4: Virkninger uten markedspris og usikkerhet

SOK-2301 - Nytte-kostnadsanalyse i teori og praksis

Oversikt over ulike verdsettingsmetoder for prissetting:

	Tilnærming	Type verdi	Vanligste verdsettingsmetoder
Faktisk marked	Markedsbasert	Bruksverdi	Markedspriser, kostnader ved avbøtende tiltak, kostnader ved å erstatte tapte miljøgoder
Parallelle markeder	Avslørte preferanser	Bruksverdi	Hedonisk prising (eiendomspriser, lønninger), reisekostnadsmetoden
Hypotetiske markeder	Uttrykte preferanser	Bruksverdi og ikke-bruksverdi	Betinget verdsetting, valgeksperimenter

Markedsbasert

- Den foretrukkene metoden
- Markedspriser er ofte ikke tilgjengelig

Metoder basert på avslørte preferanser

- Forholdsvis pålitelig
- Begrenset bruksområde
- Mest egnet til bruksverdi
- Bør suppleres med uttryket preferanser

Metode for uttrykte preferanser

- Kan anvendes på alle typer goder
- Folk vil ofte ikke oppgi korrekte svar på hypotetiske valg

Bruk av fageksperter for å verdsette virkninger

- Bedre til å vurdere sannsynligheter
- Samme metoder for å avdekke preferanser kan brukes på eksperter
- Ekspertvurdering vil ikke alltid samsvare med publikums egne preferanser
- Brukes til å lage scenarioer for betinget verdsetting og valgeksperimenter

Miljøvirkninger

Figure 1: Miljøverdi

- Miljøverdi kan være vanskelig å verdsette, spesielt ikke-bruksverdi
- Respondenter har ikke erfaring med å velge tilgangen eller kvalitet
- Verdioverføringer fra tidligere gjennomførte studier
 - forutsetter høy kvalitet på underliggende verdsettingsstudier

Kostnadsbasert verdsettelse

- Beregne hva det vil koste å unngå eller avbøte tapet av et miljøgode
- F.eks. støyisolering

Vurdering av usikkerhet kan grovt sett bestå av disse fire stegene:

- kartlegg usikkerhetsfaktorene
- klassifiser usikkerhetsfaktorene
- gjennomfør usikkerhetsanalyse
- vurder risikoreduserende tiltak

Husk at usikkerhet allerede kan ha blitt tatt høyde for

- Tiltak med høy risiko eller umoden teknologi kan ha blitt forkastet når relevante tiltak ble valg ut i arbeidsfase 2
- Forventningsverdien tar hensyn til ulike sannsynligheter for ulike utfall
- Kalkulasjonsrenten tar hensyn til risiko

Ulike typer av usikkerhet

- Tiltaks- og prosjektinterne forhold:
 - Usikkerhet knyttet til gjennomføringen og prosjektering.
- Hendelsesusikkerhet:
 - Uforutsette hendelser for dette prosjektet ("usystematisk risiko")
- Generell usikkerhet:
 - Generell risiko ("markedsrisiko")

Ulike typer usikkerhetsanalyse

• Følsomhetsanalyser

	Pessimistisk verdi	Forventet verdi	Optimistisk verdi
Forventet investeringskostnad (mill. kr)	300	125	50
Netto nåverdi (mill. kr)	-47	128	203

Mer avanserte usikkerhetsanalyser

- scenarioanalyser
 - Utvidelse av følsomhetsanalyse
 - Flere parameter endres samtidig
- simuleringer
 - Monte Carlo

