国際調査報告

国際出願番号 PCT/JP99/06682

	四灰帆耳:	+K Cl	国際出願番号 PCT/JP9	9/06682
C(続き).	関連すると認められ	る文献		
引用文献の カテゴリー*				関連する
<i>37 - 3 - ∗</i>	リニー 51州又献名	及び一部の箇所が関連するときに	は、その関連する箇所の表示	請求の範囲の番号
A	WO, 97/46676, A1 & AU, 9730479, A	(伊東 恭悟)11.12月.19 & EP,911397,A1 & CN,122	997 (11. 12. 97) 27602, A	1-28
P, A	WO, 99/29715, A1 & AU, 9913504, A	(伊東 恭悟) 17.6月.199	9 (17. 06. 99)	1-28
Р, А	WO, 99/33977, A1 & AU, 9916856, A	(伊東 恭悟) 8.7月.1999	(08. 07. 99)	1-28
		· .		
			:	
			·	

国際調査報告

国際出願番号 PCT/JP99/06682

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl⁷ Cl2N 15/12, Cl2N 5/10, Cl2P 21/02, CO7K 14/47, A61K 38/17, CO7K 7/06, A61K 38/08, CO7K 16/18, A61K 35/26, A61K 39/395

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1' C12N 15/12, C12N 5/10, C12P 21/02, C07K 14/47, A61K 38/17, C07K 7/06, A61K 38/08, C07K 16/18, A61K 35/26, A61K 39/395

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

REGISTRY(STN), CA(STN), WPI(DIALOG), GenBank/EMBL/DDBJ/GeneSeq, SwissProt/PIR/GeneSeq

C. 関連する	ると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
$\frac{X}{A}$	NAGASE, T. et al. "Prediction of the coding sequence of unident ified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro", DNA Res. (1998. Oct. 30) Vol. 5, No. 5, p. 277-286	1-6, 21 7-20, 22-28
P, X P, A	WO, 99/54461, A2 (METAGEN GESELLSCHAFT) 28.10月.1999(28.10.99) & DE, 19817948, A1	1-8, 21, 28 9-20, 22-27
A	SHICHIJO, S. et al. "A gene encoding antigenic peptides of human squamous cell carcinoma recognized by cytotoxic T lymphocyte", J. Exp. Med. (1998. Feb.) Vol. 187, No. 3, p. 277-288	1-28

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す。
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日20.01.00国際調査報告の発送日
01.02.00国際調査機関の名称及びあて先
日本国特許庁(ISA/JP)
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号特許庁審査官(権限のある職員)
高堀 栄二4B 9281電話番号 03-3581-1101
電話番号 03-3581-1101内線 3448

national application No.
PCT/JP99/06682

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim N P,A WO, 99/33977, A1 (Kyogo Ito), 08 July, 1999 (08.07.99) & AU, 9916856, A 1-28		tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
E AU, 9913504, A P,A WO, 99/33977, Al (Kyogo Ito), 08 July, 1999 (08.07.99) & AU, 9916856, A 1-28	Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
OR JULY, 1999 (08.07.99) & AU, 9916856, A		& AU, 9913504, A	
	P,A	08 July, 1999 (08.07.99)	1-28

PCT/JP99/06682

CLASSIFICATION OF SUBJECT MATTER C12N 15/12, C12N 5/10, C12P 21/02, C07K 14/47, A61K 38/17, C07K 7/06, A61K 38/08, C07K 16/18, A61K 35/26, A61K 39/395 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl' C12N 15/12, C12N 5/10, C12P 21/02, C07K 14/47, A61K 38/17, C07K 7/06, A61K 38/08, C07K 16/18, A61K 35/26, A61K 39/395 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) REGISTRY (STN), CA (STN), WPI (DIALOG), GenBank/EMBL/DDBJ/GeneSeq, SwissProt/PIR/GeneSeq C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Х NAGASE, T.et al. "Prediction of the coding sequence of 1-6,21 Α unidentified human genes.XI. The complete sequences of 100 7-20,22-28 new cDNA clones from brain which code for large proteins in vitro", DNA Res.(1998.Oct.30)Vol.5,No.5,p.277-286 P,X WO, 99/54461, A2 (METAGEN GESELLSCHAFT), 1-8,21,28 P,A 28 October, 1999 (28.10.99) 9-20,22-27 & DE, 19817948, A1 A SHICHIJO, S. et al. "A gene encoding antigenic peptides of 1-28 human squamous cell carcinoma recognized by cytotoxic T lymphocyte", J. Exp. Med. (1998. Feb.) Vol. 187, No. 3, p. 277-2 Α WO, 97/46676, Al (Kyogo Ito), 1-28 11 December, 1997 (11.12.97) & AU, 9730479, A & EP, 911397, A1 & CN, 1227602, A P,A WO, 99/29715, A1 (Kyogo Ito), 1-28 17 June, 1999 (17.06.99) \boxtimes Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or "A" document defining the general state of the art which is not priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention considered to be of particular relevance earlier document but published on or after the international filing document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is step when the document is taken alone cited to establish the publication date of another citation or other document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is "O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination being obvious to a person skilled in the art document published prior to the international filing date but later document member of the same patent family than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 20 January, 2000 (20.01.00) 01 February, 2000 (01.02.00) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office

Telephone No.

Facsimile No.

<210> 21

<211> 8

<212> PRT

5 <213> Artificial Sequence

<220>

<221> VARIANT

<222> 2

<223> Xaa is Phe, Tyr, Met or Trp.

10 <220>

<221> VARIANT

<222> 8

 $\langle 223 \rangle$ Xaa is Phe, Leu, Ile, Trp or Met.

<400> 21

15 Leu Xaa Gln Ala Val Ala Thr Xaa

5

<212> PRT

<213> Artificial Sequence

<220>

<221> VARIANT

5 <222> 2

<223> Xaa is Phe, Tyr, Met or Trp.

<220>

<221> VARIANT

<222> 10

10 <223> Xaa is Phe, Leu, Ile, Trp or Met.

<400> 19

Gly Xaa Asp Cys Ala Asn Glu Ser Val Xaa

5

10

15 <210> 20

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

20 <221> VARIANT

<222> 2

<223> Xaa is Phe, Tyr, Met or Trp.

<220>

<221> VARIANT

25 <222> 9

<223> Xaa is Phe, Leu, Ile, Trp or Met.

<400> 20

Glu Xaa Cys Leu Lys Phe Thr Lys Xaa

			i di
			i i
ř.			•
	•		
			Š
		·	4 '

Ser Tyr Gly Ser His Ser Thr Asp Ser Leu

5

10

<210> 16

5 <211> 8

<212> PRT

<213> Homo sapiens

<400> 16

Arg Tyr Trp Gly Glu Ile Pro Ile

10

5

<210> 17

<211> 8

<212> PRT

15 <213> Homo sapiens

<400> 17

Lys Phe Thr Lys Leu Leu Arg Phe

5

20 <210> 18

<211> 8

<212> PRT

<213> Homo sapiens

<400> 18

25 Thr Phe Pro Val Ser Glu Glu Leu

5

<210> 19

<211> 10

<210> 12

<211> 11

<212> PRT

<213> Homo sapiens

5 <400> 12

Val Phe His Glu Val Gly Ile Gly Ser Val Leu

5

10

<210> 13

10 <211> 9

<212> PRT

<213> Homo sapiens

<400> 13

Asp Tyr His Ser Tyr Met Leu Gln Ile

15 5

<210> 14

<211> 10

<212> PRT

20 <213> Homo sapiens

<400> 14

Ser Tyr Met Leu Gln Ile Ser Lys Gln Leu

5 10

25 <210> 15

<211> 10

<212> PRT

<213> Homo sapiens

<400> 15

8/12

<213> Homo sapiens

<400> 8

Leu Tyr Gln Ala Val Ala Thr Ile Leu

5

5

<211> 10

<210> 9

<212> PRT

<213> Homo sapiens

10 <400> 9

Glu Tyr Cys Leu Lys Phe Thr Lys Leu Leu

5

10

<210> 10

15 <211> 10

<212> PRT

<213> Homo sapiens

<400> 10

Arg Phe Ala Val Asp Met Glu Gln Val Phe

20 5 10

<210> 11

<211> 10

<212> PRT

25 <213> Homo sapiens

<400> 11

Pro Phe Pro Asp Val Met Glu Gln Val Phe

5

10

5

⟨210⟩ 5

<211> 8

5 <212> PRT

<213> Homo sapiens

<400> 5

Leu Tyr Gln Ala Val Ala Thr Ile

5

10

<210> 6

<211> 9

<212> PRT

<213> Homo sapiens

15 <400> 6

Ser Phe Asp Leu Leu Pro Arg Glu Phe

5

<210> 7

20 <211> 11

<212> PRT

<213> Homo sapiens

<400> 7

Ser Phe Asp Leu Leu Pro Arg Glu Phe Arg Leu

25

5

10

<210> 8

<211> 9

<212> PRT

	ggt gtg ctg ggc agt gat gtc ttc gag gag cct atg tca ggc atg agt	1459				
	Gly Val Leu Gly Ser Asp Val Phe Glu Glu Pro Met Ser Gly Met Ser					
	360 365 370					
	gaa gct ggg att cct cag agc cct gat gac tca gat agc agc tat ggt	1507				
5	Glu Ala Gly Ile Pro Gln Ser Pro Asp Asp Ser Asp Ser Ser Tyr Gly					
	375 380 385					
	tee cae tee act gae age etc atg ggg tee tee ect gtt tte aac cag	1555				
	Ser His Ser Thr Asp Ser Leu Met Gly Ser Ser Pro Val Phe Asn Gln					
	390 395 400 405					
10	cgc tgc aag aag atg agg aaa ata taaaaggaaa agagggagat	1602				
	Arg Cys Lys Arg Met Arg Lys Ile					
	410					
	gttttgtcca gacctactag acccaacaga aaaggttttt gtattagaat ctgtttcctt	1662				
	aaaaaattgat ttgactcctg ttcttaaaaa aaaaaaaaaa	1711				
15						
	<210> 3					
	<211> 10					
	<212> PRT					
	<213> Homo sapiens					
20	< 400> 3					
	Gly Phe Asp Cys Ala Asn Glu Ser Val Leu					
	5 10					
	<210> 4					
25	<211> 9					
	<212> PRT					
	<213> Homo sapiens					
	<400> 4					
	Glu Tyr Cys Leu Lys Phe Thr Lys Leu					

	Arg	Phe	Ala	Val	Asp	Arg	Glu	Ala	Arg	Leu	Gly	Gln	Thr	Pro	Phe	Pro	
			200					205					210				
	gat	gtg	atg	gag	cag	gta	ttc	cat	gaa	gtg	ggt	att	ggc	agt	gtg	ctc	1027
	Asp	Val	Met	Glu	Gln	Val	Phe	His	Glu	Val	Gly	Ile	Gly	Ser	Val	Leu	
5		215					220					225					
	tcc	ctc	cag	aag	ttc	tgg	cag	cac	cgc	atc	aag	gac	tat	cac	agt	tac	1075
	Ser	Leu	G1n	Lys	Phe	Trp	Gln	His.	Arg	Ile	Lys	Asp	Tyr	His	Ser	Tyr	
	230					235					240					245	
	atg	cta	cag	att	agt	aag	caa	ctc	tct	gaa	gaa	tat	gaa	agg	att	gtc	1123
10	Met	Leu	G1n	Ile	Ser	Lys	G1n	Leu	Ser	Glu	Glu	Tyr	Glu	Arg	Ile	Val	
					250					255					260		
	aat	cct	gag	aag	gcc	aca	gag	gac	gct	aaa	cct	gtg	aag	atc	aag	gag	1171
	Asn	Pro	Glu	Lys	Ala	Thr	Glu	Asp	Ala	Lys	Pro	Val	Lys	Ile	Lys	Glu	
				265					270					275			
15	gaa	cct	gtg	agc	gac	atc	act	ttt	cct	gtc	agt	gag	gag	ctg	gag	gct	1219
	Glu	Pro	Val	Ser	Asp	Ile	Thr	Phe	Pro	Val	Ser	Glu	Glu	Leu	G1u	Ala	
			280					285					290				
	gac	ctt	gct	tct	gga	gac	cag	tca	ctg	cct	atg	gga	gtg	ctt	ggg	gct	1267
	Asp	Leu	Ala	Ser	G1y	Asp	Gln	Ser	Leu	Pro	Met	G1y	Val	Leu	Gly	Ala	
20		295					300					305					
	cag	agc	gaa	cgc	ttc	cca	tct	aac	ctg	gag	gtt	gaa	gct	tca	cca	cag	1315
		Ser	Glu	Arg	Phe	Pro	Ser	Asn	Leu	Glu	Val	G1u	Ala	Ser	Pro	Gln	
	310					315					320					325	
	gct	tca	agt	gca	gag	gta	aat	gct	tct	cct	ctt	tgg	aat	ctg	gcc	cat	1363
25	Ala	Ser	Ser	Ala		Val	Asn	Ala	Ser	Pro	Leu	Trp	Asn	Leu	Ala	His	
					330					335					340		
			atg														1411
	Val	Lys	Met		Pro	Gln	Glu	Ser	Glu	Glu	Gly	Asn	Val	Ser	Gly	His	
				345					350					355			

			40					45					50				
	gac	atc	ccc	tca	gag	cca	tgt	agt	ctc	acc	atc	cat	acg	att	cag	ttg	547
	Asp	Ile	Pro	Ser	Glu	Pro	Cys	Ser	Leu	Thr	Ile	His	Thr	Ile	G1n	Leu	
		55					60					65					
5	att	cag	cac	aac	cga	cgt	ctt	cgc	aac	ctt	att	gcc	aca	gct	cag	gcc	595
	Ile	Gln	His	Asn	Arg	Arg	Leu	Arg	Asn	Leu	Ile	Ala	Thr	Ala	Gln	Ala	
	70					75			-		80					85	
	cag	aat	cag	cag	cag	aca	gaa	ggt	gta	aaa	act	gaa	gag	agt	gaa	cct	643
	G1n	Asn	Gln	G1n	Gln	Thr	G1u	G1y	Val	Lys	Thr	Glu	Glu	Ser	Glu	Pro	
10					90					95					100		
												gat					691
	Leu	Pro	Ser	Cys	Pro	Gly	Ser	Pro	Pro	Leu	Pro	Asp	Asp	Leu	Leu	Pro	
				105					110					115			
												atc					739
15	Leu	Asp		Lys	Asn	Pro	Asn		Pro	Phe	Gln	Ile	Arg	His	Ser	Asp	
			120					125					130				
												cct					787
	Pro		Ser	Asp	Phe	Tyr		Gly	Lys	Gly	Glu	Pro	Val	Thr	Glu	Leu	
90		135					140	•				145					
20												gca					835
		ırp	HIS	Ser	Cys		GIn	Leu	Leu	Tyr		Ala	Val	Ala	Thr		
	150					155					160					165	
												agt					883
25	Leu	міа	nis	міа	170	rne	ASP	Cys	Ala		Glu	Ser	Val	Leu		Thr	
20	cta	aat	gat	at a		an t	~~~	+-+	.	175		444			180		001
												ttt					931
	₽€u	1111	nsp	185	ма	1112	GIU	1 9 1		Leu	Lys	Phe	ınr		Leu	Leu	
	cat	+++	ac+		gac.	caa	œ~	a cc	190	a+~			a a ±	195	***	4	070
	Cgt		S CL	5 · B	gau	~88	gag	RCC	cgg	ctg	gga	cag	act	CCT	itt	cct	979

