Abstract

We detail the construction and some of the properties of the Lebesgue measure via the Lebesgue–Stieltjes Measure.

Premeasures, Outer Measures, and Measures

Consider a set-function $\lambda \colon P(\mathbb{R}) \to [0, \infty]$ that satisfies

- $\lambda(\varnothing) = 0$;
- for any finite or infinite sequence of disjoint sets, $\{E_j\}_{j=1}^{\infty}$, we have

$$\lambda\left(\bigsqcup_{j=1}^{\infty}\right) = \sum_{j=1}^{\infty} \lambda(E_j);$$

- $\lambda(I) = b a$, where I is an interval (either open, closed, or a half-interval);
- $\lambda(s+E) = \lambda(E)$.

Unfortunately, such a set-function doesn't exist.

In order to construct a set function on a restricted domain $\lambda \colon \mathcal{L} \to [0, \infty]$, we need to define a particular class of measurable subsets of \mathbb{R} . This is where the concept of an *outer measure* comes in.

Definition. Let X be a set, and let $\mu^*: P(X) \to [0, \infty]$ be a set function. We say μ^* is an outer measure if

- $\mu^*(\emptyset) = 0;$
- $\mu^*(A) \leq \mu^*(B)$ if $A \subseteq B$;

•
$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \le \sum_{j=1}^{\infty} \mu^*(A_j).$$

We will obtain an outer measure on the entirety of P(X) by defining a notion of measure on some "satisfactory" subfamily $\mathcal{E} \subseteq P(X)$, then by approximating other subsets using this family.

Proposition: Let $\mathcal{E} \subseteq P(X)$ be a family of subsets such that $\emptyset \in \mathcal{E}$ and $X \in \mathcal{E}$, and let $\rho \colon \mathcal{E} \to [0, \infty]$ be a set function such that $\rho(\emptyset) = 0$. For any $A \subseteq X$, define

$$\mu^*(E) = \inf \left\{ \sum_{j \ge 1} \rho(E_j) \mid E_j \in \mathcal{E}, A \subseteq \bigcup_{j \ge 1} E_j \right\}.$$

Then, μ^* is an outer measure.

Proof. We start by showing well-definedness, which stems from the fact that we may select $E_j = X$ for all j.

Since we may take $E_j = \emptyset$ for all j, we must have $\mu^*(\emptyset) = 0$. Furthermore, if $A \subseteq B$, since the set over which the infimum is taken for the definition of $\mu^*(A)$ includes the corresponding set for B, we must have $\mu^*(A) \le \mu^*(B)$.

Finally, let $\{A_j\}_{j\geq 1}\subseteq P(X)$, and let $\varepsilon>0$. For each j, there exists $\{E_{j,k}\}_{k\geq 1}\subseteq \mathcal{E}$ such that $A_j\subseteq\bigcup_{k\geq 1}E_{j,k}$ and $\sum_{k\geq 1}\rho(E_{j,k})\leq \mu^*(A_j)+\varepsilon 2^{-j}$.

Then, if $A = \bigcup_{j \geq 1} A_j$, we have $A \subseteq \bigcup_{j,k \geq 1} E_{j,k}$, and $\sum_{j,k \geq 1} \rho(E_{j,k}) \leq \sum_{j \geq 1} \mu^*(A_j) + \varepsilon$, so that $\mu^*(A) \leq \sum_{j \geq 1} \mu^*(A_j) + \varepsilon$. Since ε is arbitrary, we are done.

Definition. A subset $A \subseteq X$ is said to be μ^* -measurable if for any $E \subseteq X$, A serves as a good "cookie cutter" for E, in that

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Equivalently, due to subadditivity, we have A is measurable if and only if for all $E \subseteq X$,

$$\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Definition. Let \mathcal{A} be an algebra of subsets of X. We call a set function $\mu_0 \colon \mathcal{A} \to [0, \infty]$ a premeasure if

- $\mu_0(\varnothing) = 0$;
- for a collection of disjoint elements of \mathcal{A} , $\{A_j\}_{j=1}^{\infty}$ where $\bigcup_{j>1} A_j \in \mathcal{A}$, we have

$$\mu_0\left(\bigsqcup_{j\geq 1} A_j\right) = \sum_{j\geq 1} \mu_0(A_j).$$

Every premeasure gives rise to an outer measure by taking

$$\mu^*(E) = \inf \left\{ \sum_{j \ge 1} \mu_0(A_j) \, \middle| \, A_j \in \mathcal{A}, E \subseteq \bigcup_{j \ge 1} A_j \right\}. \tag{*}$$

A remarkable result by Caratheodory allows us to extend premeasures from algebras to measures on σ -algebras. To start, there is a little bit of build-up.

