MIMAB112A				
2007. október	30.			

B. csoport

Név:.... Szak:..... Neptun kód:....

1. Legyen
$$\underline{a} = (-1, 2, 0, 3)$$
,

Legyen
$$\underline{a} = (-1, 2, 0, 3)$$
, $\underline{b} = (4, 2, 3, -1)$, $\underline{c} = (7, 6, 6, 1)$, $\underline{d} = (-3, 6, 0, 9)$. $A := \{\underline{a}, \underline{b}, \underline{c}, \underline{d}\}$

Bázistranszformációt alkalmazva válaszoljon az alábbi kérdésekre! (Indoklás!)

- a) Mennyi az A vektorhalmaz rangja?
- b) Van-e az A vektorhalmaznak két vektorból álló lineárisan összefüggő részhalmaza?
- c) Adjon meg egy olyan v vektort, amelyet az A vektorhalmazhoz csatolva megnöveli annak rangját! (6 pont)
- 2. Legyen $\underline{a} = (2, 0)$, $\underline{b} = (4, -3)$.

Ellenőrizze a Cauchy-Schwarz egyenlőtlenséget az <u>a</u> és <u>b</u> vektorokra!

(3 pont)

$$x_1 = 3 + 2t$$

3. Egy egyenes paraméteres egyenletrendszere:

$$x_2 = -1 + 4t$$

$$x_3 = 2 - 5t$$

- a, Adja meg az egyenes egy pontját és egy irányvektorát!
- b, Írja fel annak a síknak az egyenletét, amely merőleges a fenti egyenesre és áthalad az a = (3, -1, 4) ponton! (3 pont)

$$A := \begin{bmatrix} 2 & 1 \\ 0 & 3 \\ -1 & 2 \end{bmatrix}, \qquad B := \begin{bmatrix} 1 & 1 \\ 4 & 2 \end{bmatrix}, \qquad C := \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \qquad D := \begin{bmatrix} 1 & 1 & 4 \\ 0 & 2 & -1 \end{bmatrix}$$

Melyek léteznek az alábbi mátrixok közül? Amelyik létezik, azt számítsa ki!

$$B \cdot (A^T + 3D), \quad D^T \cdot B \cdot C, \quad D^T \cdot A \cdot C, \quad C \cdot C^T$$
 (6 pont)

5. Egy koncertre 3héten keresztül 4-féle kategóriában árultak jegyeket. Az alábbi táblázat az egyes heteken az egyes kategóriákban eladott jegyek számát tartalmazza:

	1. kategória	2. kategória	3. kategória	4. kategória
1. hét	150	100	70	50
2. hét	200	120	100	80
3. hét	180	80	120	100

Az egyes kategóriák jegyárait tartalmazza az alábbi árvektor (eFt-ban): $p = (1, 1.5, 2, 3)^{T}$. Legyen A a táblázat adataiból nyert mátrix.

a, Számítsa ki és értelmezze az alábbi kifejezéseket!

$$1^{\mathrm{T}} \cdot A$$
, $A \cdot e_2$, $e_1^{\mathrm{T}} \cdot A \cdot p$.

- b, Írja fel azokat a kifejezéseket, amelyek megadják, hogy
 - mennyi az egyes heteken az eladott összesjegyek száma;
 - mennyi a 3 hét alatt a jegyek eladásából származó összes árbevétel? (7 pont)