

Circuiti Elettrici

Capitolo 2

Elementi circuitali elementari (bipoli adinamici)

Prof. Cesare Svelto

Elementi circuitali elementari- Cap. 2

- 2.1 Introduzione
 - Soluzione di un circuito e classificazione dei componenti
- 2.3 Resistore e legge di Ohm
- 2.2 Elementi attivi: i generatori
- 2.4 Connessione (in) serie e (in) parallelo di elementi semplici:
 - 2.4.1 resistori in serie e partitore di tensione
 - 2.4.2 resistori in parallelo e partitore di corrente
- 2.5 Connessione serie e parallelo di generatori indipendenti
- 2.6 Bipoli equivalenti di Thevenin e di Norton
- 2.7 Generatori reali
- 2.8 Trasformazioni stella-triangolo (cenni)
 Sommario

2.1 Introduzione

- Abbiamo visto le proprietà del circuito (elettrico) come interconnessione di più elementi o componenti (elettrici)
- Vedremo adesso le caratteristiche di elementi circuitali semplici (bipoli adinamici) e di conseguenza le loro proprietà e possibili combinazioni in un circuito
- Partiremo dalla descrizione matematica (caratteristica) del componente ideale che spesso approssima bene il funzionamento anche del componente reale, pur con le sue non-idealità, impiegato nei circuiti elettrici
- Impareremo a risolvere la rete (=analisi e risultati) in presenza di generatori di tensione o di corrente e di resistori

Sistema risolvente di un circuito

Un metodo risolutivo teoricamente possibile ma sconveniente per calcoli svolti a mano, si basa sul "sistema risolvente del circuito".
 Nel circuito con R rami (bipoli) e N nodi si hanno R correnti di ramo e R tensioni di ramo, per un totale di 2R incognite da determinare.
 Per risolvere il circuito occorrono 2R equazioni che formano il sistema risolvente del circuito (a calcolatore il sistema è agevolmente risolvibile)

 Le relazioni <u>caratteristiche</u> devono essere <u>compatibili con</u> le equazioni topologiche: non devono violare nè replicare <u>KCL e KVL</u>

Classificazione dei componenti

- <u>La relazione caratteristica</u> descrive matematicamente i legami tra correnti e tensioni ai terminali di un componente elettrico
- I componenti di un circuito possono essere classificati in base a diversi criteri:
 - numero di terminali (in genere n-poli)
 bipoli (2 terminali), tripoli (3 terminali), quadripoli (4 terminali)
 - impiego energetico attivi (generano energia) o passivi (assorbono energia)
 - linearità lineari o non-lineari nella caratteristica tensione-corrente
 - memoria adinamico/resisitivo/senza memoria o dinamico/con memoria se la caratteristica coinvolge o meno derivate delle grandezze v-i
 - tempo invarianza
 tempo-invarianti o tempo-varianti
 se la caratteristica dipende o meno esplicitamente dal tempo

Classificazione dei componenti

((caratteristiche))

Le equazioni costitutive possono coinvolgere le derivate delle correnti o delle tensioni . Inoltre possono dipendere da alcune grandezza impresse, omogenee con delle correnti o con delle tensioni $(\mathbf{i}_0, \mathbf{v}_0)$. Possono altresì dipendere esplicitamente dal tempo. Infine possono dipendere da eventuali altri parametri (e.g. temperatura, pressione, campo magnetico ...) $\mathbf{f}(\mathbf{v}, \mathbf{i}, \frac{d}{dt} \mathbf{v}, \frac{d}{dt} \mathbf{i}, \mathbf{v}_0, \mathbf{i}_0, t, \frac{T}{t}, \frac{p_{\text{AMB}}}{t}, \frac{E}{t}, \frac{H}{t}$

Sussiste la seguente classificazione dei componenti

		Rel. Cost.	esempio
Linearità	Lineare	È lineare	$v = R i, v = L \frac{di}{dt}$
	Non lineare	Non è lineare	$i = i_0(e^{\alpha v} - 1)$
Memoria	Adinamico (resistivo, senza memoria)	Non coinvolge le derivate	$v = R i$ $i = i_0(e^{\alpha v} - 1)$
	Dinamico (con memoria)	Coinvolge le derivate	$v = L \frac{di}{dt}$ $i = \left[\frac{k}{(v_0 - v)^{1/2}} \right] \frac{dv}{dt}$
Tempo	Tempo invariante	Non dipende esplicitamente dal tempo	$v = R i, i = i_0(e^{\alpha v}-1),$ v = L di/dt
invarianza	Tempo variante	Dipende esplicitamente dal tempo	$v = (R_0 + R\cos\omega t) i$

