2 Funcții

P 1. Fie $f: A \longrightarrow B$ o funcție. Arătați că

2.1 Imagini directe și imagini inverse. Funcții surjective, injective, bijective. Mulțimi echipotente

```
a) f(X_1) \subseteq f(X_2), (\forall) X_1 \subseteq X_2 \subseteq A;
b) f(X_1 \cup X_2) = f(X_1) \cup f(X_2), (\forall) X_1, X_2 \subseteq A;
c) f(\bigcup_{i\in I} X_i) = \bigcup_{i\in I} f(X_i), (\forall) \{X_i | i\in I\} \subseteq \mathcal{P}(A);
d) f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2), (\forall) X_1, X_2 \subseteq A;
e) f(\bigcap_{i\in I} X_i) \subseteq \bigcap_{i\in I} f(X_i), (\forall) \{X_i | i\in I\} \subseteq \mathcal{P}(A);
f) f(X_1) \setminus f(X_2) \subseteq f(X_1 \setminus X_2), (\forall) X_1, X_2 \subseteq A.
{\bf P}2. Fie f:A\longrightarrow Bo funcție. Arătați că
a) f^{-1}(Y_1) \subseteq f^{-1}(Y_2), (\forall) Y_1 \subseteq Y_2 \subseteq B;

b) f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2), (\forall) Y_1, Y_2 \subseteq B;

c) f^{-1}(\bigcup_{i \in I} Y_i) = \bigcup_{i \in I} f^{-1}(Y_i), (\forall) \{Y_i | i \in I\} \subseteq \mathcal{P}(B);

d) f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2), (\forall) Y_1, Y_2 \subseteq B;
e) f^{-1}(\bigcap_{i \in I} Y_i) = \bigcap_{i \in I} f^{-1}(Y_i), (\forall) \{Y_i | i \in I\} \subseteq \mathcal{P}(B);
f) f^{-1}(Y_1 \setminus Y_2) = f^{-1}(Y_1) \setminus f^{-1}(Y_2), (\forall) Y_1, Y_2 \subseteq B.
P 3. Fie f:A\longrightarrow B o funcție. Arătați că pentru orice X\subseteq A și Y\subseteq B au loc următoarele proprietăți:
a) f(X) \subseteq Y \iff X \subseteq f^{-1}(Y);
b) X \subseteq f^{-1}(f(X));
c) f(f^{-1}(Y)) \subseteq Y;
d) f(X) \cap Y = f(X \cap f^{-1}(Y)).
P 4. Fie f: A \longrightarrow B o functie. Arătati că următoarele afirmatii sunt echivalente:
a) f este surjectivă(i.e., pentru orice y \in B ecuația f(x) = y are cel puțin o soluție x \in A);
b) (\forall)y \in B \Longrightarrow (\exists)x \in A : f(x) = y;
c) Im(f) = B;
d) f(f^{-1}(Y)) = Y, (\forall) y \subseteq B;
e) (\forall)C, (\forall)g, h: B \longrightarrow C, g \circ f = h \circ f \Longrightarrow g = h;
f) (\exists)g: B \longrightarrow A: f \circ g = id_B.
P 5. Fie f:A\longrightarrow B o functie. Arătati că următoarele afirmatii sunt echivalente:
a) f este injectivă(i.e., pentru orice y \in B ecuația f(x) = y are cel mult o soluție x \in A);
b) (\forall) x_1, x_2 \in A, x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2);
c) (\forall)x_1, x_2 \in A, f(x_1) = f(x_2) \Longrightarrow x_1 = x_2;
d) f^{-1}(f(X)) = X, (\forall) X \subseteq A;
e) f(X_1 \cap X_2) = f(X_1) \cap f(X_2), (\forall) X_1, X_2 \subseteq A;
f) f(X_1 \setminus X_2) = f(X_1) \setminus f(X_2), (\forall) X_1, X_2 \subseteq A;
g) (\forall)C, (\forall)g, h: C \longrightarrow A, f \circ g = f \circ h \Longrightarrow g = h;
h) (\exists)q: B \longrightarrow A: q \circ f = id_A.
```

