

### Static triction:

- -> Selfadjustable force
- -> maximum static force

$$f_s \leq f_{sL}$$

f<sub>s</sub> < 
$$\mu_s N$$

Rough 
$$(2k = 0.2)$$
Surface  $u_s = 0.3$ 

$$=0.27 Mg$$



$$F = 10N \qquad a = 0, f_S = 10N$$















Rough Swylac



Body will not move of

N = my + Fsino





Find acc. of System and Tension in String



$$a = \frac{5j - j_k}{2 + 5} = \frac{50 - 2}{7}$$

$$=\frac{5}{7}(70-48)$$











Mc = 0.3

$$f_{SL} = 0.2 \times 3 \times 10$$
  $f_{SL} = 0.3 \times 20$   
= 6 N = 6 N  
 $f_{K} = 3 \times 10$ 

## Objects will move



# F = 15 N Find (1) A CC- of Objects and Tension in String

# 1 volves of Friction on each object

$$\frac{0}{\alpha = \frac{15 - (4 + 3)}{5}}$$

$$\alpha = \frac{8}{5} = 1.6 \text{ m/s}^2$$

FOR B 
$$\rightarrow a$$
  
 $T + \rightarrow 15 N$   
 $4N$   
 $15 - T - 4 = 2x 1.6$ 

$$15-T-4 = 2x1.6$$

$$11-T = 3.2$$

$$T = 11-3.2 = 3$$



#### ANGLE OF FRICTION :→ ( //)

SL

The angle of friction is the angle between resultant contact force of and normal reaction N, when sliding is initiating. It is denoted by  $\lambda$ 

$$\tan \lambda = \frac{f_{sm}}{N} = \frac{\mu_s N}{N} = \mu_s$$

• For smooth surface  $\lambda = 0$ 







## ANGLE OF REPOSE $(\theta)$

SL

A body is placed on an inclined plane and the angle of inclination is gradually increased. At some angle of inclination  $\theta$  the body starts sliding down the plane due to gravity. This angle of inclination is called angle of repose  $(\theta)$ .

Angle of repose is that minimum angle of inclination at which a body placed on the inclined starts sliding down due to its own weight.

Thus, angle of repose = angle of friction.





my sind = 
$$f_{SL}$$
  
my sind =  $M_S N$   
my sind =  $M_S M_S W$   
 $tand = M_S$   
 $Q = tan'(M_S)$ 









Ranz

