Домашнее задание. Нейросетевая классификация текстов

В этом домашнем задании вам предстоит самостоятельно решить задачу классификации текстов на основе семинарского кода. Мы будем использовать датасет <u>ag_news</u>. Это датасет для классификации новостей на 4 темы: "World", "Sports", "Business", "Sci/Tech".

Установим модуль datasets, чтобы нам проще было работать с данными.

```
!pip install datasets
→ Collecting datasets
      Downloading datasets-3.3.2-py3-none-any.whl.metadata (19 kB)
     Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from datasets) (3.17.0)
     Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from datasets) (1.26.4)
     Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.11/dist-packages (from datasets) (18.1.0)
     Collecting dill<0.3.9,>=0.3.0 (from datasets)
       Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)
     Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from datasets) (2.2.2)
     Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.11/dist-packages (from datasets) (2.32.3)
     Requirement already satisfied: tqdm>=4.66.3 in /usr/local/lib/python3.11/dist-packages (from datasets) (4.67.1)
     Collecting xxhash (from datasets)
       Downloading xxhash-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)
     Collecting multiprocess<0.70.17 (from datasets)
      Downloading multiprocess-0.70.16-py311-none-any.whl.metadata (7.2 kB)
     Requirement already satisfied: fsspec<=2024.12.0,>=2023.1.0 in /usr/local/lib/python3.11/dist-packages (from fsspec[htt
     Requirement already satisfied: aiohttp in /usr/local/lib/python3.11/dist-packages (from datasets) (3.11.13)
     Requirement already satisfied: huggingface-hub>=0.24.0 in /usr/local/lib/python3.11/dist-packages (from datasets) (0.28
     Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from datasets) (24.2)
     Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from datasets) (6.0.2)
     Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datase
     Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (1.
     Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (25.1.
     Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (1
     Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets)
     Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (0.
     Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (1
     Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-
     Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32
     Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets
     Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->da
     Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->da
     Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets
     Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets) (2025.1)
     Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets) (2025.
     Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas
     Downloading datasets-3.3.2-py3-none-any.whl (485 kB)
                                                485.4/485.4 kB 12.9 MB/s eta 0:00:00
    Downloading dill-0.3.8-py3-none-any.whl (116 kB)
                                                · 116.3/116.3 kB 7.3 MB/s eta 0:00:00
    Downloading multiprocess-0.70.16-py311-none-any.whl (143 kB)
                                                - 143.5/143.5 kB 11.9 MB/s eta 0:00:00
    Downloading xxhash-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)
                                                - 194.8/194.8 kB 16.7 MB/s eta 0:00:00
     Installing collected packages: xxhash, dill, multiprocess, datasets
     Successfully installed datasets-3.3.2 dill-0.3.8 multiprocess-0.70.16 xxhash-3.5.0
```

Импорт необходимых библиотек

```
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import datasets

import numpy as np
import matplotlib.pyplot as plt

from tqdm.auto import tqdm
from datasets import load_dataset
from nltk.tokenize import word_tokenize
from sklearn.model_selection import train_test_split
import nltk
```

```
from collections import Counter
from typing import List
import string
import seaborn
seaborn.set(palette='summer')
nltk.download('punkt')
→ [nltk_data] Downloading package punkt to /root/nltk_data...
    [nltk_data] Unzipping tokenizers/punkt.zip.
     True
nltk.download('punkt_tab')
    [nltk_data] Downloading package punkt_tab to /root/nltk_data...
     [nltk_data] Unzipping tokenizers/punkt_tab.zip.
from nltk.tokenize import word_tokenize
device = 'cuda' if torch.cuda.is_available() else 'cpu'
device
→ 'cuda'
```

