#Week 8

Task 1 Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickenss to be 13 mm)

Task 2 Consider the house that we analysed in the alst two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m2 on the west, fixed 3.6 m2 on the south and an operable 3.6 m2 on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminium?

Answers:

Task 1

Answer:

From the diagram we can see that: For double-pane (13mm) glazing:

$$U_{air} = 2.8 \frac{w}{m^2} \cdot K$$

$$U_{argon} = 2.7 \frac{w}{m^2} \cdot K$$

$$U_{krypton} = 2.6 \, w/m^2 \cdot K$$

So, when the gas is changing

Air → Argon: decrease about 4.57%

Air → Krypton: decrease about 7.14%

For triple-pane (13mm) glazing:

$$U_{double} = 2.8 \, w/m^2 \cdot K$$

$$U_{triple} = 1.8 \, w/m^2 \cdot K$$

So, when changing double-pane to triple-pane the U value will decrease about 35.71%

When the glass surfaces are coated with a film that has an emissivity of 0.1,

$$U_double 0.1 = 1.8 \, w/m^2 \cdot K$$

$$U_triple 0.1 = 1 w/m^2 \cdot K$$

So, when coating a film that has an emissivity of 0.1, the U value of double-pane decrease

Task 2 Answer:

						P	IACENZ	A, Italy						WMO#:	160840	
Lat	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	W)	Period:	89-10	WBAN:	99999	
Annual H	eating and H	umidificati	on Design C	onditions												
0-14	Unation	- 00		Humi	dification DF	P/MCDB and	HR		T 0	oldest mon	th WS/MCE)B	MCWS	/PCWD	1	
Coldest	Heating	g DB	99.6%			99%			0.4%		1%		to 99.6% DB			
Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250		(
Annual C	ooling, Dehu	midificatio	n, and Entha	ilpy Design	Conditions	is .										
Hottest	Hottest			Cooling D	B/MCWB					Evaporation	WB/MCDE	3		MCWS	PCWD	ř
Month	Month	0.4	4%	19	%	29	b	0	.4%	1	%	2	%	to 0.4	% DB	
WICHIGH	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(1)	(k)	(1)	(m)	(n)	(0)	(p)	
8	11 0	33 1	227	31 0	22 4	30.3	21 8	24 6	30.2	23 7	20 2	22 9	28 3	24	90	10

Table 10 Peak Irradiance, W/m²

·		Latitude										
Exposure		20°	25°	30°	35°	40°	45°	50°	55°	60°		
North	E_D	125	106	92	84	81	85	96	112	136		
	E_d	128	115	103	93	84	76	69	62	55		
	E_t	253	221	195	177	166	162	164	174	191		
Northeast/Northwest	E_D	460	449	437	425	412	399	386	374	361		
	E_d	177	169	162	156	151	147	143	140	137		
	E_t	637	618	599	581	563	546	529	513	498		
East/West	E_D	530	543	552	558	560	559	555	547	537		
	E_d	200	196	193	190	189	188	187	187	187		
	E_t	730	739	745	748	749	747	742	734	724		
Southeast/Southwest	E_D	282	328	369	405	436	463	485	503	517		
	E_d	204	203	203	204	205	207	210	212	215		
	E_t	485	531	572	609	641	670	695	715	732		
South	E_D	0	60	139	214	283	348	408	464	515		
	E_d	166	193	196	200	204	209	214	219	225		
	E_t	166	253	335	414	487	557	622	683	740		
Horizontal	E_D	845	840	827	806	776	738	691	637	574		
	E_d	170	170	170	170	170	170	170	170	170		
	Ε,	1015	1010	997	976	946	908	861	807	744		

Table 13 Fenestration Solar Load Factors FF_s

Exposure	Single Family Detached	Multifamily
North	0.44	0.27
Northeast	0.21	0.43
East	0.31	0.56
Southeast	0.37	0.54
South	0.47	0.53
Southwest	0.58	0.61
West	0.56	0.65
Northwest	0.46	0.57
Horizontal	0.58	0.73

