Математическая Статистика

16 мая 2014 г.

Глава 1

Основы

1.1 Методы оценок характеристик распределения наблюдаемых случайных величин

 x_1, \ldots, x_n — независимые одинаково распределённые случайные величины с неизвестной функцией распределения F. Логично, что вероятность выпадения каждого x_k (вероятность того, что наугад взятый из выборки x будет равен x_k) одинакова

$$P(x=x_k) = \frac{1}{n}$$

Цель — найти F или сказать что-то о её свойствах.

1.1.1 Эмпирическая функция распределения

Определение 1.1.1 (Эмпирическая функция распределения). Эмпирической (выборочной) функцией распределения, построенной по выборке x_1, \ldots, x_n называется функция

$$F_n(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1}(x_k \le x)$$

Теорема 1.1.1. Неизвестная функция распределения F(x) может быть сколь угодно точно восстановлена по выборке достаточно большого объёма [1, стр. 25].

$$\mathbb{P}\left(F_n\left(x\right) \xrightarrow[n\to\infty]{} F\left(x\right)\right) = 1$$

Идея доказательства. Вспомним, чему равна эмпирическая функция распределения

$$F_n(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1}(x_k \le x)$$

Заметим, что индикаторы $1 (x_k \le x)$ являются независимыми одинаково распределёнными случайными величинами, а функцию распределения F(x) можно записать следующим образом

$$F(x) = \mathbb{P}\{x_1 \le x\} = M\mathbb{1}(x_1 \le x)$$

Так как эмпирическая функция распределения является средним арифметическим индикаторов, то по усиленному закону больших чисел она сходится к неизвестной функции распределения почти наверное при устремлении длины выборки к бесконечности

$$F_n(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1}\left(x_k \le x\right) \xrightarrow[n \to \infty]{a.s.} M\mathbb{1}\left(x_1\right) = F(x)$$

Теорема доказана

$$F_n(x) \xrightarrow[n \to \infty]{a.s.} F(x)$$

1.1.2 Гистограмма

Как можно попытаться отследить плотность распределения? Постараемся найти функцию распределения, а потом и плотность.

Допустим, F имеет хорошую (непрерывную) плотность. Как тогда из F получить p?

Мы знаем, что F'=p, но это никому не нужно, так как F'_n — производная ступенчатой функции, которая почти везде будет равна нулю.

Но также мы помним, что

$$F(b) - F(a) = \int_{a}^{b} p(x) dx$$

Положим a=x и введём $\Delta_x=b-x$

$$F(x + \Delta_x) - F(x) = \int_{x}^{x + \Delta_x} p(y) dy$$

Делим обе части на Δ_x .

$$\frac{1}{\Delta_{x}} \cdot \int_{0}^{x+\Delta_{x}} p(y) dy = \frac{F(x+\Delta_{x}) - F(x)}{\Delta_{x}}$$

Несложно заметить, что при достаточно малых значениях Δ_x получаем плотность распределения $p\left(x\right)$

$$\frac{\Delta F(x)}{\Delta_x} \xrightarrow{\Delta_x \to 0} \frac{dF(x)}{dx} = p(x)$$

Значит, можем заменить p(x) не производной, а такой разностью.

$$p(x) \approx \frac{F(x+\Delta) - F(x)}{\Delta}$$

Возьмём m полуинтервалов на числовой прямой $I_j = (a_{j-1}, a_j], i = \overline{1, m}$ таких, что все значения выборки попадают в один из них. Для этого определим пару свойств точек, ограничивающих эти интервалы:

- 1.1. Методы оценок характеристик распределения наблюдаемых случайных величин5
 - 1. Каждая следующая точка строго правее (больше) предыдущей. (так как зачем нам одинаковые точки?)

$$a_0 < a_1 < \dots < a_m$$

2. Каждое значение выборки должно попадать ровно в один полуинтерваль. Очевидно, что данные полуинтервалы I_j не пересекаются между собой. Значит, осталось потребовать, чтобы крайнее левое значение было меньше минимального значения из выборки, а крайнее правое — не больше максимального

$$a_0 < min(X) \le max(X) \le a_m$$

Введём функцию q(y)

$$q(y) = \sum_{j=1}^{m} \frac{F(a_j) - F(a_{j-1})}{a_j - a_{j-1}} \cdot 1 \quad (y \in I_j)$$

Определим последовательность функций $q_n(y)$, заменив F(x) на $F_n(x)$ в предыдущем определении

$$q_n(y) = \sum_{j=1}^{m} \frac{F_n(a_j) - F_n(a_{j-1})}{a_j - a_{j-1}} \cdot \mathbb{1}(y \in I_j)$$
(1.1)

Отметим, что q_n сходится к q почти наверное (согласно закону больших чисел), а q в свою очередь сходится к p (согласно центральной предельной теореме)

$$q_n\left(y\right) \xrightarrow[n \to \infty]{a.s.} q\left(y\right) \xrightarrow[m \to \infty]{} p\left(y\right)$$

Функция q_n называется **гистограммой**.

Избавимся от a_{j} в формуле, а для этого вспомним, чему равно $F_{n}\left(x\right)$

$$F_n(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1}(x_k \le x)$$

Теперь посмотрим, чему равна разность $F_n\left(a_j\right) - F_n\left(a_{j-1}\right)$, которая, как мы видим, является вероятностью того, что x попало в отрезок I_j

$$F_n(a_j) - F_n(a_{j-1}) = \frac{1}{n} \cdot \sum_{k=1}^n \mathbb{1}(x_k \le a_j) - \frac{1}{n} \cdot \sum_{k=1}^n \mathbb{1}(x_k \le a_{j-1})$$

Сгруппируем слагаемые и получим чуть более компактную запись разности

$$F_n(a_j) - F_n(a_{j-1}) =$$

$$= \frac{1}{n} \cdot \sum_{k=1}^n \left[\mathbb{1}(x_k \le a_j) - \mathbb{1}(x_k \le a_{j-1}) \right]$$
(1.2)

Рассмотрим возможные значения индикаторов

Если оба индикатора равны единице, это значит, что x_k не больше a_j и не больше a_{j-1} . Поскольку $a_{j-1} \le a_j$, то можно обойтись тем, что $x \le a_{j-1}$

$$\begin{cases} \mathbb{1} (x_k \le a_j) = 1 \\ \mathbb{1} (x_k \le a_{j-1}) = 1 \\ a_{j-1} \le a_j \end{cases} \Rightarrow \begin{cases} x_k \le a_j \\ x_k \le a_{j-1} \\ a_{j-1} \le a_j \end{cases}$$
$$\Rightarrow x_k \le a_{j-1} \le a_j \Rightarrow x_k \le a_{j-1}$$

Такая ситуация, что x больше, чем a_j , но не больше, чем a_{j-1} , невозможна, так как a_{j-1} не больше, чем a_j , а признать возможной такое положение дел $(a_j < x_k \le a_{j-1})$ означало бы то, что $a_j < a_{j-1}$

$$\begin{cases} \mathbb{1}(x_k \le a_j) = 0 \\ \mathbb{1}(x_k \le a_{j-1}) = 1 \end{cases} \Rightarrow \begin{cases} x_k > a_j \\ x_k \le a_{j-1} \\ a_{j-1} \le a_j \end{cases}$$
$$\Rightarrow \begin{cases} a_j < x_k \le a_{j-1} \\ a_{j-1} \le a_j \end{cases}$$

Если оба индикатора равны нулю, то это значит, что x строго больше как a_j , так и a_{j-1} . Опять же, поскольку $a_{j-1} \le a_j$, то достаточно сказать, что $x > a_j$.

$$\begin{cases} \mathbb{1} (x_k \le a_j) = 0 \\ \mathbb{1} (x_k \le a_{j-1}) = 0 \\ a_{j-1} \le a_j \end{cases} \Rightarrow \begin{cases} x_k > a_j \\ x_k > a_{j-1} \\ a_j \ge a_{j-1} \\ a_j \ge a_{j-1} \end{cases}$$
$$\Rightarrow x_k > a_j \ge a_{j-1} \Rightarrow x_k > a_j$$

Если же x больше, чем a_{j-1} , но не больше, чем a_j , то x попадает в полуинтервал $(a_{i-1},a_i]$

$$\begin{cases} 1 & (x_k \le a_j) = 1 \\ 1 & (x_k \le a_{j-1}) = 0 \end{cases} \Rightarrow \begin{cases} x_k \le a_j \\ x_k > a_{j-1} \\ a_j \ge a_{j-1} \end{cases}$$
$$\Rightarrow a_{j-1} < x_k \le a_j$$

Вспомним формулу (1.2)

$$F_n(a_j) - F_n(a_{j-1}) = \frac{1}{n} \cdot \sum_{k=1}^n \left[\mathbb{1} (x_k \le a_j) - \mathbb{1} (x_k \le a_{j-1}) \right]$$

Очевидно, что нас интересуют те пары, разность которых не равна нулю. Это значит, что те случаи, когда $x>a_j$ или $x\leq a_{j-1}$, нас не интересуют. Поскольку такой случай, что $a_j< x\leq a_{j-1}$ невозможен, то его тоже отбросим. Значит, остался только тот вариант, когда x попадает в полуинтервал $(a_{j-1},a_j]$

$$\frac{1}{n} \cdot \sum_{k=1}^{n} \left[\mathbb{1} \left(x_k \le a_j \right) - \mathbb{1} \left(x_k \le a_{j-1} \right) \right] = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1} \left(x_k \in (a_{j-1}, a_j] \right)$$

Видим знакомые полуинтервалы $(a_{j-1}, a_j] = I_j$. Воспользуемся этим

$$\frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1} (x_k \in (a_{j-1}, a_j]) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1} (x_k \in I_j)$$

Получаем компактную запись для разности функций распределения

$$F_n(a_j) - F_n(a_{j-1}) = \frac{1}{n} \cdot \sum_{k=1}^n \mathbb{1}(x_k \in I_j)$$
 (1.3)

Вернёмся к уравнению (1.1)

$$q_n(y) = \sum_{j=1}^{m} \frac{F_n(a_j) - F_n(a_{j-1})}{a_j - a_{j-1}} \cdot \mathbb{1} (y \in I_j)$$

Воспользовавшись тем, что $(a_j - a_{j-1})$ — длина полуинтервала I_j , а разность $F_n(a_j) - F_n(a_{j-1})$ была только что переписана через индикаторы, получаем такую формулу

$$q_n(y) = \sum_{j=1}^{m} \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}(x_k \in I_j) \cdot \frac{1}{|I_j|} \cdot \mathbb{1}(y \in I_j)$$

Упростим, введя функцию $\nu_j(X)$ [1, стр. 68], которая считает количество элементов выборки $X=x_1,\ldots,x_n$, попавших в интервал I_j . Это будет сумма индикаторов того, что элемент x_k попал в I_j

$$\nu_j(X) = \sum_{x \in X} \mathbb{1}(x \in I_j) = \sum_{k=1}^n \mathbb{1}(x_k \in I_j)$$

Поскольку $\mathbb{1}(y \in I_j)$ зависит от j и не зависит от k, то его можно перенести во внешнюю сумму. Получаем следующую формулу

$$q_n(y) = \sum_{j=1}^{m} \frac{\mathbb{1}(y \in I_j)}{n \cdot |I_j|} \cdot \nu_j(X)$$

У этой суммы только один ненулевой элемент, так как y может попасть только в один полуинтервал. Тогда обозначим номер отрезка, в который попал y, через k ($y \in I_k$), а функцию q_n (y) запишем как q_n^k

$$q_n^k = \frac{\nu_k\left(X\right)}{n \cdot |I_k|} \tag{1.4}$$

Что мы тут видим? Теперь k — номер "столбика" гистограммы (номер интересующего нас полуинтервала — того, в который попал y).

"Высота" столбика (значение функции на определённом полуинтервале) пропорциональна количеству элементов, попавших в этот отрезок (что логично). Кроме того, происходит деление на общее количество элементов. Деление нужно, чтобы q(y) сходилось к p(y).

Делителю же $|I_k|$ отведена особая роль — он предотвращает искажение гистограммы при различных длинах отрезков. То есть, чем длиннее отрезок, тем ниже столбик, так как элементы более "размазаны" по отрезку, что тоже логично.

Представим, что значение функции — это высоту прямоугольника, а длина отрезка — его ширина (графически это изображается именно так). Тогда отношение количества элементов, попавших в полуинтервал, к количеству всех элементов выборки (вероятность того, что случайно взятый элемент из выборки попадёт в k-ый отрезок $[1, {\rm стр.}\ 24]$), является площадью прямоугольника

$$S_k = \frac{\nu_k(X)}{n} = \mathbb{P}_n(x \in I_k)$$

Введём замену в формуле (1.4) и умножим обе части на длину отрезка

$$\mathbb{P}_n \left(x \in I_k \right) = q_n^k \cdot |I_k|$$

Если устремить количество полуинтервалов к бесконечности $(m \to \infty)$, то каждый полуинтервал будет сжиматься в точку. При этом вероятность попадения x в отрезок будет стремиться к вероятности попадения x в точку y. Введём обозначения $|I_j|=\delta$, $I_j=\Delta_y$

$$\mathbb{P}_n(x=y) \approx \mathbb{P}_n(x \in \Delta_y) = q_n(y) \cdot \delta, \qquad m \to \infty$$

Очень напоминает ситуацию с плотностью распределения непрерывной случайной величины ξ

$$\mathbb{P}(\xi = x) \approx p(x) \cdot \delta, \quad \delta \to 0$$

Нужно отметить, что количество элементов выборки должно стремиться к бесконечности $(n \to \infty)$, так как плотность может быть лишь у непрерывных случайных величин. Чем больше будет элементов, тем плотнее они будут стоять на числовой прямой.

1.1.3 Оценка неизвестных параметров

Снова у нас есть x_1, \ldots, x_n — выборка из распределения F_{θ} , где θ — неизвестный параметр из множества Θ

Пример 1.1.1. Имеем нормальное распределение с известным СКО $\sigma=1$ и неизвестным математическим ожиданием $a-N\left(a,1\right)$. Тогда θ — математическое ожидание a

Пример 1.1.2. Есть нормальное распределение, в котором неизвестны оба параметра. Тогда θ будет парой (a,σ)

 Γ лавный вопрос — определение основных параметров распределения выборки.

