Appendix A Practices and Solutions

Table of Contents

Practices for Lesson I	3
Practice I-1: Introduction	4
Practice Solutions I-1: Introduction	5
Practices for Lesson 1	11
Practice 1-1: Retrieving Data Using the SQL SELECT Statement	12
Practice Solutions 1-1: Retrieving Data Using the SQL SELECT Statement	
Practices for Lesson 2	
Practice 2-1: Restricting and Sorting Data.	
Practice Solutions 2-1: Restricting and Sorting Data	
Practices for Lesson 3	
Practice 3-1: Using Single-Row Functions to Customize Output	
Practice Solutions 3-1: Using Single-Row Functions to Customize Output	
Practices for Lesson 4	
Practice 4-1: Using Conversion Functions and Conditional Expressions	36
Practice Solutions 4-1: Using Conversion Functions and Conditional Expressions.	
Practices for Lesson 5	41
Practice 5-1: Reporting Aggregated Data Using the Group Functions	42
Practice Solutions 5-1: Reporting Aggregated Data Using the Group Functions	45
Practices for Lesson 6	48
Practice 6-1: Displaying Data from Multiple Tables Using Joins	49
Practice Solutions 6-1: Displaying Data from Multiple Tables Using Joins	52
Practices for Lesson 7	
Practice 7-1: Using Subqueries to Solve Queries	
Practice Solutions 7-1: Using Subqueries to Solve Queries	
Practices for Lesson 8	
Practice 8-1: Using the Set Operators	
Practice Solutions 8-1: Using the Set Operators	
Practices for Lesson 9	
Practice 9-1: Manipulating Data	
Practice Solutions 9-1: Manipulating Data	
Practices for Lesson 10	
Practice 10-1: Using DDL Statements to Create and Manage Tables	
Practice Solutions 10-1: Using DDL Statements to Create and Manage Tables	
Practices for Lesson 11	
Practice 11-1: Creating Other Schema Objects	
Practice Solutions 11-1: Creating Other Schema Objects	
Practices for Appendix F	
Practice F-1: Oracle Join Syntax	
Practice Solutions F-1: Oracle Join Syntax	88

Practices for Lesson I

In this practice, you perform the following:

- Start Oracle SQL Developer and create a new connection to the oral account.
- Use Oracle SQL Developer to examine data objects in the oral account. The oral account contains the HR schema tables.

Note the following location for the lab files:

\home\oracle\labs\sql1\labs

If you are asked to save any lab files, save them in this location.

In any practice, there may be exercises that are prefaced with the phrases "If you have time" or "If you want an extra challenge." Work on these exercises only if you have completed all other exercises within the allocated time and would like a further challenge to your skills.

Perform the practices slowly and precisely. You can experiment with saving and running command files. If you have any questions at any time, ask your instructor.

Note

- 1) All written practices use Oracle SQL Developer as the development environment. Although it is recommended that you use Oracle SQL Developer, you can also use SQL*Plus that is available in this course.
- 2) For any query, the sequence of rows retrieved from the database may differ from the screenshots shown.

Practice I-1: Introduction

This is the first of many practices in this course. The solutions (if you require them) can be found at the end of this practice. Practices are intended to cover most of the topics that are presented in the corresponding lesson.

Starting Oracle SQL Developer

1) Start Oracle SQL Developer using the SQL Developer desktop icon.

Creating a New Oracle SQL Developer Database Connection

- 2) To create a new database connection, in the Connections Navigator, right-click Connections. Select New Connection from the menu. The New/Select Database Connection dialog box appears.
- 3) Create a database connection using the following information:

a) Connection Name: myconnection

b) Username: ora1

c) Password: ora1

d) Hostname: localhost

e) Port: 1521

f) SID: ORCL

Ensure that you select the Save Password check box.

Testing and Connecting Using the Oracle SQL Developer Database Connection

- 4) Test the new connection.
- 5) If the status is Success, connect to the database using this new connection.

Browsing the Tables in the Connections Navigator

6) In the Connections Navigator, view the objects available to you in the Tables node. Verify that the following tables are present:

COUNTRIES
DEPARTMENTS
EMPLOYEES
JOB_GRADES
JOB_HISTORY
JOBS
LOCATIONS
REGIONS

- REGIONS
- 7) Browse the structure of the EMPLOYEES table.
- 8) View the data of the DEPARTMENTS table.

Practice Solutions I-1: Introduction

Starting Oracle SQL Developer

- 1) Start Oracle SQL Developer using the SQL Developer desktop icon.
 - a) Double-click the SQL Developer desktop icon.

The SQL Developer Interface appears.

Creating a New Oracle SQL Developer Database Connection

2) To create a new database connection, in the Connections Navigator, right-click Connections and select New Connection from the menu.

The New / Select Database Connection dialog box appears.

3) Create a database connection using the following information:

a) Connection Name: myconnection

b) Username: ora1

c) Password: ora1

d) Hostname: localhost

e) Port: 1521

f) SID: ORCL

Ensure that you select the Save Password check box.

Testing and Connecting Using the Oracle SQL Developer Database Connection

4) Test the new connection.

5) If the status is Success, connect to the database using this new connection.

When you create a connection, a SQL Worksheet for that connection opens automatically.

Browsing the Tables in the Connections Navigator

6) In the Connections Navigator, view the objects available to you in the Tables node. Verify that the following tables are present:

COUNTRIES
DEPARTMENTS
EMPLOYEES
JOB_GRADES
JOB_HISTORY
JOBS
LOCATIONS
REGIONS

7) Browse the structure of the EMPLOYEES table.

8) View the data of the DEPARTMENTS table.

Practices for Lesson 1

In this practice, you write simple SELECT queries. The queries cover most of the SELECT clauses and operations that you learned in this lesson.

Practice 1-1: Retrieving Data Using the SQL SELECT Statement Part 1

Test your knowledge:

1) The following SELECT statement executes successfully:

```
SELECT last_name, job_id, salary AS Sal
FROM employees;
```

True/False

2) The following SELECT statement executes successfully:

```
SELECT *
FROM job_grades;
```

True/False

3) There are four coding errors in the following statement. Can you identify them?

```
SELECT employee_id, last_name
sal x 12 ANNUAL SALARY
FROM employees;
```

Part 2

Note the following points before you begin with the practices:

- Save all your lab files at the following location: /home/oracle/labs/sql1/labs
- Enter your SQL statements in a SQL Worksheet. To save a script in SQL Developer, make sure that the required SQL worksheet is active and then from the File menu, select Save As to save your SQL statement as a lab_<lessonno>_<stepno>.sql script. When you are modifying an existing script, make sure that you use Save As to save it with a different file name.
- To run the query, click the Execute Statement icon in the SQL Worksheet. Alternatively, you can press [F9]. For DML and DDL statements, use the Run Script icon or press [F5].
- After you have executed the query, make sure that you do not enter your next query in the same worksheet. Open a new worksheet.

You have been hired as a SQL programmer for Acme Corporation. Your first task is to create some reports based on data from the Human Resources tables.

Practice 1-1: Retrieving Data Using the SQL SELECT Statement (continued)

4) Your first task is to determine the structure of the DEPARTMENTS table and its contents.

	DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	2 LOCATION_ID
1	10	Administration	200	1700
2	20	Marketing	201	1800
3	50	Shipping	124	1500
4	60	IT	103	1400
5	80	Sales	149	2500
6	90	Executive	100	1700
7	110	Accounting	205	1700
8	190	Contracting	(null)	1700

5) Determine the structure of the EMPLOYEES table.

Name	Nu11	Туре
EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL PHONE_NUMBER HIRE_DATE JOB_ID SALARY COMMISSION_PCT	NOT NULL NOT NULL	NUMBER(6) VARCHAR2(20) VARCHAR2(25) VARCHAR2(25) VARCHAR2(20) DATE VARCHAR2(10) NUMBER(8,2) NUMBER(2,2)
MANAGER_ID DEPARTMENT_ID		NUMBER(6) NUMBER(4)
11 rows selected		

The HR department wants a query to display the last name, job ID, hire date, and employee ID for each employee, with the employee ID appearing first. Provide an alias STARTDATE for the HIRE_DATE column. Save your SQL statement to a file named lab 01 05.sql so that you can dispatch this file to the HR department.

6) Test your query in the lab_01_05.sql file to ensure that it runs correctly.

Note: After you have executed the query, make sure that you do not enter your next query in the same worksheet. Open a new worksheet.

Practice 1-1: Retrieving Data Using the SQL SELECT Statement (continued)

	AZ	EMPLOYEE_ID	ÆZ	LAST_NAME	Æ	JOB_ID	A	STARTDATE
1		200	Wh	alen	AD,	_ASST	17-	SEP-87
2		201	Har	tstein	ΜK	_MAN	17-	FEB-96
3		202	Fay		ΜK	_REP	17-	AUG-97
4		205	Hig	gins	AC.	_MGR	07-	JUN-94
5		206	Gie	tz	AC.	_ACCOUNT	07-	JUN-94

...

19	176 Taylor	SA_REP	24-MAR-98
20	178 Grant	SA_REP	24-MAY-99

7) The HR department wants a query to display all unique job IDs from the EMPLOYEES table.

Part 3

If you have time, complete the following exercises:

8) The HR department wants more descriptive column headings for its report on employees. Copy the statement from lab_01_05.sql to a new SQL Worksheet.

Name the column headings Emp #, Employee, Job, and Hire Date, respectively. Then run the query again.

	∄ Emp#	2 Employee	2 Job	Hire Date	
1	200	Whalen	AD_ASST	17-SEP-87	
2	201	Hartstein	MK_MAN	17-FEB-96	
3	202	Fay	MK_REP	17-AUG-97	
4	205	Higgins	AC_MGR	07-JUN-94	
5	206	Gietz	AC_ACCOUNT	07-JUN-94	

•••

Practice 1-1: Retrieving Data Using the SQL SELECT Statement (continued)

19	176 Taylor	SA_REP	24-MAR-98
20	178 Grant	SA_REP	24-MAY-99

9) The HR department has requested a report of all employees and their job IDs. Display the last name concatenated with the job ID (separated by a comma and space) and name the column Employee and Title.

•••

19	Whalen, AD_ASST
20	Zlotkey, SA_MAN

If you want an extra challenge, complete the following exercise:

10) To familiarize yourself with the data in the EMPLOYEES table, create a query to display all the data from that table. Separate each column output by a comma. Name the column title THE OUTPUT.

	THE_OUTPUT
1	200, Jennifer, Whalen, JWHALEN, 515.123.4444, AD_ASST, 101, 17-SEP-87, 4400, , 10
2	201,Michael,Hartstein,MHARTSTE,515.123.5555,MK_MAN,100,17-FEB-96,13000,,20
3	202,Pat,Fay,PFAY,603.123.6666,MK_REP,201,17-AUG-97,6000,,20
4	205,Shelley,Higgins,SHIGGINS,515.123.8080,AC_MGR,101,07-JUN-94,12000,,110
5	206,William,Gietz,WGIETZ,515.123.8181,AC_ACCOUNT,205,07-JUN-94,8300,,110

...

```
19 176,Jonathon,Taylor,JTAYLOR,011.44.1644.429265,SA_REP,149,24-MAR-98,8600,.2,80 20 178,Kimberely,Grant,KGRANT,011.44.1644.429263,SA_REP,149,24-MAY-99,7000,.15,
```

Practice Solutions 1-1: Retrieving Data Using the SQL SELECT Statement

Part 1

Test your knowledge:

1) The following SELECT statement executes successfully:

```
SELECT last_name, job_id, salary AS Sal
FROM employees;
```

True/False

2) The following SELECT statement executes successfully:

```
SELECT *
FROM job_grades;
```

True/False

3) There are four coding errors in the following statement. Can you identify them?

```
SELECT employee_id, last_name
sal x 12 ANNUAL SALARY
FROM employees;
```

- The EMPLOYEES table does not contain a column called sal. The column is called SALARY.
- The multiplication operator is *, not x, as shown in line 2.
- The ANNUAL SALARY alias cannot include spaces. The alias should read ANNUAL SALARY or should be enclosed within double quotation marks.
- A comma is missing after the LAST NAME column.

Part 2

You have been hired as a SQL programmer for Acme Corporation. Your first task is to create some reports based on data from the Human Resources tables.

- 4) Your first task is to determine the structure of the DEPARTMENTS table and its contents.
 - a. To determine the DEPARTMENTS table structure:

```
DESCRIBE departments
```

Practice Solutions 1-1: Retrieving Data Using the SQL SELECT Statement (continued)

b. To view the data contained in the DEPARTMENTS table:

```
SELECT *
FROM departments;
```

5) Determine the structure of the EMPLOYEES table.

```
DESCRIBE employees
```

The HR department wants a query to display the last name, job ID, hire date, and employee ID for each employee, with the employee ID appearing first. Provide an alias STARTDATE for the HIRE_DATE column. Save your SQL statement to a file named lab 01 05.sql so that you can dispatch this file to the HR department.

```
SELECT employee_id, last_name, job_id, hire_date StartDate
FROM employees;
```

6) Test your query in the lab 01 05.sql file to ensure that it runs correctly.

```
SELECT employee_id, last_name, job_id, hire_date StartDate
FROM employees;
```

7) The HR department wants a query to display all unique job IDs from the EMPLOYEES table.

```
SELECT DISTINCT job_id
FROM employees;
```

Part 3

If you have time, complete the following exercises:

8) The HR department wants more descriptive column headings for its report on employees. Copy the statement from lab_01_05.sql to a new SQL Worksheet. Name the column headings Emp #, Employee, Job, and Hire Date, respectively. Then run the query again.

9) The HR department has requested a report of all employees and their job IDs. Display the last name concatenated with the job ID (separated by a comma and space) and name the column Employee and Title.

```
SELECT last_name||', '||job_id "Employee and Title"
FROM employees;
```

Practice Solutions 1-1: Retrieving Data Using the SQL SELECT Statement (continued)

If you want an extra challenge, complete the following exercise:

10) To familiarize yourself with the data in the EMPLOYEES table, create a query to display all the data from that table. Separate each column output by a comma. Name the column title THE OUTPUT.

Practices for Lesson 2

In this practice, you build more reports, including statements that use the WHERE clause and the ORDER BY clause. You make the SQL statements more reusable and generic by including the ampersand substitution.

Practice 2-1: Restricting and Sorting Data

The HR department needs your assistance in creating some queries.

1) Because of budget issues, the HR department needs a report that displays the last name and salary of employees who earn more than \$12,000. Save your SQL statement as a file named lab_02_01.sql. Run your query.

2) Open a new SQL Worksheet. Create a report that displays the last name and department number for employee number 176. Run the query.

3) The HR department needs to find high-salary and low-salary employees. Modify lab_02_01.sql to display the last name and salary for any employee whose salary is not in the range of \$5,000 to \$12,000. Save your SQL statement as lab_02_03.sql.

	LAST_NAME	SALARY
1	Whalen	4400
2	Hartstein	13000
3	King	24000
4	Kochhar	17000
5	De Haan	17000
6	Lorentz	4200
7	Rajs	3500
8	Davies	3100
9	Matos	2600
10	Vargas	2500

4) Create a report to display the last name, job ID, and hire date for employees with the last names of Matos and Taylor. Order the query in ascending order by the hire date.

Practice 2-1: Restricting and Sorting Data (continued)

5) Display the last name and department ID of all employees in departments 20 or 50 in ascending alphabetical order by name.

	LAST_NAME	DEPARTMENT_ID
1	Davies	50
2	Fay	20
3	Hartstein	20
4	Matos	50
5	Mourgos	50
6	Rajs	50
7	Vargas	50

6) Modify lab_02_03.sql to display the last name and salary of employees who earn between \$5,000 and \$12,000, and are in department 20 or 50. Label the columns Employee and Monthly Salary, respectively. Save lab_02_03.sql as lab_02_06.sql again. Run the statement in lab_02_06.sql.

7) The HR department needs a report that displays the last name and hire date for all employees who were hired in 1994.

8) Create a report to display the last name and job title of all employees who do not have a manager.

9) Create a report to display the last name, salary, and commission of all employees who earn commissions. Sort data in descending order of salary and commissions.

Use the column's numeric position in the ORDER BY clause.

Practice 2-1: Restricting and Sorting Data (continued)

10) Members of the HR department want to have more flexibility with the queries that you are writing. They would like a report that displays the last name and salary of employees who earn more than an amount that the user specifies after a prompt. Save this query to a file named lab_02_10.sql. If you enter 12000 when prompted, the report displays the following results:

11) The HR department wants to run reports based on a manager. Create a query that prompts the user for a manager ID and generates the employee ID, last name, salary, and department for that manager's employees. The HR department wants the ability to sort the report on a selected column. You can test the data with the following values:

manager_id = 103, sorted by last_name:

manager id = 201, sorted by salary:

manager id = 124, sorted by employee id:

If you have time, complete the following exercises:

12) Display all employee last names in which the third letter of the name is "a."

Practice 2-1: Restricting and Sorting Data (continued)

13) Display the last names of all employees who have both an "a" and an "e" in their last name.

If you want an extra challenge, complete the following exercises:

14) Display the last name, job, and salary for all employees whose jobs are either those of a sales representative or of a stock clerk, and whose salaries are not equal to \$2,500, \$3,500, or \$7,000.

15) Modify lab_02_06.sql to display the last name, salary, and commission for all employees whose commission is 20%. Save lab_02_06.sql as lab_02_15.sql again. Rerun the statement in lab_02_15.sql.

Practice Solutions 2-1: Restricting and Sorting Data

The HR department needs your assistance in creating some queries.

1) Because of budget issues, the HR department needs a report that displays the last name and salary of employees earning more than \$12,000. Save your SQL statement as a file named lab_02_01.sql. Run your query.

```
SELECT last_name, salary
FROM employees
WHERE salary > 12000;
```

2) Open a new SQL Worksheet. Create a report that displays the last name and department number for employee number 176.

```
SELECT last_name, department_id
FROM employees
WHERE employee_id = 176;
```

3) The HR department needs to find high-salary and low-salary employees. Modify lab_02_01.sql to display the last name and salary for all employees whose salary is not in the range \$5,000 through \$12,000. Save your SQL statement as lab_02_03.sql.

```
SELECT last_name, salary
FROM employees
WHERE salary NOT BETWEEN 5000 AND 12000;
```

4) Create a report to display the last name, job ID, and hire date for employees with the last names of Matos and Taylor. Order the query in ascending order by hire date.

```
SELECT last_name, job_id, hire_date
FROM employees
WHERE last_name IN ('Matos', 'Taylor')
ORDER BY hire_date;
```

5) Display the last name and department ID of all employees in departments 20 or 50 in ascending alphabetical order by name.

```
SELECT last_name, department_id
FROM employees
WHERE department_id IN (20, 50)
ORDER BY last_name ASC;
```

6) Modify lab_02_03.sql to list the last name and salary of employees who earn between \$5,000 and \$12,000, and are in department 20 or 50. Label the columns Employee and Monthly Salary, respectively. Save lab_02_03.sql as lab_02_06.sql again. Run the statement in lab_02_06.sql.

```
SELECT last_name "Employee", salary "Monthly Salary"
FROM employees
WHERE salary BETWEEN 5000 AND 12000
AND department_id IN (20, 50);
```

Practice Solutions 2-1: Restricting and Sorting Data (continued)

7) The HR department needs a report that displays the last name and hire date for all employees who were hired in 1994.

```
SELECT last_name, hire_date
FROM employees
WHERE hire_date LIKE '%94';
```

8) Create a report to display the last name and job title of all employees who do not have a manager.

```
SELECT last_name, job_id
FROM employees
WHERE manager_id IS NULL;
```

9) Create a report to display the last name, salary, and commission for all employees who earn commissions. Sort data in descending order of salary and commissions. Use the column's numeric position in the ORDER BY clause.

```
SELECT last_name, salary, commission_pct
FROM employees
WHERE commission_pct IS NOT NULL
ORDER BY 2 DESC, 3 DESC;
```

10) Members of the HR department want to have more flexibility with the queries that you are writing. They would like a report that displays the last name and salary of employees who earn more than an amount that the user specifies after a prompt. (You can use the query created in practice exercise 1 and modify it.) Save this query to a file named lab 02 10.sql.

```
SELECT last_name, salary
FROM employees
WHERE salary > &sal_amt;
```

Enter 12000 when prompted for a value in a dialog box. Click OK.

11) The HR department wants to run reports based on a manager. Create a query that prompts the user for a manager ID and generates the employee ID, last name, salary, and department for that manager's employees. The HR department wants the ability to sort the report on a selected column. You can test the data with the following values:

```
manager_id = 103, sorted by last_name
manager_id = 201, sorted by salary
manager_id = 124, sorted by employee_id
```

Practice Solutions 2-1: Restricting and Sorting Data (continued)

```
SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE manager_id = &mgr_num
ORDER BY &order_col;
```

If you have the time, complete the following exercises:

12) Display all employee last names in which the third letter of the name is "a."

```
SELECT last_name
FROM employees
WHERE last_name LIKE '__a%';
```

13) Display the last names of all employees who have both an "a" and an "e" in their last name.

```
SELECT last_name
FROM employees
WHERE last_name LIKE '%a%'
AND last_name LIKE '%e%';
```

If you want an extra challenge, complete the following exercises:

14) Display the last name, job, and salary for all employees whose job is that of a sales representative or a stock clerk, and whose salary is not equal to \$2,500, \$3,500, or \$7,000.

```
SELECT last_name, job_id, salary
FROM employees
WHERE job_id IN ('SA_REP', 'ST_CLERK')
AND salary NOT IN (2500, 3500, 7000);
```

15) Modify lab_02_06.sql to display the last name, salary, and commission for all employees whose commission amount is 20%. Save lab_02_06.sql as lab_02_15.sql again. Rerun the statement in lab_02_15.sql.

```
SELECT last_name "Employee", salary "Monthly Salary", commission_pct

FROM employees
WHERE commission_pct = .20;
```

Practices for Lesson 3

This practice provides a variety of exercises using different functions that are available for character, number, and date data types.

Practice 3-1: Using Single-Row Functions to Customize Output

1) Write a query to display the system date. Label the column Date.

Note: If your database is remotely located in a different time zone, the output will be the date for the operating system on which the database resides.

2) The HR department needs a report to display the employee number, last name, salary, and salary increased by 15.5% (expressed as a whole number) for each employee. Label the column New Salary. Save your SQL statement in a file named lab_03_02.sql.

3) Run your query in the lab 03 02.sql file.

					_=			
	A	EMPLOYEE_ID	A	LAST_NAME	A	SALARY	A	New Salary
1		200	Wh	alen		4400		5082
2		201	Har	tstein		13000		15015
3		202	Fay			6000		6930
4		205	Hig	gins		12000		13860
5		206	Gie	tz		8300		9587

19	176 Taylor	8600	9933
20	178 Grant	7000	8085

4) Modify your query lab_03_02.sql to add a column that subtracts the old salary from the new salary. Label the column Increase. Save the contents of the file as lab_03_04.sql. Run the revised query.

