程式人《十分鐘系列》

用十年也搞不懂

Cantor奇幻的集合論世界

陳鍾誠

2016年11月17日

話說

•《集合論》是數學裡最基礎的東西!

集合論非常簡單

•基本上就是一個籃子放一堆東西!

· 然後找找《藍子裡面有沒有那個東西》

• • •

舉例而言

假如 A={3, 7, 11}

-那麼 3 就是 A 的元素

一但是 5 不是 A 的元素

然後

• 集合可以進行

《聯集、交集、差集》

等運算!

非常的簡單

但是、鄉民說

·工程師雖然常常有點宅, 但他們都還算正常人!

而那些

·最厲害的數學家也很宅, 但幾乎都不是正常人!

在集合論裏

· 也有一些不正常的數學家 發現了不正常的定理!

話說

·好的數學家帶你上天堂 最好的數學家帶你見閻王!

現在

就讓我們來看一個

《最好的數學家》...

那個數學家的名字是

Georg Cantor ...

翻成中文是

格奥爾格・費迪南徳・路徳維希・菲利普・ 康托爾

Georg Ferdinand Ludwig Philipp Cantor

1845年3月3日

康托爾出生於俄國聖彼得堡,他的 父親是丹麥商人,母親是俄國音樂 家。

康托爾上大學的時候

· 在柏林大學曾受到著名數學家 《魏爾斯特拉斯》的教導....

魏爾斯特拉斯是誰?

如果你學微積分的時候

·數學老師有教你《極限的定義》 那些事情...

也就是有ε和δ的那些東東

極限的定義

如果在 x 趨近於 a 時 f(x) 可以「任意接近」 b , 那我們就說 f(x) 趨近於 a 時的極限為 b , 其數學符

號定義如下。

$$\lim_{x \to a} f(x) = b$$

以上定義中的「任意接近」(arbitrarily close to) 的數學意義是:對於任何 $\epsilon>0$,都存在一個 $\delta>0$ 使得在 $0<|x-a|<\delta$ 的情況下 會滿足 $|f(x)-b|<\epsilon$,如下圖所示。

所以如果您想證明 f(x) 在 x=a 的極限存在,只要證明可以「任意接近」就行了。也就是找出滿足 $|f(x)-b|<\epsilon$ 的 δ 條件,並證明這個條件存在就行了。

那就是

• 《魏爾斯特拉斯》

搞出來的了!

卡爾·魏爾斯特拉斯

Karl Theodor Wilhelm Weierstrass (Weierstraß)

出生 1815年10月31日

普魯士王國威斯伐倫省埃尼格爾洛

逝世 1897年2月19日 (81歳)

普魯士王國布蘭登堡省柏林

研究領域 數學

機構 柏林工業大學

問題是

·《魏爾斯特拉斯》為甚麼要搞出 這個有 & 和 & 的東東!

喔!

- 那個答案很簡單
- 就是因為發明微積分的人,包含《萊布尼茲》和《牛頓》,他們自己都搞不清楚《無限小》到底是甚麼東東!

牛頓版的無限小

•叫做流數術 (Method of Fluxions)

牛頓在流數術中說

· ... 是為了去了解這個量的比值,並不是在他們消失之前,也不是在消失之後,而是在它們消失之剎那的比值...

Sir Isaac Newton

Portrait of Newton in 1689 by Godfrey Kneller

然後萊布尼茲說

- 它將是充分條件,當我們談及《無窮小量》,我們既了解這個量...相當小...
- 既使任何人想要將無窮小視為終極之事物...是可以辨到的...即使他認為這種事情是完全不可能的;
- 它仍是足夠單純地可用來做計算的工具, 如同數學家保留虛根而獲得的極大的用 處...

Gottfried Wilhelm Leibniz

Portrait by Christoph Bernhard Francke

萊布尼茲的話來自《天才之旅》一書:http://www.taaze.tw/sing.html?pid=11100319907

於是有位柏克萊主教看不下去了

• 他跳出來說:

那麼這些流數是甚麼呢?它們是漸漸 消失的無窮小增量,那麼這些漸漸消 失的無窮小增量又是甚麼呢?他們既 非有限量,也非無窮小量,更非空無 一物,我們可否稱之為失去量的鬼魂 呢...?

