Classification: Logistic Regression and Linear Discriminant Analysis (ISLR 4.1 - 4.4)

Yingbo Li

Southern Methodist University

STAT 4399

Outline

- 1 Logistic Regression
- 2 Linear Discriminant Analysis

Classification

One categorical response Y:

- Two levels: usually coded as $\{0,1\}$.
 - ▶ {no, yes},
 - {healthy, diseased}.
- Multiple levels: usually coded as $\{1, 2, \dots, K\}$.
 - ▶ Un-ordered: {orange, purple, other}.
 - Ordered: {mild, moderate, severe}.

Using numerical coding doesn't necessarily imply ordering, and the gaps between ordered levels may not be the same.

One or more predictors $X = (X_1, X_2, \dots, X_p)$.

Classification: build a function C(X) that takes input X and predicts its value for Y

The Default data

Contains n = 10000 observations and 4 variables

- default: {yes, no}.
- student: {yes, no}; balance, income: numerical.

	default	student
No	9667	7056
Yes	333	2944

	balance	income
Min	0.0	772
1st Qu	481.7	21340
Median	823.6	34553
Mean	835.4	33517
3rd Qu	1166.3	43808
Max	2654.3	73554

We are interested in predicting whether an individual will default on his or her credit card payment, on the basis of annual income and monthly credit card balance.

Model the probability $P(Y = 1 \mid X)$

We code the response default as

$$Y = \begin{cases} 0 & \text{if no} \\ 1 & \text{if yes} \end{cases}$$

We don't directly regress $P(Y = 1 \mid X)$ on X, because

- Normality residuals assumption in linear regression is not satisfied.
- The predicted probability may be greater than 1 or less than 0.

Logistic regression

Denote the success probability p = P(Y = 1), then

- Odds $\frac{p}{1-p}$: takes value in $(0,\infty)$
- Log-odds $\log\left(\frac{p}{1-p}\right)$: takes value in $(-\infty,\infty)$. Also called logit.

We connect the log-odds with a linear combination of predictors

$$logit(p) = log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p.$$

This is equivalent to

$$p = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$
$$= \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}}$$

Maximum likelihood

Consider the case of p=1 predictor. The *likelihood* function is the density of the sampling distribution of Y given the parameters β_0, β_1 .

Each $Y_i \sim \text{Bernoulli}(p_i)$, where p_i depends on $X_{i,1}$, its density

$$f(Y_i \mid \beta_0, \beta_1) = p_i^{Y_i} (1 - p_i)^{1 - Y_i}$$

$$= \left(\frac{e^{\beta_0 + \beta_1 X_{i,1}}}{1 + e^{\beta_0 + \beta_1 X_{i,1}}}\right)^{Y_i} \left(\frac{1}{1 + e^{\beta_0 + \beta_1 X_{i,1}}}\right)^{1 - Y_i}$$

Since observations Y_1, \ldots, Y_n are independent, the likelihood function is

$$f(Y \mid \beta_0, \beta_1) = \prod_{i=1}^n f(Y_i \mid \beta_0, \beta_1)$$
$$= \prod_{i=1}^n \left(\frac{e^{\beta_0 + \beta_1 X_{i,1}}}{1 + e^{\beta_0 + \beta_1 X_{i,1}}} \right)^{Y_i} \left(\frac{1}{1 + e^{\beta_0 + \beta_1 X_{i,1}}} \right)^{1 - Y_i}$$

The maximum likelihood estimator (MLE) is

$$(\hat{\beta}_0, \hat{\beta}_1) = \arg \max_{\beta_0, \beta_1} f(Y \mid \beta_0, \beta_1)$$

In linear regression (Ch 3), under the normality assumption of residuals $\epsilon_i \sim N(0, \sigma^2)$, the MLE estimators of the regression coefficients are the same as the OLS estimators.

For logistic regression, we can use the glm function in R: glm(default \sim balance, data = Default, family = binomial);

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-10.6513	0.3612	-29.4922	0.0000
balance	0.0055	0.0002	24.9531	0.0000

Interpreting the logistic regression slope

 $\hat{eta}_1 = 0.0055$, and it is significant. What does it mean?

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1 \Longleftrightarrow \frac{p}{1-p} = e^{\beta_0 + \beta_1 X_1}.$$

An unit increase in X_1 is associated with

- β_1 unit increase/decrease in log-odds on average,
- $100(e^{\beta_1}-1)\%$ increase/decrease in odds.

An increase of \$10 in balance is associated with

$$5.65\% = 100 \times (e^{0.0055 \times 10} - 1)\%$$

increase in the odds of default.

What does the intercept $\hat{\beta}_0 = -10.6513$ mean?

Prediction

Predict the probability of default of someone of a balance X:

$$\hat{p} = \frac{1}{1 + e^{-(\hat{\beta}_0 + \hat{\beta}_1 X)}}$$

For an individual

- with a balance of \$1000, $\hat{p} = 0.006$.
- with a balance of \$2000, $\hat{p} = 0.586$.