Подготовка данных

Для вашего удобства, мы привели код обработки датасета в ноутбуке. Ваша задача — обучить модель, которая получит максимальное возможное качество на тестовой части.

```
# Загрузим датасет
dataset = datasets.load_dataset('ag_news')
    /usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning:
     The secret `HF_TOKEN` does not exist in your Colab secrets.
     To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens)
     You will be able to reuse this secret in all of your notebooks.
     Please note that authentication is recommended but still optional to access public models or datasets.
       warnings.warn(
     README.md: 100%
                                                                 8.07k/8.07k [00:00<00:00, 412kB/s]
     train-00000-of-00001.parquet: 100%
                                                                               18.6M/18.6M [00:00<00:00, 57.9MB/s]
     test-00000-of-00001.parquet: 100%
                                                                              1.23M/1.23M [00:00<00:00, 78.6MB/s]
     Generating train split: 100%
                                                                         120000/120000 [00:00<00:00, 413159.84 examples/s]
     Generating test split: 100%
                                                                         7600/7600 [00:00<00:00, 224258.04 examples/s]
```

Как и в семинаре, выполним следующие шаги:

- Составим словарь
- Создадим класс WordDataset
- Выделим обучающую и тестовую часть, создадим DataLoader-ы.

```
words = Counter()

for example in tqdm(dataset['train']['text']):
    # Приводим к нижнему регистру и убираем пунктуацию
    prccessed_text = example.lower().translate(
        str.maketrans('', '', string.punctuation))

for word in word_tokenize(prccessed_text):
    words[word] += 1
```

```
vocab = set(['<unk>', '<bos>', '<eos>', '<pad>'])
counter_threshold = 25
for char, cnt in words.items():
   if cnt > counter_threshold:
       vocab.add(char)
print(f'Pasмep словаря: {len(vocab)}')
word2ind = {char: i for i, char in enumerate(vocab)}
ind2word = {i: char for char, i in word2ind.items()}
→ 100%
                                                   120000/120000 [00:21<00:00, 6193.10it/s]
     Размер словаря: 11842
class WordDataset:
   def __init__(self, sentences):
        self.data = sentences
        self.unk_id = word2ind['<unk>']
        self.bos_id = word2ind['<bos>']
        self.eos_id = word2ind['<eos>']
        self.pad_id = word2ind['<pad>']
   def __getitem__(self, idx: int) -> List[int]:
        processed_text = self.data[idx]['text'].lower().translate(
            str.maketrans('', '', string.punctuation))
        tokenized_sentence = [self.bos_id]
        tokenized_sentence += [
            word2ind.get(word, self.unk_id) for word in word_tokenize(processed_text)
        tokenized_sentence += [self.eos_id]
        train_sample = {
            "text": tokenized_sentence,
            "label": self.data[idx]['label']
       return train_sample
   def _len_(self) \rightarrow int:
        return len(self.data)
def collate_fn_with_padding(
    input_batch: List[List[int]], pad_id=word2ind['<pad>'], max_len=256) -> torch.Tensor:
    seq_lens = [len(x['text']) for x in input_batch]
   max_seq_len = min(max(seq_lens), max_len)
   new_batch = []
   for sequence in input_batch:
        sequence['text'] = sequence['text'][:max_seq_len]
        for _ in range(max_seq_len - len(sequence['text'])):
            sequence['text'].append(pad_id)
        new_batch.append(sequence['text'])
   sequences = torch.LongTensor(new_batch).to(device)
   labels = torch.LongTensor([x['label'] for x in input_batch]).to(device)
   new_batch = {
        'input_ids': sequences,
        'label': labels
   return new_batch
train_dataset = WordDataset(dataset['train'])
np.random.seed(42)
idx = np.random.choice(np.arange(len(dataset['test'])), 5000)
eval_dataset = WordDataset(dataset['test'].select(idx))
```

```
batch_size = 32
train_dataloader = DataLoader(
    train_dataset, shuffle=True, collate_fn=collate_fn_with_padding, batch_size=batch_size)
eval_dataloader = DataLoader(
    eval_dataset, shuffle=False, collate_fn=collate_fn_with_padding, batch_size=batch_size)
```