Определение 1.1.2 (Статистика). Статистикой называют функцию S от выборки $X=(x_1,x_2,\ldots,x_n)$

$$S\left(X\right) = S\left(x_1, x_2, \dots, x_n\right)$$

Определение 1.1.3 (Оценка). Статистику, значение которой заменяет неизвестный параметр, называют оценкой

Пример 1.1.3. Предположим, что выборка сделана из распределения Бернулли, то есть $\{x_i\}$ — набор одинаково распределённых случайных величин, причём

$$x_i = \begin{cases} 1, & p \\ 0, & 1-p \end{cases}$$

Тогда неизвестный параметр — величина p (вероятность удачного эксперимента)

$$\theta = p \in [0; 1] = \Theta$$

Введём разные оценки \hat{p}

$$\hat{p}_1 = \frac{1}{n} \sum_{k=1}^n x_k$$

$$\hat{p}_2 = x_1$$

$$\hat{p}_3 = \frac{2}{n} \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} x_k$$

Замечание: Поскольку \hat{p} — случайная величина, то может оказаться, что она не равна настоящему параметру p

$$\mathbb{P}\left\{\hat{p}=p\right\}=0$$

- 1. Возникает мысль о том, что разность $\hat{p}-p$ должна быть "маленькой". Например, чтобы $M\left(\hat{p}-p\right)^2$ было самое маленькое из возможных.
- 2. Также логично желать того, чтобы оценка \hat{p} сходилась к истинному значению параметра p по вероятности $(\hat{p} \xrightarrow[n \to \infty]{\mathbb{P}} p)$ или почти всюду $(\hat{p} \xrightarrow[n \to \infty]{a.s.} p)$
- 3. При многократном повторении эксперимента даже самая (на первый взгляд) плохая оценка может оказаться полезной

$$M\hat{p}_1 = p$$

$$M\hat{p}_2 = p$$

$$M\hat{p}_3 = p$$

Например, если целый год каждый день дают набор чисел, а статистик считает значение параметра p с помощью оценки $\hat{p_2}$, то в среднем за год у него получится величина, близкая к истинному p.

Определение 1.1.4 (Состоятельная оценка). Оценка $\hat{\theta}$ называется состоятельной, если стремится к истинному значению θ по вероятности

$$\hat{\theta} \xrightarrow[n \to \infty]{\mathbb{P}} \theta$$

Определение 1.1.5 (Сильно состоятельная оценка). Оценка $\hat{\theta}$ называется сильно состоятельной, если стремится к истинному значению θ почти наверное

$$\hat{\theta} \xrightarrow[n \to \infty]{a.s.} \theta$$

Пример 1.1.4. Оценка \hat{p}_1 из прошлого примера является сильно состоятельной.

Определение 1.1.6 (Несмещённая оценка). Оценка $\hat{\theta}$ несмещённая, если

$$\forall \theta \in \Theta : M_{\theta} \hat{\theta} = \theta$$

Замечание 1. Несмещённая оценка существует не всегда

Определение 1.1.7. Несмещённая оценка $\hat{\theta} \in K$ называется оптимальной в классе квадратично интегрируемых оценок K, если для всякой другой несмещённой оценки $\tilde{\theta} \in K$

$$D_{\theta}\hat{\theta} \leq D_{\theta}\tilde{\theta}, \quad \forall \theta \in \Theta$$

или же

$$M_{\theta} \left(\hat{\theta} - \theta \right)^2 \le M_{\theta} \left(\tilde{\theta} - \theta \right)^2, \quad \forall \theta \in \Theta$$

Замечание 2. В учебнике Боровкова А. А. "Математическая статистика" оценка, удовлетворяющая этим условиям, носит название эффективная оценка [1, стр. 130], но у нас этот термин будет использоваться далее в другом смысле

Пример 1.1.5. Сравним \hat{p}_1 и \hat{p}_3

$$D_p \hat{p}_1 = \frac{1}{n^2} \cdot n \cdot p \cdot (1 - p) = \frac{p \cdot (1 - p)}{n}$$
$$D_p \hat{p}_3 = \frac{2 \cdot p \cdot (1 - p)}{n}$$

1.1.4 Выборочные оценки. Метод моментов

Как восстановить неизвестный параметр $\theta \in \Theta$ из функции распределения $F_{\theta}\left(x\right)$?

Вспомним распределения и их параметры

- 1. Нормальное распределение $N\left(a,\sigma^2\right)$. В нём параметр a является средним, а параметр σ^2 дисперсией
- 2. Пуассоновское распределение $Poi\left(\lambda\right)$. Тут параметр λ является и средним, и дисперсией
- 3. Экспоненциальное распределение $Exp\left(\lambda\right)$. $\frac{1}{\lambda}$ среднее, $\frac{1}{\lambda^2}$ дисперсия

И так далее...

Как правило, неизвестный параметр θ можно искать следующим образом

$$\exists \varphi \in C(\mathbb{R}) : \int_{\mathbb{R}} \varphi(x) dF_{\theta}(x) = g(\theta)$$

Значит, у нас есть уравнение для поиска оценки $\hat{\theta}$ при непрерывной и монотонной $g(\hat{\theta})$

$$g\left(\hat{\theta}\right) = \int_{\mathbb{R}} \varphi\left(x\right) dF_n\left(x\right) \tag{1.5}$$

Пример 1.1.6. Если θ — среднее, то $\varphi\left(x\right)=x$

$$\int_{-\infty}^{+\infty} x dF_{\theta}(x) = \theta = g(\theta)$$

Теорема 1.1.2. Пусть функция $\varphi(x)$ в (1.5) непрерывна, ограничена и строго монотонная. Тогда оценка $\hat{ heta}$ существует и является сильно состоятельной.

Доказательство. Имеем формулу (1.5)

$$g\left(\hat{\theta}\right) = \int_{\mathbb{R}} \varphi\left(x\right) dF_n\left(x\right)$$

Поскольку функция $g\left(\hat{\theta}\right)$ непрерывна и монотонна, то она имеет обратную функцию $g^{-1}:g^{-1}\left(g\left(\hat{\theta}\right)\right)=\hat{\theta}.$ Применим обратную функцию к обеим частям уравнения

$$\hat{\theta} = g^{-1} \left(\int_{\mathbb{D}} \varphi(x) dF_n(x) \right)$$

Поскольку выборочная функция распределения почти всюду равна неизвестной функции распределения при достаточно большом объёме выборки,

$$\int_{\mathbb{R}} \varphi(x) dF_n(x) \xrightarrow[n \to \infty]{a.s.} \int_{\mathbb{R}} \varphi(x) dF_n(x)$$

Функция $g^{-1}(x)$ непрерывна

$$\hat{\theta} = g^{-1} \left(\int_{\mathbb{R}} \varphi(x) dF_n(x) \right) \xrightarrow[n \to \infty]{a.s.} g^{-1} \left(\int_{\mathbb{R}} \varphi(x) dF_n(x) \right) = \theta$$

Теорема доказана

$$\hat{\theta} \xrightarrow[n \to \infty]{a.s.} \theta$$

Определение 1.1.8 (Выборочное среднее). Выборочное средние обозначается через \overline{x} и считается по следующей формуле

$$\overline{x} = \int_{\mathbb{D}} x dF_n(x)$$

Поскольку все элементы выборки равновероятны, получаем математическое ожидание дискретной равномерно распределённой случайной величины, принимающей n значений

$$\overline{x} = \int_{\mathbb{R}} x dF_n(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} x_k$$

Определение 1.1.9 (Выборочная дисперсия). Выборочная дисперсия $\overline{\sigma^2}$ считается формуле

$$\overline{\sigma^2} = \int_{\mathbb{R}} (x - \overline{x})^2 dF_n(x) = \frac{1}{n} \cdot \sum_{k=1}^n (x_k - \overline{x})^2$$

1.2 Свойства оценок

1.2.1 Неравенство Рао-Крамера

Теорема 1.2.1 (Колмогорова). Оптимальная оценка единственная или её нет вообще

Доказательство. Допустим, есть две разные оптимальные и несмещённые оценки θ_1 и θ_2 . Тогда по определению для любой несмещённой оценки $\hat{\theta}$ будет

$$\begin{cases} D_{\theta}\theta_{1} \leq D_{\theta}\hat{\theta} \\ D_{\theta}\theta_{2} \leq D_{\theta}\hat{\theta} \end{cases}, \forall \theta \in \Theta$$

Поскольку неравенство выполняется для каждой несмещённой оценки $\hat{\theta},$ а оценки θ_1 и θ_2 являются несмещёнными, то можем их и поставить в неравенство в роли $\hat{\theta}$

$$\begin{cases} D_{\theta}\theta_1 \le D_{\theta}\theta_2 \\ D_{\theta}\theta_2 \le D_{\theta}\theta_1 \end{cases}, \forall \theta \in \Theta$$

А это возможно только если дисперсии этих оценок равны. Обозначим эту дисперсию через $\sigma^2\left(\theta\right)$

$$D_{\theta}\theta_1 = D_{\theta}\theta_2 = \sigma^2\left(\theta\right)$$

Возьмём несмещённую оценку $\tilde{\theta}$, равную среднеарифметическому оценок θ_1 и θ_2

$$\tilde{\theta} = \frac{1}{2} \cdot \theta_1 + \frac{1}{2} \cdot \theta_2$$

Тогда по определению θ_1 и θ_2 получаем, что дисперсия новой оценки не меньше, чем у оптимальных

$$D_{\theta}\tilde{\theta} \ge \sigma^2\left(\theta\right) \tag{1.6}$$

Попробуем честно вычислить дисперсию оценки $ilde{ heta}$

$$D_{\theta}\tilde{\theta} = M_{\theta} \left(\tilde{\theta} - \theta \right) = M_{\theta} \left[\frac{1}{2} \cdot (\theta_1 - \theta) + \frac{1}{2} \cdot (\theta_2 - \theta) \right]^2 =$$

$$= \frac{1}{4} \cdot D_{\theta}\theta_1 + \frac{1}{4} \cdot D_{\theta}\theta_1 + \frac{1}{2} \cdot M_{\theta} \left[(\theta_1 - \theta) \cdot (\theta_2 - \theta) \right]$$

Воспользуемся неравенством Коши (частный случай неравенства Гёльдера)

$$M_{\theta} \left[(\theta_{1} - \theta) \cdot (\theta_{2} - \theta) \right] \leq \sqrt{M_{\theta} (\theta_{1} - \theta)^{2} \cdot M_{\theta} (\theta_{2} - \theta)^{2}} =$$

$$= \sqrt{D_{\theta} \theta_{1} \cdot D_{\theta} \theta_{2}} = \sqrt{\sigma_{1}^{2} \cdot \sigma_{2}^{2}}$$

$$(1.7)$$

И вернёмся к вычислению дисперсии оценки $ilde{ heta}$

$$\frac{1}{4} \cdot D_{\theta} \theta_{1} + \frac{1}{4} \cdot D_{\theta} \theta_{1} + \frac{1}{2} \cdot M_{\theta} \left[(\theta_{1} - \theta) \cdot (\theta_{2} - \theta) \right] \leq \frac{1}{2} \cdot \sigma^{2} \left(\theta \right) + \frac{1}{2} \cdot \sqrt{\sigma^{2} \left(\theta \right) \cdot \sigma^{2} \left(\theta \right)} = \sigma^{2} \left(\theta \right)$$

То есть, дисперсия оценки $\tilde{\theta}$ не больше дисперсии введённой оптимальной оценки

$$D_{\theta}\tilde{\theta} \le \sigma^2\left(\theta\right) \tag{1.8}$$

Воспользовавшись неравенствами (1.6) и (1.8), получаем равенство

$$D_{\theta}\tilde{\theta} = \sigma^2\left(\theta\right)$$

Это значит, что в неравенстве (1.7) в данном случае тоже выходит равенство

$$M_{\theta} \left[(\theta_1 - \theta) \cdot (\theta_2 - \theta) \right] = \sqrt{M_{\theta} (\theta_1 - \theta)^2} \cdot \sqrt{M_{\theta} (\theta_2 - \theta)^2}$$

Для дальнейших размышлений вспомним аналогию с векторами, а именно смысл равенства в неравенстве Коши для скалярного произведения векторов

$$|\vec{a} \cdot \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \cos\left(\widehat{\vec{a}, \vec{b}}\right) = \sqrt{\vec{a}^2} \cdot \sqrt{\vec{b}^2} \cdot \cos\left(\widehat{\vec{a}, \vec{b}}\right)$$

Скалярное произведение двух векторов равно произведению их модулей только тогда, когда они сонаправлены

$$\left(\widehat{\vec{a},\vec{b}}\right) = 0 \Rightarrow \vec{a} \cdot \vec{b} = \sqrt{\vec{a}^2} \cdot \sqrt{\vec{b}^2}$$

Положим математическое ожидание нормой, а $\theta_1 - \theta$ и $\theta_2 - \theta$ векторами пространства случайных событий. Получаем, что нормы и направления этих векторов совпадают

$$M_{\theta} \left[(\theta_{1} - \theta) \cdot (\theta_{2} - \theta) \right] = \sqrt{M_{\theta} (\theta_{1} - \theta)^{2}} \cdot \sqrt{M_{\theta} (\theta_{2} - \theta)^{2}}$$

$$\Rightarrow \left(\widehat{\theta_{1} - \theta, \theta_{2}} - \theta \right)$$

Это значит, что они равны, что противоречит предположению о том, что они разные

$$\begin{cases}
\left(\widehat{\theta_1 - \theta}, \widehat{\theta_2} - \theta\right) = 0 \\
M_{\theta} (\theta_1 - \theta)^2 = M_{\theta} (\theta_2 - \theta)^2
\end{cases} \Rightarrow \theta_1 - \theta = \theta_2 - \theta$$

$$\Rightarrow \theta_1 = \theta_2$$

Теорема доказана

Для дальнейших действий будем считать, что функция распределения $F_{\theta}(x)$ имеет плотность $p(x,\theta)$, которая дважды дифференцируема по θ . То есть её можно дифференцировать под знаком интеграла.

Также отметим, что выборка (x_1, \ldots, x_n) имеет плотность распределения, так как является случайным вектором в \mathbb{R}^n , все компоненты которого — случайные величины.

Определение 1.2.1 (Функция правдоподобия). Плотность распределения вектора независимых случайных величин, равная произведению плотностей распределения его компонент, называется функцией правдоподобия

$$L(\vec{x}, \theta) = \prod_{k=1}^{n} p(x_k, \theta)$$

Прологарифмировав функцию правдоподобия, получим симпатичную сумму

$$\ln L(\vec{x}, \theta) = \sum_{k=1}^{n} \ln p(x_k, \theta)$$

А симпатична она тем, что это сумма незасимых одинаково распределённых случайных величин. Воспользовавшись законом больших чисел, можем сказать, что она стремится к сумме n одинаковых математических ожиданий при достаточно большом размере выборки

$$\ln L(\vec{x}, \theta) = n \cdot \frac{\ln p(x_1, \theta) + \dots + \ln p(x_n, \theta)}{n} \approx n \cdot M_{\theta} \ln p(x_1, \theta)$$

Проблема в том, что мы не знаем среднего. Для разрешения этого вопроса введём ещё одно определение

Определение 1.2.2 (Вклад выборки). Ваклад выборки — частная производная по параметру θ от логарифма функции правдоподобия

$$U(\vec{x}, \theta) = \frac{\partial}{\partial \theta} \ln L(\vec{x}, \theta) = \sum_{k=1}^{n} \frac{\partial}{\partial \theta} \cdot \ln p(x_k, \theta)$$
$$= \frac{\partial}{\partial \theta} L(\vec{x}, \theta)$$
$$= \frac{\partial}{\partial \theta} L(\vec{x}, \theta)$$

Замечание 3. Математическое ожидание вклада выборки равно нулю

$$M_{\theta}U\left(\vec{x},\theta\right) = 0$$

Доказательство. Посчитаем математическое ожидание вклада выборки

$$M_{\theta}U\left(\vec{x},\theta\right) = \int_{\mathbb{R}^{n}} U\left(\vec{u},\theta\right) \cdot L\left(\vec{u},\theta\right) d\vec{u} =$$

$$= \int_{\mathbb{R}^{n}} \frac{\frac{\partial}{\partial \theta} L\left(\vec{x},\theta\right)}{L\left(\vec{x},\theta\right)} \cdot L\left(\vec{u},\theta\right) d\vec{u} =$$

$$= \int_{\mathbb{R}^{n}} \frac{\partial}{\partial \theta} L\left(\vec{u},\theta\right) d\vec{u}$$

Воспользовавшись предположением о том, что функция распределения дважды дифференцируема, вынесем взятие производной за знак интеграла

$$M_{\theta}U\left(\vec{x},\theta\right) = \frac{\partial}{\partial\theta} \int_{\mathbb{R}^{n}} L\left(\vec{u},\theta\right) d\vec{u}$$

Поскольку интегрируем плотность распределения случайного вектора по всему пространству, то он равен единице. Производная же от единице равна нулю. Это значит, что математическое ожидание вклада выборки равно нулю

$$M_{\theta}U\left(\vec{x},\theta\right) = \frac{\partial}{\partial\theta} \int_{\mathbb{R}^{n}} L\left(\vec{u},\theta\right) d\vec{u} = \frac{\partial}{\partial\theta} 1 = 0$$

Замечание 4. Частная производная по оценке θ от функции правдоподобия $L\left(\vec{u},\theta\right)$ равна нулю.

Доказательство. Выше у нас было равенство

$$\frac{\partial}{\partial \theta} \int_{\mathbb{R}^n} L\left(\vec{u}, \theta\right) \, d\vec{u} = 0$$

Так как производную можем заносить под знак интеграла (согласно нашему предположению), то получаем такое равенство

$$\int_{\mathbb{R}^n} \frac{\partial}{\partial \theta} L(\vec{u}, \theta) \ d\vec{u} = 0$$

Поскольку интеграл не зависит от θ , то такое возможно лишь в том случае, когда производная равна нулю

$$\frac{\partial}{\partial \theta} L\left(\vec{u}, \theta\right) = 0$$

Определение 1.2.3 (Количество информации Фишера). Математическое ожидание квадрата вклада выборки называется количеством информации Фишера

$$I_n(\theta) = M_\theta U(\vec{x}, \theta)^2$$

Замечание 5.

$$M_{\theta}U(\vec{x},\theta)^{2} = -M_{\theta}\frac{\partial^{2}}{\partial\theta^{2}}\ln L(\vec{x},\theta)$$

Доказательство. Будем доказывать справа налево

$$-M_{\theta} \frac{\partial^{2}}{\partial \theta^{2}} \ln L(\vec{x}, \theta) = -M_{\theta} \frac{\partial}{\partial \theta} \frac{\frac{\partial}{\partial \theta} L(\vec{x}, \theta)}{L(\vec{x}, \theta)} =$$

$$= -M_{\theta} \left(\frac{\frac{\partial^{2}}{\partial \theta^{2}} L(\vec{x}, \theta) \cdot L(\vec{x}, \theta) - \left[\frac{\partial}{\partial \theta} L(\vec{x}, \theta) \right]^{2}}{L(\vec{x}, \theta)^{2}} \right) =$$

$$= -M_{\theta} \frac{\frac{\partial^{2}}{\partial \theta^{2}} L(\vec{x}, \theta)}{L(\vec{x}, \theta)} + M_{\theta} \left[\frac{\frac{\partial}{\partial \theta} L(\vec{x}, \theta)}{L(\vec{x}, \theta)} \right]^{2}$$

Помним, что производная от функции правдоподобия по θ равна нулю. Значит вторая производная тоже равна нулю и остаётся лишь математическое ожидание квадрата, который равен квадрату производной логарифма функции правдоподобия, что в свою очередь и есть вклад выборки

$$\frac{\partial}{\partial \theta} L(\vec{u}, \theta) = 0 \Rightarrow -M_{\theta} \frac{\frac{\partial^{2}}{\partial \theta^{2}} L(\vec{x}, \theta)}{L(\vec{x}, \theta)} = 0$$

$$\Rightarrow -M_{\theta} \frac{\partial^{2}}{\partial \theta^{2}} \ln L(\vec{x}, \theta) = M_{\theta} \left[\frac{\frac{\partial}{\partial \theta} L(\vec{x}, \theta)}{L(\vec{x}, \theta)} \right]^{2} =$$

$$= M_{\theta} \left[\frac{\partial}{\partial \theta} \ln L(\vec{x}, \theta) \right]^{2} = M_{\theta} U(\vec{x}, \theta)^{2}$$

Утверждение доказано

$$M_{\theta}U(\vec{x},\theta)^{2} = -M_{\theta}\frac{\partial^{2}}{\partial\theta^{2}}\ln L(\vec{x},\theta)$$

Количество информации позволяет оценить точность, с которой можем получить параметр θ

Теорема 1.2.2 (Неравенство Рао-Крамера). Пусть $\hat{\theta}$ — несмещённая оценка параметра θ . Тогда имеет место неравенство

$$\forall \theta \in \Theta : D_{\theta} \hat{\theta} \ge \frac{1}{I_n(\theta)}$$

 $\mathcal{A}oказательство.$ Выпишем, чему равно математическое ожидание оценки θ

$$\begin{cases} M_{\theta} \hat{\theta} &= \theta \\ M_{\theta} \hat{\theta} &= \int\limits_{\mathbb{R}^n} \hat{\theta} \left(\vec{u} \right) \cdot L \left(\vec{u}, \theta \right) \, d\vec{u} \\ \Rightarrow \theta &= \int\limits_{\mathbb{R}^n} \hat{\theta} \left(\vec{u} \right) \cdot L \left(\vec{u}, \theta \right) \, d\vec{u} \end{cases}$$

Продифференцируем с двух сторон полученное для θ равенство по самому параметру θ

$$\frac{\partial}{\partial \theta} \theta = \frac{\partial}{\partial \theta} \int_{\mathbb{R}^n} \hat{\theta} \left(\vec{u} \right) \cdot L \left(\vec{u}, \theta \right) \, d\vec{u}$$

Левая часть равенства превращается в единицу, а справа заносим взятие производной под знак интеграла. Также помним, что оценка $\theta\left(\vec{u}\right)$ не зависит от параметра θ . Это значит, что производную нужно брать только от функции правдоподобия

$$1 = \int\limits_{\mathbb{D}^{n}} \hat{\theta}\left(\vec{u}\right) \cdot \frac{\partial}{\partial \theta} L\left(\vec{u}, \theta\right) \, d\vec{u}$$

Далее нам нужно получить вклад выборки. Для этого умножим и поделим подинтегральное выражение на функцию правдоподобия

$$\begin{split} &\int\limits_{\mathbb{R}^{n}}\hat{\theta}\left(\vec{u}\right)\cdot\frac{\partial}{\partial\theta}L\left(\vec{u},\theta\right)\;d\vec{u} = \\ &=\int\limits_{\mathbb{R}^{n}}\hat{\theta}\left(\vec{u}\right)\cdot\frac{\frac{\partial}{\partial\theta}L\left(\vec{u},\theta\right)}{L\left(\vec{u},\theta\right)}\cdot L\left(\vec{u},\theta\right)\;d\vec{u} \end{split}$$

Видим, что дробь под интегралом — производная логарифма функции правдоподобия, которая является вкладом выборки

$$\begin{split} \int\limits_{\mathbb{R}^{n}} \hat{\theta}\left(\vec{u}\right) \cdot \frac{\frac{\partial}{\partial \theta} L\left(\vec{u}, \theta\right)}{L\left(\vec{u}, \theta\right)} \cdot L\left(\vec{u}, \theta\right) \; d\vec{u} = \\ = \int\limits_{\mathbb{R}^{n}} \hat{\theta}\left(\vec{u}\right) \cdot U\left(\vec{x}, \theta\right) \cdot L\left(\vec{u}, \theta\right) \; d\vec{u} \end{split}$$

У нас есть математическое ожидание произведения оценки и вклада выборки, которое равно единице

$$1 = M_{\theta} \left(\hat{\theta} \cdot U \left(\vec{x}, \theta \right) \right) \tag{1.9}$$

Помним, что математическое ожидание вклада выборки равно нулю. Значит, умножение его на константу ничего не меняет

$$M_{\theta}U(\vec{x}, \theta) = 0$$

$$\Rightarrow \theta \cdot M_{\theta}U(\vec{x}, \theta) = M_{\theta}(\theta \cdot U(\vec{x}, \theta)) = 0$$

Воспользовавшись полученным результатом, вернёмся к равенству (1.9). Отнимем от обеих частей ноль (то есть, полученное только что выражение)

$$1 = M_{\theta} \left(\hat{\theta} \cdot U \left(\vec{x}, \theta \right) \right) - M_{\theta} \left(\theta \cdot U \left(\vec{x}, \theta \right) \right)$$

Получаем компактное равенство

$$1 = M_{\theta} \left[\left(\hat{\theta} - \theta \right) \cdot U \left(\vec{x}, \theta \right) \right]$$

Воспользовавшись неравенством Коши, узнаём, произведение корней дисперсии и количества информации больше, чем единица

$$1 = M_{\theta} \left[\left(\hat{\theta} - \theta \right) \cdot U \left(\vec{x}, \theta \right) \right] \le$$

$$\le \sqrt{M_{\theta} \left(\hat{\theta} - \theta \right)} \cdot \sqrt{M_{\theta} U \left(\vec{x}, \theta \right)} =$$

$$= \sqrt{D_{\theta} \hat{\theta}} \cdot \sqrt{I_{n} \left(\theta \right)}$$
(1.10)

Возводим обе части равенства в квадрат и делим на количество информации

$$D_{\theta}\hat{\theta} \ge \frac{1}{I_n\left(\theta\right)}$$

Неравенство доказано

Замечание 6. Иногда нужно оценивать не сам параметр, а функцию параметра

Если α — несмещённая оценка для $f\left(\theta\right)$, то справедливо следующее неравенство

$$\forall \theta \in \Theta : D_{\theta} \alpha \ge \frac{|f'(\theta)|}{I_n(\theta)}$$

1.2.2 Метод максимального правдоподобия

У нас есть нижняя оценка точности, с которой можно отыскать желаемую оценку, а это значит, что точнее определить просто не получится и нужно стремиться к равенству в неравенстве Рао-Крамера.

Определение 1.2.4 (Эффективная оценка). Оценка $\hat{\theta}$, для которой в неравенстве Рао-Крамера стоит равенство, называется эффективной

$$\forall \theta \in \Theta : D_{\theta}\hat{\theta} = \frac{1}{I_n(\theta)}$$

Попытаемся выяснить, какими свойствами должна обладать плотность, чтобы можно было получить эффективную оценку. Для этого в неравенстве Рао-Крамера нужно рассмотреть случай равенства (так как в этом случае оценка будет самой точной)

$$D_{\theta}\hat{\theta} = \frac{1}{I_n\left(\theta\right)}$$

Рассмотрим неравенство (1.10) и попытаемся понять, в каком случае в нём будет стоять знак равенства

$$1 = M_{\theta} \left[\left(\hat{\theta} - \theta \right) \cdot U \left(\vec{x}, \theta \right) \right] =$$
$$= \sqrt{M_{\theta} \left(\hat{\theta} - \theta \right)^{2}} \cdot \sqrt{M_{\theta} U \left(\vec{x}, \theta \right)^{2}}$$

Снова проводим аналогию с векторами и видим, что скалярное произведение (математическое ожидание произведения) векторов (функций от параметра θ : $f_1(\theta) = \hat{\theta} - \theta$ и $f_2(\theta) = U(\vec{x}, \theta)$) равно произведению их норм (корней квадратов математических ожиданий).

Это в свою очередь означает, что "угол" между этими векторами (функциями) равен нулю и эти функции являются линейными комбинациями друг друга. Значит, есть такая функция $k(\theta)$, что $f_2(\theta)$ равняется произведению $f_1(\theta)$ и $k(\theta)$.

$$U(\vec{x}, \theta) = (\hat{\theta} - \theta) \cdot k(\theta)$$
$$\frac{\partial}{\partial \theta} \ln L(\vec{x}, \theta) = \hat{\theta} \cdot k(\theta) - \theta \cdot k(\theta)$$
$$\partial \ln L(\vec{x}, \theta) = \hat{\theta}(\vec{x}) \cdot k(\theta) \cdot \partial \theta - \theta \cdot k(\theta) \cdot \partial \theta$$

Проинтегрируем обе части равенства

$$\int \partial \ln L(\vec{x}, \theta) = \hat{\theta}(\vec{x}) \cdot \int k(\theta) \, \partial \theta - \int \theta \cdot k(\theta) \, \partial \theta$$

Получим следующее равенство

$$\ln L(\vec{x}, \theta) + c_1(\vec{x}) = \hat{\theta}(\vec{x}) \cdot [a(\theta) + c_2] - [b^*(\theta) + c_3]$$

Сгруппируем константы и введём замену $b\left(\theta\right)=-b^{*}\left(\theta\right)$

$$\ln L(\vec{x}, \theta) = \hat{\theta}(\vec{x}) \cdot a(\theta) + b(\theta) + c(\vec{x})$$

Избавимся от логарифма слева, а для этого проэкспонируем обе части равенства

$$L(\vec{x}, \theta) = \exp \left\{ \hat{\theta}(\vec{x}) \cdot a(\theta) + b(\theta) + c(\vec{x}) \right\}$$

При конечном n положим такую плотность распределения

$$p(x_1, \theta) = \exp \left\{ \hat{\theta}(x_1) \cdot a_1(\theta) + b_1(\theta) + c_1(x_1) \right\}$$

В таком случае получим следующую функцию правдоподобия

$$L\left(\vec{x},\theta\right) = \prod_{k=1}^{n} p\left(x_{1},\theta\right) =$$

$$= \exp\left\{\sum_{k=1}^{n} \hat{\theta}\left(x_{k}\right) \cdot a_{1}\left(\theta\right) + n \cdot b_{1}\left(\theta\right) + \sum_{k=1}^{n} c_{1}\left(x_{k}\right)\right\}$$

