TRIGONOMETRY

Chapter 03

2nd
SECONDARY

SECTOR CIRCULAR

HELICO | MOTIVATION

1. Definición

1.1 Circunferencia

Línea curva, cerrada y plana, cuyos puntos equidistan (igual distancia) de un punto fijo llamado centro.

1.2 Círculo

Región del plano limitado por una circunferencia

SECTOR CIRCULAR - LONGITUD DE ARCO

Fórmula:

$$L = \theta . R$$

Sector Circular AOB (< AOB): Es la región circular limitada por dos radios y el arco correspondiente.

Elementos:

R: Longitud del radio

L: Longitud del arco AB

9 : Número de radianes de la medida del ángulo central.

 $0 < \theta \le 2\pi$

PROPIEDADES

FACTORES DE CONVERSIÓN:

TRIGONOMETRÍA SACO OLIVEROS

Del gráfico, determine L en centimetros. R = 20 cm rad

RESOLUCIÓN

Recordar:

$$L = \theta . R$$

$$L = \frac{\pi}{5}$$
 (20 cm)

$$L = 4\pi \text{ cm}$$

Del gráfico, determine L en centímetros.

RESOLUCIÓN

$$\frac{\theta \text{ rad} = 30^{\circ} \left(\frac{\pi \text{-rad}}{180^{\circ}} \right)$$

$$\frac{\theta}{6} = \frac{\pi}{6}$$

Recordar:

$$L = \theta . R$$

$$L = \frac{\pi}{6} (12 \text{ cm})$$

$$L = 2\pi \text{ cm}$$

Del gráfico, determine R en centimetros. 3π cm rad

RESOLUCIÓN

Recordar:

$$\theta \cdot R = L$$

$$\frac{\pi}{4}$$
 . R = 3π cm

$$R = 12 cm$$

RESOLUCIÓN

Propiedad:

$$\frac{L_1}{L_2} = \frac{R_1}{R_2}$$

$$\frac{L}{3\pi \text{ cm}} = \frac{12 \text{ cm}}{18 \text{ cm}}$$

$$L = 2\pi \text{ cm}$$

Del gráfico, reduzca:

$$E = \frac{2 L_3 + L_2}{L_1}$$

RESOLUCIÓN

Propiedad:

$$L_1 = L$$

$$L_2 = 2L$$

$$L_3 = 3L$$

Reemplazamos en E:

$$\mathsf{E} = \frac{2(3L) + 2L}{L}$$

$$\mathsf{E} = \frac{6\mathsf{L} + 2\mathsf{L}}{\mathsf{L}} = \frac{8\mathsf{L}}{\mathsf{L}}$$

6

En la figura se muestra un auto que se desplaza desde el punto A hacia el punto B.

Determine la longitud en metros de la trayectoria recorrida por el auto.

RESOLUCIÓN

$$\theta_1$$
rad = $36^{\phi} \left(\frac{\pi \text{-rad}}{180^{\phi}} \right) = \frac{\pi}{5}$

$$\frac{\theta_2 \text{rad} = 60^{\circ} \left(\frac{\pi \cdot \text{rad}}{180^{\circ}}\right) = \frac{\pi}{3}$$

$$L_1 = \frac{\pi}{5}$$
 (10 m) = 2π m

$$L_2 = \frac{\pi}{3}$$
 (12 m) = 4π m

$$L_1 + L_2 = 6\pi m$$

: El auto recorrió 6π m

7

Al abrirse una laptop, el punto M del borde superior de la pantalla, barre un ángulo de 126°. Determine la longitud del ancho de la pantalla, en centímetros, si al momento del barrido se formó un arco de medida igual a 14π cm.

RESOLUCIÓN

$$\frac{\theta}{180^{\circ}} = 126^{\circ} \left(\frac{\pi \, \text{rad}}{180^{\circ}} \right) = \frac{7\pi}{10}$$

$$\theta \cdot R = L$$

$$-\frac{7\pi}{10}$$
. R = $\frac{2}{14\pi}$ cm

∴ R = 20 cm = ancho de pantalla

