Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Pót nagy zárthelyi dolgozat, 2023. nov. 23.							111111111111111111111111111111111111111	

NEV:	
Neptun kód:	

Előadó: Márkus / Sarkadi

1. A talaj felett h magasságban található pontból függőlegesen feldobunk egy követ.

a) Mekkora volt a kezdősebesség, ha a kő ugyanannyi ideig tartózkodott a mozgás kezdőpontja felett, mint alatt a földetérés pillanatáig. (1,5)

I.
$$t = \frac{2U}{g}$$

I. $h = U \cdot t + \frac{9}{2} \cdot t^2$

$$L = U \cdot \frac{2U}{g} + \frac{9}{2} \cdot \frac{4U^2}{g^2} = \frac{4U^2}{g}$$

II. $U = \frac{GL}{2}$

b) Mekkora volt a kö talaj feletti legnagyobb magassága? (1,5)

$$t_{tot} = \frac{U}{g} = \frac{l \cdot g}{zg} = \frac{1}{2} \left[\frac{l \cdot g}{g} \right]$$

$$y_{max} = l + Ut_{tot} - \frac{g}{2} t_{tot} = l + \frac{1}{2} \cdot \frac{l \cdot g}{2} \cdot \frac{1}{2} \cdot \frac{l \cdot g}{g} - \frac{g}{2} \cdot \frac{l \cdot g}{4g} = \frac{1}{2} \left[\frac{l \cdot g}{g} - \frac{l \cdot g}{g} \right]$$

$$y_{max} = l + \frac{l \cdot g}{4} - \frac{l \cdot g}{8} = \frac{g}{g} l \cdot \frac{l \cdot g}{g}$$

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Pót nagy zárthelyi dolgozat, 2023, nov. 23.								

- Vízszintes talajon egymásra helyezünk két egyforma, m tömegű téglát. Az alsót F erővel húzzuk vízszintes irányban. Minden súrlódó felület tapadási és csúszási súrlódási együtthatója egyaránt μ.
 - a) Legalább mekkora legyen F, hogy a két tégla a talajhoz képest megmozduljon? (1)

b) Legalább mekkora legyen F, hogy az alsó tégla kicsússzon a felső alól? (1)

vázlatosan ábrázolja az alsó tégla gyorsulását a rá kifejtett F erő függvényében! (1)

Villamosmérnök alapszak Fizika1	1.	2.	3.	4,	E1.	E2.	Mondat	Összes
Pót nagy zárthelyi dolgozat, 2023. nov. 23.								

- Egy La nyugalmi hosszúságú, k direkciós állandójú, hajlékony gumikötél egyik végét egy falba vert szöghöz kötjük, másik végére m tömegű pontszerű testet kötünk. A testet közvetlenül a szög mellől kezdősebesség nélkül elejtjük. A test előszőr szabadon esik, majd elkezd megfeszülni a gumikötél. A test megáll, majd újra elindul felfelé.
- a) Mekkora a test sebessége, amikor a gumikötél elkezd megfeszülni? (0,5)

b) Mekkora a gumikötél maximális megnyúlása? (1)

c) Hol éri el a test a legnagyobb sebességet? Mekkora ez a legnagyobb sebesség? (1,5)

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Pót nagy zárthelyi dolgozat, 2023. nov. 23.								

- Egy L hosszúságú nyújthatatlan fonál egyik vége rögzített, másik végére m tömegű testet kötűnk. Az így elkészített inga kezdetben függőleges egyensúlyi helyzetében van, majd v_θ kezdősebességet adunk neki.
 - a) Legalább Mekkora legyen a kezdősebesség, ha azt szeretnénk, hogy az ingafonál még akkor is feszes maradjon, amikor a test fél fordulatot megtéve pályája legmagasabb pontjára kerül? Legalább mekkora sebességgel kell a testnek mozognia a legfelső ponton? (1,5)

b) A fent kiszámított kezdősebesség duplájával indítjuk a testet a legalsó pontból. Mekkora erő feszíti a kötelet a legfelső pontban? (1,5)

$$V_0 = 2\sqrt{5gL}$$

$$\frac{1}{2}mV_0^2 = mg \cdot 2L + \frac{1}{2}w_0^2$$

$$\frac{1}{2}\cdot 4\cdot 5gL = g \cdot 2L + \frac{1}{2}U_0^2$$

$$8gL = \frac{1}{2}v_1^2 \implies v_1^2 = 16gL \qquad v_2 = 4\sqrt{g}L^2$$

$$V_{\xi}$$

$$F_{\xi} = me$$

$$F_{\xi} = m\left(\frac{16gL}{L} - g\right) = m \cdot 15g$$

$$F_{\xi} = 15 mg$$

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Pót nagy zárthelyi dolgozat, 2023. nov. 23.								