Elementi circuitali attivi e passivi

Elementi attivi (generatori)

producono energia elettrica e P_{entrante} ≤0

Elementi passivi (utilizzatori P≥0)

- Una sorgente dipendente è un elemento attivo nel quale la grandezza erogata (tensione o corrente) è controllata da un'altra tensione o corrente
- Le sorgenti controllate sono di 4 tipi diversi: VCVS, CCVS, VCCS, CCCS.
 Occorre considerare anche il segno delle sorgenti indipendenti che controllano le dipendenti

Resistore: legge di Ohm

- Il resistore è un bipolo caratterizzato da una tensione direttamente proporzionale alla corrente
- La legge di Ohm dice che <u>la tensione v ai capi di un</u> resistore è direttamente proporzionale alla corrente <u>i</u> che attraversa il resistore

L'espressione matematica della legge di Ohm è:

$$v = R \cdot i$$

caratteristica tensione-corrente di un resistore

PIANO i-v

i R

R>0 è la resistenza e si misura in ohm [Ω] o [V/A]

resistore variabile

Resistore: resistività

• In un conduttore cilindrico di lunghezza l e sezione A la resistenza dipende da una caratteristica propria del materiale [capacità di opporre resistenza al passaggio della corrente] detta resistività ρ misurata in ohm per metro [Ω ·m]

$$R = \rho \frac{l}{A}$$

(corrente uniforme nella sezione *A* del conduttore; NO effetto pelle)

Materiale	$Resistivit\grave{a}\ (\Omega m)$	Applicazioni
Argento	1.6×10^{-8}	conduttori, contatti
Rame	1.7×10^{-8}	cavi, connettori
Oro	2.3×10^{-8}	cavi, interruttori
Alluminio	2.7×10^{-8}	cavi
Ferriti	1	trasformatori audio
Silicio	6.4×10^{2}	circuiti integrati
Carta	1011	isolante
Vetro	10^{12}	isolante
Polietilene	10^{14}	isolante
Mica	1017	isolante

Materiale	Resistività $(\Omega \cdot m)$	Uso
Argento	1.64×10^{-8}	Conduttore
Rame	1.72×10^{-8}	Conduttore
Alluminio	2.8×10^{-8}	Conduttore
Oro	2.45×10^{-8}	Conduttore
Carbonio	4×10^{-5}	Semiconduttore
Germanio	47×10^{-2}	Semiconduttore
Silicio	6.4×10^{2}	Semiconduttore
Carta	10^{10}	Isolante
Mica	5×10^{11}	Isolante
Vetro	10 ¹²	Isolante
Teflon	3×10^{12}	Isolante

Rame e alluminio per i cavi elettrici mentre il vetro è isolante (linee alta tensione)

Resistore: caratteristica

• La caratteristica del resistore può essere:

lineare (resistore ideale)

non-lineare (resistore reale)

• Nei conduttori metallici ρ aumenta con la temperatura (un resistore reale ha un dato di targa importante che è la potenza massima dissipata per mantenere valori di resistenza vicini a quello nominale)

Resistori

Valore: Giallo – Viola = 47 Moltiplicatore: Verde = 100000 Tolleranza: Oro = +/- 5 %

Resistenza da 4700000ohm = 4700 kohm con una tolleranza del 5 %

COLORE	1° ANELLO	2° ANELLO	3° ANELLO	4° ANELLO
Nero		0	x 1	
Marrone	1	1	x 10	-
Rosso	2	2	x 100	-
Arancio	3	3	x 1.000	-
Giallo	4	4	x 10.000	-
Verde	5	5	x 100.000	-
Blu	6	6	x 1.000.000	-
Viola	7	$\overline{}$	x 10.000.000	-
Grigio	8	8	-	-
Bianco	9	9	-	
ORO	-	-	: 10	5%
ARGENTO	-	-	: 100	10%
NULLA	-	-	-	25%

Resistori di precisione

Resistori con 6 anelli colorati

Il sesto anello non è molto frequente, indica il coefficiente di temperatura, utile in determinate situazioni...

