UCS1302: DATA STRUCTURES

Algorithm analysis

Session Meta Data

Author	Dr. B. Bharathi
Reviewer	
Version Number	1.2
Release Date	23 June 2019

Revision History

Revision Date	Details	Version no.
22 September	New SSN template applied	1.2
2017		

Session Objectives

- Understanding the concepts of algorithm analysis
- Running time calculations

Session Outcomes

- At the end of this session, participants will be able to
 - Understand algorithm analysis
 - Calculate the running time of an algorithm

Agenda

- Introduction
- Algorithm analysis
- Growth rate
- Asymptotic notation
- Running time calculation

Introduction to Algorithm analysis

Dr. B. Bharathi

SSNCE

June 23, 2019

Introduction

What is Algorithm?

- •a clearly specified set of simple instructions to be followed to solve a problem
 - > Takes a set of values, as input and
 - > produces a value, or set of values, as output
- May be specified
 - ➤In English
 - ➤ As a computer program
 - >As a pseudo-code
- Data structures
 - Methods of organizing data
- •Program = algorithms + data structures

Introduction

- Why need algorithm analysis?
 - writing a working program is not good enough
 - The program may be inefficient!
 - If the program is run on a large data set, then the running time becomes an issue

Order of growth

- Any algorithm is expected to work fast for any input size.
- For smaller input size our algorithm will work fine but for higher input size the execution time is much higher
- By increasing the size of n (input size) we can analyze how well our algorithm works.
- Let input size, n=5 and we have to sort the list of elements for e.g. 25,29,10,15,2

Order of growth

- So for n=5 our algorithm will work fine but what if n=5000?
- So our algorithm will take much longer time to sort the elements or cause small delays to give the result
- So how the behavior of algorithm changes with the no. of inputs will give the analysis of the algorithm and is called the *Order of Growth*

Order of growth

- For calculating the order of growth we have to go for higher value of n, because
- > as the input size grow higher algorithm makes delays.
- > for all real time applications we have higher values for n.

Example: Selection Problem

- Given a list of N numbers, determine the kth largest, where k ≤ N.
- Algorithm 1:
 - (1) Read N numbers into an array
 - (2) Sort the array in decreasing order by some simple algorithm
 - (3) Return the element in position k

Example: Selection Problem

Algorithm 2:

- (1) Read the first k elements into an array and sort them in decreasing order
- (2) Each remaining element is read one by one
 - If smaller than the kth element, then it is ignored
 - Otherwise, it is placed in its correct spot in the array, bumping one element out of the array.
- (3) The element in the kth position is returned as the answer.

Example: Selection Problem

- Which algorithm is better when
 - -N = 100 and k = 100?
 - N = 100 and k = 1?
- What happens when N = 1,000,000 and k = 500,000?
- There exist better algorithms

Algorithm analysis

- We only analyze correct algorithms
- An algorithm is correct
 - If, for every input instance, it halts with the correct output
- Incorrect algorithms
 - Might not halt at all on some input instances
 - Might halt with other than the desired answer
- Analyzing an algorithm
 - Predicting the resources that the algorithm requires
 - Resources include
 - Memory
 - Computational time (usually most important)

Algorithm analysis

- Factors affecting the running time
 - computer
 - compiler
 - algorithm used
 - input to the algorithm
 - The content of the input affects the running time
 - typically, the *input size* (number of items in the input) is the main consideration
 - E.g. sorting problem ⇒ the number of items to be sorted
 - E.g. multiply two matrices together ⇒ the total number of elements in the two matrices

Efficiency of the algorithm

- There are three cases
 - Best case
 - Worst case
 - Average case

Efficiency of the algorithm

- Worst-case running time of an algorithm
 - The longest running time for any input of size n
 - An upper bound on the running time for any input
 - ⇒ guarantee that the algorithm will never take longer
 - Example: Sort a set of numbers in increasing order;
 and the data is in decreasing order
- Best-case running time
 - sort a set of numbers in increasing order; and the data is already in increasing order
- Average-case running time
 - May be difficult to define what "average" means

