

OET 65 TEST REPORT

Product Name

PocketBook eReader

PocketBook 902

FCC ID YDUPB902R1

Client ADVANCED MULTI TECH PTE. LTD

TA Technology (Shanghai) Co., Ltd. 报告专用章

GENERAL SUMMARY

Product Name	PocketBook eReader	Model	PocketBook 902	
FCC ID	YDUPB902R1	Report No.	RZA2010-1483FCC	
Client	ADVANCED MULTI TECH PTE. LTD			
Manufacturer	ADVANCED MULTI TECH PTE. LTD			
Standard(s)	IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 KHz to 300 GHz. OET Bulletin 65 supplement C, published June 2001 including DA 02-1438, published June 2002: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65. KDB 248227 D01 SAR meas for 802 11 a b g v01r02: SAR Measurement Procedures for 802.11a/b/g Transmitters KDB 616217 D03 SAR Supp Note and Netbook Laptop v01: SAR Evaluation Considerations for Laptop/Notebook/Netbook and Tablet Computers - supplement to KDB 616217. KDB 447498 D01 Mobile Portable RF Exposure v04: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies			
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards. General Judgment: Pass (Stamp) Date of issue: September 28th 2010			
Comment	The test result only responds to the me	easured sample	Э.	

Approved by 相比

Revised by & & &

Performed by_

Yang Weizhong Ling Minbao

Xue Chaofeng

TABLE OF CONTENT

1. G	eneral Information	5
1.1.	Notes of the test report	5
1.2.	Testing laboratory	5
1.3.	Applicant Information	6
1.4.	Manufacturer Information	6
1.5.	Information of EUT	7
1.6.	The Maximum SAR _{1g} Values and Conducted Power of each tested band	8
1.7.	Test Date	8
2. O	perational Conditions during Test	ç
2.1.	General description of test procedures	9
2.2.	Position of module in Portable devices	10
3. S/	AR Measurements System Configuration	11
3.1.	SAR Measurement Set-up	11
3.2.	DASY5 E-field Probe System	12
3.	2.1. EX3DV4 Probe Specification	12
3.	2.2. E-field Probe Calibration	13
3.3.	Other Test Equipment	13
3.	3.1. Device Holder for Transmitters	13
3.	3.2. Phantom	14
3.4.	Scanning procedure	14
3.5.	Data Storage and Evaluation	16
3.	5.1. Data Storage	16
3.	5.2. Data Evaluation by SEMCAD	16
3.6.	System check	19
3.7.	Equivalent Tissues	20
4. La	aboratory Environment	20
5. CI	haracteristics of the Test	21
5.1.	Applicable Limit Regulations	21
5.2.	Applicable Measurement Standards	21
6. Co	onducted Output Power Measurement	21
6.1.		
6.2.	Conducted Power Results	22
7. Te	est Results	23
7.1.		
7.2.	System Check	23
7.3.	·	
7.	3.1. 802.11b	
8. M	easurement Uncertainty	25
	ain Test Instruments	
	X A [.] Test I avout	27

Report No. RZA2010-1483FCC	Page 4of 63
ANNEX B: System Check Results	28
ANNEX C: Graph Results	29
ANNEX D: Probe Calibration Certificate	35
ANNEX E: D2450V2 Dipole Calibration Certificate	46
ANNEX F: DAE4 Calibration Certificate	55
ANNEX G: The EUT Appearances	60

Report No. RZA2010-1483FCC

1. General Information

1.1. Notes of the test report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date

and under the conditions stated in this test report and is based on the knowledge and technical

facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the

confidentiality of all information related to the items under test and the results of the test. This report

only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the

certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity

and/or promotional purposes without previous written approval of TA Technology (Shanghai) Co.,

Ltd. and the Accreditation Bodies, if it applies.