Proposition: Let μ_0 be a premeasure on \mathcal{A} , with μ^* defined by (*). Then,

- (a) $\mu^*|_{\mathcal{A}} = \mu_0$;
- (b) every set in \mathcal{A} is μ^* -measurable.

Proof. Suppose $E \in \mathcal{A}$. If $E \subseteq \bigcup_{j\geq 1} A_j$ with $A_j \in \mathcal{A}$, we let $B_n = E \cap \left(A_n \setminus \bigcup_{j=1}^{n-1} A_j\right)$. The B_n are disjoint members of \mathcal{A} whose union is E, so

$$\mu_0(E) = \sum_{j=1}^{\infty} \mu_0(B_j)$$

$$\leq \sum_{j=1}^{\infty} \mu_0(A_j).$$

It follows that $\mu_0(E) \leq \mu^*(E)$. The reverse inequality is clear from the fact that we may specify $A_1 = E$ and $A_{j>1} = \emptyset$.

Meanwhile, if $A \in \mathcal{A}$, $E \subseteq X$, and $\varepsilon > 0$, then there is a collection $\{B_j\}_{j \ge 1} \subseteq \mathcal{A}$ with $E \subseteq \bigcup_{j \ge 1} B_j$ and $\sum_{j \ge 1} \mu_0(B_j) \le \mu^*(E) + \varepsilon$. By additivity on \mathcal{A} , we get

$$\mu^*(E) + \varepsilon \ge \sum_{j=1}^{\infty} \mu_0(B_j \cap A) + \mu_0(B_j \cap A^c)$$
$$\ge \mu^*(E \cap A) + \mu^*(E \cap A^c),$$

so A is measurable.

Theorem (Caratheodory's Theorem): Let $\mathcal{A} \subseteq P(X)$ be an algebra, let μ_0 be a premeasure on \mathcal{A} , and let \mathcal{M} be the σ -algebra generated by \mathcal{A} . There exists a measure μ on \mathcal{M} whose restriction to \mathcal{A} is μ_0 — namely, $\mu - \mu^*|_{\mathcal{M}}$, where μ^* is given by (*).

If ν is another measure on \mathcal{M} that extends μ_0 , then $\nu(E) \leq \mu(E)$, with equality for all $\mu(E) < \infty$. Furthermore, if μ_0 is σ -finite, then μ is unique.

Proof. We start by showing that if μ^* is an outer measure, then if \mathcal{M}^* is the collection of μ^* -measurable sets, \mathcal{M}^* is a σ -algebra and $\mu^*|_{\mathcal{M}^*}$ is a complete measure.

By definition, \mathcal{M}^* is closed under complements, as the definition of μ^* -measurability is symmetric in A and A^c . To show finite additivity, if $A, B \in \mathcal{M}^*$ and $E \subseteq X$, we have

$$\mu^{*}(E) = \mu^{*}(E \cap A) + \mu^{*}(E \cap A^{c})$$

= $\mu^{*}(E \cap A \cap B) + \mu^{*}(E \cap A \cap B^{c})$
+ $\mu^{*}(E \cap A^{c} \cap B) + \mu^{*}(E \cap A^{c} \cap B^{c}).$

We note that $A \cup B = (A \cap B) \cup (A \cap B^c) \cup (A^c \cap B)$, so subadditivity gives

$$\mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap B^c) + \mu^*(E \cap A^c \cap B) \ge \mu^*(E \cap (A \cup B)).$$

Therefore,

$$\mu^*(E) \ge \mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cup B)^c).$$

Therefore, $A \cup B \in \mathcal{M}^*$, so \mathcal{M}^* is an algebra. Moreover, if $A, B \in \mathcal{M}^*$ are disjoint, then

$$\mu^*(A \cup B) = \mu^*((A \cup B) \cap A) + \mu^*((A \cup B) \cap A^c)$$

= \mu^*(A) + \mu^*(B).

