Задание по курсу «Суперкомпьютерное моделирование и технологии»

сентябрь 2016 - декабрь 2016

Содержание

Содержание		1
1	Введение	1
2	Математическая постановка дифференциальной задачи	1
3	Численный метод решения задачи	2
4	Варианты заданий	3
5	Требования к отчету	3
Список литературы		4

1 Введение

В качестве модельной задачи предлагается задача для трехмерного гиперболического уравнения в области, представляющей из себя прямоугольный параллелепипед. Индивидуальные варианты заданий отличаются типом граничных условий.

Задание необходимо выполнить на следующих ПВС Московского университета:

- 1. IBM eServer pSeries 690 Regatta (использовать данную ПВС необязательно, рекомендуется для отладки программ) [1],
- 2. IBM Blue Gene/P. В качестве дополнительного задания предлагается реализовать использование "мэппинга" [2],
- 3. «Ломоносов» [3].

2 Математическая постановка дифференциальной задачи

В трехмерной замкнутой области

$$\Omega = [0 \leqslant x \leqslant L] \times [0 \leqslant y \leqslant L] \times [0 \leqslant z \leqslant L]$$

для $(0 < t \le T]$ требуется найти решение u(x, y, z, t) уравнения в частных производных

$$\frac{\partial^2 u}{\partial t^2} = \Delta u \tag{1}$$

с начальными условиями

$$u|_{t=0} = \varphi(x, y, z), \tag{2}$$

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = 0,\tag{3}$$

при условии, что на границах области заданы однородные граничные условия первого рода

$$u(0, y, z, t) = 0,$$
 $u(L, y, z, t) = 0,$ (4)

$$u(x, 0, z, t) = 0,$$
 $u(x, L, z, t) = 0,$ (5)

$$u(x, y, 0, t) = 0,$$
 $u(x, y, L, t) = 0,$ (6)

либо периодические граничные условия

$$u(0, y, z, t) = u(L, y, z, t), u_x(0, y, z, t) = u_x(L, y, z, t), (7)$$

$$u(x, 0, z, t) = u(x, L, z, t), u_{\nu}(x, 0, z, t) = u_{\nu}(x, L, z, t), (8)$$

$$u(x, y, 0, t) = u(x, y, L, t), u_z(x, y, 0, t) = u_z(x, y, L, t). (9)$$

Конкретная комбинация граничных условий определяется индивидуальным вариантом задания (см. п. 4).

3 Численный метод решения задачи

Содержание данного пункта основано на материале книги [4]. Для численного решения задачи введем на Ω сетку $\omega_{h\tau} = \bar{\omega}_h \times \omega_{\tau}$, где

$$T = L = 1,$$

 $\bar{\omega}_h = \{(x_i = ih, y_j = jh, z_k = kh), i = 0, 1, \dots, N, j = 0, 1, \dots, N, k = 0, 1, \dots, N, hN = 1\},$
 $\omega_\tau = \{t_n = n\tau, n = 0, 1, \dots, K, \tau K = 1\}.$

Через ω_h обозначим множество внутренних, а через γ_h — множество граничных узлов сетки $\bar{\omega}_h$.

Для аппроксимации исходного уравнения (1) с однородными граничными условиями (4)–(6) и начальными условиями (2)–(3) воспользуемся следующей системой уравнений:

$$\frac{y_{ijk}^{n+1} - 2y_{ijk}^n + y_{ijk}^{n-1}}{\tau^2} = \Delta_h y^n, \quad (x_i, y_j, z_k) \in \omega_h, \quad n = 1, 2, \dots, K - 1,$$
$$y_{ijk}^{n+1} = 0, \quad (x_i, y_j, z_k) \in \gamma_h, \quad n = 0, 1, \dots, K - 1.$$

Здесь Δ_h — семиточечный разностный аналог оператора Лапласа:

$$\Delta_h y^n = \frac{y_{i-1,j,k}^n - 2y_{i,j,k}^n + y_{i+1,j,k}^n}{h^2} + \frac{y_{i,j-1,k}^n - 2y_{i,j,k}^n + y_{i,j+1,k}^n}{h^2} + \frac{y_{i,j,k-1}^n - 2y_{i,j,k}^n + y_{i,j,k+1}^n}{h^2}.$$

Приведенная выше разностная схема является явной — значения y_{ijk}^{n+1} на (n+1)-м шаге можно явным образом выразить через значения на предыдущих слоях.