Asymptotic Notations

- Algorithms perform f(n) basic operations to accomplish task
 - Identify that function
 - Identify size of problem (n)
 - Count number of operations in terms of n

Execution time

- Time computer takes to execute f(n) operations is cf(n)
- where c
 - depends on speed of computer and
 - varies from computer to computer

Development of Notation

- Not concerned with small values of n
- Concerned with VERY LARGE values of n
- Asymptotic refers to study of function f as n approaches infinity
- Example: f(n) = n²+4n + 20
 n² is the dominant term and the term 4n + 20 becomes insignificant as n grows larger

Development of Notation

- Drop insignificant terms and constants
- Say function is of O(n²) called Big-O of n²
- Common Big-O functions in algorithm analysis
 - -g(n) = 1 (growth is constant)
 - $-g(n) = log_2 n$ (growth is logarithmic)
 - -g(n) = n (growth is linear)
 - $-g(n) = n \log_2 n$ (growth is faster than linear)
 - $-g(n) = n^2$ (growth is quadratic)
 - $-g(n) = 2^n$ (growth is exponential)

Growth Rate

- The idea is to establish a relative order among functions for large n
- $\exists c, n_0 > 0 \text{ such that } f(N) \le c g(N) \text{ when } N \ge n_0$
- f(N) grows no faster than g(N) for "large" N

Asymptotic notation: Big-Oh

- f(N) = O(g(N))
- There are positive constants c and n_0 such that $f(N) \le c g(N)$ when $N \ge n_0$
- The growth rate of f(N) is less than or equal to the growth rate of g(N)
- g(N) is an upper bound on f(N)

Big-Oh: example

- Let $f(N) = 2N^2$. Then
 - $f(N) = O(N^4)$
 - $f(N) = O(N^3)$
 - $f(N) = O(N^2)$ (best answer, asymptotically tight)
- O(N²): reads "order N-squared" or "Big-Oh N-squared"

Big Oh: more examples

- $N^2 / 2 3N = O(N^2)$
- 1 + 4N = O(N)
- $7N^2 + 10N + 3 = O(N^2) = O(N^3)$
- $\log_{10} N = \log_2 N / \log_2 10 = O(\log_2 N) = O(\log N)$
- $\sin N = O(1)$; 10 = O(1), $10^{10} = O(1)$
- $\sum_{i=1}^{N} i \leq N \cdot N = O(N^2)$

$$\sum_{i=1}^{N} i^2 \le N \cdot N^2 = O(N^3)$$

- log N + N = O(N)
- $log^k N = O(N)$ for any constant k
- $N = O(2^N)$, but 2^N is not O(N)
- 2^{10N} is not O(2^N)

Some rules

When considering the growth rate of a function using Big-Oh

- Ignore the lower order terms and the coefficients of the highest-order term
- No need to specify the base of logarithm
 - Changing the base from one constant to another changes the value of the logarithm by only a constant factor
- If $T_1(N) = O(f(N))$ and $T_2(N) = O(g(N))$, then
 - $T_1(N) + T_2(N) = max(O(f(N)), O(g(N))),$
 - $T_1(N) * T_2(N) = O(f(N) * g(N))$

Big-Omega

- $\exists c, n_0 > 0 \text{ such that } f(N) \ge c g(N) \text{ when } N \ge n_0$
- f(N) grows no slower than g(N) for "large" N

Big-Omega

- $f(N) = \Omega(g(N))$
- There are positive constants c and n_0 such that $f(N) \ge c g(N)$ when $N \ge n_0$
- The growth rate of f(N) is *greater than or equal to* the growth rate of g(N).

