Introduction to Machine Learning

Lasso Regression

Learning goals

- Know lasso regression (L1 penalty)
- Know the properties of L1 regularization

Another shrinkage method is the so-called **lasso regression** (least absolute shrinkage and selection operator), which uses an L1 penalty on θ :

$$\begin{split} \hat{\theta}_{\text{lasso}} &= \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{T} \mathbf{x}^{(i)} \right)^{2} + \lambda \sum_{j=1}^{p} |\theta_{j}| \\ &= \arg\min_{\boldsymbol{\theta}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\theta} \right)^{\top} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\theta} \right) + \lambda \|\boldsymbol{\theta}\|_{1} \end{split}$$

Optimization is much harder now. $\mathcal{R}_{\text{reg}}(\theta)$ is still convex, but in general there is no analytical solution and it is non-differentiable.

Let $y = 3x_1 - 2x_2 + \epsilon$, $\epsilon \sim N(0, 1)$. The true minimizer is $\theta^* = (3, -2)^T$.

Left plot shows effect of L1 regularization, right plot shows corresponding with L2 for comparison:

With increasing regularization, $\hat{\theta}_{lasso}$ is pulled back to the origin, but takes a different "route".

Contours of regularized objective for different λ values.

Green = true minimizer of the unreg.objective and red = lasso solution.

Regularized empirical risk $\mathcal{R}_{\text{reg}}(\theta_1,\theta_2)$ using squared loss for $\lambda\uparrow$. L1 penalty makes non-smooth kinks at coordinate axes more pronounced, while L2 penalty warps \mathcal{R}_{reg} toward a "basin" (elliptic paraboloid).

We can also rewrite this as a constrained optimization problem. The penalty results in the constrained region to look like a diamond shape.

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^{2} \text{ subject to: } \|\boldsymbol{\theta}\|_{1} \leq t$$

The kinks in *L*1 enforce sparse solutions because "the loss contours first hit the sharp corners of the constraint" at coordinate axes where (some) entries are zero.

L1 AND L2 REG. WITH ORTHONORMAL DESIGN

For special case of orthonormal design $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}$ we can derive closed-form a solution in terms of $\hat{\theta}_{OLS} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{y}$:

$$\hat{ heta}_{\mathsf{lasso}} = \mathsf{sign}(\hat{ heta}_{\mathsf{OLS}})(|\hat{ heta}_{\mathsf{OLS}}| - \lambda)_{+} \quad ext{(sparsity)}$$

Function $S(\theta,\lambda) := \text{sign}(\theta)(|\theta| - \lambda)_+$ is called **soft thresholding** operator: For $|\theta| < \lambda$ it returns 0, whereas params $|\theta| > \lambda$ are shrunken toward 0 by λ . Comparing this to $\hat{\theta}_{\text{Ridge}}$ under orthonormal design:

$$\hat{\theta}_{\mathsf{Ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y} = ((1 + \lambda) \mathbf{I})^{-1} \hat{\theta}_{\mathsf{OLS}} = \frac{\hat{\theta}_{\mathsf{OLS}}}{1 + \lambda} \quad (\mathsf{no} \; \mathsf{sparsity})$$

COMPARING SOLUTION PATHS FOR L1/L2

- Ridge regression results in a smooth solution path with non-sparse parameters
- \bullet lasso regression induces sparsity, but only for large enough λ

SUPPORT RECOVERY OF LASSO

In which cases can the lasso select the true support of θ ? This can be formalized as sign consistency (different from ℓ_2 consistency!):

$$\mathbb{P}\big(\mathsf{sign}(\hat{\theta}) = \mathsf{sign}(\boldsymbol{\theta})\big) \to \mathsf{1} \text{ as } n \to \infty$$

Suppose the true DGP given a partition $\theta = (\theta_1, \theta_2)^{\top}$ is

$$\mathbf{Y} = \mathbf{X}\mathbf{\theta} + \mathbf{\varepsilon} = \mathbf{X}_1\mathbf{\theta}_1 + \mathbf{X}_2\mathbf{\theta}_2 + \mathbf{\varepsilon}$$
 with $\mathbf{\varepsilon} \sim (0, \sigma^2 \mathbf{I})$

and only θ_1 is non-zero. Let \mathbf{X}_1 denote the $n \times q$ matrix with the relevant features and \mathbf{X}_2 the matrix of noise features. It can be shown that $\hat{\theta}_{lasso}$ is sign consistent under a **irrepresentable condition** ightharpoonup Zhao and Yu, 2006:

$$|(\mathbf{X}_2^{ op}\mathbf{X}_1)(\mathbf{X}_1^{ op}\mathbf{X}_1)^{-1} \mathrm{sign}(oldsymbol{ heta}_1)| < \mathbf{1}$$

In fact, lasso can only be sign consistent if this condition holds. Intuitively, the irrelevant variables in \mathbf{X}_2 must not be too correlated with (or *representable* by) the informative features \bullet Meinshausen and Yu, 2006.

