1.187.305

PATENT SPECIFICATION

NO DRAWINGS

1.187.305

Inventor: GEORGE STEPHEN FOERSTER

Date of Application (No. 23722/67) and filing Complete Specification: 22 May, 1967.

Complete Specification Published: 8 April, 1970.

Index at acceptance: -C

C7 A (E249, B25Y, B287, B289, B27X, B271, B273, B275, B277, B279, E289, B309, B319, B339, B34Y, B345, B347, B35Y, B35X, B37Y, B879, B38X, B381, B383, B385, B387, B389, B399, B419, B489, B44Y, B440, B449, B45X, B451, B453, B455, B457, B459, B46Y, B479, B48X, B481, B483, B485, B487, B489, B519, B539, B549, B55Y, B558, B559, B610, B613, B616, B619, B62X, B621, B624, B627, B630, B633, B635, B66X, B661, B663, B865, B667, B669, B670, 741, 742, 743, 744, 770, 781, 782); B3 P(5A, 9, 14)

International Classification: -C 22 f 1/06

COMPLETE SPECIFICATION

Process for production of Extraded Magnesium-Lithium Alloy Articles

We, THE Dow CHEMICAL COMPANY, a Corporation organised and existing under the laws of the State of Delaware, United States of America, of Midland, County of Midland, State of Michigan, United States of America, do hereby declare the invention for which we pray that a patent may be granted to us and the method by which it is to be performed to be particularly described in and by the following statement:—

The invention relates to a process for production of extruded magnesium-lithium alloy articles having improved strength properties.

Magnesium-lithium alloys have been of interest heretofore but such alloys containing less than about 5 percent lithium have had relatively low strength properties, and alloys containing greater quantities of lithium are uneconomical and tend to overage at room temperatures resulting in loss of initial high strength properties.

It has now been found that additions of lead or tin to magnesium containing lithium in a critical range of proportions produces alloys which when extruded and age hardened can produce articles having unusually high strength values. The present invention accordingly provides a process for the production of such articles, which process is characterized by (a) heating to a temperature within the range of from 300 to 425°C. a magnesium-base alloy consisting, by weight, of from 0.4 to 2.0 percent lithium, from 3 to 20 percent tin or lead or a binary mixture of tin and lead, up to 4 percent aluminium, up to 2 percent manganese, up to 3 percent zine, up to 0.2 percent

zirconium, and the balance magnesium together with such impurities as are normally present therein; (b) die expressing the heated alloy at a rate of at least 15 m. per minute; and (c) hardening the die expressed alloy at a temperature within the range of from 120° to 230°C.

In more preferred ranges of compositions, the alloy contains from 0.4 to 2 percent by weight of lithium and from 3 to 15 percent by weight of tin or from 5 to 20 percent of lead.

The alloy containing lithium and tin or lead may be further improved or modified by the addition of up to 4 percent of aluminum, up to 2 percent of manganese, up to 3 percent of zinc and up to 0.2 percent of zirconium. These additions are generally made to improve mechanical properties and may be made severally, or plurally in any combination. The addition of manganese tends also to improve the corrosion resistance of the alloy. Additions of aluminum and manganese are often made concurrently to the same alloy. More preferred ranges of additions are: up to 2 percent of aluminum, up to 1.5 percent of manganese, up to 1.5 percent of zinc, and up to 0.1 percent of zirconium.

It is to be noted that while tin and lead both improve the properties of the basic magnesium-lithium alloy and both additions produce a metal which is quite advantageously extruded, the alloys containing tin and the alloys containing lead are different in some respects. The alloys containing lead exhibit reasonably good resistance to sait water, which

40

45

70

[Price Ss. Od.]

is surprising on considering the wide spread in solution potential between lead and magnesium. The corrosion resistance of the tin alloys is better than the lead alloys. To attain maximum strength, the alloy containing tin is rapidly cooled as by water quenching the metal immediately after subjecting the metal to a wrought operation such as extrusion.

The alloy may be made in the desired proportions according to the invention by melting together the alloying ongredients in proper proportions or by using hardeners of magnesium alloys containing the alloying constituents. Protection from oxidation during alloying can be affected by the use of a saline flux, as in conventional alloying of magnesium. The molten alloy may be flux refined, if desired, by stirring the alloy with additional flux. The so-refined metal is allowed to settle and then is separated from the flux as by decanting into a suitable casting mold, e.g., a round mold for extrusion stock.

