Task 1: Give it a go

Question Number	Score			
Question 1	2	1	2	Review
Question 2	1	1	1	Review
Question 3	1	1	1	Review
Question 4	1	1	1	Review
Question 5	2	1	2	Review
Question 6	2	1	2	Review
Question 7	10	1	10	Review

Click on a question number to see how your answers were marked and, where available, full solutions.				
Question Number	Score			
Question 1	2 / 2 R	eview		
Question 2	1 / 1 R	eview		

Total		19	I	19 (10	00%)
	Question 7	10	1	10	Review
	Question 6	2	1	2	Review
	Question 5	2	1	2	Review
	Question 4	1	1	1	Review
	Question 3	1	1	1	Review
	Question 2	1	1	1	Review
	Question 1	2	/	2	Review

Performance Summary

Exam Name:	SIT190 - Week 7 - Quiz - Short
Session ID:	13874488195
Student's Name:	COWLISHAW, Ethan Del (edcowlishaw)
Exam Start:	Thu Jan 01 1970 10:00:00
Exam Stop:	Tue Apr 30 2024 15:25:16
Time Spent:	0:14:44

Performance Summary

Exam Name:	SIT190 - Week 7 - Quiz - Short
Session ID:	12394967142
Student's Name:	COWLISHAW, Ethan Del (edcowlishaw)
Exam Start:	Fri May 03 2024 15:10:29
Exam Stop:	Fri May 03 2024 15:23:27
Time Spent:	0:12:58

I achieved full marks on both attempts of the quizzes. Though I did get full marks, I did continuously make silly mistakes like forgetting the order in which you subtract values to find the gradient (doing $y_1 - y_2$ instead of $y_2 - y_1$), so there is definitely room for improvement on both attempts.

For the last question where you needed to find the y-values of the stationary points, it completely slipped my mind on how to do so. I did a bunch of trial-and-error to remember how.

I understand how to find the answers most of the time, I simply have not consolidated the information properly. I will focus on doing so, and these guizzes have already helped me identify gaps and force me to slow down.

I did improve by about 12% time-wise so I am happy with that performance. As aforementioned, I made a few silly mistakes that would easily be fixed by slowing down.

(also a fun thing I noticed - my time on the first attempt thinks we're at the Unix epoch back in 1970)

Task 2: Derivatives

1) If
$$f(x)=4x^2+1$$
, find $\lim_{h o 0}rac{f(x+h)-f(x)}{h}$

$$f(x+h) = 4(x+h)^2 + 1$$

$$-> 4(x^2 + h^2 + 2xh) + 1$$

$$-> 4x^2 + h^2 + 8xh + 1$$

$$\lim_{h \to 0} \frac{(4x^2 + h^2 + 8xh + 1) - (4x^2 + 1)}{h}$$

$$> \frac{4x^2 + h^2 + 8xh + 1 - 4x^2 - 1}{h}$$

$$> \frac{h^2 + h^2 + 8xh + 1}{h}$$

$$> \frac{h^2 + 8xh}{h}$$

$$> \frac{h^2 + 8xh}{h}$$

$$> \frac{h^2 + 8xh}{h}$$

$$\rightarrow \frac{4x^2+h^2+8xh+1-4x^2-1}{4x^2+h^2+8xh+1-4x^2-1}$$

$$\rightarrow \frac{4x^2 + h^2 + 8xh + x^2 + x^2}{h}$$

$$\rightarrow \frac{h^2+8xh}{h}$$

$$-> \frac{h^2}{h} + \frac{8xh}{h}$$

$$-> 0 + 8x$$

=8x

Verification

$$4x^{2} + 1$$
-> $4 \times 2x^{2-1}$
-> $8x^{1}$
= $8x$

2) The below table gives the displacement of a vehicle from a starting position. Give the average rate of change in displacement between 4-8 hours.

Time (h)	0	2	4	6	8	10
Displacement (km)	0	135	210	298	329	428

$$\frac{329-210}{8-4} = \frac{119}{4} = 29.75$$
km

3) Find the derivative of the following functions

a)
$$f(x) = 7x^3 - rac{5}{x^3} - rac{4}{x^{-1}} - rac{5}{\sqrt{x+1}}$$

Answer: $21x^2 + 15x^{-4} - 4 - \frac{5}{2(x+1)^{\frac{3}{2}}}$

Alternate answer: $21x^2 + \frac{15}{x^4} - 4 - \frac{5}{2(x+1)^{\frac{3}{2}}}$

Working out

$$1:7x^{3}$$

$$2:-rac{5}{x^3}$$

$$3:-rac{x^{s}}{x^{-1}}$$

$$4:-rac{5}{\sqrt{x+1}}$$

1:
$$7x^3$$

->
$$7 * 3x^{3-1}$$

$$=21x^2$$

2:
$$-\frac{5}{x^3}$$

$$-> -5x^{-3}$$

$$-> -3 * -5x^{-3-1}$$

$$=15x^{-4}$$
 or $rac{1}{15x^4}$

3:
$$-\frac{4}{x^{-1}}$$

$$-> -4 \div \frac{1}{x}$$
$$-> -4 \times \frac{x}{1}$$

$$-> -4 \times \frac{x}{1}$$

->
$$\frac{-4x}{1} = -4x$$
Or: -> $\frac{-4}{\frac{1}{x}}$
-> $\frac{1}{x} = 1x^{1} = x$
-> $\frac{-4}{x}$
-> $-4x^{1} = -4x$
-> $-4*1x^{1-1}$
= -4