COLORE	1° ANELLO	2° ANELLO	3° ANELLO	4° ANELLO	5° ANELLO	6° ANELLO
Nero	-	0	0	x 1	-	200 ppm/°K
Marrone	1	1	1	x 10	1 %	100 ppm/°K
Rosso	2	2	2	x 100	2 %	50 ppm/°K
Arancio	3	3	3	x 1.000	3 %	25 ppm/°K
Giallo	4	4	4	x 10.000	-	15 ppm/°K
Verde	5	5	5	x 100.000	0.5 %	-
Blu	6	6	6	x 1.000.000	0,25 %	10 ppm/°K
Viola	7	7	7	x 10.000.000	0,1 %	5 ppm/°K
Grigio	8	8	8	- (0,05 %	1 ppm/°K
Bianco	9	9	9	-	-	-
ORO	-	-	-	: 10	5 %	-
ARGENTO	-	-	-	: 100	10 %	-
NULLA	-	-	-	-	25 %	-

Alcune combinazioni di colori non sono usate evitando così letture ambigue tipo RRRBBB, che non esiste, in quanto che sarebbe confondibile BBBRRR, che esiste

Resistore: conduttanza e potenza

• La conduttanza è la capacità di un elemento di condurre corrente elettrica; è il reciproco della resistenza R [Ω] e si misura in siemens [$S=\Omega^{-1}$] o [A/V]

$$G = \frac{1}{R} = \frac{i}{v} \qquad i = G \cdot v$$

La potenza dissipata da un resistore percorso da corrente è:

$$p = vi = Ri^2 = \frac{v^2}{R}$$
 Legge di Joule

E' sempre *p*≥0 e dunque <u>il resistore può solo assorbire</u> <u>potenza e non può erogare potenza al circuito</u>

Corto circuito e circuito aperto

• Il corto circuito (c.c.) è un resistore di valore R=0 ($G=\infty$). La sua caratteristica è v=0 indipendentemente dal valore di i

• Il circuito aperto (c.a.) è un resistore di valore $R=\infty$ (G=0). La sua caratteristica è i=0 indipendentemente dal valore di v

La corrente in un corto circuito può essere qualsiasi come la tensione in un circuito aperto può essere qualsiasi. I valori specifici dipendono dal resto del circuito

Interruttori

 Tramite i concetti di corto circuito e circuito aperto è possibile rappresentare gli interruttori, spesso utilizzati per connettere o disconnettere parti del circuito tra loro

- L'interruttore chiuso è sostituibile con un corto circuito (equivalente) L'interruttore aperto è sostituibilecon un circuito aperto (equivalente)
- Esistono anche interruttori a due vie (un chiuso e un aperto)

selettore a due vie

Principio di dualità

- La dualità è una proprietà generale dei circuiti secondo cui definizioni, formule, e teoremi hanno una doppia versione una duale dell'altra e ricavabili l'una dall'altra scambiando tra loro alcuni termini o alcuni simboli
- Ad esempio corto circuito e circuito aperto sono duali (uno è il duale dell'altro) perchè dalle proprietà dell'uno si ricavano quelle dell'altro <u>scambiando i termini tensione</u> corrente e resistenza conduttanza

corto circuito (c.c.)

Un resistore di **resistenza** nulla ha una **tensione** nulla per qualsiasi valore di **corrente**. Un resistore di **resistenza** nulla viene chiamato <u>corto circuito</u>. Caratteristica del corto circuito è v=0 indipendentemente dalla **corrente**

circuito aperto (c.a.)

Un resistore di **conduttanza** nulla ha una **corrente** nulla per qualsiasi valore di **tensione**. Un resistore di **conduttanza** nulla viene chiamato <u>circuito aperto</u>. Caratteristica del circuito aperto è *i*=0 indipendentemente dalla **tensione**

Circuiti ed elementi duali

 Per ogni circuito è possibile ricavare un circuito duale descritto da relazioni descrittive e da un sistema di equazioni numericamente identico, avendo l'accortezza di scambiare tra loro:

tensione	\leftrightarrow	corrente
gen.tens.	\leftrightarrow	gen.corr.
resistenza	\leftrightarrow	conduttanza
C.C.	\leftrightarrow	c.a.
maglia	\leftrightarrow	nodo
KVL	\leftrightarrow	KCL
serie	\leftrightarrow	parallelo
triangolo	\leftrightarrow	stella
induttanza	\leftrightarrow	capacità

Generatori indipendenti

- Un generatore (sorgente "s") ideale indipendente è un elemento attivo che mantiene una tensione o corrente specificata
- Il generatore indipendente di tensione ha una caratteristica $v=v_s(t)$ indipendente dal valore di i

