15.1 Notation

Logic

Table 15.1.1: Logic.

©zyBooks 03/27/25 16:07 241378! Theodore Podewil WMICHCS1310GuptaSpring2025

Symbol	Meaning
٨	Conjunction, logical AND
V	Disjunction, logical OR
_	Negation, logical NOT
\oplus	Exclusive OR
\rightarrow	Conditional
\leftrightarrow	Biconditional
=	Logical equivalence
A	Universal quantifier, "for all"
3	Existential quantifier, "there exists"
··	Therefore

Proofs

©zyBooks 03/27/25 16:07 2413785 Theodore Podewil

WMICHCS1310GuptaSpring2025

Table 15.1.2: Proofs.

_	End of
	proof

Sets

©zyBooks 03/27/25 16:07 2413785 Theodore Podewil

Table 15.1.3: Sets.

Symbol	Meaning	
$A = \{\ldots,\ldots\}$	Roster notation of set $m{A}$	
Ø, {}	Empty set	
A	Cardinality of set $m{A}$	
€	Element of a set	
∉	Not an element of a set	
N	The set of natural numbers $\{0,1,2,\ldots\}$	
Z	The set of integers $\{\ldots,-2,-1,0,1,2,\ldots\}$	
\mathbb{Z}^+	The set of positive integers $\{1,2,\ldots\}$	
Q	The set of rational numbers	
\mathbb{R}	The set of real numbers	
\mathbb{R}^+	The set of positive real numbers	
$A=\{x\in S: P(x)\}$	Set builder notation of $m{A}$ of all $m{x}$ in $m{S}$ such that $m{P}(m{x})$ is true	413
U	Universal set WMICHCS1310GuptaSpring	
\subseteq	Subset	
C	Proper subset	
P(A)	Power set of set $m{A}$	

Λ	Intersection	
U	Union	
_	Complement	
$igcap_{i=1}^n A_i$	Intersection of sets A_1,A_2,\ldots , $A_1\cap A_2\cap A_2\cap A_3\cap A_3\cap A_3\cap A_3\cap A_3\cap A_3\cap A_3\cap A_3$	2413785 ng2025
$igcup_{i=1}^n A_i$	Union of sets A_1,A_2,\ldots , $A_1\cup A_2\cup\ldots$	
_	Set difference	
0	Symmetric difference	
×	Cartesian product	
λ	Empty string	

Functions

Table 15.1.4: Functions.

©zyBooks 03/27/25 16:07 2413785 Theodore Podewil WMICHCS1310GuptaSpring2025

Symbol	Meaning
f:x o Y	Function $m{f}$ that maps domain $m{X}$ to target $m{Y}$
$\lfloor x \rfloor$	Floor of $m{x}$, largest integer less than or equal to $m{x}$
$\lceil x \rceil$	Ceiling of \boldsymbol{x} , smallest integer greater than or equal7/25 16:07 241378 to \boldsymbol{x}
f^{-1}	Inverse function of function $m{f}$
$f\circ g$	Composition of function $m{f}$ with function $m{g}$
I_A	Identity function on $m{A}$

Boolean algebra

Table 15.1.5: Boolean algebra.

Symbol	Meaning
•	Boolean multiplication
+	Boolean addition
_	Boolean complement
=	Boolean equivalence
↑	Boolean NAND
 	Boolean NOR
4	

Relations and digraphs

Table 15.1.6: Relations and digraphs.

Symbol	Me	aning
aRb	Binary relation R be $b\in B$	etween $oldsymbol{a} \in oldsymbol{A}$ and $oldsymbol{ ilde{o}}$ zyBooks 03/27/25 16:07 Theodore Podew
$\langle v_0, v_1, \dots, v_l angle$	Walk from vertex $oldsymbol{v_0}$	to vertex $v_l^{\text{MICHCS1310GuptaSp}}$
$S\circ R$	Composition of rela	tion $m{R}$ on relation $m{S}$
G^k	${m k}$ th graph power of	G
G^+	Transitive closure o	f graph $oldsymbol{G}$
$a \preceq b$	aRb such that $oldsymbol{R}$ is	a partial order
$a \prec b$	aRb such that $oldsymbol{R}$ is	a strict order
$a\sim b$	$m{aRb}$ such that $m{R}$ is relation	an equivalence
[a]	Equivalence class of	f a

Computation

Table 15.1.7: Algorithms and analysis.

