Podsumowanie Analizy Ryzyka Zagrożenia Agrofagiem (Ekspres PRA) dla ${\it He-licoverpa}\ zea$

Obszar PRA: Rzeczpospolita Polska

Opis obszaru zagrożenia: uprawy polowe (głównie kukurydzy), przede wszystkim w Polsce północno-zachodniej, w niewielkim stopniu również uprawy w warunkach chronionych w całej Polsce.

Główne wnioski:

H. zea jest gatunkiem motyla z rodziny sówkowatych (Noctuidae) szeroko rozsiedlonym w cieplejszych rejonach obu Ameryk. Gąsienice żerują polifagicznie na wielu roślinach, przynosząc wysokie straty ekonomiczne, między innymi w uprawie kukurydzy, sorgo, bawełny i pomidorów. Motyle wykazują duże zdolności migracyjne i są wstanie zasiedlać czasowo miejsca o znacznie chłodniejszym klimacie (np. północ Kanady, południe Argentyny). W obecnych warunkach klimatycznych Polski powstanie osiadłych populacji H. zea jest bardzo mało prawdopodobne, jednak w przypadku rozwinięcia się licznych populacji na południu Europy, terytorium naszego kraju znajdzie się w zasięgu migrujących osobników (analogiczna sytuacja ma miejsce w wypadku bliźniaczego gatunku H. armigera). Istnieje także ryzyko, że w przypadku zawleczenia gatunek ten może wyrządzić szkody w uprawach pod osłonami – zarówno roślin ozdobnych jak i warzyw.'

Ogólna ocena ryzyka: Średnie.

Inne rekomendacje:

• Należy na bieżąco sprawdzać informacje o znaczących stratach wyrządzanych przez $H.\ armigera$ i na podstawie odłowionych osobników dorosłych sprawdzać, czy nie są to przedstawiciele $H.\ zea.$

Ekspresowa analiza ryzyka: *Helicoverpa zea* (Boddie, 1850)

Autorzy: Wojciech Kubasik^A, Magdalena Gawlak^A, Michał Czyż^A, Agata Olejniczak^A, Tomasz Kałuski^A

A: Instytut Ochrony Roślin, ul. Węgorka 20, Poznań, 60-318

Autor korespondencyjny: plantquarantine@pra.org

Data: Październik 11, 2017*

Etap I

Wstęp

Powód wykonania PRA: Helicoverpa zea jest gatunkiem rozprzestrzenionym w strefach tropikalnych, subtropikalnych i umiarkowanych obu Ameryk. Gąsienica żeruje polifagicznie na wielu gatunkach roślin, zarówno dzikich, jak i uprawnych. W Ameryce Północnej powoduje ona znaczne straty w uprawie, między innymi kukurydzy i soi. Ponieważ motyle potrafią migrować na znaczne odległości, gąsienice są spotykane również w regionach, gdzie gatunek ten nie jest w stanie przezimować. Istnieje ryzyko zawleczenia tego gatunku do Europy, gdzie będzie mógł się dalej rozprzestrzeniać samoistnie.

Obszar PRA: Rzeczpospolita Polska

Etap II

Ocena zagrożenia Agrofagiem

(1) Taksonomia:

• Królestwo: Animalia

• Typ: Arthropoda

• Podtyp: Hexapoda

• Gromada: Insecta

• Rząd: Lepidoptera

• Rodzina: Noctuidae

• Rodzaj: Helicoverpa

• Gatunek: Helicoverpa zea (Boddie, 1850)*

Na podstawie: EPPO (2018)

Synonimy: Heliothis zea (Boddie, 1850), Phalaena zea (Boddie, 1850), Bombyx obsoleta Fabricius 1775, Heliothis umbrosa Grote

Nazwa powszechna: American bollworm, corn earworm, tomato fruitworm, New World bollworm (angielska), Chenille des épis du maïs (francuska), Amerikanischer Baumwollkapselwurm (niemiecka)

(2) Informacje ogólne o agrofagu:

^{*}Raport został wygenerowany w R (R Core Team, 2018) z użyciem knitr i bookdown (Xie, 2016, 2015)

Helicoverpa zea jest gatunkiem rozpowszechnionym na obu kontynentach amerykańskich, o dużych skłonnościach migracyjnych. Szczegółowe informacje o tym gatunku dostępne są na stronach (EPPO (2018), CABI/EPPO (2017)) oraz stronach CABI (2018). Dużo informacji o biologii i szkodliwości można znaleźć także na stronach University of Florida Capinera (2000).

Gąsienice żerują polifagicznie na wielu gatunkach roślin z różnych rodzin, jednak największe straty ekonomiczne przynoszą szkody wyrządzane w uprawach kukurydzy. Larwy mogą żerować na większości organów nadziemnych roślin, zjadając i dziurawiąc liście jak, i wgryzając się do wnętrza pędów, owoców oraz kolb kukurydzy. Gatunek ten najłatwiej wykryć w stadium gąsienicy, są one jednak dość zmiennie ubarwione i istnieje możliwość pomyłki z innymi przedstawicielami rodziny sówkowatych (Noctuidae). Typowo ubarwiona gąsienica ma ciemny grzbiet ciała (zwykle brązowy) z czarnymi pinaculami, jaśniejszy pasek po bokach ciała i jasny spód ciała (barwy od cielistej, przez żółtą do zielonej). Szczegóły budowę larw można znaleźć w kluczu, który opracował Passoa (2014), Lepintercept (2017).

Ponieważ gąsienice zazwyczaj wgryzają się do wnętrza organów roślin to by je znaleźć trzeba często rozciąć pęd czy kolbę kukurydzy. Na podstawie gąsienicy jest bardzo trudno stwierdzić czy mamy do czynienie z H. zea, czy też z występującą w Polsce H. armigera. Gąsienice należy zebrać i wyhodować postaci dorosłe, których identyfikacja jest możliwa na podstawie budowy aparatów kopulacyjnych. Osobniki dorosłe mogą być także odławiane do pułapek świetlnych i feromonowych Capinera (2000).

