

Mode of Exam **OFFLINE**

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

SET - A

Academic Year: 2023-24 (ODD)

Test: CLAT-2

Course Code & Title: 18AIE332T – Image and Video Processing

Vear & Sem: III Year & V Semester

Date: 09-010-2023

Duration: 1 Hour

Max. Marks: 50 Marks

Course	Course Articulation Matrix:													
	Learn	ing Ou	tcomes	At t	he end	of this o	ourse	learne	rs will	he ahle	to:			
(CO):								icarne	is wiii	oc doic	10.			
CO-1	Illustra	te the basi	ic concepts	of Swari	n Intellige	nce proces	ses							
CO-2	Examir	Examine the principle of Immuno computing techniques												
CO-3	Skills f	Skills for planning, estimating, and resourcing for Natural design considerations												
CO-4	Manag	e the scop	e changes	of nature	inspired	techniques	which in	fluence co	mputing					
CO-5	Ability	to identif	y optimiza	tion Tech	iniques as	a means i	to provide	e function	ality and	value to ap	pply conte	ext in specific o	case studies	
CO-6	Ability	to unders	tand the n	eeds and	familiariz	e the DNA	Comput	ing						
1	2 3 4 5 6 7 8 9 10 11 12 PSO													
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual &Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO – 3	
2	3	2	2	1	-	-	-	-	-	-	-	-	-	1
3	3	1	2	2	-	-	-	-	-	-	-	-	-	2
3	3	2	2	1	-	-	-	-	-	-	-	-	-	2
3	3	2	2	1	-	-	-	-	-	-	-	-	-	2
3	3	2	2	2	-	-	-	-	-	-	-	-	-	3
2	3	2	2	2	-	-	-	-	-	-	-	-	-	3

	$Part - A$ $(5 \times 1 = 5 \text{ Marks})$												
Instru	Instructions: Answer all												
Q. No	Question	Marks	BL	СО	PO	PI Code							
1	Which spatial domain technique would you use to improve the contrast of a grayscale handwritten digit image for optical character recognition (OCR) by redistributing the intensity values across the entire range? a) Histogram Processing b) Histogram Equalization c) Histogram Matching d) Local Histogram Processing	1	2	2	1	1.2.4							
2	To restore the image and reduce the impact of noise, which common spatial domain method would you employ? a) Inverse Filtering – Wiener b) Singular Value Decomposition c) Adaptive Filters d) Band Pass Filters	1	1	2	1	1.2.2							
3	A project that requires identifying and isolating individual cells in microscopic images. Which segmentation	1	1	3	1	2.1.3							