To show that \mathcal{M}^* is a σ -algebra, we show that \mathcal{M}^* is closed under countable disjoint unions. Let $\{A_j\}_{j\geq 1}$ be a sequence of disjoint sets in \mathcal{M}^* , and let $B_n = \bigsqcup_{j=1}^n A_j$, with $B = \bigsqcup_{j\geq 1} A_j$. Then, for any $E \subseteq X$, we have

$$\mu^*(E \cap B_n) = \mu^*(E \cap B_n \cap A_n) + \mu^*(E \cap B_n \cap A_n^c)$$

= \(\mu^*(E \cap A_n) + \mu^*(E \cap B_{n-1}),\)

so by induction, we have

$$\mu^*(E \cap B_n) = \sum_{j=1}^n \mu^*(E \cap A_j).$$

This gives

$$\mu^*(E) = \mu^*(E \cap B_n) + \mu^*(E \cap B_n^c)$$
$$\geq \sum_{j=1}^n \mu^*(E \cap A_j) + \mu^*(E \cap B^c),$$

and taking $n \to \infty$, we have

$$\mu^*(E) \ge \sum_{j=1}^{\infty} \mu^*(E \cap A_j) + \mu^*(E \cap B^c)$$

^IThis is Theorem 1.11 in Folland's Real Analysis.

$$\geq \mu^* \left(\bigsqcup_{j \geq 1} E \cap A_j \right) + \mu^* (E \cap B^c)$$
$$= \mu^* (E \cap B) + \mu^* (E \cap B^c)$$
$$\geq \mu^* (E).$$

Therefore, $B \in \mathcal{M}^*$, and if we take E = B,

$$\mu^*(B) = \sum_{j=1}^{\infty} \mu^*(A_j),$$

and μ^* is countably additive on \mathcal{M}^* . Finally, if $\mu^*(A) = 0$, we have

$$\mu^*(E) \le \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

= $\mu^*(E \cap A^c)$
 $\le \mu^*(E),$

so $A \in \mathcal{M}^*$, and $\mu^*|_{\mathcal{M}^*}$ is a complete measure.

Returning to our premeasure, μ_0 and the corresponding outer measure μ^* , we note that since every element of \mathcal{A} is μ^* -measurable, the σ -algebra of μ^* -measurable sets includes \mathcal{A} , so it includes $\mathcal{M} = \sigma(\mathcal{A})$.

Let ν be any other measure on \mathcal{M} that extends μ_0 . If $E \in \mathcal{M}$, and $E \subseteq \bigcup_{j \geq 1} A_j$ with $A_j \in \mathcal{A}$, then $\nu(E) \leq \sum_{j \geq 1} \nu(A_j) = \sum_{j \geq 1} \mu_0(A_j)$, so $\nu(E) \leq \mu(E)$.

If we set $A = \bigcup_{j>1} A_j$, the properties of the premeasure give us

$$\nu(A) = \lim_{n \to \infty} \nu\left(\bigcup_{j=1}^{n} A_j\right)$$
$$= \lim_{n \to \infty} \mu\left(\bigcup_{j=1}^{n} A_j\right)$$
$$= \mu(A).$$

If $\mu(E) < \infty$, we may select the A_i such that $\mu(A) < \mu(E) + \varepsilon$, so $\mu(A \setminus E) < \varepsilon$, and

$$\begin{split} \mu(E) & \leq \mu(A) \\ & = \nu(A) \\ & = \nu(E) + \nu(A \setminus E) \\ & \leq \nu(E) + \mu(A \setminus E) \\ & \leq \nu(E) + \varepsilon. \end{split}$$

Since ε is arbitrary, $\mu(E) = \nu(E)$.

Now, if μ_0 is σ -finite, we write $X = \bigsqcup_{j \geq 1} A_j$, with $\mu_0(A_j) < \infty$ and the A_j are disjoint. For any $E \in \mathcal{M}$, we have

$$\mu(E) = \sum_{j \ge 1} \mu(E \cap A_j)$$
$$= \sum_{j \ge 1} \nu(E \cap A_j)$$
$$= \nu(E).$$

Construction of the Lebesgue Measure

With Caratheodory's theorem, we now know that it is possible to construct a unique measure from a suitable premeasure on a particular family of subsets. Here, we will use the family of half-open intervals, or h-intervals, of the form (a, b], where $-\infty \le a < b < \infty$, or (a, ∞) .