In preparing extruded material, it is desirable first to scalp the cast extrusion stock so as to present a smooth, clean surface to the extrusion die. The clean extrusion stock is heated to a temperature of from 300 to 425°C., inserted into the container of an extrusion press and die expressed. The present alloy is extruded at speeds of at least 15 m. per minute and may even be expressed at speeds of 30 m. per minute or more, substantially without reduction in mechanical strength properties. According to the method of the invention, the present alloys containing tin are advaningeously water quenched as the extrusion emerges from the die. The extruded metal, with or without water quenching, is then subjected to an aging step. Aging is carried out by heating the metal at a temperature of 120° to 230°C, until a substantial amount of precipitation hardening takes place. The time of aging will depend on the temperature employed and may vary from about a week at the lower temperatures to about 2 hours at the higher remperatures. Aging at about 175°C. for 24 hours has given excellent results.

The following examples further illustrate the invention.

FRAMPLES

Melts of compositions according to the invention as well as alloys used for comparison were prepared by melting together, under saline flux, magnesium and the individual metallic constituents. The melts were flux refined and settled in a conventional fashion and cast into 75-mm. diameter extrusion billers. The billets were scalped, preheated to about 340°C., inserted in the conminer of an extrusion press which had been preheated to 315 to 340°C. The metal was pushed into 1/16inch by 7/8-inch (1.6 x 22 mm.) strip at a rate of 30 m. per minute. Part of each push was water quenched. Samples of quenched and unquenched extruded metal were aged at 175°C, for 24 hours and then subjected to physical testing along with samples of the extrusion which had not been aged. The test results and the compositions prepared and the processing conditions are indicated in the following tables.

In Table I there is illustrated the beneficial effect of adding various amounts of lithium to a magnesium-base alloy commining 5 percent of tin. Note also the beneficial consequences of aging and of water quenching. In Table II there is illustrated the improvement in properties on adding various amounts of tin to a magnesium-lithium alloy containing 1.5 per cent of lithium. In Table III there is illustrated the high level of strengths obtained on making additions of aluminum, manganese, zinc, or, aluminum and manganese to a magnesium-lithium-tin alloy. In Table IV there is illustrated the property levels obtained on adding various amounts of lithium to a magnesium alloy commining 9 percent of lead. In Table V there is illustrated the increased strength properties exhibited on adding increasing amounts of lead to a magnesiumlithium alloy containing 1.5 percent of lithium. In Table VI there is illustrated the effect of adding zirconium or zirconium and zinc to

magnesium-lithium-lead alloy.
In the tables, comparative examples outside the scope of the invention are indicated by an asterisk (*). The balance of the alloy compositions is magnesium. Abbreviations used in the tables are as follows:

% E = Percent elongation

TYS = Tensile yield strength in kg./cm.²

TS = Ultimate tensile strength in kg./cm.²

50

60

65

70

75_.

80

85

90

95

100

—
•
7
8

Evamole		Alloy C	Alloy Composition, Wt. %	n, Wt. %	_	*Quei	*Quenched, not Aged	t Aged	Qim	Qienched and Aged	Aged	Age	Aged, not Quenched	nched
No. Su	SH	II.	Ψ	Mn	Zn	% E	TYS	S.I.	% B	TYS	1.8	} %	R TYS	S.I. S
1*	5	0	1	1	1	er er	1610	2590	01	1610	2590	1	ŀ	1
12	1 0	6.3	l		l	9	1890	2730	7	2380	3080	∞	2100	2800
m	ĸ	0.8	1	ļ	l	m	1840	2410		3500	3710	판	2870	3220
4	Ki'	1.6	I	İ		4	1540	2170	8	3290	3500	4	2660	2870
5	ស	3.7	Į	i]	ġv.	1190	1840	₩	1890	2410	œ	1120	175n
		; ;	:	;		.	Тався ІІ							
Framole		Alloy C	lloy Composition, Wt. %	1, Wt. %		*Ouen	*Quenched, not Aged	t Aged	() near	Quenched and Aged	Aged	Age	Aged, not Quenched	enched
No. Su	Sn	F.i.	M	Ma	Zn	% E	SLL	TS	% E	SX.I.	T.S	% B	TYS	TS
9	ę;	1.5	1	i	1	4	1470	2030	2	2870	3010	9	2170	2520
7	ĸ	1.5	1	I	ļ	₹	1540	2170	N	3290	3500	₩	2660	2870
€ .	7	1.5	1	ľ	1	9	1750	2310	8	3080	3360	ī	2240	2520
Ó	٥	1.5		.1	I	ĸ	1890	2520	-	3150	3150	6	2520	2870
10	= .	1.5	1	[į	Ġ	2170	2590	İ	ļ	. 1	₩.	2590	3220
11	14	1.5	1	1	1	ぜ	2100	2730	8	3430	3850	₹	2660	3150

ř,

.