George Berkeley

Portrait of Berkeley by John Smybert, 1727

Born 12 March 1685

County Kilkenny, Ireland

Died 14 January 1753 (aged 67)

Oxford, England

Nationality Irish

於是偉大的柯西只好跳出來澄清

當某個歸屬於特定變數的值, 逼近於一個固定值,而能隨心 所欲地使其變小而致終止,此 終止值即稱為所有其他值的極 限!

Augustin-Louis Cauchy

Cauchy around 1840. Lithography by Zéphirin Belliard after a painting by Jean Roller.

Born 21 August 1789

Paris, France

Died 23 May 1857 (aged 67)

Sceaux, France

Nationality French

而這也是柯先生發明柯西數列的原因

一個柯西序列 (x_n) 的繪圖,使用藍 \Box 色, x_n 相對於 n。如果包含這個序列的空間是完備的,則這個序列的「最終目標」也就是極限存在。

能隨著序列前進而相互靠近。

但問題是

· 《牛頓、萊布尼茲、柯西》的話,你 覺得夠數學嗎?

柏克萊主教消失的幽靈,是否還繼續 存在呢?

這時候

·魏爾斯特拉斯 跳出來說話了!

Karl Weierstrass

Karl Theodor Wilhelm Weierstrass (Weierstraß)

魏爾斯特拉斯說

• 所謂的極限就是:

如果在x 趨近於a 時 f(x) 可以「任意接近」b,那我們就說f(x) 趨近於a 時的極限為b,其數學符

號定義如下。

$$\lim_{x \to a} f(x) = b$$

以上定義中的「任意接近」(arbitrarily close to) 的數學意義是:對於任何 $\epsilon>0$,都存在一個 $\delta>0$ 使得在 $0<|x-a|<\delta$ 的情況下 會滿足 $|f(x)-b|<\epsilon$,如下圖所示。

所以如果您想證明 f(x) 在 x=a 的極限存在,只要證明可以「任意接近」就行了。也就是找出滿足 $|f(x)-b|<\epsilon$ 的 δ 條件,並證明這個條件存在就行了。

然後柏克萊主教說

那個《魏爾斯特拉甚麼的》,你說的那麼數學我聽不懂,請說人話

於是魏爾斯特拉斯說

。請回家學數學 ...

結果是

•魏爾斯特拉斯完勝柏克萊主教

從此

·微積分就有了《嚴格的數學基礎》

從微積分開始

一無窮小的幽靈就如影隨形

而且

• 把無窮小取 1/ε 就會變成無窮大 ...

而那個年輕的康托爾

·正在柏林大學,向魏爾斯特拉斯學習數學...

康托爾想著

·如果集合的元素有無限多個,那會怎麼樣呢?

康托爾又想

•我的老師搞出了 ε和δ的東東

· 那我可以用無窮大集合搞出甚麼東東鬼呢?

所以

康托爾就開始搞《無窮大集合》的《集合論》

對於有限集合

• 像是

- **-** {1, 2, 3}
- $\overline{-} \{7, 4, 5\}$

我們可以計算集合大小!

雨者大小都是 3

原因是

• 兩個集合可以一對一對應

這樣的話

·對於無窮集合而言,我們也可以如 法炮製...

怎麼如法炮製呢?

像是

· 自然數 N和偶數可以一對一對應

 $-\{1, 2, 3, \cdots\}$

 $-\{2, 4, 6, \cdots\}$

所以《自然數和偶數》有同樣的《基數》 我們稱這個基數為 NO

那《整數集合乙》的基數呢?

康托爾說

• 這還不簡單:

$$-N=\{1, 2, 3, 4, 5, 6, 7\cdots\}$$

$$-Z=\{0, 1, -1, 2, -2, 3, -3\cdots\}$$

這樣不就對上了嗎?

好像有點道理!

這樣的話

· 那有理數 Q 應該就沒辦法對上了吧?

• 有理數就是可以寫成《分數 q/p》的 那種數!

康托爾說

NO, NO, NO!

你看、我們只要這樣對就行了

```
p/q 1 2 3 4 5 ....

1 1/1 1/2 1/3 1/4 1/5 ....

2 2/1 2/2 2/3 2/3 2/4 2/5 ....

3 3/1 3/2 3/3 3/3 3/4 3/5 ....

4 ....

5 ....
```

喂喂喂

• 康托爾老兄,你把 1/1, 2/2, 3/3 對到 了不同數上,可是他們都是1 阿!

