Redes Neurais

Carlos Diego Rodrigues 16 de dezembro de 2021

Universidade Federal do Ceará

Redes Neurais

- Motivação: Deep Learning.
- Por que usar mais de uma camada?
- Descida de gradiente estocástica.
- Retropropagação do erro.
 - Rede de duas camadas
 - Generalização matricial

Deep Learning

- Redes neurais causaram grande impacto em anos recentes em aplicações como visão computacional e reconhecimento de linguagem natural.
- Um dos motivos para isto é a capacidade dos dispositivos lidarem com grande quantidade de dados.
- Estudos mostram que uma estrutura expandida, com diversas camadas de computação, também traz benefícios significativos na qualidade do algoritmo (em comparação com a aplicação de uma função diretamente: regressão).
- Os modelos deep learning são flexíveis e conseguem explorar mais combinações de informação enterradas nos conjuntos de instâncias com maior eficiência.
- Surgimento de software e hardware próprios para redes neurais: tensors e GPUs.

Deep Learning

- 1. Aprendizado de máquina clássico: fazer predições diretamente de um conjunto de atributos pré-especificados pelo usuário.
- Aprendizado com técnicas de representação: transformar os atributos em uma representação antes de fazer uma predição.
- Aprendizado profundo (deep learning): uma técnica de aprendizado com representação que pode utilizar múltiplos passos (camadas) de representação para criar características complexas.

MNIST - Reconhecimento de números escritos

Classifier	Test Error Rate (%)	References
Linear classifier (1-layer neural net)	12.0	LeCun et al. (1998)
K-nearest-neighbors, Euclidean (L2)	5.0	LeCun et al. (1998)
2-Layer neural net, 300 hidden units, mean square error	4.7	LeCun et al. (1998)
Support vector machine, Gaussian kernel	1.4	MNIST Website
Convolutional net, LeNet-5 (no distortions)	0.95	LeCun et al. (1998)
Methods using distortions		
Virtual support vector machine, deg-9 polynomial, (2-pixel jittered and deskewing)	0.56	DeCoste and Scholkopf (2002)
Convolutional neural net (elastic distortions)	0.4	Simard, Steinkraus, and Platt (2003)
6-Layer feedforward neural net (on GPU) (elastic distortions)	0.35	Ciresan, Meier, Gambardella, and Schmidhuber (2010)
Large/deep convolutional neural net (elestic distortions)	0.35	Ciresan, Meier, Masci, Maria Gambardella, and Schmidhuber (2011)
Committee of 35 convolutional networks (elastic distortions)	0.23	Ciresan, Meier, and Schmidhuber (2012)

Uma primeira rede neural: regressão

- Uma função de regressão (ou regressão logística) pode ser vista como uma primeira rede neural simples.
- Nesta rede temos um conjunto de entradas igual ao número de atributos da instância original e uma única saída que é calculada diretamente a partir das entradas:

$$h_w(x,b) = \sigma(w^T x + b)$$

 Este modelo pode ser avaliado para cada exemplo, pelo erro quadrático proporcionado:

$$J^{i}(w) = \frac{1}{2}(h_{w}(x^{i}, b^{i}) - y^{i})^{2} \forall i = 1, \cdots, m$$

 Podemos adotar como critério para um modelo ideal a minimização do erro médio sobre todas as instâncias:

$$w^* = \arg\min_{w} \left\{ \frac{1}{m} \sum_{i=1}^{m} J^i(w) \right\}$$

Rede neural de regressão

Mais camadas

- Digamos que temos um problema de prever o preço de um imóvel.
- Alguns atributos interessantes podem ser:
 - Área do imóvel
 - Número de quartos
 - CEP
 - Bairro
 - Área de lazer
- Estas características estão relacionadas às características que fazem de fato com que as pessoas paguem mais por um imóvel:
 - Tamanho da família
 - Acesso a bons serviços
 - Proximidade com o centro da cidade
- Poderíamos então associar os atributos a essa camada escondida.

Rede neural com duas camadas

Relações entre camadas

 Podemos observar que a saída agora nao depende mais diretamente da entrada através da relação:
 h_w(x, b) = σ(w^Tx + b).

- De maneira geral poderíamos dizer que cada nó além da camada de entrada pode ser escrito através de alguma relação dessa forma.
- O mais comum é considerarmos que todos os nós de uma camada estão conectados a todos os nós da camada seguinte e deixar que os coeficientes emerjam no processo de resolução.
- Portanto em cada camada k podemos considerar uma matriz $W^{[k]}$, onde cada coluna $W^{[k]}_j$ corresponde ao j-ésimo nó daquela camada e o valor $W^{[k]}_{ij}$ é o peso da sua ligação com o i-ésimo elemento da camada seguinte.

