Projection onto nonnegative orthant, rectangular box and polyhedron, and

- alternating projection algorithm
- active set method
- interior point method
- ▶ dual proximal gradient method.

Andersen Ang

Mathématique et recherche opérationnelle, UMONS, Belgium manshun.ang@umons.ac.be Homepage: angms.science

First draft: March 19, 2020 Last update: December 23, 2020

Projection onto nonnegative orthant

▶ Given $\mathbf{y} \in \mathbb{R}^n$, the Euclidean projection of \mathbf{y} onto a (non-empty and compact)set $S \subseteq \mathbb{R}^n$, denoted as $P_S(\mathbf{y})$, is a function $\mathbb{R}^n \to \mathbb{R}^n$ that output a point $\hat{\mathbf{x}}$ by solving the following optimization problem

$$\hat{\mathbf{x}} = P_S(\mathbf{y}) = \underset{\mathbf{x} \in S}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{y}\|_2.$$

Such optimization always has a unique solution, details here.

▶ Question What if S is the nonnegative orthant?

$$P_S(\mathbf{y}) = \underset{\mathbf{x}>0}{\operatorname{argmin}} \ \|\mathbf{x} - \mathbf{y}\|_2,$$

where $x \ge 0$ means x is inside the set

Nonnegative orthant
$$S = \{ \mathbf{x} \mid x_i \geq 0, \forall i \}.$$

▶ This problem has a trivial solution $\hat{\mathbf{x}} = [\mathbf{y}]_+$, where $\hat{x}_i = [y_i]_+$ with $[\cdot]_+ = \max\{\cdot, 0\}$.

$$[\mathbf{y}]_+$$
 is the solution of $\underset{\mathbf{x}>0}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{y}\|_2$

► Among all the feasible value in the nonnegative orthant, 0 is the closest one to negative value.

► An example

The orange point $\mathbf{y} = [2, -2]^{\mathsf{T}}$ is projected to the blue point [2, 0] as the blue point is where the blue circle just touch the nonnegative orthant (the region covered by both red and blue color). Here the radius of the circle (=2) is the optimal cost value.

Projection onto a box

► A generalization of the nonnegativity is the box constraint

$$P_S(\mathbf{y}) = \underset{\mathbf{1} \le \mathbf{x} \le \mathbf{u}}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{y}\|_2,$$

with the close form solution

$$[P_S(\mathbf{y})]_i = \begin{cases} l_i & y_i \le l_i \\ y_i & l_i < y_i < u_i \\ u_i & y_i \ge u_i \end{cases}$$

An example $l_i = 1, u_i = 2$ and a point at (5,5).

Projection onto a polyhedron

► Projection onto nonnegative orthant and projection onto a box are special cases to projection onto a polyhedron

$$\mbox{Polyhedron} \ \ S = \Big\{ \mathbf{x} \ | \ \mathbf{A}\mathbf{x} \leq \mathbf{b} \Big\}.$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ is full rank, and $\mathbf{b} \in \mathbb{R}^m$.

Note that it does not matter $Ax \ge b$ or $Ax \le b$: we can absorb the negative sign into A or b and flip the inequality sign.

Example 1: m=n=2

orange point $\mathbf{y} = [2, -2]$ blue point $\hat{\mathbf{x}} = [12/5, -6/5]$ Red region $x + 2y \ge 0$ Blue region $2x + y \ge 0$ \mathbf{a}_1 [2, 1] \mathbf{a}_2 [1, 2] $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

- ightharpoonup fulfill $Ax \ge b$ for the first row of A, but not the second row.
- ► The optimal cost value $=\frac{4}{5}$, which is the distance between $\hat{\mathbf{x}}$ and \mathbf{y} , and it is also the radius of the blue circle.
- ightharpoonup We can see in this example that, projection to nonnegative orthant is simply the vector ${\bf a}_1, {\bf a}_2$ are rotated to the direction of the standard basis.

Example 2 : m = 3, n = 2

orange point
$$\mathbf{y} = [2, -2]$$
 blue point $\hat{\mathbf{x}} = [2, -1]$ Red region $x + 2y \ge 0$ Blue region $2x + y \ge 0$ Green region $x - y \le 3$ $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ -1 & 1 \end{bmatrix}$ $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}$

▶ The boundary of the feasible region is highlighted in yellow.

Solving projection onto polyhedron

► Unlike the projection onto nonnegative orthant or projection onto a box, the problem

$$\underset{\mathbf{A}\mathbf{x}\leq\mathbf{b}}{\operatorname{argmin}} \|\mathbf{x}-\mathbf{y}\|_2,$$

has no simple close form solution in general.

- ▶ To solve it, we use an iterative optimization algorithms, such as
 - 1. Alternating projection algorithm
 - 2. Active Set methods
 - 3. Interior point methods
 - 4. (Dual) Proximal gradient method
 - 5. Douglas-Rachford splitting algorithm on the dual

We talk very briefly on the first four approaches. We do not talk about approach 5 here.

