Any fool can write code that a computer can understand. Good programmers write code that humans can understand.

- Martin Flower

- 一般地, TensorFlow 输入样本数据到训练/推理子图中执行运算, 存在三种读取样本数据的方法:
 - 1. 数据注入: 通过字典 feed_dict 将数据传递给 Session.run, 以替代 Placeholder 的输出 Tensor 的值;
 - 2. 数据管道:通过构造输入子图,并发地从文件中读取样本数据;
 - 3. 数据预加载:对于小数据集,使用 Const 或 Variable 直接持有数据。

基于大型数据集的训练或推理任务,样本数据的输入常常使用数据的管道模式,确保 高的吞吐率,提高训练/推理的执行效率。该过程使用队列实现输入子图与训练/推理子图 之间的数据交互与异步控制。

本章将重点论述数据加载的 Pipeline 的工作机制,并深入了解 TensorFlow 并发执行的协调机制,及其队列在并发执行中扮演的角色。

1.1 数据注入

数据注入是最为常见的数据加载的方法,它通过字典 feed_dict 将样本数据传递给 Session.run,或者 Tensor.eval 方法;其中,字典的关键字为 Tensor 的名字,值为样本数据。

TensorFlow 将按照字典中 Tensor 的名字,将样本数据替换该 Tensor 的值。

```
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
with tf.Session():
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
```

一般地,feed_dict 可以替代任何 Tensor 的值。但是,常常使用 Placeholder 表示其 输出 Tensor 的值未确定,待使用 feed_dict 替代。

1.2 数据预加载

可以使用 Const 或 Variable 直接持有数据,将数据预加载至内存中,提升执行效率。该方法仅适用于小数据集,当样本数据集比较大时,内存资源消耗非常可观。这里以 mnist 数据集为例,讲解数据预加载的使用方法。

```
from tensorflow.examples.tutorials.mnist import input_data
data_sets = input_data.read_data_sets('/tmp/mnist/data')
```

1.2.1 使用 Const

由于 Const OP 输出 Tensor 的值是直接内联在计算图中。如果该 Const OP 在图中被使用多次,可能造成重复的冗余数据,白白浪费了不必要的内存资源。

```
with tf.name_scope('input'):
  input_images = tf.constant(data_sets.train.images)
  input_labels = tf.constant(data_sets.train.labels)
```

1.2.2 使用 Variable

可以使用不可变、非训练的 Variable 替代 Const。一旦初始化了该类型的 Variable, 便不能改变其值, 从而具备 Const 的属性。

用于数据预加载的 Variable 与用于训练的 Variable 之间存在差异,它将置位 trainable=False,系统不会将其归类于 GraphKeys.TRAINABLE_VARIABLES 集合中。在训练过程中,系统不会对其实施更新操作。

另外,在构造该类型的 Variable 时,还将设置 collections=[],系统不会将其归类于 GraphKeys.GLOBAL_VARIABLES 集合中。在训练过程中,系统不会对其实施 Checkpoint 操作。

为了创建不可变、非训练的 Variable, 此处写了一个简单的工厂方法。

```
def immutable_variable(initial_value):
   initializer = tf.placeholder(
    dtype=initial_value.dtype,
    shape=initial_value.shape)
   return tf.Variable(initializer, trainable=False, collections=[])
```

immutable_variable 使用传递进来的 initial_value 构造 Placeholder 的类型与形状信息,并以此作为 Variable 的初始值。可以使用 immutable_variable 创建不可变的,用于数据预加载的 Variable。

```
with tf.name_scope('input'):
  input_images = immutable_variable(data_sets.train.images)
  input_labels = immutable_variable(data_sets.train.labels)
```

1.3 数据管道 3

1.2.3 批次预加载

可以构建 Pipeline,结合数据预加载机制,实现样本的批式加载。首先,使用tf.train.slice_input_producer 在每个 epoch 开始时将整个样本空间随机化,每次从样本集合中随机采样获取一个训练样本。

```
def one(input_xs, input_ys, num_epochs)
  return tf.train.slice_input_producer(
    [input_xs, input_ys], num_epochs=num_epochs)
```

然后,使用 tf.train.batch 每次得到一个批次的样本数据。

```
def batch(x, y, batch_size)
  return tf.train.batch(
    [x, y], batch_size=batch_size)
```

对于使用 Variable 预加载数据,可以如下方式获取一个批次的样本数据。

```
with tf.name_scope('input'):
    input_images = immutable_variable(data_sets.train.images)
    input_labels = immutable_variable(data_sets.train.labels)

image, label = one(input_images, input_labels, epoch=1)
batch_images, batch_labels = batch(image, label, batch_size=100)
```

事实上,tf.train.slice_input_producer将构造样本队列,通过 QueueRunner并发地通过执行 Enqueue操作,将训练样本逐一加入到样本队列中去。在每次迭代训练启动时,通过调用 DequeueMany 一次性获取 batch_size 个的批次样本数据到训练子图中去。

