Problem Statement

Identify the characteristics of the target audience for each type of treadmill offered by a sports equipments manufacturing giant, to provide a better recommendation of the treadmills to the new customers.

Note: Although 44% of the products sold are KP281, there is no significant difference in the share of revenue generated by selling these products. Therefore, recommendations are made by giving equal importance to all three products.

```
In [793...
            import numpy as np
            import pandas as pd
            import matplotlib.pyplot as plt
            import seaborn as sns
In [794...
            df = pd.read csv("treadmill.csv")
In [795...
            df.head()
                Product Age
                                                   MaritalStatus
                               Gender
                                        Education
                                                                 Usage
                                                                         Fitness
                                                                                  Income
                                                                                           Miles
Out[795]:
             0
                 KP281
                                  Male
                                               14
                                                                      3
                                                                                    29562
                                                                                             112
                           18
                                                          Single
             1
                 KP281
                           19
                                  Male
                                               15
                                                          Single
                                                                      2
                                                                               3
                                                                                    31836
                                                                                              75
             2
                 KP281
                           19
                               Female
                                               14
                                                       Partnered
                                                                      4
                                                                               3
                                                                                    30699
                                                                                              66
             3
                 KP281
                                                                               3
                                                                                    32973
                           19
                                  Male
                                               12
                                                          Single
                                                                      3
                                                                                              85
                 KP281
                           20
                                  Male
                                               13
                                                       Partnered
                                                                               2
                                                                                    35247
                                                                                              47
In [796...
            df.tail()
                                 Gender
                                          Education
                                                     MaritalStatus
                                                                                             Miles
                  Product
                           Age
                                                                   Usage
                                                                            Fitness
                                                                                    Income
Out[796]:
             175
                    KP781
                                                                                               200
                             40
                                    Male
                                                 21
                                                            Single
                                                                         6
                                                                                 5
                                                                                      83416
             176
                   KP781
                             42
                                    Male
                                                 18
                                                            Single
                                                                         5
                                                                                 4
                                                                                      89641
                                                                                               200
             177
                    KP781
                             45
                                    Male
                                                 16
                                                            Single
                                                                         5
                                                                                 5
                                                                                      90886
                                                                                               160
                    KP781
                                                         Partnered
                                                                                 5
                                                                                     104581
                                                                                               120
             178
                             47
                                    Male
                                                 18
                                                                         4
             179
                    KP781
                             48
                                    Male
                                                 18
                                                         Partnered
                                                                         4
                                                                                 5
                                                                                      95508
                                                                                               180
In [797...
            df.shape
             (180, 9)
Out[797]:
```

 There are 180 rows and 9 columns in the dataset. Each row represents a purchase and columns represent the product(treadmill) type and the customer attributes.

In [798...

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):
    Column
                 Non-Null Count Dtype
    Product
0
                 180 non-null
                                object
1
                  180 non-null
                                int64
   Age
2
   Gender
                 180 non-null object
3 Education
                180 non-null int64
4 MaritalStatus 180 non-null object
5 Usage
                 180 non-null
                               int64
   Fitness
                 180 non-null
                               int64
    Income
7
                 180 non-null
                               int64
    Miles
                  180 non-null
                                int64
dtypes: int64(6), object(3)
memory usage: 12.8+ KB
```

- Categorical variables of type object Product, Gender, MaritalStatus
- Numerical variables of type int Age, Usage, Fitness, Income, Miles
- · No null value in the dataset

```
In [799...
          df.nunique()
          Product
                             3
Out[799]:
                            32
          Age
                             2
          Gender
          Education
          MaritalStatus
                             2
          Usage
                             5
          Fitness
                            62
          Income
          Miles
                            37
          dtype: int64
```

Univariate Analysis

Analysing the structure of data

```
In [800... plt.figure(figsize=(15, 12))

