AE1 - Análise Real

1. Uma função $f:A\to\mathbb{R}$, definida em $A\subset\mathbb{R}$, é contínua no ponto $a\in\mathbb{R}$ quando, para todo $\varepsilon>0$, existe um $\delta > 0$ tal que $x \in A$ e $|x - a| < \delta$ implica que $|f(x) - f(a)| < \varepsilon$.

Com base na definição acima, seja a função $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = 3x + 1.

Para f ser contínua no ponto a, devemos tomar:

1.
$$\delta = \frac{\varepsilon}{5}$$

1.
$$\delta=rac{arepsilon}{5}$$
2. $\delta=rac{arepsilon}{3}$

3.
$$\delta = \varepsilon$$

4.
$$\delta=rac{arepsilon}{2}$$

5. A função não é contínua.

A função é contínua, mas com derivada constante.

Se $\delta = 3$, toda distância |x - a|, onde 0 < x < 3 deve resultar em distância $|f(x) - f(a)| < \varepsilon$, onde

Por exemplo, em x=2, |2-a| deve implicar $|7-f(a)|<\varepsilon$, para $\varepsilon>0$.

A relação de 3x+1 de 7 para 2 não é a mesma entre ε e δ que 1), 2), ou 4), portanto 3).

- 3. Considere o conjunto $X = \{x \in \mathbb{R} | -5 \le 2x + 1 < 9\}$ e as afirmações:
 - 1. X é enumerável.
 - 2. O ínfimo de $X \in -5$.
 - 3. O supremo de $X \neq 4$.

São falsas:

- 1.1 e 2
- 2. 2
- 3.1 e 3
- 4. 1
- 5.3

X não é enumerável.

$$2x+1 \ge -5 \Rightarrow 2x \ge -6 \Rightarrow x \ge -3$$
.

X é fechado à esquerda, com ínfimo -3.

$$2x + 1 < 9 \Rightarrow 2x < 8 \Rightarrow x < 4.$$

X é aberto à direita, com supremo 4.

- 4. Seja o conjunto $X=\{x\in\mathbb{Z}|-5\leq 2x+1<9\}$ e considere as afirmações abaixo:
 - 1. X é enumerável.
 - 2. O ínfimo de X é -3.
 - 3. A cardinalidade de X é 8.

São falsas:

- 1.1
- 2.2 e 3
- 3. 2
- 4.1 e 2
- 5.3

X é enumerável pois é discreto.

$$2x+1 \geq -5 \Rightarrow 2x \geq -6 \Rightarrow x \geq -3.$$

$$2x+1<9\Rightarrow 2x<8\Rightarrow x<4.$$

5. Uma função $f:A \to \mathbb{R}$, definida em $A \subset \mathbb{R}$, é contínua no ponto $a \in \mathbb{R}$ quando, para todo $\varepsilon > 0$, existe um $\delta>0$ tal que $x\in A$ e $|x-a|<\delta$ implica que $|f(x)-f(a)|<\varepsilon.$

Com base na definição acima, seja a função $f:\mathbb{R} o \mathbb{R}$ dada por f(x)=3-2x.

Para f ser contínua no ponto a, devemos tomar:

1.
$$\delta = \frac{\varepsilon}{5}$$
2. $\delta = \frac{\varepsilon}{3}$

$$2. \delta = \frac{8}{3}$$

3.
$$\delta = \epsilon$$

3.
$$\delta = \frac{\varepsilon}{\varepsilon}$$
4. $\delta = \frac{\varepsilon}{2}$

5. A função não é contínua.

Igual à questão 1). Mesma resposta.