Attorney's Docket No.: 25142-0002001 / FP04-0096-00US-XX

Applicant: Yamamoto et al. Serial No.: 10/797,903 Filed: March 10, 2004

Page : 2 of 12

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1.-11. (Cancelled).

- 12. (Currently Amended) A therapeutic method for treating a cancer in a patient, comprising:
- a) determining if the patient's cancer expresses c-Kit kinase or a mutant c-Kit kinase; and
- b) if the cancer is determined to express c-Kit kinase or a mutant c-Kit kinase, administering to a the patient suffering from a cancer a pharmacologically effective dose of a compound represented by the general formula (I) or a pharmaceutically acceptable salt thereof or a hydrate of the foregoing:

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{3}$$

wherein R¹ represents methyl, 2-methoxyethyl or a group represented by the formula II:

Applicant : Yamamoto et al. Attorney's Docket No.: 25142-0002001 / FP04-0096-Serial No. : 10/797,903 00US-XX

Filed : March 10, 2004

Page : 3 of 12

$$\mathbb{R}^{a3} \xrightarrow{\mathbb{R}^{a1}} \mathbb{R}^{a3} \xrightarrow{\mathbb{R}^{a2}} \mathbb{R}^{a2} \xrightarrow{\mathbb{R}^{a2}} \mathbb{R}^{a2}$$

$$\mathbb{R}^{a2} \xrightarrow{\mathbb{R}^{a2}} \mathbb{R}^{a2} \xrightarrow{\mathbb{R}^{a2}} \mathbb{R}^{a2} \mathbb{R}^{$$

wherein R^{a3} represents methyl, cyclopropylmethyl or cyanomethyl; R^{a1} represents hydrogen, fluorine, or hydroxyl; and R^{a2} represents 1-pyrrolydinyl, 1-piperidinyl, 4-morpholinyl, dimethylamino or diethylamino;

 R^2 represents cyano or -CONHR^{a4} wherein R^{a4} represents hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkoxy or C_{3-8} cycloalkoxy;

R³ represents hydrogen, methyl, trifluoromethyl, chlorine or fluorine; and

 $\mbox{\sc R}^4$ represents hydrogen, methyl, ethyl, n-propyl, cyclopropyl, 2-thiazolyl or 4-fluorophenyl,

wherein the cancer is acute myelogenous leukemia, mast cell leukemia, small cell lung cancer, gastrointestinal stromal tumors, testicular cancer, ovarian cancer, breast cancer, brain cancer, neuroblastoma or colorectal cancer.

- 13. (Cancelled).
- 14. (Previously presented) The method of claim 12, wherein the cancer is acute myelogenous leukemia, a small cell lung cancer, or GIST.
- 15. (Cancelled).
- 16. (Currently amended) A therapeutic method for treating mastocytosis, allergy, or asthma comprising administering to a patient suffering from one or more of the diseases a

Attorney's Docket No.: 25142-0002001 / FP04-0096-

Applicant: Yamamoto et al. Serial No.: 10/797,903 00US-XX

Filed : March 10, 2004

: 4 of 12 Page

pharmacologically effective dose of a compound represented by the general formula (I), or a pharmaceutically acceptable salt thereof or a hydrate of the foregoing:

wherein R¹ represents methyl, 2-methoxyethyl or a group represented by the formula II:

$$R_{a3} \longrightarrow R_{a1} \qquad R_{a3} \longrightarrow R$$

wherein R^{a3} represents methyl, cyclopropylmethyl or cyanomethyl; R^{a1} represents hydrogen, fluorine, or hydroxyl; and R^{a2} represents 1-pyrrolydinyl, 1-piperidinyl, 4-morpholinyl, dimethylamino or diethylamino;

R² represents cyano or -CONHR^{a4} wherein R^{a4} represents hydrogen, C₁₋₆ alkyl, C₃₋₈ cycloalkyl, C₁₋₆ alkoxy or C₃₋₈ cycloalkoxy;

R³ represents hydrogen, methyl, trifluoromethyl, chlorine or fluorine; and

R⁴ represents hydrogen, methyl, ethyl, n-propyl, cyclopropyl, 2-thiazolyl or 4fluorophenyl.