Отметим, что в этом случае оценка $\hat{\theta}(\vec{x})$ является суммой оценок по каждой координате (случайной величине)

$$\hat{\theta}\left(\vec{x}\right) = \sum_{k=1}^{n} \hat{\theta}\left(x_k\right)$$

Определение 1.2.5 (Экспоненциальное распределение). Распределения следующего вида называются экспоненциальными

$$p\left(x,\theta\right)=\exp\left\{ \hat{\theta}\left(x\right)\cdot a\left(\theta\right)+b\left(\theta\right)+c\left(x\right)\right\}$$

Попробуем найти рецепт выяснения эффективной оценки. Начнём с примера

Пример 1.2.1. Есть выборка x_1, x_2, \ldots, x_n из нормального распределения с неизвестным математическим ожиданием $N(\theta, 1)$. Тогда плотность распределения k-ой случайной величины будет следующей

$$p(x_k) = \frac{1}{\sqrt{2 \cdot \pi}} \cdot exp\left\{-\frac{(x_k - \theta)^2}{2}\right\}$$

Её логарифм, очевидно, имеет такой вид

$$\ln p(x_k) = \ln \frac{1}{\sqrt{2 \cdot \pi}} - \frac{(x_k - \theta)^2}{2}$$

Теперь выпишем логарифм функции правдоподобия

$$\ln L(\vec{x}, \theta) = \sum_{k=1}^{n} \ln p(x_k) =$$

$$= \sum_{k=1}^{n} \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{(x_k - \theta)^2}{2} =$$

$$= n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{(x_k - \theta)^2}{2}$$

Раскроем скобки

$$\ln L\left(\vec{x},\theta\right) = n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{x_k^2}{2} + \sum_{k=1}^{n} x_k \cdot \theta - \frac{n \cdot \theta^2}{2}$$

Воспользуемся формулой для несмещённой (ещё и эффективной) оценки среднего

$$\sum_{k=1}^{n} x_k \cdot \theta = \frac{1}{n} \cdot \sum_{k=1}^{n} x_k \cdot \theta \cdot n = \overline{x} \cdot \theta \cdot n$$

$$\Rightarrow \ln L(\vec{x}, \theta) = n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{x_k^2}{2} + \overline{x} \cdot \theta \cdot n - \frac{n \cdot \theta^2}{2}$$

Сгруппировав множители n, получаем

$$\ln L(\vec{x}, \theta) = n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{x_k^2}{2} - n \cdot \frac{\theta^2 - 2 \cdot \overline{x} \cdot \theta}{2}$$

Добавим и отнимем в числителе дроби выборочное среднее

$$\ln L\left(\vec{x},\theta\right) = n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{x_k^2}{2} - n \cdot \frac{\theta^2 - 2 \cdot \overline{x} \cdot \theta + \left(\overline{x}^2 - \overline{x}^2\right)}{2}$$

Теперь в числителе очевиден квадрат разности

$$\ln L\left(\vec{x},\theta\right) = n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{x_k^2}{2} + n \cdot \frac{\overline{x}^2}{2} - n \cdot \frac{\theta^2 - 2 \cdot \overline{x} \cdot \theta + \overline{x}^2}{2}$$

Записываем квадрат разности короче, а выборочное средние вносим под знак суммы

$$\ln L(\vec{x}, \theta) = n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{x_k^2 - \overline{x}^2}{2} - n \cdot \frac{(\theta - \overline{x})^2}{2}$$

Видим, что последнее вычитаемое не может быть отрицательным, а когда оценка θ равна выборочному среднему, то последнее слагаемое обращается в нуль, а сама функция правдоподобия в таком случае принимает максимальное значение.

Делаем предположение о том, как находить наилучшую оценку

$$Q_* = \arg\max_{\theta} \ln L\left(\vec{x}, \theta\right)$$

Оказывается, именно так она и находится.

Определение 1.2.6 (Оценка максимального правдоподобия). Оценка максимального правдоподобия θ_* — такое значение параметра θ , при котором функция правдободобия достигает своего максимального значения

$$Q_* = \arg\max_{\theta} \ln L\left(\vec{x}, \theta\right)$$

Замечание 7. Оценок маесимального правдоподобия может быть несколько, а может не существовать ни одной.

Определение 1.2.7 (Уравнение правдоподобия). Уравнением правдоподобия называется равенство вида

$$U(\vec{x},\theta) = 0$$

Или же

$$\frac{\partial}{\partial \theta} \ln L\left(\vec{x}, \theta\right) = 0$$

Замечание 8. В гладком случае оценку θ_* можно искать с помощью уравнения правдоподобия. Тем не менее, нужно помнить, что равенство первой производной нулю является лишь необходимым условием максимума, поэтому полученные результаты необходимо проверять.

Определение 1.2.8 (Вариационный ряд). Вариационный ряд выборки x_1, x_2, \ldots, x_n — значения выборки, упорядоченные в порядке неубывания

$$x_{(1)}, x_{(2)}, \dots, x_{(n)}, x_{(1)} = \min_{k} x_k$$

Теорема 1.2.3. Если плотность $p(x,\theta)$ непрерывна и дифференцируема по параметру θ , а производная не равна нулю $\frac{\partial}{\partial \theta} p(x,\theta) \neq 0$, то оценка максимального правдоподобия состоятельна

Глава 2

Достаточные статистики

2.1 Оптимальная оценка

Определение 2.1.1 (Симметризация). Симметризация Λ оценки $\hat{\theta}$ — среднее оценок $\hat{\theta}$ для всевозможных перестановок $\sigma \in S_n$ элементов выборки x_1, x_2, \ldots, x_n

$$\Lambda \hat{\theta} = \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \hat{\theta} \left(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)} \right)$$

Лемма 2.1.1. Для произвольной несмещённой оценки $\hat{\theta}$ её симметризация $\Lambda \hat{\theta}$ не хуже её самой в среднем квадратическом

$$M_{\theta}\hat{\theta} = \theta \Rightarrow \begin{cases} M_{\theta}\Lambda\hat{\theta} = M_{\theta}\hat{\theta} = \theta \\ D_{\theta}\Lambda\hat{\theta} \leq D_{\theta}\hat{\theta} \end{cases}$$

Доказательство. Берём x_1, x_2, \ldots, x_n — независимые одинаково распределённые случайные величины.

Введём обозначения для более короткой записи используемых в доказательстве случайных векторов.

Вектор, состоящий из элементов выборки в их изначальном порядке, обозначим привычным \vec{x}

$$(x_1, x_2, \dots, x_n) = \vec{x}$$

Вектор, состоящий из элементов, изменивших своё местоположение под влиянием перестановки σ (значение которой будет ясно из контекста), будем обозначать через \vec{x}_{σ}

$$(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \vec{x}_{\sigma}$$

Тогда и оценки примут более красивый вид

$$\hat{\theta}(x_1, x_2, \dots, x_n) = \hat{\theta}(\vec{x})$$

$$\hat{\theta}(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \hat{\theta}(\vec{x}_{\sigma})$$

Теперь приступим непосредственно к доказательству.

1. Начнём с первого пункта — докажем несмещённость симметризации опенки $\hat{ heta}$.

Нетрудно показать, что вектора \vec{x} и \vec{x}_{σ} имеют одинаковое распределение для любой перестановки σ , а это значит, что и оценки $\hat{\theta}\left(\vec{x}\right)$ и $\hat{\theta}\left(\vec{x}_{\sigma}\right)$ распределены одинаково как функции случайных одинаково распределённых векторов. Следовательно, их математические ожидания равны между собой при любой перестановке σ

$$M_{\theta}\hat{\theta}\left(\vec{x}\right) = M_{\theta}\hat{\theta}\left(\vec{x}_{\sigma}\right) = \theta$$

Посчитаем математическое ожидание симметризации оценки $\hat{ heta}$

$$M_{\theta}\Lambda\hat{\theta} = M_{\theta} \left\{ \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \hat{\theta}\left(\vec{x}_{\sigma}\right) \right\}$$

Помним, что математическое ожидание линейно и константы можно выносить за знак математического ожидания, а математическое ожидание суммы равно сумме математических ожиданий

$$M_{\theta} \left\{ \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \hat{\theta} \left(\vec{x}_{\sigma} \right) \right\} = \frac{1}{n!} \cdot \sum_{\sigma \in S_n} M_{\theta} \hat{\theta} \left(\vec{x}_{\sigma} \right)$$

Не забываем, что математическое ожидание оценки любого вектора \vec{x}_{σ} одинаково и равно параметру θ

$$\frac{1}{n!} \cdot \sum_{\sigma \in S_n} M_{\theta} \hat{\theta} \left(\vec{x}_{\sigma} \right) = \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \theta$$

Сумма имеет n! слагаемых (количество перестановок $\sigma \in S_n$)

$$\frac{1}{n!} \cdot \sum_{\sigma \in S_n} \theta = \frac{1}{n!} \cdot n! \cdot \theta = \theta$$

А это значит, что первый пункт доказан и симметризация несмещённой оценки $\hat{\theta}$ действительно несмещённая

$$M_{\theta}\Lambda\hat{\theta}=\theta$$

2. Теперь посмотрим, чему равна дисперсия симметризации оценки $\hat{\theta}$ Воспользуемся определением

$$D_{\theta} \Lambda \hat{\theta} = M_{\theta} \left(\Lambda \hat{\theta} - \theta \right)^{2} = M_{\theta} \left\{ \frac{1}{n!} \cdot \sum_{\sigma \in S_{n}} \hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right\}^{2}$$

Внесём параметр θ в сумму. Для этого нужно умножить и поделить его на n! (так как сумма имеет n! слагаемых)

$$M_{\theta} \left\{ \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right\}^2 =$$

$$= M_{\theta} \left\{ \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \hat{\theta} \left(\vec{x}_{\sigma} \right) - \frac{1}{n!} \cdot n! \cdot \theta \right\}^2 =$$

$$= M_{\theta} \left\{ \frac{1}{n!} \cdot \left(\sum_{\sigma \in S_n} \hat{\theta} \left(\vec{x}_{\sigma} \right) - n! \cdot \theta \right) \right\}^2 =$$

$$= M_{\theta} \left\{ \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right) \right\}^2 =$$

$$= M_{\theta} \left\{ \sum_{\sigma \in S_n} \frac{1}{n!} \cdot \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right) \right\}^2$$

Вспомним неравенство Йенсена для выпуклой функции f

$$f\left(\sum_{i=1}^{n} q_i \cdot x_i\right) \le \sum_{i=1}^{n} q_i \cdot f\left(x_i\right), \qquad \sum_{i=1}^{n} q_i = 1$$

В нашем случае $x_i = (\hat{\theta}(\vec{x}_{\sigma_i}) - \theta)$, функция $f(x) = x^2$, сумма проходит по всевозможным перестановкам σ , а роль q_i выполняет $\frac{1}{n!}$, так как

$$\sum_{\sigma \in S_n} q_i = \sum_{\sigma \in S_n} \frac{1}{n!} = n! \cdot \frac{1}{n!} = 1$$

Перепишем неравенство Йенсена для нашего случая

$$M_{\theta} \left\{ \sum_{\sigma \in S_n} \frac{1}{n!} \cdot \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right) \right\}^2 \le M_{\theta} \sum_{\sigma \in S_n} \frac{1}{n!} \cdot \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right)^2 \tag{2.1}$$

Воспользуемся линейностью математического ожидания, внеся его под знак суммы

$$M_{\theta} \sum_{\sigma \in S_n} \frac{1}{n!} \cdot \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right)^2 = \frac{1}{n!} \cdot \sum_{\sigma \in S_n} M_{\theta} \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right)^2$$

Видим сумму дисперсий. Дисперсии одинаковы, так как оценки имеют одинаковые распределения

$$\frac{1}{n!} \cdot \sum_{\sigma \in S_n} M_{\theta} \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right)^2 = \frac{1}{n!} \cdot \sum_{\sigma \in S_n} D_{\theta} \hat{\theta} \left(\vec{x}_{\sigma} \right) =$$

$$= \frac{1}{n!} \cdot \sum_{\sigma \in S_n} D_{\theta} \hat{\theta} \left(\vec{x} \right) = \frac{1}{n!} \cdot n! \cdot D_{\theta} \hat{\theta} \left(\vec{x} \right) = D_{\theta} \hat{\theta} \left(\vec{x} \right)$$

Из неравенства Йенсена (2.1) видим, что дисперсия симметризации не хуже дисперсии самой оценки

$$D_{\theta}\Lambda\hat{\theta} \leq D_{\theta}\hat{\theta}\left(\vec{x}\right)$$

То есть, симметризация не ухудшает оценку, а в общем случае (когда неравенство строгое) даже делает её лучше.

Замечание 9. Равенство в неравенстве Йенсена (в доказательстве выше) возможно только в случае симметричной функции. Значит, в качестве оценки достаточно брать только симметричные функции выборки

Определение 2.1.2 (Функция вариационного ряда). Если оценка $\hat{\theta}$ симметрична относительно перестановок аргументов, то она является функцией вариационного ряда

Замечание 10. Все оценки, которые претендуют быть оптимальными, должны быть функциями вариационного ряда

2.2 σ -алгебра, порождённая случайной величиной

Имеем вероятностное пространство $(\Omega, \mathfrak{F}, \mathbb{P})$, также есть функция $\xi: \Omega \to \mathbb{R}$ такая, что связанные с ней множества измеримы по Лебегу

$$\{\omega \mid \xi(\omega) < c\} \in \mathfrak{F}, c \in \mathbb{R}$$

Но это будет неудобно при использовании, поэтому возьмём борелевские подмножества $\mathfrak B$ множества $\mathbb R$

$$\mathbb{R} \supset \mathfrak{B} \ni \Delta : \xi^{-1}(\Delta) \in \mathfrak{F}$$

Рассмотрим более подробно, что же означает запись $\xi^{-1}(\Delta)$

$$\xi^{-1}(\Delta) = \{\omega \mid \xi(\omega) \in \Delta\}, \qquad \Delta \in \mathfrak{B}, \omega \in \Omega$$

Определение 2.2.1 (Сигма-алгебра, порождённая случайной величиной). $\mathfrak{F}_{\xi} = \sigma\left(\xi\right) - \sigma$ -алгебра, порождённая случайной величиной ξ

$$\mathfrak{F}_{\xi} = \left\{ \xi^{-1} \left(\Delta \right) \mid \Delta \in \mathfrak{B} \right\}$$

Из курса теории вероятностей помним лемму, которая утверждает, что ξ — случайная величина тогда и только тогда, когда

$$\forall \Delta \in \mathfrak{B} : \{\omega \mid \xi(\omega) \in \Delta\} = \{\xi \in \Delta\} = \xi^{-1}(\Delta) \in \mathfrak{F}$$

