Medida

Sésar

1. Medidas exteriores

Definition 1. Sea X conjunto arbitrario. Una **medida exterior** en X es una aplicación $\mu^* : \mathcal{P}(X) \to [0, +\infty]$ tal que

- 1. $\mu^*(\emptyset) = 0$.
- 2. (Monotonía) $E \subseteq F \subseteq X \Rightarrow \mu^*(E) \le \mu^*(F)$
- 3. $(\sigma$ -Subaditividad) $\{E_i\}_{i\in\mathbb{N}}\subseteq\mathcal{P}(X)$ numerable $\Rightarrow \mu^*(\bigcup_{i\in\mathbb{N}}E_i)\leq\sum_{i=1}^\infty\mu^*(E_i)$.

De manera general, decimos que una aplicación $\eta: \mathcal{P}(X) \to [0, +\infty]$ es **subaditiva** si $\eta(E \cup F) \leq \eta(E) + \eta(F)$ y se puede demostrar mediante inducción que es equivalente a una desigualdad similar con un número finito de subconjuntos. El prefijo σ - sirve para indicar que una propiedad queremos extenderla a un conjunto numerable. Por otro lado, η se dice que es aditiva si $\eta(E \cup F) = \eta(E) + \eta(F)$ solo si $E \cap F = \varnothing$. Análogamente, se puede comprobar que esto es equivalente a tomar un conjunto finito de subconjuntos disjuntos y σ -aditiva es esta misma condición tomando una familia numerable de subconjuntos. Notemos pues que toda aplicación σ -aditiva es aditiva y toda aplicación σ -subaditiva es subaditiva. No tan obvio, toda aplicación aditiva es subaditiva. Esto es ya que $E \cup F = E \setminus F \cup E \cap F \cup F \setminus F$, por lo que $\eta(E \cup F) = \eta(E \setminus F) + \eta(E \cap F) + \eta(F \setminus E) \leq (\eta(E \setminus F) + \eta(E \cap F)) + (\eta(E \cap F) + \eta(F \setminus E)) = \eta(E) + \eta(F)$, y la igualdad se da si y solo si $E \cap F = 0$.

Remark 1. La medida exterior μ^* no tiene porqué ser σ -aditiva.

2. Sigma-álgebras

Definition 2. Sea X conjunto. Decimos que $\mathcal{A} \subseteq \mathcal{P}(X)$ es una σ -álgebra si

- 1. $\varnothing \in \mathcal{A}$.
- 2. $A \in \mathcal{A} \Rightarrow X \setminus A \in \mathcal{A}$.
- 3. $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A} \text{ numerable } \Rightarrow \bigcup_{i\in\mathbb{N}}A_i\in\mathcal{A}.$

Decimos que el par (X, A) es un **espacio medible**

Dicho en otras palabras, una σ -álgebra es una familia de subconjuntos que es cerrada bajo las operaciones del complementario y la unión numerable.

Remark 2. Notemos que por ser \mathcal{A} cerrada por el complemento, $X = X \setminus \emptyset \in \mathcal{A}$ y por la leyes de Morgan, la intersección numerable es cerrada en \mathcal{A} , es decir, $\bigcap_{i \in \mathbb{N}} A_i \in \mathcal{A}$ con $A_i \in \mathcal{A}$.

Example 1. Si X es un conjunto arbitrario, entonces $\{\emptyset, X\}$ y $\mathcal{P}(X)$ son σ -álgebras. Son respectivamente las σ -álgebras más pequeña y grande que se puede tomar en el conjunto X.

Lemma 1. La intersección arbitraria de σ -álgebra es una σ -álgebra.

Demostración. Sea $\{A_{i \in I}\}$ una familia de σ -álgebras en un conjunto X, donde I es un conjunto de índices arbitrario. En primer lugar, como $\emptyset \in \mathcal{A}_i$, entonces $\emptyset \in \bigcap \mathcal{A}_i$. Por otro lado, si $A \in \bigcap \mathcal{A}_i$, entonces $A \in \mathcal{A}_i$ para todo $i \in I$, y por tanto, $X \setminus A \in \mathcal{A}_i$, por lo que $X \setminus A \in \bigcap \mathcal{A}_i$. Finalmente, por la misma justificación se puede deducir que la unión numerable es cerrada en $\bigcap \mathcal{A}_i$.

