# 模块三 椭圆与方程

### 第1节 椭圆的定义、标准方程及简单几何性质(★★)

### 内容提要

- 1. 椭圆定义:设 $F_1$ , $F_2$ 是平面上的两个定点,若平面内的点P满足 $|PF_1|+|PF_2|=2a(2a>|F_1F_2|)$ ,则点P的轨迹是以 $F_1$ , $F_2$ 为焦点的椭圆.
- 2. 椭圆的简单几何性质:

| 标准方程 | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$                 | $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$                        |
|------|--------------------------------------------------------------------|---------------------------------------------------------------------------|
| 焦点坐标 | $F_1(-c,0)$ , $F_2(c,0)$                                           | $F_1(0,c)$ , $F_2(0,-c)$                                                  |
| 焦距   | $ F_1F_2  = 2c$ , $\exists c^2 = a^2 - b^2$                        |                                                                           |
| 图形   | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$             | $ \begin{array}{c c} A_1 & y \\ \hline F_1 & O \\ F_2 & A_2 \end{array} $ |
| 范围   | $-a \le x \le a$ , $-b \le y \le b$                                | $-b \le x \le b$ , $-a \le y \le a$                                       |
| 对称性  | 关于 x 轴、y 轴、原点对称 ————————————————————————————————————               |                                                                           |
| 顶点坐标 | 左、右顶点: $A_1(-a,0)$ , $A_2(a,0)$<br>上、下顶点: $B_1(0,b)$ , $B_2(0,-b)$ | 左、右顶点: $B_1(-b,0)$ , $B_2(b,0)$ 上、下顶点: $A_1(0,a)$ , $A_2(0,-a)$           |
| 长轴长  | $\left A_{1}A_{2}\right =2a$ ,其中 $a$ 叫做长半轴长                        |                                                                           |
| 短轴长  | $\left B_{1}B_{2}\right =2b$ ,其中 $b$ 叫做短半轴长                        |                                                                           |
| 离心率  | $e = \frac{c}{a}(0 < e < 1)$                                       |                                                                           |

3. 通径: 经过椭圆焦点且垂直于长轴的弦叫做通径(如图中两条蓝色的线段), 其长度为 $\frac{2b^2}{a}$ .



#### 典型例题

类型 1: 椭圆定义的运用

【例 1】椭圆 $\frac{x^2}{9} + \frac{y^2}{2} = 1$ 的焦点为 $F_1$ , $F_2$ ,点P在椭圆上,若 $|PF_1| = 4$ ,则 $|PF_2| = _____$ ;  $\angle F_1PF_2$ 的大小

为\_\_\_\_\_\_;  $\Delta PF_1F_2$ 的周长为\_\_\_\_\_\_; 若延长 PO 交椭圆于 Q,则  $|PF_1| + |F_1Q| = ______.$ 

解析: 椭圆中给出 $|PF_1|$ ,可由定义求 $|PF_2|$ ,由题意,a=3, $b=\sqrt{2}$ , $c=\sqrt{a^2-b^2}=\sqrt{7}$ ,

因为 $|PF_1|+|PF_2|=2a=6$ ,且 $|PF_1|=4$ ,所以 $|PF_2|=6-|PF_1|=2$ ;

要求 $\angle F_1PF_2$ ,可先求 $|F_1F_2|$ ,在 $\Delta PF_1F_2$ 中由余弦定理推论求 $\cos \angle F_1PF_2$ ,

如图,
$$|F_1F_2| = 2c = 2\sqrt{7}$$
,所以 $\cos \angle F_1PF_2 = \frac{|PF_1|^2 + |PF_2|^2 - |F_1F_2|^2}{2|PF_1| \cdot |PF_2|} = \frac{16 + 4 - 28}{2 \times 4 \times 2} = -\frac{1}{2}$ ,故 $\angle F_1PF_2 = 120^\circ$ ;

 $\Delta PF_1F_2$ 的周长为 $|PF_1|+|PF_2|+|F_1F_2|=2a+2c=6+2\sqrt{7}$ ;

由椭圆的对称性,O是 PQ 中点,而 O 也是  $F_1F_2$ 的中点,所以四边形  $PF_1QF_2$ 为平行四边形,

从而 $|QF_1| = |PF_2| = 2$ ,故 $|PF_1| + |QF_1| = 4 + 2 = 6$ .

