MA0301 Elementær diskret matematikk, v12 - løsningsforslag

1 Det er 2^{56} forskjellige nøkler, og $2^{56}-4$ nøkler som ikke er svake. Det er $(2^{56})^3$ forskjellige 3DES-nøkler. Det er $(2^{56}-4)^3$ 3DES-nøkler der ingen av DES-nøklene er svake. Det er 4^3 nøkler der alle DES-nøklene er svake, så det er

$$(2^{56})^3 - 4^3$$

nøkler der minst én av DES-nøklene ikke er svak. Alternativt kan vi se på muligheten for ingen, én eller to svake DES-nøkler, som gir oss

$$\begin{split} (2^{56} - 4)^3 + 3 \cdot 4 \cdot (2^{56} - 4)^2 + 3 \cdot 4^2 \cdot (2^{56} - 4) \\ &= (2^{56})^3 - 3 \cdot 4 \cdot (2^{56})^2 + 3 \cdot 4^2 \cdot 2^{56} - 4^3 \\ &\quad + 3 \cdot 4 \cdot (2^{56})^2 - 3 \cdot 4 \cdot 2 \cdot 4 \cdot 2^{56} + 3 \cdot 4 \cdot 4^2 \\ &\quad + 3 \cdot 4^2 \cdot 2^{56} - 3 \cdot 4^3 \\ &= (2^{56})^3 - 4^3. \end{split}$$

$$\begin{aligned} \mathbf{2a} \quad \neg s \leftrightarrow \neg q \Leftrightarrow s \leftrightarrow q, \ \neg t \rightarrow \neg p \Leftrightarrow p \rightarrow t \ \text{og} \ \neg t \lor s \Leftrightarrow t \rightarrow s. \\ (p \rightarrow t) \land (t \rightarrow s) \Rightarrow p \rightarrow s, \ (p \rightarrow s) \land (s \leftrightarrow q) \Rightarrow p \rightarrow q. \end{aligned}$$

2b Moteksempel: p sann, t sann, s sann og q usann.

3 En maskin som gjenkjenner språket $\{1\}\{01\}^* \cup \{11\}\{10\}^*$ er for eksempel:

4a Venstre program bruker a=O(a) multiplikasjoner, høyre program bruker høyst $2(n+1)=O(n)=O(\log a)$ multiplikasjoner.

4b Hvis

$$x^{a_{n-i+1}+2a_{n-i+2}+2^2a_{n-i+3}+\cdots+2^{i-1}a_n}$$

da er

$$u = x^{a_{n-1}}u^2 = x^{a_{n-1}}x^{2(a_{n-i+1}+2a_{n-i+2}+2^2a_{n-i+3}+\dots+2^{i-1}a_n)}$$
$$= x^{a_{n-i}+2a_{n-i+1}+2^2a_{n-i+2}+\dots+2^ia_n}.$$

Altså gjelder $P(i) \to Q(i)$ for alle i.

4c Det er klart at P(0) er sann. Fra **4b** vet vi at $P(0) \to Q(0)$ er sann, og dermed må Q(0) være sann.

Vi har fått oppgitt at $Q(i) \to P(i+1)$ er sann for alle i. Fra **4b** vet vi at $P(i+1) \to Q(i+1)$ er sann for alle i. Vi får dermed at

$$(Q(i) \rightarrow P(i+1)) \land (P(i+1) \rightarrow Q(i+1)) \Rightarrow Q(i) \rightarrow Q(i+1),$$

altså at $Q(i) \to Q(i+1)$ er sann for alle i.

Ved matematisk induksjon følger det at Q(i) er sann for alle i, spesifikt er Q(n) sann.

5 Hjørnene i grafen er merket med n/w, som sier i hvilken iterasjon n hjørnet ble fargelagt og hvilken vekt w det fikk.

6a For \sim : Refleksiv er opplagt. Symmetrisk følger fra at bijeksjonene involvert i grafisomorfien er invertible. Transitivitet følger om vi bare setter sammen bijeksjonene. Betingelsene for at sammensetningene utgjør en grafisomorfi er lette å sjekke.

For \sqsubseteq : G_1 er en undergraf av G_2 hvis hjørnemengden (kantmengden) til G_1 er en delmengde av hjørnemengden (kantmengden) til G_2 , og funksjonen som angir hvilke hjørner kantene i G_1 forbinder er restriksjonen av tilsvarende funksjon for G_2 .

Refleksivitet er opplagt. Anti-symmetri følger fra anti-symmetri av \subseteq . Transitiv følger fra transitivitet av \subseteq .

6b Hvis vi teller kanter ser vi at (i) og (vi) i alene i sine ekvivalensklasser. Hvis vi ser på grader av hjørner ser vi at (iv) og (v) også er alene i sine ekvivalensklasser. Til slutt er det lett å se at (ii) og (iii) er isomorfe. Vi får dermed ekvivalensklassene $\{(i)\}$, $\{(ii), (iii)\}$, $\{(iv)\}$, $\{(v)\}$ og $\{(vi)\}$.

Hasse-diagrammet er:

