The FEAST Algorithm for Sparse Symmetric Eigenvalue Problems

Susanne Bradley
RPE Defense
University of British Columbia
November 2, 2016

Problem statement

• FEAST algorithm: find all eigenpairs (λ, \mathbf{x}) of a real symmetric matrix \mathbf{A} with

$$\lambda \in [\lambda_-, \lambda_+] =: \mathcal{L}.$$

- Our focus: A is large and sparse
 - FEAST involves linear system solves want to use iterative solvers

FEAST overview

Subspace iteration

Pick p random n-vectors $\mathbf{Q}_{(0)} = \begin{bmatrix} \boldsymbol{q}_1, \boldsymbol{q}_2, ..., \boldsymbol{q}_p \end{bmatrix}$ For k = 1, 2, ... $\tilde{\mathbf{Y}}_{(k)} \leftarrow \mathbf{A} \cdot \mathbf{Q}_{(k-1)}$ Orthonormalize $\tilde{\mathbf{Y}}_{(k)}$ into $\mathbf{Y}_{(k)}$ Form $p \times p$ system $\hat{\mathbf{A}} = \mathbf{Y}_{(k)}^H \mathbf{A} \mathbf{Y}_{(k)}$ Compute eigenpairs $(\hat{\lambda}, \widehat{\mathbf{X}})$ of $\hat{\mathbf{A}}$ $\mathbf{Q}_{(k)} \leftarrow \mathbf{Y}_{(k)} \widehat{\mathbf{X}}$

 $\mathbf{Q}_{(k)}$: converges linearly to the p dominant eigenvectors of \mathbf{A} (convergence factor to eigenvector i: $|\lambda_{p+1}/\lambda_i|$)

FEAST overview

Pick p random n-vectors

Subspace iteration + filtering

 $\begin{aligned} \mathbf{Q}_{(0)} &= \left[\boldsymbol{q}_1, \boldsymbol{q}_2, \dots, \boldsymbol{q}_p \right] \\ \text{For } k &= 1, 2, \dots \\ \mathbf{\tilde{Y}}_{(k)} \leftarrow \boldsymbol{\rho}(\mathbf{A}) \cdot \mathbf{Q}_{(k-1)} \end{aligned}$

Orthonormalize $\widetilde{\mathbf{Y}}_{(k)}$ into $\mathbf{Y}_{(k)}$

Form $p \times p$ system $\widehat{\mathbf{A}} = \mathbf{Y}_{(k)}^H \mathbf{A} \mathbf{Y}_{(k)}$

Compute eigenpairs $(\hat{\lambda}, \widehat{X})$ of \widehat{A}

$$\mathbf{Q}_{(k)} \leftarrow \mathbf{Y}_{(k)} \widehat{\mathbf{X}}$$

...where $\rho(\mathbf{A})$ preserves eigenvectors and maps eigenvalues λ to $\rho(\lambda)$.

 $\mathbf{Q}_{(k)}$: converges linearly to the p dominant eigenvectors of $\rho(\mathbf{A})$ (convergence factors: $|\rho(\lambda_{p+1})/\rho(\lambda_i)|$)

Examples:

•
$$\rho(\mathbf{A}) = \mathbf{A}^k$$

 $\rightarrow \rho(\lambda) = \lambda^k$

•
$$\rho(\mathbf{A}) = (\mathbf{A} - \sigma \mathbf{I})^{-1}$$

 $\rightarrow \rho(\lambda) = \frac{1}{\lambda - \sigma}$

FEAST overview: choice of filter

$$\rho(A) = ???$$

Ideal: indicator function over \mathcal{L}

FEAST overview: choice of filter

Cauchy's Integral Theorem

Let Γ be a contour in the complex plane. Then the (counterclockwise) contour integral

$$\pi(\lambda) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{1}{z - \lambda} dz, \qquad \lambda \notin \Gamma$$

is equal to 1 for λ enclosed in Γ , and 0 for λ not enclosed in Γ .