Kifejtendő kérdések

 Definiálja a tapadási és a csúszási súrlódási erő fogalmát! Milyen körülmények között lép fel, milyen irányú az erő? (1,5) Adjon meg összefüggést az erők kvantitatív jellemzésére, értelmezze a bevezetett mennyiségeket! (1,5)

For Ket egymáson elosutro felület kölcsönhatábakor feléfő disszipatív erő, hánya a relativ tebességgel ellentétás, magysága a felületelet összenyomó esővel arányos. For pe Fe u: csuhán milódési e.h.

Fts: Két egymás hoz képest nyagolombar levő filület kölcső nhatasoc hor felléjső kénynererő. hanga a filületekkel poisharamer, nagysága éppen alkar, hopy a felületek egymás la képest ne csúsranal el. Nagyságanas filső korlátot hab a Fts Ft. Mo öttrefüggás.

 Értelmezze a transzlációs tehetetlenségi erő fogalmát! Milyen esetben lép fel? (1) Adjon meg összefüggést, és nevezze meg a bevezetett mennyiségeket! (1) Rajz segítségével mutasson példát olyan esetre, ahol fellép a transzlációs tehetetlenségi erő! Rajzolja be az ábrán a tehetetlenségi erőt, és az ellenerejét is! (1)

t translaciós telretotlersique ero inerciarendorenher her pest egyenesconali, quo souló mozgást végró vomatheor tabási rendherher lip fel. Fiz-mā
alodā a a von. rendrer. gyormlása, m a test temeze

to tr. tel. crò nem solcoonlatois l'ol mannonile, une inerciaerò, crès minos ellenereje

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Pót nagy zárthelyi dolgozat, 2023. nov. 23.								

Kiegészítendő mondatok

Egészítse ki az alábbi hiányos mondatokat úgy a megfelelő szavakkal, szókapcsolatokkal, matematikai kifejezésekkel (skalár-vektor megkülönböztetés), hogy azok a Fizika1 tantárgy színvonalának megfelelő, fizikailag helyes állításokat fogalmazzanak meg!

I. A mechanika jelenségeit leíró mennyiségeket az alábbi három SI alapmennyiségből származtatjuk:
2. Ha egy tömegpont sebesség-idő függvényének idő szerinti deriváltját állítjuk elő, a gy ovn-lós – idő fv:
 Vízszintes talaj fölött h magasságból úgy kívánunk elhajítani egy testet adott v kezdősebességgel.
hogy az a legtovább tartózkodjon a levegőben. A kezdősebesség vektor iránya figg ő legesen felfele mutat
4. Egy szabadon eső test sebesség-idő grafikonja egy linegvis függvény. Az elejtett testek v(t) grafikonja a gyakorlatban mindig az ideális görbe
helyezkedik el a közegellenállás miatt.
5. A közegellenállási erő a sebesség négyzetével arányos. A közegellenállási erő teljesítménye a sebesség
6. Az erők egy csoportját úgy definiáljuk, hogy hatásukra a tömegpont mozgása kielégítsen bizonyos kényszerfeltételeket. Ezek az erők a Le nyhwerel.
7. Rögzített tengelyű, súrlódásmentes csigán átvetett, elhanyagolható tömegű, nyújthatatlan kötél nem változtatja meg a z
8. A munkatétel értelmében a tömegpontra ható erő peunkaja agyenla a to negpow kinetikus energi ajánul negváltorás éval.
9. Egy test ul diciti sa energiaja a test kinetikus és potencialis energiáinak összege.
10. Egy R sugarú bolygó felszínén a potenciális energia értéke E. A bolygó felszíne felett 2R távolságra a potenciális energia értéke E/3
11. Tömegpontrendszerek impulzusa állandó, ha a pontrendszerre ható külső erőle erecléje milla
12. Nehézségi erőtérben a potenciális energiát konvencionálisan az <i>E=mgh</i> összefüggéssel adjuk