Symbol	Meaning
:=	Assignment
f = O(g)	Function $m{f}$ is Oh of function $m{g}$
$f=\Omega(g)$	Function $m{f}$ is Omega of function $m{g}$
$f=\Theta(g)$	Function $m{f}$ is Theta of function $m{g}$

Table 15.1.8: Finite state machines.

Symbol	Meaning _{©zyBooks} 03/27/25 16:07 24137	
Q	Theodore Podewil Finite set of states WMICHC\$1310GuptaSpring202	
$q_0 \in Q$	$oldsymbol{q_0}$ is the start state.	
I	Finite set of input actions	
O	Finite set of output responses	
$\delta:Q imes I o Q imes O$	Transition function	

Table 15.1.9: Turing machines.

Symbol	Meaning
$oldsymbol{Q}$	Finite set of states
Γ	Finite set of tape symbols
$\Sigma\subset \Gamma$	A subset of the tape symbols are input symbols
$q_0 \in Q$	$oldsymbol{q_0}$ is the start state
$q_{ ext{acc}} \in Q$	q _{acc} is the accept state ©zyBooks 03/27/25 16:07 241378
$q_{ ext{rej}} \in Q$	$q_{ m rej}$ is the reject state 310GuptaSpring2025
$\delta: (Q - \{q_{ ext{acc}}, q_{ ext{rej}}\}) imes \Gamma o Q imes \Gamma imes \{L, R\}$	Transition function

Induction and recursion

Table 15.1.10: Notation for sequences and summations.

Symbol	Meaning
$\{a_k\}=a_m,a_{m+1},\ldots,a_n$	Sequence with index \boldsymbol{k} starting at initial index \boldsymbol{m} and ending at final index \boldsymbol{n} yBooks 03/27/25 16:07 241378 Theodore Podewil
$\sum\limits_{k=m}^{n}a_{k}=a_{m}+a_{m+1}+\cdots+a_{n}$	Summation with index $m{k}$ starting at initial index $m{m}$ and ending at final index $m{n}$
!	Factorial

Integer properties

Table 15.1.11: Notation for integer properties.

Symbol	Meaning	
x y	$oldsymbol{x}$ divides $oldsymbol{y}$	
$x \nmid y$	$oldsymbol{x}$ does not divide $oldsymbol{y}$	
$q=n \ { m div} \ d \ r=n \ { m mod} \ d$	For $m{n} = m{q}m{d} + m{r}$, $m{div}$ returns the quotient $m{q}$ when $m{n}$ is divided by $m{d}$, and $m{mod}$ returns the remainder $m{r}$ when $m{n}$ is divided by $m{d}$	
\mathbb{Z}_m	The ring of integers $\{0,1,2,\ldots,m-1\}$	
=	Modular congruence	
$(n)_b$	Base $m{b}$ representation of $m{n}$	

Counting

Table 15.1.12: Counting.

Symbol	Meaning
P(n,r)	Number of ${m r}$ -permutations from a set with ${m n}$ elements
$\binom{n}{r}, C(n,r)$	Number of $m{r}$ -subsets from a set with $m{n}$ elements Theodore P
	WMICHCS1310Gup
4	

Discrete probability

Table 15.1.13: Discrete probability.

Symbol	Meaning	
p(E)	Probability of event $m{E}$	
p(E F)	Probability of event $m{E}$ given event $m{F}$	
X(S)	Random variable with range $oldsymbol{S}$	
E[X]	Expected value of random variable $oldsymbol{X}$	

Graphs and trees

Table 15.1.14: Graphs and trees.

©zyBooks 03/27/25 16:07 2413785

Symbol Meaning WMICHCS1310GuptaSpring2025 V_G Vertex set of graph G Edge set of graph G Undirected edge

(,)	Directed edge	
K_n	Complete graph on $m{n}$ vertices	
C_n	Cycle on $m{n}$ vertices	
Q_n	n -dimensional hypercube ©zyBooks 03/27/25 16:07 241	
$K_{n,m}$	Bipartite graph from $m{n}$ vertices to $m{m}$ ICHCS1310GuptaSpring2 vertices	2025
$\kappa(G)$	Vertex connectivity of graph $m{G}$	
$\lambda(G)$	Edge connectivity of graph $m{G}$	
$\delta(G)$	Minimum degree of graph $m{G}$	
$\Delta(G)$	Maximum degree of graph $m{G}$	
X(G)	Chromatic number of graph $m{G}$	
$\omega(G)$	Clique number of graph $m{G}$	

15.2 Set notation and quantified logical statements

Using set notation to specify the domain of variables in quantified statements.

