1. Let H be the set of all vectors of the form $\begin{bmatrix} s+3t \\ s-t \\ 2s-t \\ 4t \end{bmatrix}$. Show that H is a subspace of \mathbb{R}^4 .

Solution: Since

$$\begin{bmatrix} s+3t \\ s-t \\ 2s-t \\ 4t \end{bmatrix} = s \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ -1 \\ -1 \\ 4 \end{bmatrix}$$

then by Theorem 1 in the textbook we must have that

$$\operatorname{Span} \left\{ \begin{bmatrix} 1\\1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\-1\\-1\\4 \end{bmatrix} \right\}$$

is a subspace of \mathbb{R}^4 .

2. Let

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

(a) Is $\mathbf{w} \in \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$? How many vectors are there in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?

Solution: No. By inspection $\mathbf{w} \notin \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. There are 3 vectors in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

(b) How many vectors are in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?

Solution: Since Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is the set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ there are infinitely many vectors in this set.

3. Again consider the set of vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

(a) Is w in the subpsace spanned by $\{v_1, v_2, v_3\}$? Why or why not?

Solution: If the **w** is in the subspace spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ then the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{w}$$

has at least one solution. By setting up the augmented matrix $[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{w}]$ and row reducing we obtain

$$\begin{bmatrix} 1 & 2 & 4 & 3 \\ 0 & 1 & 2 & 1 \\ -1 & 3 & 6 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 1 \\ Row \\ Reduce \end{bmatrix}$$

So this system has the solution

$$c_1 = 1$$
$$c_2 = 1 - 2c_3$$

Since the solution involves a free variable, we know this system has at least one solution. Thus \mathbf{w} is a linear combination of $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Thus, \mathbf{v} is in the subspace spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

(b) Let $\mathbf{u} = \begin{bmatrix} 8 \\ 4 \\ 7 \end{bmatrix}$. Is \mathbf{u} in the subpsace spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$? Why or why not?

Solution: If the ${\bf u}$ is in the subspace spanned by $\{{\bf v}_1,{\bf v}_2,{\bf v}_3\}$ then the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{u}$$

has at least one solution. By setting up the augmented matrix $[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{u}]$ and row reducing we obtain

$$\begin{bmatrix} 1 & 2 & 4 & 8 \\ 0 & 1 & 2 & 4 \\ -1 & 3 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ Reduce & 0 & 0 & 0 & 1 \end{bmatrix}$$

This system has no solution, so \mathbf{u} is not a linear combination of $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Thus, \mathbf{u} is not in the subspace spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.