REPRESENTING CONVEX STRUCTURES WITH CHESS

ESTEBAN LLUIS-ACEFF AND ERICK I. RODRÍGUEZ-JUÁREZ

Abstract.

- 1. Introduction
 - 2. Notation
- 3. Moore Families

Definition 3.1. Let X be a set. Let $\mathscr{C} \subseteq \mathscr{P}(X)$. We call \mathscr{C} a **Moore family** if and only if the following conditions are satisfied:

- (1) $\varnothing, X \in \mathscr{C}$.
- $(2) \ \forall \mathscr{D} \subseteq \mathscr{C} \left((\mathscr{D} \neq \varnothing) \ \Longrightarrow \ \bigcap \mathscr{D} \in \mathscr{C} \right)$

Definition 3.2. Let X be a set. Let $\alpha : \mathscr{P}(X) \longrightarrow \mathscr{P}(X)$. We call α a **closure operator** if and only if the following conditions are satisfied:

- (1) $\alpha(\emptyset) = \emptyset$.
- (2) $\forall A \in \mathscr{P}(X) (A \subseteq \alpha(A)).$
- $(3) \ \forall A, B \in \mathscr{P}(X) (A \subseteq B \implies \alpha(A) \subseteq \alpha(B)).$
- (4) $\forall A \in \mathscr{P}(X)(\alpha(\alpha(A)) = A)$.

Definition 3.3. We denote

$$\begin{array}{lcl} MF_X & = & \{\mathscr{D} \subseteq \mathscr{P}(X) : \mathscr{D} \text{ is a Moore family}\}, \\ CL_X & = & \{\alpha \in \mathscr{P}(X)^{\mathscr{P}(X)} : \alpha \text{ is a closure operator}\}. \end{array}$$

Lemma 3.4. Let $\alpha \in CL_X$. Then

- (a) $Im(\alpha) \in MF_X$.
- (b) $\forall \mathscr{D} \subseteq Im(\alpha), A = \bigcap \mathscr{D} \text{ is such that } \alpha(A) = A.$

Proof. We verify that $Im(\alpha) \in MF_X$.

- (1) $\varnothing = \alpha(\varnothing) \in Im(\alpha)$, and $X \subseteq \alpha(X) \subseteq X \implies X = \alpha(X) \in Im(\alpha)$
- (2) Let $\emptyset \neq \mathscr{D} \subseteq Im(\alpha)$. Define $A = \bigcap \mathscr{D}$. We must have $A \in Im(\alpha)$. Notice that, $\forall Z \in \mathscr{D} \subseteq Im(\alpha)$, $\exists B \in \mathscr{P}(X)$ such that $Z = \alpha(B)$. Then $\alpha(Z) = \alpha(\alpha(B)) = \alpha(B) = Z$.

$$\alpha(z)$$
 $\alpha(\alpha(z))$ $\alpha(z)$ z .

Let $Z \in \mathcal{D}$. Then $A \subseteq Z$, and $\alpha(A) \subseteq \alpha(Z)$. Therefore

$$A\subseteq\alpha(A)\subseteq\bigcap_{Z\in\mathscr{D}}\alpha(Z)=\bigcap_{Z\in\mathscr{D}}Z=A.$$

Finally $A = \alpha(A) \in Im(\alpha)$, which proves (a) and (b).

Key words and phrases. Convex structure, chess.

Lemma 3.5. Let $\mathscr{D} \in MF_X$. Then $\Phi_{\mathscr{D}} : \mathscr{P}(X) \longrightarrow \mathscr{P}(X)$ defined by

$$\Phi_{\mathscr{D}}(A) = \bigcap_{\substack{Z \in \mathscr{D} \\ A \subseteq Z}} Z,$$

is such that $\Phi_{\mathscr{D}} \in CL_X$.

Proof. (1) $\Phi_{\mathscr{D}}(\varnothing) = \bigcap_{A \in \mathscr{D}} A = \varnothing$.