Relações entre camadas

- Dessa forma, para o caso de duas camadas, é possível obter um vetor intermediário $a = \sigma(W^{[1]}x + b^{[1]})$ e então calcular $h_W(x, b) = \sigma(W^{[2]}a + b^{[2]})$.
- Generalizando para *r* camadas temos:

$$a^{[1]} = \sigma^{[1]}(W^{[1]}x + b^{[1]})$$

$$a^{[2]} = \sigma^{[2]}(W^{[2]}a^{[1]} + b^{[2]})$$

$$...$$

$$a^{[r-1]} = \sigma^{[r-1]}(W^{[r-1]}a^{[r-2]} + b^{[r-1]})$$

$$h_W(x) = \sigma^{[r]}(W^{[r]}a^{[r-1]} + b^{[r]})$$

Esquema de uma rede neural com 2 camadas internas

Funções de ativação

- A função de ativação pode mudar, a depender do interesse do desenvolvedor da rede.
- Observe que se a função de ativação for uma identidade, é possível reduzir aquela camada. Suponha que temos duas camadas, onde $a^{[1]} = W^{[1]}x + b^{[1]}$.

$$h_{W}(x) = \sigma(W^{[2]}a^{[1]} + b^{[2]})$$

$$h_{W}(x) = \sigma(W^{[2]}(W^{[1]}x + b^{[1]}) + b^{[2]})$$

$$h_{W}(x) = \sigma(W^{[2]}W^{[1]}x + (W^{[2]}b^{[1]} + b^{[2]}))$$

$$h_{W}(x) = \sigma(\tilde{W}x + \tilde{b})$$

 Funções de ativação definem portanto o objetivo e necessidade da camada.

Ativações típicas

- Função logística: $f(x) = \frac{1}{1 + e^{-x}}$
- Tangente hiperbólica: $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$
- Softmax: $f(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}}$
- Softsign: $f(x) = \frac{x}{|x|+1}$
- Rectified Linear Unit: $f(x) = max\{0, x\} = [max\{0, x_i\}]$
- Softplus: $f(x) = log(1 + e^x)$
- Outras ...

Como resolver com mais camadas

- O processo de regressão nos elucida um caminho de resolução para uma rede neural onde entradas e saídas estão diretamente conectadas.
- A descida de gradiente consiste na atualização iterativa dos valores (w, b) de forma que:

$$w_j \leftarrow w_j + \alpha(y^i - h_w(x^i))x_j$$

• De forma mais geral poderíamos pensar no seguinte esquema:

$$w_j \leftarrow w_j + \alpha \frac{d}{dw_j} h_w(x)$$

- Dois desafios surgem no caso das redes neurais:
 - 1. Uma grande quantidade de entradas, neurons, exemplos ...
 - 2. Como atualizar os valores para mais de uma camada.

Descida de gradiente estocástica

- Consiste em aplicar exatamente a mesma metodologia do método de descida de gradiente.
- Contudo nem todos os exemplos são considerados para fazer uma atualização dos valores.
- Divide-se o conjunto de instâncias em amostras chamadas "mini-batches".
- Esta amostra aleatória não conduz ao valor ideal de descida de gradiente, mas permite uma atualização no sentido da otimização. Após uma nova avaliação, um outro "mini-batch" é usado e o método segue.

Algoritmo Descida de gradiente estocástica

Algorithm 1 Descida do gradiente estocástica

Entrada: X, Y: conjunto de atributos e classes

Saída: (w, b): coeficientes aproximados

- 1: Encontre um valor inicial para (w, b)
- 2: for $k \leftarrow 1 \cdots N_{iter}$ do
- 3: Escolha uma amostra (X', Y') de (X, Y)
- 4: for $(x', y') \in (X', Y')$ do
- 5: for $j \leftarrow 1 \cdots n$ do
- 6: $w_j \leftarrow w_j + \alpha \frac{d}{dw_j} h_w(x)$
- 7: $b \leftarrow b + \alpha \frac{d}{db} h_w(x)$
- 8: Retorna (w, b)

Retropropagação do erro

- A técnica para lidar com as várias camadas da rede neural é chamada de retropropagação do erro.
- Similarmente à teoria vista para regressão e regressão logística ela consiste em utilizar a margem de erro obtida por determinados candidatos (W, B) da rede para melhorá-los iterativamente com o auxílio da descida de gradiente (estocástica).
- **Teorema** : Suponha que uma rede de tamnho N calcula uma função real $f: \mathbb{R}^l \to \mathbb{R}$. Então o gradiente ∇f pode ser calculado por um circuito de tamanho O(N) em tempo O(N).
- Auto-diferenciação.

