Lecture 4: Neural Networks and Backpropagation

Announcements: Assignment 1

Assignment 1 due Fri 4/16 at 11:59pm

Administrative: Project Proposal

Due **Mon 4/19**

TA expertise are posted on the webpage.

(http://cs231n.stanford.edu/office hours.html)

Administrative: Discussion Section

Discussion section tomorrow:

Backpropagation

Administrative: Midterm Updates

- Tues, **May 4** and is worth **15%** of your grade.
- available for **24 hours** on Gradescope from May 4, **12PM** PDT to May 5, 11:59 AM PDT.
- **3-hour** consecutive timeframe
- Exam will be designed for 1.5 hours.
- Open book and open internet but no collaboration
- Only make private posts during those 24 hours

Recap: from last time

$$f(x,W) = Wx + b$$

Recap: loss functions

$$s = f(x; W) = Wx$$
 Linear score function

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM loss (or softmax)}$$

$$L = rac{1}{N} \sum_{i=1}^{N} L_i + \lambda \sum_k W_k^2$$
 data loss + regularization

Finding the best W: Optimize with Gradient Descent


```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

Gradient descent

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow:(, approximate:(, easy to write:)
Analytic gradient: fast:), exact:), error-prone:(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

What we are going to discuss today!

$$s = f(x; W) = Wx$$
 Linear score function

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM loss (or softmax)}$$

$$L = rac{1}{N} \sum_{i=1}^N L_i + \lambda \sum_k W_k^2$$
 data loss + regularization

How to find the best W?

Problem: Linear Classifiers are not very powerful

Visual Viewpoint

Linear classifiers learn one template per class

Geometric Viewpoint

Linear classifiers can only draw linear decision boundaries

Pixel Features

Image Features

Image Features: Motivation

Cannot separate red and blue points with linear classifier

Image Features: Motivation

 $f(x, y) = (r(x, y), \theta(x, y))$

Cannot separate red and blue points with linear classifier

After applying feature transform, points can be separated by linear classifier

Example: Color Histogram

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions Within each region quantize edge direction into 9 bins

Example: 320x240 image gets divided into 40x30 bins; in each bin there are 9 numbers so feature vector has 30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features", ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Example: Bag of Words

Image Features

Image features vs ConvNets

One Solution: Feature Transformation

Histogram of Oriented Gradients (HoG)

Today: Neural Networks

Neural networks: the original linear classifier

(**Before**) Linear score function:
$$f = Wx$$

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

Neural networks: 2 layers

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: also called fully connected network

(**Before**) Linear score function: f=Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: 3 layers

(**Before**) Linear score function: f = Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network

$$f=W_3\max(0,W_2\max(0,W_1x))$$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: hierarchical computation

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

Neural networks: learning 100s of templates

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$f = W_2 \max(0, W_1 x)$$

Learn 100 templates instead of 10.

Share templates between classes

Neural networks: why is max operator important?

(**Before**) Linear score function: f = Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function $\max(0, z)$ is called the **activation function**.

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

Neural networks: why is max operator important?

(**Before**) Linear score function: f = Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function $\max(0, z)$ is called the **activation function**.

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again!

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

ReLU is a good default choice for most problems

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Neural networks: Architectures

Example feed-forward computation of a neural network

hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)
```

Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
    from numpy random import randn
 3
    N, D_{in}, H, D_{out} = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
 7
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y_pred - y).sum()
12
      print(t, loss)
13
      grad y pred = 2.0 * (y pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad w1 = x.T.dot(grad h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w2 -= 1e-4 * grad w2
```

```
import numpy as np
    from numpy random import randn
    N, D_in, H, D_out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y_pred - y).sum()
      print(t, loss)
12
13
      grad y pred = 2.0 * (y pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad w1 = x.T.dot(grad h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w2 -= 1e-4 * grad w2
```

Define the network

```
import numpy as np
    from numpy random import randn
 3
    N, D_{in}, H, D_{out} = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
 8
    for t in range(2000):
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y_pred - y).sum()
      print(t, loss)
12
13
      grad_y_pred = 2.0 * (y_pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad w1 = x.T.dot(grad h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w2 -= 1e-4 * grad w2
```

Define the network

Forward pass

