Categorical Variables in Regression Models

Jared S. Murray
The University of Texas at Austin
McCombs School of Business

Example: Estimating Wage Gaps

Imagine you are a trial lawyer and you are considering a suit against a company for salary discrimination. You've gathered the following data...

Gender		Salary		
1	Male	32.0		
2	Female	39.1		
3	Female	33.2		
4	Female	30.6		
5	Male	29.0		
208 Female 30.0				

You want to relate salary (Y) to gender (X)... how can we do that?

Gender is an example of a categorical variable. The variable gender separates our data into 2 groups or categories.

We want to understand the relationship between this categorical variable and salary.

Multiple regression will be useful here. First we recode the categorical variable into a dummy variable

Gender		Salary	Male
1	Male	32.00	1
2	Female	39.10	0
3	Female	33.20	0
4	Female	30.60	0
5	Male	29.00	1
208	Female	30.00	0

Note: In R, categorical variables are known as **factors**. R will turn factor variables into dummies for you inside of 1m

```
head(salary)
## # A tibble: 6 x 10
   Employee EducLev JobGrade YrHired YrBorn Gender YrsPrior PCJob Salary
##
     <db1> <db1>
               <db1>
                    ##
## 1
                  1
                     92
                           69 Male
                                     1 No
                                           32
                                                 4
                  1 81 57 Female 1 No 39.1
## 2
       2 1
                                               15
## 3
                 1 83 60 Female 0 No 33.2 13
                  1 87 55 Female 7 No 30.6
## 4
## 5
            3
                  1 92
                          67 Male 0 No 29
## 6
                      92 71 Female 0 No
                                           30.5
```

To ensure that Gender is treated as a categorical variable:

```
salary$Gender = factor(salary$Gender)
```

We could start by fitting the following model:

$$Salary_i = \beta_0 + \beta_1 Male_i + \epsilon_i$$

$$Salary_i = \beta_0 + \beta_1 Male_i + \epsilon_i$$

```
salaryfit = lm(Salary~Gender, data=salary)
coef(salaryfit)

## (Intercept) GenderMale
## 37.209929 8.295513

confint(salaryfit)

## 2.5 % 97.5 %

## (Intercept) 35.446314 38.97354
## GenderMale 5.211041 11.37998
```

How should we interpret these regression coefficients?

Plug in the two possible values for the dummy variable:

$$Salary_i = \begin{cases} 37.2 + \epsilon_i & \text{females} \\ 37.2 + 8.3 + \epsilon_i = 45.5 + \epsilon_i & \text{males} \end{cases}$$

```
mean(~Salary, data=subset(salary, Gender=="Female"))
## [1] 37.20993
mean(~Salary, data=subset(salary, Gender=="Male"))
## [1] 45.50544
print(45.50544 - 37.20993)
## [1] 8.29551
```

How can the defense attorney try to counteract the plaintiff's argument?

Perhaps the observed difference in salaries is due to confounding variables and NOT to gender discrimination...

Obviously, there are many other factors which we can legitimately use in determining salaries...

- education
- job classification
- experience
- **.**..

How can we use regression to incorporate additional information?

Let's add a measure of experience...

$$Salary_i = \beta_0 + \beta_1 Male_i + \beta_2 Exp_i + \epsilon_i$$

How do we interpret β_1 and β_2 ?

$$Salary_i = \beta_0 + \beta_1 Male_i + \beta_2 Exp_i + \epsilon_i$$

$$Salary_i = 27 + 8Male_i + 0.98Exp_i + \epsilon_i$$

$$Salary_i = \begin{cases} 27 + 0.98Exp_i + \epsilon_i & \text{females} \\ 35 + 0.98Exp_i + \epsilon_i & \text{males} \end{cases}$$

```
p = plotModel(salaryfit_exp, Salary~Exp) + geom_point(aes(shape=.color))
```

More than Two Categories

We can use dummy variables in situations in which there are more than two categories. Dummy variables are needed for each category except one, designated as the "baseline" or "reference" category.

The choice of reference category only effects the meaning of the coefficients in the model, not the overall fit (i.e. the fitted values, residual standard deviation, R^2 , etc. remain the same)

We want to evaluate the difference in house prices in different neighborhoods.

	Nbhd	SqFt	Price
1	2	1.79	114.3
2	2	2.03	114.2
3	2	1.74	114.8
4	2	1.98	94.7
5	2	2.13	119.8
6	1	1.78	114.6
7	3	1.83	151.6
8	3	2.16	150.7

14

We could create dummy variables dn1, dn2 and dn3...

```
Nbhd
       SqFt Price dn1 dn2 dn3
     2 1.79 114.3 0 1
1
     2 2.03 114.2 0 1
3
     2 1.74 114.8 0 1
4
     2 1.98 94.7 0 1
5
     2 2.13 119.8
6
      1 1.78 114.6
                      0
     3 1.83 151.6 0
                      0 1
     3 2.16 150.7
                      0
8
                  0
```

(Again, R will do this for you if you make Nbhd a factor)

$$Price_i = \beta_0 + \beta_1 dn 2_i + \beta_2 dn 3_i + \beta_3 Size_i + \epsilon_i$$

$$Price_i = \beta_0 + \beta_3 Size + \epsilon_i$$
 (Nbhd 1)
 $Price_i = \beta_0 + \beta_1 + \beta_3 Size + \epsilon_i$ (Nbhd 2)
 $Price_i = \beta_0 + \beta_2 + \beta_3 Size + \epsilon_i$ (Nbhd 3)

$$Price = \beta_0 + \beta_1 dn + \beta_2 dn + \beta_3 Size + \epsilon$$

```
housing_fit = lm(Price~factor(Nbhd) + Size, data=housing)
coef(housing_fit)
```

```
## (Intercept) factor(Nbhd)2 factor(Nbhd)3 Size
## 21.24 10.57 41.54 46.39
```

$$Price = 21.24 + 10.57 dn^2 + 41.54 dn^3 + 46.39 Size + \epsilon$$

plotModel(housing_fit, Price~Size)

$$Price = \beta_0 + \beta_1 Size + \epsilon$$

```
lm(Price~Size, data=housing)
##
## Call:
## lm(formula = Price ~ Size, data = housing)
##
## Coefficients:
## (Intercept) Size
## -10.09 70.23
```

$$Price = -10.09 + 70.23 Size + \epsilon$$

