Problem set 12

by Maksim Al Dandan

April 10, 2024

Week 12. Problem set

$1 \quad \text{Task } 1$

1.1 Statement

Run Prim-Jarník algorithm [Cormen, $\S 21.2$] on the following graph, starting at vertex C. Assuming that the algorithm is using Binary heap implementation [Cormen, $\S 6$] of a priority queue, show the state of the Binary heap after each iteration of the algorithm (i.e. after adding each new vertex to the MST). The graph contains 8 vertices, which means that your solution must provide 8 states of the Binary heap. Each heap state must be represented as an array. No justification is required.

1.2 Solution

Number	Vertices	Edges	Weights
1.	-	-	-
2.	В	CB	9
3.	В	DB	6
	Н	DH	8
4.	В	FB	5
	G	FG	4
	E	FE	6
5.	E	GE	5
6.	A	BA	7
7.	A	EA	5
8.	-	-	-

2 Task 2

2.1 Statement

Suppose that all edge weights in a graph are integers in the range from 1 to |V|. How fast can you make Kruskal's algorithm run by modifying it somehow? What if the edge weights are integers in the range from 1 to W for some constant W? Justify your answer in at most two paragraphs.

2.2 Solution

If all edge weights in a graph are integers in the range from 1 to |V|, we can use a linear time sorting algorithm such as counting sort instead of a comparison-based sorting algorithm. This would make the sorting step of Kruskal's algorithm run in O(V+E) time, and since the disjoint-set operations run in nearly constant time, the overall time complexity of the algorithm would be O(V+E).

If the edge weights are integers in the range from 1 to W for some constant W, we can still use counting sort or radix sort to sort the edges in linear time. However, if W is significantly larger than |V| and |E|, the time complexity of the sorting step could be dominated by W. In this case, the overall time complexity of the algorithm would be O(W + V + E).

References

[Cormen] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to Algorithms, Fourth Edition. The MIT Press 2022