UTILIZAÇÃO DE PROGRAMA PROGRESSIVO DE AUMENTO DE LUZ PARA A ANTECIPAÇÃO DO PERÍODO REPRODUTIVO DE JUNDIÁ *RHAMDIA QUELEN.*

Rafaela Costa Dunker^{1;} Ana Carolina Moreira^{2;} Bruno Corrêa da Silva^{3;} Hilton Amaral Júnior^{4;} Leandro Bortoli^{5;} Silvano Garcia^{6;} Luís Ivan Martinhão Souto⁷

RESUMO

A piscicultura brasileira vem se desenvolvendo e é importante que sejam desenvolvidos pacotes tecnológicos direcionados aos peixes nativos, como o jundiá (*Rhamdia quelen*). Este projeto teve como objetivo testar diferentes taxas de luminosidade para estimular a eficiência no processo reprodutivo de jundiá e foi realizado no CEPC-EPAGRI, localizado no IFC-Campus Camboriú. Foram utilizados três programas de luz, sendo: Lote 1: peixes submetidos à menor taxa de luminosidade do ano; Lote 2: luminosidade equivalente ao período do solstício de inverno à metade do solstício de verão; Lote 3: submetidos à luminosidade do período do solstício de inverno ao solstício de verão. Foram analisados nove tanques mantidos em local fechado, sendo que a cada três tanques utilizou-se um programa de luz diferente, com três fêmeas e três machos de jundiá em cada tanque. Foram analisados alguns aspectos reprodutivos e verificadas diferenças significativas na antecipação da reprodução em função da taxa de luminosidade.

Palavras-chave: Reprodução. Jundiá. Luminosidade.

INTRODUÇÃO

O jundiá (*Rhamdia quelen*) é um peixe de água doce que teve sua origem no centro da Argentina até o sul do México, possui hábito noturno e habita locais calmos e profundos. É uma espécie euritérmica, sua maturidade sexual é atingida no primeiro ano de vida, e desovam em locais de água limpa e com fundo pedregoso (GUEDES, 1980).

¹Aluna do curso técnico em agropecuária integrado ao ensino médio, Instituto Federal Catarinense – Campus Camboriú, anabellyna3@gmail.com

² Aluna do curso técnico em agropecuária integrado ao ensino médio, Instituto Federal Catarinense – Campus Camboriú, rafaeladunkercosta@gmail.com

³ Doutor em Aquicultura, Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (EPAGRI), brunosilva@epagri.sc.gov.br

⁴ Doutor em Aquicultura, Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (EPAGRI), hilton@epagri.sc.gov.br

⁵ Técnico em Aquicultura, Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (EPAGRI), leandrobortoli@bol.com.br

⁶ Doutor em Aquicultura, Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (EPAGRI), silvanog@epagri.sc.gov.br

⁷ Doutor em Medicina Veterinária, Instituto Federal Catarinense – Campus Camboriú, luis.souto@ifc.edu.br

Apresenta dois picos reprodutivos durante o ano, um no verão e outro na primavera, e tem desova múltipla. O desenvolvimento embrionário é rápido e ocorre entre 3 a 5 dias; a reprodução é induzida ou alterada por mudanças ambientais, como temperatura e fotoperíodo (BARTONHALL et al., 1980).

Kaya e Hasler (1972) reconhecem uma correlação em latitudes temperadas, entre os períodos reprodutivos da primavera com os dias mais quentes e mais longos, responsável pela maturação gonadal, por exercer ação direta no eixo hipotálamo-hipófise-gonadal dos peixes teleósteos, estimulando ou inibindo a produção de hormônio liberador de gonadotrofina (GnRH), de hormônios hipofisários (FSH e LH) e outros hormônios que modulam a reprodução e a maturação dos gametas (AMANO et al., 2004).

A reprodução é induzida, principalmente por um longo fotoperíodo, que corresponde à duração do tempo de luz ao longo do dia; nas regiões tropicais, o ciclo é de 12 luz / 12 escuro, enquanto em regiões temperadas a fase se ajusta ao longo do ano (FARNER, 1961; MARTINEZ-CHAVEZ et al., 2008; ZIV et al., 2005).

O desenvolvimento de novas técnicas que propiciem o aumento de produtividade na piscicultura é de extrema importância, pois pode proporcionar uma produção mais competitiva no mercado de agropecuário. O objetivo deste projeto foi pesquisar, de forma experimental, duas situações de exposições de taxas de luminosidades diferentes da natural para verificar a possibilidade dos animais apresentarem melhor resultado reprodutivo, para possível desenvolvimento de tecnologia reprodutiva que possa propiciar um aumento e antecipação da produção de alevinos, gerando menor impacto ambiental e melhores resultados socioeconômicos para a cadeia produtiva.

