ARQUITECTURA DE COMPUTADORES. BENCHMARK del TEMA 1. Apellidos y nombre:

1. Escriba la expresión de la ley de Amdahl en términos de p (ganancia de velocidad del recurso que se ha mejorado) y de f (fracción del tiempo de procesamiento en el computador base durante el que NO se puede aprovechar la mejora):

$$S \le p /(1+f_{\times}(p-1))$$

2. Según la ley de Amdahl, la máxima ganancia de velocidad que se puede conseguir, por mucho que se mejore el recurso es 1/f(f definido como en la pregunta 1)

(V)

- 3. Escriba la expresión del tiempo de CPU (T_{CPU}) en términos del número de instrucciones ejecutadas (NI), el número medio de ciclos por instrucción (CPI) y la frecuencia de reloj (F) T_{CPU} =NI×CPI/F
- 4. ¿Cuál es la velocidad pico en MIPS de un procesador que puede terminar hasta cuatro instrucciones por ciclo y funciona a una frecuencia de reloj de 3 GHz?

MIPS=4 int/ciclo × $3*10^9$ ciclos/s × $(1/10^6)$ = 12000

5. La comunicación entre procesadores en un computador UMA se realiza a través de escrituras y lecturas en la memoria compartida, igual que en un computador NUMA

(V)

6. Un procesador puede terminar hasta 4 operaciones en coma flotante por ciclo. ¿Cuál es su velocidad pico (en GFLOPS) si funciona a una frecuencia de reloj de 2 GHz?

GFLOPS =
$$4 \text{ op_float/ciclo} \times 2*10^9 \text{ ciclos/s} \times (1/10^9) = 8$$

7. El bucle for i=1 to N do $a(i)=c\times(a(i)+b(i))$; con $N=10^{14}$, se ejecuta en 10 segundos, siendo c, a(), y b() datos en coma flotante. ¿Cuántos GFLOPS alcanza la máquina al ejecutar el código?

GFLOPS=
$$(2*10^{14} \text{ op_float}) / (10 \text{ s} \times 10^9) = 2*10^4 = 20,000$$

- 8. En la secuencia de instrucciones:
 - (a) add r1, r2, r3; r1 \leftarrow r2 + r3
 - (b) sub r1, r2, r4; r1 \leftarrow r2 r4
 - (c) add r3, r2, r1; r3 \leftarrow r2 + r1
 - El registro r1 solo genera una dependencia RAW

(F)

No hay dependencias debido al uso del registro r2

(V)

- El registro r3 genera una dependencia WAW

(**F**)