Internet de las cosas

Internet de las cosas: Origen, usos y aplicaciones

Dr. Francisco Javier Acosta Padilla Embedded Hardware & Software Manager KUGU Home GmbH

Bio

· 2006 - 2010

- Ingeniería electrónica, especialidad electrónica de potencia. Instituto Tecnológico de La Laguna (hoy Tecnológico Nacional de México)

· 2010 - 2011

- Ingeniero de automatización, IS Solutions S.A. de C.V. Lerdo, Durango

· 2011 - 2012

 Maestría en electrónica y telecomunicaciones, especialidad en domótica. Université de Rennes 1, Rennes, Francia

· 2012 - 2015

Doctorado en ciencias de la computación. Tesis: Self adaptation for Internet of Things applications.
Univeristé de Rennes 1 / Inria Rennes

· 2016 - 2018

 Postdoc: Secure Over The Air (OTA) Updates for edge IoT devices. Inria Paris Saclay / Freie Universität Berlin

· 2018 - 2019

- Ingeniero de desarrollo e investigación. Nano-Sense, París

2019 a la fecha

- Gerente de dispositivos y sistemas embebidos. KUGU Home, Berlín

WSN -> IoT

Dispositivos embebidos

- "Cyber Physical Systems"
- Microprocesador + memoria + periféricos + conectividad

Conectividad inalámbrica

- Ultra bajo consumo de energía
- Medio/largo alcance
- Protocolo estándar

Protocolos de internet (OSI)

OSI MODEL	TCP/IP MODEL	
Application Layer		
Presentation Layer	Application Layer	
Session Layer		
Transport Layer	Transport Layer	
Network Layer	Internet Layer	
Data Link Layer	Notwork Access Lover	
Physical Layer	Network Access Layer	

10/29/20 UJED 2020

Protocolos IoT

	IOT STACK	WEB STACK
TCP/IP	IOT applications Device Management	Web applications
Data Format	Binary, JSON, CBOR	HTML, XML, JSON
Application Layer	CoAP, MQTT, XMPP, AMPQP	HTTP, DHCP, DNS, TLS/SSL
Transport Layer	UDP, DTLS	TCP, UDP
Internet Layer	IPv6/IP Routing	IPv6, IPv4, IPSec
	6LOWPAN	
Network/Link Layer	IEEE 802.15.4 MAC	Ethernet (IEEE 802.3), DSL, ISDN, WIreless LAN (IEEE 802.11), Wi-Fi
	IEEE 802.15.4 PHY / Physical Radio	(IEEE 802.11), Wi-Fi

Retos

Dispositivos embebidos (hardware)

- Funcionamiento con baterías
- Muy bajo poder de cálculo
- Muy poca memoria

Transimisión de datos (conectividad)

- Ancho de banda ultra limitado
- Generalmente inalámbrico

Programación

- Lenguajes cercanos al hardware (ASM, C, C++)
- Conciencia de la baja disponibilidad de memoria
- Librerías existentes limitadas
- Actualizaciones (!!!)

Sociales

Cómo hacer uso de tantos dispositivos conectados en la nueva realidad?

Usos

Agricultura

- Monitoreo de plantaciones
- Prevención/anticipación de fenómenos

Smart Cities

- Medición calidad del aire
- Tráfico vehicular
- Servicios (alumbrado, basura, etc)

Smart home

- Consumo de energía
- Automatización

Industrial IoT

- Monitoreo de líneas de producción
- Automatización de procesos no críticos
- Monitoreo de consumo energético

Caso de uso: KUGU Home GmbH

Problemas a resolver

- Lento proceso de facturación de costos de calefacción en edificos residenciales
- Errores en el proceso: reclamaciones de los inquilinos
- Ignorancia del uso de energía para calefacción
- Detección de fallos en el sistema de calefacción centralizado

KUGU in a nutshell

Recolección de datos

- Alta/Muy alta frecuencia

Reusabilidad

 Lectura de datos de medidores previamente instalados

No intrusivo

- Colector de datos independiente

Visualización

- Portal hecho a la medida

Facturación

Posibilidad de generar facturas en semanas

Central Heating Optimisation

- Detección de fallos
- Recomendaciones de uso
- Ahorro directo de energía

Malinche: colector de datos

100% inalámbrico

- Recepción de datos wireless M-Bus
- Envío de datos LoRaWAN

Funcionamiento con baterías

- 10 años sin cambio de baterías

Configurable remotamente

Esquema de recepción de datos

- Recepción wM-Bus: KUGU IP / RIOT OS
 - Medidor -> Malinche
- Envío LoRaWAN: RIOT OS / Semtech LoRaMAC 1.0.2
 - Malinche -> LoRaWAN
- Pasarela LoRaWAN: BasicStation + ChirpStack
 - LoRaWAN -> MOTT
- Broker mqtt2influx: KUGU IP
 - MQTT -> InfluxDB
- HTTP Injector: KUGU IP
 - InfluxDB -> HTTP
- Decodificador wM-Bus: jMBus
 - HTTP -> InfluxDB
- KUGU Portal: KUGU IP
 - InfluxDB -> Visualización

Conclusiones

Uso práctico del IoT

Nuevas ideas, creación de startups

Rol del software open source

- Bases firmes, estándares y usables

Propiedad intelectual / Patentes

- Nuevas ideas -> Propiedad intelectual
- Uso de licencias open source permite IP
- Contribución directa a la sociedad y comunidades open source

10/29/20 UJED 2020

Más información

KUGU Home

- https://kugu-home.com/

RIOT-OS

- http://riot-os.org/
- https://github.com/RIOT-OS/RIOT

BasicStation

https://github.com/lorabasics/basicstation

ChirpStack

https://www.chirpstack.io/

InfluxDB

- https://www.influxdata.com/

Gracias!!