(3) Czy agrofag jest wektorem?

Nie

(4) Czy do wejścia lub rozprzestrzenienia agrofaga potrzebny jest wektor.

Nie

(5) Status regulacji agrofaga:

Kontynent/Region	Kraj/RPPP	Status	Rok
Afryka	Afryka Wschodnia	lista A1	2001
	Afryka Południowa	lista A1	2001
Azja	Bahrain	lista A1	2003
	Izrael	Szkodnik kwarantannowy	2009
Europa	Turcja	lista A1	2007
RPPO/EU	APPPC	lista A1	1988
	EPPO	lista A1	1994
	EU	Aneks I/A1	1992
	PPPO	lista A1	1993

(6) Rozmieszczenie:

Kontynent	Rozmieszczenie	Komentarz do statusu agrofaga w poszczególnych krajach	Źródła
Ameryka Południowa	Większość obszaru kontynentu.	Naturalny zasięg występowania. Szeroko rozmieszczony, częstszy na północy kontynentu, najpewniej nie brak stałych populacji na południowych krańcach kontynentu, ale mogą być notowane migrujące osobniki.	EPPO, 2018

Kontynent	Rozmieszczenie	Komentarz do statusu agrofaga w poszczególnych krajach	Źródła
Ameryka Północna	Znaczna część kontynentu	Szeroko rozmieszczony, ale liczne i stałe populacje tylko w południowej i środkowej części kontynentu. Na północ sięga po Kanadę, jednak na północy brak osiadłych populacji.	EPPO, 2018
Azja	Chiny	Prowincja Anhui północno-wschodniej części Chin. Dane te są jednak wątpliwe, bo istnieje tu możliwość pomyłki z H. armigera (badania te pochodzą z czasów, kiedy te gatunki traktowano synonimicznie (EPPO/CABI 1996))	YongYue i GuangWen, 2017
Europa	Szwajcaria	Przechwycony w przesyłce kwiatów	Billen, 1984
UE		Brak	NA
Oceania	Hawaje		Purcell i in., 1992

$\left(7\right)$ Rośliny żywicielskie i ich rozmieszczenie na obszarze PRA:

Nazwa naukowa szkodnika (nazwa powszechna)	Obecność na obszarze PRA	Komentarze	Źródła
Abelmoschus esculentus (piżmian jadalny, okra)	Nie	Gatunek uprawny w krajach o klimacie tropikalnym i subtropikalnym.	CABI, 2018
Abutilon theophrasti (zaślaz pospolity)	Tak	Pochodzący z Azji wschodniej gatunek lokalnie zadomowiony na	CABI, 2018
Amaranthus (szarlat)	Tak	obszarze PRA. Na obszarze PRA gatunki dziko rosnące (w tym pospolicie występujące w uprawach chwasty) oraz rośliny ozdobne.	CABI, 2018
Arachis hypogaea (orzacha podziemna, orzech ziemny)	Nie	Jednoroczna roślina uprawna pochodząca z Ameryki. Do Polski sprowadzane są owoce do celów spożywczych. We florze Polski notowana jako efemerofit.	CABI, 2018
Brassica oleracea (kapusta warzywna)	Tak	Roślina uprawna na całym obszarze PRA.	CABI, 2018
Brassica oleracea var. botrytis (kalafior)	Tak	Roślina uprawna na całym obszarze PRA.	CABI, 2018
Brassica oleracea var. capitata (kapusta głowiasta)	Tak	Roślina uprawna na całym obszarze PRA.	CABI, 2018
Cajanus cajan (nikla indyjska)	Nie	Gatunek uprawny w krajach o klimacie tropikalnym.	CABI, 2018

Nazwa naukowa szkodnika (nazwa powszechna)	Obecność na obszarze PRA	Komentarze	Źródła
Capsicum (papryka)	Tak	Na obszarze PRA C.annuum jest rośliną uprawianą. Dostępne są odmiany ozdobne uprawiane w warunkach domowych.	CABI, 2018
Capsicum annuum (papryka roczna)	Tak	Na obszarze PRA C. annuum jest rośliną uprawianą. W cieplejszych rejonach kraju możliwa uprawa w gruncie, jednak częściej pod osłonami. Dostępne są odmiany ozdobne uprawiane w doniczkach w warunkach domowych.	CABI, 2018
Chenopodium quinoa (komosa ryżowa)	Tak	Na obszarze PRA roślina rzadko uprawiana, efemerofit.	CABI, 2018
Cicer arietinum (ciecierzyca pospolita)	Tak	Na obszarze PRA roślina uprawiana głównie pod osłonami,	CABI, 2018
Citrus (cytrusy)	Tak	efemerofit. Rośliny uprawne. Na obszarze PRA niektóre gatunki uprawiane jako ozdobne w warunkach domowych, w szklarniach i oranżeriach. Owoce sprowadzane do celów spożywczych i przetwórstwa.	CABI, 2018
Cucumis melo (ogórek melon)	Tak	Roślina uprawna na obszarze PRA w gruncie i pod osłonami. Uprawy poboczne, uprawy amatorskie.	CABI, 2018
Cucumis sativus (ogórek siewny)	Tak	Roślina uprawna na całym obszarze PRA.	CABI, 2018
Fragaria (poziomka)	Tak	Rośliny uprawiane i dziko rosnace na całym obszarze PRA.	CABI, 2018
Fragaria x ananassa (truskawka, poziomka ananasowa)	Tak	Roślina uprawna na całym obszarze PRA w gruncie i pod osłonami.	CABI, 2018
Geranium (Carolina geranium)	Nie		CABI, 2018
Gerbera (gerbera)	Tak	Roślina uprawiana na obszarze PRA w warunkach szklarniowych i domowych jako roślina ozdobna. Wrażliwa na mrozy, w Polsce nie przetrzymuje zimy.	CABI, 2018
Glycine max (soja warzywna, soja zwyczajna)	Tak	Roślina uprawna na obszarze PRA. Gatunek przejściowo dziczejący.	CABI, 2018
Gossypium (bawełna)	Nie	Ważna roślina uprawna nie występująca na obszarze PRA.	CABI, 2018
Helianthus annuus (słonecznik zwyczajny)	Tak	Roślina uprawna na obszarze PRA. Także jako roślina ozdobna.	CABI, 2018
Ipomoea purpurea (wilec purprowy)	Tak	Na obszarze PRA gatunek uprawiany jako roślina ozdobna i przejściowo dziczejąca (efemerofit).	CABI, 2018
$Lactuca\ sativa\ (salata\ siewna)$	Tak	Roślina uprawna na obszarze PRA.	CABI, 2018

