请扫码登记

无线网名称: BUAA_SME3, 无线网密码: sme41sme

扫码登记

课程微信群

微电子器件实验

彭守仲

北京航空航天大学 微电子学院

第一馆203办公室 shouzhong.peng@buaa.edu.cn

2020年11月4日

直流和频率特性测量与分析

- 直流特性实验内容
 - 1、二极管的直流特性测量与分析
 - 2、双极型晶体管的直流特性测量与分析
 - 3、场效应晶体管的直流特性测量与分析

■ 频率特性实验内容

- 1、双极型晶体管的频率特性测量与分析
- 2、场效应晶体管的频率特性测量与分析

MOS管的s-d伏安特性曲线

■ 实验一:s-d伏安特性曲线

1.调节*E*应使

 $E_D = 0-1.5 \text{V}$

2. 测量 V_{SD} 和 i_D 并画图

IRF3205

gds

电压源 产生电压*E*。

手持式万用表2 测量电压V_{so}

台式万用表 测量电流*i*。

MOS管的转移特性曲线

- 实验二:转移特性曲线
- 1.调节*E*应使

 $E_D = 0.5 \text{V}/1.0 \text{V}/1.5 \text{V}$

IRF3205

2.调节*E*。使

 $E_G = 0.1-7V(3-5V多取点)$

 $3.测量 V_{GS}和 i_D$ 并画图

电压源 产生电压*E_G和E_D*

手持式万用表1 测量电压*V_{cs}*

手持式万用表2 测量电压V_{Ds}

台式万用表 测量电流 i_o

回顾

- CC: 电流超限流
 - ➢ 三通道直流电源所设置的电流表示所允许的最大输出电流,用于避免过大电流烧毁器件。正常工作时,设备处在恒压模式下,此时显示CV;当实测电流超过用户设置的最大电流时,显示CC,此时需要检查电路是否短路或电流过大。
- CC:电流超量程(3A)
 - > 最大电流为

- N沟道增强型MOS管转移特性曲线
 - 当场效应管工作在恒流区时,由于输出特性曲线可近似看 为一组平行线,所以可以用一条转移特性曲线来代替恒流 区的所有曲线

- N沟道增强型MOS管转移特性曲线
 - 当场效应管工作在恒流区时,由于输出特性曲线可近似看为一组平行线,所以可以用一条转移特性曲线来代替恒流区的所有曲线

- N沟道增强型MOS管转移特性曲线
 - 当场效应管工作在恒流区时,由于输出特性曲线可近似看为一组平行线,所以可以用一条转移特性曲线来代替恒流区的所有曲线

- N沟道增强型MOS管转移特性曲线
 - 当场效应管工作在恒流区时,由于输出特性曲线可近似看 为一组平行线,所以可以用一条转移特性曲线来代替恒流 区的所有曲线

■ 对比双极型晶体管与MOS管的输出特性曲线

■ 对比双极型晶体管与MOS管的输出特性曲线

MOS管的转移特性曲线

■ 实验三:转移特性曲线

1.调节*E*_D使

 $E_D = 1.0 \text{V}$

2.调节*E*_G使

E_G=0.1-10V(3-5V多取点)

IRFR214

 $3.测量 V_{GS} 和 i_D$ 并画图

电压源 产生电压*E_G和E_D*

手持式万用表1 测量电压*V_{cs}*

手持式万用表2 测量电压V_{DS}

台式万用表 测量电流 i_o

MOS管的输出特性曲线

■ 实验四:输出特性曲线

1.调节*E*。使

 E_G =3.3V/3.5V/3.7V

2.调节*E*D使

E_D=0.1-2V(0.1-0.5V多取点) gds

IRFR214

 $3.测量 V_{DS} 和 i_D$ 并画图

(V_{DS}采用对数坐标)

电压源 产生电压*E_G和E_D*

手持式万用表1 测量电压 V_{cs}

手持式万用表2 测量电压*V_{DS}*

台式万用表 测量电流 i_n

思考题

■思考题:

- 1. 请列举场效应管与双极型晶体管的几个不同点。
- 2. 请根据转移特性曲线图画出输出特性曲线中的恒流区曲线示意图。

MOS管的转移特性曲线

■ 实验三:转移特性曲线

1.调节*E*应使

 $E_D = 1.0 \text{V}$

2.调节*E*_G使

E_G=0.1-10V(3-5V多取点)

IRFR214

 $3.测量 V_{GS}和 i_D$ 并画图

电压源 产生电压*E_G和E_D*

手持式万用表1 测量电压*V_{cs}*

手持式万用表2 测量电压V_{DS}

台式万用表 测量电流 i_n

MOS管的输出特性曲线

■ 实验四:输出特性曲线

1.调节*E*。使

 E_G =3.3V/3.5V/3.7V

2.调节*E*D使

E_D=0.1-2V(0.1-0.5V多取点) gds

IRFR214

 $3.测量 V_{DS} 和 i_D 并画图$

(VDS采用对数坐标)

电压源 产生电压*E_G和E_D*

手持式万用表1 测量电压 V_{cs}

手持式万用表2 测量电压*V_{DS}*

台式万用表 测量电流 i_o

有软型的大大型。 中有软型的大大型。 工艺物型的大大型。 工艺物型的大大型。

谢谢!