数字系统设计

第一章 概述

- 一、数字系统概述
- ■二、数字系统设计方法学
- ■三、数字系统设计自动化

第一章 概述

- ■一、数字系统概述
- ■二、数字系统设计方法学
- ■三、数字系统设计自动化

微处 理器

数字系统涉及生活的方方面面

- 处理器
 - CPU, DSP, Controllers
- 存储芯片
 - RAM, ROM, EEPROM
- 模拟芯片
 - Mobile communication, audio/video processing
- 可编程器件
 - PLA, FPGA
- 嵌入式系统
 - Used in cars, factories
 - Network cards
- System-on-chip (SoC)

数字 系统

■ 数字系统的基本组成

数字系统可以看做是一个微处理器外加交互接口

■微处理器

■微处理器

■ 常见微处理器

中央处理器(Central Processing Unit, CPU)

微电子学院 10 September 2020 8

- ■常见微处理器
 - 图形处理器(Graphics Processing Unit, GPU)

似义 理器

■ 常见微处理器

- 现场可编程逻辑门阵列(Field Programmable Gate Array

FPGA)

微电子学院 10 September 2020 10

- 常见微处理器
 - 专用处理器(Application Specific Integrated Circuit, ASIC)
 - ▶应特定用户要求和特定电子系统的需要而设计、制造的集成电路

射频芯片

矿机芯片

人工智能芯片

微处 理器

- 其他微处理器
 - DSP 数字信号处理器
 - ISP 图像信号处理器
 - MCU 微控制器
 - SoC 系统级芯片/片上系统

CPU	GPU	NPU
DSP	ISP	TPU
片上存储	基带单元	ADC/DAC
wifi/4G/5G	音频处理单元	接口单元

逻辑电路

- ■数字逻辑电路
 - 是微处理器实现数字信号逻辑运算的电路

5	
AND	

AB	Q
0 0	0
0 1	1
1 0	1
1 1	1

$$\begin{array}{c|c} A & Q \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

- 处理与传递离散信号(数字信号)
- 组合逻辑电路
- 时序逻辑电路

■ 组合逻辑电路

结构特征:

- 1. 输入输出之间没有反馈延迟通路
- 2. 不含存储单元

工作特征:

任意时刻的输出只取决于该时刻的输入,与电路原有的状态无关

2-4译码器

多路 选择器

逻辑

■ 时序逻辑电路

结构特征:

- 1.电路由组合电路和存储电路组成
- 2.存在反馈电路

工作特征:

电路输出即与该时刻的输入有关,也与电路原有的状态有关

同步时序电路:

存储电路里所有触发器有一个统一的时钟源,它们的状态在同一时刻更新

异步时序电路:

没有统一的时钟脉冲, 电路的状态更新 不在同一时刻发生

逻辑 门

- ■逻辑门电路
 - 数字逻辑电路的基本单元。执行"或"、"与"、"非"、"或非"、"与非"等逻辑运算的电路
 - 任何复杂的逻辑电路都可由基本逻辑门组成

■逻辑器件

逻辑 器件

真空电子管

德福雷斯特在对二 极管的研究基础上, 发明了真空三极管。 耗电量巨大 寿命短

相较于真空三极管,晶体管在体积、寿命、制作工艺上都有极大的优势

10 September 2020 微电子学院

数字电路概述

■ 金属氧化物半导体场效应管(Metal Oxide 器件 Semiconductor Field Effect Transistor,MOSFE)

■逻辑

乔治 布尔

逻辑不仅是哲学, 还是数学

任何事情都能用数学形式表 达其处理过程

可以用0和1表达逻辑

可以用0和1表征各种不同任务

■逻辑

香农

逻辑可以用逻辑电路来实现, 也就是用电子管来实现

用电子管的开关实现0和1

■从晶体管到数字系统

- ■数字信号
 - 什么是数字信号
 - 为什么使用用数字信号
 - 如何获得数字信号

- 数字信号与模拟信号的区别
 - 图像

胶片相机

感光、冲洗

数码相机

像素点GRB采样

- 数字信号与模拟信号的区别
 - 时间

时间不确定、可取连续时间

时间确定、时间精度有限

- 数字信号与模拟信号的区别
 - 电视

■ 数字信号与模拟信号的区别

27

数字信号与模拟信号的区别

模拟信号具有连续性:

