AIL 862

Lecture 6

Challenges for Semantic Segmentation

What and where

Classes with similar spectral signature

Inconspicuous classes

Solution for the mentioned problems

Context

Solution for the mentioned problems

Context

Context at multiple scales

Solution for the mentioned problems

Context

Context at multiple scales

Global context

Contraction Phase

Reduces spatial size

Increases understanding of content ("what")

Though loses some object information due to contraction (loses "where" to some extent)

Recover "where" in expansion phase

Concatenate feature maps from contraction phase during expansion phase during recovery

Helps in recovery of "where" information

Principle behind U-Net

U-Net


```
def forward(self, x):
    enc1 = self.encoder1(x)
    enc2 = self.encoder2(self.pool1(enc1))
    enc3 = self.encoder3(self.pool2(enc2))
    enc4 = self.encoder4(self.pool3(enc3))
    bottleneck = self.bottleneck(self.pool4(enc4))
    dec4 = self.upconv4(bottleneck)
    dec4 = torch.cat((dec4, enc4), dim=1)
    dec4 = self.decoder4(dec4)
    dec3 = self.upconv3(dec4)
    dec3 = torch.cat((dec3, enc3), dim=1)
    dec3 = self.decoder3(dec3)
    dec2 = self.upconv2(dec3)
    dec2 = torch.cat((dec2, enc2), dim=1)
    dec2 = self.decoder2(dec2)
    dec1 = self.upconv1(dec2)
    dec1 = torch.cat((dec1, enc1), dim=1)
    dec1 = self.decoder1(dec1)
   return torch.sigmoid(self.conv(dec1))
```

```
self.decoder4 = UNet._block((features * 8) * 2, features * 8, name="dec4")
self.upconv3 = nn.ConvTranspose2d(
    features * 8, features * 4, kernel_size=2, stride=2
)
```

Spatial Attention + UNet

Figure from: Attention based UNet model for breast cancer segmentation using BUSI dataset, 2024

However, idea of attention based UNet sis much older

Figure from: An improved medical image segmentation framework with Channel-Height-Width-Spatial attention module

LinkNet

PSPNet

PSPNet


```
def forward(self, x):
   f, class_f = self.feats(x)
   p = self.psp(f)
   p = self.drop 1(p)
   p = self.up_1(p)
    p = self.drop_2(p)
   p = self.up_2(p)
    p = self.drop_2(p)
   p = self.up_3(p)
    p = self.drop_2(p)
    auxiliary = F.adaptive_max_pool2d(input=class_f, output_size=(1, 1)).view(-1, class_f.size(1))
   return self.final(p), self.classifier(auxiliary)
```

```
class PSPModule(nn.Module):
   def __init__(self, features, out features=1024, sizes=(1, 2, 3, 6)):
       super(). init ()
       self.stages = []
       self.stages = nn.ModuleList([self. make stage(features, size) for size in sizes])
       self.bottleneck = nn.Conv2d(features * (len(sizes) + 1), out features, kernel size=1)
       self.relu = nn.ReLU()
   def make stage(self, features, size):
       prior = nn.AdaptiveAvgPool2d(output size=(size, size))
       conv = nn.Conv2d(features, features, kernel size=1, bias=False)
       return nn.Sequential(prior, conv)
   def forward(self, feats):
       h, w = feats.size(2), feats.size(3)
       priors = [F.upsample(input=stage(feats), size=(h, w), mode='bilinear') for stage in self.stages] + [feats]
       bottle = self.bottleneck(torch.cat(priors, 1))
       return self.relu(bottle)
```

DeepLabV3

Rethinking Atrous Convolution for Semantic Image Segmentation, Chen et al., 2017

Atrous Convolution

- ✓ Traditional convolution: fixed size filters do not capture features at different scales effectively.
- ✓ Strides and pooling layers are used to control the receptive field, though they cause information loss.

Atrous convolution

- ✓ Increased receptive field.
- ✓ Allows capturing features at multiple scales.
- ✓ Allows multi-scale feature extraction.

Edge Pixels

UNet Original loss function: Gives weightage to edge pixels ("small separation borders that we introduce between touching cells")

SAR Segmentation

- ✓ Architecture wise same architectures are applicable for SAR segmentation as well.
- ✓ However, semantic segmentation performance is often sub-optimal in SAR images.
- ✓ Several works try to improve performance by providing additional training-time data source or using by identifying more reliable labels.

SAR Segmentation (with optical side-information)

EO means electro-optical in this slide.

Otherwise in this course, we abbreviate Earth observation as EO.

Figure from - Heterogeneous Feature Distillation Network for SAR Image Semantic Segmentation

SAR Segmentation

Multi-scale Convolutional Neural Network for SAR Image Semantic Segmentation

SAR Segmentation

A Refined Pyramid Scene Parsing Network for Polarimetric SAR Image Semantic Segmentation in Agricultural Areas

Channel Attention for Hyperspectral Images

ReSC-net: Hyperspectral Image Classification Based on Attention-Enhanced Residual Module and Spatial-Channel Attention

Paper reading allotment

Early Preparation Pays Off: New Classifier Pre-tuning for Class Incremental Semantic Segmentation

Ritik

CLIP-Guided Generative Networks for Transferable Targeted Adversarial Attacks

Shubhojit

FocusMAE: Gallbladder Cancer Detection from Ultrasound Videos with Focused Masked Autoencoders

Akshay