Tutovial Sheet 06

A minimum spanning illee is a type of spanning tree where the cost is minimum (sum of the weights of all edges)

. Minimum spanning tree has applications in the designing of

· elsed in algorithms approximating the travelling is alcoman

problem.

Image segmentation and handwriting recognition.

2.	Algorithms	Time Complexity	Space Complexity
	Prim	O((m+n)dogn)	O(V+E)
	Keusal	O(nlogn)	0(E+v)
	Dijkstra	$O(n^2)$	0(n²)
	Bellman ford	0(VE)	0(n)

(i) App	lying ka	uskals' f	Algo.		1	2 4,	9
0 0	格	N 9 1		8	7 1	6) 2	3
7 6 8	652	2204	12	3	171	3-1	* 3 !
0 5 8	2 6 9	4-60	0	2 4 4	8 / 9 ×		

No of edges = $(n+1) = 9-1 \Rightarrow 8$ No. of edges = $(n+1) = 9-1 \Rightarrow 8$ Min. Weight = 1+2+2+4+4+7+8+9=) 37.

(ii) Applying Prims Algo

Toking Onos Charting.

taking len cost verter, everytime.

No. of edges =
$$9-18 = 8$$
.
Min cost/weight = 37 .

Here weights are intermultiplied by 10 units
then the Shortest path will not change.
The reason being in the weights of all paths
from 'S' to 't' will be a multiplied by 10.

(same amount).

If the weights are increased by 10 units, then shortest path may change Egs if the shootest path is of weight 10 and have 5 edges. There is another path with have 5 edges. There is another path with 2 edges and total weight 20, After increment 100 The weight of chostist path will be 10+50 => 60. While weight of other path will be 20+20 = 40.

The shortest path will change.

Source Node 3.

Pnihalize other distance to oo from source node go take shortest path.

	shortest Divience from Some Notes S
node	Shorton
Smy	S S
$S \rightarrow X \rightarrow U$	7
S->X->>	9
S-y-y-V	

Applying Bellmanford Algo

floyd warshall yo

$$A^{0} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 0 & 6 & 3 & 0 \\ 2 & 3 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 2 & 0 \\ 3 & 0 & 0 & 0 & 2 & 0 \\ 3 & 0 & 1 & 1 & 0 & 0 \\ 5 & 0 & 4 & 0 & 2 & 0 \end{bmatrix}$$

$$A^{1} = \begin{cases} 1 & 2 & 3 & 45 \\ 0 & 0 & 6 & 300 \\ 3 & 0 & 9 & 600 \\ 3 & 0 & 0 & 200 \\ 4 & 0 & 1 & 1 & 000 \\ 5 & 0 & 4 & 00 & 20 \\ \end{cases}$$

$$A^{2} = 1 \begin{vmatrix} 2 & 3 & 4 & 5 \\ 0 & 0 & 6 & 3 & 0 \\ 3 & 0 & 0 & 2 & 0 \\ 3 & 0 & 0 & 2 & 0 \\ 3 & 4 & 1 & 1 & 2 & 0 \\ 5 & 7 & 4 & 13 & 2 & 0 \\ \end{pmatrix}$$

$$A^{3} = \begin{bmatrix} 2 & 3 & 4 & 6 \\ 9 & 6 & 3 & 8 \\ 3 & 0 & 9 & 6 & 8 \\ 3 & 0 & 0 & 2 & 8 \\ 4 & 1 & 1 & 2 & 0 \end{bmatrix}$$

The time complexity
will be of n3)
as 3 nested loops
as eved.

Space complexity

Space complexity

o(n2)

No.		T	2	3		
AY,	100	Dealer L	7 0 2	470	100	
	3	14	ر ا		000	
	5	16	3	3	10	

Anovon Shorter distance Matrixa