- 时域连续
- 取值连续

数字信号具有离散型:

- 时域为离散的
- 值域为一个有限集合

自然界中绝大部分信号都是模拟信号

微电子学院 28 10 September 2020

■ 为什么要采用数字信号

■ 为什么要采用数字信号

噪声多

噪声难消除

■ 为什么要采用数字信号

模拟信号

数字信号

■ 来自于物理世界

■基于布尔方程

■热波动噪声

■采样误差噪声

■噪声易累积

■噪声不会累积

■如何获取数字信号

采样频率

采样精度

第一章 概述

- ■一、数字系统概述
- ■二、数字系统设计方法学
- ■三、数字系统设计自动化

数字电路设计方法学

- 数字电路设计的三个域
 - 行为域、结构域、几何域
- ■数字电路的层次化设计
 - 自顶向下
 - 自底向上
- ■数字电路的实现技术
 - 全定制
 - 半定制
 - 可编程器件

数字电路设计方法学

数字电路设计方法学

- ■层次化设计
 - 自底向上(Bottom-Up设计)

- 缺点: 缺乏全局规划、迭代优化难度大

10 September 2020 微电子学院 37

数字电路设计方法学

- ■层次式设计
 - 自顶向下(Top-Down设计)

自顶向下方法的设计 通常需要经过"设 计一验证一修改设 计一再验证"的过程, 通过不断的迭代优化 与验证,获得满足性 能与功能要求的结果

数字系统设计方法学

■ 混合设计模式

Top-Down Structural design

Bottom-Up realization

■ 以全加器为例

数字系统设计方法学

■ 以全加器为例

数字系统设计方法学

■ 数字系统的实现技术

数字系统设计方法

- "搭积木"式
 - ▶标准逻辑器件+外围电路
 - ▶性能高
 - > 设计成本高
 - ▶几乎没有灵活性
 - ▶ 设计复杂度高

数字系统设计方法

■半定制

- 标准单元模式
 - > 设计灵活
 - ▶标准单元库有助于提高布图效率
 - ▶自动化程度高
 - ▶设计周期短
 - > ASIC设计广泛采用

数字系统设计方法学

■可编程器件

- FPGA
 - ▶设计灵活度高,为用户提供了参与系统与电路设计的可能性
 - ▶设计周期短、上市快
 - ▶功耗大
 - > 成本高
 - ▶速度慢

第一章 概述

- ■一、数字系统概述
- ■二、数字系统设计方法学
- ■三、数字系统设计自动化

■ 如何设计芯片?

手工设计→计算机辅助→电子设计自动化

Electronic Design Automation

10 September 2020 微电子学院 47

- EDA: Electronic Design Automation 电子设计自动化
 - 利用计算机完成集成电路的设计工作
 - 以计算机和微电子技术为先导,汇集计算机图形学、拓扑学、逻辑学、计算数学等多种计算机应用学科最新成果的先进技术
 - 代替设计者完成逻辑综合、布局布线、仿真验证等工作

■ EDA: Where HW and SW meet each other

- EDA技术发展的三个阶段
 - CAD阶段
 - ▶20世纪60年代中期~20世纪80年代初期
 - ▶计算机辅助版图编辑、PCB设计、电路模拟
 - ➤常用工具: Tango 、SPICE
 - CAE (Computer Aided Engineering) 阶段
 - ▶20世纪80年代初期~20世纪90年代初期
 - ▶原理图输入、逻辑仿真、自动布局、功能模拟、分析验证
 - ➤ 常用工具: Mentor Graphics 、 Valid Daisy

- EDA技术发展的三个阶段
 - EDA阶段
 - ▶20世纪90年代以来
 - ▶ 硬件描述语言、系统级仿真与综合技术
 - ▶自顶向下的设计理念
 - ▶精力主要集中于方案创新与架构创新
 - ➤ 常用软件: Cadence、Design Compiler、IC Compiler、Quartus

