Occupancy Detection MT7038

Anton Stråhle & Max Sjödin

Fall 2020

Data

The occupancy status of a room was observed for a few days. Snapshots of the features below were taken every minute.

- Features
 - ▶ Temperature
 - ▶ CO2
 - Humidity
 - HumidityRatio
 - ▶ Light
- Response
 - Occupancy
 - Occupied
 - ▶ Unoccupied

Data

Figure: Boxplots of Features: Standardized and unstandardize

Data

The occupancy status of a room was observed for a few days. Snapshots of the features below were taken every minute.

- Features
 - ▶ Temperature
 - ▶ CO2
 - ▶ Humidity
 - HumidityRatio
 - ▶ Light
- Response
 - Occupancy
 - Occupied
 - Unoccupied

Light is excluded as the best classifier would otherwise become *Are the lights on?*

Brief Exploration

Figure: Pairplots of Features

► Non-linearity?

Brief Exploration

- Unbalanced data set
 - ▶ Many more unoccupied data points than occupied

As the data set consists of minutley snapshots the sets cannot be combined and then resampled as we might have almost identical data points in all three sets.

Our solution to this problem was to upsample the Occupied class in both the training and validation sets so that the we had an even split in both.

Methodology

- ► SVM
 - ▶ Linear, Radial & Polynomial
- ► Logistic Regression
 - ▶ Regular & Weighted

Methodology

- Why? Good for classification and should generalize well with low costs
- How? \triangleright Using the package e1071 and the function svm

Kernel	Cost	TestAccuracy
Linear	0.00013	0.83940
Radial	0.00100	0.83490
Polynomial Degree 4	0.00004	0.83752

Figure: SVM Accuracies

Methodology

Logistic regression

- Why? Sood for classification and can be further optimized with boosting algorithms and regularization
- How? ▶ Regular GLM, Boosting, Lasso and Ridge
 - ightharpoonup Find optimal λ manually using validation set

Method	TestAccuracy
Logit	0.86979
Boosting	0.85854
Lasso	0.85516
Ridge	0.84390

Figure: SVM Accuracies

Discussion

TABLE OF ALL TREES AND IMORTANT THINGS FOUND EARLIER(MODEL TEST ACCURACIES)