PG DAC Feb 20 Data Structure Question Bank

Q1. Linked link are not superior to STL vectors a) True b) False Q2. Deleting a node in a linked list is a simple matter of using the delete operator to free the node's memory a) True b) False Q3. The advantage of link list over array is a) Link list can grow and shrink in size during the time b) Less space is required for storing elements c) Both 1 and 2 are correct d) None of the above Q4. Which one of the following algorithm is NOT an example of Divide and conquer technique a) Quick Sort b) Merge Sort c) Bubble Sort d) Binary Search Q5. The inorder traversal of some binary tree produces the sequence DBEAFC, and the postorder transversal of the same tree produced the sequence DEBFCA. Which of the following is correct preorder transversal sequence? c) ABDECF a) DBAECF b) ABEDFC d) None of the above Q6. How many cycles should be contained in a tree? a) 0 b) At least 1 c) Any number d) None of the above Q7. If graph G has no edges then corresponding adjacency matrix is a) Unit matrix b) Zero matrix c) Matrix with all 1's d) None of the above Q8. What is not true for linear collision processing? a) It is easier to program b) It may include more collision c) It requires space for links d) All are true Q9. Algorithms can be represented in various ways EXCEPT a) PROGRAMS b) FLOWCHARTS c) DECISION CHARTS d) SPREADSHEET Q10. The element at the root of heap is a) Largest b) Depending on type of heap it may be smallest or largest c) Smallest d) None of the above Q11. The end at which a new element gets added to queue is called a) Front b) Rear c) Top d) Bottom Q12.Stack can be represented using b) Arrays or linked list a) Arrays c) Only linked list d) None of the above

Q13. A graph is said to be a tree, if it satisfies which of the properties:

a) If it is connected and there are no cycles in the graph.

PG DAC Feb 20 Data Structure Question Bank

- a) If it is not connected and there are cycles in the graph
- b) If it connected and there are cycles in the graph
- c) None of the above

c) None of the	above					
a) A record key from	to the process of dering m storage address code from a record ke	_	b) Storage a d) None of th	ddress from a	a record key	
	aversal of some binary e tree produced the so		-		•	
a) DBAECF	b) ABEDFC	c) ABDECF	d) No	ne of the abo	ve	
Q16. Which of the foa) empty(Q)	ollowing is not an ope b) deque(Q,X)	ration of queue, c) enque(Q,X)		queue has ite	ems `Q` and `X`?	
Q17. In an adjacenc a) Similar columns	y matrix parallel edges b) Simil	s are given by lar rows	c) Not repres	entable	d) None of the above	<u>}</u>
Q18. A dynamic data a) heap	a structure where we be be being sea		esired records c) circularly li		me is d) array	
Q19. We can efficien a) linear queue	ntly reverse a string us b) circular q	_	c) Stack	d) doubly lin	nked list	
popped four times a	A, B, C, D and E are po and each element is in stack. Now one item i b) B	serted in a queu	e. Then two el	ements are de	eleted from the queue a	nd
Q21. The memory a a. floor address	ddress of the first eler b. foundation addres			ddress		
•	ddress of fifth elemen ase(Array)+w(5-lowe	•		•	la per memory cell for the	
b. LOC(Array[5])=E	Base(Array[5])+(5-lowe	er bound), where	e w is the numl	ber of words p	per memory cell for the	
c. LOC(Array[5])=E	Base(Array[4])+(5-Upp	er bound), wher	e w is the num	ber of words	per memory cell for the	
d. None of above						
Q23. Which of the fo	ollowing data structure	es are indexed s	tructures?			

c) both of above

b) linked lists

a)

linear arrays

d) none of above

PG DAC Feb 20 Data Structure Question Bank

Q24. Which of the following is not the required condition for binary search algorithm? a) The list must be sorted

- b) there should be the direct access to the middle element in any sublist
- c) There must be mechanism to delete and/or insert elements in list d) none of above

d)	binary search algorithm is not efficient when the data elements are more than 1000.
c)	there must be a mechanism to access middle element directly
b)	requirement of sorted array is expensive when a lot of insertion and deletions are needed
a) mı	ust use a sorted array
Q25.	Which of the following is not a limitation of binary search algorithm?

a) tables arrays b) matrix arrays c) both of above d) none of above Q27. A variable P is called pointer if a) P contains the address of an element in DATA. P points to the address of first element in DATA b) c) P can store only memory addresses P contain the DATA and the address of DATA d) Q28. Which of the following data structure can't store the non-homogeneous data elements? a) Arrays b) Records c) Pointers d) None Q29. Before deleting an element from list we make sure that a) it is an list b) it is not a invalid list c) it is not an empty list d) it must be full. Q30. Each data item in a record may be a group item composed of sub-items; those items which are indecomposable are called a) Elementary items b) atoms c) scalars d) all of above

Q31. The difference between linear array and a record is

- a) An array is suitable for homogeneous data but the data items in a record may have different data type
- b) In a record, there may not be a natural ordering in opposed to linear array.
- c) A record form a hierarchical structure but a linear array does not
- d) All of above

Q32. Which of the following statement is false?

Q26. Two dimensional arrays are also called

- a) Arrays are dense lists and static data structure
- b) data elements in linked list need not be stored in adjecent space in memory
- c) pointers store the next data element of a list
- d) linked lists are collection of the nodes that contain information part and next pointer

Q33. Binary search algorithm cannot be applied to

PG DAC Feb 20 Data Structure Question Bank

a) sorted linked list	b) sorted binary t	rees c) sorted	linear array d	l) pointer array	
Q34. When new data usually called	are to be inserted into	a data structure,	out there is no ava	ailable space; this situation is	
a) underflow	b) overflow	c) housefull	d) satı	ırated	
Q35. The situation w	hen in a linked list STAF	RT=NULL is			
a) underflow	b) overflow	c) l	nousefull	d) saturated	
Q36. Which of the fo	llowing name does not b) LIFO list	relate to stacks? c) Piles	d) Push-dowi	ı lists	
a) grounded header l	llowing is two way list? ist ider and trailer nodes	b)	circular header lis	t	
Q38. The term "push a) array	" and "pop" is related t b) lists	o the c) stacks	d) all of abov	ve	
Q39. A data structure a) Linked lists	e where elements can b b) Stacks	oe added or remov c) Queues	ed at either end b		
Q40. When inorder t a) FAEKCDBHG	raversing a tree resulte b) FAEKCDHG		; the preorder tra EAFKHDCBG	versal would return d) FEAKDCHBG	
Q41. Which data strua) Stacks	octure allows deleting d b) Queues	ata elements from c) Deques	front and insertind) Binary sea	=	
Q42. Identify the dat a) Input-restricted de		rs deletions at both put-restricted deq		out insertion at only one end. Ority queues d) None of abo	ove
Q43. Which of the fo	llowing data structure i b) Lists c) Stac		None of above		
Q44. Which of the fo	llowing data structure i	s linear type?			
a) Strings	b) Lists	c) Queues	d) All of abov	<i>r</i> e	
Q45. To represent hi	erarchical relationship b) Priority	between elements c) Tree	, which data struc d) All of abov		
Q46. A binary tree w a) Complete binary	hose every node has ei tree b) Binary seard		nildren is called E xtended binary t	ree d) None of above	

Q47. The depth of a complete binary tree is given by

PG DAC Feb 20 Data Structure Question Bank

a)	١	Dn	=	n	اما	7n
a,)	ווט	_	11	IUE	(211

b) $Dn = n \log 2n + 1$

c) Dn = log 2n

d) Dn = log2n+1

Q48. When representing any algebraic expression E which uses only binary operations in a 2-tree, a) the variable in E will appear as external nodes and operations in internal nodes b) the operations in E will appear as external nodes and variables in internal nodes c) the variables and operations in E will appear only in internal nodes d) the variables and operations in E will appear only in external nodes Q49. A binary tree can easily be converted into q 2-tree a) by replacing each empty sub tree by a new internal node b) by inserting an internal nodes for non-empty node c) by inserting an external nodes for non-empty node d) by replacing each empty sub tree by a new external node Q50. When converting binary tree into extended binary tree, all the original nodes in binary tree are a) internal nodes on extended tree b) external nodes on extended tree d) None of above c) vanished on extended tree Q51. The post order traversal of a binary tree is DEBFCA. Find out the pre order traversal a) ABFCDE b) ADBFEC c) ABDECF d) ABDCEF Q52. Which of the following sorting algorithm is of divide-and-conquer type? c) Quick sort a) Bubble sort b) Insertion sort d) All of above Q53. An algorithm that calls itself directly or indirectly is known as b) Recursion a) Sub algorithm c) Polish notation d) Traversal algorithm Q54. In a binary tree, certain null entries are replaced by special pointers which point to nodes higher in the tree for efficiency. These special pointers are called a) Leaf b) branch c) path d) thread Q55. The in order traversal of tree will yield a sorted listing of elements of tree in a) Binary trees b) Binary search trees c) Heaps d) None of above Q56. In a Heap tree a) Values in a node is greater than every value in left sub tree and smaller than right sub tree Values in a node is greater than every value in children of it b) c) Both of above conditions applies

Q57. In a graph if e=[u, v], Then u and v are called

None of above conditions applies

a) endpoints of e

d)

b) adjacent nodes

c) neighbors

d) all of above

PG DAC Feb 20 Data Structure Question Bank

Q58. A connected graph T without any cycles is called

Much more complicated to analyze than that of worst case

Sometimes more complicated and some other times simpler than that of worst case

Much more simpler to analyze than that of worst case

a)

b)

c) d)

None or above

a) a	tree graph	b) free tree	c) a tree	d) All of abov	re
a) u is	n a graph if e=(u, v) mean adjacent to v but v is not processor and v is succes	adjacent to u		o) e begins at u and ends at d) both b and c	v
Q60. It	f every node u in G is adja ated b j	acent to every othe)complete	r node v in G, A g c) finite	raph is said to be d) strongly connecte	d
O61 T	wo main measures for th	ne efficiency of an a	llgorithm are		
	cessor and memory	· ·	ty and capacity	c) Time and space	d) Data and space
	he time factor when dete	ermining the efficie			
•	nting microseconds		-	e number of key operations	
c) Cou	nting the number of state	ements	d) Counting the	kilobytes of algorithm	
a) Cou b) c) d)	The space factor when destinting the maximum mer Counting the minimum Counting the average maximum Counting the maximum Which of the following case	mory needed by th memory needed by emory needed by t disk space needed	e algorithm the algorithm he algorithm by the algorithm		
a)	=	Worst case	c) Average case		
u,	Dest case S ₁	, Worst case	c) / Weldge cust	a, itali case	
a) b) c) d)	The Worst case occur in ling litem is somewhere in the litem is not in the array at litem is the last element litem is the last element. The Average case occur in	ne middle of the arr at all in the array It in the array or is r	not there at all		
a)	When Item is somewhe				
b)	When Item is not in the		anc andy		
c)	When Item is the last ele	•			
ď)	When Item is the last el		or is not there at	all	
Q67. T	he complexity of the ave	rage case of an alg	orithm is		

6

PG DAC Feb 20 Data Structure Question Bank

Q68.	The complexity	of linear search alg	orithm is	
a) O(n)	b) O(log n)	c) O(n2)	d) O(n log n)
Q69	. The complexit	y of Binary search a	lgorithm is	
a) O(n)	b) O(log)	c) O(n2)	d) O(n log n)
Q70). The complexit	ty of Bubble sort alg	orithm is	
a) O(n)	b) O(log n)	c) O(n2)	d) O(n log n)
Q71	. The complexit	y of merge sort algo	orithm is	
a) O(n)	b) O(log n)	c) O(n2)	d) O(n log n)
	The indirect ch ernal change	-	of a variable in one inter-module cha	ne module by another module is called ange c) side effect d) side-module upda
Q73.	Which of the fo	ollowing data struct	ure is not linear da	lata structure?
a) Ar	rays	b) Linked lists	c) Both of ab	oove d) None of above
Q74. a) Tro		ollowing data struct b) Graphs	cure is linear data	structure? d) None of above
	-	of processing each of Merging	element in the list c) Inserting	t is known as d) Traversal
Q76	.Finding the loc	ation of the elemen	t with a given valu	ue is
a)) Traversal	b) Search	c) Sor	rt d) None of above
Q77.	Arrays are best	t data structures		
a)	for relatively	permanent collect	ions of data	
b)	for the size o	f the structure and	the data in the str	ructure are constantly changing
c)	for both of a	bove situation		
d)	for none of a	bove situation		
078.	Linked lists are	best suited		
a)		permanent collection	ons of data	
b)	•	•		tructure are constantly changing
c)		bove situation		and the control of th
d)	for none of a	bove situation		
Q80.	Each array dec	laration need not gi	ve, implicitly or ex	xplicitly, the information about
	e name of array	_	•	b) the data type of array
c) the	e first data fron	n the set to be store	ed	d) the index set of the array

PG DAC Feb 20 Data Structure Question Bank

Q81. The elements of an array are stored successively in memory cells because

Int main()

a) elem	by this way co ents can be calc	•	track only the addr	ess of the first element a	nd the addresses of other
b)			emory does not allo	ow arrays to store other t	han serially
c)	both of above	•	•	•	,
d)	none of above	2			
002	When is a linea	r guana said ta ba	omntu?		
	ont > rear	r queue said to be b) front = = -	• •	ear + 1	d) rear = = front + 1
u, 110	ine real	5, 11 6110	i cymone y i	Cui · I	u, real Hone : 1
Q83.	Which of the fo	lowing statement	is true regarding st	cacks and queue?	
•	•		logically as well as		
ii) mom	Linear queue ory is not allowe		vastage as reuse of		
iii)	•		ular queue is 'rear=	=front + 1'	
a) i &		b) i & iii	c) ii & iii	d) All.	
-		·			
				ted sequentially is?	
a) fro	ont = = rear	b) rear + 1	L + front c) (rea	r+1)%arraysize = = front	d) None of the these
Q85.	In a linked repre	esentation a node o	consists of which o	f the following fields?	
	ta, link, header		Only link field	c) Only data field	d) Data and link fields.
-	In case of a link				
-	rays are used to	of pointer to the n		ery linked node has a link of the above Q87.	to the next node
C) LII	iks nave a array	or pointer to the h	iext iiik. uj Ali	of the above Qo7.	
Q88.	Which of the fol	lowing is not true	regarding a singly l	inked list?	
a)	Nodes are link	ed in one direction	n		
b)	The last node	is pointing to NUL	L indicating the end	d of list	
c)	_			and traverses through ev	very subsequent nodes
d)	Address of the	e list is the addres	s of the node		
000	-				
			n takes command I	ine arguments looks like b) Int main(char	
-	nt main(int argo nt main(int argo			d) Int main(char	· · · · · · · · · · · · · · · · · · ·
Ο, .	ine iniaini(inie ar Be	,, c.i.d. d.g.[],		a) me mam(enar	arg. [], inc arge,
Q90.	Using which ma	cro, we can display	y the argument fro	m variable number of arg	ument function?
a) va		b) va_list	c) va_show	d) va_start	
001	1 , 111 .1				
	what will be the ıde <stdio.h></stdio.h>	output of the follo	owing program?		

PG DAC Feb 20 Data Structure Question Bank

```
{
       float arr[]={12.5,5.4,7.3,21.6,8.7};
       printf("%d\n",sizeof(arr)/sizeof(arr[0]));
       return 0;
}
                      b) 5
                                     c) 8
                                                           d) 20
   a) 4
Q92. What is the output of the following program?
Int main()
{
       Int j,sum;
       for( j=1, sum=0; j<5; j++)
       sum+=j;
               cout<<sum;
sum=j;
              return 0;
}
                                            c) Compilation error: undefined variable sum and j
                                                                                                       d) 6
  a) 5
                             b) 10
Q93. A program P reads in 500 integers in the range [0 to 100] representing the score of 500 students. It then
prints the frequency of each score above 50. What would be the best way for P to store the frequencies?
a) An array of 50 numbers
                                                           b) An array of 100 numbers
c) An array of 500 numbers
                                                    d) A dynamically allocated array of 550 numbers
Q94. Which is true about reference variable?
       A reference can never be null
a)
b)
       A reference once established cannot be changed
       Reference doesn't need an explicit dereferencing mechanism.
c)
d)
       All of the above.
Q95. Dynamic objects are stored in
a) Code segment
                                     b) Data segment
                                                                  c) Heap
                                                                                  d) Run time stack
Q96. What is the output of the following code? const
int a=124;
void main()
{
     const int* Sample();
          p=Sample();
int *p;
       cout<<*p;
const int* Sample()
{
       return (&a);
```


}				
a) Warning	b) compilation er	ror c) output	: 124 d) ga	rbage value
Q97. What is the size of	pointer in C++ on 32 bi	t architecture?		
	•		a variable to which	ch pointer is pointing to
Q98. Which are the mai	n three features of OOF	Planguage?		
a) Data Encapsulati	on, Inheritance and Exc	ception handling		
	/morphism and excepti	_		
	ion, inheritance and po	_		
•	eritance and polymorpl	-		
Q99. Which out of the g	iven function types can	not be declared "virtu	al"?	
a) Normal member func			Destructor	d) None of the above
Q100. Read the code car	refully			
class Base				
{				
private: int I; protected	d: int j;			
public: in	t k;			
} ;				
class Derived:public Base	e			
{				
private: int x; protecte	d: int y;			
•	t z;			
} ;				
	es , sizeof(Derived)	bytes on a 32 bi	it architecture.	
a)12,12 b) 12,16	c) 12, 24	d) 4 , 16		
0404 (1-1) 1 1				
Q101. Static_cast can be			etaa a	ما امید می مطام
a) Compile time	b) runtime	e c) linking t	time	d) both a and b
Q102. Which inheritance	e type is used in the cla	ss given below? Class		
A: public B: public C				
{				
}				
a) multi-level	b) multipl	e c) hybrid	d) hie	erarchical
Q103. Which of the follo	wing operators cannot	be overloaded?		
a) [] b) -		d) *		
Q104. Which of the follo	owing STL Container wi	II store the elements i	n adjacent memo	ry locations?
a) Vector	b) list	c) set	d) map	

Q105. Which of the following statement is incorrect regarding inline functions? b) It slows down execution a) It speeds up execution c) It increases the code size d) A function can be inline without inline specifier. Q106. Which of the following is not a member of class? a) Static function b) friend function c) constructor d) virtual function Q107. In which operator overloading, compiler implicitly passes a dummy integer as an argument? a) Post increment / decrement operator b) Pre increment / decrement operator c) Both the above d) None of the above Q108. Which of the following is correct statement regarding abstract class? a) Abstract class object can't be created b) Pointer to abstract class can be created c) Reference to abstract class can be created d) All of the above Q109. During inheritance which of the following is not inherited? a) Friend function b) Constructor c) Overloaded = operator d) All of the above Q110. What is the output of the following program? class myclass { public: static int counter; **}**; void main() cout<<myclass::counter; } a) Output 0 b) Compilation error c) Linking error d) Output garbage value Q111. What is the primary purpose of template function? To allow a single function to be used with varying types of arguments a) b) To hide the name of the function from the linker (preventing duplicate symbols) c) To improve execution speed of the program To enable better debugging d) Q112. Which of the following data structure may give overflow error, even though the current number of element in it is less than its size? a) Simple queue b) Circular queue c) Primary queue d) Stack Q113. The most appropriate matching for the following pairs: a) Bubble sort 1) O(nlog(n)) b) Insertion sort 2) O(n)

Quick sort

c)

3) O(n^2)

PG DAC Feb 20 Data Structure Question Bank

a) a=1 b=2 c=3	b) a=3 b=1 c=2	c) a=3 b=	2 c=1	d) a=2 b=3 c=1
Q114. In a binary tree, cert tree for efficiency. These sp	•		inters which point	to nodes higher in the
a) root	b) node	c) branch	d) thread	
Q115. a binary search tree v	whose left subtree and	d right subtree diffe	r in height by at m	ost one unit is called.
a) AVL tree	b) Red-black tree	c) Lemma	tree	d) None of the above
Q116 algori	thm is not an example	of divide and conq	uer rule.	
a) Quick sort	b) bubble sort	c) merge	sort d) bir	nary search
Q117. Which of the followir	ng stack operations co	uld result in stack u	nderflow?	
a) Push	b) pop	c) is_full	d) none of th	ne above
Q118. Which of the followir	ng sorting algorithm há	as the worst time co	omplexity of nlog(r	1)?
a) Heap sort	b) Insertion sort	c) Selection	on sort d) Bu	cket sort
Q119. The number of binary	y trees with 3 nodes w	hich when traverse	d in post order giv	res the sequence A, B , C is
a) 3	b) 5	c) 7	d) 9	
Q120. A binary tree that ha	s n leaf nodes, all at sa	ime level. The numl	ber of non-leaf no	des in such tree is
a) n-1	b) log(n)	c) 2n	d) 2n-1	
Q121. Queue can be used to	o implement			
a) Recursion	b) Breadth-	first search c)	Depth – first sear	ch d) None of these
Q122. Which design patterr	n is used in Exception I	nandling mechanisn	n?	
a) Chain of responsibility	/	, ,	eter pattern	
c) Builder pattern		d) Adapte	er pattern	
Q123. Which design patter		nit the class instant	iation to one obje	ct?
a) Factory method design p		b) Builder design	•	
c) Prototype design patterr	1 d)	Singleton design pa	attern	
Q124. The object which out known as	lives the program exe	cution time and exi	sts between execu	itions of the program is
a) Global object b) pe	ersistent object	c) transient objec	ct d) de	legate object
Q125. Which design patterr interface?	n you would use to tra	nslate an existing cl	ass interface into	a compatible target
a) Proxy design pattern		b) Adapte	er design pattern	

