Probability Theory

II Random variables \sim Radon-Nikodym

Seongho Joo

Seoul National University

Measurable Functions

Definition 1

Let $(\Omega,\mathcal{F}) \mathrm{and}\ (S,\mathcal{B})$ be measurable spaces. The $\mathit{pull-back}$ of \mathcal{B} to Ω is

$$f^*\mathcal{B} = \{f^{-1}(B) \subseteq \Omega : B \subset \mathcal{B}\}$$

The push-forward of $\mathcal F$ to $\mathsf S$ is

$$f_*\mathcal{F} = \{E \subseteq S : f^{-1}(E) \in \mathcal{F}\}$$

- Both of them are σ -fields.
- \bullet $\sigma(\cdot)$ and pull-back operations commute, i.e., $\sigma(f^*\mathcal{E})=f^*(\sigma(\mathcal{E}))$

Measurable Functions

Definition 1

Let $(\Omega,\mathcal{F}) \mathrm{and}\ (S,\mathcal{B})$ be measurable spaces. The $\mathit{pull-back}$ of \mathcal{B} to Ω is

$$f^*\mathcal{B} = \{f^{-1}(B) \subseteq \Omega : B \subset \mathcal{B}\}$$

The push-forward of $\mathcal F$ to $\mathsf S$ is

$$f_*\mathcal{F} = \{E \subseteq S : f^{-1}(E) \in \mathcal{F}\}$$

- Both of them are σ -fields.
- ullet $\sigma(\cdot)$ and pull-back operations commute, i.e., $\sigma(f^*\mathcal{E})=f^*(\sigma(\mathcal{E}))$

Definition 2

Let $(\Omega, \mathcal{F}), (S, \mathcal{B})$ measurable spaces. $f: \Omega \to S$ is \mathcal{F}/\mathcal{B} -measurable if $f^*\mathcal{B} \subseteq \mathcal{F}$.

Example: Indicator functions $\mathbf{1}_A:\Omega\to\mathbb{R},A\subseteq\Omega$ is measurable if and only $A\in\mathcal{F}.$

Measurable Functions

Proposition 1

Let $\mathcal{E}\subseteq\mathcal{B}$ such that $\sigma(\mathcal{E})=\mathcal{B}.$ Then f is measurable if and only if $f^*\mathcal{E}\subseteq\mathcal{F}.$

Examples: $X:\Omega\to\mathbb{R}$ is \mathcal{F} -measurable if and only if

- $X^{-1}(B) \in \mathcal{F}, \forall B \in \mathcal{B}(\mathbb{R})$
- $\blacksquare X^{-1}(a,b] \in \mathcal{F}, \forall a < b \in \mathbb{R}$
- $X^{-1}(-\infty,t] \in \mathcal{F}, \forall t \in \mathbb{R}$

Definition 3

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a (Borel) random variable is a $\mathcal{F}/\mathcal{B}(\mathbb{R})$ measurable function $X:\Omega\to\mathbb{R}$

Properties

- Composition of measurable functions are measurable.
- Let X_1, X_2, \ldots, X_d be random variables on (Ω, \mathcal{F}) . If $f : \mathbb{R}^d \to \mathbb{R}$ is continuous, then $Y = f(X_1, \ldots, X_d)$ is a random variable.
- \blacksquare Given random variable X, $\mu_X=\mathbb{P}\circ X^{-1}=X^*\mathbb{P}$ is a probability measure on (S,\mathcal{B})

Robustness of Measurability

Proposition 2

If
$$f_n:(\Omega,\mathcal{F})\to(\bar{\mathbb{R}},\mathcal{B}(\bar{\mathbb{R}}))$$
 are measurable, then so are
$$\sup_n f_n,\ \inf_n f_n,\ \limsup_{n\to\infty} f_n,\ \liminf_{n\to\infty} f_n$$

Remark. In $C(\mathbb{R})$, this does not work. **Proof.**

Simple Approximation

Theorem 1

If $f:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ is measurable, there is a sequence φ_n of simple measurable functions such that

$$\lim_{n \to \infty} \varphi_n(x) = f(x) \quad \forall x \in \Omega$$

In addition, $\varphi \to f$ uniformly on $f^{-1}[-M,M] \ \forall M>0$

Set
$$\varphi_n = \sum_{k=0}^{2^{2n}-1} \frac{k}{2^n} \mathbf{1}_{\{k/2^n < f \le (k+1)/2^n\}} + 2^n \mathbf{1}_{\{f > 2^n\}}(x)$$
. Note that $\varphi_n \le \varphi_{n+1} \le f$

Doob-Dynkin Representation

Corollary 1

Let X_1,X_2,\ldots,X_d $\mathcal{F}/\mathcal{B}(\mathbb{R})$ -measurable and $Y:\Omega\to\mathbb{R}$ $\sigma(X_1,\ldots,X_d)/\mathcal{B}(\mathbb{R})$ measurable. Then, there exists Borel measurable $f:\mathbb{R}^d\to\mathbb{R}$ such that $Y=f(X_1,\ldots,X_d)$

Simple integration

Proposition 3

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let

$$S_{\mathcal{F}} := \{f: \Omega \to \mathbb{R} \mid f \text{ is simple and } \mathcal{F}\text{-measurable}\}$$

denote the set of real-valued, \mathcal{F} -measurable simple functions. Then $S_{\mathcal{F}}$ is a real vector space, and the mapping

$$\int \cdot d\mu : S_{\mathcal{F}} \to \mathbb{R}$$

is a positive linear functional.

