# Graphs

# Graphs

- $\blacksquare$  A graph is a pair (V, E), where
  - V is a set of nodes, called vertices
  - **E** is a collection of pairs of vertices, called edges
  - Vertices and edges are positions and store elements

```
V = \{1, 2, ..., 10\}
E = \{(1, 8), (1,9), (2,3), (2,5), (3,4), (3,6), (4,10), (5,6), (6,10), (7,7), (7, 10)\}
```



# **Edge Types**

- Directed edge
  - ordered pair of vertices (u, v)
  - first vertex u is the origin
  - second vertex v is the destination
  - e.g., a flight
- Undirected edge
  - unordered pair of vertices (u,v)
  - e.g., a flight route
- Directed graph
  - all the edges are directed
  - e.g., route network
- Undirected graph
  - all the edges are undirected
  - e.g., flight network



# Applications

- Shortest path finding (navigation systems),
- Minimum spanning tree (communication networks),
- Scheduling and resource allocation
- Social networks
- Flight/Road networks
- Image processing
- Machine Learning
- Game Development and many many more...

# Terminology

- End vertices (or endpoints) of an edge
  - U and V are the endpoints of a
- □ Edges incident on a vertex
  - a, d, and b are incident on V
- Adjacent vertices
  - U and V are adjacent
- Degree of a vertex
  - X has degree 5
- Parallel edges
  - h and i are parallel edges
- Self-loop
  - j is a self-loop



# Terminology (cont.)

#### Path

- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
  - path such that all its vertices and edges are distinct
- Examples
  - $P_1 = (V,b,X,h,Z)$  is a simple path
  - $P_2 = (U,c,W,e,X,g,Y,f,W,d,V)$ is a path that is not simple



# Terminology (cont.)

#### Cycle

- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
  - cycle such that all its vertices and edges are distinct
- Examples
  - $C_1 = (V,b,X,g,Y,f,W,c,U,a,V)$  is a simple cycle
  - C<sub>2</sub>=(U,c,W,e,X,g,Y,f,W,d,V,a,
     U) is a cycle that is not simple



# Properties

#### Property 1

 $\sum_{v} \deg(v) = 2m$ 

Proof: each edge is counted twice

#### Property 2

In an undirected graph with no self-loops and no multiple edges

$$m \leq n (n-1)/2$$

Proof: each vertex has degree at most (n-1)

What is the bound for a directed graph?

#### Notation

*n* number of vertices

*m* number of edges

deg(v) degree of vertex v



#### Example

- n = 4
- m = 6
- $\bullet \deg(v) = 3$

# **Graph ADT**

```
vertex_count(): Return the number of vertices of the graph.
                   vertices(): Return an iteration of all the vertices of the graph.
               edge_count(): Return the number of edges of the graph.
                     edges(): Return an iteration of all the edges of the graph.
               get\_edge(u,v): Return the edge from vertex u to vertex v, if one exists;
                               otherwise return None. For an undirected graph, there is
                               no difference between get_edge(u,v) and get_edge(v,u).
        degree(v, out=True): For an undirected graph, return the number of edges inci-
                               dent to vertex v. For a directed graph, return the number
                               of outgoing (resp. incoming) edges incident to vertex v,
                               as designated by the optional parameter.
incident_edges(v, out=True): Return an iteration of all edges incident to vertex v. In
                               the case of a directed graph, report outgoing edges by
                               default; report incoming edges if the optional parameter
                               is set to False.
      insert_vertex(x=None): Create and return a new Vertex storing element x.
  insert_edge(u, v, x=None): Create and return a new Edge from vertex u to vertex v,
                               storing element x (None by default).
           remove_vertex(v): Remove vertex v and all its incident edges from the graph.
             remove_edge(e): Remove edge e from the graph.
```

## Graph Representations



Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G . (c) The adjacency-matrix representation of G

