APPENDIX A PROOF OF THEOREM 2

Proof. As defined in section III, the adversary \mathcal{M} acts as a dishonest user. We start by observing that since the session key of the test session is computed as $sk = H_2(\sigma)$ for some 5-tuple σ .

Let \mathcal{M} be any AKE adversary against CB-AKE protocol. We will show how to use the ability of \mathcal{M} to construct an solver $\mathcal S$ to solve the ECGDH problem. $\mathcal S$ first chooses $P_0 \in G_{C_{3,1,1}}$ $\mathcal S$ generates t_A and t_B normally but sets $comm_1^A \leftarrow X_1$ at random, sets P_0 as the CA's master public key P_{pub} , selects the system parameter params = $\{F_p, E/F_p, G, P, P_{pub}, H_2\}, C_{3.1.2}$ and sends params to $\mathcal{M}.$ Since \mathcal{H}_2 and \mathcal{H} is a random oracle, ${\mathcal M}$ can only distinguish a session key from a random string with probability significantly greater than $\frac{1}{2}$ in one of the following cases:

Case 1 Guessing attack: \mathcal{M} correctly guesses the session key. Case 2 **Key replication:** \mathcal{M} forces two distinct non-matching sessions to have the same session key. In that case $\mathcal M$ can select one of the sessions as the test session and query

the key of the other session.

Case 3 Forging attack: At some point in its run, the adversary \mathcal{M} queries \mathcal{H}_2 on the value $(ID_I, ID_J, K_1^A, K_2^A, K_3^A)$ in the test session owned by A communicating with B.

The probability of guessing the output of \mathcal{H}_2 and \mathcal{H} are $\mathcal{O}(1/2^{\lambda})$, which is negligible; thus **Case 1** can be ruled out.

The input to the key derivation includes all information contained in the session identifier. Since two non-matching sessions cannot have the same communicating parties and ephemeral public keys (except with negligible probability), key replication is equivalent to finding a collision for \mathcal{H}_2 and \mathcal{H} . Therefore **Case 2** occurs with probability $\mathcal{O}\left(s(\lambda)^2/2^{\lambda}\right)$, which is negligible.

It remains to consider Case 3-forging attacks. The rest of this section is devoted to the analysis of this event. Following the standard approach we will show how to construct a ECGDH challenger, that uses an adversary $\mathcal M$ that succeeds with non-negligible probability in a forging attack. Let E be an elliptic curve defined over a finite field GF(p), P be a point on E of order n, and X, Y and Z be points on E such that $X = x \cdot P$, $Y = y \cdot P$ and $Z = z \cdot P$ for some unknown $x,y,z \in [0,n-1]$. The challenger S is given a P,X,Yand an oracle access to $F_{DDH}(\cdot,\cdot,\cdot)$. The challenger is also given a F_{DDH} oracle which on input (P, X, Y, Z), returns 1 if $Z = F_{CDH}(P, X, Y)$ and 0 otherwise. S simulates the game outlined above. During the game, S has to answer all queries of the adversary \mathcal{M} .

The following two sub-cases should be considered.

 $C_{3,1}$ The Test session has a matching session owned by another honest party.

 $C_{3.2}$ No honest party owns a session matching with the Test session.

A. The analysis of case $C_{3.1}$

Assume that \mathcal{M} selects a test session for which the matching session exists. Then S modifies the experiment as follows.

S selects at random matching sessions executed by some honest parties ${\mathcal A}$ and ${\mathcal B}$ (in fact, ${\mathcal S}$ selects two sessions at random and continues only if they are matching - $\mathcal S$ successfully guesses them with probability $2/k^2$). Denote by $comm_A$ and $comm_B$ the communications sent by the respective parties in these matching sessions. When either of these sessions is activated, S does not follow the protocol.