Для начала счета (т.е. для нахождения y_{ijk}^2) должны быть заданы значения $y_{ijk}^0,\,y_{ijk}^1,$ $(x_i, y_i, z_k) \in \omega_h$. Из условия (2) имеем

$$y_{ijk}^0 = \varphi(x_i, y_j, z_k), \quad (x_i, y_j, z_k) \in \omega_h.$$

Простейшая замена начального условия (3) уравнением $(y_{ijk}^1-y_{ijk}^0)/ au=0$ имеет лишь первый порядок аппроксимации по au. Аппроксимацию второго порядка по au и h дает разностное уравнение

$$\frac{y_{ijk}^1 - y_{ijk}^0}{\tau} = \frac{\tau}{2} \Delta_h \varphi(x_i, y_j, z_k), \quad (x_i, y_j, z_k) \in \omega_h.$$

Разностная аппроксимация для периодических граничных условий выглядит следующим образом

$$\begin{array}{ll} y_{0jk}^{n+1} = y_{Njk}^{n+1}, & y_{1jk}^{n+1} = y_{N+1jk}^{n+1}, \\ y_{i0k}^{n+1} = y_{iNk}^{n+1}, & y_{i1k}^{n+1} = y_{iN+1k}^{n+1}, \\ y_{ij0}^{n+1} = y_{ijN}^{n+1}, & y_{ij1}^{n+1} = y_{ijN+1}^{n+1}, \end{array}$$

$$i, j, k = 0, 1, \dots, N$$
.

Варианты заданий 4

Индивидуальные варианты заданий отличаются комбинацией граничных условий. Варианты приведены в следующей таблице 1. Значениям «1-го рода» и «периодические» в

Вариант 1 1-го рода 1-го рода 1-го рода 1-го рода 1-го рода периодические 1-го рода периодические 1-го рода 1-го рода периодические периодические периодические 1-го рода 1-го рода 6 периодические 1-го рода периодические периодические 1-го рода периодические периодические периодические периодические

Таблица 1: Варианты заданий

столбце x отвечают формулы (4) и (7), в столбце y — (5) и (8), в столбце z — (6) и (9).

Требования к отчету 5

Для того, чтобы успешно сдать задание, необходимо

- уверенно ориентироваться в программном коде;
- понимать семантику всех используемых в коде функций MPI и директив OpenMP;
- представить отчет с результатами исследования параллельных характеристик программы;
- представить программный код.

Исследование параллельных характеристик МРІ-программы необходимо провести на всех трех ПВС. На ПВС Blue Gene/P также необходимо провести исследование параллельных характеристик гибридной программы MPI/OpenMP и сравнить полученные результаты с программой, не используещей директивы OpenMP.

Отчет о выполнении задания должен содержать

- математическую постановку задачи;
- численные метод ее решения;
- краткое описание проделанной работы по созданию гибридной реализации MPI/ OpenMP;
- результаты расчетов (см. ниже).

Расчеты проводятся для разных размеров задач и на разном числе процессоров. Результаты расчетов заносятся в таблицу. Значениями в ячейках таблицы являются время решения и ускорение (таблица 2). Таблица результатов расчетов на системе Blue Gene/P

Таблица 2: Пример оформления таблицы с результатами расчетов

$\overline{}$ \phantom	4 исло точек сетки N^3	Время решения Т	Ускорение S	
1	128^{3}			
2	128^{3}			
4	128^{3}			
8	128^{3}			
1	256^{3}			
2	256^{3}			
4	256^{3}			
8	256^{3}			
1	512^{3}			
2	512^{3}			
4	512^{3}			
8	512^{3}			

должна содержать три дополнительных столбца. В двух из них должны быть приведены время и ускорение для гибридной версии MPI/OpenMP, а в третьем — отношение времени выполнения MPI-версии программы к времени работы гибридной версии MPI/OpenMP.

Следует выполнить около 20 шагов по времени.

IBM eServer pSeries 690 Regatta

Расчеты должны быть проведены для следующего числа процессоров: 1, 2, 4 и 8. Расчеты должны быть проведены на сетках 128^3 , 256^3 , 512^3 .

IBM Blue Gene/P

Расчеты должны быть проведены для следующего числа процессоров: 128, 256 и 512. MPI-версию следует запускать в режиме SMP, гибридную версию MPI/OpenMP — в режиме SMP, но использовать при этом не четыре, а только три процессорных ядра. Расчеты должны быть проведены на сетках 512^3 , 1024^3 , 1536^3 .

«Ломоносов»

Расчеты должны быть проведены для следующего числа процессоров: 8, 16, 32, 64 и 128. Расчеты должны быть проведены на сетках $128^3, 256^3, 512^3$.

Список литературы

[1] IBM eServer pSeries 690 Regatta. — http://www.regatta.cmc.msu.ru.

- [2] IBM Blue Gene/P. http://hpc.cmc.msu.ru.
- [3] Суперкомпьютер «Ломоносов». http://hpc.cmc.msu.ru.
- [4] $\it Cамарский A.A., Гулин A.B.$ Численные методы. М.: Наука. Гл. ред. физ-мат. лит., 1989.