## Product
plt.subplot(331)
df['Product'].value_counts().plot(kind='pie', autopct='%.f%%')

## Age
plt.subplot(332)
sns.histplot(data=df, x='Age')

## Gender
plt.subplot(333)
df['Gender'].value_counts().plot(kind='pie', autopct='%.f%%')

## Education
plt.subplot(334)
sns.countplot(data=df, x=df['Education'])
```

```
## MaritalStatus
plt.subplot(335)
df['MaritalStatus'].value_counts().plot(kind='pie', autopct='%.f%')
## Usage
plt.subplot(336)
sns.countplot(data=df, x='Usage')
## Fitness
plt.subplot(337)
df['Fitness'].value counts().plot(kind='pie', autopct='%.f%%')
## Income
plt.subplot(338)
sns.histplot(data=df, x='Income')
## Miles
plt.subplot(339)
sns.boxplot(data=df, y='Miles')
plt.show()
```


- Most of the treadmills sold are the entry-level type (KP281) and advanced-type (KP781) are the least sold
- Majority of the customers are male (58%)
- 3 out of 5 customers are partnered and 2/5 are single
- 54% of the customers rate themselves 3 on a scale of 1 to 5 in fitness level, 5 being excellent and only 1% rate themselves 1

```
print('14 years -', ((df['Education'] == 14).sum()/1.8).round(0))
```

Percentage of customers who have had an eduction of 16 years - 47.0 14 years - 31.0

• Close to 50% of the customers have an education of 16 years and 78% of the customers have an education of either 14 or 16 years

Analysing the characteristics of numerical attributes

In [802	df.describe()		

Out[802]:		Age	Education	Usage	Fitness	Income	Miles
	count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
	mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
	std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
	min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
	25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
	50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
	75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
	max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

- Median age of a customer is 26 and 50% of the customers are in age range 24-33.
- More than 50% of the people who have purchased the treadmill have a plan to use it 3-4 days a week
- 75% of the customers fall in an annual income between \$30,000-60,000
- More than half of the total customers expect to run on an average 65-115 miles a week
 whereas the max distance a customer expects to run is 360 miles a week. These higher
 values of outliers are evident from the higher value of mean(103 miles) whereas median
 is at 94 miles.

Product

```
In [803...
          df['Product'].unique()
           array(['KP281', 'KP481', 'KP781'], dtype=object)
Out[803]:
In [804...
          df['Product'].value_counts()
                    80
           KP281
Out[804]:
           KP481
                    60
           KP781
                    40
           Name: Product, dtype: int64
In [805...
          sns.countplot(data=df, x='Product')
           plt.show()
```


Marginal Probability of products to be purchased

Revenue generation

```
In [807...
    rev = df['Product'].value_counts().to_frame().rename(columns={'Product':'Refrev.loc['KP281'] = rev.loc['KP281']*1500
    rev.loc['KP481'] = rev.loc['KP481']*1750
    rev.loc['KP781'] = rev.loc['KP781']*2500
    ((rev/rev.sum())*100).round(0)
```

Out[807]:		Revenue%
	KP281	37.0
	KP481	32.0
	KP781	31.0

 Although the sales of product KP281 is higher, there is no significant difference in the share of total revenue generated by each product.

Bivariate/Multivariate Analysis

```
In [808... df.groupby(by='Product').median()
```

Out[808]:		Age	Education	Usage	Fitness	Income	Miles
	Product						
	KP281	26.0	16.0	3.0	3.0	46617.0	85.0
	KP481	26.0	16.0	3.0	3.0	49459.5	85.0
	KP781	27.0	18.0	5.0	5.0	76568.5	160.0

In [809... df.groupby(by='Product').mean()

Out[809]:		Age	Education	Usage	Fitness	Income	Miles
	Product						
	KP281	28.55	15.037500	3.087500	2.9625	46418.025	82.787500
	KP481	28.90	15.116667	3.066667	2.9000	48973.650	87.933333
	KP781	29 10	17 325000	4 775000	4 6250	75441 575	166 900000

Average value of attributes of the customers who have purchased products KP281 and KP481 are almost the same

For product KP781, values are significantly higher, notably for fields like Fitness, Income and Miles run