The algebra of h-intervals, \mathcal{A} , generates the Borel σ -algebra, $\mathcal{B}_{\mathbb{R}}$.

Consider a finite Borel measure on \mathbb{R} , and let $F(x) = \mu((-\infty, x])$. We often call F(x) the distribution function of μ . Then, we see that F is increasing and right-continuous, as

$$(-\infty, x] = \bigcap_{n \ge 1} (-\infty, x_n],$$

where x_n is a decreasing sequence convergence to x.

As it turns out, we are able to reverse this process. Given an increasing, right-continuous function $F \colon \mathbb{R} \to \mathbb{R}$, there is a corresponding Borel measure.

Proposition: Let $F: \mathbb{R} \to \mathbb{R}$ be increasing and right-continuous. If $\{(a_j, b_j)\}_{j=1}^n$ are disjoint h-intervals, we define

$$\mu_0 \left(\bigcup_{j=1}^n (a_j, b_j] \right) = \sum_{j=1}^n (F(b_j) - F(a_j)),$$

and set $\mu_0(\emptyset) = 0$. Then, μ_0 is a premeasure on \mathcal{A} .

Proof. We start by verifying that μ_0 is well-defined, seeing as elements of \mathcal{A} can be written in more than one way as disjoint unions of h-intervals. If $\{(a_j,b_j]\}_{j=1}^n$ are disjoint, and $\bigcup_{j=1}^n (a_j,b_j] = (a,b]$, then after relabeling indices, we must have $a = a_1 < b_1 = a_2 < \cdots < b_n = b$, so $\sum_{j=1}^n (F(b_j) - F(a_j)) = F(b) - F(a)$.

Generally speaking, if $\{I_i\}_{i=1}^n$ and $\{J_j\}_{j=1}^m$ are disjoint finite sets of intervals such that $\bigcup_{i=1}^n I_i = \bigcup_{j=1}^m J_j$, then

$$\sum_{i=1}^{n} \mu_0(I_i) = \sum_{i=1}^{n} \sum_{j=1}^{m} \mu_0(I_i \cap J_j)$$
$$= \sum_{j=1}^{m} \mu_0(J_j).$$

Now, we must show that if $\{I_j\}_{j=1}^{\infty}$ is a sequence of disjoint h-intervals with $\bigcup_{j\geq 1} I_j \in \mathcal{A}$, then $\mu_0(\bigcup_{j\geq 1} I_j) = \sum_{j>1} \mu_0(I_j)$.

Since $\bigcup_{j\geq 1} I_j$ is a finite union of h-intervals, we may partition $\{I_j\}_{j\geq 1}$ into finitely many subfamilies such that the union in each subfamily is a single h-interval. Using the finite additivity of μ_0 , we may assume that $\bigcup_{j=1}^{\infty} I_j$ is an interval I=(a,b]. We thus have

$$\mu_0(I) = \mu_0 \left(\bigcup_{j=1}^n I_j \right) + \mu_0 \left(I \setminus \bigcup_{j=1}^n I_j \right)$$

$$\geq \mu_0 \left(\bigcup_{j=1}^n I_j \right)$$

$$= \sum_{j=1}^n \mu_0(I_j).$$

Taking limits, we get $\mu_0(I) \ge \sum_{j \ge 1} \mu_0(I_j)$.

To prove the reverse inequality, we suppose a and b are finite, and fix $\varepsilon > 0$. Since F is right-continuous, there exists $\delta > 0$ such that $F(a + \delta) - F(a) < \varepsilon$, and if $I_j = (a_j, b_j]$, then for each j there is $\delta_j > 0$ such that $F(b_j + \delta_j) - F(b_j) < \varepsilon 2^{-j}$.

