Negation, Implication, and Logic

Daniel J. Greenhoe

Title page Daniel J. Greenhoe page v

title: Negation, Implication, and Logic

document type: technical report author: Daniel J. Greenhoe

version: VERSION 0.51

time stamp: 2019 September 26 (Thursday) 11:06am UTC

copyright: Copyright © 2019 Daniel J. Greenhoe

license: Creative Commons license CC BY-NC-ND 4.0

typesetting engine: XAMTEX

document urls: https://www.researchgate.net/profile/Daniel_Greenhoe/publications

https://github.com/dgreenhoe/pdfs/blob/master/nil.pdf

Copyright © 2019 Daniel J. Greenhoe

This text was typeset using $X \equiv LAT_E X$, which is part of the $T_E X$ family of typesetting engines, which is arguably the greatest development since the Gutenberg Press. Graphics were rendered using the *pstricks* and related packages, and $LAT_E X$ graphics support.

The main roman, *italic*, and **bold** font typefaces used are all from the *Heuristica* family of typefaces (based on the *Utopia* typeface, released by *Adobe Systems Incorporated*). The math font is XITS from the XITS font project. The font used in quotation boxes is adapted from *Zapf Chancery Medium Italic*, originally from URW++ Design and Development Incorporated. The font used for the text in the title is Adventor (similar to *Avant-Garde*) from the *TEX-Gyre Project*. The font used for the ISBN in the footer of individual pages is LOUID CRYSTAL (*Liquid Crystal*) from *FontLab Studio*. The Latin handwriting font is *Lavi* from the *Free Software Foundation*.

The ship appearing throughout this text is loosely based on the *Golden Hind*, a sixteenth century English galleon famous for circumnavigating the globe.¹

¹ Paine (2000) page 63 ⟨Golden Hind⟩

Here, on the level sand,
Between the sea and land,
What shall I build or write
Against the fall of night? ♥

Tell me of runes to grave
That hold the bursting wave,
Or bastions to design
For longer date than mine.

Alfred Edward Housman, English poet (1859–1936) ²

▶ The uninitiated imagine that one must await inspiration in order to create. That is a mistake. I am far from saying that there is no such thing as inspiration; quite the opposite. It is found as a driving force in every kind of human activity, and is in no wise peculiar to artists. But that force is brought into action by an effort, and that effort is work. Just as appetite comes by eating so work brings inspiration, if inspiration is not discernible at the beginning. ♥

Igor Fyodorovich Stravinsky (1882–1971), Russian-born composer ³

*As I think about acts of integrity and grace, I realise that there is nothing in my knowledge to compare with Frege's dedication to truth. His entire life's work was on the verge of completion, much of his work had been ignored to the benefit of men infinitely less capable, his second volume was about to be published, and upon finding that his fundamental assumption was in error, he responded with intellectual pleasure clearly submerging any feelings of personal disappointment. It was almost superhuman and a telling indication of that of which men are capable if their dedication is to creative work and knowledge instead of cruder efforts to dominate and be known.

Bertrand Russell (1872–1970), British mathematician, in a 1962 November 23 letter to Dr. van Heijenoort.

image: http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Russell.html

² quote: ☐ Housman (1936), page 64 ⟨"Smooth Between Sea and Land"⟩, ☐ Hardy (1940) ⟨section 7⟩

image: http://en.wikipedia.org/wiki/Image:Housman.jpg

image: http://en.wikipedia.org/wiki/Image:Igor_Stravinsky.jpg

⁴ quote: ## Heijenoort (1967), page 127

SYMBOLS

rugula XVI. Quae vero praesentem mentis attentionem non requirunt, etiamsi ad conclusionem necessaria sint, illa melius est per brevissimas notas designare quam per integras figuras: ita enim memoria non poterit falli, nec tamen interim cogitatio distrahetur ad haec retinenda, dum aliis deducendis incumbit. ♥

← Rule XVI. As for things which do not require the immediate attention of the mind, however necessary they may be for the conclusion, it is better to represent them by very concise symbols rather than by complete figures. It will thus be impossible for our memory to go wrong, and our mind will not be distracted by having to retain these while it is taken up with deducing other matters. ♣

René Descartes (1596–1650), French philosopher and mathematician ⁵

In signs one observes an advantage in discovery which is greatest when they express the exact nature of a thing briefly and, as it were, picture it; then indeed the labor of thought is wonderfully diminished.
Gottfried Leibniz (1646–1716), German mathematician, 6

Symbol list

symbol	description	
numbers:		
\mathbb{Z}	integers	$\dots, -3, -2, -1, 0, 1, 2, 3, \dots$
W	whole numbers	$0, 1, 2, 3, \dots$
N	natural numbers	1, 2, 3,
\mathbb{Z}^{\dashv}	non-positive integers	, -3, -2, -1, 0

...continued on next page...

⁵ quote: ☐ Descartes (1684a) ⟨rugula XVI⟩, translation: ☐ Descartes (1684b) ⟨rule XVI⟩, image: Frans Hals (circa 1650), http://en.wikipedia.org/wiki/Descartes, public domain

⁶ quote: ② Cajori (1993) ⟨paragraph 540⟩, image: http://en.wikipedia.org/wiki/File:Gottfried_Wilhelm_von_Leibniz.jpg, public domain

symbol	description	
\mathbb{Z}^-	negative integers	$\dots, -3, -2, -1$
\mathbb{Z}_{o}	odd integers	$\dots, -3, -1, 1, 3, \dots$
\mathbb{Z}_{e}	even integers	$\dots, -4, -2, 0, 2, 4, \dots$
\mathbb{Q}	rational numbers	$\frac{m}{n}$ with $m \in \mathbb{Z}$ and $n \in \mathbb{Z} \setminus 0$
\mathbb{R}	real numbers	completion of Q
\mathbb{R}^{\vdash}	non-negative real numbers	$[0,\infty)$
\mathbb{R}^{\dashv}	non-positive real numbers	$(-\infty,0]$
\mathbb{R}^+	positive real numbers	$(0,\infty)$
\mathbb{R}^-	negative real numbers	$(-\infty,0)$
\mathbb{R}^*	extended real numbers	$\mathbb{R}^* \triangleq \mathbb{R} \cup \{-\infty, \infty\}$
\mathbb{C}	complex numbers	,
F	arbitrary field	(often either \mathbb{R} or \mathbb{C})
∞	positive infinity	
$-\infty$	negative infinity	
π	pi	3.14159265
relations:	•	
R	relation	
\bigcirc	relational and	
$X \times Y$	Cartesian product of X and Y	
(\triangle, ∇)	ordered pair	
z	absolute value of a complex nu	ımber z
=	equality relation	
≜	equality by definition	
\rightarrow	maps to	
€	is an element of	
∉	is not an element of	
$\mathcal{oldsymbol{D}}(\mathbb{R})$	domain of a relation ®	
$\mathcal{I}(\mathbb{R})$	image of a relation ®	
$\mathcal{R}(\mathbb{R})$	range of a relation ®	
$\mathcal{N}(\mathbb{R})$	null space of a relation ®	
set relations:	-	
⊆	subset	
⊊	proper subset	
⊇	super set	
⊋	proper superset	
⊆ ⊊ ⊋ ⊈ ⊄	is not a subset of	
¢	is not a proper subset of	
operations or	n sets:	
$A \cup B$	set union	
$A \cap B$	set intersection	
$A \triangle B$	set symmetric difference	
$A \setminus B$	set difference	
A^{c}	set complement	
.	set order	
$\mathbb{1}_{A}(x)$	set indicator function or charac	cteristic function
logic:		
1	"true" condition	
0	"false" condition	
	logical NOT operation	

...continued on next page...

SYMBOL LIST Daniel J. Greenhoe page xi

symbol	description	
^	logical AND operation	
V	logical inclusive OR operation	
\oplus	logical exclusive OR operation	
\Longrightarrow	"implies";	"only if"
\leftarrow	"implied by";	"if"
\Leftrightarrow	"if and only if";	"implies and is implied by"
⇒	universal quantifier:	"for each"
3	existential quantifier:	"there exists"
order on sets:		
V	join or least upper bound	
^	meet or greatest lower bound	
	reflexive ordering relation	"less than or equal to"
≤ ≥ <	reflexive ordering relation	"greater than or equal to"
<u>-</u>	irreflexive ordering relation	"less than"
>	irreflexive ordering relation	"greater than"
measures on		greater than
	order or counting measure of a	set X
distance spac		301 21
d d	metric or distance function	
linear spaces:		
	vector norm	
	operator norm	
$\langle \triangle \mid \lor \rangle$	inner-product span of a linear space <i>V</i>	
	span of a life at space v	
algebras:	real part of an alamant in a al	a a h u a
\Re	real part of an element in a *-al	_
T and attributions	imaginary part of an element in	ra *-aigeora
set structures		
T	a topology of sets	
R	a ring of sets	
A ~	an algebra of sets	
$rac{arnothing}{2^{X}}$	empty set	
	power set on a set X	
sets of set stru		
$\mathcal{T}(X)$	set of topologies on a set X	
$\mathcal{R}(X)$	set of rings of sets on a set X	_
$\mathcal{A}(X)$	set of algebras of sets on a set X	
	tions/functions/operators:	
2^{XY}	set of <i>relations</i> from <i>X</i> to <i>Y</i>	
Y^X	set of <i>functions</i> from <i>X</i> to <i>Y</i>	
$S_{j}(X,Y)$	set of <i>surjective</i> functions from	X to Y
$\mathcal{I}_{j}(X,Y)$	set of <i>injective</i> functions from X	X to Y
$\vec{\mathcal{B}}_{j}(X,Y)$		Y to Y
$\mathcal{B}(\boldsymbol{X}, \boldsymbol{Y})$	set of bounded functions/opera	tors from X to Y
	set of <i>linear bounded</i> functions	
$C(\boldsymbol{X}, \boldsymbol{Y})$		_
* ' '	forms/operators:	
$ ilde{\mathbf{F}}$	Fourier Transform operator	
$\hat{f F}$	Fourier Series operator	
	continued on payt page	

...continued on next page...

раде xii Daniel J. Greenhoe Symbol List

symbol	description
K	Discrete Time Fourier Series operator
${f Z}$	Z-Transform operator
$ ilde{f}(\omega)$	Fourier Transform of a function $f(x) \in L^2_{\mathbb{D}}$
$reve{x}(\omega)$	Discrete Time Fourier Transform of a sequence $(x_n \in \mathbb{C})_{n \in \mathbb{Z}}$
$\check{x}(z)$	<i>Z-Transform</i> of a sequence $(x_n \in \mathbb{C})_{n \in \mathbb{Z}}$

SYMBOL INDEX

+, 113
-, 35, 36, 37 , 37
0, 36 , 36
1, 36, 37 , 37
<, 104
>, 104
2, 114
2^{XY} , 76
$2^{X}, 39$
⇐, 36, 37
⇔, 36, 37 , 37, 44
⇒, 36, 37 , 37, 44
⊫, 36, 37 , 37, 44
△ , 37
$\bigvee A$, 116
\bigwedge A, 116
\cap , 37, 41, 44
(h), 36, 37 , 37
⊕, 36, 37 , 37
©, 213
∪, 37, 41, 44
©, 147
©*, 147
÷, 37 , 37, 44
↓, 35, 36 , 36, 44
Ø, 36, 41
⇒ 1, 36, 37 , 37, 44

```
≥, 104
≥, 104
∧, 36, 37, 37
≤, 104, 105
(X, \leq), 104, 105
(X,\sqsubseteq), 103
(X, ₹, ℚ), 117
(X, ₹, ∅), 117
(X, \vee, \wedge; \leq), 119
⇔, 29
≤, 104
∨, 36, 37, 37
L*, 119
L_1, 114

L_2^N, 173

P^*, 114
M, 137
M*, 137
⊖, 35, 36, 36, 44
⊕, 35, 36, 37, 37,
113
\emptyset, 44
⊗, 44, 113
⊥, 211
≺, 105
inf A, 116
sup A, 116
```

®, 76
①, <mark>86</mark>
\rightarrow , 17, 24
⊑ , 103
\mathcal{D} , 82
<i>I</i> , 82
\mathcal{N} , 82
\mathcal{R} , 82
d, 221
×, 105
37, 41, 44
∨, 37 , 116
∧, 37 , 116
X, 37, 41
X , 40
Q^P , 114 \mathbb{R}^{-1} , 79
⊕ 1, 79 △, 37, 41, 44
\triangle , 37, 41, 44 c, 41
c_x , 37, 44
$c_x, 37, 44$ $c_y, 37, 44$
$f^{n}, 97$
Y^X , 87
-, 182
1, 96
⇔, 182
\Rightarrow , 182
., = = =

\triangle , 182
\(\frac{1}{4}\)
<i>∨ A</i> , 116
•, <mark>80</mark>
÷, 182
↓, 182
≡, 129
A , 52
$R, \frac{53}{}$
T, 49
δ , 101
\ominus , 182
≺ , 105
sup <i>A</i> , 116
-
①, 86
①, 86 $A(X)$, 52, 53
①, 86 A(X), 52, 53 $B_{i}(X, Y)$, 90
①, 86 A(X), 52, 53 $B_{j}(X,Y)$, 90 $I_{j}(X,Y)$, 90
①, 86 A(X), 52, 53 $B_{i}(X, Y)$, 90
①, 86 A(X), 52, 53 $B_{j}(X,Y)$, 90 $I_{j}(X,Y)$, 90 $S_{i}(X,Y)$, 90
①, 86 A(X), 52, 53 $B_j(X,Y)$, 90 $I_j(X,Y)$, 90 $S_j(X,Y)$, 90 $\mathcal{T}(X)$, 49
①, 86 $\mathcal{A}(X)$, 52, 53 $\mathcal{B}_{j}(X,Y)$, 90 $\mathcal{I}_{j}(X,Y)$, 90 $\mathcal{S}_{j}(X,Y)$, 90 $\mathcal{T}(X)$, 49 ×, 48
①, 86 $\mathcal{A}(X)$, 52, 53 $\mathcal{B}_{j}(X,Y)$, 90 $\mathcal{I}_{j}(X,Y)$, 90 $\mathcal{S}_{j}(X,Y)$, 90 $\mathcal{T}(X)$, 49 ×, 48 ∨, 116
①, 86 $\mathcal{A}(X)$, 52, 53 $\mathcal{B}_{j}(X,Y)$, 90 $\mathcal{I}_{j}(X,Y)$, 90 $\mathcal{F}(X)$, 49 ×, 48 ∨, 116 I , 86
①, 86 $\mathcal{A}(X)$, 52, 53 $\mathcal{B}_{j}(X,Y)$, 90 $\mathcal{I}_{j}(X,Y)$, 90 $\mathcal{F}(X)$, 49 ×, 48 ∨, 116 I , 86 f, 87
①, 86 $\mathcal{A}(X)$, 52, 53 $\mathcal{B}_{j}(X,Y)$, 90 $\mathcal{I}_{j}(X,Y)$, 90 $\mathcal{F}(X)$, 49 ×, 48 ∨, 116 I , 86

page xiv Daniel J. Greenhoe	
	page xiv

CONTENTS

Fr	ont m	patter control of the	i
	Front	tcover	i
	Title	page	V
	Copy	right and typesetting	vi
	Quot	tes	vii
	Symb	bol list	ix
	Symb	bol index	xiii
	Conte	tents	XV
_			
Fr	ont m	natter en	1
Ini	troduc	otion	1
	liouud	CHOIL	•
1	Nega	ation	3
	_	Definitions	3
		Properties of negations	5
		Examples	9
2	Impli	ication	17
•	Lant		00
3	Logi		23
			23
			29
	3.3	Classical two-valued logic	34
Α	Set S	Structures	39
			39
			39
			39
		· · · · · · · · · · · · · · · · · · ·	42
		· · · · · · · · · · · · · · · · · · ·	44
			48
	A.3	· · · · · · · · · · · · · · · · · · ·	49
			49
			52
			53
			55
			55
			59
	A.6	Lattices of set structures	62
			62
			64
			67
			69
			69

page xvi Daniel J. Greenhoe CONTENTS

		Relationships between set structures	
	A.8	Literature	73
В	Rela		75
	B.1		75
		B.1.1 Definition and examples	75
		B.1.2 Calculus of Relations	78
	B.2	Functions	87
		B.2.1 Definition and examples	87
		B.2.2 Properties of functions	90
			90
			93
			95
			97
	ВЗ		00
	B.4	·	.01
	D. 4	Literature	. 0 1
_	Ord	lor 1	03
•		Preordered sets	
		Order relations	
		Linearly ordered sets	
		Representation	
	C.5		
		Functions on ordered sets	
	C.7		
		C.7.1 Subposets	
		C.7.2 Operations on posets	13
		C.7.3 Primitive subposets	14
		C.7.4 Decomposition examples	14
	C.8	Bounds on ordered sets	15
D	Latt	tices 1	17
	D.1	Semi-lattices	17
	D.2	Lattices	19
	D.3	Examples	24
	D.4	Characterizations	26
	D.5	Functions on lattices	29
		D.5.1 Isomorphisms	
		D.5.2 Metrics	
		D.5.3 Lattice products	
	D 6	Literature	
	٥.0	Literature	J
E	Bot	unded Lattices 1	35
-		andou Editiooo	-
F	Mod	dular Lattices 1	^-
		uulai Lattices	37
•	F.1		
-	F.1 F.2	Modular relation	37
	F.2	Modular relation	37
Г 		Modular relation 1 Semimodular lattices 1 Modular lattices 1	37 38 38
	F.2	Modular relation	.37 .38 .38
	F.2 F.3	Modular relation1Semimodular lattices1Modular lattices1F.3.1 Characterizations1F.3.2 Special cases1	37 38 38 38 42
	F.2	Modular relation1Semimodular lattices1Modular lattices1F.3.1 Characterizations1F.3.2 Special cases1	37 38 38 38 42
	F.2 F.3	Modular relation1Semimodular lattices1Modular lattices1F.3.1 Characterizations1F.3.2 Special cases1Examples1	37 38 38 38 42 42
	F.2 F.3 F.4	Modular relation 1 Semimodular lattices 1 Modular lattices 1 F.3.1 Characterizations 1 F.3.2 Special cases 1 Examples 1 tributive Lattices 1	37 38 38 38 42 42
	F.2 F.3 F.4 Dis t G.1	Modular relation 1 Semimodular lattices 1 Modular lattices 1 F.3.1 Characterizations 1 F.3.2 Special cases 1 Examples 1 tributive Lattices 1 Distributivity relation 1	37 38 38 42 42 47
	F.2 F.3 F.4 Dis t G.1	Modular relation 1 Semimodular lattices 1 Modular lattices 1 F.3.1 Characterizations 1 F.3.2 Special cases 1 Examples 1 tributive Lattices 1 Distributivity relation 1 Distributive Lattices 1	37 38 38 38 42 42 47 47 47
	F.2 F.3 F.4 Dis t G.1	Modular relation 1 Semimodular lattices 1 Modular lattices 1 F.3.1 Characterizations 1 F.3.2 Special cases 1 Examples 1 tributive Lattices 1 Distributivity relation 1 Distributive Lattices 1 G.2.1 Definition 1	37 38 38 38 42 42 47 47 47
	F.2 F.3 F.4 Dis t G.1	Modular relation 1 Semimodular lattices 1 Modular lattices 1 F.3.1 Characterizations 1 F.3.2 Special cases 1 Examples 1 tributive Lattices 1 Distributivity relation 1 Distributive Lattices 1 G.2.1 Definition 1 G.2.2 Characterizations 1	37 38 38 38 42 42 47 47 47 47 47
	F.2 F.3 F.4 Dis t G.1	Modular relation 1 Semimodular lattices 1 Modular lattices 1 F.3.1 Characterizations 1 F.3.2 Special cases 1 Examples 1 tributive Lattices 1 Distributivity relation 1 Distributive Lattices 1 G.2.1 Definition 1 G.2.2 Characterizations 1 G.2.3 Properties 1	37 38 38 42 47 47 47 47 47 48 62
	F.2 F.3 F.4 Dis t G.1	Modular relation 1 Semimodular lattices 1 Modular lattices 1 F.3.1 Characterizations 1 F.3.2 Special cases 1 Examples 1 tributive Lattices 1 Distributivity relation 1 Distributive Lattices 1 G.2.1 Definition 1 G.2.2 Characterizations 1	37 38 38 42 47 47 47 47 47 48 62
G	F.2 F.3 F.4 Dist G.1 G.2	Modular relation 1 Semimodular lattices 1 Modular lattices 1 F.3.1 Characterizations 1 F.3.2 Special cases 1 Examples 1 tributive Lattices 1 Distributivity relation 1 Distributive Lattices 1 G.2.1 Definition 1 G.2.2 Characterizations 1 G.2.3 Properties 1 G.2.4 Examples 1	37 38 38 38 42 47 47 47 47 47 48 62 64
G	F.2 F.3 F.4 Dist G.1 G.2	Modular relation 1 Semimodular lattices 1 Modular lattices 1 F.3.1 Characterizations 1 F.3.2 Special cases 1 Examples 1 tributive Lattices 1 Distributive Lattices 1 G.2.1 Definition 1 G.2.2 Characterizations 1 G.2.3 Properties 1 G.2.4 Examples 1	37 38 38 38 42 42 47 47 47 47 47 48 62 64

CONTENTS Daniel J. Greenhoe page xvii H.2 H.4 Literature **Boolean Lattices** 11 173 1.2 1.3 1.4 1.5 1.6 **Orthocomplemented Lattices** 197 198 J.1.1 J.1.2 Characterization J.1.3 J.1.4 J.2.1 J.2.2 Characterizations K Relations on lattices with negation 211 211 **Valuations on Lattices** 221 224 **Back Matter** 227 227

page xviii Daniel J. Greenhoe CONTENTS

CONTENTS Daniel J. Greenhoe page 1

Introduction

Logics as lattices. In this paper, a *logic* $L' \triangleq (X, \vee, \wedge, \neg, 0, 1; \leq, \rightarrow)$ is defined as a *bounded lattice*

 $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ with a *negation function* \neg and *implication function* \rightarrow defined on L. And in this sense, the logic L' is said to be "constructed on" the lattice L. Traditional logic is constructed on a two element ("true" and "false") Boolean lattice. A first generalization to this concept may be to allow logics to be defined on any 2^n element Boolean lattice. A second generalization may be to allow logics to be defined on any *lattice* that has a *negation* function defined on it. On finite sets, there are significantly more choices of *general lattices* than there are *Boolean lattices*. And so having the option of constructing *non-Boolean logics* is arguably not without advantage. The disadvantage is that we often give up the celebrated property of *distributivity*. Nevertheless, some authors have already investigated structures without this property anyways. And one could argue that the "crucial" properties of logic *don't* include *distributivity*, but rather *do* include *only* the following:

```
(1). disjunctive idempotence: x \lor x = x \quad \forall x \in X \text{ and}

(2). conjunctive idempotence: x \land x = x \quad \forall x \in X \text{ and}

(3). excluded middle property: x \lor \neg x = 1 \quad \forall x \in X \text{ and}

(4). non-contradiction property: x \land \neg x = 0 \quad \forall x \in X.
```

Not all logics have all of these properties. Of course all $Boolean\ logics$ have them. But more generally, all $ortho\ logics$ have them as well. 10

Negation functions. There are several types of *negation functions* and information about them is scattered about in the literature. Section **??** introduces several types of negation, describes some of their properties, and shows where different types of negation—including *fuzzy negation*, *ortho negation*, and *Boolean negation*—"fit" into the larger structure of *negations* in general.

Implication functions. Defining an *implication* function for a logic constructed on a *Boolean lattice* is straightforward because we can simply use the *classical implication* $x - y \triangleq \neg x \lor y$. However, defining an *implication* function for a *non-Boolean* logic is more difficult. Section **??** addresses the problem of defining implication functions on *lattices*, including lattices that are *non-Boolean*.

¹⁰ Properties of *ortho negations* and hence also *ortho logics*: Theorem 1.5 page 8. Relationships between logics: Figure 3.1 page 29.

⁷ In an 8 element set, there are a total of 222 unlabeled *lattices* (Proposition D.2 page 125). Of these 222, only 1 is *Boolean*.

⁸ logic: Definition 3.2 page 29. lattice: Definition D.3 page 119. negation function: Definition 1.2 page 4. implication function: Definition 3.1 page 24 Boolean lattice: Definition I.1 page 173. orthocomplemented lattice: Definition J.1 page 198. ortho negation: Definition 1.3 page 4. ortho+distributivity=Boolean: Proposition J.1 page 204

⁹ ■ Alsina et al. (1980), ■ Hamacher (1976) ⟨referenced by ■ Alsina et al. (1983)⟩

page 2 Daniel J. Greenhoe CONTENTS

When we say not-being, we speak, I think, not of something that is the opposite of being, but only of something different.... Then when we are told that the negative signifies the opposite, we shall not admit it; we shall admit only that the particle "not" indicates something different from the words to which it is prefixed, or rather from the things denoted by the words that follow the negative.

Plato's the *Sophist* (circa 360 B.C.) ¹

← Clearly, then, it is a principle of this kind that is the most certain of all principles.... Let us next state what this principle is. "It is impossible for the same attribute at once to belong and not to belong to the same thing and in the same relation"; ... This is the most certain of all principles,... for it is impossible for anyone to suppose that the same thing is and is not,... it is by nature the starting-point of all the other axioms as well. "

Aristotle (384BC-322BC), Greek philosopher ²

1.1 Definitions

Definition 1.1. 3 Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a BOUNDED LATTICE (Definition E.1 page 135).

```
P A FUNCTION \neg \in X^X is a subminimal negation on L if
x \le y \implies \neg y \le \neg x \quad \forall x, y \in X \quad (\text{ANTITONE})^4
```

Remark 1.1. ⁵ In the context of natural language, D. Devidi argues that, subminimal negation (Definition 1.1 page 3) is "difficult to take seriously as" a negation. He essentially gives this example: Let $x \triangleq p$ is a fish" and $y \triangleq p$ has gills". Suppose "p is a fish" implies "p has gills" ($x \le y$). Now let $p \triangleq p$ "many dogs". Then the *antitone* property and $x \le y$ tells us (\implies) that "Not many dogs have gills" implies that "Not many dogs are fish".

² Aristotle page 4.1005b

³ ■ Dunn (1996) pages 4–6, ■ Dunn (1999) pages 24–26 (2 THE KITE OF NEGATIONS)

⁴The *antitone* property may also be referred to as *antitonic*, *order-reversing*, or *contrapositive*.

⁵ Devidi (2010) page 511, Devidi (2006) page 568

page 4 Daniel J. Greenhoe CHAPTER 1. NEGATION

Figure 1.1: lattice of negations

Definition 1.2. 6 Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a BOUNDED LATTICE (Definition E.1 page 135).

```
A FUNCTION \neg \in X^X is a negation, or minimal negation, on L if

1. x \le y \implies \neg y \le \neg x \quad \forall x, y \in X (antitone) and

2. x \le \neg \neg x \quad \forall x \in X (weak double negation).

A MINIMAL NEGATION \neg is an intuitionistic negation if

3. x \land \neg x = 0 \quad \forall x, y \in X (non-contradiction).

A MINIMAL NEGATION \neg is a fuzzy negation if

4. \neg 1 = 0 (boundary condition).
```

Definition 1.3. ⁷ Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a BOUNDED LATTICE (Definition E.1 page 135).

```
A MINIMAL NEGATION \neg is a de Morgan negation if
          5. X
                                                                 (INVOLUTORY).
     A DE MORGAN NEGATION \neg is a Kleene negation if
          6. x \land \neg x
                          <
                                y \lor \neg y
                                                       \forall x,y \in X (Kleene condition).
DEF
     A DE MORGAN NEGATION \neg is an ortho negation if
          7. x \land \neg x
                                                       \forall x, y \in X (NON-CONTRADICTION).
     A DE MORGAN NEGATION \neg is an orthomodular negation if
          8. x \wedge \neg x
                                                       \forall x, y \in X (NON-CONTRADICTION)
         9. x \leq y
                         \implies x \lor (y \land \neg x) = y \quad \forall x, y \in X \quad (\text{ORTHOMODULAR}).
```

⁷ □ Dunn (1999) pages 24–26 ⟨2 The Kite of Negations⟩, □ Jenei (2003) page 283, □ Kalmbach (1983) page 22, □ Lidl and Pilz (1998) page 90, □ Husimi (1937)

Remark 1.2. ⁸ The Kleene condition is basically a weakened form of the non-contradiction and excluded middle properties because $x \land \neg x = 0 \le 1 = y \lor \neg y$.

non-contradiction

Definition 1.4. ⁹

D E F A MINIMAL NEGATION $\neg \in X^X$ is **strict** (\neg is a **strict negation**) if

1.
$$x \leq y \implies \neg y \leq \neg x \quad \forall x, y \in X$$
 (strictly antitone) and

A STRICT NEGATION
$$\neg$$
 is strong (\neg is a strong negation) if

3.
$$\neg \neg x = x \quad \forall x \in X \quad \text{(involutory)}.$$

Definition 1.5. Let $L \triangleq (X, \vee, \wedge, \neg, 0, 1; \leq)$ be a Bounded Lattice (Definition E.1 page 135) with a function \neg in X^X .

If \neg is a minimal negation, then **L** is a **lattice** with negation.

1.2 Properties of negations

Lemma 1.1. ¹⁰ Let $\neg \in X^X$ be a function on a BOUNDED LATTICE $L \triangleq (X, \lor, \land, 0, 1; \le)$ (Definition E.1 page 135).

♥Proof:

1. Proof that $antitone \implies conjunctive de Morgan$:

$$x \land y \le x \text{ and } x \land y \le y$$
 by definition of \land
 $\implies \neg(x \land y) \ge \neg x \text{ and } \neg(x \land y) \ge \neg y$ by antitone
 $\implies \neg(x \land y) \ge \neg x \lor \neg y$ by definition of \lor

2. Proof that antitone \implies disjunctive de Morgan:

$$x \le x \lor y$$
 and $y \le x \lor y$ by definition of \lor $\Rightarrow \neg x \ge \neg(x \lor y)$ and $\neg y \ge \neg(x \lor y)$ by antitone $\Rightarrow \neg x \land \neg y \ge \neg(x \lor y)$ by definition of \land $\Rightarrow \neg(x \lor y) \le \neg x \land \neg y$

⁸ Cattaneo and Ciucci (2009) page 78

⁹ 🗈 Fodor and Yager (2000), pages 127–128, 📃 Bellman and Giertz (1973)

Lemma 1.2. 11 Let $\neg \in X^X$ be a function on a LATTICE $L \triangleq (X, \lor, \land; \le)$ (Definition D.3 page 119).

If $x = (\neg \neg x)$ for all $x \in X$ (INVOLUTORY), then $x \leq y \implies \neg y \leq \neg x\} \iff \begin{cases} \neg (x \lor y) = \neg x \land \neg y \quad \forall x, y \in X \text{ (DISJUNCTIVE DE MORGAN)} \quad and \\ \neg (x \land y) = \neg x \lor \neg y \quad \forall x, y \in X \text{ (CONJUNCTIVE DE MORGAN)} \end{cases}$ DE MORGAN

№ Proof:

L

- 1. Proof that $antitone \implies de Morgan$ equalities:
 - (a) Proof that $\neg(\neg x \land \neg y) \ge x \lor y$:

$$\neg(\neg x \land \neg y) \ge \neg \neg x \lor \neg \neg y$$
 by Lemma 1.1
= $x \lor y$ by *involutory* property (Definition 1.5 page 5)

(b) Proof that $\neg(\neg x \lor \neg y) \le x \land y$:

$$\neg(\neg x \lor \neg y) \le \neg \neg x \land \neg \neg y$$
 by Lemma 1.1
= $x \land y$ by *involutory* property (Definition 1.5 page 5)

(c) Proof that $\neg(x \land y) = \neg x \lor \neg y$:

$$\neg(x \land y) \ge \neg x \lor \neg y$$
 by Lemma 1.1 by *involutory* property (Definition 1.5 page 5)
$$\le \neg x \lor \neg y$$
 by item (1b)

(d) Proof that $\neg(x \lor y) = \neg x \land \neg y$:

$$\neg(x \lor y) \ge \neg x \land \neg y$$
 by Lemma 1.1

$$\neg(x \lor y) = \neg[\neg \neg x \lor \neg \neg y]$$
 by *involutory* property (Definition 1.5 page 5)

$$\le \neg x \land \neg y$$
 by item (1a)

2. Proof that $antitone \iff de Morgan$:

$$x \le y \implies \neg y = \neg (x \lor y)$$
 because $x \le y$
 $= \neg x \land \neg y$ by $de Morgan$
 $\le \neg x$ by definition of \land

Lemma 1.3. Let $\neg \in X^X$ be a function on a LATTICE $L \triangleq (X, \lor, \land; \le)$ (Definition D.3 page 119).

$$\begin{bmatrix} 1 & x \leq \neg \neg x & \forall x \in X & (\text{weak double negation}) & and \\ 2 & \neg 1 = 0 & (\text{boundary condition}) \end{bmatrix} \implies \{ \neg 0 = 1 & (\text{boundary condition}) \}$$

♥Proof:

Lemma 1.4. Let $\neg \in X^X$ be a function on a LATTICE $L \triangleq (X, \lor, \land; \le)$ (Definition D.3 page 119).

 $\left\{ \begin{array}{l} (x \land \neg x = 0 \ \forall x \in X \ (\text{non-contradiction}) \end{array} \right\} \Longrightarrow \left\{ \begin{array}{l} \neg 1 = 0 \ (\text{boundary condition}) \end{array} \right\}$

NPROOF:

$$0 = 1 \land \neg 1$$
$$= \neg 1$$

by non-contradiction hypothesis by definition of g.u.b. 1 and \land

Lemma 1.5. ¹² Let $\neg \in X^X$ be a function on a BOUNDED LATTICE $L \triangleq (X, \lor, \land, 0, 1; \le)$ (Definition E.1 page 135).

Lember 1859.

(a)
$$\neg is$$
 bijective and (B) $x \le y \implies \neg y \le \neg x \quad \forall x, y \in X \quad (ANTITONE)$

$$\begin{cases}
(A) & \neg is \text{ BIJECTIVE} \\
(B) & x \le y \implies \neg y \le \neg x \quad \forall x, y \in X \quad (ANTITONE)
\end{cases}$$

Boundary Conditions

№PROOF:

1. Proof that $\neg 0 = 1$:

$$x \le 1$$
 $\forall x \in X$ by definition of l.u.b. 1
 $\Rightarrow \neg 1 \le \neg x$ $\forall x \in X$ by antitone hypothesis
 $\Rightarrow \neg 1 \le y$ $\forall y \in X$ by bijective hypothesis
 $\Rightarrow \neg 1 = 0$ by definition of g.l.b. 0

2. Proof that $\neg 0 = 1$:

$$0 \le x$$
 $\forall x \in X$ by definition of g.l.b. 0
 $\Rightarrow \neg x \le \neg 0$ $\forall x \in X$ by antitone hypothesis
 $\Rightarrow \neg x \le y$ by bijective hypothesis
 $\Rightarrow \neg 0 = 1$ by definition of l.u.b. 1

Theorem 1.1. Let $\neg \in X^X$ be a function on a BOUNDED LATTICE $L \triangleq (X, \lor, \land, 0, 1; \le)$ (Definition E.1 page 135).

$$\left\{\begin{array}{l}
\neg \text{ is an} \\
\text{INTUITIONISTIC NEGATION}
\right\} \implies \left\{ \neg 1 = 0 \quad \text{(boundary condition)} \right\}$$

[♠]Proof: This follows directly from Definition 1.5 (page 5) and Lemma 1.4 (page 6).

Theorem 1.2. Let $\neg \in X^X$ be a function on a BOUNDED LATTICE $L \triangleq (X, \lor, \land, 0, 1; \le)$ (Definition E.1 page 135).

¹² **■** Varadarajan (1985) page 42

▶ Proof: This follows directly from Definition 1.2 (page 4) and Lemma 1.3 (page 6).

Theorem 1.3. Let $\neg \in X^X$ be a function on a BOUNDED LATTICE $L \triangleq (X, \lor, \land, 0, 1; \le)$ (Definition E.1 page 135).

$$\left\{ \begin{array}{l} \neg \ is \ a \\ minimal \\ negation \end{array} \right\} \implies \left\{ \begin{array}{l} \neg x \lor \neg y \le \neg (x \land y) \quad \forall x,y \in X \quad \text{(conjunctive de Morgan inequality)} \quad and \\ \neg (x \lor y) \le \neg x \land \neg y \quad \forall x,y \in X \quad \text{(disjunctive de Morgan inequality)} \end{array} \right\}$$

№ Proof: This follows directly from Definition 1.5 (page 5) and Lemma 1.1 (page 5).

Theorem 1.4. Let $\neg \in X^X$ be a function on a BOUNDED LATTICE $L \triangleq (X, \lor, \land, 0, 1; \le)$ (Definition E.1 page 135).

 $^{\circ}$ Proof: This follows directly from Definition 1.5 (page 5) and Lemma 1.2 (page 5).

Theorem 1.5. ¹³ Let $\neg \in X^X$ be a function on a BOUNDED LATTICE $L \triangleq (X, \lor, \land, 0, 1; \le)$ (Definition E.1 page 135).

$$\left\{ \begin{array}{l} \neg \ is \ an \\ ortho \ negation \end{array} \right\} \implies \left\{ \begin{array}{l} 1. & \neg 0 = 1 \\ 2. & \neg 1 = 0 \\ 3. & \neg (x \lor y) = \neg x \land \neg y \quad \forall x,y \in X \quad \text{(DISJUNCTIVE DE MORGAN)} \quad and \\ 4. & \neg (x \land y) = \neg x \lor \neg y \quad \forall x,y \in X \quad \text{(CONJUNCTIVE DE MORGAN)} \quad and \\ 5. & x \lor \neg x = 1 \\ 6. & x \land \neg x \leq y \lor \neg y \quad \forall x,y \in X \quad \text{(KLEENE CONDITION)}. \end{array} \right.$$

№ Proof:

- 1. Proof for $0 = \neg 1$ boundary condition: by Lemma 1.4 (page 6)
- 2. Proof for boundary conditions:

$$1 = \neg \neg 1$$
 by *involutory* property
= $\neg 0$ by previous result

- 3. Proof for *de Morgan* properties:
 - (a) By Definition 1.5 (page 5), ortho negation is involutory and antitone.
 - (b) Therefore by Lemma 1.2 (page 5), *de Morgan* properties hold.
- 4. Proof for *excluded middle* property:

$$x \lor \neg x = (x \lor \neg x)^{\neg \neg}$$
 by *involutory* property of *ortho negation* (Definition 1.5 page 5)
$$= \neg (x \neg \land x)^{\neg \neg}$$
 by *disjunctive de Morgan* property
$$= \neg (\neg x \land x)$$
 by *involutory* property of *ortho negation* (Definition 1.5 page 5)
$$= \neg (x \land \neg x)$$
 by *commutative* property of *lattices* (Definition D.3 page 119)
$$= \neg 0$$
 by *non-contradiction* property of *ortho negation* (Definition 1.5 page 5)
$$= 1$$
 by *boundary condition* (item (2) page 8) of *minimal negation*

5. Proof for *Kleene condition*:

$$x \land \neg x = 0$$
 by *non-contradiction* property (Definition 1.5 page 5)
 ≤ 1 by definition of 0 and 1
 $= y \lor \neg y$ by *excluded middle* property (item (4) page 8)

1.3 Examples

E X

> E X

Example 1.1 (discrete negation). Let $\mathbf{L} \triangleq (X, \vee, \wedge, \neg, 0, 1; \leq)$ be a bounded lattice (Definition E.1 page 135) with a function $\neg \in X^X$.

The function $\neg x$ defined as $\neg x \triangleq \begin{cases}
1 & \text{for } x = 0 \\
0 & \text{otherwise}
\end{cases}$ is an *intuitionistic negation* (Definition 1.2 page 4) and a *fuzzy negation* (Definition 1.2 page 4).

$$\begin{cases} \neg y \le \neg x & \iff 1 \le 1 & \text{for } 0 = x = y \\ \neg y \le \neg x & \iff 0 \le 1 & \text{for } 0 = x \le y \\ \neg y \le \neg x & \iff 0 \le 0 & \text{for } 0 \ne x \le y \end{cases} \implies \neg x \text{ is } antitone$$

$$\begin{cases} \neg \neg x = \neg 1 = 0 \ge 0 = x & \text{for } x = 0 \\ \neg \neg x = \neg 0 = 1 \ge x = x & \text{for } x \ne 0 \end{cases} \implies \neg x \text{ has } weak \text{ double negation}$$

$$\begin{cases} x \land \neg x = x \land 1 = 0 \land 0 = 0 & \text{for } x \ne 0 \\ x \land \neg x = x \land 0 = x \land 0 = 0 & \text{for } x \ne 0 \end{cases} \implies \neg x \text{ has } non\text{-contradiction property}$$

$$\neg 1 = 0 \implies \neg x \text{ has the boundary condition property}$$

Example 1.2 (dual discrete negation). ¹⁵ Let $L \triangleq (X, \vee, \wedge, \neg, 0, 1; \leq)$ be a *bounded lattice* (Definition E.1 page 135) with a function $\neg \in X^X$.

The function $\neg x$ defined as $\neg x \triangleq \begin{cases} 0 & \text{for } x = 1 \\ 1 & \text{otherwise} \end{cases}$

is a *subminimal negation* (Definition 1.1 page 3) but it is *not* a *minimal negation* (Definition 1.2 page 4) (and not any other negation defined here).

PROOF: To be an *subminimal negation*, $\neg x$ must be *antitone* (Definition 1.1 page 3). To be a *minimal negation*, $\neg x$ must be *antitone* and have *weak double negation* (Definition 1.2 page 4).

$$\left\{
 \begin{array}{l}
 \neg y \leq \neg x & \iff 0 \leq 0 & \text{for } x = y = 1 \\
 \neg y \leq \neg x & \iff 0 \leq 1 & \text{for } x \leq y = 1 \\
 \neg y \leq \neg x & \iff 1 \leq 1 & \text{for } x \leq y \neq 1
 \end{array}
\right\} \implies \neg x \text{ is antitone}$$

$$\left\{
 \begin{array}{l}
 \neg \neg x = \neg 0 = 1 \geq x & \text{for } x = 1 \\
 \neg \neg x = \neg 1 = 0 \leq x & \text{for } x \neq 1
 \end{array}
\right\} \implies \neg x \text{ does not have weak double negation}$$

¹⁴ Fodor and Yager (2000) page 128, Yager (1980) pages 256–257, Yager (1979) ⟨cf Fodor⟩

¹⁵

Fodor and Yager (2000) page 128, ■ Ovchinnikov (1983) page 235 ⟨Example 4⟩

Example 1.3. ¹⁶ Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a bounded lattice

E X

The function
$$\neg x$$
 is an *intuitionistic negation* (Definition 1.2 page 4) if $\neg x \triangleq \begin{cases} 1 & \text{for } x = 0 \\ 0 & \text{otherwise} \end{cases}$

Example 1.4.

E X

The function \neg illustrated to the right is an *ortho negation* (Definition 1.3 page 4).

$$\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array} =
\begin{bmatrix}
0 \\
0
\end{bmatrix}$$

 \Rightarrow

№ PROOF:

- 1. Proof that \neg is antitone: $0 \le 1 \implies \neg 1 = 0 \le x = \neg 0 \implies \neg$ is antitone over (0,1)
- 2. Proof that \neg is *involutory*: $1 = \neg 0 = \neg \neg 1$
- 3. Proof that \neg has the *non-contradiction* property: $1 \land \neg 1 = 1 \land 0 = 0$ $0 \land \neg 0 = 0 \land 1 = 0$

Example 1.5.

E X The functions ¬ illustrated to the right are *not* any negation defined here. In particular, they are *not antitone*.

$$01 = \neg 1$$
 $01 = \neg 0$ $01 = \neg a$
 $01 = \neg a$ $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$
 $01 = \neg a$

№ Proof:

- 1. Proof that (a) is *not antitone*: $a \le 1 \implies \neg 1 = 1 \nleq a = \neg a$
- 2. Proof that (b) is *not antitone*: $a \le 1 \implies \neg 1 = a \nleq 0 = \neg a$
- 3. Proof that (c) is *not antitone*: $0 \le a \implies \neg a = 1 \nleq a = \neg 0$

Example 1.6.

E X The function \neg as illustrated to the right is *not* a *subminimal negation* (it is *not antitone*) and so is *not* any negation defined here. Note however that the problem is *not* the O_6 *lattice*—it is possible to define a negation on an O_6 *lattice* (Example 1.16 page 14).

 $^{\textcircled{N}}$ Proof: Proof that \neg is not antitone: $a \le c \implies \neg c = d \nleq b = \neg a$

 \blacksquare

Remark 1.3. The concept of a *complement* (Definition H.1 page 167) and the concept of a *negation* are fundamentally different. A *complement* is a *relation* (Definition B.1 page 75) on a lattice L and a *negation* is a *function* (Definition B.8 page 87). In Example 1.6 (page 10), b and d are both complements of a, but yet \neg is *not* a negation. In the right side lattice of Example 1.16 (page 14), both b and d are complements of a (and so the lattice is *multipy complemented*), but yet only d is equal to the negation of a ($d = \neg a$). It can also be said that complementation is a property *of* a lattice, whereas negation is a function defined *on* a lattice.

1.3. EXAMPLES Daniel J. Greenhoe page 11

Figure 1.2: negations on L_3

Example 1.7.

Each of the functions ¬ illustrated to the right is a *subminimal negation* (Definition 1.1 page 3); *none* of them is a *minimal negation* (each fails to have *weak double negation*).

№ Proof:

E X

1. Proof that (a)
$$\neg$$
 is antitone: $a \le 1 \implies \neg 1 = 0 \le 0 = \neg a \implies \neg$ is antitone over $(a, 1)$ $0 \le 1 \implies \neg 1 = 0 \le a = \neg 0 \implies \neg$ is antitone over $(0, 1)$ $0 \le a \implies \neg a = 0 \le a = \neg 0 \implies \neg$ is antitone over $(0, a)$

2. Proof that (a) \neg *fails* to have *weak double negation*: $1 \nleq a = \neg 0 = \neg \neg 1$

3. Proof that (b)
$$\neg$$
 is antitone: $a \le 1 \implies \neg 1 = a \le a = \neg a \implies \neg$ is antitone over $(a, 1)$ $0 \le 1 \implies \neg 1 = a \le a = \neg 0 \implies \neg$ is antitone over $(0, 1)$ $0 \le a \implies \neg a = a \le a = \neg 0 \implies \neg$ is antitone over $(0, a)$

- 4. Proof that (b) \neg *fails* to have *weak double negation*: $1 \nleq a = \neg a = \neg \neg 1$
- 5. (c) is a special case of the *dual discrete negation* (Example 1.2 page 9).

Example 1.8. The function \neg illustrated in Figure 1.2 page 11 (A) is a **minimal negation** (Definition 1.2 page 4); it is *not* an *intuitionistic negation* (it does not have the *non-contradiction* property), it is *not* a *de Morgan negation* (it is not *involutory*), and it is *not* a *fuzzy negation* ($\neg 1 \neq 0$).

♥Proof:

1. Proof that
$$\neg$$
 is antitone: $a \le 1 \implies \neg 1 = a \le 1 = \neg a \implies \neg$ is antitone over $(a, 1)$ $0 \le 1 \implies \neg 1 = a \le 1 = \neg 0 \implies \neg$ is antitone over $(0, 1)$ $0 \le a \implies \neg a = 1 \le 1 = \neg 0 \implies \neg$ is antitone over $(0, a)$

2. Proof that \neg is a weak double negation (and so is a minimal negation, but is not a de Morgan negation):

- 3. Proof that \neg does *not* have the *non-contradiction* property (and so is not an *intuitionistic negation*): $1 \land \neg 1 = 1 \land a = a \neq 0$
- 4. Proof that \neg is not a fuzzy negation: $\neg 1 = a \neq 0$

⇛

₽

Example 1.9 (Łukasiewicz 3-valued logic/Kleene 3-valued logic/RM $_3$ logic). ¹⁷ The function \neg illustrated in Figure 1.2 page 11 (B) is a **Kleene negation** (Definition 1.3 page 4), and is also a *fuzzy negation* (Definition 1.2 page 4); but it is *not* an *ortho negation* and is *not* an *intuitionistic negation* (it does not have the *non-contradiction* property).

♥Proof:

- 1. Proof that \neg is antitone: $a \le 1 \implies \neg 1 = 0 \le a = \neg a \implies \neg$ is antitone over (a, 1) $0 \le 1 \implies \neg 1 = 0 \le 1 = \neg 0 \implies \neg$ is antitone over (0, 1) $0 \le a \implies \neg a = a \le 1 = \neg 0 \implies \neg$ is antitone over (0, a)
- 2. Proof that \neg is *involutory* (and so is a *de Morgan negation*):

```
1 = \neg 0 = \neg \neg 1 \implies \neg \text{ is involutory at } 1

a = \neg a = \neg \neg a \implies \neg \text{ is involutory at } a

0 = \neg 0 = 0 \neg \neg \implies \neg \text{ is involutory at } 0
```

3. Proof that \neg does *not* have the *non-contradiction* property (and so is not an *ortho negation*):

$$x \land \neg x = x \land x = x \neq 0$$

4. Proof that ¬ satisfies the *Kleene condition* (and so is a *Kleene negation*):

```
1 \wedge \neg 1 = 1 \wedge 0 = 0 \leq a =
                                      a
                  0
                         0
                            <
                               1 =
                            <
                               1
            1 \wedge a
                     = a \leq 1
         = 0 \wedge 1
                     = 0 \le 1 =
                                            0
     \neg 0
                                      1
                                                         \neg 1
                  1 = 0 \leq a = a
    \neg 0 = 0 \land
```

Example 1.10. The function \neg illustrated in Figure 1.2 page 11 (C) an **intuitionistic negation** (Definition 1.2 page 4); but it is *not* a *fuzzy negation* ($1 \neq \neg 0$), and it is *not* a *de Morgan negation* (it is not *involutory*).

№ Proof:

- 1. Proof that \neg is antitone: $a \le 1 \implies \neg 1 = 0 \le 0 = \neg a \implies \neg$ is antitone at (a, 1) $0 \le 1 \implies \neg 1 = 0 \le a = \neg 0 \implies \neg$ is antitone at (0, 1) $0 \le a \implies \neg a = 0 \le a = \neg 0 \implies \neg$ is antitone at (0, a)
- 2. Proof that ¬ has *weak double negation* property (and so is a *minimal negation*, but *not* a *de Morgan negation*):

```
1 \le a = \neg 0 = \neg \neg 1 \implies \neg has weak double negation at 1

a = \neg 0 = \neg \neg a \implies \neg has weak double negation at a

0 = \neg a = 0 \Rightarrow \neg is involutory at 0
```

3. Proof that \neg has the *non-contradiction* property (and so is an *intuitionistic negation*):

4. Proof that \neg is *not* a *fuzzy negation*: $\neg 1 \neq 0$

¹⁷ ■ Łukasiewicz (1920), ■ Avron (1991) pages 277–278, ■ Kleene (1938) page 153, ■ Kleene (1952), pages 332–339 (\$64. The 3-valued logic), ■ Sobociński (1952)

1.3. EXAMPLES Daniel J. Greenhoe page 13

Figure 1.3: negations on M_2

Example 1.11 (Heyting 3-valued logic/Jaśkowski's first matrix). ¹⁸ The function ¬ illustrated in Figure 1.2 page 11 (D) is an **intuitionistic negation** (Definition 1.2 page 4), and is also a **fuzzy negation** (Definition 1.2 page 4), but it is *not* a *de Morgan negation* (it is not *involutory*).

 $^{\circ}$ Proof: This is simply a special case of the *discrete negation* (Example 1.1 page 9).

Remark 1.4. There is only one linearly ordered (Definition C.4 page 105) 3-element lattice (L_3) that is a fuzzy negation (Example 1.11 page 12). However, this lattice is also an intuitionistic negation. There are no L_3 lattices that are fuzzy but yet not intuitionistic. In fact, there are only three linearly ordered 3-element lattices with with $1 = \neg 0$ and $0 = \neg 1$. Of these three, only one is both fuzzy and intuitionistic (Example 1.11 page 12), one is Kleene but not fuzzy (Example 1.9 page 11), and one is subminimal but not fuzzy (Example 1.7 page 10). It can be claimed that the "simplist" fuzzy negation that is not de Morgan and not intuitionistic is the M_2 lattice of Example 1.12 (next).

Example 1.12. The function \neg illustrated in Figure 1.3 page 13 (A) is a **fuzzy negation** (Definition 1.2 page 4). It is not an *intuitionistic negation* (it does not have the *non-contradiction* property) and it is *not* a *de Morgan negation* (it is not *involutory*).

PROOF: Note that $\begin{array}{c}
1 = \neg 00 \\
a & \\
0 = \neg 1 = \neg a
\end{array}$ $\begin{array}{c}
0 = \neg 0 \\
a & \\
0 = \neg 1 = \neg a
\end{array}$ $\begin{array}{c}
0 = \neg 0 \\
0 = \neg 1 = \neg a
\end{array}$ $\begin{array}{c}
0 = \neg 1 \\
0 = \neg 1
\end{array}$ $\begin{array}{c}
0 = \neg 1 \\
0 = \neg 1
\end{array}$ $\begin{array}{c}
\text{Kleene negation} \\
\text{(Example 1.12 page 13)}
\end{array}$ (Example 1.11 page 12) (Example 1.9 page 11)

- 1. Proof that \neg is *antitone*: *a* 0 = \neg is antitone at (a, 1) \leq \neg is antitone at (0,1) $\neg 0$ \neg is *antitone* at (0, a)= 0 \leq \neg is *antitone* at (b, 1)bb < 1 $\neg ()$ \neg is *antitone* at (0, b)=
- 2. Proof that ¬ has *weak double negation* property (and so is a *minimal negation*, but *not* a *de Morgan negation*):

- 3. Proof that \neg does *not* have the *non-contradiction* property (and so is *not* an *intuitionistic negation*): $b \land \neg b = b \land b = b \neq 0$
- 4. Proof that \neg is has boundary conditions (and so is a fuzzy negation): $\neg 1 = 0$, $\neg 0 = 1$

0.50 (D. ft. III

Example 1.13. ¹⁹ The function \neg illustrated in Figure 1.3 page 13 (B) is an *ortho negation* (Definition 1.3 page 4).

♥Proof:

- 1. Proof that \neg is antitone: $a \le 1 \implies \neg 1 = 0 \le b = \neg a$ $0 \le 1 \implies \neg 1 = 0 \le 1 = \neg 0$ $0 \le a \implies \neg a = b \le 1 = \neg 0$ $b \le 1 \implies \neg 1 = 0 \le a = \neg b$ $0 \le b \implies \neg b = a \le 1 = \neg 0$
- 2. Proof that \neg is involutory (and so is a de Morgan negation): $1 = \neg 0 = \neg \neg 1$ $a = \neg a = \neg \neg a$ $b = \neg b = \neg b$ $0 = \neg 0 = 0$
- 3. Proof that \neg is has the *non-contradiction* property (and so is an *ortho negation*):

 $0 \wedge \neg 0 = 0 \wedge 1 = 0$

Example 1.14 (BN₄). ²⁰ The function \neg illustrated in Figure 1.3 page 13 (C) is a **de Morgan negation** (Definition 1.3 page 4), but it is *not* a *Kleene negation* and not an *ortho negation* (it does *not* satisfy the *Kleene condition*).

№ Proof:

- 1. Proof that \neg is antitone: $a \le 1 \implies \neg 1 = 0 \le b = \neg a$ $0 \le 1 \implies \neg 1 = 0 \le 1 = \neg 0$ $0 \le a \implies \neg a = a \le 1 = \neg 0$ $b \le 1 \implies \neg 1 = 0 \le b = \neg b$ $0 \le b \implies \neg b = b \le 1 = \neg 0$
- 2. Proof that \neg is involutory (and so is a de Morgan negation): $1 = \neg 0 = \neg \neg 1$ $a = \neg a = \neg \neg a$ $b = \neg b = \neg \neg b$ $0 = \neg 0 = 0$
- 3. Proof that \neg does *not* have the *non-contradiction* property (and so is *not* an *ortho negation*):

$$a \wedge \neg a = a \wedge a = a \neq 0$$

 $b \wedge \neg b = b \wedge b = b \neq 0$

4. Proof that ¬ does *not* satisfy the *Kleene condition* (and so is a *de Morgan negation*):

$$a \wedge \neg a = a \wedge a = a \nleq b \wedge \neg b = b$$

²⁰ ■ Cignoli (1975) page 270, ■ Restall (2000) page 171 ⟨Example 8.39⟩, ■ de Vries (2007) pages 15–16 ⟨Example 26⟩, ■ Dunn (1976), ■ Belnap (1977)

¹⁹ Belnap (1977) page 13 Restall (2000) page 177 (Example 8.44), Pavičić and Megill (2008) page 28 (Definition 2, classical implication)

page 15

E X

The function \neg illustrated to the left is a de Morgan negation (Definition 1.3 page 4), but it is not a Kleene negation and not an ortho negation (it does *not* satisfy the *Kleene condition*). The negation illustrated to the right is a Kleene negation (Definition 1.3 page 4), but it is not an ortho negation (it does not have the non-contradiction property).

Example 1.16.

The function ¬ illustrated to the left is a *de Morgan* negation (Definition 1.3 page 4); it is not a Kleene negation (it does not satisfy the Kleene condition). The negation illustrated to the right is an ortho negation (Definition 1.3 page 4).