1.2. Testing laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Page 5of 63

1.3. Applicant Information

Company: ADVANCED MULTI TECH PTE. LTD

Address: No. 10 Anson Road #15-17/18, International Plaza Singapore 079903

City: Singapore

Postal Code: 079903

Country: Singapore

Telephone: 886 2 29645672 Fax: 886 2 89132117

1.4. Manufacturer Information

Company: ADVANCED MULTI TECH PTE. LTD

Address: No. 10 Anson Road #15-17/18, International Plaza Singapore 079903

City: Singapore

Postal Code: 079903

Country: Singapore

Telephone: 886 2 29645672

Fax: 886 2 89132117

1.5. Information of EUT

General information

Device Type:	Portable Device			
Exposure Category:	Uncontrolled Environment / General Population			
Product Name:	PocketBook eReader	PocketBook eReader		
Antenna Type:	Internal Antenna			
Device Operating Configurations :				
Supporting Mode(s):	802.11b/g; 802.11n;			
Test Channel:	1-6-11 (802.11b/g)			
(Low - Middle - High)	1-6-11 (802.11n)			
Operating Frequency Range(s)	Band	Tx (MHz)		
Operating Frequency Range(s)	802.11b/g/n	2412~2462MHz		

Report No. RZA2010-1483FCC

Page 8of 63

Auxiliary equipment details

AE1: Battery

Model: PocketBook Pro Manufacturer: Mcnair/LICO

S/N: /

The EUT is a PocketBook eReader, under Model name: PocketBook 902, the device has an internal antenna for WiFi Tx/Rx. SAR is only tested for 802.11b in this report, SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum SAR_{1g} Values and Conducted Power of each tested band

Body Worn Configuration

Band	Channel	Position	SAR _{1g} (W/kg)
802.11b	11	Back Side	1.150

The Maximum Power

Band	Maximum Conducted Power (dBm)
802.11b	16.30

Note: The detail Power refers to Table 4 (Power Measurement Results).

1.7. Test Date

The test is performed from September 25, 2010 to September 26, 2010.

2. Operational Conditions during Test

2.1. General description of test procedures

For the 802.11b/g SAR body tests, a communication link is set up with the test mode software for WIFI mode test. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1, 6 and 11 respectively in the case of 2450 MHz. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frequency band.802.11b/g modes are tested on channels1,6,11;however,if output power reduction is necessary for channels 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels must be tested instead.

SAR is not required for 802.11g channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels. When the maximum average output channel in each frequency band is not included in the "default test channels", the maximum channel should be tested instead of an adjacent "default test channels", these are referred to as the "required test channels" and are illustrated in table 1.

Then The Absolute Radio Frequency Channel Number (ARFCN) is firstly allocated to 2437 respectively in the case of 802.11b/g.

Table 1: "Default Test Channels"

Mode			Turbo	"	"Default Test Channels"		
	GHz	Channel	Channel	15.247		LIMII	
			Chamilei	802.11b	802.11g	Ur	UNII
	2.412	1#		√	*		
802.11b/g	2.437	6	6	√	*		
	2.462	11#		√	*		

Note: #=when output power is reduced for channel 1 and /or 11to meet restricted band requirements the highest out put channels closet to each of these channels should be tested.

 $[\]sqrt{=}$ " default test channels"

^{* =}possible 802.11g channels with maximum average output 0.25dB>=the "default test channels"

Report No. RZA2010-1483FCC Page 10of 63

2.2. Position of module in Portable devices

According to KDB 447498 D01 Mobile Portable RF Exposure v04 SAR is required for both back and edge with the most conservative exposure conditions, the EUT is tested at the following 5 test positions:

- Test Position 1: The back side of the EUT towards the bottom of the flat phantom. (ANNEX G Picture 4) 0 cm from WiFi antenna-to-user (Please see ANNEX G Picture 3)
- Test Position 2: The left side of the EUT towards the bottom of the flat phantom. (ANNEX G Picture 5) 3.4 cm from WiFi antenna-to-user(Please see ANNEX G Picture 3)
- Test Position 3: The right side of the EUT towards the bottom of the flat phantom. (ANNEX G Picture 6) 13.8 cm from WiFi antenna-to-user (Please see ANNEX G Picture 3)
 (This is not the most conservative antenna to user distance at edge mode. According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions, No SAR)
- Test Position 4: The top side of the EUT towards the bottom of the flat phantom. (ANNEX G Picture 7) 0.7 cm from WiFi antenna-to-user(Please see ANNEX G Picture 3)
- Test Position 5: The bottom side of the EUT towards the bottom of the flat phantom. (ANNEX G Picture 8) 24.8 cm from WiFi antenna-to-user (Please see ANNEX G Picture 3) (This is not the most conservative antenna to user distance at edge mode. According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions, ANNEX G Picture 8, No SAR)

3. SAR Measurements System Configuration

3.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

Figure 1 SAR Lab Test Measurement Set-up

Report No. RZA2010-1483FCC Page 12of 63

3.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

3.2.1. EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration

ISO/IEC17025 calibration

service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity \pm 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic Range 10 μ W/g to > 100 mW/g Linearity:

 \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure

scenario (e.g., very strong gradient

fields).