Big-Omega: examples

- Let $f(N) = 2N^2$. Then
 - $f(N) = \Omega(N)$
 - $f(N) = \Omega(N^2)$ (best answer)

$$f(N) = \Theta(g(N))$$

 the growth rate of f(N) is the same as the growth rate of g(N)

Big-Theta

- $f(N) = \Theta(g(N))$ iff f(N) = O(g(N)) and $f(N) = \Omega(g(N))$
- The growth rate of f(N) equals the growth rate of g(N)
- Example: Let $f(N)=N^2$, $g(N)=2N^2$
 - Since f(N) = O(g(N)) and $f(N) = \Omega(g(N))$, thus $f(N) = \Theta(g(N))$.
- Big-Theta means the bound is the tightest possible.

Some rules

- If T(N) is a polynomial of degree k, then $T(N) = \Theta(N^k)$.
- For logarithmic functions, $T(\log_m N) = \Theta(\log N)$.

General Rules

For loops

- at most the running time of the statements inside the for-loop (including tests) times the number of iterations.
- Nested for loops

- the running time of the statement multiplied by the product of the sizes of all the for-loops.
- $O(N^2)$

General rules (cont'd)

Consecutive statements

- These just add
- $O(N) + O(N^2) = O(N^2)$
- If S1

 never more than the running time of the test plus the larger of the running times of S1 and S2.

Example

Calculate

- Lines 1 and 4 count for one unit each
- Line 3: executed N times, each time four units
- Line 2: (1 for initialization, N+1 for all the tests, N for all the increments) total 2N + 2
- total cost: $6N + 4 \Rightarrow O(N)$

Example

1. How many times count++ will be executed?

```
int count = 0;

for (int i = 0; i < N; i++)

for (int j = 0; j < i; j++)

count++;
```

- When i=0, it will run 0 times.
 When i=1, it will run 1 times.
 When i=2, it will run 2 times and so on
- Total number of times count++ will run is 0+1+2+...+(N-1)=N*(N-1) /2.
- So the time complexity will be $O(N^2)$.

Example

2. How many times count++ will be executed?

```
int count = 0;

for (int i = N; i > 0; i /= 2)

for (int j = 0; j < i; j++)

count++;
```

- When i=N, it will run N times.
 When i=N/2, it will run N/2 times.
 When i=N/4, it will run N/4 times and so on
- Total number of times count++ will run is
 N + N/2 +N/4 +.....1 = 2* N
- So the time complexity will be O(N).

Another Example

- Maximum Subsequence Sum Problem
- Given (possibly negative) integers A₁, A₂, ..., A_n, find the maximum value of
 - For convenience, the maximum subsequence $\sum_{k=i}^J A$ in the integers are negative
- E.g. for input –2, 11, -4, 13, -5, -2
 - Answer: 20 (A₂ through A₄)

Algorithm 1: Simple

Exhaustively tries all possibilities (brute force)

```
int maxSubSum1 (const vector<int> &a)
{
  int maxSum=0;
  for (int i=0;i<a.size();i++)
      for (int j=i;j<a.size();j++)
      {
      int thisSum=0;
      for (int k=i;k<=j;k++)
            thisSum += a[k];
      if (thisSum > maxSum)
            maxSum = thisSum;
      }
  return maxSum;
}
```

O(N³)

Binary search

```
binary search (input type a[], input type x, unsigned int n)
                                                                                                       log <sub>2</sub> n
                                                                            n
int low, mid, high; /* Can't be unsigned; why? */
/*1*/
           low = 0; high = n - 1;
/*2*/
           while ( low <= high )
/*3*/
                mid = (low + high)/2;
/*4*/
               if(a[mid] < x)
/*5*/
                     low = mid + 1;
else
                                                                              8
/*6*/
               if (a[mid] < x)
/*7*/
                     high = mid - 1;
                                                                             16
else
/*8*/
                    return( mid ); /* found */
/*9*/
           return ( NOT FOUND );
```

O(log n)

Summary

- Algorithm
- Order of growth
- Need for algorithm analysis
- Asymptotic notation
- Running time calculation
- Examples