k-point quadrature
$$\pi(\lambda) \approx \rho(\lambda) \coloneqq \sum_{i=1}^k \frac{w_i}{z_i - \lambda}$$

$$\rho(\mathbf{A}) \coloneqq \sum_{i=1}^k w_i (z_i \mathbf{I} - \mathbf{A})^{-1}$$

Trapezoidal rule

On [-1,1] for different (half) number of nodes m

Computing $\rho(\mathbf{A})\mathbf{Q}$

Trapezoidal quadrature points $S = \infty, m = 5$

- For $\mathbf{Q} = [\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_p],$ $\rho(\mathbf{A})\mathbf{Q} = \sum_{i=1}^{2m} w_i (z_i \mathbf{I} \mathbf{A})^{-1} \mathbf{Q}$
- Note: nodes z are in complex conjugate pairs
- For real \mathbf{A} , \mathbf{Q} : $(\bar{z}\mathbf{I} - \mathbf{A})^{-1}\mathbf{Q} = \overline{(z\mathbf{I} - \mathbf{A})^{-1}\mathbf{Q}}$
- Therefore: in real case, only need to solve mp linear systems to compute $\rho(\mathbf{A})\mathbf{Q}$ (instead of 2mp)

Computing $\rho(\mathbf{A})\mathbf{Q}$

At each FEAST iteration: solve mp linear systems $(z_i \mathbf{I} - \mathbf{A}) \mathbf{y}_{i,j} = \mathbf{q}_j, \qquad 1 \le i \le m, 1 \le j \le p.$

- Usual approach in FEAST literature: use direct solvers
 - What if A is large and sparse?
 - ...or we don't need highly accurate solutions?
- Our goal: use iterative solvers instead
 - Some challenges:
 - Systems are indefinite, non-Hermitian (even for Hermitian A)
 - Conditioning issues
 - Lots of right-hand sides

Numerical experiments

- Direct solvers vs. preconditioned GMRES
- Two matrices: finding 100 eigenpairs of each (with search space size p=130)
- FEAST tolerance: 10^{-10}
- Quadrature: S = 1.05, m = 8
- Coded in MATLAB

Matrix 1: Andrews

n = 60,000; nnz = 760,154

- $[\lambda_{-}, \lambda_{+}] = [0.0, 1.3]$ (100 smallest)
- GMRES solver:
 - Tolerance: 10^{-10}
 - Preconditioner: ILUTP $(\tau = 5.0 \times 10^{-3})$
- Direct solver: backslash

Andrews matrix results

	GMRES with ILUTP	Direct solver
nnz(L+U) (average over all shifted systems)	2,767,412	234,019,880
FEAST iterations to convergence	3	3
Average time per LS solve	7.9 s (119.0 iterations)	2.0 s
Total time	26,462 s*	6,530 s

^{*=} includes time for preconditioner construction

Matrix 2: c-big

n = 345,241; nnz = 2,340,859

- $[\lambda_-, \lambda_+] = [45.2,50.0]$ (interior)
- GMRES solver:
 - Tolerance: 10^{-10}
 - Preconditioner: ILUTP $(\tau = 1.0 \times 10^{-3})$

c-big results

	GMRES with ILUTP	Direct solver
nnz(L+U) (average over all shifted systems)	5,697,775	144,569,235
FEAST iterations to convergence	3	3
Average time per LS solve	2.5 s (8.5 iterations)	1.6 s
Total time	7,795 s*	4,979 s

^{*=} includes time for preconditioner construction

Discussion/considerations

- Speed vs. memory
 - On our 60k matrix per linear system: iterative solver takes 4x the time, ~1/25th of the memory
 - On 345k: 1.6x the time, ~1/17th of the memory
- Direct solver loses a level of parallelism
 - Can overcome this (to an extent) with a different direct solver
- Lots of improvements to explore for the iterative solvers...

Future work

- Krylov space recycling
- Preconditioned MINRES
- More parallelization
- Generalized and non-Hermitian problems

Thank you

- Chen
- Robert and Uri
- lan
- Audience