

TEST REPORT

FCC ID: 2ALT5-GW6088

For

GREAT WORLD LTD

Electric Heater

Model No. : GW-6078TBT, GW-6088TBT, GW-5088C-AMBT, GW-6088TMBT

Trade Name : N/A

Prepared for : GREAT WORLD LTD

Address 406 Room 1 ,Floor 5, No.37, Chong-De 11TH Road, Bei-Tun District,

Taichung City, Taiwan.

Prepared by : Shenzhen Alpha Product Testing Co., Ltd.

Address Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road,

Bao'an, Shenzhen, China

Report No. : T1870550 02

Date of Receipt : April 10, 2017

Date of Test : April 10, 2017- April 26, 2017

Date of Report : April 26, 2017

Version Number : REV0

TABLE OF CONTENT

	Description	Page
1.	General Information	5
	1.1. Description of Device (EUT)	5
	1.2. Description of Test Facility	6
	1.3. Test Procedure	6
2.	Summary of Measurement	7
	2.1. Summary of test result	7
	2.2. Assistant equipment used for test	7
	2.3. Block Diagram	8
	2.4. Test mode	8
	2.5. Test Conditions	9
	2.6. Measurement Uncertainty (95% confidence levels, k=2)	9
	2.7. Test Equipment List	
3.	Maximum Peak Output power	11
	3.1. Limit	11
	3.2. Test Procedure	11
	3.3. Test Setup	11
	3.4. Test Results	
4.	Bandwidth	12
	4.1. Limit	12
	4.2. Test Procedure	
	4.3. Test Results	
5.	Carrier Frequency Separation	18
	5.1. Limit	18
	5.2. Test Procedure	
	5.3. Test Results	
6.	Number Of Hopping Channel	
	6.1. Limit	
	6.2. Test Procedure	
	6.3. Test Results	
7.	Dwell Time	
	7.1. Test limit	
	7.2. Test Procedure	
	7.3. Test Results	
8.	Radiated emissions	
	8.1. Radiation Emission Limits(15.209)	
	8.2. Block Diagram of Test setup	
	8.3. Test Procedure	
	8.4. Test Results	
9.	Band Edge Compliance	
- •	9.1. Block Diagram of Test Setup	
	9.2. Limit	

	9.3. Test Procedure	45
	9.4. Test Results	45
10.	Power Line Conducted Emissions	64
	10.1. Conducted Emission Limits(15.207)	64
	10.2. Block Diagram of Test Setup	64
	10.3. Test Procedure	
	10.4. Test Results	64
11.	Antenna Requirements	67
	11.1. Standard Requirement	67
	11.2. Antenna Connected Construction	67
	11.3. Results	67
12.	Test setup photo	68
	12.1. Photos of Radiated emission	68
	12.2. Photos of Conducted Emission test.	69
13.	Photos of EUT	70

DECLARATION

Applicant : GREAT WORLD LTD

Manufacturer : Dongguan Songwei Electric Technology Co., Ltd

Product : Electric Heater

GW-6078TBT, GW-6088TBT, GW-5088C-AMBT,

Report No.: T1870550 02

(A) Model No. : GW-6088TMBT

(B) Trade Name : N/A

(C) Power supply: AC 120V/60Hz

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2016, ANSI C63.4:2014 ;ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature):	Reak Yang Project Engineer	Reak Yang
Approved by (name + signature):	Simple Guan Project Manager	Soft C
Date of issue:		April 26, 2017

1. General Information

1.1. Description of Device (EUT)

EUT : Electric Heater

Model No. : GW-6078TBT, GW-6088TBT, GW-5088C-AMBT, GW-6088TMBT

DIFF. : There is no difference between all the models, except the appearance and

model name, so this report performs the model GW-6078TBT.

Trade mark : N/A

Power supply : AC 120V/60Hz

Radio Technology : Bluetooth 4.0 (EDR mode)

Operation frequency : 2402-2480MHz

Modulation : GFSK, π /4 DQPSK, 8- DPSK

Antenna Type : Integrated Antenna, max gain 0Bi.

Software version N/A

Hardware version N/A

Applicant : GREAT WORLD LTD

Address : 406 Room 1 ,Floor 5, No.37, Chong-De 11TH Road, Bei-Tun District,

Taichung City, Taiwan.

Manufacturer : Dongguan Songwei Electric Technology Co., Ltd

Address : No., 75, Dapianmei Rd., Da Pian Mei Village, Da Ling Shan Town,

Dong Guan City, Guang Dong Province, China

Adapter : N/A

Page 6 of 70 Report No.: T1870550 02

1.2. Description of Test Facility

Shenzhen Alpha Product Testing Co., Ltd

Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road,

Bao'an, Shenzhen, China

March 25, 2015 File on Federal Communication Commission

Registration Number: 203110

July 18, 2014 Certificated by IC

Registration Number: 12135A

1.3. Test Procedure

POWER LINE CONDUCTED INTERFERENCE:

The test procedure used was ANSI Standard ANSI C63.4:2014 using a 50 u H LISN. Both Lines were observed. The bandwidth of the receiver was 10kHz with an appropriate sweep speed. The ambient temperature of the EUT was 25 °C with a humidity of 58%.

