Language and computation notes

Lecture 3 - Non-deterministic Finite Automata

Example: Construct DFA over $\sum = 0, 1$ accepting all works were penultimate symbol is 1

Maybe: - q0 initial state - q1 initial Last symbol is 1 - q2 penultimate seen symbol is 1

We define

$$\rightarrow$$
 (0,1) \rightarrow q0 (1) \rightarrow q1 (0,1) \rightarrow q2

Step	Input	State 1	State 2	State 3
0	0	X		
1	1	X	X	
2	1	X	X	X
3	0	X		X
4	0	X		

Defining the achine

A NFA N = {Q, \sum , δ , S, F} where

- Q: Finite set of states \sum : Alphabet δ : Transitional function $\delta \in Q. \sum -> P(a)$