Постановка задачи

Ваша задача -- получить максимальное возможное accuracy на eval_dataloader . Ниже приведена функция, которую вам необходимо запустить для обученной модели, чтобы вычислить качество её работы.

```
def evaluate(model, eval_dataloader) -> float:
    """
    Calculate accuracy on validation dataloader.
    """

predictions = []
    target = []
    with torch.no_grad():
        for batch in eval_dataloader:
            logits = model(batch['input_ids'])
            predictions.append(logits.argmax(dim=1))
            target.append(batch['label'])

predictions = torch.cat(predictions)
    target = torch.cat(target)
    accuracy = (predictions == target).float().mean().item()
```

Ход работы

Оценка за домашнее задание складывается из четырех частей:

Запуск базовой модели с семинара на новом датасете (1 балл)

На семинаре мы создали модель, которая дает на нашей задаче довольно высокое качество. Ваша цель --- обучить ее и вычислить score, который затем можно будет использовать в качестве бейзлайна.

В модели появится одно важное изменение: количество классов теперь равно не 2, а 4. Обратите на это внимание и найдите, что в коде создания модели нужно модифицировать, чтобы учесть это различие.

Проведение экспериментов по улучшению модели (2 балла за каждый эксперимент)

Чтобы улучшить качество базовой модели, можно попробовать различные идеи экспериментов. Каждый выполненный эксперимент будет оцениваться в 2 балла. Для получения полного балла за этот пункт вам необходимо выполнить по крайней мере 2 эксперимента. Не расстраивайтесь, если какой-то эксперимент не дал вам прироста к качеству: он все равно зачтется, если выполнен корректно.

Вот несколько идей экспериментов:

- **Модель RNN**. Попробуйте другие нейросетевые модели --- LSTM и GRU. Мы советуем обратить внимание на <u>GRU</u>, так как интерфейс этого класса ничем не отличается от обычной Vanilla RNN, которую мы использовали на семинаре.
- Увеличение количества рекуррентных слоев модели. Это можно сделать с помощью параметра num_layers в классе nn.RNN. В такой модели выходы первой RNN передаются в качестве входов второй RNN и так далее.
- **Изменение архитектуры после применения RNN**. В базовой модели используется агрегация со всех эмбеддингов. Возможно, вы захотите конкатенировать результат агрегации и эмбеддинг с последнего токена.
- Подбор гиперпараметров и обучение до сходимости. Возможно, для получения более высокого качества просто необходимо увеличить количество эпох обучения нейросети, а также попробовать различные гиперпараметры: размер словаря, dropout_rate, hidden_dim.

Обратите внимание, что главное правило проведения экспериментов — необходимо совершать одно архитектурное изменение в одном эксперименте. Если вы совершите несколько изменений, то будет неясно, какое именно из изменений дало прирост к качеству.

Получение высокого качества (3 балла)

В конце вашей работы вы должны указать, какая из моделей дала лучший результат, и вывести качество, которое дает лучшая модель, с помощью функции evaluate. Ваша модель будет оцениваться по метрике ассuracy следующим образом:

• accuracy < 0.9 — 0 баллов; • $0.9 \leqslant accuracy < 0.91$ — 1 балл; • $0.91 \leqslant accuracy < 0.915$ — 2 балла; • $0.915 \leqslant accuracy$ — 3 балла.

Оформление отчета (2 балла)

В конце работы подробно опишите все проведенные эксперименты.

- Укажите, какие из экспериментов принесли улучшение, а какие --- нет.
- Проанализируйте графики сходимости моделей в проведенных экспериментах. Являются ли колебания качества обученных моделей существенными в зависимости от эпохи обучения, или же сходимость стабильная?
- Укажите, какая модель получилась оптимальной.

