Applications in Graphics and Scientific Simulations

CPSC483: Deep Learning on Graph-Structured Data

Rex Ying

Outline of Today's Lecture

Physical Simulation in Science and Engineering

- Graph Neural Networks for Simulation
 - Graph Networks Simulator (GNS)

Constrained-based Graph Networks Simulator (C-GNS)

- Application: Reservoir Simulation
 - Subsurface Graph Neural Network (SGNN)

Outline of Today's Lecture

Physical Simulation in Science and Engineering

- Graph Neural Networks for Simulation
 - Graph Networks Simulator (GNS)

Constrained-based Graph Networks Simulator (C-GNS)

- Application: Reservoir Simulation
 - Subsurface Graph Neural Network (SGNN)

Physical Simulation in Science and Engineering (1)

What is simulation?

Predicting the status of a(some) moving matter(s) at the given time

A moving block

Some falling sands

Physical Simulation in Science and Engineering (2)

- Why do we need physical simulation?
 - For science, it can be used to test theories in real world
 - For engineering, it can be used to assess the performance of a planned system
 - Example:

- Particle-particle interactions
 - Predicting galaxy formation with time

- **Reservoir simulation**
 - Predicting properties of fluids

Physical Simulation in Science and Engineering (3)

- High Performance Computing (HPC) for Simulation
 - Skyrocketing HPC can be applied to do some computationally intensive simulation

Laser-plasma particle acceleration

Fusion

Cosmic-ray acceleration

Physical Simulation in Science and Engineering (4)

Characteristics

- 1) Large scale in size: at the forefront of HPC
 - Nevertheless, even those large compute with long-time simulation may only do reasonably small systems in practice
 - E.g., for a reasonable 3D laser-plasma interaction system, it has 100B grid vertices, 1T particles, over 100k time steps
 - Largest simulations (1/year): 10^{-1} of that scale, most studies: < 10^{-2} of that scale

Physical Simulation in Science and Engineering (5)

Characteristics

- 2) Multi-scale and large dynamic range
 - The dynamics involves multiple scales
 - Kinetic, many-body processes operating at microscopic scales significantly influence the fluid dynamics at large scales (and vice-versa)
 - E.g., Only ~0.01% of the particles are accelerated but can carry 10-50% of system energy

Machine Learning in Physical Simulation (1)

- An attractive alternative: Machine learning
 - Simulators trained from observed data can directly predict the next status

$$\operatorname{Model}(S_{T_0}, \dots, S_{T_i}) = S_{T_{i+1}}$$
 Previous status before step T_{i+1} Predicted status at step T_{i+1}

Prediction

Machine Learning in Physical Simulation (2)

- An attractive alternative: Machine learning
 - Why do we use ML?
 - Multiscale dynamics raise an opportunity for optimization
 - Model can only focus on local information of each unit
 - Some powerful tools can be used to model the interactions between local neighbors, e.g., Graphs
 - Goal
 - For large-scale simulations, can we design accurate and generalizable ML models that capture the essential dynamics of the system with significant speedups?

Outline of Today's Lecture

Physical Simulation in Science and Engineering

- Graph Neural Networks for Simulation
 - Graph Networks Simulator (GNS)

Constrained-based Graph Networks Simulator (C-GNS)

- Application: Reservoir Simulation
 - Subsurface Graph Neural Network (SGNN)

Graph Neural Networks for Simulation (1)

- Problem setting: Particle-based simulation
 - Given the initial conditions of particles (position, velocity)
 - Simulate the evolution of material over long time range

Graph Neural Networks for Simulation (2)

- A powerful tool for learning to simulate: Graph
 - Rich physical states are represented by graphs of interacting particles
 - Node: Particle, Edge: Interaction

- Why use graph
 - Graph structure naturally captures the local interaction (e.g., collision) between a particle and its adjacent particles
 - Complex dynamics can be approximated by modeling such interaction

Graph Neural Networks for Simulation: GNS (1)

