CS181u Applied Logic & Automated Reasoning

Lecture 03: DPLL, Model Counting

Professor Lucas Bang Harvey Mudd College Department of Computer Science

Given a formula ϕ , is it possible to assign all variables the values T or F so that the formula evaluates to T?

$$\phi = (x \lor y) \land (\neg x \lor z) \land (z \lor w) \land x \land (y \lor v)$$

Given a formula ϕ , is it possible to assign all variables the values T or F so that the formula evaluates to T?

$$\phi = (x \lor y) \land (\neg x \lor z) \land (z \lor w) \land x \land (y \lor v)$$
$$(x, y, z, w, v) = (T, F, T, F, T)$$

Given a formula ϕ , is it possible to assign all variables the values T or F so that the formula evaluates to T?

$$\phi = (x \lor y) \land (\neg x \lor z) \land (z \lor w) \land x \land (y \lor v)$$
$$(x, y, z, w, v) = (T, F, T, F, T)$$

A satisfying assignment is called a model for ϕ .

Given a formula ϕ , is it possible to assign all variables the values T or F so that the formula evaluates to T?

$$\phi = (x \lor y) \land (\neg x \lor z) \land (z \lor w) \land x \land (y \lor v)$$
$$(x, y, z, w, v) = (T, F, T, F, T)$$

A satisfying assignment is called a model for ϕ .

A harder problem: how many models are there?

X	у	Z	W	V	ϕ
F	F	F	F	F	F
F	<i>y</i>	F :	•	F ··· TFTFTFTFTFT	F ··· FFTFTFFFTTTT
T T T T T T T T T T	F	FTTTFFFFTTT	TFFTTFFTT	\mid T \mid	F
T	F	Т	F	F	F
T	F	T	F	T	T
T	F	Т	T	F	F
T	F	Т	T	Т	T
T	Т	F	F	F	F
T	Т	F	F	T	F
T	Т	F	T	F	F
T	T	F	T	T	F
T	T	T	F	F	T
T	FFFFFTTTTTT	T	F	T	T
T	T	T	T	F	T
T	Т	T	Т	T	T

Easy! Just make the truth table and count!

X	y	z F	W	V	ϕ
F	F	F	F	F	F
	•	•	•	:	:
T	F	F	Т	\mid T \mid	F
T	F	Т	F	F	F
T	F	Т	F	Т	T
T	F	T	T	F	F
T	F	Т	Τ	T	T
T	T	F	F	F	F
T	T	F	F	T	F
T	T	F	T	F	F
T	T	F	T	T	F
T	Т	Τ	F	F	Т
T	Т	Т	F	T	T
	F F F T T T	F T T F F F T T T	T F T T F T T T	T F T F T F T F T	F F T F F T T
T	Т	Т	Т	Т	Т

Easy! Just make the truth table and count!

X	y	Z	W	V	ϕ
F	F	F	F	F	F
•	•	•	•	•	
Т	F	F	Т	Т	F
T	F	Т	F	F	F
T	F	Τ	F	Т	Т
T	F	T	T	F	F
Т	F	Т	Τ	T	T
T	Т	F	F	F	F
T	T	F	F	T	F
T	Т	F	T	F	F
T	T	F	T	$\mid T \mid$	F
Τ	Т	Т	F	F	Τ
Т	Т	Т	F	T	T
	F F F T T T T T T T	F T T F F F F T T T	T F F T T F T T T	T F T F T F T F	F F T F F F T T
T	T	T	T	Т	Т

Easy! Just make the truth table and count!

 ϕ has 6 models.

X	у	Z	W	V	ϕ
F	F	F	F	F	F
F	•	•	•	•	
T	F	F	Т	Т	F
T	F	T	F	F	F
T	F	Τ	F	Т	T
T	F	T	T	F	F
	F	Т	Τ	T	T
Τ	Т	F	F	F	F
T	T	F	F	T	F
T	Т	F	T	F	F
T	Т	F	T	$\mid T \mid$	F
T	Т	Т	F	F	Т
	F F F T T T T T T	F T T T F F F T T	F	T	F T F T F T T
T T T T T T T T T T	Т	Т	T F T T F T T T	T F T F T F T F T	T
T	Т	Т	Τ	Т	Т

Easy! Just make the truth table and count!

 ϕ has 6 models.

This approach is $\Theta(2^n)$.

Bummer!

In 1962, Davis, Putnam, Logemann, Loveland published the DPLL algorithm for Boolean SAT.

DPLL is the backbone of modern industry-grade automated theorem proving (Amazon, Microsoft, NASA, ...)

DPLL is also a model counting algorithm!

