Scilab Textbook Companion for Principles of Physics by P .V. Naik¹

Created by
Sai Praneeth Y S S
B.Tech
Electronics Engineering
SASTRA UNIVERSITY
College Teacher
Peddavarapu Sreehari
Cross-Checked by
Lavitha Pereira

December 12, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Principles of Physics

Author: P.V. Naik

Publisher: Prentice Hall, New Delhi

Edition: 2

Year: 2004

ISBN: 8120326466

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
1	Motion	8
2	Work Energy and Power	16
3	Potential Energy	21
4	Rotational motion of Rigid Objects	25
5	Properties of Matter	28
6	Real gas and Transport Processes in Gas	33
7	Thin Lens and Coaxial systems and Aberrations	37
9	Interference	41
10	Diffraction	45
11	Polarization	48
12	Direct Current Circuits	50
13	Alternating Current Circuits	59
15	Motion of a charged particle	64
16	Electrons Ions Isotopes and Nucleus	68

List of Scilab Codes

Exa 1.e.1	Tensions in the cables	8
Exa 1.e.5	Acceleration of the block	9
Exa 1.e.6	Acceleration and Tension	9
Exa 1.e.8	Weight of the person	10
Exa 1.1	Orbital speed and centripetal acceleration	10
Exa 1.2	Speed	11
Exa 1.3	Tension and acceleration	11
Exa 1.4	Acceleration	12
Exa 1.5	Period of rotation	13
Exa 1.6	Coefficient of limiting friction	13
Exa 1.7	Speed	14
Exa 1.8	Coefficient of static and kinetic friction	14
Exa 1.9	Tension and coefficient of friction	15
Exa 2.1	Workdone	16
Exa 2.2	Workdone	16
Exa 2.3	Workdone	17
Exa 2.4	Kinetic energy	18
Exa 2.5	Workdone	18
Exa 2.6	Force constant of the spring	19
Exa 2.7	Speed of the block	19
Exa 2.8	Workdone and average power	20
Exa 3.1	Potential energy	21
Exa 3.2	Potential energy	22
Exa 3.3	Potential Energy	22
Exa 3.4	Speed	23
Exa 3.5	Rest and total energy	23
Exa 4.1	Moment of inertia and Kinetic energy	25
Exa 4.2	Velocity and acceleration	26

Exa 4.3	Period of oscillation	26
Exa 4.4	Period of oscillation	26
Exa 4.5	Angular speed of rotation	27
Exa 5.1	Period of pendulum	28
Exa 5.2		28
Exa 5.3	PProperties of Material	29
Exa 5.4		0
Exa 5.5	Rate of change of pressure	0
Exa 5.6		31
Exa 5.7	Energy required	31
Exa 5.8		32
Exa 6.1		3
Exa 6.2	Mean free path	34
Exa 6.3		34
Exa 6.4		5
Exa 6.5	Thermal conductivity	5
Exa 7.1		37
Exa 7.2		8
Exa 7.3		8
Exa 7.4	Radii of curvature	9
Exa 9.1		1
Exa 9.2		1
Exa 9.3		2
Exa 9.4		13
Exa 9.5		3
Exa 10.1		5
Exa 10.2		15
Exa 10.3		6
Exa 10.4		6
Exa 10.5	· · · · · · · · · · · · · · · · · · ·	7
Exa 11.1		8
Exa 11.2		18
		0
		0
		51
		52
	1	52
		3

Exa	12.e.7	Nortons equivalent circuit
Exa	12.1	Current
Exa	12.2	Equivalent circuit
Exa	12.3	Norton equivalent
Exa	12.4	Parameters
Exa	12.5	Time constant
Exa	12.6	Parameters
Exa	13.1	rms current and maximum current
Exa	13.2	rms current
Exa	13.3	rms current
Exa	13.4	Maximum potential difference 60
Exa	13.5	rms potential difference 61
Exa	13.6	Parameters
Exa	13.7	Resonating frequency and Q factor 62
Exa	13.8	Capacitance and resistance 63
Exa	15.1	Speed
Exa	15.2	Vertical displacement
Exa	15.3	Time required
Exa	15.4	Orbital speed
Exa	15.5	Pitch of helix and radius of trajectory
Exa	16.1	Separation
Exa	16.2	BE per nucleon
Exa	17.1	Maximum kinetic energy
Exa	17.2	Stopping potential
Exa	17.3	Shortest wavelength
Exa	17.4	Wavelength
Exa	17.5	Wavelength

Chapter 1

Motion

Scilab code Exa 1.e.1 Tensions in the cables

```
1 clc
2 clear
3 //Input data
4 w=50//Weight in N
5 a=[40,50]//Angles made by two cables in degrees
6
7 // Calculations
8 //Solving two equations obtained from fig. 1.10 on
      page no.10
9 //-T1\cos 40+T2\cos 50=0
10 / T1\sin 40 + T2\sin 50 = 50
11 A = [-\cos d(a(1)) \cos d(a(2))]
       sind(a(1)) sind(a(2))]// Coefficient matrix
12
13 B=[0
14
      w]//Constant matrix
15 X=inv(A)*B//Variable matrix
16
17 // Output
18 printf ('Tensions in all three cables are %3.2 f N, %3
      .2 \text{ f N}, \% \text{i N', X(1), X(2), w}
```

Scilab code Exa 1.e.5 Acceleration of the block

Scilab code Exa 1.e.6 Acceleration and Tension

```
//Output
printf('The acceleration produced is %i m/s^2 \n The
tension in the string connecting the blocks is
%i N',a,T)
```

Scilab code Exa 1.e.8 Weight of the person

```
clc
clear
//Input data
w=588//Weight of the person in N
a=3//Acceleration in m/s^2

//Calculations
m=(w/9.8)//Mass of the person in kg
P=(w+(m*a))//Weight of the person when the elevator is accelerated upwards in N

//Output
printf('Weight of the person when the elevator is accelerated upwards is %i N',P)
```

Scilab code Exa 1.1 Orbital speed and centripetal acceleration

```
1 clc
2 clear
3 //Input data
4 d=180//Distance of satellite above the surface of earth in km
5 t=90//Time taken to complete one revolution of the earth in minutes
6 r=6400//Radius of the earth in kms
```

```
8 // Calculations
9 R=(r+d)*1000// Total distance in m
10 T=t*60// Time in seconds
11 v=(2*3.14*R)/T// Orbital speed in m/s
12 a=(v^2/R)// Centripetal acceleration in m/s^2
13
14 // Output
15 printf('Orbital speed is %i m/s \n Centripetal acceleration is %3.1 f m/s^2', v, a)
```

