CheatSheet di Analisi Matematica

Fabio Ferrario

@fefabo

2022/2023

Indice

1	Stu	dio di Funzione	4			
	1.1	Definizione del Dominio	4			
	1.2	Limiti ai punti di frontiera e Asintoti	5			
		1.2.1 Asintoti	5			
	1.3	Derivata, Monotonia e Estremanti	5			
		1.3.1 Punti di estremo	5			
	1.4	Derivata Seconda, Concavià/Convessità	5			
	1.5	Altri elmenti di studio di una funzione	6			
		1.5.1 Retta Tangente al grafico	6			
		1.5.2 Punti di Discontinuità	6			
		1.5.3 Funzioni Pari/Dispari	6			
2	Stu	dio dei Limiti	7			
	2.1	Limiti Notevoli	7			
	2.2	Equivalenze Asintotiche	8			
		2.2.1 O-Piccolo	8			
	2.3	Gerarchie di Infiniti	Ö			
	2.4	Forme di indecisione	6			
3	Serie 10					
	3.1	Serie Note	10			
	3.2		11			
4	Cal	colo Differenziale	13			
	4.1	Definizione di derivata e il Rapporto Incrementale	13			
	4.2		14			
		4.2.1 Derivate Composte	14			
			14			
	4.3		15			
			15			
		·	15			

INDICE 3

5 Calcolo Integrale

16

Insiemistica

Dati un elemento m e un insieme A:

- Massimo/Minimo: m si dice massimo/minimo di A se esso $Appartiene\ ad\ A$ ed é il piú grande/piccolo elemento di A.
- Maggiorante/Minorante: m si dice maggiorante/minorante di A se é Maggiore/Minore o uguale di ogni elemento di A.

Studio di Funzione

Nello studio di funzione bisogna fare:

- Definizione del Dominio
- Intersezione con gli Assi (Segno di f(x))
- Limiti ai punti di frontiera e Asintoti
- Derivata, Monotonia e Estremanti
- Derivata Seconda, Concavià/Convessità

In particolare:

1.1 Definizione del Dominio

In una funzione il dominio ha i seguenti limiti:

Denominatore $\neq 0$ Logaritmo Argomento > 0

Radiceⁿ Argomento ≥ 0 (sse n pari) $[f(x)]^{g(x)}$ f(x) > 0

1.2 Limiti ai punti di frontiera e Asintoti

Trovato il dominio, bisogna trovare i limiti ai punti di frontiera, quindi trovare i limiti in ogni punto in cui il dominio si interrompe (sia da destra che da sinistra) e eventualmente a $\pm \infty$.

1.2.1 Asintoti

Trovati tutti i limiti, se trovi:

- $\lim_{x \to \alpha^{\pm}} f(x) = \pm \infty \implies \text{Asintoto } Verticale.$
- $\lim_{x \to \pm \infty} f(x) = l \implies$ Asintoto Orizzontale (di equazione y = l)

Bisogna anche controllare la presenza di Asintoti Obliqui:

- $m = \lim_{x \to \pm \infty} \frac{f(x)}{x} \implies \text{se } m \text{ esiste } e \text{ non } \hat{e} \text{ nullo trovo } q$:
- $q = \lim_{x \to \pm \infty} [f(x) mx] \implies$ se q esiste allora y = mx + q è asintoto obliquo

1.3 Derivata, Monotonia e Estremanti

La monotonia di una funzione si calcola ponendo f'(x) > 0. Nei punti in cui la derivata è positiva, la funzione è **Crescente**, nei punti in cui è negativa la funzione è **Decrescente**

1.3.1 Punti di estremo

I punti in cui la derivata cambia direzione sono punti di estremo (max/min). Se il punto di estremo è il più grande/piccolo di tutta la funzione, allora sono Assoluti.

1.4 Derivata Seconda, Concavià/Convessità

Derivando la derivata prima si trova la derivata seconda, il cui segno da informazioni sulla Concavià e Convessità della funzione.