 $\{z, x, y \vee v\}$

Conclusion: ϕ is satisfiable

```
Function : DPLL(\phi)
Input : CNF formula \phi over n variables
Output : true or false, the satisfiability of F
begin
| UnitPropagate(\phi)
| if \phi has false clause then return false
| if all clauses of \phi satisfied then return true
| x \leftarrow \text{SelectBranchVariable}(\phi)
| return DPLL(\phi[x \mapsto true]) \vee DPLL(\phi[x \mapsto false])
end
```

```
Function : DPLL(\phi)
Input : CNF formula \phi over n variables
Output : true or false, the satisfiability of F
begin

UnitPropagate(\phi)

if \phi has false clause then return false

if all clauses of \phi satisfied then return true

x \leftarrow \text{SelectBranchVariable}(\phi)

return DPLL(\phi[x \mapsto true]) \vee DPLL(\phi[x \mapsto false])
end
```

```
Function : DPLL(\phi)
Input : CNF formula \phi over n variables
Output : true or false, the satisfiability of F
begin
UnitPropagate(\phi)
if \phi has false clause then return false
if all clauses of \phi satisfied then return true
x \leftarrow \text{SelectBranchVariable}(\phi)
\text{return DPLL}(\phi[x \mapsto true]) \lor \text{DPLL}(\phi[x \mapsto false])
end
```

```
Function : DPLL(\phi)
Input : CNF formula \phi over n variables
Output : true or false, the satisfiability of F
begin
| UnitPropagate(\phi)
| if \phi has false clause then return false
| if all clauses of \phi satisfied then return true
| x \leftarrow \text{SelectBranchVariable}(\phi)
| return DPLL(\phi[x \mapsto true]) \vee DPLL(\phi[x \mapsto false])
end
```

```
Function : DPLL(\phi)
Input : CNF formula \phi over n variables
Output : true or false, the satisfiability of F
begin
UnitPropagate(\phi)
if \phi has false clause then return false
if all clauses of \phi satisfied then return true
x \leftarrow \text{SelectBranchVariable}(\phi)
return DPLL(\phi[x \mapsto true]) \vee DPLL(\phi[x \mapsto false])
end
```


$$t = 4 \quad \{z, x, y \lor v\}$$

```
t = 4 \quad \{z, x, y \lor v\}
x \mapsto F
t = 3 \text{ UNSAT } \{z, F, y \lor v\}
```

$$t = 4 \quad \{z, x, y \lor v\}$$

$$x \mapsto F \quad x \mapsto T$$

$$t = 3 \quad \text{UNSAT} \quad \{z, F, y \lor v\} \quad \{z, T, y \lor v\} \quad t = 3$$

```
t = 4 \quad \{z, x, y \lor v\}
x \mapsto F \quad x \mapsto T
z \mapsto F
z \mapsto F
t = 2 \text{ UNSAT } \{F, T, y \lor v\}
```

```
t = 4 \quad \{z, x, y \lor v\}
x \mapsto F \quad x \mapsto T
z \mapsto F \quad z \mapsto T
z \mapsto F \quad z \mapsto T
t = 2 \text{ UNSAT } \{F, T, y \lor v\} \quad \{T, T, y \lor v\} \quad t = 2
```



```
t = 4 \quad \{z, x, y \lor v\}
                           x \mapsto F \ x \mapsto T
t = 3 UNSAT \{z, F, y \lor v\} \{z, T, y \lor v\} t = 3
                                    z \mapsto F \quad z \mapsto T
         t = 2 UNSAT \{F, T, y \lor v\} \{T, T, y \lor v\} t = 2
                            t = 1 \{T, T, F \vee v\}
        t = 0 UNSAT \{T, T, F \vee F\}
```

```
t = 4 \quad \{z, x, y \lor v\}
                           x \mapsto F \ x \mapsto T
t = 3 UNSAT \{z, F, y \lor v\} \{z, T, y \lor v\} t = 3
                                     z \mapsto F \quad z \mapsto T
         t = 2 UNSAT \{F, T, y \lor v\} \{T, T, y \lor v\} t = 2
                                               y \mapsto F
                            t = 1 \{T, T, F \vee v\}
                                    v \mapsto F \quad v \mapsto T
        t = 0 unsat \{T, T, F \vee F\} \{T, T, F \vee T\} sat t = 0
                                                          2^t = 1 \text{ model}
```

```
t = 4 \quad \{z, x, y \lor v\}
                         x \mapsto F \ x \mapsto T
t = 3 UNSAT \{z, F, y \lor v\} \{z, T, y \lor v\} t = 3
                                  z \mapsto F \quad z \mapsto T
        t = 2 UNSAT \{F, T, y \lor v\} \{T, T, y \lor v\} t = 2
                                           y \mapsto F \quad y \mapsto T
                          t = 1 \{T, T, F \lor v\}  \{T, T, T \lor v\} SAT t = 1
                                   2^t = 2 \text{ models}
                                 v \mapsto F \quad v \mapsto T
       t = 0 unsat \{T, T, F \vee F\} \{T, T, F \vee T\} sat t = 0
                                                     2^t = 1 \text{ model}
```