RADIATION INTERFERENCE:

The test procedure used was ANSI Standard ANSI C63.4:2014 using a ANRITSU spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a micro volt at the output of the antenna. The resolution bandwidth was 100kHz and the video bandwidth was 300 kHz up to 1 GHz and 1 MHz with a video BW of 3MHz above 1 GHz. The ambient temperature of the EUT was 25°C with a humidity of 58%.

FORMULA OF CONVERSION FACTORS:

The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer and cable loss. The antenna correction factors and cable loss are stated in terms of dB. The gain of the Pre-selector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF + CABLE = FS

ANSI STANDARD ANSI C63.4:2014 10.1.7 MEASUREMENT PROCEDURES:

The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes. The situation was similar for the conducted measurement except that the table did not rotate. The EUT was setup as described in ANSI Standard ANSI C63.4:2014 10.1.7 with the EUT 40 cm from the vertical ground wall.

2. Summary of Measurement

2.1. Summary of test result

Test procedures according to the technical standards:

KDB DA 00-705

Description of Test Item	Standard	Results
Maximum Peak Output Power	FCC Part 15: 15.247(b)(1) ANSI C63.4 :2014	PASS
Bandwidth	FCC Part 15: 15.215 ANSI C63.4 :2014	PASS
Carrier Frequency Separation	FCC Part 15: 15.247(a)(1) ANSI C63.4 :2014	PASS
Number Of Hopping Channel	FCC Part 15: 15.247(a)(1)(iii) ANSI C63.4:2014	PASS
Dwell Time	FCC Part 15: 15.247(a)(1)(iii) ANSI C63.4:2014	PASS
Radiated Emission	FCC Part 15: 15.209 FCC Part 15: 15.247(d) ANSI C63.4 :2014	PASS
Band Edge Compliance	FCC Part 15: 15.247(d) ANSI C63.4 :2014	PASS
Power Line Conducted Emissions	FCC Part 15: 15.207 ANSI C63.4 :2014	PASS
Antenna requirement	FCC Part 15: 15.203	PASS

Note:

- 1: "N/A" denotes test is not applicable in this Test Report
- 2: Test with the test procedure Blue tool.
- 3: All tests are according to ANSI C63.10-2013:

2.2. Assistant equipment used for test

Description	:	N/A
Manufacturer		N/A
Model No.	:	N/A

2.3. Block Diagram

1, For radiated emissions test: EUT was placed on a turn table, which is 0.8 meter high above ground for blew 1GHz, 1.5 meter high above ground for above 1GHz. EUT was be set into BT test mode by software before test.

EUT

2, For Power Line Conducted Emissions Test.

EUT

2.4. Test mode

The test software was used to control EUT work in Continuous TX mode, and select test channel, wireless mode.

Tested mode, channel, and data rate information				
Mode	Mode Channel Frequency			
		(MHz)		
	Low :CH1	2402		
GFSK	Middle: CH40	2441		
	High: CH79	2480		

Tested mode, channel, and data rate information				
Mode Channel Frequency				
(MHz)				
	Low :CH1	2402		
π /4 DQPSK	Middle: CH40	2441		
	High: CH79	2480		

Tested mode, channel, and data rate information				
Mode	Mode Channel Frequency			
	Low :CH1	2402		
8- DPSK	Middle: CH40	2441		
	High: CH79	2480		

2.5. Test Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

2.6. Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.71dB	
Uncertainty for Radiation Emission test in 3m	2.13 dB	Polarize: V
chamber (below 30MHz)	2.57dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	3.90dB	Polarize: V
chamber (30MHz to 1GHz)	3.92dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	4.28dB	Polarize: H
chamber (1GHz to 25GHz)	4.26dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for conducted RF Power	0.16dB	
Uncertainty for temperature	0.2℃	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

2.7. Test Equipment List

Equipment	Manufacture	Model No.	Serial No.	cal. Date	Cal. Interval
3m Semi-Anechoic CHENYU		N/A	N/A	2017.07.21	2Year
Spectrum analyzer	Agilent	E4407B	MY46185649	2017.09.29	1Year
Receiver	R&S	ESPI	101873	2017.09.29	1Year
Receiver	R&S	ESCI	101165	2017.09.29	1Year
Bilog Antenna	SCHWARZBECK	VULB 9168	VULB9168-438	2017.09.30	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D(1201)	2017.09.30	2Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2017.09.29	1 Year
L.I.S.N.#2	ROHDE&SCHWA RZ	ENV216	101043	2017.09.29	1 Year
Cable	Resenberger	N/A	No.1	2017.09.29	1Year
Cable	SCHWARZBECK	N/A	No.2	2017.09.29	1Year
Cable	SCHWARZBECK	N/A	No.3	2017.09.29	1Year
Pre-amplifier	HP	HP8347A	2834A00455	2017.09.29	1Year
Pre-amplifier	Agilent	8449B	3008A02664	2017.09.29	1Year
vector Signal Generator	Agilent	N5182A	MY49060042	2017.09.29	1 Year
vector Signal Generator	Agilent	E4438C	US44271917	2017.09.29	1 Year
X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54080020	2017.09.29	1 Year
X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54110001	2017.09.29	1 Year
Signal Analyzer	Agilent	N9020A	MY48030494	2017.09.29	1 Year

3. Maximum Peak Output power

3.1. Limit

Please refer section 15.247.

