Problem 5.3.12

Prove the statement by mathematical induction:

For any integer $n \ge 0$, $7^n - 2^n$ is divisible by 5.

Proof. Let the property P(n) be the statement:

$$7^n - 2^n$$
 is divisible by 5

First, we must prove that P(0) is true (basis step).

$$7^0 - 2^0$$
 is divisible by 5

$$7^{0} - 2^{0} = 1 - 1$$

$$= 0$$

$$= 5(0)$$

Thus, P(0) is true.

Now, suppose that P(k) is true for some integer $k \ge 0$ (inductive hypothesis). That is,

$$7^k - 2^k$$
 is divisible by 5

By the definition of divisibility, for some integer r,

$$7^{k} - 2^{k} = 5r$$

We must show that P(k+1) is true (inductive step). That is,

$$7^{k+1} - 2^{k+1}$$
 is divisible by 5

The left-hand side of P(k + 1) is:

$$\begin{split} 7^{k+1} - 2^{k+1} &= 7(7^k) - 2(2^k) \\ &= 5 \cdot 7^k + 2 \cdot 7^k - 2 \cdot 2^k \\ &= 5 \cdot 7^k + 2(7^k - 2^k) \\ &= 5 \cdot 7^k + 2(5r) \\ &= 5(7^k + 2r) \end{split}$$

 $7^k + 2r$ is an integer since it is a sum of the product of integers, so $7^{k+1} - 2^{k+1}$ can be written as 5m for some integer $m = (7^k + 2r)$.

By the definition of divisibility, $7^{k+1} - 2^{k+1}$ is divisible by 5, and thus, P(k+1) is true.

Since we have proved both the basis step and the inductive step, we conclude that the statement is true using mathematical induction. \Box

Problem 5.3.18

Prove the statement by mathematical induction:

$$5^n + 9 < 6^n$$
, for all integers $n > 2$.

Proof. Let the property P(n) be the inequality:

$$5^n + 9 < 6^n$$

First, we must prove that P(0) is true (basis step).

$$5^2 + 9 < 6^2$$
$$25 + 9 < 36$$

Thus, P(0) is true.

Now, suppose that P(k) is true for some integer $k \ge 2$ (inductive hypothesis). That is,

$$5^k + 9 < 6^k$$

We must show that P(k+1) is true (inductive step). That is,

$$5^{k+1} + 9 < 6^{k+1}$$

The left-hand side of P(k + 1) is:

$$5^{k+1} + 9 = 5(5^k) + 9$$

$$= 5 \cdot (5^k + 9 - 9) + 9$$

$$= 5 \cdot ((5^k + 9) - 9) + 9$$

$$< 5 \cdot (6^k - 9) + 9$$

$$< 5 \cdot 6^k - 45 + 9$$

$$< 5 \cdot 6^k - 36$$

$$< 5 \cdot 6^k$$

$$< 6 \cdot 6^k$$

$$< 6^{k+1}$$

Thus, the left-hand side of P(k+1) is less than the right-hand side of P(k+1), and P(k+1) is true. Since we have proved both the basis step and the inductive step, we conclude that the statement is true using mathematical induction.

Problem 5.3.22

Prove the statement by mathematical induction:

$$1 + nx \le (1 + x)^n$$
, for all real numbers $x > -1$ and integers $n \ge 2$.

Proof. Let the property P(n) be the inequality:

$$1 + nx \le \left(1 + x\right)^n$$

First, we must prove that P(2) is true (basis step).

$$1 + 2x = 1 + 2x + 0$$

$$\leq 1 + 2x + x^{2}$$

$$= (1 + x)^{2}$$

$$= (1 + x)^{n}$$

Thus, P(0) is true.