康托爾

- •喔!那修改一下跳掉就好了!
- •不修也沒關係,因為 A<B 且 B<A 的話,那就只剩 A=B 的情况了阿!

我

"這樣說好像也是對啦!

這樣的話

所有的無限大集合,不是就都一樣大了嗎?

康托爾

· 我原本也以為是一樣,但是我後來發現自己錯了 …

•《實數的集合》就比《自然數集合》 更大 ...

為何《實數集合》比《自然數》更大?

康托爾

•這個嘛?其實只要0到1之間的實數集合就《比自然數集合更大了》

·證明的關鍵得讓我們回到一對一對 應這個概念上來看!

假如 0 到 1 之間的實數

• 可以和自然數一對一對應

·那麼我們就可以把實數列一個表, 從一列到無窮....

那個實數表像這樣

```
r_1 = 0.5105110...
r_2 = 0.4132043...
r_3 = 0.8245026...
r_{\Delta} = 0.2330126...
r_5 = 0.4107246...
r_6 = 0.9937838...
r_7 = 0.0105135...
```

這樣的話,我們可以

把對角線的元素用《底線加粗體》標示出來

$$r_1 = 0 . 5 1 0 5 1 1 0 ...$$

 $r_2 = 0 . 4 1 3 2 0 4 3 ...$
 $r_3 = 0 . 8 2 4 5 0 2 6 ...$
 $r_4 = 0 . 2 3 3 0 1 2 6 ...$
 $r_5 = 0 . 4 1 0 7 2 4 6 ...$
 $r_6 = 0 . 9 9 3 7 8 3 8 ...$
 $r_7 = 0 . 0 1 0 5 1 3 5 ...$

然後、我們就可以找到

• 很多你所漏列的實數

只要該實數,小數後第 1 個數字和第 1 個實數的對角線上元素不同就好了啊!

```
r_1 = 0.5105110...
r_2 = 0.4132043...
r_3 = 0.8245026...
r_4 = 0.2330126...
r_5 = 0.4107246...
r_6 = 0.9937838...
r_7 = 0.0105135...
```

所以

- ·不管你怎麼列,你永遠都會漏掉很 多0到1之間的實數
- 所以《0到1之間的實數集合》比《自然數集合》更大!

既然

• 自然數集合是《可數無窮大》

•那麼我們可以說:0到1之間實數集合

是《不可數無窮大》!

這樣的話

• 那還有沒有比

《0到1之間實數集合更大的集合》呢?

• 像是《0 到 100 之間的實數集合》

或是《所有實數形成的集合》

應該比《0到1之間實數集合》更大吧!

康托爾

- 非也非也!
- 《 0 到 100 之間的實數集合》沒有比《 0 到 1 之間實數集合》大喔
- 因為只要用 f(x)=100*x 就可以把《0到1之間實數集合》一對一映射到《0 到 100 之間的實數集合》了!

$$y = \frac{2x-1}{x^2}$$

如果用 $y = \frac{2x-1}{x^2}$ 這個函數

可以將0到1之間的實 數集合,映射到所有實 數上喔!

甚至、就算把實數維度變成二維的

·那個集合大小也只不過 和實數集合一樣大而已!

更詳細的說

·一個邊長為1的正方形中的實數集合,和0到1之間的實數集合是一樣大的!

因為兩者之間可以一對一對應

· 對應的方法是將座標 (a, b) 轉為

$$z=0. a_1b_1a_2b_2a_3b_3...$$

兩集合一樣大

所以

- · 任意的 (a,b) 之間的實數集合,都 是一樣大的
- 任意維度的實數集合也都是一樣大的
- 這個集合大小我稱之為《連續統()》

接著我問

•康托爾先生,那麼有沒有比實數集合(也就是《連續統C》)更大的集合呢?

康托爾先生

- 有的,《所有實數集合的子集合所形成的集合》,比實數集合更大!
- 更廣義的說:所有A的子集合所形成的集合,稱為PowerSet(A),都比A集合更大!

為甚麼呢?

康托爾

•我可以證明!