• Il generatore indipendente di corrente ha una caratteristica $i=i_s(t)$ indipendente dal valore di v

Nei generatori indipendenti ideali, la potenza erogata è $v_s i = (v_s)^2/R$ che comporta $p = \infty$ per R = 0. Oppure $v i_s = R(i_s)^2$ ancora con $p = \infty$ ma per $R = \infty$. Ciò non può avvenire realmente

Generatori dipendenti

- Un generatore ideale dipendente è un elemento attivo la cui tensione o corrente è controllata da un'altra tensione o corrente
- I generatori dipendenti sono indicati con un simbolo a rombo.
 La dipendenza dalla variabile esterna è scritta esplicitamente

Generatore		Caratteristica	Variabile libera	
1. 1	Tensione	$v = E_0$	i	
Indipendente	Corrente	$i = A_0$	υ	
Dipendente	GTCC (CCVS)	$v = \rho i_x$	ì	
	GTCT (VCVS)	$v = \alpha_v v_x$	i	
	GCCC (CCCS)	$i = \alpha_i i_{\scriptscriptstyle X}$	υ	
	GCCT (VCCS)	$i = \gamma v_{\scriptscriptstyle X}$	υ	

I generatori, sia indipendenti che dipendenti, impongono una specifica quantità $(v \circ i)$ e lasciano completamente libera la variabile complementare $(i \circ v)$

Esempio sui generatori dipendenti

Calcolare la potenza assorbita da ciascuno degli elementi del circuito in Figura 2.5.

Esempio

ESEMPIO 2.1

Figura 2.5 Per l'Esempio 2.1.

Soluzione

Si applica la convenzione di segno per la potenza assorbita della Figura 1.8, che riportiamo qui a fianco per comodità di consultazione. Per $p_{\rm I}$, la corrente di 5 A esce dal terminale positivo (o entra in quello negativo) e quindi:

$$p_1 = -(20 \times 5) = -100 \text{ W}$$
 la potenza è erogata

Sia per p_2 che per p_3 , la corrente entra dal terminale positivo dell'elemento:

$$p_2 = (12 \times 5) = 60 \text{ W}$$
 la potenza è assorbita

$$p_3 = (8 \times 6) = 48 \text{ W}$$
 la potenza è assorbita

Per p_4 , si noti che la tensione è di 8 V (positiva verso l'alto), la stessa tensione di p_3 , poiché l'elemento passivo e il generatore dipendente sono connessi agli stessi terminali (si ricordi che la tensione è sempre misurata fra i due terminali di un elemento). Poiché la corrente è uscente dal terminale positivo si ha:

$$p_4 = +8 \times (-0.2 \times I) = +8 \times (-0.2 \times 5) = -8 \text{ W}$$
 la potenza è erogata

Si osservi che sia il generatore indipendente da 20 V che quello dipendente pari a 0.21 stanno fornendo potenza al resto del circuito, mentre i due elementi passivi assorbono potenza. Inoltre:

$$p_1 + p_2 + p_3 + p_4 = -100 + 60 + 48 - 8 = 0$$
 come previsto dal teorema di Tellegen

In accordo con la (1.8), la potenza totale erogata è uguale alla potenza totale assorbita.

0.2I

Figura 1.8 Direzioni di riferimento per la potenza; in entrambi i casi è indicata l'espressione che assume la potenza assorbita: (a) convenzione normale o degli utilizzatori, (b) convenzione dei generatori.

Esempio sui generatori indip. e dip.

Esempio

Si ricavi la tensione v nel ramo mostrato in Figura quando $i_2 = 2$ A.

$$v = v_{ac} = v_a - v_c = (v_a - v_b) + (v_b - v_c) = v_{ab} + v_{bc} = v_x + 10 \text{ V} = 15i_2 + 10 \text{ V}$$

Esempio sui generatori

 $i_2=2$ A $v = 15i_2$ one del da 10 V

Soluzione

La tensione v è la somma della tensione del generatore indipendente di tensione da 10 V e della tensione v_x del generatore dipendente controllato in corrente.

Si osservi che il fattore 15 che moltiplica la corrente di controllo ha unità di ohm (Ω) .

