BAYESIAN LEARNING - LECTURE 11

Mattias Villani

Division of Statistics

Department of Computer and Information Science
Linköping University

OVERVIEW

- ► Computing the marginal likelihood
- ► Bayesian variable selection
- Model averaging

MARGINAL LIKELIHOOD IN CONJUGATE MODELS

- \triangleright Computing the marginal likelihood requires integration w.r.t. θ .
- ▶ Short cut for conjugate models by rearragement of Bayes' theorem:

$$p(y) = \frac{p(y|\theta)p(\theta)}{p(\theta|y)}$$

► Bernoulli model example

$$p(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$p(y|\theta) = \theta^{s} (1 - \theta)^{f}$$

$$p(\theta|y) = \frac{1}{B(\alpha + s, \beta + f)} \theta^{\alpha + s - 1} (1 - \theta)^{\beta + f - 1}$$

► Marginal likelihood

$$p(y) = \frac{\theta^s (1-\theta)^f \frac{1}{B(\alpha,\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}}{\frac{1}{B(\alpha+s,\beta+f)} \theta^{\alpha+s-1} (1-\theta)^{\beta+f-1}} = \frac{B(\alpha+s,\beta+f)}{B(\alpha,\beta)}$$

COMPUTING THE MARGINAL LIKELIHOOD

► Usually difficult to evaluate the integral

$$p(\mathbf{y}) = \int p(\mathbf{y}|\theta)p(\theta)d\theta = E_{p(\theta)}[p(\mathbf{y}|\theta)].$$

▶ Draw from the prior $\theta^{(1)}, ..., \theta^{(N)}$ and use the Monte Carlo estimate

$$\hat{\rho}(\mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \rho(\mathbf{y} | \theta^{(i)}).$$

Unstable if the posterior is somewhat different from the prior.

▶ Importance sampling. Let $\theta^{(1)}, ..., \theta^{(N)}$ be iid draws from $g(\theta)$.

$$\int p(\mathbf{y}|\theta)p(\theta)d\theta = \int \frac{p(\mathbf{y}|\theta)p(\theta)}{g(\theta)}g(\theta)d\theta \approx N^{-1}\sum_{i=1}^{N} \frac{p(\mathbf{y}|\theta^{(i)})p(\theta^{(i)})}{g(\theta^{(i)})}$$

▶ Modified Harmonic mean: $g(\theta) = N(\tilde{\theta}, \tilde{\Sigma}) \cdot I_c(\theta)$, where $\tilde{\theta}$ and $\tilde{\Sigma}$ is the posterior mean and covariance matrix estimated from an MCMC chain, and $I_c(\theta) = 1$ if $(\theta - \tilde{\theta})'\tilde{\Sigma}^{-1}(\theta - \tilde{\theta}) \leq c$.

COMPUTING THE MARGINAL LIKELIHOOD, CONT.

- ▶ Rearrangement of Bayes' theorem: $p(\mathbf{y}) = p(\mathbf{y}|\theta)p(\theta)/p(\theta|\mathbf{y})$.
- ▶ We must know the posterior, **including** the normalization constant.
- ▶ But we only need to know $p(\theta|\mathbf{y})$ in a single point θ_0 .
- ▶ Kernel density estimator to approximate $p(\theta_0|\mathbf{y})$. Unstable.
- ► Chib (1995, JASA) provide better solutions for Gibbs sampling.
- ► Chib-Jeliazkov (2001, JASA) generalizes to **MH algorithm** (good for IndepMH, terrible for RWM).
- ► Reversible Jump MCMC (RJMCMC) for model inference.
 - MCMC methods that moves in model space.
 - ▶ Proportion of iterations spent in model k estimates $Pr(M_k|\mathbf{y})$.
 - Usually hard to find efficient proposals. Sloooow convergence.
- Bayesian nonparametrics (e.g. Dirichlet process priors).

APPROXIMATE MARGINAL LIKELIHOODS

► Taylor approximation of the log posterior

$$\ln p(\mathbf{y}|\theta)p(\theta) \approx \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) - \frac{1}{2}J_{\hat{\theta},\mathbf{y}}(\theta - \hat{\theta})^{2},$$
$$p(\mathbf{y}|\theta)p(\theta) \approx p(\mathbf{y}|\hat{\theta})p(\hat{\theta}) \exp \left[-\frac{1}{2}J_{\hat{\theta},\mathbf{y}}(\theta - \hat{\theta})^{2}\right]$$

► The Laplace approximation:

$$\ln \hat{p}(\mathbf{y}) = \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) + \frac{1}{2} \ln \left| J_{\hat{\theta},\mathbf{y}}^{-1} \right| + \frac{p}{2} \ln(2\pi),$$

where p is the number of unrestricted parameters in the model.

- Note that $\hat{\theta}$ and $J_{\hat{\theta},\mathbf{y}}$ can be obtained with numerical optimization with BFGS update of Hessian.
- ▶ The BIC approximation is obtained if $J_{\hat{\theta}, \mathbf{y}}$ behaves like $n \cdot I_p$ in large samples

$$\ln \hat{p}(\mathbf{y}) = \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) - \frac{p}{2} \ln n.$$

BAYESIAN VARIABLE SELECTION

Linear regression:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon.$$

▶ Which variables have **non-zero** coefficient? Example of hypotheses:

$$H_0$$
: $\beta_0 = \beta_1 = ... = \beta_p = 0$

$$H_1$$
 : $\beta_1=0$

$$H_2$$
 : $\beta_1 = \beta_2 = 0$

- ▶ Introduce variable selection indicators $\mathcal{I} = (I_1, ..., I_p)$.
- ▶ Example: $\mathcal{I} = (1, 1, 0)$ means that $\beta_1 \neq 0$ and $\beta_2 \neq 0$, but $\beta_3 = 0$, so x_3 drops out of the model.

BAYESIAN VARIABLE SELECTION, CONT.

▶ Model inference, just crank the Bayesian machine:

$$p(\mathcal{I}|\mathbf{y}, \mathbf{X}) \propto p(\mathbf{y}|\mathbf{X}, \mathcal{I}) \cdot p(\mathcal{I})$$

- ▶ The prior $p(\mathcal{I})$ is typically taken to be $I_1, ..., I_p | \theta \stackrel{iid}{\sim} Bernoulli(\theta)$.
- \triangleright θ is the prior inclusion probability.

BAYESIAN VARIABLE SELECTION, CONT.

▶ Model inference, just crank the Bayesian machine:

$$\rho(\mathcal{I}|\mathbf{y},\mathbf{X}) \propto \rho(\mathbf{y}|\mathbf{X},\mathcal{I}) \cdot \rho(\mathcal{I})$$

- ▶ The prior $p(\mathcal{I})$ is typically taken to be $I_1, ..., I_p | \theta \stackrel{iid}{\sim} Bernoulli(\theta)$.
- \triangleright θ is the prior inclusion probability.
- ▶ Challenge: Computing the marginal likelihood for each model (\mathcal{I})

$$p(\mathbf{y}|\mathbf{X},\mathcal{I}) = \int p(\mathbf{y}|\mathbf{X},\mathcal{I},\beta)p(\beta|\mathbf{X},\mathcal{I})d\beta$$

BAYESIAN VARIABLE SELECTION, CONT.

- ▶ Let $\beta_{\mathcal{I}}$ denote the **non-zero** coefficients under \mathcal{I} .
- Prior:

$$\begin{split} \beta_{\mathcal{I}} | \sigma^2 &\sim \textit{N}\left(0, \sigma^2 \Omega_{\mathcal{I}, 0}^{-1}\right) \\ \sigma^2 &\sim \textit{Inv} - \chi^2\left(\nu_0, \sigma_0^2\right) \end{split}$$

Marginal likelihood

$$\rho(\mathbf{y}|\mathbf{X},\mathcal{I}) \propto \left|\mathbf{X}_{\mathcal{I}}'\mathbf{X}_{\mathcal{I}} + \Omega_{\mathcal{I},0}^{-1}\right|^{-1/2} \left|\Omega_{\mathcal{I},0}\right|^{1/2} \left(\nu_0 \sigma_0^2 + RSS_{\mathcal{I}}\right)^{-(\nu_0 + n - 1)/2}$$

where $X_{\mathcal{I}}$ is the covariate matrix for the subset given by \mathcal{I} .

lacktriangledown $\mathit{RSS}_\mathcal{I}$ is (almost) the residual sum of squares under model implied by \mathcal{I}

$$RSS_{\mathcal{I}} = \mathbf{y}'\mathbf{y} - \mathbf{y}'\mathbf{X}_{\mathcal{I}} \left(\mathbf{X}_{\mathcal{I}}'\mathbf{X}_{\mathcal{I}} + \Omega_{\mathcal{I},0}\right)^{-1} \mathbf{X}_{\mathcal{I}}'\mathbf{y}$$

BAYESIAN VARIABLE SELECTION VIA GIBBS SAMPLING

- \triangleright But there are 2^p model combinations to go through! Ouch!
- ▶ ... but most will have essentially zero posterior probability. Phew!