- Graph Network-based Simulator (GNS)
 - m: message passing step
 - v_i^m : feature of node i at m step
 - $e_{i,j}^m$: interaction between node i and node j at m step
 - For every prediction, GNS can be carried out in three steps
 - Construct graph: Connect the node to its neighbors
 - Pass messages: Update the status of each node
 - Extract dynamics info: Predict the next status

GNS: Graph Construction

- Construct graph
 - The other nodes within the radius are regarded as neighbors

- Node features
 - Node Position
 - Previous velocities
 - Particle type
- Edge features
 - Relative positional displacement
 - Magnitude

GNS: Message Passing (1)

- Pass messages
 - Aggregate the information from multi-hop neighbors
 - A stack of M graph convolution layers
 - Layer-0 inputs are input features $V^0 = \{v_i^0\}$, $E^0 = \{e_{i,j}^0\}$
 - Layer-m inputs are the updated embeddings V^m , E^m from previous m-1 layers

GNS: Message Passing (2)

Example of passing messages

 $Msg_{a,b} = MsgPass(v_b^m, e_{a,b}^m, v_a^m)$

 $\Delta v_a^m = Agg(Msg_{a,*})$

Aggregate message

 $\mathbf{v}_{a}^{m+1} = \mathbf{v}_{a}^{m} + \text{Update}(\mathbf{v}_{a}^{m}, \Delta \mathbf{v}_{a}^{m})$ $\mathbf{e}_{a,b}^{m+1} = \mathbf{e}_{a,b}^{m} + \text{Msg}_{a,b}$

Update node and edge representation

GNS: Extract Dynamics Info

- Extract dynamics info
 - Use updated node representation to predict next status
 - Feed the representation into a learnable MLP to predict current acceleration
 - Apply Euler integrator[1] to update position and velocity
 - Optimizing for acceleration is equivalent to optimizing for position
 - Acceleration is computed as first order finite difference from the position

Extract dynamics info

GNS: Pipeline (1)

Pipeline of GNS

Encoder

- Node input features:
 - Position
 - Previous velocities
 - Particle type
- Edge input features: displacements
- Embed features with MLP
- Construct neighborhood graph

Processor

- Message-passing layers (x10)
 - Use neighborhood graph
 - Edge function: MLP
 - Node function: MLP
- Outputs embeddings (next step)

Decoder

- Decode acceleration
- Feed into Euler integrator to obtain position and velocity

GNS: Pipeline (2)

Training time: one-step minibatch training

• Inference time: 1000s of steps

GNS: Demo (1)

GNS: Demo (2)

More complex scenarios

Outline of Today's Lecture

Physical Simulation in Science and Engineering

- Graph Neural Networks for Simulation
 - Graph Networks Simulator (GNS)

Constrained-based Graph Networks Simulator (C-GNS)

- Application: Reservoir Simulation
 - Subsurface Graph Neural Network (SGNN)

Graph Neural Networks for Simulation: C-GNS

- Motivation of C-GNS
 - GNS applies an explicit forward model to calculate next state directly from the current one
 - However, an equally valid way is to explain the motion/interaction in terms of constraint satisfaction
 - Let's consider an example: a bowling ball colliding with a fixed bowling pin

Constraint-based Simulator (1)

- Collision between two balls
 - Fixed ball causes the other one to move
 - Physical constraint: Objects do not overlap
 - Notation
 - $X_{\leq t}$: position of object before time step t

Constraint-based Simulator (2)

- The way GNS models
 - Predicts the next position directly
 - Directly predict the position of ball after collision
 - Requires to implicitly resolve physical constraints
 - Objects do not overlap
- Many traditional physical simulators don't work like that!

