INGENIERÍA ELECTRÓNICA

Informe Final

""INTERFASE DE CONTROL REMOTO DE UN VEHICULO PEQUEÑO""

Asignatura: INTERACCION HARDWARE-SOFTWARE (ETN-1022)

Estudiante: Univ. Diego Alejandro Cruz Torrez **Docente:** Ing. Pedro Clifford Paravicini Hurtado

Fecha de presentación: 10/06/2023

Objetivo

Diseñar,programar,probar y desplegar una interfase de control remoto de un vehiculo pequeño,en un plazo de 7 semanas

Aplicaciones

El control remoto de un vehiculo pequeño, tiene una variedad de aplicaciones en las que destacan :

- -Transporte de pequeños objetos
- -Monitoreo de espacios cerrados
- -Juguete

Cronograma

		SEMANAS						
META	ACTIVIDAD	1	2	3	4	5	6	7
1 Identificar los componentes	Determinar software							
de hardware y software necesarios	Deteminar hardware							
para la implementacion	Realizar un presupuesto							
de dicho proyecto								
2Diseño de la armadura del							П	\Box
vehiculo	Posicionamiento de los							
	componentes electronicos						Ш	
	Proceso de construccion							
	Proceso de ensamblaje							
3Diseño de la interfase de control	Selección de la base de datos							
	Escritura del codigo de la						П	
	interfase						Ш	Ц
	Formato de la interfase						Ш	
	Carga de software en							
4Pruebas	controlador							_
	Pruebas							_
5Ajustes	Ajustes							
6Finalizacion	Toques finales							

Presupuesto componentes Hardware

Componente	Precio	
esp32		70
estructura		
2WD		70
usb CONECTOR		4
antena		22
driver		22
placa		2,5

perforada	
Total	190,5

ESP 32

Estructura 2WD

Conector USB

Puente H

Antena

Placa perforada

Planteamiento del problema

- -El ESP32 debe recibir información alojada en una base de datos con el fin de controlar bidireccionalmente el funcionamiento de 2 motores
- -La base de datos deberá indicar la dirección del movimiento del vehiculo
- -Una interface deberá controlar estos cambios de acuerdo al usuario
- -La respuesta deberá ser inmediata pues el control es en tiempo real

Construccion Hardware

Construcción del circuito

- -Esp32
- -4 salidas al puente H
- -Interruptor alimentación motor
- -Interruptor alimentación Esp32

Construcción del vehículo

- -2 Ruedas fijas
- -1 rueda omnidireccional
- -2 motores,4 entradas

Ensamblado del vehiculo

Incorporacion del puente H,la antena y la placa perforada con el ESP32

- -Se añadió una antena SMA pará una respuesta rápida ante cambios en la base de datos
- -La fuente de poder es un cargador portátil con la suficiente potencia para alimentar 2 motores -Se añadió un switch de alimentación
- -Se conecto la placa perforada al modulo puente H

