ANSWER 3

We want to choose the altribute to split in such a way that remaining entropy is minimized.

i.e. we compute Remainder (Ai) for each

Ai at speit and select one that gives least value.

Femainder (A) =
$$\frac{2d}{p+n}$$
 $\frac{p+n}{p+n}$ $\frac{p+n}{p+n}$ $\frac{p+n}{p+n}$ $\frac{p+n}{p+n}$ where $\frac{p+n}{p+n}$ $\frac{p+n}{$

first split Remainder (Ai) = $\frac{4}{5}\left(-\frac{2}{4}\log_2\left(\frac{2}{4}\right) - \frac{2}{4}\log_2\left(\frac{2}{4}\right)\right)$

$$\frac{1}{5} \left(\frac{1}{5} - \frac{1}{5} \log \left(\frac{1}{1} \right) \right) = \frac{4}{5} \left(\frac{1}{2} + \frac{1}{2} \right) + 0 = 0.8$$
Remain oler (A2)
$$= \frac{3}{5} \left(-\frac{2}{3} \log_2 \left(\frac{2}{3} \right) - \frac{1}{3} \log_2 \left(\frac{1}{3} \right) \right)$$

 $= \frac{3}{5} \frac{1}{3} \left(2 \log_{2}(\frac{3}{2}) + \log_{2}(3) \right) = 0.55.$

Remainder (A3) =
$$\frac{2}{5}\left(-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right)$$

+ $\frac{3}{5}\left(-\frac{1}{3}\log_2\left(\frac{1}{3}\right) - \frac{2}{3}\log_2\left(\frac{2}{3}\right)\right)$
= $\frac{1}{5}\left(1+1\right) + \frac{1}{5}\left(\log_2^2 + 2\log_2\frac{2}{3}\right)$
= 0.9509 = 0.95
Hence, A, minimizer remains entropy.
Chaose A_L to epit.
All with A_L = 01 are output $y = 0$.
80, we are reft with $\Re x_3$, x_4 , x_5 ?.
and A₁ and A₃.
Remainder (A₁) = $\frac{2}{3}\left(-\frac{2}{2}\log_2\left(\frac{2}{2}\right) = 0\right)$
+ $\frac{1}{3}\left(-0 - \frac{1}{2}\log_2\left(\frac{1}{1}\right)\right) = 0$
Pemainder (A₃) = $\frac{1}{3}\left(-\frac{1}{2}\log_2\left(\frac{1}{1}\right)\right) + \frac{2}{3}\left(-\frac{1}{2}\log_2\left(\frac{1}{2}\right)\right)$
- $\frac{1}{3}\log_2\left(\frac{1}{2}\right)$
Rence, A₁ minimizes remaining entropy to 0.
(i.e. we split wit A₃ now.

3 Jy=1