Precalculus

, Factorization of polynomials: overview

Todor Miley

2019

Outline

Factorization overview

Recall that $i^2 = -1$, $\sqrt{-1} = i$.

Example (Polynomial factorizations)

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x + 1)(x - i)(x + i)$$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= (x - (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

$$(x - (-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

Factorization overview 4/8

Theorem (The Fundamental Theorem of Algebra)

Every polynomial can be factored into product of linear terms

$$p(x) = a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n),$$

where x_1, \ldots, x_n are the (not necessarily different) roots of p(x).

- Every pol. of deg. *n* can be factored as product of *n* linear factors.
- x_1, \ldots, x_n may be complex numbers. Reminder: complex numbers are of the form p + qi, where $i^2 = -1$ and $\sqrt{-1} = i$.
- While we can find $x_1, \ldots x_n$ with arbitrary precision, there may not exist a formula involving radicals for computing each x_1, \ldots, x_n .

Corollary

Every real polynomial can be factored into a product of real linear terms and real quadratic terms with no real roots, i.e., factors of form

- \bullet (x-r), where r is real and
- $ax^2 + bx + c$ with $b^2 4ac < 0$ where a, b, c are real.

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$
 = prod. real quadratics no roots & lin. terms.

Example

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2\left(x - \left(-\frac{5}{2}\right)\right)(x - 1) \qquad \text{real roots}$$

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x - (-i))(x - i) \qquad \text{complex roots}$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x - (-1))(x - i)(x - (-i)) \qquad \text{mixed roots}$$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= \left(x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right)$$

$$\left(x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right) \qquad \text{complex roots}$$

Factorization overview 6/8

Factoring polynomials in practice

In theory every polynomial can be factored.

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- Theory guarantees numerical approximations for roots x_1, \ldots, x_n .
- Can we find algebraic formulas for x_1, \ldots, x_n ?
- No, if using finitely many operations $+, -, *, /, \sqrt[n]{}$.
- First (advanced) proof by Norwegian Niels Henrik Abel(1824) based on work of Italian Paolo Ruffini(1799).
- Yes, with extra operations. Difficult: google Galois Theory to get started.

Factorization overview 7/

What does factorization mean?

- Based on context, "to factor a polynomial" means one of:
 - Factor the polynomial over the rational numbers. Use integers/quotients, but no √/.
 - Factor the polynomial over the real numbers. Use radicals and/or numerical approximations, no use of $i = \sqrt{-1}$.
 - Fully factor the polynomial using complex numbers.

These poly's are equal	Type of factorization
$x^4 + 1$	factored over rationals
$(x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$	factored over the reals
	full complex factorization

Factorization overview 8/8

Factorization over the rationals

- Suppose we want to factor a polynomial using only rational numbers (no numerical approximations).
- No guarantee to get:

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- A factorization using rationals may have arbitrarily large factors.
- Efficient algorithms for factoring using rationals exist.
 - Kronecker algorithm (German Leopold Kronecker (1823-1891)).
 - Methods based on finite fields.
 - Lenstra-Lenstra-Lovász algorithm (Dutch, Dutch, Hungarian mathematicians, all contemporary).
- Above methods require computer; no rational roots assumption.
- If we assume rational roots there are practical algorithms by hand.
- We study those for cubics with the aid of scientific calculator.