## Graph Representations



Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

# Performance

| representation   | space | add edge | edge between<br>v and w? | iterate over vertices<br>adjacent to v? |
|------------------|-------|----------|--------------------------|-----------------------------------------|
| list of edges    |       |          |                          |                                         |
| adjacency matrix |       |          |                          |                                         |
| adjacency lists  |       |          |                          |                                         |
|                  |       |          |                          |                                         |

# Subgraphs

- A subgraph S of a graphG is a graph such that
  - The vertices of S are a subset of the vertices of G
  - The edges of S are a subset of the edges of G
- □ A spanning subgraph of G is a subgraph that contains all the vertices of G



Subgraph



Spanning subgraph

# Connectivity

- A graph is connected if there is a path between every pair of vertices
- If G is not connected, a connected component of a graph G is a maximal connected subgraph of G



Connected graph



Non connected graph with two connected components

## Trees and Forests

- □ A tree is an undirected graph T such that
  - T is connected
  - T has no cycles

This definition of tree is different from the one of a rooted tree

- A forest is a collection of disjoint trees.
- The connected components of a forest are trees





**Forest** 

# Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest is a collection of trees that covers all the vertices (nodes) in a graph but avoids cycles.



Graph



Spanning tree

# Depth-First Search



## Depth-First Search

**Idea:** Similar to pre-order traversal of a tree, visit all vertices reachable from an adjacent vertex before visiting another adjacent vertex.

```
Algorithm:

procedure DFS(v,G):

if v is not marked then begin

\{visit\ v\}

Mark v.

for each vertex w adjacent to v do DFS(w,G)

end

end

Initialize each vertex in the graph G to be "unmarked".

for each vertex v do DFS(v,G)
```

# Example

- A unexplored vertex
- A visited vertex
- —— unexplored edge
- discovery edge
- --- back edge





# Example (cont.)



#### Exercise

Find the order in which nodes are visited starting from node s having adjacency list given below:

$$adj(s) = [a, c, d],$$
  
 $adj(a) = [],$   
 $adj(c) = [e, b],$   
 $adj(b) = [d],$   
 $adj(d) = [c],$   
 $adj(e) = [s].$ 



## DFS to classify edges in Graphs

There can be 2 categories of edges: I) discovery edge or tree edge II) non-tree edges

In an undirected graph there is only one type of non-tree edge: back edge

In directed graph, there are 3 possible kinds of non-tree edges:

- a) back edges, which connect a vertex to an ancestor in the DFS tree
- b) **forward edges**, which connect a vertex to a descendant in the DFS tree
- c) **cross edges**, which connect a vertex to a vertex that is neither its ancestor nor its descendant

## Find the various types of edges



#### Exercise

In the graph below, build the adjacency list assuming it is ordered so that lower numbered vertices come before higher numbered ones. Give the order of nodes visited.



#### Exercise

In the graph below, build the adjacency list assuming it is ordered alphabetically. Give the order of nodes visited and show the classification of each edge.



# Properties of DFS

#### Property 1

DFS(G, v) visits all the vertices and edges in the connected component of v

#### Property 2

The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v



# Analysis of DFS

- $\Box$  Setting/getting a vertex/edge label takes O(1) time
- □ Each vertex is labeled twice
  - once as UNEXPLORED
  - once as VISITED
- □ Each edge is labeled twice
  - once as UNEXPLORED
  - once as DISCOVERY or BACK
- □ Method incidentEdges is called once for each vertex
- $\square$  DFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
  - Recall that  $\sum_{v} \deg(v) = 2m$

### Depth-First Search - Applications

- Finding connected components of G
- Finding whether G is connected
- Topological Sorting: This sorting is useful in various scenarios, such as scheduling tasks with dependencies or resolving symbol dependencies in compilers.
- Finding paths between nodes:
- Detecting cycles in undirected graphs
- Other areas: Maze exploration, Network analysis, File system exploration: used to traverse directory structures in a file system