	Frame													
Glazing Type			Property ^{c,d}	Center of Glazing	Operable					Fixed				
	Glazing Layers	IDb			Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl
Clear	1	1a	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35
			SHGC	0.86	0.75	0.75	0.64	0.64	0.64	0.78	0.78	0.75	0.75	0.75
	2	5a	U	2.73	4.62	3.42	3.00	2.87	5.83	3.61	3.22	2.86	2.84	2.72
			SHGC	0.76	0.67	0.67	0.57	0.57	0.57	0.69	0.69	0.67	0.67	0.67
	3	29a	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93
			SHGC	0.68	0.60	0.60	0.51	0.51	0.51	0.62	0.62	0.60	0.60	0.60
Low-e, low-solar	2	25a	U	1.70	3.83	2.68	2.33	2.21	1.89	2.75	2.36	2.03	2.01	1.90
			SHGC	0.41	0.37	0.37	0.31	0.31	0.31	0.38	0.38	0.36	0.36	0.36
	3	40c	U	1.02	3.22	2.07	1.76	1.71	1.45	2.13	1.76	1.44	1.40	1.33
			SHGC	0.27	0.25	0.25	0.21	0.21	0.21	0.25	0.25	0.24	0.24	0.24
Low-e, high-solar	2	17c	U	1.99	4.05	2.89	2.52	2.39	2.07	2.99	2.60	2.26	2.24	2.13
			SHGC	0.70	0.62	0.62	0.52	0.52	0.52	0.64	0.64	0.61	0.61	0.61
	3	32c	U	1.42	3.54	2.36	2.02	1.97	1.70	2.47	2.10	1.77	1.73	1.66
			SHGC	0.62	0.55	0.55	0.46	0.46	0.46	0.56	0.56	0.54	0.54	0.54
Heat-absorbing	1	lc	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35
			SHGC	0.73	0.64	0.64	0.54	0.54	0.54	0.66	0.66	0.64	0.64	0.64
	2	5c	U	2.73	4.62	3.42	3.00	2.87	2.53	3.61	3.22	2.86	2.84	2.72
	3	20-	SHGC U	0.62	0.55	0.55	0.46	0.46	0.46	0.56 2.76	0.56	0.54	0.54	0.54
	3	29c	SHGC	1.76 0.34	3.80 0.31	2.60 0.31	2.25 0.26	2.19 0.26	0.26	0.31	2.39 0.31	2.05 0.30	2.01 0.30	1.93 0.30
		799												
Reflective	1	11	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35
	2		SHGC	0.31	0.28	0.28	0.24	0.24	0.24	0.29	0.29	0.27	0.27	0.27
	2	5p	U SHGC	2.73 0.29	4.62 0.27	3.42 0.27	3.00 0.22	2.87 0.22	2.53 0.22	3.61 0.27	3.22 0.27	2.86 0.26	2.84 0.26	2.72 0.26
	3	29c	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93
	3	290	SHGC	0.34	0.31	0.31	0.26	0.26	0.26	0.31	0.31	0.30	0.30	0.30

$$q_{fen} = A \times CF_{fen}$$

$$CF_{fen} = U(\Delta t - 0.46 DR) + PXI \times SHGC \times IAC \times FF_s$$

where

 q_{fen} = fenestration cooling load, W

A = fenestration area (including frame), m²

 CF_{fen} = surface cooling factor, W/m²

 $U = \text{fenestration NFRC heating U-factor, W/(m}^2 \cdot \text{K})$

 Δt = cooling design temperature difference, K

PXI = peak exterior irradiance, including shading modifications, W/m² [see Equations (26) or (27)]

SHGC = fenestration rated or estimated NFRC solar heat gain coefficient

IAC = interior shading attenuation coefficient, Equation (29)

 FF_s = fenestration solar load factor, <u>Table 13</u>

$$\Delta T_{cooling} = 31.9 - 24 = 7.9$$
°C $\Delta T_{heating} = 20 - (-4.8) = 24.8$ °C DR=11.9°C