The open intervals $(a_j, b_j + \delta_j)$ cover the compact set $[a + \delta, b]$, so there is a finite subcover. By discarding $(a_j, b_j + \delta_j)$ contained in larger ones, and relabeling indices, we may assume that

- the intervals $(a_1, b_1 + \delta_1), \ldots, (a_N, b_N + \delta_N)$ cover $[a + \delta, b]$;
- $b_j + \delta_j \in (a_{j+1}, b_{j+1} + \delta_{j+1})$ for each j.

Then,

$$\mu_{0}(I) < F(b) - F(a + \delta) + \varepsilon$$

$$\leq F(b_{N} + \delta_{N}) - F(a_{1}) + \varepsilon$$

$$= F(b_{N} + \delta_{N}) - F(a_{N}) + \sum_{j=1}^{N-1} (F(a_{j+1}) - F(a_{j})) + \varepsilon$$

$$\leq F(b_{N} + \delta_{N}) - F(a_{N}) + \sum_{j=1}^{N-1} (F(b_{j} + \delta_{j}) - F(a_{j})) + \varepsilon$$

$$< \sum_{j=1}^{N} (F(b_{j}) + \varepsilon 2^{-j} - F(a_{j})) + \varepsilon$$

$$< \sum_{j=1}^{\infty} \mu_{0}(I_{j}) + 2\varepsilon.$$

Since ε is arbitrary, we are done for the case that a and b are finite.

If $a=-\infty$, then for any $M<\infty$, the intervals $(a_j,b_j+\delta_j)$ cover [-M,b], so the same reasoning gives $F(b)-F(-M)\leq \sum_{j=1}^\infty \mu_0(I_j)+2\varepsilon$, whereas if $b=\infty$, we obtain $F(M)-F(a)\leq \sum_{j=1}^\infty \mu_0(I_j)+2\varepsilon$. Our desired result follows from taking $\varepsilon\to 0$ and $M\to\infty$.

This allows us to establish the correspondence between increasing and right-continuous functions and Borel measures.

Theorem: If $F: \mathbb{R} \to \mathbb{R}$ is an increasing, right-continuous function, then there is a unique Borel measure μ_F on \mathbb{R} such that $\mu_F((a,b]) = F(b) - F(a)$ for all a,b. If G is another such function, then $\mu_F = \mu_G$ if and only if F - G is constant.

Conversely, if μ is a Borel measure on $\mathbb R$ that is finite on bounded sets, and we define

$$F(x) = \begin{cases} \mu((0, x]) & x > 0\\ 0 & x = 0,\\ -\mu((x, 0]) & x < 0 \end{cases}$$

then F is increasing and right-continuous, with $\mu = \mu_F$.

Proof. We know that each F induces a premeasure on A by the previous proposition, and by definition, G induces the same premeasure if and only if F - G is constant. These premeasures are σ -finite, since

$$\mathbb{R} = \bigcup_{j=-\infty}^{\infty} (j, j+1].$$

Therefore, the induced measure μ_F on $\mathcal{B}_{\mathbb{R}}$ is unique by the Caratheodory extension theorem.

The last assertion follows from the fact μ is monotonic, and continuous from both above and below, so that F is continuous for both $x \geq 0$ and x < 0. Since $\mu = \mu_F$ on \mathcal{A} , we have $\mu = \mu_F$ on $\mathcal{B}_{\mathbb{R}}$ by the uniqueness condition in the Caratheodory extension theorem.

Definition. If F is an increasing and right-continuous function, then the completion of the measure μ_F , which we write λ_F , is known as the Lebesgue-Stieltjes measure associated to F.

We denote the σ -algebra associated to λ_F as \mathcal{M}_{λ} . For any $E \in \mathcal{M}_{\lambda}$, we have

$$\lambda_F(E) = \inf \left\{ \sum_{j=1}^{\infty} (F(b_j) - F(a_j)) \mid E \subseteq \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}$$
$$= \inf \left\{ \sum_{j=1}^{\infty} \lambda_F((a_j, b_j)) \mid E \subseteq \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}.$$

As it turns out, we are allowed to replace the h-intervals in the formula for for $\lambda_F(E)$ with open intervals. Note that in Real Analysis II, we defined the Lebesgue measure through this method.

