

Motor Imagery BCI for Virtual Hand Control

สิปปนนท์ สรณ์คุณแก้ว

โครงงานนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร
ปริญญาวิศวกรรมศาสตร์บัณฑิต สาขาวิชาวิศวกรรมหุ่นยนต์และระบบอัตโนมัติ
สถาบันวิทยาการหุ่นยนต์ภาคสนาม
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
ปีการศึกษา 2567

สารบัญ

บทที่ 1 บทนำ	3
1.1 ที่มา ความสำคัญ	3
1.2 ประโยคปัญหางานวิจัย (Problem Statement)	3
1.3 ผลผลิตและผลลัพธ์ (Outputs and Outcomes) ผลผลิต ผลลัพธ์	3 3 3
1.4 ความต้องการของระบบ (Requirements)	3
1.5 ขอบเขตของงานวิจัย (Scopes)	3
1.6 ข้อกำหนดของงานวิจัย (Assumptions)	3
1.7 ขั้นตอนการดำเนินงาน	4
บทที่ 2 ทฤษฎี/งานวิจัย/การศึกษาที่เกี่ยวข้อง	5
2.1[หัวข้อ] 2.1.1 [หัวข้อย่อย]	5
2.2[หัวข้อ]	6
บทที่ 3 ระเบียบวิธีวิจัย	7
3.1[หัวข้อ] 3.1.1 [หัวข้อย่อย]	7
3.2[หัวข้อ]	7
บทที่ 4 การทดลองและผลการทดลอง/วิจัย	8
4.1[หัวข้อ] 4.1.1 [หัวข้อย่อย]	8
4.2[หัวข้อ]	8
บทที่ 5 บทสรุป	9
5.1[หัวข้อ] 5.1.1 [หัวข้อย่อย]	9
5.2[หัวข้อ]	9
เอกสารอ้างอิง	10

บทที่ 1 บทน้ำ

1.1 ที่มา ความสำคัญ

ปัจจุบันมความก้าวหน้าทางเทคโนโลยีมากขึ้นโดยเทคโนโลยีหนึ่งที่น่าสนใจคือการทำ Brain-Computer Interface ซึ่งช่วยให้ สามารถที่จะส่งสัญญาณคลื่นสมองให้มีปฏิสัมพันธ์กับอุปกรณ์ภายนอกได้ และเทคโนโลยีนี้สามารถที่จะพัฒนาต่อยอดเพื่อ ช่วยเหลือผู้ป่วยที่ไม่สามารถขยับร่างกายได้สามารถที่จะควบคุมหรือมีปฏิสัมพันธ์กับสิ่งภายนอกได้ผ่านการถ่ายทอดคลื่น สมองจากเทคโนโลยี BCI

1.2 ประโยคปัญหางานวิจัย (Problem Statement)

ผู้ป่วยบริเวณทั่วโลกโดยส่วนใหญ่ที่เกิดจากโรคหรืออาการบาดเจ็บที่ทำให้ไม่สามารถขยับร่างกายช่วงแขนหรือขาได้ แต่ สมองของผู้ป่วยยังคงสามารถทำงานได้ตามปกติโดยจะนำสัญญาณคลื่นสมองของผู้ป่วยมาสร้างกระบวณการบางอย่างที่ ช่วยให้ผู้ป่วยสามารถได้โดยไม่พึ่งร่างกายในส่วนที่เสียหายจากโรคหรืออาการบาดเจ็บ

1.3 ผลผลิตและผลลัพธ์ (Outputs and Outcomes)

ผลผลิต

1. ระบบการเชื่อมต่อและควบคุมระหว่างอุปกรณ์ EEG และสั่งให้กำแบมือหุ่นยนต์ที่มีมอเตอร์เพียง 1 ตัว

ผลลัพธ์

1. สามารถช่วยให้ผู้ป่วยที่ไม่สามารถขยับได้มีปฏิสัมพันธ์ได้อีกครั้งผ่านการถ่ายทอดคลื่นสมอง

1.4 ความต้องการของระบบ (Requirements)

2. อุปกรณ์, สัญญาณ

1.5 ขอบเขตของงานวิจัย (Scopes)

1. หุ่นยนต์หรืออุปกรณ์ที่จะควบคุมจะใช้เพียงมอเตอร์แค่ 1 ตัว หรืออีกอย่างคือจะทำได้แค่การกำแบ

1.6 ข้อกำหนดของงานวิจัย (Assumptions)

1.