А это значит, что все элементы σ -алгебры \mathfrak{F}_ξ входят в σ -алгебру $\mathfrak{F},$ а сама \mathfrak{F}_ξ является подмножеством \mathfrak{F}

$$\begin{cases} \mathfrak{F}_{\xi} = \left\{ \xi^{-1} \left(\Delta \right) \mid \Delta \in \mathfrak{B} \right\} \\ \forall \Delta \in \mathfrak{B} : \xi^{-1} \left(\Delta \right) \in \mathfrak{F} \end{cases} \Rightarrow \mathfrak{F}_{\xi} \subset \mathfrak{F}$$

Проверим, что \mathfrak{F}_{ξ} действительно является σ -алгеброй

1. Множество элементарных исходов Ω входит в \mathfrak{F}_{ξ} . Поскольку случайная величина ξ принимает действительные значения, то прообраз множества действительных чисел $\mathbb R$ и будет множеством элементарных исходов Ω . А поскольку $\mathbb R$ принадлежит борелевской σ -алгебре, то его прообраз по определению принадлежит σ -алгебре \mathfrak{F}_{ξ}

$$\begin{cases} \xi^{-1} \left(\Delta \in \mathfrak{B} \right) \in \mathfrak{F} \\ \mathbb{R} \in \mathfrak{B} \\ \xi^{-1} \left(\mathbb{R} \right) = \Omega \end{cases} \Rightarrow \Omega \in \mathfrak{F}_{\xi}$$

2. Если событие A принадлежит $\mathfrak{F}_{\xi},$ то его дополнение \overline{A} тоже принадлежит \mathfrak{F}_{ξ}

$$A = \xi^{-1}(\Delta) = \{\omega \mid \xi(\omega) \in \Delta\}$$

$$\Rightarrow \overline{A} = \{\omega \mid \xi(\omega) \notin \Delta\} = \{\omega \mid \xi(\omega) \in \overline{\Delta}\}$$

$$\overline{A} = \xi^{-1}(\overline{\Delta})$$

Поскольку $\mathfrak B$ является σ -алгеброй, а Δ — её элемент, то дополнение $\overline \Delta$ тоже принадлежит σ -алгебре $\mathfrak B$. Из этого следует, что свойство выполняется

$$\begin{cases} \xi^{-1}\left(\Delta\right) \in \mathfrak{F} \\ \Delta \in \mathfrak{B} \Rightarrow \overline{\Delta} \in \mathfrak{B} \end{cases} \Rightarrow \overline{\xi^{-1}\left(\Delta\right)} = \xi^{-1}\left(\overline{\Delta}\right) \in \mathfrak{F}$$

3. Замкнутость относительно счётных пересечений.

Начнём с замкнутости относительно пересечения двух множеств

$$A = \xi^{-1}(\Delta_1), B = \xi^{-1}(\Delta_2)$$

Начинаем считать

$$A \cap B = \xi^{-1} (\Delta_1) \cap \xi^{-1} (\Delta_2) =$$

$$= \{ \omega \mid \xi (\omega) \in \Delta_1 \} \cap \{ \omega \mid \xi (\omega) \in \Delta_2 \} =$$

$$= \{ \omega \mid \xi (\omega) \in \Delta_1 \wedge \xi (\omega) \in \Delta_2 \} =$$

$$= \{ \omega \mid \xi (\omega) \in \Delta_1 \cap \Delta_2 \} = \xi^{-1} (\Delta_1 \cap \Delta_2)$$

Значит, имеем равенство

$$\xi^{-1}\left(\Delta_{1}\right)\cap\xi^{-1}\left(\Delta_{2}\right)=\xi^{-1}\left(\Delta_{1}\cap\Delta_{2}\right)$$

Пользуясь методом математической индукции нетрудно показать, что для любого n выполняется

$$\xi^{-1}\left(\bigcap_{i=1}^{n}\Delta_{i}\right)=\bigcap_{i=1}^{n}\xi^{-1}\left(\Delta_{i}\right),\Delta_{i}\in\mathfrak{B}$$

Как устроена эта σ -алгебра? Каждому элементарному исходу отвечает одно и только одно значение случайной величины, а каждому значению случайной величины отвечает один и больше элементарных исходов. Допустим, есть некое $a \in \mathbb{R}$, которое является образом по крайней мере двух элементарных исходов ω_1 и ω_2

$$\xi\left(\omega_{1}\right)=\xi\left(\omega_{2}\right)=a$$

Теперь рассмотрим элемент Δ борелевской σ -алгебры \mathfrak{B} . Из вышесказанного следует, что, если число a принадлежит множеству Δ , то прообраз этого множества содержит элементы ω_1 и ω_2 , в противном случае оба элементарных исхода не входят в прообраз

$$a \in \Delta \Rightarrow \xi^{-1}(\Delta) \ni \omega_1, \omega_2$$

 $a \notin \Delta \Rightarrow \xi^{-1}(\Delta) \not\ni \omega_1, \omega_2$

То есть, множество \mathfrak{F}_{ξ} не будет различать элементы ω_1 и ω_2 . Это в свою очередь означает, что можно разбить \mathfrak{F}_{ξ} на уровни — непересекающиеся подмножества

Определение 2.2.2 (Множество уровня). Множество уровня H_t — полный прообраз значения $t \in \mathbb{R}$ случайной величины ξ

$$H_t = \{ \omega \mid \xi(\omega) = t \} = \xi^{-1}(t)$$

Замечание 11. Уровни H_i составляют разбиение множества элементарных исходов Ω .

1. Множества H_i не пересекаются

$$H_{t_1} \neq H_{t_2} \Leftrightarrow t_1 \neq t_2$$

2. Объединение всех H_i даёт множество элементарных исходов

$$\bigcup_{t \in \mathbb{R}} H_t = \bigcup_{t \in \mathbb{R}} \xi^{-1} (t) = \xi^{-1} (\mathbb{R}) = \Omega$$

Очень похоже на гипотезы из курса теории вероятностей с той лишь разницей, что уровней может быть бесконечное и даже континуальное количество, из чего также следует, что вероятность некоторых из них может быть нулевой.

2.3 Случайная величина, измеримая относительно σ -алгебры, порождённой случайной величиной

В общем случае вероятностное пространство может быть разбито на континуальное количество множеств уровней (для σ -алгебры, порождённой непрерывной случайной величиной).

Начнём же с рассмотрения того случая, когда случайная величина ξ принимает n значений a_1, a_2, \ldots, a_n

$$\xi:\Omega\to\{a_1,a_2,\ldots,a_n\}$$

 \Im то в свою очередь означает, что у нас есть n уровней

$$H_k = \{ \omega \mid \xi(\omega) = a_k \}, k = \overline{1, n}$$

Нетрудно понять, что σ -алгебра $\sigma(\xi)$ содержит 2^n элементов

$$\sigma\left(\xi\right) = \left\{\bigcup_{k=1}^{n} H_{k}^{\eta_{k}} \mid \eta_{k} = \overline{0,1}, H_{k}^{0} = \emptyset, H_{k}^{1} = H_{k}\right\}$$

Нам нет смысла пользоваться лишь одной случайной величиной ξ . Нас интересует, как устроены случайные величины, которые измеримы относительно σ -алгебры σ (ξ).

Возьмём \varkappa — случайная величина, измеримая относительно $\sigma(\xi)$. Это значит, что все прообразы случайной величины \varkappa должны лежать в σ -алгебре $\sigma(\xi)$

$$\{\omega \mid \varkappa(\omega) \le c\} \in \sigma(\xi)$$

To есть, прообразы \varkappa выражаются через объединения уровней H_k

$$\{\omega \mid \varkappa(\omega) \le c\} = \bigcup_{k=1}^{n} H_k^{\eta_k}$$

Введём обозначение

$$A(c) = \{ \omega \mid \varkappa(\omega) \le c \}$$

Очевидно, что при $c \to -\infty$ прообразом является пустое множество, а когда $c \to +\infty$, то прообразом является всё множество элементарных исходов

$$\{\omega \mid \varkappa(\omega) \le -\infty\} = \{\omega \mid \varkappa(\omega) \in \emptyset\} = \varkappa^{-1}(\emptyset) = \emptyset$$
$$\{\omega \mid \varkappa(\omega) \le +\infty\} = \{\omega \mid \varkappa(\omega) \in \mathbb{R}\} = \varkappa^{-1}(\mathbb{R}) = \Omega$$

Также ясно, что, если имеются два элемента борелевского множества и один включён в другой, то полный прообраз первого элемента тоже будет включён в прообраз второго

$$\begin{split} \Delta_1, \Delta_2 &\in \mathfrak{B}, \Delta_1 \subseteq \Delta_2 \\ \Rightarrow \varkappa^{-1} \left(\Delta_1 \right) \subseteq \varkappa^{-1} \left(\Delta_1 \right) \cup \varkappa^{-1} \left(\Delta_2 \right) = \\ &= \varkappa^{-1} \left(\Delta_1 \cup \Delta_2 \right) = \varkappa^{-1} \left(\Delta_2 \right) \end{split}$$

Ни у кого не возникает сомнений, что справедливо и такое утверждение

$$c_1, c_2 \in \mathbb{R}, c_1 \le c_2 \Rightarrow A(c_1) \subseteq A(c_2)$$

Объединим и проанализируем вышеописанное:

1. Количество элементов в множестве A(c) не уменьшается с ростом c

$$c_1 \leq c_2 \Rightarrow A(c_1) \subseteq A(c_2)$$

2. Множество A(c) "разрастается" от пустого множества \emptyset до множества элементарных событий Ω с ростом c от $-\infty$ до $+\infty$

$$A(-\infty) = \emptyset, A(+\infty) = \Omega$$

3. Множество A(c) растёт дискретными шагами. Это связано с тем, что уровни H_k в нашей σ -алгебре неделимы, а каждый её элемент должен состоять из объединений этих уровней и ничего другого.

Из этого всего делаем более конкретные выводы о том, как изменяется значение функции $A\left(c\right)$ с ростом параметра c. Должны быть опорные точки, на которых происходит "скачок" — точки, на которых к объединению добавляется ещё один или более уровней.

Поскольку имеется n уровней, то может быть не более n скачков: ведь самый "медленный" рост будет происходить, если добавлять по одному уровню на определённых константах, а нужно пройти всё от пустого множества \emptyset до множества элементарных исходов Ω .

Выделим m точек $(m \le n)$ $c_1 < c_2 < \cdots < c_m$ на числовой прямой $\mathbb R$ как значения случайной величины \varkappa

$$\varkappa:\Omega\to\{c_1,c_2,\ldots,c_m\}$$

Посмотрим, как соотносятся между собой $A\left(c_{i}\right)$ и $A\left(c_{i-1}\right)$, чтобы лучше понять природу скачков.

Сначала покажем, что $A(c_1)$ является прообразом c_1

$$\varkappa^{-1}(c_1) = \{\omega \mid \varkappa(\omega) = c_1\}$$

Поскольку случайная величина не принимает значений до c_1 , то множество $A\left(c_1-0\right)=\{\omega\mid\varkappa(\omega)< c_1\}$ пустое. Получаем то, что хотели

$$\varkappa^{-1}(c_1) = \{\omega \mid \varkappa(\omega) = c_1\} \cup \emptyset =$$

$$= \{\omega \mid \varkappa(\omega) = c_1\} \cup \{\omega \mid \varkappa(\omega) < c_1\} =$$

$$= \{\omega \mid \varkappa(\omega) \le c_1\} = A(c_1)$$

Идём дальше. Обозначим $c_0 = -\infty$. Тогда в каждой точке $A(c_i)$, $i = \overline{1, m}$ происходит скачок на множество $\varkappa^{-1}(c_i)$, то есть

$$A\left(c_{i}\right) = A\left(c_{i-1}\right) \cup \varkappa^{-1}\left(c_{i}\right)$$

Так происходит, потому что имеет место равенство, которое выполняется из-за того, что функция имеет скачки лишь на параметрах c_i , а между ними не меняет значения

$$A\left(c_{i}\right) = A\left(c_{i+1} - 0\right)$$

В таком случае тождество очевидно

$$A(c_i) = \{\omega \mid \varkappa(\omega) \le c_i\} =$$

$$= \{\omega \mid \varkappa(\omega) < c_i\} \cup \{\omega \mid \varkappa(\omega) = c_i\} =$$

$$= A(c_{i-1} - 0) \cup \varkappa^{-1}(c_i) = A(c_{i-1}) \cup \varkappa^{-1}(c_i)$$

Поскольку \varkappa — случайная величина, принимающая m значений, то её прообразы составляют разбиение пространства элементарных исходов Ω . А поскольку $A(c_{i-1})$ состоит из объединений этих прообразов, то оно не пересекается с $\varkappa^{-1}(c_i)$. То есть, мы знаем, как вычислять прообраз \varkappa

$$\begin{cases} A\left(c_{i-1}\right) \cap \varkappa^{-1}\left(c_{i}\right) = \emptyset \\ A\left(c_{i}\right) = A\left(c_{i-1}\right) \cup \varkappa^{-1}\left(c_{i}\right) \end{cases} \Rightarrow \varkappa^{-1}\left(c_{i}\right) = A\left(c_{i}\right) \setminus A\left(c_{i-1}\right)$$

Значит, случайная величина \varkappa принимает значение c_i при выпадении любого элементарного исхода ω из множества $A\left(c_i\right)\setminus A\left(c_{i-1}\right)$

$$\varkappa(\omega) = c_i, \omega \in A(c_i) \setminus A(c_{i-1})$$
(2.2)

Запишем это в более удобном виде

$$\varkappa\left(\omega\right) = \sum_{i=1}^{m} c_{i} \cdot \mathbb{1}\left\{\omega \in A\left(c_{i}\right) \setminus A\left(c_{i-1}\right)\right\}$$

Но эта сумма кажется уродливой из-за длинного индикатора и непонятного m. Попытаемся разобраться, в чём же дело и как прийти к изначальной n и милым H_k .

Помним, что $A\left(c_{i}\right)\backslash A\left(c_{i-1}\right)$ — объединение нескольких множеств уровня $H_{k}.$

Для любого t разность множеств $A(c_t) \setminus A(c_{t-1}) \neq \emptyset$ (когда это множество пустое, то индикатор просто не сработает и нечего считать) можно представить как объединение двух непересекающихся множеств, которые обозначим $H_1^t \in \mathfrak{F}$ и $H_2^t \in \mathfrak{F}$, причём H_1^t — множество уровня, а H_2^t — произвольное множество из \mathfrak{F} (в том числе и пустое, если разность и есть множество уровня). Тогда t-ое слагаемое примет следующий вид

$$c_t \cdot \mathbb{1} \left\{ \omega \in A \left(c_t \right) \setminus A \left(c_{t-1} \right) \right\} = c_t \cdot \mathbb{1} \left\{ \omega \in H_1^t \cup H_2^t \right\}$$

Поскольку множества H_1^t и H_2^t по условию не пересекаются, то можно разбить индикатор на сумму

$$c_t \cdot \mathbb{1}\left\{\omega \in H_1^t \cup H_2^t\right\} = c_t \cdot \left(\mathbb{1}\left\{\omega \in H_1^t\right\} + \mathbb{1}\left\{\omega \in H_2^t\right\}\right)$$
$$= c_t \cdot \mathbb{1}\left\{\omega \in H_1^t\right\} + c_t \cdot \mathbb{1}\left\{\omega \in H_2^t\right\}$$

Если ввести две константы c_1^t и c_2^t , которые будут равны старой c_t , то равенство примет более симпатичный вид

$$c_t \cdot \mathbb{1}\left\{\omega \in H_1^t\right\} + c_t \cdot \mathbb{1}\left\{\omega \in H_2^t\right\} = c_1^t \cdot \mathbb{1}\left\{\omega \in H_1^t\right\} + c_2^t \cdot \mathbb{1}\left\{\omega \in H_2^t\right\}$$

Если же H_2^t не является пустым множеством \emptyset или множеством уровня H_k , то нужно повторить процедуру, разбив H_2^t на объединение двух непересекающихся множеств — на множество уровня и множество из \mathfrak{F} . В итоге (вследствие конечности множества \mathfrak{F}) индикатор разности $A(c_t) \setminus A(c_{t-1})$ будет разбита на сумму индикаторов множеств уровней.

