GIAC

蚂蚁金服ServiceMesh新型网络代理的思考与实践

奕杉 xiaodong.dxd@antfin.com

Agenda

- ▶背景 & 概览
- >架构&重点特性
- ▶技术案例解析
- ▶总结 & 展望
- **≯**QA

背景&概览

ServiceMesh数据平面

- C实现,支持多语言扩展
- 基于Nginx<u>扩展</u>
- 开发不活跃
- 老牌代理系统,业界广 泛使用,服务各类场景

- C++实现
- CNCF项目,ISTIO原生数 据平面
- 开发活跃,最新版为1.8.0
- Google, Lyft主导,业界 众多公司使用中,重点搭 载ISTIO使用,服务各类 场景

LINKERD

- Rust实现
- CNCF项目,最早的 Service Mesh数据平面
- 开发活跃,最新版为 18.9.1

SOFAMOSN

- Golang实现
- 新生项目,初期旨在搭建 RPC亲和,高度可扩展性 的Golang转发系统
- ▶ 开发活跃,最新版为0.3.0
- · 蚂蚁+UC主导,重点搭载 SOFAMesh使用,目标服 务通用场景,金融场景

云原生时代数据转发平面思考

- ▶部署运维
- ▶云环境
- ▶微服务体系
- ▶云原生定义
- ▶测试、灰度
- ▶金融级零可信安全
- ▶异构语言、协议
- ▶异构计算
- ▶运维架构
- ▶东西向 VS 南北向
- **>...**

架构&重点特性

SOFAMesh

- ✓ Pilot
 - ✓ Transparent proxy integrated with K8S
 - ✓ Traffic Management
 - ✓ Traffic Shifting
 - ✓ Failure Injection
 - ✓ Control Ingress Traffic
 - ✓ Control Egress Traffic
 - ✓ MTLS over HTTPS
- ✓ Mixer
 - ✓ Report Request
- ✓ Citadel
 - ✓ MTLS
 - ✓ RBAC (doing)

https://github.com/alipay/sofa-mosn https://github.com/alipay/sofa-mesh

蚂蚁云原生数据平面架构

NODE

SSL / TCP Offload

SOFAMosn

容器虚拟层

K8S体系

Node扩展

MOSN – 多协议支持

- 支持常用协议
- 支持自定义扩展模式
- XProtocol快速接入SOFAMesh

MOSN — 性能

10

- Raw Epoll 模式
- Writev
- 读优化
- 无损迁移

协议

- SofaRPC 深度优化
- XProtocol 扩展机制
- HTTP/1.1, HTTP/2.0 优化

TLS

- 官方库IO 优化
- 无损状态迁移

内存优化

- 内存复用 框架
- Slab style buffer
- 内存使用 深度优化

协程

- 协程池化
- 同步操作 异步化

网络层

• 协议栈接入试点

MOSN - 安全

- ✓ RBAC (ing)
- ✓双向链路加密
- ✓WAF (todo)
- ✔流量镜像 (todo)

MOSNG 网关(待开源)

MOSN - 多场景支持

- 开源版保证充分的可扩展性,性能支持
- 基于开源版MOSN建设蚂蚁内部版MOSN,通过扩展的方式实现 LDC/弹性路由选择,加密机证书集成,基于配置中心的后端服务 发现等蚂蚁定制需求
- 基于开源版MOSN建设网关类转发产品MOSNG对功能扩展,性能等方面的需求(待开源)

分类	特性	已支持	待支持
	HTTP	支持高性能HTTP/1.1转发,并接入MOSN IO/Net,Metrics 收集等基础能力	XF Headers
		性能优化的HTTP/2.0转发,并接入MOSN IO/Net, Metrics 收集等基础能力	HTTP/2.0 初始化参数 HTTP/2.0 Server Push
		支持协议自动识别、Upgrade、GRPC、WebSocket	
协议		支持高性能SOFARPC转发	
173 00	RPC	基于Xprotocol浅解包支持Dubbo转发	
		提供两种模式的可扩展的RPC协议框架,支持自定义RPC, 支持协议自动识别	
	TCP	支持TCP代理	
		支持端口维度TLS,mTLS	
	TLS	支持SNI多域名接入	XFCC
		支持服务端明文、密文自动识别	域名维度TLS Context
		支持可扩展的证书获取方式	7/

特性	已支持	待支持
域名匹配	多层域名匹配	
简单路由匹配	Path / Headers / Prefix	
复杂路由匹配	Label based SubSet	
流量分发	Cluster / Host Weight支持	
拦截路由	Direct Response	CORS策略 基于请求header控制的路由
请求处理	HTTP Rewrite & Headers Custom	方式 更多LB算法
流量镜像	Traffic Shadow	文多品并从
重试	简单计数重试	
路由扩展机制	可扩展的链式自定义路由	
LB算法	Random / SRR	
	域名匹配 简单路由匹配 复杂路由匹配 流量分发 拦截路由 请求处理 流量镜像 重试 路由扩展机制	域名匹配

