京都大数学系 院試過去問解答 数学 II,専門科目(その他)

nabla *

2024年12月21日

目次

はじめに	2
2025 年度 (令和 7 年度)	9
2024 年度 (令和 6 年度)	4
2020 年度 (令和 2 年度)	6
2019 年度 (平成 31 年度)	g
2018 年度 (平成 30 年度)	10
2017 年度 (平成 29 年度)	11
2016 年度 (平成 28 年度)	12
2015 年度 (平成 27 年度)	14
2014 年度 (平成 26 年度)	15
2013 年度 (平成 25 年度)	16
2011 年度 (平成 23 年度)	17
2010 年度 (平成 22 年度)	18
2009 年度 (平成 21 年度)	20
2008 年度 (平成 20 年度)	21
2006 年度 (平成 18 年度)	23

 $[*]Twitter:@nabla_delta$

はじめに

京大理学研究科数学系の院試問題の解答です。解答が正しいという保証はありません。また、一部の解答は math.stackexchange.com で見つけたものを参考にしています。別解がある(かもしれない)場合でも解答は一つだけしか書いてありませんし、ここの解答より簡単な解答もあるかもしれません。この文書を使用して何らかの不利益が発生しても、私は責任を負いません。転載は禁止です。

2025年度(令和7年度)

問 12

G=(V,E) を頂点集合 V, 辺集合 E をもつ無向有限グラフとする。頂点 $v\in V$ に接続する G の辺全体の集合を $\delta_G(v)$ と表す。辺部分集合 $M\subseteq E$ が G のマッチングであるとは,M のどの相異なる 2 辺も端点を共有しないことをいう。頂点部分集合 $C\subseteq V$ が G の頂点被覆であるとは,

$$\bigcup_{v \in C} \delta_G(v) = E$$

をみたすことをいう.

G によって定まる次の線形計画問題 $\mathrm{LP}(G)$ を考える.

最大化
$$\sum_{e \in E} x_e$$
 制約 $\sum_{e \in \delta_G(v)} x_e \le 1 \quad (v \in V),$ $x_e \ge 0 \quad (e \in E)$

- (1) LP(G) が整数最適解を持たない G が存在することを示せ.
- (2) LP(G) が整数最適解を持つが,G の最大マッチングのサイズと G の最小頂点被覆のサイズが異なる G が存在することを示せ.
- (3) G の最大マッチングのサイズと G の最小頂点被覆のサイズが等しいならば、 $\operatorname{LP}(G)$ が整数最適解を持つことを示せ.

解答. (1) $V = \{1, 2, 3\}, E = \{(1, 2), (2, 3), (3, 1)\}$ とする. この時

$$\sum_{e \in E} x_e = \frac{1}{2} \sum_{v \in V} \sum_{e \in \mathcal{E}_O(v)} x_e \le \frac{1}{2} \sum_{v \in V} 1 = \frac{3}{2}$$
 (*)

である.一方 $x_e=1/2$ $(e\in E)$ とすると制約を満たし,(*) で等号が成立するから,これは最適解である.(*) で等号が成立する時 $x_e \not\in \mathbb{Z}$ となる $e\in E$ が存在するから,整数最適解を持たない.

- (2) $V=\{1,2,3,4\}, E=\{(i,j); 1\leq i< j\leq 4\}$ とする. (*) と同様に $\sum_{e\in E} x_e\leq 2$ である. e=(1,2),(3,4) の時 $x_e=1$, それ以外で $x_e=0$ とすると等号が成立し、制約も満たすから、 $\mathrm{LP}(G)$ は整数最適解を持つ. また G の最小頂点被覆のサイズは 3 であるが、最大マッチングのサイズは 2 である.
 - (3) $C \subset V$ を G の最小頂点被覆とし、 $M \subset E$ を G の最大マッチングとする. この時

$$\sum_{e \in E} x_e \le \sum_{v \in C} \sum_{e \in \delta_G(v)} x_e \le \sum_{v \in C} 1 = |C| = |M|$$

である.一方 $e\in M$ の時 $x_e=1, e\not\in M$ の時 $x_e=0$ とすると $\sum_{e\in E} x_e=|M|$ となる.また M が マッチングであることから制約も満たす.よって $\operatorname{LP}(G)$ は整数最適解を持つ.

2024年度(令和6年度)

問 11

 a_0 と a_1 を整数, c_1,c_2,\ldots を整数の可算無限列とする.また,任意の整数 i,j に対して $\delta_{ii}=1,\delta_{ij}=0$ $(i\neq j)$ と定める.このとき,以下に示すプログラムを考える.ただしプログラム中, $X\leftarrow\langle$ 式 \rangle は,プログラム変数 X への \langle 式 \rangle の値の代入を表す.

$$\begin{split} Z \leftarrow 1; M \leftarrow 0; \\ \mathbf{while} \ M < 2 \ \mathbf{do} \\ \mathbf{if} \ M = 0 \ \mathbf{then} \\ \mathbf{if} \ c_{Z+M} = a_0 \ \mathbf{then} \\ M \leftarrow M + 1 \\ \mathbf{else} \\ Z \leftarrow Z + 1 \\ \mathbf{else} \ \mathbf{if} \ c_{Z+M} = a_1 \ \mathbf{then} \\ M \leftarrow M + 1 \\ \mathbf{else} \\ Z \leftarrow Z + 1 + \delta_{a_0 a_1}; M \leftarrow 0 \end{split}$$

このプログラムについて、以下の性質 (A) と (B) をともに満たす論理式 I を与えよ.

- (A) I はプログラム中の while ループの不変条件である.
- (B) $I \wedge \neg (M < 2)$ ならば,

$$(c_Z = a_0) \land (c_{Z+1} = a_1) \land \forall i. (1 \le i < Z \Rightarrow (c_i \ne a_0) \lor (c_{i+1} \ne a_1)).$$

解答.

$$I_1 \equiv \left(M \ge 1 \Rightarrow \bigwedge_{j=0}^{M-1} (c_{Z+j} = a_j) \right), \quad I_2 \equiv \forall i. \left(1 \le i < Z \Rightarrow (c_i, c_{i+1}) \ne (a_0, a_1) \right)$$

とおく. $I\equiv (M\leq 2)\wedge I_1\wedge I_2$ が条件を満たすことを示す. (B) は明らか. while ループに入る前は M=0,Z=1 だから I は成り立つ. I が成り立つ時に while ループに入るとする.

- \bullet M=0 かつ $c_Z=a_0$ の場合:while ループを抜けると M=1 となるから I_1 が成り立つ.この時 I_2 も成り立つから I が成り立つ.
- M=0 かつ $c_Z \neq a_0$ の場合: $(c_Z,c_{Z+1}) \neq (a_0,a_1)$ であり、while ループを抜けると Z が 1 増えるから I_2 が成り立つ.この時 I_1 も成り立つから I が成り立つ.
- \bullet M=1 かつ $c_{Z+1}=a_1$ の場合: $(c_Z,c_{Z+1})=(a_0,a_1)$ であり、while ループを抜けると M=2 となるから I_1 が成り立つ.この時 I_2 も成り立つから I が成り立つ.
- M=1 かつ $c_{Z+1} \neq a_1$ かつ $a_0 \neq a_1$ の場合: $(c_Z, c_{Z+1}) \neq (a_0, a_1)$ であり、while ループを抜けると Z が 1 増えるから I_2 が成り立つ.またこの時 M=0 なので I_1 も成り立つ.よって I も成り立つ.
- M=1 かつ $c_{Z+1} \neq a_1$ かつ $a_0=a_1$ の場合: $(c_Z,c_{Z+1}) \neq (a_0,a_1),(c_{Z+1},c_{Z+2}) \neq (a_0,a_1)$ であり、while ループを抜けると Z が 2 増えるから I_2 が成り立つ.またこの時 M=0 なので I_1 も成り立つ.よって I も成り立つ.

以上から I は (A) も満たす.

問 12

G=(V,E) を有限無向グラフとし,r を V の要素,k を正整数とする.また,E が k 個の辺集合 E_1,\dots,E_k に分割でき,各 E_i は G 中の全域木であるとする.D=(V,A) を,G における各無向辺 $\{u,v\}\in E$ を有向辺 (u,v) もしくは (v,u) で置き換えることで得られる有向グラフとする.以下が同値 であることを示せ.