	355 360 365	
	Met Ser Gly Met Ser Glu Ala Gly Ile Pro Gln Ser Pro Asp Asp Ser	
	370 375 380	
	Asp Ser Ser Tyr Gly Ser His Ser Thr Asp Ser Leu Met Gly Ser Ser	
5	385 390 395 400	
	Pro Val Phe Asn Gln Arg Cys Lys Lys Arg Met Arg Lys Ile	
	405 410	
	· · · · · · · · · · · · · · · · · · ·	
	<210> 2	
10	<211> 1711	
	<212> DNA	
	<213> Homo sapiens	
	<400> 2	
	acgcgatect tgcctcagge ctctcgaggt ccagacagec gcccageccg ctctgcgac	g 60
15	cagcagtgaa tagtgtggta cctccttgtc tcggttcagg tccagacctc cccgtcttc	c 120
	ggctgccctg aacgtcaggc gacctcagga ccctgtgatt ggcgcctgcg ccggcggac	с 180
	gtgaccgagg aaacccctgg agggacttgg gcattccttg ggctccgtgc ctgttcttc	g 240
	tgctcctttc gggcaaggat ctcacattat cagtctttga ccgacacaga atgcctggca	a 300
	tttgataaat gtttgttgaa cttgaagaga catatggaca atg aat ctg caa aga	355
20	Met Asn Leu Gln Arg	
	5	
	tac tgg gga gag ata cca ata tca tca agc cag acc aac aga agt tcc	403
	Tyr Trp Gly Glu Ile Pro Ile Ser Ser Ser Gln Thr Asn Arg Ser Ser	
	10 15 20	
25	ttc gat ttg ctc cca cgg gag ttc cgt ctg gtg gaa gtc cat gac cca	451
	Phe Asp Leu Leu Pro Arg Glu Phe Arg Leu Val Glu Val His Asp Pro	
	25 30 35	
	ccc ctg cac caa ccc tca gcc aac aag ccg aag ccc ccc act atg ctg	499
	Pro Leu His Gln Pro Ser Ala Asn Lys Pro Lys Pro Pro Thr Met Leu	

	Ile Arg	His	Ser	Asp	Pro	Glu	Ser	Asp	Phe	Tyr	Arg	G1y	Lys	Gly	Glu
	130					135					140				
	Pro Val	Thr	Glu	Leu	Ser	Trp	His	Ser	Cys	Arg	Gln	Leu	Leu	Tyr	Gln
	145				150					155					160
5	Ala Val	Ala	Thr	Ile	Leu	Ala	His	Ala	Gly	Phe	Asp	Cys	Ala	Asn	Glu
				165					170					175	
	Ser Val	Leu	Glu	Thr	Leu	Thr	Asp	Val	Ala	His	Glu	Tyr	Cys	Leu	Lys
			180					185	ECP 3	13/14	***		190		
	Phe Thr	Lys	Leu	Leu	Arg	Phe	Ala	Val	Asp	Arg	Glu	Ala	Arg	Leu	Gly
10		195					200					205			
	Gln Thr	Pro	Phe	Pro	Asp	Val	Met	Glu	Gln	Val	Phe	His	Glu	Val	Gly
	210	ı				215					220				
	Ile Gly	Ser	Va1	Leu	Ser	Leu	Gln	Lys	Phe	Trp	Gln	His	Arg	Ile	Lys
	225				230					235					240
15	Asp Tyr	His	Ser	Tyr	Met	Leu	Gln	Ile	Ser	Lys	Gln	Leu	Ser	Glu	Glu
				245					250					255	
	Tyr Glu	Arg	Ile	Val	Asn	Pro	G1u	Lys	Ala	Thr	Glu	Asp	Ala	Lys	Pro
			260					265					270		
	Val Lys	Ile	Lys	Glu	Glu	Pro	Val	Ser	Asp	Ile	Thr	Phe	Pro	Val	Ser
20		275					280					285			
	Glu Glu	Leu	Glu	Ala	Asp	Leu	Ala	Ser	Gly	Asp	Gln	Ser	Leu	Pro	Met
	290)				295					300				
	Gly Val	Leu	Gly	Ala	Gln	Ser	Glu	Arg	Phe	Pro	Ser	Asn	Leu	Glu	Val
	305				310					315					320
25	Glu Ala	a Ser	Pro	Gln	Ala	Ser	Ser	Ala	Glu	Val	Asn	Ala	Ser	Pro	Leu
				325					330					335	
	Trp Ası	ı Leu	Ala	His	Val	Lys	Met	Glu	Pro	Gln	Glu	Ser	Glu	Glu	Gly
			340					345					350		
	Asn Va	l Ser	Gly	His	Gly	Val	Leu	Gly	Ser	Asp	Val	Phe	Glu	G1u	Pro

THIS FACE DLANK (USPTO)

SEQUENCE LISTING

<110> ITOH, Kyogo; Sumitomo Pharmaceuticals Company, Limited <120> A Novel Tumor Antigen ART-1, and It's Tumor Antigen Peptides <130> 661644 5 <150> Japan: 98-341253 <151> 01. 12. 98 <160> 21 <210> 1 10 <211> 414 <212> PRT <213> Homo sapiens <400> 1 Met Asn Leu Gln Arg Tyr Trp Gly Glu Ile Pro Ile Ser Ser Ser Gln 15 5 10 15 Thr Asn Arg Ser Ser Phe Asp Leu Leu Pro Arg Glu Phe Arg Leu Val 20 25 30 Glu Val His Asp Pro Pro Leu His Gln Pro Ser Ala Asn Lys Pro Lys 35 40 45 20 Pro Pro Thr Met Leu Asp Ile Pro Ser Glu Pro Cys Ser Leu Thr Ile 50 55 60 His Thr Ile Gln Leu Ile Gln His Asn Arg Arg Leu Arg Asn Leu Ile 65 70 75 80 Ala Thr Ala Gln Ala Gln Asn Gln Gln Gln Thr Glu Gly Val Lys Thr 25 85 90 Glu Glu Ser Glu Pro Leu Pro Ser Cys Pro Gly Ser Pro Pro Leu Pro 100 105 110 Asp Asp Leu Leu Pro Leu Asp Cys Lys Asn Pro Asn Ala Pro Phe Gln 115 120 125

This,

10

15

20

チドを有効成分として含有してなる、腫瘍の治療剤または予防剤。

- 21. 請求項6記載のタンパク質、請求項9~16いずれか記載の腫瘍抗原ペプチドまたはその誘導体、のいずれかに特異的に結合する抗体。
- 22. 腫瘍患者由来の単離された抗原提示能を有する細胞の表面に、HLA抗原と請求項9~16いずれか記載の腫瘍抗原ペプチドまたはその誘導体との複合体を提示させてなる抗原提示細胞。
- 23. 請求項1または2記載のDNA、請求項6記載の腫瘍抗原タンパク質、 請求項18記載の組換えDNA、あるいは請求項19記載の組換えポリペプチド を、腫瘍患者由来の単離された抗原提示能を有する細胞に取り込ませて得られう る、HLA抗原と腫瘍抗原ペプチドまたはその誘導体との複合体の提示された抗 原提示細胞。
- 24.請求項22または23記載の抗原提示細胞を有効成分として含有してなる腫瘍の治療剤。
- 25. HLA抗原と請求項9~16いずれか記載の腫瘍抗原ペプチドまたはその誘導体との複合体を特異的に認識する細胞傷害性T細胞。
- 26. 請求項22または23記載の抗原提示細胞に提示されたHLA抗原と腫瘍抗原ペプチドまたはその誘導体との複合体を特異的に認識する細胞傷害性T細胞。
- 27. 請求項25または26記載の細胞傷害性T細胞を有効成分として含有してなる腫瘍の治療剤。
 - 28. 請求項9~16いずれか記載の腫瘍抗原ペプチドまたはその誘導体、請求項6記載のタンパク質、あるいは請求項19記載の組換えポリペプチドを含有してなる腫瘍の診断薬。

10

15

20

25

または一部を含む配列より選択される、請求項10記載の腫瘍抗原ペプチド、または機能的に同等の特性を有するその誘導体。

- 12. 配列番号:3~配列番号:5のいずれかに記載のアミノ酸配列の全部または一部を含む配列より選択される、請求項11記載の腫瘍抗原ペプチド、または機能的に同等の特性を有するその誘導体。
- 13. 配列番号: 3~配列番号: 18のいずれかに記載のアミノ酸配列の第2位および/またはC末端のアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列の全部または一部を含む配列より選択される、請求項11記載の腫瘍抗原ペプチド誘導体。
- 14.配列番号:3~配列番号:5のいずれかに記載のアミノ酸配列の第2位 および/またはC末端のアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸 配列の全部または一部を含む配列より選択される、請求項13記載の腫瘍抗原ペ プチド誘導体。
 - 15. 配列番号:3~配列番号:18のいずれかに記載のアミノ酸配列の第2位がチロシン、フェニルアラニン、メチオニンまたはトリプトファンに置換され、および/またはC末端のアミノ酸残基がフェニルアラニン、ロイシン、イソロイシン、トリプトファンまたはメチオニンに置換されたアミノ酸配列の全部または一部を含む配列より選択される、請求項13記載の腫瘍抗原ペプチド誘導体。
 - 16. 配列番号:19~配列番号:21のいずれかに記載のアミノ酸配列の全部または一部を含む配列より選択される、請求項14記載の腫瘍抗原ペプチド誘導体。
 - 17. 請求項9~16いずれか記載の腫瘍抗原ペプチドおよびその誘導体から 選択される少なくとも1種を有効成分として含有してなる、腫瘍の治療剤または 予防剤。
- 18.請求項9~16いずれか記載の腫瘍抗原ペプチドまたはその誘導体をコードするDNAの少なくとも1種を含有する組換えDNA。
 - 19. 請求項18記載の組換えDNAを発現させて得られうる組換えポリペプチド。
 - 20. 請求項18記載の組換えDNAまたは請求項19記載の組換えポリペプ

10

15

20

25

請求の範囲

- 1.配列番号:1に記載のアミノ酸配列を有するタンパク質、又はそのアミノ酸配列のうち1もしくは複数のアミノ酸残基が置換、欠失及び/又は付加されたアミノ酸配列を有する変異タンパク質、をコードするDNA(ただし、該タンパク質および変異タンパク質はその細胞内分解により、HLA抗原と結合して細胞傷害性T細胞により認識され得る腫瘍抗原ペプチドを生じるものである)。
- 2.配列番号:2に記載の塩基配列を有するDNA、E.coli JM109(3D9)(受託番号FERM BP-6929)が保有する外来性DNA、 又はこれらのDNAとストリンジェントな条件下でハイブリダイズする変異DNA(ただし、該DNAおよび変異DNAが発現して生産されるタンパク質は、その細胞内分解により、HLA抗原と結合して細胞傷害性T細胞により認識され得る腫瘍抗原ペプチドを生じるものである)。
 - 3. 請求項1または2記載のDNAを有する発現プラスミド。
 - 4. 請求項3記載の発現プラスミドによって形質転換された形質転換体。
 - 5. 請求項4記載の形質転換体を培養し、発現される組換えタンパク質を回収 することからなる、組換えタンパク質の生産方法。
 - 6. 請求項1または2記載のDNAによりコードされるか、または請求項5記載の生産方法により生産される、腫瘍抗原タンパク質。
- 7. 請求項1または2記載のDNA、あるいは請求項6記載のタンパク質を有 効成分として含有する医薬。
 - 8. 請求項1または2記載のDNA、あるいは請求項6記載のタンパク質を有効成分として含有する、腫瘍の治療剤または予防剤。
 - 9. 請求項6記載のタンパク質の一部よりなる部分ペプチドであって、かつH LA抗原と結合して細胞傷害性T細胞により認識され得る腫瘍抗原ペプチド、ま たは機能的に同等の特性を有するその誘導体。
 - 10. HLA抗原がHLA-A24である請求項9記載の腫瘍抗原ペプチド、 または機能的に同等の特性を有するその誘導体。
 - 11. 配列番号: 3~配列番号: 18のいずれかに記載のアミノ酸配列の全部

10

原ペプチド特異的なCTLが誘導されていることが示された。

なお本実験で用いたMT-2の代わりに、HLA-A24のcDNA発現プラスミドをCOS-7細胞 (ATCC No. CRL1651) やVA-13細胞 (理化学研究所細胞銀行) に導入してペプチドをパルスした細胞を用いることによっても、同様の実験を行うことが可能である (J. Exp. Med., 187:277,1998)。

配列表フリーテキスト

配列番号:19に記載のアミノ酸配列の第2番目のアミノ酸は、フェニルアラニン、チロシン、メチオニンまたはトリプトファンであり、第10番目のアミノ酸は、フェニルアラニン、ロイシン、イソロイシン、トリプトファンまたはメチオニンである。

配列番号:20に記載のアミノ酸配列の第2番目のアミノ酸は、フェニルアラニン、チロシン、メチオニンまたはトリプトファンであり、第9番目のアミノ酸は、フェニルアラニン、ロイシン、イソロイシン、トリプトファンまたはメチオニンである。

15 配列番号:21に記載のアミノ酸配列の第2番目のアミノ酸は、フェニルアラニン、チロシン、メチオニンまたはトリプトファンであり、第8番目のアミノ酸は、フェニルアラニン、ロイシン、イソロイシン、トリプトファンまたはメチオニンである。

産業上の利用の可能性

本発明により、新規な腫瘍抗原タンパク質およびその遺伝子、該腫瘍抗原タンパク質由来の腫瘍抗原ペプチド、これらの物質の誘導体、あるいはこれら腫瘍抗原タンパク質、遺伝子、腫瘍抗原ペプチドまたはこれらの誘導体を、in vivoまたはin vitroで利用した腫瘍の治療剤、予防剤または診断薬などを提供することができる。