(2) Let $A \in \mathscr{P}(X)$. We will show that $A \subseteq \Phi_{\mathscr{D}}(A)$. Let $a \in A$, and $Z \in \mathscr{D}$, such that $A \subseteq Z$. Then $a \in Z$, and

$$\therefore \quad a \in \bigcap_{\substack{Z \in \mathscr{D} \\ A \subseteq Z}} Z \implies A \subseteq \bigcap_{\substack{Z \in \mathscr{D} \\ A \subseteq Z}} Z = \Phi_{\mathscr{D}}(A).$$

(3) Let $A, B \in \mathscr{P}(X)$, such that $A \subseteq B$. We require $\Phi_{\mathscr{D}}(A) \subseteq \Phi_{\mathscr{D}}(B)$. Notice that $\{Z \in \mathscr{D} : B \subseteq Z\} \subseteq \{Z \in \mathscr{D} : A \subseteq Z\}$. Therefore,

$$\Phi_{\mathscr{D}}(A) = \bigcap_{\substack{Z \in \mathscr{D} \\ A \subset Z}} Z \subseteq \bigcap_{\substack{Z \in \mathscr{D} \\ A \subset Z}} Z = \Phi_{\mathscr{D}}(B).$$

(4) We need to show $\Phi_{\mathscr{D}}(A) = \Phi_{\mathscr{D}}(\Phi_{\mathscr{D}}(A))$. By (2), $\Phi_{\mathscr{D}}(A) \subseteq \Phi_{\mathscr{D}}(\Phi_{\mathscr{D}}(A))$. Let $Z_0 \in \mathscr{D}$ such that $A \subseteq Z_0$. Therefore $\Phi_{\mathscr{D}}(A) = \bigcap_{\substack{Z \in \mathscr{D} \\ Z \subseteq \mathscr{D}}} Z \subseteq Z_0$.

$$\begin{array}{cccc} :: & \forall Z \in \mathscr{D}(A \subseteq Z) & \Longrightarrow & \Phi_{\mathscr{D}}(A) \subseteq Z) \\ :: & \{Z \in \mathscr{D} : A \subseteq Z\} & \subseteq & \{Z \in \mathscr{D} : \Phi_{\mathscr{D}}(A) \subseteq Z\} \\ :: & \Phi_{\mathscr{D}}(\Phi_{\mathscr{D}}(A)) = \bigcap_{\substack{Z \in \mathscr{D} \\ \Phi_{\mathscr{D}}(A) \subseteq Z}} Z & \subseteq & \bigcap_{\substack{Z \in \mathscr{D} \\ A \subseteq Z}} Z = \Phi_{\mathscr{D}}(A). \end{array}$$

Lemma 3.6. Let $\mathscr{D} \in MF_X$. Then $Im(\Phi_{\mathscr{D}}) = \mathscr{D}$.

Proof. Since $\mathscr{D} \in MF_X$, $\forall A \subseteq X$, $\Phi_{\mathscr{D}}(A) \in \mathscr{D}$. Then $Im(\Phi_{\mathscr{D}}) \subseteq \mathscr{D}$. Let $A \in \mathscr{D}$. So $A \in \mathscr{D}$ is such that $A \subseteq A$, $A \subseteq \Phi_{\mathscr{D}}(A) = \bigcap_{\substack{Z \in \mathscr{D} \\ A \subseteq Z}} Z \subseteq A$. Then $A = \Phi_{\mathscr{D}}(A)$, and

$$\mathscr{D} \subset Im(\Phi_{\mathscr{D}}).$$

Proposition 3.7. Let $\Phi: MF_X \longrightarrow CL_X$ be defined by:

$$\Phi_{\mathscr{D}}: \mathscr{P}(X) \longrightarrow \mathscr{D}, \ \Phi_{\mathscr{D}}(A) = \bigcap_{\substack{Z \in \mathscr{D} \\ A \subset Z}} Z.$$

Then Φ is a bijection.