Definition 3. Sea X conjunto y $\mathcal{F} \subseteq \mathcal{P}(X)$. Definimos la σ -álgebra generada por \mathcal{F} como

$$\sigma(\mathcal{F}) := \bigcap \{ \mathcal{A} \subseteq \mathcal{P}(X) \mid \mathcal{F} \subseteq \mathcal{A}, \ \mathcal{A} \ \sigma\text{-\'algebra} \}$$

Remark 3. Por el lema anterior, es directo observar que, en efecto, $\sigma(\mathcal{F})$ es una σ -álgebra.

Proposition 1. La familia $\sigma(\mathcal{F})$ es la σ -álgebra más pequeña que contiene a \mathcal{F} .

Demostración. En primer lugar, es fácil ver que $\mathcal{F} \subseteq \sigma(\mathcal{F})$. Además, es fácil ver que si \mathcal{A} es una σ -álgebra tal que $\mathcal{F} \subseteq \mathcal{A}$, entonces $\sigma(\mathcal{F}) \subseteq \mathcal{A}$.

Remark 4. Es trivial comprobar que si \mathcal{A} es una σ -álgebra, entonces $\sigma(\mathcal{A}) = \mathcal{A}$.

Definition 4. Sea (X, \mathcal{T}) un espacio topológico. Definimos la σ -álgebra de Borel como

$$\mathcal{B}(X) := \sigma(\mathcal{T}).$$

3. Medidas

Definition 5. Sea (X, A) un espacio medible. Una **medida** es una aplicación $\mu : A \to [0, +\infty]$ tal que

1.
$$\mu(\varnothing) = 0$$

2. $(\sigma$ -Aditividad) $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$ numerable y disjuntos $\Rightarrow \mu(\bigsqcup_{i\in\mathbb{N}}A_i)=\sum_{i=1}^{\infty}\mu(A_i)$. La tripla (X,\mathcal{A},μ) es un **espacio de medida**.

Decimos además que una medida $\mu: \mathcal{A} \to [0, +\infty]$ es finita si $\mu(X) < \infty$. Por otro lado, decimos que μ es σ -finita si existe una familia numerable $\{A_i\}_{i\in\mathcal{N}}\subseteq\mathcal{A}_{i}$ tal que $X=\bigcup_{i\in\mathbb{N}}A_i$ y $\mu(A_i)<\infty$ para todo $i\in\mathbb{N}$.

Example 2. Sea $(X, \mathcal{P}(X))$ espacio medible y definamos $\mu(A) = |A|$ si $A \subseteq X$ es finito y $\mu(B) = \infty$ si $B \subseteq X$ es infinito. Entonces μ es una medida conocida como la **medida de contar**. Notemos que la medida de contar μ es finita si y solo si X es finito y μ es σ -finita si y solo si X es numerable.

Lemma 2. Si $\{S_i\}_{i\in\mathbb{N}}\subseteq\mathcal{P}(X)$, entonces existe un $\{T_i\}_{i\in\mathbb{N}}\subseteq\mathcal{P}(X)$ de conjuntos disjuntos tal que $\bigcup S_i=\bigcup T_i$ y $T_i\subseteq S_i$. En

Demostración. Definammos $T_1 = S_1$ y $T_{i+1} = S_{i+1} \setminus \bigcup_{k=1}^i S_k$. Entonces por un lado es fácil observar que $T_i \subseteq S_i$. Por otro lado, notemos que $\bigsqcup_{i=1}^n T_i = \bigcup_{i=1}^n S_i$ y esto se puede demostrar de manera inductiva. Por tanto, como se cumple para todo $n \in \mathbb{N}$, tenemos que $\bigcup S_i = \bigcup T_i$. \square

Proposition 2. Toda medida es monótona y σ -subaditiva. Es decir:

- 1. Si $E, F \in \mathcal{A}$ y $E \subseteq F \Rightarrow \mu(E) \leq \mu(F)$.
- 2. $\mu(\bigcup_{i\in\mathbb{N}} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$.

