Title

D. Zack Garza

Contents

Contents

1	Thu	rsday, August 27	3
	1.1	Consequence of the Nullstellensatz	3
	1.2	Proof of Remaining Part of Nullstellensatz	3

Contents 2

1 | Thursday, August 27

1.1 Consequence of the Nullstellensatz

Recall Hilbert's Nullstellensatz:

- a. For any affine variety, V(I(X)) = X.
- b. For any ideal $J \leq k[x_1, \dots, x_n], I(V(J)) = \sqrt{J}$.

So there's an order-reversing bijection

$$\left\{ \text{Radical ideals } k[x_1, \cdots, x_n] \right\} \to V(\,\cdot\,) I(\,\cdot\,) \left\{ \text{Affine varieties in } \mathbb{A}^n \right\}.$$

In proving $I(V(J)) \subseteq \sqrt{J}$, we had an important lemma (Noether Normalization): the maximal ideals of $k[x_1, \dots, x_n]$ are of the form $\langle x - a_1, \dots, x - a_n \rangle$.

Corollary 1.1.1(?). If V(I) is empty, then $I = \langle 1 \rangle$.

Remark 1.1.2: This is because no common vanishing locus \implies trivial ideal, so there's a linear combination that equals 1.

Slogan 1.1.3: The only ideals that vanish nowhere are trivial.

Proof.

By contrapositive, suppose $I \neq \langle 1 \rangle$. By Zorn's Lemma, these exists a maximal ideals \mathfrak{m} such that $I \subset \mathfrak{m}$. By the order-reversing property of $V(\cdot)$, $V(\mathfrak{m}) \subseteq V(I)$. By the classification of maximal ideals, $\mathfrak{m} = \langle x - a_1, \cdots, x - a_n \rangle$, so $V(\mathfrak{m}) = \{a_1, \cdots, a_n\}$ is nonempty.

1.2 Proof of Remaining Part of Nullstellensatz

We now return to the remaining hard part of the proof of the Nullstellensatz:

$$I(V(J)) \subseteq \sqrt{J}$$

Thursday, August 27

Let $f \in V(I(J))$, we want to show $f \in \sqrt{J}$. Consider the ideal

$$\tilde{J} := J + \langle ft - 1 \rangle \subseteq k[x_1, \cdots, x_n, t]$$

Observation 1.2.1: f = 0 on all of V(J) by the definition of I(V(J)).

However, if f = 0, then $ft - 1 \neq 0$, so

$$V(\tilde{J}) = V(G) \cap V(ft - 1) = \emptyset$$

Figure 1: Effect, a hyperbolic tube around V(J), so both can't vanish

Applying the corollary $\tilde{J} = (1)$, so

$$1 = \langle ft - 1 \rangle g_0(x_1, \dots, x_n, t) + \sum f_i g_i(x_1, \dots, x_n, t)$$

with $f_i \in J$. Let t^N be the largest power of t in any g_i . Thus for some polynomials G_i , we have

$$f^{N} := (ft-1)G_{0}(x_{1}, \cdots, x_{n}, ft) + \sum f_{i}G_{i}(x_{1}, \cdots, x_{n}, ft)$$

noting that f does not depend on t. Now take $k[x_1, \dots, x_n, t]/\langle ft - 1 \rangle$, so ft = 1 in this ring. This kills the first term above, yielding

$$f^N = \sum f_i G_i(x_1, \cdots, x_n, 1) \in k[x_1, \cdots, x_n, t] / \langle ft - 1 \rangle$$
.

:::{.proposition title="?"}{#prop:inclusion}

There is an inclusion

$$k[x_1, \cdots, x_n] \hookrightarrow k[x_1, \cdots, x_n, t] / \langle ft - 1 \rangle$$
.

:::

Since this is injective, this identity also holds in $k[x_1, \dots, x_n]$. But $f_i \in J$, so $f \in \sqrt{I}$.

Exercise 1.2.2(?): Why is this true?

Example 1.2.3: Consider k[x]. If $J \subset k[x]$ is an ideal, it is principal, so $J = \langle f \rangle$. We can factor $f(x) = \prod_{i=1}^{\kappa} (x - a_i)^{n_i}$ and $V(f) = \{a_1, \dots, a_k\}$. Then

$$I(V(f)) = \langle (x - a_1)(x - a_2) \cdots (x - a_k) \rangle = \sqrt{J} \subsetneq J,$$

so this loses information.

