Лекция по математическому анализу №3.

Чудинов Никита (группа 145)

11 сентября 2015

Определение 1 (Абсолютно сходящийся ряд). Ряд $\sum_{1}^{\infty} a_n$ абсолютно сходится, если сходится $\sum_{1}^{\infty} |a_n|$.

Свойства:

1. Абсолютно сходящийся ряд сходится (обратное неверно!)

 \mathcal{A} оказательство. Пусть $\sum_{1}^{\infty} |a_n|$ сходится. Следовательно, по критерию Коши

$$\forall \varepsilon > 0, p \; \exists n : \; \sum_{n+1}^{n+p} |a_n| < \varepsilon;$$
$$\left| \sum_{n=1}^{\infty} a_n \right| \leqslant \sum_{n=1}^{\infty} |a_n|.$$

2. Если $\sum_{1}^{\infty} a_n$, $\sum_{1}^{\infty} b_n$ абсолютно сходятся и $|b_n| \leqslant M \forall n$, то $\sum_{1}^{\infty} a_n b_n$ тоже абсолютно сходится.

Доказательство.
$$\left|\sum_{1}^{\infty}a_{n}b_{n}\right|\leqslant\left|M\sum_{1}^{\infty}a_{n}\right|.$$

- 3. Если $\sum_{1}^{\infty} a_n$, $\sum_{1}^{\infty} b_n$ абсолютно сходятся, то $\sum_{1}^{\infty} \lambda a_n + \mu b_n$ тоже абсолютно сходится.
- 4. Если $\sum_{1}^{\infty} a_n$ абсолютно сходится и $\sum_{1}^{\infty} a_n = S$, то ряд, полученный при произвольной перестановке членов тоже сходится и его сумма равна S.
- 5. Правило умножения: Если $\sum_{1}^{\infty} a_n$, $\sum_{1}^{\infty} b_n$ абсолютно сходятся и $\sum_{1}^{\infty} a_n = A$, $\sum_{1}^{\infty} b_n = B$, то ряд $\sum_{1}^{\infty} a_n \sum_{1}^{\infty} b_n = \sum_{1}^{\infty} c_n = C = A \cdot B$.

Определение 2 (Произведение по Коши).
$$\sum_{1}^{\infty} a_n \sum_{1}^{\infty} b_n = \sum_{1}^{\infty} c_n = \sum_{k=0}^{\infty} \sum_{s=0}^{k} a_s b_{k-s}$$
.

Определение 3 (Условно сходящиеся ряды). Ряд $\sum_{1}^{\infty} a_n$ называется условно сходящимся, если $\sum_{1}^{\infty} a_n$ сходится, но $\sum_{1}^{\infty} |a_n|$ расходится

Теорема (Риман). Если ряд $\sum_{1}^{\infty} a_n$ условно сходится, то для любого числа $S \in \mathbb{R} \cup \{-\infty, +\infty\}$ существует такая перестановка этого ряда, что ряд начинает сходиться к этому числу S.

Функциональные последовательности и ряды

Здесь и в дальнейшем: $f_n(x)$ — некоторая функция, определённая над множеством D.

Определение 4 (Поточечная сходимость). $f_n(x)$ сходится к f(x) на $D: f_n \xrightarrow{D} f$, $\lim_{n \to \infty} f_n(x) \to f(x); x \in D$, если $\forall x \in D \ \forall \varepsilon > 0 \ \exists N(\varepsilon, x): |f_n(x) - f(x)| < \varepsilon \ \forall n > N$.

Определение 5. Ряд $\sum_{1}^{\infty} f(x)$ сходится на D, если $S_n(x) = \sum_{1}^{n} f_n(x)$ сходится к некоторой функции S(x); $\forall x \in D$.

Теорема. Последовательность $f_n(x) \xrightarrow{D} f(x)$ если $\exists a_n \to 0: |f_n(x) - f(x)| \leqslant a_n \ \forall x, n \in D.$