Demostración. En primer lugar, si $E \subseteq F$, entonces $F = E \sqcup F \setminus E$. Como $F \setminus E = F \cap X \setminus E \in \mathcal{A}$, entonces $\mu(F) = \mu(E) + \mu(F \setminus E) \ge \mu(E)$. Por otro lado, por lema, existe una familia de conjuntos disjuntos $\{T_i\}_{i \in \mathbb{N}} \subseteq \mathcal{A}$ tal que $\bigcup A_i = \bigcup T_i$ y $T_i \subseteq A_i$. De este modo, obtenemos que $\mu(\bigcup A_i) = \mu(\bigcup T_i) = \sum \mu(T_i) \le \sum \mu(A_i)$.

Este teorema tiene como consecuencia la siguiente afirmación: toda medida en $\mathcal{P}(X)$ es una medida exterior.

Remark 5. Notemos que por la demostración de la anterior proposición, para todo par $E, F \in \mathcal{A}$, $\mu(E \setminus F) = \mu(E) - \mu(F)$. Decimos que μ es **sustractiva**.

Corollary 1. Sea (X, \mathcal{A}, μ) un espacio de medida y $\{A_i\}_{i \in \mathbb{N}} \subseteq \mathcal{A}$.

- 1. Si la cadena es ascendente $A_i \subseteq A_{i+1} \Rightarrow \mu(\bigcup A_i) = \lim_{n \to \infty} \mu(A_n)$.
- 2. Si la cadena es descendente $A_{i+1} \subseteq A_i$ y existe un $i_0 \in \mathbb{N}$ tal que $\mu(A_{n_0}) < \infty \Rightarrow \mu(\bigcap A_i) = \lim_{n \to \infty} \mu(A_n)$

Demostración. Supongamos que la cadena $\{A_i\}$ es ascendente. Consideremos de manera inductiva $B_1 := A_1$ y $B_{i+1} := A_{i+1} \setminus A_i$. Entonces notemos que $\{B_i\}$ es una familia de conjuntos disjuntos tales que $\bigcup A_i = \bigcup B_i$. Por lo tanto, $\mu(\bigcup A_i) = \mu(\bigcup B_i) = \sum_{i=1}^{\infty} \mu(B_i)$. Por otro lado, notemos que $A_k = \bigcup_{i=1}^k B_i$. Por lo que $\mu(A_k) = \sum_{i=1}^k \mu(B_i)$ y de esta manera obtenemos que $\lim_{n\to\infty} \mu(A_n) = \lim_{n\to\infty} \sum_{i=1}^n \mu(B_i) = \sum_{i=1}^{\infty} \mu(B_i)$.

Supongamos ahora que $\{A_i\}$ es descendente. Entonces $\{A_{n_0} \setminus A_{i+n_0}\}$ es una cadena ascendente. Por lo tanto, por el apartado anterior, $\mu(\bigcup_i (A_{n_0} \setminus A_{i+n_0})) = \lim_{n \to \infty} \mu(A_{n_0} \setminus A_{n+n_0})$. De este modo, tenemos que la parte de la izquierda de la igualdad podemos expresarlo como $\mu(\bigcup_i (A_{n_0} \setminus A_{i+n_0})) = \mu(A_{n_0} \setminus \bigcap_{i=n_0} A_{i+n_0}) = \mu(A_{n_0}) - \mu(\bigcap_{i=n_0} A_{i+n_0})$. Por otro lado, el límite puede expresarse como lím $_{n\to\infty} \mu(A_{n_0} \setminus A_{i+n_0}) = \mu(A_{n_0}) - \lim_{n\to\infty} \mu(A_{n-n_0})$. Por lo tanto, tenemos

que $\mu(A_{n_0}) - \mu(\bigcap A_{i+n_0}) = \mu(A_{n_0}) - \lim_{n\to\infty} \mu(A_{n-n_0})$. Como $\mu(A_{n_0}) < \infty$, entonces podemos cancelar este término a ambos lados de la igualdad y por tanto, $\mu(\bigcap A_{i+n_0}) = \lim_{n\to\infty} \mu(A_{n-n_0})$. Como falta una familia finita de subconjuntos A_i de la cadena descendente a considerar, donde $i \leq n_0$, introducirlos en la ecuación no altera el resultado.

Example 3. Sea ν la medida de contar en $X = \mathbb{N}$. Tomemos $A_n = \{k \in \mathbb{N} \mid n \leq k\}$. La familia $\{A_n\}$ forma una cadena descendiente tal que $\mu(A_n) = \infty$ para todo $n \in \mathbb{N}$, por lo que $\lim_{n \to \infty} \mu(A) = \infty$. Por otro lado, $\bigcap A_n = \emptyset$, luego $\mu(\bigcap A_n) = 0 \neq \infty = \lim_{n \to \infty} \mu(A_n)$.

Definition 6. Sea (X, \mathcal{A}, μ) un espacio de medida y $E \in \mathcal{A}$. Definimos el **subespacio de medida** $(E, \mathcal{A}_E, \mu_E)$ como los definidos como

$$\mathcal{A}_E := \{ A \cap E \mid A \in \mathcal{A} \}, \qquad \mu_E : \mathcal{A}_E \to [0, \infty].$$

$$A \cap E \mapsto \mu(A \cap E)$$

Proposition 3. Sea (X, \mathcal{A}, μ) un espacio de medida y $E \in \mathcal{A}$. Entonces $(E, \mathcal{A}_E, \mu_E)$ es un espacio de medida.

Demostración. Veamos primeramente que \mathcal{A}_E es una σ-álgebra. Vemos que $\varnothing = \varnothing \cap E \in \mathcal{A}_E$. Por otro lado, si $A \cap E \in \mathcal{A}$, entonces $E \setminus (A \cap E) = E \setminus A = X \setminus A \cap E \in \mathcal{A}_E$. Finalmente, si $\{A_i \cap E\}_{i \in \mathbb{N}} \subseteq \mathcal{A}_E$, entonces $\bigcup_{i \in \mathbb{N}} (A_i \cap E) = (\bigcup_{i \in \mathbb{N}} A_i) \cap E \in \mathcal{A}_E$. Por tanto, hemos probado que \mathcal{A}_E es una σ-álgebra.

Finalmente, veamos que μ_E es una medida. En primer lugar, $\mu_E(\varnothing) = \mu_E(\varnothing \cap E) = \mu(\varnothing \cap E) = \mu(\varnothing) = 0$. Por otro lado, sea $\{A_i \cap E\}_{i \in \mathbb{N}} \subseteq \mathcal{A}_E$ disjuntos, entonces $\mu_E(\bigsqcup_{i \in \mathbb{N}} (A_i \cap E)) = \mu(\bigsqcup_{i \in \mathbb{N}} (A_i \cap E)) = \sum_{i=1}^{\infty} \mu(A_i \cap E) = \sum_{i=1}^{\infty} \mu(A_i \cap E)$.

4. Conjuntos de medida cero

Definition 7. Sea (X, \mathcal{A}, μ) un espacio de medida. Decimos que $N\mathcal{A}$ es de **medida cero** si $\mu(N) = 0$.

Remark 6. Sean $M \subseteq N$ tales que $N \in \mathcal{A}$ es un conjunto de medida cero. Si $M \in \mathcal{A}$, entonces $\mu(M) = 0$. No obstante, no siempre tenemos que $M \in \mathcal{A}$, por lo que en un espacio de medida general, un subconjunto de uno de medida cero puede no ser medible.

Definition 8. Un espacio de medida (X, \mathcal{A}, μ) es **completo** si para todo $N \in \mathcal{N}$ de medida cero, $E \subseteq N \Rightarrow E \in \mathcal{A}$.

Theorem 1. Sea (X, \mathcal{A}, μ) un espacio de medida. Definamos $(X, \overline{\mathcal{A}}, \overline{\mu})$ tales que

$$\overline{\mathcal{A}} := \{ A \cup M \mid A \in \mathcal{A}, \ M \subseteq N, \ N \in \mathcal{A} \ \text{y} \ \mu(N) = 0 \}, \qquad \mu : \overline{\mathcal{A}} \to [0, +\infty].$$
$$A \cup M \mapsto \mu(A)$$

- 1. $(X, \overline{A}, \overline{\mu})$ es un espacio de medida completo.
- 2. $A \subseteq \overline{A}$
- 3. $\overline{\mu}$ es la única extensión de μ en $\overline{\mathcal{A}}$.

Demostración. En primer lugar, demostremos que $\overline{\mathcal{A}}$ es un álgebra. En primer lugar, notemos que \varnothing es un conjunto de medida cero por definición y como $\varnothing = \varnothing \cup \varnothing$, entonces $\varnothing \in \overline{\mathcal{A}}$. Por otro lado, supongamos que $A \cup M \in \overline{\mathcal{A}}$. Entonces $X \setminus (A \cup M) = X \setminus A \cap X \setminus M$. Por otro lado, como $M \subseteq N$, entonces $X \setminus M = X \setminus N \cup N \setminus M$. De este modo, $X \setminus (A \cup M) = (X \setminus A \cap X \setminus N) \cup (X \setminus A \cap N \setminus M)$. Por un lado, como $A, N \in \mathcal{A}$, entonces $X \setminus A \cap X \setminus N \in \mathcal{A}$. Por otro lado, $X \setminus A \cap N \setminus M \subseteq N$. Por lo tanto, $X \setminus (A \cup M) \in \overline{\mathcal{A}}$. Finalmente, si $\{A_i \cup M_i\} \subseteq \overline{\mathcal{A}}$, entonces $\bigcup_i (A_i \cup M_i) = (\bigcup_i A_i) \cup (\bigcup_i M_i)$, donde $\bigcup_i A_i \in \overline{\mathcal{A}}$ y $\bigcup_i M_i \subseteq \bigcup_i N_i$ y $\mu(\bigcup_i N_i) \le \sum \mu(N_i) = 0$, luego $\bigcup_i (A_i \cup M_i) \in \overline{\mathcal{A}}$. Por lo tanto, $\overline{\mathcal{A}}$ es una σ -álgebra.

Veamos ahora que $\overline{\mu}$ está bien definido. Supongamos que $A \cup M = B \cup M'$. Entonces por un lado, tenemos que $A \subseteq A \cup M = B \cup M' \subseteq B \cup N'$, por lo que $\overline{\mu}(A \cup M) = \mu(A) \le \mu(B \cup N') \le \mu(B) = \overline{\mu}(B)$. De manera análoga, obtenemos que $B \subseteq A \cup N$, y obtendríamos que $\overline{\mu}(A \cup M) \le \overline{\mu}(B \cup M')$.

Visto que $\overline{\mu}$ está bien definido, demostremos que $\overline{\mu}$ es una medida. Es fácil observar que $\overline{\mu}(\varnothing) = \mu(\varnothing) = 0$ y $\overline{\mu}(\bigsqcup_i (A_i \cup M_i)) = \overline{\mu}(\bigsqcup_i A_i \cup \bigsqcup_i M_i) = \mu(\bigsqcup_i A_i) = \sum_{i=1}^{\infty} \mu(A_i) = \sum_{i=1}^{\infty} \overline{\mu}(A_i \cup M_i)$. Esto demuestra que $\overline{\mu}$ es una medida.

Finalmente, para esta primera parte, demostremos que $\overline{\mu}$ es completo. Supongamos que $A \cup M \in \overline{\mathcal{A}}$ tal que $\overline{\mu}(A \cup M) = 0$ y sea $B \subseteq A \cup M$. Entonces $B = \emptyset \cup B$, donde $\emptyset \in \mathcal{A}$ y B es un subconjunto del conjunto de medida cero $A \cup N$, por lo que $B \in \overline{\mathcal{A}}$, demostrando así que $\overline{\mu}$ es completo.

Ahora, es fácil comprobar que $\mathcal{A} \subseteq \overline{\mathcal{A}}$, ya que si $A \in \mathcal{A}$, entonces $A = A \cup \emptyset$, donde es sabido que \emptyset es en particular un conjunto de medida cero, luego $A \in \overline{\mathcal{A}}$.

