CS4384: Automata Theory Homework Assignment 1

Matthew McMillian mgm160130@utdallas.edu

September 6, 2018

1. Let $B \subset N_1$ (given) be a finite set of positive integers and define $\Sigma = \{a, b\}$. Mathematically define a DFA, A, that accepts a string $s \in \Sigma^*$ if and only if $\forall_{i \in B}$, the i^{th} symbol of s is b.

We immediately define a this new DFA's Σ , Q, Q_0 , and F based off the criteria in the question.

 $\Sigma = \{a, b\}$, the alphabet of both sets.

 $Q = [0, n] \cap \mathbb{N}_0$, where $n = \max(B \cup \{0\})$. We define n in such a that the maximum number of states that we need is the maximum number required in B since we can loop back on the final n state as an accepting state after B's criteria is satisfied. We intersect with \mathbb{N}_0 to ensure our set of states are states numbered greater than 0.

 $Q_0 = 0$, our start state is defined to be state 0.

 $F = \{0, n\}$, our set of accepting states. 0 is an accepting state since we must accept the empty set, and n is our final state that satisfies B's requirements.

The transition function can be broken down into 3 parts.

- We define an arbitrary set $S_1 = \{((q, b), q + 1) \mid q, q + 1 \in Q\}$. No matter what state we are in, it is OK to transition to the next state q + 1 if our input is a b, since this will always satisfy B's requirements.
- We define an arbitrary set $S_2 = \{((q, a), q + 1) \mid q \in Q, q + 1 \in Q B\}$. We only want to transition to another state with an a iff we are not transitioning to a state that B requires as a b transition.
- We define an arbitrary set $S_3 = \{((n, \sigma), n) \mid \sigma \in \Sigma\}$. This ensures that our case with the empty set, and our case that we finish looping through B will accept anything after that input.

$$\delta = S_1 \cup S_2 \cup S_3 = \{((q,b), q+1) \mid q, q+1 \in Q\} \cup \{((q,a), q+1) \mid q \in Q, q+1 \in Q - B\} \cup \{((n,\sigma), n) \mid \sigma \in \Sigma\}, \text{ which satisfies all of the cases in the DFA.}$$

Thus, we define $A = (Q, \Sigma, \delta, Q_0, F)$ respectively.

2. Construct a DFA that accepts all binary strings divisible by 5.

For this problem, $\Sigma = \{0,1\}$, and $Q = \{0,1,2,3,4\}$. Our δ , transition function, is defined as $Q \times \Sigma \to Q$, which means we should have $Q \times \Sigma$, 2×5 , transitions in our diagram. Our $F = \{0\}$. We can build a table modeling the relationships that our states should have until we have $Q \times \Sigma$ transitions. Then we can build our DFA out of the table's transitions.

Number	Mod5	Binary	State
1	1	1	1
2	2	10	2
3	3	11	3
4	4	100	4
5	0	101	0
6	1	110	1
7	2	111	2
8	3	1000	3
9	4	1001	4
10	0	1010	5

Now that we have our table, we can begin to build our DFA from it's transitions.

3. Construct an NFA for the language $L = \{w \mid w \text{ contains the substring } aba\}.$

For this NFA, $\Sigma = \{w \mid w \text{ is any character}\}$, and $Q = \{0, 1, 2, 3\}$. Let $\Sigma_a = \Sigma - \{a\}$ and $\Sigma_{ab} = \Sigma - \{a, b\}$. The following NFA satisfies the language L.

- 4. Convert the following NFAs to DFAs.
 - a.) We construct 2 tables, 1 NFA table, and 1 DFA table. We get the values from the NFA table, and iteratively through filling out the DFA table.

Table 1: NFA to DFA

Table 2: NFA		Table 3: DFA				
		_	q	a	b	
<u>q</u>			0	0,1	_	
0 (),1	-	1	_	0	
1	-	0	0.1	0.1	0	
			0,1	0,1	U	

And we can then construct our DFA from the prior table.

b.) Similar to part a.), we construct 2 tables, 1 NFA table, and 1 DFA table. We get the values from the NFA table, and iteratively through filling out the DFA table.

4

And we can then construct our DFA from the prior table.

Table 4: NFA to DFA

Table 5: NFA		ACTIA		Table 6: DFA			
	bie 5: 1			q	a	b	
				0	0,1,2	-	
1	0,1,2	-	0	0,1,2	0,1,2	1,2	
1	0	-		1,2	0,1	1,2	
2	1	1,2		0,1	0,1,2	_	

5. Convert the following DFAs to REs.

We define Adren's Theorm below:

Let P,Q be regular expressions. If $p \neq \emptyset$, then $R = Q + RP = QP^*$.

a.) Regular Expression for DFA a.,

$$q_0 = aq_0 + bq_1 + \epsilon$$

$$q_1 = aq_1 + bq_0 = bq_0a^*$$

$$q_0 = aq_0 + bbq_0a^* + \epsilon$$

$$q_0 = q_0(a + bba^*) + \epsilon$$

$$q_0 = (a + bba^*)^*$$
(by Adren's Theorm)

Thus our regular express for part a.) is $(a + bba^*)^*$

b.) Regular Expression for DFA b.,

$$q_{0} = aq_{1} + bq_{1} + \epsilon$$

$$q_{1} = aq_{1} + bq_{2}$$

$$q_{2} = bq_{1} + aq_{0}$$

$$q_{1} = aq_{1} + b(bq_{1} + aq_{0}) = aq_{1} + bbq_{1} + aq_{0}$$

$$q_{1} = q_{1}(a + bb) + aq_{0} = (a + bb)^{*}aq_{0}$$

$$q_{0} = aa(a + bb)^{*}q_{0} + ba(a + bb)^{*}q_{0} + \epsilon$$

$$q_{0} = q_{0}(aa(a + bb)^{*} + ba(a + bb)^{*}) + \epsilon$$

$$q_{0} = (aa(a + bb)^{*} + ba(a + bb)^{*})^{*}$$
(by Adren's Theorm)

Thus our regular express for part b.) is $(aa(a+bb)^* + ba(a+bb)^*)^*$