```
In [3]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.impute import SimpleImputer
         from sklearn.preprocessing import StandardScaler
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.model selection import train test split, GridSearchCV
         from sklearn.metrics import confusion_matrix, roc_curve, roc_auc_score, f1_score,
In [4]: data = pd.read_csv(r'C:\Users\pl\Downloads\diabetes.csv')
In [5]: data
Out[5]:
               Pregnancies Glucose BloodPressure SkinThickness Insulin BMI Pedigree Age
                                                                                          Outcome
            0
                        6
                               148
                                              72
                                                            35
                                                                    0
                                                                       33.6
                                                                               0.627
                                                                                       50
                                                                                                 1
                                                                       26.6
                                                                               0.351
            1
                                85
                                              66
                                                            29
                                                                                       31
                                                                                                 0
            2
                        8
                               183
                                              64
                                                             0
                                                                    0
                                                                       23.3
                                                                               0.672
                                                                                       32
                                                                                                 1
            3
                                89
                                                            23
                                                                   94
                                                                       28.1
                                                                               0.167
                                                                                       21
                                              66
                                                                                                 0
                        0
                               137
                                              40
                                                            35
                                                                  168
                                                                       43.1
                                                                               2.288
                                                                                       33
                                                                                                 1
                                ...
                                              ...
                                                            ...
                                                                                                 ...
          763
                       10
                               101
                                              76
                                                            48
                                                                  180
                                                                       32.9
                                                                               0.171
                                                                                       63
                                                                                                 0
          764
                        2
                               122
                                              70
                                                            27
                                                                    0
                                                                       36.8
                                                                               0.340
                                                                                       27
                                                                                                 0
          765
                        5
                               121
                                              72
                                                            23
                                                                  112
                                                                       26.2
                                                                               0.245
                                                                                       30
                                                                                                 0
          766
                               126
                                              60
                                                             0
                                                                       30.1
                                                                               0.349
                                                                                       47
                                                                                                 1
          767
                                93
                                              70
                                                            31
                                                                    0 30.4
                                                                               0.315
                                                                                       23
                                                                                                 0
         768 rows × 9 columns
In [6]: data.drop(['Pregnancies', 'BloodPressure', 'SkinThickness'], axis=1, inplace=True
```

In [7]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Glucose	768 non-null	int64
1	Insulin	768 non-null	int64
2	BMI	768 non-null	float64
3	Pedigree	768 non-null	float64
4	Age	768 non-null	int64
5	Outcome	768 non-null	int64

dtypes: float64(2), int64(4)

memory usage: 36.1 KB

In [8]: data.head()

Out[8]:

	Glucose	Insulin	BMI	Pedigree	Age	Outcome
0	148	0	33.6	0.627	50	1
1	85	0	26.6	0.351	31	0
2	183	0	23.3	0.672	32	1
3	89	94	28.1	0.167	21	0
4	137	168	43.1	2.288	33	1

In [9]: data.describe().T

Out[9]:

	count	mean	std	min	25%	50%	75%	max
Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.25000	199.00
Insulin	768.0	79.799479	115.244002	0.000	0.00000	30.5000	127.25000	846.00
ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.0000	36.60000	67.10
Pedigree	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	2.42
Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	81.00
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.00000	1.00

In [10]: hist = data.hist(figsize=(20,16))


```
In [11]: target_feature = 'Outcome'
num_features = list(set(data.columns) - set([target_feature]))
```

```
In [12]: X = data.drop(target_feature, axis=1)
y = data[target_feature]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_s
```

In [13]: data[data['Glucose'] == 0]

Out[13]:

	Glucose	Insulin	ВМІ	Pedigree	Age	Outcome
75	0	0	24.7	0.140	22	0
182	0	23	27.7	0.299	21	0
342	0	0	32.0	0.389	22	0
349	0	0	41.0	0.346	37	1
502	0	0	39.0	0.727	41	1

In [14]: data[data['BMI'] == 0]

Out[14]:

		Glucose	Insulin	BMI	Pedigree	Age	Outcome
,	9	125	0	0.0	0.232	54	1
	49	105	0	0.0	0.305	24	0
	60	84	0	0.0	0.304	21	0
	81	74	0	0.0	0.102	22	0
	145	102	0	0.0	0.572	21	0
	371	118	89	0.0	1.731	21	0
	426	94	0	0.0	0.256	25	0
	494	80	0	0.0	0.174	22	0
	522	114	0	0.0	0.189	26	0
	684	136	0	0.0	0.640	69	0
	706	115	0	0.0	0.261	30	1

```
In [15]: imputer = SimpleImputer(missing_values=0.0, strategy='median')
    imputer.fit(X_train[['Glucose','BMI']])
    X_train[['Glucose','BMI']] = imputer.transform(X_train[['Glucose','BMI']])
    X_test[['Glucose','BMI']] = imputer.transform(X_test[['Glucose','BMI']])
```

C:\Users\pl\anaconda3\lib\site-packages\pandas\core\frame.py:3678: SettingWithC
opyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self[col] = igetitem(value, i)

C:\Users\pl\anaconda3\lib\site-packages\pandas\core\frame.py:3678: SettingWithC
opyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self[col] = igetitem(value, i)

```
In [16]: y_train.value_counts(normalize=True).plot.bar(color=['tab:blue', 'tab:red'])
    plt.grid(axis='y')
    plt.title(target_feature)
    plt.xlabel('Class')
    plt.ylabel('Proportion')
```

Out[16]: Text(0, 0.5, 'Proportion')