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts, the e.i.r.p shall not exceed 4W

3.2. Test Procedure

The transmitter output is connected to the RF Power Meter. The RF Power Meter is set to the peak power detection.

3.3. Test Setup

3.4. Test Results

EUT: Electric Heater M/N: GW-6078TBT					
Test date: 2017-04-16		Test site: RF site	Tested by: Reak		
Mode Freq (MHz)		PK Output Power (dBm)	Limit (dBm)	Margin (dB)	
	2402	1.51	21	18.939	
GFSK	2441	1.69	21	18.996	
	2480	1.93	21	19.086	
	2402	1.20	21	19.064	
π /4 DQPSK,	2441	1.39	21	19.099	
	2480	1.57	21	19.159	
	2402	1.21	21	19.134	
8- DPSK	2441	1.38	21	19.159	
	2480	1.56	21	19.201	
Conclusion: PASS					

4. Bandwidth

4.1. Limit

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

4.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30kHz RBW and 100kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.3. Test Results

EUT: Electric Heater M/N: GW-6078TBT						
Test date: 2017-04-16		Test site: RF site	Tested by: Reak			
Mode	Freq (MHz)	20dB Bandwidth (KHz)	Limit (kHz)	Conclusion		
GFSK	2402	832.3	/	PASS		
	2441	833.8	/	PASS		
	2480	834.1	/	PASS		
	2402	1118	/	PASS		
π /4 DQPSK	2441	1118	/	PASS		
	2480	1119	/	PASS		
	2402	1166	/	PASS		
8- DPSK	2441	1163	/	PASS		
	2480	1164	/	PASS		

Orginal Test data For 20dB bandwidth GFSK:

π /4 DQPSK:

8- DPSK:

Center Freq 2.480000000 GHz

Ref 20.00 dBm

5. Carrier Frequency Separation

5.1. Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

5.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The carrier frequency was measured by spectrum analyzer with 30kHz RBW and 100kHz VBW.

5.3. Test Results

EUT: Electric Heater M/N: GW-6078TBT								
Test date: 2017-	04-16	Test site: RF site	Tested by:	Tested by: Reak				
Mode/Channel	Channel separation (MHz)	20dB Bandwidth (KHz)	Limit (KHz) 2/3 20dB bandwidth	Conclusion				
GFSK	1.002	834.9	556.6	PASS				
π /4 DQPSK	1.002	1118	745.333	PASS				
8- DPSK	1.002	1166	777.333	PASS				

Orginal test data for channel separation

GFSK

π /4 DQPSK

8- DPSK:

6. Number Of Hopping Channel

6.1. Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

6.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The number of hopping channel was measured by spectrum analyzer with 300kHz RBW and 1MHz VBW.

6.3. Test Results

EUT: Electric Heater M/N: GW-6078TBT							
Test date: 2017-04-16	Test site: RF site	Tested by	by: Reak				
Mode	Number of hopping channel	Limit	Conclusion				
GFSK	79	>15	PASS				
π /4 DQPSK	79	>15	PASS				
8- DPSK	79	>15	PASS				

Original test data for hopping channel number GFSK

π /4 DQPSK

8- DPSK:

7. Dwell Time

7.1. Test limit

Please refer section 15.247

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz. The average time of occupancy on any frequency shall not greater than 0.4 s within period of 0.4 sec- onds multiplied by the number of hopping channel employed.

7.2. Test Procedure

- 7.2.1. Place the EUT on the table and set it in transmitting mode.
- 7.2.2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 7.2.3. Set center frequency of spectrum analyzer = operating frequency.
- 7.2.4. Set the spectrum analyzer as RBW, VBW=1MHz, Span=0Hz, Sweep=auto.
- 7.2.5. Repeat above procedures until all frequency measured were complete.

7.3. Test Results

PASS.

Detailed information please see the following page.

Report No.: T1870550 02

EUT: Electric I	Heater M/N	I: GW-6078TE	BT				
Test date: 2017	-04-16	Test site: RF	est site: RF site Tested by: Reak				
Mode	Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limit (s)	Conclusion	
	DH1	2441	0.352	0.225	< 0.4	PASS	
GFSK	DH3	2441	1.616	0.345	< 0.4	PASS	
	DH5	2441	2.878	0.368	< 0.4	PASS	
	DH1	2441	0.365	0.234	< 0.4	PASS	
π /4 DQPSK	DH3	2441	1.621	0.346	< 0.4	PASS	
	DH5	2441	2.878	0.368	< 0.4	PASS	
8- DPSK	DH1	2441	0.385	0.246	< 0.4	PASS	
	DH3	2441	1.621	0.346	< 0.4	PASS	
	DH5	2441	2.878	0.368	< 0.4	PASS	

