Higher Order Linear ODE: Existence and Uniqueness Results, Fundamental Solutions, Wronskian

Department of Mathematics IIT Guwahati

Differential Operators

Let I be an interval and n be a positive integer. We will now see what is meant by a differential operator from $C^n(I)$ to C(I).

Consider the map $D:C^1(I)\to C(I)$ given by D(f)=f'. More generally, for any $k\in\{1,\dots,n\}$, consider the map $D^k:C^k(I)\to C(I)$ given by $D^k(f)=f^{(k)}$, where $f^{(k)}$ denotes the k-th derivative of f. Observe that $D^k=D\circ D\circ \cdots \circ D$ (k times). By convention, $D^0=Id$ (the identity map).

The operators (or maps) D^k are called **differentiation operators**. Definition: A **differential operator** from $C^n(I)$ to C(I) is a map $L:C^n(I)\to C(I)$ which can be expressed as a function of the differentiation operator D.

For example: Take $L=D^n$ or $L=e^D$ or $L=a_nD^n+a_{n-1}D^{n-1}+\cdots+a_1D+a_0D^0$, where $a_0,a_1,\ldots,a_n\in C(I)$.

Linear ODEs

Definition The differential operator $L:C^n(I)\to C(I)$ is said to be **linear** if for any $y(x),y_1(x),y_2(x)\in C^n(I)$ and $c\in\mathbb{R}$,

• $L(y_1 + y_2) = L(y_1) + L(y_2)$, and L(cy) = cL(y).

Linear ODE: An ODE given by $F(x,y,y',\ldots,y^{(n)})=0$ on an interval I is said to be linear if it can be written as L(y)(x)=g(x), where $L:C^n(I)\to C(I)$ is a linear differential operator.

Example: Consider y'' + 3xy' + xy = x, this is a linear ODE. Note that L(y)(x) := y'' + 3xy' + xy is linear.

Non-linear ODE: A non-linear ODE involves higher powers of y and/or derivatives of y.

Example: $y'' + xy'^2 + xy^3 = x$ is a non-linear ODE. Note that $L(y)(x) := y'' + xy'^2 + xy^3$ is not linear.

 FACT: A general n-th order linear ODE can be represented as

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = g(x),$$

where a_i and g are given functions of x, $a_n(x) \neq 0$.

- CHECK THAT: $L:C^n(I)\to C(I)$ given by $L(y)(x):=a_n(x)y^{(n)}(x)+a_{n-1}(x)y^{(n-1)}(x)+\cdots+a_1(x)y'(x)+a_0(x)y(x)$ is a linear differential operator.
- When g(x) = 0, L(y)(x) = 0 is called homogeneous differential equation.

Existence and Uniqueness Results

Theorem: (Existence and uniqueness theorem for linear IVP of order n)

Suppose that $a_j(x), g(x) \in C(I)$ and $a_n(x) \neq 0$ for all $x \in I$. Let $x_0 \in I$. Then the initial value problem (IVP)

$$(Ly)(x) = g(x), \ y^{(j)}(x_0) = \alpha_j, \ j = 0, \dots, n-1,$$

where $\alpha_j \in \mathbb{R}$ and $L(y)(x) := a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \cdots + a_1(x)y'(x) + a_0(x)y(x)$, has a unique solution y(x) for all $x \in I$.

In particular, if g=0 and $\alpha_j=0,\ j=0,\dots,n-1,$ then y(x)=0 for all $x\in I.$

Example:

- The IVP $(1+x^2)y''+xy'-y=\tan x,\ y(1)=1,\ y'(1)=2\ \text{has a}$ unique solution which exists on $(-\pi/2,\pi/2)$).
- The IVP $y'' + 3x^2y' + e^xy = \sin x$, y(0) = 1, y'(0) = 0 has a unique solution which exists on $(-\infty, \infty)$).
- The IVP $y''-y=0,\ y(1)=0,\ y'(1)=0$ has a trivial solution y(x)=0 for all $x\in\mathbb{R}.$

Theorem: (Superposition principle for homogeneous equation)

Let $y_i \in C^n(I)$, $i=1,\cdots,n$ be any solutions of L(y)(x)=0 on I. Then $y(x)=c_1y_1(x)+c_2y_2(x)+\cdots+c_ny_n(x)$, where $c_i,\ i=1,\cdots,n$ are arbitrary constants, is also a solution on I.

Example: $y_1(x) = e^{2x}$ and $y_2(x) = xe^{2x}$ are two solutions of y'' - 4y' + 4y = 0. Note that $y(x) = c_1y_1(x) + c_2y_2(x)$ is also a solution of y'' - 4y' + 4y = 0.

Theorem:(Superposition principle for non-homogeneous equation)

Let $y_{p_i} \in C^n(I)$ be solutions of $L(y)(x) = g_i(x)$ for each $i = 1, \dots, n$ on I. Then

$$y_p(x) = c_1 y_{p_1}(x) + c_2 y_{p_2}(x) + \dots + c_n y_{p_n}(x),$$

where c_i , $i=1,\cdots,n$ are arbitrary constants, is a solution of $L(y)(x)=\sum_{i=1}^n c_i g_i(x)$ on I.

Example: Note that $y_{p_1}(x) = e^x$ is solution of $y'' - 2y' + 2y = e^x$ and $y_{p_2}(x) = x^2$ is a solution of $y'' - 2y' + 2y = 2 - 4x + 2x^2$. Then $10e^x + 7x^2$ is a solution of $y'' - 2y' + 2y = 10e^x + 7(2 - 4x + 2x^2)$.

Solution of linear ODE:

Consider the linear differential operator L where

$$L(y) := a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y,$$

where $a_i:I\to\mathbb{R}$ are given functions.

Problem: Given $g \in C(I)$, find $y \in C^n(I)$ such that L(y) = g.

Since $L:{\cal C}^n(I)\to {\cal C}(I)$ is a linear transformation, the solution set of

$$L(y) = g$$

is given by

$$Ker(L) + y_P$$

where y_p is a particular solution (PS) satisfying $L(y_P) = g$ and $Ker(L) = \{y \in C^n(I) | L(y) = 0\}.$

Note that Ker(L) is a vector space.

If $\{y_1, \ldots, y_n\} \subset C^n(I)$ is a basis of $\mathrm{Ker}(L)$, then the general solution (GS) of L(y) = g is given by

$$y = c_1 y_1 + \dots + c_n y_n + y_P.$$

Moral: (The GS of
$$L(y) = g$$
) = (The GS of $L(y) = 0$) + (a PS y_p satisfying $L(y_p) = g$)

Theorem: We have $\dim(\operatorname{Ker}(L)) = n$.

Proof: Choose $x_0 \in I$. Define $T : \text{Ker}(L) \to \mathbb{K}^n$ by

$$Ty := (y(x_0), y'(x_0), \dots, y^{(n-1)}(x_0)).$$

Here, \mathbb{K} is either the field of real numbers or the field of complex numbers.

Then T is linear. By uniqueness theorem, $T(y)=\mathbf{0}$ implies y=0. Therefore, T is one-to-one. The existence of solution shows that T is onto. Thus, T is bijective. Hence $\dim(\operatorname{Ker}(L))=n$.