	EMPLOYEE_ID	LAST_NAME	SALARY	New Salary	2 Increase
1	200	Whalen	4400	5082	682
2	201	Hartstein	13000	15015	2015
3	202	Fay	6000	6930	930
4	205	Higgins	12000	13860	1860
5	206	Gietz	8300	9587	1287

19	176 Taylor	8600	9933	1333
20	178 Grant	7000	8085	1085

Practice 3-1: Using Single-Row Functions to Customize Output (continued)

5) Write a query that displays the last name (with the first letter in uppercase and all the other letters in lowercase) and the length of the last name for all employees whose name starts with the letters "J," "A," or "M." Give each column an appropriate label. Sort the results by the employees' last names.

Rewrite the query so that the user is prompted to enter a letter that the last name starts with. For example, if the user enters "H" (capitalized) when prompted for a letter, then the output should show all employees whose last name starts with the letter "H."

Modify the query such that the case of the entered letter does not affect the output. The entered letter must be capitalized before being processed by the SELECT query.

6) The HR department wants to find the duration of employment for each employee. For each employee, display the last name and calculate the number of months between today and the date on which the employee was hired. Label the column as MONTHS_WORKED. Order your results by the number of months employed. Round the number of months up to the closest whole number.

Note: Because this query depends on the date when it was executed, the values in the MONTHS WORKED column will differ for you.

Practice 3-1: Using Single-Row Functions to Customize Output (continued)

	LAST_NAME	■ MONTHS_WORKED
1	Zlotkey	112
2	Mourgos	115
3	Grant	121
4	Lorentz	124
5	Vargas	131
•••		
19	Whalen	261
20	King	264

If you have time, complete the following exercises:

7) Create a query to display the last name and salary for all employees. Format the salary to be 15 characters long, left-padded with the \$ symbol. Label the column SALARY.

8) Create a query that displays the first eight characters of the employees' last names and indicates the amounts of their salaries with asterisks. Each asterisk signifies a thousand dollars. Sort the data in descending order of salary. Label the column EMPLOYEES AND THEIR SALARIES.

Practice 3-1: Using Single-Row Functions to Customize Output (continued)

9) Create a query to display the last name and the number of weeks employed for all employees in department 90. Label the number of weeks column TENURE. Truncate the number of weeks value to 0 decimal places. Show the records in descending order of the employee's tenure.

Note: The TENURE value will differ as it depends on the date on which you run the query.

	LAST_NAME	A	TENURE
1	King		1147
2	Kochhar		1028
3	De Haan		856

Practice Solutions 3-1: Using Single-Row Functions to Customize Output

1) Write a query to display the system date. Label the column Date.

Note: If your database is remotely located in a different time zone, the output will be the date for the operating system on which the database resides.

```
SELECT sysdate "Date"
FROM dual;
```

2) The HR department needs a report to display the employee number, last name, salary, and salary increased by 15.5% (expressed as a whole number) for each employee. Label the column New Salary. Save your SQL statement in a file named lab 03 02.sql.

```
SELECT employee_id, last_name, salary,
ROUND(salary * 1.155, 0) "New Salary"
FROM employees;
```

3) Run your query in the file lab 03 02.sql.

4) Modify your query lab_03_02.sql to add a column that subtracts the old salary from the new salary. Label the column Increase. Save the contents of the file as lab_03_04.sql. Run the revised query.

```
SELECT employee_id, last_name, salary,

ROUND(salary * 1.155, 0) "New Salary",

ROUND(salary * 1.155, 0) - salary "Increase"

FROM employees;
```

5) Write a query that displays the last name (with the first letter in uppercase and all the other letters in lowercase) and the length of the last name for all employees whose name starts with the letters "J," "A," or "M." Give each column an appropriate label. Sort the results by the employees' last names.

```
SELECT INITCAP(last_name) "Name",

LENGTH(last_name) "Length"

FROM employees

WHERE last_name LIKE 'J%'

OR last_name LIKE 'M%'

OR last_name LIKE 'A%'

ORDER BY last_name ;
```

Rewrite the query so that the user is prompted to enter a letter that starts the last name. For example, if the user enters H (capitalized) when prompted for a letter, then the output should show all employees whose last name starts with the letter "H."

Practice Solutions 3-1: Using Single-Row Functions to Customize Output (continued)

Modify the query such that the case of the entered letter does not affect the output. The entered letter must be capitalized before being processed by the SELECT query.

```
SELECT INITCAP(last_name) "Name",
LENGTH(last_name) "Length"
FROM employees
WHERE last_name LIKE UPPER('&start_letter%')
ORDER BY last_name;
```

6) The HR department wants to find the duration of employment for each employee. For each employee, display the last name and calculate the number of months between today and the date on which the employee was hired. Label the column MONTHS_WORKED. Order your results by the number of months employed. Round the number of months up to the closest whole number.

Note: Because this query depends on the date when it was executed, the values in the MONTHS WORKED column will differ for you.

If you have the time, complete the following exercises:

7) Create a query to display the last name and salary for all employees. Format the salary to be 15 characters long, left-padded with the \$ symbol. Label the column SALARY.

```
SELECT last_name,
LPAD(salary, 15, '$') SALARY
FROM employees;
```

8) Create a query that displays the first eight characters of the employees' last names and indicates the amounts of their salaries with asterisks. Each asterisk signifies a thousand dollars. Sort the data in descending order of salary. Label the column EMPLOYEES_AND_THEIR_SALARIES.

```
SELECT rpad(last_name, 8) | | ' ' | | rpad(' ', salary/1000+1, '*')

EMPLOYEES_AND_THEIR_SALARIES

FROM employees

ORDER BY salary DESC;
```

Practice Solutions 3-1: Using Single-Row Functions to Customize Output (continued)

9) Create a query to display the last name and the number of weeks employed for all employees in department 90. Label the number of weeks column TENURE. Truncate the number of weeks value to 0 decimal places. Show the records in descending order of the employee's tenure.

Note: The TENURE value will differ as it depends on the date when you run the query.

```
SELECT last_name, trunc((SYSDATE-hire_date)/7) AS TENURE
FROM employees
WHERE department_id = 90
ORDER BY TENURE DESC
```

Practices for Lesson 4

This practice provides a variety of exercises using TO_CHAR and TO_DATE functions, and conditional expressions such as DECODE and CASE. Remember that for nested functions, the results are evaluated from the innermost function to the outermost function.

Practice 4-1: Using Conversion Functions and Conditional Expressions

1) Create a report that produces the following for each employee: <employee last name> earns <salary> monthly but wants <3 times salary.>. Label the column Dream Salaries.

19 Taylor earns \$8,600.00 monthly but wants \$25,800.00. 20 Grant earns \$7,000.00 monthly but wants \$21,000.00.

2) Display each employee's last name, hire date, and salary review date, which is the first Monday after six months of service. Label the column REVIEW. Format the dates to appear in the format similar to "Monday, the Thirty-First of July, 2000."

	LAST_NAME	HIRE_DATE	2 REVIEW
1	Whalen	17-SEP-87	Monday, the Twenty-First of March, 1988
2	Hartstein	17-FEB-96	Monday, the Nineteenth of August, 1996
3	Fay	17-AUG-97	Monday, the Twenty-Third of February, 1998
4	Higgins	07-JUN-94	Monday, the Twelfth of December, 1994
5	Gietz	07-JUN-94	Monday, the Twelfth of December, 1994

•••

19 Taylor	24-MAR-98	Monday, the Twenty-Eighth of September, 1998
20 Grant	24-MAY-99	Monday, the Twenty-Ninth of November, 1999

3) Display the last name, hire date, and day of the week on which the employee started. Label the column DAY. Order the results by the day of the week, starting with Monday.

	LAST_NAME	HIRE_DATE	2 DAY
1	Grant	24-MAY-99	MONDAY
2	Ernst	21-MAY-91	TUESDAY
3	Taylor	24-MAR-98	TUESDAY
4	Rajs	17-OCT-95	TUESDAY
5	Mourgos	16-NOV-99	TUESDAY

19	Matos	15-MAR-98	SUNDAY
20	Fay	17-AUG-97	SUNDAY

Practice 4-1: Using Conversion Functions and Conditional Expressions (continued)

4) Create a query that displays the employees' last names and commission amounts. If an employee does not earn commission, show "No Commission." Label the column COMM.

16	Vargas	No Commission
17	Zlotkey	.2
18	Abel	.3
19	Taylor	.2
20	Grant	.15

If you have time, complete the following exercises:

5) Using the DECODE function, write a query that displays the grade of all employees based on the value of the column JOB_ID, using the following data:

Practice 4-1: Using Conversion Functions and Conditional Expressions (continued)

6) Rewrite the statement in the preceding exercise by using the CASE syntax.

		A	GRADE
1	AC_ACCOUNT	0	
2	AC_MGR	0	
3	AD_ASST	0	
4	AD_PRES	А	
5	AD_VP	0	
6	AD_VP	0	
7	IT_PROG	C	

14 SA_REP	D
15 SA_REP	D

•••		
19	ST_CLERK	E
20	ST_MAN	В

Practice Solutions 4-1: Using Conversion Functions and Conditional Expressions

1) Create a report that produces the following for each employee: <employee last name> earns <salary> monthly but wants <3 times salary.>. Label the column Dream Salaries.

2) Display each employee's last name, hire date, and salary review date, which is the first Monday after six months of service. Label the column REVIEW. Format the dates to appear in the format similar to "Monday, the Thirty-First of July, 2000."

3) Display the last name, hire date, and day of the week on which the employee started. Label the column DAY. Order the results by the day of the week, starting with Monday.

```
SELECT last_name, hire_date,

TO_CHAR(hire_date, 'DAY') DAY

FROM employees

ORDER BY TO_CHAR(hire_date - 1, 'd');
```

4) Create a query that displays the employees' last names and commission amounts. If an employee does not earn commission, show "No Commission." Label the column COMM.

```
SELECT last_name,

NVL(TO_CHAR(commission_pct), 'No Commission') COMM

FROM employees;
```

5) Using the DECODE function, write a query that displays the grade of all employees based on the value of the JOB_ID column, using the following data:

Job	Grade
AD_PRES	А
ST MAN	В
IT_PROG	С
SA REP	D
ST_CLERK	E
None of the above	0

Practice Solutions 4-1: Using Conversion Functions and Conditional Expressions (continued)

```
SELECT job_id, decode (job_id,

'ST_CLERK', 'E',

'SA_REP', 'D',

'IT_PROG', 'C',

'ST_MAN', 'B',

'AD_PRES', 'A',

'0')GRADE

FROM employees;
```

6) Rewrite the statement in the preceding exercise by using the CASE syntax.

```
SELECT job_id, CASE job_id

WHEN 'ST_CLERK' THEN 'E'

WHEN 'SA_REP' THEN 'D'

WHEN 'IT_PROG' THEN 'C'

WHEN 'ST_MAN' THEN 'B'

WHEN 'AD_PRES' THEN 'A'

ELSE '0' END GRADE

FROM employees;
```

Practices for Lesson 5

At the end of this practice, you should be familiar with using group functions and selecting groups of data.

Practice 5-1: Reporting Aggregated Data Using the Group Functions

Determine the validity of the following three statements. Circle either True or False.

- 1) Group functions work across many rows to produce one result per group. True/False
- 2) Group functions include nulls in calculations. True/False
- 3) The WHERE clause restricts rows before inclusion in a group calculation. True/False

The HR department needs the following reports:

4) Find the highest, lowest, sum, and average salary of all employees. Label the columns Maximum, Minimum, Sum, and Average, respectively. Round your results to the nearest whole number. Save your SQL statement as lab_05_04.sql. Run the query.

5) Modify the query in lab_05_04.sql to display the minimum, maximum, sum, and average salary for each job type. Save lab_05_04.sql as lab_05_05.sql again. Run the statement in lab 05 05.sql.

		Maximum	Minimum 1	2 Sum	2 Average
1	AC_MGR	12000	12000	12000	12000
2	AC_ACCOUNT	8300	8300	8300	8300
3	IT_PROG	9000	4200	19200	6400
4	ST_MAN	5800	5800	5800	5800
5	AD_ASST	4400	4400	4400	4400
6	AD_VP	17000	17000	34000	17000
7	MK_MAN	13000	13000	13000	13000
8	SA_MAN	10500	10500	10500	10500
9	MK_REP	6000	6000	6000	6000
10	AD_PRES	24000	24000	24000	24000
11	SA_REP	11000	7000	26600	8867
12	ST_CLERK	3500	2500	11700	2925

Practice 5-1: Reporting Aggregated Data Using the Group Functions (continued)

6) Write a query to display the number of people with the same job.

Generalize the query so that the user in the HR department is prompted for a job title. Save the script to a file named lab_05_06.sql. Run the query. Enter IT_PROG when prompted.

7) Determine the number of managers without listing them. Label the column Number of Managers.

Hint: Use the MANAGER_ID column to determine the number of managers.

8) Find the difference between the highest and lowest salaries. Label the column DIFFERENCE.

If you have time, complete the following exercises:

9) Create a report to display the manager number and the salary of the lowest-paid employee for that manager. Exclude anyone whose manager is not known. Exclude any groups where the minimum salary is \$6,000 or less. Sort the output in descending order of salary.

Practice 5-1: Reporting Aggregated Data Using the Group Functions (continued)

If you want an extra challenge, complete the following exercises:

10) Create a query to display the total number of employees and, of that total, the number of employees hired in 1995, 1996, 1997, and 1998. Create appropriate column headings.

11) Create a matrix query to display the job, the salary for that job based on department number, and the total salary for that job, for departments 20, 50, 80, and 90, giving each column an appropriate heading.

Practice Solutions 5-1: Reporting Aggregated Data Using the Group Functions

Determine the validity of the following three statements. Circle either True or False.

- 1) Group functions work across many rows to produce one result per group. **True**/False
- 2) Group functions include nulls in calculations. True/**False**
- 3) The WHERE clause restricts rows before inclusion in a group calculation. **True**/False

The HR department needs the following reports:

4) Find the highest, lowest, sum, and average salary of all employees. Label the columns Maximum, Minimum, Sum, and Average, respectively. Round your results to the nearest whole number. Save your SQL statement as lab_05_04.sql. Run the query.

```
SELECT ROUND(MAX(salary),0) "Maximum",

ROUND(MIN(salary),0) "Minimum",

ROUND(SUM(salary),0) "Sum",

ROUND(AVG(salary),0) "Average"

FROM employees;
```

5) Modify the query in lab_05_04.sql to display the minimum, maximum, sum, and average salary for each job type. Save lab_05_04.sql as lab_05_05.sql again. Run the statement in lab_05_05.sql.

6) Write a query to display the number of people with the same job.

```
SELECT job_id, COUNT(*)
FROM employees
GROUP BY job_id;
```

Generalize the query so that the user in the HR department is prompted for a job title. Save the script to a file named lab_05_06.sql. Run the query. Enter IT_PROG when prompted and click OK.

```
SELECT job_id, COUNT(*)
FROM employees
WHERE job_id = '&job_title'
GROUP BY job_id;
```

Practice Solutions 5-1: Reporting Aggregated Data Using the Group Functions (continued)

7) Determine the number of managers without listing them. Label the column Number of Managers.

Hint: Use the MANAGER_ID column to determine the number of managers.

```
SELECT COUNT(DISTINCT manager_id) "Number of Managers" FROM employees;
```

8) Find the difference between the highest and lowest salaries. Label the column DIFFERENCE.

```
SELECT MAX(salary) - MIN(salary) DIFFERENCE FROM employees;
```

If you have the time, complete the following exercises:

9) Create a report to display the manager number and the salary of the lowest-paid employee for that manager. Exclude anyone whose manager is not known. Exclude any groups where the minimum salary is \$6,000 or less. Sort the output in descending order of salary.

```
SELECT manager_id, MIN(salary)
FROM employees
WHERE manager_id IS NOT NULL
GROUP BY manager_id
HAVING MIN(salary) > 6000
ORDER BY MIN(salary) DESC;
```

If you want an extra challenge, complete the following exercises:

10) Create a query that will display the total number of employees and, of that total, the number of employees hired in 1995, 1996, 1997, and 1998. Create appropriate column headings.

Practice Solutions 5-1: Reporting Aggregated Data Using the Group Functions (continued)

11) Create a matrix query to display the job, the salary for that job based on the department number, and the total salary for that job, for departments 20, 50, 80, and 90, giving each column an appropriate heading.

```
SELECT job_id "Job",

SUM(DECODE(department_id , 20, salary)) "Dept 20",

SUM(DECODE(department_id , 50, salary)) "Dept 50",

SUM(DECODE(department_id , 80, salary)) "Dept 80",

SUM(DECODE(department_id , 90, salary)) "Dept 90",

SUM(salary) "Total"

FROM employees

GROUP BY job_id;
```

Practices for Lesson 6

This practice is intended to give you experience in extracting data from more than one table using the SQL:1999–compliant joins.

Practice 6-1: Displaying Data from Multiple Tables Using Joins

1) Write a query for the HR department to produce the addresses of all the departments. Use the LOCATIONS and COUNTRIES tables. Show the location ID, street address, city, state or province, and country in the output. Use a NATURAL JOIN to produce the results.

	2 LOCATION_ID	STREET_ADDRESS	2 CITY	STATE_PROVINCE	2 COUNTRY_NAME
1	1400	2014 Jabberwocky Rd	Southlake	Texas	United States of America
2	1500	2011 Interiors Blvd	South San Francisco	California	United States of America
3	1700	2004 Charade Rd	Seattle	Washington	United States of America
4	1800	460 Bloor St. W.	Toronto	Ontario	Canada
5	2500	Magdalen Centre, The Oxford Science Park	Oxford	Oxford	United Kingdom

2) The HR department needs a report of only those employees with corresponding departments. Write a query to display the last name, department number, and department name for these employees.

	LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
1	Whalen	10	Administration
2	Hartstein	20	Marketing
3	Fay	20	Marketing
4	Davies	50	Shipping
5	Vargas	50	Shipping

•••

18 Higgins	110 Accounting
19 Gietz	110 Accounting

3) The HR department needs a report of employees in Toronto. Display the last name, job, department number, and the department name for all employees who work in Toronto.

	LAST_NAME	₿ JOB_ID	DEPARTMENT_ID DEPARTMENT_NAME
1	Hartstein	MK_MAN	20 Marketing
2	Fay	MK_REP	20 Marketing

4) Create a report to display employees' last name and employee number along with their manager's last name and manager number. Label the columns Employee, Emp#, Manager, and Mgr#, respectively. Save your SQL statement as lab_06_04.sql. Run the query.

	2 Employee	2 EMP#	Manager	2 Mgr#
1	Hunold	103	De Haan	102
2	Fay	202	Hartstein	201
3	Gietz	206	Higgins	205
4	Lorentz	107	Hunold	103
5	Ernst	104	Hunold	103

. .

Practice 6-1: Displaying Data from Multiple Tables Using Joins (continued)

18 Taylor	176 Zlotkey	149
19 Abel	174 Zlotkey	149

5) Modify lab_06_04.sql to display all employees including King, who has no manager. Order the results by the employee number. Save your SQL statement as lab_06_05.sql. Run the query in lab_06_05.sql.

	2 Employee	EMP#	Manager	2 Mgr#
1	King	100	(null)	(null)
2	Kochhar	101	King	100
3	De Haan	102	King	100
4	Hunold	103	De Haan	102
5	Ernst	104	Hunold	103

19 Higgins	205 Kochhar	101
20 Gietz	206 Higgins	205

6) Create a report for the HR department that displays employee last names, department numbers, and all the employees who work in the same department as a given employee. Give each column an appropriate label. Save the script to a file named lab 06 06.sql.

	A	DEPARTMENT	EMPLOYEE	2 COLLEAGUE
1		20	Fay	Hartstein
2		20	Hartstein	Fay
3		50	Davies	Matos
4		50	Davies	Mourgos
5		50	Davies	Rajs

•••

41	110 Gietz	Higgins	
42	110 Higgins	Gietz	

7) The HR department needs a report on job grades and salaries. To familiarize yourself with the JOB_GRADES table, first show the structure of the JOB_GRADES table. Then create a query that displays the name, job, department name, salary, and grade for all employees.

DESC JOB_GRADES Name	Nu11	Туре
GRADE_LEVEL LOWEST_SAL HIGHEST_SAL		VARCHAR2(3) NUMBER NUMBER
3 rows selected		

Practice 6-1: Displaying Data from Multiple Tables Using Joins (continued)

	LAST_NAME	₿ JOB_ID	DEPARTMENT_NAME	2 SALARY	grade_level
1	King	AD_PRES	Executive	24000	E
2	Kochhar	AD_VP	Executive	17000	E
3	De Haan	AD_VP	Executive	17000	E
4	Hartstein	MK_MAN	Marketing	13000	D
5	Higgins	AC_MGR	Accounting	12000	D

18 Matos	ST_CLERK	Shipping	2600 A
19 Vargas	ST_CLERK	Shipping	2500 A

If you want an extra challenge, complete the following exercises:

8) The HR department wants to determine the names of all the employees who were hired after Davies. Create a query to display the name and hire date of any employee hired after employee Davies.

9) The HR department needs to find the names and hire dates of all the employees who were hired before their managers, along with their managers' names and hire dates. Save the script to a file named lab_06_09.sql.

Practice Solutions 6-1: Displaying Data from Multiple Tables Using Joins

1) Write a query for the HR department to produce the addresses of all the departments. Use the LOCATIONS and COUNTRIES tables. Show the location ID, street address, city, state or province, and country in the output. Use a NATURAL JOIN to produce the results.

```
SELECT location_id, street_address, city, state_province, country_name
FROM locations
NATURAL JOIN countries;
```

2) The HR department needs a report of all employees. Write a query to display the last name, department number, and department name for all the employees.

```
SELECT last_name, department_id, department_name
FROM employees
JOIN departments
USING (department_id);
```

3) The HR department needs a report of employees in Toronto. Display the last name, job, department number, and department name for all employees who work in Toronto.

```
SELECT e.last_name, e.job_id, e.department_id,
d.department_name
FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
JOIN locations l
ON (d.location_id = l.location_id)
WHERE LOWER(l.city) = 'toronto';
```

4) Create a report to display employees' last names and employee number along with their managers' last names and manager number. Label the columns Employee, Emp#, Manager, and Mgr#, respectively. Save your SQL statement as lab 06 04.sql. Run the query.

5) Modify lab_06_04.sql to display all employees including King, who has no manager. Order the results by the employee number. Save your SQL statement as lab 06 05.sql. Run the query in lab 06 05.sql.

Practice Solutions 6-1: Displaying Data from Multiple Tables Using Joins (continued)

6) Create a report for the HR department that displays employee last names, department numbers, and all the employees who work in the same department as a given employee. Give each column an appropriate label. Save the script to a file named lab_06_06.sql. Run the query.