Example 1.17.

The function ¬ illustrated to the left is *not antitone* and therefore is not a *negation* (Definition 1.2 page 4). The function ¬ illustrated to the right is a *Kleene negation* (Definition 1.3 page 4); it is not an ortho negation (it does not have the *non-contradiction* property).

[♠]Proof:

- 1. Proof that left \neg is not antitone: $a \le c$ but $\neg c \nleq \neg a$.
- 2. Proof that right ¬ satisfies the *Kleene condition*:

$$x \land \neg x = \begin{cases} b & \text{for } x = b \\ 0 & \text{otherwise} \end{cases} \quad \forall x \in X \quad \text{and} \quad y \land \neg y = \begin{cases} c & \text{for } y = c \\ 0 & \text{otherwise} \end{cases}$$
$$\implies x \land \neg x \leq y \lor \neg y \quad \forall x, y \in X$$

3. Proof that right \neg does not have the *non-contradiction* property: $b \land \neg b = b \land c = b \neq 0$

Example 1.18.

The lattices illustrated to the left and right are *Boolean* (Definition I.1 page 173). The function ¬ illustrated to the left is a *Kleene negation* (Definition 1.3 page 4), but it is not an ortho negation (it does not have the noncontradiction property). The negation illustrated to the right is an ortho negation (Definition 1.3 page 4).

^ℚProof:

1. Proof that left side negation does *not* have *non-contradiction* property (and so is *not* an *ortho nega*tion):

$$a \land \neg a = a \land d = a \neq 0$$

2. Proof that left side negation does *not* satisfy *Kleene condition* (and so is *not* a *Kleene negation*): $a \land \neg a = a \land d = a \nleq f = c \lor f = c \lor \neg c$

CHAPTER 2

IMPLICATION

In this document, *implication* is defined as in Definition 3.1 (next).

Definition 2.1. Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a BOUNDED LATTICE (Definition E.1 page 135).

D E F

```
The function \rightarrow in X^X is an implication on L if
```

1. $\{x \le y\} \implies x \to y \ge x \lor y \quad \forall x,y \in X \quad \text{(Weak entailment)} \quad and$

2. $x \land (x \rightarrow y) \leq \neg x \lor y \quad \forall x,y \in X \quad \text{(Weak modus ponens)}$

Proposition 2.1. Let \rightarrow be an IMPLICATION (Definition 3.1 page 24) on a BOUNDED LATTICE $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ (Definition E.1 page 135).

 $\frac{\mathsf{P}}{\mathsf{R}} \quad \{x \le y\}$

 $\iff \{x \to y \ge x \lor y\}$

 $\forall x,y \in X$

♥Proof:

- 1. Proof for \implies case: by *weak entailment* property of *implications* (Definition 3.1 page 24).
- 2. Proof for \Leftarrow case:

$$y \ge x \land (x \to y)$$
 by right hypothesis
 $\ge x \land (x \lor y)$ by modus ponens property of \to (Definition 3.1 page 24)
 $= x$ by absorptive property of lattices (Definition D.3 page 119)

Remark 2.1. ¹ Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a *bounded lattice* (Definition E.1 page 135). In the context of *ortho lattices*, a more common (and stronger) definition of *implication* \rightarrow might be

1.
$$x \le y \implies x \to y = 1 \quad \forall x, y \in X \quad (entailment \mid strong entailment)$$
 and

2. $x \land (x \rightarrow y) \leq y \quad \forall x,y \in X \quad (modus ponens \mid strong modus ponens)$

This definition yields a result stronger than that of Proposition 3.1 (page 24):

$$\{x \le y\} \iff \{x \to y = 1\} \qquad \forall x, y \in X$$

¹ ■ Hardegree (1979) page 59 〈(E),(MP),(E*)〉, ■ Kalmbach (1973) page 498, ■ Kalmbach (1983) pages 238–239 〈Chapter 4 §15〉, ■ Pavičić and Megill (2008) page 24, ■ Xu et al. (2003) page 27 〈Definition 2.1.1〉, ■ Xu (1999) page 25, ■ Jun et al. (1998) page 54

The Heyting 3-valued logic (Example 3.6 page 32) and Sasaki hook logic (Example 3.9 page 33) have both strong entailment and strong modus ponens. However, for non-orthologics in general, these two properties seem inappropriate to serve as a definition for implication. For example, the Kleene 3-valued logic (Example 3.3 page 30), RM_3 logic (Example 3.5 page 31), and BN_4 logic (Example 3.10 page 33) do not have the strong entailment property; and the Kleene 3-valued logic, Łukasiewicz 3-valued logic (Example 3.4 page 31), and BN_4 logic do not have the strong modus ponens property.

♥Proof:

- 1. Proof for \implies case: by *entailment* property of *implications* (Definition 3.1 page 24).
- 2. Proof for \Leftarrow case:

$$x \to y = 1 \implies x \land 1 \le y$$
 by *modus ponens* property (Definition 3.1 page 24)
$$\implies x \le y$$
 by definition of 1 (*least upper bound*) (Definition C.21 page 116)

Example 2.1. Let $L \triangleq (X, \vee, \wedge, \neg, 0, 1; \leq)$ be a *lattice with negation* (Definition 1.5 page 5).

If L is an **orthomodular lattice** (Definition 1.3 page 4), then the functions listed below are all examples of valid *implication* functions (Definition 3.1 page 24) on L. If L is an **ortholattice**, then 1–5 are *implication* relations.

```
1. x \stackrel{\varsigma}{\longrightarrow} y \triangleq \neg x \lor y \quad \forall x,y \in X \quad (classical implication / material implication / horseshoe)
2. x \stackrel{\varsigma}{\longrightarrow} y \triangleq \neg x \lor (x \land y) \quad \forall x,y \in X \quad (Sasaki hook / quantum implication)
3. x \stackrel{d}{\longrightarrow} y \triangleq y \lor (\neg x \land \neg y) \quad \forall x,y \in X \quad (Dishkant implication)
4. x \stackrel{k}{\longrightarrow} y \triangleq (\neg x \land y) \lor (\neg x \land \neg y) \lor (x \land (\neg x \lor y)) \quad \forall x,y \in X \quad (Kalmbach implication)
5. x \stackrel{\eta}{\longrightarrow} y \triangleq (\neg x \land y) \lor (x \land y) \lor ((\neg x \lor y) \land \neg y) \quad \forall x,y \in X \quad (non-tollens implication)
6. x \stackrel{r}{\longrightarrow} y \triangleq (\neg x \land y) \lor (x \land y) \lor (\neg x \land \neg y) \quad \forall x,y \in X \quad (relevance implication)
```

Moreover, if L is a **Boolean lattice**, then all of these implications are equivalent to $\stackrel{\varsigma}{\rightarrow}$, and all of them have *strong entailment* and *strong modus ponens*.

Note that $\forall x,y \in X$, $x \stackrel{d}{\to} y = \neg y \stackrel{\$}{\to} \neg x$ and $x \stackrel{n}{\to} y = \neg y \stackrel{k}{\to} \neg x$. The values for the 6 implications on an *orthocomplemented* O_6 *lattice* (Definition J.2 page 198) are listed in Example 3.11 (page 33).

^ℚProof:

- 1. Proofs for the *classical implication* $\stackrel{\varsigma}{\rightarrow}$:
 - (a) Proof that on an *ortho lattice*, $\stackrel{\triangleleft}{\rightarrow}$ is an *implication*:

```
x \le y \implies x \stackrel{\varsigma}{\to} y \triangleq \neg x \lor y by definition of \stackrel{\varsigma}{\to} by x \le y and antitone property of \neg (Definition 1.3 page 4)
= 1 \qquad \qquad \text{by } excluded \ middle \ property \ of } \neg \ (\text{Theorem 1.5 page 8})
\implies strong \ entailment \qquad \text{by definition of } strong \ entailment}
x \land (\neg x \lor y) \le \neg x \lor y \qquad \qquad \text{by definition of } \land \text{(Definition C.22 page 116)}
\implies weak \ modus \ ponens
by definition of weak \ modus \ ponens
```

Note that in general for an *ortho lattice*, the bound cannot be tightened to *strong modus ponens* because, for example in the O_6 *lattice* (Definition J.2 page 198) illustrated to the right

² ■ Kalmbach (1973) page 499, ■ Kalmbach (1974), ■ Mittelstaedt (1970) ⟨Sasaki hook⟩, ■ Finch (1970) page 102 ⟨Sasaki hook (1.1)⟩, ■ Kalmbach (1983) page 239 ⟨Chapter 4 §15, 3. Theorem⟩

 $x \land (\neg x \lor y) = x \land 1 = x \nleq y \implies not strong modus ponens$

(b) Proof that on a *Boolean lattice*, $\stackrel{\checkmark}{\rightarrow}$ is an *implication*:

$$x \land (\neg x \lor y) = (x \land \neg x) \lor (x \land y)$$
 by distributive property of Boolean lattices (Definition I.1 page 173)
$$= 1 \lor (x \land y)$$
 by excluded middle property of Boolean lattices
$$= x \land y$$
 by definition of 1
$$\leq y$$
 by definition of \land (Definition C.22 page 116)
$$\implies strong\ modus\ ponens$$
 by definition of $strong\ modus\ ponens$

- 2. Proofs for Sasaki implication $\stackrel{\$}{\rightarrow}$:
 - (a) Proof that on an *ortho lattice*, \rightarrow is an *implication*:

$$x \leq y \implies x \stackrel{\S}{\to} y$$

$$\stackrel{\triangle}{=} \neg x \lor (x \land y) \qquad \text{by definition of } \stackrel{L}{\to}$$

$$= \neg x \lor x \qquad \text{by } x \leq y \text{ hypothesis}$$

$$= 1 \qquad \text{by } excluded \ middle \ \text{prop. of } ortho \ negation \ (\text{Theorem 1.5 page 8})$$

$$\implies strong \ entailment \qquad \text{by definition of } strong \ entailment}$$

$$x \land (x \stackrel{\S}{\to} y) \triangleq x \land [\neg x \lor (x \land y)] \qquad \text{by definition of } \land \text{(Definition C.22 page 116})$$

$$\leq \neg x \lor y \qquad \text{by definition of } \land \text{(Definition C.22 page 116})$$

$$\implies weak \ modus \ ponens$$

(b) Proof that on a *Boolean lattice*, $\stackrel{\$}{\rightarrow} = \stackrel{\varsigma}{\rightarrow}$:

$$x \stackrel{\$}{\to} y \triangleq \neg x \lor (x \land y)$$
 by definition of $\stackrel{\$}{\to}$ by Lemma I.2 (page 178)
= $x \stackrel{\varsigma}{\to} y$ by definition of $\stackrel{\varsigma}{\to}$

- 3. Proofs for Dishkant implication $\stackrel{d}{\rightarrow}$:
 - (a) Proof that $x \stackrel{d}{\rightarrow} y \equiv \neg y \stackrel{s}{\rightarrow} \neg x$:

$$x \stackrel{d}{\rightarrow} y \triangleq y \lor (\neg x \land \neg y)$$
 by definition of $\stackrel{d}{\rightarrow}$ by *commutative* property of *lattices* (Theorem D.3 page 120) by *commutative* property of *lattices* (Theorem D.3 page 120) by *involutory* prop. of *ortho negations* (Definition 1.3 page 4) $\triangleq \neg y \stackrel{\$}{\rightarrow} \neg x$ by definition of $\stackrel{\$}{\rightarrow}$

(b) Proof that on an *ortho lattice*, $\stackrel{d}{\rightarrow}$ is an *implication*:

$$x \leq y \implies x \stackrel{d}{\to} y$$

$$\stackrel{\triangle}{=} y \vee (\neg x \wedge \neg y) \qquad \text{by definition of } \stackrel{d}{\to}$$

$$= y \vee \neg y \qquad \text{by } x \leq y \text{ hypothesis and } \text{ antitone property (Definition 1.3 page 4)}$$

$$= 1 \qquad \text{by } \text{ excluded middle prop. of } \text{ or tho negation (Theorem 1.5 page 8)}$$

$$\implies \text{ strong entailment} \qquad \text{by definition of } \text{ strong entailment}$$

$$x \wedge (x \stackrel{d}{\to} y) \triangleq y \vee (\neg x \wedge \neg y) \qquad \text{by definition of } \stackrel{d}{\to}$$

$$= y \vee \neg x \qquad \text{by definition of } \wedge \text{ (Definition C.22 page 116)}$$

$$\implies \text{ weak modus ponens}$$

(c) Proof that on a *Boolean lattice*, $\stackrel{d}{\rightarrow} = \stackrel{\varsigma}{\rightarrow}$:

$$x \stackrel{d}{\rightarrow} y \triangleq y \lor (\neg x \land \neg y)$$
 by definition of $\stackrel{d}{\rightarrow}$ by Lemma I.2 (page 178)
$$= x \stackrel{\varsigma}{\rightarrow} y$$
 by definition of $\stackrel{\varsigma}{\rightarrow}$

- 4. Proofs for the *Kalmbach implication* $\stackrel{k}{\rightarrow}$:
 - (a) Proof that on an *ortho lattice*, $\stackrel{k}{\rightarrow}$ is an *implication*:

$$x \leq y \implies x \stackrel{k}{\to} y$$

$$\triangleq (\neg x \wedge y) \vee (\neg x \wedge \neg y) \vee [x \wedge (\neg x \vee y)] \qquad \text{by definition of } \stackrel{k}{\to}$$

$$= (\neg x \wedge y) \vee (\neg y) \vee [x \wedge (\neg x \vee y)] \qquad \text{by antitone property (Definition 1.3 page 4)}$$

$$= (\neg x \wedge y) \vee \neg y \vee [x \wedge (1)]$$

$$= (\neg x \wedge y) \vee (x \vee \neg y) \qquad \text{by definition of 1 (Definition C.21 page 116)}$$

$$= \neg \neg (\neg x \wedge y) \vee (x \vee \neg y) \qquad \text{by involutory property (Definition 1.3 page 4)}$$

$$= \neg (\neg \neg x \vee \neg y) \vee (x \vee \neg y) \qquad \text{by de Morgan property (Theorem 1.5 page 8)}$$

$$= \neg (x \vee \neg y) \vee (x \vee \neg y) \qquad \text{by involutory property (Definition 1.3 page 4)}$$

$$= 1 \qquad \text{by excluded middle property (Theorem 1.5 page 8)}$$

$$\Rightarrow strong entailment$$

$$x \wedge (x \xrightarrow{k} y) \triangleq x \wedge [(\neg x \wedge y) \vee (\neg x \wedge \neg y) \vee [x \wedge (\neg x \vee y)]]$$
by definition of \xrightarrow{k}

$$\leq (\neg x \wedge y) \vee (\neg x \wedge \neg y) \vee [x \wedge (\neg x \vee y)]$$
by definition of \wedge (Definition C.22 page 116)

$$\leq (\neg x \wedge y) \vee (\neg x \wedge \neg y) \vee (\neg x \vee y)$$
by definition of \wedge (Definition C.22 page 116)

$$\leq y \vee (\neg x \wedge \neg y) \vee \neg x \vee y$$
by definition of \wedge (Definition C.22 page 116)

$$= y \vee \neg x \vee (\neg x \wedge \neg y)$$
by definition of \wedge (Definition C.22 page 116)

$$\leq y \vee \neg x \vee (\neg x \wedge \neg y)$$
by definition of \wedge (Definition C.22 page 116)

$$\leq y \vee \neg x \vee \neg x$$
by definition of \wedge (Definition C.22 page 116)

$$= \neg x \vee y$$
by definition of \wedge (Definition C.22 page 116)

$$\Rightarrow y \vee \neg x \vee \neg x$$
by definition of \wedge (Definition C.22 page 116)

$$\Rightarrow y \vee \neg x \vee \neg x$$
by definition of \wedge (Definition C.22 page 116)

(b) Proof that on a *Boolean lattice*, $\stackrel{k}{\rightarrow} = \stackrel{\varsigma}{\rightarrow}$:

```
x \stackrel{k}{\rightarrow} y \triangleq (\neg x \land y) \lor (\neg x \land \neg y) \lor [x \land (\neg x \lor y)]
                                                                                       by definition of \stackrel{k}{\rightarrow}
            = (\neg x \land y) \lor (\neg x \land \neg y) \lor [(x \land \neg x) \lor (x \land y)]
                                                                                      by distributive property (Definition I.1 page 173)
            = (\neg x \land y) \lor (\neg x \land \neg y) \lor [(0) \lor (x \land y)]
                                                                                       by non-contradiction property
            = (\neg x \land y) \lor (\neg x \land \neg y) \lor (x \land y)
                                                                                       by bounded property (Definition E.1 page 135)
            = \neg x \land (y \lor \neg y) \lor (x \land y)
                                                                                       by distributive property (Definition I.1 page 173)
            = \neg x \wedge 1 \vee (x \wedge y)
                                                                                       by excluded middle property
            = \neg x \lor (x \land y)
                                                                                       by definition of 1 (Definition C.21 page 116)
            = \neg x \lor y
                                                                                       by Lemma I.2 (page 178)
            \triangleq x \stackrel{c}{\rightarrow} y
                                                                                       by definition of \stackrel{\varsigma}{\rightarrow}
```

- 5. Proofs for the *non-tollens implication* $\stackrel{n}{\rightarrow}$:
 - (a) Proof that $x \stackrel{n}{\to} y \equiv \neg y \stackrel{k}{\to} \neg x$:

$$x \stackrel{\eta}{\to} y \triangleq (\neg x \land y) \lor (x \land y) \lor [(\neg x \lor y) \land \neg y]$$
by definition of $\stackrel{\eta}{\to}$
$$= (y \land \neg x) \lor (y \land x) \lor [\neg y \land (y \lor \neg x)]$$
$$= (\neg \neg y \land \neg x) \lor (\neg \neg y \land \neg \neg x) \lor [\neg y \land (\neg \neg y \lor \neg x)]$$
by definition of $\stackrel{k}{\to}$
$$\Rightarrow \neg y \stackrel{k}{\to} \neg x$$
by definition of $\stackrel{k}{\to}$

(b) Proof that on an *ortho lattice*, $\stackrel{\eta}{\rightarrow}$ is an *implication*:

$$x \leq y \implies x \stackrel{\eta}{\to} y$$

$$\equiv \neg y \stackrel{k}{\to} \neg x \qquad \text{by item (5a) page 27}$$

$$= 1 \qquad \text{by item (4a) page 27}$$

$$\implies strong\ entailment$$

$$x \wedge (x \stackrel{\eta}{\to} y) = x \wedge (\neg y \stackrel{k}{\to} \neg x) \qquad \text{by item (5a) page 27}$$

$$\leq \neg \neg y \vee \neg x \qquad \text{by item (4a) page 27}$$

$$\leq y \vee \neg x \qquad \text{by item (4a) page 27}$$

$$= y \vee \neg x \qquad \text{by involutory property of } \neg \text{ (Definition 1.3 page 4)}$$

$$= \neg x \vee y \qquad \text{by commutative property of } lattices \text{ (Definition D.3 page 119)}$$

$$\implies weak\ modus\ ponens$$

(c) Proof that on a *Boolean lattice*, $\stackrel{n}{\rightarrow} = \stackrel{\varsigma}{\rightarrow}$:

$$x \xrightarrow{\eta} y = \neg y \xrightarrow{k} \neg x$$
 by item (5a) page 27
 $= \neg \neg y \lor \neg x$ by item (4b) page 27
 $= y \lor \neg x$ by involutory property of \neg (Definition 1.3 page 4)
 $= \neg x \lor y$ by commutative property of lattices (Definition D.3 page 119)
 $\triangleq x \xrightarrow{\varsigma} y$ by definition of $\xrightarrow{\varsigma}$

- 6. Proofs for the *relevance implication* $\stackrel{\mathcal{L}}{\rightarrow}$:
 - (a) Proof that on an *ortho lattice*, $\stackrel{r}{\rightarrow}$ does *not* have *weak entailment*: In the *ortho lattice* to the right...

$$x \le y \implies x \xrightarrow{r} y$$

$$\triangleq (\neg x \land y) \lor (x \land y) \lor (\neg x \land \neg y) \qquad \text{by definition of } \xrightarrow{r}$$

$$= 0 \lor x \lor \neg y$$

$$= x \lor \neg y$$

$$\neq x \lor y$$

(b) Proof that on an orthomodular lattice, $\stackrel{r}{\rightarrow}$ does have strong entailment:

$$x \le y \implies x \xrightarrow{r} y$$

$$\triangleq (\neg x \land y) \lor (x \land y) \lor (\neg x \land \neg y) \qquad \text{by definition of } \xrightarrow{r}$$

$$= (\neg x \land y) \lor x \lor (\neg x \land \neg y) \qquad \text{by } x \le y \text{ hypothesis}$$

$$= (\neg x \land y) \lor x \lor \neg y \qquad \text{by } x \le y \text{ and } antitone \text{ property (Definition 1.3 page 4)}$$

$$= y \lor \neg y \qquad \text{by } orthomodular identity (Definition J.3 page 207)}$$

$$= 1 \qquad \text{by } excluded \ middle \ property \text{ of } \neg \text{ (Theorem 1.5 page 8)}$$

(c) Proof that on an *ortho lattice*, $\stackrel{r}{\rightarrow}$ *does* have *weak modus ponens*:

$$x \wedge (x \xrightarrow{r} y) \triangleq x \wedge [(\neg x \wedge y) \vee (x \wedge y) \vee (\neg x \wedge \neg y)] \qquad \text{by definition of } \xrightarrow{r}$$

$$\leq [(\neg x \wedge y) \vee (x \wedge y) \vee (\neg x \wedge \neg y)] \qquad \text{by definition of } \wedge \text{ (Definition C.22 page 116)}$$

$$\leq \neg x \vee (x \wedge y) \vee (\neg x \wedge \neg y) \qquad \text{by definition of } \wedge \text{ (Definition C.22 page 116)}$$

$$\leq \neg x \vee y \vee (\neg x \wedge \neg y) \qquad \text{by definition of } \wedge \text{ (Definition C.22 page 116)}$$

$$\leq \neg x \vee y \qquad \text{by absorption property (Theorem D.3 page 120)}$$

$$\Rightarrow weak modus ponens$$

(d) Proof that on a *Boolean lattice*, $\stackrel{r}{\rightarrow} = \stackrel{\varsigma}{\rightarrow}$:

$$x \stackrel{r}{\rightarrow} y \triangleq (\neg x \land y) \lor (x \land y) \lor (\neg x \land \neg y)$$
 by definition of $\stackrel{r}{\rightarrow}$

$$= [\neg x \land (y \lor \neg y)] \lor (x \land y)$$
 by distributive property (Definition I.1 page 173)
$$= [\neg x \land 1] \lor (x \land y)$$
 by excluded middle property of \neg (Theorem 1.5 page 8)
$$= \neg x \lor (x \land y)$$
 by definition of 1 and \land (Definition C.22 page 116)
$$= \neg x \lor y$$
 by property of Boolean lattices (Lemma I.2 page 178)
$$\triangleq x \stackrel{\varsigma}{\rightarrow} y$$
 by definition of $\stackrel{\varsigma}{\rightarrow}$

₽

 $\stackrel{\checkmark}{}$ I dare say that this is the last effort of the human mind, and when this project shall have been carried out, all that men will have to do will be to be happy, since they will have an instrument that will serve to exalt the intellect not less than the telescope serves to perfect their vision.

LOGIC

Gottfried Leibniz (1646–1716), German mathematician, sharing his thoughts regarding mathematical logic. ¹

■ I cannot forget or omit to record this day last week. I was sleeping as usual for the night at St. Michael's Hamlet. As I awoke in the morning, the sun was shining brightly into my room. There was a consciousness on my mind that I was the discoverer of the true logic of the future. For a few minutes I felt a delight such as one can seldom hope to feel. But it would not last long— I remembered only too soon how unworthy and weak an instrument I was for accomplishing so great a work, and how hardly could I expect to do it.

**Total Control

*

William Stanley Jevons (1835–1882), English economist and logician ²

3.1 Implications

Arguably a logic is not a logic without the inclusion of an implication function \rightarrow . The mathematical structure logic is formally defined in Definition 3.2 (page 29). But before defining a logic, this text offers a very general definition (a "weak" definition) of implication that can be used in defining a very wide class of logics—including non-Boolean ones. For Boolean logics, the classical implication function $x \stackrel{\varsigma}{\rightarrow} y$ (Example 3.1 page 25) is arguably adequate. Two key properties of classical implication on a classical classi

```
<sup>1</sup> quote: Padoa (1912), page 21
```

Cajori (1993) (paragraph 541)

image: http://en.wikipedia.org/wiki/Gottfried_Leibniz, public domain

image: http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Jevons.html

quote: **Jevons** (1886), page 219 (1866 March 28 entry)

Definition 3.1. Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a BOUNDED LATTICE (Definition E.1 page 135).

Ε

F

The function \rightarrow in X^X is an **implication** on **L** if

1. $\{x \le y\} \implies x \to y \ge x \lor y$ $\forall x,y \in X$ (Weak entailment)

 $x \land (x \to y) \le \neg x \lor y \quad \forall x,y \in X$ (Weak modus ponens)

Proposition 3.1. Let \rightarrow be an IMPLICATION (Definition 3.1 page 24) on a BOUNDED LATTICE $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ (Definition E.1 page 135).

$$\{x \le y\}$$

$$\iff$$
 $\{x \to y \ge x \lor y\}$

$$\forall x, y \in X$$

^ℚProof:

- 1. Proof for \implies case: by *weak entailment* property of *implications* (Definition 3.1 page 24).
- 2. Proof for \Leftarrow case:

$$y \ge x \land (x \to y)$$

$$\ge x \land (x \lor y)$$

by right hypothesis

$$\geq x \wedge (x \vee y)$$

by *modus ponens* property of \rightarrow (Definition 3.1 page 24)

$$= x$$

by *absorptive* property of *lattices* (Definition D.3 page 119)

Remark 3.1. ³ Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a *bounded lattice* (Definition E.1 page 135). In the context of ortho lattices, a more common (and stronger) definition of implication \rightarrow might be

1.
$$x \le y \implies x \to y = 1 \quad \forall x, y \in X \quad (entailment \mid strong entailment)$$

2.
$$x \land (x \to y) \le y \quad \forall x,y \in X \quad (modus ponens \mid strong modus ponens)$$

This definition yields a result stronger than that of Proposition 3.1 (page 24):

$$\{x \le y\} \iff \{x \to y = 1\} \quad \forall x, y \in X$$

The Heyting 3-valued logic (Example 3.6 page 32) and Sasaki hook logic (Example 3.9 page 33) have both strong entailment and strong modus ponens. However, for non-orthologics in general, these two properties seem inappropriate to serve as a definition for *implication*. For example, the *Kleene 3-valued* logic (Example 3.3 page 30), RM_3 logic (Example 3.5 page 31), and BN_4 logic (Example 3.10 page 33) do not have the strong entailment property; and the Kleene 3-valued logic, Łukasiewicz 3-valued logic (Example 3.4 page 31), and BN_4 logic do not have the strong modus ponens property.

^ℚProof:

- 1. Proof for \implies case: by *entailment* property of *implications* (Definition 3.1 page 24).
- 2. Proof for \Leftarrow case:

$$x \to y = 1 \implies x \land 1 \le y$$
 by *modus ponens* property (Definition 3.1 page 24)
$$\implies x \le y$$
 by definition of 1 (*least upper bound*) (Definition C.21 page 116)

[■] Hardegree (1979) page 59 ((E),(MP),(E*)), ■ Kalmbach (1973) page 498,
■ Kalmbach (1983) pages 238–239 (Chapter 4 §15), ■ Pavičić and Megill (2008) page 24,

Xu et al. (2003) page 27 (Definition 2.1.1), ■ Xu (1999) page 25, **Jun et al.** (1998) page 54

Example 3.1. 4 Let $L \triangleq (X, \vee, \wedge, \neg, 0, 1; \leq)$ be a *lattice with negation* (Definition 1.5 page 5).

If L is an **orthomodular lattice** (Definition 1.3 page 4), then the functions listed below are all examples of valid *implication* functions (Definition 3.1 page 24) on L. If L is an **ortholattice**, then 1–5 are *implication* relations.

1.
$$x \stackrel{c}{\rightarrow} y \triangleq \neg x \lor y \quad \forall x,y \in X$$
 (classical implication/material implication/horseshoe)

2.
$$x \stackrel{\$}{\to} y \triangleq \neg x \lor (x \land y)$$
 $\forall x,y \in X$ (Sasaki hook | quantum implication)

3.
$$x \stackrel{d}{\to} y \triangleq y \lor (\neg x \land \neg y)$$
 $\forall x,y \in X$ (Dishkant implication)
4. $x \stackrel{k}{\to} y \triangleq (\neg x \land y) \lor (\neg x \land \neg y) \lor (x \land (\neg x \lor y))$ $\forall x,y \in X$ (Kalmbach implication)

5.
$$x \xrightarrow{\eta} y \triangleq (\neg x \land y) \lor (x \land y) \lor ((\neg x \lor y) \land \neg y) \quad \forall x, y \in X \quad (non-tollens implication)$$
6. $x \xrightarrow{r} y \triangleq (\neg x \land y) \lor (x \land y) \lor (\neg x \land \neg y) \quad \forall x, y \in X \quad (relevance implication)$

Moreover, if L is a **Boolean lattice**, then all of these implications are equivalent to $\stackrel{\varsigma}{\rightarrow}$, and all of them have *strong entailment* and *strong modus ponens*.

Note that $\forall x,y \in X$, $x \stackrel{d}{\rightarrow} y = \neg y \stackrel{S}{\rightarrow} \neg x$ and $x \stackrel{\eta}{\rightarrow} y = \neg y \stackrel{k}{\rightarrow} \neg x$. The values for the 6 implications on an *orthocomplemented* O_6 *lattice* (Definition J.2 page 198) are listed in Example 3.11 (page 33).

№PROOF:

3.1. IMPLICATIONS

- 1. Proofs for the *classical implication* $\stackrel{\varsigma}{\rightarrow}$:
 - (a) Proof that on an *ortho lattice*, $\stackrel{\varsigma}{\rightarrow}$ is an *implication*:

$$x \le y \implies x \stackrel{\varsigma}{\to} y \triangleq \neg x \lor y$$
 by definition of $\stackrel{\varsigma}{\to}$ by $x \le y$ and antitone prop. of \neg (Definition 1.3 page 4)
$$= 1 \qquad \qquad \text{by } excluded \ middle \ \text{prop. of } \neg \text{ (Theorem 1.5 page 8)}$$

$$\implies strong \ entailment \qquad \text{by definition of } strong \ entailment}$$

$$x \land (\neg x \lor y) \le \neg x \lor y \qquad \qquad \text{by definition of } \land \text{ (Definition C.22 page 116)}$$

$$\implies weak \ modus \ ponens$$

Note that in general for an *ortho lattice*, the bound cannot be tightened to *strong modus ponens* because, for example in the O_6 *lattice* (Definition J.2 page 198) illustrated to the right

$$x \land (\neg x \lor y) = x \land 1 = x \nleq y \implies not strong modus ponens$$

(b) Proof that on a *Boolean lattice*, $\stackrel{\varsigma}{\rightarrow}$ is an *implication*:

$$x \wedge (\neg x \vee y) = (x \wedge \neg x) \vee (x \wedge y)$$
 by *distributive* prop. of Boolean lat. (Definition I.1 page 173)
$$= 1 \vee (x \wedge y)$$
 by *excluded middle* property of *Boolean lattices*

$$= x \wedge y$$
 by definition of 1
$$\leq y$$
 by definition of \wedge (Definition C.22 page 116)
$$\implies strong modus ponens$$
 by definition of $strong modus ponens$

2. Proofs for *Sasaki implication* $\stackrel{\$}{\rightarrow}$:

⁴ ■ Kalmbach (1973) page 499, ■ Kalmbach (1974), ■ Mittelstaedt (1970) ⟨Sasaki hook⟩, ■ Finch (1970) page 102 ⟨Sasaki hook (1.1)⟩, ■ Kalmbach (1983) page 239 ⟨Chapter 4 §15, 3. Theorem⟩

page 26 Daniel J. Greenhoe CHAPTER 3. LOGIC

(a) Proof that on an *ortho lattice*, $\stackrel{\$}{\rightarrow}$ is an *implication*:

$$x \leq y \implies x \stackrel{\S}{\to} y$$
 $\triangleq \neg x \lor (x \land y)$ by definition of $\stackrel{k}{\to}$
 $= \neg x \lor x$ by $x \leq y$ hypothesis
 $= 1$ by excluded middle prop. of ortho neg. (Theorem 1.5 page 8)
 $\implies strong\ entailment$ by definition of $strong\ entailment$
 $x \land (x \stackrel{\S}{\to} y) \triangleq x \land [\neg x \lor (x \land y)]$ by definition of \land (Definition C.22 page 116)
 $\leq \neg x \lor y$ by definition of \land (Definition C.22 page 116)
 $\implies weak\ modus\ ponens$

(b) Proof that on a *Boolean lattice*, $\stackrel{\S}{\rightarrow} = \stackrel{\varsigma}{\rightarrow}$:

$$x \stackrel{\S}{\to} y \triangleq \neg x \lor (x \land y)$$
 by definition of $\stackrel{\S}{\to}$ by Lemma I.2 (page 178)
= $x \stackrel{\S}{\to} y$ by definition of $\stackrel{\S}{\to}$

- 3. Proofs for *Dishkant implication* $\stackrel{d}{\rightarrow}$:
 - (a) Proof that $x \stackrel{d}{\rightarrow} y \equiv \neg y \stackrel{s}{\rightarrow} \neg x$:

$$x \stackrel{\mathcal{A}}{\rightarrow} y \triangleq y \lor (\neg x \land \neg y)$$
 by definition of $\stackrel{\mathcal{A}}{\rightarrow}$ by commutative property of lattices (Theorem D.3 page 120) by involutory property of ortho negations (Definition 1.3 page 4) $\triangleq \neg y \stackrel{\mathcal{S}}{\rightarrow} \neg x$ by definition of $\stackrel{\mathcal{A}}{\rightarrow}$

(b) Proof that on an *ortho lattice*, $\stackrel{d}{\rightarrow}$ is an *implication*:

$$x \leq y \implies x \stackrel{d}{\to} y$$

$$\stackrel{\triangle}{=} y \vee (\neg x \wedge \neg y) \qquad \text{by definition of } \stackrel{d}{\to}$$

$$= y \vee \neg y \qquad \text{by } x \leq y \text{ hypoth. and } antitone \text{ prop. (Definition 1.3 page 4)}$$

$$= 1 \qquad \text{by } excluded \ middle \ \text{prop. of ortho neg. (Theorem 1.5 page 8)}$$

$$\implies strong \ entailment \qquad \text{by definition of } strong \ entailment}$$

$$x \wedge (x \stackrel{d}{\to} y) \triangleq y \vee (\neg x \wedge \neg y) \qquad \text{by definition of } \stackrel{d}{\to}$$

$$= y \vee \neg x \qquad \text{by definition of } \wedge \text{ (Definition C.22 page 116)}$$

$$\implies weak \ modus \ ponens$$

(c) Proof that on a *Boolean lattice*, $\stackrel{d}{\rightarrow} = \stackrel{\varsigma}{\rightarrow}$:

$$x \stackrel{d}{\rightarrow} y \triangleq y \lor (\neg x \land \neg y)$$
 by definition of $\stackrel{d}{\rightarrow}$ by Lemma I.2 (page 178)
= $x \stackrel{\varsigma}{\rightarrow} y$ by definition of $\stackrel{\varsigma}{\rightarrow}$

4. Proofs for the *Kalmbach implication* $\stackrel{k}{\rightarrow}$:

3.1. IMPLICATIONS Daniel J. Greenhoe page 27

(a) Proof that on an *ortho lattice*, $\stackrel{k}{\rightarrow}$ is an *implication*:

```
x \le y \implies x \stackrel{k}{\to} y
         \triangleq (\neg x \land y) \lor (\neg x \land \neg y) \lor [x \land (\neg x \lor y)]
                                                                        by definition of \stackrel{k}{\rightarrow}
         = (\neg x \land y) \lor (\neg y) \lor [x \land (\neg x \lor y)]
                                                                        by antitone property (Definition 1.3 page 4)
         = (\neg x \land y) \lor \neg y \lor [x \land (1)]
         = (\neg x \land y) \lor (x \lor \neg y)
                                                                        by definition of 1 (Definition C.21 page 116)
         = \neg \neg (\neg x \land y) \lor (x \lor \neg y)
                                                                        by involutory property (Definition 1.3 page 4)
         = \neg(\neg\neg x \lor \neg y) \lor (x \lor \neg y)
                                                                        by de Morgan property (Theorem 1.5 page 8)
         = \neg(x \lor \neg y) \lor (x \lor \neg y)
                                                                        by involutory property (Definition 1.3 page 4)
         = 1
                                                                        by excluded middle property (Theorem 1.5 page 8)
          \implies strong entailment
```

```
x \wedge (x \xrightarrow{k} y) \triangleq x \wedge [(\neg x \wedge y) \vee (\neg x \wedge \neg y) \vee [x \wedge (\neg x \vee y)]] \quad \text{by definition of } \xrightarrow{k} \\ \leq (\neg x \wedge y) \vee (\neg x \wedge \neg y) \vee [x \wedge (\neg x \vee y)] \quad \text{by definition of } \wedge \text{ (Definition C.22 page 116)} \\ \leq (\neg x \wedge y) \vee (\neg x \wedge \neg y) \vee (\neg x \vee y) \quad \text{by definition of } \wedge \text{ (Definition C.22 page 116)} \\ \leq y \vee (\neg x \wedge \neg y) \vee \neg x \vee y \quad \text{by definition of } \wedge \text{ (Definition C.22 page 116)} \\ = y \vee \neg x \vee (\neg x \wedge \neg y) \quad \text{by } idempotent \text{ p. (Theorem D.3 page 120)} \\ \leq y \vee \neg x \vee \neg x \quad \text{by definition of } \wedge \text{ (Definition C.22 page 116)} \\ = \neg x \vee y \quad \text{by } idempotent \text{ p. (Theorem D.3 page 120)} \\ \end{cases}
```

(b) Proof that on a *Boolean lattice*, $\frac{k}{3} = \frac{3}{3}$:

 \implies weak modus ponens

```
x \stackrel{k}{\rightarrow} y \triangleq (\neg x \land y) \lor (\neg x \land \neg y) \lor [x \land (\neg x \lor y)]
                                                                                       by definition of \stackrel{k}{\rightarrow}
            = (\neg x \land y) \lor (\neg x \land \neg y) \lor [(x \land \neg x) \lor (x \land y)]
                                                                                       by distributive property (Definition I.1 page 173)
            = (\neg x \land y) \lor (\neg x \land \neg y) \lor [(0) \lor (x \land y)]
                                                                                       by non-contradiction property
            = (\neg x \land y) \lor (\neg x \land \neg y) \lor (x \land y)
                                                                                       by bounded property (Definition E.1 page 135)
            = \neg x \land (y \lor \neg y) \lor (x \land y)
                                                                                       by distributive property (Definition I.1 page 173)
            = \neg x \wedge 1 \vee (x \wedge y)
                                                                                       by excluded middle property
                                                                                       by definition of 1 (Definition C.21 page 116)
            = \neg x \lor (x \land y)
            = \neg x \lor v
                                                                                       by Lemma I.2 (page 178)
            \triangleq x \stackrel{c}{\rightarrow} v
                                                                                       by definition of \stackrel{\varsigma}{\rightarrow}
```

- 5. Proofs for the *non-tollens implication* $\stackrel{n}{\rightarrow}$:
 - (a) Proof that $x \stackrel{n}{\to} y \equiv \neg y \stackrel{k}{\to} \neg x$:

$$x \stackrel{\eta}{\to} y \triangleq (\neg x \land y) \lor (x \land y) \lor [(\neg x \lor y) \land \neg y]$$
 by definition of $\stackrel{\eta}{\to}$
$$= (y \land \neg x) \lor (y \land x) \lor [\neg y \land (y \lor \neg x)]$$
 by definition of $\stackrel{\eta}{\to}$
$$= (\neg \neg y \land \neg x) \lor (\neg \neg y \land \neg \neg x) \lor [\neg y \land (\neg \neg y \lor \neg x)]$$
 by definition of $\stackrel{k}{\to}$

(b) Proof that on an *ortho lattice*, $\stackrel{\eta}{\rightarrow}$ is an *implication*:

$$x \leq y \implies x \stackrel{\eta}{\to} y$$

$$\equiv \neg y \stackrel{k}{\to} \neg x \qquad \text{by item (5a) page 27}$$

$$= 1 \qquad \text{by item (4a) page 27}$$

$$\implies strong\ entailment$$

$$x \wedge (x \stackrel{\eta}{\to} y) = x \wedge (\neg y \stackrel{k}{\to} \neg x) \qquad \text{by item (5a) page 27}$$

$$\leq \neg \neg y \vee \neg x \qquad \text{by item (4a) page 27}$$

$$= y \vee \neg x \qquad \text{by involutory property of } \neg \text{ (Definition 1.3 page 4)}$$

$$= \neg x \vee y \qquad \text{by commutative property of } lattices \text{ (Definition D.3 page 119)}$$

$$\implies weak\ modus\ ponens$$

(c) Proof that on a *Boolean lattice*, $\stackrel{n}{\rightarrow} = \stackrel{\varsigma}{\rightarrow}$:

$$x \xrightarrow{\eta} y = \neg y \xrightarrow{k} \neg x$$
 by item (5a) page 27
 $= \neg \neg y \lor \neg x$ by item (4b) page 27
 $= y \lor \neg x$ by involutory property of \neg (Definition 1.3 page 4)
 $= \neg x \lor y$ by commutative property of lattices (Definition D.3 page 119)
 $\triangleq x \xrightarrow{\zeta} y$ by definition of $\xrightarrow{\zeta}$

- 6. Proofs for the *relevance implication* $\stackrel{\mathcal{L}}{\rightarrow}$:
 - (a) Proof that on an *ortho lattice*, $\stackrel{r}{\rightarrow}$ does *not* have *weak entailment*: In the *ortho lattice* to the right...

$$x \le y \implies x \xrightarrow{r} y$$

$$\triangleq (\neg x \land y) \lor (x \land y) \lor (\neg x \land \neg y) \qquad \text{by definition of } \xrightarrow{r}$$

$$= 0 \lor x \lor \neg y$$

$$= x \lor \neg y$$

$$\neq x \lor y$$

(b) Proof that on an *orthomodular lattice*, $\stackrel{r}{\rightarrow}$ *does* have *strong entailment*:

$$x \le y \implies x \xrightarrow{r} y$$

$$\stackrel{\triangle}{=} (\neg x \land y) \lor (x \land y) \lor (\neg x \land \neg y) \qquad \text{by definition of } \xrightarrow{r}$$

$$= (\neg x \land y) \lor x \lor (\neg x \land \neg y) \qquad \text{by } x \le y \text{ hypothesis}$$

$$= (\neg x \land y) \lor x \lor \neg y \qquad \text{by } x \le y \text{ and } antitone \text{ property (Definition 1.3 page 4)}$$

$$= y \lor \neg y \qquad \text{by } orthomodular identity (Definition J.3 page 207)}$$

$$= 1 \qquad \text{by } excluded \textit{ middle property of } \neg \text{ (Theorem 1.5 page 8)}$$

(c) Proof that on an *ortho lattice*, $\stackrel{\tau}{\rightarrow}$ *does* have *weak modus ponens*:

$x \wedge (x \xrightarrow{r} y) \triangleq x \wedge [(\neg x \wedge y) \vee (x \wedge y) \vee (\neg x \wedge \neg y)]$	by definition of $\stackrel{r}{\rightarrow}$
$\leq [(\neg x \land y) \lor (x \land y) \lor (\neg x \land \neg y)]$	by definition of \land (Definition C.22 page 116)
$\leq \neg x \lor (x \land y) \lor (\neg x \land \neg y)$	by definition of \land (Definition C.22 page 116)
$\leq \neg x \vee y \vee (\neg x \wedge \neg y)$	by definition of \land (Definition C.22 page 116)
$\leq \neg x \vee y$	by absorption property (Theorem D.3 page 120)
⇒ weak modus ponens	

3.2. LOGICS Daniel J. Greenhoe page 29

(d) Proof that on a *Boolean lattice*, $\stackrel{r}{\rightarrow} = \stackrel{\varsigma}{\rightarrow}$:

```
x \stackrel{\mathcal{F}}{\rightarrow} y \triangleq (\neg x \wedge y) \vee (x \wedge y) \vee (\neg x \wedge \neg y) by definition of \stackrel{\mathcal{F}}{\rightarrow}
= [\neg x \wedge (y \vee \neg y)] \vee (x \wedge y) by distributive property (Definition I.1 page 173)
= [\neg x \wedge 1] \vee (x \wedge y) by excluded middle property of \neg (Theorem 1.5 page 8)
= \neg x \vee (x \wedge y) by definition of 1 and \wedge (Definition C.22 page 116)
= \neg x \vee y by property of Boolean lattices (Lemma I.2 page 178)
\triangleq x \stackrel{\mathcal{F}}{\rightarrow} y by definition of \stackrel{\mathcal{F}}{\rightarrow}
```

3.2 Logics

Figure 3.1: lattice of logics

Definition 3.2. ⁵ Let \rightarrow be an IMPLICATION (Definition 3.1 page 24) defined on a LATTICE WITH NEGATION $L \triangleq (X, \vee, \wedge, \neg, 0, 1; \leq)$ (Definition 1.5 page 5).

```
(X, \lor, \land, \neg, 0, 1; \le, \rightarrow) \text{ is a logic} \qquad \text{if } \neg \text{ is a MINIMAL NEGATION.}
(X, \lor, \land, \neg, 0, 1; \le, \rightarrow) \text{ is a fuzzy logic} \qquad \text{if } \neg \text{ is a Fuzzy NEGATION.}
(X, \lor, \land, \neg, 0, 1; \le, \rightarrow) \text{ is an intuitionalistic logic} \qquad \text{if } \neg \text{ is an intuitionalistic NEGATION.}
(X, \lor, \land, \neg, 0, 1; \le, \rightarrow) \text{ is a de Morgan logic} \qquad \text{if } \neg \text{ is a De Morgan Negation.}
(X, \lor, \land, \neg, 0, 1; \le, \rightarrow) \text{ is a Kleene logic} \qquad \text{if } \neg \text{ is a Kleene Negation.}
(X, \lor, \land, \neg, 0, 1; \le, \rightarrow) \text{ is an orthologic} \qquad \text{if } \neg \text{ is an Ortho Negation.}
(X, \lor, \land, \neg, 0, 1; \le, \rightarrow) \text{ is a Boolean logic} \qquad \text{if } \neg \text{ is an Ortho Negation.}
```

Definition 3.3. ⁶ Let $L \triangleq (X, \vee, \wedge, \neg, 0, 1; \leq, \rightarrow)$ be a LOGIC (Definition 3.2 page 29).

The function \leftrightarrow in X^X is an **equivalence** on **L** if $x \leftrightarrow y \triangleq (x \rightarrow y) \land (y \rightarrow x) \quad \forall x,y \in X$

Example 3.2 (Aristotelian logic/classical logic). 7

⁷ Novák et al. (1999) pages 17–18 (EXAMPLE 2.1)

⁵ ■ Straßburger (2005) page 136 (Definition 2.1), ■ de Vries (2007) page 11 (Definition 16)

⁶ ■ Novák et al. (1999) page 18

The *classical bi-variate logic* is defined below. It is a 2 element *Boolean logic* (Definition 3.2 page 29). with $L \triangleq (\{1,0\}, \land, \neg, 0, 1, \leq; \lor)$ and a *classical implication* \rightarrow with *strong entailment* and *strong modus ponens*. The value 1 represents "*true*" and 0 represents "*false*".

$$\begin{bmatrix}
0 & 1 & = \neg 0 \\
0 & 0 & = \neg 1
\end{bmatrix}$$

$$x \to y \triangleq \begin{cases}
1 & \forall x \le y \\
y & \text{otherwise}
\end{cases} = \begin{cases}
\frac{\rightarrow}{1} & 1 & 0 \\
\frac{1}{0} & 1 & 1
\end{cases}$$

$$\forall x, y \in X$$

$$= \neg x \lor y$$

- **♥**Proof:
 - 1. Proof that \neg is an *ortho negation*: by Definition 1.3 (page 4)
 - 2. Proof that \rightarrow is an *implication* with *strong entailment* and *strong modus ponens*:
 - (a) *L* is *Boolean* and therefore is *orthocomplemented*.
 - (b) \rightarrow is equivalent to the *classical implication* $\stackrel{\varsigma}{\rightarrow}$ (Example 3.1 page 25).
 - (c) By Example 3.1 (page 25), \rightarrow has strong entailment and strong modus ponens.

The *classical logic* (previous example) can be generalized in several ways. Arguably one of the simplest of these is the 3-valued logic due to Kleene (next example).

Example 3.3 (Kleene 3-valued logic). 8

The *Kleene 3-valued logic* (X, \vee , \wedge , \neg , 0, 1; \leq , \rightarrow) is defined below. The function \neg is a *Kleene negation* (Definition 1.3 page 4, Example 1.9 page 11) defined on a 3 element *linearly ordered lattice* (Definition C.4 page 105). The function \rightarrow is the *classical implication* $x \rightarrow y \triangleq \neg x \vee y$. The values 1 represents "*true*", 0 represents "*false*", and *n* represents "*neutral*" or "*undecided*".

$$\begin{cases}
0 & 1 = \neg 0 \\
0 & n = \neg n
\end{cases}$$

$$x \to y \triangleq \left\{ \neg x \lor y \quad \forall x \in X \right\} = \left\{ \begin{array}{c|c}
\hline
 & 1 & n & 0 \\
\hline
 & 1 & n & 0 \\
n & 1 & n & n \\
\hline
 & 0 & 1 & 1 & 1
\end{array} \right.$$

№ Proof:

E X

- 1. Proof that ¬ is a *Kleene negation*: see Example 1.9 (page 11)
- 2. Proof that \rightarrow is an *implication*: This follows directly from the definition of \rightarrow and the definition of an *implication* (Definition 3.1 page 24).
- 3. Proof that \rightarrow does not have *strong entailment*: $n \rightarrow n = n = n \lor n \ne 1$.
- 4. Proof that → does not have *strong modus ponens*: $n \to 0 = n = \neg n \lor 0 \nleq 0$.

A lattice and negation alone do not uniquely define a logic. Łukasiewicz also introduced a 3-valued logic with identical lattice structure to Kleene, but with a different implication relation (next example). Historically, Łukasiewicz's logic was introduced before Kleene's.

⁸ ■ Kleene (1938) page 153,
Kleene (1952), pages 332–339 (§64. The 3-valued logic), Avron (1991) page 277

Example 3.4 (Łukasiewicz 3-valued logic). 9

The *Łukasiewicz 3-valued logic* (X, \vee , \wedge , \neg , 0, 1; \leq , \rightarrow) is defined to the right and below. The function \neg is a *Kleene negation* (Definition 1.3 page 4) defined on a 3 element *linearly ordered lattice* (Definition C.4 page 105). The implication has *strong entailment* but *weak modus ponens*. In the implication table below, values that differ from the classical $x \rightarrow y \triangleq \neg x \lor y$ are shaded.

$$\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}$$

$$\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0
\end{array}$$

$$x \to y \triangleq \left\{ \begin{array}{ccc} 1 & \forall x \le y \\ \neg x \lor y & \text{otherwise} \end{array} \right\} = \left\{ \begin{array}{cccc} \to & 1 & n & 0 \\ \hline 1 & 1 & n & 0 \\ n & 1 & 1 & n \\ \hline 0 & 1 & 1 & 1 \end{array} \right\} = \left\{ \begin{array}{cccc} 1 & \text{for } x = y = n \\ \neg x \lor y & \text{otherwise} \end{array} \right\}$$

♥Proof:

- 1. Proof that ¬ is a *Kleene negation*: see Example 1.9 (page 11)
- 2. Proof that \rightarrow is an *implication*: This follows directly from the definition of \rightarrow and the definition of an *implication* (Definition 3.1 page 24).
- 3. Proof that \rightarrow does not have *strong modus ponens*: $n \rightarrow 0 = n = \neg n \lor 0 \nleq 0$.

Example 3.5 (RM $_3$ logic). ¹⁰

The RM_3 logic (X, \vee , \wedge , \neg , 0, 1; \leq , \rightarrow) is defined below. The function \neg is a *Kleene negation* (Definition 1.3 page 4) defined on a 3 element *linearly ordered lattice* (Definition C.4 page 105). The implication function has *weak entailment* by *strong modus ponens*. In the implication table below, values that differ from the classical $x \to y \triangleq \neg x \vee y$ are shaded.

$$\begin{cases}
0 & 1 = \neg 0 \\
0 & n = \neg n
\end{cases}$$

$$x \to y \triangleq \begin{cases}
1 & \forall x < y \\
n & \forall x = y \\
0 & \forall x > y
\end{cases} = \begin{cases}
\frac{\rightarrow}{1} & \frac{1}{n} & \frac{0}{0} \\
1 & 1 & \frac{0}{0} & 0 \\
n & 1 & n & 0 \\
0 & 1 & 1 & 1
\end{cases}$$

$$\forall x, y \in X$$

№ Proof:

- 1. Proof that ¬ is a *Kleene negation*: see Example 1.9 (page 11)
- 2. Proof that \rightarrow is an *implication*: This follows directly from the definition of \rightarrow and the definition of an *implication* (Definition 3.1 page 24).
- 3. Proof that \rightarrow does not have *strong entailment*: $n \rightarrow n = n = n \lor n \ne 1$.

In a 3-valued logic, the negation does not necessarily have to be as in the previous three examples. The next example offers a different negation.

Sobociński (1952)

Negation, Implication, and Logic [VERSION 051] https://github.com/dgreenhoe/pdfs/blob/master/nil.pdf

⁹ ■ Łukasiewicz (1920) page 17 ⟨II. The principles of consequence⟩, ■ Avron (1991) page 277 ⟨Łukasiewicz.⟩

¹⁰ Avron (1991) pages 277–278

Example 3.6 (Heyting 3-valued logic/Jaśkowski's first matrix). 11

The *Heyting 3-valued logic* $(X, \vee, \wedge, \neg, 0, 1; \leq, \rightarrow)$ is defined below. The negation \neg is both *intuitionistic* and *fuzzy* (Definition 1.2 page 4), and is defined on a 3 element *linearly ordered lattice* (Definition C.4 page 105). The implication function has both *strong entailment* and *strong modus ponens*. In the implication table below, values that differ from the classical $x \rightarrow y \triangleq \neg x \vee y$ are shaded.

$$\begin{cases}
0 & 1 = \neg 0 \\
0 & n
\end{cases}$$

$$x \to y \triangleq \begin{cases}
1 & \forall x \le y \\
y & \text{otherwise}
\end{cases} = \begin{cases}
\frac{\rightarrow 1 & n & 0}{1 & 1 & n & 0} \\
n & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{cases}$$

$$\forall x, y \in X$$

♥Proof:

E X

- 1. Proof that ¬ is a *Kleene negation*: see Example 1.11 (page 12)
- 2. Proof that \rightarrow is an *implication*: by definition of *implication* (Definition 3.1 page 24)

Of course it is possible to generalize to more than 3 values (next example).

Example 3.7 (Łukasiewicz 5-valued logic). 12

The *Łukasiewicz 5-valued logic* $(X, \vee, \wedge, \neg, 0, 1; \leq, \rightarrow)$ is defined below. The implication function has *strong entailment* but *weak modus ponens*. In the implication table below, values that differ from the classical $x \to y \triangleq \neg x \vee y$ are shaded.

№ Proof:

E X

All the previous examples in this section are *linearly ordered*. The following examples employ logics that are not.

Example 3.8 (Boolean 4-valued logic). 13

Belnap (1977) page 13, ■ Restall (2000) page 177 ⟨Example 8.44⟩, ■ Pavičić and Megill (2008) page 28 ⟨Definition 2, classical implication⟩, ■ Mittelstaedt (1970), ■ Finch (1970) page 102 ⟨(1.1)⟩, ■ Smets (2006) page 270

 \Rightarrow

¹² **A** Xu et al. (2003) page 29 ⟨Example 2.1.3⟩

[■] Jun et al. (1998) page 54 ⟨Example 2.2⟩

The *Boolean 4-valued logic* is defined below. The negation function \neg is an *ortho negation* (Example 1.13 page 13) defined on an M_2 *lattice*. The value 1 represents "*true*", 0 represents "*false*", and m and n represent some intermediate values.

$$x \to y \triangleq \neg x \lor y = \begin{cases} \frac{\rightarrow 1 & b & n & 0}{1 & 1 & b & n & 0} \\ \frac{b}{b} & 1 & 1 & n & n \\ n & 1 & b & 1 & b \\ 0 & 1 & 1 & 1 & 1 \end{cases} \quad \forall x, y \in X$$

Example 3.9 (Sasaki hook / quantum implication). 14

The *Sasaki hook logic* $(X, \vee, \wedge, \neg, 0, 1; \leq, \rightarrow)$ is defined below. The order structure and negation are the same as in Example 3.8 (page 32).

$$x \to y \triangleq \neg x \lor (x \land y) = \begin{cases} \frac{\rightarrow}{1} & \frac{1}{b} & \frac{b}{n} & 0\\ \frac{1}{1} & \frac{1}{b} & \frac{b}{n} & 0\\ \frac{b}{1} & \frac{1}{1} & \frac{b}{n} & \frac{n}{n} \\ \frac{n}{1} & \frac{1}{b} & \frac{1}{1} & \frac{b}{n} \\ 0 & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{cases}$$

All the previous examples in this section are *distributive*; the previous example was *Boolean*. The next example is *non-distributive*, and *de Morgan* (but *non-Boolean*). Note for a given order structure, the method of negation may not be unique; in the previous and following examples both have identical lattices, but are negated differently.

