DATASCI 510

Data Science: Process and Tools

Lesson 10

Classification Accuracy

© 2024 Bahram Zahir & Ernst Henle

Reflections

A scientist in his laboratory is not a mere technician: he is also a child confronting natural phenomena that impress him as though they were fairy tales.

Marie Skłodowska Curie, 1867-1934

Agenda

- Announcements: End of Class!
- Finish the Notebook for Lesson 9
- Fill the surveys
- Break
- An example with ROC and AuC
- Lesson_10_a_Classification_Accuracy.ipynb
- Break
- Lesson_10_b_Student.ipynb
- Interview question 1
- Interview question 2

Surveys

Please feel the survey!

Actual Cases from Test Data:

- -20 got an intestinal infection in the hospital
- -20 did not get an intestinal infection in the hospital

Model Results (Predictions):

- −10 patients who were indeed infected each had a probability of **0.99**
- -10 patients who were indeed not infected each had a probability of **0.01**
- -10 patients who were not infected but each had a probability of **0.51**
- -10 patients who were infected but each had a probability of only 0.49

What is the classification accuracy?

Actual Cases from Test Data:

- −20 got an intestinal infection in the hospital
- -20 did not get an intestinal infection in the hospital

Model Results (Predictions):

- −10 patients who were indeed infected each had a probability of **0.99**
- -10 patients who were indeed not infected each had a probability of **0.01** \P
- -10 patients who were not infected but each had a probability of **0.51**
- -10 patients who were infected but each had a probability of only 0.49

Assuming threshold = 0.5

Accuracy =
$$\frac{TP+TN}{TP+TN+FP+FN} = \frac{20}{40} = 0.5$$

Recall =
$$\frac{TP}{TP+FN} = \frac{10}{20} = 0.5$$

Precision =
$$\frac{TP}{TP+FP} = \frac{10}{20} = 0.5$$

Actual Cases from Test Data:

- −20 got an intestinal infection in the hospital
- -20 did not get an intestinal infection in the hospital

Model Results (Predictions):

- −10 patients who were indeed infected each had a probability of **0.99**
- -10 patients who were indeed not infected each had a probability of **0.01**
- -10 patients who were not infected but each had a probability of **0.51**
- -10 patients who were infected but each had a probability of only 0.49

Assuming threshold = 0.75

Accuracy =
$$\frac{TP+TN}{TP+TN+FP+FN} = \frac{30}{40} = 0.75$$

Recall =
$$\frac{TP}{TP+FN} = \frac{10}{20} = 0.5$$

Precision =
$$\frac{TP}{TP+FP} = \frac{10}{10} = 1$$

Actual Cases from Test Data:

- −20 got an intestinal infection in the hospital
- -20 did not get an intestinal infection in the hospital

Model Results (Predictions):

- −10 patients who were indeed infected each had a probability of **0.99**
- -10 patients who were indeed not infected each had a probability of **0.01**
- -10 patients who were not infected but each had a probability of **0.51**
- -10 patients who were infected but each had a probability of only 0.49

Assuming threshold = 0.25

Accuracy =
$$\frac{TP+TN}{TP+TN+FP+FN} = \frac{30}{40} = 0.75$$

$$Recall = \frac{TP}{TP + FN} = \frac{20}{20} = 1$$

Precision =
$$\frac{TP}{TP+FP} = \frac{20}{30} = 0.67$$

Interview question 2 (from the last two weeks)

- Assume you are at one end of a tunnel, with a perfectly rectangular surface and need to move to the other end of the tunnel
- You are told that there are a given number of mines on the surface of this tunnel and their exact emplacements are known
- Furthermore, you know that it is safe to walk around the mines, as long as you keep a distance of R from the location of the mines
- Propose an algorithm to determine whether a safe path exists through the tunnel