「158-165」、「170-179」及び「188-196」を、HLA-A2402 cDNAの組換えプラスミドをトランスフェクトしたCOS-7細胞にパルスした結果、ペプチドをパルスしない場合よりもKG-CTLは高い反応性を示した。以上の結果より、「158-165」、「170-179」及び「188-196」の3つのペプチドは、HLA-A24拘束性の腫瘍抗原ペプチドとして機能していることが示された。

実施例9

5

10

15

20

25

腫瘍抗原ペプチドによる末梢血リンパ球からのCTL誘導

実施例5~実施例7で合成した3種のペプチドを用いて、末梢血リンパ球から抗原特異的なCTLが誘導できるか検討した。

HLA-AローカスがA24のヘテロである健常人の末梢血からフィコール法によりリンパ球を分離した。 24 穴プレートに 2×10^6 細胞/穴となるようにリンパ球を加え、リンパ球培養液で培養した。培養液に前記腫瘍抗原ペプチドを 10μ M になるように加え、末梢血リンパ球を刺激した。 1 週間後、X線照射(50G y)した約 2×10^5 個の末梢血リンパ球とともに前記腫瘍抗原ペプチドを 10μ Mになるように加えて、 2 回目の刺激を行った。 さらに 1 週間後、3 回目の刺激を同様に繰り返した。 3 回目の刺激から 1 週間後、培養したリンパ球を回収した。腫瘍抗原タンパク質を発現しておりHLA-A2402陽性の白血病癌細胞株のMT-2を標的細胞(1×10^4 個)として、前記のリンパ球(8×10^4 個)が反応して産生する培養上清中の 1 FN- γ 量を ELISAで測定した。結果を以下の表 7 に示す。

表 7

抗原ペプチド	培養上清中のIFN-γ量(pg/ml)
「158-165」	330
「170-179」	237
「188-196」	147
なし	3

ペプチド無刺激の末梢血リンパ球は、標的細胞には反応しなかったが、3種類の抗原ペプチド「158-165」、「170-179」及び「188-196」で刺激した末梢血リンパ球は、標的細胞に反応してIFN-γを産生したことから、HLA-A24拘束性の抗

al-Ala-Thr-Ile 12.4mgを得た。

得られたLeu-Tyr-Gln-Ala-Val-Ala-Thr-Ileは、逆相系充填剤YMC-PACK ODS-AM AM-303 (4.6 ϕ × 250mm)を用いた、0%から60%までの0.1%TFAを含むアセトニトリルの直線濃度勾配溶出法による分析において保持時間19.2分を示し、そのアミノ酸分析値および質量分析値は理論値と一致した。

アミノ酸分析

加水分解:1 %フェノール/6 N塩酸水溶液、1 1 0 ℃、 2 4 時間

分析法: ニンヒドリン法

10 *基準アミノ酸 () 内理論値

Thr: 0.91 (1)

G1x:1.03 (1)

Ala: 2. 07 (2)

*Val: 1.00 (1)

Ile: 0.99 (1)

Leu: 1. 02 (1)

Tyr:0.98(1)

質量分析 (FAB)

[M+H] + : 878

20 実施例8

5

15

腫瘍抗原ペプチドの同定

先の実施例 5、6及び7で合成した3種のペプチドについて、実施例 4 に記載の活性測定を行った結果を以下の表 6 に示す。

表 6

25	パルスしたペプチド	KG-CTLが反応して産生したIFN-γ量(pg/ml)
	「158-165」	289
	Г ₁₇₀₋₁₇₉ ј	458
	「188-196」	399
	なし	117

u 37.5mgを得た。

得られたG1u-Tyr-Cys-Leu-Lys-Phe-Thr-Lys-Leuは、逆相系充填剤YMC-PACK ODS-AM AM-303 (4.6 $\phi \times 250$ mm)を用いた、0%から60%までの0.1%TFAを含むアセトニトリルの直線濃度勾配溶出法による分析において保持時間20.8分を示し、そのアミノ酸分析値(Cysは検出できず)および質量分析値は理論値と一致した。

アミノ酸分析

加水分解:1%フェノール/6N塩酸水溶液、110℃、24時間

10 分析法: ニンヒドリン法

*基準アミノ酸 ()内理論値

Thr: 0.93 (1)

Glx:0.96 (1)

*Leu: 2.00 (2)

Tyr:0.83 (1)

Phe: 0.97 (1)

Lys:1.88(2)

質量分析 (FAB)

 $[M+H]^+:1144$

20 実施例 7

5

15

25

<u>Leu-Tyr-Gln-Ala-Val-Ala-Thr-Ile (「158</u> <u>-165」、配列番号: 5)</u> の合成

先の実施例5と同様にして、Fmoc-Ile-Alko Resin (0.62mmol/g、100-200mesh) 50mgを用いて、Fmoc-Thr (tBu)-OH, Fmoc-Ala-OH, Fmoc-Val-OH, Fmoc-Ala-OH, Fmoc-Tyr (tBu)-OH, Fmoc-Leu-OHを順次カップリングさせ、その後脱保護を行った。得られた粗ペプチドを酢酸水に溶解し、先の実施例6と同様にしてSep-pak Vac (C18)で精製し、Leu-Tyr-Gln-Ala-V

[M+H] +: 1 0 5 4

表 5

スケジュール1

	工程	時間(分)	×処理回数
5	1. (洗浄) DMF1. 2ml	1	× 2
	2. (脱保護)50%ピペリジン/DMF	1 2	\times 1
	3. (洗浄) DMF1. 2 m l	1	× 7
	4. (カップリング) 各アミノ基保護アミノ酸 (5	当量)	
	/NMP溶液0.9ml、DIC (5当量) /	NMP	
10	溶液0.3ml	3 0	× 1
	5. (洗浄) DMF1. 2 m l	1	× 2
	6. (カップリング) 各アミノ基保護アミノ酸(5	当量)	
	/NMP溶液0.9ml、DIC (5当量) /	NMP	
	溶液0.3 m l	3 0	× 1
15	7. (洗浄) DMF1. 2 m l	1	× 4
	実施例 6		
	Glu-Tyr-Cys-Leu-Lys-Phe	-Thr-L	y s – L e u
	_(「188-196」、配列番号:4)の合成		
	先の実施例5と同様にして、Fmoc-Leu-	Alko Re	esin (O.
20	$57 \mathrm{mmol/g}, 100-200 \mathrm{mesh}) 50$) mgを用いて	C、Fmoc-
	Lys (Boc) -OH, Fmoc-Thr (tB	u) -OH,	Fmoc-Ph
	e-OH, Fmoc-Lys (Boc) -OH, F	moc-Le	u-OH, Fm
	oc-Cys $(Trt)-OH$, $Fmoc-Tyr$	(t B u) -	OH, Fmoc
	-Glu (OtBu) -OHを順次カップリングさ	せ、その後脱	保護を行った。
25	得られた粗ペプチドを酢酸水に溶解し2回にわけ、	S e p — p a	k Vac (C
	18)で精製した。すなわち、予め0.1%TFA	水で平衡化さ	せたカートリッ
	ジに注入し、0.1%TFA水10ml×3回で洗	净後、0.1	%TFA 水 -
	アセトニトリル (1:1) 10ml×3回で溶出し	た。溶出液を	集め凍結乾燥

L, G l u - T y r - C y s - L e u - L y s - P h e - T h r - L y s - L e

10

15

25

5時間反応させた。氷冷下反応液にジエチルエーテル10mlを加え10分攪拌し、濾過しジエチルエーテル10mlで洗浄した。濾上物に酢酸水10mlを加えて30分間攪拌後、樹脂を濾別し、酢酸水<math>4mlで洗浄した。濾洗液を凍結乾燥後、得られた粗ペプチドを酢酸水に溶解し、予め0.1%TFA水で平衡化させた逆相系充填剤 $YMC-PACK\ ODS-A\ SH-363-5\ (30\phi\times250mm)$ に注入し、カラムを0.1%TFA水で洗浄後、アセトニトリル濃度を240分で40%まで増加させ、流速7ml/min.で溶出した。溶出液をA220nmでモニターし、目的物を含む画分を集め、凍結乾燥し、 $Gly-Phe-Asp-Cys-Ala-Asn-Glu-Ser-Val-Leu\ 15.4mgを得た。$

得られた $Gly-Phe-Asp-Cys-Ala-Asn-Glu-Ser-Val-Leuは、逆相系充填剤YMC-PACK ODS-AM AM-303 (4.6<math>\phi \times 250$ mm)を用いた、0%から60%までの0.1%TFAを含むアセトニトリルの直線濃度勾配溶出法による分析において保持時間 19.9分を示し、そのアミノ酸分析値(Cysは検出できず)および質量分析値は理論値と一致した。

アミノ酸分析

加水分解:1%フェノール/6N塩酸水溶液、110℃、24時間 分析法:ニンヒドリン法

20 *基準アミノ酸 () 内理論値

A s x : 1.98 (2)

Ser: 0.78 (1)

Glx:1.01 (1)

Gly: 0.99 (1)

Ala: 1.00 (1)

*Val: 1.00 (1)

Leu: 1. 06 (1)

Phe: 1. 01 (1)

質量分析 (FAB)

10

15

20

25

上記ペプチドが腫瘍抗原ペプチドであるか否かの同定は、以下のようにして行った。すなわち、HLA-A2402 cDNAの組換えプラスミドを文献(J. Exp. Med. , 187:277, 1998)の記載に従い、 10^4 個のCOS-7細胞にリポフェクチン法にてトランスフェクションしてHLA-A2402を発現させた。この細胞に対し、先に合成したHLA-A24の結合モチーフを有する各種ペプチドをそれぞれ $10\,\mu$ Mで2時間添加してパルスした後、 2×10^4 個のKG-CTLとともに18時間培養し、KG-CTLが産生した培養上清中のIFN- γ 量をELISA法にて測定することにより腫瘍抗原ペプチドの同定を行った。

以上のようなHLA-A24結合モチーフを有するペプチドの合成及び腫瘍抗原ペプチドの同定の具体例として、3種のペプチド、すなわち配列番号:1のアミノ酸配列の第170位から第179位の配列よりなるペプチド(配列番号:3、以下、該ペプチドを単に「170-179」と称することもある)、第188位から第196位の配列よりなるペプチド(配列番号:4、以下、該ペプチドを単に「188-196」と称することもある)、及び第158位から第165位の配列よりなるペプチド(配列番号:5、以下、該ペプチドを単に「158-165」と称することもある)についての実施例を以下に記載する。

実施例5

Gly-Phe-Asp-Cys-Ala-Asn-Glu-Ser-Val-Leu (「170-179」、配列番号: 3) の合成

樹脂はFmoc-Leu-Alko Resin (0.57mmol/g、100-200mesh)を用いた。この樹脂50mgを用いて、後記スケジュール1 (表5)に従って合成を開始し、Fmoc-Val-OH、Fmoc-Ser(tBu)-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Asn-OH、Fmoc-Ala-OH、Fmoc-Cys(Trt)-OH、Fmoc-Asn-OH、Fmoc-Ala-OH、Fmoc-Cys(Trt)-OH、Fmoc-Gly-OHを順次カップリングさせた。カップリングの後スケジュール1の工程3まで行い、その結果、ペプチド樹脂が得られた。

このペプチド樹脂にReagentK (5%フェノール、5%チオアニソール、 $5\%H_2O$ 、2. 5%エタンジチオール/TFA溶液) 1 mlを加え、室温で2.

10

15

25

腫瘍抗原タンパク質遺伝子の塩基配列の決定

実施例2で得られた腫瘍抗原タンパク質をコードするプラスミドクローン3D9 についてDyeDeoxy Terminator Cycle Sequencingキット(パーキンエルマー社製)を使用して塩基配列を決定した。決定した塩基配列(1711塩基対)を配列番号: 2に、また該塩基配列によりコードされるアミノ酸配列(414アミノ酸)を配列番号: 1に、それぞれ示す。これらの塩基配列及びアミノ酸配列を、WWW Entrezデータベースを使用して既知の配列と比較した結果、プラスミドクローン3D9は新規な遺伝子であることが明らかとなった。3D9によりコードされる本発明の新規な腫瘍抗原タンパク質を、ART-1(Adenocarcinoma antigen Recognized by \underline{T} cells- $\underline{1}$)と命名した。

なお、上記の塩基配列決定後、プラスミド3D9をE.coli JM109に導入し、新規な腫瘍抗原タンパクART-1のcDNAを含有する保存用の形質転換体であるE.coli JM109(3D9)を調製した。E.coli JM109(3D9)は、茨城県つくば市東1丁目1番3号、工業技術院生命工学工業技術研究所に寄託されている(微生物の表示: E.coli JM109(3D9);受領日:平成10年11月25日;受託番号:FERM P-17062) (国際寄託への変更日:平成11年11月4日;受託番号:FERM BP-6929)。

実施例4

候補ペプチドの選択

HLA分子に結合して提示される抗原ペプチドの配列には規則性(モチーフ)があり、HLA-A24の場合、8~11アミノ酸よりなるペプチドの第2位のアミノ酸がチロシン、フェニルアラニン、メチオニン又はトリプトファンであり、C末端のアミノ酸がフェニルアラニン、トリプトファン、ロイシン、イソロイシン又はメチオニンであることが知られている(Immunogenetics, 41:178, 1995、

J. Immunol., 152:3913, 1994, J. Immunol., 155:4307, 1994)

このようなモチーフに従い、本発明の腫瘍抗原タンパク質ART-1のアミノ酸配列から、HLA-A24結合モチーフを有する8~11アミノ酸よりなるペプチド部分を16種類選択した。これら16種類のペプチドのアミノ酸配列を、配列番号:3~配列番号:18に示す。これらのペプチドは、以下に示すFmoc法にて合成を行った。

10

15

20

25

スミド25 μ 1とHLA-A2402 c DNAの組換えプラスミド10 μ 1(200ng)と約50倍に希釈したリポフェクチン試薬35 μ 1の混合液70 μ 1のうち、30 μ 1 をCOS-7に加えてダブルトランスフェクトした。トランスフェクタントは2点ずつ用意した。5時間後、このトランスフェクタントに200 μ 1の10% FCSを含む培養液を加え、更に48時間、37℃で培養した後、培養液を除去し、ウェル当たり1.5×10 5 個のKG-CTLを加えて100 μ 1の10%FCSと25U/mlのIL-2を含む培養液で37℃で24時間培養した。培養後、培養液を回収し、実施例1に記載のELISA法にてIFN- γ 量を測定した。

