Write your own Theorem Prover

Phil Scott

27 October 2016

Introduction

We'll work through a *toy* LCF style theorem prover for classical propositional logic. We will:

- review the LCF architecture
- choose a logic
- write the kernel
- derive basic theorems/inference rules
- build basic proof tools
- write a decision procedure

What is LCF?

- A design style for theorem provers.
- Follows the basic design of *Logic of Computable Functions* (Milner, 1972).
- Examples: HOL, HOL Light, Isabelle, Coq.
- Syntax given by a data type whose values are logical terms.
- There is an abstract type whose values are logical theorems.
- Basic inference rules are functions on the abstract theorem type.
- Derived rules are functions which call basic inference rules.

What is Classical Propositional Logic (informally)

- Syntax:
 - Variables P, Q, \dots, R and connectives $\neg, \lor, \land, \rightarrow, \leftrightarrow$
 - Terms/formulas: $P, \neg P, P \lor Q, P \land Q, P \rightarrow Q, P \leftrightarrow Q$
- Semantics
 - ullet Truth values op and op assigned to variables
 - Connectives evaluate like "truth-functions"; e.g. $\top \lor \bot = \top$
 - ullet Theorems are terms which always evaluate to \top (tautologies)
- Proof Theorems can be found by truth-table checks, DPLL proof-search, or by applying rules of inference to axioms.

An inference system for propositional logic

- Given an alphabet α , a term is one of
 - a variable $v \in \alpha$
 - an implication $\psi \to \phi$ for formulas ϕ and ψ (we take \to to be right-associative)
 - ullet a negation $\neg \phi$ for some formula ϕ
- A theorem is one of

Axiom 1
$$\phi \rightarrow \psi \rightarrow \phi$$
 for terms ϕ and ψ

Axiom 2
$$(\phi \to \psi \to \chi) \to (\phi \to \psi) \to \phi \to \chi$$
 for terms ϕ , ψ and χ

Axiom 3
$$(\neg \phi \rightarrow \neg \psi) \rightarrow \psi \rightarrow \phi$$
 for terms ϕ and ψ

Modus Ponens a term ψ whenever ϕ and $\phi \to \psi$ are theorems

The Kernel (syntax)

Formally

Given an alphabet α , a term is one of

- a variable $v \in \alpha$
- an implication $\psi \to \phi$ for formulas ϕ and ψ (we take \to to be right-associative)
- a negation $\neg \phi$ for some formula ϕ

Really Formally

Theorems

```
axiom1 :: a -> a -> Theorem a
axiom1 p q = Theorem (p :=>: q :=>: p)
axiom2 :: a \rightarrow a \rightarrow a \rightarrow Theorem a
axiom2 p q r =
  Theorem ((p :=>: q :=>: r) :=>: (p :=>: q) :=>: (p :=>: r))
axiom3 :: a \rightarrow a \rightarrow Theorem a
axiom3 p q = Theorem ((Not p :=>: Not q) :=>: q :=>: p)
mp :: Eq a => Theorem a -> Theorem a
mp (Theorem (p :=>: q)) (Theorem p') | p == p' = Theorem q
```

Securing the Kernel

The Theorem type does not have any publicly visible constructors. The only way to obtain values of Theorem type is to use the axioms and inference rule.

First (meta) theorem

Theorem

For any term P, $P \rightarrow P$ is a theorem.

Proof.

Take ϕ and χ to be P and ψ to be $P \to P$ in Axioms 1 and 2 to get:

- ② $(P \rightarrow (P \rightarrow P) \rightarrow P) \rightarrow (P \rightarrow P \rightarrow P) \rightarrow (P \rightarrow P)$ Apply modus ponens to 1 and 2 to get:
- (P \rightarrow P \rightarrow P) \rightarrow P \rightarrow P Use Axiom 1 with /phi and /psi to be P to get:

Apply modus ponens to 3 and 4.