7) The HR department needs a report on job grades and salaries. To familiarize yourself with the JOB_GRADES table, first show the structure of the JOB_GRADES table. Then create a query that displays the name, job, department name, salary, and grade for all employees.

If you want an extra challenge, complete the following exercises:

8) The HR department wants to determine the names of all employees who were hired after Davies. Create a query to display the name and hire date of any employee hired after employee Davies.

```
SELECT e.last_name, e.hire_date
FROM employees e JOIN employees davies
ON (davies.last_name = 'Davies')
WHERE davies.hire_date < e.hire_date;</pre>
```

9) The HR department needs to find the names and hire dates for all employees who were hired before their managers, along with their managers' names and hire dates. Save the script to a file named lab_06_09.sql.

```
SELECT w.last_name, w.hire_date, m.last_name, m.hire_date
FROM employees w JOIN employees m
ON (w.manager_id = m.employee_id)
WHERE w.hire_date < m.hire_date;</pre>
```

Practices for Lesson 7

In this practice, you write complex queries using nested SELECT statements. For practice questions, you may want to create the inner query first. Make sure that it runs and produces the data that you anticipate before you code the outer query.

Practice 7-1: Using Subqueries to Solve Queries

1) The HR department needs a query that prompts the user for an employee last name. The query then displays the last name and hire date of any employee in the same department as the employee whose name they supply (excluding that employee). For example, if the user enters Zlotkey, find all employees who work with Zlotkey (excluding Zlotkey).

2) Create a report that displays the employee number, last name, and salary of all employees who earn more than the average salary. Sort the results in order of ascending salary.

3) Write a query that displays the employee number and last name of all employees who work in a department with any employee whose last name contains the letter "u." Save your SQL statement as lab 07 03.sql. Run your query.

Practice 7-1: Using Subqueries to Solve Queries (continued)

4) The HR department needs a report that displays the last name, department number, and job ID of all employees whose department location ID is 1700.

	LAST_NAME	DEPARTMENT_ID	∄ JOB_ID
1	Whalen	10	AD_ASST
2	King	90	AD_PRES
3	Kochhar	90	AD_VP
4	De Haan	90	AD_VP
5	Higgins	110	AC_MGR
6	Gietz	110	AC_ACCOUNT

Modify the query so that the user is prompted for a location ID. Save this to a file named lab 07 04.sql.

5) Create a report for HR that displays the last name and salary of every employee who reports to King.

	LAST_NAME	A	SALARY
1	Hartstein		13000
2	Kochhar		17000
3	De Haan		17000
4	Mourgos		5800
5	Zlotkey		10500

6) Create a report for HR that displays the department number, last name, and job ID for every employee in the Executive department.

7) Create a report that displays a list of all employees whose salary is more than the salary of any employee from department 60.

If you have the time, complete the following exercise:

8) Modify the query in lab_07_03.sql to display the employee number, last name, and salary of all employees who earn more than the average salary, and who work in a department with any employee whose last name contains a "u." Save lab_07_03.sql as lab_07_08.sql again. Run the statement in lab_07_08.sql.

Practice Solutions 7-1: Using Subqueries to Solve Queries

1) The HR department needs a query that prompts the user for an employee last name. The query then displays the last name and hire date of any employee in the same department as the employee whose name they supply (excluding that employee). For example, if the user enters <code>Zlotkey</code>, find all employees who work with Zlotkey (excluding Zlotkey).

2) Create a report that displays the employee number, last name, and salary of all employees who earn more than the average salary. Sort the results in order of ascending salary.

```
SELECT employee_id, last_name, salary
FROM employees
WHERE salary > (SELECT AVG(salary)
FROM employees)
ORDER BY salary;
```

3) Write a query that displays the employee number and last name of all employees who work in a department with any employee whose last name contains a "u." Save your SQL statement as lab_07_03.sql. Run your query.

```
SELECT employee_id, last_name
FROM employees
WHERE department_id IN (SELECT department_id
FROM employees
WHERE last_name like '%u%');
```

4) The HR department needs a report that displays the last name, department number, and job ID of all employees whose department location ID is 1700.

Practice Solutions 7-1: Using Subqueries to Solve Queries (continued)

Modify the query so that the user is prompted for a location ID. Save this to a file named lab 07 04.sql.

5) Create a report for HR that displays the last name and salary of every employee who reports to King.

6) Create a report for HR that displays the department number, last name, and job ID for every employee in the Executive department.

7) Create a report that displays a list of all employees whose salary is more than the salary of any employee from department 60.

If you have the time, complete the following exercise:

8) Modify the query in lab_07_03.sql to display the employee number, last name, and salary of all employees who earn more than the average salary and who work in a department with any employee whose last name contains a "u." Save lab_07_03.sql to lab_07_08.sql again. Run the statement in lab_07_08.sql.

Practices	for	Lesson	8
------------------	-----	--------	---

In this practice, you write queries using the set operators.

Practice 8-1: Using the Set Operators

1) The HR department needs a list of department IDs for departments that do not contain the job ID ST_CLERK. Use the set operators to create this report.

2) The HR department needs a list of countries that have no departments located in them. Display the country ID and the name of the countries. Use the set operators to create this report.

3) Produce a list of jobs for departments 10, 50, and 20, in that order. Display the job ID and department ID by using the set operators.

4) Create a report that lists the employee IDs and job IDs of those employees who currently have a job title that is the same as their job title when they were initially hired by the company (that is, they changed jobs, but have now gone back to doing their original job).

- 5) The HR department needs a report with the following specifications:
 - Last name and department ID of all employees from the EMPLOYEES table, regardless of whether or not they belong to a department
 - Department ID and department name of all departments from the DEPARTMENTS table, regardless of whether or not they have employees working in them

Write a compound query to accomplish this.

Practice 8-1: Using the Set Operators (continued)

	LAST_NAME	DEPARTMENT_ID	TO_CHAR(NULL)
1	Abel	80	(null)
2	Davies	50	(null)
3	De Haan	90	(null)
4	Ernst	60	(null)
5	Fay	20	(null)
6	Gietz	110	(null)
7	Grant	(null)	(null)
8	Hartstein	20	(null)
9	Higgins	110	(null)
10	Hunold	60	(null)
11	King	90	(null)
12	Kochhar	90	(null)
13	Lorentz	60	(null)
14	Matos	50	(null)
15	Mourgos	50	(null)
16	Rajs	50	(null)
17	Taylor	80	(null)
18	Vargas	50	(null)
19	Whalen	10	(null)
20	Zlotkey	80	(null)
21	(null)	10	Administration
22	(null)	20	Marketing
23	(null)	50	Shipping
24	(null)	60	IT
25	(null)	80	Sales
26	(null)	90	Executive
27	(null)	110	Accounting
28	(null)	190	Contracting

Practice Solutions 8-1: Using the Set Operators

1) The HR department needs a list of department IDs for departments that do not contain the job ID ST_CLERK. Use the set operators to create this report.

```
SELECT department_id
FROM departments
MINUS
SELECT department_id
FROM employees
WHERE job_id = 'ST_CLERK';
```

2) The HR department needs a list of countries that have no departments located in them. Display the country ID and the name of the countries. Use the set operators to create this report.

```
SELECT country_id, country_name
FROM countries
MINUS
SELECT l.country_id, c.country_name
FROM locations l JOIN countries c
ON (l.country_id = c.country_id)
JOIN departments d
ON d.location_id=l.location_id;
```

3) Produce a list of jobs for departments 10, 50, and 20, in that order. Display job ID and department ID using the set operators.

```
SELECT distinct job_id, department_id
FROM employees
WHERE department_id = 10
UNION ALL
SELECT DISTINCT job_id, department_id
FROM employees
WHERE department_id = 50
UNION ALL
SELECT DISTINCT job_id, department_id
FROM employees
WHERE department_id = 20
```

4) Create a report that lists the employee IDs and job IDs of those employees who currently have a job title that is the same as their job title when they were initially hired by the company (that is, they changed jobs, but have now gone back to doing their original job).

```
SELECT employee_id,job_id
FROM employees
INTERSECT
SELECT employee_id,job_id
FROM job_history;
```

Practice Solutions 8-1: Using the Set Operators (continued)

- 5) The HR department needs a report with the following specifications:
 - Last name and department ID of all the employees from the EMPLOYEES table, regardless of whether or not they belong to a department
 - Department ID and department name of all the departments from the DEPARTMENTS table, regardless of whether or not they have employees working in them

Write a compound query to accomplish this.

```
SELECT last_name,department_id,TO_CHAR(null)
FROM employees
UNION
SELECT TO_CHAR(null),department_id,department_name
FROM departments;
```

Practices for Lesson 9

In this practice, you add rows to the MY_EMPLOYEE table, update and delete data from the table, and control your transactions. You run a script to create the MY_EMPLOYEE table.

Practice 9-1: Manipulating Data

The HR department wants you to create SQL statements to insert, update, and delete employee data. As a prototype, you use the MY_EMPLOYEE table before giving the statements to the HR department.

Note: For all the DML statements, use the Run Script icon (or press [F5]) to execute the query. This way you get to see the feedback messages on the Script Output tabbed page. For SELECT queries, continue to use the Execute Statement icon or press [F9] to get the formatted output on the Results tabbed page.

Insert data into the MY EMPLOYEE table.

- 1) Run the statement in the lab_09_01.sql script to build the MY_EMPLOYEE table used in this practice.
- 2) Describe the structure of the MY EMPLOYEE table to identify the column names.

DESCRIBE my_employee Name	Nu1	1	Туре
ID LAST_NAME FIRST_NAME USERID SALARY	NOT	NULL	NUMBER(4) VARCHAR2(25) VARCHAR2(25) VARCHAR2(8) NUMBER(9,2)
5 rows selected			

3) Create an INSERT statement to add the *first row* of data to the MY_EMPLOYEE table from the following sample data. Do not list the columns in the INSERT clause. *Do not enter all rows yet*.

ID	LAST_NAME	FIRST_NAME	USERID	SALARY	
1	Patel	Ralph	rpatel	895	
2	Dancs Betty		bdancs	860	
3	Biri	Ben	bbiri	1100	
4	Newman	Chad	cnewman	750	
5	Ropeburn	Audrey	aropebur	1550	

- 4) Populate the MY_EMPLOYEE table with the second row of the sample data from the preceding list. This time, list the columns explicitly in the INSERT clause.
- 5) Confirm your addition to the table.

Practice 9-1: Manipulating Data (continued)

	2 ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	1	. Patel	Ralph	rpatel	895
2	Z	Dancs	Betty	bdancs	860

- 6) Write an INSERT statement in a dynamic reusable script file to load the remaining rows into the MY_EMPLOYEE table. The script should prompt for all the columns (ID, LAST_NAME, FIRST_NAME, USERID, and SALARY). Save this script to a lab 09 06.sql file.
- 7) Populate the table with the next two rows of the sample data listed in step 3 by running the INSERT statement in the script that you created.
- 8) Confirm your additions to the table.

9) Make the data additions permanent.

Update and delete data in the MY_EMPLOYEE table.

- 10) Change the last name of employee 3 to Drexler.
- 11) Change the salary to \$1,000 for all employees who have a salary less than \$900.
- 12) Verify your changes to the table.

- 13) Delete Betty Dancs from the MY EMPLOYEE table.
- 14) Confirm your changes to the table.

Practice 9-1: Manipulating Data (continued)

15) Commit all pending changes.

Control data transaction to the MY_EMPLOYEE table.

16) Populate the table with the last row of the sample data listed in step 3 by using the statements in the script that you created in step 6. Run the statements in the script.

17) Confirm your addition to the table.

	A ID	LAST_NAME	FIRST_NAME	2 USERID	2 SALARY
1	1	Patel	Ralph	rpatel	1000
2	3	Drexler	Ben	bbiri	1100
3	4	Newman	Chad	cnewman	1000
4	5	Ropeburn	Audrey	aropebur	1550

- 18) Mark an intermediate point in the processing of the transaction.
- 19) Delete all the rows from the MY EMPLOYEE table.
- 20) Confirm that the table is empty.
- 21) Discard the most recent DELETE operation without discarding the earlier INSERT operation.

22) Confirm that the new row is still intact.

	B ID	LAST_NAME	FIRST_NAME	2 USERID	2 SALARY
1	1	Patel	Ralph	rpatel	1000
2	3	Drexler	Ben	bbiri	1100
3	4	Newman	Chad	cnewman	1000
4	5	Ropeburn	Audrey	aropebur	1550

23) Make the data addition permanent.

If you have the time, complete the following exercise:

24) Modify the lab_09_06.sql script such that the USERID is generated automatically by concatenating the first letter of the first name and the first seven characters of the last name. The generated USERID must be in lowercase. Therefore, the script should not prompt for the USERID. Save this script to a file named lab_09_24.sql.

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
6	Anthony	Mark	manthony	1230

- 25) Run the lab 09 24.sql script to insert the following record:
- 26) Confirm that the new row was added with correct USERID.

Practice 9-1: Manipulating Data (continued)

	A	ID	A	LAST_NAME	A	FIRST_NAME	AZ	USERID	A	SALARY
1		6	An	thony	Ma	rk	mа	anthony		1230

Practice Solutions 9-1: Manipulating Data

Insert data into the MY_EMPLOYEE table.

- 1) Run the statement in the lab_09_01.sql script to build the MY_EMPLOYEE table used in this practice.
 - a) From File menu, select Open. In the Open dialog box, navigate to the /home/oracle/labs/sql1/labs folder, and then double-click lab 09 01.sql.
 - b) After the statement is opened in a SQL Worksheet, click the Run Script icon to run the script. You get a Create Table succeeded message on the Script Output tabbed page.
- 2) Describe the structure of the MY_EMPLOYEE table to identify the column names.

```
DESCRIBE my_employee
```

3) Create an INSERT statement to add the first row of data to the MY_EMPLOYEE table from the following sample data. Do not list the columns in the INSERT clause.

ID	LAST_NAME	FIRST_NAME	USERID	SALARY	
1	Patel	Ralph	rpatel	895	
2	Dancs	Betty	bdancs	860	
3	Biri	Ben	bbiri	1100	
4	Newman	Chad	cnewman	750	
5	Ropeburn	Audrey	aropebur	1550	

```
INSERT INTO my_employee
  VALUES (1, 'Patel', 'Ralph', 'rpatel', 895);
```

4) Populate the MY_EMPLOYEE table with the second row of the sample data from the preceding list. This time, list the columns explicitly in the INSERT clause.

5) Confirm your additions to the table.

```
SELECT *
FROM my employee;
```

Practice Solutions 9-1: Manipulating Data (continued)

6) Write an INSERT statement in a dynamic reusable script file to load the remaining rows into the MY_EMPLOYEE table. The script should prompt for all the columns (ID, LAST_NAME, FIRST_NAME, USERID, and SALARY). Save this script to a file named lab 09 06.sql.

7) Populate the table with the next two rows of sample data listed in step 3 by running the INSERT statement in the script that you created.

8) Confirm your additions to the table.

```
SELECT *
FROM my_employee;
```

9) Make the data additions permanent.

```
COMMIT;
```

Update and delete data in the MY_EMPLOYEE table.

10) Change the last name of employee 3 to Drexler.

```
UPDATE my_employee
SET last_name = 'Drexler'
WHERE id = 3;
```

11) Change the salary to \$1,000 for all employees with a salary less than \$900.

```
UPDATE my_employee
SET salary = 1000
WHERE salary < 900;</pre>
```

12) Verify your changes to the table.

```
SELECT *
FROM my_employee;
```

13) Delete Betty Dancs from the MY_EMPLOYEE table.

```
DELETE
FROM my_employee
WHERE last_name = 'Dancs';
```

14) Confirm your changes to the table.

```
SELECT *
FROM my_employee;
```

Practice Solutions 9-1: Manipulating Data (continued)

15) Commit all pending changes.

```
COMMIT;
```

Control data transaction to the MY EMPLOYEE table.

16) Populate the table with the last row of the sample data listed in step 3 by using the statements in the script that you created in step 6. Run the statements in the script.

```
INSERT INTO my_employee
VALUES (&p_id, '&p_last_name', '&p_first_name',
    '&p_userid', &p_salary);
```

17) Confirm your addition to the table.

```
SELECT *
FROM my_employee;
```

18) Mark an intermediate point in the processing of the transaction.

```
SAVEPOINT step_17;
```

19) Delete all the rows from the MY EMPLOYEE table.

```
DELETE
FROM my_employee;
```

20) Confirm that the table is empty.

```
SELECT *
FROM my_employee;
```

21) Discard the most recent DELETE operation without discarding the earlier INSERT operation.

```
ROLLBACK TO step 17;
```

22) Confirm that the new row is still intact.

```
SELECT *
FROM my_employee;
```

23) Make the data addition permanent.

```
COMMIT;
```

Practice Solutions 9-1: Manipulating Data (continued)

If you have time, complete the following exercise:

24) Modify the lab_09_06.sql script such that the USERID is generated automatically by concatenating the first letter of the first name and the first seven characters of the last name. The generated USERID must be in lowercase. Therefore, the script should not prompt for the USERID. Save this script to a file named lab_09_24.sql.

```
SET ECHO OFF
SET VERIFY OFF
INSERT INTO my_employee
VALUES (&p_id, '&&p_last_name', '&&p_first_name',
   lower(substr('&p_first_name', 1, 1) ||
   substr('&p_last_name', 1, 7)), &p_salary);
SET VERIFY ON
SET ECHO ON
UNDEFINE p_first_name
UNDEFINE p_last_name
```

25) Run the lab_09_24.sql script to insert the following record:

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
6	Anthony	Mark	manthony	1230

26) Confirm that the new row was added with the correct USERID.

```
SELECT *
FROM my_employee
WHERE ID='6';
```

Practices for Lesson 10

Create new tables by using the CREATE TABLE statement. Confirm that the new table was added to the database. You also learn to set the status of a table as READ ONLY and then revert to READ/WRITE.

Note: For all the DDL and DML statements, click the Run Script icon (or press [F5]) to execute the query in SQL Developer. This way you get to see the feedback messages on the Script Output tabbed page. For SELECT queries, continue to click the Execute Statement icon or press [F9] to get the formatted output on the Results tabbed page.

Practice 10-1: Using DDL Statements to Create and Manage Tables

1) Create the DEPT table based on the following table instance chart. Save the statement in a script called lab_10_01.sql, and then execute the statement in the script to create the table. Confirm that the table is created.

Column Name	ID	NAME
Key Type	Primary key	
Nulls/Unique		
FK Table		
FK Column		
Data type	NUMBER	VARCHAR2
Length	7	25

Name	Null	Туре
ID NAME	NOT NULL	NUMBER(7) VARCHAR2(25)

- 2) Populate the DEPT table with data from the DEPARTMENTS table. Include only columns that you need.
- 3) Create the EMP table based on the following table instance chart. Save the statement in a script called lab_10_03.sql, and then execute the statement in the script to create the table. Confirm that the table is created.

Column Name	ID	LAST_NAME	FIRST_NAME	DEPT_ID
Key Type				
Nulls/Unique				
FK Table				DEPT
FK Column				ID
Data type	NUMBER	VARCHAR2	VARCHAR2	NUMBER
Length	7	25	25	7

Name	Null	Type
ID LAST_NAME FIRST_NAME DEPT_ID		NUMBER(7) VARCHAR2(25) VARCHAR2(25) NUMBER(7)

Practice 10-1: Using DDL Statements to Create and Manage Tables (continued)

- 4) Create the EMPLOYEES2 table based on the structure of the EMPLOYEES table. Include only the EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY, and DEPARTMENT_ID columns. Name the columns in your new table ID, FIRST_NAME, LAST_NAME, SALARY, and DEPT_ID, respectively.
- 5) Alter the EMPLOYEES2 table status to read-only.
- 6) Try to insert the following row in the EMPLOYEES2 table:

ID	FIRST_NAME	LAST_NAME	SALARY	DEPT_ID
34	Grant	Marcie	5678	10

You get the following error message:

```
Error starting at line 1 in command:
INSERT INTO employees2
VALUES (34, 'Grant','Marcie',5678,10)
Error at Command Line:1 Column:12
Error report:
SQL Error: ORA-12081: update operation not allowed on table "ORA1"."EMPLOYEES2"
12081. 00000 - "update operation not allowed on table \"%s\".\"%s\""
*Cause: An attempt was made to update a read-only materialized view.
*Action: No action required. Only Oracle is allowed to update a read-only materialized view.
```

7) Revert the EMPLOYEES2 table to the read/write status. Now, try to insert the same row again. You should get the following messages:

```
ALTER TABLE employees2 succeeded.
1 rows inserted
```

8) Drop the EMPLOYEES2 table.

Practice Solutions 10-1: Using DDL Statements to Create and Manage Tables

1) Create the DEPT table based on the following table instance chart. Save the statement in a script called lab_10_01.sql, and then execute the statement in the script to create the table. Confirm that the table is created.

Column Name	ID	NAME	
Key Type	Primary key		
Nulls/Unique			
FK Table			
FK Column			
Data type	NUMBER	VARCHAR2	
Length	7	25	

```
CREATE TABLE dept
  (id    NUMBER(7)CONSTRAINT department_id_pk PRIMARY KEY,
    name VARCHAR2(25));
```

To confirm that the table was created and to view its structure, issue the following command:

```
DESCRIBE dept
```

2) Populate the DEPT table with data from the DEPARTMENTS table. Include only those columns that you need.

```
INSERT INTO dept
   SELECT department_id, department_name
   FROM departments;
```

3) Create the EMP table based on the following table instance chart. Save the statement in a script called lab_10_03.sql, and then execute the statement in the script to create the table. Confirm that the table is created.

Column Name	ID	LAST_NAME	FIRST_NAME	DEPT_ID
Key Type				
Nulls/Unique				
FK Table				DEPT
FK Column				ID
Data type	NUMBER	VARCHAR2	VARCHAR2	NUMBER
Length	7	25	25	7

Practice Solutions 10-1: Using DDL Statements to Create and Manage Tables (continued)

```
CREATE TABLE emp

(id NUMBER(7),

last_name VARCHAR2(25),

first_name VARCHAR2(25),

dept_id NUMBER(7)

CONSTRAINT emp_dept_id_FK REFERENCES dept (id)
);
```

To confirm that the table was created and to view its structure:

```
DESCRIBE emp
```

4) Create the EMPLOYEES2 table based on the structure of the EMPLOYEES table. Include only the EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY, and DEPARTMENT_ID columns. Name the columns in your new table ID, FIRST_NAME, LAST_NAME, SALARY, and DEPT_ID, respectively.

```
CREATE TABLE employees2 AS

SELECT employee_id id, first_name, last_name, salary,

department_id dept_id

FROM employees;
```

5) Alter the EMPLOYEES2 table status to read-only.

```
ALTER TABLE employees2 READ ONLY
```

6) Try to insert the following row in the EMPLOYEES2 table.

