```
In [1]: # import the libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [6]: salary_train=pd.read_csv("C:\\Users\\nishi\\Desktop\\Assignments\\Naive_Bayes\\Sa

In [7]: salary_train

Out[7]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	1
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	N
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	N
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	N
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	N
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Fem
30156	27	Private	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife	White	Ferr
30157	40	Private	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband	White	N
30158	58	Private	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Ferr
30159	22	Private	HS-grad	9	Never- married	Adm- clerical	Own-child	White	N
30160	52	Self-emp- inc	HS-grad	9	Married-civ- spouse	Exec- managerial	Wife	White	Ferr

30161 rows × 14 columns

In [9]: salary_test=pd.read_csv("C:\\Users\\nishi\\Desktop\\Assignments\\Naive_Bayes\\Sal

In [10]: salary_test

Out[10]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	
0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	
1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	
2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	
3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	
4	34	Private	10th	6	Never- married	Other- service	Not-in-family	White	
15055	33	Private	Bachelors	13	Never- married	Prof- specialty	Own-child	White	
15056	39	Private	Bachelors	13	Divorced	Prof- specialty	Not-in-family	White	Fŧ
15057	38	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Husband	White	
15058	44	Private	Bachelors	13	Divorced	Adm- clerical	Own-child	Asian- Pac- Islander	
15059	35	Self-emp- inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	

15060 rows × 14 columns

```
In [15]: from sklearn import preprocessing
         label encoder=preprocessing.LabelEncoder()
         for i in string columns:
             salary train[i]=label encoder.fit transform(salary train[i])
             salary_test[i]=label_encoder.fit_transform(salary_test[i])
In [17]: col_names=list(salary_train.columns)
         train_X=salary_train[col_names[0:13]]
         train_Y=salary_train[col_names[13]]
         test_x=salary_test[col_names[0:13]]
         test_y=salary_test[col_names[13]]
In [18]: | col names=list(salary train.columns)
         train X=salary train[col names[0:13]]
         train_Y=salary_train[col_names[13]]
         test_x=salary_test[col_names[0:13]]
         test_y=salary_test[col_names[13]]
In [20]:
         from sklearn.naive_bayes import GaussianNB
         Gmodel=GaussianNB()
         train pred gau=Gmodel.fit(train X,train Y).predict(train X)
         test pred gau=Gmodel.fit(train X,train Y).predict(test x)
In [21]: | train_acc_gau=np.mean(train_pred_gau==train_Y)
         train acc gau#0.795
Out[21]: 0.7953317197705646
In [22]: | test_acc_gau=np.mean(test_pred_gau==test_y)
         test_acc_gau#0.794
Out[22]: 0.7946879150066402
In [24]: | from sklearn.naive_bayes import MultinomialNB
         Mmodel=MultinomialNB()
         train_pred_multi=Mmodel.fit(train_X,train_Y).predict(train_X)
         test pred multi=Mmodel.fit(train X,train Y).predict(test x)
In [25]: | train_acc_multi=np.mean(train_pred_multi==train_Y)
         train acc multi
Out[25]: 0.7729186698053778
```

```
In [26]: | test acc multi=np.mean(test pred multi==test y)
         #0.772
         test_acc_multi#0.774
Out[26]: 0.7749667994687915
In [28]: | salary train=pd.read csv("C:\\Users\\nishi\\Desktop\\Assignments\\Naive Bayes\\Se
         salary_test=pd.read_csv("C:\\Users\\nishi\\Desktop\\Assignments\\Naive_Bayes\\Sal
         salary train.columns
         salary_test.columns
         string_columns=['workclass','education','maritalstatus','occupation','relationshi
         from sklearn import preprocessing
         label_encoder=preprocessing.LabelEncoder()
         for i in string columns:
             salary train[i]=label encoder.fit transform(salary train[i])
             salary_test[i]=label_encoder.fit_transform(salary_test[i])
         col_names=list(salary_train.columns)
         train_X=salary_train[col_names[0:13]]
         train_Y=salary_train[col_names[13]]
         test_x=salary_test[col_names[0:13]]
         test_y=salary_test[col_names[13]]
         ####### Naive Bayes ############
         #Gaussian Naive Bayes
         from sklearn.naive bayes import GaussianNB
         Gmodel=GaussianNB()
         train pred gau=Gmodel.fit(train X,train Y).predict(train X)
         test_pred_gau=Gmodel.fit(train_X,train_Y).predict(test_x)
         train acc gau=np.mean(train pred gau==train Y)
         test acc gau=np.mean(test pred gau==test y)
         train_acc_gau#0.795
         test_acc_gau#0.794
         #Multinomial Naive Bayes
         from sklearn.naive bayes import MultinomialNB
         Mmodel=MultinomialNB()
         train pred multi=Mmodel.fit(train X,train Y).predict(train X)
         test_pred_multi=Mmodel.fit(train_X,train_Y).predict(test_x)
         train_acc_multi=np.mean(train_pred_multi==train_Y)
         test acc multi=np.mean(test pred multi==test y)
         train acc multi#0.772
         test acc multi#0.774
```