PROCEDIMENTOS METODOLÓGICOS

O experimento foi realizado no Campo Experimental de Piscicultura de Camboriú da Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (CEPC-EPAGRI) localizado no Instituto Federal Catarinense, Campus Camboriú (IFC - Campus Camboriú). Foram usados nove tanques de 0,8 metros de altura, 1,95 metros de diâmetro e com capacidade de 1,5 a 1,8 metro cúbico de água, com o monitoramento da qualidade da água, analisando o teor de oxigênio dissolvido e a temperatura da água; também foi colocado um sistema de aeração

ligado cerca de oito horas por dia, e os tanques tinham renovação constante de água. Em cada tanque foram alocados três fêmeas e três machos de jundiá (*Rhamdia quelen*), com alimentação fornecida duas vezes ao dia. Em cada tanque foi colocado um refletor LED 30 watts branco frio (6000 K) com luminosidade de 2400 lúmens, e três peças de cano de PVC de 100mm com 50 centímetros de comprimento, para propiciar um ponto de fuga aos animais.

Para o estabelecimento do programa de luz, foram usados os valores equivalentes a taxa de luminosidade do 15° dia do mês para a latitude de 28°S (localização aproximada de Florianópolis). Foram estabelecidos três programas de luz: Lote 1: equivalente ao menor período de luminosidade do ano; Lote 2: equivalente entre a taxa de luminosidade do solstício de inverno (23 de junho) até a metade do solstício de verão (22 de dezembro); e Lote 3: considerando a quantidade de luz entre o solstício de inverno (23 de junho) ao solstício de verão (22 de dezembro) (PEREIRA, ANGELOCCI E SENTELHAS, 2007). Os animais foram abrigados no dia 06 de agosto de 2018 e submetidos ao processo reprodutivo no dia 25 de setembro de 2018. O quadro 1 apresenta a taxa de luminosidade utilizada em cada lote.

Quadro 1: Descrição do número de horas diárias de exposição à luz dos diferentes lotes de jundiás (*Rhamdia quelen*) ao longo das sete semanas de experimento.

PROGRAMA	NÚMERO DE HORAS DE LUZ POR DIA								
DE LUZ	SEMANA 1	SEMANA 2	SEMANA 3	SEMANA 4	SEMANA 5	SEMANA 6	SEMANA 7		
LOTE 1	10,2	10,2	10,2	10,4	10,4	10,4	10,4		
LOTE 2	10,2	10,3	10,4	10,7	11,0	11,4	11,8		
LOTE 3	10,2	10,4	11,0	11,8	12,7	13,4	13,8		

Após a 7° semana, as fêmeas foram induzidas com extrato pituitário de carpa (EPC) na dose de 5mg/kg de peso vivo. Os óvulos foram coletados após 230 a 260 horas-grau; o sêmen dos machos foi coletado sem indução hormonal; a coleta foi feita em ambos os sexos por massagem abdominal com pressão nos sentidos crânio-caudal e lateral-medial.

Para a avaliação das características reprodutivas foram usados os seguintes critérios: motilidade, quantidade de óvulos, qualidade macroscópica dos óvulos, taxa de fertilidade e porcentagem de eclosão da desova.

A análise estatística foi realizada utilizando o teste de Levene para verificação de homocedasticidade, seguida do teste de Shapiro-Wilks, para

verificar a normalidade dos dados. Posteriormente, foi realizada a análise de variância unifatorial e a separação de médias pelo teste de Tukey. Para a análise estatística foi considerado um nível de significância de 5%.

RESULTADOS E DISCUSSÃO

O peso médio das fêmeas e dos machos, a taxa de motilidade de espermatozóides, a quantidade de óvulos extrusados e suas qualidades macroscópica e microscópica, a taxa de fertilidade e quantidade de larvas produzidas estão apresentadas na tabela 1.

Os valores médios de velocidade espermática e tempo de movimentação dos espermatozóides foram numericamente maiores para o lote 3 em relação aos outros dois lotes. A quantidade de óvulos, qualidade média macroscópica e microscópica para os óvulos e taxa de fertilidade também foram maiores para o lote 3 do que para os lotes 1 e 2. O número de larvas obtido foi superior para o lote 1 do que para os outros, apesar de serem relativamente próximos, principalmente em relação ao lote 3 (tabela1).

Apesar de haver dados numéricos diferentes entre os lotes, apenas os parâmetros quantidade de óvulos e tempo de movimentação de espermatozóides apresentaram diferenças estatisticamente significantes, sendo que o lote 3, com o programa de luz progressivo, variando do solstício de inverno no início ao solstício de verão no final, apresentou os melhores resultados (tabelas 2).

Tabela 1: Valores médios dos parâmetros analisados para os diferentes lotes de jundiá (*Rhamdia quelen*) expostos a diferentes taxas de luminosidades artificiais durante um período de sete semanas.

