MOS-transistor exercise:

Slide page 28 (lower)

1. Calculate the ratio of leakage current I_{ds} (V_{gs} =0V) to the drain-current I_{ds} (V_{gs} =V_t) of a NMOS-transistor with the following parameters:

```
\begin{array}{ll} V_t \!\!=\!\! 0.5 V & \text{(threshold voltage)} \\ v_T \!\!=\!\! 26 m V & \text{(thermal voltage)} & \text{(Ids(Vgs = 0)/Ids(Vgs = Vt))} = 2.7^* 10^* \text{(-6)} \\ n \!\!=\!\! 1.5 & \text{(process factor)} \\ V_{ds} \!\!>\!\! v_T & \end{array}
```

Slide page 28 (lower)

2. Calculate the minimum threshold voltage V_t of a NMOS-transistor if its leakage current for V_{gs} =0V needs to be 1/1000 or less compared to its drain-current for V_{gs} = V_t . Assume: v_T =26mV, n=1.5, V_{ds} >> v_T Vt >= 0.269 V

Slide page 30 (lower)

3. Assuming a NMOS-transistor with a nominal threshold voltage V_{t0} =0.4V in a 90nm CMOS process. Calculate the actual threshold voltage of this device if source is on 1.1V! Assume a surface potential of Φ_S =0.93V and a body effect coefficient of V=0.6V. Vt = 0.68V

class: Tue, Nov/7