First meta theorem formally

Metaproof

```
theorem :: Eq a => Term a -> Theorem a
theorem p =
  let step1 = axiom1 p (p :=>: p)
    step2 = axiom2 p (p :=>: p) p
    step3 = mp step2 step1
    step4 = axiom1 p p
in mp step3 step4
```

Example

```
> theorem (Var "P")
Theorem (Var "P" :=>: Var "P")
>
```

Issues

• How many axioms are there?

```
axiom1 :: a -> a -> Theorem a
```

• How many theorems did we just prove?

```
theorem :: Eq a => Term a -> Theorem a
```

• Why could this be a problem for doing formal proofs?

A more(?) efficient axiomatisation

(p,q,r) = (Var 'p', Var 'q', Var 'r')

axiom1 :: Theorem Char

```
axiom1 = Theorem (p :=>: q :=>: p)
axiom2 :: Theorem Char
axiom2 = Theorem ((p :=>: q :=>: r)
                   :=>: (p :=>: q) :=>: (p :=>: r))
axiom3 :: Theorem Char
axiom3 = Theorem ((Not p :=>: Not q) :=>: q :=>: p)
instTerm :: (a -> Term b) -> Term a -> Term b
instTerm f (Var x) = f x
instTerm f (Not t) = Not (instTerm f t)
instTerm f (a :=>: c) = instTerm f a :=>: instTerm f c
inst :: (a -> Term b) -> Theorem a -> Theorem b
inst f (Theorem x) = Theorem (instTerm f x)
                                             27 October 2016
```

Metaproof again

```
truthThm =
  let inst1 = inst (\v -> if v == 'q' then p :=>: p else p)
    step1 = inst1 axiom1
    step2 = inst1 axiom2
    step3 = mp step2 step1
    step4 = inst (const p) axiom1
  in mp step3 step4
```

```
> theorem
Theorem (Var 'P' :=>: Var 'P')
```

Derived syntax

```
infixl 4 \/
infixl 5 /\
-- | Syntax sugar for disjunction
(\/) :: Term a -> Term a -> Term a
p / q = Not p := > : q
-- | Syntax sugar for conjunction
(/\) :: Term a -> Term a -> Term a
p / q = Not (p :=>: Not q)
-- | Syntax sugar for truth
truth :: Term Char
truth = p :=>: p
-- | Syntax sugar for false
false :: Term Char
false = Not truth
```

A proof tool: the deduction [meta]-theorem

Why did we need five steps to prove $P \rightarrow P$. Can't we just use conditional proof?

- Assume P.
- ② Have P.

Hence, $P \rightarrow P$.

Deduction Theorem

From $\{P\} \cup \Gamma \vdash Q$, we can derive $\Gamma \vdash P \rightarrow Q$.

But Our axiom system says nothing about assumptions!

A DSL for proof trees with assumptions

Syntax

Semantics

```
-- Convert a proof tree to the form \(\Gamma\) \( P \)

sequent :: (Eq a, Show a) => Proof a -> ([Term a], Term a)

sequent (Assume a) = ([a], a)

sequent (UseTheorem t) = ([], termOfTheorem t)

sequent (MP pr pr') =

let (asms, p :=>: q) = sequent pr

(asms', _) = sequent pr' in

(nub (asms ++ asms'), q)
```

A DSL for proof trees with assumptions

Semantics

```
-- Send \{P\} \cup \Gamma \vdash Q to \Gamma \vdash P \to Q discharge :: (Ord a, Show a) => Term a -> Proof a -> Proof a

-- Push a proof through the kernel verify :: Proof a -> Theorem a
```

The implementation of 'discharge' follows the proof of the deduction theorem!

Example with DSL

We want:

```
inst2 :: Term a -> Term a -> Theorem a -> Theorem a
-- \vdash \neg P \rightarrow P \rightarrow \bot
lemma1 =
  let step1 = Assume (Not p)
      step2 = UseTheorem (inst2 (Not p) (Not (false P)) axiom1)
      step3 = MP step2 step1
      step4 = UseTheorem (inst2 (false P) p axiom3)
      step5 = MP step4 step3
  in verify step5
> lemma1
Theorem (Not (Var 'P') :=>: Var 'P'
            :=>: Not (Var 'P' :=>: Var 'P'))
```

Embedding Sequent Calculus

Assumption carrying proofs

- We'd like to work with proofs of the form $\Gamma \vdash P$ without needing a DSL and a separate verification step.
- We can identify a sequent $P_1, P_2, \dots, P_n \vdash P$ with the implication $P_1 \to P_1 \to \dots \to P_n \to P$
- We just need to keep track of n:

data Sequent a = Sequent Int (Theorem a)

Sequent inference

Modus Ponens on Sequents

Given the sequents

$$\Gamma \vdash P \rightarrow Q \text{ and } \Delta \vdash P$$
,

we can derive the sequent

$$\Gamma \cup \Delta \vdash Q$$
.