Proof. We prove injection. Let $\mathscr{C}, \mathscr{D} \in MF_X$, such that $\Phi_{\mathscr{C}} = \Phi_{\mathscr{D}}$. By Lemma 3.6,

$$\mathscr{C} = Im(\Phi_{\mathscr{C}}) = Im(\Phi_{\mathscr{D}}) = \mathscr{D}.$$

It remains verify surjection. Let $\alpha \in CL_X$. Consider $\Phi_{Im(\alpha)} : \mathscr{P}(X) \longrightarrow Im(\alpha)$. By Lemma 3.4(a), $Im(\alpha) \in MF_X$. Let $A \subseteq X$. Notice that $A \subseteq \alpha(A) \in Im(\alpha)$.

$$\therefore \quad A \subseteq \Phi_{Im(\alpha)}(A) = \bigcap_{\substack{Z \in Im(\alpha) \\ A \subseteq Z}} Z \subseteq \alpha(A)$$

$$\therefore \quad \alpha(A) \subseteq \alpha(\Phi_{Im(\alpha)}(A)) \subseteq \alpha(\alpha(A)) = \alpha(A) \implies \alpha(\Phi_{Im(\alpha)}(A)) = \alpha(A).$$

Since $\mathscr{D}' = \{Z \in Im(\alpha) : A \subseteq Z\} \subseteq Im(\alpha), \text{ then } \Phi_{Im(\alpha)}(A) = \bigcap \mathscr{D}'.$

Applying the Lemma 3.4(b) to $\alpha \in CL_X$, and $\Phi_{Im(\alpha)}(A) = \bigcap \mathscr{D}'$, we obtain

$$\alpha(A) = \alpha(\Phi_{Im(\alpha)}(A)) = \Phi_{Im(\alpha)}(A) \implies \Phi_{Im(\alpha)} = \alpha.$$

Lemma 3.8. Let $X \neq \emptyset$. For each $\alpha \in I$, let $M_{\alpha} \in MF_X$. Then $\bigcap_{\alpha \in I} M_{\alpha} \in MF_X$.

Definition 3.9. Let $X \neq \emptyset$ be a set. Let $\mathscr{A} \subseteq \mathscr{P}(X)$. Define the Moore family generated by \mathscr{A} :

$$M(\mathscr{A}) = \bigcap_{M \in MF_X \atop \mathscr{A} \subseteq M} M = \left\{ \bigcap \mathscr{D} : \mathscr{D} \subseteq \mathscr{A} \right\} \cup \{\varnothing, X\}.$$

Remark 3.10. We have defined the following system of operators.

Proposition 3.11. Let $X \neq \emptyset$ be a set. Then

- (1) $M(\emptyset) = {\emptyset, X}.$
- (2) $\forall \mathscr{A} \subseteq \mathscr{P}(X) (\mathscr{A} \subseteq M(\mathscr{A})).$
- $(3) \ \forall \mathscr{A}, \mathscr{B} \subseteq \mathscr{P}(X) (\mathscr{A} \subseteq \mathscr{B} \implies M(\mathscr{A}) \subseteq M(\mathscr{B})).$
- $(4) \ \forall \mathscr{A} \subseteq \mathscr{P}(X)(M(M(\mathscr{A})) = M(\mathscr{A})).$

$$Proof. \qquad (1) \ M(\varnothing) = \left\{\bigcap \mathscr{D} : \mathscr{D} \subseteq \varnothing\right\} \cup \{\varnothing, X\} = \left\{\bigcap \varnothing\right\} \cup \{\varnothing, X\} = \{\varnothing, X\}.$$

- $(2) \ \mathscr{A} = \left\{\bigcap\{A\}: A \in \mathscr{A}\right\} \subseteq \left\{\bigcap\mathscr{D}: \mathscr{D} \subseteq \mathscr{A}\right\} \cup \left\{\varnothing, X\right\} = M(\mathscr{A}).$
- (3) Let $\mathscr{A}, \mathscr{B} \subseteq \mathscr{P}(X)$, such that $\mathscr{A} \subseteq \mathscr{B}$.