Lemma: For any $E \in \mathcal{M}_{\lambda}$, we have

$$\lambda_F(E) = \inf \left\{ \sum_{j=1}^{\infty} \lambda_F((a_j, b_j)) \mid E \subseteq \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}.$$

Proof. We call the quantity on the right $\nu(E)$. Let $E \subseteq \bigcup_{j=1}^{\infty} (a_j, b_j)$. Each (a_j, b_j) is a countable disjoint union of h-intervals of the form $I_{j,k} = (c_{j,k}, c_{j,k+1}]$, where $(c_{j,k})_k$ is a sequence with $c_{j,1} = a_j$ and $c_{j,k} \to b_j$. Thus, $E \subseteq \bigcup_{j,k=1}^{\infty} I_{j,k}$, so

$$\sum_{j=1}^{\infty} \lambda_F((a_j, b_j)) = \sum_{j,k=1}^{\infty} \lambda_F(I_{j,k})$$
$$\geq \lambda_F(E),$$

so $\nu(E) \geq \lambda_F(E)$.

On the other hand, given $\varepsilon > 0$, there exists $\{(a_j, b_j]\}_{j \ge 1}$ such that $E \subseteq \bigcup_{j \ge 1} (a_j, b_j]$ and $\sum_{j \ge 1} \lambda_F((a_j, b_j]) \le \lambda_F(E) + \varepsilon$. For each j, right-continuity gives $\delta_j > 0$ such that $F(b_j + \delta_j) - F(b_j) < \varepsilon 2^{-j}$.

Then, $E \subseteq \bigcup_{j>1} (a_j, b_j + \delta_j)$, and

$$\sum_{j\geq 1} \lambda_F((a_j, b_j + \delta_j)) \leq \sum_{j\geq 1} \lambda_F((a_j, b_j]) + \varepsilon$$
$$\leq \lambda_F(E) + 2\varepsilon,$$

so
$$\nu(E) \le \mu(E)$$

Now we may understand the regularity of the Lebesgue–Stieltjes measure.

Theorem: Let λ_F be a Lebesgue–Stieltjes measure on \mathbb{R} , and let $E \in \mathcal{M}_{\lambda}$. Then, the following hold:

- (a) For all $\varepsilon > 0$, there exists $U \subseteq \mathbb{R}$ open with $E \subseteq U$ and $\lambda_F(U \setminus E) < \varepsilon$.
- (b) There exists $V \subseteq \mathbb{R}$ G_{δ} with $E \subseteq V$ and $\lambda_F(V \setminus E) < \varepsilon$.
- (c) For all $\varepsilon > 0$, there exists $C \subseteq \mathbb{R}$ closed with $C \subseteq E$ and $\lambda_F(E \setminus C) < \varepsilon$.

(d) There exists $F \subseteq \mathbb{R}$ F_{σ} with $E \subseteq F$ and $\lambda_F(F \setminus E) < \varepsilon$.

Proof.

(a) Let $\varepsilon > 0$. By the previous theorem, and the definition of the outer measure, we have a set $\{(a_j, b_j)\}_{j=1}^{\infty}$ such that $E \subseteq \bigcup_{j>1} (a_j, b_j)$, and

$$\lambda_F(E) + \varepsilon > \sum_{j=1}^{\infty} \lambda_F((a_j, b_j))$$
$$\geq \lambda_F\left(\bigcup_{j=1}^{\infty} (a_j, b_j)\right),$$

so we set $U = \bigcup_{j>1} (a_j, b_j)$.

Now, if $\lambda_F(E) < \infty$, then $\lambda_F(U \setminus E) = \lambda_F(U) - \lambda_F(E) < \varepsilon$. Meanwhile, if $\lambda_F(E) = \infty$, we partition to get $E = \bigsqcup_{k \geq 1} E_k$ with $\lambda_F(E_k) < \infty$, and find U_k such that $\lambda_F(U_k \setminus E_k) < \varepsilon 2^{-k}$. Setting $U = \bigcup_{k \geq 1} U_k$, we get

$$\lambda_F(U \setminus E) = \lambda_F \left(\bigcup_{k \ge 1} (U_k \setminus E_k) \right)$$

$$\le \sum_{k \ge 1} \lambda_F(U_k \setminus E_k)$$

$$< \sum_{k \ge 1} \varepsilon 2^{-k}$$

$$= \varepsilon$$

(b) For each n, we find $U_n \subseteq \mathbb{R}$ such that $E \subseteq U_n$ and $\lambda_F(U_n \setminus E) < 1/n$. Setting $V = \bigcap_{n>1} U_n$, we find

$$\lambda_F(V \setminus E) = \lambda_F \left(\bigcap_{n \ge 1} (U_n \setminus E) \right)$$

$$\le \lambda_F(U_k \setminus E)$$

$$< 1/k,$$
for all k

so $\lambda_F(V \setminus E) = 0$.