10 September 2020 微电子学院 51

- EDA被定位为集成电路产业链龙头
 - 2000年国务院出台了8号文件
- 推动了封装测试行业从二维转向三维
- PCB板级系统的硅上互联
- 维持"摩尔定律"的语言
- 时间摩尔到空间摩尔的转变

■ EDA工具分类

- 电子电路设计
 - ➤ HSPICE、SPECTRE
- PCB设计
 - Protel
- PLD设计
 - ➤ Quartus II、ISE
- IC设计
 - Modelsim Design Compiler, Encounter IC compiler

- IC EDA 三巨头
 - Cadence
 - Synopsys
 - Mentor
- 2019年全球行业产值
 - 90亿美元
 - 三巨头垄断全球70%
 - 三巨头垄断国内90%

©2007, by O1consulting
Top EDA vendors' relative market-share, Europe, 2007

90亿元的产值控制全球5000亿美元的半导体市场

华为	DxDesigner (前端)	Mentor Graphics
	HAPS (验证)	Synopsys
	Allegro (PCB)	Cadence
中兴	Allegro (前端到后端)	Cadence
	ExpeditionPCB (布线)	Mentor Graphics
联想	Allegro	Cadence
联想	PADS	Mentor Graphics
朗科	PADS	Mentor Graphics
	Orcad	Cadence
神达电脑	Allegro	Cadence
英业达	Allegro	Cadence
威盛	Allegro	Cadence
天弘电子	ExpeditionPCB (WG)	Mentor Graphics
	Allegro	Cadence
宏基	Allegro	Cadence
	BoardstationPCB(EN)	Mentor Graphics

华硕	Allegro	Cadence
创维	PADS	MentorGraphics
TCL	PADS	Mentor Graphics
迈瑞医疗	PADS	Mentor Graphics
清华同方	PADS	Mentor Graphics
长城	Allegro	Cadence
海尔	CR5000	ZUKEN
海信	CR5000	ZUKEN
新北洋	CR5000	ZUKEN
中海油服	AD	Altium
博士力士乐	AD	Altium
中芯国际	AD	Altium
南京南瑞	AD	Altium
南京三宝	AD	Altium
纬创资通	Allegro	Cadence
	BoardstationPCB(EN)	Mentor Graphics

- - 谷歌断供→鸿蒙系统

EDA对半导体产业的重要性

- ARM断供→备胎转正、V8架构永久授权
- EDA断供→?

美国断供EDA工具,是为最后一招做准备,华为不可不防 设计

全球三大EDA工具欲断供华为,华为芯片设计该何去何从?

美国三大EDA巨头断供华为,华为芯片还能做下去吗?

三大EDA软件公司断供华为!本土EDA公司能否抗旗?-电子发烧发

2019年6月9日 - 华为在缺少EDA公司支持的情况下,台积电遭遇美国更严格的审查。... 曝料 Cadence、Mentor、Synopsys三大EDA软件公司,都已相继断供华为。华为在缺少EDA公...

🥏 电子发烧友网 🔻 - 百度快照

克 基 尔 比

- ■国产EDA产业发展
 - EDA熊猫系统
 - ▶1986年开始研发,1993年问世
 - > 但未取得实质性成功

- 华大九天

- > 承载熊猫系统的技术
- ▶数模混合IC设计、后端优化、平板(FPD)全流程设计
- 芯禾科技、广立微

- 与国外差距显著
 - 产品不够全、性能不够优、尤其是在数字电路方面
 - 政策与研发的影响
 - 与先进工艺结合的缺失
 - > 与先进工艺接触的机会少, 限制了我们的提高
 - ▶ 1 我在该公司的10年中(1999年到2009年),当时几个产品在商业上还不太成功。不太成功的 影响 标志是:无法与主流EDA工具进行正面竞争,在功能和性能上有差距。当时国内EDA产业的
 - 人フ 环境与目前差别很大、当时的现状是: 做出的EDA工具必须比主流EDA工具要好、并且要明 显地好,才可能有市场空间。而目前国内EDA产业的现状是:首先解决EDA工具的有无问
 - 一研发题,其次再解决好与更好的问题。相对来讲,目前国内EDA产业的需求对EDA公司的商业化 成功更加友好。有时候,我甚至猜想:如果把今天国内EDA产业环境提前10年,也许我们当
 - 一 市均^{年开发EDA就不会那么痛苦了。}

