HDL em diabéticos e não diabéticos

Amanda Cavalcanti Pinheiro Barbas

2024-11-27

Table of contents

1	Introdução	1
2	Materiais e Métodos	1
3	Resultados	2
4	Tabela de Dados	2
5	Resultados dos Testes Estatísticos	3
6	Discussão	3

1 Introdução

O HDL (lipoproteína de alta densidade) é conhecido por sua relação inversa com doenças cardiovasculares devido às suas funções antiaterogênicas, como o transporte reverso de colesterol, atividades antioxidantes e anti-inflamatórias. No entanto, em estados patológicos como resposta inflamatória aguda, obesidade e doenças inflamatórias crônicas, o HDL pode perder essas funções. Essas condições, incluindo diabetes mellitus, aumentam o risco de doenças cardiovasculares. No diabetes mellitus, o HDL passa por alterações estruturais que comprometem suas funções protetoras, contribuindo para maior risco cardiovascular e disfunção do HDL¹. Assim, esse trabalho busca compreender se há diferença significativa nos níveis de HDL em pacientes diabéticos em comparação com os não diabéticos.

2 Materiais e Métodos

Os dados utilizados neste estudo foram obtidos de um banco de dados pré-existente, que contém informações sobre pacientes diabéticos e não diabéticos. A amostra de pacientes foi dividida em dois grupos: um grupo de pacientes diabéticos e um grupo de controle composto por pacientes não diabéticos. A definição de diabetes foi baseada em hemoglobina glicada > 6.5. A variável de interesse foi o nível de HDL, que foi extraído diretamente do banco de dados. Os dados serão

analisados usando o software RStudio² e a linguagem R^3 . Os gráficos serão plotados com o pacote ggplot2⁴. Para avaliar a normalidade dos dados, será realizado o teste de Shapiro-Wilk. Caso os dados sigam uma distribuição normal, será realizado o teste t de Student para comparação entre os grupos diabéticos e não diabéticos. Caso os dados não sigam uma distribuição normal, a comparação entre os grupos será realizada utilizando o teste de Mann-Whitney. O nível de significância adotado para todas as análises será de 5% (p < 0,05).

3 Resultados

Os níveis de HDL foram comparados entre indivíduos diabéticos e não diabéticos utilizando o teste de Mann-Whitney. Houve uma diferença estatisticamente significativa nos níveis de HDL entre os grupos (W = 7897.5, p = 0.0015). A mediana dos níveis de HDL foi de 41 em diabéticos e 47 em não diabéticos.

4 Tabela de Dados

A tabela a seguir apresenta as primeiras linhas do dataset usado na análise:

	id	chol	stab.glu	hdl	ratio	glyhb	location	age	gender	height	weight	frame	bp.1s	bp.1d	bp.2s	bp.2d	waist	hip	time.ppn
1	1000	203	82	56	3.6	4.31	Buckingham	46	female	62	121	medium	118	59	NA	NA	29	38	720
2	1001	165	97	24	6.9	4.44	Buckingham	29	female	64	218	large	112	68	NA	NA	46	48	360
3	1002	228	92	37	6.2	4.64	Buckingham	58	female	61	256	large	190	92	185	92	49	57	180
4	1003	78	93	12	6.5	4.63	Buckingham	67	male	67	119	large	110	50	NA	NA	33	38	480
5	1005	249	90	28	8.9	7.72	Buckingham	64	male	68	183	medium	138	80	NA	NA	44	41	300
6	1008	248	94	69	3.6	4.81	Buckingham	34	male	71	190	large	132	86	NA	NA	36	42	195

Figure 1: Tabela de Dados - Primeiras Linhas

5 Resultados dos Testes Estatísticos

- 1. Para os diabéticos, o teste de Shapiro-Wilk apresentou $\mathbf{W} = \mathbf{0.8649}, \, \mathbf{p} = 4.169 \mathrm{e}{-06}.$
- 2. Para os não diabéticos, o teste de Shapiro-Wilk apresentou **W** = **0.9217**, p = 5.574e-12.
- 3. O teste de Wilcoxon apresentou $\mathbf{W}=\mathbf{7897.5},\ \mathbf{p}=0.001459,\ \mathrm{indicando}\ \mathrm{uma}\ \mathrm{diferença}\ \mathrm{significativa}\ \mathrm{entre}\ \mathrm{os}\ \mathrm{grupos}.$

6 Discussão

Os resultados indicaram que os indivíduos diabéticos apresentaram níveis significativamente mais baixos de HDL em comparação aos não diabéticos, corroborando a literatura que associa o diabetes a menores níveis de HDL. A redução dos níveis de HDL é um dos aspectos mais comuns e preocupantes observados na síndrome metabólica. A resistência à insulina, a obesidade e os altos níveis de triglicerídeos desempenham papéis centrais na associação com baixos níveis de ${\rm HDL}^5$. Somada à disfunção estrutural e funcional, que compromete suas propriedades antiaterogênicas, como o transporte reverso de colesterol e suas atividades antioxidantes e anti-inflamatórias, verifica-se um maior risco cardiovascular nessa população.

Além disso, o boxplot reflete claramente essa diferença, com valores medianos mais baixos no grupo diabético. Esses achados reforçam a necessidade de uma abordagem clínica que vá além do controle glicêmico, considerando estratégias para preservar ou melhorar os níveis e a funcionalidade do HDL em pacientes diabéticos. Por fim, estudos futuros são necessários para investigar intervenções específicas voltadas à melhoria da funcionalidade do HDL e sua relação com a redução do risco cardiovascular em indivíduos com diabetes mellitus.

- 1. Farbstein, D. & Levy, A. P. HDL dysfunction in diabetes: Causes and possible treatments. Expert review of cardiovascular therapy 10, 353–361 (2012).
- 2. RStudio Team. *RStudio: Integrated Development Environment for r.* (RStudio, PBC., Boston, MA, 2020).
- 3. R Core Team. *R: A Language and Environment for Statistical Computing.* (R Foundation for Statistical Computing, Vienna, Austria, 2021).
- 4. Wickham, H. *Ggplot2: Elegant Graphics for Data Analysis*. (Springer-Verlag New York, 2016).
- 5. Srivastava, R. A. K. Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. *Molecular and cellular biochemistry* **440**, 167–187 (2018).