```
import numpy as np
    from numpy random import randn
 3
    N, D_{in}, H, D_{out} = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y_pred - y).sum()
      print(t, loss)
12
13
14
      grad_y_pred = 2.0 * (y_pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
17
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
18
      w1 -= 1e-4 * grad w1
19
20
      w2 -= 1e-4 * grad w2
```

Define the network

Forward pass

Calculate the analytical gradients

```
import numpy as np
    from numpy random import randn
 3
    N, D_{in}, H, D_{out} = 64, 1000, 100, 10
                                                                 Define the network
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
 7
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
                                                                 Forward pass
11
      loss = np.square(y pred - y).sum()
12
      print(t, loss)
13
      grad y pred = 2.0 * (y pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
                                                                 Calculate the analytical gradients
      grad h = grad y pred.dot(w2.T)
16
      grad w1 = x.T.dot(grad h * h * (1 - h))
17
18
19
      w1 -= 1e-4 * grad w1
                                                                 Gradient descent
20
      w2 -= 1e-4 * grad w2
```

Setting the number of layers and their sizes

Do not use size of neural network as a regularizer. Use stronger regularization instead:

(Web demo with ConvNetJS: http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

 $L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$

This image by Fotis Bobolas is licensed under CC-BY 2.0

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Plugging in neural networks with loss functions

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
 Nonlinear score function

$$L_i = \sum_{i \neq j} \max(0, s_j - s_{y_i} + 1)$$
 SVM Loss on predictions

$$R(W) = \sum_k W_k^2 \quad \text{Regularization}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2)$$
 Total loss: data loss + regularization

Problem: How to compute gradients?

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
 Nonlinear score function

$$L_i = \sum_{i \neq j} \max(0, s_j - s_{y_i} + 1)$$
 SVM Loss on predictions

$$R(W) = \sum_k W_k^2 \quad \text{Regularization}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2)$$
 Total loss: data loss + regularization

If we can compute $\frac{\partial L}{\partial W_1}$, $\frac{\partial L}{\partial W_2}$ then we can learn W_1 and W_2

(Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

Problem: Not feasible for very complex models!

$$\nabla_W L = \nabla_W \left(\frac{1}{N} \sum_{i=1}^N \sum_{j \neq y_i} \max(0, W_{j,:} \cdot x + W_{y_i,:} \cdot x + 1) + \lambda \sum_k W_k^2 \right)$$

Better Idea: Computational graphs + Backpropagation

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Solution: Backpropagation

$$f(x,y,z)=(x+y)z$$

$$f(x,y,z)=(x+y)z$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x, y, z) = (x + y)z$$

e g $x = -2$ $y = 5$ $z = -4$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Backpropagation: a simple example

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Another example: $f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2 x_2 + w_2$

Another example: $f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$

Another example: $f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_1 x_2 + w_2 x_1 + w_2 x_2 + w_2 x_2$$

$$f(x)=e^x \qquad \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_a(x)=ax \qquad \qquad
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_1 x_2 + w_2 x_1 + w_2 x_2 + w_2 x_2$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_1)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x \end{aligned}$$

$$f(x) = rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx} = -1/x^2$$
 $f_c(x) = c + x \qquad \qquad
ightarrow \qquad rac{df}{dx} = 1$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_1)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \qquad \qquad o \qquad \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad \qquad o \qquad \qquad rac{df}{dx} = a$$

$$egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_1)}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2 x_1 + w_2 x_2 + w_1 x_2 + w_2 x_2$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$f(x) = rac{1}{x}
ightarrow rac{df}{dx} = -1/x^2
ightarrow rac{df}{dx} = 1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + u)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+u)}}$$

$$f(x)=e^x \ f_a(x)=ax$$

$$rac{df}{dx}=$$

$$f(x) = -$$

$$=\frac{1}{x}$$

$$\rightarrow$$

$$rac{df}{dx} = -1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1 + e^{-x}
ight)^2} = \ \left(rac{1 + e^{-x} - 1}{1 + e^{-x}}
ight) \left(rac{1}{1 + e^{-x}}
ight) = \ \left(1 - \sigma(x)
ight)\sigma(x)$$

Computational graph

representation may not

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\begin{array}{ll} \text{Sigmoid local} & \frac{d\sigma(x)}{dx} = \frac{e^{-x}}{\left(1+e^{-x}\right)^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = \left(1-\sigma(x)\right)\sigma(x) \end{array}$$
 gradient:

Computational graph

representation may not

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\begin{array}{ll} \text{Sigmoid local} & \frac{d\sigma(x)}{dx} = \frac{e^{-x}}{\left(1+e^{-x}\right)^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = \left(1-\sigma(x)\right)\sigma(x) \end{array}$$
 gradient:

Computational graph

representation may not

add gate: gradient distributor

add gate: gradient distributor

mul gate: "swap multiplier"

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

Forward pass: Compute output

Backward pass: Compute grads

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

Base case

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

def f(w0, x0, w1, x1, w2):
 s0 = w0 * x0
 s1 = w1 * x1
 s2 = s0 + s1
 s3 = s2 + w2
 L = sigmoid(s3)

Sigmoid

