A Classification Based approach for predicting Smartphone Price Categories

November 25, 2024

Outline

- Introduction
- 2 Dataset Description
- Oata Preprocessing
- 4 Acknowledgement
- 6 References

Introduction

Background

- The smartphone industry experiences continuous technological innovations, with manufacturers introducing advanced features.
- Multiple global players, such as Apple, Samsung, and Xiaomi, vie for market share, leading to frequent product launches and pricing battles.
- Consumers demand value for money, with preferences shifting toward devices offering high performance at competitive prices.

Motivation

We hope our model will help:

- Simplify pricing strategies for manufacturers
- Increase pricing transparency for consumers

Motivation

We hope our model will help:

- Simplify pricing strategies for manufacturers
- Increase pricing transparency for consumers

- Develop a Robust Classification Model
- Determine the most influential factors behind smartphone pricing
- Compare algorithm performances
- Practical Applicability
- Methodological Contribution

- Develop a Robust Classification Model
- Determine the most influential factors behind smartphone pricing
- Compare algorithm performances
- Practical Applicability
- Methodological Contribution

- Develop a Robust Classification Model
- Determine the most influential factors behind smartphone pricing
- Compare algorithm performances
- Practical Applicability
- Methodological Contribution

- Develop a Robust Classification Model
- Determine the most influential factors behind smartphone pricing
- Compare algorithm performances
- Practical Applicability
- Methodological Contribution

- Develop a Robust Classification Model
- Determine the most influential factors behind smartphone pricing
- Compare algorithm performances
- Practical Applicability
- Methodological Contribution

Dataset Description

Source

 $Link - {\tt https://www.kaggle.com/datasets/iabhishekofficial/smartphone-price-classification}$

The dataset is publicly available and contains 2000 smartphone entries with 19 feature variables and 1 target variable representing price_range.

Features

Feature Name	Description	Туре
battery_power	battery capacity in mAh	Numerical
clock_speed	speed at which processor executes instructions	Numerical
fc	front Camera Megapixels	Numerical
pc	primary Camera Megapixels	Numerical
int_memory	internal Memory capacity	Numerical
$m_{-}dep$	smartphone Depth in cm	Numerical
mobile_wt	weight of the smartphone	Numerical
n_cores	number of cores in processor	Numerical
px_height	pixel Resolution Height	Numerical
px_width	pixel Resolution Width	Numerical
ram	RAM in MB	Numerical
sc_h	screen Height in cm	Numerical
SC_W	screen Width in cm	Numerical
$talk_time$	longest time that a single battery charge will last over a call	Numerical
blue	has bluetooth or not	Categorical
$dual_sim$	has dual sim support or not	Categorical
four_g	has 4G or not	Categorical
three_g	has 3G or not	Categorical
wifi	has wifi or not	Categorical
touch_screen	has touch screen or not	Categorical

Target Variable

- The target variable price_range is categorical with 4 classes.
 - 0 Low Cost Budget Smartphones
 - 1 Medium Cost Mid-Range Smartphones
 - 2 High Cost High-End Smartphones
 - 3 Very High Cost Flagship Smartphones

Data Preprocessing

Data Cleaning - Handling Missing Values I

Significance: Machine learning models often require complete data to function correctly. Missing values can lead to errors.

Observation: There are no missing values in the dataset.

Data Cleaning - Handling Duplicate Values

```
df.duplicated().sum()
np.int64(0)
```

Significance: Duplicate entries can distort the true representation of the data, leading to **bias**.

Observation: There are no duplicate values in the dataset.

Data Cleaning - Handling Invalid Values I

```
negative_counts = df.apply(lambda x: (x < 0).sum())
print(negative_counts)</pre>
```

```
batterv_power
hlue
clock_speed
dual sim
fc
four g
int_memory
m dep
mobile_wt
n cores
px height
px_width
ram
sc h
SC W
talk time
three_g
touch screen
wifi
price range
dtype: int64
```

Significance: None of the features can have negative values.

Observation: There are no negative values in the dataset.

Data Cleaning - Handling Invalid Values II

```
zero_counts = df.apply(lambda x: (x == 0).sum())
print(zero_counts)
```

bactery_power	0
blue	1010
clock_speed	0
dual_sim	981
fc	474
four_g	957
int_memory	0
m_dep	0
mobile_wt	0
n_cores	0
pc	101
px_height	2
px_width	0
ram	0
sc_h	0
sc_w	180
talk_time	0
three_g	477
touch_screen	994
wifi	986
price_range	500
dtype: int64	

hattery nower

Significance: Most of the numerical features can not be zero except fc and pc. These two being zero means the phone does not have a front or primary camera.

