STOR 455 STATISTICAL METHODS I

Jan Hannig

Exam 1

- Results are on blackboard
- I should have printouts and hardcopies to return on Tuesday.
- Grading Scale
 - -90+A
 - -80 + B
 - -70+C
 - -60+D

Inference for β_1

$$b_1 \sim N(\beta_1, \sigma^2(b_1))$$
where $\sigma^2(b_1) = \sigma^2 / \sum (X_i - \overline{X})^2$

$$t = (b_1 - \beta_1) / s(b_1)$$
where $s(b_1) = \sqrt{s^2 / \sum (X_i - \overline{X})^2}$

$$t \sim t(n-2)$$

Confidence Interval for β_1

- $b_1 \pm t^* s(b_1)$
- where $t^* = t(1-\alpha/2;n-2)$, the upper $(1-\alpha/2)$ 100 percentile of the t distribution with n-2 degrees of freedom
- 1- α is the confidence level

Significance tests for β_1

$$H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0$$
 $t = (b_1 - 0)/s(b_1)$
Reject $H_0 \text{ if } |t| \geq t^*, t^* = t(1 - \alpha/2, n - 2)$
 $p - value = P(|T| > |t|), \text{ where } T \sim t(n - 2)$

The book discourages tests in favor of CIs

Inference for β_0

$$b_0 \sim N(\beta_0, \sigma^2(b_0))$$

where
$$\sigma^2(b_0) = \sigma^2 \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum (X_i - \overline{X})^2} \right]$$

$$t = (b_0 - \beta_0)/s(b_0)$$

for $s(b_0)$ replace σ^2 by s^2

$$t \sim t(n-2)$$

Confidence Interval for β_0

- $b_0 \pm t^* s(b_0)$
- where $t^* = t(1-\alpha/2;n-2)$, the upper $(1-\alpha/2)$ 100 percentile of the t distribution with n-2 degrees of freedom
- 1-α is the confidence level

Significance tests for β_0

$$H_0: \beta_0 = 0 \text{ vs } H_a: \beta_0 \neq 0$$

 $t = (b_0 - 0)/s(b_0)$

Reject
$$H_0$$
 if $|t| \ge t^*, t^* = t(1 - \alpha/2, n - 2)$

$$P = \text{Prob} \left(|\mathbf{z}| > |t| \right), \text{ where } z \sim t(n-2)$$

Point Estimation of μ_{Yh}

- $\mu_{Yh} = \beta_0 + \beta_1 X_h$, the mean value of Y for the subpopulation with $X=X_h$
- Point estimate of μ_{Yh} : $\hat{Y}_h = b_0 + b_1 X_h$
- Unbiased: E (\hat{Y}_h) = μ_{Yh}

Inference for E(Y_h)

• Estimate $\sigma^2(\hat{Y}_h)$ by

$$s^{2}(Y_{h}) = s^{2} \left[\frac{1}{n} + \frac{(X_{h} - \overline{X})^{2}}{\sum (X_{i} - \overline{X})^{2}} \right]$$

•
$$t = \frac{\hat{Y}_h - E(Y_h)}{s(\hat{Y}_h)} \sim t(n-2)$$

Inference for Y_{h(new)}

Estimate prediction variance by:

$$s^{2}(\text{pred}) = s^{2} \left[1 + \frac{1}{n} + \frac{\left(X_{h} - \overline{X}\right)^{2}}{\sum \left(X_{i} - \overline{X}\right)^{2}} \right]$$

t-distribution:

$$t = (Y_{h(new)} - \hat{Y}_h)/s(pred) \sim t(n-2)$$

Confidence band for regression line

- Working-Hotelling CB: $\hat{Y}_h \pm Ws(\hat{Y}_h)$
- where $W^2=2F(1-\alpha; 2, n-2)$
- This gives intervals for all X_h
- CI narrower when X_h close to X

Do it in SAS

```
/*plot confidence band */
symbol1 v=circle i=rlclm99;
proc gplot data=breastcancer;
  plot mort*temp;
run;
symbol1 v=circle i=rlclm95;
proc gplot data=breastcancer;
  plot mort*temp;
run;
```

95% and 99% Confidence band

9/30/10

Example: Breast Cancer

- What's the relationship between mean annual temperature and the mortality rate for a type of breast cancer in women? The subjects from regions of Great Britain, Norway, and Sweden.
- Mortality: Mortality index for neoplasms of the female breast
- Temperature: Mean annual temperature (in degrees F)
- The Data (http://www.ncsec.org/cadre2/team6_2/modelII.pdf)

