Business and Financial Modeling Specialization

2. Introduction to Spreadsheets and Models

• 2. Data \rightarrow What-If Analysis \rightarrow Scenario Manager

Sensitivity analysis: compare impact on an outcome variable based on 10% changes on individual input vars. Limits to simple, deterministic models: doesn't incorporate the uncertainty of market, i.e. inaccurate representations of variance in real world.

• 3. Modeling Risk and Making Predictions

=RandBetween(low, high)

Forcast: for Linear: =FORECAST(predict_x, known_y's, known_x's)

 $for \ Exponential: = GROWTH(known_y's, \ known_x's, \ predict_x) \ and = LOGEST(Known \ Y's, \ Known \ X's, \ Const, \ Stats)$

Regression Analysis: =CORREL(array1, array2)

or Data \rightarrow Data Analysis \rightarrow Regression (R = correlation; R Square = covariance; adjusted R² to account for size)

• 4. Monte Carlo Simulations

Worth when manual What-If analysis is impossible, model is complex, stakes is high or a bit more precision is important - Linear Programming (LP) Solver

3. Modeling Risk and Realities

• 1. Models with Little to No Risk

Decision, objective, constraint(s) \rightarrow spreadsheet to optimize

Deterministic settings \iff no risk

Run "Excel Solver" several times w/ different starting values to ensure global min/max.

• 2. Models with High Risk

Scenario Approach: basically, estimate the future based on the past

(e.g. expect equal probability of return as one of the past 20 trading days of a stock)

Should vary # of used scenarios (past events) to test robustness (and prevent overfitting)

Risk := likelihood and/or magnitude of **undesirable** outcome(s)

- Negative correlation → reduced variance/risk/volatility
- 3. Data Visualization & Choose the Right Distribution

Goodness of fit tests : Chi-Square (χ^2) test & Kolmogorov-Smirnov test.

- Chi-Square test is one-sided, i.e. can disprove but not prove

Null hypothesis: the studied comes from a RV following a specified distribution.

Ideally, ≥ 50 data points; divide into n buckets with ≥ 5 in each.

Every χ^2 test has "degree of freedom" = # of buckets - # parameters of specified distribution - 1

Then, look up a confidence table.

Excel formula: =chisq.test(actual range, expected range)

- Kolmogorov-Smirnov (K-S) test

Arrange data values in ascending order; arrange theoretical values similarly; find maximal diff b/w them.

Typically, a value 0.03-0.04 or lower is considered good.

• 4. Comparing Alternatives using Simulations

Careful when calculating expected values that involve non-linear terms \rightarrow need simulation

Data Analysis \rightarrow Random Number Generation

Can compare the 95% CI of expected return and risk

4. Decision-Making and Scenarios

• 1. Compare with NPV (net present values)

$$F_n = PV \cdot (1+r)^n$$

Excel =NPV(·) function assumes that 1^{st} payment starts at t=1, i.e. discounted by r

- Cost of Capital (CoC): reflects riskless return, compensation for expected inflation + risk premium

Usually considers the nominal CoC, i.e. includes compensation for expected inflation

Hard to estimate

- Internal rate of return (IRR) : Excel =IRR(values)

Project gains (positive NPV) iff IRR > CoC

May not always give the idea of worth or not \rightarrow NPV is always good

- Other criteria (not too good): payback time, ROI (avg/expected)
- 2. Initial investment, Operating phase, Terminal phase
 - Initial investment: capitalized costs (asset, no immediate tax benefit), non-capitalized costs (R&D + training), working capital (inventory, no tax benefit)

Working capital expansion consumes cash.

- Operating : $\Delta Cash Flow = \Delta CR - \Delta CE - \Delta T$

Taxable income = Revenue - COGS - DTS (depreciation tax savings) \rightarrow doesn't depend on account receivable etc.

Annual depreciation: (cost - estimated salvage) / life

- Terminal: include tax on gain/loss on (final sale estimated salvage value)
- Key considerations
 - If company profitable, then losses can be used for tax deduction; else, losses are just losses.
 - Financing is included only in estimation of CoC, but not cash flow.
 - Include all incidental effects (on other products/services).
 - Working capital is usually released at the end.
 - Sunk cost never relevant; additional investment is.
 - Don't forget opportunity costs (:= value of the resource in its next most highly valued use)
 - Perform sensitivity analysis
- 3. Financial Statements (Balance Sheet, Income Statement, Cash Flow Statement) and Forecasting
 - Balance Sheet (Snapshot of a timepoint)
 - Financial position (listing of resources and obligations) on a specific date
 - Assets = Liabilities + Owners' Equity
 - Common assets on it: cash (link to CFS), accounts receivable, inventory, property plant and equipment (PPE), intangible assets, investments in financial assets, etc.
 - Liabilities on it: accounts payable, other payables (wages, interest, income taxes), receipt of payment in advance of providing service, short-term debt, long-term debt, product warranties, employee pensions
 - Owners' Equity: contributed capital, retained earnings (link to IS)
 - * Income vs Cash Flow (difference is TIMING)

