HOMEWORK 2 Due October 15

You can write your answers in English or in French, choose what works best for you.

We fix an integer $k \geq 3$.

Let Γ be a congruence subgroup. We define

$$\Gamma_{\infty}^{+} = \Gamma \cap \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, t \in \mathbf{Z} \right\}$$

and

$$\Gamma_{\infty} = \Gamma \cap \{\pm \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, t \in \mathbf{Z}\}$$

- 1. Show that $[\Gamma_{\infty}:\Gamma_{\infty}^{+}]=1$ or 2.
- **2.** Let N > 2. Show that $[\Gamma_1(N)_{\infty} : \Gamma_1(N)_{\infty}^+] = 1$ and $[\Gamma_0(N)_{\infty} : \Gamma_0(N)_{\infty}^+] = 2$.
- **3.** Assume that k is odd and $[\Gamma_{\infty} : \Gamma_{\infty}^{+}] = 2$. Show that any $f \in M_{k}(\Gamma)$ satisfies $f(\infty) = 0$.
- **4.** Show that the map $\Gamma_{\infty}^+ \backslash \Gamma \to \{(c,d) \in \mathbf{Z}^2, (c,d) \text{ coprime}\}$, sending a matrix to its second row, is well-defined and injective.

Recall that we have proved in the lecture: for all $k \geq 3$, the series $\sum_{(c,d) \in \mathbf{Z}^2 \setminus (0,0)} \frac{1}{(cz+d)^k}$ converges normally on any subset of \mathcal{H} of the form $X_{A,B} = \{-A \leq x \leq A, B < y\}$ for A, B > 0.

We define

$$G_{k,\Gamma,\infty}(z) = \sum_{g \in \Gamma_{\infty}^+ \backslash \Gamma} j(g,z)^{-k}$$

so that the series converges normally on any $X_{A,B}$, and the sum is holomorphic.

- **5.** Show that $G_{k,\Gamma,\infty}$ is a weakly modular form of weight k.
- **6.** Assume that k is odd and $[\Gamma_{\infty} : \Gamma_{\infty}^{+}] = 2$. Show that $G_{k,\Gamma,\infty} = 0$.
- **7.** Show that $G_{k,\Gamma,\infty}$ is bounded at infinity.

Compute $G_{k,\Gamma,\infty}$ (the result depends on the parity of k and the value of $[\Gamma_{\infty}:\Gamma_{\infty}^+]$).

- **8.** Let c be a cusp of Γ that is not ∞ , t a representative of c, and $g \in \mathrm{SL}_2(\mathbf{Z})$ such that $g\infty = t$. Show that $G_{k,\Gamma,\infty}|_k g$ is bounded at infinity and that $(G_{k,\Gamma,\infty}|_k g)(\infty) = 0$.
 - **9.** Deduce that $G_{k,\Gamma,\infty} \in M_k(\Gamma)$.
 - **10.** Show that $M_k(\Gamma)$ is generated by $S_k(\Gamma)$ and the $G_{k,g\Gamma g^{-1},\infty}|_k g^{-1}$, $g \in \mathrm{SL}_2(\mathbf{Z})$.
- **11.** Assume that k is even. Show that dim $M_k(\Gamma) = \dim S_k(\Gamma) + |C_{\Gamma}|$, where C_{Γ} is the set of cusps of Γ .
- 12. Let $C'_{\Gamma} \subset C_{\Gamma}$ be the subset of C_{Γ} defined as follows: let $c \in C_{\Gamma}$, and let $g \in \operatorname{SL}_2(\mathbf{Z})$ be such that $g \infty$ is a representative of c. Then $c \in C'_{\Gamma}$ if and only if $[g\Gamma_{\infty}g^{-1}:g\Gamma_{\infty}^+g^{-1}]=1$. Assume that k is odd. Show that $\dim M_k(\Gamma)=\dim S_k(\Gamma)+|C'_{\Gamma}|$.
 - **13.** Let $f \in S_k(\Gamma)$. Show that

$$\langle f, G_{k,\Gamma,\infty} \rangle = \frac{1}{\operatorname{vol}(\Gamma \backslash \mathcal{H})} \int_{\Gamma_{\infty}^{+} \backslash \mathcal{H}} f(z) y^{k-2} dx dy$$

and deduce that $\langle f, G_{k,\Gamma,\infty} \rangle = 0$.

14. How is $G_{k,\mathrm{SL}_2(\mathbf{Z}),\infty}$ related to the Eisenstein series defined in the lecture?