## **Day 17: Reinforcement Learning**



The actual details of all these equations aren't that important.

- Reinforcement learning has become a 3rd main branch of ML (next to supervised and unsupervised learning)
  - Big proponent of RL is OpenAl, by Elon Musk and Microsoft
- RL used to play (and win) Dota 2, a video game
  - This is a very high-dimensional game (thousands of numbers to represent a state, thousands of possible options)
- Big benchmark for RL: play an Atari games with only pixel inputs
  - Neural networks made this possible
- IRL RL: how to balance an upside-down pendulum?
- RL in use now:
  - Industrial robotics
  - supply chain optimization
  - Advertising and recommendation (youtube)
  - Self driving cars (with other methods)
- What are the core attributes of RL?
  - Goal-seeking agent acting within an environment
  - Agent is trying to maximize its reward over time
  - Assumes substantial uncertainty about the environment
  - Involves a trade-off between exploration and exploitation: to explore possible states to find high rewards, we'll need to make mistakes
- **Key Abstraction:** Markov Decision Process



- Agent: The learner or decision-maker to be trained.
- **Environment**: Everything outside the agent.
- **Time**: Sequence of discrete time steps,  $t = 0, 1, 2, 3 \dots T$
- State: A "situation" that the agent may find itself in,  $S_t \in \mathcal{S}$
- Action: Selected by the agent at a time step, A<sub>t</sub> ∈ A
- · After each action, the environment returns:
  - A **reward**: a numerical value,  $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$
  - A new state, S<sub>t+1</sub> ∈ S
- Interaction over time leads to a *trajectory* of the following form:
  - S<sub>0</sub>, A<sub>0</sub>, R<sub>1</sub>, S<sub>1</sub>, A<sub>1</sub>, R<sub>2</sub>, S<sub>2</sub>, A<sub>2</sub>, R<sub>3</sub>...

**Markov Property:** Given the present, the future does not depend on the past. (Each possible value for  $S_t$  and  $R_t$  depend *only* on the immediately preceding state and action,  $S_{t-1}$  and  $A_{t-1}$ , and not on any other earlier states or actions.)

• Example: Windy Gridworld



- Agent makes a move (up/down/left/right), but there's a 10% change they go -90 deg to that and a 10% chance they go +90 deg to that.
- **Policy:** A function that takes a state and returns the probability that the agent will perform each possible action, denoted as  $\pi(s)$ 
  - $\pi^*(s)$  is the optimal policy
- Expected Return: You want to maximize this. Could (?) be the sum of rewards for a trajectory:  $G_t=R_{t+1}+R_{t+3}+...+R_T$
- **Episodic vs. Continuing Tasks:** An episodic task ends in a special terminal state then resets to a standard starting state (ex. an Atari game). A continuing task goes on forever (ie.  $T=\infty$ )
- **Discount Rate:** controls how focused the algorithm is on short/long term results:

$$U(S_0, S_1, S_2, \dots) = \sum_{t=0}^{\infty} \gamma^t R(S_t), \text{ where } 0 \le \gamma \le 1$$
$$\le \sum_{t=0}^{\infty} \gamma^t R_{\text{max}} = \frac{R_{\text{max}}}{1 - \gamma}$$

- **Value Function:** a measure of how good it is for an agent to be in a given state when following a specific policy. Equivalent to finding the discounted expected return from that state.
- Bellman Equation: expresses the relationship between the value of a state and the values of its successor states, averaging over all possibilities weighting by their probability.



