AI early diagnosis can save thousands of patients

Deep Learning

"Deep Learning brings machine learning closer to its original gole: Artificial Intelligence"

NEURAL NETWORKS

CONVOLUTIONAL NEURAL NETWORKS

1

Heart and Cancer Patients

Article by Pallab Ghosh, BBC 2018

The systems will save millions of

people and billions of pounds by

enabling the diseases to be picked up

much earlier.

The Current State

- Best doctors get it wrong in one in five cases
- Patients sent home undiagnosed
- Undergo an unnecessary operation

How does the AI system help?

Test Data

Trained on hundreds of thousands of MRI scans. Thus, can pick up subtle hints way better than even doctors with decades of experience.

Pixels

Since convolutional networks break the image into pixels and process those pixels, they can pick up telling stuff such as shaded areas, lumps etc which can be missed by the naked eye.

Transfer Learning

The low level feature detectors can be used to detect other diseases just as well.

"Greatly outperformed fellow heart specialists"

The system was tested in clinical trials in 6 cardiology units. The trials indicate that the system can do a lot better than consultants.

15% - 18 % better diagnosis

That is a lot of people

300,000,000\$

That's a lot of money

100%Total success!

2 CheXNet

Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning, 25 December 2017

Gist of the Paper

Input Chest X-Ray Image

CheXNet 121-layer CNN

Output Pneumonia Positive (85%)

Convolutional Network Architecture and Training

Pathology	Wang et al. (2017)	Yao et al. (2017)	CheXNet (ours)
Atelectasis	0.716	0.772	0.8094
Cardiomegaly	0.807	0.904	0.9248
Effusion	0.784	0.859	0.8638
Infiltration	0.609	0.695	0.7345
Mass	0.706	0.792	0.8676
Nodule	0.671	0.717	0.7802
Pneumonia	0.633	0.713	0.7680
Pneumothorax	0.806	0.841	0.8887
Consolidation	0.708	0.788	0.7901
Edema	0.835	0.882	0.8878
Emphysema	0.815	0.829	0.9371
Fibrosis	0.769	0.767	0.8047
Pleural Thickening	0.708	0.765	0.8062
Hernia	0.767	0.914	0.9164

CheXNet vs. Radiologists

	F1 Score (95% CI)	
Radiologist 1	0.383	
Radiologist 2	0.356	
Radiologist 3	0.365	
Radiologist 4	0.442	
Radiologist Average	0.387	
CheXNet	0.435	

Patient History

Both systems currently predict whether the patient has a disease or not by looking at X-Rays, MRIs etc. They did not take into account patient histories which allow doctors to make much better decisions.

Test Data

The model was trained on frontal radiographs but it has been shown that 15% of accurate diagnosis require the lateral view

-Thanks!

Any questions?

- Jayant Mehra
- jayantmehra@ucla.edu