1 Definition: Transition System

A **planning task** is a 4-tuple $\Pi = \langle V, I, O, \gamma \rangle$

A transition system is a 6-tuple $T = \langle S, L, c, T, s_0, S^* \rangle$ where:

- S: finite set of states
- L: finite set of transition labels
- $c: L \mapsto \mathbb{R}_0^+$: label cost function
- $T \subseteq S \times L \times S$: transition relation
- s₀ ∈ S: initial state
- $S^* \subseteq S$: set of goal states

1.1 Forms and Properties

1.1.1 Heuristics

- Admissable: $h(s) \le h^*(s)$
- Consistent: $h(s) \leq c(s,s') + h(s')$
- Goal aware: $h(s \in S^*) = 0$
- Safe: $h(s)=\infty \to h^*(s)=\infty$

1.1.2 Task forms and Misc.

- Positive normal form: All ops and goal are positive and flat
- o is positive if pre(o) and eff(o) are positive
- A logical proposition is positive if \neg doesn't appear (including \leftarrow and \leftrightarrow
- o is flat, if eff(o) is flat (i.e. contains only atomics or $(x \triangleright y)$)
- STRIPS: If all ops are STRIPS and goal follows: $\bigwedge_{v \in V} v$
- o is STRIPS if pre(o) follows same form, and eff(o) is atomic.
- i-g Form: STRIPS form. $\{i,g\}\subseteq V.$ $I:=\{i\}.$ $\gamma:=\{g\}.$ $\forall (o\in O)(|\mathrm{pre}(o)|>0)$
- Any task can be made i-g form trivially, if already STRIPS.
- Transition Normal Form (TNF): ∀(o ∈ O)(vars(eff(o)) = vars(pre(o))) and vars(γ) = V.
- This can be achieved by 1) add auxiliary u to every dom(v)
- 2) For each variable and value, add an operator than converts it to u for zero cost
- 3) For all o, if a variable is in pre, but not in eff add it with the same value. If v in eff but not in pre, add v=u in pre
- Algorithm is sound → plans are correct, and "unsolveable" answer is correct.

1.2 On-Set and Dominating states

- The on-set is the set of propositional variables that are true in a interpretation.
- Domainiting interpretations for $\mathrm{on}(s)\subseteq\mathrm{on}(s'), s,s'\in S$

1.3 Complexity

- $P \subseteq NP \subseteq PSPACE = NPSPACE$
- (PlanEx)istance ≤ (B)ounded (C)ost PlanEx
- (PlanEx)istance ∈ PSPACE
- · True for both optimal and satisfycing

1.4 Search

- · Uninformed: DFS, BFS, Iterative DFS
- Heuristic: Greedy BFS, A*, W-A*, IDA*
- Local Heuristic: Hill climbing, Sim. anneling, Beam

2 Satisfiability & Equivalence

```
\begin{split} \varphi \text{ satisfiable iff } \exists I:I\models\varphi\\ \varphi \text{ valid iff } \forall I:I\models\varphi\\ \varphi\models\psi \text{ iff } \forall I:I\models\varphi\to I\models\psi \end{split}
```

$\varphi \equiv \psi \text{ iff } \varphi \models \psi \wedge \psi \models \varphi$

Let $\varphi=\varphi_1\wedge\ldots\wedge\varphi_n$ be a conjunction of atoms, and o's add effects be $\{a_1,\ldots,a_k\}$, and delete effects $\{d_1,\ldots,d_l\}$

$$\operatorname{sregr}(\varphi,o) \coloneqq \left\{ ^{\perp \text{ if } \exists (i,j)\varphi_i = d_j}_{\operatorname{pre}(o) \wedge (\{\varphi_1,\ldots,\varphi_n\}/\{a_1,\ldots,a_k\}) \text{ otherwise}} \right.$$

