Graphs: Minimum Spanning Trees

Minimum Spanning Tree Algorithms

Input: Connected, undirected graph **G** with edge weights (unconstrained, but must be additive)

Output: A graph G' with the following properties:

- G' is a spanning graph of G
- G' is a tree (connected, acyclic)
- G' has a minimal total weight among all spanning trees

Graphs: MST – Kruskal's Algorithm

(A, D)

(E, H)

(F, G)

(A, B)

(B, D)

(G, E)

(G, H)

(E, C)

(C, H)

(E, F)

(F, C)

(D, E)

(B, C)

(C, D)

(A, F)

(D, F)

	_
(A, D)	
(E, H)	
(F, G)	
(A, B)	
(B, D)	X
(G, E)	\
(G, H)	\times
(E, C)	
(C, H)	\times
(E, F)	X
(F, C)	X
(D, E)	
(B, C)	X
(C, D)	×
(A, F)	X
(D, F)	X

```
(A, D)
(E, H)
(F, G)
(A, B)
(B, D)
(G, E)
(G, H)
(E, C)
(C, H)
(E, F)
(F, C)
(D, E)
(B, C)
(C, D)
(A, F)
(D, F)
```

```
5 B 15
C 16 C 10 11
17 D 13 E 2 H
12 8 9 12
```



```
KruskalMST(G):
     DisjointSets forest
     foreach (Vertex v : G):
       forest.makeSet(v)
     PriorityQueue Q // min edge weight
     foreach (Edge e : G):
       Q.insert(e)
10
     Graph T = (V, \{\})
11
12
     while |T.edges()| < n-1:
13
       Edge (u, v) = Q.removeMin()
14
       if forest.find(u) != forest.find(v):
15
           T.addEdge(u, v)
16
           forest.union( forest.find(u),
17
                         forest.find(v) )
18
19
     return T
```

Priority Queue:	Heap	Sorted Array
Building :6-8	O(m)	O(m * log(m))
Each removeMin :13	m * log(m)	O(1) * m

```
KruskalMST(G):
     DisjointSets forest
     foreach (Vertex v : G):
       forest.makeSet(v)
     PriorityQueue Q // min edge weight
     foreach (Edge e : G):
       Q.insert(e)
10
     Graph T = (V, \{\})
11
12
     while |T.edges()| < n-1:
13
       Edge (u, v) = Q.removeMin()
14
       if forest.find(u) != forest.find(v):
15
          T.addEdge(u, v)
16
          forest.union( forest.find(u),
17
                         forest.find(v) )
18
19
     return T
```

Priority Queue:	Total Running Time
Неар	m + m * log(m)
Sorted Array	m * log(m) + m

```
O(m * log(m))
```

```
KruskalMST(G):
     DisjointSets forest
     foreach (Vertex v : G):
       forest.makeSet(v)
     PriorityQueue Q // min edge weight
     foreach (Edge e : G):
       Q.insert(e)
10
     Graph T = (V, \{\})
11
12
     while |T.edges()| < n-1:
13
       Edge (u, v) = Q.removeMin()
14
       if forest.find(u) != forest.find(v):
15
          T.addEdge(u, v)
16
           forest.union( forest.find(u),
17
                         forest.find(v) )
18
19
     return T
```

Graphs: MST – Prim's Algorithm

Partition Property

Consider an arbitrary partition of the vertices on **G** into

two subsets **U** and **V**.

Partition Property

Consider an arbitrary partition of the vertices on **G** into

two subsets **U** and **V**.

Let **e** be an edge of minimum weight across the partition.

Then **e** is part of some minimum spanning tree.

Partition Property

The partition property suggests an algorithm:

Prim's Algorithm


```
1 PrimMST(G, s):
     Input: G, Graph;
            s, vertex in G, starting vertex
     Output: T, a minimum spanning tree (MST) of G
     foreach (Vertex v : G):
       d[v] = +inf
       p[v] = NULL
     d[s] = 0
10
11
     PriorityQueue Q // min distance, defined by d[v]
12
     Q.buildHeap(G.vertices())
13
     Graph T
                       // "labeled set"
14
15
     repeat n times:
16
       Vertex m = Q.removeMin()
17
       T.add(m)
18
       foreach (Vertex v : neighbors of m not in T):
19
         if cost(v, m) < d[v]:
20
           d[v] = cost(v, m)
21
           p[v] = m
22
23
     return T
```

Prim's Algorithm

Sparse Graph:

```
m ~ n
m log(m) + m log(m) -> m log(m)
```

Dense Graph:

```
m ~ n^2
n^2 log(n)
```

```
PrimMST(G, s):
     foreach (Vertex v : G):
       d[v] = +inf
       p[v] = NULL
10
     d[s] = 0
11
12
     PriorityQueue Q // min distance, defined by d[v]
13
     Q.buildHeap(G.vertices())
14
     Graph T
                     // "labeled set"
15
16
     repeat n times:
17
       Vertex m = Q.removeMin()
18
       T.add(m)
19
       foreach (Vertex v : neighbors of m not in T):
20
         if cost(v, m) < d[v]:
21
           d[v] = cost(v, m)
22
           m = [v]q
```

	Adj. Matrix	Adj. List
Неар	O(n ² + m lg(n))	O(n lg(n) + m lg(n))
Unsorted Array	O(n²)	O(n ²)

Graphs: MST – Runtime Analysis

MST Algorithm Runtime:

• Kruskal's Algorithm:

$$O(n + m \lg(n))$$

• Prim's Algorithm:

$$O(n \lg(n) + m \lg(n))$$

MST Algorithm Runtime:

Upper bound on MST Algorithm Runtime:O(m lg(n))