方法如下

· 假如你把 PowerSet(A) 列下來,像是這樣:

A 的元素	PowerSet(A) 的元素
a b c d e f	

那麼、我們可以將集合 A 分成 X, Y 兩份

• X: 對應到的集合包含自己, 像是 b, e, . . .

Y: 對應的集合不包含自己, 像是 a, c, d, f...

A 的元素	PowerSet(A) 的元素
a b c d e f f	{c}

假如A和PowerSet(A)可以一對一對應

· 那麼對於那個和B匹配的y而言, 到底y應不應該是B的元素呢?

A 的元素	PowerSet(A) 的元素
a b c	{c}
d e	{}
f	{j,k,}
y	B

仔細想你就會發現

- 假如 y 屬於 B , 那麼 y 就不應該是 B 的元素, 所以 y 不應該屬於 B
- 假如 y 不屬於 B , 那麼 y 就應該是 B 的元素, 所以 y 應該屬於 B

所以就矛盾了!

這代表我們的前提是錯的

· 也就是《假如A和PowerSet(A)可以一對一一對應》這件事情是錯的!

· 換句話說《假如 A和 PowerSet(A) 是無法一對一對應的》。

而且

· PowerSet(A) 不可能比集合A小

- 因為 A={a,b,c,...} 可對應到 {{a}, {b}, {c},...}

•所以PowerSet(A) 只能比A更大

於是我們

• 可以得到一系列愈來愈大的無限集合

 $-N0 < P[N0] < P[0,1] < P[P[0,1]] < \cdots$

• 而且我康托爾猜測 P[N0] 就是連續統

C,這個猜測稱為《連續統假設》。

看到這裡

你應該會發現,所有的推理都很合理,是從《一對一對應》這個簡單概念來的,只是康托爾把這個概念放到無限集合上,一直適用上去而已

問題是

。你可以接受上述的推論嗎?

對我而言

• 我其實很難接受這樣的推論。

把一對一對應

• 放在有限集合,是理所當然的。

但是一旦放到無限集合上

•那就很難令人接受了!

像康托爾這樣的做法

• 不只我無法接受!

· 當年和康托爾同時代的數學家們也都很難接受。

像是 Kroncker 就很難接受

利奧波德·克羅內克

維基百科,自由的百科全書

利奧波德·克羅內克(德語:Leopold Kronecker,1823年12月7日—1891年12月29日),德國數學家與邏輯學家,出生於西里西亞利格尼茨(現屬波蘭的萊格尼察),卒於柏林。他認為算術與數學分析都必須以整數為基礎,他曾說:「上帝創造了整數,其餘都是人做的工作」(Bell 1986,477頁)。這與數學家格奧爾格·康托爾的觀點相互對立。克羅內克是恩斯特·庫默爾的學生和終身摯友。

以克羅內克命名的數學理論包括克羅內克δ、克羅內克積等。

Kronecker引理說明: 若 $(x_n)_{n=1}^\infty$ 是一個實數數列,使得

$$\sum_{n=1}^{\infty} x_n = s$$

存在且有限,則對於 $0 < b_1 \le b_2 \le b_3 \le \ldots$ 及 $b_n \to \infty$ 則有

$$\lim_{n\to\infty}\frac{1}{b_n}\sum_{k=1}^n b_k x_k=0$$

但是

· 如果放棄一對一對應可以用在無限 集合上

·那麼我們到底要拿無限集合怎麼辦 呢?

在康托爾證明完實數集合不可數之後

他的躁鬱症就在1884年發作了

1899年

- 康托爾的兒子魯道夫意外身亡
- ·接著,康托爾在1904,1907,1911年多次進出精神病院
- 並在1918年73歲時於精神病院去世!

康托爾的《無窮集合論》

• 還有羅素發現的《集合悖論》等等。

羅素悖論:設命題函數P(x)表示「x∉x」,現假設由性質P確定一個集合A——也就是說「A={x|x ∉ x}」。那麽現在的問題是:A∈A是否成立?首先,若A∈A,則A是A的元素,那麽A不具有性質P,由命題函數P知A∉A;其次,若A∉A,也就是說A具有性質P,而A是由所有具有性質P的類組成的,所以A∈A。