4 SAT Planning style-algorithm

Algorithm 1: SAT Planning

```
 \begin{array}{lll} \text{1:} & & \text{procedure } \text{SATPLAN}(\text{``PI''}) \\ \text{2:} & & \text{for } \text{Tin } [0,1,2,...] \text{ do} \\ \text{3:} & & \varphi \leftarrow \text{build\_sat\_formula}(\Pi,T) \\ \text{4:} & & I \leftarrow \text{sat\_solver}(\varphi) \\ \text{5:} & & \text{if } \text{I'= none then} \\ \text{6:} & & \text{return } \text{extract\_plan}(\Pi,T,I) \\ \text{7:} & & \text{end} \\ \text{8:} & & \text{end} \\ \text{9:} & & \text{end} \\ \end{array}
```

4.1 SAT: Operator Selection Clauses

- oⁱ_i (operator chosen at step i)
- $o_1^i \lor ... \lor o_n^i$ for $1 \le i \le T$
- $\neg o_j^i \lor \neg o_k^i$ for $1 \le i \le T, 1 \le j < k \le n$ (at most one operator per step)
- This is equal to ¬(oⁱ_j ∧ oⁱ_k)

4.2 Transition Clauses

recondition

g • $\neg o^i \lor \operatorname{pre}(o)^{i-1}$ for $1 \le i \le T, o \in O$

Positive/Negative Effects Clauses:

- $\neg o^i \lor \neg \alpha^{i-1} \lor v^i$
- $\bullet \ \neg o^i \lor \alpha^{i-1} \lor \neg \delta^{i-1} \lor \neg v^i$

Positive/Negative Frame Clauses:

- $\bullet \ \neg o^i \vee \neg v^{i-1} \vee \delta^{i-1} \vee v^i$
- $\neg o^i \lor o^{i-1} \lor v^{i-1} \lor \neg v^i$

where $\alpha = \operatorname{effcond}(v, \operatorname{eff}(o)) \delta = \operatorname{effcond}(\neg v, \operatorname{eff}(o))$

5 BDD Complexity

	Hash table	Formula	BDD
s ∈ S?	O(k)	O(S)	O(k)
$S := S \cup \{s\}$	O(k)	O(k)	O(k)
$S := S \setminus \{s\}$	O(k)	O(k)	O(k)
S ∪ S'	O(k S + k S')	0(1)	0(s s')
S ∩ S'	O(k S + k S')	0(1)	0(s s')
S \ S'	O(k S + k S')	0(1)	0(s s')
s	O(k2 ^k)	0(1)	0(s)
$\{s \mid s(v) = T\}$	O(k2k)	0(1)	0(1)
S = Ø?	0(1)	co-NP-complete	0(1)
S = S'?	O(k S)	co-NP-complete	0(1)
S	0(1)	#P-complete	0(s)

6 BDD Operators

6.1 Conditioning

Conditioning variable v in formula φ to T or F:

- $\varphi\left[\frac{T}{v}\right]$ or $\varphi\left[\frac{F}{v}\right]$: restrict v to a given value
- Time: $O(|\varphi|)$

6.2 Forgetting

Forgetting (existential abstraction): allow both v=T and v=F and eliminate v.

- On formulas: $\exists v\varphi = \varphi\left[\frac{T}{v}\right] \vee \varphi\left[\frac{F}{v}\right]$
- On sets: $\exists vS = S\left[\frac{T}{v}\right] \cup S\left[\frac{F}{v}\right]$
- Time: $O(|\varphi|)$

6.3 Renaming

Renaming X to Y in formula φ , written $\varphi[X \to Y]$: replace all X by Y in φ (Y not present in φ).

• Time: $O(|\varphi|)$

7 BDD Transitions

7.1 Transition BDD

$$T_{V(O)} = \bigvee_{o \in O} t_{V(o)}$$

$$t_{V(O)} = \operatorname{pre}(o) \land \bigwedge_{v \in V} (\operatorname{effcond}(v, e) \lor (v \land \neg \operatorname{effcond}(\neg v, e)) \leftrightarrow v')$$