Note: 1 A period time = 0.4 (s) * 79 = 31.6(s)

² DH1 time slot = Pulse Duration * (1600/(1*79)) * A period time/1000

DH3 time slot = Pulse Duration * (1600/(3*79)) * A period time/1000

DH5 time slot = Pulse Duration * (1600/(5*79)) * A period time/1000

GFSK

DH1:

DH3:

DH5

π /4 DQPSK

DH1:

DH3:

DH5:

8- DPSK:

DH1

DH3

DH5

8. Radiated emissions

8.1. Radiation Emission Limits(15.209)

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

15.209 Limit

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT			
MHz	Meters	$\mu V/m$	dB(µV)/m		
0.009-0.490	300	2400/F(KHz)	/		
0.490-1.705	30	24000/F(KHz)	/		
1.705-30	30	30	29.5		
30 ~ 88	3	100	40.0		
88 ~ 216	3	150	43.5		
216 ~ 960	3	200	46.0		
960 ~ 1000	3	500 54.0			
Above 1000	2	74.0 dB(μV)	/m (Peak)		
AUUVE 1000	3	$54.0 \text{ dB}(\mu\text{V})/\text{m} \text{ (Average)}$			

8.2. Block Diagram of Test setup

Below 30MHz Test Setup

Above 30MHz Test Setup

Above 1GHz Test Setup

8.3. Test Procedure

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber.
- (2) Setup EUT and simulator as shown in section 1.4 and 6.1
- (3) Test antenna was located 3m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
- (a) Change work frequency or channel of device if practicable.
- (b) Change modulation type of device if practicable.
- (c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions
- (4) Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated
- (5) For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014on Radiated Emission test.
- (6) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure.

8.4. Test Results

We have scanned the 10th harmonic from 9KHz to the EUT's highest frequency..

Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

From 30MHz to 1000MHz: Conclusion: PASS

Site LAB Polarization: Vertical Temperature: 23.5 Limit: FCC Part15 Class B Radiation

EUT: Electric Heater M/N: GW-6078TBT

Mode: Note:

Power: AC 120V/60Hz Humidity: 51 %

Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		86.2000	8.21	9.71	17.92	40.00	-22.08	peak			
2		230.0985	6.77	11.79	18.56	46.00	-27.44	peak			
3	8	316.5889	10.40	13.79	24.19	46.00	-21.81	peak			
4		501.1790	9.36	17.22	26.58	46.00	-19.42	peak			
5		701.7610	5.07	20.40	25.47	46.00	-20.53	peak			
6	*	948.7609	7.93	23.43	31.36	46.00	-14.64	peak			

Report No.: T1870550 02

Remark: All modes have been tested, and only worst data of GFSK mode, Channel 2402MHz was listed in this report.

Report No.: T1870550 02

1GHz	2—25GHz Radiated emission Test result
EUT: Electric Heater	M/N: GW-6078TBT
D AC 1001//COLL	

Power: AC 120V/60Hz

Test date: 2017-04-19 Test site: 3m Chamber Tested by: Reak

Test mode: GFSK Tx CH1 2402MHz

Antenna polarity: Vertical

2 2220	michina polarity. Vertical								
No	-	Read Level (dBuV/m)	Hactor	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4804	49.82	33.95	10.18	34.26	59.69	74	14.31	PK
2	4804	34.17	33.95	10.18	34.26	44.04	54	9.96	AV
3	7206	/							
4	9608	/							
5	12010	/							
Ante	enna Po	larity: Horiz	contal						
1	4804	51.34	33.95	10.18	34.26	61.21	74	12.79	PK
2	4804	35.19	33.95	10.18	34.26	45.06	54	8.94	AV
3	7206	/							
4	9608	/							
5	12010	/						•	

Note:

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

		1GH	z—25GH	Iz Radia	ated em	issison Test	result		
EUT:	Electric	Heater	ľ	M/N: G	W-6078	RTBT			
Powe	r: AC 120)V/60Hz							
Test o	date: 2017	7-04-19	Test site:	3m Cha	mber	Tested by:	Reak		
Test r	node: GF	SK Tx CH	40 2441M	Hz					
Anter	na polari	ty: Vertical							
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4882	45.62	33.93	10.2	34.29	55.46	74	18.54	PK
2	4882	33.79	33.93	10.2	34.29	43.63	54	10.37	AV
3	7323	/							
4	9764	/							
5	12205	/							
Anter	na Polari	ty: Horizon	ıtal						
1	4882	47.61	33.93	10.2	34.29	57.45	74	16.55	PK
2	4882	35.62	33.93	10.2	34.29	45.46	54	8.54	AV
3	7323	/							

Note:

5

9764

12205

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

1GHz—25GHz Radiated emissison Test result

EUT: Electric Heater M/N: GW-6078TBT

Power: AC 120V/60Hz

Test date: 2017-04-19 Test site: 3m Chamber Tested by: Reak

Test mode: GFSK Tx CH79 2480MHz

Antenna polarity: Vertical

	The state of the s											
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark			
1	4960	48.16	33.98	10.22	34.25	58.11	74	15.89	PK			
2	4960	34.49	33.98	10.22	34.25	44.44	54	9.56	AV			
3	7440	/										
4	9920	/										
5	12400	/										
Ant	enna Pola	arity: Horiz	ontal									
1	4960	49.87	33.98	10.22	34.25	59.82	74	14.18	PK			
2	4960	35.11	33.98	10.22	34.25	45.06	54	8.94	AV			
3	7440	/										
4	9920	/										
5	12400	/										

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

1GHz—25GHz Radiated emissison Test result

EUT: Electric Heater M/N: GW-6078TBT

Power: AC 120V/60Hz

Test date: 2017-04-19 Test site: 3m Chamber Tested by: Reak

Test mode: π /4 DQPSK Tx CH1 2402MHz

Antenna polarity: Vertical

7 11111	mema pounty. Vertical											
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark			
1	4804	44.36	33.95	10.18	34.26	54.23	74	19.77	PK			
2	4804	32.16	33.95	10.18	34.26	42.03	54	11.97	AV			
3	7206	/										
4	9608	/										
5	12010	/										
Ante	enna Pola	rity: Horizo	ontal									
1	4804	48.22	33.95	10.18	34.26	58.09	74	15.91	PK			
2	4804	36.49	33.95	10.18	34.26	46.36	54	7.64	AV			
3	7206	/										
4	9608	/										
5	12010	/										

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

MAL CW (070TDT	1 CSt 1 CSd1	•
1GHz—25GHz Radiated emissison	Test result	t

EUT: Electric Heater M/N: GW-6078TBT

Power: AC 120V/60Hz

Test date: 2017-04-19 Test site: 3m Chamber Tested by: Reak

Test mode: π /4 DQPSK Tx CH40 2441MHz

Antenna polarity: Vertical

No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)		Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark		
1	4882	46.76	33.93	10.2	34.29	56.6	74	17.4	PK		
2	4882	35.45	33.93	10.2	34.29	45.29	54	8.71	AV		
3	7323	/									
4	9764	/									
5	12205	/									
Anter	Antenna Polarity: Horizontal										
									75.7.7		

		-) -							
1	4882	48.22	33.93	10.2	34.29	58.06	74	15.94	PK
2	4882	34.38	33.93	10.2	34.29	44.22	54	9.78	AV
3	7323	/							
4	9764	/							
5	12205	/							

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

1GHz—25GHz Radiated emissison Test result										
Γ: Electri	c Heater	N	1/N: G\	W-6078	TBT					
ver: AC 1	20V/60Hz									
Test date: 2017-04-19 Test site: 3m Chamber Tested by: Reak										
Test mode: π /4 DQPSK Tx CH79 2480MHz										
enna pola	rity: Vertic	al								
Freq (MHz) Read Level Factor (dBuV/m) (dB/m) Result (dBuV/m) Result (dBuV/m) Remark										
4960	48.66	33.98	10.22	34.25	58.61	74	15.39	PK		
4960	33.19	33.98	10.22	34.25	43.14	54	10.86	AV		
7440	/									
9920	/									
12400	/									
enna Pola	arity: Horizo	ontal								
4960	48.41	33.98	10.22	34.25	58.36	74	15.64	PK		
4960	34.18	33.98	10.22	34.25	44.13	54	9.87	AV		
7440	/									
9920	/									
	ver: AC 1 t date: 20 t mode: enna pola Freq (MHz) 4960 4960 7440 9920 12400 enna Pola 4960 4960 7440	Freq (MHz) 4960 4960 12400 7440 7440 4960 48.41 4960 48.41 4960 34.18 7440 7440 7440 7440 7440 7440 7440 7440 7440 7440 7440 7440 7440 7440 7440 7440 7440 7440	T: Electric Heater	T: Electric Heater M/N: GVer: AC 120V/60Hz t date: 2017-04-19 Test site: 3m Character through the transfer of transfer of the transfer of transfer o	T: Electric Heater	T: Electric Heater M/N: GW-6078TBT ver: AC 120V/60Hz t date: 2017-04-19 Test site: 3m Chamber Tested by: t mode: π /4 DQPSK Tx CH79 2480MHz enna polarity: Vertical Freq (MHz) Read Level Factor (dBuV/m) (dB/m) B) (dB) 4960 48.66 33.98 10.22 34.25 58.61 4960 33.19 33.98 10.22 34.25 43.14 7440 / 9920 / 12400 / 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 / 12400 9920 9920 / 12400 9920 / 12400 9920 9920 / 12400 9920 9920 / 12400 9920 9920 / 12400 9920	rer: AC 120V/60Hz t date: 2017-04-19 Test site: 3m Chamber Tested by: Reak t mode: π /4 DQPSK Tx CH79 2480MHz enna polarity: Vertical Freq (MHz) Read Level Factor (dBuV/m) (dB/m) B) (dB) 4960 48.66 33.98 10.22 34.25 58.61 74 4960 33.19 33.98 10.22 34.25 43.14 54 7440 / 9920 / 12400 9920	T: Electric Heater		

5 1 Note:

12400

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

1GHz—25GHz Radiated emissison Test result

EUT: Electric Heater M/N: GW-6078TBT

Power: AC 120V/60Hz

Test date: 2017-04-19 Test site: 3m Chamber Tested by: Reak

Test mode: 8- DQPSK Tx CH1 2402MHz

Antenna polarity: Vertical

	1								
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4804	46.38	33.95	10.18	34.26	56.25	74	17.75	PK
2	4804	33.64	33.95	10.18	34.26	43.51	54	10.49	AV
3	7206	/							
4	9608	/							
5	12010	/							
Ante	enna Pola	rity: Horizo	ontal						
1	4804	47.81	33.95	10.18	34.26	57.68	74	16.32	PK
2	4804	35.49	33.95	10.18	34.26	45.36	54	8.64	AV
3	7206	/							
4	9608	/							

Note:

12010

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

		1GH	z—25GH	Iz Radia	ated em	issison Test	result			
EUT:	EUT: Electric Heater M/N: GW-6078TBT									
Powe	Power: AC 120V/60Hz									
Test o	Test date: 2017-04-19 Test site: 3m Chamber Tested by: Reak									
Test r	mode: 8-]	DQPSK Tx	CH40 24	41MHz	Z					
Anter	na polari	ty: Vertical								
No	Freq (MHz)	Read Level (dBuV/m)		loss(d	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/ m)	Margin (dB)	Remark	

1	4882	48.17	33.93	10.2	34.29	58.01	/4	15.99	PK
2	4882	34.27	33.93	10.2	34.29	44.11	54	9.89	AV
3	7323	/							
4	9764	/							
5	12205	/							
Antenna Polarity: Horizontal									
1	4882	48.91	33.93	10.2	34.29	58.75	74	15.25	PK
2	4882	33.63	33.93	10.2	34.29	43.47	54	10.53	AV
3	7323	/							
4	9764	/							
5	12205	/							

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

1GHz—25GHz Radiated emissison Test result										
CIT	Γ: Electri			/N: GW			st resurt			
			1V1/	IN. UW	-00/81	БІ				
Pow	ver: AC I	20V/60Hz								
Tes	Test date: 2017-04-19 Test site: 3m Chamber Tested by: Reak									
Tes	Test mode: 8- DQPSK Tx CH79 2480MHz									
Ant	enna pola	rity: Vertic	al							
No	No Freq (MHz) Read Level (dBuV/m) (dB/m) Result (dBuV/m) Result (dBuV/m) Remark									
1	4960	48.29	33.98	10.22	34.25	58.24	74	15.76	PK	
2	4960	34.77	33.98	10.22	34.25	44.72	54	9.28	AV	
3	7440	/								
4	9920	/								
5	12400	/								
Ant	enna Pola	arity: Horizo	ontal							
1	4960	47.45	33.98	10.22	34.25	57.4	74	16.6	PK	
2	4960	33.49	33.98	10.22	34.25	43.44	54	10.56	AV	
3	7440	/								
4	9920	/								

Note:

5 | 12400

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

9. Band Edge Compliance

9.1. Block Diagram of Test Setup

9.2. Limit

All the lower and upper band-edges emissions appearing within restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

9.3. Test Procedure

All restriction band and non- restriction band have been tested , only worse case is reported.

9.4. Test Results

PASS. (See below detailed test data)

Radiated Method

GFSK (CH Low)

			Band Ed	dge Test	result			
EUT: Electric	Heater	I	M/N: G	W-6078	BTBT			
Power: AC 12	20V/60Hz							
Test date: 201	17-04-19	Test site	: 3m Cl	namber	Tested by	: Reak		
Test mode: T	x CH Low 2	2402MHz	Z					
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	44.16	27.62	3.92	34.97	40.73	74	33.27	PK
Antenna Pola	rity: Horizo	ontal						
2390	44.82	27.62	3.92	34.97	41.39	74	32.61	PK
NI-4								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

GFSK (CH High)

			Band Ed	dge Test	result			
EUT: Electric	c Heater	1	M/N: G	W-6078	BTBT			
Power: AC 1	20V/60Hz							
Test date: 20	17-04-19	Test site:	3m Cha	ımber	Tested by:	Reak		
Test mode: T	x CH High	2480MHz	Z					
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	45.76	27.89	4	34.97	42.68	74	31.32	PK
Antenna Pola	rity: Horizo	ontal						
2483.5	43.81	27.89	4	34.97	40.73	74	33.27	PK

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

GFSK (Hopping Low)

			Band Ed	dge Test	result			
EUT: Electric	Heater]	M/N: G	W-6078	BTBT			
Power: AC 12	20V/60Hz							
Test date: 201	17-04-19	Test site	: 3m Cł	namber	Tested by	: Reak		
Test mode: T	x CH Low	2402MHz	Z					
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)		Margin (dB)	Remark
2390	45.88	27.62	3.92	34.97	42.45	74	31.55	PK
Antenna Pola	rity: Horizo	ontal						
2390	44.12	27.89	4	34.97	41.04	74	32.96	PK
	•							

