

N-Channel 1.25-W, 2.5-V MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)}$ (Ω)	I _D (A)		
20	0.060 @ V _{GS} = 4.5 V	2.4		
	$0.115 @ V_{GS} = 2.5 V$	2.0		

Ordering Information: Si2302ADS-T1

Parameter		Symbol	5 sec	Steady State	Unit
Drain-Source Voltage		V _{DS}	20		V
Gate-Source Voltage		V_{GS}	±8		V
Continuous Drain Current (T _J = 150°C) ^a	T _A = 25°C	I _D	2.4	2.1	
	T _A = 70°C		1.9	1.7	
Pulsed Drain Current ^a		I _{DM}	10		Α
Continuous Source Current (Diode Conduction) ^a		I _S	0.94	0.6	
B	T _A = 25°C	P _D	0.9	0.7	w
Power Dissipation ^a	T _A = 70°C		0.57	0.46	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Mariana kandan ta Antionta	$t \le 5$ sec.	R _{thJA}	115	140	°C/W
Maximum Junction-to-Ambient ^a	Steady State		140	175	

Notes
a. Surface Mounted on FR4 Board.

For SPICE model information via the Worldwide Web: http://www.vishay.com/www/product/spice.htm

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Static	•		•	•		•	
Drain-Source Breakdown Voltage	V(_{BR)DSS}	$V_{GS} = 0 \text{ V, } I_{D} = 10 \mu\text{A}$	20				
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$	0.65	0.95	1.2	V	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			±100	nA	
Zero Gate Voltage Drain Current		V _{DS} = 20 V, V _{GS} = 0 V	1		1	\top	
	IDSS	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			10	μA	
On-State Drain Current ^a		$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	6			_	
	I _{D(on)}	$V_{DS} \ge 5 \text{ V, } V_{GS} = 2.5 \text{ V}$	4			Α	
Drain-Source On-Resistance ^a	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 3.6 \text{ A}$		0.045	0.060 ^b	Ω	
		$V_{GS} = 2.5 \text{ V}, I_D = 3.1 \text{ A}$		0.070	0.115		
Forward Transconductance ^a	9fs	$V_{DS} = 5 \ V, I_{D} = 3.6 A$		8		S	
Diode Forward Voltage	V _{SD}	$I_S = 0.94 \text{ A}, V_{GS} = 0 \text{ V}$		0.76	1.2	V	
Dynamic			<u> </u>				
Total Gate Charge	Q_{g}			4.0	10	nC	
Gate-Source Charge	Q _{gs}	V_{DS} = 10 V, V_{GS} = 4.5 V, I_{D} = 3.6 A		0.65			
Gate-Drain Charge	Q _{gd}			1.5			
Input Capacitance	C _{iss}			300		pF	
Output Capacitance	C _{oss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		120			
Reverse Transfer Capacitance	C _{rss}			80			
Switching							
Turn-On Delay Time	t _{d(on)}			7	15	ns	
Rise Time	t _r	V_{DD} = 10 V, R_L = 2.8 Ω		55	80		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 3.6$ A, $V_{GEN} = 4.5$ V, $R_g = 6 \Omega$		16	60		
Fall-Time	t _f			10	25		

 $[\]begin{array}{ll} \mbox{Notes} \\ \mbox{a.} & \mbox{Pulse test: } \mbox{PW} \leq 300 \ \mu \mbox{s} \mbox{ duty cycle} \leq 2\%. \\ \mbox{b.} & \mbox{Effective for production } 10/04. \\ \end{array}$

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