ID	FIRST_NAME	LAST_NAME	SALARY	DEPT_ID
34	Grant	Marcie	5678	10

Note, you will get the "Update operation not allowed on table" error message. Therefore, you will not be allowed to insert any row into the table because it is assigned a read-only status.

```
INSERT INTO employees2
VALUES (34, 'Grant', 'Marcie', 5678, 10)
```

7) Revert the EMPLOYEES2 table to the read/write status. Now try to insert the same row again.

Now, because the table is assigned a READ WRITE status, you will be allowed to insert a row into the table.

```
ALTER TABLE employees2 READ WRITE

INSERT INTO employees2

VALUES (34, 'Grant', 'Marcie', 5678, 10)
```

Practice Solutions 10-1: Using DDL Statements to Create and Manage Tables (continued)

8) Drop the EMPLOYEES2 table.

Note: You can even drop a table that is in the READ ONLY mode. To test this, alter the table again to READ ONLY status, and then issue the DROP TABLE command. The table EMPLOYEES2 will be dropped.

DROP TABLE employees2;

Practices for Lesson 11

Part 1 of this lesson's practice provides you with a variety of exercises in creating, using, and removing views. Complete questions 1–6 of this lesson.

Part 2 of this lesson's practice provides you with a variety of exercises in creating and using a sequence, an index, and a synonym. Complete questions 7–10 of this lesson.

Practice 11-1: Creating Other Schema Objects

Part 1

- 1) The staff in the HR department wants to hide some of the data in the EMPLOYEES table. Create a view called EMPLOYEES_VU based on the employee numbers, employee last names, and department numbers from the EMPLOYEES table. The heading for the employee name should be EMPLOYEE.
- 2) Confirm that the view works. Display the contents of the EMPLOYEES VU view.

	A	EMPLOYEE_ID	A	EMPLOYEE	A	DEPARTMENT_ID
1		200	Wh	alen		10
2		201	Hai	rtstein		20
3		202	Fay	,		20
4		205	Hig	gins		110
5		206	Gie	tz		110

19	205	Higgins	110
20	206	Gietz	110

3) Using your EMPLOYEES_VU view, write a query for the HR department to display all employee names and department numbers.

	EMPLOYEE	DEPARTMENT_ID
1	King	90
2	Kochhar	90
3	De Haan	90
4	Hunold	60
5	Ernst	60

•••

19	Higgins	110
20	Gietz	110

- 4) Department 50 needs access to its employee data. Create a view named DEPT50 that contains the employee numbers, employee last names, and department numbers for all employees in department 50. You have been asked to label the view columns EMPNO, EMPLOYEE, and DEPTNO. For security purposes, do not allow an employee to be reassigned to another department through the view.
- 5) Display the structure and contents of the DEPT50 view.

DESCRIBE dept50 Name	Null	Туре
EMPNO EMPLOYEE DEPTNO		NUMBER(6) VARCHAR2(25) NUMBER(4)

Practice 11-1: Creating Other Schema Objects (continued)

EMPNO	EMPLOYEE	DEPTNO
124 141 142 143 144	Mourgos Rajs Davies Matos Vargas	50 50 50 50 50 50

6) Test your view. Attempt to reassign Matos to department 80.

Part 2

- 7) You need a sequence that can be used with the PRIMARY KEY column of the DEPT table. The sequence should start at 200 and have a maximum value of 1,000. Have your sequence increment by 10. Name the sequence DEPT_ID_SEQ.
- 8) To test your sequence, write a script to insert two rows in the DEPT table. Name your script lab_11_08.sql. Be sure to use the sequence that you created for the ID column. Add two departments: Education and Administration. Confirm your additions. Run the commands in your script.
- 9) Create a nonunique index on the NAME column in the DEPT table.
- 10) Create a synonym for your EMPLOYEES table. Call it EMP.

Practice Solutions 11-1: Creating Other Schema Objects Part 1

1) The staff in the HR department wants to hide some of the data in the EMPLOYEES table. Create a view called EMPLOYEES_VU based on the employee numbers, employee last names, and department numbers from the EMPLOYEES table. The heading for the employee name should be EMPLOYEE.

```
CREATE OR REPLACE VIEW employees_vu AS

SELECT employee_id, last_name employee, department_id

FROM employees;
```

2) Confirm that the view works. Display the contents of the EMPLOYEES_VU view.

```
SELECT *
FROM employees_vu;
```

3) Using your EMPLOYEES_VU view, write a query for the HR department to display all employee names and department numbers.

```
SELECT employee, department_id FROM employees_vu;
```

4) Department 50 needs access to its employee data. Create a view named DEPT50 that contains the employee numbers, employee last names, and department numbers for all employees in department 50. They have requested that you label the view columns EMPNO, EMPLOYEE, and DEPTNO. For security purposes, do not allow an employee to be reassigned to another department through the view.

```
CREATE VIEW dept50 AS

SELECT employee_id empno, last_name employee,
department_id deptno

FROM employees
WHERE department_id = 50
WITH CHECK OPTION CONSTRAINT emp_dept_50;
```

5) Display the structure and contents of the DEPT50 view.

```
DESCRIBE dept50

SELECT *
FROM dept50;
```

6) Test your view. Attempt to reassign Matos to department 80.

```
UPDATE dept50
SET deptno = 80
WHERE employee = 'Matos';
```

The error is because the DEPT50 view has been created with the WITH CHECK OPTION constraint. This ensures that the DEPTNO column in the view is protected from being changed.

Practice Solutions 11-1: Creating Other Schema Objects (continued)

Part 2

7) You need a sequence that can be used with the primary key column of the DEPT table. The sequence should start at 200 and have a maximum value of 1,000. Have your sequence increment by 10. Name the sequence DEPT ID SEQ.

```
CREATE SEQUENCE dept_id_seq
START WITH 200
INCREMENT BY 10
MAXVALUE 1000;
```

8) To test your sequence, write a script to insert two rows in the DEPT table. Name your script lab_11_08.sql. Be sure to use the sequence that you created for the ID column. Add two departments: Education and Administration. Confirm your additions. Run the commands in your script.

```
INSERT INTO dept
VALUES (dept_id_seq.nextval, 'Education');
INSERT INTO dept
VALUES (dept_id_seq.nextval, 'Administration');
```

9) Create a nonunique index on the NAME column in the DEPT table.

```
CREATE INDEX dept_name_idx ON dept (name);
```

10) Create a synonym for your EMPLOYEES table. Call it EMP.

```
CREATE SYNONYM emp FOR EMPLOYEES;
```

Practices for Appendix F

This practice is intended to give you practical experience in extracting data from more than one table using the Oracle join syntax.

Practice F-1: Oracle Join Syntax

1) Write a query for the HR department to produce the addresses of all the departments. Use the LOCATIONS and COUNTRIES tables. Show the location ID, street address, city, state or province, and country in the output. Run the query.

A	LOCATION_ID 🛭 STREET_ADDRESS	2 CITY	STATE_PROVINCE	2 COUNTRY_NAME
1	1400 2014 Jabberwocky Rd	Southlake	Texas	United States of America
2	1500 2011 Interiors Blvd	South San Francisco	California	United States of America
3	1700 2004 Charade Rd	Seattle	Washington	United States of America
4	1800 460 Bloor St. W.	Toronto	Ontario	Canada
5	2500 Magdalen Centre, The Oxford Science Park	Oxford	Oxford	United Kingdom

2) The HR department needs a report of all employees. Write a query to display the last name, department number, and department name for all employees. Run the query.

	LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
1	Whalen	10	Administration
2	Hartstein	20	Marketing
3	Fay	20	Marketing
4	Davies	50	Shipping
5	Vargas	50	Shipping

• • •

18 Higgins	110 Accounting
19 Gietz	110 Accounting

3) The HR department needs a report of employees in Toronto. Display the last name, job, department number, and department name for all employees who work in Toronto.

	LAST_NAME	₿ JOB_ID	DEPARTMENT_ID DEPARTMENT_NAME
1	Hartstein	MK_MAN	20 Marketing
2	Fay	MK_REP	20 Marketing

4) Create a report to display the employees' last names and employee number along with their managers' last names and manager number. Label the columns Employee, Emp#, Manager, and Mgr#, respectively. Save your SQL statement as lab f 04.sql.

	Employee	EMP#	Manager	2 Mgr#
1	Hunold	103	De Haan	102
2	Fay	202	Hartstein	201
3	Gietz	206	Higgins	205
4	Lorentz	107	Hunold	103
5	Ernst	104	Hunold	103

•••

18 Taylor	176 Zlotkey	149
19 Abel	174 Zlotkey	149

Practice F-1: Oracle Join Syntax (continued)

5) Modify lab_f_04.sql to display all employees including King, who has no manager. Order the results by the employee number. Save your SQL statement as lab_f_05.sql. Run the query in lab_f_05.sql.

	2 Employee	g EMP#	Manager	🖁 Mgr#
1	Hunold	103	De Haan	102
2	Fay	202	Hartstein	201
3	Gietz	206	Higgins	205
4	Lorentz	107	Hunold	103
5	Ernst	104	Hunold	103

...

19 Abel	174 Zlotkey	149
20 King	100 (null)	(null)

6) Create a report for the HR department that displays employee last names, department numbers, and all employees who work in the same department as a given employee. Give each column an appropriate label. Save the script to a file named lab f 06.sql.

	A	DEPARTMENT	2 EMP	LOYEE 🖁	COLLEAGUE
1		20	Fay	H	artstein
2		20	Hartstei	n Fa	ıy
3		50	Davies	М	atos
4		50	Davies	М	ourgos
5		50	Davies	Ra	ajs

•••

39	90	Kochhar	De Haan
40	90	Kochhar	King
41	110	Gietz	Higgins
42	110	Higgins	Gietz

7) The HR department needs a report on job grades and salaries. To familiarize yourself with the JOB_GRADES table, first show the structure of the JOB_GRADES table. Then create a query that displays the name, job, department name, salary, and grade for all employees.

Name	Nu11	Туре
GRADE_LEVEL LOWEST_SAL HIGHEST_SAL		VARCHAR2(3) NUMBER NUMBER

Practice F-1: Oracle Join Syntax (continued)

	LAST_NAME	∄ JOB_ID	DEPARTMENT_NAME	2 SALARY	grade_level
1	King	AD_PRES	Executive	24000	E
2	De Haan	AD_VP	Executive	17000	E
3	Kochhar	AD_VP	Executive	17000	E
4	Hartstein	MK_MAN	Marketing	13000	D
5	Higgins	AC_MGR	Accounting	12000	D

18 Matos	ST_CLERK	Shipping	2600 A
19 Vargas	ST_CLERK	Shipping	2500 A

If you want an extra challenge, complete the following exercises:

8) The HR department wants to determine the names of all employees who were hired after Davies. Create a query to display the name and hire date of any employee hired after employee Davies.

9) The HR department needs to find the names and hire dates for all employees who were hired before their managers, along with their managers' names and hire dates. Save the script to a file named lab f 09.sql.

	LAST_NAME	HIRE_DATE	LAST_NAME_1	HIRE_DATE_1
1	Whalen	17-SEP-87	Kochhar	21-SEP-89
2	Hunold	03-JAN-90	De Haan	13-JAN-93
3	Vargas	09-JUL-98	Mourgos	16-NOV-99
4	Matos	15-MAR-98	Mourgos	16-NOV-99
5	Davies	29-JAN-97	Mourgos	16-NOV-99
6	Rajs	17-OCT-95	Mourgos	16-NOV-99
7	Grant	24-MAY-99	Zlotkey	29-JAN-00
8	Taylor	24-MAR-98	Zlotkey	29-JAN-00
9	Abel	11-MAY-96	Zlotkey	29-JAN-00

Practice Solutions F-1: Oracle Join Syntax

1) Write a query for the HR department to produce the addresses of all the departments. Use the LOCATIONS and COUNTRIES tables. Show the location ID, street address, city, state or province, and country in the output. Run the query.

```
SELECT location_id, street_address, city, state_province,
country_name
FROM locations, countries
WHERE locations.country_id = countries.country_id;
```

2) The HR department needs a report of all employees. Write a query to display the last name, department number, and department name for all employees. Run the query.

```
SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id;
```

3) The HR department needs a report of employees in Toronto. Display the last name, job, department number, and department name for all employees who work in Toronto.

```
SELECT e.last_name, e.job_id, e.department_id,
d.department_name
FROM employees e, departments d , locations l
WHERE e.department_id = d.department_id
AND d.location_id = l.location_id
AND LOWER(l.city) = 'toronto';
```

4) Create a report to display the employee last name and the employee number along with the last name of the employee's manager and manager number. Label the columns Employee, Emp#, Manager, and Mgr#, respectively. Save your SQL statement as lab_f_04.sql.

5) Modify lab_f_04.sql to display all employees including King, who has no manager. Order the results by the employee number. Save the SQL statement as lab_f_05.sql. Run the query in lab_f_05.sql.

Practice Solutions F-1: Oracle Join Syntax (continued)

6) Create a report for the HR department that displays employee last names, department numbers, and all the employees who work in the same department as a given employee. Give each column an appropriate label. Save the script to a file named lab f 06.sql.

7) The HR department needs a report on job grades and salaries. To familiarize yourself with the JOB_GRADES table, first show the structure of the JOB_GRADES table. Then create a query that displays the name, job, department name, salary, and grade for all employees.

If you want an extra challenge, complete the following exercises:

8) The HR department wants to determine the names of all employees hired after Davies. Create a query to display the name and hire date of any employee hired after Davies.

```
SELECT e.last_name, e.hire_date
FROM employees e , employees davies
WHERE davies.last_name = 'Davies'
AND davies.hire_date < e.hire_date;
```

9) The HR department needs to find the names and hire dates for all employees who were hired before their managers, along with their managers' names and hire dates. Label the columns Employee, Emp Hired, Manager, and Mgr Hired, respectively. Save the script to a file named lab f 09.sql.

```
SELECT w.last_name, w.hire_date, m.last_name, m.hire_date
FROM employees w , employees m
WHERE w.manager_id = m.employee_id
AND w.hire_date < m.hire_date;</pre>
```

Appendix A Practices and Solutions

Table of Contents

Practices and Solutions for Lesson I	3
Practice I-1: Accessing SQL Developer Resources	4
Practice I-2: Using SQL Developer	5
Practice Solutions I-1: Accessing SQL Developer Resources	7
Practice Solutions I-2: Using SQL Developer	8
Practices and Solutions for Lesson 1	17
Practice 1-1: Controlling User Access	17
Practice Solutions 1-1: Controlling User Access	20
Practices and Solutions for Lesson 2	25
Practice 2-1: Managing Schema Objects	25
Practice Solutions 2-1: Managing Schema Objects	31
Practices and Solutions for Lesson 3	39
Practice 3-1: Managing Objects with Data Dictionary Views	39
Practice Solutions 3-1: Managing Objects with Data Dictionary Views	43
Practices and Solutions for Lesson 4	47
Practice 4-1: Manipulating Large Data Sets	47
Practice Solutions 4-1: Manipulating Large Data Sets	51
Practices and Solutions for Lesson 5	56
Practice 5-1: Managing Data in Different Time Zones	56
Practice Solutions 5-1: Managing Data in Different Time Zones	59
Practices and Solutions for Lesson 6	62
Practice 6-1: Retrieving Data by Using Subqueries	62
Practice Solutions 6-1: Retrieving Data by Using Subqueries	66
Practices and Solutions for Lesson 7	70
Practice 7-1: Regular Expression Support	70
Practice Solutions 7-1: Regular Expression Support	72

Practices and Solutions for Lesson I

In this practice, you review the available SQL Developer resources. You also learn about your user account that you use in this course. You then start SQL Developer, create a new database connection, and browse your HR tables. You also set some SQL Developer preferences, execute SQL statements, and execute an anonymous PL/SQL block by using SQL Worksheet. Finally, you access and bookmark the Oracle Database 11*g* documentation and other useful Web sites that you can use in this course.

Practice I-1: Accessing SQL Developer Resources

In this practice, you do the following:

- 1) Access the SQL Developer home page.
 - a. Access the online SQL Developer home page available at: http://www.oracle.com/technology/products/database/sql_developer/index.ht ml
 - b. Bookmark the page for easier future access.
- 2) Access the SQL Developer tutorial available online at: http://st-curriculum.oracle.com/tutorial/SQLDeveloper/index.htm. Then review the following sections and associated demos:
 - a) What to Do First
 - b) Working with Database Objects
 - c) Accessing Data

Practice I-2: Using SQL Developer

- 1) Start SQL Developer by using the desktop icon.
- 2) Create a database connection using the following information:
 - a) Connection Name: myconnection
 - b) Username: oraxx, where xx is the number of your PC (Ask your instructor to assign you an ora account out of the ora21-ora40 range of accounts.)
 - c) Password: oraxx
 - d) Hostname: localhost
 - e) Port: 1521
 - f) SID: orcl (or the value provided to you by the instructor)
- 3) Test the new connection. If the status is Success, connect to the database by using this new connection.
 - a) Click the Test button in the New/Select Database Connection window.
 - b) If the status is Success, click the Connect button.
- 4) Browse the structure of the EMPLOYEES table and display its data.
 - a) Expand the myconnection connection by clicking the plus sign next to it.
 - b) Expand the Tables icon by clicking the plus sign next to it.
 - c) Display the structure of the EMPLOYEES table.
 - d) View the data of the DEPARTMENTS table.
- 5) Execute some basic SELECT statements to query the data in the EMPLOYEES table in the SQL Worksheet area. Use both the Execute Statement (or press F9) and the Run Script (or press F5) icons to execute the SELECT statements. Review the results of both methods of executing the SELECT statements on the appropriate tabbed pages.
 - a) Write a query to select the last name and salary for any employee whose salary is less than or equal to \$3,000.
 - b) Write a query to display last name, job ID, and commission for all employees who are not entitled to receive a commission.
- 6) Set your script pathing preference to /home/oracle/labs/sql2.
 - a) Select Tools > Preferences > Database > Worksheet Parameters.
 - b) Enter the value in the Select default path to look for scripts field.
- 7) Enter the following in the Enter SQL Statement box.

 SELECT employee_id, first_name, last_name,
 FROM employees;
- 8) Save the SQL statement to a script file by using the File > Save As menu item.
 - a) Select File > Save As.
 - b) Name the file intro test.sql.

Practice I-2: Using SQL Developer (continued)

- c) Place the file under your /home/oracle/labs/sql2/labs folder.
- 9) Open and run confidence.sql from your /home/oracle/labs/sql2/labs folder, and observe the output.

Practice Solutions I-1: Accessing SQL Developer Resources

- 1) Access the SQL Developer home page.
 - a) Access the online SQL Developer home page available online at: http://www.oracle.com/technology/products/database/sql developer/index.html

The SQL Developer home page is displayed as follows:

- b) Bookmark the page for easier future access.
- 2) Access the SQL Developer tutorial available online at: http://st-curriculum.oracle.com/tutorial/SQLDeveloper/index.htm

Then, review the following sections and associated demos:

- a) What to Do First
- b) Working with Database Objects
- c) Accessing Data

Practice Solutions I-2: Using SQL Developer

1) Start SQL Developer by using the desktop icon.

- 2) Create a database connection using the following information:
 - a. Connection Name: myconnection
 - b. Username: oraxx (Ask your instructor to assign you one ora account out of the ora21-ora40 range of accounts.)
 - c. Password: oraxx
 - d. Hostname: localhost
 - e. Port: 1521
 - f. SID: orcl (or the value provided to you by the instructor)

- 3) Test the new connection. If the status is Success, connect to the database by using this new connection.
 - a) Click the Test button in the New/Select Database Connection window.

b) If the status is Success, click the Connect button.

Browsing the Tables

- 4) Browse the structure of the EMPLOYEES table and display its data.
 - a) Expand the myconnection connection by clicking the plus sign next to it.

b) Expand the Tables icon by clicking the plus sign next to it.

c) Display the structure of the EMPLOYEES table.
 Click the EMPLOYEES table. The Columns tab displays the columns in the EMPLOYEES table as follows:

d) View the data of the DEPARTMENTS table.

In the Connections navigator, click the **DEPARTMENTS** table. Then click the Data tab.

myco	nnection IIII DEP	ARTMENTS		
Columns	Data Constraints	Grants Statistics Trigge	rs Flashback Dep	oendencies Details
→ 🔁 [🞝 🗶 👺 👢 So	rt Filter:		<u> </u>
Ē	DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	2 LOCATION_ID
1	10	Administration	200	1700
2	20	Marketing	201	1800
3	30	Purchasing	114	1700
4	40	Human Resources	203	2400
5	50	Shipping	121	1500
6	60	IT	103	1400
7	70	Public Relations	204	2700

- 5) Execute some basic SELECT statements to query the data in the EMPLOYEES table in the SQL Worksheet area. Use both the Execute Statement (or press F9) and the Run Script icons (or press F5) to execute the SELECT statements. Review the results of both methods of executing the SELECT statements on the appropriate tabbed pages.
 - a) Write a query to select the last name and salary for any employee whose salary is less than or equal to \$3,000.

```
SELECT last_name, salary
FROM employees
WHERE salary <= 3000;
```

b) Write a query to display last name, job ID, and commission for all employees who are not entitled to receive a commission.

```
SELECT last_name, job_id, commission_pct
FROM employees
WHERE commission_pct IS NULL;
```

- 6) Set your script pathing preference to /home/oracle/labs/sql2.
 - a) Select Tools > Preferences > Database > Worksheet Parameters.
 - b) Enter the value in the **Select default path to look for scripts** field. Then, click OK.

7) Enter the following SQL statement:

```
SELECT employee_id, first_name, last_name
FROM employees;
```

- 8) Save the SQL statement to a script file by using the File > Save As menu item.
 - a) Select File > Save As.

b) Name the file intro_test.sql.

Enter intro_test.sql in the File_name text box.

c) Place the file under the /home/oracle/labs/SQL2/labs folder.

Then, click Save.

9) Open and run confidence.sql from your /home/oracle/labs/SQL2/labs folder and observe the output.

Open the confidence.sql script file by using the File > Open menu item.

Then, press F5 to execute the script.

The following is the expected result:

COUNT(*)4
1 rows selected
COUNT(*)23
1 rows selected
COUNT(*)27
1 rows selected
COUNT(*)19
1 rows selected
COUNT(*)
10
1 rows selected

Practices and Solutions for Lesson 1

Practice 1-1: Controlling User Access

To complete question 8 and the subsequent ones, you need to connect to the database by using SQL Developer. If you are already not connected, do the following to connect:

- 1. Click the SQL Developer desktop icon.
- 2. In the Connections Navigator, use the *oraxx* account and the corresponding password provided by your instructor to log on to the database.
- 8. Grant another user query privilege on your table. Then, verify whether that user can use the privilege.

