Théorie de Fourier et ondelettes

Q. RIBLE

Feuille d'exercises 2 : Séries de Fourier

Espaces de Hilbert

Exercice 1 : Théorème de Pythagore

Soit \mathcal{H} un espace de Hilbert. Soient $u_1, \cdots, u_n \in \mathcal{H}$ des vecteurs deux à deux orthogonaux. Montrer que

$$\left\| \sum_{i=1}^{n} u_i \right\|^2 = \sum_{i=1}^{n} \|u_i\|^2$$

Séries de Fourier

Exercice 2:

Montrer que $(e^{in}, n \in \mathbb{Z})$ est une famille orthonormale de $L^2(0; 2\pi)$ (on admet que la famille est totale). On note dans la suite $c_n(f)$ les coefficients d'une fonction f dans cette base orthonormale.

Exercice 3:

Montrer que $(\sqrt{2}\cos(n\cdot), n \ge 0; \sqrt{2}\sin(n\cdot), n > 0)$ est une famille orthonormale de $L^2(0; 2\pi)$ (on admet que la famille est totale).

On note dans la suite $a_n(f), b_n(f)$ les coefficients d'une fonction f dans cette base orthonormale.

Exercice 4:

Montrer que pour $f, g \in L^2(0; 2\pi)$ et $\lambda \in \mathbb{C}$ on a $c_n(\lambda f + g) = \lambda c_n(f) + c_n(g)$

Exercice 5:

Faire le développement en série de Fourier des fonctions suivantes :

- 1. f, 2π -périodique définie par f(x) = x sur $[-\pi; \pi[$
- 2. g, 2π -périodique définie par g(x) = x sur $[0; 2\pi]$
- 3. h, 2π -périodique définie par h(x) = |x| sur $[-\pi; \pi[$

Exercice 6:

Soit f la fonction 2π -périodique définie par $f(x)=x^2$ pour $x\in[0;2\pi[$. Développer f en série de Fourier et en déduire la valeur des sommes

$$\sum_{n\geq 1} \frac{1}{n^2} \; , \; \sum_{n\geq 1} \frac{1}{n^4}$$

Exercice 7:

Soit f une fonction 2π -périodique de classe \mathcal{C}^1 . Montrer que $c_n(f') = inc_n(f)$. En déduire $c_n(f^{(k)})$ pour f une fonction 2π -périodique de classe \mathcal{C}^k . En déduire un ordre de décroissance des coefficients de Fourier pour une fonction de classe \mathcal{C}^k .

Exercice 8:

Soit $u_0 \in L^2(0, 2\pi)$. Utiliser la décomposition en série de Fourier pour montrer que le problème :

$$\begin{cases} \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0\\ u(0, \cdot) = u_0 \end{cases}$$

admet une unique solution u qui est $\mathcal{C}^{\infty}(\mathbb{R}^+ \times \mathbb{R}, L^2(0, 2\pi))$

- 1. Écrire la série de fourier de u selon x avec des coefficients qui dépendent de t.
- 2. En déduire la transformée de Fourier de $\frac{\partial}{\partial t}u$ et de $\frac{\partial^2}{\partial x^2}u$
- 3. Obtenir une équation différentielle sur les $c_n(t)$ en t et obtenir une solution pour $c_n(t)$
- 4. En déduire la série de Fourier de u et conclure.

Exercice 9:

Soient $f, g \in L^2(0, 2\pi)$. Montrer que pour $n \in \mathbb{Z}$, $c_n(f * g) = c_n(f)c_n(g)$.

Exercice 10 : Phénomène de Gibbs

Soit f la fonction 2π -périodique définie par $f(x) = \frac{\pi}{4}$ pour $x \in [0, \pi[$ et $f(x) = -\frac{\pi}{4}$ pour $x \in [-\pi; 0[$

- 1. Développer f en série de Fourier
- 2. Soit $S_N f$ la somme partielle du développement en série de Fourier de f à l'ordre n. Calculer $\lim_{n\to+\infty} S_{2n+1}f(0)$.
- 3. Calculer $\lim_{n\to+\infty} S_{2n+1} f\left(\frac{\pi}{2(n+1)}\right)$.

Transformée de Fourier discrète et rapide

Exercice 11:

Calculer à la main la TFD de l'échantillon (1, i, -1, 0).

Transformée de Fourier continue

Exercice 12:

Soient $f, g \in L^1(\mathbb{R}), \lambda \in \mathbb{R}$ vérifier les relations suivantes :

$$\widehat{\lambda f + g} = \lambda \widehat{f} + \widehat{g}$$

$$\widehat{f(\cdot - a)} = e^{-ia \cdot \widehat{f}}$$

$$\widehat{f(\lambda \cdot)} = \frac{1}{|\lambda|} \widehat{f}(\cdot/\lambda)$$

$$\widehat{f * g} = \widehat{f} \widehat{g}$$

$$\widehat{fg} = \widehat{f} * \widehat{g}$$

Exercice 13:

Soit $f \in L^1(\mathbb{R}) \cap C^1(\mathbb{R})$ dérivable et telle que $f' \in L^1(\mathbb{R})$. Montrer que

$$\forall \xi \in \mathbb{R}, \widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

Réciproquement si $f\in L^1(\mathbb{R})$ et $x\mapsto xf(x)\in L^1(\mathbb{R})$ alors $\widehat{f}\in \mathcal{C}^1(\mathbb{R})$ et

$$(\widehat{f})' = \widehat{ixf(x)}$$

Exercice 14:

Calculer la transformée de Fourier de la fonction f définie par $f(x)=e^{-\alpha|x|}$ où $\alpha>0$ et montrer que $\widehat{f}(\xi)=\frac{2\alpha}{\alpha^2+\xi^2}$.

