ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" (СП6ГУ)

Образовательная программа бакалавриата "Математика"

Отчет о практике

на тему

Стационарные случайные последовательности

Выполнил студент 3 курса бакалавриата группа 21.Б02-мкн Югай Александр Германович

Научный руководитель: доктор физико-математических наук, Давыдов Юрий Александрович

 ${
m Cahkt-} \Pi$ етербург 2024

Содержание

Вве	едение	3
1.	Стационарные (в узком смысле) случайные последовательности. Сохраняющие	!
	меру преобразования	3
2.	Эргодичность и перемешивание	8
3.	Эргодические теоремы	11
Сп	исок литературы	17

Введение

В рамках учебной практики, мне было предложено ознакомиться с теорией стационарных случайных процессов и элементами эргодической теории [2]. Во время работы я решал учебные задачи из [2]. Их решения приведены ниже.

1. Стационарные (в узком смысле) случайные последовательности. Сохраняющие меру преобразования

Задача 1. Пусть T – сохраняющее меру преобразование и $\xi = \xi(\omega)$ – случайная величина, такая что существует математическое ожидание $\mathbb{E}\xi(\omega)$. Показать, что $\mathbb{E}\xi(\omega) = \mathbb{E}\xi(T\omega)$.

Доказательство. Докажем, что совпадают распределения случайных величин $Y := \xi(\omega)$ и $Z := \xi(T\omega)$. Если это так, то получаем требуемое, воспользовавшись формулой:

$$\mathbb{E}X = \int_{0}^{\infty} (1 - F_X(x)) \, dx$$

где $F_X(x)$ – функция распределения случайной величины X. Докажем это:

$$F_Y(t) = \mathbb{P}\{Y(\omega) \leqslant t\} = \mathbb{P}\{Y(\omega) \in (-\infty; t)\} = \mathbb{P}\{\omega \in Y^{-1}((-\infty; t))\}$$

Воспользуемся, тем, что T – сохраняет меру:

$$\mathbb{P}\{\omega \in Y^{-1}((-\infty;t))\} = \mathbb{P}\{\omega \in T^{-1}Y^{-1}(-\infty;t)\} = \mathbb{P}\{T(\omega) \in Y^{-1}(-\infty;t)\} = \mathbb{P}\{Y(T(\omega)) \in (-\infty;t)\} = \mathbb{P}\{Z(\omega) \in (-\infty;t)\} = F_Z(t)$$

Итого $F_Y(t) = F_Z(t)$. Значит по замечанию выше – все доказано.

Задача 2. Показать, что в примерах 1 и 2(cmp. 599 s [2]) преобразования T – являются преобразованиями, сохраняющимим меру.

Доказательство. 1)Докажем, что T – измеримо. Это ясно, так как наша σ - алгебра это 2^{Ω} и поэтому $T^{-1}A$ – измеримо для любого $A \subset \Omega$.

Для доказательства того что T – сохраняет меру воспользуемся задачей 1.6 ниже. Ясно, что одноточечные множества образуют π - систему(стр. 205 [2]), которая к тому же является порождающей для σ -алгебры 2^{Ω} . Тогда по задаче 1.6 достаточно проверить свойство сохранения меры для одноточечных множеств, для которых это очевидно.

- **2)** Это утверждение достаточно проверить на интервалах $(a,b) \subset [0,1)$. Рассмотрим случаи:
- Если $a > \lambda$, $\lambda < b < 1$, то:

$$T^{-1}(a,b) = (a - \lambda, b - \lambda) \in \mathcal{B}([0,1))$$
$$\mathbb{P}(a,b) = \mathbb{P}(a - \lambda, b - \lambda) = b - a$$

– Если $a < \lambda$, $\lambda < b < 1$, то:

$$T^{-1}(a,b) = ([0,b-\lambda) \cup (a-\lambda+1,1) \in \mathcal{B}([0,1))$$

$$\mathbb{P}(a,b) = \mathbb{P}([0,b-\lambda) \cup (a-\lambda+1,1)) =$$

$$= b - \lambda + 1 - a + \lambda - 1 = b - a$$

– $Ec \Lambda u \ a < b < \lambda$, mo:

$$T^{-1}(a,b) = (a - \lambda + 1, b - \lambda + 1) \in \mathcal{B}([0,1))$$
$$\mathbb{P}(a,b) = \mathbb{P}(a - \lambda + 1, b - \lambda + 1) = b - a$$

Значит T-измеримо и сохраняет меру.

Задача 3. Пусть $\Omega = [0,1)$, $\mathscr{F} = \mathscr{B}([0,1))$ и \mathbb{P} – некоторая мера с непрерывной функцией распределения. Показать, что преобразования $Tx = \lambda x$, $0 < \lambda < 1$, и $Tx = x^2$ не являются преобразованиями, сохраняющими меру.

Доказательство. 1) $Tx = \lambda x, \ 0 < \lambda < 1$. Предположим противное. Пусть не умаляя общности: $\mathbb{P}(a,b) > 0$. Знаем: $\mathbb{P}(a,b) = F(b) - F(a)$, для непрерывной функции F(x). Рассмотрим меру n-го прообраза этого интервала:

$$\mathbb{P}(T^{-n}(a,b)) = \mathbb{P}\left(\frac{a}{\lambda^n}, \frac{b}{\lambda^n}\right) = F\left(\frac{a}{\lambda^n}\right) - F\left(\frac{b}{\lambda^n}\right) = \mathbb{P}(a,b) = F(a) - F(b) > 0.$$

Устремим $n \times +\infty$. Тогда по неперерывости F(x):

$$\lim_{n \to +\infty} F\left(\frac{b}{\lambda^n}\right) = \lim_{n \to +\infty} F\left(\frac{a}{\lambda^n}\right) = 1$$

Значит:

$$\lim_{n \to +\infty} \mathbb{P}(T^{-n}(a,b)) = \mathbb{P}(a,b) = 0$$

Мы получили противоречие.

2)Также как и выше, предположим противное. Пусть: $\mathbb{P}(a,b) > 0$. Рассмотрим меру n-го прообраза:

$$\mathbb{P}(T^{-n}(a,b)) = \mathbb{P}(a^{\frac{1}{2^n}}, b^{\frac{1}{2^n}}) = F\left(a^{\frac{1}{2^n}}\right) - F\left(b^{\frac{1}{2^n}}\right) = \mathbb{P}(a,b)$$

При n стремящемся к $+\infty$, $F\left(a^{\frac{1}{2^n}}\right)$ стремится к F(1), так как F по условию непрерывная. Тогда $\mathbb{P}(a,b)=0$. Снова получаем противоречие.

Задача 4. Пусть Ω — множество всех последовательностей $\omega = (\dots, \omega_0, \omega_1, \dots)$ дей-ствительных чисел, $\mathscr F$ - σ -алгебра, порожденная измеримыми цилиндрами $\{\omega : (\omega_k, \dots, \omega_{k+n-1} \in B_n\}$, где $n=1,2,\dots,k\in\mathbb Z$ и множество $B_n\in\mathscr B(\mathbb R^n)$. Пусть $\mathbb P$ —вероятностная мера на $(\Omega,\mathscr F)$ и двухстороннее преобразование T определено формулой

$$T(\ldots,\omega_{-1},\omega_0,\omega_1,\ldots)=(\ldots,\omega_0,\omega_1,\omega_2,\ldots).$$

Показать, что T является сохраняющим меру преобразованием в том и только том случае, когда

$$\mathbb{P}\{\omega: (\omega_0, \dots, \omega_{n-1}) \in B_n\} = \mathbb{P}\{\omega: (\omega_k, \dots, \omega_{k+n-1}) \in B_n\}$$

для всех $n = 1, 2, \dots, k \in \mathbb{Z}$ и $B_n \in \mathscr{B}(\mathbb{R}^{\infty})$.

$$\mathbb{P}(T^{-1}A) = \mathbb{P}\{\omega : (\omega_{-1}, \dots, \omega_{n-2}) \in B_n\} = \mathbb{P}\{\omega : (\omega_0, \dots, \omega_{n-1}) \in B_n\} = \mathbb{P}(A).$$

Значит T сохраняет меру.