Note: For this exercise, team up with another group. For example, if you are user ora21, team up with another user ora22.

- a. Grant another user privilege to view records in your REGIONS table. Include an option for this user to further grant this privilege to other users.
- b. Have the user query your REGIONS table.
- c. Have the user pass on the query privilege to a third user (for example, ora23).

Practice 1-1: Controlling User Access (continued)

- d. Take back the privilege from the user who performs step b. **Note:** Each team can run exercises 9 and 10 independently.
- 9. Grant another user query and data manipulation privileges on your COUNTRIES table. Make sure that the user cannot pass on these privileges to other users.
- 10. Take back the privileges on the COUNTRIES table granted to another user.
 - **Note:** For exercises 11 through 17, team up with another group.
- 11. Grant another user access to your DEPARTMENTS table. Have the user grant you query access to his or her DEPARTMENTS table.
- 12. Query all the rows in your DEPARTMENTS table.

	DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
1	10	Administration	200	1700
2	20	Marketing	201	1800
3	30	Purchasing	114	1700
4	40	Human Resources	203	2400
5	50	Shipping	121	1500
6	60	IT	103	1400
7	70	Public Relations	204	2700
8	80	Sales	145	2500

. . .

- 13. Add a new row to your DEPARTMENTS table. Team 1 should add Education as department number 500. Team 2 should add Human Resources as department number 510. Query the other team's table.
- 14. Create a synonym for the other team's DEPARTMENTS table.
- 15. Query all the rows in the other team's DEPARTMENTS table by using your synonym.

Team 1 SELECT statement results:

	DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	2 LOCATION_ID
16		Benefits	(null)	1700
17	170	Manufacturing	(null)	1700
18	180	Construction	(null)	1700
19	190	Contracting	(null)	1700
20	200	Operations	(null)	1700
21	210	IT Support	(null)	1700
22	220	NOC	(null)	1700
23	230	IT Helpdesk	(null)	1700
24	240	Government Sales	(null)	1700
25	250	Retail Sales	(null)	1700
26	260	Recruiting	(null)	1700
27	270	Payroll	(null)	1700
28	510	Human Resources	(null)	(null

Practice 1-1: Controlling User Access (continued)

Team 2 SELECT statement results:

	DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
16	160	Benefits	(null)	1700
17	170	Manufacturing	(null)	1700
18	180	Construction	(null)	1700
19	190	Contracting	(null)	1700
20	200	Operations	(null)	1700
21	210	IT Support	(null)	1700
22	220	NOC	(null)	1700
23	230	IT Helpdesk	(null)	1700
24	240	Government Sales	(null)	1700
25	250	Retail Sales	(null)	1700
26	260	Recruiting	(null)	1700
27	270	Payroll	(null)	1700
28	500	Education	(null)	(null

- 16. Revoke the SELECT privilege from the other team.
- 17. Remove the row that you inserted into the DEPARTMENTS table in step 13 and save the changes.

Practice Solutions 1-1: Controlling User Access

To complete question 8 and the subsequent ones, you need to connect to the database by using SQL Developer.

1. What privilege should a user be given to log on to the Oracle server? Is this a system or an object privilege?

The CREATE SESSION system privilege

2. What privilege should a user be given to create tables? The CREATE TABLE privilege

- 3. If you create a table, who can pass along privileges to other users in your table?

 You can, or anyone you have given those privileges to, by using WITH GRANT OPTION
- 4. You are the DBA. You create many users who require the same system privileges.

What should you use to make your job easier?

Create a role containing the system privileges and grant the role to the users.

5. What command do you use to change your password?

The ALTER USER statement

6. User21 is the owner of the EMP table and grants DELETE privileges to User22 by using the WITH GRANT OPTION clause. User22 then grants DELETE privileges on EMP to User23. User21 now finds that User23 has the privilege and revokes it from User22. Which user can now delete data from the EMP table?

Only User21

7. You want to grant SCOTT the privilege to update data in the DEPARTMENTS table. You also want to enable SCOTT to grant this privilege to other users. What command do you use?

GRANT UPDATE ON departments TO scott WITH GRANT OPTION;

8. Grant another user query privilege on your table. Then, verify whether that user can use the privilege.

Note: For this exercise, team up with another group. For example, if you are user ora21, team up with another user ora22.

a) Grant another user privilege to view records in your REGIONS table. Include an option for this user to further grant this privilege to other users.

Team 1 executes this statement:

```
GRANT select
ON regions
TO <team2_oraxx> WITH GRANT OPTION;
```

b) Have the user query your REGIONS table.

Team 2 executes this statement:

```
SELECT * FROM <team1_oraxx>.regions;
```

c) Have the user pass on the query privilege to a third user (for example, ora23).

Team 2 executes this statement.

```
GRANT select
ON <team1_oraxx>.regions
TO <team3_oraxx>;
```

d) Take back the privilege from the user who performs step b.

Team 1 executes this statement.

```
REVOKE select
ON regions
FROM <team2_oraxx>;
```

9. Grant another user query and data manipulation privileges on your COUNTRIES table. Make sure the user cannot pass on these privileges to other users.

Team 1 executes this statement.

```
GRANT select, update, insert
ON COUNTRIES
TO <team2_oraxx>;
```

10. Take back the privileges on the COUNTRIES table granted to another user. *Team 1 executes this statement.*

```
REVOKE select, update, insert ON COUNTRIES FROM <team2_oraxx>;
```

Note: For the exercises 11 through 17, team up with another group.

11. Grant another user access to your DEPARTMENTS table. Have the user grant you query access to his or her DEPARTMENTS table.

Team 2 executes the GRANT statement.

```
GRANT select
ON departments
TO <team1_oraxx>;
```

Team 1 executes the GRANT statement.

```
GRANT select
ON departments
TO <team2_oraxx>;
```

Here, < team1_oraxx> is the username of Team 1 and < team2_oraxx> is the username of Team 2.

12. Query all the rows in your DEPARTMENTS table.

```
SELECT *
FROM departments;
```

13. Add a new row to your DEPARTMENTS table. Team 1 should add Education as department number 500. Team 2 should add Human Resources as department number 510. Query the other team's table.

Team 1 executes this INSERT statement.

```
INSERT INTO departments(department_id, department_name)
VALUES (500, 'Education');
COMMIT;
```

Team 2 executes this INSERT statement.

```
INSERT INTO departments(department_id, department_name)
VALUES (510, 'Human Resources');
COMMIT;
```

14. Create a synonym for the other team's DEPARTMENTS table.

Team 1 creates a synonym named team2.

```
CREATE SYNONYM team2
FOR <team2_oraxx>.DEPARTMENTS;
```

Team 2 creates a synonym named team1.

```
CREATE SYNONYM team1

FOR <team1_oraxx>. DEPARTMENTS;
```

15. Query all the rows in the other team's DEPARTMENTS table by using your synonym.

Team 1 executes this SELECT statement.

SELECT	*		
FROM	I	team2;	

Team 2 executes this SELECT statement.

```
SELECT *
FROM team1;
```

16. Revoke the SELECT privilege from the other team.

Team 1 revokes the privilege.

```
REVOKE select
ON departments
FROM < team2_oraxx>;
```

Team 2 revokes the privilege.

```
REVOKE select
ON departments
FROM <team1_oraxx>;
```

17. Remove the row that you inserted into the DEPARTMENTS table in step 8 and save the changes.

Team 1 executes this DELETE statement.

DELETE FROM de	partments
WHERE departme	ent_id = 500;
COMMIT;	

Team 2 executes this DELETE statement.

```
DELETE FROM departments
WHERE department_id = 510;
COMMIT;
```

Practices and Solutions for Lesson 2

Practice 2-1: Managing Schema Objects

In this practice, you use the ALTER TABLE command to modify columns and add constraints. You use the CREATE INDEX command to create indexes when creating a table, along with the CREATE TABLE command. You create external tables.

1. Create the DEPT2 table based on the following table instance chart. Enter the syntax in the SQL Worksheet. Then, execute the statement to create the table. Confirm that the table is created.

Column Name	ID	NAME
Key Type		
Nulls/Unique		
FK Table		
FK Column		
Data type	NUMBER	VARCHAR2
Length	7	25

Name	Null	Туре
ID		NUMBER (7)
NAME		VARCHAR2(25)
2 rows selected		

- 2. Populate the DEPT2 table with data from the DEPARTMENTS table. Include only the columns that you need.
- 3. Create the EMP2 table based on the following table instance chart. Enter the syntax in the SQL Worksheet. Then execute the statement to create the table. Confirm that the table is created.

Column Name	ID	LAST_NAME	FIRST_NAME	DEPT_ID
Key Type				
Nulls/Unique				
FK Table				
FK Column				
Data type	NUMBER	VARCHAR2	VARCHAR2	NUMBER
Length	7	25	25	7

Name	Null	Туре
ID		NUMBER(7)
LAST_NAME		VARCHAR2 (25)
FIRST_NAME		VARCHAR2 (25)
DEPT_ID		NUMBER(7)
4 rows selected		

4. Modify the EMP2 table to allow for longer employee last names. Confirm your modification.

Name	Null	Туре
ID		NUMBER (7)
LAST_NAME		VARCHAR2(50)
FIRST_NAME		VARCHAR2(25)
DEPT_ID		NUMBER (7)
4 rows selected		

- 5. Create the EMPLOYEES2 table based on the structure of the EMPLOYEES table. Include only the EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY, and DEPARTMENT_ID columns. Name the columns in your new table ID, FIRST_NAME, LAST_NAME, SALARY, and DEPT_ID, respectively.
- 6. Drop the EMP2 table.
- 7. Query the recycle bin to see whether the table is present.

	ORIGINAL_NAME	2 OPERATION	2 DROPTIME
17	EMP_NEW_SAL	DROP	2009-05-22:14:44:15
18	EMP2	DROP	2009-05-22:14:57:57

8. Restore the EMP2 table to a state before the DROP statement.

Name	Null	Туре
TD		TERRED (A)
ID		NUMBER (7)
LAST_NAME		VARCHAR2 (50)
FIRST_NAME		VARCHAR2(25)
DEPT_ID		NUMBER (7)
4 rows selected		

9. Drop the FIRST_NAME column from the EMPLOYEES2 table. Confirm your modification by checking the description of the table.

Name .	Nu11	Туре
ID LAST_NAME SALARY DEPT_ID	NOT NULL	NUMBER(6) VARCHAR2(25) NUMBER(8,2) NUMBER(4)
4 rows selected		

10. In the EMPLOYEES2 table, mark the DEPT_ID column as UNUSED. Confirm your modification by checking the description of the table.

Name	Nu11	Туре
ID LAST_NAME SALARY	NOT NULL	NUMBER(6) VARCHAR2(25) NUMBER(8,2)
3 rows selected		

- 11. Drop all the UNUSED columns from the EMPLOYEES2 table. Confirm your modification by checking the description of the table.
- 12. Add a table-level PRIMARY KEY constraint to the EMP2 table on the ID column. The constraint should be named at creation. Name the constraint my_emp_id_pk.
- 13. Create a PRIMARY KEY constraint to the DEPT2 table using the ID column. The constraint should be named at creation. Name the constraint my dept id pk.
- 14. Add a foreign key reference on the EMP2 table that ensures that the employee is not assigned to a nonexistent department. Name the constraint my emp dept id fk.
- 15. Modify the EMP2 table. Add a COMMISSION column of the NUMBER data type, precision 2, scale 2. Add a constraint to the COMMISSION column that ensures that a commission value is greater than zero.
- 16. Drop the EMP2 and DEPT2 tables so that they cannot be restored. Verify the recycle bin
- 17. Create the DEPT_NAMED_INDEX table based on the following table instance chart. Name the index for the PRIMARY KEY column as DEPT PK IDX.

Column Name	Deptno	Dname
Primary Key	Yes	
Data Type	Number	VARCHAR2
Length	4	30

18. Create an external table library_items_ext. Use the ORACLE_LOADER access driver.

Note: The emp_dir directory and library_items.dat file are already created for this exercise. library_items.dat has records in the following format:

- 2354, 2264, 13.21, 150,
- 2355, 2289, 46.23, 200,
- 2355, 2264, 50.00, 100,
- a. Open the lab_02_18.sql file. Observe the code snippet to create the library_items_ext external table. Then replace <TODO1>, <TODO2>, <TODO3>, and <TODO4> as appropriate and save the file as lab_02_18_soln.sql. Run the script to create the external table.
- b. Query the library_items_ext table.

	A	CATEGOR	BOO	BOOK_P	2 QUAN
1		2354	2264	13.21	150
2		2355	2289	46.23	200
3		2355	2264	50	100

19. The HR department needs a report of the addresses of all departments. Create an external table as dept_add_ext using the ORACLE_DATAPUMP access driver. The report should show the location ID, street address, city, state or province, and country in the output. Use a NATURAL JOIN to produce the results.

Note: The emp dir directory is already created for this exercise.

- a. Open the lab_02_19.sql file. Observe the code snippet to create the dept_add_ext external table. Then, replace <TODOI>, <TODO2>, and <TODO3> with the appropriate code. Replace <oraxx_emp4.exp> and <oraxx_emp5.exp> with the appropriate file names. For example, if you are the ora21 user, your file names are ora21_emp4.exp and ora21_emp5.exp. Save the script as lab_02_19_soln.sql.
- b. Run the lab 02 19 soln.sql script to create the external table.
- c. Query the dept add ext table.

	2 LOCAT	STREET_ADDRESS	2 CITY	STATE_PROVINCE	2 COUNTRY_NAME
1	1000	1297 Via Cola di Rie	Roma	(null)	Italy
2	1100	93091 Calle della Testa	Venice	(null)	Italy
3	1200	2017 Shinjuku-ku	Tokyo	Tokyo Prefecture	Japan
4	1300	9450 Kamiya-cho	Hiroshima	(null)	Japan
5	1400	2014 Jabberwocky Rd	Southlake	Texas	United States of Amer
6	1500	2011 Interiors Blvd	South San Francisco	California	United States of Amer
7	1600	2007 Zagora St	South Brunswick	NewJersey	United States of Amer
8	1700	2004 Charade Rd	Seattle	Washington	United States of Amer

Note: When you perform the preceding step, two files oraxx_emp4.exp and oraxx emp5.exp are created under the default directory emp dir.

- 20. Create the emp_books table and populate it with data. Set the primary key as deferred and observe what happens at the end of the transaction.
 - a. Run the lab_02_20_a.sql file to create the emp_books table. Observe that the emp_books_pk primary key is not created as deferrable.

create table succeeded.

b. Run the lab_02_20_b.sql file to populate data into the emp_books table. What do you observe?

```
I rows inserted

Error starting at line 2 in command:
insert into emp_books values(300,'Change Management')

Error report:

SQL Error: ORA-00001: unique constraint (ORA21.EMP_BOOKS_PK) violated

00001. 00000 - "unique constraint (%s.%s) violated"

*Cause: An UPDATE or INSERT statement attempted to insert a duplicate key.
For Trusted Oracle configured in DBMS MAC mode, you may see
this message if a duplicate entry exists at a different level.

*Action: Either remove the unique restriction or do not insert the key.
```

c. Set the emp books pk constraint as deferred. What do you observe?

```
Error starting at line 1 in command:
set constraint emp_books_pk deferred

Error report:

SQL Error: ORA-02447: cannot defer a constraint that is not deferrable
02447. 00000 - "cannot defer a constraint that is not deferrable"

*Cause: An attempt was made to defer a nondeferrable constraint
*Action: Drop the constraint and create a new one that is deferrable
```

- d. Drop the emp books pk constraint.
- e. Modify the emp_books table definition to add the emp_books_pk constraint as deferrable this time.

alter table emp_books succeeded.

f. Set the emp books pk constraint as deferred.

set constraint succeeded.

g. Run the lab_02_20_g.sql file to populate data into the emp_books table. What do you observe?

1 rows inserted 1 rows inserted 1 rows inserted

h. Commit the transaction. What do you observe?

Error report:

SQL Error: ORA-02091: transaction rolled back

ORA-00001: unique constraint (ORA21.EMP_BOOKS_PK) violated

02091. 00000 - "transaction rolled back"

*Cause: Also see error 2092. If the transaction is aborted at a remote site then you will only see 2091; if aborted at host then you will see 2092 and 2091.

*Action: Add rollback segment and retry the transaction.

Practice Solutions 2-1: Managing Schema Objects

1. Create the DEPT2 table based on the following table instance chart. Enter the syntax in the SQL Worksheet. Then, execute the statement to create the table. Confirm that the table is created.

Column Name	ID	NAME
Key Type		
Nulls/Unique		
FK Table		
FK Column		
Data type	NUMBER	VARCHAR2
Length	7	25

```
CREATE TABLE dept2
(id NUMBER(7),
name VARCHAR2(25));

DESCRIBE dept2
```

2. Populate the DEPT2 table with data from the DEPARTMENTS table. Include only the columns that you need.

```
INSERT INTO dept2
SELECT department_id, department_name
FROM departments;
```

3. Create the EMP2 table based on the following table instance chart. Enter the syntax in the SQL Worksheet. Then execute the statement to create the table. Confirm that the table is created.

Column Name	ID	LAST_NAME	FIRST_NAME	DEPT_ID
Key Type				
Nulls/Unique				
FK Table				
FK Column				
Data type	NUMBER	VARCHAR2	VARCHAR2	NUMBER
Length	7	25	25	7

```
CREATE TABLE emp2
(id NUMBER(7),
last_name VARCHAR2(25),
first_name VARCHAR2(25),
dept_id NUMBER(7));

DESCRIBE emp2
```

4. Modify the EMP2 table to allow for longer employee last names. Confirm your modification.

```
ALTER TABLE emp2
MODIFY (last_name VARCHAR2(50));
DESCRIBE emp2
```

5. Create the EMPLOYEES2 table based on the structure of the EMPLOYEES table. Include only the EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY, and DEPARTMENT_ID columns. Name the columns in your new table ID, FIRST_NAME, LAST_NAME, SALARY, and DEPT_ID, respectively.

```
CREATE TABLE employees2 AS

SELECT employee_id id, first_name, last_name, salary,
department_id dept_id

FROM employees;
```

6. Drop the EMP2 table.

```
DROP TABLE emp2;
```

7. Query the recycle bin to see whether the table is present.

```
SELECT original_name, operation, droptime FROM recyclebin;
```

8. Restore the EMP2 table to a state before the DROP statement.

```
FLASHBACK TABLE emp2 TO BEFORE DROP;
DESC emp2;
```

9. Drop the FIRST_NAME column from the EMPLOYEES2 table. Confirm your modification by checking the description of the table.

```
ALTER TABLE employees2
DROP COLUMN first_name;
DESCRIBE employees2
```

10. In the EMPLOYEES2 table, mark the DEPT_ID column as UNUSED. Confirm your modification by checking the description of the table.

```
ALTER TABLE employees2
SET UNUSED (dept_id);
DESCRIBE employees2
```

11. Drop all the UNUSED columns from the EMPLOYEES2 table. Confirm your modification by checking the description of the table.

```
ALTER TABLE employees2
DROP UNUSED COLUMNS;
DESCRIBE employees2
```

12. Add a table-level PRIMARY KEY constraint to the EMP2 table on the ID column. The constraint should be named at creation. Name the constraint my_emp_id_pk.

```
ALTER TABLE emp2
ADD CONSTRAINT my_emp_id_pk PRIMARY KEY (id);
```

13. Create a PRIMARY KEY constraint to the DEPT2 table using the ID column. The constraint should be named at creation. Name the constraint my_dept_id_pk.

```
ALTER TABLE dept2
ADD CONSTRAINT my_dept_id_pk PRIMARY KEY(id);
```

14. Add a foreign key reference on the EMP2 table that ensures that the employee is not assigned to a nonexistent department. Name the constraint my_emp_dept_id_fk.

```
ALTER TABLE emp2
ADD CONSTRAINT my_emp_dept_id_fk
FOREIGN KEY (dept_id) REFERENCES dept2(id);
```

15. Modify the EMP2 table. Add a COMMISSION column of the NUMBER data type, precision 2, scale 2. Add a constraint to the COMMISSION column that ensures that a commission value is greater than zero.

```
ALTER TABLE emp2
ADD commission NUMBER(2,2)
CONSTRAINT my_emp_comm_ck CHECK (commission > 0);
```

16. Drop the EMP2 and DEPT2 tables so that they cannot be restored. Check in the recycle bin.

```
DROP TABLE emp2 PURGE;
DROP TABLE dept2 PURGE;

SELECT original_name, operation, droptime
FROM recyclebin;
```

17. Create the DEPT_NAMED_INDEX table based on the following table instance chart. Name the index for the PRIMARY KEY column as DEPT_PK_IDX.

Column Name	Deptno	Dname
Primary Key	Yes	
Data Type	Number	VARCHAR2
Length	4	30

```
CREATE TABLE DEPT_NAMED_INDEX
(deptno NUMBER(4)

PRIMARY KEY USING INDEX
(CREATE INDEX dept_pk_idx ON
DEPT_NAMED_INDEX(deptno)),
dname VARCHAR2(30));
```

18. Create an external table library_items_ext. Use the ORACLE_LOADER access driver.

Note: The emp_dir directory and library_items.dat are already created for this exercise

library_items.dat has records in the following format:

```
2354, 2264, 13.21, 150,
```

2355, 2289, 46.23, 200,

2355, 2264, 50.00, 100,

a) Open the lab_02_18.sql file. Observe the code snippet to create the library_items_ext external table. Then, replace <**TODO1**>, <**TODO2**>, <**TODO3**>, and <**TODO4**> as appropriate and save the file as lab_02_18_soln.sql.

Run the script to create the external table.

```
b) Query the library_items_ext table.

SELECT * FROM library_items_ext;
```

19. The HR department needs a report of addresses of all the departments. Create an external table as dept_add_ext using the ORACLE_DATAPUMP access driver. The report should show the location ID, street address, city, state or province, and country in the output. Use a NATURAL JOIN to produce the results.

Note: The emp dir directory is already created for this exercise.

a) Open the lab_02_19.sql file. Observe the code snippet to create the dept_add_ext external table. Then, replace <TODO1>, <TODO2>, and <TODO3> with appropriate code. Replace <oraxx_emp4.exp> and <oraxx_emp5.exp> with appropriate file names. For example, if you are user ora21, your file names are ora21_emp4.exp and ora21_emp5.exp. Save the script as lab_02_19_soln.sql.

Note: When you perform the preceding step, two files **oraxx_emp4.exp** and **oraxx emp5.exp** are created under the default directory emp dir.

