

PES UNIVERSITY

(Established under Karnataka Act No. 16 of 2013) 100-ft Ring Road, Bengaluru – 560 085, Karnataka,India

Capstone Project Report (Phase 2)
On

Deep fake Image Detection Using GANception

Submitted by

SHRINIVAS S PATIL – (PES1PG23CA137)

March 2025 - June 2025

Under the guidance of

Mr. Santosh S Katti
Assistant Professor
Department Of Computer Applications,
PESU, Bengaluru - 560085

FACULTY OF ENGINEERING DEPARTMENT OF COMPUTER APPLICATIONS PROGRAM – MASTER OF COMPUTER APPLICATIONS

CERTIFICATE

This is to certify that the project entitled

Deep Fake Image Detection Using GANception

is a bonafide work carried out by

in partial fulfillment for the completion of Capstone Project, Phase-1 work in the Program of Study MCA under rules and regulations of PES University, Bengaluru during the period Nov. 2024 – Feb 2025. The project report has been approved as it satisfies the academic requirements of 3rd semester MCA.

Internal Guide

Mr. Santosh S Katti
Assistant Professor
Department of Computer
Applications
PES University
Bengaluru - 560085

Chairperson

Dr. Veena S
Department of Computer Applications
PES University
Bengaluru - 560085

Dean- Faculty of Engineering & Technology

PES University Bengaluru - 560085

DECLARATION

I, SHRINIVAS S PATIL, bearing PES1PG23CA137 hereby declare that the Capstone project phase-1 entitled, *Deep Fake Image Detection Using GANception*, is an original work done by me under the guidance of SANTOSH S KATTI, Designation, PES University, and is being submitted in partial fulfillment of the requirements for completion of 3rd Semester course in the Program of Study MCA. All corrections/suggestions indicated for internal assessment have been incorporated in the report.

PLACE: DATE:

SHRINIVAS S PATIL

ACKNOWLEDGEMENT

I take great pleasure in expressing my sincere gratitude to all those who have guided me and supported me to successfully complete this project.

I express my sincere gratitude to the Vice Chancellor of PES University, **Dr. J Suryaprasad** and Chairperson **Dr. Veena S**, who gave me an opportunity to go ahead with this project.

I am grateful to my guide, **Mr. Santosh S Katti,** Assistant Professor, Department of Computer Applications, who has been my source of inspiration and provided me with guidance, encouragement and support, during the course of the project.

SHRINIVAS S PATIL

ABSTRACT

In its application, this will involve creating an advanced deep fake image detector via the deep neural network (DNNs). The system will force the use of complex machine learning algorithms, which will be excellent to detect real and manipulated images on different platforms, particularly when deep fakes present a high risk in social media.

The use of detection methods based on GAN is decisive because these methods examine intrinsic artifacts and contradictions that are typically contained in deep fake images. Some of these artifacts are abnormal textures, unnatural facial expression, consistency in lighting or shadowing. The capacity of the system to signal manipulated content is therefore mile high when such slight hints are picked.

Table of Contents

ABSTRACT

CHAPTER 1 INTRODUCTION	.1
1.1 PROJECT DISCRIPTION	1
1.2 PROBLEM DEFINITION	1
1.3 PROPOSED SOLUTION	2
1.4 PURPOSE	2
1.5 SCOPE	3
CHAPTER 2 LITERATURE SURVEY	4
2.1 DOMAIN STUDY	4
2.2 RELATED WORK	4
CHAPTER 3 HARDWARE AND SOFTWARE REQUIREMENTS	.9
3.1 HARDWARE REQUIREMENTS	9
3.2 SOFTWARE REQUIREMENTS	.9
CHAPTER 4 SOFTWARE REQUIREMENT SPECIFICATION	l1
4.1 FUNCTIONAL REQUIREMENTS	l1
4.2 NON-FUNCTIONAL REQUIREMENTS	L 2
CHAPTER 5 SYSTEM DESIGN1	.4
5.1 ARCHITECTURE DIAGRAM1	4
5.2 CONTEXT FLOW DIAGRAM	L6
CHAPTER 6 DETAILED DESIGN1	.7
6.1 USE CASE DIAGRAM1	7
6.2 SEQUENCE DIAGRAM	L9
6.3 ACTIVITY DIAGRAM	20
6.4 DATABASE DESIGN2	21

CHAPTER 7 METHODOLOGY

7.1 REAL TIME & BATCH
7.2 IMAGE PREPROCESSING
7.3 ARTIFACT DETECTION
7.4 CONFIDENCE SCORE REPORT GENERATION
CHAPTER 8 PSEUDOCODE & IMPLEMENTATION (SCREENSHOTS)
8.1 LOGIN REGISTRATION22
8.2 REALTIME DETECTION
8.3 BATCH DETECTION
8.4 ARTIFACT DETECTION
8.5 REPORT GENERATION
8.6 CONFIDENCE SCORE
8.7 LOGIN PAGE
8.8 REGISTER PAGE
8.9 REAL TIME DETECTION
8.10 ARTIFACT DETECTION
CHAPTER 9 SOFTWARE TESTING
9.1 MANUAL TEST CASES
CHAPTER 10 CONCLUSION
CHAPTER 11 FUTURE ENHANCEMENT
APPENDIX A BIBLIOGRAPHY 41
APPENDIX B USER MANUAL
APPENDIX C PLAGIARIASM REPORT
APPENDIX D POSTER

LIST OF FIGURES

Figure	Title	Page
5.1	Architecture Diagram	15
5.2	Context Diagram	17
6.1	Use Case Diagram	18
7.1	Login page	29
7.2	Register Page	30
7.3	Home Page	31
7.4	Real Time detection	33
7.5	Batch Image detection	36
7.6	Artifact detection	34

LIST OF TABLES

Figure	Title	Page
2.1	Comparison study of the existing system	6
3.1	Hardware requirements	10
3.2	Software requirements	10
8.1	Test case results for real time	35
8.2	Test case results forBatch image	35
8.3	Test case results for Artifact	36