Finite-State Machines

Dr. Mark Anthony A. Ozaeta, MBA

Finite-State Machine

1

 A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of states at any given time.

Finite-State Machine

• The FSM **can change from one state to another** in response to some inputs; the change from one state to another is called a *transition*.

3 4

Finite-State Machine

 FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition. Finite-state machines are of two types – deterministic finite-state machines and nondeterministic finite-state machines. A deterministic finite-state machine can be constructed equivalent to any non-deterministic one.

5 6

Real-world Examples

Real-world Examples

7 8

Real-world Examples

Real-world Examples

- Simple examples are vending machines, which dispense products when the proper combination of coins is deposited.
- Elevators, whose sequence of stops is determined by the floors requested by riders.
- \bullet Traffic lights, which change sequence when cars are waiting.
- Combination locks, which require the input of a sequence of numbers in the proper order.

9 10

How powerful is Finite State Machine?

- The finite-state machine has less computational power than some other models of computation such as the Turing machine.
- The computational power distinction means there are computational tasks that a Turing machine can do but a FSM cannot.
- This is because a FSM's memory is limited by the number of states it has. FSMs are studied in the more general field of automata theory.

11 12

13 14

15 16

17 18

Exercise (Get ½ Crosswise)

Scenario A: Coffee Vending Machine

The machine sells one cup of coffee for ₱15. It accepts only ₱5

- If a customer inserts less than $\ref{p}15$, prompt them to insert more.
- After receiving ₱15, dispense coffee and return to idle.
- Do not accept more than ₱15.

Concepts and Terminologies

A *state* is a description of the status of a system that is waiting to execute a *transition*.

A transition is a set of actions to be executed when a condition is fulfilled or when an event is received.

For example, when using an audio system to listen to the radio (the existem is in the "radio" stellar receiving a "next" stimulus results in moving to the next staton. When the system is in the $(\mathbb{C}^0)^n$ state, the "next" stimulus results in moving to the next track. Identical stimuli trigger different actions depending on the current state.

In some finite-state machine representations, it is also possible to associate actions with a state:
• an entry action: performed *when entering* the state, and

- \bullet an exit action: performed $\textit{when exiting}\xspace$ the state.

19 20

Classifications: Acceptors

- Acceptors (also called detectors or recognizers)
 produce binary output, indicating whether or not the received input is accepted.
- Each state of an acceptor is either accepting or n on accepting.

Classifications: Classifiers

• Classifiers are a generalization of acceptors that produce n-ary output where n is strictly greater than two.

The machine classifies inputs into multiple categories (e.g., Class 1. Class 2. Class n)

- Instead of a binary decision, it makes a multi-class decision
- Acceptor: "Does this string belong to the language?" → YES/NO
- Classifier: "To which of the n languages (or categories) does this string belong?" \rightarrow Class 1, Class 2, ..., Class n

22 21

Classification: Transducers

• A transducer is a type of FSM that, unlike acceptors or classifiers, produces output strings (not just decisions or class labels) in response to input strings. It essentially maps inputs to outputs, making it a translator or converter.

Classification: Transducers

There are two main types:

- Moore Machine: Output depends only on the current state
- Mealy Machine: Output depends on both current state and input symbol

Use-case Example				
FSM Variant	Input	Output	Output Form	Function
Acceptor	String	Accept / Reject	Boolean decision	Language recognition
Classifier	String	Class label (n > 2)	Symbol from finite set	Categorization
Transducer	String	Output string (sequence)	New string/symbol stream	Transformation / translation