10 September 2020 微电子学院 58

- "巴统"
 - 对共产主义国家出口管制统筹委员会
 - 总部在巴黎的美大使馆——巴黎统筹委员会

20世纪80年代之前,禁运EDA

1991年,国产熊猫EDA系统发布

1994年,取消对华EDA禁运

2008年, EDA软件再度起航

■ 数字系统(集成电路)设计流程

编写系统Spec文件

ALU, Controller

Verilog SystemC

约束文件、库

与或非门

- 系统功能描述
- ■功能结构设计
 - 基于芯片功能及性能要求设计规划
- ■电路设计
 - 基于硬件描述语言(Hardware Description Language,
 HDL): VHDL, Verilog; RTL代码
 - 不再是手工画图
- ■电路仿真
 - 功能验证、行为仿真

10 September 2020 微电子学院 61

- ■逻辑综合
 - 将RLT电路转换为门级网表(Netlist)
 - 翻译: RTL→逻辑库 映射: RTL→器件库
 - 包含门延迟信息

网表是一种记录有逻辑门之间连接关系及时延信息的文件

- ■门级仿真
 - 比电路仿真更真实
 - 考虑连接关系及门延时

- 版图设计(物理设计)
 - 包含多个阶段且各阶段联系紧密
 - 决定芯片的最终设计方案
- 静态时序分析(STA)
 - 套用时序模型(Timing Model)
 - 门延时: Gate Delay——查表法
 - 线延时: Wire Delay——Elmore模型
- 后仿真验证

■ 数字系统设计层次

抽象层次	时序单位	基本单元	电路的功能描述
系统级	数据处理	进程及通信	自然语言描述系统功能或相互 通信的进程

前端

后端

■ 电梯的系统级描述

■数字系统设计层次

	抽象层次	时序单位	基本单元	电路的功能描述
	系统级	数据处理	进程及通信	自然语言描述系统功能或相互 通信的进程
前端	行为级	运算步	运算的控制	行为有限状态机、数据流图、 控制流图

后端

电梯的行为级描述

现态	次态	转换条件		
SO	S1	下一个时钟		
S1	S1	up[pos]=1 or stop[pos]=1		
S1	S2	S1下一个状态不为S1时		
S2	S1	up[pos]=1 or stop[pos]=1		
S2	S3	S2下一状态不为S1,且stop[pos+i]=1 or up[pos+i]=1 or down[pos+i]=1 (i>0且pos+i<=N)		
S2	S4	S2下一状态不为S1和S3,且down[pos]=1		
S2	S5	S2下一状态不为S1/S3/S4,且stop[pos-i]=1 o up[pos-i]=1 or down[pos-i]=1 (i>O且pos-i>=0)		
S2	S2	S2下一状态不为S1/S3/S4/S5时		
S3	S2	完成pos=pos+1,下一个时钟		
S4	S4	down[pos]=1 or stop[pos]=1		
S4	S5	S4下一个状态不为S4时		
S5	S4	down[pos]=1 or stop[pos]=1		
S5	S6	S5下一状态不为S4,且stop[pos-i]=1 or up[pos-i]= or down[pos-i]=1 (i>0且pos-i>=0)		
S5	S1	S5下一状态不为S4和S6,且up[pos]=1		
S5	S2	S5下一状态不为S4/S6/S1, 且stop[pos+i]=1 or up[pos+i]=1 or down[pos+i]=1 (i>0且pos+i<=N)		
S5	S5	S2下一状态不为S4/S6/S1/S2时		
S6	S5	完成pos=pos-1,下一个时钟		

