Project Planning Phase Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	22 October 2022
Team ID	PNT2022TMID28004
Project Name	Project – EXPLORATORY ANALYSIS
	OFRAINFALL DATA IN INDIA FOR
	AGRICULTURE.
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Point s	Priority	Team Members
Sprint-1	Rainfall PredictionML Model	USN-1	Weather Dataset Collection, Data preprocessing, Data	5	High	Ashwin S, Manojkumar P
Sprint-1	(Dataset)	USN-2	Visualization. Train Model using Different machine learningAlgorithms	5	High	Logesh V, Keerthidharan T
Sprint-1		USN-3	Test the model and give best	1 0	High	Ashwin S, Manojkumar P
Sprint-2	Front end	USN-4	Finalization of background and its requirements.	5	Medium	Logesh V, Keerthidharan T
Sprint-2		USN-5	Necessary input boxes designed to get input from the user	5	Medium	Ashwin S, Manojkumar P
Sprint-2		USN-6	Checking whether the data is valid and predicting accordingly to the model used	4	Medium	Ashwin S, Logesh V

Sprint-2	Dashboard	USN-7	Attractive dashboard for	6	Low	Logesh V, Keerthidharan T
			forecasting designed			
Sprint-3	Rainfall	USN-8	User enter the location,	1	High	Ashwin S, Manojkumar P
	Prediction		temperature, humidity and other	0		
			key factors			
Sprint-3		USN-9	Predict the rainfall and display the	1	High	Ashwin S, , Keerthidharan T
			result	0		

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Point s	Priority	Team Members
Sprint-4	Testing	USN-10	Test the application	10	High	Ashwin S, Manojkumar P
Sprint-4	Deploy Model	USN-11	Deploy the model in IBM cloud to make userfriendly application	10	High	Logesh V, Keerthidharan T

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date(Actual)
Sprint-1	20	6 Days	31Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-2	20	6 Days	05 Nov 2022	10 Nov 2022	20	10 Nov 2022
Sprint-3	20	6 Days	10 Nov 2022	13 Nov 2022	20	13 Nov 2022
Sprint-4	20	6 Days	13 Nov 2022	16 Nov 2022	20	16 Nov 2022

Velocity:

Imagine we have a 5-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) periteration unit (story points per day)

AV= Sprint duration/ Velocity = 20/5 =4

Total Average Velocity=4

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

Tool: Jira Software