- (1) 任意の空でない $X \subseteq V \setminus \{r\}$ に対して,D は $V \setminus X$ から X への有向辺を k 本以上含む.
- (2) D において、r の入次数は 0 であり、任意の $v \in V \setminus \{r\}$ の入次数は k である.

解答. \bullet $(1) \Rightarrow (2): D$ における $v \in V$ の入次数を $d^-(v)$ と書く. (1) で $X = \{v\}$ $(v \in V \setminus \{r\})$ とすると $d^-(v) \geq k$ である. これと仮定より

$$|E| = \sum_{v \in V} d^-(v) \ge \sum_{v \in V \setminus \{r\}} d^-(v) \ge k(|V| - 1) = \sum_{i=1}^k |E_i| = |E|$$

となるから、不等号で等号が成立し $d^-(r) = 0, d^-(v) = k (v \neq r)$ となる.

ullet $(2)\Rightarrow (1): |X|$ についての帰納法で示す。 |X|=1 の時は明らか。空でない $X\subset V\setminus\{r\}$ で成り立つとして $X\cup\{s\}\subset V\setminus\{r\}$ なる $s\in V\setminus X$ を取る。D における s から X への有向辺の本数を n,X から s への有向辺の本数を m とすると, $V\setminus (X\cup\{s\})$ から $X\cup\{s\}$ への有向辺の本数は k(|X|+1)-(n+m) である。今 G において s から X のある頂点への辺が k+1 本以上あるとすると,仮定からある E_i はこの辺を 2 本以上含むことになるが,これは閉路をなすので不適。これより $n+m\leq k|X|$ であるから, $X\cup\{s\}$ に対しても成り立つ。

2020年度(令和2年度)

問 10

 \mathbb{N} を非負整数全体の集合とする. $\{\mathcal{C}_n\}_{n\in\mathbb{N}}$ を, 各 n について

$$\mathcal{C}_n \subseteq \{\varphi \mid \varphi : \mathbb{N}^n \to \mathbb{N}\}$$

であり、かつ以下の条件を満たすような最小の集合族とする.

- zero() = 0 で定義される関数 zero は C_0 に属する.
- suc(y) = y + 1 で定義される関数 suc は C_1 に属する.
- $1 \le i \le n$ のとき、 $\operatorname{proj}_{i}^{n}(y_{1}, \ldots, y_{n}) = y_{i}$ で定義される関数 $\operatorname{proj}_{i}^{n}$ は \mathcal{C}_{n} に属する.
- $h \in C_m, g_1, \ldots, g_m \in C_n$ ならば、次のように定義される関数 f は C_n に属する.

$$f(y_1, \ldots, y_n) = h(g_1(y_1, \ldots, y_n), \ldots, g_m(y_1, \ldots, y_n))$$

• $g \in C_n, h \in C_{n+2}$ ならば、次のように定義される関数 f は C_{n+1} に属する.

$$f(0, y_1, \dots, y_n) = g(y_1, \dots, y_n)$$

$$f(x+1, y_1, \dots, y_n) = h(x, y_1, \dots, y_n, f(x, y_1, \dots, y_n))$$

このとき次の問に答えよ.

(1) 次の式

$$\mathsf{sub}(x,y) = \begin{cases} 0 & (x < y \text{ のとき}) \\ x - y & (それ以外) \end{cases}$$

により定義される関数 sub が C_2 に属することを示せ.

(2) $g, s \in C_1, h \in C_3$ が与えられたとき,

$$f(0, y) = g(y)$$

$$f(x + 1, y) = h(x, y, f(x, s(y)))$$

により定義される関数 f が C_2 に属することを示せ.

解答. 以下では $\operatorname{proj}_{i}^{n}$ を π_{i}^{n} と書く.

(1) 関数 pred を $pred(x) = max\{x-1,0\}$ で定めると,

$$pred(0) = 0 = zero(),$$

$$pred(x + 1) = x = \pi_1^2(x, pred(x))$$

より pred $\in C_1$ である. これと sub(x,0) = 0 = zero() および

$$\begin{split} \mathsf{pred}(\mathsf{sub}(x,y)) &= \max\{\mathsf{sub}(x,y) - 1, 0\} = \max\{\max\{x - y, 0\} - 1, 0\} \\ &= \begin{cases} 0 & (x - y \le 1) \\ x - y - 1 & (x - y > 1) \end{cases} \\ &= \max\{x - (y + 1), 0\} = \mathsf{sub}(x, y + 1) \end{split}$$

から $h(x,y):= \mathrm{sub}(y,x)\in \mathcal{C}_2$ である. $\mathrm{sub}(x,y)=h(\pi_2^2(x,y),\pi_1^2(x,y))$ なので $\mathrm{sub}\in \mathcal{C}_2$. (2) 1 関数 F を

$$F(0, y, z) = g(s^{y}(z)),$$

$$F(x+1, y, z) = h(x, s^{\text{sub}(y, x+1)}(z), F(x, y, z))$$

¹この解答は Ian Chiswell, A Course in Formal Languages, Automata and Groups, Springer の P46, exercise 8 とそのヒントを参考にした.

で定める. まず $F \in \mathcal{C}_3$ を示す. $a(x,y) = s^x(y)$ とおくと

$$a(0,y) = y = \pi_2^2(x,y),$$

$$a(x+1,y) = s(s^x(y)) = s(\pi_3^3(x,y,a(x,y)))$$

より $a \in \mathcal{C}_2$ である. よって $b(x,y,z) = s^{\mathsf{sub}(y,x+1)}(z)$ は

$$b(x,y,z) = a(\mathsf{sub}(y,x+1),z) = a\Big(\mathsf{sub}(\pi_2^3(x,y,z),\mathsf{suc}(\pi_1^3(x,y,z)),\pi_3^3(x,y,z)\Big)$$

と書けるので C_3 の元である. 従って

$$c(x,y,z,w) = h\Big(\pi_1^4(x,y,z,w), b(\pi_1^4(x,y,z,w), \pi_2^4(x,y,z,w), \pi_3^4(x,y,z,w)), \pi_4^4(x,y,z,w)\Big) \in \mathcal{C}_4$$

とおけば
$$F(x+1,y,z)=c(x,y,z,F(x,y,z))$$
 となるから $F\in\mathcal{C}_3$ である. 次に $F(x,y+1,z)=F(x,y,s(z))$ $(y\geq x)$ を x についての帰納法で示す。 $x=0$ の時は

$$F(0, y + 1, z) = g(s^{y}(s(z))) = F(0, y, s(z))$$

だから良い. x で正しい時, x+1 では $y \ge x+1$ に対し

$$F(x+1,y+1,z) = h(x, s^{\sup(y+1,x+1)}(z), F(x,y+1,z))$$

$$= h(x, s^{\sup(y,x+1)}(s(z)), F(x,y,s(z)))$$

$$= F(x+1,y,s(z))$$

だから示された.

今
$$F_1(x,z)=F(x,x,z)=F(\pi_1^2(x,z),\pi_1^2(x,z),\pi_2^2(x,z))\in\mathcal{C}_2$$
 とおくと
$$F_1(0,z)=F(0,0,z)=g(z),$$

$$F_1(x+1,z)=F(x+1,x+1,z)=h(x,z,F(x,x+1,z))$$

$$=h(x,z,F(x,x,s(z)))=h(x,z,F_1(x,s(z)))$$

であるから、 F_1 と f は同じ漸化式を満たす。従って $f \in \mathcal{C}_2$.

問 11

G=(V,E) を有限の頂点集合 V と辺集合 E を持つ無向グラフとし, $w:E \to \mathbb{R}$ を G の辺重みとする.

- (1) $T_1, T_2 \subseteq E$ を相異なる全域木とし、 $e_1 \in T_1 \setminus T_2$ とする.このとき、ある $e_2 \in T_2 \setminus T_1$ が存在して、 $(T_1 \setminus \{e_1\}) \cup \{e_2\}$ と $(T_2 \setminus \{e_2\}) \cup \{e_1\}$ のどちらも全域木となることを示せ.
- (2) 全域木を含む辺部分集合 $F\subseteq E$ に対して, $T\subseteq F$ を満たす全域木 T の重み $\sum_{e\in T}w(e)$ の最大値を f(F) と表す.全域木を含む辺部分集合 $X,Y\subseteq E$ と辺 $e\in E$ が $X\subseteq Y\subseteq E\setminus\{e\}$ を満たすとき,

$$f(X \cup \{e\}) + f(Y) \ge f(X) + f(Y \cup \{e\})$$

が成り立つことを示せ.