高いIFN-γ産生が認められた群については、該当する凍結保存してあったHT-1376 c DNAの組み換えプラスミドによる形質転換体約 100個のプールを用いてさらに以下のようにスクリーニングを行った。すなわち、形質転換体のプールをアンピシリン $(50\,\mu\,g/\text{ml})$ を含むLB寒天培地のプレートにまいてコロニーを得て、各群400コロニーについてウェル当たりの形質転換体が 1 種類となる条件で上記と同様の方法で培養し、HT-1376 c DNAの組換えプラスミド DNAを調製した。さらに上記と同様な方法で、COS-7へのHT-1376 c DNAの組換えプラスミドと HLA-A2402 c DNAの組換えプラスミドのダブルトランスフェクトを行い、引き続いてKG-CTLとの混合培養を行い、KG-CTLが反応して産生した培養液中のIFN-γの定量を行って陽性のプラスミドを選択した。この操作により 1 つの HT-1376 c DNA組換えプラスミドクローンが選択され、これを3D9と命名した。3D9については、さらにもう一度、同様な操作を繰り返してKG-CTLによるIFN-γの産生量を測定した。その結果を以下の表 4 に示す。

表 4

細胞	KG-CTLが産生したIFN-γ量(pg/ml)
COS-7 + HLA-A2402	2152
COS - 7 + HLA - A2402 + 3D	9 2379

KG-CTLは、COS-7にHLA-A2402のみをトランスフェクトした細胞に対してよりも、COS-7にHLA-A2402と3D9とをダブルトランスフェクトした細胞に対して、より強く反応してIFN-γを産生した。この結果から3D9がコードするタンパク質は、腫瘍抗原タンパク質であることが示された。

実施例3

10

15

20

25

プターとSallアダプターを連結した c DNAを作製した後、この c DNAを発現ベクターのプラスミドpSV-SPORT1 (GIBCO BRL 社製) の制限酵素NotIおよびSalIの切断部位にライゲーションにより連結して組換えプラスミドを得た。この組換えプラスミドをジーンパルサー (Bio-Rad社製) を用いて電気パルスにより大腸菌のエレクトロマックス DH10B^Mセル (GIBCO BRL社製) に導入し、アンピシリン(50 μ g/ml)を含むLB培地(1%バクトトリプトン、0.5%イーストエキス、0.5%NaCl、pH7.3)で組換プラスミドが導入されている形質転換体を選択した。

この形質転換体の100個のプールからの組換えプラスミドDNAの回収は以下のように行った。すなわち、アンピシリン(50μg/ml)を含むLB培地の入った96ウェルU底マイクロプレートにウェルあたり 100個の形質転換体を加え培養後、その一部をウェル当たり0.25mlのTYGPN培地(F. M. Ausubelら編、CURRENT PROTCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, Inc.)の入った別の96ウェルU底マイクロプレートに移して37℃で48時間培養し、残りのLB培地のマイクロプレートは凍結保存した。TYGPN培地で培養した形質転換体の組換えプラスミドDNAは、マイクロプレートでアルカリ溶解法(F. M. Ausubelら編、CURRENT PROTCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, Inc.)により調製した。イソプロパノール沈澱で回収した組換えプラスミドDNAは、50μlの20ng/ml RNaseを含む10mM Tris, 1mM EDTA, pH7.4溶液で懸濁した。

一方、茨城県つくば市東1丁目1番3号、工業技術院生命工学工業技術研究所に寄託されている食道癌細胞株KE-4 (受領日:平成9年5月23日;受託番号:FERM BP-5955)から、中尾ら著、Cancer Res.,55:4248-4252(1995)の記載に従い、HLA-A2402のcDNAを発現ベクターpCR3 (INVITROGEN社製)に組み込んだ組換えプラスミドを作製した。

次に、アフリカミドリザルの腎臓由来の細胞株COS-7(ATCC番号CRL1651)へ、リポフェクチン法により以下のようにHT-1376 c DNAの組換えプラスミドと HLA-A2402 c DNAの組換えプラスミドをダブルトランスフェクトした。すなわち、COS-7を96ウェル平底マイクロプレートにウェル当たり8000個を加えて、100 μ 1の10% FCSを含むRPMI1640培養液で1日間培養した。リポフェクトアミン試薬 (GIBCO BRL社製)を用い、形質転換体約100個分のHT-1376 c DNAの組換えプラ

表3

10

15

20

25

 	KG-CTLが産生したIFN-γ量(pg/ml)	HLA-Aタイプ
SSB (B細胞株¹))	5769	2402/2402
Ban-B1 (B細胞株 ¹⁾)	78	3101/3302
HPB-MLT (白血病細胞株)	189	0101/0201
MOLT-16 (白血病細胞株)	13	2301/3002
MT-2(白血病細胞株)	3495	2402/2402
なし(KG-CTLのみ)	0	

¹⁾健常人のB細胞をEBウイルスでトランスフォームしたB細胞株

表 2 の結果より、KG-CTLは、表中のHLA-A2402陽性の癌細胞(HT-1376、11-18、PC-9)に強く反応してIFN-γを産生すること、HLA-A2陽性の癌細胞(143B)にも反応してIFN-γを産生することが示された。また表 3 の結果より、KG-CTLは、HLA-A2402陽性のEBウイルスでトランスフォームした B 細胞株や白血病細胞株 (SSB、MT-2) に強く反応すること、HLA-A2陽性の白血病細胞(HPB-MLT)に対しても反応することが明らかになった。

樹立された KG-CTLは、茨城県つくば市東1丁目1番3号、工業技術院生命工学工業技術研究所に寄託されている(微生物の表示: KG-CTL; 受領日: 平成10年6月19日; 受託番号: FERM P-16854)(国際寄託への変更日: 平成11年5月20日; 受託番号: FERM BP-6725)。なお、中尾ら著、Cancer Res.,55:4248-4252(1995)記載の方法に従い、KG-CTLのHLA分子のタイピングを行った結果(塩野義製薬(株)により実施)、AローカスはA0206及びA2402であることが確認された。実施例2

腫瘍抗原タンパク質の同定

実施例1でKG-CTLが強く反応した膀胱癌細胞株HT-1376 (ATCC番号CRL1472) から以下の方法によりcDNAライブラリーを作製した。

まず、HT-1376からmRNA精製システム (ファルマシアバイオテク社製) を用い、添付のプロトコールに従い、全RNA画分の分離および oligo(dT)カラムによる poly(A)+mRNAの調製を行った。mRNAよりスーパースクリプトプラスミドシステム(GIBCO BRL社製)を用い添付のプロトコールに従い、両端にNotIアダ

10

15

表 2

ロイキン-2、0.1mM NEAA (GIBCO BRL社製) を添加した培養液 (以下、リンパ 球培養液と呼ぶ)で培養した。培養開始から2日間は、培養液中に抗CD3抗体の NU-T3 (ニチレイ社製) を 1μ g/ml添加した。30日以上培養を続け、HLA-A24また はHLA-A2陽性の何種類かの癌細胞株に反応するCTL株を樹立し、KG-CTLと命名し て以下の実験に使用した。各種癌細胞株に対するKG-CTLの反応性は、96穴プレー トに癌細胞株を1×10⁴個/穴植え込み、翌日にKG-CTLを1×10⁵個/穴添加して、 更に18時間培養した後、培養液を回収してKG-CTLが産生したインターフェロン- γ (IFN- γ) 量を測定することにより調べた。IFN- γ の定量は、エンザイムイム ノアッセイ(ELISA)により行った。すなわち、96穴プレートに固相化抗体として 抗ヒトIFN-γマウスモノクローナル抗体を吸着させ、ウシ血清アルブミンで非特 異的結合をブロックした後、検体中のIFN-γを抗体に結合させた。次に検出抗体 として抗ヒトIFN-γウサギポリクローナル抗体を結合させ、さらにアルカリフォ スファターゼ標識した抗ウサギイムノグロブリンヤギ抗体(アマシャム社製)を 結合した後、ペルオキシダーゼ発色キットT(住友ベークライト社製)を用いて 発色させた後、吸光度(405nm)を測定した。これをスタンダードのIFN-γで得ら れた値と比較することにより定量した。表2に、各種腺癌細胞株に対するKG-CTL の反応性を示す。また、表3にリンパ球系細胞株に対するKG-CTLの反応性を示す。

_	腺癌細胞株名称	KG-CTLが産生したIFN-γ量(pg/ml)	HLA-Aタイプ
20	HT-1376(膀胱癌細胞核	k) 4608	2402/2402
	1-87 (肺癌細胞株)	194	0207/1101
	11-18 (肺癌細胞株)	4632	0201/2402
	PC-9(肺癌細胞株)	1102	0206/2402
	LC-1 (肺癌細胞株)	129	3101/3302
25	YT-803(肺癌細胞株)	285	3101/3302
	143B(骨肉腫細胞株)	1547	0211/0211
_	なし(KG-CTLのみ)	100	

10

15

25

RIA、ELISA、蛍光または発光測定法などを用いることにより、当該診断を行うことができる。

さらに近年、抗原ペプチドとHLA抗原との複合体を用いて抗原特異的CTL を検出する新しい検出方法が確立された(Science, 274:p94, 1996)。本発明の腫瘍抗原ペプチドまたはその誘導体とHLA抗原との複合体を前記検出方法に供し、腫瘍抗原特異的CTLを検出することにより、腫瘍の早期発見、再発、転移を診断することができる。また本発明の腫瘍抗原ペプチド等を有効成分とする医薬の適応可能な腫瘍患者の選択や、当該医薬による治療効果の判定などにも利用できる。すなわち本発明においては、本発明の腫瘍抗原ペプチドまたはその誘導体等を含有する、腫瘍の診断薬をも提供するものである。

具体的には、文献(Science, 274: p94, 1996)に記載の方法に従って蛍光標識したHLA抗原と腫瘍抗原ペプチドとの複合体の4量体を作製し、これを用いて腫瘍が疑われる患者の末梢血リンパ球中の抗原ペプチド特異的CTLをフローサイトメーターにより定量することにより、前記診断を行うことができる。

本発明の腫瘍抗原ペプチドをコードするDNA、腫瘍抗原タンパク質、腫瘍抗原ペプチド又はその誘導体、該腫瘍抗原ペプチドまたはその誘導体を提示している抗原提示細胞、該腫瘍抗原ペプチドまたはその誘導体とHLA抗原との複合体を特異的に認識するCTL等は、当該技術分野における研究用試薬としても有用である。

20 発明を実施するための最良の形態

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。

実施例1

肺腺癌由来の腫瘍内浸潤リンパ球(TIL)からの細胞傷害性T細胞(CTL)株の樹立

肺腺癌患者の手術検体を培養液中で細切した後、コラゲナーゼ及びDNAaseを含む培養液中で攪拌して細胞を分散させた。細胞分散液からFicoll Conray溶液を用いて、比重遠心法によりリンパ球を分離した。リンパ球は、24穴プレートを用い、45%RPMI-1640、45%AIM-V (GIBCO BRL社)、10%FCSに、100U/mlインター

10

15

20

25

導体との複合体を特異的に認識するCTL、および、該CTLを有効成分として含有してなる腫瘍の治療剤をも提供するものである。該治療剤は、CTLを安定に維持するために、生理食塩水、リン酸緩衝生理食塩水(PBS)、培地等を含むことが好ましい。投与方法としては、静脈内投与、皮下投与、皮内投与が挙げられる。このようなCTLを有効成分として含有してなる腫瘍の治療剤を患者の体内に戻すことにより、ART-1陽性の患者の体内でCTLによる腫瘍細胞の傷害作用が促進され、腫瘍細胞を破壊することにより、腫瘍を治療することができる。

本発明は、本発明のタンパク質、または本発明の腫瘍抗原ペプチドまたはその誘導体に特異的に結合する抗体をも提供するものである。該抗体は、例えば、Antibodies; A Laboratory Manual, Lane, H, D. ら編, Cold Spring Harber Laboratory Press 出版 New York 1989などに記載の方法により容易に作製される。すなわち、本発明の腫瘍抗原タンパク質、腫瘍抗原ペプチドまたはその誘導体を用いて常法により適宜動物を免疫することにより、腫瘍抗原タンパク質、腫瘍抗原ペプチドまたはその誘導体を認識する抗体、さらにはその活性を中和する抗体が容易に作製できる。抗体の用途としては、アフィニティークロマトグラフィー、免疫学的診断等が挙げられる。

該抗体を用いて前記免疫学的診断を行うには、まず前記抗体を必要に応じて適宜標識し、これを用いて腫瘍が疑われる患者から得た試料(例えば血液、腫瘍組織など)中の抗原の存在を検出することにより、腫瘍の有無を診断することができる。具体的にはイムノブロット法、放射免疫測定法(RIA)、酵素免疫測定法(ELISA)、蛍光あるいは発光測定法等により行うことができる。

本発明の腫瘍抗原ペプチドおよびその誘導体、本発明のタンパク質、または本 発明の組換えポリペプチドは、腫瘍を診断するための診断薬の成分とすることが できる。すなわち、本発明の腫瘍抗原ペプチドまたはその誘導体そのものなどを 診断薬として用い、腫瘍が疑われる患者から得た試料(例えば血液、腫瘍組織な ど)中の抗体の存在を検出することにより、腫瘍の早期発見、再発、転移を診断 することが可能である。また本発明の腫瘍抗原ペプチド等を有効成分とする医薬 の適応可能な腫瘍患者の選択にも利用できる。具体的には、イムノブロット法、 Aの形態であっても、RNAの形態であっても良い。具体的には、DNAの場合は Cancer Res.,56:p5672,1996や J. Immunol.,161: p5607,1998などを参考にして行うことができ、またRNAの場合は J. Exp. Med., 184: p465,1996などを参考にして行うことができる。

5

前記抗原提示細胞を有効成分として含有する腫瘍の治療剤は、抗原提示細胞を安定に維持するために、生理食塩水、リン酸緩衝生理食塩水(PBS)、培地等を含むことが好ましい。投与方法としては、静脈内投与、皮下投与、皮内投与が挙げられる。このような抗原提示細胞を有効成分として含有してなる腫瘍の治療剤を患者の体内に戻すことにより、ART-1陽性の患者の体内で効率良く特異的なCTLが誘導され、腫瘍を治療することができる。なお、HLA-A24に陽性の腫瘍患者に対してはHLA-A24拘束性の腫瘍抗原ペプチドあるいはその誘導体を使用するといった、患者と使用するペプチドとでHLAの型を合わせる必要のあることは言うまでもない。

15

10

さらに、本発明の腫瘍抗原ペプチドまたはその誘導体、本発明の腫瘍抗原タンパク質またはそのDNA、あるいは本発明の組換えDNAまたは組換えポリペプチドのイン・ビトロでの利用法として、以下の養子免疫療法における利用が挙げられる。