Run the lab_02_19_soln.sql script to create the external table.

b) Query the dept add ext table.

```
SELECT * FROM dept add ext;
```

- 20. Create the emp_books table and populate it with data. Set the primary key as deferred and observe what happens at the end of the transaction.
 - a) Run the lab_02_20a.sql script to create the emp_books table. Observe that the emp_books pk primary key is not created as deferrable.

```
CREATE TABLE emp_books (book_id number,
title varchar2(20), CONSTRAINT
emp_books_pk PRIMARY KEY (book_id));
```

b) Run the lab_02_20b.sql script to populate data into the emp_books table.

What do you observe?

```
INSERT INTO emp_books VALUES(300,'Organizations');
INSERT INTO emp_books VALUES(300,'Change Management');
```

The first row is inserted. However, you see the ora-00001 error with the second row insertion.

c) Set the emp_books_pk constraint as deferred. What do you observe?

```
SET CONSTRAINT emp books pk DEFERRED;
```

You see the following error: "ORA-02447: Cannot defer a constraint that is not deferrable."

d) Drop the emp books pk constraint.

```
ALTER TABLE emp books DROP CONSTRAINT emp books pk;
```

e) Modify the emp_books table definition to add the emp_books_pk constraint as deferrable this time.

```
ALTER TABLE emp_books ADD (CONSTRAINT emp_books_pk PRIMARY KEY (book_id) DEFERRABLE);
```

f) Set the emp books pk constraint as deferred.

```
SET CONSTRAINT emp books pk DEFERRED;
```

g) Run the lab_02_20g.sql script to populate data into the emp_books table.

What do you observe?

```
INSERT INTO emp_books VALUES (300,'Change Management');
INSERT INTO emp_books VALUES (300,'Personality');
INSERT INTO emp_books VALUES (350,'Creativity');
```

You see that all the rows are inserted.

h) Commit the transaction. What do you observe?

```
COMMIT;
```

You see that the transaction is rolled back.

Practices and Solutions for Lesson 3

Practice 3-1: Managing Objects with Data Dictionary Views

In this practice, you query the dictionary views to find information about objects in your schema.

1. Query the USER_TABLES data dictionary view to see information about the tables that you own.

2. Query the ALL_TABLES data dictionary view to see information about all the tables that you can access. Exclude the tables that you own.

Note: Your list may not exactly match the following list:

TABLE_NAME	2 OWNER
1 DUAL	SYS
2 SYSTEM_PRIVILEGE_MAP	SYS
3 TABLE_PRIVILEGE_MAP	SYS

98 PLAN_TABLE\$ SYS
99 WRI\$_ADV_ASA_RECO_DATA SYS
100 PSTUBTBL SYS

3. For a specified table, create a script that reports the column names, data types, and data types' lengths, as well as whether nulls are allowed. Prompt the user to enter the table name. Give appropriate aliases to the DATA_PRECISION and DATA_SCALE columns. Save this script in a file named lab 03 01.sql.

For example, if the user enters DEPARTMENTS, the following output results:

Practice 3-1: Managing Objects with Data Dictionary Views (continued)

	2 COLUMN_NAME	2 DATA_TYPE	DATA_LENGTH	PRECISION	SCALE 2	NULLABLE
1	DEPARTMENT_ID	NUMBER	22	4	0 N	
2	DEPARTMENT_NAME	VARCHAR2	30	(null)	(null) N	
3	MANAGER_ID	NUMBER	22	6	0 Y	
4	LOCATION_ID	NUMBER	22	4	0 Y	

4. Create a script that reports the column name, constraint name, constraint type, search condition, and status for a specified table. You must join the USER_CONSTRAINTS and USER_CONS_COLUMNS tables to obtain all this information. Prompt the user to enter the table name. Save the script in a file named lab_03_04.sql. For example, if the user enters DEPARTMENTS, the following output results:

Γ	A	COLUMN_NAME	2 CONSTRAINT_NAME	🖁 CONSTRA	SEARCH_CONDITION	STATUS
1	. D	EPARTMENT_NAME	DEPT_NAME_NN	С	"DEPARTMENT_NAME" IS NOT	ENABLED
Z	D	EPARTMENT_ID	DEPT_ID_PK	P	(null)	ENABLED
Ξ	L	OCATION_ID	DEPT_LOC_FK	R	(null)	ENABLED
4	M	ANAGER_ID	DEPT_MGR_FK	R	(null)	ENABLED

5. Add a comment to the DEPARTMENTS table. Then query the USER_TAB_COMMENTS view to verify that the comment is present.

6. Create a synonym for your EMPLOYEES table. Call it EMP. Then find the names of all synonyms that are in your schema.

7. Run lab_03_07.sql to create the dept50 view for this exercise. You need to determine the names and definitions of all the views in your schema. Create a report that retrieves view information: the view name and text from the USER VIEWS data dictionary view.

Note: The ${\tt EMP_DETAILS_VIEW}$ was created as part of your schema.

Note: You can see the complete definition of the view if you use Run Script (or press F5) in SQL Developer. If you use Execute Statement (or press F9) in SQL Developer, scroll horizontally in the result pane. If you use SQL*Plus, to see more contents of a LONG column, use the SET LONG *n* command, where *n* is the value of the number of characters of the LONG column that you want to see.

Practice 3-1: Managing Objects with Data Dictionary Views (continued)

	VIEW_NAME	TEXT
1	DEPT50	SELECT employee_id empno, last_name employee, department_id deptno
2	EMP_DETAILS_VIEW	SELECT e.employee_id, e.job_id, e.manager_id, e.department_id, d.location_id

8. Find the names of your sequences. Write a query in a script to display the following information about your sequences: sequence name, maximum value, increment size, and last number. Name the script lab_03_08.sql. Run the statement in your script.

Run the lab_03_09_tab.sql script as a prerequisite for exercises 9 through 11. Alternatively, open the script file to copy the code and paste it into your SQL Worksheet. Then execute the script. This script:

- Drops if there are existing tables DEPT2 and EMP2
- Creates the DEPT2 and EMP2 tables

Note: In Practice 2, you should have already dropped the DEPT2 and EMP2 tables so that they cannot be restored.

9. Confirm that both the DEPT2 and EMP2 tables are stored in the data dictionary.

10. Confirm that the constraints were added by querying the USER_CONSTRAINTS view. Note the types and names of the constraints.

- 11. Display the object names and types from the USER_OBJECTS data dictionary view for the EMP2 and DEPT2 tables.
- 12. Create the SALES_DEPT table based on the following table instance chart. Name the index for the PRIMARY KEY column SALES_PK_IDX. Then query the data dictionary view to find the index name, table name, and whether the index is unique.

Practice 3-1: Managing Objects with Data Dictionary Views (continued)

Column Name	Team_Id	Location
Primary Key	Yes	
Data Type	Number	VARCHAR2
Length	3	30

	A	INDEX_NAME	A	TABLE_NAME	A	UNIQUENESS
1	SAI	LES_PK_IDX	SAL	.ES_DEPT	NO	NUNIQUE

Practice Solutions 3-1: Managing Objects with Data Dictionary Views

1. Query the data dictionary to see information about the tables you own.

```
SELECT table_name
FROM user_tables;
```

2. Query the dictionary view to see information about all the tables that you can access. Exclude tables that you own.

```
SELECT table_name, owner
  FROM all_tables
  WHERE owner <>'ORAxx';
```

3. For a specified table, create a script that reports the column names, data types, and data types' lengths, as well as whether nulls are allowed. Prompt the user to enter the table name. Give appropriate aliases to the DATA_PRECISION and DATA_SCALE columns. Save this script in a file named lab 03 01.sql.

To test, run the script and enter DEPARTMENTS as the table name.

4. Create a script that reports the column name, constraint name, constraint type, search condition, and status for a specified table. You must join the USER_CONSTRAINTS and USER_CONS_COLUMNS tables to obtain all this information. Prompt the user to enter the table name. Save the script in a file named lab 03 04.sql.

To test, run the script and enter DEPARTMENTS as the table name.

Practice Solutions 3-1: Managing Objects with Data Dictionary Views (continued)

5. Add a comment to the DEPARTMENTS table. Then query the USER TAB COMMENTS view to verify that the comment is present.

```
COMMENT ON TABLE departments IS

'Company department information including name, code, and location.';

SELECT COMMENTS

FROM user_tab_comments

WHERE table_name = 'DEPARTMENTS';
```

6. Create a synonym for your EMPLOYEES table. Call it EMP. Then, find the names of all the synonyms that are in your schema.

```
CREATE SYNONYM emp FOR EMPLOYEES;
SELECT *
FROM user_synonyms;
```

7. Run lab_03_07.sql to create the dept50 view for this exercise. You need to determine the names and definitions of all the views in your schema. Create a report that retrieves view information: the view name and text from the USER_VIEWS data dictionary view.

Note: The EMP DETAILS VIEW was created as part of your schema.

Note: You can see the complete definition of the view if you use Run Script (or press F5) in SQL Developer. If you use Execute Statement (or press F9) in SQL Developer, scroll horizontally in the result pane. If you use SQL*Plus to see more contents of a LONG column, use the SET LONG *n* command, where *n* is the value of the number of characters of the LONG column that you want to see.

```
SELECT view_name, text
FROM user_views;
```

Practice Solutions 3-1: Managing Objects with Data Dictionary Views (continued)

8. Find the names of your sequences. Write a query in a script to display the following information about your sequences: sequence name, maximum value, increment size, and last number. Name the script lab_03_08.sql. Run the statement in your script.

```
SELECT sequence_name, max_value, increment_by, last_number
FROM user_sequences;
```

Run the lab_03_09_tab.sql script as a prerequisite for exercises 9 through 11. Alternatively, open the script file to copy the code and paste it into your SQL Worksheet. Then execute the script. This script:

- Drops the DEPT2 and EMP2 tables
- Creates the DEPT2 and EMP2 tables

Note: In Practice 2, you should have already dropped the DEPT2 and EMP2 tables so that they cannot be restored.

9. Confirm that both the DEPT2 and EMP2 tables are stored in the data dictionary.

```
SELECT table_name
FROM user_tables
WHERE table_name IN ('DEPT2', 'EMP2');
```

10. Query the data dictionary to find out the constraint names and types for both the tables.

```
SELECT constraint_name, constraint_type
FROM user_constraints
WHERE table_name IN ('EMP2', 'DEPT2');
```

11. Query the data dictionary to display the object names and types for both the tables.

```
SELECT object_name, object_type
FROM user_objects
WHERE object_name LIKE 'EMP%'
OR object_name LIKE 'DEPT%';
```

Practice Solutions 3-1: Managing Objects with Data Dictionary Views (continued)

12. Create the SALES_DEPT table based on the following table instance chart. Name the index for the PRIMARY KEY column as SALES_PK_IDX. Then query the data dictionary view to find the index name, table name, and whether the index is unique.

Column Name	Team_Id	Location	
Primary Key	Yes		
Data Type	Number	VARCHAR2	
Length	3	30	

```
CREATE TABLE SALES_DEPT

(team_id NUMBER(3)

PRIMARY KEY USING INDEX

(CREATE INDEX sales_pk_idx ON

SALES_DEPT(team_id)),

location VARCHAR2(30));

SELECT INDEX_NAME, TABLE_NAME, UNIQUENESS

FROM USER_INDEXES

WHERE TABLE_NAME = 'SALES_DEPT';
```

Practices and Solutions for Lesson 4

Practice 4-1: Manipulating Large Data Sets

In this practice, you perform multitable INSERT and MERGE operations, and track row versions.

- 1. Run the lab_04_01.sql script in the lab folder to create the SAL_HISTORY table.
- 2. Display the structure of the SAL HISTORY table.

Name	Nu11	Туре
EMPLOYEE_ID HIRE_DATE SALARY		NUMBER(6) DATE NUMBER(8,2)
3 rows selected		

- 3. Run the lab_04_03.sql script in the lab folder to create the MGR_HISTORY table.
- 4. Display the structure of the MGR HISTORY table.

Name	Null	Туре
EMPLOYEE_ID MANAGER_ID SALARY		NUMBER(6) NUMBER(6) NUMBER(8,2)
3 rows selected		

- 5. Run the lab_04_05.sql script in the lab folder to create the SPECIAL_SAL table.
- 6. Display the structure of the SPECIAL SAL table.

Name	Null	Туре
EMPLOYEE_ID SALARY		NUMBER(6) NUMBER(8,2)
2 rows selected		

- 7. a. Write a query to do the following:
 - Retrieve details such as the employee ID, hire date, salary, and manager ID of those employees whose employee ID is less than 125 from the EMPLOYEES table.
 - If the salary is more than \$20,000, insert details such as the employee ID and salary into the SPECIAL SAL table.

- Insert details such as the employee ID, hire date, and salary into the SAL HISTORY table.
- Insert details such as the employee ID, manager ID, and salary into the MGR_HISTORY table.
- b. Display the records from the SPECIAL_SAL table.

	A	EMPLOYEE_ID	A	SALARY
1		100		24000

c. Display the records from the SAL_HISTORY table.

	A	EMPLOYEE_ID	A	HIRE_DATE	A	SALARY
1		101	21	-SEP-89		17000
2		102	13	-JAN-93		17000
3		103	03	-JAN-90		9000
4		104	21	-MAY-91		6000
5		105	25	-JUN-97		4800
6		106	05	-FEB-98		4800
7		107	07	-FEB-99		4200

d. Display the records from the MGR_HISTORY table.

	A	EMPLOYEE_ID	A	MANAGER_ID	A	SALARY
1		101		100		17000
2		102		100		17000
3		103		102		9000
4		104		103		6000
5		105		103		4800
6		106		103		4800
7		107		103		4200

- 8.
- a. Run the lab_04_08a.sql script in the lab folder to create the SALES_WEEK_DATA table.
- b. Run the lab_04_08b.sql script in the lab folder to insert records into the SALES_WEEK_DATA table.

c. Display the structure of the SALES WEEK DATA table.

Name	Nu11	Туре
ID WEEK_ID QTY_MON QTY_TUE QTY_WED QTY_THUR		NUMBER(6) NUMBER(2) NUMBER(8,2) NUMBER(8,2) NUMBER(8,2) NUMBER(8,2)
QTY_FRI 7 rows selected		NUMBER(8,2)

d. Display the records from the SALES_WEEK_DATA table.

- e. Run the lab_04_08_e.sql script in the lab folder to create the EMP SALES INFO table.
- f. Display the structure of the EMP SALES INFO table.

Name	Nu11	Туре
ID WEEK QTY_SALES		NUMBER(6) NUMBER(2) NUMBER(8,2)
3 rows selected		

- g. Write a query to do the following:
 - Retrieve details such as ID, week ID, sales quantity on Monday, sales quantity on Tuesday, sales quantity on Wednesday, sales quantity on Thursday, and sales quantity on Friday from the SALES_WEEK_DATA table.
 - Build a transformation such that each record retrieved from the SALES_WEEK_DATA table is converted into multiple records for the EMP_SALES_INFO table.

Hint: Use a pivoting INSERT statement.

h. Display the records from the EMP_SALES_INFO table.

	A ID	WEEK	QTY_SALES
1	200	6	2050
2	200	6	2200
3	200	6	1700
4	200	6	1200
5	200	6	3000

9. You have the data of past employees stored in a flat file called emp.data. You want to store the names and email IDs of all employees, past and present, in a table. To do

this, first create an external table called EMP_DATA using the emp.dat source file in the emp dir directory. Use the lab 04 09.sql script to do this.

- 10. Next, run the lab_04_10.sql script to create the EMP_HIST table.
 - a. Increase the size of the email column to 45.
 - b. Merge the data in the EMP_DATA table created in the last lab into the data in the EMP_HIST table. Assume that the data in the external EMP_DATA table is the most up-to-date. If a row in the EMP_DATA table matches the EMP_HIST table, update the email column of the EMP_HIST table to match the EMP_DATA table row. If a row in the EMP_DATA table does not match, insert it into the EMP_HIST table. Rows are considered matching when the employee's first and last names are identical.
 - c. Retrieve the rows from EMP HIST after the merge.

	FIRST_NAME	LAST_NAME	EMAIL
1	Ellen	Abel	EABEL
2	Sundar	Ande	SANDE
3	Mozhe	Atkinson	MATKINSO
4	David	Austin	DAUSTIN
5	Hermann	Baer	HBAER
6	Shelli	Baida	SBAIDA
7	Amit	Banda	ABANDA
8	Elizabeth	Bates	EBATES
9	Sarah	Bell	SBELL
10	David	Bernstein	DBERNSTE
11	Laura	Bissot	LBISSOT

11. Create the EMP3 table by using the lab_04_11.sql script. In the EMP3 table, change the department for Kochhar to 60 and commit your change. Next, change the department for Kochhar to 50 and commit your change. Track the changes to Kochhar by using the Row Versions feature.

Practice Solutions 4-1: Manipulating Large Data Sets

- 1. Run the lab_04_01.sql script in the lab folder to create the SAL_HISTORY table.
- 2. Display the structure of the SAL_HISTORY table.

```
DESC sal history
```

- 3. Run the lab_04_03.sql script in the lab folder to create the MGR_HISTORY table.
- 4. Display the structure of the MGR HISTORY table.

```
DESC mgr_history
```

- 5. Run the lab_04_05.sql script in the lab folder to create the SPECIAL_SAL table.
- 6. Display the structure of the SPECIAL SAL table.

```
DESC special sal
```

- 7. a) Write a query to do the following:
 - Retrieve details such as the employee ID, hire date, salary, and manager ID of those employees whose employee ID is less than 125 from the EMPLOYEES table.
 - If the salary is more than \$20,000, insert details such as the employee ID and salary into the SPECIAL SAL table.
 - Insert details such as the employee ID, hire date, and salary into the SAL HISTORY table.
 - Insert details such as the employee ID, manager ID, and salary into the MGR HISTORY table.

```
INSERT ALL
WHEN SAL > 20000 THEN
INTO special_sal VALUES (EMPID, SAL)
ELSE
INTO sal_history VALUES(EMPID, HIREDATE, SAL)
INTO mgr_history VALUES(EMPID, MGR, SAL)
SELECT employee_id EMPID, hire_date HIREDATE,
salary SAL, manager_id MGR
FROM employees
WHERE employee_id < 125;</pre>
```

b) Display the records from the SPECIAL SAL table.

```
SELECT * FROM special_sal;
```

c) Display the records from the SAL HISTORY table.

```
SELECT * FROM sal_history;
```

d) Display the records from the MGR_HISTORY table.

```
SELECT * FROM mgr_history;
```

- 8. a) Run the lab_04_08a.sql script in the lab folder to create the SALES WEEK DATA table.
 - b) Run the lab_04_08b.sql script in the lab folder to insert records into the SALES_WEEK_DATA table.
 - c) Display the structure of the SALES WEEK DATA table.

```
DESC sales week data
```

d) Display the records from the SALES WEEK DATA table.

```
SELECT * FROM SALES_WEEK_DATA;
```

- e) Run the lab_04_08_e.sql script in the lab folder to create the EMP SALES INFO table.
- f) Display the structure of the EMP_SALES INFO table.

```
DESC emp_sales_info
```

- g) Write a query to do the following:
 - Retrieve details such as the employee ID, week ID, sales quantity on Monday, sales quantity on Tuesday, sales quantity on Wednesday, sales quantity on Thursday, and sales quantity on Friday from the SALES WEEK DATA table.
 - Build a transformation such that each record retrieved from the SALES_WEEK_DATA table is converted into multiple records for the EMP SALES INFO table.

Hint: Use a pivoting INSERT statement.

```
INSERT ALL

INTO emp_sales_info VALUES (id, week_id, QTY_MON)

INTO emp_sales_info VALUES (id, week_id, QTY_TUE)

INTO emp_sales_info VALUES (id, week_id, QTY_WED)

INTO emp_sales_info VALUES (id, week_id, QTY_THUR)

INTO emp_sales_info VALUES (id, week_id, QTY_FRI)

SELECT ID, week_id, QTY_MON, QTY_TUE, QTY_WED,

QTY_THUR,QTY_FRI FROM sales_week_data;
```

h) Display the records from the SALES INFO table.

```
SELECT * FROM emp_sales_info;
```

9. You have the data of past employees stored in a flat file called emp.data. You want to store the names and email IDs of all employees past and present in a table. To do this, first create an external table called EMP_DATA using the emp.dat source file in the emp_dir directory. You can use the script in lab 04 09.sql to do this.

```
CREATE TABLE emp data
  (first_name VARCHAR2(20)
  ,last name VARCHAR2(20)
  , email VARCHAR2(30)
ORGANIZATION EXTERNAL
TYPE oracle loader
DEFAULT DIRECTORY emp dir
ACCESS PARAMETERS
 RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 NOBADFILE
 NOLOGFILE
 FIELDS
 (first name POSITION (1:20) CHAR
  , last name POSITION (22:41) CHAR
    email POSITION (43:72) CHAR )
LOCATION ('emp.dat') );
```

- 10. Next, run the lab_04_10.sql script to create the EMP_HIST table.
 - a) Increase the size of the email column to 45.

```
ALTER TABLE emp_hist MODIFY email varchar(45);
```

b) Merge the data in the EMP_DATA table created in the last lab into the data in the EMP_HIST table. Assume that the data in the external EMP_DATA table is the most up-to-date. If a row in the EMP_DATA table matches the EMP_HIST table, update the email column of the EMP_HIST table to match the EMP_DATA table row. If a row in the EMP_DATA table does not match, insert it into the EMP_HIST table. Rows are considered matching when the employee's first and last names are identical.

```
MERGE INTO EMP_HIST f USING EMP_DATA h
ON (f.first_name = h.first_name
AND f.last_name = h.last_name)
```

```
WHEN MATCHED THEN

UPDATE SET f.email = h.email

WHEN NOT MATCHED THEN

INSERT (f.first_name
, f.last_name
, f.email)

VALUES (h.first_name
, h.last_name
, h.email);
```

c) Retrieve the rows from EMP HIST after the merge.

```
SELECT * FROM emp_hist;
```

11. Create the EMP3 table using the lab_04_11.sql script. In the EMP3 table, change the department for Kochhar to 60 and commit your change. Next, change the department for Kochhar to 50 and commit your change. Track the changes to Kochhar using the Row Versions feature.

```
UPDATE emp3 SET department_id = 60
WHERE last_name = 'Kochhar';
COMMIT;
UPDATE emp3 SET department_id = 50
WHERE last_name = 'Kochhar';
COMMIT;
```

```
SELECT VERSIONS_STARTTIME "START_DATE",

VERSIONS_ENDTIME "END_DATE", DEPARTMENT_ID

FROM EMP3

VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE

WHERE LAST_NAME = 'Kochhar';
```

Practices and Solutions for Lesson 5

Practice 5-1: Managing Data in Different Time Zones

In this practice, you display time zone offsets, CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP. You also set time zones and use the EXTRACT function.

- 1. Alter the session to set NLS DATE FORMAT to DD-MON-YYYY HH24:MI:SS.
- 2. a. Write queries to display the time zone offsets (TZ_OFFSET) for the following time zones.
 - US/Pacific-New

- Singapore

- Egypt

- b. Alter the session to set the TIME_ZONE parameter value to the time zone offset of US/Pacific-New.
- c. Display CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP for this session.
- d. Alter the session to set the TIME_ZONE parameter value to the time zone offset of Singapore.
- e. Display CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP for this session.