Желаем удачи!

```
class CharLM(nn.Module):
   def __init__(
           self, hidden_dim: int, vocab_size: int, num_classes: int = 4,
           aggregation_type: str = 'max',
           dropout_part = 0.1,
           rec_layers = 1,
           rnn_type: str = 'rnn'
        ):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, hidden_dim)
        if rnn_type == 'rnn':
           self.rnn = nn.RNN(hidden_dim, hidden_dim, batch_first=True, num_layers=rec_layers)
        elif rnn_type == 'gru':
           self.rnn = nn.GRU(hidden_dim, hidden_dim, batch_first=True, num_layers=rec_layers)
        else: #'lstm'
           self.rnn = nn.LSTM(hidden_dim, hidden_dim, batch_first=True, num_layers=rec_layers)
        self.linear = nn.Linear(hidden_dim, hidden_dim)
        self.projection = nn.Linear(hidden_dim, num_classes)
        self.non_lin = nn.Tanh()
        self.dropout = nn.Dropout(p=dropout_part)
        self.aggregation_type = aggregation_type
   def forward(self, input_batch) -> torch.Tensor:
        embeddings = self.embedding(input_batch) # [batch_size, seq_len, hidden_dim]
        output, _ = self.rnn(embeddings) # [batch_size, seq_len, hidden_dim]
        if self.aggregation_type == 'max':
           output = output.max(dim=1)[0] #[batch_size, hidden_dim]
        elif self.aggregation_type == 'mean':
           output = output.mean(dim=1) #[batch_size, hidden_dim]
        else:
           raise ValueError("Invalid aggregation_type")
        output = self.dropout(self.linear(self.non_lin(output))) # [batch_size, hidden_dim]
        prediction = self.projection(self.non_lin(output)) # [batch_size, num_classes]
        return prediction
model = CharLM(hidden_dim=256, vocab_size=len(vocab), num_classes=4, rnn_type='rnn').to(device)
criterion = nn.CrossEntropyLoss(ignore_index=word2ind['<pad>'])
optimizer = torch.optim.Adam(model.parameters())
```

```
import torch
from tqdm import tqdm
num epoch = 10
eval_steps = len(train_dataloader) // 2
losses_type = {}
acc type = {}
best_accuracy = 0
best_model = None
for aggregation_type in ['max', 'mean']:
   print(f"Starting training for {aggregation_type}")
   losses = []
   acc = []
   for epoch in range(num_epoch):
        epoch_losses = []
        model.train()
        for i, batch in enumerate(tqdm(train_dataloader, desc=f'Training epoch {epoch}:')):
           optimizer.zero_grad()
           logits = model(batch['input_ids'])
           loss = criterion(logits, batch['label'])
           loss.backward()
           optimizer.step()
           epoch_losses.append(loss.item())
           if i % eval_steps == 0:
               model.eval()
                accuracy = evaluate(model, eval_dataloader)
                acc.append(accuracy)
                if accuracy > best_accuracy:
                    best accuracy = accuracy
                    best_model = model.state_dict()
                model.train()
        losses.append(sum(epoch_losses) / len(epoch_losses))
   losses_type[aggregation_type] = losses
   acc type[aggregation type] = acc
torch.save(best_model, 'best_model.pth')
→ Starting training for max
                                       | 3750/3750 [01:11<00:00, 52.27it/s]
     Training epoch 0:: 100%
     Training epoch 1:: 100%
                                         3750/3750 [01:12<00:00, 51.95it/s]
     Training epoch 2:: 100%
                                         3750/3750 [01:11<00:00, 52.30it/s]
     Training epoch 3:: 100%
                                        3750/3750 [01:11<00:00, 52.26it/s]
     Training epoch 4:: 100%
                                         3750/3750 [01:11<00:00, 52.53it/s]
     Training epoch 5:: 100%
                                         3750/3750 [01:12<00:00, 51.90it/s]
     Training epoch 6:: 100%
                                         3750/3750 [01:11<00:00, 52.48it/s]
     Training epoch 7:: 100%
                                         3750/3750 [01:11<00:00, 52.13it/s]
                                         3750/3750 [01:12<00:00, 52.08it/s]
     Training epoch 8:: 100%
     Training epoch 9:: 100%
                                      | 3750/3750 [01:10<00:00, 52.86it/s]
     Starting training for mean
                                         3750/3750 [01:10<00:00, 53.01it/s]
     Training epoch 0:: 100%
     Training epoch 1:: 100%
                                         3750/3750 [01:10<00:00, 53.00it/s]
     Training epoch 2:: 100%
                                         3750/3750 [01:11<00:00, 52.29it/s]
     Training epoch 3:: 100%
                                         3750/3750 [01:11<00:00, 52.64it/s]
     Training epoch 4:: 100%
                                         3750/3750 [01:11<00:00, 52.76it/s]
     Training epoch 5:: 100%
                                         3750/3750 [01:11<00:00, 52.50it/s]
     Training epoch 6:: 100%
                                         3750/3750 [01:11<00:00, 52.57it/s]
                                         3750/3750 [01:10<00:00, 52.88it/s]
     Training epoch 7:: 100%
     Training epoch 8:: 100%
                                         3750/3750 [01:11<00:00, 52.76it/s]
     Training epoch 9:: 100%
                                       | 3750/3750 [01:11<00:00, 52.65it/s]
for (name, values), color in zip(losses_type.items(), ['red', 'blue']):
   plt.plot(np.arange(len(losses_type[name])), losses_type[name], color=color, label=name)
```



```
for (name, values), color in zip(losses_type.items(), ['red', 'blue']):
    plt.plot(np.arange(len(acc_type[name][1:])), acc_type[name][1:], color=color, label=name)
    print(f"Лучшая accuracy для подхода {name}: {(max(acc_type[name]) * 100):.2f}")

plt.title('Accuracy')
plt.xlabel("epoch")
plt.legend()
plt.show()
```