Nazwa naukowa szkodnika (nazwa powszechna)	Obecność na obszarze PRA	Komentarze	Źródła
Lamium amplexicaule (jasnota różowa)	Tak	Pospolita roślina dziko rosnąca na całym obszarze PRA. Roślina ruderalna, także w uprawach rolniczych jako chwast.	CABI, 2018
Lespedeza juncea var.	Nie		CABI, 2018
sericea Lonicera japonica (wiciokrzew japoński)	Tak	Roślina uprawiana w ogrodach jako ozdobna.	CABI, 2018
Medicago lupulina	Tak	Pospolita roślina dziko rosnąca na	CABI, 2018
(lucerana nerkowata) Medicago sativa	Tak	całym obszarze PRA. Roślina uprawna i dziczejąca na	CABI, 2018
(lucerna siewna) Nicotiana tabacum (tytoń szlachetny)	Tak	całym obszarze PRA. Roślina uprawna i przejściowo dziczejąca na obszarze PRA.	CABI, 2018
Panicum miliaceum (proso zwyczajne)	Tak	Gatunek rzadko uprawiany na obszarze PRA, przejściowo	CABI, 2018
Phaseolus (fasola)	Tak	dziczejący. Rośliny uprawiane na obszarze PRA.	CABI, 2018
Phaseolus vulgaris (fasola zwyczajna)	Tak	Roślina uprawna na całym obszarze PRA.	CABI, 2018
Salix (wierzby)	Tak	Wiele gatunków dziko rosnących i uprawianych jako rośliny ozdobne.	CABI, 2018
Securigera varia (cieciorka pstra)	Tak	Stosunkowo pospolita roślina dziko rosnąca na całym obszarze PRA.	CABI, 2018
Solanum lycopersicum (pomidor)	Tak	Roślina uprawna na całym obszarze PRA, w gruncie i pod	CABI, 2018
Solanum melongena (psianka podłużna, bakłażan)	Tak	osłonami. Roślina uprawna, na obszarze PRA głównie pod osłonami.	CABI, 2018
Sorghum bicolor (sorgo dwubarwne)	Nie/tak?	Podejmowane są próby uprawy tego gatunku na obszarze PRA.	CABI, 2018
Spinacia oleracea (szpinak warzywny)	Tak	Roślina uprawna na całym obszarze PRA, w gruncie i pod	CABI, 2018
Trifolium (koniczyny)	Tak	osłonami. Wiele gatunków dziko rosnących i uprawianych jako rośliny pastewne oraz w płodozmianie.	CABI, 2018
Trifolium incarnatum (koniczyna	Tak	Gatunek uprawiany na obszarze PRA.	CABI, 2018
krwistoczerwona) <i>Vivia sativa</i> (wyka siewna)	Tak	Roślina dziko rosnąca i uprawna (pastewna) na całym obszarze	CABI, 2018
<i>Vicia villosa</i> (wyka kosmata)	Tak	PRA. Roślina dziko rosnąca i uprawna (pastewna) na całym obszarze	CABI, 2018
Vigna unguiculata	Nie	PRA.	CABI, 2018
(wspięga wężowata) Zea mays (kukurydza)	Tak	Roślina uprawna na całym	CABI, 2018
Zea mays subsp. mays (kukurydza cukrowa)	Tak	obszarze PRA. Roślina uprawna na całym obszarze PRA.	CABI, 2018

(8) Drogi przenikania:

Najbardziej prawdopodobne jest przenikanie gatunku w stadium jaja, gąsienicy lub poczwarki. Mogą być one zawlekane z:

- roślinami do sadzenia (z wyłączeniem nasion, bulw i cebulek) z lub bez podłoża
- częściami roślin i produktami roślinnym, takimi jak:
 - kwiaty cięte i gałęzie,
 - ciete drzewa,
 - owoce i warzywa.

W wypadku rozwinięcia się na terenie Europy osiadłej populacji H. zea, gatunek ten będzie mógł się rozprzestrzeniać dalej drogą naturalnej migracji. Istnieje także możliwość przedostania się osobników dorosłych z transportem lotniczym, zwłaszcza z terenów, gdzie gatunek ten występuje w dużej liczebności (np. Ameryka Środkowa).

Możliwa droga przenikania	Droga przenikania:
Krótki opis, dlaczego jest rozważana jako droga przenikania	 H. zea jest polifagiem i istnieje teoretycznie możliwość przedostania się form preimaignalnych (jaja, larwy, poczwarki) z roślinami importowanymi z Ameryki Południowej i Północnej.
Czy droga przenikania jest zakazana na obszarze PRA?	Nie
Czy agrofag był już przechwycony tą drogą przenikania?	Nie
Jakie stadium jest najbardziej prawdopodobnie związane z tą drogą przenikania?	jaja, larwy, poczwarki
Jakie są ważne czynniki związane z tą drogą przenikania?	Transport żywych roślin w możliwie krótkim czasie
Czy agrofag może przeżyć transport i składowanie w tej drodze przenikania?	Tak
Czy agrofag może zostać przeniesiony z tej drogi przenikania na odpowiednie siedlisko?	Tak
Czy wielkość przemieszczania tą drogą przenikania sprzyja wejściu agrofaga?	Tak
Czy częstotliwość przemieszczania tą drogą przenikania sprzyja wejściu agrofaga?	Tak
Ocena prawdopodobieństwa wejścia	Średnie
Ocena niepewności	Wysoka

