Mestrado Integrado em Engenharia Informática 2017/2018

Tópicos de Matemática Discreta

______ 2.º teste — 12 de janeiro de 2018 — _____ duração: 2 horas ______

- 1. Prove, por indução nos naturais, que $1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$, para todo o natural n.
- 2. Sejam $f:\mathbb{Z}\to\mathbb{N}$ e $g:\mathbb{N}\to\mathbb{Z}$ as funções definidas por

$$f(n) = \begin{cases} 2n-1 & \text{se} & n>0\\ 5 & \text{se} & n=0\\ -2n & \text{se} & n<0 \end{cases} \qquad g(n) = \begin{cases} 0 & \text{se} & n \notin \text{par}\\ 3 & \text{se} & n \notin \text{impar} \end{cases}.$$

- (a) Determine $f(\{-1,0,3\})$. Justifique
- (b) Dê exemplo de um conjunto $B \subseteq \mathbb{N}$ tal que $f^{\leftarrow}(B) = \{0, 3, 9\}$. Justifique.
- (c) Dê um exemplo de subconjuntos C e D de \mathbb{Z} tais que $f(C \cap D) \neq f(C) \cap f(D)$. Justifique.
- (d) Diga, justificando, se f é injetiva e se f é sobrejetiva.
- (e) Alguma das funções $f \circ g$ e $g \circ f$ é uma função constante? Justifique.
- 3. Seja R a relação binária em $\mathbb N$ definida por

a R b se e só se $a - b \ge 3$, para quaisquer $a, b \in \mathbb{N}$.

Sejam $A = \{1, 2, 3, 4, 5, 6\}$ e S a relação binária em A definida por $S = \{(1, 5), (6, 1), (3, 6), (5, 2)\}$.

- (a) Determine $Dom(R) \cap Im(S)$. Justifique.
- (b) Diga, justificando, se a relação R é:
 - i. simétrica; ii. transitiva.
- (c) Dê exemplo de uma relação binária T em A tal que $S^{-1} \circ T \subseteq R$.
- 4. Seja A o conjunto das palavras sobre o alfabeto $\{0,1\}$ de comprimento entre 1 e 4, ou seja, A é o conjunto formado por todas as sequências com 1, 2, 3 ou 4 dígitos iguais a 0 ou 1. [obs.: por exemplo, $0001 \in A$, mas $11110 \notin A$]. Seja R a relação de equivalência definida em A por

x R y se só se a palavra x tem o mesmo comprimento que a palavra y,

para quaisquer $x, y \in A$

- (a) Determine $[00]_R$. Justifique.
- (b) Indique, justificando, quantos elementos tem o conjunto A/R.
- 5. Considere o c.p.o. (A, \subseteq) , onde $A = \{\{1\}, \{2\}, \{4\}, \{1, 2\}, \{2, 4\}, \{3, 4\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$.
 - (a) Desenhe o diagrama de Hasse do c.p.o. (A, \subseteq) .
 - (b) Indique, caso, existam
 - i. os elementos maximais e os elementos minimais de A.
 - ii. o supremo de $\{\{2\}, \{4\}\}$ e o ínfimo de $\{\{1, 3, 4\}, \{2, 3, 4\}\}$.
- 6. Diga, justificando, se é verdadeira ou falsa, a afirmação seguinte: Para qualquer conjunto X e quaisquer relações binárias S e T em X, se S e T são relações de ordem parcial em X, então $S \cup T$ é uma relação de ordem parcial em X.

Cotações	1.	2.	3.	4.	5.	6.
	2,5	1+1+1+1,75+1,25	1+2+1	1,5+1	1,75+2	1,25