Example 3.10 (BN₄ logic). 15

The BN_4 logic is defined below. The function \neg is a de Morgan negation (Example 1.14 page 14) defined on a 4 element M_2 lattice. The value 1 represents "true", 0 represents "false", b represents "both" (both true and false), and n represents "neither". In the implication table below, the values that differ from those of the classical implication \rightarrow are shaded.

$$x \to y \triangleq \begin{cases} \begin{array}{c|cccc} \to & 1 & n & b & 0 \\ \hline 1 & 1 & n & 0 & 0 \\ n & 1 & 1 & n & n \\ b & 1 & n & b & 0 \\ \hline 0 & 1 & 1 & 1 & 1 \end{array} \end{cases}$$

$$\forall x,y \in X$$

Example 3.11.

E

EX

The tables that follow are the 6 implications defined in Example 3.1 (page 25) on the O_6 lattice with ortho negation (Definition 1.3 page 4), or the O_6 orthocomplemented lattice (Definition J.2 page 198), illustrated to the right. In the tables, the values that differ from those of the classical implication $\stackrel{c}{\rightarrow}$ are shaded.

<u>\$</u>	1	d	c	b	a	0
1	1	d	c	b	a	0
d	1	1	c	1	a	a
c	1	d	1	b	1	b
b	1	1	c	1	c	c
a	1	d	1	d	1	d
0	1	1	1	1	1	1

<u>₹</u>	1	d	c	b	a	0
1	1	d	c	b	a	0
d	1	1	a	1	a	a
c	1	b	1	b	1	b
b	1	1	c	1	c	c
a	1	1	1	d	1	d
0	1	1	1	1	1	1

\xrightarrow{d}	1	d	c	b	a	0
1	1	d	c	b	a	0
d	1	1	c	1	a	a
c	1	d	1	b	1	b
b	1	1	c	1	a	c
a	1	d	1	b	1	d
0	1	1	1	1	1	1

Pavičić and Megill (2008) page 28 (Definition 2), \blacksquare Mittelstaedt (1970), \blacksquare Finch (1970) page 102 ((1.1)), \blacksquare Smets (2006) page 270

¹⁵ **Restall (2000) page 171 ⟨Example 8.39⟩**

$\stackrel{k}{\rightarrow}$	1	d	c	b	a	0
1	1	d	c	b	а	0
d	1	1	a	1	a	a
c	1	b	1	b	1	b
b	1	1	c	1	a	c
a	1	d	1	b	1	d
0	1	1	1	1	1	1

\xrightarrow{n}	1	d	c	b	a	0
1	1	d	c	b	а	0
d	1	1	a	1	a	a
c	1	b	1	b	1	b
b	1	1	c	1	a	c
a	1	d	1	b	1	d
0	1	1	1	1	1	1

$\stackrel{r}{\rightarrow}$	1	d	c	b	a	0
1	1	d	c	b	а	0
d	1	1	a	1	a	a
c	1	b	1	b	1	b
b	1	1	c	1	a	c
a	1	d	1	b	1	d
0	1	1	1	1	1	1

Example 3.12. 16

A 6 element logic is defined below. The function \neg is a *Kleene negation* (Example 1.17 page 15). The implication has *strong entailment* but *weak modus ponens*. In the implication table below, the values that differ from those of the *classical implication* $\stackrel{\varsigma}{\rightarrow}$ are shaded.

$$x \to y \triangleq \begin{cases} \frac{-}{1} & 1 & p & q & m & n & 0 \\ \hline 1 & 1 & p & q & m & n & 0 \\ p & 1 & 1 & q & p & q & n \\ q & 1 & p & 1 & m & p & m \\ m & 1 & 1 & q & 1 & q & q \\ n & 1 & 1 & 1 & 1 & 1 & 1 \end{cases} \quad \forall x, y \in X$$

[♠]Proof:

E

- 1. Proof that ¬ is a *Kleene negation*: see Example 1.17 (page 15)
- 2. Proof that \rightarrow is an *implication*: This follows directly from the definition of \rightarrow and the definition of an *implication* (Definition 3.1 page 24).
- 3. Proof that \rightarrow does not have *strong modus ponens*:

$$\neg p \land (p \to m) = n \land p = n \leq p = \neg p \lor m \nleq m
\neg n \land (n \to m) = n \land p = n \leq p = \neg p \lor m \nleq m
\neg p \land (p \to 0) = n \land n = n \leq n = \neg p \lor 0 \nleq 0
\neg n \land (n \to 0) = p \land n = n \leq p = \neg n \lor 0 \nleq 0$$

For an example of an 8-valued logic, see **Example** Kamide (2013). For examples of 16-valued logics, see **Example** Shramko and Wansing (2005).

3.3 Classical two-valued logic

Definition 3.4 (Aristotelian logic/classical logic). 17

The classical 2-value logic is a 2 element LATTICE WITH ORTHO NEGATION (Definition 1.3 page 4) $(\{1,0\}, \vee, \wedge, \neg, 0, 1; \leq, \stackrel{\varsigma}{})$ as illustrated below with values 1 representing "TRUE", 0 representing "FALSE", and with an implication connective \implies as specified below:

$$\begin{vmatrix} 0 & 1 & = \neg 0 \\ 0 & 0 & = \neg 1 \end{vmatrix} \qquad x \implies y \triangleq \left\{ \begin{array}{ccc} 1 & \forall x \leq y \\ y & otherwise \end{array} \right\} = \left\{ \begin{array}{ccc} \Longrightarrow & 1 & 0 \\ \hline 1 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right. \forall x, y \in X \right\} = \neg x \vee y$$

 16 \blacksquare Xu et al. (2003) pages 29–30 (Example 2.1.4)

 17 / Novák et al. (1999) pages 17–18 (Example 2.1)

D

—>

Theorem 3.1.

If $(\{1,0\}, \vee, \wedge, \neg, 0, 1; \leq, \stackrel{\varsigma}{\rightarrow})$ is the CLASSICAL 2-VALUE LOGIC (Definition 3.4 page 34), then the **logical OR** \vee , **logical AND** \wedge , and **logical equivalence** \iff operations are defined as follows:

V 1 0	1	0	'	Λ 1 0	1	0	\iff	1	0
1	1	1	•	1	1	0	1	1	0
0	1	0		0	0	0	0	0	1

[♥]Proof:

T

- 1. Proof for *logical OR* operation \vee : This follows from the *lattice* (Definition D.3 page 119) properties of L_2 .
- 2. Proof for *logical AND* operation \wedge : This follows from the *lattice* (Definition D.3 page 119) properties of L_2 .
- 3. Proof for *logical if and only if* operation \iff : This follows from the definition of \implies (Definition 3.4 page 34) and Definition 3.3 (page 29).

One of the most useful facts concerning propositional logic systems is that they form a *Boolean algebra* (next theorem). Because they are a Boolean algebra, a number of useful properties automatically follow (next theorem) from the properties of Boolean algebras (Theorem I.2 $_{page}$ 178).

Theorem 3.2 (Boolean algebra properties). ¹⁸ Let $\{0, 1\}$ be the set of logical properties false and TRUE (Axiom ?? page ??). Let \vee be the LOGICAL OR and \wedge the LOGICAL AND operations (Definition 3.1 page 34). Let \Longrightarrow be the LOGICAL IMPLIES relation (Definition ?? page ??).

	$(\{0, 1\}, \vee, \wedge)$	\; =	\Rightarrow) <i>is a</i> Boolea	N ALGEBRA.	In j	particular for all s	$x, y, z \in \{0, 1\},$
	$x \vee x$	=	X	$x \wedge x$	=	x	(IDEMPOTENT)
	$x \vee y$	=	$y \lor x$	$x \wedge y$	=	$y \wedge x$	(COMMUTATIVE)
	$x \lor (y \lor z)$	=	$(x \lor y) \lor z$	$x \wedge (y \wedge z)$	=	$(x \wedge y) \wedge z$	(ASSOCIATIVE)
	$x \lor (x \land y)$	=	X	$x \wedge (x \vee y)$	=	x	(ABSORPTIVE)
I.	$x \lor (y \land z)$	=	$(x \lor y) \land (x \lor z)$	$x \wedge (y \vee z)$	=	$(x \land y) \lor (x \land z)$	(DISTRIBUTIVE)
H	$x \lor 0$	=	X	$x \wedge 1$	=	x	(IDENTITY)
	$x \vee 1$	=	1	$x \wedge 0$	=	0	(BOUNDED)
	$x \vee x'$	=	1	$x \wedge x'$	=	0	(COMPLEMENTED) ¹⁹
	(x')'	=	X				(UNIQUELY COMP.)
	$(x \lor y)'$	=	$x' \wedge y'$	$(x \wedge y)'$	=	$x' \vee y'$	(de Morgan's laws)
	property	with	n emphasizing∨	dual pro	opert	y emphasizing ∧	property name

PROOF: This follows directly from the fact that the *classical 2-valued logic* (Definition 3.4 page 34) is a *Boolean algebra* (Definition 1.1 page 173) and from Theorem I.2 (page 178).

Definition 3.5 (additional logic operations). ²⁰ Let ($\{0, 1\}$, \Longrightarrow , \lor , \land , \neg , 0, 1) be a propositional logic system. Let $x' \triangleq \neg x$ and $y' \triangleq \neg y$. The following table defines additional operations on $\{0, 1\}$ in

The property $x \wedge x' = 0$ is also called *non-contradiction* or *explosion*.

References: Renedo et al. (2003), page 71
Restall (2004) pages 73–75

Restall (2001), pages 1–3

The property $x \vee x' = 1$ is also called the *law of the excluded middle*.

terms of \vee , \wedge , *and* \neg .

name	symbol	definition						
joint denial		$x \downarrow y$			$\forall x,y \in \{0,1\}$			
inhibit x	Θ	$x \ominus y$		•	$\forall x,y \in \{0,1\}$			
inhibit y	_	x-y	≜	$x \wedge y'$	$\forall x,y \in \{0,1\}$			
complete disjunction	⊕	$x \oplus y$	≜	$(x' \wedge y) \vee (x \wedge y')$	$\forall x,y \in \{0,1\}$			
alternative denial		x y	≜	$x' \vee y'$	$\forall x,y \in \{0,1\}$			

There are a total of $2^4 = 16$ possible binary operations on the set of relations $\{0, 1\} \times \{0, 1\} \rightarrow \{0, 1\}$. The following table summarizes these 16 operations.²¹

			lo	gic	ope	erations			
			(x,]	y) =	=				
name and symbol		11	10	01	00	оре	erati	ion in terms of ∨, ∧,	and ¬
zero	0	0	0	0	0	0	=	$x \wedge x'$	$\forall x \in \{0, 1\}$
joint denial	↓	0	0	0	1	$x \downarrow y$	=	$x' \wedge y'$	$\forall x,y \in \{0,1\}$
inhibit x	Θ	0	0	1	0	$x \ominus y$	=	$x' \wedge y$	$\forall x,y \in \{0,1\}$
complement x	(D)	0	0	1	1	x⊕y	=	x'	$\forall x,y \in \{0,1\}$
inhibit y	_	0	1	0	0	x-y	=	$x \wedge y'$	$\forall x,y \in \{0,1\}$
complement y	Ф	0	1	0	1	$x \oplus y$	=	y'	$\forall x,y \in \{0,1\}$
complete disjunction	0	0	1	1	0	$x \oplus y$	=	$(x' \wedge y) \vee (x \wedge y')$	$\forall x,y \in \{0,1\}$
alternative denial		0	1	1	1	x y	=	$x' \vee y'$	$\forall x,y \in \{0,1\}$
conjunction		1	0	0	0	$x \wedge y$	=	$x \wedge y$	$\forall x,y \in \{0,1\}$
equivalence	\Leftrightarrow	1	0	0	1	$x \Leftrightarrow y$	=	$(x \land y) \lor (x' \land y')$	$\forall x,y \in \{0,1\}$
transfer y	⊫	1	0	1	0	$x \Vdash y$	=	y	$\forall x,y \in \{0,1\}$
implication	\Rightarrow	1	0	1	1	$x \Rightarrow y$	=	$x' \vee y$	$\forall x,y \in \{0,1\}$
transfer x	I≡I	1	1	0	0	x = y	=	X	$\forall x,y \in \{0,1\}$
implied by	(←	1	1	0	1	$x \Leftarrow y$	=	$x \vee y'$	$\forall x,y \in \{0,1\}$
disjunction	\ \	1	1	1	0	$x \lor y$	=	$x \vee y$	$\forall x,y \in \{0,1\}$
identity	1	1	1_	1	1	1	=	$x \vee x'$	$\forall x \in \{0, 1\}$

The 16 logic operations of propositional logic can all be represented using the logic operations of *disjunction* \vee , *conjunction* \wedge , and *negation* \neg . Using these representations, all 16 operations can be generalized to *Boolean algebras* using the equivalent Boolean algebra/lattice operations of *join*, *meet*, and *complement*.²²

In addition to Boolean algebras, the 16 operations can also have equivalent operations on *algebra* of sets where the logic operations essentially define the set operations as in

$$A \cup B = \{x \in X | (x \in A) \lor (x \in B)\}$$

$$A \cap B = \{x \in X | (x \in A) \land (x \in B)\}$$

$$A \setminus B = \{x \in X | (x \in A) \ominus (x \in B)\}$$

$$A \triangle B = \{x \in X | (x \in A) \ominus (x \in B)\}$$

$$A^{c} = \{x \in X | \neg (x \in A)\}$$

²² Givant and Halmos (2009), page 32

²¹ Shiva (1998) page 83

Computer science also makes use of some of the 16 logic operations, where *disjunction* becomes *OR*, and *conjunction* becomes *AND*. So, there are four fields (Boolean algebra, logic, set theory, computer science) that all use essentially the same operations, but sometimes call them by different names. The following table attempts to identify to these terms across the four fields:²³

				terminolog	y			
]	Boolean algebra		logic		algebra of sets	COI	nputer science
0000	0	bottom	0	false	Ø	empty set	0	zero
0001	↓	rejection	↓	joint denial	↓	rejection	↓	nor
0010	0	inhibit x	Θ	inhibit x	Θ	inhibit x	$\mid \Theta \mid$	inhibit x
0011	Φ	complement x	Ф	negation x	c_x	complement x	Φ	not x
0100	-	exception	-	inhibit y	\ \	difference	-	difference
0101	Ф	complement y	Ф	negation y	c _v	complement y	Ф	not y
0110		Boolean addition	Φ	complete disjunction	Á	symmetric difference	Φ	exclusive-or
0111		Sheffer stroke		alternate denial		Sheffer stroke		nand
1000	^	meet	_ ^	conjuction	\cap	intersection	_ ^	and
1001	\Rightarrow	biconditional	\Leftrightarrow	equivalence	\Leftrightarrow	equivalence	\Leftrightarrow	equivalence
1010	⊫	projection y	⊫	transfer y	⊫	projection y	l⊨	projection y
1011	\rightarrow	implication	⇒	implication	\Rightarrow	implication	\Rightarrow	implication
1100	⊫	projection x	∣⊫∣	transfer x	∣⊫∣	projection x	∣⊫∣	projection x
1101	÷	adjunction	(←	implied by	÷	adjunction	÷	adjunction
1110	\ \	join	V	disjunction	U	union	V	or
1111	1	top	1	true	X	universal set	1	one

I spent September in extending his [Peano's] methods to the logic of relations....The time was one of intellectual intoxication. My sensations resembled those one has after climbing a mountain in a mist, when, on reaching the summit, the mist suddenly clears, and the country becomes visible for forty miles in every direction....Suddenly, in the space of a few weeks, I discovered what appeared to be definitive answers to the problems which had baffled me for years. And in the course of discovering these answers, I was introducing a new mathematical technique, by which regions formerly abandoned to the vaguenesses of philosophers were conquered for the precision of exact formulae. Intellectually, the month of September 1900 was the highest point of my life. I went about saying to myself that now at last I had done something worth doing, and I had the feeling that I must be careful not to be run over in the street before I had written it down.

Bertrand Russell (1872–1970), British mathematician, 24

23http://groups.google.com/group/sci.math/browse_thread/thread/c1e9a7beb9a82311

²⁴ quote: Russell (1951), pages 217–218

image: http://en.wikipedia.org/wiki/File:Russell1907-2.jpg, public domain

page 38 Daniel J. Greenhoe CHAPTER 3. LOGIC

A.1 General set structures

Similar to the definition of a *relation* on a set X as being any subset of the *Cartesian product* $X \times X$ (Definition B.1 page 75), a *set structure* on a set X is simply any subset of the *power set* 2^X (next) of the set X.

Definition A.1.

The **power set** 2^X on a set X is defined as $2^X \triangleq \{A | A \subseteq X\}$ (the set of all subsets of X)

Definition A.2. 1 Let 2^X be the POWER SET (Definition A.1 page 39) of a set X.

A set S(X) is a **set structure** on X if $S(X) \subseteq 2^X$. A SET STRUCTURE Q(X) is a **paving** on X if $\emptyset \in Q(X)$.

Definition A.3. ² Let Q(X) be a PAVING (Definition A.2 page 39) on a set X. Let Y be a set containing the element 0.

A function $m \in Y^{Q(X)}$ is a **set function** if $m(\emptyset) = 0$.

A.2 Operations on the power set

A.2.1 Standard operations

Definition A.4. ³ Let 2^X be a set. Let |X| be a function in the function space $[0:+\infty]^X$ (Definition B.8 page 87).

Figure A.1: some standard set structures

Figure A.2: Venn diagrams for standard set operations (Definition A.5 page 40)

|X| is the cardinality or order of X if $|X| \triangleq \begin{cases} number \text{ of } elements \text{ in } X \text{ if } X \text{ is } \text{FINITE} \\ +\infty & \text{otherwise} \end{cases}$

Definition A.5 (next) introduces seven standard set operations: two *nullary* operations, one *unary* operation, and four *binary operations* (Definition B.9 page 88).

Definition A.5. ⁴ Let 2^X be the POWER SET (Definition A.1 page 39) on a set X. Let \neg represent the LOGICAL NOT operation, \vee represent the LOGICAL OR operation, \wedge represent the LOGICAL AND operation (Definition 3.2 page 29), and \oplus represent the LOGICAL EXCLUSIVE-OR operation (Definition 3.5 page 35).

⁴ Aliprantis and Burkinshaw (1998) pages 2–4

	name/symbol		arity	definition	domain
	emptyset	Ø	0	$\emptyset \triangleq \left\{ x \in X \middle x \neq x \right\}$	
	universal set	\boldsymbol{X}	0	$X \triangleq \left\{ x \in X \middle x = x \right\}$	
D E	complement	С	1	$A^{c} \triangleq \left\{ x \in X \middle \neg (x \in A) \right\}$	$\forall A \in 2^X$
F	union	U	2	$A \cup B \triangleq \{x \in X (x \in A) \lor (x \in B)\}$	$\forall A,B \in 2^X$
	intersection	\cap	2	$A \cap B \triangleq \left\{ x \in X \middle (x \in A) \land (x \in B) \right\}$	$\forall A,B \in 2^X$
	difference	\	2	$A \setminus B \triangleq \left\{ x \in X \middle (x \in A) \land \neg (x \in B) \right\}$	$\forall A,B \in 2^X$
	symmetric difference	Δ	2	$A \triangle B \triangleq \{x \in X \mid (x \in A) \oplus (x \in B)\}$	$\forall A,B \in 2^X$

With regards to the standard seven set operations only, Theorem A.1 (next) expresses each of the set operations in terms of pairs of other operations.

Theorem A.1.

$$X = \varnothing^{c}$$

$$\varnothing = X^{c} = (A \cup A^{c})^{c} = A \cap A^{c} = A \setminus A = A \triangle A$$

$$X = A \cup A^{c} = (A \cap A^{c})^{c}$$

$$A^{c} = X \setminus A = X \triangle A$$

$$A \cup B = (A^{c} \cap B^{c})^{c} = (A \triangle B) \triangle (A \cap B) = (A \setminus B) \triangle B$$

$$A \cap B = (A^{c} \cup B^{c})^{c} = (A \cup B) \triangle A \triangle B = A \setminus (A \setminus B)$$

$$A \setminus B = (A^{c} \cup B)^{c} = A \cap B^{c} = (A \cup B) \triangle B = (A \triangle B) \cap A$$

$$A \triangle B = [(A^{c} \cup B)^{c}] \cup [(A \cup B^{c})^{c}] = [(A^{c} \cap B^{c})^{c}] \cap (A \cap B)^{c}$$

$$= (A \setminus B) \cup (B \setminus A)$$

Proposition A.1. Let X be a set and 2^X the power set of X. Let $R \subseteq X$ such that R is closed with respect to the set symmetric difference operator \triangle .

```
(R, \triangle) \text{ is a GROUP. In particular,}
1. \ \emptyset \triangle A = A \triangle \emptyset = A \qquad \forall A \in R \qquad (\emptyset \text{ is the identity element})
2. \ A \triangle A = \emptyset \qquad \forall A \in R \qquad (A \text{ is the inverse of } A)
3. \ A \triangle (B \triangle C) = (A \triangle B) \triangle C \qquad \forall A, B, C \in R \qquad (A \text{ Associative})
```

Proof that Ø is the *identity* element:

1a. Proof that $\emptyset \in \mathbb{R}$:

$$\emptyset = A \triangle A$$
 \triangle closed with respect to R $\in R$

1b. Proof that $\emptyset \triangle A = A$:

$$\varnothing \triangle A = \{x \in X | (x \in \varnothing) \oplus (x \in A)\}$$
 by definition of \triangle page 40
 $= \{x \in X | (x \in \{x \in X | x \neq x\}) \oplus (x \in A)\}$ by definition of \triangle page 40
 $= \{x \in X | (0 \oplus (x \in A)\}$ by definition of \oplus (Definition 3.1 page 34)
 $= A$

1c. Proof that $A \triangle \emptyset = A$:

```
A \triangle \emptyset = \{x \in X | (x \in A) \oplus (x \in \emptyset)\}  by definition of \triangle page 40

= \{x \in X | (x \in A) \oplus (x \in \{x \in X | x \neq x\})\}  by definition of \triangle page 40

= \{x \in X | (x \in A) \oplus 0\}  by definition of \oplus (Definition 3.1 page 34)
```

[№] Proof:

Figure A.3: The partition of a set *X* into 4 regions by subsets *A* and *B*

2. Proof that $A \triangle A$:

$$A \triangle A = \{x \in X | (x \in A) \oplus (x \in A)\}$$
 by definition of \triangle page 40
= $\{x \in X | 0\}$ by definition of \triangle page 40
= \emptyset by definition of \triangle page 40

3. Proof that $A \triangle (B \triangle C) = (A \triangle B) \triangle C$:

$$A\triangle(B\triangle C) = \{x \in X | (x \in A) \oplus [x \in (B\triangle C)]\}$$
 by definition of \triangle page 40

$$= \{x \in X | (x \in A) \oplus [(x \in B) \oplus (x \in C)]\}$$
 by definition of \triangle page 40

$$= \{x \in X | [(x \in A) \oplus (x \in B)] \oplus (x \in C)\}$$

$$= (A\triangle B)\triangle C$$

A.2.2 Non-standard operations

Two subsets A and B of a set X that are intersecting but yet one is not contained in the other, partition the set X into four regions, as illustrated in Figure A.3 (page 42). Because there are four regions, the number of ways we can select one or more of them is $2^4 = 16$. Therefore, a binary operator on sets A and B can likewise result in one of $2^4 = 16$ possibilities. Definition A.6 (page 42) presents 7 set operations. Therefore, there should be an additional 16 - 7 = 9 operations. Definition A.6 (next definition) attempts to define these additional operations. Some definitions are adapted from logic (Table 3.3 page 36). But in general these definitions are non-standard definitions with respect to set theory. The 16 set operations under the inclusion relation \subseteq form a lattice; this lattice is illustrated by a *Hasse diagram* in Figure A.4 (page 43).

Definition A.6. ⁵ Let 2^X be the power set on a set X. For any sets $A, B \in 2^X$, let $AB \triangleq (A \cap B)$.

⁵ standard ops: Aliprantis and Burkinshaw (1998) pages 2–4

Figure A.4: lattice of set operations

	name/symbol		arity			definition	domain
	empty set	Ø	2	$A \oslash B$	≜	Ø	$\forall A,B \in 2^X$
	rejection	\downarrow	2	$A \downarrow B$	≜	$A^{c}B^{c}$	$\forall A,B \in 2^X$
	inhibit x	Θ	2	$A \ominus B$	≜	$A^{\mathtt{c}}B$	$\forall A, B \in 2^X$
	complement x	c_{x}	2	$A c_x B$	≜	$A^{c}B \cup A^{c}B^{c}$	$\forall A, B \in 2^X$
	difference	\	2	$A \setminus B$	≜	AB^{c}	$\forall A, B \in 2^X$
	complement y	c_{v}	2	$A c_y B$	≜	$AB^{c} \cup A^{c}B^{c}$	$\forall A, B \in 2^X$
D	symmetric difference	Š	2	$A \stackrel{\cdot}{\triangle} B$	≜	$AB^{c} \cup A^{c}B$	$\forall A,B \in 2^X$
E F	Sheffer stroke		2	$A \mid B$	≜	$AB^{c} \cup A^{c}B \cup A^{c}B^{c}$	$\forall A,B \in 2^X$
F	intersection	\cap	2	$A \cap B$	≜	$AB \cup$	$\forall A,B \in 2^X$
	equivalence	\Leftrightarrow	2	$A \Leftrightarrow B$	≜	$AB \cup A^{c}B^{c}$	$\forall A, B \in 2^X$
	projection y	I⊨	2	$A \Vdash B$	≜	$AB \cup A^{c}B$	$\forall A, B \in 2^X$
	implication	\Rightarrow	2	$A \Rightarrow B$	≜	$AB \cup A^{c}B \cup A^{c}B^{c}$	$\forall A, B \in 2^X$
	projection x	⊨ ا	2	$A \dashv \mid B$	≜	$AB \cup AB^{c}$	$\forall A, B \in 2^X$
	adjunction	÷	2	$A \div B$	≜	$AB \cup AB^{c} \cup A^{c}B^{c}$	$\forall A, B \in 2^X$
	union	U	2	$A \cup B$	≜	$AB \cup AB^{c} \cup A^{c}B$	$\forall A,B \in 2^X$
	universal set	\otimes	2	$A \otimes B$	≜	$AB \cup AB^{c} \cup A^{c}B \cup A^{c}B^{c}$	$\forall A,B \in 2^X$

A.2.3 Generated operations

Definition A.5 (page 40) defines set operations in terms of logical operations. However, it is also possible to express set operations in terms of two or more other set operations. When all the set operations can be expressed in terms of a set of operations, then that set of operations is *functionally complete* (next definition, but see also Definition I.3 page 183).

Definition A.7. ⁶ *Let S be a set structure.*

A set of operations Φ is **functionally complete** in S if \cup , \cap , c, \emptyset , and X can all be expressed in terms of elements of Φ .

Example A.1. Here are some examples of *functionally complete* sets:

```
{↓}
                               (rejection)
                               (Sheffer stroke)
                {|}
                               (adjunction and ∅)
                {÷, Ø}
                               (set difference and X)
                \{\setminus, X\}
E
X
                               (union and complement)
                {U, c}
                               (intersection and complement)
               {∩, c}
                              (symmetric difference, intersection, and X)
                \{\triangle, \cap, X\}
                               (symmetric difference, union, and X)
                \{\triangle, \cup, X\}
                               (symmetric difference, set difference, and complement)
                \{\triangle, \setminus, \mathsf{c}\}
```

The five theorems that follow demonstrate which operations can be generated by sets of generating operations:

2 generators,	$\binom{7}{2} = 21$	possibilities,	Proposition A.2	page 45
3 generators,	$\binom{7}{3} = 35$	possibilities,	Proposition A.3	page 45
4 generators,	$\binom{7}{4} = 35$	possibilities,	Proposition A.4	page 46
5 generators,	$\binom{7}{5} = 21$	possibilities,	Proposition A.5	page 47
6 generators,	$\binom{7}{6} = 7$	possibilities,	Proposition A.6	page 47

⁶ Whitesitt (1995) page 69

D E F Starting with any two subsets A and B and using all the operations of a *functionally complete* set of operations, an *algebra of sets* (Definition A.10 page 52) is produced. Thus, a *functionally complete* set of set operations induces an *algebra of sets*. Other less powerful sets of operations generate fewer operations and induce only a *ring of sets* (Definition A.11 page 53). And some sets of operations, such as $\{\cup, \cap\}$, generate no set operations but themselves.

Proposition A.2 (2 generators). *The following table demonstrates the "standard" operations generated by sets of 2 operations.*

gen	erat	ors	ge	ner	ate	d op	era	ıtio	ns	induced set structure
1.	Ø	X	Ø	X						
2.	Ø	С	Ø	X	С					
3.	Ø	U	Ø			U				
4.	Ø	\cap	Ø				\cap			
5.	Ø	\	Ø					\		
6.	Ø	\triangle	Ø						\triangle	
7.	\boldsymbol{X}	С	Ø	\boldsymbol{X}	С					
8.	\boldsymbol{X}	U		\boldsymbol{X}		U				
9.	\boldsymbol{X}	\cap		\boldsymbol{X}			\cap			
10.	\boldsymbol{X}	\	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
11.	\boldsymbol{X}	\triangle	Ø	\boldsymbol{X}	С				\triangle	
12.	С	U	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
13.	С	\cap	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
14.	С	\	Ø	\boldsymbol{X}	С			\		
15.	С	\triangle	Ø	\boldsymbol{X}	С				\triangle	
16.	U	\cap				U	Λ			
17.	U	\	Ø			U	Λ	\	\triangle	ring of sets
18.	U	\triangle	Ø			U	Λ	\	\triangle	ring of sets
19.	\cap	\	Ø				\cap	\		
20.	\cap	\triangle	Ø			U	\cap	\	\triangle	ring of sets
21.	\	Δ	Ø			U	Λ	\	Δ	ring of sets

Proposition A.3 (3 generators). *The following table demonstrates the "standard" operations generated by sets of 3 operations.*

	gei	1era	tors	ge	ner	ate	d op	era	tio	ns	induced set structure
1.	Ø	X	С	Ø	X	С					
2.	Ø	\boldsymbol{X}	U	Ø	\boldsymbol{X}		U				
3.	Ø	\boldsymbol{X}	\cap	Ø	\boldsymbol{X}			Λ			
4.	Ø	\boldsymbol{X}	\	Ø	\boldsymbol{X}	С	U	Λ	\	Δ	algebra of sets
5.	Ø	\boldsymbol{X}	\triangle	Ø	\boldsymbol{X}	С				\triangle	
6.	Ø	С	U	Ø	X	С	U	Λ	\	Δ	algebra of sets
7.	Ø	С	\cap	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
8.	Ø	С	\	Ø	\boldsymbol{X}	С			\		
9.	Ø	С	\triangle	Ø	\boldsymbol{X}	С				\triangle	
10.	Ø	U	\cap	Ø			U	Λ			
11.	Ø	U	\	Ø			U	Λ	\	Δ	ring of sets
12.	Ø	U	\triangle	Ø			U	Λ	\	\triangle	ring of sets
13.	Ø	\cap	\	Ø				\cap	\		
14.	Ø	\cap	\triangle	Ø			U	Λ	\	\triangle	ring of sets
15.	Ø	\	\triangle	Ø			U	Λ	\	\triangle	ring of sets
16.	X	С	U	Ø	X	С	U	Λ	\	\triangle	algebra of sets

2019 SEPTEMBER 26 (THURSDAY) 11:06AM UTC COPYRIGHT © 2019 DANIEL J. GREENHOE Negation, Implication, and Logic [VERSION 051] https://github.com/dgreenhoe/pdfs/blob/master/nil.pdf

17.	X	С	\cap	Ø	X	С	U	\cap	\	Δ	algebra of sets
18.	X	С	\	Ø	\boldsymbol{X}	С	U	Λ	\	Δ	algebra of sets
19.	X	С	\triangle	Ø	\boldsymbol{X}	С				\triangle	
20.	X	U	\cap		X		U	\cap			
21.	X	U	\	Ø	X	С	U	Λ	\	Δ	algebra of sets
22.	X	U	\triangle	Ø	X	С	U	Λ	\	\triangle	algebra of sets
23.	X	\cap	\	Ø	X	С	U	\cap	\	Δ	algebra of sets
24.	X	\cap	\triangle	Ø	X	С	U	\cap	\	\triangle	algebra of sets
25.	X	\	\triangle	Ø	X	С	U	Λ	\	Δ	algebra of sets
26.	С	U	\cap	Ø	\boldsymbol{X}	С	U	Λ	\	Δ	algebra of sets
27.	С	U	\	Ø	\boldsymbol{X}	С	U	Λ	\	Δ	algebra of sets
28.	С	U	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
29.	С	\cap	\	Ø	\boldsymbol{X}	С	U	\cap	\	Δ	algebra of sets
30.	c	\cap	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
31.	С	\	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
32.	U	\cap	\	Ø			U	Λ	\	Δ	ring of sets
33.	U	\cap	\triangle	Ø			U	\cap	\	\triangle	ring of sets
34.	U	\	\triangle	Ø			U	Λ	\	\triangle	ring of sets
35.	n	\	Δ	Ø			U	\cap	\	Δ	ring of sets

Proposition A.4 (4 generators). *The following table demonstrates the "standard" operations generated by sets of 4 operations.*

	ge	ener	ato	rs	ge	ner	ate	d op	era	ıtio	ns	induced set structure
1.	Ø	X	С	U	Ø	X	С	U	Λ	\	Δ	algebra of sets
2.	Ø	\boldsymbol{X}	С	\cap	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
3.	Ø	\boldsymbol{X}	С	\	Ø	\boldsymbol{X}	С	U	\cap	\	Δ	algebra of sets
4.	Ø	\boldsymbol{X}	С	\triangle	Ø	\boldsymbol{X}	С				\triangle	
5.	Ø	\boldsymbol{X}	U	\cap	Ø	\boldsymbol{X}		U	\cap			pre-topology
6.	Ø	\boldsymbol{X}	U	\	Ø	\boldsymbol{X}	С	U	Λ	\	Δ	algebra of sets
7.	Ø	\boldsymbol{X}	U	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
8.	Ø	\boldsymbol{X}	\cap	\	Ø	\boldsymbol{X}	С	U	\cap	\	Δ	algebra of sets
9.	Ø	\boldsymbol{X}	\cap	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
10.	Ø	\boldsymbol{X}	\	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
11.	Ø	С	U	\cap	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
12.	Ø	С	U	\	Ø	X	С	U	Λ	\	Δ	algebra of sets
13.	Ø	С	U	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
14.	Ø	С	\cap	\	Ø	X	С	U	\cap	\	Δ	algebra of sets
15.	Ø	С	\cap	\triangle	Ø	X	С	U	Λ	\	\triangle	algebra of sets
16.	Ø	С	\	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
17.	Ø	U	\cap	\	Ø			U	Λ	\	Δ	ring of sets
18.	Ø	U	\cap	\triangle	Ø			U	Λ	\	\triangle	ring of sets
19.	Ø	U	\	\triangle	Ø			U	Λ	\	\triangle	ring of sets
20.	Ø	\cap	\	\triangle	Ø			U	\cap	\	\triangle	ring of sets
21.	X	С	U	\cap	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
22.	$\mid X \mid$	С	U	\	Ø	\boldsymbol{X}	С	U	Λ	\	Δ	algebra of sets
23.	X	С	U	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
24.	X	С	\cap	\	Ø	X	С	U	\cap	\	Δ	algebra of sets
25.	X	С	\cap	\triangle	Ø	X	С	U	\cap	\	\triangle	algebra of sets
26.	X	С	\	\triangle	Ø	X	С	U	Λ	\	\triangle	algebra of sets
27.	$\mid X$	U	\cap	\	Ø	X	С	U	\cap	\	Δ	algebra of sets

28.	X	U	\cap	Δ	Ø	X	С	U	\cap	\	Δ	algebra of sets
29.	X	U	\	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
30.	X	\cap	\	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
31.	С	U	\cap	\	Ø	X	С	U	\cap	\	Δ	algebra of sets
32.	c	U	\cap	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
33.	С .	U	\	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
34.	c	\cap	\	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
35.	U	Λ	\	Δ	Ø	X	С	U	Λ	\	Δ	algebra of sets

Proposition A.5 (5 generators). The following table demonstrates the "standard" operations generated by sets of 5 operations.

		gen	era	tors		ge	ner	ate	d op	era	ıtio	ns	induced set structure
1.	Ø	X	С	U	\cap	Ø	X	С	U	Λ	\	Δ	algebra of sets
2.	Ø	\boldsymbol{X}	С	U	\	Ø	\boldsymbol{X}	С	U	Λ	\	Δ	algebra of sets
3.	Ø	\boldsymbol{X}	С	U	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
4.	Ø	\boldsymbol{X}	С	\cap	\	Ø	\boldsymbol{X}	С	U	\cap	\	Δ	algebra of sets
5.	Ø	\boldsymbol{X}	С	\cap	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
6.	Ø	\boldsymbol{X}	С	\	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
7.	Ø	\boldsymbol{X}	U	\cap	\	Ø	\boldsymbol{X}	С	U	\cap	\	Δ	algebra of sets
8.	Ø	\boldsymbol{X}	U	\cap	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
9.	Ø	\boldsymbol{X}	U	\	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
10.	Ø	\boldsymbol{X}	\cap	\	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
11.	Ø	С	U	\cap	\	Ø	X	С	U	\cap	\	Δ	algebra of sets
12.	Ø	С	U	\cap	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
13.	Ø	С	U	\	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
14.	Ø	С	\cap	\	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
15.	Ø	U	\cap	\	\triangle	Ø			U	\cap	\	\triangle	ring of sets
16.	$\mid X \mid$	С	U	\cap	\	Ø	\boldsymbol{X}	С	U	\cap	\	Δ	algebra of sets
17.	X	С	U	\cap	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
18.	X	С	U	\	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
19.	X	С	\cap	\	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
20.	X	U	\cap	\	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
21.	С	U	\cap	\	Δ	Ø	X	С	U	\cap	\	Δ	algebra of sets

Proposition A.6 (6 generators). The following table demonstrates the "standard" operations generated by sets of 6 operations.

		ge	ner	ato	rs		ge	ner	ate	d op	era	tio	ns	induced set structure
1.	Ø	X	С	U	\cap	\	Ø	X	С	U	Λ	\	Δ	algebra of sets
2.	Ø	\boldsymbol{X}	С	U	\cap	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
3.	Ø	\boldsymbol{X}	С	U	\	\triangle	Ø	\boldsymbol{X}	С	U	Λ	\	\triangle	algebra of sets
4.	Ø	\boldsymbol{X}	С	\cap	\	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
5.	Ø	\boldsymbol{X}	U	\cap	\	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets
6.	Ø	С	U	\cap	\	\triangle	Ø	X	С	U	\cap	\	\triangle	algebra of sets
7.	$\mid X$	С	U	\cap	\	\triangle	Ø	\boldsymbol{X}	С	U	\cap	\	\triangle	algebra of sets

A.2.4 Set multiplication

The *Cartesian product* operation \times (next definition) is a kind of *set multiplication* operation.

Definition A.8. ⁷ *Let X and Y be sets, and let* (x, y) *be an* ORDERED PAIR.


```
The Cartesian product X \times Y of X and Y is X \times Y \triangleq \{(x, y) | (x \in X) \text{ and } (y \in Y)\}
```

Theorem A.2 (next theorem) demonstrates how this set operation interacts with certain other set operations. The Cartesian product is of critical importance in general because, for example, relations (Definition B.1 page 75) and functions (Definition B.8 page 87) are subsets of Cartesian products.

Theorem A.2. 8 Let X, Y, Z be sets.

```
X\times (Y\cup Z) = (X\times Y)\cup (X\times Z) \qquad (\times \ distributes \ over \cup)
X\times (Y\cap Z) = (X\times Y)\cap (X\times Z) \qquad (\times \ distributes \ over \cap)
X\times (Y\setminus Z) = (X\times Y)\setminus (X\times Z) \qquad (\times \ distributes \ over \cap)
(X\times Y)\cap (Y\times X) = (X\cap Y)\times (Y\cap X)
(X\times X)\cap (Y\times Y) = (X\cap Y)\times (X\cap Y)
```

№ Proof:

$$X \times (Y \cup Z) = \{(a,b) \mid (a \in X) \land (b \in Y \cup Z)\}$$

$$= \{(a,b) \mid (a \in X) \land (b \in Y) \lor (b \cup Z)\}\}$$

$$= \{(a,b) \mid [(a \in X) \land (b \in Y)] \lor [(a \in X) \land (b \in Z)]\}$$
by Definition A.5
by Theorem 3.2
by Definition A.5
$$= \{(a,b) \mid [(a \in X) \land (b \in Y)]\} \cup \{(a,b) \mid [(a \in X) \land (b \in Z)]\}\}$$
by Definition A.5
$$X \times (Y \cap Z) = \{(a,b) \mid (a \in X) \land (b \in Y \cap Z)\}\}$$

$$= \{(a,b) \mid (a \in X) \land (b \in Y) \land (b \cup Z)\}\}$$

$$= \{(a,b) \mid [(a \in X) \land (b \in Y)]\} \cap \{(a,b) \mid [(a \in X) \land (b \in Z)]\}\}$$
by Definition A.5
$$= \{(a,b) \mid [(a \in X) \land (b \in Y)]\} \cap \{(a,b) \mid [(a \in X) \land (b \in Z)]\}\}$$
by Definition A.5
$$X \times (Y \setminus Z) = \{(a,b) \mid (a \in X) \land (b \in Y \setminus Z)\}\}$$

$$= \{(a,b) \mid (a \in X) \land (b \in Y \setminus Z)\}$$

$$= \{(a,b) \mid (a \in X) \land (b \in Y \setminus Z)\}$$

$$= \{(a,b) \mid (a \in X) \land (b \in Y \setminus Z)\}$$

```
X \times (Y \setminus Z) = \{(a,b) \mid (a \in X) \land (b \in Y \setminus Z)\}
= \{(a,b) \mid (a \in X) \land (b \in Y \cap Z^{c})\}
= \{(a,b) \mid (a \in X) \land [(b \in Y) \land (b \in Z^{c})]\}
= \{(a,b) \mid [(a \in X) \land (b \in Y)] \land [(a \in X) \land (b \in Z^{c})]\}
= \{(a,b) \mid [(a \in X) \land (b \in Y)]\} \cap \{(a,b) \mid [(a \in X) \land (b \in Z^{c})]\}
= (X \times Y) \cap (X \times Z^{c})
= (X \times Y) \setminus (X \times Z)
by Definition A.5
```

⁸ Menini and Oystaeyen (2004), page 50, Halmos (1960) page 25

⁷ A Halmos (1960) page 24

G. Frege, 2007 August 25, http://groups.google.com/group/sci.logic/msg/3b3294f5ac3a76f0

```
(X \times Y) \cap (Y \times X) = \{(a, b) | (a \in X) \land (b \in Y)\} \cap \{(a, b) | (a \in Y) \land (b \in X)\}
                            = \{(a,b) \mid [(a \in X) \land (b \in Y)] \land [(a \in Y) \land (b \in X)]\}
                                                                                                                                by Definition A.5
                            = \{(a,b) \mid [(a \in X) \land (a \in Y)] \land [(b \in Y) \land (b \in X)]\}
                            = \{(a,b) \mid (a \in X \cap Y) \land (b \in Y \cap X)\}\
                            = (X \cap Y) \times (Y \cap X)
(X \times X) \cap (Y \times Y) = \{(a, b) | (a \in X) \land (b \in X)\} \cap \{(a, b) | (a \in Y) \land (b \in Y)\}
                                                                                                                                by Definition A.5
                            = \{(a,b) \mid [(a \in X) \land (b \in X)] \land [(a \in Y) \land (b \in Y)]\}
                            = \{(a,b) \mid [(a \in X) \land (a \in Y)] \land [(b \in X) \land (b \in Y)]\}
                            = \{(a,b) \mid (a \in X \cap Y) \land (b \in X \cap Y)\}\
                            = (X \cap Y) \times (X \cap Y)
```

Standard set structures **A.3**

Set structures are typically designed to satisfy some special properties—such as being closed with respect to certain set operations. Examples of commonly occurring set structures include

```
# power set
                  (Definition A.1
                                    page 39)
                  (Definition A.9
4 topologies
                                    page 49)
algebra of sets (Definition A.10
                                    page 52)
## ring of sets
                  (Definition A.11
                                    page 53)
# partitions
                  (Definition A.12
                                    page 55)
```

A.3.1 **Topologies**

Definition A.9. ⁹ Let Γ be a set with an arbitrary (possibly uncountable) number of elements. Let 2^X be the POWER SET of a set X.

```
A family of sets T \subseteq 2^X is a topology on a set X if
         1. \emptyset \in T
                                                                         (\emptyset is in T)
                                                                                                                                         and
         2. X \in T
                                                                         (X is in T)
                                                                                                                                         and
        3. U, V \in T \Longrightarrow U \cap V \in T (the intersection of a finite number of open sets is open)
4. \left\{U_{\gamma}|\gamma \in \Gamma\right\} \subseteq T \Longrightarrow \bigcup_{\gamma \in \Gamma} U_{\gamma} \in T (the union of an arbitrary number of open sets is open).
        з. U, V \in T
A topological space is the pair (X,T). An open set is any member of T.
A closed set is any set D such that D^c is OPEN.
The set of topologies on a set X is denoted \mathcal{T}(X). That is,
       \mathcal{T}(X) \triangleq \{T \subseteq 2^X | T \text{ is a topology}\}.
If X is FINITE, then T is a topology on a finite set, and (4.) can be replaced by
       U, V \in T
                                       U \cup V \in T.
```

Example A.2. ¹⁰ Let $\mathcal{T}(X)$ be the set of topologies on a set X and 2^X the *power set* (Definition A.1 page 39)

¹⁰ **/** Munkres (2000), page 77, **/** Kubrusly (2011) page 107 ⟨Example 3.J⟩, **/** Steen and Seebach (1978) pages 42–43 ⟨II.4⟩, **a** DiBenedetto (2002) page 18

⁹ Munkres (2000) page 76, Riesz (1909), Hausdorff (1914), Tietze (1923) ⟨cited by Thron page 18⟩, Hausdorff (1937) page 258

on X.

Е	$\{\emptyset, X\}$	is a <i>topology</i> in	$\mathcal{T}(X)$	(indiscrete topology or trivial topology)
X	2^X	is a <i>topology</i> in	$\mathcal{T}(X)$	(discrete topology)

Example A.3. ¹¹ There are four topologies on the set $X \triangleq \{x, y\}$:

	topologies on $\{x, y\}$	corresponding closed sets
_	$T_0 = \{\emptyset, X\}$	$\{\emptyset, X\}$
E X	$T_1 = \{\emptyset, \{x\}, X\}$	$\{\emptyset, \{y\}, X\}$
	$T_2 = \{\emptyset, \{y\}, X\}$	$\{\emptyset, \{x\}, X\}$
	$T_3 = \{\emptyset, \{x\}, \{y\}, X\}$	$\{\emptyset, \{x\}, \{y\}, X\}$

The topologies (X, T_1) and (X, T_2) , as well as their corresponding closed set topological spaces, are all *Serpiński spaces*.

Example A.4. There are a total of 29 *topologies* (Definition A.9 page 49) on the set $X \triangleq \{x, y, z\}$:

topologies on $\{x, y, z\}$	corresponding closed sets		
$T_{00} = \{\emptyset, X\}$ $T_{01} = \{\emptyset, \{x\}, X\}$ $T_{02} = \{\emptyset, \{y\}, X\}$ $T_{04} = \{\emptyset, \{z\}, X\}$			
$T_{01} = \{\emptyset, \{x\}, X\}$	$\{\emptyset, \{y, z\}, X\}$		
$T_{02} = \{\emptyset, \qquad \{y\}, \qquad X\}$	$\{\emptyset, \{x,z\} X\}$		
$T_{04} = \{\emptyset, \qquad \{z\}, \qquad X\}$	$\{\emptyset, \{x, y\}, X\}$		
$ I_{10} = \{ \emptyset, \{x, y\}, X \} $	$\{\emptyset, \qquad \{z\}, \qquad X\}$		
$T_{20} = \{\emptyset, \qquad \{x, z\}, X\}$ $T_{40} = \{\emptyset, \qquad \{y, z\}, X\}$ $T_{11} = \{\emptyset, \{x\}, \qquad \{x, y\}, \qquad X\}$	$\{\emptyset, \{y\}, X\}$		
$T_{40} = \{\emptyset, \{y, z\}, X\}$	$\{\emptyset, \{x\}, X\}$		
$T_{11} = \{\emptyset, \{x\}, \{x, y\}, X\}$	$\{\emptyset, \qquad \{z\}, \qquad \{y, z\}, X\}$		
$T_{21} = \{\emptyset, \{x\}, \qquad \{x, z\}, X\}$ $T_{41} = \{\emptyset, \{x\}, \qquad \{y, z\}, X\}$ $T_{12} = \{\emptyset, \{y\}, \qquad \{x, y\}, \qquad X\}$	$\{\emptyset, \{y\} \ \{y, z\}, X\} \ \{\emptyset, \{x\}, \{y, z\}, X\}$		
$T_{41} = \{\emptyset, \{x\}, \{y, z\}, X\}$	$\{\emptyset, \{x\}, \{y, z\}, X\}$		
$T_{12} = \{\emptyset, \{y\}, \{x, y\}, X\}$	$\{\emptyset, \{z\}, \{x,z\} X\}$		
$T_{22} = \{\emptyset, \{y\}, \{x, z\}, X\}$	$\{\emptyset, \{y\}, \{x,z\}, X\}$		
$T_{42} = \{\emptyset, \{y\}, \{z\}, \{x, y\}, \{y, z\}, X\}$ $T_{14} = \{\emptyset, \{z\}, \{x, y\}, X\}$	$ \begin{cases} \emptyset, \{x\}, & \{x, z\}, & X \} \\ \{\emptyset, & \{z\}, \{x, y\}, & X \end{cases} $		
	$\{\emptyset, \{z\}, \{x, y\}, X\}$		
$T_{24} = \{\emptyset, \{z\}, \{x, z\}, X\}$	$\{\emptyset, \{y\}, \{x,y\}, X\}$		
$T_{44} = \{\emptyset, \{z\}, \{y, z\}, X\}$	$\{\emptyset, \{x\}, \{x, y\}, X\}$		
$T_{31} = \{\emptyset, \{x\}, \{x, y\}, \{x, z\}, X\}$	$\{\emptyset, \{y\}, \{z\}, \{y, z\}, X\}$		
$T_{52} = \{\emptyset, \{y\}, \{x, y\}, \{y, z\}, X\}$	$\{\emptyset, \{x\}, \{z\}, \{x, z\}, X\}$		
$T_{64} = \{\emptyset, \{z\}, \{x, z\}, \{y, z\}, X\}$	$\{\emptyset, \{x\}, \{y\}, \{x, y\}, X\}$		
$T_{13} = \{\emptyset, \{x\}, \{y\}, \{x, y\}, X\}$	$\{\emptyset, \{z\}, \{x, z\}, \{y, z\}, X\}$		
$T_{25} = \{\emptyset, \{x\}, \{z\}, \{x, z\}, X\}$	$\{\emptyset, \{y\}, \{x, y\}, \{y, z\}, X\}$		
$T_{46} = \{\emptyset, \{y\}, \{z\}, \{y, z\}, X\}$	$\{\emptyset, \{x\}, \{x, y\}, \{x, z\}, X\}$		
$T_{33} = \{\emptyset, \{x\}, \{y\}, \{x, y\}, \{x, z\}, X\}$	$\{\emptyset, \{y\}, \{z\}, \{x, z\}, \{y, z\}, X\}$		
$T_{53} = \{\emptyset, \{x\}, \{y\}, \{x, y\}, \{y, z\}, X\}$	$\{\emptyset, \{x\}, \{z\}, \{x, z\}, \{y, z\}, X\}$		
$T_{35} = \{\emptyset, \{x\}, \{z\}, \{x, y\}, \{x, z\}, X\}$	$\{\emptyset, \{y\}, \{z\}, \{x, y\}, \{y, z\}, X\}$		
$T_{65} = \{\emptyset, \{x\}, \{z\}, \{x, z\}, \{y, z\}, X\}$	$\{\emptyset, \{x\}, \{y\}, \{x, y\}, \{y, z\}, X\}$		
$T_{56} = \{\emptyset, \{y\}, \{z\}, \{x, y\}, \{y, z\}, X\}$	$\{\emptyset, \{x\}, \{z\}, \{x, y\}, \{x, z\}, X\}$		
$T_{66} = \{\emptyset, \{y\}, \{z\}, \{x, z\}, \{y, z\}, X\}$	$\{\emptyset, \{x\}, \{y\}, \{x, y\}, \{x, z\}, X\}$		
$T_{77} = \{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, X\}$	$\{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, X\}$		

Theorem A.3. Let $L \triangleq (X, \vee, \wedge; \leq)$ be a LATTICE.

№ Proof:

1. By Proposition A.15 (page 62), (S, \subseteq) is an *ordered set*.

¹¹ Isham (1999), page 44, Isham (1989), page 1515

- 2. By Proposition A.16 (page 63), \cup is *least upper bound* operation on (S, \subseteq) . and \cap is *greatest lower bound* operation on (S, \subseteq) .
- 3. Therefore, by Definition D.3 (page 119), (S, \cup , \cap ; \subseteq) is a lattice.
- 4. By Theorem D.3 (page 120), (S, \cup , \cap ; \subseteq) is *idempotent*, *commutative*, associative, and absorptive.
- 5. Proof that $(S, \cup, \cap; \subseteq)$ is *distributive*:
 - (a) Proof that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$:

```
A \cap (B \cup C)
= \{x \in X | x \in A \land x \in (B \cup C)\} by definition of \cap (Definition A.5 page 40)
= \{x \in X | x \in A \land x \in \{x \in X | x \in B \lor x \in C\}\} by definition of \cup (Definition A.5 page 40)
= \{x \in X | x \in A \land (x \in B \lor x \in C)\} by Theorem 3.2 page 35
= \{x \in X | x \in A \land x \in B\} \cup \{x \in X | x \in A \land x \in C\} by definition of \cup (Definition A.5 page 40)
= (A \cap B) \cup (A \cap C) by definition of \cap (Definition A.5 page 40)
```

(b) Proof that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$: This follows from the fact that $(S, \cup, \cap; \subseteq)$ is a lattice (item (3) page 51), that \cap distributes over \cup (item (5) page 51), and by Theorem G.1 (page 148).

Example A.5. There are five unlabeled lattices on a five element set (Proposition D.2 page 125). Of these five, three are *distributive* (Proposition G.3 page 165). The following illustrates that the distributive lattices are isomorphic to topologies, while the non-distributive lattices are not.

	non-distributive/not topologies		distributive/are topologies		
E X	$ \begin{cases} x, y, z \\ \{x\} \end{cases} $	$ \begin{cases} x, y \\ x \end{cases} $ $ \begin{cases} x, y, z \\ y \\ z \end{cases} $	$\{x, y, z\}$ $\{x, y\}$ $\{x\}$ \emptyset	$\{x, z\} \bigcirc \{x, y, z\}$ $\{x, y\}$ $\{x\}$ \emptyset	

NPROOF:

- 1. The first two lattices are non-distributive by *Birkhoff distributivity criterion* (Theorem G.2 page 152).
 - (a) This lattice is not a topology because, for example,

$${x} \lor {y} = {x, y, z} \ne {x, y} = {x} \cup {y}.$$

That is, the set union operation \cup is *not* equivalent to the order join operation \vee .

(b) This lattice is not a topology because, for example,

$$\{x\} \lor \{y\} = \{y\} \neq \{x, y\} = \{x\} \cup \{y\}$$

- 2. The last three lattices are distributive by *Birkhoff distributivity criterion* (Theorem G.2 page 152).
 - (a) This lattice is the topology T_{13} of Example A.4 (page 50). On the set $\{x, y, z\}$, there are a total of three topologies that have this order structure (see Example A.4):

$$T_{13} = \{ \emptyset, \{x\}, \{y\}, \{x,y\}, \{x,y,z\} \} \}$$

$$T_{25} = \{ \emptyset, \{x\}, \{z\}, \{x,z\}, \{x,y,z\} \}$$

$$T_{46} = \{ \emptyset, \{y\}, \{z\}, \{y,z\}, \{x,y,z\} \}$$

© ⊕S⊜ BY-NC-ND D E F (b) This lattice is the topology T_{31} of Example A.4 (page 50). On the set $\{x, y, z\}$, there are a total of three topologies that have this order structure (see Example A.4):

$$T_{31} = \{ \emptyset, \{x\}, \{x,y\}, \{x,z\}, \{x,y,z\} \} \}$$

 $T_{52} = \{ \emptyset, \{y\}, \{x,y\}, \{y,z\}, \{x,y,z\} \} \}$
 $T_{64} = \{ \emptyset, \{z\}, \{x,z\}, \{y,z\}, \{x,y,z\} \} \}$

(c) This lattice is a topology by Definition A.9 (page 49).