すなわちメラノーマにおいては、患者本人の腫瘍内浸潤T細胞を体外で大量に 培養して、これを患者に戻す養子免疫療法に治療効果が認められている

20

25

すなわち本発明は、前記HLA抗原と本発明の腫瘍抗原ペプチドまたはその誘

10

15

20

25

腫瘍患者の治療において、以下のようにイン・ビトロで利用することが可能である。

すなわち、腫瘍抗原ペプチドまたはその誘導体、あるいは腫瘍抗原タンパク質またはそのDNAなどを腫瘍の治療に用いる場合、患者の体内で効率良く特異的なCTLを誘導することの可能な投与法が重要になる。そのための手段のひとつとして、本発明は、腫瘍患者由来の単離された抗原提示能を有する細胞の表面に、HLA抗原と本発明の腫瘍抗原ペプチドまたはその誘導体との複合体を提示させた抗原提示細胞、および該抗原提示細胞を有効成分として含有してなる腫瘍の治療剤を提供するものである。

ここで「抗原提示能を有する細胞」とは、本発明の腫瘍抗原ペプチドまたはその誘導体を提示することの可能なHLA抗原を細胞表面に発現する細胞であれば特に限定されないが、特に抗原提示能が高いとされる樹状細胞が好ましい。

また、前記抗原提示能を有する細胞から本発明の抗原提示細胞を調製するために添加される物質としては、本発明の腫瘍抗原ペプチドまたはその誘導体のみならず、本発明のDNA、タンパク質、組換えDNAまたは組換えポリペプチドであっても良い。その際、タンパクまたはDNAの形態で使用する場合には細胞内に取り込まれる必要がある。

本発明の抗原提示細胞は、腫瘍患者から抗原提示能を有する細胞を単離し、該細胞に本発明の腫瘍抗原ペプチドまたはその誘導体、あるいは腫瘍抗原タンパク質または組換えポリペプチドを体外でパルスして、HLA抗原と前記腫瘍抗原ペプチドまたはその誘導体との複合体を提示させることにより得られる(Cancer Immunol. Immunother., 46:82, 1998、J. Immunol., 158, p1796, 1997、Cancer Res., 59, p1184, 1999)。樹状細胞を用いる場合は、例えば、腫瘍患者の末梢血からフィコール法によりリンパ球を分離し、その後非付着細胞を除き、付着細胞をGM-CSFおよびIL-4存在下で培養して樹状細胞を誘導し、当該樹状細胞を本発明の腫瘍抗原ペプチドまたは腫瘍抗原タンパク質等と共に培養してパルスすることなどにより、本発明の抗原提示細胞を調製することができる。

また、前記抗原提示能を有する細胞に本発明のDNAまたは組換えDNAを導入することにより本発明の抗原提示細胞を調製する場合は、当該遺伝子は、DN

10

15

20

25

したポリトープ等をコードするDNAを指し、本発明の腫瘍抗原ペプチドまたはその誘導体をコードするDNAを少なくとも一つ含んでさえいれば、本発明の組換えDNAの範疇に含まれる。当該組換えDNAは適当な発現ベクターに組み込むことにより、腫瘍の治療剤または予防剤の有効成分とすることができる。

ここで「ポリトープ」とは、複数のCTLエピトープを連結させたものであり、 当該ポリトープをコードするDNAは近年、DNAワクチンに利用されている (例えばJ. of Immunology, 160, p1717, 1998などを参照のこと)。本発明の腫瘍抗 原ペプチドまたはその誘導体をコードするDNAの少なくとも1種または2種以 上を連結させることにより、さらには所望により他の腫瘍抗原ペプチドをコード するDNAをも連結させることにより、本発明のポリトープをコードするDNA を作製することができる。

本発明の組換えDNAは、DNA合成および通常の遺伝子工学的手法に基づき、例えばMolecular Cloning 2nd Edt., Cold Spring Harbor Laboratory Press (1989)等の基本書に従い容易に作製することができる。また、この組換えDNAの発現ベクターへの組み込みも、前記基本書等に従い行うことができる。

作製された本発明の組換えDNAが、HLA抗原と結合してCTLにより認識され得る腫瘍抗原ペプチドを生じるか否かは、例えば、前記本発明のDNAの活性測定法に準じて行うことができる。また、本発明の組換えDNAを腫瘍の治療剤または予防剤として使用する方法も、前記本発明のDNAに準じて行うことができる。

前記したように、本発明の組換えDNAを発現して得られうる「組換えポリペ プチド」も、腫瘍の治療剤または予防剤の有効成分とすることができる。

本発明の組換えポリペプチドは、前記した本発明のタンパク質と同様の手法により調製することができる。また、作製された組換えポリペプチドが活性を有するか否かも、前記本発明のタンパク質と同様の手法により測定することができる。さらに、当該組換えポリペプチドを腫瘍の治療剤または予防剤として使用する方法も、前記本発明のタンパク質および本発明のペプチドに準じて行うことができる。

本発明の腫瘍抗原ペプチドまたはその誘導体、本発明の腫瘍抗原タンパク質またはそのDNA、あるいは本発明の組換えDNAまたは組換えポリペプチドは、

10

15

20

25

すなわち、腫瘍の治療又は予防を目的とする使用に際しては、本発明の腫瘍抗原ペプチドまたはその誘導体の少なくとも1種または2種以上を組み合わせ、要すれば他の腫瘍抗原ペプチド等と組み合わせて患者に投与する。本発明の腫瘍抗原ペプチド又はその誘導体を有効成分とする腫瘍の治療剤または予防剤をARTー1陽性の患者に投与すると、抗原提示細胞のHLA抗原に腫瘍抗原ペプチドまたはその誘導体が提示され、提示されたHLA抗原複合体特異的CTLが増殖して腫瘍細胞を破壊することができ、従って、患者の腫瘍を治療し、又は腫瘍の増殖・転移を予防することができる。ARTー1は、肺癌等の上皮性腫瘍に広範に発現しているので、本発明の腫瘍の治療剤または予防剤は、適用範囲の広いことが有利である。さらに、本発明の腫瘍抗原ペプチドまたはその誘導体を有効成分とする腫瘍の治療剤又は予防剤は、従来の化学療法や放射線療法と併用することにより、治療効果を上げることも可能である。

本発明の腫瘍抗原ペプチドまたはその誘導体を有効成分とする腫瘍の治療剤または予防剤は、細胞性免疫が効果的に成立するようにアジュバントとともに投与したり、粒子状の剤型にして投与することができる。アジュバントとしては、文献 (Clin. Microbiol. Rev., 7:277-289, 1994)に記載のものなどが応用可能である。また、リポソーム製剤、直径数μmのビーズに結合させた粒子状の製剤、リピッドを結合させた製剤なども考えられる。投与方法としては、皮内投与、皮下投与、静脈注射などが考えられる。製剤中の本発明の腫瘍抗原ペプチドあるいはその誘導体の投与量は、治療すべき疾患、患者の年齢、体重等により適宜調整することができるが、通常0.0001mg~1000mg、好ましくは 0.001mg~100mg、より好ましくは0.01mg~10mgであり、これを数日ないし数月に1回投与するのが好ましい。

さらに、本発明の腫瘍の治療剤または予防剤として、以下に述べるように、本発明の腫瘍抗原ペプチドまたはその誘導体をコードするDNAの少なくとも1種を含有する組換えDNAや、該組換えDNAを発現させて得られうる組換えポリペプチドも、本発明の腫瘍の治療剤または予防剤の有効成分とすることができる。ここで「組換えDNA」とは、例えば、本発明の腫瘍抗原タンパク質の一部よりなる部分ポリペプチド、部分ペプチド、これらの誘導体、またはこれらの連結

10

15

20

25

したアミノ酸配列の全部または一部を含み、かつ前記活性を有する腫瘍抗原ペプチド誘導体が例示される。好ましくは、配列番号:3~配列番号:18のいずれかに記載のアミノ酸配列の第2位および/またはC末端のアミノ酸残基を前記モチーフ上知られたアミノ酸残基に置換したアミノ酸配列の全部または一部を含み、かつ前記活性を有する腫瘍抗原ペプチド誘導体が挙げられる。すなわち、配列番号:3~配列番号:18のいずれかに記載のアミノ酸配列の第2位のアミノ酸残基をチロシン、フェニルアラニン、メチオニン又はトリプトファンに置換し、および/またはC末端のアミノ酸残基をフェニルアラニン、ロイシン、イソロイシン、トリプトファン又はメチオニンに置換したアミノ酸配列の全部または一部を含み、かつ前記活性を有する腫瘍抗原ペプチド誘導体が挙げられ、具体的には配列番号:3~配列番号:18のいずれかに記載のアミノ酸配列の第2位のアミノ酸残基をチロシン、フェニルアラニン、メチオニン又はトリプトファンに置換し、および/またはC末端のアミノ酸残基をフェニルアラニン、ロイシン、イソロイシン、トリプトファン又はメチオニンに置換したアミノ酸配列からなり、かつ前記活性を有する腫瘍抗原ペプチド誘導体が例示される。

本発明のHLA-A24拘束性の腫瘍抗原ペプチド誘導体の好適なものとしては、配列番号:3~配列番号:5のいずれかに記載のアミノ酸配列の第2位および/またはC末端のアミノ酸残基を他のアミノ酸残基(好ましくは前記インターネット上で結合可能と予想されているアミノ酸残基)に置換したアミノ酸配列の全部または一部を含み、かつ前記活性を有する腫瘍抗原ペプチド誘導体が挙げられる。より好ましくは、配列番号:3~配列番号:5のいずれかに記載のアミノ酸配列の第2位をチロシン、フェニルアラニン、メチオニン又はトリプトファンに置換し、および/またはC末端をフェニルアラニン、ロイシン、イソロイシン、トリプトファン又はメチオニンに置換したアミノ酸配列の全部または一部を含み、かつ前記活性を有する腫瘍抗原ペプチド誘導体が挙げられる。このような腫瘍抗原ペプチド誘導体の例を、配列番号:19~配列番号:21に示す。

本発明の腫瘍抗原ペプチド又はその誘導体は、少なくとも1種または2種以上 組み合わせることにより、腫瘍の治療剤または予防剤として使用することができ る。

10

15

20

25

能と予想されるペプチド配列が示されており(http://bimas.dcrt.nih.gov/molbio/hla_bind/)、例えば前記モチーフ上とり得るアミノ酸に類似の性質を持つアミノ酸が許容され得る。従って、本発明の腫瘍抗原ペプチド誘導体の例として、本発明の腫瘍抗原ペプチドに対して、これらモチーフ上アミノ酸の置換が可能な位置(HLA-A24、HLA-A2においては第2位とC末端)にあるアミノ酸残基を他のアミノ酸残基(好ましくは前記インターネット上で結合可能と予想されているアミノ酸残基)に置換したアミノ酸配列の全部又は一部を含むものであって、かつHLA抗原と結合してCTLにより認識され得るという活性を持つペプチド誘導体が挙げられる。より好ましくは、該位置において、前記モチーフ上知られたアミノ酸残基の中から置換するアミノ酸残基を選択したアミノ酸配列の全部または一部を含むペプチドであって、かつ前記活性を有する腫瘍抗原ペプチド誘導体が挙げられる。なお「全部又は一部」の長さとしては、改変部位を含む8~14アミノ酸程度の長さが好ましい(ただしHLA-DR, -DP, -DQについては、14アミノ酸以上の長さの場合もある)。また「一部」の中にはHLA抗原と結合する部分が含まれる。

ここで、HLA-A24に拘束性の腫瘍抗原ペプチド誘導体としては、例えばART-1のアミノ酸配列上HLA-A24の結合モチーフを有するペプチドに対して、前記モチーフ上アミノ酸の置換が可能な位置、すなわち第2位および/またはC末端のアミノ酸残基を他のアミノ酸残基(好ましくは前記インターネット上で結合可能と予想されているアミノ酸残基)に置換したアミノ酸配列の全部または一部を含み、かつ前記活性を有する腫瘍抗原ペプチド誘導体が挙げられ、好ましくは、第2位および/またはC末端のアミノ酸残基を前記モチーフ上知られたアミノ酸残基に置換したアミノ酸配列の全部または一部を含み、かつ前記活性を有する腫瘍抗原ペプチド誘導体が挙げられる。該HLA-A24拘束性の腫瘍抗原ペプチド誘導体において「全部又は一部」の長さとしては、改変部位を含む8~11アミノ酸程度が好ましい。

具体的には、例えば配列番号:3~配列番号:18のいずれかに記載のアミノ酸配列の第2位および/またはC末端のアミノ酸残基を他のアミノ酸残基(好ましくは前記インターネット上で結合可能と予想されているアミノ酸残基)に置換

10

25

され得るという腫瘍抗原ペプチドとしての活性を有するものは、全て、本発明の 腫瘍抗原ペプチド誘導体の範疇に含まれる。

ここで、アミノ酸残基の「改変」とは、アミノ酸残基の置換、欠失、及び/又は付加(ペプチドのN末端、C末端へのアミノ酸の付加も含む)を意味し、好ましくはアミノ酸残基の置換が挙げられる。アミノ酸残基の置換に係る改変の場合、置換されるアミノ酸残基の数および位置は、腫瘍抗原ペプチドとしての活性が維持される限り、任意であるが、前記したように通常、腫瘍抗原ペプチドの長さが8~14アミノ酸程度であることから、1個から数個の範囲が好ましい。

本発明の腫瘍抗原ペプチド誘導体の長さとしては、前記腫瘍抗原ペプチドと同様に $8\sim1$ 4rミノ酸程度が好ましい(ただしHLA-DR、-DP、-DQについては、14rミノ酸以上の長さの場合もある。)

以上のような本発明の腫瘍抗原ペプチド誘導体は、本発明の腫瘍抗原ペプチドの一部を改変した改変体を前記ペプチド合成法に基づき合成し、これを前記腫瘍 抗原ペプチドのアッセイ法に供することにより、同定することができる。

生に記載したように、HLA-A1, -A0201, -A0204, -A0205, -A0206, -A0207, -A11, -A24, -A31, -A6801, -B7, -B8, -B2705, -B37, -Cw0401, -Cw0602などの HLAの型については、該HLAに結合して提示される抗原ペプチドの配列の規則性 (モチーフ) が判明している。また前記したように、HLA抗原に結合可能と 予想されるペプチド配列をインターネット上検索することができる

20 (http://bimas.dcrt.nih.gov/molbio/hla_bind/)。従って、該モチーフに基づき、本発明の腫瘍抗原ペプチドのアミノ酸を改変した腫瘍抗原ペプチド誘導体を作製することが可能である。

例えばHLA-A24に結合して提示される抗原ペプチドのモチーフとしては、前記したように、8~11アミノ酸よりなるペプチドのうちの第2位のアミノ酸がチロシン、フェニルアラニン、メチオニン又はトリプトファンであり、C末端のアミノ酸がフェニルアラニン、ロイシン、イソロイシン、トリプトファン又はメチオニンであることが知られている(J. Immunol., 152, p3913, 1994, Immunogenetics, 41:p178, 1995, J. Immunol., 155:p4307, 1994)。またHLA-A2の場合は、前記の表1に記載のモチーフが知られている。またインターネット上でHLA抗原に結合可