Example 1.2.4: Let $J = \langle x - a_1, \dots, x - a_n \rangle$, then $I(V(J)) = \sqrt{J} = J$ with J maximal. Thus there is a correspondence

$$\left\{ \text{Points of } \mathbb{A}^n \right\} \iff \left\{ \text{Maximal ideals of } k[x_1, \cdots, x_n] \right\}.$$

Theorem 1.2.5 (Properties of I).

a.
$$I(X_1 \cup X_2) = I(X_1) \cap I(X_2)$$
.

a.
$$I(X_1 \cup X_2) = I(X_1) \cap I(X_2)$$
.
b. $I(X_1) \cap I(X_2) = \sqrt{I(X_1) + I(X_2)}$.

Proof.

We proved (a) on the variety side.

For (b), by the Nullstellensatz, $X_i = V(I(X_i))$, so

$$I(X_1 \cap X_2) = I(VI(X_1) \cap VI(X_2))$$

= $IV(I(X_1) + I(X_2))$
= $\sqrt{I(X_1) + I(X_2)}$.

Example 1.2.6: Example of property (b):

Take $X_1 = V(y - x^2)$ and $X_2 = V(y)$, a parabola and the x-axis.

Figure 2: Intersecting $V(y-x^2)$ and V(y)

Then $X_1 \cap X_2 = \{(0,0)\}$, and $I(X_1) + I(X_2) = \langle y - x^2, y \rangle = \langle x^2, y \rangle$, but

$$I(X_1 \cap X_2) = \langle x, y \rangle = \sqrt{\langle x^2, y \rangle}$$

Proposition 1.2.7(?).

If $f, g \in k[x_1, \dots, x_n]$, and suppose f(x) = g(x) for all $x \in \mathbb{A}^n$. Then f = g.

Proof.

Since f - g vanishes everywhere, $f - g \in I(\mathbb{A}^n) = I(V(0)) = \sqrt{0} = 0$.

More generally suppose f(x) = g(x) for all $x \in X$, where X is some affine variety. Then by definition, $f - g \in I(X)$, so a "natural" space of functions on X is $k[x_1, \dots, x_n]/I(X)$.

Definition 1.2.8 (Coordinate Ring)

For an affine variety X, the coordinate ring of X is

$$A(X) := k[x_1, \cdots, x_n]/I(X).$$

Elements $f \in A(X)$ are called *polynomial* or regular functions on X.

Observation 1.2.9: The constructions $V(\cdot), I(\cdot)$ work just as well for A(X) and X.

Given any $S \subset A(Y)$ for Y an affine variety,

$$V(S) = V_Y(S) := \left\{ x \in Y \mid f(x) = 0 \ \forall f \in S \right\}.$$

Given $X \subset Y$ a subset,

$$I(X) = I_Y(X) := \left\{ f \in A(Y) \mid f(x) = 0 \ \forall x \in X \right\} \subseteq A(Y).$$

Example 1.2.10: For $X \subset Y \subset \mathbb{A}^n$, we have $I(X) \supset I(Y) \supset I(\mathbb{A}^n)$, so we have maps

$$A(\mathbb{A}^n) \xrightarrow{\cdot/I(Y)} A(Y) \xrightarrow{\cdot/I(X)} A(X)$$

Theorem 1.2.11(?).

Let $X \subset Y$ be an affine subvariety, then

a.
$$A(X) = A(Y)/I_{Y}(X)$$

b. There is a correspondence

Proof.

Properties are inherited from the case of \mathbb{A}^n , see exercise in Gathmann.

Example 1.2.12: Let $Y = V(y - x^2) \subset \mathbb{A}^2/\mathbb{C}$ and $X = \{(1, 1)\} = V(x - 1, y - 1) \subset \mathbb{A}^2/\mathbb{C}$.

Then there is an inclusion $\langle y - x^2 \rangle \subset \langle x - 1, y - 1 \rangle$ (e.g. by Taylor expanding about the point (1,1)), and there is a map

$$A(\mathbb{A}^n) \xrightarrow{} A(Y) \xrightarrow{} A(X)$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$k[x,y] \xrightarrow{} k[x,y]/\left\langle y-x^2\right\rangle \xrightarrow{} k[x,y]/\left\langle x-1,y-1\right\rangle$$