Dunque $v = 10 \text{ V} + v_x = 10 \text{ V} + 15 \Omega \cdot 2 \text{ A} = 40 \text{ V}$

Connessione di generatori

 La connessione in serie di più generatori di tensione è equivalente ad un unico generatore con tensione pari alla somma delle tensioni dei singoli generatori

La connessione in parallelo di più generatori di tensione è
possibile solo se tutte le tensioni sono uguali
(naturalmente la tensione risultante è quella di uno qualsiasi dei generatori
ma la corrente nelle maglie di più generatori in parallelo è indeterminabile)

Connessione di generatori

Invocando il principio di dualità, e scambiando i termini corrente ↔ tensione e serie↔parallelo, otteniamo anche:

 La connessione in parallelo di più generatori di corrente è equivalente ad un unico generatore con corrente pari alla somma delle correnti dei singoli generatori

 La connessione in serie di più generatori di corrente è possibile solo se tutte le correnti sono uguali

(naturalmente la corrente risultante è quella di uno qualsiasi dei generatori ma la tensione tra i nodi del parallelo di generatori è indeterminabile)

Connessione di resistori e R_{eq}

- Spesso risulta possibile e conveniente <u>combinare resistori</u> in serie e in parallelo, riducendo una rete resistiva a una singola **resistenza equivalente** R_{eq} tale che <u>ai capi di</u> R_{eq} <u>si abbia la stessa caratteristica i-v della rete originaria</u>
- Per ottenere questo utile risultato occorre prima imparare a combinare tra loro le resistenze disposte in serie (ottenendo un singolo valore di R_{eq,SER}) e/o combinare tra loro le resistenze disposte in parallelo (ottenendo un singolo valore di R_{eq,PAR})
 Si ripete poi la procedura sino a ottenere un'unica resistenza R_{eq}
- Se presenti anche dei generatori, vedremo che per calcolare R_{eq} occorre "spegnere" tutti i generatori indip. sostituendo a ogni gen.tens. un corto circuito e a ogni gen.corr. un circuito aperto N.B. gen.tens. con V=0 equivale a c.c. (R=0) e gen.corr. con I=0 equivale a c.a. (R=∞)

Calcolo R_{eq} con generatori indipendenti

<u>R_{in} o R_{eq} è la resistenza di ingresso o **resistenza equivalente vista ai morsetti a-b** (una volta spenti tutti i generatori indipendenti)</u>

 $R_{\rm eq}$ si ottiene sostituendo e semplificando la rete passiva attraverso combinazioni (e.g. serie e parallelo) delle resistenze

Calcolo R_{eq} con generatori dipendenti

- Considerato un circuito fatto di bipoli adinamici (resistori e generatori) si può calcolare la resistenza equivalente tra due morsetti del circuito spegnendo i generatori indipendenti ma prestando attenzione a non spegnere i generatori dipendenti. Per tenere conto del loro effetto si può applicare ai morsetti una sorgente forzante (v_0 o i_0 se si sceglie tensione o corrente e ad esempio v_0 =1 V o i_0 =1 A) e poi si calcola la grandezza duale corrispondentemente risultante alla coppia di morsetti (i_x o v_x se prima si era scelto gen.tens. o gen.corr, rispettivamente)
- A questo punto si calcola $R_{\rm eq} = v_0/i_x$ oppure $R_{\rm eq} = v_x/i_0$
- Se decidiamo ci chiamare sempre v_0 e i_0 i valori di tensione e corrente ai morsetti, indipendentemente da quale sia il termine forzante e quale il termine risultante, allora è sempre $R_{\rm eq} = v_0/i_0$

FARE disegno esplicativo e spiegare operativamente il metodo

Circuiti a singola maglia

 Un circuito a una singola maglia ha <u>elementi tutti percorsi</u> dalla stessa corrente i (elementi in serie o concatenati)

Applicando KVL:

$$v_1 + v_2 + v_3 + v_4 = 0$$

Quando gli elementi sono generatori di tensione e resistori, possiamo calcolare la corrente i, utilizzando la somma delle tensioni sulla maglia uguale a zero e la legge di Ohm

2.4.1 Serie di resistori e resistenza equivalente

• <u>Serie</u>: due o più resistori sono in serie se sono connessi uno di seguito all'altro e quindi sono percorsi dalla stessa corrente

 La resistenza equivalente di un numero (N) di resistori connessi in serie è la somma delle singole resistenze (R_k):

$$R_{\text{eq,SER}} = R_1 + R_2 + \dots + R_N = \sum_{k=1}^{N} R_k$$

Infatti per la serie di resistori $v = \sum v_k = \sum (R_k i) = \sum (R_k i) = \sum (R_k i) = \sum R_{eq,SER} = v/i = \sum R_k i$