- **P 6.** Fie $f:A\longrightarrow A$ o funcție cu proprietatea că $f\circ f$ are un unic punct fix $a\in A$. Arătați că a este unicul punct fix al funcției f.
- **P 7.** Fie $f, g: A \longrightarrow A$ două funcții cu proprietatea că $f \circ g = g \circ f$. Dacă funcția f are un unic punct fix $a \in A$, arătați că g este un punct fix al funcției g.
- **P 8.** Fie A şi B două mulțimi finite cu acelaşi număr de elemente şi $f:A\longrightarrow B$ o funcție. Atunci f este injectivă dacă și numai dacă f este surjectivă. Arătați că afirmația nu este adevărată pentru mulțimi infinite.
- P 9. Arătați că o reuniune numărabilă de mulțimi numărabile este numărabilă.
- **P 10.** Arătați că $\mathbb{N} \sim \mathbb{Z} \sim \mathbb{Q}$.
- ${\bf P}$ 11. Arătați că
- a) $(0,1) \sim [0,1) \sim (0,1] \sim [0,1]$;
- b) $(a, b) \sim (0, 1), (\forall) a, b \in \mathbb{R}, a < b;$
- c) $\mathbb{R} \sim (0,1)$.

- **P 12.** Arătați că nu există nicio funcție surjectivă $f: \mathbb{N} \longrightarrow (0,1)$, astfel că $|\mathbb{N}| < |\mathbb{R}|$.
- **P 13.** Arătați că există o funcție injectivă $f:(0,1)\times(0,1)\longrightarrow(0,1)$, astfel că $|\mathbb{R}|=|\mathbb{C}|$.
- **P 14.** Arătați că pentru orice mulțime A are loc inegalitatea $|A| < |\mathcal{P}(A)|$.
- **P 15.** Fie A şi B mulțimi finite, cu |A| = m şi |B| = n. Determinați:
- a) numărul tuturor funcțiilor $f: A \longrightarrow B$;
- b) numărul tuturor funcțiilor injective $f: A \longrightarrow B$;
- c) numărul tuturor funcțiilor bijective $f: A \longrightarrow B$;
- d) numărul tuturor funcțiilor surjective $f: A \longrightarrow B$.

2.2 Permutări

- **P 16.** Fie permutarea $\alpha \in S_5$, $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix}$. Calculați α^2 și α^3 . Determinați cel mai mic $k \in \mathbb{N}^*$ cu proprietatea că $\alpha^k = id$.
- **P 17.** În grupul S_3 considerăm permutările $\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ şi $\beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. Calculați α^2 , α^3 , β^2 , $\alpha\beta$ şi $\alpha^2\beta$. Arătați că , împreună cu α și β , acestea sunt toate permutările din S_3 . Verificați că $\alpha^2 = \alpha^{-1}$, $\beta = \beta^{-1}$ și $\beta\alpha = \alpha^2\beta$.
- **P 18.** Determinați toate ciclurile de lungime 3 din S_4 .
- **P 19.** Câte cicluri de lungime l se află în S_n .
- **P 20.** Două permutări $\alpha, \beta \in S_n$ se numesc disjuncte dacă

$$(\alpha(i) - i) \cdot (\beta(i) - i) = 0, \quad (\forall) i = \overline{1, n}.$$

Dacă $\alpha, \beta \in S_n$ sunt două permutări disjuncte, arătați că

- a) $\alpha(i) \neq i \Longrightarrow \beta(\alpha(i)) = \alpha(i)$.
- b) $\alpha\beta = \beta\alpha$.
- P 21. Descompuneți următoarele permutări în produse de cicluri disjuncte:

- P 22. Descompuneți permutările de la exercițiul precedent în produse de transpoziții.
- **P 23.** Determinați paritățile tuturor permutărilor din S_3 și din S_4 .
- **P 24.** Determinați ordinul maxim pe care îl poate avea o permutare din S_n , pentru $n=\overline{2,10}$.
- P 25. Verificați identitățile următoare:
- a) (a,b)(a,b) = id, (a,b)(a,c) = (a,c,b), (a,b)(c,d) = (a,d,c)(a,b,c);
- b) $(i_1, i_2, i_3, \dots, i_{l-1}, i_l) = (i_1, i_l)(i_1, i_{l-1}) \dots (i_1, i_3)(i_1, i_2);$
- c) $(i, j) = (i, i+1)(i+1, i+2)\dots(j-2, j-1)(j-1, j)(j-2, j-1)\dots(i+1, i+2)(i, i+1), (\forall)i < j;$
- d) $\alpha(i_1, i_2, \dots, i_l)\alpha^{-1} = (\alpha(i_1), \alpha(i_2), \dots, \alpha(i_l)).$
- **P 26.** Determinați toate permutările $\alpha \in S_6$ care comută cu permutarea
- a) $\sigma = (1, 3, 4)(2, 6)$.
- b) $\tau = (1, 2, 3)(4, 5, 6)$.
- c) $\rho = (1,2)(3,4)(5,6)$.
- **P 27.** Fie (G,\cdot) un grup şi $M\subseteq G,\,M\neq\emptyset$. Arătați că subgrupul $\langle M\rangle$ generat de M este cea mai mică submulțime $H\subseteq G$ cu proprietatea că $M\subseteq H$ şi $H\cdot (M\cup M^{-1})\subseteq H$. Arătați că dacă grupul G este finit, atunci $\langle M\rangle$ este cea mai mică submulțime a lui G cu proprietatea că $M\subseteq H$ şi $H\cdot M\subseteq H$.