Это бейзлайн, перейдем к улучшению.

Сначала рассмотрим выбор rnn: изменим на lstm и gru.

```
model = CharLM(hidden_dim=256, vocab_size=len(vocab), num_classes=4, rnn_type='lstm').to(device)
criterion = nn.CrossEntropyLoss(ignore_index=word2ind['<pad>'])
optimizer = torch.optim.Adam(model.parameters())
```

for (name, values), color in zip(losses_type.items(), ['red', 'blue']):
 plt.plot(np.arange(len(losses_type[name])), losses_type[name], color=color, label=name)


```
for (name, values), color in zip(losses_type.items(), ['red', 'blue']):
    plt.plot(np.arange(len(acc_type[name][1:])), acc_type[name][1:], color=color, label=name)
    print(f"Лучшая accuracy для подхода {name}: {(max(acc_type[name]) * 100):.2f}")

plt.title('Accuracy')
plt.xlabel("epoch")
plt.legend()
plt.show()
```



```
model = CharLM(hidden_dim=256, vocab_size=len(vocab), num_classes=4, rnn_type='gru').to(device)
criterion = nn.CrossEntropyLoss(ignore_index=word2ind['<pad>'])
optimizer = torch.optim.Adam(model.parameters())
```

```
for (name, values), color in zip(losses_type.items(), ['red', 'blue']):
    plt.plot(np.arange(len(losses_type[name])), losses_type[name], color=color, label=name)
```



```
for (name, values), color in zip(losses_type.items(), ['red', 'blue']):
    plt.plot(np.arange(len(acc_type[name][1:])), acc_type[name][1:], color=color, label=name)
    print(f"Лучшая ассигасу для подхода {name}: {(max(acc_type[name]) * 100):.2f}")

plt.title('Accuracy')
plt.xlabel("epoch")
plt.legend()
plt.show()
```