$$t = 4 \quad \{z, x, y \lor v\}$$

$$x \mapsto F \quad x \mapsto T$$

$$t = 3 \text{ UNSAT } \{z, F, y \lor v\} \quad \{z, T, y \lor v\} \quad t = 3$$

$$z \mapsto F \quad z \mapsto T$$

$$t = 2 \text{ UNSAT } \{F, T, y \lor v\} \quad \{T, T, y \lor v\} \quad t = 2$$

$$y \mapsto F \quad y \mapsto T$$

$$t = 1 \quad \{T, T, F \lor v\} \quad \{T, T, T \lor v\} \quad \text{SAT } t = 1$$

$$v \mapsto F \quad v \mapsto T$$

$$t = 0 \text{ UNSAT } \{T, T, F \lor F\} \quad \{T, T, F \lor T\} \quad \text{SAT } t = 0$$

$$2^t = 1 \quad \text{model}$$

Conclusion: ϕ has 3 models

```
Function : DPLL(\phi, t)
Input : CNF formula \phi over n variables; t \in \mathbb{Z}
Output : \#\phi, the model count of \phi
begin
UnitPropagate(\phi)
if \phi has false clause then return false
if all clauses of \phi satisfied then return true
x \leftarrow SelectBranchVariable(<math>\phi)
return DPLL(\phi[x \mapsto true], t - 1) \vee DPLL(\phi[x \mapsto true], t - 1)
end
```

```
Function : DPLL(\phi t)
Input : CNF formula \phi over n variables; t \in \mathbb{Z}
Output : \#\phi, the model count of \phi
begin
UnitPropagate(\phi)
if \phi has false clause then return false
if all clauses of \phi satisfied then return true
x \leftarrow SelectBranchVariable(<math>\phi)
return DPLL(\phi[x \mapsto true], t - 1) \vee DPLL(\phi[x \mapsto true], t - 1)
end
```

```
Function : DPLL(\phi, t)
Input : CNF formula \phi over n variables; t \in \mathbb{Z}
Output : \#\phi, the model count of \phi
begin

| UnitPropagate(\phi)
| if \phi has false clause then return false
| if all clauses of \phi satisfied then return true
| x \leftarrow SelectBranchVariable(\phi)
| return DPLL(\phi[x \mapsto true], t - 1) \vee DPLL(\phi[x \mapsto true], t - 1)
end
```

```
Function : DPLL(\phi, t)
Input : CNF formula \phi over n variables; t \in \mathbb{Z}
Output : \#\phi, the model count of \phi
begin

| UnitPropagate(\phi)
| if \phi has false clause then return 0
| if all clauses of \phi satisfied then return true
| x \leftarrow SelectBranchVariable(\phi)
| return DPLL(\phi[x \mapsto true], t - 1) \lor DPLL(\phi[x \mapsto true], t - 1)
end
```

```
Function : DPLL(\phi, t)
Input : CNF formula \phi over n variables; t \in \mathbb{Z}
Output : \#\phi, the model count of \phi
begin

| UnitPropagate(\phi)
| if \phi has false clause then return 0
| if all clauses of \phi satisfied then return true
| x \leftarrow SelectBranchVariable(\phi)
| return DPLL(\phi[x \mapsto true], t - 1) \lor DPLL(\phi[x \mapsto true], t - 1)
end
```

```
Function : DPLL(\phi, t)
Input : CNF formula \phi over n variables; t \in \mathbb{Z}
Output : \#\phi, the model count of \phi
begin

| UnitPropagate(\phi)
| if \phi has false clause then return 0
| if all clauses of \phi satisfied then return 2^t
| x \leftarrow \text{SelectBranchVariable}(\phi)
| return DPLL(\phi[x \mapsto true], t - 1) \vee DPLL(\phi[x \mapsto true], t - 1)
end
```

```
Function : DPLL(\phi, t)
Input : CNF formula \phi over n variables; t \in \mathbb{Z}
Output : \#\phi, the model count of \phi
begin
| UnitPropagate(\phi)
| if \phi has false clause then return 0
| if all clauses of \phi satisfied then return 2^t
| x \leftarrow \text{SelectBranchVariable}(\phi)
| return DPLL(\phi[x \mapsto true], t - 1) + DPLL(\phi[x \mapsto true], t - 1)
end
```