 \implies Так как T сохраняет меру, то по рассуждениям выше мы знаем требуемое для $\forall n$, k=-1. Докажем, для k>0:

Пусть $A = \{\omega : (\omega_k, \dots, \omega_{k+n-1}) \in B_n\}$. Возьмем от A k-й прообраз T:

$$\mathbb{P}(T^{-k}A) = \mathbb{P}\{\omega : (\omega_0, \dots, \omega_{n-1}) \in B_n\} = \mathbb{P}(A) = \mathbb{P}\{\omega : (\omega_k, \dots, \omega_{n+k-1}) \in B_n\}$$

Для k < 0:

Пусть $A = \{\omega : (\omega_0, \dots, \omega_{n-1}) \in B_n\}$. Возьмем от A - k-й прообраз T:

$$\mathbb{P}(T^{-(-k)}A) = \mathbb{P}\{\omega : (\omega_k, \dots, \omega_{n+k-1}) \in B_n\} = \mathbb{P}(A) = \mathbb{P}\{\omega : (\omega_0, \dots, \omega_{n-1}) \in B_n\}$$

Значит требуемое условие выполнено для всех k и n.

Задача 5. Пусть ξ_0, ξ_1, \ldots -некоторая стационараная последовательность случайных элементов со значениями в борелевском простравнстве S. Показать, что можно построить случайные элементы $\xi_{-1}, \xi_{-2}, \ldots$ со значаниями в S такие, что двусторонняя последовательность $\ldots, \xi_{-1}, \xi_0, \xi_1, \ldots$ будет стационарной.

Доказательство. Воспользуемся теоремой Колмогорова о существовании процесса (стр. 346 [1]). Положим за множество временных интервалов $\mathscr{T} = \mathbb{Z}$, и возьмем следующие функции распределения:

$$F_{t_0,t_1,\dots,t_n}(x_0,\dots,x_n) = \mathbb{P}(\omega:\xi_0 \le x_0,\xi_{t_1-t_0} \le x_1,\dots,\xi_{t_n-t_0} \le x_n)$$

Тогда по теореме Колмогорова существует случайный процесс $X=(\eta_t)_{t\in\mathscr{T}}$ Такой, что

$$\mathbb{P}(\omega : \eta_{t_0} \le x_0, \dots, \eta_{t_n} \le x_n) = F_{t_0, t_1, \dots, t_n}(x_0, \dots, x_n)$$

Ясно, что $\xi_i \stackrel{\mathscr{D}}{=} \eta_i, i \geq 0$ (из равенства их функций распределкния). Докажем, что последовательность X-стационарная. Так как $\mathscr{B}(\mathbb{R}^{\infty})$ порождена фундаментальными прямо-угольниками, то достаточно проверить для $B_n = \prod_{i=1}^n [a_i, b_i]$

$$\mathbb{P}(\omega : \eta_k \le x_0, \dots, \eta_{k+n-1} \le x_n) = F_{k,k+1,\dots,k+n}(x_0, \dots, x_n) =$$

$$= \mathbb{P}(\omega : \xi_0 \le x_0, \xi_1 \le x_1, \dots, \xi_n \le x_n) = \mathbb{P}(\omega : \eta_0 \le x_0, \dots, \eta_n \le x_n)$$

Значит $X = (\eta_t)_{t \in \mathscr{T}}$ -стационарная последовательность, содержащаа исходную.

Задача 6. Пусть T – измеримое преобразование на $(\Omega, \mathscr{F}, \mathbb{P})$ и \mathscr{E} есть π -система подмножеств Ω (стр. 205 [2]), породжающая \mathscr{F} . Доказать, что если равенствог $\mathbb{P}(T^{-1}A) = \mathbb{P}(A)$ верно для $A \in \mathbb{E}$, то оно верно и для $A \in \mathscr{F}$.

Доказательство. Дополним $\mathscr E$ до полукольца $\mathscr P$, добавив пустое множество и для любых $A,B\in\mathscr E$ добавим $A\backslash B$. Так как $\mathscr E$ - π -система, то $\mathscr P$ действительно полукольцо.

Положим $Q(A) := \mathbb{P}(T^{-1}A)$. Это мера на (Ω, \mathscr{F}) . Докажем, что \mathbb{P} и Q совпадают на \mathscr{P} . Так как на элементах π -системы эти меры уже совпадают, то достаточно показать, что они совпадают на дополнениях т.е. $\mathbb{P}(A \backslash B) = Q(A \backslash B) = \mathbb{P}(T^{-1}(A \backslash B))$, для любых $A, B \in \mathscr{E}$.

$$\mathbb{P}(A \backslash B) = \mathbb{P}(A) - \mathbb{P}(A \cap B) = \mathbb{P}(T^{-1}A) - \mathbb{P}(T^{-1}(A \cap B)) =$$
$$= \mathbb{P}(T^{-1}A) - \mathbb{P}(T^{-1}A \cap T^{-1}B) = \mathbb{P}(T^{-1}A \backslash T^{-1}B) = \mathbb{P}(T^{-1}(A \backslash B))$$

Так как \mathbb{P} и Q совпадают на \mathscr{P} , которая порождает \mathscr{F} , то по теореме о единственности продолжения меры(стр. 38 [3]) \mathbb{P} и Q совпадают на \mathscr{F} , т.е. $\mathbb{P}(T^{-1}A) = \mathbb{P}(A)$ для $A \in \mathscr{F}$.

Задача 7. Пусть T – сохраняющее меру преобразование на $(\Omega, \mathscr{F}, \mathbb{P})$ и \mathscr{G} - его под- σ -алгебра \mathscr{F} . Показать, что для почти каждого $A \in \mathscr{F}$

$$\mathbb{P}(A \mid \mathscr{G})(T\omega) = \mathbb{P}(T^{-1}A \mid T^{-1}\mathscr{G})(\omega).$$

Доказательство. По определению:

$$\mathbb{P}(A \mid \mathscr{G})(T\omega) = \mathbb{E}(\mathbb{1}_A \mid \mathscr{G})(T\omega)$$

$$\mathbb{P}(T^{-1}A \mid T^{-1}\mathscr{G})(\omega) = \mathbb{E}(\mathbb{1}_{T^{-1}A} \mid T^{-1}\mathscr{G})(\omega).$$

Обозначим за Y УМО $\mathbb{E}(\mathbb{1}_A \mid \mathscr{G})$. Докажем, что $Y(T\omega)$ – удовлетворяет универсальному свойству УМО $\mathbb{E}(\mathbb{1}_{T^{-1}A} \mid T^{-1}\mathscr{G})(\omega)$.

Измеримость - очевидна. Достаточно доказать следующую формулу:

$$\int_C Y(Tx) d\mathbb{P} = \int_C \mathbb{1}_{T^{-1}A}(y) d\mathbb{P}$$

Перепишем первый интеграл слудующим образом и применим результат Задачи 1:

$$\int_{C} Y(Tz) d\mathbb{P} = \int_{\Omega} Y(Tz) \mathbb{1}_{C}(z) d\mathbb{P} = \int_{\Omega} Y(Tz) \mathbb{1}_{TC}(Tz) d\mathbb{P} =$$

$$= \int_{\Omega} Y(z) \mathbb{1}_{TC}(z) d\mathbb{P} = \int_{TC} Y(z) d\mathbb{P}$$

Воспользуемся тем, что Y это УМО:

$$\int_{TC} Y(z) \, d\mathbb{P} = \int_{TC} \mathbb{1}_A(z) \, d\mathbb{P} = \int_{\Omega} \mathbb{1}_A(z) \mathbb{1}_{TC}(z) \, d\mathbb{P} = \int_{\Omega} \mathbb{1}_A(Tz) \mathbb{1}_{TC}(Tz) \, d\mathbb{P} = \int_{\Omega} \mathbb{1}_{T^{-1}A}(z) \mathbb{1}_{C}(z) \, d\mathbb{P} = \int_{C} \mathbb{1}_{T^{-1}A}(z) \, d\mathbb{P}$$

Что и требовалось доказать.

Задача 8. Пусть T – некоторое измеримое преобразование на (Ω, \mathscr{F}) и \mathscr{P} – множество всех вероятностных мер \mathbb{P} , относительно которых T является сохраняющим \mathbb{P} -меру преобразованием. Показать, что:

- (a) множество \mathscr{P} выпукло;
- (b) T является эргодическим преобразованием относительно меры $\mathbb P$ в том и только том случае, когда $\mathbb P$ есть крайняя точка множества $\mathscr P$.

Доказательство. (a) Пусть $\lambda_1, \lambda_2 \in \mathscr{P}, a \in (0,1]$. Докажем, что мера $\mathbb{P}(A) = a\lambda_1(A) + (1-a)\lambda_2(A) \in \mathscr{P}$.

$$\mathbb{P}(T^{-1}A) = a\lambda_1(T^{-1}A) + (1-a)\lambda_2(T^{-1}A) = a\lambda_1(A) + (1-a)\lambda_2(A) = \mathbb{P}(A)$$

(b) \Longrightarrow Пусть $\mathbb{P} = a\lambda_1 + (1-a)\lambda_2$ —эргодично. Тогда λ_1 – абсолютно непрерывна относительно меры \mathbb{P} (т.е. $\mathbb{P}(A) = 0 \Longrightarrow \lambda_1(A) = 0$). Тогда по теоереме Радона-Никодима λ_1 имеет суммируемую плотность относительно меры \mathbb{P} т.е. существует такая f, что:

$$\lambda_1(A) = \int_A f(z) \, d\mathbb{P}$$

Докажем, что f — инвариантная случайная величина. Применим к f теорему о замене меры:

$$\int_A f(z) \, d\mathbb{P} = \int_{T^{-1}A} f(Tz) \, d\mathbb{P}$$

Также воспользуемся инвариантностью T относительно λ_1 .

$$\int_{A} f(z) d\mathbb{P} = \int_{T^{-1}A} f(z) d\mathbb{P}$$

Тогда совместив оба равенства имеем:

$$\int_{T^{-1}A} f(z) d\mathbb{P} = \int_{T^{-1}A} f(Tz) d\mathbb{P}$$

Предположим, что $f(Tz) \neq f(z)$. Тогда НУО $\exists \epsilon > 0, a > 0$: $\mathbb{P}\{z: f(Tz) - f(z) > \epsilon\} > a > 0$. Положим A = T(W) и тогда $W \subset T^{-1}(TW)$. Значит:

$$0 = \int_{T^{-1}A} f(Tz) - f(z) \, d\mathbb{P} \geqslant \int_{W} f(Tz) - f(z) \, d\mathbb{P} \geqslant \epsilon \mathbb{P}\{z : f(Tz) - f(z) > 0\}$$

Значит, f— инвариантная случайная величина и тогда f = const(теорема 1, стр.602 [2]). Значит \mathbb{P} — действительно граничная точка \mathscr{P} .

Докажем, что если \mathbb{P} – не эргодическое, то оно представляется выпуклой комбинацией мер из \mathscr{P} . Если \mathbb{P} – не эргодическое, что существует инвариантное множество $A \in \mathscr{F}$ не полной меры. Тогда положим:

$$\lambda_1(B) = \frac{1}{\mathbb{P}(A)} \mathbb{P}(A \cap B), \lambda_2(B) = \frac{1}{1 - \mathbb{P}(A)} \mathbb{P}(B \setminus A), a = \mathbb{P}(A)$$

Тогда $a\lambda_1(A)+(1-a)\lambda_2(A)=\mathbb{P}(A)$. Эти меры не совпадают с \mathbb{P} , так как они различны на B=A.

2. Эргодичность и перемешивание

Задача 1. Показать, что случайная величина η является инваринтной тогда и только тогда, когда она $\mathcal J$ измерима (измерима относительно σ -алгебры инвариантных множеств).

Доказательство. \Longrightarrow Пусть $B \in \mathscr{B}(\mathbb{R})$. Докажем, что $\eta^{-1}(B)$ – инвариантное множество. Действительно

$$T^{-1}(\eta^{-1}(B)) = \{\omega : T\omega \in \eta^{-1}(B)\} = \{\omega : \eta(T\omega) \in B\} = \{\omega : \eta(\omega) \in B\} = \eta^{-1}(B).$$

В предпоследнем равенстве мы воспользовались инвариантностью η .

 \exists наем: $\forall B \in \mathscr{B}(\mathbb{R}): \eta^{-1}(B) \in \mathscr{J}$. Зафиксируем $\omega \in \Omega$ и пусть $\eta(\omega) = a \in \mathbb{R}$. Тогда $\eta^{-1}(a) \in \mathscr{J}$ и тогда по инвариантности $T^{-1}\eta^{-1}(a) = \eta^{-1}(a)$. Так как $\omega \in \eta^{-1}(a) = T^{-1}\eta^{-1}(a)$, то $\eta(T\omega) = a = \eta(\omega)$.

Задача 2. Показать, что множество A является почти инвариантным тогда и только тогда, когда $\mathbb{P}(T^{-1}A \setminus A) = 0$.

Доказательство. \implies Так как A-почти инвариантно, то $\mathbb{P}(A \triangle T^{-1}A) = 0$. Также:

$$\mathbb{P}(A \triangle T^{-1}A) = \mathbb{P}((A \setminus T^{-1}A) \sqcup (T^{-1}A \setminus A)) = \mathbb{P}(A \setminus T^{-1}A) + \mathbb{P}(T^{-1}A \setminus A) = 0.$$

Значит, $\mathbb{P}(T^{-1}A \setminus A) = 0$.

Так как $\mathbb{P}(A \triangle T^{-1}A) = \mathbb{P}(A \setminus T^{-1}A) + \mathbb{P}(T^{-1}A \setminus A) = \mathbb{P}(A \setminus T^{-1}A)$, то достаточно доказать, что $\mathbb{P}(A \setminus T^{-1}A) = 0$. Распишем $\mathbb{P}(A \setminus T^{-1}A)$:

$$\mathbb{P}(A \setminus T^{-1}A) = \mathbb{P}(A) - \mathbb{P}(A \cap T^{-1}A)$$

Теперь распишем $\mathbb{P}(A \cap T^{-1}A)$:

$$\mathbb{P}(A\cap T^{-1}A) = \mathbb{P}(T^{-1}A) - \mathbb{P}(T^{-1}A\setminus A) = \mathbb{P}(T^{-1}A) = \mathbb{P}(A)$$

Значит, $\mathbb{P}(A \setminus T^{-1}A) = 0$.

Задача 3. Показать, что преобразование T есть перемешивание ε том ε том ε том ε случае, когда для любых двух случайных величин ε ε ε ε ε ε ε ε ε

$$\mathbb{E}\xi(T^n\omega)\eta(\omega) \longrightarrow \mathbb{E}\xi(\omega)\mathbb{E}\eta(\omega), n \to \infty$$

Доказательство. \sqsubseteq Положим $\xi(\omega)=\mathbb{1}_B(\omega),\ \eta(\omega)=\mathbb{1}_A(\omega).$ Имеем:

$$\xi(T^n\omega) = \mathbb{1}_B(T^n\omega) = \mathbb{1}_{T^{-n}}(\omega), \xi(T^n\omega)\eta(\omega) = \mathbb{1}_{(T^{-n}B)\cap A}(\omega)$$

Тогда применив к ним формулу из условия, получим требуемое.

 \Longrightarrow Из свойства перемешивания получаем требуемое утверждение для $\xi(\omega) = \sum_{i=1}^n \mathbb{1}_{C_i}(\omega)$, $\eta(\omega) = \sum_{i=1}^n \mathbb{1}_{B_i}(\omega)$. Воспользуемся тем, что функции такого вида плотны в $L^2(\text{стр.}460\ [3])$, и тем самым мы имеем сходимость из условия для любых η и ξ .

Задача 4. Привести пример сохраняющего меру эргодического преобразования, которое не является перемешиванием.

Доказательство. Рассотрим вероятностное пространство следующего вида: $\Omega = \{0,1\}, \mathscr{F} = 2^{\Omega}, \mathbb{P}: \mathbb{P}(0) = \frac{1}{2}, \mathbb{P}(1) = \frac{1}{2}$. В качестве T возьмем следующее преобразование: T(0) = 1, T(1) = 0. Ясно, что T – сохраняет меру. Также, ясно, что лишь Ω –является инвариантным множеством. Проверим свойство перемешивания:

$$\mathbb{P}(\{1\} \cap T^{-n}\{0\}) = \begin{cases} \frac{1}{2}, & \text{если } n\text{--нечётно} \\ 0, & \text{иначе.} \end{cases}$$

У такой последовательности нет предела. Значит, T— не является перемешиванием. \square

Задача 5. Пусть T-сохраняющее меру преобразование на $(\Omega, \mathcal{F}, \mathbb{P})$. Пусть \mathscr{A} – алгебра подмножеств Ω и $\sigma(\mathscr{A}) = \mathscr{F}$. Предположим, что определение $4(\text{cmp. }603\ [2])$ предположент выполнение свойства

$$\mathbb{P}(A \cap T^{-n}B) \longrightarrow \mathbb{P}(A)\mathbb{P}(B), n \to \infty$$

лишь для множеств A и B из \mathscr{A} . Показать, что тогда это свойство будет выполнено для всех A и B из $\mathscr{F} = \sigma(\mathscr{A})$ (и, следовательно преобразование T есть перемешивание). Показать, что утверждение остается справедливым, если \mathscr{A} является π -системой, такой, что $\pi(\mathscr{A}) = \mathscr{F}$.

Доказательство. Сначала, сведем случай π -системы к случаю алгебры. Пусть \mathscr{A} – наша π -система. Дополним ее до алгебры, добавив \emptyset , Ω и дополнения всех множеств из \mathscr{A} . Ясно, что для пустого и всего Ω предельное тождество в условии выполняется. Достаточно доказать что для любых $A, B \in \mathscr{A}$ верны три предельных тождества

$$1)\mathbb{P}(A^c \cap T^{-n}B) \longrightarrow \mathbb{P}(A^c)\mathbb{P}(B), n \to \infty$$
$$2)\mathbb{P}(A \cap T^{-n}B^c) \longrightarrow \mathbb{P}(A)\mathbb{P}(B^c), n \to \infty$$
$$3)\mathbb{P}(A^c \cap T^{-n}B^c) \longrightarrow \mathbb{P}(A^c)\mathbb{P}(B^c), n \to \infty.$$

Докажем (1):

$$\mathbb{P}(A^c \cap T^{-n}B) = \mathbb{P}(T^{-n}B) - \mathbb{P}(A \cap T^{-n}B) = \mathbb{P}(B) - \mathbb{P}(A \cap T^{-n}B) \longrightarrow \mathbb{P}(B) - \mathbb{P}(A)\mathbb{P}(B) = \mathbb{P}(B)(1 - \mathbb{P}(A)) = \mathbb{P}(B)(A^c), n \to \infty.$$

Докажем (2):

$$\mathbb{P}(A \cap T^{-n}B^c) = \mathbb{P}(A) - \mathbb{P}(A \cap T^{-n}B) = \mathbb{P}(A) - \mathbb{P}(A \cap T^{-n}B) \longrightarrow \mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B) = \mathbb{P}(A)(1 - \mathbb{P}(B)) = \mathbb{P}(B^c)(A), n \to \infty.$$

Докажем (3):

$$\mathbb{P}(A^c \cap T^{-n}B^c) = \mathbb{P}(A^c) - \mathbb{P}(A^c \cap T^{-n}B) = 1 - \mathbb{P}(A) - \mathbb{P}(T^{-n}B) + \mathbb{P}(A \cap T^{-n}B) = 1 - \mathbb{P}(A) - \mathbb{P}(A) - \mathbb{P}(B) + \mathbb{P}(A \cap T^{-n}B) \longrightarrow 1 - \mathbb{P}(A) - \mathbb{P}(B) - \mathbb{P}(A)\mathbb{P}(B) = (1 - \mathbb{P}(B))(1 - \mathbb{P}(A)) = \mathbb{P}(B^c)(A^c), n \to \infty.$$

Значит, достаточно доказывать для случая, если А алгебра.

Восмользуемся фактом, что если $\mathscr A$ алгебра, такая, что $\sigma(\mathscr A)=\mathscr F$, то $\forall \epsilon>0$ $\exists A_\epsilon: \mathbb P(A_\epsilon \bigtriangleup A)<\epsilon.$ Тогда зафиксируем ϵ и для любых $A,B\in\mathscr F$ запишем

$$(*)\mathbb{P}(A\cap T^{-n}B) = \mathbb{P}(A) + \mathbb{P}(T^{-n}B) - \mathbb{P}(A\cup T^{-n}B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A\cup T^{-n}B)$$

$$\mathbb{P}(A \cup T^{-n}B) = \mathbb{P}(A_{\epsilon} \cup T^{-n}B_{\epsilon}) + \mathbb{P}(A \setminus A_{\epsilon}) + \mathbb{P}(T^{-n}B \setminus T^{-n}B_{\epsilon}) - \mathbb{P}(A_{\epsilon} \setminus A) - \mathbb{P}(T^{-n}B_{\epsilon} \setminus T^{-n}B) =$$

$$= \mathbb{P}(A_{\epsilon} \cup T^{-n}B_{\epsilon}) + \mathbb{P}(A \setminus A_{\epsilon}) + \mathbb{P}(T^{-n}(B \setminus B_{\epsilon})) - \mathbb{P}(A_{\epsilon} \setminus A) - \mathbb{P}(T^{-n}(B_{\epsilon} \setminus B)) =$$

$$= \mathbb{P}(A_{\epsilon} \cup T^{-n}B_{\epsilon}) + \mathbb{P}(A \setminus A_{\epsilon}) + \mathbb{P}(B \setminus B_{\epsilon}) - \mathbb{P}(A_{\epsilon} \setminus A) - \mathbb{P}(B_{\epsilon} \setminus B)$$

Тогда

$$\mathbb{P}(A_{\epsilon} \cup T^{-n}B_{\epsilon}) - 2\epsilon \le \mathbb{P}(A \cup T^{-n}B) \le \mathbb{P}(A_{\epsilon} \cup T^{-n}B_{\epsilon}) + 2\epsilon$$

Подставим в (*)

$$\mathbb{P}(A_{\epsilon} \cap T^{-n}B_{\epsilon}) - 4\epsilon \leq \mathbb{P}(A \cap T^{-n}B) \leq \mathbb{P}(A_{\epsilon} \cap T^{-n}B_{\epsilon}) + 4\epsilon$$

Устремим $n \to \infty$

$$\mathbb{P}(A_{\epsilon})\mathbb{P}(B_{\epsilon}) - 4\epsilon \le \lim_{n \to +\infty} \mathbb{P}(A \cap T^{-n}B) \le \mathbb{P}(A_{\epsilon})\mathbb{P}(B_{\epsilon}) + 4\epsilon$$

В силу, произвольности ϵ , получаем требуемое.

Задача 6. Пусть A является почти инвариантным множеством. Показать, что $\omega \in A$ (\mathbb{P} -n.n.), если и только если $T^n\omega \in A$ для всех $n=1,2,\ldots$

Доказательство. \Longrightarrow Рассмотрим события $B_n = \{\omega \in A : T^k\omega \in A, k = 1, 2, \dots, n\} = \{\omega \in A : \omega \in T^{-k}A, k = 1, 2, \dots, n\} = A \cap T^{-1} \cap T^{-2} \cap \dots \cap T^{-n}A$. Это вложенная последовательность событий. Нам достаточно доказать, что

$$\mathbb{P}(\bigcap_{n=1}^{\infty} B_n) = \lim_{n \to +\infty} \mathbb{P}(B_n) = \mathbb{P}(A)$$

Докажем, что для любого n выполнено $\mathbb{P}(B_n) = \mathbb{P}(A)$. Будем доказывать это по индукции. База n=1:

$$\mathbb{P}(A \cap T^{-1}A) = \mathbb{P}(A) - \mathbb{P}(A \setminus T^{-1}A)$$

Тут последнее слагаемое рано 0, по почти инвариантности A. Докажем переход:

$$\mathbb{P}(A \cap T^{-1} \cap T^{-2} \cap \dots \cap T^{-n}A) = \mathbb{P}((A \cap T^{-1} \cap T^{-2} \cap \dots \cap T^{-n+1}A) \cap T^{-n}A)$$

$$= \mathbb{P}(A \cap T^{-1} \cap T^{-2} \cap \dots \cap T^{-n+1}A) - \mathbb{P}((A \cap T^{-1} \cap T^{-2} \cap \dots \cap T^{-n+1}A) \setminus T^{-n}A) \ge \mathbb{P}(A) - \mathbb{P}(A \setminus T^{-n}A) = \mathbb{P}(A)$$

Последнее равенство следует из почти-инвариантности A.

Заметим, что верно и обратное неравенство, так как $B_n \subseteq A$. Значит $\mathbb{P}(\bigcap_{n=1}^{\infty} B_n) = \mathbb{P}(A)$ и все доказано.

$$\mathbb{P}(\{\omega \in A^c : \omega : T^k \omega \in A, k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c : \omega \in T^{-k} k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2, \dots\}) = \mathbb{P}(\{\omega \in A^c k \in T^c k = 1, 2,$$

$$= \mathbb{P}(T^{-1}(\bigcap_{n=1}^{\infty} B_n) \setminus A) = 0$$

Так как, $B_n \subseteq A$, то имеем оценку

$$\mathbb{P}(T^{-1}(\bigcap_{n=1}^{\infty} B_n) \setminus A) \le \mathbb{P}(T^{-1}A \setminus A) = 0$$

Последнее равно 0 по почти-инваринтности A.

Задача 7. Привести пример сохраняющих меру преобразований T на $(\Omega, \mathscr{F}, \mathbb{P})$, для которых: (a) из того что $A \in \mathscr{F}$, вовсе не следует, что $TA \in \mathscr{F}$; (b) из того, что $A \in \mathscr{F}$ и $TA \in \mathscr{F}$, вовсе не следует, что $\mathbb{P}(A) = \mathbb{P}(TA)$.

Доказательство. (a) Рассмотрим следующее вероятностное пространство: $\Omega = \{a, b, c\}, \mathscr{F} = \{\emptyset, \{a\}, \{b, c\}, \Omega\}, \mathbb{P} : \mathbb{P}(a) = \frac{1}{2}, \mathbb{P}(\{b, c\}) = \frac{1}{2}. \text{ В качестве } T \text{ - возьмем следующее преобразование: } T(a) = b, T(b) = T(c) = a. \text{ Ясно, что оно сохраняет меру}(T^{-1}(\{a\}) = \{b, c\}, T^{-1}(\{b, c\}) = \{a\}), \text{ но } T(\{a\}) = \{b\}$ — не измеримо.

(b)Рассмотрим следующее вероятностное пространство и его преобразование: $\Omega = \{a,b\}, \mathscr{F} = 2^{\Omega}, \mathbb{P} : \mathbb{P}(a) = 1, \mathbb{P}(b) = 0, T : T(a) = T(b) = a$. Оно сохраняет меру, но $0 = \mathbb{P}(b) \neq \mathbb{P}(T^{-1}(b)) = \mathbb{P}(a) = 1$.

3. Эргодические теоремы

Задача 1. Пусть $\xi = (\xi_1, \xi_2, \dots)$ – гауссовская стационарная последовательность (т.е. $\xi_i \backsim \mathcal{N}(0, \sigma_i^2))$ с $\mathbb{E}\xi_n = 0$ и ковариационной функцией $R(n) = \mathbb{E}\xi_{k+n}\xi_k$. Показать, что условие $R(n) \to 0$ является достаточным для того, чтобысохраняющее меру преобразование, соответствующее последовательности ξ , было перемешиванием (и, следовательно эргодическим).

Доказательство. Зафиксируем $A_0, B_0 \in \mathscr{B}(\mathbb{R}^{\infty})$. Положим

$$A = \{\omega : (\xi_1, \xi_2, \dots) \in A_0\}, B = \{\omega : (\xi_1, \xi_2, \dots) \in B_0\}, B_n = \{\omega : (\xi_n, \xi_{n+1}, \dots) \in B_0\}$$

Нужно доказать, что

$$\mathbb{P}(A \cap B_n) \to \mathbb{P}(A)\mathbb{P}(B), n \to \infty$$

Зафиксируем $\epsilon > 0$. Так как наша σ -алгебра попрождена всевозможными $\mathcal{B}(\mathbb{R}^n)$, то существует такое $m \in \mathbb{N}$ и открытые множества A_0^*, B_0^* такие, что $\mathbb{P}(A \triangle A^*) < \epsilon$ и $\mathbb{P}(B \triangle B^*) < \epsilon$ где $A^* = \{\omega : (\xi_1, \xi_2, \dots) \in A_0^*\}$ и $B^* = \{\omega : (\xi_1, \xi_2, \dots) \in B_0^*\}$. Из стационарности для множеств $B_n = \{\omega : (\xi_n, \xi_{n+m-1}, \dots) \in B_0^*\}$ получаем $\mathbb{P}(B_n \triangle B_n^*) < \epsilon$.

Пусть P — распределение вектора $(\xi_1, \xi_2, \ldots, \xi_m, \xi_1, \xi_2, \ldots, \xi_m)$ и Q_n — распределение вектора $(\xi_1, \xi_2, \ldots, \xi_m, \xi_n, \xi_{n+1}, \ldots, \xi_{n+m-1})$. Докажем, что из того, что $R(n) \to 0$ следует $Q_n \stackrel{w}{\to} P$, $n \to \infty$. Рассмотрим характеристические функции этих распределени. Пусть $\phi_n(\overline{t})$ — характеристическая функция распределения Q_n и $\phi(\overline{t})$ — характеристическая функция распределения P. Докажем, что $\phi_n \to \phi$, $n \to \infty$. Это равносильно слабой сходимости.

$$\phi_n(\bar{t}) = exp\{-\frac{1}{2}(K_n\bar{t},t)\}, \ \phi(\bar{t}) = exp\{-\frac{1}{2}(K\bar{t},t)\}, \ \text{где},$$

$$K_m = (\mathbb{E}\xi_i\xi_j)_{i,j\in\{1,\dots m\}},$$

$$K = \begin{pmatrix} K_m & 0 \\ 0 & K_m \end{pmatrix}, K_n = \begin{pmatrix} K_m & A_n \\ A_n^T & C_n \end{pmatrix},$$

$$A_n = (\mathbb{E}\xi_i\xi_{n+j-1})_{i,j\in\{1,\dots m\}}, C_n = (\mathbb{E}\xi_{n+i-1}\xi_{n+j-1})_{i,j\in\{1,\dots m\}}$$

Из стационарности следует, что $(\xi_1,\ldots\xi_m)$ и $(\xi_n,\ldots\xi_{n+m-1})$ одинаково распределены и следовательно $C_n=K$. Из $R(n)\to 0$ следует, что A_n поэлементно стремится к нулевой матрице. Тогда $\phi_n\to\phi, n\to\infty$ и значит есть слабая сходимость распределений.

Пусть \mathbb{P}_n – мера соответствующая распределению Q_n и \mathbb{S} – мера соответствующая распределению P. Применим теорему 1 со стр. 431 [1]:

$$\overline{\lim} \, \mathbb{P}_n(Z) \leq \mathbb{S}(Z)$$
, где Z – замкнутое множество

$$\underline{\lim} \mathbb{P}_n(C) \geq \mathbb{S}(C)$$
, где C – открытое множество.

Теперь мы можем доказать свойство перемешивания. Распишем $\mathbb{P}(A \cap B_n)$:

$$\lim_{n \to +\infty} \mathbb{P}(A \cap B_n) \le \lim_{n \to +\infty} [\mathbb{P}(A^* \cap B_n^*)] + \epsilon =$$

$$= \lim_{n \to +\infty} [\mathbb{P}(\omega : (\xi_1, \xi_2, \dots, \xi_m) \in A^*, (\xi_n, \xi_{n+1}, \dots, \xi_{n+m-1}) \in B_0^*)] + \epsilon =$$

$$= \overline{\lim_{n \to +\infty}} \mathbb{P}_n(A^* \times B_0^*) \le \mathbb{S}(A^* \times B_0^*) = \mathbb{P}(A^*)\mathbb{P}(B^*) \le (\mathbb{P}(A) + \epsilon)(\mathbb{P}(B) + \epsilon)$$

Аналогично доказывается обратная оценка, но с приближением не открытыми множествами, а замкнутыми.

Задача 2. Показать, что для всякой последовательности $\xi = (\xi_1, \xi_2, \dots)$, состоящей из независимых одинаково распределенных случайных величин, соответствующее сохраняющее меру преобразование является перемешиванием.