7.2 Apply

Algorithm 2: BDD Apply

```
 \begin{array}{lll} \textbf{1:} & \textbf{procedure Apply}(\text{reached}, O) \\ \textbf{2:} & B \leftarrow T_{V(O)} \\ \textbf{3:} & B \leftarrow \text{bdd-intersection}(B, \text{reached}) \\ \textbf{4:} & \textbf{for } v \in V \ \textbf{do} \\ \textbf{5:} & B \leftarrow \text{bdd-forget}(B, v) \\ \textbf{6:} & \textbf{end} \\ \textbf{7:} & \textbf{for } v \in V \ \textbf{do} \\ \textbf{8:} & B \leftarrow \text{bdd-rename}(B, v', v) \\ \textbf{9:} & \textbf{end} \\ \textbf{10:} & \textbf{return B} \\ \textbf{11:} & \textbf{end} \\ \end{array}
```

By then taking the union of the out and the previous reached, you get the reached for the following timestep.

8 Relaxed Task Graph (RTG)

```
\begin{aligned} o_1 &= \langle c \vee (a \wedge b), c \wedge ((c \wedge d) \triangleright e), 1 \rangle \\ o_2 &= \langle \top, f, 2 \rangle \\ o_3 &= \langle f, g, 1 \rangle \\ o_4 &= \langle f, h, 1 \rangle \end{aligned}
```


8.1 h^{max} & h^{add}

- $h^{\mathrm{max}} < h^+ < h^{\mathrm{FF}} < h^{\mathrm{add}}$
- $\bullet \ h^{\max(s)} = \infty \leftrightarrow h^{+(s)} = \infty \leftrightarrow h^{\mathrm{FF}(s)} = \infty \leftrightarrow h^{\mathrm{add}(s)} = \infty$
- h^{\max} and $h^{\mathrm{add}} \rightarrow$ admissible and consistent
- h⁺ and h^{FF} → NOT admissible and consistent
- · All are safe and goal-aware.

Above, only nodes where h^{\max} (left) and h^{add} (right) differ are recorded.

- h^{max} : Pick the max predecessor at AND node, and the min at OR
- hadd: Add the predecessor at AND node, and pick the min at OR
- Both can be computed efficiently by expanding the minimum/ newest node that CAN be updated

8.2 h^{FF} and Best Achiever Graphs (G)

- BAG can be achieved by removing all incoming edges into a OR node, except the minimum cost one $\,$
- $h^{\rm FF}$ can be achieved by adding all operators participating in the $G^{\rm add}$ for $h^{\rm add}$
- G are also useful for analysis when $h^{\rm add}$ overapprox and when $h^{\rm max}$ under approx.

9 Invariant/Mutex/FDR

- · Validating invariant is AS HARD as planning.
- Mutex group is a set of variables where AT MOST one can be true

- A Mutex cover is a set of mutex groups where each variable occurs in exactly one group
- · A mutex group is positive if it contains no negations of variables

9.1 Mutex-based Reformulation of Propositional

Given a conflict-free propositional planning task Π w/ positive mutex cover $\{G_1, ..., G_N\}$

- In all condition where variable $v \in G_i$ occurs, replace v with $v_{G_i} \coloneqq v$
- In all effects e where variable v ∈ G_i occurs,
- Replace all atomic add effects v with $v_G := v$
- Replace all atomic delete effects ¬v with:
- $-\left(v_{G_i} = v \land \neg \bigvee_{v' \in G_i \setminus \{v\}} \operatorname{effcond}(v', e)\right) \triangleright v_{G_i} := \operatorname{none}$
- Practically, this means, if v_{G_i} is being deleted AND IS NOT BEING SET TO ANOTHER VARIABLE, set it to none. This is keep it conflict-free.

The consistency condition $\operatorname{consist}(e)$ prohibits two simultaneous assignments to the same mutex group.

I.e. $\neg (\operatorname{effcond}(v := d, e) \land \operatorname{effcond}(v := d', e))$

9.2 SAS+

An operator of an FDR operator is a SAS+ operator if

- · pre(o) is a satisfiable conjunction of atoms, and
- eff(o) is a conflict-free conjunction of atomic effects.