Wood Frames

Window1 (east, wood frame, fixed)

$$A_{window1} = 14.4 \text{ m}^2$$

Heating:

$$U_{window1} = 2.84 \frac{w}{m^2} \cdot K$$

$$HF_{window1} = U_{window1} * \Delta T_{cooling} = 2.84 * 24.8 = 70.44 \text{ w/m}^2$$

$$Q_{window1} = HF_{window1} * A_{window} = 70.44 * 14.4 = 1014.2w$$

Cooling:

Heat transfer:

$$CF_{window1} = U_{window1\left(\Delta T_{cooling} - 0.46*DR\right)} = 2.84(7.9 - 0.46*11.9) = 6.9w/m^2$$

Irradiation:

$$E_D = 559, \ E_d = 188, \ FF_{seast} = 0.31$$
 $PXI_{window1} = E_D + E_d = 559 + 188 = 747$
 $CF_{window1} = PXI * SHGC * IAC * FF_{seast} = 747 * 0.54 * 1 * 0.31 = 125.1$
 $CF_{fenestration1} = U_{window1}(\Delta Tcooling - 0.46 * DR) + PXI * SHGC * IAC * FF_{seast}$
 $= 6.9 + 125.1 = 132 \ W/m^2$
 $\dot{Q}_{window1} = CF_{fenestration1} * A_{window1} = 132 * 14.4 = 1900.8w$

Window2 (west, wood frame, fixed)

$$A_{window2} = 14.4 \text{ m}^2$$

Heating:

U window2=2.84 w/m2·K

$$HF_{window2} = U_{window2} * \Delta T_{cooling} = 2.84 * 24.8 = 70.44 \text{ w/m}^2$$

$$Q_{window2} = HF_{window2} * A_{window} = 70.44 * 14.4 = 1014.2w$$

Cooling:

Heat transfer:

$$CF_{window}2 = U_{window}2(\Delta T_cooling - 0.46 * DR) = 2.84(7.9 - 0.46 * 11.9) = 6.9w/m^2$$

Irradiation:

$$E_D = 559, \ E_d = 188, \ FF_{swest} = 0.56$$
 $PXI_{window1} = E_D + E_d = 559 + 188 = 747$ $CF_window2 = PXI * SHGC * IAC * FF_Swest = 747 * 0.54 * 1 * 0.56 = 225.9$ $CF_fenestration2 = U_window2 (\Delta Tcooling - 0.46 * DR) + PXI * SHGC * IAC * FF_Swest$ $= 6.9 + 225.9 = 232.8 \ W/m^2$

$$\dot{Q}_{window2} = CF_{fenestration2} * A_{window2} = 232.8 * 14.4 = 3352.32w$$

Window3 (south, wood frame, fixed)

$$A_{window3} = 3.6 \text{ m}^2$$

Heating:

$$U_{window3} = 2.84 \, w/m^2 \cdot K$$

$$HF_{window3} = U_{window3} * \Delta T_{cooling} = 2.84 * 24.8 = 70.44 \text{ w/m}^2$$

 $Q_{window3} = HF_{window3} * A_{window} = 70.44 * 3.6 = 253.6 \text{w}$

Cooling:

Heat transfer:

$$CF_{window3} = U_{window3}(\Delta T_cooling - 0.46 * DR) = 2.84(7.9 - 0.46 * 11.9) = 6.9w/m^2$$

Irradiation:

$$E_D = 348, \quad E_d = 209, \quad FF_{ssouth} = 0.47$$

$$PXI_{window3} = E_D + E_d = 348 + 209 = 557$$

$$CF_{window3} = PXI * SHGC * IAC * FF_ssouth = 557 * 0.54 * 1 * 0.47 = 141.4$$

$$CF_{fenestration3} = U_{window3} \; (\Delta T cooling - 0.46 * DR) + PXI * SHGC * IAC * FF_{ssouth}$$

$$= 6.9 + 141.4 = 148.3 \, W/m^2$$

$$\dot{Q}_{window3} = CF_{fenestration3} * A_{window3} = 148.3 * 3.6 = 533.88w$$

Window4 (south, wood frame, openable)

$$A_{window3} = 3.6 \text{ m}^2$$

Heating:

$$U_{window4} = 2.87 \, w/m^2 \cdot K$$

$$HF_{window4} = U_{window4} * \Delta T_{cooling} = 2.87 * 24.8 = 71.17 \text{ w/m}^2$$