BAYESIAN VARIABLE SELECTION VIA GIBBS SAMPLING

- \triangleright But there are 2^p model combinations to go through! Ouch!
- ▶ ... but most will have essentially zero posterior probability. Phew!
- ▶ **Simulate** from the joint posterior distribution:

$$p(\beta, \sigma^2, \mathcal{I}|\mathbf{y}, \mathbf{X}) = p(\beta, \sigma^2|\mathcal{I}, \mathbf{y}, \mathbf{X})p(\mathcal{I}|\mathbf{y}, \mathbf{X}).$$

- ▶ Simulate from $p(\mathcal{I}|\mathbf{y})$ using **Gibbs sampling**:
 - ▶ Draw $I_1|\mathcal{I}_{-1}$, y, X
 - ▶ Draw $I_2|\mathcal{I}_{-2},\mathbf{y},\mathbf{X}$
 - **...**
 - ▶ Draw $I_p|\mathcal{I}_{-p}$, **y**, **X**

BAYESIAN VARIABLE SELECTION VIA GIBBS SAMPLING

- ▶ But there are 2^p model combinations to go through! Ouch!
- ▶ ... but most will have essentially zero posterior probability. Phew!
- ▶ **Simulate** from the joint posterior distribution:

$$p(\beta, \sigma^2, \mathcal{I}|\mathbf{y}, \mathbf{X}) = p(\beta, \sigma^2|\mathcal{I}, \mathbf{y}, \mathbf{X})p(\mathcal{I}|\mathbf{y}, \mathbf{X}).$$

- ► Simulate from $p(\mathcal{I}|\mathbf{y})$ using **Gibbs sampling**:
 - ▶ Draw $I_1|\mathcal{I}_{-1}$, **y**, **X**
 - ▶ Draw $I_2|\mathcal{I}_{-2},\mathbf{y},\mathbf{X}$
 - **...**
 - ▶ Draw $I_p | \mathcal{I}_{-p}, \mathbf{y}, \mathbf{X}$
- ▶ Only need to compute $Pr(I_i = 0 | \mathcal{I}_{-i}, \mathbf{y}, \mathbf{X})$ and $Pr(I_i = 1 | \mathcal{I}_{-i}, \mathbf{y}, \mathbf{X})$.
- Automatic model averaging, all in one simulation run.
- ▶ If needed, simulate from $p(\beta, \sigma^2 | \mathcal{I}, \mathbf{y}, \mathbf{X})$ for each draw of \mathcal{I} .

PSEUDO CODE FOR BAYESIAN VARIABLE SELECTION

- 0 Initialize $\mathcal{I}^{(0)} = (I_1^{(0)}, I_2^{(0)}, ..., I_p^{(0)})$
- 1 Simulate σ^2 and β from [Note: ν_n , σ_n^2 , μ_n , Ω_n all depend on $\mathcal{I}^{(0)}$]
 - $ightharpoonup \sigma^2 | \mathcal{I}^{(0)}, \mathbf{y}, \mathbf{X} \sim \mathit{Inv} \chi^2 \left(\nu_n, \sigma_n^2 \right)$
 - $\triangleright \beta | \sigma^2, \mathcal{I}^{(0)}, \mathbf{y}, \mathbf{X} \sim N \left[\mu_n, \sigma^2 \Omega_n^{-1} \right]$
- **2.1** Simulate $I_1|\mathcal{I}_{-1}$, \mathbf{y} , \mathbf{X} by [define $\mathcal{I}_{prop}^{(0)} = (1 I_1^{(0)}, I_2^{(0)}, ..., I_p^{(0)})]$
 - ▶ compute marginal likelihoods: $p(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)})$ and $p(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)}_{prop})$
 - ▶ Simulate $I_1^{(1)} \sim Bernoulli(\kappa)$ where

$$\kappa = \frac{\textit{p}(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)}) \cdot \textit{p}(\mathcal{I}^{(0)})}{\textit{p}(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)}) \cdot \textit{p}(\mathcal{I}^{(0)}) + \textit{p}(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)}_{\textit{prop}}) \cdot \textit{p}(\mathcal{I}^{(0)}_{\textit{prop}})}$$