1.3 数据管道

- 一个典型的数据加载的 Pipeline(Input Pipeline),包括如下几个重要数据处理实体:
- 1. 文件名称队列:将文件名称的列表加入到该队列中;
- 2. 读取器:从文件名称队列中读取文件名 (出队);并根据数据格式选择相应的文件读取器,解析文件的记录;
 - 3. 解码器:解码文件记录,并转换为数据样本;
- 4. 预处理器: 对数据样本进行预处理, 包括正则化, 白化等:
- 5. 样本队列:将处理后的样本数据加入到样本队列中。

以 mnist 数据集为例,假如数据格式为 TFRecord。首先,使用 tf.train.string_input_producer 构造了一个持有文件名列表的 FIFOQueue 队列 (通过执行 EnqueueMany OP),并且在每个 epoch 周期内实现文件名列表的随机化。

1.3.1 构建文件名队列

```
def input_producer(num_epochs):
    return tf.train.string_input_producer(
        ['/tmp/mnist/train.tfrecords'], num_epochs=num_epochs)
```

构造好了文件名队列之后,使用 tf.TFRecordReader 从文件名队列中获取文件名 (出队,通过调用执行 Dequeue OP),并从文件中读取样本记录 (Record)。然后,使用 tf.parse_single_example 解析出样本数据。

1.3.2 读取器

```
def parse_record(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        features={
            'image_raw': tf.FixedLenFeature([], tf.string),
            'label': tf.FixedLenFeature([], tf.int64),
        })
    return features
```

1.3.3 解码器

接着对样本数据进行解码,及其可选的预处理过程,最终得到训练样本。

```
def decode_image(features):
    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image.set_shape([28*28])

# Convert from [0, 255] -> [-0.5, 0.5] floats.
    image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
    return image

def decode_label(features):
    label = tf.cast(features['label'], tf.int32)
    return label

def one_example(features):
    return decode_image(features), decode_label(features)
```

1.3.4 构建样本队列

可以使用 tf.train.shuffle_batch 构建一个 RandomShuffleQueue 队列,将解析后的训练样本追加在该队列中(通过执行 Enqueue OP); 当迭代执行启动时,将批次获取 batch_size 个样本数据(通过执行 DequeueMany OP)。

1.4 数据协同 5

```
def shuffle_batch(image, label, batch_size):
    # Shuffle the examples and collect them into batch_size
    # batches.(Uses a RandomShuffleQueue)
    images, labels = tf.train.shuffle_batch(
        [image, label], batch_size=batch_size, num_threads=2,
        capacity=1000 + 3 * batch_size,
        # Ensures a minimum amount of shuffling of examples.
        min_after_dequeue=1000)
    return images, labels
```

1.3.5 输入子图

最后,将整个程序传接起来便构造了一个输入子图。

```
def inputs(num_epochs, batch_size):
    with tf.name_scope('input'):
        filename_queue = input_producer(num_epochs)
        features = parse_record(filename_queue)
        image, label = one_example(features)
        return shuffle_batch(image, label, batch_size)
```

1.4 数据协同

事实上,数据加载的 Pipeline 其本质是构造一个输入子图,实现并发 IO 操作,使得训练过程不会因操作 IO 而阻塞,从而实现 GPU 的利用率的提升。

对于输入子图,数据流的处理划分为若干阶段 (Stage),每个阶段完成特定的数据处理功能;各阶段之间以队列为媒介,完成数据的协同和交互。

如下图所示,描述了一个典型的神经网络的训练模式。整个流水线由两个队列为媒介, 将其划分为 3 个阶段。

图 1-1 模型训练工作流

1.4.1 阶段 1

string_input_producer 构造了一个 FIF0Queue 的队列,它是一个有状态的 OP。根据 shuffle 选项,在每个 epoch 开始时,随机生成文件列表,并将其一同追加至队列之中。

图 1-2 阶段 1:模型训练工作流

1.4 数据协同 7

随机化

首先,执行名为 filenames 的 Const OP, 再经过 RandomShuffle 将文件名称列表随机化。

Epoch 控制

为了实现 epoch 的计数,实现巧妙地设计了一个名为 epochs 的本地变量。其中,本地变量仅对本进程的多轮 Step 之间共享数据,并且不会被训练子图实施更新。

在 Session.run 之前,系统会执行本地变量列表的初始化,将名为 epochs 的 Variable 实施零初始化。

epoch 的计数功能由 CountUpTo 完成,它的工作原理类似于 C++ 的 i++。它持有 Variable 的引用,及其上限参数 limit。每经过一轮 epoch,使其 Variable 自增 1,直至 达到 num_epochs 数目。