- (c) We may use the same methodology on E^c , and take complements.
- (d) We may use the same methodology on E^c , and take complements, using the fact that the complement of a G_{δ} set is a F_{σ} set.

Theorem: Let $E \in \mathcal{M}_{\lambda}$. Then,

$$\lambda_F(E) = \inf \{ \lambda_F(U) \mid E \subseteq U, U \text{ open} \}$$

= \sup \{ \lambda_F(K) \cent | K \subseteq E, K \compact \}.

The former equality is known as outer regularity, and the latter equality is known as inner regularity.

Proof. We know that for all $\varepsilon > 0$, there is $E \subseteq \bigcup_{j \ge 1} (a_j, b_j)$, and $\sum_{j \ge 1} \lambda_F((a_j, b_j)) \le \lambda_F(E) + \varepsilon$. Setting $U = \bigcup_{j \ge 1} (a_j, b_j)$, we have $\lambda_F(U) \le \lambda_F(E) + \varepsilon$. Since $E \subseteq U$, we also have $\lambda_F(E) \le \lambda_F(U)$, so the definition of outer regularity is satisfied.

We now show inner regularity. If E is bounded, given $\varepsilon > 0$, there is $C \subseteq E$ closed with $\lambda_F(E \setminus C) < \varepsilon$. Since C is bounded, C is compact, so $\lambda_F(E) - \varepsilon < \lambda_F(C)$, and so we have inner regularity whenever E is bounded.

If E is not bounded, we set $E_n = E \cap [-n, n]$. We have $E_1 \subseteq E_2 \subseteq \cdots$, and $E = \bigcup_{n \ge 1} E_n$. Therefore, $\lambda_F(E) = \sup(\lambda_F(E_n))$. There are two cases.

If $\lambda_F(E) = \infty$, then we may find compact $K_n \subseteq E_n$ such that $\lambda_F(E_n) - 1 < \lambda_F(K - n)$, so that $\lambda_F(K_n) \to \infty$.

If $\lambda_F(E) < \infty$, then given $\varepsilon > 0$, we find N such that $\lambda_F(E) - \varepsilon/2 < \lambda_F(E_n)$. We find compact K with $K \subseteq E_n$ and $\lambda_F(E_n) - \varepsilon/2 < \lambda_F(K)$. Thus, $K \subseteq E$ is compact, with $\lambda_F(E) - \varepsilon < \lambda_F(K)$.

Proposition: If $E \in \mathcal{M}_{\lambda}$, and $\lambda_F(E) < \infty$, then for every $\varepsilon > 0$, there is a set A that is a finite union of open intervals such that $\lambda_F(E \triangle A) < \varepsilon$.

Proof. By outer regularity, there is $U \subseteq \mathbb{R}$ open such that $E \subseteq U$, and $\lambda_F(U \setminus E) < \varepsilon/2$. Every open subset of \mathbb{R} is a countable disjoint union of open intervals, so that $\lambda_F(\bigsqcup_{j>1}((a_j,b_j)\setminus E))<\varepsilon$.

We find N such that
$$\sum_{j=N+1}^{\infty} \lambda_F((a_j, b_j)) < \varepsilon/2$$
, and set $A = \bigsqcup_{j=1}^{N} (a_j, b_j)$.

Definition. The Lebesgue measure is defined to be the Lebesgue–Stieltjes measure associated to the function F(x) = x. We denote it by m.

The domain of m is known as the class of Lebesgue-measurable sets, denoted \mathcal{L} .

Theorem: If $E \in \mathcal{L}$, then $E + s \in \mathcal{L}$ and $rE \in \mathcal{L}$ for all $r, s \in \mathbb{R}$. Moreover, m(E + s) = m(E), and m(rE) = |r|m(E).