An FDR task is a SAS+ task if all operators are SAS+ and the goal is a satisfiable conjunction of atoms

10 Abstraction

- $s \in \gamma \rightarrow \alpha(s) \in \gamma$
- $\langle s, o, s' \rangle \in \mathcal{T} \rightarrow \langle \alpha(s), o, \alpha(s') \rangle \in \mathcal{T}_{\alpha}$
- Abstraction are composable, i.e. $(\beta \circ \alpha)$ is a valid abstraction.
- · Abstraction are surjective.
- · Abstraction uses coarsening/refinement terminology.
- $h^{\beta \circ \alpha} < h^{\alpha} < h^*$
- h^α is safe, goal-aware, admissible and consistent.

10.1 Additivity

- Orthogonal α_1 & α_2 : If $\forall (t\in\mathcal{T})(\alpha_1(s)=\alpha_2(t))\vee(\alpha_2(s)=\alpha_2(t)),$ where $t=\langle s,\ell,t\rangle$
- Affect α for ℓ , if $\langle \alpha(s), \ell, \alpha(t) \rangle$, where $\alpha(s) \neq \alpha(t)$

 $h^{\alpha}(\{p \mapsto L, t_A \mapsto R, t_B \mapsto R\}) = 3$

- Also ortogonal if no label affects both abstractions.
- The sum of orthogonal h^{α} is safe, goal-aware, admissible and

10.2 Projections & Pattern Databases

- A projection (π_P) is a special kind of abstraction
- $\pi_P: S \to S'$ is defined as $\pi_{P(s)} := s|_P$ (where $s|_{P(v)} := s(v)$ for all v)
- I.e. we condition a state on a single variable assignment. The heuristic induced by π_P , we call a PDB heuristic (h^P)
- Syntatic projections $(\Pi|_P)$, gives the projected planning task, by practically, removing the variables in the projection, from $\langle P, I|_P, \{o|_P, o \in O\}, \gamma|_P \rangle$

$\begin{array}{c|c} \Pi & \xrightarrow{\quad \text{induced TS} \quad} \mathcal{T}(\Pi) \\ & \downarrow \text{abstract TS} \\ & \downarrow \mathcal{T}(\Pi)^{\pi_p} \\ & \Pi|_p & \xrightarrow{\quad \text{induced TS} \quad} \mathcal{T}(\Pi|_p) & \text{isomorphis} \end{array}$

10.3 PDB Lookup

- PDBs are precomputed before search.
- Is effective done via perfect hashing.
- $\qquad \quad \bullet \ N_i \coloneqq \Pi_{j=1}^{i-1} |\mathrm{dom} \big(v_j \big)|$
- PDB-index(s) := $\sum_{i=1}^{k} N_i \cdot s(v_i)$

11 Merge and Shrink

- Idea
- ▶ 1) Project ∏ to atomic projection
- → 2) Merge two of the resulting transition systems (T|P)
- → 3) Shrink combined T' by abstracting more states
- + 4) Pick the result as the first transition system and go to step (2)

Algorithm 3: Merge and Shrink

```
procedure Merge-and-Shrink(\Pi,B)
                     F \leftarrow F(\Pi)
                    while |F| > 1 do
                           "type" \leftarrow pick-merge-or-shrink(F)
                         if type = merge then
                              \mathcal{T}_1 \leftarrow \operatorname{pick}(\vec{F})
                               \mathcal{T}_{2} \leftarrow \operatorname{pick}(F \setminus \{\mathcal{T}_{1}\})
                              F \leftarrow (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}
                         if type = shrink then
11:
                               \mathcal{T} \leftarrow \operatorname{pick}(F)
                             \begin{array}{l} \beta \leftarrow \text{pick-abstraction(B)} \\ F \leftarrow (F \setminus \{\mathcal{T}\}) \cup \left\{\mathcal{T}^{\beta}\right\} \end{array}
12.
13-
14.
                         end
                     end
15.
                    return F[0]
17:
               end
```

 $\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}}$:

 $S_{\otimes} = S_1 \times S_2$

_

- A finite set $F = \{\mathcal{T}_1, ..., \mathcal{T}_n\}$, where all share ℓ and $\mathrm{cost}(s)$.
- FTS induced by Π is $F(\Pi) = \{\mathcal{T}^{\pi_v} \mid v \in V\}$
- $\bigotimes F \sim \mathcal{T}(\Pi)$ is the transition system that induced it.