Таким же образом можно поступить со всеми остальными индикаторами. В итоге получим n констант d_1, d_2, \ldots, d_n вместо m c_1, c_2, \ldots, c_m .

Теперь сумма примет более приятный для глаз и понятный из контекста начала раздела вид

$$\varkappa(\omega) = \sum_{i=1}^{m} c_i \cdot \mathbb{1} \left\{ \omega \in A(c_i) \setminus A(c_{i-1}) \right\}$$
$$= \sum_{i=1}^{n} d_i \cdot \mathbb{1} \left\{ \omega \in H_i \right\}$$

Видим, что теперь можно определить отображение из множества значений, принимаемых случайной величиной ξ , в множество значений, принимаемых случайной величиной \varkappa

$$f: \{a_1, a_2, \dots, a_n\} \to \{d_1, d_2, \dots, d_n\}$$

Попробуем показать, что \varkappa является функцией от ξ . Очевидно, что случайная величина ξ имеет такой же вид, что и \varkappa — сумма констант, умноженных на индикаторы, так как мы только что показали, что все функции, измеримые относительно σ -алгебры, порождённой случайной величиной ξ , выглядят именно так

$$f(\xi(\omega)) = f\left(\sum_{i=1}^{n} a_i \cdot \mathbb{1}\left\{\omega \in H_i\right\}\right)$$

Поскольку уровни H_i не пересекаются, то лишь одно слагаемое не будет равно нулю: ω может принадлежать лишь одному уровню. В таком случае запись принимает свой изначальный вид без суммы (2.2)

$$f(\xi(\omega)) = f(a_i), \omega \in H_i$$

Замечаем, что $f(a_i) = d_i$, а это и есть то значение, которое принимает случайная величина \varkappa на уровне H_i

$$f(\xi(\omega)) = f(a_i) = d_i = \varkappa(\omega), \omega \in H_i$$

Поскольку мы не привязывались к конкретным i и конкретным $\omega,$ то получаем желаемое равенство

$$\varkappa = f(\xi)$$

Отсюда делаем вывод, что случайной величине \varkappa необходимо и достаточно быть функцией случайной величины ξ , чтобы быть измеримой относительно σ -алгебры, порождённой случайной величиной ξ .

2.4 Условное математическое ожидание

Имеется произвольная случайная величина η , интегрируемая с квадратом. Нужно найти случайную величину $\tilde{\eta}$ которая измерима в $\sigma(\xi)$ и ближайшая в среднем квадратическом к η .

2.4.1 Проекция вектора

Для наглядности начнём с геометрической интерпретации задачи. Если представить η как вектор в некоем пространстве \mathfrak{L} , а $\sigma(\xi)$ как подпространство пространства \mathfrak{L} , то $\tilde{\eta}$ будет ни что иное, как проекция случайной величины η на пространство $\sigma(\xi)$.

Отдохнём от случайных величин и вспомним геометрию.

Имеется точка x в пространстве L'. Мы ищем такую точку y в подпространстве $L \subset L'$, что расстояние между x и y минимальное. Значит, надо опустить перпендикуляр от y на L.

У нас есть e_1, e_2, \ldots, e_n — ортонормированный базис в L, тогда y можно найти по формуле

$$y = \sum_{k=1}^{n} (x, e_k) \cdot e_k$$
 (2.3)

Потому что $y \in L$ должен лежать в пространстве L по условию, а это значит, что он должен быть линейной комбинацией базисных векторов e_1, e_2, \ldots, e_n и это очевидно выполняется

Также разностью x-y должен быть вектор, перпендикулярный пространству L. То есть, скалярное произведение этой разности с любым вектором z из пространства L должно равняться нулю

$$(x-y) \perp L \Leftrightarrow \forall z \in L : (x-y,z) = 0$$

Вследствие линейности скалярного произведения можно переписать это условие иначе

$$\begin{cases} \forall z \in L : (x-y,z) = 0 \\ (a+b,c) = (a,c) + (b,c) \end{cases} \Rightarrow \forall z \in L : (x,z) = (y,z)$$

Покажем, что и это выполняется. z является линейной комбинацией базисных векторов. Запишем это

$$z = \sum_{k=1}^{n} \beta_k \cdot e_k$$

В таком случае скалярное произведение (x, z) будет таким

$$(x,z) = \sum_{k=1}^{n} \beta_k \cdot (x, e_k)$$

 ${
m C}$ произведением (y,x) придётся чуть-чуть повозиться

$$(y,x) = \left(\sum_{k=1}^{n} (x, e_k) \cdot e_k, \sum_{k=1}^{n} \beta_k \cdot e_k\right) = \sum_{k=1}^{n} (x, e_k) \cdot \beta_k$$

Как видим, суммы равны, а значит, проекция x на L найдена верно.

2.4.2 Проекция случайной величины

Возьмём L — множество всех случайных величин, которые измеримы относительно $\sigma(\xi)$.

$$L \ni \sum_{k=1}^{n} c_k \cdot \mathbb{1}_{H_k}, c_k \in \mathbb{R}$$

Но что же взять в качестве ортонормированного базиса? По внешнему виду элементов пространства L кажется, что это $\mathbb{1}_{H_k}$. В качестве скалярного произведения случайных величин возьмём математическое ожидание произведения.

Оказывается, H_k действительно ортогональны

$$k_1 \neq k_2 \Rightarrow H_{k_1} \cap H_{k_2} = \emptyset \Rightarrow M\left(\mathbb{1}_{H_{k_1}} \cdot \mathbb{1}_{H_{k_1}}\right) = 0$$

Теперь нужно нормировать эти базисные вектора, а для этого их надо поделить на их нормы. В нашем пространстве норма порождена скалярным произведением, то есть

$$||x|| = \sqrt{(x,x)} = \sqrt{M(x \cdot x)} = \sqrt{M(x^2)}, x \in L$$

Теперь у нас есть всё необходимое для того, чтобы представить ортонормированный базис. Начнём преобразования H_k

$$e_k = \frac{\mathbb{1}_{H_k}}{\sqrt{M\left(\mathbb{1}_{H_k}\right)^2}}$$

Поскольку индикатор может принимать лишь одно из двух значений 0 или 1, а их квадраты равны им самим, то в формуле квадрат тоже можно убрать

$$e_k = \frac{\mathbb{1}_{H_k}}{\sqrt{M\mathbb{1}_{H_k}}}$$

Также помним, что математическое ожидание в знаменателе есть ни что иное, как вероятность события H_k , и теперь у нас есть красивый ортонормированный базис

$$e_k = \frac{\mathbb{1}_{H_k}}{\sqrt{\mathbb{P}(H_k)}} \tag{2.4}$$

Идём дальше, ищем проекцию. Вспомним снова пример с векторами (2.3)

$$y = \sum_{k=1}^{n} (x, e_k) \cdot e_k$$

Если заменить y на $\tilde{\eta},$ а x на $\eta,$ то получаем следующую картину, имеющую непосредственное отношение к задаче

$$\tilde{\eta} = \sum_{k=1}^{n} (\eta, e_k) \cdot e_k$$

Осталось заменить e_k на то, что получили выше (2.4)

$$\tilde{\eta} = \sum_{k=1}^{n} \left(\eta, \frac{\mathbb{1}_{H_k}}{\sqrt{\mathbb{P}(H_k)}} \right) \cdot \frac{\mathbb{1}_{H_k}}{\sqrt{\mathbb{P}(H_k)}}$$

Заменяем скалярное произведение на математическое ожидание произведения и получаем то, с чем можно дальше работать, не отвлекаясь на геометрию

$$\tilde{\eta} = \sum_{k=1}^{n} M\left(\eta \cdot \frac{\mathbbm{1}_{H_k}}{\sqrt{\mathbb{P}\left(H_k\right)}}\right) \cdot \frac{\mathbbm{1}_{H_k}}{\sqrt{\mathbb{P}\left(H_k\right)}}$$

Поскольку вероятность $\mathbb{P}\left(H_{k}\right)$ — константа, то её можно вынести за математическое ожидание

$$\tilde{\eta} = \sum_{k=1}^{n} \frac{M\left(\eta \cdot \mathbbm{1}_{H_{k}}\right)}{\sqrt{\mathbb{P}\left(H_{k}\right)}} \cdot \frac{\mathbbm{1}_{H_{k}}}{\sqrt{\mathbb{P}\left(H_{k}\right)}}$$

Произведения корней вероятности даёт саму вероятность. Теперь у нас есть красивая формула для проекции случайной величины

$$\tilde{\eta} = \sum_{k=1}^{n} \frac{M(\eta \cdot \mathbb{1}_{H_k})}{\mathbb{P}(H_k)} \cdot \mathbb{1}_{H_k}$$
(2.5)

На что стоит обратить внимание в этой формуле:

- 1. $\tilde{\eta}$ случайная величина, так как индикатор вне математического ожидания никуда не девается и результат суммы будет зависеть от произошедшего ω , а точнее от того, какому уровню H_k оно принадлежит
- 2. Когда ω принадлежит H_k , то результатом суммы будет среднее значение случайной величины η на событии H_k

Если с первым пунктом всё очевидно, то небольшое пояснение ко второму не помешает.

Нужно показать, что k-я "координата" случайной величины $\tilde{\eta}$ действительно даёт среднее значение случайной величины η на событии H_k

$$\frac{M\left(\eta\cdot\mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)}$$

Начнём с определения математического ожидания

$$M(\eta \cdot \mathbb{1}_{H_k}) = \int_{\Omega} \mathbb{P}(d\omega) \ \eta(\omega) \cdot \mathbb{1}_{H_k} \cdot =$$

$$= \int_{H_k} \mathbb{P}(d\omega) \ \eta(\omega) + \int_{\Omega \setminus H_k} \mathbb{P}(d\omega) \ 0.$$
(2.6)

Видим математическое ожидание случайной величины, которая гарантированно принимает нулевое значение на множестве $\Omega \setminus H_k$, что в свою очередь искажает желаемую картину и притягивает результат к нулю с силой, которая пропорциональна $\mathbb{P}\left(\Omega \setminus H_k\right)$. То есть, "вес" каждого ненулевого значения случайной величины уменьшился.

Почему так происходит? Потому что вероятность события H_k в общем случае не равна единице. Если ввести новую меру $\mathbb{P}_k(A) = \frac{\mathbb{P}(A)}{\mathbb{P}(H_k)}$, то наступит гармония, а вероятность $\mathbb{P}_k(H_k)$ будет равна единице.

Из контекста понятно, что нигде кроме как в интеграле по событию H_k эта мера использоваться не будет, поэтому она будет колебаться в пределах [0;1], но строгости ради введём небольшую поправку (и увидим, что не напрасно)

$$\mathbb{P}_{k}(A) = \frac{\mathbb{P}(A \cap H_{k})}{\mathbb{P}(H_{k})}$$

Видим условную вероятность, а значит, мы на правильном пути! Логично, что в поисках условного математического ожидания должна была встретиться условная вероятность

$$\mathbb{P}_{k}\left(A\right) = \frac{\mathbb{P}\left(A \cap H_{k}\right)}{\mathbb{P}\left(H_{k}\right)} = \mathbb{P}\left(A \mid H_{k}\right)$$

Теперь математическое ожидание (2.6) принимает несколько иной вид

$$M\left(\eta \cdot \mathbb{1}_{H_{k}}\right) = \int_{H_{k}} \mathbb{P}\left(d\omega \mid H_{k}\right) \, \eta\left(\omega\right) \cdot \mathbb{P}\left(H_{k}\right)$$

Тут уже уровень H_k играет роль целого множества элементарных исходов, его мера $\mathbb{P}(H_k \mid H_k)$ равна единице, а мы получаем действительно среднее значение случайной величины η на множестве H_k , умноженное на вероятность $\mathbb{P}(H_k)$. Значит, осталось лишь поделить обе части на $\mathbb{P}(H_k)$

$$\frac{M\left(\eta\cdot\mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)}=\int\limits_{H_{k}}\mathbb{P}\left(d\omega\mid H_{k}\right)\,\eta\left(\omega\right)$$

Определение 2.4.1 (Условное математическое ожидание случайной величины относительно случайного события). Условное математическое ожидание случайной величины ξ относительно события A [2, стр. 68] обозначается $M(\xi \mid A)$ и считается по формуле

$$M(\xi \mid A) = \frac{M(\xi \cdot \mathbb{1}_A)}{\mathbb{P}(A)} = \int_A \mathbb{P}(d\omega \mid A) \ \xi(\omega)$$

Пользуясь только что введённым обозначением, можно более красиво переписать формулу (2.5) для получения проекции случайной величины η на σ -алгебру, порождённой уровнями H_1, H_2, \ldots, H_n

$$\tilde{\eta} = \sum_{k=1}^{n} M(\eta \mid H_k) \cdot \mathbb{1}_{H_k}$$

Забегая наперёд, введём определение частного случая условного математического ожидания случайной величины относительно σ -алгебры, чтобы обратить внимание на этот важный момент.

Определение 2.4.2 (Условное математическое ожидание случайной величины относительно сигма-алгебры, порождённой случайной величиной, принимающей конечное количество значений). Есть σ -алгебра \mathfrak{F}_1 , разбитая

на n уровней H_1, H_2, \ldots, H_n . Тогда условное математическое ожидание случайной величины η относительно этой σ -алгебры — случайная величина, которая обозначается $M(\eta \mid \mathfrak{F}_1)$ и вычисляется по формуле

$$M(\eta \mid \mathfrak{F}_1) = \sum_{k=1}^{n} \frac{M(\eta \cdot \mathbb{1}_{H_k})}{\mathbb{P}(H_k)} \cdot \mathbb{1}_{H_k}$$

Замечание 12. У нас есть определения условного математического ожидания относительно σ -алгебры $\mathfrak F$ и относительно случайного события А. Из контекста будет ясно, какое именно определение используется, поэтому путаницы возникнуть не должно.