## DFS and Maze Traversal

- ☐ The DFS algorithm is similar to a classic strategy for exploring a maze
  - We mark each intersection, corner and dead end (vertex) visited
  - We mark each passage (edge ) traversed
  - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)



## Breadth-First Search

#### Breadth-First Search

Idea: Similar to level-order traversal of a tree, visit all adjacent vertices before going deeper:

```
procedure BFS(\nu, G)
    Initialize a queue to contain v.
   Mark v.
   while queue is not empty do begin
       DEQUEUE a vertex v
       \{visit v\}
      for each vertex w adjacent to v do begin
           if (w is unmarked) then begin
             Mark w
             ENQUEUE(w)
            end
        end
     end
```

Initialize each vertex in the graph G to be "unmarked".

BFS(v,G) // Call the function

## Example



## Example (cont.)



## Example (cont.)



## **Properties**

**Proposition 14.16:** Let G be an undirected or directed graph on which a BFS traversal starting at vertex s has been performed. Then

- The traversal visits all vertices of G that are reachable from s.
- For each vertex v at level i, the path of the BFS tree T between s and v has i
  edges, and any other path of G from s to v has at least i edges.
- If (u, v) is an edge that is not in the BFS tree, then the level number of v can be at most 1 greater than the level number of u.



## Analysis

Setting/getting a vertex/edge label takes  $\mathbf{O}(1)$  time Each vertex is labeled twice

- once as UNEXPLORED
- once as VISITED

Each edge is labeled twice

- once as UNEXPLORED
- once as DISCOVERY or CROSS

Each vertex is inserted once into a sequence  $L_i$ Method incidentEdges is called once for each vertex BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure

- Recall that  $\sum_{v} \deg(v) = 2m$ 

## **Applications**

Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time

- Compute the connected components of  $\boldsymbol{G}$
- Compute a spanning forest of *G*
- Find a simple cycle in G, or report that G is a forest
- Given two vertices of **G**, find a path in **G** between them with the minimum number of edges, or report that no such path exists

## DFS vs. BFS

| Applications                                         | DFS | BFS |
|------------------------------------------------------|-----|-----|
| Spanning forest, connected components, paths, cycles | √   | √   |
| Shortest paths                                       |     | √   |
| Biconnected components                               | √   |     |





## DFS vs. BFS (cont.)

#### Back edge (v, w)

w is an ancestor of v in the tree of discovery edges

#### Cross edge (v, w)

w is in the same level as
v or in the next level





## Minimum spanning trees

#### **Problem Definition**

Given an undirected, weighted graph G, we are interested in finding a tree T that contains all the vertices in G and minimizes the sum

$$w(T) = \sum_{(u,v) \text{ in } T} w(u,v).$$



## Minimum spanning trees



## Kruskal's algorithm

```
MST-KRUSKAL(G, w)
 1 A = \emptyset
 2 for each vertex v \in G.V
        MAKE-SET(v)
 3
    create a single list of the edges in G.E
    sort the list of edges into monotonically increasing order by weight w
    for each edge (u, v) taken from the sorted list in order
         if FIND-SET(u) \neq FIND-SET(v)
             A = A \cup \{(u, v)\}\
             UNION(u, v)
    return A
```

## Prim's algorithm

```
MST-PRIM(G, w, r)
    for each vertex u \in G.V
2 u.key = \infty
3 u.\pi = NIL
4 r.key = 0
5 \quad Q = \emptyset
6 for each vertex u \in G.V
      INSERT(Q, u)
    while Q \neq \emptyset
       u = \text{EXTRACT-MIN}(Q) // add u to the tree
9
       for each vertex v in G.Adj[u] // update keys of u's non-tree neighbors
10
          if v \in Q and w(u, v) < v.key
11
12
              v.\pi = u
              v.key = w(u, v)
13
               DECREASE-KEY (Q, v, w(u, v))
14
```