11.2 Merge Strategies

- f-preserving strategy
- Combine nodes with identical g and h value
- $\it Rational$: Preserves $\it h$ and overall graph shape
- Tie-breaking criterion, prefer merging high g + h
 Rational: High values heuristic estimates are less likely to be explored by A*, so it can be more inprecise.

11.3 Merge and Shrink - Effective Shrink

This is done by first converting the combined table (which is a cross product of two abstractions) into a linked list. And then...

$\begin{aligned} & list_0 = \{(0,0)\} \\ & list_1 = \{(0,1)\} \\ & list_2 = \{(1,0)\} \\ & list_3 = \{(1,1)\} \\ & list_4 = \{(2,0)\} \\ & list_5 = \{(2,1)\} \\ & list_6 = \{(3,0)\} \\ & list_7 = \{(3,1)\} \end{aligned}$	$\begin{array}{l} list_0 = \{(0,0)\} \\ list_1 = \{(0,1)\} \\ list_2 = \{(1,0),(1,1)\} \\ list_3 = \emptyset \\ list_4 = \{(2,0)\} \\ list_5 = \{(2,1)\} \\ list_6 = \{(3,0)\} \\ list_7 = \{(3,1)\} \end{array}$	_	$\begin{array}{l} \text{list}_0 = \{(0,0)\} \\ \text{list}_1 = \{(0,1)\} \\ \text{list}_2 = \{(1,0),(1,1)\} \\ \text{list}_3 = \emptyset \\ \text{list}_4 = \{(2,0),(2,1), \\ (3,0),(3,1)\} \\ \text{list}_5 = \emptyset \\ \text{list}_6 = \emptyset \\ \text{list}_7 = \emptyset \end{array}$	list ₃ = {(í,
				s ₁ = 0 s ₁ = 1 s ₁ = 2 s ₁ = 3	s ₂ = 0 0 2 3 3	s ₂ = 1

11.4 Merge and Shrink Lookup

· Looking up the heuristic value in a MAS system requires looking up from first single variables and then into the larger merge, i.e.

At the end, our heuristic is represented by six tables:

three one-dimensional tables for the atomic abstractions:												
	Tpackage	L	R	Α	В	T _{truck A}	L	R	T _{truck B}	L	R	
		0	1	2	3		0	1		0	1	

two tables for the two merge and subsequent shrink steps:

T _{m&s}	s ₂ = 0	$s_2 = 1$	T _{m&s}	$s_2 = 0$	$s_2 = 1$	
$s_1 = 0$	0	1	$s_1 = 0$	1	1	
$s_1 = 1$	2	2	$s_1 = 1$	1	0	
$s_1 = 2$	3	3	$s_1 = 2$	2	2	
$s_1 = 3$	3	3	$s_1 = 3$	3	3	

one table with goal distances for the final transition system:

Th	s = 0	s = 1	s = 2	s = 3	
h(s)	3	2	0	1	

11.5 Label Reduction

11.5.1 Definition

- A label reduction $\langle \lambda : L \to L', c' : L \to \mathbb{R}^+ \rangle$, such that $\ell \in$ $L, c'(\lambda(\ell)) \le c(\ell)$
- The label-reduced transition system $\mathcal{T}^{\langle \lambda,c'\rangle}=$ $\langle S, L', c', \{ \langle s, \lambda(\ell), t \rangle \mid \langle s, \ell, t, \rangle \in T \}, s_0, S_* \rangle$

- ℓ is alive in F if all $\mathcal{T}' \in F$ have ℓ , dead otherwise
- ℓ locally subsumes ℓ' in $\mathcal T$ if for all transition $\langle s,\ell',t\rangle$ there is
- It also globally subsumes if this is true in all $\mathcal{T} \in F$
- ℓ and ℓ' are locally equivilant if ℓ locally subsumes ℓ' and vice
- + ℓ and ℓ' are $\mathcal{T}\text{-combinable}$ if there are locally equivilant in all transition systems $\mathcal{T}' \in F \setminus \{\mathcal{T}\}$