	technique would you use?					
	a) Detection of Isolated Points					
	b) Region Splitting and Merging					
	c) Line Detection					
	d) Region Growing					
4	Choose the compression technique that is most	1	2	3	1	2.4.2
	suitable for efficiently representing consecutive					
	occurrences of the same value with a code indicating					
	the value and its count in a data compression					
	algorithm designed for a sensor data stream?					
	a) Run Length Coding					
	b) Bit Plane Codingc) LZW Coding					
	d) Arithmetic Coding					
	d) Anumene Coding					
5	What compression technique, recognized for its ability to	1	1	3	1	1.2.5
	efficiently reduce both spatial and spectral redundancies	1	_		_	1.2.0
	in hyperspectral satellite images, would you utilize to					
	optimize storage and transmission of these images?					
	a) Wavelet Coding					
	b) Predictive Coding					
	c) Bit Plane Coding					
	d) Huffman Coding					
	$Part - B$ $(3 \times 5 = 15 \text{ Marks})$					
Instru	actions: Answer all	1	1		.	
6	In a criminal investigation, a security camera captured a crucial	5	1	2	1	1.2.4
	moment but the image is blurry and lacks clarity. The investigators need to enhance the image to identify the suspects.					
	Describe how you would utilize spatial domain methods to					
	sharpen the image and potentially identify the individuals					
	involved.					
7	Radiologists need to identify and isolate tumors in a series of	5	2	3	1	2.2.3
	MRI scans. Some tumors have similar intensities to surrounding					
	tissue, making them challenging to distinguish. Detail the approach you would take using image segmentation					
	techniques to accurately detect and isolate tumors in the MRI					
	scans.					
8	An organization needs to digitally archive a large number of	5	2	3	1	1.1.4
	important documents. They want to ensure that the documents					
	are stored efficiently while preserving all information.					
	How would you apply lossless compression techniques, specifically Run Length Coding, to efficiently store and archive					
	the documents while guaranteeing no loss of information?					
	Part – C	1	1		I	
	$(3 \times 10 = 30 \text{ Marks})$ Instructions: A payon all					
9	Instructions: Answer all Describe a step-by-step process, along with the rationale behind	10	3	2	1	2.3.4
	each step, for how you would use local histogram processing			_	_	
	and adaptive filters to enhance the quality of an old photograph					
	that has degraded over time and contains significant historical					
10	information?	10	3	2	1	211
10	Elucidate the steps necessary to implement local histogram equalization employed to improve contrast and enhance details	10	3		1	2.1.1
	in an image characterized by varying lighting conditions across					
	different regions.		<u> </u>			
11	How would you address the challenge of segmenting an image	10	3	3	1	1.2.4
	containing multiple objects of interest with varying lighting					
	conditions, using the region-growing method for region-based					
	segmentation?		<u> </u>			

*Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy. Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

SET - B

Academic Year: 2023-24 (ODD)

Test: CLAT-2

Course Code & Title: 18AIE332T - Image and Video Processing

Vear & Sem: IV Year & VII Semester

Date: 09-10-2023

Duration: 2 Hour

Max. Marks: 50 Marks

Course	e Articu	ılation I	Matrix:											
Course (CO):	Learn	ing Ou	tcomes	At t	he end	of this	course,	learne	ers will	be able	e to:			
CO-1	Appl	y the fu	ındame	ntal co	ncepts o	of a dig	gital im	age pro	ocessin	g syster	n			
CO-2	Com	pute th	e techn	iques fo	or imag	e enha	ncemer	ıt and ı	estorai	tion				
CO-3														
CO-4	Analyze various motion techniques used in video coding													
CO-5														
1	2	3	4	5	6	7	8	9	10	11	12		PSO	
		Desig n & Devel opme nt	Desig n,	Mode rn	Cultu re	nt &	Ethics	Indivi dual &Tea m Work	Com munic ation	Proje ct Mgt. & Finan ce	Life Long Learn ing	PSO - 1	PSO - 2	PSO –
3	2	2	2	-	-	-	-	-	-	-	3	-	-	-
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-
3	2	2	3	-	-	-	_	-	-	-	3	-	-	_

	Part – A (5 x 1 = 5 Marks)											
Instructions: Answer all												
Q. No	Question	Marks	BL	СО	PO	PI Code						
1	Spatial filter is used for reducing noise in an image either it might be filters or processing, If it is processing the values will not be cent percent, if not Filters, choose the best Methods in the given below? a) Smoothing Linear Filters b) Sharpening Spatial Filters c) Combined Spatial Enhancement Methods d) Local Histogram Processing	1	2	2	2	2.1.2						
2	In the context of the Fourier transform, what does the term "spectrum" refer to? a. A range of frequencies in a signal b. The amplitude of a signal c. The time-domain representation of a signal d. The phase of a signal	1	3	2	2	2.2.3						
3	In an image processing task, if you want to separate objects based on their color similarity. Which segmentation technique would be most effective? a) Texture Based Segmentation b) Region Splitting and Merging	1	3	3	3	3.1.4						