 Vamos voltar ao caso da rede de duas camadas explicitando cada passo do cálculo:

$$z = W^{[1]}x + b^{[1]}$$

$$a = \sigma(z)$$

$$o = W^{[2]}a + b^{[2]}$$

$$J = \frac{1}{2}(y - o)^2$$

Vamos utilizar ao longo desta seção a regra da cadeia:

$$g_j = g_j(x_1, x_2, \dots, x_n)$$

$$J = J(g_1, g_2, \dots, g_k)$$

$$\frac{dJ}{dx_i} = \sum_{i=1}^k \frac{dJ}{dg_j} \frac{dg_j}{dx_i}$$

MNIST - Reconhecimento de números escritos

- Nosso objetivo é calcular as derivadas de cada camada para propor atualizações para $W^{[1]},W^{[2]},b^{[1]}$ e $b^{[2]}$.
- Calculando $\frac{dJ}{dW^{[2]}}$.

$$\frac{dJ}{dW_i^{[2]}} = \frac{dJ}{do} \cdot \frac{do}{dW_i^{[2]}}$$
$$= (o - y) \cdot \frac{do}{dW_i^{[2]}}$$
$$= (o - y) \cdot a_i$$

• Calculando $\frac{dJ}{db^{[2]}}$

$$\frac{dJ}{db^{[2]}} = \frac{dJ}{do} \cdot \frac{do}{db^{[2]}}$$
$$= (o - y) \cdot \frac{do}{db}$$
$$= (o - y)$$

• Calculando $\frac{dJ}{dW^{[1]}}$.

$$\frac{dJ}{dW_{ij}^{[1]}} = \frac{dJ}{dz_i} \cdot \frac{dz_i}{dW_{ij}^{[1]}}$$
$$= \frac{dJ}{dz_i} \cdot x_j$$

• Calculando $\frac{dJ}{dz}$

$$\frac{dJ}{dz_i} = \frac{dJ}{da_i} \cdot \frac{da_i}{dz_i}$$
$$= \frac{dJ}{da_i} \cdot \sigma'(z_i)$$

• Calculando dJ

$$\frac{dJ}{da_i} = \frac{dJ}{do} \cdot \frac{do}{da_i}$$
$$= (o - y) \cdot W_i^{[2]}$$

 Portanto, podemos concluir o processo para a primeira camada:

$$\frac{dJ}{dW_{ij}^{[1]}} = \frac{dJ}{do} \cdot \frac{do}{da_i} \cdot \frac{da_i}{dz_i} \cdot \frac{dz_i}{dW_{ij}^{[1]}}$$
$$= (o - y) \cdot W_i^{[2]} \cdot \sigma'(z_i) \cdot x_j$$

• Em argumento similar podemo concluir que:

$$\frac{dJ}{db_i^{[1]}} = \frac{dJ}{do} \cdot \frac{do}{da_i} \cdot \frac{da_i}{dz_i} \cdot \frac{dz_i}{db_i^{[1]}}$$
$$= (o - y) \cdot W_i^{[2]} \cdot \sigma'(z_i)$$

• Adotando a sistemática (pensando $x = a^{[0]}$):

$$a^{[1]} = \sigma^{[1]}(W^{[1]}a^{[0]} + b^{[1]})$$

$$a^{[2]} = \sigma^{[2]}(W^{[2]}a^{[1]} + b^{[2]})$$
...
$$a^{[r-1]} = \sigma^{[r-1]}(W^{[r-1]}a^{[r-2]} + b^{[r-1]})$$

$$a^{[r]} = \sigma^{[r]}(W^{[r]}a^{[r-1]} + b^{[r]})$$

$$J = \frac{1}{2}(a^{[r]} - y)^2$$

 Podemos adotar desenvolvimento similar àquele apresentado para a primeira camada da rede de duas camadas.

Algoritmo de Retropropagação em uma rede neural

Algorithm 2 Retropropagação

```
Entrada: X, Y: conjunto de atributos e classes
Saída: (W, b): coeficientes da rede
 1: repeat
         Escolher uma amostra (X', Y')
 2:
 3: a^{[0]} \leftarrow X'
 4: for k = 1 \cdots r do
             Calcular a^{[k]} = \sigma^{[k]} (W^{[k]} a^{[k-1]} + b^{[k]})
 5:
 6:
         for k \leftarrow r \cdots 1 do
 7:
             if k = r then
                 Calcular \delta^{[r]} = \frac{dJ}{dr} = (W^{[r]} \cdot (a^{[r]} - Y')) \cdot \sigma'^{[r]}(z^{[r]})
 8:
 9:
             else
                  Calcular \delta^{[k]} = \frac{dJ}{dz^{[k]}} = (W^{[k+1]} \cdot \delta^{[k+1]}) \cdot \sigma'^{[k]}(z^{[k]})
10:
              Calcular \frac{dJ}{dW[k]} = \delta^{[k]} a^{[k]}^T
11:
12:
              Calcular \frac{dJ}{u[k]} = \delta^{[k]}
13:
              Atualizar (W, b) de acordo com a descida de gradiente.
14: until convergência
15: Retorna (W, b)
```