分类	特性	已支持	待支持
	Cluster管理	Cluster / SubSet Cluster	优先级等功能
	后端池化	支持各协议后端连接池	
二 业	主动健康检查	支持各协议健康检查、心跳	被动健康检查
后端集群管理	后端TLS	支持可配置的后端TLS	完善后端熔断机制 实现更多后端获取方式
	后端资源熔断	支持简单的后端熔断	<u> </u>
	扩展性	可扩展的后端获取方式	
>> ■ +☆ # J	故障注入	故障注入	基于请求参数控制的故障注入
流量控制	流控	支持QPS、Rate限流	支持黑/白名单

分类	特性	已支持	待支持
	N.A	IO、协议、前后端核心metrics	
	Metrics	支持无损迁移	
监测	T '	Tracing Framework	
	Tracing	SOFARPC Tracer	HTTP Tracing完善
	Logging	Request Access Log	
遥感	Report	Report Request / Response 信息	Report更多监测信息
严 7 史 元 ☆C	XDS	支持基于ADS的配置更新	支持多种可扩展的配置模式
配置更新		支持ISTIO sidecar、gateway、router 配置模式	
	高性能配置更新	基于RCU的动态配置更新	
A D. N. ALN I	木冶	查询当前生效Config	
ADMIN	查询	查询当前Metrics	

分类	特性	已支持	待支持
		HTTP/1.1 长、短链接无损迁移	
	无损升级	无状态RPC无损迁移	HTTP/2.0 基于goaway无损 迁移
		TLS无损迁移	
	扩展性	支持IO处理扩展	
基础能力		支持监听器扩展	
		支持请求处理扩展	
	IO/Net模式	Golang原生IO方式	
		NetPoll网关模式	
	NZ 111 AV 1	内存池化复用机制	
	通用能力	Stream处理引擎	

技术案例解析

服务接入 - 蚂蚁配置中心方案

- ✓ 通过中间件通道对应用推送 MOSN调用地址
- ✓ 通过扩展cluster类型的方式 动态获取配置中心后端
- ✓ MOSN出向路由基于明确的 服务依赖关系生成
- ✓ 服务通过 id:version 定义
- ✓ 适用于SOA化服务,标准微服务

服务接入 – XProtocol DNS方案

无损平滑迁移

- ✓支持平滑升级,平滑reload
- ✓支持存量链接无损迁移
- ✓支持无状态RPC迁移
- ✓支持HTTP/1.1迁移,含长连接
- ✓支持TLS
- ✓较好解决MOSN升级/reload造成业务抖动等问题

IO平滑迁移

IO平滑迁移

TLS平滑迁移

- ✓支持AEAD模式Cipher套件
- ✓支持TLS状态迁移
 - ✓加密秘钥
 - ✓Seq序列
 - ✓TLS读写缓存
 - ✓秘钥状态
- ✔明/密文链路自动探测

单核性能测试

- ✓ 压测版本: 0.2.1 2018.08版本
- ✓部署模式: ServiceA <-> MOSNA <-> MOSNB <-> ServiceB
- ✓压测机型

节点	OS	CPU
MosnA	3.10.0-327.ali2010.rc7.alios7.x86_64	Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz
MosnB / ServiceB	3.10.0-327.ali2010.rc7.alios7.x86_64	Intel(R) Xeon(R) CPU E5-2430 0 @ 2.20GHz

- ✓Client模拟方式
 - ✓ SOFARPC
 - ✓ 通过蚂蚁内部压测平台建立500条链接
 - ✓ HTTP/1.1
 - ✓ ab -n 2000000 -c 500 -k
 - ✓ HTTP/2.0
 - ✓ h2load -n1000000 -c5 -m100 -t4
- ✓压测内容: 1K 请求/响应

单核性能测试

场景	QPS	RT(ms)	MEM(K)	CPU(%)
SOFARPC	16000	15.8	77184	98
HTTP/ 1.1 (原生FastHTTP)	4610	67	47336	90
HTTP/2.0 (原生Golang官方实现)	5219	81	31244	74

性能优化实践总结

- ▶Golang经典的短超时读IO模式在较老版本Linux(2.6.2)下性能损失较大(约30%),可通过绑核或升级内核(如到4.13.0)解决
- ▶Golang官方HTTP/2.0在单核场景下性能一般,满足生产高性能要求需要深度优化
- >一些有效的优化手段
 - ➤ 单次尽量多读 / writev写合并
 - ▶ 100K以下的内存避免入堆;避免临时内存入堆
 - ➤ 通过内存复用降低GC占比
 - ▶ 协程池化,减少协程调度,减少stack扩容/缩容
 - ➤ 注意避免G饥饿
 - ▶ 性能热点函数优化/替换
 - **>** ··

多核性能测试

- ✓ 压测版本: 0.2.1 2018.08版本
- ✓部署模式: Client <-> MOSN<-> Service
- ✓压测机型

节点	OS	CPU
MOSN	3.10.0-327.ali2010.rc7.alios7.x86_64	Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz
Service	3.10.0-327.ali2010.rc7.alios7.x86_64	Intel(R) Xeon(R) CPU E5-2430 0 @ 2.20GHz