Only probe which enables compliance testing for frequencies up to 6 GHz

with precision of better 30%.

Figure 2.EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

3.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

3.3. Other Test Equipment

3.3.1. Device Holder for Transmitters

Construction: Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4 and SAM v6.0 Phantoms.

Material: POM, Acrylic glass, Foam

Page 14of 63

3.3.2. **Phantom**

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Aailable Special

Figure 4 Generic Twin Phantom

3.4. Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid

Report No. RZA2010-1483FCC

Page 15of 63

spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

 A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

3.5. Data Storage and Evaluation

3.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, a_{i0} , a_{i1} , a_{i2}

 $\begin{array}{ll} \text{- Conversion factor} & \text{ConvF}_i \\ \text{- Diode compression point} & \text{Dcp}_i \end{array}$

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 \mathbf{E}_{i} = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot .) / (\cdot 1000)$$

Page 18of 63

with **SAR** = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

- = conductivity in [mho/m] or [Siemens/m]
- = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{\text{pwe}} = E_{\text{tot}}^2 / 3770$$
 or $P_{\text{pwe}} = H_{\text{tot}}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3.6. System check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the Table 6.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

3D Probe positioner

Flat Phantom

Dipole

Dipole

Att2

Att2

PM3

Att2

PM3

Figure 5 System Check Set-up

3.7. Equivalent Tissues

The liquid is consisted of water, salt and Glycol. The liquid has previously been proven to be suited for worst-case. The Table 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 2: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY 2450MHz	
Water	73.2	
Glycol	26.7	
Salt	0.1	
Dielectric Parameters	f=2450MH=	
Target Value	f=2450MHz ε=52.70 σ=1.95	

4. Laboratory Environment

Table 3: The Ambient Conditions during Test

Temperature	Min. = 20°C, Max. = 25 °C		
Relative humidity	Min. = 30%, Max. = 70%		
Ground system resistance	< 0.5 Ω		
Ambient noise is checked and found very low and in compliance with requirement of standards.			
Reflection of surrounding objects is minimize	ed and in compliance with requirement of standards.		

Page 21of 63

5. Characteristics of the Test

5.1. Applicable Limit Regulations

IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 KHz to 300 GHz.

5.2. Applicable Measurement Standards

OET Bulletin 65 supplement C, published June 2001 including DA 02-1438, published June 2002: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65.

KDB 248227 D01 SAR meas for 802 11 a b g V01R02: SAR Measurement Procedures for 802.11a/b/g Transmitters

KDB 616217 D03 SAR Supp Note and Netbook Laptop v01: SAR Evaluation Considerations for Laptop/Notebook/Netbook and Tablet Computers – Supplement to KDB 616217

KDB 447498 D01 Mobile Portable RF Exposure v04: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

Page 22of 63

6. Conducted Output Power Measurement

6.1. Summary

The following procedures had been used to prepare the EUT for the SAR test. The client provided a special driver and program, which enable engineer to control the frequency and output power of the module.

6.2. Conducted Power Results

Table 4: Conducted Power Measurement Results

802.11b		Average Power(dBm)		
002.110	Channel 1	Channel 6	Channel 11	
Before Test	16.10	16.30	16.30	
After Test	16.08	16.29	16.27	
902.44~	Average Power(dBm)			
802.11g	Channel 1	Channel 6	Channel 11	
Test Result	11.40	11.60	10.90	
902 44n		Average Power(dBm)		
802.11n	Channel 1	Channel 6	Channel 11	
Test Result	10.00	10.10	10.20	

Note: 1. KDB 248227-SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than measured on the corresponding 802.11b channels.

