iSCSI unter Linux - das SAN für zuhause

5. Augsburger Linux-Infotag 2006

Frank Berger, IT-Dienstleistungen

Vorstellung

Markus Lidel, Shadow Connect GmbH:

- Systemadministration für Linux / Windows
- Linux Kernel-Entwicklung (I2O-Subsystem)

Frank Berger, IT-Dienstleistungen:

- Systemadministration für Linux / Solaris
- Software-Qualität / Testautomatisierung

Agenda

- → Einführung iSCSI
- → Abgrenzung zu FC, GNDB, NFS, VMware
- → iSCSI Implementierungen für Linux
- → iSCSI Beispiel 1 / Performance
- → Multipath-Problematik
- → Live Demo / iSCSI + GFS

SAN – Worum geht es?

iSCSI – SCSI über IP / Begriffe

IQN - iSCSI Qualified Name für Initiator und Target:

iqn.2004-03.de.fm-berger:s0002:iscsi-storage:lvm-test01 iqn.2004-03.de.fm-berger:w0001

RFC3270

Warum iSCSI?

Vorteile:

- → Durch TCP/IP maximale Flexibilität der Netzwerkschicht
- → Geeignet für heterogene Umgebungen (Linux+Solaris+Windows...)
- → Unter Linux im Baukastenprinzip kombinierbar (z.B. mit LVM, Software-RAID oder Device Mapper Multipath)

Nachteile:

 → Evtl. Protokoll-Overhead (reduzierbar mit Spezialhardware TOE, iSCSI-HBA)

FC, NFS, GNDB, VMware... vs. iSCSI

- → Shared Disks auch mit VMware Workstation möglich!
- → VMware ESX 3.0 iSCSI + VMotion
- → GNDB (Global Network Block Device) als Alternative für homogene Cluster
- → iSCSI ersetzt NICHT NFS!

iSCSI – Linux Implementierungen

Initiator

Intel-iSCSI	→ Intel Referenz-Implementierung nur für 2.4 Kernel→ wird nicht weiterentwickelt
Linux-iSCSI	 → Cisco Implementierung für 2.4 und <= 2.6.10 Kernel → Zusammenschluss mit Open-iSCSI
Core-iSCSI	 → Basiert auf PyX Technologies Implementierung → STABLE / zukünftig Zusammenschluss mit Open-iSCSI
Open-iSCSI	→ Fokus der Entwicklung!→ Ab Kernel 2.6.11 einsetzbar

Target

UNH-iSCSI	 → Referenz Implementierung → Keine aktive Weiterentwicklung? → Einzige Implementierung mit RAWIO-Support
iSCSI Enterprise Target	 → Basiert auf Implementierung von Ardis Tech. → Ab Kernel 2.6.14 einsetzbar → Derzeit kein RAWIO-Support

iSCSI - Beispiel 1 / Performance

ISCSI Initiator

1 Gigabit-Ethernet über 2x D-Link DGE-528T (RTL8169 2.2LK-NAPI) MTU 7200 Bytes; txqueuelen 100000

ISCSI Target

AMD Sempron 3100+ / 1 GB RAM Linux 2.6.15 Open-iSCSI Version 1.0 r485

Ergebnisse:

- → IDE+ext3 lokal: **45 MBytes/s**
- → iSCSI+ext3 über 1 Gigabit-Ethernet: **31 MBytes/s**
- → iSCSI+ext3 über Fast-Ethernet: **11 MBytes/s**
- → iSCSI+GFS über 1 Gigabit-Ethernet: 28 MBytes/s
- → iSCSI+GFS mit 2 Knoten über 1 Gigabit-Ethernet: 13 + 15 MBytes/s

Open-iSCSI im **Detail**

iSCSI Multipath / Device-Mapper Multipath

iSCSI - Beispiel 2 / GFS Demo

