

Artificial Seawater Medium

Christa Smith, Frank Ferrer-Gonzalez

Abstract

Modified from Harrison et al., 1980. A broad spectrum artifical seawater medium for coastal and open ocean phytoplankton. The final salt concentration is \sim 34 ppt.

Citation: Christa Smith, Frank Ferrer-Gonzalez Artificial Seawater Medium. protocols.io

https://www.protocols.io/view/artificial-seawater-medium-jvccn2w

Published: 28 Jun 2018

Guidelines

Prepare solutions separately, autoclave (or filter sterilize as needed), and then mix to prevent precipitation of salts. When autoclaving, use a bottle at least twice the size of the needed volume (e.g. use a 1 L bottle to autoclave 500 mL). Solutions should sit for 24-48 hr after autoclaving to allow for gaseous exchanges. N, P, Si, and trace element components are from the Bigelow NCMAM L1 medium; Vitamin components are from the Bigelow NCMAM f/2 medium. Trace metal and vitamin solutions can be made ahead of time and aliquots stored frozen.

Before start

Acid washed all glassware with 10% HCl and rinse well (3-5 times with deionized or ultrapure water depending on downstream application). Prepare L1 medium components, L1 trace element solution and f/2 vitamin mix ahead of time.

Protocol

Prepare

Step 1.

Prepare solution 1.

. ASM Solution 1

CONTACT: Christa Smith

Step 1.1.

Dissolve 10.595 g NaCl into the bottle.

Step 1.2.

Dissolve 1.775 g Na₂SO₄ into the bottle.

Step 1.3.

Dissolve 0.2795 g KCl into the bottle.

Step 1.4.

Dissolve 43.1 mg Kbr into the bottle.

Step 1.5.

Dissolve 0.1145 g H₃BO₃ into the bottle.

Step 1.6.

Dissolve 1.375 mg NaF into the bottle.

Step 1.7.

Dissolve 86.75 mg NaHCO₃ into the bottle.

Step 1.8.

Measure 500 mL dH_2O into a 1 L glass bottle.

Step 1.9.

Mix final solution well and set aside until ready to autoclave.

Prepare

Step 2.

Prepare solution 2.

. ASM Solution 2

CONTACT: Christa Smith

Step 2.1.

Dissolve 4.796 g MgCl₂·6H₂O into bottle.

Step 2.2.

Dissolve 0.672 g CaCl₂·2H₂O into bottle.

Step 2.3.

Dissolve 10.95 mg SrCl₂·6H₂O into bottle.

Step 2.4.

NaNO₃: 1 ml primary stock solution (75.00 g/L)

Step 2.5.

Step 2.6.

 Na_2SiO_3 · $9H_2O$ (optional): 1 ml primary stock solution (30.00 g/L)

P NOTES

Christa Smith 14 Sep 2017

Only add if phytoplankton requires silicates.

Step 2.7.

Measure 500 mL dH₂O into a 1 L glass bottle.

Step 2.8.

Mix final solution well and set aside until ready to autoclave.

Autoclave

Step 3.

Autoclave solutions 1 and 2 and let sit 24-48 hours for gas exchange.

Mix

Step 4.

Combine solutions 1 and 2.

P NOTES

Christa Smith 13 Sep 2017

If a solution has some precipitate, consider filtering solution(s) before or after combining through a 0.2 micron PES membrane.

Mix

Step 5.

Add 1 mL of trace element solution.

₹ PROTOCOL

. L1 Trace Element Solution

CONTACT: Christa Smith

Step 5.1.

Add 1 mL primary stock of MnCl₂·4H₂O (178.10 g/L in dH₂O) into the bottle.

Step 5.2.

Add 1 mL primary stock of ZnSO₄·7H₂O (23.00 g/L in dH₂O) into the bottle.

Step 5.3.

Add 1 mL primary stock of CoCl₂·6H₂O (11.90 g/L in dH₂O) into the bottle.

Step 5.4.

Add 1 mL primary stock of $CuSO_4 \cdot 5H_2O$ (2.50 g/L in dH_2O) into the bottle.

Step 5.5.

Add 1 mL primary stock of Na₂MoO₄·2H₂O (19.90 g/L in dH₂O) into the bottle.

Step 5.6.

Add 1 mL primary stock of H_2SeO_3 (1.29 g/L in dH_2O) into the bottle.

Step 5.7.

Add 1 mL primary stock of NiSO₄· $6H_2O$ (2.63 g/L in dH₂O) into the bottle.

Step 5.8.

Add 1 mL primary stock of Na₃VO₄ (1.84 g/L in dH₂O) into the bottle.

Step 5.9.

Add 1 mL primary stock of K₂CrO (1.94 g/L in dH₂O) into the bottle.

Step 5.10.

Bring final volume to 1 L with dH₂O.

Step 5.11.

Meausre 950 mL dH₂O into a 1 L glass bottle.

Step 5.12.

Filter sterilize final trace element solution through a 0.2 micron PES membrane.

Step 5.13.

Dissolve 3.15 g FeCl₃· $6H_2O$ into the bottle.

Step 5.14.

Dissolve 4.36 g Na₂EDTA·2H₂O into the bottle.

Step 5.15.

Store frozen in 1 mL aliquots.

Mix

Step 6.

Add 0.5 mL of f/2 vitamin solution.

. f/2 Vitamin Solution

CONTACT: Christa Smith

Step 6.1.

Measure 950 mL dH₂O into a 1 L glass bottle.

Step 6.2.

Add 10 mL primary stock solution of biotin (vit. H) (0.1 g/L in dH₂O) into the bottle.

Step 6.3.

Add 1 mL primary stock solution of cyanocobalamin (vit. B12) (1.0 g/L in dH₂O) into the bottle.

Step 6.4.

Bring the final volume to 1 L with dH₂O.

Step 6.5.

Filter sterilize final vitamin solution through a 0.2 micron PES membrane.

Step 6.6.

Dissolve 200 mg thiamine·HCl (vit. B1) into the bottle.

Step 6.7.

Store frozen in 0.5 mL aliquots.

Store

Step 7.

Mix well and store for up to 2 weeks at 4 Celsius.

Christa Smith 14 Sep 2017

Final salt concentration is ~34 ppt.