Instead, there are three cases as follows:

(in place of T_A) and $comm_1^B \leftarrow Y_1$ (in place of T_B). S generates d_A , r_A and d_B , r_B normally, and it also

has $e_A = H_n(Cert_A)$ and $e_B = H_n(Cert_B)$ normally. But it sets $comm_2^A$ and $comm_2^B$ in two ways. The first method is S sets $comm_2^A \leftarrow X_2$ (in place of Q_A) and $comm_2^B \leftarrow Y_2$ (in place of Q_B). The second method is S sets $R_A \leftarrow X_2$, $comm_2^A \leftarrow e_A X_2 + e_A R_{CA}^A +$ P_0 (in place of $e_A r_A P + e_A R_{CA}^A + P_0$) and $R_B \leftarrow Y_2$, $comm_2^B \leftarrow e_B Y_2 + e_B R_{CA}^B + P_0 \text{(in place of } e_B r_B P +$

 $e_B R_{CA}^B + P_0$).

 $C_{3.1.3}$ S generates t_A , d_A , r_A and t_B , d_B , r_B normally and it also has $e_A = H_n(Cert_A)$ and $e_B = H_n(Cert_B)$ normally. But it sets $comm_3^A$ and $comm_3^B$ in two ways. The first method is $\mathcal S$ sets $comm_3^A \leftarrow X_3$ (in place of $(t_A + d_A) P$ and $comm_3^B \leftarrow Y_3$ (in place of $(t_B + d_B) P$). The second method is S sets $T_A \leftarrow X_3^1$, $R_A \leftarrow X_3^2$, $comm_3^A \leftarrow X_3^1 + e_A X_3^2 + e_A R_{CA}^A + P_0$ (in place of $t_A P + e_A r_A P + e_A R_{CA}^A + P_0$) and $T_B \leftarrow Y_3^1$, $R_B \leftarrow Y_3^2$, $comm_3^B \leftarrow Y_3^1 + e_B Y_3^2 + e_B R_{CA}^B + P_0$ (in place of $t_BP + e_Br_BP + e_BR_{CA}^B + P_0$).

With probability $1/k^2$ \mathcal{M} picks one of the selected sessions as the test session and another as its matching session. We claim that if \mathcal{M} wins in the forging attack, S can solve the ECCDH challenge. Indeed, the supposed session key for the selected session is $H_2(\sigma)$, where the 5-tuple σ includes the value $F_{CDH}(X_1, Y_1), F_{CDH}(X_2, Y_2), F_{CDH}(X_3, Y_3)$ or $F_{CDH}(X_1, Y_1), F_{CDH}(e_A X_2 + e_A R_{CA}^A + P_0, e_B Y_2 + e_B R_{CA}^B + P_0), F_{CDH}(X_3^1 + e_A X_3^2 + e_A R_{CA}^A + P_0, Y_3^1 + e_B Y_3^2 + e_B R_{CA}^B + P_0).$

To win, \mathcal{M} must have queried σ to the random oracle

If the selected session is indeed the test session, \mathcal{M} is allowed to reveal a subset of $\{r_A, r_B, d_A, d_B, t_A \text{ and } t_B\}$, but it is not allowed to reveal both (r_A, d_A, t_A) or both (r_B, d_B, t_B) . We observe that in this case, the only way that $\mathcal M$ can distinguish this simulated eCK experiment from a true eCK experiment is if \mathcal{M} queries (r_A, d_A, t_A) or (r_B, d_B, t_B) (this way, \mathcal{M} will find out that $comm_{\mathcal{A}}$ and $comm_{\mathcal{B}}$ were not computed correctly). Proposition probability that \mathcal{M} makes such queries is at most

$$2n \cdot \mathbf{Adv}^{\mathrm{ECDLOG}}(\mathcal{T})$$

for some discrete logarithm solver \mathcal{T} .

Therefore (assuming that \mathcal{M} always selects a test session

which has a matching session)

$$\begin{split} \mathbf{Adv}^{\mathrm{ECGDH}}(\mathcal{S}) \geq & \frac{2}{k^2} \cdot \mathbf{Adv}^{\mathrm{AKE}}_{\mathrm{CBAP}}(\mathcal{M}) \\ & - 2n \cdot \mathbf{Adv}^{\mathrm{ECDLOG}}(\mathcal{T}) - O\left(\frac{k^2}{2^{\lambda}}\right). \end{split}$$

Note that in this case S doesn't make any queries to the ECDDH oracle and runs in time O(t).