```
grad L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

Add gate

```
grad_L = 1.0
grad s3 = grad L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

Backprop Implementation: "Flat" code

Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

Add gate

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3

grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

Backprop Implementation: "Flat" code

Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
```

 $grad_x0 = grad_s0 * w0$

Multiply gate

Backprop Implementation: "Flat" code

Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

Multiply gate

"Flat" Backprop: Do this for assignment 1!

Stage your forward/backward computation!

"Flat" Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = \#... function of X,W1,b1
scores = #... function of h1, W2, b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dh1, dW2, db2 = #...
dW1, db1 = #...
```

Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

```
class ComputationalGraph(object):
   # . . .
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes topologically sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```

Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code

(x,y,z are scalars)

```
class Multiply(torch.autograd.Function):
 @staticmethod
 def forward(ctx, x, y):
                                            Need to stash
    ctx.save_for_backward(x, y)
                                            some values for
                                            use in backward
    z = x * y
    return z
 @staticmethod
                                             Upstream
  def backward(ctx, grad_z):
                                             gradient
    x, y = ctx.saved_tensors
    grad_x = y * grad_z # dz/dx * dL/dz
                                             Multiply upstream
    grad_y = x * grad_z # dz/dy * dL/dz
                                             and local gradients
    return grad_x, grad_y
```

Example: PyTorch operators

SpatialClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedMaxPooling.c	Canonicaize all includes in PyTorch. (#14849)	4 months ago
SpatialFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFullDilatedConvolution,c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialMaxUnpooling.c	Canonicalize all includes in PyTorch: (#14849)	4 months ago
SpatialReflectionPadding.o	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingBilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
E THNN.h	Canonicalize all includes in PyTorch. (#14849)	4 months ago
E Tanh.c	Canonicatize all includes in PyTerch. (#14849)	4 months ago
TemporatReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReplicationPadding.c	Canonicalize all includes in Pyforch. (#14849)	4 months ago
TemporalRowConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingLinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingNearest.c	Canonicalize all includes in PyTerch. (#14849)	4 months ago
VolumetricAdaptiveAveragePoolin	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAveragePooling.c	Ganonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
■ VolumetricDilatedCorvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilstedMexPooling.c	Canonicalize all includes in PyTerch. (#14849)	4 months ago
VolumetricFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849).	4 months ago
VolumetricUpSamplingTrilineacc	Canonicalize all includes in PyTorch. (#14849)	4 months ago
lineer_upsampling.h	Implement nn.functional.interpolate based on upsample. (#8591)	9 months ago
pooling_shape.h	Use integer math to compute output size of pooling operations (#14405)	4 months ago
E unfold.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago

```
#ifndef TH GENERIC FILE
    #define TH GENERIC FILE "THNN/generic/Sigmoid.c"
    #else
    void THNN_(Sigmoid_updateOutput)(
                                                                    Forward
              THNNState *state,
              THTensor *input,
              THTensor *output)
      THTensor_(sigmoid)(output, input);
    void THNN_(Sigmoid_updateGradInput)(
14
              THNNState *state,
              THTensor *gradOutput,
              THTensor *gradInput,
              THTensor *output)
18
19
      THNN_CHECK_NELEMENT(output, gradOutput);
      THTensor_(resizeAs)(gradInput, output);
20
      TH TENSOR APPLY3(scalar t, gradInput, scalar t, gradOutput, scalar t, output,
        scalar_t z = *output_data;
        *gradInput_data = *gradOutput_data * (1. - z) * z;
      );
    #endif
```