プチド、

5

10

20

25

2) 配列番号:3~配列番号:18のいずれかに記載のアミノ酸配列の全長または連続した一部分を含み、該アミノ酸配列よりN末端方向及び/又はC末端方向に長いペプチド、または配列番号:3~配列番号:18のいずれかに記載のアミノ酸配列の連続した一部分よりなるペプチド、

であって、かつHLA-A24抗原と結合してCTLにより認識され得るような腫瘍抗原ペプチドが挙げられる。ここで、前記2)のペプチドの長さとしては、HLA-A24抗原に結合して提示されるという観点から、8~11アミノ酸程度のものが挙げられる。また「連続した一部分」には、HLA抗原に結合する部分が含まれるため、モチーフ構造を損なわないような構造であることが好ましい。

本発明のHLA-A24拘束性の腫瘍抗原ペプチドの好適なものとしては、配列番号:3~配列番号:5のいずれかに記載のアミノ酸配列の全部または一部を含み、かつHLA-A24抗原と結合してCTLにより認識され得るような腫瘍抗原ペプチドが挙げられる。すなわち、

- 15 1)配列番号:3~配列番号:5のいずれかに記載のアミノ酸配列よりなるペプチド、
 - 2) 配列番号:3~配列番号:5のいずれかに記載のアミノ酸配列の全長または連続した一部分を含み、該アミノ酸配列よりN末端方向及び/又はC末端方向に長いペプチド、または配列番号:3~配列番号:5のいずれかに記載のアミノ酸配列の連続した一部分よりなるペプチド、

であって、かつHLA-A24抗原と結合してCTLにより認識され得るような腫瘍抗原ペプチドが挙げられる。

本発明において「腫瘍抗原ペプチドと機能的に同等の特性を有する誘導体」 (以下、腫瘍抗原ペプチド誘導体と略す場合がある)とは、本発明の腫瘍抗原ペ プチドのアミノ酸配列に対し、1又はそれ以上、好ましくは1~数個のアミノ酸 残基の改変を施した改変体であって、かつHLA抗原と結合してCTLにより認 識され得るという腫瘍抗原ペプチドとしての特性を有するものを指す。すなわち、 本発明の腫瘍抗原ペプチドのアミノ酸配列に対して1又はそれ以上のアミノ酸残 基の改変を施した改変体であって、かつHLA抗原と結合してCTLにより認識

15

20

25

(1995)、Genbank Accession No. M64740) を用い、前記CTLとしては、ヒトの末梢 血リンパ球のペプチド刺激により調製される場合の他、KG-CTL (FERM BP-6725) などのHLA-A24拘束性のCTLを用いることにより、前記の腫瘍抗原ペプチドの同定を行うことができる。

5 以上のような腫瘍抗原ペプチドの配列の規則性(モチーフ)が判明している場合と異なり、例えばHLA-A26のようにそのペプチドのモチーフが明らかでない場合は、該HLA-A26と腫瘍抗原ペプチドとの複合体を認識するCTL株が存在する場合には、例えばW097/46676に記載の方法に準じて本発明の腫瘍抗原ペプチドを同定することができる。

なお、以上述べたような腫瘍抗原ペプチドの同定法を、以下、 "腫瘍抗原ペプ チドのアッセイ法" と総称することもある。

前記したように、HLA-A24に結合して提示される腫瘍抗原ペプチドの配列には 規則性(モチーフ)があり、具体的には、8~11アミノ酸よりなるペプチドのう ちの第2位のアミノ酸がチロシン、フェニルアラニン、メチオニン又はトリプト ファンであり、C末端のアミノ酸がフェニルアラニン、ロイシン、イソロイシン、 トリプトファン又はメチオニンとなることが知られている(J. Immunol., 152, p3913, 1994, Immunogenetics, 41:p178, 1995, J. Immunol., 155:p4307, 1994)。ま た前記したように、インターネット上、NIHのBIMASのソフトを用いることにより、 HLA抗原に結合可能と予想される配列を検索することができる(http://bimas. dcrt. nih. gov/molbio/hla bind/)。

従って、本発明のHLA-A24拘束性の腫瘍抗原ペプチドとしては、配列番号:1 に記載のART-1のアミノ酸配列上、このようなモチーフ構造や結合可能と予想される構造に関わる部分ペプチドであって、かつHLA-A24抗原と結合してCTLにより認識され得るような腫瘍抗原ペプチドが例示される。

前記HLA-A24拘束性の腫瘍抗原ペプチドとしては、具体的には、例えば配列番号:3~配列番号:18のいずれかに記載のアミノ酸配列の全部または一部を含むペプチドであって、かつHLA-A24抗原と結合してCTLにより認識され得るような腫瘍抗原ペプチドが例示される。すなわち、

1) 配列番号:3~配列番号:18のいずれかに記載のアミノ酸配列よりなるペ

10

15

20

25

チド部分を容易に選び出すことができる。また前記インターネット上での検索により、HLA抗原に結合可能と予想される配列を容易に選び出すことができる。 選び出された候補ペプチドを前述の方法にて合成し、該候補ペプチドとHLA抗原との結合複合体がCTLにより認識されるか否か、すなわち候補ペプチドが腫瘍抗原ペプチドとしての活性を有するか否かを測定することにより、本発明の腫瘍抗原ペプチドを同定することができる。

本発明の腫瘍抗原ペプチドの具体的な同定法としては、例えば J. Immunol., 154, p2257, 1995に記載の方法が挙げられる。すなわち、候補ペプチドを提示すると考えられるタイプのHLA抗原が陽性のヒトから末梢血リンパ球を単離し、in vitroで該候補ペプチドを添加して刺激した場合に、該候補ペプチドをパルスしたHLA抗原陽性細胞を特異的に認識するCTLが誘導された場合は、該候補ペプチドが腫瘍抗原ペプチドに成り得ることが示される。ここでCTLの誘導の有無は、例えば、抗原ペプチド提示細胞に反応してCTLが産生する種々のサイトカイン(例えばIFN-γ)の量を、例えばELISA法などによって測定することにより、調べることができる。また⁵¹Crで標識した抗原ペプチド提示細胞に対するCTLの傷害性を測定する方法(⁵¹Crリリースアッセイ、Int. J. Cancer, 58:p317, 1994)によっても調べることができる。

さらに、候補ペプチドを提示すると考えられるタイプのHLA抗原の c D N A を発現する発現プラスミドを、例えばCOS-7細胞(ATCC No. CRL1651)やVA-13細胞(理化学研究所細胞銀行)に導入した細胞に対して候補ペプチドをパルスし、この細胞に対して、前記候補ペプチドを提示すると考えられるタイプのHLA抗原に拘束性のCTLを反応させ、該CTLが産生する種々のサイトカイン(例えばIFN- γ)の量を測定することによっても、調べることができる(J. Exp. Med., 187: 277, 1998)。

以上のような種々の活性測定の具体例は、後述の実施例8および実施例9に記載されている。

なお、ART-1はHLA-A24拘束性の腫瘍抗原ペプチド部分を有するものである。HLA-A24拘束性の腫瘍抗原ペプチドを選択する場合には、前記HLA抗原をコードするcDNAとしてはHLA-A24のcDNA(Cancer Res., 55: 4248-4252

HLA-A1, -A0201, -A0204, -A0205, -A0206, -A0207, -A11, -A24, -A31, -A6801, -B7, -B8, -B2705, -B37, -Cw0401, -Cw0602などのHLAの型については、該HLAに結合して提示される抗原ペプチドの配列の規則性(モチーフ)が判明している(例えばImmunogenetics, 41:p178, 1995などを参照のこと)。例えばHLA-A24のモチーフとしては、8~11アミノ酸よりなるペプチドのうちの第2位のアミノ酸がチロシン、フェニルアラニン、メチオニンまたはトリプトファンであり、C末端のアミノ酸がフェニルアラニン、ロイシン、イソロイシン、トリプトファン又はメチオニンとなることが知られている(J. Immunol., 152, p3913, 1994, Immunogenetics, 41:p178, 1995, J. Immunol., 155:p4307, 1994)。またHLA-A2のモチーフについては、以下の表1に示したモチーフが知られている(Immunogenetics, 41, p178, 1995、J. Immunol., 155:p4749, 1995)。

表 1

5

10

25

	HLA-A2のタイプ	N末端から2番目のアミノ酸	C末端のアミノ酸	
	HLA-A0201	L, M	V, L	
15	HLA-A0204	L	L	
	HLA-A0205	V, L, I, M	L	
	HLA-A0206	V, Q	V, L	
	HLA-A0207	L	L	

(ペプチドの長さは8~11アミノ酸)

20 さらに近年、HLA抗原に結合可能と予想されるペプチド配列を、インターネット上、NIHのBIMASのソフトを使用することにより検索することができる (http://bimas.dcrt.nih.gov/molbio/hla_bind/)。

ペプチドの長さとしては、各種HLA分子に結合している抗原ペプチドの解析により(Immunogenetics, 41:178, 1995)、通常8から14 アミノ酸程度であることが明らかにされている(ただしHLA - DR、 - DP、 - DQについては、14 アミノ酸以上の長さの抗原ペプチドも認められる)。

これらのモチーフに関わるペプチド部分を本発明の腫瘍抗原タンパク質のアミノ酸配列中から選び出すのは容易である。すなわち、腫瘍抗原タンパク質ART - 1のアミノ酸配列(配列番号:1)を見れば、上記モチーフ構造に関わるペプ

10

15

20

25

本発明の腫瘍抗原タンパク質を有効成分として含有する医薬は、細胞性免疫が効果的に成立するようにアジュバントとともに投与したり、粒子状の剤型にして投与することができる。アジュバントとしては、文献 (Clin. Microbiol. Rev., 7:277-289, 1994)に記載のものなどが応用可能である。また、リポソーム製剤、直径数μmのビーズに結合させた粒子状の製剤、リピッドを結合させた製剤なども考えられる。投与方法としては、皮内投与、皮下投与、静脈注射などが考えられる。製剤中の本発明の腫瘍抗原タンパク質の投与量は、治療目的の疾患、患者の年齢、体重等により適宜調整することができるが、通常0.0001mg~1000mg、好ましくは 0.001mg~100mg、より好ましくは0.01mg~10mgであり、これを数日ないし数月に1回投与するのが好ましい。

本発明において「腫瘍抗原ペプチド」とは、本発明の腫瘍抗原タンパク質の一部よりなる部分ペプチドであって、かつHLA抗原と結合してCTLにより認識され得る腫瘍抗原ペプチドである。すなわち、前記した本発明の腫瘍抗原タンパク質のアミノ酸配列の一部よりなるペプチドであって、かつ、該ペプチドとHLA抗原との結合複合体がCTLにより認識され得るようなペプチドであれば、本発明のタンパク質のアミノ酸配列中の如何なる位置に存する如何なる長さのペプチドであっても、全て、本発明の腫瘍抗原ペプチドの範疇に含まれる。このような本発明の腫瘍抗原ペプチドは、本発明の腫瘍抗原タンパク質の一部よりなる候補ペプチドを合成し、該候補ペプチドとHLA抗原との複合体がCTLにより認識されるか否か、すなわち候補ペプチドが腫瘍抗原ペプチドとしての活性を有するか否かをアッセイすることにより、同定することができる。

ここで、ペプチドの合成については、通常のペプチド化学において用いられる方法に準じて行うことができる。該公知方法としては文献 (ペプタイド・シンセシス (Peptide Synthesis) , Interscience, New York, 1966; ザ・プロテインズ (The Proteins) , Vol 2, Academic Press Inc., New York, 1976; ペプチド合成, 丸善 (株) , 1975; ペプチド合成の基礎と実験、丸善 (株) , 1985; 医薬品の開発 続 第14巻・ペプチド合成, 広川書店, 1991) などに記載されている方法が挙げられる。

次に、本発明の腫瘍抗原ペプチドの同定方法につき、以下に記述する。

10

15

20

25

のMolecular Cloning 等の多くの成書や文献に基づいて実施することができる。すなわち本発明のDNAを、常法により適当な発現ベクター(例えばpSV-SPORT1、pCR3など)に組み込むことにより、発現プラスミドを作製する。次に発現プラスミドを適当な宿主細胞に導入して形質転換体を得る。宿主細胞としては、大腸菌などの原核生物、酵母のような単細胞真核生物、昆虫、動物などの多細胞真核生物の細胞などが挙げられる。また、宿主細胞への発現プラスミドの導入は、リン酸カルシウム法、DEAE-デキストラン法、電気パルス法、リポフェクチン法などの公知の方法を用いれば良い。得られた形質転換体は、常法により該形質転換体に適した培地で培養することによって目的とするタンパク質を発現する。以上のようにして得られた腫瘍抗原タンパク質は、一般的な生化学的方法によって単離精製することができる。

以上のようにして作製された本発明の腫瘍抗原タンパク質が活性を有しているか否かは、前記したように、本発明のDNAを細胞内で発現させて本発明のタンパク質を産生させ、該タンパク質の細胞内分解により生じたペプチド断片が腫瘍抗原ペプチドとしての活性を有するか否かを測定することにより、確認することができる。また、得られた腫瘍抗原タンパク質そのものを用いて活性測定を行う場合には、例えばマクロファージなどの食細胞に本発明の腫瘍抗原タンパク質を取り込ませて細胞内でペプチド断片を生じさせ、その後、該ペプチド断片とHLA抗原との複合体に対してCTLを加えて作用させ、該CTLが反応して産生する種々のサイトカイン(例えばIFN-y)の量を測定することなどによって、調べることができる。

以上のような本発明のタンパク質もまた、医薬の有効成分とすることができる。即ち、本発明のタンパク質を有効成分として含有する「医薬」は、例えば、本発明のタンパク質を腫瘍患者に投与することで、腫瘍を治療または予防することができる。本発明の腫瘍抗原タンパク質を腫瘍患者に投与すると抗原提示細胞内に取り込まれ、その後、細胞内分解を受けて生じた腫瘍抗原ペプチドがHLA抗原と結合して複合体を形成し、該複合体が抗原提示細胞表面に提示され、この複合体に特異的なCTLが体内で効率的に増殖し、腫瘍細胞を破壊する。以上のようにして、腫瘍の治療又は腫瘍の増殖・転移の予防が達成される。

10

15

20

25

ロウイルス、アデノウイルス、アデノ関連ウイルス、ワクシニアウイルス等を用いた方法が特に好ましい。

その他の方法としては、発現プラスミドを直接筋肉内などに投与する方法、リポソーム法、リポフェクチン法、マイクロインジェクション法、リン酸カルシウム法、エレクトロポレーション法等が挙げられ、特にDNAワクチン法、リポソーム法が好ましい。