₽

A.3.2 Algebras of sets

Definition A.10. Let X be a set with POWER SET 2^X (Definition A.1 page 39).

```
A \subseteq 2^{X} is an algebra of sets on X if

1. A \in A \Longrightarrow A^{c} \in A (closed under complement operation) and
2. A, B \in A \Longrightarrow A \cap B \in A (closed under \cap)

The set of all algebra of sets on a set X is denoted A(X) such that
A(X) \triangleq \left\{ A \subseteq 2^{X} \middle| A \text{ is an algebra of sets} \right\}.

An Algebra of sets A on X is a \sigma-algebra on X if

3. \left\{ A_{n} \middle| n \in \mathbb{Z} \right\} \subseteq A \Longrightarrow \bigcup_{n \in \mathbb{Z}} A_{n} \in A (closed under countable union operations).
```

On every set *X* with at least 2 elements, there are always two particular algebras of sets: the *smallest algebra* and the *largest algebra*, as demonstrated by Example A.6 (next).

Example A.6. ¹³ Let $\mathcal{A}(X)$ be the set of *algebras of sets* (Definition A.10 page 52) on a set X and 2^X the *power set* (Definition A.1 page 39) on X.

Isomorphically, all *algebras of sets* are *boolean algebras* (Definition I.1 page 173) and all boolean algebras are algebras of sets (next theorem).

Theorem A.4 (Stone Representation Theorem). 14 Let $L \triangleq (X, \vee, \wedge; \leq)$ be a LATTICE.

```
 \begin{array}{c} \mathsf{T} \\ \mathsf{H} \\ \mathsf{M} \end{array} \mathsf{L} \ is \ \mathsf{Boolean} \quad \Longleftrightarrow \quad \left\{ \begin{array}{c} \mathsf{L} \ is \ isomorphic \ to \ (\mathbf{A}, \cup, \cap, \varnothing, X; \subseteq) \\ for \ some \ \mathsf{ALGEBRA} \ \mathsf{OF} \ \mathsf{SETS} \ (\mathsf{Definition} \ \mathsf{A.10} \ \mathsf{page} \ \mathsf{52}) \ \mathsf{A} \end{array} \right\}
```

№ Proof:

- 1. Proof that algebra of sets \implies Boolean algebra:
 - (a) Proof that S is closed under \cup and \cap : by hypothesis.
 - (b) By item (1b) and by Theorem A.6 (page 59), L is a distributive lattice.

¹⁴ Levy (2002) page 257, Grätzer (2003) page 85, Joshi (1989) page 224, Saliĭ (1988) page 32 ("Stone's Theorem"), Stone (1936)

¹² ■ Aliprantis and Burkinshaw (1998) page 95, ■ Aliprantis and Burkinshaw (1998) page 151, ■ Halmos (1950) page 21, ■ Hausdorff (1937) page 91

¹³ Stroock (1999) page 33, Aliprantis and Burkinshaw (1998) pages 95–96

- (c) By item (1b) and properties of *lattices* (Theorem D.3 page 120), **L** is *idempotent*, *commutative*, *associative*, and *absorptive*.
- (d) Proof that *L* has *identity*:

$$A \cup \emptyset = \{x \in X | (x \in A) \lor (x \in \emptyset)\}$$
 by definition of \cup Definition A.5 page 40
 $= \{x \in X | x \in A\}$ by definition of \emptyset Definition A.5 page 40
 $= A$ by definition of \cap Definition A.5 page 40
 $= \{x \in X | (x \in A) \land (x \in X)\}$ by definition of \cap Definition A.5 page 40
 $= \{x \in X | x \in A\}$ by definition of \emptyset Definition A.5 page 40
 $= A$

- (e) Proof that *L* is *complemented*: by hypothesis.
- (f) Because **L** is *commutative* (item (1c) page 52), *distributive* (item (1b) page 52), has *identity* (item (1d) page 53), and is *complemented* (item (1e) page 53), and by the definition of *Boolean algebras* (Definition I.1 page 173), **L** is a *Boolean algebra*.
- 2. Proof that Boolean algebra \implies algebra of sets: not included at this time.

A.3.3 Rings of sets

A *ring of sets* (next definition) is a family of subsets that is closed under an "addition-like" set union operator \cup and "subtraction-like" set difference operator \setminus . Using these two operations, it is not difficult to show that a ring of sets is also closed under a "multiplication-like" set intersection operator \cap . Because of this, a ring of sets behaves like an *algebraic ring*. Note however that a ring of sets is not necessarily a *topology* (Definition A.9 page 49) because it does not necessarily include X itself.

Definition A.11. 15 Let X be a set with POWER SET 2^X (Definition A.1 page 39).

 $R \subseteq 2^{X} \text{ is a ring of sets on } X \text{ if}$ $1. \quad A, B \in R \qquad \Longrightarrow A \cup B \qquad \text{(closed under } \cup) \qquad \text{and}$ $2. \quad A, B \in R \qquad \Longrightarrow A \setminus B \in R \qquad \text{(closed under } \vee)$ $The set of all rings of sets on a set X \text{ is denoted } \mathcal{R}(X) \text{ such that}$ $\mathcal{R}(X) \triangleq \left\{ R \subseteq 2^{X} \middle| R \text{ is a ring of sets} \right\}.$ $A \text{ RING OF SETS } R \text{ on } X \text{ is a } \sigma\text{-ring on } X \text{ if}$ $3. \quad \left\{ A_{n} \middle| n \in \mathbb{Z} \right\} \subseteq R \qquad \Longrightarrow \bigcup_{n \in \mathbb{Z}} A_{n} \in R \quad \text{(closed under countable union operations)}.$

Example A.7. Table A.7 (page 54) lists some *rings of sets* on a finite set X.

Example A.8. Let $X \triangleq \{x, y, z\}$ be a set and R be the family of sets $R \triangleq \{\emptyset, X, \{x\}, \{y\}, \{z\}, \{x, y\}\}.$

Note that $(R, \subseteq, \cup, \cap)$ is a lattice as illustrated in the figure to the right. However, R is *not* a ring of sets on X because, for example,

$${x, y, z} \setminus {x} = {y, z} \notin \mathbf{R}.$$

Table A.7: some *rings of sets* on a finite set X (Example A.7 page 53)

Example A.9. Let $X \triangleq \{x, y, z\}$ be a set and **R** be the family of sets

 $R \triangleq \{\emptyset, X, \{x\}, \{y\}, \{z\}\}\}$. Note that $(T, \subseteq) \cup \cap$ is a lattice as illustrated in the figure to the right. However, R is *not* a ring of sets on X because, for example,

$${x,y,z}\setminus{x} = {y,z} \notin \mathbf{R}.$$

Proposition A.7. ¹⁶ Let $\mathcal{R}(X)$ be the set of RINGS OF SETS (Definition A.11 page 53) on a set X.

A.3.4 Partitions

The following definition is a special case of *partition* defined on lattices (Definition E.2 page 136).

Definition A.12. ¹⁷

Example A.10. Let $A, B \subseteq X$, as illustrated in Figure A.3 (page 42). There are a total of 15 partitions of X induced by A and B (Proposition A.11 page 57). Here are 5 of these partitions:

```
1. \{X\} (1 region)

2. \{A, A^c\} (2 regions)

3. \{A \cup B, A^c \cap B^c\} (2 regions)

4. \{A \cap B, A \triangle B, A^c \cap B^c\} (3 regions)

5. \{A \cap B, A \cap B^c, A^c \cap B, A^c \cap B^c\} (4 regions) [see also Figure A.3 page 42 and Figure A.4 page 43]
```

Proposition A.8. ¹⁸ Let $\mathcal{P}(X)$ be the set of partitions on a set X.

The relation $\trianglelefteq \in 2^{\mathbb{PP}}$ defined as $P \trianglelefteq Q \iff \forall B \in Q, \exists A \in P \text{ such that } B \subseteq A$ is an ordering relation on $\mathcal{P}(X)$.

Example A.11. Table A.8 (page 56) lists some partitions P(X) on a finite set X.

A.4 Numbers of set structures

Proposition A.9. 19

110	roposition A.3.										
		The number of topologies t_n on a finite set X_n with n elements is									
Р		n	0	1	2	3	۷	1 5	6	7	8
RP		t_n	1	1	4	29	355	5 6942	209, 527	9, 535, 241	642, 779, 354
		n	9				9		1	0	
		t_n	63, 260, 289, 423			23	8,977,0	53, 873, 04	3		

¹⁶ Molmogorov and Fomin (1975) page 32, Bartle (2001) page 318

¹⁷ Munkres (2000), page 23, Rota (1964), page 498, Halmos (1950) page 31

¹⁸ Roman (2008) page 111, Comtet (1974) page 220, Grätzer (2007), page 697

¹⁹ ☑ Sloane (2014) (http://oeis.org/A000798), ② Brown and Watson (1996), page 31, ② Comtet (1974) page 229,
② Comtet (1966), ② Chatterji (1967), page 7, ② Evans et al. (1967), ② Krishnamurthy (1966), page 157


```
partitions \mathcal{P}(X) on a set X
= \{ P_1 = \emptyset \}
  \mathcal{P}(\emptyset)
                                                 = \left\{ \begin{array}{ccc} \boldsymbol{P}_1 & = & \left\{ x \right\} \end{array} \right\}
  \mathcal{P}(\{x\})
                                         = \left\{ \begin{array}{l} \mathbf{P}_{1} = \left\{ \begin{array}{l} \{x\}, \{y\}, \\ \mathbf{P}_{2} = \left\{ \end{array} \right. \left. \left\{ x, y \right\} \right. \right\} \right\} \\ \\ = \left\{ \begin{array}{l} \mathbf{P}_{1} = \left\{ \\ \mathbf{P}_{2} = \left\{ \right. \left\{ x \right\}, \\ \mathbf{P}_{3} = \left\{ \right. \left\{ x \right\}, \left\{ y \right\}, \left\{ x, z \right\}, \\ \mathbf{P}_{4} = \left\{ \right. \left\{ x \right\}, \left\{ y \right\}, \left\{ z \right\} \right. \right\} \\ \\ \mathbf{P}_{5} = \left\{ \left. \left\{ x \right\}, \left\{ y \right\}, \left\{ z \right\} \right. \right\} \end{array} \right. 
                                                                                                                                                                                                            \{x, y, z\}
                                                                                                                                                                                \{x,z\},
\{x, y, z\}
                                                                                                                                                                                                              \{w, y, z\}
                                                                                                                                                                                                              \{w, x, z\}
                                                                                                                                                                                                              \{w, x, y\}
                                                                                                                                                              \{w, x\}, \{y, z\}
                                                                                                                                                                \{w, y\}, \{x, z\}
                                                                                                                                                               \{w, z\}, \{x, y\},
                                                                                                                                                               \{y,z\}
                                                                                                                                                              \{x,z\}
                                                                                                                                     \{w,x\}
                                                                               = \{ \{w\}, \{x\}, \{y\}, \{z\}, \}
```

Table A.8: some partitions P(X) on a finite set X (Example A.11 page 55)

Proposition A.10. ²⁰ Let t_n be the number of topologies on a finite set with n elements.

$$\lim_{n\to\infty}\frac{t_n}{2^{\frac{n^2}{4}}}=\infty \qquad \qquad \text{(lower bound)}$$

$$\lim_{n\to\infty}\frac{t_n}{2^{\left(\frac{1}{2}+\epsilon\right)n^2}}=0 \qquad \forall \epsilon>0 \qquad \text{(upper bound)}$$

$$t_n>nt_{n-1} \qquad \qquad \text{(rate of growth)}$$

Similar to the amazing relationship between e, π , i, 1, and 0 given by $e^{i\pi} + 1 = 0$, we find another relationship between e and the number of partitions, rings of sets, and algebras of sets (Theorem A.5 page 58).

Definition A.13. ²¹

D E F

The **Bell numbers** are the elements of the sequence $(B_n)_{n\in\mathbb{N}}$ defined as the solution to the following equation:

$$e^{e^x-1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n.$$

The Bell numbers are also called the **exponential numbers**.

Proposition A.11. ²² Let $(B_n)_{n\in\mathbb{N}}$ be the sequence of Bell numbers. Then (B_n) has the following values:

P		0	1	2	3	4	5	6	7	8	9	10	11
R P	B_n	1	1	2	5	15	52	203	877	4140	21, 147	115,975	678, 570

 $^{\circ}$ Proof: By Definition A.13 (page 57), the sequence (B_n) is the solution to

$$e^{e^x-1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n.$$

Let $f^{(n)}(x)$ be the *n*th derivative of a function $f: \mathbb{R} \to \mathbb{R}$. The Maclaurin expansion of f(x) is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!} x^n$$

Let $f(x) \triangleq e^{e^x}$. Then

$$f^{(0)}(0) = f^{(0)}(x)|_{x=0}$$

$$= e^{e^0}$$

$$= e$$

$$f^{(1)}(0) = f^{(1)}(x)|_{x=0}$$

$$= \frac{d}{dx} e^{e^x}|_{x=0}$$

$$= e^{e^x} e^x|_{x=0}$$

$$= e$$

$$f^{(2)}(0) = \frac{d}{dx} f^{(1)}(x)|_{x=0}$$

Chatterji (1967), pages 6–7, A Kleitman and Rothschild (1970)

²¹ Comtet (1974) pages 210–211, Rota (1964), page 499, Bell (1934) page 417, d'Ocagne (1887) page 371

$$\begin{split} &= \frac{d}{dx}e^{s^2}e^x\bigg|_{x=0} \\ &= \left(e^{s^2}e^x\right)e^x + e^{s^2}e^x\bigg|_{x=0} \\ &= e^{s^2}\left(e^{2x} + e^x\right)\bigg|_{x=0} \\ &= 2e \\ &f^{(3)}(0) = \frac{d}{dx}f^{(2)}(x)\bigg|_{x=0} \\ &= \frac{d}{dx}e^{s^2}\left(e^{2x} + e^x\right)\bigg|_{x=0} \\ &= e^{s^2}\left(e^{2x} + e^x\right) + e^{s^2}\left(2e^{2x} + e^x\right)\bigg|_{x=0} \\ &= e^{s^2}\left(e^{3x} + 3e^{2x} + e^x\right)\bigg|_{x=0} \\ &= e^{s^2}\left(e^{3x} + 3e^{2x} + e^x\right)\bigg|_{x=0} \\ &= \frac{d}{dx}e^{s^2}\left(e^{3x} + 3e^{2x} + e^x\right)\bigg|_{x=0} \\ &= \left(e^{s^2}e^x\right)\left(e^{3x} + 3e^{2x} + e^x\right)\bigg|_{x=0} \\ &= \left(e^{s^2}e^x\right)\left(e^{4x} + 6e^{3x} + 7e^{2x} + e^x\right)\bigg|_{x=0} \\ &= \left(e^{s^2}e^x\right)\left(e^{4x} + 6e^{3x} + 7e^{2x} + e^x\right)\bigg|_{x=0} \\ &= \frac{d}{dx}e^{s^2}\left(e^{5x} + 10e^{4x} + 25e^{3x} + 15e^{2x} + e^x\right)\bigg|_{x=0} \\ &= \frac{d}{dx}e^{s^2}\left(e^{5x} + 10e^{4x} + 25e^{3x} + 15e^{2x} + e^x\right)\bigg|_{x=0} \\ &= \left(e^{s^2}e^x\right)\left(e^{5x} + 10e^{4x} + 25e^{3x} + 15e^{2x} + e^x\right)\bigg|_{x=0} \\ &= \left(e^{s^2}e^x\right)\left(e^{5x} + 10e^{4x} + 25e^{3x} + 15e^{2x} + e^x\right)\bigg|_{x=0} \end{aligned}$$

Thus, e^{e^x} has Maclaurin expansion

= 203e

$$e^{e^x} = e\left(1 + x + \frac{2}{2}x^2 + \frac{5}{3!}x^3 + \frac{15}{4!}x^4 + \frac{52}{5!}x^5 + \frac{203}{6!}x^6 + \dots\right) = e\sum_{n=0}^{\infty} \frac{B_n}{n!}x^n$$

Theorem A.5. ²³ Let X_n be a finite set with n elements. Let $(B_n)_{n\in\mathbb{N}}$ be the sequence of Bell numbers.

23 http://groups.google.com/group/sci.math/browse_thread/thread/70a73e734b69a6ec/

A.5 Operations on set structures

Proposition A.12.

	closed under	partition	ring of sets	algebra of sets	topology
	Ø		✓	✓	✓
	X	✓		✓	✓
P R	С			✓	
P	U		✓	✓	✓
	Λ		✓	✓	✓
	Δ		✓	✓	
	\		✓	✓	

[♠]Proof:

- 1. Proof for closure in a topology: Definition A.9 (page 49)
- 2. Proof for closure in a *ring of sets*: Definition A.11 (page 53) and Theorem A.14 (page 61)
- 3. Proof for closure in an *algebra of sets*: Definition A.10 (page 52) and Theorem A.13 (page 59)

Theorem A.6. Let T be a SET STRUCTURE (Definition A.2 page 39) on a set X.

	$T \text{ is a topology} \implies \forall A, B, C \in$	T	
	$A \cup A = A$	$A \cap A = A$	(IDEMPOTENT)
т	$A \cup B = B \cup A$	$A \cap B = B \cap A$	(COMMUTATIVE)
Ĥ	$A \cup (B \cup C) = (A \cup B) \cup C$	$A \cap (B \cap C) = (A \cap B) \cap C$	(ASSOCIATIVE)
M	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	(ABSORPTIVE)
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	(distributive)
	property with emphasis on ∪	dual property with emphasis on \cap	property name

№PROOF:

- 1. By Definition A.9 (page 49), *T* is a *topology*.
- 2. By Theorem A.4 (page 52), $(T, \cup, \cap; \subseteq)$ is a distributive lattice.
- 3. The properties listed are all properties of *distributive lattices*, as provided by Theorem D.3 (page 120), Definition G.2 (page 148), and Theorem G.1 (page 148).

Proposition A.13. Let A be a SET STRUCTURE (Definition A.2 page 39) on a set X.

 \blacksquare

by de Morgan's Law (Theorem A.8 page 60)

№PROOF:

$$\emptyset = A \cap A^{c}$$

$$X = c\emptyset$$

$$A \cup B = c(A^{c} \cap B^{c})$$

$$A \setminus B = A \cap B^{c}$$

$$A \triangle B = (A \setminus B^{c}) \cup (B \setminus A)$$

 (A, \cup, \setminus) is a ring of sets because \cup and \setminus are closed in A (as shown above).

Theorem A.7. ²⁴ *Let* **A** *be a* SET STRUCTURE (Definition A.2 page 39) on a set X.

	Det 11 be to the off the (bemindent 12 page 66) on to be 11.							
	A is an algebra of sets \implies	$\forall A, B, C \in \mathbf{A}$						
	$A \cup A = A$	$A \cap A = A$	(IDEMPOTENT)					
	$A \cup B = B \cup A$	$A \cap B = B \cap A$	(COMMUTATIVE)					
	$A \cup (B \cup C) = (A \cup B) \cup C$	$A \cap (B \cap C) = (A \cap B) \cap C$	(ASSOCIATIVE)					
	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	(ABSORPTIVE)					
H	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	(DISTRIBUTIVE)					
М	$A \cup \emptyset = A$	$A \cap X = A$	(IDENTITY)					
	$A \cup X = X$	$A \cap \emptyset = \emptyset$	(BOUNDED)					
	$A \cup A^{c} = X$	$A \cap A^{c} = \emptyset$	(COMPLEMENTED)					
	$(A^{c})^{c} = A$		(UNIQUELY COMPLEMENTED)					
	$(A \cup B)^{c} = A^{c} \cap B^{c}$	$(A \cap B)^{c} = A^{c} \cup B^{c}$	(de Morgan)					
	property emphasizing∪	dual property emphasizing∩	property name					

№ Proof:

- 1. By Definition A.10 (page 52), S is an algebra of sets.
- 2. By the *Stone Representation Theorem* (Theorem A.4 page 52), (S, \cup , \cap , \emptyset , X; \subseteq) is a *Boolean algebra*.
- 3. The properties listed are all properties of *Boolean algebras* (Theorem I.2 page 178).

Theorem A.8. ²⁵ Let **A** be an ALGEBRA OF SETS (Definition A.10 page 52) on a set X.

	A is an algebra of sets \implies	$\forall A_1, A_2, \dots, A_N, B \in \mathbf{A} \ and \ \forall N$	$\in \mathbb{N}$
	$\left(\bigcup_{n=1}^{N} A_n\right)^{c} = \bigcap_{n=1}^{N} A_n^{c}$	$\left \left(\bigcap_{n=1}^{N} A_n \right)^{c} \right = \bigcup_{n=1}^{N} A_n^{c}$	(de Morgan)
T H M	$\left(\bigcup_{n=1}^{N} A_n\right) \cap B = \bigcup_{n=1}^{N} \left(A_n \cap B\right)$	$\left(\bigcap_{n=1}^{N} A_n\right) \cup B = \bigcap_{n=1}^{N} \left(A_n \cup B\right)$	$\left(\begin{array}{c} \text{DISTRIBUTIVE} \\ \text{with respect to} \\ \cup \text{ and } \cap \end{array}\right)$
	$\left(\bigcup_{n=1}^{N} A_n\right) \setminus B = \bigcup_{n=1}^{N} \left(A_n \setminus B\right)$	$\left(\bigcap_{n=1}^{N} A_n\right) \setminus B = \bigcap_{n=1}^{N} \left(A_n \setminus B\right)$	$\begin{pmatrix} \text{DISTRIBUTIVE} \\ \text{with respect to} \\ \backslash \text{and} \cap \end{pmatrix}$
	property emphasizing \cup	dual property emphasizing∩	property name

²⁴ Dieudonné (1969) pages 3–4, Copson (1968) page 9

²⁵

 Michel and Herget (1993) page 12,
 Aliprantis and Burkinshaw (1998) page 4,
 Vaidyanathaswamy (1960) pages 3–4

№ Proof:

- 1. By Theorem A.4 (page 52), the lattice $(X, \cup, \cap; \subseteq)$ is Boolean.
- 2. The first four properties are true any Boolean system Theorem I.4 (page 179).
- 3. Proof for the remaining two:

$$\left(\bigcap_{n=1}^{N} A_n\right) \backslash B = \left(\bigcap_{n=1}^{N} A_n\right) \cap B^{c}$$
 by Theorem A.1 page 41
$$= \bigcap_{n=1}^{N} (A_n \cap B^{c})$$
 by previous result
$$= \bigcap_{n=1}^{N} (A_n \backslash B)$$
 by Theorem A.1 page 41
$$\left(\bigcup_{n=1}^{N} A_n\right) \backslash B = \left(\bigcup_{n=1}^{N} A_n\right) \cap B^{c}$$
 by Theorem A.1 page 41
$$= \bigcup_{n=1}^{N} (A_n \cap B^{c})$$
 by previous result
$$= \bigcup_{n=1}^{N} (A_n \backslash B)$$
 by Theorem A.1 page 41

Proposition A.14. ²⁶ Let **R** be a SET STRUCTURE (Definition A.2 page 39) on a set X.

```
 \left\{ \begin{array}{l} R \text{ is } a \\ \textbf{ring of sets} \\ on X \end{array} \right\} \implies \left\{ \begin{array}{l} 1. & \varnothing & \in R \\ 2. & A \cup B \in R \\ 3. & A \cap B \in R \\ 4. & A \setminus B \in R \end{array} \right. & \langle R \text{ is closed under } \cup \rangle & \text{and} \\ 4. & A \setminus B \in R \\ 5. & A \triangle B \in R \end{array} \right. & \forall A, B \in R \\ 4. & \langle R \text{ is closed under } \cap \rangle & \text{and} \\ 4. & \langle A \setminus B \in R \\ 5. & \langle A \setminus B \in R \\ 6. & \langle A \setminus B \in R \\ 7. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \in R \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus A \\ 8. & \langle A \setminus B \setminus A \setminus A \\ 8. & \langle A \setminus B \setminus
```

№ Proof:

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$
$$A \cap B = (A \cup B) \setminus (A \triangle B)$$
$$A \setminus A = \emptyset$$

Theorem A.9. 27 Let R be a SET STRUCTURE (Definition A.2 page 39) on a set X.

	If R is an ring of sets on X, th	$en(\mathbf{R}, \triangle, \cap)$ is an algebraic ring; in particular,
	$A \triangle \emptyset = A \forall A \in R$	$A \cap \emptyset = \emptyset \ \forall A \in R$
H	$A \triangle X = A^{c} \forall A \in R$	$A \cap X = A \forall A \in \mathbf{R}$
М	$A \triangle \emptyset = A \forall A \in R$	$A \cap A = A \forall A \in \mathbf{R}$
	$A \cap (B \triangle C) = (A \cap$	$(B)\triangle(A\cap C)$ $\forall A,B,C\in R$
	properties emphasizing $ riangle$	properties emphasizing∩

²⁶ Berezansky et al. (1996) page 4, Halmos (1950) pages 19–20

²⁷

☐ Vaidyanathaswamy (1960) pages 17–18, ☐ Kelley and Srinivasan (1988) page 22, ☐ Wilker (1982), page 211, ☐ Vaidyanathaswamy (1960) page 19

₽

- 1. Proof that (R, \cup, \setminus) is an *algebraic ring*: by Theorem A.9 (page 61)
- 2. Proof that a ring of sets is equivalent to (R, \cup, \setminus) : This is proven simply by noting that \cup and \setminus (the two operations in a ring of sets (R, \cup, \setminus)) can be expressed in terms of \triangle and \cap (the two operations in the algebraic ring (R, \triangle, \cap)) and vice-versa. And this is demonstrated by Theorem A.1 (page 41).
- 1. Proof that (S, \triangle) is a group: see Proposition A.1 (page 41).
- 2. Proof that $A \cap (B \cap C) = (A \cap B) \cap C$:

$$A \cap (B \cap C) = \{x \in X | (x \in A) \land [(x \in B) \land (x \in C)]\}$$
 by definition of \cap page 40
= $\{x \in X | [(x \in A) \land (x \in B)] \land (x \in C)\}$
= $(A \cap B) \cap C$ by definition of \cap page 40

3. Proof that $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$:

$$A \cap (B \triangle C) = \{x \in X | (x \in A) \land [(x \in B) \oplus (x \in C)]\}$$
 by definition of \cap , \triangle page 40
= $\{x \in X | [(x \in A) \land (x \in B)] \oplus [(x \in A) \land (x \in C)]\}$
= $(A \cap B) \triangle (A \cap C)$ by definition of \cap , \triangle page 40

4. Proof that $(A \triangle B) \cap C = (A \cap C) \triangle (B \cap C)$:

$$(A\triangle B) \cap C = \{x \in X | [(x \in A) \oplus (x \in B)] \land (x \in C)\}$$
 by definition of \cap , \triangle page 40
= $\{x \in X | [(x \in A) \land (x \in C)] \oplus [(x \in B) \land (x \in C)]\}$
= $(A \cap C)\triangle(B \cap C)$ by definition of \cap , \triangle page 40

₽

A.6 Lattices of set structures

A.6.1 Ordering relations

The *set inclusion* relation \subseteq (Definition A.14 page 62) is an *order relation* (Definition C.2 page 104) on set structures, as demonstrated by Proposition A.15 (next proposition).

Definition A.14. Let S be a SET STRUCTURE (Definition A.2 page 39) on a set X.

```
The relation \subseteq \in 2^{SS} is defined as
A \subseteq B \quad \text{if} \quad x \in A \implies x \in B \quad \forall x \in X
```

Proposition A.15 (order properties). *Let S be a* SET STRUCTURE (Definition A.2 page 39) on a set X.

```
The pair (S, \subseteq) is an ordered set. In particular,
              A \subset A
                                                                                  ∀A∈S
                                                                                                                          and
                                                                                                  (REFLEXIVE)
R
                  \subseteq
                        \boldsymbol{B}
                              and B \subseteq C
                                                                A \subseteq C
                                                                                 \forall A,B,C \in S
                                                                                                  (TRANSITIVE)
                                                                                                                          and
                         \boldsymbol{B}
                              and B\subseteq
                                                \boldsymbol{A}
                                                                 A = B \quad \forall A.B \in S
                                                                                                  (ANTI-SYMMETRIC).
```

[♠] Proof: By Definition C.2 (page 104), a relation is an *order relation* if it is *reflexive*, *transitive*, and *anti-symmetric*.

1. Proof that \subseteq is *reflexive* on 2^X :

$$x \in A \implies x \in A$$
$$\implies A \subseteq A$$

2. Proof that \subseteq is *transitive* on 2^X :

$$x \in A \implies x \in B$$
 by first left hypothesis $\Rightarrow x \in C$ by second left hypothesis $\Rightarrow A \subset C$

3. Proof that \subseteq is *anti-symmetric* on 2^X :

$$A \subseteq B \implies (x \in A \implies x \in B)$$

$$B \subseteq A \implies (x \in B \implies x \in A)$$

$$A \subseteq B \text{ and } B \subseteq A \implies (x \in A \iff x \in B)$$

$$\implies A = B$$

In a set structure that is *closed* under the *union* operation \cup and *intersection* operation \cap , the *greatest lower bound* of any two elements A and B is simply $A \cap B$ and *least upper bound* is simply $A \cup B$ (Proposition A.16 page 63). However, this may not be true for a set structure that is *not* closed under these operations (Example A.12 page 64).

Proposition A.16. Let S be a SET STRUCTURE (Definition A.2 page 39) on a set X.

№ Proof:

1. Proof that $A \cup B$ is the least upper bound:

```
A = \{x \in X | x \in A\}
\subseteq \{x \in X | x \in A \text{ or } x \in B\}
= A \cup B \qquad \text{by Definition A.5 page 40}
B = \{x \in X | x \in B\}
\subseteq \{x \in X | x \in A \text{ or } x \in B\}
= A \cup B \qquad \text{by Definition A.5 page 40}
A \subseteq C \text{ and } B \subseteq C \implies \{x \in A \text{ and } y \in B \implies x, y \in C\}
\implies \{x \in A \text{ or } x \in B \implies x \in C\}
\implies \{x \in A \cup B \implies x \in C\}
\implies A \cup B \subseteq C
```

2. Proof that $A \cap B$ is the greatest lower bound:

$$A \cap B = \left\{ x \in X | x \in A \text{ and } x \in B \right\}$$
 by Definition A.5 page 40
$$\subseteq \left\{ x \in X | x \in A \right\}$$

$$= A$$

$$A \cap B = \left\{ x \in X | x \in A \text{ and } x \in B \right\}$$
 by Definition A.5 page 40
$$\subseteq \left\{ x \in X | x \in B \right\}$$

$$= B$$

$$C \subseteq A \text{ and } C \subseteq B \implies \left\{ x \in C \implies x \in A \text{ and } x \in C \implies x \in B \right\}$$

$$\implies \left\{ x \in C \implies x \in A \text{ or } x \in B \right\}$$

$$\implies \left\{ x \in C \implies x \in A \cap B \right\}$$

$$\implies C \subseteq A \cap B$$

Example A.12. The set structure

 $S \triangleq \{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, y, z\}\}\$ ordered by the set inclusion relation \subseteq is illustrated by the Hasse diagram to the right. Note that

$${x} \lor {z} = {x, y, z} \ne {x, z} = {x} \cup {z}.$$

That is, the set union operation \cup is *not* equivalent to the order join operation \vee .

A.6.2 Lattices of topologies

Example A.13. ²⁸ Example A.3 (page 50) lists the four topologies on the set $X \triangleq \{x, y\}$. The lattice of these topologies

$$\left(\left\{T_1, T_2, T_3, T_4\right\}, \cup, \cap; \subseteq\right)$$

is illustrated by the *Hasse diagram* to the right.

$$2^{\{x,y\}} \triangleq \{ \emptyset, \{x\}, \{y\}, \{x,y\} \}$$

$$\{ \emptyset, \{x\}, \{x,y\} \}$$

$$\{ \emptyset, \{x,y\} \}$$

$$\{ \emptyset, \{x,y\} \}$$

Example A.14. ²⁹Let a given topology in $\mathcal{T}(\{x,y,z\})$ be represented by a Hasse diagram as illustrated to the right, where a circle present means the indicated set is in the topology, and a circle absent means the indicated set is not in the topology. Example A.4 (page 50) lists the 29 topologies $\mathcal{T}(\{x,y,z\})$. The lattice of these 29 topologies ($\mathcal{T}(\{x,y,z\})$, \cup , \cap ; \subseteq) is illustrated in Figure A.5 (page 65). The five topologies T_1 , T_{41} , T_{22} , T_{14} , and T_{77} are also *algebras of sets* (Definition A.10 page 52); these five sets are shaded in Figure A.5.

Theorem A.10. ³⁰ Let $\mathcal{T}(X)$ be the **lattice of topologies** on a set X with |X| elements.

²⁸ Isham (1999), page 44, Isham (1989), page 1515

²⁹ **/** Isham (1999), page 44, **/** Isham (1989), page 1516, **/** Steiner (1966), page 386

³⁰ Steiner (1966), page 384

Figure A.5: Lattice of *topologies* on $X \triangleq \{x, y, z\}$ (see Example A.14 page 64)

Theorem A.11. ³¹ Let $\mathcal{T}(X)$ be the **lattice of topologies** on a set X.

Theorem A.12. 32

Every lattice of topologies is complemented.

Theorem A.13. ³³

Every TOPOLOGY (Definition A.9 page 49) except the DISCRETE TOPOLOGY and INDISCRETE TOPOLOGY (Example A.2 page 49) in the **lattice of topologies** on a set X has at least |X| - 1 COMPLEMENTS.

Example A.15. Example A.4 (page 50) lists the 29 topologies on a set $X \triangleq \{x, y, z\}$. By Theorem A.13 (page 65), with the exception of T_{00} (the indiscrete topology) and T_{77} (the discrete topology), each of those topologies has exactly |X| - 1 = 3 - 1 = 2 complements. Table A.9 (page 66) lists the 29 topologies on $\{x, y, z\}$ along with their respective complements.

Theorem A.14. 34

³¹ Steiner (1966), page 385

³² avan Rooij (1968), Steiner (1966), page 397, Gaifman (1961), Hartmanis (1958)

³³ A Hartmanis (1958), Schnare (1968), page 56, Watson (1994), Brown and Watson (1996), page 32

topologies on $\{x, y, z\}$	1st complement	2nd compl.
$T_{00} = \{\emptyset, X \}$	T_{77}	
$T_{01} = \{\emptyset, \{x\}, X\}$	T_{56}	T_{66}
$T_{02} = \{\emptyset, \qquad \{y\}, \qquad X \}$	T_{65}	T_{35}
$T_{04} = \{\emptyset, \qquad \{z\}, \qquad X \}$	T_{53}	T_{33}
$T_{10} = \{\emptyset, \qquad \{x, y\}, \qquad X \}$	T_{65}	T_{66}
$T_{20} = \{\emptyset, \qquad \{x, z\}, \qquad X\}$	T_{53}	T_{56}
	T_{33}	T_{35}
	T_{64}	T_{46}
$T_{21} = \{\emptyset, \{x\}, \{x, z\}, X\}$	T_{52}	T_{46}
	T_{22}	T_{14}
$T_{12} = \{\emptyset, \{y\}, \{x, y\}, X\}$	T_{64}	T_{25}
$T_{22} = \{\emptyset, \qquad \{y\}, \qquad \{x, z\}, \qquad X\}$	T_{41}	T_{14}
$T_{42} = \{\emptyset, \{y\}, \{y, z\}, X\}$	T_{31}	T_{25}
$T_{14} = \{\emptyset, \qquad \{z\}, \{x, y\}, \qquad X\}$	T_{41}	T_{22}
$T_{24} = \{\emptyset, \qquad \{z\}, \qquad \{x, z\}, \qquad X\}$	T_{52}	T_{13}
$T_{44} = \{\emptyset, \{z\}, \{y, z\}, X\}$	T_{31}	T_{13}
$T_{31} = \{\emptyset, \{x\}, \{x, y\}, \{x, z\}, X\}$	T_{42}	T_{44}
$T_{52} = \{\emptyset, \{y\}, \{x, y\}, \{x, z\}, X\}$	T_{21}	T_{24}
$T_{64} = \{\emptyset, \{z\}, \{x, z\}, \{y, z\}, X\}$	T_{11}	T_{12}
$T_{13} = \{\emptyset, \{x\}, \{y\}, \{x, y\}, X\}$	T_{24}	T_{44}
$T_{25} = \{\emptyset, \{x\}, \{z\}, \{x, z\}, X\}$	T_{12}	T_{42}
$T_{46} = \{\emptyset, \{y\}, \{z\}, \{y, z\}, X\}$	T_{11}	T_{21}
$T_{33} = \{\emptyset, \{x\}, \{y\}, \{x, y\}, \{x, z\}, X\}$	T_{04}	T_{40}
$T_{53} = \{\emptyset, \{x\}, \{y\}, \{x, y\}, \{y, z\}, X\}$	T_{04}	T_{20}
$T_{35} = \{\emptyset, \{x\}, \{z\}, \{x, y\}, \{x, z\}, X\}$	T_{02}	T_{40}
$T_{65} = \{\emptyset, \{x\}, \{z\}, \{x, z\}, \{y, z\}, X\}$	T_{02}	T_{10}
$T_{56} = \{\emptyset, \{y\}, \{z\}, \{x, y\}, \{y, z\}, X\}$	T_{01}	T_{20}
$T_{66} = \{\emptyset, \{y\}, \{z\}, \{x, z\}, \{y, z\}, X\}$	T_{01}	T_{10}
$T_{77} = \{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, X\}$	T_{00}	

Table A.9: the 29 topologies on a set $\{x, y, z\}$ along with their respective complements (Example A.15 page 65)

Theorem A.15. ³⁵ Let $\mathcal{T}(X)$ be the lattice of topologies on a set X and let $n \triangleq |X|$.

	$\mathcal{T}(X)$ contains $2^n - 2$ atoms	for finite X .
Ţ	$\mathcal{T}(X)$ contains $2^{ X }$ atoms	for infinite X .
H	$\mathcal{T}(X)$ contains $n(n-1)$ anti-atoms	for finite X.
	$\mathcal{T}(X)$ contains $2^{2^{ X }}$ anti-atoms	for infinite X .

A.6.3 Lattices of algebra of sets

Example A.16. The following table lists some algebras of sets on a finite set *X*. Lattices of algebras of sets are illustrated in Figure A.8 (page 69) and Figure A.6 (page 68).

Figure A.6: lattice of *algebras of sets* on $\{w, x, y, z\}$ (Example A.16 page 67)

Figure A.7: Lattice of rings of sets on $X \triangleq \{x, y, z\}$ (Example A.17 page 69)

Figure A.8: Lattices of set structures (see Example A.18 (page 69), Example A.7 (page 53), and Example A.16 (page 67))

A.6.4 Lattices of rings of sets

Example A.17. There are a total of **15** rings of sets on the set $X \triangleq \{x, y, z\}$. These rings of sets are listed in Example A.7 (page 53) and illustrated in Figure A.7 (page 68). The five rings containing $X \in (\mathbf{R}_{11} - \mathbf{R}_{15})$ are also *algebras of sets* (Proposition A.18 page 71), and thus also *Boolean algebras* (Theorem A.4 page 52). The five algebras of sets are shaded Figure A.7.

A.6.5 Lattices of partitions of sets

Example A.18. There are a total of **5** partitions of sets on the set $X \triangleq \{x, y, z\}$. These sets are listed in Example A.11 (page 55) and illustrated in Figure A.8 (page 69).

Example A.19. There are a total of **15** partitions of sets on the set $X \triangleq \{w, x, y, z\}$. These sets are listed in Example A.11 (page 55) and illustrated in Figure A.9 (page 70).

In 1946, Philip Whitman proposed an amazing conjecture—that all finite lattices are isomorphic to a lattice of partitions. A proof for this was published some 30 years later by Pavel Pudlák and Jiří Tůma (next theorem).

Theorem A.16. ³⁶ Let L be a lattice.

L is finite \implies L is isomorphic to a lattice of partitions

Example A.20. There are five unlabeled lattices on a five element set as stated in Proposition D.2 (page 125) and illustrated in Example D.11 (page 126). All of these lattices are isomorphic to a lattice of partitions (Theorem A.16 page 69), as illustrated next.

³⁶ Pudlák and Tůma (1980) ⟨improved proof⟩, Pudlák and Tůma (1977) ⟨proof⟩, Whitman (1946) ⟨conjecture⟩, Saliĭ (1988) page vii ⟨list of lattice theory breakthroughs⟩

³⁵ Larson and Andima (1975), page 179, Frölich (1964)

Figure A.9: Lattice of partitions of sets on $X \triangleq \{w, x, y, z\}$ (Example A.19 page 69)

	lattices on 5 element set as lattices of partitions							
	$\{\{x\}, \{y\}, \{z\}\}$	$\{\{w\}, \{x\}, \{y\}, \{z\}\}$						
{	$\{\{x\}, \{y, z\}\}\}$	$\{w\}, \{x\}, \{y, z\}\}$						
	$\{\{y\}, \{x, z\}\}$	$\{\{w,x\},\{y,z\}\}$	$\{\{w\}, \{x\}, \{y, z\}$					
	$\{\{x,y,z\}\}$	$\{\{w,x,$	$\{y,z\}$					
	${}^{\bullet}_{\{\{w\}, \{x\}, \{y\}, \{y\}, \{y\}, \{y\}, \{y\}, \{y\}, \{y\}, \{y$	z}}	$\{\{w\}, \{x\}, \{y\}, \{z\}\}$					
	$\{\{w\}, \{x,y\}, \{z\}\}$	$\{\{w,x\},\{y,z\}\}$	$\{\{w\}, \{x\}, \{y, z\}\}$					
{	$\{w\}, \{x, y, z\}\}$ $\{w, x, y\}, \{z\}$	}						
	$\bullet\{\{w,x,y,z\}\}$	ç	$\{\{w,x,y,z\}\}$					
	$P^{\{\{w,x,y,z\}\}}$							
	o {Ø}							
			00400					

A.7 Relationships between set structures

Proposition A.17. ³⁷

$ \left\{ \begin{array}{l} R & \text{is a ring of sets} \\ on & \text{a set } X \end{array} \right\} \qquad \Longrightarrow $	$\left\{\begin{array}{l} \mathbf{R} \cup X \text{ is an algebra of sets} \\ on X \end{array}\right\}$
---	---

Theorem A.17. *Let X be a set.*

№ Proof:

```
A is an algebra of sets on X \implies A is closed under \cup, \cap, c, \setminus, \emptyset, X by Theorem A.12 page 59
\implies \left\{ \begin{array}{ll} 1. & A \text{ is a topology on } X \\ & \text{AND} \\ 2. & A \text{ is a ring of sets on } X \end{array} \right\}
```

```
\left\{
\begin{array}{ll}
1. & \mathbf{A} \text{ is a topology on } X \\
\text{AND} \\
2. & \mathbf{A} \text{ is a ring of sets on } X
\right\} \implies \mathbf{A} \text{ is closed under c and } \cap \qquad \text{by Theorem A.12 page 59} \\
\implies \mathbf{A} \text{ is a ring of sets}
```

Corollary A.1. Let X be a set and 2^X the power set of X.

```
\begin{cases}
\mathbf{A} \subseteq 2^{X} | \mathbf{A} \text{ is an algebra of sets on } X \\
= \{ \mathbf{T} \subseteq 2^{X} | \mathbf{T} \text{ is a topology on } X \} \cap \{ \mathbf{R} \subseteq 2^{X} | \mathbf{R} \text{ is a ring of sets on } X \}
\end{cases}
```

№ Proof:

Example A.21. Note that the *intersection* of the lattice of topologies on $\{x, y, z\}$ (Figure A.5 page 65) *and* the lattice of rings of sets on $\{x, y, z\}$ (Figure A.7 page 68) is *equal to* the lattice of algebras of sets on $\{x, y, z\}$ (Figure A.8 page 69).

Proposition A.18. Let $\mathcal{R}(X)$ be the set of RINGS OF SETS (Definition A.11 page 53) and $\mathcal{A}(X)$ the set of ALGEBRAS OF SETS (Definition A.10 page 52) on a set X.

NPROOF:

$$A^{c} = X \setminus A$$
 by Theorem A.1 page 41 $A \cap B = A \setminus (A \setminus B)$ by Theorem A.1 page 41

³⁷ Berezansky et al. (1996) page 4, A Halmos (1950) page 21

Figure A.10: Algebras of sets generated by topologies on the set $X \triangleq \{x, y, z\}$ (see Example A.23 page 72)

Therefore, $(R \cup X)$ is closed under c and \cap , and thus by the definition of algebras of sets (Definition A.10 page 52), $(R \cup X)$ is an algebra of sets.

Definition A.15. 38

The **Borel set** B(X,T) generated by the topological space (X,T) is the σ -algebra generated by the topology T.

Example A.22. Suppose we have a dice with the standard six possible outcomes X. Suppose also we construct the following topology T on X, and this in turn generates the following Borel set (σ -algebra) B on X:

Example A.23. There are a total of 29 *topologies* on the set $X \triangleq \{x, y, z\}$; and of these, 5 are also *algebras of sets*, 24 are not. Figure A.10 (page 72) illustrates the 24 topologies on the set $\{x, y, z\}$ that

³⁸ Aliprantis and Burkinshaw (1998) page 97

A.8. LITERATURE Daniel J. Greenhoe page 73

are *not* algebras of sets and the 5 algebras of sets that they generate.

A.8 Literature

Literature survey:

```
1. Origin of the symbols \cup and \cap:
```

```
Peano (1888a)
```

Peano (1888b)

2. There is some difference in the definition of *ring of sets*:

```
(a) ring of sets defined as closed under \triangle, \cap:
```

```
Stone (1936), page 38
```

Constantinescu (1984) page 155

(b) *ring of sets* defined as closed under \cup ,\(compatible definition):

```
Wilker (1982), page 211
```

Aliprantis and Burkinshaw (1998) page 96

Haaser and Sullivan (1991) page 2

Hewitt and Ross (1994) page 118

(c) $ring \ of \ sets$ defined as closed under \cup , \setminus , \emptyset (compatible definition):

Rao (2004) page 15

(d) *ring of sets* defined as closed under \cup , \cap (incompatible definition):

Hausdorff (1937) page 90

Birkhoff (1937), page 443

Erdös and Tarski (1943), page 315

MacLane and Birkhoff (1999) page 485

3. Relationship to lattices (order theory):

Stone (1936)

4. More references dealing with set structures ...

Vaidyanathaswamy (1947)

Bagley (1955)

Hartmanis (1958)

Vaidyanathaswamy (1960)

@ Gaifman (1961)

Steiner (1966)

van Rooij (1968)

Rayburn (1969)

Larson and Andima (1975)

Pudlák and Tůma (1980)

Brown and Watson (1991)

Watson (1994)

Brown and Watson (1996)

5. Partitions

Deza and Deza (2006) page 142

Day (1981)

Rota (1964)

6. Distributive and modular properties in lattice of topologies

- (a) Remark that "It can be shewn easily that the lattice of topologies is not distributive."
 - Vaidyanathaswamy (1947)
 - Vaidyanathaswamy (1960) page 134
- (b) Proof that the lattice of T1 topologies is not modular:
 - **Bagley** (1955)
- (c) Proof that the lattice of topologies on any set with 3 or more elements is not modular (and thus also not distributive):
 - Steiner (1966), page 384
- 7. Complements in lattice of topologies:
 - (a) Proof that every lattice of topologies over a *finite* set is complemented:
 - ## Hartmanis (1958)
 - (b) Proof that every lattice of topologies over a *countably infinite* set is complemented:
 - **Gaifman** (1961)
 - (c) Proof that every lattice of topologies over a *any arbitrary* set is complemented:
 - Steiner (1966), page 397
 - (d) avan Rooij (1968)
 - (e) Every topology in $\hat{\Sigma}(X)$ has at least 2 complements for $|X| \ge 3$:

 ### Hartmanis (1958)
 - (f) Every topology in $\hat{\Sigma}(X)$ has at least |X| 1 complements for $|X| \ge 2$: \bigcirc Schnare (1968)
 - (g) A large number of topologies in $\hat{\Sigma}(X)$ have at least $2^{|X|}$ complements for $|X| \ge 4$: Brown and Watson (1996)

B.1 Relations

► A dual relative term, such as "lover," "benefactor," "servant," is a common name signifying a pair of objects. Of the two members of the pair, a determinate one is generally the first, and the other the second; so that if the order is reversed, the pair is not considered as remaining the same.

Charles Sanders Peirce (1839–1914), American mathematician and logician ¹

B.1.1 Definition and examples

A relation on the sets X and Y is any subset of the Cartesian product $X \times Y$ (next definition). Alternatively, a relation is a generalization of a *function* (Definition B.8 page 87) in the sense that both are subsets of a Cartesian product, but the relation allows mapping from a single element in its domain to two different elements in its range, whereas functions do not— a single element in a function's domain may map to one and only one element in its range. The set of all relations in $X \times Y$ is denoted 2^{XY} , which is suitable since the number of relations in $X \times Y$ when X and Y are finite is $2^{|X|\cdot|Y|}$ (Proposition B.1 page 76). Examples include the following:

```
Example B.2 page 76 Relations in the Cartesian product \{x_1, x_2, x_3\} \times \{y_1, y_2\}
Example B.20 page 89 Functions in the Cartesian product \{x_1, x_2, x_3\} \times \{y_1, y_2\}
Example B.21 page 89 Functions in the Cartesian product \{x, y, z\} \times \{x, y, z\}
Example B.18 page 88 discrete examples
Example B.19 page 88 continuous examples
```

Definition B.1. 2 Let X and Y be sets.

² Maddux (2006) page 4, Halmos (1960) page 26

A **relation** $\mathbb{B}: X \to Y$ is any subset of $X \times Y$. That is, $\mathbb{B} \subseteq X \times Y$ A pair $(x, y) \in \mathbb{B}$ is alternatively denoted $x \mathbb{B} y$. The set of all relations that are subsets of $X \times Y$ is denoted 2^{XY} ; that is, $2^{XY} \triangleq \{\mathbb{B} | \mathbb{B} \subset (X \times Y)\}$.

Example B.1.

Let
$$X \triangleq \{1, 2, 3\}$$

 $Y \triangleq \{A, B\}$
 $\mathbb{R} \triangleq \{(1, A), (2, A), (3, B)\}$

The sets *X* and *Y* and the relation ® are illustrated to the right.

Proposition B.1. Let 2^{XY} be the set of all relations from a set X to a set Y. Let $|\cdot|$ be the counting measure for sets.

p
number of possible relations in
$$X \times Y$$

$$| 2^{XY} | = 2^{|X \times Y|} = 2^{|X| \cdot |Y|}$$

♥Proof:

- 1. Let *X* be a finite set with *m* elements.
- 2. Let *Y* be a finite set with *n* elements.
- 3. Then the number of elements in $X \times Y$ is mn.
- 4. A relation is any subset of $X \times Y$, which may (represent this with a 1) or may not (represent this with a 0) contain a given element of $X \times Y$.
- 5. Therefore, the number of possible relations is $2^{mn} = 2^{|X| \cdot |Y|}$.

Example B.2 (next) lists all of the 64 possible relations in the Cartesian product $\{x_1, x_2, x_3\} \times \{y_1, y_2\}$. Eight of these 64 relations are also functions. These eight functions are listed in Example B.20 (page 89). Of these eight functions, six are *surjective*. These six surjective functions are listed in Example B.27 (page 92).

Example B.2. Let $X \triangleq \{x_1, x_2, x_3\}$ and $Y \triangleq \{y_1, y_2\}$. Let 2^{XY} be the set of all relations in $X \times Y$. There are a total of $|2^{XY}| = 2^{|X| \cdot |Y|} = 2^{3 \times 2} = 64$ possible relations. These are listed below. Of these 64 relations, only 8 are *functions*, as listed in Example B.20 (page 89).

	relations in $\{x_1, x_2, x_3\} \times \{y_1, y_2\}$								
\mathbb{R}_1	=	Ø							
\mathbb{R}_2	=	{	(x_1, y_1) ,	}					
\mathbb{R}_3	=	{	(x_1, y_2)	}					
\mathbb{R}_4	=	{	$(x_1,y_1), (x_1,y_2)$	}					
\mathbb{R}_5	=	{	(x_2, y_1)	}					

B.1. RELATIONS Daniel J. Greenhoe page 77

```
^{\circ}_6
                       (x_1,y_1),
                                                                                                                                   }
                                                             (x_2, y_1)
          =
®<sub>7</sub>
                                                                                                                                   }
                                                             (x_2, y_1)
          =
                 {
                                          (x_1, y_2),
^{\circ}_8
                                          (x_1,y_2),
                       (x_1,y_1),
                                                             (x_2, y_1),
\mathbb{R}_{0}
          =
                                                                                (x_2, y_2)
                       (x_1,y_1),
®<sub>10</sub>
         =
                                                                                 (x_2, y_2)
®<sub>11</sub>
                                          (x_1, y_2)
                                                                                 x_2, y_2
          =
®<sub>12</sub>
                       (x_1,y_1),
                                          (x_1, y_2)
                                                                                 (x_2, y_2)
®<sub>13</sub>
         =
                                                              (x_2, y_1)
                                                                                 x_2, y_2
                       (x_1,y_1),
®<sub>14</sub>
                                                              (x_2, y_1)
                                                                                 (x_2, y_2)
®<sub>15</sub>
                                          (x_1,y_2),
          =
                                                              (x_2, y_1)
                                                                                (x_2, y_2)
                                          (x_1,y_2),
®<sub>16</sub>
          =
                       (x_1, y_1),
                                                              (x_2, y_1)
                                                                                (x_2, y_2)
®<sub>17</sub>
          =
                                                                                                 (x_3, y_1)
                       (x_1,y_1),
®<sub>18</sub>
          =
                                                                                                  (x_3, y_1)
®19
                                          (x_1, y_2)
          =
                                                                                                  x_3, y_1
^{\circ}20
                                          (x_1, y_2)
                                                                                                  (x_3, y_1)
\mathbb{R}_{21}
         =
                                                              (x_2, y_1)
                                                                                                  x_3, y_1
®22
                       (x_1,y_1),
                                                              (x_2, y_1)
          =
                                                                                                  (x_3, y_1)
®23
                                          (x_1,y_2),
                                                              (x_2, y_1)
          =
                                                                                                  x_3, y_1
®<sub>24</sub>
                                          (x_1,y_2),
         =
                       (x_1, y_1),
                                                                                                  x_3, y_1
®25
                                                                                (x_2, y_2)
                                                                                                 (x_3, y_1)
®<sub>26</sub>
          =
                       (x_1, y_1),
                                                                                 (x_2, y_2)
                                                                                                  (x_3, y_1)
®<sub>27</sub>
          =
                 {
                                          (x_1, y_2)
                                                                                 (x_2, y_2)
                                                                                                 (x_3, y_1)
^{\circledR}_{28}
                                          (x_1, y_2)
                       (x_1,y_1),
                                                                                 (x_2, y_2)
                                                                                                 (x_3, y_1)
®29
         =
                                                              (x_2, y_1)
                                                                                 (x_2, y_2)
                                                                                                  (x_3, y_1)
                       (x_1,y_1),
\mathbb{R}_{30}
                                                              (x_2, y_1)
                                                                                (x_2, y_2)
                                                                                                 (x_3, y_1)
\mathbb{R}_{31}
          =
                                          (x_1,y_2),
                                                             (x_2, y_1)
                                                                                (x_2, y_2)
                                                                                                 (x_3, y_1)
®32
                                                                                (x_2, y_2)
          =
                                                                                                 (x_3, y_1)
\mathbb{R}_{33}
         =
                                                                                                                   (x_3, y_2)
                                                                                                                                   }
                       (x_1,y_1),
®34
                                                                                                                                   }
         =
                                                                                                                   (x_3, y_2)
®35
                                          (x_1, y_2)
                                                                                                                                   }
                                                                                                                    (x_3, y_2)
®36
                       (x_1,y_1),
                                          (x_1, y_2)
                                                                                                                                   }
                                                                                                                    x_3, y_2
®37
          =
                                                              (x_2, y_1)
                                                                                                                                   }
                                                                                                                    x_3, y_2
®38
                       (x_1,y_1),
                                                             (x_2, y_1)
          =
                                                                                                                                   }
                                                                                                                   (x_3, y_2)
®39
                                                              (x_2, y_1)
                                                                                                                                   }
          =
                                          (x_1,y_2),
                                                                                                                    (x_3, y_2)
\mathbb{R}_{40}
                                          (x_1,y_2),
                       (x_1, y_1),
                                                             (x_2, y_1),
                                                                                                                                   }
                                                                                                                   (x_3, y_2)
®<sub>41</sub>
                                                                                (x_2, y_2)
                                                                                                                                   }
                 {
                                                                                                                   (x_3, y_2)
®42
                       (x_1,y_1),
          =
                                                                                 (x_2, y_2)
                                                                                                                    (x_3, y_2)
                                                                                                                                   }
®43
                                          (x_1, y_2)
                                                                                                                                   }
                                                                                 (x_2, y_2)
                                                                                                                   x_3, y_2
^{\circ}_{44}
                       (x_1,y_1),
                                          (x_1, y_2)
                                                                                                                                   }
          =
                                                                                 (x_2, y_2)
                                                                                                                    (x_3, y_2)
\mathbb{R}_{45}
          =
                                                              (x_2, y_1)
                                                                                                                                   }
                                                                                 (x_2, y_2)
                                                                                                                    (x_3, y_2)
                       (x_1, y_1),
®<sub>46</sub>
                                                              (x_2, y_1)
                                                                                                                                   }
                                                                                (x_2, y_2)
                                                                                                                   x_3, y_2
®<sub>47</sub>
                                          (x_1, y_2),
                                                                                                                                   }
         =
                                                                                                                    (x_3, y_2)
                                                                                (x_2, y_2)
\mathbb{R}_{48}
                                          (x_1,y_2),
                       (x_1, y_1),
                                                                                                                                   }
          =
                                                              (x_2, y_1)
                                                                                (x_2, y_2)
                                                                                                                   (x_3, y_2)
^{\circ}_{49}
                                                                                                                                   }
                                                                                                 (x_3, y_1)
                                                                                                                   x_3, y_2
                       (x_1,y_1),
®<sub>50</sub>
                                                                                                  (x_3, y_1)
                                                                                                                                   }
          =
                                                                                                                   (x_3, y_2)
®<sub>51</sub>
                                          (x_1, y_2)
                                                                                                                                   }
                                                                                                  x_3, y_1
                                                                                                                   (x_3, y_2)
®52
                                          (x_1, y_2)
                                                                                                                                   }
          =
                                                                                                  x_3, y_1
                                                                                                                   (x_3, y_2)
^{\circledR}_{53}
                                                                                                                                   }
          =
                                                              (x_2, y_1)
                                                                                                  x_3, y_1
                                                                                                                   (x_3, y_2)
                       (x_1, y_1),
®<sub>54</sub>
                                                              (x_2, y_1)
                                                                                                  x_3, y_1
                                                                                                                                   }
                                                                                                                  (x_3, y_2)
                                          (x_1,y_2),
®<sub>55</sub>
                                                                                                                                   }
                                                                                                 (x_3, y_1)
                                                                                                                   (x_3, y_2)
```

Example B.3.