Например, последнее определение может выглядеть немного странно

$$M(\eta \mid \mathfrak{F}_1) = \sum_{k=1}^{n} M(\eta \mid H_k) \cdot \mathbb{1}_{H_k}$$

Зато при более детальном рассмотрении из самой записи очевиден её смысл: условное математическое ожидание относительно σ -алгебры — вектор, для получения которого нужно умножить проекции на базисные векторы. Ведь $M(\eta \mid H_k)$ — ни что иное, как проекция вектора (случайной величины) η на ось (уровень) H_k , также эта величина является скаляром, как и проекция вектора на ось.

Лемма 2.4.1 (Равенство скалярных произведений для конечной сигма-алгебры). Для случайной величины η и её проекции $\tilde{\eta}$ на σ -алгебру \mathfrak{F}_{ξ} , порождённую случайной величиной ξ , принимающей конечное количество значений, выполняется равенство скалярных произведений

$$\forall A \in \mathfrak{F}_{\mathcal{E}} : M(\tilde{\eta} \cdot \mathbb{1}_A) = M(\eta \cdot \mathbb{1}_A) \tag{2.7}$$

 \mathcal{A} оказательство. Для начала распишем $\tilde{\eta}$ по определению

$$M(\tilde{\eta} \cdot \mathbb{1}_A) = M\left(\sum_{k=1}^n \frac{M(\eta \cdot \mathbb{1}_{H_k})}{\mathbb{P}(H_k)} \cdot \mathbb{1}_{H_k} \cdot \mathbb{1}_A\right)$$

Произведение индикаторов $\mathbb{1}_{H_k}$ и $\mathbb{1}_A$ — индикатор пересечения $\mathbb{1}_{H_k\cap A}$. Воспользуемся линейностью математического ожидания, не забывая, что дробь в каждом слагаемом — константа и выносится за знак математического ожидания

$$M\left(\sum_{k=1}^{n} \frac{M\left(\eta \cdot \mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)} \cdot \mathbb{1}_{H_{k}} \cdot \mathbb{1}_{A}\right) = \sum_{k=1}^{n} \frac{M\left(\eta \cdot \mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)} \cdot M\left(\mathbb{1}_{H_{k} \cap A}\right)$$

Помним, что математическое ожидание индикатора — вероятность

$$\sum_{k=1}^{n} \frac{M\left(\eta \cdot \mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)} \cdot M\left(\mathbb{1}_{H_{k}\cap A}\right) = \sum_{k=1}^{n} \frac{M\left(\eta \cdot \mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)} \cdot \mathbb{P}\left(H_{k}\cap A\right)$$

Замечаем условную вероятность

$$\sum_{k=1}^{n} \frac{M(\eta \cdot \mathbb{1}_{H_{k}})}{\mathbb{P}(H_{k})} \cdot \mathbb{P}(H_{k} \cap A) = \sum_{k=1}^{n} M(\eta \cdot \mathbb{1}_{H_{k}}) \cdot \frac{\mathbb{P}(H_{k} \cap A)}{\mathbb{P}(H_{k})} = \sum_{k=1}^{n} M(\eta \cdot \mathbb{1}_{H_{k}}) \cdot \mathbb{P}(A \mid H_{k})$$

Поскольку A принадлежит множеству случайных событий \mathfrak{F}_{ξ} , то условная вероятность $\mathbb{P}(A\mid H_k)$ равна либо нулю, либо единице, поскольку A либо включает в себя уровень H_k , либо не пересекается с ним. То есть, получился индикатор $\mathbb{1}(H_k\subseteq A)$. А этот индикатор говорит о том, что теперь надо суммировать лишь по тем уровням, которые являются частью события A, а дальше можно смело воспользоваться линейностью математического ожидания

$$\sum_{k=1}^{n} M(\eta \cdot \mathbb{1}_{H_{k}}) \cdot \mathbb{P}(A \mid H_{k}) = \sum_{k=1}^{n} M(\eta \cdot \mathbb{1}_{H_{k}}) \cdot \mathbb{1}(H_{k} \subseteq A) =$$

$$= \sum_{H_{k} \subseteq A} M(\eta \cdot \mathbb{1}_{H_{k}}) = M\left(\sum_{H_{k} \subseteq A} \eta \cdot \mathbb{1}_{H_{k}}\right)$$

Далее мы имеем полное математическое и моральное право вынести η за знак суммы. Если с математикой всё очевидно (работает закон дистрибутивности), то напомню о морально-этической стороне дела: нам нужно, пройтись по всем возможным индикаторам $\mathbbm{1}_{H_k}$, из которых лишь один сработает (будет равен единице, а не нулю), поэтому сумма нужна лишь для того, чтобы не писать в конце каждой строчки "для тех ω , что входят в H_k " (помним, что случайная величина и индикатор — функции от элементарного события ω)

$$M\left(\sum_{H_{k}\subseteq A}\eta\cdot\mathbb{1}_{H_{k}}\right)=M\left(\eta\left(\omega\right)\cdot\sum_{H_{k}\subseteq A}\mathbb{1}_{H_{k}}\left(\omega\right)\right)$$

Сумма индикаторов непересекающихся событий — индикатор их объединения, которое является множеством A. Не забываем, что оно может состоять из объединений уровней и только из них (или же быть пустым)

$$M\left(\eta \cdot \sum_{H_k \subseteq A} \mathbb{1}_{H_k}\right) = M\left(\eta \cdot \mathbb{1}_A\right)$$

Значит, равенство (2.7) выполняется.

Замечание 13. В связи с выполнением равенства скалярных произведений можем сделать вывод, что математическое ожидание случайной величины и её проекции тоже равны. Это нетрудно показать, установив А равным всему множеству элементарных исходов (индикатор в таком случае станет просто тождественной единицей)

$$M(\eta) = M(\eta \cdot \mathbb{1}_{\Omega}) = M(\tilde{\eta} \cdot \mathbb{1}_{\Omega}) = M(\tilde{\eta})$$

2.4.3 Условное математическое ожидание

Введём же общее определение для условного математического ожидания случайной величины относительно σ -алгебры

Определение 2.4.3 (Условное математическое ожидание случайной величины относительно сигма-алгебры). Условным математическим ожиданием случайной величины η относительно σ -алгебры \mathfrak{F}_1 называется такая случайная величина $\tilde{\eta}$, что

- 1. Случайная величина $\tilde{\eta}$ измерима относительно σ -алгебры \mathfrak{F}_1
- 2. Выполняется равенство скалярных произведений

$$\forall A \in \mathfrak{F}_1 : M(\tilde{\eta} \cdot \mathbb{1}_A) = M(\eta \cdot \mathbb{1}_A)$$

Обозначение $\tilde{\eta} = M(\eta \mid \mathfrak{F}_1)$

Условное математическое ожидание случайной величины η относительно σ -алгебры, порождённой случайной величиной ξ , будем обозначать $M\left(\eta \mid \sigma\left(\xi\right)\right)$, а более кратко $M\left(\eta \mid \xi\right)$

Попробуем обобщить определение условного математического ожидания, чтобы обладать универсальной формулой, из которой можно делать какие-то выводы. Начнём с того, что у нас уже есть

$$M\left(\eta\mid\mathfrak{F}_{\xi}\right)=\sum_{k=1}^{n}M\left(\eta\mid H_{k}\right)\cdot\mathbb{1}_{H_{k}}$$

Множество уровня H_k — прообраз одного из значений случайной величины ξ , которой порождена σ -алгебра \mathfrak{F}_{ξ} . Если назвать эти значения a_1, a_2, \ldots, a_n , то запись примет следующий вид

$$M(\eta \mid \sigma(\xi)) = \sum_{k=1}^{n} M(\eta \mid \xi^{-1}(a_k)) \cdot \mathbb{1}(\xi^{-1}(a_k))$$
 (2.8)

Воспользовавшись альтернативной записью прообраза

$$\xi^{-1}(a_k) = \{ \omega \mid \xi(\omega) = a_k \} = \{ \xi = a_k \}$$

Перепишем формулу (2.8) с той поправкой, что позволим себе не писать фигурные скобки для удобства и красоты

$$M(\eta \mid \sigma(\xi)) = \sum_{k=1}^{n} M(\eta \mid \xi = a_k) \cdot \mathbb{1}_{\xi = a_k}$$

Теперь введём функцию $\varphi^{\eta}\left(x\right)=M\left(\eta\mid\xi=x\right)$ и условное математическое ожидание примет следующий вид

$$M(\eta \mid \xi) = \sum_{k=1}^{n} \varphi^{\eta}(a_k) \cdot \mathbb{1}_{\xi = a_k}$$

Вновь вспоминаем роль суммы и индикаторов и видим, что условное математическое ожидание в нашей формуле принимает значение $\varphi^{\eta}(x)$ в зависимости от того, какое значение приняла случайная величина $\xi(\omega)$. То есть, можно переписать равенство следующим образом

$$M(\eta \mid \xi) = \varphi^{\eta}(a_k) : \xi(\omega) = a_k$$

То есть, можно просто подставить значение случайной величины ξ в качестве аргумента функции φ^{η} и получим условное математическое ожидание

$$M\left(\eta \mid \xi\right) = \varphi^{\eta}\left(\xi\right)$$

Расписывать эту функцию не имеет смысла, так как получим нечто несуразное

 $\varphi^{\eta}(\xi) \equiv M(\eta \mid \xi = \xi)$

Следует записывать следующим образом

$$\varphi^{\eta}\left(\xi\right) = M\left(\eta \mid \xi = x\right)|_{x=\xi}$$

Покажем, что такая формула вычисления условного математического ожидания подходит для общего случая,* и проверить, будет ли случайная величина $\varphi^{\eta}(\xi)$ условным математическим ожиданием.

Лемма 2.4.2 (Равенство скалярных произведений в общем случае). В общем случае функция

$$\varphi^{\eta}\left(\xi\right) = M\left(\eta \mid \xi = x\right)|_{x=\xi}$$

является условным математическим ожиданием случайной величины η относительно σ -алгебры, порождённой случайной величиной ξ

$$M(\eta \mid \sigma(\xi)) = \varphi^{\eta}(\xi)$$

Доказатель ство. Нужно доказать то, что выполняются оба свойства условного математического ожидания.

То, что $\varphi^{\eta}(\xi)$ измерима относительно $\sigma(\xi)$, очевидно из определения: $\varphi^{\eta}(\xi)$ является функцией случайной величины ξ , а это и есть измеримость. Дальше придётся немного повозиться.

$$\forall A \in \sigma(\xi) : M(\varphi^{\eta}(\xi) \cdot \mathbb{1}_A) = M(\eta \cdot \mathbb{1}_A)$$

Следуем определению, пока что ничего очевидного нет кроме надежды на то, что была выведена достаточно общая формула, которая должна работать

$$M(\varphi^{\eta}(\xi) \cdot \mathbb{1}_{A}) = \int_{\Omega} \varphi^{\eta}(\xi) \cdot \mathbb{1}_{A} \cdot d\mathbb{P}$$

Применим индикатор и будем интегрировать не по всему множеству элементарных исходов, а лишь по событию A, а также в явном виде покажем элементарный исход ω , так как сейчас с ним надо будет поработать основательно

$$\int_{\Omega} \varphi^{\eta}(\xi) \cdot \mathbb{1}_{A} \cdot d\mathbb{P} = \int_{A} \varphi^{\eta}(\xi(\omega)) \, \mathbb{P}(d\omega)$$
 (2.9)

Теперь нужно немного остановиться и подумать, что же делать дальше. Немного выше оказалось, что сама по себе запись $\varphi^{\eta}\left(\xi\right)$ не даёт ничего полезного. Копнём немно глубже и посмотрим на то, что есть у нас. Значение

 $^{^*}$ Так как формула была выведена из условного математического ожидания относительно σ -алгебры, порождённой случайной величиной, принимающей конечное количество значений, то справедливость формулы для этого случая доказывать уже нет нужды

случайной величины использовалось лишь для восстановления случайного события, которому принадлежит произошедший элементарный исход ω^{\dagger} . То есть, мы знали, чему равна случайная величина, но не знали, какое именно событие произошло, зато могли определить, какому уровню принадлежит произошедшее событие. Тут же у нас есть интеграл и мы проходим по каждому мельчайшему событию $d\omega$. Вспомним, чему равна $\varphi^{\eta}(x)$

$$\varphi^{\eta}(x) = M(\eta \mid \xi = x)$$

А теперь распишем условное математическое ожидание

$$\varphi^{\eta}(x) = M(\eta \mid \xi = x) = \frac{M(\eta \cdot \mathbb{1}_{\{\xi = x\}})}{\mathbb{P}\{\xi = x\}}$$

В общем случае для непрерывных случайных величин такая запись не имеет смысла, но мы как раз рассматриваем очень маленькие значения, а усложнять нет желания. Поэтому просто подставляем получившееся выражение в интеграл (2.9)

$$\int_{A} \varphi^{\eta} \left(\xi \left(\omega \right) \right) \mathbb{P} \left(d\omega \right) = \int_{A} \frac{M \left(\eta \cdot \mathbb{1}_{\left\{ \xi = x \right\}} \right)}{\mathbb{P} \left\{ \xi = x \right\}} \mathbb{P} \left(d\omega \right) \tag{2.10}$$

Дальше происходит магия, которую можно трактовать по-разному

Формулировка 1: Воспользовавшись вышесказанным, заменим событие $\{\xi = x\}$ на $d\omega$ и продолжим колдовать

$$\int_{A} \frac{M\left(\eta \cdot \mathbb{1}_{\left\{\xi = x\right\}}\right)}{\mathbb{P}\left\{\xi = x\right\}} \, \mathbb{P}\left(d\omega\right) = \int_{A} \frac{M\left(\eta \cdot \mathbb{1}_{d\omega}\right)}{\mathbb{P}\left(d\omega\right)} \, \mathbb{P}\left(d\omega\right)$$

Вероятности сокращаются, хоть это и немного смущает, а $d\omega$ находится в индикаторе, что ещё больше нагнетает обстановку. Учтём внесённые изменения и перепишем математическое ожидание через интеграл

$$\int_{A} \frac{M\left(\eta \cdot \mathbb{1}_{d\omega}\right)}{\mathbb{P}\left(d\omega\right)} \, \mathbb{P}\left(d\omega\right) = \int_{A} \int_{\Omega} \eta \cdot \mathbb{1}_{d\omega} \cdot \mathbb{P}\left(d\tilde{\omega}\right)$$

