Министерство образования и науки РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

Прикладная математика и информатика

Кафедра прикладной математики и искусственного интеллекта

Теоретические модели вычисления

Домашнее задание №3 Машины Тьюринга и квантовые вычисления

Преподаватель: Ивлиев С. А. Студент: Соколова А.С.

Содержание

1	Машины Тьюринга				
	1.1	Операции с числами	3		
	1.2	Операции с языками и символами	6		
2	Ква	антовые вычисления	10		
	2.1	Генерация суперпозиций 1 (1 балл)	10		
	2.2	Различение состояний 1 (1 балл)	11		

1 Машины Тьюринга

Работу требуется выполнять в системе turingmachine.io.

Для сдачи заданий 1-2 требуется прикрепить файлы YAML с исходным кодом проекта. Каждый файлы должен иметь наименование задание_пункт.yml, к примеру 1—1.yml для первой задачи первого задания.

1.1 Операции с числами

Реализуйте машины Тьюринга, которые позволяют выполнять следующие операции:

1. Сложение двух унарных чисел (1 балла)

Используем дополнительный символ х

Считаем первую единицу, заменяем ее на х. Идем до конца, считываем пробел и заменяем его на единицу. Идем влево до х. Считываем х, заменяем его на пробел.

Каждую следующую единицу по очереди заменяем на x, копируем единицу в конец и т д.

 $1+111111 \rightarrow 1111111$

	1	+	X	, ,
q0	<q1,x,r></q1,x,r>	<pre><done,' ',r=""></done,'></pre>		<pre><done, '="" ',r=""></done,></pre>
q1	<q1,1,r></q1,1,r>	<q2,+,r></q2,+,r>		
q2	<q2,1,r></q2,1,r>			<' ',1,L>
q3	<q3,1,r></q3,1,r>	<q4,+,l></q4,+,l>		
q4	<q4,1,l></q4,1,l>		<q0,' ',="" r=""></q0,'>	

2. Умножение унарных чисел (1 балл)

	1	*	, ,
q0	<q1,' ',r=""></q1,'>	<skip,*,r></skip,*,r>	
q1	<q1,1,r></q1,1,r>	<q2,*,r></q2,*,r>	
q2	<q3,' ',r=""></q3,'>	<back,' ',l=""></back,'>	
q3	<q3,1,r></q3,1,r>		<result,' ',r=""></result,'>
result	<result,1,r></result,1,r>		<q4,1,l></q4,1,l>
q4	<q4,1,l></q4,1,l>	<q5,*,r></q5,*,r>	<q4,' ',l=""></q4,'>
q5	<q5,1,r></q5,1,r>		<q2,1,r></q2,1,r>
back	<back,1,l></back,1,l>	<back,*,l></back,*,l>	<q0,1,r></q0,1,r>
skip	<skip,1,r></skip,1,r>		<pre><done,' ',r=""></done,'></pre>

Рассотрим подробнее на простом примере 11*1

1. Переходим в состояние q0 по 1 и заменяем 1 на пробел и передвигаемся правее. Получаем промежуточный результат:

1*1

2. Считываем следующую единицу, переходим в состояние q1 по 1. Считываем единицы и передвигаемся правее пока не встретим *. То есть переходим в состояние q2 по *. Промежуточный результат без изменения, только головка передвигается:

1*1

3. Далее после знака * встречаем единицу. То есть переходим в состояние q2 по 1 и заменяем 1 на пробел. Далее попадаем в состояние q3:

1*

4. Считываем еще один пробел в состоянии q3 и переходим в состояние result:

```
| q3 | <result, ', ', | | |
```

_1*__

5. Так как текущая ячейка пробел, то из состояния result по пробелу переходим в состояние q4, заменяя пробел на единицу и передвигая головку левее:

_1*__1

6. Из состояния q4 по пробелу и единице двигаемся левее, пропуская их:

