Décembre 2019, Sans document, 1h20

Préambule : Le sujet est composé de trois exercices indépendants. La qualité de la rédaction sera prise en compte. Toutes les réponses seront données sur la copie (ne pas rendre le sujet).

Exercice 1

- 1. Enoncer la loi forte des grands nombres (hypothèses et résultats).
- 2. Enoncer le théorème central limite (hypothèses et résultats).
- 3. Soit $(X_n)_n$ une suite de variables aléatoires réelles indépendantes et de loi de Poisson de paramètre $\lambda_n \in \mathbb{N}^*$. On suppose que $\lambda_n \to +\infty$. Montrer que

$$\frac{X_n - \lambda_n}{\sqrt{\lambda_n}} \stackrel{p.s.}{\to} \mathcal{N}(0,1).$$

4. Soit $(X_n)_n$ une suite de variables aléatoires indépendantes. On pose pour tout $x \in \mathbb{R}$

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{X_i \le x}$$
 et $F(x) = \mathbf{P}(X \le x)$.

Soit $x \in \mathbb{R}$ fixé tel que $F(x) \neq 0$ et $F(x) \neq 1$.

- (a) Montrer que $F_n(x) \stackrel{p.s.}{\to} F(x)$.
- (b) Montrer qu'il existe une suite $\varphi_n(x)$ à préciser telle que $\varphi_n(x)(F_n(x) F(x)) \stackrel{p.s.}{\to} \mathcal{N}(0,1)$.
- (c) Déduire des question précédente un intervalle de confiance asymptotique de niveau 1α avec $\alpha \in]0,1[$ pour F(x). On prendra soin de justifier toutes les étapes de construction de l'intervalle de confiance.

Exercice 2

Soit X_1, \ldots, X_n n variables aléatoires indépendantes et identiquement distribuées de loi uniforme sur $[1, \theta]$ où $\theta > 1$ est un paramètre inconnu à estimer.

- 1. Rappeler la densité de X_1 ainsi que son espérance et sa variance.
- 2. Calculer l'estimateur des moments de θ . On le notera $\hat{\theta}$.
- 3. Rappeler la définition du risque quadratique d'un estimateur et montrer sa décomposition biais/variance.
- 4. Calculer le biais et la variance de $\hat{\theta}$.
- 5. $\hat{\theta}$ est-il consistant? Justifier.
- 6. En écrivant un théorème central limite pour $\hat{\theta}$, construire un intervalle de confiance asymptotique de niveau 1α pour θ (avec $\alpha \in]0,1[$).

Exercice 3 (5 points)

Soit X_1, \ldots, X_n n variables aléatoires i.i.d. de loi admettant la densité

$$f_{\theta}(x) = \exp(-(x-\theta))\mathbf{1}_{[\theta,+\infty[}(x),$$

où θ est un paramètre réel.

- 1. Montrer que pour tout $\theta \in \mathbb{R}$, f_{θ} est une densité de probabilité.
- 2. Calculer l'estimateur du maximum de vraisemblance de θ . On le notera $\hat{\theta}_{MV}$.
- 3. Calculer la fonction de répartition de $\hat{\theta}_{MV}$ et en déduire que la densité de $\hat{\theta}_{MV}$ est donnée par

$$f_{\hat{\theta}_{MV}}(x) = n \exp(n(\theta - x)) \mathbf{1}_{[\theta, +\infty[}(x).$$

- 4. Calculer $\mathbf{E}[\hat{\theta}_{MV}]$. En déduire un nouvel estimateur $\tilde{\theta}$ de θ qui soit sans biais.
- 5. Calculer la variance de $\hat{\theta}$.
- 6. Calculer $\mathbf{E}[X_1]$. En déduire l'estimateur des moments de θ . On notera $\hat{\theta}_m$ cet estimateur.
- 7. Calculer le risque quadratique de $\hat{\theta}_m$.
- 8. Comparer les risques quadratiques des estimateurs $\hat{\theta}_{MV}$, $\tilde{\theta}$ et $\hat{\theta}_{m}$.
- 9. Donner un intervalle de confiance asymptotique de niveau 1α pour θ .