

Введение в экономико-математическое моделирование

Лекция 4. Линейные задачи-2

Исследование систем линейных уравнений. Метод Гаусса.

Системы линейных неравенств

канд. физ.-матем. наук, доцент Д.В. Чупраков usr10381@vyatsu.ru

An (2 Mark 2 1/37

Структура лекции

- 1 Системы линейных уравнений
- Приведение к разрешенному виду
- Переход от одного базиса к другому.
- 4 Переход от одного опорного решения к другому
- 5 Резюме лекции и домашнее задание

Системы линейных уравнений

Системой *m* линейных уравнений с *n* неизвестными называется система вида

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_1 \\ & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

где

- $ightharpoonup a_{ij}$ для всех $i=\{1,\ldots,m\};\ b=\{1,\ldots,n\})$ известные коэффициенты;
- ▶ $b_1, ..., b_n$ известные свободные члены;
- \triangleright x_1, \ldots, x_n неизвестные.

Решение СЛУ

Решение системы — совокупность n чисел c_1, c_2, \ldots, c_n , таких что подстановка каждого c_i вместо x_i в систему обращает все ее уравнения в тождества.

Решить систему — найти множество всех ее решений.

Элементарные преобразования СЛУ

- 1. Исключить из СЛУ тривиальное уравнение $0x_1 + 0x_2 + \ldots + 0x_n = 0$.
- 2. Умножить уравнение системы на число $\lambda \neq 0$
- 3. К одному уравнению системы прибавить другое, умноженное на некоторое число.
- 4. Переставить любые два уравнения в системе.

Теорема

Элементарные преобразования не меняют множества решений системы линейных уравнений.

Расширенная матрица

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_1 \\ & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$\updownarrow$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

Ступенчатая матрица

Ступенчатой называется матрица, удовлетворяющая следующим условиям:

- 1. если эта матрица содержит нулевую строку, то все строки, расположенные под нею, также нулевые;
- 2. если первый ненулевой элемент некоторой строки расположен в столбце с номером *i*, то первый ненулевой элемент следующей строки должен находиться в столбце с номером большим, чем *i*.

Теорема

Любая расширенная матрица может быть приведена к ступенчатому виду с помощью элементарных преобразований.

Метод Гаусса — метод исключения переменных:

 Прямой ход — приведение матрицы коэффициентов к ступенчатому виду.

Осуществляется сверху вниз

 Обратный ход — выражение из каждого уравнения по одной переменной.

Осуществляется снизу вверх

Метод Гаусса—Жордана

Мы рассмотрим метод Гаусса—Жордана, позволяющий выполнять прямой и обратный ход одновременно. На шаге *i* выполняются следующие действия:

- 1. Строки и столбцы с номерами $j \geqslant i$ переставляются так, чтобы $a_{ii} \neq 0$ Причем желательно, чтобы $(a_{ii} = 1)$.
- 2. Все строки с номером $k \neq i$ домножаются на λ_k так, $\lambda_k a_{ki}$ делилось на a_{ii} .
- 3. Строка i вычитается из всех других строк так, чтобы в i-столбце обратились в ноль все элементы кроме a_{ii} .

Метод Гацсса—Жордана. Пример I

Задача

Решить СЛУ:
$$\begin{cases} x_1 - x_2 + x_3 - x_4 = -2 \\ x_1 + 2x_2 - 2x_3 - x_4 = -5 \\ 2x_1 - x_2 - 3x_3 + 2x_4 = -1 \\ x_1 + 2x_2 + 3x_3 - 6x_4 = -10 \end{cases}$$

Составим расширенную матрицу:
$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & b \\ 1 & -1 & 1 & -1 & -2 \\ 1 & 2 & -2 & -1 & -5 \\ 2 & -1 & -3 & 2 & -1 \\ 1 & 2 & 3 & -6 & -10 \end{bmatrix}$$

Метод Гаусса—Жордана. Пример II

▶ Шаг 1:

Метод Гаусса—Жордана. Пример III

▶ Шаг 2:

$$\begin{bmatrix}
1 & -1 & 1 & -1 & -2 \\
0 & 3 & -3 & 0 & -3 \\
0 & 1 & -5 & 3 & 3 \\
0 & 3 & 2 & -5 & -8
\end{bmatrix}$$

$$\begin{bmatrix}
x_1 & x_2 & x_3 & x_4 & b \\
1 & -1 & 1 & -1 & -2 \\
0 & 3 & 2 & -5 & -8
\end{bmatrix}$$

Метод Гаусса—Жордана. Пример IV

▶ Шаг 3:

Метод Гаусса—Жордана. Пример V

▶ Шаг 4:

Метод Гаусса—Жордана. Пример VI

▶ Восстанавливаем систему:
$$\begin{cases} x_1 - 2x_4 = 1 \\ x_2 + 3x_4 = 3 \\ x_3 - x_4 = -1 \end{cases}$$

$$lacktriangle$$
 Выражаем элементы на диагонали: $egin{cases} x_1 = 1 + 2x_4 \ x_2 = 3 - 3x_4 \ x_3 = -1 + x_4 \end{cases}$

▶ Обозначим x₄ за a и выпишем ответ

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1+2a \\ 3-3a \\ 1+a \\ a \end{pmatrix}$$

Свободные и зависимые переменные

В решении выше переменная x_4 может принимать любые значения: Такие переменные называются свободными или неосновными.

Переменные x_1, x_2, x_3 однозначно вычисляются по значениям неосновных переменных. Это зависимые или основные переменные.

Как выявить основные переменные?

В системе, полученной методом Гаусса—Жордана, основная переменная x_j

- входит в одно из уравнений системы с коэффициентом 1, а в остальные уравнения системы входит с коэффициентами, равными 0;
- в каждое уравнение входит не более одной основной переменной.

Пример основных и свободных переменных

$$\begin{cases} x_1 - 5x_2 + 6x_4 = 7 \\ 3x_2 + x_3 - x_4 = 2 \end{cases}$$

$$\begin{pmatrix} 1 & -5 & 0 & 6 & 7 \\ 0 & 3 & 1 & -1 & 2 \end{pmatrix}$$

- ▶ x₁, x₃ основные
- ▶ x₂, x₃ свободные

Разрешенная система уравнений

Система линейных уравнений называется разрешенной, если каждое уравнение системы линейных уравнений содержит разрешенную переменную.

Разрешенная система линейных уравнений всегда совместна.

Количество базисных переменных не превосходит числа уравнений.

Виды решений СЛУ І

 Если свободные переменные объявить параметрами и перенести вправо, то получим общее решение СЛУ.

$$\begin{cases} x_1 = 7 + 5x_2 - 6x_4 \\ x_3 = 2 - 3x_2 + x_4 \end{cases} \begin{cases} x_2 = a \\ x_4 = b \end{cases}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 7 + 5a - 6b \\ a \\ 2 - 3a + b \\ b \end{pmatrix}$$

Виды решений СЛУ II

 Если свободным переменным придать числовые значения и вычислить значения разрешенных переменных, то получим частное решение СЛУ.

$$\begin{cases} x_1 = 7 + 5x_2 - 6x_4 \\ x_3 = 2 - 3x_2 + x_4 \end{cases} \begin{cases} x_2 = 1 \\ x_4 = 3 \end{cases}$$
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -6 \\ 1 \\ 2 \\ 3 \end{pmatrix}$$

Виды решений СЛУ III

 Если свободным переменным придать нулевые значения, то получим базисное решение СЛУ.

$$\begin{cases} x_1 = 7 + 5x_2 - 6x_4 \\ x_3 = 2 - 3x_2 + x_4 \end{cases} \begin{cases} x_2 = 0 \\ x_4 = 0 \end{cases}$$
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ 2 \\ 0 \end{pmatrix}$$

Исследование СЛУ

- ▶ Если в каждом уравнении системы есть зависимая переменная, то СЛУ совместная имеет решения.
- Если все переменные в системе линейных уравнений разрешенные, то СЛУ определенная — имеет единственное решение.
- Если в совместной слу есть хотя бы одна свободная переменная, то СЛУ неорпеделенная — имеет бесконечное число решений.

Критерий несовместности

Противоречивое уравнение

$$0x_1 + 0x_2 + \ldots + 0x_n = b \neq 0$$

Теорема (Критерий несовместности)

Система несовместна тогда и только тогда, когда в результате применения метода Гаусса—Жордна получено противоречивое уравнение.

Переход от базиса к базису. Пример І

Задача

Найти все базисные решения СЛУ:

$$\begin{cases} x_1 - x_2 + x_3 - x_4 = -2 \\ x_1 + 2x_2 - 2x_3 - x_4 = -5 \\ 2x_1 - x_2 - 3x_3 + 2x_4 = -1 \\ x_1 + 2x_2 + 3x_3 - 6x_4 = -10 \end{cases}$$

Решая СЛУ методом жордана—Гаусса получаем:

$$\begin{cases} x_1 - 2x_4 = 1 \\ x_2 + 3x_4 = 3 \\ x_3 - x_4 = -1 \end{cases}$$
 или

	<i>x</i> ₁	<i>X</i> ₂		<i>X</i> 3	<i>X</i> 4	b
	1	C)	0	2	1
	0	1		0	3	3
	0	C)	1	-1	$\left -1 \right $

Переход от базиса к базису. Пример II

 Сделаем основной переменную x₄ a x₃ превратим в свободную переменную.

