Exercise 1

1.1 - 15

1.1-15-(a). Which data set(s) will produce the most number of frequent itemsets?

Answer:

The E data set produces more frequent item sets, it has more frequent purchases with the items.

1.1-15-(b).. Which data set(s) will produce the fewest number of frequent itemsets?

Answer:

The dataset D has few frequent item sets, in that dataset items are not occurring oftenly.

1.1-15-(c).. Which data set(s) will produce the longest frequent itemset?

Answer:

The dataset E has the longest frequent itemset, in here the items are more often occurred in many purchases.

1.1-15-(d).. Which data set(s) will produce frequent itemsets with highest maximum support?

Answer:

The B dataset, the support is highest items purchased together in a single transaction in an dataset.

1.1-15-(e).. Which data set(s) will produce frequent itemsets containing items with wide-varying support levels (i.e., items with mixed support, ranging from less than 20% to more than 70%).

Answer:

The dataset E. each item has different support levels at 900.

1.2-1-(a) Using minsup = 3/8, show how the Apriori algorithm enumerates all frequent patterns from this dataset

Itemset
ABCD
ACDF
ACDEG
ABDF
BCG
DFG
ABG
CDFG

Answer:

	Α	В	С	D	Е	F	G
T1	1	1	1	1	0	0	0
T2	1	0	1	1	0	1	0
T3	1	0	1	1	1	0	1
T4	1	1	0	1	0	1	0
T5	0	1	1	0	0	0	1
T6	0	0	0	1	0	1	1
T7	1	1	0	0	0	0	1
T8	0	0	1	1	0	1	1

Given minimum support = 3

Step1:

Count of each candidate

Itemset	Support, Count
A	5
В	4
С	5
D	6
Е	1
F	4
G	5

Here the itemset E will be removed, its considered as infrequent

Step2:

Now compare the candidate support with the minimum support count

The E has the less support than the minimum support

= support(E) < minimum support

$$= 1 < 3$$

Now this is considered as an infrequent item.

After removing E

Itemset	Support, count
A	5
В	4
С	5
D	6
F	4
G	5

Table L1

Step 3:
To know the set of two frequent itemset, we use

Itemset	Support, count
{A,B}	3
{A,C}	3
{A.D}	4
{A,F}	2
{A,G}	2
{B,C}	2
{B,D}	2
{B,F}	1
{B,G}	2
{C,D}	4
{C,F}	2
{C,G}	3
{D,F}	4
{D,G}	3
{F,G}	2

Now check support >= minimum support then, the itemsets with less support will be infrequent.

Here, these itemsets $\{A,F\},\{A,G\},\{B,C\},\{B,D\},\{B,F\},\{B,G\},\{C,F\},\{D,F\},\{F,G\}$ are infrequent

After removing the infrequent itemsets,

Itemset	Support, Count
{A,B}	3
{A,C}	3
{A,D}	4
{C,D}	4
{C,G}	3
{D,F}	4
{D,G}	3

The frequent itemset final tree

Step 4:

Now we will join to generate the candidate set of 3 itemsets.

Itemset	Support, Count
{A,B,C}	1
$\{A,B,D\}$	2
{A,C,D}	3
{C,G,D}	2

Now check support >= minimum support then, the itemsets with less support will be infrequent.

In here these $\{A,B,C\},\{A,B,D\},\{C,D,G\}$ are infrequernt.

The final tree is

Note: The dark nodes are having less support than the minimum support.

The item sets with minus=3.

Sup	itemsets
6	D
5	A, C, G
4	B, F, AD, CD, DF
3	AB, AC, CG, DG, ACD

1.2-4. Given the database in Table 8.4. Show all rules that one can generate from the set ABE.

Answer:

	Α	В	С	D	Е
T1	1	0	1	1	0
T2	0	1	1	0	1
T3	1	1	1	0	1
T4	0	1	0	1	1
T5	1	1	1	0	1
T6	1	1	1	1	0

Itemset	Support count
ABE	2
AB	3
AE	2
BE	4
Α	4
В	5
E	4

taking a frequent itemset ABE, the rules can be:

$$Confidence(X->Y) = \frac{Support(XUY)}{Support(X)}$$

$${AB} \rightarrow E = \frac{Sup(ABE)}{Sup(AB)} = \frac{2}{3} = 0.66 = 66\%$$

$$\{AE\} -> B = \frac{Sup(ABE)}{Sup(AE)} = \frac{2}{2} = 1 = 100\%$$

{BE} -> A =
$$\frac{\text{Sup(ABE)}}{\text{Sup(BE)}} = \frac{1}{2} = 0.5 = 50\%$$

$$\{A\} \rightarrow BE = \frac{Sup(ABE)}{Sup(A)} = \frac{1}{2} = 0.5 = 50\%$$

{B} -> AE =
$$\frac{\text{Sup(ABE)}}{\text{Sup(B)}} = \frac{2}{5} = 0.4 = 40\%$$

$$\{E\} \rightarrow AB = \frac{Sup(ABE)}{Sup(E)} = \frac{2}{3} = 0.5 = 50\%$$