

Sequence Listing

<110> Baker, Kevin P.
Botstein, David
Desnoyers, Luc
Eaton, Dan 1.
Ferrara, Napoleone
Fong, Sherman
Gao, Wei-Qiang
Goddard, Audrey
Godowski, Paul J.
Grimaldi, Christopher J.
Gurney, Austin L.
Hillan, Kenneth J.
Pan, James
Paoni, Nicholas F.

- <120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same
- <130> P2830P1C50
- <140> 10/015480
- <141> 2001-12-11
- <150> 60/098716
- <151> 1998-09-01
- <150> 60/098723
- <151> 1998-09-01
- <150> 60/098749
- <151> 1998-09-01
- <150> 60/098750
- <151> 1998-09-01
- <150> 60/098803
- <151> 1998-09-02
- <150> 60/098821
- <151> 1998-09-02
- <150> 60/098843
- <151> 1998-09-02
- <150> 60/099536
- <151> 1998-09-09
- <150> 60/099596
- <151> 1998-09-09
- <150> 60/099598
- <151> 1998-09-09
- <150> 60/099602
- <151> 1998-09-09

- <150> 60/099642
- <151> 1998-09-09
- <150> 60/099741
- <151> 1998-09-10
- <150> 60/099754
- <151> 1998-09-10
- <150> 60/099763
- <151> 1998-09-10
- <150> 60/099792
- <151> 1998-09-10
- <150> 60/099808
- <151> 1998-09-10
- <150> 60/099812
- <151> 1998-09-10
- <150> 60/099815
- <151> 1998-09-10
- <150> 60/099816
- <151> 1998-09-10
- <150> 60/100385
- <151> 1998-09-15
- <150> 60/100388
- <151> 1998-09-15
- <150> 60/100390
- <151> 1998-09-15
- <150> 60/100584
- <151> 1998-09-16
- <150> 60/100627
- <151> 1998-09-16
- <150> 60/100661 <151> 1998-09-16
- <150> 60/100662 <151> 1998-09-16
- <150> 60/100664
- <151> 1998-09-16
- <150> 60/100683
- <151> 1998-09-17
- <150> 60/100684
- <151> 1998-09-17

- <150> 60/100710
- <151> 1998-09-17
- <150> 60/100711
- <151> 1998-09-17
- <150> 60/100848
- <151> 1998-09-18
- <150> 60/100849
- <151> 1998-09-18
- <150> 60/100919
- <151> 1998-09-17
- <150> 60/100930
- <151> 1998-09-17
- <150> 60/101014
- <151> 1998-09-18
- <150> 60/101068
- <151> 1998-09-18
- <150> 60/101071
- <151> 1998-09-18
- <150> 60/101279
- <151> 1998-09-22
- <150> 60/101471
- <151> 1998-09-23
- <150> 60/101472
- <151> 1998-09-23
- <150> 60/101474
- . <151> 1998-09-23
 - <150> 60/101475
 - <151> 1998-09-23
 - <150> 60/101476
 - <151> 1998-09-23
 - <150> 60/101477
 - <151> 1998-09-23
 - <150> 60/101479
 - <151> 1998-09-23
 - <150> 60/101738
 - <151> 1998-09-24
 - <150> 60/101741
 - <151> 1998-09-24

- <150> 60/101743
- <151> 1998-09-24
- <150> 60/101915
- <151> 1998-09-24
- <150> 60/101916
- <151> 1998-09-24
- <150> 60/102207
- <151> 1998-09-29
- <150> 60/102240
- <151> 1998-09-29
- <150> 60/102307
- <151> 1998-09-29
- <150> 60/102330
- <151> 1998-09-29
- <150> 60/102331
- <151> 1998-09-29
- <150> 60/102484
- <151> 1998-09-30
- <150> 60/102487
- <151> 1998-09-30
- <150> 60/102570
- <151> 1998-09-30
- <150> 60/102571
- <151> 1998-09-30
- <150> 60/102684
- <151> 1998-10-01
- <150> 60/102687
- <151> 1998-10-01
- <150> 60/102965
- <151> 1998-10-02
- <150> 60/103258
- <151> 1998-10-06
- <150> 60/103314
- <151> 1998-10-07
- <150> 60/103315
- <151> 1998-10-07
- <150> 60/103328
- <151> 1998-10-07

- <150> 60/103395
- <151> 1998-10-07
- <150> 60/103396
- <151> 1998-10-07
- <150> 60/103401
- <151> 1998-10-07
- <150> 60/103449
- <151> 1998-10-06
- <150> 60/103633
- <151> 1998-10-08
- <150> 60/103678
- <151> 1998-10-08
- <150> 60/103679
- <151> 1998-10-08
- <150> 60/103711
- <151> 1998-10-08
- <150> 60/104257
- <151> 1998-10-14
- <150> 60/104987
- <151> 1998-10-20
- <150> 60/105000
- <151> 1998-10-20
- <150> 60/105002
- <151> 1998-10-20
- <150> 60/105104
- <151> 1998-10-21
- <150> 60/105169
- <151> 1998-10-22
- <150> 60/105266
- <151> 1998-10-22
- <150> 60/105693
- <151> 1998-10-26
- <150> 60/105694
- <151> 1998-10-26
- <150> 60/105807
- <151> 1998-10-27
- <150> 60/105881
- <151> 1998-10-27

- <150> 60/105882
- <151> 1998-10-27
- <150> 60/106023
- <151> 1998-10-28
- <150> 60/106029
- <151> 1998-10-28
- <150> 60/106030
- <151> 1998-10-28
- <150> 60/106032
- <151> 1998-10-28
- <150> 60/106033
- <151> 1998-10-28
- <150> 60/106062
- <151> 1998-10-27
- <150> 60/106178
- <151> 1998-10-28
- <150> 60/106248
- <151> 1998-10-29
- <150> 60/106384
- <151> 1998-10-29
- <150> 60/108500
- <151> 1998-10-29
- <150> 60/106464
- <151> 1998-10-30
- <150> 60/106856
- <151> 1998-11-03
- <150> 60/106902
- <151> 1998-11-03
- <150> 60/106905
- <151> 1998-11-03
- <150> 60/106919
- <151> 1998-11-03
- <150> 60/106932
- <151> 1998-11-03
- <150> 60/106934
- <151> 1998-11-03
- <150> 60/107783
- <151> 1998-11-10

- <150> 60/108775
- <151> 1998-11-17
- <150> 60/108779
- <151> 1998-11-17
- <150> 60/108787
- <151> 1998-11-17
- <150> 60/108788
- <151> 1998-11-17
- <150> 60/108801
- <151> 1998-11-17
- <150> 60/108802
- <151> 1998-11-17
- <150> 60/108806
- <151> 1998-11-17
- <150> 60/108807
- <151> 1998-11-17
- <150> 60/108848
- <151> 1998-11-18
- <150> 60/108849
- <151> 1998-11-18
- <150> 60/108850
- <151> 1998-11-18
- <150> 60/108851
- <151> 1998-11-18
- <150> 60/108852
- <151> 1998-11-18
- <150> 60/108858
- <151> 1998-11-18
- <150> 60/108867
- <151> 1998-11-17
- <150> 60/108904
- <151> 1998-11-18
- <150> 60/108925
- <151> 1998-11-17
- <150> 60/113296
- <151> 1998-12-22
- <150> 60/114223
- <151> 1998-12-30

- <150> 60/129674
- <151> 1999-04-16
- <150> 60/141037
- <151> 1999-06-23
- <150> 60/144758
- <151> 1999-07-20
- <150> 60/145698
- <151> 1999-07-26
- <150> 60/162506
- <151> 1999-10-29
- <150> 09/218517
- <151> 1998-12-22
- <150> 09/284291
- <151> 1999-04-12
- <150> 09/403297
- <151> 1999-10-18
- <150> 09/872035
- <151> 2001-06-01
- <150> 09/882636
- <151> 2001-06-14
- <150> 09/946374
- <151> 2001-09-04
- <150> PCT/US99/00106
- <151> 1999-01-05
- <150> PCT/US99/20111
- <151> 1999-09-01
- <150> PCT/US99/21194
- <151> 1999-09-15
- <150> PCT/US99/28313
- <151> 1999-11-30
- <150> PCT/US99/28551
- <151> 1999-12-02
- <150> PCT/US99/30095
- <151> 1999-12-16
- <150> PCT/US00/00219
- <151> 2000-01-05
- <150> PCT/US00/00376
- <151> 2000-01-06

- <150> PCT/US00/03565
- <151> 2000-02-11
- <150> PCT/US00/04342
- <151> 2000-02-18
- <150> PCT/US00/05004
- <151> 2000-02-24
- <150> PCT/US00/05841
- <151> 2000-03-02
- <150> PCT/US00/06884
- <151> 2000-03-15
- <150> PCT/US00/13705
- <151> 2000-05-17
- <150> PCT/US00/14042
- <151> 2000-05-22
- <150> PCT/US00/14941
- <151> 2000-05-30
- <150> PCT/US00/15264
- <151> 2000-06-02
- <150> PCT/US00/23328
- <151> 2000-08-24
- <150> PCT/US00/23522
- <151> 2000-08-23
- <150> PCT/US00/30873
- <151> 2000-11-10
- <150> PCT/US00/30952
- <151> 2000-11-08
- <150> PCT/US00/32678
- <151> 2000-12-01
- <150> PCT/US01/06520
- <151> 2001-02-28
- <150> PCT/US01/06666
- <151> 2001-03-01
- <150> PCT/US01/17800
- <151> 2001-06-01
- <150> PCT/US01/19692
- <151> 2001-06-20
- <150> PCT/US01/21066
- <151> 2001-06-29

```
<150> PCT/US01/21735
<151> 2001-07-09
<160> 477
<210> 1
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 1
tgtaaaacga cggccagtta aatagacctg caattattaa tct 43
<210> 2
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 2
caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41
<210> 3
<211> 1110
<212> DNA
<213> Homo sapiens
<400> 3
ccaatcgccc ggtgcggtgg tgcagggtct cgggctagtc atggcgtccc 50
cgtctcggag actgcagact aaaccagtca ttacttgttt caagagcgtt 100
 ctgctaatct acacttttat tttctggatc actggcgtta tccttcttgc 150
agttggcatt tggggcaagg tgagcctgga gaattacttt tctcttttaa 200
atgagaaggc caccaatgtc cccttcgtgc tcattgctac tggtaccgtc 250
attattettt tgggeacett tggttgtttt getaeetgee gagettetge 300
atggatgcta aaactgtatg caatgtttct gactctcgtt tttttggtcg 350
aactggtcgc tgccatcgta ggatttgttt tcagacatga gattaagaac 400
agctttaaga ataattatga gaaggctttg aagcagtata actctacagg 450
agattataga agccatgcag tagacaagat ccaaaatacg ttgcattgtt 500
gtggtgtcac cgattataga gattggacag atactaatta ttactcagaa 550
aaaggatttc ctaagagttg ctgtaaactt gaagattgta ctccacagag 600
```

```
agatgcagac aaagtaaaca atgaaggttg ttttataaag gtgatgacca 650
ttatagagtc agaaatggga gtcgttgcag gaatttcctt tggagttgct 700
 tgcttccaac tgattggaat ctttctcgcc tactgccwct ctcgtgccat 750
 aacaaataac cagtatgaga tagtgtaacc caatgtatct gtgggcctat 800
tcctctctac ctttaaggac atttagggtc ccccctgtga attagaaagt 850
 tgcttggctg gagaactgac aacactactt actgatagac caaaaaaacta 900
 caccagtagg ttgattcaat caagatgtat gtagacctaa aactacacca 950
 ataggctgat tcaatcaaga tccgtgctcg cagtgggctg attcaatcaa 1000
 gatgtatgtt tgctatgttc taagtccacc ttctatccca ttcatgttag 1050
 atcgttgaaa ccctgtatcc ctctgaaaca ctggaagagc tagtaaattg 1100
 taaatgaagt 1110
<210> 4
<211> 245
<212> PRT
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 1-42
<223> Signal Peptide
<220>
<221> TRANSMEM
<222> 19-42, 61-83, 92-114, 209-230
<223> Transmembrane Domains
<220>
<221> misc feature
<222> 69-80, 211-222
<223> Prokaryotic Membrane Lipoprotein Lipid Attachment Site.
<220>
<221> misc feature
<222> 75-81, 78-84, 210-216, 214-220, 226-232
<223> N-Myristoylation Site.
<220>
<221> misc feature
<222> 134-138
<223> N-Glycosylation Site.
<220>
<221> misc feature
<222> 160-168, 160-169
<223> Tyrosine Kinase Phosphorylation Site.
```

<220> <221> unsure <222> 233 <223> unknown amino acid <400> 4 Met Ala Ser Pro Ser Arg Arg Leu Gln Thr Lys Pro Val Ile Thr 5 10 Cys Phe Lys Ser Val Leu Leu Ile Tyr Thr Phe Ile Phe Trp Ile 20 Thr Gly Val Ile Leu Leu Ala Val Gly Ile Trp Gly Lys Val Ser Leu Glu Asn Tyr Phe Ser Leu Leu Asn Glu Lys Ala Thr Asn Val 50 55 Pro Phe Val Leu Ile Ala Thr Gly Thr Val Ile Ile Leu Leu Gly Thr Phe Gly Cys Phe Ala Thr Cys Arg Ala Ser Ala Trp Met Leu Lys Leu Tyr Ala Met Phe Leu Thr Leu Val Phe Leu Val Glu Leu 95 Val Ala Ala Ile Val Gly Phe Val Phe Arg His Glu Ile Lys Asn Ser Phe Lys Asn Asn Tyr Glu Lys Ala Leu Lys Gln Tyr Asn Ser Thr Gly Asp Tyr Arg Ser His Ala Val Asp Lys Ile Gln Asn Thr Leu His Cys Cys Gly Val Thr Asp Tyr Arg Asp Trp Thr Asp Thr Asn Tyr Tyr Ser Glu Lys Gly Phe Pro Lys Ser Cys Cys Lys Leu Glu Asp Cys Thr Pro Gln Arg Asp Ala Asp Lys Val Asn Asn Glu 185 190 Gly Cys Phe Ile Lys Val Met Thr Ile Ile Glu Ser Glu Met Gly 200 205 Val Val Ala Gly Ile Ser Phe Gly Val Ala Cys Phe Gln Leu Ile 215 Gly Ile Phe Leu Ala Tyr Cys Xaa Ser Arg Ala Ile Thr Asn Asn 230 235 Gln Tyr Glu Ile Val 245

<210> 5 <211> 1218 <212> DNA <213> Homo sapiens

<400> 5

cccacgcgtc cggcgccgtg gcctcgcgtc catctttgcc gttctctcgg 50 acctgtcaca aaggagtcgc gccgccgccg ccgcccctc cctccggtgg 100 gcccgggagg tagagaaagt cagtgccaca gcccgaccgc gctgctctga 150 gccctgggca cgcggaacgg gagggagtct gagggttggg gacgtctgtg 200 agggaggga acagccgctc gagcctgggg cgggcggacc ggactggggc 250 cggggtaggc tctggaaagg gcccgggaga gaggtggcgt tggtcagaac 300 ctgagaaaca gccgagaggt tttccaccga ggcccgcgct tgagggatct 350 gaagaggttc ctagaagagg gtgttccctc tttcgggggt cctcaccaga 400 agaggttett gggggtegee ettetgagga ggetgegget aacagggeee 450 agaactgcca ttggatgtcc agaatcccct gtagttgata atgttgggaa 500 taagetetge aactttettt ggeatteagt tgttaaaaac aaataggatg 550 caaatteete aaeteeaggt tatgaaaaca gtaettggaa aaetgaaaac 600 tacctaaatg atcgtctttg gttgggccgt gttcttagcg agcagaagcc 650 ttggccaggg tctgttgttg actctcgaag agcacatagc ccacttccta 700 gggactggag gtgccgctac taccatgggt aattcctgta tctgccgaga 750 tgacagtgga acagatgaca gtgttgacac ccaacagcaa caggccgaga 800 acagtgcagt acccactgct gacacaagga gccaaccacg ggaccctgtt 850 cggccaccaa ggaggggccg aggacctcat gagccaagga gaaagaaaca 900 aaatgtggat gggctagtgt tggacacact ggcagtaata cggactcttg 950 tagataagta agtatctgac tcacggtcac ctccagtgga atgaaaagtg 1000 ttctgcccgg aaccatgact ttaggactcc ttcagttcct ttaggacata 1050 ctcgccaagc cttgtgctca cagggcaaag gagaatattt taatgctccg 1100 ctgatggcag agtaaatgat aagatttgat gtttttgctt gctgtcatct 1150 actttgtctg gaaatgtcta aatgtttctg tagcagaaaa cacgataaag 1200 ctatgatctt tattagag 1218

```
<210> 6
<211> 117
<212> PRT
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 1-16
<223> Signal Peptide
<220>
<221> misc feature
<222> 18-24, 32-38, 34-40, 35-41, 51-57
<223> N-Myristoylation Site.
<220>
<221> misc feature
<222> 22-26, 50-54, 113-117
<223> Casein Kinase II Phosphorylation Site.
<400> 6
 Met Ile Val Phe Gly Trp Ala Val Phe Leu Ala Ser Arg Ser Leu
                                       10
 Gly Gln Gly Leu Leu Thr Leu Glu Glu His Ile Ala His Phe
 Leu Gly Thr Gly Gly Ala Ala Thr Thr Met Gly Asn Ser Cys Ile
                                                           45
 Cys Arg Asp Asp Ser Gly Thr Asp Asp Ser Val Asp Thr Gln Gln
 Gln Gln Ala Glu Asn Ser Ala Val Pro Thr Ala Asp Thr Arg Ser
                  65
                                      70
 Gln Pro Arg Asp Pro Val Arg Pro Pro Arg Arg Gly Arg Gly Pro
                  80
 His Glu Pro Arg Arg Lys Lys Gln Asn Val Asp Gly Leu Val Leu
                  95
                                     100
 Asp Thr Leu Ala Val Ile Arg Thr Leu Val Asp Lys
                 110
                                     115
<210> 7
<211> 756
<212> DNA
<213> Homo sapiens
<400> 7
 ggcacgaggc gctgtccacc cgggggcgtg ggagtgaggt accagattca 50
 gcccatttgg ccccgacgcc tctgttctcg gaatccgggt gctgcggatt 100
 gaggtcccgg ttcctaacgg actgcaagat ggaggaaggc gggaacctag 150
```

```
gaggcctgat taagatggtc catctactgg tcttgtcagg tgcctggggc 200
atgcaaatgt gggtgacctt cgtctcaggc ttcctgcttt tccgaagcct 250
teccegacat acetteggae tagtgeagag caaactette ecettetaet 300
tecacatete catgggetgt geetteatea acetetgeat ettggettea 350
cagcatgett gggeteaget caeattetgg gaggeeagee agetttacet 400
getgtteetg ageettaege tggeeactgt caacgeeege tggetggaac 450
cccgcaccac agctgccatg tgggccctgc aaaccgtgga gaaggagcga 500
ggcctgggtg gggaggtacc aggcagccac cagggtcccg atccctaccg 550
ccagctgcga gagaaggacc ccaagtacag tgctctccgc cagaatttct 600
tccgctacca tgggctgtcc tctctttgca atctgggctg cgtcctgagc 650
aatgggctct gtctcgctgg ccttgccctg gaaataagga gcctctagca 700
aaaaaa 756
<210> 8
<211> 189
<212> PRT
<213> Homo sapiens
<220>
<221> sig peptide
<222> 1-24
<223> Signal Peptide
<220>
<221> misc feature
<222> 4-10, 5-11, 47-53, 170-176, 176-182
<223> N-Myristoylation Site.
<220>
<221> misc feature
<222> 44-85
<223> G-protein Coupled Receptors Proteins.
<220>
<221> misc feature
<222> 54-65
<223> Prokaryotic Mmembrane Lipoprotein Lipid Attachment Site.
<220>
<221> misc feature
<222> 82-86
<223> Casein Kinase II Phosphorylation Site.
```

<220>

```
<221> TRANSMEM
<222> 86-103, 60-75
<223> Transmembrane Domain
<220>
<221> misc feature
<222> 144-151
<223> Tyrosine Kinase Phosphorylation Site.
 Met Glu Glu Gly Gly Asn Leu Gly Gly Leu Ile Lys Met Val His
 Leu Leu Val Leu Ser Gly Ala Trp Gly Met Gln Met Trp Val Thr
 Phe Val Ser Gly Phe Leu Leu Phe Arg Ser Leu Pro Arg His Thr
                                       40
                  35
 Phe Gly Leu Val Gln Ser Lys Leu Phe Pro Phe Tyr Phe His Ile
 Ser Met Gly Cys Ala Phe Ile Asn Leu Cys Ile Leu Ala Ser Gln
 His Ala Trp Ala Gln Leu Thr Phe Trp Glu Ala Ser Gln Leu Tyr
 Leu Leu Phe Leu Ser Leu Thr Leu Ala Thr Val Asn Ala Arg Trp
 Leu Glu Pro Arg Thr Thr Ala Ala Met Trp Ala Leu Gln Thr Val
                                      115
                                                          120
                 110
 Glu Lys Glu Arg Gly Leu Gly Gly Glu Val Pro Gly Ser His Gln
                                      130
                 125
 Gly Pro Asp Pro Tyr Arg Gln Leu Arg Glu Lys Asp Pro Lys Tyr
                                      145
 Ser Ala Leu Arg Gln Asn Phe Phe Arg Tyr His Gly Leu Ser Ser
                                                           165
                 155
 Leu Cys Asn Leu Gly Cys Val Leu Ser Asn Gly Leu Cys Leu Ala
                                      175
                 170
 Gly Leu Ala Leu Glu Ile Arg Ser Leu
                 185
<210> 9
<211> 1508
<212> DNA
<213> Homo sapiens
```

aattcagatt ttaagcccat tctgcagtgg aatttcatga actagcaaga 50

<400> 9

ggacaccatc ttcttgtatt atacaagaaa ggagtgtacc tatcacacac 100 agggggaaaa atgctctttt gggtgctagg cctcctaatc ctctgtggtt 150 ttctgtggac tcgtaaagga aaactaaaga ttgaagacat cactgataag 200 tacattttta tcactggatg tgactcgggc tttggaaact tggcagccag 250 aacttttgat aaaaagggat ttcatgtaat cgctgcctgt ctgactgaat 300 caggatcaac agctttaaag gcagaaacct cagagagact tcgtactgtg 350 cttctggatg tgaccgaccc agagaatgtc aagaggactg cccagtgggt 400 gaagaaccaa gttggggaga aaggtctctg gggtctgatc aataatgctg 450 gtgttcccgg cgtgctggct cccactgact ggctgacact agaggactac 500 agagaaccta ttgaagtgaa cctgtttgga ctcatcagtg tgacactaaa 550 tatgcttcct ttggtcaaga aagctcaagg gagagttatt aatgtctcca 600 gtgttggagg tcgccttgca atcgttggag ggggctatac tccatccaaa 650 tatgcagtgg aaggtttcaa tgacagctta agacgggaca tgaaagcttt 700 tggtgtgcac gtctcatgca ttgaaccagg attgttcaaa acaaacttgg 750 cagatccagt aaaggtaatt gaaaaaaaac tcgccatttg ggagcagctg 800 tctccagaca tcaaacaaca atatggagaa ggttacattg aaaaaagtct 850 agacaaactg aaaggcaata aatcctatgt gaacatggac ctctctccgg 900 tggtagagtg catggaccac gctctaacaa gtctcttccc taagactcat 950 tatgccgctg gaaaagatgc caaaattttc tggatacctc tgtctcacat 1000 gccagcagct ttgcaagact ttttattgtt gaaacagaaa gcagagctgg 1050 ctaatcccaa ggcagtgtga ctcagctaac cacaaatgtc tcctccaggc 1100 tatgaaattg gccgatttca agaacacatc tccttttcaa ccccattcct 1150 tatctgctcc aacctggact catttagatc gtgcttattt ggattgcaaa 1200 agggagtccc accatcgctg gtggtatccc agggtccctg ctcaagtttt 1250 ctttgaaaag gagggctgga atggtacatc acataggcaa gtcctgccct 1300 gtatttaggc tttgcctgct tggtgtgatg taagggaaat tgaaagactt 1350 gcccattcaa aatgatcttt accgtggcct gccccatgct tatggtcccc 1400 agcatttaca gtaacttgtg aatgttaagt atcatctctt atctaaatat 1450

```
aaaaaaaa 1508
<210> 10
<211> 319
<212> PRT
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 1-17
<223> Signal Peptide
<220>
<221> misc feature
<222> 36-47, 108-113, 166-171,198-203, 207-212
<223> N-myristoylation Sites.
<220>
<221> misc_feature
<222> 39-42
<223> Glycosaminoglycan Attachment Site.
<220>
<221> TRANSMEM
<222> 136-152
<223> Transmembrane Domain
<220>
<221> misc feature
<222> 161-163, 187-190 and 253-256
<223> N-glycosylation Sites.
<400> 10
 Met Leu Phe Trp Val Leu Gly Leu Leu Ile Leu Cys Gly Phe Leu
                    5
 Trp Thr Arg Lys Gly Lys Leu Lys Ile Glu Asp Ile Thr Asp Lys
 Tyr Ile Phe Ile Thr Gly Cys Asp Ser Gly Phe Gly Asn Leu Ala
                   35
 Ala Arg Thr Phe Asp Lys Lys Gly Phe His Val Ile Ala Ala Cys
  Leu Thr Glu Ser Gly Ser Thr Ala Leu Lys Ala Glu Thr Ser Glu
  Arg Leu Arg Thr Val Leu Leu Asp Val Thr Asp Pro Glu Asn Val
                                        85
  Lys Arg Thr Ala Gln Trp Val Lys Asn Gln Val Gly Glu Lys Gly
                                       100
  Leu Trp Gly Leu Ile Asn Asn Ala Gly Val Pro Gly Val Leu Ala
                                       115
                  110
```

Pro Thr As	p Trp	Leu 125	Thr	Leu	Glu	Asp	Tyr 130	Arg	Glu	Pro	Ile	Glu 135
Val Asn Le	eu Phe	Gly 140	Leu	Ile	Ser	Val	Thr 145	Leu	Asn	Met	Leu	Pro 150
Leu Val Ly	s Lys	Ala 155	Gln	Gly	Arg	Val	Ile 160	Asn	Val	Ser	Ser	Val 165
Gly Gly A	g Leu	Ala 170	Ile	Val	Gly	Gly	Gly 175	Tyr	Thr	Pro	Ser	Lys 180
Tyr Ala Va	al Glu	Gly 185	Phe	Asn	Asp	Ser	Leu 190	Arg	Arg	Asp	Met	Lys 195
Ala Phe G	y Val	His 200	Val	Ser	Суѕ	Ile	Glu 205	Pro	Gly	Leu	Phe	Lys 210
Thr Asn L	eu Ala	Asp 215	Pro	Val	Lys	Val	Ile 220	Glu	Lys	Lys	Leu	Ala 225
Ile Trp G	lu Gln	Leu 230	Ser	Pro	Asp	Ile	Lys 235	Gln	Gln	Tyr	Gly	Glu 240
Gly Tyr I	le Glu	Lys 245	Ser	Leu	Asp	Lys	Leu 250	Lys	Gly	Asn	Lys	Ser 255
Tyr Val A	sn Met	Asp 260	Leu	Ser	Pro	Val	Val 265	Glu	Cys	Met	Asp	His 270
Ala Leu T	nr Ser	Leu 275	Phe	Pro	Lys	Thr	His 280	Tyr	Ala	Ala	Gly	Lys 285
Asp Ala L	ys Ile	Phe 290	Trp	Ile	Pro	Leu	Ser 295	His	Met	Pro	Ala	Ala 300
Leu Gln A	sp Phe	Leu 305	Leu	Leu	Lys	Gln	Lys 310	Ala	Glu	Leu	Ala	Asn 315

<210> 11

<211> 2720

<212> DNA

<213> Homo sapines

Pro Lys Ala Val

<400> 11

gegggetgtt gaeggegetg egatggetge etgegaggge aggagaageg 50
gagetetegg tteeteteag teggaettee tgaegeegee agtgggeggg 100
geecettggg eegtegeeae eaetgtagte atgtaeceae egeegeegee 150
geegeeteat egggaettea teteggtgae getgagettt ggegagaget 200

atgacaacag caagagttgg cggcggcgct cgtgctggag gaaatggaag 250 caactgtcga gattgcagcg gaatatgatt ctcttcctcc ttgcctttct 300 gcttttctgt ggactcctct tctacatcaa cttggctgac cattggaaag 350 ctctggcttt caggctagag gaagagcaga agatgaggcc agaaattgct 400 gggttaaaac cagcaaatcc acccgtctta ccagctcctc agaaggcgga 450 caccgaccct gagaacttac ctgagatttc gtcacagaag acacaaagac 500 acatccageg gggaccacet cacetgeaga ttagaceece aageeaagae 550 ctgaaggatg ggacccagga ggaggccaca aaaaggcaag aagcccctgt 600 ggatccccgc ccggaaggag atccgcagag gacagtcatc agctggaggg 650 gagcggtgat cgagcctgag cagggcaccg agctcccttc aagaagagca 700 gaagtgccca ccaagcctcc cctgccaccg gccaggacac agggcacacc 750 agtgcatctg aactatcgcc agaagggcgt gattgacgtc ttcctgcatg 800 catggaaagg ataccgcaag tttgcatggg gccatgacga gctgaagcct 850 gtgtccaggt ccttcagtga gtggtttggc ctcggtctca cactgatcga 900 cgcgctggac accatgtgga tcttgggtct gaggaaagaa tttgaggaag 950 ccaggaagtg ggtgtcgaag aagttacact ttgaaaagga cgtggacgtc 1000 aacctgtttg agagcacgat ccgcatcctg ggggggctcc tgagtgccta 1050 ccacctgtct ggggacagcc tcttcctgag gaaagctgag gattttggaa 1100 atcggctaat gcctgccttc agaacaccat ccaagattcc ttactcggat 1150 gtgaacatcg gtactggagt tgcccacccg ccacggtgga cctccgacag 1200 cactgtggcc gaggtgacca gcattcagct ggagttccgg gagctctccc 1250 gtctcacagg ggataagaag tttcaggagg cagtggagaa ggtgacacag 1300 cacatccacg gcctgtctgg gaagaaggat gggctggtgc ccatgttcat 1350 caatacccac agtggcctct tcacccacct gggcgtattc acgctgggcg 1400 ccagggccga cagctactat gagtacctgc tgaagcagtg gatccagggc 1450 gggaagcagg agacacagct gctggaagac tacgtggaag ccatcgaggg 1500 tgtcagaacg cacctgctgc ggcactccga gcccagtaag ctcacctttg 1550 tgggggaget tgeccaegge egetteagtg ceaagatgga ceaectggtg 1600 tgcttcctgc cagggacgct ggctctgggc gtctaccacg gcctgcccgc 1650 cagccacatg gagctggccc aggagctcat ggagacttgt taccagatga 1700 accggcagat ggagacgggg ctgagtcccg agatcgtgca cttcaacctt 1750 tacccccagc cgggccgtcg ggacgtggag gtcaagccag cagacaggca 1800 caacctgctg cggccagaga ccgtggagag cctgttctac ctgtaccgcg 1850 tcacagggga ccgcaaatac caggactggg gctgggagat tctgcagagc 1900 ttcagccgat tcacacgggt cccctcgggt ggctattctt ccatcaacaa 1950 tgtccaggat cctcagaagc ccgagcctag ggacaagatg gagagcttct 2000 tcctggggga gacgctcaag tatctgttct tgctcttctc cgatgaccca 2050 aacctgctca gcctggacgc ctacgtgttc aacaccgaag cccaccctct 2100 gcctatctgg acccctgcct agggtggatg gctgctggtg tggggacttc 2150 gggtgggcag aggcacettg etgggtetgt ggcattttee aagggeecae 2200 gtagcaccgg caaccgccaa gtggcccagg ctctgaactg gctctgggct 2250 cctcctcgtc tctgctttaa tcaggacacc gtgaggacaa gtgaggccgt 2300 cagtettggt gtgatgeggg gtgggetggg cegetggage etcegeetge 2350 ttcctccaga agacacgaat catgactcac gattgctgaa gcctgagcag 2400 gtctctgtgg gccgaccaga ggggggcttc gaggtggtcc ctggtactgg 2450 ggtgaccgag tggacagccc agggtgcagc tctgcccggg ctcgtgaagc 2500 ctcagatgtc cccaatccaa gggtctggag gggctgccgt gactccagag 2550 gcctgaggct ccagggctgg ctctggtgtt tacaagctgg actcagggat 2600 cctcctggcc gccccgcagg gggcttggag ggctggacgg caagtccgtc 2650 tagctcacgg gcccctccag tggaatgggt cttttcggtg gagataaaag 2700 ttgatttgct ctaaccgcaa 2720

```
<210> 12
```

<400> 12

Met Ala Ala Cys Glu Gly Arg Arg Ser Gly Ala Leu Gly Ser Ser

<211> 699

<212> PRT

<213> Homo sapiens

<220>

<221> TRANSMEM

<222> 21-40 and 84-105

<223> Transmembrane Domain (type II)

Gln	Ser	Asp	Phe	Leu 20	Thr	Pro	Pro	Val	Gly 25	Gly	Ala	Pro	Trp	Ala 30
Val	Ala	Thr	Thr	Val 35	Val	Met	Tyr	Pro	Pro 40	Pro	Pro	Pro	Pro	Pro 45
His	Arg	Asp	Phe	Ile 50	Ser	Val	Thr	Leu	Ser 55	Phe	Gly	Glu	Ser	Tyr 60
Asp	Asn	Ser	Lys	Ser 65	Trp	Arg	Arg	Arg	Ser 70	Cys	Trp	Arg	Lys	Trp 75
Lys	Gln	Leu	Ser	Arg 80	Leu	Gln	Arg	Asn	Met 85	Ile	Leu	Phe	Leu	Leu 90
Ala	Phe	Leu	Leu	Phe 95	Cys	Gly	Leu	Leu	Phe 100	Tyr	Ile	Asn	Leu	Ala 105
Asp	His	Trp	Lys	Ala 110	Leu	Ala	Phe	Arg	Leu 115	Glu	Glu	Glu	Gln	Lys 120
Met	Arg	Pro	Glu	Ile 125	Ala	Gly	Leu	Lys	Pro 130	Ala	Asn	Pro	Pro	Val 135
Leu	Pro	Ala	Pro	Gln 140	Lys	Ala	.Asp	Thr	Asp 145	Pro	Glu	Asn	Leu	Pro 150
Glu	Ile	Ser	Ser	Gln 155	Lys	Thr	Gln	Arg	His 160	Ile	Gln	Arg	Gly	Pro 165
Pro	His	Leu	Gln-	Ile 170	Arg	Pro	Pro	Ser	Gln 175	Asp	Leu	Lys	Asp	Gly 180
Thr	Gln	Glu	Glu	Ala 185	Thr	Lys	Arg	Gln	Glu 190	Ala	Pro	Val	Asp	Pro 195
Arg	Pro	Glu	Gly	Asp 200	Pro	Gln	Arg	Thr	Val 205	Ile	Ser	Trp	Arg	Gly 210
Ala	Val	Ile	Glu	Pro 215	Glu	Gln	Gly	Thr	Glu 220	Leu	Pro	Ser	Arg	Arg 225
Ala	Glu	Val	Pro	Thr 230	Lys	Pro	Pro	Leu	Pro 235	Pro	Ala	Arg	Thr	Gln 240
Gly	Thr	Pro	Val	His 245	Leu	Asn	Tyr	Arg	Gln 250	Lys	Gly	Val	Ile	Asp 255
Val	Phe	Leu	His	Ala 260	Trp	Lys	Gly	Tyr	Arg 265	Lys	Phe	Ala	Trp	Gly 270
His	Asp	Glu	Leu	Lys 275	Pro	Val	Ser	Arg	Ser 280	Phe	Ser	Glu	Trp	Phe 285
Gly	Leu	Gly	Leu	Thr	Leu	Ile	Asp	Ala	Leu	Asp	Thr	Met	Trp	Ile

575 580 585

Glu Val Lys Pro Ala Asp Arg His Asn Leu Leu Arg Pro Glu Thr
590 595 600

Val Glu Ser Leu Phe Tyr Leu Tyr Arg Val Thr Gly Asp Arg Lys

Tyr Gln Asp Trp Gly Trp Glu Ile Leu Gln Ser Phe Ser Arg Phe 620 625 630

Thr Arg Val Pro Ser Gly Gly Tyr Ser Ser Ile Asn Asn Val Gln 635 640 645

Asp Pro Gln Lys Pro Glu Pro Arg Asp Lys Met Glu Ser Phe Phe 650 655 660

Leu Gly Glu Thr Leu Lys Tyr Leu Phe Leu Leu Phe Ser Asp Asp 665 670 675

Pro Asn Leu Leu Ser Leu Asp Ala Tyr Val Phe Asn Thr Glu Ala 680 685 690

His Pro Leu Pro Ile Trp Thr Pro Ala 695

<210> 13

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 13

cqccaqaagq gcgtgattga cgtc 24

<210> 14

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 14

ccatccttct tcccagacag gccg 24

<210> 15

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 15

gaagcctgtg tccaggtcct tcagtgagtg gtttggcctc ggtc 44

- <210> 16
- <211> 1524
- <212> DNA
- <213> Homo sapiens

<400> 16

ggcgccgcgt aggcccggga ggccgggccg gccgggctgc gagcgcctgc 50 cccatgcgcc gccgcctctc cgcacgatgt tcccctcgcg gaggaaagcg 100 gcgcagctgc cctgggagga cggcaggtcc gggttgctct ccggcggcct 150 ccctcggaag tgttccgtct tccacctgtt cgtggcctgc ctctcgctgg 200 gettettete cetactetgg etgeagetea getgetetgg ggaegtggee 250 cgggcagtca ggggacaagg gcaggagacc tcgggccctc cccgtgcctg 300 cccccagag ccgcccctg agcactggga agaagacgca tcctggggcc 350 cccaccgcct ggcagtgctg gtgcccttcc gcgaacgctt cgaggagctc 400 ctggtcttcg tgccccacat gcgccgcttc ctgagcagga agaagatccg 450 gcaccacatc tacgtgctca accaggtgga ccacttcagg ttcaaccggg 500 cagegeteat caaegtggge tteetggaga geageaacag caeggaetae 550 attgccatgc acgacgttga cctgctccct ctcaacgagg agctggacta 600 tggctttcct gaggctgggc ccttccacgt ggcctccccg gagctccacc 650 ctctctacca ctacaagacc tatgtcggcg gcatcctgct gctctccaag 700 cagcactacc ggctgtgcaa tgggatgtcc aaccgcttct ggggctgggg 750 ccgcgaggac gacgagttct accggcgcat taagggaget gggctccage 800 ttttccgccc ctcgggaatc acaactgggt acaagacatt tcgccacctg 850 catgacccag cctggcggaa gagggaccag aagcgcatcg cagctcaaaa 900 acaggagcag ttcaaggtgg acagggaggg aggcctgaac actgtgaagt 950 accatgtggc ttcccgcact gccctgtctg tgggcggggc cccctgcact 1000 gtcctcaaca tcatgttgga ctgtgacaag accgccacac cctggtgcac 1050 attcagctga gctggatgga cagtgaggaa gcctgtacct acaggccata 1100 ttgctcaggc tcaggacaag gcctcaggtc gtgggcccag ctctgacagg 1150 atgtggagtg gccaggacca agacagcaag ctacgcaatt gcagccaccc 1200 ggccgccaag gcaggcttgg gctgggccag gacacgtggg gtgcctggga 1250

```
cgggaccccc cctgccttcc tgctcaccct actctgacct ccttcacgtg 1350
cccaggcctg tgggtagtgg ggagggctga acaggacaac ctctcatcac 1400
cctactctga cctccttcac gtgcccaggc ctgtgggtag tggggagggc 1450
aaaaaaaaa aaaaaaaaa aaaa 1524
<210> 17
<211> 327
<212> PRT
<213> Homo sapiens
<220>
<221> sig peptide
<222> 1-42
<223> Signal peptide.
<220>
<221> misc feature
<222> 19-25,65-71,247-253,285-291,303-310
<223> N-myristoylation site.
<220>
<221> misc feature
<222> 27-31
<223> cAMP- and cGMP-dependent protein kinase phosphorylation site.
<220>
<221> TRANSMEM
<222> 29-49
<223> Transmembrane domain (type II).
<220>
<221> misc feature
<222> 154-158
<223> N-glycosylation site.
<220>
<221> misc feature
<222> 226-233
<223> Tyrosine kinase phosphorylation site.
<400> 17
 Met Phe Pro Ser Arg Arg Lys Ala Ala Gln Leu Pro Trp Glu Asp
   1
 Gly Arg Ser Gly Leu Leu Ser Gly Gly Leu Pro Arg Lys Cys Ser
 Val Phe His Leu Phe Val Ala Cys Leu Ser Leu Gly Phe Phe Ser
```

40

35

45

cgctgcttgc catgcacagt gatcagagag aggctggggt gtgtcctgtc 1300

Leu	Leu	Trp	Leu	Gln 50	Leu	Ser	Cys	Ser	Gly 55	Asp	Val	Ala	Arg	Ala 60	
Val	Arg	Gly	Gln	Gly 65	Gln	Glu	Thr	Ser	Gly 70	Pro	Pro	Arg	Ala	Cys 75	
Pro	Pro	Glu	Pro	Pro 80	Pro	Glu	His	Trp	Glu 85	Glu	Asp	Ala	Ser	Trp 90	
Gly	Pro	His	Arg	Leu 95	Ala	Val	Leu	Val	Pro 100	Phe	Arg	Glu	Arg	Phe 105	
Glu	Glu	Leu	Leu	Val 110	Phe	Val	Pro	His	Met 115	Arg	Arg	Phe	Leu	Ser 120	
Arg	Lys	Lys	Ile	Arg 125	His	His	Ile	Tyr	Val 130	Leu	Asn	Gln	Val	Asp 135	٠
His	Phe	Arg	Phe	Asn 140	Arg	Ala	Ala	Leu	Ile 145	Asn	Val	Gly	Phe	Leu 150	
Glu	Ser	Ser	Asn	Ser 155	Thr	Asp	Tyr	Ile	Ala 160	Met	His	Asp	Val	Asp 165	
Leu	Leu	Pro	Leu	Asn 170	Glu	Glu	Leu	Asp	Tyr 175	Gly	Phe	Pro	Glu	Ala 180	
Gly	Pro	Phe	His	Val 185	Ala	Ser	Pro	Glu	Leu 190	His	Pro	Leu	Tyr	His 195	
Tyr	Lys	Thr	Tyr	Val 200	Gly	Gly	Ile	Leu	Leu 205	Leu	Ser	Lys	Gln	His 210	
Tyr	Arg	Leu	Cys	Asn 215	Gly	Met	Ser	Asn	Arg 220	Phe	Trp	Gly	Trp	Gly 225	
Arg	Glu	Asp	Asp	Glu 230	Phe	Tyr	Arg	Arg	Ile 235	Lys	Gly	Ala	Gly	Leu 240	
Gln	Leu	Phe	Arg	Pro 245	Ser	Gly	Ile	Thr	Thr 250		Tyr	Lys	Thr	Phe 255	
Arg	His	Leu	His	Asp 260	Pro	Ala	Trp	Arg	Lys 265		Asp	Gln	Lys	Arg 270	
Ile	Ala	Ala	Gln	Lys 275	Gln	Glu	Gln	Phe	Lys 280		Asp	Arg	Glu	Gly 285	
Gly	Leu	Asn	Thr	Val 290		Tyr	His	Val	Ala 295		Arg	Thr	Ala	Leu 300	
Ser	Val	Gly	Gly	Ala 305	Pro	Cys	Thr	Val	Leu 310		Ile	Met	Leu	Asp 315	
Cys	Asp	Lys	Thr	Ala 320		Pro	Trp	Cys	Thr 325		Ser	•			

```
<210> 18
<211> 23
<212> DNA
<<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 18
 gcgaacgctt cgaggagtcc tgg 23
<210> 19
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 19
gcagtgcggg aagccacatg gtac 24
<210> 20
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 20
cttcctgagc aggaagaaga tccggcacca catctacgtg ctcaac 46
<210> 21
<211> 494
<212> DNA
<213> Homo sapiens
<400> 21
 caatgtttgc ctatccacct cccccaagcc cctttaccta tgctgctgct 50
 aacgctgctg ctgctgctgc tgctgcttaa aggctcatgc ttggagtggg 100
 gactggtcgg tgcccagaaa gtctcttctg ccactgacgc ccccatcagg 150
 gattgggcct tctttccccc ttcctttctg tgtctcctgc ctcatcggcc 200
 tgccatgacc tgcagccaag cccagccccg tggggaaggg gagaaagtgg 250
 gggatggcta agaaagctgg gagataggga acagaagagg gtagtgggtg 300
 ggctaggggg gctgccttat ttaaagtggt tgtttatgat tcttatacta 350
 atttatacaa agatattaag gccctgttca ttaagaaatt gttcccttcc 400
 cctgtgttca atgtttgtaa agattgttct gtgtaaatat gtctttataa 450
```

```
<210> 22
<211> 73
<212> PRT
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 1-15
<223> Signal peptide.
<220>
<221> misc_feature
<222> 3-18
<223> Growth factor and cytokines receptors family.
<400> 22
10
Ser Cys Leu Glu Trp Gly Leu Val Gly Ala Gln Lys Val Ser Ser
Ala Thr Asp Ala Pro Ile Arg Asp Trp Ala Phe Pro Pro Ser
 Phe Leu Cys Leu Leu Pro His Arg Pro Ala Met Thr Cys Ser Gln
Ala Gln Pro Arg Gly Glu Gly Glu Lys Val Gly Asp Gly
               65
<210> 23
<211> 2883
<212> DNA
<213> Homo sapiens
<400> 23
```

gggacceatg eggeegtgac ecceggetee etagaggeec agegeageeg 50 cagcggacaa aggagcatgt ccgcgccggg gaaggcccgt cctccggccg 100 ggctccgggg cggcccgcta ggccagtgcg ccgccgctcg ccccgcaggc 200 cccggcccgc agcatggagc cacccggacg ccggcggggc cgcgcgcagc 250 cgccgctgtt gctgccgctc tcgctgttag cgctgctcgc gctgctggga 300 ggcggcggcg gcggcgcgc cgcggcgctg cccgccggct gcaagcacga 350 tgggcgccc cgaggggctg gcagggcggc gggcgccgcc gagggcaagg 400 tggtgtgcag cagcctggaa ctcgcgcagg tcctgcccc agatactctg 450

45

cccaaccgca cggtcaccct gattctgagt aacaataaga tatccgagct 500 gaagaatggc tcattttctg ggttaagtct ccttgaaaga ttggacctcc 550 gaaacaatct tattagtagt atagatccag gtgccttctg gggactgtca 600 tctctaaaaa gattggatct gacaaacaat cgaataggat gtctgaatgc 650 agacatattt cgaggactca ccaatctggt tcggctaaac ctttcgggga 700 atttgttttc ttcattatct caaggaactt ttgattatct tgcgtcatta 750 cggtctttgg aattccagac tgagtatctt ttgtgtgact gtaacatact 800 gtggatgcat cgctgggtaa aggagaagaa catcacggta cgggatacca 850 ggtgtgttta tcctaagtca ctgcaggccc aaccagtcac aggcgtgaag 900 caggagetgt tgacatgega eceteegett gaattgeegt etttetaeat 950 gactccatct catcgccaag ttgtgtttga aggagacagc cttcctttcc 1000 agtgcatggc ttcatatatt gatcaggaca tgcaagtgtt gtggtatcag 1050 gatgggagaa tagttgaaac cgatgaatcg caaggtattt ttgttgaaaa 1100 gaacatgatt cacaactgct ccttgattgc aagtgcccta accatttcta 1150 atattcaggc tggatctact ggaaattggg gctgtcatgt ccagaccaaa 1200 cgtgggaata atacgaggac tgtggatatt gtggtattag agagttctgc 1250 acagtactgt cctccagaga gggtggtaaa caacaaaggt gacttcagat 1300 ggcccagaac attggcaggc attactgcat atctgcagtg tacgcggaac 1350 acccatggca gtgggatata tcccggaaac ccacaggatg agagaaaagc 1400 ttggcgcaga tgtgatagag gtggcttttg ggcagatgat gattattctc 1450 gctgtcagta tgcaaatgat gtcactagag ttctttatat gtttaatcag 1500 atgcccctca atcttaccaa tgccgtggca acagctcgac agttactggc 1550 ttacactgtg gaagcagcca acttttctga caaaatggat gttatatttg 1600 tggcagaaat gattgaaaaa tttggaagat ttaccaagga ggaaaaatca 1650 aaagagctag gtgacgtgat ggttgacatt gcaagtaaca tcatgttggc 1700 tgatgaacgt gtcctgtggc tggcgcagag ggaagctaaa gcctgcagta 1750 ggattgtgca gtgtcttcag cgcattgcta cctaccggct agccggtgga 1800 gctcacgttt attcaacata ttcacccaat attgctctgg aagcttatgt 1850 catcaagtct actggcttca cggggatgac ctgtaccgtg ttccagaaag 1900 tggcagcete tgategtaca ggaetttegg attatgggag gegggateea 1950 gagggaaacc tggataagca gctgagcttt aagtgcaatg tttcaaatac 2000 attttcgagt ctggcactaa aggtatgtta cattctgcaa tcatttaaga 2050 ctatttacag ttaaattaga atgctccaaa tgttctgctt cgcaaaataa 2100 ccttattaaa agatttttt ttgcaggaag ataggtatta ttgcttttgc 2150 tactgtttta aagaaaacta accaggaaga actgcattac gactttcaag 2200 ggccctaggc atttttgcct ttgattccct ttcttcacat aaaaatatca 2250 gaaattacat tttataactg cagtggtata aatgcaaata tactattgtt 2300 acatgtgaaa aaattttatt tgacttaaaa gtttatttat ttgtttttt 2350 gctcctgatt ttaagacaat aagatgtttt catgggcccc taaaagtatc 2400 atgageettt ggeaetgege etgeeaagee tagtggagaa gteaaceetg 2450 agaccaggtg tttaatcaag caagctgtat atcaaaattt ttggcagaaa 2500 acacaaatat gtcatatatc ttttttaaa aaaagtattt cattgaagca 2550 agcaaaatga aagcattttt actgattttt aaaattggtg ctttagatat 2600 atttgactac actgtattga agcaaataga ggaggcacaa ctccagcacc 2650 ctaatggaac cacattttt tcacttagct ttctgtgggc atgtgtaatt 2700 gtattctctg cggtttttaa tctcacagta ctttatttct gtcttgtccc 2750 tcaataatat cacaaacaat attccagtca ttttaatggc tgcataataa 2800 ctgatccaac aggtgttagg tgttctggtt tagtgtgagc actcaataaa 2850 tattgaatga atgaacgaaa aaaaaaaaaa aaa 2883

```
<210> 24
<211> 616
<212> PRT
<213> Homo sapiens

<220>
<221> sig_peptide
<222> 1-33
<223> Signal peptide.

<220>
<221> TRANSMEM
<222> 13-40
<223> Transmembrane domain (type II).
```

<4000 Met 1		Pro	Pro	Gly 5	Arg	Arg	Arg	Gly	Arg 10	Ala	Gln	Pro	Pro	Leu 15
Leu	Leu	Pro	Leu	Ser 20	Leu	Leu	Ala	Leu	Leu 25	Ala	Leu	Leu	Gly	Gly 30
Gly	Gly	Gly	Gly	Gly 35	Ala	Ala	Ala	Leu	Pro 40	Ala	Gly	Cys	Lys	His 45
Asp	Gly	Arg	Pro	Arg 50	Gly	Ala	Gly	Arg	Ala 55	Ala	Gly	Ala	Ala	Glu 60
Gly	Lys	Val	Val	Cys 65	Ser	Ser	Leu	Glu	Leu 70	Ala	Gln	Val	Leu	Pro 75
Pro	Asp	Thr	Leu	Pro 80	Asn	Arg	Thr	Val	Thr 85	Leu	Ile	Leu	Ser	Asn 90
Asn	Lys	Ile	Ser	Glu 95	Leu	Lys	Asn	Gly	Ser 100	Phe	Ser	Gly	Leu	Ser 105
Leu	Leu	Glu	Arg	Leu 110	Asp	Leu	Arg	Asn	Asn 115	Leu	Ile	Ser	Ser	Ile 120
Asp	Pro	Gly	Ala	Phe 125	Trp	Gly	Leu	Ser	Ser 130	Leu	Lys	Arg	Leu	Asp 135
Leu	Thr	Asn	Asn	Arg 140	Ile	Gly	Суѕ	Leu	Asn 145	Ala	Asp	Ile	Phe	Arg 150
Gly	Leu	Thr	Asn	Leu 155	Val	Arg	Leu	Asn	Leu 160	Ser	Gly	Asn	Leu	Phe 165
Ser	Ser	Leu	Ser	Gln 170	Gly	Thr	Phe	Asp	Tyr 175	Leu	Ala	Ser	Leu	Arg 180
Ser	Leu	Glu	Phe	Gln 185			Tyr					Суѕ	Asn	Ile 195
Leu	Trp	Met	His	Arg 200	Trp	Val	Lys	Glu	Lys 205	Asn	Ile	Thr	Val	Arg 210
Asp	Thr	Arg	Cys	Val 215	Tyr	Pro	Lys	Ser	Leu 220	Gln	Ala	Gln	Pro	Val 225
Thr	Gly	Val	Lys	Gln 230	Glu	Leu	Leu	Thr	Cys 235	Asp	Pro	Pro	Leu	Glu 240
Leu	Pro	Ser	Phe	Tyr 245	Met	Thr	Pro	Ser	His 250	Arg	Gln	Val	Val	Phe 255
Glu	Gly	Asp	Ser	Leu 260	Pro	Phe	Gln	Cys	Met 265	Ala	Ser	Tyr	Ile	Asp 270
Gln	Asp	Met	Gln	Val 275	Leu	Trp	Tyr	Gln	Asp 280	Gly	Arg	Ile	Val	Glu 285

Thr Asp	Glu	Ser	Gln 290	Gly	Ile	Phe	Val	Glu 295	Lys	Asn	Met	Ile	His 300
Asn Cys	Ser	Leu	Ile 305	Ala	Ser	Ala	Leu	Thr 310	Ile	Ser	Asn	Ile	Gln 315
Ala Gly	Ser	Thr	Gly 320	Asn	Trp	Gly	Cys	His 325	Val	Gln	Thr	Lys	Arg 330
Gly Asn	Asn	Thr	Arg 335	Thr	Val	Asp	Ile	Val 340	Val	Leu	Glu	Ser	Ser 345
Ala Gln	Tyr	Cys	Pro 350	Pro	Glu	Arg	Val	Val 355	Asn	Asn	Lys	Gly	Asp 360
Phe Arg	Trp	Pro	Arg 365	Thr	Leu	Ala	Gly	Ile 370	Thr	Ala	Tyr	Leu	Gln 375
Cys Thr	Arg	Asn	Thr 380	His	Gly	Ser	Gly	Ile 385	Tyr	Pro	Gly	Asn	Pro 390
Gln Asp	Glu	Arg	Lys 395	Ala	Trp	Arg	Arg	Cys 400	Asp	Arg	Gly	Gly	Phe 405
Trp Ala	Asp	Asp	Asp 410	Tyr	Ser	Arg	Cys	Gln 415	Tyr	Ala	Asn	Asp	Val 420
Thr Arg	Val	Leu	Tyr 425	Met	Phe	Asn	Gln	Met 430	Pro	Leu	Asn	Leu	Thr 435
Asn Ala	Val	Ala	Thr 440	Ala	Arg	Gln	Leu	Leu 445	Ala	Tyr	Thr	Val	Glu 450
Ala Ala	Asn	Phe	Ser 455	Asp	Lys	Met	Asp	Val 460	Ile	Phe	Val	Ala	Glu 465
Met Ile	Glu	Lys	Phe 470	Gly	Arg	Phe	Thr	Lys 475	Glu	Glu	Lys	Ser	Lys 480
Glu Leu	Gly	Asp	Val 485	Met	Val	Asp	Ile	Ala 490	Ser	Asn	Ile	Met	Leu 495
Ala Asp	Glu	Arg	Val 500	Leu	Trp	Leu	Ala	Gln 505	Arg	Glu	Ala	Lys	Ala 510
Cys Ser	Arg	Ile	Val 515	Gln	Cys	Leu	Gln	Arg 520	Ile	Ala	Thr	Tyr	Arg 525
Leu Ala	Gly	Gly	Ala 530	His	Val	Tyr	Ser	Thr 535	Tyr	Ser	Pro	Asn	Ile 540
Ala Leu	Glu	Ala	Tyr 545	Val	Ile	Lys	Ser	Thr 550	Gly	Phe	Thr	Gly	Met 555
Thr Cys	Thr	Val	Phe 560	Gln	Lys	Val	Ala	Ala 565	Ser	Asp	Arg	Thr	Gly 570

```
Leu Ser Asp Tyr Gly Arg Arg Asp Pro Glu Gly Asn Leu Asp Lys
                 575
 Gln Leu Ser Phe Lys Cys Asn Val Ser Asn Thr Phe Ser Ser Leu
                 590
                                      595
 Ala Leu Lys Val Cys Tyr Ile Leu Gln Ser Phe Lys Thr Ile Tyr
                                      610
                                                          615
 Ser
<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 25
gaggactcac caatctggtt cggc 24
<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 26
aactggaaag gaaggctgtc tccc 24
<210> 27
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 27
 gtaaaggaga agaacatcac ggtacgggat accaggtgtg tttatcctaa 50
<210> 28
<211> 683
<212> DNA
<213> Homo sapiens
<400> 28
 gcgtggggat gtctaggagc tcgaaggtgg tgctgggcct ctcggtgctg 50
 ctgacggcgg ccacagtggc cggcgtacat gtgaagcagc agtgggacca 100
 gcagaggett cgtgacggag ttatcagaga cattgagagg caaattcgga 150
```

aaaaagaaaa cattcgtctt ttgggagaac agattatttt gactgagcaa 200 cttgaagcag aaagagaaa gatgttattg gcaaaaggat ctcaaaaatc 250 atgacttgaa tgtgaaatat ctgttggaca gacaacacga gtttgtggt 300 gtgtgttgat ggagagtagc ttagtagtat cttcatcttt tttttggtc 350 actgtccttt taaacttgat caaataaagg acagtgggtc atataagtta 400 ctgctttcag ggtcccttat atctgaataa aggagtgtgg gcagacactt 450 tttggaagag tctgtctggg tgatcctggt agaagcccca ttagggtcac 500 tgtccagtgc ttagggttgt tactgagaag cactgccgag cttgtgagaa 550 ggaagggatg gatagtagca tccacctgag tagtctgatc agtcggcatg 600 atgacgaagc cacgagaaca tcgacctcag aaggactgga ggaaggtgaa 650 gtggagggag agacgctcct gatcgtcgaa tcc 683

<210> 29

<211> 81

<212> PRT

<213> Homo sapiens

<220>

<221> sig_peptide

<222> 1-21

<223> Signal peptide.

<400> 29

Met Ser Arg Ser Ser Lys Val Val Leu Gly Leu Ser Val Leu Leu 1 5 10 15

Thr Ala Ala Thr Val Ala Gly Val His Val Lys Gln Gln Trp Asp 20 25 30

Gln Gln Arg Leu Arg Asp Gly Val Ile Arg Asp Ile Glu Arg Gln 35 40 45

Ile Arg Lys Lys Glu Asn Ile Arg Leu Leu Gly Glu Gln Ile Ile
50 55 60

Leu Thr Glu Gln Leu Glu Ala Glu Arg Glu Lys Met Leu Leu Ala 65 70 75

Lys Gly Ser Gln Lys Ser

<210> 30

<211> 2128

<212> DNA

<213> Homo sapiens

<400> 30 ctgtcgtctt tgcttcagcc gcagtcgcca ctggctgcct gaggtgctct 50 tacagcctgt tccaagtgtg gcttaatccg tctccaccac cagatctttc 100 tccgtggatt cctctgctaa gaccgctgcc atgccagtga cggtaacccg 150 caccaccatc acaaccacca cgacgtcatc ttcgggcctg gggtccccca 200 tgatcgtggg gtcccctcgg gccctgacac agcccctggg tctccttcgc 250 ctgctgcagc tggtgtctac ctgcgtggcc ttctcgctgg tggctagcgt 300 gggcgcctgg acggggtcca tgggcaactg gtccatgttc acctggtgct 350 tetgettete egtgaceetg ateateetea tegtggaget gtgegggete 400 caggeceget tececetyte ttggegeaac ttececatea cettegeety 450 ctatgcggcc ctcttctgcc tctcggcctc catcatctac cccaccacct 500 atgtccagtt cctgtcccac ggccgttcgc gggaccacgc catcgccgcc 550 accttettet cetgeatege gtgtgtgget tacgecaceg aagtggeetg 600 gaccegggee eggeeeggeg agateaetgg etatatggee acegtaeeeg 650 ggctgctgaa ggtgctggag accttcgttg cctgcatcat cttcgcgttc 700 atcagegace ceaacetgta ceageaceag eeggeeetgg agtggtgegt 750 ggcggtgtac gccatctgct tcatcctagc ggccatcgcc atcctgctga 800 acctggggga gtgcaccaac gtgctaccca tccccttccc cagcttcctg 850 tcggggctgg ccttgctgtc tgtcctcctc tatgccaccg cccttgttct 900 ctggcccctc taccagttcg atgagaagta tggcggccag cctcggcgct 950 cgagagatgt aagctgcagc cgcagccatg cctactacgt gtgtgcctgg 1000 gaccgccgac tggctgtggc catcctgacg gccatcaacc tactggcgta 1050 tgtggctgac ctggtgcact ctgcccacct ggtttttgtc aaggtctaag 1100 actotoccaa gaggeteceg tteectetee aacetetttg ttettettge 1150 ecgagtttte tttatggagt acttetttee teegeettte etetgtttte 1200 ctcttcctgt ctcccctccc tcccaccttt ttctttcctt cccaattcct 1250 tgcactctaa ccagttcttg gatgcatctt cttccttccc tttcctcttg 1300 ctgtttcctt cctgtgttgt tttgttgccc acatcctgtt ttcacccctg 1350

<210> 31

<211> 322

<212> PRT

<213> Homo sapiens

<400> 31

Met Pro Val Thr Val Thr Arg Thr Thr Ile Thr Thr Thr Thr 1 5 10 15

Ser Ser Ser Gly Leu Gly Ser Pro Met Ile Val Gly Ser Pro Arg
20 25 30

Ala Leu Thr Gln Pro Leu Gly Leu Leu Arg Leu Leu Gln Leu Val 35 40 45

Ser Thr Cys Val Ala Phe Ser Leu Val Ala Ser Val Gly Ala Trp
50 55 60

Thr Gly Ser Met Gly Asn Trp Ser Met Phe Thr Trp Cys Phe Cys 65 70 75

Phe Ser Val Thr Leu Ile Ile Leu Ile Val Glu Leu Cys Gly Leu 80 85 90

Gln Ala Arg Phe Pro Leu Ser Trp Arg Asn Phe Pro Ile Thr Phe 95 100 105

Ala	Cys	Tyr	Ala	Ala 110	Leu	Phe	Cys	Leu	Ser 115	Ala	Ser	Ile	Ile	Tyr 120
Pro	Thr	Thr	Tyr	Val 125	Gln	Phe	Leu	Ser	His 130	Gly	Arg	Ser	Arg	Asp 135
His	Ala	Ile	Ala	Ala 140	Thr	Phe	Phe	Ser	Cys 145	Ile	Ala	Суѕ	Val	Ala 150
Tyr	Ala	Thr	Glu	Val 155	Ala	Trp	Thr	Arg	Ala 160	Arg	Pro	Gly	Glu	Ile 165
Thr	Gly	Tyr	Met	Ala 170	Thr	Val	Pro	Gly	Leu 175	Leu	Lys	Val	Leu	Glu 180
Thr	Phe	Val	Ala	Cys 185	Ile	Ile	Phe	Ala	Phe 190	Ile	Ser	Asp	Pro	Asn 195
Leu	Tyr	Gln	His	Gln 200	Pro	Ala	Leu	Glu	Trp 205	Cys	Val	Ala	Val	Tyr 210
Ala	Ile	Cys	Phe	Ile 215	Leu	Ala	Ala	Ile	Ala 220	Ile	Leu	Leu	Asn	Leu 225
Gly	Glu	Cys	Thr	Asn 230	Val	Leu	Pro	Ile	Pro 235	Phe	Pro	Ser	Phe	Leu 240
Ser	Gly	Leu	Ala	Leu 245	Leu	Ser	Val	Leu	Leu 250	Tyr	Ala	Thr	Ala	Leu 255
Val	Leu	Trp	Pro	Leu 260	Tyr	Gln	Phe	Asp	Glu 265	Lys	Tyr	Gly	Gly	Gln 270
Pro	Arg	Arg	Ser	Arg 275	Asp	Val	Ser	Cys	Ser 280	Arg	Ser	His	Ala	Tyr 285
Tyr	Val	Cys	Ala	Trp 290	Asp	Arg	Arg	Leu	Ala 295	Val	Ala	Ile	Leu	Thr 300
Ala	Ile	Asn	Leu	Leu 305	Ala	Tyr	Val	Ala	Asp 310	Leu	Val	His	Ser	Ala 315
His	Leu	Val	Phe	Val 320	Lys	Val								
<210	> 32													

<210> 32

<211> 3680

<212> DNA

<213> Homo sapiens

<400> 32

gaacgtgcca ccatgcccag ctaatttttg tatttttagt agagacgggg 50

tttcaccatg ttggccaggc tggtcttgaa ctcgtgacct catgatccgc 100

tcacctcggc ctcccaaagt gctgggatta caggcatgag ccactgacgc 150

ctggccagcc tatgcatttt taagaaatta ttctgtatta ggtgctgtgc 200 taaacattgg gcactacagt gaccaaaaca gactgaattc cccaagagcc 250 aaagaccagt gagggagacc aacaagaaac aggaaatgca aaagagacca 300 ttattactca ctatgactaa gggtcacaaa tggggtacgt tgatggagag 350 tgatttgtta agagactaca gagggaggac agactaccaa gaggggggcc 400 aggaaagctc ctctgacgag gtggtatttc agcccaaact ggaagaatga 450 gaaagagcta gccagccatc agaatagtcc agaagagatg gggagcacta 500 cactcactac actttggcct gagaaaatag catgggattg gaggaggctg 550 ggggaacacc acttctgccg acctgggcag gaggcattga gggcttgaga 600 aagggcaatg gcagtagcag tagaaaggac agggtaggag cagggacttt 650 gcaggtggaa tcattaggtc ttatcaacag atatgggcaa gcaaagccag 700 gggagaattg atggtaatgc tgaggtttgg agccaggcta gatgggacag 750 tggtgggtga tgcaaaggaa agaggtcagg aagcagggcc agacgtgggg 800 agaaggtgtg ggggtttggt ttccatcttg ccgagtctgc cggaatgtgg 850 atgggaagac caagaggagg agcaaggggc agaggggaag ggaatcttaa 900 agaagteetg gatgeeacae tettetteet teeteetett eeeteteete 950 agaggtetea etegtggtte tteattteet geeetgeete eateteetet 1000 gggtgctggg aaagtggagg attagctgaa gttttgcttc tcggggcctg 1050 tctgaatctc cattgctttc tgggaggaca taattcacct gtcctagctt 1100 cttatcatct tacatttccc tgtagccact gggacatatg tggtgttcct 1150 tectagetee tgteteetee teatgeettt getgggtatg ggeatgttag 1200 ggggaaggtc attgctgtca gaggggcact gactttctaa tggtgttacc 1250 caaggtgaat gttggagaca cagtcgcgat gctgcccaag tcccggcgag 1300 ccctaactat ccaggagatc gctgcgctgg ccaggtcctc cctgcatggt 1350 atgcagcccc tcccatgttt ctggccactt tgtcctttct cctcccgttt 1400 gcacatccct ttggaactgt ttcctgtgag tacatgctgg ggtctcccct 1450 ttcttccctt gctcaggtga atctcagccc cttctcccac ccaaaggttc 1500 acatggatee taactactge caccetteea cetecetgea eetgtgetee 1550 ctggcctggt cctttaccag gcttctccac cctcccctat ctccaggtat 1600

ttcccaggtg gtgaaggacc acgtgaccaa gcctaccgcc atggcccagg 1650 gccgagtggc tcacctcatt gagtggaagg gctggagcaa gccgagtgac 1700 tcacctgctg ccctggaatc agccttttcc tcctattcag acctcagcga 1750 gggcgaacaa gaggctcgct ttgcagcagg agtggctgag cagtttgcca 1800 tegeggaage caageteega geatggtett eggtggatgg egaggaetee 1850 actgatgact cctatgatga ggactttgct gggggaatgg acacagacat 1900 ggctgggcag ctgcccctgg ggccgcacct ccaggacctg ttcaccggcc 1950 accggttctc ccggcctgtg cgccagggct ccgtggagcc tgagagcgac 2000 tgctcacaga ccgtgtcccc agacaccctg tgctctagtc tgtgcagcct 2050 ggaggatggg ttgttgggct ccccggcccg gctggcctcc cagctgctgg 2100 gcgatgagct gcttctcgcc aaactgcccc ccagccggga aagtgccttc 2150 cgcagcctgg gcccactgga ggcccaggac tcactctaca actcgcccct 2200 cacagagtcc tgcctttccc ccgcggagga ggagccagcc ccctgcaagg 2250 actgccagcc actctgccca ccactaacgg gcagctggga acggcagcgg 2300 caagectetg acetggeete ttetggggtg gtgteettag atgaggatga 2350 ggcagagcca gaggaacagt gacccacatc atgcctggca gtggcatgca 2400 tcccccggct gctgccaggg gcagagcctc tgtgcccaag tgtgggctca 2450 aggeteceag cagageteca cageetagag ggeteetggg agegeteget 2500 tctccgttgt gtgttttgca tgaaagtgtt tggagaggag gcaggggctg 2550 ggctgggggc gcatgtcctg ccccactcc cggggcttgc cgggggttgc 2600 ccggggcctc tggggcatgg ctacagctgt ggcagacagt gatgttcatg 2650 ttcttaaaat gccacacaca catttcctcc tcggataatg tgaaccacta 2700 agggggttgt gactgggctg tgtgagggtg gggtgggagg gggcccagca 2750 acceccace etecceatge etetetette tetgetttte tteteaette 2800 cgagtccatg tgcagtgctt gatagaatca cccccacctg gaggggctgg 2850 ctcctgccct cccggagcct atgggttgag ccgtccctca agggcccctg 2900 cccagctggg ctcgtgctgt gcttcattca cctctccatc gtctctaaat 2950 cttcctcttt tttcctaaag acagaaggtt tttggtctgt tttttcagtc 3000

ggatcttctc ttctggga ggctttggaa tgatgaaagc atgtaccetc 3050 caccettttc ctggcccct aatggggct gggccctttc ccaaccectc 3100 ctaggatgt cgggcagtgt gctggcgct cacagccagc cgggctgccc 3150 attcacgcag agctctctga gcgggaggtg gaagaaagga tggctctggt 3200 tgccacagag ctgggacttc atgttcttct agagagggcc acaagagggc 3250 cacaggggtg gecgggagtt gtcagctgat gcctgctgag aggcaggaat 3300 tgtgccagtg agtgacagtc atgagggagt gtctcttctt ggggaggaaa 3350 gaaggtagag cctttctgtc tgaatgaaag gccaaggcta cagtacaggg 3400 ccccgccca gccagggtg taatgccaac gtagtgagg cctctggcag 3450 atcctgcatt ccaaggtcac tggactgta ggcttttattgg ttgtgggaag 3550 gcccaaggta agaacgagag ccaacggca caagcattct atataaag 3600 ggctcattag gtgttattt tgttctattt aagaatttgt tttattaaat 3650 taatataaaa atctttgtaa atctctaaaa 3680

<400> 33

Met Phe	Leu Ala Thr Leu	Ser Phe Leu Leu	Pro Phe Ala His Pro
1	5	10	15

Phe Gly Thr Val Ser Cys Glu Tyr Met Leu Gly Ser Pro Leu Ser 20 25 30

<210> 33

<211> 335

<212> PRT

<213> Homo sapiens

Phe	Ser	Ser	Tyr	Ser 125	Asp	Leu	Ser	Glu	Gly 130	Glu	Gln	Glu	Ala	Arg 135
Phe	Ala	Ala	Gly	Val 140	Ala	Glu	Gln	Phe	Ala 145	Ile	Ala	Glu	Ala	Lys 150
Leu	Arg	Ala	Trp	Ser 155	Ser	Val	Asp	Gly	Glu 160	Asp	Ser	Thr	Asp	Asp 165
Ser	Tyr	Asp	Glu	Asp 170	Phe	Ala	Gly	Gly	Met 175	Asp	Thr	Asp	Met	Ala 180
Gly	Gln	Leu	Pro	Leu 185	Gly	Pro	His	Leu	Gln 190	Asp	Leu	Phe	Thr	Gly 195
His	Arg	Phe	Ser	Arg 200	Pro	Val	Arg	Gln	Gly 205	Ser	Val	Glu	Pro	Glu 210
Ser	Asp	Cys	Ser	Gln 215	Thr	Val	Ser	Pro	Asp 220	Thr	Leu	Cys	Ser	Ser 225
Leu	Суѕ	Ser	Leu	Glu 230	Asp	Gly	Leu	Leu	Gly 235	Ser	Pro	Ala	Arg	Leu 240
Ala	Ser	Gln	Leu	Leu 245	Gly	Asp	Glu	Leu	Leu 250	Leu	Ala	Lys	Leu	Pro 255
Pro	Ser	Arg	Glu	Ser 260	Ala	Phe	Arg	Ser	Leu 265	Gly	Pro	Leu	Glu	Ala 270
Gln	Asp	Ser	Leu	Tyr 275	Asn	Ser	Pro	Leu	Thr 280	Glu	Ser	Cys	Leu	Ser 285
Pro	Ala	Glu	Glu	Glu 290	Pro	Ala	Pro	Cys	Lys 295	Asp	Cys	Gln	Pro	Leu 300
Cys	Pro	Pro	Leu	Thr 305	Gly	Ser	Trp	Glu	Arg 310	Gln	Arg	Gln	Ala	Ser 315
Asp	Leu	Ala	Ser	Ser 320	Gly	Val	Val	Ser	Leu 325	Asp	Glu	Asp	Glu	Ala 330
Glu	Pro	Glu	Glu	Gln 335										
<210: <211: <212: <213:	> 25 > DN		cial	Seq	uenc	e								
<220: <223:		nthe	tic	olig	onuc	leot	ide :	prob	e					

<400> 34

tgtcctttgt cccagacttc tgtcc 25

```
<210> 35
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 35
ctggatgcta atgtgtccag taaatgatcc ccttatcccg tcgcgatgct 50
<210> 36
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 36
ttccactcaa tgaggtgagc cactc 25
<210> 37
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 37
 ggcgagccct aactatccag gag 23
<210> 38
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 38
 ggagatcgct gcgctggcca ggtcctccct gcatggtat 39
<210> 39
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 <400> 39
 ctgctgcaaa gcgagcctct tg 22
 <210> 40
 <211> 2084
```

<400> 40

ggttcctggg cgctctgtta cacaagcaag atacagccag ccccacctaa 50 ttttgtttcc ctggcaccct cctgctcagt gcgacattgt cacacttaac 100 ccatctgttt tctctaatgc acgacagatt cctttcagac aggacaactg 150 tgatatttca gttcctgatt gtaaatacct cctaagcctg aagcttctgt 200 tactagccat tgtgagcttc agtttcttca tctgcaaaat gggcataata 250 caatctattc ttgccacatc aagggattgt tattccttta aaaaaaaacc 300 aataccaaag aagcctacaa tgttggcctt agccaaaatt ctgttgattt 350 caacgttgtt ttattcactt ctatcgggga gccatggaaa agaaaatcaa 400 gacataaaca caacacagaa cattgcagaa gtttttaaaa caatggaaaa 450 taaacctatt totttggaaa gtgaagcaaa ottaaactca gataaagaaa 500 atataaccac ctcaaatctc aaggcgagtc attcccctcc tttgaatcta 550 cccaacaaca gccacggaat aacagatttc tccagtaact catcagcaga 600 gcattctttg ggcagtctaa aacccacatc taccatttcc acaagccctc 650 ccttgatcca tagctttgtt tctaaagtgc cttggaatgc acctatagca 700 gatgaagate ttttgcccat ctcagcacat cccaatgcta cacctgctct 750 gtcttcagaa aacttcactt ggtctttggt caatgacacc gtgaaaactc 800 ctgataacag ttccattaca gttagcatcc tctcttcaga accaacttct 850 ccatctgtga cccccttgat agtggaacca agtggatggc ttaccacaaa 900 cagtgatage tteactgggt ttacceetta teaagaaaaa acaactetae 950 agcctacctt aaaattcacc aataattcaa aactctttcc aaatacgtca 1000 gatccccaaa aagaaaatag aaatacagga atagtattcg gggccatttt 1050 aggtgctatt ctgggtgtct cattgcttac tcttgtgggc tacttgttgt 1100 gtggaaaaag gaaaacggat tcattttccc atcggcgact ttatgacgac 1150 agaaatgaac cagttctgcg attagacaat gcaccggaac cttatgatgt 1200 gagttttggg aattctagct actacaatcc aactttgaat gattcagcca 1250 tgccagaaag tgaagaaaat gcacgtgatg gcattcctat ggatgacata 1300 cctccacttc gtacttctgt atagaactaa cagcaaaaag gcgttaaaca 1350 gcaagtgtcatctacatcetagcettttgacaaattcatetttcaaaagg1400ttacacaaaattactgtcacgtggattttgtcaaggagaatcataaaagc1450aggagaccagtagcagaaatgtagacaggatgtatcatceaaaggttttc1500tttcttacaatttttggccatcctgaggcatttactaagtagcettaatt1550tgtattttagtagtattttcttagtagaaaatatttgggaatcagataa1600aactaaaagatttcaccattacagecetgectcataactaaataataaaa1650attattccaccaaaaaattctaaaacaatgaagatgactctttactgetc1700tgcetgaagccctagtaccataattcaagattgcattttcttaaatgaaa1750attgaaagggtgctttttaaagaaaatttgacttaaagctaaaaagagga1800catagcccagagttctgtttaattttctagatcagcacacacatgatca1900gcccactgagttatgaagctgacaatgactgcattcaacggggccatggc1950aggaaagctgaccctacccaggaaagtaatagcttcttaaaagtcttca2000aaggttttggaattttaacttgtcttaatatatcttaggcttcaattat2050ttgggtgccttaaaaactcaatgagaatcatggt 2084

<210> 41 <211> 334

<212> PRT

<213> Homo sapiens

<400> 41

Met Leu Ala Leu Ala Lys Ile Leu Leu Ile Ser Thr Leu Phe Tyr
1 5 10 15

Ser Leu Leu Ser Gly Ser His Gly Lys Glu Asn Gln Asp Ile Asn 20 25 30

Thr Thr Gln Asn Ile Ala Glu Val Phe Lys Thr Met Glu Asn Lys 35 40 45

Pro Ile Ser Leu Glu Ser Glu Ala Asn Leu Asn Ser Asp Lys Glu
50 55 60

Asn Ile Thr Thr Ser Asn Leu Lys Ala Ser His Ser Pro Pro Leu
65 70 75

Asn Leu Pro Asn Asn Ser His Gly Ile Thr Asp Phe Ser Ser Asn 80 85 90

Ser Ser Ala Glu His Ser Leu Gly Ser Leu Lys Pro Thr Ser Thr 95 100 105

Ile	Ser	Thr	Ser	Pro 110	Pro	Leu	Ile	His	Ser 115	Phe	Val	Ser	Lys	Val 120
Pro	Trp	Asn	Ala	Pro 125	Ile	Ala	Asp	Glu	Asp 130	Leu	Leu	Pro	Ile	Ser 135
Ala	His	Pro	Asn	Ala 140	Thr	Pro	Ala	Leu	Ser 145	Ser	Glu	Asn	Phe	Thr 150
Trp	Ser	Leu	Val	Asn 155	Asp	Thr	Val	Lys	Thr 160	Pro	Asp	Asn	Ser	Ser 165
Ile	Thr	Val	Ser	Ile 170	Leu	Ser	Ser	Glu	Pro 175	Thr	Ser	Pro	Ser	Val 180
Thr	Pro	Leu	Ile	Val 185	Glu	Pro	Ser	Gly	Trp 190	Leu	Thr	Thr	Asn	Ser 195
Asp	Ser	Phe	Thr	Gly 200	Phe	Thr	Pro	Tyr	Gln 205	Glu	Lys	Thr	Thr	Leu 210
Gln	Pro	Thr	Leu	Lys 215	Phe	Thr	Asn	Asn	Ser 220	Lys	Leu	Phe	Pro	Asn 225
Thr	Ser	Asp	Pro	Gln 230	Lys	Glu	Asn	Arg	Asn 235	Thr	Gly	Ile	Val	Phe 240
Gly	Ala	Ile	Leu	Gly 245	Ala	Ile	Leu	Gly	Val 250	Ser	Leu	Leu	Thr	Leu 255
Val	Gly	Tyr	Leu	Leu 260	Cys	Gly	Lys	Arg	Lys 265	Thr	Asp	Ser	Phe	Ser 270
His	Arg	Arg	Leu	Tyr 275	Asp	Asp	Arg	Asn	Glu 280	Pro	Val	Leu	Arg	Leu 285
Asp	Asn	Ala	Pro	Glu 290	Pro	Tyr	Asp	Val	Ser 295	Phe	Gly	Asn	Ser	Ser 300
Tyr	Tyr	Asn	Pro	Thr 305	Leu	Asn	Asp	Ser	Ala 310	Met	Pro	Glu	Ser	Glu 315
Glu	Asn	Ala	Arg	Asp 320	Gly	Ile	Pro	Met	Asp 325	Asp	Ile	Pro	Pro	Leu 330

Arg Thr Ser Val

<210> 42 <211> 1594

<212> DNA

<213> Homo sapiens

<400> 42

aacaggatct cctcttgcag tctgcagccc aggacgctga ttccagcagc 50

gccttaccgc gcagcccgaa gattcactat ggtgaaaatc gccttcaata 100 cccctaccgc cgtgcaaaag gaggaggcgc ggcaagacgt ggaggccctc 150 ctgagccgca cggtcagaac tcagatactg accggcaagg agctccgagt 200 tgccacccag gaaaaagagg gctcctctgg gagatgtatg cttactctct 250 taggeettte atteatettg geaggaetta ttgttggtgg ageetgeatt 300 tacaagtact tcatgcccaa gagcaccatt taccgtggag agatgtgctt 350 ttttgattct gaggatcctg caaattccct tcgtggagga gagcctaact 400 teetgeetgt gaetgaggag getgaeatte gtgaggatga caacattgea 450 atcattgatg tgcctgtccc cagtttctct gatagtgacc ctgcagcaat 500 tattcatgac tttgaaaagg gaatgactgc ttacctggac ttgttgctgg 550 ggaactgcta tetgatgcee etcaataett etattgttat geetecaaaa 600 aatctggtag agctctttgg caaactggcg agtggcagat atctgcctca 650 aacttatgtg gttcgagaag acctagttgc tgtggaggaa attcgtgatg 700 ttagtaacct tggcatcttt atttaccaac tttgcaataa cagaaagtcc 750 ttccgccttc gtcgcagaga cctcttgctg ggtttcaaca aacgtgccat 800 tgataaatgc tggaagatta gacacttccc caacgaattt attgttgaga 850 ccaagatctg tcaagagtaa gaggcaacag atagagtgtc cttggtaata 900 agaagtcaga gatttacaat atgactttaa cattaaggtt tatgggatac 950 tcaagatatt tactcatgca tttactctat tgcttatgct ttaaaaaaag 1000 gaaaaaaaa aaaactacta accactgcaa gctcttgtca aattttagtt 1050 taattggcat tgcttgtttt ttgaaactga aattacatga gtttcatttt 1100 ttctttgcat ttatagggtt tagatttctg aaagcagcat gaatatatca 1150 cctaacatcc tgacaataaa ttccatccgt tgtttttttt gtttgtttgt 1200 tttttctttt cctttaagta agctctttat tcatcttatg gtggagcaat 1250 tttaaaattt gaaatatttt aaattgtttt tgaacttttt gtgtaaaata 1300 tatcagatct caacattgtt ggtttctttt gtttttcatt ttgtacaact 1350 ttcttgaatt tagaaattac atctttgcag ttctgttagg tgctctgtaa 1400 ttaacctgac ttatatgtga acaattttca tgagacagtc atttttaact 1450 aatgcagtga ttctttctca ctactatctg tattgtggaa tgcacaaaat 1500

tgtgtaggtg ctgaatgctg taaggagttt aggttgtatg aattctacaa 1550

<210>	43	
<211>	263	
<212>	PRT	
<213>	${\tt Homo}$	sapien
/////>	12	

<2123 <2133		-	apie	ns										
<400	> 43													
Met 1	Val	Lys	Ile	Ala 5	Phe	Asn	Thr	Pro	Thr 10	Ala	Val	Gln	Lys	Glu 15
Glu	Ala	Arg	Gln	Asp 20	Val	Glu	Ala	Leu	Leu 25	Ser	Arg	Thr	Val	Arg 30
Thr	Gln	Ile	Leu	Thr 35	Gly	Lys	Glu	Leu	Arg 40	Val	Ala	Thr	Gln	Glu 45
Lys	Glu	Gly	Ser	Ser 50	Gly	Arg	Суѕ	Met	Leu 55	Thr	Leu	Leu	Gly	Leu 60
Ser	Phe	Ile	Leu	Ala 65	Gly	Leu	Ile	Val	Gly 70	Gly	Ala	Cys	Ile	Tyr 75
Lys	Tyr	Phe	Met	Pro 80	Lys	Ser	Thr	Ile	Туг 85	Arg	Gly	Glu	Met	Cys 90
Phe	Phe	Asp	Ser	Glu 95	Asp	Pro	Ala	Asn	Ser 100	Leu	Arg	Gly	Gly	Glu 105
Pro	Asn	Phe	Leu	Pro 110	Val	Thr	Glu	Glu	Ala 115	Asp	Ile	Arg	Glu	Asp 120
Asp	Asn	Ile	Ala	Ile 125	Ile	Asp	Val	Pro	Val 130	Pro	Ser	Phe	Ser	Asp 135
Ser	Asp	Pro	Ala	Ala 140	Ile	Ile	His	Asp	Phe 145	Glu	Lys	Gly	Met	Thr 150
Ala	Tyr	Leu	Asp	Leu 155	Leu	Leu	Gly	Asn	Cys 160	Tyr	Leu	Met	Pro	Leu 165
Asn	Thr	Ser	Ile	Val 170	Met	Pro	Pro	Lys	Asn 175	Leu	Val	Glu	Leu	Phe 180
Gly	Lys	Leu	Ala	Ser 185	Gly	Arg	Tyr	Leu	Pro 190	Gln	Thr	Tyr	Val	Val 195
Arg	Glu	Asp	Leu	Val 200	Ala	Val	Glu	Glu	Ile 205	Arg	Asp	Val	Ser	Asn 210
Leu	Gly	Ile	Phe	Ile 215	Tyr	Gln	Leu	Cys	Asn 220	Asn	Arg	Lys	Ser	Phe 225
Arg	Leu	Arg	Arg	Arg	Asp	Leu	Leu	Leu	Gly	Phe	Asn	Lys	Arg	Ala

Ile Asp Lys Cys Trp Lys Ile Arg His Phe Pro Asn Glu Phe Ile 245 250 255

Val Glu Thr Lys Ile Cys Gln Glu 260

<210> 44

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 44

gaaagacacg acacagcagc ttgc 24

<210> 45

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 45

gggaactgct atctgatgcc 20

<210> 46

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 46

caggatetee tettgeagte tgeage 26

<210> 47

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 47

cttctcgaac cacataagtt tgaggcag 28

<210> 48

<211> 25

<212> DNA

<213> Artificial Sequence

<220> <223> Synthetic oligonucleotide probe

<400> 48 cacgattccc tccacagcaa ctggg 25

<210> 49 <211> 1969 <212> DNA

<213> Homo sapiens

<400> 49 ggaggaggga gggcgggcag gcgccagccc agagcagccc cgggcaccag 50 cacggactet etettecage ecaggtgeee eccaeteteg etecattegg 100 cgggagcacc cagtcctgta cgccaaggaa ctggtcctgg gggcaccatg 150 gtttcggcgg cagcccccag cctcctcatc cttctgttgc tgctgctggg 200 gtctgtgcct gctaccgacg cccgctctgt gcccctgaag gccacgttcc 250 tggaggatgt ggcgggtagt ggggaggccg agggctcgtc ggcctcctcc 300 ccgagcctcc cgccaccctg gaccccggcc ctcagcccca catcgatggg 350 gccccagccc acaaccctgg ggggcccatc accccccacc aacttcctgg 400 atgggatagt ggacttcttc cgccagtacg tgatgctgat tgctgtggtg 450 ggctccctgg cctttctgct gatgttcatc gtctgtgccg cggtcatcac 500 ccggcagaag cagaaggcct cggcctatta cccatcgtcc ttccccaaga 550 agaagtacgt ggaccagagt gaccgggccg ggggcccccg ggccttcagt 600 gaggtccccg acagagcccc cgacagcagg cccgaggaag ccctggattc 650 ctcccggcag ctccaggccg acatcttggc cgccacccag aacctcaagt 700 ccccaccag ggctgcactg ggcggtgggg acggagccag gatggtggag 750 ggcaggggcg cagaggaaga ggagaagggc agccaggagg gggaccagga 800 agtccaggga catggggtcc cagtggagac accagaggcg caggaggagc 850 cgtgctcagg ggtccttgag ggggctgtgg tggccggtga gggccaaggg 900 gagctggaag ggtctctctt gttagcccag gaagcccagg gaccagtggg 950 tecceegaa ageceetgtg ettgeageag tgtecaeece agtgtetaae 1000 agtecteccg ggetgecage cetgactgte gggececeaa gtggteacet 1050 ccccgtgtat gaaaaggcct tcagccctga ctgcttcctg acactccctc 1100 cttggcctcc ctgtggtgcc aatcccagca tgtgctgatt ctacagcagg 1150 cagaaatget ggtccccggt gccccggagg aatcttacca agtgccatca 1200 teetteacet cageageece aaagggetae ateetacage acageteece 1250 tgacaaagtg agggagggca cgtgtccctg tgacagccag gataaaacat 1300 cccccaaagt gctgggatta caggcgtgag ccaccgtgcc cggcccaaac 1350 tactttttaa aacagctaca gggtaaaatc ctgcagcacc cactctggaa 1400 aatactgctc ttaattttcc tgaaggtggc cccctgtttc tagttggtcc 1450 aggattaggg atgtggggta tagggcattt aaatcctctc aagcgctctc 1500 caagcacccc cggcctgggg gtgagtttct catcccgcta ctgctgctgg 1550 gatcaggttg aatgaatgga actcttcctg tctggcctcc aaagcagcct 1600 agaagctgag gggctgtgtt tgaggggacc tccaccctgg ggaagtccga 1650 ggggctgggg aagggtttct gacgcccagc ctggagcagg ggggccctgg 1700 ccacccctg ttgctcacac attgtctggc agcctgtgtc cacaatattc 1750 gtcagtcctc gacagggagc ctgggctccg tcctgcttta gggaggctct 1800 ggcaggaggt cetetecece atecetecat etggggetee eccaacetet 1850 gcacagetet ccaggtgetg agatataatg caccageaca ataaacettt 1900 aaaaaaaaa aaaaaaaga 1969

<210> 50

<211> 283

<212> PRT

<213> Homo sapiens

<400> 50

Met Val Ser Ala Ala Ala Pro Ser Leu Leu Ile Leu Leu Leu 1 5 10 15

Leu Leu Gly Ser Val Pro Ala Thr Asp Ala Arg Ser Val Pro Leu
20 25 30

Lys Ala Thr Phe Leu Glu Asp Val Ala Gly Ser Gly Glu Ala Glu 35 40 45

Gly Ser Ser Ala Ser Ser Pro Ser Leu Pro Pro Pro Trp Thr Pro
50 55 60

Ala Leu Ser Pro Thr Ser Met Gly Pro Gln Pro Thr Thr Leu Gly
65 70 75

Gly Pro Ser Pro Pro Thr Asn Phe Leu Asp Gly Ile Val Asp Phe

Phe	Arg	Gln	Tyr	Val 95	Met	Leu	Ile	Ala	Val 100	Val	Gly	Ser	Leu	Ala 105
Phe	Leu	Leu	Met	Phe 110	Ile	Val	Cys	Ala	Ala 115	Val	Ile	Thr	Arg	Gln 120
Lys	Gln	Lys	Ala	Ser 125	Ala	Tyr	Tyr	Pro	Ser 130	Ser	Phe	Pro	Lys	Lys 135
Lys	Tyr	Val	Asp	Gln 140	Ser	Asp	Arg	Ala	Gly 145	Gly	Pro	Arg	Ala	Phe 150
Ser	Glu	Val	Pro	Asp 155	Arg	Ala	Pro	Asp	Ser 160	Arg	Pro	Glu	Glu	Ala 165
Leu	Asp	Ser	Ser	Arg 170	Gln	Leu	Gln	Ala	Asp 175	Ile	Leu	Ala	Ala	Thr 180
Gln	Asn	Leu	Lys	Ser 185	Pro	Thr	Arg	Ala	Ala 190	Leu	Gly	Gly	Gly	Asp 195
Gly	Ala	Arg	Met	Val 200	Glu	Gly	Arg	Gly	Ala 205	Glu	Glu	Glu	Glu	Lys 210
Gly	Ser	Gln	Glu	Gly 215	Asp	Gln	Glu	Val	Gln 220	Gly	His	Gly	Val	Pro 225
Val	Glu	Thr	Pro	Glu 230	Ala	Gln	Glu	Glu	Pro 235	Cys	Ser	Gly	Val	Leu 240
Glu	Gly	Ala	Val	Val 245	Ala	Gly	Glu	Gly	Gln 250	Gly	Glu	Leu	Glu	Gly 255
Ser	Leu	Leu	Leu	Ala 260	Gln	Glu	Ala	Gln	Gly 265	Pro	Val	Gly	Pro	Pro 270
Glu	Ser	Pro	Cys	Ala 275	Cys	Ser	Ser	Val	His 280	Pro	Ser	Val		

<210> 51

<211> 1734

<212> DNA

<213> Homo sapiens

<400> 51

gtggactctg agaagcccag gcagttgagg acaggagaga gaaggctgca 50 gacccagagg gagggaggac agggagtcgg aaggaggagg acagaggagg 100 gcacagagac gcagagcaag ggcggcaagg aggagaccct ggtgggagga 150 agacactctg gagagagag gggctgggca gagatgaagt tccaggggcc 200 cctggcctgc ctcctgctgg ccctctgcct gggcagtggg gaggctggcc 250

ccctgcagag cggagaggaa agcactggga caaatattgg ggaggccctt 300 ggacatggcc tgggagacgc cctgagcgaa ggggtgggaa aggccattgg 350 caaagaggcc ggaggggcag ctggctctaa agtcagtgag gcccttggcc 400 aagggaccag agaagcagtt ggcactggag tcaggcaggt tccaggcttt 450 ggcgcagcag atgctttggg caacagggtc ggggaagcag cccatgctct 500 gggaaacact gggcacgaga ttggcagaca ggcagaagat gtcattcgac 550 acggagcaga tgctgtccgc ggctcctggc agggggtgcc tggccacagt 600 ggtgcttggg aaacttctgg aggccatggc atctttggct ctcaaggtgg 650 cettggagge cagggecagg geaateetgg aggtetgggg acteegtggg 700 tecaeggata ecceggaaae teageaggea getttggaat gaateeteag 750 ggagctccct ggggtcaagg aggcaatgga gggccaccaa actttgggac 800 caacactcag ggagctgtgg cccagcctgg ctatggttca gtgagagcca 850 gcaaccagaa tgaagggtgc acgaatcccc caccatctgg ctcaggtgga 900 ggctccagca actctggggg aggcagcggc tcacagtcgg gcagcagtgg 950 cagtggcagc aatggtgaca acaacaatgg cagcagcagt ggtggcagca 1000 gcagtggcag cagcagtggc agcagcagtg gcggcagcag tggcggcagc 1050 agtggtggca gcagtggcaa cagtggtggc agcagaggtg acagcggcag 1100 tgagtcctcc tggggatcca gcaccggctc ctcctccggc aaccacggtg 1150 ggagcggcgg aggaaatgga cataaacccg ggtgtgaaaa gccagggaat 1200 gaagcccgcg ggagcgggga atctgggatt cagggcttca gaggacaggg 1250 agtttccagc aacatgaggg aaataagcaa agagggcaat cgcctccttg 1300 gaggetetgg agacaattat egggggeaag ggtegagetg gggeagtgga 1350 ggaggtgacg ctgttggtgg agtcaatact gtgaactctg agacgtctcc 1400 tgggatgttt aactttgaca ctttctggaa gaattttaaa tccaagctgg 1450 gtttcatcaa ctgggatgcc ataaacaagg accagagaag ctctcgcatc 1500 eegtgaeete cagacaagga geeaceagat tggatgggag eeeceacaet 1550 ccctccttaa aacaccaccc tctcatcact aatctcagcc cttgcccttg 1600

aaaaaaaaa aaaaaaaaaa aaaaaaaaa aaaa 1734

<210> <211> <212> <213>	440 PRT	•	npier	ıs										
<400> Met 1		Phe	Gln	Gly 5	Pro	Leu	Ala	Cys	Leu 10	Leu	Leu	Ala	Leu	Cys 15
Leu	Gly	Ser	Gly	Glu 20	Ala	Gly	Pro	Leu	Gln 25	Ser	Gly	Glu	Glu	Ser 30
Thr	Gly	Thr	Asn	Ile 35	Gly	Glu	Ala	Leu	Gly 40	His	Gly	Leu	Gly	Asp 45
Ala	Leu	Ser	Glu	Gly 50	Val	Gly	Lys	Ala	Ile 55	Gly	Lys	Glu	Ala	Gly 60
Gly	Ala	Ala	Gly	Ser 65	Lys	Val	Ser	Glu	Ala 70	Leu	Gly	Gln	Gly	Thr 75
Arg	Glu	Ala	Val	Gly 80	Thr	Gly	Val	Arg	Gln 85	Val	Pro	Gly	Phe	Gly 90
Ala	Ala	Asp	Ala	Leu 95	Gly	Asn	Arg	Val	Gly 100	Glu	Ala	Ala	His	Ala 105
Leu	Gly	Asn	Thr	Gly 110	His	Glu	Ile	Gly	Arg 115	Gln	Ala	Glu	Asp	Val 120
Ile	Arg	His	Gly	Ala 125	Asp	Ala	Val	Arg	Gly 130	Ser	Trp	Gln	Gly	Val 135
Pro	Gly	His	Ser	Gly 140	Ala	Trp	Glu	Thr	Ser 145	Gly	Gly	His	Gly	Ile 150
Phe	Gly	Ser	Gln	Gly 155	Gly	Leu	Gly	Gly	Gln 160	Gly	Gln	Gly	Asn	Pro 165
Gly	Gly	Leu	Gly	Thr 170	Pro	Trp	Val	His	Gly 175	Tyr	Pro	Gly	Asn	Ser 180
Ala	Gly	Ser	Phe	Gly 185	Met	Asn	Pro	Gln	Gly 190	Ala	Pro	Trp	Gly	Gln 195
Gly	Gly	Asn	Gly	Gly 200	Pro	Pro	Asn	Phe	Gly 205	Thr	Asn	Thr	Gln	Gly 210
Ala	Val	Ala	Gln	Pro 215	Gly	Tyr	Gly	Ser	Val 220	Arg	Ala	Ser	Asn	Glr 225
Asn	Glu	Gly	Cys	Thr 230	Asn	Pro	Pro	Pro	Ser 235	Gly	Ser	Gly	Gly	G1 ₃ 240

Ser	Ser	Asn	Ser	Gly 245	Gly	Gly	Ser	Gly	Ser 250	Gln	Ser	Gly	Ser	Ser 255
Gly	Ser	Gly	Ser	Asn 260	Gly	Asp	Asn	Asn	Asn 265	Gly	Ser	Ser	Ser	Gly 270
Gly	Ser	Ser	Ser	Gly 275	Ser	Ser	Ser	Gly	Ser 280	Ser	Ser	Gly	Gly	Ser 285
Ser	Gly	Gly	Ser	Ser 290	Gly	Gly	Ser	Ser	Gly 295	Asn	Ser	Gly	Gly	Ser 300
Arg	Gly	Asp	Ser	Gly 305	Ser	Glu	Ser	Ser	Trp 310	Gly	Ser	Ser	Thr	Gly 315
Ser	Ser	Ser	Gly	Asn 320	His	Gly	Gly	Ser	Gly 325	Gly	Gly	Asn	Gly	His 330
Lys	Pro	Gly	Cys	Glu 335	Lys	Pro	Gly	Asn	Glu 340	Ala	Arg	Gly	Ser	Gly 345
Glu	Ser	Gly	Ile	Gln 350	Gly	Phe	Arg	Gly	Gln 355	Gly	Val	Ser	Ser	Asn 360
Met	Arg	Glu	Ile	Ser 365	Lys	Glu	Gly	Asn	Arg 370	Leu	Leu	Gly	Gly	Ser 375
Gly	Asp	Asn	Tyr	Arg 380	Gly	Gln	Gly	Ser	Ser 385	Trp	Gly	Ser	Gly	Gly 390
Gly	Asp	Ala	Val	Gly 395	Gly	Val	Asn	Thr	Val 400	Asn	Ser	Glu	Thr	Ser 405
Pro	Gly	Met	Phe	Asn 410	Phe	Asp	Thr	Phe	Trp 415	Lys	Asn	Phe	Lys	Ser 420
Lys	Leu	Gly	Phe	Ile 425	Asn	Trp	Asp	Ala	Ile 430	Asn	Lys	Asp	Gln	Arg 435
Ser	Ser	Arg	Ile	Pro 440										