PyTorch sigmoid layer

Source

```
#ifndef TH GENERIC FILE
    #define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
    void THNN_(Sigmoid_updateOutput)(
                                                                     Forward
              THNNState *state,
              THTensor *input,
              THTensor *output)
                                                              \sigma(x)
      THTensor_(sigmoid)(output, input);
    void THNN (Sigmoid updateGradInput)(
              THNNState *state,
14
              THTensor *gradOutput,
              THTensor *gradInput,
              THTensor *output)
18
19
      THNN_CHECK_NELEMENT(output, gradOutput);
      THTensor (resizeAs)(gradInput, output);
20
      TH TENSOR APPLY3(scalar t, gradInput, scalar t, gradOutput, scalar t, output,
        scalar t z = *output data;
        *gradInput data = *gradOutput data * (1. - z) * z;
      );
    #endif
```

PyTorch sigmoid layer

```
return (1 / (1 + std::exp((-a))));
```

Source

```
#ifndef TH GENERIC FILE
    #define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
    void THNN_(Sigmoid_updateOutput)(
                                                                    Forward
              THNNState *state,
              THTensor *input,
              THTensor *output)
      THTensor_(sigmoid)(output, input);
    void THNN (Sigmoid updateGradInput)(
              THNNState *state,
              THTensor *gradOutput,
16
              THTensor *gradInput,
              THTensor *output)
      THNN_CHECK_NELEMENT(output, gradOutput);
20
      THTensor (resizeAs)(gradInput, output);
21
      TH TENSOR APPLY3(scalar t, gradInput, scalar t, gradOutput, scalar t, output,
        scalar t z = *output data;
        *gradInput data = *gradOutput data * (1. - z) * z;
      );
```

PyTorch sigmoid layer

```
static void sigmoid_kernel(TensorIterator& iter) {
   AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [&]() {
     unary_kernel_vec(
        iter,
        [=](scalar_t a) -> scalar_t { return (1 / (1 + std::exp((-a)))); },
        [=](Vec256<scalar_t> a) {
        a = Vec256<scalar_t> ((scalar_t)(0)) - a;
        a = a.exp();
        a = Vec256<scalar_t>((scalar_t)(1)) + a;
        a = a.reciprocal();
        return a;
        Forward actually
        });
    }
}

defined elsewhere...
```

Backward

$$(1-\sigma(x))\,\sigma(x)$$

Source

#endif

Summary for today:

- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- **backpropagation** = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- forward: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs

So far: backprop with scalars

Next time: vector-valued functions!

Next Time: Convolutional Networks!

Recap: Vector derivatives

Scalar to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change?

Recap: Vector derivatives

Scalar to Scalar

Vector to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Regular derivative:

Derivative is **Gradient**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

If x changes by a small amount, how much will y change?

For each element of x, if it changes by a small amount then how much will y change?

Recap: Vector derivatives

Scalar to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change?

Vector to Scalar

 $x \in \mathbb{R}^N, y \in \mathbb{R}$

Derivative is **Gradient**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial}{\partial x}\right)$$

For each element of x, if it changes by a small amount then how much will y change?

Vector to Vector

$$x \in \mathbb{R}^N, y \in \mathbb{R}^M$$

Derivative is **Jacobian**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n} \quad \frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \quad \left(\frac{\partial y}{\partial x}\right)_{n,m} = \frac{\partial y_m}{\partial x_n}$$

For each element of x, if it changes by a small amount then how much will each element of y change?

Gradients of variables wrt loss have same dims as the original variable

Jacobian is sparse: off-diagonal entries always zero! Never explicitly form Jacobian -- instead use implicit multiplication

Jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use **implicit** multiplication

[3 2 1 -2]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

[13 9 -2 -6] [5 2 17 1]

y: [N×M]

Also see derivation in the course notes:

http://cs231n.stanford.edu/handouts/linear-backprop.pdf

[3 2 1 -2]

Matrix Multiply

Jacobians:

dy/dx: $[(N\times D)\times (N\times M)]$ dy/dw: $[(D\times M)\times (N\times M)]$

For a neural net we may have N=64, D=M=4096
Each Jacobian takes 256 GB of memory!
Must work with them implicitly!

y: [N×M]

[13 9 -2 -6]

[52171]

dL/dy: [N×M]

[23-39]

[-8 1 4 6]

[3 2 1 -2]

element of x?