Let $X \triangleq \{1, 2, 3\}$, $Y \triangleq \{1, 2\}$, and 2^{XY} the set of all of the $2^{3\times 2} = 64$ relations in $X \times Y$. Furthermore, let $x_1 \triangleq 1$, $x_2 \triangleq 2$, $x_3 \triangleq 3$, $y_1 \triangleq 1$, and $y_2 \triangleq 2$. Then the following common relations are

B.1.2 Calculus of Relations

Proposition B.2. ³ Let 2^{XY} be the set of all relations in $X \times Y$. $\emptyset \in 2^{XY}$ (\emptyset is a relation)

Daniel J. Greenhoe

№ Proof:

$$\emptyset \subseteq X \times Y$$

 \implies Ø is a relation.

by definition of relation Definition B.1 page 75

Proposition B.3. ⁴ Let 2^{XY} be the set of all relations from the sets X to the set Y.

	Poortion 2.	o. Ect 2	se me eer	oj citi i cicitio.	regreent tree	cete 11 to tite	_
P R P	$\mathbb{R} \in 2^{XY}$	(® is a relation)	and \	\Rightarrow	$\odot \subset \mathfrak{I}^{XY}$	(§ is a relation)	
	$\circledS\subseteq \mathbb{R}$	(§ is a subset of ®) \int \int \	—	७ ८ ∠		

NPROOF:

$$\mathbb{S} \subseteq \mathbb{R}$$
 by right hypothesis

 $\subseteq X \times Y$ by definition of relation Definition B.1 page 75

⇒ \emptyset is a relation. by definition of relation Definition B.1 page 75

⁴ Suppes (1972) page 58

³ Suppes (1972) page 58

A function does not always have an inverse that is also a function. But unlike functions, every relation has an inverse that is also a relation. Note that since all functions are relations, every function does have an inverse that is at least a relation, and in some cases this inverse is also a function.

Definition B.2. ⁵ Let \circledast be a relation in 2^{XY} .

$$^{^{\circ}}$$
 is the **inverse** of relation $^{\circ}$ if

$$\mathbb{R}^{-1} \triangleq \{ (y, x) \in Y \times X | (x, y) \in \mathbb{R} \}$$

The inverse relation \mathbb{R}^{-1} is also called the **converse** of \mathbb{R} .

Example B.4.

Let
$$X \triangleq \{1, 2, 3\}$$

and $Y \triangleq \{A, B\}$
and $\mathbb{B} \triangleq \{(1, A), (2, A), (2, B), (3, B)\}.$
Then $\mathbb{B}^{-1} = \{(A, 1), (A, 2), (B, 2), (B, 3)\}.$

The sets X and \overline{Y} and the relations @ and $@^{-1}$ are illustrated below.

Example B.5.

Let $X \triangleq \{1, 2, 3\}$. Then the "less than or equal to" relation \leq in 2^{XX} is

$$\leq \equiv \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

and it's inverse \leq^{-1} is equivalent to the "greater than or equal to" relation >:

$$\leq^{-1} \equiv \{(1,1)\,,\,(2,1)\,,\,(3,1)\,,\,(2,2)\,,\,(3,2)\,,\,(3,3)\} \equiv \geq.$$

Example B.6.

Let \otimes be the *ellipse* relation in $2^{\mathbb{R}\mathbb{R}}$ such that

hen the inverse relation
$$\mathbb{R}^{-1}$$
 is

Then the inverse relation
$$\mathbb{R}^{-1}$$
 is $\mathbb{R}^{-1} = \left\{ (x, y) \in \mathbb{R}^2 | \frac{x^2}{2^2} + \frac{2^2}{2^2} = 1 \right\}.$

Both of these relations are illustrated to the right.

Example B.7. Let $\mathbf{I} \in X^X$ be an identity function, and $f, f^{-1} \in X^X$ be functions. f^{-1} is the **inverse** of f if $ff^{-1} = f^{-1}f = \mathbf{I}$.

⁵ ■ Suppes (1972) page 61 (Defintion 6, inverse="converse"), ■ Kelley (1955) page 7, ■ Peirce (1883a) page 188 (inverse="converse")

Theorem B.1. 6 *Let* $^{\$}$ *be a relation with inverse* $^{\$^{-1}}$.

№PROOF:

$$(\mathbb{R}^{-1})^{-1} = \underbrace{\{(x,y) \mid (y,x) \in \mathbb{R}\}}_{\mathbb{R}^{-1}}$$
 by definition of \mathbb{R}^{-1} (Definition B.2 page 79)
$$= \{(x,y) \mid (y,x) \in \{(y,x) \mid (x,y) \in \mathbb{R}\}\}$$
 by definition of \mathbb{R}^{-1} (Definition B.2 page 79)
$$= \{(x,y) \mid (x,y) \in \mathbb{R}\}$$

$$= \{(x,y) \mid (x,y) \in \mathbb{R}\}$$

Example B.8.

Let
$$X \triangleq \{1, 2, 3\}$$

and $Y \triangleq \{A, B\}$
and $\mathbb{B} \triangleq \{(1, A), (2, A), (2, B), (3, B)\}.$
Then $\mathbb{B}^{-1} = \{(A, 1), (A, 2), (B, 2), (B, 3)\}$
and $(\mathbb{B}^{-1})^{-1} = \{(1, A), (2, A), (2, B), (3, B)\} = \mathbb{B}.$

The sets *X* and *Y* and the relations \mathbb{R} , \mathbb{R}^{-1} , and $(\mathbb{R}^{-1})^{-1}$ are illustrated below.

Example B.9. Let $X \triangleq \{1, 2, 3\}$. Let $\leq \in 2^{XX}$ be the "less than or equal to" relation in 2^{XX} .

$$\left(\leq^{-1} \right)^{-1} \triangleq \left(\left\{ (1,1), (1,2), (1,3), (2,2), (2,3), (3,3) \right\}^{-1} \right)^{-1}$$

$$= \left(\left\{ (1,1), (2,1), (3,1), (2,2), (3,2), (3,3) \right\} \right)^{-1}$$

$$= \left(\left\{ (1,1), (1,2), (1,3), (2,2), (2,3), (3,3) \right\} \right)$$

$$\triangleq \leq$$

Definition B.3. ⁷ Let $\mathbb{R} \in 2^{XY}$ and $\mathbb{S} \in 2^{YZ}$ be relations. Let \wedge be the logical and function.

⁷ Melley (1955) pages 7–8, Fuhrmann (2012) page 2

B.1. RELATIONS Daniel J. Greenhoe page 81

Theorem B.2. 8 *Let X, Y, and Z be sets.*

№ Proof:

$$(\$ \circ \$)^{-1} = \left\{ (x,z) \mid \exists y \text{ such that } (x,y) \in \$ \text{ and } (y,z) \in \$ \right\}^{-1}$$
 by definition of \circ (page 80)
$$= \left\{ (z,x) \mid (x,z) \in \left\{ (x,z) \mid \exists y \text{ such that } (x,y) \in \$ \text{ and } (y,z) \in \$ \right\} \right\}$$
 by definition of $\$^{-1}$ (page 79)
$$= \left\{ (z,x) \mid \exists y \text{ such that } (x,y) \in \$ \text{ and } (y,z) \in \$ \right\}$$
 by definition of $\$^{-1}$ (page 79)
$$= \left\{ (z,x) \mid \exists y \text{ such that } (y,x) \in \$^{-1} \text{ and } (z,y) \in \$^{-1} \right\}$$
 by definition of \circ (page 80)
$$= \left\{ (\$^{-1}) \circ (\$^{-1}) \right\}$$
 by definition of \circ (page 80)

Example B.10.

```
Let
          \boldsymbol{X}
                              \{1, 2, 3\}
                         \triangleq \{A, B\}
and
          \boldsymbol{Y}
                         \triangleq {red, green, blue}
and
          \boldsymbol{Z}
                         \triangleq \{(1,A), (2,A), (2,B), (3,B)\}.
and
                         \triangleq \{(A, \text{red}), (A, \text{green}), (B, \text{blue})\}.
and
          (S)
                             \{(1, red), (1, green), (2, green), (2, blue), (3, blue)\}.
Then R • S
                             {(red, 1), (green, 1), (green, 2), (blue, 2), (blue, 3)}.
and
                         = (\mathbb{S}^{-1} \circ \mathbb{R}^{-1})
```

The quanitities are illustrated below.

⁸ Melley (1955) page 8

Definition B.4. 9 *Let* $@ \in 2^{XY}$ *be a relation.*

D E F The **domain** of \mathbb{R} is $\mathcal{D}(\mathbb{R}) \triangleq \{x \in X | \exists y \text{ such that } (x, y) \in \mathbb{R}\}.$

The **image set** of \mathbb{B} is $\mathcal{I}(\mathbb{R}) \triangleq \{y \in Y | \exists x \text{ such that } (x, y) \in \mathbb{R}\}.$

The **null space** of \mathbb{R} is $\mathcal{N}(\mathbb{R}) \triangleq \{x \in X | (x, 0) \in \mathbb{R}\}.$

The range of \mathbb{R} is any set $\mathcal{R}(\mathbb{R})$ such that $\mathcal{I}(\mathbb{R}) \subseteq \mathcal{R}(\mathbb{R})$

Example B.11. Let $\mathbb{R} \triangleq \sin x$. Then ...

$$I(\mathbb{R}) = -1 \le y \le 1$$

$$\mathcal{N}(\mathbb{R}) = \{ n\pi | n \in \mathbb{Z} \}.$$

$$\mathcal{R}(\mathbb{R}) = \mathbb{R}$$

Example B.12. Let $\mathbb{R} \triangleq \cos x$. Then ...

$$\mathcal{D}(\mathbb{R}) = \mathbb{R}$$

$$\mathcal{I}(\mathbb{R}) = -1 \le y \le 1$$

$$\mathcal{N}(\mathbb{R}) = \left\{ \left(n + \frac{1}{2} \right) \pi | n \in \mathbb{Z} \right\}.$$

$$\mathcal{R}(\mathbb{R}) = \mathbb{R}$$

Example B.13. (Rudin, 1991)99 Let \boldsymbol{X} and \boldsymbol{Y} be linear functions and Y^X be the set of all functions from \boldsymbol{X} to \boldsymbol{Y} . Let \boldsymbol{f} be an function in Y^X .

The **domain** of f is

$$\mathcal{D}(f) \triangleq X$$

The **range** of f is

$$\mathcal{I}(f) \triangleq \{ y \in Y | \exists x \in X \text{ such that } y = fx \}$$

The **null space** of f is $\mathcal{N}(f) \triangleq \{x \in \mathbf{X} | fx = 0\}$

Theorem B.3. ¹⁰ Let $\mathcal{D}(\mathbb{R})$ be the domain of a relation \mathbb{R} and $\mathcal{I}(\mathbb{R})$ the image of \mathbb{R} .

$$\mathcal{D} \bigg(\bigcup_{i \in I} \mathbb{R}_i \bigg) \; = \; \bigcup_{i \in I} \mathcal{D} \big(\mathbb{R}_i \big) \qquad \qquad \mathcal{I} \bigg(\bigcup_{i \in I} \mathbb{R}_i \bigg) \; = \; \bigcup_{i \in I} \mathcal{I} \big(\mathbb{R}_i \big)$$

$$\mathcal{D} \bigg(\bigcap_{i \in I} \mathbb{R}_i \bigg) \; \subseteq \; \bigcap_{i \in I} \mathcal{D} \big(\mathbb{R}_i \big) \qquad \qquad \mathcal{I} \bigg(\bigcap_{i \in I} \mathbb{R}_i \bigg) \; \subseteq \; \bigcap_{i \in I} \mathcal{I} \big(\mathbb{R}_i \big)$$

$$\mathcal{D} \big(\mathbb{R} \backslash \mathbb{S} \big) \; \supseteq \; \mathcal{D} \big(\mathbb{R} \big) \backslash \mathcal{D} \big(\mathbb{S} \big) \qquad \qquad \mathcal{I} \bigg(\mathbb{R} \backslash \mathbb{S} \big) \; \supseteq \; \mathcal{I} \big(\mathbb{R} \big) \backslash \mathcal{I} \big(\mathbb{S} \big)$$

♥Proof:

$$\begin{split} \mathcal{D}\bigg(\bigcup_{i\in I} \mathbb{R}_i\bigg) &= \left\{x|\exists y \quad \text{such that} \quad (x,y) \in \bigcup_{i\in I} \mathbb{R}_i\right\} \\ &= \left\{x|\exists y \quad \text{such that} \quad (x,y) \in \left\{(x,y) \mid \bigvee_i (x,y) \in \mathbb{R}_i\right\}\right\} \\ &= \left\{x|\exists y \quad \text{such that} \quad \bigvee_i (x,y) \in \mathbb{R}_i\right\} \\ &= \left\{x|\bigvee_i \left[\exists y \quad \text{such that} \quad (x,y) \in \mathbb{R}_i\right]\right\} \\ &= \bigcup_i \left\{x|\exists y \quad \text{such that} \quad (x,y) \in \mathbb{R}_i\right\} \\ &= \bigcup_i \mathcal{D}\big(\mathbb{R}_i\big) \end{split}$$

by Definition B.4 page 82

by Definition A.5 page 40

by Definition A.5 page 40

by Definition B.4 page 82

¹⁰ **a** Suppes (1972) pages 60–61

⁹ Munkres (2000), page 16, Kelley (1955) page 7

$$\mathcal{D}\bigg(\bigcap_{i\in I} \mathbb{B}_i\bigg) = \left\{x | \exists y \quad \text{such that} \quad (x,y) \in \bigcap_{i\in I} \mathbb{B}_i\right\} \qquad \text{by Definition B.4 page 82}$$

$$= \left\{x | \exists y \quad \text{such that} \quad (x,y) \in \left\{(x,y) \mid \bigwedge_i (x,y) \in \mathbb{B}_i\right\}\right\} \qquad \text{by Definition A.5 page 40}$$

$$= \left\{x | \exists y \quad \text{such that} \quad \bigwedge_i (x,y) \in \mathbb{B}_i\right\}$$

$$= \left\{x | \bigwedge_i \left[\exists y \quad \text{such that} \quad (x,y) \in \mathbb{B}_i\right]\right\}$$

$$= \bigcap_i \left\{x | \exists y \quad \text{such that} \quad (x,y) \in \mathbb{B}_i\right\}$$
 by Definition A.5 page 40
$$= \bigcap_i \mathcal{D}(\mathbb{B}_i)$$
 by Definition B.4 page 82

Example B.14.

Let
$$X \triangleq \{1, 2, 3\}$$

and $Y \triangleq \{A, B, C\}$
and $\mathbb{R} \triangleq \{(1, A), (2, B), (3, C)\}$
and $\mathbb{S} \triangleq \{(1, A), (1, B), (2, C), (3, C)\}.$

₽

$$\mathcal{D}(\mathbb{B} \cup \mathbb{S}) = \mathcal{D}(\{(1, A), (2, B), (3, C)\} \cup \{(1, A), (1, B), (2, C), (3, C)\}).$$

$$= \mathcal{D}\{(1, A), (1, B), (2, B), (2, C), (3, C)\}$$

$$= \{1, 2, 3\}$$

$$= \{1, 2, 3\} \cup \{1, 23\}$$

$$= \mathcal{D}(\mathbb{B} \cup \mathcal{D}(\mathbb{S}))$$

$$\mathcal{D}(\mathbb{B} \cap \mathbb{S}) = \{(1, A), (3, C)\}$$

$$= \{1, 3\}$$

$$\subseteq \{1, 2, 3\} \cap \{1, 23\}$$

$$= \mathcal{D}(\mathbb{B} \cap \mathcal{D}(\mathbb{S}))$$

$$\mathcal{I}(\mathbb{B} \cup \mathbb{S}) = \mathcal{I}(\{(1, A), (2, B), (3, C)\} \cup \{(1, A), (1, B), (2, C), (3, C)\}).$$

$$= \mathcal{I}\{(1, A), (1, B), (2, B), (2, C), (3, C)\}$$

$$= \{A, B, C\}$$

$$= \{A, B, C\} \cup \{A, BC\}$$

$$= \mathcal{I}(\mathbb{B} \cup \mathcal{I}(\mathbb{S}))$$

$$\mathcal{I}(\mathbb{B} \cap \mathbb{S}) = \{(1, A), (3, C)\}$$

$$= \{A, C\}$$

$$\subseteq \{A, B, C\} \cap \{A, BC\}$$

$$= \mathcal{I}(\mathbb{B} \cap \mathcal{I}(\mathbb{S}))$$

Example B.15.

Let
$$X \triangleq \{-1,0,1\}$$

and $Y \triangleq \{-1,0,1\}$
and $\otimes \triangleq \{(-1,-1), (0,0), (1,1)\}$
and $\otimes \triangleq \{(-1,1), (0,0), (1,-1)\}.$

$$\begin{split} \mathcal{D}(\$ \cup \$) &= \mathcal{D}(\{(-1,-1), (0,0), (1,1)\} \cup \{(-1,1), (0,0), (1,-1)\}). \\ &= \mathcal{D}\{(-1,-1), (0,0), (1,1), (-1,1), (1,-1)\} \\ &= \{-1,0,1\} \\ &= \{-1,0,1\} \cup \{-1,01\} \\ &= \mathcal{D}(\$ \cup \mathcal{D}(\$)) \end{split}$$

$$\mathcal{D}(\$ \cap \$) &= \mathcal{D}(\{(-1,-1), (0,0), (1,1)\} \cap \{(-1,1), (0,0), (1,-1)\}). \\ &= \mathcal{D}\{(0,0)\} \\ &= \{0\} \\ &\subseteq \{-1,0,1\} \cap \{-1,01\} \\ &= \mathcal{D}(\$ \cap \mathcal{D}(\$)) \end{split}$$

$$\mathcal{I}(\$ \cup \$) &= \mathcal{I}(\{(-1,-1), (0,0), (1,1)\} \cup \{(-1,1), (0,0), (1,-1)\}). \\ &= \mathcal{I}\{(-1,-1), (0,0), (1,1), (-1,1), (1,-1)\} \\ &= \{-1,0,1\} \\ &= \{-1,0,1\} \cup \{-1,01\} \\ &= \mathcal{I}(\$ \cup \mathcal{D}(\$)) \end{split}$$

$$\mathcal{I}(\$ \cap \$) &= \mathcal{I}(\{(-1,-1), (0,0), (1,1)\} \cap \{(-1,1), (0,0), (1,-1)\}). \\ &= \mathcal{I}\{(0,0)\} \\ &= \{0\} \\ &\subseteq \{-1,0,1\} \cap \{-1,01\} \\ &= \mathcal{I}(\$ \cap \mathcal{I}(\$)) \end{split}$$

Example B.16.

Let
$$f(x) \triangleq x$$

and $g(x) \triangleq -x$.

$$\mathcal{D}(f \cup g) = \mathcal{D}\left\{\left(x, y\right) \in \mathbb{R}^{2} | y = x\right\} \cup \left\{(x, y) \in \mathbb{R}^{2} | y = -x\right\}\right)$$

$$= \mathcal{D}\left\{(x, y) \in \mathbb{R}^{2} | y = x \text{ or } y = -x\right\}$$

$$= \mathbb{R}$$

$$= \mathbb{R} \cup \mathbb{R}$$

$$= \left(\mathcal{D}\left\{(x, y) \in \mathbb{R}^{2} | y = x\right\}\right) \cup \left(\mathcal{D}\left\{(x, y) \in \mathbb{R}^{2} | y = -x\right\}\right)$$

$$\mathcal{D}(f \cap g) = \mathcal{D}\left(\left\{(x, y) \in \mathbb{R}^{2} | y = x\right\} \cap \left\{(x, y) \in \mathbb{R}^{2} | y = -x\right\}\right)$$

$$= \mathcal{D}\left\{(x, y) \in \mathbb{R}^{2} | y = x \text{ and } y = -x\right\}$$

$$= \mathcal{D}\left\{(0, 0)\right\}$$

$$= \{0\}$$

$$\subseteq \mathbb{R}$$

$$= \mathbb{R} \cap \mathbb{R}$$

$$= \left(\mathcal{D}\left\{(x, y) \in \mathbb{R}^{2} | y = x\right\}\right) \cap \left(\mathcal{D}\left\{(x, y) \in \mathbb{R}^{2} | y = -x\right\}\right)$$

B.1. RELATIONS Daniel J. Greenhoe page 85

$$I(f \cup g) = I(\{(x, y) \in \mathbb{R}^2 | y = x\}) \cup \{(x, y) \in \mathbb{R}^2 | y = -x\})$$

$$= I\{(x, y) \in \mathbb{R}^2 | y = x \text{ or } y = -x\}$$

$$= \mathbb{R}$$

$$= \mathbb{R} \cup \mathbb{R}$$

$$= (I\{(x, y) \in \mathbb{R}^2 | y = x\}) \cup (I\{(x, y) \in \mathbb{R}^2 | y = -x\})$$

$$I(f \cap g) = I(\{(x, y) \in \mathbb{R}^2 | y = x\} \cap \{(x, y) \in \mathbb{R}^2 | y = -x\})$$

$$= I\{(x, y) \in \mathbb{R}^2 | y = x \text{ and } y = -x\}$$

$$= I\{(0, 0)\}$$

$$= \{0\}$$

$$\subseteq \mathbb{R}$$

$$= \mathbb{R} \cap \mathbb{R}$$

$$= (I\{(x, y) \in \mathbb{R}^2 | y = x\}) \cap (I\{(x, y) \in \mathbb{R}^2 | y = -x\})$$

Definition B.5. ¹¹ Let \otimes be a relation in 2^{XY} .

Theorem B.4. 12

$$\mathbb{R}(\varnothing) = \varnothing$$

$$\mathbb{R}\left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} \mathbb{R}(A_i)$$

$$\mathbb{R}\left(\bigcap_{i \in I} A_i\right) \subseteq \bigcap_{i \in I} \mathbb{R}(A_i)$$

№PROOF:

¹¹ Kelley (1955) page 8

¹² Kelley (1955) page 8

Definition B.6 (next) provides some properties associated with special types of relations. Relations can be defined based on their properties. For example, *equivalence relations* are *reflexive*, *symmetric*, and *transitive*; whereas *order relations* are (Definition C.2 $_{page}$ 104) are *reflexive*, *anti-symmetric*, and *transitive*.

Definition B.6. ¹³ Let X be a set and @ a relation in 2^{XX} .

emmuon b.o. Let A be a set ana ® a retation in \(\begin{align*}{cccccccccccccccccccccccccccccccccccc							
	® is reflexive	if x x x	$\forall x \in X$				
	® is irreflexive	$if (x,x) \notin \mathbb{R}$	$\forall x \in X$				
	® is symmetric	$if x \otimes y \implies y \otimes x$	$\forall x,y \in X$				
2	® is asymmetric	$if x \otimes y \implies (y, x) \notin \mathbb{R}$	$\forall x,y \in X$				
	® is anti-symmetric	$if x \otimes y \ and \ y \otimes x \implies x =$	$y \forall x,y \in X$				
	® is transitive	$if x \otimes y \text{ and } y \otimes z \implies x \otimes z$	$\forall x,y,z \in X$				
	® is connected	$if x \neq y \implies x \otimes y \text{ or } y \otimes x$	$\forall x,y,z \in X$				
	® is strongly connected	if $x \otimes y$ or $y \otimes x$	$\forall x,y,z \in X$				

Definition B.7. ¹⁴

The **identity element** $\mathbb{O}(X)$ with respect to $\mathbb{B} \in 2^{XX}$ is defined as $\mathbb{O}(X) \triangleq \{(x,x) \mid (x,x) \in \mathbb{B}\}$.

The identity element $\mathbb{O}(X)$ may also be denoted as simply $\mathbb{O}(X)$.

Proposition B.4. Let @ be the identity element in 2^{XX} with respect to the composition function \circ .

P
R
$$\mathbb{O} \circ \mathbb{R} = \mathbb{R} \circ \mathbb{O} = \mathbb{R}$$
 $\forall \mathbb{R} \in 2^{XX}$

Example B.17. (Michel and Herget, 1993)411 Let X be a linear space and X^X the set of all functions from X to X (Definition B.8 page 87). Let X be an function in X^X . X is an **identity function** in X^X if $X = \mathbf{x}$.

Theorem B.5. ¹⁵ Let ® be a relation in 2^{XX} . Let ① be the identity element in 2^{XX} with respect to composition.

¹⁵ Kelley (1955) page 9

 $^{^{13}}$ Suppes (1972) page 69 (Defintion 10–Definition 17), \bigcirc Kelley (1955) page 9

¹⁴ Kelley (1955) page 9

B.2. FUNCTIONS Daniel J. Greenhoe page 87

№PROOF:

```
\mathbb{R} is reflexive \iff (x, x) \in \mathbb{R}
                                                                                                                                          by Definition B.6 page 86
                                                                                           \forall x \in X
                                                       \iff ① \subseteq ®
                                                                                                                                          by Definition B.7 page 86
                                                                                                                                          by Definition B.6 page 86
                        \mathbb{R} is symmetric \iff [(x, y) \in \mathbb{R} \implies (y, x) \in \mathbb{R}]
                                                       \iff \mathbb{R} = \mathbb{R}^{-1}
                                                                                                                                          by Definition B.2 page 79
              \mathbb{R} is anti-symmetric \iff [(x, y) \in \mathbb{R} \implies (y, x) \notin \mathbb{R}]
                                                                                                                                          by Definition B.6 page 86
                                                       \iff \mathbb{R} \cap \mathbb{R}^{-1} = \emptyset
                                                                                                                                          by Definition B.2 page 79
                                                                                                                                          by Definition B.6 page 86
                          \mathbb{R} is transitive \iff [(x, y), (y, z) \in \mathbb{R} \implies (x, z) \in \mathbb{R}]
                                                       \iff \mathbb{R} \circ \mathbb{R} \subset \mathbb{R}
                                                                                                                                          by Definition B.3 page 80
\mathbb{R} is transitive and reflexive \iff [\mathbb{R} \circ \mathbb{R} \subseteq \mathbb{R} \text{ and } \mathbb{O} \subseteq \mathbb{R}]
                                                                                                                                          by previous results
                                                       \implies [\mathbb{R} \circ \mathbb{R} \subseteq \mathbb{R} \text{ and } \mathbb{R} = \mathbb{I} \circ \mathbb{R} \subseteq \mathbb{R} \circ \mathbb{R}]
                                                                                                                                          by definition of ① page 86
                                                       \iff [\mathbb{R} \circ \mathbb{R} \subseteq \mathbb{R} \text{ and } \mathbb{R} \subseteq \mathbb{R} \circ \mathbb{R}]
                                                       \implies \mathbb{R} \circ \mathbb{R} = \mathbb{R}
```

B.2 Functions

The function is a special case of the relation in that while both are subsets of a Cartesian product, an element in the domain of a function can only map to *one* element in the range (Definition B.8—next definition). The set of all functions in the Cartesian product $X \times Y$ is denoted Y^X ; this is suitable because the number of functions in $X \times Y$ for finite X and Y is $|Y|^{|X|}$ (Proposition B.5 page 88). The fact that not all functions are relations is demonstrated in Example B.18 (page 88) (discrete cases) and Example B.19 (page 88) (continuous cases).

B.2.1 Definition and examples

Definition B.8. ¹⁶ Let X and Y be sets. Let \wedge be the "logical and" operation (Definition 3.1 page 34).

```
A relation f \in 2^{XY} is a function if
(x, y_1) \in f \land (x, y_2) \in f \implies y_1 = y_2 \qquad \text{(for each } x, \text{ there is only one } f(x)\text{)}
The set of all functions in 2^{XY} is denoted
Y^X \triangleq \left\{ f \in 2^{XY} \mid f \text{ is a function} \right\}.
A function may also be referred to as a correspondence, transformation, or map.
```

As indicated in Definition B.8 (previous definition), functions customarily come disguised in different names depending on the context in which they are found. This is particularly true with respect

to *vector spaces*, as illustrated next:

- maps from a field to a field *function*:
- functional: maps from a vector space to a field
- maps from a vector space to a vector space function:

However, no matter what name is used, a function is still a function as long as it satisfies Definition B.8.

Definition B.9. 17

A function $f \in Y^{X^n}$ is said to have arity n. $A function \, \mathsf{f} \in Y^{X^3}$ is said to be ternary. A function $f \in Y^{X^2}$ is said to be binary.

A function $f \in Y^{X^1} \triangleq Y^X$ is said to be **unary**.

A function $f \in Y^{X^0} \triangleq Y$ is said to be nullary.

Example B.18. The figure below illustrates two discrete examples of relations that are functions and two that are not.

two *relations* in 2^{XY} that *are functions*

two *relations* in 2^{XY} that are *not functions*

Example B.19. ¹⁸ The figures below illustrates one example of a continuous relation that is not a function and one that is.

$$\{(x, y) \in X \times Y | x^2 + y^2 = 1\}$$

(a relation that is *not* a function)

$$\{(x,y) \in X \times Y | x^2 + y^2 = 1\}$$
relation that is *not* a function)
$$\begin{cases} (x,y) \in X \times Y | & y = \sqrt{1-x^2} & \text{for } -1 < x < 1 \\ y = 0 & \text{otherwise} \end{cases}$$
(a relation that is a function)

Proposition B.5. ¹⁹ Let Y^X be the set of all functions from a set X to a set Y. Let $|\cdot|$ be the counting measure for sets.

- ¹⁷ Burris and Sankappanavar (2000), pages 25–26
- ¹⁸ Apostol (1975) page 34
- ¹⁹ Comtet (1974) page 4

B.2. FUNCTIONS Daniel J. Greenhoe page 89

```
PROOF: Let X \triangleq \{x_1, x_2, ..., x_m\}.
Let Y \triangleq \{y_1, y_2, ..., y_n\}.
```

Then x_1 can map to exactly one of the *n* elements in set *Y*: $y_1, y_2, ...,$ or y_n .

Likewise, x_2 can also map to one of the n elements in set Y.

So, the total number of possible functions in Y^X is

$$n^m = |Y|^{|X|}$$

Example B.20. Let $X \triangleq \{x_1, x_2, x_3\}$ and $Y \triangleq \{y_1, y_2\}$. There are a total of $|\mathbb{R}| = 2^{|X| \cdot |Y|} = 2^{3 \times 2} = 64$ possible relations on $X \times Y$, as listed in Example B.2 (page 76). Let $\mathbb{F} \triangleq (F_1, F_2, F_3, ...)$ be the set of all **functions** from X to Y. There are a total of $|\mathbb{F}| = |Y|^{|X|} = 2^3 = 8$ possible functions. These 8 functions are listed below. Of these 8 functions, 6 are *surjective*, as listed in Example B.27 (page 92).

functions on
$$\{x_1, x_2, x_3\} \times \{y_1, y_2\}$$

 $F_1 = \{(x_1, y_1), (x_2, y_1), (x_3, y_1)\}\$ $F_5 = \{(x_1, y_1), (x_2, y_1), (x_3, y_2)\}\$
 $F_2 = \{(x_1, y_2), (x_2, y_1), (x_3, y_1)\}\$ $F_6 = \{(x_1, y_2), (x_2, y_1), (x_3, y_2)\}\$
 $F_3 = \{(x_1, y_1), (x_2, y_2), (x_3, y_1)\}\$ $F_7 = \{(x_1, y_1), (x_2, y_2), (x_3, y_2)\}\$
 $F_4 = \{(x_1, y_2), (x_2, y_2), (x_3, y_1)\}\$ $F_8 = \{(x_1, y_2), (x_2, y_2), (x_3, y_2)\}\$

Example B.21. Let $X \triangleq \{x, y, z\}$ There are a total of $|\mathbb{R}| = 2^{|X \times X|} = 2^{|X| \cdot |X|} = 2^{3 \times 3} = 2^9 = 512$ possible relations on X^2 . Of these 512 relations, only 27 are **functions**. These 27 functions are listed below. Of these 27 functions, only 7 are *surjective* functions, as listed in Example B.28 (page 93).

```
functions on \{x, y, z\} \times \{x, y, z\}
                                               F_{15}
                        (y, x),
                                  (z,x)
                                                              (x,z),
              (x,x),
                                                                       (y, y),
                                                                                 (z, y)
                        (y, x),
                                               F_{16} =
              (x, y),
                                  (z,x)
                                                              (x,x),
                                                                        (y,z),
                                                                                 (z, y)
                       (y,x),
                                               \mathbf{F}_{17} = \{
              (x,z),
                                  (z,x)
                                                              (x, y),
                                                                        (y,z),
                                                                                 (z, y)
\vec{F_4}
                                               F_{18} = \{
              (x,x), (y,y),
                                  (z,x)
                                                             (x,z),
                                                                       (y,z),
                                                                                 (z, y)
                                               \boldsymbol{F}_{19} = \{ (x, x), 
             (x, y),
                       (y, y),
                                  (z,x)
                                                                       (y,x),
                                                                                 (z,z)
                                               \boldsymbol{F}_{20} = \{ (x, y), 
           \{ (x,z), (y,y), 
                                  (z,x)
                                                                        (y,x),
                                                                                 (z,z)
                                               \boldsymbol{F}_{21} = \{ (x, z), 
      = \{ (x, x), (y, z), 
                                  (z,x)
                                                                       (y,x),
                                                                                 (z,z)
                                               \mathbf{F}_{22} = \{ (x, x),
                                  (z,x)
             (x, y),
                       (y,z),
                                                                       (y, y),
                                                                                 (z,z)
F_{0}
                                               F_{23} = \{ (x, y),
      = \{ (x, z), (y, z), 
                                  (z,x)
                                                                        (y, y),
                                                                                 (z,z)
                                               \mathbf{F}_{24} = \{ (x,z),
F_{10}
      = \{ (x, x), (y, x), \}
                                  (z, y)
                                                                       (y, y),
                                                                                 (z,z)
F_{11}
                                               \mathbf{F}_{25} = \{ (x, x), 
      = \{ (x, y), (y, x),
                                                                        (y,z),
                                  (z, y)
                                                                                 (z,z)
                                               F_{26} = \{
           \{ (x,z),
                        (y,x),
                                  (z, y)
                                                              (x, y),
                                                                        (y,z),
                                                                                 (z,z)
                                                                                          }
F_{13}
                                               F_{27} =
              (x,x),
                        (y, y),
                                  (z, y)
                                                              (x,z),
                                                                        (y,z),
                                                                                 (z,z)
                                                                                          }
F_{14}
              (x, y),
                        (y, y),
                                  (z, y)
```

Definition B.10. 20 Let Y^X be the set of functions from a set X to a set Y.

```
Functions f \in Y^X and g \in Y^X are equal if f(x) = g(x) \quad \forall x \in X
This is denoted as f \stackrel{\circ}{=} g.
```


Properties of functions B.2.2

Theorem B.6. ²¹ Let f be a FUNCTION (Definition B.8 page 87) in Y^X with inverse relation f^{-1} in 2^{XY} .

```
f(\emptyset) = \emptyset
                                                                                   \forall f \in Y^X
T
                                       f^{-1}(\emptyset) = \emptyset
                                                                                   \forall f \in Y^X
        2.
                                           f(A) \subseteq f(B)
                                                                                   \forall f \in Y^X, A, B \in 2^X
        3. A \subseteq B \implies
                                                                                                                    (ISOTONE)
        4. A \subseteq B \implies f^{-1}(A) \subseteq f^{-1}(B)
                                                                                   \forall f \in Y^X, A, B \in 2^Y
                                                                                                                    (ISOTONE)
```

^ℚProof:

1. Proof that $f(\emptyset) = \emptyset$:

$$f(\emptyset) = \{ y \in Y | \exists x \in \emptyset \text{ such that } (x, y) \in f \}$$
 by Definition B.5 page 85 by definition of \emptyset page ??

2. Proof that $A \subseteq B \implies f(A) \subseteq f(B)$:

$$f(A) = \{y \in Y | \exists x \in A \text{ such that } (x, y) \in f\}$$
 by Definition B.5 page 85
 $\subseteq \{y \in Y | \exists x \in B \text{ such that } (x, y) \in f\}$ by left hypothesis
 $= f(B)$ by Definition B.5 page 85

3. Proof that $f^{-1}(\emptyset) = \emptyset$:

$$f^{-1}(\emptyset) = \{x \in X | \exists y \in \emptyset \text{ such that } (x, y) \in f\}$$
 by Definition B.5 page 85 by definition of \emptyset page ??

4. Proof that $A \subseteq B \implies f^{-1}(A) \subseteq f^{-1}(B)$:

$$f^{-1}(A) = \{x \in X | \exists y \in A \text{ such that } (x, y) \in f^{-1}\}$$
 by Definition B.5 page 85
 $\subseteq \{x \in X | \exists y \in B \text{ such that } (x, y) \in f\}$ by left hypothesis
 $= f^{-1}(B)$ by Definition B.5 page 85

B.2.3 Types of functions

In general, a function $f \in Y^X$ can be described as "into" because f maps each element of X into Ysuch that $f(X) \subseteq Y$. However there are some common more restrictive special types of functions. These are defined in Definition B.11 (next defintion).

Definition B.11. 22 Let $f \in Y^X$.

```
f is surjective (also called onto)
                                                             iff(X) = Y
                                                             iff(x_n) = f(x_m) \implies x_n = x_m
 f is injective
                        (also called one-to-one)
                                                             iff is both surjective and injective.
 f is bijective
                        (also called one-to-one
                        and onto)
We also define the following sets of functions:
       S_i(X,Y) \triangleq \{f \in Y^X | f \text{ is surjective} \}
                                                                 (the set of all surjective functions in Y^X)
       \mathcal{I}_{i}(X,Y) \triangleq \{f \in Y^{X} | f \text{ is injective}\}
                                                                 (the set of all injective functions in Y^X)
                         \{f \in Y^X | f \text{ is bijective}\}
       \mathcal{B}_{\mathsf{i}}(X,Y) \triangleq
                                                                 (the set of all bijective functions in Y^X)
```

²² Michel and Herget (1993), pages 14–15, Fuhrmann (2012) page 2, Comtet (1974) page 5

 \Rightarrow

²¹ Davis (2005) pages 6–8, Vaidyanathaswamy (1960) page 10

The types described in Definition B.11 are illustrated below:

"into" (arbitrary function in Y^X)

"onto" surjective

"one-to-one" injective

"one-to-one and onto" bijective

Example B.22.

In the set $\mathbb{R}^{\mathbb{R}}$, the function $\sin x$ is *not injective*, *not surjective*, and *not bijective*.

Example B.23.

In the set $\mathbb{R}^{\mathbb{R}}$, the function $x\sin x$ is *surjective*, but *not injective* and *not bijective*.

Example B.24.

In the set $\mathbb{R}^{\mathbb{R}}$, the function $y = \frac{1}{4}x$ is *injective*, *surjective*, and *bijective*.

Example B.25. In the set $\mathbb{R}^{\mathbb{R}}$, the function e^x is *injective*, but *not surjective* and *not bijective*.

Example B.26. In the set $\mathbb{R}^{\mathbb{R}}$, the function $\tan x$ is *not injective*, *not surjective* (it's range does not include $\frac{\pi}{2}$, $\frac{3\pi}{2}$, etc.) and *not bijective*.

Daniel J. Greenhoe

Theorem B.7. ²³

f <i>and</i> g	are	surjective	\Rightarrow	g∘f	is surjective
g∘f	is	surjective	\Longrightarrow	g	is surjective
f and g	are	injective	\Longrightarrow	g∘f	is injective
g∘f	is	injective	\Longrightarrow	f	is injective

№ Proof:

T H M

f, g are surjective
$$\implies$$
 f(X) = Y, and g(Y) = Z by definition of surjective page 90 \implies g \circ f(X) = g(Y) = Z \implies g \circ f is surjective by definition of surjective page 90

$$\Rightarrow g(f(X)) = Z$$

$$\Rightarrow g(Y) = Z$$

$$\Rightarrow g \text{ is surjective}$$
because $f(X) \subseteq Y$ and by isotone property page 90
$$\Rightarrow g \text{ is surjective}$$
by definition of surjective page 90

by definition of surjective page 90

$$\mathbf{g} \circ \mathbf{f}(x_1) = \mathbf{g} \circ \mathbf{f}(x_2) \implies \mathbf{g}(\mathbf{f}(x_1)) = \mathbf{g}(\mathbf{f}(x_2))$$

$$\implies \mathbf{f}(x_1) = \mathbf{f}(x_2) \qquad \text{because g is injective}$$

$$\implies x_1 = x_2 \qquad \text{because f is injective}$$

$$f(x_1) = f(x_2) \implies g(f(x_1)) = g(f(x_2))$$

 $\implies g \circ f(x_1) = g \circ f(x_2)$
 $\implies x_1 = x_2$ because $g \circ f$ is injective
 $\implies f$ is injective

Theorem B.8 (Bernstein-Cantor-Schröder Theorem). 24

 \implies g \circ f is injective

 $\left(\exists f \in \mathcal{I}_{j}(X,Y)\right) \ and \left(\exists g \in \mathcal{I}_{j}(Y,X)\right) \Longrightarrow \exists h \in \mathcal{B}_{j}(X,Y)$

Example B.27. Let $X \triangleq \{x_1, x_2, x_3\}$ and $Y \triangleq \{y_1, y_2\}$. There are a total of $|\mathbb{R}| = 2^{3 \times 2} = 64$ possible relations, as listed in Example B.2 (page 76). There are a total of $|\mathbb{F}| = 2^3 = 8$ possible functions, as listed in Example B.20 (page 89). Let $\mathbb{S} \triangleq (S_1, S_2, S_3, ...)$ be the set of all **surjective** functions from

 $g \circ f$ is surjective $\implies g \circ f(X) = Z$

 \Rightarrow

²³ Durbin (2000), pages 16–17

X to *Y*. There are a total of |S| = 6 possible surjective functions, as listed next:

Example B.28. Let $X \triangleq \{x, y, z\}$ There are a total of $|\mathbb{R}| = 2^{|X \times X|} = 2^{|X| \cdot |X|} = 2^{3 \times 3} = 2^9 = 512$ possible relations on $X \times X$. Of these 512 relations, only 27 are **functions**. These 27 functions are listed in Example B.21 (page 89). Of these 27 functions, only 7 are *surjective* functions, as listed below. Actually, in the case of a function mapping from a finite set onto the same finite set, The set \mathbb{S} of surjective functions is equal to the set of injective functions and the set of bijective functions.

surjective functions on $\{x, y, z\} \times \{x, y, z\}$													
S_1	=	{	(x,z),	(y,x),	(z,x)	}	S_5	=	{	(x,x),	(y,z),	(z, y)	}
S_2	=	{	(x,z),	(y, y),	(z, x)	}	$ S_6 $	=	{	(x, y),	(y,x),	(z,z)	}
S_3	=	{	(x, y),	(y,z),	(z, x)	}	$ S_7 $	=	{	(x,x),	(y, y),	(z, z)	}
S_4	=	{	(x,z),	(y,x),	(z, y)	}							

B.2.4 Image relations

Consider two subsets *A* and *B* of the domain of a function f. What is the relationship between the image under f of their union and the union of their images under f? Are they equal? Is one a subset of the other? What is the relationship between the image of their intersection under f and the intersection of their images f? Theorem B.9 (next theorem) answers these questions.

Theorem B.9. ²⁵ Let f be a function in Y^X .

$$f\left(\bigcup_{i\in I}A_i\right) = \bigcup_{i\in I}f\left(A_i\right) \quad \forall f\in Y^X, A_i\in 2^X \quad (additive)$$

$$f\left(\bigcap_{i\in I}A_i\right) \subseteq \bigcap_{i\in I}f\left(A_i\right) \quad \forall f\in Y^X, A_i\in 2^X$$

♥Proof:

²⁵ Davis (2005) pages 6–7, Vaidyanathaswamy (1960) page 10

1. Proof that $f\left(\bigcup_{i\in I} A_i\right) = \bigcup_{i\in I} f\left(A_i\right)$:

$$\begin{split} \mathbf{f}\left(\bigcup_{i\in I}A_i\right) &= \left\{y\in Y|\exists x\in\bigcup_{i\in I}A_i \text{ such that } (x,y)\in \mathbf{f}\right\} \\ &= \bigcup_{i\in I}\left\{y\in Y|\exists x\in A_i \text{ such that } (x,y)\in \mathbf{f}\right\} \\ &= \bigcup_{i\in I}\mathbf{f}\left(A_i\right) \end{split} \text{ by Definition B.5 page 85}$$

2. Proof that $f(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} f(A_i)$:

$$\begin{split} \operatorname{f}\left(\bigcap_{i\in I}A_i\right) &= \left\{y\in Y|\exists x\in\bigcap_{i\in I}A_i \text{ such that } (x,y)\in\operatorname{f}\right\} & \text{by Definition B.5 page 85} \\ &= \left\{y\in Y|\exists x \text{ such that } \bigwedge_{i\in I}[x\in A_i] \text{ and } (x,y)\in\operatorname{f}\right\} & \text{by Definition A.5 page 40} \\ &\subseteq \left\{y\in Y|\bigwedge_{i\in I}[\exists x\in A_i \text{ such that } (x,y)\in\operatorname{f}]\right\} & \\ &= \bigcap_{i\in I}\left\{y\in Y|\exists x\in A_i \text{ such that } (x,y)\in\operatorname{f}\right\} & \text{by Definition A.5 page 40} \\ &= \bigcap_{i\in I}\operatorname{f}\left(A_i\right) & \text{by Definition B.5 page 85} \end{split}$$

Theorem B.10.
26
 Let $f^{-1} \in X^Y$ be the inverse of a function $f \in Y^X$.

$$f^{-1}(Y) = X \qquad \forall f \in Y^X$$

$$f^{-1}(A^c) = c \left[f^{-1}(A) \right] \qquad \forall f \in Y^X, A \in 2^Y$$

$$f^{-1}\left(\bigcup_{i \in I} A_i \right) = \bigcup_{i \in I} f^{-1}\left(A_i \right) \qquad \forall f \in Y^X, A_i \in 2^Y$$

$$f^{-1}\left(\bigcap_{i \in I} A_i \right) = \bigcap_{i \in I} f^{-1}\left(A_i \right) \qquad \forall f \in Y^X, A_i \in 2^Y$$

[♠]Proof:

1. Proof that $f^{-1}(A^{c}) = c [f^{-1}(A)]$:

$$c \left[f^{-1}(Y) \right] = c \left\{ x \in X | \exists y \in A \text{ such that } (x, y) \in f \right\}$$
 by Definition B.5 page 85
$$= \left\{ x \in X | \exists y \in A \text{ such that } (x, y) \in f \right\}$$
 by Definition A.5 page 40
$$= \left\{ x \in X | \exists y \in A \text{ such that } (x, y) \in f \right\}$$
 by Definition A.5 page 40
$$= \left\{ x \in X | \exists y \in A^{c} \text{ such that } (x, y) \in f \right\}$$
 by Definition B.5 page 85
$$= f^{-1}(A^{c})$$

B.2. FUNCTIONS Daniel J. Greenhoe page 95

2. Proof that $f^{-1}\left(\bigcup_{i\in I} A_i\right) = \bigcup_{i\in I} f^{-1}\left(A_i\right)$:

$$\mathsf{f}^{-1}\left(\bigcup_{i\in I}A_i\right) = \left\{x\in X|\exists y\in\bigcup_{i\in I}A_i \text{ such that } (x,y)\in\mathsf{f}\right\}$$
by Definition B.5 page 85
$$= \left\{x\in X|\bigvee_{i\in I}\left\{\exists y\in A_i \text{ such that } (x,y)\in\mathsf{f}\right\}\right\}$$

$$= \bigcup_{i\in I}\left\{\exists x\in X|y\in A_i \text{ such that } (x,y)\in\mathsf{f}\right\}$$
by Definition A.5 page 40
$$= \bigcup_{i\in I}\mathsf{f}^{-1}(A_i)$$
by Definition B.5 page 85

3. Proof that $f^{-1}(Y) = X$:

$$f^{-1}(Y) = f^{-1}(\mathcal{I}X \cup Y \setminus \mathcal{I}X)$$

$$= f^{-1}(\mathcal{I}X) \cup f^{-1}(Y \setminus \mathcal{I}X)$$
by item 4
$$= X \cup \emptyset$$
by Definition B.4 page 82
$$= X$$

4. Proof that $f^{-1}\left(\bigcap_{i\in I}A_i\right)=\bigcap_{i\in I}f^{-1}\left(A_i\right)$:

$$\begin{split} \mathbf{f}^{-1}\left(\bigcap_{i\in I}A_i\right) &= \left\{x\in X|\exists y\in\bigcap_{i\in I}A_i \text{ such that } (x,y)\in\mathbf{f}\right\} & \text{by Definition B.5 page 85} \\ &= \left\{x\in X|\exists y \text{ such that } \left\{y\in\bigwedge_{i\in I}A_i \text{ and } (x,y)\in\mathbf{f}\right\}\right\} & \text{by Definition A.5 page 40} \\ &= \left\{x\in X|\bigwedge_{i\in I}[\exists y\in A_i \text{ such that } (x,y)\in\mathbf{f}]\right\} & \text{by definition of function page 87} \\ &= \bigcap_{i\in I}\left\{x\in X|\exists y\in A_i \text{ such that } (x,y)\in\mathbf{f}\right\} & \text{by Definition A.5 page 40} \\ &= \bigcap_{i\in I}\mathbf{f}^{-1}\left(A_i\right) & \text{by Definition B.5 page 85} \end{split}$$

5. Proof that $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$:

$$f^{-1}(Y \setminus A) = f^{-1}(Y \cap A^{c})$$

$$= f^{-1}(Y) \cap f^{-1}(A^{c})$$

$$= X \cap f^{-1}(A^{c})$$

$$= X \cap c \left[f^{-1}(A)\right]$$

$$= X \setminus f^{-1}(A)$$
by 5.

by 3.

by 3.

by 3.

₽

B.2.5 Indicator functions

By the *axiom of extension*, a set is uniquely defined by the elements that are in that set. Thus, we are often interested in the Boolean result of whether an element is in a set *A*, or is not in *A*, but exclude the possibility of both being true. That a statement is either true or false but definitely not both is called *the law of the excluded middle* and is a fundamental property of all *Boolean algebras*

($\{1,0\},\lor,\land$). The *indicator function* (next definition) is a convenient "indicator" of whether or not a particular element is in a set, and has several interesting properties (Theorem B.11 page 96).

Definition B.12. 28 *Let X be a set.*

D E F The indicator function $1 \in \{0,1\}^{2^X}$ is defined as $1_A(x) = \begin{cases} 1 & \text{for } x \in A & \forall x \in X, A \in 2^X \\ 0 & \text{for } x \notin A & \forall x \in X, A \in 2^X \end{cases}$ The indicator function $1 \in \{0,1\}^{2^X}$ is defined as

The indicator function 1 is also called the **characteristic function**.

Theorem B.11. ²⁹ Let 1 be the INDICATOR FUNCTION (Definition B.12 page 96). Let $x \lor y$ represent the maximum of $\{x, y\}$.

[♠]Proof:

$$\begin{array}{lll} \mathbb{1}_{A\cup B}(x) \triangleq \left\{ \begin{array}{lll} 1 & \text{for } x \in A \cup B & \forall x \in X \\ 0 & \text{for } x \notin A \cup B & \forall x \in X \end{array} \right. & \text{by Definition B.12} \\ = \left\{ \begin{array}{lll} 1 & \text{for } x \in A \vee x \in B & \forall x \in X \\ 0 & \text{otherwise} \end{array} \right. & \text{by Definition B.12} \end{array} \\ = \left\{ \begin{array}{lll} 1 & \text{for } x \in A \vee x \in B & \forall x \in X \\ 0 & \text{otherwise} \end{array} \right. & \text{by Definition A.5 page 40} \end{array} \\ = \left\{ \begin{array}{lll} 1 & \text{for } x \in A \\ 0 & \text{otherwise} \end{array} \right\} \vee \left\{ \begin{array}{lll} 1 & \text{for } x \in B \\ 0 & \text{otherwise} \end{array} \right\} \\ = \mathbb{I}_A(x) \vee \mathbb{I}_B(x) & \text{by Definition B.12} \end{array} \\ \mathbb{I}_{A\cap B}(x) \triangleq \left\{ \begin{array}{lll} 1 & \text{for } x \in A \cap B & \forall x \in X \\ 0 & \text{for } x \notin A \cap B & \forall x \in X \end{array} \right. & \text{by Definition B.12} \end{array} \\ = \left\{ \begin{array}{lll} 1 & \text{for } x \in A \cap B & \forall x \in X \\ 0 & \text{otherwise} \end{array} \right. & \text{by Definition A.5 page 40} \end{array} \\ = \left\{ \begin{array}{lll} 1 & \text{for } x \in A \cap B & \forall x \in X \\ 0 & \text{otherwise} \end{array} \right. & \text{by Definition B.12} \end{array} \\ \mathbb{I}_{A\cap B}(x) = \mathbb{I}_A(x) \wedge \mathbb{I}_B(x) \\ = \mathbb{I}_A(x) \wedge \mathbb{I}_A(x) \wedge \mathbb{I}_A(x) \\ = \mathbb{I}_A(x) \wedge \mathbb{I}_A(x) \wedge \mathbb{I}_A(x) \wedge \mathbb{I}_A(x) \wedge \mathbb{I}_A(x) \\ = \mathbb{I}_A(x) \wedge \mathbb{I}_A(x) \wedge$$

²⁹ Aliprantis and Burkinshaw (1998), page 126, Hausdorff (1937), pages 22–23

²⁷excluded middle: Theorem 3.2 page 35

²⁸ , page 104, Aliprantis and Burkinshaw (1998), page 126, Hausdorff (1937), page 22, de la Vallée-Poussin

$$\mathbb{1}_{A \triangle B} = \mathbb{1}_{(A \setminus B^{c}) \cup (B \setminus A^{c})} \\
= (\mathbb{1}_{A \setminus B^{c}}) \vee (\mathbb{1}_{B \setminus A^{c}}) \\
= [\mathbb{1}_{A} (1 - \mathbb{1}_{B^{c}})] \vee [\mathbb{1}_{B} (1 - \mathbb{1}_{A^{c}})] \\
= [\mathbb{1}_{A} (1 - 1 + \mathbb{1}_{B})] \vee [\mathbb{1}_{B} (1 - 1 + \mathbb{1}_{A})] \\
= [\mathbb{1}_{A} \mathbb{1}_{B}] \vee [\mathbb{1}_{B} \mathbb{1}_{A}] \\
= \mathbb{1}_{A} \mathbb{1}_{B}$$

$$\mathbb{1}_{\emptyset} = \mathbb{1}_{A \setminus A} \\
= \mathbb{1}_{A} (1 - \mathbb{1}_{A}) \\
= \mathbb{1}_{A} - \mathbb{1}_{A} \mathbb{1}_{A} \\
= \mathbb{1}_{A} - \mathbb{1}_{A} \\
= 0$$

$$\mathbb{1}_{X} = \mathbb{1}_{A \cup A^{c}} \\
= \mathbb{1}_{A} \vee \mathbb{1}_{A^{c}} \\
= \mathbb{1}_{A} \vee (1 - \mathbb{1}_{A}) \\
= 1$$

B.2.6 Calculus of functions

Definition B.13. 30 Let Y^X be the set of all functions from a set X to a set Y.