<210> 53

<211> 3580

<212> DNA

<213> Homo sapiens

<400> 53

gaccggtece teeggteetg gatgtgegga etetgetgea gegagggetg 50
caggeeegee gggeggtget eacegtgeee tggetggtgg agtttetete 100
ctttgetgae eatgttgtte eettgetgga atattacegg gacatettea 150
cteteetget gegeetgeae eggagettgg tgttgtegea ggagagtgag 200
gggaagatgt gttteetgaa eaagetgetg etaettgetg teetgggetg 250

gcttttccag attcccacag tccctgagga cttgttcttt ctggaagagg 300 gtccctcata tgcctttgag gtggacacag tagccccaga gcatggcttg 350 gacaatgcgc ctgtggtgga ccagcagctg ctctacacct gctgccccta 400 categgagag eteeggaaac tgetegette gtgggtgtea ggeagtagtg 450 gacggagtgg gggcttcatg aggaaaatca ccccaccac taccaccagc 500 ctgggagece ageetteeca gaccagecag gggetgeagg cacagetege 550 ccaggcettt ttecacaace ageegeeete ettgegeegg aeegtagagt 600 tegtggeaga aagaattgga teaaaetgtg teaaaeatat eaaggetaea 650 ctggtggcag atctggtgcg ccaggcagag tcacttctcc aagagcagct 700 ggtgacacag ggagaggaag ggggagaccc agcccagctg ttggagatct 750 tgtgttccca gctgtgccct cacggggccc aggcattggc cctggggcgg 800 gagttetgte aaaggaagag ceetgggget gtgegggege tgetteeaga 850 ggagaccccg gcagccgttc tgagcagtgc agagaacatt gctgtggggc 900° ttgcaacaga gaaagcctgt gcttggctgt cagccaacat cacagcactg 950 atcaggaggg aggtgaaagc agcagtgagt cgcacacttc gagcccaggg 1000 teetgaacet getgeeeggg gggageggag gggetgetee egegeetgae 1050 gtgctctcct tggccgtggg gccacgggac cctgacgagg gagtctcccc 1100 agagcatctg gaacagctcc taggccagct gggccagacg ctgcggtgcc 1150 gccagttcct gtgcccacct gctgagcagc atctggcaaa gtgctctgtg 1200 gagttagett ceeteetegt tgeagateaa atteetatee tagggeeece 1250 ggcacagtac aggctggaga gagggcaggc tcgaaggctt ctgcacatgc 1300 tgctttcctt gtggaaggaa gactttcagg ggccggttcc gctgcagctg 1350 ctgctgagcc caagaaatgt ggggcttctg gcagacacaa ggccaaggga 1400 gtgggacttg ctgctattct tgctacggga gctggtggag aagggtctga 1450 tgggacggat ggagatagag gcctgcctgg gcagcctcca ccaggcccag 1500 tggccagggg actttgctga agaattagca acactgtcta atctgtttct 1550 agccgagccc cacctgccag aaccccagct aagagcctgt gagttggtgc 1600 agccaaaccg gggcactgtg ctggcccaga gctagggctg agaagtggcc 1650

ctgccttggg cattgcacca gaaccctgga cccccgcctc acgaggaggc 1700 ccaagtgccc aatgcagacc ctcactggtt ggggtgtagc tgggtctaca 1750 gtcagacttc ctgctctaag ggtgtcactg cctggcatcc caccacgcga 1800 atcctagagg aaggagagtt ggcctgattt gggattatgg cagaaaagtc 1850 cagagatgcc agtcctggag tagaagaggt ggtgtttgtt tatctcttgg 1900 atactaaatg aaatgaggtg tgtgggcttg tcaacacaga attcaagcct 1950 catttgctat cccagcatct cttaaaactt tgtagtcttg gaattcatga 2000 cagaggcaaa tgactcctgc ttaacttatg aagaaagtta aaacatgaat 2050 cttgggagtc tacattttct tatcaccagg agctggactg ccatctcctt 2100 ataaatgcct aacacaggcc gggtctggtg gctcatgcct gtaatcccag 2150 cactttgaga ggcctgaggt cggcggactg cctgaggtca ggaattcaag 2200 accageetgg ceaacatgge aaaaceecat etetaetaaa aataaaaaaa 2250 ttattagctg ggcatggtgg tgtgtgcctg taatcccagc tactcaggag 2300 gatgaggcag gagacctgct tgaacctgga ggtggaggtt gcagtgagcc 2350 gaggtcgcac cactgcactc cagtctgggt aacagagcga gactttctag 2400 aaaaagccta acaaacagat aaggtaggac tcaaccaact gaaacctgac 2450 tttccccctg taccttcagc ccctgtgcag gtagtaacct cttgagacct 2500 ctccctgacc agggaccaag cacagggcat ttagagcttt ttagaataaa 2550 ctggttttct ttaaaaaaaa aaaaaaaaa agggcggccg ccctttttt 2600 ttttattaaa atteteecea eaegatgget eetgeaatet geeaeagete 2700 tggggcgtgt cctgtaggga aaggccctgt tttccctgag gcggggctgg 2750 gcttgtccat gggtccgcgg agctggccgt gcttggcgcc ctggcgtgtg 2800 tetagetget tettgeeggg caeagagetg eggggtetgg gggeaeeggg 2850 agctaagagc aggctctggt gcaggggtgg aggcctgtct cttaaccgac 2900 accetgaggt geteetgaga tgetgggtee accetgagtg geacggggag 2950 cagctgtggc cggtgctcct tcytaggcca gtcctgggga aactaagctc 3000 gggcccttct ttgcaaagac cgaggatggg gtgggtgtgg gggactcatg 3050 gggaatggcc tgaggagcta cgtgtgaaga gggcgccggt ttgttggctg 3100

cagcggcctg gagcgcctct ctcctgagcc tcagtttccc tttccgtcta 3150 atgaagaaca tgccgtctcg gtgtctcagg gctattagga cttgccctca 3200 ggaagtggcc ttggacgagc gtcatgttat tttcacaact gtcctgcgac 3250 gttggcctgg gcacgtcatg gaatggccca tgtccctctg ctgcgtggac 3300 gtcgcggtcg ggagtgcgca gccagaggcg gggccagacg tgcgcctggg 3350 ggtgagggaa ggcgcccgg gagggcctca caggaagttg ggctcccgca 3400 ccaccaggca gggcggctc ccgccgcc cgccgccacc accgtccagg 3450 ggccggtaga caaagtggaa gtcgcgcttg ggctcgctgc gcagcaggta 3500 gcccttgatg cagtgcgca gcgcgtcgtc cgccagctgg aagcaggcc 3550 cgtccaccag cacgaacagc cggtgcgcct 3580

<210> 54

<211> 280

<212> PRT

<213> Homo sapiens

<400> 54

Met Cys Phe Leu Asn Lys Leu Leu Leu Leu Ala Val Leu Gly Trp
1 5 10 15

Leu Phe Gln Ile Pro Thr Val Pro Glu Asp Leu Phe Phe Leu Glu 20 25 30

Glu Gly Pro Ser Tyr Ala Phe Glu Val Asp Thr Val Ala Pro Glu 35 40 45

His Gly Leu Asp Asn Ala Pro Val Val Asp Gln Gln Leu Leu Tyr
50 55 60

Thr Cys Cys Pro Tyr Ile Gly Glu Leu Arg Lys Leu Leu Ala Ser 65 70 75

Trp Val Ser Gly Ser Ser Gly Arg Ser Gly Gly Phe Met Arg Lys 80 85 90

Ile Thr Pro Thr Thr Thr Ser Leu Gly Ala Gln Pro Ser Gln
95 100 105

Thr Ser Gln Gly Leu Gln Ala Gln Leu Ala Gln Ala Phe Phe His 110 115 120

Asn Gln Pro Pro Ser Leu Arg Arg Thr Val Glu Phe Val Ala Glu 125 130 135

Arg Ile Gly Ser Asn Cys Val Lys His Ile Lys Ala Thr Leu Val 140 145 150

Ala	Asp	Leu	Val	Arg 155	Gln	Ala	Glu	Ser	Leu 160	Leu	Gln	Glu	Gln	Leu 165
Val	Thr	Gln	Gly	Glu 170	Glu	Gly	Gly	Asp	Pro 175	Ala	Gln	Leu	Leu	Glu 180
Ile	Leu	Суѕ	Ser	Gln 185	Leu	Cys	Pro	His	Gly 190	Ala	Gln	Ala	Leu	Ala 195
Leu	Gly	Arg	Glu	Phe 200	Cys	Gln	Arg	Lys	Ser 205	Pro	Gly	Ala	Val	Arg 210
Ala	Leu	Leu	Pro	Glu 215	Glu	Thr	Pro	Ala	Ala 220	Val	Leu	Ser	Ser	Ala 225
Glu	Asn	Ile	Ala	Val 230	Gly	Leu	Ala	Thr	Glu 235	Lys	Ala	Cys	Ala	Trp
Leu	Ser	Ala	Asn	Ile 245	Thr	Ala	Leu	Ile	Arg 250	Arg	Glu	Val	Lys	Ala 255
Ala	Val	Ser	Arg	Thr 260	Leu	Arg	Ala	Gln	Gly 265	Pro	Glu	Pro	Ala	Ala 270
Arg	Gly	Glu	Arg	Arg 275	Gly	Cys	Ser	Arg	Ala 280					

<210> 55

<211> 2401

<212> DNA

<213> Homo sapiens

<400> 55

tcccttgaca ggtctggtgg ctggttcggg gtctactgaa ggctgtctgg 50 atcaggaaac tgaagactct ctgcttttge cacagcagtt cctgcagctt 100 ccttgaggtg tgaacccaca tccctgccce cagggccacc tgcaggacgc 150 cgacacctac ccctcagcag acgccggaga gaaatgagta gcaacaaaga 200 gcagcggtca gcagtgttcg tgatcctctt tgccctcatc accatcctca 250 tcctctacag ctccaacagt gccaatgagg tcttccatta cggctccctg 300 cggggccgta gccgcacc tgtcaacctc aagaagtgga gcatcactga 350 cggctatgtc cccattctcg gcaacaagac actgccctct cggtgccacc 400 agtgtgtgat tgtcagcagc tccagcacc tgctaggcac caagctgggc 450 cctgagatcg tcagctgat tgggcaacaa gaccacctac cgcgtcgtgg 550 cccattccag tgtgttccg gtgctgagg ggcccagga gtttgtcaac 600 cccattccag tgtgttccg gtgctgagga ggccccagga gtttgtcaac 600

cggacccctg aaaccgtgtt catcttctgg gggcccccga gcaagatgca 650 gaagccccag ggcagcctcg tgcgtgtgat ccagcgagcg ggcctggtgt 700 tececaaeat ggaageatat geegtetete eeggeegeat geggeaattt 750 gacgacctct tccggggtga gacgggcaag gacagggaga agtctcattc 800 gtggttgagc acaggctggt ttaccatggt gatcgcggtg gagttgtgtg 850 accacgtgca tgtctatggc atggtccccc ccaactactg cagccagcgg 900 ccccgcctcc agcgcatgcc ctaccactac tacgagccca aggggccgga 950 cgaatgtgtc acctacatcc agaatgagca cagtcgcaag ggcaaccacc 1000 accgcttcat caccgagaaa agggtcttct catcgtgggc ccagctgtat 1050 ggcatcacct tctcccaccc ctcctggacc taggccaccc agcctgtggg 1100 acctcaggag ggtcagagga gaagcagcct ccgcccagcc gctaggccag 1150 ggaccatett etggeeaate aaggettget ggagtgtete eeageeaate 1200 agggeettga ggaggatgta teeteeagee aateagggee tggggaatet 1250 gttggcgaat cagggatttg ggagtctatg tggttaatca ggggtgtctt 1300 tettgtgcag teagggtetg egeacagtea ateagggtag agggggtatt 1350 tetgagteaa tetgaggeta aggaeatgte ettteeeatg aggeettggt 1400 teagageece aggaatggae eececaatea eteeceacte tgetgggata 1450 atggggtcct gtcccaagga gctgggaact tggtgttgcc ccctcaattt 1500 ccagcaccag aaagagagat tgtgtggggg tagaagctgt ctggaggccc 1550 ggccagagaa tttgtggggt tgtggaggtt gtgggggcgg tggggaggtc 1600 ccagaggtgg gaggctggca tccaggtctt ggctctgccc tgagaccttg 1650 gacaaaccct tccccctctc tgggcaccct tctgcccaca ccagtttcca 1700 gtgcggagtc tgagaccctt tccacctccc ctacaagtgc cctcgggtct 1750 gtcctccccg tctggaccct cccagccact atcccttgct ggaaggctca 1800 gctctttggg gggtctgggg tgacctcccc acctcctgga aaactttagg 1850 gtatttttgc gcaaactcct tcagggttgg gggactctga aggaaacggg 1900 acaaaacctt aagctgtttt cttagcccct cagccagctg ccattagctt 1950 ggctcttaaa gggccaggcc tccttttctg ccctctagca gggaggtttt 2000 ccaactgttg gaggcgcctt tggggctgcc cctttgtctg gagtcactgg 2050

<210> 56

<211> 299

<212> PRT

<213> Homo sapiens

<400> 56

Met Ser Ser Asn Lys Glu Gln Arg Ser Ala Val Phe Val Ile Leu 1 5 10 15

Phe Ala Leu Ile Thr Ile Leu Ile Leu Tyr Ser Ser Asn Ser Ala
20 25 30

As Glu Val Phe His Tyr Gly Ser Leu Arg Gly Arg Ser Arg Arg 35 40 45

Pro Val Asn Leu Lys Lys Trp Ser Ile Thr Asp Gly Tyr Val Pro
50 55 60

Ile Leu Gly Asn Lys Thr Leu Pro Ser Arg Cys His Gln Cys Val
65 70 75

Ile Val Ser Ser Ser His Leu Leu Gly Thr Lys Leu Gly Pro 80 85 90

Glu Ile Glu Arg Ala Glu Cys Thr Ile Arg Met Asn Asp Ala Pro $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Thr Thr Gly Tyr Ser Ala Asp Val Gly Asn Lys Thr Thr Tyr Arg 110 115 120

Val Val Ala His Ser Ser Val Phe Arg Val Leu Arg Arg Pro Gln 125 130 135

Glu Phe Val Asn Arg Thr Pro Glu Thr Val Phe Ile Phe Trp Gly
140 145 150

Pro Pro Ser Lys Met Gln Lys Pro Gln Gly Ser Leu Val Arg Val 155 160 165

Ile Gln Arg Ala Gly Leu Val Phe Pro Asn Met Glu Ala Tyr Ala

Val Ser Pro Gly Arg Met Arg Gln Phe Asp Asp Leu Phe Arg Gly
185 190 195

Glu Thr Gly Lys Asp Arg Glu Lys Ser His Ser Trp Leu Ser Thr
200 205 210

Gly Trp Phe Thr Met Val Ile Ala Val Glu Leu Cys Asp His Val
215 220 225

His Val Tyr Gly Met Val Pro Pro Asn Tyr Cys Ser Gln Arg Pro 230 235 240

Arg Leu Gln Arg Met Pro Tyr His Tyr Tyr Glu Pro Lys Gly Pro 245 250 255

Asp Glu Cys Val Thr Tyr Ile Gln Asn Glu His Ser Arg Lys Gly 260 265 270

Asn His His Arg Phe Ile Thr Glu Lys Arg Val Phe Ser Ser Trp 275 280 285

Ala Gln Leu Tyr Gly Ile Thr Phe Ser His Pro Ser Trp Thr 290 295

<210> 57

<211> 4277

<212> DNA

<213> Homo sapiens

<400> 57

gtttctcata gttggcgtct tctaaaggaa aaacactaaa atgaggaact 50 cagcggaccg ggagcgacga agcttgaggg aagcatccct agctgttggc 100 gcagaggggc gaggctgaag ccgagtggcc cgaggtgtct gaggggctgg 150 ggcaaaggtg aaagagtttc agaacaagct tcctggaacc catgacccat 200 gaagtcttgt cgacatttat accgtctgag ggtagcagct cgaaactaga 250 agaagtggag tgttgccagg gacggcagta tctctttgtg tgaccctggc 300 ggcctatggg acgttggctt cagacctttg tgatacacca tgctgcgtg 350 gacgatgacg gcgtggagag gaatgaggcc tgaggtcaca ctggcttgcc 400 tcctcctage cacagcaggc tgctttgctg acttgaacga ggtccctcag 450 gtcaccgtcc agcctgcgtc caccgtccag aagcccggag gcactgtgat 500 cttgggctgc gtggtggaac ctccaaggat gaatgtaacc tggcgctga 550 atggaaagga gctgaatggc tcggatgat ctctgggtgt cctcatcacc 600 cacgggaccc tcgtcatcac tgcccttaac aaccacctg tgggacggta 650

ccagtgtgtg gcccggatgc ctgcgggggc tgtggccagc gtgccagcca 700 ctgtgacact agccaatctc caggacttca agttagatgt gcagcacgtg 750 attgaagtgg atgagggaaa cacagcagtc attgcctgcc acctgcctga 800 gagccacccc aaagcccagg tccggtacag cgtcaaacaa gagtggctgg 850 aggeetecag aggtaactae etgateatge eetcagggaa eetceagatt 900 gtgaatgcca gccaggagga cgagggcatg tacaagtgtg cagcctacaa 950 cccagtgacc caggaagtga aaacctccgg ctccagcgac aggctacgtg 1000 tgcgccgctc caccgctgag gctgcccgca tcatctaccc cccagaggcc 1050 caaaccatca tcgtcaccaa aggccagagt ctcattctgg agtgtgtggc 1100 cagtggaatc ccaccccac gggtcacctg ggccaaggat gggtccagtg 1150 tcaccggcta caacaagacg cgcttcctgc tgagcaacct cctcatcgac 1200 accaccageg aggaggacte aggeacetae egetgeatgg eegacaatgg 1250 ggttgggcag cccggggcag cggtcatcct ctacaatgtc caggtgtttg 1300 aaccccctga ggtcaccatg gagctatccc agctggtcat cccctggggc 1350 cagagtgcca agettacetg tgaggtgegt gggaacecee egeeeteegt 1400 gctgtggctg aggaatgctg tgcccctcat ctccagccag cgcctccggc 1450 teteçegeag ggeeetgege gtgeteagea tggggeetga ggaegaagge 1500 gtctaccagt gcatggccga gaacgaggtt gggagcgccc atgccgtagt 1550 ccagctgcgg acctccaggc caagcataac cccaaggcta tggcaggatg 1600 ctgagctggc tactggcaca cctcctgtat caccctccaa actcggcaac 1650 cctgagcaga tgctgagggg gcaaccggcg ctccccagac ccccaacgtc 1700 agtggggcct gcttccccga agtgtccagg agagaagggg cagggggctc 1750 ecgcegagge teccateate eteagetege ecegeacete caagacagae 1800 tcatatgaac tggtgtggcg gcctcggcat gagggcagtg gccgggcgcc 1850 aatcctctac tatgtggtga aacaccgcaa gcaggtcaca aattcctctg 1900 acgattggac catctctggc attccagcca accagcaccg cctgaccctc 1950 accagacttg accccgggag cttgtatgaa gtggagatgg cagcttacaa 2000 ctgtgcggga gagggccaga cagccatggt caccttccga actggacggc 2050

ggcccaaacc cgagatcatg gccagcaaag agcagcagat ccagagagac 2100 gaccetggag ceagteecca gageageage cagecagace aeggeegeet 2150 ctcccccca gaageteeg acaggeeeac cateteeacg geeteegaga 2200 cctcagtgta cgtgacctgg attccccgtg ggaatggtgg gttcccaatc 2250 cagteettee gtgtggagta caagaaqeta aagaaagtgg gagaetggat 2300 tetggecace agegecatee ecceategeg getgteegtg gagateaegg 2350 gcctagagaa aggcacctcc tacaagtttc gagtccgggc tctgaacatg 2400 ctgggggaga gcgagcccag cgcccctct cggccctacg tggtgtcggg 2450 ctacageggt egegtgtacg agaggeeegt ggeaggteet tatateacet 2500 tcacggatgc ggtcaatgag accaccatca tgctcaagtg gatgtacatc 2550 ccagcaagta acaacaacac cccaatccat ggcttttata tctattatcg 2600 acccacagac agtgacaatg atagtgacta caagaaggat atggtggaag 2650 gggacaagta ctggcactcc atcagccacc tgcagccaga gacctcctac 2700 gacattaaga tgcagtgctt caatgaagga ggggagagcg agttcagcaa 2750 cgtgatgatc tgtgagacca aagctcggaa gtcttctggc cagcctggtc 2800 gactgccacc cccaactctg gccccaccac agccgcccct tcctgaaacc 2850 atagagegge eggtgggeac tggggeeatg gtggeteget ecagegaeet 2900 gccctatctg attgtcgggg tcgtcctggg ctccatcgtt ctcatcatcg 2950 tcaccttcat ccccttctgc ttgtggaggg cctggtctaa gcaaaaacat 3000 acaacagacc tgggttttcc tcgaagtgcc cttccaccct cctgcccgta 3050 tactatggtg ccattgggag gacteccagg ccaccaggec agtggacage 3100 cctacctcag tggcatcagt ggacgggcct gtgctaatgg gatccacatg 3150 aatagggget geeeetegge tgeagtggge taceegggea tgaageeeca 3200 gcagcactgc ccaggcgagc ttcagcagca gagtgacacc agcagcctgc 3250 tgaggcagac ccatcttggc aatggatatg acccccaaag tcaccagatc 3300 acgaggggtc ccaagtctag cccggacgag ggctctttct tatacacact 3350 geoegaegae tecaeteace agetgetgea geoecateae gaetgetgee 3400 aacgccagga gcagcctgct gctgtgggcc agtcaggggt gaggagagcc 3450 cccgacagtc ctgtcctgga agcagtgtgg gaccctccat ttcactcagg 3500

gcccccatgc tgcttgggcc ttgtgccagt tgaagaggtg gacagtcctg 3550 actectgeea agtgagtgga ggagactggt gteeccagea eecegtaggg 3600 gcctacgtag gacaggaacc tggaatgcag ctctccccgg ggccactggt 3650 gcgtgtgtct tttgaaacac cacctctcac aatttaggca gaagctgata 3700 tcccagaaag actatatatt gtttttttt taaaaaaaaa agaagaaaaa 3750 agagacagag aaaattggta tttatttttc tattatagcc atatttatat 3800 atttatgcac ttgtaaataa atgtatatgt tttataattc tggagagaca 3850 taaggagtcc tacccgttga ggttggagag ggaaaataaa gaagctgcca 3900 cctaacagga gtcacccagg aaagcaccgc acaggctggc gcgggacaga 3950 ctcctaacct ggggcctctg cagtggcagg cgaggctgca ggaggcccac 4000 agataagctg gcaagaggaa ggatcccagg cacatggttc atcacgagca 4050 tgagggaaca gcaaggggca cggtatcaca gcctggagac acccacacag 4100 atggctggat ccggtgctac gggaaacatt ttcctaagat gcccatqaga 4150 acagaccaag atgtgtacag cactatgagc attaaaaaac cttccagaat 4200 caataatccg tggcaacata tctctgtaaa aacaaacact gtaacttcta 4250 aataaatgtt tagtcttccc tgtaaaa 4277

<210> 58

<211> 1115

<212> PRT

<213> Homo sapiens

<400> 58

Met Leu Arg Gly Thr Met Thr Ala Trp Arg Gly Met Arg Pro Glu 1 5 10 15

Val Thr Leu Ala Cys Leu Leu Leu Ala Thr Ala Gly Cys Phe Ala 20 25 30

Asp Leu Asn Glu Val Pro Gln Val Thr Val Gln Pro Ala Ser Thr 35 40 45

Val Gln Lys Pro Gly Gly Thr Val Ile Leu Gly Cys Val Val Glu
50 55 60

Pro Pro Arg Met Asn Val Thr Trp Arg Leu Asn Gly Lys Glu Leu
65 70 75

Asn Gly Ser Asp Asp Ala Leu Gly Val Leu Ile Thr His Gly Thr 80 85 90

Leu	Val	Ile	Thr	Ala 95	Leu	Asn	Asn	His	Thr 100	Val	Gly	Arg	Tyr	Gln 105
Cys	Val	Ala	Arg	Met 110	Pro	Ala	Gly	Ala	Val 115	Ala	Ser	Val	Pro	Ala 120
Thr	Val	Thr	Leu	Ala 125	Asn	Leu	Gln	Asp	Phe 130	Lys	Leu	Asp	Val	Gln 135
His	Val	Ile	Glu	Val 140	Asp	Glu	Gly	Asn	Thr 145	Ala	Val	Ile	Ala	Cys 150
His	Leu	Pro	Glu	Ser 155	His	Pro	Lys	Ala	Gln 160	Val	Arg	Tyr	Ser	Val 165
Lys	Gln	Glu	Trp	Leu 170	Glu	Ala	Ser	Arg	Gly 175	Asn	Tyr	Leu	Ile	Met 180
Pro	Ser	Gly	Asn	Leu 185	Gln	Ile	Val	Asn	Ala 190	Ser	Gln	Glu	Asp	Glu 195
Gly	Met	Tyr	Lys	Cys 200	Ala	Ala	Tyr	Asn	Pro 205	Val	Thr	Gln	Glu	Val 210
Lys	Thr	Ser	Gly	Ser 215	Ser	Asp	Arg	Leu	Arg 220	Val	Arg	Arg	Ser	Thr 225
Ala	Glu	Ala	Ala	Arg 230	Ile	Ile	Tyr	Pro	Pro 235	Glu	Ala	Gln	Thr	Ile 240
Ile	Val	Thr	Lys	Gly 245	Gln	Ser	Leu	Ile	Leu 250	Glu	Cys	Val	Ala	Ser 255
Gly	Ile	Pro	Pro	Pro 260	Arg	Val	Thr	Trp	Ala 265	Lys	Asp	Gly	Ser	Ser 270
Val	Thr	Gly	Tyr	Asn 275	Lys	Thr	Arg	Phe	Leu 280	Leu	Ser	Asn	Leu	Leu 285
Ile	Asp	Thr	Thr	Ser 290	Glu	Glu	Asp	Ser	Gly 295	Thr	Tyr	Arg	Cys	Met 300
Ala	Asp	Asn	Gly	Val 305	Gly	Gln	Pro	Gly	Ala 310	Ala	Val	Ile	Leu	Tyr 315
Asn	Val	Gln	Val	Phe 320	Glu	Pro	Pro	Glu	Val 325	Thr	Met	Glu	Leu	Ser 330
Gln	Leu	Val	Ile	Pro 335	Trp	Gly	Gln	Ser	Ala 340	Lys	Leu	Thr	Cys	Glu 345
Val	Arg	Gly	Asn	Pro 350	Pro	Pro	Ser	Val	Leu 355	Trp	Leu	Arg	Asn	Ala 360
Val	Pro	Leu	Ile	Ser 365	Ser	Gln	Arg	Leu	Arg 370	Leu	Ser	Arg	Arg	Ala 375

Leu	Arg	Val	Leu	Ser 380	Met	Gly	Pro	Glu	Asp 385	Glu	Gly	Val	Tyr	Gln 390
Cys	Met	Ala	Glu	Asn 395	Glu	Val	Gly	Ser	Ala 400	His	Ala	Val	Val	Gln 405
Leu	Arg	Thr	Ser	Arg 410	Pro	Ser	Ile	Thr	Pro 415	Arg	Leu	Trp	Gln	Asp 420
Ala	Glu	Leu	Ala	Thr 425	Gly	Thr	Pro	Pro	Val 430	Ser	Pro	Ser	Lys	Leu 435
Gly	Asn	Pro	Glu	Gln 440	Met	Leu	Arg	Gly	Gln 445	Pro	Ala	Leu	Pro	Arg 450
Pro	Pro	Thr	Ser	Val 455	Gly	Pro	Ala	Ser	Pro 460	Lys	Суѕ	Pro	Gly	Glu 465
Lys	Gly	Gln	Gly	Ala 470	Pro	Ala	Glu	Ala	Pro 475	Ile	Ile	Leu	Ser	Ser 480
Pro	Arg	Thr	Ser	Lys 485	Thr	Asp	Ser	Tyr	Glu 490	Leu	Val	Trp	Arg	Pro 495
Arg	His	Glu	Gly	Ser 500	Gly	Arg	Ala	Pro	Ile 505	Leu	Tyr	Tyr	Val	Val 510
Lys	His	Arg	Lys	Gln 515	Val	Thr	Asn	Ser	Ser 520	Asp	Asp	Trp	Thr	Ile 525
Ser	Gly	Ile	Pro	Ala 530	Asn	Gln	His	Arg	Leu 535	Thr	Leu	Thr	Arg	Leu 540
Asp	Pro	Gly	Ser	Leu 545	Tyr	Glu	Val	Glu	Met 550	Ala	Ala	Tyr	Asn	Cys 555
Ala	Gly	Glu	Gly	Gln 560	Thr	Ala	Met	Val	Thr 565	Phe	Arg	Thr	Gly	Arg 570
Arg	Pro	Lys	Pro	Glu 575	Ile	Met	Ala	Ser	Lys 580	Glu	Gln	Gln	Ile	Gln 585
Arg	Asp	Asp	Pro	Gly 590	Ala	Ser	Pro	Gln	Ser 595	Ser	Ser	Gln	Pro	Asp 600
His	Gly	Arg	Leu	Ser 605	Pro	Pro	Glu	Ala	Pro 610	Asp	Arg	Pro	Thr	Ile 615
Ser	Thr	Ala	Ser	Glu 620	Thr	Ser	Val	Tyr	Val 625	Thr	Trp	Ile	Pro	Arg 630
Gly	Asn	Gly	Gly	Phe 635	Pro	Ile	Gln	Ser	Phe 640	Arg	Val	Glu	Tyr	Lys 645
Lys	Leu	Lys	Lys	Val 650	Gly	Asp	Trp	Ile	Leu 655	Ala	Thr	Ser	Ala	Ile 660

Pro	Pro	Ser	Arg	Leu 665	Ser	Val	Glu	Ile	Thr 670	Gly	Leu	Glu	Lys	Gly 675
Thr	Ser	Tyr	Lys	Phe 680	Arg	Val	Arg	Ala	Leu 685	Asn	Met	Leu	Gly	Glu 690
Ser	Glu	Pro	Ser	Ala 695	Pro	Ser	Arg	Pro	Tyr 700	Val	Val	Ser	Gly	Tyr 705
Ser	Gly	Arg	Val	Tyr 710	Glu	Arg	Pro	Val	Ala 715	Gly	Pro	Tyr	Ile	Thr 720
Phe	Thr	Asp	Ala	Val 725	Asn	Glu	Thr	Thr	Ile 730	Met	Leu	Lys	Trp	Met 735
Tyr	Ile	Pro	Äla	Ser 740	Asn	Asn	Asn	Thr	Pro 745	Ile	His	Gly	Phe	Tyr 750
Ile	Tyr	Tyr	Arg	Pro 755	Thr	Asp	Ser	Asp	Asn 760	Asp	Ser	Asp	Tyr	Lys 765
Lys	Asp	Met	Val	Glu 770	Gly	Asp	Lys	Tyr	Trp 775	His	Ser	Ile	Ser	His 780
Leu	Gln	Pro	Glu	Thr 785	Ser	Tyr	Asp	Ile	Lys 790	Met	Gln	Cys	Phe	Asn 795
Glu	Gly	Gly	Glu	Ser 800	Glu	Phe	Ser	Asn	Val 805	Met	Ile	Cys	Glu	Thr 810
Lys	Ala	Arg	Lys	Ser 815	Ser	Gly	Gln	Pro	Gly 820	Arg	Leu	Pro	Pro	Pro 825
Thr	Leu	Ala	Pro	Pro 830	Gln	Pro	Pro	Leu	Pro 835	Glu	Thr	Ile	Glu	Arg 840
Pro	Val	Gly	Thr	Gly 845	Ala	Met	Val	Ala	Arg 850	Ser	Ser	Asp	Leu	Pro 855
Tyr	Leu	Ile	Val	Gly 860	Val	Val	Leu	Gly	Ser 865	Ile	Val	Leu	Ile	Ile 870
Val	Thr	Phe	Ile	Pro 875	Phe	Суѕ	Leu	Trp	Arg 880	Ala	Trp	Ser	Lys	Gln 885
Lys	His	Thr	Thr	Asp 890	Leu	Gly	Phe	Pro	Arg 895	Ser	Ala	Leu	Pro	Pro 900
Ser	Cys	Pro	Tyr	Thr 905	Met	Val	Pro	Leu	Gly 910	Gly	Leu	Pro	Gly	His 915
Gln	Ala	Ser	Gly	Gln 920	Pro	Tyr	Leu	Ser	Gly 925	Ile	Ser	Gly	Arg	Ala 930
Cys	Ala	Asn	Gly	Ile 935	His	Met	Asn	Arg	Gly 940	Cys	Pro	Ser	Ala	Ala 945

Val Gly Tyr Pro Gly Met Lys Pro Gln Gln His Cys Pro Gly Glu Leu Gln Gln Ser Asp Thr Ser Ser Leu Leu Arg Gln Thr His 965 970 Leu Gly Asn Gly Tyr Asp Pro Gln Ser His Gln Ile Thr Arg Gly 980 985 Pro Lys Ser Ser Pro Asp Glu Gly Ser Phe Leu Tyr Thr Leu Pro 995 1000 Asp Asp Ser Thr His Gln Leu Leu Gln Pro His His Asp Cys Cys 1010 1015 1020 Gln Arg Gln Glu Gln Pro Ala Ala Val Gly Gln Ser Gly Val Arg 1030 1025 Arg Ala Pro Asp Ser Pro Val Leu Glu Ala Val Trp Asp Pro Pro 1040 1045 Phe His Ser Gly Pro Pro Cys Cys Leu Gly Leu Val Pro Val Glu 1055 1060 1065 Glu Val Asp Ser Pro Asp Ser Cys Gln Val Ser Gly Gly Asp Trp 1070 1075 Cys Pro Gln His Pro Val Gly Ala Tyr Val Gly Gln Glu Pro Gly 1085 1090 Met Gln Leu Ser Pro Gly Pro Leu Val Arg Val Ser Phe Glu Thr 1100 1105 1110 Pro Pro Leu Thr Ile 1115 <210> 59 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe gggaaacaca gcagtcattg cctgc 25 <210> 60 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 60 gcacacgtag cctgtcgctg gagc 24

```
<210> 61
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 caccccaaag cccaggtccg gtacagcgtc aaacaagagt gg 42
<210> 62
<211> 1661
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 678
<223> unknown base
<400> 62
 egggaggetg ggtegteatg ateeggacee cattgtegge etetgeecat 50
 egectgetee teccaggete eegeggeega eeeeegegea acatgeagee 100
 cacgggeege gagggtteec gegegeteag eeggeggtat etgeggegte 150
 tgctgctcct gctactgctg ctgctgctgc ggcagcccgt aacccgcgcg 200
 gagaccacge egggegeece cagageeete tecaegetgg geteeceeag 250
 cctcttcacc acgccgggtg tccccagcgc cctcactacc ccaggcctca 300
 ctacgccagg cacccccaaa accctggacc ttcggggtcg cgcgcaggcc 350
 ctgatgcgga gtttcccact cgtggacggc cacaatgacc tgccccaggt 400
 cctgagacag cgttacaaga atgtgcttca ggatgttaac ctgcgaaatt 450
 teagecatgg teagaceage etggaeagge ttagagaegg cetegtgggt 500
 gcccagttct ggtcagcctc cgtctcatgc cagtcccagg accagactgc 550
 cgtgcgcctc gccctggagc agattgacct cattcaccgc atgtgtgcct 600
 cctactctga actcgagctt gtgacctcag ctgaaggtct gaacagctct 650
 caaaagctgg cctgcctcat tggcgtgnag ggtggtcact cactggacag 700
 cagectetet gtgetgegea gtttetatgt getgggggtg egetaeetga 750
 cacttacctt cacctgcagt acaccatggg cagagagttc caccaagttc 800
 agacaccaca tgtacaccaa cgtcagcgga ttgacaagct ttggtgagaa 850
```

agtagtagag gagttgaacc gcctgggcat gatgatagat ttgtcctatg 900 catcggacac cttgataaga agggtcctgg aagtgtctca ggctcctgtg 950 atcttctccc actcagctgc cagagctgtg tgtgacaatt tgttgaatgt 1000 tecegatgat atectgeage ttetgaagaa eggtggeate gtgatggtga 1050 cactgtccat gggggtgctg cagtgcaacc tgcttgctaa cgtgtccact 1100 gtggcagatc actttgacca catcagggca gtcattggat ctgagttcat 1150 cgggattggt ggaaattatg acgggactgg ccggttccct caggggctgg 1200 aggatgtgtc cacataccca gtcctgatag aggagttgct gagtcgtasc 1250 tggagcgagg aagagcttca aggtgtcctt cgtggaaacc tgctgcgggt 1300 cttcagacaa gtggaaaagg tgagagagga gagcagggeg cagagccccg 1350 tggaggctga gtttccatat gggcaactga gcacatcctg ccactcccac 1400 ctcgtgcctc agaatggaca ccaggctact catctggagg tgaccaagca 1450 gccaaccaat cgggtcccct ggaggtcctc aaatgcctcc ccataccttg 1500 ttccaggect tgtggctgct gccaccatcc caaccttcac ccagtggctc 1550 tgctgacaca gtcggtcccc gcagaggtca ctgtggcaaa gcctcacaaa 1600 gccccctctc ctagttcatt cacaagcata tgctgagaat aaacatgtta 1650 cacatggaaa a 1661

```
<210> 63
```

<220>

<221> unsure

<222> 196, 386

<223> unknown amino acid

<400> 63

Met Gln Pro Thr Gly Arg Glu Gly Ser Arg Ala Leu Ser Arg Arg
1 5 10 15

Gln Pro Val Thr Arg Ala Glu Thr Thr Pro Gly Ala Pro Arg Ala 35 40 45

Leu Ser Thr Leu Gly Ser Pro Ser Leu Phe Thr Thr Pro Gly Val
50 55 60

<211> 487

<212> PRT

<213> Homo sapiens

Pro	Ser	Ala	Leu	Thr 65	Thr	Pro	Gly	Leu	Thr 70	Thr	Pro	Gly	Thr	Pro 75
Lys	Thr	Leu	Asp	Leu 80	Arg	Gly	Arg	Ala	Gln 85	Ala	Leu	Met	Arg	Ser 90
Phe	Pro	Leu	Val	Asp 95	Gly	His	Asn	Asp	Leu 100	Pro	Gln	Val	Leu	Arg 105
Gln	Arg	Tyr	Lys	Asn 110	Val	Leu	Gln	Asp	Val 115	Asn	Leu	Arg	Asn	Phe 120
Ser	His	Gly	Gln	Thr 125	Ser	Leu	Asp	Arg	Leu 130	Arg	Asp	Gly	Leu	Val 135
Gly	Ala	Gln	Phe	Trp 140	Ser	Ala	Ser	Val	Ser 145	Cys	Gln	Ser	Gln	Asp 150
Gln	Thr	Ala	Val	Arg 155	Leu	Ala	Leu	Glu	Gln 160	Ile	Asp	Leu	Ile	His 165
Arg	Met	Суѕ	Ala	Ser 170	Tyr	Ser	Glu	Leu	Glu 175	Leu	Val	Thr	Ser	Ala 180
Glu	Gly	Leu	Asn	Ser 185	Ser	Gln	Lys	Leu	Ala 190	Cys	Leu	Ile	Gly	Val 195
Xaa	Gly	Gly	His	Ser 200	Leu	Asp	Ser	Ser	Leu 205	Ser	Val	Leu	Arg	Ser 210
Phe	Tyr	Val	Leu	Gly 215	Val	Arg	Tyr	Leu	Thr 220	Leu	Thr	Phe	Thr	Cys 225
Ser	Thr	Pro	Trp	Ala 230	Glu	Ser	Ser	Thr	Lys 235	Phe	Arg	His	His	Met 240
Tyr	Thr	Asn	Val	Ser 245	Gly	Leu	Thr	Ser	Phe 250	Gly	Glu	Lys	Val	Val 255
Glu	Glu	Leu	Asn	Arg 260	Leu	Gly	Met	Met	Ile 265	Asp	Leu	Ser	Tyr	Ala 270
Ser	Asp	Thr	Leu	Ile 275	Arg	Arg	Val	Leu	Glu 280	Val	Ser	Gln	Ala	Pro 285
Val	Ile	Phe	Ser	His 290	Ser	Ala	Ala	Arg	Ala 295	Val	Cys	Asp	Asn	Leu 300
Leu	Asn	Val	Pro	Asp 305	Asp	Ile	Leu	Gln	Leu 310	Leu	Lys	Asn	Gly	Gly 315
Ile	Val	Met	Val	Thr 320	Leu	Ser	Met	Gly	Val 325	Leu	Gln	Cys	Asn	Leu 330
Leu	Ala	Asn	Val	Ser 335	Thr	Val	Ala	Asp	His 340	Phe	Asp	His	Ile	Arg 345

```
Ala Val Ile Gly Ser Glu Phe Ile Gly Ile Gly Gly Asn Tyr Asp
                 350
Gly Thr Gly Arg Phe Pro Gln Gly Leu Glu Asp Val Ser Thr Tyr
                                                          375
                                     370
                 365
Pro Val Leu Ile Glu Glu Leu Leu Ser Arg Xaa Trp Ser Glu Glu
                                     385
                 380
Glu Leu Gln Gly Val Leu Arg Gly Asn Leu Leu Arg Val Phe Arg
                 395
Gln Val Glu Lys Val Arg Glu Glu Ser Arg Ala Gln Ser Pro Val
                 410
Glu Ala Glu Phe Pro Tyr Gly Gln Leu Ser Thr Ser Cys His Ser
                                     430
                 425
His Leu Val Pro Gln Asn Gly His Gln Ala Thr His Leu Glu Val
                                     445
                 440
Thr Lys Gln Pro Thr Asn Arg Val Pro Trp Arg Ser Ser Asn Ala
                                                          465
                                     460
                 455
Ser Pro Tyr Leu Val Pro Gly Leu Val Ala Ala Ala Thr Ile Pro
                                     475
                 470
Thr Phe Thr Gln Trp Leu Cys
                 485
<210> 64
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 64
ccttcacctg cagtacacca tgggc 25
<210> 65
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 65
gtcacacaca gctctggcag ctgag 25
<210> 66
<211> 47
<212> DNA
<213> Artificial Sequence
```

<220> <223> Synthetic oligonucleotide probe

<400> 66 ccaagttcag acaccacatg tacaccaacg tcagcggatt gacaagc 47

<210> 67

<211> 1564

<212> DNA

<213> Homo sapiens

<400> 67 tgctaggctc tgtcccacaa tgcacccgag agcaggagct gaaagcctct 50 aacacccaca gatccctcta tgactgcaat gtgaggtgtc cggctttgct 100 ggcccagcaa gcctgataag catgaagctc ttatctttgg tggctgtggt 150

cgggtgtttg ctggtgcccc cagctgaagc caacaagagt tctgaagata 200 tccggtgcaa atgcatctgt ccaccttata gaaacatcag tgggcacatt 250 tacaaccaga atgtatccca gaaggactgc aactgcctgc acgtggtgga 300 geceatgeea gtgeetggee atgaegtgga ggeetaetge etgetgtgeg 350 agtgcaggta cgaggagcgc agcaccacca ccatcaaggt catcattgtc 400 atctacctgt ccgtggtggg tgccctgttg ctctacatgg ccttcctgat 450 gctggtggac cctctgatcc gaaagccgga tgcatacact gagcaactgc 500 acaatgagga ggagaatgag gatgctcgct ctatggcagc agctgctgca 550 tccctcgggg gaccccgagc aaacacagtc ctggagcgtg tggaaggtgc 600 ccagcagcgg tggaagctgc aggtgcagga gcagcggaag acagtcttcg 650 atcggcacaa gatgctcagc tagatgggct ggtgggttg ggtcaaggcc 700 ccaacaccat ggctgccagc ttccaggctg gacaaagcag ggggctactt 750 ctcccttccc tcggttccag tcttcccttt aaaagcctgt ggcatttttc 800 ctccttctcc ctaactttag aaatgttgta cttggctatt ttgattaggg 850 aagagggatg tggtctctga tctctgttgt cttcttgggt ctttggggtt 900 gaagggaggg ggaaggcagg ccagaaggga atggagacat tcgaggcggc 950 cagctctgag tcttgggaat gttgttaccc ttggaagata aagctgggtc 1050 ttcaggaact cagtgtctgg gaggaaagca tggcccagca ttcagcatgt 1100

ctcaggagtg gatgcgatct gtctctcctg gctccactct tgccgccttc 1000

gttcctttct gcagtggttc ttatcaccac ctccctccca gccccggcgc 1150

tecageccea geoceagete cagecetgag gacagetetg atggagage 1200
tgggccccet gageceactg ggtetteagg gtgcaetgga agetggtgt 1250
cgetgtecce tgtgcaette tegeactggg geatggagtg eccatgeata 1300
ctetgetgee ggteceetea ectgeaettg aggggtetgg geagteeete 1350
cteteceag tgtecaeagt eactgageea gaeggteggt tggaaeatga 1400
gaetegagge tgagegtgga tetgaaeace aeageeeetg taettgggtt 1450
geetettgte ectgaaette gttgtaeeag tgeatggaga gaaaattttg 1500
teetettgte ttagagttgt gtgtaaatea aggaageeat eattaaattg 1550
ttttatteet etea 1564

<210> 68

<211> 183

<212> PRT

<213> Homo sapiens

<400> 68

Met Lys Leu Leu Ser Leu Val Ala Val Val Gly Cys Leu Leu Val 1 5 10

Pro Pro Ala Glu Ala Asn Lys Ser Ser Glu Asp Ile Arg Cys Lys 20 25 30

Cys Ile Cys Pro Pro Tyr Arg Asn Ile Ser Gly His Ile Tyr Asn 35 40 45

Gln Asn Val Ser Gln Lys Asp Cys Asn Cys Leu His Val Val Glu
50 55 60

Pro Met Pro Val Pro Gly His Asp Val Glu Ala Tyr Cys Leu Leu
65 70 75

Cys Glu Cys Arg Tyr Glu Glu Arg Ser Thr Thr Thr Ile Lys Val 80 85 90

Ile Ile Val Ile Tyr Leu Ser Val Val Gly Ala Leu Leu Tyr 95 100 105

Met Ala Phe Leu Met Leu Val Asp Pro Leu Ile Arg Lys Pro Asp 110 115 120

Ala Tyr Thr Glu Gln Leu His Asn Glu Glu Glu Asn Glu Asp Ala 125 130 135

Arg Ser Met Ala Ala Ala Ala Ala Ser Leu Gly Gly Pro Arg Ala 140 145 150

Asn Thr Val Leu Glu Arg Val Glu Gly Ala Gln Gln Arg Trp Lys 155 160 165 Leu Gln Val Gln Glu Gln Arg Lys Thr Val Phe Asp Arg His Lys 170 175 180

Met Leu Ser

<210> 69

<211> 3170

<212> DNA

<213> Homo sapiens

<400> 69

agegggtete gettgggtte egetaattte tgteetgagg egtgagaetg 50 agttcatagg gtcctgggtc cccgaaccag gaagggttga gggaacacaa 100 tetgcaagee eeegegaeee aagtgagggg eeeegtgttg gggteeteee 150 tecetttgea tteceaecee teegggettt gegtetteet ggggaeceee 200 tegeegggag atggeeget tgatgeggag caaggatteg teetgetgee 250 tgctcctact ggccgcggtg ctgatggtgg agagctcaca gatcggcagt 300 tcgcgggcca aactcaactc catcaagtcc tctctgggcg gggagacgcc 350 tggtcaggcc gccaatcgat ctgcgggcat gtaccaagga ctggcattcg 400 gcggcagtaa gaagggcaaa aacctggggc aggcctaccc ttgtagcagt 450 gataaggagt gtgaagttgg gaggtattgc cacagtcccc accaaggatc 500 atcggcctgc atggtgtgtc ggagaaaaaa gaagcgctgc caccgagatg 550 gcatgtgctg ccccagtacc cgctgcaata atggcatctg tatcccagtt 600 actgaaagca tottaaccco toacatocog gototggatg gtactoggca 650 cagagatcga aaccacggtc attactcaaa ccatgacttg ggatggcaga 700 atctaggaag accacacat aagatgtcac atataaaagg gcatgaagga 750 gacccctgcc tacgatcatc agactgcatt gaagggtttt gctgtgctcg 800 tcatttctgg accaaaatct gcaaaccagt gctccatcag ggggaagtct 850 gtaccaaaca acgcaagaag ggttctcatg ggctggaaat tttccagcgt 900 tgcgactgtg cgaagggcct gtcttgcaaa gtatggaaag atgccaccta 950 ctcctccaaa gccagactcc atgtgtgtca gaaaatttga tcaccattga 1000 ggaacatcat caattgcaga ctgtgaagtt gtgtatttaa tgcattatag 1050 catggtggaa aataaggttc agatgcagaa gaatggctaa aataagaaac 1100

gtgataagaa tatagatgat cacaaaaagg gagaaagaaa acatgaactg 1150 aatagattag aatgggtgac aaatgcagtg cagccagtgt ttccattatg 1200 caacttgtct atgtaaataa tgtacacatt tgtggaaaat gctattatta 1250 agagaacaag cacacagtgg aaattactga tgagtagcat gtgactttcc 1300 aagagtttag gttgtgctgg aggagaggtt tccttcagat tgctgattgc 1350 ttatacaaat aacctacatg ccagatttct attcaacgtt agagtttaac 1400 aaaatactcc tagaataact tgttatacaa taggttctaa aaataaaatt 1450 gctaaacaag aaatgaaaac atggagcatt gttaatttac aacagaaaat 1500 taccttttga tttgtaacac tacttctgct gttcaatcaa gagtcttggt 1550 agataagaaa aaaatcagtc aatatttcca aataattgca aaataatggc 1600 cagttgttta ggaaggcctt taggaagaca aataaataac aaacaaacag 1650 ccacaaatac tttttttca aaattttagt tttacctgta attaataaga 1700 actgatacaa gacaaaaaca gttccttcag attctacgga atgacagtat 1750 atctctcttt atcctatgtg attcctgctc tgaatgcatt atattttcca 1800 aactataccc ataaattgtg actagtaaaa tacttacaca gagcagaatt 1850 ttcacagatg gcaaaaaaat ttaaagatgt ccaatatatg tgggaaaaga 1900 gctaacagag agatcattat ttcttaaaga ttggccataa cctatatttt 1950 gatagaatta gattggtaaa tacatgtatt catacatact ctgtggtaat 2000 agagacttaa gctggatctg tactgcactg gagtaagcaa gaaaattggg 2050 aaaacttttt cgtttgttca ggttttggca acacatagat catatgtctg 2100 aggcacaagt tggctgttca tctttgaaac caggggatgc acagtctaaa 2150 tgaatatctg catgggattt gctatcataa tatttactat gcagatgaat 2200 tcagtgtgag gtcctgtgtc cgtactatcc tcaaattatt tattttatag 2250 tgctgagatc ctcaaataat ctcaatttca ggaggtttca caaaatgtac 2300 tcctgaagta gacagagtag tgaggtttca ttgccctcta taagcttctg 2350 actagccaat ggcatcatcc aattttcttc ccaaacctct gcagcatctg 2400 ctttattgcc aaagggctag tttcggtttt ctgcagccat tgcggttaaa 2450 aaatataagt aggataactt gtaaaacctg catattgcta atctatagac 2500 accacagttt ctaaattctt tgaaaccact ttactacttt ttttaaactt 2550

aactcagttc taaatacttt gtctgagca caaaacaata aaaggttatc 2600 ttatagtcgt gactttaaac tttttgtagac cacaattcac tttttagttt 2650 tcttttactt aaatcccatc tgcagtctca aatttaagtt ctcccagtag 2700 agattgagtt tgagcctgta tatctattaa aaatttcaac ttcccacata 2750 tatttactaa gatgattaag acttacatt tctgcacagg tctgcaaaaa 2800 caaaaattat aaactagtcc atccaagaac caaagtttgt ataaacaggt 2850 tgctataagc ttgtgaaatg aaaatggaac atttcaatca aacatttcct 2900 atataacaat tattatatt acaatttggt ttctgcaata ttttcttat 2950 gtccaccctt ttaaaaatta ttatttgaag taatttatt acaggaaatg 3000 ttaatgagat gtatttctt atagagatat ttcttacaga aagctttgta 3050 gcagaatata tttgcagcta ttgacttgt aatttaggaa aaatgtataa 3100 taagataaaa tctattaaat ttttccctc taaaaactga aaaaaaaaa 3150 aaaaaaaaaa aaaaaaaaa 3170

<210> 70

<211> 259

<212> PRT

<213> Homo sapiens

<400> 70

Met Ala Ala Leu Met Arg Ser Lys Asp Ser Ser Cys Cys Leu Leu 1 5 10 15

Leu Leu Ala Ala Val Leu Met Val Glu Ser Ser Gln Ile Gly Ser 20 25 30

Ser Arg Ala Lys Leu Asn Ser Ile Lys Ser Ser Leu Gly Glu 35 40 45

Thr Pro Gly Gln Ala Ala Asn Arg Ser Ala Gly Met Tyr Gln Gly 50 55 60

Leu Ala Phe Gly Gly Ser Lys Lys Gly Lys Asn Leu Gly Gln Ala
65 70 75

Tyr Pro Cys Ser Ser Asp Lys Glu Cys Glu Val Gly Arg Tyr Cys
80 85 90

His Ser Pro His Gln Gly Ser Ser Ala Cys Met Val Cys Arg Arg 95 100 105

Lys Lys Lys Arg Cys His Arg Asp Gly Met Cys Cys Pro Ser Thr 110 115 120 Arg Cys Asn Asn Gly Ile Cys Ile Pro Val Thr Glu Ser Ile Leu 125 130 135

Thr Pro His Ile Pro Ala Leu Asp Gly Thr Arg His Arg Asp Arg 140 145 150

Asn His Gly His Tyr Ser Asn His Asp Leu Gly Trp Gln Asn Leu 155 160 165

Gly Arg Pro His Thr Lys Met Ser His Ile Lys Gly His Glu Gly 170 175 180

Asp Pro Cys Leu Arg Ser Ser Asp Cys Ile Glu Gly Phe Cys Cys 185 190 195

Ala Arg His Phe Trp Thr Lys Ile Cys Lys Pro Val Leu His Gln $200 \hspace{1.5cm} 205 \hspace{1.5cm} 210 \hspace{1.5cm}$

Gly Glu Val Cys Thr Lys Gln Arg Lys Lys Gly Ser His Gly Leu 215 220 225

Glu Ile Phe Gln Arg Cys Asp Cys Ala Lys Gly Leu Ser Cys Lys 230 235 240

Val Trp Lys Asp Ala Thr Tyr Ser Ser Lys Ala Arg Leu His Val 245 250 255

Cys Gln Lys Ile

<210> 71

<211> 1809

<212> DNA

<213> Homo sapiens

<400> 71

teteaatetg etgacetegt gateegeetg accettgtaat ecacetacet 50 tggeeteeca aagtgttggg attacaggeg tgageeaceg egeeeggeea 100 acateacegtt tetaaaaatt gatteetea aatteatgge aaatattee 150 etteeetta aceteetatg teagaatgag gaaggatage tgeatetatt 200 tagteagtt teeattgeata gtaatatte eatgtagtat tetetaagtt 250 atattetagt aatteeatag tettagatta taggetetaa eataeettgg 300 aaaataeettg atgteetaa aageeettggg eagaaattee gtattgetga 350 ggattegte tettaaeee ettetaaagt eateeegeet tggeteagga 400 tettggaagage tegeaceae aaaaatggea aacateacea geteecagaa 450 tettggaeeag tegaaagete egagtteggg eeagtttaee aecaceecaa 500 gtacacagea gaatagtaea agteaceeta eaacateacea teettgggaee 550

ctcaagcccc caacatccca gtcctcagtc ctcagtcatc ttgacttcaa 600 atctcaacct gagccatccc cagttcttag ccagttgagc cagcgacaac 650 agcaccagag ccaggcagtc actgttecte etectggttt ggagteettt 700 cetteccagg caaaactteg agaateaaca eetggagaca gteeetecae 750 tgtgaacaag cttttgcagc ttcccagcac gaccattgaa aatatctctg 800 tgtctgtcca ccagccacag cccaaacaca tcaaacttgc taagcggcgg 850 atacccccag cttctaagat cccagcttct gcagtggaaa tgcctggttc 900 agcagatgtc acaggattaa atgtgcagtt tggggctctg gaatttgggt 950 cagaaccttc tctctctgaa tttggatcag ctccaagcag tgaaaatagt 1000 aatcagattc ccatcagctt gtattcgaag tctttaagtg agcctttgaa 1050 tacatettta teaatgacea gtgeagtaea gaaeteeaca tatacaaett 1100 ccgtcattac ctcctgcagt ctgacaagct catcactgaa ttctgctagt 1150 ccagtagcaa tgtcttcctc ttatgaccag agttctgtgc ataacaggat 1200 cccataccaa agccctgtga gttcatcaga gtcagctcca ggaaccatca 1250 tgaatggaca tggtggtggt cgaagtcagc agacactaga cagtaagtat 1300 agcagcaagc tactcttgtc atggctggtg ccaaccaaac agaggaagag 1350 gatagctcac gtgatgtgga aaacaccagt tggtcaatgg ctcattcgtt 1400 aaaaagcagc ccttttgctt ttttgttttt ggaccaggtg ttggctgtgg 1450 tgttattaga aatgtcttaa ccacagcaag aaggaggtgg tggtctcata 1500 ttcttctgcc ctaatcagac tgcaccacaa gtgcagcata cagtatgcat 1550 tttaaagatg cttgggccag gcggggtggc tgatgcccat aatcccagtg 1600 ctttgggggg ccaaggcagg cagattgccc aagctcagga gtttgagacc 1650 accetgggea acatggtgaa actetgtete taetaaaata egaaaaacta 1700 gccgggtgtg gtggcggcgc gtgcctgtaa tcccagctac ttgggaggct 1750 gaggcacaag aatcgcttga gccagcttgg gctacaaagt gagactccgt 1800 ctgaaaaga 1809

<210> 72

<211> 363

<212> PRT

<213> Homo sapiens

<	<400> Met 1	72 Cys	Phe	Lys	Ala 5	Leu	Gly	Arg	Asn	Ser 10	Val	Leu	Leu	Arg	Ile 15
	Cys	Ser	Phe	Ile	Pro 20	Leu	Leu	Lys	Ser	Ser 25	Val	Leu	Gly	Ser	Gly 30
	Phe	Gly	Glu	Leu	Ala 35	Pro	Pro	Lys	Met	Ala 40	Asn	Ile	Thr	Ser	Ser 45
	Gln	Ile	Leu	Asp	Gln 50	Leu	Lys	Ala	Pro	Ser 55	Leu	Gly	Gln	Phe	Thr 60
	Thr	Thr	Pro	Ser	Thr 65	Gln	Gln	Asn	Ser	Thr 70	Ser	His	Pro	Thr	Thr 75
	Thr	Thr	Ser	Trp	Asp 80	Leu	Lys	Pro	Pro	Thr 85	Ser	Gln	Ser	Ser	Val 90
	Leu	Ser	His	Leu	Asp 95	Phe	Lys	Ser	Gln	Pro 100	Glu	Pro	Ser	Pro	Val 105
	Leu	Ser	Gln	Leu	Ser 110	Gln	Arg	Gln	Gln	His 115	Gln	Ser	Gln	Ala	Val 120
	Thr	Val	Pro	Pro	Pro 125	Gly	Leu	Glu	Ser	Phe 130	Pro	Ser	Gln	Ala	Lys 135
	Leu	Arg	Glu	Ser	Thr 140	Pro	Gly	Asp	Ser	Pro 145	Ser	Thr	Val	Asn	Lys 150
	Leu	Leu	Gln	Leu	Pro 155	Ser	Thr	Thr	Ile	Glu 160		Ile	Ser	Val	Ser 165
	Val	His	Gln	Pro	Gln 170	Pro	Lys	His	Ile	Lys 175		Ala	Lys	Arg	Arg 180
	Ile	Pro	Pro	Ala	Ser 185	Lys	Ile	Pro	Ala	Ser 190		Val	Glu	Met	Pro 195
	Gly	Ser	Ala	Asp	Val 200		Gly	Leu	Asn	Val 205		Phe	Gly	Ala	Leu 210
	Glu	Phe	Gly	Ser	Glu 215		Ser	Leu	Ser	Glu 220		Gly	Ser	Ala	Pro 225
	Ser	Ser	Glu	Asn	Ser 230		Gln	Ile	Pro	235		Leu	Tyr	Ser	Lys 240
	Ser	Leu	Ser	Glu	Pro 245		Asn	Thr	Ser	Leu 250		Met	Thr	Ser	Ala 255
	Val	Gln	Asn	ser	Thr 260		Thr	Thr	Ser	Val 265		Thr	Ser	Cys	Ser 270
	Leu	Thr	Ser	Ser	Ser	Leu	Asn	Ser	Ala	Ser	Pro	Val	Ala	Met	Ser

275 280 285

Ser Ser Tyr Asp Gln Ser Ser Val His Asn Arg Ile Pro Tyr Gln 290 295 300

Ser Pro Val Ser Ser Ser Glu Ser Ala Pro Gly Thr Ile Met Asn 305 310 315

Gly His Gly Gly Gly Arg Ser Gln Gln Thr Leu Asp Ser Lys Tyr 320 325 330

Ser Ser Lys Leu Leu Ser Trp Leu Val Pro Thr Lys Gln Arg 335 340 345

Lys Arg Ile Ala His Val Met Trp Lys Thr Pro Val Gly Gln Trp 350 355 360

Leu Ile Arg

<210> 73

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 73
aattcatggc aaatatttcc cttccc 26

<210> 74

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 74

tggtaaactg gcccaaactc gg 22

<210> 75

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 75

ttaaagtcat ccgtccttgg ctcaggattt ggagagcttg caccaccaaa 50

<210> 76

<211> 1989

<212> DNA

<213> Homo sapiens

<400> 76 gccgagtggg acaaagcctg gggctgggcg ggggccatgg cgctgccatc 50 ccgaatcctg ctttggaaac ttgtgcttct gcagagctct gctgttctcc 100 tgcactcagc ggtggaggag acggacgcgg ggctgtacac ctgcaacctg 150 caccatcact actgccacct ctacgagage ctggccgtcc gcctggaggt 200 caccgacggc cccccggcca cccccgccta ctgggacggc gagaaggagg 250 tgctggcggt ggcgcggc gcacccgcgc ttctgacctg cgtgaaccgc 300 gggcacgtgt ggaccgaccg gcacgtggag gaggctcaac aggtggtgca 350 ctgggaccgg cagccgccg gggtcccgca cgaccgcgcg gaccgcctgc 400 tggacctcta cgcgtcgggc gagcgccgcg cctacgggcc cctttttctg 450 cgcgaccgcg tggctgtggg cgcggatgcc tttgagcgcg gtgacttctc 500 actgcgtatc gagccgctgg aggtcgccga cgagggcacc tactcctgcc 550 acctgcacca ccattactgt ggcctgcacg aacgccgcgt cttccacctg 600 acggtcgccg aaccccacgc ggagccgccc ccccggggct ctccgggcaa 650 cggctccagc cacageggcg ccccaggccc agaccccaca ctggcgcgcg 700 gccacaacgt catcaatgtc atcgtccccg agagecgage ccaettette 750 cagcagetgg getacgtget ggccaegetg etgetettea teetgetaet 800 ggtcactgtc ctcctggccg cccgcaggcg ccgcggaggc tacgaatact 850 cggaccagaa gtcgggaaag tcaaagggga aggatgttaa cttggcggag 900 ttcgctgtgg ctgcagggga ccagatgctt tacaggagtg aggacatcca 950 gctagattac aaaaacaaca tcctgaagga gagggcggag ctggcccaca 1000 gccccctgcc tgccaagtac atcgacctag acaaagggtt ccggaaggag 1050 aactgcaaat agggaggccc tgggctcctg gctgggccag cagctgcacc 1100 tetectgtet gtgeteeteg gggeatetee tgatgeteeg gggeteacee 1150 cccttccagc ggctggtccc gctttcctgg aatttggcct gggcgtatgc 1200 agaggeegee tecacaceee teeceeaggg gettggtgge ageatageee 1250 ccacccctgc ggcctttgct cacgggtggc cctgcccacc cctggcacaa 1300 ccaaaatccc actgatgccc atcatgccct cagacccttc tgggctctgc 1350 ccgctggggg cctgaagaca ttcctggagg acactcccat cagaacctgg 1400 cagccccaaa actggggtca gcctcagggc aggagtccca ctcccacgg 1450 gctctgctcg tccggggctg ggagatgtc ctgggagggg acactcccat 1500 cagaacttgg cagccttgaa gttggggtca gcctcggcag gagtcccact 1550 cctcctggggg tgctgcctgc caccaagagc tccccacct gtaccaccat 1600 gtgggactcc aggcaccatc tgttctcccc agggacctgc tgacttgaat 1650 gccagcctt gctcctgt gttgctttgg gccacctggg gctgcacccc 1700 ctgcccttc tctgcccat ccctacccta gccttgctct cagccacct 1750 gatagtcact gggctccctg tgacttctga ccctgacacc cctccctgg 1800 actctgcctg ggctggagtc tagggctggg gctacatttg gcttctgtac 1850 tggctgagga caggggaggg agtgaagttg gtttggggtg gcctgtgttg 1900 ccactctcag cacccacat ttgcatctgc tggtggacct gccaccatca 1950 caataaagtc cccatctgat ttttaaaaaa aaaaaaaa 1989

<210> 77

<211> 341

<212> PRT

<213> Homo sapiens

<400> 77

Met Ala	Leu Pro	Ser	Ara	Ile	Leu	Leu	Trp	Lys	Leu	Val	Leu	Leu
1	neu 110	5	5	_			10	_				15

Gln Ser Ser Ala Val Leu Leu His Ser Ala Val Glu Glu Thr Asp 20 25 30

Ala Gly Leu Tyr Thr Cys Asn Leu His His His Tyr Cys His Leu 35 40 45

Tyr Glu Ser Leu Ala Val Arg Leu Glu Val Thr Asp Gly Pro Pro 50 55 60

Ala Thr Pro Ala Tyr Trp Asp Gly Glu Lys Glu Val Leu Ala Val
65 70 75

Ala Arg Gly Ala Pro Ala Leu Leu Thr Cys Val Asn Arg Gly His 80 85 90

Val Trp Thr Asp Arg His Val Glu Glu Ala Gln Gln Val Val His
95 100 105

Trp Asp Arg Gln Pro Pro Gly Val Pro His Asp Arg Ala Asp Arg 110 115 120

Leu Leu Asp Leu Tyr Ala Ser Gly Glu Arg Arg Ala Tyr Gly Pro 125 130 135

Leu	Phe	Leu	Arg	Asp 140	Arg	Val	Ala	Val	Gly 145	Ala	Asp	Ala	Phe	Glu 150
Arg	Gly	Asp	Phe	Ser 155	Leu	Arg	Ile	Glu	Pro 160	Leu	Glu	Val	Ala	Asp 165
Glu	Gly	Thr	Tyr	Ser 170	Cys	His	Leu	His	His 175	His	Tyr	Cys	Gly	Leu 180
His	Glu	Arg	Arg	Val 185	Phe	His	Leu	Thr	Val 190	Ala	Glu	Pro	His	Ala 195
Glu	Pro	Pro	Pro	Arg 200	Gly	Ser	Pro	Gly	Asn 205	Gly	Ser	Ser	His	Ser 210
Gly	Ala	Pro	Gly	Pro 215	Asp	Pro	Thr	Leu	Ala 220	Arg	Gly	His	Asn	Val 225
Ile	Asn	Val	Ile	Val 230	Pro	Glu	Ser	Arg	Ala 235	His	Phe	Phe	Gln	Gln 240
Leu	Gly	Tyr	Val	Leu 245	Ala	Thr	Leu	Leu	Leu 250	Phe	Ile	Leu	Leu	Leu 255
Val	Thr	Val	Leu	Leu 260	Ala	Ala	Arg	Arg	Arg 265	Arg	Gly	Gly	Tyr	Glu 270
Tyr	Ser	Asp	Gln	Lys 275	Ser	Gly	Lys	Ser	Lys 280	Gly	Lys	Asp	Val	Asn 285
Leu	Ala	Glu	Phe	Ala 290	Val	Ala	Ala	Gly	Asp 295	Gln	Met	Leu	Tyr	Arg 300
Ser	Glu	Asp	Ile	Gln 305	Leu	Asp	Tyr	Lys	Asn 310	Asn	Ile	Leu	Lys	Glu 315
Arg	Ala	Glu	Leu	Ala 320		Ser	Pro	Leu	Pro 325		Lys	Tyr	Ile	Asp 330
Leu	Asp	Lys	Gly	Phe 335		Lys	Glu	Asn	Cys 340					
<210	> 78							•						

<210> 78

<211> 2243

<212> DNA

<213> Homo sapiens

<400> 78
cgccggaggc agcggcggcg tggcgcagcg gcgacatggc cgttgtctca 50
gaggacgact ttcagcacag ttcaaactcc acctacggaa ccacaagcag 100
cagtctccga gctgaccagg aggcactgct tgagaagctg ctggaccgcc 150

cgcccctgg cctgcagagg cccgaggacc gcttctgtgg cacatacatc 200

atcttcttca gcctgggcat tggcagtcta ctgccatgga acttctttat 250 cactgccaag gagtactgga tgttcaaact ccgcaactcc tccagcccag 300 ccaccgggga ggaccctgag ggctcagaca tcctgaacta ctttgagagc 350 taccttgccg ttgcctccac cgtgccctcc atgctgtgcc tggtggccaa 400 cttectgett gteaacaggg ttgeagteea cateegtgte etggeeteae 450 tgacggtcat cctggccatc ttcatggtga taactgcact ggtgaaggtg 500 gacacttcct cctggacccg tggttttttt gcggtcacca ttgtctgcat 550 ggtgatcctc agcggtgcct ccactgtctt cagcagcagc atctacggca 600 tgaccggctc ctttcctatg aggaactccc aagcactgat atcaggagga 650 gccatgggcg ggacggtcag cgccgtggcc tcattggtgg acttggctgc 700 atccagtgat gtgaggaaca gcgccctggc cttcttcctg acggccacca 750 tetteetegt getetgeatg ggaetetaee tgetgetgte eaggetggag 800 tatgccaggt actacatgag gcctgttctt gcggcccatg tgttttctgg 850 tgaagaggag cttccccagg actccctcag tgccccttcg gtggcctcca 900 gattcattga ttcccacaca ccccctctcc gccccatcct gaagaagacg 950 gccagcctgg gcttctgtgt cacctacgtc ttcttcatca ccagcctcat 1000 ctaccccgcc gtctgcacca acatcgagtc cctcaacaag ggctcgggct 1050 cactgtggac caccaagttt ttcatccccc tcactacctt cctcctgtac 1100 aactttgctg acctatgtgg ccggcagctc accgcctgga tccaggtgcc 1150 agggcccaac agcaaggcgc tcccagggtt cgtgctcctc cggacctgcc 1200 tcatccccct cttcgtgctc tgtaactacc agccccgcgt ccacctgaag 1250 actgtggtct tccagtccga tgtgtacccc gcactcctca gctccctgct 1300 ggggctcagc aacggctacc tcagcaccct ggccctcctc tacgggccta 1350 agattgtgcc cagggagctg gctgaggcca cgggagtggt gatgtccttt 1400 tatgtgtgct tgggcttaac actgggctca gcctgctcta ccctcctggt 1450 gcacctcatc tagaagggag gacacaagga cattggtgct tcagagcctt 1500 tgaagatgag aagagagtgc aggagggctg ggggccatgg aggaaaggcc 1550 taaagtttca cttggggaca gagagcagag cacactcggg cctcatccct 1600 cccaagatgc cagtgagcca cgtccatgcc cattccgtgc aaggcagata 1650

ttccagtcat attaacagaa cactcctgag acagttgaag aagaaatagc 1700 acaaatcagg ggtactccct tcacagctga tggttaacat tccaccttct 1750 ttctagccct tcaaagatgc tgccagtgtt cgccctagag ttattacaaa 1800 gccagtgcca aaacccagcc atgggctctt tgcaacctcc cagctgcgct 1850 cattccagct gacagcgaga tgcaagcaaa tgctcagctc tccttaccct 1900 gaaggggtet ecetggaatg gaagteeet ggeatggtea gteeteagge 1950 ccaagactca agtgtgcaca gacccctgtg ttctgcgggt gaacaactgc 2000 ccactaacca gactggaaaa cccagaaaga tgggccttcc atgaatgctt 2050 cattccagag ggaccagagg gcctccctgt gcaagggatc aagcatgtct 2100 ggcctgggtt ttcaaaaaaa gagggatcct catgacctgg tggtctatgg 2150 cctgggtcaa gatgagggtc tttcagtgtt cctgtttaca acatgtcaaa 2200 gccattggtt caagggcgta ataaatactt gcgtattcaa aaa 2243

<210> 79

<211> 475

<212> PRT

<213> Homo sapiens

<400> 79

Met Ala Val Val Ser Glu Asp Asp Phe Gln His Ser Ser Asn Ser

Thr Tyr Gly Thr Thr Ser Ser Leu Arg Ala Asp Gln Glu Ala

Leu Leu Glu Lys Leu Leu Asp Arg Pro Pro Pro Gly Leu Gln Arg

Pro Glu Asp Arg Phe Cys Gly Thr Tyr Ile Ile Phe Phe Ser Leu 50

Gly Ile Gly Ser Leu Leu Pro Trp Asn Phe Phe Ile Thr Ala Lys

Glu Tyr Trp Met Phe Lys Leu Arg Asn Ser Ser Pro Ala Thr

Gly Glu Asp Pro Glu Gly Ser Asp Ile Leu Asn Tyr Phe Glu Ser 95

Tyr Leu Ala Val Ala Ser Thr Val Pro Ser Met Leu Cys Leu Val 115 110

Ala Asn Phe Leu Leu Val Asn Arg Val Ala Val His Ile Arg Val 135 125

Leu	Ala	Ser	Leu	Thr 140	Val	Ile	Leu	Ala	Ile 145	Phe	Met	Val	Ile	Thr 150
Ala	Leu	Val	Lys	Val 155	Asp	Thr	Ser	Ser	Trp 160	Thr	Arg	Gly	Phe	Phe 165
Ala	Val	Thr	Ile	Val 170	Cys	Met	Val	Ile	Leu 175	Ser	Gly	Ala	Ser	Thr 180
Val	Phe	Ser	Ser	Ser 185	Ile	Tyr	Gly	Met	Thr 190	Gly	Ser	Phe	Pro	Met 195
Arg	Asn	Ser	Gln	Ala 200	Leu	Ile	Ser	Gly	Gly 205	Ala	Met	Gly	Gly	Thr 210
Val	Ser	Ala	Val	Ala 215	Ser	Leu	Val	Asp	Leu 220	Ala	Ala	Ser	Ser	Asp 225
Val	Arg	Asn	Ser	Ala 230	Leu	Ala	Phe	Phe	Leu 235	Thr	Ala	Thr	Ile	Phe 240
Leu	Val	Leu	Cys	Met 245	Gly	Leu	Tyr	Leu	Leu 250	Leu	Ser	Arg	Leu	Glu 255
Tyr	Ala	Arg	Tyr	Tyr 260	Met	Arg	Pro	Val	Leu 265	Ala	Ala	His	Val	Phe 270
Ser	Gly	Glu	Glu	Glu 275	Leu	Pro	Gln	Asp	Ser 280	Leu	Ser	Ala	Pro	Ser 285
Val	Ala	Ser	Arg	Phe 290	Ile	Asp	Ser	His	Thr 295	Pro	Pro	Leu	Arg	Pro 300
Ile	Leu	Lys	Lys	Thr 305	Ala	Ser	Leu	Gly	Phe 310	Cys	Val	Thr	Tyr	Val 315
Phe	Phe	Ile	Thr	Ser 320	Leu	Ile	Tyr	Pro	Ala 325	Val	Cys	Thr	Asn	Ile 330
Glu	Ser	Leu	Asn	Lys 335	Gly	Ser	Gly	Ser	Leu 340	Trp	Thr	Thr	Lys	Phe 345
Phe	Ile	Pro	Leu	Thr 350	Thr	Phe	Leu	Leu	Tyr 355	Asn	Phe	Ala	Asp	Leu 360
Cys	Gly	Arg	Gln	Leu 365	Thr	Ala	Trp	Ile	Gln 370	Val	Pro	Gly	Pro	Asn 375
Ser	Lys	Ala	Leu	Pro 380	Gly	Phe	Val	Leu	Leu 385	Arg	Thr	Cys	Leu	Ile 390
Pro	Leu	Phe	Val	Leu 395	Cys	Asn	Tyr	Gln	Pro 400	Arg	Val	His	Leu	Lys 405
Thr	Val	Val	Phe	Gln 410	Ser	Asp	Val	Tyr	Pro 415	Ala	Leu	Leu	Ser	Ser 420

•

```
Leu Leu Gly Leu Ser Asn Gly Tyr Leu Ser Thr Leu Ala Leu Leu
Tyr Gly Pro Lys Ile Val Pro Arg Glu Leu Ala Glu Ala Thr Gly
                                     445
                 440
Val Val Met Ser Phe Tyr Val Cys Leu Gly Leu Thr Leu Gly Ser
                                     460
Ala Cys Ser Thr Leu Leu Val His Leu Ile
                 470
<210> 80
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 80
ttttgcggtc accattgtct gc 22
<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 81
 cgtaggtgac acagaagccc agg 23
<210> 82
<211> 49
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 82
 tacggcatga ccggctcctt tcctatgagg aactcccagg cactgatat 49
 <210> 83
 <211> 1844
 <212> DNA
 <213> Homo sapiens
 <400> 83
 gacagtggag ggcagtggag aggaccgcgc tgtcctgctg tcaccaagag 50
 ctggagacac catctcccac cgagagtcat ggccccattg gccctgcacc 100
  tectegteet egtececate etecteagee tggtggeete eeaggactgg 150
```

aaggctgaac gcagccaaga ccccttcgag aaatgcatgc aggatcctga 200 ctatgagcag ctgctcaagg tggtgacctg ggggctcaat cggaccctga 250 agccccagag ggtgattgtg gttggcgctg gtgtggccgg gctggtggcc 300 gccaaggtgc tcagcgatgc tggacacaag gtcaccatcc tggaggcaga 350 taacaggatc gggggccgca tcttcaccta ccgggaccag aacacgggct 400 ggattgggga gctgggagcc atgcgcatgc ccagctctca caggatcctc 450 cacaagetet gecagggeet ggggeteaac etgaceaagt teaceeagta 500 cgacaagaac acgtggacgg aggtgcacga agtgaagctg cgcaactatg 550 tggtggagaa ggtgcccgag aagctgggct acgccttgcg tccccaggaa 600 aagggccact cgcccgaaga catctaccag atggctctca accaggccct 650 caaagacctc aaggcactgg gctgcagaaa ggcgatgaag aagtttgaaa 700 ggcacacgct cttggaatat cttctcgggg aggggaacct gagccggccg 750 gccgtgcagc ttctgggaga cgtgatgtcc gaggatggct tcttctatct 800 cagettegee gaggeeetee gggeeeacag etgeeteage gacagaetee 850 agtacagccg catcgtgggt ggctgggacc tgctgccgcg cgcgctgctg 900 agctcgctgt ccgggcttgt gctgttgaac gcgcccgtgg tggcgatgac 950 ccagggaccg cacgatgtgc acgtgcagat cgagacctct cccccggcgc 1000 ggaatctgaa ggtgctgaag gccgacgtgg tgctgctgac ggcgagcgga 1050 ccggcggtga agcgcatcac cttctcgccg ccgctgcccc gccacatgca 1100 ggaggcgctg cggaggctgc actacgtgcc ggccaccaag gtgttcctaa 1150 getteegeag geeettetgg egegaggage acattgaagg eggeeactea 1200 aacaccgatc gcccgtcgcg catgattttc tacccgccgc cgcgcgaggg 1250 cgcgctgctg ctggcctcgt acacgtggtc ggacgcggcg gcagcgttcg 1300 ccggcttgag ccgggaagag gcgttgcgct tggcgctcga cgacgtggcg 1350 gcattgcacg ggcctgtcgt gcgccagetc tgggacggca ccggcgtcgt 1400 caagegttgg geggaggace ageacageea gggtggettt gtggtacage 1450 cgccggcgct ctggcaaacc gaaaaggatg actggacggt cccttatggc 1500 egeatetaet ttgeeggega geacacegee taccegeaeg getgggtgga 1550

gacggcggtc aagtcggcgc tgcgcgccgc catcaagatc aacagccgga 1600 aggggcctgc atcggacacg gccagccccg aggggcacgc atctgacatg 1650 gaggggcagg ggcatgtgca tggggtggcc agcagcccct cgcatgacct 1700 ggcaaaggaa gaaggcagcc accctccagt ccaaggccag ttatctctcc 1750 aaaacacgac ccacacgagg acctcgcatt aaagtatttt cggaaaaaaa 1800 aaaaaaaaa aaaaaaaaa aaaaaaaaaa aaaa 1844 <210> 84 <211> 567 <212> PRT <213> Homo sapiens <400> 84 Met Ala Pro Leu Ala Leu His Leu Leu Val Leu Val Pro Ile Leu Leu Ser Leu Val Ala Ser Gln Asp Trp Lys Ala Glu Arg Ser Gln Asp Pro Phe Glu Lys Cys Met Gln Asp Pro Asp Tyr Glu Gln Leu Leu Lys Val Val Thr Trp Gly Leu Asn Arg Thr Leu Lys Pro Gln 55 Arg Val Ile Val Val Gly Ala Gly Val Ala Gly Leu Val Ala Ala Lys Val Leu Ser Asp Ala Gly His Lys Val Thr Ile Leu Glu Ala Asp Asn Arg Ile Gly Gly Arg Ile Phe Thr Tyr Arg Asp Gln Asn Thr Gly Trp Ile Gly Glu Leu Gly Ala Met Arg Met Pro Ser Ser 115 110 His Arg Ile Leu His Lys Leu Cys Gln Gly Leu Gly Leu Asn Leu 130 Thr Lys Phe Thr Gln Tyr Asp Lys Asn Thr Trp Thr Glu Val His Glu Val Lys Leu Arg Asn Tyr Val Val Glu Lys Val Pro Glu Lys

Leu Gly Tyr Ala Leu Arg Pro Gln Glu Lys Gly His Ser Pro Glu

Asp Ile Tyr Gln Met Ala Leu Asn Gln Ala Leu Lys Asp Leu Lys

190

170

185

Ala	Leu	Gly	Cys	Arg 200	Lys	Ala	Met	Lys	Lys 205	Phe	Glu	Arg	His	Thr 210
Leu	Leu	Glu	Tyr	Leu 215	Leu	Gly	Glu	Gly	Asn 220	Leu	Ser	Arg	Pro	Ala 225
Val	Gln	Leu	Leu	Gly 230	Asp	Val	Met	Ser	Glu 235	Asp	Gly	Phe	Phe	Tyr 240
Leu	Ser	Phe	Ala	Glu 245	Ala	Leu	Arg	Ala	His 250	Ser	Cys	Leu	Ser	Asp 255
Arg	Leu	Gln	Tyr	Ser 260	Arg	Ile	Val	Gly	Gly 265	Trp	Asp	Leu	Leu	Pro 270
Arg	Ala	Leu	Leu	Ser 275	Ser	Leu	Ser	Gly	Leu 280	Val	Leu	Leu	Asn	Ala 285
Pro	Val	Val	Ala	Met 290	Thr	Gln	Gly	Pro	His 295	Asp	Val	His	Val	Gln 300
Ile	Glu	Thr	Ser	Pro 305	Pro	Ala	Arg	Asn	Leu 310	Lys	Val	Leu	Lys	Ala 315
Asp	Val	. Val	Leu	Leu 320	Thr	Ala	Ser	Gly	Pro 325	Ala	Val	Lys	Arg	Ile 330
Thr	Phe	e Ser	Pro	Pro 335	Leu	Pro	Arg	His	Met 340	Gln	Glu	Ala	Leu	Arg 345
Arg	, Lev	ı His	Tyr	Val 350	Pro	Ala	Thr	Lys	Val 355	Phe	Leu	Ser	Phe	Arg 360
Arg	g Pro	o Ph∈	Trp	Arg 365		Glu	ı His	Ile	: Glu 370	Gly	Gly	His	Ser	Asn 375
Thr	Asp	Arç	g Pro	Ser 380	Arg	, Met	: Ile	Phe	385	Pro	Pro	Pro	Arg	Glu 390
Gly	/ Ala	a Lev	ı Lev	Leu 395		a Sei	Tyr	Thr	Trp 400	Ser	Asp	Ala	a Ala	Ala 405
Ala	a Ph	e Ala	a Gly	1 Leu 410		r Ar	g Glu	ı Glu	1 Ala 415	Lev	ı Arç	g Leu	ı Ala	Leu 420
Asp	o As	p Val	l Ala	Ala 425		ı His	s Gly	y Pro	val 430	l Val	L Ar	g Glr	n Leu	1 Trp 435
Ası	o Gl	y Th	r Gly	y Val 440		l Ly	s Arg	g Tr	o Ala 445	a Glu õ	Ası	o Gli	n His	Ser 450
Glı	n Gl	y Gl	y Phe	e Val		1 Gl:	n Pro	o Pro	o Ala 460	a Let	ı Trj	o Gli	n Thi	Glu 465
Ly	s As	p As	p Tr	o Thi 470		l Pr	о Ту:	r Gl	y Arc	g Ile 5	е Ту	r Ph	e Ala	a Gly 480

.

Glu	His	Thr	Ala	Tyr 485	Pro	His	Gly	Trp	Val 490	Glu	Thr	Ala	Val	Lys 495
Ser	Ala	Leu	Arg	Ala 500	Ala	Ile	Lys	Ile	Asn 505	Ser	Arg	Lys	Gly	Pro 510
Ala	Ser	Asp	Thr	Ala 515	Ser	Pro	Glu	Gly	His 520	Ala	Ser	Asp	Met	Glu 525
Gly	Gln	Gly	His	Val 530	His	Gly	Val	Ala	Ser 535	Ser	Pro	Ser	His	Asp 540
Leu	Ala	Lys	Glu	Glu 545	Gly	Ser	His	Pro	Pro 550	Val	Gln	Gly	Gln	Leu 555
Ser	Leu	Gln	Asn	Thr 560	Thr	His	Thr	Arg	Thr 565	Ser	His			

<210> 85 <211> 3316 <212> DNA

<213> Homo sapiens

<400> 85 ctgacatggc ctgactcggg acagctcaga gcagggcaga actggggaca 50 ctctgggccg gccttctgcc tgcatggacg ctctgaagcc accctgtctc 100 tggaggaacc acgagcgagg gaagaaggac agggactcgt gtggcaggaa 150 gaactcagag ccgggaagcc cccattcact agaagcactg agagatgcgg 200 cccctcgca gggtctgaat ttcctgctgc tgttcacaaa gatgcttttt 250 atctttaact ttttgttttc cccacttccg accccggcgt tgatctgcat 300 cctgacattt ggagctgcca tcttcttgtg gctgatcacc agacctcaac 350 ccgtcttacc tcttcttgac ctgaacaatc agtctgtggg aattgaggga 400 ggagcacgga agggggtttc ccagaagaac aatgacctaa caagttgctg 450 cttctcagat gccaagacta tgtatgaggt tttccaaaga ggactcgctg 500 tgtctgacaa tgggccctgc ttgggatata gaaaaccaaa ccagccctac 550 agatggctat cttacaaaca ggtgtctgat agagcagagt acctgggttc 600 tctttgctca gaataggcca gagtggatca tctccgaatt ggcttgttac 700 acgtactcta tggtagctgt acctctgtat gacaccttgg gaccagaagc 750 catcgtacat attgtcaaca aggctgatat cgccatggtg atctgtgaca 800 caccccaaaa ggcattggtg ctgataggga atgtagagaa aggcttcacc 850 ccgagcctga aggtgatcat ccttatggac ccctttgatg atgacctgaa 900 gcaaagaggg gagaagagtg gaattgagat cttatcccta tatgatgctg 950 agaacctagg caaagagcac ttcagaaaac ctgtgcctcc tagcccagaa 1000 gacctgagcg tcatctgctt caccagtggg accacaggtg accccaaagg 1050 agccatgata acccatcaaa atattgtttc aaatgctgct gcctttctca 1100 aatgtgtgga gcatgcttat gagcccactc ctgatgatgt ggccatatcc 1150 tacctccctc tggctcatat gtttgagagg attgtacagg ctgttgtgta 1200 cagctgtgga gccagagttg gattcttcca aggggatatt cggttgctgg 1250 ctgacgacat gaagactttg aagcccacat tgtttcccgc ggtgcctcga 1300 ctccttaaca ggatctacga taaggtacaa aatgaggcca agacaccctt 1350 gaagaagttc ttgttgaagc tggctgtttc cagtaaattc aaagagcttc 1400 aaaagggtat catcaggcat gatagtttct gggacaagct catctttgca 1450 aagatccagg acagcctggg cggaagggtt cgtgtaattg tcactggagc 1500 tgccccatg tccacttcag tcatgacatt cttccgggca gcaatgggat 1550 gtcaggtgta tgaagcttat ggtcaaacag aatgcacagg tggctgtaca 1600 tttacattac ctggggactg gacatcaggt cacgttgggg tgcccctggc 1650 ttgcaattac gtgaagctgg aagatgtggc tgacatgaac tactttacag 1700 tgaataatga aggagaggtc tgcatcaagg gtacaaacgt gttcaaagga 1750 tacctgaagg accctgagaa gacacaggaa gccctggaca gtgatggctg 1800 getteacaea ggagaeattg gtegetgget eeegaatgga aetetgaaga 1850 tcatcgaccg taaaaagaac attttcaagc tggcccaagg agaatacatt 1900 gcaccagaga agatagaaaa tatctacaac aggagtcaac cagtgttaca 1950 aatttttgta cacggggaga gcttacggtc atccttagta ggagtggtgg 2000 ttcctgacac agatgtactt ccctcatttg cagccaagct tggggtgaag 2050 ggctcctttg aggaactgtg ccaaaaccaa gttgtaaggg aagccatttt 2100 agaagacttg cagaaaattg ggaaagaaag tggccttaaa acttttgaac 2150 aggtcaaagc catttttctt catccagagc cattttccat tgaaaatggg 2200 ctcttgacac caacattgaa agcaaagcga ggagagcttt ccaaatactt 2250 tcggacccaa attgacagcc tgtatgagca catccaggat taggataagg 2300 tacttaagta cctgccggcc cactgtgcac tgcttgtgag aaaatggatt 2350 aaaaactatt cttacatttg ttttgccttt cctcctattt ttttttaacc 2400 tgttaaactc taaagccata gcttttgttt tatattgaga catataatgt 2450 gtaaacttag ttcccaaata aatcaatcct gtctttccca tcttcgatgt 2500 tgctaatatt aaggcttcag ggctactttt atcaacatgc ctgtcttcaa 2550 gateceagtt tatgttetgt gteetteete atgattteea acettaatae 2600 tattagtaac cacaagttca agggtcaaag ggaccctctg tgccttcttc 2650 tttgttttgt gataaacata acttgccaac agtctctatg cttatttaca 2700 tcttctactg ttcaaactaa gagattttta aattctgaaa aactgcttac 2750 aattcatgtt ttctagccac tccacaaacc actaaaattt tagttttagc 2800 ctatcactca tgtcaatcat atctatgaga caaatgtctc cgatgctctt 2850 ctgcgtaaat taaattgtgt actgaaggga aaagtttgat cataccaaac 2900 atttcctaaa ctctctagtt agatatctga cttgggagta ttaaaaattg 2950 ggtctatgac atactgtcca aaaggaatgc tgttcttaaa gcattattta 3000 cagtaggaac tggggagtaa atctgttccc tacagtttgc tgctgagctg 3050 gaagctgtgg gggaaggagt tgacaggtgg gcccagtgaa cttttccagt 3100 aaatqaagca agcactgaat aaaaacctcc tgaactggga acaaagatct 3150 acaggcaagc aagatgccca cacaacaggc ttattttctg tgaaggaacc 3200 aactgatctc ccccaccctt ggattagagt tcctgctcta ccttacccac 3250 agataacaca tgttgtttct acttgtaaat gtaaagtctt taaaataaac 3300 tattacagat aaaaaa 3316

<210> 86

<211> 739

<212> PRT

<213> Homo sapiens

<400> 86

Met Asp Ala Leu Lys Pro Pro Cys Leu Trp Arg Asn His Glu Arg
1 5 10 15

Gly Lys Lys Asp Arg Asp Ser Cys Gly Arg Lys Asn Ser Glu Pro 20 25 30

Gly Ser Pro His Ser Leu Glu Ala Leu Arg Asp Ala Ala Pro Ser

Gln	Gly	Leu	Asn	Phe 50	Leu	Leu	Leu	Phe	Thr 55		Met	Leu	Phe	Il 6
Phe	Asn	Phe	Leu	Phe 65	Ser	Pro	Leu	Pro	Thr 70	Pro	Ala	Leu	Ile	Cy:
Ile	Leu	Thr	Phe	Gly 80	Ala	Ala	Ile	Phe	Leu 85	Trp	Leu	Ile	Thr	Arq 90
Pro	Gln	Pro	Val	Leu 95	Pro	Leu	Leu	Asp	Leu 100	Asn	Asn	Gln	Ser	Va:
Gly	Ile	Glu	Gly	Gly 110	Ala	Arg	Lys	Gly	Val 115	Ser	Gln	Lys	Asn	Asr 120
Asp	Leu	Thr	Ser	Cys 125	Cys	Phe	Ser	Asp	Ala 130	Lys	Thr	Met	Tyr	Gl: 135
Val	Phe	Gln	Arg	Gly 140	Leu	Ala	Val	Ser	Asp 145	Asn	Gly	Pro	Cys	Le: 150
Gly	Tyr	Arg	Lys	Pro 155	Asn	Gln	Pro	Tyr	Arg 160	Trp	Leu	Ser	Tyr	Lys 165
Gln	Val	Ser	Asp	Arg 170	Ala	Glu	Tyr	Leu	Gly 175	Ser	Cys	Leu	Leu	His 180
Lys	Gly	Tyr	Lys	Ser 185	Ser	Pro	Asp	Gln	Phe 190	Val	Gly	Ile	Phe	Ala 195
Gln	Asn	Arg	Pro	Glu 200	Trp	Ile	Ile	Ser	Glu 205	Leu	Ala	Cys	Tyr	Thr 210
Tyr	Ser	Met	Val	Ala 215	Val	Pro	Leu	Tyr	Asp 220	Thr	Leu	Gly	Pro	Glu 225
Ala	Ile	Val	His	Ile 230	Val	Asn	Lys	Ala	Asp 235	Ile	Ala	Met	Val	Ile 240
Cys	Asp	Thr	Pro	Gln 245	Lys	Ala	Leu	Val	Leu 250	Ile	Gly	Asn	Val	Glu 255
Lys	Gly	Phe	Thr	Pro 260	Ser	Leu	Lys	Val	Ile 265	Ile	Leu	Met	Asp	Pro 270
Phe	Asp	Asp	Asp	Leu 275	Lys	Gln	Arg	Gly	Glu 280	Lys	Ser	Gly	Ile	Glu 285
Ile	Leu	Ser	Leu	Tyr 290	Asp	Ala	Glu	Asn	Leu 295	Gly	Lys	Glu	His	Phe 300
Arg	Lys	Pro	Val	Pro 305	Pro	Ser	Pro	Glu	Asp 310	Leu	Ser	Val	Ile	Cys 315
Phe	Thr	Ser	Glv	Thr	Thr	Glv	Asp	Pro	Lvs	Glv	Ala	Met	Tle	Thr

Phe Lys Leu Ala Gln Gly Glu Tyr Ile Ala Pro Glu Lys Ile Glu

Asn Ile Tyr Asn Arg Ser Gln Pro Val Leu Gln Ile Phe Val His 620 625 630

Gly Glu Ser Leu Arg Ser Ser Leu Val Gly Val Val Val Pro Asp 635 640 645

Thr Asp Val Leu Pro Ser Phe Ala Ala Lys Leu Gly Val Lys Gly 650 660

Ser Phe Glu Glu Leu Cys Gln Asn Gln Val Val Arg Glu Ala Ile 665 670 675

Leu Glu Asp Leu Gln Lys Ile Gly Lys Glu Ser Gly Leu Lys Thr
680 685 690

Phe Glu Gln Val Lys Ala Ile Phe Leu His Pro Glu Pro Phe Ser 695 700 705

Ile Glu Asn Gly Leu Leu Thr Pro Thr Leu Lys Ala Lys Arg Gly
710 715 720

Glu Leu Ser Lys Tyr Phe Arg Thr Gln Ile Asp Ser Leu Tyr Glu
725 730 735

His Ile Gln Asp

<210> 87

<211> 2725

<212> DNA

<213> Homo sapiens

<400> 87

ggaggcggg gcccggggc ccctaagcca ttcctgaagt catgggctgg 100 ccaggacatt ggtgaccgc caatccggta tggacgactg gaagcccagc 150 cccctcatca agccctttgg ggctcggaag aagcggagct ggtaccttac 200 ctggaagtat aaactgacaa accagcgggc cctggagga ttctgtcaga 250 caggggccgt gctttcctg ctggtgactg tcattgtcaa tatcaagttg 300 atcctggaca ctcggcagc catcagtgaa gccaatgaag acccagagcc 350 agagcaagac tatgatgagg ccctaggccg cctggagccc ccacggcgca 400 gaggcagtgg tccccggcgg gtcctggacg tagaggtgta ttcaagtcgc 450 agcaaagtat atgtggcagt ggatggcacc acggtgctgg aggatgaggc 500 ccgggagcag ggccggggca tccatgtcat tgtcctaac caggccaccg 550

gccacgtgat ggcaaaacgt gtgtttgaca cgtactcacc tcatgaggat 600 gaggccatgg tgctattcct caacatggta gcgcccggcc gagtgctcat 650 ctgcactgtc aaggatgagg gctccttcca cctcaaggac acagccaagg 700 gacacatggg ccttcgtggg acgaaaagga ggtcctgtct tcggggagaa 800 acattetaag teacetgeee tetetteetg gggggaeeca gteetgetga 850 agacagatgt gccattgagc tcagcagaag aggcagagtg ccactgggca 900 gacacagage tgaaccgtcg ccgccggcgc ttctgcagca aagttgaggg 950 ctatggaagt gtatgcagct gcaaggaccc cacacccatc gagttcagcc 1000 ctgacccact cccagacaac aaggtcctca atgtgcctgt ggctgtcatt 1050 gcagggaacc gacccaatta cctgtacagg atgctgcgct ctctgctttc 1100 agcccagggg gtgtctcctc agatgataac agttttcatt gacggctact 1150 atgaggaacc catggatgtg gtggcactgt ttggtctgag gggcatccag 1200 catactccca tcagcatcaa gaatgcccgc gtgtctcagc actacaaggc 1250 cagcctcact gccactttca acctgtttcc ggaggccaag tttgctgtgg 1300 ttctggaaga ggacctggac attgctgtgg attttttcag tttcctgagc 1350 caatccatcc acctactgga ggaggatgac agcctgtact gcatctctgc 1400 ctggaatgac caggggtatg aacacacggc tgaggaccca gcactactgt 1450 accgtgtgga gaccatgcct gggctgggct gggtgctcag gaggtccttg 1500 tacaaggagg agcttgagcc caagtggcct acaccggaaa agctctggga 1550 ttgggacatg tggatgcgga tgcctgaaca acgccggggc cgagagtgca 1600 teatecetga egttteeega teetaeeact ttggeategt eggeeteaac 1650 atgaatggct actttcacga ggcctacttc aagaagcaca agttcaacac 1700 ggttccaggt gtccagctca ggaatgtgga cagtctgaag aaagaagctt 1750 atgaagtgga agttcacagg ctgctcagtg aggctgaggt tctggaccac 1800 agcaagaacc cttgtgaaga ctctttcctg ccagacacag agggccacac 1850 ctacgtggcc tttattcgaa tggagaaaga tgatgacttc accacctgga 1900 cccagcttgc caagtgcctc catatctggg acctggatgt gcgtggcaac 1950 catcggggcc tgtggagatt gtttcggaag aagaaccact tcctggtggt 2000