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

GFSK (Hopping High)

			Band Ed	dge Test	result			
EUT: Electric	Heater]	M/N: G	W-6078	BTBT			
Power: AC 12	20V/60Hz							
Test date: 20	17-04-19	Test site	: 3m Cł	namber	Tested by	: Reak		
Test mode: T	x CH High	2480MH	Z					
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)		Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	45.65	27.89	4	34.97	42.57	74	31.43	PK
Antenna Pola	rity: Horizo	ontal						
2483.5	45.98	27.89	4	34.97	42.9	74	31.10	PK
NT - 4	·		·					

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

π /4 DQPSK (CH Low)

			Dana L	age rest	resure			
EUT: Electric	Heater]	M/N: G	W-6078	BTBT			
Power: AC 12	20V/60Hz							
Test date: 20	17-04-19	Test site	: 3m Cł	namber	Tested by	: Reak		
Test mode: T	x CH Low 2	2402MHz	Z					
Antenna pola	rity: Vertica	al						
	Read	Antenna	Cable	Amp	D 1	Limit (dBuV/m)		
Freq	Level	Factor	loss(d	_	Result		Margin	Remark
(MHz)	(dBuV/m)	(dB/m)	B)	(dB)	(dBuV/m)	(aBuv/m)	(dB)	
2390	42.95	27.62	3.92	34.97	39.52	74	34.48	PK
Antenna Pola	rity: Horizo	ontal						
2390	43.45	27.62	3.92	34.97	40.02	74	33.98	PK
1	1		l	l	l		1	

Band Edge Test result

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

π /4 DQPSK (CH High)

		Band Ed	dge Test	result			
[eater	I	M/N: G	W-6078	BTBT			
V/60Hz							
04-19	Test site	: 3m Cł	namber	Tested by	: Reak		
CH High	2480MH	Z					
y: Vertica	al						
Read Level BuV/m)	Factor		Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
44.74	27.89	4	34.97	41.66	74	32.34	PK
y: Horizo	ontal						
45.87	27.89	4	34.97	42.79	74	31.21	PK
	V/60Hz 04-19 CH High V: Vertica Read Level BuV/m) 44.74	V/60Hz 04-19 Test site CH High 2480MHz V: Vertical Read Antenna Level Factor BuV/m) (dB/m) 44.74 27.89 V: Horizontal	eater M/N: G V/60Hz 04-19 Test site: 3m Ch CH High 2480MHz V: Vertical Read Antenna Cable Level Factor loss(d BuV/m) (dB/m) B) 44.74 27.89 4 V: Horizontal	eater M/N: GW-6078 V/60Hz 04-19 Test site: 3m Chamber CH High 2480MHz V: Vertical Read Antenna Cable Amp Level Factor loss(d Factor BuV/m) (dB/m) B) (dB) 44.74 27.89 4 34.97 V: Horizontal	W/60Hz 04-19 Test site: 3m Chamber Tested by CH High 2480MHz Wertical Read Antenna Cable Amp Level Factor BuV/m) (dB/m) B) (dB) 44.74 27.89 4 34.97 41.66 We Horizontal	eater M/N: GW-6078TBT V/60Hz 04-19 Test site: 3m Chamber Tested by: Reak CH High 2480MHz V: Vertical Read Antenna Cable Amp Level Factor (dBuV/m) BuV/m) (dB/m) B) (dB) 44.74 27.89 4 34.97 41.66 74 V: Horizontal	eater M/N: GW-6078TBT V/60Hz 04-19 Test site: 3m Chamber Tested by: Reak CH High 2480MHz V: Vertical Read Antenna Cable Amp Factor (dB/m) B) (dB) Result (dBuV/m) (dBuV/m) (dB) 44.74 27.89 4 34.97 41.66 74 32.34 V: Horizontal

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

π /4 DQPSK (Hopping Low)

			Band Ed	dge Test	result			
EUT: Electric	Heater	I	M/N: G	W-6078	BTBT			
Power: AC 12	20V/60Hz							
Test date: 201	17-04-19	Test site	: 3m Cł	namber	Tested by	: Reak		
Test mode: Ta	x CH Low 2	2402MHz	Z					
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	44.22	27.62	3.92	34.97	40.79	74	33.21	PK
Antenna Pola	rity: Horizo	ontal						
2390	44.77	27.62	3.92	34.97	41.34	74	32.66	PK

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

π /4 DQPSK (Hopping High)

			Band Ed	dge Test	result			
EUT: Electric	Heater	1	M/N: G	W-6078	BTBT			
Power: AC 12	20V/60Hz							
Test date: 201	7-04-19	Test site	: 3m Cł	namber	Tested by	: Reak		
Test mode: T	x CH High	2480MH	Z					
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)		Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	44.52	27.89	4	34.97	41.44	74	32.56	PK
Antenna Pola	rity: Horizo	ontal						
2483.5	44.84	27.89	4	34.97	41.76	74	32.24	PK

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

8- DPSK (CH Low)