A **predicate** is a logical statement with a truth value that depends on one or more variables. For example, let P(x) denote the predicate that says "x is a prime number." The truth value of P(x) so depends on the value of the variable x. When a predicate is used in a logical expression, the domain of each variable must be specified. The **domain** of a variable is the set of possible values for the variable. A reasonable domain for the predicate "x is a prime number" is the set of all positive integers.

The domain of each variable used in a logical expression can be defined before the logical expression. Ex:

The domain for variable x is \mathbb{Z}^+ . $\exists x P(x)$

An alternative notation that is equivalent to the example above uses set notation inside the logical expression to denote the domain of a variable.

$$\exists x \in \mathbb{Z}^+$$
 , $P(x)$

This material refers to the notation in which the domain of a variable is defined inside the logical expression as defining the domain of a variable *inline*. The set used in an inline definition of a domain must be explicitly defined beforehand or must use a standard symbol for a mathematical set, such as \mathbb{Z}^+ for the set of positive integers or \mathbb{R} for the set of real numbers.

PARTICIPATION ACTIVITY

15.2.1: Matching equivalent statements.

How to use this tool

$$\exists x \in \mathbb{Z}^+, (x^2 < x) \qquad orall x \in \mathbb{R}^+, (x^2 > x) \qquad orall x \in \mathbb{Z}, (x^2 = x)$$

$$orall x \in \mathbb{R}^+, (x^2 > x)$$

$$orall x \in \mathbb{Z}, (x^2 = x)$$

$$\exists x \in \mathbb{R}, (x^2 < x)$$

The square of every positive real number is greater than that number.

There exists a positive integer whose square is less than that number.

The domain of variable x is the set of real numbers.

 $\exists x (x^2 < x)$

The domain of variable $m{x}$ is the set of integers.

$$\forall x(x^2=x)$$

Reset

PARTICIPATION

15.2.2: Select the equivalent statement.

Select the option that is equivalent to the given expression. The predicate $R(x)$ is defined to mean that person $m{x}$ was given a raise.
1) The domain for variable $m{x}$ is the set of

employees at a company. $\forall x R(x)$

Let $oldsymbol{C}$ be the set of employees at

o a company.

 $\forall x R(x)$

 $\bigcirc\ orall x\in C$, R(x)

Let $oldsymbol{C}$ be the set of employees at

o a company.

 $orall x \in C$, R(x)

Let $oldsymbol{C}$ be the set of employees at

o a company.

 $x \in C$, R(x)

2) The domain for variable \boldsymbol{x} is the set of employees at a company.

 $\exists x \notin R(x)$

Let $oldsymbol{C}$ be the set of employees at

o a company.

 $x \in C$, otin R(x)

 $\bigcirc \exists x \in C$, otin R(x)

Let $oldsymbol{C}$ be the set of employees at

o a company.

 $\exists x \notin R(x)$

Let $oldsymbol{C}$ be the set of employees at

o a company.

 $\exists x \in C$, otin R(x)

©zyBooks 03/27/25 16:07 2413785 Theodore Podewil WMICHCS1310GuptaSpring2025

Inline domain definitions with more than one variable

The domains of the variables in a logical expression can be defined inline, even when there is more than one variable and those variables have different domains. In the example below, variables x and yhave different domains.

The domain for variable x is \mathbb{Z}^+ . The domain for variable y is \mathbb{R}^+ .

 $orall x \exists y \left(y = rac{1}{x}
ight)$

The logical expression below is equivalent to the example above.

$$orall x \in \mathbb{Z}^+$$
 , $\exists y \in \mathbb{R}^+$, $\left(y = rac{1}{x}
ight)$

The domains for two variables can also be the same set as in the example below.

$$orall x \in \mathbb{R}^+$$
 , $\exists y \in \mathbb{R}^+$, $\left(y = rac{1}{x}
ight)$

PARTICIPATION ACTIVITY

15.2.3: Matching equivalent statements.