<210> 88

<211> 660

<212> PRT

<213> Homo sapiens

<400> 88

Met Asp Asp Trp Lys Pro Ser Pro Leu Ile Lys Pro Phe Gly Ala 1 5 10 15

Arg Lys Lys Arg Ser Trp Tyr Leu Thr Trp Lys Tyr Lys Leu Thr 20 25 30

Asn Gln Arg Ala Leu Arg Arg Phe Cys Gln Thr Gly Ala Val Leu 35 40 45

Phe Leu Leu Val Thr Val Ile Val Asn Ile Lys Leu Ile Leu Asp 50 55 60

Thr Arg Arg Ala Ile Ser Glu Ala Asn Glu Asp Pro Glu Pro Glu
65 70 75

Gln Asp Tyr Asp Glu Ala Leu Gly Arg Leu Glu Pro Pro Arg Arg

Arg Gly Ser Gly Pro Arg Arg Val Leu Asp Val Glu Val Tyr Ser 95 100 105

Ser	Arg	Ser	Lys	Val 110	Tyr	Val	Ala	Val	Asp 115	Gly	Thr	Thr	Val	Leu 120
Glu	Asp	Glu	Ala	Arg 125	Glu	Gln	Gly	Arg	Gly 130	Ile	His	Val	Ile	Val 135
Leu	Asn	Gln	Ala	Thr 140	Gly	His	Val	Met	Ala 145	Lys	Arg	Val	Phe	Asp 150
Thr	Tyr	Ser	Pro	His 155	Glu	Asp	Glu	Ala	Met 160	Val	Leu	Phe	Leu	Asn 165
Met	Val	Ala	Pro	Gly 170	Arg	Val	Leu	Ile	Cys 175	Thr	Val	Lys	Asp	Glu 180
Gly	Ser	Phe	His	Leu 185	Lys	Asp	Thr	Ala	Lys 190	Ala	Leu	Leu	Arg	Ser 195
Leu	Gly	Ser	Gln	Ala 200	Gly	Pro	Ala	Leu	Gly 205	Trp	Arg	Asp	Thr	Trp 210
Ala	Phe	Val	Gly	Arg 215	Lys	Gly	Gly	Pro	Val 220	Phe	Gly	Glu	Lys	His 225
Ser	Lys	Ser	Pro	Ala 230	Leu	Ser	Ser	Trp	Gly 235	Asp	Pro	Val	Leu	Leu 240
Lys	Thr	Asp	Val	Pro 245	Leu	Ser	Ser	Ala	Glu 250	Glu	Ala	Glu	Cys	His 255
Trp	Ala	Asp	Thr	Glu 260		Asn	Arg	Arg	Arg 265		Arg	Phe	Cys	Ser 270
_				275					280			Asp		285
				290					295			Lys		300
				305					310			Asn		315
Ту	Arg	Met	Leu	320		Leu	Leu	. Ser	Ala 325		. Gly	v Val	Ser	Pro 330
				335	•				340	1		ı Glu		345
				350)				355	i				9ro 360
11	e Ser	: Ile	e Lys	365		Arç	, Val	. Sei	370		з Туг	. Lys	Ala	375
Le	ı Thr	Ala	Thr	? Phe 380		ı Leı	ı Ph∈	e Pro	385		a Lys	s Phe	: Ala	Val 390

Val	Leu	Glu	Glu	Asp 395	Leu	Asp	Ile	Ala	Val 400	Asp	Phe	Phe	Ser	Phe 405
Leu	Ser	Gln	Ser	Ile 410	His	Leu	Leu	Glu	Glu 415	Asp	Asp	Ser	Leu	Tyr 420
Cys	Ile	Ser	Ala	Trp 425	Asn	Asp	Gln	Gly	Tyr 430	Glu	His	Thr	Ala	Glu 435
Asp	Pro	Ala	Leu	Leu 440	Tyr	Arg	Val	Glu	Thr 445	Met	Pro	Gly	Leu	Gly 450
Trp	Val	Leu	Arg	Arg 455	Ser	Leu	Tyr	Lys	Glu 460	Glu	Leu	Glu	Pro	Lys 465
Trp	Pro	Thr	Pro	Glu 470	Lys	Leu	Trp	Asp	Trp 475	Asp	Met	Trp	Met	Arg 480
Met	Pro	Glu	Gln	Arg 485	Arg	Gly	Arg	Glu	Cys 490	Ile	Ile	Pro	Asp	Val 495
Ser	Arg	Ser	Tyr	His 500	Phe	Gly	Ile	Val	Gly 505	Leu	Asn	Met	Asn	Gly 510
Tyr	Phe	His	Glu	Ala 515	Tyr	Phe	Lys	Lys	His 520	Lys	Phe	Asn	Thr	Val 525
Pro	Gly	Val	Gln	Leu 530	Arg	Asn	Val	Asp	Ser 535	Leu	Lys	Lys	Glu	Ala 540
Tyr	Glu	Val	Glu	Val 545	His	Arg	Leu	Leu	Ser 550	Glu	Ala	Glu	Val	Leu 555
Asp	His	Ser	Lys	Asn 560	Pro	Cys	Glu	Asp	Ser 565	Phe	Leu	Pro	Asp	Thr 570
Glu	Gly	His	Thr	Tyr 575	Val	Ala	Phe	Ile	Arg 580		Glu	Lys	Asp	Asp 585
Asp	Phe	Thr	Thr	Trp 590	Thr	Gln	Leu	Ala	Lys 595		Leu	His	Ile	Trp 600
Asp	Leu	Asp	Val	Arg 605		Asn	His	Arg	Gly 610		Trp	Arg	Leu	Phe 615
Arg	Lys	Lys	Asn	His 620		Leu	Val	Val	Gly 625		Pro	Ala	Ser	Pro 630
Tyr	Ser	Val	. Lys	635		Pro	Ser	Val	Thr 640) Ile	Phe	Leu	Glu 645
Pro	Pro	Pro	Lys	650		Gly	Ala	Pro	Gly 655		Pro	Glu	Gln	Thr 660

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 89
 gatggcaaaa cgtgtgtttg acacg 25
<210> 90
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 90
 cctcaaccag gccacgggcc ac 22
 <210> 91
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 91
  cccaggcaga gatgcagtac aggc 24
 <210> 92
 <211> 26
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 92
  cctccagtag gtggatggat tggctc 26
 <210> 93
 <211> 47
  <212> DNA
  <213> Artificial Sequence
  <223> Synthetic oligonucleotide probe
  <400> 93
  ctcacctcat gaggatgagg ccatggtgct attcctcaac atggtag 47
  <210> 94
  <211> 3037
  <212> DNA
  <213> Homo sapiens
```

<400> 94 cggacgcgtg ggctgctggt gggaaggcct aaagaactgg aaagcccact 50 ctcttggaac caccacacct gtttaaagaa cctaagcacc atttaaagcc 100 actggaaatt tgttgtctag tggttgtggg tgaataaagg agggcagaat 150 ggatgatttc atctccatta gcctgctgtc tctggctatg ttggtgggat 200 gttacgtggc cggaatcatt cccttggctg ttaatttctc agaggaacga 250 ctgaagctgg tgactgtttt gggtgctggc cttctctgtg gaactgctct 300 ggcagtcatc gtgcctgaag gagtacatgc cctttatgaa gatattcttg 350 agggaaaaca ccaccaagca agtgaaacac ataatgtgat tgcatcagac 400 aaagcagcag aaaaatcagt tgtccatgaa catgagcaca gccacgacca 450 cacacagetg catgectata ttggtgttte cetegttetg ggettegttt 500 tcatgttgct ggtggaccag attggtaact cccatgtgca ttctactgac 550 gatccagaag cagcaaggtc tagcaattcc aaaatcacca ccacgctggg 600 tctggttgtc catgctgcag ctgatggtgt tgctttggga gcagcagcat 650 ctacttcaca gaccagtgtc cagttaattg tgtttgtggc aatcatgcta 700 cataaggcac cagctgcttt tggactggtt tccttcttga tgcatgctgg 750 cttagagcgg aatcgaatca gaaagcactt gctggtcttt gcattggcag 800 caccagttat gtccatggtg acatacttag gactgagtaa gagcagtaaa 850 gaagcccttt cagaggtgaa cgccacggga gtggccatgc ttttctctgc 900 cgggacattt ctttatgttg ccacagtaca tgtcctccct gaggtgggcg 950 gaatagggca cagccacaag cccgatgcca cgggagggag aggcctcagc 1000 cgcctggaag tggcagccct ggttctgggt tgcctcatcc ctctcatcct 1050 gtcagtagga caccagcatt aaatgttcaa ggtccagcct tggtccaggg 1100 ccgtttgcca tccagtgaga acagccggca cgtgacagct actcacttcc 1150 tcagtctctt gtctcacctt gcgcatctct acatgtattc ctagagtcca 1200 gaggggaggt gaggttaaaa cctgagtaat ggaaaagctt ttagagtaga 1250 aacacattta cgttgcagtt agctatagac atcccattgt gttatctttt 1300 aaaaggccct tgacattttg cgttttaata tttctcttaa ccctattctc 1350 agggaagatg gaatttagtt ttaaggaaaa gaggagaact tcatactcac 1400 aatgaaatag tgattatgaa aatacagtgt tctgtaatta agctatgtct 1450 ctttcttctt agtttagagg ctctgctact ttatccattg atttttaaca 1500 tggttcccac catgtaagac tggtgcttta gcatctatgc cacatgcgtt 1550 gatggaaggt catagcaccc actcacttag atgctaaagg tgattctagt 1600 taatctggga ttagggtcag gaaaatgata gcaagacaca ttgaaagctc 1650 tctttatact caaaagagat atccattgaa aagggatgtc tagagggatt 1700 taaacagctc ctttggcacg tgcctctctg aatccagcct gccattccat 1750 caaatggagc aggagaggtg ggaggagctt ctaaagaggt gactggtatt 1800 ttgtagcatt ccttgtcaag ttctcctttg cagaatacct gtctccacat 1850 tcctagagag gagccaagtt ctagtagttt cagttctagg ctttccttca 1900 agaacagtca gatcacaaag tgtctttgga aattaaggga tattaaattt 1950 taagtgattt ttggatggtt attgatatct ttgtagtagc tttttttaaa 2000 agactaccaa aatgtatggt tgtccttttt ttttgttttt tttttttta 2050 attatttctc ttagcagatc agcaatccct ctagggacct aaatactagg 2100 tcagctttgg cgacactgtg tcttctcaca taaccacctg tagcaagatg 2150 gatcataaat gagaagtgtt tgcctattga tttaaagctt attggaatca 2200 tgtctcttgt ctcttcgtct tttctttgct tttcttctaa cttttccctc 2250 tagcctctcc tcgccacaat ttgctgctta ctgctggtgt taatatttgt 2300 gtgggatgaa ttcttatcag gacaaccact tctcgaactg taataatgaa 2350 gataataata totttattot ttatocoott caaagaaatt acctttgtgt 2400 caaatgccgc tttgttgagc ccttaaaata ccacctcctc atgtgtaaat 2450 tgacacaatc actaatctgg taatttaaac aattgagata gcaaaagtgt 2500 ttaacagact aggataattt tttttcata tttgccaaaa tttttgtaaa 2550 ccctgtcttg tcaaataagt gtataatatt gtattattaa tttatttta 2600 ctttctatac catttcaaaa cacattacac taagggggaa ccaagactag 2650 tttcttcagg gcagtggacg tagtagtttg taaaaacgtt ttctatgacg 2700 cataagctag catgectatg atttatttee tteatgaatt tgteaetgga 2750 tcagcagctg tggaaataaa gcttgtgagc cctctgctgg ccacagtgag 2800 gaaagtagca caaataggat acagttgtat gtagtcattg gcaacaattg 2850 catacaattt tactaccaag agaaggtata gtatggaaag tccaaatgac 2900 ttccttgatt ggatgttaac agctgactgg tgtgagactt gaggtttcat 2950 ctagtccttc aaaactatat ggttgcctag attctctctg gaaactgact 3000 ttgtcaaata aatagcagat tgtagtgtca aaaaaaa 3037

<210> 95 <211> 307 <212> PRT <213> Homo sapiens

<400> 95

Met Asp Asp Phe Ile Ser Ile Ser Leu Leu Ser Leu Ala Met Leu

Val Gly Cys Tyr Val Ala Gly Ile Ile Pro Leu Ala Val Asn Phe

Ser Glu Glu Arg Leu Lys Leu Val Thr Val Leu Gly Ala Gly Leu

Leu Cys Gly Thr Ala Leu Ala Val Ile Val Pro Glu Gly Val His

Ala Leu Tyr Glu Asp Ile Leu Glu Gly Lys His His Gln Ala Ser

Glu Thr His Asn Val Ile Ala Ser Asp Lys Ala Ala Glu Lys Ser 85

Val Val His Glu His Glu His Ser His Asp His Thr Gln Leu His 100

Ala Tyr Ile Gly Val Ser Leu Val Leu Gly Phe Val Phe Met Leu 115

Leu Val Asp Gln Ile Gly Asn Ser His Val His Ser Thr Asp Asp 125

Pro Glu Ala Ala Arg Ser Ser Asn Ser Lys Ile Thr Thr Leu 140

Gly Leu Val Val His Ala Ala Ala Asp Gly Val Ala Leu Gly Ala 165 155

Ala Ala Ser Thr Ser Gln Thr Ser Val Gln Leu Ile Val Phe Val 175 170

Ala Ile Met Leu His Lys Ala Pro Ala Ala Phe Gly Leu Val Ser 190 185

Phe Leu Met His Ala Gly Leu Glu Arg Asn Arg Ile Arg Lys His 210 200

```
Leu Leu Val Phe Ala Leu Ala Ala Pro Val Met Ser Met Val Thr
Tyr Leu Gly Leu Ser Lys Ser Ser Lys Glu Ala Leu Ser Glu Val
                                     235
Asn Ala Thr Gly Val Ala Met Leu Phe Ser Ala Gly Thr Phe Leu
                 245
Tyr Val Ala Thr Val His Val Leu Pro Glu Val Gly Gly Ile Gly
                 260
His Ser His Lys Pro Asp Ala Thr Gly Gly Arg Gly Leu Ser Arg
                 275
Leu Glu Val Ala Ala Leu Val Leu Gly Cys Leu Ile Pro Leu Ile
                                     295
Leu Ser Val Gly His Gln His
<210> 96
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 96
 gttgtgggtg aataaaggag ggcag 25
<210> 97
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 97
 ctgtgctcat gttcatggac aactg 25
<210> 98
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
 <400> 98
 ggatgatttc atctccatta gcctgctgtc tctggctatg ttggtgggat 50
 <210> 99
 <211> 1429
```

<400> 99 gctcgaggcc ggcggcggcg ggagagcgac ccgggcggcc tcgtagcggg 50 gccccggatc cccgagtggc ggccggagcc tcgaaaagag attctcagcg 100 ctgattttga gatgatgggc ttgggaaacg ggcgtcgcag catgaagtcg 150 ccgcccctcg tgctggccgc cctggtggcc tgcatcatcg tcttgggctt 200 caactactgg attgcgagct cccggagcgt ggacctccag acacggatca 250 tggagctgga aggcagggtc cgcagggcgg ctgcagagag aggcgccgtg 300 gagetgaaga agaacgagtt ccagggagag ctggagaagc agegggagca 350 gcttgacaaa atccagtcca gccacaactt ccagctggag agcgtcaaca 400 agctgtacca ggacgaaaag gcggttttgg tgaataacat caccacaggt 450 gagaggetea teegagtget geaagaceag ttaaagacee tgeagaggaa 500 ttacggcagg ctgcagcagg atgtcctcca gtttcagaag aaccagacca 550 acctggagag gaagttctcc tacgacctga gccagtgcat caatcagatg 600 aaggaggtga aggaacagtg tgaggagcga atagaagagg tcaccaaaaa 650 ggggaatgaa gctgtagctt ccagagacct gagtgaaaac aacgaccaga 700 gacagcaget ecaagecete agtgageete ageccagget geaggeagea 750 ggcctgccac acacagaggt gccacaaggg aagggaaacg tgcttggtaa 800 cagcaagtcc cagacaccag ccccagttc cgaagtggtt ttggattcaa 850 agagacaagt tgagaaagag gaaaccaatg agatccaggt ggtgaatgag 900 gagecteaga gggaeagget geegeaggag eeaggeeggg ageaggtggt 950 ggaagacaga cctgtaggtg gaagaggctt cgggggagcc ggagaactgg 1000 gccagacccc acaggtgcag gctgccctgt cagtgagcca ggaaaatcca 1050 gagatggagg gccctgagcg agaccagctt gtcatccccg acggacagga 1100 ggaggagcag gaagctgccg gggaagggag aaaccagcag aaactgagag 1150 gagaagatga ctacaacatg gatgaaaatg aagcagaatc tgagacagac 1200 aagcaagcag ccctggcagg gaatgacaga aacatagatg tttttaatgt 1250 tgaagatcag aaaagagaca ccataaattt acttgatcag cgtgaaaagc 1300

ggaatcatac actctgaatt gaactggaat cacatatttc acaacagggc 1350

cgaagagatg actataaaat gttcatgagg gactgaatac tgaaaactgt 1400 gaaatgtact aaataaaatg tacatctga 1429

yaaa	cyca	.cc u	aaca		J -		•							
<210> <211> <212> <213>	401 PRT	1	pien	ıs										
<400> Met 1	100 Met) Gly	Leu	Gly 5	Asn	Gly	Arg	Arg	Ser i	Met :	Lys	Ser	Pro	Pro 15
Leu	Val	Leu	Ala	Ala 20	Leu	Val	Ala	Cys	Ile 25	Ile	Val	Leu	Gly	Phe 30
Asn	Tyr	Trp	Ile	Ala 35	Ser	Ser	Arg	Ser	Val 40	Asp	Leu	Gln	Thr	Arg 45
Ile	Met	Glu	Leu	Glu 50	Gly	Arg	Val	Arg	Arg 55	Ala	Ala	Ala	Glu	Arg 60
Gly	Ala	Val	Glu	Leu 65	Lys	Lys	Asn	Glu	Phe 70	Gln	Gly	Glu	Leu	Glu 75
Lys	Gln	Arg	Glu	Gln 80	Leu	Asp	Lys	Ile	Gln 85	Ser	Ser	His	Asn	Phe 90
Gln	Leu	ı Glu	Ser	Val 95	Asn	Lys	Leu	Tyr	Gln 100	Asp	Glu	Lys	Ala	Val 105
Leu	Val	Asn	. Asn	Ile 110	Thr	Thr	Gly	Glu	Arg 115	Leu	Ile	Arg	Val	Leu 120
Gln	Ası	o Glr	ı Lev	Lys 125	Thr	Leu	Gln	Arg	Asn 130	Tyr	Gly	Arg	Leu	Gln 135
Glr	ı Ası	o Val	L Lev	Gln 140	Phe	Gln	Lys	: Asn	Gln 145	Thr	Asn	Leu	Glu	Arg 150
Lys	s Ph	e Sei	г Туз	r Asp 155	Lev	ser	Glr	Cys	11e 160	Asn	Gln	. Met	Lys	Glu 165
Va:	l Ly	s Gl	u Glı	n Cys 170	s Glu)	ı Glu	ı Arç	g Il€	Glu 175	Glu	ı Val	. Thr	Lys	Lys 180
Gl	y As	n Gl	u Al	a Val	l Ala 5	a Sei	r Ar	g Asp	190	ser	Glu	ı Ası	n Asr	195
Gl	n Ar	g Gl	n Gl	n Le	u Gla O	n Ala	a Le	u Se:	r Glu 205	ı Pro	Glr	n Pro	o Arg	Leu 210
Gl	n Al	a Al	a Gl	y Le 21	u Pr	o Hi	s Th	r Gl	u Val 220	l Pro	o Gli	n Gl	у Ly	s Gly 225
As	n Va	al Le	u Gl	y As	n Se	r Ly	s Se	r Gl	n Th	r Pr	o Al	a Pr	o Se	r Ser

				230					235					240
Glu	Val	Val	Leu	Asp 245	Ser	Lys	Arg	Gln	Val 250	Glu	Lys	Glu	Glu	Thr 255
Asn	Glu	Ile	Gln	Val 260	Val	Asn	Glu	Glu	Pro 265	Gln	Arg	Asp	Arg	Leu 270
Pro	Gln	Glu	Pro	Gly 275	Arg	Glu	Gln	Val	Val 280	Glu	Asp	Arg	Pro	Val 285
Gly	Gly	Arg	Gly	Phe 290	Gly	Gly	Ala	Gly	Glu 295	Leu	Gly	Gln	Thr	Pro 300
Gln	Val	Gln	Ala	Ala 305	Leu	Ser	Val	Ser	Gln 310	Glu	Asn	Pro	Glu	Met 315
Glu	Gly	Pro	Glu	Arg 320	Asp	Gln	Leu	Val	Ile 325	Pro	Asp	Gly	Gln	Glu 330
Glu	Glu	Gln	Glu	Ala 335	Ala	Gly	Glu	Gly	Arg 340	Asn	Gln	Gln	Lys	Leu 345
Arg	Gly	Glu	Asp	Asp 350		Asn	Met	Asp	Glu 355	Asn	Glu	Ala	Glu	Ser 360
Glu	Thr	Asp	Lys	Gln 365	Ala	Ala	Leu	Ala	Gly 370	Asn	Asp	Arg	Asn	Ile 375
Asp	Val	Phe	. Asn	Val 380		ı Asp	Gln	Lys	: Arg 385	Asp	Thr	: Ile	a Asn	Leu 390
Lev	a Asp	Glr	a Arg	, Glu 395		s Arç	J Asn	His	Thr 400	Leu	l			
<210)> 10)1												

<211> 3671

<212> DNA

<213> Homo sapiens

<400> 101

ggatgcagaa agcctcagtg ttgctcttcc tggcctgggt ctgcttcctc 50 ttctacgctg gcattgccct cttcaccagt ggcttcctgc tcacccgttt 100 ggageteace aaccatagea getgecaaga geeceeagge eetgggteee 150 tgccatgggg gagccaaggg aaacctgggg cctgctggat ggcttcccga 200 ttttcgcggg ttgtgttggt gctgatagat gctctgcgat ttgacttcgc 250 ccagecccag catteacacg tgcctagaga gcctcctgtc tecctaccct 300 teetgggeaa actaagetee ttgeagagga teetggagat teageeceae 350 catgecegge tetacegate teaggttgae cetectacea ceaccatgea 400 gegeeteaag geeeteacea etggeteaet geetaeettt attgatgetg 450 gtagtaactt cgccagccac gccatagtgg aagacaatct cattaagcag 500 ctcaccagtg caggaaggcg tgtagtcttc atgggagatg atacctggaa 550 agacetttte eetggtgett tetecaaage tttettette ceateettea 600 atgtcagaga cctagacaca gtggacaatg gcatcctgga acacctctac 650 cccaccatgg acagtggtga atgggacgtg ctgattgctc acttcctggg 700 tgtggaccac tgtggccaca agcatggccc tcaccaccct gaaatggcca 750 agaaacttag ccagatggac caggtgatcc agggacttgt ggagcgtctg 800 gagaatgaca cactgctggt agtggctggg gaccatggga tgaccacaaa 850 tggagaccat ggaggggaca gtgagctgga ggtctcagct gctctctttc 900 tgtatagece caeageagte ttececagea ecceaceaga ggagecagag 950 gtgattcctc aagttagcct tgtgcccacg ctggccctgc tgctgggcct 1000 gcccatccca tttgggaata tcggggaagt gatggctgag ctattctcag 1050 ggggtgagga ctcccagccc cactcctctg ctttagccca agcctcagct 1100 ctccatctca atgctcagca ggtgtcccga tttcttcata cctactcagc 1150 tgctactcag gaccttcaag ctaaggagct tcatcagctg cagaacctct 1200 tetecaagge etetgetgae taccagtgge ttetecagag eeccaagggg 1250 gctgaggcga cactgccgac tgtgattgct gagctgcagc agttcctgcg 1300 gggagctcgg gccatgtgca tcgagtcttg ggctcgtttc tctctggtcc 1350 gcatggcggg gggtactgct ctcttggctg cttcctgctt tatctgcctg 1400 ctggcatctc agtgggcaat atccccaggc tttccattct gccctctact 1450 cctgacacct gtggcctggg gcctggttgg ggccatagcg tatgctggac 1500 teetgggaae tattgagetg aagetagate tagtgettet aggggetgtg 1550 getgeagtga geteatteet ecettttetg tggaaageet gggetggetg 1600 ggggtccaag aggcccctgg caaccctgtt tcccatccct gggcccgtcc 1650 tgttactcct gctgtttcgc ttggctgtgt tcttctctga tagttttgtt 1700 gtagctgagg ccagggccac ccccttcctt ttgggctcat tcatcctgct 1750 cctggttgtc cagcttcact gggagggcca gctgcttcca cctaagctac 1800 tcacaatgcc ccgccttggc acttcagcca caacaaaccc cccacggcac 1850

aatggtgcat atgccctgag gcttggaatt gggttgcttt tatgtacaag 1900 gctagctggg ctttttcatc gttgccctga agagacacct gtttgccact 1950 cctctccctg gctgagtcct ctggcatcca tggtgggtgg tcgagccaag 2000 aatttatggt atggagcttg tgtggcggcg ctggtggccc tgttagctgc 2050 cgtgcgcttg tggcttcgcc gctatggtaa tctcaagagc cccgagccac 2100 ccatgctctt tgtgcgctgg ggactgcccc taatggcatt gggtactgct 2150 gcctactggg cattggcgtc gggggcagat gaggctcccc cccgtctccg 2200 ggtcctggtc tctggggcat ccatggtgct gcctcgggct gtagcagggc 2250 tggctgcttc agggctcgcg ctgctgctct ggaagcctgt gacagtgctg 2300 gtgaaggctg gggcaggcgc tccaaggacc aggactgtcc tcactccctt 2350 ctcaggcccc cccacttctc aagctgactt ggattatgtg gtccctcaaa 2400 tctaccgaca catgcaggag gagttccggg gccggttaga gaggaccaaa 2450 tctcagggtc ccctgactgt ggctgcttat cagttgggga gtgtctactc 2500 agetgetatg gteacageee teaccetgtt ggeetteeca ettetgetgt 2550 tgcatgcgga gcgcatcagc cttgtgttcc tgcttctgtt tctgcagagc 2600 tteettetee tacatetget tgetgetggg ataccegtea ceacecetgg 2650 teettttaet gtgecatgge aggeagtete ggettgggee eteatggeea 2700 cacagacett etaeteeaca ggeeaceage etgtetttee ageeateeat 2750 tggcatgcag cettegtggg atteccagag ggtcatgget cetgtaettg 2800 getgeetget ttgetagtgg gagecaaeae etttgeetee caceteetet 2850 ttgcagtagg ttgcccactg ctcctgctct ggcctttcct gtgtgagagt 2900 caagggctgc ggaagagaca gcagccccca gggaatgaag ctgatgccag 2950 agtcagaccc gaggaggaag aggagccact gatggagatg cggctccggg 3000 atgcgcctca gcacttctat gcagcactgc tgcagctggg cctcaagtac 3050 ctctttatcc ttggtattca gattctggcc tgtgccttgg cagcctccat 3100 ccttcgcagg catctcatgg tctggaaagt gtttgcccct aagttcatat 3150 ttgaggctgt gggcttcatt gtgagcagcg tgggacttct cctgggcata 3200 getttggtga tgagagtgga tggtgetgtg ageteetggt teaggeaget 3250 atttctggcc cagcagagt agcctagtct gtgattactg gcacttggct 3300 acagagagtg ctggagaaca gtgtagcctg gcctgtacag gtactggatg 3350 atctgcaaga caggctcagc catactctta ctatcatgca gccaggggcc 3400 gctgacatct aggacttcat tattctataa ttcaggacca cagtggagta 3450 tgatccctaa ctcctgattt ggatgcatct gagggacaag gggggcggtc 3500 tccgaagtgg aataaaatag gccgggcgtg gtgacttgca cctataatcc 3550 cagcactttg ggaggcagag gtgggaggat tgcttggtcc caggagttca 3600 agaccagcct gtggaacata acaagacccc gtctctacta tttaaaaaaa 3650 agtgtaataa aatgataata t 3671

<210> 102

<211> 1089

<212> PRT

<213> Homo sapiens

<400> 102

Met Gln Lys Ala Ser Val Leu Leu Phe Leu Ala Trp Val Cys Phe 1 5 10 15

Leu Phe Tyr Ala Gly Ile Ala Leu Phe Thr Ser Gly Phe Leu Leu 20 25 30

Thr Arg Leu Glu Leu Thr Asn His Ser Ser Cys Gln Glu Pro Pro 35 40 45

Gly Pro Gly Ser Leu Pro Trp Gly Ser Gln Gly Lys Pro Gly Ala
50 55 60

Cys Trp Met Ala Ser Arg Phe Ser Arg Val Val Leu Val Leu Ile
65 70 75

Asp Ala Leu Arg Phe Asp Phe Ala Gln Pro Gln His Ser His Val 80 85 90

Pro Arg Glu Pro Pro Val Ser Leu Pro Phe Leu Gly Lys Leu Ser 95 100 105

Ser Leu Gln Arg Ile Leu Glu Ile Gln Pro His His Ala Arg Leu 110 115 120

Tyr Arg Ser Gln Val Asp Pro Pro Thr Thr Thr Met Gln Arg Leu 125 130 135

Lys Ala Leu Thr Thr Gly Ser Leu Pro Thr Phe Ile Asp Ala Gly
140 145 150

Ser Asn Phe Ala Ser His Ala Ile Val Glu Asp Asn Leu Ile Lys 155 160 165

Gln	Leu	Thr	Ser	Ala 170	Gly	Arg	Arg	Val	Val 175	Phe	Met	Gly	Asp	Asp 180
Thr	Trp	Lys	Asp		Phe	Pro	Gly	Ala		Ser	Lys	Ala	Phe	Phe 195
Phe	Pro	Ser	Phe	Asn 200	Val	Arg	Asp	Leu	Asp 205	Thr	Val	Asp	Asn	Gly 210
Ile	Leu	Glu	His	Leu 215	Tyr	Pro	Thr	Met	Asp 220	Ser	Gly	Glu	Trp	Asp 225
Val	Leu	Ile	Ala	His 230	Phe	Leu	Gly	Val	Asp 235	His	Суѕ	Gly	His	Lys 240
His	Gly	Pro	His	His 245	Pro	Glu	Met	Ala	Lys 250	Lys	Leu	Ser	Gln	Met 255
Asp	Gln	Val	Ile	Gln 260	Gly	Leu	Val	Glu	Arg 265	Leu	Glu	Asn	Asp	Thr 270
Leu	Leu	Val	Val	Ala 275	Gly	Asp	His	Gly	Met 280	Thr	Thr	Asn	Gly	Asp 285
His	Gly	Gly	Asp	Ser 290	Glu	Leu	Glu	Val	Ser 295	Ala	Ala	Leu	Phe	Leu 300
Tyr	Ser	Pro	Thr	Ala 305	Val	Phe	Pro	Ser	Thr 310	Pro	Pro	Glu	Glu	Pro 315
Glu	Val	Ile	Pro	Gln 320	Val	Ser	Leu	Val	Pro 325	Thr	Leu	Ala	Leu	Leu 330
Leu	Gly	Leu	Pro	Ile 335	Pro	Phe	Gly	Asn	Ile 340	Gly	Glu	Val	Met	Ala 345
Glu	Leu	Phe	Ser	Gly 350	Gly	Glu	Asp	Ser	Gln 355	Pro	His	Ser	Ser	Ala 360
Leu	Ala	Gln	Ala	Ser 365	Ala	Leu	His	Leu	Asn 370	Ala	Gln	Gln	Val	Ser 375
Arg	Phe	Leu	His	Thr 380	Tyr	Ser	Ala	Ala	Thr 385	Gln	Asp	Leu	Gln	Ala 390
Lys	Glu	Leu	His	Gln 395	Leu	Gln	Asn	Leu	Phe 400	Ser	Lys	Ala	Ser	Ala 405
Asp	Tyr	Gln	Trp	Leu 410	Leu	Gln	Ser	Pro	Lys 415	Gly	Ala	Glu	Ala	Thr 420
Leu	Pro	Thr	Val	Ile 425	Ala	Glu	Leu	Gln	Gln 430	Phe	Leu	Arg	Gly	Ala 435
Arg	Ala	Met	Cys	Ile 440	Glu	Ser	Trp	Ala	Arg 445	Phe	Ser	Leu	Val	Arg 450

Met	Ala	Gly	Gly	Thr 455	Ala	Leu	Leu	Ala	Ala 460	Ser	Cys	Phe	Ile	Cys 465
Leu	Leu	Ala	Ser	Gln 470	Trp	Ala	Ile	Ser	Pro 475	Gly	Phe	Pro	Phe	Cys 480
Pro	Leu	Leu	Leu	Thr 485	Pro	Val	Ala	Trp	Gly 490	Leu	Val	Gly	Ala	Ile 495
Ala	Tyr	Ala	Gly	Leu 500	Leu	Gly	Thr	Ile	Glu 505	Leu	Lys	Leu	Asp	Leu 510
Val	Leu	Leu	Gly	Ala 515	Val	Ala	Ala	Val	Ser 520	Ser	Phe	Leu	Pro	Phe 525
Leu	Trp	Lys	Ala	Trp 530	Ala	Gly	Trp	Gly	Ser 535	Lys	Arg	Pro	Leu	Ala 540
Thr	Leu	Phe	Pro	Ile 545	Pro	Gly	Pro	Val	Leu 550	Leu	Leu	Leu	Leu	Phe 555
Arg	Leu	Ala	Val	Phe 560	Phe	Ser	Asp	Ser	Phe 565	Val	Val	Ala	Glu	Ala 570
Arg	Ala	Thr	Pro	Phe 575	Leu	Leu	Gly	Ser	Phe 580	Ile	Leu	Leu	Leu	Val 585
Val	Gln	Leu	His	Trp 590	Glu	Gly	Gln	Leu	Leu 595	Pro	Pro	Lys	Leu	Leu 600
Thr	Met	Pro	Arg	Leu 605	Gly	Thr	Ser	Ala	Thr 610	Thr	Asn	Pro	Pro	Arg 615
His	Asn	Gly	Ala	Tyr 620	Ala	Leu	Arg	Leu	Gly 625	Ile	Gly	Leu	Leu	Leu 630
Cys	Thr	Arg	Leu	Ala 635	Gly	Leu	Phe	His	Arg 640	Cys	Pro	Glu	Glu	Thr. 645
Pro	Val	Cys	His	Ser 650	Ser	Pro	Trp	Leu	Ser 655	Pro	Leu	Ala	Ser	Met 660
Val	Gly	Gly	Arg	Ala 665	Lys	Asn	Leu	Trp	Tyr 670	Gly	Ala	Cys	Val	Ala 675
Ala	Leu	Val	Ala	Leu 680	Leu	Ala	Ala	Val	Arg 685	Leu	Trp	Leu	Arg	Arg 690
Tyr	Gly	Asn	Leu	Lys 695	Ser	Pro	Glu	Pro	Pro 700	Met	Leu	Phe	Val	Arg 705
Trp	Gly	Leu	Pro	Leu 710	Met	Ala	Leu	Gly	Thr 715	Ala	Ala	Tyr	Trp	Ala 720
Leu	Ala	Ser	Gly	Ala 725	Asp	Glu	Ala	Pro	Pro 730	Arg	Leu	Arg	Val	Leu 735

Val	Ser	Gly	Ala	Ser 740	Met	Val	Leu	Pro	Arg 745	Ala	Val	Ala	Gly	Leu 750		
Ala	Ala	Ser	Gly	Leu 755	Ala	Leu	Leu	Leu	Trp 760	Lys	Pro	Val	Thr	Val 765		
Leu	Val	Lys	Ala	Gly 770	Ala	Gly	Ala	Pro	Arg 775	Thr	Arg	Thr	Val	Leu 780		
Thr	Pro	Phe	Ser	Gly 785	Pro	Pro	Thr	Ser	Gln 790	Ala	Asp	Leu	Asp	Tyr 795		
Val	Val	Pro	Gln	Ile 800	Tyr	Arg	His	Met	Gln 805	Glu	Glu	Phe	Arg	Gly 810		
Arg	Leu	Glu	Arg	Thr 815	Lys	Ser	Gln	Gly	Pro 820	Leu	Thr	Val	Ala	Ala 825		
Tyr	Gln	Leu	Gly	Ser 830	Val	Tyr	Ser	Ala	Ala 835	Met	Val	Thr	Ala	Leu 840		
Thr	Leu	Leu	Ala	Phe 845	Pro	Leu	Leu	Leu	Leu 850	His	Ala	Glu	Arg	Ile 855		
Ser	Leu	Val	Phe	Leu 860	Leu	Leu	Phe	Leu	Gln 865	Ser	Phe	Leu	Leu	Leu 870		
His	Leu	Leu	Ala	Ala 875	Gly	Ile	Pro	Val	Thr 880	Thr	Pro	Gly	Pro	Phe 885		
Thr	Val	Pro	Trp	Gln 890	Ala	Val	Ser	Ala	Trp 895	Ala	Leu	Met	Ala	Thr 900		
Gln	Thr	Phe	Tyr	Ser 905	Thr	Gly	His	Gln	Pro 910	Val	Phe	Pro	Ala	Ile 915		
His	Trp	His	Ala	Ala 920	Phe	Val	Gly	Phe	Pro 925	Glu	Gly	His	Gly	Ser 930		
Cys	Thr	Trp	Leu	Pro 935	Ala	Leu	Leu	Val	Gly 940	Ala	Asn	Thr	Phe	Ala 945		
Ser	His	Leu	Leu	Phe 950	Ala	Val	Gly	Cys	Pro 955	Leu	Leu	Leu	Leu	Trp 960		
Pro	Phe	Leu	Cys	Glu 965	Ser	Gln	Gly	Leu	Arg 970	Lys	Arg	Gln	Gln	Pro 975	٠	
Pro	Gly	Asn	Glu	Ala 980	Asp	Ala	Arg	Val	Arg 985	Pro	Glu	Glu	Glu	Glu 990		
Glu	Pro	Leu		Glu 995	Met	Arg	Leu		Asp .000	Ala	Pro	Gln		Phe 005		
Tyr	Ala	Ala		Leu 010	Gln	Leu	Gly		Lys 015	Tyr	Leu	Phe		Leu 020		

Gly Ile Gln Ile Leu Ala Cys Ala Leu Ala Ala Ser Ile Leu Arg \$1025\$ 1030 1035

Arg His Leu Met Val Trp Lys Val Phe Ala Pro Lys Phe Ile Phe 1040 1045 1050

Glu Ala Val Gly Phe Ile Val Ser Ser Val Gly Leu Leu Gly 1055 1060 1065

Ile Ala Leu Val Met Arg Val Asp Gly Ala Val Ser Ser Trp Phe 1070 1075 1080

Arg Gln Leu Phe Leu Ala Gln Gln Arg 1085

<210> 103

<211> 1743

<212> DNA

<213> Homo sapiens

<400> 103

tgccgctgcc gccgctgctg ctgttgctcc tggcggcgcc ttggggacgg 50 gcagttccct gtgtctctgg tggtttgcct aaacctgcaa acatcacctt 100 cttatccatc aacatgaaga atgtcctaca atggactcca ccagagggtc 150 ttcaaggagt taaagttact tacactgtgc agtatttcat cacaaattgg 200 cccaccagag gtggcactga ctacagatga gaagtccatt tctgttgtcc 250 tgacagctcc agagaagtgg aagagaaatc cagaagacct tcctgtttcc 300 atgcaacaaa tatactccaa tctgaagtat aacgtgtctg tgttgaatac 350 taaatcaaac agaacgtggt cccagtgtgt gaccaaccac acgctggtgc 400 tcacctggct ggagccgaac actctttact gcgtacacgt ggagtccttc 450 gtcccagggc cccctcgccg tgctcagcct tctgagaagc agtgtgccag 500 gactttgaaa gatcaatcat cagagttcaa ggctaaaatc atcttctggt 550 atgttttgcc catatctatt accgtgtttc ttttttctgt gatgggctat 600 tccatctacc gatatatcca cgttggcaaa gagaaacacc cagcaaattt 650 gattttgatt tatggaaatg aatttgacaa aagattcttt gtgcctgctg 700 aaaaaatcgt gattaacttt atcaccctca atatctcgga tgattctaaa 750 atttctcatc aggatatgag tttactggga aaaagcagtg atgtatccag 800 ccttaatgat cctcagccca gcgggaacct gaggccccct caggaggaag 850 aggaggtgaa acatttaggg tatgcttcgc atttgatgga aattttttgt 900

gactetgaag aaaacaegga aggtaettet eteaeeeage aagagteeet 950 cagcagaaca atacccccgg ataaaacagt cattgaatat gaatatgatg 1000 tcagaaccac tgacatttgt gcggggcctg aagagcagga gctcagtttg 1050 caggaggagg tgtccacaca aggaacatta ttggagtcgc aggcagcgtt 1100 ggcagtcttg ggcccgcaaa cgttacagta ctcatacacc cctcagctcc 1150 aagacttaga ccccctggcg caggagcaca cagactcgga ggagggccg 1200 gaggaagagc catcgacgac cctggtcgac tgggatcccc aaactgqcaq 1250 gctgtgtatt ccttcgctgt ccagcttcga ccaggattca gagggctgcg 1300 agccttctga gggggatggg ctcggagagg agggtcttct atctagactc 1350 tatgaggagc cggctccaga caggccacca ggagaaaatg aaacctatct 1400 catgcaattc atggaggaat gggggttata tgtgcagatg gaaaactgat 1450 gccaacactt ccttttgcct tttgtttcct gtgcaaacaa gtgagtcacc 1500 cctttgatcc cagccataaa gtacctggga tgaaagaagt tttttccagt 1550 ttgtcagtgt ctgtgagaat tacttatttc ttttctctat tctcatagca 1600 cgtgtgtgat tggttcatgc atgtaggtct cttaacaatg atggtggcc 1650. tctggagtcc aggggctggc cggttgttct atgcagagaa agcagtcaat 1700 aaatgtttgc cagactgggt gcagaattta ttcaggtggg tgt 1743

```
<210> 104
```

<400> 104

Met Ser Tyr Asn Gly Leu His Gln Arg Val Phe Lys Glu Leu Lys 1 5 10 15

Leu Leu Thr Leu Cys Ser Ile Ser Ser Gln Ile Gly Pro Pro Glu
20 25 30

Val Ala Leu Thr Thr Asp Glu Lys Ser Ile Ser Val Val Leu Thr 35 40 45

Ala Pro Glu Lys Trp Lys Arg Asn Pro Glu Asp Leu Pro Val Ser 50 55 60

Met Gln Gln Ile Tyr Ser Asn Leu Lys Tyr Asn Val Ser Val Leu
65 70 75

Asn Thr Lys Ser Asn Arg Thr Trp Ser Gln Cys Val Thr Asn His

<211> 442

<212> PRT

<213> Homo sapiens

Thr	Leu	Val	Leu	Thr 95	Trp	Leu	Glu	Pro	Asn 100	Thr	Leu	Tyr	Cys	Val 105
His	Val	Glu	Ser	Phe 110	Val	Pro	Gly	Pro	Pro 115	Arg	Arg	Ala	Gln	Pro 120
Ser	Glu	Lys	Gln	Cys 125	Ala	Arg	Thr	Leu	Lys 130	Asp	Gln	Ser	Ser	Glu 135
Phe	Lys	Ala	Lys	Ile 140	Ile	Phe	Trp	Tyr	Val 145	Leu	Pro	Ile	Ser	Ile 150
Thr	Val	Phe	Leu	Phe 155	Ser	Val	Met	Gly	Tyr 160	Ser	Ile	Tyr	Arg	Tyr 165
Ile	His	Val	Gly	Lys 170	Glu	Lys	His	Pro	Ala 175	Asn	Leu	Ile	Leu	Ile 180
Tyr	Gly	Asn	Glu	Phe 185	Asp	Lys	Arg	Phe	Phe 190	Val	Pro	Ala	Glu	Lys 195
Ile	Val	Ile	Asn	Phe 200	Ile	Thr	Leu	Asn	Ile 205	Ser	Asp	Asp	Ser	Lys 210
Ile	Ser	His	Gln	Asp 215	Met	Ser	Leu	Leu	Gly 220	Lys	Ser	Ser	Asp	Val 225
Ser	Ser	Leu	Asn	Asp 230	Pro	Gln	Pro	Ser	Gly 235	Asn	Leu	Arg	Pro	Pro 240
Gln	Glu	Glu	Glu	Glu 245	Val	Lys	His	Leu	Gly 250	Tyr	Ala	Ser	His	Leu 255
Met	Glu	Ile	Phe	Cys 260	Asp	Ser	Glu	Glu	Asn 265	Thr	Glu	Gly	Thr	Ser 270
Leu	Thr	Gln	Gln	Glu 275	Ser	Leu	Ser	Arg	Thr 280	Ile	Pro	Pro	Asp	Lys 285
Thr	Val	Ile	Glu	Tyr 290	Glu	Tyr	Asp	Val	Arg 295	Thr	Thr	Asp	Ile	Cys 300
Ala	Gly	Pro	Glu	Glu 305	Gln	Glu	Leu	Ser	Leu 310	Gln	Glu	Glu	Val	Ser 315
Thr	Gln	Gly	Thr	Leu 320	Leu	Glu	Ser	Gln	Ala 325	Ala	Leu	Ala	Val	Leu 330
Gly	Pro	Gln	Thr	Leu 335	Gln	Tyr	Ser	Tyr	Thr 340	Pro	Gln	Leu	Gln	Asp 345
Leu	Asp	Pro	Leu	Ala 350	Gln	Glu	His	Thr	Asp 355	Ser	Glu	Glu	Gly	Pro 360
Glu	Glu	Glu	Pro	Ser 365	Thr	Thr	Leu	Val	Asp 370	Trp	Asp	Pro	Gln	Thr 375

```
Gly Arg Leu Cys Ile Pro Ser Leu Ser Ser Phe Asp Gln Asp Ser
                 380
 Glu Gly Cys Glu Pro Ser Glu Gly Asp Gly Leu Gly Glu Gly
                 395
                                      400
 Leu Leu Ser Arg Leu Tyr Glu Glu Pro Ala Pro Asp Arg Pro Pro
                  410
                                      415
 Gly Glu Asn Glu Thr Tyr Leu Met Gln Phe Met Glu Glu Trp Gly
                 425
                                      430
 Leu Tyr Val Gln Met Glu Asn
                 440
<210> 105
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 105
 cgctgctgct gttgctcctg g 21
<210> 106
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 106
cagtgtgcca ggactttg 18
<210> 107
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 107
agtcgcaggc agcgttgg 18
<210> 108
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 108
ctcctccgag tctgtgtgct cctgc 25
<210> 109
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 109
 ggacgggcag ttccctgtgt ctctggtggt ttgcctaaac ctgcaaacat 50
c 51
<210> 110
<211> 1114
<212> DNA
<213> Homo sapiens
<400> 110
 cggacgcgtg ggcggacgc tgggcggacg cgtgggtctc tgcggggaga 50
 cgccagcctg cgtctgccat ggggctcggg ttgaggggct ggggacgtcc 100
 tetgetgaet gtggccaecg ceetgatget geeegtgaag ceeeeggaag 150
 gctcctgggg ggcccagatc atcgggggcc acgaggtgac cccccactcc 200
 aggecetaca tggcatecgt gegetteggg ggccaacate actgeggagg 250
 ettectgetg egageeeget gggtggtete ggeegeeeae tgetteagee 300
 acagagacet cegeactgge etggtggtge tgggegeeca egteetgagt 350
 actgcggagc ccacccagca ggtgtttggc atcgatgctc tcaccacgca 400
 ccccgactac caccccatga cccacgccaa cgacatctgc ctgctgcggc 450
 tgaacggctc tgctgtcctg ggccctgcag tggggctgct gaggctgcca 500
 gggagaaggg ccaggcccc cacagcgggg acacggtgcc gggtggctgg 550
 ctggggcttc gtgtctgact ttgaggagct gccgcctgga ctgatggagg 600
 ccaaggtccg agtgctggac ccggacgtct gcaacagctc ctggaagggc 650
 cacctgacac ttaccatgct ctgcacccgc agtggggaca gccacagacg 700
 gggcttctgc tcggccgact ccggagggcc cctggtgtgc aggaaccggg 750
 ctcacggcct cgtttccttc tcgggcctct ggtgcggcga ccccaagacc 800
 cccgacgtgt acacgcaggt gtccgccttt gtggcctgga tctgggacgt 850
 ggttcggcgg agcagtcccc agcccggccc cctgcctggg accaccaggc 900
```

ccccaggaga agccgcctga gccacaacct tgcggcatgc aaatgagatg 950 gccgctccag gcctggaatg ttccgtggct gggccccacg ggaagcctga 1000 tgttcagggt tggggtggga cgggcagcgg tggggcacac ccattccaca 1050 tgcaaagggc agaagcaaac ccagtaaaat gttaactgac aaaaaaaaa 1100 aaaaaaaaaa gaaa 1114

- <210> 111
- <211> 283
- <212> PRT
- <213> Homo sapiens
- <400> 111
- Met Gly Leu Gly Leu Arg Gly Trp Gly Arg Pro Leu Leu Thr Val

 1 5 10 15
- Ala Thr Ala Leu Met Leu Pro Val Lys Pro Pro Ala Gly Ser Trp 20 25 30
- Gly Ala Gln Ile Ile Gly Gly His Glu Val Thr Pro His Ser Arg 35 40 45
- Pro Tyr Met Ala Ser Val Arg Phe Gly Gly Gln His His Cys Gly 50 55 60
- Gly Phe Leu Leu Arg Ala Arg Trp Val Val Ser Ala Ala His Cys
 65 70 75
- Phe Ser His Arg Asp Leu Arg Thr Gly Leu Val Val Leu Gly Ala 80 85 90
- His Val Leu Ser Thr Ala Glu Pro Thr Gln Gln Val Phe Gly Ile 95 100 105
- Asp Ala Leu Thr Thr His Pro Asp Tyr His Pro Met Thr His Ala 110 115 120
- Asn Asp Ile Cys Leu Leu Arg Leu Asn Gly Ser Ala Val Leu Gly 125 130 135
- Pro Ala Val Gly Leu Leu Arg Leu Pro Gly Arg Arg Ala Arg Pro 140 145 150
- Pro Thr Ala Gly Thr Arg Cys Arg Val Ala Gly Trp Gly Phe Val 155 160 165
- Ser Asp Phe Glu Glu Leu Pro Pro Gly Leu Met Glu Ala Lys Val 170 175 180
- Arg Val Leu Asp Pro Asp Val Cys Asn Ser Ser Trp Lys Gly His
 185 190 195
- Leu Thr Leu Thr Met Leu Cys Thr Arg Ser Gly Asp Ser His Arg

200 205 210 Arg Gly Phe Cys Ser Ala Asp Ser Gly Gly Pro Leu Val Cys Arg 215 220 Asn Arg Ala His Gly Leu Val Ser Phe Ser Gly Leu Trp Cys Gly Asp Pro Lys Thr Pro Asp Val Tyr Thr Gln Val Ser Ala Phe Val 250 Ala Trp Ile Trp Asp Val Val Arg Arg Ser Ser Pro Gln Pro Gly 260 265 Pro Leu Pro Gly Thr Thr Arg Pro Pro Gly Glu Ala Ala 275 280 <210> 112 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 112 gacgtctgca acagctcctg gaag 24 <210> 113 <211> 23 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 113 cgagaaggaa acgaggccgt gag 23 <210> 114 <211> 44 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 114 tgacacttac catgctctgc acccgcagtg gggacagcca caga 44 <210> 115 <211> 1808 <212> DNA <213> Homo sapiens <400> 115 gagetaceca ggeggetggt gtgeageaag eteegegeeg acteeggaeg 50

cetgacgeet gacgeetgte eeeggeeegg catgageege tacetgetge 100 cgctgtcggc gctgggcacg gtagcaggcg ccgccgtgct gctcaaggac 150 tatgtcaccg gtggggcttg ccccagcaag gccaccatcc ctgggaagac 200 ggtcatcgtg acgggcgcca acacaggcat cgggaagcag accgccttgg 250 aactggccag gagaggaggc aacatcatcc tggcctgccg agacatggag 300 aagtgtgagg cggcagcaaa ggacatccgc ggggagaccc tcaatcacca 350 tgtcaacgcc cggcacctgg acttggcttc cctcaagtct atccgagagt 400 ttgcagcaaa gatcattgaa gaggaggagc gagtggacat tctaatcaac 450 aacgcgggtg tgatgcggtg cccccactgg accaccgagg acggcttcga 500 gatgcagttt ggcgttaacc acctgggtca ctttctcttg acaaacttgc 550 tgctggacaa gctgaaagcc tcagcccctt cgcggatcat caacctctcg 600 tccctggccc atgttgctgg gcacatagac tttgacgact tgaactggca 650 qacqaqqaag tataacacca aagccgccta ctgccagagc aagctcgcca 700 tcqtcctctt caccaaggag ctgagccggc ggctgcaagg ctctggtgtg 750 actgtcaacg ccctgcaccc cggcgtggcc aggacagagc tgggcagaca 800 cacgggcatc catggctcca ccttctccag caccacactc gggcccatct 850 tetggetget ggtcaagage eeegagetgg eegeecagee eageacatae 900 ctggccgtgg cggaggaact ggcggatgtt tccggaaagt acttcgatgg 950 actcaaacag aaggccccgg cccccgaggc tgaggatgag gaggtggccc 1000 ggaggetttg ggetgaaagt geeegeetgg tgggettaga ggeteeetet 1050 gtgagggagc agcccctccc cagataacct ctggagcaga tttgaaagcc 1100 aggatggcgc ctccagaccg aggacagctg tccgccatgc ccgcagcttc 1150 ctggcactac ctgagccggg agacccagga ctggcggccg ccatgcccgc 1200 agtaggttet agggggeggt getggeegea gtggaetgge etgeaggtga 1250 gcactgeece gggetetgge tggtteegte tgetetgetg ceageagggg 1300 agaggggcca tctgatgctt cccctgggaa tctaaactgg gaatggccga 1350 ggaggaaggg gctctgtgca cttgcaggcc acgtcaggag agccagcggt 1400 gcctgtcggg gagggttcca aggtgctccg tgaagagcat gggcaagttg 1450

tctgacactt ggtggattct tgggtccctg tgggaccttg tgcatgcatg 1500 gtcctctctg agcettggtt tcttcagcag tgagatgctc agaataactg 1550 ctgtctccca tgatggtgg gtacagcgag ctgttgtctg gctatggcat 1600 ggctgtgccg ggggtgtttg ctgagggctt cctgtgccag agcccagcca 1650 gagagcaggt gcaggtgtca tcccgagttc aggctctgca cggcatggag 1700 tgggaacccc accagctgct gctacaggac ctgggattgc ctgggactcc 1750 caccttccta tcaattctca tggtagtcca aactgcagac tctcaaactt 1800 gctcattt 1808

<210> 116

<211> 331

<212> PRT

<213> Homo sapiens

<400> 116

Met Ser Arg Tyr Leu Leu Pro Leu Ser Ala Leu Gly Thr Val Ala 1 5 10 15

Gly Ala Ala Val Leu Leu Lys Asp Tyr Val Thr Gly Gly Ala Cys $20 \\ 25 \\ 30$

Pro Ser Lys Ala Thr Ile Pro Gly Lys Thr Val Ile Val Thr Gly 35 40 45

Ala Asn Thr Gly Ile Gly Lys Gln Thr Ala Leu Glu Leu Ala Arg
50 55 60

Arg Gly Gly Asn Ile Ile Leu Ala Cys Arg Asp Met Glu Lys Cys
65 70 75

Glu Ala Ala Lys Asp Ile Arg Gly Glu Thr Leu Asn His His 80 85 90

Val Asn Ala Arg His Leu Asp Leu Ala Ser Leu Lys Ser Ile Arg 95 100 105

Glu Phe Ala Ala Lys Ile Ile Glu Glu Glu Glu Arg Val Asp Ile 110 115 120

Leu Ile Asn Asn Ala Gly Val Met Arg Cys Pro His Trp Thr Thr 125 130 135

Glu Asp Gly Phe Glu Met Gln Phe Gly Val Asn His Leu Gly His 140 145 150

Phe Leu Leu Thr Asn Leu Leu Leu Asp Lys Leu Lys Ala Ser Ala 155 160 165

Pro Ser Arg Ile Ile Asn Leu Ser Ser Leu Ala His Val Ala Gly 170 175 180

His Ile Asp Phe Asp Asp Leu Asn Trp Gln Thr Arg Lys Tyr Asn 185 Thr Lys Ala Ala Tyr Cys Gln Ser Lys Leu Ala Ile Val Leu Phe 205 Thr Lys Glu Leu Ser Arg Arg Leu Gln Gly Ser Gly Val Thr Val 220 Asn Ala Leu His Pro Gly Val Ala Arg Thr Glu Leu Gly Arg His 235 Thr Gly Ile His Gly Ser Thr Phe Ser Ser Thr Thr Leu Gly Pro 245 250 Ile Phe Trp Leu Leu Val Lys Ser Pro Glu Leu Ala Ala Gln Pro 265 Ser Thr Tyr Leu Ala Val Ala Glu Glu Leu Ala Asp Val Ser Gly 275 280 285 Lys Tyr Phe Asp Gly Leu Lys Gln Lys Ala Pro Ala Pro Glu Ala 290 295 Glu Asp Glu Glu Val Ala Arg Arg Leu Trp Ala Glu Ser Ala Arg 310 Leu Val Gly Leu Glu Ala Pro Ser Val Arg Glu Gln Pro Leu Pro 325

330

Arg

<210> 117 <211> 2249

<212> DNA

<213> Homo sapiens

<400> 117

gaagttcgcg agcgctggca tgtggtcctg gggggggct ggcggcgctg 50 ctggcggtgc tggcgctcgg gacaggagac ccagaaaggg ctgcggctcg 100 gggcgacacg ttctcggcgc tgaccagcgt ggcgcgcgcc ctggcgcccg 150 agcgccggct gctggggctg ctgaggcggt acctgcgcgg ggaggaggcg 200 cggctgcggg acctgactag attctacgac aaggtacttt ctttgcatga 250 ggattcaaca acccctgtgg ctaaccctct gcttgcattt actctcatca 300 aacgcctgca gtctgactgg aggaatgtgg tacatagtct ggaggccagt 350 gagaacatcc gagctctgaa ggatggctat gagaaggtgg agcaagacct 400 tecageettt gaggaeettg agggageage aagggeeetg atgeggetge 450

aggacgtgta catgctcaat gtgaaaggcc tggcccgagg tgtctttcag 500 agagtcactg gctctgccat cactgacctg tacagcccca aacggctctt 550 ttctctcaca ggggatgact gcttccaagt tggcaaggtg gcctatgaca 600 tgggggatta ttaccatgcc attccatggc tggaggaggc tgtcagtctc 650 ttccgaggat cttacggaga gtggaagaca gaggatgagg caagtctaga 700 agatgccttg gatcacttgg cctttgctta tttccgggca ggaaatgttt 750 cgtgtgccct cagcctctct cgggagtttc ttctctacag cccagataat 800 aagaggatgg ccaggaatgt cttgaaatat gaaaggctct tggcagagag 850 ccccaaccac gtggtagctg aggctgtcat ccagaggccc aatatacccc 900 acctgcagac cagagacacc tacgaggggc tatgtcagac cctgggttcc 950 cageceaete tetaceagat ecetageete taetgtteet atgagaceaa 1000 ttccaacgcc tacctgctgc tccagcccat ccggaaggag gtcatccacc 1050 tggagcccta cattgctctc taccatgact tcgtcagtga ctcagaggct 1100 cagaaaatta gagaacttgc agaaccatgg ctacagaggt cagtggtggc 1150 atcaggggag aagcagttac aagtggagta ccgcatcagc aaaagtgcct 1200 ggctgaagga cactgttgac ccaaaactgg tgaccctcaa ccaccgcatt 1250 gctgccctca caggccttga tgtccggcct ccctatgcag agtatctgca 1300 ggtggtgaac tatggcatcg gaggacacta tgagcctcac tttgaccatg 1350 ctacgtcacc aagcagcccc ctctacagaa tgaagtcagg aaaccgagtt 1400 gcaacattta tgatctatct gagctcggtg gaagctggag gagccacagc 1450 cttcatctat gccaacctca gcgtgcctgt ggttaggaat gcagcactgt 1500 tttggtggaa cctgcacagg agtggtgaag gggacagtga cacacttcat 1550 gctggctgtc ctgtcctggt gggagataag tgggtggcca acaagtggat 1600 acatgagtat ggacaggaat teegeagace etgeagetee ageeetgaag 1650 actgaactgt tggcagagag aagctggtgg agtcctgtgg ctttccagag 1700 aagccaggag ccaaaagctg gggtaggaga ggagaaagca gagcagcctc 1750 ctggaagaag gccttgtcag ctttgtctgt gcctcgcaaa tcagaggcaa 1800 gggagaggtt gttaccaggg gacactgaga atgtacattt gatctgcccc 1850

agccacggaa gtcagagtag gatgcacagt acaaaggagg ggggagtgga 1900 ggcctgagag ggaagtttct ggagttcaga tactctctgt tgggaacagg 1950 acateteaac agteteaggt tegateagtg ggtettttgg caetttgaac 2000 cttgaccaca gggaccaaga agtggcaatg aggacacctg caggaggggc 2050 tagcctgact cccagaactt taagactttc tccccactgc cttctgctgc 2100 agcccaagca gggagtgtcc ccctcccaga agcatatccc agatgagtgg 2150 tgtatgatgg ttttttaaca cagtcattaa aaatgtttat aaatcaaaa 2249 <210> 118

<211> 544

<212> PRT

<213> Homo sapiens

<400> 118

Met Gly Pro Gly Ala Arg Leu Ala Ala Leu Leu Ala Val Leu Ala

Leu Gly Thr Gly Asp Pro Glu Arg Ala Ala Arg Gly Asp Thr 20 25

Phe Ser Ala Leu Thr Ser Val Ala Arg Ala Leu Ala Pro Glu Arg

Arg Leu Leu Gly Leu Leu Arg Arg Tyr Leu Arg Gly Glu Glu Ala

Arg Leu Arg Asp Leu Thr Arg Phe Tyr Asp Lys Val Leu Ser Leu

His Glu Asp Ser Thr Thr Pro Val Ala Asn Pro Leu Leu Ala Phe

Thr Leu Ile Lys Arg Leu Gln Ser Asp Trp Arg Asn Val Val His 95 100 105

Ser Leu Glu Ala Ser Glu Asn Ile Arg Ala Leu Lys Asp Gly Tyr 115

Glu Lys Val Glu Gln Asp Leu Pro Ala Phe Glu Asp Leu Glu Gly 125 130

Ala Ala Arg Ala Leu Met Arg Leu Gln Asp Val Tyr Met Leu Asn 145 150

Val Lys Gly Leu Ala Arg Gly Val Phe Gln Arg Val Thr Gly Ser 160

Ala Ile Thr Asp Leu Tyr Ser Pro Lys Arg Leu Phe Ser Leu Thr 170 180

Gly	Asp	Asp) Cys	Phe	Gln	Val	Gly	Lys	Val		Tyr	Asp	Met	Gly 195
Asp	Tyr	Tyr	His	Ala 200	Ile	Pro	Trp	Leu	Glu 205		Ala	Val	Ser	Leu 210
Phe	Arg	Gly	Ser	Tyr 215	Gly	Glu	Trp	Lys	Thr 220	Glu	Asp	Glu	Ala	Ser 225
Leu	Glu	Asp	Ala	Leu 230	Asp	His	Leu	Ala	Phe 235	Ala	Tyr	Phe	Arg	Ala 240
Gly	Asn	. Val	Ser	Cys 245	Ala	Leu	Ser	Leu	Ser 250	Arg	Glu	Phe	Leu	Leu 255
Tyr	Ser	Pro	Asp	Asn 260	Lys	Arg	Met	Ala	Arg 265	Asn	Val	Leu	Lys	Tyr 270
Glu	Arg	Leu	Leu	Ala 275	Glu	Ser	Pro	Asn	His 280	Val	Val	Ala	Glu	Ala 285
Val	Ile	Gln	Arg	Pro 290	Asn	Ile	Pro	His	Leu 295	Gln	Thr	Arg	Asp	Thr 300
Tyr	Glu	Gly	Leu	Cys 305	Gln	Thr	Leu	Gly	Ser 310	Gln	Pro	Thr	Leu	Tyr 315
Gln	Ile	Pro	Ser	Leu 320	Tyr	Cys	Ser	Tyr	Glu 325	Thr	Asn	Ser	Asn	Ala 330
Tyr	Leu	Leu	Leu	Gln 335	Pro	Ile	Arg	Lys	Glu 340	Val	Ile	His	Leu	Glu 345
Pro	Tyr	Ile	Ala	Leu 350	Tyr	His	Asp	Phe	Val 355	Ser	Asp	Ser	Glu	Ala 360
Gln	Lys	Ile	Arg	Glu 365	Leu	Ala	Glu	Pro	Trp 370	Leu	Gln	Arg	Ser	Val 375
Val	Ala	Ser	Gly	Glu 380	Lys	Gln	Leu	Gln	Val 385	Glu	Tyr	Arg	Ile	Ser 390
Lys	Ser	Ala	Trp	Leu 395	Lys	Asp	Thr	Val	Asp 400	Pro	Lys	Leu	Val	Thr 405
Leu	Asn	His	Arg	Ile 410	Ala	Ala	Leu	Thr	Gly 415	Leu	Asp	Val	Arg	Pro 420
Pro	Tyr	Ala	Glu	Tyr 425	Leu	Gln	Val	Val	Asn 430	Tyr	Gly	Ile	Gly	Gly 435
His	Tyr	Glu	Pro	His 440	Phe	Asp	His	Ala	Thr 445	Ser	Pro	Ser	Ser	Pro 450
Leu	Tyr	Arg	Met	Lys 455	Ser	Gly	Asn	Arg	Val 460	Ala	Thr	Phe	Met	Ile 465

```
Tyr Leu Ser Ser Val Glu Ala Gly Gly Ala Thr Ala Phe Ile Tyr
                  470
                                      475
 Ala Asn Leu Ser Val Pro Val Val Arg Asn Ala Ala Leu Phe Trp
                  485
                                      490
 Trp Asn Leu His Arg Ser Gly Glu Gly Asp Ser Asp Thr Leu His
                                      505
 Ala Gly Cys Pro Val Leu Val Gly Asp Lys Trp Val Ala Asn Lys
                                      520
 Trp Ile His Glu Tyr Gly Gln Glu Phe Arg Arg Pro Cys Ser Ser
                                      535
 Ser Pro Glu Asp
<210> 119
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 119
 cgggacagga gacccagaaa ggg 23
<210> 120
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 120
 ggccaagtga tccaaggcat cttc 24
<210> 121
<211> 49
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 121
ctgcgggacc tgactagatt ctacgacaag gtactttctt tgcatgggg 49
<210> 122
<211> 1778
<212> DNA
<213> Homo sapiens
```

<400> 122 gagataggga gtctgggttt aagttcctgc tccatctcag gagcccctgc 50 toccaccoot aggaagecae cagaetecae ggtgtgggge caatcaggtg 100 gaatcggccc tggcaggtgg ggccacgagc gctggctgag ggaccgagcc 150 ggagagcccc ggagcccccg taacccgcgc ggggagcgcc caggatgccg 200 cgcggggact cggagcaggt gcgctactgc gcgcgcttct cctacctctg 250 gctcaagttt tcacttatca tctattccac cgtgttctgg ctgattgggg 300 ccctggtcct gtctgtgggc atctatgcag aggttgagcg gcagaaatat 350 aaaacccttg aaagtgcctt cctggctcca gccatcatcc tcatcctcct 400 gggcgtcgtc atgttcatgg tctccttcat tggtgtgctg gcgtccctcc 450 gtgacaacct gtaccttctc caagcattca tgtacatcct tgggatctgc 500 ctcatcatgg agctcattgg tggcgtggtg gccttgacct tccggaacca 550 gaccattgac ttcctgaacg acaacattcg aagaggaatt gagaactact 600 atgatgatet ggaetteaaa aacateatgg aetttgttea gaaaaagtte 650 aagtgctgtg gcggggagga ctaccgagat tggagcaaga atcagtacca 700 cgactgcagt gcccctggac ccctggcctg tggggtgccc tacacctgct 750 gcatcaggaa cacgacagaa gttgtcaaca ccatgtgtgg ctacaaaact 800 atcgacaagg agcgtttcag tgtgcaggat gtcatctacg tgcggggctg 850 caccaacgcc gtgatcatct ggttcatgga caactacacc atcatggcgt 900 gcatcctcct gggcatcctg cttccccagt tcctgggggt gctgctgacg 950 ctgctgtaca tcacccgggt ggaggacatc atcatggagc actctgtcac 1000 tgatgggctc ctggggcccg gtgccaagcc cagcgtggag gcggcaggca 1050 cgggatgctg cttgtgctac cccaattagg gcccagcctg ccatggcagc 1100 tccaacaagg accgtctggg atagcacctc tcagtcaaca tcgtggggct 1150 ggacaggget geggeeeete tgeecacaet cagtactgae caaageeagg 1200 gctgtgtgtg cctgtgtgta ggtcccacgg cctctgcctc cccagggagc 1250 agagectggg ceteceetaa gaggetttee eegaggeage tetggaatet 1300 gtgcccacct ggggcctggg gaacaaggcc ctcctttctc caggcctggg 1350

ctacagggga gggagagcct gaggctctgc tcagggccca tttcatctct 1400

ggcagtgcct tggcggtggt attcaaggca gttttgtagc acctgtaatt 1450 ggggagaggg agtgtgccc tcggggcagg agggaagggc atctggggaa 1500 gggcaggagg gaagagctgt ccatgcagcc acgcccatgg ccaggttggc 1550 ctcttctcag cctcccaggt gccttgagcc ctcttgcaag ggcggctgct 1600 tccttgagcc tagttttt ttacgtgatt tttgtaacat tcatttttt 1650 gtacagataa caggagttc tgactaatca aagctggtat ttccccgcat 1700 gtcttattct tgcccttccc ccaaccagtt tgttaatcaa acaataaaaa 1750 catgttttg tttgtttta aaaaaaaa 1778

<210> 123

<211> 294

<212> PRT

<213> Homo sapiens

<400> 123

Met Pro Arg Gly Asp Ser Glu Gln Val Arg Tyr Cys Ala Arg Phe 1 5 10 15

Ser Tyr Leu Trp Leu Lys Phe Ser Leu Ile Ile Tyr Ser Thr Val 20 25 30

Phe Trp Leu Ile Gly Ala Leu Val Leu Ser Val Gly Ile Tyr Ala 35 40 45

Glu Val Glu Arg Gln Lys Tyr Lys Thr Leu Glu Ser Ala Phe Leu
50 55 60

Ala Pro Ala Ile Ile Leu Ile Leu Leu Gly Val Val Met Phe Met 65 70 75

Val Ser Phe Ile Gly Val Leu Ala Ser Leu Arg Asp Asn Leu Tyr 80 85 90

Leu Leu Gln Ala Phe Met Tyr Ile Leu Gly Ile Cys Leu Ile Met 95 100 105

Glu Leu Ile Gly Gly Val Val Ala Leu Thr Phe Arg Asn Gln Thr 110 115 120

Ile Asp Phe Leu Asn Asp Asn Ile Arg Arg Gly Ile Glu Asn Tyr 125 130 135

Tyr Asp Asp Leu Asp Phe Lys Asn Ile Met Asp Phe Val Gln Lys
140 145 150

Lys Phe Lys Cys Cys Gly Gly Glu Asp Tyr Arg Asp Trp Ser Lys 155 160 165

Asn Gln Tyr His Asp Cys Ser Ala Pro Gly Pro Leu Ala Cys Gly

	170		175		180								
Val Pro Tyr Thr	Cys Cys Ile 185	Arg Asn	Thr Thr Gl	ı Val Val	Asn 195								
Thr Met Cys Gly	Tyr Lys Thr 200	Ile Asp	Lys Glu Are 205	g Phe Ser	Val 210								
Gln Asp Val Ile	Tyr Val Arg 215	Gly Cys	Thr Asn Al. 220	a Val Ile	Ile 225								
Trp Phe Met Asp	Asn Tyr Thr 230	Ile Met	Ala Cys Ilo 235	e Leu Leu	Gly 240								
Ile Leu Leu Pro	Gln Phe Leu 245	Gly Val	Leu Leu Th: 250	Leu Leu	Tyr 255								
Ile Thr Arg Val	Glu Asp Ile 260	Ile Met	Glu His Ser 265	Val Thr	Asp 270								
Gly Leu Leu Gly	Pro Gly Ala 275	Lys Pro	Ser Val Glu 280	ı Ala Ala	Gly 285								
Thr Gly Cys Cys	Leu Cys Tyr 290	Pro Asn											
<210> 124 <211> 25 <212> DNA <213> Artificial Sequence													
<220> <223> Synthetic o	oligonucleoti	de probe											
<400> 124 atcatctatt ccacc	gtgtt ctggc	25											
<210> 125 <211> 25 <212> DNA <213> Artificial	<211> 25												
<220> <223> Synthetic o	ligonucleoti	de probe											
<400> 125 gacagagtgc tccat	gatga tgtcc :	25											
<210> 126 <211> 50 <212> DNA <213> Artificial Sequence													
<220> <223> Synthetic o	ligonucleotic	de probe											
<400> 126													

<210> 127

<211> 1636

<212> DNA

<213> Homo sapiens

<400> 127

gaggageggg cegaggacte cagegtgeee aggtetggea teetgeactt 50 gctgccctct gacacctggg aagatggccg gcccgtggac cttcaccctt 100 ctctgtggtt tgctggcagc caccttgatc caagccaccc tcagtcccac 150 tgcagttctc atcctcggcc caaaagtcat caaagaaaag ctgacacagg 200 agetgaagga ccacaacgee accageatee tgeageaget geegetgete 250 agtgccatgc gggaaaagcc agccggaggc atccctgtgc tgggcagcct 300 ggtgaacacc gtcctgaagc acatcatctg gctgaaggtc atcacagcta 350 acatecteca getgeaggtg aagecetegg ceaatgacea ggagetgeta 400 gtcaagatcc ccctggacat ggtggctgga ttcaacacgc ccctggtcaa 450 gaccatcgtg gagttccaca tgacgactga ggcccaagcc accatccgca 500 tggacaccag tgcaagtggc cccacccgcc tggtcctcag tgactgtgcc 550 accagccatg ggagcctgcg catccaactg ctgtataagc tctccttcct 600 ggtgaacgcc ttagctaagc aggtcatgaa cctcctagtg ccatccctgc 650 ccaatctagt gaaaaaccag ctgtgtcccg tgatcgaggc ttccttcaat 700 ggcatgtatg cagacctcct gcagctggtg aaggtgccca tttccctcag 750 cattgaccgt ctggagtttg accttctgta tcctgccatc aagggtgaca 800 ccattcagct ctacctgggg gccaagttgt tggactcaca gggaaaggtg 850 accaagtggt tcaataactc tgcagcttcc ctgacaatgc ccaccctgga 900 caacatcccg ttcagcctca tcgtgagtca ggacgtggtg aaagctgcag 950 tggctgctgt gctctctcca gaagaattca tggtcctgtt ggactctgtg 1000 cttcctgaga gtgcccatcg gctgaagtca agcatcgggc tgatcaatga 1050 aaaggctgca gataagctgg gatctaccca gatcgtgaag atcctaactc 1100 aggacactcc cgagtttttt atagaccaag gccatgccaa ggtggcccaa 1150 ctgatcgtgc tggaagtgtt tccctccagt gaagccctcc gccctttgtt 1200 caccctgggc atcgaagcca gctcggaagc tcagttttac accaaaggtg 1250

accaacttat actcaacttg aataacatca gctctgatcg gatccagctg 1300 atgaactctg ggattggctg gttccaacct gatgttctga aaaacatcat 1350 cactgagatc atccactcca tcctgctgcc gaaccagaat ggcaaattaa 1400 gatctggggt cccagtgtca ttggtgaagg ccttgggatt cgaggcagct 1450 gagtcctcac tgaccaagga tgcccttgtg cttactccag cctccttgtg 1500 gaaacccagc tctcctgtct cccagtgaag acttggatgg cagccatcag 1550 ggaaggctgg gtcccagctg ggagtatggg tgtgagctct atagaccatc 1600 cctctctgca atcaataaac acttgcctgt gaaaaa 1636

<210> 128

<211> 484

<212> PRT

<213> Homo sapiens

<400> 128

Met Ala Gly Pro Trp Thr Phe Thr Leu Leu Cys Gly Leu Leu Ala 1 5 10 15

Ala Thr Leu Ile Gln Ala Thr Leu Ser Pro Thr Ala Val Leu Ile $20 \hspace{1cm} 25 \hspace{1cm} 30$

Leu Gly Pro Lys Val Ile Lys Glu Lys Leu Thr Gln Glu Leu Lys 35 40 45

Asp His Asn Ala Thr Ser Ile Leu Gln Gln Leu Pro Leu Leu Ser 50 55 60

Ala Met Arg Glu Lys Pro Ala Gly Gly Ile Pro Val Leu Gly Ser
65 70 75

Leu Val Asn Thr Val Leu Lys His Ile Ile Trp Leu Lys Val Ile $80 \hspace{1cm} 85 \hspace{1cm} 90$

Thr Ala Asn Ile Leu Gln Leu Gln Val Lys Pro Ser Ala Asn Asp 95 100 105

Gln Glu Leu Leu Val Lys Ile Pro Leu Asp Met Val Ala Gly Phe
110 115 120

Asn Thr Pro Leu Val Lys Thr Ile Val Glu Phe His Met Thr Thr 125 130 135

Glu Ala Gln Ala Thr Ile Arg Met Asp Thr Ser Ala Ser Gly Pro 140 145 150

Thr Arg Leu Val Leu Ser Asp Cys Ala Thr Ser His Gly Ser Leu
155 160 165

Arg Ile Gln Leu Leu Tyr Lys Leu Ser Phe Leu Val Asn Ala Leu

455 460 465

Asp Ala Leu Val Leu Thr Pro Ala Ser Leu Trp Lys Pro Ser Ser 470 475 480

Pro Val Ser Gln

<210> 129

<211> 2213

<212> DNA

<213> Homo sapiens

<400> 129

gagegaacat ggeagegegt tggeggtttt ggtgtgtete tgtgaecatg 50 gtggtggcgc tgctcatcgt ttgcgacgtt ccctcagcct ctgcccaaag 100 ctaacaaaag acctgtaata agaatgaatg gagacaagtt ccgtcgcctt 200 gtgaaagccc caccgagaaa ttactccgtt atcgtcatgt tcactgctct 250 ccaactgcat agacagtgtg tcgtttgcaa gcaagctgat gaagaattcc 300 agatcctggc aaactcctgg cgatactcca gtgcattcac caacaggata 350 ttttttgcca tggtggattt tgatgaaggc tctgatgtat ttcagatgct 400 aaacatgaat tcagctccaa ctttcatcaa ctttcctqca aaaqqqaaac 450 ccaaacgggg tgatacatat gagttacagg tgcggggttt ttcagctgag 500 cagattgccc ggtggatcgc cgacagaact gatgtcaata ttagagtgat 550 tagaccccca aattatgctg gtccccttat gttgggattg cttttggctg 600 ttattggtgg acttgtgtat cttcgaagaa gtaatatgga atttctcttt 650 aataaaactg gatgggcttt tgcagctttg tgttttgtgc ttgctatgac 700 atctggtcaa atgtggaacc atataagagg accaccatat gcccataaga 750 atccccacac gggacatgtg aattatatcc atggaagcag tcaagcccag 800 tttgtagctg aaacacacat tgttcttctg tttaatggtg gagttacctt 850 aggaatggtg cttttatgtg aagctgctac ctctgacatg gatattggaa 900 agogaaagat aatgtgtgtg gotggtattg gaottgttgt attattotto 950 agttggatgc tctctatttt tagatctaaa tatcatggct acccatacag 1000 ctttctgatg agttaaaaag gtcccagaga tatatagaca ctggagtact 1050 ggaaattgaa aaacgaaaat cgtgtgtgtt tgaaaagaag aatgcaactt 1100 gtatattttg tattacctct ttttttcaag tgatttaaat agttaatcat 1150 ttaaccaaaq aaqatqtqta qtqccttaac aaqcaatcct ctgtcaaaat 1200 ctgaggtatt tgaaaataat tatcctctta accttctctt cccagtgaac 1250 tttatggaac atttaattta gtacaattaa gtatattata aaaattgtaa 1300 aactactact ttqttttaqt tagaacaaag ctcaaaacta ctttagttaa 1350 cttggtcatc tgattttata ttgccttatc caaagatggg gaaagtaagt 1400 cctgaccagg tgttcccaca tatgcctgtt acagataact acattaggaa 1450 ttcattctta gcttcttcat ctttgtgtgg atgtgtatac tttacgcatc 1500 tttccttttg agtagagaaa ttatgtgtgt catgtggtct tctgaaaatg 1550 gaacaccatt cttcagagca cacgtctagc cctcagcaag acagttgttt 1600 ctcctcctcc ttqcatattt cctactqcqc tccaqcctga gtgatagagt 1650 gagactctgt ctcaaaaaaa agtatctcta aatacaggat tataatttct 1700 gcttgagtat ggtgttaact accttgtatt tagaaagatt tcagattcat 1750 tccatctcct tagttttctt ttaaggtgac ccatctgtga taaaaatata 1800 gcttagtgct aaaatcagtg taacttatac atggcctaaa atgtttctac 1850 aaattagagt ttgtcactta ttccatttgt acctaagaga aaaataggct 1900 caqttaqaaa aqqactccct .qqccaqqcqc aqtgacttac gcctgtaatc 1950 tcaqcacttt qqqaqqccaa qqcaqqcaqa tcacqaqgtc aggagttcga 2000 gaccatectg gecaacatgg tgaaaceeeg tetetaetaa aaatataaaa 2050 attaqctqqq tqtqqtqqca qqaqcctqta atcccaqcta cacaggaggc 2100 tgaggcacga gaatcacttg aactcaggag atggaggttt cagtgagccg 2150 agatcacgcc actgcactcc agcctggcaa cagagcgaga ctccatctca 2200 aaaaaaaaa aaa 2213

<210> 130

<211> 335

<212> PRT

<213> Homo sapiens

<400> 130

Met Ala Ala Arg Trp Arg Phe Trp Cys Val Ser Val Thr Met Val 1 5 10 15

Val Ala Leu Leu Ile Val Cys Asp Val Pro Ser Ala Ser Ala Gln

Arg	Lys	Lys	Glu	Met 35	Val	Leu	Ser	Glu	Lys 40	Val	Ser	Gln	Leu	Met
Glu	Trp	Thr	Asn	Lys 50	Arg	Pro	Val	Ile	Arg 55	Met	Asn	Gly	Asp	Lys 60
Phe	Arg	Arg	Leu	Val 65	Lys	Ala	Pro	Pro	Arg 70	Asn	Tyr	Ser	Val	Ile 75
Val	Met	Phe	Thr	Ala 80	Leu	Gln	Leu	His	Arg 85	Gln	Суз	Val	Val	Cys 90
Lys	Gln	Ala	Asp	Glu 95	Glu	Phe	Gln	Ile	Leu 100	Ala	Asn	Ser	Trp	Arc 105
Tyr	Ser	Ser	Ala	Phe 110	Thr	Asn	Arg	Ile	Phe 115	Phe	Ala	Met	Val	Asp 120
Phe	Asp	Glu	Gly	Ser 125	Asp	Val	Phe	Gln	Met 130	Leu	Asn	Met	Asn	Ser 135
Ala	Pro	Thr	Phe	Ile 140	Asn	Phe	Pro	Ala	Lys 145	Gly	Lys	Pro	Lys	Arc 150
Gly	Asp	Thr	Tyr	Glu 155	Leu	Gln	Val	Arg	Gly 160	Phe	Ser	Ala	Glu	Glr 165
Ile	Ala	Arg	Trp	Ile 170	Ala	Asp	Arg	Thr	Asp 175	Val	Asn	Ile	Arg	Va: 180
Ile	Arg	Pro	Pro	Asn 185	Tyr	Ala	Gly	Pro	Leu 190	Met	Leu	Gly	Leu	Let 195
Leu	Ala	Val	Ile	Gly 200	Gly	Leu	Val	Tyr	Leu 205	Arg	Arg	Ser	Asn	Met 210
Glu	Phe	Leu	Phe	Asn 215	Lys	Thr	Gly	Trp	Ala 220	Phe	Ala	Ala	Leu	Cys 225
Phe	Val	Leu	Ala	Met 230	Thr	Ser	Gly	Gln	Met 235	Trp	Asn	His	Ile	Arç 240
Gly	Pro	Pro	Tyr	Ala 245	His	Lys	Asn	Pro	His 250	Thr	Gly	His	Val	Asr 255
Tyr	Ile	His	Gly	Ser 260	Ser	Gln	Ala	Gln	Phe 265	Val	Ala	Glu	Thr	His 270
Ile	Val	Leu	Leu	Phe 275	Asn	Gly	Gly	Val	Thr 280	Leu	Gly	Met	Val	Lei 285
Leu	Cys	Glu	Ala	Ala 290	Thr	Ser	Asp	Met	Asp 295	Ile	Gly	Lys	Arg	Lys 300
Tle	Met	Cvs	Val	Ala	Glv	Tle	Glv	T.e.11	Va1	Val	Len	Phe	Pho	Sar

305 310 315

Trp Met Leu Ser Ile Phe Arg Ser Lys Tyr His Gly Tyr Pro Tyr 320 325 330

Ser Phe Leu Met Ser 335

<210> 131

<211> 2476

<212> DNA

<213> Homo sapiens

<400> 131

aagcaaccaa actgcaagct ttgggagttg ttcgctgtcc ctgccctgct 50 ctgctaggga gagaacgcca gagggaggcg gctggcccgg cggcaggctc 100 tcagaaccgc taccggcgat gctactgctg tgggtgtcgg tggtcgcagc 150 cttggcgctg gcggtactgg cccccggagc aggggagcag aggcggagag 200 cagccaaagc gcccaatgtg gtgctggtcg tgagcgactc cttcgatgga 250 aggttaacat ttcatccagg aagtcaggta gtgaaacttc cttttatcaa 300 ctttatgaag acacgtggga cttcctttct gaatgcctac acaaactctc 350 caatttgttg cccatcacgc gcagcaatgt ggagtggcct cttcactcac 400 ttaacagaat cttggaataa ttttaagggt ctagatccaa attatacaac 450 atggatggat gtcatggaga ggcatggcta ccgaacacag aaatttggga 500 aactggacta tacttcagga catcactcca ttagtaatcg tgtggaagcg 550 tggacaagag atgttgcttt cttactcaga caagaaggca ggcccatggt 600 taatcttatc cgtaacagga ctaaagtcag agtgatggaa agggattggc 650 agaatacaga caaagcagta aactggttaa gaaaggaagc aattaattac 700 actgaaccat ttgttattta cttgggatta aatttaccac acccttaccc 750 ttcaccatct tctggagaaa attttggatc ttcaacattt cacacatctc 800 tttattggct tgaaaaagtg tctcatgatg ccatcaaaat cccaaagtgg 850 tcacctttgt cagaaatgca ccctgtagat tattactctt cttatacaaa 900 aaactgcact ggaagattta caaaaaaaga aattaagaat attagagcat 950 tttattatgc tatgtgtgct gagacagatg ccatgcttgg tgaaattatt 1000 ttggcccttc atcaattaga tcttcttcag aaaactattg tcatatactc 1050 ctcagaccat ggagagctgg ccatggaaca tcgacagttt tataaaatga 1100

gcatgtacga ggctagtgca catgttccgc ttttgatgat gggaccagga 1150 attaaagccg gcctacaagt atcaaatgtg gtttctcttg tggatattta 1200 ccctaccatg cttgatattg ctggaattcc tctgcctcag aacctgagtg 1250 gatactettt gttgeegtta teateagaaa eatttaagaa tgaacataaa 1300 gtcaaaaacc tgcatccacc ctggattctg agtgaattcc atggatgtaa 1350 tgtgaatgcc tccacctaca tgcttcgaac taaccactgg aaatatatag 1400 cctattcgga tggtgcatca atattgcctc aactctttga tctttcctcg 1450 gatccagatg aattaacaaa tgttgctgta aaatttccag aaattactta 1500 ttctttggat cagaagcttc attccattat aaactaccct aaagtttctg 1550 cttctgtcca ccagtataat aaagagcagt ttatcaagtg gaaacaaagt 1600 ataggacaga attattcaaa cgttatagca aatcttaggt ggcaccaaga 1650 ctggcagaag gaaccaagga agtatgaaaa tgcaattgat cagtggctta 1700 aaacccatat gaatccaaga gcagtttgaa caaaaagttt aaaaatagtg 1750 ttctagagat acatataaat atattacaag atcataatta tgtattttaa 1800 atgaaacagt tttaataatt accaagtttt ggccgggcac agtggctcac 1850 acctgtaatc ccaggacttt gggaggctga ggaaagcaga tcacaaggtc 1900 aagagattga gaccatcctg gccaacatgg tgaaaccctg tctctactaa 1950 aaatacaaaa attagctggg cgcggtggtg cacacctata gtctcagcta 2000 ctcagaggct gaggcaggag gatcgcttga acccgggagg cagcagttgc 2050 agtgagctga gattgcgcca ctgtactcca gcctggcaac agagtgagac 2100 tgtgtcgcaa aaaaataaaa ataaaataat aataattacc aatttttcat 2150 tattttgtaa gaatgtagtg tattttaaga taaaatgcca atgattataa 2200 aatcacatat tttcaaaaat ggttattatt taggcctttg tacaatttct 2250 aacaatttag tggaagtatc aaaaggattg aagcaaatac tgtaacagtt 2300 atgttccttt aaataataga gaatataaaa tattgtaata atatgtatca 2350 taaaatagtt gtatgtgagc atttgatggt gaaaaaaaaa aaaaaaaaa 2400 aaaaaaaaa aaaaaaaaa aaaaaa 2476