The Big Idea

DPLL → #DPLL

Satifiability Counting Algorithm

$$\forall i : 0 \le a[i] < k \land 0 \le b[i] < k$$

$$\forall i : a[i] \neq b[i]$$

$$length(a) = n$$

$$length(b) = n$$

$$\forall i: 0 \le a[i] < k \land 0 \le b[i] < k$$

 $\forall i: a[i] \ne b[i]$

 $length(a) = n$

 $length(b) = n$

First, is this SAT?

$$k = 4, n = 5, a = [1, 1, 1, 1, 1], b = [0, 2, 3, 2, 0]$$

$$\forall i : 0 \le a[i] < k \land 0 \le b[i] < k$$

$$\forall i : a[i] \neq b[i]$$

$$length(a) = n$$

$$length(b) = n$$

First, is this SAT?

$$k = 4, n = 5, a = [1, 1, 1, 1, 1], b = [0, 2, 3, 2, 0]$$

For a given k and n, how many models?

$$\#\phi(k,n) = (k^2 - k)^n$$

$$\forall i: 0 \le a[i] < k$$

$$\forall i, j: i < j \Rightarrow a[i] < a[j]$$

$$length(a) = n$$

$$length(b) = n$$

$$\forall i: 0 \leq a[i] < k$$

$$\forall i: i < pivot \Rightarrow a[i] < a[pivot]$$

$$\forall i: i > pivot \Rightarrow a[i] > a[pivot]$$

$$\text{length}(a) = n$$

$$= \text{quicksort partitioning}$$

We could do ad-hoc analysis for every constraint, but we want an algorithm!

The SAT algorithm for arrays

 $\phi \in Array Theory$

The SAT algorithm for arrays

```
\phi \in Array Theory
\downarrow T_1 : A \rightarrow UIF
\downarrow \phi' \in UIF Theory
```

The SAT algorithm for arrays

```
\phi \in Array Theory

T_1 : A \rightarrow UIF

\phi' \in UIF Theory

T_2 : UIF \rightarrow EL

\phi'' \in Equality Logic
```

The SAT algorithm for arrays

The SAT algorithm for arrays

 $\phi \in \text{Array Theory}$ $\downarrow T_1 : A \to UIF$ $\phi' \in \text{UIF Theory}$ $\downarrow T_2 : UIF \to EL$ $\downarrow \phi'' \in \text{Equality Logic}$

There is a SAT algorithm for this!

(Proposed) counting algorithm for arrays

 $\phi \in Array Theory$

The SAT algorithm for arrays

$$\phi \in \text{Array Theory}$$
 $T_1: A \to UIF$
 $\phi' \in \text{UIF Theory}$
 $T_2: UIF \to EL$
 $\phi'' \in \text{Equality Logic}$

There is a SAT algorithm for this!

(Proposed) counting algorithm for arrays

$$\phi \in \text{Array Theory}$$

$$\downarrow T_1' : A \to UIF$$

$$\phi' \in \text{UIF Theory}$$

The SAT algorithm for arrays

$$\phi \in \text{Array Theory}$$
 $T_1 : A \to UIF$
 $\phi' \in \text{UIF Theory}$
 $T_2 : UIF \to EL$
 $\phi'' \in \text{Equality Logic}$

There is a SAT algorithm for this!

(Proposed) counting algorithm for arrays

$$\phi \in \text{Array Theory}$$

$$\downarrow T_1' : A \to UIF$$

$$\phi' \in \text{UIF Theory}$$

$$\downarrow T_2' : UIF \to EL$$

$$\phi'' \in \text{Equality Logic}$$

The SAT algorithm for arrays

$$\phi \in \text{Array Theory}$$
 $\downarrow T_1 : A \to UIF$
 $\phi' \in \text{UIF Theory}$
 $\downarrow T_2 : UIF \to EL$
 $\downarrow \phi'' \in \text{Equality Logic}$

There is a SAT algorithm for this!

(Proposed) counting algorithm for arrays

The SAT algorithm for arrays

$$\phi \in \text{Array Theory}$$
 $T_1 : A \to UIF$
 $\phi' \in \text{UIF Theory}$
 $T_2 : UIF \to EL$
 $\phi'' \in \text{Equality Logic}$

There is a SAT algorithm for this!

(Proposed) counting algorithm for arrays

There is a poly-time counting algorithm for this!

Model Counting Overview

Satifiability Counting Algorithm

DPLL → #DPLL

Model Counting Overview