P. Maurer

ENS Rennes

Recasages: 153, 154, 157.

Référence : Gourdon, Algèbre

Décomposition de Dunford

Proposition 1. Soit $f \in \mathcal{L}(E)$ et $F \in \mathbb{K}[X]$ un polynôme annulateur de f. Soit $f = \beta M_1^{\alpha_1} \cdots M_s^{\alpha_s}$ la décomposition en facteurs irréductibles de $\mathbb{K}[X]$ du polynôme F.

Pour $i \in [\![1,s]\!]$, on note $N_i = \operatorname{Ker} M_i^{\alpha_i}(f)$. On a alors $E = N_1 \oplus \cdots \oplus N_s$, et pour tout $i \in [\![1,s]\!]$, la projection sur N_i parallèlement à $\bigoplus_{\substack{1 \leq j \leq s \\ j \neq i}} N_j$ est un polynôme en f.

Démonstration.

Etape 1 : déterminons les projecteurs en question.

Comme les polynômes $M_i^{\alpha_i}$ sont irréductibles, ils sont premiers entre eux deux à deux dans $\mathbb{K}[X]$. D'après le lemme des noyaux, on en déduit que $E = N_1 \oplus \cdots \oplus N_s$.

Pour $i \in [\![1,s]\!]$, on note $Q_i = \prod_{\substack{1 \leq j \leq s \\ j \neq i}} M_j^{\alpha_j}$. Alors aucun facteur n'est commun à tous les Q_i , qui sont

donc premiers entre eux dans leur ensemble. En appliquant l'identité de Bézout, il existe donc $U_1, \ldots, U_s \in \mathbb{K}[X]$ tels que

$$1 = U_1 Q_1 + \cdots + U_s Q_s$$
.

En appliquant à f cette égalité, on obtient

$$\operatorname{Id}_{E} = U_{1}(f) \circ Q_{1}(f) + \cdots + U_{s}(f) \circ Q_{s}(f).$$

Pour
$$i \in [1, s]$$
, notons $P_i = U_i Q_i$ et $p_i = P_i(f)$. On a donc $\sum_{i=1}^s p_i = \mathrm{Id}_E$. (\star)

Par ailleurs, pour tout $j \neq i$, F, que l'on rappelle être un polynôme annulateur de f, divise $Q_i Q_j$ donc :

$$p_i \circ p_j = U_i U_j(f) \circ Q_i Q_j(f)$$

= 0.

On déduit de l'égalité (\star) que pour $i \in [1, s]$, on a $p_i = \sum_{j=1}^s p_i \circ p_j = p_i^2$. Ainsi, p_i est un projecteur. Il s'agit alors de déterminer son image et son noyau.

Etape 2: montrons que Im $p_i = N_i$ pour tout $i \in [1, s]$.

• Soit $y = p_i(x) \in \text{Im}(p_i)$. Alors $M_i^{\alpha_i}(f)(y) = M_i^{\alpha_i}(f)(p_i(x)) = M_i^{\alpha_i}(f) \circ P_i(f)(x) = U_i(f) \circ F(f)(x) = 0$, donc $x \in \text{Ker } M_i^{\alpha_i} = N_i$. • Soit $x \in N_i$. Alors $x = p_1(x) + \cdots + p_s(x)$. Or pour $j \neq i$, on a

$$p_j(x) = U_j(f)(x) \circ Q_j(f)(x),$$

où $M_i^{\alpha_i}|Q_j$, donc $Q_j(f)(x)=0$, donc $p_j(x)=0$. Ainsi, $x=p_i(x)\in \text{Im}(p_i)$.

Etape 3: montrons que Ker $p_i = \bigoplus_{\substack{1 \leq j \leq s \\ j \neq i}} N_j$ pour tout $i \in [1, s]$.

- Pour $j \neq i$, on a $N_j \subset \operatorname{Ker} p_i$. En effet, si $x \in N_j$ alors $M_j^{\alpha_j} | Q_i$ donc $p_i(x) = 0$. On en déduit que $\bigoplus_{\substack{1 \leq j \leq s \\ j \neq i}} N_j \subset \operatorname{Ker}(p_i)$, puisque $\operatorname{Ker}(p_i)$ est un sous-espace vectoriel.
- Réciproquement, soit $x \in \text{Ker}(p_i)$. D'après (\star) , on a $x = \sum_{\substack{1 \leq j \leq s \\ j \neq i}} p_j(x)$. Donc

$$x \in \bigoplus_{\substack{1 \le j \le s \\ j \ne i}} N_j.$$

Par construction, les projecteurs p_i sont bien des polynômes en f.