How to use this tool

$$orall x \in \mathbb{Z}, \exists y \in \mathbb{R}, (y^2+x=2)$$

$$orall y \in \mathbb{Z}, \exists x \in \mathbb{R}, (y^2+x=2)$$

$$orall x \in \mathbb{R}, \exists y \in \mathbb{Z}, (y^2+x=2)$$

$$orall y \in \mathbb{R}, \exists x \in \mathbb{Z}, (y^2+x=2)$$

The domain for variable x is \mathbb{Z} .

The domain for variable y is \mathbb{R} .

 $orall x \exists y (y^2 + x = 2)$

The domain for variable $m{x}$ is $\mathbb{R}^{.S1310 ext{GuptaSpring2025}}$

The domain for variable y is \mathbb{Z} .

$$\forall x \exists y (y^2 + x = 2)$$

The domain for variable y is \mathbb{Z} .

The domain for variable x is \mathbb{R} .

 $\forall y \exists x (y^2 + x = 2)$

The domain for variable $oldsymbol{y}$ is \mathbb{R} . The domain for variable x is \mathbb{Z} . $\forall y \exists x (y^2 + x = 2)$

Reset

PARTICIPATION ACTIVITY

15.2.4: Inline domain definitions with multiple variables.

 $m{A}$ denotes the set of people who work for Company $m{1}$. $m{B}$ denotes the set of people who work for Company 2. The predicate K(x,y) means that person x knows person y. Select the logical expression that is equivalent to the given statement.

- 1) Everyone at Company $\bf 1$ knows someone at Company 2.
 - $\forall x \in A \exists y \in A, K(x, y)$
 - $\bigcirc \ \forall x \in A, \exists y \in B, K(x,y)$
 - igcirc $orall x \in B$, $\exists y \in A, K(x,y)$
- 2) Two people at Company $\mathbf{1}$ do not know each other.
 - $\bigcirc \exists x \in A, \exists y \in A, (\not\in K(x,y) \land \not\in K(y,x))$
 - $\bigcirc \exists x \in A, \exists y \in B, (x \neq y \land \notin K(x, y) \land \notin K(y, x))$
 - $\bigcirc \exists x \in A, \exists y \in A, (x \neq y \land \notin K(x, y) \land \notin K(y, x))$

Additional exercises

15.2.1: Quantified expressions with inline domain definitions: mathematical examples.

Indicate whether each statement is true or false. Justify the answer.

- (a) $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, (x^2 = -y)$
- (b) $\exists x \in \mathbb{R}$, $\exists y \in \mathbb{R}^+$, $(x^2 = -y)$

- (c) $\forall x \in \mathbb{Z}^+$, $\exists y \in \mathbb{R}$, $(x^2 = y)$
- (d) $\forall x \in \mathbb{Z}^+$, $\exists y \in \mathbb{Z}$, $\left(rac{1}{x}
 ight) = y$
- (e) $\exists x \in \mathbb{Z}^+$, $\forall y \in \mathbb{R}$, $(y^2 \geq x)$
- (f) $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, $((x \neq y) \rightarrow x^2 + y^2 > 0)$
- (g) $\exists x \in \mathbb{Z}$, $\forall y \in \mathbb{R}$, $((y \geq x) \to y^2 \geq 2y)$

©zyBooks 03/27/25 16:07 2413785 Theodore Podewil WMICHCS1310GuptaSpring2025

15.2.2: Quantified expressions with inline domain definitions: English to logic.

T= set of students in the third grade at a school.

 ${m F}=$ set of students in the fourth grade at a school.

Define the following predicates.

O(x,y): x is older than y.

S(x,y): x is a sibling of y.

Translate each English sentence into a quantified logical expression. Define the domain of each variable inline.

- (a) **Sam** is older than every student in the third grade.
- (b) Every fourth grader is older than every third grader.
- (c) There is a third grader who is older than at least one fourth grader.
- (d) There is a fourth grader who is older than every third grader.
- (e) Every fourth grader is older than at least one third grader.
- (f) There is a third grader who is a sibling of another third grader.
- (g) There is a third grader who is a sibling of a fourth grader.

©zyBooks 03/27/25 16:07 241378! Theodore Podewil

WMICHCS1310GuptaSpring2025

(h) There is a third grader who does not have a sibling in the fourth grade.