```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: df=pd.read_csv(r"C:\Users\Admin\Downloads\2015 - 2015.csv")
 df

Out[2]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Free
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.6
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.6
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.6
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.6
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.6
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.5
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.4
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0.1
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	0.'
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	3.0

158 rows × 12 columns

```
In [3]: |df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 158 entries, 0 to 157
        Data columns (total 12 columns):
             Column
                                             Non-Null Count Dtvpe
         ---
         0
             Country
                                                             object
                                             158 non-null
             Region
                                             158 non-null
                                                             object
         1
         2
             Happiness Rank
                                             158 non-null
                                                             int64
         3
             Happiness Score
                                             158 non-null
                                                             float64
         4
             Standard Error
                                             158 non-null
                                                             float64
         5
             Economy (GDP per Capita)
                                             158 non-null
                                                             float64
         6
             Family
                                             158 non-null
                                                             float64
         7
             Health (Life Expectancy)
                                                             float64
                                             158 non-null
             Freedom
         8
                                             158 non-null
                                                             float64
         9
             Trust (Government Corruption) 158 non-null
                                                             float64
         10 Generosity
                                             158 non-null
                                                             float64
         11 Dystopia Residual
                                                             float64
                                             158 non-null
        dtypes: float64(9), int64(1), object(2)
        memory usage: 14.9+ KB
In [4]: | df.columns
Out[4]: Index(['Country', 'Region', 'Happiness Rank', 'Happiness Score',
                'Standard Error', 'Economy (GDP per Capita)', 'Family',
                'Health (Life Expectancy)', 'Freedom', 'Trust (Government Corruptio
        n)',
                'Generosity', 'Dystopia Residual'],
              dtype='object')
```

In [5]: | sns.pairplot(df)

Out[5]: <seaborn.axisgrid.PairGrid at 0x246c34580d0>


```
In [6]: sns.distplot(df['Happiness Rank'])
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x246be692af0>

In [7]: sns.heatmap(df.corr())

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x246c7c97340>


```
In [8]: x=df[['Happiness Score', 'Family']]
y=df[['Happiness Rank']]
```

```
In [9]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

```
In [10]: | from sklearn.linear_model import LinearRegression
         lr= LinearRegression()
         lr.fit(x_train,y_train)
Out[10]: LinearRegression()
In [11]:
         print(lr.intercept_)
          [289.30053438]
         prediction= lr.predict(x_test)
In [12]:
         plt.scatter(y_test,prediction)
Out[12]: <matplotlib.collections.PathCollection at 0x246c8771f10>
           160
           140
           120
           100
           80
           60
           40
           20
            0
                         40
                                          100
                                               120
                    20
                               60
                                    80
                                                     140
                                                          160
In [13]: |print(lr.score(x_test,y_test))
         0.9867308381291591
In [14]:
         print(lr.score(x_train,y_train))
         0.9828007348418877
In [15]: | from sklearn.linear model import Ridge, Lasso
In [16]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[16]: Ridge(alpha=10)
In [17]: |rr.score(x_test,y_test)
Out[17]: 0.9771858524318255
In [18]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[18]: Lasso(alpha=10)
```

```
In [19]: la.score(x_test,y_test)
Out[19]: 0.9362269408351096
In [ ]:
```