- ✓Client模拟方式
 - ✓ SOFARPC
 - ✓ 通过蚂蚁内部压测平台建立500条链接,
 - ✓ HTTP/1.1
 - ✓ ab -n 2000000 -c 500 -k
 - ✓ HTTP/2.0
 - ✓ h2load -n1000000 -c5 -m100 -t4
- ✓压测内容: 1K 请求/响应

多核性能测试

场景	QPS	RT(ms)	MEM(K)	CPU(%)
SOFARPC	45000	23.4	544732	380
HTTP/ 1.1 (原生FastHTTP)	21584	23	42768	380
HTTP/2.0 (原生Golang官方实现)	8180	51.7	173180	300

性能优化实践总结

- ➤Golang官方HTTP/2.0在多核场景下性能不佳,满足生产要求需要深度优化
- ▶G-P-M协程调度模型在单进程模式下可以压到4-8C, 更高多核要求可以通过多进程解决
- ▶ 在内存复用等优化的前提下,GC表现稳定
- ▶多进程绑核+reuse port方案在多核场景性能优于单进程多协程方案(约15%),但从进程结构简单出发MOSN选择单进程模型
- ▶尽量减少系统调用等导致G切换上下文
- ▶注意避免P饥饿

长连接模式

✓压测版本: 0.2.1 - 2018.08版本

✓部署模式: Client <-> MOSN<-> Service

✓压测机型

节点	OS	CPU
MOSN	3.10.0-327.ali2010.rc7.alios7.x86_64	Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz
Service	3.10.0-327.ali2010.rc7.alios7.x86_64	Intel(R) Xeon(R) CPU E5-2430 0 @ 2.20GHz

- ✓Client模拟方式
 - **✓** SOFARPC
 - ✓ 通过蚂蚁内部压测平台建立10w条链接
- ✓压测内容: 1K 请求/响应

长连接模式

场景	QPS	MEM(K)	CPU(%)	goroutine
原生IO模式	1000	3.3	60	200028
Raw Epoll模式	1000	2.5	18	28

性能优化实践总结

▶原生协程IO模式暂时无法很好满足C10K场景性能要求,不适合高性能网关场景

Golang TLS单核性能测试

```
▶环境
   ✓ CPU : Intel(R) Xeon(R) CPU E5-2430 0 @ 2.20GHz
   ✓ 内存: 1.5G
➣软件
   ✓ Nginx-1.13.8 with OpenSSL
   ✓ Caddy on go-1.10.2
   ✓ Caddy-boring on go-1.10.2
▶场景
   ✓ Case1
        ✓ 证书: RSA 2048
        ✓ Cipher: ECDHE-RSA-AES256-GCM-SHA384
   ✓ Case2
        ✓ 证书: ECC p256
        ✓ Cipher: ECDHE-ECDSA-AES256-GCM-SHA384
▶命令

√ ab -f TLS1.2 -Z $cipher -c 100 -n 200000 https://$ip
```


Golang TLS单核性能测试

性能优化实践总结

- ▶除 p384,RSA 外,Golang原生对很多算法有汇编优化,性能好于boring SSL golang
- ➤ Golang 对 p256 有汇编优化, p256MulInternal, p256SqrInternal等椭圆曲线函数实现与 OpenSSL相同
- ▶ Golang 对 p384 没有优化,boring SSL golang 性能是 golang 实现6倍
- ➤ Golang 对 AES-GCM 有汇编优化,性能是 boring SSL golang 版本的20倍
- ➤ Golang 对 SHA, MD 等 HASH 算法都有汇编优化

性能优化实践总结

- ➤ SOFARPC 经过IO,内存,协议等优化,较0.1.0版本QPS提升50%,内存使用减少40%
- ▶HTTP/2.0 优化针对IO,内存,流处理等,仍在进行中
- ▶Golang内存/线程模型与C/C++有较大区别,思路/算法/工具迁移有一定成本
- ▶系统编程领域Golang体系是"新世界",在协议栈加速等深度优化方面仍有大量工作要做, 但潜力无限

更多技术案例

- ▶协议 / TLS自动识别
- ▶基于RCU机制的高性能动态配置更新
- ▶串行化stream事件处理
- ➤QPS / 令牌桶限流
- ▶链式路由、 Multiple Cluster
- ➤Metrics平滑迁移
- **>**...

总结&展望

蚂蚁微服务Mesh化探索

MOSN - X

Frontend

Microservice

Security

Serverless

MOSNG

MOSN

DPDK

eBPF

User Protocol Stack

SSL Offload

加速卡

运维/流量调拨/监控/…

下一代网络接入系统

下一代微服务体系

零可信 安全体 系

高性能统一转发平面

基于可靠沙箱的云原生运行时

异构硬件

Q&A

金融级分布式架构

ServiceMesher

欢迎关注微信公众号,获取更多技术干货!

https://github.com/alipay/sofa-mosn https://github.com/alipay/sofa-mesh xiaodong.dxd@antfin.com