Then $\{M \in MF_X : \mathscr{B} \subseteq M\} \subseteq \{M \in MF_X : \mathscr{A} \subseteq M\}$, implies

$$M(\mathscr{A}) = \bigcap_{\substack{M \in MF_X \\ \mathscr{A} \subseteq M}} M \subseteq \bigcap_{\substack{M \in MF_X \\ \mathscr{B} \subseteq M}} M = M(\mathscr{B}).$$

(4) Since $\forall \mathcal{M} \in MF_X$, $M(\mathcal{M}) = \mathcal{M}$, it follows that, $M(M(\mathcal{A})) = M(\mathcal{A})$.

Proposition 3.12. Let $X \neq \emptyset$. Let $\mathscr{A}, \mathscr{B} \subseteq \mathscr{P}(X)$. Define

$$\mathscr{A} \sim \mathscr{B} \iff M(\mathscr{A}) = M(\mathscr{B}).$$

Then \sim is an equivalence relation on $\mathscr{P}(X)$.

4. Convex Structures

Definition 4.1. Let X be set. Let $\mathscr{C} \subseteq \mathscr{P}(X)$. We call \mathscr{C} a **convex structure** if and only if the following conditions are satisfied:

- (1) $\varnothing, X \in \mathscr{C}$.

$$(2) \ \forall \mathscr{D} \subseteq \mathscr{C} \left(\mathscr{D} \neq \varnothing \implies \bigcap \mathscr{D} \in \mathscr{C} \right).$$

$$(3) \ \forall \mathscr{D} \subseteq \mathscr{C} \left(\forall D_1, D_2 \in \mathscr{D}(D_1 \subseteq D_2 \vee D_2 \subseteq D_1) \implies \bigcup \mathscr{D} \in \mathscr{C} \right)$$

Definition 4.2. We call $\alpha: \mathscr{P}(X) \longrightarrow \mathscr{P}(X)$ a domain finite or algebraic if and only if

$$\forall A \in \mathscr{P}(X) \left(\alpha(A) = \bigcup_{F \in [A]^{<\aleph_0}} \alpha(F) \right).$$

Definition 4.3. Let

 $\begin{array}{rcl} CS_X & = & \{\mathscr{C} \subseteq \mathscr{P}(X) : \mathscr{C} \text{ is a convex structure}\}, \\ CLA_X & = & \{\alpha \in \mathscr{P}(X)^{\mathscr{P}(X)} : \alpha \text{ is an algebraic closure operator}\}. \end{array}$

Lemma 4.4. Let X be a set. Let $\mathscr{C} \subseteq \mathscr{P}(X)$ be a convex structure. Then

$$F \in \left[\bigcup \mathscr{C} \right]^{<\aleph_0} \iff \exists Z \in \mathscr{C}(F \in [Z]^{<\aleph_0}).$$

Theorem 4.5 ([1]). $\Phi_{\mathscr{D}} \in CLA_X \iff \mathscr{D} \in CS_X$.

Proof. Let $\mathscr{D} \in MF_X$. We note that $\mathscr{D} = Im(\Phi_{\mathscr{D}})$.

We must verify that \mathcal{D} is closed under unions of chains.

Let $\mathscr{C} \subseteq \mathscr{D}$ a chain. Let $Z \in \mathscr{C}$, then $Z = \bigcup_{F \in [Z]^{\leq \aleph_0}} \Phi_{\mathscr{D}}(F)$. Therefore

$$\bigcup \mathscr{C} = \bigcup_{Z \in \mathscr{C}} \bigcup_{F \in [Z]^{<\aleph_0}} \Phi_{\mathscr{D}}(F).$$

(incomplete)

5. FINITE CONVEX STRUCTURES

6. Chess

7. Further Work

References

[1] Van de Vel M.L.J. Theory of Convex Structures. North-Holland, 1993.

CDMX. MEXICO

Current address: 14100, Mexico Email address: esteban@xeleva.com

CDMX. MEXICO

 $Current\ address$: Mexico

 $Email\ address{:}\ {\tt nijerc@gmail.com}$