d) Bridge design pattern

c) Façade design pattern

PG DAC Feb 20 Data Structure Question Bank

Q126	. The adapter, bri	dge and comp	oosite design pa	atterns are	examples of			
•	eational pattern			b) :	Structural patter	n		
c) Bel	havioral pattern			d)	nteraction patter	'n		
Q127	. Communication	diagram, seq	uence diagram	and timing	diagram can all b	e catego	orized as	
a) B	ehavior diagram		b) Structure di	iagram	c) Activity dia	agram	d) Interaction	diagram
Q128 a) Tr ı	. Linked link are n u e å	ot superior to o) False	STL vectors					
Q129 a) Tr ı	. Deleting a node ue k	in a linked lis ^a b) False	t is a simple ma	tter of usin	g the delete oper	rator to f	ree the node's	memory
Q130	. The advantage o	of link list over	array is					
a)	Link list can gro	w and shrink	in size during t	the time				
b)	Less space is re	quired for sto	ring elements					
c)	Both 1 and 2 are	e correct						
d)	None of the abo	ove						
Q131	. Which one of th	e following al	gorithm is NOT	an example	e of Divide and co	onquer te	echnique	
a) Qu	ick Sort	b) Mei	rge Sort	c) Bubble	Sort	d) Bina	ary Search	
	. The inorder trav ame tree produce AECF		ce DEBFCA. Wh		ollowing is correc		ler transversal s	
Q133	. How many cycle	s should be co	ontained in a tr	ee?				
a) (c) any number		f the above			
Q134	. If graph G has no	edges then	corresponding a	adjacency n	natrix is			
a) ເ	unit matrix	b) zero	matrix	c) matrix v	vith all 1's	d) Nor	ne of the above	
	. What is not true		•	_				
•	is easier to progra		b) It may inclu					
-	equires space for			d) All are t	rue			
	. In an adjacency	matrix paralle		-		_	al) Ni a a a Cula a	-1
a) Sir	milar columns		b) Similar row	s c) ľ	Not representable	9	d) None of the	above
Q137	. The element at t	the root of he	ap is					
a)	Largest							
b)	Smallest							

Depending on type of heap it may be smallest or largest

c)

PG DAC Feb 20 Data Structure Question Bank

d) None of the above

```
Q138. The end at which a new element gets added to queue is called
 a) Front
                  b) Rear
                                         c) Top d) Bottom
Q139. If we traverse a following tree in Pre order then what will be traversal
a)
       ABDGCEHIF
                             b) ABDGHEICF
                                                   c) ABDGFCIEH
                                                                          d) None of the above
Q140. A graph is said to be a tree, if it satisfies which of the properties
a) If it is connected and there are no cycles in the graph.
       If it is not connected and there are cycles in the graph
b)
c)
       If it connected and there are cycles in the graph
       None of the above
d)
Q141. Hashing refers to the process of deriving
a) A record key from storage address
                                                           b) Storage address from a record key
c) A floating-point code from a record key
                                                           d) None of the above
Q142. The inorder traversal of some binary tree produces the sequence DBEAFC, and the postorder traversal of
the same tree produced the sequence DEBFCA. Which of the following is a correct preorder traversal sequence?
                                     c) ABDECF
                                                    d) None of the above
a) DBAECF
              b) ABEDFC
Q143. What is not true for linear collision processing?
a) It is easier to program
                                             b) It may include more collision
c) It requires space for links
                                             d) All are true
Q144. In an adjacency matrix parallel edges are given by
a) Similar columns
                                     b) Similar rows
                                                           c) Not representable
                                                                                         d) None of the above
Q145. What is the output of the following program?
#include<iostream> using
namespace std; enum
test
{
       A=32, B, C;
};
int main()
{
       cout<<A<<","<<B<<","<<C;
       return 0;
}
a) 32, 32, 32
                                                   c) 32, 31, 30
                                                                          d) None of the above
                             b) 32 ,33 , 34
```

Q146. A dynamic data structure where we can search for desired records in O(log2n) time is

PG DAC Feb 20 Data Structure Question Bank

a) heap b) binary search tree c) circularly linked list d) array Q147. We can efficiently reverse a string using a a) linear queue b) circular queue c) stack d) doubly linked list Q148. Deleting a node in a linked list is a simple matter of using the delete operator to free the node's memory. a) True b) False Q149. The inorder traversal of some binary tree produces the sequence DBEAFC, and the postorder traversal of the same tree produced the sequence DEBFCA. Which of the following is a correct preorder traversal sequence? a) DBAECF b) ABEDFC c) ABDECF d) None of the above Q150. What is not true for linear collision processing? a) It is easier to program b) It may include more collision c) It requires space for links d) All are true Q151. In an adjacency matrix parallel edges are given by a) Similar columns b) Similar rows d) None of the above c) Not representable Q152. Suppose the numbers 6, 4, 2,9,5,7,0,3,1 are inserted in that order into an initially empty binary search tree. The binary search tree uses the usual ordering on natural numbers. What is the inorder traversal sequence of the resultant tree? Select one: a) 796103254 b) 103254796 c) 790123456 d) 0 1 2 3 4 5 6 7 9 Q153. Two main measures for the efficiency of an algorithm are a) Data and space. b) Processor and memory c) Complexity and capacity d) Time and space Q154. The complexity of the average case of an algorithm is a) Much more complicated to analyze than that of worst case b) Much more simpler to analyze than that of worst case Sometimes more complicated and some other times simpler than that of worst case d) None or above c) Q155. The time factor when determining the efficiency of algorithm is measured by a) Counting microseconds b) Counting the number of key operations, c) Counting the number of statements d) Counting the kilobytes of algorithm

Q156. The space factor when determining the efficiency of algorithm is measured by

- a) Counting the maximum memory needed by the algorithm
- **b)** Counting the minimum memory needed by the algorithm
- c) Counting the average memory needed by the algorithm
- d) Counting the maximum disk space needed by the algorithm

PG DAC Feb 20 Data Structure Question Bank

Q157. Which of the following case does not exist in complexity theory

a) Best case	b) Worst case	c) Average ca	se d) Null cas e	2	
Q158. The running tim a) O(n log n)	ne of insertion sort is b) O(log n)	c) O(n)	d) O(n^2)		
Q159. Which of the fo a) Quick sort	llowing sorting procedure b) Merge sort	is the slowest? c) Bubble sor	't d	l) Heap sort	
Q160. The correct ord time comparisons is	er of the efficiency of the f	following sorting a	algorithms acc	ording to their overall rur	nning
a) bubble>selection>i c) Merge=Quick=Hea		o) Insertion>selection I) none above	tion>bubble		
	ratively passes through a l a new first element is call b) sele		e first elemen	t with any element less tl	han it
Q162. The way a card a) Quick sort	game player arranges his o	cards as he picks t c) Selection so		ne can be compared to rge sort	
Q163. Which among t a) Merge sort	he following is the best wh b) Quick sort	en the list is alrea		d) Selection sort	
Q164. Which of the fo a) Bubble sort	llowing sorting algorithm i b) Insertion		onquer type? ck sort	d) All of above	
Q165. An algorithm th a) Sub algorithm	at calls itself directly or inc b) Recursio			d) Traversal algorithm	
Q166. Representation a) recursive	of data structure in memo	-	age structure	d) file structure	
	ed to be a mathematical mions on that model.	odel of a user-de	fined type alo	ng with the collection of a	all
a) Cardinality	b) Assignme	ent c) Prin	nitive	d) Structured	
algorithm is in the ord					ies of the
a) f(n) x g(n)	b) Max (f(n),g(n))	c) Min	(f(n),g(n))	d) f(n) + g(n)	

Q169. As part of the maintenance work, you are entrusted with the work of rearranging the library books in a shelf in proper order, at the end of each day. The ideal choice will be

PG DAC Feb 20 Data Structure Question Bank

a) Bubble sort

b) Quick sort

c) Insertion sort

d) Selection sort

Q170. The running time of merge sort can be recursively represented by

a) T(n)=2T(n/4)+n

b) T(n)=2T(n/2)+n

c) T(n)=2T(n/2)+2

d) T(n)=2T(n/3)+n

Q171. You have a sorted array and now you are given an element to be placed in that array so that the resulting array is also sorted, the best sorting technique in this case is

a) Bubble sort

b) Selection sort

c) Insertion sort

d) Merge sort

Q172. The input to a merge sort is 6,5,4,3,2,1 and the same input is applied to quick sort then which is the best algorithm in this case

a) Merge sort

b) Quick sort

c) Cannot be decided

Q173. The memory available for storage is less, in this case if you want to sort the data which is the better approach amongst the following

a) Merge sort

b) Quick sort

c) Heap sort

d) All

Q174. Arrange heap sort, merge sort and quick sort in the order of their space complexity

a) heap>merge>quick

b) quick<heap<merge

c) merge>quick>heap

d) none

Q175. One of the reason why quick sort is better compared to other sorts is

a) its running time is O(n)

b) its space complexity is theta(log n),

Q176. The running time of quick sort largely depends on

a) arrangement of elements

b) selection of pivot element

c) small list,

d) none

Q177. The running time of heapify is given by

a) T(n) = T(2n/3) + Omega(1)

b) T(n) = T(2n/2), T(n) = T(2n)

c) None

Q178. Which of the following statements are right about radix sort?

a) LSD radix sort is a stable sort

b) MSD radix sort is a stable sort

c) None.

Q179. LSD radix sort is applied on the following set of numbers: 21,86,124,33,29,163. What will be the order of numbers just before the MSD is considered?

a) (21,29,86,33,124,163)

b) (21,124,29,33,163,86)

c) (21,29,124,163,33,86)

Q180. The worst case time and worst case space complexity of radix sort is:

a) O(k*lg (N))

b) O(N^2)

c) O(k*N)

Q181. The Worst case occur in linear search algorithm when

a) Item is somewhere in the middle of the array,

b) Item is not in the array at all

c) Item is the last element in the array,

PG DAC Feb 20 Data Structure Question Bank

d) Item is the last element in the array or is not there at all

When Item is somewhere in the middle of the array.

When Item is the last element in the array or is not there at all.

Q182. The Average case occur in linear search algorithm

When Item is the last element in the array.

For relatively permanent collections of data

When Item is not in the array at all.

Q183. Arrays are best data structures

a) b)

c)

d)

a)

•	the size of the			structure ar	e constantly		
	c) for both of ak ne of above situa		ı				
Q184. Eac	h array declarat	ion need not	give, implicitly o	or explicitly,	the informatio	n about	
a) The nai	me of array				b) The data typ	oe of array	
c) The firs	t data from the	set to be sto	red		d) The index se	et of the array	
Q185. Wh	ich of the follow	ving data stru	ctures are index	ked structure	es?		
a) linear a	arrays b)	linked lists	c) both of abov	re d) none	e of above		
Q186. Wh	ich of the follow	ving is not the	e required condi	tion for bina	ary search algor	ithm?	
a) Th	e list must be so	orted, there s	hould be the dir	rect access t	o the		
middle el	ement in any sul	b list					
b) Th	ere must be me	chanism to d	elete and/or in:	sert elemen	ts in		
list c) no	ne of above						
	ich of the follow						
	rays are dense li						
-	ta elements in li			in adjecent s	space in memo	ry	
	inters store the						
d) lin	ked lists are coll	ection of the	nodes that cont	ain informa	tion part and n	ext pointer	
∩188 Bin	ary search algor	ithm cannot	he annlied to				
	linked list		sorted binary t	rees	c) sorted linear	r arrav	d) pointer array
.,			, , .		,	,	, p
Q189. The	e extra key inser	ted at the en	d of the array is	called a,			
a) End key	/.	b) Stop k	ey. c) :	Sentinel.	D) Tran	sposition.	
Q190. The	e goal of hashing	s is to produc	e a search that t	akes			
a) O(1) tir	ne	b) O(n2)	time c)	O(log n) tim	ie	d) O(n log n) t	ime
Q191. The	e largest elemen	t of an array	index is called it	S			
a) lower b	ound.	b) range.	c) uppe	er bound.	d) All of these.	

Q192. When new dat usually called	a are to be inserted into a	data structure, but th	ere is no available sp	pace; this situation is
a) underflow	b) overflow	c) house full	d) saturated	
Q193. Which of the formal grounded header I c) linked list with hea		b) circular heade		
Q194. Which of the fo	ollowing name does not re b) LIFO list	elate to stacks? c) Piles	d) Push-down li	sts
Q195. A data structura) Linked lists	re where elements can be b) Stacks	added or removed at c) Queues	either end but not in d) Deque	the middle
Q196. Identify the da a) Input-restricted de c) Priority queues	ta structure which allows eque		-restricted deque	ion at only one end.
	ollowing data structure is Lists c) Stacks	non-linear type? d) None of above		
Q198. What is the p	oostfix form of the following	ng prefix *+ab-cd		
a) ab+cd-*	b) abc+*-	c) ab+*cd-	d) ab+*cd-	
Q199. The situation a) underflow	when in a linked list STAF b) overflow	T=NULL is c) house full	d) saturated	
				.
Q201. In list impleme a) the data	ntation, a node carries inf b) the link		and the data	d) non above
Q202. The link field in a) Zero value c) Pointer to the next	n the last node of the linke element location	ed list contains b) link to the firs d) all above	st node	
Q203. To delete a no	de at the beginning of the the list		e list is modified as th first element in the l	

d) no element

c) last element in the list

Q204. A linked list	in which the last no	de points to the firs	t is called a		
a) Doubly linked lis	it b) Circular list c) Ger	neralized list	d) reveres list	
Q205. A doubly lin	ked list facilitates lis	st traversal in			
a) Any direction	b) Circular direction	c) Either dire	ction	d) no direction
Q206. In the linked	l list representation	of the stacks, the to	pp of the stack is repre	sented by	
a) the last node	b) any of	f the nodes	c) first node	d) non above	
a) Coefficient	onsists of three field , exponential and li em link, data item an	nk b) Coefficier	nt, data item and the li d) only exponential		
	_	offers considerable	-		
a) Computational tc) Space utilization	ime n as well as comput	ational time.	b) Space utiliz d) all above	zation	
,,,,,					
Q209. Whether a l	ist is full or empty is ation b	given by the) The length of the l	ist c) The size of	the list	d) zero value
•		onship between eler) Tree	nents, which data stru d) All of above	cture is suitable	??
Q211. The depth o	f a complete binary	tree is given by			
a) Dn = n log2n	b) Dn = n log2n+1	c) Dn = log2n		d) Dn = log2n+1
Q212. When inord	er traversing a tree	resulted E A C K F H	D B G; the preorder tr	aversal would r	eturn
a) FAEKCDBHG	b) FAEKCDHGB	c) EAFKHDCB	G d) FEA	KDCHBG
Q213. The post ord a) ABFCDE b) ADBI		nary tree is DEBFCA. c) ABDECF	Find out the pre order d) ABDCEF	r traversal	
·	ree, certain null ent se special pointers a	•	special pointers which	n point to nodes	s higher in the tree
•) branch	c) path	d) thread		
Q215. The in order a) Binary tree		ill yield a sorted listiny search trees	ng of elements of tree c) Heaps		e of above
· · · · · · · · · · · · · · · · · · ·	=	•	v in G, A graph is said	to be	
a) isolated b) c	omplete c) finite d) stro	ongly connected		

PG DAC Feb 20 Data Structure Question Bank

Q217. A binary tree of depth "d" is an almost complete binary tree if

a) Each leaf in the tree is either at level "d" or at level "d-1"

a) Complete Binary Tree

b) For any node "n" in the tree with a right descendent at level "d" all the left descendents of "n" that are leaves, are also at level "d" d) **Both a & b**

c)	None of the a	above				
Q218	. The degree of	a node in a gene	eral tree can be	9		
a) ma	ximum two	b) two	c) more t	han two	d) zero	
Q219	. In an ordered	tree the left mos	st son is the			
a) old	est son	b) younges	t son	c) left son	d) None of the	above
Q220	. An element o	f a tree is called a	l			
a) no	de	b) root	c) leaf			
	. The node whi	ch gives rise to th	ne branch node b) grandfather		e c) root node	
	. Going from le versing	aves to the root	s called b) descending		c) climbing	
	. A binary tree rictly binary tr		on-leaf node habilities b) complete bi		y right and left subtrees c) almost com	is said to be a plete binary tree
Q224	. In the inorder	tree traversal th	e root is visited	d		
a) bef	ore left subtre	e visit	b) in between	subtree visit	s c) before right	subtree visit
Q225 a) b) c)	no link field info, left, righ	tial representation of and father field data and the poir	ds	·	tation each node of the t	ree will have:
٠,	tinee neids, t	data and the pon	iters to left and	a right sabtiv		
Q226 a) noo			ation of a grap c) direction of		ntain information of : arallel edges	
Q227 a) Sta		•	h, which of the c) Linked List.	_	ata structure is used? he above.	
	. The binary tre ed tree	e in which the do	escendent poir b) threaded tr		cestor is called? c) pointer tree	
Q229	. A binary tree	whose every nod	e has either ze	ero or two ch	ildren is called:	

b) Binary Search Tree

21

PG DAC Feb 20 Data Structure Question Bank

c) None of the Above

d) Extended Binary Tree

```
Q230. What is the output of the following program?
#include <iostream>
int main()
{
char arr[20];
int I;
for(i=0;i<10;i++)
*(arr+i)=65+1;
*(arr+i)='\0';
cout<<arr;
return(0);
Select one:
a) มมมมมม
                      b) ABCDEFGHIJ
                                                     c) None of these
                                                                                   d) AAAAAAAAA
Q231. What is the running time of the following code fragment?
for (int i=0; i<10; i++) for
(int j=0; j<N; J++) for (int
k=N-2; k<N+2; K++)
   cout<<in<<" "<<j<end
                                      c) O (N<sup>2</sup>)
                                                     d) O (N log N)
a) O (log N)
                      b) O (N)
Q232. The initial configuration of the queue is a, b, c, d (a is the front end). To get the configuration d, c, b, a one
needs a minimum of?
   a) 2 deletions and 3 additions
                                                                    b) 3 deletions and 4 additions
   c) 3 deletions and 2 additions
                                                                    d) 3 deletions and 3 additions
Q233. What is the infix version of the following postfix expression? X12+z17Y +42*/+
a) x+12+z/(17+y)*42
                                                                    b) x+12+z ((17+y)*42
c) x+12+z/17+y*42
                                                                    d) x+12+z/ (17+Y*42)
Q234. Linked lists are not used in:
a) Linker
                    b) OS
                                     c) None of these
                                                                      d) Compiler
Q235. The balance factor for an AVL tree are:
a) 0, 1, or -1
                              b) All of these
                                                     c) 1, 2 or 3
                                                                            d) 0, 1 or 2
Q236. Suppose we have the following class whose underlying data structure is a linked list of of
List nodes.
class List{
```


public:

a) O(log n)

b) O(n)

c) O(1)

d) O(n log n)


```
//other public functions
~List();
private: struct
Listnode{ int
item; List
node *next;
};
ListNode*head;
};
Q237. Which of the following sequence of code could be used in the destructor~List () to correctly delete all of
the nodes in the list? (Which ones are legal, even if the style is atrocious?)
       for(ListNode*n=head;head!=NULL;head=n){    n=head->next;
١.
delete head;
}
II.
       for (ListNode *n=head;n!=NULL;n->next){ delete n;
}
       ListNode*n;
III.
Q238.
while(head!=NULL){ n=head-
>next; delete head;
head=n;
                              b) III only
                                                    c) II and III only
                                                                                  d) and III only
a) I and II only
Q239. Find the output of the following program?
Main ()
int x=20, y=35;
x=y+++x;
cout<<x<<y;
a) 56, 91
                      b) 55, 90
                                             c) 57, 94
                                                                   d) 57, 92
Q240. The numbers of swapping needed to sort the numbers 25,23,21,22,24 in ascending order using bubble sort
is:
a) 12
                    b) 20
                                   c) 6
                                                  d) 13
Q241. What is the expected time required to search for a value in a binary search tree containing n nodes? (You
should make reasonable assumptions about the structure of the tree.)
```

PG DAC Feb 20 Data Structure Question Bank

		nary tree are a b c a f c	e g and a b d e c f g, Respectively. The
postorder traversal of th a) d e b f g c a	b) e d b g f c a	c) e d b f c a	d) d e f b c a
a, a e b i g e a	b) c a b g i c a	c, c a b i c a	a, a c + 5 c a
Q243. Which one is not a	a type of a queue:		
a) Non-liner Queue	b) Circular queue	c) Deque	d) Priority Queue
Q244. Consider the follo	wing C		
declaration struct{ sh	ort s[5]		
union{ float y; l	ong z; }u; }t:		
Q245. Assume the objec	ts of type short, float an	d long occupy 2 byte, 4	byte and 8 byte respectively. The
memory requirement fo	r variable t ignoring aligr	nment considerations is	
a) 14 byte b) 22 b	yte c) 18byte	e d) :	10byte
Q246. In a complete bina	ary tree of 'n' levels ,the	re are:	
a) 2n-1leaves and 2n n	ion-leaf nodes	b) 2 ⁿ leav	es and 2^n-1 non-leaf nodes
c) n^2leaves and n^2-	1 non-leaf nodes	d) 2^n-1lea	aves and 2 ⁿ non-leaf nodes
Q247. Which is not a so	orting technique:		
a) Merge sort	b) Radix sort	c) Quick sort	d) Poll sort
O249. The way a cord of	ama playar arrangas his	cords as he misks them	un ana hu ana is an ayamnla af
a) insertion sort	b) merge sort	c) selection sort	up one by one, is an example of the distribution of the distributi
dy miscreton sort	b) merge sort	e, selection son	a, sussic 3010
Q249. Which one is the s			
a) Strut	b) Tree c) L	inked List	d) Array
Q250. A class template i	n C++ has the following s	structure	
template <class t=""> class</class>	_		
}			
, Ω251 What is the mean	ing of T in the above pro	gram?	
a) It must be an integer of		b) It is a string	variable
c) It is a placeholder for a		,	holder for a pointer value
Q252. In double order tr		h) Ombress	made is visited to vise
a) Every node is visited cc) Some node are visite		b) Only root d) Every node is v	node is visited twice
c, Some node are visite	, a twice	u, Every Houe is v	isited twice


```
#include<iostream>
using namespace std;
int main ()
{
int i;
 char*art [] = {"C","C++","JAVA","VBA"};
char *(*ptr)[4] = &arr;
char<<++ (*ptr) [2];
 return 0;
}
a) Java
                                                                    d) compile time error
                      b) C++
                                             c) ava
Q254. In recursion which data structure is used:
a) Tree
                b) Linked List
                                                                       d) Stack
                                                 c) Array
Q256. Which of the following operators cannot be overloaded?
a) =
                    b) ->
                                           c) ::
                                                                 d) ==
Q257. The postfix equivalent of the infix 4 $2*3-3+8/4(1+1) is
a) 42$3*3-8/411+/+
                                                     b) 42$3*3-84/11+/+
                                                     d) 42$3*3-84/11++/
c) 42$33*-84/11+/+
Q.258) Stack is also called as
a) First in first out
                           b) First in last out
                                                     c) Last in last out
                                                                                d) Last in first out
Q.259) Any node is the path from the root to the node is called
a) Ancestor node c) Successor node
                                          c) Internal node
                                                                     d) None of the above
Q.260) Which of the following is not the type of queue?
a) Priority queue b) Circular queue
                                          c) Single ended queue
                                                                     d) Ordinary queue
Q.261) A graph is a collection of nodes, called ..... And line segments called arcs or ..... that connect pair of
nodes.
a) vertices, paths
                           b) vertices, edges
                                                     c) graph node, edges
                                                                                     d) edges, vertices
Q.262) In ......, search start at the beginning of the list and check every element in the list.
a) Binary search
                          b) Hash Search
                                                c) Linear search
                                                                     d) Binary Tree search
Q. 263) In the ...... traversal we process all of a vertex's descendants before we move to an adjacent vertex.
a) Depth Limited
                           b) With First
                                          c) Breadth First
                                                                d) Depth First
Q. 267) To represent hierarchical relationship between elements, Which data structure is suitable?
a) Graph
                                                                          d) Priority
                          b) Tree
                                                c) Dequeue
```

PG DAC Feb 20 Data Structure Question Bank

Q.268) Which of the	e following data stru	cture is linea	ar type?			
a) Stack	b) Graph	c) rees	d) Bi	nary tree	!	
O 269) Herder node	e is used as sentinel i	n				
a) Queues	b) Stacks		c) Graphs	d)		
Binary tree	D) Stacks	`	o, Grapiis	۵,		
-	e following data stru	cture can't s	tore the no	nhomog	eneous data ele	ements?
a) Arrays	b) Stacks				of the above	
Q.271) A binary sea	rch tree whose left s	subtree and	right subtre	ee differ i	in hight by at mo	ost 1 unit is called
a) Lemma tree	b) Redblack tr		c) AVL tree		d) None of the	
Q.272) is a pile	in which items are a	dded at one	end and re	emoved f	rom the other.	
a) List	b) Queue	(c) Stack			
d) Array						
Q.273) Which of the	e following is non-lin	ear data str				
a) Trees	b) Stacks	c) Strings	d) Al	l of the a	bove	
O 274) The contract	(
•	of comparisons don				(N. 2) /2	
a) (N/2)+1	b) (N+1)/2		c) (N-1)/2	a) ((N-2)/2	
Ω 275) is not th	e operation that car	he nerform	ned on que	IE.		
a) Traversal	b) Insertion	i de periorni	c) Deletion		d) Retrieval	
a, maversar	b) macraon		c, Deletion		a, netrevar	
Q.276) Which is/are	the application(s) o	f stack				
a) Function calls			rge numbe	r Arithme	etic	
c) Evaluation of arit	hmetic expressions		d) All of th			
Q.277) Which of the	e following data stru	ctures are in	idexed stru	ctures?		
a) Stack	b) Linked lists	c) Li	near arrays	d) N	lone of the abov	ve
Q. 278) Which of th	e following data stru		_		lata elements?	
a) Lists	b) Pointers		c) Records	5	d) Arrays	
0.070)						
	s are also called	(1- all-all-a		-\ 11 · -		-1\ All - C.L L
a) One-dimensiona	l array b)	Vertical arra	У	c) Horizo	ontal array	d) All of the above
O 280) A does	not keep track of ac	drace of ave	arv alaman	t in the li	c†	
•	Queue c) String		near array	t iii tiic ii.	3t.	
a, stack b) C	cacac cj Stillig	u, Li	car array			
Q.281) The complex	ity of linear search a	lgorithm is				
· · · · · ·	-	_	d) O(n log	n)		

PG DAC Feb 20 Data Structure Question Bank

		F G DAC I	reb 20 Data Sti	ucture Question be	alik
Q. 282)	The com	plexity of Binar	y search algorithm	n is	
a) O(n))	b) O(log n)	c) O(n2)	d) O(n log n)	
Q.283)	The com	plexity of Bubb	le sort algorithm i	S	
a) O(n))	b) O(log n)	c) O(n2)	d) O(n log n)	
Q.284)	The com	plexity of merg	e sort algorithm is	;	
a) O(n))	b) O(log n)	c) O(n2)	d) O(n log n)	
Q.285) a) b) c) d)	Counting Counting Counting	the maximum the minimum r the average me	memory needed memory needed b emory needed by	y the algorithm	measured by
Q.286)	The ope	ration of proces	sing each elemen	t in the list is known as	
a) Trav	ersal/	b) In:	serting	c) Merging	d) Sorting
•	Binary ti		ls are called as vinter trees		d) None of the above

c) Last nodes

d) Terminal nodes

Q.288) In Binary trees nodes with no successor are called.....

b) Final nodes

a) End nodes

	PG DAC Feb 20 1	Data Structu	re Question	Bank
Q.289 The depth	of a complete binary	tree is given b	У	
a) Dn = n log2n	b) Dn = n log2i	n+1 c) [On = log2n	d) Dn = log2n+1
Q.290) Every node a) Predecessor	N in a binary tree T e b) Antecedent	•	has a unique p Precursor	arent called the of N. d) None of the above
Q.291) The in order a) Merging	traversal of tree will b) AVL Trees	•	_	ents of tree in) Binary search trees
Q.292) A binary tre a) Extended binary c) Binary Search tre	•	has either zero ete binary tree isjoint tree	or two childre	n is called
Q.293) The post ord a) ABFCDE	ler traversal of a bina b) ADBFE		CA. Find out th	ne pre order traversal d) ABDCEF
a) Prefix, infix, post	ards ways of traversi fix traversal, post-traver	b) F	Pre-process, in	 -process, post-process r, in-order, post-order
Q.295) A technique a) Hashing	for direct search is_ b) Tree Search	c) Binary Sea	rch d) Linear Search
Q.296) If a node ha a) Preorder predec c) Inorder successo		leleted from a l norder predece reorder succes	ssor	s replaced by its
Q.297) A full bina	ry tree with 2n+1 noo	des contain		
a) n leaf nodes	b) n non-leaf nodes	c) n-1 le	af nodes	d) n-1 non-leaf nodes
Q.298) A full binar	y tree with n leaves o	contains		
a) n - 1 nodes	b) log2n nodes	c) 2n – 1 nod	es d) 2n nodes
Q.299) The smalle	est element of an arra	y's index is call	led its	
a) extraction	b) range	c) lower bou) upper bound
Q.300) The data str	ucture required for B	readth First Tra	aversal on a gr	aph is
a) queue	b) stack	c) array	d) Non	e of the above

Q.301) One can convert a binary tree into its mirror image by traversing it in

d) None of the above

a) Graph

b) Stacks

c) Lists

PG DAC Feb 20 Data Structure Question Bank

Q.315 In a qu respectively.	eue, the initial value	s of front pointer f r	are pointer r shoul	d be and
a) 0 and 1	b) 0 and -1	c) -1 and 0	d) 1 and 0	
Q.316) There is an eal Sentinel			ed a List header	
Q.317) The property a) The root cannot o c) The second subtre	•	•	ubset is called left s ight subtree can b	
Q.318) When new d		d into a data structu	ure, but there is not	t available space; this situation is
a) overflow	b) Underflow	c) housefull	d) memoryfull	
-	ure where elements	can be added or re	moved at either en	d but not in the middle is called
a) stacks	b) queues c) d	lequeuer d)	linked lists	
	ointers to refer elem ueue c) pointe		cure in which eleme	ents are logically adjacent is
•	n algorithm cannot b b) sorted linear arr		d binary trees	d) sorted linked list
Q.322) is the a) Quick b) H			x sort	
Q.323) Which of the a) Avail=Top	e following condition b) Null=Avail	s checks available fi	ree space in avail lis d) Avail=Max st	
Q.324) Which of the a) Priority queue b)	e following is not the Circular queue	type of queue? c) Ordinary o	queue d) Si n	gle ended queue
Q.325) is a dir	ected tree in which o	outdegree of each n	ode is less than or	equal to two.
a) Binary tree	b) Dinary tree	c) Unar	y tree	d) None of the above
Q.326) The number a) (N/2)-1	of comparisons done b) (N+1)/2	e by sequential sear c) (N-1)/2	ch is d) (N+2)/2	
Q.327) In, searc	_	_	•	
a) Hash Search	b) Binary search	c) Linear sea	r ch d) Bii	nary Tree search

PG DAC Feb 20 Data Structure Question Bank

Q.328 The operation that combines the element is of A and B in a single sorted list C with n=r+s element is called...... a) Sharing d) None of the above b) Merging c) Inserting Q.329) Which of the following is an internal sorting? a) 2-way Merge Sort b) Tape Sort c) Merge Sort d) Tree Sort Q.340) Which of the following is an external sorting? a) Merge Sort b) Tree Sort d) Insertion Sort c) Bubble Sort Q.341) is the term used to insert an element into stack? a) Push b) Pull c) Pop d) All of the above Q.342) is the term used to delete an element from the stack? a) Push d) All of the above b) Pull c) Pop Q.343) Before inserting into stack one must check the condition....... a) Overflow b) Underflow d) Existing elements c) Maximum elements Q.344) Deletion in the linked stack takes place by deleting....... a) Beginning of the list b) End of the list d) Node pointed by the start process. c) Middle of the list Q.345) The value of REAR is increased by 1 when...... a) An element is merged in a queue b) An element is added in a queue c) An element is traversed in a queue d) An element is deleted in a queue Q.346) The operation of processing each element in the list is known as..... a) merging b) traversal c) inserting d) sorting Q.347) Sequential representation of binary tree uses....... a) Array with pointers b) Single linear array c) Two dimensional arrays d) Three dimensional arrays Q.348) In a 2-tree, nodes with 0 children are called...... a) Outer node b) Exterior node d) Outside node c) External node Q.349) In a extended-binary tree nodes with 2 children are called....... a) Inner node b) Internal node c) Domestic node d) Interior node Q.350) The line drawn from a node N of tree T to a successor is called a) Route b) Arrow c) Edge d) Path

PG DAC Feb 20 Data Structure Question Bank

Q.351 Which of the following sorting algorithms does not have a worst case running time of O(n2)? b) Quick sort c) Bubble sort d) Merge sort a) Insertion sort Q.352) In a circular linked list there is no beginning and no end. a) b) components are arranged hierarchically. c) forward and backward traversal within the list is permitted. d) components are all linked together in some sequential manner. Q.353) The quick sort algorithm exploit ______ design technique a) Overflow b) Backtracking c) Dynamic programming d) Divide and Conquer Q.354) The data structure required to check whether an expression contains balanced parenthesis is a) Stack b) Queue c) Tree d) Array Q.355) What data structure would you mostly likely see in a nonrecursive implementation of a recursive algorithm? a) Trees b) Linked list c) Stack d) Queue Q.356) The number of leaf nodes in a complete binary tree of depth d is b) 2d-1+1 c) 2d+1+1 d) 2d+1 a) 2d Q.357) The pre-order and post order traversal of a Binary Tree generates the same output. The tree can have maximum a) One node b) Two nodes c) Three nodes d) Any number of nodes Q.358) A binary tree of depth "d" is an almost complete binary tree if Each leaf in the tree is either at level "d" or at level "d-1" a) For any node "n" in the tree with a right descendent at level "d" all the left descendents of "n" that are b) leaves, are also at level "d" c) Both (A) & (B) d) None of the above Q.359) In a binary tree a sequence of consecutive edges is called a) Path b) Rotate c) Two-way d) Connecting lines Q.360) An adjacency matrix representation of a graph cannot contain information of: a) nodes b) edges c) parallel edges d) direction of edges Q.361) is not the operation that can be performed on queue. a) Traversal b) Retrieval c) Deletion d) Insertion

Q.362) A linear list in which the last node points to the first node is

PG DAC Feb 20 Data Structure Question Bank

b) The link field of the first node

d) The link field of the prior node

Q.371 The link field of last node, in a singly link list representation is linked with

a) The data field of the first node

c) A null