 $Q_{window4} = HF_{window4} * A_{window} = 71.17 * 3.6 = 256.2 \text{w}$

Cooling:

Heat transfer:

$$CF_{window4} = U_{window4}(\Delta T_{cooling} - 0.46 * DR) = 2.87(7.9 - 0.46 * 11.9) = 6.96 w/m^2$$

Irradiation:

$$E_D = 348, \quad E_d = 209, \quad SHGC = 0.46, \quad FF_{ssouth} = 0.47$$

$$PXI_{window4} = E_D + E_d = 348 + 209 = 557$$

$$CF_{window4} = PXI * SHGC * IAC * FF_{ssouth} = 557 * 0.46 * 1 * 0.47 = 120.4$$

$$CF_{fenestration4} = U_{window4} \left(\Delta Tcooling - 0.46 * DR\right) + PXI * SHGC * IAC * FF_{ssouth}$$

$$= 6.9 + 120.4 = 127.3 \, W/\, m^2$$

$$\dot{Q}_{window4} = CF_{fenestration4} * A_{window4} = 127.3 * 3.6 = 458.28w$$

$$\dot{Q}_{totalcoolingwood} = 1900.8 + 3352.32 + 533.88 + 458.28 = 6245.3w$$

$$\dot{Q}_{totalheatingwood} = 1014.2 + 1014.2 + 253.6 + 256.2 = 2538.2w$$

Aluminum Frames

Window1 (south, aluminum frame, fixed)

Heating:

$$U_{window1} = 3.61 \, w/m^2 \cdot K$$

$$HF_{window1} = U_{window1} * \Delta T_{cooling} = 3.61 * 24.8 = 89.52 \, w/m^2$$

 $Q_{window1} = HF_{window1} * A_{window} = 89.52 * 14.4 = 1289.1 w$

Cooling:

Heat transfer:

$$CF_{window1} = U_{window1}(\Delta T_{cooling} - 0.46*DR) = 3.61(7.9 - 0.46*11.9) = 8.7w/m^2$$

Irradiation:

$$E_D = 559, \quad E_d = 188, \quad SHGC = 0.56, \quad FF_{seast} = 0.31$$

$$PXI_{window1} = E_D + E_d = 559 + 188 = 747$$

$$CF_{window1} = PXI * SHGC * IAC * FF_{seast} = 747 * 0.56 * 1 * 0.31 = 129.6$$

$$CF_{fenestration1} = U_{window1} \left(\Delta Tcooling - 0.46 * DR\right) + PXI * SHGC * IAC * FF_{seast}$$

$$= 8.7 + 129.6 = 138.3 \; W/m^2$$

$$\dot{Q}_{window1} = CF_{fenestration1} * A_{window1} = 138.3 * 14.4 = 1991.5w$$

Window2 (west, aluminum frame, fixed)

$$A_{\text{window2}} = 14.4 \text{ m}^2$$

Heating:

$$U_{window2} = 3.61 \, w/m^2 \cdot K$$

$$HF_{window2} = U_{window2} * \Delta T_{cooling} = 3.61 * 24.8 = 89.52 \text{ w/m}^2$$

 $Q_{window2} = HF_{window2} * A_{window} = 59.52 * 14.4 = 1289.1 \text{ w}$

Cooling:

Heat transfer:

$$CF_{window}2 = U_{window}2(\Delta T_cooling - 0.46*DR) = 3.61(7.9 - 0.46*11.9) = 8.7w/m^2$$

Irradiation:

$$E_D = 559$$
, $E_d = 188$, $FF_{swest} = 0.56$

$$CF_window2 = PXI * SHGC * IAC * FF_Swest = 747 * 0.56 * 1 * 0.56 = 234.26$$

$$CF_fenestration2 = U_window2 \; (\Delta Tcooling - 0.46 * DR) + PXI * SHGC * IAC * FF_Swest$$

