概率论与数理统计:第十一次作业部分提示

- (1) 第四题提示: 1)区间长度为 $2u_{0.975}\frac{\sqrt{\bar{x}(1-\bar{x})}}{\sqrt{n}}$, 而在不知道 \bar{x} 的 具体数值时, $\bar{x}(1-\bar{x}) \leq 0.25$.
 - 2) 如果知道 $\theta < 0.2$, 那么我们可以预先知道 $\theta(1-\theta) <$ $0.2 \times 0.8 = 0.16$, 可适当减少采访人数。
- (2) 第五题提示: θ 时该分布的 0.5 分位数、可以用样本中位数的 渐进正态性构造。
- (3) 第七题提示: 考虑 $Y = \frac{X}{\theta}$, 那么 $X = \theta Y$. Y 的密度函数为 $p_V(y) = \theta(\theta y)^{-2}\theta = y^{-2}, \ y > 1.$

考虑最小次序统计量 $x_{(1)}$, 那么

$$P(\frac{x_{(1)}}{\theta} > c) = P(\frac{x_i}{\theta} > c, i = 1, \dots, n) = (P(\frac{X}{\theta} > c))^n = (\frac{1}{c^n}), c > 1.$$

所以可以让 $\frac{x_{(1)}}{\theta}$ 作为枢轴量。 (4) 第八题 (2): 区间长度为 $2t_{0.975}(n-1)\frac{s}{\sqrt{n}} \leqslant \frac{\sigma}{4}$, 即

$$4t_{0.975}(n-1)s^2/n \leqslant \frac{\sigma^2}{16}.$$

注意到 $(n-1)s^2/\sigma^2 \sim \chi^2(n-1)$, 考虑分位数 $\chi^2_{0.9}(n-1)$), 通 过计算软件求解

$$4t_{0.975}(n-1)\chi_{0.9}^2(n-1)/(n(n-1)) \leqslant \frac{1}{16}.$$

也可以粗略的估算, $\chi^2(n-1)$ 的数学期望为 n-1, 方差为 2(n-1), 所以 s^2 的期望为 σ^2 , 方差为 $2\sigma^4/(n-1)$ 。可以通过 切比雪夫不等式 $P(|X - E(X)| > a) \leqslant \frac{Var(X)}{a^2}$ 来估计概率为 0.9 的取值范围,接着用 $u_{0.975}$ 来代替 $t_{0.975}(n-1)$,即可给出 n 的粗略估计。