

Übung 13: SAT und Physical Design

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

24 Januar 2025

Keine Garantie für die Richtigkeit der Tutorfolien. Bei Unklarheiten/Unstimmigkeiten haben VL/ZÜ-Folien recht!

SAT

- Satisfiability → Erfüllbarkeit einer boolschen Funktion feststellen
- moderne Solver können sichere Aussage über SAT/UNSAT treffen, ohne alle Variablenbelegungen durchzuprobieren \rightarrow einigermaßen effizient lösbar¹
- DPLL und Konfliktgraphen nicht mehr relevant für ERA
- Formulierung als KNF (Konjunktive Normalform, CNF): OR in den Klammern, AND dazwischen, z.B.:

$$(x_1+x_2+x_3)\cdot(\overline{x}_2+x_4+x_5)\cdot(\overline{x}_1+x_3+\overline{x}_5)$$

¹ SAT ist und bleibt aber trotzdem NP-vollständig:)

SAT: Schaltkreisäquivalenz

c	d	$e = c \oplus d$
0	0	0
0	1	1
1	0	1
1	1	1
1	1	0

- existiert eine Belegung von a,b, sodass e=1, dann sind die beiden Schaltkreise für diese Belegung nicht äquivalent
- eine solche Schaltung heißt Miter
- KNF kann durch Tseitin-Transformation aufgestellt werden

Einschub: Tseitin-Transformation

- $\overline{1}$ $\overline{(a \wedge b)} \leftrightarrow c \wedge$
- $(\overline{a} \vee \overline{b}) \leftrightarrow d \wedge$
- $(c \oplus d) \leftrightarrow e \land$
- $4) \epsilon$

nach Umformung zu KNF und Berechnung mittels eines SAT-Solvers erhalten wir UNSAT, die Schaltkreise sind also äquivalent

s1:	t1	=	1			
s2:	t2	=	5			
s3:	t3	=	7			
s4:	t5	=	t1	+	t2	
s5:	t4	=	t3	+	t5	
s6:	t1	=	t4	+	t5	
s7:	t2	=	t1	+	t3	

s1: t1 = 1 s2: t2 = 5 s3: t3 = 7 s4: t5 = t1 + t2 s5: t4 = t3 + t5 s6: t1 = t4 + t5 s7: t2 = t1 + t3

- Ziel: Verbindung von Terminalen mit kürzesten Pfaden
- rektilinear (geradlinig): nur horizontale/vertikale Verbindungen

- Hanan-Punkte: mögliche Steinerknoten (Abzweigungen im Steinerbaum)
- Schnittpunkte von Geraden durch Terminalknoten
- Reduziert Menge an Abzweigungspunkten, die betrachtet werden müssen

Konstruktion des Steinerbaums:

1. Finde Terminale mit minimaler Manhattan-Distanz $\delta = \Delta x + \Delta y$

- 1. Finde Terminale mit minimaler Manhattan-Distanz $\delta = \Delta x + \Delta y$
- 2. Konstruiere die kürzesten Verbindungen (bounding box)

- 1. Finde Terminale mit minimaler Manhattan-Distanz $\delta = \Delta x + \Delta y$
- 2. Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat

- 1. Finde Terminale mit minimaler Manhattan-Distanz $\delta = \Delta x + \Delta y$
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- 1. Finde Terminale mit minimaler Manhattan-Distanz $\delta = \Delta x + \Delta y$
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- 1. Finde Terminale mit minimaler Manhattan-Distanz $\delta = \Delta x + \Delta y$
- 2. Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- 1. Finde Terminale mit minimaler Manhattan-Distanz $\delta = \Delta x + \Delta y$
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- 1. Finde Terminale mit minimaler Manhattan-Distanz $\delta = \Delta x + \Delta y$
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- 1. Finde Terminale mit minimaler Manhattan-Distanz $\delta = \Delta x + \Delta y$
- 2. Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- 1. Finde Terminale mit minimaler Manhattan-Distanz $\delta = \Delta x + \Delta y$
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- 1. Finde Terminale mit minimaler Manhattan-Distanz $\delta = \Delta x + \Delta y$
- 2. Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- 1. Finde Terminale mit minimaler Manhattan-Distanz $\delta = \Delta x + \Delta y$
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- 1. Finde Terminale mit minimaler Manhattan-Distanz $\delta = \Delta x + \Delta y$
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

Fragen?

Die Slides zur Registerallokation wurden von Bjarne Hansen übernommen

Artemis-Hausaufgaben

- ### H13 Verifikation mit SAT" bis 02.02.2025 23:59 Uhr
- Finden der KNFs für zwei Miter-Schaltungen
- letzte Hausaufgabe Notenbonus ab 80% (exklusive Bonuspunkte)

Links

- Zulip: "ERA Tutorium Do-1600-1" bzw. "ERA Tutorium Fr-1500-2"
- ERA-Moodle-Kurs
- ERA-Artemis-Kurs

Übung 13: SAT und Physical Design

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

24 Januar 2025