Scilab code Exa 1.2 Speed

```
1 clc
2 clear
3 //Input data
4 m=0.05//Mass of the stone in kg
5 \text{ r=0.4//Radius of the string in m}
7 // Calculations
8 vh=sqrt(9.8*r)//Minimum speed when the stone is at
      the top of the circle in m/s
9 vl = sqrt((2/m)*(((1/2)*m*vh^2)+(m*9.8*2*r)))/Minimum
       speed when the stone is at the bottom of the
      circle in m/s
10
11 //Output
12 printf ('Minimum speed when the stone is at the top
      of the circle is %3.2 f m/s \n Minimum speed when
      the stone is at the bottom of the circle is \%3.2f
      m/s', vh, vl)
```

Scilab code Exa 1.3 Tension and acceleration

```
1 clc
2 clear
3 //Input data
4 m=0.2//Mass of the ball in kg
5 r=1.5//Radius of vertical circle in m
6 q=35//Angle made by the ball in degrees
7 \text{ v=6//Velocity of the ball in m/s}
9 // Calculations
10 T=(m*((v^2/r)+(9.8*cosd(q))))//Tension in the string
       in N
11 at=9.8*sind(q)//Tangential acceleration in m/s^2
12 ar=(v^2/r)/Radial acceleration in m/s^2
13 a=sqrt(at^2+ar^2)/Acceleration in m/s^2
14
15 // Output
16 printf ('Tension in the string is \%3.1 f N \n
      Tangential acceleration is %3.2 f m/s^2 \n Radial
      acceleration is \%i \text{ m/s}^2, T, at, ar)
```

Scilab code Exa 1.4 Acceleration

```
clc
clear
//Input data
//A small ball is released from height of 4r
    measured from the bottom of the loop, where r is
    the radius of the loop

//Calculations
ar=(6*9.8)//Radial acceleration in m/s^2
at=(9.8*sind(90))//Tangential acceleration in m/s^2
//Output
printf('Radial acceleration is %3.1f m/s^2 \n
```

Scilab code Exa 1.5 Period of rotation

```
clc
clear
//Input data
1=0.95//Length of the strring in m
m=0.15//Mass of the bob in kg
r=0.25//Radius of the circle in m

//Calculations
h=sqrt(l^2-r^2)//Height of the pendulum in m
t=2*3.14*sqrt(h/9.8)//Period of rotation in s
//Output
printf('The period of rotation is %3.4f s',t)
```

Scilab code Exa 1.6 Coefficient of limiting friction

```
1 clc
2 clear
3 //Input data
4 N=40//Minimum speed of rotor in rpm
5 r=2.5//Radius of rotor in m
6
7 //Calculations
8 t=60/N//Time period in s
9 u=(9.8*t^2)/(4*3.14^2*r)//Coefficient of limiting friction
10
11 //Output
```

```
12 printf('The coefficient of limiting friction between the object and the wall of the rotor is %3.4f',u')
```

Scilab code Exa 1.7 Speed

```
clc
clear
//Input data
a=30//Angle of inclination in degrees
t=3//Time in s

//Calculations
a=(9.8*sind(a))//Acceleration in m/s^2
v=(0+a*t)//Velocity in m/s

//Output
printf('Speed of the block after %i s is %3.1f m/s', t,v)
```

Scilab code Exa 1.8 Coefficient of static and kinetic friction

```
1 clc
2 clear
3 //Input data
4 m=10//Mass of the block in kg
5 F1=40//Horizontal force to start moving in N
6 F2=32//Horizontal force to move with constant velocity in N
7
8 //Calculations
9 u1=(F1/(m*9.8))//Coefficient of static friction
10 u2=(F2/(m*9.8))//Coefficient of kinetic friction
```

Scilab code Exa 1.9 Tension and coefficient of friction

```
clc
clear
//Input data
m=[3,12]//Masses of the blocks in kg
q=50//Angle made by the string in degrees
a=3//Acceleration of 12kg block in m/s^2

//Calculations
T=m(1)*(9.8+a)//Tension in the string in N
u=(m(2)*(9.8*sind(q)-a)-T)/(m(2)*9.8*cosd(q))//
Coefficient of kinetic friction

//Output
printf('Tension in the string is %3.1f N \n The coefficient of kinetic friction between %i kg block and the plane is %3.3f',T,m(2),u)
```

Chapter 2

Work Energy and Power

Scilab code Exa 2.1 Workdone

```
clc
clear
//Input data
F=[6,2]//Constant force in vector form 6i+2j in N
s=[3,5]//Displacement in vector form 3i+5j in N

//Calculations
W=(F(1)*s(1))+(F(2)*s(2))//Workdone in J
q=acosd(W/(sqrt(F(1)^2+F(2)^2)*sqrt(s(1)^2+s(2)^2)))
//Angle between Force and displacement in degrees
//Output
printf('Workdone by the force is %3.0f J \n Angle between Force and displacement is %3.1f degrees', W,q)
```

Scilab code Exa 2.2 Workdone

```
clc
clear
//Input data
m=10//Mass of block in kg
q=40//Angle made by the force with horizontal in degrees
s=5//Horizontal displacement of the block in m
u=0.3//Coefficient of kinematic friction

//Calculations
F=(u*m*9.8)/(cosd(q)+(u*sind(q)))//Pulling force in N
W=(F*cosd(q))*s//Workdone by the pulling force in J
//Output
printf('Workdone by the pulling force is %3.2 f J', W)
```

Scilab code Exa 2.3 Workdone

```
1 clc
2 clear
3 //Input data
4 r1=[0,1]//Interval in m
5 r2=[1,2]//Interval in m
6 r3=[2,4]//Interval in m
7 r4=[0,5]//Interval in m
8 y=[6,12]//Y- coordinates from the graph 2.5 on page no. 27
9
10 //Calculations
11 a1=(1/2)*(r1(2)-r1(1))*y(1)//Area under the curve in J
12 a2=(r2(2)-r2(1))*y(1)//Area under the curve in J
13 a3=((r3(2)-r3(1))*y(1))+((1/2)*((r3(2)-r3(1))/2)*(y(2)-y(1)))//Area
```

```
under the curve in J
14 \quad a4 = (a1 + a2 + a3 + ((1/2) * y(2) * (r4(2) - r3(2)))) / Area \quad under
       the curve in J
15
16 // Output
17 X=[0,1,2,3,4,5] //X- coordinate is distance in m
18 Y = [0,6,6,12,12,0] / Y - coordinate is Force in N
19 plot(X,Y)//Graph shown in figure 2.5 on page no.27
20 xtitle ('Distance versus Force', 'Distance in m', '
      Force in N')
21
22 printf ('The work done in the intervals: n (a)\%i \le x
      <=%i m is %i J \n (b)%i<=x<=%i m is %i J \n (c)%i
      \leq x \leq \%i m is %i J \n (d)%i\leq x \leq \%i m is %i J \n',
      r1(1),r1(2),a1,r2(1),r2(2),a2,r3(1),r3(2),a3,r4
      (1), r4(2), a4)
```