In [21]: X_train

Out[21]:

	Glucose	Insulin	ВМІ	Pedigree	Age
22	196.0	0	39.8	0.451	41
497	81.0	76	30.1	0.547	25
395	127.0	275	27.7	1.600	25
381	105.0	0	20.0	0.236	22
258	193.0	375	25.9	0.655	24
456	135.0	0	26.7	0.687	62
435	141.0	0	42.4	0.205	29
398	82.0	0	21.1	0.389	25
48	103.0	0	39.1	0.344	31
294	161.0	0	21.9	0.254	65

614 rows × 5 columns

In [22]: X_test

Out[22]:

	Glucose	Insulin	ВМІ	Pedigree	Age
680	56.0	45	24.2	0.332	22
607	92.0	41	19.5	0.482	25
639	100.0	46	19.5	0.149	28
638	97.0	91	40.9	0.871	32
295	151.0	120	35.5	0.692	28
526	97.0	82	18.2	0.299	21
685	129.0	205	33.2	0.591	25
391	166.0	0	45.7	0.340	27
654	106.0	135	34.2	0.142	22
315	112.0	94	34.1	0.315	26

154 rows × 5 columns

```
In [23]:
         y_train
Out[23]: 22
                 1
         497
                 0
         395
                 0
         381
                 0
         258
                 0
         456
                 0
         435
                 1
         398
                 0
         48
                 1
         294
         Name: Outcome, Length: 614, dtype: int64
In [24]:
         y_test
Out[24]: 680
                 0
         607
                 0
         639
                 0
         638
                 1
         295
                 0
         526
                 0
         685
                 0
         391
                 1
         654
                 0
         315
         Name: Outcome, Length: 154, dtype: int64
         y_train.value_counts(normalize=True).plot.bar(color=['tab:blue', 'tab:red'])
In [25]:
         plt.grid(axis='y')
         plt.title(target_feature)
         plt.xlabel('Class')
         plt.ylabel('Proportion')
```

Out[25]: Text(0, 0.5, 'Proportion')

In [26]: X_train[num_features].corr().style.background_gradient(cmap='coolwarm')

Out[26]:

	Glucose	Insulin	Pedigree	ВМІ	Age
Glucose	1.000000	0.321751	0.145176	0.223262	0.263797
Insulin	0.321751	1.000000	0.207136	0.192143	-0.026828
Pedigree	0.145176	0.207136	1.000000	0.165553	0.018448
ВМІ	0.223262	0.192143	0.165553	1.000000	0.006558
Age	0.263797	-0.026828	0.018448	0.006558	1.000000

```
In [28]: scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_train = pd.DataFrame(X_train, columns=num_features)
    X_test = scaler.transform(X_test)
    X_test = pd.DataFrame(X_test, columns=num_features)
```

```
In [29]: | def print_metrics(y_true, y_pred):
             print('Metrics:')
             print(f'f1_score = {f1_score(y_true=y_true, y_pred=y_pred).round(3)}')
             print(f'recall_score = {recall_score(y_true=y_true, y_pred=y_pred).round(3)}
             print(f'precision_score = {precision_score(y_true=y_true, y_pred=y_pred).rour
         def print_confusion_matrix(y_true, y_pred):
             sns.heatmap(confusion_matrix(y_true=y_true, y_pred=y_pred), annot=True, cmap=
             plt.title('Confusion matrix')
             plt.xlabel('Predict')
             plt.ylabel('Actual')
             plt.show()
         def print_roc_auc(y_true, y_pred_prob):
             fpr, tpr, thresholds = roc_curve(y_true, y_pred_prob)
             auc = roc_auc_score(y_true, y_pred_prob)
             plt.plot(fpr, tpr)
             plt.xlabel('False Positive Rate')
             plt.ylabel('True Positive Rate')
             plt.title(f'ROC AUC: {auc.round(3)}')
             plt.show()
         def print_params(model):
             print('Model parameters:')
             print(f'K neighbors = {model.n_neighbors}')
             print(f'Power = {model.p}')
         def start_train(model, X_train, y_train, X_test, y_test):
             model.fit(X_train, y_train)
             y_prep = model.predict(X_test)
             y_pred_prob = model.predict_proba(X_test)[:,1]
             print_params(model=model)
             print_metrics(y_true=y_test, y_pred=y_prep)
             print_confusion_matrix(y_true=y_test, y_pred=y_prep)
             print_roc_auc(y_true=y_test, y_pred_prob=y_pred_prob)
```

In [30]: start_train(model=KNeighborsClassifier(), X_train=X_train, y_train=y_train, X_tes

Model parameters:
K neighbors = 5
Power = 2
Metrics:
f1_score = 0.621
recall_score = 0.593
precision_score = 0.653


```
In [32]: param_grid = {
          'n_neighbors': range(1, 51),
          'p': range(1, 4)
}
grid = GridSearchCV(estimator=KNeighborsClassifier(), param_grid=param_grid, cv=s
grid.fit(X_train, y_train)
model = grid.best_estimator_
start_train(model=model, X_train=X_train, y_train=y_train, X_test=X_test, y_test=
```

Model parameters:
K neighbors = 43
Power = 1
Metrics:
f1_score = 0.609
recall_score = 0.519
precision_score = 0.737


```
In [34]: graph = ['Glucose','Insulin','BMI','Age','Outcome']
    sns.set()
    print(sns.pairplot(data[graph],hue='Outcome', diag_kind='kde'))
```

<seaborn.axisgrid.PairGrid object at 0x0000020553803AC0>

In []: