12 ממ"ן

יונתן אוחיון

2017 באוגוסט 22

- 1 שאלה 1
- סעיף א 1.1

$$|A| = 3 \rightarrow |A \times A| = 3^2 \rightarrow |\mathcal{P}(A \times A)| = 2^{3^2} = 512$$

1.2 סעיף ב

ננסה להוכיח שS יחס שקילות ונגיע לסתירה:

1.2.1 רפלקסיביות

רלציה R על A הינה רפלקסיבית אם מתקיים $R\subseteq R$ (כלומר $I_A\subseteq R$). נראה ש

$$\forall R \in M \to RR = R^2 \to R^2 = R^2 \to (R, R) \in S$$

1.2.2 סימטריות

 $R_2R_1=$ לפי הגדרת $(R_2,R_1)\in S$, לפיכך, לפיכך. אמם $(R_1,R_2)\in S$, אמם לפי הגדרת לפי ההגדרה. $(R_1,R_2)\in S$ אמם אמם $(R_1,R_2)\in S$ לפי ההגדרה.

טרנזיטיביות 1.2.3

נראה שS אינו טרנזיטיבי באמצעות דוגמה נגדית:

$$R_1 = \{(2,3)\}, \ R_2 = \emptyset, \ R_3 = \{(3,2)\}$$

$$R_1R_2 = R_2R_1 = \emptyset \to (R_1, R_2) \in S$$

$$R_3R_2 = R_2R_3 = \emptyset \to (R_3, R_2) \in S$$

$$R_1R_3 = \{(2,2)\}, \ R_3R_1 = \{(3,3)\}$$

$$R_3R_1 \neq R_1R_3 \to (R_1, R_3) \notin S$$

לכן, S אינו יחס שקילות.

2 שאלה 2

סעיף א 2.1

לא נכון. דוגמה נגדית:

$$R_1 = \{(2,3)\}$$

$$R_2 = \{(3,2)\}$$

$$s(R_1) = s(R_2) = \{(2,3), (3,2)\}$$

$$R_1 \neq R_2$$

2.2 סעיף ב

לא נכון, מכיוון שכל (מאיבריה אינו יחס סימטרי אך היחס מוגדר על (שאיבריה אינם $R \in Range(S)$ שאיברים אינם בהכרח יחסים סימטריים).

2.3 סעיף ג

לא נכון. דוגמה נגדית:

$$R_1 = \{(3,2)\}$$

$$R_2 = \{(2,3)\}$$

$$R_1R_2 = \{(3,3)\}$$

$$s(R_1) = \{(2,3),(3,2)\}$$

$$s(R_2) = \{(3,2),(2,3)\}$$

$$s(R_1R_2) = \{(3,3)\}$$

$$s(R_1)s(R_2) = \{(2,2),(3,3)\}$$

$$s(R_1R_2) \neq s(R_1)s(R_2)$$

7 סעיף ד

נכון. הוכחה:

$$\begin{split} s(R_1) &= R \cup R^{-1} \\ s(s(R)) &= s(R) \cup (s(R))^{-1} = R \cup R^{-1} \cup (R \cup R^{-1})^{-1} \\ s(s(R)) &= R \cup R^{-1} \cup R \cup R^{-1} = R \cup R^{-1} \cup R \cup R^{-1} \\ s(s(R)) &= R \cup R^{-1} \cup R \cup R^{-1} = R \cup R \cup R^{-1} \cup R^{-1} \\ s(s(R)) &= R \cup R \cup R^{-1} \cup R^{-1} \cup R^{-1} \\ s(s(R)) &= s(R)) \end{split}$$

2

3 שאלה

סעיף א 3.1

:F נוכיח שK סדר חלקי מעל

3.1.1 רפלקסיביות

Kנראה שKרפלקסיבי

$$\forall f \in F o f(n) = f(n) \xrightarrow[$$
הגדרת היחס הגדרת היחס הגדרת גדול שווה היחס הגדרת היחס הגדרת היחס הגדרת היחס