A categorical predictor

Fit a logistic regression, using student as the predictor: code it as a dummy variable: 0 - no, 1 - yes.

 ${\tt glm}({\tt default} \sim {\tt student}, {\tt data} = {\tt Default}, {\tt family} = {\tt binomial});$

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-3.5041	0.0707	-49.5542	0.0000
student[Yes]	0.4049	0.1150	3.5202	0.0004

Predicted probability of default

- for a student is $\hat{p} = \frac{1}{1 + e^{-(\hat{\beta}_0 + \hat{\beta}_1)}} = 0.0431$.
- for a non-student is $\hat{p}=\frac{1}{1+e^{-\hat{eta}_0}}=0.0292.$

Students tend to have higher default probabilities than non-students.

Multiple logistic regression

 $glm(default \sim ., data = Default, family = binomial);$

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-10.8690	0.4923	-22.0801	0.0000
student[Yes]	-0.6468	0.2363	-2.7376	0.0062
balance	0.0057	0.0002	24.7376	0.0000
income	0.0000	0.0000	0.3698	0.7115

Why is the coefficient for student negative here, but positive in the previous logistic regression where p=1?

Given the rest the predictors, ...

For a fixed value of balance, a student tends to have a lower default probability than a non-student.

Students (orange) vs. non-students (blue)

To whom should credit be offered?

- Students tend to have higher balances than non-students, so their marginal default rate is higher than for non-students. A student is risker than non students if no information about the credit card balance is available
- But for each level of balance, students default less than non-students. However, that student is less risky than a non student with the same credit card balance!

Discriminant analysis

Model the distribution of X in each class k separately, and then use Bayes theorem to flip things around and obtain $P(Y = k \mid X)$.

- Why discriminant analysis?
 - More stable than the logistic regression when the two classes are well-separated.
 - Can handle more than two classes.
- Linear discriminant analysis:

$$D = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- D: discriminant function
- \triangleright β_0 : constant
- β_1, \ldots, β_p : discriminant coefficients
- We want to discriminate between the different categories
- Good predictors tend to have large β_i 's (weight)

Bayes theorem

• For events: let $\{A_1,\ldots,A_K\}$ be a partition of the sample space, i.e., $A_i\cap A_j=\emptyset$ for any 1< i,j< K, and $\sum_{i=1}^K P(A_i)=1$, then

$$P(A_k \mid B) = \frac{P(B \mid A_k)P(A_k)}{\sum_{j=1}^{K} P(B \mid A_j)P(A_j)}$$

• When $Y \in \{1, 2, \dots, K\}$ is discrete, then

$$P(Y = k \mid X) = \frac{f(X \mid Y = k)P(Y = k)}{\sum_{j=1}^{K} f(X \mid Y = j)P(Y = j)}$$

- ▶ Denote $\pi_k = P(Y = k)$, is the *prior* probability of class k.
- ▶ $P(Y = k \mid X)$ is the *posterior* probability of class k, given the observation X
- ▶ Denote $f_k(X) = f(X \mid Y = k)$ is the density of X in class k.

Get yourself a 10 Deutsche Mark bill

Linear discriminant analysis, p = 1

- Under the assumptions:
 - ▶ In the class Y = k,

$$X \sim N(\mu_k, \sigma^2) \Longleftrightarrow f_k(X) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(X-\mu_k)^2}{2\sigma^2}}.$$

- ▶ The variance σ^2 is the same across classes.
- ullet Assign the observation with predictor X to the class C(x)

$$C(X) = \arg \max_{k} \ P(Y = k \mid X) = \arg \max_{k} \ f_{k}(X)\pi_{k}$$

 Under the assumptions of normality and equal variance, we assign the observation to the class for which

$$\delta_k(X) = \log(\pi_k) - \frac{\mu_k^2}{2\sigma^2} + \frac{\mu_k}{\sigma^2}X$$

is the largest. Note: $\delta_k(X)$ is a linear function in X.

An example of K=2

When $\pi_1 = \pi_2$, the decision boundary is:

$$\delta_1(X) = \delta_2(X) \Longrightarrow X = \frac{\mu_1 + \mu_2}{2}$$

In the training data, $n_1 = n_2 = 20$

- LDA decision boundary (solid line): error rate 11.1%
- Bayesian decision boundary (dashed line): error rate: 10.6%

19 / 20

Parameter estimation

Estimators of the unknown parameters: $\mu_1, \ldots, \mu_K, \sigma^2, \pi_1, \ldots, \pi_K$.

$$\hat{\mu}_{k} = \frac{1}{n_{k}} \sum_{i:Y_{i}=k} X_{i},$$

$$\hat{\sigma}^{2} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i:Y_{i}=k} (X_{i} - \hat{\mu}_{k})^{2}$$

$$\hat{\pi}_{k} = \frac{n_{k}}{n},$$

Estimated LDA discriminant function:

$$\hat{\delta}_k(X) = \log(\hat{\pi}_k) - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \frac{\hat{\mu}_k}{\hat{\sigma}^2}X$$