Off-grid, Mobile, PV System For life on the road

A python-based trip-planning utility

Zayne Khouja 18-883, Autumn 2021

System Certainty

- Yields results for best case scenario
 - Given panel characteristics and accurate irradiance data, charge times reflect optimal conditions per month
- Mapping of route to coordinates to state data is consistent and accurate
- Useful for comparing charge times between seasons
- Modular code: can use on any google maps route, any specified panel, and any battery you choose

Drive time (Hours per Day) per State to Fully Charge Battery in November

System Uncertainty & Assumptions

- Irradiance & Temperature at a per-state granularity
 - Particularly inaccurate for geographically diverse states (CA, WA, ...)
 - A more granular solution is behind a paid subscription (SoDa)
- Route between waypoints is approximated with a straight line
- Uses max irradiance in a specified month
 - No hour-by-hour accuracy
 - Does not adjust date of interest as drive goes on
- Not particularly useful for winter months
 - Cannot realistically charge the battery fully in many states during december/january

JULY Drive time (Hours per Day) per State to Fully Charge Battery in July 2.85 (11)

NOVEMBER

Drive time (Hours per Day) per State to Fully Charge Battery in November

Units: Hours per Day	CA	AZ	NM	TX	OK	МО	IL	IN	ОН	WV	PA	NY	VT	NH	ME
July	2.5	2.2	2.4	2.2	2.8	2.6	2.9	2.9	2.9	2.7	3.0	3.1	3.2	3.2	3.3
November	7.2	5.4	6.1	5.1	7.6	10.2	21.7	12.3	15.9	17.0	13.5	16.9	18.8	17.8	19.7