2023 D&A
Deep Session 5차시
CNN 심화
(LeNet, AlexNet, VGG)

CONTENTS

/ 01 / 02 / 03 / 04 CNN모델개요 LeNet AlexNet VGG

1. CNN 모델 개요

CNN 모델의 발전

- LeNet: 최초의 CNN 모델

ILSVRC (Imagenet Large Scale Visual Recognition Challenge)

이미지 인식 경진대회로 대용량의 이미지 데이터셋(Imagenet)을 주고 이미지 분류 알고리즘의 성능을 평가

- 2012년 AlexNet이 오류율을 크게 낮추며 딥러닝이 큰 주목을 받게 되었다.
- 그 후 딥러닝을 활용한 기법이 꾸준히 정확도를 개선해 오고, 컴퓨터 비전 분야에 큰 역할을 해 왔다.

2. LeNet

개요

- 1998년 Yann Lecun 연구팀이 개발한 최초의 CNN 알고리즘
- Yann Lecun 팀의 논문 'Gradient-Based Learning Applied to Document Recognition'에 수록되어 있는 LeNet-5가 대표적
- 손글씨 숫자를 인식하는 네트워크 → MNIST 데이터셋 사용 (0~9의 손글씨)
- 32x32 크기의 흑백 이미지에서 학습된 7 layer CNN
- [Input Conv(C1) Subsampling(S2) Conv(C3) Subsampling(S4) Conv(C5) FC6 FC7(output)]

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

2. LeNet - Conv1

Input

Input

Input size: (1, 32, 32)

Convolution

Filter size: 5x5 Filter 수: 6 Stride: 1 C1 layer

size: (6, 28, 28)

2. LeNet – Subsampling2

- 당시에 subsampling이라고 불렸으나 현재의 pooling과 동일한 역할

C1 layer

size: (6, 28, 28)

Average Pooling

Pooling size: 2x2 Stride: 2

S2 layer

size: (6, 14, 14)

2. LeNet - Conv3

S2 layer

size: (6, 14, 14)

Convolution

Filter size: 5x5 Filter 수: 16 Stride: 1

C3 layer

size: (16, 10, 10)

2. LeNet - Conv3

C3 layer의 feature map

S2 layer의 feature map

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	X				Χ	Χ	Χ			Χ	Χ	Χ	X		Χ	X
1	X	Χ				Χ	Χ	X			X	X	X	X		X
2	X	Χ	Χ				Χ	X	X			X		X	X	X
3		\mathbf{X}	Χ	Χ			Χ	X	Χ	Χ			X		X	X
4			Χ	X	Χ			X	X	X	X		\mathbf{X}	X		\mathbf{X}
5				X	Х	Х			X	X	X	X		X	X	X

TABLE I

EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3.

연산마다 서로 다른 조합의 입력값을 취해서 보다 다양한 특징을 찾아 global feature로 나타나기를 기대

- ① 연속된 3장을 모아 Convolution
 → 6장의 10x10 feature map 생성
- ② 연속된 4장을 모아 Convolution
 → 6장의 10x10 feature map 생성
- ③ 불연속한 4장을 모아 Convolution → 3장의 10x10 feature map 생성
- ④ 6장 모두 Convolution
 → 1장의 10x10 feature map 생성

2. LeNet – Subsampling4

C3 layer

size: (16, 10, 10)

Average Pooling

Pooling size: 2x2 Stride: 2 S4 layer

size: (16, 5, 5)

2. LeNet - Conv5

size: (16, 5, 5)

Convolution

Filter size: 5x5 Filter 수: 120 Stride: 1

C5 layer

size: (120, 1, 1)

2. LeNet - Fully Connected

^{*} Eclidean Radial Basis Function

[:] 입력값과 학습된 가중치들 사이의 거리를 계산 후,

이 거리값을 가지고 가우시안 분포 함수의 값을 계산하여 확률을 계산

3. AlexNet

개요

- 2012년 ILSVRC 대회 우승 모델
- 딥러닝 열풍을 일으키는 데 큰 역할
- 2개의 GPU로 병렬연산을 수행하기 위해 병렬적인 구조로 설계
- 227x227 크기의 RGB 3 Channel 이미지를 Input으로 사용
- [Input Conv1 MaxPool1 Conv2 MaxPool2 Conv3 Conv4 Conv5 MaxPool5 FC6 FC7 FC8(output)]

3. AlexNet

Data Augmentation

- 1. 좌우 반전을 통해 이미지 양 2배 증가
- 2. 256x256 이미지를 랜덤으로 잘라서 227x227 만듦

Dropout

→ overfitting 방지

3. AlexNet

ReLU 함수

활성화 함수로 ReLU 사용

- LeNet-5에서는 tanh 사용
 → 점점 기울기가 0에 수렴하여 역전파의 경우 기울기가 소실하게 되는 문제
- ReLU를 사용하는 것이 같은 정확도를 유지하면서 tanh를 사용하는 것보다 6배나 빨라 AlexNet 이후로는 ReLU 함수를 주로 사용

3. AlexNet - Conv1, MaxPool1

Input size: (3, 227, 227) size: (48, 55, 55) size: (48, 27, 27)