Note: The output might be different based on the date when the command is executed.

Note: Observe in the preceding practice that CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP are sensitive to the session time zone.

3. Write a query to display DBTIMEZONE and SESSIONTIMEZONE.

4. Write a query to extract the YEAR from the HIRE_DATE column of the EMPLOYEES table for those employees who work in department 80.

Practice 5-1: Managing Data in Different Time Zones (continued)

	LAST_NAME	A	EXTRACT(YEARFROMHIRE_DATE)
1	Russell		1996
2	Partners		1997
3	Errazuriz		1997
4	Cambrault		1999
5	Zlotkey		2000
6	Tucker		1997
7	Bernstein		1997

- 5. Alter the session to set NLS DATE FORMAT to DD-MON-YYYY.
- 6. Examine and run the lab_05_06.sql script to create the SAMPLE_DATES table and populate it.
 - a. Select from the table and view the data.

b. Modify the data type of the DATE_COL column and change it to TIMESTAMP. Select from the table to view the data.

- c. Try to modify the data type of the DATE_COL column and change it to TIMESTAMP WITH TIME ZONE. What happens?
- 7. Create a query to retrieve last names from the EMPLOYEES table and calculate the review status. If the year hired was 1998, display Needs Review for the review status; otherwise, display not this year! Name the review status column Review. Sort the results by the HIRE DATE column.

Hint: Use a CASE expression with the EXTRACT function to calculate the review status.

• • •

Practice 5-1: Managing Data in Different Time Zones (continued)

8. Create a query to print the last names and the number of years of service for each employee. If the employee has been employed for five or more years, print 5 years of service. If the employee has been employed for 10 or more years, print 10 years of service. If the employee has been employed for 15 or more years, print 15 years of service. If none of these conditions match, print maybe next year! Sort the results by the HIRE_DATE column. Use the EMPLOYEES table.

Hint: Use CASE expressions and TO YMINTERVAL.

	LAST_NAME	HIRE_DATE	2 SYSDATE	2 Awards
1	OConnell	21-JUN-1999	23-JUN-2009	10 years of service
2	Grant	13-JAN-2000	23-JUN-2009	5 years of service
3	Whalen	17-SEP-1987	23-JUN-2009	15 years of service
4	Hartstein	17-FEB-1996	23-JUN-2009	10 years of service
5	Fay	17-AUG-1997	23-JUN-2009	10 years of service
6	Mavris	07-JUN-1994	23-JUN-2009	15 years of service

•••

Practice Solutions 5-1: Managing Data in Different Time Zones

1. Alter the session to set NLS DATE FORMAT to DD-MON-YYYY HH24:MI:SS.

```
ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
```

2. a. Write queries to display the time zone offsets (TZ_OFFSET) for the following time zones: *US/Pacific-New*, *Singapore*, and *Egypt*.

US/Pacific-New

SELECT TZ_OFFSET ('US/Pacific-New') from dual;

Singapore

SELECT TZ_OFFSET ('Singapore') from dual;

Egypt

SELECT TZ OFFSET ('Egypt') from dual;

b. Alter the session to set the TIME_ZONE parameter value to the time zone offset of US/Pacific-New.

```
ALTER SESSION SET TIME_ZONE = '-7:00';
```

c. Display CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP for this session.

Note: The output may be different based on the date when the command is executed.

```
SELECT CURRENT_DATE, CURRENT_TIMESTAMP,
LOCALTIMESTAMP FROM DUAL;
```

d. Alter the session to set the TIME_ZONE parameter value to the time zone offset of Singapore.

```
ALTER SESSION SET TIME_ZONE = '+8:00';
```

e. Display CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP for this session.

Note: The output might be different, based on the date when the command is executed.

```
SELECT CURRENT_DATE, CURRENT_TIMESTAMP,
LOCALTIMESTAMP FROM DUAL;
```

Practice Solutions 5-1: Managing Data in Different Time Zones (continued)

Note: Observe in the preceding practice that CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP are all sensitive to the session time zone.

3. Write a guery to display DBTIMEZONE and SESSIONTIMEZONE.

```
SELECT DBTIMEZONE, SESSIONTIMEZONE FROM DUAL;
```

4. Write a query to extract YEAR from the HIRE_DATE column of the EMPLOYEES table for those employees who work in department 80.

```
SELECT last_name, EXTRACT (YEAR FROM HIRE_DATE)
FROM employees
WHERE department_id = 80;
```

5. Alter the session to set NLS DATE FORMAT to DD-MON-YYYY.

```
ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY';
```

- 6. Examine and run the lab_05_06.sql script to create the SAMPLE_DATES table and populate it.
 - a. Select from the table and view the data.

```
SELECT * FROM sample_dates;
```

b. Modify the data type of the DATE_COL column and change it to TIMESTAMP. Select from the table to view the data.

```
ALTER TABLE sample_dates MODIFY date_col TIMESTAMP;
SELECT * FROM sample_dates;
```

c. Try to modify the data type of the DATE_COL column and change it to TIMESTAMP WITH TIME ZONE. What happens?

```
ALTER TABLE sample_dates MODIFY date_col TIMESTAMP WITH TIME ZONE;
```

Practice Solutions 5-1: Managing Data in Different Time Zones (continued)

You are unable to change the data type of the DATE_COL column because the Oracle server does not permit you to convert from TIMESTAMP to TIMESTAMP WITH TIMEZONE by using the ALTER statement.

7. Create a query to retrieve last names from the EMPLOYEES table and calculate the review status. If the year hired was 1998, display Needs Review for the review status; otherwise, display not this year! Name the review status column Review. Sort the results by the HIRE DATE column.

Hint: Use a CASE expression with the EXTRACT function to calculate the review status.

8. Create a query to print the last names and the number of years of service for each employee. If the employee has been employed five or more years, print 5 years of service. If the employee has been employed 10 or more years, print 10 years of service. If the employee has been employed 15 or more years, print 15 years of service. If none of these conditions match, print maybe next year! Sort the results by the HIRE DATE column. Use the EMPLOYEES table.

Hint: Use CASE expressions and TO YMINTERVAL.

Practices and Solutions for Lesson 6

Practice 6-1: Retrieving Data by Using Subqueries

In this practice, you write multiple-column subqueries, and correlated and scalar subqueries. You also solve problems by writing the WITH clause.

1. Write a query to display the last name, department number, and salary of any employee whose department number and salary both match the department number and salary of any employee who earns a commission.

2. Display the last name, department name, and salary of any employee whose salary and commission match the salary and commission of any employee located in location ID 1700.

3. Create a query to display the last name, hire date, and salary for all employees who have the same salary and commission as Kochhar.

Note: Do not display Kochhar in the result set.

4. Create a query to display the employees who earn a salary that is higher than the salary of all the sales managers (JOB_ID = 'SA_MAN'). Sort the results from the highest to the lowest.

Practice 6-1: Retrieving Data by Using Subqueries (continued)

	LAST_NAME	∄ JOB_ID	SALARY
1	King	AD_PRES	24000
2	De Haan	AD_VP	17000
3	Kochhar	AD_VP	17000

5. Display details such as the employee ID, last name, and department ID of those employees who live in cities the names of which begin with *T*.

6. Write a query to find all employees who earn more than the average salary in their departments. Display last name, salary, department ID, and the average salary for the department. Sort by average salary and round to two decimals. Use aliases for the columns retrieved by the query as shown in the sample output.

- 7. Find all employees who are not supervisors.
 - a. First, do this using the NOT EXISTS operator.

Practice 6-1: Retrieving Data by Using Subqueries (continued)

- b. Can this be done by using the NOT IN operator? How, or why not?
- 8. Write a query to display the last names of the employees who earn less than the average salary in their departments.

9. Write a query to display the last names of the employees who have one or more coworkers in their departments with later hire dates but higher salaries.

10. Write a query to display the employee ID, last names, and department names of all the employees.

Note: Use a scalar subquery to retrieve the department name in the SELECT statement.

• • •

Practice 6-1: Retrieving Data by Using Subqueries (continued)

105	196	Walsh	Shipping
106	197	Feeney	Shipping
107	178	Grant	(null)

11. Write a query to display the department names of those departments whose total salary cost is above one-eighth (1/8) of the total salary cost of the whole company. Use the WITH clause to write this query. Name the query SUMMARY.

	DEPARTMENT_NAME	DEPT_TOTAL
1	Sales	304500
2	Shipping	156400

Practice Solutions 6-1: Retrieving Data by Using Subqueries

1. Write a query to display the last name, department number, and salary of any employee whose department number and salary match the department number and salary of any employee who earns a commission.

```
SELECT last_name, department_id, salary
FROM employees
WHERE (salary, department_id) IN
(SELECT salary, department_id
FROM employees
WHERE commission_pct IS NOT NULL);
```

2. Display the last name, department name, and salary of any employee whose salary and commission match the salary and commission of any employee located in location ID1700.

3. Create a query to display the last name, hire date, and salary for all employees who have the same salary and commission as Kochhar.

Note: Do not display Kochhar in the result set.

4. Create a query to display the employees who earn a salary that is higher than the salary of all the sales managers (JOB_ID = 'SA_MAN'). Sort the results on salary from the highest to the lowest.

Practice Solutions 6-1: Retrieving Data by Using Subqueries (continued)

5. Display details such as the employee ID, last name, and department ID of those employees who live in cities the names of which begin with *T*.

```
SELECT employee_id, last_name, department_id
FROM employees
WHERE department_id IN (SELECT department_id
FROM departments
WHERE location_id IN
(SELECT location_id
FROM locations
WHERE city LIKE 'T%'));
```

6. Write a query to find all employees who earn more than the average salary in their departments. Display last name, salary, department ID, and the average salary for the department. Sort by average salary. Use aliases for the columns retrieved by the query as shown in the sample output.

Practice Solutions 6-1: Retrieving Data by Using Subqueries (continued)

- 7. Find all employees who are not supervisors.
 - a. First, do this by using the NOT EXISTS operator.

```
SELECT outer.last_name
FROM employees outer
WHERE NOT EXISTS (SELECT 'X'
FROM employees inner
WHERE inner.manager_id =
outer.employee_id);
```

b. Can this be done by using the NOT IN operator? How, or why not?

```
SELECT outer.last_name
FROM employees outer
WHERE outer.employee_id
NOT IN (SELECT inner.manager_id
FROM employees inner);
```

This alternative solution is not a good one. The subquery picks up a NULL value, so the entire query returns no rows. The reason is that all conditions that compare a NULL value result in NULL. Whenever NULL values are likely to be part of the value set, *do not* use NOT IN as a substitute for NOT EXISTS.

8. Write a query to display the last names of the employees who earn less than the average salary in their departments.

```
SELECT last_name
FROM employees outer
WHERE outer.salary < (SELECT AVG(inner.salary)
FROM employees inner
WHERE inner.department_id
= outer.department_id);
```

Practice Solutions 6-1: Retrieving Data by Using Subqueries (continued)

9. Write a query to display the last names of employees who have one or more coworkers in their departments with later hire dates but higher salaries.

```
SELECT last_name
FROM employees outer
WHERE EXISTS (SELECT 'X'
FROM employees inner
WHERE inner.department_id =
outer.department_id
AND inner.hire_date > outer.hire_date
AND inner.salary > outer.salary);
```

10. Write a query to display the employee ID, last names, and department names of all employees.

Note: Use a scalar subquery to retrieve the department name in the SELECT statement.

```
SELECT employee_id, last_name,

(SELECT department_name

FROM departments d

WHERE e.department_id =

d.department_id ) department

FROM employees e

ORDER BY department;
```

11. Write a query to display the department names of those departments whose total salary cost is above one-eighth (1/8) of the total salary cost of the whole company. Use the WITH clause to write this query. Name the query SUMMARY.

Practices and Solutions for Lesson 7

Practice 7-1: Regular Expression Support

In this practice, you use regular expressions functions to search for, replace, and manipulate data. You also create a new CONTACTS table and add a CHECK constraint to the p_number column to ensure that phone numbers are entered into the database in a specific standard format.

1. Write a query to search the EMPLOYEES table for all the employees whose first names start with "Ki" or "Ko."

2. Create a query that removes the spaces in the STREET_ADDRESS column of the LOCATIONS table in the display. Use "Street Address" as the column heading.

3. Create a query that displays "St" replaced by "Street" in the STREET_ADDRESS column of the LOCATIONS table. Be careful that you do not affect any rows that already have "Street" in them. Display only those rows that are affected.

- 4. Create a contacts table and add a check constraint to the p_number column to enforce the following format mask to ensure that phone numbers are entered into the database in the following standard format: (XXX) XXX-XXXX. The table should have the following columns:
 - l_name varchar2(30)
 - p number varchar2 (30)

Practice 7-1: Regular Expression Support (continued)

5. Run the SQL script lab_07_05.sql to insert the following seven phone numbers into the contacts table. Which numbers are added?

1_name Column Value	p_number Column Value
NULL	`(650) 555-5555'
NULL	`(215) 555-3427'
NULL \ \ 650 555-5555'	
NULL	`650 555 5555 <i>'</i>
NULL	`650-555-5555'
NULL	`(650)555-5555 <i>'</i>
NULL	` (650) 555-5555'

6. Write a query to find the number of occurrences of the DNA pattern ctc in the string gtctcgtctgtctgtctgtctgtctgt. Ignore case-sensitivity.

Practice Solutions 7-1: Regular Expression Support

1. Write a query to search the EMPLOYEES table for all employees whose first names start with "Ki" or "Ko."

```
SELECT first_name, last_name
FROM employees
WHERE REGEXP_LIKE (last_name, '^K(i|o).');
```

2. Create a query that removes the spaces in the STREET_ADDRESS column of the LOCATIONS table in the display. Use "Street Address" as the column heading.

```
SELECT regexp_replace (street_address, ' ', '') AS "Street
Address"
FROM locations;
```

3. Create a query that displays "St" replaced by "Street" in the STREET_ADDRESS column of the LOCATIONS table. Be careful that you do not affect any rows that already have "Street" in them. Display only those rows, which are affected.

```
SELECT regexp_replace (street_address, 'St$',
'Street')
FROM locations
WHERE regexp_like (street_address, 'St');
```

- 4. Create a contacts table and add a check constraint to the p_number column to enforce the following format mask to ensure that phone numbers are entered into the database in the following standard format: (XXX) XXX-XXXX. The table should have the following columns:
 - l_name varchar2(30)
 - p number varchar2 (30)

```
CREATE TABLE contacts
(
    l_name     VARCHAR2(30),
    p_number     VARCHAR2(30)
          CONSTRAINT     p_number_format
          CHECK ( REGEXP_LIKE ( p_number, '^\(\d{3}\) \d{3}-\\d{4}$;' ) )
);
```

Practice Solutions 7-1: Regular Expression Support (continued)

- 5. Run the lab_07_05.sql SQL script to insert the following seven phone numbers into the contacts table. Which numbers are added?
 Only the first two INSERT statements use a format that conforms to the c_contacts_pnf constraint; the remaining statements generate CHECK constraint errors.
- 6. Write a query to find the number of occurrences of the DNA pattern ctc in the string gtctcgtctgtctgtctgtctgtctgt. Use the alias Count_DNA. Ignore case-sensitivity.

```
SELECT REGEXP_COUNT('gtctcgtctcgttctgtctgtctgtctgt,'ctc')
AS Count_DNA
FROM dual;
```

Practice Solutions 7-1: Regular Expression Support (continued)

Appendix AP Additional Practices and Solutions

Table of Contents

Additional Practices	
Practice 1-1	4
Practice Solutions 1-1	12
Case Study	
Practice 2-1	
Practice Solutions 2-1	27

Additional Practices

Practice 1-1

These exercises can be used for extra practice after you have discussed the following topics: basic SQL SELECT statement, basic SQL Developer commands, and SQL functions.

1) The HR department needs to find data for all the clerks who were hired after the year 1997.

2) The HR department needs a report of employees who earn commission. Show the last name, job, salary, and commission of those employees. Sort the data by salary in descending order.

3) For budgeting purposes, the HR department needs a report on projected raises. The report should display those employees who have no commission, but who have a 10% raise in salary (round off the salaries).

4) Create a report of employees and their length of employment. Show the last names of all the employees together with the number of years and the number of completed months that they have been employed. Order the report by the length of their employment. The employee who has been employed the longest should appear at the top of the list.

	LAST_NAME	YEARS	MONTHS
1	King	22	0
2	Whalen	21	9
3	Kochhar	19	9
4	Hunold	19	6
5	Ernst	18	1
6	De Haan	16	6
7	Higgins	15	1
8	Gietz	15	1
9	Rajs	13	8
10	Hartstein	13	4
11	Abel	13	2
12	Davies	12	5
13	Fay	11	10
14	Matos	11	4
15	Taylor	11	3
16	Vargas	11	0
17	Lorentz	10	5
18	Grant	10	1
19	Mourgos	9	7
20	Zlotkey	9	5

5) Show those employees who have a last name starting with the letters "J," "K," "L," or "M."

6) Create a report that displays all employees, and indicate with the words *Yes* or *No* whether they receive a commission. Use the DECODE expression in your query.

	LAST_NAME	2 SALARY	② COMMISSION
1	King	24000	No
2	Kochhar	17000	No
3	De Haan	17000	No
4	Hunold	9000	No
5	Ernst	6000	No
6	Lorentz	4200	No
7	Mourgos	5800	No
8	Rajs	3500	No
9	Davies	3100	No
10	Matos	2600	No
11	Vargas	2500	No
12	Zlotkey	10500	Yes
13	Abel	11000	Yes
14	Taylor	8600	Yes
15	Grant	7000	Yes
16	Whalen	4400	No
17	Hartstein	13000	No
18	Fay	6000	No
19	Higgins	12000	No
20	Gietz	8300	No

These exercises can be used for extra practice after you have discussed the following topics: basic SQL SELECT statement, basic SQL Developer commands, SQL functions, joins, and group functions.

7) Create a report that displays the department name, location ID, last name, job title, and salary of those employees who work in a specific location. Prompt the user for the location. For example, if the user enters 1800, these are the results:

8) Find the number of employees who have a last name that ends with the letter "n." Create two possible solutions.

9) Create a report that shows the name, location, and number of employees for each department. Make sure that the report also includes departments without employees.

	DEPARTMENT_ID	DEPARTMENT_NAME	2 LOCATION_ID 2	COUNT(E.EMPLOYEE_ID)
1	80	Sales	2500	3
2	110	Accounting	1700	2
3	10	Administration	1700	1
4	60	IT	1400	3
5	20	Marketing	1800	2
6	90	Executive	1700	3
7	50	Shipping	1500	5
8	190	Contracting	1700	0

10) The HR department needs to find the job titles in departments 10 and 20. Create a report to display the job IDs for those departments.

11) Create a report that displays the jobs that are found in the Administration and Executive departments. Also display the number of employees for these jobs. Show the job with the highest number of employees first.

These exercises can be used for extra practice after you have discussed the following topics: basic SQL SELECT statements, basic SQL Developer commands, SQL functions, joins, group functions, and subqueries.

12) Show all the employees who were hired in the first half of the month (before the 16th of the month).

13) Create a report that displays the following for all employees: last name, salary, and salary expressed in terms of thousands of dollars.

	LAST_NAME	2 SALARY 2	THOUSANDS
1	King	24000	24
2	Kochhar	17000	17
3	De Haan	17000	17
4	Hunold	9000	9
5	Ernst	6000	6
6	Lorentz	4200	4
7	Mourgos	5800	5
8	Rajs	3500	3
9	Davies	3100	3
10	Matos	2600	2
11	Vargas	2500	2
12	Zlotkey	10500	10
13	Abel	11000	11
14	Taylor	8600	8
15	Grant	7000	7
16	Whalen	4400	4
17	Hartstein	13000	13
18	Fay	6000	6
19	Higgins	12000	12
20	Gietz	8300	8

14) Show all the employees who have managers with a salary higher than \$15,000. Show the following data: employee name, manager name, manager salary, and salary grade of the manager.

	LAST_NAME	MANAGER	2 SALARY 2	GRADE_LEVEL
1	De Haan	King	24000 E	
2	Hartstein	King	24000 E	
3	Higgins	Kochhar	17000 E	
4	Hunold	De Haan	17000 E	
5	Kochhar	King	24000 E	
6	Mourgos	King	24000 E	
7	Whalen	Kochhar	17000 E	
8	Zlotkey	King	24000 E	

15) Show the department number, name, number of employees, and average salary of all the departments, together with the names, salaries, and jobs of the employees working in each department.

16) Create a report to display the department number and lowest salary of the department with the highest average salary.

17) Create a report that displays departments where no sales representatives work. Include the department number, department name, manager ID, and the location in the output.

- 18) Create the following statistical reports for the HR department: Include the department number, department name, and the number of employees working in each department that:
 - a) Employs fewer than three employees:

	A	DEPARTMENT_ID	DEPARTMENT_NAME	A	COUNT(*)
1		10	Administration		1
2		110	Accounting		2
3		20	Marketing		2

b) Has the highest number of employees:

c) Has the lowest number of employees:

19) Create a report that displays the employee number, last name, salary, department number, and the average salary in their department for all employees.

20) Show all the employees who were hired on the day of the week on which the highest number of employees were hired.

21) Create an anniversary overview based on the hire date of the employees. Sort the anniversaries in ascending order.

Practice Solutions 1-1

These exercises can be used for extra practice after you have discussed the following topics: basic SQL SELECT statement, basic SQL Developer commands, and SQL functions.

1) The HR department needs to find data for all of the clerks who were hired after the year 1997.

```
SELECT *
FROM employees
WHERE job_id = 'ST_CLERK'
AND hire_date > '31-DEC-1997';
```

2) The HR department needs a report of employees who earn commission. Show the last name, job, salary, and commission of those employees. Sort the data by salary in descending order.

```
SELECT last_name, job_id, salary, commission_pct
FROM employees
WHERE commission_pct IS NOT NULL
ORDER BY salary DESC;
```

3) For budgeting purposes, the HR department needs a report on projected raises. The report should display those employees who do not get a commission but who have a 10% raise in salary (round off the salaries).

4) Create a report of employees and their duration of employment. Show the last names of all employees together with the number of years and the number of completed months that they have been employed. Order the report by the duration of their employment. The employee who has been employed the longest should appear at the top of the list.

5) Show those employees who have a last name starting with the letters "J," "K," "L," or "M."

```
SELECT last_name
FROM employees
WHERE SUBSTR(last_name, 1,1) IN ('J', 'K', 'L', 'M');
```

6) Create a report that displays all employees, and indicate with the words *Yes* or *No* whether they receive a commission. Use the DECODE expression in your query.

```
SELECT last_name, salary,
          decode(commission_pct, NULL, 'No', 'Yes') commission
FROM employees;
```

These exercises can be used for extra practice after you have discussed the following topics: basic SQL SELECT statement, basic SQL Developer commands, SQL functions, joins, and group functions.