Доказательство. Зафиксируем $A_0, B_0 \in \mathscr{B}(\mathbb{R}^{\infty})$. Положим

$$A = \{\omega : (\xi_1, \xi_2, \dots) \in A_0\}, B = \{\omega : (\xi_1, \xi_2, \dots) \in B_0\}, B_n = \{\omega : (\xi_n, \xi_{n+1}, \dots) \in B_0\}$$

Нужно доказать, что

$$\mathbb{P}(A \cap B_n) \to \mathbb{P}(A)\mathbb{P}(B), n \to \infty$$

Зафиксируем $\epsilon > 0$. Так как наша σ -алгебра попрождена всевозможными $\mathscr{B}(\mathbb{R}^n)$, то существует такое $m \in \mathbb{N}$ и множество A_0^* такое, что $\mathbb{P}(A \triangle A^*) < \epsilon$ где $A^* = \{\omega : (\xi_1, \xi_2, \dots) \in A_0^*\}$. Тогда из независимости, при n > m имеем:

$$\mathbb{P}(A^* \cap B_n) = \mathbb{P}(A^*)\mathbb{P}(B_n) = \mathbb{P}(A^*)\mathbb{P}(B)$$

Последнее равенство выполняется ввиду стационарности.

Оценим следующее выражение при n > m

$$|\mathbb{P}(A\cap B_n) - \mathbb{P}(A)\mathbb{P}(B_n)| \leq |\mathbb{P}(A\cap B_n) - \mathbb{P}(A^*\cap B_n)| + |\mathbb{P}(A^*\cap B_n) - \mathbb{P}(A)\mathbb{P}(B_n)| \leq \epsilon + |\mathbb{P}(A^*)\mathbb{P}(B_n) - \mathbb{P}(A)\mathbb{P}(B_n)| = \epsilon + |(\mathbb{P}(A^*) - \mathbb{P}(A))\mathbb{P}(B_n)| \leq \epsilon + \epsilon |\mathbb{P}(B_n)| \leq 2\epsilon$$
 Значит свойство перемешивания выполняется.

Задача 3. Показать, что стационарная последовательность ξ эргодична в том и только том случае, когда для любого $B \in \mathcal{B}(\mathbb{R}^k), k = 1, 2, \dots$

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{B}(\xi_{i}, \dots, \xi_{i+k-1}) \to \mathbb{P}\{(\xi_{1}, \dots, \xi_{k}) \in B\}, \, \mathbb{P}\text{-}n.н.\,(*)$$

Доказательство. \Longrightarrow Пусть Q – распределение последовательности $\xi=(\xi_1,\xi_2,\dots),$ и определим T следующим образом:

$$T:(x_1,x_2,\dots)\to(x_2,x_3,\dots)$$

Тогда T – эргодическое преобразование, и применив эргодическую теорему Биркгофа-Хинчина к $\eta(x_1, x_2, \dots) = \mathbb{1}_B(x_1, x_2, \dots, x_k)$, получаем требуемое.

 \bigcirc Докажем, что T – эргодическое. Для этого достаточно доказать, что любое множество из σ -алгебры \mathcal{J} инварантных множеств имеет меру 0 или 1. Перепишем условие (*):

$$\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}_{A}(T^{i}\omega)\to\mathbb{Q}(A),\ \mathbb{P}$$
-п.н., где $A=\{\omega:(x_{1},x_{2},\ldots,x_{k})\in B\},B\in\mathscr{B}(\mathbb{R}^{k}).$

Тогда по теоереме Биркгофа-Хинчина $\mathbb{E}_Q(\mathbb{1}_A|\mathscr{J}) = \mathbb{E}_Q\mathbb{1}_A$, для $A = \{\omega : (x_1, x_2, \dots, x_k) \in \mathbb{E}_Q(\mathbb{1}_A|\mathscr{J}) = \mathbb{E}_Q(\mathbb{1}_A|\mathscr{J}) = \mathbb{E}_Q(\mathbb{1}_A|\mathscr{J}) = \mathbb{E}_Q(\mathbb{1}_A|\mathscr{J}) = \mathbb{E}_Q(\mathbb{1}_A|\mathscr{J})$ $B\}, B \in \mathscr{B}(\mathbb{R}^k)$. Так как такие A - порождают $\mathscr{B}(\mathbb{R}^\infty)$, то это равенство верно для любого множества из $\mathscr{B}(\mathbb{R}^{\infty})$. В частности это верно для множеств из \mathscr{J} . Тогда для $A \in \mathscr{J}$:

$$\mathbb{E}_Q(\mathbb{1}_A|\mathscr{J}) = \mathbb{1}_A = \mathbb{E}_Q\mathbb{1}_A$$

Значит любое множество из \mathcal{J} имеет меру либо 0, либо 1.

Задача 4. Пусть на (Ω, \mathscr{P}) заданы две вероятностные меры \mathbb{P} и Q, относительно которых сохраняющее меру преобразование Т является эргодическим. Доказать, что тогда или $\mathbb{P} = Q$ или $\mathbb{P} \perp Q$ $(\exists A \in \mathscr{F} : \mathbb{P}(A) = 1, Q(A) = 0).$

Доказательство. Пусть $\mathbb{P} \neq Q$. Воспользуемся конструкцией из 8 задачи 1 параграфа. Пусть \mathscr{P} — выпуклое множество мер, относительно которых T является сохраняющим меру преобразованием. Тогда $\mathbb P$ и Q – крайние точки этого множества. Рассмотрим $\lambda=\frac{1}{2}\mathbb{P}+\frac{1}{2}Q.$ Так как это не крайняя точка \mathscr{F} , то λ не эргодическое преобразование, а значит существует инвариантное множество А положительной, но не полной меры. Также, относительно эргодических мер A должно иметь меру 0 или 1. Значит $\mathbb{P}(A)=1, Q(A)=0$ или $\mathbb{P}(A) = 0, Q(A) = 1$. Во втором случае, в качестве искомого множества полной меры подойдет A^c .

Задача 5. Пусть T – сохраняющее меру преобразование на $(\Omega, \mathscr{F}, \mathbb{P})$ и \mathscr{A} – алгебра подмножеств Ω такая, что $\sigma(\mathscr{A}) = \mathscr{F}$. Пусть

$$\mathbb{1}_A^{(n)} = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_A(T^i \omega)$$

хотя бы одно из следующих условий:

- (i) $\mathbbm{1}_A^{(n)} \stackrel{\mathbb{P}}{\to} \mathbb{P}(A)$ для любого $A \in \mathscr{A}$. (ii) $\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n \mathbb{P}(A \cap T^{-i}B) = \mathbb{P}(A)\mathbb{P}(B)$ для всех $A, B \in \mathscr{A}$.
- (iii) $\mathbb{1}^{(n)}_A \overset{\mathbb{P}}{\to} \mathbb{P}(A)$ для любого $A \in \mathscr{F}.$

Доказательство. (iii) Следует из 3 задачи

(i) Сведем к предыдущему случаю. Достаточно доказать, что для любого $A \in \mathscr{F}$

$$\mathbb{P}\{|\mathbb{1}_A^{(n)} - \mathbb{P}(A)| > \epsilon\} \to 0, \ n \to \infty.$$

Зафиксируем $A \in \mathcal{F}$, $\delta > 0$. Так как $\sigma(\mathscr{A}) = \mathscr{F}$, то найдется такое $A^* \in \mathscr{A}$, такое что $\mathbb{P}(A \triangle A^*) < \frac{\delta}{3}$. Оценим $\mathbb{P}\{|\mathbb{1}_A - \mathbb{1}_{A^*}| > \frac{\epsilon}{3}\}$:

$$\mathbb{P}\{|\mathbb{1}_A - \mathbb{1}_{A^*}| > \frac{\epsilon}{3}\} \le \mathbb{P}\{|\mathbb{1}_A - \mathbb{1}_{A^*}| > 0\} \le \frac{\delta}{3}$$

Значит и для средних оценка выполняется:

$$\mathbb{P}\{|\mathbb{1}_{A}^{(n)} - \mathbb{1}_{A^*}^{(n)}| \le \frac{\delta}{3}$$