```
<210> 132
<211> 536
<212> PRT
<213> Homo sapiens
<400> 132
Met Leu Leu Trp Val Ser Val Val Ala Ala Leu Ala Leu Ala
Val Leu Ala Pro Gly Ala Gly Glu Gln Arg Arg Ala Ala Lys
Ala Pro Asn Val Val Leu Val Val Ser Asp Ser Phe Asp Gly Arg
Leu Thr Phe His Pro Gly Ser Gln Val Val Lys Leu Pro Phe Ile
Asn Phe Met Lys Thr Arg Gly Thr Ser Phe Leu Asn Ala Tyr Thr
Asn Ser Pro Ile Cys Cys Pro Ser Arg Ala Ala Met Trp Ser Gly
                 80
Leu Phe Thr His Leu Thr Glu Ser Trp Asn Asn Phe Lys Gly Leu
                                    100
Asp Pro Asn Tyr Thr Trp Met Asp Val Met Glu Arg His Gly
                110
Tyr Arg Thr Gln Lys Phe Gly Lys Leu Asp Tyr Thr Ser Gly His
                                    130
His Ser Ile Ser Asn Arg Val Glu Ala Trp Thr Arg Asp Val Ala
Phe Leu Leu Arg Gln Glu Gly Arg Pro Met Val Asn Leu Ile Arg
                155
Asn Arg Thr Lys Val Arg Val Met Glu Arg Asp Trp Gln Asn Thr
Asp Lys Ala Val Asn Trp Leu Arg Lys Glu Ala Ile Asn Tyr Thr
                185
                                    190
Glu Pro Phe Val Ile Tyr Leu Gly Leu Asn Leu Pro His Pro Tyr
                200
Pro Ser Pro Ser Ser Gly Glu Asn Phe Gly Ser Ser Thr Phe His
Thr Ser Leu Tyr Trp Leu Glu Lys Val Ser His Asp Ala Ile Lys
                230
Ile Pro Lys Trp Ser Pro Leu Ser Glu Met His Pro Val Asp Tyr
                245
                                                        255
```

Tyr	Ser	Ser	Tyr	Thr 260	Lys	Asn	Cys	Thr	Gly 265	Arg	Phe	Thr	Lys	Lys 270
Glu	Ile	Lys	Asn	Ile 275	Arg	Ala	Phe	Tyr	Tyr 280	Ala	Met	Cys ·	Ala	Glu 285
Thr	Asp	Ala	Met	Leu 290	Gly	Glu	Ile	Ile	Leu 295	Ala	Leu	His	Gln	Leu 300
Asp	Leu	Leu	Gln	Lys 305	Thr	Ile	Val	Ile	Tyr 310	Ser	Ser	Asp	His	Gly 315
Glu	Leu	Ala	Met	Glu 320	His	Arg	Gln	Phe	Tyr 325	Lys	Met	Ser	Met	Tyr 330
Glu	Ala	Ser	Ala	His 335	Val	Pro	Leu	Leu	Met 340	Met	Gly	Pro	Gly	Ile 345
Lys	Ala	Gly	Leu	Gln 350	Val	Ser	Asn	Val	Val 355	Ser	Leu	Val	Asp	Ile 360
Tyr	Pro	Thr	Met	Leu 365	Asp	Ile	Ala	Gly	Ile 370	Pro	Leu	Pro	Gln	Asn 375
Leu	Ser	Gly	Tyr	Ser 380	Leu	Leu	Pro	Leu	Ser 385	Ser	Glu	Thr	Phe	Lys 390
Asn	Glu	His	Lys	Val 395	Lys	Asn	Leu	His	Pro 400	Pro	Trp	Ile	Leu	Ser 405
Glu	Phe	His	Gly	Cys 410	Asn	Val	Asn	Ala	Ser 415	Thr	Tyr	Met	Leu	Arg 420
Thr	Asn	His	Trp	Lys 425	Tyr	Ile	Ala	Tyr	Ser 430	Asp	Gly	Ala	Ser	Ile 435
Leu	Pro	Gln	Leu	Phe 440	Asp	Leu	Ser	Ser	Asp 445	Pro	Asp	Glu	Leu	Thr 450
Asn	Val	Ala	Val	Lys 455	Phe	Pro	Glu	Ile	Thr 460	Tyr	Ser	Leu	Asp	Gln 465
Lys	Leu	His	Ser	Ile 470	Ile	Asn	Tyr	Pro	Lys 475	Val	Ser	Ala	Ser	Val 480
His	Gln	Tyr	Asn	Lys 485	Glu	Gln	Phe	Ile	Lys 490	Trp	Lys	Gln	Ser	Ile 495
Gly	Gln	Asn	Tyr	Ser 500	Asn	Val	Ile	Ala	Asn 505	Leu	Arg	Trp	His	Gln 510
Asp	Trp	Gln	Lys	Glu 515	Pro	Arg	Lys	Tyr	Glu 520	Asn	Ala	Ile	Asp	Gln 525
Trp	Leu	Lys	Thr	His 530	Met	Asn	Pro	Arg	Ala 535	Val				

.

<210> 133 <211> 1475 <212> DNA <213> Homo sapiens

<400> 133

gagagaagtc agcctggcag agagactctg aaatgaggga ttagaggtgt 50 tcaaggagca agagcttcag cctgaagaca agggagcagt ccctgaagac 100 gcttctactg agaggtctgc catggcctct cttggcctcc aacttgtggg 150 ctacatccta ggccttctgg ggcttttggg cacactggtt gccatgctgc 200 tccccagctg gaaaacaagt tcttatgtcg gtgccagcat tgtgacagca 250 gttggcttct ccaagggcct ctggatggaa tgtgccacac acagcacagg 300 catcacccag tgtgacatct atagcaccct tctgggcctg cccgctgaca 350 tccaggctgc ccaggccatg atggtgacat ccagtgcaat ctcctccctg 400 gcctgcatta tctctgtggt gggcatgaga tgcacagtct tctgccagga 450 atcccgagcc aaagacagag tggcggtagc aggtggagtc tttttcatcc 500 ttggaggcct cctgggattc attcctgttg cctggaatct tcatgggatc 550 ctacgggact tctactcacc actggtgcct gacagcatga aatttgagat 600 tggagagget etttaettgg geattattte tteeetgtte teeetgatag 650 ctggaatcat cctctgcttt tcctgctcat cccagagaaa tcgctccaac 700 tactacgatg cctaccaagc ccaacctctt gccacaagga gctctccaag 750 gcctggtcaa cctcccaaag tcaagagtga gttcaattcc tacagcctga 800 cagggtatgt gtgaagaacc aggggccaga gctgggggt ggctgggtct 850 gtgaaaaaca gtggacagca ccccgagggc cacaggtgag ggacactacc 900 actggatcgt gtcagaaggt gctgctgagg atagactgac tttggccatt 950 ggattgagca aaggcagaaa tgggggctag tgtaacagca tgcaggttga 1000 attgccaagg atgctcgcca tgccagcctt tctgttttcc tcaccttgct 1050 gctcccctgc cctaagtccc caaccctcaa cttgaaaccc cattccctta 1100 agccaggact cagaggatcc ctttgccctc tggtttacct gggactccat 1150 ccccaaaccc actaatcaca tcccactgac tgaccctctg tgatcaaaga 1200 ccctctctct ggctgaggtt ggctcttagc tcattgctgg ggatgggaag 1250 gagaagcagt ggcttttgtg ggcattgctc taacctactt ctcaagcttc 1300

cctccaaaga aactgattgg ccctggaacc tccatcccac tcttgttatg 1350 actccacagt gtccagacta atttgtgcat gaactgaaat aaaaccatcc 1400 tacggtatcc agggaacaga aagcaggatg caggatggga ggacaggaag 1450 gcagcctggg acatttaaaa aaata 1475

<210> 134

<211> 230

<212> PRT

<213> Homo sapiens

<400> 134

Met Ala Ser Leu Gly Leu Gln Leu Val Gly Tyr Ile Leu Gly Leu
1 5 10 15

Leu Gly Leu Leu Gly Thr Leu Val Ala Met Leu Leu Pro Ser Trp 20 25 30

Lys Thr Ser Ser Tyr Val Gly Ala Ser Ile Val Thr Ala Val Gly 35 40 45

Phe Ser Lys Gly Leu Trp Met Glu Cys Ala Thr His Ser Thr Gly 50 55 60

Ile Thr Gln Cys Asp Ile Tyr Ser Thr Leu Leu Gly Leu Pro Ala
65 70 75

Asp Ile Gln Ala Ala Gln Ala Met Met Val Thr Ser Ser Ala Ile 80 85 90

Ser Ser Leu Ala Cys Ile Ile Ser Val Val Gly Met Arg Cys Thr $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Val Phe Cys Gln Glu Ser Arg Ala Lys Asp Arg Val Ala Val Ala 110 115 120

Gly Gly Val Phe Phe Ile Leu Gly Gly Leu Leu Gly Phe Ile Pro

Val Ala Trp Asn Leu His Gly Ile Leu Arg Asp Phe Tyr Ser Pro 140 145 150

Leu Val Pro Asp Ser Met Lys Phe Glu Ile Gly Glu Ala Leu Tyr 155 160 165

Leu Gly Ile Ile Ser Ser Leu Phe Ser Leu Ile Ala Gly Ile Ile
170 175 180

Leu Cys Phe Ser Cys Ser Ser Gln Arg Asn Arg Ser Asn Tyr Tyr 185 190 195

Asp Ala Tyr Gln Ala Gln Pro Leu Ala Thr Arg Ser Ser Pro Arg 200 205 210 Pro Gly Gln Pro Pro Lys Val Lys Ser Glu Phe Asn Ser Tyr Ser 215 220 225

Leu Thr Gly Tyr Val

<210> 135

<211> 610

<212> DNA

<213> Homo sapiens

<400> 135

gcactgctgc tgtcccatca gctgctctga agctccatgg tgcccagaat 50 cttcgctcct gcttatgtgt cagtctgtct cctcctcttg tgtccaaggg 100 aagtcatcgc tcccgctggc tcagaaccat ggctgtgcca gccggcaccc 150 aggtgtggag acaagatcta caaccccttg gagcagtgct gttacaatga 200 cgccatcgtg tccctgagcg agacccgcca atgtggtccc ccctgcacct 250 tctggccctg ctttgagctc tgctgtcttg attcctttgg cctcacaaac 300 gattttgttg tgaagctgaa ggttcagggt gtgaattccc agtgccactc 350 atctcccatc tccagtaaat gtgaaagcag aagacgtttt ccctgagaag 400 acatagaaag aaaatcaact ttcactaagg catctcagaa acataggcta 450 aggtaatatg tgtaccagta gagaagcctg aggaatttac aaaatgatgc 500 agctccaagc cattgtatgg cccatgtggg agactgatgg gacatggaga 550 atgacagtag attatcagga aataaataa gtggttttc caatgtacac 600 acctgtaaaa 610

<210> 136

<211> 119

<212> PRT

<213> Homo sapiens

<400> 136

Met Val Pro Arg Ile Phe Ala Pro Ala Tyr Val Ser Val Cys Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Leu Cys Pro Arg Glu Val Ile Ala Pro Ala Gly Ser Glu 20 25 30

Pro Trp Leu Cys Gln Pro Ala Pro Arg Cys Gly Asp Lys Ile Tyr
35 40 45

Asn Pro Leu Glu Gln Cys Cys Tyr Asn Asp Ala Ile Val Ser Leu 50 55 60

Ser Glu Thr Arg Gln Cys Gly Pro Pro Cys Thr Phe Trp Pro Cys

65 70 75

Phe Glu Leu Cys Cys Leu Asp Ser Phe Gly Leu Thr Asn Asp Phe 80 85 90

Val Val Lys Leu Lys Val Gln Gly Val Asn Ser Gln Cys His Ser 95 100 105

Ser Pro Ile Ser Ser Lys Cys Glu Ser Arg Arg Phe Pro 110 115

<210> 137

<211> 771

<212> DNA

<213> Homo sapiens

<400> 137

ctccactgca accacccaga gccatggctc cccgaggctg catcgtagct 50 gtetttqcca ttttctqcat ctccaqqctc ctctqctcac acggagcccc 100 agtggccccc atgactcctt acctgatgct gtgccagcca cacaagagat 150 gtggggacaa gttctacgac ccctgcagc actgttgcta tgatgatgcc 200 gtcgtgccct tggccaggac ccagacgtgt ggaaactgca ccttcagagt 250 ctgctttgag cagtgctgcc cctggacctt catggtgaag ctgataaacc 300 agaactgcga ctcagcccgg acctcggatg acaggctttg tcgcagtgtc 350 agctaatgga acatcagggg aacgatgact cctggattct ccttcctggg 400 tgggcctgga gaaagaggct ggtgttacct gagatctggg atgctgagtg 450 gctgtttggg ggccagagaa acacacactc aactgcccac ttcattctgt 500 gacctgtctg aggcccaccc tgcagctgcc ctgaggaggc ccacaggtcc 550 cettetagaa ttetggacag catgagatge gtgtgetgat gggggeecag 600 ggactctgaa ccctcctgat gacccctatg gccaacatca acccggcacc 650 accccaagge tggctgggga accettcace ettetgtgag attttccate 700 atctcaagtt ctcttctatc caggagcaaa gcacaggatc ataataaatt 750 tatgtacttt ataaatgaaa a 771

<210> 138

<211> 110

<212> PRT

<213> Homo sapiens

<400> 138

Met Ala Pro Arg Gly Cys Ile Val Ala Val Phe Ala Ile Phe Cys
1 5 10 15

Ile Ser Arg Leu Leu Cys Ser His Gly Ala Pro Val Ala Pro Met 20 25 30

Thr Pro Tyr Leu Met Leu Cys Gln Pro His Lys Arg Cys Gly Asp 35 40 45

Lys Phe Tyr Asp Pro Leu Gln His Cys Cys Tyr Asp Asp Ala Val
50 55 60

Val Pro Leu Ala Arg Thr Gln Thr Cys Gly Asn Cys Thr Phe Arg
65 70 75

Val Cys Phe Glu Gln Cys Cys Pro Trp Thr Phe Met Val Lys Leu 80 85 90

Ile Asn Gln Asn Cys Asp Ser Ala Arg Thr Ser Asp Asp Arg Leu
95 100 105

Cys Arg Ser Val Ser 110

<210> 139

<211> 2044

<212> DNA

<213> Homo sapiens

<400> 139

atagtgaaaa catcacggct gcagccctgg ctacgggtgc ctgcatcgta 750

ggaatcctct gcctcccct catcctgctc ctggtctaca agcaaaggca 800 ggcagcctcc aaccgccgtg cccaggagct ggtgcggatg gacagcaaca 850 ttcaagggat tgaaaacccc ggctttgaag cctcaccacc tgcccagggg 900 atacccgagg ccaaagtcag gcacccctg tcctatgtgg cccagcggca 950 gccttctgag tctgggcggc atctgctttc ggagcccagc accccctgt 1000 ctcctccagg ccccggagac gtcttcttcc catccctgga ccctgtccct 1050 gactctccaa actttgaggt catctagccc agctggggga cagtgggctg 1100 ttgtggctgg gtctggggca ggtgcatttg agccagggct ggctctgtga 1150 gtggcctcct tggcctcggc cctggttccc tccctcctgc tctgggctca 1200 gatactgtga catcccagaa gcccagcccc tcaacccctc tggatgctac 1250 atggggatgc tggacggctc agcccctgtt ccaaggattt tggggtgctg 1300 agattetece etagagaeet gaaatteace agetacagat gecaaatgae 1350 ttacatctta agaagtctca gaacgtccag cccttcagca gctctcgttc 1400 tgagacatga gccttgggat gtggcagcat cagtgggaca agatggacac 1450 tgggccaccc tcccaggcac cagacacagg gcacggtgga gagacttctc 1500 ccccgtggcc gccttggctc ccccgttttg cccgaggctg ctcttctgtc 1550 agactteete tttgtaceae agtggetetg gggeeaggee tgeetgeeea 1600 ctggccatcg ccaccttccc cagctgcctc ctaccagcag tttctctgaa 1650 gatctgtcaa caggttaagt caatctgggg cttccactgc ctgcattcca 1700 gtccccagag cttggtggtc ccgaaacggg aagtacatat tggggcatgg 1750 tggcctccgt gagcaaatgg tgtcttgggc aatctgaggc caggacagat 1800 gttgccccac ccactggaga tggtgctgag ggaggtgggt ggggccttct 1850 gggaaggtga gtggagaggg gcacctgccc cccgccctcc ccatccccta 1900 ctcccactgc tcagcgcggg ccattgcaag ggtgccacac aatgtcttgt 1950 ccaccctggg acacttctga gtatgaagcg ggatgctatt aaaaactaca 2000 tggggaaaaa aaaaaaaaa aaaaaaaaa aaga 2044

<210> 140

<211> 311

<212> PRT

<213> Homo sapiens

<400 Met			. Pro	Thr	: Ala	. Leu	ı Glu	ı Ala	Glv	Ser	Tro	Aro	Tro	Gly
1	-			5					10			9	**P	15
Ser	Leu	Leu	Phe	20		Phe	e Leu	Ala	Ala 25		Leu	Gly	Pro	Val 30
Ala	Ala	Phe	Lys	: Val 35		Thr	Pro	Tyr	Ser 40	Leu	Tyr	Val	Cys	Pro 45
Glu	Gly	Gln	Asn	Val 50		Leu	Thr	Cys	Arg 55	Leu	Leu	Gly	Pro	Val 60
Asp	Lys	Gly	His	Asp 65		Thr	Phe	Tyr	Lys 70	Thr	Trp	Tyr	Arg	Ser 75
Ser	Arg	Gly	Glu	Val 80		Thr	Суѕ	Ser	Glu 85	Arg	Arg	Pro	Ile	Arg 90
Asn	Leu	Thr	Phe	Gln 95		Leu	His	Leu	His 100	His	Gly	Gly	His	Gln 105
Ala	Ala	Asn	Thr	Ser 110	His	Asp	Leu	Ala	Gln 115	Arg	His	Gly	Leu	Glu 120
Ser	Ala	Ser	Asp	His 125	His	Gly	Asn	Phe	Ser 130	Ile	Thr	Met	Arg	Asn 135
Leu	Thr	Leu	Leu	Asp 140	Ser	Gly	Leu	Tyr	Cys 145	Cys	Leu	Val	Val	Glu 150
Ile	Arg	His	His	His 155	Ser	Glu	His	Arg	Val 160	His	Gly	Ala	Met	Glu 165
Leu	Gln	Val	Gln	Thr 170	Gly	Lys	Asp	Ala	Pro 175	Ser	Asn	Cys	Val	Val 180
Tyr	Pro	Ser	Ser	Ser 185	Gln	Asp	Ser	Glu	Asn 190	Ile	Thr	Ala	Ala	Ala 195
Leu	Ala	Thr	Gly	Ala 200	Cys	Ile	Val	Gly	Ile 205	Leu	Cys	Leu	Pro	Leu 210
Ile	Leu	Leu	Leu	Val 215	Tyr	Lys	Gln	Arg	Gln 220	Ala	Ala	Ser	Asn	Arg 225
Arg .	Ala	Gln	Glu	Leu 230	Val	Arg	Met	Asp	Ser 235	Asn	Ile	Gln	Gly	Ile 240
Glu	Asn	Pro	Gly	Phe 245	Glu	Ala	Ser	Pro	Pro 250	Ala	Gln	Gly	Ile	Pro 255
Glu .	Ala	Lys	Val	Arg 260	His	Pro	Leu	Ser	Tyr 265	Val	Ala	Gln	Arg	Gln 270
Pro i	Ser	Glu	Ser	Gly	Arg	His	Leu	Leu	Ser	Glu	Pro	Ser	Thr	Pro

275 280 285

Leu Ser Pro Pro Gly Pro Gly Asp Val Phe Phe Pro Ser Leu Asp 290 295 300

Pro Val Pro Asp Ser Pro Asn Phe Glu Val Ile 305 310

<210> 141

<211> 1732

<212> DNA

<213> Homo sapiens

<400> 141

cccacgcgtc cgcgcctctc ccttctgctg gaccttcctt cgtctctcca 50 tetetecete ettteeege gttetette cacettete ttetteeeac 100 cttagacete cetteetgee etcettteet geceaeeget getteetgge 150 ccttctccga ccccgctcta gcagcagacc tcctggggtc tgtgggttga 200 tetgtggccc etgtgcctcc gtgtcctttt egtctccctt cctcccgact 250 ccgctcccgg accagcggcc tgaccctggg gaaaggatgg ttcccgaggt 300 gagggtcctc tcctccttgc tgggactcgc gctgctctgg ttccccctgg 350 actoccacgo togagocogo coagacatgt totgootttt coatgggaag 400 agatactece eeggegagag etggeacece tacttggage cacaaggeet 450 gatgtactgc ctgcgctgta cctgctcaga gggcgcccat gtgagttgtt 500 accgcctcca ctgtccgcct gtccactgcc cccagcctgt gacggagcca 550 cagcaatgct gtcccaagtg tgtggaacct cacactccct ctggactccg 600 ggccccacca aagtcctgcc agcacaacgg gaccatgtac caacacggag 650 agatetteag tgeceatgag etgtteeeet eeegeetgee eaaceagtgt 700 gtcctctgca gctgcacaga gggccagatc tactgcggcc tcacaacctg 750 ccccgaacca ggctgcccag cacccctccc actgccagac tcctgctgcc 800 aagcctgcaa agatgaggca agtgagcaat cggatgaaga ggacagtgtg 850 cagtcgctcc atggggtgag acatcctcag gatccatgtt ccagtgatgc 900 tgggagaaag agaggcccgg gcaccccagc cccactggc ctcagcgccc 950 ctctgagctt catccctcgc cacttcagac ccaagggagc aggcagcaca 1000 actgtcaaga tcgtcctgaa ggagaaacat aagaaagcct gtgtgcatgg 1050 egggaagaeg tacteceaeg gggaggtgtg geaeceggee tteegtgeet 1100

<210> 142

<211> 451

<212> PRT

<213> Homo sapiens

<400> 142

Met Val Pro Glu Val Arg Val Leu Ser Ser Leu Leu Gly Leu Ala 1 5 10 15

Leu Leu Trp Phe Pro Leu Asp Ser His Ala Arg Ala Arg Pro Asp 20 25 30

Met Phe Cys Leu Phe His Gly Lys Arg Tyr Ser Pro Gly Glu Ser

Trp His Pro Tyr Leu Glu Pro Gln Gly Leu Met Tyr Cys Leu Arg
50 55 60

Cys Thr Cys Ser Glu Gly Ala His Val Ser Cys Tyr Arg Leu His
65 70 75

Cys Pro Pro Val His Cys Pro Gln Pro Val Thr Glu Pro Gln Gln 80 85 90

Cys Cys Pro Lys Cys Val Glu Pro His Thr Pro Ser Gly Leu Arg 95 100 105

Ala Pro Pro Lys Ser Cys Gln His Asn Gly Thr Met Tyr Gln His 110 115 120

Gly	Glu	Ile	Phe	Ser 125		His	Glu	Leu	Phe 130		Ser	Arg	Leu	Pro 135		
Asn	Gln	Cys	: Val	Leu 140		Ser	Cys	Thr	Glu 145	Gly	Gln	Ile	Tyr	Cys 150		
Gly	Leu	Thr	Thr	Cys 155	Pro	Glu	Pro	Gly	Cys 160	Pro	Ala	Pro	Leu	Pro 165		
Leu	Pro	Asp	Ser	Cys 170		Gln	Ala	Cys	Lys 175	Asp	Glu	Ala	Ser	Glu 180	•	
				185		Ser			190					195.		
				200		Ser			205					210		
				215		Thr			220					225		
				230		Pro			235					240		
				245		Lys			250					255		
				260		Gly			265					270		
				275		Cys			280					285		
				290		Val Ala			295					300		
				305		Gly			310					315		
				320		Arg			325					330		
				335		Arg			340					345		
				350		Tyr			355					360		
				365		Gly			370					375		
				380					385					390 ·		
DGI	OTII	11511	ьеи	395	ъeи	Asp	ser		400	ьц	ser	GIN	GLU	Ala 405		

Arg Leu Pro Glu Arg Gly Thr Ala Leu Pro Thr Ala Arg Trp Pro 420

Pro Arg Arg Ser Leu Glu Arg Leu Pro Ser Pro Asp Pro Gly Ala 425

Glu Gly His Gly Gln Ser Arg Gln Ser Asp Gln Asp Ile Thr Lys 440

Thr

<210> 143

<211> 693

<212> DNA

<213> Homo sapiens

<400> 143

<210> 144

<211> 93

<212> PRT

<213> Homo sapiens

<400> 144

Met Asp Ser Leu Arg Lys Met Leu Ile Ser Val Ala Met Leu Gly 1 5 10 15

Ala Gly Ala Gly Val Gly Tyr Ala Leu Leu Val Ile Val Thr Pro
20 25 30

Gly Glu Arg Arg Lys Gln Glu Met Leu Lys Glu Met Pro Leu Gln
35 40 45

Asp Pro Arg Ser Arg Glu Glu Ala Ala Arg Thr Gln Gln Leu Leu
50 55 60

Leu Ala Thr Leu Gln Glu Ala Ala Thr Thr Gln Glu Asn Val Ala
65 70 75

Trp Arg Lys Asn Trp Met Val Gly Gly Glu Gly Gly Ala Ser Gly 80 85 90

Arg Ser Pro

<210> 145

<211> 1883

<212> DNA

<213> Homo sapiens

<400> 145

caggagaga ggcaccgcc ccacccgcc tccaaagcta accctcgggc 50 ttgaggggaa gaggctgact gtacgttcct tctactctgg caccactctc 100 caggetgeca tggggeceag caecectete eteatettgt teettttgte 150 atggtcggga cccctccaag gacagcagca ccaccttgtg gagtacatgg 200 aacgccgact agctgcttta gaggaacggc tggcccagtg ccaggaccag 250 agtagtcggc atgctgctga gctgcgggac ttcaagaaca agatgctgcc 300 actgctggag gtggcagaga aggagcggga ggcactcaga actgaggccg 350 acaccatctc cgggagagtg gatcgtctgg agcgggaggt agactatctg 400 gagacccaga acccagctct gccctgtgta gagtttgatg agaaggtgac 450 tggaggccct gggaccaaag gcaagggaag aaggaatgag aagtacgata 500 tggtgacaga ctgtggctac acaatctctc aagtgagatc aatgaagatt 550 ctgaagcgat ttggtggccc agctggtcta tggaccaagg atccactggg 600 gcaaacagag aagatctacg tgttagatgg gacacagaat gacacagcct 650 ttgtcttccc aaggetgegt gacttcaccc ttgccatggc tgcccggaaa 700 gcttcccgag tccgggtgcc cttcccctgg gtaggcacag ggcagctggt 750 atatggtggc tttctttatt ttgctcggag gcctcctgga agacctggtg 800 gaggtggtga gatggagaac actttgcagc taatcaaatt ccacctggca 850 aaccgaacag tggtggacag ctcagtattc ccagcagagg ggctgatccc 900

cccctacggc ttgacagcag acacctacat cgacctggta gctgatgagg 950 aaggtetttg ggetgtetat gecaceeggg aggatgaeag geacttgtgt 1000 ctggccaagt tagatccaca gacactggac acagagcagc agtgggacac 1050 accatgtccc agagagaatg ctgaggctgc ctttgtcatc tgtgggaccc 1100 tctatgtcgt ctataacacc cgtcctgcca gtcgggcccg catccagtgc 1150 tcctttgatg ccagcggcac cctgacccct gaacgggcag cactccctta 1200 ttttccccgc agatatggtg cccatgccag cctccgctat aacccccgag 1250 aacgccaget ctatgcctgg gatgatggct accagattgt ctataaqctg 1300 gagatgagga agaaagagga ggaggtttga ggagctagcc ttqttttttq 1350 catctttctc actcccatac atttatatta tatccccact aaatttcttq 1400 ttcctcattc ttcaaatgtg ggccagttgt ggctcaaatc ctctatattt 1450 ttagccaatg gcaatcaaat tctttcagct cctttgtttc atacggaact 1500 ccagatcctg agtaatcctt ttagagcccg aagagtcaaa accctcaatg 1550 ttccctcctg ctctcctgcc ccatgtcaac aaatttcagg ctaaggatgc 1600 cccagaccca gggctctaac cttgtatgcg ggcaggccca gggagcaggc 1650 agcagtgttc ttcccctcag agtgacttgg ggagggagaa ataggaggag 1700 acgtccaget ctgtcctctc ttcctcactc ctcccttcag tgtcctgagg 1750 aacaggactt tctccacatt gttttgtatt gcaacatttt gcattaaaag 1800 aaaaaaaaa aaaaaaaaa aaa 1883

```
<210> 146
```

<400> 146

Met Gly Pro Ser Thr Pro Leu Leu Ile Leu Phe Leu Leu Ser Trp $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met
20 25 30

Glu Arg Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln
35 40 45

Asp Gln Ser Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn

<211> 406

<212> PRT

<213> Homo sapiens

Lys	Met	Leu	Pro	Leu 65		Glu	Val	Ala	Glu 70		Glu	Arg	Glu	Ala 7
Leu	Arg	Thr	Glu	Ala 80		Thr	Ile	Ser	Gly 85	Arg	Val	Asp	Arg	Let 90
Glu	Arg	Glu	Val	Asp 95		Leu	Glu	Thr	Gln 100	Asn	Pro	Ala	Leu	Pro
Cys	Val	Glu	Phe	Asp 110		Lys	Val	Thr	Gly 115	Gly	Pro	Gly	Thr	Lys 120
Gly	Lys	Gly	Arg	Arg 125		Glu	Lys	Tyr	Asp 130	Met	Val	Thr	Asp	Cys 135
Gly	Tyr	Thr	Ile	Ser 140	Gln	Val	Arg	Ser	Met 145	Lys	Ile	Leu	Lys	Arc 150
Phe	Gly	Gly	Pro	Ala 155	Gly	Leu	Trp	Thr	Lys 160	Asp	Pro	Leu	Gly	Glr 165
Thr	Glu	Lys	Ile	Tyr 170	Val	Leu	Asp	Gly	Thr 175	Gln	Asn	Asp	Thr	Ala 180
Phe	Val	Phe	Pro	Arg 185	Leu	Arg	Asp	Phe	Thr 190	Leu	Ala	Met	Ala	Ala 195
Arg	Lys	Ala	Ser	Arg 200	Val	Arg	Val	Pro	Phe 205	Pro	Trp	Val	Gly	Thr 210
Gly	Gln	Leu	Val	Tyr 215	Gly	Gly	Phe	Leu	Tyr 220	Phe	Ala	Arg	Arg	Pro 225
Pro	Gly	Arg	Pro	Gly 230	Gly	Gly	Gly	Glu	Met 235	Glu	Asn	Thr	Leu	Gln 240
Leu	Ile	Lys	Phe	His 245	Leu	Ala	Asn	Arg	Thr 250	Val	Val	Asp	Ser	Ser 255
Val	Phe	Pro	Ala	Glu 260	Gly	Leu	Ile	Pro	Pro 265	Tyr	Gly	Leu	Thr	Ala 270
Asp	Thr	Tyr	Ile	Asp 275	Leu	Val	Ala	Asp	Glu 280	Glu	Gly	Leu	Trp	Ala 285
Val	Tyr	Ala	Thr	Arg 290	Glu	Asp	Asp	Arg	His 295	Leu	Cys	Leu	Ala	Lys 300
Leu	Asp	Pro	Gln	Thr 305	Leu	Asp	Thr	Glu	Gln 310	Gln	Trp	Asp	Thr	Pro 315
Cys	Pro	Arg	Glu	Asn 320	Ala	Glu	Ala	Ala	Phe 325	Val	Ile	Cys	Gly	Thr 330
Leu	Tvr	Val	Val	Tvr	Asn	Thr	Ara	Pro	Δla	Sar	Δνα	Δla	λκα	T10

Gln Cys Ser Phe Asp Ala Ser Gly Thr Leu Thr Pro Glu Arg Ala 350 355 360

Ala Leu Pro Tyr Phe Pro Arg Arg Tyr Gly Ala His Ala Ser Leu 365 370 375

Arg Tyr Asn Pro Arg Glu Arg Gln Leu Tyr Ala Trp Asp Asp Gly 380 385 390

Tyr Gln Ile Val Tyr Lys Leu Glu Met Arg Lys Lys Glu Glu Glu 395 400 405

Val

<210> 147

<211> 2052

<212> DNA

<213> Homo sapiens

<400> 147

gacagctgtg tctcgatgga gtagactctc agaacagcgc agtttgccct 50 ccgctcacgc agagcctctc cgtggcttcc gcaccttgag cattaggcca 100 gttctcctct tctctctaat ccatccgtca cctctcctgt catccgtttc 150 catgccgtga ggtccattca cagaacacat ccatggctct catgctcagt 200 ttggttctga gtctcctcaa gctgggatca gggcagtggc aggtgtttgg 250 gccagacaag cctgtccagg ccttggtggg ggaggacgca gcattctcct 300 gtttcctgtc tcctaagacc aatgcagagg ccatggaagt gcggttcttc 350 aggggccagt tetetagegt ggtccacete tacagggacg ggaaggacca 400 gccatttatg cagatgccac agtatcaagg caggacaaaa ctggtgaagg 450 attctattgc ggaggggcgc atctctctga ggctggaaaa cattactgtg 500 ttggatgctg gcctctatgg gtgcaggatt agttcccagt cttactacca 550 gaaggccatc tgggagctac aggtgtcagc actgggctca gttcctctca 600 tttccatcac gggatatgtt gatagagaca tccagctact ctgtcagtcc 650 tegggetggt teeceeggee cacagegaag tggaaaggte cacaaggaca 700 ggatttgtcc acagactcca ggacaaacag agacatgcat ggcctgtttg 750 atgtggagat ctctctgacc gtccaagaga acgccgggag catatcctgt 800 tccatgcggc atgctcatct gagccgagag gtggaatcca gggtacagat 850

```
aggagatace tttttegage etatategtg geacetgget accaaagtae 900
 tgggaatact ctgctgtggc ctattttttg gcattgttgg actgaagatt 950
 ttcttctcca aattccagtg gaaaatccag gcggaactgg actggagaag 1000
 aaagcacgga caggcagaat tgagagacgc ccggaaacac gcagtggagg 1050
 tgactctgga tccagagacg gctcacccga agctctgcgt ttctgatctg 1100
 aaaactgtaa cccatagaaa agctccccag gaggtgcctc actctgagaa 1150
 gagatttaca aggaagagtg tggtggcttc tcagagtttc caagcaggga 1200
 aacattactg ggaggtggac ggaggacaca ataaaaggtg gcgcgtggga 1250
gtgtgccggg atgatgtgga caggaggaag gagtacgtga ctttgtctcc 1300
cgatcatggg tactgggtcc tcagactgaa tggagaacat ttgtatttca 1350
cattaaatcc ccgttttatc agcgtcttcc ccaggacccc acctacaaaa 1400
ataggggtct tcctggacta tgagtgtggg accatctcct tcttcaacat 1450
aaatgaccag tcccttattt ataccctgac atgtcggttt gaaggcttat 1500
tgaggcccta cattgagtat ccgtcctata atgagcaaaa tggaactccc 1550
atagtcatct gcccagtcac ccaggaatca gagaaagagg cctcttggca 1600
aagggcctct gcaatcccag agacaagcaa cagtgagtcc tcctcacagg 1650
caaccacgcc cttcctcccc aggggtgaaa tgtaggatga atcacatccc 1700
acattettet ttagggatat taaggtetet eteceagate caaagteeeg 1750
cagcageegg ccaaggtgge ttccagatga agggggactg geetgteeac 1800
atgggagtca ggtgtcatgg ctgccctgag ctgggaggga agaaggctga 1850
cattacattt agtttgctct cactccatct ggctaagtga tcttgaaata 1900
ccacctctca ggtgaagaac cgtcaggaat tcccatctca caggctgtgg 1950
tgtagattaa gtagacaagg aatgtgaata atgcttagat cttattgatg 2000
acagagtgta tcctaatggt ttgttcatta tattacactt tcagtaaaaa 2050
aa 2052
```

<400> 148

Met Ala Leu Met Leu Ser Leu Val Leu Ser Leu Lys Leu Gly

<210> 148

<211> 500

<212> PRT

<213> Homo sapiens

	1				5				1	0				15
Se	er Gl	Ly G	ln Tı	rp G1 2	n Va 20	ıl Ph	e Gl	y Pr	o As 2	р Ly 5	s Pr	o Va	l Gl	n Ala 30
Le	u Va	ıl Gl	y G1	u As	p Al	a Al	a Phe	e Se	r Cy 4	s Ph	e Le	ı Se	r Pr	o Lys 45
Th	r As	n Al	a Gl	u Al 5	a Me O	t Gl	u Val	l Ar	g Ph	e Phe	e Ar	g Gl	y Gl:	n Phe 60
Se	r Se	r Va	l Va	l Hi 6	s Le 5	u Ty	r Arq	g Ası	0 Gl	y Lys	s Asp	Gl:	n Pro	Phe
Me	t Gl	n Me	t Pr	o Gl 8	n Ty O	r Glr	n Gly	/ Ar	Thi 85	c Lys	E Leu	ı Val	l Lys	s Asp 90
Sei	r Il	e Al	a Gl	u Gl:	y Ar	g Ile	e Ser	Let	1 Arg	g Leu)	ı Glü	Ası	ı Ile	Thr 105
Val	l Le	u As	p Al	a Gl	y Le	ı Tyr	Gly	Cys	Arg 115	, Il∈	e Ser	Ser	Glr	Ser 120
Туг	ту:	r Gl	n Ly:	s Ala 125	a Ile	e Trp	Glu	Leu	Gln 130	Val	Ser	Ala	Lev	Gly 135
Ser	· Val	l Pro) Lei	1 Ile 140	e Ser	: Ile	Thr	Gly	Tyr 145	Val	Asp	Arg	Asp	Ile 150
Gln	Lei	ı Leı	ı Cys	Glr 155	Ser	Ser	Gly	Trp	Phe	Pro	Arg	Pro	Thr	Ala 165
Lys	Trp	Lys	Gly	Pro 170	Gln	Gly	Gln	Asp	Leu 175	Ser	Thr	Asp	Ser	Arg 180
Thr	Asn	Arg	Asp	Met 185	His	Gly	Leu	Phe	Asp 190	Val	Glu	Ile	Ser	Leu 195
Thr	Val	Gln	Glu	Asn 200	Ala	Gly	Ser	Ile	Ser 205	Суз	Ser	Met	Arg	His 210
Ala	His	Leu	Ser	Arg 215	Glu	Val	Glu	Ser	Arg 220	Val	Gln	Ile	Gly	Asp 225
Thr	Phe	Phe	Glu	Pro 230	Ile	Ser	Trp	His	Leu 235	Ala	Thr	Lys	Val	Leu 240
Gly	Ile	Leu	Cys	Cys 245	Gly	Leu	Phe	Phe	Gly 250	Ile	Val	Gly	Leu	Lys 255
Ile	Phe	Phe	Ser	Lys 260	Phe	Gln	Trp	Lys	Ile 265	Gln	Ala	Glu	Leu	Asp 270
Trp	Arg	Arg	Lys	His 275	Gly	Gln	Ala	Glu	Leu 280	Arg	Asp .	Ala	Arg	Lys 285
His	Ala	Val	Glu	Val	Thr	Leu .	Asp :	Pro	Glu	Thr .	Ala	His	Pro	

290 295 300 Leu Cys Val Ser Asp Leu Lys Thr Val Thr His Arg Lys Ala Pro 310 Gln Glu Val Pro His Ser Glu Lys Arg Phe Thr Arg Lys Ser Val Val Ala Ser Gln Ser Phe Gln Ala Gly Lys His Tyr Trp Glu Val 335 340 Asp Gly Gly His Asn Lys Arg Trp Arg Val Gly Val Cys Arg Asp 355 Asp Val Asp Arg Arg Lys Glu Tyr Val Thr Leu Ser Pro Asp His 365 370 Gly Tyr Trp Val Leu Arg Leu Asn Gly Glu His Leu Tyr Phe Thr 385 Leu Asn Pro Arg Phe Ile Ser Val Phe Pro Arg Thr Pro Pro Thr Lys Ile Gly Val Phe Leu Asp Tyr Glu Cys Gly Thr Ile Ser Phe 410 Phe Asn Ile Asn Asp Gln Ser Leu Ile Tyr Thr Leu Thr Cys Arg 425 430 Phe Glu Gly Leu Leu Arg Pro Tyr Ile Glu Tyr Pro Ser Tyr Asn 445 Glu Gln Asn Gly Thr Pro Ile Val Ile Cys Pro Val Thr Gln Glu 455 Ser Glu Lys Glu Ala Ser Trp Gln Arg Ala Ser Ala Ile Pro Glu Thr Ser Asn Ser Glu Ser Ser Ser Gln Ala Thr Thr Pro Phe Leu 490 Pro Arg Gly Glu Met 500 <210> 149 <211> 24 <212> DNA <213> Artificial Sequence

<220>

<400> 149

<210> 150 <211> 23

<223> Synthetic oligonucleotide probe

gcgtggtcca cctctacagg gacg 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 150
 ggaactgacc cagtgctgac acc 23
<210> 151
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 151
gcagatgcca cagtatcaag gcaggacaaa actggtgaag gattc 45
<210> 152
<211> 2294
<212> DNA
<213> Homo sapiens
<400> 152
gcgatggtgc gcccggtggc ggtggcggcg gcggttgcgg aggcttcctt 50
ggtcggattg caacgaggag aagatgactg accaaccgac tggctgaatg 100
aatgaatggc ggagccgagc gcgccatgag gagcctgccg agcctgggcg 150
geetegeect gttgtgetge geegeegeeg cegeegeegt egeeteagee 200
gcctcggcgg ggaatgtcac cggtggcggc ggggccgcgg ggcaggtgga 250
cgcgtcgccg ggccccgggt tgcggggcga gcccagccac cccttcccta 300
gggcgacggc tcccacggcc caggccccga ggaccgggcc cccgcgcgcc 350
accetceacc gaccectgge tgcgacttct ccagcccagt ccccggagac 400
cacccctctt tgggcgactg ctggaccctc ttccaccacc tttcaggcgc 450
cgctcggccc ctcgccgacc acccctccgg cggcggaacg cacttcgacc 500
acctctcagg cgccgaccag acccgcgccg accacccttt cgacgaccac 550
tggcccggcg ccgaccaccc ctgtagcgac caccgtaccg gcgcccacga 600
ctccccggac cccgaccccc gatctcccca gcagcagcaa cagcagcgtc 650
ctccccaccc cacctgccac cgaggccccc tcttcgcctc ctccagagta 700
tgtatgtaac tgctctgtgg ttggaagcct gaatgtgaat cgctgcaacc 750
agaccacagg gcagtgtgag tgtcggccag gttatcaggg gcttcactgt 800
```

gaaacctgca aagagggctt ttacctaaat tacacttctg ggctctgtca 850 gccatgtgac tgtagtccac atggagctct cagcataccg tgcaacaggt 900 aagcaacaga gggtggaact gaagtttatt ttattttagc aagggaaaaa 950 aaaaggctgc tactctcaag gaccatactg gtttaaacaa aggaggatga 1000 gggtcataga tttacaaaat attttatata cttttattct cttactttat 1050 atgttatatt taatgtcagg atttaaaaac atctaattta ctgatttagt 1100 tcttcaaaag cactagagtc gccaattttt ctctgggata atttctgtaa 1150 atttcatggg aaaaaattat tgaagaataa atctgctttc tggaagggct 1200 ttcaggcatg aaacctgcta ggaggtttag aaatgttctt atgtttatta 1250 atataccatt ggagtttgag gaaatttgtt gtttggttta tttttctctc 1300 taatcaaaat tctacatttg tttctttgga catctaaagc ttaacctggg 1350 ggtaccctaa tttatttaac tagtggtaag tagactggtt ttactctatt 1400 taccagtaca tttttgagac caaaagtaga ttaagcagga attatcttta 1450 aactattatg ttatttggag gtaatttaat ctagtggaat aatgtactgt 1500 tatctaagca tttgccttgt actgcactga aagtaattat tctttgacct 1550 tatgtgaggc acttggcttt ttgtggaccc caagtcaaaa aactgaagag 1600 acagtattaa ataatgaaaa aaataatgac aggttatact cagtgtaacc 1650 tgggtataac ccaagatctg ctgccactta cgagctgtgt tccttgggca 1700 agtaatttcc tttcactgag cttgtttctt ctcaaggttg ttgtgaagat 1750 taaatgagtt gatatatata aaatgcctag cacatgtcac tcaataaatt 1800 ctggtttgtt ttaatttcaa aggaatatta tggactgaaa tgagagaaca 1850 tgttttaaga acttttagct ccttgacaaa gaagtgcttt atactttagc 1900 actaaatatt ttaaatgctt tataaatgat attatactgt tatggaatat 1950 tgtatcatat tgtagtttat taaaaatgta gaagaggctg ggcgcggtgg 2000 ctcacgcctg taatcctagc actttgggag gccaaggcgg gtggatcact 2050 tgaggccagg agttctagat gagcctggcc agcacagtga aaccccgtct 2100 ctactaaaaa tacaaacaaa ttagctgggc gtggtggcac acacctgtag 2150 teccagetae tegggagget gaggeaggag aateggttga accegggagg 2200

aya	iyyya	gac	tetg	tett	aa a	aaaa	aaaa	a aa	aaaa	aaaa	aaa	a 22	94	
<211 <212	> 15 > 25 > PR > Ho	8	apie	ns										
			Leu	Pro 5		Leu	Gly	Gly	Leu 10	Ala	Leu	Leu	Cys	Cys 15
Ala	Ala	Ala	Ala	Ala 20	Ala	Val	Ala	Ser	Ala 25	Ala	Ser	Ala	Gly	Asn 30
Val	Thr	Gly	Gly	Gly 35	Gly	Ala	Ala	Gly	Gln 40	Val	Asp	Ala	Ser	Pro 45
Gly	Pro	Gly	Leu	Arg 50	Gly	Glu	Pro	Ser	His 55	Pro	Phe	Pro	Arg	Ala 60
Thr	Ala	Pro	Thr	Ala 65	Gln	Ala	Pro	Arg	Thr 70	Gly	Pro	Pro	Arg	Ala 75
Thr	Val	His	Arg	Pro 80	Leu	Ala	Ala	Thr	Ser 85	Pro	Ala	Gln	Ser	Pro 90
Glu	Thr	Thr	Pro	Leu 95	Trp	Ala	Thr	Ala	Gly 100	Pro	Ser	Ser	Thr	Thr 105
Phe	Gln	Ala	Pro	Leu 110	Gly	Pro	Ser	Pro	Thr 115	Thr	Pro	Pro	Ala	Ala 120
Glu	Arg	Thr	Ser	Thr 125	Thr	Ser	Gln	Ala	Pro 130	Thr	Arg	Pro	Ala	Pro 135
Thr	Thr	Leu	Ser	Thr 140	Thr	Thr	Gly	Pro	Ala 145	Pro	Thr	Thr	Pro	Val 150
Ala	Thr	Thr	Val	Pro 155	Ala	Pro	Thr	Thr	Pro 160	Arg	Thr	Pro	Thr	Pro 165
Asp	Leu	Pro	Ser	Ser 170	Ser	Asn	Ser	Ser	Val 175	Leu	Pro	Thr	Pro	Pro 180
Ala	Thr	Glu	Ala	Pro 185	Ser	Ser	Pro	Pro	Pro 190	Glu	Tyr	Val	Cys	Asn 195
Суѕ	Ser	Val	Val	Gly 200	Ser	Leu	Asn	Val	Asn 205	Arg	Cys	Asn	Gln	Thr 210
Thr	Gly	Gln	Cys	Glu 215	Cys	Arg	Pro	Gly	Tyr 220	Gln	Gly	Leu	His	Cys 225
Glu	Thr	Cys	Lys	Glu 230	Gly	Phe	Tyr	Leu	Asn	Tyr	Thr	Ser	Gly	Leu

```
250
 Cys Asn Arg
<210> 154
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 154
 aactgctctg tggttggaag cctg 24
<210> 155
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 155
 cagtcacatg gctgacagac ccac 24
<210> 156
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 156
aggttatcag gggcttcact gtgaaacctg caaagagg 38
<210> 157
<211> 689
<212> DNA
<213> Homo sapiens
<400> 157
tgcggcgcag tgtagacctg ggaggatggg cggcctgctg ctggctgctt 50
ttctggcttt ggtctcggtg cccagggccc aggccgtgtg gttgggaaga 100
ctggaccctg agcagcttct tgggccctgg tacgtgcttg cggtggcctc 150
ccgggaaaag ggctttgcca tggagaagga catgaagaac gtcgtggggg 200
tggtggtgac cctcactcca gaaaacaacc tgcggacgct gtcctctcag 250
cacgggctgg gagggtgtga ccagagtgtc atggacctga taaagcgaaa 300
```

Cys Gln Pro Cys Asp Cys Ser Pro His Gly Ala Leu Ser Ile Pro

ctccggatgg gtgtttgaga atccctcaat aggcgtgctg gagctctggg 350
tgctggccac caacttcaga gactatgcca tcatcttcac tcagctggag 400
ttcggggacg agcccttcaa caccgtggag ctgtacagtc tgacggagac 450
agccagccag gaggccatgg ggctcttcac caagtggagc aggagcctgg 500
gcttcctgtc acagtagcag gcccagctgc agaaggacct cacctgtgct 550
cacaagatcc ttctgtgagt gctgcgtccc cagtagggat ggcgcccaca 600
gggtcctgtg acctcggca gtgtccaccc acctcgctca gcggctcccg 650
gggcccagca ccagctcaga ataaagcgat tccacagca 689

<210> 158

<211> 163

<212> PRT

<213> Homo sapiens

<400> 158

Met Gly Gly Leu Leu Leu Ala Ala Phe Leu Ala Leu Val Ser Val 1 5 10 15

Pro Arg Ala Gln Ala Val Trp Leu Gly Arg Leu Asp Pro Glu Gln 20 25 30

Leu Leu Gly Pro Trp Tyr Val Leu Ala Val Ala Ser Arg Glu Lys 35 40 45

Gly Phe Ala Met Glu Lys Asp Met Lys Asn Val Val Gly Val Val 50 55 60

Val Thr Leu Thr Pro Glu Asn Asn Leu Arg Thr Leu Ser Ser Gln 6570 75

Arg Asn Ser Gly Trp Val Phe Glu Asn Pro Ser Ile Gly Val Leu
95 100 105

Glu Leu Trp Val Leu Ala Thr Asn Phe Arg Asp Tyr Ala Ile Ile 110 115 120

Phe Thr Gln Leu Glu Phe Gly Asp Glu Pro Phe Asn Thr Val Glu 125 130 130

Leu Tyr Ser Leu Thr Glu Thr Ala Ser Gln Glu Ala Met Gly Leu 140 145 150

Phe Thr Lys Trp Ser Arg Ser Leu Gly Phe Leu Ser Gln 155 160

<211> 1665

<212> DNA

<213> Homo sapiens

<400> 159

aacagacgtt ccctcgcggc cctggcacct ctaaccccag acatgctgct 50 gctgctgctg cccctgctct gggggaggga gagggcggaa ggacagacaa 100 gtaaactgct gacgatgcag agttccgtga cggtgcagga aggcctgtgt 150 gtccatgtgc cctgctcctt ctcctacccc tcgcatggct ggatttaccc 200 tggcccagta gttcatggct actggttccg ggaaggggcc aatacagacc 250 aggatgetee agtggeeaca aacaacceag etegggeagt gtgggaggag 300 actegggace gattecacet cettggggae ceacatacea agaattgeae 350 cctgagcatc agagatgcca gaagaagtga tgcggggaga tacttctttc 400 gtatggagaa aggaagtata aaatggaatt ataaacatca ccggctctct 450 gtgaatgtga cagcettgae ceaeaggeee aacateetea teeeaggeae 500 cctggagtcc ggctgccccc agaatctgac ctgctctgtg ccctgggcct 550 gtgagcaggg gacaccccct atgatetect ggatagggae etcegtgtee 600 cccctggacc cctccaccac ccgctcctcg gtgctcaccc tcatcccaca 650 gccccaggac catggcacca gcctcacctg tcaggtgacc ttccctgggg 700 ccagcgtgac cacgaacaag accgtccatc tcaacgtgtc ctacccgcct 750 cagaacttga ccatgactgt cttccaagga gacggcacag tatccacagt 800 cttgggaaat ggctcatctc tgtcactccc agagggccag tctctgcgcc 850 tggtctgtgc agttgatgca gttgacagca atccccctgc caggctgagc 900 ctgagctgga gaggcctgac cctgtgcccc tcacagccct caaacccggg 950 ggtgctggag ctgccttggg tgcacctgag ggatgcagct gaattcacct 1000 gcagagetea gaaccetete ggeteteage aggtetacet gaacgtetee 1050 ctgcagagca aagccacatc aggagtgact cagggggtgg tcggggggagc 1100 tggagccaca gccctggtct tcctgtcctt ctgcgtcatc ttcgttgtag 1150 tgaggtcctg caggaagaaa tcggcaaggc cagcagcggg cgtgggagat 1200 acgggcatag aggatgcaaa cgctgtcagg ggttcagcct ctcaggggcc 1250 cctgactgaa ccttgggcag aagacagtcc cccagaccag cctcccccag 1300

cttetgeeg etectagti ggggaagga ageteeagta tgeateete 1350 agetteeaga tggtgaagee ttgggaeteg eggggaeagg aggeeaetga 1400 cacegagtae teggagatea agateeaeag atgagaaaet geagagaete 1450 aceetgattig aggateaea geeeteeag geaagggaga agteagagge 1500 tgattettgt agaattaaca geeeteeaeg tgatgageta tgataacaet 1550 atgaattat tgeagagtga aaageaeaea ggetttagag teaaagtate 1600 teaaacetga ateeaeaetg tgeeeteeet tttatttt taactaaaag 1650 acagacaaat teeta 1665

<210> 160

<211> 463

<212> PRT

<213> Homo sapiens

<400> 160

Met Leu Leu Leu Leu Pro Leu Leu Trp Gly Arg Glu Arg Ala 1 5 10 15

Glu Gly Gln Thr Ser Lys Leu Leu Thr Met Gln Ser Ser Val Thr 20 25 30

Val Gln Glu Gly Leu Cys Val His Val Pro Cys Ser Phe Ser Tyr 35 40 45

Pro Ser His Gly Trp Ile Tyr Pro Gly Pro Val Val His Gly Tyr 50 55 60

Trp Phe Arg Glu Gly Ala Asn Thr Asp Gln Asp Ala Pro Val Ala 65 70 75

Thr Asn Asn Pro Ala Arg Ala Val Trp Glu Glu Thr Arg Asp Arg 80 85 90

Phe His Leu Leu Gly Asp Pro His Thr Lys Asn Cys Thr Leu Ser $95\,$ 100 $\,$ 105

Ile Arg Asp Ala Arg Arg Ser Asp Ala Gly Arg Tyr Phe Phe Arg
110 115 120

Met Glu Lys Gly Ser Ile Lys Trp Asn Tyr Lys His His Arg Leu 125 130 135

Ser Val Asn Val Thr Ala Leu Thr His Arg Pro Asn Ile Leu Ile 140 145 150

Pro Gly Thr Leu Glu Ser Gly Cys Pro Gln Asn Leu Thr Cys Ser 155 160 165

Val Pro Trp Ala Cys Glu Gln Gly Thr Pro Pro Met Ile Ser Trp
170 175 180

Ile	e Gly	y Thr	Ser	Val 185	Ser	Pro	Let	ı Asp	Pro 190		Thr	Th:	: Arç	g Ser 195
Sei	r Val	Leu	Thr	Leu 200	Ile	Prc	Glr	n Pro	Gln 205		His	Gly	/ Thr	Ser 210
Let	ı Thr	Cys	Gln	Val 215	Thr	Phe	Pro	Gly	Ala 220		Val	. Thr	Thr	Asn 225
Lys	5 Thr	. Val	His	Leu 230	Asn	Val	Ser	Tyr	Pro 235	Pro	Gln	Asn	Leu	Thr 240
Met	Thr	. Val	Phe	Gln 245	Gly	Asp	Gly	Thr	Val 250	Ser	Thr	Val	Leu	Gly 255
Asr	Gly	Ser	Ser	Leu 260	Ser	Leu	Pro	Glu	Gly 265	Gln	Ser	Leu	Arg	Leu 270
Val	Cys	Ala	Val	Asp 275	Ala	Val	Asp	Ser	Asn 280	Pro	Pro	Ala	Arg	Leu 285
Ser	Leu	Ser	Trp	Arg 290	Gly	Leu	Thr	Leu	Cys 295	Pro	Ser	Gln	Pro	Ser 300
Asn	Pro	Gly	Val	Leu 305	Glu	Leu	Pro	Trp	Val 310	His	Leu	Arg	Asp	Ala 315
Ala	Glu	Phe	Thr	Cys 320	Arg	Ala	Gln	Asn	Pro 325	Leu	Gly	Ser	Gln	Gln 330
Val	Tyr	Leu	Asn	Val 335	Ser	Leu	Gln	Ser	Lys 340	Ala	Thr	Ser	Gly	Val 345
Thr	Gln	Gly	Val	Val 350	Gly	Gly	Ala	Gly	Ala 355	Thr	Ala	Leu	Val	Phe 360
Leu	Ser	Phe	Cys	Val 365	Ile	Phe	Val	Val	Val 370	Arg	Ser	Cys	Arg	Lys 375
Lys	Ser	Ala	Arg	Pro 380	Ala	Ala	Gly	Val	Gly 385	Asp	Thr	Gly	Ile	Glu 390
Asp	Ala	Asn	Ala	Val 395	Arg	Gly	Ser	Ala	Ser 400	Gln	Gly	Pro	Leu	Thr 405
Glu	Pro	Trp	Ala	Glu . 410	Asp	Ser	Pro	Pro	Asp 415	Gln	Pro	Pro	Pro	Ala 420
Ser	Ala	Arg	Ser	Ser 425	Val	Gly	Glu	Gly	Glu 430	Leu	Gln	Tyr	Ala	Ser 435
Leu	Ser	Phe	Gln :	Met ' 440	Val	Lys	Pro	Trp	Asp 445	Ser	Arg	Gly	Gln	Glu 450
Ala	Thr	Asp	Thr	Glu ' 455	Tyr	Ser	Glu	Ile	Lys 460	Ile	His	Arg		

```
<210> 161
<211> 739
<212> DNA
<213> Homo sapiens
<400> 161
```

gacgcccagt gacctgccga ggtcggcagc acagagctct ggagatgaag 50 accetgttcc tgggtgtcac gctcggcctg gccgctgccc tgtccttcac 100 cctggaggag gaggatatca cagggacctg gtacgtgaag gccatggtgg 150 tcgataagga ctttccggag gacaggaggc ccaggaaggt gtccccagtg 200 aaggtgacag ccctgggcgg tgggaagttg gaagccacgt tcaccttcat 250 gagggaggat cggtgcatcc agaagaaaat cctgatgcgg aagacggagg 300 agcetggcaa atacagegee tatgggggca ggaageteat gtacetgeag 350 gagetgeeca ggagggaeca etacatettt taetgeaaag accageacca 400 tgggggcctg ctccacatgg gaaagcttgt gggtaggaat tctgatacca 450 accgggaggc cctggaagaa tttaagaaat tggtgcagcg caagggactc 500 teggaggagg acatttteae geeectgeag aegggaaget gegtteeega 550 acactaggca gcccccgggt ctgcacctcc agagcccacc ctaccaccag 600 acacagagee eggaceacet ggacetacee tecagecatg accetteeet 650 gctcccaccc acctgactcc aaataaagtc cttttccccc aaaaaaaaa 700

aaaaaaaaa aaaaaaaaa aaaaaaaaa 739

```
<210> 162
```

<400> 162

Met Lys Thr Leu Phe Leu Gly Val Thr Leu Gly Leu Ala Ala Ala

Leu Ser Phe Thr Leu Glu Glu Glu Asp Ile Thr Gly Thr Trp Tyr

Val Lys Ala Met Val Val Asp Lys Asp Phe Pro Glu Asp Arg Arg

Pro Arg Lys Val Ser Pro Val Lys Val Thr Ala Leu Gly Gly

Lys Leu Glu Ala Thr Phe Thr Phe Met Arg Glu Asp Arg Cys Ile

<211> 170

<212> PRT

<213> Homo sapiens

```
Gln Lys Lys Ile Leu Met Arg Lys Thr Glu Glu Pro Gly Lys Tyr
  Ser Ala Tyr Gly Gly Arg Lys Leu Met Tyr Leu Gln Glu Leu Pro
                    95
                                       100
  Arg Arg Asp His Tyr Ile Phe Tyr Cys Lys Asp Gln His His Gly
                  110
  Gly Leu Leu His Met Gly Lys Leu Val Gly Arg Asn Ser Asp Thr
  Asn Arg Glu Ala Leu Glu Glu Phe Lys Lys Leu Val Gln Arg Lys
                  140
                                       145
  Gly Leu Ser Glu Glu Asp Ile Phe Thr Pro Leu Gln Thr Gly Ser
                  155
                                       160
  Cys Val Pro Glu His
                  170
 <210> 163
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Synthetic oligonucleotide probe
<400> 163
 ggagatgaag accetgttee tg 22
<210> 164
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 164
 ggagatgaag accetgttce tgggtg 26
<210> 165
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 165
gtcctccgga aagtccttat c 21
<210> 166
<211> 25
```

```
<212> DNA
 <213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 166
 gcctagtgtt cgggaacgca gcttc 25
<210> 167
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 167
 cagggacctg gtacgtgaag gccatggtgg tcgataagga ctttccggag 50
<210> 168
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 168
 ctgtccttca ccctggagga ggaggatatc acagggacct ggtac 45
<210> 169
<211> 1204
<212> DNA
<213> Homo sapiens
<400> 169
 gttccgcaga tgcagaggtt gaggtggctg cgggactgga agtcatcggg 50
 cagaggtete acageageea aggaacetgg ggeeegetee teceeetee 100
aggccatgag gattctgcag ttaatcctgc ttgctctggc aacagggctt 150
gtagggggag agaccaggat catcaagggg ttcgagtgca agcctcactc 200
ccagccctgg caggcagccc tgttcgagaa gacgcggcta ctctgtgggg 250
cgacgeteat egeceecaga tggeteetga cageageeca etgeeteaag 300
ccccgctaca tagttcacct ggggcagcac aacctccaga aggaggaggg 350
ctgtgagcag acccggacag ccactgagtc cttcccccac cccggcttca 400
acaacageet eeccaacaaa gaccaeegea atgacateat getggtgaag 450
atggcatcgc cagtctccat cacctgggct gtgcgacccc tcaccctctc 500
```

<210> 170

<211> 250

<212> PRT

<213> Homo sapiens

<400> 170

Met Arg Ile Leu Gln Leu Ile Leu Leu Ala Leu Ala Thr Gly Leu 1 5 10 15

Val Gly Glu Thr Arg Ile Ile Lys Gly Phe Glu Cys Lys Pro 20 25 30

His Ser Gln Pro Trp Gln Ala Ala Leu Phe Glu Lys Thr Arg Leu
35 40 45

Leu Cys Gly Ala Thr Leu Ile Ala Pro Arg Trp Leu Leu Thr Ala 50 55 60

Ala His Cys Leu Lys Pro Arg Tyr Ile Val His Leu Gly Gln His
65 70 75

Asn Leu Gln Lys Glu Glu Gly Cys Glu Gln Thr Arg Thr Ala Thr
80 85 90

Glu Ser Phe Pro His Pro Gly Phe Asn Asn Ser Leu Pro Asn Lys 95 100 105

```
Asp His Arg Asn Asp Ile Met Leu Val Lys Met Ala Ser Pro Val
                                       115
 Ser Ile Thr Trp Ala Val Arg Pro Leu Thr Leu Ser Ser Arg Cys
                  125
                                      130
 Val Thr Ala Gly Thr Ser Cys Leu Ile Ser Gly Trp Gly Ser Thr
 Ser Ser Pro Gln Leu Arg Leu Pro His Thr Leu Arg Cys Ala Asn
                  155
                                      160
 Ile Thr Ile Ile Glu His Gln Lys Cys Glu Asn Ala Tyr Pro Gly
                  170
                                      175
 Asn Ile Thr Asp Thr Met Val Cys Ala Ser Val Gln Glu Gly Gly
                  185
                                      190
 Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Asn
 Gln Ser Leu Gln Gly Ile Ile Ser Trp Gly Gln Asp Pro Cys Ala
                 215
 Ile Thr Arg Lys Pro Gly Val Tyr Thr Lys Val Cys Lys Tyr Val
                 230
 Asp Trp Ile Gln Glu Thr Met Lys Asn Asn
                 245
<210> 171
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 171
 ggctgcggga ctggaagtca tcggg 25
<210> 172
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 172
ctccaggcca tgaggattct gcag 24
<210> 173
<211> 18
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Synthetic oligonucleotide probe
 <400> 173
 cctctggtct gtaaccag 18
 <210> 174
 <211> 24
 <212> DNA
<213> Artificial Sequence
 <220>
<223> Synthetic oligonucleotide probe
 <400> 174
 tctgtgatgt tgccggggta ggcg 24
<210> 175
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 175
 cgtgtagaca ccaggctttc gggtg 25
<210> 176
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 176
 cccttgatga tcctggtc 18
<210> 177
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 177
aggccatgag gattctgcag ttaatcctgc ttgctctggc aacagggctt 50
<210> 178
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 178
 gagagaccag gatcatcaag gggttcgagt gcaagcctca ctc 43
<210> 179
<211> 907
<212> DNA
<213> Homo sapiens
<400> 179
 gagcagtgtt ctgctggagc cgatgccaaa aaccatgcat ttcttattca 50
 gattcattgt tttcttttat ctgtggggcc tttttactgc tcagagacaa 100
 aagaaagagg agagcaccga agaagtgaaa atagaagttt tgcatcgtcc 150
 agaaaactgc tctaagacaa gcaagaaggg agacctacta aatgcccatt 200
 atgacggcta cetggctaaa gacggctcga aattctactg cagccggaca 250
 caaaatgaag gccaccccaa atggtttgtt cttggtgttg ggcaagtcat 300
 aaaaggccta gacattgcta tgacagatat gtgccctgga gaaaagcgaa 350
 aagtagttat accccttca tttgcatacg gaaaggaagg ctatgcagaa 400
 ggcaagattc caccggatgc tacattgatt tttgagattg aactttatgc 450
 tgtgaccaaa ggaccacgga gcattgagac atttaaacaa atagacatgg 500
 acaatgacag gcagetetet aaageegaga taaaeeteta ettgcaaagg 550
 gaatttgaaa aagatgagaa gccacgtgac aagtcatatc aggatgcagt 600
 tttagaagat atttttaaga agaatgacca tgatggtgat ggcttcattt 650
 ctcccaagga atacaatgta taccaacacg atgaactata gcatatttgt 700
 atttctactt tttttttta gctatttact gtactttatg tataaaacaa 750
 agtcactttt ctccaagttg tatttgctat ttttccccta tgagaagata 800
 ttttgatctc cccaatacat tgattttggt ataataaatg tgaggctgtt 850
 ttgcaaactt aaaaaaaaa aaaaaaaaaa aaaaaaaaa 900
aaaaaaa 907
<210> 180
<211> 222
<212> PRT
<213> Homo sapiens
<400> 180
Met Pro Lys Thr Met His Phe Leu Phe Arg Phe Ile Val Phe Phe
  1
                  5
                                     10
                                                         15
```

```
Tyr Leu Trp Gly Leu Phe Thr Ala Gln Arg Gln Lys Lys Glu Glu
  Ser Thr Glu Glu Val Lys Ile Glu Val Leu His Arg Pro Glu Asn
  Cys Ser Lys Thr Ser Lys Lys Gly Asp Leu Leu Asn Ala His Tyr
  Asp Gly Tyr Leu Ala Lys Asp Gly Ser Lys Phe Tyr Cys Ser Arg
  Thr Gln Asn Glu Gly His Pro Lys Trp Phe Val Leu Gly Val Gly
                                       85
  Gln Val Ile Lys Gly Leu Asp Ile Ala Met Thr Asp Met Cys Pro
 Gly Glu Lys Arg Lys Val Val Ile Pro Pro Ser Phe Ala Tyr Gly
 Lys Glu Gly Tyr Ala Glu Gly Lys Ile Pro Pro Asp Ala Thr Leu
                                      130
 Ile Phe Glu Ile Glu Leu Tyr Ala Val Thr Lys Gly Pro Arg Ser
                  140
 Ile Glu Thr Phe Lys Gln Ile Asp Met Asp Asn Asp Arg Gln Leu
                  155
                                      160
 Ser Lys Ala Glu Ile Asn Leu Tyr Leu Gln Arg Glu Phe Glu Lys
                  170
                                                          180
 Asp Glu Lys Pro Arg Asp Lys Ser Tyr Gln Asp Ala Val Leu Glu
                                      190
 Asp Ile Phe Lys Lys Asn Asp His Asp Gly Asp Gly Phe Ile Ser
                 200
                                      205
 Pro Lys Glu Tyr Asn Val Tyr Gln His Asp Glu Leu
                 215
<210> 181
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 181
gtgttctgct ggagccgatg cc 22
<210> 182
<211> 18
<212> DNA
```

<213> Artificial Sequence

```
<220>
 <223> Synthetic oligonucleotide probe
 <400> 182
 gacatggaca atgacagg 18
 <210> 183
 <211> 18
 <212> DNA
 <213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 183
· cctttcagga tgtaggag 18
<210> 184
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 184
 gatgtctgcc accccaag 18
<210> 185
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 185
 gcatcctgat atgacttgtc acgtggc 27
<210> 186
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 186
tacaagaggg aagaggagtt gcac 24
<210> 187
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
 <400> 187
 gcccattatg acggctacct ggctaaagac ggctcgaaat tctactgcag 50
 cc 52
<210> 188
<211> 573
<212> DNA
<213> Homo sapiens
<400> 188
 cagaaatgca gggaccattg cttcttccag gcctctgctt tctgctgagc 50
 ctctttggag ctgtgactca gaaaaccaaa acttcctgtg ctaagtgccc 100
 cccaaatgct tcctgtgtca ataacactca ctgcacctgc aaccatggat 150
 atacttctgg atctgggcag aaactattca cattcccctt ggagacatgt 200
 aacgccaggc atggtggctc gcgcctgtaa tcccagttct ttgggaagcc 250
 aaggcaggtg gatcacctga ggtcaggagt ttgagaccag cctggccaac 300
 atagtgaaac cccgtgtcta ctaaaaatac aaaaatcagc cgggcgtggt 350
 ggtgcatgcc tgcaatccca gttactcggg aggctgaggc aggagaatcg 400
 cttgaactca ggaggcagaa gttgcagtga acccagatcc tgccattgca 450
 ctccagcatg gatgacagag caagactccg tctcaaaaag aaaagatagt 500
 ttcttgtttc atttcgcgac tgccctctca gtgtttcctg ggatcccctc 550
 ccaaataaag tacttatatt ctc 573
<210> 189
<211> 74
<212> PRT
<213> Homo sapiens
<400> 189
Met Gln Gly Pro Leu Leu Pro Gly Leu Cys Phe Leu Leu Ser
Leu Phe Gly Ala Val Thr Gln Lys Thr Lys Thr Ser Cys Ala Lys
                  20
                                                          30
Cys Pro Pro Asn Ala Ser Cys Val Asn Asn Thr His Cys Thr Cys
Asn His Gly Tyr Thr Ser Gly Ser Gly Gln Lys Leu Phe Thr Phe
                                      55
Pro Leu Glu Thr Cys Asn Ala Arg His Gly Gly Ser Arg Leu
                 65
```

```
<210> 190
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 190
 agggaccatt gcttcttcca ggcc 24
 <210> 191
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Synthetic oligonucleotide probe
<400> 191
 cgttacatgt ctccaagggg aatg 24
<210> 192
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 192
 cctgtgctaa gtgcccccca aatgcttcct gtgtcaataa cactcactgc 50
<210> 193
<211> 1091
<212> DNA
<213> Homo sapiens
<400> 193
caagcaggtc atccccttgg tgaccttcaa agagaagcag agagggcaga 50
ggtggggggc acagggaaag ggtgacctct gagattcccc ttttccccca 100
gactttggaa gtgacccacc atggggctca gcatcttttt gctcctgtgt 150
gttcttgggc tcagccaggc agccacaccg aagattttca atggcactga 200
gtgtgggcgt aactcacagc cgtggcaggt ggggctgttt gagggcacca 250
gcctgcgctg cgggggtgtc cttattgacc acaggtgggt cctcacagcg 300
gctcactgca gcggcagcag gtactgggtg cgcctggggg aacacagcct 350
cagccagete gactggaceg ageagateeg geacagegge ttetetgtga 400
cccatcccgg ctacctggga gcctcgacga gccacgagca cgacctccgg 450
```

```
<210> 194
```

<400> 194

Met G.	TA P	eu	Ser	Ile	Phe	Leu	Leu	Leu	Cys	Val	Leu	Gly	Leu	Ser
1				5					10					15

Gln Ala Ala Thr Pro Lys Ile Phe Asn Gly Thr Glu Cys Gly Arg
20 25 30

Asn Ser Gln Pro Trp Gln Val Gly Leu Phe Glu Gly Thr Ser Leu 35 40 45

Arg Cys Gly Gly Val Leu Ile Asp His Arg Trp Val Leu Thr Ala 50 55 60

Ala His Cys Ser Gly Ser Arg Tyr Trp Val Arg Leu Gly Glu His
65 70 75

Ser Leu Ser Gln Leu Asp Trp Thr Glu Gln Ile Arg His Ser Gly

Phe Ser Val Thr His Pro Gly Tyr Leu Gly Ala Ser Thr Ser His
95 100 105

Glu His Asp Leu Arg Leu Leu Arg Leu Arg Leu Pro Val Arg Val 110 115 120

<211> 248

<212> PRT

<213> Homo sapiens

Thr Ser Ser Val Gln Pro Leu Pro Leu Pro Asn Asp Cys Ala Thr 125 130 130

Pro Arg Asn Pro Phe Pro Asp Leu Leu Gln Cys Leu Asn Leu Ser 155 160 165

Ile Val Ser His Ala Thr Cys His Gly Val Tyr Pro Gly Arg Ile 170 175 180

Thr Ser Asn Met Val Cys Ala Gly Gly Val Pro Gly Gln Asp Ala 185 190 195

Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Gly Gly Val Leu 200 205 210

Gln Gly Leu Val Ser Trp Gly Ser Val Gly Pro Cys Gly Gln Asp 215 220 225

Gly Ile Pro Gly Val Tyr Thr Tyr Ile Cys Lys Tyr Val Asp Trp 230 235 240

Ile Arg Met Ile Met Arg Asn Asn 245

<210> 195

<211> 1485

<212> DNA

<213> Homo sapiens

<400> 195

geggeeacae geagetage ggageeegga eeaggeggeggg ageeeeggegg 100
ctegteeete geeggeteeg egaageetgg ageeggggg ageeeeggegg 100
tegeeatgte gggegagete ageaacaggt tecaaggagg gaaggegtte 150
ggettgetea aageeeggea ggagaggagg etggeeggag teaaeeggga 200
gtttetgtgt gaeeagaag acagtgatga agagaacett eeagaaaage 250
teaaeageett eaaagaaag tacatggagt ttgaeetgaa eaatgaagge 300
gagattgaee tgatgeett aaagaggatg atggagaage ttggtgeee 350
caagaceea etggagatga agaagatgat eteaagggg acaggagggg 400
teagtgaeae tatateetae egagaetttg tgaaeatgat getggggaaa 450
eggteggetg teeteaagtt agteatgatg tttgaaggaa aageeaaega 500
gageageeee aageeagttg geeeeeetee agagagagae attgetagee 550
tgeeetgagg aeeeegeetg gaeteeeese eetteeese eeataeetee 600

ctcccgatct tgctgccctt cttgacacac tgtgatctct ctctctcta 650 tttgtttggt cattgagggt ttgtttgtgt tttcatcaat gtctttgtaa 700 agcacaaatt atctgcctta aaggggctct gggtcgggga atcctgagcc 750 ttgggtcccc tccctctt cttccctcct tccccgctcc ctgtgcagaa 800 gggctgatat caaaccaaaa actagagggg gcagggccag ggcagggagg 850 cttccagcct gtgttcccct cacttggagg aaccagcact ctccatcctt 900 tcagaaagtc tccaagccaa gttcaggctc actgacctgg ctctgacgag 950 gaceccagge cactetgaga agacettgga gtagggacaa ggetgeaggg 1000 cctctttcgg gtttccttgg acagtgccat ggttccagtg ctctggtgtc 1050 acceaggaca cagecacteg gggccccgct gccccagetg atccccacte 1100 gcttggcatt gggagccctt caagaaggta ccagaaggaa ccctccagtc 1200 ctgctctctg gccacacctg tgcaggcagc tgagaggcag cgtgcagccc 1250 tactgtccct tactggggca gcagagggct tcggaggcag aagtgaggcc 1300 tggggtttgg ggggaaaggt cagctcagtg ctgttccacc ttttagggag 1350 gatactgagg ggaccaggat gggagaatga ggagtaaaat gctcacggca 1400 aagtcagcag cactggtaag ccaagactga gaaatacaag gttgcttgtc 1450 tgaccccaat ctgcttgaaa aaaaaaaaa aaaaa 1485

```
<210> 196
```

<211> 150

<212> PRT

<213> Homo sapiens

<400> 196

Met Ser Gly Glu Leu Ser Asn Arg Phe Gln Gly Gly Lys Ala Phe 1 5 10 15

Gly Leu Leu Lys Ala Arg Gln Glu Arg Arg Leu Ala Glu Ile Asn 20 25 30

Arg Glu Phe Leu Cys Asp Gln Lys Tyr Ser Asp Glu Glu Asn Leu 35 40 45

Pro Glu Lys Leu Thr Ala Phe Lys Glu Lys Tyr Met Glu Phe Asp 50 55 60

Leu Asn Asn Glu Gly Glu Ile Asp Leu Met Ser Leu Lys Arg Met
65 70 75

Met Glu Lys Leu Gly Val Pro Lys Thr His Leu Glu Met Lys Lys 80 85 90

Met Ile Ser Glu Val Thr Gly Gly Val Ser Asp Thr Ile Ser Tyr 95 100 105

Arg Asp Phe Val Asn Met Met Leu Gly Lys Arg Ser Ala Val Leu 110 115 120

Lys Leu Val Met Met Phe Glu Gly Lys Ala Asn Glu Ser Ser Pro 125 130 135

Lys Pro Val Gly Pro Pro Pro Glu Arg Asp Ile Ala Ser Leu Pro 140 145 150

<210> 197

<211> 4842

<212> DNA

<213> Homo sapiens

<400> 197

cgcgctcccc gcgcgcctcc tcgggctcca cgcgtcttgc cccgcagagg 50 cagecteete caggageggg geeetgeaca ceatggeece egggtgggea 100 ggggtcggcg ccgccgtgcg cgcccgcctg gcgctggcct tggcgctggc 150 gagegteetg agtgggeete eageegtege etgeeecace aagtgtacet 200 gctccgctgc cagcgtggac tgccacgggc tgggcctccg cgcggttcct 250 cggggcatcc cccgcaacgc tgagcgcctt gacctggaca gaaataatat 300 caccaggate accaagatgg acttegetgg geteaagaac eteegagtet 350 tgcatctgga agacaaccag gtcagcgtca tcgagagagg cgccttccag 400 gacctgaagc agctagagcg actgcgcctg aacaagaata agctgcaagt 450 ccttccagaa ttgcttttcc agagcacgcc gaagctcacc agactagatt 500 tgagtgaaaa ccagatccag gggatcccga ggaaggcgtt ccgcggcatc 550 accgatgtga agaacctgca actggacaac aaccacatca gctgcattga 600 agatggagcc ttccgagcgc tgcgcgattt ggagatcctt accctcaaca 650 acaacaacat cagtegeate etggteacea getteaacea catgeegaag 700 atccgaactc tgcgcctcca ctccaaccac ctctactgcg actgccacct 750 ggcctggctc tcggattggc tgcgacagcg acggacagtt ggccagttca 800 cactetgeat ggeteetgtg catttgaggg getteaacgt ggeggatgtg 850 cagaagaagg agtacgtgtg cccagccccc cactcggagc ccccatcctg 900

caatgccaac tccatctcct gcccttcgcc ctgcacgtgc agcaataaca 950 togtggactg togaggaaag ggottgatgg agattootgo caacttgoog 1000 gagggcatcg tcgaaatacg cctagaacag aactccatca aagccatccc 1050 tgcaggagcc ttcacccagt acaagaaact gaagcgaata gacatcagca 1100 agaatcagat atcggatatt gctccagatg ccttccaggg cctgaaatca 1150 ctcacatcgc tggtcctgta tgggaacaag atcaccgaga ttgccaaggg 1200 actgtttgat gggctggtgt ccctacagct gctcctcctc aatgccaaca 1250 agatcaactg cctgcgggtg aacacgtttc aggacctgca gaacctcaac 1300 ttgctctccc tgtatgacaa caagctgcag accatcagca aggggctctt 1350 cgcccctctg cagtccatcc agacactcca cttagcccaa aacccatttg 1400 tgtgcgactg ccacttgaag tggctggccg actacctcca ggacaacccc 1450 atcgagacaa gcggggcccg ctgcagcagc ccgcgccgac tcgccaacaa 1500 gcgcatcagc cagatcaaga gcaagaagtt ccgctgctca ggctccgagg 1550 attaccgcag caggttcagc agcgagtgct tcatggacct cgtgtgcccc 1600 gagaagtgtc gctgtgaggg cacgattgtg gactgctcca accagaagct 1650 ggteegeate ecaageeace teeetgaata tgteacegae etgegaetga 1700 atgacaatga ggtatctgtt ctggaggcca ctggcatctt caagaagttg 1750 cccaacctgc ggaaaataaa tctgagtaac aataagatca aggaggtgcg 1800 agagggaget ttegatggag cagecagegt geaggagetg atgetgaeag 1850 ggaaccaget ggagacegtg caegggegeg tgtteegtgg ceteagtgge 1900 ctcaaaacct tgatgctgag gagtaacttg atcagctgtg tgagtaatga 1950 cacctttgcc ggcctgagtt cggtgagact gctgtccctc tatgacaatc 2000 ggatcaccac catcacccct ggggccttca ccacgcttgt ctccctgtcc 2050 accataaacc teetgteeaa eeeetteaac tgeaactgee acctggeetg 2100 gctcggcaag tggttgagga agaggcggat cgtcagtggg aaccctaggt 2150 gccagaagcc atttttcctc aaggagattc ccatccagga tgtggccatc 2200 caggacttca cctgtgatgg caacgaggag agtagctgcc agctgagccc 2250 gegetgeeeg gageagtgea eetgtatgga gaeagtggtg egatgeagea 2300 acaagggget cegegeeete eecagaggea tgeecaagga tgtgaeegag 2350

ctgtacctgg aaggaaacca cctaacagcc gtgcccagag agctgtccgc 2400 cctccgacac ctgacgctta ttgacctgag caacaacagc atcagcatgc 2450 tgaccaatta caccttcagt aacatgtctc acctctccac tctgatcctg 2500 agetacaacc ggctgaggtg cateceegte caegeettea aegggetgeg 2550 gtccctgcga gtgctaaccc tccatggcaa tgacatttcc agcgttcctg 2600 aaggeteett caacgacete acatetett eecatetgge getgggaace 2650 aacccactcc actgtgactg cagtcttcgg tggctgtcgg agtgggtgaa 2700 ggcggggtac aaggagcctg gcatcgcccg ctgcagtagc cctgagccca 2750 tggctgacag gctcctgctc accaccccaa cccaccgctt ccagtgcaaa 2800 gggccagtgg acatcaacat tgtggccaaa tgcaatgcct gcctctccag 2850 cccgtgcaag aataacggga catgcaccca ggaccctgtg gagctgtacc 2900 gctgtgcctg cccctacagc tacaagggca aggactgcac tgtgcccatc 2950 aacacctgca tccagaaccc ctgtcagcat ggaggcacct gccacctgag 3000 tgacagccac aaggatgggt tcagctgctc ctgccctctg ggctttgagg 3050 ggcagcggtg tgagatcaac ccagatgact gtgaggacaa cgactgcgaa 3100 aacaatgcca cctgcgtgga cgggatcaac aactacgtgt gtatctgtcc 3150 gcctaactac acaggtgagc tatgcgacga ggtgattgac cactgtgtgc 3200 ctgagctgaa cctctgtcag catgaggcca agtgcatccc cctggacaaa 3250 ggattcagct gcgagtgtgt ccctggctac agcgggaagc tctgtgagac 3300 agacaatgat gactgtgtgg cccacaagtg ccgccacggg gcccagtgcg 3350 tggacacaat caatggctac acatgcacct gcccccaggg cttcagtgga 3400 cccttctgtg aacaccccc acccatggtc ctactgcaga ccagcccatg 3450 cgaccagtac gagtgccaga acggggccca gtgcatcgtg gtgcagcagg 3500 agcccacctg ccgctgccca ccaggcttcg ccggccccag atgcgagaag 3550 ctcatcactg tcaacttcgt gggcaaagac tcctacgtgg aactggcctc 3600 cgccaaggtc cgaccccagg ccaacatctc cctgcaggtg gccactgaca 3650 aggacaacgg catcettete tacaaaggag acaatgacee cetggcactg 3700 gagetgtace agggeeacgt geggetggte tatgaeagee tgagtteece 3750

tccaaccaca gtgtacagtg tggagacagt gaatgatggg cagtttcaca 3800 gtgtggagct ggtgacgcta aaccagaccc tgaacctagt agtggacaaa 3850 ggaactccaa agagcctggg gaagctccag aagcagccag cagtgggcat 3900 caacageeee etetacettg gaggeateee caceteeace ggeeteteeg 3950 cettgegeca gggeaeggae eggeetetag geggetteea eggatgeate 4000 catgaggtgc gcatcaacaa cgagctgcag gacttcaagg ccctcccacc 4050 acagtecetg ggggtgteae eaggetgeaa gteetgeaee gtgtgeaage 4100 acggcctgtg ccgctccgtg gagaaggaca gcgtggtgtg cgagtgccgc 4150 ccaggctgga ccggcccact ctgcgaccag gaggcccggg acccctgcct 4200 cggccacaga tgccaccatg gaaaatgtgt ggcaactggg acctcataca 4250 tgtgcaagtg tgccgagggc tatggagggg acttgtgtga caacaagaat 4300 gactetgeca atgeetgete ageetteaag tgteaceatg ggeagtgeea 4350 catctcagac caaggggagc cctactgcct gtgccagccc ggctttagcg 4400 gcgagcactg ccaacaagag aatccgtgcc tgggacaagt agtccgagag 4450 gtgatccgcc gccagaaagg ttatgcatca tgtgccacag cctccaaggt 4500 gcccatcatg gaatgtcgtg ggggctgtgg gccccagtgc tgccagccca 4550 cccgcagcaa gcggcggaaa tacgtcttcc agtgcacgga cggctcctcg 4600 tttgtagaag aggtggagag acacttagag tgcggctgcc tcgcgtgttc 4650 ctaageeest geeegeetge etgeeaeste teggaeteea gettgatgga 4700 gttgggacag ccatgtggga ccccctggtg attcagcatg aaggaaatga 4750 agctggagag gaaggtaaag aagaagagaa tattaagtat attgtaaaat 4800

```
<210> 198
```

<400> 198

Leu Ala Leu Ala Leu Ala Ser Val Leu Ser Gly Pro Pro $20 \\ 25 \\ 30$

Ala Val Ala Cys Pro Thr Lys Cys Thr Cys Ser Ala Ala Ser Val

<211> 1523

<212> PRT

<213> Homo sapiens

As	р Су	s Hi	s Gl	y Le	u Gl _i 0	y Lei	ı Ar	g Ala	a Va] 55	l Pro	Arq	g Gly	/ Ile	e Pro 60
Ar	g As	n Al	a Gl	u Ard	g Lei 5	ı Asp	Lei	u Ası	o Arg 70	g Asn	Asr	ı Ile	e Thi	r Arg 75
Il	e Th	r Ly	s Me	t Ası 80	Phe	e Ala	Gly	y Lei	ı Lys 85		Leu	Arg	y Val	L Leu 90
Hi	s Le	u Gl	u As _i	p Asr 95	n Glr	n Val	. Sei	r Val	l Ile 100	Glu	Arg	Gly	Ala	Phe 105
Gli	n Asj	o Le	u Ly:	s Glr 110	Leu)	ı Glu	Arg	g Leu	Arg 115	Leu	Asn	Lys	Asn	Lys 120
Le	ı Glı	n Va	l Let	125	Glu	ı Leu	Leu	ı Phe	Gln 130	Ser	Thr	Pro	Lys	Leu 135
Thi	Arq	j Le	u Asp	Leu 140	Ser	Glu	Asn	Gln	Ile 145	Gln	Gly	Ile	Pro	Arg 150
Lys	s Alá	a Phe	e Arg	g Gly 155	Ile	Thr	Asp	Val	Lys 160	Asn	Leu	Gln	Leu	Asp 165
Asn	ı Asr	His	s Ile	Ser 170	Суз	Ile	Glu	Asp	Gly 175	Ala	Phe	Arg	Ala	Leu 180
Arg	Asp	Let	ı Glu	11e 185	Leu	Thr	Leu	Asn	Asn 190	Asn	Asn	Ile	Ser	Arg 195
				200		Asn			205					210
Arg	Leu	His	Ser	Asn 215	His	Leu	Tyr	Cys	Asp 220	Cys	His	Leu	Ala	Trp 225
Leu	Ser	Asp	Trp	Leu 230	Arg	Gln	Arg	Arg	Thr 235	Val	Gly	Gln	Phe	Thr 240
				245		His			250					255
Val	Gln	Lys	Lys	Glu 260	Tyr	Val	Cys	Pro	Ala 265	Pro .	His	Ser	Glu	Pro 270
Pro	Ser	Cys	Asn	Ala 275	Asn	Ser	Ile	Ser	Cys 280	Pro :	Ser	Pro	Cys	Thr 285
Cys	Ser	Asn	Asn	Ile 290	Val	Asp (Cys	Arg	Gly : 295	Lys (Gly :	Leu :		Glu 300
				305		Glu (310					315
Gln	Asn	Ser	Ile	Lys .	Ala	Ile 1	Pro .	Ala	Gly A	Ala F	he '	Thr (aln '	Tur

														•
Lу	s Ly	s Le	u Ly:	s Arg 335	g Ile 5	e Asp	o Ile	e Se:	r Lys 340	s Asr O	n Glr	n Ile	e Se	r As _l
11	e Ala	a Pr	o Ası	9 Ala 350	a Phe	∋ Glr	n Gly	y Lei	u Lys 355	s Ser	Leu	ı Thi	Sei	Let 360
Va:	l Le	и Ту:	r Gly	y Asr 365	n Lys	s Ile	e Thi	r Glu	u Ile 370		a Lys	Gl	/ Let	2 Phe 375
Ası	o Gl	y Lei	ı Val	Ser 380	Leu)	ı Glr	Leu	ı Leı	ı Let 385	ı Leu	a Asn	Ala	Asr	1 Lys 390
Ile	e Asr	т Суз	s Leu	395	y Val	. Asn	Thr	Phe	9 Glr 400		Leu	Gln	Asn	Leu 405
Asr	l Leu	ı Leı	ı Ser	Leu 410	Tyr	Asp	Asn	Lys	415		Thr	Ile	Ser	Lys 420
Gly	/ Let	Phe	e Ala	Pro 425	Leu	Gln	Ser	lle	Gln 430		Leu	His	Leu	Ala 435
Gln	Asn	Pro	Phe	Val 440	Cys	Asp	Cys	His	Leu 445	Lys	Trp	Leu	Ala	Asp 450
Туr	Leu	Gln	Asp	Asn 455	Pro	Ile	Glu	Thr	Ser 460	Gly	Ala	Arg	Cys	Ser 465
Ser	Pro	Arg	Arg	Leu 470	Ala	Asn	Lys	Arg	Ile 475	Ser	Gln	Ile	Lys	Ser 480
Lys	Lys	Phe	Arg	Cys 485	Ser	Gly	Ser	Glu	Asp 490	Tyr	Arg	Ser	Arg	Phe 495
Ser	Ser	Glu	Cys	Phe 500	Met	Asp	Leu	Val	Cys 505	Pro	Glu	Lys	Cys	Arg 510
Cys	Glu	Gly	Thr	Ile 515	Val	Asp	Cys	Ser	Asn 520	Gln	Lys	Leu	Val	Arg 525
Ile	Pro	Ser	His	Leu 530	Pro	Glu	Tyr	Val	Thr 535	Asp	Leu	Arg	Leu	Asn 540
Asp	Asn	Glu	Val	Ser 545	Val	Leu	Glu	Ala	Thr 550	Gly	Ile	Phe	Lys	Lys 555
Leu	Pro	Asn	Leu	Arg 560	Lys	Ile	Asn	Leu	Ser 565	Asn	Asn	Lys	Ile	Lys 570
Glu	Val	Arg	Glu	Gly 575	Ala	Phe	Asp	Gly	Ala 580	Ala	Ser	Val	Gln	Glu 585
Leu	Met	Leu	Thr	Gly 590	Asn	Gln	Leu	Glu	Thr 595	Val	His	Gly	Arg	Val 600
Phe	Arg	Gly	Leu	Ser	Gly	Leu	Lys	Thr	Leu	Met	Leu	Arg	Ser	Asn

Gln Arg Cys Glu Ile Asn Pro Asp Asp Cys Glu Asp Asn Asp Cys 995 1000 1005

Glu Asn Asn Ala Thr Cys Val Asp Gly Ile Asn Asn Tyr Val Cys $1010 \hspace{1cm} 1015 \hspace{1cm} 1020$

Ile Cys Pro Pro Asn Tyr Thr Gly Glu Leu Cys Asp Glu Val Ile 1025 1030 1035

Asp His Cys Val Pro Glu Leu Asn Leu Cys Gln His Glu Ala Lys 1040 1045 1050

Cys Ile Pro Leu Asp Lys Gly Phe Ser Cys Glu Cys Val Pro Gly 1055 1060 1065

Tyr Ser Gly Lys Leu Cys Glu Thr Asp Asn Asp Asp Cys Val Ala $1070~\rm{1075}~\rm{1080}$

His Lys Cys Arg His Gly Ala Gln Cys Val Asp Thr Ile Asn Gly $1085 \hspace{1cm} 1090 \hspace{1cm} 1095$

Tyr Thr Cys Thr Cys Pro Gln Gly Phe Ser Gly Pro Phe Cys Glu 1100 1105 1110

His Pro Pro Pro Met Val Leu Leu Gln Thr Ser Pro Cys Asp Gln 1115 1120 1125

Tyr Glu Cys Gln Asn Gly Ala Gln Cys Ile Val Val Gln Glu 1130 1135 1140

Pro Thr Cys Arg Cys Pro Pro Gly Phe Ala Gly Pro Arg Cys Glu 1145 1150 1155

Lys Leu Ile Thr Val Asn Phe Val Gly Lys Asp Ser Tyr Val Glu 1160 . 1165 . 1170

Leu Ala Ser Ala Lys Val Arg Pro Gln Ala Asn Ile Ser Leu Gln

- Val Ala Thr Asp Lys Asp Asn Gly Ile Leu Leu Tyr Lys Gly Asp 1195 Asn Asp Pro Leu Ala Leu Glu Leu Tyr Gln Gly His Val Arg Leu 1205 1210 Val Tyr Asp Ser Leu Ser Ser Pro Pro Thr Thr Val Tyr Ser Val 1220 Glu Thr Val Asn Asp Gly Gln Phe His Ser Val Glu Leu Val Thr Leu Asn Gln Thr Leu Asn Leu Val Val Asp Lys Gly Thr Pro Lys 1255 Ser Leu Gly Lys Leu Gln Lys Gln Pro Ala Val Gly Ile Asn Ser 1265 Pro Leu Tyr Leu Gly Gly Ile Pro Thr Ser Thr Gly Leu Ser Ala Leu Arg Gln Gly Thr Asp Arg Pro Leu Gly Gly Phe His Gly Cys 1300 Ile His Glu Val Arg Ile Asn Asn Glu Leu Gln Asp Phe Lys Ala 1310 1315 Leu Pro Pro Gln Ser Leu Gly Val Ser Pro Gly Cys Lys Ser Cys Thr Val Cys Lys His Gly Leu Cys Arg Ser Val Glu Lys Asp Ser 1345 Val Val Cys Glu Cys Arg Pro Gly Trp Thr Gly Pro Leu Cys Asp 1360 Gln Glu Ala Arg Asp Pro Cys Leu Gly His Arg Cys His His Gly 1380 Lys Cys Val Ala Thr Gly Thr Ser Tyr Met Cys Lys Cys Ala Glu 1390 Gly Tyr Gly Gly Asp Leu Cys Asp Asn Lys Asn Asp Ser Ala Asn 1400 Ala Cys Ser Ala Phe Lys Cys His His Gly Gln Cys His Ile Ser 1425 Asp Gln Gly Glu Pro Tyr Cys Leu Cys Gln Pro Gly Phe Ser Gly
- Glu Val Ile Arg Arg Gln Lys Gly Tyr Ala Ser Cys Ala Thr Ala

Glu His Cys Gln Gln Glu Asn Pro Cys Leu Gly Gln Val Val Arg

1445

1435

1450

1455

Ser Lys Val Pro Ile Met Glu Cys Arg Gly Gly Cys Gly Pro Gln \$1475\$ \$1480\$ \$1485

Cys Cys Gln Pro Thr Arg Ser Lys Arg Arg Lys Tyr Val Phe Gln
1490 1495 1500

Cys Thr Asp Gly Ser Ser Phe Val Glu Glu Val Glu Arg His Leu 1505 1510 1515

Glu Cys Gly Cys Leu Ala Cys Ser 1520

<210> 199

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 199

atggagattc ctgccaactt gccg 24

<210> 200

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 200

ttgttggcat tgaggaggag cagc 24

<210> 201

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 201

gagggcatcg tcgaaatacg cctagaacag aactccatca aagccatccc 50

<210> 202

<211> 753

<212> DNA

<213> Homo sapiens

<400> 202

ggatgcagga cgctcccctg agctgcctgt caccgactag gtggagcagt 50

gtttcttccg cagactcaac tgagaagtca gcctctgggg caggcaccag 100

gaatctgeet titeagitet gieteeggea gietitgagi atgaaggetg 150 cgggeattet gaeceteatt gieteegge teacaaggege egagteeaaa 200 atetacaete gitigeaaact gietaaaata titetegagigi etggeetigga 250 caattactigi gieteegge titigaaacti gatetigeatigi geatattatig 300 agageggeta caacaccaca geecegacigi teetiggatga eggeageate 350 gaetatiggea tetteeagati eaacagette gegtiggietea gaegeggaaa 400 getigaagigi aacaaccacti geeatigteege etgeteagee titigateactig 450 atgaecteae agatgeaatti atetigtigeea gigaaaattigi taaagagaca 500 caaggaatga actatiggea geetiggagigi titeetaaactigga aggeeagaga 550 cetigteeggi titigaaaaaa geetiggagi titeetaaactigga gaactiggae 600 ceetigtigeat ettigteeegi titeeteeaa tatteettet eaaactigga 700 gagggaaaaat taagetatae tittaagaaa ataaatatti eeaattaaat 750 gite 753

<210> 203

<211> 148

<212> PRT

<213> Homo sapiens

<400> 203

Met Lys Ala Ala Gly Ile Leu Thr Leu Ile Gly Cys Leu Val Thr 1 5 10 15

Gly Ala Glu Ser Lys Ile Tyr Thr Arg Cys Lys Leu Ala Lys Ile 20 25 30

Phe Ser Arg Ala Gly Leu Asp Asn Tyr Trp Gly Phe Ser Leu Gly 35 40 45

Asn Trp Ile Cys Met Ala Tyr Tyr Glu Ser Gly Tyr Asn Thr Thr 50 55 60

Ala Pro Thr Val Leu Asp Asp Gly Ser Ile Asp Tyr Gly Ile Phe 65 70 75

Gln Ile Asn Ser Phe Ala Trp Cys Arg Arg Gly Lys Leu Lys Glu 80 85 90

Asn Asn His Cys His Val Ala Cys Ser Ala Leu Ile Thr Asp Asp $95 \hspace{1cm} 100 \hspace{1cm} 105 \hspace{1cm}$

```
Gln Gly Met Asn Tyr Trp Gln Gly Trp Lys Lys His Cys Glu Gly
                   125
  Arg Asp Leu Ser Glu Trp Lys Lys Gly Cys Glu Val Ser
                   140
  <210> 204
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 204
  gcaggctttg aggatgaagg ctgc 24
 <210> 205
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 205
  ctcattggct gcctggtcac aggc 24
 <210> 206
 <211> 24
 <212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 206
 ccagtcggac aggtctctcc cctc 24
<210> 207
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 207
tcagtgacca aggctgagca ggcg 24
<210> 208
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Synthetic oligonucleotide probe

<400> 208

ctacactcgt tgcaaactgg caaaaatatt ctcgagggct ggcctgg 47

<210> 209

<211> 1648

<212> DNA

<213> Homo sapiens

<400> 209

caggccattt gcatcccact gtccttgtgt tcggagccag gccacaccgt 50 cctcagcagt gtcatgtgtt aaaaacgcca agctgaatat atcatgcccc 100 tattaaaact tgtacatggc tccccattgg tttttggaga aaagttcaag 150 ctttttacct tggtgtctgc ctgtatccca gtgttcaggc tggctagacg 200 gcggaagaag atcctatttt actgtcactt cccagatctg cttctcacca 250 agagagattc ttttcttaaa cgactataca gggccccaat tgactggata 300 gaggaataca ccacaggcat ggcagactgc atcttagtca acagccagtt 350 cacagetget gtttttaagg aaacatteaa gteeetgtet eacatagace 400 ctgatgtcct ctatccatct ctaaatgtca ccagctttga ctcagttgtt 450 cctgaaaagc tggatgacct agtccccaag gggaaaaaat tcctgctgct 500 ctccatcaac agatacgaaa ggaagaaaaa tctgactttg gcactggaag 550 ccctagtaca gctgcgtgga agattgacat cccaagattg ggagagggtt 600 catctgatcg tggcaggtgg ttatgacgag agagtcctgg agaatgtgga 650 acattatcag gaattgaaga aaatggtcca acagtccgac cttggccagt 700 atgtgacctt cttgaggtct ttctcagaca aacagaaaat ctccctcctc 750 cacagetgea egtgtgtget ttacacacca ageaatgage aetttggeat 800 tgtccctctg gaagccatgt acatgcagtg cccagtcatt gctgttaatt 850 cgggtggacc cttggagtcc attgaccaca gtgtcacagg gtttctgtgt 900 gagectgace eggtgeactt eteagaagea atagaaaagt teateegtga 950 accttcctta aaagccacca tgggcctggc tggaagagcc agagtgaagg 1000 aaaaattttc ccctgaagca tttacagaac agctctaccg atatgttacc 1050 aaactgctgg tataatcaga ttgtttttaa gatctccatt aatgtcattt 1100 ttatggattg tagacccagt tttgaaacca aaaaagaaac ctagaatcta 1150

atgcagaaga gatctttaa aaaataaact tgagtcttga atgtgagcca 1200 ctttcctata taccacacct ccctgtccac ttttcagaaa aaccatgtct 1250 tttatgctat aatcattcca aattttgcca gtgttaagtt acaaatgtgg 1300 tgtcattcca tgttcagcag agtatttaa ttatatttc tcgggattat 1350 tgctcttctg tctataaatt ttgaatgata ctgtgcctta attggtttc 1400 atagtttaag tgtgtatcat tatcaaagtt gattaatttg gcttcatagt 1450 ataatgagag cagggctatt gtagttccca gattcaatcc accgaagtgt 1500 tcactgtcat ctgttaggga atttttgtt gtcctgtctt tgcctggatc 1550 catagcgaga gtgctctgta tttttttaa gataatttgt attttgcac 1600 actgaggatat aataaaaggt gtttatcata aaaaaaaaa aaaaaaaaa aaaaaaaa 1648

<400> 210

Met	Pro	Leu	Leu	Lys	Leu	Val	His	Gly	Ser	Pro	Leu	Val	Phe	Glv
Ţ				5					10					15

Phe Arg Leu Ala Arg Arg Lys Lys Ile Leu Phe Tyr Cys His 35 40 45

Phe Pro Asp Leu Leu Thr Lys Arg Asp Ser Phe Leu Lys Arg 50 55 60

Leu Tyr Arg Ala Pro Ile Asp Trp Ile Glu Glu Tyr Thr Thr Gly
65 70 75

Met Ala Asp Cys Ile Leu Val Asn Ser Gln Phe Thr Ala Ala Val 80 85 90

Phe Lys Glu Thr Phe Lys Ser Leu Ser His Ile Asp Pro Asp Val 95 100 105

Leu Tyr Pro Ser Leu Asn Val Thr Ser Phe Asp Ser Val Val Pro
110 115 120

Glu Lys Leu Asp Asp Leu Val Pro Lys Gly Lys Lys Phe Leu Leu 125 130 135

Leu Ser Ile Asn Arg Tyr Glu Arg Lys Lys Asn Leu Thr Leu Ala $140\,$

Leu Glu Ala Leu Val Gln Leu Arg Gly Arg Leu Thr Ser Gln Asp

<210> 210

<211> 323

<212> PRT

<213> Homo sapiens

				155					160					165
Trp	Glu	Arg	Val	His 170	Leu	Il∈	e Val	Ala	Gly 175	Gly	Tyr	Asp	Glu	Arg 180
Val	Leu	Glu	Asn	Val 185	Glu	His	Tyr	Gln	Glu 190	Leu	Lys	Lys	Met	Val 195
Gln	Gln	Ser	Asp	Leu 200	Gly	Gln	Tyr	Val	Thr 205	Phe	Leu	Arg	Ser	Phe 210
Ser .	Asp	Lys	Gln	Lys 215	Ile	Ser	Leu	Leu	His 220	Ser	Cys	Thr	Cys	Val 225
Leu '	Tyr	Thr	Pro	Ser 230	Asn	Glu	His	Phe	Gly 235	Ile	Val	Pro	Leu	Glu 240
Ala N	Met	Tyr	Met	Gln 245	Cys	Pro	Val	Ile	Ala 250	Val	Asn	Ser	Gly	Gly 255
Pro I	Leu	Glu	Ser	Ile 260	Asp	His	Ser	Val	Thr 265	Gly	Phe	Leu	Cys	Glu 270
Pro P	Asp	Pro	Val	His 275	Phe	Ser	Glu	Ala	Ile 280	Glu	Lys	Phe	Ile	Arg 285
Glu F	Pro	Ser	Leu	Lys 290	Ala	Thr	Met	Gly	Leu 295	Ala	Gly	Arg	Ala	Arg 300
Val L	ys	Glu	Lys	Phe 305	Ser	Pro	Glu	Ala	Phe 310	Thr	Glu	Gln	Leu	
Arg T	'yr	Val	Thr	Lys 320	Leu	Leu	Val							
<210> .<211> <212> .<212> .<213>	155 DNA		piens	S										
<400> 2 gactad		cg at	ccga	agac	g tg	gctc	cctg	ggc	ggcaq	gaa (ccat	gttg	ga 50)
cttcg														
tctacc														
ccaact														

tttgcatgag ttcctggtta atttgcatga gagatatggg cctgtggtct 250

ccttctggtt tggcaggcgc ctcgtggtta gtttgggcac tgttgatgta 300

ctgaagcagc atatcaatcc caataagaca tcggaccctt ttgaaaccat 350

gctgaagtca ttattaaggt atcaatctgg tggtggcagt gtgagtgaaa 400