Scilab code Exa 2.4 Kinetic energy

```
1 clc
2 clear
3 //Input data
4 m=0.05//Mass of the body in kg
5 v=[3,5]//Velocity in vector form 3i+4j in m/s
6
7 //Calculations
8 ke=(1/2)*m*(v(1)^2+v(2)^2)//Kinetic energy in J
9
10 //Output
11 printf('Kinetic energy is %3.2 f J',ke)
```

Scilab code Exa 2.5 Workdone

```
clc
clear
//Input data
k=50//Spring force constant in N/m
x=-0.02//Length of compression in m

//Calculations
W=(1/2)*k*(x)^2//Work done by the spring in J

//Output
printf('Work done by the spring when the block comes from the compressed position to the equilibrium position is %3.2 f J',W)
```

Scilab code Exa 2.6 Force constant of the spring

```
1 clc
2 clear
3 //Input data
4 x=0.03//Length stretched by the spring in m
5 m=0.25//Mass of the body in kg
6
7 //Calculations
8 k=(m*9.8)/x//Force constant of the spring in N/m
9
10 //Output
11 printf('Force constant of the spring is %3.2 f N/m',k
)
```

Scilab code Exa 2.7 Speed of the block

```
1 clc
2 clear
```

```
3 //Input data
4 m=5//Mass of block in kg
5 F=20//Constant force in N
6 x=6//Distance moved by the block in m
7
8 //Calculations
9 W=(F*x)//Workdone by the block in J
10 v=sqrt((2*W)/m)//Speed of the block in m/s
11
12 //Output
13 printf('Speed of the block when it moves through a distance of %3.0 f m is %3.2 f m/s',x,v)
```

Scilab code Exa 2.8 Workdone and average power

```
1 clc
2 clear
3 //Input data
4 m=50//Mass of the object in kg
5 \text{ v=8//Speed in m/s}
6 t=4//Time taken in s
8 // Calculations
9 a=(v-0)/t//Acceleration in m/s^2
10 s=(v^2/(2*a))/Distance in m
11 W=(m*a*s)//Workdone in J
12 P=(W/t)//Power delivered in watt
13
14 // Output
15 printf ('Workdone on the object is %i J \n The
     average power delivered by the force in the first
      %i s is %i watt', W, t, P)
```

Chapter 3

Potential Energy

Scilab code Exa 3.1 Potential energy

```
1 clc
2 clear
3 //Input data
4 m=0.04//Mass of stone in kg
5 vi=25//Initial velocity in m/s
6 vf=0//Final velocity in m/s
7 yi=0//Initial height in m
9 // Calculations
10 Ui=(m*9.81*yi)//Initial potential energy in J
11 Ki = (1/2) *m*vi^2//Initial kinetic energy in J
12 Etotal=(Ui+Ki)//Total energy in J
13 h=(Etotal/(m*9.8))/Maximum height in m
14 //when the stone is at (2/3)h, total energy is again
      same
15 v = sqrt((Etotal - (m*9.8*(2/3)*h))/((1/2)*m))/Velocity
       at (2/3) of its maximum height in m/s
16
17 // Output
18 printf ('Maximum height it will reach is %3.1 f m \n
     Potential energy at that height is \%3.1f J \n
```

Scilab code Exa 3.2 Potential energy

```
clc
clear
//Input data
m=0.5//Mass of the sphere in kg
vi=100//Initial velocity in m/s
vf=20//Final velocity in m/s

//Calculations
h=(vi^2-vf^2)/(2*9.8)//Height in m
PE=(m*9.8*h)//Potential energy in J
//Calculations
printf('Potential energy of the sphere is %i J',PE)
```

Scilab code Exa 3.3 Potential Energy

```
1 clc
2 clear
3 //Input data
4 m=0.5//Mass of the block in kg
5 x=0.05//Distance to which block is pulled in m
6 k=300//Force constant of the spring in N/m
7
8 //Calculations
9 U=(1/2)*k*x^2//Potential energy of the block in J
10 v=x*sqrt(k/m)//Velocity of the block in m/s
11
12 //Output
```

13 printf('Potential energy of the block when spring is in stretched position is %3.3 f J \n Velocity of the block when it passes through the equilibrium position is %3.2 f m/s', U, v)

Scilab code Exa 3.4 Speed

```
clc
clear
//Input data
1=0.8//Length of a simple pendulum in m
q=30//Angle with the vertical through which the bob
is released in degrees
10//Required angle in degrees
11//Calculations
12//Output
13//Output
14//Output
15//Output
16//Output
17//Output
18//Output
19//Output
19//Output
19//Output
10//Output
11//Output
12//Output
13//Output
14//Output
15//Output
16//Output
17//Output
18//Output
19//Output
19//Output
19//Output
19//Output
10//Output
11//Output
12//Output
13//Output
14//Output
15//Output
16//Output
17//Output
18//Output
19//Output
19//Outp
```

Scilab code Exa 3.5 Rest and total energy

```
1 clc
2 clear
3 //Input data
4 m=(9.1*10^-31)//Mass of the electron in kg
5 v=(3*10^8)//Velocity of light in m/s
6 c=(1.6*10^-19)//Charge of the electron in coloumbs
7
8 //Calculations
9 Re=(m*v^2)/(c*10^6)//Rest energy in MeV
```

Chapter 4

Rotational motion of Rigid Objects

Scilab code Exa 4.1 Moment of inertia and Kinetic energy

```
1 clc
2 clear
3 //Input data
4 w=4//Angular velocity in rad/s
5 m=[1,2,3,4]//Masses in kg from the figure 4.17 on page no.54
6 r=[2.5,1.5]//Centre position in m
7
8 //Calculations
9 I=(m(1)+m(2)+m(3)+m(4))*(r(1)^2+r(2)^2)//Moment of inertia in kg.m^2
10 KE=(1/2)*I*w^2//Kinetic energy of the system in J
11
12 //Output
13 printf('The moment of inertia is %i kg.m^2 \n Kinetic energy of the system is %i J',I,KE)
```

Scilab code Exa 4.2 Velocity and acceleration

```
clc
clear
//input data
q=30//Angle of inclination in degrees
h=1//Height in m

//Calculations
v=sqrt((10/7)*9.8*h)//Velocity in m/s
a=(5/7)*9.8*sind(q)//Acceleration in m/s^2

//Output
printf('Velocity and acceleration of the centre of mass of the sphere is %3.2 f m/s and %3.1 f m/s^2', v,a)
```

Scilab code Exa 4.3 Period of oscillation

```
1 clc
2 clear
3 //Input data
4 m=1.2//Mass of the rod in kg
5 l=0.8//Length of the rod in m
6
7 //Calculations
8 T=2*3.14*sqrt((2*1)/(3*9.8))//Time period in s
9
10 //Output
11 printf('Period of oscillation is %3.2 f s',T)
```