Lebesgue Integral

Define L^+ on $(\Omega, \mathcal{F}, \mu)$ by

$$L^+(\mathcal{F}) = \{f: \Omega \to [0,\infty), f \text{ is } \mathcal{F}/\mathcal{B}(\mathbb{R}) \text{ measurable } \}$$

Definition 4

For $f \in L^+$, the Lebesgue integral is

$$\mu(F) = \int f \,\mathrm{d}\mu = \int_{\Omega} f(w) \,\mathrm{d}\mu(w) = \sup\{\int \varphi \,\mathrm{d}\mu : \varphi \leq f, \varphi \ \text{ simple, measurable } \}$$

Properties

If
$$f \in L^+, \alpha > 0$$
, $\int \alpha f d\mu = \alpha \int f d\mu$.

If
$$f, g \in L^+$$
, $\int (f+g) d\mu = \int f d\mu + \int g d\mu$

If
$$0 \le f \le g$$
, $\int f d\mu \le \int g d\mu$

4 If
$$f_n \in L^+$$
, then

$$\int \left(\sum_{n=1}^{\infty} f_n\right) d\mu = \sum_{n=1}^{\infty} \int f_n d\mu$$

Monotone Convergence Theorem

Theorem 2

If
$$f_n \in L^+, f_n \uparrow f$$
, then $\int f_n d\mu \uparrow \int f d\mu$

Lebesgue Integral

Proposition 4

Let $f,g\in L^+$.

- ${\color{black} \blacksquare}$ If $f \leq g$ $\mu\text{-a.s.}$ then $\int f \,\mathrm{d}\mu \leq \int g \,\mathrm{d}\mu$
- 2 If f=g $\mu ext{-a.s.}$ then $\int f\,\mathrm{d}\mu=\int g\,\mathrm{d}\mu$
- $\int f \, \mathrm{d}\mu = 0$ then f = 0 a.s.

Lebesgue Integral

Proposition 4

Let $f,g\in L^+$.

- \blacksquare If $f \leq g \ \mu\text{-a.s.}$ then $\int f \,\mathrm{d}\mu \leq \int g \,\mathrm{d}\mu$
- ${\bf 2}$ If f=g $\mu\text{-a.s.}$ then $\int f\,\mathrm{d}\mu=\int g\,\mathrm{d}\mu$
- $\int f \, \mathrm{d}\mu = 0$ then f = 0 a.s.

Proof.

Fatou's Lemma

If
$$f_n \in L^+$$
, $\int \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int f_n d\mu$

Borel-Cantelli Lemma

Lemma 1

If
$$\sum_{n=1}^\infty \mu(A_n) < \infty$$
 , then $\mu\{A_n \text{ i.o }\} = 0$

Dominated Convergence Theorem

Theorem 3

Suppose $f_n, g_n, g \in L^1$, with

- \mathbf{II} $f_n o f$ a.s. and $g_n o g$ a.s.
- $g_n \ge 0$ and $|f_n| \le g_n$ a.s.

Then, $f \in L^1$ and $\int f_n d\mu \to \int f d\mu$

For finite measure case, bounded convergence theorem works.

When do integral and derivative commute?

Proposition 5

Let (Ω,\mathcal{F},μ) be a measure space, and $f:(a,b)\times\Omega\to\mathbb{R}$ such that

- $\blacksquare \ w \mapsto f(t,w)$ is measurable for each $t \in (a,b)$
- $f(t_0,\cdot)\in L^1(\Omega,\mathcal{F},\mu)$ for some $t_0\in(a,b)$
- 3 $\frac{\partial f}{\partial t}(t,w)$ exists for μ -a.e. w and for every $t\in(a,b)$
- There is $g\in L^1(\Omega,\mathcal{F},\mu)$ such that $|\frac{\partial f}{\partial t}(t,w)|\leq g(w)$ for μ -a.e. w and for every $t\in(a,b)$

Then, $f(t,\cdot)\in L^1$ for all $t\in(a,b),\,t\mapsto\int f(t,w)\,\mathrm{d}\mu$ is differentiable on (a,b) and $\frac{\mathrm{d}}{\mathrm{d}t}\int f(t,w)\,\mu(\mathrm{d}w)=\int\frac{\partial f}{\partial t}(t,w)\,\mu(\mathrm{d}w)$

Remark. Almost sure statements must hold *independently* of t.

Radon-Nikodym

Definition 5

Say $\nu << \mu$, ν is absolutely continuous w.r.t. μ if $\mu(A) \implies \nu(A)$, $\forall A \in \mathcal{F}$

Radon-Nikodym

Definition 5

Say $\nu << \mu$, ν is absolutely continuous w.r.t. μ if $\mu(A) \implies \nu(A)$, $\forall A \in \mathcal{F}$

Theorem 4

Let μ, ν be σ -finite measures on (Ω, \mathcal{F}) .

Then $\nu<<\mu$ if and only if $\exists \rho:\Omega\to[0,\infty)$ measurable such that $\nu(A)=\int_A\rho\,\mathrm{d}\mu$, $\forall A\in\mathcal{F}.$ Moreover, the density ρ is uniquely defined up to a ν -null set. It is called the Radon-Nikodym derivative $\rho=\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$.

Theorem 5

Let μ, ν be σ -finite measures on (Ω, \mathcal{F}) . Then ν has a unique *Lebesgue decomposition* $\nu = \nu_a + \nu_s$. where

- $\blacksquare \nu_a << \mu$
- $\nu_s \perp \mu$: ν_s and μ are mutually singular, meaning $\exists A \in \mathcal{F}$ such that $\nu_s(A) = 0$ and $\mu(A^c) = 0$