• 後來導致了《公理化集合論》的出現

公理化集合論

接受《無窮集合》與《一對一對應》等概念, 但是卻透過第九條的正規公理排除了羅素與康托爾悖論的集合

集合論中其中一套由Skolem最後整理的公理系統,稱為Zermelo-Fraenkel集合論(ZF)。實際上,這個名稱通常不包括歷史上遠比今天具爭議性的選擇公理,當包括了選擇公理,這套系統被稱為ZFC。

- 1. 外延公理:(Axiom of extensionality) 兩個集合相同,若且唯若它們擁有相同的元素。
- 2. 分類公理:(Axiom schema of specification / axiom schema of separation / axiom schema of restricted comprehension)或稱子集公理,給出任何集合及命題P(x),存在著一個原來集合的子集包含而且只包含使P(x) 成立的元素。
- 3. 配對公理:(Axiom of pairing)假如x, y為集合,那就有另一個集合{x,y}包含x與y作為它的僅有元素。
- 4. 並集公理:(Axiom of union)每一個集合也有一個並集。也就是說,對於每一個集合x,也總存在著另一個集合y,而y的元素也就是而且只會是x的元素的元素。
- 5. 空集公理:存在著一個不包含任何元素的集合,我們記這個空集合為{}。可由分類公理得出。
- 6. 無窮公理:(Axiom of infinity)存在著一個集合x,空集 $\{$ }為其元素之一,且對於任何x中的元素y, $y \cup \{y\}$ 也是x的元素。
- 7. 替代公理: (Axiom schema of replacement)
- 8. **幂**集公理:(Axiom of power set)每一個集合也有其**幂**集。那就是,對於任何的x,存在著一個集合y,使y的元素是而且只會是x的子集。
- 9. 正規公理:(Axiom of regularity / Axiom of foundation)每一個非空集合x,總包含著一元素y,使x與y為不交集。
- 10. 選擇公理:(Axiom of choice,Zermelo's version)給出一個集合x,其元素皆為互不相交的非空集,那總存在著一個集合y(x的一個選擇集合),包含x每一個元素的僅僅一個元素。

第九條的正規公理

•排除了以自身為元素之集合

所有非空集合 A 中至少有一個這樣的元素 x ,它與 A 本身的交集為空集。即

 $\forall A, \exists x \in A : A \neq \varnothing \implies x \cap A = \varnothing$

從這個公理可得出兩個結果,其一為「不存在以自身為元素的集合」,其二為「沒有無限序列 a_n 使得對於所有 i, a_{i+1} 是 a_i 的元素」。

• 因而避開了《康托爾與羅素的悖論》

因為

既然康托爾和羅素的那些集合,根本就不是集合的話,那集合論裏就沒有矛盾了阿!

關於數學家的這種解法

·不知道你是否能接受?

但是除了集合悖論之外

- · 康托爾還遺留下了《連續統假設》的問題。
- · 這個問題在1900年希爾伯特的23個數學問題當中被列為第一個問題。

後來在1940年

- · 哥德爾證明了用《集合論公理》無法 反證《連續統假設》是錯的!
- ·接著在1963年,柯恩證明了《集合論公理》無法證明《連續統假設》是對的!

於是

連續統假設就像《歐氏幾何的平行公設》一樣,可以被加入集合論中,或者反過來 在加入集合論中,都可以創造出《不矛盾 的集合論》。

也就是說

- 集合論可以分為
 - -連續統集合論
 - 非連續統集合論

等兩類,甚至更多類!

在思考這些數學問題的同時

我們得要很小心

小心甚麼?

小心走火入魔

因為

•《康托爾、哥德爾、圖靈》等三人!

他們一脈相承的

都使用了類似《對角證法》的 證明法,在數學上做出了驚人的 貢獻!

這些貢獻是

- · 康托爾的《實數不可數》與 《無限集合擴展鏈》
- 哥德爾的《不完備定理》
- •圖靈的《停止問題不可解》!

當他們三人

• 做出這些令人驚訝的貢獻後

結果是

- 康托爾因躁鬱症而死於精神病院
- 哥德爾也因精神問題最後不吃東西而死
- 圖靈則是因同性戀最後吃了有氰化物的蘋果死掉了!

這些數學上的巨人

其實最後都有個悲慘的結局

想當偉人嗎?

歡迎加入數學的行列!

歡迎使用對角證法

·來證明出令人驚訝的定理!

這就是我們今天的

一十分鐘系列!

我們下回見!

Bye Bye!

