重庆大学物理实验报告

大学物理实验中心 实验时间: 工:用学院 实验室

开课学	阮、头短至_	7,7,7,-	电子科设计与		实	验项目类	性型	
课程名称	大学物理 实验	实验项目 名称	制作	验证	演示	综合	设计	其他
指导教师	孝乃梅	成绩	lo					

实验目的: 1. 掌握应变片的工作原理和使用方法

- 2. 掌握非平衡电桥的工作原理, 3解并电桥、差动牛桥和 差动全桥的性能
- 3. 掌握使用应变片设计电子秤的方法

实验原理: 1. 应变片的工作原理

电阻应变片的工作原理基于应变效应,即导体或半导体材料受外力而 产生机械变形时,材料的电阻随之发生变化、一根金属电阻丝在未受力 时R=10年,在外力作用下,L+0L,1-01,1+01,1受=2+2学+3 在弹性范围内,轴向应变和横向应变关系为。辛 =-M华 又等=入巨生, : 管=(+2M+入巨) = 下m 些

根据明有原理 1 2. 非平衡电桥测量电路

U₀= E(<u>P</u>₁+P₂-<u>P</u>₃+P₄) = P₁P₄-P₂P₃ E 与P₁= P₂=P₃=P₄HF平衡 (PHP₄)(P₃+P₄) P₁ E接应变片 - 女电标电路 P₁ P₂连相反的应变片 - 半桁电路. 邻臂相反,对臂相同一全桥差动电路.

亚里片传感器综合实验仪(放大、桥臂、传感器) 实验仪器: 209砝码10个.万朋表、电源、350几电阻

实验步骤:

- ① 庄接电路、 121 凡为方向相反的应变片、123. 124为国定电阻 1. 牛桥电路
- ③ 连接电路、调节电桥平衡补偿电位器、使输出电压为0
- 田保次放置砝码,记录电表读数
- 2.全桥电路
- . O R. Rz. Rz. Rz. Pa均连接应变片, 邻臂应变方向相反, 对臂应变方 向相同
- 3. 用全标电路制作 0~200g 电子杆 在实验 2的电路基础上,放200g 砝码,调节差动放大器增益, 使输出电压为 0.2 V. 再取下所有砝码调整,使放10个为 0.2 V. 不 放射为OV

实验记录:	0	2.0	40	60	80	100	120	140	160	0.2000	0.2262
半桥 U/V	0	0.0226	0.0432	0.0640	0.0861	0.(075	0.1505		- 2420	0.4089	0.4564
半桥 U/V	0	0.0226	0.0903	0.1348	0.1797	0.3352	0.2710	0.3144	0.1000	0 4007	17.1

2	. 电フバー			-	T.	9.0	100	120	140	160	180	200
	砝码19	0	20	40	60	80	100	100		1409	180.5	200.0
		•	24.6	44.3	63.6	83.8	102-8	121.5	141.0	100-7	100	200.0
	m/g	0	07.0	41.7		. 0	28	1.5	1.0	0.9	0.5	6.0
	om/g	0.0	5.6	4.3	3.6	3.8	270	1/	-	4.0	1	

ふ手机 测量值19 220.2 标准值(9 218.45

数据处理:

1.半桥电路

取 (20,0.0226) . (200,0.2262)

灵教度
$$S_{V_1} = \frac{\Delta U}{\Delta m} = \frac{0.2262 - 0.0026}{(200 - 20)\times10^3} = 1.13 \text{ V/kg}.$$

2.全桥电路

取 (20,0.0448), (200,0.4564)

灵敏度
$$Sv_2 = \frac{\Delta U}{com} = \frac{0.4564 - 0.0448}{(200-20) \times 10^{-3}} = 2.28 \text{ V/kg}$$
.

3. 手机质量误差

由国及计算灵敏度可知,全桥电路比牛桥电桥灵敏度高

WIIV

- 讨论:1.多个应变片可以放大变化,便显像更加明显。
 - 2. 先调零差动放大器再调零桥臂
 - 3. 凋零差动放大器时内部短接
 - 4. 测半全桥时增益调到最大,电子秤时调适当5. 增益调大会使数据进于灵敏,不易调零

物理实验 原始实验数据记录 101年11月29日

实验名称 电子平设计与制作

实验仪器:

仪器名称	量程	最小量	估读误差	仪器误差	零位误差
	0~2V	0.000/	0-000/		
建压表	0-2009	209	0		
(VA)		4			

1.7	游步到19	0	20	40	60	80	100	120	140	160	180	200
半桥	U/V	0	0.0226	0.0432	0.0640	0.0861	0.1095	0.1325	0.1354	0.1785	0.2020	0.2262
全桥	UIV	0	0-0448	0.0903	0.1348	0.1797	0.2252	0-2710	0-3166	0.3630	0-4089	0.4564

2.电子科

磁码19	0	20	40	60	80	(00	120	140	160	1.80	200
mig	0-	25.6	44.3	63.6	83.8	102.8	121.5	141.0	160.9	180.5	200.0
omlg	0	5-6	4.3	3.6	3.8	2.8	1-5	1.0	0.9	0.5	0.0

于机测量值19	220.2
标准值19	218.45

指导教师: