W3WI DS304.1 Applied Machine Learning Fundamentals

Backpropagation Formulas

Input to the network: $\boldsymbol{x} := (1,1)^{\intercal}$. Desired output: $\boldsymbol{y} := (0,1)^{\intercal}$. The network is depicted in the following figure:

The following table lists the preactivations and activations of all neurons (result of the forward pass through the network):

Neuron	Preactivation p	${\bf Activation}\; z$	Activation function $g(\cdot)$
$n_1^{[hid]}$	0.61	0.61	ReLU
$n_2^{[hid]}$	-0.64	0.00	ReLU
$n_1^{[out]}$	-0.85	0.30	Sigmoid
$n_2^{[out]}$	-0.49	0.38	Sigmoid

Step 1) Computation of the error gradient in the output layer:

$$\frac{\partial \mathcal{J}}{\partial z_{n_{k}^{[out]}}} := 2 \cdot \left(\frac{g(p_{n_{k}^{[out]}})}{g(p_{n_{k}^{[out]}})} - y_{k} \right)$$

$$\tag{1}$$

Example for neuron $n_1^{[out]}$: (see blue number below neuron in figure above)

$$\frac{\partial \mathcal{J}}{\partial n_1^{[out]}} = 2 \cdot (0.30 - 0) = 0.60$$

Step 2) Computation of the error gradient in the hidden layer:

$$\frac{\partial \mathcal{J}}{\partial z_{n_{t}^{[hid]}}} := \sum_{k} \frac{\frac{\partial \mathcal{J}}{\partial \mathcal{J}}}{\frac{\partial z_{n_{k}^{[out]}}}{\partial z_{n_{k}^{[out]}}}} \cdot g'(p_{n_{k}^{[out]}}) \cdot \Theta_{kt}^{[out]}$$
(2)

Example for neuron $n_1^{[hid]}$: (see blue number below neuron in figure above)

$$\frac{\partial \mathcal{J}}{\partial n_1^{[hid]}} = \left[0.60 \cdot g(-0.85) \cdot (1 - g(-0.85)) \cdot (-1.4) \right] + \left[-1.24 \cdot g(-0.49) \cdot (1 - 0.49) \cdot (-0.81) \right]$$

$$= 0.06$$

Step 3) Computation of the weight gradient in the output layer:

$$\frac{\partial \mathcal{J}}{\partial \Theta_{kt}^{[out]}} := \frac{\frac{\partial \mathcal{J}}{\partial \mathcal{J}}}{\frac{\partial \mathcal{J}}{\partial z_{n_{k}^{[out]}}}} \cdot g'(p_{n_{k}^{[out]}}) \cdot g(p_{n_{t}^{[hid]}})$$
(3)

Example for weight $\Theta_{11}^{[out]}$:

$$\frac{\partial \mathcal{J}}{\partial \Theta_{11}^{[out]}} = 0.60 \cdot g(-0.85) \cdot (1 - g(-0.85)) \cdot g(0.61)$$

$$= 0.077$$

Step 4) Computation of the weight gradient in the hidden layer:

The weight gradient in the hidden layer is computed analogously to step 3. However, we use the input to the network instead of $g(p_{n_i^{[hid]}})$.

Step 5) Update the network parameters:

The parameters are updated according to the gradient descent update rule.

Example for weight $\Theta_{11}^{[out]}$ with learning rate $\alpha := 0.1$:

$$\Theta_{11}^{[out]} \longleftarrow \Theta_{11}^{[out]} - \alpha \cdot \frac{\partial \mathcal{J}}{\partial \Theta_{11}^{[out]}}$$

$$\longleftarrow -1.40 - 0.1 \cdot 0.077$$

$$\longleftarrow -1.4077$$