本発明のDNAを実際に医薬として作用させるには、DNAを直接体内に導入する in vivo法、およびヒトからある種の細胞を採集し体外でDNAを該細胞に導入しその細胞を体内に戻す ex vivo法がある (日経サイエンス, 1994年4月号, 20-45頁、月刊薬事, 36(1), 23-48(1994)、実験医学増刊, 12(15), (1994)、およびこれらの引用文献等)。in vivo法がより好ましい。

in vivo法により投与する場合は、治療目的の疾患、症状等に応じた適当な投与経路により投与され得る。例えば、静脈、動脈、皮下、皮内、筋肉内等に投与することができる。 in vivo法により投与する場合は、例えば、液剤等の製剤形態をとりうるが、一般的には有効成分である本発明のDNAを含有する注射剤等とされ、必要に応じて、慣用の担体を加えてもよい。また、本発明のDNAを含有するリポソームまたは膜融合リポソーム(センダイウイルス(HVJ) ーリポソーム等)においては、懸濁剤、凍結剤、遠心分離濃縮凍結剤等のリポソーム製剤の形態とすることができる。

製剤中の本発明のDNAの含量は、治療目的の疾患、患者の年齢、体重等により適宜調整することができるが、通常、0.0001mg~100mg、好ましくは0.001mg~10mgの本発明のDNAを、数日ないし数月に1回投与するのが好ましい。

本発明においてタンパク質とは、上記した本発明の種々のDNAによりコードされるタンパク質であり、その細胞内分解により、HLA抗原と結合してCTLにより認識され得る腫瘍抗原ペプチドを生じるという、腫瘍抗原タンパク質としての特性を有するものを指す。具体例としては、配列番号:1に記載のアミノ酸配列を有するART-1が挙げられる。これら本発明のタンパク質は、上記本発明のDNAを用いることにより、大量に製造することが可能である。

本発明のDNAを発現して腫瘍抗原タンパク質を生産するには、例えば、前述

15

20

25

をコードするDNAを有する発現プラスミドとをダブルトランスフェクトする。該トランスフェクトは、例えばリポフェクトアミン試薬(GIBCO BRL社製)を用いたリポフェクチン法などにより行うことができる。その後、用いたHLA抗原に拘束性の腫瘍反応性のCTLを加えて作用させ、該CTLが反応して産生する種々のサイトカイン(例えばIFN- γ)の量を、例えばELISA法などで測定することによって、候補DNAが腫瘍抗原タンパク質をコードするDNAであるか否かを調べることができる。なお、ART-1はHLA-A24拘束性の腫瘍抗原ペプチド部分を有するものであるため、前記HLA抗原をコードするDNAとしては、HLA-A24のcDNA(Cancer Res.,55: 4248-4252 (1995)、Genbank Accession

No. M64740) が挙げられ、前記CTLとしては、ヒトの末梢血リンパ球より調製される場合の他、KG-CTL (FERM BP-6725) などのHLA-A24拘束性のCTLが挙げられる。

以上のような活性測定の具体例は、後述の実施例2に記載されている。

以上のような本発明のDNAは、医薬の有効成分とすることができる。即ち、本発明のDNAを有効成分として含有する「医薬」は、例えば、本発明のDNAを腫瘍患者に投与することで、腫瘍を治療または予防することができる。

発現ベクターに組み込まれた本発明のDNAを以下の方法により腫瘍患者に投与すると、抗原提示細胞内で腫瘍抗原タンパク質が高発現する。その後、細胞内分解を受けて生じた腫瘍抗原ペプチドがHLA抗原と結合して複合体を形成し、該複合体が抗原提示細胞表面に高密度に提示されることにより、この複合体に特異的なCTLが体内で効率的に増殖し、腫瘍細胞を破壊する。以上のようにして、腫瘍の治療又は腫瘍の増殖・転移の予防が達成される。

本発明のDNAを投与し細胞内に導入する方法としては、ウイルスベクターによる方法およびその他の方法(日経サイエンス,1994年4月号,20-45頁、月刊 薬事,36(1),23-48(1994)、実験医学増刊,12(15),(1994)、およびこれらの引用文献等)のいずれの方法も適用することができる。

ウイルスベクターによる方法としては、例えばレトロウイルス、アデノウイルス、アデノ関連ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンビスウイルス等のDNAウイルス又はRNAウイルスに本発明のDNAを組み込んで導入する方法が挙げられる。この中で、レト

10

15

20

25

有し、ストリンジェントな条件下で前記ヒトART-1のDNAにハイブリダイズするようなDNAを指す。

ここで「ストリンジェントな条件」とは、例えば、 $6\times SSC$ ($20\times SS$ Cは、333mM Sodium citrate、333mM NaClを示す)、0.5%SDSおよび50%ホルムアミドを含む溶液中で42%にてハイブリダイズさせた後、 $0.1\times SSC$ 、0.5%SDSの溶液中で68%にて洗浄するような条件、あるいは、中山ら著、バイオ実験イラストレイテッド②遺伝子解析の基礎、p.148-151、秀潤社、1995年、に記載の条件等を指す。

これら変異DNAは、例えば配列番号:2に記載のDNA等とのハイブリダイゼーションなどによりクローニングされるものであるが、具体的なcDNAライブラリーの作製、ハイブリダイゼーション、ポジティブコロニーの選択、塩基配列の決定等の操作はいずれも公知であり、先のMolecular Cloning等を参照して行うことができる。ハイブリダイゼーションに用いるプローブとしては、例えば配列番号:2に記載の塩基配列を有するDNA、E.coli JM109(3D9)が保有する外来性DNAなどが挙げられる。

以上1)~3)に挙げたDNAのうち、「そのDNAが発現して生産されるタンパク質が、その細胞内分解により、HLA抗原と結合してCTLにより認識され得る腫瘍抗原ペプチドを生じる」という特性を有するものが、本発明の腫瘍抗原タンパク質をコードするDNA、すなわち本発明のDNAとなり得る。すなわち、該DNAが発現して生産されるタンパク質の一部のアミノ酸配列からなる部分ペプチドがHLA抗原と結合可能であり、当該ペプチドがHLA抗原と結合して細胞表面に提示された場合、そのペプチド断片とHLA抗原との複合体に対して特異的なCTLが結合して細胞傷害作用やサイトカインの産生が誘導される、そのようなペプチド断片を生じるものが、本発明のDNAとなり得る。

ここで、候補となるDNAが腫瘍抗原タンパク質をコードするDNAとなり得るか否かは、例えば以下のような方法により測定することができる。

すなわちまず、アフリカミドリザル腎臓由来のCOS-7 (ATCC CRL1651) や繊維芽細胞VA-13 (理化学研究所細胞開発銀行) といった腫瘍抗原タンパク質を発現していない細胞に対し、候補となるDNAを有する発現プラスミドと、HLA抗原

10

15

20

25

Molecular Cloning 2nd Edt. Cold Spring Harbor Laboratory Press (1989)等に従い、当業者ならば容易に行うことができる。

なお、前記ART-1のDNAを外来性DNAとして組込んだプラスミドを含有する E. coli JM109(3D9)は、茨城県つくば市東1丁目1番3号、工業技術院生命工学 工業技術研究所に、受託番号:FERM BP-6929として寄託されている (受領日:平成10年11月25日、国際寄託への変更日:平成11年11月4日)。

2) ART-1の改変タンパク質またはアレル変異体等をコードするDNA

前記DNAのうち、「配列番号:1に記載のアミノ酸配列のうち1もしくは複数のアミノ酸残基が置換、欠失及び/又は付加されたアミノ酸配列を有する変異タンパク質をコードするDNA」とは、人為的に作製したいわゆる改変タンパク質や、生体内に存在するアレル変異体等のタンパク質をコードするDNAを意味する。ここで置換、欠失及び/又は付加されるアミノ酸残基の数は、後述の部位特異的変異誘発等の周知の方法により置換、欠失及び/又は付加できる程度の数を指す。このうち1~数十アミノ酸残基の置換、欠失及び/又は付加が好ましく、また1~数個のアミノ酸残基の置換、欠失及び/又は付加がより好ましい。さらに、置換を行う場合は活性を損なわないような保存的なアミノ酸(側鎖の性質の似たアミノ酸)への置換が好ましい。

この変異タンパク質をコードするDNAは、例えば、Molecular Cloning: A Laboratory Manual第2版第1-3巻, Cold Spring Harber Labolatory Press (1989) に記載の種々の方法、例えば部位特異的変異誘発やPCR法等によって、当業者ならば容易に製造することができる。

3) ART-1のDNAとストリンジェントな条件下でハイブリダイズするDN A

前記DNAのうち、「配列番号:2に記載の塩基配列を有するDNA、又は E. coli JM109(3D9)が保有する外来性DNAとストリンジェントな条件下でハイブリダイズする変異DNA」とは、例えばラット、マウス等の脊椎動物全てのART -1のDNAのような、前記ヒトART-1のDNAにストリンジェントな条件下でハイブリダイズするDNAを指す。さらに、例えば前記ヒトART-1のDNAと60%以上、70%以上、80%以上、若しくは90%以上のidentityを

10

15

20

25

- (26) 前記(22)または(23)記載の抗原提示細胞に提示されたHLA 抗原と腫瘍抗原ペプチドまたはその誘導体との複合体を特異的に認識する細胞傷 害性T細胞、
- (27) 前記(25)または(26)記載の細胞傷害性T細胞を有効成分として含有してなる腫瘍の治療剤、ならびに
- (28) 前記(9)~(16)いずれか記載の腫瘍抗原ペプチドまたはその誘導体、前記(6)記載のタンパク質、あるいは前記(19)記載の組換えポリペプチドを含有してなる腫瘍の診断薬、に関する。

本発明のDNAは、新規な腫瘍抗原タンパク質をコードするものであり、配列番号:1に記載のアミノ酸配列を有するタンパク質、又はそのアミノ酸配列のうち1もしくは複数のアミノ酸残基が置換、欠失及び/又は付加されたアミノ酸配列を有する変異タンパク質、をコードするDNA(ただし、該タンパク質および変異タンパク質はその細胞内分解により、HLA抗原と結合してCTLにより認識され得る腫瘍抗原ペプチドを生じるものである)、あるいは、配列番号:2に記載の塩基配列を有するDNA、E.coli JM109(3D9)が保有する外来性DNA、又はこれらのDNAとストリンジェントな条件下でハイブリダイズする変異DNA(ただし、該DNAおよび変異DNAが発現して生産されるタンパク質は、その細胞内分解により、HLA抗原と結合してCTLにより認識され得る腫瘍抗原ペプチドを生じるものである)が例示される。以下、これら本発明のDNAにつき順次説明する。

1) ART-1をコードするDNA

前記DNAのうち、「配列番号:1に記載のアミノ酸配列を有するタンパク質をコードするDNA」、「配列番号:2に記載の塩基配列を有するDNA」とは、本発明のヒト由来の腫瘍抗原タンパク質ART-1をコードするDNAである。該DNAは、後述の実施例に記載の方法によりクローニングすることができる。また、配列番号:2に記載の塩基配列の適当な部分をハイブリダイゼーションのプローブあるいはPCRのプライマーに用いて、例えば膀胱癌細胞株HT-1376(ATCC番号CRL1472)由来のcDNAライブラリーをスクリーニングすることによっても、クローニングすることができる。該クローニングは、例えば

15

20

25

ロイシン、トリプトファンまたはメチオニンに置換されたアミノ酸配列の全部または一部を含む配列より選択される、前記(13)記載の腫瘍抗原ペプチド誘導体、

- (16) 配列番号:19〜配列番号:21のいずれかに記載のアミノ酸配列の全部または一部を含む配列より選択される、前記(14)記載の腫瘍抗原ペプチド誘導体、
- (17) 前記 (9) \sim (16) いずれか記載の腫瘍抗原ペプチドおよびその誘導体から選択される少なくとも 1 種を有効成分として含有してなる、腫瘍の治療剤または予防剤、
- 10 (18) 前記 (9) ~ (16) いずれか記載の腫瘍抗原ペプチドまたはその誘 導体をコードするDNAの少なくとも1種を含有する組換えDNA、
 - (19) 前記(18)記載の組換えDNAを発現させて得られうる組換えポリペプチド、
 - (20) 前記(18)記載の組換えDNAまたは前記(19)記載の組換えポリペプチドを有効成分として含有してなる、腫瘍の治療剤または予防剤、
 - (21) 前記(6)記載のタンパク質、前記(9)~(16)いずれか記載の 腫瘍抗原ペプチドまたはその誘導体、のいずれかに特異的に結合する抗体、
 - (22) 腫瘍患者由来の単離された抗原提示能を有する細胞の表面に、HLA 抗原と前記(9)~(16)いずれか記載の腫瘍抗原ペプチドまたはその誘導体 との複合体を提示させてなる抗原提示細胞、
 - (23) 前記(1)または(2)記載のDNA、前記(6)記載の腫瘍抗原タンパク質、前記(18)記載の組換之DNA、あるいは前記(19)記載の組換えポリペプチドを、腫瘍患者由来の単離された抗原提示能を有する細胞に取り込ませて得られうる、HLA抗原と腫瘍抗原ペプチドまたはその誘導体との複合体の提示された抗原提示細胞、
 - (24) 前記(22)または(23)記載の抗原提示細胞を有効成分として含有してなる腫瘍の治療剤、
 - (25) HLA抗原と前記(9)~(16)いずれか記載の腫瘍抗原ペプチドまたはその誘導体との複合体を特異的に認識する細胞傷害性T細胞、

10

15

20

25

回収することからなる、組換えタンパク質の生産方法、

- (6) 前記(1)または(2)記載のDNAによりコードされるか、または前記(5)記載の生産方法により生産される、腫瘍抗原タンパク質、
- (7) 前記(1)または(2)記載のDNA、あるいは前記(6)記載のタンパク質を有効成分として含有する医薬、
- (8) 前記(1)または(2)記載のDNA、あるいは前記(6)記載のタンパク質を有効成分として含有する、腫瘍の治療剤または予防剤、
- (9) 前記(6)記載のタンパク質の一部よりなる部分ペプチドであって、かつHLA抗原と結合して細胞傷害性T細胞により認識され得る腫瘍抗原ペプチド、または機能的に同等の特性を有するその誘導体、
- (10) HLA抗原がHLA-A24である前記(9)記載の腫瘍抗原ペプチド、または機能的に同等の特性を有するその誘導体、
- (11) 配列番号:3~配列番号:18のいずれかに記載のアミノ酸配列の全部または一部を含む配列より選択される、前記(10)記載の腫瘍抗原ペプチド、または機能的に同等の特性を有するその誘導体、
- (12) 配列番号:3~配列番号:5のいずれかに記載のアミノ酸配列の全部 または一部を含む配列より選択される、前記(11)記載の腫瘍抗原ペプチド、 または機能的に同等の特性を有するその誘導体、
- (13) 配列番号:3~配列番号:18のいずれかに記載のアミノ酸配列の第2位および/またはC末端のアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列の全部または一部を含む配列より選択される、前記(11)記載の腫瘍抗原ペプチド誘導体、
- (14) 配列番号:3~配列番号:5のいずれかに記載のアミノ酸配列の第2位および/またはC末端のアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列の全部または一部を含む配列より選択される、前記(13)記載の腫瘍抗原ペプチド誘導体、
- (15) 配列番号:3~配列番号:18のいずれかに記載のアミノ酸配列の第2位がチロシン、フェニルアラニン、メチオニンまたはトリプトファンに置換され、および/またはC末端のアミノ酸残基がフェニルアラニン、ロイシン、イソ

