NOVA **IMS** Information

Management

School

CRISP-DM PROCESS MODEL

Data Science for Marketing

© 2021-2022 Nuno António

Summary

- 1. Introduction
- 2. Global overview
- 3. Business understanding phase

Introduction

CRISP-DM process model

Why use a standard process model

- Framework to record and replicate projects
- Assists project planning and management
- Encourage best practices and the obtention of better results
- Provides a base for new practitioners:
 - Demonstrates the maturity of Data Mining/Data Science
 - Reduces dependency of "experts"

Data Mining/Data Science processes

- KDD: Knowledge Discovery in Databases
- SEMMA: Sampling, Exploring, Modifying, Modelling, and Assessing
- CRISP-DM: CRoss Industry Standard Process for Data Mining

Global overview

CRISP-DM process model

CRISP-DM

- Applies not only to DM projects, but also to Text Mining, Statistics, and Descriptive and Predictive Analytics
- Used in academy and by DM practitioners
- Non-proprietary
- Tool neutral
- Focus both on the application and the technical perspectives
- Most-often used process model

Four level breakdown

source: Chapman et. al (2000)

Phase: Business understanding

- Determine business objectives
 - Background
 - Business objectives
 - Business success criteria
- Assess situation
 - Resources
 - Requirements
 - Risks and contingencies
- Determine data mining goals and success criteria
- Produce project plan

Phase: Data understanding

- Collect initial data
- Describe data
- Explore data
- Verify data quality

Phase: Data preparation

- Select data
- Clean data
- Construct data
- Integrate/merge data
- Format data

Phase: Modeling

- Select modeling techniques
 - Algorithm selection
 - Modeling assumptions
- Generate test design
- Build model
- Assess model

Phase: Evaluation

- Evaluate results
 - Assess data mining results vs business success criteria
 - Approve model
- Review process
- Determine next steps
 - Production or not?
 - Additional requirements?

Phase: Deployment

- Plan deployment
 - Strategy to deploy the model, including integration in business processes
- Plan monitoring and maintenance
 - Performance assessment
 - Models' update
- Produce final report
- Review project

Cyclical nature

- DM does not end once a project is deployed!!!
- Lessons learned during the project development and from the deployed project can trigger more-focused business questions

2.3

Business understanding phase

CRISP-DM process model

"A possible consequence of neglecting this step is to expend a great deal of effort producing the right answers to the wrong questions"

Abbott (2015)

NOVA IMS Information Management School

Business understanding

Determine business objectives **Background**

ORGANIZATION

- Identify key persons
- Identify the internal sponsor and main expert
- Define steering committee
- Identify affected business units

PROBLEM AREA

- Identify the problem area (e.g., marketing)
- Describe the problem in general terms
- Identify target groups (e.g., users or managers)
- Identify users' needs and expectations

CURRENT SOLUTION

- Identify and describe current solution used to address the problem (if any)
- Describe the pros and cons of the current solution (if any)

Determine business objectives Business objectives

- Informally describe the **problem to be solved** (e.g., increase customers loyalty to increase sales)
- Specify all business questions as precisely as possible
- Specify any other business requirements (e.g., vouchers cannot exceed 25% of the benefits)
- Specify expected benefits in business terms (e.g., identify customers visiting patterns and try to increase the number of visits) should be AS REALISTIC AS POSSIBLE!

Determine business objectives Business success criteria

- Specify business success criteria:
 - Measurable (e.g., increase the visits by 5% per quarter); or
 - Subjective (e.g., give useful insights into frequent visitors)
- Identify who assesses the success criteria

Assess Situation Inventory of resources (1/3)

Hardware

- Identify required hardware
- Establish the hardware availability

Assess Situation Inventory of resources (2/3)

Personal

- Identify project sponsor (if not the main sponsor)
- Identify systems, databases, and other technical administrators
- Identify DM experts, statisticians, and other analysts

"IT'S GREAT TO HAVE BUSINESS AND IT IN THE ROOM.
EVERYONE PLEASE MEET SHELLA. SHELLA WILL BE YOUR
TRANSLATOR TODAY."

Proto Dataedo

Assess Situation Inventory of resources (3/3)

Personal

- Identify knowledge and types of knowledge sources
- Check available tools and techniques
- Identity data and types of data sources (e.g., online, experts, docs., etc.)

Access to data and data knowledge is critical

YOU'LL WORK IN TEAMS OF TWO, EACH LOOKING INTO 540 TABLES AND FILES.

Assess Situation Requirements, assumptions and constraints

REQUIREMENTS

- Specify target group
- About comprehensibility, accuracy, deployment, maintenance, etc.
- About security, legal restrictions, privacy, reporting, and project schedule

ASSUMPTIONS

- Clarify all assumptions (e.g., # of observations)
- List assumptions on data quality, external factors, and costs
- List assumptions about the model explicability or explanation

CONSTRAINTS

- Check general constraints (e.g., legal, budget, timescale, etc.)
- Check access to data sources (rights and technological issues)
- Check the accessibility of relevant knowledge

Assess Situation Risks and contingencies

IDENTIFY RISKS

- Identify business risk (e.g., competitor comes up with better results first)
- Identify organization risks (e.g., department requesting project doesn't have funding)
- Identify financial risks
- Identify technical risks
- Identify risks related to data and data sources

CONTIGENCY PLANS

- Determine conditions under which each risk may occur
- Develop contingency plans

Assess Situation Terminology

- Check for the existence of a previous glossary
- Talk to domain experts to understand their terminology
- Become familiar with the business terminology

WHO IS A CUSTOMER ?

HOW MANY CUSTOMERS DO WE HAVE?

Protr@ Dataedo

Assess Situation Costs and benefits

- Estimate costs for data collection
- Estimate costs of developing and implementing a solution
- Identify benefits (e.g., improved customer satisfaction, ROI, and increase in revenue)
- Estimate operating costs

Determine DM goals Data Mining goals

- Translate the business questions to DM goals (e.g., reduction of visiting frequency)
- Specify DM problem type (e.g., segmentation)

Determine DM goals Data Mining success criteria

- Specify criteria for model assessment (e.g., model accuracy, performance and complexity)
- Define benchmarks for evaluation criteria
- Specify criteria which address subjective assessment criteria (e.g., model explicability and insights provided by the model)

Produce project plan Project plan

- Define the initial process and discuss the feasibility with all involved personnel
- Combine all identified goal and selected techniques in a coherent procedure
- Estimate the effort and resources needed to achieve and deploy the solution (e.g., Data understanding: 20-30%, Data preparation: 50-70%, Modeling: 10-20%, Deployment: 5-10%, Other phases: remaining)
- Identify critical steps and major iterations
- Mark decision and review points

Produce project plan Initial assessment of tools and techniques

- Create a list of selection criteria for tools and techniques
- Choose potential tools and techniques
- Evaluate appropriateness of techniques
- Review and prioritize applicable techniques according to the evaluation of alternative solutions

Questions?

Data Science for Marketing

© 2021-2022 Nuno António (Rev. 2022-09-13)