```
accacatgag gaaaaattg tatgaaaatg gtgtgactga ttctctgaag 450
 agtaactttg ccctcctcct aaagctttca gaagaattat tagataaatg 500
 getetectae ecagagaeee ageaegtgee eeteageeag catatgettg 550
 gttttgctat gaagtctgtt acacagatgg taatgggtag tacatttgaa 600
 gatgatcagg aagtcattcg cttccagaag aatcatggca cagtttggtc 650
 tgagattgga aaaggctttc tagatgggtc acttgataaa aacatgactc 700
 ggaaaaaaca atatgaagat gccctcatgc aactggagtc tgttttaagg 750
 aacatcataa aagaacgaaa aggaaggaac ttcagtcaac atattttcat 800
 tgactcctta gtacaaggga accttaatga ccaacagatc ctagaagaca 850
 gtatgatatt ttctctggcc agttgcataa taactgcaaa attgtgtacc 900
tgggcaatct gttttttaac cacctctgaa gaagttcaaa aaaaattata 950
tgaagagata aaccaagttt ttggaaatgg teetgttaet ccagagaaaa 1000
ttgagcagct cagatattgt cagcatgtgc tttgtgaaac tgttcgaact 1050
gccaaactga ctccagtttc tgcccagctt caagatattg aaggaaaaat 1100
tgaccgattt attattccta gagagaccct cgtcctttat gcccttggtg 1150
tggtacttca ggatcctaat acttggccat ctccacacaa gtttgatcca 1200
gatcggtttg atgatgaatt agtaatgaaa actttttcct cacttggatt 1250
ctcaggcaca caggagtgtc cagagttgag gtttgcatat atggtgacca 1300
cagtacttct tagtgtattg gtgaagagac tgcacctact ttctgtggag 1350
ggacaggtta ttgaaacaaa gtatgaactg gtaacatcat caagggaaga 1400
agcttggatc actgtctcaa agagatatta aaattttata catttaaaat 1450
cattgttaaa ttgattgagg aaaacaacca tttaaaaaaa atctatgttg 1500
aatcetttta taaaccagta teaetttgta atataaacae etatttgtae 1550
ttaa 1554
```

<210> 212

<211> 462

<212> PRT

<213> Homo sapiens

<400> 212

Met Leu Asp Phe Ala Ile Phe Ala Val Thr Phe Leu Leu Ala Leu 1 5 10

Va	1 G1	y Al	a Va	1 Le 2	u Ту 0	r Le	и Ту	r Pr	o Ala 25		r Ar	g G1	n Al	a Ala 30	
Gl	y Il	e Pr	o Gl	y Il 3	e Th 5	r Pr	o Th:	r Gl	u Glu 40	ı Ly	s As	p Gl	y As	n Leu 45	
Pr	o As	p Il	e Va	l Ası	n Se 0	r Gly	y Sei	r Lei	u His	Gl	u Ph	e Le	u Va	l Asn 60	
Le	u Hi	s Gl	u Ar	g Ty:	r Gl _i	y Pro	o Val	l Val	l Ser 70	Ph	e Tr	p Ph	e Gl	y Arg 75	
Ar	g Lei	ı Va	l Va	l Sei 80	r Lei	u Gl	/ Thr	val	Asp 85	Val	l Le	u Ly	s Gl:	n His	
Ile	e Asr	n Pro	o Ası	Lys 95	s Thi	r Ser	Asp	Pro	Phe	Gĺ	ı Thi	r Me	t Lei	Lys 105	
Sei	Leu	ı Leı	ı Arç	Tyr 110	Glr	n Ser	Gly	Gly	Gly 115	Ser	. Val	L Se:	r Glı	1 Asn 120	
His	Met	: Aro	j Lys	Lys 125	Leu	Tyr	Glu	Asn	Gly 130	Val	. Thr	: Ası	Sei	Leu 135	
Lys	Ser	Asr	n Phe	Ala 140	Leu	Leu	Leu	Lys	Leu 145	Ser	Glu	ı Glı	ı Lev	Leu 150	
Asp	Lys	Trp	Leu	Ser 155	Tyr	Pro	Glu	Thr	Gln 160	His	Val	Pro	Leu	Ser 165	
Gln	His	Met	Leu	Gly 170	Phe	Ala	Met	Lys	Ser 175	Val	Thr	Gln	Met	Val 180	
Met	Gly	Ser	Thr	Phe 185	Glu	Asp	Asp	Gln	Glu 190	Val	Ile	Arg	Phe	Gln 195	
Lys	Asn	His	Gly	Thr 200	Val	Trp	Ser	Glu	Ile 205	Gly	Lys	Gly	Phe	Leu 210	
Asp	Gly	Ser	Leu	Asp 215	Lys	Asn	Met	Thr	Arg 220	Lys	Lys	Gln	Tyr	Glu 225	
Asp	Ala	Leu	Met	Gln 230	Leu	Glu	Ser	Val	Leu 235	Arg	Asn	Ile	Ile	Lys 240	
Glu	Arg	Lys	Gly	Arg 245	Asn	Phe	Ser	Gln	His 250	Ile	Phe	Ile	Asp	Ser 255	
Leu	Val	Gln	Gly	Asn 260	Leu	Asn	Asp	Gln	Gln 265	Ile	Leu	Glu	Asp	Ser 270	
Met	Ile	Phe	Ser	Leu 275	Ala	Ser	Cys	Ile	Ile ' 280	Thr	Ala	Lys	Leu	Cys 285	
Thr	Trp	Ala	Ile	Cys 290	Phe	Leu	Thr '	Thr	Ser (295	Glu	Glu	Val	Gln	Lys 300	

.

Lys	Leu	Tyr	Glu	Glu 305	Ile	Asn	Gln	Val	Phe 310	Gly	Asn	Gly	Pro	Val 315
Thr	Pro	Glu	Lys	Ile 320	Glu	Gln	Leu	Arg	Tyr 325	Cys	Gln	His	Val	Leu 330
Cys	Glu	Thr	Val	Arg 335	Thr	Ala	Lys	Leu	Thr 340	Pro	Val	Ser	Ala	Gln 345
Leu	Gln	Asp	Ile	Glu 350	Gly	Lys	Ile	Asp	Arg 355	Phe	Ile	Ile	Pro	Arg 360
Glu	Thr	Leu	Val	Leu 365	Tyr	Ala	Leu	Gly	Val 370	Val	Leu	Gln	Asp	Pro 375
Asn	Thr	Trp	Pro	Ser 380	Pro	His	Lys	Phe	Asp 385	Pro	Asp	Arg	Phe	Asp 390
Asp	Glu	Leu	Val	Met 395	Lys	Thr	Phe	Ser	Ser 400	Leu	Gly	Phe	Ser	Gly 405
Thr	Gln	Glu	Cys	Pro 410	Glu	Leu	Arg	Phe	Ala 415	Tyr	Met	Val	Thr	Thr 420
Val	Leu	Leu	Ser	Val 425	Leu	Val	Lys	Arg	Leu 430	His	Leu	Leu	Ser	Val 435
Glu	Gly	Gln	Val	Ile 440	Glu	Thr	Lys	Tyr	Glu 445	Leu	Val	Thr	Ser	Ser 450
Arg	Glu	Glu	Ala	Trp 455	Ile	Thr	Val	Ser	Lys 460	Arg	Tyr			

<210> 213

<211> 759

<212> DNA

<213> Homo sapiens

<400> 213

ctagatttgt cggcttgcgg ggagacttca ggagtcgctg tetetgaact 50
tecagectca gagacegeeg ecettgteee egagggeeat gggeegggte 100
teagggettg tgeeeteteg etteetgaeg eteetggege atetggtggt 150
egteateace ttattetggt eeegggaeag eaacatacag geetgeetge 200
eteteacgtt eaceceegag gagtatgaea ageaggaeat teagetggtg 250
geegegetet etgteaceet gggeetettt geagtggage tggeeggttt 300
eeteteagga gteteeatgt teaacageae eeagageete ateteeattg 350
gggeteactg tagtgeatee gtggeeetgt eettetteat attegagegt 400
tgggagtgea etaegtattg gtaeatttt gtettetgea gtgeeettee 450

agctgtcact gaaatggctt tattcgtcac cgtctttggg ctgaaaaaga 500 aacccttctg attaccttca tgacgggaac ctaaggacga agcctacagg 550 ggcaagggcc gcttcgtatt cctggaagaa ggaaggcata ggcttcggtt 600 ttcccctcgg aaactgcttc tgctggagga tatgtgttgg aataattacg 650 tcttgagtct gggattatcc gcattgtatt tagtgctttg taataaaata 700 tgttttgtag taacattaag acttatatac agttttaggg gacaattaaa 750 aaaaaaaaa 759

<210> 214

<211> 140

<212> PRT

<213> Homo sapiens

<400> 214

Met Gly Arg Val Ser Gly Leu Val Pro Ser Arg Phe Leu Thr Leu 1 5 10 15

Leu Ala His Leu Val Val Val Ile Thr Leu Phe Trp Ser Arg Asp $20 \\ 25 \\ 30$

Ser Asn Ile Gln Ala Cys Leu Pro Leu Thr Phe Thr Pro Glu Glu 35 40 45

Tyr Asp Lys Gln Asp Ile Gln Leu Val Ala Ala Leu Ser Val Thr
50 55 60

Leu Gly Leu Phe Ala Val Glu Leu Ala Gly Phe Leu Ser Gly Val 65

Ser Met Phe Asn Ser Thr Gln Ser Leu Ile Ser Ile Gly Ala His $80 \\ 85 \\ 90$

Cys Ser Ala Ser Val Ala Leu Ser Phe Phe Ile Phe Glu Arg Trp 95 100 105

Glu Cys Thr Thr Tyr Trp Tyr Ile Phe Val Phe Cys Ser Ala Leu 110 115 120

Pro Ala Val Thr Glu Met Ala Leu Phe Val Thr Val Phe Gly Leu 125 130 135

Lys Lys Lys Pro Phe 140

<210> 215

<211> 697

<212> DNA

<213> Homo sapiens

<400> 215

teceggacee tgeegeeetg ecactatgte eegeegetet atgetgettg 50

cetgggetet ceccagecte ettegacteg gageggetea ggagacagaa 100 gacceggeet getgeageee catagtgeee eggaacgagt ggaaggeeet 150 ggcateagag tgegeceage acetgageet gecettaege tatgtggtgg 200 tategeacae ggegggeage agetgeaaca ecceegeete gtgecageag 250 caggeeegga atgtgeagea etaceacatg aagacaetgg getggtgega 300 egtgggetae aactteetga ttggagaaga egggetegta taegagggee 350 gtggetggaa etteaegggt geceaeteag gteaettatg gaaceeeatg 400 teeattggea teagetteat gggeaactae atggateggg tgeeeacaee 450 ecaggeeate egggeageee agggtetaet ggeetgggg tgtgeeage 500 gageeetgag gteeaactat gtgeteaaag gacaeeggga tgtgeageg 550 acaeteetee eaggeaacea getetaeea eteateeaga attggeeaca 600 etaeeggeee ecetgaggee etgetgatee geaeeecatt eeteeetee 650 catggeeaaa aaceeeactg teteettee eaataaagat gtagete 697

<400> 216

Met	Ser	Arg	Arg	Ser	Met	Leu	Leu	Ala	Trp	Ala	Leu	Pro	Ser	Leu
1				5					10					15

Leu Arg Leu Gly Ala Ala Gln Glu Thr Glu Asp Pro Ala Cys Cys
20 25 30

Ser Pro Ile Val Pro Arg Asn Glu Trp Lys Ala Leu Ala Ser Glu 35 40 45

Cys Ala Gln His Leu Ser Leu Pro Leu Arg Tyr Val Val Val Ser 50 55 60

His Thr Ala Gly Ser Ser Cys Asn Thr Pro Ala Ser Cys Gln Gln 65 70 75

Gln Ala Arg Asn Val Gln His Tyr His Met Lys Thr Leu Gly Trp 80 85 90

Cys Asp Val Gly Tyr Asn Phe Leu Ile Gly Glu Asp Gly Leu Val 95 100 105

Tyr Glu Gly Arg Gly Trp Asn Phe Thr Gly Ala His Ser Gly His
110 115 120

<210> 216

<211> 196

<212> PRT

<213> Homo sapiens

Leu Trp Asn Pro Met Ser Ile Gly Ile Ser Phe Met Gly Asn Tyr 125 130 135

Met Asp Arg Val Pro Thr Pro Gln Ala Ile Arg Ala Ala Gln Gly
140 145 150

Leu Leu Ala Cys Gly Val Ala Gln Gly Ala Leu Arg Ser Asn Tyr 155 160 165

Val Leu Lys Gly His Arg Asp Val Gln Arg Thr Leu Ser Pro Gly
170 175 180

Asn Gln Leu Tyr His Leu Ile Gln Asn Trp Pro His Tyr Arg Ser 185 190 195

Pro

<210> 217

<211> 1871

<212> DNA

<213> Homo sapiens

<400> 217

ctgggacccc gaaaagagaa ggggagagg aggggacgag agcggaggag 50 gaagatgcaa ctgactcgct gctgcttcgt gttcctggtg cagggtagcc 100 totatotggt catctgtggc caggatgatg gtcctcccgg ctcagaggac 150 cctgagcgtg atgaccacga gggccagccc cggccccggg tgcctcggaa 200 geggggeeae ateteaceta agteeegeee catggeeaat teeactetee 250 tagggctgct ggccccgcct ggggaggctt ggggcattct tgggcagccc 300 cccaaccgcc cgaaccacag cccccaccc tcagccaagg tgaagaaaat 350 ctttggctgg ggcgacttct actccaacat caagacggtg gccctgaacc 400 tgctcgtcac agggaagatt gtggaccatg gcaatgggac cttcagcgtc 450 cacttccaac acaatgccac aggccaggga aacatctcca tcagcctcgt 500 gcccccagt aaagctgtag agttccacca ggaacagcag atcttcatcg 550 aaqccaaggc ctccaaaatc ttcaactgcc ggatggagtg ggagaaggta 600 qaacggggcc gccggacctc gctttgcacc cacgacccag ccaagatctg 650 ctcccgagac cacgctcaga gctcagccac ctggagctgc tcccagccct 700 tcaaagtcgt ctgtgtctac atcgccttct acagcacgga ctatcggctg 750 qtccaqaaqq tqtqcccaqa ttacaactac cataqtqata ccccctacta 800

ggacaggect geceatgeag gagaceatet ggacaceggg cagggaaggg 900 gttgggcctc aggcagggag gggggtggag acgaggagat gccaagtggg 950 gccagggcca agtctcaagt ggcagagaaa gggtcccaag tgctggtccc 1000 aacctgaagc tgtggagtga ctagatcaca ggagcactgg aggaggagtg 1050 ggctctctgt gcagcctcac agggctttgc cacggagcca cagagagatg 1100 ctgggtcccc gaggcctgtg ggcaggccga tcagtgtggc cccagatcaa 1150 gtcatgggag gaagctaagc ccttggttct tgccatcctg aggaaagata 1200 gcaacaggga gggggagatt tcatcagtgt ggacagcctg tcaacttagg 1250 gccagaggag ctctccagcc ctgcctagtg ggcgccctga gccccttgtc 1350 gtgtgctgag catggcatga ggctgaagtg gcaaccctgg ggtctttgat 1400 gtcttgacag attgaccatc tgtctccagc caggccaccc ctttccaaaa 1450 ttccctcttc tgccagtact ccccctgtac cacccattgc tgatggcaca 1500 cccatcctta agctaagaca ggacgattgt ggtcctccca cactaaggcc 1550 acageceate egegtgetgt gtgteeetet tecaececaa eeeetgetgg 1600 ctcctctggg agcatccatg tcccggagag gggtccctca acagtcagcc 1650 tcacctgtca gaccggggtt ctcccggatc tggatggcgc cgccctctca 1700 gcagcgggca cgggtggggc ggggccgggc cgcagagcat gtgctggatc 1750 tgttctgtgt gtctgtctgt gggtgggggg aggggaggga agtcttgtga 1800 aaccgctgat tgctgacttt tgtgtgaaga atcgtgttct tggagcagga 1850 aataaagctt gccccggggc a 1871

<210> 218

<211> 252

<212> PRT

<213> Homo sapiens

<400> 218

Met Gln Leu Thr Arg Cys Cys Phe Val Phe Leu Val Gln Gly Ser
1 5 10 15

Leu Tyr Leu Val Ile Cys Gly Gln Asp Asp Gly Pro Pro Gly Ser

Glu Asp Pro Glu Arg Asp Asp His Glu Gly Gln Pro Arg Pro Arg
35 40 45

Val	Pro	Arg	Lys	Arg 50	Gly	His	Ile	Ser	Pro 55	Lys	Ser	Arg	Pro	Met 60
Ala	Asn	Ser	Thr	Leu 65	Leu	Gly	Leu	Leu	Ala 70	Pro	Pro	Gly	Glu	Ala 75
Trp	Gly	Ile	Leu	Gly 80	Gln	Pro	Pro	Asn	Arg 85	Pro	Asn	His	Ser	Pro 90
Pro	Pro	Ser	Ala	Lys 95	Val	Lys	Lys	Ile	Phe 100	Gly	Trp	Gly	Asp	Phe 105
Tyr	Ser	Asn	Ile	Lys 110	Thr	Val	Ala	Leu	Asn 115	Leu	Leu	Val	Thr	Gly 120
Lys	Ile	Val	Asp	His 125	Gly	Asn	Gly	Thr	Phe 130	Ser	Val	His	Phe	Gln 135
His	Asn	Ala	Thr	Gly 140	Gln	Gly	Asn	Ile	Ser 145	Ile	Ser	Leu	Val	Pro 150
Pro	Ser	Lys	Ala	Val 155	Glu	Phe	His	Gln	Glu 160	Gln	Gln	Ile	Phe	Ile 165
Glu	Ala	Lys	Ala	Ser 170	Lys	Ile	Phe	Asn	Cys 175	Arg	Met	Glu	Trp	Glu 180
Lys	Val	Glu	Arg	Gly 185	Arg	Arg	Thr	Ser	Leu 190	Cys	Thr	His	Asp	Pro 195
Ala	Lys	Ile	Cys	Ser 200	Arg	Asp	His	Ala	Gln 205	Ser	Ser	Ala	Thr	Trp 210
Ser	Cys	Ser	Gln	Pro 215	Phe	Lys	Val	Val	Cys 220	Val	Tyr	Ile	Ala	Phe 225
Tyr	Ser	Thr	Asp	Tyr 230	Arg	Leu	Val	Gln	Lys 235	Val	Cys	Pro	Asp	Tyr 240
Asn	Tyr	His	Ser	Asp 245	Thr	Pro	Tyr	Tyr	Pro 250	Ser	Gly			
<210														

<400> 219 gtgaatgtga gggtttgatg actttcagat gtctaggaac cagagtgggt 50 gcaggggccc caggcagggc tgattcttgg gcggaggaga gtagggtaaa 100 gggttctgca tgagctcctt aaaggacaaa ggtaacagag ccagcgagag 150 agctcgaggg gagactttga cttcaagcca cagaattggt ggaagtgtgc 200

<211> 2065

<212> DNA

<213> Homo sapiens

gegeegeege egeegteget cetgeagege tgtegaceta geegetagea 250 tetteeegag cacegggate eeggggtagg aggegaegeg ggegageace 300 agegecagee ggetgegget geceaeaegg eteaeeatgg geteegggeg 350 cegggegetg teegeggtge eggeegtget getggteete aegetgeegg 400 ggctgcccgt ctgggcacag aacgacacgg agcccatcgt gctggagggc 450 aagtgtetgg tggtgtgega etegaaceeg geeaeggaet ceaagggete 500 ctcttcctcc ccgctgggga tatcggtccg ggcggccaac tccaaggtcg 550 cettetegge ggtgeggage accaaceacg agecateega gatgageaac 600 aagacgcgca tcatttactt cgatcagatc ctggtgaatg tgggtaattt 650 tttcacattg gagtctgtct ttgtagcacc aagaaaagga atttacagtt 700 tcagttttca cgtgattaaa gtctaccaga gccaaactat ccaggttaac 750 ttgatgttaa atggaaaacc agtaatatct gcctttgcgg gggacaaaga 800 tgttactcgt gaagetgeea egaatggtgt cetgetetae etagataaag 850 aggataaggt ttacctaaaa ctggagaaag gtaatttggt tggaggctgg 900 cagtattcca cgttttctgg ctttctggtg ttccccctat aggattcaat 950 ttctccatga tgttcatcca ggtgagggat gacccactcc tgagttattg 1000 gaagatcatt ttttcatcat tggattgatg tcttttattg gtttctcatg 1050 ggtggatatg gattctaagg attctagcct gtctgaacca atacaaaatt 1100 tcacagatta tttgtgtgtg tctgtttcag tatatttgga ttgggactct 1150 aagcagataa tacctatgct taaatgtaac agtcaaaagc tgtctgcaag 1200 acttattctg aatttcattt cctgggatta ctgaattagt tacagatgtg 1250 gaattttatt tgtttagttt taaaagactg gcaaccaggt ctaaggatta 1300 gaaaactcta aagttctgac ttcaatcaac ggttagtgtg atactgccaa 1350 agaactgtat actgtgttaa tatattgatt atatttgttt ttattccttt 1400 ggaattagtt tgtttggttc ttgtaaaaaa cttggatttt ttttttcagt 1450 aactggtatt atgttttctc ttaaaataag gtaatgaatg gcttgcccac 1500 aaatttacct tgactacgat atcatcgaca tgacttctct caaaaaaaaa 1550 gaatgcttca tagttgtatt ttaattgtat atgtgaaaga gtcatatttt 1600 ccaagttata ttttctaaga agaagaatag atcataaatc tgacaaggaa 1650 aaagttgctt acccaaaatc taagtgctca atccctgagc ctcagcaaaa 1700 cagctcccct ccgagggaaa tcttatactt tattgctcaa ctttaattaa 1750 aatgattgat aataaccact ttattaaaaa cctaaggttt tttttttc 1800 cgtagacatg accactttat taactggtgg tgggatgctg ttgtttctaa 1850 ttatacctat ttttcaaggc ttctgttgta tttgaagtat catctggttt 1900 tgccttaact ctttaaattg tatatatta tctgtttagc taatattaaa 1950 ttcaaatatc ccatatctaa atttagtgca atatcttgtc ttttgtatag 2000 gtcatatgaa ttcataaaat tatttatgtc tgttatagaa taaagattaa 2050 tatatgttaa aaaaa 2065

<213> Homo sapiens

<4	<00	220

Met Gly	Ser	Gly	Arg	Arg	Ala	Leu	Ser	Ala	Val	Pro	Ala	Val	Leu
1		_	5	_				10					15

Leu Val Leu Thr Leu Pro Gly Leu Pro Val Trp Ala Gln Asn Asp 20 25 30

Thr Glu Pro Ile Val Leu Glu Gly Lys Cys Leu Val Val Cys Asp 35 40 45

Ser Asn Pro Ala Thr Asp Ser Lys Gly Ser Ser Ser Pro Leu
50 55 60

Gly Ile Ser Val Arg Ala Ala Asn Ser Lys Val Ala Phe Ser Ala 65 70 75

Val Arg Ser Thr Asn His Glu Pro Ser Glu Met Ser Asn Lys Thr 80 85 90

Arg Ile Ile Tyr Phe Asp Gln Ile Leu Val Asn Val Gly Asn Phe 95 100 105

Phe Thr Leu Glu Ser Val Phe Val Ala Pro Arg Lys Gly Ile Tyr 110 115 120

Ser Phe Ser Phe His Val Ile Lys Val Tyr Gln Ser Gln Thr Ile 125 130 135

Gln Val Asn Leu Met Leu Asn Gly Lys Pro Val Ile Ser Ala Phe 140 . 145 150

Ala Gly Asp Lys Asp Val Thr Arg Glu Ala Ala Thr Asn Gly Val 155 160 165

<210> 220

<211> 201

<212> PRT

Leu Leu Tyr Leu Asp Lys Glu Asp Lys Val Tyr Leu Lys Leu Glu Lys Gly Asn Leu Val Gly Gly Trp Gln Tyr Ser Thr Phe Ser Gly Phe Leu Val Phe Pro Leu 200 <210> 221 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 221 acggctcacc atgggctccg 20 <210> 222 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 222 aggaagagga gcccttggag tccg 24 <210> 223 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 223 cgtgctggag ggcaagtgtc tggtggtgtg cgactcgaac 40 <210> 224 <211> 902 <212> DNA <213> Homo sapiens <400> 224 cggtggccat gactgcggcc gtgttcttcg gctgcgcctt cattgccttc 50 gggcctgcgc tcgcccttta tgtcttcacc atcgccatcg agccgttgcg 100 tatcatcttc ctcatcgccg gagctttctt ctggttggtg tctctactga 150

tttcgtccct tgtttggttc atggcaagag tcattattga caacaaagat 200

ggaccaacac agaaatatet getgatettt ggagegtttg tetetgteta 250
tatecaagaa atgtteegat ttgeatatta taaactetta aaaaaageea 300
gtgaaggttt gaagagtata aaceeaggtg agacageace etetatgega 350
ctgetggeet atgtteetgg ettgggettt ggaateatga gtggagtatt 400
teeetttgtg aataceetat etgaeteett ggggeeagge acagtgggea 450
tteatggaga tteteeteaa ttetteettt atteagettt eatgaegget 500
gteattatet tgetgeatgt attetggge attgtatttt ttgatggetg 550
tgagaagaaa aagtggggea teeteettat egtteetetg acceacetge 600
tggtgteage ecagacette ataagttett attatggaat aaaceetggeg 650
teageattta taateetggt geteatggge acetgggeat teetagetge 700
gggaggeage tgeegaagee tgaaactetg eetgetetge eaagacaaga 750
actteetet ttacaaceag egeteeagat aaceeteaggg aaceageaet 800
teecaaaceg eagactacat etttagagga ageacaactg tgeetttte 850
tgaaaateee tttteetggt ggaattgaga aagaaataaa actatgeaga 900
ta 902

<210> 225

<211> 257

<212> PRT

<213> Homo sapiens

<400> 225

Met Thr Ala Ala Val Phe Phe Gly Cys Ala Phe Ile Ala Phe Gly
1 5 10 15

Pro Ala Leu Ala Leu Tyr Val Phe Thr Ile Ala Ile Glu Pro Leu 20 25 30

Arg Ile Ile Phe Leu Ile Ala Gly Ala Phe Phe Trp Leu Val Ser 35 40 45

Leu Leu Ile Ser Ser Leu Val Trp Phe Met Ala Arg Val Ile Ile 50 55 60

Asp Asn Lys Asp Gly Pro Thr Gln Lys Tyr Leu Leu Ile Phe Gly
65 70 75

Ala Phe Val Ser Val Tyr Ile Gln Glu Met Phe Arg Phe Ala Tyr 80 85 90

Tyr Lys Leu Leu Lys Lys Ala Ser Glu Gly Leu Lys Ser Ile Asn 95 100 105 Pro Gly Glu Thr Ala Pro Ser Met Arg Leu Leu Ala Tyr Val Ser 110 115 Gly Leu Gly Phe Gly Ile Met Ser Gly Val Phe Ser Phe Val Asn 130 Thr Leu Ser Asp Ser Leu Gly Pro Gly Thr Val Gly Ile His Gly 145 Asp Ser Pro Gln Phe Phe Leu Tyr Ser Ala Phe Met Thr Leu Val 160 Ile Ile Leu Leu His Val Phe Trp Gly Ile Val Phe Phe Asp Gly 170 175 Cys Glu Lys Lys Lys Trp Gly Ile Leu Leu Ile Val Leu Leu Thr 185 190 195 His Leu Leu Val Ser Ala Gln Thr Phe Ile Ser Ser Tyr Tyr Gly 205 Ile Asn Leu Ala Ser Ala Phe Ile Ile Leu Val Leu Met Gly Thr 215 225 Trp Ala Phe Leu Ala Ala Gly Gly Ser Cys Arg Ser Leu Lys Leu 230 Cys Leu Leu Cys Gln Asp Lys Asn Phe Leu Leu Tyr Asn Gln Arg

250

Ser Arg

<210> 226

<211> 3939

<212> DNA

<213> Homo sapiens

245

<400> 226

 tgtccaccct gtcaccagtc aacaccacat accagctccg ggtcagccgc 500 atggacgatt ttgtgctcag gactggggag cagttcagct tcaataccac 550 agcagcacag ccccagtact tcaagtatga gttccctgaa ggcgtggact 600 cggtaattgt caaggtgacc tccaacaagg ccttcccctg ctcagtcatc 650 tecatteagg atgtgetgtg teetgtetat gaeetggaea acaaegtage 700 cttcatcggc atgtaccaga cgatgaccaa gaaggcggcc atcaccgtac 750 agegeaaaga etteeceage aacagetttt atgtggtggt ggtggtgaag 800 accgaagacc aagcctgcgg gggctccctg cctttctacc ccttcgcaga 850 agatgaaccg gtcgatcaag ggcaccgcca gaaaaccctg tcagtgctgg 900 tgtctcaagc agtcacgtct gaggcatacg tcagtgggat gctcttttgc 950 ctgggtatat ttctctcctt ttacctgctg accgtcctcc tggcctgctg 1000 ggagaactgg aggcagaaga agaagaccct gctggtggcc attgaccgag 1050 cctgcccaga aagcggtcac cctcgagtcc tggctgattc ttttcctggc 1100 agttcccctt atgagggtta caactatggc tcctttgaga atgtttctgg 1150 atctaccgat ggtctggttg acagcgctgg cactggggac ctctcttacg 1200 gttaccaggg ccgctccttt gaacctgtag gtactcggcc ccgagtggac 1250 tecatgaget etgtggagga ggatgaetae gaeacattga eegaeatega 1300 ttccgacaag aatgtcattc gcaccaagca atacctctat gtggctgacc 1350 tggcacggaa ggacaagcgt gttctgcgga aaaagtacca gatctacttc 1400 tggaacattg ccaccattgc tgtcttctat gcccttcctg tggtgcagct 1450 ggtgatcacc taccagacgg tggtgaatgt cacagggaat caggacatct 1500 gctactacaa cttcctctgc gcccacccac tgggcaatct cagcgccttc 1550 aacaacatcc tcagcaacct ggggtacatc ctgctggggc tgcttttcct 1600 geteateate etgeaaeggg agateaaeea caacegggee etgetgegea 1650 atgacetetg tgeeetggaa tgtgggatee eeaaacaett tgggetttte 1700 tacgccatgg gcacagccct gatgatggag gggctgctca gtgcttgcta 1750 tcatgtgtgc cccaactata ccaatttcca gtttgacaca tcgttcatgt 1800 acatgatege eggactetge atgetgaage tetaceagaa geggeaeeeg 1850 gacatcaacg ccagcgccta cagtgcctac gcctgcctgg ccattgtcat 1900

cttcttctct gtgctgggcg tggtctttgg caaagggaac acggcgttct 1950 ggatcgtctt ctccatcatt cacatcatcg ccaccctgct cctcagcacg 2000 cagetetatt acatgggeeg gtggaaactg gaetegggga tetteegeeg 2050 catectecae gtgetetaea eagactgeat eeggeagtge agegggeege 2100 tetaegtgga eegeatggtg etgetggtea tgggeaaegt cateaaetgg 2150 tegetggetg cetatggget tateatgege eccaatgatt tegetteeta 2200 cttgttggcc attggcatct gcaacctgct cctttacttc gccttctaca 2250 tcatcatgaa gctccggagt ggggagagga tcaagctcat ccccctgctc 2300 tgcatcgttt gcacctccgt ggtctggggc ttcgcgctct tcttcttctt 2350 ccagggactc agcacctggc agaaaacccc tgcagagtcg agggagcaca 2400 accgggactg catcetecte gacttetttg acgaceacga catetggeae 2450 ttcctctcct ccatcgccat gttcgggtcc ttcctggtgt tgctgacact 2500 ggatgacgac ctggatactg tgcagcggga caagatctat gtcttctagc 2550 aggagetggg ccettegett caceteaagg ggeeetgage teetttgtgt 2600 catagaccgg tcactctgtc gtgctgtggg gatgagtccc agcaccgctg 2650 cccagcactg gatggcagca ggacagccag gtctagctta ggcttggcct 2700 gggacagcca tggggtggca tggaaccttg cagctgccct ctgccgagga 2750 gcaggcctgc tcccctggaa cccccagatg ttggccaaat tgctgctttc 2800 ttetcagtgt tggggcette catgggeece tgteetttgg etetceattt 2850 gtccctttgc aagaggaagg atggaaggga caccctcccc atttcatgcc 2900 ttgcattttg cccgtcctcc tccccacaat gccccagcct gggacctaag 2950 gcctcttttt cctcccatac tcccactcca gggcctagtc tggggcctga 3000 atctctgtcc tgtatcaggg ccccagttct ctttgggctg tccctggctg 3050 ccatcactgc ccattccagt cagccaggat ggatgggggt atgagatttt 3100 gggggttggc cagctggtgc cagacttttg gtgctaaggc ctgcaagggg 3150 cctggggcag tgcgtattct cttccctctg acctgtgctc agggctggct 3200 ctttagcaat gcgctcagcc caatttgaga accgccttct gattcaagag 3250 gctgaattca gaggtcacct cttcatccca tcagctccca gactgatgcc 3300

agcaccagga ctggaggag aagcgcctca ccccttccct tccttcttc 3350 caggccctta gtcttgccaa accccagctg gtggcctttc agtgccattg 3400 acactgccca agaatgtcca ggggcaaagg agggatgata cagagttcag 3450 cccgttctgc ctccacagct gtgggcaccc cagtgcctac cttagaaagg 3500 ggcttcagga agggatgtgc tgtttccctc tacgtgccca gtcctagcct 3550 cgctctagga cccagggctg gcttctaagt ttccgtccag tcttcaggca 3600 agttctgtgt tagtcatgca cacacatacc tatgaaacct tggagtttac 3650 aaagaattgc cccagctctg ggcaccctgg ccaccctggt ccttggatcc 3700 ccttcgtcc acctggtcca ccccagatgc tgaggatgg ggagctcagg 3750 cggggcctct gcttggaga tgggaatgtg tttttctcc aaacttgttt 3800 ttatagctct gcttgaaggg ctgggagatg aggtgggtct ggatctttc 3850 tcagagcgtc tccatgctat ggttgcattt ccgttttcta tgaatgaatt 3900 tgcattcaat aaacaaccag actcaaaaaa aaaaaaaaa 3939

<210> 227

<211> 832

<212> PRT

<213> Homo sapiens

<400> 227

Met Phe Ala Leu Gly Leu Pro Phe Leu Val Leu Leu Val Ala Ser 1 5 10 15

Val Glu Ser His Leu Gly Val Leu Gly Pro Lys Asn Val Ser Gln 20 25 30

Lys Asp Ala Glu Phe Glu Arg Thr Tyr Val Asp Glu Val Asn Ser 35 40 45

Glu Leu Val Asn Ile Tyr Thr Phe Asn His Thr Val Thr Arg Asn
50 55 60

Arg Thr Glu Gly Val Arg Val Ser Val Asn Val Leu Asn Lys Gln
65 70 75

Lys Gly Ala Pro Leu Leu Phe Val Val Arg Gln Lys Glu Ala Val

Val Ser Phe Gln Val Pro Leu Ile Leu Arg Gly Met Phe Gln Arg
95 100 105

Lys Tyr Leu Tyr Gln Lys Val Glu Arg Thr Leu Cys Gln Pro Pro 110 115 120

Thr Lys Asn Glu Ser Glu Ile Gln Phe Phe Tyr Val Asp Val Ser

Gln Leu Val Ile Thr Tyr Gln Thr Val Val Asn Val Thr Gly Asn 470 475 480

455

Gln Asp Ile Cys Tyr Tyr Asn Phe Leu Cys Ala His Pro Leu Gly 485 490 495

Asn Leu Ser Ala Phe Asn Asn Ile Leu Ser Asn Leu Gly Tyr Ile 500 505 510

Leu Leu Gly Leu Leu Phe Leu Leu Ile Ile Leu Gln Arg Glu Ile 515 520 525

Asn His Asn Arg Ala Leu Leu Arg Asn Asp Leu Cys Ala Leu Glu 530 535 540

Cys Gly Ile Pro Lys His Phe Gly Leu Phe Tyr Ala Met Gly Thr 545 550 555

Ala Leu Met Met Glu Gly Leu Leu Ser Ala Cys Tyr His Val Cys 560 565 570

Pro Asn Tyr Thr Asn Phe Gln Phe Asp Thr Ser Phe Met Tyr Met 575 580 585

Ile Ala Gly Leu Cys Met Leu Lys Leu Tyr Gln Lys Arg His Pro 590 595 600

Asp Ile Asn Ala Ser Ala Tyr Ser Ala Tyr Ala Cys Leu Ala Ile 60.5 610 615

Val Ile Phe Phe Ser Val Leu Gly Val Val Phe Gly Lys Gly Asn 620 625 630

Thr Ala Phe Trp Ile Val Phe Ser Ile Ile His Ile Ile Ala Thr 635 640 645

Leu Leu Ser Thr Gln Leu Tyr Tyr Met Gly Arg Trp Lys Leu 650 655 660

Asp Ser Gly Ile Phe Arg Arg Ile Leu His Val Leu Tyr Thr Asp 665 670 675

Cys Ile Arg Gln Cys Ser Gly Pro Leu Tyr Val Asp Arg Met Val 680 685 690

Leu Leu Val Met Gly Asn Val Ile Asn Trp Ser Leu Ala Ala Tyr

820

Gly Leu Ile Met Arg Pro Asn Asp Phe Ala Ser Tyr Leu Leu Ala 715 Ile Gly Ile Cys Asn Leu Leu Leu Tyr Phe Ala Phe Tyr Ile Ile 725 730 Met Lys Leu Arg Ser Gly Glu Arg Ile Lys Leu Ile Pro Leu Leu 745 750 Cys Ile Val Cys Thr Ser Val Val Trp Gly Phe Ala Leu Phe Phe 755 Phe Phe Gln Gly Leu Ser Thr Trp Gln Lys Thr Pro Ala Glu Ser Arg Glu His Asn Arg Asp Cys Ile Leu Leu Asp Phe Phe Asp Asp 790 785 His Asp Ile Trp His Phe Leu Ser Ser Ile Ala Met Phe Gly Ser 805 800 Phe Leu Val Leu Leu Thr Leu Asp Asp Leu Asp Thr Val Gln

Arg Asp Lys Ile Tyr Val Phe 830

<210> 228

<211> 2848

<212> DNA

<213> Homo sapiens

<400> 228 getcaagtge cetgeettge eccaeccage ceageetgge cagageeece 50 tggagaagga gctctcttct tgcttggcag ctggaccaag ggagccagtc 100 ttgggcgctg gagggcctgt cctgaccatg gtccctgcct ggctgtggct 150 getttgtgte teegteeece aggeteteee caaggeecag eetgeagage 200 tgtctgtgga agttccagaa aactatggtg gaaatttccc tttatacctg 250 accaagttgc cgctgccccg tgagggggct gaaggccaga tcgtgctgtc 300 aggggactca ggcaaggcaa ctgagggccc atttgctatg gatccagatt 350 ctggcttcct gctggtgacc agggccctgg accgagagga gcaggcagag 400 taccagctac aggtcaccct ggagatgcag gatggacatg tcttgtgggg 450 tccacagcct gtgcttgtgc acgtgaagga tgagaatgac caggtgcccc 500 atttctctca agccatctac agagctcggc tgagccgggg taccaggcct 550 ggcatcccct tcctcttcct tgaggcttca gaccgggatg agccaggcac 600 agecaacteg gatettegat tecacateet gagecagget ceageceage 650 cttccccaga catgttccag ctggagcctc ggctgggggc tctggccctc 700 agececaagg ggageaceag cettgaceae geeetggaga ggaeetaeea 750 gctgttggta caggtcaagg acatgggtga ccaggcctca ggccaccagg 800 ccactgccac cgtggaagtc tccatcatag agagcacctg ggtgtcccta 850 gagectatee acetggeaga gaateteaaa gteetataee egeaceaeat 900 ggcccaggta cactggagtg ggggtgatgt gcactatcac ctggagagcc 950 atcccccggg accctttgaa gtgaatgcag agggaaacct ctacgtgacc 1000 agagagetgg acagagaage ceaggetgag tacetgetee aggtgeggge 1050 tcagaattcc catggcgagg actatgcggc ccctctggag ctgcacgtgc 1100 tggtgatgga tgagaatgac aacgtgccta tctgccctcc ccgtgacccc 1150 acagteagea teeetgaget eagteeacea ggtactgaag tgactagaet 1200 gtcagcagag gatgcagatg cccccggctc ccccaattcc cacgttgtgt 1250 atcagetect gageeetgag cetgaggatg gggtagaggg gagageette 1300 caggtggacc ccacttcagg cagtgtgacg ctgggggtgc tcccactccg 1350 agcaggccag aacatcctgc ttctggtgct ggccatggac ctggcaggcg 1400 cagagggtgg cttcagcagc acgtgtgaag tcgaagtcgc agtcacagat 1450 atcaatgatc acgcccctga gttcatcact tcccagattg ggcctataag 1500 cctccctgag gatgtggagc ccgggactct ggtggccatg ctaacagcca 1550 ttgatgctga cctcgagccc gccttccgcc tcatggattt tgccattgag 1600 aggggagaca cagaagggac ttttggcctg gattgggagc cagactctgg 1650 gcatgttaga ctcagactct gcaagaacct cagttatgag gcagctccaa 1700 gtcatgaggt ggtggtggtg gtgcagagtg tggcgaagct ggtggggcca 1750 ggcccaggcc ctggagccac cgccacggtg actgtgctag tggagagagt 1800 gatgccaccc cccaagttgg accaggagag ctacgaggcc agtgtcccca 1850 tcagtgcccc agccggctct ttcctgctga ccatccagcc ctccgacccc 1900 atcageegaa eeeteaggtt eteeetagte aatgaeteag agggetgget 1950 ctgcattgag aaattctccg gggaggtgca caccgcccag tccctgcagg 2000 gcgcccagcc tggggacacc tacacggtgc ttgtggaggc ccaggataca 2050 geoetgacte ttgcccetgt geoeteccaa tacetetgea cacceegeca 2100 agaccatggc ttgatcgtga gtggacccag caaggacccc gatctggcca 2150 gtgggcacgg teectacage tteaceettg gteecaacee caeggtgeaa 2200 cgggattggc gcctccagac tctcaatggt tcccatgcct acctcacctt 2250 ggccctgcat tgggtggagc cacgtgaaca cataatcccc gtggtggtca 2300 qccacaatqc ccaqatqtqq cagctcctgq ttcgagtgat cgtgtgtcgc 2350 tgcaacgtgg aggggcagtg catgcgcaag gtgggccgca tgaagggcat 2400 geceaegaag etgteggeag tgggeateet tgtaggeace etggtageaa 2450 taggaatett ceteateete atttteacee aetggaeeat gteaaggaag 2500 aaggacccgg atcaaccagc agacagcgtg cccctgaagg cgactgtctg 2550 aatggcccag gcagctctag ctgggagctt ggcctctggc tccatctgag 2600 tcccctggga gagagcccag cacccaagat ccagcagggg acaggacaga 2650 gtagaagece etecatetge eetggggtgg aggeaceate accateacea 2700 ggcatgtctg cagagectgg acaccaactt tatggactgc ccatgggagt 2750 gctccaaatg tcagggtgtt tgcccaataa taaagcccca gagaactggg 2800

<400> 229

Met Val Pro Ala Trp Leu Trp Leu Leu Cys Val Ser Val Pro Gln
1 5 10 15

Ala Leu Pro Lys Ala Gln Pro Ala Glu Leu Ser Val Glu Val Pro 20 25 30

Glu Asn Tyr Gly Gly Asn Phe Pro Leu Tyr Leu Thr Lys Leu Pro 35 40 45

Leu Pro Arg Glu Gly Ala Glu Gly Gln Ile Val Leu Ser Gly Asp
50 55 60

Ser Gly Lys Ala Thr Glu Gly Pro Phe Ala Met Asp Pro Asp Ser
65 70 75

Gly Phe Leu Leu Val Thr Arg Ala Leu Asp Arg Glu Glu Gln Ala

<210> 229

<211> 807

<212> PRT

<213> Homo sapiens

Glu	Tyr	Gln	Leu	Gln 95	Val	Thr	Leu	Glu	Met 100	Gln	Asp	Gly	His	Val 105
Leu	Trp	Gly	Pro	Gln 110	Pro	Val	Leu	Val	His 115	Val	Lys	Asp	Glu	Asr 120
Asp	Gln	Val	Pro	His 125	Phe	Ser	Gln	Ala	Ile 130	Tyr	Arg	Ala	Arg	Let 135
Ser	Arg	Gly	Thr	Arg 140	Pro	Gly	Ile	Pro	Phe 145	Leu	Phe	Leu	Glu	Ala 150
Ser	Asp	Arg	Asp	Glu 155	Pro	Gly	Thr	Ala	Asn 160	Ser	Asp	Leu	Arg	Phe 165
His	Ile	Leu	Ser	Gln 170	Ala	Pro	Ala	Gln	Pro 175	Ser	Pro	Asp	Met	Phe 180
Gln	Leu	Glu	Pro	Arg 185	Leu	Gly	Ala	Leu	Ala 190	Leu	Ser	Pro	Lys	Gl ₃ 195
Ser	Thr	Ser	Leu	Asp 200	His	Ala	Leu	Glu	Arg 205	Thr	Tyr	Gln	Leu	Le:
Val	Gln	Val	Lys	Asp 215	Met	Gly	Asp	Gln	Ala 220	Ser	Gly	His	Gln	Ala 225
Thr	Ala	Thr	Val	Glu 230	Val	Ser	Ile	Ile	Glu 235	Ser	Thr	Trp	Val	Ser 240
Leu	Glu	Pro	Ile	His 245	Leu	Ala	Glu	Asn	Leu 250	Lys	Val	Leu	Tyr	Pro 255
His	His	Met	Ala	Gln 260	Val	His	Trp	Ser	Gly 265	Gly	Asp	Val	His	Tyr 270
His	Leu	Glu	Ser	His 275	Pro	Pro	Gly	Pro	Phe 280	Glu	Val	Asn	Ala	Glu 285
Gly	Asn	Leu	Tyr	Val 290	Thr	Arg	Glu	Leu	Asp 295	Arg	Glu	Ala	Gln	Ala 300
Glu	Tyr	Leu	Leu	Gln 305	Val	Arg	Ala	Gln	Asn 310	Ser	His	Gly	Glu	Asp 315
Tyr	Ala	Ala	Pro	Leu 320	Glu	Leu	His	Val	Leu 325	Val	Met	Asp	Glu	Asr.
Asp	Asn	Val	Pro	Ile 335	Cys	Pro	Pro	Arg	Asp 340	Pro	Thr	Val	Ser	Ile 345
Pro	Glu	Leu	Ser	Pro 350	Pro	Gly	Thr	Glu	Val 355	Thr	Arg	Leu	Ser	Ala 360
Glu	Asp	Ala	Asp	Ala	Pro	Glv	Ser	Pro	Asn	Ser	His	Val	Va1	ጥ ህን

650 655 660

Gly Leu Ile Val Ser Gly Pro Ser Lys Asp Pro Asp Leu Ala Ser 665 670 675

Gly His Gly Pro Tyr Ser Phe Thr Leu Gly Pro Asn Pro Thr Val 680 685 690

Gln Arg Asp Trp Arg Leu Gln Thr Leu Asn Gly Ser His Ala Tyr
695 700 700

Leu Thr Leu Ala Leu His Trp Val Glu Pro Arg Glu His Ile Ile 710 715 720

Pro Val Val Val Ser His Asn Ala Gln Met Trp Gln Leu Leu Val 725 730 735

Arg Val Ile Val Cys Arg Cys Asn Val Glu Gly Gln Cys Met Arg
740 745 750

Lys Val Gly Arg Met Lys Gly Met Pro Thr Lys Leu Ser Ala Val755 760 765

Gly Ile Leu Val Gly Thr Leu Val Ala Ile Gly Ile Phe Leu Ile 770 775 780

Leu Ile Phe Thr His Trp Thr Met Ser Arg Lys Lys Asp Pro Asp 785 790 795

Gln Pro Ala Asp Ser Val Pro Leu Lys Ala Thr Val 800 805

<210> 230

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 230

cgccttaccg cgcagcccga agattcacta tggtgaaaat cgccttcaat 50

<210> 231

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 231

cctgagctgt aaccccactc cagg 24

<210> 232

<211> 23

<212> DNA

<213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 232 agagtctgtc ccagctatct tgt 23 <210> 233 <211> 2786 <212> DNA <213> Homo sapiens <400> 233 ccggggacat gaggtggata ctgttcattg gggcccttat tgggtccagc 50 atctgtggcc aagaaaaatt ttttggggac caagttttga ggattaatgt 100 cagaaatgga gacgagatca gcaaattgag tcaactagtg aattcaaaca 150 acttgaaget caatttetgg aaateteeet eeteetteaa teggeetgtg 200 gatgtcctgg tcccatctgt cagtctgcag gcatttaaat ccttcctgag 250 atcccagggc ttagagtacg cagtgacaat tgaggacctg caggcccttt 300 tagacaatga agatgatgaa atgcaacaca atgaagggca agaacggagc 350 agtaataact tcaactacgg ggcttaccat tccctggaag ctatttacca 400 cgagatggac aacattgccg cagactttcc tgacctggcg aggagggtga 450 agattggaca ttcgtttgaa aaccggccga tgtatgtact gaagttcagc 500 actgggaaag gcgtgaggcg gccggccgtt tggctgaatg caggcatcca 550 ttcccgagag tggatctccc aggccactgc aatctggacg gcaaggaaga 600 ttgtatctga ttaccagagg gatccagcta tcacctccat cttggagaaa 650 atggatattt tcttgttgcc tgtggccaat cctgatggat atgtgtatac 700 tcaaactcaa aaccgattat ggaggaagac gcggtcccga aatcctggaa 750 gctcctgcat tggtgctgac ccaaatagaa actggaacgc tagttttgca 800

ggaaagggag ccagcgacaa cccttgctcc gaagtgtacc atggacccca 850

cgccaattcg gaagtggagg tgaaatcagt ggtagatttc atccaaaaac 900

atgggaattt caagggcttc atcgacctgc acagctactc gcagctgctg 950

atgtatccat atgggtactc agtcaaaaag gccccagatg ccgaggaact 1000

cgacaaggtg gcgaggcttg cggccaaagc tctggcttct gtgtcgggca 1050

ctgagtacca agtgggtccc acctgcacca ctgtctatcc agctagcggg 1100

agcagcatcg actgggcgta tgacaacggc atcaaatttg cattcacatt 1150 tgagttgaga gataccggga cctatggctt cctcctgcca gctaaccaga 1200 tcatccccac tgcagaggag acgtggctgg ggctgaagac catcatggag 1250 atttgtaccc acacgtgcac gcactgaggc cattgttaaa ggagctcttt 1350 cetacetgtg tgagtcagag ceetetgggt ttgtggagea caeaggeetg 1400 cccctctcca gccagctccc tggagtcgtg tgtcctggcg gtgtccctgc 1450 aagaactggt tctgccagcc tgctcaattt tggtcctgct gtttttgatg 1500 agecttttgt etgtttetee ttecacectg etggetggge ggetgeacte 1550 agcatcaccc cttcctgggt ggcatgtctc tctctacctc atttttagaa 1600 ccaaagaaca tctgagatga ttctctaccc tcatccacat ctagccaagc 1650 cagtgacctt getetggtgg cactgtggga gacaccactt gtetttaggt 1700 gggtctcaaa gatgatgtag aatttccttt aatttctcgc agtcttcctg 1750 gaaaatattt teetttgage ageaaatett gtagggatat eagtgaaggt 1800 ctctccctcc ctcctcct gtttttttt tttttgagac agagttttgc 1850 tcttgttgcc caggctggag tgtgatggct cgatcttggc tcaccacaac 1900 ctctgcctcc tgggttcaag caattctcct gcctcagcct cttgagtagc 1950 ttggtttata ggcgcatgcc accatgcctg gctaattttg tgtttttagt 2000 agagacaggg tttctccatg ttggtcaggc tggtctcaaa ctcccaacct 2050 caggtgatet geeeteettg geeteecaga gtgetgggat tacaggtgtg 2100 agccactgtg ccgggcccgt cccctccttt tttaggcctg aatacaaagt 2150 agaagatcac tttccttcac tgtgctgaga atttctagat actacagttc 2200 ttactcctct cttccctttg ttattcagtg tgaccaggat ggcgggaggg 2250 gatctgtgtc actgtaggta ctgtgcccag gaaggctggg tgaagtgacc 2300 atctaaattg caggatggtg aaattatccc catctgtcct aatgggctta 2350 cctcctcttt gccttttgaa ctcacttcaa agatctaggc ctcatcttac 2400 aggteetaaa teaeteatet ggeetggata ateteaetge eetggeaeat 2450 tcccatttgt gctgtggtgt atcctgtgtt tccttgtcct ggtttgtgtg 2500

<210> 234

<211> 421

<212> PRT

<213> Homo sapiens

<400> 234

Met Arg Trp Ile Leu Phe Ile Gly Ala Leu Ile Gly Ser Ser Ile 1 5 10 15

Cys Gly Gln Glu Lys Phe Phe Gly Asp Gln Val Leu Arg Ile Asn 20 25 30

Val Arg Asn Gly Asp Glu Ile Ser Lys Leu Ser Gln Leu Val Asn 35 40 45

Ser Asn Asn Leu Lys Leu Asn Phe Trp Lys Ser Pro Ser Ser Phe
50 55 60

Asn Arg Pro Val Asp Val Leu Val Pro Ser Val Ser Leu Gln Ala 65 70 75

Phe Lys Ser Phe Leu Arg Ser Gln Gly Leu Glu Tyr Ala Val Thr 80 85 90

Ile Glu Asp Leu Gln Ala Leu Leu Asp As
n Glu Asp Asp Glu Met 95 100 105

Gln His Asn Glu Gly Gln Glu Arg Ser Ser Asn Asn Phe Asn Tyr 110 115 120

Gly Ala Tyr His Ser Leu Glu Ala Ile Tyr His Glu Met Asp Asn 125 130 135

Ile Ala Ala Asp Phe Pro Asp Leu Ala Arg Arg Val Lys Ile Gly
140 145 150

His Ser Phe Glu Asn Arg Pro Met Tyr Val Leu Lys Phe Ser Thr \$155\$

Gly Lys Gly Val Arg Arg Pro Ala Val Trp Leu Asn Ala Gly Ile 170 175 180

His Ser Arg Glu Trp Ile Ser Gln Ala Thr Ala Ile Trp Thr Ala 185 190 195

Arg L	ys 1	Ile	Val	Ser 200	Asp	Tyr	Gln	Arg	Asp 205	Pro	Ala	Ile	Thr	Ser 210
Ile L	eu (Glu	Lys	Met 215	Asp	Ile	Phe	Leu	Leu 220	Pro	Val	Ala	Asn	Pro 225
Asp G	ly T	Гуr	Val	Tyr 230	Thr	Gln	Thr	Gln	Asn 235	Arg	Leu	Trp	Arg	Lys 240
Thr A	rg S	Ser	Arg	Asn 245	Pro	Gly	Ser	Ser	Cys 250	Ile	Gly	Ala	Asp	Pro 255
Asn A	rg A	naA	Trp	Asn 260	Ala	Ser	Phe	Ala	Gly 265	Lys	Gly	Ala	Ser	Asp 270
Asn P	ro (Cys	Ser	Glu 275	Val	Tyr	His	Gly	Pro 280	His	Ala	Asn	Ser	Glu 285
Val G	lu V	Val	Lys	Ser 290	Val	Val	Asp	Phe	Ile 295	Gln	Lys	His	Gly	Asn 300
Phe L	ys (Gly	Phe	Ile 305	Asp	Leu	His	Ser	Tyr 310	Ser	Gln	Leu	Leu	Met 315
Tyr P	ro 1	Гуr	Gly	Tyr 320	Ser	Val	Lys	Lys	Ala 325	Pro	Asp	Ala	Glu	Glu 330
Leu A	sp I	Lys	Val	Ala 335	Arg	Leu	Ala	Ala	Lys 340	Ala	Leu	Ala	Ser	Val 345
Ser G	ly T	Thr	Glu	Tyr 350	Gln	Val	Gly	Pro	Thr 355	Cys	Thr	Thr	Val	Tyr 360
Pro A	la S	Ser	Gly	Ser 365	Ser	Ile	Asp	Trp	Ala 370	Tyr	Asp	Asn	Gly	Ile 375
Lys P	he A	Ala	Phe	Thr 380	Phe	Glu	Leu	Arg	Asp 385	Thr	Gly	Thr	Tyr	Gly 390
Phe L	eu I	Leu	Pro	Ala 395	Asn	Gln	Ile	Ile	Pro 400	Thr	Ala	Glu	Glu	Thr 405
Trp L	eu (Gly	Leu	Lys 410	Thr	Ile	Met	Glu	His 415	Val	Arg	Asp	Asn	Leu 420

Tyr

<210> 235

<211> 1743

<212> DNA

<213> Homo sapiens

<400> 235

caaccatgca aggacaggc aggagaagag gaacctgcaa agacatatt 50 tgttccaaaa tggcatctta cctttatgga gtactctttg ctgttggcct 100

ctgtgctcca atctactgtg tgtccccggc caatgccccc agtgcatacc 150 cccgcccttc ctccacaaag agcacccctg cctcacaggt gtattccctc 200 aacaccgact ttgccttccg cctataccgc aggctggttt tggagacccc 250 gagtcagaac atcttcttct cccctgtgag tgtctccact tccctggcca 300 tgctctccct tggggcccac tcagtcacca agacccagat tctccagggc 350 ctgggcttca acctcacaca cacaccagag tctgccatcc accagggctt 400 ccagcacctg gttcactcac tgactgttcc cagcaaagac ctgaccttga 450 agatgggaag tgccctcttc gtcaagaagg agctgcagct gcaggcaaat 500 ttcttgggca atgtcaagag gctgtatgaa gcagaagtct tttctacaga 550 tttctccaac ccctccattg cccaggcgag gatcaacagc catgtgaaaa 600 agaagaccca agggaaggtt gtagacataa tccaaggcct tgaccttctg 650 acggccatgg ttctggtgaa tcacattttc tttaaagcca agtgggagaa 700 gccctttcac cttgaatata caagaaagaa cttcccattc ctggtgggcg 750 agcaggtcac tgtgcaagtc cccatgatgc accagaaaga gcagttcgct 800 tttggggtgg atacagagct gaactgcttt gtgctgcaga tggattacaa 850 gggagatgcc gtggccttct ttgtcctccc tagcaagggc aagatgaggc 900 aactggaaca ggccttgtca gccagaacac tgataaagtg gagccactca 950 ctccagaaaa ggtggataga ggtgttcatc cccagatttt ccatttctgc 1000 ctcctacaat ctggaaacca tcctcccgaa gatgggcatc caaaatgcct 1050 ttgacaaaaa tgctgatttt tctggaattg caaagagaga ctccctgcag 1100 gtttctaaag caacccacaa ggctgtgctg gatgtcagtg aagagggcac 1150 tgaggccaca gcagctacca ccaccaagtt catagtccga tcgaaggatg 1200 gtccctctta cttcactgtc tccttcaata ggaccttcct gatgatgatt 1250 acaaataaag ccacagacgg tattctcttt ctagggaaag tggaaaatcc 1300 cactaaatcc taggtgggaa atggcctgtt aactgatggc acattgctaa 1350 tgaccccagt ggagctggat tcgctggcag ggatgccact tccaaggctc 1450 aatcaccaaa ccatcaacag ggaccccagt cacaagccaa cacccattaa 1500

<210> 236

<211> 417

<212> PRT

<213> Homo sapiens

<400> 236

Met Ala Ser Tyr Leu Tyr Gly Val Leu Phe Ala Val Gly Leu Cys
1 5 10 15

Ala Pro Ile Tyr Cys Val Ser Pro Ala Asn Ala Pro Ser Ala Tyr 20 25 30

Pro Arg Pro Ser Ser Thr Lys Ser Thr Pro Ala Ser Gln Val Tyr 35 40 45

Ser Leu Asn Thr Asp Phe Ala Phe Arg Leu Tyr Arg Arg Leu Val $50\,$ $55\,$ $60\,$

Leu Glu Thr Pro Ser Gln Asn Ile Phe Phe Ser Pro Val Ser Val
65 70 75

Ser Thr Ser Leu Ala Met Leu Ser Leu Gly Ala His Ser Val Thr 80 85 90

Lys Thr Gln Ile Leu Gln Gly Leu Gly Phe Asn Leu Thr His Thr 95 100 105

Pro Glu Ser Ala Ile His Gln Gly Phe Gln His Leu Val His Ser 110 115 120

Leu Thr Val Pro Ser Lys Asp Leu Thr Leu Lys Met Gly Ser Ala 125 130 135

Leu Phe Val Lys Lys Glu Leu Gln Leu Gln Ala Asn Phe Leu Gly
140 145 150

Asn Val Lys Arg Leu Tyr Glu Ala Glu Val Phe Ser Thr Asp Phe 155 160 165

Ser Asn Pro Ser Ile Ala Gln Ala Arg Ile Asn Ser His Val Lys 170 175 180

Lys Lys Thr Gln Gly Lys Val Val Asp Ile Ile Gln Gly Leu Asp 185 190 195

Leu Leu Thr Ala Met Val Leu Val Asn His Ile Phe Phe Lys Ala
200 205 210

Lys	Trp	Glu	Lys	Pro 215	Phe	His	Leu	Glu	Tyr 220	Thr	Arg	Lys	Asn	Phe 225
Pro	Phe	Leu	Val	Gly 230	Glu	Gln	Val	Thr	Val 235	Gln	Val	Pro	Met	Met 240
His	Gln	Lys	Glu	Gln 245	Phe	Ala	Phe	Gly	Val 250	Asp	Thr	Glu	Leu	Asn 255
Cys	Phe	Val	Leu	Gln 260	Met	Asp	Tyr	Lys	Gly 265	Asp	Ala	Val	Ala	Phe 270
Phe	Val	Leu	Pro	Ser 275	Lys	Gly	Lys	Met	Arg 280	Gln	Leu	Glu	Gln	Ala 285
Leu	Ser	Ala	Arg	Thr 290	Leu	Ile	Lys	Trp	Ser 295	His	Ser	Leu	Gln	Lys 300
Arg	Trp	Ile	Glu	Val 305	Phe	Ile	Pro	Arg	Phe 310	Ser	Ile	Ser	Ala	Ser 315
Tyr	Asn	Leu	Glu	Thr 320	Ile	Leu	Pro	Lys	Met 325	Gly	Ile	Gln	Asn	Ala 330
Phe	Asp	Lys	Asn	Ala 335	Asp	Phe	Ser	Gly	Ile 340	Ala	Lys	Arg	Asp	Ser 345
Leu	Gln	Val	Ser	Lys 350	Ala	Thr	His	Lys	Ala 355	Val	Leu	Asp	Val	Ser 360
Glu	Glu	Gly	Thr	Glu 365	Ala	Thr	Ala	Ala	Thr 370	Thr	Thr	Lys	Phe	Ile 375
Val	Arg	Ser	Lys	Asp 380	Gly	Pro	Ser	Tyr	Phe 385	Thr	Val	Ser	Phe	Asn 390
Arg	Thr	Phe	Leu	Met 395	Met	Ile	Thr	Asn	Lys 400	Ala	Thr	Asp	Gly	Ile 405
Leu	Phe	Leu	Gly	Lys 410	Val	Glu	Asn	Pro	Thr 415	Lys	Ser			
<210: <211: <212: <213:	> 23 > DNA		cial	Sequ	ience	÷								
<220 <223		nthet	ic o	oligo	onucl	leoti	.de p	orobe	è					

<400> 237

<210> 238 <211> 47 <212> DNA

caaccatgca aggacagggc agg 23

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 238
ctttgctgtt ggcctctgtg ctcccaacca tgcaaggaca gggcagg 47
<210> 239
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 239
tgactcgggg tctccaaaac cagc 24
<210> 240
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 240
ggtataggcg gaaggcaaag tcgg 24
<210> 241
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 241
 ggcatcttac ctttatggag tactctttgc tgttggcctc tgtgctcc 48
<210> 242
<211> 2436
<212> DNA
<213> Homo sapiens
<400> 242
 ggctgaccgt gctacattgc ctggaggaag cctaaggaac ccaggcatcc 50
 agctqcccac qcctqaqtcc aagattcttc ccaggaacac aaacgtagga 100
 gacccacgct cctggaagca ccagccttta tctcttcacc ttcaagtccc 150
 ctttctcaag aatcctctgt tctttgccct ctaaagtctt ggtacatcta 200
 qqacccaqqc atcttqcttt ccaqccacaa agagacagat gaagatgcag 250
```

aaaggaaatg ttctccttat gtttggtcta ctattgcatt tagaagctgc 300 aacaaattcc aatgagacta gcacctctgc caacactgga tccagtgtga 350 tctccagtgg agccagcaca gccaccaact ctgggtccag tgtgacctcc 400 agtggggtca gcacagccac catctcaggg tccagcgtga cctccaatgg 450 ggtcagcata gtcaccaact ctgagttcca tacaacctcc agtgggatca 500 gcacagccac caactotgag ttcagcacag cgtccagtgg gatcagcata 550 gccaccaact ctgagtccag cacaacctcc agtggggcca gcacagccac 600 caactctgag tecageacae ectecagtgg ggecageaca gteaceaact 650 ctgggtccag tgtgacctcc agtggagcca gcactgccac caactctgag 700 tccagcacag tgtccagtag ggccagcact gccaccaact ctgagtctag 750 cacactetee agtggggeea geacageeae caactetgae tecageacaa 800 cctccagtgg ggctagcaca gccaccaact ctgagtccag cacaacctcc 850 agtggggcca gcacagccac caactctgag tccagcacag tgtccagtag 900 ggccagcact gccaccaact ctgagtccag cacaacctcc agtggggcca 950 gcacagccac caactetgag tecagaacga ectecaatgg ggetggeaca 1000 gccaccaact ctgagtccag cacgacctcc agtggggcca gcacagccac 1050 caactetgae tecageacag tgtecagtgg ggecageact gecaecaact 1100 ctgagtccag cacgacctcc agtggggcca gcacagccac caactctgag 1150 tccagcacga cctccagtgg ggctagcaca gccaccaact ctgactccag 1200 cacaacctcc agtggggccg gcacagccac caactctgag tccagcacag 1250 tgtccagtgg gatcagcaca gtcaccaatt ctgagtccag cacaccctcc 1300 agtggggcca acacagccac caactctgag tccagtacga cctccagtgg 1350 ggccaacaca gccaccaact ctgagtccag cacagtgtcc agtggggcca 1400 gcactgccac caactctgag tccagcacaa cctccagtgg ggtcagcaca 1450 gccaccaact ctgagtccag cacaacctcc agtggggcta gcacagccac 1500 caactetgae tecageacaa eetecagtga ggeeageaca geeaceaact 1550 ctgagtctag cacagtgtcc agtgggatca gcacagtcac caattctgag 1600 tccagcacaa cctccagtgg ggccaacaca gccaccaact ctgggtccag 1650 tgtgacctct gcaggctctg gaacagcagc tctgactgga atgcacacaa 1700

<400> 243

		-												
Met	Lys	Met	Gln	Lys	Gly	Asn	Val	Leu	Leu	Met	Phe	Gly	Leu	Leu
1	-			5	_				10					15

Leu His Leu Glu Ala Ala Thr Asn Ser Asn Glu Thr Ser Thr Ser 20 25 30

<210> 243

<211> 596

<212> PRT

<213> Homo sapiens

Thr	Asn	Ser	Glu	Ser 110	Ser	Thr	Thr	Ser	Ser 115	Gly	Ala	Ser	Thr	Ala 120
Thr	Asn	Ser	Glu	Ser 125	Ser	Thr	Pro	Ser	Ser 130	Gly	Ala	Ser	Thr	Val 135
Thr	Asn	Ser	Gly	Ser 140	Ser	Val	Thr	Ser	Ser 145	Gly	Ala	Ser	Thr	Ala 150
Thr	Asn	Ser	Glu	Ser 155	Ser	Thr	Val	Ser	Ser 160	Arg	Ala	Ser	Thr	Ala 165
Thr	Asn	Ser	Glu	Ser 170	Ser	Thr	Leu	Ser	Ser 175	Gly	Ala	Ser	Thr	Ala 180
Thr	Asn	Ser	Asp	Ser 185	Ser	Thr	Thr	Ser	Ser 190	Gly	Ala	Ser	Thr	Ala 195
Thr	Asn	Ser	Glu	Ser 200	Ser	Thr	Thr	Ser	Ser 205	Gly	Ala	Ser	Thr	Ala 210
Thr	Asn	Ser	Glu	Ser 215	Ser	Thr	Val	Ser	Ser 220	Arg	Ala	Ser	Thr	Ala 225
Thr	Asn	Ser	Glu	Ser 230	Ser	Thr	Thr	Ser	Ser 235	Gly	Ala	Ser	Thr	Ala 240
Thr	Asn	Ser	Glu	Ser 245	Arg	Thr	Thr	Ser	Asn 250	Gly	Ala	Gly	Thr	Ala 255
Thr	Asn	Ser	Glu	Ser 260	Ser	Thr	Thr	Ser	Ser 265	Gly	Ala	Ser	Thr	Ala 270
Thr	Asn	Ser	Asp	Ser 275	Ser	Thr	Val	Ser	Ser 280	Gly	Ala	Ser	Thr	Ala 285
Thr	Asn	Ser	Glu	Ser 290	Ser	Thr	Thr	Ser	Ser 295	Gly	Ala	Ser	Thr	Ala 300
Thr	Asn	Ser	Glu	Ser 305	Ser	Thr	Thr	Ser	Ser 310	Gly	Ala	Ser	Thr	Ala 315
Thr	Asn	Ser	Asp	Ser 320		Thr	Thr	Ser	Ser 325	Gly	Ala	Gly	Thr	Ala 330
Thr	Asn	Ser	Glu	Ser 335		Thr	Val	Ser	Ser 340	Gly	Ile	Ser	Thr	Val 345
Thr	Asn	Ser	Glu	Ser 350		Thr	Pro	Ser	Ser 355	Gly	Ala	Asn	Thr	Ala 360
Thr	Asn	Ser	Glu	Ser 365		Thr	Thr	Ser	Ser 370	Gly	Ala	Asn	Thr	Ala 375
Thr	Asn	Ser	Glu	Ser 380		Thr	Val	Ser	Ser 385	Gly	Ala	Ser	Thr	Ala 390

•

Thr	Asn	Ser	Glu	Ser 395	Ser	Thr	Thr	Ser	Ser 400	Gly	Val	Ser	Thr	Ala 405
Thr	Asn	Ser	Glu	Ser 410	Ser	Thr	Thr	Ser	Ser 415	Gly	Ala	Ser	Thr	Ala 420
Thr	Asn	Ser	Asp	Ser 425	Ser	Thr	Thr	Ser	Ser 430	Glu	Ala	Ser	Thr	Ala 435
Thr	Asn	Ser	Glu	Ser 440	Ser	Thr	Val	Ser	Ser 445	Gly	Ile	Ser	Thr	Val 450
Thr	Asn	Ser	Glu	Ser 455	Ser	Thr	Thr	Ser	Ser 460	Gly	Ala	Asn	Thr	Ala 465
Thr	Asn	Ser	Gly	Ser 470	Ser	Val	Thr	Ser	Ala 475	Gly	Ser	Gly	Thr	Ala 480
Ala	Leu	Thr	Gly	Met 485	His	Thr	Thr	Ser	His 490	Ser	Ala	Ser	Thr	Ala 495
Val	Ser	Glu	Ala	Lys 500	Pro	Gly	Gly	Ser	Leu 505	Val	Pro	Trp	Glu	Ile 510
Phe	Leu	Ile	Thr	Leu 515	Val	Ser	Val	Val	Ala 520	Ala	Val	Gly	Leu	Phe 525
Ala	Gly	Leu	Phe	Phe 530	Cys	Val	Arg	Asn	Ser 535	Leu	Ser	Leu	Arg	Asn 540
Thr	Phe	Asn	Thr	Ala 545	Val	Tyr	His	Pro	His 550	Gly	Leu	Asn	His	Gly 555
Leu	Gly	Pro	Gly	Pro 560	Gly	Gly	Asn	His	Gly 565	Ala	Pro	His	Arg	Pro 570
Arg	Trp	Ser	Pro	Asn 575	Trp	Phe	Trp	Arg	Arg 580	Pro	Val	Ser	Ser	Ile 585
Ala	Met	Glu	Met	Ser 590	Gly	Arg	Asn	Ser	Gly 595	Pro				
<2102 <2112 <2122 <2132	> 26 > DN	A	cial	Seq	uence	Э								
<2203 <2233		nthe	tic (olig	onuc	leot	ide j	prob	е				٠	

<400> 244

<210> 245 <211> 24 <212> DNA

gaagcaccag cctttatctc ttcacc 26

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 245
gtcagagttg gtggctgtgc tagc 24
<210> 246
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 246
 ggacccaggc atcttgcttt ccagccacaa agagacagat gaagatgc 48
<210> 247
<211> 957
<212> DNA
<213> Homo sapiens
<400> 247
 gggagagag ataaatagca gcgtggcttc cctggctcct ctctgcatcc 50
 ttcccgacct tcccagcaat atgcatcttg cacgtctggt cggctcctgc 100
 tccctccttc tgctactggg ggccctgtct ggatgggcgg ccagcgatga 150
 ccccattgag aaggtcattg aagggatcaa ccgagggctg agcaatgcag 200
 agagagaggt gggcaaggcc ctggatggca tcaacagtgg aatcacgcat 250
 gccggaaggg aagtggagaa ggttttcaac ggacttagca acatggggag 300
 ccacaccggc aaggagttgg acaaaggcgt ccaggggctc aaccacggca 350
 tggacaaggt tgcccatgag atcaaccatg gtattggaca agcaggaaag 400
 gaagcagaga agcttggcca tggggtcaac aacgctgctg gacaggccgg 450
 gaaggaagca gacaaagcgg tccaagggtt ccacactggg gtccaccagg 500
 ctgggaagga agcagagaaa cttggccaag gggtcaacca tgctgctgac 550
 caggetggaa aggaagtgga gaagettgge caaggtgeee accatgetge 600
 tggccaggcc gggaaggagc tgcagaatgc tcataatggg gtcaaccaag 650
 ccagcaagga ggccaaccag ctgctgaatg gcaaccatca aagcggatct 700
 tccagccatc aaggagggc cacaaccacg ccgttagcct ctggggcctc 750
 agtcaacacg cettteatea acetteeege cetgtggagg agegtegeea 800
```

acatcatgcc ctaaactggc atccggcctt gctgggagaa taatgtcgcc 850 gttgtcacat cagctgacat gacctggagg ggttgggggt gggggacagg 900 tttctgaaat ccctgaaggg ggttgtactg ggatttgtga ataaacttga 950 tacacca 957

<210> 248

<211> 247

<212> PRT

<213> Homo sapiens

<400> 248

Met His Leu Ala Arg Leu Val Gly Ser Cys Ser Leu Leu Leu 1 5 10 15

Leu Gly Ala Leu Ser Gly Trp Ala Ala Ser Asp Asp Pro Ile Glu 20 25 30

Lys Val Ile Glu Gly Ile Asn Arg Gly Leu Ser Asn Ala Glu Arg 35 40 45

Glu Val Gly Lys Ala Leu Asp Gly Ile Asn Ser Gly Ile Thr His
50 55 60

Ala Gly Arg Glu Val Glu Lys Val Phe Asn Gly Leu Ser Asn Met 657075

Gly Ser His Thr Gly Lys Glu Leu Asp Lys Gly Val Gln Gly Leu 80 85 90

Asn His Gly Met Asp Lys Val Ala His Glu Ile Asn His Gly Ile 95 100 105

Gly Gln Ala Gly Lys Glu Ala Glu Lys Leu Gly His Gly Val Asn 110 115 120

Asn Ala Ala Gly Gln Ala Gly Lys Glu Ala Asp Lys Ala Val Gln 125 130 135

Gly Phe His Thr Gly Val His Gln Ala Gly Lys Glu Ala Glu Lys 140 145 150

Leu Gly Gln Gly Val Asn His Ala Ala Asp Gln Ala Gly Lys Glu 155 160 165

Val Glu Lys Leu Gly Gln Gly Ala His His Ala Ala Gly Gln Ala 170 175 180

Gly Lys Glu Leu Gln Asn Ala His Asn Gly Val Asn Gln Ala Ser 185 190 195

Lys Glu Ala Asn Gln Leu Leu Asn Gly Asn His Gln Ser Gly Ser $200 \hspace{1cm} 205 \hspace{1cm} 210 \hspace{1cm}$

Ser Ser His Gln Gly Gly Ala Thr Thr Pro Leu Ala Ser Gly

215 220 225

Ala Ser Val Asn Thr Pro Phe Ile Asn Leu Pro Ala Leu Trp Arg 230 235 240

Ser Val Ala Asn Ile Met Pro 245

<210> 249

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 249

caatatgcat cttgcacgtc tgg 23

<210> 250

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 250

aagettetet getteettte etge 24

<210> 251

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 251

tgaccccatt gagaaggtca ttgaagggat caaccgaggg ctg 43

<210> 252

<211> 3781

<212> DNA

<213> Homo sapiens

<400> 252

ctccgggtcc ccaggggctg cgccgggccg gcctggcaag ggggacgagt 50

cagtggacac tccaggaaga gcggccccgc ggggggcgat gaccgtgcgc 100

tgaccctgac tcactccagg tccggaggcg ggggcccccg gggcgactcg 150

ggggcggacc gcggggcgga gctgccgccc gtgagtccgg ccgagccacc 200

tgagcccgag ccgcgggaca ccgtcgctcc tgctctccga atgctgcgca 250

ccgcgatggg cctgaggagc tggctcgccg ccccatgggg cgcgctgccg 300 cctcggccac cgctgctgct gctcctgctg ctgctgctcc tgctgcagcc 350 geogeeteeg acetgggege teageeceeg gateageetg cetetggget 400 ctgaagagcg gccattcctc agattcgaag ctgaacacat ctccaactac 450 acagecette tgetgageag ggatggeagg accetgtaeg tgggtgeteg 500 agaggccctc tttgcactca gtagcaacct cagcttcctg ccaggcgggg 550 agtaccagga gctgctttgg ggtgcagacg cagagaagaa acagcagtgc 600 agetteaagg geaaggacee acagegegae tgteaaaaet acateaagat 650 cctcctgccg ctcagcggca gtcacctgtt cacctgtggc acagcagcct 700 tcagccccat gtgtacctac atcaacatgg agaacttcac cctggcaagg 750 gacgagaagg ggaatgtcct cctggaagat ggcaagggcc gttgtccctt 800 cgacccgaat ttcaagtcca ctgccctggt ggttgatggc gagctctaca 850 ctggaacagt cagcagcttc caagggaatg acccggccat ctcgcggagc 900 caaagcette geeceaceaa gaeegagage teeeteaact ggetgeaaga 950 cccagctttt gtggcctcag cctacattcc tgagagcctg ggcagcttgc 1000 aaggcgatga tgacaagatc tactttttct tcagcgagac tggccaggaa 1050 tttgagttct ttgagaacac cattgtgtcc cgcattgccc gcatctgcaa 1100 gggcgatgag ggtggagagc gggtgctaca gcagcgctgg acctccttcc 1150 tcaaggccca gctgctgtgc tcacggcccg acgatggctt ccccttcaac 1200 gtgctgcagg atgtcttcac gctgagcccc agcccccagg actggcgtga 1250 caccetttte tatggggtet teaetteeca gtggcacagg ggaactacag 1300 aaggetetge egtetgtgte tteacaatga aggatgtgea gagagtette 1350 agcggcctct acaaggaggt gaaccgtgag acacagcagt ggtacaccgt 1400 gacccacccg gtgcccacac cccggcctgg agcgtgcatc accaacagtg 1450 cccgggaaag gaagatcaac tcatccctgc agctcccaga ccgcgtgctg 1500 aactteetea aggaeeaett eetgatggae gggeaggtee gaageegeat 1550 gctgctgctg cagccccagg ctcgctacca gcgcgtggct gtacaccgcg 1600 tecetggeet geaceacace tacgatgtee tetteetggg cactggtgae 1650 ggccggctcc acaaggcagt gagcgtgggc ccccgggtgc acatcattga 1700

ggagctgcag atcttctcat cgggacagcc cgtgcagaat ctgctcctgg 1750 acacccacag ggggctgctg tatgcggcct cacactcggg cgtagtccag 1800 gtgcccatgg ccaactgcag cctgtaccgg agctgtgggg actgcctcct 1850 cgcccgggac ccctactgtg cttggagcgg ctccagctgc aagcacgtca 1900 gcctctacca gcctcagctg gccaccaggc cgtggatcca ggacatcgag 1950 ggagccagcg ccaaggacct ttgcagcgcg tcttcggttg tgtccccgtc 2000 ttttgtacca acaggggaga agccatgtga gcaagtccag ttccagccca 2050 acacagtgaa cactttggcc tgcccgctcc tctccaacct ggcgacccga 2100 ctctggctac gcaacggggc ccccgtcaat gcctcggcct cctgccacgt 2150 gctacccact ggggacctgc tgctggtggg cacccaacag ctgggggagt 2200 tccagtgctg gtcactagag gagggcttcc agcagctggt agccagctac 2250 tgcccagagg tggtggagga cggggtggca gaccaaacag atgagggtgg 2300 cagtgtaccc gtcattatca gcacatcgcg tgtgagtgca ccagctggtg 2350 gcaaggccag ctggggtgca gacaggtcct actggaagga gttcctggtg 2400 atgtgcacgc tetttgtget ggccgtgetg eteccagttt tattettget 2450 ctaccggcac cggaacagca tgaaagtett eetgaagcag ggggaatgtg 2500 ccagegtgca ecceaagace tgeeetgtgg tgetgeeece tgagaeeege 2550 ccactcaacg gcctagggcc ccctagcacc ccgctcgatc accgagggta 2600 ccagtccctg tcagacagcc ccccgggggc ccgagtcttc actgagtcag 2650 agaagaggcc actcagcatc caagacagct tcgtggaggt atccccagtg 2700 tgcccccggc cccgggtccg ccttggctcg gagatccgtg actctgtggt 2750 gtgagagetg acttccagag gacgetgeec tggettcagg ggetgtgaat 2800 gctcggagag ggtcaactgg acctcccctc cgctctgctc ttcgtggaac 2850 acgaccgtgg tgcccggccc ttgggagcct tggagccagc tggcctgctg 2900 ctctccagtc aagtagcgaa gctcctacca cccagacacc caaacagccg 2950 tggccccaga ggtcctggcc aaatatgggg gcctgcctag gttggtggaa 3000 cagtgctcct tatgtaaact gagccctttg tttaaaaaac aattccaaat 3050 gtgaaactag aatgagaggg aagagatagc atggcatgca gcacacacgg 3100

ctgctccagt tcatggcctc ccaggggtgc tggggatgca tccaaagtgg 3150
ttgtctgaga cagagttgga aaccctcacc aactggcctc ttcaccttcc 3200
acattatccc gctgccaccg gctgccctgt ctcactgcag attcaggacc 3250
agcttgggct gcgtgcgttc tgccttgcca gtcagccgag gatgtagttg 3300
ttgctgccgt cgtcccacca cctcagggac cagagggcta ggttggcact 3350
gcggccctca ccaggtcctg ggctcggacc caactcctgg acctttccag 3400
cctgtatcag gctgtggcca cacgagagga cagcgcgagc tcaggagga 3450
tttcgtgaca atgtacgcct ttccctcaga attcagggaa gagactgtcg 3500
cctgccttcc tccgttgttg cgtgagaacc cgtgtgcccc ttcccaccat 3550
atccaccctc gctccatctt tgaactcaaa cacgaggaac taactgcacc 3600
ctggtcctct ccccagtccc cagttcaccc tccatcctc accttcctcc 3650
actctaaggg atatcaacac tgcccagcac aggggccctg aatttatgtg 3700
gttttatac atttttaat aagatgcact ttatgtcatt ttttaataaa 3750
gtctgaagaa ttactgttta aaaaaaaaaa a 3781

<210> 253

<211> 837

<212> PRT

<213> Homo sapiens

<400> 253

Met Leu Arg Thr Ala Met Gly Leu Arg Ser Trp Leu Ala Ala Pro 1 5 10

Trp Gly Ala Leu Pro Pro Arg Pro Pro Leu Leu Leu Leu Leu 20 25 30

Leu Leu Leu Leu Gln Pro Pro Pro Pro Thr Trp Ala Leu Ser 35 40 45

Pro Arg Ile Ser Leu Pro Leu Gly Ser Glu Glu Arg Pro Phe Leu
50 55 60

Arg Phe Glu Ala Glu His Ile Ser Asn Tyr Thr Ala Leu Leu Leu 65 70 75

Ser Arg Asp Gly Arg Thr Leu Tyr Val Gly Ala Arg Glu Ala Leu 80 85 90

Phe Ala Leu Ser Ser Asn Leu Ser Phe Leu Pro Gly Gly Glu Tyr 95 100 105

Gln Glu Leu Leu Trp Gly Ala Asp Ala Glu Lys Lys Gln Gln Cys 110 115 120

Ser	Phe	Lys	Gly	Lys 125	Asp	Pro	Gln	Arg	Asp 130	Cys	Gln	Asn	Tyr	Ile 135
Lys	Ile	Leu	Leu	Pro 140	Leu	Ser	Gly	Ser	His 145	Leu	Phe	Thr	Cys	Gly 150
Thr	Ala	Ala	Phe	Ser 155	Pro	Met	Cys	Thr	Tyr 160	Ile	Asn	Met	Glu	Asn 165
Phe	Thr	Leu	Ala	Arg 170	Asp	Glu	Lys	Gly	Asn 175	Val	Leu	Leu	Glu	Asp 180
Gly	Lys	Gly	Arg	Cys 185	Pro	Phe	Asp	Pro	Asn 190	Phe	Lys	Ser	Thr	Ala 195
Leu	Val	Val	Asp	Gly 200	Glu	Leu	Tyr	Thr	Gly 205	Thr	Val	Ser	Ser	Phe 210
Gln	Gly	Asn	Asp	Pro 215	Ala	Ile	Ser	Arg	Ser 220	Gln	Ser	Leu	Arg	Pro 225
Thr	Lys	Thr	Glu	Ser 230	Ser	Leu	Asn	Trp	Leu 235	Gln	Asp	Pro	Ala	Phe 240
Val	Ala	Ser	Ala	Tyr 245	Ile	Pro	Glu	Ser	Leu 250	Gly	Ser	Leu	Gln	Gly 255
Asp	Asp	Asp	Lys	Ile 260	Tyr	Phe	Phe	Phe	Ser 265	Glu	Thr	Gly	Gln	Glu 270
Phe	Glu	Phe	Phe	Glu 275	Asn	Thr	Ile	Val	Ser 280	Arg	Ile	Ala	Arg	Ile 285
Cys	Lys	Gly	Asp	Glu 290	Gly	Gly	Glu	Arg	Val 295	Leu	Gln	Gln	Arg	Trp 300
Thr	Ser	Phe	Leu	Lys 305	Ala	Gln	Leu	Leu	Cys 310	Ser	Arg	Pro	Asp	Asp 315
Gly	Phe	Pro	Phe	Asn 320	Val	Leu	Gln	Asp	Val 325	Phe	Thr	Leu	Ser	Pro 330
Ser	Pro	Gln	Asp	Trp 335	Arg	Asp	Thr	Leu	Phe 340	Tyr	Gly	Val	Phe	Thr 345
Ser	Gln	Trp	His	Arg 350	Gly	Thr	Thr	Glu	Gly 355	Ser	Ala	Val	Суѕ	Val 360
Phe	Thr	Met	Lys	Asp 365	Val	Gln	Arg	Val	Phe 370	Ser	Gly	Leu	Tyr	Lys 375
Glu	Val	Asn	Arg	Glu 380	Thr	Gln	Gln	Trp	Tyr 385	Thr	Val	Thr	His	Pro 390
Val	Pro	Thr	Pro	Arg 395	Pro	Gly	Ala	Cys	Ile 400	Thr	Asn	Ser	Ala	Arg 405

r

(Glu	Arg	Lys	Ile	Asn 410	Ser	Ser	Leu	Glr	Leu 415		Asp	Arg	Val	Leu 420
1	Asn	Phe	Leu	Lys	Asp 425	His	Phe	Leu	Met	430		Gln	Val	Arg	Ser 435
I	Arg	Met	Leu	Leu	Leu 440	Gln	Pro	Gln	Ala	Arg 445		Gln	Arg	Val	Ala 450
7	Val	His	Arg	Val	Pro 455	Gly	Leu	His	His	Thr 460		Asp	Val	Leu	Phe 465
I	Leu	Gly	Thr	Gly	Asp 470	Gly	Arg	Leu	His	Lys 475	Ala	Val	Ser	Val	Gly 480
F	Pro	Arg	Val	His	Ile 485	Ile	Glu	Glu	Leu	Gln 490	Ile	Phe	Ser	Ser	Gly 495
G	Sln	Pro	Val	Gln	Asn 500	Leu	Leu	Leu	Asp	Thr 505	His	Arg	Gly	Leu	Leu 510
T	yr	Ala	Ala	Ser	His 515	Ser	Gly	Val	Val	Gln 520	Val	Pro	Met	Ala	Asn 525
C	Cys	Ser	Leu	Tyr	Arg 530	Ser	Cys	Gly	Asp	Cys 535	Leu	Leu	Ala	Arg	Asp 540
P	ro	Tyr	Cys	Ala	Trp 545	Ser	Gly	Ser	Ser	Cys 550	Lys	His	Val	Ser	Leu 555
Т	'yr	Gln	Pro	Gln	Leu 560	Ala	Thr	Arg	Pro	Trp 565	Ile	Gln	Asp	Ile	Glu 570
G	ly	Ala	Ser	Ala	Lys 575	Asp	Leu	Суѕ	Ser	Ala 580	Ser	Ser	Val	Val	Ser 585
P	ro	Ser	Phe	Val	Pro 590	Thr	Gly	Glu	Lys	Pro 595	Cys	Glu	Gln	Val	Gln 600
P.	he	Gln	Pro	Asn	Thr 605	Val	Asn	Thr	Leu	Ala 610	Cys	Pro	Leu	Leu	Ser 615
A	sn	Leu	Ala	Thr	Arg 620	Leu	Trp	Leu	Arg	Asn 625	Gly	Ala	Pro	Val	Asn 630
A.	la	Ser	Ala	Ser	Cys 635	His	Val	Leu	Pro	Thr 640	Gly	Asp	Leu	Leu	Leu 645
Va	al	Gly	Thr	Gln	Gln 650	Leu	Gly	Glu	Phe	Gln 655	Cys	Trp	Ser	Leu	Glu 660
G.	lu	Gly	Phe	Gln	Gln 665	Leu	Val	Ala	Ser	Tyr 670	Cys	Pro	Glu	Val	Val 675
G.	lu	Asp	Gly	Val	Ala 680	Asp	Gln	Thr	Asp	Glu 685	Gly	Gly	Ser		Pro 690

```
Val Ile Ile Ser Thr Ser Arg Val Ser Ala Pro Ala Gly Gly Lys
 Ala Ser Trp Gly Ala Asp Arg Ser Tyr Trp Lys Glu Phe Leu Val
                                      715
 Met Cys Thr Leu Phe Val Leu Ala Val Leu Leu Pro Val Leu Phe
                                      730
 Leu Leu Tyr Arg His Arg Asn Ser Met Lys Val Phe Leu Lys Gln
                                      745
 Gly Glu Cys Ala Ser Val His Pro Lys Thr Cys Pro Val Val Leu
 Pro Pro Glu Thr Arg Pro Leu Asn Gly Leu Gly Pro Pro Ser Thr
                 770
                                     775
 Pro Leu Asp His Arg Gly Tyr Gln Ser Leu Ser Asp Ser Pro Pro
                                      790
 Gly Ala Arg Val Phe Thr Glu Ser Glu Lys Arg Pro Leu Ser Ile
                 800
                                      805
 Gln Asp Ser Phe Val Glu Val Ser Pro Val Cys Pro Arg Pro Arg
                 815
                                      820
 Val Arg Leu Gly Ser Glu Ile Arg Asp Ser Val Val
                 830
<210> 254
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 254
agcccgtgca gaatctgctc ctgg 24
<210> 255
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 255
tgaagccagg gcagcgtcct ctgg 24
<210> 256
<211> 18
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 256
gtacaggctg cagttggc 18
<210> 257
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 257
 agaagccatg tgagcaagtc cagttccagc ccaacacagt g 41
<210> 258
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 258
gagetgeaga tetteteate gggacagece gtgeagaate tgete 45
<210> 259
<211> 4563
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 3635
<223> unknown base
<400> 259
 ctaageegga ggatgtgeag etgeggegge ggegeegget acgaagagga 50
 cggggacagg cgccgtgcga accgagccca gccagccgga ggacgcgggc 100
 agggcgggac gggagcccgg actcgtctgc cgccgccgtc gtcgccgtcg 150
 tgccggcccc gcgtccccgc gcgcgagcgg gaggagccgc cgccacctcg 200
 cgcccgagcc gccgctagcg cgcgccgggc atggtcccct cttaaaggcg 250
 caggeegegg eggegggge gggtgtgegg aacaaagege eggegegggg 300
 cctgcgggcg gctcgggggc cgcgatgggc gcggcgggcc cgcggcggcg 350
 geggegetge eegggeeggg eetegeggeg etaggeeggg etggeeteeg 400
 tgggcgggg cagcggctg agggcgcgc gagcctgcgg cggcggcggc 450
```

ggcggcggcg gcggcccggc gggcggagcg gcgcgggcat ggccgcgcgc 500 ggccggcgcg cctggctcag cgtgctgctc gggctcgtcc tgggcttcgt 550 gctggcctcg cggctcgtcc tgccccgggc ttccgagctg aagcgagcgg 600 gcccacggcg ccgcgccagc cccgagggct gccggtccgg gcaggcggcg 650 gcttcccagg ccggcgggc gcgcggcgat gcgcgcgggg cgcagctctg 700 gccgcccggc tcggacccag atggcggccc gcgcgacagg aactttctct 750 tcgtgggagt catgaccgcc cagaaatacc tgcagactcg ggccgtggcc 800 gcctacagaa catggtccaa gacaattcct gggaaagttc agttcttctc 850 aagtgagggt tctgacacat ctgtaccaat tccagtagtg ccactacggg 900 gtgtggacga ctcctacccg ccccagaaga agtccttcat gatgctcaag 950 tacatgcacg accactactt ggacaagtat gaatggttta tgagagcaga 1000 tgatgacgtg tacatcaaag gagaccgtct ggagaacttc ctgaggagtt 1050 tgaacagcag cgagcccctc tttcttgggc agacaggcct gggcaccacg 1100 gaagaaatgg gaaaactggc cctggagcct ggtgagaact tctgcatggg 1150 ggggcctggc gtgatcatga gccgggaggt gcttcggaga atggtgccgc 1200 acattggcaa gtgtctccgg gagatgtaca ccacccatga ggacgtggag 1250 gtgggaaggt gtgtccggag gtttgcaggg gtgcagtgtg tctggtctta 1300 tgagatgcgg cagctttttt atgagaatta cgagcagaac aaaaaggggt 1350 acattagaga tetecataae agtaaaatte accaagetat cacattacae 1400 cccaacaaaa acccaccta ccagtacagg ctccacagct acatgctgag 1450 ccgcaagata tccgagctcc gccatcgcac aatacagctg caccgcgaaa 1500 ttgtcctgat gagcaaatac agcaacacag aaattcataa agaggacctc 1550 cagctgggaa teceteete etteatgagg ttteageece geeagegaga 1600 ggagattctg gaatgggagt ttctgactgg aaaatacttg tattcggcag 1650 ttgacggcca gcccctcga agaggaatgg actccgccca gagggaagcc 1700 ttggacgaca ttgtcatgca ggtcatggag atgatcaatg ccaacgccaa 1750 gaccagaggg cgcatcattg acttcaaaga gatccagtac ggctaccgcc 1800 gggtgaaccc catgtatggg gctgagtaca tcctggacct gctgcttctg 1850

tacaaaaagc acaaagggaa gaaaatgacg gtccctgtga ggaggcacgc 1900 gtatttacag cagactttca gcaaaatcca gtttgtggag catgaggagc 1950 tggatgcaca agagttggcc aagagaatca atcaggaatc tggatccttg 2000 tcctttctct caaactccct gaagaagctc gtcccctttc agctccctgg 2050 gtcgaagagt gagcacaaag aacccaaaga taaaaagata aacatactga 2100 ttcctttgtc tgggcgtttc gacatgtttg tgagatttat gggaaacttt 2150 gagaagacgt gtcttatccc caatcagaac gtcaagctcg tggttctgct 2200 tttcaattct gactccaacc ctgacaaggc caaacaagtt gaactgatga 2250 gagattaccg cattaagtac cctaaagccg acatgcagat tttgcctgtg 2300 tetggagagt tttcaagage eetggeeetg gaagtaggat eeteceagtt 2350 taacaatgaa totttgotot tottotgoga ogtogacoto gtgtttacta 2400 cagaattcct tcagcgatgt cgagcaaata cagttctggg ccaacaaata 2450 tattttccaa tcatcttcag ccagtatgac ccaaagattg tttatagtgg 2500 gaaagttccc agtgacaacc attttgcctt tactcagaaa actggcttct 2550 ggagaaacta tgggtttggc atcacgtgta tttataaggg agatcttgtc 2600 cgagtgggtg gctttgatgt ttccatccaa ggctgggggc tggaggatgt 2650 ggaccttttc aacaaggttg tccaggcagg tttgaagacg tttaggagcc 2700 aggaagtagg agtagtccac gtccaccatc ctgtcttttg tgatcccaat 2750 cttgacccca aacagtacaa aatgtgcttg gggtccaaag catcgaccta 2800 tgggtccacc cagcagctgg ctgagatgtg gctggaaaaa aatgatccaa 2850 gttacagtaa aagcagcaat aataatggct cagtgaggac agcctaatgt 2900 ccagctttgc tggaaaagac gtttttaatt atctaattta tttttcaaaa 2950 attttttgta tgatcagttt ttgaagtccg tatacaagga tatattttac 3000 aagtggtttt cttacatagg actcctttaa gattgagctt tctgaacaag 3050 aaggtgatca gtgtttgcct ttgaacacat cttcttgctg aacattatgt 3100 agcagacctg cttaactttg acttgaaatg tacctgatga acaaaacttt 3150 tttaaaaaaa tgttttcttt tgagaccctt tgctccagtc ctatggcaga 3200 aaacgtgaac attcctgcaa agtattattg taacaaaaca ctgtaactct 3250 ggtaaatgtt ctgttgtgat tgttaacatt ccacagattc taccttttgt 3300

qttttgtttt tttttttac aattgtttta aagccatttc atgttccagt 3350 tgtaagataa ggaaatgtga taatagctgt ttcatcattg tcttcaggag 3400 agetttecag agttgateat tteeteteat ggtaetetge teageatgge 3450 cacgtaggtt ttttgtttgt tttgttttgt tctttttttg agacggagtc 3500 teactetgtt acceaggetg gaatgeagtg gegeaatett ggeteacttt 3550 aacctccact tccctggttc aagcaattcc cctgcctttg cctcccgagt 3600 agctgggatt acaggcacac accaccacgc ccagntagtt tttttgtatt 3650 tttagtagag acggggtttc accatgcaag cccagctggc cacgtaggtt 3700 ttaaagcaag gggcgtgaag aaggcacagt gaggtatgtg gctgttctcg 3750 tggtagttca ttcggcctaa atagacctgg cattaaattt caagaaggat 3800 ttggcatttt ctcttcttga cccttctctt taaagggtaa aatattaatg 3850 tttagaatga caaagatgaa ttattacaat aaatctgatg tacacagact 3900 gaaacataca cacatacacc ctaatcaaaa cgttggggaa aaatgtattt 3950 ggttttgttc ctttcatcct gtctgtgtta tgtgggtgga gatggttttc 4000 attettteat tactgttttg ttttateett tgtatetgaa atacetttaa 4050 tttatttaat atctgttgtt cagagetetg ceatttettg agtacetgtt 4100 agttagtatt atttatgtgt atcgggagtg tgtttagtct gttttatttg 4150 cagtaaaccg atctccaaag atttcctttt ggaaacgctt tttcccctcc 4200 ttaattttta tattoottao tgttttaota aatattaagt gttotttgac 4250 aattttggtg ctcatgtgtt ttggggacaa aagtgaaatg aatctgtcat 4300 tataccagaa agttaaattc tcagatcaaa tgtgccttaa taaatttgtt 4350 ttcatttaga tttcaaacag tgatagactt gccattttaa tacacgtcat 4400 tggagggctg cgtatttgta aatagcctga tgctcatttg gaaaaataaa 4450 ccagtgaaca atatttttct attgtacttt tcgaaccatt ttgtctcatt 4500 attcctgttt tagctgaaga attgtattac atttggagag taaaaaactt 4550 aaacacgaaa aaa 4563

<210> 260

<211> 802

<212> PRT

<213> Homo sapiens

~400	<400> 260													
	Ala		Arg	Gly 5	Arg	Arg	Ala	Trp	Leu 10	Ser	Val	Leu	Leu	Gly 15
Leu	Val	Leu	Gly	Phe 20	Val	Leu	Ala	Ser	Arg 25	Leu	Val	Leu	Pro	Arg 30
Ala	Ser	Glu	Leu	Lys 35	Arg	Ala	Gly	Pro	Arg 40	Arg	Arg	Ala	Ser	Pro 45
Glu	Gly	Cys	Arg	Ser 50	Gly	Gln	Ala	Ala	Ala 55	Ser	Gln	Ala	Gly	Gly 60
Ala	Arg	Gly	Asp	Ala 65	Arg	Gly	Ala	Gln	Leu 70	Trp	Pro	Pro	Gly	Ser 75
Asp	Pro	Asp	Gly	Gly 80	Pro	Arg	Asp	Arg	Asn 85	Phe	Leu	Phe	Val	Gly 90
Val	Met	Thr	Ala	Gln 95	Lys	Tyr	Leu	Gln	Thr 100	Arg	Ala	Val	Ala	Ala 105
Tyr	Arg	Thr	Trp	Ser 110	Lys	Thr	Ile	Pro	Gly 115	Lys	Val	Gln	Phe	Phe 120
Ser	Ser	Glu	Gly	Ser 125	Asp	Thr	Ser	Val	Pro 130	Ile	Pro	Val	Val	Pro 135
Leu	Arg	Gly	Val	Asp 140	Asp	Ser	Tyr	Pro	Pro 145	Gln	Lys	Lys	Ser	Phe 150
Met	Met	Leu	Lys	Tyr 155	Met	His	Asp	His	Tyr 160	Leu	Asp	Lys	Tyr	Glu 165
Trp	Phe	Met	Arg	Ala 170	Asp	Asp	Asp	Val	Tyr 175	Ile	Lys	Gly	Asp	Arg 180
Leu	Glu	Asn	Phe	Leu 185	Arg	Ser	Leu	Asn	Ser 190	Ser	Glu	Pro	Leu	Phe 195
Leu	Gly	Gln	Thr	Gly 200	Leu	Gly	Thr	Thr	Glu 205	Glu	Met	Gly	Lys	Leu 210
Ala	Leu	Glu	Pro	Gly 215	Glu	Asn	Phe	Cys	Met 220	Gly	Gly	Pro	Gly	Val 225
Ile	Met	Ser	Arg	Glu 230	Val	Leu	Arg	Arg	Met 235	Val	Pro	His	Ile	Gly 240
Lys	Cys	Leu	Arg	Glu 245	Met	Tyr	Thr	Thr	His 250	Glu	Asp	Val	Glu	Val 255
Gly	Arg	Cys	Val	Arg 260	Arg	Phe	Ala	Gly	Val 265	Gln	Cys	Val	Trp	Ser 270

Tyr Glu Met Arg Gln Leu Phe Tyr Glu Asn Tyr Glu Gln Asn Lys

				560					565					570
Leu	Phe	Asn	Ser	Asp 575	Ser	Asn	Pro	Asp	Lys 580	Ala	Lys	Gln	Val	Glu 585
Leu	Met	Arg	Asp	Tyr 590	Arg	Ile	Lys	Tyr	Pro 595	Lys	Ala	Asp	Met	Gln 600
Ile	Leu	Pro	Val	Ser 605	Gly	Glu	Phe	Ser	Arg 610	Ala	Leu	Ala	Leu	Glu 615
Val	Gly	Ser	Ser	Gln 620	Phe	Asn	Asn	Glu	Ser 625	Leu	Leu	Phe	Phe	Cys 630
Asp	Val	Asp	Leu	Val 635	Phe	Thr	Thr	Glu	Phe 640	Leu	Gln	Arg	Cys	Arg 645
Ala	Asn	Thr	Val	Leu 650	Gly	Gln	Gln	Ile	Tyr 655	Phe	Pro	Ile	Ile	Phe 660
Ser	Gln	Tyr	Asp	Pro 665	Lys	Ile	Val	Tyr	Ser 670	Gly	Lys	Val	Pro	Ser 675
Asp	Asn	His	Phe	Ala 680	Phe	Thr	Gln	Lys	Thr 685	Gly	Phe	Trp	Arg	Asn 690
Tyr	Gly	Phe	Gly	Ile 695	Thr	Cys	Ile	Tyr	Lys 700	Gly	Asp	Leu	Val	Arg 705
Val	Gly	Gly	Phe	Asp 710	Val	Ser	Ile	Gln	Gly 715	Trp	Gly	Leu	Glu	Asp 720
Val	Asp	Leu	Phe	Asn 725	Lys	Val	Val	Gln	Ala 730	Gly	Leu	Lys	Thr	Phe 735
Arg	Ser	Gln	Glu	Val 740	Gly	Val	Val	His	Val 7 4 5	His	His	Pro	Val	Phe 750
Cys	Asp	Pro	Asn	Leu 755	Asp	Pro	Lys	Gln	Tyr 760	Lys	Met	Cys	Leu	Gly 765
Ser	Lys	Ala	Ser	Thr 770	Tyr	Gly	Ser	Thr	Gln 775	Gln	Leu	Ala	Glu	Met 780
Trp	Leu	Glu	Lys	Asn 785	Asp	Pro	Ser	Tyr	Ser 790	Lys	Ser	Ser	Asn	Asn 795
Asn	Gly	Ser	Val	Arg 800	Thr	Ala								
<210>		-												
<211><212>														
<2122				Sam	ien co									

<213> Artificial Sequence

<223> Synthetic oligonucleotide probe

```
<400> 261
  gtgccactac ggggtgtgga cgac 24
 <210> 262
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
<400> 262
  tcccatttct tccgtggtgc ccag 24
 <210> 263
 <211> 46
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 263
 ccagaagaag teetteatga tgeteaagta catgeacgae cactae 46
 <210> 264
 <211> 1419
 <212> DNA
 <213> Homo sapiens
 <400> 264
  ggacaaccgt tgctgggtgt cccagggcct gaggcaggac ggtactccgc 50
  tgacacette cettteggee ttgaggttee cageetggtg geeceaggae 100
  gttccggtcg catggcagag tgctacggac gacgcctatg aagcccttag 150
  teettetagt tgegettttg etatggeett egtetgtgee ggettateeg 200
  agcataactg tgacacctga tgaagagcaa aacttgaatc attatataca 250
  agttttagag aacctagtac gaagtgttcc ctctggggag ccaggtcgtg 300
  agaaaaaatc taactctcca aaacatgttt attctatagc atcaaaggga 350
  tcaaaattta aggagctagt tacacatgga gacgcttcaa ctgagaatga 400
  tgttttaacc aatcctatca gtgaagaaac tacaactttc cctacaggag 450
 gcttcacacc ggaaatagga aagaaaaaac acacggaaag taccccattc 500
 tggtcgatca aaccaaacaa tgtttccatt gttttgcatg cagaggaacc 550
 ttatattgaa aatgaagagc cagagccaga gccggagcca gctgcaaaac 600
 aaactgaggc accaagaatg ttgccagttg ttactgaatc atctacaagt 650
```

ccatatgtta cctcatacaa gtcacctgtc accactttag ataagagcac 700 tggcattgag atctctacag aatcagaaga tgttcctcag ctctcaggtg 750 aaactgcgat agaaaaaccc gaagagtttg gaaagcaccc agagagttgg 800 aataatgatg acattttgaa aaaaatttta gatattaatt cacaagtgca 850 acaggcactt cttagtgaca ccagcaaccc agcatataga gaagatattg 900 aagcctctaa agatcaccta aaacgaagcc ttgctctagc agcagcagca 950 gaacataaat taaaaacaat gtataagtcc cagttattgc cagtaggacg 1000 aacaagtaat aaaattgatg acatcgaaac tgttattaac atgctgtgta 1050 attctagatc taaactctat gaatatttag atattaaatg tgttccacca 1100 gagatgagag aaaaagctgc tacagtattc aatacattaa aaaatatgtg 1150 tagatcaagg agagtcacag ccttattaaa agtttattaa acaataatat 1200 aaaaaatttta aacctacttg atattccata acaaaqctqa tttaaqcaaa 1250 ctgcattttt tcacaggaga aataatcata ttcgtaattt caaaagttgt 1300 ataaaaatat tttctattgt agttcaaatg tgccaacatc tttatgtgtc 1350 atgtgttatg aacaattttc atatgcacta aaaacctaat ttaaaataaa 1400 attttggttc aggaaaaaa 1419