La resistenza serie è sempre maggiore del più grande dei resistori. Se tutti i resistori sono uguali $(R_k=R)$, $R_{eq,SER}=NR$

2.4.1 Serie di resistori e partitore di tensione

• Il partitore di tensione di una serie di N resistori, ovvero la tensione v_k su un singolo resistore R_k , è esprimibile come:

$$v_k = \frac{R_k}{R_1 + R_2 + \dots + R_N} v$$

dove v è la tensione complessiva ai capi della serie di resistori

La tensione si ripartisce tra i resistori in maniera proporzionale al valore di resistenza di ciascun resistore: $v_k \propto R_k$

Infatti $i=v/R_{\rm eq,SER}$ e la tensione sul singolo resistore R_k della serie sarà $v_k = R_k \cdot i = R_k \cdot v/(R_1 + R_2 + \ldots + R_N) \propto R_k$

Circuiti con una coppia di nodi

• Un circuito con due soli nodi ha <u>elementi tutti sottoposti alla</u> stessa tensione v (elementi in parallelo)

Applicando KCL ad uno dei nodi:

$$i_1 + i_2 + i_3 + i_4 = 0$$

Quando gli elementi sono generatori di corrente e resistori, possiamo calcolare la tensione v, utilizzando la somma delle correnti nel nodo uguale a zero e la legge di Ohm

2.4.2 Parallelo di resistori e conduttanza equivalente

 <u>Parallelo</u>: due o più resistori sono in parallelo se sono connessi agli stessi due nodi e quindi hanno ai capi la stessa tensione

La conduttanza equivalente di N resistori in parallelo è:

$$G_{\text{eq,PAR}} = G_1 + G_2 + \dots + G_N = \sum_{k=1}^{N} G_k$$

Infatti per il //di resistori $i=\sum i_k=\sum (G_k v)=\sum (G_k)\cdot v \rightarrow G_{\rm eq}=G_{\rm eq,PAR}=i/v=\sum G_k$

La resistenza equivalente di N resistori in parallelo è:

$$\frac{1}{R_{\text{eq,PAR}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N} = \sum_{K=1}^{n} \frac{1}{R_k}$$

La resistenza parallelo è sempre minore del più piccolo dei resistori. Se tutti i resistori sono uguali $(R_k=R)$, $R_{eq,PAR}=R/N$

2.4.2 Parallelo di resistori e partitore di corrente

• Il partitore di corrente del parallelo di N resistori, ovvero la corrente i_k nel singolo resistore R_k , è esprimibile come:

$$i_k = \frac{G_k}{G_1 + G_2 + \dots + G_N} i$$

dove i è la corrente complessiva nel parallelo di resistori <u>La corrente si ripartisce tra i resistori in maniera proporzionale al valore di conduttanza di ciascun resistore: $i_k \propto G_k$ </u>

Infatti $v=i/G_{\rm eq,PAR}$ e la corrente sul singolo resistore R_k del parallelo sarà $i_k=G_k\cdot v=G_k\cdot i/(G_1+G_2+\ldots+G_N)\propto G_k$

2.4.2 Parallelo di due resistori e partitore di corrente

Un caso particolare ma di grande importanza pratica è il parallelo di due soli resistori, R_1 e R_2

$$\frac{1}{R_{\text{eq,PAR}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N} \xrightarrow{N=2} \frac{1}{R_{\text{eq,//}}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{R_1 + R_2}{R_1 R_2}$$

la resistenza equivalente è il prodotto diviso la somma delle due resistenze di partenza:

se
$$R_1 = R_2 = R$$

$$\Rightarrow$$

$$R_{eq,//} = R/2$$

$$R_{\text{eq},//} = \frac{R_1 R_2}{R_1 + R_2}$$

Le due correnti nei due resistori in parallelo sono:

$$i_1 = \frac{v}{R_1} = \frac{R_{\text{eq},//}}{R_1} i = \frac{R_2}{R_1 + R_2} i$$
 $i_2 = \frac{v}{R_2} = \frac{R_{\text{eq},//}}{R_2} i = \frac{R_1}{R_1 + R_2} i$

La corrente in una resistenza è proporzionale al valore dell'altra resistenza

Calcolo resistenza equivalente

Calcolo resistenza equivalente

Esempio Ricavare R_{eq} per il circuito indicato

2.6 Bipoli di Thevenin e di Norton

Due importanti collegamenti da considerare sono le connessioni:

serie tra generatore di tensione e resistore (bipolo di Thevenin)

parallelo tra generatore di corrente e resistore (bipolo di Norton)

- Le caratteristiche sono formalmente identiche (bipoli duali)
 scambiando tensione↔corrente e resistenza↔conduttanza
- Quando i due bipoli (Thevenin e Norton) sono equivalenti?