Możliwa droga przenikania	Droga przenikania:
Krótki opis, dlaczego jest rozważana jako droga przenikania	H. zea jest szerokim polifagiem i istnieje teoretycznie możliwość przedostania się form preimaignalnych (jaja, larwy, poczwarki) z częściami roślinami i produktami roślinnymi importowanymi z Ameryki Południowej i Północnej.
Czy droga przenikania jest zakazana na obszarze PRA?	Nie
Czy agrofag był już przechwycony tą drogą przenikania?	Nie

Możliwa droga przenikania	Droga przenikania:
Jakie stadium jest najbardziej prawdopodobnie związane z tą drogą przenikania?	jaja, poczwarki, larwy
Jakie są ważne czynniki związane z tą drogą przenikania?	Transport żywych roślin w możliwie krótkim czasie
Czy agrofag może przeżyć transport i składowanie w tej drodze przenikania?	Tak
Czy agrofag może zostać przeniesiony z tej drogi przenikania na odpowiednie siedlisko?	Tak
Czy wielkość przemieszczania tą drogą przenikania sprzyja wejściu agrofaga?	Nie
Czy częstotliwość przemieszczania tą drogą przenikania sprzyja wejściu agrofaga?	Nie
Ocena prawdopodobieństwa wejścia	Średnie
Ocena niepewności	Wysoka

Możliwa droga przenikania	Droga przenikania:
Krótki opis, dlaczego jest rozważana jako droga przenikania	H. zea jest dobrze latającym gatunkiem motyla i istnieje teoretycznie możliwość przedostania się na pokład osobnika dorosłego. Jest to groźne jedynie w wypadku zapłodnionej samicy, gdyż prawdopodobieństwo przedostania się jednorazowo w ten sposób większej liczby osobników jest bardzo mało prawdopodobne.
Czy droga przenikania jest zakazana na obszarze PRA?	Nie
Czy agrofag był już przechwycony tą drogą przenikania?	Nie
Jakie stadium jest najbardziej prawdopodobnie związane z tą drogą przenikania?	imago
Jakie są ważne czynniki związane z tą drogą przenikania?	Transport w warunkach umożliwiających przeżycie osobnika dorosłego (np. transport pasażerski).
Czy agrofag może przeżyć transport i składowanie w tej drodze przenikania?	Tak
Czy agrofag może zostać przeniesiony z tej drogi przenikania na odpowiednie siedlisko?	Nie
Czy wielkość przemieszczania tą drogą przenikania sprzyja wejściu agrofaga?	Nie
Czy częstotliwość przemieszczania tą drogą przenikania sprzyja wejściu agrofaga?	Nie
Ocena prawdopodobieństwa wejścia	Średnie
Ocena niepewności	Średnia

(9) Prawdopodobieństwo zasiedlenia w warunkach zewnętrznych (środowisko naturalne i zarządzane oraz uprawy) na obszarze PRA:

W obecnych warunkach klimatycznych nie ma możliwości rozwinięcia się stałych populacji *H. zea* w Polsce. Ponieważ jest to gatunek migrujący, w wypadku powstania licznych populacji w Europie Południowej,

istnieje możliwość czasowej kolonizacji i wyrządzania szkód przez gąsienice, jak ma to miejsce w północnych stanach USA i południowej Kanadzie. Blisko spokrewniony z H. zea gatunek - H. armigera, jest już notowany w Polsce jako szkodnik kukurydzy, jednak pojawiający się niezbyt licznie i bez większego znaczenia ekonomicznego.

Model niszy klimatycznej agrofaga został opracowny w programie CLIMEX 4.0 Commonwealth Scientific and Industrial Research Organisation (CSIRO) (2004). Ze względu na słabą dostępność danych wymaganych do modelowania wykorzystano parametry niszy klimatycznej blisko spokrewnionego gatunku *H. amigera* Zalucki i Furlong (2015), które następnie korygowano o informacje dotyczące diapauzy i wymagań temperaturowych Olmstead i in. (2016). W kolejnym etapie modelowania dopasowywano poszczególne parametry wilgotności oraz temperatury inicjującej i terminującej diapauzę, tak aby wynik odzwierciedlał rozmieszczenie owada na terenie Ameryki Północnej (Załącznik 1 Tab 4). Ze względu na obecność agrofaga na obszarze Kalifornii modelowanie przeprowadzano z założeniem irygacji 3,6 mm/dzień (25 mm/tydzień, patrz Mika i Newman (2010)). Modelowanie przeprowadzono na danych historycznych z okresu referencyjnego 1961-1990. Następnie użyto zunifikowanych danych z okresu 1986-2015 jako zmiany klimatycznej w stosunku do okresu referencyjnego do określenia bieżących warunków klimatycznych panujących na obszarze PRA.

Ocena	\mathbf{Niskie}	$\mathbf{\acute{S}rednie}$	$\mathbf{W}\mathbf{y}\mathbf{s}\mathbf{o}\mathbf{k}\mathbf{i}\mathbf{e}$
Ocena prawdopodobieństwa zadomowienia w	X	•	•
warunkach zewnętrznych Ocena niepewności		X	

Z dancyh historycznych za okres 1961-1990 wynika, że warunki panujące na terenie PRA nie są dogodne dla agrofaga. Jednak na podstawie modelu zmiany klimatu jaka nastąpiła w okresie 1986-2015 można ze średnią niepewnością stwierdzić, że zmiany temperatury i opadów jakie nastąpiły w ostatnim trzydziestoleciu umożliwiają zasiedlenie agrofaga w niektórych obszarach kraju. Ponadto należy zauważyć, że gatunek posiada ogromne możliwości dyspersyjne, przez co możliwe są jego masowe naloty na obszar PRA przy sprzyjających warunkach atmosferycznych (patrz pkt 11). Z drugiej strony gatunek ten na terenie Europy ma konkurencję w postaci blisko spokrewnionego *H. amigera* przez co ocena możliwości jego zasiedlenia jest utrudniona.