- **Optimality Equation:** The value of a state under an optimal policy must be equal to the expected return for the best action taken from that state.
  - ie. a policy that chooses a suboptimal action cannot be optimal.

$$v_*(s) = \max_a \sum_{s',r} p(s',r,|s,a) \left[ r + \gamma v_*(s') \right]$$

 Policies are refined through a loop of evaluating the expected values and refining the policy to pick the best policy:

Ex: Goal is to get to the gray squares

|              | $v_k$ for the random policy                                                                                                                                                   | greedy policy w.r.t. $v_k$ |                  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|
| k = 0        | 0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0       0.0     0.0     0.0     0.0                                             |                            | random<br>policy |
| <i>k</i> = 1 | 0.0       -1.0       -1.0       -1.0         -1.0       -1.0       -1.0       -1.0         -1.0       -1.0       -1.0       -1.0         -1.0       -1.0       -1.0       0.0 |                            |                  |
| <i>k</i> = 2 | 0.0 -1.7 -2.0 -2.0<br>-1.7 -2.0 -2.0 -2.0<br>-2.0 -2.0 -2.0 -1.7<br>-2.0 -2.0 -1.7 0.0                                                                                        |                            |                  |



- But... to solve a problem with a Bellman algorithm, you need:
  - Perfect knowledge of the environment
  - Space to store the entire value function in a table
  - This is impossible to do with any real game
  - All the TD algorithms are ways to statistically approximate this
- The solution: Temporal Difference
  - Method for learning how to predict future rewards and therefore choose better actions
  - Doesn't assume full knowledge of environment dynamics
  - Bio-inspired by how the brain deals with dopamine
  - Repeatedly runs episodes and uses the results to refine the model
  - Learning Rate: Conceptually, represents the averaging out of lots of estimates. In practice, usually set to a constant value  $0<\alpha\leq 1$

$$V_{T}(S_{1}) = \frac{(T-1)V_{T-1}(S_{1}) + R_{T}(S_{1})}{T}$$

$$= \frac{(T-1)}{T}V_{T-1}(S_{1}) + \frac{1}{T}R_{T}(S_{1})$$

$$= V_{T-1}(S_{1}) + \alpha_{T}(R_{T}(S_{1}) - V_{T-1}(S_{1}))$$
where  $\alpha_{T} = \frac{1}{T}$ 

• TD(0): Only updates the final state with the reward



- TD(1): Adds an *eligibility trace* (E), which keeps track of the events that occurred and how future rewards should be discounted.
  - At the end, only eligible states are blamed/get credit for the reward

- $TD(\lambda)$ : unification of TD(0) and TD(1), where  $\lambda$  is the decay rate (the rate at which eligibility traces decay). TD(0) =  $\lambda = 0$ , TD(1) =  $\lambda = 1$ 
  - In general,  $\lambda=0.7$  has been found to work well for most problems
- Q-learning: like TD(0), but prioritizes exploration and the value table is keyed by state/action pairs instead of just states
  - "Off-Policy" because updates don't always depend on the action picked
     (?)
  - "Epsilon-Greedy" exploration sometimes (with a defined probability, ex.
     5%) picks a random move instead of the best one
  - Throw compute at it to make up the difference
- DQN (Deep Q Network): neural network with Q learning
  - Improves stability with an "experience replay buffer" where it continues to learn from past experience
- AlphaGo/AlphaZero: very successful, based on RL, DQN, and tree searching
  - Used the Monte Carlo Tree Search (MCTS), which is like alpha-beta pruning but uses more statistics to discover promising moves in large state spaces
- Monte Carlo Tree Search (MCTS):
  - Store the win proportion of each node, and prioritize picking nodes that haven't been visited before
  - After a certain number of plys, play randomly to get to the end (or use a neural net)
- Pitfalls with RL:
  - "Catastrophic Forgetting": In general, an RL agent can perform well on one task only. If you re-train it for another task, it forgets how to do the first one. (ie. transfer learning is unsolved)
  - Very brittle: any slight change to the environment makes the whole thing fall apart (ex. changing the colors of breakout causes an agent to disintegrate)

- Very susceptible to how the rewards are defined and sparse rewards: humans still shape it in that way.
- Hard to translate between simulation learning and the real world
- Future Research Areas:
  - Meta-learning: how to make transfer learning work well
  - Neuroevolution: applying insights from evolutionary computation to RL problems
  - Multi-Agent RL: Unique challenges arise when multiple agents need to work together