B. The analysis of case $C_{3,2}$

Now assume that \mathcal{M} selects a test session for which no matching session exists. In this case \mathcal{S} modifies the experiment as follows.

1) $C_{3.2.1}$: assume that \mathcal{B} is the owner

 \mathcal{S} selects a random party \mathcal{B} and sets $Q_B \leftarrow X_2$ as its long-term public key, it also sets $R_B \leftarrow X_2^*$ as its long-term public point. Note that \mathcal{S} doesn't know long-term secret key corresponding to this long-term public key, and \mathcal{S} also doesn't know long-term secret number via this long-term public point. Thus it cannot properly simulate eCK sessions executed by \mathcal{B} . \mathcal{S} handles eCK sessions executed by \mathcal{B} as follows. \mathcal{S} randomly selects t_B , picks h_2 and h_3 at random from Z_q^* and computes $e_B = H_n(Cert_B)$.

Note that S can handle session key and ephemeral secret key reveals by revealing sk, t_B , but cannot handle long-term secret key reveals or long-term secret value reveals.

If $\mathcal C$ is an adversary-controlled party, $\mathcal M$ can compute the session key on its own, reveal the session key sk and detect that it is fake. To address this issue, $\mathcal S$ watches $\mathcal M$'s random oracle queries and if $\mathcal M$ ever queries $(Z_1,Z_2,Z_3,\mathcal B,\mathcal C)$ to H_2 (for some $Z_1,Z_2,Z_3\in G$), $\mathcal S$ checks if

$$F_{DDH}\left(t_{B}P, comm_{1}^{\mathcal{C}}, Z_{1}\right) = 1,$$

$$F_{DDH}\left(X_{2}, comm_{2}^{\mathcal{C}}, Z_{2}\right) = 1,$$

$$F_{DDH}\left(t_{B}P + X_{2}, comm_{3}^{\mathcal{C}}, Z_{3}\right) = 1$$

or

$$F_{DDH} (t_B P, comm_1^{\mathcal{C}}, Z_1) = 1,$$

$$F_{DDH} (e_B X_2^* + e_B R_{CA}^B + P_0, comm_2^{\mathcal{C}}, Z_2) = 1,$$

$$F_{DDH} (t_B P + e_B X_2^* + e_B R_{CA}^B + P_0, comm_3^{\mathcal{C}}), Z_3) = 1$$

and if yes, replies with the session key sk. Similarly, on the computation of sk, $\mathcal S$ checks if sk should be equal to any previous response from the random oracle. Because of these checks $\mathcal S$ runs in quadratic time of the number of random oracle's queries.

 \mathcal{M} cannot detect that it is in the simulated eCK experiment unless it either queries \mathcal{H}_2 or reveals a long-term

secret key and long-term secret number of \mathcal{B} . The first event reveals $F_{DLOG}(X_2)$, $F_{DLOG}(X_2^*)$ and allows \mathcal{S} to solve the ECCDH problem, it happens with probability at most

$$n \cdot \mathbf{Adv}^{\mathrm{ECDLOG}}(\mathcal{T})$$

for some discrete logarithm solver \mathcal{T} . The second event is impossible as otherwise the test session will no longer be clean.

2) $C_{3,2,2}$: S also randomly selects an eCK session in which B is the peer

Denote the owner of this session by A. When the selected session is activated, S follows the protocol only partially:

- C_a S generates t_A and t_B normally but sets $comm_1^A \leftarrow X_1$ (in place of T_A) and $comm_1^B \leftarrow Y_1$ (in place of T_B).
- C_b S generates d_A , r_A and d_B , r_B normally, and it also has $e_A = H_n(Cert_A)$ and $e_B = H_n(Cert_B)$ normally. But it sets $comm_2^A$ and $comm_2^B$ in two ways. The first method is S sets $comm_2^A \leftarrow X_2$ (in place of Q_A) and $comm_2^B \leftarrow Y_2$ (in place of Q_B). The second method is S sets $R_A \leftarrow X_2$, $comm_2^A \leftarrow e_A X_2 + e_A R_{CA}^A + P_0$ (in place of $e_A r_A P + e_A R_{CA}^A + P_0$)and $R_B \leftarrow Y_2$, $comm_2^B \leftarrow e_B Y_2 + e_B R_{CA}^B + P_0$ (in place of $e_B r_B P + e_B R_{CA}^B + P_0$).
- C_c S generates t_A , d_A , r_A and t_B , d_B , r_B normally and it also has $e_A = H_n(Cert_A)$ and $e_B = H_n(Cert_B)$ normally. But it sets $comm_3^A$ and $comm_3^B$ in two ways. The first method is S sets $comm_3^A \leftarrow X_3$ (in place of $(t_A + d_A)P$ and $comm_3^B \leftarrow Y_3$ (in place of $(t_B + d_B)P$). The second method is S sets $T_A \leftarrow X_3^1$, $R_A \leftarrow X_3^2$, $comm_3^A \leftarrow X_3^1 + e_A X_3^2 + e_A R_{CA}^A + P_0$ (in place of $t_A P + e_A r_A P + e_A R_{CA}^A + P_0$) and $T_B \leftarrow Y_3^1$, $R_B \leftarrow Y_3^2$, $comm_3^B \leftarrow Y_3^1 + e_B Y_3^2 + e_B R_{CA}^B + P_0$ (in place of $t_B P + e_B r_B P + e_B R_{CA}^B + P_0$).

With probability at least 1/nk(1/n) to pick the correct party \mathcal{B} and 1/k to pick the correct session), \mathcal{M} picks the selected session as the test session, and if it wins, it solves the ECCDH problem. The supposed session key for the selected session is $H_2(\sigma)$, where the 5-tuple σ includes the value $F_{CDH}(X_1,Y_1)$, $F_{CDH}(X_2,Y_2)$, $F_{CDH}(X_3,Y_3)$ or $F_{CDH}(X_1,Y_1)$, $F_{CDH}(e_AX_2+e_AR_{CA}^A+P_0,e_BY_2+e_BR_{CA}^B+P_0)$, $F_{CDH}(X_3^1+e_AX_3^2+e_AR_{CA}^A+P_0,Y_3^1+e_BY_3^2+e_BR_{CA}^B+P_0)$. To win, \mathcal{M} must have queried σ to the random oracle H_2 .

If the selected session is indeed the test session, \mathcal{M} is not allowed to reveal both r_A , d_A and t_A and is not allowed to corrupt \mathcal{B} . In this case, the only way that \mathcal{M} can distinguish this simulated eCK experiment from a true eCK experiment is if M queries (r_A, d_A, t_A) . However, by Case $C_{3.1}$ it happens with probability at most for some discrete logarithm solver \mathcal{T} . Overall, if \mathcal{M} always selects a test session which doesn't have a matching session then the success probability of \mathcal{S} is at most

$$n \cdot \mathbf{Adv}^{\mathrm{ECDLOG}}(\mathcal{T})$$

for some discrete logarithm solver \mathcal{T} . Overall, if \mathcal{M} always selects a test session which doesn't have a matching session

then the success probability of ${\mathcal S}$ is at most

$$\mathbf{Adv}^{\mathrm{ECGDH}}(\mathcal{S}) \geq \frac{1}{nk} \cdot \mathbf{Adv}_{\mathcal{M}}^{\mathrm{CB-AKE}} - O\left(\frac{k^{2}}{2^{\lambda}}\right) \\ - 2n \cdot \mathbf{Adv}^{\mathrm{ECDLOG}}(\mathcal{T}),$$

where \mathcal{T} is some discrete logarithm solver. \mathcal{S} runs in time O(kt).

Finally, under the ECGDH assumption, $\mathbf{Adv}^{\mathrm{ECGDH}}(\mathcal{S})$ is negligible. Therefore, $\mathbf{Adv}^{\mathrm{CB-AKE}}_{\mathcal{M}}$ is negligible and CB-AKE protocol has eCK security.