טרנזיטיביות 3.1.2

נניח שקיימים $f,g,h\in F o (f,g)\in K \wedge (g,f)\in K$ ונראה ש $f,g,h\in F o (f,g)\in K \wedge (g,f)\in K$ נניח שקיימים $g(n)\leq h(n)$ בהכרח בהכרח $f(n)\leq g(n)$ בהכרח בהכרח $f(n)\leq g(n)$ בהכרח לפיכך ולפי הגדרת גדול שווה, $f(n)\leq h(n)$ בהער היחט ולכן $f(n)\leq g(n)$ בהער היחט בולכן לפיכך ולפי הגדרת בדול שווה, $f(n)\leq h(n)$ בהער היחט בלום בהער היחט ביד בהער היחט בהער היחט

אנטיסימטריות 3.1.3

אם אומר $f(n)\leq g(n)\wedge g(n)\leq f(n)$, הרי $f(g)\in K$, מה שאומר כך של $f,g\in F$ מה שאומר שבהכרח שבהכרח לפיכך, היחס f(n)=g(n)

 $\cdot F$ לכן, איחס חלקי מעל

סעיף ב 3.2

נניח שK סדר מלא, ניתן דוגמה נגדית ונגיע לסתירה:

$$f(n) = n$$
$$g(n) = 2$$

לפי ההנחה, K סדר מלא ועבור כל $f,g\in F$ מתקייים $f,g\in F$ מתקיים אך מדר מלא ועבור מלא שהפונקציה g מחזירה לכל $g,f)\in K$ את המספר 2, לא מתקיים g מחזירה לכל g את המספר 2, והשני כאשר g אך הם אינם מוגדרים כך). לפיכך, הראשון מתקיים רק כאשר g באינו סדר מלא.

4 שאלה 4

סעיף א 4.1

n=kמכיוון שנתונים לנו שני מקרי בסיס, נרצה לבדוק את נכונות שניהם (ואז נוכל להשתמש גם בn=k-1וגם ברn=k-1

n = 0 4.1.1

$$2 * 3^{0} + (-2)^{1} = 2 * 1 - 2 = 0 = f(0)$$

n = 1 4.1.2

$$2 * 3^{1} + (-2)^{2} = 6 + 4 = 10 = f(1)$$

n=kכעת, נוכל להניח שהוא מתקיים הוא וגם לn=kוגם הוא מתקיים להניח כעת, נוכל להניח וגם לn=k+1

$$f(n) = 2 * 3^{n} + (-2)^{n+1}$$

$$f(n-1) = 2 * 3^{n-1} + (-2)^{n}$$

מההגדרה הרקורסיבית נובע:

$$f(n+1) = f(n) + 6f(n-1)$$

עכשיו נוכל להציב את ערכי f(n) וf(n) בפונקציה הרקורסיבית ולהוכיח:

$$f(n+1) = 2 * 3^{n} + (-2)^{n+1} + 6(2 * 3^{n-1} + (-2)^{n})$$

$$= 6 * 3^{n-1} + -2(-2)^{n} + 12 * 3^{n-1} + 6(-2)^{n}$$

$$= 6 * 3^{n-1} + 12 * 3^{n-1} + -2(-2)^{n} + 6(-2)^{n}$$

$$= 18 * 3^{n-1} + 4(-2)^{n}$$

$$= 2 * 3^{n+1} + (-2)^{n+2}$$

. טבעי. השלמה, הבדיקה והמעבר, התנאי נכון לכל n טבעי.

4.1.3 סעיף ב

הפונקציה f אינה על מכיוון שהיא מתאימה לכל n מספר זוגי, ו $\mathbb N$ כולל בתוכו את כל המספרים הטבעיים (ולא רק את הזוגיים):

$$f(n) = 2 * 3^{n} + (-2)^{n} - 2$$

= 2 * 3^{n} - 2 * (-2)^{n}
= 2 * (3^{n} - (-2)^{n})