Now, suppose that P(k) is true for some integer $k \ge 2$ (inductive hypothesis). That is,

$$1 + kx \le (1 + x)^k$$

We must show that P(k+1) is true (inductive step). That is,

$$1 + (k+1)x \le (1+x)^{(k+1)}$$

The right-hand side of P(k+1) is:

$$(1+x)^{k+1} = (1+x)^k (1+x)$$

$$\geq (1+kx)(1+x)$$

$$= (1)(1) + (kx)(1) + (1)(x) + (kx)(x)$$

$$= 1 + kx + x + kx^2$$

$$= 1 + (k+1)x + kx^2$$

$$\geq 1 + (k+1)x + 0$$

$$= 1 + (k+1)x$$

Thus, the right-hand side of P(k+1) is greater than or equal to the left-hand side of P(k+1), and P(k+1) is true.

Since we have proved both the basis step and the inductive step, we conclude that the statement is true using mathematical induction. \Box

Problem 5.4.2

Suppose b_1, b_2, b_3, \dots is a sequence defined as follows:

$$b_1 = 4$$

$$b_2 = 12$$

$$b_k = b_{k-2} + b_{k-1}$$

for all integers $k \ge 3$.

Prove that b_n is divisible by 4 for all integers $n \ge 1$.

Proof. We need to prove that b_n is divisible by 4 for all integers $n \ge 1$ in the sequence defined by

$$b_1 = 4$$

$$b_2 = 12$$

$$b_k = b_{k-2} + b_{k-1}$$

for all integers $k \ge 3$.

Basis Step: For n = 1, $b_1 = 4$, which is divisible by 4.

For n = 2, $b_2 = 12$, which is also divisible by 4.

Inductive Step: Assume the statement is true for some integers k and k-1, i.e., both b_k and b_{k-1} are divisible by 4. We must show it is true for k+1. From the recursive definition,

$$b_{k+1} = b_k + b_{k-1}$$

If $b_k = 4m$ and $b_{k-1} = 4n$ for some integers m and n, then

$$b_{k+1} = 4m + 4n = 4(m+n)$$

which is divisible by 4.

Hence, by mathematical induction, b_n is divisible by 4 for all integers $n \ge 1$.

Problem 5.4.3

Suppose that $c_0, c_1, c_2, ...$ is a sequence defined as follows:

$$c_0 = 2$$

$$c_1 = 2$$

$$c_2 = 6$$

$$c_k = 3c_{k-3}$$

for all integers $k \ge 3$.

Prove that c_n is even for all integers $n \ge 0$.

Proof. We need to prove that c_n is even for all integers $n \ge 0$ in the sequence defined by

$$c_0 = 2 \\$$

$$c_1 = 2$$

$$c_2 = 6$$

$$c_k = 3c_{k-3}$$

for all integers $k \ge 3$.

Basis Step: For n = 0, $c_0 = 2$, which is even.

For n = 1, $c_1 = 2$, which is even.

For n = 2, $c_2 = 6$, which is even.

Inductive Step: Assume the statement is true for n = k - 3, i.e., c_{k-3} is even. We must show it is true for k. From the recursive definition,

$$c_k = 3c_{k-3}$$

If $c_{k-3} = 2m$ for some integer m, then

$$c_k = 3 \cdot 2m = 2 \cdot (3m)$$

which is divisible by 2, hence even.

Therefore, by mathematical induction, c_n is even for all integers $n \geq 0$.

Problem 5.4.7

Suppose that g_1, g_2, g_3, \dots is a sequence defined as follows:

$$g_1 = 3$$

$$g_2 = 5$$

$$g_k = 3g_{k-1} - 2g_{k-2} \text{ for all integers } k \ge 3.$$

Prove that $g_n = 2^n + 1$ for all integers $n \ge 1$.

Proof. We need to prove that $g_n = 2^n + 1$ for all integers $n \ge 1$ in the sequence defined by

$$g_1 = 0$$

$$g_2 = 5$$

$$g_k = 3g_{k-1} - 2g_{k-2}$$
 for all integers $k \ge 3$.

Basis Step: For n = 1, $g_1 = 3$ equals $2^1 + 1 = 3$.

For n = 2, $g_2 = 5$ equals $2^2 + 1 = 5$.

Inductive Step: Assume the statement is true for n = k - 1 and n = k - 2, i.e., $g_{k-1} = 2^{k-1} + 1$ and $g_{k-2} = 2^{k-2} + 1$. We must show it is true for k. From the recursive definition,

$$g_k = 3g_{k-1} - 2g_{k-2}$$

Substituting the inductive hypothesis,

$$g_k = 3(2^{k-1} + 1) - 2(2^{k-2} + 1)$$

Expanding and simplifying,

$$g_k = 3 \cdot 2^{k-1} + 3 - 2^{k-1} - 2$$

$$g_k = 2 \cdot 2^{k-1} + 1$$

$$g_k = 2^k + 1$$

Thus, $g_k = 2^k + 1$. Therefore, by mathematical induction, $g_n = 2^n + 1$ for all integers $n \ge 1$.

Problem 5.4.18

Compute 9^0 , 9^1 , 9^2 , 9^3 , 9^4 and 9^5 . Make a conjecture about the units digit of 9^n where n is a positive integer. Use strong mathematical induction to prove your conjecture.

Proof. Compute the powers of 9:

$$9^{0} = 1$$

 $9^{1} = 9$
 $9^{2} = 81$
 $9^{3} = 729$
 $9^{4} = 6561$
 $9^{5} = 59049$

Conjecture: The units digit of 9ⁿ alternates between 1 and 9 for positive integers n.

Proof by Strong Mathematical Induction:

Basis Step: The conjecture holds for n = 0 and n = 1.

Inductive Step: Assume the conjecture holds for all integers less than or equal to k for some $k \ge 1$. We need to show it holds for k + 1.

- 1. If k+1 is even, then k is odd, and by the inductive hypothesis, the units digit of 9^k is 9. Thus, the units digit of $9^{k+1} = 9^k \times 9$ is 1.
- 2. If k+1 is odd, then k is even, and by the inductive hypothesis, the units digit of 9^k is 1. Thus, the units digit of $9^{k+1} = 9^k \times 9$ is 9.

By strong mathematical induction, the conjecture is true for all integers $n \ge 0$.

Problem 5.5.2

Show that if the predicate is true before entry to the loop, then it is also true after exit from the loop: Loop:

```
while (m >= o and m <= 100)
    m := m + 4
    n := n - 2
end while</pre>
```

Predicate: m + n is odd

Proof. We need to show that if the predicate "m + n is odd" is true before entry to the loop, then it is also true after exit from the loop.

The loop performs the following operations while m is between 0 and 100 (inclusive):

```
while (m >= 0 \text{ and } m <= 100)

m := m + 4

n := n - 2

end while
```

The changes to m and n are by even numbers (4 and 2, respectively).

If m + n is odd initially, then adding even numbers to both m and n results in an even change to m + n. Since adding an even number to an odd number results in an odd number, m + n remains odd after each iteration and after the loop exits.

Therefore, if the predicate "m + n is odd" is true before the loop, it remains true after the loop exits. \Box

Problem 5.5.4

Show that if the predicate is true before entry to the loop, then it is also true after exit from the loop: Loop:

```
while (n >= 0 and n <= 100)
    n := n + 1
end while</pre>
```

Predicate: $2^n < (n+2)!$

Proof. We need to show that if the predicate $2^n < (n+2)!$ is true before entry to the loop, then it is also true after exit from the loop.

The loop performs the following operation while n is between 0 and 100 (inclusive):

```
while (n >= o and n <= 100)
    n := n + 1
end while</pre>
```

Assume the predicate $2^n < (n+2)!$ is true for some n. We need to show it holds for n+1, i.e., $2^{n+1} < (n+3)!$

```
Since 2^n < (n+2)!, multiplying both sides by 2 gives 2 \cdot 2^n < 2 \cdot (n+2)!. Also, 2 < (n+3) for all n \ge 0, hence 2 \cdot (n+2)! < (n+3) \cdot (n+2)! = (n+3)!.
```

Thus, $2^{n+1} < (n+3)!$, proving the predicate for n+1.