(10) Prawdopodobieństwo zasiedlenia w uprawach pod osłonami na obszarze PRA:

Jako polifag *H. zea* może rozwijać się na wielu roślinach, w tym uprawianych w szklarniach roślinach ozdobnych i warzywach. Dla spokrewnionego gatunku, *H. armigera*, notowano w Europie liczne wystąpienia w warunkach upraw chronionych (PRA Helicoverpa amigera). Ponieważ w warunkach upraw pod osłonami gatunek ten jest dość łatwy do wykrycia i zwalczenia (duże gąsienice), a prawdopodobieństwo przenoszenia jest niewielkie, nie należy spodziewać się rozwinięcia populacji utrzymujących się przez dłuższy czas.

Ocena	Niskie	Średnie	Wysokie
Ocena prawdopodobieństwa zasiedlenia w uprawach	X		
chronionych Ocena niepewności		X	

(11) Rozprzestrzenienie na obszarze PRA:

Motyle H. zea mają duże zdolności dyspersyjne i mogą pokonywać dystans przekraczający kilkaset kilometrów. W takim wypadku rozprzestrzenianie z udziałem człowieka ma znaczenie marginalne. Gatunek ten posiada ogromne możliwości dyspersyjne. Duże populacje motyli potrafią migrować na wysokości nawet 900 m. n. p. m. na odległości przekraczające 400 km. Dlatego, mimo że aktualnie warunki pogodowe na terenie PRA raczej nie są korzystne do zasiedlenia możliwe są naloty owada z pobliskich krajów, w których warunki sprzyjają zasiedleniu (np. z Węgier). Taka sytuacja ma miejsce w natywnym zasięgu na terenie USA, gdzie uważa się, że osobniki znajdywane na północy (powyżej 40 równoleżnika) nie tworzą stałych populacji, i prawdopodobnie na zimę migrują na południe (patrz przegląd literatury w Olmstead i in. (2016)).

Ocena	Niskie	Średnie	Wysokie
Ocena wielkości rozprzestrzenienia na obszarze PRA	X		
Ocena niepewności	X		

(12) Wpływ na obcecnym obszarze zasięgu:

I) Wpływ na bioróżnorodność

Na obszarach, gdzie *H. zea* występuje licznie, może być ona istotnym elementem sieci troficznych. Dorosłe osobniki mogą stanowić ważny element diety niektórych gatunków ptaków, nietoperzy. Stadia preimaginalne mogą być zjadane przez drapieżne owady oraz owadożerne ssaki. Są one także ważnym miejscem rozwoju parazytoidów. Pełną listę naturalnych wrogów *H. zea* podaje Kogan i in. (1989).

Ocena	Niskie	Średnie	$\mathbf{Wysokie}$
Ocena wielkości wpływu na bioróżnorodność na obecnym obszarze zasięgu	•	X	•
Ocena niepewności		X	

II) Wpływ na usługi ekosystemowe

Na obecnym obszarze występowania H. zea jest jednym z najistotniejszych szkodników kukurydz oraz drugim co do istotności ekonomicznej szkodnikiem w ogóle CABI (2018). Znaczne straty wyrządzane są także w uprawie bawełny, sorgo, pomidorów i wielu innych roślin.

Usługi ekosystemowe	Czy szkodnik wpływa na tą usługę ekosystemową?	Krótki opis wpływu	Źródła
Zabezpieczająca	Tak	H. zea jest jednym z najistotniejszych szkodników kukurydzy w Ameryce Północnej i Południowej, mogącym rozwijać się także na wielu innych gatunkach roślin uprawnych.	Kogan i in., 1989
Regulacyjna	Nie	· · · · · · · · · · · · · · · · · · ·	NA
Wspomagająca	Nie		NA
Kulturowa	Nie		NA

Ocena	Niski	Średni	Wysoki
Ocena wielkości wpływu na usługi ekosystemowe na	•	•	X
obecnym obszarze zasięgu Ocena niepewności	X		

III) Wpływ socjo-ekonomiczny

Szacunkowe straty powodowane przez *H. zea* (razem z *H. virescens*) na terenie USA szacowane są na 1000 milionów USD rocznie. Koszty ochrony chemicznej upraw to dodatkowo ok. 250 mln USD rocznie CABI (2018).

Rating	Niski	Średni	Wysoki
Ocena wielkości wpływu socjoekonomicznego na			X
obecnym obszarze zasięgu Ocena niepewności	X		

(13) Potencjalny wpływ na obszarze PRA:

Czy wpływ będzie równie duży, co na obecnym obszarze występowania? $\it Nie$

Ze względu na uwarunkowania klimatyczne *H. zea* nie jest w stanie wytworzyć na terenie naszego kraju osiadłych populacji. Ponieważ jest to gatunek migrujący, w wypadku powstania dużych populacji w południowej Europie istnieje możliwość, że migrujące osobniki będą licznie docierać na terytorium Polski i ze składanych jaj rozwiną się gąsienice, które lokalnie będą mogły wyrządzać znaczne szkody, zwłaszcza w uprawach kukurydzy.

I) Potencjalny wpływ na bioróżnorodność na obszarze PRA

Małe prawdopodobieństwo powstanie osiadłych populacji *H. zea* na terenie PRA. Dodatkowo nisza ekologiczna jest już tutaj zajęta przez bliźniaczy gatunek – *H. armigera*.