	抽象层次	时序单位	基本单元	电路的功能描述
前端	系统级	数据处理	进程及通信	自然语言描述系统功能或相互 通信的进程
	行为级	运算步	运算的控制	行为有限状态机、数据流图、 控制流图
	RTL级	时钟周期	寄存器、运算	布尔方程、卡诺图、有限状态 机

后端

■电梯的RTL级描述

RTL设计

```
module regfile (rna,rnb,d,wn,we,clk,clrn,qa,qb);
 2
                  [4:0] rna,rnb,wn; // register #
          input
          input
                                     // data to be written
          input
                        we,clk,clrn; // write enable
                                      // two read ports
          output [31:0] qa,qb;
                 [31:0] register [1:31]; // r1 - r31
          assign ga = (rna == 0)? 0 : register[rna]; // read port 1
          assign qb = (rnb == 0)? 0 : register[rnb]; // read port 2
10
          always @(posedge clk or negedge clrn) begin
11
              if (clrn == 0) begin // reset
12
                  integer i;
                  for (i=1; i<32; i=i+1)
14
                      register[i] <= 0;
15
              end else begin
16
                  if ((wn != 0) && (we == 1))
                      register[wn] <= d;
                                                     // write port
17
18
              end
19
          end
20
      endmodule
```

RTL仿真

	抽象层次	时序单位	基本单元	电路的功能描述
	系统级	数据处理	进程及通信	自然语言描述系统功能或相互 通信的进程
前端	行为级	运算步	运算的控制	行为有限状态机、数据流图、 控制流图
	RTL级	时钟周期	寄存器、运算	布尔方程、卡诺图、有限状态 机
后	门级	延时模型	逻辑门、器件	原理图
端				

■电梯的门级描述

门级设计

门级仿真

	抽象层次	时序单位	基本单元	电路的功能描述
	系统级	数据处理	进程及通信	自然语言描述系统功能或相互 通信的进程
前端	行为级	运算步	运算的控制	行为有限状态机、数据流图、 控制流图
	RTL级	时钟周期	寄存器、运算	布尔方程、卡诺图、有限状态 机
后	门级	延时模型	逻辑门、器件	原理图
端	版图级		几何图形	

■电梯的版图级描述

- 综合(Synthesis)
 - 是指从较高层次的设计描述到较低层次的设计描述的转换
 - 、映射并包含一定的设计优化的过程
 - 高层综合(High-level Synthesis)
 - 逻辑综合(Logic Synthesis)
 - 版图综合(Layout synthesis)

■高层综合

- 超大规模集成电路设计是 一个多目标优化问题,设 计过程必须权衡几个相互 冲突的设计目标, 如芯片 面积、电路延迟和功耗。 高层综合实现从行为抽象 层到RTL的自动化转换, 可以大大缩短设计周期, 允许在设计过程中尝试更 多可替代的电路实现方法 从而为集成电路设计寻 找更多的优化设计空间。

■逻辑综合

- 是指将把寄存器传输级(Register Transfer Level, RTL) 代码所描述的逻辑功能和用户所要求的性能,基于一个完 备的逻辑单元库,转换成满足相关约束条件的门级网表的 过程。

RTL级描述 翻译 优化 映射 门级网表

10 September 2020 微电子学院 77

微电子学院 10 September 2020

- 一、数字系统概述
 - 数字信号、器件、数字逻辑、逻辑电路、微处理器、系统
- 二、数字系统设计方法学
 - 三个域、层次式设计、实现技术
- ■三、数字系统设计自动化
 - EDA的发展历史、国内EDA现状、EDA设计流程

10 September 2020 微电子学院 79

课后作业

- 数字系统的实现方式有哪些? 各有什么优缺点?
- 简述 "片上系统(System on Chip, SOC)"
- 什么是Top-Down设计模式? 优缺点是什么?
- 数字系统设计过程中, "设计说明书(Specification, Spec)"的作用是什么?通常包含哪些内容?

10 September 2020 微电子学院 80