Haziq Jamil

Department of Statistics

London School of Economics and Political Science

January 13, 2018

Chapter 5

I-priors for Categorical Responses

5.1 Preliminary

Observe data $\{(y_1, x_1), \ldots, (y_n, x_n)\}$ where each $x_i \in \mathcal{X}$. Let $y_i \in \{1, \ldots, m\}$ and write $y_i = (y_{i1}, \ldots, y_{im})$ where $y_{ij} = 1$ if $y_i = j$ and 0 otherwise. For $j = 1, \ldots, m$, attempt to model

$$y_{ij} = \alpha_j + f_j(x_i) + \epsilon_{ij}$$
$$(\epsilon_{i1}, \dots, \epsilon_{im})^{\top} \stackrel{\text{iid}}{\sim} N_m(\mathbf{0}, \mathbf{\Psi}^{-1})$$

Define $f_j(x) = f(x, j)$ such that each f_j belong to some RKHS \mathcal{F} (and not separate RKHSs \mathcal{F}_j). The reproducing kernel of \mathcal{F} is $h: (\mathcal{X} \times \{1, \dots, m\})^2 \to \mathbb{R}$ as defined by

$$h((x,j),(x',j')) = a(j,j')h_{\eta}(x,x').$$

Choices for $a: \{1, \ldots, m\} \times \{1, \ldots, m\} \to \mathbb{R}$ include

1. The Pearson kernel

$$a(j, j') = \frac{\delta_{jj'}}{P(X = j)} - 1$$

2. The Identity kernel

$$a(j,j') = \delta_{jj'}$$

The kernel h_{η} may be any of the usual kernels, i.e. canonical, fBm, Pearson, SE, polynomial, etc. and this kernel depends on the hyperparameters η . Denote **H** as the $n \times n$ matrix with (r, s) entries equal to $h_{\eta}(x_r, x_s)$ for $r, s \in \{1, \ldots, \}$. Similarly, denote **A** as the $m \times m$ matrix with (k, j) entries equal to a(k, j). Note that for the identity kernel, $\mathbf{A} = \mathbf{I}_m$.

The regression model in vector form:

$$\overbrace{\begin{pmatrix} y_{i1} \\ \vdots \\ y_{im} \end{pmatrix}}^{\mathbf{y}_{i}} = \overbrace{\begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{m} \end{pmatrix}}^{\mathbf{\alpha}} + \overbrace{\begin{pmatrix} f_{1}(x_{i}) \\ \vdots \\ f_{m}(x_{i}) \end{pmatrix}}^{\mathbf{f}(x_{i})} + \overbrace{\begin{pmatrix} \epsilon_{i1} \\ \vdots \\ \epsilon_{im} \end{pmatrix}}^{\mathbf{\epsilon}_{i}} \\
\mathbf{\epsilon}_{i} \stackrel{\text{iid}}{\sim} N_{m}(\mathbf{0}, \mathbf{\Psi}^{-1}).$$

An I-prior on the regression function $f: \mathcal{X} \times \{1, \dots, m\} \to \mathbb{R}$ takes the form

$$f_j(x) = f(x,j) = \sum_{k=1}^{m} \sum_{i=1}^{n} a(j,k)h_{\eta}(x,x_i)w_{ij}$$

where $(w_{i1}, \ldots, w_{im})^{\top} \stackrel{\text{iid}}{\sim} N_m(\mathbf{0}, \mathbf{\Psi}).$

Rearrange the *n* observations per class. Let $\mathbf{f}_j = (f_j(x_1), \dots, f_j(x_n))^{\top} \in \mathbb{R}^n$. We can write the I-prior as $\mathbf{f}_j = \mathbf{A}_{jj} \cdot \mathbf{H} \mathbf{w}_j$ Therefore, $\mathbf{f}_j \sim \mathrm{N}_n(\mathbf{0}, \mathbf{\Psi}_{jj} \mathbf{A}_{jj} \mathbf{H}^2)$, and

$$Cov(\mathbf{f}_{j}, \mathbf{f}_{k}) = Cov(\mathbf{A}_{jj} \cdot \mathbf{H}\mathbf{w}_{j}, \mathbf{A}_{kk} \cdot \mathbf{H}\mathbf{w}_{k})$$

$$= \mathbf{A}_{jj}\mathbf{A}_{kk} \cdot \mathbf{H} Cov(\mathbf{w}_{j}, \mathbf{w}_{k})\mathbf{H}$$

$$= \mathbf{A}_{jj}\mathbf{A}_{kk}\Psi_{jk}\mathbf{H}^{2}.$$

Write $\mathbf{f} = (\mathbf{f}_1^\top, \dots, \mathbf{f}_m^\top)^\top \mathbb{R}^{nm}$. Then this is multivariate normal with mean $\mathbf{0}$ and covariance matrix equal to

$$Var \mathbf{f} = (\mathbf{A} \otimes \mathbf{H})(\mathbf{\Psi} \otimes \mathbf{I}_n)(\mathbf{A} \otimes \mathbf{H})$$
$$= (\mathbf{A} \mathbf{\Psi} \mathbf{A} \otimes \mathbf{H}^2)$$
$$= (\mathbf{\Omega}_{jk} \mathbf{H}^2)_{j,k=1}^n$$

where $\Omega_{jk} = (\mathbf{A} \Psi \mathbf{A})_{jk}$. Out of interest, this can be expressed as a matrix normal distribution. Write \mathbf{w} as the $n \times m$ matrix with entries equal to w_{ij} . Then $\mathbf{w} \sim \text{MN}_{n,m}(\mathbf{0}, \mathbf{I}_n, \Psi)$ and $\mathbf{f} = \mathbf{H} \mathbf{w} \mathbf{A} \sim \text{MN}_{n,m}(\mathbf{0}, \mathbf{H}^2, \mathbf{A} \Psi \mathbf{A})$.

5.1.1 Special case: $\Psi = \mathbf{I}_m$ with identity kernel

In this case, the matrix normal distribution for \mathbf{f} is $\mathrm{MN}_{n,m}(\mathbf{0},\mathbf{H}^2,\mathbf{I}_m)$. That is to say, the *columns* of \mathbf{f} , i.e. \mathbf{f}_j , are iid observations $\mathbf{f}_j \stackrel{\mathrm{iid}}{\sim} \mathrm{N}_n(\mathbf{0},\mathbf{H}^2)$.