答案: 2;  $120^{\circ}$ ;  $6+2\sqrt{7}$ ; 6



【变式】(2021 • 新高考 I 卷) 已知  $F_1$  ,  $F_2$  是椭圆 C :  $\frac{x^2}{9} + \frac{y^2}{4} = 1$  的两个焦点,点 M 在 C 上,则  $|MF_1| \cdot |MF_2|$  的最大值为(

解析:由椭圆定义, $\left|MF_1\right|$ 与 $\left|MF_2\right|$ 的和为定值,故可用不等式 $mn \leq (\frac{m+n}{2})^2$ 来求积的最大值,

由题意, a=3 ,所以 $|MF_1|+|MF_2|=2a=6$  ,故 $|MF_1|\cdot |MF_2| \le (\frac{|MF_1|+|MF_2|}{2})^2=9$  ,

当且仅当 $|MF_1|=|MF_2|=3$ 时取等号,所以 $|MF_1|\cdot |MF_2|$ 的最大值为9.

#### 答案: C

【反思】涉及椭圆上的点到两焦点距离的问题,可优先往椭圆定义上思考.

【例 2】已知椭圆  $C: \frac{x^2}{4} + \frac{y^2}{3} = 1$  的左、右焦点分别为  $F_1$  ,  $F_2$  , A(1,2) , P 为椭圆 C 上的动点,则  $|PA| - |PF_1|$  的最小值为\_\_\_\_\_.

解析:如图,A 在椭圆外,不易直接分析  $|PA|-|PF_1|$  的最小值,可考虑用椭圆定义将  $|PF_1|$  换成  $|PF_2|$  来看,由题意, $|PF_1|+|PF_2|=4$ ,所以  $|PF_1|=4-|PF_2|$ ,故  $|PA|-|PF_1|=|PA|-(4-|PF_2|)=|PA|+|PF_2|-4$  ①,由三角形两边之和大于第三边知  $|PA|+|PF_2|\geq |AF_2|$ ,结合①得: $|PA|-|PF_1|=|PA|+|PF_2|-4\geq |AF_2|-4$  ②,当且仅当点 P 位于图中  $P_0$  处时取等号,椭圆的半焦距  $c=\sqrt{a^2-b^2}=\sqrt{4-3}=1$ ,所以  $F_2(1,0)$ ,又 A(1,2),所以  $|AF_2|=2$ ,代入②知  $|PA|-|PF_1|\geq 2-4=-2$ ,故  $|PA|-|PF_1|$  的最小值为 -2.

答案: -2



【**反思**】涉及椭圆上的点到一个焦点的距离的最值问题,若不易直接求解,则可考虑用椭圆定义,转化到另一个焦点去分析.

【变式】已知 F(2,0) 是椭圆  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$  的右焦点,椭圆的过 F 且垂直于长轴的弦长为 6,若  $A(-2,\sqrt{2})$ ,M 为椭圆上的动点,则 |MF| + |MA| 的最大值为\_\_\_\_\_.

**解析**: 先求 a 和 b,  $F(2,0) \Rightarrow a^2 - b^2 = 4$  ①,由通径公式,过 F 且垂直于长轴的弦长为  $\frac{2b^2}{a} = 6$  ②, 联立①②解得: a = 4,  $b = 2\sqrt{3}$ ,

如图,直接分析|MF|+|MA|的最值不易,可考虑用椭圆定义将|MF|转化为M与左焦点的距离再看,

设椭圆的左焦点为 $F_1(-2,0)$ ,则 $|MF|+|MF_1|=2a=8$ ,所以 $|MF|=8-|MF_1|$ ,

故 $|MF| + |MA| = 8 - |MF_1| + |MA| = |MA| - |MF_1| + 8$  ③,

由三角形两边之差小于第三边知 $|MA|-|MF_1|\leq |AF_1|=\sqrt{2}$ ,结合③得: $|MF|+|MA|=|MA|-|MF_1|+8\leq \sqrt{2}+8$ , 当且仅当点M位于图中 $M_0$ 处时取等号,所以|MF|+|MA|的最大值为 $\sqrt{2}+8$ .

答案: √2+8



类型 II: 椭圆的标准方程与简单几何性质

【例 3】椭圆  $x^2 + mv^2 = 1$ 的焦点在 y 轴上,长轴长是短轴长的 2 倍,则 m = ( )

(A) 
$$\frac{1}{4}$$
 (B)  $\frac{1}{2}$  (C) 2 (D) 4

解析:为了看出椭圆的长半轴长a和短半轴长b,先将所给方程化为椭圆的标准方程,

$$x^2 + my^2 = 1 \Rightarrow \frac{y^2}{\frac{1}{m}} + \frac{x^2}{1} = 1$$
, 所以  $a = \sqrt{\frac{1}{m}}$ ,  $b = 1$ , 因为长轴长是短轴长的 2 倍,所以  $2a = 2 \times 2b$ ,

从而 
$$a = 2b$$
 , 故  $\sqrt{\frac{1}{m}} = 2$  , 解得:  $m = \frac{1}{4}$ .