解答. (1) $T_2 \cup \{e_1\}$ が含む唯一の閉路を C とする。任意の $e_2 \in C \setminus \{e_1\}$ に対し $(T_2 \setminus \{e_2\}) \cup \{e_1\}$ は全域木であるから, $(T_1 \setminus \{e_1\}) \cup \{e_2\}$ が全域木となる $e_2 \in C \setminus \{e_1\}$ の存在を示せば良い. $T_1 \setminus \{e_1\}$ の 2 個の連結成分を T_1', T_1'' とする。また $e_1 = (u,v), u \in T_1', v \in T_1''$ とする。 $C \setminus \{e_1\}$ の辺の u,v でない端点の集合を V' とおくと, $e_1 \not\in T_1 \setminus T_2$ より $V' \neq \emptyset$ である。 $V' \subset T_1'$ の時は v を端点とする $C \setminus \{e_1\}$ の唯一の辺を e_2 とすれば良い. $V' \subset T_1''$ の時も同様.それ以外の時, $u' \in T_1', v' \in T_1''$ が存在して $(u',v') \in C \setminus \{e_1\}$ となるから,これを e_2 とすれば良い.

(2) 全域木を含む $F \subset E$ に対し,f(F) を達成する全域木を T_F と書く.全域木を含む $X \subset E$ と $e, e' \not\in E$ を任意に取る. $F_1 = X \cup \{e, e'\}, F_2 = X$ とおく. $T_1 = T_{F_1}, T_2 = T_{F_2}, e_1 = e$ として(1)を使うと, $e_2 \in T_{F_2} \setminus T_{F_1} \subset X$ が存在して $(T_{F_1} \setminus \{e_1\}) \cup \{e_2\} \subset X \cup \{e'\}, (T_{F_2} \setminus \{e_2\}) \cup \{e_1\} \subset X \cup \{e\}$ が全域木となる.よって

$$f(X \cup \{e, e'\}) + f(X) = \sum_{e \in T_{F_1}} w(e) + \sum_{e \in T_{F_2}} w(e)$$

$$= \sum_{e \in (T_{F_1} \setminus \{e_1\}) \cup \{e_2\}} w(e) + \sum_{e \in (T_{F_2} \setminus \{e_2\}) \cup \{e_1\}} w(e)$$

$$\leq f(X \cup \{e'\}) + f(X \cup \{e\}).$$

従って $Y = X \cup \{e_1, \ldots, e_n\}$ $(e_i \notin X)$ に対し

$$f(X \cup \{e\}) - f(X) \ge f(X \cup \{e, e_1\}) - f(X \cup \{e_1\})$$

$$\ge \dots \ge f(X \cup \{e, e_1, \dots, e_n\}) - f(X \cup \{e_1, \dots, e_n\})$$

$$= f(Y \cup \{e\}) - f(Y)$$

≥ なる. □

2019年度(平成31年度)

問 12

G=(V,E) を有限の頂点集合 V と辺集合 $E\subset V\times V$ をもつ有向グラフとし, $w:E\to\mathbb{R}$ を辺重みとする。G 中の単純有向閉路 C に対して,その平均重みを

$$\frac{1}{|E(C)|} \sum_{e \in E(C)} w(e)$$

と定義する. ただし,E(C) は C に含まれる辺集合,|E(C)| は E(C) の元の個数とする. このとき,任意の実数 t に対して,以下の条件 (i) と (ii) が同値であることを示せ.

- (i) G 中に平均重みが t 未満の単純有向閉路が存在しない.
- (ii) ある関数 $p: V \to \mathbb{R}$ が存在して、任意の辺 $e = (u, v) \in E$ に対して、

$$p(v) - p(u) + t \le w(e)$$

が成立する.

解答. w(e) - t を改めて w(e) とおくことにより t = 0 として良い.

- (ii) \Rightarrow (i) : C を G の単純有向閉路とし, $E(C) = \{e_i = (v_i, v_{i+1}); i = 1, \ldots, n\}$ とする.ただし $v_{n+1} = v_1$ である.この時 $p(v_{i+1}) p(v_i) \leq w(e_i)$ を $i = 1, \ldots, n$ について足すと $0 \leq \sum_{i=1}^n w(e_i)$ となるから,C の平均重みは 0 以上である.
- (i) \Rightarrow (ii) : $s \notin V$ を取り,有向グラフ $G' = (V \cup \{s\}, E')$ を $E' = E \cup \{(s,u); u \in V\}$ で定める.また w((s,u)) = 0 ($u \in V$) として w の定義域を E' に拡張する.G' は負閉路を持たないから,Bellman-Ford 法により s から $u \in V$ への最短経路長 p(u) が計算できる.この時任意の $e = (u,v) \in E$ に対し $p(v) \leq (s$ から u への経路長) + w(e) である.右辺の下限を取れば $p(v) \leq p(u) + w(e)$ となる.

2018年度(平成30年度)

問 11

G を以下の 2 条件を満たす有限無向グラフとする.

- (i) G は 2 部グラフである.
- (ii) G は r-正則である(すなわち,全ての頂点の次数が r である).

G の各辺への色の割り当てで、端点を共有する辺が全て異なる色であるとき、その割り当てを G の辺彩色と呼ぶ、また、G の辺彩色に必要な最小の色数を G の辺彩色数と呼ぶ、

- (1) r=2 のとき, G の辺彩色数が 2 であることを証明せよ.
- (2) $r=2^k$ (k は正の整数) のとき,G の辺彩色数が 2^k であることを証明せよ.なお,G の各連結成分が Euler 閉路を持つことを用いてもよい.

解答. r は 2 のべきとは限らない正整数とする.

まず G は完全マッチングを持つことを示す。G=(U,V;E) とする。U の点を端点とする辺の本数は r|U| であるが,(i) よりこれは r|V| にも等しいから,|U|=|V| であることに注意する。任意の $A\subset U$ に対し

$$N(A) = \{ v \in V \; ; \; \exists u \in A, (u, v) \in E \}$$

とおく、A の点を端点に持つ辺は、N(A) の点を端点に持つ辺でもあるから

$$r|A| = \sum_{a \in A} (a$$
を端点に持つ辺の本数) $\leq \sum_{b \in N(A)} (b$ を端点に持つ辺の本数) = $r|N(A)|$

である. よって Hall の結婚定理より G は完全マッチングを持つ.

G の辺彩色数を $\chi'(G)$ と書く. (ii) より $\chi'(G) \le r$ であることを示せば十分. これを r に関する帰納法で示す. r=1 の時は明らか. r-1 の時成り立つとする. G から完全マッチング M の辺を取り除いた $G\setminus M$ は (r-1)-正則な 2 部グラフであるから,帰納法の仮定より $\chi'(G\setminus M)=r-1$ である. よって $G\setminus M$ の辺には色 $1,2,\ldots,r-1$ を割り当て、M の辺には色 r を割り当てることで $\chi'(G) \le r$ を得る.

2017年度 (平成29年度)

問 11

G=(V,E) を有限の頂点集合 V と辺集合 $E\subseteq \binom{V}{2}$ を持つ無向グラフとし, $w:E\to\mathbb{R}$ を辺重みとする.このとき,全域木 $T^*\subseteq E$ に対して,以下の 2 つの条件 (A) と (B) が同値であることを示せ. (A) T^* が重み w に関して最小である.すなわち,任意の全域木 $T\subset E$ に対して,

$$\sum_{e \in T^*} w(e) \le \sum_{e \in T} w(e)$$

を満たす.

(B) 任意の辺 $f \in E \setminus T^*$ に対して,

$$w(f) \ge \max_{f' \in C_f} w(f')$$

が成立する. ただし, C_f は $T^* \cup \{f\}$ に含まれる唯一の閉路とする.

解答。 \bullet (A) \Rightarrow (B) : $w(f) < \max_{f' \in C_f} w(f')$ なる $f \in E \setminus T^*$ が存在したとして, $w(f') = \max_{f' \in C_f} w(f')$ なる $f' \in E$ を取る。この時 $(T^* \setminus \{f'\}) \cup \{f\}$ は全域木であり,重みは T^* の重みより真に小さい.これは T^* の最小性に矛盾.