其中,当 epoch 数到达 num_epochs 时,CountUpTo 将自动抛出 OutOfRangeError 异常。详细实现可以参考 CountUpToOp 的 Kernel 实现。

```
template <class T>
struct CountUpToOp : OpKernel
  explicit CountUpToOp(OpKernelConstruction* ctxt)
     OpKernel(ctxt) {
    OP_REQUIRES_OK(ctxt, ctxt->GetAttr("limit", &limit_));
  void Compute(OpKernelContext* ctxt) override {
    T before_increment;
      mutex_lock l(*ctxt->input_ref_mutex(0));
         Fetch the old tensor
      Tensor tensor = ctxt->mutable_input(0, true);
      T* ptr = &tensor.scalar<T>()();
      before_increment = *ptr;
      // throw OutOfRangeError if exceed limit
      if (*ptr >= limit_) {
        ctxt->SetStatus(errors::OutOfRange(
             "Reached limit of ", limit_));
        return;
      // otherwise increase 1
      ++*ptr;
    // Output if no error.
    Tensor* out_tensor;
    OP_REQUIRES_OK(ctxt, ctxt->allocate_output(
    "output", TensorShape({}), &out_tensor));
    out_tensor->scalar<T>()() = before_increment;
private:
  T limit_;
```

入队操作

事实上,将文件名列表追加到队列中,执行的是 EnqueueMany,类似于 Assign 修改 Variable 的值,EnqueueMany 也是一个有状态的 OP,它持有队列的句柄,直接完成队列的状态更新。

在此处, EnqueueMany 将被 Session.run 执行,系统反向遍历,找到依赖的 Identity,发现控制依赖于 CountUpTo,此时会启动一次 epoch 计数,直至到达 num_epoch 数目抛出 OutOfRangeError 异常。同时, Identity 依赖于 RandomShuffle,以便得到随机化了的文件名列表。

QueueRunner

另外,在调用 tf.train.string_input_producer 时,将往计算图中注册一个特殊的 OP: QueueRunner,并且将其添加到 GraphKeys.QUEUE_RUNNERS 集合中。并且,一个 QueueRunner 持有一个或多个 Enqueue, EnqueueMany 类型的 OP。

1.4.2 阶段 2

Reader 从文件名队列中按照 FIFO 的顺序获取文件名,并按照文件名读取文件记录,成功后对该记录进行解码和预处理,将其转换为数据样本,最后将其追加至样本队列中。

读取器

事实上,实现构造了一个 ReaderRead 的 OP, 它持有文件名队列的句柄,从队列中按照 FIFO 的顺序获取文件名。

因为文件的格式为 TFRecord, ReaderRead 将委托调用 TFRecordReader 的 OP, 执行文件的读取。最终,经过 ReaderRead 的运算,将得到一个序列化了的样本。

解码器

得到序列化了的样本后,将使用合适的解码器实施解码,从而得到一个期望的样本数据。可选地,可以对样本实施预处理,例如 reshape 等操作。

1.4 数据协同 9

入队操作

得到样本数据后,将启动 QueueEnqueue 的运算,将样本追加至样本队列中去。其中,QueueEnqueue 是一个有状态的 OP,它持有样本队列的句柄,直接完成队列的更新操作。

实施上,样本队列是一个 RandomShuffleQueue, 使用出队操作实现随机采样。

并发执行

为了提高 IO 的吞吐率,可以启动多路并发的 Reader 与 Decoder 的工作流,并发地将样本追加至样本队列中去。其中,RandomShuffleQueue 是线程安全的,支持并发的入队或出队操作。

1.4.3 阶段 3

当数据样本累计至一个 batch_size 时,训练/推理子图将取走该批次的样本数据,启动一次迭代计算(常称为一次 Step)。

出队操作

事实上,训练子图使用 DequeueMany 获取一个批次的样本数据。

迭代执行

一般地,一次迭代运行,包括两个基本过程:前向计算与反向梯度传递。Worker 任务使用 PS 任务更新到本地的当前值、执行前向计算得到本次迭代的损失。

然后,根据本次迭代的损失,反向计算各个 Variable 的梯度,并更新到 PS 任务中; PS 任务更新各个 Variable 的值,并将当前值广播到各个 Worker 任务上去。

Checkpoint

PS 任务根据容错策略,周期性地实施 Checkpoint。将当前所有 Variable 的数据,及 其图的元数据,包括静态的图结构信息,持久化到外部存储设备上,以便后续恢复计算图, 及其所有 Variable 的数据。

1.4.4 Pipeline 节拍

例如,往 FIFOQueue 的队列中添加文件名称列表,此时调用 EnqueueMany 起始的子图计算,其中包括执行所依赖的 CountUpTo。当 CountUpTo 达到 limit 上限时,将自动抛出 OutOfRangeError 异常。

扮演主程序的 QueueRunner, 捕获 coord.join 重新抛出的 OutOfRangeError 异常, 随后立即关闭相应的队列,并且退出该线程的执行。队列被关闭之后,入队操作将变为非法;而出队操作则依然合法,除非队列元素为空。

同样的道理,下游 OP 从队列 (文件名队列) 中出队元素,一旦该队列元素为空,则自动抛出 OutOfRangeError 异常。该阶段对应的 QueueRunner 将感知该异常的发生,然后捕获异常并关闭下游的队列 (样本队列),退出线程的执行。

在 Pipeline 的最后阶段,train_op 从样本队列中出队批次训练样本时,队列为空,并且队列被关闭了,则抛出 OutOfRangeError 异常,最终停止整个训练任务。