3. AlexNet - Conv1, MaxPool1

MaxPooling layer

Overlapping maxpooling 사용

→ 정보의 손실을 최소화하고 Overfitting 방지

Non-overlapping pooling

Overlapping pooling

3. AlexNet - Conv1, MaxPool1

LRN (Local Response Normalization)

- 신경생물학에서 원리를 가져온 것으로, 우측 그림의 검은 부분을 집중하여 보면 회색의 점이 보인다. → 강한 자극인 검정색이 약한 자극인 흰색의 인식을 막아 발생하는 '측면억제' 현상
- ReLU는 양수의 방향으로 입력의 값을 그대로 사용하기 때문에 매우 높은 하나의 픽셀값이 주변의 픽셀에 영향을 미치게 될 수 있다.
 - → map의 같은 위치에 있는 pixel끼리 정규화

3. AlexNet - Conv2, MaxPool2

Norm1 layer

Conv2 layer

Convolution

Filter size: 5x5 Filter 수: 256 Stride: 1 Padding: 2

MaxPooling

Pooling size: 3x3 Stride: 2

size: (128, 27, 27)

size: (128, 13, 13)

3. AlexNet - Conv3, Conv4

Norm2 layer

Addictional trick

Convolution

Filter size: 3x3 Filter 수: 384 Stride: 1 Padding: 1

Conv3 layer

Convolution

Filter size: 3x3 Filter 수: 384 Stride: 1 Padding: 1

Conv4 layer

size: (192, 13, 13)

size: (128, 13, 13)

size: (192, 13, 13)

Conv

3. AlexNet - Conv5, MaxPool5

Conv4 layer

MaxPool5 layer

Convolution

Pooling size: 3x3 Stride: 2

size: (192, 13, 13)

Conv

size: (128, 13, 13)

size: (128, 6, 6)

3. AlexNet - FC6, FC7, FC8

4. VGG

개요

- 2014년 ILSVRC 대회에서 2위를 한 CNN 모델
- 논문 'Very deep convolutional networks for large-scale image recognition'에 수록
- VGG부터 네트워크의 깊이가 확 깊어졌다.
- 3x3의 작은 filter를 사용한 convolution layer를 깊게 중첩한다는 것이 가장 큰 특징
- [Input C1 C2 MaxPool2 C3 C4 MaxPool4 C5 C6 C7 MaxPool7 C8 C9 C10 MaxPool10 C11 C12 C13 MaxPool13 FC14 FC15 FC16(Output)

4. VGG

3x3 filter 사용

깊이의 영향만을 최대한 확인하고자 filter size를 3x3으로 고정

- filter 사이즈가 크면 금방 이미지 사이즈가 작아져서 깊게 만들기 어려움
- 1. 비선형성 증가
- 각 Convolution 연산은 ReLU 함수를 포함
- → layer가 증가함에 따라 비선형성 증가
- 2. 학습 파라미터 수 감소

4. VGG

Data Augmentation

256x256 ~ 512x512 중 임의로 scaling 후 224x224로 crop

224x224

224x224

224x224

224x224

4. VGG – Conv1, Conv2, MaxPool2

Convolution

Filter size: 3x3 Filter 수: 64 Stride: 1 Padding: 1

Conv1 layer

size: (64, 224, 224)

Input size: (3, 224, 224)

Convolution

Filter size: 3x3 Filter 수: 64 Stride: 1 Padding: 1

C2 layer

Conv2

size: (64, 224, 224)

MaxPooling

Pooling size: 2x2 Stride: 2

MaxPool2 layer

1 x 1 x 4096 1 x 1 x 1000

max pooling

fully nected+ReLU

size: (64, 112, 112)

4. VGG – Conv3, Conv4, MaxPool4

MaxPool2 layer

Convolution

Filter size: 3x3 Filter 수: 128 Stride: 1 Padding: 1 Conv3 layer

(128, 112, 112)

Output size: (64, 112, 112)

Convolution

Filter size: 3x3 Filter 수: 128 Stride: 1 Padding: 1

Conv4 layer

size: (128, 112, 112)

MaxPooling

Pooling size: 2x2 Stride: 2

MaxPool4 layer

size: (128, 56, 56)

4. VGG – Conv5, Conv6, Conv7, MaxPool7

MaxPool4 layer

size: (128, 56, 56)

Convolution

Filter size: 3x3 Filter 수: 256 Stride: 1 Padding: 1

Conv5 layer

size: (256, 56, 56)

Convolution

Filter size: 3x3 Filter 수: 256 Stride: 1 Padding: 1

size: (256, 56, 56)

Convolution

Filter size: 3x3 Filter 수: 256 Stride: 1 Padding: 1

Conv7 layer

MaxPooling

Pooling size: 2x2 Stride: 2

MaxPool7 layer

size: (256, 28, 28)

4. VGG – Conv8, Conv9, Conv10, MaxPool10

4. VGG – Conv11, Conv12, Conv13, MaxPool13

4. VGG – FC14, FC15, FC16

size: (512, 7, 7)

(25088)으로 flatten 후

FC14 layer

size: (4096)

FC15 layer

size: (4096)

Fully Connected

Output

Output size: (1000)

과제

- 1. AlexNet 주석 달기
- 2. VGG 논문 review

②2023 D&A Deep Session 5計入 THANK YOU

2023. 04. 06