APELLIDOS, NOMBRE: DNI:

Firma

<u>Primer parcial.</u> Asignatura completa: ejercicios 2 y 3. **Ejercicio 1.-**

- (A) 1. Sea V un \mathbb{K} -espacio vectorial de dimensión finita y $f:V\to\mathbb{K}$ un homomorfismo no nulo. Pruebe que f es sobreyectiva y que dim $\ker(f)=\dim V-1$.
 - 2. Sea A una matriz cuadrada con coeficientes complejos.
 - a) Pruebe que si λ es autovalor de A, entonces λ^n es autovalor de A^n para cualquier $n \geq 1$.
 - b) Una matriz N es nilpotente si existe $k \geq 0$ tal que N^k es la matriz nula. Supongamos que A es diagonalizable. Demuestre que A es nilpotente si y solamente si A es la matriz nula.
- (B) Sea V un \mathbb{R} -espacio vectorial de dimensión 4, y \mathcal{B} una base respecto de la que tomaremos coordenadas. Consideremos los subespacios vectoriales

$$W_1 = \langle \boldsymbol{w}_{11} = (1, 0, 1, 0)^t, \boldsymbol{w}_{12} = (1, 1, 0, 0)^t \rangle, W_2 : \begin{cases} 2y_1 - y_2 + y_4 = 0 \\ y_1 + y_3 = 0 \end{cases}$$

Calcule una base de cada uno de los subespacios $W_1 + W_2$ y $W_1 \cap W_2$.

Ejercicio 2.-

(A) Pruebe la fórmula de la dimensión en espacios vectoriales: si V es un \mathbb{K} -espacio vectorial de dimensión finita y $W_1, W_2 \subset V$ son subespacios vectoriales, entonces

$$\dim(W_1 + W_2) + \dim(W_1 \cap W_2) = \dim(W_1) + \dim(W_2).$$

(B) Sean $f:\mathbb{R}^3 \to \mathbb{R}^4$ el homomorfismo de matriz, respecto de las bases estándar,

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix}, \ y \ W' \subset \mathbb{R}^4 \ dado \ por \ \begin{cases} y'_1 - y'_2 = 0, \\ y'_1 - y'_3 = 0. \end{cases}$$

Calcule una base de cada uno de los siguientes subespacios: $\operatorname{im}(f)$, $f^{-1}(W')$.

Ejercicio 3.-

- (A) 1. Sea V un \mathbb{K} -espacio vectorial de dimensión finita y $f: V \to V$ un homomorfismo. Sea $u \in V$ tal que $f(u) = w \neq 0$. Pruebe que $\operatorname{im}(f) = \langle w \rangle$ si y solamente si $V = \langle u \rangle \oplus \ker(f)$.
 - 2. Pruebe la condición equivalente de endomorfismo diagonalizable: sea $f:V\to V$ un endomorfismo, con V un \mathbb{K} -espacio vectorial de dimensión finita. Entonces f es diagonalizable si y solamente si existe una base de V formada por autovectores de f.
- (B) Consideremos la matriz

$$A = \begin{pmatrix} 1 & a & 1 \\ -1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}, \text{ con } a \in \mathbb{R}.$$

- 1. Verifique que las raíces del polinomio característico de A son $2, 1 \pm \sqrt{-a}$.
- 2. Para a=-1, calcule una matriz no singular P tal que $P^{-1}AP=D$ es una matriz diagonal.
- 3. Pruebe que, para a>0, la matriz A es diagonalizable sobre $\mathbb C$ pero no sobre $\mathbb R.$

Segundo parcial. Asignatura completa: ejercicios 5 y 6.

Ejercicio 4.-

- (A) En el espacio afín euclídeo $\mathbb{A}^n(\mathbb{R}), n \geq 2$, y con respecto al sistema de referencia métrico estándar, consideramos el vector $\mathbf{u} = a\mathbf{e}_1, a \in \mathbb{R}$ no nulo. Pruebe que la traslación $\tau_{\mathbf{u}}$ se descompone como producto de dos simetrías hiperplanas de ejes paralelos.
- (B) Calcule una descomposición en valores singulares de la matriz

$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 2 \\ 0 & -2 & 0 \end{pmatrix}, \text{ cuyos valores singulares no nulos son } \sigma_1 = \sigma_2 = \sqrt{5}.$$

Ejercicio 5.-

- (A) Sea $A_{n \times n}$ una matriz compleja tal que $A^* = -A$.
 - 1. Pruebe que A es una matriz normal.
 - 2. Demuestre que los autovalores de A son de la forma ib, con $b \in \mathbb{R}$.
 - 3. Deduzca que existe una matriz U unitaria tal que $U^*AU = iD_1$, donde D_1 es una matriz diagonal real.
- (B) En el espacio afín $\mathbb{A}^4(\mathbb{R})$, y fijado un sistema de referencia métrico, consideramos las siguientes variedades lineales afines:

$$\pi_1:\left\{\begin{array}{ll} x_1=1,\\ x_2=-1. \end{array}\right., \pi_2:\left\{\begin{array}{ll} x_1=2,\\ x_2=-1. \end{array}\right., \varrho=(2,-1,2,0)+\langle \overrightarrow{(1,0,0,0)}\rangle.$$

- 1. Calcule unas ecuaciones paramétricas de $\pi_1 + \rho$.
- 2. Calcule una ecuaciones implícitas de $\pi_2 \cap \varrho$.
- 3. Determine las rectas cohiperplanarias con π_1 contenidas en π_2 .
- 4. Halle una perpendicular común a los dos planos π_1 y π_2 y la distancia entre ellos.

Ejercicio 6.-

- (A) Sea H un hiperplano en el espacio afín $\mathbb{A}^5(\mathbb{R})$, con π_1 y π_2 planos contenidos en H.
 - 1. Describa razonadamente, de acuerdo a la dimensión, las posibles variedades lineales afines que se obtienen al calcular $\pi_1 \cap \pi_2$.
 - 2. Consideremos H' un hiperplano paralelo y distinto a H y una recta s contenida en H', con s paralela a π_1 . Pruebe que para todo punto $P \in s$, existe una única perpendicular común a s y a π_1 que pasa por P
- (B) Fijado en $\mathbb{A}^3(\mathbb{R})$ un sistema de referencia métrico, sea $f_a: \mathbb{A}^3(\mathbb{R}) \to \mathbb{A}^3(\mathbb{R})$ el movimiento de matriz

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ a & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ a & 0 & 0 & 1 \end{pmatrix}, a \in \mathbb{R}.$$

- 1. Clasifique el movimiento f_a en función del parámetro a, dando todos sus elementos geométricos.
- 2. Calcule los planos fijos de f_0 y describa su posición relativa respecto a los elementos geométricos de f_0 .

Todos los problemas se valoran sobre 10 puntos. Los alumnos que se examinen de la asignatura completa tendrán una nota sobre 40 puntos, y los que lo hagan de un parcial sobre 30 puntos.