```
<210> 265
```

<400> 265

Met Lys Pro Leu Val Leu Leu Val Ala Leu Leu Leu Trp Pro Ser 1 5 10 15

Ser Val Pro Ala Tyr Pro Ser Ile Thr Val Thr Pro Asp Glu Glu 20 25 30

Gln Asn Leu Asn His Tyr Ile Gln Val Leu Glu Asn Leu Val Arg 35 40 45

Ser Val Pro Ser Gly Glu Pro Gly Arg Glu Lys Lys Ser Asn Ser 50 55 60

Pro Lys His Val Tyr Ser Ile Ala Ser Lys Gly Ser Lys Phe Lys 65 70 75

Glu Leu Val Thr His Gly Asp Ala Ser Thr Glu Asn Asp Val Leu
80 85 90

<211> 350

<212> PRT

<213> Homo sapiens

Thr	Asn	Pro	Ile	Ser 95	Glu	Glu	Thr	Thr	Thr 100	Phe	Pro	Thr	Gly	Gly 105
Phe	Thr	Pro	Glu	Ile 110	Gly	Lys	Lys	Lys	His 115	Thr	Glu	Ser	Thr	Pro 120
Phe	Trp	Ser	Ile	Lys 125	Pro	Asn ·	Asn	Val	Ser 130	Ile	Val	Leu	His	Ala 135
Glu	Glu	Pro	Tyr	Ile 140	Glu	Asn	Glu	Glu	Pro 145	Glu	Pro	Glu	Pro	Glu 150
Pro	Ala	Ala	Lys	Gln 155	Thr	Glu	Ala	Pro	Arg 160	Met	Leu	Pro	Val	Val 165
Thr	Glu	Ser	Ser	Thr 170	Ser	Pro	Tyr	Val	Thr 175	Ser	Tyr	Lys	Ser	Pro 180
Val	Thr	Thr	Leu	Asp 185	Lys	Ser	Thr	Gly	Ile 190	Glu	Ile	Ser	Thr	Glu 195
Ser	Glu	Asp	Val	Pro 200	Gln	Leu	Ser	Gly	Glu 205	Thr	Ala	Ile	Glu	Lys 210
Pro	Glu	Glu	Phe	Gly 215	Lys	His	Pro	Glu	Ser 220	Trp	Asn	Asn	Asp	Asp 225
Ile	Leu	Lys	Lys	Ile 230	Leu	Asp	Ile	Asn	Ser 235	Gln	Val	Gln	Gln	Ala 240
Leu	Leu	Ser	Asp	Thr 245	Ser	Asn	Pro	Ala	Tyr 250	Arg	Glu	Asp	Ile	Glu 255
Ala	Ser	Lys	Asp	His 260	Leu	Lys	Arg	Ser	Leu 265	Ala	Leu	Ala	Ala	Ala 270
Ala	Glu	His	Lys	Leu 275	Lys	Thr	Met	Tyr	Lys 280	Ser	Gln	Leu	Leu	Pro 285
Val	Gly	Arg	Thr	Ser 290	Asn	Lys	Ile	Asp	Asp 295	Ile	Glu	Thr	Val	Ile 300
Asn	Met	Leu	Cys	Asn 305	Ser	Arg	Ser	Lys	Leu 310	Tyr	Glu	Tyr	Leu	Asp 315
Ile	Lys	Cys	Val	Pro 320	Pro	Glu	Met	Arg	Glu 325	Lys	Ala	Ala	Thr	Val 330
Phe	Asn	Thr	Leu	Lys 335	Asn	Met	Суѕ	Arg	Ser 340	Arg	Arg	Val	Thr	Ala 345
Leu	Leu	Lys	Val	Tyr 350										
		_												

<210> 266 <211> 2403 <212> DNA

<400> 266 cggctcgagc ggctcgagtg aagagcctct ccacggctcc tgcgcctgag 50 acagetggee tgacetecaa ateatecate cacecetget gteatetgtt 100 ttcatagtgt gagatcaacc cacaggaata tccatggctt ttgtgctcat 150 tttggttctc agtttctacg agctggtgtc aggacagtgg caagtcactg 200 gaccgggcaa gtttgtccag gccttggtgg gggaggacgc cgtgttctcc 250 tgctccctct ttcctgagac cagtgcagag gctatggaag tgcggttctt 300 caggaatcag ttccatgctg tggtccacct ctacagagat ggggaagact 350 gggaatctaa gcagatgcca cagtatcgag ggagaactga gtttgtgaag 400 gactccattg caggggggcg tgtctctcta aggctaaaaa acatcactcc 450 ctcggacatc ggcctgtatg ggtgctggtt cagttcccag atttacgatg 500 aggaggccac ctgggagctg cgggtggcag cactgggctc acttcctctc 550 atttccatcg tgggatatgt tgacggaggt atccagttac tctgcctgtc 600 ctcaggctgg ttcccccagc ccacagccaa gtggaaaggt ccacaaggac 650 aggatttgtc ttcagactcc agagcaaatg cagatgggta cagcctgtat 700 gatgtggaga tctccattat agtccaggaa aatgctggga gcatattgtg 750 ttccatccac cttgctgagc agagtcatga ggtggaatcc aaggtattga 800 taggagagac gtttttccag ccctcacctt ggcgcctggc ttctatttta 850 ctcgggttac tctgtggtgc cctgtgtggt gttgtcatgg ggatgataat 900 tgttttcttc aaatccaaag ggaaaatcca ggcggaactg gactggagaa 950 gaaagcacgg acaggcagaa ttgagagacg cccggaaaca cgcagtggag 1000 gtgactctgg atccagagac ggctcacccg aagctctgcg tttctgatct 1050 gaaaactgta acccatagaa aagctcccca ggaggtgcct cactctgaga 1100 agagatttac aaggaagagt gtggtggctt ctcagggttt ccaagcaggg 1150 agacattact gggaggtgga cgtgggacaa aatgtagggt ggtatgtggg 1200 agtgtgtcgg gatgacgtag acagggggaa gaacaatgtg actttgtctc 1250 ccaacaatgg gtattgggtc ctcagactga caacagaaca tttgtatttc 1300 acattcaatc cccattttat cagcctcccc cccagcaccc ctcctacacg 1350

agtaggggtc ttcctggact atgagggtgg gaccatctcc ttcttcaata 1400 caaatgacca gtcccttatt tataccctgc tgacatgtca gtttgaaggc 1450 ttgttgagac cctatatcca gcatgcgatg tatgacgagg aaaaggggac 1500 tcccatattc atatgtccag tgtcctgggg atgagacaga gaagaccctg 1550. cttaaagggc cccacaccac agacccagac acagccaagg gagagtgctc 1600 ecgacaggtg geeceagett ceteteegga geetgegeae agagagteae 1650 geoceccact cteetttagg gagetgaggt tettetgece tgagecetge 1700 agcagcggca gtcacagctt ccagatgagg ggggattggc ctgaccctqt 1750 gggagtcaga agccatggct gccctgaagt ggggacggaa tagactcaca 1800 ttaggtttag tttgtgaaaa ctccatccag ctaagcgatc ttgaacaagt 1850 cacaacctcc caggetectc atttgctagt cacggacagt gattectgcc 1900 tcacaggtga agattaaaga gacaacgaat gtgaatcatg cttgcaggtt 1950 tgagggcaca gtgtttgcta atgatgtgtt tttatattat acattttccc 2000 accataaact ctgtttgctt attccacatt aatttacttt tctctatacc 2050 aaatcaccca tggaatagtt attgaacacc tgctttgtga ggctcaaaga 2100 ataaagagga ggtaggattt ttcactgatt ctataagccc agcattacct 2150 gataccaaaa ccaggcaaag aaaacagaag aagaggaagg aaaactacag 2200 gtccatatcc ctcattaaca cagacacaaa aattctaaat aaaattttaa 2250 caaattaaac taaacaatat atttaaagat gatatataac tactcagtgt 2300 ggtttgtccc acaaatgcag agttggttta atatttaaat atcaaccagt 2350 aaa 2403

<210> 267

<211> 466

<212> PRT

<213> Homo sapiens

<400> 267

Met Ala Phe Val Leu Ile Leu Val Leu Ser Phe Tyr Glu Leu Val

Ser Gly Gln Trp Gln Val Thr Gly Pro Gly Lys Phe Val Gln Ala
20 25 30

Leu Val Gly Glu Asp Ala Val Phe Ser Cys Ser Leu Phe Pro Glu

Thr	Ser	Ala	Glu	Ala 50	Met	Glu	Val	Arg	Phe 55	Phe	Arg	Asn	Gln	Phe 60
His	Ala	Val	Val	His 65	Leu	Tyr	Arg	Asp	Gly 70	Glu	Asp	Trp	Glu	Ser 75
Lys	Gln	Met	Pro	Gln 80	Tyr	Arg	Gly	Arg	Thr 85	Glu	Phe	Val	Lys	Asp 90
Ser	Ile	Ala	Gly	Gly 95	Arg	Val	Ser	Leu	Arg 100	Leu	Lys	Asn	Ile	Thr 105
Pro	Ser	Asp	Ile	Gly 110	Leu	Tyr	Gly	Суз	Trp 115	Phe	Ser	Ser	Gln	Ile 120
Tyr	Asp	Glu	Glu	Ala 125	Thr	Trp	Glu	Leu	Arg 130	Val	Ala	Ala	Leu	Gly 135
Ser	Leu	Pro	Leu	Ile 140	Ser	Ile	Val	Gly	Tyr 145	Val	Asp	Gly	Gly	Ile 150
Gln	Leu	Leu	Cys	Leu 155	Ser	Ser	Gly	Trp	Phe 160	Pro	Gln	Pro	Thr	Ala 165
Lys	Trp	Lys	Gly	Pro 170	Gln	Gly	Gln	Asp	Leu 175	Ser	Ser	Asp	Ser	Arg 180
Ala	Asn	Ala	Asp	Gly 185	Tyr	Ser	Leu	Tyr	Asp 190	Val	Glu	Ile	Ser	Ile 195
Ile	Val	Gln	Glu	Asn 200	Ala	Gly	Ser	Ile	Leu 205	Cys	Ser	Ile	His	Leu 210
Ala	Glu	Gln	Ser	His 215	Glu	Val	Glu	Ser	Lys 220	Val	Leu	Ile	Gly	Glu 225
Thr	Phe	Phe	Gln	Pro 230	Ser	Pro	Trp	Arg	Leu 235	Ala	Ser	Ile	Leu	Leu 240
Gly	Leu	Leu	Cys	Gly 245	Ala	Leu	Cys	Gly	Val 250	Val	Met	Gly	Met	Ile 255
Ile	Val	Phe	Phe	Lys 260	Ser	Lys	Gly	Lys	Ile 265	Gln	Ala	Glu	Leu	Asp 270
Trp	Arg	Arg	Lys	His 275	Gly	Gln	Ala	Glu	Leu 280	Arg	Asp	Ala	Arg	Lys 285
His	Ala	Val	Glu	Val 290	Thr	Leu	Asp	Pro	Glu 295	Thr	Ala	His	Pro	Lys 300
Leu	Cys	Val	Ser	Asp 305	Leu	Lys	Thr	Val	Thr 310	His	Arg	Lys	Ala	Pro 315
Glr	Glu	Val	Dro	Hie	Ser	Glu	Lvc	Δra	Dha	ጥሎ~	71 20 00	T	C~~	17-1

Val Ala Ser Gln Gly Phe Gln Ala Gly Arg His Tyr Trp Glu Val \$335\$ \$340\$

Asp Val Gly Gln Asn Val Gly Trp Tyr Val Gly Val Cys Arg Asp 350 355 360

Asp Val Asp Arg Gly Lys Asn Asn Val Thr Leu Ser Pro Asn Asn 365 370 375

Gly Tyr Trp Val Leu Arg Leu Thr Thr Glu His Leu Tyr Phe Thr 380 385 390

Phe Asn Pro His Phe Ile Ser Leu Pro Pro Ser Thr Pro Pro Thr 395 400 405

Arg Val Gly Val Phe Leu Asp Tyr Glu Gly Gly Thr Ile Ser Phe 410 415 420

Phe Asn Thr Asn Asp Gln Ser Leu Ile Tyr Thr Leu Leu Thr Cys 425 430 435

Gln Phe Glu Gly Leu Leu Arg Pro Tyr Ile Gln His Ala Met Tyr 440 445 450

Asp Glu Glu Lys Gly Thr Pro Ile Phe Ile Cys Pro Val Ser Trp 455 460 465

Gly

<210> 268

<211> 2103

<212> DNA

<213> Homo sapiens

<400> 268

cottcacagg actottcatt getggttggc aatgatgtat oggocagatg 50
tggtgagggc taggaaaaga gtttgttggg aaccotgggt tatoggooto 100
gtoatottca tatocotgat tgtootggca gtgtgcattg gactoactgt 150
toattatgtg agatataato aaaagaagac otacaattac tatagcacat 200
tgtoatttac aactgacaaa otatatgotg agtttggcag agaggottot 250
aacaatttta cagaaatgag ocagagactt gaatcaatgg tgaaaaatgc 300
attttataaa totocattaa gggaagaatt tgtoaagtot caggttatoa 350
agttoagtoa acagaagcat ggagtgttgg otcatatgot gttgatttgt 400
agatttoact otactgagga tootgaaact gtagataaaa ttgttoaact 450
tgttttacat gaaaagctgc aagatgotgt aggacoccot aaagtagato 500

ctcactcagt taaaattaaa aaaatcaaca agacagaaac agacagctat 550 ctaaaccatt gctgcggaac acgaagaagt aaaactctag gtcagagtct 600 caggatcgtt ggtgggacag aagtagaaga gggtgaatgg ccctggcagg 650 ctagcctgca gtgggatggg agtcatcgct gtggagcaac cttaattaat 700 gccacatggc ttgtgagtgc tgctcactgt tttacaacat ataagaaccc 750 tgccagatgg actgcttcct ttggagtaac aataaaacct tcgaaaatga 800 aacggggtct ccggagaata attgtccatg aaaaatacaa acacccatca 850 catgactatg atatttctct tgcagagctt tctagccctg ttccctacac 900 aaatgcagta catagagttt gtctccctga tgcatcctat gagtttcaac 950 caggtgatgt gatgtttgtg acaggatttg gagcactgaa aaatgatggt 1000 tacagtcaaa atcatcttcg acaagcacag gtgactctca tagacgctac 1050 aacttgcaat gaacctcaag cttacaatga cgccataact cctagaatgt 1100 tatgtgctgg ctccttagaa ggaaaaacag atgcatgcca gggtgactct 1150 ggaggaccac tggttagttc agatgctaga gatatctggt accttgctgg 1200 aatagtgagc tggggagatg aatgtgcgaa acccaacaag cctggtgttt 1250 atactagagt tacggccttg cgggactgga ttacttcaaa aactggtatc 1300 taagagacaa aagcctcatg gaacagataa cattttttt tgttttttgg 1350 gtgtggaggc catttttaga gatacagaat tggagaagac ttgcaaaaca 1400 gctagatttg actgatctca ataaactgtt tgcttgatgc atgtattttc 1450 ttcccagctc tgttccgcac gtaagcatcc tgcttctgcc agatcaactc 1500 tgtcatctgt gagcaatagt tgaaacttta tgtacataga gaaatagata 1550 atacaatatt acattacagc ctgtattcat ttgttctcta gaagttttgt 1600 cagaattttg acttgttgac ataaatttgt aatgcatata tacaatttga 1650 agcactcctt ttcttcagtt cctcagctcc tctcatttca gcaaatatcc 1700 attttcaagg tgcagaacaa ggagtgaaag aaaatataag aagaaaaaaa 1750 tcccctacat tttattggca cagaaaagta ttaggtgttt ttcttagtgg 1800 aatattagaa atgatcatat tcattatgaa aggtcaagca aagacagcag 1850 aataccaatc acttcatcat ttaggaagta tgggaactaa gttaaggaag 1900

tccagaaaga agccaagata tatccttatt ttcatttcca aacaactact 1950
atgataaatg tgaagaagat tctgtttttt tgtgacctat aataattata 2000
caaacttcat gcaatgtact tgttctaagc aaattaaagc aaatatttat 2050
ttaacattgt tactgaggat gtcaacatat aacaataaaa tataaatcac 2100
cca 2103
<210> 269 <211> 423 <212> PRT <213> Homo sapiens
<400> 269
Met Met Tyr Arg Pro Asp Val Val Arg Ala Arg Lys Arg Val Cys 1 5 10
Trp Glu Pro Trp Val Ile Gly Leu Val Ile Phe Ile Ser Leu Ile 20 25 30
Val Leu Ala Val Cys Ile Gly Leu Thr Val His Tyr Val Arg Tyr 35 40 45
Asn Gln Lys Lys Thr Tyr Asn Tyr Tyr Ser Thr Leu Ser Phe Thr 50 55 60
Thr Asp Lys Leu Tyr Ala Glu Phe Gly Arg Glu Ala Ser Asn Asn 65 70 75
Phe Thr Glu Met Ser Gln Arg Leu Glu Ser Met Val Lys Asn Ala 80 85 90
Phe Tyr Lys Ser Pro Leu Arg Glu Glu Phe Val Lys Ser Gln Val 95 100 105
Ile Lys Phe Ser Gln Gln Lys His Gly Val Leu Ala His Met Leu 110 115 120
Leu Ile Cys Arg Phe His Ser Thr Glu Asp Pro Glu Thr Val Asp 125 130 135
Lys Ile Val Gln Leu Val Leu His Glu Lys Leu Gln Asp Ala Val 140 145 150
Gly Pro Pro Lys Val Asp Pro His Ser Val Lys Ile Lys Lys Ile 155 160 165
Asn Lys Thr Glu Thr Asp Ser Tyr Leu Asn His Cys Cys Gly Thr 170 175 180
Arg Arg Ser Lys Thr Leu Gly Gln Ser Leu Arg Ile Val Gly Gly 185 190 195
Thr Glu Val Glu Glu Gly Glu Trp Pro Trp Gln Ala Ser Leu Gln 200 205 210

Trp	As _l	o Gly	y Ser	His 215	arg	Cys	s Gly	/ Ala	Thr 220	Leu	Il∈	Asr	ı Ala	a Thr 225
Trp	Lei	ı Va]	L Ser	Ala 230	Ala	His	Cys	Phe	Thr 235	Thr	Tyr	Lys	: Asr	n Pro 240
Ala	Arg	J Trp	Thr	Ala 245	Ser	Phe	Gly	Val	Thr 250	Ile	Lys	Pro	Ser	Lys 255
Met	Lys	: Arg	Gly	Leu 260	Arg	Arg	Ile	Ile	Val 265	His	Glu	Lys	Tyr	Lys 270
His	Pro	Ser	His	Asp 275	Tyr	Asp	Ile	Ser	Leu 280	Ala	Glu	Leu	Ser	Ser 285
Pro	Val	Pro	Tyr	Thr 290	Asn	Ala	Val	His	Arg 295	Val	Cys	Leu	Pro	Asp 300
				303	Gln				310					315
Phe	Gly	Ala	Leu	Lys 320	Asn	Asp	Gly	Tyr	Ser 325	Gln	Asn	His	Leu	Arg 330
Gln	Ala	Gln	Val	Thr 335	Leu	Ile	Asp	Ala	Thr 340	Thr	Cys	Asn	Glu	Pro 345
Gln .	Ala	Tyr	Asn	Asp 350	Ala	Ile	Thr	Pro	Arg : 355	Met :	Leu	Cys	Ala	Gly 360
Ser :	Leu	Glu	Gly	Lys 365	Thr A	Asp	Ala	Cys	Gln (370	Gly A	Asp	Ser	Gly	Gly 375
Pro 1	Leu	Val	Ser :	Ser . 380	Asp A	Ala .	Arg .	Asp :	Ile 7 385	Frp 7	ľyr :	Leu 2		Gly 390
Ile V	/al	Ser	Trp (Gly 1 395	Asp G	Glu (Cys I	Ala 1	Lys I 100	Pro A	Asn]	Lys 1		Gly 405
Val T	'yr '	Thr A	Arg \	7al 7	Thr A	la 1	Leu A	Arg A	Asp I	rp I	le T	hr S		Lys 420
Thr G	ly :	Ile												
<210>														
<211>)												
<2125	17877													

<400> 270

<212> DNA

<213> Homo sapiens

gtcgaaggtt ataaaagctt ccagccaaac ggcattgaag ttgaagatac 50
aacctgacag cacagcctga gatcttgggg atccctcagc ctaacaccca 100
cagacgtcag ctggtggatt cccgctgcat caaggcctac ccactgtctc 150

catgetgggc tetecetgee ttetgtgget cetggeegtg acettettgg 200 ttcccagagc tcagcccttg gcccctcaag actttgaaga agaggaggca 250 gatgagactg agacggcgtg gccgcctttg ccggctgtcc cctgcgacta 300 cgaccactgc cgacacctgc aggtgccctg caaggagcta cagagggtcg 350 ggccggcggc ctgcctgtgc ccaggactct ccagccccgc ccagccgccc 400 gacccgccgc gcatgggaga agtgcgcatt gcggccgaag agggccgcgc 450 agtggtccac tggtgtgccc ccttctcccc ggtcctccac tactggctgc 500 tgctttggga cggcagcgag gctgcgcaga aggggccccc gctgaacgct 550 acggtccgca gagccgaact gaaggggctg aagccagggg gcatttatgt 600 cgtttgcgta gtggccgcta acgaggccgg ggcaagccgc gtgccccagg 650 ctggaggaga gggcctcgag ggggccgaca tccctgcctt cgggccttgc 700 ageegeettg eggtgeegee caaceeege actetggtee aegeggeegt 750 cggggtgggc acggccctgg ccctgctaag ctgtgccgcc ctggtgtggc 800 acttetgeet gegegatege tggggetgee egeegeegage egeegeega 850 gccgcagggg cgctctgaaa ggggcctggg ggcatctcgg gcacagacag 900 ccccacctgg ggcgctcagc ctggcccccg ggaaagagga aaacccgctg 950 cctccaggga gggctggacg gcgagctggg agccagccc aggctccagg 1000 gccacggcgg agtcatggtt ctcaggactg agcgcttgtt taggtccggt 1050 acttggcgct ttgtttcctg gctgaggtct gggaaggaat agaaaggggc 1100 ccccaatttt tttttaagcg gccagataat aaataatgta acctttgcgg 1150 ttaaaaaaaa aaaaaaaaa 1170

<210> 271

<211> 238

<212> PRT

<213> Homo sapiens

<400> 271

Met Leu Gly Ser Pro Cys Leu Leu Trp Leu Leu Ala Val Thr Phe 1 5 10 15

Leu Val Pro Arg Ala Gln Pro Leu Ala Pro Gln Asp Phe Glu Glu
20 25 30

Glu Glu Ala Asp Glu Thr Glu Thr Ala Trp Pro Pro Leu Pro Ala

Val	Pro	Cys	Asp	Туг 50	Asp	His	Cys	Arg	His 55	Leu	Gln	Val	Pro	Cys 60
Lys	Glu	Leu	Gln	Arg 65	Val	Gly	Pro	Ala	Ala 70	Cys	Leu	Cys	Pro	Gly 75
Leu	Ser	Ser	Pro	Ala 80	Gln	Pro	Pro	Asp	Pro 85	Pro	Arg	Met	Gly	Glu 90
Val	Arg	Ile	Ala	Ala 95	Glu	Glu	Gly	Arg	Ala 100	Val	Val	His	Trp	Cys 105
Ala	Pro	Phe	Ser	Pro 110	Val	Leu	His	Tyr	Trp 115	Leu	Leu	Leu	Trp	Asp 120
Gly	Ser	Glu	Ala	Ala 125	Gln	Lys	Gly	Pro	Pro 130	Leu	Asn	Ala	Thr	Val 135
Arg	Arg	Ala	Glu	Leu 140	Lys	Gly	Leu	Lys	Pro 145	Gly	Gly	Ile	Tyr	Val 150
Val	Cys	Val	Val	Ala 155	Ala	Asn	Glu	Ala	Gly 160	Ala	Ser	Arg	Val	Pro 165
Gln	Ala	Gly	Gly	Glu 170	Gly	Leu	Glu	Gly	Ala 175	Asp	Ile	Pro	Ala	Phe 180
Gly	Pro	Cys	Ser	Arg 185	Leu	Ala	Val	Pro	Pro 190	Asn	Pro	Arg	Thr	Leu 195
Val	His	Ala	Ala	Val 200	Gly	Val	Gly	Thr	Ala 205	Leu	Ala	Leu	Leu	Ser 210
Cys	Ala	Ala	Leu	Val 215	Trp	His	Phe	Cys	Leu 220	Arg	Asp	Arg	Trp	Gly 225
Cys	Pro	Arg	Arg	Ala 230	Ala	Ala	Arg	Ala	Ala 235	Gly	Ala	Leu		
210>	272													
211>														

<211> 2397

<212> DNA

<213> Homo sapiens

<400> 272

agagaaagaa gcgtctccag ctgaagccaa tgcagccctc cggctctccg 50 cgaagaagtt ccctgccccg atgagccccc gccgtgcgtc cccgactatc 100 cccaggeggg cgtggggcac cgggcccagc gccgacgatc gctgccgttt 150 tgcccttggg agtaggatgt ggtgaaagga tggggcttct cccttacggg 200 gctcacaatg gccagagaag attccgtgaa gtgtctgcgc tgcctgctct 250 acgccctcaa tctgctcttt tggttaatgt ccatcagtgt gttggcagtt 300

tctgcttgga tgagggacta cctaaataat gttctcactt taactgcaga 350 aacgagggta gaggaagcag tcattttgac ttactttcct gtggttcatc 400 cggtcatgat tgctgtttgc tgtttcctta tcattgtggg gatgttagga 450 tattgtggaa cggtgaaaag aaatctgttg cttcttgcat ggtactttgg 500 aagtttgctt gtcattttct gtgtagaact ggcttgtggc gtttggacat 550 atgaacagga acttatggtt ccagtacaat ggtcagatat ggtcactttg 600 aaagccagga tgacaaatta tggattacct agatatcggt ggcttactca 650 tgcttggaat ttttttcaga gagagtttaa gtgctgtgga gtagtatatt 700 tcactgactg gttggaaatg acagagatgg actggccccc agattcctgc 750 tgtgttagag aattcccagg atgttccaaa caggcccacc aggaagatct 800 cagtgacctt tatcaagagg gttgtgggaa gaaaatgtat tcctttttga 850 gaggaaccaa.acaactgcag gtgctgaggt ttctgggaat ctccattggg 900 gtgacacaaa tootggcoat gattotoaco attactotgo totgggotot 950 gtattatgat agaagggagc ctgggacaga ccaaatgatg tccttgaaga 1000 atgacaactc tcagcacctg tcatgtccct cagtagaact gttgaaacca 1050 agcctgtcaa gaatctttga acacacatcc atggcaaaca gctttaatac 1100 acactttgag atggaggagt tataaaaaga aatgtcacag aagaaaacca 1150 caaacttgtt ttattggact tgtgaatttt tgagtacata ctatgtgttt 1200 cagaaatatg tagaaataaa aatgttgcca taaaataaca cctaagcata 1250 tactattcta tgctttaaaa tgaggatgga aaagtttcat gtcataagtc 1300 accacctgga caataattga tgcccttaaa atgctgaaga cagatgtcat 1350 acceaetgtg tageetgtgt atgaetttta etgaacacag ttatgttttg 1400 aggcagcatg gtttgattag catttccgca tccatgcaaa cgagtcacat 1450 atggtgggac tggagccata gtaaaggttg atttacttct accaactagt 1500 atataaagta ctaattaaat gctaacatag gaagttagaa aatactaata 1550 actittatta ctcagcgatc tattcttctg atgctaaata aattatatat 1600 cagaaaactt tcaatattgg tgactaccta aatgtgattt ttgctggtta 1650 ctaaaaatatt cttaccactt aaaagagcaa gctaacacat tgtcttaagc 1700

tcgattcaggga ttttttgtat ataagtctgt gttaaatctg tataattcag 1750 tcgatttcag ttctgataat gttaagaata accattatga aaaggaaaat 1800 ttgtcctgta tagcatcatt attttagcc tttcctgtta ataaagcttt 1850 actattctgt cctgggctta tattacacat ataactgtta tttaaatact 1900 taaccactaa ttttgaaaat taccagtgtg atacatagga atcattattc 1950 agaatgtagt ctggtctta ggaagtatta ataagaaaat ttgcacataa 2000 cttagttgat tcagaaagga cttgtatgct gttttctcc caaatgaaga 2050 ctctttttga cactaacac ttttaaaaa gcttatcttt gccttccca 2100 aacaagaagc aatagtctcc aagtcaatat aaattctaca gaaaatagtg 2150 ttctttttc ccagaaaaat gcttgtgaga atcattaaaa catgtgacaa 2200 tttaggatt ctttgttta tttcactgat taatatactg tggcaaatta 2200 cacagattat taaattttt tacaagagta tagtatatt atttgaaatg 2300 ggaaaagtgc attttactg attttgtga ttttgttat ttctcagaat 2397

<400> 273

Met Ala	Arg Glu Asp	Ser Val Lys	Cys Leu Arg Cy	s Leu Leu Tyr
1	5		10	15

Ala Leu Asn Leu Leu Phe Trp Leu Met Ser Ile Ser Val Leu Ala 20 25 30

Val Ser Ala Trp Met Arg Asp Tyr Leu Asn Asn Val Leu Thr Leu 35 40 45

Thr Ala Glu Thr Arg Val Glu Glu Ala Val Ile Leu Thr Tyr Phe
50 55 60

Pro Val Val His Pro Val Met Ile Ala Val Cys Cys Phe Leu Ile
65 70 75

Ile Val Gly Met Leu Gly Tyr Cys Gly Thr Val Lys Arg Asn Leu 80 85 90

Leu Leu Leu Ala Trp Tyr Phe Gly Ser Leu Leu Val Ile Phe Cys

Val Glu Leu Ala Cys Gly Val Trp Thr Tyr Glu Gln Glu Leu Met 110 115 120

<210> 273

<211> 305

<212> PRT

<213> Homo sapiens

Val	Pro	Val	Gln	Trp 125	Ser	Asp	Met	Val	Thr 130	Leu	Lys	Ala	Arg	Met 135
Thr	Asn	Tyr	Gly	Leu 140	Pro	Arg	Tyr	Arg	Trp 145	Leu	Thr	His	Ala	Trp 150
Asn	Phe	Phe	Gln	Arg 155	Glu	Phe	Lys	Cys	Cys 160	Gly	Val	Val	Tyr	Phe 165
Thr	Asp	Trp	Leu	Glu 170	Met	Thr	Glu	Met	Asp 175	Trp	Pro	Pro	Asp	Ser 180
Cys	Cys	Val	Arg	Glu 185	Phe	Pro	Gly	Cys	Ser 190	Lys	Gln	Ala	His	Gln 195
Glu	Asp	Leu	Ser	Asp 200	Leu	Tyr	Gln	Glu	Gly 205	Суѕ	Gly	Lys	Lys	Met 210
Tyr	Ser	Phe	Leu	Arg 215	Gly	Thr	Lys	Gln	Leu 220	Gln	Val	Leu	Arg	Phe 225
Leu	Gly	Ile	Ser	Ile 230	Gly	Val	Thr	Gln	Ile 235	Leu	Ala	Met	Ile	Leu 240
Thr	Ile	Thr	Leu	Leu 245	Trp	Ala	Leu	Tyr	Tyr 250	Asp	Arg	Arg	Glu	Pro 255
Gly	Thr	Asp	Gln	Met 260	Met	Ser	Leu	Lys	Asn 265	Asp	Asn	Ser	Gln	His 270
Leu	Ser	Cys	Pro	Ser 275	Val	Glu	Leu	Leu	Lys 280	Pro	Ser	Leu	Ser	Arg 285
Ile	Phe	Glu	His	Thr 290	Ser	Met	Ala	Asn	Ser 295	Phe	Asn	Thr	His	Phe 300
Glu	Met	Glu	Glu	Leu 305										
<210>														
<211><212>														
<213>	· Hom	no sa	pier	ıs										

<400> 274

gagagaggca gcagcttgct cagcggacaa ggatgctggg cgtgagggac 50
caaggcctgc cctgcactcg ggcctcctcc agccagtgct gaccagggac 100
ttctgacctg ctggccagcc aggacctgtg tggggaggcc ctcctgctgc 150
cttggggtga caatctcagc tccaggctac agggagaccg ggaggatcac 200
agagccagca tgttacagga tcctgacagt gatcaacctc tgaacagcct 250
cgatgtcaaa cccctgcgca aaccccgtat ccccatggag accttcagaa 300

aggtggggat ccccatcatc atagcactac tgagcctggc gagtatcatc 350 attgtggttg tcctcatcaa ggtgattctg gataaatact acttcctctg 400 cgggcagcct ctccacttca tcccgaggaa gcagctgtgt gacggagagc 450 tggactgtcc cttgggggag gacgaggagc actgtgtcaa gagcttcccc 500 gaagggcctg cagtggcagt ccgcctctcc aaggaccgat ccacactgca 550 ggtgctggac tcggccacag ggaactggtt ctctgcctgt ttcgacaact 600 tcacagaagc tctcgctgag acagcctgta ggcagatggg ctacagcaga 650 gctgtggaga ttggcccaga ccaggatctg gatgttgttg aaatcacaga 700 aaacagccag gagcttcgca tgcggaactc aagtgggccc tgtctctcag 750 gctccctggt ctccctgcac tgtcttgcct gtgggaagag cctgaagacc 800 ccccgtgtgg tgggtgggga ggaggcctct gtggattctt ggccttggca 850 ggtcagcatc cagtacgaca aacagcacgt ctgtggaggg agcatcctgg 900 acceccactg ggteeteacg geageceact getteaggaa acatacegat 950 gtgttcaact ggaaggtgcg ggcaggctca gacaaactgg gcagcttccc 1000 atccctggct gtggccaaga tcatcatcat tgaattcaac cccatgtacc 1050 ccaaagacaa tgacatcgcc ctcatgaagc tgcagttccc actcactttc 1100 teaggeacag teaggeeeat etgtetgeee ttetttgatg aggageteae 1150 tecagecace ceaetetgga teattggatg gggetttacg aageagaatg 1200 gagggaagat gtctgacata ctgctgcagg cgtcagtcca ggtcattgac 1250 agcacacggt gcaatgcaga cgatgcgtac cagggggaag tcaccgagaa 1300 gatgatgtgt gcaggcatcc cggaaggggg tgtggacacc tgccagggtg 1350 acagtggtgg gcccctgatg taccaatctg accagtggca tgtggtgggc 1400 atcgttaget ggggetatgg etgeggggge eegageacee eaggagtata 1450 caccaaggtc tcagcctatc tcaactggat ctacaatgtc tggaaggctg 1500 agetgtaatg etgetgeece tttgeagtge tgggageege tteetteetg 1550 ccctgcccac ctggggatcc cccaaagtca gacacagagc aagagtcccc 1600 ttgggtacac ccctctgccc acagcctcag catttcttgg agcagcaaag 1650 ggcctcaatt cctgtaagag accctcgcag cccagaggcg cccagaggaa 1700

gtcagcagcc ctagctcggc cacacttggt gctcccagca tcccagggag 1750
agacacagcc cactgaacaa ggtctcaggg gtattgctaa gccaagaagg 1800
aactttccca cactactgaa tggaagcagg ctgtcttgta aaagcccaga 1850
tcactgtggg ctggagagga gaaggaaagg gtctgcgcca gccctgtccg 1900
tcttcaccca tccccaagcc tactagagca agaaaccagt tgtaatataa 1950
aatgcactgc cctactgttg gtatgactac cgttacctac tgttgtcatt 2000
gttattacag ctatggccac tattattaaa gagctgtgta acatctctgg 2050
caaaaaaaaa aaa 2063

<210> 275

<211> 432

<212> PRT

<213> Homo sapiens

<400> 275

Met Leu Gln Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp 1 5 10

Val Lys Pro Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg
20 25 30

Lys Val Gly Ile Pro Ile Ile Ile Ala Leu Leu Ser Leu Ala Ser 35 40 45

Ile Ile Ile Val Val Leu Ile Lys Val Ile Leu Asp Lys Tyr
50 55 60

Tyr Phe Leu Cys Gly Gln Pro Leu His Phe Ile Pro Arg Lys Gln
65 70 75

Leu Cys Asp Gly Glu Leu Asp Cys Pro Leu Gly Glu Asp Glu Glu 80 85 90

His Cys Val Lys Ser Phe Pro Glu Gly Pro Ala Val Ala Val Arg 95 100 105

Leu Ser Lys Asp Arg Ser Thr Leu Gln Val Leu Asp Ser Ala Thr 110 115 120

Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn Phe Thr Glu Ala Leu 125 130 135

Ala Glu Thr Ala Cys Arg Gln Met Gly Tyr Ser Arg Ala Val Glu 140 145 150

Ile Gly Pro Asp Gln Asp Leu Asp Val Val Glu Ile Thr Glu Asn 155 160 165

Ser Gln Glu Leu Arg Met Arg Asn Ser Ser Gly Pro Cys Leu Ser 170 175 180

Gly Ser	Leu	Val	Ser 185	Leu	His	Cys	Leu	Ala 190	Cys	Gly	Lys	Ser	Leu 195
Lys Thr	Pro	Arg	Val 200	Val	Gly	Gly	Glu	Glu 205	Ala	Ser	Val	Asp	Ser 210
Trp Pro	Trp	Gln	Val 215	Ser	Ile	Gln	Tyr	Asp 220	Lys	Gln	His	Val	Cys 225
Gly Gly	Ser	Ile	Leu 230	Asp	Pro	His	Trp	Val 235	Leu	Thr	Ala	Ala	His 240
Cys Phe	Arg	Lys	His 245	Thr	Asp	Val	Phe	Asn 250	Trp	Lys	Val	Arg	Ala 255
Gly Ser	Asp	Lys	Leu 260	Gly	Ser	Phe	Pro	Ser 265	Leu	Ala	Val	Ala	Lys 270
Ile Ile	Ile	Ile	Glu 275	Phe	Asn	Pro	Met	Tyr 280	Pro	Lys	Asp	Asn	Asp 285
Ile Ala	Leu	Met	Lys 290	Leu	Gln	Phe	Pro	Leu 295	Thr	Phe	Ser	Gly	Thr 300
Val Arg	Pro	Ile	Cys 305	Leu	Pro	Phe	Phe	Asp 310	Glu	Glu	Leu	Thr	Pro 315
Ala Thr	Pro	Leu	Trp 320	Ile	Ile	Gly	Trp	Gly 325	Phe	Thr	Lys	Gln	Asn 330
Gly Gly	Lys	Met	Ser 335	Asp	Ile	Leu	Leu	Gln 340	Ala	Ser	Val	Gln	Val 345
Ile Asp	Ser	Thr	Arg 350	Cys	Asn	Ala	Asp	Asp 355	Ala	Tyr	Gln	Gly	Glu 360
Val Thr	Glu	Lys	Met 365	Met	Cys	Ala	Gly	Ile 370	Pro	Glu	Gly	Gly	Val 375
Asp Thr	Cys	Gln	Gly 380	Asp	Ser	Gly	Gly	Pro 385	Leu	Met	Tyr	Gln	Ser 390
Asp Gln	Trp	His	Val 395	Val	Gly	Ile	Val	Ser 400	Trp	Gly	Tyr	Gly	Cys 405
Gly Gly	Pro	Ser	Thr 410	Pro	Gly	Val	Tyr	Thr 415	Lys	Val	Ser	Ala	Tyr 420
Leu Asn	Trp	Ile	Tyr 425	Asn	Val	Trp	Lys	Ala 430	Glu	Leu			

<210> 276

<211> 3143

<212> DNA

<213> Homo sapiens

<400> 276 gggctgaggc actgagagac cggaaagcct ggcattccag agggagggaa 50 acgcagcggc atccccaggc tccagagctc cctggtgaca gtctgtggct 100 gagcatggcc ctcccagccc tgggcctgga cccctggagc ctcctgggcc 150 ttttcctctt ccaactgctt cagctgctgc tgccgacgac gaccgcgggg 200 ggaggcgggc aggggcccat gcccagggtc agatactatg caggggatga 250 acgtagggca cttagcttct tccaccagaa gggcctccag gattttgaca 300 ctctgctcct gagtggtgat ggaaatactc tctacgtggg ggctcgagaa 350 gccattctgg ccttggatat ccaggatcca ggggtcccca ggctaaagaa 400 catgataccg tggccagcca gtgacagaaa aaagagtgaa tgtgccttta 450 agaagaagag caatgagaca cagtgtttca acttcatccg tgtcctggtt 500 tettacaatg teacecatet etacacetge ggeacetteg cetteagece 550 tgcttgtacc ttcattgaac ttcaagattc ctacctgttg cccatctcgg 600 aggacaaggt catggaggga aaaggccaaa gcccctttga ccccgctcac 650 aagcatacgg ctgtcttggt ggatgggatg ctctattctg gtactatgaa 700 caactteetg ggeagtgage ceatectgat gegeaeactg ggateceage 750 ctgtcctcaa gaccgacaac ttcctccgct ggctgcatca tgacgcctcc 800 tttgtggcag ccatcccttc gacccaggtc gtctacttct tcttcgagga 850 gacagccagc gagtttgact tctttgagag gctccacaca tcgcgggtgg 900 ctagagtctg caagaatgac gtgggcggcg aaaagctgct gcagaagaag 950 tggaccacct teetgaagge eeagetgete tgeacceage eggggeaget 1000 gecetteaac gteateegee aegeggteet geteeeegee gatteteeca 1050 cagetececa catetacgea gtetteacet eccagtggea ggttggeggg 1100 accaggaget etgeggtttg tgeettetet etettggaca ttgaaegtgt 1150 ctttaagggg aaatacaaag agttgaacaa agaaacttca cgctggacta 1200 cttatagggg ccctgagacc aacccccggc caggcagttg ctcagtgggc 1250 ccctcctctg ataaggccct gaccttcatg aaggaccatt tcctgatgga 1300 tgagcaagtg gtggggacgc ccctgctggt gaaatctggc gtggagtata 1350 cacggcttgc agtggagaca gcccagggcc ttgatgggca cagccatctt 1400

gtcatgtacc tgggaaccac cacagggtcg ctccacaagg ctgtggtaag 1450 tggggacagc agtgctcatc tggtggaaga gattcagctg ttccctgacc 1500 ctgaacctgt tcgcaacctg cagctggccc ccacccaggg tgcagtgttt 1550 gtaggettet caggaggtgt etggagggtg eccegageea actgtagtgt 1600 ctatgagage tgtgtggaet gtgteettge eegggaeeee eactgtgeet 1650 gggaccetga gteecgaace tgttgeetee tgtetgeece caacetgaae 1700 teetggaage aggacatgga gegggggaae eeagagtggg catgtgeeag 1750 tggccccatg agcaggagcc ttcggcctca gagccgcccg caaatcatta 1800 aagaagtcct ggctgtcccc aactccatcc tggagctccc ctgcccccac 1850 ctgtcagcct tggcctctta ttattggagt catggcccag cagcagtccc 1900 agaagcctct tccactgtct acaatggctc cctcttgctg atagtgcagg 1950 atggagttgg gggtctctac cagtgctggg caactgagaa tggcttttca 2000 taccetgtga tetectactg ggtggacage caggaccaga ceetggeeet 2050 ggatcctgaa ctggcaggca tcccccggga gcatgtgaag gtcccgttga 2100 ccagggtcag tggtggggcc gccctggctg cccagcagtc ctactggccc 2150 cactttgtca ctgtcactgt cctctttgcc ttagtgcttt caggagccct 2200 catcatecte gtggeeteee cattgagage acteeggget eggggeaagg 2250 ttcagggctg tgagaccctg cgccctgggg agaaggcccc gttaagcaga 2300 gagcaacacc tccagtctcc caaggaatgc aggacctctg ccagtgatgt 2350 ggacgetgae aacaactgee taggeactga ggtagettaa actetaggea 2400 caggeegggg ctgeggtgca ggeaectgge catgetgget gggeggeeca 2450 agcacagece tgaetaggat gaeageagea caaaagaeea eettteteee 2500 ctgagaggag cttctgctac tctgcatcac tgatgacact cagcagggtg 2550 atgcacagca gtctgcctcc cctatgggac tcccttctac caagcacatg 2600 agetetetaa eagggtgggg getaeeeeca gaeetgetee tacaetgata 2650 ttgaagaacc tggagaggat ccttcagttc tggccattcc agggaccctc 2700 cagaaacaca gtgtttcaag agaccctaaa aaacctgcct gtcccaggac 2750 cctatggtaa tgaacaccaa acatctaaac aatcatatgc taacatgcca 2800 ctcctggaaa ctccactctg aagctgccgc tttggacacc aacactccct 2850

teteccaggg teatgeaggg atetgetece teetgettee ettaccagte 2900 gtgcaccget gacteccagg aagtetttee tgaagtetga ceacetttet 2950 tettgettea gttggggeag actetgatee ettetgeeet ggeagaatgg 3000 caggggtaat etgageette tteacteett taccetaget gacecettea 3050 ceteteccee teeetttee tttgttttgg gatteagaaa actgettgte 3100 agagaetgtt tatttttat taaaaatata aggettaaaa aaa 3143

<210> 277

<211> 761

<212> PRT

<213> Homo sapiens

<400> 277

Met Ala Leu Pro Ala Leu Gly Leu Asp Pro Trp Ser Leu Leu Gly
1 5 10 15

Leu Phe Leu Phe Gln Leu Leu Gln Leu Leu Leu Pro Thr Thr Thr 20 25 30

Ala Gly Gly Gly Gln Gly Pro Met Pro Arg Val Arg Tyr Tyr
35 40 45

Ala Gly Asp Glu Arg Arg Ala Leu Ser Phe Phe His Gln Lys Gly
50 55 60

Leu Gln Asp Phe Asp Thr Leu Leu Ser Gly Asp Gly Asn Thr 65 70 75

Leu Tyr Val Gly Ala Arg Glu Ala Ile Leu Ala Leu Asp Ile Gln
80 85 90

Asp Pro Gly Val Pro Arg Leu Lys Asn Met Ile Pro Trp Pro Ala 95 100 105

Ser Asp Arg Lys Lys Ser Glu Cys Ala Phe Lys Lys Ser Asn 110 115 120

Glu Thr Gln Cys Phe Asn Phe Ile Arg Val Leu Val Ser Tyr Asn 125 130 135

Val Thr His Leu Tyr Thr Cys Gly Thr Phe Ala Phe Ser Pro Ala 140 145 150

Cys Thr Phe Ile Glu Leu Gln Asp Ser Tyr Leu Leu Pro Ile Ser 155 160 165

Glu Asp Lys Val Met Glu Gly Lys Gly Gln Ser Pro Phe Asp Pro 170 175 180

Ala His Lys His Thr Ala Val Leu Val Asp Gly Met Leu Tyr Ser 185 190 195

C	Gly	Thr	Met	Asn	Asn 200	Phe	Leu	Gly	Ser	Glu 205	Pro	Ile	Leu	Met	Arg 210
ין	ľhr	Leu	Gly	Ser	Gln 215	Pro	Val	Leu	Lys	Thr 220	Asp	Asn	Phe	Leu	Arg 225
ר	ſrp	Leu	His	His	Asp 230	Ala	Ser	Phe	Val	Ala 235	Ala	Ile	Pro	Ser	Thr 240
G	Sln	Val	Val	Tyr	Phe 245	Phe	Phe	Glu	Glu	Thr 250	Ala	Ser	Glu	Phe	Asp 255
F	Phe	Phe	Glu	Arg	Leu 260	His	Thr	Ser	Arg	Val 265	Ala	Arg	Val	Cys	Lys 270
P	Asn	Asp	Val	Gly	Gly 275	Glu	Lys	Leu	Leu	Gln 280	Lys	Lys	Trp	Thr	Thr 285
P	he	Leu	Lys	Ala	Gln 290	Leu	Leu	Cys	Thr	Gln 295	Pro	Gly	Gln	Leu	Pro 300
P	he	Asn	Val	Ile	Arg 305	His	Ala	Val	Leu	Leu 310	Pro	Ala	Asp	Ser	Pro 315
Т	'hr	Ala	Pro	His	Ile 320	Tyr	Ala	Val	Phe	Thr 325	Ser	Gln	Trp	Gln	Val 330
G	lу	Gly	Thr	Arg	Ser 335	Ser	Ala	Val	Cys	Ala 340	Phe	Ser	Leu	Leu	Asp 345
I	le	Glu	Arg	Val	Phe 350	Lys	Gly	Lys	Tyr	Lys 355	Glu	Leu	Asn	Lys	Glu 360
Т	hr	Ser	Arg	Trp	Thr 365	Thr	Tyr	Arg	Gly	Pro 370	Glu	Thr	Asn	Pro	Arg 375
Р	ro	Gly	Ser	Cys	Ser 380	Val	Gly	Pro	Ser	Ser 385	Asp	Lys	Ala	Leu	Thr 390
P.	he	Met	Lys	Asp	His 395	Phe	Leu	Met	Asp	Glu 400	Gln	Val	Val	Gly	Thr 405
Ρ:	ro	Leu	Leu .	Val	Lys 410	Ser	Gly	Val	Glu	Tyr 415	Thr	Arg	Leu	Ala	Val 420
G.	lu	Thr	Ala	Gln	Gly 425	Leu	Asp	Gly	His	Ser 430	His	Leu	Val	Met	Tyr 435
Le	eu	Gly	Thr	Thr	Thr 440	Gly	Ser	Leu	His	Lys 445	Ala	Val	Val	Ser	Gly 450
As	sp	Ser	Ser		His 455	Leu	Val	Glu	Glu	Ile 460	Gln	Leu	Phe	Pro	Asp 465
Pı	ro	Glu	Pro		Arg 470	Asn	Leu	Gln	Leu	Ala 475	Pro	Thr	Gln	Gly	Ala 480

Val	Phe	Val	Gly	Phe 485	Ser	Gly	Gly	Val	Trp 490	Arg	Val	Pro	Arg	Ala 495
Asn	Суз	Ser	Val	Tyr 500	Glu	Ser	Суѕ	Val	Asp 505	Cys	Val	Leu	Ala	Arg 510
Asp	Pro	His	Суѕ	Ala 515	Trp	Asp	Pro	Glu	Ser 520	Arg	Thr	Cys	Cys	Leu 525
Leu	Ser	Ala	Pro	Asn 530	Leu	Asn	Ser	Trp	Lys 535	Gln	Asp	Met	Glu	Arg 540
Gly	Asn	Pro	Glu	Trp 545	Ala	Cys	Ala	Ser	Gly 550	Pro	Met	Ser	Arg	Ser 555
Leu	Arg	Pro	Gln	Ser 560	Arg	Pro	Gln	Ile	Ile 565	Lys	Glu	Val	Leu	Ala 570
Val	Pro	Asn	Ser	Ile 575	Leu	Glu	Leu	Pro	Cys 580	Pro	His	Leu	Ser	Ala 585
Leu	Ala	Ser	Tyr	Tyr 590	Trp	Ser	His	Gly	Pro 595	Ala	Ala	Val	Pro	Glu 600
Ala	Ser	Ser	Thr	Val 605	Tyr	Asn	Gly	Ser	Leu 610	Leu	Leu	Ile	Val	Gln 615
Asp	Gly	Val	Gly	Gly 620	Leu	Tyr	Gln	Cys	Trp 625	Ala	Thr	Glu	Asn	Gly 630
Phe	Ser	Tyr	Pro	Val 635	Ile	Ser	Tyr	Trp	Val 640	Asp	Ser	Gln	Asp	Gln 645
Thr	Leu	Ala	Leu	Asp 650	Pro	Glu	Leu	Ala	Gly 655	Ile	Pro	Arg	Glu	His 660
Val	Lys	Val		Leu 665	Thr	Arg	Val	Ser	Gly 670	_	Ala	Ala	Leu	Ala 675
Ala	Gln	Gln	Ser	Tyr 680	Trp	Pro	His	Phe	Val 685	Thr	Val	Thr	Val	Leu 690
Phe	Ala	Leu	Val	Leu 695	Ser	Gly	Ala	Leu	Ile 700	Ile	Leu	Val	Ala	Ser 705
Pro	Leu	Arg	Ala	Leu 710	Arg	Ala	Arg	Gly	Lys 715	Val	Gln	Gly	Cys	Glu 720
Thr	Leu	Arg	Pro	Gly 725	Glu	Lys	Ala	Pro	Leu 730	Ser	Arg	Glu	Gln	His 735
Leu	Gln	Ser	Pro	Lys 740	Glu	Cys	Arg	Thr	Ser 745	Ala	Ser	Asp	Val	Asp 750
Ala	Asp	Asn	Asn	Cys 755	Leu	Gly	Thr	Glu	Val 760	Ala				

```
<210> 278
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 278
 ctgctggtga aatctggcgt ggag 24
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 279
gtctggtcct ggctgtccac ccaq 24
<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 280
catcttgtca tgtacctggg aaccaccaca gggtcgctcc acaag 45
<210> 281
<211> 2320
<212> DNA
<213> Homo sapiens
<400> 281
agggtccctt agccgggcgc agggcgcgca gcccaggctg agatccgcgg 50
cttccgtaga agtgagcatg gctgggcagc gagtgcttct tctagtgggc 100
ttccttctcc ctggggtcct gctctcagag gctgccaaaa tcctgacaat 150
atctacagta ggtggaagcc attatctact gatggaccgg gtttctcaga 200
ttcttcaaga tcacggtcat aatgtcacca tgcttaacca caaaagaggt 250
ccttttatgc cagattttaa aaaggaagaa aaatcatatc aagttatcag 300
ttggcttgca cctgaagatc atcaaagaga atttaaaaag agttttgatt 350
tctttctgga agaaacttta ggtggcagag gaaaatttga aaacttatta 400
aatgttctag aatacttggc gttgcagtgc agtcattttt taaatagaaa 450
```

ggatatcatg gattccttaa agaatgagaa cttcgacatg gtgatagttg 500 aaacttttga ctactgtcct ttcctgattg ctgagaagct tgggaagcca 550 tttgtggcca ttctttccac ttcattcggc tctttggaat ttgggctacc 600 aatccccttg tcttatgttc cagtattccg ttccttgctg actgatcaca 650 tggacttctg gggccgagtg aagaattttc tgatgttctt tagtttctgc 700 aggaggcaac agcacatgca gtctacattt gacaacacca tcaaggaaca 750 tttcacagaa ggctctaggc cagttttgtc tcatcttcta ctgaaagcag 800 agttgtggtt cattaactct gactttgcct ttgattttgc tcgacctctg 850 cttcccaaca ctgtttatgt tggaggcttg atggaaaaac ctattaaacc 900 agtaccacaa gacttggaga acttcattgc caagtttggg gactctggtt 950 ttgtccttgt gaccttgggc tccatggtga acacctgtca gaatccggaa 1000 atetteaagg agatgaacaa tgeetttget caeetaeeee aaggggtgat 1050 atggaagtgt cagtgttctc attggcccaa agatgtccac ctggctgcaa 1100 atgtgaaaat tgtggactgg cttcctcaga gtgacctcct ggctcaccca 1150 agcatccgtc tgtttgtcac ccacggcggg cagaatagca taatggaggc 1200 catccagcat ggtgtgccca tggtggggat ccctctcttt ggagaccagc 1250 ctgaaaacat ggtccgagta gaagccaaaa agtttggtgt ttctattcag 1300 ttaaagaagc tcaaggcaga gacattggct cttaagatga aacaaatcat 1350 ggaagacaag agatacaagt ccgcggcagt ggctgccagt gtcatcctgc 1400 gctcccaccc gctcagcccc acacagcggc tggtgggctg gattgaccac 1450 gtcctccaga cagggggcgc gacgcacctc aagccctatg tctttcagca 1500 gccctggcat gagcagtacc tgttcgacgt ttttgtgttt ctgctggggc 1550 tcactctggg gactctatgg ctttgtggga agctgctggg catggctgtc 1600 tggtggctgc gtggggccag aaaggtgaag gagacataag gccaggtgca 1650 gccttggcgg ggtctgtttg gtgggcgatg tcaccatttc tagggagctt 1700 cccactagtt ctggcagccc cattctctag tccttctagt tatctcctgt 1750 tttcttgaag aacaggaaaa atggccaaaa atcatccttt ccacttgcta 1800 attttgctac aaattcatcc ttactagete etgeetgeta geagaaatet 1850

ttccagtcct cttgtcctcc tttgtttgcc atcagcaagg gctatgctgt 1900 gattctgtct ctgagtgact tggaccactg accetcagat ttccagcett 1950 aaaatccacc ttccttcta tgcgcctctc cgaatcacac cctgactctt 2000 ccagcetcca tgtccagacc tagtcagcct ctctcactcc tgcccctact 2050 atctatcatg gaataacatc caagaaagac accttgcata ttctttcagt 2100 ttctgttttg ttctccaca tattctcttc aatgctcagg aagcctgccc 2150 tgtgcttgag agttcagggc cggacacagg ctcacaggtc tccacattgg 2200 gtccctgtct ctggtgcca cagtgagctc cttcttggct gagcaggcat 2250 ggagactgta ggtttccaga tttcctgaaa aataaaagtt tacagcgtta 2300 tctcccca acctcactaa 2320

<210> 282

<211> 523

<212> PRT

<213> Homo sapiens

<400> 282

Met Ala Gly Gln Arg Val Leu Leu Val Gly Phe Leu Leu Pro 1 5 10 15

Gly Val Leu Leu Ser Glu Ala Ala Lys Ile Leu Thr Ile Ser Thr
20 25 30

Val Gly Gly Ser His Tyr Leu Leu Met Asp Arg Val Ser Gln Ile 35 40 45

Leu Gln Asp His Gly His Asn Val Thr Met Leu Asn His Lys Arg
50 55 60

Gly Pro Phe Met Pro Asp Phe Lys Lys Glu Glu Lys Ser Tyr Gln
65 70 75

Val Ile Ser Trp Leu Ala Pro Glu Asp His Gln Arg Glu Phe Lys 80 85 90

Lys Ser Phe Asp Phe Phe Leu Glu Glu Thr Leu Gly Gly Arg Gly 95 100 105

Lys Phe Glu Asn Leu Leu Asn Val Leu Glu Tyr Leu Ala Leu Gln
110 115 120

Cys Ser His Phe Leu Asn Arg Lys Asp Ile Met Asp Ser Leu Lys 125 130 135

Asn Glu Asn Phe Asp Met Val Ile Val Glu Thr Phe Asp Tyr Cys 140 145 150

Pro Phe Leu Ile Ala Glu Lys Leu Gly Lys Pro Phe Val Ala Ile

Ala Ala Val Ala Ala Ser Val Ile Leu Arg Ser His Pro Leu Ser

<210> 286 <211> 2340 <212> DNA

<400> 285

<213> Homo sapiens

<400> 286 gggctgttga tttgtggggg attttgaaga gaggaggaat aggaggaagg 50

cccaaagatg tccacctggc tgcaaatgtg aaaattgtgg actgg 45

ggttgagggg ctgcctctgg catatgcaca cactcacaca ttctgtcaca 100 cccgtcacac acacatacca tgttctccat ccccccaggt ccagccctca 150 gtgctgtccc atccagcagg gctaccctga agctctggct gcagccctcc 200 cgtccagtgg gcaggcggct tcatccctcc tttctctccc aaagcccaac 250 tgctgtcact gcatgctctg ccaaggagga gggaactgca gtgacagcag 300 gagtaagagt gggaggcagg acagagctgg gacacaggta tggagagggg 350 gttcagcgag cctagagagg gcagactatc agggtgccgg cggtgagaat 400 ccagggagag gagcggaaac agaagaggg cagaagaccg gggcacttgt 450 gggttgcaga gcccctcagc catgttggga gccaagccac actggctacc 500 aggtccccta cacagtcccg ggctgccctt ggttctggtg cttctggccc 550 tgggggccgg gtgggcccag gaggggtcag agcccgtcct gctggagggg 600 gagtgcctgg tggtctgtga gcctggccga gctgctgcag gggggcccgg 650 gggagcagcc ctgggagagg caccccctgg gcgagtggca tttgctgcgg 700 teegaageea eeaceatgag eeageagggg aaaceggeaa tggeaceagt 750 ggggccatct acttcgacca ggtcctggtg aacgagggcg gtggctttga 800 ccgggcctct ggctccttcg tagcccctgt ccggggtgtc tacagcttcc 850 ggttccatgt ggtgaaggtg tacaaccgcc aaactgtcca ggtgagcctg 900 atgctgaaca cgtggcctgt catctcagcc tttgccaatg atcctgacgt 950 gaccegggag geagecacea getetgtget actgeeettg gaccetgggg 1000 accgagtgtc tetgegeetg egteggggga atetaetggg tggttggaaa 1050 tactcaagtt tetetggett ceteatette cetetetgag gacccaagte 1100 tttcaagcac aagaatccag cccctgacaa ctttcttctg ccctctcttg 1150 ccccagaaac agcagaggca ggagagagac tccctctggc tcctatccca 1200 cctctttgca tgggaccctg tgccaaacac ccaagtttaa gagaagagta 1250 gagetgtgge atetecagae caggeettte cacceaccea cececagtta 1300 ccctcccagc cacctgctgc atctgttcct gcctgcagcc ctaggatcag 1350 ggcaaggttt ggcaagaagg aagatctgca ctactttgcg gcctctgctc 1400 ctccggttcc cccaccccag cttcctgctc aatgctgatc agggacaggt 1450

ggcgcaggtg agcctgacag gccccacag gagcccagat ggacaagcct 1500 cagegtacee tgcaggette tteetgtgag gaaagecage atcaeggate 1550 tcagccagca ccgtcagaag ctgagccagc accgtatggg ctagggtggg 1600 aggeteagee acaggeagaa gggtgggaag ggeetggagt etgtggetgg 1650 tgaggaagga aggagggtgt attgtctaga ctgaacatgg tacacattct 1700 gcatgtatag cagagcagcc agcaggtagc aatcctggct gtccttctat 1750 gctggatccc agatggactc tggcccttac ctccccacct gagattaggg 1800 tgagtgtgtt tgctctggct gagagcagag ctgagagcag gtatacagag 1850 ctggaagtgg accatggaaa acatcgataa ccatgcatcc tcttgcttgg 1900 ccacctcctg aaactgctcc acctttgaag tttgaacttt agtccctcca 1950 cactetgact getgeeteet teeteecage teteteactg agttatette 2000 actgtacctg ttccagcata tccccactat ctctcttct cctgatctgt 2050 gctgtcttat tctcctcctt aggcttccta ttacctggga ttccatgatt 2100 catteettea gaccetetee tgccagtatg ctaaaccete cetetett 2150 tettateeeg etgteeeatt ggeeeageet ggatgaatet ateaataaaa 2200 caactagaga atggtggtca gtgagacact atagaattac taaggagaag 2250 atgcctctgg agtttggatc gggtgttaca ggtacaagta ggtatgttgc 2300 agaggaaaat aaatatcaaa ctgtatacta aaattaaaaa 2340

<210> 287

<211> 205

<212> PRT

<213> Homo sapiens

<400> 287

Met Leu Gly Ala Lys Pro His Trp Leu Pro Gly Pro Leu His Ser 1 5 10 15

Pro Gly Leu Pro Leu Val Leu Val Leu Leu Ala Leu Gly Ala Gly 20 25 30

Trp Ala Gln Glu Gly Ser Glu Pro Val Leu Leu Glu Gly Glu Cys 35 40 45

Leu Val Val Cys Glu Pro Gly Arg Ala Ala Ala Gly Gly Pro Gly 50 55 60

Gly Ala Ala Leu Gly Glu Ala Pro Pro Gly Arg Val Ala Phe Ala 65 70 75

```
Ala Val Arg Ser His His His Glu Pro Ala Gly Glu Thr Gly Asn
                                       85
 Gly Thr Ser Gly Ala Ile Tyr Phe Asp Gln Val Leu Val Asn Glu
                                      100
 Gly Gly Gly Phe Asp Arg Ala Ser Gly Ser Phe Val Ala Pro Val
                                      115
 Arg Gly Val Tyr Ser Phe Arg Phe His Val Val Lys Val Tyr Asn
                                      130
 Arg Gln Thr Val Gln Val Ser Leu Met Leu Asn Thr Trp Pro Val
                  140
                                      145
 Ile Ser Ala Phe Ala Asn Asp Pro Asp Val Thr Arg Glu Ala Ala
                  155
                                      160
 Thr Ser Ser Val Leu Leu Pro Leu Asp Pro Gly Asp Arg Val Ser
                  170
                                      175
 Leu Arg Leu Arg Arg Gly Asn Leu Leu Gly Gly Trp Lys Tyr Ser
                  185
                                      190
 Ser Phe Ser Gly Phe Leu Ile Phe Pro Leu
                 200
<210> 288
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 288
 aggcagccac cagctctgtg ctac 24
<210> 289
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
cagagagga agatgaggaa gccagag 27
<210> 290
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

<400> 290 ctgtgctact gcccttggac cctggggacc gagtgtctct gc 42

<210> 291

<211> 1570

<212> DNA

<213> Homo sapiens

<400> 291

gctgtttctc tcgcgccacc actggccgcc ggccgcagct ccaggtgtcc 50 tageegeeca geetegaege egteeeggga eeeetgtget etgegegaag 100 ccctggcccc gggggccggg gcatgggcca ggggcgcggg gtgaagcggc 150 ttcccgcggg gccgtgactg ggcgggcttc agccatgaag accctcatag 200 ccgcctactc cggggtcctg cgcggcgagc gtcaggccga ggctgaccgg 250 agccagcgct ctcacggagg acctgcgctg tcgcgcgagg ggtctgggag 300 atggggcact ggatccagca tecteteege ecteeaggae etettetetg 350 tcacctggct caataggtcc aaggtggaaa agcagctaca ggtcatctca 400 gtgctccagt gggtcctgtc cttccttgta ctgggagtgg cctgcagtgc 450 catcctcatg tacatattct gcactgattg ctggctcatc gctgtgctct 500 acttcacttg gctggtgttt gactggaaca cacccaagaa aggtggcagg 550 aggtcacagt gggtccgaaa ctgggctgtg tggcgctact ttcgagacta 600 ctttcccatc cagctggtga agacacacaa cctgctgacc accaggaact 650 atatctttgg ataccacccc catggtatca tgggcctggg tgccttctgc 700 aacttcagca cagaggccac agaagtgagc aagaagttcc caggcatacg 750 gccttacctg gctacactgg caggcaactt ccgaatgcct gtgttgaggg 800 agtacctgat gtctggaggt atctgccctg tcagccggga caccatagac 850 tatttgcttt caaagaatgg gagtggcaat gctatcatca tcgtggtcgg 900 gggtgcggct gagtctctga gctccatgcc tggcaagaat gcagtcaccc 950 tgcggaaccg caagggcttt gtgaaactgg ccctgcgtca tggagctgac 1000 ctggttccca tctactcctt tggagagaat gaagtgtaca agcaggtgat 1050 cttcgaggag ggctcctggg gccgatgggt ccagaagaag ttccagaaat 1100 acattggttt cgccccatgc atcttccatg gtcgaggcct cttctcctcc 1150 gacacctggg ggctggtgcc ctactccaag cccatcacca ctgttgtggg 1200

<210> 292

<211> 388

<212> PRT

<213> Homo sapiens

<400> 292

Met Lys Thr Leu Ile Ala Ala Tyr Ser Gly Val Leu Arg Gly Glu 1 5 10 10 15

Arg Gln Ala Glu Ala Asp Arg Ser Gln Arg Ser His Gly Gly Pro $20 \\ 25 \\ 30$

Ala Leu Ser Arg Glu Gly Ser Gly Arg Trp Gly Thr Gly Ser Ser 35 40 45

Arg Ser Lys Val Glu Lys Gln Leu Gln Val Ile Ser Val Leu Gln 65 70 75

Trp Val Leu Ser Phe Leu Val Leu Gly Val Ala Cys Ser Ala Ile 80 85 90

Leu Met Tyr Ile Phe Cys Thr Asp Cys Trp Leu Ile Ala Val Leu 95 100 105

Tyr Phe Thr Trp Leu Val Phe Asp Trp Asn Thr Pro Lys Lys Gly 110 115 120

Gly Arg Arg Ser Gln Trp Val Arg Asn Trp Ala Val Trp Arg Tyr 125 130 135

Phe Arg Asp Tyr Phe Pro Ile Gln Leu Val Lys Thr His Asn Leu 140 145 150

Leu Thr Thr Arg Asn Tyr Ile Phe Gly Tyr His Pro His Gly Ile 155 160 165

Met Gly Leu Gly Ala Phe Cys Asn Phe Ser Thr Glu Ala Thr Glu 170 175 180

Val	Ser	Lys	Lys	Phe 185	Pro	Gly	'Ile	Arg	Pro 190	Tyr	Leu	ı Ala	Thr	Leu 195
Ala	Gly	Asn	Phe	Arg 200	Met	Pro	Val	Leu	Arg 205	Glu	Tyr	Leu	Met	Ser 210
Gly	Gly	Ile	Cys	Pro 215	Val	Ser	Arg	Asp	Thr 220	Ile	Asp	Tyr	Leu	Leu 225
Ser	Lys	Asn	Gly	Ser 230	Gly	Asn	Ala	Ile	Ile 235	Ile	Val	Val	Gly	Gly 240
Ala	Ala	Glu	Ser	Leu 245	Ser	Ser	Met	Pro	Gly 250	Lys	Asn	Ala	Val	Thr 255
Leu	Arg	Asn	Arg	Lys 260	Gly	Phe	Val	Lys	Leu 265	Ala	Leu	Arg	His	Gly 270
Ala	Asp	Leu	Val	Pro 275	Ile	Tyr	Ser	Phe	Gly 280	Glu	Asn	Glu	Val	Tyr 285
Lys	Gln	Val	Ile	Phe 290	Glu	Glu	Gly	Ser	Trp 295	Gly	Arg	Trp	Val	Gln 300
Lys	Lys	Phe	Gln	Lys 305	Tyr	Ile	Gly	Phe	Ala 310	Pro	Cys	Ile	Phe	His 315
Gly	Arg	Gly	Leu	Phe 320	Ser	Ser	Asp	Thr	Trp 325	Gly	Leu	Val	Pro	Tyr 330
Ser	Lys	Pro	Ile	Thr 335	Thr	Val	Val	Gly	Glu 340	Pro	Ile	Thr	Ile	Pro 345
Lys	Leu	Glu	His	Pro 350	Thr	Gln	Gln	Asp	Ile 355	Asp	Leu	Tyr	His	Thr 360
Met	Tyr	Met	Glu	Ala 365	Leu	Val	Lys	Leu	Phe 370	Asp	Lys	His	Lys	Thr 375
Lys	Phe	Gly	Leu	Pro 380	Glu	Thr	Glu	Val	Leu 385	Glu	Val	Asn		
<210> <211>														
<211>														
<213>	Art:	ific	ial :	Sequ	ence									
<220> <223>	Synt	thet	ic o	ligo	nucle	eoti	de p	robe						
<400> gctga		gg ti	ccca	atcta	a cto	cc 2	4							
<210>							•							

<211> 24 <212> DNA

```
<213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 294
 cccacagaca cccatgacac ttcc 24
 <210> 295
 <211> 50
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 295
 aagaatgaat tgtacaaagc aggtgatctt cgaggagggc tcctggggcc 50
<210> 296
<211> 3060
<212> DNA
<213> Homo sapiens
<400> 296
 gggcggcggg atgggggccg ggggcggcgg gcgccgcact cgctgaggcc 50
 ccgacgcagg gccgggccgg gcccagggcc gaggagcgcg gcggccagag 100
 cggggccgcg gaggcgacgc cggggacgc cgcgcgacga gcaggtggcg 150
 gcggctgcag gcttgtccag ccggaagccc tgagggcagc tgttcccact 200
 ggctctgctg accttgtgcc ttggacggct gtcctcagcg aggggccgtg 250
caccegetee tgageagege catgggeetg etggeettee tgaagaeeca 300
gttcgtgctg cacctgctgg tcggctttgt cttcgtggtg agtggtctgg 350
tcatcaactt cgtccagctg tgcacgctgg cgctctggcc ggtcagcaag 400
cagetetace geogeeteaa etgeegeete geetaeteae tetggageea 450
actggtcatg ctgctggagt ggtggtcctg cacggagtgt acactgttca 500
cggaccaggc cacggtagag cgctttggga aggagcacgc agtcatcatc 550
ctcaaccaca acttcgagat cgacttcctc tgtgggtgga ccatgtgtga 600
gcgcttcgga gtgctgggga gctccaaggt cctcgctaag aaggagctgc 650
tctacgtgcc cctcatcggc tggacgtggt actttctgga gattgtgttc 700
tgcaagcgga agtgggagga ggaccgggac accgtggtcg aagggctgag 750
gegeetgteg gactaceceg agtacatgtg gttteteetg tactgegagg 800
```

ggacgcgctt cacggagacc aagcaccgcg ttagcatgga ggtggcggct 850 gctaaggggc ttcctgtcct caagtaccac ctgctgccgc ggaccaaggg 900 cttcaccacc gcagtcaagt gcctccgggg gacagtcgca gctgtctatg 950 atgtaaccct gaacttcaga ggaaacaaga acccgtccct gctggggatc 1000 ctctacggga agaagtacga ggcggacatg tgcgtgagga gatttcctct 1050 ggaagacatc ccgctggatg aaaaggaagc agctcagtgg cttcataaac 1100 tgtaccagga gaaggacgcg ctccaggaga tatataatca gaagggcatg 1150 tttccagggg agcagtttaa gcctgcccgg aggccgtgga ccctcctgaa 1200 cttcctgtcc tgggccacca ttctcctgtc tcccctcttc agttttgtct 1250 tgggcgtctt tgccagcgga tcacctctcc tgatcctgac tttcttgggg 1300 tttgtgggag cagetteett tggagttege agaetgatag gagaateget 1350 tgaacctggg aggtggagat tgcagtgagc tgagatggca tcactgtact 1400 ccagcctagg caacagagca agactcagtc tcaaaaaaaa aaaaaaacaa 1450 aaaaacccca gaaattctgg agttgaactg tgtagttact gacatgaaaa 1500 attcactaga ggctgaacag cagatttgag caggcagaaa aaaatcagca 1550 agcttgaaga tggtaccttg agatttttca ggctaatgaa aaaagaatga 1600 aggaaaatta acagcctcag agacccatgg tgcaccgtca cacaaatcaa 1650 catatgcatg atgagagtcc cagaaggaga ggagagaaag ggtcagaaag 1700 aatggccaca agctgatgaa aaacagtaac ctacccactc aggaagctca 1750 gtgaactcca atgaggatga atatcagaga tccacaccta gatatttcat 1800 aatcaaagtg tcaaatgaca aagaatcttg aaagcagcaa gagatgagca 1850 acttatcttg ttcaaaggat ctttgatcag attaacagct catttctcct 1900 cagaaatcat gggagccagg agatagtggg atgaacactg ttgaaggcaa 1950 aaccttcaac tgtaattatt ggacttttga gtcttagatg gtcctgacct 2000 ctttgtcttc agggacagtt tttcaattta atccctaata acaattagtc 2050 aagetteett gaeetgtagg aaggeetgte tttaggeegg geaeagtgge 2100 ttacacctgt aatcccagca ctttgggagg cccagacggg tggatcattt 2150 ggggtcaggc tgatctcaaa ctcctgagtt caggtgatct gcccgcctca 2200 gcctcccaaa gtgttgtgat tgcaggcgtg agccactgcg cctggccgga 2250

atttcttttt aaggctgaat gatgggggcc aggcacgatg gctcacgcct 2300 gtgatcccaa gtagcttgga ttgtaaacat gcaccaccat gcctggctaa 2350 tttttgtatt tttagtagag acgtgttagc caggctggtc tcgatctcct 2400 gacctcaagt gaccacctgc ctcagcctcc caaagtactg ggattacagg 2450 cgtgagccac tgtgcctggc cttgagcatc ttgtgatgtg cttattggcc 2500 atttgtatat cttctatctt ctttggggaa atgtctgttc aagtcctttg 2550 ttgttctgtt gcccaggctg gagtacagtg gcacagtctt ggctcactgc 2650 agcctcgacc tcctgggctg cagtgatcct cccacctcag cctcccttgt 2700 agctgtattt ttttgtattt tgtattttgt agctgtagtt tttgtatttt 2750 ttgtggagac agcatttcac catgatgccc aggctggtct tgaactcctg 2800 agetcaagtg atetgeetge tteageetee caaagtgetg ggattacaga 2850 catgagccac tgcacctggc aaactcccaa aattcaacac acacacacaa 2900 aaaaccacct gattcaaaat gggcagaggg gccgggtgtg gccccaacta 2950 ccagggagac tgaagtggga ggatcgcttg ggcatgagaa gtcgaggctg 3000 cagtgagtcg aggttgtgcg actgcattcc agcctggaca acagagtgag 3050 accetgtete 3060

<210> 297

<211> 368

<212> PRT

<213> Homo sapiens

<400> 297

Met Gly Leu Leu Ala Phe Leu Lys Thr Gln Phe Val Leu His Leu 1 5 10 15

Leu Val Gly Phe Val Phe Val Val Ser Gly Leu Val Ile As
n Phe 20 \$25\$

Val Gln Leu Cys Thr Leu Ala Leu Trp Pro Val Ser Lys Gln Leu 35 40 45

Tyr Arg Arg Leu Asn Cys Arg Leu Ala Tyr Ser Leu Trp Ser Gln 50

Leu Val Met Leu Glu Trp Trp Ser Cys Thr Glu Cys Thr Leu 65 70 75

Phe Thr Asp Gln Ala Thr Val Glu Arg Phe Gly Lys Glu His Ala

Va	.1 11	.e :	Ile	e Le	u As 9	n Hi 5	s A	sn	Phe	e Gl	u Il	.e A	sp	Ph	e Le	u Cy	ys Gly 105
Tr	p Th	r	1et	: Су:	s Gl 11	u Ar O	g Pl	he	Gl ₃	y Va	l Le 11	u G 5	ly	Se:	r Se	r Ly	s Val 120
Le	u Al	a I	Lys	Lys	5 Gl:	u Le 5	u Le	eu	Туг	. Va	l Pr 13	0 L	eu	Ile	e Gl	y Tr	p Thr 135
Tr	р Ту	r E	he	Leu	1 Gli 140	ı Il	e Vá	al	Phe	е Су	s Ly 14	s A: 5	rg	Lys	s Tr	p Gl	u Glu 150
As	p Ar	g A	sp	Thr	7 Val	l Va	1 G1	Lu (Gly	Lei	u Ar 16	g A: 0	rg	Leu	ı Se:	r As	p Tyr 165
Pr	o Gli	u T	yr	Met	Trp 170	Ph	e Le	eu l	Leu	Туз	r Cy.	s G] 5	lu	Gly	Th:	r Ar	g Phe 180
Thi	Glı	ι T	hr	Lys	His 185	ar	g Va	1 5	Ser	Met	Gl: 190	ı Va	al.	Ala	Alá	a Al	a Lys 195
Gl	/ Lei	ı P	ro	Val	Leu 200	Ly:	з Ту	r F	His	Leu	Let 205	ı Pr	:o .	Arg	Thr	Ly	s Gly 210
Ph∈	. Thr	T	hr	Ala	Val 215	Lys	з Су	s I	Leu	Arg	Gl ₃ 220	y Th	r '	Val	Ala	Ala	225
Tyr	Asp	V V	al	Thr	Leu 230	Asr	n Ph	e A	Arg	Gly	Asr 235	Ly	s A	Asn	Pro	Sei	Leu 240
Leu	Gly	· I]	le	Leu	Tyr 245	Gly	Ly:	s L	,ys	Tyr	Glu 250	Al	a A	lsp	Met	Cys	Val 255
Arg	Arg	Ph	ne	Pro	Leu 260	Glu	Asp	ΡI	le	Pro	Leu 265	As	p @	Slu	Lys	Glu	Ala 270
Ala	Gln	Tr	p i	Leu	His 275	Lys	Leı	ı T	yr	Gln	Glu 280	Ly	s A	sp	Ala	Leu	Gln 285
Glu	Ile	Ту	r i	Asn	Gln 290	Lys	Gly	<i>т</i> М	et	Phe	Pro 295	Gl	y G	lu	Gln	Phe	Lys 300
Pro	Ala	Ar	g A	Arg	Pro 305	Trp	Thr	Le	eu	Leu	Asn 310	Ph€	e L	eu	Ser	Trp	Ala 315
Thr	Ile	Le	u I	Leu	Ser 320	Pro	Leu	Pł	ne	Ser	Phe 325	Val	. L	eu	Gly	Val	Phe 330
Ala	Ser	G1	y S	Ser	Pro 335	Leu	Leu	I1	le :	Leu	Thr 340	Ph∈	· L	eu	Gly	Phe	Val 345
Gly	Ala	Ala	a S	Ser	Phe 350	Gly	Val	Ar	g 1	Arg	Leu 355	Ile	G.	lу	Glu	Ser	Leu 360
Glu	Pro	Gl	γA	rg '	Trp	Arg	Leu	Gl	.n								

```
<210> 298
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 298
 cttcctctgt gggtggacca tgtg 24
 <210> 299
 <211> 21
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 299
 gccacctcca tgctaacgcg g 21
<210> 300
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 300
 ccaaggteet egetaagaag gagetgetet aegtgeeest categ 45
<210> 301
<211> 1334
<212> DNA
<213> Homo sapiens
<400> 301
gatattettt atttttaaga atetgaagta etatgeatea eteeeteeaa 50
tgtcctgggg cagccaccag gcatattcat ctttgtgtgt gtttttcttt 100
tgctttagca ctggggcact tcttgcttat ttctttggta ggaaaggggc 150
tcagtttgtc ttgtggggtt ggtggcaggc aggccggctt acgcctgata 200
cggccctggg ttagaaggga agggaagata aacttttata caaatgggga 250
tagctggggt ctgagacctg cttcctcagt aaaattcctg ggatctgcct 300
ataccttctt ttctctaacc tggcataccc tgcttaaagc ctctcagggc 350
ttctctctgt tcttaggatc aaagtattta gagctacaag agccctcatg 400
```

gtctggcccc tgccccctg gccagcttca ttgtacatgt ggtgttctct 450 tgtcgttcct gtaatgtggt atgccatggg gtctttgcac aagcctttcc 500 tetttggetg gacactgtte eetgeeece ceatactett eetaettaat 550 atgtagtcat cctgcagatt tcaattctaa catcattttc tccagggatc 600 ctggcctgac agaatctcat cttgtttaat gctctcataa gaccacttgt 650 ttcccttttg cagcacttgc cactcagttg tatctttatg tgcgtttgtg 700 gttgtatggg ttgtgtctgt tccccagaat gcccagctct gagctgcgtg 750 agggtcaagg gcattgctgt gcctgccagg tatagtgcct acatgtggtg 800 ggtgctcatg ttttagagac taaatggagg aggagatgag gaaaagattg 850 aaatctctca gttcaccaga tggtgtaggg cccagcattg taaattcaca 900 cgttgactgt gcttgtgaat tatctgggga tgcaggtcct gattcagtag 950 gcccaggttg ggcatctcta acaaactccc acgtgatget gatgctggtc 1000 ctatgaacta tactaaatag taagaatcta tggagccagg ctgggcatgg 1050 tggctcacac ctatgatccc agcactttgg gaggctgagg caggctgatc 1100 acctggagtc aggatttcaa gactagcctg gccaacatgg tggaacccca 1150 tctgtactaa aaatacacaa attagctggg catggtggca catgcctgta 1200 gtcccagcta cttgggaggc tgaagcaaga gaatcgcttg aacctgggag 1250 gcggaggttg cagtgagccg agatcaggcc actgtattcc aaccagggtg 1300 acagagtgag actctatgtc caaaaaaaa aaaa 1334

```
<210> 302
```

<400> 302

His Leu Cys Val Cys Phe Ser Phe Ala Leu Ala Leu Gly His Phe 20 25 30

Leu Leu Ile Ser Leu Val Gly Lys Gly Leu Ser Leu Ser Cys Gly 35 40 45

Arg Arg Glu Gly Lys Ile Asn Phe Tyr Thr Asn Gly Asp Ser Trp

<211> 143

<212> PRT

<213> Homo sapiens

Gly Leu Arg Pro Ala Ser Ser Val Lys Phe Leu Gly Ser Ala Tyr 80 85 90

Thr Phe Phe Ser Leu Thr Trp His Thr Leu Leu Lys Ala Ser Gln 95 100 105

Gly Phe Ser Leu Phe Leu Gly Ser Lys Tyr Leu Glu Leu Gln Glu 110 115 120

Pro Ser Trp Ser Gly Pro Cys Pro Pro Gly Gln Leu His Cys Thr 125 130 135

Cys Gly Val Leu Leu Ser Phe Leu 140

<210> 303

<211> 1768

<212> DNA

<213> Homo sapiens

<400> 303

ggctggactg gaactcctgg tcccaagtga tccacccgcc tcagcctccc 50 aaggtgctgt gattataggt gtaagccacc gtgtctggcc tctgaacaac 100 tttttcagca actaaaaaag ccacaggagt tgaactgcta ggattctgac 150 tatgctgtgg tggctagtgc tcctactcct acctacatta aaatctgttt 200 tttgttctct tgtaactagc ctttaccttc ctaacacaga ggatctgtca 250 ctgtggctct ggcccaaacc tgaccttcac tctggaacga gaacagaggt 300 ttctacccac accgtcccct cgaagccggg gacagcctca ccttgctggc 350 ctctcgctgg agcagtgccc tcaccaactg tctcacgtct ggaggcactg 400 actcgggcag tgcaggtagc tgagcctctt ggtagctgcg gctttcaagg 450 tgggccttgc cctggccgta gaagggattg acaagcccga agatttcata 500 ggcgatggct cccactgccc aggcatcagc cttgctgtag tcaatcactg 550 ccctggggcc aggacggcc gtggacacct gctcagaagc agtgggtgag 600 acatcacgct gcccgcccat ctaacctttt catgtcctgc acatcacctg 650 atccatgggc taatctgaac tctgtcccaa ggaacccaga gcttgagtga 700 gctgtggctc agacccagaa ggggtctgct tagaccacct ggtttatgtg 750 acaggacttg catteteetg gaacatgagg gaacgeegga ggaaagcaaa 800 gtggcaggga aggaacttgt gccaaattat gggtcagaaa agatggaggt 850

gttgggttat cacaaggcat cgagtctcct gcattcagtg gacatgtggg 900 ggaagggctg ccgatggcgc atgacacact cgggactcac ctctggggcc 950 atcagacage egttteegee eegateeaeg taceagetge tgaagggeaa 1000 ctgcaggccg atgctctcat cagccaggca gcagccaaaa tctgcgatca 1050 ccagccaggg gcagccgtct gggaaggagc aagcaaagtg accatttctc 1100 ctcccctcct tccctctgag aggccctcct atgtccctac taaagccacc 1150 agcaagacat agctgacagg ggctaatggc tcagtgttgg cccaggaggt 1200 cagcaaggcc tgagagctga tcagaagggc ctgctgtgcg aacacggaaa 1250 tgcctccagt aagcacaggc tgcaaaatcc ccaggcaaag gactgtgtgg 1300 ctcaatttaa atcatgttct agtaattgga gctgtcccca agaccaaagg 1350 agctagagct tggttcaaat gatctccaag ggcccttata ccccaggaga 1400 ctttgatttg aatttgaaac cccaaatcca aacctaagaa ccaggtgcat 1450 taagaatcag ttattgccgg gtgtggtggc ctgtaatgcc aacattttgg 1500 gaggccgagg cgggtagatc acctgaggtc aggagttcaa gaccagcctg 1550 gccaacatgg tgaaacccct gtctctacta aaaatacaaa aaaactagcc 1600 aggcatggtg gtgtgtgcct gtatcccagc tactcgggag gctgagacag 1650 gagaattact tgaacctggg aggtgaagga ggctgagaca ggagaatcac 1700 ttcagcctga gcaacacagc gagactctgt ctcagaaaaa ataaaaaaag 1750 aattatggtt atttgtaa 1768

<210> 304

<211> 109

<212> PRT

<213> Homo sapiens

<400> 304

Met Leu Trp Trp Leu Val Leu Leu Leu Leu Pro Thr Leu Lys Ser 1 5 10 15

Val Phe Cys Ser Leu Val Thr Ser Leu Tyr Leu Pro Asn Thr Glu 20 25 30

Asp Leu Ser Leu Trp Leu Trp Pro Lys Pro Asp Leu His Ser Gly 35 40 45

Thr Arg Thr Glu Val Ser Thr His Thr Val Pro Ser Lys Pro Gly 50 55 60

Thr Ala Ser Pro Cys Trp Pro Leu Ala Gly Ala Val Pro Ser Pro

Thr Val Ser Arg Leu Glu Ala Leu Thr Arg Ala Val Gln Val Ala 80 85 90

Glu Pro Leu Gly Ser Cys Gly Phe Gln Gly Gly Pro Cys Pro Gly
95 100 105

Arg Arg Arg Asp

<210> 305

<211> 989

<212> DNA

<213> Homo sapiens

<400> 305

gegggeeege gagteegaga cetgteeeag gageteeage teaegtgace 50 tgtcactgcc tcccgccgcc tcctgcccgc gccatgaccc agccggtgcc 100 ccggctctcc gtgcccgccg cgctggccct gggctcagcc gcactgggcg 150 ccgccttcgc cactggcctc ttcctgggga ggcggtgccc cccatggcga 200 ggccggcgag agcagtgcct gcttcccccc gaggacagcc gcctgtggca 250 gtatcttctg agccgctcca tgcgggagca cccggcgctg cgaagcctga 300 ggctgctgac cctggagcag ccgcaggggg attctatgat gacctgcgag 350 caggeccage tettggecaa eetggegegg etcatecagg ecaagaagge 400 getggacetg ggcacettca egggetaete egecetggee etggeeetgg 450 cgctgcccgc ggacgggcgc gtggtgacct gcgaggtgga cgcgcagccc 500 ccggagctgg gacggcccct gtggaggcag gccgaggcgg agcacaagat 550 cgacctccgg ctgaagcccg ccttggagac cctggacgag ctgctggcgg 600 cgggcgaggc cggcaccttc gacgtggccg tggtggatgc ggacaaggag 650 aactgctccg cctactacga gcgctgcctg cagctgctgc gacccggagg 700 catectegee gteeteagag teetgtggeg egggaaggtg etgeaacete 750 cgaaagggga cgtggcggcc gagtgtgtgc gaaacctaaa cgaacgcatc 800 cggcgggacg tcagggtcta catcagcctc ctgcccctgg gcgatggact 850 caccttggcc ttcaagatct agggctggcc cctagtgagt gggctcgagg 900 gagggttgcc tgggaacccc aggaattgac cctgagtttt aaattcgaaa 950 ataaagtggg gctgggacac aaaaaaaaa aaaaaaaa 989

<21 <21	10> 11> 12> 13> 1	26: PR'	2 ľ	sapi	.ens											
	00> 3 et Th 1			n Pr	o Va	al P: 5	ro A	.rg	Lei	ı Se	r Va 1	l Pr 0	o Al	.a Al	la Le	eu Ala 15
Le	u G]	У	Se	r Al	a Al 2	.a Le ?0	eu G	ly	Ala	a Al	a Ph 2	e Al 5	a Th	ır Gl	.y L∈	eu Phe 30
Le	u Gl	- У	Ar	g Ar	g Су 3	rs P1	o P	ro	Trp	Ar	g Gl 4	y Ar O	g Ar	g Gl	u Gl	n Cys 45
Le	u Le	u	Pro	Pr	o G1 5	u As 0	sp S	er	Arg	, Le	u Trj	p Gl	n Ty	r Le	u Le	u Ser 60
Ar	g Se	r	Met	Ar	g Gl 6	u Hi 5	s Pi	ro	Ala	. Le	ı Arç	g Se:	r Le	u Ar	g Le	u Leu 75
Thi	r Le	u	Glu	ı Glı	n Pro	o Gl 0	n Gl	Lу	Asp	Sei	Met	Met	t Th	r Cy	s Gl	u Gln 90
Ala	a Gl:	n :	Leu	Let	1 Ala 9	a As 5	n Le	eu.	Ala	Arc	100	ı Ile	e Glı	n Ala	a Ly	s Lys 105
Ala	ı Lei	נ נ	Asp	Leu	Gl ₃	y Th.	r Ph	ie '	Thr	Gly	Tyr 115	Ser	Ala	a Lei	ı Ala	Leu 120
Ala	ı Let	1 <i>I</i>	Ala	Leu	Pro 125	Ala S	a As	p (Gly	Arg	Val 130	Val	Thr	Суз	Gl:	val 135
Asp	Ala	a (Gln	Pro	Pro 140	Gli	ı Le	u (Gly	Arg	Pro 145	Leu	Trp	Arg	, Glr	150
Glu	Ala	. (3	lu	His	Lys 155	Ile	As;	ρI	Leu	Arg	Leu 160	Lys	Pro	Ala	Leu	Glu 165
Thr	Leu	A	sp	Glu	Leu 170	Leu	ı Ala	a A	la	Gly	Glu 175	Ala	Gly	Thr	Phe	Asp 180
Val	Ala	V	al	Val	Asp 185	Ala	Ası	o L	ys	Glu	Asn 190	Cys	Ser	Ala	Tyr	Tyr 195
Glu	Arg	C	ys	Leu	Gln 200	Leu	Lei	ı A	rg	Pro	Gly 205	Gly	Ile	Leu	Ala	Val 210
Leu	Arg	V	al	Leu	Trp 215	Arg	Gly	L	ys	Val	Leu 220	Gln	Pro	Pro	Lys	Gly 225
Asp	Val	A	la.	Ala	Glu 230	Cys	Val	. A:	rg I	Asn	Leu 235	Asn	Glu	Arg	Ile	Arg 240
Arg	Asp	Vá	al Z	Arg	Val 245	Tyr	Ile	Se	er 1	Leu	Leu 250	Pro	Leu	Gly	Asp	Gly 255

Leu Thr Leu Ala Phe Lys Ile 260

- <210> 307
- <211> 2272
- <212> DNA
- <213> Homo sapiens

<400> 307

.ccgccgccgc agccgctacc gccgctgcag ccgctttccg cggcctgggc 50 ctctcgccgt cagcatgcca cacgccttca agcccgggga cttggtgttc 100 getaagatga agggetacce teactggeet gecaggateg acgaeatege 150 ggatggcgcc gtgaagcccc cacccaacaa gtaccccatc tttttctttg 200 gcacacacga aacagcette etgggaceca aggacetgtt eccetacgae 250 aaatgtaaag acaagtacgg gaagcccaac aagaggaaag gcttcaatga 300 agggctgtgg gagatccaga acaaccccca cgccagctac agcgcccctc 350 cgccagtgag ctcctccgac agcgaggccc ccgaggccaa ccccgccgac 400 ggcagtgacg ctgacgagga cgatgaggac cggggggtca tggccgtcac 450 ageggtaace gecaeagetg ecagegaeag gatggagage gaeteagaet 500 cagacaagag tagcgacaac agtggcctga agaggaagac gcctgcgcta 550 aagatgtcgg tetegaaacg agecegaaag geeteeageg acetggatea 600 ggccagcgtg tccccatccg aagaggagaa ctcggaaagc tcatctgagt 650 cggagaagac cagcgaccag gacttcacac ctgagaagaa agcagcggtc 700 cgggcgccac ggaggggccc tctgggggga cggaaaaaaa agaaggcgcc 750 gtcagcctcc gactccgact ccaaggccga ttcggacggg gccaagcctg 800 agccggtggc catggcgcgg tcggcgtcct cctcctcc ttcctcctcc 850 tectecgaet ecgatgtgte tgtgaagaag eeteegaggg geaggaagee 900 agcggagaag cctctcccga agccgcgagg gcggaaaccg aagcctgaac 950 ggcctccgtc cagctccagc agtgacagtg acagcgacga ggtggaccgc 1000 atcagtgagt ggaagcggcg ggacgaggcg cggaggcgcg agctggaggc 1050 ccggcggcgg cgagagcagg aggaggagct gcggcgcctg cgggagcagg 1100 agaaggagga gaaggagcgg aggccgagc gggccgaccg cggggaggct 1150 gageggggea geggeggeag cageggggae gageteaggg aggaegatga 1200

gcccgtcaag aagcggggac gcaagggccg gggccggggt cccccgtcct 1250 cctctgactc cgagcccgag gccgagctgg agagagaggc caagaaatca 1300 gcgaagaagc cgcagtcctc aagcacagag cccgccagga aacctggcca 1350 gaaggagaag agagtgcggc ccgaggagaa gcaacaagcc aagcccgtga 1400 aggtggagcg gacccggaag cggtccgagg gcttctcgat ggacaggaag 1450 gtagagaaga agaaagagcc ctccgtggag gagaagctgc agaagctgca 1500 cagtgagatc aagtttgccc taaaggtcga cagcccggac gtgaagaggt 1550 gcctgaatgc cctagaggag ctgggaaccc tgcaggtgac ctctcagatc 1600 ctccagaaga acacagacgt ggtggccacc ttgaagaaga ttcgccgtta 1650 caaagcgaac aaggacgtaa tggagaaggc agcagaagtc tatacccggc 1700 tcaagtcgcg ggtcctcggc ccaaagatcg aggcggtgca gaaagtgaac 1750 aaggctggga tggagaagga gaaggccgag gagaagctgg ccggggagga 1800 getggeeggg gaggaggeee eecaggagaa ggeggaggae aageecagea 1850 ccgatctctc agccccagtg aatggcgagg ccacatcaca gaagggggag 1900 agcgcagagg acaaggagca cgaggaggt cgggactcgg aggaggggcc 1950 aaggtgtggc teetetgaag acetgeaega eagegtaegg gagggteeeg 2000 acctggacag gcctgggagc gaccggcagg agcgcgagag ggcacggggg 2050 gactcggagg ccctggacga ggagagctga gccgcgggca gccaggccca 2100 gcccccgccc gagctcaggc tgcccctctc cttccccggc tcgcaggaga 2150 gcagagcaga gaactgtggg gaacgctgtg ctgtttgtat ttgttccctt 2200 gggttttttt ttcctgccta atttctgtga tttccaacca acatgaaatg 2250 actataaacg gttttttaat ga 2272

```
<210> 308
```

<400> 308

Met Pro His Ala Phe Lys Pro Gly Asp Leu Val Phe Ala Lys Met 1 5 10

Lys Gly Tyr Pro His Trp Pro Ala Arg Ile Asp Asp Ile Ala Asp 20 25 30

Gly Ala Val Lys Pro Pro Pro Asn Lys Tyr Pro Ile Phe Phe

<211> 671

<212> PRT

<213> Homo sapiens

35 45 Gly Thr His Glu Thr Ala Phe Leu Gly Pro Lys Asp Leu Phe Pro Tyr Asp Lys Cys Lys Asp Lys Tyr Gly Lys Pro Asn Lys Arg Lys Gly Phe Asn Glu Gly Leu Trp Glu Ile Gln Asn Asn Pro His Ala Ser Tyr Ser Ala Pro Pro Pro Val Ser Ser Ser Asp Ser Glu Ala Pro Glu Ala Asn Pro Ala Asp Gly Ser Asp Ala Asp Glu Asp Asp Glu Asp Arg Gly Val Met Ala Val Thr Ala Val Thr Ala Thr Ala Ala Ser Asp Arg Met Glu Ser Asp Ser Asp Ser Asp Lys Ser Ser 140 Asp Asn Ser Gly Leu Lys Arg Lys Thr Pro Ala Leu Lys Met Ser 155 160 Val Ser Lys Arg Ala Arg Lys Ala Ser Ser Asp Leu Asp Gln Ala 170 175 Ser Val Ser Pro Ser Glu Glu Glu Asn Ser Glu Ser Ser Glu Ser Glu Lys Thr Ser Asp Gln Asp Phe Thr Pro Glu Lys Lys Ala Ala Val Arg Ala Pro Arg Gly Pro Leu Gly Gly Arg Lys Lys Lys Ala Pro Ser Ala Ser Asp Ser Asp Ser Lys Ala Asp Ser Asp Gly Ala Lys Pro Glu Pro Val Ala Met Ala Arg Ser Ala Ser 250 Ser Ser Ser Ser Ser Ser Ser Ser Asp Ser Asp Val Ser Val 260 Lys Lys Pro Pro Arg Gly Arg Lys Pro Ala Glu Lys Pro Leu Pro Lys Pro Arg Gly Arg Lys Pro Lys Pro Glu Arg Pro Pro Ser Ser 295 Ser Ser Ser Asp Ser Asp Glu Val Asp Arg Ile Ser Glu 315 Trp Lys Arg Arg Asp Glu Ala Arg Arg Glu Leu Glu Ala Arg