 $PXI_{window1} = E_D + E_d = 559 + 188 = 747$

$$= 8.7 + 234.26 = 242.96 W/m^2$$

$$\dot{Q}_{window2} = CF_{fenestration2} * A_{window2} = 242.96 * 14.4 = 3498.6w$$

Window3 (south, aluminum frame, fixed)

$$A_{window3} = 3.6 \text{ m}^2$$

Heating:

$$U_{window3} = 3.61 \, w/m^2 \cdot K$$

$$HF_{window3} = U_{window3} * \Delta T_{cooling} = 3.61 * 24.8 = 89.52 \, w/m^2$$

 $Q_{window3} = HF_{window3} * A_{window} = 89.52 * 3.6 = 322.2w$

Cooling:

Heat transfer:

$$CF_{window3} = U_{window3}(\Delta T_cooling - 0.46 * DR) = 3.61(7.9 - 0.46 * 11.9) = 8.7w/m^2$$

Irradiation:

$$E_D = 348, \quad E_d = 209, \quad FF_{ssouth} = 0.47$$

$$PXI_{window3} = E_D + E_d = 348 + 209 = 557$$

$$CF_{window3} = PXI * SHGC * IAC * FF_ssouth = 557 * 0.56 * 1 * 0.47 = 146.6$$

$$CF_{fenestration3} = U_{window3} (\Delta T cooling - 0.46 * DR) + PXI * SHGC * IAC * FF_{ssouth}$$

$$= 8.7 + 146.6 = 155.3 \, W/m^2$$

$$\dot{Q}_{window3} = CF_{fenestration3} * A_{window3} = 155.3 * 3.6 = 559.08w$$

Window4 (south, aluminum frame, openable)

$$A_{\text{window3}} = 3.6 \text{ m}^2$$

Heating:

$$U_{window4} = 4.62 \, w/m^2 \cdot K$$

$$HF_{window4} = U_{window4} * \Delta T_{cooling} = 4.62 * 24.8 = 114.57 \text{ w/m}^2$$

 $Q_{window4} = HF_{window4} * A_{window} = 114.57 * 3.6 = 412.4 \text{w}$

Cooling:

Heat transfer:

$$CF_{window4} = U_{window4}(\Delta T_{cooling} - 0.46 * DR) = 4.62(7.9 - 0.46 * 11.9) = 11.2w/m^2$$

Irradiation:

$$E_D = 348, \quad E_d = 209, \quad SHGC = 0.55, \quad FF_{ssouth} = 0.47$$

$$PXI_{window4} = E_D + E_d = 348 + 209 = 557$$

$$CF_{window4} = PXI * SHGC * IAC * FF_{ssouth} = 557 * 0.55 * 1 * 0.47 = 143.98$$

$$CF_{fenestration4} = U_{window4} \; (\Delta T cooling - 0.46 * DR) + PXI * SHGC * IAC * FF_{ssouth}$$

$$= 11.2 + 143.98 = 155.18W/\textit{m}^2$$

$$\dot{Q}_{window4} = CF_{fenestration4} * A_{window4} = 155.18 * 3.6 = 558.65w$$

$$\begin{split} \dot{Q}_{total cooling a luminum} &= 1991.5 + 3498.6 + 559.08 + 558.65 = 6607.8 w \\ \dot{Q}_{total heating a luminum} &= 1289.1 + 1289.1 + 322.2 + 412.4 = 3312.8 w \end{split}$$

$$\frac{\frac{\dot{Q}_{total cooling wood}}{\dot{Q}_{total cooling aluminum}} = \frac{6245.3}{6607.8} = 94.5\%$$

$$\frac{\dot{Q}_{total heating wood}}{\dot{Q}_{total heating aluminum}} = \frac{2538.2}{3312.8} = 76.6\%$$

Conclusion:

It can be seen that window with wooden frame has better resistance in cooling and heating, aluminum frame window has 94.5% cooling and 76.6% heating resistance of a wooden one.