Observation: px_height and sc_w are have 2 and 180 zero values respectively.

Action: We replaced these zero values with the mean of the respective features.

Data Cleaning - Handling Invalid Values III

```
to_replace_with_mean = ['sc_w', 'px_height']
for feature in to_replace_with_mean:
   df[feature] = df[feature].replace(0, df[feature].mean())
```

Data Cleaning - Outlier Handling I

Significance:

- Outliers can distort the true representation of data.
- Machine learning models can be sensitive to outliers.

Data Cleaning - Outlier Handling II

Data Cleaning - Outlier Handling (cont.)

Observation: The box plots revealed outliers in two features, fc and px_height.

Action: To identify these outliers, we will use the IQR (Interquartile Range) method and remove extreme values.

$$IQR = Q3 - Q1$$

Once the IQR is calculated, outliers are identified using the following bounds:

Any data point that falls below the lower bound or above the upper bound is considered an outlier.

Data Cleaning - Outlier Handling (cont.)

```
def remove_outliers_igr(data, column):
  Q1 = data[column].quantile(0.25)
 Q3 = data[column].guantile(0.75)
  IQR = Q3 - Q1
  lower_bound = Q1 - 1.5 * IQR
 upper_bound = Q3 + 1.5 * IQR
  filtered_data = data[(data[column] >= lower_bound) &
                        (data[column] <= upper_bound)]</pre>
  return filtered data
df = remove_outliers_igr(df, 'fc')
df = remove_outliers_iqr(df, 'px_height')
```

Data Cleaning - Outlier Handling (cont.)

Data Cleaning - Checking for Class Imbalance

Significance: Imbalanced dataset makes the model biased towards the majority class.

Observation: There are no class imbalance in the dataset.

Data Cleaning - Correlation Analysis I

Significance:

Correlation analysis helps identify relationships between features. It can help in feature engineering.

Data Cleaning - Correlation Analysis II

Observation:

- ram and price_range : Higher RAM capacity leads to higher price range.
- **three_g and four_g:** A high correlation here suggests that devices with 4G almost always support 3G, making one of these features redundant.
- **§ fc and pc**: These features are correlated, as better primary cameras often accompany better front cameras.
- px_height and px_width: These are components of screen resolution and are naturally correlated.
- **5** sc_h and sc_w : These are also naturally correlated.

Data Cleaning - Correlation Analysis III

Action:

- three_g and four_g: three_g was removed from the dataset.
- 2 fc and pc : fc was removed from the dataset.
- px_height and px_width : They were combined to form a new feature px_area = px_height * px_width.
- sc_h and sc_w : They were combined to form a new feature screen_area = sc_h * sc_w.

Data Cleaning - Correlation Analysis IV

Feature Selection I

Significance: By selecting the most relevant features, the model can focus on the **most important** information. Moreover, including irrelevant or redundant features can cause the model to **overfit** the training data. Also, fewer features mean **less data to process**.

Action: In our project, we used the ANOVA F-test (Analysis of Variance) method to evaluate each feature's relationship with the target variable, price_range, and select features that are statistically significant. The threshold for selection is a p-value of less than 0.1 i.e. a 90% confidence level.

Feature Selection II

```
y = df.pop('price_range')
X = df
feature_selector = SelectKBest(f_classif, k='all')
X_selected = feature_selector.fit_transform(X, y)
p_values = feature_selector.pvalues_
f_scores = feature_selector.scores_
selected_features = X.columns[p_values < 0.1]</pre>
```

```
Outcome: The selected features are:
'battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'ram',
'px_area', 'screen_area'
```

Normalizing Features I

Significance: Normalizing features ensures that all features contribute equally to the model training process and prevents any feature from dominating the others.

Action: We used the PowerTransformer from sklearn.preprocessing to normalize the features px_area and screen_area.

Outcome: The features px_area and screen_area were successfully normalized, resulting in a more balanced dataset for model training.

Train-Test Split I

Significance: Splitting the dataset into training and testing sets allows us to evaluate model performance and ensure that the model generalizes well to unseen data.

Action: We used train_test_split from sklearn.model_selection to split the dataset into 80% training and 20% testing sets.

Outcome: The train-test split resulted in 1584 samples with 7 features for training and 396 samples with 7 features for testing, with corresponding target arrays of 1584 and 396 elements, respectively.

Scaling I

Significance: Scaling ensures that all feature values are normalized, which improves the performance and convergence of many machine learning algorithms.

Action: We used the StandardScaler from sklearn.preprocessing to scale the feature values.

Outcome: The dataset was successfully scaled, resulting in normalized feature values that contribute equally to the model training process.

References

Thank You!