Exercice 15:

Calculer les transformées de Fourier des fonctions suivantes :

- 1. Montrer que la transformée de Fourier de $\mathbb{1}_{\left[-\frac{T}{2},\frac{T}{2}\right]}$ est $\frac{2 \sin\left(\xi \frac{T}{2}\right)}{\xi}$.
- 2. La fonction indicatrice $\mathbb{1}_{[a;b]}$ ($\mathbb{1}_{[a,b]}(x) = 1$ si $x \in [a;b]$ et $\mathbb{1}_{[a,b]}(x) = 0$ sinon).
- 3. (Difficile) La fonction sinus cardinal $sinc(x) = \frac{\sin(x)}{x}$ (la fonction est-elle L^1 ? L^2 ?)

Exercice 16:

Soient $\mu \in \mathbb{C}, \sigma \in \mathbb{R}_+^*$. On pose $f_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$. Montrer que

$$\forall \xi \in \mathbb{R}, \widehat{f_{\mu,\sigma}}(\xi) = \exp\left(-i\mu\xi - \frac{\sigma^2\xi^2}{2}\right).$$

On pourra se ramener à $f=f_{0,1}$ puis chercher une équation différentielle dont \widehat{f} est solution.

Exercice 17:

Soit $u_0 \in L^1(\mathbb{R})$. On considère une tige homogène très mince de longueur infinie. La température de la tige au temps $t \geq 0$ au point d'abscisse $x \in \mathbb{R}$ est notée u(t,x). On suppose que cette fonction vérifie l'équation suivante, appelée équation de la chaleur :

$$\begin{cases} \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0\\ u(0, x) = u_0(x) \end{cases}$$

On cherche une solution à l'équation précédente, \mathcal{C}^1 par rapport à la variable de temps $t \in]0, +\infty[$ et \mathcal{C}^2 par rapport à la variable d'espace $x \in \mathbb{R}$ telle que $u(t, \cdot)$ tend vers u_0 dans $L^1(\mathbb{R})$ lorsque t tend vers 0. On note $\mathcal{F}_x(u)(t,x)$ la transformée de Fourier de u par rapport à la variable d'espace x.

- 1. Montrer que $\mathcal{F}_x\left(\frac{\partial}{\partial t}u\right) = \frac{\partial}{\partial t}\mathcal{F}_x(u)$
- 2. Mettre en forme la transformée de Fourier de l'equation de la chaleur en fonction de la question 1 et de l'exercice 13.
- 3. En utilisant, pour x fixé, les solutions de $v'(t) + x^2v(t) = 0$, donner les solution de $\mathcal{F}_x(u)(t,x)$.
- 4. En déduire les solutions de u(t,x).

Utiliser la décomposition en série de Fourier pour montrer qu'il existe une unique fonction $u \in \mathcal{C}^{\infty}(\mathbb{R}^+, L^2(0, 2\pi))$ telle que :

Exercice 18:

Montrer la forme suivante de la formule de Poisson entre une fonction $f \in L^1(\mathbb{R})$ et sa périodisée \bar{f} : $c_n(\bar{f}) = \frac{1}{2\pi} \hat{f}(n)$.

Exercice 19: Principe d'incertitude d'Heisenberg

Soit $f \in L^2(\mathbb{R})$ à valeurs réelles, dérivable, telle que $f' \in L^2(\mathbb{R})$ et $x \mapsto xf(x) \in L^2(\mathbb{R})$.

- 1. Montrer que $2\int_{\mathbb{R}} x f'(x) f(x) dx = -\int_{\mathbb{R}} f(x)^2$
- 2. En déduire l'inégalité de Heisenberg $D_f D_{\widehat{f}} \geq \frac{1}{4}$
- 3. Etudier le cas d'égalité.

Exercice 20: Théorème de Shannon

Soit $f \in L^1(\mathbb{R})$ telle que $supp(\widehat{f}) \subset [-T; T]$.

- 1. Soit $g(x) = \sum_{n \in \mathbb{Z}} \widehat{f}(x + 2nT)$ la 2T-périodisée de \widehat{f} montrer que g et \widehat{f} coincident sur [-T; T].
- 2. Ecrire la formule de Poisson pour \hat{f} . On fera attention à la période dans le calcul des coefficients de Fourier.
- 3. En déduire la formule de Shannon $\forall x \in \mathbb{R}, f(x) = \sum_{n \in \mathbb{Z}} f\left(\frac{n\pi}{T}\right) sinc(Tx \pi n)$