Заметим, что по неравенству треугольника:

$$|\mathbb{1}_{A}^{(n)} - \mathbb{P}(A)| \le |\mathbb{1}_{A}^{(n)} - \mathbb{1}_{A^*}^{(n)}| + |\mathbb{1}_{A^*}^{(n)} - \mathbb{P}(A^*)| + |\mathbb{P}(A) - \mathbb{P}(A^*)|$$

Теперь мы можем оценить $\mathbb{P}\{|\mathbb{1}_{\scriptscriptstyle A}^{(n)}-\mathbb{P}(A)|>\epsilon\}$:

$$\begin{split} \mathbb{P}\{|\mathbb{1}_{A}^{(n)} - \mathbb{P}(A)| > \epsilon\} &\leq \mathbb{P}\{|\mathbb{1}_{A}^{(n)} - \mathbb{1}_{A^*}^{(n)}| > \frac{\epsilon}{3}\} + \mathbb{P}\{|\mathbb{1}_{A^*}^{(n)} - \mathbb{P}(A^*)| > \frac{\epsilon}{3}\} + \mathbb{P}\{|\mathbb{P}(A) - \mathbb{P}(A^*)| > \frac{\epsilon}{3}\} \leq \\ &\leq \frac{2\delta}{3} + \mathbb{P}\{|\mathbb{1}_{A^*}^{(n)} - \mathbb{P}(A^*)| > \frac{\epsilon}{3}\} \end{split}$$

Последнее слагаемое стремится к 0 при $n \to \infty$. Получаем пценку для любого $\delta > 0$:

$$0 < \overline{\lim}_{n} \mathbb{P}\{|\mathbb{1}_{A}^{(n)} - \mathbb{P}(A)| > \epsilon\} < \frac{2\delta}{3}$$

Значит $\lim_{n\to\infty}\mathbb{P}\{|\mathbb{1}_A^{(n)}-\mathbb{P}(A)|>\epsilon\}=0.$ (ii) Сведем задачу к следствию со стр. 606 [2]. Зафиксируем $\epsilon>0$ и найдем такие $A_{\epsilon}, B_{\epsilon} \in \mathscr{A}$ такие, что $\mathbb{P}(A \triangle A_{\epsilon}) < \epsilon$ и $\mathbb{P}(B \triangle B_{\epsilon}) < \epsilon$. Воспользуемся оценкой, полученной в 5 задаче 2-го параграфа:

$$\mathbb{P}(A_{\epsilon} \cap T^{-n}B_{\epsilon}) - 4\epsilon \leq \mathbb{P}(A \cap T^{-n}B) \leq \mathbb{P}(A_{\epsilon} \cap T^{-n}B_{\epsilon}) + 4\epsilon$$

Тогда

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{P}(A_{\epsilon} \cap T^{-i}B_{\epsilon}) - 4\epsilon \leq \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{P}(A \cap T^{-i}B) \leq \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{P}(A_{\epsilon} \cap T^{-i}B_{\epsilon}) + 4\epsilon$$

$$\mathbb{P}(A_{\epsilon})\mathbb{P}(B_{\epsilon}) - 4\epsilon \leq \overline{\lim_{n \to +\infty}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{P}(A \cap T^{-i}B) \leq \mathbb{P}(A_{\epsilon})\mathbb{P}(B_{\epsilon}) + 4\epsilon$$

$$(\mathbb{P}(A) - \epsilon)(\mathbb{P}(B) - \epsilon) - 4\epsilon \leq \overline{\lim_{n \to +\infty}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{P}(A \cap T^{-i}B) \leq (\mathbb{P}(A) + \epsilon)(\mathbb{P}(B) + \epsilon) + 4\epsilon$$

Аналогичная оценка верна и для нижнего предела. Тогда в силу произвольности ϵ полу-чаем требуемое.

Задача 6. Пусть T – сохраняющее меру преобразование на $(\Omega, \mathscr{F}, \mathbb{P})$. Доказать, что это преобразование эргодично относительном меры $\mathbb P$ тогда и только тогда, когда на (Ω,\mathscr{F}) не существует меры $Q\neq\mathbb{P}$ такой, что относительно \mathbb{P} Q имеет плотность и преобразование T сохраняет меру Q.

Доказательство. Предположим противное. Пусть $Q(A) = \int_A f(z) d\mathbb{P}$. Тогда, как было показано в 8 задаче 1-го параграфа f(z) = f(Tz) и следовательно f(z) является инваринтной случайной величиной отмносительно меры \mathbb{P} . Тогда \mathbb{P} – не эргодично. Получили противоречие.

Задача 7. Доказать, что преобразование бернуллиевского сдвига (стр. 610 [2]) является перемешиванием

Доказательство. Частный случай задачи 2 3-го параграфа.

Задача 8. Пусть T – сохраняющее меру преобразование на $(\Omega, \mathscr{F}, \mathbb{P})$. Будем обозначать $T^{-1}\mathscr{F} = \{T^{-1}A : A \in \mathscr{F}\}$ и говорить, что σ - алгебра

$$\mathscr{F}_{-\infty} = \bigcap_{n=1}^{\infty} T^{-n} \mathscr{F}$$

является тривиальной ($\mathbb P$ - тривиальной), если каждое множество из $\mathscr F_{-\infty}$ имеет меру 0 или 1. Доказать, что такое преобразование T – обладает свойством эргодичности и перемешивания.

Доказательство. Сразу будем доказывать, свойство перемешивания. Эргодичность отсюда будет следовать.

Докажем следующую лемму:

Лемма 1. Пусть X, Y_n – ограниченные случайные величины, такие что:

(i)
$$\mathbb{E}(X) = \mathbb{E}(Y_n) = 0$$

(ii)
$$\mathbb{E}X^2 \le 1$$
, $\mathbb{E}Y_n^2 \le 1$

(iii) Y_n – измерима относительно σ - алгебры $T^{-n}\mathscr{F}$ Тогда $\mathbb{E} XY_n \to 0, \ n \to \infty$

Покажем, что из леммы следует утверждение. Рассмотрим $X := \mathbb{1}_A - \mathbb{P}(A)$ и $Y_n := \mathbb{1}_{T^{-n}B} - \mathbb{P}(T^{-n}B) = \mathbb{1}_{T^{-n}B} - \mathbb{P}(B)$ (последнее равенство верно. так как T сохраняет меру). Очевидно, что обе случайные величины подходят под условие леммы. Тогда

$$\mathbb{P}(A \cap T^{-n}B) - \mathbb{P}(A)\mathbb{P}(B) = \mathbb{E}\{\mathbb{1}_{A \cap T^{-n}B} - \mathbb{1}_A\mathbb{P}(B) - \mathbb{1}_{T^{-n}B}\mathbb{P}(A) + \mathbb{P}(A)\mathbb{P}(B)\} = \mathbb{E}XY_n$$

Тогда $\lim_{n\to+\infty} \mathbb{P}(A\cap T^{-n}B) = \mathbb{P}(A)\mathbb{P}(B)$, т.е. T – преобразование перемешивания. Докажем лемму:

Заметим, что σ - алгебры $\mathscr{F}_n = T^{-n}\mathscr{F}$ — образуют убывающую фильтрацию. Тогда по теореме Леви $\mathbb{E}(X|\mathscr{F}_n) \to \mathbb{E}(X|\mathscr{F}_{-\infty})$ почти наверное. Так как $\mathscr{F}_{-\infty}$ — тривиальная σ -алгебра, то $\mathbb{E}(X|\mathscr{F}_{-\infty}) = \mathbb{E}X = 0$. Значит $\mathbb{E}(XY_n|\mathscr{F}_n) = Y_n\mathbb{E}(X|\mathscr{F}_n) \to 0$ почти наверное, так как Y_n — ограничена и \mathscr{F}_n -измерима. Далее, если X и Y_n ограниченные случайные величины, то по теореме Лебега о мажорируемой сходимости:

$$\mathbb{E}(\mathbb{E}(XY_n|\mathscr{F}_n)) = \mathbb{E}XY_n \to 0$$

Значит лемма доказана.