```
In [810...
            df.groupby(by=['Product', 'Gender']).mean()
                                   Age Education
                                                      Usage
                                                              Fitness
                                                                            Income
                                                                                          Miles
Out[810]:
            Product Gender
              KP281
                     Female
                              28.450000
                                         15.100000
                                                   2.900000
                                                             2.875000
                                                                       46020.075000
                                                                                      76.200000
                        Male
                             28.650000
                                         14.975000
                                                   3.275000
                                                             3.050000
                                                                       46815.975000
                                                                                      89.375000
              KP481
                     Female
                             29.103448
                                         15.206897
                                                   3.137931
                                                             2.862069
                                                                       49336.448276
                                                                                      87.344828
                        Male
                              28.709677
                                         15.032258
                                                   3.000000
                                                             2.935484
                                                                       48634.258065
                                                                                      88.483871
                     Female
                             27.000000
                                         17.857143
                                                   5.000000
                                                                                     180.000000
              KP781
                                                             4.571429
                                                                       73633.857143
                             29.545455
                                        17.212121 4.727273 4.636364
                                                                      75825.030303
                                                                                     164.121212
In [811...
            df.groupby(by=['Product', 'MaritalStatus']).mean()
                                                           Usage
                                        Age Education
                                                                   Fitness
                                                                                 Income
                                                                                               Miles
Out[811]:
```

Product	MaritalStatus						
KP281	Partnered	29.666667	15.125000	3.041667	2.854167	47848.750000	77.229167
	Single	26.875000	14.906250	3.156250	3.125000	44271.937500	91.125000
KP481	Partnered	30.222222	15.250000	3.055556	2.916667	49522.666667	90.05555
	Single	26.916667	14.916667	3.083333	2.875000	48150.125000	84.75000
KP781	Partnered	29.826087	17.434783	4.913043	4.695652	82047.173913	183.04347
	Single	28.117647	17.176471	4.588235	4.529412	66504.588235	145.05882

Out[812]:

```
In [812... df.groupby(by=['Gender', 'Product']).describe()['Age']
```

count mean std min 25% 50% 75% max Gender **Product KP281** 28.450000 7.110664 19.0 23.75 26.5 **Female** 40.0 32.25 50.0 20.0 **KP481** 29.103448 5.802369 25.00 29.0 33.00 40.0 29.0 **KP781** 7.0 27.000000 3.559026 23.0 24.50 26.0 29.00 33.0 Male **KP281** 40.0 28.650000 7.419828 18.0 23.00 26.0 34.25 47.0 **KP481** 28.709677 7.439505 19.0 23.00 25.0 33.50 48.0 **KP781** 33.0 29.545455 7.462786 22.0 25.00 27.0 31.00 48.0

```
In [813...
sns.boxplot(data=df, y='Age', x='Gender', hue='Product')
plt.show()
```


 Median age of customers who purchased different products are almost equal however, majority of KP781 customers fall into relatively narrow age range whereas the age is widely distributed for the customers of other two products

Product vs Gender

```
In [814...
sns.countplot(data=df, x='Gender', hue='Product')
plt.show()
```


Marginal Probability table

In [815	pd.cros	stab(df	['Pro	duct
Out[815]:	Gender	Female	Male	All
	Product			
	KP281	0.22	0.22	0.44
	KP481	0.16	0.17	0.33
	KP781	0.04	0.18	0.22
	All	0.42	0.58	1.00

Conditional Probability table

```
In [816...
           pd.crosstab(df['Product'], df['Gender'], normalize='index', margins=True).r
            Gender Female Male
Out[816]:
           Product
             KP281
                      0.50
                            0.50
             KP481
                      0.48
                            0.52
             KP781
                      0.18
                            0.82
                ΑII
                      0.42 0.58
```

- P(Product=KP781 and Gender=Male) = 0.18
- P(Male/KP781) = 0.82

The likelihood of a male customer buying KP781 is 18% but if the product sold is KP781, there is 82% probability that it is bought by a male

Product vs Education