		J J	J
	$[-f](x) \triangleq -[f(x)]$	$\forall x \in X, f \in Y^X$	(NEGATION)
D	$ \begin{bmatrix} f + g \\ f - g \end{bmatrix}(x) \triangleq f(x) + g(x) \\ [f - g](x) \triangleq f(x) + [-g](x) $	$\forall x \in X f, g \in Y^X$	(FUNCTION ADDITION)
E	$[f-g](x) \triangleq f(x) + [-g](x)$	$\forall x \in X f, g \in Y^X$	(function subtraction)
F	$[gf](x) \triangleq g[f(x)]$	$\forall x \in X f, g \in Y^X$	(FUNCTION MULTIPLICATION)
	$[\alpha f](x) \triangleq \alpha [f(x)]$	$\forall x \in X, \alpha \in Y f \in Y^X$	(SCALAR MULTIPLICATION)

Definition B.14. Let f be a function in X^X with inverse relation f^{-1} and let f be the identity function in f.

$$\mathbf{f}^{n} \triangleq \begin{cases} \mathbf{I} & for \, n = 0 \\ \prod_{1}^{n} \mathbf{f} & for \, n \in \mathbb{N} \\ \left(\mathbf{f}^{-1}\right)^{n} & for \, n \in \mathbb{Z}^{-} \end{cases}$$

Theorem B.12. 31 Let X, Y, and Z be sets

1116	OIE	III D.12.	Le	i A, I, unu Z	de seis.	
	1.	$(fg)^{-1}$	=	$(g^{-1})(f^{-1})$	$\forall f \in Y^X, g \in Z^Y$	(IDEMPOTENT)
T H M	2.			(hg)f	$\forall f \in X^W, g \in Y^X, h \in Z^Y$	(ASSOCIATIVE)
М	3.	(f + g)h	=	$(fh) \stackrel{\circ}{+} (gh)$	$\forall f, g \in Y^X, h \in Z^Y$	(RIGHT DISTRIBUTIVE)
	4.	$\alpha(fg)$	=	$(\alpha f)g$	$\forall f \in Y^X, g \in Z^Y$	(HOMOGENOUS)

№PROOF:

 \blacksquare

³⁰
 Michel and Herget (1993) page 409, Cayley (1858), Riesz (1913), Hilbert et al. (1927) page 6

- 1. Proof of the *idempotent* property:
 - (a) Note that $fg = f \circ g$, where \circ is the *composition function* (Definition B.3 page 80).
 - (b) The result follows from Theorem B.2 (page 81), where it is demonstrated to be true for the more general case of *relations*.
- 2. Proof of the *associative* property: This result follows from Theorem B.2 (page 81), where it is demonstrated to be true for the more general case of *relations*.
- 3. Proof of the *right distributive* property:

$$[(f + g)h]x = (f + g)(hx)$$
 by Definition B.13 page 97

$$= [f(hx)] + [g(hx)]$$
 by Definition B.13 page 97

$$= [(fh)x] + [(gh)x]$$
 by Definition B.13 page 97

4. Proof of the homogeneous property:

$$[\alpha[fg]](x) = \alpha[[fg](x)]$$
 by Definition B.13 page 97

$$= \alpha[f[g(x)]]$$
 by Definition B.13 page 97

$$= [\alpha f][g(x)]$$
 by Definition B.13 page 97

$$= [[\alpha f]g](x)$$
 by Definition B.13 page 97

Theorem B.13. Let $A \triangleq X^X$ be the set of functions on X^X .

```
1. (\mathcal{A},\mathring{+}) is an additive group.

2. (\mathcal{A},\mathring{+},\cdot) is a ring.

3. (\mathcal{A},\mathring{+}) is a linear space.

4. (\mathcal{A},\mathring{+},\cdot) is an algebra.
```

[♠]Proof:

1. additive group:

```
1. f \stackrel{\circ}{+} \mathbb{O} = \mathbb{O} + f = f \forall f \in \mathcal{A} (\mathbb{O} \in \mathcal{A} \text{ is the identity element})

2. f \stackrel{\circ}{+} (-f) = (-f) + f = \mathbb{O} \forall f \in \mathcal{A} ((-f) \text{ is the inverse of } f)

3. (f \stackrel{\circ}{+} g) + h = f \stackrel{\circ}{+} (g + h) \forall f, g, h \in \mathcal{A} ((\mathcal{A}, \cdot) \text{ is associative})
```

2. ring:

```
1. (\mathcal{A}, +, *) is a group with respect to (\mathcal{A}, +) (additive group)

2. f(gh) = (fg)h \forall f,g,h \in \mathcal{A} (associative with respect to *)

3. f(g+h) = (fg) + (fh) \forall f,g,h \in \mathcal{A} (* is left distributive over +)

4. (f + g)h = (fh) + (gh) \forall f,g,h \in \mathcal{A} (* is right distributive over +).
```

3. linear space:

```
1.
                                    (f + \hat{q}) + \hat{h} = f + (\hat{q} + \hat{h})
                                                                                                         \forall f,g,h \in A
                                                                                                                                         (+ is associative)
2.
                                             f + g = g + f
                                                                                                         \forall f,g \in A
                                                                                                                                         (\hat{+} \text{ is } commutative)
     \exists 0 \in X such that f + 0 = f
                                                                                                         \forall f \in XA
                                                                                                                                         (+ identity)
       \exists g \in X
                        such that f + g = 0
                                                                                                         \forall f \in A
                                                                                                                                         (+ inverse)
5.
                                  \alpha \otimes (f + g) = (\alpha \otimes f) + (\alpha \otimes g)
                                                                                                         \forall \alpha \in S \text{ and } f,g \in A
                                                                                                                                         (⊗ distributes over +)
                                  (\alpha + \beta) \otimes f = (\alpha \otimes f) + (\beta \otimes f)
6.
                                                                                                         \forall \alpha, \beta \in S \text{ and } f \in A
                                                                                                                                         (⊗ pseudo-distributes over +)
7.
                                        \alpha(\beta \otimes f) = (\alpha \cdot \beta) \otimes f
                                                                                                         \forall \alpha, \beta \in S \text{ and } f \in A
                                                                                                                                         (· associates with ⊗)
                                             1 \otimes f =
                                                                                                         \forall f \in A
                                                                                                                                         (⊗ identity)
```


4. algebra:

Theorem B.14. Let $\mathcal{A} \triangleq \left\{ \mathbf{f} \in X^X | \exists \mathbf{f}^{-1} \text{ such that } \mathbf{f}^{-1} \mathbf{f} \stackrel{\circ}{=} \mathbf{f} \mathbf{f}^{-1} \stackrel{\circ}{=} \mathbf{I} \right\}$ be the set of invertible functions

 (A, \cdot) is a (multiplicative) group.

^ℚProof:

1. multiplicative group:

1.
$$f\mathbf{I} = \mathbf{I}f = f$$
 $\forall f \in \mathcal{A}$ $(\mathbf{I} \in \mathcal{A} \text{ is the identity element})$
2. $f^{-1}f = ff^{-1} = \mathbf{I}$ $\forall f \in \mathcal{A}$ $(f^{-1} \text{ is the inverse of } f)$

2.
$$f^{-1}f = ff^{-1} = I \quad \forall f \in A$$
 (f^{-1} is the inverse of f)

3.
$$(fg)h = f(gh)$$
 $\forall f, g, h \in \mathcal{A}$ $((\mathcal{A}, \cdot) \text{ is associative})$

2. field:

1.
$$(X, +, *)$$
 is a ring (ring)

2.
$$xy = yx$$
 $\forall x,y \in X$ (commutative with respect to *)

3.
$$(X \setminus \{0\}, *)$$
 is a group (group with respect to *).

Theorem B.15. Let $\mathcal{D}(f)$ be the domain of an function f and $\mathcal{I}(f)$ the image of f.

$$\mathcal{D}\left(\bigcup_{i \in I} \mathsf{f}_i\right) \ = \ \bigcup_{i \in I} \mathcal{D}(\mathsf{f}_i) \qquad \qquad \mathcal{I}\left(\bigcup_{i \in I} \mathsf{f}_i\right) \ = \ \bigcup_{i \in I} \mathcal{I}(\mathsf{f}_i)$$

$$\mathcal{D}\left(\bigcap_{i \in I} \mathsf{f}_i\right) \ \subseteq \ \bigcap_{i \in I} \mathcal{D}(\mathsf{f}_i) \qquad \qquad \mathcal{I}\left(\bigcap_{i \in I} \mathsf{f}_i\right) \ \subseteq \ \bigcap_{i \in I} \mathcal{I}(\mathsf{f}_i)$$

$$\mathcal{D}(\mathsf{f} \setminus \mathsf{g}) \ \supseteq \ \mathcal{D}(\mathsf{f}) \setminus \mathcal{D}(\mathsf{g}) \qquad \qquad \mathcal{I}(\mathsf{f} \setminus \mathsf{g}) \ \supseteq \ \mathcal{I}(\mathsf{f}) \setminus \mathcal{I}(\mathsf{g})$$

 $^{\circ}$ Proof: These results follow from Theorem B.3 (page 82).

Definition B.15. 32 Let X and Y be linear spaces over a field \mathbb{F} and with dual spaces

$$X^* \triangleq \{f(x; x^*) \in \mathbb{F}^X | x^* \in X^*\}$$
 (set of functionals with parameter x^* from X to \mathbb{F})
$$Y^* \triangleq \{g(y; y^*) \in \mathbb{F}^Y | y^* \in Y^*\}.$$
 (set of functionals with parameter y^* from Y to \mathbb{F})

Let $f \in Y^X$ be a function.

³² Michel and Herget (1993) page 420, Giles (2000), page 171

B.3 Tempered Distributions

 $\stackrel{\leftarrow}{}$ I am sure that something must be found. There must exist a notion of generalized functions which are to functions what the real numbers are to the rationals. $\stackrel{\blacktriangleleft}{}$

Giuseppe Peano (1858–1932), Italian mathematician³³

Definition B.16. 34

D E F

D E F A **test function** is any function ϕ that satisfies

- 1. $\phi \in \mathbb{C}^{\mathbb{R}}$
- 2. ϕ is infinitely differentiable.

The set of all test functions is denoted $\mathbb{C}^{\infty}(\mathbb{R})$. A test function ϕ belongs to the **Schwartz class** S if, for some set of constants $\{C_{n,k}|n,k\in\mathbb{W}\}$,

$$(1+|x|)^n |\phi^{(k)}| \le C_{n,k} \qquad \forall n,k \in \mathbb{W}, \forall x \in \mathbb{R}$$

Definition B.17. ³⁵ Let S be the Schwartz class of functions (Definition B.16).

 $d[\cdot] \text{ is a tempered distribution if}$ $1. \quad d\left[\alpha_1\phi_1 + \alpha_2\phi_2\right] = d\left[\alpha_1\phi_1\right] + d\left[\alpha_2\phi_2\right] \qquad \forall \phi_1,\phi_2 \in S, \alpha_1,\alpha_2 \in \mathbb{R} \quad \text{(LINEAR)} \qquad \text{and}$ $2. \quad \lim_{n \to \infty} \phi_n = \phi \qquad \Longrightarrow \qquad \lim_{n \to \infty} d\left[\phi_n\right] = d[\phi] \quad \forall \phi_1,\phi_2 \in S \qquad \text{(CONTINUOUS)}$

Definition B.18. ³⁶ Let S be the Schwartz class of functions (Definition B.16).

Two tempered distributions d_1 and d_2 are **equal** if $d[\phi_1] = d[\phi_2] \quad \forall \phi_1, \phi_2 \in S$

Theorem B.16 (next) demonstrates that all continuous and what we might call "well behaved" functions generate a tempered distribution.

Theorem B.16. ³⁷ Let f be a function in $\mathbb{C}^{\mathbb{R}}$. Let T_f be defined as

$$\mathsf{T}_{\mathsf{f}}[\phi] \triangleq \int_{\mathbb{R}} \mathsf{f}(x)\phi(x) \, \mathsf{d}x.$$

№ Proof:

1. Proof that T_f is *linear*:

$$\begin{split} \mathsf{T}_{\mathsf{f}}\big[\phi_1+\phi_2\big] &= \int_{\mathbb{R}} \mathsf{f}(x)\big(\phi_1(x)+\phi_2(x)\big)\,\mathsf{d}x & \text{by definition of }\mathsf{T}_{\mathsf{f}} \\ &= \int_{\mathbb{R}} \mathsf{f}(x)\phi_1(x)\,\mathsf{d}x + \int_{\mathbb{R}} \mathsf{f}(x)\phi_2(x)\,\mathsf{d}x & \text{by linearity of } \int \\ &= \mathsf{T}_{\mathsf{f}}\big[\phi_1\big] + \mathsf{T}_{\mathsf{f}}\big[\phi_2\big] & \text{by definition of }\mathsf{T}_{\mathsf{f}} \end{split}$$

 33 quote: \square Duistermaat and Kolk (2010) page ix

image http://en.wikipedia.org/wiki/File:Giuseppe_Peano.jpg, public domain

- ³⁴ Vretblad (2003) page 200
- ³⁵ Vretblad (2003) pages 203–204 (Definition 8.3)
- ³⁶ Wretblad (2003) page 206
- ³⁷ Wretblad (2003) page 204

2. Proof that T_f is *cotinuous*:

$$\lim_{n \to \infty} \left| \mathsf{T}_{\mathsf{f}} [\phi_n] - \mathsf{T}_{\mathsf{f}} [\phi] \right| = \lim_{n \to \infty} \left| \int_{\mathbb{R}} \mathsf{f}(x) \phi_n(x) \, \mathrm{d}x - \int_{\mathbb{R}} \mathsf{f}(x) \phi(x) \, \mathrm{d}x \right| \qquad \text{by definition of } \mathsf{T}_{\mathsf{f}}$$

$$= \lim_{n \to \infty} \left| \int_{\mathbb{R}} \mathsf{f}(x) \left(\phi_n(x) - \phi(x) \, \mathrm{d}x \right) \right| \qquad \text{by linearity of } \int$$

$$\leq \lim_{n \to \infty} \int_{\mathbb{R}} M(1 + |x|)^m \left| \phi_n(x) - \phi(x) \right| \, \mathrm{d}x$$

$$= \int_{\mathbb{R}} M(1 + |x|)^{m+2} \left| \phi_n(x) - \phi(x) \right| \frac{1}{(1 + |x|)^2} \, \mathrm{d}x$$

$$\leq \lim_{n \to \infty} \max_{x} \left\{ M(1 + |x|)^{m+2} \left| \phi_n(x) - \phi(x) \right| \right\} \int_{\mathbb{R}} \frac{1}{(1 + |x|)^2} \, \mathrm{d}x$$

$$= 0$$

Definition B.19. 38

The **Dirac delta distribution** $\delta \in \mathbb{C}^{\mathbb{R}}$ is defined as $\delta[\phi] \triangleq \phi(0)$

One could argue that a tempered distribution d behaves *as if* it satisfies the following relation:

$$d[\phi] \approx \int_{\mathbb{R}} d(x)\phi(x) dx.$$

This is not technically correct because in general d is not a function that can be evaluated at a given point x (and hence the here undefined relation " \approx "). But despite this failure, the notation is still very useful in that distributions do behave "as if" they are defined by the above integral relation.

Using this notation, the Dirac delta distribution looks likes this:

$$\delta[\phi] \triangleq \phi(0) \approx \int_{\mathbb{R}} \delta(x)\phi(x) \, dx$$

We could also define another "scaled" and "translated" distribution δ_{ab} such that

$$\delta_{ab}[\phi] \triangleq b\phi(ab) \approx \int_{\mathbb{R}} \delta\left(\frac{x}{b} - a\right)\phi(x) dx$$

because

$$\int_{\mathbb{R}} \delta\left(\frac{x}{b} - a\right) \phi(x) \, dx = \int_{\mathbb{R}} \delta(u - a) \phi(ub) b \, du \qquad \text{where } u = \frac{x}{b}$$

$$= b \int_{\mathbb{R}} \delta(u - a) \phi(ub) \, du$$

$$= b \phi(ab)$$

B.4 Literature

1. Reference books:

```
Maddux (2006)
```

Suppes (1972) (0486616304) Chapter 3: Relations and Functions

2. Pioneering papers on relations:

```
de Morgan (1864a)
```

de Morgan (1864b)

Peirce (1883a)

Peirce (1883c)

Peirce (1883b)

3. Axiomization of calculus of relations:

4. Historically oriented presentations:

Maddux (1991)

Pratt (1992) pages 248-254

5. Theory of Distributions

☐ Hömander (2003) 〈Referenced by Vretblad(2003) as a standard work.〉

Knapp (2005)

6. Miscellaneous:

Peirce (1870a)

Peirce (1870b)

Peirce (1870c)

APPENDIX C	
	ORDER

Equivalence relations require *symmetry* ($x = y \iff y = x$). However another very important type of relation, the *order relation*, actually requires *anti-symmetry*. This chapter presents some useful structures regarding order relations. Ordering relations on a set allow us to *compare* some pairs of elements in a set and determine whether or not one element is *less than* another. In this case, we say that those two elements are *comparable*; otherwise, they are *incomparable*. A set together with an order relation is called an *ordered set*, a *partially ordered set*, or a *poset* (Definition C.2 page 104).

C.1 Preordered sets

```
Definition C.1. 1 Let X be a set.
```


Example C.1. ²

D E F

² Shen and Vereshchagin (2002) page 43

page 104 Daniel J. Greenhoe APPENDIX C. ORDER

C.2 Order relations

Definition C.2. 3 Let X be a set. Let 2^{XX} be the set of all relations on X.

A relation \leq is an **order relation** in 2^{XX} if 0 < x < x

2. $x \le y$ and $y \le z \implies x \le z \qquad \forall x, y, z \in X$

(TRANSITIVE)

(REFLEXIVE)

preorder

and

and

3. $x \le y \text{ and } y \le x \implies x = y \quad \forall x, y \in X$ (anti-symmetric)

An **ordered set** is the pair (X, \leq) . The set X is called the **base set** of (X, \leq) . If $x \leq y$ or $y \leq x$, then elements x and y are said to be **comparable**, denoted $x \sim y$. Otherwise they are **incomparable**, denoted x||y. The relation \leq is the relation \leq ("less than but not equal to"), where \is the SET DIFFERENCE operator, and = is the equality relation. An order relation is also called a **partial order relation**. An ordered set is also called a **partially ordered set** or **poset**.

The familiar relations \geq , <, and > (next) can be defined in terms of the order relation \leq (Definition C.2—previous).

Definition C.3. 4 Let (X, \leq) be an ordered set.

The relations \geq , <, $> \in 2^{XX}$ are defined as follows: $x \geq y \iff y \leq x \qquad \forall x,y \in X$ $x \leq y \iff x \leq y \text{ and } x \neq y \forall x,y \in X$ $x \geq y \iff x \geq y \text{ and } x \neq y \forall x,y \in X$ The relation \geq is called the **dual** of \leq .

Theorem C.1. 5 Let X be a set.

 $(X, \leq) \text{ is an ordered set} \iff (X, \geq) \text{ is an ordered set}$

Example C.2.

E

DEF

		order relation	dual order relation			
	≤	(integer less than or equal to)	≥	(integer greater than or equal to)		
E X	⊆	(subset)	⊇	(super set)		
	-	(divides)		(divided by)		
	\Longrightarrow	(implies)	\leftarrow	(implied by)		

Example C.3. The Hasse diagram to the left illustrates the ordered set $(2^{\{x,y,z\}}, \subseteq)$ and the Hasse diagram to the right illustrates its dual $(2^{\{x,y,z\}},\supseteq)$.

 $^{^3}$

 MacLane and Birkhoff (1999) page 470, Beran (1985) page 1, Korselt (1894) page 156 ⟨I, II, (1)⟩, Dedekind (1900) page 373 ⟨I–III⟩

⁴ Peirce (1880b) page 2

⁵ Grätzer (1998), page 3

Linearly ordered sets **C.3**

In an ordered set we can say that some element is less than or equal to some other element. That is, we can say that these two elements are *comparable*—we can *compare* them to see which one is lesser or equal to the other. But it is very possible that there are two elements that are not comparable, or *incomparable*. That is, we cannot say that one element is less than the other—it is simply not possible to compare them because their ordered pair is not an element of the order relation.

For example, in the ordered set $(2^{\{x,y,z\}}, \subseteq)$ of Example C.9, we can say that $\{x\} \subseteq \{x,z\}$ (we can compare these two sets with respect to the order relation \subseteq), but we cannot say $\{y\} \subseteq \{x, z\}$, nor can we say $\{x, z\} \subseteq \{y\}$. Rather, these two elements $\{y\}$ and $\{x, z\}$ are simply *incomparable*.

However, there are some ordered sets in which every element is comparable with every other element; and in this special case we say that this ordered set is a totally ordered set or is linearly ordered (next definition).

Definition C.4. ⁶

D E

A relation \leq is a **linear order relation** on X if

- 1. \leq is an ORDER RELATION (Definition C.2 page 104) and
- 2. $x \le y \text{ or } y \le x \quad \forall x, y \in X$ (COMPARABLE).

A linearly ordered set is the pair (X, \leq) .

A linearly ordered set is also called a **totally ordered set**, a **fully ordered set**, and a **chain**.

Definition C.5 (poset product). ⁷

E

D

Ε

The **product** $P \times Q$ of ordered pairs $P \triangleq (X, \leq)$ and $Q \triangleq (Y, \leq)$ is the ordered pair $(X \times Y, \leq)$ where

$$(x_1, y_1) \le (x_2, y_2) \qquad \stackrel{\text{def}}{\Longleftrightarrow} \qquad x_1 \le x_2 \text{ and } y_1 \le y_2 \qquad \forall x_1, x_2 \in X; y_1, y_2 \in Y$$

Representation **C.4**

Definition C.6. ⁸

1. $x \leq y$ 2. (x < z < y)

y **covers** x in the ordered set (X, \leq) if

(y is greater than x) (z = x or z = v)

(there is no element between x and y).

The case in which y covers x is denoted

⁶

MacLane and Birkhoff (1999) page 470, ■ Ore (1935) page 410

Birkhoff (1948) page 7,
 MacLane and Birkhoff (1967), page 489

⁸ Birkhoff (1933a) page 445

E X

E

Example C.4. Let $(\{x, y, z\}, \leq)$ be an ordered set with cover relation \prec .

		(y	covers	x	
$\{x < y < z\}$	\Longrightarrow	$\{z\}$	covers	y	}
		z	does not cover	x	

An ordered set can be represented in four ways:

- 1. Hasse diagram
- 2. tables
- 3. set of ordered pairs of order relations
- 4. set of ordered pairs of cover relations

Definition C.7. Let (X, \leq) be an ordered pair.

- A diagram is a **Hasse diagram** of (X, \leq) if it satisfies the following criteria:
 - Each element in X is represented by a dot or small circle.
 - \Leftrightarrow For each $x, y \in X$, if x < y, then y appears at a higher position than x and a line connects x and y.

Example C.5. Here are three ways of representing the ordered set $(2^{\{x,y\}}, \subseteq)$;

1. **Hasse diagrams**: If two elements are comparable, then the lesser of the two is drawn lower on the page than the other with a line connecting them.

2. Sets of ordered pairs specifying *order relations* (Definition C.2 page 104):

$$\subseteq = \left\{ \begin{array}{ll} (\varnothing,\varnothing)\,, & (\{x\},\{x\})\,, & (\{y\},\{y\})\,, & (\{x,y\},\{x,y\})\,, \\ (\varnothing,\{x\})\,, & (\varnothing,\{y\})\,, & (\varnothing,\{x,y\})\,, & (\{x\},\{x,y\})\,, & (\{y\},\{x,y\}) \end{array} \right\}$$

3. Sets of ordered pairs specifying *covering relations*:

$$\leftarrow = \{ (\emptyset, \{x\}), (\emptyset, \{y\}), (\{x\}, \{x, y\}), (\{y\}, \{x, y\}) \}$$

Example C.6. The Hasse diagrams to the left and right represent *equivalent* ordered sets. They are simply drawn differently.

Example C.7. The Hasse diagrams to the left and right represent *equivalent* ordered sets. They are simply drawn differently.

Example C.8. The Hasse diagrams to the left and right represent *equivalent* ordered sets. In particular, the line extending from 1 to *y* in the diagram to the left is

In particular, the line extending from 1 to y in the diagram to the left is redundant because other lines already indicate that $z \le 1$ and $y \le z$; and thus by the *transitive* property (Definition C.2 page 104), these two relations imply $1 \le y$. A more concise explanation is that both have the same convering relation:

 $\leq \{(z,1), (x,z), (0,x), (y,z), (0,y)\}$

C.5. EXAMPLES Daniel J. Greenhoe page 107

Examples

Examples of order relations include the following:

set inclusion order relation:	Example C.9	page 107
integer divides order relation:	Example C.10	page 107
linear operator order relation:	Example C.11	page 107
projection operator order relation:	Example C.12	page 107
integer order relation:	Example C.13	page 108
metric order relation:	Example C.14	page 108
coordinatewise order relation	Example C.15	page 108
lexicographical order relation	Example C.16	page 108

Example C.9 (Set inclusion order relation). 9 Let X be a set, 2^{X} the power set of X, and \subseteq the set inclusion relation. Then, \subseteq is an *order relation* on the set 2^X and the pair $(2^X, \subseteq)$ is an ordered set. The ordered set $(2^{\{x,y,z\}},\subseteq)$ is illustrated to the right by its *Hasse diagram*.

Example C.10 (Integer divides order relation). ¹⁰Let | be the "divides" relation on the set \mathbb{N} of positive integers such that n|m represents m divides n. Then I is an *order relation* on \mathbb{N} and the pair (\mathbb{N}, \mathbb{I}) is an *ordered set*. The ordered set $(\{n \in \mathbb{N} | n | 2 \text{ or } n | 3 \text{ or } n | 5\}, \})$ is illustrated by a *Hasse diagram* to the right.

Example C.11 (Operator order relation). ¹¹ Let X be an inner-product space. We can define the order relation \leq on the linear operators $\mathbf{L}_1, \mathbf{L}_2, \mathbf{L}_3 \dots \in X^X$ as follows:

Example C.12 (Projection operator order relation). 12 Let (V_n) be a sequence of subspaces in a Hilbert space X. We can define a projection operator P_n for every subspace $V_n \subseteq X$ in a subspace lattice such that

$$V_n = \mathbf{P}_n \mathbf{X} \qquad \forall n \in \mathbb{Z}.$$

Each projection operator \mathbf{P}_n in the lattice "projects" the range space \mathbf{X} onto a subspace V_n . We can define an order relation on the projection operators as follows:

$$\mathbf{P}_1\mathbf{P}_2=\mathbf{P}_2\mathbf{P}_1=\mathbf{P}_1$$

 $^{^{10}}$ \blacksquare MacLane and Birkhoff (1999) page 484, \blacksquare Sheffer (1920) page 310 (footnote 1)

¹² Isham (1999) pages 21–22, Dunford and Schwartz (1957), page 481, **?** page 72

Example C.13 (Integer order relation). Let \leq be the standard order relation on the set of integers \mathbb{Z} . Then the ordered pair (\mathbb{Z}, \leq) is a totally ordered set. The totally ordered set $(\{1,2,3,4\},\leq)$ is illustrated to the right. Other familiar examples of totally ordered sets include the pair (\mathbb{Q}, \leq) (where \mathbb{Q} is the set of rational numbers) and (\mathbb{R}, \leq) (where \mathbb{R} is the set of real numbers).

Q4 **Q**3 **Q**2 **Q**1

Figure C.1: Balls on the set \mathbb{R}^2 using different metrics

Example C.14 (Metric order relation). ¹³Let d_n be a metric on the set X and B_n be the unit ball centered at "0" in the metric space (X, d_n) . Define an order relation \leq on the set of metric spaces $\{(X, d_n) \mid n = 1, 2, ...\}$ such that $(X, d_n) \leq (X, d_m) \iff B_n \subseteq B_m$.

The the tuple $(\{(X, d_n) \mid n = 1, 2, ...\}, \leq)$ is an ordered set. The ordered set of several common metric spaces is a *totally ordered* set, as illustrated to the right and with associated unit balls illustrated in Figure C.1 (page 108).

Example C.15 (Coordinatewise order relation). ¹⁴ Let (X, \leq) be an ordered set. Let $\mathbf{x} \triangleq (x_1, x_2, \dots, x_n)$ and $\mathbf{y} \triangleq (y_1, y_2, \dots, y_n)$.

The **coordinatewise order relation** \geq on the Cartesian product X^n is defined for all $x, y \in X^n$ as $x \geq y \iff \{x_1 \leq y_1 \text{ and } x_2 \leq y_2 \text{ and } \dots \text{ and } x_n \leq y_n\}$

Example C.16 (Lexicographical order relation). Let (X, \leq) be an ordered set. Let $\mathbf{x} \triangleq (x_1, x_2, \dots, x_n)$ and $\mathbf{y} \triangleq (y_1, y_2, \dots, y_n)$.

 $^{^{13}}$ Michel and Herget (1993) page 354, \blacksquare Giles (1987) page 29

¹⁴

■ Shen and Vereshchagin (2002) page 43

¹⁵ ■ Shen and Vereshchagin (2002) page 44, ■ Halmos (1960) page 58, ■ Hausdorff (1937) page 54

C.5. EXAMPLES Daniel J. Greenhoe page 109

The **lexicographical order relation** \leq on the Cartesian product X^n is defined forall $x, y \in X^n$ as

$$\mathbf{x} < \mathbf{y} \iff \begin{cases} \left(\begin{array}{cccc} x_{1} < y_{1} & & & \\ (x_{2} < y_{2} & \text{and} & x_{1} = y_{1} & & \\ (x_{3} < y_{3} & \text{and} & (x_{1}, x_{2}) = (y_{1}, y_{2}) & & \\ & \dots & & \dots & \\ (x_{n-1} < y_{n-1} & \text{and} & (x_{1}, x_{2}, \dots, x_{n-2}) = (y_{1}, y_{2}, \dots, y_{n-2}) & \text{or} \\ (x_{n} \le y_{n} & \text{and} & (x_{1}, x_{2}, \dots, x_{n-1}) = (y_{1}, y_{2}, \dots, y_{n-1}) & & \\ \end{cases}$$
The large graphical and are relations is also called the distingual angle and are relation.

The lexicographical order relation is also called the **dictionary order relation** or **alphabetic order relation**.

Definition C.8.

An ordered set is **labeled** if the labels on the elements are significant.

An ordered set is **unlabeled** if the labels on the elements are not significant.

Proposition C.1. ¹⁶ Let X_n be a finite set with order $n = |X_n|$. Let P_n be the number of labeled ordered sets on X_n and p_n the number of unlabeled ordered sets.

Р	n	0	1	2	3	4	5	6	7	8	9
R	P_n	1	1	3	19	219	4231	130,023	6, 129, 859	431, 723, 379	44,511,042,511
Р	p_n	1	1	2	5	16	63	318	2045	16, 999	183, 231

Figure C.2: All possible orderings of the set $\{x, y, z\}$ (Example C.17 page 109).

Example C.17. Proposition C.1 (page 109) indicates that there are exactly 19 labeled order relations on the set $\{x, y, z\}$ and 5 unlabeled order relations.

The 19 labeled order relations on $\{x, y, z,\}$ are represented here using three methods: 1. Hasse diagrams: Figure C.2 page 109

order relations: Table C.2 page 110
 covering relations: Table C.3 page 110

In each of these three methods, the 19 *labeled* order relations are arranged into 5 groups, each group representing one of the 5 *unlabeled* order relations.

E X

 $^{^{16}}$ ⊒ Sloane (2014) ⟨http://oeis.org/A001035⟩, ⊒ Sloane (2014) ⟨http://oeis.org/A000112⟩, \blacksquare Comtet (1974) page 60, \blacksquare Brinkmann and McKay (2002)

page 110 Daniel J. Greenhoe APPENDIX C. ORDER

	labeled order relations on $\{x, y, z\}$									
\leq_1	=	{	(x,x),(y,y),(z,z)				}			
\leq_2	=	{	(x, x), (y, y), (z, z),	(y, z)			}			
\leq_3	=	{	(x, x), (y, y), (z, z),	(z, y)			}			
\leq_4	=	{	(x, x), (y, y), (z, z),	(x, z)			}			
$ \leq_5$	=	{	(x, x), (y, y), (z, z),	(z,x)			}			
\leq_6	=	{	(x, x), (y, y), (z, z),	(x, y)			}			
≤ ₇	=	{	(x, x), (y, y), (z, z),	(y, x)			}			
≤8	=	{	(x, x), (y, y), (z, z),	(x, y),	(x, z)		}			
≤9	=	{	(x, x), (y, y), (z, z),	(x, y),	(y, z)		}			
≤ ₁₀	=	{	(x, x), (y, y), (z, z),	(z,x),	(z, y)		}			
≤11	=	{	(x, x), (y, y), (z, z),	(y,x),	(z,x)		}			
≤ ₁₂	=	{	(x, x), (y, y), (z, z),	(x, y),	(z, y)		}			
≤ ₁₃	=	{	(x, x), (y, y), (z, z),	(x,z),	(y, z)		}			
≤14	=	{	(x, x), (y, y), (z, z),	(x, y),	(y,z),	(x,z)	}			
≤ ₁₅	=	{	(x, x), (y, y), (z, z),	(x,z),	(x, y),	(z, y)	}			
≤ ₁₆	=	{	(x, x), (y, y), (z, z),	(y,x),	(y,z),	(x, z)	}			
≤ ₁₇	=	{	(x, x), (y, y), (z, z),	(y,z),	(y,x),	(z, x)	}			
\leq_{18}	=	{	(x, x), (y, y), (z, z),	(z,x),	(z,y),	(x, y)	}			
≤19	=	{	(x, x), (y, y), (z, z),	(z,y),	(z,x),	(y, x)	}			

Table C.2: labeled order relations on $\{x, y, z\}$

	labeled cover relations on $\{x, y, z\}$										
\prec_1	=	Ø				≺11	=	{	(y,x),	(z,x)	}
\prec_2	=	{	(y,z)		}	≺ ₁₂	=	{	(x, y),	(z, y)	}
\prec_3	=	{	(z, y)		}	≺ ₁₃	=	{	(x,z),	(y, z)	}
\prec_4	=	{	(x, z)		}	≺14	=	{	(x, y),	(y,z)	}
\prec_5	=	{	(z, x)		}	≺ ₁₅	=	{	(x,z),	(x, y)	}
\prec_6	=	{	(x, y)		}	< ₁₆	=	{	(y,x),	(y, z)	}
$ \prec_7$	=	{	(y, x)		}	≺ 17	=	{	(y,z),	(y, x)	}
<8	=	{	(x, y),	(x,z)	}	≺18	=	{	(z,x),	(z, y)	}
≺9	=	{	(x, y),	(y, z)	}	≺ 19	=	{	(z,y),	(z, x)	}
< ₁₀	=	{	(z,x),	(z, y)	}						

Table C.3: labeled cover relations on $\{x, y, z\}$

C.6 Functions on ordered sets

Definition C.9. ¹⁷ Let (X, \leq) and (Y, \leq) be ordered sets.

Definition $\theta \in Y^X$ is **order preserving** with respect to \leq and \neq if $x \leq y \implies \theta(x) \neq \theta(y) \quad \forall x, y \in X$.

Example C.18. ¹⁸ In the diagram to the right, the function $\theta \in Y^X$ is *order preserving* with respect to \leq and \geq . Note that θ^{-1} is *not* order preserving. This example also illustrates the fact that that order preserving does not imply *isomorphic*.

Example C.19. In the diagram to the right, the function $\theta \in Y^X$ is *order preserving* with respect to \leq and \leq . Note that θ^{-1} is *not* order preserving. Like Example C.18 (page 111), this example also illustrates the fact that that order preserving does not imply *isomorphic*.

Example C.20. In the diagram to the right, the function $\theta \in Y^X$ is *order preserving* with respect to \leq and \neq . Note that θ^{-1} *is also* order preserving. In this case, θ is an *isomorphism* and the ordered sets (X, \leq) and (Y, \neq) are *isomorphic*.

Example C.21. ¹⁹

The function $f(x) \triangleq \frac{x}{1-x^2}$ in $\mathbb{R}^{(-1:1)}$ is *bijective* and *order preserving*.

Theorem C.2 (Pointwise ordering relation). ²⁰Let X be a set, (Y, \leq) an ordered set, and $f, g \in Y^X$.

- $f(x) \le g(x) \forall x \in X \implies (Y^X, \ge) \text{ is an ordered set.}$
 - In this case we say f is "dominated by" g in X, or we say g "dominates" f in X.

Example C.22 (Pointwise ordering relation). ²¹Let $f \ge g$ represent that $f(x) \le g(x)$ for all $0 \le x \le 1$ (we say f is "dominated by" g in the region [0,1], or we say g "dominates" f in the region [0,1]). The pair $(\{f_n(x) = 1 - x^n | n \in \mathbb{N}\}, \nearrow)$ is a totally ordered set.

¹⁷ Burris and Sankappanavar (2000), page 10

¹⁸ Burris and Sankappanavar (2000), page 10

¹⁹ Munkres (2000) page 25 (Example 1§3.9)

²⁰ Shen and Vereshchagin (2002), page 43, Giles (2000), page 252

²¹ Shen and Vereshchagin (2002), page 43, Giles (2000), page 252, Aliprantis and Burkinshaw (2006) page 2

page 112 Daniel J. Greenhoe APPENDIX C. ORDER

C.7 Decomposition

C.7.1 Subposets

Definition C.10. 22

The tupple (Y, \leq) is a **subposet** of the ordered set (X, \leq) if

- 1. $Y \subseteq X$
- (Y is a subset of X)
- and

- $2. \quad \overline{\leq} = \leq \cap Y^2$
- $(\ge is the relation \le restricted to Y \times Y)$

Example C.23.

Subposets of

include

Example C.24. Let

$$(X, \leq) \triangleq \Big(\{0, a, b, c, p, 1\}, \qquad \Big\{ (0, 0), (a, a), (b, b), (c, c), (p, p), (1, 1), \\ (0, a), (0, b), (0, c), (0, p), (0, 1), \\ (a, b), (a, c), (a, 1), (p, 1), \\ (b, c), (b, 1), (c, 1), (p, 1) \Big\} \Big)$$

$$(Y, \geq) \triangleq \Big(\{0, a, c, p, 1\}, \qquad \Big\{ (0, 0), (a, a), (c, c), (p, p), (1, 1), \Big\}$$

$$c$$
 b
 a
 b
 a
 b
 a

$$(0,a), (0,c), (0,p), (0,1), (a,c), (a,1), (p,1), (c,1), (p,1) \}.$$

Then (Y, \leq) is a subposet of (X, \leq) because $Y \subseteq X$ and $\leq = (\leq \cap Y^2)$.

A *chain* is an ordered set in which every pair of elements is *comparable* (Definition C.4 page 105). An *antichain* is just the opposite—it is an ordered set in which *no* pair of elements is comparable (next definition).

Definition C.11. 23

D Inc

D

The subposet (A, \leq) in the ordered set (X, \leq) is an **antichain** if $a||b \quad \forall a, b \in A$

(all elements in A are INCOMPARABLE).

Definition C.12. ²⁴

- $\ensuremath{\clubsuit}$ The **length** of a poset (X, \leq) is the length of the longest chain in the ordered set.
- "" The **width** of a poset (X, \leq) is number of elements in the largest antichain in the ordered set.

Theorem C.3 (Dilworth's theorem). ²⁵ Let (X, \leq) be an ordered set with width n.

²³ Grätzer (2003) page 2

²⁵ Dilworth (1950a) page 161, Dilworth (1950b), Farley (1997) page 4

²⁴ Grätzer (2003) page 2, Birkhoff (1967) page 5

C.7.2 Operations on posets

Definition C.13. ²⁶ Let X and Y be disjoint sets. Let $P \triangleq (X, \triangleleft)$ and $Q \triangleq (Y, \triangleleft)$ be ordered sets on X and Y.

The **direct sum** of **P** and **Q** is defined as

$$P + Q \triangleq (X \cup Y, \leq)$$

where $x \leq y$ if

D E F

- 1. $x, y \in X$ and $x \in y$ or
- 2. $x, y \in Y$ and $x \leq y$

The direct sum operation is also called the **disjoint union**. The notation nP is defined as $nP \triangleq P + P + \cdots + P$.

$$n-1$$
 "+" operations

Definition C.14. ²⁷ Let X and Y be disjoint sets. Let $P \triangleq (X, \triangleleft)$ and $Q \triangleq (Y, \triangleleft)$ be ordered sets on X and Y.

The **direct product** of **P** and **Q** is defined as

$$P \times Q \triangleq (X \times Y, \leq)$$

where $(x_1, y_1) \le (x_2, y_2)$ if $x_1 \ge x_2$ and $y_1 \ge y_2$.

The direct product operation is also called the **cartesian product**. The order relation \leq is called a **coordinate wise order relation**. The notation P^n is defined as

$$P^n \triangleq \underbrace{P \times P \times \cdots \times P}_{n-1 \text{ "x" operations}}.$$

Definition C.15. ²⁸ Let X and Y be disjoint sets. Let $P \triangleq (X, \triangleleft)$ and $Q \triangleq (Y, \triangleleft)$ be ordered sets on X and Y.

The ordinal sum of P and Q is defined as

 $P \oplus Q \triangleq (X \cup Y, \leq)$

where $x \le y$ if

D

D

- 1. $x, y \in X$ and $x \neq y$ or
- 2. $x, y \in Y$ and $x \leq y$ or
- 3. $x \in X$ and $y \in Y$.

Definition C.16. ²⁹ Let X and Y be disjoint sets. Let $P \triangleq (X, \leq)$ and $Q \triangleq (Y, \leq)$ be ordered sets on X and Y.

The **ordinal product** of **P** and **Q** is defined as

 $P \otimes Q \triangleq (X \times Y, \leq)$

where $(x_1, y_1) \le (x_2, y_2)$ if

- 1. $x_1 \neq x_2$ and $x_1 \neq x_2$ or
- $2. \quad x_1 = x_2 \quad and \quad y_1 \le y_2$

The order relation \leq is called a **lexicographical** order relation, **dictionary order relation**, or **alphabetic order relation**.

- ²⁶ Stanley (1997) page 100
- ²⁷ Stanley (1997) pages 100–101, Shen and Vereshchagin (2002) page 43
- ²⁸ Stanley (1997) page 100
- 29 \blacksquare Stanley (1997) page 101, \blacksquare Shen and Vereshchagin (2002) page 44, \blacksquare Halmos (1960) page 58, \blacksquare Hausdorff (1937) page 54

page 114 Daniel J. Greenhoe APPENDIX C. ORDER

Definition C.17. ³⁰ Let $P \triangleq (X, \leq)$ be an ordered set. Let \geq be the dual order relation of \leq .

The **dual** of **P** is defined as $P^* \triangleq (X, \ge)$

Definition C.18. ³¹ *Let* X *and* Y *be disjoint sets. Let* $P \triangleq (X, \leq)$ *and* $Q \triangleq (Y, \leq)$ *be ordered sets on* X *and* Y.

The ordinal product of P and Q is defined as $Q^{P} \triangleq \left(\left\{ f \in Y^{X} | f \text{ is ORDER PRESERVING} \right\}, \leq \right)$ where $f \leq g$ if $f(x) \leq g(x) \quad \forall x \in X$.
The order relation \leq is called a **pointwise order relation** (Example C.22 page 111).

Theorem C.4 (cardinal arithmetic). ³² Let $P \triangleq (X, \leq)$ be an ordered set.

1. **P** + **Q** = Q + Pcommutative 2. **P** × **Q** $= Q \times P$ commutative 3. $(P + Q) + (\mathbb{R}, \leq) = P + (Q + (\mathbb{R}, \leq))$ associative 4. $(\mathbf{P} \times \mathbf{Q}) \times (\mathbb{R}, \leq) = \mathbf{P} \times (\mathbf{Q} \times (\mathbb{R}, \leq))$ associative 5. $\mathbf{P} \times (\mathbf{Q} + (\mathbb{R}, \leq)) = (\mathbf{P} \times \mathbf{Q}) + (\mathbf{P} \times (\mathbb{R}, \leq))$ distributive 6. $(\mathbb{R}, \leq)^{P+Q}$ $= (\mathbb{R}, \leq)^{P} \times (\mathbb{R}, \leq)^{Q}$ $(\boldsymbol{P}^{Q})^{(\mathbb{R},\leq)}$ ${m p}{m Q}{f imes}({\mathbb R},{\leq})$

C.7.3 Primitive subposets

Definition C.19.

The ordered set L_1 is defined as $(\{x\}, \leq)$, for some value x.

The L_1 ordered set is illustrated by the Hasse diagram to the right.

Definition C.20.

The ordered set 2 is defined as $2 \triangleq 1^2$.

The 2 ordered set is illustrated by the Hasse diagram to the right.

C.7.4 Decomposition examples

Example C.25. Figure C.3 (page 115) illustrates the four ordered set operations +, \times , \oplus , and \otimes .

Example C.26. ³³The ordered set n1 is the *anti-chain* with n elements. The ordered set 41 is illustrated to the right.

³³ Stanley (1997) page 100

³⁰ Stanley (1997) page 101

³¹ Stanley (1997) page 101

³² Stanley (1997) page 102

Figure C.3: Operations on ordered sets (Example C.25 page 114)

Example C.27. The ordered set \mathbb{I}^n is the *chain* with *n* elements. The ordered set 1⁴ is illustrated to the right.

Example C.28. The ordered set 2² is the 4 element Boolean algebra illustrated to the right.

Example C.29. The ordered set 2³ is the 8 element Boolean algebra illustrated to the right.

Example C.30. ³⁴The longest antichain (Definition C.11 page 112) in the figure to the right has 4 elements giving this ordered set a width (Definition C.12 page 112) of 4. The longest chain also has 4 elements, giving the ordered set a *length* (Definition C.12 page 112) of 3. By *Dilworth's theorem* (Theorem C.3 page 112), the smallest partition consists of four chains (Definition C.4 page 105). One such partition is $\{\{0, a, p, 1\}, \{b\}, \{c, q\}, \{r\}\}.$

Bounds on ordered sets C.8

In an *ordered set* (Definition C.2 page 104), a pair of elements $\{x, y\}$ may not be *comparable*. Despite this, we may still be able to find elements that are comparable to both x and y and are "greater" than both of them. Such a greater element is called an *upper bound* of x and y. There may be many elements that are upper bounds of x and y. But if one of these upper bounds is comparable with and is smaller than all the other upper bounds, than this "smallest" of the "greater" elements is called the *least upper bound* (lub) of x and y, and is denoted $x \vee y$ (Definition C.21 page 116). Likewise,

³⁴ Farley (1997) page 4

we may also be able to find elements that are comparable to $\{x,y\}$ and are "*lesser*" than both of them. Such a lesser element is called a *lower bound* of x and y. If one of these lower bounds is comparable with and is larger than all the other lower bounds, than this "largest" of the "lesser" elements is called the *greatest lower bound* (glb) of $\{x,y\}$ and is denoted $x \land y$ (Definition C.22 page 116). If every pair of elements in an ordered set has both a least upper bound and a greatest lower bound in the ordered set, then that ordered set is a *lattice* (Definition D.3 page 119).

Definition C.21. Let (X, \leq) be an ordered set and 2^X the power set of X.

For any set $A \in 2^X$, c is an **upper bound** of A in (X, \leq) if

1. $x \le c \quad \forall x \in A$.

D E F

D

DEF

An element b is the **least upper bound**, or **lub**, of A in (X, \leq) if

2. b and c are upper bounds of $A \implies b \le c$.

The least upper bound of the set A is denoted $\bigvee A$. It is also called the **supremum** of A, which is denoted $\sup A$. The **join** $x \lor y$ of x and y is defined as $x \lor y \triangleq \bigvee \{x, y\}$.

Definition C.22. Let (X, \leq) be an ordered set and 2^X the power set of X.

For any set $A \in 2^X$, p is a **lower bound** of A in (X, \leq) if

1. $p \le x \quad \forall x \in A$.

An element a is the **greatest lower bound**, or **glb**, of A in (X, \leq) if

2. a and p are LOWER BOUNDS of $A \implies p \le a$.

The greatest lower bound of the set A is denoted $\bigwedge A$. It is also called the **infimum** of A, which is denoted inf A. The **meet** $x \wedge y$ of x and y is defined as $x \wedge y \triangleq \bigwedge \{x, y\}$.

Definition C.23 (least upper bound property). 35 *Let X be a set. Let* sup *A be the supremum (least upper bound) of a set A.*

A set X satisfies the **least upper bound property** if

1. $A \subseteq X$

2. $A \neq \emptyset$ ar

3. $\exists b \in X$ such that $\forall a \in A, \ a \leq b$ (A is bounded above in X)

A set X that satisfies the least upper bound property is also said to be **complete**.

Proposition C.2. Let $(X, \vee, \wedge; \leq)$ be an ORDERED SET (Definition C.2 page 104).

$$\begin{array}{c} \mathbf{P} \\ \mathbf{R} \\ \mathbf{P} \end{array} \hspace{0.5cm} x \hspace{0.1cm} \leq \hspace{0.1cm} y \hspace{0.1cm} \Longleftrightarrow \hspace{0.1cm} \left\{ \begin{array}{ccc} 1. & x \wedge y & = \hspace{0.1cm} x \hspace{0.1cm} \text{and} \\ 2. & x \vee y & = \hspace{0.1cm} y \end{array} \right\} \hspace{0.1cm} \forall x,y \in X$$

Proposition C.3. Let 2^X be the POWER SET of a set X.

$$\begin{array}{c}
\mathsf{P} \\
\mathsf{R} \\
\mathsf{P}
\end{array}
A \subseteq B \implies \left\{ \begin{array}{ccc}
1. & \bigvee A & \leq & \bigvee B & \text{and} \\
2. & \bigwedge A & \leq & \bigwedge B &
\end{array} \right\} \qquad \forall A, B \in 2^X$$

 $\exists \sup A \in X$

APPENDIX D	
1	
	LATTICES

D.1 Semi-lattices

Definition C.21 (page 116) defined the least upper bound \vee of pairs of elements in terms of an ordering relation \leq . However, the converse development is also possible— we can first define a binary operation \otimes with a handful of "least upper bound like properties", and then define an ordering relation \leq in terms of \otimes (Definition D.1 page 117). In fact, Theorem D.1 (page 117) shows that under Definition D.1, (X, \leq) *is* a partially ordered set and \otimes is a least upper bound on that ordered set.

The same development is performed with regards to a greatest lower bound \oslash with the result that (X, \lt) *is* a partially ordered set and \oslash is a greatest lower bound on that ordered set (Theorem D.2 page 118).

Definition D.1. ¹ *Let* \otimes , \leq : $X^2 \rightarrow X$ *be binary operators on a set X*.

```
The algebraic structure (X, \leq, \otimes) is a join semilattice if

1. x \otimes x = x \forall x \in X (idempotent) and
2. x \otimes y = y \otimes x \forall x, y \in X (commutative) and
3. (x \otimes y) \otimes z = x \otimes (y \otimes z) \forall x, y, z \in X (associative).
```

Definition D.2. ² Let \emptyset , \ge : $X^2 \to X$ be binary operators on a set X.

```
The algebraic structure (X, \leq, \emptyset) is a meet semilattice if

1. x \otimes x = x \forall x \in X (idempotent) and
2. x \otimes y = y \otimes x \forall x, y \in X (commutative) and
3. (x \otimes y) \otimes z = x \otimes (y \otimes z) \forall x, y, z \in X (associative).
```

Theorem D.1. 3 Let \otimes , \leq : $X^2 \to X$ be binary operators over a set X.

```
 \left\{ \begin{array}{l} (X, \mathbb{Z}, \emptyset) \text{ is } a \\ \text{JOIN SEMILATTICE} \end{array} \right\} \implies \left\{ \begin{array}{l} 1. & (X, \mathbb{Z}) \text{ is } a \text{ PARTIALLY ORDERED SET} \\ 2. & x \otimes y \text{ is } a \text{ LEAST UPPER BOUND of } x \text{ and } y & \forall x, y \in X. \end{array} \right\}
```

PROOF: In order for (X, \leq) to be an ordered set, \leq must be, according to Definition C.2 (page 104), *reflexive*, *antisymmetric*, and *transitive*;

² MacLane and Birkhoff (1999) page 475

³ MacLane and Birkhoff (1999) page 475

$\stackrel{\text{def}}{=}$ Proof that \leq is reflexive:

$$x = x \otimes x$$

$$\iff x \le x$$

$$\implies \le \text{ is reflexive}$$

by idempotent hypothesis by definition of \leq

$\stackrel{\text{def}}{=}$ Proof that \leq is antisymmetric:

$$x \le y$$
 and $y \le x \iff x \otimes y = y$ and $y \otimes x = x$
 $\implies x \otimes y = y$ and $x \otimes y = x$
 $\implies x = y$
 $\implies \le \text{is antisymmetric}$

by definition of \leq by commutative hypothesis

\clubsuit Proof that \leq is transitive:

$$x \le y$$
 and $y \le z \iff x \otimes y = y$ and $y \otimes z = z$
 $\implies (x \otimes y) \otimes z = z$
 $\iff x \otimes (y \otimes z) = z$
 $\implies x \otimes z = z$
 $\iff x \le z$
 $\iff z \le z$
 $\iff z \le z$

by definition of \leq

by associative hypothesis

\bowtie Proof that $x \otimes y$ is a lub of x and y:

$$x \otimes y = y \iff x \leq y$$

 $\iff x \vee y = y$
 $\implies x \otimes y = x \vee y$
 $\implies x \otimes y \text{ is the lub of } x \text{ and } y$

by definition of \leq by definition of \vee

Theorem D.2. 4 Let \oslash , \gtrless : $X^2 \to X$ be binary operators over a set X.

			· · · · · · · · · · · · · · · · ·	
I	$\int (X, \leq, \emptyset) \text{ is } a$) <u> </u>	$\int (X, <) is a$ partially ordered set	and \
M	igg(MEET SEMILATTICE $ig($		2. $x \otimes y$ is a Greatest lower bound of x and y	$\forall x, y \in X. \int$

 $\$ Proof: In order for (X, \leq) to be an ordered set, \leq must be, according to Definition C.2 (page 104), *reflexive*, *antisymmetric*, and *transitive*;

\triangle Proof that \leq is reflexive:

$$x = x \otimes x$$

$$\iff x \le x$$

$$\implies \le \text{ is reflexive}$$

by idempotent hypothesis by definition of \leq

Proof that ≤ is antisymmetric:

$$x \le y$$
 and $y \le x \iff x \otimes y = x$ and $y \otimes x = y$ by definition of \le $\implies x \otimes y = x$ and $x \otimes y = y$ by commutative hypothesis $\implies x = y$ $\implies \le$ is antisymmetric

⁴ MacLane and Birkhoff (1999) page 475

D.2. LATTICES Daniel J. Greenhoe page 119

 \clubsuit Proof that \leq is transitive:

```
x \le y and y \le z \iff x \otimes y = x and y \otimes z = y by definition of \le
\implies x \otimes (y \otimes z) = x
\iff (x \otimes y) \otimes z = x by associative hypothesis
\implies x \otimes z = x
\iff x \le z
\iff \le \text{is transitive}
```

 $\overset{\text{de}}{=}$ Proof that $x \otimes y$ is a glb of x and y:

```
x \otimes y = x \iff x \leq y by definition of \leq

\iff x \wedge y = x by definition of \wedge

\implies x \otimes y = x \wedge y

\implies x \otimes y is the glb of x and y
```

D.2 Lattices

An *ordered set* is a set together with the additional structure of an ordering relation (Definition C.2 page 104). However, this amount of structure tends to be insufficient to ensure "well-behaved" mathematical systems. This situation is greatly remedied if every pair of elements in an ordered set (partially or linearly ordered) has both a *least upper bound* and a *greatest lower bound* (Definition C.22 page 116) in the ordered set; in this case, that ordered set is a *lattice* (next definition). Gian-Carlo Rota (1932–1999) illustrates the advantage of lattices over simple ordered sets by pointing out that the *ordered set* of partitions of an integer "is fraught with pathological properties", while the *lattice* of partitions of a set "remains to this day rich in pleasant surprises". Further examples of lattices follow in Section D.3 (page 124).

```
Definition D.3. 6
```

```
An algebraic structure \mathbf{L} \triangleq (X, \vee, \wedge; \leq) is a lattice if

1. (X, \leq) is an ordered set and
2. x, y \in X \implies x \vee y \in X and
3. x, y \in X \implies x \wedge y \in X

The algebraic structure \mathbf{L}^* \triangleq (X, \otimes, \otimes; \geq) is the dual lattice of \mathbf{L}, where \otimes and \otimes are determined by \geq. The LATTICE \mathbf{L} is linear if (X, \leq) is a CHAIN (Definition C.4 page 105).
```

Definition D.3 (previous) characterizes lattices in terms of *order properties*. Under this definition, lattices have an equivalent characterization in terms of *algebraic properties*. In particular, all lattices have four basic algebraic properties: all lattices are *idempotent*, *commutative*, *associative*, and *absorptive*. Conversely, any structure that possesses these four properties *is* a lattice. These results are demonstrated by Theorem D.3 (next). However, note that the four properties are not *independent*, as it is possible to prove that any structure $L \triangleq (X, \vee, \wedge; \leq)$ that is *commutative*, *associative*, and *absorptive*, is also *idempotent* (Theorem D.8 page 128). Thus, when proving that L is a lattice, it is only necessary to prove that it is *commutative*, *associative*, and *absorptive*.

⁶ MacLane and Birkhoff (1999) page 473, Birkhoff (1948) page 16, Ore (1935), Birkhoff (1933a) page 442, Maeda and Maeda (1970), page 1

⁵ Rota (1997) page 1440 (Introduction), Rota (1964) page 498 (partitions of a set)

Theorem D.3. ⁷

[♠]Proof:

1. Proof that $(X, \vee, \wedge; \leq)$ is a lattice \implies 4 properties: These follow directly from the definitions of least upper bound \lor and greatest lower bound \land . For the absorptive property,

$$x \le y \implies x \lor (x \land y) = x \lor x = x$$

 $y \le x \implies x \lor (x \land y) = x \lor y = x$
 $x \le y \implies x \land (x \lor y) = x \land y = x$
 $y \le x \implies x \land (x \lor y) = x \land x = x$

2. Proof that $(X, \vee, \wedge; \leq)$ is a lattice \iff 4 properties:

According to Definition D.3 (page 119), in order for $(X, \vee, \wedge; \leq)$ to be a lattice, $(X, \vee, \wedge; \leq)$ must be an ordered set, $x \lor y$ must be the least upper bound for any $x, y \in X$ and $x \land y$ must be the greatest lower bound for any $x, y \in X$.

- (a) By Theorem D.1 (page 117), $(X, \vee, \wedge; \leq)$ is an ordered set.
- (b) By Theorem D.1 (page 117), $x \lor y$ is the least upper bound for any $x, y \in X$.
- (c) Proof that $x \land y$ is the greatest lower bound for any $x, y \in X$: To prove this, we must show that $x \le y \iff x \land y = x$.

Proof that
$$x \le y \iff x \land y = x$$
:

 $y = y \lor (y \land x)$ by absorptive hypothesis

 $= y \lor (x \land y)$ by commutative hypothesis

 $= y \lor x$ by $x \land y = x$ hypothesis

 $= x \lor y$ by commutative hypothesis

 $\Rightarrow x \le y$ by definition of \le

7 🏿 MacLane and Birkhoff (1999) pages 473–475 (Lемма 1, Theorem 4), 🗐 Burris and Sankappanavar (1981) pages 4–7, **a** Birkhoff (1938), pages 795–796, **a** Ore (1935) page 409 ⟨(α)⟩, **a** Birkhoff (1933a) page 442, **b** Dedekind (1900) pages 371–372 ((1)–(4)). Peirce (1880b) credits Boole and Jevons with the *commutative* property: Peirce (1880b), page 33 ("(5)"). Peirce (1880b) credits Boole and Jevons with the associative property. Peirce (1880b) credits Jevons (1864) with the *idempotent* property: Jevons (1864), page 41

A + A = A "Law of Unity" "Law of Simplicity" \boldsymbol{A}

🦀 Negation, Implication, and Logic [VERSIDN 0.51] 🚧 https://github.com/dgreenhoe/pdfs/blob/master/nil.pdf

 $x \leq y$

D.2. LATTICES Daniel J. Greenhoe page 121

Lemma D.1. ⁸ *Let* $L \triangleq (X, \vee, \wedge; \leq)$ *be a* LATTICE (Definition D.3 page 119).

№PROOF:

- 1. Proof for \implies case: by left hypothesis and definition of \land (Definition C.22 page 116).
- 2. Proof for \Leftarrow case: by right hypothesis and definition of \land (Definition C.22 page 116).

The identities of Theorem D.3 (page 120) occur in pairs that are *duals* of each other. That is, for each identity, if you swap the join and meet operations, you will have the other identity in the pair. Thus, the characterization of lattices provided by Theorem D.3 (page 120) is called *self-dual*. And because of this, lattices support the *principle of duality* (next theorem).

Theorem D.4 (Principle of duality).
⁹ Let $L \triangleq (X, \vee, \wedge; \leq)$ be a lattice.

```
\begin{cases} \phi \text{ is an identity on } \mathbf{L} \text{ in terms} \\ \text{of the operations } \vee \text{ and } \wedge \end{cases} \implies \mathbf{T} \phi \text{ is also an identity on } \mathbf{L} \\ \text{where the operator } \mathbf{T} \text{ performs the following mapping on the operations of } \phi \text{:} \\ \vee \to \wedge, \quad \wedge \to \vee \end{cases}
```

PROOF: For each of the identities in Theorem D.3 (page 120), the operator **T** produces another identity that is also in the set of identities:

```
\mathbf{T}(1a) = \mathbf{T}[x \lor y = y \lor x] = [x \land y = y \land x] = (1b)
\mathbf{T}(1b) = \mathbf{T}[x \land y = y \land x] = [x \lor y = y \lor x] = (1a)
\mathbf{T}(2a) = \mathbf{T}[x \lor (y \land z) = (x \lor y) \land (x \lor z)] = [x \land (y \lor z) = (x \land y) \lor (x \land z)] = (2b)
\mathbf{T}(2b) = \mathbf{T}[x \land (y \lor z) = (x \land y) \lor (x \land z)] = [x \lor (y \land z) = (x \lor y) \land (x \lor z)] = (2a)
```

Therefore, if the statement ϕ is consistent with regards to the lattice L, then $T\phi$ is also consistent with regards to the lattice L.

Proposition D.1 (Monotony laws). ¹⁰ Let $(X, \vee, \wedge; \leq)$ be a lattice.

- ⁸ # Holland (1970), page ???
- ⁹ Padmanabhan and Rudeanu (2008) pages 7–8, Beran (1985) pages 29–30

№ Proof:

$$1.(a \land x) \leq a \qquad \qquad \text{by definition of } \textit{meet} \textit{ operation } \land \textit{ Definition C.22 page 116}$$

$$\leq b \qquad \qquad \text{by left hypothesis}$$

$$2.(a \land x) \leq x \qquad \qquad \text{by definition of } \textit{meet} \textit{ operation } \land \textit{ Definition C.22 page 116}$$

$$\leq y \qquad \qquad \text{by left hypothesis}$$

$$3.(a \land x) = \underbrace{(a \land x) \land (a \land x)}_{\leq b} \qquad \qquad \text{by } \textit{idempotent property Theorem D.3 page 120}$$

$$\leq b \land y \qquad \qquad \text{by 1 and 2}$$

$$4.(a \lor x) = \underbrace{(a \lor x) \lor (a \lor x)}_{\leq b} \qquad \qquad \text{by } \textit{idempotent property Theorem D.3 page 120}$$

$$\leq b \lor y \qquad \qquad \text{by 1 and 2}$$

Minimax inequality. Suppose we arrange a finite sequence of values into m groups of n elements per group. This could be represented as an $m \times n$ matrix. Suppose now we find the minimum value in each row, and the maximum value in each column. We can call the maximum of all the minimum row values the maximin, and the minimum of all the maximum column values the minimax. Now, which is greater, the maximin or the minimax? The minimax inequality demonstrates that the maximin is always less than or equal to the minimax. The minimax inequality is illustrated below and stated formerly in Theorem D.5 (page 122).

$$\bigvee_{1} \left\{ \begin{array}{c|cccc} \bigwedge_{1}^{n} \left\{ & x_{11} & x_{12} & \cdots & x_{1n} & \right\} \\ \bigwedge_{1}^{n} \left\{ & x_{21} & x_{22} & \cdots & x_{2n} & \right\} \\ \bigwedge_{1}^{n} \left\{ & \vdots & \ddots & \ddots & \vdots & \right\} \\ \bigwedge_{1}^{n} \left\{ & x_{m1} & x_{m2} & \cdots & x_{mn} & \right\} \end{array} \right\} \leq \bigvee_{1}^{n} \left\{ \begin{array}{c|cccc} \bigvee_{1}^{m} & \bigvee_{1}^{m} & \bigvee_{1}^{m} & \bigvee_{1}^{m} & \bigvee_{1}^{m} \\ x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{array} \right\}$$
minimax

Theorem D.5 (Minimax inequality). ¹¹ Let $(X, \vee, \wedge; \leq)$ be a lattice.

¹¹ Birkhoff (1948) pages 19–20

—>

D.2. LATTICES

^ℚProof:

Distributive inequalities. Special cases of the minimax inequality include three distributive *inequalities* (next theorem). If for some lattice any *one* of these inequalities is an *equality*, then *all three* are *equalities* (Theorem G.1 page 148); and in this case, the lattice is a called a *distributive* lattice (Definition G.2 page 147).

Theorem D.6 (distributive inequalities). 12

♥Proof:

1. Proof that ∧ sub-distributes over ∨:

$$(x \land y) \lor (x \land z) \le (x \lor x) \land (y \lor z)$$
 by *minimax inequality* (Theorem D.5 page 122)
= $x \land (y \lor z)$ by *idempotent* property of lattices (Theorem D.3 page 120)

$$\bigvee \left\{ \frac{\bigwedge \left\{ \begin{array}{cc} x & y \end{array} \right\}}{\bigwedge \left\{ \begin{array}{cc} x & z \end{array} \right\}} \right\} \leq \bigwedge \left\{ \begin{array}{c|c} \bigvee & \bigvee \\ x & y \\ x & z \end{array} \right\}$$

2. Proof that \vee super-distributes over \wedge :

$$x \lor (y \land z) = (x \land x) \lor (y \land z)$$
 by *idempotent* property of lattices (Theorem D.3 page 120) $\leq (x \lor y) \land (x \lor z)$ by *minimax inequality* (Theorem D.5 page 122)

$$\bigvee \left\{ \frac{\bigwedge \left\{ \begin{array}{cc} x & x \\ \bigwedge \left\{ \begin{array}{cc} y & z \\ \end{array} \right\} \right\} \right\} \leq \bigwedge \left\{ \begin{array}{c|c} \bigvee & \bigvee \\ x & x \\ y & z \end{array} \right\}$$

3. Proof that of median inequality: by minimax inequality (Theorem D.5 page 122)

Negation, Implication, and Logic [VERSIDN 051] https://github.com/dgreenhoe/pdfs/blob/master/nil.pdf

Modular inequalities. Besides the distributive property, another consequence of the minimax inequality is the *modularity inequality* (next theorem). A lattice in which this inequality becomes equality is said to be *modular* (Definition F.3 page 138).

Theorem D.7 (Modular inequality). ¹³ Let $(X, \vee, \wedge; \leq)$ be a LATTICE (Definition D.3 page 119).

№ Proof:

$$x \lor (y \land z) = (x \land x) \lor (y \land z)$$
 by absorptive property (Theorem D.3 page 120)
 $\leq (x \lor y) \land (x \lor z)$ by the minimax inequality (Theorem D.5 page 122)
 $= y \land (x \lor z)$ by left hypothesis

$$\bigvee \left\{ \begin{array}{c|c} \bigwedge \left\{ \begin{array}{cc} x & x \end{array} \right\} \\ \hline \bigwedge \left\{ \begin{array}{cc} x & x \end{array} \right\} \end{array} \right\} \qquad \leq \qquad \bigwedge \left\{ \begin{array}{c|c} \bigvee & \bigvee \\ x & x \\ y & z \end{array} \right\}$$

D.3 Examples

Example D.1. ¹⁴the ordered set illustrated to the right is **not** a lattice because, for example, while x and y have $upper\ bounds\ a$, b, and 1, x and y have no $least\ upper\ bound$. Obviously 1 is not the least upper bound because $a \le 1$ and $b \le 1$. And neither a nor b is a least upper bound because $a \not\le b$ and $b \not\le a$; rather, a and b are incomparable (a||b). Note that if we remove either or both of the two lines crossing the center, the ordered set becomes a lattice.

Example D.2 (Discrete lattice). Let 2^A be the power set of a set A, \subseteq the set inclusion relation, \cup the set union operation, and \cap the set intersection operation. Then the tupple $(2^{\{x,y,z\}}, \cup, \cap; \subseteq)$ is a lattice.

Examples of least upper bound	Examples of greatest lower bounds			
$\{x,y\} \cup \{y\} \qquad = \{x,y\}$	$\{x,y\} \cap \{y\} = \{y\}$			
$\{x,z\} \cup \{y,z\} = \{x,y,y\}$	$z\} \mid \{x, z\} \cap \{y, z\} = \{z\}$			

Example D.3 (Integer factor lattice). ¹⁵For any pair of natural numbers $n, m \in \mathbb{N}$, let n|m represent the relation "m divides n", lcm(n, m) the *least common multiple* of n and m, and gcd(n, m) the *greatest common divisor* of n and m.

E ({1,2,3,5,6,10,15,30}, gcd, lcm; |) is a lattice.

¹⁵ MacLane and Birkhoff (1999) page 484, A Sheffer (1920) page 310 (footnote 1)

D.3. EXAMPLES Daniel J. Greenhoe page 125

Example D.4 (Linear lattice). Let \leq be the standard counting ordering relation on the set of integers; and for any pair of integers $n, m \in \mathbb{N}$, let $\max(n, m)$ be the maximum of n and m, and $\min(n, m)$ be the minimum of n and m. Then the tupple ($\{1, 2, 3, 4\}$, \max , \min ; \leq) is a lattice.

Example D.5 (Subspace lattices). ¹⁶Let ((V_n)) be a sequence of subspaces, \subseteq be the set inclusion relation, + the subspace addition operator, and \cap the set intersection operator. Then the tuple ($\{V_n\}, +, \cap; \subseteq$) is a lattice.

Example D.6 (Projection operator lattices). ¹⁷Let (\mathbf{P}_n) be a sequence of projection operators in a Hilbert space X.

Example D.7 (Lattice of a single topology). ¹⁸ Let X be a set, τ a topology on X, \subseteq the set inclusion relation, \cup the set union operator, and \cap the set intersection operator. Then the tuple (τ , \cup , \cap ; \subseteq) is a lattice.

Example D.8 (Lattice of topologies). ¹⁹Let X be a set and $\{\tau_1, \tau_2, \tau_3, ...\}$ all the possible topologies on X. Let \subseteq be the set inclusion relation, \cup the set union operator, and \cap the set $\{\emptyset, \{x, y\}, \{x\}\}\}$ intersection operator. Then the tuple $\{(X, \tau_n)\}, \cup, \cap; \subseteq\}$ is a lattice.

Proposition D.2. ²⁰ Let X_n be a finite set with order $n = |X_n|$. Let L_n be the number of labeled lattices on X_n , l_n the number of unlabeled lattices, and p_n the number of unlabeled posets.

	n	0	1	2	3	4	5	6	7	8	9	10
P R	L_n	1	1	2	6	36	380	6390	157962	5396888	243, 179, 064	13, 938, 711, 210
P	l_n	1	1	1	1	2	5	15	53	222	1078	5994
	p_n	1	1	2	5	16	63	318	2045	16, 999	183, 231	2, 567, 284

Example D.9 (lattices on 1–3 element sets). ²¹There is only one unlabeled lattice for finite sets with 3 or fewer elements (Proposition D.2 page 125). Thus, these lattices are all linearly ordered. These 3 lattices are illustrated to the right.

¹⁶ Isham (1999) pages 21–22

¹⁷ ■ Isham (1999) pages 21–22, ■ Dunford and Schwartz (1957), pages 481–482

¹⁸ ■ Burris and Sankappanavar (1981) page 9, ■ Birkhoff (1936a) page 161

¹⁹ **Isham** (1999) page 44, **Isham** (1989), page 1515

 $^{^{20}}$ \sqsubseteq Sloane (2014) $\langle \text{http://oeis.org/A055512} \rangle$, \trianglerighteq Sloane (2014) $\langle \text{http://oeis.org/A006966} \rangle$, \trianglerighteq Sloane (2014) $\langle \text{http://oeis.org/A000112} \rangle$, \blacksquare Heitzig and Reinhold (2002)

²¹ **/** Kyuno (1979), page 412, **/** Stanley (1997), page 102

Example D.10 (lattices on a 4 element set). ²²There are 2 unlabeled lattices on a 4 element set (Proposition D.2 page 125). These are illustrated to the right.

Example D.11 (lattices on a 5 element set). ²³There are 5 unlabeled lattices on a 5 element set (Proposition D.2 page 125). These are illustrated to the right.

Example D.12 (lattices on a 6 element set). ²⁴ There are 15 *unlabeled lattices* on a 6 element set (Proposition D.2 page 125). These are illustrated in the following table. Notice that the lattices in the second row are simply generated from the 5 element lattices (Example D.11 page 126) with a "head" or "tail" added to each one.

Example D.13 (lattices on a 7 element set). 25 There are 53 unlabeled lattices on a 7 element set (Proposition D.2 page 125). These are illustrated in Figure D.1 (page 127).

Example D.14 (lattices on 8 element sets). There are 222 unlabeled lattices on a 8 element set (Proposition D.2 page 125). See Kyuno's paper 26 for Hasse diagrams of all 222 lattices.

D.4 Characterizations

Theorem D.3 (page 120)gave eight equations in three variables and two operators that are true of all lattices. But the converse is also true: that is, if the eight equations of Theorem D.3 are true for all values of the underlying set, then that set together with the two operators are a lattice.

That is, the eight equations in three variables of Theorem D.3 *characterize* lattices, or serve as an *equational basis* for lattices.²⁷ And this is not the only system of equations that characterize a lattice. There are other systems that use fewer equations in more variables. Here are some examples of lattice characterizations:

²⁵ **Kyuno** (1979), pages 413–414

²⁶ **Kyuno** (1979), pages 415–421

²⁷ 📃 McKenzie (1970) page 24, 🏉 Tarski (1966)

D.4. CHARACTERIZATIONS Daniel J. Greenhoe page 127

Figure D.1: The 53 unlabeled lattices on a 7 element set (Example D.13 page 126)

■ 8 equations in 3 variables	Theorem D.3	page 120
	Theorem D.8	page 128
2 equations in 5 variables	Theorem D.9	page 128
4 1 equation in 8 variables with length 29	Theorem D.10	page 128
1 equation in 7 variables with length 79	Theorem D.10	page 128

Since these characterizations are equivalent to the definition of the lattice, we could in fact change things around and essentially make any of these characterizations into the definition, and make the definition into a theorem.²⁸

Theorem D.3 (page 120) gave 4 necessary and sufficient pairs of properties for a structure $(X, \vee, \wedge; \leq)$ to be a *lattice*. However, these 4 pairs are actually *overly* sufficient (they are not *independent*), as demonstrated next.

```
Theorem D.8. <sup>29</sup>
```

```
(X, \vee, \wedge; \leq) is a lattice
H
                   x \lor y = y \lor x
                                                               x \wedge y = y \wedge x
                                                                                                  \forall x, y \in X
                                                                                                                 (COMMUTATIVE)
                                                                                                                                     and
           (x \lor y) \lor z = x \lor (y \lor z)
                                                      (x \wedge y) \wedge z = x \wedge (y \wedge z)
                                                                                                  \forall x, y, z \in X
                                                                                                                (ASSOCIATIVE)
                                                                                                                                     and
M
          x \lor (x \land y) =
                                                      x \wedge (x \vee y) =
                                                                                                  \forall x, y \in X
                                                                                                                (ABSORPTIVE)
```

 \bigcirc Proof: Let $L \triangleq (X, \vee, \wedge; \leq)$.

- 1. Proof that L is a *lattice* \implies 3 properties: by Theorem D.3 page 120
- 2. Proof that \boldsymbol{L} is a *lattice* \iff 3 properties:
 - (a) Proof that 3 properties \implies *L* is *idempotent*:

```
x \lor x = x \lor [x \land (x \lor y)] by absorptive property

= x \lor [x \land z] where z \triangleq x \lor y

= x by absorptive property

x \land x = x \land [x \lor (x \land y)] by absorptive property

= x \land [x \lor z] where z \triangleq x \land y

= x by absorptive property
```

(b) By Theorem D.3 page 120 and because \boldsymbol{L} is *commutative*, *associative*, *absorptive*, and *idempotent* with respect to \vee and \wedge , \boldsymbol{L} is a *lattice*.

Theorem D.9 (Lattice characterization in 2 equations and 5 variables). ³⁰ Let X be a set and \vee and \wedge be two binary operators on X.

```
(X, \leq, \vee, \wedge) \text{ is a lattice } \textbf{if and only if}
x = (x \wedge y) \vee x \qquad \forall x, y \in X \qquad and
[(x \wedge y) \wedge z \vee u] \vee w = [(y \wedge z) \wedge x \vee w] \vee (y \vee u) \wedge u \quad \forall x, y, z, u, w \in X
```

Theorem D.10 (Lattice characterizations in 1 equation). ³¹ Let X be a set and \vee and \wedge be two binary

```
<sup>28</sup> Burris and Sankappanavar (1981) pages 6–7,
```

³¹ McCune et al. (2003b) page 2, McCune et al. (2003a), McCune and Padmanabhan (1996) page 144, http://www.cs.unm.edu/%7Everoff/LT/

²⁹ 🥒 Padmanabhan and Rudeanu (2008) page 8, 🜒 Beran (1985) page 5, 📃 McKenzie (1970) page 24

³⁰ **Tamura** (1975) page 137

operators on X.

```
The following four statements are all equivalent:
        1. (X, \vee, \wedge; \leq) is a lattice
        2. (((y \lor x) \land x) \lor (((z \land (x \lor x)) \lor (u \land x)) \land v)) \land (w \lor ((s \lor x) \land (x \lor t))) = x
                                                       (1 equation, 8 variables, length 29)
                    \forall x, y, z, u, v, w, s, t \in X
        3. (((y \lor x) \land x) \lor (((z \land (x \lor x)) \lor (u \land x)) \land v)) \land (((w \lor x) \land (s \lor x)) \lor t) = x
                                                       (1 equation, 8 variables, length 29)
                    \forall x, y, z, u, v, w, s, t \in X
```

4. $(((x \land y) \lor (y \land (x \lor y))) \land z) \lor (((x \land (((x_1 \land y) \lor (y \land x_2)) \lor (y \land x_2))))))$ $(y) \lor (((y \land (((x_1 \lor (y \lor x_2)) \land (x_3 \lor y)) \land y)) \lor (u \land (y \lor y)))))$ (1 equation, 7 variables, length 79) $\forall x, y, z, x_1, x_2, x_3, u \in X$

D.5 Functions on lattices

D.5.1 **Isomorphisms**

Lattices and ordered set (Definition C.2 page 104) are examples of mathematical order structures. Often we are interested in similarities between two lattices L_1 and L_2 with respect to order. Similarities between lattices can be described by defining a function θ that maps from the first lattice to the second. The degree of similarity can be roughly described in terms of the mapping θ as follows:

- 1. If there exists a mapping that is *bijective* then the number of elements in L_1 and L_2 is the same. However, their order structure may still be very different.
- 2. Lattices L_1 and L_2 are more similar if there exists a mapping that is *bijective* and *order preserv*ing (Definition C.9 page 111). Despite having this property however, their order structure may still be remarkably different, as illustrated by Example C.18 (page 111) and Example C.19 (page 111).
- 3. Lattices L_1 and L_2 are essentially identical (except possibly for their labeling) if there exists a mapping θ that is not only bijective and $order\ preserving$, but whose inverse (Definition B.2 page 79) is also bijective (Theorem D.11 page 129). In this case, the lattices L_1 and L_2 are isomorphic and the mapping θ is an *isomorphism*. An isomorphism between L_1 and L_2 implies that the two lattices have an identical order structure. In particular, the isomorphism θ preserves joins and meets (next definition).

Definition D.4. Let $L_1 \triangleq (X, \vee, \wedge; \leq)$ and $L_2 \triangleq (Y, \otimes, \otimes; \neq)$ be lattices.

```
L_1 and L_2 are algebraically isomorphic, or simply isomorphic, if there exists a function \theta \in
Y^X such that
```

1. $\theta(x \lor y) = \theta(x) \oslash \theta(y)$

 $\forall x, y \in X$

(PRESERVES JOINS)

2. $\theta(x \wedge y) = \theta(x) \otimes \theta(y)$

 $\forall x, y \in X$

(PRESERVES MEETS).

In this case, the function θ is said to be an **isomorphism** from L_1 to L_2 , and the isomorphic relationship between L_1 and L_2 is denoted as

 $L_1 \equiv L_2$.

DEF

Theorem D.11. ³² $Let(X, \vee, \wedge; \leq)$ and $(Y, \otimes, \emptyset; \neq)$ be lattices and $\theta \in Y^X$ be a BIJECTIVE function with inverse $\theta^{-1} \in X^Y$. $Let(X, \vee, \wedge; \leq) \equiv (Y, \otimes, \emptyset; \neq)$ represent the condition that the two lattices

Burris and Sankappanavar (2000), page 10

are ISOMORPHIC.

$$\underbrace{\begin{array}{ccc} x_1 \leq x_2 & \Longrightarrow & \theta(x_1) \leq \theta(x_2) & \forall x_1, x_2 \in X \\ y_1 \leq y_2 & \Longrightarrow & \theta^{-1}(y_1) \leq \theta^{-1}(y_2) & \forall y_1, y_2 \in Y \end{array}}_{\theta \text{ and } \theta^{-1} \text{ are ORDER PRESERVING with respect to } \leq \text{and } z^{33}$$
 $\iff \underbrace{(X, \vee, \wedge; \leq) \equiv (Y, \varnothing, \varnothing; z)}_{\text{isomorphic}}$

 $^{\mathbb{Q}}$ Proof: Let $\theta \in Y^X$ be the isomorphism between lattices $(X, \vee, \wedge; \leq)$ and $(Y, \emptyset, \emptyset; \leq)$.

- 1. Proof that *order preserving* \implies *preserves joins*:
 - (a) Proof that $\theta(x_1 \lor x_2) \otimes \theta(x_1) \otimes \theta(x_2)$:
 - i. Note that

$$x_1 \le x_1 \lor x_2$$

$$x_2 \le x_1 \lor x_2.$$

ii. Because θ is order preserving

$$\theta(x_1) \le \theta(x_1 \lor x_2)$$

 $\theta(x_2) \le \theta(x_1 \lor x_2).$

iii. We can then finish the proof of item (1a):

$$\theta(x_1) \otimes \theta(x_2) \leq \underbrace{\theta(x_1 \vee x_2)}_{x_1 \leq x_1 \vee x_2} \otimes \underbrace{\theta(x_1 \vee x_2)}_{x_2 \leq x_1 \vee x_2}$$
$$= \theta(x_1 \vee x_2)$$

by order preserving hypothesis

by idempotent property page 120

- (b) Proof that $\theta(x_1 \lor x_2) \ge \theta(x_1) \oslash \theta(x_2)$:
 - i. Just as in item (1a), note that $\theta^{-1}(y_1) \vee \theta^{-1}(y_2) \leq \theta^{-1}(y_1 \otimes y_2)$:

$$\theta^{-1}(y_1) \vee \theta^{-1}(y_2) \leq \underbrace{\theta^{-1}(y_1 \otimes y_2)}_{y_1 \neq y_1 \otimes y_2} \vee \underbrace{\theta^{-1}(y_1 \otimes y_2)}_{y_2 \neq y_1 \otimes y_2}$$
$$= \theta^{-1}(y_1 \otimes y_2)$$

by order preserving hypothesis

by idempotent property page 120

ii. Because θ is order preserving

$$\theta \left[\theta^{-1}(y_1) \vee \theta^{-1}(y_2) \right] \le \theta \theta^{-1}(y_1 \otimes y_2)$$

= $y_1 \otimes y_2$

by item (1(b)i) page 130

by definition of inverse function θ^{-1}

- iii. Let $u_1 \triangleq \theta(x_1)$ and $u_2 \triangleq \theta(x_2)$.
- iv. We can then finish the proof of item (1b):

$$\begin{split} \theta(x_1 \vee x_2) &= \theta \left[\theta^{-1} \theta(x_1) \vee \theta^{-1} \theta(x_2) \right] \\ &= \theta \left[\theta^{-1}(u_1) \vee \theta^{-1}(u_2) \right] \\ &= u_1 \otimes u_2 \\ &= \theta(x_1) \otimes \theta(x_2) \end{split}$$

by definition of inverse function θ^{-1} by definition of u_1, u_2 , item (1(b)iii) by item (1(b)ii)

by definition of u_1, u_2 , item (1(b)iii)

(c) And so, combining item (1a) and item (1b), we have

³³ order preserving: Definition C.9 page 111

- 2. Proof that *order preserving* \implies *preserves meets*:
 - (a) Proof that $\theta(x_1 \wedge x_2) \leq \theta(x_1) \otimes \theta(x_2)$:

$$\theta(x_1) \oslash \theta(x_2) \otimes \underbrace{\theta(x_1 \land x_2)}_{x_1 \ge x_1 \land x_2} \oslash \underbrace{\theta(x_1 \land x_2)}_{x_2 \ge x_1 \land x_2}$$
$$= \theta(x_1 \land x_2)$$

by order preserving hypothesis

by idempotent property page 120

- (b) Proof that $\theta(x_1 \wedge x_2) \otimes \theta(x_1) \otimes \theta(x_2)$:
 - i. Just as in item (2a), note that $\theta^{-1}(y_1) \wedge \theta^{-1}(y_2) \ge \theta^{-1}(y_1 \otimes y_2)$:

$$\theta^{-1}(y_1) \wedge \theta^{-1}(y_2) \ge \underbrace{\theta^{-1}(y_1 \otimes y_2)}_{y_1 \otimes y_1 \otimes y_2} \otimes \underbrace{\theta^{-1}(y_1 \otimes y_2)}_{y_2 \otimes y_1 \otimes y_2}$$

$$= \theta^{-1}(y_1 \otimes y_2)$$

by order preserving hypothesis

by *idempotent* property page 120

ii. Because θ is *order preserving*

$$\theta \left[\theta^{-1}(y_1) \wedge \theta^{-1}(y_2) \right] \otimes \theta \theta^{-1}(y_1 \otimes y_2)$$
 by item (2(b)i)
= $y_1 \otimes y_2$

- iii. Let $v_1 \triangleq \theta(x_1)$ and $v_2 \triangleq \theta(x_2)$.
- iv. We can then finish the proof of item (2a):

$$\theta(x_1 \wedge x_2) = \theta \left[\theta^{-1} \theta(x_1) \wedge \theta^{-1} \theta(x_2) \right]$$

$$= \theta \left[\theta^{-1}(v_1) \wedge \theta^{-1}(v_2) \right] \qquad \text{by item (2(b)iii)}$$

$$\otimes v_1 \otimes v_2 \qquad \text{by item (2(b)iii)}$$

$$= \theta(x_1) \otimes \theta(x_2) \qquad \text{by item (2(b)iii)}$$

(c) And so, combining item (2a) and item (2b), we have

3. Proof that *order preserving* \Leftarrow *isomorphic*:

$$x \le y \implies \theta(y) = \theta(x \lor y) = \theta(x) \oslash \theta(y)$$
$$\implies \theta(x) \ge \theta(y)$$
$$x \le y \implies \theta(x) = \theta(x \land y) = \theta(x) \oslash \theta(y)$$
$$\implies \theta(x) \ge \theta(y)$$

by right hypothesis

by right hypothesis

Example D.15. Let $L \equiv M$ represent the condition that a lattice L and a lattice M are *isomorphic*.

 $(2^{\{x,y,z\}}, \cup, \cap; \subseteq) \equiv (\{1,2,3,5,6,10,15,30\}, \text{ lcm, gcd}; |)$ with isomorphism $\theta(A) = 5^{\mathbb{I}_{A}(z)} \cdot 3^{\mathbb{I}_{A}(y)} \cdot 2^{\mathbb{I}_{A}(x)} \quad \forall_{A \in 2^{\{a,b,c\}}}$

Explicit cases are listed below and illustrated in Example C.9 (page 107) and Example C.10 (page 107).

$$\theta(\emptyset) = 5^{0} \cdot 3^{0} \cdot 2^{0} = 1 \qquad \theta(\{z\}) = 5^{1} \cdot 3^{0} \cdot 2^{0} = 5$$

$$\theta(\{x\}) = 5^{0} \cdot 3^{0} \cdot 2^{1} = 2 \qquad \theta(\{x,z\}) = 5^{1} \cdot 3^{0} \cdot 2^{1} = 10$$

$$\theta(\{y\}) = 5^{0} \cdot 3^{1} \cdot 2^{0} = 3 \qquad \theta(\{y,z\}) = 5^{1} \cdot 3^{1} \cdot 2^{0} = 15$$

$$\theta(\{x,y\}) = 5^{0} \cdot 3^{1} \cdot 2^{1} = 6 \qquad \theta(\{x,y,z\}) = 5^{1} \cdot 3^{1} \cdot 2^{1} = 30$$

♥Proof:

$$\theta(A \cup B) = 5^{\mathbb{I}_{A \cup B}(a)} \cdot 3^{\mathbb{I}_{A \cup B}(b)} \cdot 2^{\mathbb{I}_{A \cup B}(c)}$$

$$= 5^{\mathbb{I}_{A}(a) \vee \mathbb{I}_{B}(a)} \cdot 3^{\mathbb{I}_{A}(b) \vee \mathbb{I}_{B}(b)} \cdot 2^{\mathbb{I}_{A}(c) \vee \mathbb{I}_{B}(c)}$$

$$= \operatorname{lcm} \left(5^{\mathbb{I}_{A}(a)}, 5^{\mathbb{I}_{B}(a)} \right) \cdot \operatorname{lcm} \left(3^{\mathbb{I}_{A}(b)}, 3^{\mathbb{I}_{B}(b)} \right) \cdot \operatorname{lcm} \left(2^{\mathbb{I}_{A}(c)}, 2^{\mathbb{I}_{B}(c)} \right)$$

$$= \operatorname{lcm} \left(5^{\mathbb{I}_{A}(a)} \cdot 3^{\mathbb{I}_{A}(b)} \cdot 2^{\mathbb{I}_{A}(c)}, 5^{\mathbb{I}_{B}(a)} \cdot 3^{\mathbb{I}_{B}(b)} \cdot 2^{\mathbb{I}_{B}(c)} \right)$$

$$= \operatorname{lcm} (\theta(A), \theta(B))$$

$$\theta(A \cap B) = 5^{\mathbb{I}_{A \cap B}(a)} \cdot 3^{\mathbb{I}_{A \cap B}(b)} \cdot 2^{\mathbb{I}_{A \cap B}(c)}$$

$$= 5^{\mathbb{I}_{A}(a) \wedge \mathbb{I}_{B}(a)} \cdot 3^{\mathbb{I}_{A}(b) \wedge \mathbb{I}_{B}(b)} \cdot 2^{\mathbb{I}_{A}(c) \wedge \mathbb{I}_{B}(c)}$$

$$= \operatorname{gcd} \left(5^{\mathbb{I}_{A}(a)}, 5^{\mathbb{I}_{B}(a)} \right) \cdot \operatorname{gcd} \left(3^{\mathbb{I}_{A}(b)}, 3^{\mathbb{I}_{B}(b)} \right) \cdot 2^{\mathbb{I}_{B}(c)} \right)$$

$$= \operatorname{gcd} \left(5^{\mathbb{I}_{A}(a)} \cdot 3^{\mathbb{I}_{A}(b)} \cdot 2^{\mathbb{I}_{A}(c)}, 5^{\mathbb{I}_{B}(a)} \cdot 3^{\mathbb{I}_{B}(b)} \cdot 2^{\mathbb{I}_{B}(c)} \right)$$

D.5.2 Metrics

Definition D.5. 34 *Let* $L \triangleq (X, \vee, \wedge; \leq)$ *be a lattice.*

D Ε A function $v \in \mathbb{R}^X$ is a **subvaluation** if

1. $v(x) \ge 0$

 $= \gcd(\theta(A), \ \theta(B))$

 $\forall x \in X$ and

2. $\mathsf{v}(x \lor y) + \mathsf{v}(x \land y) \le \mathsf{v}(x) + \mathsf{v}(y)$

 $\forall x,y \in X$ A subvaluation \vee is **isotone** if $x \leq y \implies \vee(x) \leq \vee(y)$.

A subvaluation \vee is **positive** if $x < y \implies \vee(x) < \vee(y)$.

Definition D.6. ³⁵ *Let* $L \triangleq (X, \vee, \wedge; \leq)$ *be a lattice.*

D E F

A function $v \in \mathbb{R}^X$ is a valuation if

1. $v(x) \ge 0$

 $\forall x \in X$

and

2. $\mathsf{v}(x \lor y) + \mathsf{v}(x \land y) = \mathsf{v}(x) + \mathsf{v}(y)$

 $\forall x, y \in X$

and

3. $x \le y \implies \mathsf{v}(x) \le \mathsf{v}(y)$

 $\forall x,y \in X$

(ISOTONE).

Proposition D.3 (lattice subvaluation metric). ³⁶ Let L be a lattice.

(v is a positive SUBVALUATION on)

 $\int d(x, y) = 2v(x \lor y) - v(x) - v(y) \text{ is a met-}$

Proposition D.4 (lattice valuation metric). ³⁷ Let L be a lattice.

 $\int d(x, y) = v(x) + v(y) - 2v(x \wedge y) \text{ is a met-}$ {v is a positive VALUATION on L } \ric.

Deza and Deza (2006) page 143

⁽not compatible with Deza)

³⁶ Deza and Deza (2006) page 143

³⁷ Deza and Deza (2006) page 143

D.6. LITERATURE Daniel J. Greenhoe page 133

D.5.3 Lattice products

Theorem D.12 (lattice product). ³⁸ Let $(X \times Y, \leq)$ be the POSET PRODUCT³⁹ of (X, \geq) and (Y, \leq) .

 $\begin{array}{c} \mathsf{T} \\ \mathsf{H} \\ \mathsf{M} \end{array} \begin{array}{c} (X, \, \lozenge, \, \lozenge; \, \overline{<}) \quad \textit{isalattice} \quad \textit{and} \\ (Y, \, \veebar, \, \overline{\land}; \, \underline{<}) \quad \textit{isalattice} \end{array} \right\} \qquad \Longrightarrow \qquad (X \times Y, \, \lor, \, \land; \, \underline{<}) \, \textit{is also a lattice}$

D.6 Literature

Literature survey:

- 1. Early lattice theory concepts:
 - **Dedekind** (1900)
 - @ Ore (1935)
- 2. Garrett Birkhoff's contribution:
 - (a) The modern concept of the lattice was introduced by Garrett Birkhoff in 1933:
 - Birkhoff (1933a)
 - **■** Birkhoff (1933b)
 - (b) However, Birkhoff came to realize that the concept of the lattice had actually already been published in 1900 by Richard Dedekind. Birkhoff later remarked in an interview "My ideas about lattice theory developed gradually ...It was my father who, when he told Ore at Yale about what I was doing some time in 1933, found out from Ore that my lattices coincided with Dedekind's Dualgruppen ...I was lucky to have gone beyond Dedekind before I discovered his work. It would have been quite discouraging if I had discovered all my results anticipated by Dedekind."
 - (c) Birkhoff wrote a book in 1940 called *Lattice Theory*. There are basically three editions:
 - Birkhoff (1940)
 - Birkhoff (1948)
 - <u>■ Birkhoff (1967)</u> With regards to his *Lattice Theory* book and another book entitled *A Survey of Modern Algebra* written with Saunders MacLane, Birkhoff remarked, "Morse had told me that no one under 30 should write a book. So I thought it over and wrote two!"⁴¹
- 3. Standard text books of lattice theory:
 - Birkhoff (1967)
 - Grätzer (1998)
 - Crawley and Dilworth (1973)
- 4. Characterizations / equational bases:
 - (a) General discussion:

 - Baker (1969)
 - McKenzie (1970)

 - Pigozzi (1975)
 - **Taylor** (1979)
 - **Taylor** (2008)
 - Jipsen and Rose (1992) pages 115–127 (Chapter 5)
 - Padmanabhan and Rudeanu (2008)
 - (b) Characterizations for lattices:
 - Kalman (1968)
 - **Tamura** (1975)
 - Sobociński (1979)

- ⁴⁰ Albers and Alexanderson (1985), page 4
- ⁴¹ Albers and Alexanderson (1985), page 4

³⁸ MacLane and Birkhoff (1967), page 489

³⁹ poset product: Definition C.5 page 105

page 134 Daniel J. Greenhoe APPENDIX D. LATTICES

- (c) Specific characterizations:
 - Padmanabhan (1969) (2 equations in 7 variables)
 - McCune and Padmanabhan (1996), page 144 (1 equation, 7 variables, length 79)
 - McCune et al. (2003a) (1 equation, 8 variables, length 29)
 - McCune et al. (2003b) (1 equation, 8 variables, length 29)
- 5. Lattice drawing program:

Ralph Freese, http://www.math.hawaii.edu/~ralph/LatDraw/

Let $L \triangleq (X, \vee, \wedge; \leq)$ be a lattice. By the definition of a *lattice* (Definition D.3 page 119), the *upper bound* $(x \vee y)$ and *lower bound* $(x \wedge y)$ of any two elements in X is also in X. But what about the upper and lower bounds of the entire set X ($\bigvee X$ and $\bigwedge X$)¹? If both of these are in X, then the lattice L is said to be *bounded* (next definition). All *finite* lattices are bounded (next proposition). However, not all lattices are bounded—for example, the lattice (\mathbb{Z}, \leq) (the lattice of integers with the standard integer ordering relation) is *unbounded*. Proposition E.2 (page 135) gives two properties of bounded lattices. Boundedness is one of the "*classic 10*" properties (Theorem I.2 page 178) of *Boolean algebras* (Definition I.1 page 173). Conversely, a bounded and complemented lattice that satisfies the conditions 1' = 0 and *Elkan's law is* a *Boolean algebra* (Proposition I.4 page 189).

Definition E.1. Let $L \triangleq (X, \vee, \wedge; \leq)$ be a lattice. Let $\bigvee X$ be the least upper bound of (X, \leq) and let $\bigwedge X$ be the greatest lower bound of (X, \leq) .

L is upper bounded if $(\bigvee X) \in X$. L is lower bounded if $(\bigwedge X) \in X$. L is bounded if L is both up

if \mathbf{L} is both upper and lower bounded.

A BOUNDED lattice is optionally denoted $(X, \vee, \wedge, 0, 1; \leq)$, where $0 \triangleq \bigwedge X$ and $1 \triangleq \bigvee X$.

Proposition E.1. *Let* $L \triangleq (X, \vee, \wedge; \leq)$ *be a lattice.*

 $\begin{array}{c} P \\ R \\ P \end{array} L \text{ is finite} \qquad \Longrightarrow \qquad L \text{ is bounded}$

Proposition E.2. Let $L \triangleq (X, \vee, \wedge; \leq)$ be a lattice with $\bigvee X \triangleq 1$ and $\bigwedge X \triangleq 0$.

```
 \left\{ \begin{array}{l} \textbf{L is BOUNDED} \\ \textbf{(Definition E.1 page 135)} \end{array} \right\} \qquad \Longrightarrow \qquad \left\{ \begin{array}{l} x \vee 1 &= 1 \quad \forall x \in X \quad \text{(upper Bounded)} \quad and \\ x \wedge 0 &= 0 \quad \forall x \in X \quad \text{(Lower Bounded)} \quad and \\ x \vee 0 &= x \quad \forall x \in X \quad \text{(join-identity)} \quad and \\ x \wedge 1 &= x \quad \forall x \in X \quad \text{(meet-identity)} \end{array} \right\}
```

[♠]Proof:

$$x \lor 1 = x \lor \left(\bigvee X\right)$$
 by definition of 1 (Definition E.1 page 135)
$$= \bigvee X$$
 because $x \in X$

 $^{^{1}\}bigvee X$: Definition C.21 page 116, $\bigwedge X$:Definition C.22 (page 116)

```
by definition of 1 (Definition E.1 page 135)
x \wedge 0 = x \wedge \left( \bigwedge X \right)
                                        by definition of 0 (Definition E.1 page 135)
       = \bigwedge X
                                        because x \in X
                                        by definition of 0 (Definition E.1 page 135)
  |x| = \bigvee \{x\}
       \leq \bigvee \{x,0\}
                                        because \{x\} \subseteq \{0, x\} and isotone property (Proposition C.3 page 116)
       = x \lor 0
                                        by definition of ∨ (Definition C.21 page 116)
       = x \vee \left( \bigwedge X \right)
                                        by definition of 0 (Definition E.1 page 135)
       \leq x \vee \left( \bigwedge \{x\} \right)
                                        because \{x\} \subseteq X and isotone property (Proposition C.3 page 116)
       \leq x \vee \left( \bigwedge \{x, x\} \right)
                                        by definition of \{\cdot\}
        = x \lor (x \land x)
                                        by definition of ∧ (Definition C.22 page 116)
        = x
                                        by absorptive property of lattices (Theorem D.3 page 120)
        = x \wedge (x \vee x)
                                        by absorptive property of lattices (Theorem D.3 page 120)
       \triangleq x \land \left(\bigvee \{x, x\}\right)
                                        by definition of \lor (Definition C.21 page 116)
       \triangleq x \land (\bigvee \{x\})
                                        by definition of set \{\cdot\}
       \leq x \land (\bigvee X)
                                        because \{x\} \subseteq \{x,1\} and by isotone property of \bigwedge (Proposition C.3 page 116)
       = x \wedge 1
                                        by definition of 1 (Definition E.1 page 135)
       = \bigwedge \{x, 1\}
                                        by definition of ∧ (Definition C.22 page 116)
       \leq \bigwedge \{x\}
                                        because \{x\} \subseteq \{x,1\} and by isotone property of \bigwedge (Proposition C.3 page 116)
```

Definition E.2. Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a BOUNDED LATTICE (Definition E.1 page 135).

A set $\{x_1, x_2, ...\}$ is a **partition** of an element $y \in X$ if 1. $x_n \neq 0$ 2. $x_n \wedge x_m = 0$ 3. $\sqrt{x_n} = 1$ and MUTUALLY EXCLUSIVE and

Definition E.3. 2 Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a BOUNDED LATTICE (Definition E.1 page 135).

The **height** h(x) of a point $x \in L$ is the LEAST UPPER BOUND of the LENGTHS (Definition C.12 page 112) of all the CHAINS that have 0 and in which x is the LEAST UPPER BOUND. The **height** h(L) of the lattice L is defined as $h(L) \triangleq h(1)$.

Birkhoff (1967) page 5

D E

D E F

E.1 Modular relation

Definition F.1. Let $(X, \vee, \wedge; \leq)$ be a lattice. Let 2^{XX} be the set of all RELATIONS in X^2 .

The modularity relation $\emptyset \in 2^{XX}$ and the dual modularity relation $\emptyset^* \in 2^{XX}$ are defined as

 $x \otimes y \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad \left\{ (x, y) \in X^2 | a \le y \quad \Longrightarrow \quad y \wedge (x \vee a) = (y \wedge x) \vee a \quad \forall a \in X \right\}$

 $x \otimes^* y \stackrel{\text{def}}{\iff} \{(x, y) \in X^2 | a \ge y \implies y \lor (x \land a) = (y \lor x) \land a \quad \forall a \in X \}.$

A pair $(x, y) \in \mathbb{Q}$ is alternatively denoted as $(x, y) \otimes$, and is called a **modular** pair. A pair $(x, y) \in \mathbb{Q}$ is alternatively denoted as $(x, y) \otimes^*$, and is called a **dual modular** pair. A pair (x, y) that is NOT a modular pair $((x, y) \notin \mathbb{Q})$ is denoted $x \otimes y$. A pair (x, y) that is NOT a dual modular pair is denoted $x \otimes^* y$.

Proposition F.1. ² *Let* $L \triangleq (X, \vee, \wedge; \leq)$ *be a lattice.*

 $\begin{array}{c} \mathbf{P} \\ \mathbf{R} \\ \mathbf{P} \end{array} \left\{ x \mathbf{w} y \iff x \mathbf{w}^* y \right\} \qquad \forall x, y \in X$

№ Proof:

DEF

 $x @ y \iff \{a \leq y \implies y \land (x \lor a) = (y \land x) \lor a \quad \forall a \in X\}$ by definition of M (Definition F.1 page 137) $\iff \{a \geq y \implies a \land (x \lor y) = (a \land x) \lor y \quad \forall a \in X\}$ by definition of \succeq (Definition C.3 page 104) $\iff \{a \geq y \implies (a \land x) \lor y = a \land (x \lor y) \quad \forall a \in X\}$ by symmetric property of = (Definition ?? page ??) $\iff \{a \geq y \implies y \lor (x \land a) = (y \lor x) \land a \quad \forall a \in X\}$ by commutative prop. of lat. (Theorem D.3 page 120) $\iff x \textcircled{M}^* y$ by definition of \textcircled{M}^* (Definition F.1 page 137)

Proposition F.2. 3 *Let* $L \triangleq (X, \vee, \wedge; \leq)$ *be a lattice.*

₽

² Maeda and Maeda (1970), page 1 (Lemma (1.2))

³ Maeda and Maeda (1970), page 1

₽

—>

[♠]Proof:

```
x \leq y \implies \{a \leq y \implies y \land (x \lor a) = x \lor a = (y \land x) \lor a \quad \forall a \in X\}
\iff x @ y \qquad \text{by definition of } @ \text{ (Definition F.1 page 137)}
x \leq y \implies \{a \leq x \implies x \land (y \lor a) = x = x \lor a = (x \land y) \lor a \quad \forall a \in X\}
\iff y @ x \qquad \text{by definition of } @ \text{ (Definition F.1 page 137)}
x \leq y \implies x @^* y \qquad \text{because } x \leq y \implies x @ y \text{ and by Proposition F.1 page 137}
x \leq y \implies y @^* x \qquad \text{because } x \leq y \implies y @ x \text{ and by Proposition F.1 page 137}
```

Proposition F.3. Let $L \triangleq (X, \vee, \wedge; \leq)$ be a lattice.

 $^{\textcircled{N}}$ Proof: Because $x \le x$ and by Proposition F.2 (page 137).

F.2 Semimodular lattices

```
Definition F.2. 4
```



```
A lattice (X, \vee, \wedge; \leq) is semimodular if
```

A semimodular lattice is also called **M-symmetric**.

F.3 Modular lattices

Modular lattices are a generalization of the distributive lattice in the sense that all distributive lattices are modular, but not equivalent because not all modular lattices are distributive (Theorem G.5 page 162).

```
Definition F.3. <sup>5</sup>
```

```
A lattice (X, \vee, \wedge; \leq) is modular if x \otimes y \quad \forall x, y \in X.
```

E.3.1 Characterizations

This section describes some characterizations of modular lattices—that is, sets of properties that are equivalent to the definition of modular lattices (Definition F.3 page 138):

⁵ 💋 Birkhoff (1967) page 82, 🗐 Maeda and Maeda (1970), page 3 (Definition (1.7))

⁴ **■ Maeda and Maeda (1970), page 3 (Definition (1.7))**

F.3. MODULAR LATTICES Daniel J. Greenhoe page 139

Ore 1935	(order characterization)	Theorem F.1	page 139
N5 lattice	(order characterization)	Theorem F.2	page 140
Riecan 1957	(algebraic characterization)	Theorem E3	page 142

Alternatively, any of the sets of properties listed in this section could be used as the definition of modular lattices and the definition would in turn become a theorem/proposition.

Order characterizations

Theorem F.1. ⁶ Let $L \triangleq (X, \vee, \wedge; \leq)$ be a lattice.

т	L is modular	\Leftrightarrow	$\{x \le y =$	\implies .	$x \lor (z \land y) = (x \lor z) \land y$	$\forall x, y, z \in X$
Ĥ		\iff	$x \lor [(x \lor y)$	$\wedge z$] =	$= (x \lor y) \land (x \lor z)$	$\forall x,y,z{\in}X$
M		\iff	$x \wedge [(x \wedge y)$	$\vee z] =$	$= (x \wedge y) \vee (x \wedge z)$	$\forall x,y,z{\in}X$

♥Proof:

1. Proof that **L** is modular \iff $\{x \le y \implies x \lor (z \land y) = (x \lor z) \land y\}$:

- 2. Proof that **L** is modular \iff $x \lor [(x \lor y) \land z] = (x \lor y) \land (x \lor z)$:
 - (a) Proof that *L* is $modular \implies x \lor [(x \lor y) \land z] = (x \lor y) \land (x \lor z)$: First note that $x \le x \lor y$.

$$x \vee [(x \vee y) \wedge z] = x \vee (u \wedge z)|_{u \triangleq x \vee y}$$
 by substitution $u \triangleq x \vee y$
= $u \wedge (x \vee z)|_{u \triangleq x \vee y}$ by modularity hypothesis
= $(x \vee y) \wedge (x \vee z)$ because $u \triangleq x \vee y$

(b) Proof that **L** is modular \iff $x \lor [(x \lor y) \land z] = (x \lor y) \land (x \lor z)$:

$$x \le y \implies x \lor (y \land z) = x \lor (y \land z)$$
 by right hypothesis and $x \le y$ by *commutative* property Theorem D.3 page 120
$$= x \lor [z \land (x \lor y)] \quad \text{because } x \le y$$
 by *commutative* property Theorem D.3 page 120
$$= x \lor [(x \lor y) \land z] \quad \text{by } \text{commutative} \text{ property Theorem D.3 page 120}$$

$$= (x \lor y) \land (x \lor z) \quad \text{by right hypothesis}$$

$$= y \land (x \lor z) \quad \text{because } x \le y$$

3. Proof that *L* is modular \iff $\{y \le x \implies x \land (y \lor z) = y \lor (x \land z)\}$:

L is modular
$$\iff \underbrace{\{x \leq y \implies x \lor (y \land z) = y \land (x \lor z)\}}_{\text{modularity definition (Definition F.3 page 138)}}$$
 by definition of modular page 138 $\iff \{y \leq x \implies y \lor (x \land z) = x \land (y \lor z)\}$ by change of variables: $x \leftrightarrow y$ $\iff \underbrace{\{y \leq x \implies x \land (y \lor z) = y \lor (x \land z)\}}_{\text{dual of Definition F.3}}$ by reflexive property of = (Definition ?? page ??)

- 4. Proof that $\{y \le x \implies x \land (y \lor z) = y \lor (x \land z)\} \iff \{x \land [(x \land y) \lor z] = (x \land y) \lor (x \land z)\}$:
 - (a) Proof that $\{y \le x \implies x \land (y \lor z) = y \lor (x \land z)\} \implies \{x \land [(x \land y) \lor z] = (x \land y) \lor (x \land z)\}$: First note that $x \land y \le x$.

$$x \wedge [(x \wedge y) \vee z] = x \wedge (u \vee z)|_{u \triangleq x \wedge y}$$
 by substitution $u \triangleq x \wedge y$
= $u \vee (x \wedge z)|_{u \triangleq x \wedge y}$ by left hypothesis
= $(x \wedge y) \vee (x \wedge z)$ because $u \triangleq x \wedge y$

(b) Proof that $\{y \le x \implies x \land (y \lor z) = y \lor (x \land z)\} \iff \{x \land [(x \land y) \lor z] = (x \land y) \lor (x \land z)\}$:

$$y \le x \implies x \land (y \lor z) = x \land (z \lor y)$$
 by commutative property Theorem D.3 page 120
 $= x \land [z \lor (x \land y)]$ because $y \le x$
 $= x \land [(x \land y) \lor z]$ by commutative property Theorem D.3 page 120
 $= (x \land y) \lor (x \land z)$ by right hypothesis
 $= y \lor (x \land z)$ because $y \le x$

Definition F.4 (N5 lattice/pentagon). ⁷

D E F The **N5 lattice** is the ordered set $(\{0, a, b, p, 1\}, \leq)$ with cover relation $\leq \{(0, a), (a, b), (b, 1), (p, 1), (0, p)\}$. The N5 lattice is also called the **pentagon**.

Lemma F.1. ⁸

The N5 lattice (pentagon lattice) is NON-MODULAR.

♥Proof:

$$x \le y \implies y \land (z \lor x) = y \land b$$
 by Definition C.21 page 116 (lub)
 $= y$ by Definition C.22 page 116 (glb)
 $\neq x$ by Definition C.21 page 116 (lub)
 $= (y \land z) \lor x$ by Definition C.21 page 116 (lub)

Theorem F.2. 9 Let L be a LATTICE (Definition D.3 page 119).

L is modular \iff **L** does not contain N5 as a sublattice.

^ℚProof:

- 1. Proof that L is modular $\implies L$ does *not* contain N5:
 This is because N5 is a non-modular lattice. Proof: Lemma F.1 page 140
- Beran (1985) pages 12–13, 🗓 Dedekind (1900) pages 391–392 ((44) and (45))
- ⁸ 🔊 Burris and Sankappanavar (1981) page 11
- ⁹ Burris and Sankappanavar (1981) page 11, Grätzer (1971) page 70, Dedekind (1900) ⟨cf Stern 1999 page 10⟩

- 2. Proof that L does not contain $N5 \implies L$ is modular:
 - (a) In what follows, we will prove the equivalent contrapositive statement: L is not modular $N5 \in L$ (every non-modular lattice *must* contain *N*5).
 - (b) We will show that for any choice of $x, y \in L$ such that $x \le y$ and under the following definitions, all non-modular lattices contain the N5 lattice illustrated below:

$$a \triangleq x \lor (y \land z)$$
$$b \triangleq y \land (x \lor z)$$

(c) Proofs for comparable elements:

$$b = y \land (x \lor z)$$
 by definition of b in item (2b)
 $\leq x \lor z$ by definition of \wedge page 116
 $a = x \lor (y \land z)$ by definition of a in item (2b)
 $\leq y \land (x \lor z)$ by modularity inequality Theorem D.7
 $= b$ by definition of b in item (2b)
 $y \land z \leq x \lor (y \land z)$ by definition of \forall page 116
 $= a$ by definition of a in item (2b)
 $z \leq x \lor z$ by definition of a page 116

(d) Proofs for noncomparable elements:

$$a \lor z = [x \lor (y \land z)] \lor z$$
 by definition of a by commutative property of lattices (page 120) by associative property of lattices (page 120) by absorptive property of lattices (page 120) by associative property of lattices (page 120) by associative property of lattices (page 120) by associative property of lattices (page 120) by previous result by previous result by previous result by associative property of lattices (page 120) by previous result by previou

$$= [z \land y] \land (x \lor z)$$
 by associative property of lattices (page 120)
$$= [y \land z] \land (x \lor z)$$
 by commutative property of lattices (page 120)
$$= y \land [z \land (x \lor z)]$$
 by associative property of lattices (page 120)
$$= y \land z$$
 by absorptive property of lattices (page 120)

(e) Thus, *all* non-modular lattices *must* contain an *N*5 sublattice. That is,

L is a non-modular lattice \implies L contains an N5 sublattice.

