

CMSC 11: Introduction to Computer Science

Jaderick P. Pabico <jppabico@uplb.edu.ph>
Institute of Computer Science, CAS, UPLB

Review

Gated Flip-Flop

- Registers
- Parallel Registers
- Time

Memory

 Research has produced a bewildering array of memory types and technologies

Card memories, tape memories, drum, disk, bubble, optical, core, charge-coupled device, and semiconductor memories, volatile, non-volatile, dynamic, static, destructive and non-destructive, read-write, read-only, programmable, erasable... pant, pant, pant, whew, have I forgotten anything?

I don't remember!

Electronic vs. Electromechanica

Eletronic Memories

- no moving parts
- as fast as the rest of the computer
- ideal for computer's main or internal memory
- can store up to 2 billion bytes
- Examples
 - RAM
 - Flash card
 - Memory card
 - SIM

Electronic vs. Electromechanica

- Electromechanical
 - have moving parts
 - Examples
 - disk, CDs
 - reels of tape
 - slow: How slow? Depends on the type of memory
 - Used for secondary storage outside of the machine
 - Can store up to 100 billion bytes

Internal Memory

- Can be thought of as a simple grid
- With a cell at each intersection
- Depending on the computer, each cell can hold one byte, two bytes, or more

Internal Memory

- Every cell has a unique ADDRESS
- ... specifying where it sits in the grid

Internal Memory

In practice, there may be many such grids

Memory Address

- What is the maximum number of cells the computer can address?
- Depends on the length and structure of the computer's words.
- Example: a 32-bit computer
 - First 8 bits is interpreted as instruction
 - Remaining 24 bits as the address

32-bit addressing

24-bit address

- In this case, addresses can be anything between
- giving 2²⁴ possible memory cells

16,777,216 cells to be exact!

8-bit addressing

- An 8-bit microcomputer, on the other hand, might process 3 bytes in succession
 - First 8 bits for instruction
 - Second 8 bits for first half of address
 - Third 8 bits for these cond half of address
- Here, the address is 16 bits long giving $2^{16} = 65,536$ possible addresses

Hexadecimal

 To make addresses shorter and more readable, they are often expressed in

HEXADECIMAL

... or base-16 numerals

•
$$10_{\text{hex}} = 16_{\text{decimal}}$$

•
$$100_{hex} = 16^2 = 256$$

•
$$1000_{hex} = 16^3 = 4096$$

HEX, it is my favorite! Bwe, he, he, he, he...

Hexadecimal

- Just as base-10 numbers require the digits 0-9, so hex needs digits from 0 to fifteen
- The extras are represented by the letters A-F

• For example $4A0D_{hex} =$

Hexadecimal

- To convert binary to hex:
 - group the binary number into nibbles, starting from the right
 - Convert each nibble into a hex digit
- Example: 101111001011011

To convert hex to binary, just reverse the process.

Types of Internal Memory

- From the hardware point of view, there are three main types of internal memory
 - CORE
 - memories use little magnetic doughnuts (cores)
 - each can be electrically magnetized in one of two directions, representing 0 and 1.

Types of Internal Memory

- RAM

- Uses flip-flops to store bits
- Each memory cell is essentially a parallel register
- Stands for Random Access Memory
 - meaning: any cell can be accessed directly

Types of Internal Memory

- ROM

- Indicates a 1 or 0 at each grid point by the presence of absence of an electric connection there
- Stands for Read-Only Memory

ROM vs. RAM

- The practical difference between them is that
 - you can only READ what's in ROM
 - while with RAM, you can read things out or write them in with equal ease.

