Sistemas Embebidos

Multiprocessadores

1

Sumário

- ☐ Vantagens de multiprocessadores
- □ CPUs e aceleradores
- Análise da performance de multiprocessadores

Porquê Multiprocessadores?

- Melhor relação custo/performance
 - Atribui-se a cada CPU um conjunto de tarefas ou usar lógica customizada (menor, mais barata).
 - O custo do CPU é uma função não-linear da performance

3

Porquê Multiprocessadores?

- Melhor performance tempo-real.
 - Colocar as funções de tempo-crítico em elementos de processamento menos sobrecarregados.
 - Uso de Rate-Monotonic Scheduling (RMS) ---ciclos de CPU extra devem ser reservados para cumprir deadlines

RMS - é um algoritmo de escalonamento usado nos sistemas de tempo real

Porquê Multiprocessadores?

- O uso de processadores especializados ou lógica customizada poupa energia
- Os uniprocessadores dos desktops não possuem eficiência energética suficiente para aplicações alimentadas por bateria

5

Porquê Multiprocessadores?

- Bom desempenho no processamento de I/O em tempo-real
- Podem consumir menos energia
- Melhor desempenho no streaming de dados (multimédia)
- A partilha da computação supera o desempenho da computação singular

Sistemas aceleradores

- Uso de unidades computacionais dedicadas para algumas funções
 - Lógica hardwired (processamento logico, alternativo, exemplo: aceleradores)
 - CPU extra
- Hardware/software co-design: Conceção de arquiteturas de hardware e software combinadas. exemplo: sistema acelerado

7

Arquitetura de um sistema acelerado

Acelerador aparece no barramento do CPU como um elemento de processamento (PE)

Acelerador vs. co-processador

- Um co-processador executa instruções
 - □ Instruções despachadas pelo CPU
- Um acelerador surge como um dispositivo (PE) no bus
 - O acelerador é controlado por registos

9

Implementações de acelerador

- IC application-specific (Chip específico para a função)
- Field-programmable gate array (FPGA)
- Componente standard
 - □ Exemplo: processador gráfico (GPU)

FPGA - É um **circuito integrado** projetado para ser configurado após a fabricação (ex: chip programável).

Tarefas de conceção de sistemas

- Projetar uma arquitetura de multiprocessador heterogénea
 - ☐ Elementos de processamento (PE): CPU, acelerador, etc.
- Programar o sistema

11

Conceção de sistemas acelerados - etapas

- Inicialmente, determinar se o sistema realmente necessita de ser acelerado
 - Quão rápido é o acelerador na função core?
 - Qual o *overhead* provocado pelo *data* transfer?
- Projetar o acelerador
- Projetar o interface do CPU para o acelerador

Problemas de caching

- A memória principal dispõe de um mecanismo de transferência de dados primário para o acelerador
- Os programas devem garantir que o caching não invalida dados da memória principal
 - O CPU pode utilizar dados inválidos através da cache, problema.

13

Sincronização

- Tal como na cache, a escrita (write) da memória principal na memória partilhada pode causar invalidação, exemplo:
 - 1. CPU lê a localização S
 - 2. Acelerador escreve na localização S -- Não desejável
 - 3. CPU lê novamente S, mas da cache

Solução possível:

Atualização da cache

Análise de performance de multiprocessadores

- ☐ Efeitos do paralelismo (e falta dele):
 - Processos
 - ☐ CPU e bus
 - Múltiplos processadores

15

Speedup do acelerador

- Parâmetro crítico speedup: quanto mais rápido é o sistema com o acelerador?
- Deve ter-se em consideração:
 - □ Tempo de execução do acelerador
 - Tempo de transferência de dados
 - ☐ Sincronização com o *CPU* mestre

Tempo de execução do acelerador

□ Tempo total de execução do acelerador:

17

Speedup do acelerador

- Assumindo que um *loop* é executado n vezes.
- Comparação de sistema acelerado com sistema não acelerado:

$$\Box S = n(t_{CPU} - t_{accel})$$

$$\Box = n[t_{CPU} - (t_{in} + t_x + t_{out})]$$
Tempo de execução do CPU

Exemplo: Tempo CPU = 100ns Tempo S.Acel = 90ns **RESULTADO**?

Temos uma vantagem, que pode ser relativa! Uma vez que o custo de implementação do acelerador e consumo energético têm de ser considerados!

Single- vs. multi-threaded

- Um fator crítico é o paralelismo disponível:
 - ☐ *Single-threaded/blocking:* O *CPU* espera pelo acelerador
 - ☐ *Multi-threaded/non-blocking:* O *CPU* continua
- Para multi-thread, o CPU deve ter trabalho útil para fazer.
 - O software deve suportar também *multithreading*.

19

Tempo total de execução

Análise do tempo de execução

- ☐ *Single-threaded*:
 - ☐ Considera o tempo de execução de todos os processos
- Multi-threaded:
 - Considera o path de execução mais longa

21

Exemplo: Escalonamento e alocação

Primeira abordagem

□ Alocação P1, P2 -> M1; P3 -> M2.

23

Segunda abordagem

□ Alocação P1 -> M1; P2, P3 -> M2:

Exemplo: Ajuste de mensagens para reduzir o atraso

Tempo de transmissão (d) = 4 unid tempo

25

Escalonamento Inicial

Novo escalonamento

- Modificar P3:
 - ☐ Ler um pacote de d1, um pacote de d2
 - Computar resultado parcial
 - Continuar para o próximo pacote

27

Novo escalonamento

Exercício 1

- Assumindo que o tempo de execução do CPU para uma dada função com um loop de 100 ciclos foi de 450ns e o acelerador teve um tempo de execução, leitura e escrita de 2ns, 1ns e 2ns por ciclo respetivamente.
- Verifique se a aceleração neste sistema foi vantajosa?

29

Exercício 2

- Numa dada função com um loop de 1000 ciclos, o tempo normal de execução do CPU foi de 6ns por ciclo e o sistema acelerado teve um tempo de execução de 1ns, de leitura 1ns e de escrita 3ns por ciclo.
- Analise se o sistema acelerado foi claramente mais eficiente, porquê?

Sistemas Embebidos

Resolução da FT6