Scilab code Exa 4.4 Period of oscillation

```
1 clc
2 clear
3 //Input data
4 r=0.2//Radius of uniform disc in m
5 d=0.15//Distance from the centre in m
6
7 //Calculations
8 T=2*3.14*sqrt((17*r)/(12*9.8))//Period of oscillations in s
9
10 //Output
11 printf('The period of oscillation is %3.2f s',T)
```

Scilab code Exa 4.5 Angular speed of rotation

```
1 clc
2 clear
3 //Input data
4 m=3//Mass of the rotor in kg
5 I=0.03//Moment of inertia in kg.m<sup>2</sup>
6 d=0.25//Distance of pivot from the centre in m
7 p=30//Precession in rpm
8
9 // Calculations
10 T=m*9.8*d//Torgue in N.m.
11 w=(p*2*3.14)/60//Angular velocity in rad/s
12 w1=(T/(I*w))/Angular speed of rotation of the rotor
       in rpm
13
14 //Output
15 printf ('Angular speed of rotation of the rotor is %i
      rpm', w1)
```

Chapter 5

Properties of Matter

Scilab code Exa 5.1 Period of pendulum

```
1 clc
2 clear
3 //Input data
4 m=1//Mass of torsional pendulum in kg
5 R=0.06//Radius of torsional pendulum in m
6 l=1.2//Length of the wire in m
7 r=0.0008//Radius of wire in m
8 S=(9*10^9)/Modulus of rigidity of the material in N
     /\text{m}^2
10 // Calculations
11 I = (1/2) *m*R^2/Moment of inertia in kg.m^2
12 C=(3.14*S*r^4)/(2*1)/Couple per unit twist in N.m.
13 T=2*3.14*sqrt(I/C)//Period of pendulum in s
14
15 // Output
16 printf('Period of pendulum is %3.1f s',T)
```

Scilab code Exa 5.2 Work done

```
1 clc
2 clear
3 //Input data
4 l=0.8//Length of the wire in m
5 d = (1.8*10^-3) // Diameter of the wire in m
6 a=1.5//Angle of twist in degrees
7 S=(1.8*10^11)/Modulus of rigidity of the material
     in N/m^2
9 // Calculations
10 r=(a*3.14)/180//Angle of twist in radians
11 W=((3.14*S*(d/2)^4*r^2)/(4*1))/10^-5/Work required
     to twist the wire in J*10^-5
12
13 //Output
14 printf ('Work required to twist the wire is \%3.2 f
     *10^{-5} J', W)
```

Scilab code Exa 5.3 PProperties of Material

```
1 clc
2 clear
3 //Input data
4 l=2//Length of wire in m
5 d=(0.4*10^-3)//Diameter of the wire in m
6 x=(1.03*10^-3)//Extension in length in m
7 L=2//Load in kg
8 C=(4.52*10^-6)//Couple in N/m
9 a=0.03//Twist angle in radians
10
11 //Calculations
12 Y=((L*9.8*1)/(x*3.14*(d/2)^2))/10^11//Young's modulus in N/m^2*10^11
13 S=((C*2*1)/(3.14*(d/2)^4*a))/10^11//Modulus of rigidity in N/m^2*10^11
```

Scilab code Exa 5.4 Excess pressure

```
clc
clear
//Input data
r=0.003//Radius of drop of glycerine in m
T=(63.1*10^-3)//Surface tension of glycerine in N/m

//Calculations
P=((2*T)/r)//Excess pressure inside the drop of glycerine in N/m^2

//Output
printf('Excess pressure inside the drop of glycerine is %3.2 f N/m^2',P)
```

Scilab code Exa 5.5 Rate of change of pressure

```
1 clc
2 clear
3 //Input data
4 r1=0.001//Initial radius in m
5 r2=0.004//Final radius in m
6 t=2*10^-3//Time in s
7 s=(7*10^-2)//Surface tension of water in N/m
8
```

Scilab code Exa 5.6 Work done

```
1 clc
2 clear
3 //Input data
4 d=0.02//Diamter of soap bubble in m
5 s=(25*10^-3)//Surface tension in N/m
6 //Initial surface area of the bubble is zero and final area is 2*4*pie*r^2 where r is the radius of the bubble
7 
8 //Calculations
9 W=(s*2*4*3.14*(d/2)^2)/10^-5//Work done in blowing a soap bubble in J*10^-5
10
11 //Output
12 printf('Work done in blowing a soap bubble is %3.2f *10^-5 J',W)
```

Scilab code Exa 5.7 Energy required

```
1 clc
2 clear
3 //Input data
4 r=0.01//Radius of liquid drop in m
```

```
5 n=500//Number of drops
6 s=(63*10^-3)//Surface tension in N/m
7
8 //Calculations
9 r1=(((4*3.14*r^3)/3)/((n*4*3.14)/3))^(1/3)//Radius
    of one small drop in m
10 As=(n*4*3.14*r1^2)//Total surface of 500 drops in m
    ^2
11 as=4*3.14*r^2//Original surface area of the drop in
    m^2
12 W=(s*(As-as))/10^-4//Work done in J*10^-4
13
14 //Output
15 printf('Energy required to break up a drop of a
    liquid is %3.1f*10^-4 J',W)
```

Scilab code Exa 5.8 Speed of flow

```
1 clc
2 clear
3 //Input data
4 d=0.04//Inside diameter of garden hose in m
5 D=0.01//Diamter of nozzle opening in m
6 v1=0.6//speed of flow of water in the hose in m/s
7
8 //calculations
9 a=3.14*(d/2)^2//Area of hose in m^2
10 A=3.14*(D/2)^2//Area of nozzle in m^2
11 v2=(v1*a)/A//Speed of flow through the nozzle in m/s
12
13 //Output
14 printf('Speed of flow through the nozzle is %3.1 f m/s',v2)
```

Chapter 6

Real gas and Transport Processes in Gas

Scilab code Exa 6.1 Critical constants

```
1 clc
2 clear
3 //Input data
4 a=(2.1*10^-2)//Vanderwaals constant a for neon gas
      in Nm^4/mol^2
5 b=(1.71*10^-5)/Vanderwaals constant b for neon gas
      in m<sup>3</sup>/mol
6 R=8.314//Gas constant in J/mol.K
8 // Calculations
9 Tc=(8*a)/(27*b*R)//Critical temperature in K
10 Vc = (3*b)/10^{-5}//Critical\ volume\ in\ m^3/mol\ * 10^{-5}
11 Pc=(a/(27*b^2))/10^6//Critical pressure in N/m^2 *
      10^6
12
13 //Output
14 printf ('Critical temperature is %3.2 f K \n Critical
      volume is \%3.2 \,\mathrm{f} * 10^{-5} \,\mathrm{m}^{3}/\mathrm{mol} \,\mathrm{n} Critical
       pressure is \%3.3 \,\mathrm{f} * 10^6 \,\mathrm{N/m^2}, Tc, Vc, Pc)
```

