

Computer Graphics (Graphische Datenverarbeitung)

- Sampling & Antialiasing -

WS 2021/2022

Corona

- Regular random lookup of the 3G certificates
- Contact tracing: We need to know who is in the class room
 - New ILIAS group for every lecture slot
 - Register via ILIAS or this QR code (only if you are present in this room)

Overview

- Last lecture
 - Fourier Transform
 - Filtering
- Now
 - Signal Processing
 - Sampling
 - Anti-aliasing & supersampling

Aliasing

- Ray tracing
 - Textured plane with one ray for each pixel (say, at pixel center)
 - No texture filtering: equivalent to modeling with b/w tiles
 - Checkerboard period becomes smaller than two pixels
 - At the Nyquist limit
 - Hits textured plane at only one point, black or white by chance

Discrete Fourier Transform

- N Equally-spaced function samples f_i
 - Function values known only at discrete points
 - Physical measurements
 - Pixel positions in an image!
- Fourier Analysis

$$a_k = 1/N \sum_i \cos(2\pi k i / N) f_i$$
, $b_k = 1/N \sum_i \sin(2\pi k i / N) f_i$

- Sum over all measurement points N
- k=0,1,2, ..., ? Highest possible frequency ?

⇒Nyquist frequency

- Sampling rate N_i
- 2 samples / period ⇔ 0.5 cycles per pixel

$$\Rightarrow k \leq N/2$$

An Example

f(x)

Fourier transformed

Amplitude

Phase

reconstructed

ignoring Phase

using Phase+Amplitude

Spatial vs. Frequency Domain

- Important basis functions
 - Box \leftrightarrow sinc

$$\sin c(x) = \frac{\sin(x\pi)}{x\pi}$$

$$\sin c(x) = 1$$

$$\int \sin c(x) dx = 1$$

- Negative values
- Infinite support
- Triangle \leftrightarrow sinc2
- Gauss ↔ Gauss

Spatial vs. Frequency Domain

- Transform behavior
- Example: box function
 - Fourier transform: sinc
 - Wide box: narrow sinc

Narrow box: wide sinc

What you should learn today

- What is sampling, aliasing?
- How does the Nyquist-Frequency come into play?
- The difference between sampling and reconstruction
- How to fight aliasing by anti-aliasing!

Sampling

The Digital Dilemma

- Nature: continuous signal (2D/3D/4D with time)
 - Defined at every point

- Acquisition: sampling
 - Rays, pixel/texel, spectral values, frames, ...

- Representation: discrete data
 - Discrete points, discretized values

- Reconstruction: filtering
 - Mimic continuous signal

- Display and perception: faithful
 - Hopefully similar to the original signal, no artifacts

not

Constant &∂-Function

- flash

· Comb/Shah

Konstante Funktion

Delta-Funktion

Delta-Funktion

Konstante Funktion

$$h(x) = \sum_{k=-\infty}^{\infty} \delta(x - k\Delta x)$$

$$H(u) = \frac{1}{\Delta x} \sum_{k=-\infty}^{\infty} \delta(u - \frac{k}{\Delta x})$$

Kamm-Funktion

Kamm-Funktion

Sampling

- Constant & δ-Function
 - Duality

$$f(x) = K$$
$$F(\omega) = K\delta(\omega)$$

- And vice versa
- Comb function
 - Duality: The dual of a comb function is again a comb function
 - Inverse wave length, amplitude scales with inverse wave length

$$f(x) = \sum_{k=-\infty}^{\infty} \delta(x - k\Delta x)$$
$$F(\omega) = \frac{1}{\Delta x} \sum_{k=-\infty}^{\infty} \delta(\omega - k\frac{1}{\Delta x})$$

Sampling

- Continuous function
 - Band-limited Fourier transform
- Sampled at discrete points
 - Multiplication with Comb function in space domain
 - Corresponds to convolution in Fourier domain
 - Multiple copies of the original
 - slight oversampling spectrum
- Frequency bands overlap?
 - No: good
 - Yes: bad, aliasing

undersampling

right at

Nyquist

f(x)

Only original frequency band desired

- In Fourier domain: multiplication with windowing function around origin
- In spatial domain: convolution with Fourier transform of windowing function

- Box function in Fourier domain
- Corresponds to sinc in space domain
 - Unlimited region of support
- Spatial domain only allows for approximations (due to finite support)

Reconstruction Filter

Cutting off the support is not a good solution

The Perfect Case

Original function and its band-limited frequency spectrum

Signal sampling:

Mult./conv. with comb

Comb dense enough (sampling≥2*bandlimit)

Frequency spectrum is replicated

Bands do not overlap

Fourier: Box (mult.) Image: sinc (conv.)

Only one copy

Correct Sampling / Bad Reconstruction

Reconstruction with ideal sinc

Identical signal

Approximate filtering

Space: tri (conv.)
Fourier: sinc² (mult.)

High frequencies are not ignored

→ Aliasing

Reconstruction with tri function (= piecewise linear interpolation)

Sampling with *Too Low Frequency*

Original function

Sampling below Nyquist:

Comb spaced too far (sampling<2*bandlimit)

Frequency bands overlap

Correct filtering

Image: sinc (conv.)

Fourier: box (mult.)

Band overlap in frequency domain cannot be corrected - aliasing

Sparse Sampling + Bad Reconstruction

Reconstruction with ideal sinc

Reconstruction fails (frequency components wrong due to aliasing!)

Filtering with sinc² function

Reconstruction with tri function (= piecewise linear interpolation)

Even worse reconstruction

Aliasing

- Overlap between replicated copies in frequency spectrum
- High frequency components from the replicated copies are treated like low frequencies during the reconstruction process

Other examples of Aliasing?

Aliasing

• In Fourier space

 Original spectrum

Nyquist satisfied

 Sampling comb

 Resulting spectrum

 Reconstruction Filter

 Reconstructed spectrum

[wikipedia]

original image

sampled at these location

yields this reconstruction.

Sampling Artifacts

- Spatial aliasing:
 - Stair cases, Moiré patterns, etc.
- Solutions:
 - Increasing the sampling rate
 - Ok, but infinite frequencies at sharp edges
 - Post-filtering (after reconstruction)
 - Does not work only leads to blurred stair cases
 - Pre-filtering (Blurring) of sharp geometry features
 - Slowly make geometry transparent at the edges
 - Correct solution in principal
 - Analytic low-pass filtering hard to implement
 - Super-sampling

Sampling Artifacts

- Temporal Aliasing
 - Cart wheels, ...
- Solutions
 - Increasing the frame rate
 - OK
 - Pre-filtering (Motion Blur)
 - Yes, possible for simple geometry (e.g., Cartoons)
 - Problems with texture, etc.
 - Post-filtering (Averaging several frames)
 - Does not work!!!! only multiple detail
- Important
 - Distinction between
 aliasing errors and
 reconstruction errors

Aliasing

- It all comes from sampling at discrete points
 - Multiplied with comb function, no smoothly weighted filters
 - Comb function: repeats frequency spectrum
- Or, from using non band limited primitives
 - Hard edges → infinitely high frequencies
- In reality, integration over finite region necessary
 - E.g., finite CCD pixel size, anti-aliasing filter
- Computer: Analytic integration often not possible
 - No analytic description of radiance or visible geometry available
- Only way: numerical integration
 - Estimate integral by taking multiple point samples, average
 - Leads to aliasing
 - Computationally expensive
 - Approximate

Aliasing in the Temporal Domain

A Shaped Temporal Filtering Camera

[Fuchs, Chen, Wang, Raskar, Seidel, Lensch – VMV 2009, C&G 2010]

Aliasing in Standard Video Cameras

Aliasing and Prefiltering

Prefiltering using various Kernels

- Each filter results in a different temporal appearance
- Corresponding to a temporal bokeh
- Smoothing might not be the only thing intended

Prefiltering using various Kernels

33

The Temporal Bokeh

Fourier Transform Camera

- Calculate a temporal Fourier transform on the fly
- 250x256@420Hz

Fourier Transform Camera

- Calculate a temporal Fourier transform on the fly
- 250x256@420Hz

Fourier filter bank

- · Real-time temporal Fourier analysis
- 8 frequency bands

Motion Intensifier

Motion Intensifier

AntiAliasing

How to avoid aliasing artifacts?

