Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)

Обнаружение дефектов программного обеспечения с использованием алгоритмов машинного обучения

Студент: Климов Илья Сергеевич, ИУ7-82Б

Научный руководитель: Вишневская Татьяна Ивановна, доцент кафедры ИУ7, к.ф.-м.н.

Актуальность

- Одна из актуальных проблем разработки программного обеспечения (ПО) наличие дефектов.
- Затраты на выявление и устранение дефектов могут составлять до 80% от общей стоимости ПО.
- Существуют различные технологии для определения дефектов. В данной работе предлагается использовать методы машинного обучения.

Цель и задачи

Цель: разработка и программная реализация метода обнаружения дефектов ПО с использованием алгоритмов машинного обучения.

Задачи:

- 1) проанализировать и сравнить существующие методы машинного обучения для обнаружения дефектов ПО;
- 2) разработать метод обнаружения дефектов ПО с применением ансамбля деревьев решений (градиентного бустинга);
- 3) разработать ПО, реализующее метод обнаружения дефектов ПО;
- 4) провести исследование эффективности разработанного метода и сравнение его с существующими реализациями.

Дефекты разрабатываемого ПО

Сравнительная таблица результатов работы методов машинного обучения

Метрики	Accuracy	Precision	Recall	F-measure
Методы	(точность)	(точность)	(полнота)	(F-мера)
Наивный байесовский классификатор	0.795	0.845	0.803	0.849
Метод опорных векторов	0.841	0.901	0.879	0.902
Дерево решений	0.823	0.845	0.878	0.889
Случайный лес	0.845	0.859	0.863	0.890
Градиентный бустинг	0.847	0.903	0.883	0.903
Адаптивный бустинг	0.835	0.858	0.861	0.889

Метрики для оценки точности алгоритмов

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$recall = \frac{TP}{TP + FN}$$

$$precision = \frac{TP}{TP + FP}$$

$$F - measure = \frac{precision \cdot recall}{precision + recall}$$

ТР – объекты, которые были верно классифицированы как положительные;

TN – объекты, которые были верно классифицированы как отрицательные;

FP – объекты, которые были ложно классифицированы как положительные;

FN – объекты, которые были ложно классифицированы как отрицательные.

Формализованная постановка задачи

Метод обнаружения дефектов ПО

Метрики для оценки кода

- Количество строк кода Маккейба
- Цикломатическая сложность Маккейба
- Количество операторов и операндов Холстеда
- Объем Холстеда
- Сложность Холстеда
- Интеллект Холстеда
- Усилия Холстеда
- Количество предполагаемых ошибок Холстеда
- Оценка времени Холстеда

- Количество строк кода Холстеда
- Количество строк комментариев Холстеда
- Количество пустых строк Холстеда
- Количество смешанных строк Холстеда
- Количество уникальных операторов
- Количество уникальных операндов
- Общее количество операторов
- Общее количество операндов

Обучение модели градиентного бустинга

Обучение модели градиентного бустинга

Логарифмическая функция потерь

$$\mathcal{L}(y,p) = -(y \cdot \log(p) + (1-y) \cdot \log(1-p))$$

Антиградиент

$$g_i^k = -\frac{a_k(x_i) - y_i}{a_k(x_i)(a_k(x_i) - 1)}$$

у – действительное значение целевой переменной;

р – предсказанное значение целевой переменной;

 $y_{\rm i}$ — действительное значение целевой переменной для i-го объекта;

 $a_k(x_i)$ – предсказанное значение целевой переменной для *i*-го объекта;

 x_i — значения метрик для i-го объекта.

Объект – набор из 17 значений метрик, посчитанных для определенного кода. Целевая переменная – переменная, показывающая вероятность наличия дефекта для объекта.

Результат обучения модели градиентного бустинга

$$a_k(x) = \eta b_1(x, y_1) + \eta b_2(x, y_2) + \dots + \eta b_k(x, y_k)$$

k – количество деревьев, участвующих при построении модели;

 η – темп обучения, $\eta \in (0,1]$;

 $b_j(x, y_j)$ – результат классификации j-го дерева, $j \in \overline{1; k}$;

x — значения метрик для каждого объекта;

 y_{j} — значения целевой переменной для каждого объекта.

Классификация кода по наличию дефекта

Программная реализация разработанного метода

Язык программирования – Python.

Библиотека для предобработки данных — scikit-learn.

Библиотека для обучения модели методом градиетного бустинга — XGBoost.

Фреймворк для разработки приложения – PyQt5.

Среда разработки – PyCharm.

Разработанная система обнаружения дефектов ПО

Анализ функции потерь

Обучение проходит верно. Функция потерь имеет гиперболическую форму, к концу обучения изменения становятся незначительными.

Сравнение точности разработанного метода

Метрики	Accuracy	Precision	Recall	F-measure
Методы	(точность)	(точность)	(полнота)	(F-мера)
Наивный байесовский классификатор	0.795	0.845	0.803	0.849
Метод опорных векторов	0.841	0.901	0.879	0.902
Дерево решений	0.823	0.845	0.878	0.889
Случайный лес	0.845	0.859	0.863	0.890
Градиентный бустинг	0.847	0.903	0.883	0.903
Адаптивный бустинг	0.835	0.858	0.861	0.889
Разработанный метод	0.941	0.818	0.936	0.873

Оценка времени выполнения программы

Зависимость между объемом входных данных и временем выполнения программы прямая. Обработка максимального количества строк занимает меньше 200 мс.

Заключение

В результате выполнения работы достигнута цель и решены все поставленные задачи:

- 1) произведены анализ и сравнение существующих методов машинного обучения для обнаружения дефектов ПО;
- 2) разработан метод обнаружения дефектов ПО с применением ансамбля деревьев решений (градиентного бустинга);
- 3) разработано ПО, реализующее метод обнаружения дефектов ПО;
- 4) проведено исследование эффективности разработанного метода и сравнение его с существующими реализациями.