66.70 Estructura del Computador

Punto Flotante

Punto flotante

En muchos cálculos el intervalo de números que se usan es muy grande:

- la masa del electrón, 9 x 10⁻²⁸ gramos
- la masa del Sol, 2 x 10³³ gramos
- Los lenguajes de programación deben permitirme escribir variables para manejar valores extremadamente bajos y también extremadamente altos, ¿la representación binaria de estas variables podría ser en punto fijo?

Representación en punto fijo

 M_e = Masa del electrón = 9 x 10⁻²⁸ gramos

 $M_s = Masa del sol = 2 x 10^{33} gramos$

En punto fijo: $\text{En punto fijo:} \\ \text{Euántos dígitos son necesarios para poder representar tanto } M_e \text{ como } M_s? \\ \text{Cuántos dígitos decimales?} \\ \text{Cuántos dígitos binarios?} \\ \text{Cuántos dígitos binarios?}$

Punto flotante

número representado = $M x base^{exp}$

De un total de N bits:

- > 1 bit para el signo de la mantisa
- > **x** bits para mantisa
- > y bits para el exponente (magnitud y signo)

_> Analizar diferentes valores de x e y para igual N ¿Conclusiones?

¿Porqué un estándar?

- Casi todos los lenguajes de programación ofrecen tipos de variable punto flotante
- Todo <u>sistema operativo</u> debe responder a excepciones punto flotantes (overflow)
- Desde PCs a supercomputadoras tienen coprocesadores para operaciones en PF

Punto flotante

- Casi todos los lenguajes de programación ofrecen datos en punto flotante
- Desde PCs a supercomputadoras tienen coprocesadores para operaciones en PF

Estandarización del formato PF: IEEE 754

- En 1982 la IEEE definió el estándar IEEE-754
- Lo implantó por primera vez en los Intel 8087
- En 1985 este formato fue aceptado como el estándar universal
- En 2008 se incluyeron modificaciones a la norma original

Norma IEEE 754

Norma IEEE 754

Definiendo la Norma IEEE 754

Cuestiones a establecer:

- Qué <u>base</u> utilizar?
- Números 'normalizados'
- >_Formato para guardar el exponente? (entero con signo)
- Valores "especiales"

Definiendo la Norma IEEE 754 ¿Qué base utilizar?

- ✓ Cuál elegir? 2, 10, 16 ...
- ✓ Qué efecto tiene sobre la representación?
- ✓ Conveniencia al realizar operaciones aritméticas

Definiendo la Norma IEEE 754

Valores normalizados

Bit implícito vale 1

Ventajas:

- ✓ La representación binaria es única para un número dado
- ✓ Todos los bits de la mantisa son significativos
- ✓ Es más fácil comparar dos números:

1°) Comparo exponentes 2º) Comparo mantisas

Definiendo la Norma IEEE 754

Representación del exponente

- El exp. es un número entero con signo
- Sistema para su representación
 - Magnitud y Signo?
 - Complemento a 1 ?
 - Complemento a 2 ?
 - "Exceso-N"?

Representación "exceso 7"

Decimal	Two's Complement	Ones' Complement	Signed Magnitude	Exceso 7
-8	1000			
-7	1001	1000	1111	0 0 0 0
-6	1010	1001	1110	0 0 0 1
-5	1011	1010	1101	0 0 1 0
-4	1100	1011	1100	0 0 1 1
-3	1101	1100	1011	0 1 0 0
-2	1110	1101	1010	0 1 0 1
-1	1111	1110	1001	0 1 1 0
0	0000	1111 or 0000	1000 or 0000	0 1 1 1
1	0001	0001	0001	1 0 0 0
2	0010	0010	0010	1 0 0 1
3	0011	0011	0011	1 0 1 0
4	0100	0100	0100	1 0 1 1
5	0101	0101	0101	1 1 0 0
6	0110	0110	0110	1 1 0 1
7	0111	0111	0111	1 1 1 0
				1 1 1 1

Representación "exceso 7"

Decimal	Two's Complement	Ones' Complement	Signed Magnitude	Exceso 7
-8	1000		y	Valor reservado
_7	1001	1000	1111	en IEEE 754
-6	1010	1001	1110	0 0 0 1 -6
-5	1011	1010	1101	0 0 1 0
-4	1100	1011	1100	0 0 1 1 -4
-3	1101	1100	1011	0 1 0 0
-2	1110	1101	1010	0 1 0 1
-1	1111	1110	1001	0 1 1 0
0	0000	1111 or 0000	1000 or 0000	0 1 1 1 0
1	0001	0001	0001	1 0 0 0
2	0010	0010	0010	1 0 0 1
3	0011	0011	0011	1 0 1 0
4	0100	0100	0100	1 0 1 1
5	0101	0101	0101	1 1 0 0 +5
6	0110	0110	0110	1 1 0 1
7	0111	0111	0111	1 1 1 0 +7
				Valor reservado en IEEE 754

Representación "exceso 7"