2.6 Trasformazione di generatori

- Tranne casi particolari (R_T =0 o G_N =0 $\equiv R_N$ = ∞) è sempre possibile trasformare un bipolo di Thevenin in uno di Norton circuitalmente equivalenti (stesse relazioni i-v ai morsetti dei bipoli)
- Una trasformazione di generatori è la sostituzione di un gen. di tensione v_s in serie a un resistore R con un gen. di corrente i_s in parallelo a un resistore R (da Thevenin a Norton), o viceversa (da Norton a Thevenin). N.B. La resistenza R è la stessa

<u>La freccia del gen. di corrente è sempre diretta verso il terminale + del gen. di tensione</u> (la corrente del gen.corr. "esce dal + e circola verso il —" del gen.tens.)

2.6 Trasformazione di generatori

2.7 Generatori reali

 Un generatore reale è modellizzabile con un generatore ideale con aggiunta la resistenza interna R_{INT} del generatore

--- per gen.tens. $R_{INT}=R_s$ è una resistenza serie

--- per gen.corr. $R_{INT}=R_p$ è una resistenza parallelo

• I generatori reali tenderanno ad avere un comportamento ideale quando $R_s \rightarrow 0$ e $R_p \rightarrow \infty$

Nella realtà se gen.tens. alimenta carico troppo basso (rispetto alla sua R_i = R_s) allora non riesce ad erogare la corrente sufficiente per mantenere il suo valore di tensione nominale v_s . Se gen.corr. ha un carico troppo alto rispetto a R_i = R_p allora la corrente sul carico è inferiore al valore nominale i_s

2.7 Generatori reali

Nel generatore reale è la partizione di tensione o di corrente su
 R_{INT} e sul carico, detta "effetto di carico sul generatore", che
 comporta una diminuzione della grandezza erogata al carico
 rispetto al valore nominale in condizioni ideali

• I generatori reali tenderanno ad avere un comportamento "praticamente" ideale per $R_s << R_L$ e $R_p >> R_L$ (" R_s piccola" ma non occorre zero e " R_p grande" ma non occorre infinito)

2.8 Trasformazioni Stella-Triangolo

Triangolo -> Stella

$$R_1 = \frac{R_b R_c}{(R_a + R_b + R_c)}$$

$$R_2 = \frac{R_c R_a}{(R_a + R_b + R_c)}$$

$$R_3 = \frac{R_a R_b}{(R_a + R_b + R_c)}$$

 $R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{P}$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$

(per solo riferimento =non imparare a memoria)

2.8 Reti a Stella(Y, T) e a Triangolo(Δ , Π)

(a) Figura 2.60 Due forme della (b) stessa rete: (a) stella, (b) T.

2.8 Trasformazioni Stella-Triangolo

I tre resistori in Figura 2.88a, sono collegati a *triangolo*; i resistori in Figura 2.88b sono collegati a *stella* e quindi hanno un terminale in comune.

Si può dimostrare che i due circuiti mostrati in Figura 2.88 sono equivalenti (esternamente), se sono soddisfatte le seguenti relazioni:

$$R_{1} = \frac{R_{a}R_{c}}{R_{a} + R_{b} + R_{c}} \qquad G_{a} = \frac{G_{1}G_{3}}{G_{1} + G_{2} + G_{3}}$$

$$R_{2} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}} \qquad G_{b} = \frac{G_{2}G_{3}}{G_{1} + G_{2} + G_{3}}$$

$$R_{3} = \frac{R_{a}R_{b}}{R_{a} + R_{b} + R_{c}} \qquad G_{c} = \frac{G_{1}G_{2}}{G_{1} + G_{2} + G_{3}}$$

$$\Delta \Rightarrow Y \qquad \qquad Y \Rightarrow \Delta$$
(2.45)

Le relazioni di sinistra permettono di ricavare le resistenze della stella, equivalente al triangolo dato ($trasformazione\ triangolo \rightarrow stella$). Le relazioni di destra permettono di ricavare le conduttanze del triangolo, equivalente alla stella data ($trasformazione\ stella \rightarrow triangolo$).