答案: A

【变式 1】椭圆  $\frac{x^2}{m} + \frac{y^2}{9} = 1$ 的焦距为 4,则 m 的值为\_\_\_\_\_.

解析:没有规定椭圆的焦点在哪个坐标轴,故需讨论,

若椭圆的焦点在x轴上,则m>9,且半焦距 $c=\sqrt{m-9}$ ,由题意,椭圆的焦距为4,

所以  $2c = 2\sqrt{m-9} = 4$ ,解得: m = 13;

若椭圆的焦点在y轴上,则0 < m < 9,且半焦距 $c = \sqrt{9-m}$ ,所以 $2c = 2\sqrt{9-m} = 4$ ,解得: m = 5; 综上所述,m 的值为 13 或 5.

答案: 13 或 5

【变式 2】椭圆的中心在原点,焦点在 x 轴上,离心率  $e=\frac{1}{2}$ ,且过点  $(2\sqrt{2},\sqrt{3})$ ,则椭圆的方程为\_\_\_\_\_.

**解析:** 由题意,可设椭圆的方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ ,

已知离心率,可找到 a, b, c 的比例关系, 将变量归一化,

由题意, $e = \frac{c}{a} = \frac{1}{2}$ ,所以a = 2c, $b = \sqrt{a^2 - c^2} = \sqrt{3}c$ ,故椭圆的方程为 $\frac{x^2}{4c^2} + \frac{y^2}{3c^2} = 1$ ,

最后求 c, 将已知的点代入即可,椭圆过点  $(2\sqrt{2},\sqrt{3}) \Rightarrow \frac{8}{4c^2} + \frac{3}{3c^2} = 1$ ,解得:  $c = \sqrt{3}$ ,

所以椭圆的方程为 $\frac{x^2}{12} + \frac{y^2}{9} = 1$ .

答案:  $\frac{x^2}{12} + \frac{y^2}{9} = 1$ 

【变式 3】对称轴为坐标轴的椭圆经过  $P(-2\sqrt{3},1)$ ,  $Q(\sqrt{3},-2)$  两点,则椭圆的方程为\_\_\_\_.

解析: 本题未给椭圆焦点在哪个坐标轴, 若讨论, 则比较麻烦, 可用待定系数法求解,

设椭圆的方程为 $Ax^2 + By^2 = 1$ , 其中A > 0, B > 0, 且 $A \neq B$ ,

将 P, Q 两点代入可得:  $\begin{cases} 12A+B=1\\ 3A+4B=1 \end{cases}$ ,解得:  $A=\frac{1}{15}$ ,  $B=\frac{1}{5}$ , 所以椭圆的方程为  $\frac{x^2}{15}+\frac{y^2}{5}=1$ .

答案:  $\frac{x^2}{15} + \frac{y^2}{5} = 1$ 

【反思】不知道焦点在哪个坐标轴上时,可考虑将椭圆方程设为 $Ax^2 + By^2 = 1(A > 0, B > 0, A \neq B)$ .

【变式 4】若方程  $x^2 + ky^2 = 2$  表示焦点在 y 轴上的椭圆,则实数 k 的取值范围为\_\_\_\_.

**解析:** 先将椭圆化为标准方程,再比较分母, $x^2 + ky^2 = 2 \Rightarrow \frac{y^2}{2} + \frac{x^2}{2} = 1$ ,

因为椭圆焦点在y轴上,所以 $\frac{2}{k} > 2$ ,解得: 0 < k < 1.

答案: (0,1)

【反思】对于椭圆,若焦点在x轴,则在其标准方程中, $x^2$ 的分母大;若焦点在y轴,则 $y^2$ 的分母大.

【变式 5】(2022•全国甲卷)已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的离心率为 $\frac{1}{3}$ ,  $A_1$ ,  $A_2$ 分别为C的左、右

顶点,B为C的上顶点,若 $\overrightarrow{BA_1} \cdot \overrightarrow{BA_2} = -1$ ,则C的方程为( )

(A) 
$$\frac{x^2}{18} + \frac{y^2}{16} = 1$$
 (B)  $\frac{x^2}{9} + \frac{y^2}{8} = 1$  (C)  $\frac{x^2}{3} + \frac{y^2}{2} = 1$  (D)  $\frac{x^2}{2} + y^2 = 1$ 

(B) 
$$\frac{x^2}{9} + \frac{y^2}{8} = 1$$

(C) 
$$\frac{x^2}{3} + \frac{y^2}{2} = 1$$

(D) 
$$\frac{x^2}{2} + y^2 = 1$$

解析:已知离心率,可找到a,b,c的比例关系,将变量归一化,

由题意,离心率 $e = \frac{c}{a} = \frac{1}{3}$ ,所以a = 3c, $b = \sqrt{a^2 - c^2} = 2\sqrt{2}c$ ,如图, $A_1(-3c,0)$ , $A_2(3c,0)$ , $B(0,2\sqrt{2}c)$ ,