													٠.								330
						JJJ							34	10							Gln 345
G	lu 1	Lys	G]	lu G	lu	Lys 350	Gl	u A:	rg	Ar	g.	Arg	r G1	lu <i>1</i> 55	Arg	Al	a A	ga	Ar		Gly 360
G.	lu A	Ala	G1	u A	rg	Gly 365	Se	r G	lу	Gl	у	Ser	Se 37	er (Sly	As	рG	lu	Le		Arg 375
G.	lu A	dsp	As	p G	lu :	Pro 380	Va.	l L	/S	Ly	s A	Arg	G1 38	у <i>Р</i> 5	lrg	Ly	s G	ly	Ar		Gly 390
Aı	g G	1y	Pr	0 P:	ro S	Ser 395	Sei	s Se	er	Ası	p 5	Ser	Gl 40	u F O	ro	Gl	u A	la	Gl		Leu 405
G1	u A	rg	G1	u Al	la I	ys 110	Lys	s Se	r	Ala	a I	ys	Ly.	s P 5	ro	Gli	n Se	er	Sei		Ser 120
Th	r G	lu	Pro	o Al	la A	arg 25	Lys	Pr	0	Gly	7 G	ln	Ly:	s G O	lu	Lys	s Aı	g	Val		\rg !35
Pr	o G:	lu	Glı	и Гр	rs G 4	1n 40	Gln	Al	a I	Lys	з Р	ro	Va]	L L	ys	Val	. G1	.u	Arg		hr 50
Ar	g L	/S	Arc	g Se	r G 4	lu 55	Gly	Phe	e S	Ser	M	et	Asp 460	> A:	rg .	Lys	. Va	1	Glu		ys 65
Ly	3 L	/S	Glu	ı Pr	o S 4	er 70	Val	Glı	נ (Glu	L	ys	Leu 475	G]	ln :	Lys	Le	u l	His		er 80
Glı	ı Il	.e]	Lys	Ph	e A.	la :	Leu	Lys	s V	/al	As	sp ,	Ser 490	Pr	:o <i>1</i>	Asp	Va	1 1	Jys		rg 95
Cys	Le	u A	Asn	Ala	a Le 50	eu (Glu	Glu	ı L	eu	G1	У (Thr 505	Le	u (Sln	۷a	l 1	hr		er 10
Gln	Il	e I	Leu	Glr	1 Ly 51	/s <i>I</i> .5	Asn	Thr	A	.sp	Va	1 5	/al 520	Al	a T	'hr	Leı	ı I	ys	Lչ 52	
Ile	Ar	g A	rg	Tyr	Ly 53	s A	la	Asn	L	ys	As	р V 5	7al 535	Ме	t G	lu	Lys	s A	la		.a
Glu	Val	l T	уr	Thr	Ar 54	g L 5	eu	Lys	Se	er	Ar	g V 5	al 50	Le	ı G	ly	Pro	L	уs		.e
Glu	Ala	a V	al	Gln	Lу 56	s V O	al .	Asn	ΓŻ	ys .	Ala	a G 5	1y 65	Met	: G	lu	Lys	G			s
Ala	Glu	ı G	lu	Lys	Le:	uA 5	la (Gly	G1	Lu (Glı	ı.L 5	eu 80	Ala	G.	ly	Glu	G.	lu .		a
Pro	Gln	G.	Lu	Lys	Ala 590	a G.	lu A	Asp	Ly	s i	Pro	5 S	er 95	Thr	As	sp :	Leu	Se	er i		a
Pro	Val	As	sn '	Gly	Glı	1 A.	la T	hr	Se	r (Glr	ı Ly	ys (Gly	G1	.u \$	Ser	A]			

Asp Lys Glu His Glu Glu Gly Arg Asp Ser Glu Glu Gly Pro Arg 620 625 630

Cys Gly Ser Ser Glu Asp Leu His Asp Ser Val Arg Glu Gly Pro 635 640 645

Asp Leu Asp Arg Pro Gly Ser Asp Arg Gln Glu Arg Glu Arg Ala 650 655 660

Arg Gly Asp Ser Glu Ala Leu Asp Glu Glu Ser 665 670

<210> 309

<211> 3871

<212> DNA

<213> Homo sapiens

<400> 309

gttggttctc ctggatcttc accttaccaa ctgcagatct tgggactcat 50 cagcctcaat aattatatta aattaacacc atttgaaaga gaacattgtt 100 ttcatcatga atgctaataa agatgaaaga cttaaagcca gaagccaaga 150 ttttcacctt tttcctgctt tgatgatgct aagcatgacc atgttgtttc 200 ttccagtcac tggcactttg aagcaaaata ttccaagact caagctaacc 250 tacaaagact tgctgctttc aaatagctgt attccctttt tgggttcatc 300 agaaggactg gattttcaaa ctcttctctt agatgaggaa agaggcaggc 350 tgctcttggg agccaaagac cacatctttc tactcagtct ggttgactta 400 aacaaaaatt ttaagaagat ttattggcct gctgcaaagg aacgggtgga 450 attatgtaaa ttagctggga aagatgccaa tacagaatgt gcaaatttca 500 tcagagtact tcagccctat aacaaaactc acatatatgt gtgtggaact 550 ggagcatttc atccaatatg tgggtatatt gatcttggag tctacaagga 600 ggatattata ttcaaactag acacacataa tttggagtct ggcagactga 650 aatgtccttt cgatcctcag cagccttttg cttcagtaat gacagatgag 700 tacctctact ctggaacage ttctgattte cttggcaaag atactgcatt 750 cactcgatcc cttgggccta ctcatgacca ccactacatc agaactgaca 800 tttcagagca ctactggctc aatggagcaa aatttattgg aactttcttc 850 ataccagaca cctacaatcc agatgatgat aaaatatatt tcttctttcg 900 tgaatcatct caagaaggca gtacctccga taaaaccatc ctttctcgag 950

ttggaagagt ttgtaagaat gatgtaggag gacaacgcag cctgataaac 1000 aagtggacga cttttcttaa ggccagactg atttgctcaa ttcctggaag 1050 tgatggggca gatacttact ttgatgagct tcaagatatt tatttactcc 1100 ccacaagaga tgaaagaaat cctgtagtat atggagtctt tactacaacc 1150 agctccatct tcaaaggctc tgctgtttgt gtgtatagca tggctgacat 1200 cagagcagtt tttaatggtc catatgctca taaggaaagt gcagaccatc 1250 gttgggtgca gtatgatggg agaatteett atecaeggee tggtacatgt 1300 ccaagcaaaa cctatgaccc actgattaag tccacccgag attttccaga 1350 tgatgtcatc agtttcataa agcggcactc tgtgatgtat aagtccgtat 1400 acccagttgc aggaggacca acgttcaaga gaatcaatgt ggattacaga 1450 ctgacacaga tagtggtgga tcatgtcatt gcagaagatg gccagtacga 1500 tgtaatgttt cttggaacag acattggaac tgtcctcaaa gttgtcagca 1550 tttcaaagga aaagtggaat atggaagagg tagtgctgga ggagttgcag 1600 atattcaagc actcatcaat catcttgaac atggaattgt ctctgaagca 1650 gcaacaattg tacattggtt cccgagatgg attagttcag ctctccttgc 1700 acagatgcga cacttatggg aaagcttgcg cagactgttg tettgccaga 1750 gacccctact gtgcctggga tggaaatgca tgctctcgat atgctcctac 1800 ttctaaaagg agagctagac gccaagatgt aaaatatggc gacccaatca 1850 cccagtgctg ggacatcgaa gacagcatta gtcatgaaac tgctgatgaa 1900 aaggtgattt ttggcattga atttaactca acctttctgg aatgtatacc 1950 taaatcccaa caagcaacta ttaaatggta tatccagagg tcaggggatg 2000 agcatcgaga ggagttgaag cccgatgaaa gaatcatcaa aacggaatat 2050 gggctactga ttcgaagttt gcagaagaag gattctggga tgtattactg 2100 caaagcccag gagcacactt tcatccacac catagtgaag ctgactttga 2150 atgtcattga gaatgaacag atggaaaata cccagagggc agagcatgag 2200 gaggggcagg tcaaggatct attggctgag tcacggttga gatacaaaga 2250 ctacatccaa atccttagca gcccaaactt cagcctcgac cagtactgcg 2300 aacagatgtg gcacagggag aagcggagac agagaaacaa ggggggccca 2350

aagtggaagc acatgcagga aatgaagaag aaacgaaatc gaagacatca 2400 cagagacctg gatgagctcc ctagagctgt agccacgtag ttttctactt 2450 aatttaaaga aaagaattcc ttacctataa aaacattgcc ttctgttttg 2500 tatatccctt atagtaattc ataaatgctt cccatggagt tttgctaagg 2550 cacaagacaa taatctgaat aagacaatat gtgatgaata taagaaaggg 2600 caaaaaattc atttgaacca gttttccaag aacaaatctt gcacaagcaa 2650 agtataagaa ttatcctaaa aatagggggt ttacagttgt aaatgtttta 2700 tgttttgagt tttggaattt attgtcatgt aaatagttga gctaagcaag 2750 ccccgaattt gatagtgtat aaggtgcttt attccctcga atgtccatta 2800 agcatggaat ttaccatgca gttgtgctat gttcttatga acagatatat 2850 cattcctatt gagaaccagc taccttgtgg tagggaataa gaggtcagac 2900 acaaattaag acaactccca ttatcaacag gaactttctc agtgagccat 2950 tcactcctgg agaatggtat aggaatttgg agaggtgcat tatttctttc 3000 tggccactgg ggttaaattt agtgtactac aacattgatt tactgaaggg 3050 cactaatgtt tcccccagga tttctattga ctagtcagga gtaacaggtt 3100 cacagagaga agttggtgct tagttatgtg ttttttagag tatatactaa 3150 gctctacagg gacagaatgc ttaataaata ctttaataag atatgggaaa 3200 atattttaat aaaacaagga aaacataatg atgtataatg catcctgatg 3250 ggaaggcatg cagatgggat ttgttagaag acagaaggaa agacagccat 3300 aaattctggc tttggggaaa actcatatcc ccatgaaaag gaagaacaat 3350 cacaaataaa gtgagagtaa tgtaatggag ctcttttcac tagggtataa 3400 gtagctgcca atttgtaatt catctgttaa aaaaaatcta gattataaca 3450 aactgctagc aaaatctgag gaaacataaa ttcttctgaa gaatcatagg 3500 aagagtagac attttattta taaccaatga tatttcagta tatattttct 3550 ctcttttaaa aaatatttat catactctgt atattatttc tttttactgc 3600 ctttattctc tcctgtatat tggattttgt gattatattt gagtgaatag 3650 gagaaaacaa tatataacac acagagaatt aagaaaatga catttctggg 3700 gagtggggat atatatttgt tgaataacag aacgagtgta aaattttaac 3750 aacggaaagg gttaaattaa ctctttgaca tcttcactca accttttctc 3800

attgctgagt taatctgttg taattgtagt attgtttttg taatttaaca 3850 ataaataagc ctgctacatg t 3871

<210> 310

<211> 777

<212> PRT

<213> Homo sapiens

<400> 310

- Met Asn Ala Asn Lys Asp Glu Arg Leu Lys Ala Arg Ser Gln Asp
 1 5 10 15
- Phe His Leu Phe Pro Ala Leu Met Met Leu Ser Met Thr Met Leu 20 25 30
- Phe Leu Pro Val Thr Gly Thr Leu Lys Gln Asn Ile Pro Arg Leu 35 40 45
- Lys Leu Thr Tyr Lys Asp Leu Leu Leu Ser Asn Ser Cys Ile Pro 50 55 60
- Phe Leu Gly Ser Ser Glu Gly Leu Asp Phe Gln Thr Leu Leu 65 70 75
- Asp Glu Glu Arg Gly Arg Leu Leu Leu Gly Ala Lys Asp His Ile 80 85 90
- Phe Leu Leu Ser Leu Val Asp Leu Asn Lys Asn Phe Lys Lys Ile 95 100 105
- Tyr Trp Pro Ala Ala Lys Glu Arg Val Glu Leu Cys Lys Leu Ala 110 115 120
- Gly Lys Asp Ala Asn Thr Glu Cys Ala Asn Phe Ile Arg Val Leu 125 130 135
- Gln Pro Tyr Asn Lys Thr His Ile Tyr Val Cys Gly Thr Gly Ala \$140\$
- Phe His Pro Ile Cys Gly Tyr Ile Asp Leu Gly Val Tyr Lys Glu 155 160 165
- Asp Ile Ile Phe Lys Leu Asp Thr His Asn Leu Glu Ser Gly Arg 170 175 180
- Leu Lys Cys Pro Phe Asp Pro Gln Gln Pro Phe Ala Ser Val Met 185 190 195
- Thr Asp Glu Tyr Leu Tyr Ser Gly Thr Ala Ser Asp Phe Leu Gly 200 205 205
- Lys Asp Thr Ala Phe Thr Arg Ser Leu Gly Pro Thr His Asp His 215 220 225
- His Tyr Ile Arg Thr Asp Ile Ser Glu His Tyr Trp Leu Asn Gly

				515					520					525
Leu	Val	Gln	Leu	Ser 530	Leu	His	Arg	Суѕ	Asp 535	Thr	Tyr	Gly	Lys	Ala 540
Cys	Ala	Asp	Суз	Cys 545	Leu	Ala	Arg	Asp	Pro 550	Tyr	Суѕ	Ala	Trp	Asp 555
Gly	Asn	Ala	Cys	Ser 560	Arg	Tyr	Ala	Pro	Thr 565	Ser	Lys	Arg	Arg	Ala 570
Arg	Arg	Gln	Asp	Val 575	Lys	Tyr	Gly	Asp	Pro 580	Ile	Thr	Gln	Cys	Trp 585
Asp	Ile	Glu	Asp	Ser 590	Ile	Ser	His	Glu	Thr 595	Ala	Asp	Glu	Lys	Val 600
Ile	Phe	Gly	Ile	Glu 605	Phe	Asn	Ser	Thr	Phe 610	Leu	Glu	Cys	Ile	Pro 615
Lys	Ser	Gln	Gln	Ala 620	Thr	Ile	Lys	Trp	Tyr 625	Ile	Gln	Arg	Ser	Gly 630
Asp	Glu	His	Arg	Glu 635	Glu	Leu	Lys	Pro	Asp 640	Glu	Arg	Ile	Ile	Lys 645
Thr	Glu	Tyr	Gly	Leu 650	Leu	Ile	Arg	Ser	Leu 655	Gln	Lys	Lys	Asp	Ser 660
Gly	Met	Tyr	Tyr	Cys 665	Lys	Ala	Gln	Glu	His 670	Thr	Phe	Ile	His	Thr 675
Ile	Val	Lys	Leu	Thr 680	Leu	Asn	Val	Ile	Glu 685	Asn	Glu	Gln	Met	Glu 690
Asn	Thr	Gln	Arg	Ala 695	Glu	His	Glu	Glu	Gly 700	Gln	Val	Lys	Asp	Leu 705
Leu	Ala	Glu	Ser	Arg 710	Leu	Arg	Tyr	Lys	Asp 715	Tyr	Ile	Gln	Ile	Leu 720
Ser	Ser	Pro	Asn	Phe 725	Ser	Leu	Asp	Gln	Tyr 730	Cys	Glu	Gln	Met	Trp 735
His	Arg	Glu	Lys	Arg 740	Arg	Gln	Arg	Asn	Lys 745	Gly	Gly	Pro	Lys	Trp 750
Lys	His	Met	Gln	Glu 755	Met	Lys	Lys	Lys	Arg 760	Asn	Arg	Arg	His	His 765
Arg	Asp	Leu	Asp	Glu 770	Leu	Pro	Arg	Ala	Val 775	Ala	Thr			
<210	> 311	L												

<211> 25

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 311
 caacgcagcc gtgataaaca agtgg 25
<210> 312
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 312
 gcttggacat gtaccaggcc gtgg 24
<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 313
ggccagactg atttgctcaa ttcctggaag tgatggggca gatac 45
<210> 314
<211> 3934
<212> DNA
<213> Homo sapiens
<400> 314
ccctgacctc cctgagccac actgagctgg aagccgcaga ggtcatcctg 50
gagcatgccc accgcgggga gcagacaacc tcccaggtaa gctgggagca 100
ctcagcagtt tcagccagca gggactgatc aggtgtgtgt cctggagtgg 200
ggagcagaag gcgtggctgg caagagtggc ctggagaaag aggttcagcg 250
cttgaccage egagetgeec gtgactacaa gatecagaac catgggeate 300
gggtgaggtg ggggggcaca ggtgtcatgt gcaccttctt gtctcagcaa 350
gaagagctga gagaggggat cttggagcca ttgagggtgt catggagcta 400
cagaggggag ggaaaggtat tttaaggtaa cagtgtggca caatagttaa 450
gagcacagtt tttggagcta gaccgacata ggttcaaatt ctcttctgtt 500
gcttcctagt tctgtagccc caggtaaggg agtgacttaa cctctctgga 550
```

cttcaatttc ctcatcacta aagtagggcc aataatagca cccacctcat 600 agggaagatt aaatgacata atgtatgtga tgcaactagc aaagtaccag 650 tcccatagta agtcatgccc cacagtattt ccacccaccc ctgttctctg 700 ccttcccaac caggtactgc aacgactgga gcagaggcgg cagcaggctt 750 cagagcggga ggctccaagc atagaacaga ggttacagga agtgcgagag 800 agcatccgcc gggcacaggt gagccaggtg aagggggctg cccggctggc 850 cctgctgcag ggggctggct tagatgtgga gcgctggctg aagccagcca 900 tgacccaggc ccaggatgag gtggagcagg agcggcggct cagtgaggct 950 cggctgtccc agagggacct ctctccaacc gctgaggatg ctgagctttc 1000 tgactttgag gaatgtgagg agacgggaga gctctttgag gagcctgccc 1050 cccaageest ggecacgagg geesteest geestgeasa egtggtattt 1100 cgctatcagg cagggcgtga ggatgagctg acaatcacgg agggtgagtg 1150 gctggaggtc atagaggagg gagatgctga cgaatgggtc aaggctcgga 1200 accageaegg egaggtagge tttgteeetg agegatatet caactteeeg 1250 gacctetece teccagagag cagecaagae agtgacaate eetgegggge 1300 agageceaca geatteetgg cacaggeest gtacagetae aceggacaga 1350 gtgcagagga gctgagcttc cctgaggggg cactcatccg tctgctgccc 1400 cgggcccaag atggagtaga tgacggcttc tggaggggag aatttggggg 1450 ccgtgttggg gtcttcccct ccctgctggt ggaagagctg cttggccccc 1500 cagggccacc tgaactetet gaccetgaac agatgetgee gteecettet 1550 ceteceaget tetececace tgcacetace tetgtgttgg atgggeecee 1600 tgcacctgtc ctgcctgggg acaaagccct ggacttccct gggttcctgg 1650 acatgatggc acctcgactc aggccgatgc gtccaccacc tccccgccg 1700 gctaaagccc cggatcctgg ccacccagat cccctcacct gaaggccagg 1750 gaagcettga eeeccagtga tgetgetgte eetatettea agetgteaga 1800 ccacaccatc aatgatccag agcaacacag ccaaaagctg gaatcgccct 1850 tatttccacc ctcacctcca agggtggaaa cttgcccctt cccatttcta 1900 gagetggaac ceaeteettt tttteeeatt gttetateat etetaggace 1950 ggaactacta ccttctcttc tgtcatgacc ctatctaggg tggtgaaatg 2000

cctgaaatct ctggggctgg aaaccatcca tcaaggtctc tagtagttct 2050 ggcccacctc tttccccacc ctggctccat gacccacccc actctggatg 2100 ccagggtcac tggggttggg ctggggagag gaacaggcct tgggaatcag 2150 gagctggagc caggatgcga agcagctgta atggtctgag cggatttatt 2200 gacaatgaat aaagggcacg aaggccaggc cagggcctgg gcctcttgtg 2250 ctaagagggc agggggccta cggtgctatt gctttagggg cccaccacgg 2300 gcaggggcct gctcccagct gccacgctct atcatatgga gcgaggtgtt 2350 ggggaaggcg gggcaggcag cetgttgcag gcaggggaag gagaagagac 2400 tgaggggctg tgacctctcc tgaggccccc agcctgagac tgtgcaactc 2450 caggtggaag tagagctggt ccctcagctg gggggcagtg ctgtccagtg 2500 gaggggaggg ctttcacgcc cacccaccc ctggccctgc cagctggtag 2550 tccatcagca caatgaagga gacttggaga agaggaagaa taacactgtt 2600 gcttcctgtt caagctgtgt ccagcttttc ccctggggct ccaggacctt 2650 ccctacctcc accaccaaac caagggattt atagcaaagg ctaagcctgc 2700 agtttactct gggggttcag ggagccgaaa ggcttaaata gtttaagtag 2750 gtgatgggaa gatgagatta cetcatttag ggeteaggea gaeteaeete 2800 tcaacaatga gagaccagga gtaggteeta teagtgeece eeagagtaga 2900 gagcaataag agcccagccc agtgcagtcc cggctgtgtt ttcctacctg 2950 gtgatcagaa gtgtctggtt tgcttggctg cccatttgcc tcttgagtgg 3000 gcagccctgg gcttgggccc ctccctccgg ccctcagtgt tggctctgca 3050 gaagetetgg ggtteeette aagtgeaega ggggttagge tgetgteeet 3100 gagteeteea ttetgtaetg gggggetgge taggaeetgg ggetgtggee 3150 teteaggggg cageetetee atggeaggea teeetgeett gggetgeeet 3200 ccccagacc cctgaccacc ccctgggtcc tgtccccac cagagcccca 3250 gctcctgtct gtgggggagc catcacggtg ttcgtgcagt ccatagcgct 3300 tctcaatgtg tgtcacccgg aacctgggag gggagggaac actggggttt 3350 aggaccacaa ctcagagget gettggeeet eeeetetgae cagggacate 3400

ctgagtttgg tggctactc cctctggcct aaggtaggg aggccttct 3450 agattgtgg gcacattgtg tagcctgact tctgctggag ctcccagtcc 3500 aggaggaaag agccaaggcc cacttttggg atcaggtgcc tgatcactgg 3550 gccccctacc tcagcccc tttccctgga gcacctgccc cacctgccca 3600 cagaagaacac agtggtctcc cctgtccgg ggcggctttt tccttcttg 3650 gagcgtccct gacggacaag tggaggcctc ttgctgcggc tgcaatggat 3700 gcaaggggct gcagaagcca ggtgcactgt gtgatgatgg gagggggct 3750 cgtcctgcag gctggaggtg gcatccacac tggacagcag gaggaggga 3800 gtgagggtaa catttccatt tcccttcatg ttttgtttct tacgttcttt 3850 cagcatgctc cttaaaaccc cagaagcccc aatttcccca agccccattt 3900 tttcttgtct ttatctaata aactcaatat taag 3934

<210> 315

<211> 370

<212> PRT

<213> Homo sapiens

<400> 315

Met Gln Leu Ala Lys Tyr Gln Ser His Ser Lys Ser Cys Pro Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Phe Pro Pro Thr Pro Val Leu Cys Leu Pro Asn Gln Val Leu 20 25 30

Gln Arg Leu Glu Gln Arg Arg Gln Gln Ala Ser Glu Arg Glu Ala 35 40 45

Pro Ser Ile Glu Gln Arg Leu Gln Glu Val Arg Glu Ser Ile Arg 50 55 60

Arg Ala Gln Val Ser Gln Val Lys Gly Ala Ala Arg Leu Ala Leu 65 70 75

Leu Gl
n Gly Ala Gly Leu Asp Val Glu Arg Tr
p Leu Lys Pro Ala 80 85 90

Met Thr Gln Ala Gln Asp Glu Val Glu Gln Glu Arg Arg Leu Ser 95 100 105

Glu Ala Arg Leu Ser Gln Arg Asp Leu Ser Pro Thr Ala Glu Asp 110 115 120

Ala Glu Leu Ser Asp Phe Glu Glu Cys Glu Glu Thr Gly Glu Leu 125 130 135

Phe Glu Glu Pro Ala Pro Gln Ala Leu Ala Thr Arg Ala Leu Pro 140 145 150

Cys Pro A	la His V	al Val 55	Phe Arc	g Tyr	Gln Ala 160	Gly Arg	Glu Asp 165
Glu Leu Th	nr Ile Ti 1	nr Glu 70	Gly Glu	1 Trp	Leu Glu 175	Val Ile	Glu Glu 180
Gly Asp Al	a Asp Gi 18	lu Trp 35	Val Lys	a Ala	Arg Asn 190	Gln His	Gly Glu 195
Val Gly Ph	e Val Pı 20	o Glu . 00	Arg Tyr	Leu	Asn Phe 205	Pro Asp	Leu Ser 210
Leu Pro Gl	u Ser Se 21	r Gln 2 5	Asp Ser	Asp	Asn Pro 220	Cys Gly A	Ala Glu 225
Pro Thr Al	23	U			235		240
Ser Ala Gl	u Glu Le 24	u Ser I 5	Phe Pro	Glu	Gly Ala 250	Leu Ile A	Arg Leu 255
Leu Pro Ar	g Ala Gl 26	n Asp G O	Gly Val	Asp .	Asp Gly 265	Phe Trp A	Arg Gly 270
Glu Phe Gl	Gly Are	g Val G	Sly Val	Phe	Pro Ser 280	Leu Leu V	al Glu 285
Glu Leu Leu	Gly Pro	Pro G	Sly Pro	Pro (Glu Leu 295	Ser Asp P	ro Glu 300
Gln Met Leı	Pro Sei 305	Pro S	er Pro	Pro S	Ser Phe : 310	Ser Pro P	ro Ala 315
Pro Thr Ser	Val Leu 320	Asp G	ly Pro	Pro A	Ala Pro V 325	Val Leu P	ro Gly 330
Asp Lys Ala	Leu Asp 335	Phe P	ro Gly	Phe I	Leu Asp N 840	Met Met A	la Pro 345
Arg Leu Arg	Pro Met 350	Arg Pı	ro Pro	Pro P 3	ro Pro E 55	ro Ala Ly	ys Ala 360
Pro Asp Pro	Gly His 365	Pro As	sp Pro		hr 70		
<210> 316 <211> 4407 <212> DNA <213> Homo sa	apiens						
<400> 316 cacagggaga (ccacagad	ca cata	tgcacg	agaga	agacag a	ggaggaaag	50

agacagagac aaaggcacag cggaagaagg cagagacagg gcaggcacag 100

aagcggccca gacagagtcc tacagaggga gaggccagag aagctgcaga 150

agacacaggc agggagagc aaagatccag gaaaggaggg ctcaggagga 200 gagtttggag aagccagacc cctgggcacc tctcccaagc ccaaggacta 250 agttttctcc atttccttta acggtcctca gcccttctga aaactttgcc 300 tetgaeettg geaggagtee aageeeceag getacagaga ggagetttee 350 aaagctaggg tgtggaggac ttggtgccct agacggcctc agtccctccc 400 agctgcagta ccagtgccat gtcccagaca ggctcgcatc ccgggagggg 450 cttggcaggg cgctggctgt ggggagccca accetgcete etgeteecea 500 ttgtgccgct ctcctggctg gtgtggctgc ttctgctact gctggcctct 550 ctcctgccct cagcccggct ggccagcccc ctcccccggg aggaggagat 600 cgtgtttcca gagaagctca acggcagcgt cctgcctggc tcgggcgccc 650 ctgccagget gttgtgccgc ttgcaggcct ttggggagac gctgctacta 700 gagctggagc aggactccgg tgtgcaggtc gaggggctga cagtgcagta 750 cctgggccag gcgcctgagc tgctgggtgg agcagagcct ggcacctacc 800 tgactggcac catcaatgga gatccggagt cggtggcatc tctgcactgg 850 gatgggggag ccctgttagg cgtgttacaa tatcgggggg ctgaactcca 900 cetecagece etggagggag geacecetaa etetgetggg ggaeetgggg 950 ctcacatcct acgccggaag agtcctgcca gcggtcaagg tcccatgtgc 1000 aacgtcaagg ctcctcttgg aagccccagc cccagacccc gaagagccaa 1050 gcgctttgct tcactgagta gatttgtgga gacactggtg gtggcagatg 1100 acaagatggc cgcattccac ggtgcggggc taaagcgcta cctgctaaca 1150 gtgatggcag cagcagccaa ggccttcaag cacccaagca tccgcaatcc 1200 tgtcagcttg gtggtgactc ggctagtgat cctggggtca ggcgaggagg 1250 ggccccaagt ggggcccagt gctgcccaga ccctgcgcag cttctgtgcc 1300 tggcagcggg gcctcaacac ccctgaggac tcgggccctg accactttga 1350 cacagecatt etgtttacce gteaggaeet gtgtggagte tecaettgeg 1400 acacgetggg tatggetgat gtgggcaccg tetgtgacce ggeteggage 1450 tgtgccattg tggaggatga tgggctccag tcagccttca ctgctgctca 1500 tgaactgggt catgtettea acatgeteea tgacaactee aageeatgea 1550

tcagtttgaa tgggcctttg agcacctctc gccatgtcat ggcccctgtg 1600 atggctcatg tggatcctga ggagccctgg tccccctgca gtgcccgctt 1650 catcactgac ttcctggaca atggctatgg gcactgtctc ttagacaaac 1700 cagaggetee attgeatetg cetgtgaett teeetggeaa ggaetatgat 1750 getgaeegee agtgeeaget gaeetteggg eeegaeteae geeattgtee 1800 acagetgeeg eegeeetgtg etgeeetetg gtgetetgge eaceteaatg 1850 gccatgccat gtgccagacc aaacactcgc cctgggccga tggcacaccc 1900 tgcgggcccg cacaggcctg catgggtggt cgctgcctcc acatggacca 1950 gctccaggac ttcaatattc cacaggctgg tggctggggt ccttggggac 2000 catggggtga ctgctctcgg acctgtgggg gtggtgtcca gttctcctcc 2050 cgagactgca cgaggcctgt cccccggaat ggtggcaagt actgtgaggg 2100 eegeegtace egetteeget eetgeaacae tgaggaetge eeaactgget 2150 cagecetgae etteegegag gageagtgtg etgeetacaa eeacegeace 2200 gacctettca agagetteec agggeecatg gactgggtte etegetacae 2250 aggegtggee ecceaggace agtgeaaact cacetgeeag geeegggeae 2300 tgggctacta ctatgtgctg gagccacggg tggtagatgg gaccccctgt 2350 tecceggaca geteeteggt etgtgteeag ggeegatgea tecatgetgg 2400 ctgtgatcgc atcattggct ccaagaagaa gtttgacaag tgcatggtgt 2450 gcggagggga cggttctggt tgcagcaagc agtcaggctc cttcaggaaa 2500 ttcaggtacg gatacaacaa tgtggtcact atccccgcgg gggccaccca 2550 cattettgte eggeageagg gaaaceetgg ecaeeggage atetaettgg 2600 ccctgaagct gccagatggc tcctatgccc tcaatggtga atacacgctg 2650 atgccctccc ccacagatgt ggtactgcct ggggcagtca gcttgcgcta 2700 cageggggce actgeagect cagagacact gteaggeeat gggceaetgg 2750 cccagcettt gacactgcaa gteetagtgg etggcaacee ecaggacaca 2800 egecteegat acagettett egtgeeeegg eegaceeett caacgeeaeg 2850 ccccactccc caggactggc tgcaccgaag agcacagatt ctggagatcc 2900 ttcggcggcg cccctgggcg ggcaggaaat aacctcacta tcccggctgc 2950 cctttctggg caccggggcc tcggacttag ctgggagaaa gagagagctt 3000

ctgttgctgc ctcatgctaa gactcagtgg ggaggggctg tgggcgtgag 3050 acctgcccct cctctctgcc ctaatgcgca ggctggccct gccctggttt 3100 cctgccctgg gaggcagtga tgggttagtg gatggaaggg gctgacagac 3150 agecetecat etaaactgee eeetetgeee tgegggteae aggagggagg 3200 gggaaggcag ggagggcctg ggccccagtt gtatttattt agtatttatt 3250 cacttttatt tagcaccagg gaaggggaca aggactaggg tcctggggaa 3300 cctgacccct gacccctcat agccctcacc ctggggctag gaaatccagg 3350 gtggtggtga taggtataag tggtgtgtgt atgcgtgtgt gtgtgtgtgt 3400 gaaaatgtgt gtgtgcttat gtatgaggta caacctgttc tgctttcctc 3450 ttcctgaatt ttattttttg ggaaaagaaa agtcaagggt agggtgggcc 3500 ttcagggagt gagggattat ctttttttt ttttctttct ttctttcttt 3550 tttttttttg agacagaatc tcgctctgtc gcccaggctg gagtgcaatg 3600 gcacaatete ggeteaetge atecteegee teeegggtte aagtgattet 3650 catgcctcag cctcctgagt agctgggatt acaggctcct gccaccacgc 3700 ccagctaatt tttgttttgt tttgtttgga gacagagtct cgctattgtc 3750 accagggctg gaatgatttc agetcactgc aacettegec acctgggttc 3800 cagcaattct cctgcctcag cctcccgagt agctgagatt ataggcacct 3850 accaccacgc ccggctaatt tttgtatttt tagtagagac ggggtttcac 3900 catgttggcc aggctggtct cgaactcctg accttaggtg atccactcgc 3950 cttcatetee caaagtgetg ggattacagg egtgageeae egtgeetgge 4000 cacgcccaac taatttttgt atttttagta gagacagggt ttcaccatgt 4050 tggccaggct gctcttgaac tcctgacctc aggtaatcga cctgcctcgg 4100 cctcccaaag tgctgggatt acaggtgtga gccaccacgc ccggtacata 4150 ttttttaaat tgaattctac tatttatgtg atccttttgg agtcagacag 4200 atgtggttgc atcctaactc catgtctctg agcattagat ttctcatttg 4250 ccaataataa tacctccctt agaagtttgt tgtgaggatt aaataatgta 4300 aataaagaac tagcataaca ctcaaaaaaa aaaaaaaaa aaaaaaaaa 4350

<21 <21	0> 3 1> 8 2> P 3> H	37 RT	sapi	ens										
Me	0> 3 t Se 1		n Thi	r Gl	y Se: 5	r His	s Pro	o Gl	y Aro		/ Lei	ı Ala	a Gly	y Arg 15
Tr	p Le	u Tr	p Gly	y Ala 20	a Gli	n Pro	с Суз	s Lei	1 Let 25	Leu	Pro) Ile	Val	Pro 30
Lei	u Se:	r Tr	p Leu	ı Val 35	l Trp	Leu	ı Lev	ı Leu	Leu 40		Leu	ı Alá	Ser	Leu 45
Lei	ı Pro	o Sei	r Ala	Arg 50	J Leι)	ı Ala	Ser	Pro	Leu 55		Arg	Glu	Glu	Glu 60
Ile	e Val	L Ph∈	e Pro	Glu 65	ı Lys	Leu	Asn	ı Gly	Ser 70	Val	Leu	Pro	Gly	Ser 75
Gl	/ Ala	a Pro	Ala	Arg 80	Let	Leu	Cys	Arg	Leu 85	Gln	Ala	Phe	Gly	Glu 90
Thr	Leu	ı Lev	l Leu	Glu 95	Leu	Glu	Gln	Asp	Ser 100	Gly	Val	Gln	Val	Glu 105
Gly	Leu	Thr	Val	Gln 110	Tyr	Leu	Gly	Gln	Ala 115	Pro	Glu	Leu	Leu	Gly 120
Gly	Ala	Glu	Pro	Gly 125	Thr	Tyr	Leu	Thr	Gly 130	Thr	Ile	Asn	Gly	Asp 135
Pro	Glu	Ser	Val	Ala 140	Ser	Leu	His	Trp	Asp 145	Gly	Gly	Ala	Leu	Leu 150
Gly	Val	Leu	Gln	Tyr 155	Arg	Gly	Ala	Glu	Leu 160	His	Leu	Gln	Pro	Leu 165
Glu	Gly	Gly	Thr	Pro 170	Asn	Ser	Ala	Gly	Gly 175	Pro	Gly	Ala	His	Ile 180
Leu	Arg	Arg	Lys	Ser 185	Pro	Ala	Ser	Gly	Gln 190	Gly	Pro	Met	Cys	Asn 195
Val	Lys	Ala	Pro	Leu 200	Gly	Ser	Pro	Ser	Pro 205	Arg	Pro	Arg	Arg	Ala 210
Lys	Arg	Phe	Ala	Ser 215	Leu	Ser	Arg	Phe	Val 220	Glu	Thr	Leu	Val	Val 225
Ala	Asp	Asp	Lys	Met 230	Ala	Ala	Phe	His	Gly 235	Ala	Gly	Leu	Lys	Arg 240
Tyr	Leu	Leu	Thr	Val	Met	Ala	Ala	Ala	Ala	Lys .	Ala	Phe	Lys	His

Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Val

		530				535			540
Gln Phe S	er Ser	Arg A 545	sp Cys	s Thr	Arg	Pro Va 550	al Pro A	Arg Asn	Gly 555
Gly Lys T	yr Cys	Glu G 560	ly Aro	g Arg	Thr	Arg Ph	ie Arg S	Ger Cys	Asn 570
Thr Glu A		373				580			585
Gln Cys A.		390				595			600
Pro Gly Pr		003				610			615
Gln Asp Gl		020				625			630
Tyr Tyr Va		033				640			645
Pro Asp Se		030				655			660
Gly Cys As		003				670			675
Met Val Cy	,	000			1	685			690
Ser Phe Ar	,	090			•	/00		•	705
Pro Ala Gl	,	,10			7	715		•	720
Gly His Arg	,	23			.,	730		7	735
Tyr Ala Leu	,	40			/	45		7	50
Val Val Leu	,	33			7	60		7	65
Ala Ala Ser	,	70			/	/5		7	80
Leu Thr Leu	, ,	0.5			7	90		7	95
Leu Arg Tyr	01	30			81	05		8	10
Arg Pro Thr	Pro G	ln Asp	Trp I	Leu H	is A	rg Arg	Ala Gln	Ile L	eu

Glu Ile Leu Arg Arg Arg Pro Trp Ala Gly Arg Lys 830 835

<210> 318

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 318

ccctgaaget gccagatggc tcc 23

<210> 319

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 319

ctgtgctctt cggtgcagcc agtc 24

<210> 320

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 320

ccacagatgt ggtactgcct ggggcagtca gcttgcgcta cag 43

<210> 321

<211> 1197

<212> DNA

<213> Homo sapiens

<400> 321

cagcagtggt ctctcagtcc tctcaaagca aggaaagagt actgtgtgct 50

gagagaccat ggcaaagaat cctccagaga attgtgaaga ctgtcacatt 100

ctaaatgcag aagctittaa atccaagaaa atatgtaaat cacttaagat 150

ttgtggactg gtgtttggta tcctggccct aactctaatt gtcctgtttt 200

gggggagcaa gcacttctgg ccggaggtac ccaaaaaagc ctatgacatg 250

gagcacactt tctacagcaa tggagagaag aagaagattt acatggaaat 300

tgatcctgtg accagaactg aaatattcag aagcggaaat ggcactgatg 350

aaacattgga agtgcacgac tttaaaaacg gatacactgg catctacttc 400 gtgggtcttc aaaaatgttt tatcaaaact cagattaaag tgattcctga 450 attttctgaa ccagaagag aaatagatga gaatgaagaa attaccacaa 500 ctttctttga acagtcagtg atttgggtcc cagcagaaaa gcctattgaa 550 aaccgagatt ttcttaaaaa ttccaaaatt ctggagattt gtgataacgt 600 gaccatgtat tggatcaatc ccactctaat atcagtttct gagttacaag 650 actttgagga ggagggagaa gatcttcact ttcctgccaa cgaaaaaaaa 700 gggattgaac aaaatgaaca gtgggtggtc cctcaagtga aagtagagaa 750 gacccgtcac gccagacaag caagtgagga agaacttcca ataaatgact 800 atactgaaaa tggaatagaa tttgatccca tgctggatga gagaggttat 850 tgttgtattt actgccgtcg aggcaaccgc tattgccgcc gcgtctgtga 900 acctttacta ggctactacc catatccata ctgctaccaa ggaggacgag 950 tcatctgtcg tgtcatcatg ccttgtaact ggtgggtggc ccgcatgctg 1000 gggagggtct aataggaggt ttgagctcaa atgcttaaac tgctggcaac 1050 atataataaa tgcatgctat tcaatgaatt tctgcctatg aggcatctgg 1100 cccctggtag ccagctctcc agaattactt gtaggtaatt cctctcttca 1150

<210> 322

<211> 317

<212> PRT

<213> Homo sapiens

<400> 322

Met Ala Lys Asn Pro Pro Glu Asn Cys Glu Asp Cys His Ile Leu 1 5 10 15

Asn Ala Glu Ala Phe Lys Ser Lys Lys Ile Cys Lys Ser Leu Lys 20 25 30

Ile Cys Gly Leu Val Phe Gly Ile Leu Ala Leu Thr Leu Ile Val

Leu Phe Trp Gly Ser Lys His Phe Trp Pro Glu Val Pro Lys Lys 50 55 60

Ala Tyr Asp Met Glu His Thr Phe Tyr Ser Asn Gly Glu Lys Lys 65 70 75

Lys Ile Tyr Met Glu Ile Asp Pro Val Thr Arg Thr Glu Ile Phe

														50
Ar	g Se	r Gl	y As	n Gl 9	у Тh: 5	r Asp	Glı	ı Th:	r Lei 100	u Glu O	ı Va	l Hi	s As	p Phe 105
Ly	s As	n Gl	у Ту	r Th:	r Gly	y Ile	ту1	r Phe	e Val	L Gly	/ Le	u Gli	n Ly:	s Cys 120
Ph	e Il	e Ly	s Th	r Gli 125	n Ile 5	e Lys	Val	l Ile	Pro 130	Glu	ı Phe	e Sei	c Glu	ı Pro 135
Glı	u Gl	u Gl	u Il	e Asp 140	o Glu)	a Asn	Glu	Glu	Ile 145	Thr	Thi	Thi	: Phe	Phe
Glı	ı Glı	n Se	r Va	l Ile 155	e Trp	Val	Pro	Ala	Glu 160	Lys	Pro) Ile	e Glu	Asn 165
Arg	J Asp	Ph	e Lei	170	Asn	Ser	Lys	Ile	Leu 175	Glu	Ile	е Суз	Asp	Asn 180
Val	Thr	Me	ту1	Trp 185	Ile	Asn	Pro	Thr	Leu 190	Ile	Ser	Val	Ser	Glu 195
Leu	Gln	Asp	Phe	Glu 200	Glu	Glu	Gly	Glu	Asp 205	Leu	His	Phe	Pro	Ala 210
Asn	Glu	Lys	Lys	Gly 215	Ile	Glu	Gln	Asn	Glu 220	Gln	Trp	Val	Val	Pro 225
Gln	Val	Lys	Val	Glu 230	Lys	Thr	Arg	His	Ala 235	Arg	Gln	Ala	Ser	Glu 240
Glu	Glu	Leu	Pro	Ile 245	Asn	Asp	Tyr	Thr	Glu 250	Asn	Gly	Ile	Glu	Phe 255
Asp	Pro	Met	Leu	Asp 260	Glu	Arg	Gly	Tyr	Cys 265	Cys	Ile	Tyr	Cys	Arg 270
Arg	Gly	Asn	Arg	Tyr 275	Cys	Arg	Arg	Val	Cys 280	Glu	Pro	Leu	Leu	Gly 285
Tyr	Tyr	Pro	Tyr	Pro 290	Tyr	Cys '	Tyr	Gln	Gly 295	Gly	Arg	Val	Ile	Cys 300
Arg	Val	Ile	Met	Pro 305	Суз	Asn '	Irp '	Trp	Val 1 310	Ala .	Arg	Met		Gly 315

Arg Val

<210> 323

<211> 1174

<212> DNA

<213> Homo sapiens

<400> 323

gcggaactgg ctccggctgg cacctgagga gcggcgtgac cccgagggcc 50

cagggagetg eccggetgge etaggeagge ageegeacea tggeeageae 100 ggccgtgcag cttctgggct tcctgctcag cttcctgggc atggtgggca 150 cgttgatcac caccatcctg ccgcactggc ggaggacagc gcacgtgggc 200 accaacatcc tcacggccgt gtcctacctg aaagggctct ggatggagtg 250 tgtgtggcac agcacaggca tctaccagtg ccagatctac cgatccctgc 300 tggcgctgcc ccaagacete caggetgccc gcgccctcat ggtcatetec 350 tgcctgctct cgggcatage ctgcgcctgc gccgtcatcg ggatgaagtg 400 cacgegetge gecaagggea caceegecaa gaccacettt gecateeteg 450 geggeaceet etteateetg geeggeetee tgtgeatggt ggeegtetee 500 tggaccacca acgacgtggt gcagaacttc tacaacccgc tgctgcccag 550 cggcatgaag tttgagattg gccaggccct gtacctgggc ttcatctcct 600 cgtccctctc gctcattggt ggcaccctgc tttgcctgtc ctgccaggac 650 gaggeaceet acaggeeeta ecaggeeeeg eccagggeea ecaegaeeae 700 tgcaaacacc gcacctgcct accagccacc agctgcctac aaagacaatc 750 gggccccctc agtgacctcg gccacgcaca gcgggtacag gctgaacgac 800 tacgtgtgag tececacage etgettetee eetgggetge tgtgggetgg 850 gtccccggcg ggactgtcaa tggaggcagg ggttccagca caaagtttac 900 ttctgggcaa tttttgtatc caaggaaata atgtgaatgc gaggaaatgt 950 ctttagagca cagggacaga gggggaaata agaggaggag aaagctctct 1000 ataccaaaga ctgaaaaaaa aaatcctgtc tgtttttgta tttattatat 1050 atatttatgt gggtgatttg ataacaagtt taatataaag tgacttggga 1100 gtttggtcag tggggttggt ttgtgatcca ggaataaacc ttgcggatgt 1150 ggctgtttat gaaaaaaaa aaaa 1174

```
<210> 324
```

Leu Gly Met Val Gly Thr Leu Ile Thr Thr Ile Leu Pro His Trp

<211> 239

<212> PRT

<213> Homo sapiens

<400> 324

Met Ala Ser Thr Ala Val Gln Leu Leu Gly Phe Leu Leu Ser Phe 1 5 10 15

_														50
				J	9				4	U				l Ser 45
				3	O				5:	5				r Gly 60
				0.					/()				Gln 75
Asp	Lei	u Gli	n Al	a Ala 80	a Arg	y Ala	a Let	ı Met	Val	Il∈	e Ser	Суз	E Lei	Leu 90
Ser	Gly	y Ile	∋ Ala	a Cys 95	Ala	Cys	s Ala	Val	. Ile	Gly	Met	Lys	cys	Thr 105
Arg	Cys	s Ala	a Lys	5 Gly 110	Thr	Pro	Ala	Lys	Thr 115	Thr	Phe	Ala	Ile	Leu 120
Gly	Gly	Thr	Leu	Phe 125	Ile	Leu	Ala	Gly	Leu 130	Leu	Cys	Met	Val	Ala 135
Val	Ser	Trp	Thr	Thr 140	Asn	Asp	Val	Val	Gln 145	Asn	Phe	Tyr	Asn	Pro 150
Leu	Leu	Pro	Ser	Gly 155	Met	Lys	Phe	Glu	Ile 160	Gly	Gln	Ala	Leu	Tyr 165
Leu	Gly	Phe	Ile	Ser 170	Ser	Ser	Leu	Ser	Leu 175	Ile	Gly	Gly	Thr	Leu 180
Leu	Cys	Leu	Ser	Cys 185	Gln	Asp	Glu	Ala	Pro 190	Tyr	Arg	Pro	Tyr	Gln 195
Ala	Pro	Pro	Arg	Ala 200	Thr	Thr	Thr	Thr	Ala 205	Asn	Thr	Ala	Pro	Ala 210
Tyr	Gln	Pro	Pro	Ala 215	Ala	Tyr	Lys	Asp	Asn 220	Arg	Ala	Pro	Ser	
Thr S	Ser	Ala	Thr	His 230	Ser	Gly	Tyr	Arg	Leu 235	Asn .	Asp	Tyr	Val	
<210> <211> <212> <213>	212 DNA	1	pien	s										

<400> 325

gagetecet caggagege tragetrea accrteggea geagagege 50 ggeagetret egeagegege agggegege geeaggatea tgtecaceae 100 cacatgecaa gtggtggef teetectgte cateetggg etggeegee 150 geategegge cacegggate gaeatgtgga geaeceagga eetgtaeegae 200

aaccccgtca cctccgtgtt ccagtacgaa gggctctgga ggagctgcgt 250 gaggcagagt tcaggcttca ccgaatgcag gccctatttc accatcctgg 300 gacttccage catgetgcag gcagtgcgag ccctgatgat cgtaggcatc 350 gtcctgggtg ccattggcct cctggtatcc atctttgccc tgaaatgcat 400 ccgcattggc agcatggagg actctgccaa agccaacatg acactgacct 450 ccgggatcat gttcattgtc tcaggtcttt gtgcaattgc tggagtgtct 500 gtgtttgcca acatgctggt gactaacttc tggatgtcca cagctaacat 550 gtacaccggc atgggtggga tggtgcagac tgttcagacc aggtacacat 600 ttggtgcggc tctgttcgtg ggctgggtcg ctggaggcct cacactaatt 650 gggggtgtga tgatgtgcat cgcctgccgg ggcctggcac cagaagaaac 700 caactacaaa gccgtttctt atcatgcctc aggccacagt gttgcctaca 750 agcctggagg cttcaaggcc agcactggct ttgggtccaa caccaaaaac 800 aagaagatat acgatggagg tgcccgcaca gaggacgagg tacaatctta 850 teettecaag caegactatg tgtaatgete taagacetet cageaeggge 900 ggaagaaact cccggagagc tcacccaaaa aacaaggaga tcccatctag 950 atttcttctt gcttttgact cacagctgga agttagaaaa gcctcgattt 1000 catctttgga gaggccaaat ggtcttagcc tcagtctctg tctctaaata 1050 ttccaccata aaacagctga gttatttatg aattagaggc tatagctcac 1100 attttcaatc ctctatttct ttttttaaat ataactttct actctgatga 1150 gagaatgtgg ttttaatctc tctctcacat tttgatgatt tagacagact 1200 coccetette etectagica ataaacceat tgatgateta titeceaget 1250 tatccccaag aaaacttttg aaaggaaaga gtagacccaa agatgttatt 1300 ttctgctgtt tgaattttgt ctccccaccc ccaacttggc tagtaataaa 1350 cacttactga agaagaagca ataagagaaa gatatttgta atctctccag 1400 agtcattttc agtttgaggc aaccaaacct ttctactgct gttgacatct 1500 tettattaca geaacaceat tetaggagtt teetgagete teeactggag 1550 tcctctttct gtcgcgggtc agaaattgtc cctagatgaa tgagaaaatt 1600

attititita attitaagicc taaatatagi taaaataaat aatgititag 1650 taaaatgata cactatctci gigaaatagc cicaccccta catgiggata 1700 gaaggaaatg aaaaataat tgcttigaca tigictatat ggtactiigt 1750 aaagtcatgc tiaagtacaa atticcatgaa aagctcacac cigitaatcci 1800 agcactiigg gaggcigagg aggaaggatc actigagccc agaagticga 1850 gactagccig ggcaacatgg agaagcccig ticicaaaa atacagagag 1900 aaaaaatcag ccagicatgg tigicatacac cigitagiccc agcaticcgg 1950 gaggcigagg tigigaggatc actigagccc aggaggiig gggcigcagt 2000 gagccatgat cacaccactg cactccagcc aggigacata gcgagatcci 2050 gictaaaaaa ataaaaaata aataatggaa cacagcaagi cctaggaagi 2100 aggitaaaac taattiia a 2121

<210> 326

<211> 261

<212> PRT

<213> Homo sapiens

<400> 326

Met Ser Thr Thr Cys Gln Val Val Ala Phe Leu Leu Ser Ile $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Gly Leu Ala Gly Cys Ile Ala Ala Thr Gly Met Asp Met Trp
20 25 30

Ser Thr Gln Asp Leu Tyr Asp Asn Pro Val Thr Ser Val Phe Gln 35 40 45

Tyr Glu Gly Leu Trp Arg Ser Cys Val Arg Gln Ser Ser Gly Phe 50 55 60

Thr Glu Cys Arg Pro Tyr Phe Thr Ile Leu Gly Leu Pro Ala Met
65 70 75

Leu Gln Ala Val Arg Ala Leu Met Ile Val Gly Ile Val Leu Gly 80 85 90

Ala Ile Gly Leu Leu Val Ser Ile Phe Ala Leu Lys Cys Ile Arg 95 100 105

Ile Gly Ser Met Glu Asp Ser Ala Lys Ala Asn Met Thr Leu Thr
110 115 120

Ser Gly Ile Met Phe Ile Val Ser Gly Leu Cys Ala Ile Ala Gly 125 130 135

Val Ser Val Phe Ala Asn Met Leu Val Thr Asn Phe Trp Met Ser 140 145 150 Thr Ala Asn Met Tyr Thr Gly Met Gly Gly Met Val Gln Thr Val 155 160 165

Gln Thr Arg Tyr Thr Phe Gly Ala Ala Leu Phe Val Gly Trp Val 170 175 180

Ala Gly Gly Leu Thr Leu Ile Gly Gly Val Met Met Cys Ile Ala 185 190 195

Cys Arg Gly Leu Ala Pro Glu Glu Thr Asn Tyr Lys Ala Val Ser 200 205 210

Tyr His Ala Ser Gly His Ser Val Ala Tyr Lys Pro Gly Gly Phe 215 220 225

Lys Ala Ser Thr Gly Phe Gly Ser Asn Thr Lys Asn Lys Lys Ile 230 235 240

Tyr Asp Gly Gly Ala Arg Thr Glu Asp Glu Val Gln Ser Tyr Pro 245 250 255

Ser Lys His Asp Tyr Val 260

<210> 327

<211> 2010

<212> DNA

<213> Homo sapiens

<400> 327

ggaaaaactg ttctcttctg tggccacagag aaccctgctt caaagcagaa 50 gtagcagttc cggagtccag ctggctaaaa ctcatcccag aggataatgg 100 caacccatgc cttagaaatc gctgggctgt ttcttggtgg tgttggaatg 150 gtgggcacag tggctgtcac tgtcatgcct cagtggagag tgtcggcctt 200 cattgaaaac aacatcgtgg tttttgaaaa cttctgggaa ggactgtgga 250 tgaattgcgt gaggcaggct aacatcagga tgcagtgcaa aatctatgat 300 tccctgctgg ctctttctcc ggacctacag gcagccagag gactgatgtg 350 tgctgcttcc gtgatgtcct tcttggcttt catgatggcc atccttggca 400 tgaaatgcac caggtgcacg ggggacaatg agaaggtgaa ggctcacatt 450 ctgctgacgg ctggaatcat cttcatcatc acgggcatgg tggtgctcat 500 ccctgtgagc tgggttgcca atgccatcat cagagatttc tataactcaa 550 tagtgaatgt tgcccaaaaa cgtgagcttg gagagctctgt tctgctgct tctgctgcg 650

tttttgttgc aacgaaaaga gcagtagcta cagatactcg ataccttccc 700 atcgcacaac ccaaaaaagt tatcacaccg gaaagaagtc accgagcgtc 750 tactccagaa gtcagtatgt gtagttgtgt atgtttttt aactttacta 800 taaagccatg caaatgacaa aaatctatat tactttctca aaatggaccc 850 caaagaaact ttgatttact gttcttaact gcctaatctt aattacagga 900 actgtgcatc agctatttat gattctataa gctatttcag cagaatgaga 950 tattaaaccc aatgctttga ttgttctaga aagtatagta atttgttttc 1000 taaggtggtt caagcatcta ctctttttat catttacttc aaaatgacat 1050 tgctaaagac tgcattattt tactactgta atttctccac gacatagcat 1100 tatgtacata gatgagtgta acatttatat ctcacataga gacatgctta 1150 tatggtttta tttaaaatga aatgccagtc cattacactg aataaataga 1200 actcaactat tgcttttcag ggaaatcatg gatagggttg aagaaggtta 1250 ctattaattg tttaaaaaca gcttagggat taatgtcctc catttataat 1300 gaagattaaa atgaaggctt taatcagcat tgtaaaggaa attgaatggc 1350 tttctgatat gctgtttttt agcctaggag ttagaaatcc taacttcttt 1400 atcetettet eccagagget tttttttet tgtgtattaa attaacattt 1450 ttaaaacgca gatattttgt caaggggctt tgcattcaaa ctgcttttcc 1500 agggctatac tcagaagaaa gataaaagtg tgatctaaga aaaagtgatg 1550 gttttaggaa agtgaaaata tttttgtttt tgtatttgaa gaagaatgat 1600 gcattttgac aagaaatcat atatgtatgg atatatttta ataagtattt 1650 gagtacagac tttgaggttt catcaatata aataaaagag cagaaaaata 1700 tgtcttggtt ttcatttgct taccaaaaaa acaacaacaa aaaaagttgt 1750 cctttgagaa cttcacctgc tcctatgtgg gtacctgagt caaaattgtc 1800 atttttgttc tgtgaaaaat aaatttcctt cttgtaccat ttctgtttag 1850 ttttactaaa atctgtaaat actgtatttt tctgtttatt ccaaatttga 1900 tgaaactgac aatccaattt gaaagtttgt gtcgacgtct gtctagctta 1950 aatgaatgtg ttctatttgc tttatacatt tatattaata aattgtacat 2000 ttttctaatt 2010

<2112 <2122 <2132	PR7	r	apier	ns				,						
<400> Met 1			His	Ala 5	Leu	Glu	Ile	Ala	Gly 10	Leu	Phe	Leu	Gly	Gly 15
Val	Gly	Met	Val	Gly 20	Thr	Val	Ala	Val	Thr 25	Val	Met	Pro	Gln	Trp 30
Arg	Val	Ser	Ala	Phe 35	Ile	Glu	Asn	Asn	Ile 40	Val	Val	Phe	Glu	Asn 45
Phe	Trp	Glu	Gly	Leu 50	Trp	Met	Asn	Cys	Val 55	Arg	Gln	Ala	Asn	Ile 60
Arg	Met	Gln	Cys	Lys 65	Ile	Tyr	Asp	Ser	Leu 70	Leu	Ala	Leu	Ser	Pro 75
Asp	Leu	Gln	Ala	Ala 80	Arg	Gly	Leu	Met	Cys 85	Ala	Ala	Ser	Val	Met 90
Ser	Phe	Leu	Ala	Phe 95	Met	Met	Ala	Ile	Leu 100	Gly	Met	Lys	Cys	Thr 105
Arg	Cys	Thr	Gly	Asp 110	Asn	Glu	Lys	Val	Lys 115	Ala	His	Ile	Leu	Leu 120
Thr	Ala	Gly	Ile	Ile 125	Phe	Ile	Ile	Thr	Gly 130	Met	Val	Val	Leu	Ile 135
Pro	Val	Ser	Trp	Val 140	Ala	Asn	Ala	Ile	Ile 145	Arg	Asp	Phe	Tyr	Asn 150
Ser	Ile	Val	Asn	Val 155	Ala	Gln	Lys	Arg	Glu 160	Leu	Gly	Glu	Ala	Leu 165
Tyr	Leu	Gly	_	Thr 170		Ala	Leu	Val	Leu 175	Ile	Val	Gly	Gly	Ala 180
Leu	Phe	Cys	Cys	Val 185	Phe	Cys	Cys	Asn	Glu 190	Lys	Ser	Ser	Ser	Tyr 195
Arg	Tyr	Ser	Ile	Pro 200	Ser	His	Arg	Thr	Thr 205	Gln	Lys	Ser	Tyr	His 210
Thr	Gly	Lys	Lys	Ser 215	Pro	Ser	Val	Tyr	Ser 220	Arg	Ser	Gln	Tyr	Val 225

<210> 329

<211> 1315

<212> DNA

<213> Homo sapiens

<400> 329

togccatggc ctctgccgga atgcagatcc tgggagtcgt cctgacactg 50

ctgggctggg tgaatggcct ggtctcctgt gccctgccca tgtggaaggt 100 gaccgctttc atcggcaaca gcatcgtggt ggcccaggtg gtgtgggagg 150 gcctgtggat gtcctgcgtg gtgcagagca ccggccagat gcagtgcaag 200 gtgtacgact cactgctggc gctgccacag gacctgcagg ctgcacgtgc 250 cctctgtgtc atcgccctcc ttgtggccct gttcggcttg ctggtctacc 300 ttgctggggc caagtgtacc acctgtgtgg aggagaagga ttccaaggcc 350 cgcctggtgc tcacctctgg gattgtcttt gtcatctcag gggtcctgac 400 gctaatcccc gtgtgctgga cggcgcatgc catcatccgg gacttctata 450 accectggt ggetgaggee caaaageggg agetggggge etecetetae 500 ttgggctggg cggcctcagg ccttttgttg ctgggtgggg ggttgctgtg 550 ctgcacttgc ccctcggggg ggtcccaggg ccccagccat tacatggccc 600 gctactcaac atctgcccct gccatctctc ggggggccctc tgagtaccct 650 accaagaatt acgtctgacg tggaggggaa tgggggctcc gctggcgcta 700 gagccatcca gaagtggcag tgcccaacag ctttgggatg ggttcgtacc 750 ttttgtttct gcctcctgct atttttcttt tgactgagga tatttaaaat 800 tcatttgaaa actgagccaa ggtgttgact cagactctca cttaggctct 850 gctgtttctc acccttggat gatggagcca aagaggggat gctttgagat 900 tctggatctt gacatgccca tcttagaagc cagtcaagct atggaactaa 950 tgcggaggct gcttgctgtg ctggctttgc aacaagacag actgtcccca 1000 agagtteetg etgetgetgg gggetggget teeetagatg teactggaca 1050 getgeeece atcetaetea ggtetetgga geteetetet teacceetgg 1100 aaaaacaaat catctgttaa caaaggactg cccacctccg gaacttctga 1150 cctctgtttc ctccgtcctg ataagacgtc cacccccag ggccaggtcc 1200 cagetatgta gaccecegee eccaceteca acaetgeace ettetgeeet 1250. gccccctcg tctcaccccc tttacactca catttttatc aaataaagca 1300 tgttttgtta gtgca 1315

<210> 330

<211> 220

<212> PRT

<213> Homo sapiens

<400	> 33	n												
		Ser	Ala	Gly 5	Met	Gln	Ile	Leu	Gly 10	Val	Val	Leu	Thr	Leu 15
Leu	Gly	Trp	Val	Asn 20	Gly	Leu	Val	Ser	Cys 25	Ala	Leu	Pro	Met	Trp 30
Lys	Val	Thr	Ala	Phe 35	Ile	Gly	Asn	Ser	Ile 40	Val	Val	Ala	Gln	Val 45
Val	Trp	Glu	Gly	Leu 50	Trp	Met	Ser	Cys	Val 55	Val	Gln	Ser	Thr	Gly 60
Gln	Met	Gln	Cys	Lys 65	Val	Tyr	Asp	Ser	Leu 70	Leu	Ala	Leu	Pro	Gln 75
Asp	Leu	Gln	Ala	Ala 80	Arg	Ala	Leu	Суѕ	Val 85	Ile	Ala	Leu	Leu	Val 90
Ala	Leu	Phe	Gly	Leu 95	Leu	Val	Tyr	Leu	Ala 100	Gly	Ala	Lys	Cys	Thr 105
Thr	Cys	Val	Glu	Glu 110	Lys	Asp	Ser	Lys	Ala 115	Arg	Leu	Val	Leu	Thr 120
Ser	Gly	Ile	Val	Phe 125	Val	Ile	Ser	Gly	Val 130	Leu	Thr	Leu	Ile	Pro 135
Val	Cys	Trp	Thr	Ala 140	His	Ala	Ile	Ile	Arg 145	Asp	Phe	Tyr	Asn	Pro 150
Leu	Val	Ala	Glu	Ala 155	Gln	Lys	Arg	Glu	Leu 160	Gly	Ala	Ser	Leu	Tyr 165
Leu	Gly	Trp	Ala	Ala 170	Ser	Gly	Leu	Leu	Leu 175	Leu	Gly	Gly	Gly	Leu 180
Leu	Cys	Cys	Thr	Cys 185	Pro	Ser	Gly	Gly	Ser 190	Gln	Gly	Pro	Ser	His 195
Tyr	Met	Ala	Arg	Tyr 200	Ser	Thr	Ser	Ala	Pro 205	Ala	Ile	Ser	Arg	Gly 210
Pro	Ser	Glu	Tyr	Pro 215	Thr	Lys	Asn	Tyr	Val 220					
<210><211><211><212><212>	> 116 > DN <i>F</i>	50 A	npi er	ns										

<213> Homo sapiens

<400> 331

gccaaggaga acatcatcaa agacttctct agactcaaaa ggcttccacg 50

ttctacatct tgagcatctt ctaccactcc gaattgaacc agtcttcaaa 100

gtaaaggcaa tggcatttta tcccttgcaa attgctgggc tggttcttgg 150 gttccttggc atggtgggga ctcttgccac aaccettctg cctcaqtqqt 200 ggagtatcag cttttgttgg cagcaacatt attgtctttg agaggctctg 250 ggaagggctc tggatgaatt gcatccgaca agccagggtc cggttgcaat 300 gcaagttcta tagctccttg ttggctctcc cgcctgccct ggaaacagcc 350 cgggccctca tgtgtgtggc tgttgctctc tccttgatcg ccctgcttat 400 tggcatctgt ggcatgaagc aggtccagtg cacaggctct aacgagaggg 450 ccaaagcata ccttctggga acttcaggag tcctcttcat cctgacgggt 500 atcttcgttc tgattccggt gagctggaca gccaatataa tcatcagaga 550 tttctacaac ccagccatcc acataggtca gaaacgagag ctgggagcag 600 cacttttcct tggctgggca agcgctgctg tcctcttcat tggagggggt 650 ctgctttgtg gattttgctg ctgcaacaga aagaagcaag ggtacagata 700 tccagtgcct ggctaccgtg tgccacacac agataagcga agaaatacga 750 caatgcttag taagacctcc accagttatg tctaatgcct ccttttggct 800 ccaagtatgg actatggtca atgtttttta taaagtcctg ctagaaactg 850 taagtatgtg aggcaggaga acttgcttta tgtctagatt tacattgata 900 cgaaagtttc aatttgttac tggtggtagg aatgaaaatg acttacttgg 950 acattetgae tteaggtgta ttaaatgeat tgaetattgt tggaeceaat 1000 cgctgctcca attttcatat tctaaattca agtataccca taatcattag 1050 caagtgtaca atgatggact acttattact ttttqaccat catgtattat 1100 ctgataagaa tctaaagttg aaattgatat tctataacaa taaaacatat 1150 acctattcta 1160

<210> 332

<211> 173

<212> PRT

<213> Homo sapiens

<400> 332

Met Asn Cys Ile Arg Gln Ala Arg Val Arg Leu Gln Cys Lys Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Tyr Ser Ser Leu Leu Ala Leu Pro Pro Ala Leu Glu Thr Ala Arg 20 25 30

Ala Leu Met Cys Val Ala Val Ala Leu Ser Leu Ile Ala Leu Leu

Ile Gly Ile Cys Gly Met Lys Gln Val Gln Cys Thr Gly Ser Asn 50 55 60

Glu Arg Ala Lys Ala Tyr Leu Leu Gly Thr Ser Gly Val Leu Phe
65 70 75

Ile Leu Thr Gly Ile Phe Val Leu Ile Pro Val Ser Trp Thr Ala 80 85 90

Asn Ile Ile Ile Arg Asp Phe Tyr Asn Pro Ala Ile His Ile Gly
95 100 105

Gln Lys Arg Glu Leu Gly Ala Ala Leu Phe Leu Gly Trp Ala Ser 110 115 120

Ala Ala Val Leu Phe Ile Gly Gly Gly Leu Leu Cys Gly Phe Cys 125 130 135

Cys Cys Asn Arg Lys Lys Gln Gly Tyr Arg Tyr Pro Val Pro Gly
140 145 150

Tyr Arg Val Pro His Thr Asp Lys Arg Arg Asn Thr Thr Met Leu 155 160 165

Ser Lys Thr Ser Thr Ser Tyr Val

<210> 333

<211> 535

<212> DNA

<213> Homo sapiens

<400> 333

agtgacaatc tcagagcagc ttctacacca cagccatttc cagcatgaag 50 atcactgggg gtctccttct gctctgtaca gtggtctatt tctgtagcag 100 ctcagaagct gctagtctgt ctccaaaaaa agtggactgc agcatttaca 150 agaagtatcc agtggtggcc atcccctgcc ccatcacata cctaccagtt 200 tgtgggtctg actacatcac ctatgggaat gaatgtcact tgtgtaccga 250 gagcttgaaa agtaatggaa gagttcagtt tcttcacgat ggaagttgct 300 aaattctcca tggacataga gagaaaggaa tgatattctc atcatcatct 350 tcatcatccc aggctctgac tgagtttctt tcagttttac tgatgtctg 400 ggtgggggac agagccagat tcagagtaat cttgaccgaa tggagaaagg 450 ttctgtgcta cccctacaaa cccatgcctc actgacagac cagcattttt 500 tttttaacac gtcaataaaa aaataatctc ccaga 535

```
<210> 334
```

<211> 85

<212> PRT

<213> Homo sapiens

<400> 334

Met Lys Ile Thr Gly Gly Leu Leu Leu Cys Thr Val Val Tyr
1 5 10 15

Phe Cys Ser Ser Ser Glu Ala Ala Ser Leu Ser Pro Lys Lys Val 20 25 30

Asp Cys Ser Ile Tyr Lys Lys Tyr Pro Val Val Ala Ile Pro Cys
35 40 45

Pro Ile Thr Tyr Leu Pro Val Cys Gly Ser Asp Tyr Ile Thr Tyr 50 55 60

Gly Asn Glu Cys His Leu Cys Thr Glu Ser Leu Lys Ser Asn Gly
65 70 75

Arg Val Gln Phe Leu His Asp Gly Ser Cys 80 85

<210> 335

<211> 742

<212> DNA

<213> Homo sapiens

<400> 335

cccgcgcccg gttctcctc gcagcacctc gaagtgcgc cctcgccctc 50
ctgctcgcgc cccgccgca tggctgcctc ccccgcgcgg cctgctgtcc 100
tggccctgac cgggctggcg ctgctcctgc tcctgtgctg gggcccaggt 150
ggcataagtg gaaataaact caagctgatg cttcaaaaac gagaagcacc 200
tgttccaact aagactaaag tggccgttga tgagaataaa gccaaagaat 250
tccttggcag cctgaagcgc cagaagcggc agctgtggga ccggactcgg 300
cccgaggtgc agcagtggta ccagcagttt ctctacatgg gctttgatga 350
agcgaaattt gaagatgaca tcacctattg gcttaacaga gatcgaaatg 400
gacatgaata ctatggcgat tactaccaac gtcactatga tgaagactct 450
gcaattggtc cccggagccc ctacggcttt aggcatggag ccagcgtcaa 500
ctacgatgac tactaaccat gacttgccac acgctgtaca agaagcaaat 550
agcgattctc ttcatgtatc tcctaatgcc ttacactact tggttctga 600
tttgctctat ttcagcagat ctttctacc tactttgtg gatcaaaaaa 650
gaagagttaa aacaacacat gtaaatgcct tttgatatt catgggaatg 700

```
cctctcattt aaaaatagaa ataaagcatt ttgttaaaaa ga 742
<210> 336
<211> 148
<212> PRT
<213> Homo sapiens
<400> 336
Met Ala Ala Ser Pro Ala Arg Pro Ala Val Leu Ala Leu Thr Gly
                                      10
Leu Ala Leu Leu Leu Leu Cys Trp Gly Pro Gly Gly Ile Ser
                  20
                                      25
 Gly Asn Lys Leu Lys Leu Met Leu Gln Lys Arg Glu Ala Pro Val
 Pro Thr Lys Thr Lys Val Ala Val Asp Glu Asn Lys Ala Lys Glu
                  50
 Phe Leu Gly Ser Leu Lys Arg Gln Lys Arg Gln Leu Trp Asp Arg
 Thr Arg Pro Glu Val Gln Gln Trp Tyr Gln Gln Phe Leu Tyr Met
                                      85
 Gly Phe Asp Glu Ala Lys Phe Glu Asp Asp Ile Thr Tyr Trp Leu
                  95
                                     100
 Asn Arg Asp Arg Asn Gly His Glu Tyr Tyr Gly Asp Tyr Tyr Gln
                                     115
                 110
 Arg His Tyr Asp Glu Asp Ser Ala Ile Gly Pro Arg Ser Pro Tyr
                 125
                                     130
 Gly Phe Arg His Gly Ala Ser Val Asn Tyr Asp Asp Tyr
                 140
```

30

45

105

120

<210> 337

<211> 1310

<212> DNA

<213> Homo sapiens

<400> 337

eggetegage eegeeeggaa gtgeeegagg ggeegegatg gagetggggg 50 agccgggcgc tcggtagcgc ggcgggcaag gcaggcgcca tgaccctgat 100 tgaaggggtg ggtgatgagg tgaccgtcct tttctcggtg cttgcctgcc 150 ttctggtgct ggcccttgcc tgggtctcaa cgcacaccgc tgagggcggg 200 gacccactgc cccagccgtc agggacccca acgccatccc agcccagcgc 250 agccatggca gctaccgaca gcatgagagg ggaggcccca ggggcagaga 300

cccccagcct gagacacaga ggtcaagctg cacagccaga gcccagcacg 350 gggttcacag caacaccgcc agccccggac tccccgcagg agcccctcgt 400 gctacggctg aaattcctca atgattcaga gcaggtggcc agggcctggc 450 cccacgacac cattggctcc ttgaaaagga cccagtttcc cggccgggaa 500 cagcaggtgc gactcatcta ccaagggcag ctgctaggcg acgacaccca 550 gaccetggge ageetteace teecteecaa etgegttete caetgeeacg 600 tgtccacgag agtcggtccc ccaaatcccc cctgcccgcc ggggtccgag 650 cccggcccct ccgggctgga aatcggcagc ctgctgctgc ccctgctgct 700 cctgctgttg ctgctgctct ggtactgcca gatccagtac cggcccttct 750 ttcccctgac cgccactctg ggcctggccg gcttcaccct gctcctcagt 800 ctcctggcct ttgccatgta ccgcccgtag tgcctccgcg ggcgcttggc 850 ctgcctgccc aggcccgcct ctccgqcctq cctcttcccq ctqccctqqa 950 gcccagccet gcgccgcaga ggactcccgg gactggcgga ggccccgccc 1000 tgcgaccgcc ggggctcggg gccacctccc ggggctqctq aacctcaqcc 1050 egeactggga gtgggeteet eggggteggg catetgetgt egetgeeteg 1100 geccegggea gageegggee geeceggggg eeegtettag tgttetgeeg 1150 gaggacccag ccgcctccaa tccctgacag ctccttgggc tgagttgggg 1200 acgccaggtc ggtgggaggc tggtgaaggg gagcggggag gggcagagga 1250 gttccccgga acccgtgcag attaaagtaa ctgtgaagtt ttaaaaaaaa 1300 aaaaaaaaa 1310

<210> 338

<211> 246

<212> PRT

<213> Homo sapiens

<400> 338

Met Thr Leu Ile Glu Gly Val Gly Asp Glu Val Thr Val Leu Phe 1 5 10 15

Ser Val Leu Ala Cys Leu Leu Val Leu Ala Leu Ala Trp Val Ser 20 25 30

Thr His Thr Ala Glu Gly Gly Asp Pro Leu Pro Gln Pro Ser Gly 35 40 45

Thr	Pro	Thr	Pro	Ser 50	Gln	Pro	Ser	Ala	Ala 55	Met	Ala	Ala	Thr	Asp 60
Ser	Met	Arg	Gly	Glu 65	Ala	Pro	Gly	Ala	Glu 70	Thr	Pro	Ser	Leu	Arg 75
His	Arg	Gly	Gln	Ala 80	Ala	Gln	Pro	Glu	Pro 85	Ser	Thr	Gly	Phe	Thr 90
Ala	Thr	Pro	Pro	Ala 95	Pro	Asp	Ser	Pro	Gln 100	Glu	Pro	Leu	Val	Leu 105
Arg	Leu	Lys	Phe	Leu 110	Asn	Asp	Ser	Glu	Gln 115	Val	Ala	Arg	Ala	Trp 120
Pro	His	Asp	Thr	Ile 125	Gly	Ser	Leu	Lys	Arg 130	Thr	Gln	Phe	Pro	Gly 135
Arg	Glu	Gln	Gln	Val 140	Arg	Leu	Ile	Tyr	Gln 145	Gly	Gln	Leu	Leu	Gly 150
Asp	Asp	Thr	Gln	Thr 155	Leu	Gly	Ser	Leu	His 160	Leu	Pro	Pro	Asn	Cys 165
Val	Leu	His	Cys	His 170	Val	Ser	Thr	Arg	Val 175	Gly	Pro	Pro	Asn	Pro 180
Pro	Cys	Pro	Pro	Gly 185	Ser	Glu	Pro	Gly	Pro 190	Ser	Gly	Leu	Glu	Ile 195
Gly	Ser	Leu	Leu	Leu 200	Pro	Leu	Leu	Leu	Leu 205	Leu	Leu	Leu	Leu	Leu 210
Trp	Tyr	Cys	Gln	Ile 215	Gln	Tyr	Arg	Pro	Phe 220	Phe	Pro	Leu	Thr	Ala 225
Thr	Leu	Gly	Leu	Ala 230	Gly	Phe	Thr	Leu	Leu 235	Leu	Ser	Leu	Leu	Ala 240
Phe	Ala	Met	Tyr	Arg 245	Pro									

<210> 339

<211> 849

<212> DNA

<213> Homo sapiens

<400> 339

gagattggaa acagccaggt tggagcagtg agtgagtaag gaaacctggc 50
tgccctctcc agattcccca ggctctcaga gaagatcagc agaaagtctg 100
caagacccta agaaccatca gccctcagct gcacctcctc ccctccaagg 150
atgacaaagg cgctactcat ctatttggtc agcagctttc ttgccctaaa 200
tcaggccagc ctcatcagtc gctgtgactt ggcccaggtg ctgcagctgg 250

aggacttggg tgggtttgag ggttactcc tgagtgactg gctgtgcctg 300 gcttttgtgg aaagcaagtt caacatatca aagataaatg aaaatgcgga 350 tggaagcttt gactatggcc tcttccagat caacagccac tactggtgca 400 acgattataa gagttactcg gaaaaccttt gccacgtaga ctgtcaagat 450 ctgctgaatc ccaaccttct tgcaggcatc cactgcgcaa aaaggattgt 500 gtccggagca cgggggatga acaactgggt agaatggagg ttgcactgtt 550 caggccggcc actctcctac tggctgacag gatgccgcct gagatgaaac 600 agggtgcggg tgcaccgtgg agtcattcca agactcctgt cactcatg 650 ggattcttca ttcttctc ctactgcctc cacttcatgt tatttctc 700 ccttcccatt tacaactaaa actgaccaga gccccaggaa taaatggttt 750 tcttggcttc ctcctactc ccactcagac ccagtccct ggttcctgtc 800 tgttatttgt aaactgagga ccacaataaa gaaatcttta tatttatcg 849

<210> 340

<211> 148

<212> PRT

<213> Homo sapiens

<400> 340

Met Thr Lys Ala Leu Leu Ile Tyr Leu Val Ser Ser Phe Leu Ala 1 5 10 15

Leu Asn Gln Ala Ser Leu Ile Ser Arg Cys Asp Leu Ala Gln Val 20 25 30

Leu Gln Leu Glu Asp Leu Asp Gly Phe Glu Gly Tyr Ser Leu Ser
35 40 45

Asp Trp Leu Cys Leu Ala Phe Val Glu Ser Lys Phe Asn Ile Ser 50 55 60

Lys Ile Asn Glu Asn Ala Asp Gly Ser Phe Asp Tyr Gly Leu Phe 65 70 75

Gln Ile Asn Ser His Tyr Trp Cys Asn Asp Tyr Lys Ser Tyr Ser

Glu Asn Leu Cys His Val Asp Cys Gln Asp Leu Leu Asn Pro Asn 95 100 105

Leu Leu Ala Gly Ile His Cys Ala Lys Arg Ile Val Ser Gly Ala 110 115 120

Arg Gly Met Asn Asn Trp Val Glu Trp Arg Leu His Cys Ser Gly
125 130 135

```
Arg Pro Leu Ser Tyr Trp Leu Thr Gly Cys Arg Leu Arg
<210> 341
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 341
 ccctccaagg atgacaaagg cgc 23
<210> 342
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 342
 ggtcagcagc tttcttgccc taaatcagg 29
<210> 343
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 343
atctcaggcg gcatcctgtc agcc 24
<210> 344
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 344
gtggatgcct gcaagaaggt tggg 24
<210> 345
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 345
```

<210> 346

<211> 2575

<212> DNA

<213> Homo sapiens

<400> 346

tetgacetga etggaagegt ecaaagaggg aeggetgtea geeetgettg 50 actgagaacc caccagctca teccagacac etcatageaa ectatttata 100 caaaggggga aagaaacacc tgagcagaat ggaatcatta ttttttccc 150 gtgaatgggc tttcagaagg caattaaaga aatccactca gagaggactt 250 ggggtgaaac ttgggtcctg tggttttctg attgtaagtg gaagcaggtc 300 ttgcacacgc tgttggcaaa tgtcaggacc aggttaagtg actggcagaa 350 aaacttccag gtggaacaag caacccatgt tctgctgcaa gcttgaagga 400 gcctggagcg ggagaaagct aacttgaaca tgacctgttg catttggcaa 450 gttctagcaa catgctccta aggaagcgat acaggcacag accatgcaga 500 ctccagttcc tcctgctgct cctgatgctg ggatgcgtcc tgatgatggt 550 ggcgatgttg caccetecce accacacet gcaccagaet gtcacagece 600 aagccagcaa gcacagcct gaagccaggt accgcctgga ctttggggaa 650 tcccaggatt gggtactgga agctgaggat gagggtgaag agtacagccc 700 tetggaggge etgecaceet ttateteact gegggaggat eagetgetgg 750 tggccgtggc cttaccccag gccagaagga accagagcca gggcaggaga 800 ggtgggagct accgcctcat caagcagcca aggaggcagg ataaggaagc 850 cccaaagagg gactgggggg ctgatgagga cggggaggtg tctgaagaag 900 aggagttgac cccgttcagc ctggacccac gtggcctcca ggaggcactc 950 agtgcccgca tccccctcca gagggctctg cccgaggtgc ggcacccact 1000 gtgtctgcag cagcaccctc aggacagcct gcccacagcc agcgtcatcc 1050 totgttteea tgatgaggee tggtccacte teetgeggae tgtacacage 1100 atcctcgaca cagtgcccag ggccttcctg aaggagatca tcctcgtgga 1150 cgacctcagc cagcaaggac aactcaagtc tgctctcagc gaatatgtgg 1200 ccaggctgga gggggtgaag ttactcagga gcaacaagag gctgggtgcc 1250

atcagggccc ggatgctggg ggccaccaga gccaccgggg atgtgctcgt 1300 cttcatggat gcccactgcg agtgccaccc aggctggctg gagcccctcc 1350 tcagcagaat agctggtgac aggagccgag tggtatctcc ggtgatagat 1400 gtgattgact ggaagacttt ccagtattac ccctcaaagg acctgcagcg 1450 tggggtgttg gactggaagc tggatttcca ctgggaacct ttgccagagc 1500 atgtgaggaa ggccctccag tcccccataa gccccatcag gagccctgtg 1550 gtgcccggag aggtggtggc catggacaga cattacttcc aaaacactgg 1600 agcgtatgac tetettatgt egetgegagg tggtgaaaac etegaactgt 1650 ctttcaaggc ctggctctgt ggtggctctg ttgaaatcct tccctgctct 1700 cgggtaggac acatctacca aaatcaggat tcccattccc ccctcgacca 1750 ggaggccacc ctgaggaaca gggttcgcat tgctgagacc tggctggggt 1800 cattcaaaga aaccttctac aagcatagcc cagaggcctt ctccttgagc 1850 aaggctgaga agccagactg catggaacgc ttgcagctgc aaaggagact 1900 gggttgtcgg acattccact ggtttctggc taatgtctac cctgagctgt 1950 acceatetga acceaggeee agtttetetg gaaageteea caacaetgga 2000 cttgggctct gtgcagactg ccaggcagaa ggggacatcc tgggctgtcc 2050 catggtgttg gctccttgca gtgacagccg gcagcaacag tacctgcagc 2100 acaccagcag gaaggagatt cactttggca gcccacagca cctgtgcttt 2150 gctgtcaggc aggagcaggt gattcttcag aactgcacgg aggaaggcct 2200 ggccatccac cagcagcact gggacttcca ggagaatggg atgattgtcc 2250 acattette tgggaaatge atggaagetg tggtgeaaga aaacaataaa 2300 gatttgtacc tgcgtccgtg tgatggaaaa gcccgccagc agtggcgatt 2350 tgaccagata aatgctgtgg atgaacgatg aatgtcaatg tcagaaggaa 2400 aagagaattt tggccatcaa aatccagctc caagtgaacg taaagagctt 2450 atatatttca tgaagctgat ccttttgtgt gtgtgctcct tgtgttagga 2500 gagaaaaaag ctctatgaaa gaatatagga agtttctcct tttcacacct 2550 tatttcattg actgctggct gctta 2575

<210> 347

<211> 639

<212> PRT <213> Homo sapiens <400> 347

<400> 34 Met Let 1		rg Lys . 5	Arg Ty	r Arg	, His	Arg 10	Pro Cy	's Arg	Leu	Gln 15
Phe Leu	ı Leu Le	eu Leu 1 20	Leu Me	t Leu	Gly	Cys 25	Val Le	u Met	Met	Val 30
Ala Met	Leu Hi	is Pro 1 35	Pro His	s His	Thr	Leu 1 40	His Gl	n Thr	Val	Thr 45
Ala Gln	Ala Se	er Lys F 50	lis Ser	r Pro	Glu	Ala <i>1</i> 55	Arg Ty	r Arg	Leu	Asp 60
Phe Gly	Glu Se	er Gln <i>F</i> 65	sp Trp	Val	Leu	Glu A	Ala Gl	u Asp	Glu	Gly 75
Glu Glu	Tyr Se	r Pro I 80	eu Glu	ı Gly	Leu	Pro F 85	ro Phe	e Ile	Ser	Leu 90
Arg Glu	Asp Gl	n Leu L 95	eu Val	Ala	Val	Ala L 100	eu Pro	Gln	Ala	Arg 105
Arg Asn		110				115				120
Lys Gln	Pro Ar	g Arg G 125	ln Asp	Lys	Glu	Ala P 130	ro Lys	Arg	Asp	Trp 135
Gly Ala		140				145				150
Pro Phe		133				160				165
Arg Ile		170				175				180
Cys Leu		100]	L90			-	195
Ile Leu		200			2	205			2	Thr 210
Val His		215			2	20			2	31u 225
Ile Ile 1		230			2	35			2	Ser 40
Ala Leu S		243			2	50			2	55
Arg Ser A	Asn Lys	Arg Let 260	ı Gly A	Ala I	le A 2	rg Ala 65	a Arg	Met L		ly 70

Al	a Th	nr A	Arg	Al	a Th 27	r Gl 5	y As	sp Va	al I	Leu	Va 28	1 Pł 0	ne i	Met	t As	sp A	la	His 285
					23	U					29	5						Ile 300
					30	J	g Va				310)						315
					32	U	n Ty				325)						330
					55.	5	s Le				340)						345
					33(,	a Le				355)						360
					300	,	/ Gl				370							375
					360	,	а Туз				385							390
					393		Ser				400							405
					410		Cys				415							420
					423		Pro				430						4	435
					440		Glu			4	445						4	450
					433		Pro			4	160						4	165
					4/0		Glu			4	1/5						4	80
Gly					400					4	90						4	95
Leu				•	300					5	05						5	10
Asn				`	J1J					5	20						5	25
Ile				,	30					5	35						54	40
Gln (Gln	Gln	T	yr I 5	Leu 645	Gln	His	Thr	Ser	A: 5:	rg 1 50	Lys	Glι	1 I	le	His		ne 55

```
Gly Ser Pro Gln His Leu Cys Phe Ala Val Arg Gln Glu Gln Val
   Ile Leu Gln Asn Cys Thr Glu Glu Gly Leu Ala Ile His Gln Gln
                   575
   His Trp Asp Phe Gln Glu Asn Gly Met Ile Val His Ile Leu Ser
                                        595
  Gly Lys Cys Met Glu Ala Val Val Gln Glu Asn Asn Lys Asp Leu
                                        610
  Tyr Leu Arg Pro Cys Asp Gly Lys Ala Arg Gln Gln Trp Arg Phe
  Asp Gln Ile Asn Ala Val Asp Glu Arg
                   635
 <210> 348
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 348
  ggagaggtgg tggccatgga cag 23
 <210> 349
 <211> 24
 <212> DNA
 <213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 349
 ctgtcactgc aaggagccaa cacc 24
<210> 350
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 350
tatgtcgctg cgaggtggtg aaaacctcga actgtctttc aaggc 45
<210> 351
<211> 2524
<212> DNA
<213> Homo sapiens
```

<400> 351 cgccaagcat gcagtaaagg ctgaaaatct gggtcacagc tgaggaagac 50 ctcagacatg gagtccagga tgtggcctgc gctgctgctg tcccacctcc 100 tecetetetg gecaetgetg ttgetgeece teceaecgee tgeteaggge 150 tetteatect eccetegaac eccaceagee ecageeegee eccegtgtge 200 caggggaggc ccctcggccc cacgtcatgt gtgcgtgtgg gagcgagcac 250 ctccaccaag ccgatctcct cgggtcccaa gatcacgtcg gcaagtcctg 300 cetggcactg caceceage caceceatea ggetttgagg aggggeegee 350 ctcatcccaa tacccctggg ctatcgtgtg gggtcccacc gtgtctcgag 400 aggatggagg ggaccccaac tctgccaatc ccggatttct ggactatggt 450 tttgcagccc ctcatgggct cgcaacccca caccccaact cagactccat 500 gcgaggtgat ggagatgggc ttatcettgg agaggcacct gccaccctgc 550 ggccattect gtteggggge egtggggaag gtgtggaeee eeagetetat 600 gtcacaatta ccatctccat catcattgtt ctcgtggcca ctggcatcat 650 cttcaagttc tgctgggacc gcagccagaa gcgacgcaga ccctcagggc 700 agcaaggtgc cctgaggcag gaggagagcc agcagccact gacagacctg 750 tecceggetg gagteactgt getgggggee tteggggaet caectaecee 800 cacccctgac catgaggagc cccgaggggg accccggcct gggatgcccc 850 accccaaggg ggctccagcc ttccagttga accggtgagg gcaggggcaa 900 tgggatggga gggcaaagag ggaaggcaac ttaggtcttc agagctgggg 950 tgggggtgcc ctctggatgg gtagtgagga ggcaggcgtg gcctcccaca 1000 gcccctggcc ctcccaaggg ggctggacca gctcctctct gggaggcacc 1050 cttccttctc ccagtctctc aggatctgtg tcctattctc tgctgcccat 1100 aactccaact ctgccctctt tggttttttc tcatgccacc ttgtctaaga 1150 caactetgee etettaacet tgatteecee tetttgtett gaactteece 1200 ttctattctg gcctacccct tggttcctga ctgtgccctt tccctcttcc 1250 tctcaggatt cccctggtga atctgtgatg cccccaatgt tggggtgcag 1300 ccaagcagga ggccaagggg ccggcacagc ccccatccca ctgagggtgg 1350 ggcagctgtg gggagctggg gccacagggg ctcctggctc ctgccccttg 1400

cacaccaccc ggaacactcc ccagccccac gggcaatcct atctgctcgc 1450 cetectgeag gtgggggeet cacatatetg tgaetteggg teeetgteee 1500 caccettgtg cacteacatg aaageettge acacteacet ceacetteae 1550 aggccatttg cacacgetee tgcaccetet eccegtecat accgeteege 1600 tcagctgact ctcatgttct ctcgtctcac atttgcactc tctccttccc 1650 acattctgtg ctcagctcac tcagtggtca gcgtttcctg cacactttac 1700 ctctcatgtg cgtttcccgg cctgatgttg tggtggtgt cggcgtgctc 1750 actetetece teatgaacae ceacceaect egttteegea geecetgegt 1800 gctgctccag aggtgggtgg gaggtgagct ggggggtcct tgggccctca 1850 teggteatgg tetegteeca ttecacacca tttgtttete tgteteeca 1900 tcctactcca aggatgccgg catcaccctg agggctcccc cttgggaatg 1950 gggtagtgag gccccagact tcacccccag cccactgcta aaatctgttt 2000 tctgacagat gggttttggg gagtcgcctg ctgcactaca tgagaaaggg 2050 acteceattt geeetteest tteteetaca gteeettttg tettgtetgt 2100 cctggctgtc tgtgtgtgt ccattctctg gacttcagag ccccctgagc 2150 cagtectece tteccageet ecetttggge etecetaaet ceaectagge 2200 tgccagggac cggagtcagc tggttcaagg ccatcgggag ctctgcctcc 2250 aagtctaccc ttcccttccc ggactccctc ctgtcccctc ctttcctccc 2300 teetteette caeteteett eetttigett eeetgeeett teeceeteet 2350 caggitette ceteettete aetggittit ceaeetteet eetteeette 2400 ttccctggct cctaggctgt gatatatatt tttgtattat ctctttcttc 2450 ttcttgtggt gatcatcttg aattactgtg ggatgtaagt ttcaaaattt 2500 tcaaataaag cctttgcaag ataa 2524

```
<210> 352
```

<400> 352

Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala
20 25 30

<211> 243

<212> PRT

<213> Homo sapiens

Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly
1 5 10 15

Ser	Gli	u Ile	Pro	Lys 35	Gly	Lys	s Glr	ı Lys	s Ala 40	a Glr	Leu	Arq	g Glr	Arg 45
Glu	Va:	l Val	Asp	Leu 50	Tyr	Asr	n Gly	y Met	Cys 55	Leu	Gln	Gly	/ Pro	Ala 60
Gly	Va]	l Pro	Gly	Arg 65	Asp	Gly	/ Ser	Pro	Gly 70		Asn	Val	. Ile	Pro
Gly	Thi	: Pro	Gly	Ile 80	Pro	Gly	' Arg	Asp	Gly 85	Phe	Lys	Gly	Glu	Lys 90
Gly	Glu	Cys	Leu	Arg 95	Glu	Ser	Phe	Glu	Glu 100	Ser	Trp	Thr	Pro	Asn 105
Tyr	Lys	Gln	Cys	Ser 110	Trp	Ser	Ser	Leu	Asn 115	Tyr	Gly	Ile	Asp	Leu 120
Gly	Lys	Ile	Ala	Glu 125	Cys	Thr	Phe	Thr	Lys 130	Met	Arg	Ser	Asn	Ser 135
Ala	Leu	Arg	Val	Leu 140	Phe	Ser	Gly	Ser	Leu 145	Arg	Leu	Lys	Cys	Arg 150
Asn	Ala	Cys	Cys	Gln 155	Arg	Trp	Tyr	Phe	Thr 160	Phe	Asn	Gly	Ala	Glu 165
Cys	Ser	Gly	Pro	Leu 170	Pro	Ile	Glu	Ala	Ile 175	Ile	Tyr	Leu	Asp	Gln 180
Gly	Ser	Pro	Glu	Met 185	Asn	Ser	Thr	Ile	Asn 190	Ile	His	Arg	Thr	Ser 195
Ser '	Val	Glu	Gly	Leu 200	Cys	Glu	Gly	Ile	Gly 205	Ala	Gly	Leu	Val	Asp 210
Val i	Ala	Ile	Trp	Val 215	Gly	Thr	Cys	Ser	Asp 220	Tyr	Pro	Lys	Gly	Asp 225
Ala S	Ser	Thr	Gly	Trp . 230	Asn :	Ser	Val	Ser	Arg 235	Ile	Ile	Ile		Glu 240
Leu F	?ro	Lys												
<210> <211> <212> <213>	480 DNA		oiens	5										

gttaaccage gcagtectee gtgegteeeg ecegeegetg eceteaetee 50

cggccaggat ggcatcctgt ctggccctgc gcatggcgct gctgctggtc 100

tccggggttc tggcccctgc ggtgctcaca gacgatgttc cacaggagcc 150

<400> 353

cgtgcccacgctgtggaacgagccggccgagctgccgtcgggagaaggcc200ccgtggaagacaccagcccggccgggagcccgtggacaccggtcccca250gcccccaccgtcgcgccaggacccgaggacagcaccgcgcaggagcggct300ggaccaggacggcgggtcgctggggcccggcgctatcgcggccatcgtga350tcgccgccctgctggccacctgcgtggtgtggcgctcgtggtcgtcgc400ctgagaaagttttctgcctcctgaagcgaataaaggggccgcgcccggcc450gcggcgcgactcggcaaaaaaaaaaaaaa480

<210> 354

<211> 121

<212> PRT

<213> Homo sapiens

<400> 354

Met Ala Ser Cys Leu Ala Leu Arg Met Ala Leu Leu Leu Val Ser 1 5 10 15

Gly Val Leu Ala Pro Ala Val Leu Thr Asp Asp Val Pro Gln Glu 20 25 30

Pro Val Pro Thr Leu Trp Asn Glu Pro Ala Glu Leu Pro Ser Gly 35 40 45

Glu Gly Pro Val Glu Ser Thr Ser Pro Gly Arg Glu Pro Val Asp
50 55 60

Thr Gly Pro Pro Ala Pro Thr Val Ala Pro Gly Pro Glu Asp Ser 65 70 75

Thr Ala Gln Glu Arg Leu Asp Gln Gly Gly Gly Ser Leu Gly Pro $80 \\ \hspace{1.5cm} 85 \\ \hspace{1.5cm} 90$

Gly Ala Ile Ala Ile Val Ile Ala Ala Leu Leu Ala Thr Cys 95 100 105

Val Val Leu Ala Leu Val Val Val Ala Leu Arg Lys Phe Ser Ala 110 115 120

Ser

<210> 355

<211> 2134

<212> DNA

<213> Homo sapiens

<400> 355

ggccgttggt tggtgcgcgg ctgaagggtg tggcgcgagc agcgtcgttg 50 gttggccggc ggcgggccgg gacgggcatg gccctgctgc tgtgcctggt 100

gtgcctgacg gcggcgctgg cccacggctg tctgcactgc cacagcaact 150 tctccaagaa gttctccttc taccgccacc atgtgaactt caagtcctgg 200 tgggtgggcg acateceegt gteaggggcg etgeteaeeg actggagega 250 cgacacgatg aaggagctgc acctggccat ccccgccaag atcacccggg 300 agaagctgga ccaagtggcg acagcagtgt accagatgat ggatcagctg 350 taccagggga agatgtactt ccccgggtat ttccccaacg agctgcgaaa 400 catetteegg gageaggtge aceteateea gaaegeeate ategaaagge 450 acctggcacc aggcagctgg ggaggagggc agctctccag ggagggaccc 500 agcctagcac ctgaaggatc aatgccatca ccccgcgggg acctccccta 550 agtageceee agaggegetg ggagtgttge cacegeeete eeetgaagtt 600 tgctccatct cacgetgggg gtcaacetgg ggaceeette eeteegggee 650 atggacacac atacatgaaa accaggeege ategaetgte ageaeegetg 700 tggcatcttc cagtacgaga ccatctcctg caacaactgc acagactcgc 750 acgtcgcctg ctttggctat aactgcgagt agggctcagg catcacaccc 800 accegtgeea gggeeetact gteeetgggg teeeaggete teettggagg 850 gggctccccg ccttccacct ggctgtcatc gggtagggcg gggccgtggg 900 ttcaggggcg caccacttcc aagcetgtgt cccacaggtc ctcggcgcag 950 tggaagtcag ctgtccaggg cctcctgaac tacataaata actggcacaa 1000 gtaagtcccc tcctcaaacc aacacaggca gtgtgtgtat gtgagcacct 1050 cgtgggtgag tatgtgtggg gcacaggctg gctccctcag ctcccacgtc 1100 ctagaggggc tcccgaggag gtggaacctc aacccagctc tgcgcaggag 1150 gcggctgcag tccttttctc cctcaaaggt ctccgaccct cagctggagg 1200 cgggcatctt tcctaaaggg tccccatagg gtctggttcc accccatccc 1250 aggtctgtgg tcagagcctg ggagggttcc ctacgatggt taggggtgcc 1300 ccatggaggg gctgactgcc ccacattgcc tttcagacag gacacgagca 1350 tgaggtaagg ccgccctgac ctggacttca gggggagggg gtaaagggag 1400 agaggagggg ggctaggggg tcctctagat cagtgggggc actgcaggtg 1450 gggctctccc tatacctggg acacctgctg gatgtcacct ctgcaaccac 1500

acccatgtgg tggttcatg aacagaccac geteetetge etteetetgg 1550 cettgggacac acagagccac eceggeettg tgagtgaccc agagaaggga 1600 ggceteggga gaaggggtge tegtaagcca acaccagegt geegggeet 1650 gcacaccett eggacatecc aggcacgagg gtgtegtgga tgtgggecaca 1700 cataggacca cacgteecag etgggaggag aggcetgggg ececcaggga 1750 gggaaggcagg gggtgggga catgggagga tgaggeage tegtetece 1800 gcagcetgg acccagaga tgaggagga eatgggagac teggageece acacttggee 1850 aacctgacet tggaagatge tgetgaggte etgaggeece acacttggee 1850 aacctgacet tggaagatge tgetgaggt etgaggeece acacttggee 1950 eetgegggeetg ececagggaa acgtggggg ggagageeteg etgaggeetg etgageetg etgageetg etgageetg etgageetg etgageetg etgageetg etgageetg etgageetg eggaagggg 2050 gaatggggg gggetgtge eagcateag geetgggeag gteegeagag 2100 etgegggatg tgattaaagt ecetgatgt tete 2134

<210> 356

<211> 157

<212> PRT

<213> Homo sapiens

<400> 356

Met Ala Leu Leu Cys Leu Val Cys Leu Thr Ala Ala Leu Ala 1 5 10 15

His Gly Cys Leu His Cys His Ser Asn Phe Ser Lys Lys Phe Ser 20 25 30

Phe Tyr Arg His His Val Asn Phe Lys Ser Trp Trp Val Gly Asp 35 40 45

Ile Pro Val Ser Gly Ala Leu Leu Thr Asp Trp Ser Asp Asp Thr 50 55 60

Met Lys Glu Leu His Leu Ala Ile Pro Ala Lys Ile Thr Arg Glu 65 70 75

Leu Tyr Gln Gly Lys Met Tyr Phe Pro Gly Tyr Phe Pro Asn Glu 95 100 105

Ile Ile Glu Arg His Leu Ala Pro Gly Ser Trp Gly Gly Gln

125 130 135

Leu Ser Arg Glu Gly Pro Ser Leu Ala Pro Glu Gly Ser Met Pro 140 145 150

Ser Pro Arg Gly Asp Leu Pro 155

<210> 357

<211> 1536

<212> DNA

<213> Homo sapiens

<400> 357

agcaggagca ggagagggac aatggaagct gccccgtcca ggttcatgtt 50 cctcttattt ctcctcacgt gtgagctggc tgcagaagtt gctgcagaag 100 ttgagaaatc ctcagatggt cctggtgctg cccaggaacc cacgtggctc 150 acagatgtcc cagctgccat ggaattcatt gctgccactg aggtggctgt 200 cataggette ttecaggatt tagaaatace ageagtgeee atacteeata 250 gcatggtgca aaaattccca ggcgtgtcat ttgggatcag cactgattct 300 gaggttctga cacactacaa catcactggg aacaccatct gcctctttcg 350 cctggtagac aatgaacaac tgaatttaga ggacgaagac attgaaagca 400 ttgatgccac caaattgagc cgtttcattg agatcaacag cctccacatg 450 gtgacagagt acaaccctgt gactgtgatt gggttattca acagcgtaat 500 tcagattcat ctcctcctga taatgaacaa ggcctcccca gagtatgaag 550 agaacatgca cagataccag aaggcagcca agctcttcca ggggaagatt 600 ctctttattc tggtggacag tggtatgaaa gaaaatggga aggtgatatc 650 atttttcaaa ctaaaggagt ctcaactgcc agctttggca atttaccaga 700 ctctagatga cgagtgggat acactgccca cagcagaagt ttccgtagag 750 catgtgcaaa acttttgtga tggattccta agtggaaaat tgttgaaaga 800 aaatcgtgaa tcagaaggaa agactccaaa ggtggaactc tgacttctcc 850 ttggaactac atatggccaa gtatctactt tatgcaaagt aaaaaggcac 900 aactcaaatc tcagagacac taaacaacag gatcactagg cctgccaacc 950 acacacaca gcacgtgcac acacgcacgc acgcgtgcac acacacacgc 1000 gcacacaca acacacag agcttcattt cctgtcttaa aatctcgttt 1050 tetettette ettetttaa attteatate eteaeteeet ateeaattte 1100

cttcttatcg tgcattcata ctctgtaage ccatctgtaa cacacctaga 1150
tcaaggettt aagagactca ctgtgatgee tetatgaaag agaggeatte 1200
ctagagaaag attgtteeaa tttgteattt aatateaagt ttgtataetg 1250
cacatgaett acacacaaca tagtteetge tettttaagg ttacetaagg 1300
gttgaaaete tacettett cataageaca tgteegtete tgaeteagga 1350
teaaaaaeca aaggatggtt ttaaaecaet ttgtgaaatt gtettttge 1400
cagaagttaa aggetgtete caagteeetg aacteageag aaatagaeca 1450
tgtgaaaaet ecatgettgg ttageatete caacteeeta tgtaaateaa 1500
caacetgeat aataaataaa aggeaateat gttata 1536

<210> 358

<211> 273

<212> PRT

<213> Homo sapiens

<400> 358

Met Glu Ala Ala Pro Ser Arg Phe Met Phe Leu Leu Phe Leu Leu 1 5 10 15

Thr Cys Glu Leu Ala Ala Glu Val Ala Ala Glu Val Glu Lys Ser
20 25 30

Ser Asp Gly Pro Gly Ala Ala Gln Glu Pro Thr Trp Leu Thr Asp 35 40 45

Val Pro Ala Ala Met Glu Phe Ile Ala Ala Thr Glu Val Ala Val 50 55 60

Ile Gly Phe Phe Gln Asp Leu Glu Ile Pro Ala Val Pro Ile Leu 65 70 75

His Ser Met Val Gln Lys Phe Pro Gly Val Ser Phe Gly Ile Ser 80 85 90

Thr Asp Ser Glu Val Leu Thr His Tyr Asn Ile Thr Gly Asn Thr 95 100 105

Ile Cys Leu Phe Arg Leu Val Asp Asn Glu Gln Leu Asn Leu Glu 110 115 120

Asp Glu Asp Ile Glu Ser Ile Asp Ala Thr Lys Leu Ser Arg Phe 125 130 135

Ile Glu Ile Asn Ser Leu His Met Val Thr Glu Tyr Asn Pro Val 140 145 150

Thr Val Ile Gly Leu Phe Asn Ser Val Ile Gln Ile His Leu Leu 155 160 165

