IMS ENGINEERING COLLEGE	IMSEC/QF/48
	Page 1 of 1
FORMATS	Issue No: 02
Assignment 2	Issue Date: 1 May 2010
Prepared by: MR	Approved by: Director

Subject Name	TAFL	Subject Code	KCS-402
Date of Handout	2nd-March, 2021	Max Marks	
Date of Submission	5th-March, 2021		

- Q1 a) Design a DFA that reads strings made up of letters in the word $\Sigma = \{A, I, L, M, R, S, T\}$ and recognize those strings that contain the word "**IMS**" as a substring.
 - b) Write a DFA to accept the language $L = \{w : |w| \mod 5 \neq 0 \}$ over $\Sigma = \{a, b\}$
 - c) Design FA to accept L, where $L = \{ \text{Strings in which 'a' always appears tripled } \}$ over the set $\Sigma = \{ a, b \}$. (Whenever 'a' appears it will repeat 3 times)
 - d) Draw DFA for the following over the set $\Sigma = \{0, 1\}$
 - i) $L = \{ w : |w| \mod 3 = 0 \}$
 - ii) $L = \{ w : |w| \mod 3 > 1 \}$
- Q2 a) Design a DFA which accepts the set of strings over alphabets $\Sigma = \{1, 2, 3, 4\}$ such that string when interpreted as decimal numbers, sum of their digits are divisible by 5 and check the string "241332" is accepted by your machine or not (give justification)
 - b) Design FA to check whether given **decimal number** is divisible by 2 or not
 - c) Design FA to check whether given **decimal number** is divisible by 3 or not
 - d) Design a DFA that accept the **binary number** divisible by 5 over $\Sigma = \{0, 1\}$.
- Q3 a) Find dfa's for the following language over $\Sigma = \{ a, b \}$ $L = \{ w : n_a(w) \mod 3 > n_b(w) \mod 3 \}$
 - b) Find dfa's for the following language over $\Sigma = \{ a, b \}$ $L = \{ w : n_a(w) \text{ mod } 3=0 \&\& n_b(w) \text{ mod } 2=0 \}$
- Q4 a) Convert the following nfa into equivalent deterministic machine.

IMS ENGINEERING COLLEGE	IMSEC/QF/48
	Page 2 of 1
FORMATS	Issue No: 02
Assignment 2	Issue Date: 1 May 2010
Prepared by: MR	Approved by: Director

b) Convert the following nfa into equivalent dfa

Q5 a) Find a deterministic accepter equivalent to

States \ \ \Sigma	a	b
$ ightarrow q_0$	q ₀ , q ₁	q_2
q1	\mathbf{q}_0	\mathbf{q}_1
q_2		q_0, q_1

b) Construct a deterministic finite automaton equivalent to

$$\begin{split} M = (~\{~q_0\,,~q_1,~q_2,~q_3~\},~\{~0,~1\},~\pmb{\delta},~q_0,~\{q_3~\}~)\\ \pmb{\delta}~given~by \end{split}$$

States $\setminus \Sigma$	a	b
\rightarrow q $_0$	q_0, q_1	q_2
q1	q_2	q_1
\mathbf{q}_2	q_3	q_3
q ₃		q_2

IMS ENGINEERING COLLEGE	IMSEC/QF/48
	Page 3 of 1
FORMATS	Issue No: 02
Assignment 2	Issue Date: 1 May 2010
Prepared by: MR	Approved by: Director

Q6 a) The transition table of a nondeterministic finite automaton M is given in following table. Construct a deterministic finite automaton equivalent to M

States $\setminus \Sigma$	0	1	2
\rightarrow q0	q_{1}, q_{4}	q_4	q_2, q_3
\mathbf{q}_1		\mathbf{q}_4	
q 2			q_2, q_3
$\left(\mathbf{q}_{3}\right)$		q4	
q4			

b) Construct a minimum state automation equivalent to given automaton

States \ \ \Sigma	a	b
\rightarrow q $_0$	q_0	q_3
q1	q_2	q_5
\mathbf{q}_2	\mathbf{q}_3	q_4
\mathbf{q}_3	\mathbf{q}_0	q_5
q4	q_0	q_6
q 5	q_1	q ₄
$(\mathbf{q_6})$	q_1	q_3