Mort	Temp
102.5	51.3
104.5	49.9
100.4	50.0
95.9	49.2

•••••

Analysis of Variance

		Sum of	Mean			
Source	DF	Squares	Square	F	Value	Pr > F
Model	1	2599.53358	2599.533	58	45.6	7 < .0001
Error	14	796.90580	56.92184			
Corrected Total	15	3396.43938				

Root MSE 7.54466 R-Square 0.7654 Dependent Mean 83.34375 Adj R-Sq 0.7486 Coeff Var 9.05246

Parameter Estimates

Variable	DF	Parameter Estimate		Value 1	Pr > t	99% Confiden	ce Limits
Intercept	1	-21.79469	15.67190	-1.39	0.1860	-68.44747	24.85809
temp	1	2.35769	0.34888	6.76	<.0001	1.31913	3.39626

ANalysis Of VAriance (ANOVA) [Section 3.8]

- Total (corrected) sum of squares in Y is SSTO= $\Sigma(Y_i - \overline{Y})^2$
- Partition of SSTO into:
 - Regression sum of square SSR
 - Error sum of square SSE
- SSTO=SSR+SSE

Total Sum of Squares

- If ignoring X_h , predict $E(Y_h)$ use \overline{Y}
- SSTO is the sum of squared deviations from this predictor, SSTO= $\Sigma(Y_i \overline{Y})^2$
- SAS uses Corrected Total for SSTO
- Uncorrected total: ΣY_i²
- "Corrected" means subtract the mean before squaring

Total Sum of Squares

- $df_{Total} = n-1$
- MST = SSTO/df_{Total} (sample variance)
- MST measures the variability of Y if there are no explanatory variables

Regression Sum of Squares

- SSR = $\Sigma(\hat{Y}_i \overline{Y})^2$
- df_R = 1 (number of explanatory variable)
- SAS call it model sum of square (SSM)
- $MSR = SSR/df_R$

Error Sum of Squares

- SSE = $\Sigma (Y_i \hat{Y}_i)^2$
- $df_E = df_{Total} df_R = n-2$
- MSE = SSE/ df_E
- MSE is an estimate of the variance of residual e_i
- $MSE=s^2$

ANOVA Table

Source	df	SS	<u>MS</u>
Regression	1	$\Sigma (\hat{Y}_i - \overline{Y})^2$	SSR/df _R
Error	n-2	$\Sigma(Y_i - \hat{Y}_i)^2$	SSE/df _E

Total n-1 $\Sigma(Y_i - \overline{Y})^2$ SSTO/df_T

Expected Mean Squares

- MSR, MSE are random variables
- $E(MSR) = \sigma^2 + \beta_1^2 \Sigma (X_i \overline{X})^2$
- $E(MSE) = \sigma^2$
- When $H_0: \beta_1 = 0$ is true E(MSR) = E(MSE)

F test

- $F=MSR/MSE \sim F(df_R, df_E) = F(1, n-2)$
- When H_0 : β_1 =0 is false, MSR tends to be larger than MSE
- We reject H_0 when F is large $F \ge F(1-\alpha, df_R, df_E) = F(.95, 1, n-2)$
- In practice we use P values

Breast cancer example

Number of Observations Read
Number of Observations Used
Analysis of Variance
16

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	???	???	???	???
Error	14	???	56.9		
Corrected Total	15	3396			

• What's the F-value? What's the distribution of the F statistics? P-value?

Analysis of Variance

		Sum of	Mean			
Source	DF	Squares	Square	F	Value	Pr > F
Model	1	2599.53358	2599.533	58	45.6	7 < .0001
Error	14	796.90580	56.92184			
Corrected Total	15	3396.43938				

Root MSE 7.54466 R-Square 0.7654 Dependent Mean 83.34375 Adj R-Sq 0.7486 Coeff Var 9.05246

Parameter Estimates

Variable	DF	Parameter Estimate		Value 1	Pr > t	99% Confiden	ce Limits
Intercept	1	-21.79469	15.67190	-1.39	0.1860	-68.44747	24.85809
temp	1	2.35769	0.34888	6.76	<.0001	1.31913	3.39626

F test and t test

- When H_0 : β_1 =0 is false, F has a <u>noncentral</u> F distribution
- This can be used to calculate power
- Recall $t = b_1/s(b_1)$ tests $H_0: \beta_1=0$
- It can be shown that $t^2 = F$
- Two approaches give same P-value

Example: Copier maintenance

- Routine preventive maintenance service
- X: number of machines serviced
- Y: number of minutes spent
- How much you should charge for one more machine that needs service?