Scilab code Exa 6.2 Mean free path

Scilab code Exa 6.3 Diffusion coefficient of the gas

```
13 //Output  
14 printf('Diffusion coefficient of a gas at STP is %3  
.2\,\mathrm{f} * 10^{\circ} - 5\,\mathrm{m}^{\circ}2/\mathrm{s}',D)
```

Scilab code Exa 6.4 Viscosity of a gas

Scilab code Exa 6.5 Thermal conductivity

Thin Lens and Coaxial systems and Aberrations

Scilab code Exa 7.1 Position of cardinal points

```
1 clc
2 clear
3 //Input data
4 f1=-12//Focal length of a converging lens in cm
5 f2=25//Focal length of a diverging lens in cm
6 d=8//Distance between the lens in cm
8 // Calculations
9 C=(1/f1)+(1/f2)+(d/(f1*f2))/Inverse of focal length
      in cm^-1
10 D=(d/f2)+1//Constant value
11 A=(d/f1)+1//Constant value
12 O1F1=(-D/C)//Poistion of cardinal point in cm
13 O2F2=(A/C)//Poistion of cardinal point in cm
14 O1H1=(1-D)/C//Poistion of cardinal point in cm
15 O2H2=(A-1)/C//Poistion of cardinal point in cm
16
17 //Output
18 printf ('Position of cardinal points are O1F1 = \%3.2 f
```

cm, $O2F2 = \%3.2 \, f$ cm, $O1H1 = \%3.2 \, f$ cm, $O2H2 = \%3.2 \, f$ cm\n The system is in air, therfore, nodal points coincide with unit points',01F1,02F2,01H1,02H2)

Scilab code Exa 7.2 Focal lengths

```
1 clc
2 clear
3 //Input data
4 f=15//Focal length of achromatic doublet made up of
     crown and flint glasses in cm
5 fl=[0.01506,0.02427]//Dispersive power of crown and
     flint glasses respectively
6
7 // Calculations
8 //Solving two equations
9 / (1/f) = (1/f1) + (1/f2)
10 //(f1/f2) = (-0.01506/0.02427)
11 fx=(fl(1)/fl(2))//Ratio of focal lengths
12 f2=(-(1/fx)+1)/(1/f)//Focal length of converging
     lens in cm
13 f1=(-fx*f2)//Focal length of diverging lens in cm
14
15 //Output
16 printf ('Focal length of converging lens is \%3.4 f cm
     \n Focal length of diverging lens is \%3.1f cm',f2
     ,f1)
```

Scilab code Exa 7.3 Radii of curvature

```
1 clc
2 clear
```

```
3 //Input data
4 f=20//Focal length in cm
5 fl=[0.015,0.019]/Dispersive powers of crown and
      flint glasses respectively
6 r=[1.495,1.53] // Refractive indices respectively
8 // Calculations
9 fx=-(fl(1)/fl(2))/Ratio of focal lengths
10 //Solving two equations
11 //(1/f) = (1/f1) + (1/f2)
12 //(f1/f2) = (-0.015/0.019)
13 f2=((1/fx)+1)/(1/f)//Focal length of converging lens
      in cm
14 f1=(fx*f2)//Focal length of diverging lens in cm
15 r2=(r(2)-1)*f2//Radius of curvature of convergent
     lens in cm
16 r1=1/(((1/f1)/(r(1)-1))+(1/r2))/Radius of curvature
       of divergent lens in cm
17
18 //Output
19 printf ('Radius of curvature of converging lens is \%3
      .4f cm \n Radius of curvature of diverging lens
     is %3.3 f cm', r2, r1)
```

Scilab code Exa 7.4 Radii of curvature

```
1 clc
2 clear
3 //Input data
4 r=1.5//Refractive index of the material of a thin lens
5 f=-20//Focal length of the lens in cm
6 rx=-6//Ratio of radii of curvature of lens
7
8 //Calculations
```

```
9 r1=1/((1/f)/((r-1)*(1-(1/rx))))//Radius of curvature
      of convergent lens in cm
10 r2=(rx*r1)//Radius of curvature of divergent lens in
      cm
11
12 //Output
13 printf('Radii of curvature of lens are %3.2 f cm and
      %i cm',r1,r2)
```

Interference

Scilab code Exa 9.1 Wavelength

```
1 clc
2 clear
3 //Input data
4 t=0.2//Thickness of film in micro m
5 r=1.25//Refractive index of liquid
6 \text{ w=[4000,5000]}//\text{Range of wavelength in Angstrom}
7 q=35//Angle observed in degrees
9 // Calculations
10 u=asind(sind(q)/r)/Angle of reflection in degrees
11 w1 = (2*t*10^-6*r*cosd(u))/10^-10/Wavelength in
      Angstrom
12 w2=w1/2//Wavelength in Angstrom
13
14 // Output
15 printf ('Wavelength absent in reflected light is %i
      Angstrom', w2)
```

Scilab code Exa 9.2 Thickness of the film

```
1 clc
2 clear
3 //Input data
4 r=1.39//Refractive index of the film
5 q=30//Angle observed in degrees
6 w=[5125,5000]//Wavelengths of two consecutive dark
      bands in Angstrom
7
8 // Calculations
9 r1=asind(sind(q)/r)//Angle of reflection in degrees
10 n=w(2)/(w(1)-w(2))/Constant value
11 t=((n*w(1)*10^-8)/(2*r*cosd(r1)))/10^-4//Thickness
      of the film in cm *10^-4
12
13 //Output
14 printf ('Thickness of the film is \%3.4 \, \text{f} *10^-4 \, \text{cm}',t)
```

Scilab code Exa 9.3 Angle of wedge

```
clc
clear
//Input data
r=1.4//Refractive index of the material
w=5893//Wavelength of yellow light in Angstrom
n=10//Number of bands
w1=0.009//Width of band in m

//Calculations
b=asind((w*10^-8)/(2*r*n*w1))//Angle of wedge in degrees
//Output
//Output
rprintf('Angle of wedge is %3.4f degrees',b)
```

Scilab code Exa 9.4 Thickness

```
clc
clear
//Input data
r=1//Refractive index
n=4//Number of bands
w=6500//Wavelength in Angstrom

//Calculations
t=(((n+(1/2))*w*10^-8)/(2*r))/10^-4//Thickness of wedge shaped air film in cm *10^-4

//Output
printf('Thickness of wedge shaped air film is %3.4f *10^-4 cm',t)
```

Scilab code Exa 9.5 Radius of curvature

```
1 clc
2 clear
3 //Input data
4 d=0.5//Diameter of the ring in cm
5 n=4//number of bands
6 w=5893//Wavelength of light in Angstrom
7 q=30//Angle at which light enters in degrees
8
9 //Calculations
10 R=((d^2*cosd(q))/(2*(2*n+1)*w*10^-8))//Radius of curvature of lens in cm
11
12 //Output
```

printf('Radius of curvature of lens is %3.1 f cm',R)

