$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$	$\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$\frac{k^2 \left(6 k^2 r_5 + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha_{\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$-\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	3t1t	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_{1}^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}lphaeta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1-lpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}ik(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_{1}^{#1}$ † lpha	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	ākt₁
$\omega_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\bar{\imath}kt_1$	0	0	0

Lagrangian density $ \begin{split} -t_1 \omega_{,\alpha}^{,\alpha} \omega_{\kappa \alpha}^{ -\frac{1}{3}} t_1 \omega_{,\lambda}^{ \lambda} \omega_{\kappa ,^{ +}} + \frac{1}{3} t_1 \omega_{\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_1 \omega_{\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_1 \omega_{\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_2 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_1 \omega_{\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_2 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_2 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_2 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_2 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_2 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_2 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_2 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_2 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_2 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_2 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{3} t_2 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + \frac{1}{6} t_2 \partial_{\sigma} f_{,\kappa}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_2 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_1 \omega_{,\kappa ,^{ \lambda}}^{ \lambda} + t_2 \omega_{,\kappa ,^{ \lambda}}^{ $	$rac{2}{3} r_2 \partial^{eta} \omega_{\lambda}^{\ \lambda lpha} \partial_{\lambda} \omega_{lphaeta}^{\ \ \prime} + r_5 \partial_{lpha} \omega_{\lambda}^{\ \ lpha} \partial^{\lambda} \omega^{eta \kappa}_{\ \ \kappa} - r_5 \partial_{eta} \omega_{\lambda}^{\ \ lpha} \partial^{\lambda} \omega^{eta \kappa}_{\kappa}$
---	---

	$\omega_0^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}$ †	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$

	#	1	1	m	m	m	2	16
Source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} == 0$	$t_1^{\#1}{}^\alpha == 0$	$\tau_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2\overline{l}k\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

	$\sigma_0^{\#1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#2} +$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

$\omega_2^{++} \alpha_\beta f_2^{++} \alpha_\beta \omega_2^{+-} \alpha_{\beta\chi}$	0	0	$\frac{t_1}{2}$
$f_2^{\#_1}\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{*+}\alpha\beta$	$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0
٠	$\omega_2^{\#1} +^{lphaeta}$	$f_{2}^{\#1} + \alpha \beta$	$\omega_{2}^{*1} +^{lphaeta\chi}$

$\sigma_{2^{-}}^{\#1} \alpha \beta \chi$	0	0	$\frac{2}{t_1}$
$\tau_{2}^{\#1}_{+}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1}{}_+\alpha\beta$		$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2+}^{#1} +^{\alpha\beta}$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

	Massive partic	le
?	Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0$
$J^P = 1^+$	Polarisations:	3
$\frac{1}{k^{\mu}}$	Square mass:	$-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$
?	Spin:	1
	Parity:	Even

	Massive partic	le
?	Pole residue:	$-\frac{1}{r_2}$ >
$J^P = 0^-$	Polarisations:	1
$\overrightarrow{k^{\mu}}$	Square mass:	$-\frac{t_2}{r_2}$ >
?	Spin:	0
	Parity:	Odd

article					
ie:	$-\frac{1}{r_2} > 0$				
ns:	1				
iss:	$-\frac{t_2}{r_2} > 0$				
	0				
	Odd				

(No massless particles)