- $-\operatorname{conc} A \operatorname{va} \cap \Longrightarrow f''(x)$ positiva
- $+ \operatorname{con} \mathcal{V} \operatorname{essa} \cup \implies f''(x) \operatorname{negativa}$

1.5 Altri elmenti di studio di una funzione

1.5.1 Retta Tangente al grafico

Se viene chiesta la retta tangente al grafico in x_0 : trova y = mx + q ponendo:

- $m = f'(x_0)$
- $\bullet \ q = f(x_0) f'(x_0) \cdot x_0$

1.5.2 Punti di Discontinuità

I punti in cui una funzione non é continua si classificano nel seguente modo:

- 1. Prima specie (Salto): i limiti dx e sx di x_0 esistono finiti ma sono diversi.
- 2. Seconda spece (Essenziale): Almeno uno dei limiti è inifinito o non esiste.
- 3. Terza Spece (Eliminabile): il limite di x_0 esiste finito ma è diverso da $f(x_0)$ o non esiste.

1.5.3 Funzioni Pari/Dispari

(serve solo per le crocette)

- - Dispari $\implies f(-x) = -f(x)$
- + Pari $\implies f(-x) = f(x)$

Paritá e disparitá di funzioni note $\sin(x)$ è Pari, Decrescente in $[0, \pi]$ e Crescente in $[\pi, 2\pi]$.

cos(x) è Pari, Crescente in $[0,\pi]$ e Decrescente in $[\pi,2\pi]$.

Studio dei Limiti

2.1 Limiti Notevoli

 $\acute{\rm E}$ importante ricordarsi questi limiti notevoli, visto che sono generalmente il modo più rapido di risolvere i limiti

Logaritmo naturale	$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$
Logaritmo con base a	$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln(a)}$
f Esponenziale	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
f Esponenziale base a	$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a)$
Costante e Frazione	$\lim_{x \to 0} \frac{ax - 1}{x} = \ln(a)$
Seno	$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$
Coseno	$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$
$\ln(x)$	$\lim_{x \to 0} ln(x) = -\infty$

8

2.2 Equivalenze Asintotiche

DEFINIZIONE

Equivalenza Asintotica tra funzioni: Se il limite del rapporto di f(x) e g(x) é uguale a 1 allora f e g sono asintoticamente equivalenti per $x \to x_0$.

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1 \implies f(x) \sim g(x) \text{ per } x \to x_0$$

In particolare, alcune equivalenze note sono:

$ ext{con } x o 0$			
$\lim_{x\to 0}$	$\sin x$	~	x
$\lim_{x\to 0}$	$1-\cos x$	~	$\frac{1}{2}x^2$
$\lim_{x\to 0}$	$\tan x$	~	x
$\lim_{x\to 0}$	$\ln(1+x)$	~	x
$\lim_{x\to 0}$	$(1+x)^{\alpha}-1$	~	αx

2.2.1 O-Piccolo

Una funzione puó essere un 'o-piccolo' di un'altra.

DEFINIZIONE

<u>o-piccolo</u>: Se il limite del rapporto di f(x) su g(x) è uguale a 0 allora f(x) è <u>o-piccolo</u> di g(x) per $x \to x_0$.

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0 \implies f(x) = og(x) \text{ per } x \to x_0$$

Questa proprietá NON é commutativa.

Nota che per x_0 si intende un valore arbitrario che può essere anche 0 o $\pm \infty$.

9

2.3 Gerarchie di Infiniti

In situazioni di indecisione del tipo $[\infty \pm \infty]$ 'vince' l'infinito piú forte. In generale, la scala é la seguente:

$$\log_a x \ll x^b \ll c^x \ll x! \ll x^x$$

N.B.

- $\sqrt{x} \gg \ln(x)$
- $x \ln(x) \gg \sqrt{x}$

2.4 Forme di indecisione

In alcuni casi ci potremmo trovare delle Forme di indecisione che ci obbligano a usare altri metodi per risolvere i limiti.

Tutte le forme possono essere risolte usando Limiti Notevoli e Trucchi algebrici per ricondursi ad essi. In particolare però, questi si risolvono usando anche:		
$\left[\frac{0}{0}\right]$	Conf. infinitesmi — Scomp/Racc/Semp — De l'Hopital	
$\left[\frac{\infty}{\infty}\right]$	Conf. infinti — Scomp/Racc/Semp — De l'Hopital	
$[1^{\infty}]$	Identità Logaritmo-Esponenziale	
$[\infty-\infty]$	Riconduzione a $\frac{0}{0}$ o $\frac{\infty}{\infty}$	
$[\infty \cdot 0]$	Razionalizzazione inversa — Prodotti notevoli al contrario	
$[0^0] / [\infty^0]$	Conf. infiniti/infinitesimi—Identità Logaritmo-Esponenziale	

Teoremi Limiti utili per esercizi

Teorema del Confronto Se ho $x \to +\infty$ e ho sin o cos potrei dover usare il teorema del confronto dato che sin e cos (NB solo per $x \to +\infty$) sono delle costanti che oscillano tra -1 e 1.

Serie

3.1 Serie Note

Serie Telescopica

$$\sum_{n=1}^{+\infty} (a_n - a_{n+k}) \text{ Oppure: } \sum_{n=1}^{+\infty} (a_{n+k} - a_n)$$

Come si risolve una serie telescopica É necessario applicare la definzione di serie, cioè la successione delle somme parziali. Devo quindi manualmente sostituire n=1, n=2, n=3, ... fino a quando non riconosco il pattern della serie. Ricordati di non semplificare Numeratore e Denominatore!, mantenendo i numeri sostituiti sarà più facile scrivere il carattere della serie.

Serie Geometrica

$$\sum_{n=0}^{+\infty} q^n \begin{cases} \text{Diverge} & q \ge 1\\ \text{Converge} & -1 < q < 1\\ \text{Irregolare} & q \le -1 \end{cases}$$

Se una serie geometrica converge (-1 < q < 1), la somma si calcola:

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$$

Serie Armonica Generalizzata

$$\sum \frac{1}{n^{\alpha}} \begin{cases} \text{Diverge} & \alpha \le 1\\ \text{Converge} & \alpha > 1 \end{cases}$$

11

Serie Armonica Logaritmica

$$\sum \frac{1}{n^{\alpha} \log^{\beta}(n)} \begin{cases} \text{Converge} & \alpha > 1 \land \forall \beta \\ \text{Converge} & \alpha = 1 \land \beta > 1 \\ \text{Diverge} & \alpha = 1 \land \beta \leq 1 \\ \text{Diverge} & \alpha < 1 \land \forall \beta \end{cases}$$

3.2 Criteri di Convergenza

DEFINIZIONE

Condizione Necessaria non Sufficiente per la convergenza:

Il Limite della successione del termine generale a_n deve essere Inifinitesimo.

$$\sum_{n=1}^{+\infty} a_n \text{ converge } \Longrightarrow \lim_{n \to +\infty} a_n = 0$$

Serie Positive def nte

Se a_n è def $\frac{\text{nte}}{} \ge 0$ uso:

Criterio del Rapporto

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l \begin{cases} \text{Converge} & l < 1 \\ \text{Diverge} & l > 1 \\ \text{Criterio inconclusivo} & l = 1 \end{cases}$$

Criterio della Radice

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = l \begin{cases} \text{Converge} & l < 1 \\ \text{Diverge} & l > 1 \\ \text{Criterio inconclusivo} & l = 1 \end{cases}$$

Criterio del Confronto $a_n \leq b_n$ definitivamente \Longrightarrow

- se b_n Converge $\implies a_n$ Converge
- se a_n Diverge $+\infty \implies b_n$ Diverge $+\infty$

Serie con Segno Alterno

Se a_n è a segno **Alterno**:

Criterio della Assoluta Convergenza . $\sum a_n \text{ converge assolutamente se converge } \sum |a_n|.$ Se una serie converge assolutamente, allora converge.

Criterio di Leibniz DA SCRIVERE

Calcolo Differenziale

4.1 Definizione di derivata e il Rapporto Incrementale

il Rapporto incrementale Di una funzione è alla base della definizone di derivata, ed è così definito:

$$\frac{\Delta y}{\Delta x} \frac{f(x_0 + h) - f(x_0)}{h}$$

DEFINIZIONE

La **derivata di una funzione** in un punto è il limite del rapporto incrementale della funzione nel punto al tendere dell'incremento a zero.

$$f'(x_0) = \lim_{h \to 0} \frac{\Delta y}{\Delta x} \frac{f(x_0 + h) - f(x_0)}{h}$$

4.2 Tecniche e Metodi di derivazione

Alcune funzioni sono facilmente derivabili:

Nome	Funzione	Derivata
Seno	$\sin x$	$\cos x$
Coseno	$\cos x$	$-\sin x$
Arcotangente	arctan	$\frac{1}{1+x^2}$
Logaritmo	ln(x)	$\frac{1}{x}$
Esponenziale	e^x	e^x
Esponenziale (negativo)	e^{-x}	$-e^{-x}$
$1 \text{ su } x^2$	$\frac{1}{x^2}$	$-\frac{2}{x^3}$
x alla α	x^{α}	$\alpha x^{\alpha-1}$