	T	ı		1	1	
	c) Region Growing					
	d) Line Detection					
4	Which of the following image compression formats is	1	1	3	3	3.1.1
	commonly used for lossy compression of photographic					
	images?					
	a) JPEG					
	b) PNG					
	c) GIF					
	d) TIFF					
5	Find the suitable characteristic of lossy compression from the	1	2	3	3	3.2.3
	given option in which the images should not be redundant?					
	A) No data loss					
	B) Smaller file sizes					
	C) Suitable for text documents					
	D) Slower compression and decompression					
	Part – B					
	$(3 \times 5 = 15 \text{ Marks})$					
	actions: Answer All					
6	You are a photo restoration specialist tasked with reviving an	5	5	2	2	2.8.1
	old, faded photograph that holds sentimental value to a client.					
	The image lacks contrast, making details hard to discern.					
	How would you employ spatial domain methods to enhance					
	the contrast and revive the old photograph?					454
7	In an autonomous vehicle, a camera system is used for lane	5	6	3	4	4.5.1
	detection and navigation. However, varying lighting					
	conditions and shadows affect the accuracy of lane detection.					
	Explain how you would utilize image segmentation					
	techniques to ensure accurate and reliable lane detection for the autonomous vehicle.					
8	A hospital has a vast database of medical images (X-rays, CT	5	4	3	4	4.6.1
0	scans, etc.). They want to implement an efficient compression	3	4	3	4	4.0.1
	strategy to reduce storage requirements while maintaining					
	diagnostic quality. How would you apply image compression					
	techniques to achieve efficient storage of medical images					
	without compromising diagnostic accuracy?					
	Part - B		<u> </u>			
	$(3 \times 10 = 30 \text{ Marks})$	1				
Instri	ictions: Answer All	•				
9	In image compression, what are the key differences between	10	5	2	2	2.6.2
	lossless and lossy compression techniques, and under what			_	_	
	circumstances would you choose one over the other?					
10	Plot the basics of frequency domain methods and discuss how	10	6	2	2	2.8.4
	the images will be Smoothen and sharpening can be done in				_	
	order to reduce the noise.					
11	How does the efficiency of Huffman coding change when	10	4	3	4	4.5.1
	applied to different types of data, such as text, images, or					
	binary files? Are there specific considerations for adapting					
	Huffman coding to different data types?					

^{*}Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy. Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor / Course Coordinator

Mode of Exam **OFFLINE**

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

SET - C

Academic Year: 2023-24 (ODD)

Test: CLAT-2

Course Code & Title: 18AIE332T - Image and Video Processing

Vear & Sem: III Year & V Semester

Date: 09-10-2023

Duration: 1 Hour

Max. Marks: 50 Marks

Course	Articu	lation N	Aatrix:											
Course	Learn	ing Ou	tcomes	At t	ho ond	of this	course	learne	re will	he able	to:			
(CO):														
CO-1						of a dig					n			
CO-2	Com	Compute the techniques for image enhancement and restoration												
CO-3	Inter	Interpret the various image compression and segmentation methods on digital images												
CO-4						es used								
CO-5	Impl	Implement the concepts of digital image, video processing and their application												
1	2	3	4	5	6	7	8	9	10	11	12		PSO	
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual &Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO – 3
3	2	2	2		-	-	-		-	-	3	-	-	-
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-

	Part – A												
Inctm	$(5 \times 1 = 5 \text{ Marks})$ Instructions: Answer all												
Q. No	Question	Marks	BL	СО	PO	PI Code							
1	Select the technique that utilizes the statistics of an image's histogram to enhance specific regions or features.	1	2	2	2	2.1.2							
	a) Using histogram statistics for image enhancementb) Smoothing Spatial filtersc) Fundamentals of Spatial Filteringd) Order statistics nonlinear filters												
2	Relate the primary purpose of homomorphic filtering in image processing. a) Image Smoothing b) Image Sharpening c)Enhancement of both high and low frequency components d) Selective Filtering	1	3	2	2	2.2.3							
3	In a medical image, you need to identify the edges of tumors for further analysis. Choose the technique which would be most appropriate.	1	3	3	3	3.1.4							