- Se inserto una carrocería proveniente de un auto de juguete

Diseño del software

Programa que permite que el ESP32 reciba información proveniente del los cambios en la base de datos en Firebase

```
#include"Arduino.h"
#include<Arduino.h>
#include<WiFi.h>
#include<Firebase_ESP_Client.h>
#include"addons/TokenHelper.h"
#include"addons/RTDBHelper.h"
#define WIFI_SSID "CASARDA"
#define WIFI PASSWORD "909225011"
// Firebase project API Key
#define API KEY "AIzaSyByub4GKNug07U33W a7-0Vv8alB6NV9iU"
#define USER_EMAIL "diego0987123@gmail.com"
#define USER PASSWORD "67181239"
#define DATABASE_URL "https://appif-d66a8-default-
rtdb.firebaseio.com/DACTCTRL"
// Objetos de Firebase
FirebaseData stream;
FirebaseAuth auth;
FirebaseConfig config;
String listenerPath ="DACTCTRL/";
// Motor A
int state1 =0;
int motor1Pin1 =13;
int motor1Pin2 =12;
// Motor B
int motor2Pin1 =14;
int motor2Pin2 =27;
voidAdelante(){
  digitalWrite(motor1Pin1, 1);
  digitalWrite(motor1Pin2, 0);
 digitalWrite(motor2Pin1, 1);
```

```
digitalWrite(motor2Pin2, 0);
voidIzquierda(){
  digitalWrite(motor1Pin1, 0);
  digitalWrite(motor1Pin2, 1);
 digitalWrite(motor2Pin1, 1);
  digitalWrite(motor2Pin2, 0);
voidDerecha(){
  digitalWrite(motor1Pin1, 1);
  digitalWrite(motor1Pin2, 0);
 digitalWrite(motor2Pin1, 0);
  digitalWrite(motor2Pin2, 1);
voidAtras(){
  digitalWrite(motor1Pin1, 0);
  digitalWrite(motor1Pin2, 1);
 digitalWrite(motor2Pin1, 0);
  digitalWrite(motor2Pin2, 1);
voidStop(){
  digitalWrite(motor1Pin1, 0);
  digitalWrite(motor1Pin2, 0);
  digitalWrite(motor2Pin1, 0);
  digitalWrite(motor2Pin2, 0);
voidinitWiFi() {
 WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
 Serial.print("Connecting to WiFi ..");
 while (WiFi.status() != WL_CONNECTED) {
    Serial.print('.');
    delay(1000);
  Serial.println(WiFi.localIP());
  Serial.println();
// Funcion que detecta cambios en la base de datos
voidstreamCallback(FirebaseStreamdata){
  Serial.printf("stream path, %s\nevent path, %s\ndata type, %s\nevent
type, %s\n\n",
                data.streamPath().c_str(),
                data.dataPath().c_str(),
                data.dataType().c_str(),
                data.eventType().c str());
  printResult(data);
  Serial.println();
  // Ruta de cambio
```

```
String streamPath =String(data.dataPath());
String btn =streamPath.substring(1);
int state =data.intData();
state1 =!state1;
Serial.print("Boton: ");
Serial.println(btn);
Serial.print("STATE: ");
Serial.println(state1);
if (state1==1){
  switch(btn.toInt()){
  case11:
  Serial.print("Ad ");
  Adelante();
  break;
  case12:
  Serial.print("Iz ");
  Izquierda();
  break;
  case13:
  Serial.print("sp");
  Stop();
  break;
  case14:
  Serial.print("der ");
  Derecha();
  break;
  case15:
  Serial.print("At");
  Atras();
  break;
  default:
  Stop();
  break;
/* Lectura inicial*/
if (data.dataTypeEnum() == fb_esp_rtdb_data_type_json){
  FirebaseJson json =data.to<FirebaseJson>();
  size_t count =json.iteratorBegin();
  Serial.println("\n----");
  for (size_t i =0; i < count; i++){</pre>
      FirebaseJson::IteratorValue value =json.valueAt(i);
      int btn =value.key.toInt();
      int state =value.value.toInt();
      Serial.print("STATE: ");
```

```
Serial.println(state);
        Serial.print("Boton:");
        Serial.println(btn);
        if (state==1){
          switch(btn){
          case11:
          Adelante();
          break;
          case12:
          Izquierda();
          break;
          case13:
          Derecha();
          break;
          case14:
          Atras();
          break;
          case15:
          Stop();
          break;
          default:
          break;
    json.iteratorEnd();
  }
voidstreamTimeoutCallback(booltimeout){
  if (timeout)
    Serial.println("stream timeout, resuming...\n");
  if (!stream.httpConnected())
    Serial.printf("error code: %d, reason: %s\n\n", stream.httpCode(),
stream.errorReason().c str());
voidsetup() {
  Serial.begin(115200);
  initWiFi();
  pinMode(motor1Pin1, OUTPUT);
  pinMode(motor1Pin2, OUTPUT);
  pinMode(motor2Pin1, OUTPUT);
  pinMode(motor2Pin2, OUTPUT);
  config.api_key= API_KEY;
```

```
// Credenciales
  auth.user.email= USER_EMAIL;
  auth.user.password= USER_PASSWORD;
  //URL
  config.database_url= DATABASE_URL;
  Firebase.reconnectWiFi(true);
  //Conexion */
  config.token_status_callback= tokenStatusCallback; //see
addons/TokenHelper.h
  config.max_token_generation_retry=5;
  // Inicializando Firebase
  Firebase.begin(&config, &auth);
 if (!Firebase.RTDB.beginStream(&stream, listenerPath.c_str()))
    Serial.printf("stream begin error, %s\n\n",
stream.errorReason().c_str());
  // Deteccion de cambios
  Firebase.RTDB.setStreamCallback(&stream, streamCallback,
streamTimeoutCallback);
  delay(500);
voidloop() {
 if (Firebase.isTokenExpired()){
    Firebase.refreshToken(&config);
    Serial.println("Refresh token");
```

Base de datos en Firebase

Deteccion de cambios

Interfase creada utilizando MIT APP INVENTOR

Tras presionar un botón se pone un 1 en su respectiva ruta activando la dirección requerida, pulsar stop detendrá el vehiculo independientemente de los otros estados

Implementacion y pruebas

- -Tras la instalación se procedió a instalar la aplicación que contiene la interface diseñada
- -Se realizaron diferentes pruebas controlando el vehiculo en distintos dispositivos teniendo éxito al control el vehiculo sin inconvenientes

Conclusiones y recomendaciones

- -Se logro implementar la interface de un vehiculo a control remoto exitosamente
- -Se logro controlar el vehiculo a través de diversos dispositivos
- -Se cumplieron los objetivos dados
- -Es posible utilizar el ESP-CAM en lugar del ESP32 con el fin de transmitir imágenes desde el punto de vista del vehiculo, mejorando el control del mismo