Page 23of 63

7. Test Results

7.1. Dielectric Performance

Table 5: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	Description	Dielectric Parameters		Temp
	Description	ε _r	σ(s/m)	${\mathfrak C}$
	Target value	52.70	1.95	,
2450MHz	±10% window	50.07 — 55.34	1.85 — 2.05	,
(body)	Measurement value 2010-9-25	51.83	1.92	21.9

7.2. System Check

Table 6: System Check for Body Tissue simulating liquid

Frequency	Description	SAR	(W/kg)		ectric meters	Temp
		10g	1g	$^{\circ}$ C		
2450MHz	Recommended value	5.97	13	51.8	2.01	1
	±10% window	5.37 — 6.57	11.7 — 14.3			
	Measurement value	6.06	14.00	51.83	1.92	21.9
	2010-9-25	0.00	14.00	31.03	1.92	21.9

Note: 1. The graph results see ANNEX B.

^{2.} Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

7.3. Summary of Measurement Results

7.3.1. 802.11b

Table 7: SAR Values (802.11b)

Limit of SAR (W/kg)		10 g Average	1 g Average	Power Drift (dB)		
		2.0 1.6		± 0.21	Graph	
Different Test Position	Channel	Measurement	Result(W/kg)	Power	Results	
	Channel	10 g Average	1 g Average	Drift(dB)		
	High	0.6€9	1.FÍ 0	-0.058	Figure 7	
Test Position 1	Middle	0.583	1.140	-0.143	Figure 8	
	Low	0.500	0.977	0.034	Figure 9	
Test Position 2	Middle	0.040	0.077	0.046	Figure 10	
Test Position 3	Test Position 3 /		1	1	/	
Test Position 4	Middle	0.303	0.640	-0.015	Figure 11	
Test Position 5	1	1	1	1	1	

Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB (< 0.8W/kg) lower than the SAR limit, testing at the high and low channels is optional.
- 3. Upper and lower frequencies were measured at the worst case.
- 4. KDB 248227-SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than measured on the corresponding 802.11b channels.

Report No. RZA2010-1483FCC

Page 25of 63

8. Measurement Uncertainty

No.	source	Туре	Uncertaint y Value (%)	Probability Distributio n	k	Ci	Standard ncertainty $u_i^{'}(\%)$	Degree of freedom V _{eff} or v _i	
1	System repetivity	Α	0.5	N	1	1	0.5	9	
	Measurement system								
2	probe calibration	В	5.9	N	1	1	5.9	∞	
3	axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞	
4	Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	80	
6	boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	∞	
7	probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞	
8	System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞	
9	readout Electronics	В	1.0	N	1	1	1.0	∞	
10	response time	В	0	R	$\sqrt{3}$	1	0	∞	
11	integration time	В	4.32	R	$\sqrt{3}$	1	2.5	∞	
12	noise	В	0	R	$\sqrt{3}$	1	0	∞	
13	RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	∞	
14	Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	∞	
15	Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	∞	
16	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	∞	
Test sample Related									
17	-Test Sample Positioning	Α	2.9	N	1	1	2.9	5	
18	-Device Holder Uncertainty	Α	4.1	N	1	1	4.1	5	
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	∞	
Physical parameter									

Report No. RZA2010-1483FCC Page 26of 63

20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	80
21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6 4	1.8	∞
22	-liquid conductivity (measurement uncertainty)	В	5.0	N	1	0.6 4	3.2	∞
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	∞
24	-liquid permittivity (measurement uncertainty)	В	5.0	N	1	0.6	3.0	∞
Combined standard uncertainty		$u_{c}' = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$					12.0	
Expanded uncertainty (confidence interval of 95 %)		и	$u_c = 2u_c$	N	k=	2	24.0	

9. Main Test Instruments

Table 8: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 13, 2010	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested	
03	Power meter	Agilent E4417A	GB41291714	March 13, 2010	One year
04	Power sensor	Agilent 8481H	MY41091316	March 26, 2010	One year
05	Signal Generator	HP 8341B	2730A00804	September 13, 2010	One year
06	Amplifier	IXA-020	0401	No Calibration Requested	
07	E-field Probe	EX3DV4	3661	December 30, 2009	One year
08	DAE	DAE4	871	November 11, 2009	One year
09	Validation Kit 2450MHz	D2450V2	712	February 19, 2010	One year

*****END OF REPORT BODY*****

ANNEX A: Test Layout

Picture 1: Specific Absorption Rate Test Layout

Picture 2: Liquid depth in the flat Phantom (2450 MHz) (15.2cm depth)

