Sterowanie Procesami Dyskretnymi

SPRAWOZDANIE Z LABORATORIUM 2

Porównanie algorytmu Johnsona oraz algorytmu NEH

1. Cel zadania

Celem zadania jest zapoznanie się z popularną metodą rozwiązywania problemu przepływowego - algorytmem NEH oraz porównanie wyników algorytmu NEH z podejściem z laboratorium nr 1 – algorytmem Johnsona

2. Wykonanie zadania

Podczas samodzielnej pracy wykonano działający algorytm NEH oraz przeprowadzono testy na wszystkich instancjach – danych pobranych ze strony dr Mariusza Makuchowskiego oraz innych przykładów znalezionych wraz z wynikami. Poniżej przedstawiono zestawienie wyników dla kilku wybranych przykładów. Porównanie badań wykonano w oparciu o dane dla dwóch maszyn. Przedstawiono również wyniki dla algorytmu NEH dla nieokreślonej odgórnie liczby maszyn/zadań.

2a. Zestawienie wyników dla kilku wybranych przykładów wg algorytmu NEH

Zestaw 1 Wykonano dla zestawu danych składającego się z 20 zadań i 5 maszyn (ta003)

zadania	maszyna1	maszyna2	maszyna3	maszyna4	maszyna5
1	77	39	14	11	83
2	94	31	21	2	13
3	9	46	15	36	84
4	57	18	10	30	46
5	29	93	85	89	20
6	79	58	46	20	33
7	55	85	42	88	74
8	73	58	18	22	42
9	65	97	36	31	33
10	86	10	2	9	71
11	25	79	44	43	32
12	39	93	89	91	48
13	76	2	6	26	42
14	24	87	3	3	99
15	38	17	1	75	7
16	5	18	43	99	54
17	91	10	81	63	8
18	29	50	57	83	73

19	22	8	76	70	30
20	27	26	59	84	75

Czas wykonania zadania wg programu doktora Makuchowskiego: 0,017 ms

Czas wykonania zadania wg naszego programu: 0,015 ms

 C_{max} wg programu doktora Makuchowskiego: 1159

 C_{max} wg naszego programu: 1140

Kolejność zadań wg programu doktora Makuchowskiego:

16 | 3 | 20 | 18 | 7 | 1 | 12 | 10 | 5 | 2 | 9 | 4 | 19 | 14 | 17 | 6 | 13 | 11 | 8 | 15

Kolejność zadań wg naszego programu:

13 | 19 | 10 | 18 | 8 | 7 | 20 | 12 | 14 | 6 | 3 | 16 | 1 | 9 | 2 | 4 | 5 | 15 | 17 | 11

Zestaw 2 Wykonano dla zestawu danych składającego się z 4 zadań i 3 maszyn

zadanie	maszyna1	maszyna2	maszyna3
1	4	1	4
2	4	3	3
3	1	2	3
4	5	1	3

Kolejność zadań wg naszego programu: 3 | 1 | 2 | 4

Kolejność wg danych podanych w instrukcji: 3 | 1 | 2 | 4

 C_{max} wg instrukcji: **18**

 C_{max} wg naszego programu: 18

2b. Porównanie wyników dla działania algorytmu NEH oraz algorytmu Johnsona

Wykonano porównanie wartości C_{max} oraz czasów trwania programów. Dla małych zestawów testowych pokazano również kolejność zadań uzyskaną przez oba algorytmy

	NEH		Johnson		
ilość zadań	czas wykonania	C_{max}	czas wykonania	C_{max}	
8	0,015	46	0,015	46	
10	0,015	66	0,015	66	
18	0,015	110	0,015	110	
32	0,031	966	0,046	1047	
44	0,031	1483	0,046	1552	
58	0,062	2009	0,093	2096	

78	0,078	2523	0,125	2637
78 90	0,109	2721	0,141	2890

Kolejność dla 8 zadań

$$6|1|3|4|5|7|8|2 \rightarrow NEH$$

$$7 | 6 | 3 | 1 | 8 | 5 | 4 | 2 \rightarrow JOHNSON$$

Kolejność dla 10 zadań

$$1 | 5 | 2 | 4 | 3 | 7 | 8 | 9 | 6 | 10 \rightarrow NEH$$

3. Wnioski

3a. Algorytm NEH

Na podstawie powyższych danych wnioskujemy, że wyniki różnią się w zależności od sposobu zaimplementowania algorytmu. Ma na to wpływ wstępne sortowanie zadań oraz sposób szeregowania wartości C_{max} . W tym algorytmie występuje duża losowość ze względu na kolejność początkowa, gdyż przy zliczaniu czasu trwania kolejnych zadań na wszystkich maszynach i wyboru największego z nich, przy tej samej wartości czasu wybór ich pierwszeństwa jest przypadkowy.

3b. Porównanie dwóch algorytmów: NEH oraz Johnson

Porównując algorytmy Johnsona oraz NEH można zauważyć, że przy małej ilości danych wejściowych zarówno C_{max} jak i czasy działania programów są podobne, a nawet takie same. Im większa liczba danych wejściowych (zadań), tym większe różnice można zauważyć pomiędzy tymi wartościami. Kolejności zadań ukazane w punkcie 2b są różne w zależności od wybranego algorytmu. Ma to związek ze sposobem sortowania.