office GAY

Roll Number:_____

Thapar University, Patiala

Department of Computer Science and Engineering

END SEMESTER EXAMINATION

2.12 SENTESTER EXAMINATION	
B. E. (Third Year): Semester-I (2018/19)	Course Code: CS701
(COE)	Course Name: Theory of Computation
December 10 , 2018	
Time: 3 Hours, M. Marks: 100 Weightage: 46	Name Of Faculty: AKU, NK, NS, RA

Note: Attempt all questions with proper justification. Assume missing data, if any, suitably.

- Q.1(a) Design a minimized deterministic finite automaton and regular expression for the language over $\Sigma = \{0, 1\}$, such that (5)
 - i) Starts with 0 and having odd length Or
 - ii) Starts with 1 and having even length
- Q1(b) Given $\Sigma = \{a, b\}$, $L_1 = \{a, ab\}$ and $L_2 = \{b, a, ba\}$. Perform following operation on L_1 and L_2 .

i)
$$L_1 - L_2$$

ii) Complement of L_1 and L_2 (1)

- iii) All strings up to 3 length of L_1^* . (2)
- Q2(a) Convert the following Moore machine M_0 into Mealy machine. (4)

Fig. 1: Moore machine Mo

Q2(b) Prove using mathematical induction that every language of the form 0^{mx+b}, (6) where m and b are positive integer constants and x ranges from 0 to infinite is regular language.

Q3(a) Minimize the following DFA M_1 : (5)

Fig. 2: DFA M₁

Q3(b)	Show that the language $L_3 = \{a^nb^nc^n \mid n > 0\}$ is accepted by a 2-PDA. You	(5)
	may assume that there is a # symbol at the end of the string and a \$	
04(-)	symbol at the beginning to mark the end points.	
Q4(a) Q4(b)	Design Pushdown automata for the language $L_4 = \{10^n 1^n \bigcup 110^n 1^{2n} \mid n > 0\}$	(6)
Q-(~)	Check whether the following grammar is ambiguous or not. Justify your answer.	(4)
	$S \rightarrow iCtS \mid iCtSeS \mid a \qquad C \rightarrow a$	
Q5(a)	·	(5)
Q3(a)	For each of the languages below, indicate the smallest complexity class that contains it (i.e. Type-3, Type 2, Type 1 or Type 0). For instance, If a language satisfies all Type 0 to Type 3 mention answer as Type 3. Justify your answer , not need to prove your answers.	(5)
	i. $0^{n}1^{m}0^{p}1^{q}$ where $n+m=p+q$, and n , m , p , $q>0$	
	ii. $0^{n}1^{m}0^{m}1^{n}$ where n, m > 0	
	iii. $0^{n}1^{m}0^{p}1^{q}$ where n, m, p, q > 0.	
	iv. 0^m over the alphabet $\{0\}$, where m is of the form $2k + 1$, $k > 0$	
	$v. 0^m 10^{m!}$ where m > 0	
Q5(b)	Give any one application of context-free grammar and explain in detail	(5)
	how context-free grammar is used in the mentioned application.	
Q6	Generate Context-free grammar and derive a string for each languages:	
	i) $L_7(G) = \text{Set of odd length string whose first, middle and last}$	(3)
	symbol is same over $\Sigma = \{a, b\}$.	(3)
	ii) $L_8(G) = \{a^n b^m \mid 0 \le n < m \le 2n\}$	(4)
	iii) $L_9(G) = \{(ab)^n (cb^m)^n \mid n \ge 0, m > 0\}$	
Q7	Given the following grammar	(10)
	$S \rightarrow AB \mid BC, A \rightarrow BA \mid 0$	()
	$B \rightarrow CC \mid 1$, $C \rightarrow AB \mid 0$	
	Apply CYK algorithm to check whether $w = 000000$ belongs to this	
	language or not?	
Q8(a)	Explain the concept of Post correspondence problem with the help of an	(6)
	example.	, ,
Q8(b)	What do you mean by recursive and recursive enumerable languages?	(4)
	Give example of both. What is relation between them?	
Q9(a)	Convert given Context Free Grammar into Chomsky Normal Form	(4)
	$S \to AB \mid a$ $A \to BC \mid b$ $B \to aB \mid C$ $C \to aC \mid B$	
Q9(b)	Explain the difference between non-deterministic pushdown automata and deterministic pushdown automata with the help of examples.	(6)
Q10		(10)
\	$L_{10} = \{ww \mid w \in \{0,1\}^{2}\}$ over $\Sigma = \{0,1\}$. Explain your logic and give	(10)
	instantaneous description for the string $w = 101101$.	
	*********End of Paper*********	