1.7 ขั้นตอนการดำเนินงาน (ตอนนี้เป็นคร่าว ๆ)

จาก TASK ที่จะทำคือการกำแบของมือหุ่นยนต์แบบมอเตอร์ 1 ตัว มีสิ่งที่ต้องรู้/ทำดังนี้

- ศึกษาว่า MI BCI คืออะไร ทำงานยังไง
- ศึกษาว่าปัญหาที่แท้จริงในการควบคุมมือหุ่นยนต์ให้กำแบได้คืออะไร เช่น Noise มาก หรือปัญหาของอุปกรณ์เป็นต้น
- เข้าใจ Process ของการทำ MI
- 1. Study BCI + Research (Survey and involved research)
- 2. Create Environment to

บทที่ 2 การทบทวนวรรณกรรม

2.1 A survey on robots controlled by motor imagery brain-computer

Brain-Computer Interface (BCI) เปรียบเสมือนการสร้างสะพานเชื่อมต่อแลกเปลี่ยนข้อมูลทำให้สมองสามารถ ตอบสนองกับสิ่งแวดล้อมภายนอกได้โดยปราศจากการใช้ระบบประสาทส่วนปลายและการขยับของร่างกาย โดย BCI จะ ทำหน้าที่ถอดรหัสสัญญาณคลื่นสมองและตีความเพื่อสร้างการเชื่อมต่อของสมองมนุษย์กับอุปกรณ์ภายนอก โดยแบ่งเป็น 2 ประเภทตามแหล่งที่มาของสัญญาณได้แก่

- 1). Exogenous BCI อาศัยตัวแปรภายนอกให้ผู้ทดสอบต้องทำการตอบสนองต่อสิ่งเร้าเพื่อกระตุ้นให้สมองสร้าง รูปแบบของคลื่นสมองที่สามารถนำไปถอดรหัสได้ โดยมีรูปแบบเช่น SSVEP และ P300 ที่ใช้การกระพริบของแสงด้วย ความถี่เป็นต้น
- 2). Endogenous BCI การใช้กระบวณการทำงานของสมองโดยไม่ใช้สิ่งเร้า หรืออุปกรณ์ภายนอกโดยใช้การ จินตนาการถึงการเคลื่อนไหวของร่างกาย เช่น จินตนาการว่ากำลังกำมือ หลักการของ Endogenous BCI เรียกอีกชื่อหนึ่ง ว่า Active BCI (Motor Imagery) ประกอบไปด้วยขั้นตอนดังนี้

รูปที่ 1 ภาพรวมของการทำระบบควบคุม MI-BCI

2.1.1 Signal processing algorithms

ในขั้นตอนแรกเป็นการนำสัญญาณคลื่นสมองที่เก็บได้จาก Electroencephalography (EEG) มาประมวลผล สัญญาณเบื้องต้นเพื่อแยกข้อมูลและลดสัญญาณรบกวนจากภายนอก จากนั้นนำไปทำในกระบวนการดังต่อไปนี้

1). Feature Extractions

เป็นกระบวณการสำคัญในการแปลงสัญญาณที่ทำการ preprocessing แล้วให้เป็น Feature vectors และกำจัด ข้อมูลที่ไม่จำเป็นเน้นความสำคัญไปที่ข้อมูลเชิงความถี่ (Frequency Domain) และข้อมูลเชิงพื้นที่ (Spatial Information) โดยทั่วไปแล้วจะใช้วิธีดังนี้

- Fourier Transformation รูปแบบ Fast หรือ Discreate
- ➤ Wavelet Transformation

- Auto-regression Model (AR)
- Common spatial pattern (CSP)
- > Independent component analysis Algorithm
- Principle component analysis
- 2). Classification methods

เป็นขั้นตอนการดึง Feature และแยกสัญญาณสมองให้สามารถเป็นคำสั่งควบคุมอุปกรณ์ต่าง ๆ ได้อย่างแม่นยำ โดยมีวิธีที่ใช้กันทั่วไปคือ การใช้ Machine Learning และ Deep Learning

	Linear Discriminant Analysis (LDA)
Machine	Support Vector Machine (SVM)
Learning	K-Nearest Neighbors (KNN)
	Random Forest (RF)
	Artificial Neural Network (ANN)
Deep	Convolutional Neural Networks (CNNs)
Learning	Recurrent Neural Networks (RNNs)
	Long Short-Term Memory (LSTM)

ตารางที่ 1 ตารางแสดงผลตัวอย่าง Classification methods ที่ใช้

2.2 A Step-by-Step Tutorial for a Motor Imagery–Based BCIA Step

- 2.1.1 [หัวข้อย่อย]
 - 1. เนื้อหา
 - 2. เนื้อหา

บทที่ 3 ระเบียบวิธีวิจัย

[เนื้อหา]

3.1[หัวข้อ]

[เนื้อหา]

- 3.1.1 [หัวข้อย่อย]
 - 1. เนื้อหา
 - 2. เนื้อหา

3.2[หัวข้อ]

บทที่ 4 การทดลองและผลการทดลอง/วิจัย

[เนื้อหา]

4.1[หัวข้อ]

[เนื้อหา]

4.1.1 [หัวข้อย่อย]

- 1. เนื้อหา
- 2. เนื้อหา

4.2[หัวข้อ]

บทที่ 5 บทสรุป

[เนื้อหา]

5.1[หัวข้อ]

[เนื้อหา]

5.1.1 [หัวข้อย่อย]

- 1. เนื้อหา
- 2. เนื้อหา

5.2[หัวข้อ]

เอกสารอ้างอิง