Therefore, if the predicate is true before the loop, it remains true after the loop exits.

Problem 5.6.2

Find the first four terms of the recursively defined sequence:

$$b_k = b_{k-1} + 3k$$
, for all integers $k \ge 2$ $b_1 = 1$

Proof.

$$b_1 = 1$$

$$b_2 = b_1 + 3 \times 2 = 1 + 6 = 7$$

$$b_3 = b_2 + 3 \times 3 = 7 + 9 = 16$$

$$b_4 = b_3 + 3 \times 4 = 16 + 12 = 28$$

Problem 5.6.6

Find the first four terms of the recursively defined sequence:

$$t_k = t_{k-1} + 2t_{k-2}\text{, for all integers } k \geq 2$$

$$t_0 = -1$$

$$t_1 = 2$$

Proof.

$$\begin{aligned} t_0 &= -1 \\ t_1 &= 2 \\ t_2 &= t_1 + 2t_0 = 2 + 2(-1) = 2 - 2 = 0 \\ t_3 &= t_2 + 2t_1 = 0 + 2 \times 2 = 0 + 4 = 4 \end{aligned}$$

Problem 5.6.8

Find the first four terms of the recursively defined sequence:

$$v_k = v_{k-1} + v_{k-2} + 1,$$
 for all integers $k \geq 3$
$$v_1 = 1$$

$$v_2 = 3$$

Proof.

$$\begin{aligned} v_1 &= 1 \\ v_2 &= 3 \\ v_3 &= v_2 + v_1 + 1 = 3 + 1 + 1 = 5 \\ v_4 &= v_3 + v_2 + 1 = 5 + 3 + 1 = 9 \end{aligned}$$

Problem 5.6.12

Let s_0, s_1, s_2, \ldots be defined by the formula $s_n = \frac{(-1)^n}{n!}$ for all integers $n \ge 0$. Show that this sequence satisfies the recurrence relation

$$s_k = \frac{-s_{k-1}}{k}$$

Proof. Given that for all integers $n \ge 0$, we need to show that it satisfies $s_k = \frac{-s_{k-1}}{k}$. Observe,

$$\begin{split} s_k &= \frac{(-1)^k}{k!} \\ &= \frac{(-1)^k}{k \cdot (k-1)!} \\ &= \frac{-(-1)^{k-1}}{k \cdot (k-1)!} \\ &= \frac{-1}{k} \cdot \frac{(-1)^{k-1}}{(k-1)!} \\ &= \frac{-s_{k-1}}{k} \end{split}$$

Hence, the sequence s_n satisfies the recurrence relation $s_k = \frac{-s_{k-1}}{k}$.

Problem 5.6.14

Let d_0, d_1, d_2, \dots be defined by the formula $d_n = 3^n - 2^n$ for all integers $n \ge 0$. Show that this sequence satisfies the recurrence relation

$$d_k = 5d_{k-1} - 6d_{k-2}$$

Proof. Given that $d_n = 3^n - 2^n$ for all integers $n \ge 0$, we need to show that it satisfies $d_k = 5d_{k-1} - 6d_{k-2}$. We have:

$$\begin{aligned} d_k &= 3^k - 2^k \\ d_{k-1} &= 3^{k-1} - 2^{k-1} \\ d_{k-2} &= 3^{k-2} - 2^{k-2} \end{aligned}$$