• (B) \Rightarrow (A) : T^* が最小全域木でないとする.最小全域木 T であって, $|T^* \cap T|$ が最大のものを取る. $T^* \neq T$ であるから,任意の $e \in T^* \setminus T$ に対し $e' \in T \setminus T^*$ であって, $(T^* \setminus \{e\}) \cup \{e'\}$ と $(T \setminus \{e'\}) \cup \{e\}$ が全域木となるものが存在する.よって

$$\sum_{f \in T} w(f) \le \sum_{f \in (T \setminus \{e'\}) \cup \{e\}} w(f)$$

より $w(e') \leq w(e)$. 一方 $(T^* \setminus \{e\}) \cup \{e'\}$ が全域木であることから $e \in C_{e'}$ である. 従って (B) より $w(e') \geq w(e)$ なので w(e') = w(e) となる. これより $(T \setminus \{e'\}) \cup \{e\}$ も最小全域木であるが,

$$|T^* \cap ((T \setminus \{e'\}) \cup \{e\})| = |T^* \cap T| + 1 > |T^* \cap T|$$

なのでTの取り方に矛盾.

(補足) e' の存在は、マトロイドに対する同時交換公理による。全域木の場合が 2020 年度専門問 11(1) に出題されている。マトロイドを使った証明もある。²

²藤重, グラフ・ネットワーク・組合せ論, 共立出版, P39, 定理 2.2

2016年度(平成28年度)

問 10

2 つの文字 a,b からなる集合 $\mathcal{A}=\{a,b\}$ と, \mathcal{A} の有限文字列全体からなる集合 $\mathcal{A}^*=\{x_1\cdots x_n; x_1,\ldots,x_n\in\mathcal{A},n\geq 0\}$ を考える.空文字列を ε ,文字列 $w,w'\in\mathcal{A}^*$ の連結を ww' で表す. \mathcal{A}^* 上の写像 $f_0,f_1,f_2,f_3:\mathcal{A}^*\to\mathcal{A}^*$ を以下のように再帰的に定義する.

$$f_0(w) = \begin{cases} \varepsilon & (w = \varepsilon) \\ \mathsf{a} f_1(w') & (w = \mathsf{a} w') \\ f_3(w') & (w = \mathsf{b} w') \end{cases} \qquad f_1(w) = \begin{cases} \varepsilon & (w = \varepsilon) \\ f_1(w') & (w = \mathsf{a} w') \\ f_2(w') & (w = \mathsf{b} w') \end{cases}$$

$$f_2(w) = \begin{cases} \mathsf{b} & (w = \varepsilon) \\ f_2(w') & (w = \mathsf{a} w') \\ f_1(w') & (w = \mathsf{b} w') \end{cases} \qquad f_3(w) = \begin{cases} \mathsf{b} & (w = \varepsilon) \\ \mathsf{b} \mathsf{a} f_1(w') & (w = \mathsf{a} w') \\ f_0(w') & (w = \mathsf{b} w') \end{cases}$$

また, A^* 上の二項関係 \sim を,以下の条件を満たす最小の合同関係(同値関係であり, $w_1 \sim w_1', w_2 \sim w_2' \Longrightarrow w_1 w_2 \sim w_1' w_2'$ が成り立つもの)とする.

$$aba \sim ab \qquad bb \sim \varepsilon$$

このとき、任意の $w, w' \in A^*$ について

$$f_0(w) = f_0(w') \iff w \sim w'$$

が成り立つことを示せ.

解答. $\bullet \Leftarrow$: より強く, $w \sim w'$ ならば $f_i(w) = f_i(w')$ (i = 0, 1, 2, 3) となることを示す.任意の $w \in \mathcal{A}^*$ に対し

$$\begin{split} f_0(\mathsf{bb}w) &= f_3(\mathsf{b}w) = f_0(w), \\ f_2(\mathsf{bb}w) &= f_1(\mathsf{b}w) = f_2(w), \\ f_0(\mathsf{ab}aw) &= \mathsf{a} f_1(\mathsf{ba}w) = \mathsf{a} f_2(\mathsf{a}w) = \mathsf{a} f_2(w), \\ f_1(\mathsf{ab}aw) &= f_1(\mathsf{ba}w) = f_2(\mathsf{a}w) = \mathsf{a} f_2(w), \\ f_2(\mathsf{ab}aw) &= f_2(\mathsf{ba}w) = f_1(w), \\ f_2(\mathsf{ab}aw) &= f_2(\mathsf{ba}w) = f_1(w), \\ f_3(\mathsf{ab}aw) &= \mathsf{ba} f_1(\mathsf{ba}w) = \mathsf{ba} f_2(\mathsf{a}w) = \mathsf{ba} f_2(w), \\ f_3(\mathsf{ab}aw) &= \mathsf{ba} f_1(\mathsf{ba}w) = \mathsf{ba} f_2(\mathsf{a}w) = \mathsf{ba} f_2(w), \\ \end{split}$$

であるから, $f_i(\mathsf{aba}) = f_i(\mathsf{ab}), f_i(\mathsf{bb}) = f_i(\varepsilon)$ である. $w_1 \sim w_1', w_2 \sim w_2'$ が $f_i(w_1) = f_i(w_1'), f_i(w_2) = f_i(w_2')$ を満たすとする.上の計算から $f_i(w_1w_2) = f_i(w_1)f_j(w_2), f_i(w_1'w_2') = f_i(w_1')f_j(w_2')$ となる(w_1 と w_1' に共通の)j が存在するから $f_i(w_1w_2) = f_i(w_1'w_2')$ が成り立つ.よって示された.

ullet ⇒:対偶を示す. aa \sim abba \sim ababa \sim abab \sim abb \sim a より, A^*/\sim の同値類の代表元は ε , a, b, ab, ba, bab の 6 個である.

$$\begin{split} f_0(\varepsilon) &= \varepsilon, \qquad f_0(\mathsf{a}) = \mathsf{a} f_1(\varepsilon) = \mathsf{a}, \qquad f_0(\mathsf{b}) = f_3(\varepsilon) = \mathsf{b}, \\ f_0(\mathsf{a}\mathsf{b}) &= \mathsf{a} f_1(\mathsf{b}) = \mathsf{a} f_2(\varepsilon) = \mathsf{a}\mathsf{b}, \qquad f_0(\mathsf{b}\mathsf{a}) = f_3(\mathsf{a}) = \mathsf{b} \mathsf{a} f_1(\varepsilon) = \mathsf{b}\mathsf{a}, \\ f_0(\mathsf{b}\mathsf{a}\mathsf{b}) &= f_3(\mathsf{a}\mathsf{b}) = \mathsf{b} \mathsf{a} f_1(\mathsf{b}) = \mathsf{b} \mathsf{a} f_2(\varepsilon) = \mathsf{b} \mathsf{a}\mathsf{b} \end{split}$$

は相異なるから示された.

(補足) \Rightarrow は f_3 に対しても成り立つが, f_1, f_2 については成り立たない.実際, $f_1(\varepsilon) = f_1(\mathsf{bab}) = \varepsilon, f_2(\varepsilon) = f_2(\mathsf{a}) = \mathsf{b}$ である.

問 11

有限集合 $E \, \subset \mathcal{I} \subset 2^E$ が以下の条件 (A), (B), (C) を満たすとき, 組 (E,\mathcal{I}) をマトロイドとよぶ.

- (A) $\emptyset \in \mathcal{I}$.
- (B) $J \subseteq I, I \in \mathcal{I}$ $x \in \mathcal{I}$, $J \in \mathcal{I}$.
- (C) $I,J\in\mathcal{I},|I|>|J|$ ならば、 $J\cup\{e\}\in\mathcal{I}$ となる $e\in I\setminus J$ が存在する. 以下の問に答えよ.
 - (i) マトロイド (E, \mathcal{I}) において極大な $I \in \mathcal{I}$ は全て同じサイズであることを示せ.
 - (ii) 有限無向グラフ G=(V,E) において, $F\subseteq 2^E$ を森族, $M\subseteq 2^E$ をマッチングの族とする.このとき,(E,F),(E,M) はそれぞれ常にマトロイドになるか?マトロイドである場合は証明を,マトロイドでない場合は反例を与えよ.

