Unit V Synchronous Counters

by

Dr. Krishan Arora
Associate Professor and Head
Lovely Professional University

How To design Synchronous Counter

- Let us employ these techniques to design a MOD-8 counter to count in the following sequence: 0, 1, 2, 3, 4, 5, 6, 7.
- Step1: Determined Flip Flop Used and Creating state transition diagram. (Rajah Keadaan)

$$N = 2^{n}$$

$$8 = 2^{n}$$

$$n = \log 8 / \log 2$$

$$= 3 \operatorname{Flip Flop} (3 \operatorname{Bit})$$

$$M = 2^{n}-1$$

$$= 2^{3}-1=8-1=7$$

N = Modulo/MOD n = Flip Flop Used M = Maximum Number To Be Count

How To design Synchronous Counter

Step 2: Creating present state-next state table

Pi	resent S	tate	Next State				
Q ₂	Q ₁	Q ₀	Q ₂	Q ₁	Q		
0	0	0	0	0	1		
0	0	1	0	1	0		
0	1	0	0	1	1		
0	1	1	1	0	0		
1	0	0	1	0	1		
1	0	1	1	1	0		
1	1	0	1	1	1		
1	1	1	0	0	0		

$$Q_0 = Q_A$$

 $Q_1 = Q_B$
 $Q_2 = Q_c$

How To Design Synchronous Counter

Step 3: Expand the present state-next state table to form the transition table.

Excitation Table (Jadual Ujaan Flip Flop JK)							
Q	Q	J	K				
0	0	0	X				
0	1	1	X				
1	0	X	1				
1	1	X	0				

'X' indicates a "don't care" condition.

Present State			Next State			Present inputs			
Q_c	Q_B	Q_A	Qc	Q_B	Q_A	J _c K _c	J_BK_B	JAKA	
0	0	0	0	0	1	0X	0X	1X	
0	0	1	0	1	0	0X	1X	X1	
0	1	0	0	1	1	ОX	X0	1X	
0	1	1	1	0	0	1X	X1	X1	
1	0	0	1	0	1	X0	0X	1X	
1	0	1	1	1	0	X0	1X	X1	
1	1	0	1	1	1	X0	X0	1X	
1	1	1	0	0	0	X1	X1	X1	

How To Design Synchronous Counter

 Step 4: Use Karnaugh maps to identify the present state logic functions for each of the inputs.

Using similar techniques for the other inputs we get:

$$K_C = Q_B Q_A$$

$$J_B = Q_A$$

$$K_B = Q_A$$

$$J_A = 1$$

How To Design Synchronous Counter

Step 5: Constructing Circuit

Design a mod 6 synchronous up counter using J-K flip flop

Find number of flip-flops required to build the counter.

Flip-flops required are : $2^n \ge N$.

Here
$$N = 6$$
 : $n = 3$

i.e. Three flip-flops are required.

Q(t)	Q(t+1)	J	K
0	0	0	x
O	1	1	x
1	O	x	1
1	1	x	O

Determine the transition table.

Present state			Next state			Flip-flop inputs					
Q _A	QB	Qc	Q _{A+1}	Q _{B+1}	Q _{C+1}	JA	KA	JB	K _B	J _C	K
0	0	0	0	0	1	0	×	0	x	1	x
0	0	1	0	1	0	0	x	1	x	x	1
0	1	0	0	1	1	0	×	x	0	1	X
0	1	1	1	0	0	1	x	x	1	x	1
1	0	0	1	0	1	х	0	0	x	1	x
1	0	1	0	0	0	x	1	0	×	x	1
1	1	0	x	x	x	x	×	x	x	x	x
1	1	1	x	х	х	x	X	x	x	X	X

Design a mod 5 synchronous up counter using J-K flip flop

Step 1:

Determine the number of flip flop needed

Flip flop required are

$$2^n > N$$

Mod 5 hence N=5

$$\therefore 2^n > N$$

$$\therefore 2^n > 5$$

N=3 i.e. 3 flip flop are required

Step 2:

Type of flip flop to be used: JK flip flop

Step 3:

1) Excitation table for JK flip flop

JK flip-flop								
Q(t)	Q(t+1)	J	K					
0	O	0	x					
0	1	1	X					
1	0	x	1					
1	1	x	O					

2) Excitation table for counter

Present state			Next	Next state			Flip flop Input					
Q.	QB	Q _A	Q _{C+1}	Q_{B+1}	Q _{A+1}	Jc	Kc	JB	KB	JA	Ka	
0	0	0	0	0	1	×	0	0	×	1	×	
0	0	1	0	1	0	×	1	1	×	×	1	
0	1	0	0	1	1	×	×	×	0	1	×	
0	1	1	1	0	0	×	×	×	1	×	1	
1	0	0	0	0	0	1	0	0	×	0	×	
1	0	1	×	×	×	×	×	×	×	×	×	
1	1	0	×	×	X	×	×	×	×	×	×	
1	1	1	×	×	X	×	×	×	×	×	×	

Decade Counter

• Once the counter counts to ten (1010), all the flip-flops are being cleared.

Clock Pulse	Q3	Q2	01	Q0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0.	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	13/4	0	0	0
9	1	0	0	1

Design synchronous mod-3 counter with the following binary sequence using clocked JK flip-flops.

Count sequence: 0, 1, 2, 0, 1, 2,......

Present state		Next	state	Flip-flop inputs			
QA	QB	Q _{A+1}	Q ₈₊₁	JA	KA	JB	K _B
0	0	0	1	0	х	1	X
0	1	1	0	1	х	х	1
1	0	0	0	×	1	0	X