income: measures the increase in economic value from a xact or even

cash flow: measures the receipt of that value in the form of cash

- IS
 - Profitability of operations over a period of time

Beginning Balance	Business Activities, Transactions and Events During the Period		Ending Balance
Cash _{Beg}	+ Receipts - Payments	=	Cash _{End}
Accts Rec _{Beg}	+ Sales - Collection	=	Accts Rec _{End}
Inventory _{Beg}	+ Purchases – Cost of Goods Sold	=	Inventory _{End}
PPE _{Beg}	+ Purchases – Deprec - Disposals	=	PPE_{End}
Accts Pay _{Beg}	+ Purchases – Payments to Suppliers	=	Accts Pay _{End}
Wages Pay _{Beg}	+ Wage Expense – Wages Paid	=	Wages Pay _{End}
Contributed Capital _{Beg}	+ Stock Issuance – Stock Repurchases	=	Contributed Capital _{End}
Retained Earn _{Beg}	+ Net Income - Dividends	=	Retained $Earn_{End}$

- Net income = Revenues Expenses
- Expenses are grouped into categories: revenue (or sales), <u>COGS</u>; gross profit, <u>operating (SG&A) expense</u>; operating income, interest, other gains and losses; pre-tax income, income tax expense; net income

- CFS

- Sources and uses of cash during a period of time
- Operating, investing, and financing activities
 - * Operating : xacts related to providing goods and services to customers and to pay expenses related to the revenue generating activities
 - * Investing: xacts related to acquisition or disposal of long-term assets (e.g. PPE)
 - * Financing : xacts related to owners or creditors (e.g. cash from issuing shares cash paid for dividends)
- Operations and Investing: to evaluate a project
- Cash from Operations = net income + depreciation Δ working capital
- Cash from Investing = investment in long-term assets + disposal of LT assets
- Cash from Financing = changes in LT liabilities + changes in contributing capital dividends

Net Income	Different Because	Cash From Operations
Sales Revenue	Not all Sales Were Collected	Cash Collected From Customers
(Cost of Goods Sold)	Not all Inventory was sold Not all Purchases were paid for	(Purchases From Suppliers)
(Wage Expense)	Not all Wages were Paid	(Wages Paid)
(Depreciation Expense)	This is not a Cash Flow	
(Taxes Paid)	No Difference	(Taxes Paid)
Net Income		Cash From Operations

• 4. New Product Venture

Forecast often starts with Sales

Calculate NPV & IRR \rightarrow What can go wrong? How wrong can it go?

- Formulation and Evaluation of Alternative Scenarios

To find breakeven point: Data \rightarrow What-If Analysis \rightarrow Goal Seek

Consider changes in credit policy, etc.

- Expanding Beyond the Time Horizon

Usually individual forecast for a finite horizon (3-7 years) + ad hoc (simplified) assumption for later (Terminal Value) For the steady state, use constant CF (perpetuity) or constant growing rate (constant growth perpetuity)

N.B. Remember the one-time "other disposable costs"

N.B. A lot of value comes from the steady state terminal value.

5. Wharton Business and Financial Modeling Capstone

• 1. Modern portfolio theory

Investing in various assets, e.g. equity, fixed income, currency, real estates to achieve a high return with controlled risk.

Efficient frontier: the set of portfolios which satisfy the condition that no other portfolio exists with a higher expected return but with the same standard deviation of return (i.e. the risk).

Diversification: rebalancing is a key to maintaining risk levels over time.

• 2. Close price vs Adjusted Close price

Sharpe Ratio: describes how much excess return you receive for the extra volatility you endure for holding a riskier asset

$$S(x) = \frac{r_x - R_f}{\text{StdDev}(r_x)}$$

x investment; r_x avg rate of return; R_f best available rate of return of a risk-free security (i.e. T-bills)

A risk/return measure for capital asset pricing model (CAPM)

For some insight, a ratio of 1 or better is good, 2 or better is very good, and 3 or better is excellent.