4:

$$-\frac{5}{\sqrt{x+1}}$$
-> $\sqrt{x+1} = (x+1)^{\frac{1}{2}}$
-> $-\frac{5}{(x+1)^{\frac{1}{2}}}$
-> $-5(x+1)^{\frac{1}{2}}$
-> $-5*\frac{1}{2}*(x+1)^{\frac{1}{2}-1}$
-> $-\frac{5}{2}(x+1)^{-\frac{3}{2}}$
-> $-\frac{5}{2} \times \frac{1}{\sqrt{(x+1)^3}}$
 $-\frac{5}{2\sqrt{(x+1)^3}}$ or $-\frac{5}{2(x+1)^{\frac{3}{2}}}$

b)
$$y=3\cos(4x^2)-2\sin\left(rac{x}{3}
ight)+\tan(x)$$

$$f'(x) = -k * p * \sin(kx^p)$$
-> $3\cos(4x^2)$
-> $3 \times -4 * 2\sin(4x^2)$
-> $-24\sin(4x^2)$

$$f'(x) = k\cos(kx)$$
-> $-2\sin(\frac{x}{3})$
-> $k = 1, x \to \frac{x}{3}$
-> $-2 \times \frac{1}{3}\cos(\frac{x}{3})$
-> $-\frac{2}{3}\cos(\frac{x}{3})$
 $\tan(kx) \to f'(x) = k * p * \sec(kx^p)^2$
-> $\tan(x)$
-> $k = 1, x \to x$
-> $1 \times \sec(x)^2$
-> $\sec(x)^2$

c)
$$y = 3e^{7x^2}$$

$$y=3e^{7x^2}$$

$$u=7x^2$$

$$u'=14x^1$$

$$egin{aligned} v &= 3e^u \ v' &= 3e^u \ f'(x) &= v' imes u \ 3e^{7x^2} imes 7x^2 \ -> 3e^{7x^2} imes 7 imes 2x^{2-1} \ -> 3e^{7x^2} imes 14x \ -> 14x imes 3e^{7x^2} \ 42e^{7x^2} x \end{aligned}$$

d)
$$y = \ln(5x^3)$$

Derivative of
$$f(x) = \ln(f_2(x))$$
 is $f'(x) = rac{f_2'(x)}{f_2(x)}$

$$u = 5x^{3}$$

$$u' = 15x^{2}$$

$$v = \ln(u)$$

$$v' = \frac{1}{u}$$

$$u' \times v'$$

$$-> 15x^{2} \times \frac{1}{5x^{3}}$$

$$-> \frac{15x^{2}}{x^{3}-2}$$

$$-> \frac{3x^{0}}{x^{1}}$$

$$= \frac{3}{x}$$

4) Sketch the graph $y = x^2 + 4x - 13$

Requirements:

- Find the derivative of this function and use this to find the stationary point.
- Give all working for finding the x and y-intercepts.
- Use a sign diagram or the second derivative test to identify if the stationary point of $y = x^2 + 4x 13$ is a local maximum or a local minimum

Derivative + classification

$$f(x) = x^2 + 4x - 13$$
-> $f'(x) = 1 \times 2x^{2-1} + 4 \times 1x^{1-1}$
-> $f'(x) = 2x^1 + 4x^0$
 $f'(x) = 2x + 4$

f''(x) = 2, which is > 0, meaning the stationary point is a local minimum, and as it is a parabola, it is a global minimum too.

Stationary point

$$(-2, -17)$$

 $0 = 2x + 4$
 $> 2x = -4$
 $> x = -2$
 $(-2)^2 + 4(-2) - 13$
 $> 4 - 8 - 13$
 $y = -17$

y and x intercepts

The *y*-intercept is the constant of the f(x) function, -13 For the x in $x^2+4x-13$, we can use the quadratic equation

$$x = \frac{-(4)\pm\sqrt{(4)^2-4(1)(-13)}}{2(1)}$$
 -> $x = \frac{-4\pm\sqrt{16+52}}{2}$ -> $x = \frac{-4\pm\sqrt{68}}{2}$ -> $x = \frac{-4\pm\sqrt{68}}{2}$ -> $x = \frac{-4\pm\sqrt{68}}{2}$ -> $x = \frac{-4\pm\sqrt{68}}{2}$ -> $x = -2\pm\frac{2\sqrt{17}}{2}$ -> $x = -2\pm\sqrt{17}$ The x -intercepts are $x_1^+ = -2 - \sqrt{17}$ and $x_2^- = -2 + \sqrt{17}$

Graph

