Week 2 Video 5

Cross-Validation and Over-Fitting

Over-Fitting

 I've mentioned over-fitting a few times during the last few weeks

Fitting to the noise as well as the signal

Over-Fitting

Reducing Over-Fitting

- □ Use simpler models
 - Fewer variables (BiC, AIC, Occam's Razor)
 - Less complex functions (MDL)

Eliminating Over-Fitting?

Every model is over-fit in some fashion

- □ The questions are:
 - How bad?
 - What is it over-fit to?

Assessing Generalizability

Does your model transfer to new contexts?

Or is it over-fit to a specific context?

Training Set/Test Set

Split your data into a training set and test set

Notes

- Model tested on unseen data
- But uses data unevenly

Split data points into N equal-size groups

- □ Train on all groups but one, test on last group
- For each possible combination

- Train on all groups but one, test on last group
- For each possible combination

- Train on all groups but one, test on last group
- For each possible combination

- Train on all groups but one, test on last group
- □ For each possible combination

- Train on all groups but one, test on last group
- □ For each possible combination

- Train on all groups but one, test on last group
- □ For each possible combination

How many groups?

- □ K-fold
 - □ Pick a number K, split into this number of groups

- Leave-out-one
 - Every data point is a fold

How many groups?

- □ K-fold
 - □ Pick a number K, split into this number of groups
 - Quicker; preferred by some theoreticians

- Leave-out-one
 - Every data point is a fold
 - More stable
 - Avoids issue of how to select folds (stratification issues)

Cross-validation variants

- Flat Cross-Validation
 - Each point has equal chance of being placed into each fold
- Stratified Cross-Validation
 - Biases fold selection so that some variable is equally represented in each fold
 - The variable you're trying to predict
 - Or some variable that is thought to be an important context

Student-level cross-validation

 Folds are selected so that no student's data is represented in two folds

 Allows you to test model generalizability to new students

 As opposed to testing model generalizability to new data from the same students

Student-level cross-validation

 Usually seen as the minimum cross-validation needed, in the EDM conference

- Papers that don't pay attention to this issue are usually rejected
 - OK to explicitly choose something else and discuss that choice
 - Not OK to just ignore the issue and do what's easiest

Student-level cross-validation

Easy to do with Batch X-Validation in RapidMiner

Other Levels Sometimes Used for Cross-Validation

- Lesson/Content
- School
- Demographic (Urban/Rural/Suburban, Race, Gender)
- Software Package

Important Consideration

- Where do you want to be able to use your model?
 - New students?
 - New schools?
 - New populations?
 - New software content?

Make sure to cross-validate at that level

Next Lecture

■ More on Generalization and Validity