Работа 1.3.1

Определение модуля Юнга по измерениям растяжения проволоки.

Работу выполнил Павлов Михаил Б01-109

1. Аннотация

В данной работе с помощью прибора Лермантова и проволоки экспериментально доказывается зависимость между напряжением и деформацией проволоки, а также рассчитывается модуль Юнга и сравнивается с табличным значением.

2. Теоретические сведения

Основное уравнение для описания одноосного напряженного состояния:

$$\varsigma = E\varepsilon$$
(1)

где ε — деформация в точке, E — модуль Юнга, а ς — напряжение.

3. Инструментальные погрешности

Рулетка: $\sigma_{rul} = \pm 0.5$ мм (половина цены деления)

Микрометр: $\sigma_{mic} = \pm 0.01$ мм (маркировка производителя)

Шкала: $\sigma_{sc} = \pm 0.1$ см (маркировка производителя)

Работа 1.3.1

4. Экспериментальная установка

Для определения модуля Юнга используется прибор Лермантова, изображенный на рис. 1.

Верхний конец проволоки Π , изготовленной из ислледуемого материала, прикреплен к консоли K, а нижний — к цилиндру, которым оканчивается шарнирный кронштейн Π . На этот же цилиндр опирается рычаг r, связанный с зеркальцем 3. Таким образом, удлинение проволоки можно измерить по углу поворота зеркальца.

Натяжение проволоки можно менять, перекладывая грузы с площадки М на площадку О и наоборот. Такая система позволяет исключить влияние деформации кронштейна К на точность измерений, так как нагрузка на нем все время остается постоянной.

Стоит отметить, что при отсутствии нагрузки проволока Π всегда несколько изогнута, поэтому вначале она не столько растягивается, сколько распрямляется.

Рис. 1. Прибор Лермантова

5. Результаты измерений и обработка данных

- 1. $d = (0.46 \pm 0.01)$ MM.
- 2. Измеряем площадь поперечного сечения проволоки

$$S = \frac{\pi(\overline{d})^2}{4} = 0,166 \text{ mm}^2$$

$$\sigma_S = S\sqrt{2\left(\frac{\sigma_d}{d}\right)^2} = 0,005 \text{ mm}^2$$

$$S = (0,166 \pm 0,005) \text{ mm}^2$$

- 3. Измеряем длинну проволоки $l=176,5~{\rm cm}$
- 4. Направляем зрительную трубу на зеркальце так, чтобы мы четко видели шкалу, тогда свет от шкалы будет падать примерно перпендикулярно шкале на зеркало, поэтому

$$\Delta l = \frac{nr}{2h}$$

2 Работа 1.3.1

P, H	9,48	14,41	18,87	23,60	28,53	28,53	23,60	18,87	14,41	9,48
Δl , cm	0,326	0,641	0,897	1,168	1,440	1,440	1,163	0,902	0,641	0,342
$\sigma_{\Delta l}$	0,007	0,014	0,020	0,025	0,031	0,031	0,025	0,020	0,014	0,008
P, H	9,48	14,41	18,87	23,60	28,53	28,53	23,60	18,87	14,41	9,48
Δl , cm	0,331	0,630	0,886	1,152	1,429	1,429	1,152	0,886	0,630	0,326
$\sigma_{\Delta l}$	0,007	0,014	0,019	0,025	0,031	0,031	0,025	0,019	0,014	0,007
P, H	9,48	14,41	18,87	23,60	28,53	28,53	23,60	18,87	14,41	9,48
Δl	0,315	0,630	0,880	1,158	1,429	1,424	1,152	0,870	0,614	0,337
$\sigma_{\Delta l}$	0,007	0,014	0,019	0,025	0,031	0,031	0,025	0,019	0,013	0,008

Таблица 1. Зависимость удлинения проволоки от нагрузки

$$\sigma_{\Delta l} = \Delta l \sqrt{\left(\frac{\sigma_n}{n}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_h}{h}\right)^2}$$

где r=15 см - длина рычага, разница показаний шкалы - n, расстояние от шкалы до проволоки - $h=(134,5\pm0,1)$ см.

- 5. Занесем полученные данные в таблицу
- 6. Построим график зависимости удлинения проволоки от нагрузки. Найдем уравнение получившийся прямой по МНК. По наклону прямой определим жесткость проволоки, а по ней модуль Юнга.

Рис. 2. Зависимость удлинения проволоки от нагрузки

Отсюда находим $k = 1.72 \cdot 10^3 \pm 0.027 \cdot 10^3 \text{ H/м}.$

7. Наконец, по найденной графически жёсткости проволоки найдем модуль Юнга по формуле

$$E = \frac{k * l_0}{S}$$

$$\sigma_E = \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_S}{S}\right)^2 + \left(\frac{\sigma_{l_0}}{l_0}\right)^2}$$

Окончательный результат: $E = 18.4 \pm 0.7 \cdot 10^{10} \; \Pi a$