Gebze Technical University Computer Engineering

CSE 222-2018 Spring
HOMEWORK II REPORT

Yunus ÇEVİK 141044080

Course Asistant: Fatma Nur Esirci

a)
$$n2^n$$
 is in $O(2^{2n})$

Answer 1

a Big-O notasyonu için

$$T(N) := O(f(N))$$
 Eğer pozitif sahtler varsa c ve no öyleki

 $T(N) \le c f(N)$ $N \ge n_0$
 $n2^n \le c.2^{2n} \implies n_2 x^n \le c.2^n.2^n$
 $n \le c.2^n$ $c \ge 1$ $n_0 \ge 1$ $\forall N \ge n_0$
 $1 \le 1.2^1 \implies 1 \le 2 \sqrt{c=1} n_0 = 1$
 $2 \le 2.2^2 \implies 2 \le 8 \sqrt{c=2} n_0 = 2$

b) Omega Notaryanu için

$$T(N) = \Omega(f(N))$$
 Eğer pozitif sabitler varsa c ve no öyleki

 $T(N) \geq c f(N)$ $N \geq n_0$
 $n! \geq c.2^n$ $c \geq 1$ $n_0 \geq 4$
 $4! \geq 1.2^n$ $c = 1, n_0 = 4$
 $24 \geq 1.16$ V
 $5! \geq 2.2^s$ $c = 2. n_0 = 5$
 $120 \geq 64$ V

C) Big O notosyon icin

log
$$n \le c_1 \cdot \log_{EU} n$$

log $n \le c_1 \cdot \log_{EU} n$

log $n \ge c_2 \cdot \log_{E$

Q(losen) icin C=6 no≥1 olması gerekir.

2) Sort the following functions from slowest to fastest in terms of their growth. Using limit estimation.

(18n) sn, 18(n!), n, 18(18(n)), 18(2n), 18(18(vn))

Answer 2

$$\frac{(|g_n|^{|g_n|})^{|g_n|}}{\lim_{n\to\infty} \frac{(|g_n|^{|g_n|})}{\lim_{n\to\infty} \frac{1}{|g_n|}}} = \frac{1}{|g_n|^{|g_n|}} \cdot \frac{1}{|g_n|^{|g_n|}} \cdot \frac{2n^{|g_n|} |g_n|^{-1} \cdot f_n(n)}{|g_n|^{|g_n|}} = \frac{2f_n(n)}{|g_n|^{|g_n|}} = \frac{2f_n(n)}{|g_n|^{|g_n$$

$$\Rightarrow \lim_{n\to\infty} \frac{2 \ln(n)}{\ln^{2}(2)n} = 0, \text{ böylece } n > (\ln n) \ln n$$

$$\rightarrow n = 0 (lg(2^n)) \Rightarrow n = lg(2^n) \Rightarrow n = n \cdot lg(2^n) \Rightarrow n = n \cdot lg(2^n)$$

$$\frac{1}{16n} \frac{1}{16n} = \frac{1682^{2}}{16(16(n))} = \frac{2 \ln(n)}{16(2)n} = \frac{2 \ln(n)}{16(2)n} = \frac{2 \ln(n)}{16(2)n} = \frac{2 \ln(n)}{16(2)n} = \frac{1}{16(2)n\log_2(n)} = \frac{1}{$$

$$\Rightarrow \lim_{n\to\infty} \frac{2\ln(n)}{\ln^2(2)n} \cdot \ln^2(2)n\log_2(n) = \Rightarrow \lim_{n\to\infty} 2\ln(n) \cdot \log_2(n) = \Rightarrow \lim_{n\to\infty} \frac{2\ln(n)}{\ln^2(2)n} \cdot \log_2(n) = \Rightarrow \lim_{n\to\infty} \frac{2\ln(n)}{\ln^$$

$$\frac{1g(n!) \stackrel{?}{=} O(n)}{\lim_{n \to \infty} \frac{1g(n!)}{n}} = \log_2(n \cdot n - 1 \cdot n - 2 \cdot n - 3 \cdot \dots - 2 \cdot 1) = \log_2(n) + \log_2(n \cdot 1) + \dots + \log_2(n)$$

$$= \log_2(n) + \log_2(n) + \dots + \log_2(n) = n \cdot \log(n)$$

$$\lim_{n\to\infty} \frac{\log_2(n)}{n} = \frac{\log_2(n)}{\log_2(n)} = \infty \quad \text{böylece log(n!)} > n$$

Sonuc olarak =>
$$|g(n!)> n = |g(2^n)> (|g_n)^{|g_n}> |g(|g(n)) = |g(|g(\sqrt{n}))$$

Yavastan hizliya doğru sıralarsak $|g(|g(n)) = |g(|g(\sqrt{n})) < (|g_n|^{|g_n} < |g(2^n) = n < |g(n|)$

3) Solve the following recurrence relation using the substitution method.

$$T(n) = 2T(n-1) + 1$$
 $n > 1$, $T(n) = 1$ $n = 1$

Answers

$$k=k$$
 icin $T(n) = 2^{k}T(n-k) + \sum_{i=1}^{k-1} 2^{i}$

Note =
$$\sum_{i=m}^{n} a^{i} = \frac{a^{m} - a^{n}}{1 - a}$$

$$T(n-k-1)$$

$$n-k-1=0$$

$$n-1=k$$

$$\Rightarrow 2^{n-1}+(n-(n-1))+(2^{n-1}-1) \Rightarrow 2^{n-1}, T(1)+(2^{n-1}-1)$$

$$\Rightarrow 2^{n-1}+2^{n-1}-1 \Rightarrow 2^{n-1}(1+1)-1 \Rightarrow 2^{n-1}, 2^{1}-1$$

$$\Rightarrow 2^{n-1+1}-1 \Rightarrow 2^{n-1}$$

4) Explain the running time of f(n) using recurrence relation. f(n): /!
if(n == 1) Jandaki recursive fonksiganda yapılması kesin olan Lislem return 1 varder. else LaBase Case de yapılan karşılastırma return f(n-1) + f(n-1) 23 Recursive Case de yapılan toplome 3 veh ise f(n-1) isleminde sikarma isleminin iki kere yapılmasıdır. f(1) = 1 - Base Ease f(n) = 2f(n-1)+4 = Recursive Case k=1 icin f(n) = 2f(n-1) + 4 ·f(n-1) = 2 f(n-1-1)+4 = 2f(n-2)+4 k=2 isin f(n) = 2[2f(n-2)+4]+4 = 22f(n-2)+8+4 ·f(n-2) = 2f(n-2-1) + 4 = 2f(n-3) + 4 k=3 icin f(n) = 22[2f(n-3)+4]+8+4 = 23f(n-3)+16+8+4 Note: \(\sigma^{\alpha} = \frac{a^{n} - a^{\bar{\gamma}}}{1 - a} \) k = k isin $f(n) = 2^k f(n-k) + 4. \sum_{i=0}^{k-1} 2^i$ $2^{k}f(n-k) + 4.\left(\frac{2^{n}-2^{k}}{1-2}\right) \Rightarrow 2^{k}f(n-k) + 4.\left(\frac{1-2^{k}}{-1}\right) \Rightarrow 2^{k}f(n-k) + 4(2^{k}-1)$ T (n-k-1) $\Rightarrow 2^{n-1}f(n-(n-1))+4(2^{n-1}-1) \Rightarrow 2^{n-1}f(1)+4(2^{n-1}-1)$ n-k-1=0 $=> 2^{n-1} + 4.2^{n-1} - 4 \Rightarrow 2^{n-1}(1+4) - 4 = 2^{n-1}(5) - 4$ n-1=k => 5.2^-1-4 Sonuc olorak O(2") Exponential dir. Q(2")

5) What does do Unknown Function? Analize the running time of Unknown Function using proper asymptotic notations.

Answer 5)

Unknownfunction fanksiyon, verilen sayının asal carpanları arasındaki 2'nin ko dereceden kuvvetlerini belirler. 2k'li değer, iki tabanına rahip logaritma ile ifade edilebilir ve fanksiyon, çalışma döngüsünü k kez tekrarlar. Girilen değer döngünün şartına bağlı olarak cift sayı olup olmadığını belirleyip, eğer cift sayı ise her ko iterosyonda logazk gibi bir logaritmik azalışa uğrar. Sonve olarak verilen n sayısının asal çarpanlarından 2'nin derecesini return eden bir fonksiyondur.

Fonksiyon T(n) = Q(1) + Q(logn) + Q(1)

Fonksiyon Best Case => TB(n) = D(1)
Fonksiyon Worst Case => TW(n) = Q(logn)

6) Write Insertion sort with pseudocode Explain analyze of your algorithm worst-case, best-case and average-case using proper asymptotic notations. Answer 6)

Insertion Sort - Psuedocade

Input => n element A[1. n] orragi

Ouput => A[1...n] azalmagan sıraya göre sıralanır.

Best-Case

- · A arrayi siralannis bir sekilde ise sadece n-1 kere for dangoso doner.
 - · Içerde bulunan while dongoso calismagaca findan hesaplanmar.

 $((n-1) \times (n-1))/2$

Worst - Clase

case durinu megdana gelir kerde bulunon (n-1/2 karsılaştırma yapmalıdır. while disagnish n-1 defa karsilastirma yapmalidir.

$$T_{\nu}(n) = (n-1) + \cdots + 2 + 1$$

= $(n(n-1))/2$

Avarage-Case

· A arrayi ters siralandiğinda worst- ! icerde bulunan while döngüsü yaklasık olarak

n-1

Targ(n) =
$$(n-1)/2 + \cdots + 2/2 + 1/2$$

= $n(n-1)/4$

$$= n(n-1)/4$$

= O(n2) Quadratic