17. (Currently amended) A method comprising:

a) determining if a cell expresses c-Kit kinase or a mutant c-Kit kinase; and

Attorney's Docket No.: 25142-0002001 / FP04-0096-

Applicant: Yamamoto et al. Serial No.: 10/797,903 00US-XX Filed : March 10, 2004

Page : 5 of 12

b) if the cell is determined to express c-Kit kinase or a mutant c-Kit kinase, applying to the a cell expressing excessive c Kit kinase or a mutant c Kit kinase, a pharmacologically effective dose of a compound represented by the general formula (I), or a salt thereof or a hydrate of the foregoing:

wherein R¹ represents methyl, 2-methoxyethyl or a group represented by the formula II:

wherein R^{a3} represents methyl, cyclopropylmethyl or cyanomethyl; R^{a1} represents hydrogen, fluorine, or hydroxyl; and R^{a2} represents 1-pyrrolydinyl, 1-piperidinyl, 4-morpholinyl, dimethylamino or diethylamino;

R² represents cyano or -CONHR^{a4} wherein R^{a4} represents hydrogen, C₁₋₆ alkyl, C₃₋₈ cycloalkyl, C₁₋₆ alkoxy or C₃₋₈ cycloalkoxy;

R³ represents hydrogen, methyl, trifluoromethyl, chlorine or fluorine; and

R⁴ represents hydrogen, methyl, ethyl, n-propyl, cyclopropyl, 2-thiazolyl or 4fluorophenyl.

Applicant: Yamamoto et al. Attorney's Docket No.: 25142-0002001 / FP04-0096-

00US-XX

Serial No.: 10/797,903 Filed: March 10, 2004

Page : 6 of 12

18. (Previously presented) The method of claim 12, wherein the compound represented by the formula (I) is 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide.

- 19. (Cancelled).
- 20. (Previously presented) The method of claim 17, wherein the compound represented by the formula (I) is 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide.
- 21. (New) The method of claim 12, wherein the cancer is mast cell leukemia, testicular cancer, ovarian cancer, breast cancer, brain cancer, neuroblastoma, or colorectal cancer.
- 22. (New) The method of claim 12, wherein the c-Kit kinase or mutant c-Kit kinase is activated.
- 23. (New) The method of claim 12, wherein the c-Kit kinase or mutant c-Kit kinase is phosphorylated.
- 24. (New) The method of claim 12, wherein the expression of c-Kit kinase or mutant c-Kit kinase is excessive.
- 25. (New) The method of claim 12, wherein the determining step comprises extracting cells from the patient.
- 26. (New) The method of claim 25, wherein the extracted cells comprise cancer cells.
- 27. (New) The method of claim 17, wherein the cell is a cancer cell, a mast cell, or an eosinophil.

Applicant : Yamamoto et al. Attorney's Docket No.: 25142-0002001 / FP04-0096-Serial No. : 10/797,903 00US-XX

Serial No.: 10/797,903 Filed: March 10, 2004

Page : 7 of 12

28. (New) The method of claim 27, wherein the cancer cell is a mast cell leukemia, testicular cancer, ovarian cancer, breast cancer, brain cancer, neuroblastoma, or colorectal cancer cell.

- 29. (New) The method of claim 27, wherein the cancer cell is a myelogenous leukemia, a small cell lung cancer or a GIST cancer cell.
- 30. (New) The method of claim 12, wherein the compound is administered orally or parenterally.
- 31. (New) The method of claim 17, wherein the c-Kit kinase or mutant c-Kit kinase is activated.
- 32. (New) The method of claim 17, wherein the c-Kit kinase or mutant c-Kit kinase is phosphorylated.
- 33. (New) The method of claim 17, wherein the expression of c-Kit kinase or mutant c-Kit kinase is excessive.
- 34. (New) The method of claim 17, wherein the determining step comprises extracting cells from the patient.
- 35. (New) The method of claim 16, wherein the compound is administered orally or parenterally.
- 36. (New) The method of claim 12, wherein the cancer is determined to express a mutant c-Kit kinase.
- 37. (New) The method of claim 17, wherein the cell is determined to express a mutant c-Kit kinase.