11.5.3 Exact Label Reduction

- . The label reduction is exact (No loss in information), if for all $\ell_1, \ell_2 \in L$:
- Either ℓ_1 or ℓ_2 globally subsumes the other
- ℓ_1 and ℓ_2 are \mathcal{T} -combinable for some $\mathcal{T} \in F$

- · Fact landmark: This must be visited at least once
- · Disjunctive Action: One action from the set must be performed
- Network flow: Fact consumption should be balanced.

12.1 Relaxed Task Graph Landmarks

- Causal Landmark λ : for I if $\gamma \models \lambda$ OR if for all plans $\langle o_1,...,o_n \rangle$ at least one $pre(o_i) \models \lambda$
- Causal fact landmark: Same as above, but $\lambda := v$
- · To calculate the RTG landmarks, first instantiate all nodes with all potential landmarks. Then perform this on RTG

$$\mathrm{LM}(n) = \{n\} \bigcap_{n' \to n \in A} \mathrm{LM}(n') \ \ \mathrm{if} \ \mathrm{type}(n) = \vee$$

$$\mathrm{LM}(n) = \{n\} \bigcup_{n' \to n \in A} \mathrm{LM}(n') \; \text{ if } \mathrm{type}(n) = \wedge$$

 $LM(d) = \{d\} \cup LM(o_1)$

12.2 Minimum Hitting Set

- · The minimum hitting set, the minimal cost set of operators such that a for a set of set of operators, each set contains one of the operators selected.
- · This is relevant for combining disjunctive action landmarks, which is not admissible if additively combined.

12.3.1 Justification Graph

- Precondition choice function: P: O → V, maps any operator in a An LP can serve as an upper bound to an IP (LP relaxation).problem task Π to one of it's preconditions.
- Justification graph: $\langle V, E := \{ \langle P(o), a \rangle \mid o \in O, a \in add(o) \} \rangle$

Example (Precondition Choice Function)

 Cut (C ⊆ E): A subset of edges, such that ALL paths i → g contains $e \in C$. Doesn't have to include all.

12.4 LM-Cut Algorithm

Initialize $h^{\text{LM-Cut}}(I) := 0$. Then iterate:

- Compute h^{\max} using a RTG. Stop if $h^{\max}(q) = 0$
- · Compute Justification graph for the P/pcf that chooses the precondition with the MAXIMAL h^{\max} value.
- Determine goal zone V_q (i.e. all nodes with a zero cost path to q).
- Compute the cut L that contains labels of all edges $\langle v, o, v' \rangle$ such that $v \notin V_a, v' \in V_a$, and v CAN be reached from i without traversing V_a . It is guaranteed that cost(L) > 0
- Increase h^{LM-Cut}(I) by cost(L) (i.e. the cost of the cut).
- Decrease cost(o) by cost(L) for all $o \in L$.

round	P(o _{orange})	P(o _{red})	landmark	co
1	d	b	{o _{red} }	2
			h ^{LM-cut} (I)	2

Solving is an NP-hard problem.

- · finite set of integer variables V
- finite set of linear inequalities (constraints) over ${\cal V}$ · Whether it should be minimized or maximized.
- an objective function, which is a linear combination of V

- minimize $3X_{O_1} + 4X_{O_2} + 5X_{O_3}$ subject to
- X_{O4} ≥ 1
- $X_{O_1} + X_{O_2} \ge 1$
- $X_{O_1} + X_{O_2} = 1$ $X_{O_1} + X_{O_3} \ge 1$ $X_{O_2} + X_{O_3} \ge 1$
- $X_{O_1}, X_{O_2}, X_{O_3}, X_{O_4} \ge 0$

Consist of the same as Integer programs, but with real valued variables and constraints.

Can be solved in polynomial time wrt, the number of constraints with SIMPLEX.