	Exceso 7	Signed Magnitude	Ones' Complement	Two's Complement	Decimal
Valor reservado				1000	-8
en IEEE 754	0 0 0 0	1111	1000	1001	-7
- 6	0 0 0 1	1110	1001	1010	-6
	0 0 1 0	1101	1010	1011	-5
- 4	0 0 1 1	1100	1011	1100	-4
entajas?	0 1 0 0	1011	1100	1101	-3
entalas	0 1 0 1	1010	1101	1110	-2
e.	0 1 1	1001	1110	1111	-1
→ 0	0 1 1 1	1000 or 0000	1111 or 0000	0000	0
	1 0 0 0	0001	0001	0001	1
	1 0 0 1	0010	0010	0010	2
	1 0 1 0	0011	0011	0011	3
	1 0 1 1	0100	0100	0100	4
+5	1 1 0 0	0101	0101	0101	5
	1 1 0 1	0110	0110	0110	6
+7	1 1 1 0	0111	0111	0111	7

Definiendo la Norma IEEE 754

■ IEEE 754 expresa el componente en exceso-N

Cuál debería ser el valor de N ?

Rango representable en simple precisión

Rango del exponente

8 bits, exceso 127

No admite Exp=0000..0000 ni Exp=1111..1111

Máximo exponente representable (valor positivo): 1111 1110 -> 127 *Mínimo* exponente representable (valor negativo): 0000 0001 -> -126

Rango de la mantisa

23 bits

normalizar => bit implícito => 24 bits => Mantisa = 1.0 + Mantisa guardada => 1 ≤ Mantisa < 2

1 bi	t 8 bits	23 bits
S	exponente	mantisa

Rango representable en doble precisión

Rango del exponente

11 bits, exceso 1023

No admite Exp=0000..0000 ni Exp=1111..1111

Máximo exponente representable (valor positivo): 1111 1110 -> 1023 *Mínimo* exponente representable (valor negativo): 0000 0001 -> -1022

Rango de la mantisa

52 bits

normalizar => bit implícito => 53 bits => Mantisa = 1.0 + Mantisa guardada

=> 1 ≤ *Mantisa* < 2

1 b	t 11 bits	52 bits
S	exponente	mantisa

Rango representable

Overflow y Underflow

$$M_{min}$$
 . base $exp_{min} \leq Núm. \leq M_{max}$. base exp_{max}

Resolución

Números reales, su representación en punto fijo y en punto flotante

Dada una cadena de 32/64 bits

- Cuántos números diferentes puedo representar?
- En qué rango de valores?
- Cuál es la distancia entre dos valores sucesivos?
- Es uniforme esa distancia?

Valores de referencia en IEEE-754

	Simple precisión	Doble precisión
Bits del signo	1	1
Bits del exponente	8	11
Bits de la mantisa	23	52
Total de bits	32	64
Sistema de exponente	Exceso en 127	Exceso en 1023
Intervalo del exponente	-126 a +127	-1022 a +1023
Número normalizado más pequeño	2-126	2-1022
Número normalizado más grande	aprox. 2 ¹²⁸	aprox. 2 ¹⁰²⁴
Intervalo decimal	aprox. 10 ⁻³⁸ a 10 ³⁸	aprox. 10 ⁻³⁰⁸ a 10 ³⁰⁸

Time	Tam.	. Rango		
Tipo	Bits	Min	Max	
Bool	8	0	1	
Char	8	-128	127	
Signed char	8	-128	127	
unsigned char	8	0	255	
short int	16	-32,768	32,767	
unsigned short int	16	0	65,535	
Int	32	-2,147,483,648	2,147,483,647	
unsigned int	32	0	4,294,967,295	
long int	32	-2,147,483,648	2,147,483,647	
unsigned long int	32	0	4,294,967,295	
long long int	64	-9,223,372,036,854,775,808	9,223,372,036,854,775,807	
unsigned long long int	64	0	18,446,744,073,709,551,615	
Float	32	1.17549e-38	3.40282e+38	
Double	64	2.22507e-308	1.79769e+308	

La Explosión del Ariane 5

El 4 de junio de 1996, el cohete Ariane 5 fue lanzado en Kourou, Guayana francesa por la Agencia Espacial Europea pero...

...explotó 40 seg después su lanzamiento en

El cohete estaba en <u>su primer viaje</u>, después de una década de desarrollo que costó u\$s 7 billones. El cohete destruido y su carga estaban estimadas en u\$s 500 millones

Norma IEEE 754

Valores especiales

Cero

Todos los bits en cero. Signo.

Infinito

Exp=todos 1's , Mantisa = todos 0's . Signo.

NaN ("Not a number")

• E=todos 1's , Mantisa <> 0, Signo = no importa

Sumar dos números en punto flotante

- 1) Calcular la diferencia entre los exponentes d=|Exp1 Exp2| => determino cuál es el número mayor y cuál el menor
- 2) Correr <u>d</u> posiciones a la derecha la coma del número menor
- 3) Encolumnar y sumar las mantisas
- 4) El exponente del resultado es el exponente del número mayor
- 5) Normalizar la mantisa del resultado ajustando el exponente si fuese necesario

Punto fijo VS. Punto flotante

- Precisión
- Rango dinámico
- Velocidad
- Requerimientos de hardware