Proof. Since open intervals are invariant under translations and dilations, so is $\mathcal{B}_{\mathbb{R}}$. For $E \in \mathcal{B}_{\mathbb{R}}$, we let $m_s(E) = m(E+s)$, and $m^r(E) = m(rE)$.

Since m_s and m^r agree with m and |r|m on finite unions of intervals, they agree on $\mathcal{B}_{\mathbb{R}}$ by the Caratheodory extension theorem. In particular, whenever $E \in \mathcal{B}_{\mathbb{R}}$, and m(E) = 0, then m(E+s) = m(rE) = 0, so it follows that the class of Lebesgue-null sets is preserved under translations and dilations. Since all members of \mathcal{L} are unions of a null set and a Borel set, it follows that \mathcal{L} is preserved under translations and dilations. Therefore, m(E+s) = m(E) and m(rE) = |r|m(E) for all $E \in \mathcal{L}$.

Cantor-Lebesgue Function

Next, we turn our attention to the question of non-measurable subsets. Specifically, what is the criterion for the existence of a non-measurable subset of the real numbers.

We will establish Vitali's Theorem, which gives a sufficient condition for non-measurable subsets of any subset of \mathbb{R} , and then use this to construct^{II} a set that is Lebesgue-measurable but not Borel-measurable.

First, recall that the Cantor set, \mathfrak{C} consists of all $x \in [0,1]$ such that the base 3 expansion $x = \sum_{j \geq 1} a_j 3^{-j}$ is such that $a_j \in \{0,2\}$.

^{II}Well, "construct" is a strong word.

Since we may map \mathfrak{C} onto [0,1] by taking $a_j \mapsto a_j/2$ for each $j \geq 0$, we see that \mathfrak{C} is uncountable, and that $m(\mathfrak{C}) = 0$. Therefore, every subset of \mathfrak{C} is of measure zero (since Lebesgue measure is complete), meaning that the cardinality of \mathcal{L} is $2^{2^{\aleph_0}}$. Meanwhile, a result from descriptive set theory shows that $\mathcal{B}_{\mathbb{R}}$ has cardinality 2^{\aleph_0} , so there exists some Lebesgue-measurable set that isn't Borel-measurable.

However, this is kind of an unsatisfactory solution to the question of a subset of \mathbb{R} that is Lebesgue-measurable but not Borel-measurable. We will construct this non-measurable subset using Vitali's theorem.

Theorem (Vitali): Given $E \subseteq \mathbb{R}$ with $m^*(E) > 0$, there exists $N \subseteq E$ with $N \notin \mathcal{L}$.

Proof. First, we assume $E \subseteq [-a,a]$, and we create an equivalence relation on E by defining $x \sim y$ if $x-y \in \mathbb{Q}$. We have

$$E = \bigsqcup_{i \in I} [x_i]_{\sim}.$$

Set $N = \{x_i\}_{i \in I}$ — i.e., select a family of representatives of equivalence classes for \sim . We claim that N is not measurable.

Let $\{r_k\}_{k=1}^{\infty}$ be an enumeration of the rationals inside $\mathbb{Q} \cap [-2a, 2a]$. The $\{r_k + N\}_{k=1}^{\infty}$ are pairwise disjoint, and

$$E \subseteq \bigsqcup_{k=1}^{\infty} r_k + N,$$

since for any $x \in E$, there is some $x_i \in N$ such that $x \sim x_i$, meaning $x - x_i \in \mathbb{Q} \cap [-2a, 2a]$, and $x - x_i = r_k$ for some k, meaning $x \in r_k + N$.

If N were measurable, then

$$0 < m^*(E)$$

$$\leq m^* \left(\bigsqcup_{k=1}^{\infty} r_k + N \right)$$

$$= \sum_{k=1}^{\infty} m^*(r_k + N)$$

$$= \sum_{k=1}^{\infty} m^*(N)$$

$$= \sum_{k=1}^{\infty} m(N).$$

Furthermore, we must have $m(N) \le m^*(E) \le 2a$. This yields a contradiction, as either m(N) = 0, giving $m^*(E) = 0$, which is a contradiction, or $m(N) \ne 0$, giving $m^*(E) = \infty$.