Не путаемся: $d\omega$ принадлежит внешнему интегралу, а $d\tilde{\omega}$ внутреннему. Индикатор упрощает нашу задачу, сужая пределы интегрирования внутреннего интеграла до маленького события $d\omega$

$$\int\limits_{A}\int\limits_{\Omega}\eta\cdot\mathbb{1}_{d\omega}\cdot\mathbb{P}\left(d\tilde{\omega}\right)=\int\limits_{A}\int\limits_{d\omega}\eta\left(\tilde{\omega}\right)\,\mathbb{P}\left(d\tilde{\omega}\right)$$

$$H_t = \xi^{-1}(a_t) = \{\omega \mid \xi(\omega) = a_t\}$$

[†]Ведь именно по значению случайной величины мы и находили уровни, элементарные исходы которых для нас неразличимы внутри одного множества уровня

Поскольку событие $d\omega$ и без того маленькое, дробить его на более мизерные $d\tilde{\omega}$ смысла нет, а это значит, что внутренний интеграл просто уничтожается и остаётся произведение случайной величины η на вероятность события $d\omega$

$$\int_{d\omega} \eta\left(\tilde{\omega}\right) \, \mathbb{P}\left(d\tilde{\omega}\right) = \eta\left(\omega\right) \cdot \mathbb{P}\left(d\omega\right)$$

Формулировка 2: Если посмотреть на исходный двойной интеграл, то можно увидеть условное математическое ожидание η относительно события $\{\xi=x\}=d\omega$

$$\int_{A} \frac{M\left(\eta \cdot \mathbb{1}_{\left\{\xi=x\right\}}\right)}{\mathbb{P}\left\{\xi=x\right\}} \, \mathbb{P}\left(d\omega\right) = \int_{A} M\left(\eta \mid d\omega\right) \, \mathbb{P}\left(d\omega\right)$$

Если определить $d\omega$ как случайное событие, на котором случайная величина η принимает одно и то же значение почти всюду, то математическое ожидание равно значению η при появлении почти любого события из $d\omega^{\ddagger}$ (если значение на промежутке $d\omega$ — константа, то очевидно, что среднее значение будет равно ей же).

$$\int_{A} M(\eta \mid d\omega) \ \mathbb{P}(d\omega) = \int_{A} \eta \, \mathbb{P}(d\omega)$$

С этим моментом разобрались, вернёмся же к нашему двойному интегралу (2.10). Получаем такой вот результат

$$\int_{A} \frac{M\left(\eta \cdot \mathbb{1}_{\{\xi=x\}}\right)}{\mathbb{P}\left\{\xi=x\right\}} \, \mathbb{P}\left(d\omega\right) = \int_{A} \eta \, \mathbb{P}\left(d\omega\right)$$

Но ведь это и есть искомое математическое ожидание! Значит, свойство доказано, формула верна

$$\int_{A} \eta \mathbb{P}(d\omega) = \int_{\Omega} \eta \cdot \mathbb{1}_{A} \cdot \mathbb{P}(d\omega) = M(\eta \cdot \mathbb{1}_{A})$$

Теперь вернёмся к менее абстрактным вещам и посмотрим, как выглядит условное математическое ожидание, когда случайные величины ξ и η имеют совместную плотность распределения

$$\mathbb{P}\left\{ \left(\xi,\eta\right)\in\Delta\right\} =\iint\limits_{\Delta}p\left(x,y\right)dxdy$$

[‡]Нам достаточно постоянства значения $\xi(\omega)$ почти всюду на событии $d\omega$, так как интеграл Лебега простой функции (функции, что принимает конечное число значений [3, стр. 53]) — сумма значений функции, умноженных на меры соответствующих им прообразов [3, стр. 69]; в противном случае результатом будет наибольшее значение из интегралов Лебега всех простых функций, не превышающих данную в каждой точке. А это значит, что, если и будут отклонения от основного значения функции ξ на событии $d\omega$, то они будут уничтожаться мерой своих прообразов, равными нулю (в связи с тем, что функция $\xi(\omega)$ равна одному и тому же значению почти всюду на ω)

В таком случае компонента ξ имеет плотность r

$$r(x) = \int_{\mathbb{D}} p(x, y) dy$$

Компонента η имеет плотность q

$$q(y) = \int_{\mathbb{R}} p(x, y) dx$$

Уточним определение функции $\varphi^{\eta}\left(x\right)$ для данного случая. Вот первоначальный вариант

$$\varphi^{\eta}\left(x\right)=M\left(\eta\mid\xi=x\right)=\frac{M\left(\eta\cdot\mathbbm{1}\left(\xi=x\right)\right)}{\mathbb{P}\left\{ \xi=x\right\} }$$

В данном (непрерывном) случае вероятность события $\mathbb{P}\left\{\xi=x\right\}$ является плотностью случайной величины ξ в точке x

$$\mathbb{P}\left\{ \xi = x \right\} = r\left(x \right)$$

Математическое ожидание случайной величины η , умноженной на индикатор $\mathbbm{1}(\xi=x)$, есть ни что иное как математическое ожидание η при фиксированном $\xi=x$

$$M(\eta \cdot \mathbb{1}(\xi = x)) = \int_{\mathbb{R}} y \cdot p(x, y) \cdot dy$$

Теперь у нас есть конкретная формула для $\varphi^{\eta}(x)$ для случая непрерывных случайных величин с общей плотностью распределения

$$\varphi^{\eta}(x) = \frac{\int\limits_{\mathbb{R}} y \cdot p(x, y) \cdot dy}{r(x)} = \frac{\int\limits_{\mathbb{R}} y \cdot p(x, y) \cdot dy}{\int\limits_{\mathbb{D}} p(x, y) dy}$$
(2.11)

Докажем снова, что $\varphi^{\eta}(\xi)$ является условным математическим ожиданием случайной величины η относительно σ -алгебры, порождённой случайной величиной ξ . Чтобы не было скучно, будем доказывать несколько иначе, чем ранее.

Лемма 2.4.3 (Равенство скалярных произведений для случайных величин с совместной плотностью). Пускай имеются две случайные величины (ξ, η) с совместной плотностью p(x,y). Тогда функция

$$\varphi^{\eta}\left(\xi\right) = \frac{\int\limits_{\mathbb{R}} y \cdot p\left(x, y\right) \cdot dy}{\int\limits_{\mathbb{R}} p\left(x, y\right) dy} \bigg|_{x=\xi}$$

Является условным математическим ожиданием $M\left(\eta\mid\xi\right)$

Доказательство. Первое свойство снова очевидно, поэтому надо доказать

$$\forall A \in \sigma(\xi) : M(\varphi^{\eta}(\xi) \cdot \mathbb{1}_A) = M(\eta \cdot \mathbb{1}_A) \tag{2.12}$$

У нас есть совместная плотность и мы хотим посчитать математическое ожидание, пользуясь именно ею. Для этого превратим индикатор $\mathbbm{1}$ ($\omega \in A$) в функцию случайной величины ξ . Поскольку любое событие A принадлежит $\sigma(\xi)$, то оно представимо в виде $\xi^{-1}(\Delta)$, $\Delta \in \mathfrak{B}$. Перепишем индикатор следующим образом: $\mathbbm{1}$ ($\omega \in A$) = $\mathbbm{1}$ ($\xi \in \Delta$). И вот теперь мы готовы к тому, чтобы записать определение математического ожидания

$$M\left(\varphi^{\eta}\left(\xi\right)\cdot\mathbb{1}_{A}\right)=\int\limits_{\mathbb{R}}\int\limits_{\mathbb{R}}\varphi^{\eta}\left(x\right)\cdot\mathbb{1}\left(x\in\Delta\right)\cdot p\left(x,y\right)\cdot\,dx\cdot\,dy$$

От y зависит лишь совместная плотность, а интеграл от неё по всей оси y является плотностью распределения ξ . То есть, интеграл по y уходит, а вместо p(x,y) появляется r(x). Также учтём индикатор и сузим область интегрирования с $\mathbb R$ до Δ

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \varphi^{\eta}(x) \cdot \mathbb{1}(x \in \Delta) \cdot p(x, y) \cdot dx \cdot dy = \int_{\Delta} \varphi^{\eta}(x) \cdot r(x) \cdot dx$$

Дальше распишем функцию φ^{η} , пользуясь формулой (2.11)

$$\int_{\Delta} \varphi^{\eta}(x) \cdot r(x) \cdot dx = \int_{\Delta} \left(\frac{\int_{\mathbb{R}} y \cdot p(x, y) \cdot dy}{r(x)} \cdot r(x) \right) dx$$

Сократим одинаковые плотности и получим интересный двойной интеграл

$$\int\limits_{\Delta} \left(\frac{\int\limits_{\mathbb{R}} y \cdot p\left(x,y\right) \cdot \, dy}{r\left(x\right)} \cdot r\left(x\right) \right) \, dx = \int\limits_{\Delta} \int\limits_{\mathbb{R}} y \cdot p\left(x,y\right) \cdot \, dy \cdot \, dx$$

Вернём индикатор обратно в интеграл

$$\int\limits_{\Delta}\int\limits_{\mathbb{D}}y\cdot p\left(x,y\right)\cdot\,dy\cdot\,dx=\int\limits_{\mathbb{D}}\int\limits_{\mathbb{D}}y\cdot\mathbb{1}\left(x\in\Delta\right)\cdot p\left(x,y\right)\cdot\,dy\cdot\,dx$$

Видим, что это и есть то математическое ожидание, которое нам нужно

$$\int\limits_{\mathbb{R}}\int\limits_{\mathbb{R}}y\cdot\mathbbm{1}\left(x\in\Delta\right)\cdot p\left(x,y\right)\cdot\,dy\cdot\,dx=M\left(\eta\cdot\mathbbm{1}_{\xi\in\Delta}\right)=M\left(\eta\cdot\mathbbm{1}_{A}\right)$$

Это значит, что тождество доказано и условное математическое ожидание для случайных величин с совместной плотностью считается с помощью

$$\varphi^{\eta}(x) = \frac{\int_{\mathbb{R}} y \cdot p(x, y) \cdot dy}{\int_{\mathbb{R}} p(x, y) dy}$$

По формуле

$$M\left(\eta\mid\xi\right)=\varphi^{\eta}\left(\xi\right)=\left.\varphi^{\eta}\left(x\right)\right|_{x=\xi}$$

Теорема 2.4.1 (Существование условного математического ожидания). Условное математическое ожидание существует всегда и единственное почти наверное

Доказательство. [1, стр. 142]

2.4.4 Свойства условного математического ожидания

Были даны определения условного математического ожидания для разных случай, теперь настало время привести основные свойства, которые позволят облегчить процедуру вычисления.§

1. Формула полной вероятности [1, стр. 144]

$$MM(\eta \mid \mathfrak{F}_1) = M\eta$$

2. Условное математическое ожидание неотрицательной случайной величины неотрицательно почти наверное

$$\eta \geq 0 \Rightarrow M(\eta \mid \mathfrak{F}_1) \geq 0$$

3. Неравенство Йенсена. Если функция φ выпуклая вниз, то

$$\varphi\left(M\left(\eta\mid\mathfrak{F}_{1}\right)\right)\leq M\left(\varphi\left(\eta\right)\mid\mathfrak{F}_{1}\right)$$

4. Теорема о трёх перпендикулярах

$$\mathfrak{F}_2 \subset \mathfrak{F}_1 \Rightarrow M(M(\eta \mid \mathfrak{F}_1) \mid \mathfrak{F}_2) = M(\eta \mid \mathfrak{F}_2)$$

5. Если случайная величина η измерима относительно σ -алгебры \mathfrak{F}_1 , то её условное математическое ожидание равно ей самой

$$M(\eta \mid \mathfrak{F}_1) = \eta$$

6. Если случайная величина η измерима относительно \mathfrak{F}_1 , то для любой случайной величины ξ

$$M(\eta \cdot \xi \mid \mathfrak{F}_1) = \eta \cdot M(\xi \mid \mathfrak{F}_1)$$

7. Если η не зависит от \mathfrak{F}_1 , то её условное математическое ожидание равно простому математическому ожиданию

$$\forall \Delta \in \mathfrak{B}, A \in \mathfrak{F}_1 : \mathbb{P}\left(\{\eta \in \Delta\} \mid A\right) = \{\eta \in \Delta\} \Rightarrow M(\eta \mid \mathfrak{F}_1) = M\eta$$

8. Условное математическое ожидание линейно, сохраняется теорема Лебега о возможности предельного перехода под знаком условного математического ожидания [5, стр. 302]. В книге Ширяева это называется теоремой о сходимости под знаком условных ожиданий [4, стр. 272]

 $[\]S$ Также со свойствами и их доказательствами можно ознакомиться в книгах Ширяева [4, стр. 270] и Боровкова [1, стр. 143]

Литература

- [1] Боровков А. А. Математическая статистика. Санкт-Петербург: Лань, 2010. 705 с.
- [2] Боровков А. А. Теория Вероятностей. Москва: Эдиториал УРСС, 1999. 472 с.
- [3] Дороговцев А. Я. Элементы общей теории меры и интеграла. Киев: Выща школа. Головное издательство, 1989. 152 с.
- [4] Ширяев А. Н. Вероятность-1. Москва: МЦНМО, 2004. 520 с.
- [5] А. Н. Колмогоров С. В. Фомин. Элементы теории функций и функционального анализа. Москва: Наука, 1976. 543 с.

Предметный указатель

```
Сигма-алгебра, порождённая случай- выборочная дисперсия, 12
        ной величиной, 26
                                    выборочное среднее, 12
функция
                                    вклад выборки, 15
    правдоподобия, 14
    вариационного ряда, 26
функция распределения
    эмпирическая, 3
    неизвестная, 3
    выборочная, 3
гистограмма, 5
количество информации Фишера, 16
множество уровня, 28
неизвестный параметр, 8
неравенство
    Рао-Крамера, 16
оценка, 8
    эффективная, 18
    максимального правдоподобия, 21
    несмещённая, 10
   сильно состоятельная, 9
    состоятельная, 9
проекция
    случайной величины, 35
распределение
   экспоненциальное, 20
сигма-алгебра
    порождённая случайной величи-
        ной, 26
симметризация, 23
случайная величина
    измеримая относительно сигма-
        алгебры, 28
статистика, 8
теорема
    Колмогорова, 12
уравнение
   правдоподобия, 21
условное математическое ожидание,
        32, 36, 39
вариационный ряд, 22
```

Оглавление

1	Осн	ювы	3
	1.1	Методы оценок характеристик распределения наблюдаемых	
		случайных величин	3
		1.1.1 Эмпирическая функция распределения	3
		1.1.2 Гистограмма	4
		1.1.3 Оценка неизвестных параметров	8
		1.1.4 Выборочные оценки. Метод моментов	10
	1.2	Свойства оценок	12
		1.2.1 Неравенство Рао-Крамера	12
		1.2.2 Метод максимального правдоподобия	18
2	Достаточные статистики 23		
	2.1	Оптимальная оценка	23
	2.2		26
	2.3	Случайная величина, измеримая относительно σ -алгебры, по-	
			28
	2.4		32
			33
			34
		P V V	38
		2.4.4 Свойства условного математического ожидания	45