Finalmente, supongamos que existe una medida $\eta: \overline{A} \to [0, \infty]$ tal que $\eta|_{A} = \mu$. Entonces obtenemos la siguiente cadena de desigualdades: $\overline{\mu}(A \cup M) = \mu(A) = \eta(A) \leq \eta(A \cup M) \leq \eta(A \cup N) \leq \eta(A) = \overline{\mu}(A \cup M)$. Por lo tanto, $\eta = \overline{\mu}$.

5. Medibilidad de Carathéodory

Definition 9. Sea $\mu^*: X \to [0,1]$ una medida externa. Decimos que un subconjunto $A \subseteq X$ es μ^* -medible si para todo $E \subseteq X$,

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A).$$

Se denota por \mathcal{M} el conjunto de todos los subconjuntos μ^* -medibles.

Remark 7. Notemos que para todo $E, A \subseteq X, E = (E \cap A) \sqcup (E \setminus A)$ y como μ^* es una medida externa, entonces siempre se cumple que $\mu^*(E) \leq \mu^*(E \cap A) + \mu^*(E \setminus A)$. Por lo tanto, que el subconjunto E sea μ^* -medible es equivalente a que se de la inecuación contraria: $\mu^*(E) \geq \mu^*(E \cap A) + \mu^*(E \setminus A)$

Theorem 2 (Carathéodory). Si $\mu^* : \mathcal{P}(X) \to [0, +\infty]$ es una medida exterior, entonces $(X, \mathcal{M}, \mu^*|_{\mathcal{M}})$ es un espacio de medida completo.

Demostración. Veamos en primer lugar, veamos que \mathcal{M} es una σ -álgebra. Por un lado, para todo $E \subseteq \mathcal{P}(X)$, tenemos que $\mu^*(E) = \mu^*(E \cap \varnothing) + \mu^*(E \setminus \varnothing)$, luego $\varnothing \in \mathcal{M}$. Por otro lado, si $A \in \mathcal{M}$, entonces para todo $E \subseteq \mathcal{P}(X)$, tenemos que $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A) = \mu^*(E \setminus (X \setminus A)) + \mu^*(E \cap X \setminus A)$, luego $X \setminus A \in \mathcal{M}$.

Falta demostrar que la medida unión numerable de conjuntos disjuntos es la suma de las medidas de dichos conjuntos. Para ello, primero lo probaremos para el caso finito y para ello, basta demostrarlo para el caso de la unión de dos conjuntos, pues mediante inducción podemos generalizarlo para cualquier familia finita. De esta manera, sean $A, B \in \mathcal{M}$. Entonces por un lado, tenemos que $\mu^*(E) = \mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap X \setminus B) + \mu^*(E \cap B \cap X \setminus A) + \mu^*(E \cap X \setminus A) + \mu^*(E \cap B \cap X \setminus A)$. Por otro lado, $A \cup B = A \setminus B \sqcup A \cap B \sqcup B \setminus A$, por lo que de esto se deduce que $\mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap X \setminus B) + \mu^*(E \cap B \cap X \setminus A) = \mu^*(E \cap (A \cup B))$ y por tanto, $\mu^*(E) = \mu^*(E \cap (A \cup B)) + \mu^*(E \cap X \setminus (A \cup B))$, luego $A \cup B \in \mathcal{M}$.

Es más, si $A, B \in \mathcal{M}$ tales que $A \cap B = \emptyset$, entonces obtenemos que $\mu^*(A \sqcup B) = \mu^*((A \sqcup B) \cap A) + \mu^*((A \sqcup B) \setminus A) = \mu^*(A) + \mu^*(B)$. Es decir, para los conjuntos μ^* -medibles, μ^* es aditiva.

