Quantity Index Numbers (On)

Questin Calculate Paasche's and Lasbegse's Quantity Index form

Commo di y	Quan	hty (unit)	Values in Rs		
	1995	1999	1995	1999	
A	100	150	500	900	
B	. 80	100	320	500	
C	60	72	120	360	
D	30	33	360	297	

Commodity	10	121	p. e.	1p,2,	Po	PI	180 P	P. P. 1
	100	150	002	900	5	6	600	750
A 6	80	100	320	500	4	5	400	460
c	60	72	120	360	2	5	300	144
D	30	-33	360	297	12	19	270	396
	1	en i	Spogo = 1300	= 2057			ZÞ180 = 157	

Passine's Quantity Index
$$Q_{01} = \frac{\sum e_1 e_1}{\sum e_0 e_1} \times 100 = \frac{2057}{1570} \times 100 = 131.02$$

Laspeyre's Quantity Index
$$Q_{01} = \frac{\sum Q_1 p_0}{\sum Q_0 p_0} \times 100 = \frac{1690}{1300} \times 100 = 130$$
 Ans

Value Index Numbers (Voi)

$$V_{01} = \frac{\sum \dot{P}_{1} \dot{q}_{1}}{\sum \dot{P}_{0} \dot{q}_{0}} \times 100 = \frac{\sum \dot{V}_{1}}{\sum \dot{V}_{0}} \times 100$$

IVI = Total value of all items in the Siven pesiod Ive = Total value of Same items in buse besided.

Test of consistency or adequacy

Used to select most suitable memod in a given condition

- (I) Unit Test: Method must be independent from the units in which brice and quantities are quoted.
- Note: Except simple aggregate method an the method satisfies this test.
- (II) Time Reversal Pert: Por x Pio = 1 (omitting the factor 100)

Note: Laspeyre's and Paasche's method does not satisfied time
Yeversal test.

Note: This factor reversal best is satisfied only by fisher's Ideal Index.

- more: Simple aggregate method, Kelly's method satisfies the circular Test.
- Note: Fisher's Ideal Poder Soutisfies both time revessed and factor revessed Post.