Cenni di Machine Learning: Decision Tree Learning

Fabio Massimo Zanzotto

Concept Learning... what?

Quick background on Supervised Machine Learning

Learning...

What?

Concepts/Classes/Sets

How?

using similarities among objects/instances

Where these similarities may be found?

Observation Space: Feature Space

A Feature Space (FS) is a vector space defined as:

$$FS = F_1 \times ... \times F_n$$

an instance *i* is a point in the feature space:

$$i = (f_1, ..., f_n) \in FS$$

A classification function is:

$$Tagger: FS \rightarrow T$$

where T is the set of the target classes

Observation Space: Feature Space

- Pixel matrix?
- Ditribution of the color

- Features as:
 - has leaves?
 - is planted in the ground?
 - **—** ...

Note: in deciding the feature space some prior knowledge is used

Definition of the classification problem

- Learning requires positive and negative examples
- Verifying learning algorithms require test examples
- Given a set of instances *I* and a desired target function tagger *Tagger*, we need annotators to define training and testing examples

Annotation is an hard work

- Annotation procedure:
 - definition of the scope: the target classes T
 - definition of the set of the instances I
 - definition of the annotation procedure
 - actual annotation

Annotation problems

- Are the target classes well defined (and shared among people)?
- How is possible to measure this?
 - → inter-annotator agreement

instances should be annotated by more than one annotators

Speeding up the annotation...

... and controlling the results

Instances in I

After the annotation

- We have:
 - the behaviour of a tagger

Tagger_{oracle}: $I \rightarrow T$

for all the examples in I

Using the annotated material

- Supervised learning:
 - I is divided in two halves:
 - I_{training}: used to train the Tagger
 - I_{testing}: used to test the Tagger

or

- I is divided in n parts, and the training-testing is done n times (n-fold cross validation), in each iteration:
 - n-1 parts are used for training
 - 1 part is used for testing

Evaluation Metrics

Given the oracle: $Tagger_{oracle}: I \rightarrow T$

Accuracy of the tagger: $Tagger: FS \rightarrow T$

where
$$Accuracy = \frac{1}{|I_{testing}|} \sum_{i \in I_{testing}} \delta(Tagger(i), Tagger_{oracle}(i))$$

$$\delta(Tagger(i), Tagger_{oracle}(i)) = \left\{ \begin{array}{ll} 0 & \text{if } Tagger(i) \neq Tagger_{oracle}(i) \\ 1 & \text{if } Tagger(i) = Tagger_{oracle}(i) \end{array} \right.$$

Precision/Recall/F-measure

needed for taggers that assign more than one category, i.e.,

$$Tagger: FS \to 2^T$$

defining:

```
System = \{(i,t)/i \in I_{testing} \ and \ t \in Tagger(i)\}
Oracle = \{(i,t)/i \in I_{testing} \ and \ t = Tagger_{oracle}(i)\}
precision and recall of the system are defined as:
```

```
Precision = |System \cap Oracle| / |System|

Recall = |System \cap Oracle| / |Oracle|
```


Categorizzazione: come avviene?

- Attributo definitorio
 - Studiata e provata sulle reti di concetti (più il concetto richiesto è distante dell'attributo definitorio più il tempo di risposta è alto)
- Basata su esempi (recenti)

• Prototipo

Categorizzazione: in apprendimento automatico

- Attributo definitorio
 - Decision trees and decision tree learning
- Basata su esempi (recenti)
 - K-neighbours and lazy learning
- Prototipo
 - Class Centroids and Rocchio Formula

Categorizzazione: in apprendimento automatico

- Attributo definitorio
 - Decision trees and decision tree learning

Decision Tree: example

Waiting at the restaurant.

• Given a set of values of the initial attributes, foresee whether or not you are going to wait.

Decision Tree: how is it?

