

Science Department

Year 12 Chemistry ATAR

Test 4: Redox - Fundamentals

Name: $_$		 	
Teacher:			

Instructions to Students:

- 1. 50 minutes permitted
- 2. Attempt all questions
- 3. Write in the spaces provided
- 4. Show all working when required
- 5. All answers to be in blue or black pen, diagrams in pencil.

TOTAL Final Percentage

/63

Year 12 Chemistry ATAR

REDOX - Fundamentals Test 2016

Total – 63 marks

d. What substance is the reducing agent?	stance is oxidised?	To what?
d. What substance is the reducing agent? (6) Write the two half equations , the overall reaction equation a you would observe if 5mL of a solution of potassium bromide is drop-wise to an aqueous solution of Chlorine gas (Chlorine water Half Eqn 1: Half Eqn 2: Combination: Final Equation:	stance is reduced?	To what?
Write the two half equations, the overall reaction equation a you would observe if 5mL of a solution of potassium bromide is drop-wise to an aqueous solution of Chlorine gas (Chlorine water Half Eqn 1: Half Eqn 2: Combination: Final Equation:	substance is the	oxidising
Write the two half equations, the overall reaction equation a you would observe if 5mL of a solution of potassium bromide is drop-wise to an aqueous solution of Chlorine gas (Chlorine water Half Eqn 1: Half Eqn 2: Combination: Final Equation:	stance is the reducing agent?	
you would observe if 5mL of a solution of potassium bromide is drop-wise to an aqueous solution of Chlorine gas (Chlorine water Half Eqn 1: Half Eqn 2: Combination: Final Equation:	toures is the reasoning algeria.	
Combination:Final Equation:	half equations, the overall r	eaction equation a
Final Equation:	half equations, the overall r serve if 5mL of a solution of p an aqueous solution of Chlorin	otassium bromide is e gas (Chlorine wate
	half equations, the overall r serve if 5mL of a solution of p an aqueous solution of Chlorin	eaction equation a otassium bromide is e gas (Chlorine wate
	half equations, the overall r serve if 5mL of a solution of p an aqueous solution of Chlorin	eaction equation a otassium bromide is e gas (Chlorine wate
	half equations, the overall r serve if 5mL of a solution of p an aqueous solution of Chlorin	eaction equation a otassium bromide is e gas (Chlorine wate

3.	Write the two half equations and the overall reaction equation for a solution of acidified $K_2Cr_2O_7$ being added to an aqueous solution of FeSO ₄ (iron(II)sulfate). Write a full observation for this reaction.		
	Half Eqn 1:		
	Half Eqn 2:		
	Combination:		
	Final Equation:		
	Observation:		
		1 1 1 1 1	
			(4 marks)
4.	What is the oxidation number o	f:	
	a. Cr in K ₂ Cr ₂ O ₇	f.	P in HPO ₄ ²⁻
	b. Mn in MnO ₄ ¹⁻	g.	O in H ₂ O ₂
	c. N in NH ₄ ⁺	h.	CI in HCIO
	d. N in N ₂	i.	C in H ₄ C ₂ O ₂
	e. S in S ₂ O ₃ ² -	j.	Xe in HXeO ₄ ¹
			(5 marks)
5.	Classify the following as either	oxidisir	ng or reducing agents:
	F _{2,} HCl, Zn, MnO	Δ ⁻ . Al.	Cr ₂ O ₇ -2: I ⁻ . Aa ⁺
	Oxidising agents	-,,	Reducing agents
			(4 marks)

6.	For each of the following changes, state whether it is oxidation reduction or neither and give the change in oxidation state of the element involved.				
	a. $Cl_2 \rightarrow Cl^{-1}$				
	Type: Change(Δ): b. ClO $^{-1}$ \rightarrow Cl $^{-1}$				
	Type: Change(Δ):				
	c. $MnO_2 \rightarrow Mn_2O_3$				
	Type: Change(Δ):				
	$d. Cu_2S_{(s)} \ \rightarrow \ Cu_2O_{(s)}$				
	Type: Change(Δ):				
	(8 marks				
7.	Determine whether the following reactions represent SPONTANEOUS redox reactions.				
	Be sure to justify your answer with working, and show half equations with E° values. Finally, show the overall ionic equation with phases and overall E° value for any reactions that occur.				
	Where a reaction is not predicted you must state this as well as show your working to justify this conclusion.				
	a. Potassium Fluoride added to Bromine water.				
	b. Copper added to dilute sulfuric acid.				

C. —	Silver metal added to a solution of zinc nitrate.
d. 	Magnesium added to a solution of tin (II) sulfate.
e.	Sodium lodide is added to a solution of hydrogen peroxide.

(10 marks)

8.	the r Use react equa	ber metal will dissolve in concentrated nitric acid solution. When litric acid reacts, the nitrate ions are converted to NO_2 gas. 1^{st} principles balancing to write a balanced half equation for the lition of the nitric acid and then add this to the appropriate half ation that explains the dissolution of the copper to produce a need redox reaction equation. Write a full observation for this tion.
	Half	Eqn 1:
	Half	Eqn 2:
	Com	bination:
	Final	Equation:
	Obse	ervation:
		(4 marks)
9.		ict the anode and cathode reaction and write a balanced overall tion for the following cells. Also calculate the cell EMF.
	(a)	A half-cell consisting of a platinum electrode in a solution containing Bromide ions and Bromine water is connected electrically and via salt bridge to another half-cell consisting of a copper electrode in a copper (II) ion solution.
		Anode reaction:
		Cathode reaction:
		Overall:
		Cell EMF:

bridge to another h copper (II) ion soluti	alf-cell consisting of a copper electrode in a on.
Anode reaction:	
Cathode reaction:	
Overall:	
Cell EMF:	
	(8 marks)

A half-cell consisting of a magnesium electrode in a solution containing magnesium ions is connected electrically and via salt

- 10. A tin rod dipping into a 1M Sn(NO₃)₂ solution, and a cobalt rod dipping into 1M CoSO₄ solution are connected to a voltmeter (a salt bridge of potassium nitrate is included). **Draw a large diagram** of the circuit, indicating:
 - the flow of electrons,
 - the anode,

(b)

- the cathode,
- the overall equation for the cell
- the overall E° of the cell,
- · the movement of ions in each half cell,
- the flow of ions across the salt bridge.
- the electrode that loses mass and
- the electrode gaining mass (if any).

Note: A mark is given for the neatness of your diagram.

(10 marks)