- 7) Create a report that displays the department name, location ID, name, job title, and salary of those employees who work in a specific location. Prompt the user for the location.
 - a) Enter 1800 for location_id when prompted.

```
SELECT d.department_name, d.location_id, e.last_name, e.job_id, e.salary
FROM employees e, departments d
WHERE e.department_id = d.department_id
AND d.location_id = &location_id;
```

8) Find the number of employees who have a last name that ends with the letter "n." Create two possible solutions.

```
SELECT COUNT(*)
FROM employees
WHERE last_name LIKE '%n';
--or
SELECT COUNT(*)
FROM employees
WHERE SUBSTR(last_name, -1) = 'n';
```

9) Create a report that shows the name, location, and number of employees for each department. Make sure that the report also includes departments without employees.

10) The HR department needs to find the job titles in departments 10 and 20. Create a report to display the job IDs for those departments.

```
SELECT DISTINCT job_id
FROM employees
WHERE department_id IN (10, 20);
```

11) Create a report that displays the jobs that are found in the Administration and Executive departments. Also display the number of employees for these jobs. Show the job with the highest number of employees first.

These exercises can be used for extra practice after you have discussed the following topics: basic SQL SELECT statements, basic SQL Developer commands, SQL functions, joins, group functions, and subqueries.

12) Show all employees who were hired in the first half of the month (before the 16th of the month).

```
SELECT last_name, hire_date
FROM employees
WHERE TO_CHAR(hire_date, 'DD') < 16;</pre>
```

13) Create a report that displays the following for all employees: last name, salary, and salary expressed in terms of thousands of dollars.

```
SELECT last_name, salary, TRUNC(salary, -3)/1000 Thousands FROM employees;
```

14) Show all employees who have managers with a salary higher than \$15,000. Show the following data: employee name, manager name, manager salary, and salary grade of the manager.

```
SELECT e.last_name, m.last_name manager, m.salary,
j.grade_level
FROM employees e JOIN employees m
ON e.manager_id = m.employee_id
JOIN job_grades j
ON m.salary BETWEEN j.lowest_sal AND j.highest_sal
AND m.salary > 15000;
```

15) Show the department number, name, number of employees, and average salary of all departments, together with the names, salaries, and jobs of the employees working in each department.

```
SELECT
        d.department id, d.department name,
        count(e1.employee id) employees,
       NVL(TO CHAR(AVG(e1.salary), '99999.99'), 'No average'
) avg sal,
        e2.last name, e2.salary, e2.job id
FROM
        departments d RIGHT OUTER JOIN employees e1
ON
        d.department id = e1.department id
RIGHT OUTER JOIN employees e2
     d.department id = e2.department id
GROUP BY d.department id, d.department name, e2.last name,
e2.salary,
         e2.job id
ORDER BY d.department id, employees;
```

16) Create a report to display the department number and lowest salary of the department with the highest average salary.

17) Create a report that displays the departments where no sales representatives work. Include the department number, department name, and location in the output.

- 18) Create the following statistical reports for the HR department: Include the department number, department name, and the number of employees working in each department that:
 - a) Employs fewer than three employees:

```
SELECT d.department_id, d.department_name, COUNT(*)
FROM departments d JOIN employees e
ON d.department_id = e.department_id
GROUP BY d.department_id, d.department_name
HAVING COUNT(*) < 3;</pre>
```

b) Has the highest number of employees:

c) Has the lowest number of employees:

19) Create a report that displays the employee number, last name, salary, department number, and the average salary in their department for all employees.

```
SELECT e.employee_id, e.last_name, e.department_id, e.salary,
AVG(s.salary)
FROM employees e JOIN employees s
ON e.department_id = s.department_id
GROUP BY e.employee_id, e.last_name, e.department_id,
e.salary;
```

20) Show all employees who were hired on the day of the week on which the highest number of employees were hired.

21) Create an anniversary overview based on the hire date of the employees. Sort the anniversaries in ascending order.

```
SELECT last_name, TO_CHAR(hire_date, 'Month DD') BIRTHDAY
FROM employees
ORDER BY TO_CHAR(hire_date, 'DDD');
```

Case Study

In this case study, you build a set of database tables for a video application. After you create the tables, you insert, update, and delete records in a video store database and generate a report. The database contains only the essential tables.

The following is a diagram of the entities and attributes for the video application:

Note: If you want to build the tables, you can execute the commands in the buildtab.sql script in SQL Developer. If you want to drop the tables, you can execute the commands in the dropvid.sql script in SQL Developer. Then you can execute the commands in the buildvid.sql script in SQL Developer to create and populate the tables.

All the three SQL scripts are present in the /home/oracle/labs/sql1/labs folder.

• If you use the buildtab.sql script to build the tables, start with step 4.

- If you use the dropvid.sql script to remove the video tables, start with step 1.
- If you use the buildvid.sql script to build and populate the tables, start with step 6(b).

Practice 2-1

1) Create the tables based on the following table instance charts. Choose the appropriate data types and be sure to add integrity constraints.

a) Table name: MEMBER

Column_ Name	MEMBER_ ID	LAST_ NAME	FIRST_NAME	ADDRESS	CITY	PHONE	JOIN DATE
Key Type	PK						
Null/ Unique	NN,U	NN					NN
Default Value							System Date
Data Type	NUMBER	VARCHAR2	VARCHAR2	VARCHAR2	VARCHAR2	VARCHAR2	DATE
Length	10	25	25	100	30	15	

b) Table name: TITLE

Column_ Name	TITLE_ID	TITLE	DESCRIPTION	RATING	CATEGORY	RELEASE_ DATE
Key Type	PK					
Null/ Unique	NN,U	NN	NN			
Check				G, PG, R, NC17, NR	DRAMA, COMEDY, ACTION, CHILD, SCIFI, DOCUMEN TARY	
Data Type	NUMBER	VARCHAR2	VARCHAR2	VARCHAR2	VARCHAR2	DATE
Length	10	60	400	4	20	

c) Table name: TITLE_COPY

Column Name	COPY_ID	TITLE_ID	STATUS
Key Type	PK	PK,FK	
Null/ Unique	NN,U	NN,U	NN
Check			AVAILABLE, DESTROYED, RENTED, RESERVED
FK Ref Table		TITLE	
FK Ref Col		TITLE_ID	
Data Type	NUMBER	NUMBER	VARCHAR2
Length	10	10	15

d) Table name: RENTAL

Column Name	BOOK_ DATE	MEMBER_ ID	COPY_ ID	ACT_RET_ DATE	EXP_RET_ DATE	TITLE_ ID
Key Type	PK	PK,FK1	PK,FK2			PK,FK2
Default Value	System Date				System Date + 2 days	
FK Ref Table		MEMBER	TITLE_ COPY			TITLE_ COPY
FK Ref Col		MEMBER_I D	COPY_ ID			TITLE_ID
Data Type	DATE	NUMBER	NUMBER	DATE	DATE	NUMBER
Length		10	10			10

e) Table name: RESERVATION

Column	RES_	MEMBER_	TITLE_
Name	DATE	ID	ID
Key	PK	PK,FK1	PK,FK2
Type			
Null/	NN,U	NN,U	NN
Unique			
FK Ref		MEMBER	TITLE
Table			
FK Ref		MEMBER_ID	TITLE_ID
Column			
Data Type	DATE	NUMBER	NUMBER
Length		10	10

2) Verify that the tables were created properly by checking in the Connections Navigator in SQL Developer.

- 3) Create sequences to uniquely identify each row in the MEMBER table and the TITLE table.
 - a) Member number for the MEMBER table: Start with 101; do not allow caching of the values. Name the sequence MEMBER_ID_SEQ.
 - b) Title number for the TITLE table: Start with 92; do not allow caching of the values. Name the sequence TITLE ID SEQ.
 - c) Verify the existence of the sequences in the Connections Navigator in SQL Developer.

- 4) Add data to the tables. Create a script for each set of data to be added.
 - a) Add movie titles to the TITLE table. Write a script to enter the movie information. Save the statements in a script named lab_apcs_4a.sql. Use the sequences to uniquely identify each title. Enter the release dates in the DD-MON-YYYY format. Remember that single quotation marks in a character field must be specially handled. Verify your additions.

Title	Description	Rating	Category	Release_date
Willie and Christmas Too	All of Willie's friends make a Christmas list for Santa, but Willie has yet to add his own wish list.	G	CHILD	05-OCT-1995
Alien Again	Yet another installation of science fiction history. Can the heroine save the planet from the alien life form?	R	SCIFI	19-MAY-1995
The Glob	A meteor crashes near a small American town and unleashes carnivorous goo in this classic.	NR	SCIFI	12-AUG-1995
My Day Off	With a little luck and a lot of ingenuity, a teenager skips school for a day in New York.	PG	COMEDY	12-JUL-1995
Miracles on Ice	A six-year-old has doubts about Santa Claus, but she discovers that miracles really do exist.	PG	DRAMA	12-SEP-1995
Soda Gang	After discovering a cache of drugs, a young couple find themselves pitted against a vicious gang.	NR	ACTION	01-JUN-1995

b) Add data to the MEMBER table. Save the insert statements in a script named lab_apcs_4b.sql. Execute commands in the script. Be sure to use the sequence to add the member numbers.

First_ Name	Last_Name	Address	City	Phone	Join_Date
Carmen	Velasquez	283 King Street	Seattle	206-899- 6666	08-MAR- 1990
LaDoris	Ngao	5 Modrany	Bratislava	586-355- 8882	08-MAR- 1990
Midori	Nagayama	68 Via Centrale	Sao Paolo	254-852- 5764	17-JUN- 1991
Mark	Quick-to-See	6921 King Way	Lagos	63-559-7777	07-APR-1990
Audry	Ropeburn	86 Chu Street	Hong Kong	41-559-87	18-JAN- 1991
Molly	Urguhart	3035 Laurier	Quebec	418-542- 9988	18-JAN- 1991

c) Add the following movie copies in the TITLE_COPY table:

Note: Have the TITLE_ID numbers available for this exercise.

Title	Copy_Id	Status	Title	Copy_Id
Willie and Christmas Too	1	AVAILABLE	Willie and Christmas Too	1
Alien Again	1	AVAILABLE	Alien Again	1
	2	RENTED		2
The Glob	1	AVAILABLE	The Glob	1
My Day Off	1	AVAILABLE	My Day Off	1
	2	AVAILABLE		2
	3	RENTED		3
Miracles on Ice	1	AVAILABLE	Miracles on Ice	1
Soda Gang	1	AVAILABLE	Soda Gang	1

d) Add the following rentals to the RENTAL table:

Note: The title number may be different depending on the sequence number.

Title_ Id	Copy_	Member_Id		
	Id		Book_date	Exp_Ret_Date
92	1	101	3 days ago	1 day ago
93	2	101	1 day ago	1 day from now
95	3	102	2 days ago	Today
97	1	106	4 days ago	2 days ago

5) Create a view named <code>TITLE_AVAIL</code> to show the movie titles, the availability of each copy, and its expected return date if rented. Query all rows from the view. Order the results by title.

	TITLE	2 COPY_ID	STATUS	EXP_RET_DATE
1	Alien Again	1	AVAILABLE	(null)
2	Alien Again	2	RENTED	15-JUL-09
3	Miracles on Ice	1	AVAILABLE	(null)
4	My Day Off	1	AVAILABLE	(null)
5	My Day Off	2	AVAILABLE	(null)
6	My Day Off	3	RENTED	16-JUL-09
7	Soda Gang	1	AVAILABLE	14-JUL-09
8	The Glob	1	AVAILABLE	(null)
9	Willie and Christmas Too	1	AVAILABLE	15-JUL-09

- 6) Make changes to the data in the tables.
 - a) Add a new title. The movie is "Interstellar Wars," which is rated PG and classified as a science fiction movie. The release date is 07-JUL-77. The description is "Futuristic interstellar action movie. Can the rebels save the humans from the evil empire?" Be sure to add a title copy record for two copies.
 - b) Enter two reservations. One reservation is for Carmen Velasquez, who wants to rent "Interstellar Wars." The other is for Mark Quick-to-See, who wants to rent "Soda Gang."

- 7) Make a modification to one of the tables.
 - a) Run the lab_apcs_7a.sql script located in the /home/oracle/labs/sqll/labs folder, to add a PRICE column to the TITLE table to record the purchase price of the video. Verify your modifications.

DESCRIBE title Name	Null	Туре
TITLE_ID TITLE DESCRIPTION RATING CATEGORY RELEASE_DATE PRICE	NOT NULL	NUMBER(10) VARCHAR2(60) VARCHAR2(400) VARCHAR2(4) VARCHAR2(20) DATE NUMBER(8,2)

Title	Price
Willie and Christmas Too	25
Alien Again	35
The Glob	35
My Day Off	35
Miracles on Ice	30
Soda Gang	35
Interstellar Wars	29

b) Create a script named lab_apcs_7b.sql that contains update statements that update each video with a price according to the preceding list. Run the commands in the script.

Note: Have the TITLE ID numbers available for this exercise.

8) Create a report that contains each customer's history of renting videos. Be sure to include the customer name, movie rented, dates of the rental, and duration of rentals. Total the number of rentals for all customers for the reporting period. Save the commands that generate the report in a script file named lab apcs 8.sql.

Practice Solutions 2-1

- 1) Create the tables based on the following table instance charts. Choose the appropriate data types and be sure to add integrity constraints.
 - a) Table name: MEMBER

```
CREATE TABLE member

(member_id NUMBER(10)

CONSTRAINT member_member_id_pk PRIMARY KEY,

last_name VARCHAR2(25)

CONSTRAINT member_last_name_nn NOT NULL,

first_name VARCHAR2(25),

address VARCHAR2(100),

city VARCHAR2(30),

phone VARCHAR2(15),

join_date DATE DEFAULT SYSDATE

CONSTRAINT member_join_date_nn NOT NULL);
```

b) Table name: TITLE

```
CREATE TABLE title
      (title id
                   NUMBER(10)
        CONSTRAINT title title id pk PRIMARY KEY,
      title VARCHAR2 (60)
        CONSTRAINT title title nn NOT NULL,
      description VARCHAR2 (400)
        CONSTRAINT title description nn NOT NULL,
      rating VARCHAR2(4)
        CONSTRAINT title rating ck CHECK
        (rating IN ('G', 'PG', 'R', 'NC17', 'NR')),
                  VARCHAR2 (20)
      category
        CONSTRAINT title category ck CHECK
        (category IN ('DRAMA', 'COMEDY', 'ACTION',
        'CHILD', 'SCIFI', 'DOCUMENTARY')),
      release date DATE);
```

c) Table name: TITLE_COPY

d) Table name: RENTAL

e) Table name: RESERVATION

```
CREATE TABLE reservation

(res_date DATE,

member_id NUMBER(10)

CONSTRAINT reservation_member_id REFERENCES

member(member_id),

title_id NUMBER(10)

CONSTRAINT reservation_title_id REFERENCES

title(title_id),

CONSTRAINT reservation_resdate_mem_tit_pk PRIMARY KEY

(res_date, member_id, title_id));
```

- 2) Verify that the tables were created properly by checking in the Connections Navigator in SOL Developer.
 - a) In the Connections Navigator, expand Connections > myconnection > Tables.
- 3) Create sequences to uniquely identify each row in the MEMBER table and the TITLE table.
 - a) Member number for the MEMBER table: Start with 101; do not allow caching of the values. Name the sequence MEMBER ID SEQ.

```
CREATE SEQUENCE member_id_seq
START WITH 101
NOCACHE;
```

b) Title number for the TITLE table: Start with 92; do not allow caching of the values. Name the sequence TITLE_ID_SEQ.

```
CREATE SEQUENCE title_id_seq
START WITH 92
NOCACHE;
```

- c) Verify the existence of the sequences in the Connections Navigator in SQL Developer.
 - i) In the Connections Navigator, assuming that the myconnection node is expanded, expand Sequences.
- 4) Add data to the tables. Create a script for each set of data to be added.
 - a) Add movie titles to the TITLE table. Write a script to enter the movie information. Save the statements in a script named lab_apcs_4a.sql. Use the sequences to uniquely identify each title. Enter the release dates in the DD-MON-YYYY format. Remember that single quotation marks in a character field must be specially handled. Verify your additions.

```
INSERT INTO title (title id, title, description, rating,
                  category, release date)
        (title id seq.NEXTVAL, 'Willie and Christmas Too',
VALUES
        'All of Willie''s friends make a Christmas list for
         Santa, but Willie has yet to add his own wish list.',
         'G', 'CHILD', TO DATE('05-OCT-1995','DD-MON-YYYY'))
INSERT INTO title(title id , title, description, rating,
                  category, release date)
VALUES
         (title id seq.NEXTVAL, 'Alien Again', 'Yet another
          installment of science fiction history. Can the
         heroine save the planet from the alien life form?',
          'R', 'SCIFI', TO DATE( '19-MAY-1995', 'DD-MON-YYYY'))
INSERT INTO title(title id, title, description, rating,
                  category, release date)
VALUES
         (title id seq.NEXTVAL, 'The Glob', 'A meteor crashes
         near a small American town and unleashes carnivorous
         goo in this classic.', 'NR', 'SCIFI',
          TO DATE( '12-AUG-1995', 'DD-MON-YYYY'))
INSERT INTO title (title id, title, description, rating,
                  category, release date)
VALUES
          (title id seq.NEXTVAL, 'My Day Off', 'With a little
           luck and a lot ingenuity, a teenager skips school
for
           a day in New York.', 'PG', 'COMEDY',
           TO DATE( '12-JUL-1995', 'DD-MON-YYYY'))
INSERT INTO title (title id, title, description, rating,
                  category, release date)
          (title id seq.NEXTVAL, 'Miracles on Ice', 'A six-
VALUES
                   doubts about Santa Claus, but she discovers
year-old has
that miracles really do exist.', 'PG', 'DRAMA',
           TO DATE('12-SEP-1995','DD-MON-YYYY'))
```

b) Add data to the MEMBER table. Place the insert statements in a script named lab_apcs_4b.sql. Execute the commands in the script. Be sure to use the sequence to add the member numbers.

```
SET VERIFY OFF
INSERT INTO member(member_id, first_name, last name,
            address, city, phone, join date)
VALUES (member id seq.NEXTVAL, 'Carmen', 'Velasquez',
        '283 King Street', 'Seattle', '206-899-6666',
TO DATE('08-MAR-1990',
        'DD-MM-YYYY'))
INSERT INTO member(member_id, first_name, last name,
            address, city, phone, join date)
VALUES (member id seg.NEXTVAL, 'LaDoris', 'Ngao',
        '5 Modrany', 'Bratislava', '586-355-8882',
TO DATE ('08-MAR-1990',
       'DD-MM-YYYY'))
INSERT INTO member (member id, first name, last name,
            address, city, phone, join date)
VALUES (member id seq.NEXTVAL, 'Midori', 'Nagayama',
        '68 Via Centrale', 'Sao Paolo', '254-852-5764',
TO DATE ('17-JUN-1991',
       'DD-MM-YYYY'))
INSERT INTO member (member id, first name, last name,
            address, city, phone, join date)
VALUES (member id seq.NEXTVAL, 'Mark', 'Quick-to-See',
        '6921 King Way', 'Lagos', '63-559-7777', TO DATE('07-
APR-1990',
       'DD-MM-YYYY'))
INSERT INTO member (member id, first name, last name,
```

c) Add the following movie copies in the TITLE_COPY table:

Note: Have the TITLE ID numbers available for this exercise.

```
INSERT INTO title copy(copy id, title id, status)
VALUES (1, 92, 'AVAILABLE')
INSERT INTO title copy(copy id, title id, status)
VALUES (1, 93, 'AVAILABLE')
INSERT INTO title copy(copy id, title id, status)
VALUES (2, 93, 'RENTED')
INSERT INTO title copy(copy id, title id, status)
VALUES (1, 94, 'AVAILABLE')
INSERT INTO title_copy(copy_id, title_id, status)
VALUES (1, 95, 'AVAILABLE')
INSERT INTO title copy(copy id, title id,status)
VALUES (2, 95, 'AVAILABLE')
INSERT INTO title copy(copy id, title id,status)
VALUES (3, 95, 'RENTED')
INSERT INTO title copy(copy id, title id,status)
VALUES (1, 96, 'AVAILABLE')
INSERT INTO title copy(copy id, title id,status)
VALUES (1, 97, 'AVAILABLE')
```

d) Add the following rentals to the RENTAL table:

Note: The title number may be different depending on the sequence number.

5) Create a view named <code>TITLE_AVAIL</code> to show the movie titles, the availability of each copy, and its expected return date if rented. Query all rows from the view. Order the results by title.

```
CREATE VIEW title_avail AS

SELECT t.title, c.copy_id, c.status, r.exp_ret_date

FROM title t JOIN title_copy c

ON t.title_id = c.title_id

FULL OUTER JOIN rental r

ON c.copy_id = r.copy_id

AND c.title_id = r.title_id;

SELECT *

FROM title_avail

ORDER BY title, copy_id;
```

- 6) Make changes to data in the tables.
 - a) Add a new title. The movie is "Interstellar Wars," which is rated PG and classified as a science fiction movie. The release date is 07-JUL-77. The description is "Futuristic interstellar action movie. Can the rebels save the humans from the evil empire?" Be sure to add a title copy record for two copies.

b) Enter two reservations. One reservation is for Carmen Velasquez, who wants to rent "Interstellar Wars." The other is for Mark Quick-to-See, who wants to rent "Soda Gang."

```
INSERT INTO reservation (res_date, member_id, title_id)
VALUES (SYSDATE, 101, 98)
/
INSERT INTO reservation (res_date, member_id, title_id)
VALUES (SYSDATE, 104, 97)
/
```

- 7) Make a modification to one of the tables.
 - a) Run the lab_apcs_7a.sql script located in the /home/oracle/labs/sql1/labs folder, to add a PRICE column to the TITLE table to record the purchase price of the video. Verify your modifications.

```
ALTER TABLE title
ADD (price NUMBER(8,2));
DESCRIBE title
```

b) Create a script named lab_apcs_7b.sql that contains update statements that update each video with a price according to the list provided. Run the commands in the script.

Note: Have the TITLE ID numbers available for this exercise.

```
SET ECHO OFF

SET VERIFY OFF

UPDATE title

SET price = &price

WHERE title_id = &title_id;

SET VERIFY OFF

SET ECHO OFF
```

8) Create a report that contains each customer's history of renting videos. Be sure to include the customer name, movie rented, dates of the rental, and duration of rentals. Total the number of rentals for all customers for the reporting period. Save the commands that generate the report in a script file named lab_apcs_8.sql.