The Restaurant Domain

	Attributes								Goal
Example	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
X ₁	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes
χ_2	No	Yes	Full	\$	No	No	Thai	30-60	No
Х ₃	No	No	Some	\$	No	No	Burger	0-10	Yes
X ₄	Yes	Yes	Full	\$	No	No	Thai	10-30	Yes
X ₅	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X ₆	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X ₇	No	No	None	\$	Yes	No	Burger	0-10	No
X ₈	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
X ₉	Yes	No	Full	\$	Yes	No	Burger	>60	No
X ₁₀	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No
X ₁₁	No	No	None	\$	No	No	Thai	0-10	No
X ₁₂	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

Will we wait, or not?

Splitting Examples by Testing on Attributes

- + X1, X3, X4, X6, X8, X12 (Positive examples)
- X2, X5, X7, X9, X10, X11 (Negative examples)

Splitting Examples by Testing on Attributes (con't)

- + X1, X3, X4, X6, X8, X12 (Positive examples)
- X2, X5, X7, X9, X10, X11 (Negative examples)

Splitting Examples by Testing on Attributes (con't)

Splitting Examples by Testing on Attributes (con't)

What Makes a Good Attribute?

© F.M.Zanzotto

Logica per la Programmazione e la Dimostrazione Automatica

Final Decision Tree

© F.M.Zanzotto

Logica per la Programmazione e la Dimostrazione Automatica

Decision Tree Learning: ID3 algorithm

function ID3 (R: attributes, S: a training set, default_value) returns
 a decision tree;

begin

if S=∅, then return default_value;

else if S consists of records all with the value *v* then return value *v*;

else f R=∅, **then return** the most frequent value *v* for records of S;

else

let A be the attribute with largest Gain(A,S) among attributes in R;

let $\{a_i| j=1,2,...,m\}$ be the values of attribute A;

let $\{S_j | j=1,2,...,m\}$ be the subsets of S consisting respectively of records with value a_i for A;

return a tree with root labeled A and arcs labeled a_1 , a_2 , ..., a_m going respectively to the trees (ID3(R-{A}, S₁), ID3(R-{A}, S₂),,ID3(R-{A}, S_m);

Attribute selection function: Gain(*A*, *S*)

- Information Theory
 - each set of messages has its intrinsic information
 related to the probability of a given message in the text
- It is demonstrated that:
 - M is the set of messages
 - p is a probability distribution of the messages
 - the information carried by the set of messages is:

$$I(M) = \sum_{m \in M} p(m) log_2(\frac{1}{p(m)})$$

Attribute selection function: Gain(*A*, *S*)

- Given:
 - a set of target classes T
 - A: an attribute with values a in A
 - S: a set of training instances
- Using the notion of information I(M) it is possible to define:

$$I_S(T) = \sum_{t \in T} p_S(t) log_2(\frac{1}{p_S(t)})$$

Remaining(A) =
$$\sum_{a \in A} p_S(a) I_{S_{A=a}}(T)$$

$$Gain(A, S) = I_S(T) - Remaining(A)$$

Example: Gain(A,S) with a binary classification

Abusing the notation and using the maximun likelihood probability estimation model:

$$I(\frac{p}{p+n}, \frac{n}{p+n}) = -\frac{p}{p+n}log_2\frac{p}{p+n} - \frac{n}{p+n}log_2\frac{n}{p+n}$$

$$Remaining(A) = \sum_{a \in A} -\frac{p_a + n_a}{p + n} I(\frac{p_a}{p_a + n_a}, \frac{n_a}{p_a + n_a})$$

where:

- p is the # of positive examples in S
- n is the # of negative examples in S
- p_a is the # of positive examples in S fixing the value of A as a
- n_a is the # of negative examples in S fixing the value of A as a

Prolog Coding

attribute(fri,[yes,no]). attribute(hun,[yes,no]). attribute(pat,[none,some,full]).

example(yes, [fri = no, hun = yes, pat = some, \dots]).


```
induce_tree( Tree) :-
    findall( example( Class, Obj), example( Class, Obj), Examples),
    findall( Att, attribute( Att, _ ), Attributes),
    induce_tree( Attributes, Examples, Tree).
```


induce_tree(_, Examples, leaf(ExClasses)) :- % No (useful) attribute, leaf with class distr.

findall(Class, member(example(Class, _), Examples), ExClasses).


```
induce_tree( _, [], null) :- !.
```

ClassX \== Class), !.

% of different class