[13 9 -2 -6] [5 2 17 1]

y: [N×M]

dL/dy: [N×M] ----- [2 3 -3 9] [-8 1 4 6]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

$$[321-1]$$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

Q: How much

does $x_{n,d}$

affect $y_{n,m}$?

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

element of x?

A: $x_{n,d}$ affects the

whole row
$$y_{n,\cdot}$$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m}$$

Q: How much

does $x_{n,d}$

 $\mathbf{A}:w_{d,m}$

affect $y_{n,m}$?

dL/dy: [N×M]

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

A:
$$x_{n,d}$$
 affects the whole row $y_{n,d}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m}$$

Q: How much

does $x_{n,d}$

A: $w_{d,m}$

affect $y_{n,m}$?

dL/dy: [N×M]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

dL/dy: [N×M]

By similar logic:

 $[N \times D] [N \times M] [M \times D]$

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

 $[D\times M] [D\times N] [N\times M]$

$$\frac{\partial L}{\partial w} = x^T \left(\frac{\partial L}{\partial y} \right)$$

These formulas are easy to remember: they are the only way to make shapes match up!

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$
 $\in \mathbb{R}^n\in\mathbb{R}^{n\times n}$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_{\mathbf{W}}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_{\mathbf{X}}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$
$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n} \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n} \end{pmatrix}$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.116 \\ 1.00 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$
 $\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$

$$\begin{bmatrix} -0.3 & 0.8 \end{bmatrix}_{\mathbf{W}}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_{\mathbf{X}}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 1.00 \\ 1.00 \end{bmatrix}$$

$$q=W\cdot x=\left(egin{array}{c} W_{1,1}x_1+\cdots+W_{1,n}x_n\ dots\ W_{n,1}x_1+\cdots+W_{n,n}x_n\ \end{array}
ight) \qquad rac{\partial f}{\partial q_i}=2q_i\
onumber \
onu$$

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$
 $\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$

$$\begin{bmatrix} -0.3 & 0.8 \end{bmatrix}_{\mathbf{W}}$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}$$

$$\mathbf{X}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$
$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$\nabla_q f = 2q$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$* \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$* \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$* \begin{bmatrix} 0.4 \\ 1.00 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$
$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$\frac{\partial f}{\partial W_{i,j}} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial W_{i,j}}$$

$$= \sum_k (2q_k)(\mathbf{1}_{k=i}x_j)$$

 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix} W$$

$$\begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} X$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix} X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix} \xrightarrow{0.116}$$

$$\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix} \xrightarrow{\frac{\partial f}{\partial W_{i,j}}} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial W_{i,j}}$$

$$= \sum_k (2q_k)(\mathbf{1}_{k=i}x_j)$$

 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$

$$\begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} \mathbf{W}$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}$$

$$\mathbf{X}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.24 \\ 0.52 \end{bmatrix}$$

$$\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$
Always check: The gradient with respect to a variable should have the same shape as the variable
$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$\frac{\partial f}{\partial W_{i,j}} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial W_{i,j}}$$

$$= \sum_k (2q_k)(\mathbf{1}_{k=i}x_j)$$

$$= 2q_i x_i$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$
 $\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}$ $\begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix}$ $\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}$ $\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$ $\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$ $\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$ $\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$ $\frac{\partial q_k}{\partial x_i} = W_{k,i}$ $q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$

 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} W$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_{X}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\frac{\partial q_k}{\partial x_i} = W_{k,i}$$

$$\frac{\partial f}{\partial x_i} = \sum_{k=1}^{\infty} \frac{\partial f}{\partial x_k} \frac{\partial q_k}{\partial x_k}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix} \qquad \frac{\partial q_k}{\partial x_i} = W_{k,i}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2 \qquad = \sum_k 2q_k W_{k,i}$$

In discussion section: A matrix example...

$$z_1 = XW_1$$
 $h_1 = \operatorname{ReLU}(z_1)$
 $\hat{y} = h_1W_2$
 $L = ||\hat{y}||_2^2$
 $\frac{\partial L}{\partial W_2} = ?$

