AutoML Challenge: AutoML Framework Using Random Space Partitioning Optimizer

Jungtaek Kim¹, Jongheon Jeong², Seungjin Choi¹

¹ Department of Computer Science and Engineering, POSTECH

² exbrain Inc.

AutoML 2016 Workshop on ICML @ NYC

AutoML Challenge (Guyon et al., 2015, 2016)

- Started in December 2014
- 5 rounds, excluding round 0
- Binary classification / Multi-class classification / Multilabel classification / Regression
- 3 phases per each round
- AutoML / Tweakathon / Final

Our Architecture

- Five components; meta-learning initializer, Bayesian optimizer, response predictor, metric calculator, and model builder
- Meta-learning initializer
- Referred from auto-sklearn (Feurer et al., 2015)
- Bayesian optimizer

12 end

Mondrian forests optimizer

Mondrian Forests Optimizer

Algorithm 1: Mondrian Forests Optimizer Input: $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ where $\mathbf{x}_i \in \mathcal{ACS}$ and y_i is sampled from the performance measure, and Time budget \mathcal{T} Output: $\mathbf{x}_{best} \in \mathcal{ACS}$ 1 $\mathcal{MF} = \text{None}$ 2 for $t < \mathcal{T}$ do 3 | if $\mathcal{MF} == \text{None}$ then 4 | Build Mondrian forests, \mathcal{MF} for \mathcal{D} else 6 | Extend \mathcal{MF} with $\{(\mathbf{x}_{new,j}, y_{new,j})\}_{j=1}^K$ 7 end 8 | Draw seed configurations $\in \mathcal{ACS}$ of local search for min_for_search times 9 | Search the neighbors of seed configurations and find the candidates, whose responses of the acquisition function are higher 10 | Merge the randomly sampled configurations $\in \mathcal{ACS}$ with the candidates queried from the acquisition function 11 | Update the best K configurations, $\{(\mathbf{x}_{new,j}, y_{new,j})\}_{j=1}^K$ into \mathcal{D}

- Random space partitioning optimizer
- Extended from Mondrian forests regression

13 return $\mathbf{x}_{best} \in \mathcal{ACS}$ where \mathbf{x}_{best} is the configuration which has the largest y_i of $(\mathbf{x}_i, y_i) \in \mathcal{D}$

- Handle all variables such as categorical and numerical variables
- Run on both Mondrian forests optimizer and actual response sampler in parallel

The Based System, auto-sklearn and Its Characteristics

- Four components; meta-learning initializer, Bayesian optimizer, machine learning framework, and ensemble builder
- Based on scikit-learn library
- Optimized by SMAC (Hutter et al., 2010)
- Bayesian optimizer using random forests
- Heuristic uncertainty estimation
- Tree rebuilding is needed

Mondrian Forests Regression

- Introduced by Lakshminarayanan et al. (2016)
- An ensemble of probabilistic generalized k-d trees
- A restriction of a Mondrian process (Roy and Teh, 2008)
- A predictive label distribution of each tree is

$$p_{T_m}(y|\mathbf{x}_{\mathsf{test}}, \mathcal{D}_{1:N}) = \sum_{j \in \mathsf{path}(\mathsf{leaf}(\mathbf{x}_{\mathsf{test}}))} w_{mj} \mathcal{N}(y|\mu_{mj}, \sigma^2_{mj})$$

AutoML Challenge Results

Final3		Final4		AutoML5	
Team	Rank	Team	Rank	Team	Rank
aad_freiburg	1 (1.80)	aad_freiburg	1 (1.60)	aad_freiburg	1 (1.60)
${f djajetic}$	2(2.00)	ideal.intel.analytics	2(3.60)	djajetic	2(2.60)
ideal.intel.analytics	3 (3.80)	abhishek4	3(5.40)	postech.mlg_exbrain	3(4.60)
asml.intel.com	3(3.80)	postech.mlg_exbrain	4(5.80)		
postech.mlg_exbrain	4(5.40)				

Further Works and Conclusions

- Extend Mondrian forests optimizer to more straightforward assumption of Mondrian processes.
- Compare our system on a single machine and multiple machines
- Since AutoML is an online and sequential problem, Mondrian forests optimizer is proper to solve this problem.

Our System on GitHub 🗘

• https://github.com/postech-mlg-exbrain/AutoML-Challenge

References

- M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and robust automated machine learning. In Advances in Neural Information Processing Systems (NIPS), volume 28, 2015.
- I. Guyon, I. Chaabane, H. J. Escalante, S. Escalera, D. Jajetic, J. R. Lloyd, N. Mać Ia, B. Ray, L. Romaszko, M. Sebag, A. Statnikov, S. Treguer, and E. Viegas. A brief review of the ChaLearn AutoML challenge. In Proceedings of AutoML 2016 Workshop on the International Conference on Machine Learning (ICML), 2016.
- I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, T. K. Ho, N. Macia, B. Ray, M. Saeed, A. Statnikov, et al. Design of the 2015 ChaLearn AutoML challenge. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2015.
- F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration (extended version). Technical Report 10-TR-SMAC, UBC, 2010.
- B. Lakshminarayanan, D. M. Roy, and Y. W. Teh. Mondrian forests for large-scale regression when uncertainty matters. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), 2016.
- D. M. Roy and Y. W. Teh. The Mondrian process. In Advances in Neural Information Processing Systems (NIPS), volume 21, 2008.