Duration: 2 hrs

- The problem of overfitting
- Cost function
- Regularized linear regression
- Regularized logistic regression

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on new examples).

Example: Logistic regression

$$h_{ heta}(x) = g(heta_0 + heta_1 x_1 + heta_2 x_2)$$
 (g = sigmoid function) Underfit

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$

overfit

 $+\theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \dots)$

Addressing overfitting:

```
x_1 =  size of house x_2 =  no. of bedrooms x_3 =  no. of floors x_4 =  age of house x_5 =  average income in neighborhood x_6 =  kitchen size \vdots x_{100}
```


Addressing overfitting:

Options:

- 1. Reduce number of features.
 - Manually select which features to keep.
 - Model selection algorithm (later in course).
- 2. Regularization.
 - Keep all the features, but reduce magnitude/values of parameters θ_i
 - Works well when we have a lot of features, each of which contributes a bit to predicting y.

Duration: 3 hrs

- The problem of overfitting
- Cost function
- Regularized linear regression
- Regularized logistic regression

Intuition

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_1 x^4$$

Suppose we penalize and make θ_3 , θ_4 really small.

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + 1000.\theta_3^2 + 1000.\theta_4^2$$

$$\theta_3 \approx 0, \theta_4 \approx 0$$

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n$

- "Simpler" hypothesis
- Less prone to overfitting

Housing:

- Features: $x_1, x_2, \ldots, x_{100}$
- Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right] \frac{\theta_1, \theta_2, \theta_3, \dots, \theta_{100}}{\operatorname{Not} \theta_0}$$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

 λ : regularization parameter

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

- Algorithm works fine; setting λ to be very large can't hurt it
- Algorithm fails to eliminate overfitting.
- Algorithm results in underfitting. (Fails to fit even training data well).
- Gradient descent will fail to converge.

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$$

$$\theta_{1} \approx 0, \theta_{2} \approx 0$$

$$\theta_{3} \approx 0, \theta_{4} \approx 0$$

$$h_{\theta}(x) = \theta_{0}$$

Duration: 2 hrs

- The problem of overfitting
- Cost function
- Regularized linear regression
- Regularized logistic regression

Regularized linear regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \widehat{\lambda} \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

Gradient descent

Repeat
$$\{$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \quad \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \theta_j \right]$$

$$(j = \mathbf{X}, 1, 2, 3, \dots, n)$$
 $\}$
$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$1 - \alpha \frac{\lambda}{m} < 1 \quad \theta_j \times 0.99$$

Normal equation

$$X = \begin{bmatrix} (x^{(1)})^T \\ \vdots \\ (x^{(m)})^T \end{bmatrix} \qquad y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix} \mathbb{R}^m$$

$$\min_{\theta} J(\theta) \qquad \text{Set } \frac{\partial}{\partial \theta_j} J(\theta) = 0$$

$$\theta = \left(X^T X + \lambda \begin{bmatrix} 0 & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ & & \ddots & 1 \end{bmatrix} \right)^{-1} X^T y$$

$$(n+1) \times (n+1)$$

Non-invertibility (optional/advanced).

Suppose $m \leq n$, (#examples) (#features)

$$\theta = (X^T X)^{-1} X^T y$$

Non-invertible/singular -> use pinv

If
$$\lambda > 0$$
,

$$\theta = \left(X^T X + \lambda \begin{bmatrix} 0 & & & \\ & 1 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix} \right)^{-1} X^T y$$

Invertible

Duration: 2 hrs

- The problem of overfitting
- Cost function
- Regularized linear regression
- Regularized logistic regression

Regularized logistic regression.

Cost function:

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))\right] + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_{i}^{2}$$

Gradient descent

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \theta_j \right]$$

$$(j = \mathbf{X}, 1, 2, 3, \dots, n)$$

$$\theta_1, \dots, \theta_n$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Advanced optimization

```
function [jVal, gradient] = costFunction(theta)
            jVal = [code to compute J(\theta)];
                              J(\theta) = \left| -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left( h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log 1 - h_{\theta}(x^{(i)}) \right) \right| + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_{j}^{2}
            gradient(1) = [code to compute \frac{\partial}{\partial \theta_0} J(\theta)];
                             \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}
            gradient(2) = [code to compute \frac{\partial}{\partial \theta_1} J(\theta)];
                              \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)} - \frac{\lambda}{m} \theta_1
            gradient(3) = [code to compute \frac{\partial}{\partial \theta_2} J(\theta)];
                             \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)} - \frac{\lambda}{m} \theta_2
            gradient(n+1) = [code to compute \frac{\partial}{\partial \theta_n} J(\theta)];
```