Sources of High Frequencies

- Geometry
 - Edges, vertices, sharp boundaries
 - Silhouettes (view dependent)
 - ...
- Texture
 - E.g., checkerboard pattern, other discontinuities, ...
- Illumination
 - Shadows, lighting effects, projections, ...
 - → Analytic filtering almost impossible
 - Even with the most simple filters

Comparison

- Analytic low-pass filtering
 - Ideally eliminates aliasing completely
 - Hard to implement
 - Weighted or unweighted area sampling
 - Compute distance from pixel to a line
 - Filter values can be stored in look-up tables
 - Possibly taking into account slope
 - Distance correction
 - Non rotationally symmetric filters
 - Does not work at corners
- Over-/Super-sampling
 - Very easy to implement
 - Does not eliminate aliasing completely
 - Sharp edges contain infinitely high frequencies

Anti-aliasing by Pre-Filtering

- Filtering before sampling
 - Band-limiting signal
 - Analog/analytic or
 - Reduce Nyquist frequency for chosen sampling-rate
- Ideal reconstruction
 - Convolution with sinc
- Practical reconstruction
 - Convolution with
 - Box filter, Bartlett (Tent)
 - → Reconstruction error

Super-Sampling in Practice

Regular super-sampling

- Averaging of N samples per pixel on a grid
- N:
 - 4 quite good
 - 16 almost always sufficient
- Samples
 - Rays, z-buffer, reflection, motion, ...
- Filter Weights
 - Box filter
 - Others: B-spline, Pyramid (Bartlett), Hexagonal, ...
- Regular super-sampling
 - Nyquist frequency for aliasing only shifted
 - → Irregular sampling patterns

Super-Sampling Caveats

- Popular mistake
 - Sampling at the corners of every pixel
 - Pixel color by averaging
 - Free super-sampling ???
- Problem
 - Wrong reconstruction filter !!!
 - Same sampling frequency,
 but post-filtering with a hat function
 - Blurring: Loss of information
- Post-Reconstruction Blur

1x1 Sampling, 3x3 Blur

1x1 Sampling, 7x7 Blur

"Super-sampling" does not come for free

Adaptive Super-Sampling

- Adaptive super-sampling
 - Idea: locally adapt sampling density
 - Slowly varying signal: low sampling rate
 - Strong changes: high sampling rate
 - Adapt sampling density locally
 - Decision criterion needed
 - Differences of pixel values
 - Contrast (relative difference)
 - |A-B| / |A|+|B|

Adaptive Super-Sampling

- Algorithm
 - Sampling at corners and mid points
 - Recursive subdivision of each quadrant
 - Decision criterion
 - Differences, contrast, object-IDs, ray trees, ...
 - Filtering with weighted averaging
 - ¼ from each quadrant
 - Quadrant: ½ (midpoint + corner)
 - Recursion

$$\begin{split} \frac{1}{4} \left(\frac{A+E}{2} + \frac{D+E}{2} + \frac{1}{4} \, \left[\, \frac{F+G}{2} + \frac{B+G}{2} + \frac{H+G}{2} + \frac{1}{4} \left\{ \frac{J+K}{2} + \frac{G+K}{2} + \frac{L+K}{2} + \frac{E+K}{2} \right\} \right] \\ + \frac{1}{4} \, \left[\, \frac{E+M}{2} + \frac{H+M}{2} + \frac{N+M}{2} + \frac{1}{4} \left\{ \frac{M+Q}{2} + \frac{P+Q}{2} + \frac{C+Q}{2} + \frac{R+Q}{2} \right\} \right] \right) \end{split}$$

- Extension
 - Jittering of sample points

Is there Aliasing in the Human Eye?