Diffraction

Scilab code Exa 10.1 Width of central band

```
1 clc
2 clear
3 //Input data
4 D=1//Distance of screen from the slit in m
5 w=6000//Wavelength in Angstrom
6 w1=0.6//Slit width in mm
7
8 //Calculations
9 x=((2*D*w*10^-10)/(w1*10^-3))*1000//Width of central band in mm
10
11 //Output
12 printf('Width of central band is %i mm',x)
```

Scilab code Exa 10.2 Wavelength

```
1 clc
2 clear
```

```
//Input data
d1=6000// Diffraction grating have number of lines
    per cm
q=50// Diffracted second order spectral line observed
    in degrees
n=2//Second order

// Calculations
w=(sind(q)/(d1*n))*10^8//Wavelength of radiation in
    Angstrom
// Output
printf('Wavelength of radiation is %3.1f Angstrom', w
)
```

Scilab code Exa 10.3 Maximum order of diffraction

```
1 clc
2 clear
3 //Input data
4 d1=6000//Diffraction grating have number of lines
        per cm
5 w=6000//Wavelength in Angstrom
6
7 //Calculations
8 n=(1/(d1*w*10^-8))//Maxmum order of diffraction
9
10 //Output
11 printf('Maximum order of diffraction that can be observed is %i',n)
```

Scilab code Exa 10.4 Ratio of intensity

```
clc
clear
//Input data
B=(3*3.14)/2//First secondary maxima at B

//Calculations
I=(sin(B)/B)^2//Ratio of intensity of central maxima to first secondary maxima

//Output
printf('Ratio of intensity of central maxima to first secondary maxima is %3.3f',I)
```

Scilab code Exa 10.5 Distance

```
1 clc
2 clear
3 //Input data
4 w=6400//Wave length of light in Angstrom
5 \text{ w1=0.3//Slit} width in mm
6 d=110//Distance of screen from the slit in cm
7 n=3//order
8
9 // Calculations
10 x = ((n*w*10^-10*(d/100))/(w1*10^-3))*1000//Distance
     between the centre of the central maximum and the
       third dark fringe in mm
11
12 //Output
13 printf('Distance between the centre of the central
     maximum and the third dark fringe is \%3.2 f mm', x)
```

Polarization

Scilab code Exa 11.1 Polarizing angles

```
1 clc
2 clear
3 //Input data
4 r1=1.538//Refractive index of the crown glass for violet
5 r2=1.52//Refractive index of the crown glass for red
6
7 //Calculations
8 ip1=atand(r1)//Polarizing angle in degrees
9 ip2=atand(r2)//Polarizing angle in degrees
10
11 //Output
12 printf('Polarizing angles for violet and red are %3 .2 f degrees and %3.2 f degrees',ip1,ip2)
```

Scilab code Exa 11.2 Angle

1 clc

```
2 clear
3 //Input data
4 I=0.09//Ratio of observed intensity to the initial
    intensity
5
6 //Calculations
7 q=acosd(sqrt(I))//Angle between the plane of
    transmission of the analyser and that of the
    polarizer in degrees
8
9 //Output
10 printf('Angle between the plane of transmission of
    the analyser and that of the polarizer is %3.2 f
    degrees',q)
```

Direct Current Circuits

Scilab code Exa 12.e.1 Current

```
clc
clear
//Input data
V=10//voltage in V from fig.12.7 on page no.175
R=10//Resistance in ohms from fig.12.7 on page no.175

//Calculations
I=(V/R)//Current in A
//Output
rprintf('Current in the circuit shown in fig.12.7 is %i A',I)
```

Scilab code Exa 12.e.2 Current

```
1 clc
2 clear
```

```
3 //Input data
4 R=[6,6,3] // Resistances in the circuit from circuit
     diagram 12.9 on page no. 175 in ohms
5 V=[24,16]//Voltages in the circuit from circuit
     diagram 12.9 on page no. 175 in V
7 // Calculations
8 Re1=1/((1/R(2))+(1/R(3)))//Equivalent resistance for
      parallel combination in ohms
  Re=R(1)+Re1//Equivalent resistance of the circuit in
      ohms
10 I1=(V(1)/Re)//Current across the resistors in A
11 pd=(I1*Re1)//Potential difference across A and B
     from circuit diagram 12.9 on page no. 175 in V
12 I2=(pd/R(3))//Current across 3 ohms resistance in A
13 I3=(V(2)/(R(1)+R(2)))/Current in A
14 I=I2+I3//Total current
15
16 //Output
17 printf ('The current shown in the circuit is %3.1 f A'
      ,I)
```

Scilab code Exa 12.e.3 Thevenins equivalent circuit

Scilab code Exa 12.e.4 Thevenins equivalent circuit

```
clc
clear
//Input data
R=[2,3,6]//Resistances from circuit diagram 12.15 on
    page no. 178 in ohms
I=2//Current in A from circuit diagram 12.15 on page
    no. 178

//Calculations
Rth=(R(2)+R(3))//Equivalent resistance in ohms
Vth=(R(3)*I)//Equivalent voltage in V

//Output
resistance is %i ohms \n
Thevenin equivalent voltage is %i V',Rth,Vth)
```

Scilab code Exa 12.e.5 Thevenins equivalent circuit

Scilab code Exa 12.e.6 Nortons equivalent circuit

Scilab code Exa 12.e.7 Nortons equivalent circuit

```
1 clc
2 clear
3 //Inut data
4 R=[4,5,6]//Resistances from circuit diagram 12.22 on page no.181 in ohms
5 I=2//Current in A from circuit diagram 12.22 on page no.181
6
7 //Calculations
8 RN=(R(1)+R(2)+R(3))//Equivalent resistance in ohms
9 IN=(R(1)*I)/RN//Equivalent curren in A
10
11 //Output
12 printf('Nortons equivalent resistance is %i ohms \n Nortons equivalent current is %3.3 f A',RN,IN)
```

Scilab code Exa 12.1 Current

```
clc
clear
//Input data
R=[6,6,12]//Resistances from circuit diagram 12.34
    on page no.192 in ohms
V=[5,2]//Voltage in V from circuit diagram 12.20 on
    page no.192

//Calculations
Re=((R(2)*R(3))/(R(2)+R(3)))+R(1)//Equivalent
    resistance in ohms for 5V supply
I=V(1)/Re//Equivalent current in A for 5V supply
Ve=((R(2)*R(3))/(R(2)+R(3)))*I//Voltage across 5V
    supply in V
I1=(Ve/R(3))//Current in A
```

Scilab code Exa 12.2 Equivalent circuit

```
1 clc
2 clear
3 //Input data
4 R=[3,5,6,7]//Resistances from circuit diagram 12.36(
     a) on page no. 193 in ohms
5 V=12//Voltage in V from circuit diagram 12.36(a) on
     page no. 193
6
  // Calculations
8 Vth=(V*R(3))/(R(3)+R(4)+R(2))//Equivalent voltage in
      V
9 Rth=R(1)+(((R(2)+R(4))*R(3))/(R(2)+R(4)+R(3)))//
     Equivalent resistance in ohms
10
11 //Output
12 printf ('Thevenin equivalent resistance is %i ohms \n
      Thevenin equivalent voltage is %i V', Rth, Vth)
```