Alternating projection algorithm

▶ The constraint $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ describe a (non-empty) polyhedron as an intersection of m inequality constraint, each of the constraint is a problem pf projection onto halfspace

$$\underset{\langle \mathbf{a}, \mathbf{x} \rangle \le b}{\operatorname{argmin}} \ \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2,$$

with the close form solution as

$$\hat{\mathbf{x}} = \begin{cases} \mathbf{y} & \langle \mathbf{a}, \mathbf{x} \rangle \le b \\ \mathbf{y} - \frac{\langle \mathbf{a}, \mathbf{x} \rangle - b}{\|\mathbf{a}\|_2^2} \mathbf{a} & \langle \mathbf{a}, \mathbf{x} \rangle > b \end{cases}$$

- Alternating projection algorithm: cycle through the projection onto halfspace from i=1 to r and repeats a few times gives the projection onto $\mathbf{A}\mathbf{x} < \mathbf{b}$.
- ▶ Drawback of this approach: if *m* is large, the cycle takes time.

Active set

- ► As the cost function is strongly convex and the constraint set is non-empty and compact (and also convex), so there exists a unique global minimizer.
- Assume we know beforehand that, the set i of the solution such that equality is satisfied in the i^{th} constraint. Mathematically¹, $\mathcal{I}: \{i \in [m] \mid \langle \mathbf{a}^i, \mathbf{x} \rangle = b_i \}$. Let $\mathbf{A}_{\mathcal{I}}$ be the submatrix of \mathbf{A} with rows in \mathcal{I} . Then we can solve the following problem instead

$$\underset{\mathbf{x}}{\operatorname{argmin}} \ \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \ \text{s.t.} \ \mathbf{A}_{\mathcal{I}} \mathbf{x} = \mathbf{b}_{\mathcal{I}}.$$

The optimality conditions can be expressed as a matrix-vector equation as

$$\begin{bmatrix} \mathbf{I} & \mathbf{A}_{\mathcal{I}}^{\top} \\ \mathbf{A}_{\mathcal{I}} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{b}_{\mathcal{I}} \end{bmatrix}$$

▶ The idea of active set method is to construct a set \mathcal{J} to approximate \mathcal{I} . In each iteration, it solves the above equation, and correct \mathcal{J} . Eventually \mathcal{J} approach to \mathcal{I} and the sol. of the matrix-vector equation gives the sol. of the original problem.

 ${}^{1}[n]$ means the set $\{1,2,\cdots,n\}$ and \mathbf{a}^{i} is the *i*-th row of \mathbf{A}

Interior point method

- ▶ First, transform $Ax \le b$ to Ax + s = b, where $s \ge 0$ is the slack variable.
- \blacktriangleright Construct a log barrier on s with parameter $\mu>0,$ and put it into the cost function, we obtain the typical problem setup in the interior point method

$$\underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} - \mu \sum_{i} \log |s_{i}| \text{ s.t. } \mathbf{A}\mathbf{x} + \mathbf{s} = \mathbf{b}.$$

This problem is convex.

- ▶ Starting from (\mathbf{x}_0, μ_0) , compute an approximate solution \mathbf{x} , then decrease μ . As $\mu \to 0$, $\mathbf{x}_k \to \mathbf{x}^*$.
- Drawback of interior point method: non-scalable, it cannot handle problem with very large size.
 11 / 13

(Dual) proximal gradient method

► The dual of the problem is

$$\min_{\mathbf{z}} \frac{1}{2} \| \mathbf{A}^{\top} \mathbf{z} - \mathbf{A}^{\top} \mathbf{y} \|_{2}^{2} + \langle \mathbf{b}, \mathbf{z} \rangle \text{ s.t. } \mathbf{z} \ge 0$$

The key is that nonnegative constraint is easy to handle by proximal operator, so you keep the nonnegative constraint

- ▶ Proximal update of this problem is simple: the cost function is a quadratic function. The standard gradient descent approach works here: take the gradient, take the step size as $\frac{1}{L}$ for L as the Lipschitz constant of the gradient, perform update, project. See here for details of (unaccelerated) proximal gradient.
- ► In fact, dual proximal gradient method in this case is exactly the dual projected gradient method.
- Nesterov's acceleration can be used.
- ► See here for the discussion of dual proximal gradient method, and also how the dual problem is constructed.

Last page - summary

Discussed: solving projection onto a polyhedron

- ightharpoonup Polyhedron set : $Ax \le b$, A full rank
- ▶ Brief overview of solving projection problem by alternating projection algorithm, active set method, interior point method and dual proximal gradient method.
- Projection onto nonnegative orthant and box as special cases with simple close form solution.

Not discussed

- ► If A is not full rank.
- ► Details of the methods.
- Solving the projection problem using Douglas-Rachford splitting.

End of document