Le relazioni di destra sono espresse in termini di conduttanze poiché così si ottengono espressioni più semplici e analoghe a quelle di sinistra.

Sommario

- Ogni elemento circuitale (un bipolo se ha due terminali) è descritto da una equazione caratteristica che lega corrente e tensione
- Bipolo passivo ($p_{ASS,media}>0$) resistore: v=Ri oppure i=Gv con R resistenza e G conduttanza. Se R=0 corto circuito (c.c.) e se $R=\infty$ circuito aperto (c.a.)
- > Gli interruttori funzionano come un c.c. o c.a.
- Bipolo attivo ($p_{ASS,media}$ anche <0) **generatore**: gen. indipendente di tensione (v_s indip. da i) o di corrente (i_s indip. da v); gen. dipendente di tensione (v_s) o gen. dip. di corrente (i_s) se comandata da una v_x o i_x presente nel circuito
- ➢ Il principio di dualità consente di descrivere un fenomeno/dispositivo scambiando tra loro le grandezze elettriche coinvolte (tensione↔corrente, resistenza↔conduttanza, etc.)
- La serie di più generatori di tensione è un unico generatore con tensione somma delle tensioni. Il parallelo di più generatori di corrente è un unico generatore con corrente somma delle correnti

Sommario

- ightharpoonup Definizione e calcolo della **resistenza equivalente** $R_{\rm eq}$ = v_0/i_0
- La serie di più resistori è una resistenza equivalente somma delle resistenze con partizione di tensione proporzionale ad R_k considerato:

$$R_{\text{eq,SER}} = R_1 + R_2 + \dots + R_N = \sum_{k=1}^{N} R_k$$

$$v_k = \frac{R_k}{R_1 + R_2 + \dots + R_N} v$$

 \triangleright I parallelo di più resistori (conduttanze) è una conduttanza equivalente somma delle conduttanze con partizione di corrente proporzionale a G_k :

$$G_{\text{eq,PAR}} = G_1 + G_2 + \dots + G_N = \sum_{k=1}^N G_k \qquad \frac{1}{R_{\text{eq,PAR}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N} = \sum_{K=1}^n \frac{1}{R_k}$$

$$i_k = \frac{G_k}{G_1 + G_2 + \dots + G_N} i$$

Sommario

➤ Il parallelo di due resistori da una resistenza equivalente "prodotto diviso somma" delle resistenze e partizione di corrente proporzionale all'altra R:

$$R_{\text{eq},\text{//}} = \frac{R_1 R_2}{R_1 + R_2}$$
 $i_1 = \frac{R_2}{R_1 + R_2} i$ $i_2 = \frac{R_1}{R_1 + R_2} i$

- ightharpoonup Bipolo di Thevenin è la serie tra generatore di tensione e resistore $R_{
 m Th}$
- \triangleright Bipolo di Norton è il parallelo tra generatore di corrente e resistore R_N
- \succ Trasformazione di generatori: $R=R_{\rm Th}=R_{\rm N}$ ma $V_{\rm Th}=R_{\rm N}i_{\rm N}$ e $I_{\rm N}=V_{\rm Th}/R_{\rm Th}$
- Generatore reale è un generatore ideale con una resistenza interna: R_s serie per gen.tensione (quasi ideale per $R_s \rightarrow 0$) R_p parallelo per gen.corrente (quasi ideale per $R_p \rightarrow \infty$) Caricado con R_1 , a causa della resistenza interna si ha un "effetto di carico"
- ightharpoonup Trasformazione Stella \leftrightarrow Triangolo (Y,T $\leftrightarrow\Delta$, Π) esistono apposite formule

Equazioni ricolorate come figure

$$R_{\text{eq,SER}} = R_1 + R_2 + \dots + R_N = \sum_{k=1}^{N} R_k$$

$$v_k = \frac{R_k}{R_1 + R_2 + \dots + R_N} v$$

$$G_{\text{eq,PAR}} = G_1 + G_2 + \dots + G_N = \sum_{k=1}^{N} G_k \qquad \frac{1}{R_{\text{eq,PAR}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N} = \sum_{K=1}^{n} \frac{1}{R_k}$$

$$i_k = \frac{G_k}{G_1 + G_2 + \dots + G_N} i$$

Equazioni ricolorate come figure

$$R_{\text{eq},//} = \frac{R_1 R_2}{R_1 + R_2}$$
 $i_1 = \frac{R_2}{R_1 + R_2} i$ $i_2 = \frac{R_1}{R_1 + R_2} i$