```
In [817... plt.figure(figsize=(12, 4))
    plt.subplot(121)
    sns.countplot(data=df, x='Education', hue='Product')
```

```
plt.subplot(122)
sns.boxplot(data=df, y='Education', x='Product')
plt.show()
```



```
In [818... pd.crosstab(df['Product'], df['Education'], margins=True, normalize=True).r
```

Out[818]:	Education	12	13	14	15	16	18	20	21	All
	Product									
	KP281	0.01	0.02	0.17	0.02	0.22	0.01	0.00	0.00	0.44
	KP481	0.01	0.01	0.13	0.01	0.17	0.01	0.00	0.00	0.33
	KP781	0.00	0.00	0.01	0.00	0.08	0.11	0.01	0.02	0.22
	ΔII	0.02	0.03	0.31	0.03	0.47	0 13	0.01	0.02	1 00

- Around half of the customers have received 16 years of education which is the median years of education of those who purchased KP281 and KP481
- Incase of KP781, the medain years of education is 18 and the only product sold to customers with more than 18 years of education is KP781
- P(Product=KP781 and Education > 16) = 0.11 + 0.01 + 0.02 = 0.14
- P(Product=KP781/Education > 16) = 0.14/(0.13+0.01+0.02) = 0.14/0.16 = 0.875

There is an 87.5% chance that the product sold is KP781 given the customer has an eduction greater than or equal to 18 years

Product vs MaritalStatus

```
In [820... sns.countplot(data=df, x='MaritalStatus', hue='Product')
plt.show()
```


Prduct vs Usage

Marginal Probability

```
In [821...
            pd.crosstab(df['Product'], df['Usage'], margins=True, normalize=True).round
              Usage
                                                         All
Out[821]:
             Product
              KP281
                      0.11
                           0.21 0.12 0.01 0.00 0.00
                                                        0.44
              KP481
                      0.08 \quad 0.17 \quad 0.07 \quad 0.02 \quad 0.00 \quad 0.00
                                                        0.33
                      0.00 0.01 0.10 0.07 0.04
              KP781
                                                 0.01
                                                        0.22
                 All 0.18 0.38 0.29 0.09 0.04 0.01
```

Conditional Probability

```
In [822...
           pd.crosstab(df['Product'], df['Usage'], margins=True, normalize='index').rd
                                                7
             Usage
                      2
                           3
                                      5
                                           6
Out[822]:
           Product
             KP281
                   0.24  0.46  0.28  0.02  0.00  0.00
             KP481
                    0.23 0.52 0.20 0.05 0.00 0.00
             KP781
                    0.00 0.02 0.45 0.30 0.18 0.05
                All 0.18 0.38 0.29 0.09 0.04 0.01
```

• P(KP781 and Usage >= 4) = 0.45+0.30+0.18+0.05 = 0.98

98% of KP781 customers use a treadmill 4+ days a week

```
In [823...
sns.countplot(data=df, x='Usage', hue='Product')
plt.show()
```


 The only product purchased by customers those who run more than 5 days a week is KP781

Product vs Fitness

Marginal Probability

```
In [824... pd.crosstab(df['Product'], df['Fitness'], normalize=True, margins=True).rol