```
Leu Ile Met Asn Lys Ala Ser Pro Glu Tyr Glu Glu Asn Met His
                   170
  Arg Tyr Gln Lys Ala Ala Lys Leu Phe Gln Gly Lys Ile Leu Phe
  Ile Leu Val Asp Ser Gly Met Lys Glu Asn Gly Lys Val Ile Ser
                  200
  Phe Phe Lys Leu Lys Glu Ser Gln Leu Pro Ala Leu Ala Ile Tyr
                  215
                                       220
  Gln Thr Leu Asp Asp Glu Trp Asp Thr Leu Pro Thr Ala Glu Val
                  230
                                       235
  Ser Val Glu His Val Gln Asn Phe Cys Asp Gly Phe Leu Ser Gly
                                       250
  Lys Leu Leu Lys Glu Asn Arg Glu Ser Glu Gly Lys Thr Pro Lys
                  260
                                       265
 Val Glu Leu
 <210> 359
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 359
 ccagcagtgc ccatactcca tagc 24
<210> 360
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 360
tgacgagtgg gatacactgc 20
<210> 361
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 361
gctctacgga aacttctgct gtgg 24
```

```
<210> 362
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 362
 attcccaggc gtgtcatttg ggatcagcac tgattctgag gttctgacac 50
<210> 363
<211> 1777
<212> DNA
<213> Homo sapiens
<400> 363
 ggagagccgc ggctgggacc ggagtgggga gcgcggcgtg gaggtgccac 50
 ccggcgcggg tggcggagag atcagaagcc tcttccccaa gccgagccaa 100
 cctcagcggg gacccgggct cagggacgcg gcggcggcgg cggcgactgc 150
 agtggctgga cgatggcagc gtccgccgga gccggggcgg tgattgcagc 200
cccagacage eggegetgge tgtggteggt getggeggeg gegettggge 250
tcttgacagc tggagtatca gccttggaag tatatacgcc aaaagaaatc 300
ttcgtggcaa atggtacaca agggaagctg acctgcaagt tcaagtctac 350
tagtacgact ggcgggttga cctcagtctc ctggagcttc cagccagagg 400
gggccgacac tactgtgtcg tttttccact actcccaagg gcaagtgtac 450
cttgggaatt atccaccatt taaagacaga atcagctggg ctggagacct 500
tgacaagaaa gatgcatcaa tcaacataga aaatatgcag tttatacaca 550
atggcaccta tatctgtgat gtcaaaaacc ctcctgacat cgttgtccag 600
cctggacaca ttaggctcta tgtcgtagaa aaagagaatt tgcctgtgtt 650
tccagtttgg gtagtggtgg gcatagttac tgctgtggtc ctaggtctca 700
ctctgctcat cagcatgatt ctggctgtcc tctatagaag gaaaaactct 750
aaacgggatt acactggctg cagtacatca gagagtttgt caccagttaa 800
gcaggctcct cggaagtccc cctccgacac tgagggtctt gtaaagagtc 850
tgccttctgg atctcaccag ggcccagtca tatatgcaca gttagaccac 900
tccggcggac atcacagtga caagattaac aagtcagagt ctgtggtgta 950
tgcggatatc cgaaagaatt aagagaatac ctagaacata tcctcagcaa 1000
```

gaaacaaaac caaactggac tetegtgeag aaaatgtage ceattaceae 1050 atgtagcctt ggagacccag gcaaggacaa gtacacgtgt actcacagag 1100 ggagagaaag atgtgtacaa aggatatgta taaatattct atttagtcat 1150 cctgatatga ggagccagtg ttgcatgatg aaaagatggt atgattctac 1200 atatgtaccc attgtcttgc tgtttttgta ctttcttttc aggtcattta 1250 caattgggag atttcagaaa cattcctttc accatcattt agaaatggtt 1300 tgccttaatg gagacaatag cagatcctgt agtatttcca gtagacatgg 1350 ccttttaatc taagggctta agactgatta gtcttagcat ttactgtagt 1400 tggaggatgg agatgctatg atggaagcat acccagggtg gcctttagca 1450 cagtatcagt accatttatt tgtctgccgc ttttaaaaaa tacccattgg 1500 ctatgccact tgaaaacaat ttgagaagtt tttttgaagt ttttctcact 1550 aaaatatggg gcaattgtta gccttacatg ttgtgtagac ttactttaag 1600 . tttgcaccct tgaaatgtgt catatcaatt tctggattca taatagcaag 1650 attagcaaag gataaatgcc gaaggtcact tcattctgga cacagttgga 1700 tcaatactga ttaagtagaa aatccaagct ttgcttgaga acttttgtaa 1750 cgtggagagt aaaaagtatc ggtttta 1777

<210> 364

<211> 269

<212> PRT

<213> Homo sapiens

<400> 364

Met Ala Ala Ser Ala Gly Ala Gly Ala Val Ile Ala Ala Pro Asp 1 5 10 10 15

Ser Arg Arg Trp Leu Trp Ser Val Leu Ala Ala Ala Leu Gly Leu 20 25 30

Leu Thr Ala Gly Val Ser Ala Leu Glu Val Tyr Thr Pro Lys Glu
35 40 45

Ile Phe Val Ala Asn Gly Thr Gln Gly Lys Leu Thr Cys Lys Phe 50 55 60

Lys Ser Thr Ser Thr Thr Gly Gly Leu Thr Ser Val Ser Trp Ser 65 70 75

Phe Gln Pro Glu Gly Ala Asp Thr Thr Val Ser Phe Phe His Tyr 80 85 90

Sei	Glr	n Gly	glr Glr	Val 95	Tyr	Leu	Gly	Asn	Tyr 100	Pro	Pro	Phe	Lys	Asp 105
Arg	ı Ile	e Ser	Trp	Ala 110	Gly	Asp	Leu	Asp	Lys 115	Lys	Asp	Ala	Ser	Ile 120
Asn	Ile	Glu	Asn	Met 125	Gln	Phe	Ile	His	Asn 130	Gly	Thr	Tyr	Ile	Cys 135
Asp	Val	Lys	Asn	Pro 140	Pro	Asp	Ile	Val	Val 145	Gln	Pro	Gly	His	Ile 150
Arg	Leu	Tyr	Val	Val 155	Glu	Lys	Glu	Asn	Leu 160	Pro	Val	Phe	Pro	Val 165
Trp	Val	Val	Val	Gly 170	Ile	Val	Thr	Ala	Val 175	Val	Leu	Gly	Leu	Thr 180
Leu	Leu	Ile	Ser	Met 185	Ile	Leu	Ala	Val	Leu 190	Tyr	Arg	Arg	Lys	Asn 195
Ser	Lys	Arg	Asp	Tyr 200	Thr	Gly	Cys	Ser	Thr 205	Ser	Glu	Ser	Leu	Ser 210
Pro	Val	Lys	Gln	Ala 215	Pro	Arg	Lys	Ser	Pro 220	Ser	Asp	Thr	Glu	Gly 225
Leu	Val	Lys	Ser	Leu 230	Pro	Ser	Gly	Ser	His 235	Gln	Gly	Pro		Ile 240
Tyr	Ala	Gln	Leu	Asp 245	His	Ser	Gly	Gly	His 250	His	Ser .	Asp		Ile 255
Asn	Lys	Ser	Glu	Ser ' 260	Val '	Val '	Tyr 2	Ala i	Asp : 265	Ile A	Arg :	Lys .	Asn	
<210><211><211><212><213>	132 DNA	1	pien	s										
<400>														
gccg														
cggg														
ccato	cage	gc gc	cgg	gctgc	: cgc	ctct	cgg	ccac	ggct	gg g	rtcgg	ıgggc	c 15	0

tcgggctggg gctggggctg gcgctcgggg tgaagctggc aggtgggctg 200

aggggcgcgg ccccggcgca gtcccccgcg gcccccgacc ctgaggcgtc 250

gcctctggcc gagccgccac aggagcagtc cctcgccccg tggtctccgc 300

agaccccggc gccgccctgc tccaggtgct tcgccagagc catcgagagc 350

agccgcgacc tgctgcacag gatcaaggat gaggtgggcg caccgggcat 400

agtggttgga gtttctgtag atggaaaaga agtctggtca gaaggtttag 450 gttatgctga tgttgagaac cgtgtaccat gtaaaccaga gacagttatg 500 cgaattgcta gcatcagcaa aagtctcacc atggttgctc ttgccaaatt 550 gtgggaagca gggaaactgg atcttgatat tccagtacaa cattatgttc 600 ccgaattccc agaaaaagaa tatgaaggtg aaaaggtttc tgtcacaaca 650 agattactga tttcccattt aagtggaatt cgtcattatg aaaaggacat 700 aaaaaaggtg aaagaagaga aagcttataa agccttgaag atgatgaaag 750 agaatgttgc atttgagcaa gaaaaagaag gcaaaagtaa tgaaaagaat 800 gattttacta aatttaaaac agagcaggag aatgaagcca aatgccggaa 850 ttcaaaacct ggcaagaaaa agaatgattt tgaacaaggc gaattatatt 900 tgagagaaaa gtttgaaaat tcaattgaat ccctaagatt atttaaaaat 950 gatcctttgt tcttcaaacc tggtagtcag tttttgtatt caacttttgg 1000 ctatacccta ctggcagcca tagtagagag agcttcagga tgtaaatatt 1050 tggactatat gcagaaaata ttccatgact tggatatgct gacgactgtg 1100 caggaagaaa acgagccagt gatttacaat agagcaaggt aaatgaatac 1150 cttctgctgt gtctagctat atcgcatctt aacactattt tattaattaa 1200 aagtcaaatt ttctttgttt ccattccaaa atcaacctgc cacattttgg 1250 gagcttttct acatgtctgt tttctcatct gtaaagtgaa ggaagtaaaa 1300 catgtttata aagtaaaaaa a 1321

```
<210> 366
```

<400> 366

Met Tyr Arg Leu Leu Ser Ala Val Thr Ala Arg Ala Ala Ala Pro 1 5 10 15

Gly Gly Leu Ala Ser Ser Cys Gly Arg Arg Gly Val His Gln Arg
20 25 30

Ala Gly Leu Pro Pro Leu Gly His Gly Trp Val Gly Gly Leu Gly 35 40 45

Leu Gly Leu Gly Leu Gly Val Lys Leu Ala Gly Gly Leu 50 55 60

<211> 373

<212> PRT

<213> Homo sapiens

Ar	g Gl	y Ala	a Al	a Pro	o Ala	a Gl:	n Sei	r Pro	Al. 7		a Pr	o As	p Pr	o Glu 75	
Ala	a Sei	r Pro	o Le	u Ala 80	a Glu	u Pr	o Pro	o Glr	n Gla		n Se	r Le	u Al	a Pro 90	
Tr	Sei	r Pro	o Gla	n Thi 95	Pro	o Ala	a Pro) Pro	Cy:		r Ar	g Cy:	s Phe	e Ala 105	
Arç	g Ala	a Ile	e Glu	1 Ser	Sei	r Arq	g Asp	Leu	Lei 115	ı His	s Ar	g Ile	e Ly:	s Asp 120	
Glı	ı Val	. Gly	/ Ala	125	Gl;	/ Ile	e Val	. Val	. Gl ₃	y Vai	l Sei	r Val	L Asp	Gly 135	1
Lys	Glu	val	Trp	Ser 140	Glu	ı Gly	/ Leu	Gly	Tyr 145	Ala	a Asp	Val	. Glı	ı Asn 150	
Arg	val	Pro	Суз	Lys 155	Pro	Glu	Thr	Val	Met 160		J Il∈	e Ala	Ser	Ile 165	
Ser	Lys	Ser	Leu	Thr 170	Met	Val	Ala	Leu	Ala 175	Lys	Leu	Trp	Glu	Ala 180	
Gly	Lys	Leu	Asp	Leu 185	Asp	Ile	Pro	Val	Gln 190	His	Tyr	· Val	Pro	Glu 195	
Phe	Pro	Glu	Lys	Glu 200	Tyr	Glu	Gly	Glu	Lys 205	Val	Ser	· Val	Thr	Thr 210	
Arg	Leu	Leu	Ile	Ser 215	His	Leu	Ser	Gly	Ile 220	Arg	His	Tyr	Glu	Lys 225	
Asp	Ile	Lys	Lys	Val 230	Lys	Glu	Glu	Lys	Ala 235	Tyr	Lys	Ala	Leu	Lys 240	
Met	Met	Lys	Glu	Asn 245	Val	Ala	Phe	Glu	Gln 250	Glu	Lys	Glu	Gly	Lys 255	
Ser	Asn	Glu	Lys	Asn 260	Asp	Phe	Thr	Lys	Phe 265	Lys	Thr	Glu	Gln	Glu 270	
Asn	Glu	Ala	Lys	Cys 275	Arg	Asn	Ser	Lys	Pro 280	Gly	Lys	Lys	Lys	Asn 285	
Asp	Phe	Glu	Gln	Gly 290	Glu	Leu	Tyr	Leu	Arg 295	Glu	Lys	Phe	Glu	Asn 300	
Ser	Ile	Glu	Ser	Leu 305	Arg	Leu	Phe	Lys	Asn 310	Asp	Pro	Leu	Phe	Phe 315	
Lys	Pro	Gly	Ser	Gln 320	Phe	Leu	Tyr	Ser	Thr 325	Phe	Gly	Tyr	Thr	Leu 330	
Leu	Ala	Ala	Ile	Val 335	Glu	Arg	Ala	Ser	Gly 340	Суѕ	Lys	Tyr	Leu	Asp 345	

```
Tyr Met Gln Lys Ile Phe His Asp Leu Asp Met Leu Thr Thr Val
                   350
                                        355
                                                            360
  Gln Glu Glu Asn Glu Pro Val Ile Tyr Asn Arg Ala Arg
                   365
 <210> 367
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 367
  tggaaaagaa gtctggtcag aaggtttagg 30
 <210> 368
 <211> 25
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 368
 catttggctt cattctcctg ctctg 25
 <210> 369
 <211> 28
 <212> DNA
 <213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 369
 aaaacctcag aacaactcat tttgcacc 28
<210> 370
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 370
 gtctcaccat ggttgctctt gccaaattgt gggaagcagg g 41
<210> 371
<211> 1150
<212> DNA
<213> Homo sapiens
<400> 371
gtgacactat agaagagcta tgacgtcgca tgcacgcgta cgtaagctcg 50
```

```
gaattcggct cgaggctggt gggaagaagc cgagatggcg gcagccagcg 100
 ctggggcaac ccggctgctc ctgctcttgc tgatggcggt agcagcgccc 150
 agtcgagccc ggggcagcgg ctgccgggcc gggactggtg cgcgaggggc 200
 tggggcggaa ggtcgagagg gcgaggcctg tggcacggtg gggctgctgc 250
 tggagcactc atttgagatc gatgacagtg ccaacttccg gaagcggggc 300
 tcactgctct ggaaccagca ggatggtacc ttgtccctgt cacagcggca 350
 gctcagcgag gaggagcggg gccgactccg ggatgtggca gccctgaatg 400
 gcctgtaccg ggtccggatc ccaaggcgac ccggggccct ggatggcctg 450
 gaagetggtg getatgtete eteetttgte eetgegtget eeetggtgga 500
 gtcgcacctg tcggaccagc tgaccctgca cgtggatgtg gccggcaacg 550
 tggtgggcgt gtcggtggtg acgcaccccg ggggctgccg gggccatgag 600
gtggaggacg tggacctgga gctgttcaac acctcggtgc agctgcagcc 650
geceaecaea geceeaggee etgagaegge ggeetteatt gagegeetgg 700
agatggaaca ggcccagaag gccaagaacc cccaggagca gaagtccttc 750
ttcgccaaat actggatgta catcattccc gtcgtcctgt tcctcatgat 800
gtcaggagcg ccagacaccg ggggccaggg tgggggtggg ggtgggggtg 850
gtggtggggg tagtggcctt tgctgtgtgc caccctccct gtaagtctat 900
ttaaaaacat cgacgataca ttgaaatgtg tgaacgtttt gaaaagctac 950
agettecage agecaaaage aactgttgtt ttggcaagae ggteetgatg 1000
tacaagettg attgaaatte actgeteact tgataegtta tteagaaace 1050
caaggaatgg ctgtccccat cctcatgtgg ctgtgtggag ctcagctgtg 1100
ttgtgtggca gtttattaaa ctgtccccca gatcgacacg caaaaaaaaa 1150
```

<210> 372

<211> 269

<212> PRT

<213> Homo sapiens

<400> 372

Met Ala Ala Ala Ser Ala Gly Ala Thr Arg Leu Leu Leu Leu 1 5 10 15

Leu Met Ala Val Ala Ala Pro Ser Arg Ala Arg Gly Ser Gly Cys $20 \\ 25 \\ 30$

Arg Ala Gly Thr Gly Ala Arg Gly Ala G 35	Gly Ala Glu Gly Arg Glu 40 45
Gly Glu Ala Cys Gly Thr Val Gly Leu I 50	Leu Leu Glu His Ser Phe 55 60
Glu Ile Asp Asp Ser Ala Asn Phe Arg I 65	Lys Arg Gly Ser Leu Leu 70 75
	85 90
	.00 105
	120
	30 135
	45 150
	60 165
Gly Gly Cys Arg Gly His Glu Val Glu As 170 17	75 180
Phe Asn Thr Ser Val Gln Leu Gln Pro Pr 185 19	3 0 195
Pro Glu Thr Ala Ala Phe Ile Glu Arg Le 200 20	210
Gln Lys Ala Lys Asn Pro Gln Glu Gln Ly 215 22	225
Tyr Trp Met Tyr Ile Ile Pro Val Val Let 230 239	5 240
Gly Ala Pro Asp Thr Gly Gly Gln Gly Gly 245 250	0 255
Gly Gly Gly Gly Ser Gly Leu Cys Cys Val 260 265	l Pro Pro Ser Leu 5
<210> 373 <211> 1706 <212> DNA <213> Homo sapiens	
<400> 373 ggagcgctgc tggaacccga gccggagccg gagcca	acagc ggggagggtg 50

gcctggcggc ctggagccgg acgtgtccgg ggcgtccccg cagaccgggg 100

cagcaggtcg teegggggee caccatgetg gtgactgeet accttgettt 150 tgtaggcctc ctggcctcct gcctggggct ggaactgtca agatgccggg 200 ctaaaccccc tggaagggcc tgcagcaatc cctccttcct tcggtttcaa 250 ctggacttct atcaggtcta cttcctggcc ctggcagctg attggcttca 300 ggccccctac ctctataaac tctaccagca ttactacttc ctggaaggtc 350 aaattgccat cctctatgtc tgtggccttg cctctacagt cctctttggc 400 ctagtggcct cctcccttgt ggattggctg ggtcgcaaga attcttgtgt 450 cetettetee etgaettaet caetatgetg ettaaccaaa eteteteaag 500 actactttgt gctgctagtg gggcgagcac ttggtgggct gtccacagcc 550 ctgctcttct cagccttcga ggcctggtat atccatgagc acgtggaacg 600 gcatgacttc cctgctgagt ggatcccagc tacctttgct cgagctgcct 650 tctggaacca tgtgctggct gtagtggcag gtgtggcagc tgaggctgta 700 gccagctgga tagggctggg gcctgtagcg ccctttgtgg ctgccatccc 750 tetectgget etggeagggg cettggeeet tegaaactgg ggggagaact 800 atgaccggca gcgtgccttc tcaaggacct gtgctggagg cctgcgctgc 850 ctcctgtcgg accgccgcgt gctgctgctg ggcaccatac aagctctatt 900 tgagagtgtc atcttcatct ttgtcttcct ctggacacct gtgctggacc 950 cacacggggc ccctctgggc attatcttct ccagcttcat ggcagccagc 1000 ctgcttggct cttccctgta ccgtatcgcc acctccaaga ggtaccacct 1050 teageceatg cacetgetgt ceettgetgt geteategte gtettetete 1100 tetteatgtt gaetttetet accageceag geeaggagag teeggtggag 1150 tccttcatag cctttctact tattgagttg gcttgtggat tatactttcc 1200 cagcatgagc ttcctacgga gaaaggtgat ccctgagaca gagcaggctg 1250 gtgtactcaa ctggttccgg gtacctctgc actcactggc ttgcctaggg 1300 ctccttgtcc tccatgacag tgatcgaaaa acaggcactc ggaatatgtt 1350 cagcatttgc tctgctgtca tggtgatggc tctgctggca gtggtgggac 1400 tcttcaccgt ggtaaggcat gatgctgagc tgcgggtacc ttcacctact 1450 gaggageeet atgeeeetga getgtaaeee eacteeagga caagataget 1500

gggacagact cttgaattcc agctatccgg gattgtacag atctctctgt 1550 gactgacttt gtgactgtcc tgtggtttct cctgccattg ctttgtgttt 1600 gggaggacat gatgggggtg atggactgga aagaaggtgc caaaagttcc 1650 ctctgtgtta ctcccattta gaaaataaac acttttaaat gatcaaaaaa 1700 aaaaaa 1706 <210> 374 <211> 450 <212> PRT <213> Homo sapiens <400> 374 Met Leu Val Thr Ala Tyr Leu Ala Phe Val Gly Leu Leu Ala Ser Cys Leu Gly Leu Glu Leu Ser Arg Cys Arg Ala Lys Pro Pro Gly 25 Arg Ala Cys Ser Asn Pro Ser Phe Leu Arg Phe Gln Leu Asp Phe

- Tyr Gln Val Tyr Phe Leu Ala Leu Ala Ala Asp Trp Leu Gln Ala 50
- Pro Tyr Leu Tyr Lys Leu Tyr Gln His Tyr Tyr Phe Leu Glu Gly
- Gln Ile Ala Ile Leu Tyr Val Cys Gly Leu Ala Ser Thr Val Leu
- Phe Gly Leu Val Ala Ser Ser Leu Val Asp Trp Leu Gly Arg Lys 105
- Asn Ser Cys Val Leu Phe Ser Leu Thr Tyr Ser Leu Cys Cys Leu 110
- Thr Lys Leu Ser Gln Asp Tyr Phe Val Leu Leu Val Gly Arg Ala 125 130
- Leu Gly Gly Leu Ser Thr Ala Leu Leu Phe Ser Ala Phe Glu Ala 140
- Trp Tyr Ile His Glu His Val Glu Arg His Asp Phe Pro Ala Glu 155
- Trp Ile Pro Ala Thr Phe Ala Arg Ala Ala Phe Trp Asn His Val 170 180
- Leu Ala Val Val Ala Gly Val Ala Ala Glu Ala Val Ala Ser Trp 190
- Ile Gly Leu Gly Pro Val Ala Pro Phe Val Ala Ala Ile Pro Leu 200 205 210

Leu Ala Leu Ala Gly Ala Leu Ala Leu Arg Asn Trp Gly Glu Asn 215 220 225
Tyr Asp Arg Gln Arg Ala Phe Ser Arg Thr Cys Ala Gly Gly Leu 230 235 240
Arg Cys Leu Leu Ser Asp Arg Arg Val Leu Leu Gly Thr Ile 245 250 255
Gln Ala Leu Phe Glu Ser Val Ile Phe Ile Phe Val Phe Leu Trp 260 265 270
Thr Pro Val Leu Asp Pro His Gly Ala Pro Leu Gly Ile Ile Phe 275 280 285
Ser Ser Phe Met Ala Ala Ser Leu Leu Gly Ser Ser Leu Tyr Arg 290 295 300
Ile Ala Thr Ser Lys Arg Tyr His Leu Gln Pro Met His Leu Leu 305 310 315
Ser Leu Ala Val Leu Ile Val Val Phe Ser Leu Phe Met Leu Thr 320 325 330
Phe Ser Thr Ser Pro Gly Gln Glu Ser Pro Val Glu Ser Phe Ile 335 340 345
Ala Phe Leu Leu Ile Glu Leu Ala Cys Gly Leu Tyr Phe Pro Ser 350 355 360
Met Ser Phe Leu Arg Arg Lys Val Ile Pro Glu Thr Glu Gln Ala 365 370 375
Gly Val Leu Asn Trp Phe Arg Val Pro Leu His Ser Leu Ala Cys 380 385 390
Leu Gly Leu Leu Val Leu His Asp Ser Asp Arg Lys Thr Gly Thr 395 400 405
Arg Asn Met Phe Ser Ile Cys Ser Ala Val Met Val Met Ala Leu 410 415 420
Leu Ala Val Val Gly Leu Phe Thr Val Val Arg His Asp Ala Glu 425 430 435
Leu Arg Val Pro Ser Pro Thr Glu Glu Pro Tyr Ala Pro Glu Leu 440 445 450
<210> 375 <211> 1098 <212> DNA <213> Home capiens

<400> 375

<213> Homo sapiens

gcgacgcgcg gcggggcggc gagaggaaac gcggcgccgg gccgggcccg 50

gccctggaga tggtccccgg cgccgcgggc tggtgttgtc tcgtgctctg 100 gctccccgcg tgcgtcgcgg cccacggctt ccgtatccat gattatttgt 150 actttcaagt gctgagtcct ggggacattc gatacatctt cacagccaca 200 cctgccaagg actttggtgg tatctttcac acaaggtatg agcagattca 250 ccttgtcccc gctgaacctc cagaggcctg cggggaactc agcaacggtt 300 tetteateca ggaccagatt getetggtgg agaggggggg etgeteette 350 ctctccaaga ctcgggtggt ccaggagcac ggcgggcggg cggtgatcat 400 ctctgacaac gcagttgaca atgacagctt ctacgtggag atgatccagg 450 acagtaccca gcgcacaget gacatccccg ccctcttcct gctcggccga 500 gacggctaca tgatccgccg ctctctggaa cagcatgggc tgccatgggc 550 catcatttcc atcccagtca atgtcaccag catccccacc tttgagctgc 600 tgcaaccgcc ctggaccttc tggtagaaga gtttgtccca cattccagcc 650 ataagtgact ctgagctggg aaggggaaac ccaggaattt tgctacttgg 700 aatttggaga tagcatctgg ggacaagtgg agccaggtag aggaaaaggg 750 cccagggccc ccaagggtgt ctcatgctac aagaagaggc aagagacagg 850 ccccagggct tctggctaga acccgaaaca aaaggagctg aaggcaggtg 900 geetgagage catetgtgae etgteacaet caeetggete cageeteece 950 tacccagggt ctctgcacag tgaccttcac agcagttgtt ggagtggttt 1000 aaagagctgg tgtttgggga ctcaataaac cctcactgac tttttagcaa 1050 taaagcttct catcagggtt gcaaaaaaaa aaaaaaaaa aaaaaaaa 1098

```
<210> 376
```

<400> 376

Met Val Pro Gly Ala Ala Gly Trp Cys Cys Leu Val Leu Trp Leu 1 5 10 15

Pro Ala Cys Val Ala Ala His Gly Phe Arg Ile His Asp Tyr Leu $20 \\ \hspace{1.5cm} 25 \\ \hspace{1.5cm} 30$

Tyr Phe Gln Val Leu Ser Pro Gly Asp Ile Arg Tyr Ile Phe Thr 35 40 45

<211> 188

<212> PRT

<213> Homo sapiens

Ala Thr Pro Ala Lys Asp Phe Gly Gly Ile Phe His Thr Arg Tyr 50 55 60

Glu Gln Ile His Leu Val Pro Ala Glu Pro Pro Glu Ala Cys Gly 65 70 75

Glu Leu Ser Asn Gly Phe Phe Ile Gln Asp Gln Ile Ala Leu Val 80 85 90

Glu Arg Gly Gly Cys Ser Phe Leu Ser Lys Thr Arg Val Val Gln 95 100 105

Glu His Gly Gly Arg Ala Val Ile Ile Ser Asp Asn Ala Val Asp 110 115 120

Asn Asp Ser Phe Tyr Val Glu Met Ile Gln Asp Ser Thr Gln Arg 125 130 135

Thr Ala Asp Ile Pro Ala Leu Phe Leu Leu Gly Arg Asp Gly Tyr 140 145 150

Met Ile Arg Arg Ser Leu Glu Gln His Gly Leu Pro Trp Ala Ile 155 160 165

Ile Ser Ile Pro Val Asn Val Thr Ser Ile Pro Thr Phe Glu Leu 170 175 180

Leu Gln Pro Pro Trp Thr Phe Trp 185

<210> 377

<211> 496

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 396

<223> unknown base

<400> 377

tctgcctcca ctgctctgtg ctgggatcat ggaacttgca ctgctgtgtg 50
ggctggtggt gatggctggt gtgattccaa tccagggcgg gatcctgaac 100
ctgaacaaga tggtcaagca agtgactggg aaaatgccca tcctctcta 150
ctggccctac ggctgtcact gcggactagg tggcagaggc caacccaaag 200
atgccacgga ctggtgctgc cagacccatg actgctgcta tgaccacctg 250
aagacccagg ggtgcggcat ctacaaggac aacaacaaa gcagcataca 300
ttgtatggat ttatctcaac gctattgtt aatggctgtg tttaatgtga 350
tctatctgga aaatgaggac tccgaataaa aagctattac tawttnaaaa 400

```
aaaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaa 496
<210> 378
<211> 116
<212> PRT
<213> Homo sapiens
<400> 378
 Met Glu Leu Ala Leu Cys Gly Leu Val Val Met Ala Gly Val
 Ile Pro Ile Gln Gly Gly Ile Leu Asn Leu Asn Lys Met Val Lys
 Gln Val Thr Gly Lys Met Pro Ile Leu Ser Tyr Trp Pro Tyr Gly
 Cys His Cys Gly Leu Gly Gly Arg Gly Gln Pro Lys Asp Ala Thr
 Asp Trp Cys Cys Gln Thr His Asp Cys Cys Tyr Asp His Leu Lys
 Thr Gln Gly Cys Gly Ile Tyr Lys Asp Asn Asn Lys Ser Ser Ile
                80
 His Cys Met Asp Leu Ser Gln Arg Tyr Cys Leu Met Ala Val Phe
 Asn Val Ile Tyr Leu Glu Asn Glu Asp Ser Glu
<210> 379
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 379
ctgcctccac tgctctgtgc tggg 24
<210> 380
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
```

<210> 381

<400> 380

<223> Synthetic oligonucleotide probe

cagagcagtg gatgttcccc tggg 24

```
<212> DNA
 <213> Artificial Sequence
 <220>
<223> Synthetic oligonucleotide probe
 <400> 381
 ctgaacaaga tggtcaagca agtgactggg aaaatgccca tcctc 45
<210> 382
<211> 764
<212> DNA
<213> Homo sapiens
<400> 382
 ctcgcttctt ccttctggat gggggcccag ggggcccagg agagtataaa 50
 ggcgatgtgg agggtgcccg gcacaaccag acgcccagtc acaggcgaga 100
 gccctgggat gcaccggcca gaggccatgc tgctgctgct cacgcttgcc 150
 ctcctggggg gccccacctg ggcagggaag atgtatggcc ctggaggagg 200
 caagtatttc agcaccactg aagactacga ccatgaaatc acagggctgc 250
 gggtgtctgt aggtcttctc ctggtgaaaa gtgtccaggt gaaacttgga 300
 gactcctggg acgtgaaact gggagcctta ggtgggaata cccaggaagt 350
 caccetgeag ceaggegaat acateacaaa agtetttgte geetteeaag 400
 ctttcctccg gggtatggtc atgtacacca gcaaggaccg ctatttctat 450
 tttgggaagc ttgatggcca gatctcctct gcctacccca gccaagaggg 500
 gcaggtgctg gtgggcatct atggccagta tcaactcctt ggcatcaaga 550
 gcattggctt tgaatggaat tatccactag aggagccgac cactgagcca 600
 ccagttaatc tcacatactc agcaaactca cccgtgggtc gctagggtgg 650
 ggtatggggc catccgagct gaggccatct gtgtggtggt ggctgatggt 700
 actggagtaa ctgagtcggg acgctgaatc tgaatccacc aataaataaa 750
 gcttctgcag aaaa 764
<210> 383
<211> 178
<212> PRT
<213> Homo sapiens
<400> 383
Met His Arg Pro Glu Ala Met Leu Leu Leu Leu Thr Leu Ala Leu
                  5
```

<211> 45

```
Leu Gly Gly Pro Thr Trp Ala Gly Lys Met Tyr Gly Pro Gly Gly 20 25 30
```

Gly Lys Tyr Phe Ser Thr Thr Glu Asp Tyr Asp His Glu Ile Thr 35 40 45

Gly Leu Arg Val Ser Val Gly Leu Leu Leu Val Lys Ser Val Gln
50 55 60

Val Lys Leu Gly Asp Ser Trp Asp Val Lys Leu Gly Ala Leu Gly
65 70 75

Gly Asn Thr Gln Glu Val Thr Leu Gln Pro Gly Glu Tyr Ile Thr 80 85 90

Lys Val Phe Val Ala Phe Gln Ala Phe Leu Arg Gly Met Val Met 95 100 105

Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu Asp Gly 110 115 120

Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu Val 125 130 135

Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly
140 145 150

Phe Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro 155 160 165

Val Asn Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg 170 175

<210> 384

<211> 2379

<212> DNA

<213> Homo sapiens

<400> 384

getgagegtg tgegggtae ggggetetee tgeettetgg getecaaege 50
agetetgtgg etgaaetggg tgeteateae gggaaetget gggetatgga 100
atacagatgt ggeageteag gtageeceaa attgeetgga agaatacate 150
atgtttteg ataagaagaa attgtaggat eeagttttt ttttaaeege 200
ceeeteeea eeeeeaaa aaaetgtaaa gatgeaaaaa egtaatatee 250
atgaagatee tattaeetag gaagattttg atgtttget gegaatgegg 300
tgttgggatt tatttgttet tggagtgtte tgeegtggetg geaaagaata 350
atgteeaaa ateggteeat eteeeaaggg gteeaatttt tetteetggg 400
tgteagegag eeetgaetea etaeagtgea getgaeaggg getgteatge 450

aactggcccc taagccaaag caaaagacct aaggacgacc tttgaacaat 500 acaaaggatg ggtttcaatg taattaggct actgagcgga tcagctgtag 550 cactggttat agcccccact gtcttactga caatgctttc ttctgccgaa 600 cgaggatgcc ctaagggctg taggtgtgaa ggcaaaatgg tatattgtga 650 atctcagaaa ttacaggaga taccctcaag tatatctgct ggttgcttag 700 gtttgtccct tcgctataac agccttcaaa aacttaagta taatcaattt 750 aaagggctca accagctcac ctggctatac cttgaccata accatatcag 800 caatattgac gaaaatgctt ttaatggaat acgcagactc aaagagctga 850 ttcttagttc caatagaatc tcctattttc ttaacaatac cttcagacct 900 gtgacaaatt tacggaactt ggatctgtcc tataatcagc tgcattctct 950 gggatctgaa cagtttcggg gcttgcggaa gctgctgagt ttacatttac 1000 ggtctaactc cctgagaacc atccctgtgc gaatattcca agactgccgc 1050 aacctggaac ttttggacct gggatataac cggatccgaa gtttagccag 1100 gaatgtcttt gctggcatga tcagactcaa agaacttcac ctggagcaca 1150 atcaattttc caagctcaac ctggcccttt ttccaaggtt ggtcagcctt 1200 cagaaccttt acttgcagtg gaataaaatc agtgtcatag gacagaccat 1250 gtcctggacc tggagctcct tacaaaggct tgatttatca ggcaatgaga 1300 tegaagettt cagtggacee agtgttttee agtgtgteee gaatetgeag 1350 cgcctcaacc tggattccaa caagctcaca tttattggtc aagagatttt 1400 ggattettgg atatecetea atgaeateag tettgetggg aatatatggg 1450 aatgcagcag aaatatttgc tcccttgtaa actggctgaa aagttttaaa 1500 ggtctaaggg agaatacaat tatctgtgcc agtcccaaag agctgcaagg 1550 agtaaatgtg atcgatgcag tgaagaacta cagcatctgt ggcaaaagta 1600 ctacagagag gtttgatctg gccagggctc tcccaaagcc gacgtttaag 1650 cccaagctcc ccaggccgaa gcatgagagc aaaccccctt tgcccccgac 1700 ggtgggagcc acagagcccg gcccagagac cgatgctgac gccgagcaca 1750 tctctttcca taaaatcatc gcgggcagcg tggcgctttt cctgtccgtg 1800 ctcgtcatcc tgctggttat ctacgtgtca tggaagcggt accctgcgag 1850 catgaagcag ctgcagcagc gctccctcat gcgaaggcac aggaaaaaga 1900

aaagacagtc cctaaagcaa atgactccca gcacccagga attttatgta 1950 gattataaac ccaccaacac ggagaccagc gagatgctgc tgaatgggac 2000 gggaccctgc acctataaca aatcgggctc cagggagtgt gaggtatgaa 2050 ccattgtgat aaaaagagct cttaaaagct gggaaataag tggtgcttta 2100 ttgaactctg gtgactatca agggaacgcg atgcccccc tccccttccc 2150 tctccctct actttggtgg caagatcctt ccttgtccgt tttagtgcat 2200 tcataatact ggtcattttc ctctcataca taatcaaccc attgaaattt 2250 aaataccaca atcaatgtga agcttgaact ccggtttaat ataataccta 2300 ttgtataaga ccctttactg attccattaa tgtcgcattt gtttaagat 2350 aaaacttctt tcataggtaa aaaaaaaaa 2379

<210> 385

<211> 513

<212> PRT

<213> Homo sapiens

<400> 385

Met Gly Phe Asn Val Ile Arg Leu Leu Ser Gly Ser Ala Val Ala 1 5 10 15

Leu Val Ile Ala Pro Thr Val Leu Leu Thr Met Leu Ser Ser Ala
20 25 30

Glu Arg Gly Cys Pro Lys Gly Cys Arg Cys Glu Gly Lys Met Val 35 40 45

Tyr Cys Glu Ser Gln Lys Leu Gln Glu Ile Pro Ser Ser Ile Ser 50 55 60

Ala Gly Cys Leu Gly Leu Ser Leu Arg Tyr Asn Ser Leu Gln Lys
65 70 75

Leu Lys Tyr Asn Gln Phe Lys Gly Leu Asn Gln Leu Thr Trp Leu 80 85 90

Tyr Leu Asp His Asn His Ile Ser Asn Ile Asp Glu Asn Ala Phe 95 100 105

Asn Gly Ile Arg Arg Leu Lys Glu Leu Ile Leu Ser Ser Asn Arg 110 115 120

Ile Ser Tyr Phe Leu Asn Asn Thr Phe Arg Pro Val Thr Asn Leu 125 130 135

Arg Asn Leu Asp Leu Ser Tyr Asn Gln Leu His Ser Leu Gly Ser 140 145 150

Glu	Gln	Phe	Arg	Gly 155	Leu	Arg	Lys	Leu	Leu 160	Ser	Leu	His	Leu	Arg 165
Ser	Asn	Ser	Leu	Arg 170	Thr	Ile	Pro	Val	Arg 175	Ile	Phe	Gln	Asp	Cys 180
Arg	Asn	Leu	Glu	Leu 185	Leu	Asp	Leu	Gly	Tyr 190	Asn	Arg	Ile	Arg	Ser 195
Leu	Ala	Arg	Asn	Val 200	Phe	Ala	Gly	Met	Ile 205	Arg	Leu	Lys	Glu	Leu 210
His	Leu	Glu	His	Asn 215	Gln	Phe	Ser	Lys	Leu 220	Asn	Leu	Ala	Leu	Phe 225
Pro	Arg	Leu	Val	Ser 230	Leu	Gln	Asn	Leu	Tyr 235	Leu	Gln	Trp	Asn	Lys 240
Ile	Ser	Val	Ile	Gly 245	Gln	Thr	Met	Ser	Trp 250	Thr	Trp	Ser	Ser	Leu 255
Gln	Arg	Leu	Asp	Leu 260	Ser	Gly	Asn	Glu	Ile 265	Glu	Ala	Phe	Ser	Gly 270
Pro	Ser	Val	Phe	Gln 275	Cys	Val	Pro	Asn	Leu 280	Gln	Arg	Leu	Asn	Leu 285
Asp	Ser	Asn	Lys	Leu 290	Thr	Phe	Ile	Gly	Gln 295	Glu	Ile	Leu	Asp	Ser 300
Trp	Ile	Ser	Leu	Asn 305	Asp	Ile	Ser	Leu	Ala 310	Gly	Asn	Ile	Trp	Glu 315
Cys	Ser	Arg	Asn	Ile 320	Cys	Ser	Leu	Val	Asn 325	Trp	Leu	Lys	Ser	Phe 330
Lys	Gly	Leu	Arg	Glu 335	Asn	Thr	Ile	Ile	Cys 340	Ala	Ser	Pro	Lys	Glu 345
Leu	Gln	Gly	Val	Asn 350	Val	Ile	Asp	Ala	Val 355	Lys	Asn	Tyr	Ser	Ile 360
Cys	Gly	Lys	Ser	Thr 365	Thr	Glu	Arg	Phe	Asp 370	Leu	Ala	Arg	Ala	Leu 375
Pro	Lys	Pro	Thr	Phe 380	Lys	Pro	Lys	Leu	Pro 385	Arg	Pro	Lys	His	Glu 390
Ser	Lys	Pro	Pro	Leu 395	Pro	Pro	Thr	Val	Gly 400	Ala	Thr	Glu	Pro	Gly 405
Pro	Glu	Thr	Asp	Ala 410	Asp	Ala	Glu	His	Ile 415	Ser	Phe	His	Lys	Ile 420
Ile	Ala	Gly	Ser	Val 425	Ala	Leu	Phe	Leu	Ser 430	Val	Leu	Val	Ile	Leu 435

```
Leu Val Ile Tyr Val Ser Trp Lys Arg Tyr Pro Ala Ser Met Lys
                 440
                                      445
 Gln Leu Gln Gln Arg Ser Leu Met Arg Arg His Arg Lys Lys
 Arg Gln Ser Leu Lys Gln Met Thr Pro Ser Thr Gln Glu Phe Tyr
                 470
 Val Asp Tyr Lys Pro Thr Asn Thr Glu Thr Ser Glu Met Leu Leu
                 485
                                      490
 Asn Gly Thr Gly Pro Cys Thr Tyr Asn Lys Ser Gly Ser Arg Glu
                                     505
 Cys Glu Val
<210> 386
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 386
ctgggatctg aacagtttcg gggc 24
<210> 387
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 387
ggtccccagg acatggtctg tccc 24
<210> 388
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 388
gctgagttta catttacggt ctaactccct gagaaccatc cctgtgcg 48
<210> 389
<211> 1449
<212> DNA
<213> Homo sapiens
<400> 389
```

agttctgaga aagaaggaaa taaacacagg caccaaacca ctatcctaag 50 ttgactgtcc tttaaatatg tcaagatcca gacttttcag tgtcacctca 100 gcgatctcaa cgatagggat cttgtgtttg ccgctattcc agttggtgct 150 ctcggaccta ccatgcgaag aagatgaaat gtgtgtaaat tataatgacc 200 aacaccctaa tggctggtat atctggatcc tcctgctgct ggttttggtg 250 gcagctcttc tctgtggagc tgtggtcctc tgcctccagt gctggctgag 300 gagaccccga attgattctc acaggcgcac catggcagtt tttgctgttg 350 gagacttgga ctctatttat gggacagaag cagctgtgag tccaactgtt 400 ggaattcacc ttcaaactca aacccctgac ctatatcctg ttcctgctcc 450 atgttttggc cctttaggct ccccacctcc atatgaagaa attgtaaaaa 500 caacctgatt ttaggtgtgg attatcaatt taaagtatta acgacatctg 550 taattccaaa acatcaaatt taggaatagt tatttcagtt gttggaaatg 600 tccagagatc tattcatata gtctgaggaa ggacaattcg acaaaagaat 650 ggatgttgga aaaaattttg gtcatggaga tgtttaaata gtaaagtagc 700 aggettttga tgtgteactg etgtateata ettttatget acacaaceaa 750 attaatgctt ctccactagt atccaaacag gcaacaatta ggtgctggaa 800 gtagtttcca tcacatttag gactccactg cagtatacag cacaccattt 850 tctgctttaa actctttcct agcatggggt ccataaaaat tattataatt 900 taacaatago ccaagoogag aatocaacat gtocagaaco agaaccagaa 950 agatagtatt tgaatgaagg tgaggggaga gagtaggaaa aagaaaagtt 1000 tggagttgaa gggtaaagga taaatgaaga ggaaaaggaa aagattacaa 1050 gtctcagcaa aaacaagagg ttttatgccc caacctgaag aggaagaaat 1100 tgtagataga aggtgaagga gattgctgaa gatatagagc acatataatg 1150 ccaacacggg gagaaaagaa aatttcccct tttacagtaa tgaatgtggc 1200 ctccatagtc catagtgttt ctctggagcc tcagggcttg gcatttattg 1250 cagcatcatg ctaagaacct tcggcatagg tatctgttcc catgaggact 1300 gcagaagtag caatgagaca tetteaagtg geattttgge agtggeeate 1350 agcaggggga cagacaaaaa catccatcac agatgacata tgatcttcag 1400 ctgacaaatt tgttgaacaa aacaataaac atcaatagat atctaaaaa 1449

```
<210> 390
<211> 146
<212> PRT
<213> Homo sapiens
<400> 390
 Met Ser Arg Ser Arg Leu Phe Ser Val Thr Ser Ala Ile Ser Thr
 Ile Gly Ile Leu Cys Leu Pro Leu Phe Gln Leu Val Leu Ser Asp
                  20
 Leu Pro Cys Glu Glu Asp Glu Met Cys Val Asn Tyr Asn Asp Gln
 His Pro Asn Gly Trp Tyr Ile Trp Ile Leu Leu Leu Val Leu
                  50
 Val Ala Ala Leu Cys Gly Ala Val Val Leu Cys Leu Gln Cys
 Trp Leu Arg Arg Pro Arg Ile Asp Ser His Arg Arg Thr Met Ala
 Val Phe Ala Val Gly Asp Leu Asp Ser Ile Tyr Gly Thr Glu Ala
                  95
                                     100
 Ala Val Ser Pro Thr Val Gly Ile His Leu Gln Thr Gln Thr Pro
 Asp Leu Tyr Pro Val Pro Ala Pro Cys Phe Gly Pro Leu Gly Ser
                 125
                                     130
 Pro Pro Pro Tyr Glu Glu Ile Val Lys Thr Thr
                 140
<210> 391
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 391
cttttcagtg tcacctcagc gatctc 26
<210> 392
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

<400> 392

ccaaaacatg gagcaggaac agg 23

- <210> 393 <211> 47 <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 393
- ccagttggtg ctctcggacc taccatgcga agaagatgaa atgtgtg 47
- <210> 394
- <211> 2340
- <212> DNA
- <213> Homo sapiens
- <400> 394
- gagcggagta aaatctccac aagctgggaa caaacctcgt cccaactccc 50 acceaecgge gttteteeag etegatetgg aggetgette geeagtgtgg 100 gacgcagetg acgcccgett attagetete getgegtege eccqqeteaq 150 aagctccgtg gcggcggcga ccgtgacgag aagcccacgg ccagctcagt 200 tctcttctac tttgggagag agagaaagtc agatgcccct tttaaactcc 250 ctcttcaaaa ctcatctcct gggtgactga gttaatagag tggatacaac 300 cttgctgaag atgaagaata tacaatattg aggatatttt tttcttttt 350 ttttcaagtc ttgatttgtg gcttacctca agttaccatt tttcagtcaa 400 gtctgtttgt ttgcttcttc agaaatgttt tttacaatct caagaaaaaa 450 tatgtcccag aaattgagtt tactgttgct tgtatttgga ctcatttggg 500 gattgatgtt actgcactat acttttcaac aaccaagaca tcaaagcagt 550 gtcaagttac gtgagcaaat actagactta agcaaaagat atgttaaagc 600 tctagcagag gaaaataaga acacagtgga tgtcgagaac ggtgcttcta 650 tggcaggata tgcggatctg aaaagaacaa ttgctgtcct tctggatgac 700 attttgcaac gattggtgaa gctggagaac aaagttgact atattgttgt 750 gaatggctca gcagccaaca ccaccaatgg tactagtggg aatttggtgc 800 cagtaaccac aaataaaaga acgaatgtct cgggcagtat cagatagcag 850 ttgaaaatca ccttgtgctg ctccatccac tgtggattat atcctatggc 900

agaaaagctt tataattgct ggcttaggac agagcaatac tttacaataa 950

aagetetaca catttteaag gagtatgetg gatteatgga actetaatte 1000 tgtacataaa aattttaaag ttatttgttt gctttcaggc aagtctgttc 1050 aatgctgtac tatgtcctta aagagaattt ggtaacttgg ttgatgtggt 1100 aagcagatag gtgagttttg tataaatctt ttgtgtttga gatcaagctg 1150 aaatgaaaac actgaaaaac atggattcat ttctataaca catttattta 1200 agtatataac acgttttttg gacaagtgaa gaatgtttaa tcattctgtc 1250 atttgttctc aatagatgta actgttagac tacggctatt tgaaaaaatg 1300 tgcttattgt actatatttt gttattccaa ttatgagcag agaaaggaaa 1350 tataatgttg aaaataatgt tttgaaatca tgacccaaag aatgtattga 1400 tttgcactat ccttcagaat aactgaaggt taattattgt atatttttaa 1450 aaattacact tataagagta taatcttgaa atgggtagca gccactgtcc 1500 attacctatc gtaaacattg gggcaattta ataacagcat taaaatagtt 1550 gtaaactcta atcttatact tattgaagaa taaaagatat ttttatgatg 1600 agagtaacaa taaagtatto atgattttto acatacatga atgttcattt 1650 aaaagtttaa tootttgagt gtotatgota toaggaaago acattattto 1700 catatttggg ttaattttgc ttttattata ttggtctagg aggaagggac 1750 tttggagaat ggaactcttg aggactttag ccaggtgtat ataataaagg 1800 taagagtatc ctttatgaaa ttttgaattt gtataacaga tgcattagat 1900 attcatttta tataatggcc acttaaaata agaacattta aaatataaac 1950 tatgaagatt gactatcttt tcaggaaaaa agctgtatat agcacaggga 2000 accctaatct tgggtaattc tagtataaaa caaattatac ttttatttaa 2050 atttcccttg tagcaaatct aattgccaca tggtgcccta tatttcatag 2100 tatttattct ctatagtaac tgcttaagtg cagctagctt ctagatttag 2150 actatataga atttagatat tgtattgttc gtcattataa tatgctacca 2200 catgtagcaa taattacaat attttattaa aataaatatg tgaaatattg 2250 acctttatgt gaagaaatta attatatgcc attgccaggt 2340

```
<211> 140
<212> PRT
<213> Homo sapiens
<400> 395
 Met Phe Phe Thr Ile Ser Arg Lys Asn Met Ser Gln Lys Leu Ser
 Leu Leu Leu Val Phe Gly Leu Ile Trp Gly Leu Met Leu Leu
                                       25
 His Tyr Thr Phe Gln Gln Pro Arg His Gln Ser Ser Val Lys Leu
 Arg Glu Gln Ile Leu Asp Leu Ser Lys Arg Tyr Val Lys Ala Leu
 Ala Glu Glu Asn Lys Asn Thr Val Asp Val Glu Asn Gly Ala Ser
 Met Ala Gly Tyr Ala Asp Leu Lys Arg Thr Ile Ala Val Leu Leu
 Asp Asp Ile Leu Gln Arg Leu Val Lys Leu Glu Asn Lys Val Asp
                  95
                                     100
 Tyr Ile Val Val Asn Gly Ser Ala Ala Asn Thr Thr Asn Gly Thr
                                     115
 Ser Gly Asn Leu Val Pro Val Thr Thr Asn Lys Arg Thr Asn Val
                                     130
 Ser Gly Ser Ile Arg
                 140
<210> 396
<211> 2639
<212> DNA
<213> Homo sapiens
<400> 396
cgcggccggg ccgccggggt gagcgtgccg aggcggctgt ggcgcaggct 50
 tecageceec accatgeegt ggeecetget getgetgetg geegtgagtg 100
gggcccagac aacccggcca tgcttccccg ggtgccaatg cgaggtggag 150
accttcggcc ttttcgacag cttcagcctg actcgggtgg attgtagcgg 200
```

cctgggcccc cacatcatgc cggtgcccat ccctctggac acagcccact 250

tggacctgtc ctccaaccgg ctggagatgg tgaatgagtc ggtgttggcg 300

gggccgggct acacgacgtt ggctggcctg gatctcagcc acaacctgct 350

caccagcate teacceaetg cetteteeg cettegetae etggagtege 400

ttgacctcag ccacaatggc ctgacagccc tgccagccga gagcttcacc 450 ageteaceee tgagegaegt gaacettage cacaaceage teegggaggt 500 ctcagtgtct gccttcacga cgcacagtca gggccgggca ctacacgtgg 550 acctctccca caacctcatt caccgcctcg tgccccaccc cacgagggcc 600 ggcctgcctg cgcccaccat tcagagcctg aacctggcct ggaaccggct 650 ccatgccgtg cccaacctcc gagacttgcc cctgcgctac ctgagcctgg 700 atgggaaccc tctagctgtc attggtccgg gtgccttcgc ggggctggga 750 ggccttacac acctgtctct ggccagcctg cagaggctcc ctgagctggc 800 gcccagtggc ttccgtgagc taccgggcct gcaggtcctg gacctgtcgg 850 gcaaccccaa gcttaactgg gcaggagctg aggtgttttc aggcctgagc 900 teeetgeagg agetggaeet ttegggeaee aacetggtge eeetgeetga 950 ggcgctgctc ctccacctcc cggcactgca gagcgtcagc gtgggccagg 1000 atgtgcggtg ccggcgcctg gtgcgggagg gcacctaccc ccggaggcct 1050 ggctccagcc ccaaggtgcc cctgcactgc gtagacaccc gggaatctgc 1100 tgccaggggc cccaccatct tgtgacaaat ggtgtggccc agggccacat 1150 aacagactgc tgtcctgggc tgcctcaggt cccgagtaac ttatgttcaa 1200 tgtgccaaca ccagtgggga gcccgcaggc ctatgtggca gcgtcaccac 1250 aggagttgtg ggcctaggag aggctttgga cctgggagcc acacctagga 1300 gcaaagtctc acccetttgt ctacgttgct tccccaaacc atgagcagag 1350 ggacttcgat gccaaaccag actcgggtcc cctcctgctt cccttcccca 1400 cttatccccc aagtgeette eetcatgeet gggeeggeet gaeeegeaat 1450 gggcagaggg tgggtgggac cecetgetge agggcagagt teaggteeac 1500 tgggctgagt gtccccttgg gcccatggcc cagtcactca ggggcgagtt 1550 tettttetaa eatageeett tetttgeeat gaggeeatga ggeeegette 1600 atccttttct atttccctag aaccttaatg gtagaaggaa ttgcaaagaa 1650 tcaagtccac ccttctcatg tgacagatgg ggaaactgag gccttgagaa 1700 ggaaaaaggc taatctaagt teetgeggge agtggeatga etggageaca 1750 geeteetgee teecageeeg gaeecaatge aetttettgt eteetetaat 1800 aageeceace eteceegeet gggeteeeet tgetgeeett geetgtteee 1850

cattagcaca ggagtagcag cagcaggaca ggcaagagcc tcacaagtgg 1900 gactotgggc ctctgaccag ctgtgcggca tgggctaagt cactotgccc 1950 ttcggagcct ctggaagctt agggcacatt ggttccagcc tagccagttt 2000 ctcaccctgg gttggggtcc cccagcatcc agactggaaa cctacccatt 2050 ttcccctgag catcctctag atgctgcccc aaggagttgc tgcagttctg 2100 gagcctcatc tggctgggat ctccaagggg cctcctggat tcagtcccca 2150 ctggccctga gcacgacagc ccttcttacc ctcccaggaa tgccgtgaaa 2200 ggagacaagg tctgcccgac ccatgtctat gctctacccc cagggcagca 2250 teteagette egaaceetgg getgttteet tagtetteat tttataaaag 2300 ttgttgcctt tttaacggag tgtcactttc aaccggcctc ccctacccct 2350 gctggccggg gatggagaca tgtcatttgt aaaagcagaa aaaggttgca 2400 tttgttcact tttgtaatat tgtcctgggc ctgtgttggg gtgttggggg 2450 aagetgggea teagtggeea catgggeate aggggetgge cecacagaga 2500 ccccacaggg cagtgagete tgtetteece cacetgeeta geccateate 2550 tatctaaccg gtccttgatt taataaacac tataaaaggt ttaaaaaaaa 2600 aaaaaaaaa aaaaaaaaa aaaaaaaaa 2639

```
<210> 397
```

<400> 397

Met Pro Trp Pro Leu Leu Leu Leu Leu Ala Val Ser Gly Ala Gln
1 5 10 15

Thr Thr Arg Pro Cys Phe Pro Gly Cys Gln Cys Glu Val Glu Thr 20 25 30

Phe Gly Leu Phe Asp Ser Phe Ser Leu Thr Arg Val Asp Cys Ser 35 40 45

Gly Leu Gly Pro His Ile Met Pro Val Pro Ile Pro Leu Asp Thr
50 55 60

Ala His Leu Asp Leu Ser Ser Asn Arg Leu Glu Met Val Asn Glu
65 70 75

Ser Val Leu Ala Gly Pro Gly Tyr Thr Thr Leu Ala Gly Leu Asp 80 85 90

<211> 353

<212> PRT

<213> Homo sapiens

Leu	Ser	His	Asn	Leu 95	Leu	Thr	Ser	Ile	Ser 100		Thr	Ala	Phe	Ser 105
Arg	Leu	Arg	Tyr	Leu 110	Glu	Ser	Leu	Asp	Leu 115		His	Asn	Gly	Leu 120
Thr	Ala	Leu	Pro	Ala 125	Glu	Ser	Phe	Thr	Ser 130	Ser	Pro	Leu	Ser	Asp 135
Val	Asn	Leu	Ser	His 140	Asn	Gln	Leu	Arg	Glu 145	Val	Ser	Val	Ser	Ala 150
Phe	Thr	Thr	His	Ser 155	Gln	Gly	Arg	Ala	Leu 160	His	Val	Asp	Leu	Ser 165
His	Asn	Leu	Ile	His 170	Arg	Leu	Val	Pro	His 175	Pro	Thr	Arg	Ala	Gly 180
Leu	Pro	Ala	Pro	Thr 185	Ile	Gln	Ser	Leu	Asn 190	Leu	Ala	Trp	Asn	Arg 195
Leu	His	Ala	Val	Pro 200	Asn	Leu	Arg	Asp	Leu 205	Pro	Leu	Arg	Tyr	Leu 210
Ser	Leu	Asp	Gly	Asn 215	Pro	Leu	Ala	Val	Ile 220	Gly	Pro	Gly	Ala	Phe 225
Ala	Gly	Leu	Gly	Gly 230	Leu	Thr	His	Leu	Ser 235	Leu	Ala	Ser	Leu	Gln 240
Arg	Leu	Pro	Glu	Leu 245	Ala	Pro	Ser	Gly	Phe 250	Arg	Glu	Leu	Pro	Gly 255
Leu	Gln	Val	Leu	Asp 260	Leu	Ser	Gly	Asn	Pro 265	Lys	Leu	Asn	Trp	Ala 270
Gly	Ala	Glu	Val	Phe 275	Ser	Gly	Leu	Ser	Ser 280	Leu	Gln	Glu	Leu	Asp 285
Leu	Ser	Gly	Thr	Asn 290	Leu	Val	Pro	Leu	Pro 295	Glu	Ala	Leu	Leu	Leu 300
His	Leu	Pro	Ala	Leu 305	Gln	Ser	Val	Ser	Val 310	Gly	Gln	Asp	Val	Arg 315
Cys	Arg	Arg	Leu	Val 320	Arg	Glu	Gly	Thr	Tyr 325	Pro	Arg	Arg	Pro	Gly 330
Ser	Ser	Pro		Val 335	Pro	Leu	His	Cys	Val 340	Asp	Thr	Arg	Glu	Ser 345
Ala	Ala	Arg		Pro 350	Thr	Ile	Leu							

<210> 398 <211> 23 <212> DNA

```
<213> Artificial Sequence
 <220>
<223> Synthetic oligonucleotide probe
<400> 398
 ccctgccagc cgagagette acc 23
<210> 399
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 399
 ggttggtgcc cgaaaggtcc agc 23
<210> 400
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 400
caaccccaag cttaactggg caggagctga ggtgttttca ggcc 44
<210> 401
<211> 1571
<212> DNA
<213> Homo sapiens
<400> 401
gatggcgcag ccacagcttc tgtgagattc gatttctccc cagttcccct 50
gtgggtctga ggggaccaga agggtgagct acgttggctt tctggaaggg 100
gaggctatat gcgtcaattc cccaaaacaa gttttgacat ttcccctgaa 150
atgtcattct ctatctattc actgcaagtg cctgctgttc caggccttac 200
ctgctgggca ctaacggcgg agccaggatg gggacagaat aaaggagcca 250
cgacctgtgc caccaactcg cactcagact ctgaactcag acctgaaatc 300
ttctcttcac gggaggcttg gcagtttttc ttactcctgt ggtctccaga 350
tttcaggcct aagatgaaag cctctagtct tgccttcagc cttctctctg 400
ctgcgtttta tctcctatgg actccttcca ctggactgaa gacactcaat 450
ttgggaagct gtgtgatcgc cacaaacctt caggaaatac gaaatggatt 500
ttctgagata cggggcagtg tgcaagccaa agatggaaac attgacatca 550
```

gaatettaag gaggaetgag tetttgeaag acaeaaagee tgegaatega 600 tgctgcctcc tgcgccattt gctaagactc tatctggaca gggtatttaa 650 aaactaccag acccctgacc attatactct ccggaagatc agcagcctcg 700 ccaatteett tettaceate aagaaggaee teeggetete teatgeeeae 750 atgacatgcc attgtgggga ggaagcaatg aagaaataca gccagattct 800 gagtcacttt gaaaagctgg aacctcaggc agcagttgtg aaggctttgg 850 gggaactaga cattettetg caatggatgg aggagacaga ataggaggaa 900 agtgatgctg ctgctaagaa tattcgaggt caagagctcc agtcttcaat 950 acctgcagag gaggcatgac cccaaaccac catctctta ctgtactagt 1000 cttgtgctgg tcacagtgta tcttatttat gcattacttg cttccttgca 1050 tgattgtctt tatgcatccc caatcttaat tgagaccata cttgtataag 1100 atttttgtaa tatctttctg ctattggata tatttattag ttaatatatt 1150 tatttatttt ttgctattta atgtatttat ttttttactt ggacatgaaa 1200 ctttaaaaaa attcacagat tatatttata acctgactag agcaggtgat 1250 gtatttttat acagtaaaaa aaaaaaacct tgtaaattct agaagagtgg 1300 ctaggggggt tattcatttg tattcaacta aggacatatt tactcatgct 1350 gatgctctgt gagatatttg aaattgaacc aatgactact taggatgggt 1400 tgtggaataa gttttgatgt ggaattgcac atctacctta caattactga 1450 ccatccccag tagactcccc agtcccataa ttgtgtatct tccagccagg 1500 aateetacae ggeeageatg tatttetaca aataaagttt tetttgeata 1550 ccaaaaaaa aaaaaaaaa a 1571

```
<210> 402
```

<400> 402

Met Arg Gln Phe Pro Lys Thr Ser Phe Asp Ile Ser Pro Glu Met
1 5 10 15

Ser Phe Ser Ile Tyr Ser Leu Gln Val Pro Ala Val Pro Gly Leu 20 25 30

Thr Cys Trp Ala Leu Thr Ala Glu Pro Gly Trp Gly Gln Asn Lys 35 40 45

<211> 261

<212> PRT

<213> Homo sapiens

Gly	Ala	Thr	Thr	Cys 50	Ala	Thr	Asn	Ser	His	Ser	Asp	Ser	Glu	Leu 60
Arg	Pro	Glu	Ile	Phe 65	Ser	Ser	Arg	Glu	Ala 70	Trp	Gln	Phe	Phe	Leu 75
Leu	Leu	Trp	Ser	Pro 80	Asp	Phe	Arg	Pro	Lys 85	Met	Lys	Ala	Ser	Ser 90
Leu	Ala	Phe	Ser	Leu 95	Leu	Ser	Ala	Ala	Phe 100	Tyr	Leu	Leu	Trp	Thr 105
Pro	Ser	Thr	Gly	Leu 110	Lys	Thr	Leu	Asn	Leu 115	Gly	Ser	Cys	Val	Ile 120
Ala	Thr	Asn	Leu	Gln 125	Glu	Ile	Arg	Asn	Gly 130	Phe	Ser	Glu	Ile	Arg 135
Gly	Ser	Val	Gln	Ala 140	Lys	Asp	Gly	Asn	Ile 145	Asp	Ile	Arg	Ile	Leu 150
Arg	Arg	Thr	Glu	Ser 155	Leu	Gln	Asp	Thr	Lys 160	Pro	Ala	Asn	Arg	Cys 165
Cys	Leu	Leu	Arg	His 170	Leu	Leu	Arg	Leu	Tyr 175	Leu	Asp	Arg	Val	Phe 180
Lys	Asn	Tyr	Gln	Thr 185	Pro	Asp	His	Tyr	Thr 190	Leu	Arg	Lys	Ile	Ser 195
Ser	Leu	Ala	Asn	Ser 200	Phe	Leu	Thr	Ile	Lys 205	Lys	Asp	Leu	Arg	Leu 210
Ser	His	Ala	His	Met 215	Thr	Cys	His	Cys	Gly 220	Glu	Glu	Ala	Met	Lys 225
Lys	Tyr	Ser	Gln	Ile 230	Leu	Ser	His		Glu 235	Lys	Leu	Glu	Pro	Gln 240
Ala	Ala	Val	Val	Lys 245	Ala	Leu	Gly		Leu . 250	Asp	Ile	Leu	Leu	Gln 255
Trp	Met	Glu		Thr 260	Glu									
<210> <211> <212>	28													
<213>			ial :	Sequ	ence									
<220> <223>	Syn	thet	ic o	ligo	nucl	eoti	de pi	robe						
<400>		at a	tear	~~++			h- 01							

ctcctgtggt ctccagattt caggccta 28

```
<210> 404
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 404
agtcctcctt aagattctga tgtcaa 26
<210> 405
<211> 998
<212> DNA
<213> Homo sapiens
<400> 405
ccgttatcgt cttgcgctac tgctgaatgt ccgtcccgga ggaggaggag 50
aggettttgc cgctgaccca gagatggccc cgagcgagca aattectact 100
gtccggctgc gcggctaccg tggccgagct agcaaccttt cccctggatc 150
tcacaaaaac tcgactccaa atgcaaggag aagcagctct tgctcggttg 200
ggagacggtg caagagaatc tgccccctat aggggaatgg tgcgcacagc 250
cctagggatc attgaagagg aaggctttct aaagctttgg caaggagtga 300
cacccgccat ttacagacac gtagtgtatt ctggaggtcg aatggtcaca 350
tatgaacatc tccgagaggt tgtgtttggc aaaagtgaag atgagcatta 400
tcccctttgg aaatcagtca ttggagggat gatggctggt gttattggcc 450
agtttttagc caatccaact gacctagtga aggttcagat gcaaatggaa 500
ggaaaaagga aactggaagg aaaaccattg cgatttcgtg gtgtacatca 550
tgcatttgca aaaatcttag ctgaaggagg aatacgaggg ctttgggcag 600
gctgggtacc caatatacaa agagcagcac tggtgaatat gggagattta 650
accacttatg atacagtgaa acactacttg gtattgaata caccacttga 700
ggacaatatc atgactcacg gtttatcaag tttatgttct ggactggtag 750
cttctattct gggaacacca gccgatgtca tcaaaagcag aataatgaat 800
caaccacgag ataaacaagg aaggggactt ttgtataaat catcgactga 850
ctgcttgatt caggctgttc aaggtgaagg attcatgagt ctatataaag 900
gctttttacc atcttggctg agaatgaccc cttggtcaat ggtgttctgg 950
cttacttatg aaaaaatcag agagatgagt ggagtcagtc cattttaa 998
```

```
<210> 406
<211> 323
<212> PRT
<213> Homo sapiens
<400> 406
Met Ser Val Pro Glu Glu Glu Glu Arg Leu Pro Leu Thr Gln
Arg Trp Pro Arg Ala Ser Lys Phe Leu Leu Ser Gly Cys Ala Ala
Thr Val Ala Glu Leu Ala Thr Phe Pro Leu Asp Leu Thr Lys Thr
                  35
Arg Leu Gln Met Gln Gly Glu Ala Ala Leu Ala Arg Leu Gly Asp
Gly Ala Arg Glu Ser Ala Pro Tyr Arg Gly Met Val Arg Thr Ala
Leu Gly Ile Ile Glu Glu Gly Phe Leu Lys Leu Trp Gln Gly
Val Thr Pro Ala Ile Tyr Arg His Val Val Tyr Ser Gly Gly Arg
Met Val Thr Tyr Glu His Leu Arg Glu Val Val Phe Gly Lys Ser
                110
Glu Asp Glu His Tyr Pro Leu Trp Lys Ser Val Ile Gly Gly Met
                125
                                     130
Met Ala Gly Val Ile Gly Gln Phe Leu Ala Asn Pro Thr Asp Leu
                                     145
Val Lys Val Gln Met Gln Met Glu Gly Lys Arg Lys Leu Glu Gly
                                     160
                                                         165
Lys Pro Leu Arg Phe Arg Gly Val His His Ala Phe Ala Lys Ile
                170
Leu Ala Glu Gly Gly Ile Arg Gly Leu Trp Ala Gly Trp Val Pro
Asn Ile Gln Arg Ala Ala Leu Val Asn Met Gly Asp Leu Thr Thr
                200
                                     205
                                                         210
Tyr Asp Thr Val Lys His Tyr Leu Val Leu Asn Thr Pro Leu Glu
Asp Asn Ile Met Thr His Gly Leu Ser Ser Leu Cys Ser Gly Leu
                230
Val Ala Ser Ile Leu Gly Thr Pro Ala Asp Val Ile Lys Ser Arg
                245
                                     250
```

Ile Met Asn Gln Pro Arg Asp Lys Gln Gly Arg Gly Leu Leu Tyr 260 Lys Ser Ser Thr Asp Cys Leu Ile Gln Ala Val Gln Gly Glu Gly 275 280 Phe Met Ser Leu Tyr Lys Gly Phe Leu Pro Ser Trp Leu Arg Met 290 295 Thr Pro Trp Ser Met Val Phe Trp Leu Thr Tyr Glu Lys Ile Arg 310 Glu Met Ser Gly Val Ser Pro Phe 320 <210> 407 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 407 cgcggatccc gttatcgtct tgcgctactg c 31 <210> 408 <211> 34 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 408 gcggaattct taaaatggac tgactccact catc 34 <210> 409 <211> 1487 <212> DNA <213> Homo sapiens <400> 409 cggacgcgtg ggcgcgggac gccggcaggg ttgtggcgca gcagtctcct 50 teetgegege gegeetgaag teggegtggg egtttgagga agetgggata 100 cagcatttaa tgaaaaattt atgcttaaga agtaaaaatg gcaggcttcc 150 tagataattt tcgttggcca gaatgtgaat gtattgactg gagtgagaga 200 agaaatgctg tggcatctgt tgtcgcaggt atattgtttt ttacaggctg 250 gtggataatg attgatgcag ctgtggtgta tcctaagcca gaacagttga 300 accatgcctt tcacacatgt ggtgtatttt ccacattggc tttcttcatg 350

ataaatgctg tatccaatgc tcaggtgaga ggtgatagct atgaaagcgg 400 ctgtttagga agaacaggtg ctcgagtttg gcttttcatt ggtttcatgt 450 tgatgtttgg gtcacttatt gcttccatgt ggattctttt tggtgcatat 500 gttacccaaa atactgatgt ttatccggga ctagctgtgt tttttcaaaa 550 tgcacttata ttttttagca ctctgatcta caaatttgga agaaccgaag 600 agctatggac ctgagatcac ttcttaagtc acattttcct tttgttatat 650 tctgtttgta gataggtttt ttatctctca gtacacattg ccaaatggag 700 tagattgtac attaaatgtt ttgtttcttt acatttttat gttctgagtt 750 ttgaaatagt tttatgaaat ttctttattt ttcattgcat agactgttaa 800 tatgtatata atacaagact atatgaattq qataatqaqt atcaqttttt 850 tattcctgag atttagaact tgatctactc cctgagccag ggttacatca 900 tcttgtcatt ttagaagtaa ccactcttgt ctctctggct gggcacggtg 950 gctcatgcct gtaatcccag cactttggga ggccgaggcg ggccgattgc 1000 ttgaggtcaa gtgtttgaga ccagcctggc caacatggcg aaaccccatc 1050 tactaaaaat acaaaaatta gccaggcatg gtggtgggtg cctgtaatcc 1100 cagctacctg ggaggctgag gcaggagaat cgcttgaacc cggggggcag 1150 aggttgcagt gagctgagtt tgcgccactg cactctagcc tgggggagaa 1200 agtgaaactc cctctcaaaa aaaagaccac tctcagtatc tctgatttct 1250 gaagatgtac aaaaaaatat agcttcatat atctggaatg agcactgagc 1300 cataaaaggt tttcagcaag ttgtaactta ttttggccta aaaatgaggt 1350 ttttttggta aagaaaaat atttgttctt atgtattgaa gaagtgtact 1400 tttatataat gatttttaa atgcccaaag gactagtttg aaagcttctt 1450 ttaaaaagaa ttcctctaat atgactttat gtgagaa 1487

<210> 410

<211> 158

<212> PRT

<213> Homo sapiens

<400> 410

Met Ala Gly Phe Leu Asp Asn Phe Arg Trp Pro Glu Cys Glu Cys

Ile Asp Trp Ser Glu Arg Arg Asn Ala Val Ala Ser Val Val Ala
20 25 30

```
Gly Ile Leu Phe Phe Thr Gly Trp Trp Ile Met Ile Asp Ala Ala
 Val Val Tyr Pro Lys Pro Glu Gln Leu Asn His Ala Phe His Thr
 Cys Gly Val Phe Ser Thr Leu Ala Phe Phe Met Ile Asn Ala Val
 Ser Asn Ala Gln Val Arg Gly Asp Ser Tyr Glu Ser Gly Cys Leu
                                       85
 Gly Arg Thr Gly Ala Arg Val Trp Leu Phe Ile Gly Phe Met Leu
                                      100
 Met Phe Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Ala
                 110
 Tyr Val Thr Gln Asn Thr Asp Val Tyr Pro Gly Leu Ala Val Phe
                 125
 Phe Gln Asn Ala Leu Ile Phe Phe Ser Thr Leu Ile Tyr Lys Phe
                 140
                                      145
 Gly Arg Thr Glu Glu Leu Trp Thr
<210> 411
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 411
 gtttgaggaa gctgggatac 20
<210> 412
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 412
ccaaactcga gcacctgttc 20
<210> 413
<211> 40
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

<400> 413
atggcaggct tcctagataa ttttcgttgg ccagaatgtg 40

<210> 414

<211> 1337

<212> DNA

<213> Homo sapiens

<400> 414

gttgatggca aacttcctca aaggagggc agagcctgcg cagggcagga 50 gcagetggce caetggegge eegcaacaet eegteteace etetgggeee 100 actgcatcta gaggagggcc gtctgtgagg ccactacccc tccagcaact 150 gggaggtggg actgtcagaa gctggcccag ggtggtggtc agctgggtca 200 gggacctacg gcacctgctg gaccacctcg ccttctccat cgaagcaggg 250 aagtgggage ctcgagccct cgggtggaag ctgaccccaa gccacccttc 300 acctggacag gatgagagtg tcaggtgtgc ttcgcctcct ggccctcatc 350 tttgccatag tcacgacatg gatgtttatt cgaagctaca tgagcttcag 400 catgaaaacc atccgtctgc cacgctggct ggcagcctcg cccaccaagg 450 agatccaggt taaaaagtac aagtgtggcc tcatcaagcc ctgcccagcc 500 aactactttg cgtttaaaat ctgcagtggg gccgccaacg tcgtgggccc 550 tactatgtgc tttgaagacc gcatgatcat gagtcctgtg aaaaacaatg 600 tgggcagagg cctaaacatc gccctggtga atggaaccac gggagctgtg 650 ctgggacaga aggcatttga catgtactct ggagatgtta tgcacctagt 700 gaaatteett aaagaaatte eggggggtge aetggtgetg gtggeeteet 750 acgacgatcc agggaccaaa atgaacgatg aaagcaggaa actcttctct 800 gacttgggga gttcctacgc aaaacaactg ggcttccggg acagctgggt 850 cttcatagga gccaaagacc tcaggggtaa aagccccttt gagcagttct 900 taaagaacag cccagacaca aacaaatacg agggatggcc agagctgctg 950 gagatggagg gctgcatgcc cccgaagcca ttttagggtg gctgtggctc 1000 ttcctcagcc aggggcctga agaagctcct gcctgactta ggagtcagag 1050 eccggcaggg getgaggagg aggagcaggg ggtgetgegt ggaaggtget 1100 gcaggtcctt gcacgctgtg tcgcgcctct cctcctcgga aacagaaccc 1150 teccaeagea cateetaeee ggaagaeeag eeteagaggg teettetgga 1200

accagetgte tgtggagaga atggggtget ttegteaggg actgetgaeg 1250 getggteetg aggaaggaea aactgeeeag acttgageee aattaaattt 1300 tatttttget ggttttgaaa aaaaaaaaa aaaaaaa 1337

<210> 415

<211> 224

<212> PRT

<213> Homo sapiens

<400> 415

- Met Arg Val Ser Gly Val Leu Arg Leu Leu Ala Leu Ile Phe Ala 1 5 10 15
- Ile Val Thr Trp Met Phe Ile Arg Ser Tyr Met Ser Phe Ser 20 25 30
- Met Lys Thr Ile Arg Leu Pro Arg Trp Leu Ala Ala Ser Pro Thr
 35 40 45
- Lys Glu Ile Gln Val Lys Lys Tyr Lys Cys Gly Leu Ile Lys Pro $50 \ 55 \ 60$
- Cys Pro Ala Asn Tyr Phe Ala Phe Lys Ile Cys Ser Gly Ala Ala 65 70 75
- Asn Val Val Gly Pro Thr Met Cys Phe Glu Asp Arg Met Ile Met 80 85 90
- Ser Pro Val Lys Asn Asn Val Gly Arg Gly Leu Asn Ile Ala Leu 95 100 105
- Val Asn Gly Thr Thr Gly Ala Val Leu Gly Gln Lys Ala Phe Asp 110 115 120
- Met Tyr Ser Gly Asp Val Met His Leu Val Lys Phe Leu Lys Glu 125 130 135
- Ile Pro Gly Gly Ala Leu Val Leu Val Ala Ser Tyr Asp Asp Pro 140 145 150
- Gly Thr Lys Met Asn Asp Glu Ser Arg Lys Leu Phe Ser Asp Leu 155 160 165
- Gly Ser Ser Tyr Ala Lys Gln Leu Gly Phe Arg Asp Ser Trp Val 170 175 180
- Phe Ile Gly Ala Lys Asp Leu Arg Gly Lys Ser Pro Phe Glu Gln 185 190 195
- Phe Leu Lys Asn Ser Pro Asp Thr Asn Lys Tyr Glu Gly Trp Pro
 200 205 210
- Glu Leu Leu Glu Met Glu Gly Cys Met Pro Pro Lys Pro Phe 215 220

```
<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 416
 gccatagtca cgacatggat g 21
<210> 417
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 417
 ggatggccag agctgctg 18
<210> 418
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 418
 aaagtacaag tgtggcctca tcaagc 26
<210> 419
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 419
tctgactcct aagtcaggca ggag 24
<210> 420
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 420
 attctctcca cagacagctg gttc 24
<210> 421
```

```
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 421
gtacaagtgt ggcctcatca agccctgccc agccaactac tttgcg 46
<210> 422
<211> 1701
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1528
<223> unknown base
<400> 422
gagactgcag agggagataa agagagagg caaagaggca gcaagagatt 50
tgtcctgggg atccagaaac ccatgatacc ctactgaaca ccgaatcccc 100
tggaagccca cagagacaga gacagcaaga gaagcagaga taaatacact 150
cacgccagga gctcgctcgc tctctctct tctctctcac tcctccctcc 200
ctctctctct gcctgtccta gtcctctagt cctcaaattc ccagtcccct 250
gcaccccttc ctgggacact atgttgttct ccgccctcct gctggaggtg 300
atttggatcc tggctgcaga tgggggtcaa cactggacgt atgagggccc 350
acatggtcag gaccattggc cagcctctta ccctgagtgt ggaaacaatg 400
cccagtcgcc catcgatatt cagacagaca gtgtgacatt tgaccctgat 450
ttgcctgctc tgcagcccca cggatatgac cagcctggca ccgagccttt 500
ggacctgcac aacaatggcc acacagtgca actctctctg ccctctaccc 550
tgtatctggg tggacttccc cgaaaatatg tagctgccca gctccacctg 600
cactggggtc agaaaggatc cccagggggg tcagaacacc agatcaacag 650
tgaagccaca tttgcagagc tccacattgt acattatgac tctgattcct 700
```

atgacagett gagtgagget getgagagge eteagggeet ggetgteetg 750

ggcatcctaa ttgaggtggg tgagactaag aatatagctt atgaacacat 800

tctgagtcac ttgcatgaag tcaggcataa agatcagaag acctcagtgc 850

ctcccttcaa cctaagagag ctgctcccca aacagctggg gcagtacttc 900

cgctacaatg gctcgctcac aactccccct tgctaccaga gtgtgctctg 950 qacagttttt tatagaaggt cccagatttc aatggaacag ctggaaaagc 1000 ttcaggggac attgttctcc acagaagagg agccctctaa gcttctggta 1050 cagaactacc gagcccttca gcctctcaat cagcgcatgg tetttgcttc 1100 tttcatccaa gcaggatcct cgtataccac aggtgaaatg ctgagtctag 1150 gtgtaggaat cttggttggc tgtctctgcc ttctcctggc tgtttatttc 1200 attgctagaa agattcggaa gaagaggctg gaaaaccgaa agagtgtggt 1250 cttcacctca gcacaagcca cgactgaggc ataaattcct tctcagatac 1300 catggatgtg gatgacttcc cttcatgcct atcaggaagc ctctaaaatg 1350 gggtgtagga tctggccaga aacactgtag gagtagtaag cagatgtcct 1400 cettecectg gacatetett agagaggaat ggacceagge tgtcatteca 1450 ggaagaactg cagagcette ageeteteca aacatgtagg aggaaatgag 1500 gaaatcgctg tgttgttaat gcagaganca aactctgttt agttgcaggg 1550 gaagtttggg atatacccca aagtcctcta ccccctcact tttatggccc 1600 tttccctaga tatactgcgg gatctctcct taggataaag agttgctgtt 1650 gaagttgtat atttttgatc aatatatttg gaaattaaag tttctgactt 1700 t 1701

<210> 423

<211> 337

<212> PRT

<213> Homo sapiens

<400> 423

Met Leu Phe Ser Ala Leu Leu Glu Val Ile Trp Ile Leu Ala 1 5 10 15

Ala Asp Gly Gly Gln His Trp Thr Tyr Glu Gly Pro His Gly Gln 20 . 25 30

Asp His Trp Pro Ala Ser Tyr Pro Glu Cys Gly Asn Asn Ala Gln
35 40 45

Ser Pro Ile Asp Ile Gln Thr Asp Ser Val Thr Phe Asp Pro Asp 50 55 60

Leu Pro Ala Leu Gln Pro His Gly Tyr Asp Gln Pro Gly Thr Glu
65 70 75

Pro Leu Asp Leu His Asn Asn Gly His Thr Val Gln Leu Ser Leu

Pro	Ser	Thr	Leu	Tyr 95	Leu	Gly	Gly	Leu	Pro 100	Arg	Lys	Tyr	Val	Ala 105
Ala	Gln	Leu	His	Leu 110	His	Trp	Gly	Gln	Lys 115	Gly	Ser	Pro	Gly	Gly 120
Ser	Glu	His	Gln	Ile 125	Asn	Ser	Glu	Ala	Thr 130	Phe	Ala	Glu	Leu	His 135
Ile	Val	His	Tyr	Asp 140	Ser	Asp	Ser	Tyr	Asp 145	Ser	Leu	Ser	Glu	Ala 150
Ala	Glu	Arg	Pro	Gln 155	Gly	Leu	Ala	Val	Leu 160	Gly	Ile	Leu	Ile	Glu 165
Val	Gly	Glu	Thr	Lys 170	Asn	Ile	Ala	Tyr	Glu 175	His	Ile	Leu	Ser	His 180
Leu	His	Glu	Val	Arg 185	His	Lys	Asp	Gln	Lys 190	Thr	Ser	Val	Pro	Pro 195
Phe	Asn	Leu	Arg	Glu 200	Leu	Leu	Pro	Lys	Gln 205	Leu	Gly	Gln	Tyr	Phe 210
Arg	Tyr	Asn	Gly	Ser 215	Leu	Thr	Thr	Pro	Pro 220	Суѕ	Tyr	Gln	Ser	Val 225
Leu	Trp	Thr	Val	Phe 230	Tyr	Arg	Arg	Ser	Gln 235	Ile	Ser	Met	Glu	Gln 240
Leu	Glu	Lys	Leu	Gln 245	Gly	Thr	Leu	Phe	Ser 250	Thr	Glu	Glu	Glu	Pro 255
Ser	Lys	Leu	Leu	Val 260	Gln	Asn	Tyr	Arg	Ala 265	Leu	Gln	Pro	Leu	Asn 270
Gln	Arg	Met	Val	Phe 275	Ala	Ser	Phe	Ile	Gln 280	Ala	Gly	Ser	Ser	Tyr 285
Thr	Thr	Gly	Glu	Met 290	Leu	Ser	Leu	Gly	Val 295	Gly	Ile	Leu	Val	Gly 300
Cys	Leu	Cys	Leu	Leu 305	Leu	Ala	Val	Tyr	Phe 310	Ile	Ala	Arg	Lys	Ile 315
Arg	Lys	Lys	Arg	Leu 320	Glu	Asn	Arg	Lys	Ser 325	Val	Val	Phe	Thr	Ser 330
Ala	Gln	Ala	Thr	Thr 335	Glu	Ala								

<210> 424

<211> 18

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 424
 gtaaagtcgc tggccagc 18
<210> 425
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 425
cccgatctgc ctgctgta 18
<210> 426
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 426
 ctgcactgta tggccattat tgtg 24
<210> 427
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 427
cagaaaccca tgatacccta ctgaacaccg aatcccctgg aagcc 45
<210> 428
<211> 1073
<212> DNA
<213> Homo sapiens
<400> 428
aatttttcac cagagtaaac ttgagaaacc aactggacct tgagtattgt 50
acattttgcc tcgtggaccc aaaggtagca atctgaaaca tgaggagtac 100
 gattctactg ttttgtcttc taggatcaac tcggtcatta ccacagctca 150
 aacctgcttt gggactccct cccacaaaac tggctccgga tcagggaaca 200
ctaccaaacc aacagcagtc aaatcaggtc tttccttctt taagtctgat 250
 accattaaca cagatgetea caetggggee agatetgeat etgttaaate 300
```

ctgctgcagg aatgacacct ggtacccaga cccacccatt gaccctggga 350 gggttgaatg tacaacagca actgcaccca catgtgttac caatttttgt 400 cacacaactt ggagcccagg gcactatcct aagctcagag gaattgccac 450 aaatcttcac gagcctcatc atccattcct tgttcccggg aggcatcctg 500 cccaccagtc aggcagggc taatccagat gtccaggatg gaagccttcc 550 agcaggagga gcaggtgtaa atcctgccac ccagggaacc ccagcaggcc 600 gcctcccaac tcccagtggc acagatgacg actttgcagt gaccacccct 650 gcaggcatcc aaaggagcac acatgccatc gaggaagcca ccacagaatc 700 agcaaatgga attcagtaag ctgtttcaaa ttttttcaac taagctgcct 750 cgaatttggt gatacatgtg aatctttatc attgattata ttatggaata 800 gattgagaca cattggatag tcttagaaga aattaattct taatttacct 850 gaaaatattc ttgaaatttc agaaaatatg ttctatgtag agaatcccaa 900 cttttaaaaa caataattca atggataaat ctgtctttga aatataacat 950 tatgctgcct ggatgatatg catattaaaa catatttgga aaactggaaa 1000 aaaaaaaaa aaaaaaaaa aaa 1073

<210> 429

<211> 209

<212> PRT

<213> Homo sapiens

<400> 429

Met Arg Ser Thr Ile Leu Leu Phe Cys Leu Leu Gly Ser Thr Arg
1 5 10 15

Ser Leu Pro Gln Leu Lys Pro Ala Leu Gly Leu Pro Pro Thr Lys 20 25 30

Leu Ala Pro Asp Gln Gly Thr Leu Pro Asn Gln Gln Gln Ser Asn 35 40 45

Gln Val Phe Pro Ser Leu Ser Leu Ile Pro Leu Thr Gln Met Leu
50 55 60

Thr Leu Gly Pro Asp Leu His Leu Leu Asn Pro Ala Ala Gly Met 65 70 75

Thr Pro Gly Thr Gln Thr His Pro Leu Thr Leu Gly Gly Leu Asn 80 85 90

Val Gln Gln Leu His Pro His Val Leu Pro Ile Phe Val Thr

Asp Phe Ala Val Thr Thr Pro Ala Gly Ile Gln Arg Ser Thr His
185
190
195

175

Ala Ile Glu Glu Ala Thr Thr Glu Ser Ala Asn Gly Ile Glu 200 205

170

<210> 430

<211> 1257

<212> DNA

<213> Homo Sapien

<400> 430

ggagagaggc cggagccaga cgctgaccac gtteetetec teggtetect 100 cegectecag cteegeget ceeggagce gggagccatg cgaceccagg 150 gececgcege cteegeget gggagceatg cgaceccagg 150 ctgcagetg ceeggage ggeteetget geteetgetg 200 ctgcagetg ceggceget gagagetet gagateeca aggggaagea 250 aaaggegaag cteeggaag gggaggtggt ggacetgtat aatggaatgt 300 gettacaagg gecageagag gtgcetggte gagacetgtat aatggaatgt 300 gettacaagg gecageaga gtgcetggte gagaceggag ceetggggec 350 aatgttatte egggtacace tgggaaaget tgagagggag gatteaaagg gaatgtetga gggaaagett tgaggagtee tggacaceca 450 actacaagca gtgtteatgg agtteattga attatggeat aggaetettagg 500 aaaattgegg agtteaat tacaaagatg egtteaaaa gtgetetaag 550 agttttgtte agtggeteae tteggetaaa atgeagaaat geatgetgte 600 agegttggta ttteacatte aatggagetg aatgtteagg accettteee 650 attgaageta taatttatt ggaceaagga ageeetgaaa tgaatteaac 700

aattaatatt catcgcactt cttctgtgga aggactttgt gaaggaattg 750 gtgctggatt agtggatgtt gctatctggg ttggcacttg ttcagattac 800 ccaaaaggag atgcttctac tggatggaat tcagtttctc gcatcattat 850 tgaaggaacta ccaaaataaa tgctttaatt ttcatttgct acctcttttt 900 ttattatgcc ttggaatggt tcacttaaat gacattttaa ataagtttat 950 gtatacatct gaatgaaaag caaagctaaa tatgtttaca gaccaaagtg 1000 tgatttcaca ctgttttaa atctagcatt attcatttg cttcaatcaa 1050 aagtggttc aatattttt ttagttggtt agaatactt cttcatagtc 1100 acattctctc aacctataat ttggaatatt gttgtggtct tttgttttt 1150 ctcttagtat agcatttta aaaaaatata aaagctacca atcttgtac 1200 aatttgtaaa tgttaagaat ttttttata tctgttaaat aaaaattatt 1250 tccaaca 1257

<210> 431

<211> 243

<212> PRT

<213> Homo Sapien

<400> 431

Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly
1 5 10 15

Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala 20 25 30

Ser Glu Ile Pro Lys Gly Lys Gln Lys Ala Gln Leu Arg Gln Arg 35 40 45

Glu Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala
50 55 60

Gly Val Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Val Ile Pro
65 70 75

Gly Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys 80 85 90

Gly Glu Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn 95 100 105

Tyr Lys Gln Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu 110 115 120

Gly Lys Ile Ala Glu Cys Thr Phe Thr Lys Met Arg Ser Asn Ser 125 130 135

```
Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg
                   140
  Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu
                                       160
  Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gln
                  170
                                       175
  Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His Arg Thr Ser
  Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu Val Asp
                                       205
  Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp
                  215
 Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Glu Glu
                  230
                                       235
 Leu Pro Lys
<210> 432
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 432
 aggacttgcc ctcaggaa 18
<210> 433
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 433
cgcaggacag ttgtgaaaat a 21
<210> 434
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 434
atgacgctcg tccaaggcca c 21
```

150

```
<210> 435
 <211> 19
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 435
  cccacctgta ccaccatgt 19
 <210> 436
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 436
  actccaggca ccatctgttc tccc 24
 <210> 437
 <211> 19
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 437
 aagggctggc attcaagtc 19
<210> 438
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 438
 tgacctggca aaggaagaa 19
<210> 439
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 439
cagccaccct ccagtccaag g 21
<210> 440
<211> 19
```

```
<212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 440
  gggtcgtgtt ttggagaga 19
<210> 441
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Synthetic oligonucleotide probe
<400> 441
 ctggccctca gagcaccaat 20
<210> 442
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 442
tectecatea etteceetag etcea 25
<210> 443
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 443
 ctggcaggag ttaaagttcc aaga 24
<210> 444
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 444
aaaggacacc gggatgtg 18
<210> 445
<211> 26
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 445
 agcgtacact ctctccaggc aaccag 26
<210> 446
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 446
 caattctgga tgaggtggta ga 22
<210> 447
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 447
caggactgag cgcttgttta 20
<210> 448
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 448
caaagcgcca agtaccggac c 21
<210> 449
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 449
ccagacetea gecaggaa 18
<210> 450
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
 <400> 450
 ccctagctga ccccttca 18
<210> 451
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 451
 tctgacaagc agttttctga atc 23
<210> 452
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 452
 ctctcccct cccttttcct ttgttt 26
<210> 453
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 453
 ctctggtgcc cacagtga 18
<210> 454
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 454
 ccatgcctgc tcagccaaga a 21
<210> 455
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 455
 caggaaatct ggaaacctac agt 23
<210> 456
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 456
ccttgaaaag gacccagttt 20
<210> 457
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 457
 atgagtcgca cctgctgttc cc 22
<210> 458
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 458
tagcagctgc ccttggta 18
<210> 459
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 459
aacagcaggt gcgactcatc ta 22
<210> 460
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 460
 tgctaggcga cgacacccag acc 23
```

```
<210> 461
 <211> 18
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 461
  tggacacgtg gcagtgga 18
 <210> 462
 <211> 19
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 462
 tcatggtctc gtcccattc 19
 <210> 463
 <211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 463
 caccatttgt ttctctgtct ccccatc 27
<210> 464
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 464
 ccggcatcct tggagtag 18
<210> 465
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 465
tccccattag cacaggagta 20
<210> 466
```

```
<211> 23
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 466
 aggetettge etgteetget get 23
<210> 467
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 467
 gcccagagtc ccacttgt 18
<210> 468
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 468
 actgctccgc ctactacga 19
<210> 469
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 469
 aggcatcctc gccgtcctca 20
<210> 470
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 470
aaggccaagg tgagtccat 19
<210> 471
<211> 20
<212> DNA
```

```
<213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 471
  cgagtgtgtg cgaaacctaa 20
 <210> 472
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 472
  tcagggtcta catcagcctc ctgc 24
 <210> 473
 <211> 19
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Synthetic oligonucleotide probe
<400> 473
 aaggccaagg tgagtccat 19
<210> 474
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 474
 cctactgagg agccctatgc 20
<210> 475
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 475
tccaggtgga ccccacttca gg 22
<210> 476
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe

<400> 476
  gggaggctta taggcccaat ctgg 24

<210> 477
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 477
  ggcttcagca gcacgtgtga agtcgaagtc gcagtcacag atatcaatga 50
-230-
-1-
```