Super-Sampling in Practice

Problems with regular super-sampling

- Expensive: 4-fold to 16-fold effort

- Non-adaptive: Same effort everywhere

- Too regular: Apparent reduction of number of levels

Introduce irregular sampling pattern

- Stochastic super-sampling
 - Or analytic computation of pixel coverage and pixel mask

Stochastic Sampling

EBERHARD KARLS
UNIVERSITÄT
TÜBINGEN

- Requirements
 - Even distribution
 - Little correlation between samples
 - Incremental generation
- Generation of samples
 - Poisson-disk sampling
 - Fixes a minimum distance between samples
 - Random generation of samples
 - Rejection, if too close to other samples
 - Jittered sampling
 - Random perturbation from regular positions
 - Stratified Sampling
 - Subdivision into areas with one random sample each
 - Improves even distribution
 - Quasi-random numbers (Quasi-Monte Carlo)
 - E.g. Halton Sequence
 - Advanced feature

Poisson-Disk Sample Distribution

- Motivation
 - Distribution of the optical receptors on the retina (here: ape)

Distribution of the receptors

Fourier analysis

© Andrew Glassner, Intro to Raytracing

HVS: Poisson Disk Experiment

- Human Perception
 - Very sensitive to regular structures
 - Insensitive against (high frequency) noise

Stochastic Sampling

- Stochastic Sampling
 - Transforms energy in high frequency bands into noise
 - Low variation in sample domain
 - Closely reconstructs target value
 - High variation
 - Reconstructs average value

Examples

Triangle comb and rectangular wave

(Width: 1.01 pix, Heigth: 50 pix):

1 sample, no jittering

1 sample, jittering

16 samples, jittering

16 samples, no jittering

Motion Blur: 1 sample, no jittering 1 sample, jittering 16 samples, no jittering 16 samples, jittering

Comparison

• Regular, 1x1

• Regular 3x3

• Regular, 7x7

• Jittered, 3x3

• Jittered, 7x7

Wrap-UP

Aliasing

- Ray tracing
 - Textured plane with one ray for each pixel (say, at pixel center)
 - No texture filtering: equivalent to modeling with b/w tiles
 - Checkerboard period becomes smaller than two pixels
 - At the Nyquist limit
 - Hits textured plane at only one point, black or white by chance

Aliasing and Prefiltering

The Digital Dilemma

- Nature: continuous signal (2D/3D/4D with time)
 - Defined at every point

- Acquisition: sampling
 - Rays, pixel/texel, spectral values, frames, ...

- Representation: discrete data
 - Discrete points, discretized values

- Reconstruction: filtering
 - Mimic continuous signal

- Display and perception: faithful
 - Hopefully similar to the original signal, no artifacts

not

Aliasing

- In Fourier space
- Original spectrum
- Sampling comb
- Resulting spectrum
- Reconstruction Filter
- Reconstructed spectrum

Anti-Aliasing

- Sampling Patterns
 - Super-sampling (slow), ok but infinite frequencies at sharp edges
 - Stochastic sampling

- Post-filtering (after reconstruction)
 - Does not work!

- Pre-filtering (blurring)
 - Correct solution in principal
 - Analytic low-pass filtering hard to implement

1 sample per pixel

1 sample, 7x7 blur

Questions

• Why do we hardly see aliasing in digital photo cameras?

• 10x zoom (3x optical) – what does this mean?

Overview

- Last lectures
 - Artifacts in ray traced images
 - Signal processing
 - Fourier Transform
- Today
 - Sampling, Reconstruction
 - Anti-aliasing & Super-Sampling
- Next
 - Image filters
 - The human visual system

Homework

• Where do you observe sampling, aliasing and anti-aliasing in action at home?

– Find one example each.