P 28. Arătați că dacă (G,\cdot) este un grup finit, iar $M\subseteq G, M\neq\emptyset$, atunci algoritmul următor permite determinarea subgrupului generat de M:

1)
$$S := \{1\}$$

2) $H := \{1\}$
3) $S := S \cdot M \setminus H$
4) if $S = \emptyset$, then $\text{stop}[\Longrightarrow H = \langle M \rangle]$
5) $H := H \cup S$, go to 3)

(alternativ putem descrie algoritmul prin următoarele recurențe:

$$S_0 := \{1\}, H_0 := \{1\},$$

$$S_{n+1} := S_n \cdot M \setminus H_n, \ (\forall)n \in \mathbb{N}$$
if $S_{n+1} = \emptyset$, then $\langle M \rangle = H_n$,
else $H_{n+1} := H_n \cup S_{n+1}$

care conduc de asemenea la subgrupul generat de submulțimea nevidă M).

P 29. Utilizați algoritmul din problema precedentă pentru a construi subgrupul $\langle M \rangle \leq S_4$, generat de $M = \{(1,2,3),(2,3,4)\}$.

P 30. Arătați că:

- a) $S_n = \langle (i, i+1) | i = \overline{1, n-1} \rangle;$
- b) $S_n = \langle (1, i) | i = \overline{2, n} \rangle;$
- c) $S_n = \langle (1,2), (1,2,\ldots,n-1,n) \rangle;$
- d) $S_n = \langle (1,2), (2,3,\ldots,n-1,n) \rangle;$
- e) $S_n = \langle (1, 2, \dots, n-1), (1, 2, \dots, n-1, n) \rangle;$ f) $A_n = \langle (i, j, k) | 1 \le i < j < k \le n \rangle;$
- g) $A_n = \langle (1, 2, i) | i = \overline{3, n} \rangle$.

P 31. a) Arătați că elementele grupului altern A_5 au formele id, (i,j)(k,l), (i,j,k), sau (i,j,k,l,m).

- b) Arătați că A_5 conține 20 de 3-cicluri, 24 de 5-cicluri și 15 produse de câte două transpoziții disjuncte.
- **P 32.** Fie $\sigma = (1, 2, \dots, m)$. Arătați că
- a) σ^k este un ciclu de lungime m dacă și numai dacă (k, m) = 1.
- b) Dacă (k, m) = d, atunci σ^k este un produs de d cicluri de lungimi egale.
- **P 33.** Fie $p, q, r, s \in S_8$ permutările date de următoarele produse de cicluri:

$$p = (1, 4, 3, 8, 2)(1, 2)(1, 5), \quad q = (1, 2, 3)(4, 5, 6, 8),$$

 $r = (1, 2, 8, 7, 4, 3)(5, 6), \quad s = (1, 3, 4)(2, 3, 5, 7)(1, 8, 4, 6).$

Calculați qpq^{-1} și $r^{-2}sr^2$.

P 34. Determinați numărul permutărilor $\sigma \in S_n$ ale căror descompuneri în cicluri disjuncte conțin k_1 cicluri de lungime $1, k_2$ cicluri de lungime $2, \ldots, k_n$ cicluri de lungime n.

P 35. Arătați că grupul altern A_n poate fi generat de ciclurile

- a) (1, 2, 3) şi (1, 2, 3, ..., n) dacă n este impar.
- b) (1, 2, 3) și (2, 3, ..., n) dacă n este par.
- **P 36.** Fie $m, n \in \mathbb{N}^*$ cu m < n-1 și $G = \langle \sigma_{m+1}, \sigma_{m+2}, \dots, \sigma_n \rangle \leq S_n$, unde

$$\sigma_{m+1} = (1, 2, \dots, m, m+1), \quad \sigma_{m+2} = (1, 2, \dots, m, m+2), \quad \dots, \quad \sigma_n = (1, 2, \dots, m, n).$$

Arătați că $G = S_n$ dacă m este impar, respectiv $G = A_n$ dacă m este par.