SENSIBILIDAD: EJERCICIO 2

¿Le interesa a la empresa el fabricar un nuevo tipo de motocicleta de 750 cc en la que se necesitasen 5, 3 y 4 horas de cada uno de los departamentos y el beneficio obtenido con la venta de una unidad de este modelo fuese 350.000 u.m.?

La función a maximizar quedaría:

$$f(x_1, x_2, x_3, x_7) = 60000^* x_1 + 120000^* x_2 + 210000^* x_3 + 350000^* x_7$$

Sujeto a:

$$2^* x_1 + 4^* x_2 + 6^* x_3 + 5^* x_7 \le 400$$

$$2^*x_1 + 2^*x_2 + 3^*x_3 + 3^*x_7 \le 240$$

$$2^*x_1 + 3^*x_2 + 8^*x_3 + 4^*x_7 \le 480$$

La base final es {P₂, P₅, P₃}, por lo que cogemos los valores de estas variables en la base inicial, que forman esta matriz:

$$B = \begin{pmatrix} 4 & 0 & 6 \\ 2 & 1 & 3 \\ 3 & 0 & 8 \end{pmatrix}, \text{ cuya inversa sería: } B^{-1} = \begin{pmatrix} 4/7 & 0 & -3/7 \\ -1/2 & 1 & 0 \\ -3/14 & 0 & 2/7 \end{pmatrix}$$

Multiplicamos B⁻¹ por los coeficientes iniciales de P₇: B⁻¹ *
$$\begin{pmatrix} 5 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 8/7 \\ 1/2 \\ 1/14 \end{pmatrix}$$

Para calcular Z₇ multiplicamos los coeficientes de la base en la función a

maximizar por P₇ final:
$$C_b * {8/7 \choose 1/2 \choose 1/14} = 120000*8/7 + 210000*1/14 = 152140$$

 $Z_7 - C_7 = 152140 - 350000 = -197860$, esto indica que en la nueva base entra P_7 y debemos calcular qué variable sale: min $\{20, 80, 720\} = 20$, por lo que sale P_2 .

Nos queda la tabla:

			60000	120000	210000	0	0	0	350000
BASE	C _B	P ₀	P_1	P ₂	P ₃	P_4	P ₅	P ₆	P ₇
P_7	350000	20	1/4	7/8	0	1/2	0	-3/8	1
P_5	0	30	-1/8	-7/16	0	-3/4	1	3/16	0
P_3	210000	50	1/8	-1/16	1	-1/4	0	5/16	0
		17500000	53750	173125	0	122500	0	-65625	0

Ahora entra P₆ y sale P₅ ya que es el único valor positivo:

			60000	120000	210000	0	0	0	350000
BASE	Св	P ₀	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	P ₇
P_7	350000	80	0	0	0	-1	2	0	1
P ₆	0	160	-2/3	-7/3	0	-4	16/3	1	0
P ₃	210000	0	1/3	2/3	1	1	-5/3	0	0
		28000000	10000	20000	0	-140000	350000	0	0

Entra P₄ y sale P₃:

			60000	120000	210000	0	0	0	350000
BASE	Св	P ₀	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	P ₇
P ₇	350000	80	1/3	2/3	1	0	1/3	0	1
P ₆	0	160	2/3	-1	4	0	-4/3	1	0
P_4	0	0	1/3	2/3	1	1	-5/3	0	0
		28000000	170000/3	340000/3	140000	0	350000/3	0	0

Se cumple la condición de parada por lo que la solución óptima sería 28888888 u.m de beneficio fabricando 80 unidades del nuevo producto y ninguno de los originales. Sería más rentable ya que se consiguen más beneficios.