所以 $\overrightarrow{BA_1} = (-3c, -2\sqrt{2}c)$ , $\overrightarrow{BA_2} = (3c, -2\sqrt{2}c)$ ,从而 $\overrightarrow{BA_1} \cdot \overrightarrow{BA_2} = -3c \cdot 3c + (-2\sqrt{2}c)^2 = -c^2$ ,

因为 $\overrightarrow{BA_1} \cdot \overrightarrow{BA_2} = -1$ ,所以 $-c^2 = -1$ ,从而 $c^2 = 1$ ,故 $a^2 = 9c^2 = 9$ , $b^2 = 8c^2 = 8$ ,所以C的方程为 $\frac{x^2}{\alpha} + \frac{y^2}{\alpha} = 1$ .

答案: B



# 强化训练

- 1. (★★) 椭圆  $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$  的右顶点为 A(1,0),过其焦点且垂直于长轴的弦长为 1,则椭圆的方 程为\_\_\_\_.
- 2.  $(2023 \cdot 湖南模拟 \cdot \star \star)$  椭圆  $\frac{x^2}{a^2} + \frac{y^2}{3} = 1(a > \sqrt{3})$  的左、右焦点分别为 $F_1$ ,  $F_2$ , A 为上顶点,若  $\Delta AF_1F_2$ 的面积为 $\sqrt{3}$ ,则 $\Delta AF_1F_2$ 的周长为( )

- (A) 8 (B) 7 (C) 6 (D) 5
- 3. (2023 安徽蚌埠三模 ★★) 若椭圆  $C: \frac{x^2}{m} + \frac{y^2}{2} = 1$ 的离心率为 $\frac{\sqrt{6}}{3}$ ,则椭圆 C 的长轴长为( )
- (A) 6 (B)  $\frac{2\sqrt{6}}{3}$   $gigg 2\sqrt{6}$  (C)  $2\sqrt{6}$  (D)  $2\sqrt{2}$   $gigg 2\sqrt{6}$

- 4. (2022 河北衡水中学六调 ★★) 阿基米德 (公元前 287 年至公元前 212 年) 不仅是著名的物理学家, 也是著名的数学家,他利用"逼近法"得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积. 若椭圆 C 的对称轴为坐标轴,焦点在y 轴上,离心率为 $\frac{\sqrt{7}}{4}$ ,面积为12 $\pi$ ,则椭圆 C 的方程为( )

- (A)  $\frac{x^2}{9} + \frac{y^2}{16} = 1$  (B)  $\frac{x^2}{3} + \frac{y^2}{4} = 1$  (C)  $\frac{x^2}{18} + \frac{y^2}{32} = 1$  (D)  $\frac{x^2}{4} + \frac{y^2}{36} = 1$

- 5. (★★) 已知  $\triangle ABC$  的周长是 8,且 B(-1,0), C(1,0),则顶点 A 的轨迹方程是 ( )
  - (A)  $\frac{x^2}{9} + \frac{y^2}{8} = 1(x \neq \pm 3)$  (B)  $\frac{x^2}{9} + \frac{y^2}{8} = 1(x \neq 0)$  (C)  $\frac{x^2}{4} + \frac{y^2}{3} = 1(y \neq 0)$  (D)  $\frac{y^2}{4} + \frac{x^2}{3} = 1(y \neq 0)$

6. (★★) 已知  $F_1$ ,  $F_2$  是椭圆  $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 的左、右焦点,P 为椭圆上一点,M 为  $F_1P$  中点, |OM| = 3, 则 $|PF_1|=$ \_\_\_\_·

- 7.  $(2023 \cdot 四川模拟 \cdot ★★★)$  已知椭圆 $C: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的两个焦点分别为 $F_1$ , $F_2$ ,一条平行于x轴的直 线 l 与椭圆 C 交于 A, B 两点,则  $|AF_1| + |BF_1| = ($

- (A) 4 (B) 3 (C) 2 (D)  $2\sqrt{7}$

8.(★★★)已知  $F_1$ ,  $F_2$  为椭圆  $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 的两个焦点,过  $F_1$  的直线交椭圆于 A, B 两点,若  $|AF_2| + |BF_2| = 12$ , 则|AB|=\_\_\_\_.

9.  $( \bigstar \star \star \star )$  设椭圆  $C : \frac{x^2}{4} + \frac{y^2}{3} = 1$  的左、右焦点分别为  $F_1$  ,  $F_2$  , A(1,1) , P 为椭圆 C 上的动点,则  $|PA| + |PF_1|$  的最大值为\_\_\_\_\_.

《一数•高考数学核心方法》