▶ Итак, новое базисное решение

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

Переход от базиса к базису. Пример І

Для перехода к новому базису нужно выбрать свободную переменную x_i , которая станет зависимой и зависимую переменную x_i , которая станет свободной.

Затем применить шаг метода Гаусса—Жордана к элементу *адіі*

Задача

Найти все базисные решения СЛУ:

$$x_1 - x_2 + x_3 - x_4 = -2$$

$$x_1 + 2x_2 - 2x_3 - x_4 = -5$$

$$2x_1 - x_2 - 3x_3 + 2x_4 = -1$$

$$\begin{cases} x_1 - x_2 + x_3 - x_4 = -2 \\ x_1 + 2x_2 - 2x_3 - x_4 = -5 \\ 2x_1 - x_2 - 3x_3 + 2x_4 = -1 \\ x_1 + 2x_2 + 3x_3 - 6x_4 = -10 \end{cases}$$

Переход от базиса к базису. Пример II

Решая СЛУ методом жордана—Гаусса получаем:

$$\begin{cases} x_1 - 2x_4 = 1 \\ x_2 + 3x_4 = 3 \\ x_3 - x_4 = -1 \end{cases}$$
 или
$$\begin{cases} x_1 & x_2 & x_3 & x_4 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{cases}$$

 Сделаем основной переменную x₄ a x₃ превратим в свободную переменную.

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & b \\ 1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 3 & 3 \\ 0 & 0 & 1 & -1 & -1 \end{bmatrix} + 2 | | | | \sim \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & b \\ 1 & 0 & 2 & 0 & -1 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \end{bmatrix}$$

Переход от базиса к базису. Пример III

▶ Итак, новое базисное решение

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

Опорное решение

Базисное решение СЛУ, у которого значения переменных неотрицательны называется опорным решением.

- Если найдено хотя бы одно опорное решение, то все остальные могут быть найдены путем перехода от одного опорного решения к другому
- Для перехода от одного опорного решения к другому достаточно уметь выбирать разрешающий элемент.

Алгоритм выбора разрешающего элемента a_{ij} :

- 1. Столбец j должен содержать положительные элементы.
- 2. В столбце j элемент a_{ij} является разрешающим, если на нем достигается минимум отношения элементов столбца b к положительным элементам столбца j.

Переход между опорными решениями І

Задача

Найти все опорные решения системы
$$\begin{cases} x_1 + -2x_2 + x_4 = 2 \\ -2x_1 + x_2 + x_3 = 2 \\ x_1 + x_2 + x_5 = 5 \end{cases}$$

Переход между опорными решениями II

аз2 — единственный положительный элемент.

Переход между опорными решениями III

Далее в основные переменные не целесообразно переводить x₅, так как придем к уже рассмотренному базису x₁, x₃, x₅. Однако, можно взять x₄ и в качестве разрешающего элемента выбрать a₂₄. Получим еще не рассмотренный базис x₁, x₂, x₄.

Переход между опорными решениями IV

x_1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	Ь	
3	0	0	0	1	3	$(\frac{3}{3}, \frac{12}{3}, 9, 0, 0) = (1, 4, 0, 9, 0)$
0	0	1	1	1	9	(3) 3 / (, , , , , /
0	3	0	0	2	12	

▶ И так далее...

После проработки лекции вы должны уметь:

- ь выполнять сложение, цмножение, транспонирование матриц;
- вычислять определитель 2 3 и 4 порядков по определению и с помощью приведения к треугольному виду;
- решать системы уравнений матричным способом и по правилу Крамера.

Задание

Для завершения лекции вам необходимо подготовить конспект, в который должны войти:

- 1. Понятие матрицы и операции над матрицами: привести пример или краткую запись правила выполнения каждой операции, достаточную, чтобы восстановить метод вычисления.
- 2. Матрицы в экономике. Разобрать задачу 1.70 на стр. 130 Практикума [2]
- 3. Определение определителя. Примеры вычисления определителей 2го, 3го, 4го порядков понятые вам.
- 4. Ранг матрицы и его нахождение. (Стр. 29–35 учебника [1])
- 5. Обратная матрица и ее нахождение. Формула.
- 6. СЛУ. Что значит решить СЛУ. Метод Крамера решения СЛУ. Формулы. Пример.

Источники информации

- Высшая математика для экономистов.
 Под ред. Н. Ш. Кремера. Глава 1, с. 9–38.
- ▶ Высшая математика для экономистов. Практикум. Под ред. Н. Ш. Кремера. Глава 1, с. 6–28.

На следующей лекции:

- научимся решать произвольные системы линейных уравнений;
- вспомним, как строится прямая на плоскости;
- научимся решать системы линейных неравенств.