Jeżeli Nie,

Ocena	Niski	Średni	Wysoki
Ocena wielkości wpływu na bioróżnorodność na	X	•	
potencjalnym obszarze zasiedlenia Ocena niepewności	X		

II) Potencjalny wpływ na usługi ekosystemowe na obszarze PRA

Brak. Jeżeli Nie,

Ocena	Niski	Średni	Wysoki
Ocena wielkości wpływu na usługi ekosystemowe na potencjalnym obszarze zasiedlenia	X	X	٠
Ocena niepewności			

III) Potencjalny wpływ socjoekonomiczny na obszarze PRA

Gatunek ten może na obszarze PRA tworzyć, jako migrant, jedynie efemeryczne populacje, których liczebność może się znacznie wahać w poszczególnych latach, dlatego wpływ ten jest bardzo trudny do oszacowania. Jeżeli Nie,

Ocena	Niski	Średni	Wysoki
Ocena wielkości wpływu socjoekonomiczny na	X		
potencjalnym obszarze zasiedlenia Ocena niepewności			X

(14) Identyfikacja zagrożonego obszaru:

Obecnie zagrożone są tereny w Polsce zachodniej i północno-zachodniej oraz stosunkowo niewielkie obszary w centralnej (okolice Kutna) i wschodniej części kraju (części województw mazowieckiego i świętokrzyskiego). Potencjalnie największego wpływu można spodziewać się w zachodniej części kraju, co związane jest z klimatem, strukturą upraw (znaczny udział kukurydzy w areale zasiewów) oraz łatwością przenikania (bak istotnych barier środowiskowych i geograficznych).

(15) Zmiana kliamtu:

Oprogramowanie CLIMEX umożliwia modelowanie zmiany niszy w odpowiedzi na zmianę klimatu na dwa sposoby. Pierwszym jest użycie odpowiednio sformatowanych danych klimatycznych wyliczonych na podstawie modeli klimatycznych. Drugim jest użycie zunifikowanych, globalnych wartości zmiany temperatury i opadów dla okresów letniego i zimowego, bezpośrednio w programie. Ze względu na małą dostępność danych klimatycznych, w odpowiednim dla programu CLIMEX formacie i trudności związanych z transformowaniem tego typu danych, do predykcji niszy użyto dwóch zestawów danych pochodzących z bazy CliMond – CSIRO-MK3.0 i MIROC-H. W obu przypadkach przyszły klimat oszacowany został na podstawie scenariuszy SRES: A2 i A1B dla lat 2050 i 2100 Kriticos i in. (2012). Oba scenariusze zakładają, że gospodarka światowa będzie się rozwijać z większym naciskiem na wartości ekonomiczne niż środowiskowe. Do wyznaczenia zunifikowanych wartości zmiany temperatury i opadów w okresie letnim i zimowym w okresach 2041-2070 i 2071-2100 użyto od 12 do 27 modeli w zależności od scenariusza (RCP 4.5, 6.0, 8.5) i szacowanego parametru (patrz załącznik 1). Na podstawie predykcji z każdego modelu wyznaczono średnią zmianę parametru dla obszaru PRA.

Źródła niepewności:

W przypadku użycia zagregowanych danych klimatycznych pochodzących z bazy CliMond największym źródłem niepewności jest wiarygodność wyników symulacji uwzględniającej wąski zakres możliwych projekcji rozwoju gospodarczego i związanych z nim zmian oraz możliwych okresowych wahań klimatu. Przyjęcie zagregowanych wartości z wielu globalnych modeli cyrkulacji atmosfery pozwala na przyjęcie bardziej wiarygodnej projekcji zmian klimatu, redukując tym samym zakres niepewności. Jednak użycie jednej wartości dla całego regionu powoduje niedoszacowanie lub przeszacowanie wartości parametrów w poszczególnych podregionach. Co wiecej, należy zauważyć, że najwieksze zmiany klimatu w przypadku obszaru PRA zachodza w zimowej porze roku. Dlatego uśrednione wartości temperatury i opadu dla okresu zimowego, w skład, którego wchodzą pory roku jesienna i zimowa, obarczone są błędem. W przypadku zmian opadów niepewność predykcji jest ogólnie wysoka, co wynika z samego charakteru słabej przewidywalności tego parametru klimatu. W przypadku H. zea ważnym czynnikiem wpływającym na przeżycie poczwarek agrofaga jest temperatura i wilgotność podłoża. Poczwarki są w stanie przeżyć w temperaturze poniżej 0 °C, o ile wilgotność podłoża pozostaje niska. W przypadku Polski, wg szacunków, zarówno temperatura jak i opad (a zatem wilgotność podłoża) zmienią się dużo bardziej w okresie zimowym niż w jesiennym. Dlatego uśrednienie tych parametrów może niedoszacowywać stresu środowiskowego oddziałującego na agrofaga.

Rysunek 1: Indeks ekoklimatyczny dla H. ze
a w latach 2050 i 2100 na podstawie scenariuszy A1B i A2; model MIROC-
H $\,$

- I) Który scenariusz zmiany klimatu jest uwzględniony na lata 2050 do 2100 Scenariusz zmiany klimatu: RCP 4.5, 6.0, 8.5, SRES: A2, A1B (IPCC (1989))
 - II) Rozważyć wpływ projektowanej zmiany klimatu na agrofaga.

Zmiany klimatyczne nie wpłyną na możliwości przenikania gatunku na obszar PRA – już w istniejących uwarunkowaniach klimatycznych jest ono teoretycznie możliwe. Mogą one jednak oddziaływać na ich częstotliwość w wypadku rozwinięcia się osiadłych populacji w pobliżu Polski (np. północne Węgry, południe Czech). Według przyjętych modeli klimatycznych w roku 2050 ponad połowa terytorium Polski będzie obszarem potencjalnego zasiedlenia przez H. zea, a w roku 2100 praktycznie cały obszar naszego kraju (z wyjątkiem wyższych partii gór) będzie spełniał warunki dla rozwoju tego agrofaga. Ze względu na trudność prognozowania warunków klimatycznych w okresie zimowym, nie można w tej chwili jednoznacznie ustalić, czy w rozpatrywanym okresie powstaną dogodne warunki do rozwinięcia się osiadłych populacji H. zea.