4.2.1 Derivate Composte

Funzione composta	f(g(x))	$f'(g(x)) \cdot g'(x)$	
Prodotto	$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + g'(x) \cdot f(x)$	
Divisione	$\frac{f(x)}{g(x)}$	$\frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{[g(x)]^2}$	

4.2.2 Derivata dell'inversa di una funzione

Dati:

$$y_o$$
e $f(x),$ avendo $g(x)=f^{-1}(x)$ allora: Per calcolare $g^\prime(y_0)$

- 1. trovo x_0 ponendo $y_0 = f(x)$
- 2. trovo $g'(y_0) = \frac{1}{f'(x_0)}$

4.3 Approssimazioni di Taylor e McLaurin

4.3.1 Tayolr

Polinomio di Taylor di grado k e centrato in x_0 :

$$P_k(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{k!}f^{(k)}(x_0)(x - x_0)^k$$

4.3.2 McLaurin

Polinomio di Mclaurin di grado k:

$$P_k(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + \dots + \frac{1}{k!}f^{(k)}(0)x^k$$

McIaurin = Taylor con $x_0 = 0$

Calcolo Integrale

Condizione di integrabilità Per l'integrabilità di una funzione su un intervallo la condizione che essa sia continua è sufficiente ma non necessaria

Primitive elementari Funzioni il cui integrale è immediatamente calcolabile.

Funzione	Primitiva
k	kx
$x^a, a \neq -1$	$\frac{x^{a+1}}{a+1}$
$\frac{1}{x}$	$\log x $
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
a^x	$rac{a^x}{\log a}$
e^{-x}	$-e^{-x}$
$\frac{1}{x^2+1}$	$\arctan(c)$

Proprietà degli integrali

- Somma di integrali: $\int f(x) + g(x)dx = \int f(x)dx + \int g(x)dx$

I metodi di risoluzione

Integrazione per Parti

Integrazione per Sostituzione

Metodo Generale e Semplificato per itnegrali generali f(x): Trovo una funzione g(x) Derivabile e Invertibile da sostituire ad x.

- 1. decido che y = g(x)
- 2. Inverto g(x) per isolare la x, ottenendo $x=g^{-1}(y)$
- 3. Derivo entrambi i membri e aggiungo dxe $dy \colon \to dx = (g^{-1})'(y) dy$
- 4. all'interno di f(x) sos
dtituisco $g(x) \to y$ e $dx \to (g^{-1})'(y)dy$
- 5. Risolvo l'integrale
- 6. Sostiuisco $y \to g(x)$

Metodo dalla definizione : Abbiamo un integrale nella forma

$$\int f(g(x))g'(x)dx$$

- 1. $y = g(x) \rightarrow dy = g'(y)dx$
- 2. Sostituiamo per ottenere $\int f(y)dy$
- 3. Calcolo l'integrale nella nuova variabile
- 4. Sostituisco $y \to g(x)$

Formula Media Integrale Considerata f limitata e integrabile su un intervallo [a, b]

$$M(f, [a, b]) = \frac{1}{b-a} \int_a^b f(x) dx$$

Dimostrazioni per induzione

Le due casistiche principali sono:

- Dimostrazioni con la sommatoria \sum
- Dimostrazioni con disequazioni

Ricorda Devi sempre dimostrare che la formula è vera per n + 1, quindi devi ricondurti a ciò che hai a destra dell'equazione.

Dimostrazioni con la sommatoria

In questo caso devo ricordarmi di ricondurmi al caso base estrando dalla sommatoria (n+1) per ricondurmi alla sommatoria \sum^n e poi sostituendo l'ipotesi induttiva (la sommatoria che supponiamo vera). Così facendo posso ottenere ciò che ho a sinistra della formula \sum^{n+1} .

Dimostrazioni con le disequazioni

In questo caso devo ricordarmi che oltre a dover sostituire l'ipotesi induttiva nella disequazione possono aggiungere numeri che mi possono servire a patto che abbia la certezza che questi numeri non vadano in contraddizione con il segno della disequazione, quindi se ho a>b, aggiungendo numeri non deve succedere che b diventi maggiore di a.

Ricorda Nell'ipotesi avrai una condizione (per esempio per n > 1), ricordati che puoi e spesso devi usarla per poter aggiungere numeri utili alla dimostrazione.