Out[824]: Fitness 1 2 3 4 5 All

Product

KP281 0.01 0.08 0.30 0.05 0.01 0.44

KP481 0.01 0.07 0.22 0.04 0.00 0.33

KP781 0.00 0.00 0.02 0.04 0.16 0.22

All 0.01 0.14 0.54 0.13 0.17 1.00
```

```
Conditional Probability
In [825...
            pd.crosstab(df['Product'], df['Fitness'], normalize='index', margins=True).
            Fitness
                             2
                                   3
                                              5
Out[825]:
            Product
             KP281
                     0.01 0.18 0.68 0.11 0.02
                     0.02 \quad 0.20 \quad 0.65 \quad 0.13 \quad 0.00
             KP481
             KP781
                     0.00 0.00 0.10 0.18 0.72
                    0.01 0.14 0.54 0.13 0.17
                 ΑII
In [826...
            df.groupby(by=['Gender', 'Product']).describe()['Fitness']
```

Out[826]: count mean std min 25% 50% 75% max

Gender	Product								
Female	KP281	40.0	2.875000	0.647975	2.0	2.75	3.0	3.0	5.0
	KP481	29.0	2.862069	0.693034	1.0	3.00	3.0	3.0	4.0
	KP781	7.0	4.571429	0.786796	3.0	4.50	5.0	5.0	5.0
Male	KP281	40.0	3.050000	0.677476	1.0	3.00	3.0	3.0	5.0
	KP481	31.0	2.935484	0.573613	2.0	3.00	3.0	3.0	4.0
	KP781	33.0	4.636364	0.652791	3.0	4.00	5.0	5.0	5.0

```
sns.countplot(data=df, x='Fitness', hue='Product')
plt.savefig('fitness_kp')
plt.show()
```


Product vs Miles

In [828	<pre>df.groupby(by=['Gender', 'Product']).describe()['Miles']</pre>
---------	---

Out[828]:			count	mean	std	min	25%	50%	75%	max	
	Gender	Product									
	Female	KP281	40.0	76.200000	27.988276	38.0	56.0	75.0	87.25	188.0	
		KP481	29.0	87.344828	33.456022	21.0	74.0	85.0	95.00	212.0	
		KP781	7.0	180.000000	63.245553	100.0	140.0	200.0	200.00	280.0	
	Male	KP281	40.0	89.375000	28.573511	47.0	75.0	85.0	105.25	169.0	
		KP481	31.0	88.483871	33.625259	42.0	58.5	95.0	106.00	170.0	
		KP781	33.0	164.121212	60.014455	80.0	120.0	160.0	180.00	360.0	

Outliers

There are outliers in both the sides of KP481 for a female customer

- IQR = 95-74 = 21
- Q1-1.5IQR = 74-31.5 = 42.5 wheras Q0 = 21
- Q3+1.5IQR = 95+31.5 = 126.5 wheras Q4 = 212 which is 68% more.

```
In [829...
sns.boxplot(data=df, y='Miles', x='Product', hue='Gender')
plt.show()
```


Product-Income

```
In [830... df.groupby(by='Product').describe()['Income']
```

Out[830]:		count	mean	sta	min	25%	50%	75%	max
	Product								
	KP281	80.0	46418.025	9075.783190	29562.0	38658.00	46617.0	53439.0	68220.0
	KP481	60.0	48973.650	8653.989388	31836.0	44911.50	49459.5	53439.0	67083.0
	KP781	40.0	75441.575	18505.836720	48556.0	58204.75	76568.5	90886.0	104581.0

```
sns.boxplot(data=df, y='Income', x='Gender', hue='Product')
plt.savefig('income_product')
plt.show()
```


Product-Income-MaritalStatus

```
In [832... df.groupby(by=['Product', 'MaritalStatus']).describe()['Income']
```

std min 25% 50% 75% Out[832]: count mean

Product	MaritalStatus							
KP281	Partnered	48.0	47848.750000	8806.643596	30699.0	40932.0	46617.0	53723.2
	Single	32.0	44271.937500	9186.952283	29562.0	36384.0	43774.5	52302.0
KP481	Partnered	36.0	49522.666667	8635.403820	32973.0	45480.0	51165.0	53439.0
	Single	24.0	48150.125000	8800.977467	31836.0	43206.0	47185.5	50312.2
KP781	Partnered	23.0	82047.173913	16387.308472	49801.0	67853.5	85906.0	93819.5
	Single	17.0	66504.588235	17830.525750	48556.0	52290.0	58516.0	88396.0

```
In [833...
          sns.boxplot(data=df, y='Income', x='Product', hue='MaritalStatus')
          plt.savefig('marital_income')
          plt.show()
```


Product-Miles-Gender