Challenge: The union $\Gamma \cup \Delta$ must be computed in the derivation of this rule.

Example

Suppose we want to perform Modus Ponens on

$$P_1, P_2, P_3 \vdash P \rightarrow Q \text{ and } P_1, P_3, P_4 \vdash P$$

where $P_i < P_j$ for $i, j \in \{1, 2, 3, 4\}$.

That is, on:

$$(3, P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow (P \rightarrow Q))$$

and

$$(3, P_1 \to P_3 \to P_4 \to P)$$
.

Goal:

$$(4, P_1 \to P_2 \to P_3 \to P_4 \to Q).$$

First, use Axiom 1 to add extra conditions on the front of both theorems.

$$P_4 \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow (P \rightarrow Q)$$

and

$$P_2 \rightarrow P_1 \rightarrow P_3 \rightarrow P_4 \rightarrow P$$

Using

$$(P \rightarrow Q \rightarrow R) \leftrightarrow (Q \rightarrow P \rightarrow R)$$

we have

$$P_{4} \rightarrow P_{1} \rightarrow P_{2} \rightarrow P_{3} \rightarrow (P \rightarrow Q)$$

$$\leftrightarrow P_{1} \rightarrow P_{4} \rightarrow P_{2} \rightarrow P_{3} \rightarrow (P \rightarrow Q)$$

$$\leftrightarrow P_{1} \rightarrow P_{2} \rightarrow P_{4} \rightarrow P_{3} \rightarrow (P \rightarrow Q)$$

$$\leftrightarrow P_{1} \rightarrow P_{2} \rightarrow P_{3} \rightarrow P_{4} \rightarrow (P \rightarrow Q)$$

and

$$\begin{array}{c} P_2 \rightarrow P_1 \rightarrow P_3 \rightarrow P_4 \rightarrow P \\ \leftrightarrow P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P \end{array}$$

- The two sequents now have the same list of assumptions in the same order.
- We cannot apply modus ponens directly, but Axiom 2 looks promising:
- $(\phi \rightarrow \psi \rightarrow \chi) \rightarrow (\phi \rightarrow \psi) \rightarrow \phi \rightarrow \chi$
- Let's see why:
- $\bullet \ (\phi \to \psi \to \chi) \to (\phi \to \psi) \to \phi \to \chi$
- We just need to collapse our cascade of implications. We can do that by rewriting to a conjunction.

Using

$$(P \to Q \to R) \leftrightarrow (P \land Q \to R)$$

we have

$$P_{1} \rightarrow P_{2} \rightarrow P_{3} \rightarrow P_{4} \rightarrow (P \rightarrow Q)$$

$$\leftrightarrow P_{1} \land P_{2} \rightarrow P_{3} \rightarrow P_{4} \rightarrow (P \rightarrow Q)$$

$$\leftrightarrow P_{1} \land P_{2} \land P_{3} \rightarrow P_{4} \rightarrow (P \rightarrow Q)$$

$$\leftrightarrow P_{1} \land P_{2} \land P_{3} \land P_{4} \rightarrow (P \rightarrow Q)$$

and

$$P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P$$

$$\leftrightarrow P_1 \land P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P$$

$$\leftrightarrow P_1 \land P_2 \land P_3 \rightarrow P_4 \rightarrow P$$

$$\leftrightarrow P_1 \land P_2 \land P_3 \land P_4 \rightarrow P$$

Using axiom 2 and modus ponens, we can then obtain

$$P_1 \wedge P_2 \wedge P_3 \wedge P_4 \rightarrow R$$

Then using

$$(P \rightarrow Q \rightarrow R) \leftrightarrow (P \land Q \rightarrow R)$$

we have

$$P_{1} \wedge P_{2} \wedge P_{3} \wedge P_{4} \rightarrow R$$

$$\leftrightarrow P_{1} \wedge P_{2} \wedge P_{3} \rightarrow P_{4} \rightarrow R$$

$$\leftrightarrow P_{1} \wedge P_{2} \rightarrow P_{3} \rightarrow P_{4} \rightarrow R$$

$$\leftrightarrow P_{1} \rightarrow P_{2} \rightarrow P_{3} \rightarrow P_{4} \rightarrow R$$