Veamos ya que la unión numerable de μ^* -medibles es también μ^* -medible. Para probar esto, basta con tomar el caso de una familia disjunta, puesto que por el lema, existe una familia de subconjuntos disjuntos cuya unión es igual a la unión de los subconjuntos iniciales. De esta manera, supongamos que $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{M}$ es una familia disjunta. Demostremos que $\bigcup_i A_i\subseteq\mathcal{M}$. Definamos $B_k=\bigcup_{i=1}^k A_i$. Entonces tenemos que $B_{i+1}=B_i\sqcup A_{i+1}$ y $\bigcup_i B_i=\bigcup A_i$. Como $A_{i+1}\in\mathcal{M}$, entonces tenemos que $\mu^*(E\cap B_{i+1})=\mu^*(E\cap B_{i+1})+\mu^*(E\cap B_{i+1}\setminus A_{i+1})=\mu^*(E\cap A_{i+1})+\mu^*(E\cap B_i)$. Por lo tanto, esto demuestra inductivamente que $\mu^*(E\cap B_{k+1})=\sum_{i=1}^k \mu^*(E\cap A_i)$.

Por otro lado, notemos que B_k es una unión finita de conjuntos μ^* -medibles, por lo que por el párrafo segundo, $B_k \in \mathcal{M}$ para todo $k \in \mathbb{N}$. Por tanto, $\mu^*(E) = \mu^*(E \cap B_k) + \mu^*(E \setminus B_k) = \sum_{i=1}^k \mu^*(E \cap A_i) + \mu^*(E \setminus B_k)$. Denotemos $B = \bigcup_i B_i$. Por definición, $X \setminus B \subseteq X \setminus B_k$, luego $\mu^*(E) \geq \sum_{i=1}^k \mu^*(E \cap A_i) + \mu^*(E \setminus B)$. Como esto es cierto para todo $k \in \mathbb{N}$, entonces podemos tomar límites a ambos lados y la desigualdad se mantendrá. Por lo que $\mu^*(E) \geq \lim_{k \to \infty} \sum_{i=1}^k \mu^*(E \cap A_i) + \mu^*(E \setminus B) = \sum_{i=1}^\infty \mu^*(E \cap A_i) + \mu^*(E \setminus B) \geq \mu^*(\bigcup_i E \cap A_i) + \mu^*(E \setminus B) = \mu^*(E \cap B) + \mu^*(E \setminus B)$. Por tanto, como esto es cierto para todo $E \subseteq X$, tenemos que $B = \bigcup_i A_i \in \mathcal{M}$ demostrando de esta manera que \mathcal{M} es una σ -álgebra.

Veamos ahora que la restricción de μ^* en \mathcal{M} es una medida. Notemos que en el anterior párrafo, hemos demostrado que $\mu^*(E) \geq \sum_{i=1}^{\infty} \mu^*(E \cap A_i) + \mu^*(E \setminus B) \geq \mu^*(\bigcup_i E \cap A_i) + \mu^*(E \setminus B) = \mu^*(E \cap B) + \mu^*(E \setminus B) \geq \mu^*(E)$, luego en particular, $\sum_{i=1}^{\infty} \mu^*(E \cap A_i) = \mu^*(\bigcup_i E \cap A_i)$. Esto es cierto para toda familia disjunta $\{A_i\}$ y tomando E = X, se llega a la σ -aditividad de μ^* en \mathcal{M} .

Finalmente, probaremos que $(E, \mathcal{M}, \mu^*|_{\mathcal{M}})$ es completo. Sea $N \in \mathcal{M}$ tal que $\mu^*(N) = 0$ y sea $M \subseteq N$. Si $E \subseteq X$, entonces como N es medible, $\mu^*(E) = \mu^*(E \cap N) + \mu^*(E \setminus N) = \mu^*(E \setminus N)$. Por otro lado, $E \setminus N \subseteq E \setminus M \subseteq E$, por lo que $\mu^*(E) \le \mu^*(E \setminus M) \le \mu^*(E \setminus N) = \mu^*(E)$, es decir, $\mu^*(E \setminus M) = \mu^*(E)$. Además, $E \cap M \subseteq M \subseteq N$ y por la monotonía de μ^* , $\mu^*(E \cap M) = 0$ y se deduce que $\mu^*(E) = \mu^*(E \setminus M) = \mu^*(E \cap M)$.