```
In [834...
          df.groupby(by=['Gender', 'Product']).describe()['Miles']
```

Out[834]:			count	mean	std	min	25%	50%	75%	max
	Gender	Product								
	Female	KP281	40.0	76.200000	27.988276	38.0	56.0	75.0	87.25	188.0
		KP481	29.0	87.344828	33.456022	21.0	74.0	85.0	95.00	212.0
		KP781	7.0	180.000000	63.245553	100.0	140.0	200.0	200.00	280.0
	Male	KP281	40.0	89.375000	28.573511	47.0	75.0	85.0	105.25	169.0
		KP481	31.0	88.483871	33.625259	42.0	58.5	95.0	106.00	170.0
		KP781	33.0	164.121212	60.014455	80.0	120.0	160.0	180.00	360.0

```
In [835...
          sns.boxplot(data=df, y='Miles', x='Gender', hue='Product')
          plt.show()
```


Correlation

Out[837]:		Age	Education	Usage	Fitness	Income	Miles
	Age	1.000000	0.280496	0.015064	0.061105	0.513414	0.036618
	Education	0.280496	1.000000	0.395155	0.410581	0.625827	0.307284
	Usage	0.015064	0.395155	1.000000	0.668606	0.519537	0.759130
	Fitness	0.061105	0.410581	0.668606	1.000000	0.535005	0.785702
	Income	0.513414	0.625827	0.519537	0.535005	1.000000	0.543473
	Miles	0.036618	0.307284	0.759130	0.785702	0.543473	1.000000

There is a strong correlation between Miles-Fitness and Miles-Usage

Income has a moderate correlation greater than 0.5 with Age, Usage, Fitness, Education and Miles

Product - Miles - Age

```
In [839...
            sns.scatterplot(data=df, x='Age', y='Miles', hue='Product')
            plt.show()
                                                             Product
              350
                                                                KP281
                                                                KP481
             300
                                                                KP781
              250
             200
             150
             100
              50
                      20
                                                                   50
                              25
                                     30
                                             35
                                                    40
                                                           45
```

Age

Product - Income - Miles

```
In [840...
```

```
sns.scatterplot(data=df, x='Income', y='Miles', hue='Product')
plt.savefig('income_miles')
plt.show()
```


No significant relationship can be observed between income and miles run for the customers of product KP281 and KP481. However, KP781 customers tend to run more and have a relatively high annual income

Analysis Insights

I. KP781

- 1. The likelihood of a male customer buying KP781 is 18% but, if the product sold is KP781, there is 82% probability that it is bought by a male. This implies that 4 out of 5 cutomers of product KP781 are male.
- 2. Overall, only 16% of the customers have had an education of more than 16 years however, there is an 88% chance that the product sold is KP781 given the customer has an eduction greater than 16 years. Also, an average annual income over \$75,000 which 50% more than that of the other cutomers.
- 3. Median Usage is 5 days and a running distance between 120-200 miles a week. Also, a median customer rate themselves 5/5 in fitness.

II. KP281 and KP481

- 1. 68% of KP281 customers and 65% of KP481 customers have rated themselves 3 on a fitness scale 1-5. And no significant difference can be seen between male and female customer fitness levels.
- 2. Median income of customers of both the product is found to be almost same(\$47k-49k) however, majority of product KP481 customers fall into a relaively narrow income range and partnered people found to have slightly higher income.
- 3. No significant difference can be observed in the distance run when income rises for either of the products.

Recommendations and Customer Profiling

- 1. Target Audience (KP281) Moderately fit people of any gender with annual income between \$35,000-55,000 and usage between 2-4 days a week.
- 2. Target Audience (KP481)- Moderately fit people of any gender with annual income between \$45,000-55,000 and usage between 2-4 days a week.
- 3. Target audience(KP781) Highly educated (16+ years) rich (\$60k+) male customers who are already fit and expect to use a treadmill disproportionately high.
- 4. Since there is no significant difference between the customers of KP281 and KP481, the treadmill KP481 can be targeted to KP281 customers with an annual income greater than \$45,000 for better revenue growth.

T., [].			
In []:			