Санкт-Петербургский государственный университет St Petersburg University Математико-Механический факультет Кафедра физической механики

ОТЧЕТ

по лабораторной работе №10

"Исследование электрических процессов в переходных цепях. Явление дифференцирования и интегрирования."

Выполнил: Норкин Марк, 353 гр.

Цель работы:

- 1. Ознакомление с переходными, передаточными и спектральными характеристиками.
- 2. Преобразование форм различных сигналов на примере дифференцирования и интегрирования.

Схемы установок:

Рис. 1.

а) Дифференцирующая цепь;

б)Интегрирующая цепь

Рис. 2 Входное напряжение

Рис. 3. Выходное напряжение на дифференцирующей цепи

Рис. 4. Выходное напряжение на интегрирующей цепи

Расчетные формулы:

Дифференцирующая цепь:

$$A(\omega) = \frac{\omega \tau}{\sqrt{1 + (\omega \tau)^2}}$$
 - Амплитудно-частотная характеристика, где

А - амплитуда, ω - частота, τ - длительность импульса

$$\frac{U_{_{\mathrm{BJX}}}(t)}{U_{_{\mathrm{BX}}}(t)}=e^{rac{-t}{RC}}$$
 - Выходное напряжение, где

 $U_{_{\rm BMX}}$ - выходное напряжение, $U_{_{\rm BX}}$ - входное напряжение, R - сопротивление резистора, C - емкость конденсатора

Интегрирующая цепь:

$$A(\omega) = \frac{\omega \tau}{\sqrt{1 + (\omega \tau)^2}}$$
 - Амплитудно-частотная характеристика $\frac{U_{_{\mathrm{BЫX}}}(t)}{U_{_{\mathrm{...}}}(t)} = 1 - e^{\frac{-t}{RC}}$ - Выходное напряжение

Расчет погрешностей:

$$\Delta U_2 = 0.5 U_{\rm BX} \left(\frac{t}{RC}\right)^2$$
 - Абсолютная погрешность

$$\delta \approx 0.5 \frac{t}{RC}$$
 - Относительная погрешность

Экспериментальные и расчётные данные:

Дифференцирующая цепь:

t,uxc 0		1	2	3	4	5	
Up, c=RC							
UR, T=RC OKENEJI.	3,42	0,78	0,18	0,06	0,02	0,004	
Uz.t=R							
A-Trooke	3,9	3,86	3,78	3.7	3,66	3.58	

Таблица 1

Таблица 2

f== xu	0	2	5	10	20	50	100	300	500	700F	1000	
A(w), T.RC		5,410	410									10=3
(w), T : # (C		5 y · 10	14-10-5	1810	5610	14010	abl 10	968 103	70010	712-10	74010	3
(W),-T=1cek												
IN, THORK		428	664	744	760	770	177	784	739	784	188	10-3

Интегрирующая цепь:

Таблица 3

f= 27 Ry	0	2	10	20	50	(00	200	400	600	800	1000
A(W) C= PC									2.00		
A(w) Z-RC Excher		1	0.8	0,56	0,264	0,136	0,074	0,034	0,022	0,017	0,013
A(w) T = RC						U.					
HW) T=RC >KCnep.		392	992	992	992	992	992	944	880	800	740

Таблица 4

Вывод:

При выполнении данной работы рассмотрели преобразование сигнала прямоугольной формы на примере дифференцирования и интегрирования, а также амплитудно-частотную характеристику этого сигнала. При сравнении полученных результатов и графиков напряжений на дифференцирующей цепи наблюдается резкое падение выходного напряжения. Получены сигналы с гладкими углами, это связано снесовершенством цепи.