Rysunek 2: Indeks ekoklimatyczny dla H. ze
a w latach 2041-2070 i 2071-2100 dla scenariuszy RCP 4.5; 6.0 i 8.5

Wpływ zmian klimatu na	Zmiana	Źródła
Czy jest prawdopodobne, że drogi przenikania mogą się zmienić na	Nie	EPPO, 2018
skutek zmian klimatu? Czy prawdopodobieństwo	Tak; prawdopodobieństwo: średnie;	Kogan i in., 1989
zasiedlenia może się zmienić wraz ze zmianą klimatu?	niepewność: średnia	TDD 0 0010
Czy wielkość rozprzestrzenienia może się zmienić wraz ze zmianą	Tak; prawdopodobieństwo: średnie; niepewność: średnia	EPPO, 2018
klimatu? Czy wpływ na obszarze PRA może się zmienić wraz ze zmianą klimatu?	Tak; prawdopodobieństwo: średnie; niepewność: średnia	EPPO, 2018

(16) Ogólna ocena ryzyka:

Prawdopodobieństwo zawleczenia *H. zea* do Europy jest bardzo wysokie – w Wielkiej Brytanii wielokrotnie notowano gąsienice przywożone wraz z importowanym materiałem roślinnym (EPPO). Identyfikację zagrożenia ułatwia fakt, że ślady żerowania gąsienic są zwykle dobrze widoczne i stosunkowo łatwe do wykrycia przez służby fitosanitarne. Same larwy mogą jednak w różny sposób ukrywać się na roślinach, między innymi wgryzając się do wnętrza łodyg, pędów, owoców itp. Dlatego też materiał roślinny sprowadzany z obszaru występowania agrofaga powinien być zawsze poddawany wnikliwej kontroli, a w razie potrzeby również kwarantannie lub dezynsekcji. W naszych warunkach dotyczy to głównie okresu wiosenno-letniego, kiedy to larwy mogłyby dokończyć rozwój w warunkach polowych. W przypadku materiału roślinnego sprowadzanego do uprawy w warunkach chronionych, niezbędna jest całoroczna szczegółowa inspekcja fitosanitarna Wnikliwa inspekcja powinna mieć także miejsce w krajach regionu śródziemnomorskiego, gdzie gatunek ten może już obecnie zaaklimatyzować się do warunków polowych.

Etap III

Zarządzanie ryzykiem zagrożenia agrofagiem.

(17) Środki fitosanitarne

I) Opisać potencjalne środki dla odpowiednich dróg przenikania i ich oczekiwaną efektywność na zapobieganie wprowadzenia (wejście i zasiedlenie) oraz/lub na rozprzestrzenienie.

Możliwe drogi przenikania (w kolejności od najważniejszej)	Możliwe środki	Opłacalność środków
Transport lotniczy całych roślin lub ich części.	Wykrycie w przesyłkach poprzez inspekcję przed odprawą lub trakcie transportu.	Wysoka
Transport lotniczy całych roślin lub ich części.	Wykrycie podczas kwarantanny po wejściu.	Średnia
Transport lotniczy całych roślin lub ich części.	Eradykacja z użyciem insektycydów.	Wysoka opłacalność, niskie koszty insektycydów.

II) Środki zarządzania eradykacją, powstrzymywaniem i kontrola

Podstawową metodą zapobiegania wniknięcia agrofaga jest wnikliwa kontrola fitosanitarna, która może odbywać się na różnych etapach transportu – od momentu przygotowywania roślin (lub ich części) po rozładunek w miejscu docelowym. Szczególnie istotne jest to w miesiącach wiosenno-letnich, kiedy to gąsienice mogłyby dokończyć swój rozwój w warunkach polowych, a jako polifag, dość łatwo znajduje rośliny pokarmowe. W wypadku wątpliwości co do zainfekowania sprowadzanego materiału, należy go

poddać kwarantannie. Jeśli charakter materiału na to pozwala (np. nie są to rośliny przeznaczone do konsumpcji), powinny zostać wykonane zabiegi z użyciem środków ochrony roślin o szerokim spektrum działania (np. chloropiryfos). Można również stosować schładzanie materiału przez 2-4 dni w temperaturze 1.7°C a następnie fumigację bromkiem metylu w dawce 13.5 g/m3 przez 4 godziny. Rośliny przeznaczone do konsumpcji, których dezynsekcja jest niemożliwa, powinny zostać zniszczone, np. przez spalenie.

(18) Niepewność:

Brak dostępnych informacji o przypadkach stwierdzenia na obszarze PRA przypadków odnalezienia H. zea w importowanym materiale roślinnym. W wypadku bardzo małych larw lub złóż jaj, możliwe jest ich przeoczenie przez służby fitosanitarne. W razie uzasadnionych podejrzeń sprowadzony materiał należy poddać kwarantannie.

(19) Uwagi:

W obecnych warunkach klimatycznych środki fitosanitarne nie są konieczne w miesiącach zimowych, gdyż gatunek ten nie jest wstanie przetrwać w warunkach polowych. Nie dotyczy to jednak roślin sprowadzanych do dalszej uprawy w warunkach chronionych.

Występowanie w Europie bliźniaczego gatunku H. armigera, komplikuje nieco status *H. zea*. Rozróżnienie ich w stadium gąsienicy jest prawie niemożliwe, a identyfikacja na podstawie postaci dorosłych wymaga specjalistycznej wiedzy. Paradoksalnie występowanie *H. armigera* może utrudniać wniknięcie *H. zea*, gdyż zajmują podobne nisze ekologiczne.

A Zdjęcia

B Klimat

Modele i warunki klimatyczne.