100

-icames		Alloy Co	mposition	1, Wr. %		,√uen	"Quenched, not Aged	. A Bed	Quen	Quenched and Aged	Aged	Aged,	Aged, not Quenched	ached
No.	Sn	Li	Al	Ma	Zu	2 % E	%E TYS	TS	¥ %	TYS	TS	¥ }°	TYS	TS
12 7 1 1	7	1	-			=	1820	2520	1	3710	399)	9	2940	3290
13	-		i	-	ş	n r h	1890	2520	N	3850	3993	4	3220	3500
14	1	-	-	-	1	\$	1890	2660		3780	3923	****	3360	3500
15	7	ı	. 2	-	i	œ	1890	2800	7	3990	4270	m	3430	3570
91	1-	~	1	1	7	. 11	1610	2660	. 8	3640	3920	্ক	3150	3570

2310 1750 3430 3710 3220 Aged, not Quenched TYS 1820 3080 3220 1190 8 % 8 % 3360 3360 2450 1960 Quenched and Aged TYS 2030 3220 1540 ₩ 8 2660 2450 2170 1890 1820 *Quenched, not Aged TABLE IV SAI. 1540 1470 1050 1960 1330 ₩ ** Alloy Composition, Wt. % 3.8 0.8 1.7 Ï Example No. 21* 20*

>	
댁	
≖	
₹	
_	

Example	Ψ	lloy Comp	Alloy Composition, Wt. %	%	*Que	*Quenched, not Aged	n Aged	Que	Quenched and Agad	Aged	Aged	Aged, not Quenched	enched	
Zo.	1.1	Pb	Zr	Zu	H %	TYS	TS	# %	TYS	LS	% H	TYS	TS	,
23	1.5	m	1	1	4	1190	1750	2	2730	2870	2	2660	2870	,
23	1.5	9	!	I	খা	1400	1960	-4	3080	3150		8	3080	
24 1.5	1.5	c v.	1	1	œ	1470	2170	7	3220	3360	1 (4	3080	3220	
22	3.5	12	I	1	ťΩ	1400	2240	-	3430	3500		3360	3430	
26	1.5	20	1	i	10	1750	2660	8	3850	4130	I	1	3570	
					1.	Table VI							÷	Ī
Example	₹.	oy Compos	lloy Composition, Wt. %	%	*Quen	*Quenched, nor Aged	Aged	Quent	Quenched and Aged	Aged	Aged,	Aged, not Ovenched	ndied	
No.	Li	Pb	Zr	Zu	% E	TYS	TS	% E	TYS	TS	% B	TYS	TS	
27	1	6	Trace		80	1680	2450	1	3710	3710	1		350	•
53	-	6	Trace	-	14	1680	2660	7	3850	3990	-	3780	3920	•
29 1	1	6	Trace	7	∞	1750	2800	1	ľ	3570	-	3710	3780	• •

Trace = 0.08 -- 0.1 percent zironium as determined spectrophotographically.

WHAT WE CLAIM IS:-

1. Process for the production of extruded magnesium-lithium alloy articles having improved strength properties characterized by (a) heating to a temperature within the range of from 300 to 425°C. a magnesium-base alloy consisting, by weight, of from 0.4 to 2.0 percent lithium, from 3 to 20 percent in or lead or a binary mixture of tin and lead, up to 4 percent aluminum, up to 2 percent manganese, up to 3 percent zinc, up to 0.2 percent zincumium, and the balance magnesium together with such impurities as are normally present therein; (b) die expressing the heated alloy at a rate of at least 15 m. per minute; and (c) age hardening the die expressed alloy at a temperature within the range of from 120° to

2. A process as claimed in Claim 1, wherein the die expressed alloy containing tin is rapidly cooled as it emerges from the press.

3. A process as claimed in Claim 1 or 2, wherein the magnesium-base alloy employed consists, by weight of from 0.4 to 0.2 percent

lithium, from 3 to 15 percent tin, up to 2 percent aluminum, up to 1.5 percent manganese, up to 1.5 percent zinc, and the balance magnesium together with such impurities as are normally present therein.

4. A process as claimed in Ciaim 1, wherein the magnesium-base alloy employed consists, by weight, of from 0.4 to 2.0 percent lithium, from 5 to 20 percent of lead, up to 2 percent aluminum, up to 1.5 percent zinc, up to 0.1 percent zirconium, and the balance magnesium together with such impurities as are normally present therein.

5. A process for the production of extruded magnesium-lithium alloy articles according to Claim 1 substantially as described hereinbefore with reference to any one of the examples.

6. Extruded magnesium-lithium alloy articles whenever produced by the process of any of the preceding claims.

BOULT, WADE & TENNANT, 111 and 112, Hatton Garden, London, E.C.1., Chartered Patent Agents, Agents for the Applicants.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1970.
Published by the Patent Office, 25 Southampton Buildings, London, W.C., from which copies may be obtained.