10

15

20

25

つづいて、前記KG-CTLが強く反応する膀胱癌細胞株HT-1376からcDNAライブラリーを作製し、該ライブラリーの組換えプラスミドとHLA-A2402(HLA-A24の一種)cDNAの組換えプラスミドをCOS-7細胞にダブルトランスフェクトし、そのトランスフェクタントに先のKG-CTLを作用させ、KG-CTLが活性化されるか否かをIFN- γ の産生量で測定するというスクリーニングを繰り返した。その結果、最終的に、1つの腫瘍抗原タンパク質の遺伝子のクローニングに成功した。塩基配列決定の結果、該腫瘍抗原タンパク質の遺伝子は新規な遺伝子であることが明らかとなった。本発明者らは、該遺伝子によりコードされる新規な腫瘍抗原タンパク質を、"ART-1" (Adenocarcinoma antigen Recognized by \underline{T} cells- \underline{I}) と命名した。

本発明者らはさらに、ART-1のアミノ酸配列中、HLA-A24に結合して提示される腫瘍抗原ペプチド部分を同定し、これらのペプチドに腫瘍抗原ペプチドとしての活性の存することを明らかにした。

本発明は、以上のような知見に基づき完成するに至ったものである。 すなわち本発明は、

- (1) 配列番号:1に記載のアミノ酸配列を有するタンパク質、又はそのアミノ酸配列のうち1もしくは複数のアミノ酸残基が置換、欠失及び/又は付加されたアミノ酸配列を有する変異タンパク質、をコードするDNA(ただし、該タンパク質および変異タンパク質はその細胞内分解により、HLA抗原と結合して細胞傷害性T細胞により認識され得る腫瘍抗原ペプチドを生じるものである)、
- (2) 配列番号: 2に記載の塩基配列を有するDNA、E. coli JM1 09(3D9)(受託番号FERM BP-6929)が保有する外来性DNA、又はこれらのDNAとストリンジェントな条件下でハイブリダイズする変異DNA(ただし、該DNAおよび変異DNAが発現して生産されるタンパク質は、その細胞内分解により、HLA抗原と結合して細胞傷害性T細胞により認識され得る腫瘍抗原ペプチドを生じるものである)、
 - (3) 前記(1)または(2)記載のDNAを有する発現プラスミド、
 - (4) 前記(3)記載の発現プラスミドによって形質転換された形質転換体、
- (5) 前記(4)記載の形質転換体を培養し、発現される組換えタンパク質を

ト)。

5

10

15

20

25

これらの腫瘍抗原ペプチドを実際に臨床に適用する際には患者に適合した腫瘍抗原ペプチドを使用する必要があり、また1種のみならず、複数の異なる腫瘍抗原ペプチドを使用する可能性もある。すなわち、全ての癌細胞が共通に同一の腫瘍抗原を発現しているとは限らず、また、一つの癌細胞上に2種以上の異なる腫瘍抗原ペプチドが提示されていることを考慮すると、複数の異なる腫瘍抗原ペプチドを用いた治療がより効果的であると考えられる。事実、メラノーマにおいては、単一の腫瘍抗原由来のペプチドのみでは効果が不十分であったことから、複数のペプチドのカクテル製剤の開発が試みられている(Int. J. Cancer, 66:162, 1996、Int. J. Cancer, 67:54, 1996)。このような背景もあり、例えば発生頻度の高い肺癌などの上皮性腫瘍において幅広く適用可能な、新たな腫瘍抗原タンパク質および腫瘍抗原ペプチドの同定が望まれている状況にある。

発明の開示

本発明は、新規な腫瘍抗原タンパク質および腫瘍抗原ペプチドを提供することを目的とする。すなわち本発明は、新規な腫瘍抗原タンパク質およびその遺伝子、該腫瘍抗原タンパク質由来の腫瘍抗原ペプチド、これらの物質の誘導体、あるいはこれら腫瘍抗原タンパク質、遺伝子、腫瘍抗原ペプチドおよびこれらの誘導体を、in vivoまたはin vitroで利用した腫瘍の治療剤、予防剤または診断薬などを提供することを目的とする。本発明の腫瘍抗原ペプチドは、広範なヒト対象が保有している(例えば日本人の約60%が保有している)HLA抗原であるHLA-A24に結合して提示される腫瘍抗原ペプチドを含むものであることから、多くの腫瘍患者に適用可能であり、さらに肺癌、膀胱癌、骨肉腫等の上皮性腫瘍あるいは白血病といった幅広い腫瘍の治療または予防に応用可能なものであるため、新規な抗腫瘍剤としての有用性が予想される。

本発明者らは、新規な腫瘍抗原タンパク質および腫瘍抗原ペプチドを得るために、以下の試みを行った。

まず本発明者らは、肺腺癌患者のリンパ球より、HLA-A24またはHLA-A2陽性の膀胱癌、肺癌、骨肉腫または白血病細胞株等を認識するCTL株を樹立し、これをKG-CTL(受託番号:FERM BP-6725)と命名した。

フォカインの産生を介して抗腫瘍効果を示す。このような一連の作用の解明に伴い、腫瘍抗原タンパク質または腫瘍抗原ペプチドをいわゆる癌ワクチンとして利用することにより、腫瘍患者の体内の腫瘍特異的CTLを増強させる治療法が可能となった。

腫瘍抗原タンパク質としては、1991年にT. Boonらが初めてMAGEと名付けた 5 タンパク質をヒトメラノーマ細胞から同定した (Science, 254:1643, 1991)。 その後、いくつかの腫瘍抗原タンパク質が、主にメラノーマ細胞から同定されて いる。メラノーマ抗原としては、メラノサイト組織特異的タンパク質であるgp 1 O O (J. Exp. Med., 179:1005, 1994) 、 MART-1 (Proc. Natl. Acad. Sci. USA, 91:3515 , 1994)、チロシナーゼ(J. Exp. Med. , 178:489 , 1993)などの 10 メラノソームタンパク質、メラノーマだけでなく各種癌細胞と正常精巣細胞に発 現するMAGE関連タンパク質群(J. Exp. Med., 179:921, 1994)、腫瘍特異的なア ミノ酸変異を持つβ-カテニン (J. Exp. Med., 183:1185, 1996) 、CDK4 (Science, 269:1281, 1995) などが同定されている。また、メラノーマ以外 15 の腫瘍抗原タンパク質としては、HER2/neu (J. Exp. Med., 181:2109, 1995) 、p 5 3 (変異型) (Proc. Natl. Acad. Sci. USA, 93:14704, 1996) などの 癌遺伝子産物、CEA (J. Natl. Cancer. Inst., 87:982, 1995)、PSA (J. Natl. Cancer. Inst., 89:293, 1997) などの腫瘍マーカー、HPV (J. Immunol., 154:5934, 1995) 、EBV(Int. Immunol., 7:653 , 1995)など のウイルスタンパク質などが同定されている。これらについては、総説 20 (Immunol. Today, 18:267, 1997, J. Exp. Med., 183:725, 1996, Curr. Opin. Immunol., 8:628, 1996等) の記述に詳しい。

腫瘍抗原タンパク質や腫瘍抗原ペプチドを腫瘍の治療や診断に応用するためには、メラノーマに比べて発生頻度が圧倒的に高い扁平上皮癌(食道癌、肺癌等)などに幅広く適応可能な腫瘍抗原の同定が重要である。これに関して、本発明者らは食道癌由来の扁平上皮癌細胞から腫瘍抗原タンパク質をコードする遺伝子のクローニングを行い、HLAの型がHLA-A24あるいはHLA-A26であるHLA抗原に結合して提示されるいくつかの腫瘍抗原ペプチドを、メラノーマ以外の腫瘍細胞から初めて同定した(J. Exp. Med. , 187:277, 1998、国際公開第97/46676号パンフレッ

10

15

20

25

明 細 書

新規な腫瘍抗原タンパク質ART-1、およびその腫瘍抗原ペプチド 技術分野

本発明は、新規な腫瘍抗原タンパク質および腫瘍抗原ペプチドに関する。さらに詳しくは、本発明は、新規な腫瘍抗原タンパク質およびその遺伝子、該腫瘍抗原タンパク質由来の腫瘍抗原ペプチド、これらの物質の誘導体、あるいはこれら腫瘍抗原タンパク質、遺伝子、腫瘍抗原ペプチドまたはこれらの誘導体を、in vivoまたはin vitroで利用した腫瘍の治療剤、予防剤または診断薬などに関する。背景技術

生体による腫瘍の排除には、免疫系、特にT細胞が重要な役割を果たしていることが知られている。実際、ヒトの腫瘍局所には腫瘍細胞に対して傷害活性を示すリンパ球の浸潤が認められ(Arch. Surg., 126:200, 1990)、メラノーマからは自己の腫瘍細胞を認識する細胞傷害性T細胞(CTL)が比較的容易に分離されている(Immunol. Today, 8:385, 1987、J. Immunol., 138:989, 1987、Int. J. Cancer, 52:52, 1992等)。また、該CTLの移入によるメラノーマ治療の臨床結果からも、腫瘍排除におけるT細胞の重要性が示唆されている(J. Natl. Cancer. Inst., 86:1159, 1994)。

自己の腫瘍細胞を攻撃するCTLが標的とする分子については長い間不明であったが、最近の免疫学および分子生物学の進歩により次第に明らかになってきた。すなわちCTLは、T細胞受容体(TCR)を用いて、腫瘍抗原ペプチドと呼ばれるペプチドと主要組織適合遺伝子複合体クラスI抗原(MHCクラスI抗原、ヒトの場合はHLA抗原と呼ばれる)との複合体を認識することにより、自己の腫瘍細胞を攻撃していることが明らかとなった。

腫瘍抗原ペプチドは、腫瘍に特有のタンパク質、すなわち腫瘍抗原タンパク質が細胞内で合成された後、プロテアソームにより細胞内で分解されることによって生成される。生成された腫瘍抗原ペプチドは、小胞体内でMHCクラスI抗原(HLA抗原)と結合して複合体を形成し、細胞表面に運ばれて抗原提示される。この抗原提示された複合体を腫瘍特異的なCTLが認識し、細胞傷害作用やリン

(57)要約

新規な腫瘍抗原タンパク質及びその遺伝子、該腫瘍抗原タンパク質由来の腫瘍 抗原ペプチド、これらの物質の誘導体、あるいはこれらをin vivoまたはin vitroで利用した腫瘍の治療剤、予防剤または診断薬等を提供する。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AE アラブ音長国連邦	3			(- · · · · · · · · · · · · · · · · · ·
BG ブルナン GM ガンドフ GN ギニア GN ギニア MC モナルドヴァルル T T J タシ・サニア MG モナルドヴァルル T Z タン・サニスタン T T J タシ・サニスタン T T M T T T T T T T T T T T T T T T T	AAAAABBBFFGJRYAFFがルルーーヤズルルルーナリン・カー・リー・アアオオアボバベブブベブベカ中コスコガ中コキキチドアアオオアボバベブブベブベカ中コスコカ中コキキチドアナオアボバベブブベブベカ中コスコカ中コキキチドア・カー・フー・ボン・リー・バスコー・カー・バスコー・カー・バスコー・カー・バスコー・カー・バスコー・カー・バスコー・カー・バスコー・カー・バスコー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー	EFFGGGGGGGGHHILLINGT SIRABDEHMNWRRUDELNST ググガガギギギクハイアイイアイ ベィラボ図レルーンニニリロンンイアイイアイ デアア・・チリネラエ ラフ デアア・・デリネラエ ラフ ド フーシンル ン ド フーシンル ン ア ア ・・デリネラエ ラフ ア ア ・・デリネラエ ラフ ア ア ・・デリネラエ ラフ ア ア ・・デリネラエ ラフ ア フ ・ ・デリネラエ ラフ ア フ ・ ・デース ・ ・デース ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	L L L L L L L L L L L L L L L L L L L	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

PCT

世界知的所有権機関 際 事 務 7条約に基づいて公開された

(51) 国際特許分類7

C12N 15/12, 5/10, C12P 21/02, C07K 14/47, A61K 38/17, C07K 7/06, A61K 38/08, C07K 16/18, A61K 35/26, 39/395

(11) 国際公開番号 A1

WO00/32770

(43) 国際公開日

2000年6月8日(08.06.00)

(21) 国際出願番号

PCT/JP99/06682-

(22) 国際出願日

1999年11月30日(30.11.99)

(30) 優先権データ 特願平10/341253

(71) 出願人;および

(72) 発明者

伊東恭悟(ITOH, Kyogo)[JP/JP]

〒841-0205 佐賀県三養基郡基山町けやき台2-25-9 Saga, (JP)

(71) 出願人(米国を除くすべての指定国について)

住友製薬株式会社

(SUMITOMO PHARMACEUTICALS COMPANY,

LIMITED)[JP/JP]

〒541-8510 大阪府大阪市中央区道修町2丁目2番8号

Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてがみ)

五味慎也(GOMI, Shinya)[JP/JP]

〒719-1106 岡山県総社市泉3-61 Okayama, (JP)

(74) 代理人

青山 葆, 外(AOYAMA, Tamotsu et al.)

〒540-0001 大阪府大阪市中央区城見1丁目3番7号

IMPビル 青山特許事務所 Osaka, (JP)

(81) 指定国 AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

明細書とは別に規則13の2に基づいて提出された生物材料 の寄託に関する表示。

NOVEL TUMOR ANTIGEN PROTEIN ART-1 AND TUMOR ANTIGEN PEPTIDE THEREOF (54) Title:

(54)発明の名称 新規な腫瘍抗原タンパク質ART-1、およびその腫瘍抗原ペプチド

(57) Abstract

A novel tumor antigen protein; its gene; a tumor antigen peptide originating in the tumor antigen protein; derivatives of these substances; and remedies, preventives or diagnostics for tumor with the use of these substances either in vivo or in vitro.