Задача 9. Пусть $1 \leq p < \infty$ и T – сохраняющее меру преобразование на вероятностном пространстве $(\Omega, \mathscr{F}, \mathbb{P})$. Пусть случайная величина $\xi(\omega) \in L^p(\Omega, \mathscr{F}, \mathbb{P})$. Доказать справедливость следующей эргодической теоремы фон Неймана в $L^p(\Omega, \mathscr{F}, \mathbb{P})$: существует случайная величина $\eta(\omega)$ такая, что

$$\mathbb{E}\left|\frac{1}{n}\sum_{k=0}^{n-1}\xi(T^k\omega)-\eta(\omega)\right|^p\to 0, n\to\infty.$$

Доказательство. Положим за $f(\omega)$ ограниченную функция, и такую, что $\mathbb{E}|\xi-f|^p<\epsilon$. Тогда пусть $\eta(\omega)=\mathbb{E}(f|\mathcal{J})$. Имеем оценку

$$\left(\mathbb{E}\left|\frac{1}{n}\sum_{k=0}^{n-1}\xi(T^k\omega)-\eta(\omega)\right|^p\right)^{\frac{1}{p}}\leq \left(\mathbb{E}\left|\frac{1}{n}\sum_{k=0}^{n-1}(\xi(T^k\omega)-f(T^k\omega))\right|^p\right)^{\frac{1}{p}}+\left(\mathbb{E}\left|\frac{1}{n}\sum_{k=0}^{n-1}f(T^k\omega)-\eta(\omega)\right|^p\right)^{\frac{1}{p}}$$

Первое слагаемое не больше ϵ . По эргодической теореме Биркгофа-Хинчина среднее f сходится по вероятности к η , и последнее слагаемое стремится к 0, так как под знаком матожидания стоят ограниченные, сходящиеся почти-всюду величины и мы можем применить теорему Лебега о мажорируемой сходимости. Значит есть сходимость в среднем в L^p .

Задача 10. Теорема Бореля о нормальности утверждает, что доля единиц и нулей в двоичном разложении чисел $\omega \in [0,1)$ сходится почти наверное (относительно меры Лебега) $\kappa \frac{1}{2}$. Доказать этот результат, рассматривая преобразование $T:[0,1) \to [0,1)$, определенное формулой

$$T(\omega) = 2\omega \, (mod \, 1),$$

и применяя эргодическую теорему 1 (стр. 604 [2]).

Доказательство. Пусть $\omega = 0, \omega_1 \omega_2 \dots$ Рассмотрим случайную величину $\xi(\omega) = \mathbb{1}_{\{\omega_1 = 1\}}(\omega)$. $\xi(\omega)$ устроена слудующим образом:

$$\xi(\omega) = \begin{cases} 1, & \text{если } \omega \in \left[\frac{1}{2}, 1\right) \\ 0, & \text{иначе.} \end{cases}$$

Значит $\mathbb{E}\xi = \frac{1}{2}$. Распишем $\xi(T^n\omega)$

$$\xi(T^n\omega) = \mathbb{1}_{\{\omega_1=1\}}(2^n\omega) = \mathbb{1}_{\{\omega_{n-1}=1\}}(\omega)$$

Если T эргодическое, тогда по эргодической теореме Биркгофа-Хинчина:

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \xi(T^k \omega) = \sum_{k=0}^{n-1} \mathbb{1}_{\{\omega_k = 1\}}(\omega) = \mathbb{E}\xi = \frac{1}{2}$$

Докажем теперь, что T – эргодическое преобразование. Согласно замечанию к теореме 1 стр. 602 [2], эргодичность равносильна тому, что любая инвариантная случайная величина $\xi(\omega) \in L^2(\Omega, \mathscr{F}, \mathbb{P})$ – константа. Пусть $\xi(\omega)$ – инвариатная случайная величина, такая, что $\mathbb{E}\xi(\omega)^2 < \infty$. Рассмотрим её ряд Фурье $\sum_{n \in \mathbb{Z}} c_n e^{2\pi n\omega}$. Тогда, применяя результат задачи 1 §1 имеем:

$$c_n = \mathbb{E}\xi(\omega)e^{-2\pi n\omega} = \mathbb{E}\xi(T\omega)e^{-2\pi nT\omega} = \mathbb{E}\xi(T\omega)e^{-2\pi(2n)\omega} = \mathbb{E}\xi(\omega)e^{-2\pi n\omega} = c_{2n}$$

Так как $\sum_{n\in\mathbb{Z}}|c_n|^2<\infty$, то $c_n=0, n\neq 0, \xi(\omega)=c_0$, то есть, T – эргодическое преобразование по замечанию выше.

Задача 11. Пусть $\omega \in [0,1)$. Рассмотрим преобразование $T:[0,1) \to [0,1)$, определенное формулой

$$T(\omega) = \begin{cases} 0, & ecnu \ \omega = 0 \\ \{\frac{1}{\omega}\}, & uhave. \end{cases}$$

 $r \partial e \ x - \partial p o \delta h a s \ ч a c m b \ ч u c л a \ x.$

Показать, что преобразование T сохраняетмеру P = P(.) Гаусса на [0,1), определяемую формулой

 $P(A) = \frac{1}{\ln 2} \int_A \frac{dx}{1+x}, \ A \in \mathcal{B}([0,1)).$

Доказательство. Достаточно доказать, что мера сохраняется для интервалов вида [0, x], так как P([a, b]) = P([0, b]) - P([0, a]). Рассмотрим прообраз [0, x]:

$$0 \le \{\frac{1}{\omega}\} \le x$$

 $k \leq \frac{1}{\omega} \leq k + x$, Для какого-то $k \in \mathbb{N}$.

$$\frac{1}{k+x} \le \omega \le \frac{1}{k}$$

Значит $T^{-1}(0,x)=\bigcup_{k=1}^{\infty}[\frac{1}{k+x},\frac{1}{k}]$. Докажем, что эти интервалы дизъюнктны: Пусть два интервала пересеклись. Тогда:

$$\frac{1}{m+x} < \frac{1}{k+x} < \frac{1}{m}$$

Для каких-то $k, m \in \mathbb{N}$. Из первого неравенства заключаем, что k < m, то есть $k+1 \le m$. Из второго: m < k + x, что невозможно. Значит пересечение дизъюнктно. Посчитаем P(0, x):

$$P(0,x) = \frac{1}{\ln 2} \int_{(0,x)} \frac{dx}{1+x} = \frac{\ln(1+x)}{\ln 2}$$

Посчитаем меру прообраза:

$$P(T^{-1}(0,x)) = P(\bigcup_{k=1}^{\infty} \left[\frac{1}{k+x}, \frac{1}{k}\right]) = \sum_{k=1}^{\infty} \frac{1}{\ln 2} \int_{\frac{1}{k+x}}^{\frac{1}{k}} \frac{dx}{1+x} = \frac{1}{\ln 2} \sum_{k=1}^{\infty} \ln(1+\frac{1}{k}) - \ln(1+\frac{1}{k+x}) =$$

$$= \frac{1}{\ln 2} \sum_{k=1}^{\infty} \ln\left(\frac{(k+1)(k+x)}{k(k+x+1)}\right) = \frac{1}{\ln 2} \lim_{n \to +\infty} \sum_{k=1}^{n} \ln\left(\frac{(k+1)(k+x)}{k(k+x+1)}\right) = \frac{1}{\ln 2} \lim_{n \to +\infty} \ln\left(\frac{(n+1)(1+x)}{n+x+1}\right) =$$

$$= \frac{\ln(1+x)}{\ln 2} = P(0,x)$$

Значит преобразование T действительно сохраняет меру Гаусса.

Задача 12. Дать пример, показывающий, что теорема Пуанкаре о возвратности неверна, вообще говоря, в случае измеримых пространств с бесконечной мерой.

Доказательство. Пусть $(\Omega, \mathscr{F}, \mathbb{P}) = (\mathbb{R}, \mathscr{B}^1, \lambda_1)$ и T(x) = x + 1. Ясно, что T сохраняет меру, но для A = [0, 1] не верно, что $T^n(\omega) \in A$ для бесконечно многих n и почти каждой точки $\omega \in A$.

Список литературы

- [1] А. Н. Ширяев, Вероятность, из-во МЦНМО, Москва, 2021, Том 1.
- [2] А. Н. Ширяев, Вероятность, из-во МЦНМО, Москва, 2021, Том 2, 596 612.
- [3] Б. М. Макаров, А. Н. Подкорытов, Лекции по вещественному анализу, изд-во "БХВ-Петербург Санкт-Петербург (2011).