Scilab code Exa 12.3 Norton equivalent

1 clc

Scilab code Exa 12.4 Parameters

```
1 clc
2 clear
3 //Input data
4 C=10*10^-6//Capicitance in F
5 R=10*10^3//Resistance in ohms
6 \text{ e=}6/\text{Emf} of the battery in V
8 // Calculations
9 t=C*R//Time constant in s
10 Qm = (C*e)/10^-6//Maximum charge in micro C
11 Im=(e/R)*1000//Maximum current in mA
12
13 //Output
14 printf ('Time constant of the circuit is \%3.1 f s \n
     Maximum charge on the capacitor is %i micro C \n
     Maximum current in the circuit is %3.1 f mA \n
      Charge at time t is Q(t) = \%i(1-\exp(-t/\%3.1 f))
```

```
micro C \n Currrent at time t is I(t) = \%3.1 f \exp(-t/\%3.1 f) mA',t,Qm,Im,Qm,t,Im,t)
```

Scilab code Exa 12.5 Time constant

```
clc
clear
//Input data
L=50//Inductance in mH
R=5//Resistance in ohms
V=6//Volatage of the battery in V
t=5//Time in ms

//Calculations
I=(L/R)//Time constant in ms
I=(V/R)*(1-exp(-t/t1))//Current in A

//Output
Printf('The time constant of the circuit is %i ms \n
The current in the circuit is %3.2f A',t1,I)
```

Scilab code Exa 12.6 Parameters

```
1 clc
2 clear
3 //Input data
4 L=6//Inductance in mH
5 C=12//Capacitance in pF
6 V=6//Voltage of the battery in V
7
8 //Calculations
9 f=(1/(2*3.14*sqrt(L*10^-3*C*10^-12)))/10^5//Frequency of oscillation in Hz*10^5
```

```
10 Qm=(C*10^-12*V)/10^-12//Maximum charge in C *10^-12
11 Im=(2*3.14*f*10^5*Qm*10^-12)/10^-6//Maximum current
    in micro A
12
13 //Output
14 printf('Frequency of oscillation is %3.2f *10^5 Hz \
    n The maximum value of charge on capacitor is %i
    *10^-12 C \n The current in the circuit is %i
    micro A',f,Qm,Im)
```

Alternating Current Circuits

Scilab code Exa 13.1 rms current and maximum current

```
clc
clear
//Input data
Vm=100//Maximum voltage in V
R=50//resitance in ohms

//Calculations
Vrms=(Vm/sqrt(2))//rms voltage in V
Irms=(Vrms/R)//rms current in A
Im=(Vm/R)//Maximum current in A

//Output
printf('rms current is %3.2 f A and maximum current is %i A',Irms,Im)
```

Scilab code Exa 13.2 rms current

```
1 clc
```

```
clear
//Input data
c=50//Capacitor in micro F
Vm=220//Maximum voltage in V
f=50//Frequency in Hz

//Calculations
Xc=(1/(2*3.14*c*10^-6*f))//Reactance in ohms
I=(Vm/Xc)//Maximum current in A
Irms=I/sqrt(2)//rms current in A
//Output
//Output
rintf('rms current is %3.2 f A',Irms)
```

Scilab code Exa 13.3 rms current

```
clc
clear
//Input data
L=2//Inductance in H
Vrms=220//rms voltage in V
f=50//Frequency in Hz

//Calculations
X1=(2*3.14*f*L)//Reactance in ohms
Irms=(Vrms/X1)//rms current in A

//Output
printf('rms current is %3.3 f A',Irms)
```

Scilab code Exa 13.4 Maximum potential difference

```
1 clc
```

```
2 clear
3 //Input data
4 Vm=220//Maximum voltage in V
5 f=50//frequency in Hz
6 R=2000//Resistance in ohms
7 C=5*10^-6//Capacitor in F
8
9 // Calculations
10 Xc = (1/(2*3.14*f*C)) / Reactance in ohms
11 Z=sqrt(R^2+Xc^2)//Impedence in ohm
12 Vc=(Vm*Xc)/Z//Maximum potential difference across
      the capacitor in V
13
14 //Output
15 printf ('Maximum potential difference across the
      capacitor is \%3.2\,\mathrm{f} V', Vc)
```

Scilab code Exa 13.5 rms potential difference

```
1 clc
2 clear
3 //Input data
4 R=5000//Resistance in ohms
5 L=2//Inductance in H
6 Vrms=200//rms Voltage in V
7 f=50//Frequency in Hz
8
9 // Calculations
10 X1=(2*3.14*f*L)//Inductive reactance in ohms
11 Z=sqrt(R^2+X1^2)//Impedence in ohms
12 V1=(Vrms*X1)/Z//rms potential difference across the
     inductor in V
13
14 //Output
15 printf ('rms potential difference across the inductor
```

Scilab code Exa 13.6 Parameters

```
1 clc
2 clear
3 //Input data
4 R=10//Resistance in ohms
5 L=5*10^-3/Inductance in H
6 C=10*10^-6//Capacitance in F
7 V=100//Voltage in V
8 f=50//Frequency in Hz
9
10 // Calculations
11 Xc = (1/(2*3.14*f*C)) // Capacitive reactance in ohms
12 X1 = (2*3.14*f*L) / Inductive reactance in ohms
13 Z=sqrt(R^2+(X1-Xc)^2)/Impedence in ohms
14 I=(V/Z)//Current in A
15 q=atand((X1-Xc)/R)//Phase angle in degrees
16 Vr=(I*R)//Voltage across resistor in V
17 Vc=(I*Xc)//Voltage across capacitor in V
18 V1=(I*X1)//Voltage across inductor in V
19
20 //Output
21 printf ('Total impedence is \%3.1 f ohms \n Current is
      \%3.3 \, f \, A \setminus n Phase angle is \%3.2 \, f \, degrees \setminus n
      Voltage across resistor is %3.2 f V \n Voltage
      across capacitor is %3.2 f V \n Voltage across
      inductor is \%3.3 \,\mathrm{f} V',Z,I,q,Vr,Vc,Vl)
```

Scilab code Exa 13.7 Resonating frequency and Q factor

```
1 clc
```

```
2 clear
3 //Input data
4 R=5//Resistance in ohms
5 L=2*10^-3//Inductance in H
6 C=25*10^-6//Capacitance in F
7 V=50//Voltage in V
8
9 //Calculations
10 w=1/sqrt(L*C)//Angular speed in rad/s
11 f=(w/(2*3.14))//Frequency in Hz
12 Q=(w*L)/R//Q factor
13
14 //Output
15 printf('Resonating frequency is %3.2 f Hz \n Q factor is %3.2 f',f,Q)
```

Scilab code Exa 13.8 Capacitance and resistance

```
clc
clear
//Input data
L=(20*10^-3) //Inductance in H
Q=8//Q factor
f=1000//Frequency in Hz

//Calculations
R=(2*3.14*f*L)/Q//Resistance in ohms
C=(1/((2*3.14*f)^2*L))/10^-6//Capacitance in microF
//Output
printf('Capacitance and resistance of coil is %3.2f micro F and %3.1f ohms respectively',C,R)
```

Motion of a charged particle

Scilab code Exa 15.1 Speed

```
clc
clear
//Input data
E=5000//Intensity of electric field in N/C
d=0.02//Distance in m
e=(1.6*10^-19)//Charge of the electron in C
m=(9.1*10^-31)//Mass of the electron in kg

//Calculations
v=sqrt(2*e*E*d/m)/10^6//Speed of the electron in m/s
*10^6

//Output
printf('Speed of the electron is %3.2 f *10^6 m/s',v)
```

Scilab code Exa 15.2 Vertical displacement

```
1 clc
```

```
2 clear
3 //Input data
4 v=(5*10^6)//Velocity of the electron in m/s
5 E=2000//Intensity of electric field in N/C
6 d=0.06//Distance in m
7 e=(1.6*10^-19)/Charge of the electron in C
8 m=(9.1*10^-31)/Mass of the electron in kg
9
10
11 // Calculations
12 y=((-e*E*d^2)/(2*m*v^2))*100//Vertical displacement
     of the electron when it just leaves the electric
     field in cm
13
14 //Output
15 printf('Vertical displacement of the electron when
     it just leaves the electric field is \%3.2 f cm', y)
```

Scilab code Exa 15.3 Time required

```
11
12 //Output
13 printf('Time required by the particle to reach the
    maximum height in the electric field is %3.2 f
    micro s',t)
```

Scilab code Exa 15.4 Orbital speed

```
1 clc
2 clear
3 //Input data
4 r=0.3//Radius of circular orbit in m
5 B=0.38//Magnetic field strength in T
6 e=(1.6*10^-19)//Charge of the proton in C
7 m=(1.672*10^-27)//Mass of the proton in kg
8
9 //Calculations
10 v=((e*B*r)/m)/10^6//Orbital speed of the proton in m
/s
11
12 //Output
13 printf('Orbital speed of the proton is %3.0f *10^6 m
/s',v)
```

Scilab code Exa 15.5 Pitch of helix and radius of trajectory

```
1 clc
2 clear
3 //Input data
4 e=(1.6*10^-19)//Charge of the proton in C
5 m=(1.67*10^-27)//Mass of the proton in kg
6 B=0.8//Magnetic field strength in T
```

Electrons Ions Isotopes and Nucleus

Scilab code Exa 16.1 Separation

```
1 clc
2 clear
3 //Input data
4 E=(200*100) // Electric field in V/m
5 B=0.2//Magnetic field in T
6 B1=0.3//Magnetic field in the main chamber in T
7 q=(1.6*10^-19) // Charge of the electron in coloumbs
8 m=[12,13]/(Carbon isotopes C12 and C13
9 M=(1.67*10^-27)/AMU(Atomic Mass Unit) in kg
10
11 // Calculations
12 v=(E/B)//Velocity in m/s
13 s=(2*v*(m(2)-m(1))*M*100)/(q*B1)/Separation in cm
14
15 // Output
16 printf ('Seperation on photographic plate is %3.4 f cm
      ',s)
```

Scilab code Exa 16.2 BE per nucleon

```
clc
clear
//Input data
a=20//Atomic number of Ca
m=40//mass number of Ca
M=39.962591//Mass of Ca nucleus in u
mp=1.007276//Mass of proton in AMU
mn=1.008665//Mass of neutron in AMU

//Calculations
BE=(1/m)*((a*mp)+(a*mn)-M)*1000//BE per nucleon in MeV

//Output
printf('BE per nucleon is %3.6 f MeV', BE)
```

Quantum Theory

Scilab code Exa 17.1 Maximum kinetic energy

```
1 clc
2 clear
3 //Input data
4 w=4000//Wavelength of the light in Angstrom units
5 wf=2.25//Work function of potassium in eV
6 \text{ m} = (9.1*10^-31) // \text{Mass of the electron in kg}
7 v=(3*10^8)/Velocity of light in m/s
8 c=(1.6*10^-19) //Charge of the electron in coloumbs
9 h=6.626*10^-34//Plancks constant in Js
10
11 // Calculations
12 E=(h*v)/(w*10^-10*c)//Energy of incident photon in
      eV
13 KE=(E-wf)//Kinetic energy in eV
14
15 // Output
16 printf ('Maximum kinetic energy of photoelectron is
      \%3.3 \, \text{f eV}', KE)
```

Scilab code Exa 17.2 Stopping potential

```
clc
clear
//Input data
wf=1.9//Workfunction of the material in eV
w=3000//Wavelength of the light in Angstrom units
v=(3*10^8)//Velocity of light in m/s
c=(1.6*10^-19)//Charge of the electron in coloumbs
h=6.626*10^-34//Plancks constant in Js

//Calculations
V=(1/c)*(((h*v)/(w*10^-10))-(wf*c))//Stopping
potential in V

//Output
rintf('Stopping potential is %3.2f V',V)
```

Scilab code Exa 17.3 Shortest wavelength

```
1 clc
2 clear
3 //Input data
4 V=(70*10^3)//Accelerating potential in V
5 v=(3*10^8)//Velocity of light in m/s
6 c=(1.6*10^-19)//Charge of the electron in coloumbs
7 h=6.626*10^-34//Plancks constant in Js
8
9 //Calculations
10 lmin=((h*v)/(c*V))/10^-9//Shortest wavelength of X-rays produced in mm
11
12 //Output
13 printf('Shortest wavelength of X-rays produced is %3.4 f mm',lmin)
```

Scilab code Exa 17.4 Wavelength

```
clc
clear
//Input data
w1=2//Wavelength in Angstrom

Z1=24//Target one
Z2=42//Target two
a=1//Constant value

//Calculations
w2=w1*((Z1-a)/(Z2-a))^2//Wavelength in Angstrom
//Output
printf('Wavelength is %3.2 f Angstrom', w2)
```

Scilab code Exa 17.5 Wavelength

```
clear
//Input data
w=3//Wavelength of the light in Angstrom
v=(3*10^8)//Velocity of light in m/s
h=6.626*10^-34//Plancks constant in Js
q=40//Scattering angle in degrees
m=(9.11*10^-31)//Mass of electron in kg
c=(1.6*10^-19)//Charge of the electron in coloumbs
// Calculations
dl=(h/(m*v))*(1-cosd(q))/10^-10//Wavelength in Angstrom
```