解答. (i) 極大な $I,J \in \mathcal{I}$ であって |I| > |J| となるものが存在したとする. この時 (C) より $J \cup \{e\} \in \mathcal{I}$ となる $e \in I \setminus J$ が存在するが,J の極大性に反する.

(ii) (E,\mathcal{I}) が (A), (B) を満たし、任意の $S \subset E$ に対し、極大な $I \in \mathcal{I} \cap 2^S$ が全て同じサイズであるとする。この時 (E,\mathcal{I}) は (C) を満たすことを示す。 $I,J \in \mathcal{I}$ が |I| > |J| を満たすとして、 $S = I \cup J$ とおく。 $J \in \mathcal{I} \cap 2^S$ は極大でないから、J を含む極大な $J' \in \mathcal{I} \cap 2^S$ が存在し、 $J' \setminus J \neq \emptyset$ である。 $e \in J' \setminus J = I \setminus J$ を取ると $J \cup \{e\} \subset J'$ だから、(B) より $J \cup \{e\} \in \mathcal{I} \cap 2^S \subset \mathcal{I}$ となる。

 \bullet (E,\mathcal{F}) は (A), (B) を満たす。任意に $S\subset E$ を取る。極大な $F\in\mathcal{F}\cap 2^S$ を任意に取る。F の連結成分を C_1,\ldots,C_n とし, C_i の頂点の個数を m_i とおく。各 C_i は木であり,n は 2^S の連結成分の個数に等しいから

$$|F| = \sum_{i} |C_{i}| = \sum_{i} (m_{i} - 1) = |V| - (2^{S}$$
 の連結成分の個数)

である. よって F は全て同じサイズであるから, (E, \mathcal{F}) はマトロイドである.

 \bullet (E, \mathcal{M}) は (A), (B) を満たす.任意に $S \subset E$ を取る.Tutte-Berge の定理より,極大な $M \in \mathcal{M} \cap 2^S$ のサイズは $(V, E \cap S)$ のみに依存し,全て同じサイズである.よって (E, \mathcal{M}) もマトロイドである. \square

(補足) (i) が成り立っても (C) が成り立つとは限らない.3

 $^{^3}$ https://math.stackexchange.com/a/268483

2015年度(平成27年度)

問 11

有限の頂点集合 V と辺集合 $E\subseteq V\times V$ を持つ有向グラフ G=(V,E) において相異なる 2 頂点 $s,t\in V$ を考える. k 本の s-t 有向パス(閉路を含まない s から t への有向パス) $P_1,\ldots,P_k\subseteq E$ が辺素(すなわち, $P_i\cap P_i=\emptyset$ $(i\neq j)$)であるとし,

$$E^* = (E \setminus (P_1 \cup \cdots \cup P_k)) \cup \{(u, v); (v, u) \in P_1 \cup \cdots \cup P_k\}$$

と定義する. このとき, $G^*=(V,E^*)$ が s-t 有向パスを持たないことと, G 中に存在する辺素な s-t パスの最大本数が k であることが同値であることを示せ.

解答. s-t 有向パスを単に s-t パスと呼ぶ. G に存在する辺素な s-t パスの最大本数を N とする.

- $N \ge k+1$ の時 : P_1, \ldots, P_k 以外の s-t パス P が存在する. P_1, \ldots, P_k, P は辺素だから, G^* も s-t パス P を持つ.
- G^* が s-t パス P を持つ時: $N \ge k+1$ となることを, $n := |P \cap (E^* \setminus E)|$ に関する帰納法で示す。 n = 0 の時, $P \subset E \setminus (P_1 \cup \cdots \cup P_k)$ であるから P は G の s-t パスでもあり,P, P_1, \ldots, P_k は辺素である。よって $N \ge k+1$ である。ある n で成り立つとする。 G^* の s-t パス P が $|P \cap (E^* \setminus E)| = n+1$ を満たすとする。P に沿って辺を見ていった時最初に現れる $E^* \setminus E$ の辺を (u,v) とすると, $(v,u) \in P_i$ となる i が存在する。P から (u,v) を取り除いた連結成分のうち,s を含むものを A_s ,t を含むものを A_t とする。また P_i から (v,u) を取り除いた連結成分のうち,s を含むものを B_s ,t を含むものを B_t とする。t から t から t の t のを助りないた連結成分のうち,t を含むものを t とする。t のののであり、t を改めてそれぞれ t ののであり、t を含むものを t ののであり、t を改めてそれぞれ t ののであり、t を含むものを t ののであり、t を改めてそれぞれ t ののであり、t を改めてるれぞれ t ののであり、t になって帰納法の仮定から t ののであり、t と t になって帰納法の仮定から t ののであり、t と t になって

2014年度(平成26年度)

問 11

有限集合 U,V に対し、頂点集合 $U\cup V$ $(U\cap V=\emptyset)$ 、辺集合 $E\subseteq U\times V$ となる 2 部グラフ G=(U,V;E) を考える。ただし |U|=|V| とする。辺部分集合 $M\subseteq E$ に対して、その端点集合 ∂M が $|\partial M|=2|M|=2|U|$ を満たすとき、M を G の完全マッチングという。点部分集合 $W\subseteq U$ に対して

$$\Gamma(W) = \{v \in V ;$$
ある $w \in W$ に対して $(w, v) \in E\}$

と定義する. このとき、任意の $W\subseteq U$ に対して $|W|\le |\Gamma(W)|$ を満たすことが、G に完全マッチング が存在するための必要十分条件であることを示せ.

解答. \bullet G に完全マッチングが存在する時: 任意に $W \subset U$ を取る. 任意の $w \in W$ に対し $(w,v) \in E$ となる $v \in V$ が存在するから $|W| \leq |\Gamma(W)|$ である.

• G に完全マッチングが存在しない時:G の最小頂点被覆を $A \cup B$ ($A \subset U, B \subset V$) とする.最大マッチング最小被覆定理より $|A| \leq |A| + |B| < |U|$ であるから $U \setminus A \neq \emptyset$ である.任意の $v \in \Gamma(U \setminus A)$ に対し, $(w,v) \in E$ となる $w \in U \setminus A$ が存在する. $v \in V \setminus B$ とすると,最大マッチングに (w,v) を追加したものもマッチングとなり最大性に反するから $v \in B$ である.よって $\Gamma(U \setminus A) \subset B$ なので,

$$|\Gamma(U \setminus A)| \le |B| < |U| - |A| = |U \setminus A|.$$

(参考) Hall の結婚定理.

2013年度(平成25年度)

問8

次のプログラムを考える. ただしプログラム中, n は正の整数定数, N,K および R_i $(0 \le i \le n+2)$ はプログラム変数であり, \langle プログラム変数 \rangle := \langle 式 \rangle はプログラム変数への代入を表す.

$$R_0 := 1; R_1 := 2; R_2 := 1; N := 2; K := 0;$$

while $N \le n+1$ do
if $K = 0$ then
 $R_{N+1} := 1; K := N; N := N+1$
else
 $R_K := R_K + R_{K-1}; K := K-1$

このプログラム中の while ループに関するループ不変条件 Θ のうち,以下の条件

$$\Theta \wedge (n+1 < N) \wedge (K = N-1) \implies \bigwedge_{i=0}^{n+1} \left(R_i = \binom{n+1}{i} \right)$$

を満たすものを与えよ、ただし、 Θ がループ不変条件であることを示すこと、ここで $\binom{m}{k}$ は二項係数を表す、

解答.

$$\Theta \equiv (N \le n+2) \land \bigwedge_{i=0}^{K} \left(R_i = \binom{N-1}{i} \right) \land \bigwedge_{i=K+1}^{N} \left(R_i = \binom{N}{i} \right)$$

が求めるものであることを示す. $\Theta \wedge (n+1 < N) \wedge (K=N-1)$ の時 N=n+2, K=n+1 だから $\bigwedge_{i=0}^{n+1}(R_i=\binom{n+1}{i})$ が成り立つ. Θ がループ不変条件であることを示す. while ループに入る前は Θ は 成り立つ.

- K=0 の時: $R_0=1, R_i=\binom{N}{i}\,(i=1,\ldots,N)$ だから、while ループを 1 回回ると $R_N=1, K=N-1, R_0=1, R_i=\binom{N-1}{i}\,(i=1,\ldots,N-1)$ となる.また $N\leq n+2$ である.よって Θ は成り立つ.
- K>0 の時:while ループ内では $R_K=\binom{N-1}{K}+\binom{N-1}{K-1}=\binom{N}{K}$ となった後 K が 1 減る.他の R_i および N は不変だから Θ が成り立つ.