Эт Лучшая ассигасу для подхода max: 91.28 Лучшая ассигасу для подхода mean: 91.08

Добавим рекуррентных слоев модели.

```
model = CharLM(hidden_dim=256, vocab_size=len(vocab), num_classes=4,rec_layers = 2, rnn_type='lstm').to(device)
criterion = nn.CrossEntropyLoss(ignore_index=word2ind['<pad>'])
optimizer = torch.optim.Adam(model.parameters())

for (name, values), color in zip(losses_type.items(), ['red', 'blue']):
    plt.plot(np.arange(len(losses_type[name])), losses_type[name], color=color, label=name)
```



```
for (name, values), color in zip(losses_type.items(), ['red', 'blue']):
    plt.plot(np.arange(len(acc_type[name][1:])), acc_type[name][1:], color=color, label=name)
    print(f"Лучшая ассигасу для подхода {name}: {(max(acc_type[name]) * 100):.2f}")

plt.title('Accuracy')
plt.xlabel("epoch")
plt.legend()
plt.show()
```


Изменим параметр dropout_part.

```
model = CharLM(hidden_dim=256, vocab_size=len(vocab), num_classes=4,dropout_part = 0.4, rec_layers = 2, rnn_type='lstm').tc
criterion = nn.CrossEntropyLoss(ignore_index=word2ind['<pad>'])
optimizer = torch.optim.Adam(model.parameters())

for (name, values), color in zip(losses_type.items(), ['red', 'blue']):
    plt.plot(np.arange(len(losses_type[name])), losses_type[name], color=color, label=name)
```



```
for (name, values), color in zip(losses_type.items(), ['red', 'blue']):
    plt.plot(np.arange(len(acc_type[name][1:])), acc_type[name][1:], color=color, label=name)
    print(f"Лучшая accuracy для подхода {name}: {(max(acc_type[name]) * 100):.2f}")

plt.title('Accuracy')
plt.xlabel("epoch")
plt.legend()
plt.show()
```



```
model = CharLM(hidden_dim=256, vocab_size=len(vocab), num_classes=4,dropout_part = 0.4, rec_layers = 2, rnn_type='gru').to(
criterion = nn.CrossEntropyLoss(ignore_index=word2ind['<pad>'])
optimizer = torch.optim.Adam(model.parameters())
```

```
for (name, values), color in zip(losses_type.items(), ['red', 'blue']):
    plt.plot(np.arange(len(losses_type[name])), losses_type[name], color=color, label=name)
```



```
for (name, values), color in zip(losses_type.items(), ['red', 'blue']):
    plt.plot(np.arange(len(acc_type[name][1:])), acc_type[name][1:], color=color, label=name)
    print(f"Лучшая accuracy для подхода {name}: {(max(acc_type[name]) * 100):.2f}")

plt.title('Accuracy')
plt.xlabel("epoch")
plt.legend()
plt.show()
```

Лучшая ассигасу для подхода max: 91.74
 Лучшая ассигасу для подхода mean: 91.76

Лучшая модель model = CharLM(hidden_dim=256, vocab_size=len(vocab), num_classes=4,dropout_part = 0.4, rec_layers = 2, rnn_type='lstm').to(device)

```
model.load_state_dict(torch.load('best_model.pth'))
final_accuracy = evaluate(model, eval_dataloader)
print(f"Best model accuracy on eval_dataloader: {final_accuracy:.4f}")
```

Ha eval_dataloader accuracy = 0.9100

Paнee (что можно посмотреть по графикам) была достигнута accuracy = 91.90 для модели model = CharLM(hidden_dim=256, vocab_size=len(vocab), num_classes=4,dropout_part = 0.1, rec_layers = 2, rnn_type='lstm').to(device) для подхода max

Измочациа грп на ден или letm уралинило эссигасу побарланиа слод в грп и измацация параматра dropout, part таужа аго