• Given a vector of objective coefficience $c = \mathbb{R}^{N \times 1}$, bounds b = $\mathbb{R}^{N \times 1}$, and coefficients $A = \mathbb{R}^{M \times N}$

Optimize: Maximize $c^T x$ subset to $Ax \leq b$ and $x \geq 0$

• The dual to the maximization problem is the minimization (These are equal).

Optimize: Minimize $b^T x$ subject to $A_T x \ge c$ and $x \ge 0$

- · Is admissible.
- Principal: Distribute cost of operators between h such that $\sum_{n=1}^{i=1} \operatorname{cost}_{i(o)} \le \operatorname{cost}(o)$ for all $o \in O$
- Also called the cost partitioning constraint
- · A general cost partitioning the upholds this constraint is admissible.

Example:

- · zero-one cost partitioning: Set cost to one in one abstraction and zero everywhere else
- · uniform cost partitioning: Distribute the cost equally among

mscf: minimum saturated cost function

$$\mathrm{mscf}(o) = \max \left(0, \max_{\substack{\alpha(s) \\ \alpha(s) \neq \alpha(t)}} \left(h^{\alpha}(s) - h^{\alpha}(t) \right) \right)$$

Algorithm

Iterate

- Pick a heuristic h_i that hasn't been picked. Terminate if none is
- Compute h_i given current cost
- Compute scf_i (ideally mscf_i) for h_i

Decrease cost(o) by scf_i(o) for all o

Example:

Compute minimum saturated cost function mscf; for h;

14.2 Relation to LM-Cut

- · LM-Cut computes SCP over disjunctive action landmarks abstraction
- Let Π be a planning task and \mathcal{L} be a disjunctive action landmark. The minimum saturated cost function for \mathcal{L} is:

$$mscf = \begin{cases} \min_{o' \in \mathcal{L}} cost(o') & \text{if } o \in \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

- · The Optimal Cost Partitioning can be calculated as an LP for disjunctive action landmarks.
- . The bound is the cost(o) as defined by the cost partitoning
- · The variables are the cost of the landmark
- · The goal is to maximize their sum.

- . This can be converted to the dual.
- · Instead the variables is whether an operator has been applied.
- · The goal is to minimize the sum of applied operators times their
- ▶ ∑ Applied_o · cost(o)
- The constrain is that all landmarks must be hit.
- $\sum_{c,l}$ Applied_o ≥ 1 for all landmarks L.

•
$$h^G \le h^{PhO} \le h^{OCP}$$

Assuming that you have a PDB, you can optimize them even further with LPs. Operators can be included if they affect an abstraction α i.e., the ℓ moves into a new abstract state $(s \neq t)$

Minimize $X_A + X_B + X_C$ subject to

$$\begin{array}{ll} \text{abst1} & X_A + X_B & \geq h^{\{A,B\}}(s) = 6 \\ \\ \text{abst2} & X_A & + X_C \geq h^{\{A,C\}}(s) = 6 \\ \\ \text{abst3} & X_B + X_C \geq h^{\{B,C\}}(s) = 6 \end{array}$$

⇒ any plan has at least cost 9.

Definition (Flow Constraint)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a task in transition normal form. The flow constraint for atom a in state s is

non-negative constraints $X_A \ge 0, X_B \ge 0, X_C \ge 0$

$$[a \in s] + \sum_{\alpha \in C: \alpha \in eff(\alpha)} Count_{\alpha} = [a \in \gamma] + \sum_{\alpha \in C: \alpha \in are(\alpha)} Count_{\alpha}$$

- Count_o: LP variable for the number of occurrences of operator o.
- Neutral operators either appear on both sides or on none.

16 Operator Counting

The operator-counting integer program IPC for a set C of operator-counting constraints for state s is

Minimize
$$\sum_{o \in O} cost(o) \cdot Count_o$$
 subject to C and C ount > 0 for all $o \in O$.

where O is the set of operators.

The IP heuristic h_c^{IP} is the objective value of IP_C, the LP heuristic h_c^{LP} is the objective value of its LP-relaxation.

If the IP/LP is infeasible, the heuristic estimate is ∞.