以上で示された.

2011年度(平成23年度)

問8

二分木の集合 B を以下を満たす最小の集合とする.

- (a) Lf $\in B$.
- (b) $\ell, r \in B$ $\Leftrightarrow \mathsf{Md}(\ell, r) \in B$.

関数 $f_0: B \times B \to B$ および再帰関数 $g: B \to B, f_1: B \times B \to B$ を以下のように定義する.

$$f_0(t,\mathsf{Lf}) = \mathsf{Nd}(\mathsf{Nd}(\mathsf{Lf},t),\mathsf{Lf})$$

$$f_0(t,\mathsf{Nd}(\ell,r)) = \mathsf{Nd}(\mathsf{Nd}(\ell,t),r)$$

$$\begin{split} g(\mathsf{Lf}) &= \mathsf{Lf} \\ g(\mathsf{Nd}(\mathsf{Lf},r)) &= \mathsf{Nd}(\mathsf{Lf},r) \\ g(\mathsf{Nd}(\mathsf{Nd}(\ell_1,r_1),r)) &= g(\mathsf{Nd}(\ell_1,\mathsf{Nd}(\mathsf{r}_1,\mathsf{r}))) \end{split}$$

$$\begin{split} f_1(t,\mathsf{Lf}) &= \mathsf{Lf} \\ f_1(t,\mathsf{Nd}(\mathsf{Lf},\mathsf{Lf})) &= \mathsf{Lf} \\ f_1(t,\mathsf{Nd}(\mathsf{Nd}(\ell_1,r_1),\mathsf{Lf})) &= f_1(t,g(\mathsf{Nd}(\mathsf{Nd}(\ell_1,r_1),\mathsf{Lf}))) \\ f_1(t,\mathsf{Nd}(\ell,\mathsf{Nd}(\ell_2,r_2))) &= \mathsf{Nd}(\ell,r_2) \end{split}$$

任意の $t_1, \ldots, t_n \in B$ および $b_1, \ldots, b_n \in \{0,1\}$ $(n \ge 1)$ に対して $s_0, s_1, \ldots, s_n \in B$ を

$$s_0 = \mathsf{Lf}, \qquad s_k = f_{b_k}(t_k, s_{k-1}) \quad (1 \le k \le n)$$

で定めるとき, s_0 から s_n を計算するのに要する関数 f_0,g および f_1 の呼び出し回数(再帰呼び出しも含む)の総和が高々 O(n) であることを証明せよ.

解答. $t \in B$ を計算する時の f_0, f_1, g の呼び出し回数を N(t) とおく. また $t \in B$ に対し $L(t), \mathsf{ht}_L(t)$ を

$$L(t) = \begin{cases} \mathsf{Lf} & (t = \mathsf{Lf}) \\ \ell & (t = \mathsf{Nd}(\ell, r)), \end{cases} \qquad \mathsf{ht}_L(t) = \begin{cases} 0 & (t = \mathsf{Lf}) \\ 1 + \mathsf{ht}_L(\ell) & (t = \mathsf{Nd}(\ell, r)), \end{cases}$$

で定める. $t=\operatorname{Nd}(\ell,r)$ に対し $\operatorname{ht}_L(g(t))=1, N(g(t))=1+\operatorname{ht}_L(\ell)$ であることを $\operatorname{ht}_L(\ell)$ に関する帰納法で示す. $\operatorname{ht}_L(\ell)=0$ の時は $\ell=\operatorname{Lf}$ だから成り立つ. $\operatorname{ht}_L(\ell)=k$ なる任意の $\ell\in B$ に対し成り立つ時,

$$\begin{split} & \operatorname{ht}_L(g(\operatorname{Nd}(\operatorname{Nd}(\ell,r),r'))) = \operatorname{ht}_L(g(\operatorname{Nd}(\ell,(\operatorname{Nd}(r,r')))) = 1, \\ & N(g(\operatorname{Nd}(\operatorname{Nd}(\ell,r),r'))) = 1 + N(g(\operatorname{Nd}(\ell,\operatorname{Nd}(r,r')))) = 1 + \operatorname{ht}_L(\ell) = \operatorname{ht}_L(\operatorname{Nd}(\operatorname{Nd}(\ell,r),r')) \end{split}$$

だから $\mathsf{ht}_L(t) = k+1$ なる $t \in B$ でも成り立つ. よって示された. ここで $b_k = 1, s_{k-1} = \mathsf{Nd}(\mathsf{Nd}(\ell_1, r_1), \mathsf{Lf})$ の時は

$$s_k = f_1(t_k, s_{k-1}) = f_1(t_k, g(s_{k-1})) = f_1(t_k, \mathsf{Nd}(\mathsf{Lf}, t)) \qquad (t \in B)$$

より $\operatorname{ht}_L(s_k) \leq 2$ であるから

$$N(s_k) = 2 + N(g(s_{k-1})) + 1 = 4 + \mathsf{ht}_L(L(s_{k-1})) \le 5 + \mathsf{ht}_L(s_{k-1}) \le 7.$$

他の b_k, s_{k-1} の場合は $N(f_{b_k}(t_k, s_{k-1})) = 1$ である. よって $\sum_{k=1}^n N(s_k) \le 7n$ なので示された. \square

2010年度(平成22年度)

問8

 $\mathbb{Z}_{\geq 0}$ を非負整数の集合とする. $n \in \mathbb{Z}_{\geq 0}$ に対して, $\left[\frac{n}{2}\right]$ を $\frac{n}{2}$ の整数部分とし, $n \bmod 2$ を n を 2 で割ったときの余りとする. また,関数 $\gamma: \mathbb{Z} \times \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ を以下のように定義する.

$$\gamma(x,0)=0$$

$$\gamma(x,n+1)= \begin{cases} 2\gamma(x,n) & (x<2^n\ \mathcal{O}$$
とき)
$$2\gamma(2^{n+1}-x-1,n)+1 & (x\geq 2^n\ \mathcal{O}$$
とき)

このとき,以下に示すプログラム

$$\begin{split} G &:= 0; \ K := 0; \\ \mathbf{while} \ K &< N \ \mathbf{do} \\ G &:= 2G + \left((B \bmod 2) - \left(\left \lceil \frac{B}{2} \right \rceil \bmod 2 \right) \right)^2; \\ B &:= \left \lceil \frac{B}{2} \right \rceil; \ K := K + 1; \end{split}$$

done

が次の性質を満たすことを示せ.

任意の $b \in \mathbb{Z}_{>0}$ について、上記のプログラムを初期条件

$$(N \ge 0) \land (B = b) \land (0 \le b < 2^N)$$

の下で実行したとき、プログラムが停止したときには $G = \gamma(b, N)$ が成立する.

ただし、上記プログラムのループ不変条件は何であるかを明示し、それが実際に不変条件であることを 証明すること.

解答. 初期条件の下で、 $b=\sum_{i=0}^{N-1}b_i2^i$ を b の 2 進数展開とする. この時ループ不変条件が

$$\Theta \equiv \left(G = \sum_{i=0}^{K-1} \text{xor}(b_{K-1-i}, b_{K-i}) 2^i\right) \wedge \left(B = \sum_{i=0}^{N-1-K} b_{K+i} 2^i\right)$$

であることを示す.ただし ${\rm xor}(a,b)=1-\delta_{a,b}$ である.ループに入る前は明らか. Θ が成り立つ時にループに入ると

$$G = 2\sum_{i=0}^{K-1} \operatorname{xor}(b_{K-1-i}, b_{K-i}) 2^{i} + \operatorname{xor}(b_{K}, b_{K+1}) = \sum_{i=0}^{K} \operatorname{xor}(b_{K-i}, b_{K-i+1}) 2^{i},$$

$$B = \sum_{i=1}^{N-1-K} b_{K+i} 2^{i-1} = \sum_{i=0}^{N-2-K} b_{K+i+1} 2^{i}$$

となった後に K が 1 増えるから Θ が成り立つ. これで示された. ループの度に K は 1 増えるからプログラムは必ず停止し、停止時には K=N となる. よって

$$\gamma \left(\sum_{i=0}^{N-1} b_i 2^i, N \right) = \sum_{i=0}^{N-1} \operatorname{xor}(b_{N-1-i}, b_{N-i}) 2^i$$