Do it in SAS

```
/* Copier maintenance data */
data copier;
  infile 'CH01PR20.txt';
  input y x;
symbol1 v=circle i=rl;
proc gplot data=copier;
  plot y*x;
run;
proc reg data=copier;
  model y=x;
run;
```


Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
	_			222	222
Model	1	76960	76960	???	???
Error	43	3416.37702	79.45063		
Corrected Total	44	80377			

Root MSE 8.91351 R-Square 0.9575

Dependent Mean 76.26667 Adj R-Sq 0.9565

Coeff Var 11.68729

Parameter Estimates

	Par	ameter St	andard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-0.58016	2.80394	-0.21	0.8371
X	1	15.03525	0.48309	31.12	<.0001

R² (Section 3.9)

- $R^2 = SSR/SSTO = 1 SSE/SSTO$
- 100*R² = percentage of variation in the response variable explained by the explanatory variable

Pearson Correlation

- r: the usual correlation coefficient
- A number between -1 and +1
- Measures the strength of the <u>linear</u> relationship between two variables

$$r = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

Pearson Correlation

• Notice that $r = b_1 \sqrt{\frac{\sum (X_i - \overline{X})^2}{\sum (Y_i - \overline{Y})^2}}$ $= b_1 (SXX/SYY)^{1/2}$

• Test H_0 : β_1 =0 similar to H_0 : r = 0

$$R^{2} \text{ and } r^{2}$$

$$r^{2} = b_{1}^{2} \left(\frac{\sum (X_{i} - \overline{X})^{2}}{\sum (Y_{i} - \overline{Y})^{2}} \right)$$

Ratio of explained and total variation

= SSR/SSTO

R^2 and r^2

- We use R² when the number of explanatory variables is arbitrary (simple and multiple regression)
- r²=R² only for simple regression
- R² is often multiplied by 100 and thereby expressed as a percent

NBA Salary Example

- Data collected by Steven Couper from the web.
- Variable: salary, ppg, cppg.

```
Obs salary ppg cppg
1 5.4 9.9 18.2
2 7.5 18.8 15.4
3 12.1 17.1 16.8
4 1.2 2.8 2.8
...
204 15.1 24.6 22.3
```

Do it in SAS

- Import: File->Import Data, then follow instruction.
- Alternative:

```
PROC IMPORT OUT= WORK.NBAPPG

DATAFILE= "T:\....steve.nbappg.xls"

DBMS=EXCEL REPLACE;

SHEET="Sheet1$";

GETNAMES=YES;

MIXED=NO;

SCANTEXT=YES;

USEDATE=YES;

SCANTIME=YES;

RUN;
```

Do it in SAS

```
symbol1 v=circle i=rl;
proc gplot data=nbappg;
  plot salary*ppg
  salary*cppg;
run;
proc reg data=nbappg;
  model salary=ppg;
   model salary=cppg;
run;
```


Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 1223.97682 1223.97682 109.25 <.0001
Error 204 2285.57697 11.20381
Corrected Total 205 3509.55379

Root MSE 3.34721 R-Square 0.3488

Dependent Mean 4.34757 Adj R-Sq 0.3456

Coeff Var 76.99029

Parameter Estimates

Parameter Standard Variable Label DF Error t Value Pr > |t| Estimate Intercept Intercept 1 0.71525 0.41852 1.71 0.0890 1 0.38688 0.03701 10.45 <.0001 ppg ppg

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 1764.82673 1764.82673 206.35 <.0001
Error 204 1744.72705 8.55258
Corrected Total 205 3509.55379

Root MSE 2.92448 R-Square 0.5029 Dependent Mean 4.34757 Adj R-Sq 0.5004 Coeff Var 67.26696

Parameter Estimates

Parameter Standard Variable Label DF Estimate Error t Value Pr > |t| Intercept Intercept 1 -0.77038 0.41043 -1.88 0.0619 cppg cppg 1 0.56208 0.03913 14.36 <.0001

Toluca Example

- Toluca Company try to find out the relationship between lot size and labor hours needed to produce the lot
- Goal: determine the optimum lot size

Do it in SAS

```
data lot;
  infile 'CH01TA01.TXT';
  input size hours;
run;
proc print data=lot;
proc reg data=lot;
  model hours=size;
  plot hours*size;
run;
```


Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	252378	252378	105.88	<.0001
Error	23	54825	2383.71562		
Corrected Total	24	307203			

Root MSE 48.82331 R-Square ???
Dependent Mean 312.28000 Adj R-Sq 0.8138
Coeff Var 15.63447

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	62.36586	26.17743	2.38	0.0259
size	1	3.57020	0.34697	10.29	<.0001