ANNEX B: System Check Results

System Performance Check at 2450 MHz

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 712

Date/Time: 9/25/2010 8:23:36 PM

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.92 \text{ mho/m}$; $\varepsilon_r = 51.83$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.34, 7.34, 7.34); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 21.5 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 71.0 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 14.0 mW/g; SAR(10 g) = 6.06 mW/gMaximum value of SAR (measured) = 19.8 mW/g

0 dB = 19.8 mW/g

Figure 6 System Performance Check 2450MHz 250mW

ANNEX C: Graph Results

802.11b Test Position 1 High

Date/Time: 9/26/2010 11:15:28 AM

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2462 MHz; $\sigma = 1.94 \text{ mho/m}$; $\epsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 – SN3661; ConvF(7.34, 7.34, 7.34); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 1 High/Area Scan (31x191x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.32 mW/g

Test Position 1 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.69 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 2.24 W/kg

SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.609 mW/g

Maximum value of SAR (measured) = 1.36 mW/g

Figure 7 802.11b Test Position 1 Channel 11

802.11b Test Position 1 Middle

Date/Time: 9/26/2010 12:22:54 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.91$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 – SN3661; ConvF(7.34, 7.34, 7.34); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 1 Middle/Area Scan (31x191x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.54 mW/g

Test Position 1 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 4.29 V/m; Power Drift = -0.143 dB

Peak SAR (extrapolated) = 2.21 W/kg

SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.583 mW/g

Maximum value of SAR (measured) = 1.29 mW/g

Figure 8 802.11b Test Position 1 Channel 6

802.11b Test Position 1 Low

Date/Time: 9/26/2010 12:55:30 PM

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.88 \text{ mho/m}$; $\epsilon_r = 51.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 – SN3661; ConvF(7.34, 7.34, 7.34); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 1 Low/Area Scan (31x191x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.31 mW/g

Test Position 1 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.22 V/m; Power Drift = 0.034 dB

Peak SAR (extrapolated) = 1.92 W/kg

SAR(1 g) = 0.977 mW/g; SAR(10 g) = 0.500 mW/g

Maximum value of SAR (measured) = 1.14 mW/g

Figure 9 802.11b Test Position 1 Channel 1

802.11b Test Position 2 Middle

Date/Time: 9/25/2010 10:08:31 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.91$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 – SN3661; ConvF(7.34, 7.34, 7.34); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 2 Middle/Area Scan (31x191x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.070 mW/g

Test Position 2 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 1.5 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 0.148 W/kg

SAR(1 g) = 0.077 mW/g; SAR(10 g) = 0.040 mW/g

Maximum value of SAR (measured) = 0.086 mW/g

Figure 10 802.11b Test Position 2 Channel 6

802.11b Test Position 4 Middle

Date/Time: 9/25/2010 9:43:00 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.91$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY5 Configuration:

Probe: EX3DV4 – SN3661; ConvF(7.34, 7.34, 7.34); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Test Position 4 Middle/Area Scan (31x191x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.744 mW/g

Test Position 4 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 8.19 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 1.2 W/kg

SAR(1 g) = 0.640 mW/g; SAR(10 g) = 0.303 mW/g

Maximum value of SAR (measured) = 0.790 mW/g

Figure 11 802.11b Test Position 4 Channel 6

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Issued: December 30, 2009

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Auden Client

Certificate No: EX3-3661_Dec09

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE EX3DV4 - SN:3661 QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes Calibration date: December 30, 2009 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration ID# GB41293874 1-Apr-09 (No. 217-01030) Apr-10 Power meter E4419B 1-Apr-09 (No. 217-01030) Apr-10 MY41495277 Power sensor E4412A Apr-10 MY41498087 1-Apr-09 (No. 217-01030) Power sensor E4412A 31-Mar-09 (No. 217-01026) Mar-10 Reference 3 dB Attenuator SN: S5054 (3c) Mar-10 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-09 (No. 217-01028) Reference 30 dB Attenuator 5N: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: 3013 2-Jan-09 (No. ES3-3013_Jan09) Jan-10 SN: 680 29-Sep-09 (No. DAE4-960_Sep09) Sep-10 DAE4 Scheduled Check Secondary Standards Check Date (in house) In house check: Oct-11 US3642U01700 RF generator HP 8648C 4-Aug-98 (in house check Oct-09) In house check: Oct10 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) Technical Manager Katja Pokovic Calibrated by