Now, calculate $5d_{k-1} - 6d_{k-2}$:

$$\begin{split} 5d_{k-1} - 6d_{k-2} &= 5(3^{k-1} - 2^{k-1}) - 6(3^{k-2} - 2^{k-2}) \\ &= 5 \cdot 3^{k-1} - 5 \cdot 2^{k-1} - 6 \cdot 3^{k-2} + 6 \cdot 2^{k-2} \\ &= 3 \cdot 3^{k-2} \cdot 5 - 2 \cdot 2^{k-2} \cdot 5 - 3^{k-2} \cdot 6 + 2^{k-2} \cdot 6 \\ &= 3^{k-2}(3 \cdot 5 - 6) + 2^{k-2}(6 - 2 \cdot 5) \\ &= 3^{k-2} \cdot 9 + 2^{k-2} \cdot (-4) \\ &= 3^k - 2^k \end{split}$$

Thus, $5d_{k-1}-6d_{k-2}=3^k-2^k$, which is the formula for d_k . Therefore, the sequence d_n satisfies the recurrence relation $d_k=5d_{k-1}-6d_{k-2}$.

Problem 5.6.28

Prove that $F_{k+1}^2-F_k^2-F_{k-1}^2=2F_kF_{k-1},$ for all integers $k\geq 1.$

Proof. Consider the Fibonacci sequence defined by $F_n = F_{n-1} + F_{n-2}$ with $F_0 = 0$ and $F_1 = 1$. We need to prove that $F_{k+1}^2 - F_k^2 - F_{k-1}^2 = 2F_kF_{k-1}$ for all integers $k \ge 1$. The left-hand side of the equation is $F_{k+1}^2 - F_k^2 - F_{k-1}^2$. Using the Fibonacci recurrence relation, $F_{k+1} = F_k + F_{k-1}$, we have:

$$\begin{split} F_{k+1}^2 &= (F_k + F_{k-1})^2 \\ &= F_k^2 + 2F_k F_{k-1} + F_{k-1}^2 \end{split}$$

Substituting this into the left-hand side of the equation gives:

$$\begin{split} F_{k+1}^2 - F_k^2 - F_{k-1}^2 &= F_k^2 + 2F_kF_{k-1} + F_{k-1}^2 - F_k^2 - F_{k-1}^2 \\ &= 2F_kF_{k-1} \end{split}$$

which is equal to the right-hand side of the given equation.

Therefore, $F_{k+1}^2 - F_k^2 - F_{k-1}^2 = 2F_kF_{k-1}$ is proven for all integers $k \ge 1$.

Problem 5.6.44

The triangle inequality for absolute value states that for all real numbers a and b, $|a+b| \le |a| + |b|$. Use the recursive definition of summation, the triangle inequality, the definition of absolute value, and mathematical induction to prove that for all positive integers n, if a_1, a_2, \ldots, a_n are real numbers, then

$$\left|\sum_{i=1}^n a_i\right| \leq \sum_{i=1}^n |a_i|$$

Proof. We need to prove by induction that for all positive integers n, if a_1, a_2, \ldots, a_n are real numbers, then

$$\left|\sum_{i=1}^n a_i\right| \leq \sum_{i=1}^n |a_i|$$

Basis Step: For n=1, we have $|a_1| \le |a_1|$, which is trivially true. **Inductive Step:** Assume the statement is true for some integer $k \ge 1$, i.e.,

$$\left| \sum_{i=1}^k a_i \right| \le \sum_{i=1}^k |a_i|$$

We must show it is true for k + 1.

Consider

$$\sum_{i=1}^{k+1} a_i = \sum_{i=1}^{k} a_i + a_{k+1}$$

By the triangle inequality,

$$\left| \sum_{i=1}^{k+1} a_i \right| = \left| \sum_{i=1}^{k} a_i + a_{k+1} \right| \le \left| \sum_{i=1}^{k} a_i \right| + |a_{k+1}|$$

Using the inductive hypothesis,

$$\left| \sum_{i=1}^k a_i \right| \le \sum_{i=1}^k |a_i|$$

Thus,

$$\left| \sum_{i=1}^{k} a_i \right| + |a_{k+1}| \le \sum_{i=1}^{k} |a_i| + |a_{k+1}| = \sum_{i=1}^{k+1} |a_i|$$

Hence, by mathematical induction, the statement holds for all positive integers n.