			<u> </u>	1		
	a) Edga Models					
	a) Edge Modelsb) Region Growing					
	c) Line Detection					
	d) Thresholding					
4	Name the term for the unnecessary or redundant	1	1	3	3	3.1.1
-	information present in an image for compression	1	1		3	3.1.1
	purposes.					
	purposes.					
	a) Coding Redundancy					
	b) Temporal Redundancy					
	c) Irrelevant Information					
	d) Image Noise					
5	Name the technique that involves splitting an image	1	2	3	3	3.2.3
	into small blocks of pixels	_	_			3.2.3
	into sman blocks of pixels					
	a) Transform Coding					
	b) Predictive Coding					
	c) Wavelet Coding					
	d) Huffman Coding					
	Part – B	•	•	•	•	•
	$(3 \times 5 = 15 \mathrm{Marks})$					
	actions: Answer All	T _		1 _		
6	Explain how you would use frequency domain methods	5	5	2	2	2.8.1
	to selectively reduce the background noise in the audio					
	recording of a studio podcast episode without					
7	compromising the clarity of speech.	5	(3	4	451
7	Describe the image compression techniques you would	5	6	3	4	4.5.1
	use to balance file size reduction with preserving the					
	visual quality for the web-based gallery that a web					
8	developer is creating for a photography website.	5	4	3	4	4.6.1
0	Demonstrate how image compression techniques,	3	4	3	4	4.0.1
	including Transform Coding, would be used to process and compress images before they are stored on the					
	platform for a popular social media platform looking to					
	implement an image compression strategy for user-					
	uploaded photos. Explain how this aligns with the JPEG					
	standard for image compression.					
	Part – B	1	1		l	
	$(3 \times 10 = 30 \text{ Marks})$)				
-	actions: Answer All	1 10				
9	Explain how Histogram Equalization and Local	10	5	2	2	2.6.2
	Histogram Processing can be applied to adjust the					
	contrast and brightness levels of drone-captured images					
	for more accurate weed detection in the precision					
10	farming.	10			1	204
10	Describe the application of Image Sharpening and	10	6	2	2	2.8.4
	Inverse Filtering (Wiener) in improving in-cabin					
	camera images to make facial features more distinct for reliable drowsiness detection.					
11	Illustrate how Region Splitting and Merging can be	10	4	3	4	4.5.1
11	utilized to segment tumor regions in CT scans, enabling	10	•		•	7.3.1
	a detailed analysis of tumor characteristics. Outline the					
	advantages and potential factors to consider regarding					
	the segmentation technique.					
↓ D€	ormance Indicators are available separately for Computer So		<u> </u>		LOWE	<u> </u>

^{*}Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy. Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator

Mode of Exam

OFFLINE

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

r – 603203, Chengalpattu District, Tamilnadu

SET - D

Academic Year: 2023-24 (ODD)

Test: CLAT-2

Course Code & Title: 18AIE332T – Image and Video Processing

Vear & Sem: III Year & V Semester

Date: 09-10-2023

Duration: 1 Hour

Max. Marks: 50 Marks

Course Articulation Matrix:

a) Run Length Coding

Course I	ourse Learning Outcomes (CO): At the end of this course, learners will be able to: O-1 Illustrate the basic concepts of Swarm Intelligence processes																
CO-1	Illustrate	the basic c	oncepts of S	warm Intell	igence proce	esses											
CO-2	Examine	the princip	ole of Immu	no computi	ng techniqu	ies											
CO-3	Skills for	r planning,	estimating,	and resour	cing for Nat	tural design	considerat	tions									
CO-4	Manage	the scope ci	hanges of no	ture inspire	ed technique	es which infl	uence com	puting									
CO-5	Ability to	Ability to identify optimization Techniques as a means to provide functionality and value to apply context in specific case studies															
CO-6	Ability to understand the needs and familiarize the DNA Computing																
1	2	3	4	5	6	7	8	9	10	11	12		PSO				
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual &Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 1 PSO - 2				
2	3	2	2	1	-	-	-	-	-	-	-	-	-	I PSO			
3	3	1	2	2	-	-	-	-	-	-	-	-	-	2			
3	3	2	2	1	-	-	-	-	-	-	-	-	-	2			
3	3	2	2	1	-	-	-	-	-	-	-	-	-	2			
3	3	2	2	2	-	-	-	-	-	-	-	-	-	3			
2	3	2	2	2	-	-	-	-	-	-	-	-	3				