Certificate No: EX3-3661_Dec09

Niels Kuster

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Approved by:

Page 1 of 11

Quality Manager

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL

tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization o o rotation around probe axis

3 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 8

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, *IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)*, February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 3 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3661

Manufactured: Calibrated: October 20, 2008 December 30, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: EX3DV4 SN:3661

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.46	0.52	0.48	± 10.1%
DCP (mV) ⁹	89.4	91.4	90.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^t (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	300	± 1.5%
			Y	0.00	0.00	1.00	300	1
			Z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^{*} The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical Inearization parameter, uncertainty not required.

⁶ Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY - Parameters of Probe: EX3DV4 SN:3661

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz]C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	±50/±100	41.5 ± 5%	$0.90 \pm 5\%$	9.34	9.34	9.34	0.69	0.64 ±11.0%
900	±50/±100	41.5 ± 5%	$0.97 \pm 5\%$	9.06	9.06	9.06	0.72	0.64 ± 11.0%
1750	±50/±100	40.1 ± 5%	1.37 ± 5%	8.19	8.19	8.19	0.59	0.63 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.77	7.77	7.77	0.83	0.56 ±11.0%
2450	±50/±100	39.2 ± 5%	1.80 ± 5%	7.22	7.22	7.22	0.35	0.83 ± 11.0%
5200	± 50 / ± 100	36.0 ± 5%	4.66 ± 5%	5.01	5.01	5.01	0.45	1.75 ± 13.1%
5500	± 50 / ± 100	$35.6 \pm 5\%$	4.96 ± 5%	4.38	4.38	4.38	0.48	1.75 ± 13.1%
5800	±50/±100	35.3 ± 5%	5.27 ± 5%	4.26	4.26	4.26	0.45	1.75 ± 13.1%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

DASY - Parameters of Probe: EX3DV4 SN:3661

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	±50/±100	55.2 ± 5%	0.97 ± 5%	9.24	9.24	9.24	0.54	0.73 ± 11.0%
900	±50/±100	55.0 ± 5%	1.05 ± 5%	8.97	8.97	8.97	0.53	0.72 ± 11.0%
1750	±50/±100	53.4 ± 5%	1.49 ± 5%	7.93	7.93	7.93	0.67	0.65 ± 11.0%
1950	±50/±100	$53.3 \pm 5\%$	1.52 ± 5%	7.60	7.60	7.60	0.60	0.69 ± 11.0%
2450	±50/±100	52.7 ± 5%	1.95 ± 5%	7.34	7.34	7.34	0.26	1.12 ± 11.0%
5200	±50/±100	$49.0 \pm 5\%$	$5.30 \pm 5\%$	4.59	4.59	4.59	0.46	1.75 ± 13.1%
5500	±50/±100	48.6 ± 5%	$5.65 \pm 5\%$	4.11	4.11	4.11	0.46	1.75 ± 13.1%
5800	±50/±100	48.2 ± 5%	6.00 ± 5%	4.12	4.12	4.12	0.48	1.75 ± 13.1%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the CorwF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

EX3DV4 SN:3661

December 30, 2009

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in HSL

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

TA Technology (Shanghai) Co., Ltd. Test Report

EX3DV4 SN:3661

December 30, 2009

Other Probe Parameters

Triangular
Not applicable
enabled
disabled
337 mm
10 mm
9 mm
2.5 mm
1 mm
1 mm
1 mm
2 mm

ANNEX E: D2450V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

CALIBITATION	ERTIFICATE		
Object	D2450V2 - SN: 7	112	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	February 19, 201	0	
The measurements and the unce	rtainties with confidence p	consistandards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature (22 \pm 3)°	nd are part of the certificate.
	of an endor- a section of the		
Primary Standards	ID#	Cal Date (Certificate No.)	Schedulad Calibration
	ID# GB37480704	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10
Power meter EPM-442A			
Power meter EPM-442A Power sensor HP 8481A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	GB37480704 US37292783	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Oct-10 Oct-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3205	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 08327	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Oct-10 Oct-10 Mar-10 Mar-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3205	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3205 SN: 601 ID # MY41092317	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11
Power meler EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 9481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 08327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: D2450V2-712_Feb10