_1*__1

7. Далее встречаем умножение * и переходим в состояние q5 двигаясь правее. А из состояния q5 встрречая пробел, заменяем его на и переходя в состояние q2 правее:

$$\begin{array}{|c|c|c|c|}\hline & * \\ \hline q4 & <& q5,*,R> \\ \hline & & , & , \\ \hline q5 & <& q2,1,R> \\ \hline \end{array}$$

_1*1_1

8. Из состояния q2 по пробелу переходим в состояние back двигаемся правее. Затем из состояния back по единице и умножению двигаемся левее, переходя к начальному состоянию. Когда встречаем пробел, заменяем его на единицу:

	1	*	, ,
back	 back,1,L>	 <back,*,l></back,*,l>	<q0,1,r></q0,1,r>
11*1	1		

9. Следующую единицу снова заменяем на пробел и т д :

- 1_*1_1 10. 1_*__1
- 10. 1____1 11. 1_*__11 12. 1_*1_11
- 13. 11*1 11
- 14. Передвигаем головку на начало результата

1.2 Операции с языками и символами

Реализуйте машины Тьюринга, которые позволяют выполнять следующие операции:

1. Принадлежность к языку $L = \{0^n 1^n 2^n\}, n \ge 0 \ (0.5 \$ балла)

Примеры данных, при которых МТ корректно завершает работу:

input: '001122'

Как выглядит на ленте завершение программы:

input: '012' input: '001122' input: '000111222' input: '000011112222'

Примеры данных, при которых МТ некорректно завершает свою работу:

input: '00011222'

Как выглядит на ленте завершение программы:

input: '000122' input: '221100' input: '1122' input: '00122' input: '00112' input: '3'

input: '000111' input: '01122'

2. Проверка соблюдения правильности скобок в строке (минимум 3 вида скобок) (0.5 балла)

Примеры данных, при которых МТ корректно завершает работу:
input: '([([])])'
input: '() []'
input: '() [] { }'
input: '(()[]{})'
Примеры данных, при которых МТ некорректно завершает свою работу:
input: '([(])'
input: '(({ [] } ([])'
input: '((())'
input: '('

3. Поиск минимального по длине слова в строке (слова состоят из символов 1 и 0 и разделены пробелом) (1 балл)

Тесты:

input: '10101 101 100'

Результат:

input: '11 01 10'

Результат:

input: '1 101 110'

Результат:

input: '1' Результат:

2 Квантовые вычисления

2.1 Генерация суперпозиций 1 (1 балл)

Дано N кубитов ($1 \le N \le 8$) в нулевом состоянии $0 \dots 0$. Также дана некоторая последовательность битов, которое задаёт ненулевое базисное состояние размера N. Задача получить суперпозицию нулевого состояния и заданного.

$$S = \frac{1}{\sqrt{2}}(0\dots 0 + \psi)$$

То есть требуется реализовать операцию, которая принимает на вход:

- 1. Массив кубитов q_s
- 2. Массив битов bits описывающих некоторое состояние ψ . Это массив имеет тот же самый размер, что и qs. Первый элемент этого массива равен 1.

Заготовка для кода:

```
}
}
```

2.2 Различение состояний 1 (1 балл)

Дано N кубитов $(1 \le N \le 8)$, которые могут быть в одном из двух состояний:

$$GHZ = \frac{1}{\sqrt{2}}(0...0 + 1...1)$$

$$W = \frac{1}{\sqrt{N}}(10...00 + 01...00 + ... + 00...01)$$

Требуется выполнить необходимые преобразования, чтобы точно различить эти два состояния. Возвращать 0, если первое состояние и 1, если второе.

```
Заготовка для кода:
```

```
namespace Solution {
    open Microsoft.Quantum.Primitive;
    open Microsoft.Quantum.Canon;
    operation Solve (qs : Qubit[]) : Int
    {
        body
        {
            return
        }
    }
}
```