			Band Ed	dge Test	result			
EUT: Electric	Heater	I	M/N: G	W-6078	BTBT			
Power: AC 12	20V/60Hz							
Test date: 201	7-04-19	Test site	: 3m Cł	namber	Tested by	: Reak		
Test mode: Tx	x CH Low 2	2402MHz	<u>.</u>					
Antenna polai	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	44.61	27.62	3.92	34.97	41.18	74	32.82	PK
Antenna Pola	rity: Horizo	ntal						
2390	43.75	27.62	3.92	34.97	40.32	74	33.68	PK

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

8- DPSK (CH High)

			Band Ed	dge Test	result			
EUT: Electric	e Heater]	M/N: G	W-6078	8TBT			
Power: AC 1	20V/60Hz							
Test date: 20	17-04-19	Test site	: 3m Cł	namber	Tested by	: Reak		
Test mode: T	x CH High	2480MH	Z					
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	43.27	27.89	4	34.97	40.19	74	33.81	PK
Antenna Pola	rity: Horizo	nto1						
2483.5	42.43	27.89	4	34.97	39.35	74	34.65	PK
2463.3	42.43	21.09	4	34.97	39.33	/4	34.03	IK
							1	

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

8- DPSK (Hopping Low)

0- DI SIX ()	Hopping LC	, , ,						
			Band Ed	dge Test	result			
EUT: Electric	Heater	1	M/N: G	W-6078	BTBT			
Power: AC 12	20V/60Hz							
Test date: 201	17-04-19	Test site	: 3m Cł	namber	Tested by	: Reak		
Test mode: T	x CH Low 2	2402MHz	Z					
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	43.81	27.62	3.92	34.97	40.38	74	33.62	PK
Antenna Pola	rity: Horizo	ontal						
2390	44.53	27.89	4	34.97	41.45	74	32.55	PK

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

8- DPSK (Hopping High)

8- DPSK (HC	opping mign	1)						
			Band Ed	dge Test	result			
EUT: Electric	c Heater	1	M/N: G	W-6078	8TBT			
Power: AC 1	20V/60Hz							
Test date: 20	17-04-19	Test site	: 3m Cl	namber	Tested by	: Reak		
Test mode: T	x CH High	2480MH	Z					
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	45.79	27.89	4	34.97	42.71	74	31.29	PK
Antenna Pola	rity: Horizo	ontal						
2483.5	44.12	27.89	4	34.97	41.04	74	32.96	PK

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Conducted Method

GFSK

CH LOW:

CH High:

Hopping Low

π /4 DQPSK

Low

Hopping Low

8- DPSK:

Low

Hopping Low

10. Power Line Conducted Emissions

10.1.Conducted Emission Limits(15.207)

Frequency	Limits dB(μV)			
MHz	Quasi-peak Level	Average Level		
0.15 -0.50	66 -56*	56 - 46*		
0.50 -5.00	56	46		
5.00 -30.00	60	50		

Notes: 1. *Decreasing linearly with logarithm of frequency.

- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decreases in line with the logarithm of the frequency in rang of
- 0.15 to 0.50 MHz.

10.2.Block Diagram of Test Setup

10.3. Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane.
- (2) Setup the EUT and simulator as shown in 10.1
- (3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N2), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014on conducted Emission test.
- (4) The bandwidth of test receiver is set at 10KHz.
- (5) The frequency range from 150 KHz to 30MHz is checked.

10.4. Test Results

PASS (See below detailed test data)

Site LAB Limit: FCC Part 15 CLASS B QP

EUT: Electric Heater M/N: GW-6078TBT

Mode: Note:

Phase: 23.6 Temperature: N AC 120V/60Hz Humidity: 54 % Power:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1		
	MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment	
1	0.1949	40.55	9.67	50.22	63.83	-13.61	peak		
2	0.3930	37.54	9.70	47.24	58.00	-10.76	peak		
3	0.5909	35.76	9.72	45.48	56.00	-10.52	peak		
4	1.0544	35.92	9.78	45.70	56.00	-10.30	QP		
5 *	1.0544	30.54	9.78	40.32	46.00	-5.68	AVG		
6	3.2865	36.14	10.01	46.15	56.00	-9.85	QP		
7	3.2865	28.14	10.01	38.15	46.00	-7.85	AVG		
8	4.2000	36.14	10.10	46.24	56.00	-9.76	QP		
9	4.2000	25.84	10.10	35.94	46.00	-10.06	AVG		

Site LAB

File:GW-6078TBT

80.0 dBuA

Limit: FCC Part 15 CLASS B QP

EUT: Electric Heater M/N: GW-6078TBT

Mode: Note:

70

60

50

40

30

20

10

Phase: L1 Temperature: 23.6 AC 120V/60Hz Humidity: 54 % Power:

11. Antenna Requirements

11.1.Standard Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2. Antenna Connected Construction

The antenna is PCB antenna and no consideration of replacement. Please see EUT photo for details.

11.3.Results

The EUT antenna is PCB Antenna. It comply with the standard requirement.

12. Test setup photo

12.1.Photos of Radiated emission

Page 68 of 70

12.2.Photos of Conducted Emission test

13.Photos of EUT

-----END OF REPORT-----