- **2.2** Simulate $I_2|\mathcal{I}_{-2}$, **y**, **X** as in Step 2.1, but $\mathcal{I}^{(0)}=(I_1^{(1)},I_2^{(0)},...,I_p^{(0)})$
- 2.P Simulate $I_p|\mathcal{I}_{-p}$, y, X as in Step 2.1, but $\mathcal{I}^{(0)}=(I_1^{(1)},I_2^{(1)},...,I_p^{(0)})$
 - 3 Repeat Steps 1-2 many times.

SIMPLE GENERAL BAYESIAN VARIABLE SELECTION

The previous algorithm only works when we can integrate out all the model parameters to obtain

$$p(\mathcal{I}|\mathbf{y}, \mathbf{X}) = \int p(\beta, \sigma^2, \mathcal{I}|\mathbf{y}, \mathbf{X}) d\beta d\sigma$$

▶ MH - propose β and \mathcal{I} jointly from the proposal distribution

$$q(\beta_p|\beta_c,\mathcal{I}_p)q(\mathcal{I}_p|\mathcal{I}_c)$$

- ▶ Main difficulty: how to propose the non-zero elements in β_p ?
- Simple approach:
 - Approximate posterior with all variables in the model: $\beta | \mathbf{y}, \mathbf{X} \stackrel{approx}{\sim} N \left[\hat{\beta}, J_{\mathbf{v}}^{-1}(\hat{\beta}) \right]$
 - ▶ Propose β_p from $N\left[\hat{\beta}, J_{\mathbf{y}}^{-1}(\hat{\beta})\right]$, conditional on the zero restrictions implied by \mathcal{I}_p . Formulas are available.

VARIABLE SELECTION IN MORE COMPLEX MODELS

Posterior summary of the one-component split-t model.^a

Parameters	Mean	Stdev	Post.Incl.
Location μ			
Const	0.084	0.019	-
Scale φ			
Const	0.402	0.035	-
LastDay	-0.190	0.120	0.036
LastWeek	-0.738	0.193	0.985
LastMonth	-0.444	0.086	0.999
CloseAbs95	0.194	0.233	0.035
CloseSqr95	0.107	0.226	0.023
MaxMin95	1.124	0.086	1.000
CloseAbs80	0.097	0.153	0.013
CloseSqr80	0.143	0.143	0.021
MaxMin80	-0.022	0.200	0.017
Degrees of freedom v			
Const	2.482	0.238	_
LastDay	0.504	0.997	0.112
LastWeek	-2.158	0.926	0.638
LastMonth	0.307	0.833	0.089
CloseAbs95	0.718	1.437	0.229
CloseSqr95	1.350	1.280	0.279
MaxMin95	1.130	1.488	0.222
CloseAbs80	0.035	1.205	0.101
CloseSqr80	0.363	1.211	0.112
MaxMin80	-1.672	1.172	0.254
Skewness λ			
Const	-0.104	0.033	_
LastDay	-0.159	0.140	0.027
LastWeek	-0.341	0.170	0.135
LastMonth	-0.076	0.112	0.016
CloseAbs95	-0.021	0.096	0.008
CloseSqr95	-0.003	0.108	0.006
MaxMin95	0.016	0.075	0.008
CloseAbs80	0.060	0.115	0.009
CloseSqr80	0.059	0.111	0.010
MaxMin80	0.093	0.096	0.013

MODEL AVERAGING

- Let γ be a quantity with an interpretation which stays the same across the two models.
- ▶ Example: Prediction $\gamma = (y_{T+1}, ..., y_{T+h})'$.
- lacktriangle The marginal posterior distribution of γ reads

$$p(\gamma|\mathbf{y}) = p(M_1|\mathbf{y})p_1(\gamma|\mathbf{y}) + p(M_2|\mathbf{y})p_2(\gamma|\mathbf{y}),$$

where $p_k(\gamma|\mathbf{y})$ is the marginal posterior of γ conditional on model k.

- ▶ Predictive distribution includes three sources of uncertainty:
 - ▶ Future errors/disturbances (e.g. the ε 's in a regression)
 - ► Parameter uncertainty (the predictive distribution has the parameters integrated out by their posteriors)
 - Model uncertainty (by model averaging)