Théorème 2. (Réduction de Dunford)

Soit $f \in \mathcal{L}(E)$ un endomorphisme dont le polynôme caractéristique χ_f est scindé sur \mathbb{K} . Alors il existe un unique couple $(d,n) \in \mathcal{L}(E)^2$ tel que

- 1. Les endomorphismes d et n commutent et d+n=f.
- 2. L'endomorphisme d est diagonalisable et l'endomorphisme n est nilpotent.

De plus, les endomorphismes d et n sont des polynômes en f.

Démonstration.

 \square On écrit $\chi_f = (-1)^n \prod_{i=1}^s (X - \lambda_i)^{\alpha}$, et on pose, pour $i \in [1, s]$, $N_i = \text{Ker}(X - \lambda_i)^{\alpha_i}$.

On applique la proposition 1 avec $F = \chi_f$, et $M_i = (X - \lambda_i)$. En utilisant les notations précédentes, il vient que $p_i = P_i(f)$ est le projecteur sur N_i parallèlement à $\bigoplus_{\substack{1 \leq j \leq s \\ j \neq i}} N_j$.

Posons $d = \sum_{i=1}^{s} \lambda_i p_i$. La matrice de d est diagonale dans une base adaptée à la décomposition

$$E = N_1 \oplus \cdots \oplus N_s$$
,

puisque les p_i sont des projecteurs sur N_i . Donc l'endomorphisme d est diagonalisable.

Par ailleurs, en posant $n = f - d = \sum_{i=1}^{s} (f - \lambda_i \operatorname{Id}_E) p_i$, on va montrer par récurrence sur $q \in \mathbb{N}^*$ que

$$n^q = \sum_{i=1}^s (f - \lambda_i \operatorname{Id}_E)^q p_i.$$

En effet, cela suit de la définition de n pour q=1, et si on suppose le résultat vrai pour un certain $q \ge 1$, alors

$$n^{q+1} = \left(\sum_{i=1}^{s} (f - \lambda_i \operatorname{Id}_E) p_i\right) \left(\sum_{i=1}^{s} (f - \lambda_i \operatorname{Id}_E)^q p_i\right)$$
$$= \sum_{\substack{1 \le i \le s \\ 1 \le j \le s}} (f - \lambda_i \operatorname{Id}_E) (f - \lambda_j \operatorname{Id}_E)^q p_i p_j,$$

où l'on a utilisé dans la deuxième égalité le fait que p_i et p_j sont des polynômes en f (ils commutent donc avec f et entre eux).

Par ailleurs, on a $p_i \circ p_j = 0$ pour $i \neq j$ donc :

$$n^{q+1} = \sum_{i=1}^{s} (f - \lambda_i \operatorname{Id}_E)^{q+1} p_i^2$$
$$= \sum_{i=1}^{s} (f - \lambda_i \operatorname{Id}_E)^{q+1} p_i.$$

Ceci conclut la récurrence.

Finalement, en posant $q = \max_{1 \le i \le s} \alpha_i$, on a $(f - \lambda_i \operatorname{Id}_E)^q p_i = [(X - \lambda_i)^q P_i](f) = 0$ car χ_f divise $(X - \lambda_i)^q P_i$ (on rappelle que $P_i = U_i \prod_{\substack{1 \le j \le s \\ i \ne i}} (X - \lambda_i)^{\alpha_j}$ selon les notations précédentes).

Ainsi, n est nilpotent, d est diagonal, et ce sont tous deux des polynômes en f tels que d+n=f.

I Supposons qu'il existe deux couples (d, d') et (n, n') où d, d', n, n' sont des polynômes en f, vérifiant les hypothèses du théorème. Alors d commute avec d' et d et d' sont diagonalisables. On en déduit qu'ils sont co-diagonalisables, c'est-à-dire diagonalisables dans une même base.

Il s'en suit que d-d' est diagonalisable, mais d-d'=n-n' donc d-d' est aussi nilpotent (cela se montre en utilisant le binôme de Newton, puisque n et n' commutent et sont nilpotents).

Ainsi,
$$n - n' = d - d' = 0$$
.