を示せば良い. (ただし $b_N=0$ とする.) これを N による帰納法で示す. N=0 の時は両辺は 0 だから良い. N で成り立つとして N+1 の時を考える. $b_N=0$ の時

$$\gamma\left(\sum_{i=0}^{N-1}b_{i}2^{i}, N+1\right) = 2\gamma\left(\sum_{i=0}^{N-1}b_{i}2^{i}, N\right) = 2\sum_{i=0}^{N-1}\operatorname{xor}(b_{N-1-i}, b_{N-i})2^{i}$$
$$= \sum_{i=1}^{N}\operatorname{xor}(b_{N-i}, b_{N-i+1})2^{i} = \sum_{i=0}^{N}\operatorname{xor}(b_{N-i}, b_{N-i+1})2^{i},$$

 $b_N = 1$ の時

$$\gamma \left(2^{N} + \sum_{i=0}^{N-1} b_{i} 2^{i}, N+1 \right) = 2\gamma \left(\sum_{i=0}^{N-1} (1-b_{i}) 2^{i}, N \right) + 1 = 2 \sum_{i=0}^{N-1} \operatorname{xor}(1-b_{N-1-i}, 1-b_{N-i}) 2^{i} + 1$$

$$= \sum_{i=1}^{N} \operatorname{xor}(b_{N-i}, b_{N-i+1}) 2^{i} + 1 = \sum_{i=0}^{N} \operatorname{xor}(b_{N-i}, b_{N-i+1}) 2^{i}$$

だから N+1 でも成り立つ. よって示された.

2009年度(平成21年度)

問8

 $A=\{{\sf a},{\sf b}\}$ を文字の集合, A^* を A に属する文字からなる有限長の文字列全体の集合とする.以下,空文字列(長さ 0 の文字列)を ε で表し,2 つの文字列 x,y を連結して得られる文字列を xy で表す.E を定数記号,N を 2 引数の関数記号とし,T を以下の性質を満たす最小の集合とする.

- (a) E は T の元である.
- (b) ℓ, r が T の元ならば、 $N(\ell, r)$ は T の元である.

関数 $F: T \to A^*$ を以下のように帰納的に定義する.

$$F(t) = egin{cases} arepsilon & (t = E \ \mathcal{O}$$
とき) $\mathbf{a}F(\ell)\mathbf{b}F(r) & (t = N(\ell,r) \ \mathcal{O}$ とき)

以下の間に答えよ.

(1) 次の性質を満たす関数 $G: T \times T \to T$ を帰納的に定義し、その G が実際この性質を満たすことを示せ、

$$F(G(t_1, t_2)) = F(t_1)F(t_2)$$

(2) 文字列 x が含む a および b の数をそれぞれ L(x) および R(x) と書く. 次の性質を満たす関数 $D: T \to \mathbb{Z}_{\geq 0}$ を帰納的に定義し、その D が実際この性質を満たすことを示せ. ただし $\mathbb{Z}_{\geq 0}$ は非 負整数の全体である.

$$D(t) = \max\{L(x) - R(x); x, y \in A^* \text{ ליכן} F(t) = xy\}$$

解答. (1)

$$G(t_1, t_2) = \begin{cases} t_2 & (t_1 = E) \\ G(\ell, G(r, t_2)) & (t_1 = N(\ell, r)) \end{cases}$$

が条件を満たすことを、 t_1 の構造に関する帰納法で示す。 $t_1=E$ の時は $F(G(t_1,t_2))=F(t_2)=F(E)F(t_2)$ だから良い。 $t_1=N(\ell,r)$ で ℓ,r については成り立つ時、

$$F(G(t_1, t_2)) = F(G(\ell, G(r, t_2))) = F(\ell)F(G(r, t_2))$$

= $F(\ell)F(r)F(t_2) = F(G(\ell, r))F(t_2) = F(t_1)F(t_2)$

だから良い. よって示された.

(2) D(E)=0 は明らか、 $t=N(\ell,r)$ とする、 $xy=F(t)=\mathsf{a}F(\ell)\mathsf{b}F(r)$ とした時,x が $\mathsf{a}F(\ell)$ の部分列であれば L(x)-R(x) の最大値は $1+D(\ell)$ である、そうでない時,任意の $t\in T$ に対し L(t)-R(t)=0 となることが帰納的にわかるから,L(x)-R(x) の最大値は $1+(L(\ell)-R(\ell))-1+D(r)=D(r)$ である、以上から D(t) の帰納的な定義は

$$D(t) = \begin{cases} 0 & (t = E) \\ \max\{1 + D(\ell), D(r)\} & (t = N(\ell, r)). \end{cases}$$

2008年度(平成20年度)

問8

 $\mathbb{N}_{\perp}=\mathbb{N}\cup\{\perp\}$ とする. 任意の関数 $f,g\in\mathbb{N}\to\mathbb{N}_{\perp}$ について順序関係 \sqsubseteq を以下のように定義する.

$$f \sqsubseteq g \iff \forall n \in \mathbb{N}. (f(n) = \bot \sharp \not \vdash l \sharp f(n) = g(n))$$

また,関数 plus $\in \mathbb{N}_{\perp} \times \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ および汎関数 cond $\in \mathbb{N} \times \mathbb{N} \times (\mathbb{N} \to \mathbb{N}_{\perp}) \to \mathbb{N}_{\perp}, F, F', G, G' \in (\mathbb{N} \to \mathbb{N}_{\perp}) \to (\mathbb{N} \to \mathbb{N}_{\perp})$ を以下のように定義する.

- (1) F,G はそれぞれ順序関係 \sqsubseteq に関する最小不動点を持つ、その理由を簡単に述べよ、以下、汎関数 $J\in(\mathbb{N}\to\mathbb{N}_\perp)\to(\mathbb{N}\to\mathbb{N}_\perp)$ が最小不動点を持つとき、その最小不動点を $\mathrm{fix}(J)$ で表すこととする.
 - (2) 任意の $g \in \mathbb{N} \to \mathbb{N}_{\perp}$ について、汎関数 $H_g: (\mathbb{N} \to \mathbb{N}_{\perp}) \to (\mathbb{N} \to \mathbb{N}_{\perp})$ を

$$H_q(f)(n) = \text{plus}(g(n), f(n))$$

と定める. このとき,

$$H_q \circ F = G \circ H_q$$
 ならば $H_q(\text{fix}(F)) = \text{fix}(G)$

が成り立つことを証明せよ.

(3) (2) の結果を用いて, 等式

$$H_{\text{fix}(K)}(\text{fix}(F)) = \text{fix}(G)$$

を満たす汎関数 $K \in (\mathbb{N} \to \mathbb{N}_{\perp}) \to (\mathbb{N} \to \mathbb{N}_{\perp})$ が存在することを証明せよ.

解答. (1)

$$F'(f)(n) = \begin{cases} \bot & (f(n) = \bot) \\ f(n) + n + 1 & (それ以外), \end{cases} \qquad G'(f)(n) = \begin{cases} \bot & (f(n) = \bot) \\ f(n) + 2n + 1 & (それ以外) \end{cases}$$

より

$$F(f)(n) = \begin{cases} 0 & (n=0) \\ F'(f)(n-1) & (n>0) \end{cases} = \begin{cases} 0 & (n=0) \\ \bot & (f(n-1)=\bot) \\ f(n-1)+n & (それ以外), \end{cases}$$

$$G(f)(n) = \begin{cases} 0 & (n=0) \\ G'(f)(n-1) & (n>0) \end{cases} = \begin{cases} 0 & (n=0) \\ \bot & (f(n-1)=\bot) \\ f(n-1)+2n-1 & (それ以外) \end{cases}$$

である. これより各 $n \in \mathbb{N}$ に対し F(f)(n) = f(n) となる f(n) が帰納的に一意に定まるから、fix(F) が存在する. fix(G) も同様. この時 fix(F)(n) = n(n+1)/2, $fix(G)(n) = n^2$ である.

(2) 任意の $n \in \mathbb{N}$ に対し

$$H_g(\operatorname{fix}(F))(n) = (H_g \circ F)(\operatorname{fix}(F))(n) = (G \circ H_g)(\operatorname{fix}(F))(n)$$

だから $H_g(\text{fix}(F)) = G(H_g(\text{fix}(F)))$. よって $H_g(\text{fix}(F))$ は G の不動点なので, $H_g(\text{fix}(F)) \sqsubseteq \text{fix}(G)$ を示せば良い.

$$H_g(f)(n) = \operatorname{plus}(g(n), f(n)) =$$

$$\begin{cases} \bot & (g(n) = \bot または f(n) = \bot) \\ g(n) + f(n) & (それ以外) \end{cases}$$

より

$$(H_g \circ F)(h)(n) = \operatorname{plus}(g(n), F(h)(n)) = \begin{cases} g(0) & (n = 0) \\ \bot & (g(n) = \bot または \, h(n-1) = \bot) \\ g(n) + h(n-1) + n & (それ以外) \end{cases}$$

$$(G \circ H_g)(h)(n) = G(H_g(h))(n) = \begin{cases} 0 & (n = 0) \\ \bot & (H_g(h)(n-1) = \bot) \\ H_g(h)(n-1) + 2n - 1 & (それ以外) \end{cases}$$

$$= \begin{cases} 0 & (n = 0) \\ \bot & (g(n-1) = \bot または \, h(n-1) = \bot) \\ g(n-1) + h(n-1) + 2n - 1 & (それ以外) \end{cases}$$

であるから, g(n) は帰納的に一意に定まり g(n)=n(n-1)/2 となる. よって $H_g(\mathrm{fix}(F))(n)\neq \bot$ なる任意の $n\in \mathbb{N}$ に対し

$$H_q(\operatorname{fix}(F))(n) = g(n) + \operatorname{fix}(F)(n) = n^2 = \operatorname{fix}(G)(n)$$

となるから $H_q(\text{fix}(F)) \sqsubseteq \text{fix}(G)$ である.

 $(3) K \in (\mathbb{N} \to \mathbb{N}_{\perp}) \to (\mathbb{N} \to \mathbb{N}_{\perp}) \approx$

$$K(f)(n) =$$

$$\begin{cases} 0 & (n=0) \\ f(n-1) + n - 1 & (それ以外) \end{cases}$$

と定めれば、(1)、(2) の計算と同様に fix(K) = g となるから示された.

2006年度(平成18年度)

問8

Prog を以下で定めるプログラム P 全体からなる集合とする.

$$P ::= \mathbf{I} \mid \mathbf{Z} \mid \mathbf{S} \mid \mathbf{N} \mid \mathbf{W}\{P\} \mid P; P$$

また、 $\operatorname{Prog} \times \mathbb{Z} \times \mathbb{Z}$ 上の関係 $\langle P, n \rangle \to m$ を、以下の導出規則を満たす最小の関係と定義する.

$$\overline{\langle \mathbf{I}, n \rangle \to n} \qquad \overline{\langle \mathbf{Z}, n \rangle \to 0} \qquad \overline{\langle \mathbf{S}, n \rangle \to n + 1} \qquad \overline{\langle \mathbf{N}, n \rangle \to -n}$$

$$\overline{\langle \mathbf{W}\{P\}, n \rangle \to n} \qquad (n < 0 \ \mathcal{O} \succeq \stackrel{\overset{}{\approx}}{}) \qquad \frac{\langle P; \mathbf{W}\{P\}, n \rangle \to m}{\langle \mathbf{W}\{P\}, n \rangle \to m} \qquad (n \ge 0 \ \mathcal{O} \succeq \stackrel{\overset{}{\approx}}{})$$

$$\underline{\langle P, n \rangle \to n'} \qquad \langle P', n' \rangle \to m}$$

$$\overline{\langle P; P', n \rangle \to m}$$

このとき、任意のプログラム $P,P'\in \operatorname{Prog}$ および任意の $n,m\in \mathbb{Z}$ について以下の命題が成り立つことを証明せよ.

$$\langle P[\mathbf{Z}; \mathbf{W}\{\mathbf{I}\}], n \rangle \to m$$
 ならば $\langle P[P'], n \rangle \to m$

ただし,P[Q] はプログラム P 中の全ての \mathbf{I} の出現をプログラム Q で置き換えて得られるプログラムを表すものとする.

解答. 命題を (*) とおく. (*) が正しいことを P の構造に関する帰納法で示す. $A = \mathbf{Z}; \mathbf{W}\{\mathbf{I}\}$ とおく.

- $P \in \{\mathbf{Z}, \mathbf{S}, \mathbf{N}\}$ の時: P[A] = P[P'] = P なので(*) は成り立つ.
- $P = \mathbf{I}$ の時:

$$\frac{\langle \mathbf{I}, 0 \rangle \to 0 \qquad \langle \mathbf{W} \{ \mathbf{I} \}, 0 \rangle \to m}{\langle \mathbf{I}, \mathbf{W} \{ \mathbf{I} \}, 0 \rangle \to m}$$

$$\frac{\langle \mathbf{Z}, n \rangle \to 0}{\langle A, n \rangle \to m}$$

より $\langle \mathbf{W}\{\mathbf{I}\}, 0 \rangle \to m$ が導出できないから $\langle A, n \rangle \to m$ も導出できない. よって (*) が成り立つ.

• (*) が成り立つ $P_1, P_2 \in \text{prog}$ に対して $P = P_1; P_2$ の時 : $P[Q] = P_1[Q]; P_2[Q]$ であるから、 $\langle P[A], n \rangle \to m$ の導出は以下のようになる.

$$\frac{\langle P_1[A], n \rangle \to n' \qquad \langle P_2[A], n' \rangle \to m}{\langle P[A], n \rangle \to m}$$

よって導出

$$\frac{\langle P_1[A], n \rangle \to n'}{\langle P_1[P'], n \rangle \to n'} \frac{\langle P_2[A], n' \rangle \to m}{\langle P_2[P'], n' \rangle \to m}$$
$$\frac{\langle P_1[P']; P_2[P'], n \rangle \to m}{\langle P_1[P']; P_2[P'], n \rangle \to m}$$

より(*)が成り立つ.

ullet (*) が成り立つ $Q\in \operatorname{prog}$ に対して $P=\mathbf{W}\{Q\}$ の時: $P[A]=\mathbf{W}\{Q[A]\}$ である。n<0 の時は導出規則から m=n となるから,(*) が成り立つ。 $n\geq 0$ とする。 $\langle \mathbf{W}\{Q[P']\},n\rangle \to m$ が導出できるとすると、

$$\frac{\langle Q[A], n \rangle \to n_1 \quad \langle \mathbf{W}\{Q[A]\}, n_1 \rangle \to m}{\frac{\langle Q[A]; \mathbf{W}\{Q[A]\}, n \rangle \to m}{\langle \mathbf{W}\{Q[A]\}, n \rangle \to m}}$$

より、点列 n_k $(k=1,2,\dots)$ であって $\langle Q[A],n_{k-1}\rangle \to n_k$ と $\langle \mathbf{W}\{Q[P']\},n_k\rangle \to m$ が導出できるようなものが得られる. (ただし $n_0=n$ とおく.) $n_k<0$ となる k がある場合は、そのようなものの最小の k を取ると

$$\frac{\langle Q[A], n_{k-1} \rangle \to n_k}{\langle Q[P'], n_{k-1} \rangle \to n_k} \frac{\langle \mathbf{W} \{Q[P']\}, n_k \rangle \to m}{\langle \mathbf{W} \{Q[P']\}, n_{k-1} \rangle \to m}$$

$$\frac{\langle Q[P']; \mathbf{W} \{Q[P']\}, n_{k-1} \rangle \to m}{\langle \mathbf{W} \{Q[P']\}, n_{k-1} \rangle \to m}$$

となるから、任意の $j=0,1,\ldots,k-1$ に対し $\langle \mathbf{W}\{Q[P']\},n_j\rangle \to m$ が導出できる.よって (*) が成り立つ.任意の k に対し $n_k\geq 0$ であるとする.もし $n_i=n_j$ なる $0\leq i< j$ が存在すれば $\langle \mathbf{W}\{Q[P']\},n_i\rangle \to m$ が導出できないから、 $\langle \mathbf{W}\{Q[P']\},n\rangle \to m$ も導出できない.よって (*) が成り立つ. n_k $(k\geq 0)$ が相異なるなら $n_k\to\infty$ $(k\to\infty)$ なので,十分大きい k に対し $\langle \mathbf{W}\{Q[P']\},n_k\rangle \to m$ は導出できない.あとは上と同様.

以上で示された.