Conversions

- A conversion is any function which sends a term ϕ to a list of theorems of the form $\vdash \phi \leftrightarrow \psi$.
- The most basic conversions come from equivalence theorems:
 - Given a theorem of the form $\vdash \phi \leftrightarrow \psi$, we have a conversion which:
 - accepts a term t
 - tries to match t against ϕ to give an instantiation θ
 - returns $\vdash \phi[\theta] \leftrightarrow \psi[\theta]$.
 - For example:
 - ullet the theorem $p \leftrightarrow p$ yields a conversion called allC
 - the theorem $(x \leftrightarrow y) \leftrightarrow (y \leftrightarrow x)$ yields a conversion called symC
 - the theorem $(P \to Q \to R) \leftrightarrow (P \land Q \to R)$ yields a conversion called uncurryC

Conversionals

- Functions which map conversions to conversions are called conversionals.
- Examples include:
 - antC converts only the left hand side of an implication
 conclC converts only the right hand side of an implication
 negC converts only the body of a negation
 orElseC tries a conversion and, if it fails, tries another
 thenC applies one conversion, and then a second to the results
 sumC tries all conversions and accumulates their results
- With these conversionals, we can algebraically construct more and more powerful conversions, implementing our own strategies for converting a term, such as those we need for embedding sequent calculus.

Truth Table Verification informally

- We nominate a fresh proposition variable X and define $\top \equiv X \rightarrow X$.
- Given a proposition, we recurse on the number of other variables.
- Base case: the only variable is X. Evaluate the term according to truth table definitions for each connective. If we evaluate to ⊤, we have a tautology.
- Recursive case: there are n variables other than X. Take the first variable P and consider the two cases $P = \top$ and $P = \bot$. Substitute in these cases and verify that we have a tautology. If so, the original proposition is a tautology.

Truth Table Verification for our Sequent Calculus

Derive a rule for case-splitting:

$$\frac{\Gamma \cup \{P\} \vdash A \qquad \Delta \cup \{\neg P\} \vdash A}{\Gamma \cup \Delta \vdash A}$$

- Derive theorems for evaluating tautologies:
 - \bullet T \rightarrow T \leftrightarrow T
 - \bullet $\top \rightarrow \bot \leftrightarrow \bot$
 - $\bullet \ \bot \to \bot \leftrightarrow \top$
 - $\bullet \ \bot \to \bot \leftrightarrow \top$
 - $\bullet \ \neg \top \leftrightarrow \bot$
 - \bullet $\neg\bot\leftrightarrow\top$
- Derive $P \vdash P \leftrightarrow \top$ and $\neg P \vdash P \leftrightarrow \bot$

Truth Table Verification for our Sequent Calculus

• Derive a conversion for fully traversing a proposition:

• Use the conversion and our evaluation rules to fully evaluate a proposition with no variables other than X. If we end up at \top , we can then use the derived rule

$$\frac{\Gamma \vdash P = \top}{\Gamma \vdash P}$$

• Wrap up in a verifier (and so claim our axioms complete):

tautology :: Term a -> Maybe (Theorem a)

Summary

- In LCF, we use a host language (ML, Haskell, Coq etc...) to secure and program against a trusted core.
- A bootstrapping phase is usually required to get to the meat.
- We can often follow textbook mathematical logic here, but we do have to worry about computational efficiency.
- We can embed richer logics inside the host logic (e.g. a proof tree DSL or a sequent calculus)
- Combinator languages can be used to craft strategies (for conversion, solving goals with tactics)
- With conversions at hand, problems can be converted to a form where we can implement decision procedures and other automated tools for proving theorems (resolution proof, linear arithmetic, computation of Grobner bases etc...)