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-712_Feb10

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.76 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C	6404	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 mW / g
SAR normalized	normalized to 1W	53.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.5 mW/g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.24 mW / g
SAR normalized	normalized to 1W	25.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.0 mW/g ± 16.5 % (k=2)

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-1483FCC

Page 49of 63

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.7 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.97 mW / g
SAR normalized	normalized to 1W	23.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.7 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-712_Feb10

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-1483FCC

Page 50of 63

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2 Ω + 1.9 jΩ	
Return Loss	- 27.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω + 5.2 JΩ
Return Loss	- 25.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.144 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 05, 2002

DASY5 Validation Report for Head TSL

Date/Time: 17.02.2010 13:12:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712

Communication System: CW; Frequency; 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.77$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03,2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = 0.032 dB

Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.24 mW/g

Maximum value of SAR (measured) = 17.1 mW/g

0 dB = 17.1 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 19.02.2010 13:05:49

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712

Communication System: CW; Frequency; 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.5 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 5.97 mW/g

Maximum value of SAR (measured) = 17 mW/g

0 dB = 17 mW/g

Certificate No: D2450V2-712_Feb10

Impedance Measurement Plot for Body TSL

ANNEX F: DAE4 Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

С

Certificate No: DAE4-871_Nov09 TA - SH (Auden) Client CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BJ - SN: 871 Object Calibration procedure(s) QA CAL-06.v12 Calibration procedure for the data acquisition electronics (DAE) November 11, 2009 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Certificate No.) Scheduled Calibration Primary Standards Keithley Multimeter Type 2001 SN: 0810278 1-Oct-09 (No: 9055) Oct-10 Secondary Standards ID # Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 05-Jun-09 (in house check) In house check: Jun-10 Name **Function** Andrea Guntli Technician Calibrated by: R&D Director Approved by: Fin Bomholt Issued: November 11, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-871_Nov09

Page 1 of 5

TA Technology (Shanghai) Co., Ltd. **Test Report**

Report No. RZA2010-1483FCC

Page 56of 63

Calibration Laboratory of

Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-871_Nov09

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-1483FCC

Page 57of 63

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Υ	z
High Range	404.813 ± 0.1% (k=2)	404.794 ± 0.1% (k=2)	405.237 ± 0.1% (k=2)
Low Range	3.98191 ± 0.7% (k=2)	3.98417 ± 0.7% (k=2)	3.98912 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	90.0 ° ± 1 °
	00.0 = .

Appendix

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199994.0	1.84	0.00
Channel X + Input	19999.85	0.05	0.00
Channel X - Input	-19997.97	1.83	-0.01
Channel Y + Input	200010.3	-3.71	-0.00
Channel Y + Input	19999.12	-0.48	-0.00
Channel Y - Input	-20000.18	-0.78	0.00
Channel Z + Input	200010.2	-2.80	-0.00
Channel Z + Input	19998.54	-0.86	-0.00
Channel Z - Input	-19999.82	0.00	0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000.3	0.22	0.01
Channel X + Input	200.20	0.30	0.15
Channel X - Input	-199.89	0.21	-0.10
Channel Y + Input	1999.8	-0.13	-0.01
Channel Y + Input	200.06	-0.04	-0.02
Channel Y - Input	-200.43	-0.73	0.36
Channel Z + Input	1999.5	-0.57	-0.03
Channel Z + Input	199.58	-0.72	-0.36
Channel Z - Input	-201.11	-1.01	0.51

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	13.79	12.75
	- 200	-12.26	-13.72
Channel Y	200	-11.82	-11.47
	- 200	10.67	10.68
Channel Z	200	-1.08	-1.35
	- 200	0.32	0.12

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	3.36	1.06
Channel Y	200	1.52	-	3.59
Channel Z	200	2.55	1.41	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15928	16288
Channel Y	16188	15745
Channel Z	15790	16219

5. Input Offset Measurement

DÅSY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.06	-3.43	1.18	0.52
Channel Y	-0.71	-2.66	0.96	0.57
Channel Z	-0.95	-1.94	0.04	0.41

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.1999	204.4
Channel Y	0.1999	203.6
Channel Z	0.1999	203.8

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9