PARÂMETRO ANALISADO	LOTE 1	LOTE 2	LOTE 3
PESO DOS ANIMAIS (g) FÊMEAS	349,0	391,0	340,0
PESO DOS ANIMAIS (g) MACHOS	299,6	285,0	347,6
MOTILIDADE DE ESPERMATOZÓIDES (% de viáveis)	2,5	2,5	3,0
MOTILIDADE DE ESPERMATOZÓIDES (velocidade espermática)	2,7	3,7	4,0
MOTILIDADE DE ESPERMATOZÓIDES (tempo de	113,6	160,0	247,3
movimentação) (segundos)			
QUANTIDADE DE ÓVULIOS (g)	25,0	25,0	46,0
QUALIDADE MACROSCÓPICA DOS ÓVULOS (proporção amarelos-	2.0	1,8	2,8
transparentes/brancos-opacos)	2,0		
QUALIDADE MICROSCÓPICA DOS ÓVULOS	2,0	2,2	2,8
TAXA DE FERTILIDADE (%)	41,4	80,3	86,7
Número de larvas	24.240	15.310	21.000

Tabela 2: Análise estatística do tempo de movimentação de espermatozóides (segundos) e da quantidade de óvulos (gramas) de jundiás (*Rhamdia quelen*), submetidos a diferentes taxas de luminosidades artificiais.

PARÂMETRO AVALIADO	LOTE	VALOR MÉDIO	DIFERENÇA ¹	
Movimentação	1	113,67	***	
	2	160,11	*** ***	
espermatozóide (s)	3	247,11	***	
	1	11,83	***	
Quantidade de óvulos (g)	2	24,75	*** ***	
	3	28,17	***	

Legenda: ¹Diferença é indicada pela divergência de marcadores entre os lotes nas diferentes linhas. Teste de Tukey para um nível de significânia de 5%.

CONCLUSÕES

O experimento demonstrou que a utilização de programa de luz progressivo com a mais ampla variação de taxa de luminosidade, do solstício de inverno no início ao solstício de verão no final, para jundiá (*Ramdia quelen*), foi o mais eficaz.

A utilização de programas de luz artificial pode ser uma possibilidade para o desenvolvimento de um pacote tecnológico para o jundiá (*Rhamdia quelen*), propiciando o aumento da produtividade e a maior competitividade.

Há a necessidade de realização de outras pesquisas para determinar com maior precisão fatores relacionados à variação do tempo de exposição à taxa de luminosidade e à intensidade de luz capazes de influenciar nas características reprodutivas do jundiá (*Ramdia quelen*).

Agradecemos ao Instituto Federal Catarinense - Campus Camboriú

(IFC-CAM) pelo apoio financeiro e bolsa de iniciação científica previstos no Edital nº 043/GDG/IFC-CAM/2017 e ao Campo Experimental de Piscicultura de Camboriú da Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (CEPC-EPAGRI) pelo apoio estrutural e profissional que proporcionou a execução desta pesquisa

REFERÊNCIAS

AMANO, M.; YAMANOME T.; YAMADA H.; OKUZAWA K.; YAMAMORI K. Effects of photoperiod on gonadotropinreleasing hormone levels in the brain and pituitary of underyearling male barfin flounder. **Fish Science**, v.70, n. 5, p.812-818, 2004.

BARTONHALL, G.A.; BOSSEMEYER, L.M.K. Determinação da época da desova e maturação do Jundiá *Rhamdia quelen*, baseado no IGS e em estudos morfocitólogico das gônodas. **Ciência Rural**, v.2, n. 1, p.133-151, 1980.

FARNER, D. S. Comparative Physiology: photoperiodicity. **Anual Review of Physiology**, v. 23, p. 71-96, 1961.

GUEDES, D.S. Contribuição ao estudo da sistemática e alimentação de jundiás (Rhamdia spp) na região central do Rio Grande do Sul (Pisces, Pimelodidae). Santa Maria – RS, 1980. 99p. Dissertação (Mestrado em Zootecnia) - Curso de Pósgraduação em Zootecnia, Universidade Federal de Santa Maria, 1980.

KAYA, C. M; HASLER, A. D. Photoperiod and temperature effects on the gonads of green sunfish, *Lepomis cyanellus* (Rafinesque), during the quiescent, winter phase of its annual sexual cycle. **Transactions of the American Fisheries Society**, v. 101, n. 2, p. 270-275, 1972.

MARTINEZ-CHAVEZ C.C.; AL-KHAMEES S.; CAMPOS-MENDOZA A.; PENMAN D.J.; MIGAUD H. Clock controlled endogenous melatonin rhythms in Nile tilapia (*Oreochromis niloticus niloticus*) and African catfish (*Clarias gariepinus*). **Chronobiology International**, v.25, n.1, p.31-49, 2008.

PEREIRA, A. R.; ANGELOCCI, L. R.; SENTELHAS, P. C. **Meteorologia agrícola.** (ver. E ampl.). Apostila de disciplina. Universidade de São Paulo, escola superior de agricultura "Luiz de Queiroz', Departamento de ciências Exatas, Piracicaba. 2007. 192p. Disponível em: http://www.esalq.usp.br/departamentos/leb/aulas/lce306/MeteorAgricola_Apostila2007.pdf Acesso em: 07 nov. 2017.

ZIV L., LEVKOVITZ S., TOYAMA R., FALCÓN J., GOTHILF Y. Functional development of the zebrafish pineal gland: light-induced expression of period 2 is required for onset of the circadian clock. **Journal of Neuroendocrinology**, v.17, n. 5, p.314-320, 2005.