	Part – A												
	$(5 \times 1 = 5 \text{ Marks})$												
Instr	Instructions: Answer all												
Q.	Question	Marks	BL	CO	PO	PI Code							
No													
1	Which spatial domain technique would you use to improve the contrast of a	1	2	2	2	2.1.2							
	grayscale handwritten digit image for optical character recognition (OCR)												
	by redistributing the intensity values across the entire range?												
	a) Histogram Processing												
	b) Histogram Equalization												
	c) Histogram Matching												
	d) Local Histogram Processing												
2	Spatial filter is used for reducing noise in an image either it might be filters	1	3	2	2	2.2.3							
	or processing, If it is processing the values will not be cent percent, if not												
	Filters, choose the best Methods in the given below?												
	a) Smoothing Linear Filters												
	b) Sharpening Spatial Filters												
	c) Combined Spatial Enhancement Methods												
	d) Local Histogram Processing												
3	Select the technique that utilizes the statistics of an image's histogram to	1	3	3	3	3.1.4							
	enhance specific regions or features.												
	a) Using histogram statistics for image enhancement												
	b) Smoothing Spatial filters												
	c) Fundamentals of Spatial Filtering												
	d) Order statistics nonlinear filters												
4	Which compression technique would be most suitable for efficiently	1	1	3	3	3.1.1							
	representing these consecutive occurrences of the same value with a code												
	indicating the value and its count?												
		II .	1	1	1	l							

	b) Bit Plane Coding					
	c) LZW Coding					
	d) Arithmetic Coding					
5	Identify the suitable technique in image compression based on dividing the	1	2	3	3	3.2.3
	image into blocks of pixels and applying a mathematical transform.					
	a) Transform Coding					
	b) Predictive Coding					
	c) Wavelet Coding					
	d) Huffman Coding					
	Part – B					
	$(3 \times 5 = 15 \text{ Marks})$					
	uctions: Answer all	_				201
6	An organization needs to digitally archive a large number of important	5	5	2	2	2.8.1
	documents. They want to ensure that the documents are stored efficiently					
	while preserving all information.					
	How would you apply lossless compression techniques, specifically Run					
	Length Coding, to efficiently store and archive the documents while					
	guaranteeing no loss of information?	_				4 = 1
7	You are a photo restoration specialist tasked with reviving an old, faded	5	6	3	4	4.5.1
	photograph that holds sentimental value to a client. The image lacks					
	contrast, making details hard to discern. How would you employ spatial					
	domain methods to enhance the contrast and revive the old photograph?				4	1.61
8	Describe the image compression techniques you would use to balance file	5	4	3	4	4.6.1
	size reduction with preserving the visual quality for the web-based gallery					
	that a web developer is creating for a photography website.					
	Part – C					
Inetr	$(3 \times 10 = 30 \text{ Marks})$ uctions: Answer all					
9	You have an image with varying lighting conditions across different	10	5	2	2	2.6.2
	regions. Explain how local histogram processing can be used to enhance the	10		_	_	2.0.2
	contrast and details in this image. Describe the steps involved in					
	implementing local histogram equalization. Provide an example illustrating					
	its effectiveness and potential challenges.					
10	How does the efficiency of Huffman coding change when applied to	10	6	2	2	2.8.4
	different types of data, such as text, images, or binary files? Are there					
	specific considerations for adapting Huffman coding to different data types?					
11	Describe the application of Image Sharpening and Inverse Filtering	10	4	3	4	4.5.1
	(Wiener) in improving in-cabin camera images to make facial features more	10			•	1,011
	distinct for reliable drowsiness detection.					
	distinct for rendule drowsiness detection.		1	1		

*Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy. Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