Czynnik klimatyczny	kod	opis	wartość
	DV0	temperatura limitująca dolna	12.0000
Temperatura	DV1	temperatura optymalna dolna	18.0000
Temperatura	DV2	temperatura optymalna gótna	35.0000
	DV3	temperatura limitująca górna	42.0000
	SM0	wilgotność limitująca dolna	0.0200
Wilgotność	SM1	wilgotność optymalna dolna	0.7000
Wilgothose	SM2	wilgotność optymalna górna	1.5000
	SM3	wilgotność limitująca górna	2.5000
	DPD0	Długość dnia inicjująca diapuazę	12.0000
D.	DPT0	Temperatura inicjująca diapauzę	12.0000
Diapauza	DPT1	Temperatura hamująca diapauzę	13.0000
	DPD0	Liczba dnia potrzebna do ukończenia	-69.0000
	DPSW	diapauzy Wskaźnik: 0 – diapauza zimowa, 1 – diapauza letnia	0.0000
Gu :	TTCS	temperatura progowa	5.0000
Stres zimna	THCS	tempo akumulacji	-0.0003
C+	TTHS	temperatura progowa	42.0000
Stres cieplny	THHS	tempo akumulacji	0.0010
Ctmas augus	SMDS	wilgotność progowa	0.0200
Stres suszy	HDS	tempo akumulacji	-0.0050
Strag zvilgotności	SMWS	wilgotność progowa	2.5000
Stres wilgotności	HWS	tempo akumulacji	0.0050

Czynnik klimatyczny	kod	opis	wartość
Stres zimna-wilgotności	DTCW	Minimalna liczba stopniodni powyżej DVCS	80.0000
	MTCW	wilgotność progowa	1.0000
	PCW	tempo akumulacji	0.1000
Akumulacja stopnio-dni	DV0		12.0000
powyżej DV0	DV3		42.0000
Akumulacja stopnio-dni	DV3		42.0000
powyżej DV3	DV4		100.0000
Akumulacja stopnio-dni	DVCS		0.0000
powyżej DVCS	DV4		100.0000
Stoopnio-dni na pokolenie	PDD	minimalna liczna stopnio-dni powyżej DV0 do ukończenia pokolenia	690.0000

Źródła

Billen, W., 1984. Tropische Insekten in Basel. Mitteilungen der Entomologischen Gesellschaft Basel 34, 141–144.

CABI, 2018. textitHelicoverpa zea [WWW Document]. URL https://www.cabi.org/isc/datasheet/26776 (udostępniono 9.28.18).

CABI/EPPO, 2017. EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Helicoverpa zea [WWW Document]. URL https://extension.entm.purdue.edu/CAPS/pdf/datasheets/OldWorldBollworm.pdf (udostępniono 9.28.18).

Capinera, J., 2000. Corn Earworm, textitHelicoverpa (=Heliothis) zea (Boddie) (Lepidoptera: Noctuidae) Florida Cooperative Extension Service [WWW Document]. URL http://entnemdept.ufl.edu/creatures/veg/corn_earworm.htm (udostępniono 9.28.18).

Commonwealth Scientific and Industrial Research Organisation (CSIRO), 2004. Dymex Simulator Application 2.0. Hearn Scientific Software, Australia.

EPPO, 2018. EPPO Global Database (available online) [WWW Document]. URL https://gd.eppo.int (udostępniono 9.28.18).

IPCC, 1989. Summary for policymakers, w: Field, C., Barros, V., Dokken, D., al. (Red.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom; New York, USA, ss. 1–32.

Kogan, M., Helm, C., Kogan, J., Brewer, E., 1989. Distribution and economic importance of Heliothis virescens and textitHelicoverpa zea in North, Central, and South America and of their natural enemies and host plants., w: King, E., Jackson, R. (Red.), Proceedings of the workshop on the biological control of Heliothis: increasing the effectiveness of natural enemies. USDA, Far East Regional Office, New Delhi, Indie, ss. 241–297.

Kriticos, D., Webber, B., Leriche, A., Ota, N., Macadam, I., Bathols, J., Scott, J., 2012. CliMond: global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution 3, 53–64.

Lepintercept, 2017. Lepintercept. An identification resource for intercepted Lepidoptera larvae [WWW Document]. URL http://idtools.org/id/leps/lepintercept/zea.html (udostępniono 9.28.18).

Mika, A., Newman, J., 2010. Climate change scenarios and models yield conflicting predictions about the future risk of an invasice species in North America. Agricultural and Forest Entomology 12, 213–221.

Olmstead, D., Nault, B., Shelton, A., 2016. Biology, ecology, and evolving management of Helicoverpa zea (Lepidoptera: Noctuidae) in sweet corn in the United States. Journal of Economic Entomology Advance

109, 1667-1676.

Passoa, S., 2014. Key to the identification of Helicoverpa armigera suspects intercepted at U.S. ports of entry, w: Gilligan, T., Passoa, S.C. (Red.), LepIntercept, An identification resource for intercepted Lepidoptera larvae. USDA/APHIS/PPQ/S&T, Fort Collins, CO., USA, ss. 1–3.

Purcell, M., Johnson, M.W., Lebeck, L.M., Hara, A.H., 1992. Biological control of Helicoverpa zea (Lepidoptera: Noctuidae) with Steinernema carpocapsae (Rhabditida: Steinernematidae) in corn used as a trap crop. Environmental Entomology 21, 1441–1447.

R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Xie, Y., 2016. bookdown: Authoring Books and Technical Documents with R Markdown. Chapman; Hall/CRC, Boca Raton, Florida.

Xie, Y., 2015. Dynamic Documents with R and knitr, 2nd ed. Chapman; Hall/CRC, Boca Raton, Florida.

YongYue, L., GuangWen, L., 2017. Spatial pattern of cotton bollworm (Helicoverpa zea) eggs with geostatistics. Journal of Huazhong Agricultural University 21, 13–17.

Zalucki, M., Furlong, M., 2015. Forecasting Helicoverpa populations in Australia: A comparison of regression based models and a bio-climatic based model approach. Insect Science 12, 45–56.