Efficient processing of dense UAV point clouds Class project presentation

Vaclav Petras (Vashek)

North Carolina State University, Center for Geospatial Analytics

NC STATE UNIVERSITY

December 1, 2015 GIS595/MEA792: UAV/lidar data analytics course

Questions

- ▶ How many points are really necessary to create a detailed DEM?
- ▶ Which method of point decimation preserve more information?

Implementation

- ▶ Open source implementation for further review and improvement.
- ▶ Methods implemented in GRASS GIS so that they can be used by a broad audience.

Count-based decimation influence on interpolated elevation

g.region nsres=0.3 ewres=0.3 rows=149 cols=161 (cells=23989)
v.surf.rst ... npmin=120 tension=20 smooth=2 segmax=40

Count-based decimation influence on local relief model

r.local.relief input=... output=... shaded_output=... neighborhood=11

Progressiveness of count-based decimation

Influence of grid-based decimation resolution

Resolution of grid-based decimation

Comparison of count-based and grid-based decimation

Count-based decimation

v.in.lidar - count-based decimation during import

v.decimate – point cloud decimation of vector maps (also supports grid-based decimation with preserving point properties)

Store return and class information as category

v.in.lidar can store return or class information as category using layers and categories for something else than ID and class

Also: read coordinates only – speed improvement (–c flag)

Binning of points from multiple LAS files

r.in.lidar – read multiple LAS files in one run The original workflow r.in.lidar input=tile_01.las output=tile_01 r.in.lidar input=tile_02.las output=tile_02 . . . r.patch input=tile_01,tile_02,... output=elevation is replaced by r.in.lidar file=tile_list.txt output=elevation where tile list.txt is tile_01.las

tile_02.las

. . .

Compute height above a given raster during binning

r.in.lidar – derive height above ground of features

The resolutions of binning and ground raster can differ, so different statistics can be computed during binning.

Export vector points from GRASS GIS as LAS

v.out.lidar - export points in a vector map as lidar points

- visualization (plas.io, CloudCompare)
- ▶ further processing (PDAL, libLAS, CloudCompare, ...)
- testing workflows with generated data

r.surf.fractal output in plas.io

Summary

- count-based and grid-based decimation perform the same on a given point cloud
- ightharpoonup analysis needed for every dataset ightharpoonup need for tool to create a report
- improvements needed for the project integrated into GRASS GIS

Get GRASS GIS 7.1 development version at grass.osgeo.org/download