Constraint-based Simulator (3)

- The way constraint-based simulator models
 - Define a constraint function to quantify how well X_{t+1} agrees with $X_{\leq t}$
 - Find X_{t+1} by solving the constraints

Comparison between GNS and C-GNS

- Graph Network-based Simulator (GNS)
 - Given previous states, GNS directly predicts the state update at the next step.
- Constraint—based Graph Network Simulator (C-GNS)
 - Constraint (f_C) : a learnable function which indicates the next step state is consistent with the current and previous states
 - Different from GNS, C-GNS begins with an initial state update and iteratively refines until it satisfies the constraint

Constrained-based Graph Networks Simulator (1)

- The learnable constraint function f_C :
 - GNN-based constraint function
 - f_C determines whether X_{t+1} is consistent with $X_{\leq t}$ (the smaller the better)

Predict the next status by minimize the constraint function

$$\widehat{X}_{t+1} = \operatorname{arg\,min}_{X_{t+1}} f_C(X_{\leq t}, X_{t+1})$$

Constrained-based Graph Networks Simulator (2)

- How can we find a minimum of a function?
 - Gradient descent (GD)!

Constrained-based Graph Networks Simulator (3)

Constrained-based Graph Networks Simulator (4)

Refine the position to find the minimum of $f_C(X_{\leq t}, X_{t+1})$

Demo (1)

• More demos can be found in https://sites.google.com/view/constraint-based-simulator

Demo (2)

Performance with different number of iterations

Outline of Today's Lecture

Physical Simulation in Science and Engineering

- Graph Neural Networks for Simulation
 - Graph Networks Simulator (GNS)

Constrained-based Graph Networks Simulator (C-GNS)

- Application: Reservoir Simulation
 - Subsurface Graph Neural Network (SGNN)

Reservoir Simulation

- Water and oil exist in the porous rock which is discretized into cells
- Water is pumped into the reservoir using injectors (blue pins)
- Preferential fluid flow path from the injectors to the oil producers (red pins)

Oil saturation level

Problem formulation

- Input: A large grid with million of cells. Each cell in grid has static and dynamic features
 - Static features: transmissibility, por-vol, porosity etc.
 - Dynamic features: water/oil/gas (in barrels) and pressure (in PSI)
 - Given the dynamic features for the initial 3 steps (time step 0, 1, 2)
 - Size: 1M to 15M cells
 - Well metadata and well rates
- Output
 - Water/oil/gas (in barrels) and pressure (in PSI) predictions for all cells (including injectors/producers) at subsequent time steps: 3, 4, ..., 22 (20 months)
 - Production prediction: 3 values WSWP, WWPR, WOPR for each producer cell at each time step - oil production prediction

Reservoir Simulation

- Graph nodes consist of grid cells and special cell types (injector, producer, boundary cells)
- Graph edges consist of connectivity between adjacent grid cells (allows transmission of water / oil)
- Apply GNS framework to simulate the oil, water saturation at each cell, and pressure at each cell
 - Given the previous statuses of graph nodes, predict the next status

Improvement: Hybrid Model (1)

- Model
 - Use 2 models to make separate water and pressure prediction
 - Benefit: combine the advantages of both models
- As for pressure prediction
 - Apply UNet[1] to model interactions at global scale
 - Unet is suitable for pressure modeling
 - Next step pressure could depend on the entire grid information

U-shaped encoder-decoder network architecture

Improvement: Hybrid Model (2)

- As for water prediction
 - Apply GNN to model water volume
 - Utilize edge features and local interaction
- Combine these two models

Multi-step Rollout During Training

- The loss consists of error on each time step
- During training, the gradient can pass through the full rollout

Reservoir Simulation over 20 steps (20 months)

Groundtruth rollout (20 steps)

Simulation results (20 steps)

Summary

- What is physical simulation?
- GNN for simulation (GNS)
 - Given previous statuses of nodes, predict the next status
 - Design message passing method to aggregate the information of surrounding neighbors
- Constraint-based Graph Neural Network Simulator
 - Explicitly model the physical constraint by learnable constraint function
- Reservoir Simulation
 - Consider a large grid as a graph
 - Apply GNN to simulate the oil, water saturation