Monte Carlo

```
import numpy as np
import matplotlib.pyplot as plt
# Function to calculate NPV
def net_present_value(inv, traveltime, persons, value_per_hour,
                      reduced_accident, maintenance, lifetime, discount_rate):
    # Calculate annual time savings benefit
    time_saving = traveltime * persons * 365 * value_per_hour
    # Total annual benefits
    annual_benefits = time_saving + reduced_accident
    # Net benefits each year (benefits - maintenance costs)
    net_benefits_per_year = annual_benefits - maintenance
    # Calculate NPV of the benefits over the bridge's lifetime
   npv_benefits = sum(net_benefits_per_year / (1 + discount_rate) ** year for year in range
    # Calculate total NPV (subtracting the initial investment)
    total_npv = npv_benefits - inv
    return total_npv
# Define the number of simulations
num_simulations = 10000
# Random value ranges for each parameter
```

```
inv_values = np.random.uniform(30e6, 70e6, num_simulations) # Investment cost in NOK (30M to
traveltime_values = np.random.uniform(0.2, 1.0, num_simulations) # Travel time saved per per
persons_values = np.random.uniform(5000, 15000, num_simulations) # Number of people using to
value_per_hour_values = np.random.uniform(50, 150, num_simulations) # Value of time saved (
reduced_accident_values = np.random.uniform(100000, 1000000, num_simulations) # Accident red
maintenance_values = np.random.uniform(200000, 500000, num_simulations) # Maintenance cost
# Fixed parameters
lifetime_years = 30 # Lifetime of the bridge in years
discount_rate = 0.03 # 3% discount rate
# Run simulations
npv_results = []
for i in range(num_simulations):
    npv = net_present_value(inv=inv_values[i],
                            traveltime=traveltime_values[i],
                            persons=persons_values[i],
                            value_per_hour=value_per_hour_values[i],
                            reduced_accident=reduced_accident_values[i],
                            maintenance=maintenance_values[i],
                            lifetime=lifetime_years,
                            discount_rate=discount_rate)
   npv_results.append(npv)
# Plotting the distribution of NPV outcomes
plt.figure(figsize=(10,6))
plt.hist(npv_results, bins=50, edgecolor='black', alpha=0.7)
plt.title('Distribution of Net Present Value (NPV) Outcomes')
plt.xlabel('Net Present Value (NOK)')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```


Risikoreduserende tiltak

- forebygge avvik fra forventningsverdien
- planlegge for å begrense konsekvensene av avvik eller uheldige hendelser

Realopsjoner

- Det er betydelige (irreversible) kostnader forbundet med å komme tilbake til utgangspunktet
- Det er sannsynlig at man senere får ny informasjon som gir god støtte i beslutningsprosessen.
- Det er handlingsrom når man på et senere tidspunkt skal ta en ny beslutning om tiltak.

Forskjellige typer realopsjoner

• Utsatt beslutning

- Trinnvis utbygging
- Innbygd fleksibilitet
- Avslutning av tiltak

Fordelingsvirkninger

- Skal ikke foretas fordelingsvekting i selve nåverdianalysen
 - Tas med i tilleggsanalyse
- Der det er relevant skal det gis tilleggsinformasjon om fordelingsvirkninger
- Økt sysselsetting i én region på bekostning av færre sysselsatte i en annen, er en fordelingsvirkning ikke en ringvirkning
- Nyttig for beslutningstaker
- Fordeling kan av og til være hovedformålet med tiltaket
 - En kan da for eksempel sammenligne NV til ulike alternative måter å oppnå en bestemt fordeling
- Vurder om det finnes kompenserende alternativer

Hvilke fordelingsvirkninger er relevante?

- geografiske regioner i Norge
- offentlige virksomheter
- privat næringsliv
- privatpersoner
- brukere og ikke-brukere av et offentlig tiltak

Hvilke fordelingsvirkninger er relevante?

- sosioøkonomiske grupper, inndelt etter for eksempel
 - inntektsnivå
 - sivil status
 - alder
 - barnefamilier
 - funksjonsevne
 - sykdomsgruppe
- yrkesgrupper

- forskjellige generasjoner
- kjønn

Eksempel på fordelingsanalyse:

- Tiltak forventes å gi et samfunnsøkonomisk overskudd på 250 mill.
- Deler inn i fem inntektsgrupper.

Kvintil (inntekt)	Beregnet overskudd ved tiltaket	
1. kvintil (lavest)	-45 000 000	
2. kvintil	-60 000 000	
3. kvintil	20 000 000	
4. kvintil	150 000 000	
5. kvintil (høyest)	185 000 000	
Summert over alle grupper	250 000 000	

Gegografisk fordeling

Figure 2: Kart

Lenke til notebooks

Oppgave:

Se på rapporten du har

- 1) Finn ett eksempel på verdivurderinger i rapporten der det ikke finnes noe faktisk marked
 - Om du ikke finner noen, finnes det verdier rapporten ikke tar med, som den potensielt kunne anslått?
- 2) Hvilken metode har forfatterne brukt på å finne verdien?
- 3) Hvordan er usikkerhet tatt hensyn til?