And this implies (by the contrapostive of the statement)

L does *not* contain an N5 sublattice \implies L is modular lattice.

Algebraic characterizations

Theorem F.3. ¹⁰ Let $\mathbf{A} \triangleq (X, \vee, \wedge; \leq)$ be an algebraic structure.

```
 \begin{cases} (x \wedge y) \vee (x \wedge z) &= [(z \wedge x) \vee y] \wedge x & \forall x, y, z \in X \text{ and } \\ [x \vee (y \vee z)] \wedge z &= z & \forall x, y, z \in X \end{cases} \iff \begin{cases} \textbf{A is a } \\ \textbf{modular lattice} \end{cases}
```

F.3.2 Special cases

Theorem F.4. ¹¹ Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a bounded lattice.

F.4 Examples

Example F.1. The lattice illustrated to the right is the *N5 lattice* (Definition F.4 page 140). The N5 lattice has a total of $5 \times 5 = 25$ pairs of elements of the form (x, y) where $x, y \in X$. Of these 25, *all* are modular pairs *except* for the pair (z, y). That is, $z \oplus y$. Therefore, the N5 lattice is *non-semimodular* (and *non-modular*).

1. Five are of the form (x, x) and are therefore modular pairs by the *reflexive* property and Proposition E3 page 138:

```
1@1, y@y, x@x, z@z, 0@0.
```


Padmanabhan and Rudeanu (2008) pages 42–43, Riečan (1957)

F.4. EXAMPLES Daniel J. Greenhoe page 143

2. Of the remaining 20, 16 more are modular pairs simply because they are *comparable* and by Proposition F2 (page 137):

$$100y$$
 $100x$ 1000 $y00x$ $y000$ $x000$ $100x$ $z000$ $y001$ $x001$ $000x$ $x000$ $x000$ $x000$

3. Of the remaining 4, 3 are modular pairs and 1 is a nonmodular pair:

$$y \otimes z \qquad x \otimes z$$

$$z \otimes y \qquad z \otimes x$$

$$x \le y \implies y \land (z \lor x) = y \land 1 \qquad = y \qquad \neq x \qquad = 0 \lor x \qquad = (y \land z) \lor x \qquad \implies z \mathfrak{D} y$$

$$0 \le z \implies z \land (y \lor 0) = z \land y \qquad = 0 \qquad = 0 \lor 0 \qquad = (z \land y) \lor 0 \qquad \implies y \mathfrak{D} z$$

$$0 \le z \implies z \land (x \lor 0) = z \land x \qquad = 0 \qquad = 0 \lor 0 \qquad = (z \land x) \lor 0 \qquad \implies x \mathfrak{D} z$$

$$0 \le x \implies x \land (z \lor 0) = x \land z \qquad = 0 \qquad = 0 \lor 0 \qquad = (x \land z) \lor 0 \qquad \implies z \mathfrak{D} x$$

Example F.2. Of the non-comparable pairs in the lattice illustrated to the right, the following are *modular* pairs:

$$x \otimes y$$
, $y \otimes x$, $x \otimes a$, $a \otimes x$, $y \otimes a$, $a \otimes y$, $b \otimes x$, $b \otimes y$

and the remaining non-comparable pairs are *non-modular*:

$$x \otimes b, y \otimes b.$$

Therefore, although the Hasse diagram shown is horizontally and vertically symmetric, the lattice itself is *not M-symmetric* (not semimodular), and thus also not modular and not distributive.

Example F.3. The lattices illustrated to the right and left are duals of each other. Both are *non-modular* and both are *non-semimodular*.

^ℚProof:

Left hand side lattice:

$$a(z+x) = a1$$
 $= a$ $\neq x$ $= 0+x$ $\implies z \oplus a$
 $z(a+0) = za$ $= za+0$ $\implies a \oplus z$

Right hand side lattice:

$$z(x+0) = zx$$
 $= zx + 0$ $\Longrightarrow x \otimes z$
 $x(z+a) = x1$ $= x$ $\neq a$ $= 0 + a$ $= xz + a$ $\Longrightarrow z \otimes z$

Negation, Implication, and Logic [VERSION 051] https://github.com/dgreenhoe/pdfs/blob/master/nil.pdf

Example F.4. The lattice illustrated to the left is *modular*. The lattice illustrated to the right is *non-modular* and *non-semimodular*.

♥PROOF:

- 1. Proof that the left hand side is *modular*: because it does not contain the N5 lattice and by Theorem F.2 (page 140).
- 2. Proof that the right hand side is *non-modular* and *non-semimodular*:

$$x(b+y) = xb$$
 $= 0$ $= 0 + y$ $\Rightarrow b \otimes x$
 $b(x+y) = b1$ $= b$ $\neq y$ $= 0 + y$ $\Rightarrow x \oplus b$
 $y(a+x) = ya$ $= 0$ $= 0 + x$ $\Rightarrow a \otimes y$
 $a(y+x) = a1$ $= a$ $\neq x$ $= 0 + x$ $\Rightarrow a \otimes y$

Proposition F.4. ¹² Let X_n be a finite set with order $n = |X_n|$. Let l_n be the number of unlabeled lattices on X_n , d_n the number of unlabeled distributive lattices on X_n , and m_n the number of unlabeled modular lattices on X_n .

Р										8		10	11	12	13
R	l_n	1	1	1	1	2	5	15	53	222	1078	5994	37622	262,776	2,018,305
P	m_n	1	1	1	1	2	4	8	16	34	72	157	343		

Example F.5 (modularity in 5 element sets). There are a total of five unlabeled lattices on a five element set (Proposition D.2 page 125); and of these five, four are modular, and three of the five are *distributive* (Example G.2 page 165).

Example F.6 (modularity in 6 element sets). There are a total of 15 unlabeled lattices on a six element set (Proposition D.2 $_{page}$ 125 and Example D.12 $_{page}$ 126); and of these 15, eight are modular, and five of the eight are distributive (Proposition G.3 $_{page}$ 165). There are no six element non-modular lattices that are also $_{semimodular}$.

Daniel J. Greenhoe page 145

F.4. EXAMPLES

Example F.7. The lattices illustrated to the left and right are duals of each other. Both are *non-modular*. The left hand side lattice is also *non-semimodular*, however the right hand side lattice is *semimodular*. ¹³

♥PROOF:

Proof for lattice on left hand side:

$$y(a + 0) = ya$$
 $= ya + 0$ $\implies a@y$
 $a(y + x) = aa$ $= a$ $= y + x$ $\implies y@a$
 $b(a + z) = b1$ $= b$ $= y + z$ $= ba + z$ $\implies a@b$
 $a(b + x) = a1$ $= a$ $= y + x$ $= ab + x$ $\implies b@a$
 $b(x + z) = b1$ $= b$ $\neq z$ $= 0 + z$ $\Rightarrow x@b$
 $x(b + 0) = xb$ $= xb + 0$ $\implies b@x$

Proof for lattice on right hand side:

$$c(x + y) = cb \qquad = y \qquad = 0 + y \qquad = cx + y \qquad \Longrightarrow x @ c$$

$$x(c + 0) = xc \qquad = xc + 0 \qquad \Longrightarrow c @ x$$

$$b(a + x) = ba \qquad = x \qquad = x + x \qquad = ba + x \qquad \text{and}$$

$$b(a + y) = b1 \qquad = b \qquad = x + y \qquad = ba + y \qquad \Longrightarrow a @ b$$

$$a(b + x) = ab \qquad = 1 \qquad = 1 + x \qquad = ab + x \qquad \Longrightarrow b @ a$$

$$c(a + y) = c1 \qquad = c \qquad \neq y \qquad = 0 + y \qquad = ca + y \qquad \Longrightarrow a @ c$$

$$a(c + x) = a1 \qquad = a \qquad \neq x \qquad = 0 + x \qquad = ac + x \qquad \Longrightarrow c @ a$$

$$c(x + y) = cb \qquad = y \qquad = 0 + y \qquad = cx + y \qquad \Longrightarrow x @ c$$

$$x(c + 0) = xc \qquad = xc + 0 \qquad \Longrightarrow c @ x$$

$$\vdots$$

Example F.8 (modular lattices on 7 element sets). There are a total of 53 unlabeled lattices on a seven element set (Example D.13 page 126). Of these 53, 16 are modular, and 8 of these 16 are distributive (Proposition G.3 page 165).

¹³ Maeda and Maeda (1970), page 5 (Exercise 1.1)

G.1 Distributivity relation

Definition G.1. Let $L \triangleq (X, \vee, \wedge; \leq)$ be a LATTICE (Definition D.3 page 119). Let 2^{XXX} be the set of all RELATIONS in X^3 .

The distributivity relation $0 \in 2^{XXX}$ and the dual distributivity relation $0^* \in 2^{XXX}$ are defined as

A triple $(x, y, z) \in \mathbb{D}$ is alternatively denoted as $(x, y, z) \in \mathbb{D}$, and is called a **distributive** triple. A triple $(x, y, z) \in \mathbb{O}^*$ is alternatively denoted as $(x, y, z) \mathbb{O}^*$, and is called a **dual distributive** triple. A set $\{x, y, z\} \subseteq X$ is **distributive** in **L** if each of the possible 3! = 6 triples [(x, y, z), $(z, x, y), \dots$ constructed from the set is DISTRIBUTIVE in **L**.

Distributive Lattices G.2

G.2.1Definition

D

This section introduces distributive lattices. Theorem D.6 (page 123) demonstrates that all lattices $(X, \vee, \wedge; \leq)$ satisfy the following *distributive inequalities*:

$$x \wedge (y \vee z) \geq (x \wedge y) \vee (x \wedge z)$$
 $\forall x,y,z \in X$ (join super-distributive) and $x \vee (y \wedge z) \leq (x \vee y) \wedge (x \vee z)$ $\forall x,y,z \in X$ (meet sub distributive). and $(x \wedge y) \vee (x \wedge z) \vee (y \wedge z) \leq (x \vee y) \wedge (x \vee z) \wedge (y \vee z)$ $\forall x,y,z \in X$ (median inequality).

Theorem G.1 (page 148) demonstrates that when *one* of these inequalities is equality, then *all three* of them are equalities. And in this case, the lattice is defined to be *distributive* (next definition).

¹

 Maeda and Maeda (1970), page 15 ⟨Definition 4.1⟩, ■ Foulis (1962) page 67, ■ von Neumann (1960), page 32 (Definition 5.1), \(\) Davis (1955) page 314 (disjunctive distributive and conjunctive distributive f.)

Definition G.2. ²

A lattice $(X, \vee, \wedge; \leq)$ is **distributive** if $(x, y, z) \in \mathbb{D} \quad \forall x, y, z \in X$

Are all lattices *distributive*? The answer is "no". Lemma G.1 (page 150) and Lemma G.2 (page 151) demonstrate two lattices that are *not* distributive: the N5 lattice (Definition F.4 page 140) and the M3 lattice (Definition G.3 page 151).

G.2.2 Characterizations

This section describes some characterizations (equational bases) of distributive lattices both in terms of lattices (order characterizations) and in terms of abstract algebraic structures (algebraic characterizations).

Order characterizations (first assuming a structure is a lattice):

Median property
1894 Theorem G.1 page 148

Birkhoff distributivity criterion 1934 Theorem G.2 page 152

Cancellation property
1934 Theorem G.3 page 155

Algebraic characterizations (first assuming nothing):

Birkhoff 1946 Proposition G.1 page 158

Birkhoff 1948 Proposition G.2 page 158

Sholander 1951 Theorem G.4 page 158

Alternatively, any of the sets of properties listed in this section could be used as the definition of distributive lattices and the definition would in turn become a theorem/proposition.

In addition, if a lattice is *uniquely complemented* and satisfies any one of a number of *Huntington properties*, then it is also *distributive* (Theorem H.2 page 169), and hence also a *Boolean algebra* (Definition I.1 page 173).

Order characterizations

By the definition given in Definition G.2 (page 148), a lattice is *distributive* if the meet operation \land distributes over the join operation \lor . And in view that the properties of lattices are self-dual, it is perhaps not surprising that the dual of the identity of Definition G.2 is also true for any distributive lattice— that is, the join operation \lor distributes over the meet operation \land (next theorem). But besides these two identities that are duals of each other, there is another identity that is not only equivalent to the first two, but is a dual of itself. This is called the *median property*, and is given by (3) in Theorem G.1 (next theorem).

Theorem G.1. ⁴ Let $L \triangleq (X, \vee, \wedge; \leq)$ be a LATTICE (Definition D.3 page 119).

³ median property: see also Literature item 5 page 170

⁴ ☐ Dilworth (1984) page 237, **②** Burris and Sankappanavar (1981) page 10, **②** Ore (1935) page 416 ⟨(7),(8), Theorem 3⟩, **③** Ore (1940) ⟨cf Gratzer 2003 page 159⟩, **②** Schröder (1890) page 286 ⟨cf Birkhoff(1948)p.133⟩, **③** Korselt (1894) ⟨cf Birkhoff(1948)p.133⟩

G.2. DISTRIBUTIVE LATTICES

```
L is DISTRIBUTIVE (Definition G.2 page 148)
  \iff x \land (y \lor z) = (x \land y) \lor (x \land z) \quad \forall x,y,z \in X
                                                                                                      (DISJUNCTIVE DISTRIBUTIVE)
  \iff x \lor (y \land z) = (x \lor y) \land (x \lor z) \quad \forall x, y, z \in X
                                                                                                      (CONJUNCTIVE DISTRIBUTIVE)
  \iff (x \lor y) \land (x \lor z) \land (y \lor z) = (x \land y) \lor (x \land z) \lor (y \land z) \quad \forall x, y, z \in X \quad \text{(median property)}
```

 $^{\lozenge}$ Proof: Let the join operation \vee be represented by +, the meet operation \wedge be represented by juxtaposition, and let meet take algebraic precedence over join (+).

1. Proof that distributive \iff disjunctive distributive:

2. Proof that disjunctive distributive \implies conjunctive distributive:

$$x + (yz) = \underbrace{\left[x + (xy)\right]}_{\text{expand } x \text{ wrt } y} + (yz)$$
 by *absorptive* property of lattices page 120
$$= x + \left[(xy) + (yz)\right]_{\text{expand } x \text{ wrt } z}$$
 by *associative* property of lattices page 120
$$= x + \left[(yx) + (yz)\right]_{\text{expand } x \text{ wrt } z}$$
 by *commutative* property of lattices page 120
$$= x + \left[y(x+z)\right]_{\text{expand } x \text{ wrt } z}$$
 by *absorptive* property of lattices page 120
$$= \left[(x+z)x\right] + \left[(x+z)y\right]_{\text{expand } x \text{ wrt } z}$$
 by *commutative* property of lattices page 120
$$= (x+z)(x+y)$$
 by *commutative* property of lattices page 120
$$= (x+z)(x+y)$$
 by *commutative* property of lattices page 120
$$= (x+y)(x+z)$$
 by *commutative* property of lattices page 120

3. Proof that *conjunctive distributive* \implies *disjunctive distributive*:

$$x(y+z) = \underbrace{\begin{bmatrix} x(x+y) \end{bmatrix}}_{\text{expand } x \text{ wrt } y} \text{ by } \textit{absorptive} \text{ property of lattices page } 120$$

$$= x \underbrace{[(x+y)(y+z)]}_{\text{expand } x \text{ wrt } z} \text{ by } \textit{associative} \text{ property of lattices page } 120$$

$$= x \underbrace{[(y+x)(y+z)]}_{\text{expand } x \text{ wrt } z} \text{ by } \textit{commutative} \text{ property of lattices page } 120$$

$$= x \underbrace{[(y+x)(y+z)]}_{\text{expand } x \text{ wrt } z} \text{ by } \textit{absorptive} \text{ property of lattices page } 120$$

$$= \underbrace{[(xz)+x]}_{\text{expand } x \text{ wrt } z} \text{ by } \textit{commutative} \text{ property of lattices page } 120$$

$$= \underbrace{[(xz)+x]}_{\text{expand } x \text{ wrt } z} \text{ by } \textit{commutative} \text{ property of lattices page } 120$$

$$= (xz)+(xy) \text{ by left hypothesis}$$

$$= (xy)+(xz) \text{ by } \textit{commutative} \text{ property of lattices page } 120$$

4. Proof that disjunctive distributive \implies median property:

```
(x + y)(x + z)(y + z)
= (x + y)[(x + z)y + (x + z)z]
                                                   by disjunctive distributive hypothesis
= (x + y)[y(x + z) + z(x + z)]
                                                   by commutative property (Theorem D.3 page 120)
= (x + y)(yx + yz + zx + zz)
                                                   by disjunctive distributive hypothesis
                                                   by Theorem D.3 page 120
= (x+y)(xy+xz+yz+z)
                                                   by disjunctive distributive hypothesis
= (x + y)xy + (x + y)xz + (x + y)yz + (x + y)z
```


$$= xy(x+y) + xz(x+y) + yz(x+y) + z(x+y)$$
 by *commutative* property (Theorem D.3 page 120)
$$= xyx + xyy + xzx + xzy + yzx + yzy + zx + zy$$
 by *disjunctive distributive* hypothesis
$$= xy + xy + xz + xyz + xyz + yz + xz + yz$$
 by *idempotent* property (Theorem D.3 page 120)
$$= xy + xyz + xz + yz$$
 by *idempotent* property (Theorem D.3 page 120)
$$= (xy)(xy) + xyz + xz + yz$$
 by *idempotent* property (Theorem D.3 page 120)
$$= (xy)(xy + z) + xz + yz$$
 by *disjunctive distributive* hypothesis
$$= xy + xz + yz$$
 by *absorptive* property (Theorem D.3 page 120)

- 5. Proof that *median property* \implies *disjunctive distributive*:
 - (a) Proof that *L* is *modular*:

$$y \le x \implies x(y+z) = x(x+z)(y+z)$$
 by absorptive property (Theorem D.3 page 120)
 $= (x+y)(x+z)(y+z)$ by $y \le x$ hypothesis
 $= xy + xz + yz$ by median property hypothesis
 $= y + xz + yz$ by $y \le x$ hypothesis
 $= y + xz$ by absorptive property (Theorem D.3 page 120)
 $\implies L$ is modular

(b) Proof that a + ab = a:

$$ab \le a$$
 by definition of \land Definition C.22 page 116
 $\implies a + ab = a$ by definition of \lor Definition C.21 page 116

(c) Proof that median property \implies disjunctive distributive:

$$x(y+z) = xx(y+z)$$
 by $idempotent$ property (Theorem D.3 page 120)
$$= x(x+y)x(x+z)(y+z)$$
 by $absorptive$ property (Theorem D.3 page 120)
$$= x[(x+y)(x+z)(y+z)]$$
 by Theorem D.3 page 120
$$= x(xy+xz+yz)$$
 by $median\ property$ hypothesis
$$= x(xy)+x(xz+yz)$$
 by item (5a) and by Theorem E.1 page 139
$$= x(xy)+x(xz)+x(yz)$$
 by item (5a) and by Theorem E.1 page 139
$$= xy+xz+xyz$$
 by Theorem D.3 page 120
$$= xy+xz+xyz$$
 by Theorem D.3 page 120
$$= xy+xz+xyz$$
 by item (5b)

Lemma G.1. ⁵

L E M

The N5 lattice is non-distributive

⁵ Burris and Sankappanavar (1981) page 11

№PROOF:

$$y \wedge (x \vee z) = y \wedge b$$
 by Definition C.21 page 116 (lub)

$$= y$$
 by Definition C.22 page 116 (glb)

$$= y \vee a$$
 by Definition C.21 page 116 (lub)

$$= y \vee (y \wedge z)$$
 by Definition C.22 page 116 (glb)

$$\neq x \vee (y \wedge z)$$
 because $x \neq y$

$$= (y \wedge x) \vee (y \wedge z)$$
 by Definition C.22 page 116 (glb)

₽

Definition G.3 (M3 lattice/diamond). ⁶

D E F The **M3 lattice** is the ordered set $(\{0, p, q, r, 1\}, \leq)$ with covering relation $\leq \{(p, 1), (q, 1), (r, 1), (0, p), (0, q), (0, r)\}.$

and is illustrated by the Hasse diagram to the right.

Remark G.1. The M3 lattice is isomorphic to the lattices

G.1. The M3 lattice is isomorphic to the lattices $(\mathcal{P}(\{x, y, z\}), \leq)^7$ where $\mathcal{P}(\{x, y, z\})$ is the set of partitions on $\{x, y, z\}$

and with \leq defined as in Proposition A.8 (page 55)

 $(\mathcal{R}(\{x,y\}),\subseteq)$ where $\mathcal{R}(\{x,y\})$ is the set of *rings of sets* on $\{x,y\}$

 $(\mathcal{A}(\{x,y,z\}),\subseteq)$ where $\mathcal{A}(\{x,y,z\})$ is the set of *algebras of sets* on $\{x,y,z\}$.

See Example A.11 (page 55), Example A.7 (page 53), Example A.16 (page 67), and Figure A.8 (page 69).

Lemma G.2. ⁸

♥Proof:

1. Proof that *M*3 is non-distributive:

$$x \land (a \lor c) = x \land y$$
 by def. of l.u.b. page 116
 $= x$ by def. of g.l.b. page 116
 $\neq b$ by Theorem D.3 page 120 (idempotent property)
 $= (\underbrace{x \land a}) \lor (\underbrace{x \land c})$ by def. of g.l.b. page 116

2. Proof that *M*3 is modular: (proof by exhaustion)

$$= y \wedge (x \vee a) \qquad = y \wedge (x \vee b)$$

$$x \vee (y \wedge b) = x \vee b \qquad x \vee (y \wedge c) = x \vee c$$

$$= x \qquad = y$$

$$= y \wedge x \qquad = y \wedge y$$

⁶ Beran (1985) pages 12–13, Korselt (1894) page 157 $\langle p_1 \equiv x, p_2 \equiv y, p_3 \equiv z, g \equiv 1, 0 \equiv 0 \rangle$

⁷ Saliĭ (1988) page 22

$$b \lor (y \land a) = b \lor b$$

$$b \lor (y \land a) = b \lor a$$

$$= b$$

$$a \lor (y \land x) = a \lor x$$

$$= y$$

$$= y \land a$$

$$= y \land (b \lor a)$$

$$= b \lor (b \lor a)$$

$$= b$$

The *Birkhoff distributivity criterion* (next) demonstrates that a lattice is distributive *if and only if* it does not contain either the N5 or M3 lattices. If a lattice does contain either of these, it is *not* distributive. If a lattice is distributive, it does *not* contain either the N5 or M3 lattices. There was a similar theorem for *modular* lattices and the N5 lattice (Theorem F.2 page 140).

Theorem G.2 (Birkhoff distributivity criterion). 9 Let $L \triangleq (X, \vee, \wedge; \leq)$ be a LATTICE.

№ Proof:

1. Proof that L is distributive $\implies L$ does *not* contain N5: This follows directly from Lemma G.1 (page 150).

^{9 🛮} Burris and Sankappanavar (1981) page 12, 🛍 Birkhoff (1948) page 134, 🖫 Birkhoff and Hall (1934)

- 2. Proof that L is distributive $\implies L$ does *not* contain M3: This follows directly from Lemma G.2 (page 151).
- 3. Proof that *L* is distributive \iff $N5 \notin L$ and $M3 \notin L$:
 - (a) Proof that this statement is equivalent to

In when manning after those tent in to show

A = 0 the 0 th or principles

and it is it as a principles

and it is it as a principles

and it is it is a principles

and it is in the or of the or of

and it is not close 0 to it is

and it is not close 0 to it is

and it is not close 0 to it

and it is and then 0 to it

and the or of th $-\infty$ part (A). Note: one could have used (it set as $B_i \to r G_i$ which is year (4), increased of (G). In an ansate to prove both. The above in year at application of preparatorismic logic. Yes not also was wrest while to show then Many many thanks to University of Waterloo his brilliant help with the logical structure of the as a pdf file, zoom in on the figure to the left to October 9 email.)

(*L* is nondistributive) \land (*N*5 \notin *L*) \Longrightarrow (*M*3 \in *L*):

Let $P \equiv Q$ denote that statement P is equivalent to statement Q. Then ...

(*L* is distributive)
$$\iff$$
 $(N5 \notin L) \land (M3 \notin L)$

$$\equiv$$
 (*L* is nondistributive) \Longrightarrow ($N5 \in L$) \vee ($M3 \in L$) contrapo

$$\equiv \neg (L \text{ is nondistributive}) \lor [(N5 \in L) \lor (M3 \in L)]$$
 by definition of

$$\equiv \left[\neg (L \text{ is nondistributive}) \lor (N5 \in L) \right] \lor (M3 \in L)$$

$$\equiv \neg \neg [\neg (\mathbf{L} \text{ is nondistributive}) \lor \neg (N5 \notin L)] \lor (M3 \in L)$$

$$\equiv \neg [(L \text{ is nondistributive}) \land (N5 \notin L)] \lor (M3 \in L)$$

$$\equiv (L \text{ is nondistributive}) \land (N5 \notin L) \implies (M3 \in L)$$

contrapositive

by definition of
$$\implies$$
 (Definition 3.1 page 34)

by definition of
$$\implies$$
 (Definition 3.1 page 34)

- (b) Proof that L is *not* distributive and $N5 \notin L \implies M3 \in L$:
 - i. Because $N5 \notin L$ and by Theorem E2 (page 140), L is modular (so we can use the modularity property of Definition F.3 page 138).
 - ii. We will show that the five values defined below form an M3 lattice:

$$b \triangleq (x \lor y) \land (x \lor z) \land (y \lor z)$$

$$a \triangleq (x \land y) \lor (x \land z) \lor (y \land z)$$

$$\dot{x} \triangleq (x \land b) \lor a$$

$$\dot{y} \triangleq (y \land b) \lor a$$

$$\dot{z} \triangleq (z \land b) \lor a$$

iii. Proof that $a \le b$:

$$a = (x \land y) \lor (x \land z) \lor (y \land z)$$

$$= (x \land y \land x) \lor (x \land z \land z) \lor (y \land z \land z)$$

$$\leq (x \lor x \lor y) \land (y \lor z \lor z) \land (x \lor z \lor z)$$

$$= (x \lor y) \land (y \lor z) \land (x \lor z)$$

$$= (x \lor y) \land (x \lor z) \land (y \lor z)$$

$$= b$$

by definition of a (item (3(b)ii))

 $= (x \land y \land x) \lor (x \land z \land z) \lor (y \land z \land z)$ by idempotent property of lattices (page 120)

 $\leq (x \lor x \lor y) \land (y \lor z \lor z) \land (x \lor z \lor z)$ by minimax inequality Theorem D.5 page 122

by idempotent property of lattices (page 120)

by commutative property of lattices (page 120)

by definition of b (item (3(b)ii))

$$\bigvee \left\{ \begin{array}{c|ccc} \bigwedge \left\{ \begin{array}{ccc} x & y & x \end{array} \right\} \\ \hline \bigwedge \left\{ \begin{array}{ccc} x & z & z \end{array} \right\} \\ \hline \bigwedge \left\{ \begin{array}{ccc} y & y & y \\ x & y & z \\ y & z & z \end{array} \right\} \end{array} \right\}$$

- iv. Proof that $a \le \dot{x} \le \dot{y} \le \dot{z} \le b$:
 - A. By item (3(b)iii), $a \le b$.
 - B. By definition of \land , $(x \land b)$ must be less than or equal to b.

- C. By definition of \lor , $(x \land b) \lor a$ must be greater than or equal to a.
- D. By definition of \dot{x} (item (3(b)ii)), $a \le \dot{x} \le b$.
- E. The proofs for $a \le \dot{y} \le b$ and $a \le \dot{z} \le b$ are essentially identical to that of $a \le \dot{x} \le b$.
- v. Proof that $\dot{x} \wedge \dot{y} = \dot{x} \wedge \dot{z} = \dot{y} \wedge \dot{z} = a$:

$$\dot{x} \wedge \dot{y} = \underbrace{[(x \wedge b) \vee a] \wedge \dot{y}}_{\dot{x}} \qquad \text{by definition of } \dot{x} \text{ item (3(b)ii)}$$

$$= \underbrace{[(x \wedge b) \wedge \dot{y}] \vee a}_{\dot{y}} \qquad \text{by modularity page 138}$$

$$= \underbrace{[(x \wedge b) \wedge ((y \wedge b) \vee a)] \vee a}_{\dot{y}} \qquad \text{by modularity page 138}$$

$$= \underbrace{[(x \wedge b) \wedge (y \vee a) \wedge b] \vee a}_{\dot{y}} \qquad \text{by idempotent property page 120}$$

$$= \underbrace{\left[(x \wedge b) \wedge (y \vee a) \vee (x \wedge z) \vee (y \wedge z)\right]}_{\dot{y}} \wedge \qquad \text{by definitions of } a \text{ and } b \text{ item (3(b)ii)}$$

$$= \underbrace{\left[(x \wedge b) \wedge (y \vee a) \wedge (x \vee z) \wedge (y \vee z)\right]}_{\dot{y}} \wedge \qquad \text{by absorption property page 120}$$

$$= \underbrace{\left[(x \wedge y) \vee (x \wedge z) \vee (y \wedge z)\right]}_{\dot{y}} \vee a \qquad \text{by modularity page 138}$$

$$= \underbrace{\left[(x \wedge y \vee (y \vee z) \wedge (x \wedge z))\right]}_{\dot{y}} \vee a \qquad \text{because } (x \wedge z) \leq (y \vee z)$$

$$= \underbrace{\left[(x \wedge z) \vee (x \wedge y)\right]}_{\dot{y}} \vee a \qquad \text{by modularity page 138}$$

$$= \underbrace{\left[(x \wedge z) \vee (x \wedge y)\right]}_{\dot{y}} \vee a \qquad \text{by modularity page 138}$$

$$= \underbrace{\left[(x \wedge z) \vee (x \wedge y)\right]}_{\dot{y}} \vee a \qquad \text{by modularity page 138}$$

$$= \underbrace{\left[(x \wedge z) \vee (x \wedge y)\right]}_{\dot{y}} \vee \underbrace{\left[(x \wedge y) \vee (x \wedge z) \vee (y \wedge z)\right]}_{\dot{y}} \qquad \text{by definition of } a \text{ item (3(b)ii)}$$

$$= (x \wedge y) \vee (x \wedge z) \vee (y \wedge z) \qquad \text{by idempotent property page 120}$$

$$= a \qquad \text{by idempotent property page 120}$$

- vi. To prove that $\dot{x} \wedge \dot{z} = a$, simply replace \dot{y} with \dot{z} and \dot{y} with z in item (3(b)v).
- vii. To prove that $\dot{y} \wedge \dot{z} = a$, simply replace \dot{x} with \dot{z} and x with z in item (3(b)v).
- viii. Proof that $\dot{x} \lor \dot{y} = b$:

$$\dot{x} \lor \dot{y} = \underbrace{[(x \land b) \lor a] \lor \dot{y}}_{\dot{x}} \qquad \text{by definition of } \dot{x} \text{ item (3(b)ii)}$$

$$= \underbrace{[(x \lor a) \land b] \lor \dot{y}}_{\dot{x}} \qquad \text{by modularity page 138}$$

$$= \underbrace{[(x \lor a) \lor ((y \land b) \lor a)] \land b}_{\dot{y}} \qquad \text{by definition of } \dot{y} \text{ item (3(b)ii)}$$

$$= \underbrace{[(x \lor a) \lor ((y \land b))] \land b}_{\dot{y}} \qquad \text{by idempotent property page 120}$$

$$= \underbrace{\left[(x \lor a) \lor ((x \land y) \lor (x \land z) \lor (y \land z)]\right]}_{\dot{y}} \land \dot{y} \qquad \text{by definitions of } \dot{y} \text{ and } \dot{y} \text{ item (3(b)ii)}$$

$$= \underbrace{\left[(x \lor y) \land (x \lor z) \land (y \lor z)\right]}_{\dot{y}} \land \dot{y} \qquad \text{by definitions of } \dot{y} \text{ and } \dot{y} \text{ item (3(b)ii)}$$

$$= \underbrace{\left[(x \lor (y \land z)) \lor (y \land (x \lor z)) \land (y \lor z)\right]}_{\dot{y}} \land \dot{y} \qquad \text{by definitions of } \dot{y} \text{ and } \dot{y} \text{ item (3(b)ii)}$$

$$= \underbrace{\left[(x \lor (y \land z)) \lor (y \land (x \lor z)) \land (y \lor z)\right]}_{\dot{y}} \land \dot{y} \qquad \text{by absorption property page 120}$$

$$= [x \lor (y \land z) \lor (y \land (x \lor z))] \land b$$
 by associative property page 120
$$= [x \lor (y \land (y \land z) \lor (x \lor z)])] \land b$$
 by modularity page 138
$$= [x \lor (y \land (x \lor z))] \land b$$
 by Definition C.21 and Definition C.22
$$= [(x \lor z) \land (x \lor y)] \land b$$
 by modularity page 138
$$= [(x \lor z) \land (x \lor y)] \land [(x \lor z) \land (x \lor y) \land (y \lor z)]$$
 by definition of *b* item (3(b)ii)
$$= (x \lor z) \land (x \lor y) \land (y \lor z)$$
 by idempotent property page 120
$$= b$$
 by definition of *b* item (3(b)ii)

- ix. To prove that $\dot{x} \lor \dot{z} = b$, simply replace \dot{y} with \dot{z} and y with z in item (3(b)viii).
- x. To prove that $\dot{y} \lor \dot{z} = b$, simply replace \dot{x} with \dot{z} and x with z in item (3(b)viii).

Theorem G.3 (cancellation criterion). ¹⁰ Let $L \triangleq (X, \vee, \wedge; \leq)$ be a LATTICE.

	or orrection (confidence		(11, 1, 1, 1, 1)
T H M	<i>L is</i> distributive	\Leftrightarrow	$ \left\{ \left\{ \begin{array}{cccc} x \lor z &=& y \lor z & \forall x, y, z \in X & and & (1) \\ x \land z &=& y \land z & \forall x, y, z \in X & & (2) \end{array} \right\} \implies x = y \right\} $
			CANCELLATION property

№ Proof:

1. Proof that *distributive* property \implies *cancellation* property:

x = x(x+z)	by absorbtive property (Theorem D.3 page 120)
=x(y+z)	by (1)
= xy + xz	by distributive hypothesis
= xy + yz	by (2)
= yx + yz	by commutative property (Theorem D.3 page 120)
= y(x+z)	by distributive hypothesis
= y(y+z)	by (1)
= y	by absorbtive property (Theorem D.3 page 120)

- 2. Proof that *distributive* property \Leftarrow *cancellation* property:
 - (a) Define

$$a \triangleq x(y+z)$$

$$b \triangleq y(x+z)$$

$$c \triangleq z(x+y)$$

$$d \triangleq (x+y)(x+z)(y+z)$$

(b) Proof that ab = xy, ac = xz, and bc = yz:

$$ab = [x(y+z)][y(x+z)]$$
 by item (2a)

 $= [x(x+z)][y(y+z)]$ by commutative property (Theorem D.3 page 120)

 $= xy$ by absorptive property (Theorem D.3 page 120)

 $ac = [x(y+z)][z(x+y)]$ by item (2a)

 $= [x(x+y)][z(z+y)]$ by commutative property (Theorem D.3 page 120)

 $= xz$ by absorptive property (Theorem D.3 page 120)

 $bc = [y(x+z)][z(x+y)]$ by item (2a)

 $= [y(y+x)][z(z+x)]$ by commutative property (Theorem D.3 page 120)

 $= yz$ by absorptive property (Theorem D.3 page 120)

(c) Proof of some inequalities:

$$a = x(y + z)$$
 by item (2a)
$$\leq (x + y)(y + z)$$
 by definition of \vee

$$\leq (x + y)[(x + y) + z]$$
 by definition of \vee

$$= x + y$$
 by absorptive property (Theorem D.3 page 120)
$$a = x(y + z)$$
 by item (2a)
$$= x(z + y)$$
 by definition of \vee

$$\leq (x + z)(z + y)$$
 by definition of \vee

$$\leq (x + z)[(x + z) + y]$$
 by definition of \vee

$$= x + z$$
 by absorptive property (Theorem D.3 page 120)
$$b = y(x + z)$$
 by item (2a)
$$\leq (x + y)(x + z)$$
 by definition of \vee

$$\leq (x + y)[(x + y) + z]$$
 by definition of \vee

$$= x + y$$
 by absorptive property (Theorem D.3 page 120)
$$c = z(x + y)$$
 by item (2a)
$$\leq (x + z)(x + y)$$
 by definition of \vee

$$\leq (x + z)(x + y)$$
 by definition of \vee

$$\leq (x + z)(x + y)$$
 by definition of \vee

$$\leq (x + z)(x + y)$$
 by definition of \vee

$$\leq (x + z)(x + y)$$
 by definition of \vee

- (d) Proof that *L* is *modular*:
 - i. Consider the following N5 lattice:

ii. For the N5 lattice, the cancellation property does not hold because

$$1 = x + z = y + z = 1 \text{ and}$$

$$0 = xz = yz = 0,$$
but yet $x \neq y$.

- iii. Because *N*5 does *not* support the *cancellation* property and by the hypothesis that *L does* support the cancellation property, *L* therefore does *not* contain *N*5.
- iv. Because *L* does not contain *N*5 and by Theorem F.2 (page 140), *L* is modular.

Daniel J. Greenhoe

(e) Proof that a + b = a + c = b + c = d:

```
a + b = a + y(x + z)
                                    by definition of c (item (2a) page 155)
     =(a+v)(x+z)
                                    by modularity: item (2c) and item (2d)
                                    by definition of a (item (2a) page 155)
     = [x(y+z) + y](x+z)
     = [y + x(y+z)](x+z)
                                    by commutative property (Theorem D.3 page 120)
     = (y+x)(y+z)(x+z)
                                    by modularity: item (2c) and item (2d)
                                    by commutative property (Theorem D.3 page 120)
     = (x+y)(x+z)(y+z)
     = d
                                    by definition of d (item (2a) page 155)
                                    by definition of c (item (2a) page 155)
a + c = a + z(x + y)
                                    by modularity: item (2c) and item (2d)
     =(a+z)(x+y)
     = [x(y+z) + z](x+y)
                                    by definition of a (item (2a) page 155)
     = [z + x(y+z)](x+y)
                                    by commutative property (Theorem D.3 page 120)
     = (z+x)(y+z)(x+y)
                                    by modularity: item (2c) and item (2d)
     = (x+y)(x+z)(y+z)
                                    by commutative property (Theorem D.3 page 120)
     = d
                                    by definition of d (item (2a) page 155)
b + c = b + z(x + y)
                                    by definition of c (item (2a) page 155)
     = (b+z)(x+y)
                                    by modularity: item (2c) and item (2d)
     = [y(x+z) + z](x+y)
                                    by definition of a (item (2a) page 155)
     = [z + y(x+z)](x+y)
                                    by commutative property (Theorem D.3 page 120)
     = (z+y)(x+z)(x+y)
                                    by modularity: item (2c) and item (2d)
     = (x+y)(x+z)(y+z)
                                    by commutative property (Theorem D.3 page 120)
     = d
                                    by definition of d (item (2a) page 155)
```

(f) Proof that (a + yz) + c = (b + xz) + c and (a + yz)c = (b + xz)c:

$$(a + yz) + c = (a + bc) + c$$

$$= a + (c + cb)$$

$$= a + c$$

$$= d$$

$$= b + c$$

$$= b + (c + ca)$$

$$= (b + ac) + c$$

$$= (b + ac) + c$$

$$= (b + ac) + c$$

$$= (a + bc) + c$$

$$= (b + ac) + c$$

$$= (ac + bc) + c$$

(g) Proof that a + yz = b + xz: by item (2f) and cancellation hypothesis.

(h) Proof that a + yz = d:

$$a + yz = (a + yz) + (a + yz)$$
 by $idempotent$ property (Theorem D.3 page 120)
$$= (a + yz) + (b + xz)$$
 by item (2g)
$$= (a + bc) + (b + ac)$$
 by item (2b)
$$= (a + ac) + (b + bc)$$
 by $commutative$ property (Theorem D.3 page 120)
$$= a + b$$
 by $absorptive$ property (Theorem D.3 page 120)
$$= d$$
 by item (2e)

(i) Proof that z(x + y) = zx + zy (*distributivity*):

$$z(x + y) = c$$
 by item (2a)
 $= c(c + a)$ by absorptive property (Theorem D.3 page 120)
 $= c(a + c)$ by commutative property (Theorem D.3 page 120)
 $= cd$ by item (2e)
 $= c(a + yz)$ by item (2h)
 $= c(a + bc)$ by item (2b)
 $= (bc + a)c$ by commutative property (Theorem D.3 page 120)
 $= bc + ac$ by modularity: item (2c) and item (2d)
 $= yz + xz$ by item (2b)
 $= zx + zy$ by commutative property (Theorem D.3 page 120)

Algebraic characterizations

Proposition G.1. ¹¹ Let $\mathbf{A} \triangleq (X, \vee, \wedge; \leq)$ be an Algebraic Structure.

```
 \left\{ \begin{array}{l} \textbf{A is a} \\ \textbf{distributive lattice} \end{array} \right\} \iff \left\{ \begin{array}{ll} 1. & x \wedge x & = x & \forall x \in X & \text{and} \\ 2. & x \vee 1 & = 1 \vee x = 1 & \forall x \in X & \text{and} \\ 3. & x \wedge 1 & = 1 \wedge x = x & \forall x \in X & \text{and} \\ 4. & x \wedge (y \vee z) & = (x \wedge y) \vee (x \wedge z) & \forall x, y, z \in X & \text{and} \\ 5. & (y \vee z) \wedge x & = (y \wedge x) \vee (z \wedge x) & \forall x, y, z \in X \end{array} \right\}
```

Proposition G.2. ¹² Let $\mathbf{A} \triangleq (X, \vee, \wedge; \leq)$ be an Algebraic Structure.

```
 \left\{ \begin{array}{l} \textbf{A is a} \\ \textbf{distributive lattice} \end{array} \right\} \iff \left\{ \begin{array}{ll} 1. & x \wedge x & = x \\ 2. & x \vee y & = y \vee x \\ 3. & x \wedge y & = y \wedge x \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 5. & x \wedge (x \vee y) & = x \\ 6. & x \wedge (y \vee z) & = (x \wedge y) \vee (x \wedge z) \end{array} \right. \forall x, y \in X \quad and \\ \left\{ \begin{array}{ll} 1. & x \wedge x & = x \\ 2. & x \vee y & = y \vee x \\ 3. & x \wedge y & = y \wedge x \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 5. & x \wedge (x \vee y) & = x \\ 6. & x \wedge (y \vee z) & = (x \wedge y) \vee (x \wedge z) \end{array} \right. \forall x, y \in X \quad and \\ \left\{ \begin{array}{ll} 1. & x \wedge x & = x \\ 3. & x \wedge y & = y \wedge x \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 5. & x \wedge (x \vee y) & = x \\ 6. & x \wedge (y \vee z) & = (x \wedge y) \vee (x \wedge z) \end{array} \right. \forall x, y \in X \quad and \\ \left\{ \begin{array}{ll} 1. & x \wedge x & = x \\ 3. & x \wedge y & = y \wedge x \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 5. & x \wedge (x \vee y) & = x \\ 6. & x \wedge (y \vee z) & = (x \wedge y) \vee (x \wedge z) \end{array} \right. \forall x, y \in X \quad and \\ \left\{ \begin{array}{ll} 1. & x \wedge x & = x \\ 3. & x \wedge y & = y \wedge x \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 5. & x \wedge (x \vee y) & = x \\ 6. & x \wedge (y \vee z) & = (x \wedge y) \vee (x \wedge z) \end{array} \right. \forall x, y \in X \quad and \\ \left\{ \begin{array}{ll} 1. & x \wedge x & = x \\ 3. & x \wedge y & = y \wedge x \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 5. & x \wedge (x \vee y) & = x \\ 6. & x \wedge (y \vee z) & = (x \wedge y) \vee (x \wedge z) \end{array} \right. \forall x, y \in X \quad and \\ \left\{ \begin{array}{ll} 1. & x \wedge x & = x \\ 3. & x \wedge y & = y \wedge x \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 5. & x \wedge (x \vee y) & = x \\ 6. & x \wedge (y \vee z) & = (x \wedge y) \wedge z \end{array} \right. \forall x, y \in X \quad and \\ \left\{ \begin{array}{ll} 1. & x \wedge x & = x \\ 3. & x \wedge y & = y \wedge x \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) & = (x \wedge y) \wedge z \\ 4. & x \wedge (y \wedge z) &
```

Theorem G.4. ¹³ Let $\mathbf{A} \triangleq (X, \vee, \wedge; \leq)$ be an Algebraic Structure.

```
 \left\{ \begin{array}{l} \textbf{A} \text{ is } a \\ \textbf{distributive lattice} \end{array} \right\} \iff \left\{ \begin{array}{l} 1. \quad x \wedge (x \vee y) = x \\ 2. \quad x \wedge (y \vee z) = (z \wedge x) \vee (y \wedge x) \quad \forall x, y, z \in X \end{array} \right.
```

¹³ Padmanabhan and Rudeanu (2008) page 59, Sholander (1951) page 28 ⟨P1, P2⟩

¹² Padmanabhan and Rudeanu (2008) page 58, Birkhoff (1948) pages 134–135 ⟨Ex.6⟩

[♠]Proof:

1. Proof that xx = x (*meet idempotent* property):

$$xx = x[x(x+x)]$$
 by 1

$$= x(xx + xx)$$
 by 2

$$= xxx + xxx$$
 by 2

$$= xxx(x + x) + xxx(x + x)$$
 by 1

$$= xx(xx + xx) + xx(xx + xx)$$
 by 2

$$= xx + xx$$
 by 1

$$= x(x + x)$$
 by 2

$$= x + xx$$
 by 1

$$= x(x + x)$$
 by 2

2. Proof that x + x = x (*join idempotent* property):

$$x + x = xx + xx$$
 by meet idempotent property (item (1) page 158)
 $= x(x + x)$ by 2
 $= x$ by 1

3. Proof that xy = yx (*meet commutative* property):

$$xy = xy + xy$$
 by *join idempotent* property (item (2) page 158)
= $y(x + x)$ by 2
= yx by *join idempotent* property (item (2) page 158)

4. Proof that x(y + z) = xy + xz (conjunctive distributive property):

$$x(y+z) = yx + zx$$
 by 2
= $xy + xz$ by *meet commutative* property (item (3) page 159)

5. Proof that x + xy = x (*join absorptive* property):

x = x(x + y)	by 1
=yx+xx	by 2
=yx+x	by meet idempotent property (item (1) page 158)
= (yx + x)(yx + x)	by meet idempotent property (item (1) page 158)
= x(yx + x) + yx(yx + x)	by 2
= x(yx + x) + yx	by 1
= [xx + (yx)x] + yx	by 2
= x(yx + x) + yx	by 2
= x(yx + xx) + yx	by meet idempotent property (item (1) page 158)
= x[x(x+y)] + yx	by 2
= xx + yx	by 1
= x + yx	by meet idempotent property (item (1) page 158)
= x + xy	by meet commutative property (item (3) page 159)

6. Proof that x + y = y + x (*join commutative* property):

$$x + y = (x + y)(x + y)$$
 by meet idempotent property (item (2) page 158)
 $= y(x + y) + x(x + y)$ by 2
 $= y(x + y) + x$ by 1
 $= (yy + xy) + x$ by 2
 $= (y + xy) + x$ by meet idempotent property (item (2) page 158)
 $= (y + yx) + x$ by meet commutative property (item (3) page 159)
 $= y + x$ by join absorptive property (item (5) page 159)

- 7. Proof that (x + y) + z = x + (y + z) (*join associative* property):
 - (a) Let $P \triangleq (x + y) + z$ and $Q \triangleq x + (y + z)$
 - (b) Proof that Px = x, Py = y, and Pz = z:

$$Px = [(x + y) + z]x$$
 by definition of P (item (7a) page 159)
$$= x[(x + y) + z]$$
 by $meet \ commutative \ property$ (item (3) page 159)
$$= x(x + y) + xz$$
 by $conjunctive \ distributive \ property$ (item (4) page 159)
$$= x + xz$$
 by 1 by $definition \ of \ P$ (item (7a) page 159)
$$Py = [(x + y) + z]y$$
 by $definition \ of \ P$ (item (7a) page 159)
$$= y[(x + y) + z]$$
 by $meet \ commutative \ property$ (item (3) page 159)
$$= y(x + y) + yz$$
 by $conjunctive \ distributive \ property$ (item (4) page 159)
$$= y(y + x) + yz$$
 by $foin \ commutative \ property$ (item (6) page 159)
$$= y + yz$$
 by $foin \ absorptive \ property$ (item (5) page 159)
$$= y + yz$$
 by $foin \ absorptive \ property$ (item (5) page 159)
$$= x[(x + y) + z]z$$
 by $foin \ commutative \ property$ (item (6) page 159)
$$= x[(x + y) + z]$$
 by $foin \ commutative \ property$ (item (6) page 159)
$$= x[(x + y) + z]$$
 by $foin \ commutative \ property$ (item (6) page 159)
$$= x[(x + y) + z]$$
 by $foin \ commutative \ property$ (item (6) page 159)
$$= x[(x + y) + z]$$
 by $foin \ commutative \ property$ (item (6) page 159)
$$= x[(x + y) + z]$$
 by $foin \ commutative \ property$ (item (6) page 159)
$$= x[(x + y) + z]$$
 by $foin \ commutative \ property$ (item (6) page 159)

(c) Proof that Qx = x, Qy = y, and Qz = z:

```
Qx = [x + (y + z)]x
                              by definition of Q (item (7a) page 159)
   = x[x + (y + z)]
                              by meet commutative property (item (3) page 159)
   = x
Qy = [x + (y + z)]y
                              by definition of Q (item (7a) page 159)
   = y[x + (y+z)]
                              by meet commutative property (item (3) page 159)
                              by conjunctive distributive property (item (4) page 159)
   = yx + y(y+z)
                              by 2
   = yx + y
                              by join commutative property (item (6) page 159)
   = y + yx
   = v
                              by join absorptive property (item (5) page 159)
Qz = [x + (y + z)]z
                              by definition of Q (item (7a) page 159)
                              by meet commutative property (item (3) page 159)
   = z[x + (y + z)]
   = zx + z(y + z)
                              by conjunctive distributive property (item (4) page 159)
                              by join commutative property (item (6) page 159)
   = z(z + y) + zx
                              by 1
    = z + zx
                              by 1
    = z + zx
                              by join absorptive property (item (5) page 159)
```

(d) Proof that (x + y) + z = x + (y + z):

$$(x+y)+z=Qx+(Qy+Qz) \qquad \text{by item (7c)} \\ =Qx+Q(y+z) \qquad \text{by } conjunctive \ distributive \ property \ (item \ (4) \ page \ 159)} \\ =Q[x+(y+z)] \qquad \text{by } conjunctive \ distributive \ property \ (item \ (4) \ page \ 159)} \\ =QP \qquad \text{by } definition \ of \ Q \ (item \ (7a) \ page \ 159)} \\ =PQ \qquad \text{by } meet \ commutative \ property \ (item \ (3) \ page \ 159)} \\ =P[x+(y+z)] \qquad \text{by } definition \ of \ Q \ (item \ (7a) \ page \ 159)} \\ =Px+P(y+z) \qquad \text{by } conjunctive \ distributive \ property \ (item \ (4) \ page \ 159)} \\ =Px+(Py+Pz) \qquad \text{by } conjunctive \ distributive \ property \ (item \ (4) \ page \ 159)} \\ =x+(y+z) \qquad \text{by } item \ (7b)$$

8. Proof that x + yz = (x + y)(x + z) (disjunctive distributive property):

$$(x + y)(x + z) = (x + y)x + (x + y)z$$
 by conjunctive distributive property (item (4) page 159)
$$= x(x + y) + z(x + y)$$
 by meet commutative property (item (3) page 159)
$$= x + z(x + y)$$
 by 1
$$= x + (zx + zy)$$
 by conjunctive distributive property (item (4) page 159)
$$= x + (xz + yz)$$
 by meet commutative property (item (3) page 159)
$$= x + (xz + yz)$$
 by join associatiave property (item (7) page 159)
$$= x + yz$$
 by join absorptive property (item (5) page 159)

- 9. Proof that (xy)z = x(yz) (meet associative property):
 - (a) Let $P \triangleq (xy)z$ and $Q \triangleq x(yz)$
 - (b) Proof that P + x = x, P + y = y, and P + z = z:

P + x = (xy)z + x	by definition of P (item (9a) page 161)
= x + (xy)z	by join commutative property (item (6) page 159)
= [x + (xy)][x + z]	by disjunctive distributive property (item (8) page 161)
=x[x+z]	by 1
= x	by 1
P + y = (xy)z + y	by definition of P (item (9a) page 161)
= y + (xy)z	by join commutative property (item (6) page 159)
= y + (yx)z	by meet commutative property (item (3) page 159)
= [y + (yx)][y + z]	by disjunctive distributive property (item (8) page 161)
=y[y+z]	by 1
= y	by 1
P + z = (xy)z + z	by definition of P (item (9a) page 161)
= z + (xy)z	by join commutative property (item (6) page 159)
=z+z(yx)	by meet commutative property (item (3) page 159)
=z	by 1

(c) Proof that Q + x = x, Q + y = y, and Q + z = z:

$$Q + x = x(yz) + x$$
 by definition of Q (item (9a) page 161)
$$= x + x(yz)$$
 by 1

$$Q + y = x(yz) + y$$
 by definition of Q (item (9a) page 161)
$$= y + x(yz)$$
 by 1

$$= (y + x)(y + yz)$$
 by 1

$$= (y + x)(y + yz)$$
 by 1

$$= y(y + x)$$
 by 1

$$= y(x + x)$$
 by 1

$$= x + x(yz)$$
 by 1

$$= x +$$

(d) Proof that (xy)z = x(yz):

$$(xy)z = [(Q+x)(Q+y)](Q+z)$$
 by item (9c)
 $= (Q+xy)(Q+z)$ by disjunctive distributive property (item (8) page 161)
 $= Q+(xy)z$ by definition of P (item (9a) page 161)
 $= P+Q$ by definition of P (item (9a) page 161)
 $= P+x(yz)$ by definition of P (item (9a) page 161)
 $= (P+x)(P+yz)$ by disjunctive distributive property (item (8) page 161)
 $= (P+x)[(P+y)(P+z)]$ by disjunctive distributive property (item (8) page 161)
 $= x(yz)$ by item (9b)

- 10. Proof that **A** is a *distributive* lattice:
 - (a) Proof that **A** is a lattice:
 - i. A is idempotent by item (1) and item (2).
 - ii. A is commutative by item (3) and item (6).
 - iii. *A* is associative by item (9) and item (7).
 - iv. **A** is absorptive by 1 and item (5).
 - v. Because **A** is *idempotent*, *commutative*, *associative*, and *absorptive*, then by Theorem D.3 (page 120), **A** is a *lattice*.
 - (b) Proof that *A* is *distributive*: by item (4) and Definition G.2 (page 148).

G.2.3 Properties

Distributive lattices are a special case of modular lattices. That is, all distributive lattices are modular, but not all modular lattices are distributive (next theorem). An example is the M3 lattice— it

₽

is modular, but yet it is not distributive (Lemma G.2 page 151).

Theorem G.5. ¹⁴ *Let* $(X, \vee, \wedge; \leq)$ *be a lattice.*

 $(X, \vee, \wedge; \leq)$ is distributive

$$\rightleftharpoons$$

 $(X, \vee, \wedge; \leq)$ is modular.

№PROOF:

1. Proof that distributivity \implies modularity:

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$
$$= y \land (x \lor z)$$

by distributive hypothesis by $x \le y$ hypothesis

2. Proof that distributivity \Leftarrow modularity: By Lemma G.2 page 151, the *M*3 lattice is modular, but yet it is *non-distributive*.

Theorem G.6 (Birkhoff's Theorem). ¹⁵ Let $L \triangleq (X, \vee, \wedge; \leq)$ be a lattice. Let 2^X be the power set of some set X.

T H M

*L is*DISTRIBUTIVE

 \Longrightarrow

L is isomorphic to a sublattice of $(2^X, \cup, \cap; \subseteq)$ for some set X.

Theorem G.7. Let $L \triangleq (X, \vee, \wedge; \leq)$ be a lattice.

 $\left\{\begin{array}{c} \textit{L is} \\ \textit{DISTRIBUTIVE} \end{array}\right\} \implies \left\{\begin{array}{c} \textit{tautology} & \textit{dual} \\ \left(\bigwedge_{n=1}^{N} x_n\right) \vee y = \bigwedge_{n=1}^{N} (x_n \vee y) & \left(\bigvee_{n=1}^{N} x_n\right) \wedge y = \bigvee_{n=1}^{N} (x_n \wedge y) \end{array}\right\}$

♥Proof:

1. Proof that $\left(\bigwedge_{n=1}^{N} x_n\right) \vee y = \bigvee_{n=1}^{N} (x_n \vee y)$ (by induction):

Proof for N = 1 case:

$$\left(\bigwedge_{n=1}^{N=1} x_n\right) \lor y = x_1 \lor y$$
$$= \bigwedge_{n=1}^{N=1} (x_n \lor y)$$

by definition of \land

by definition of \land

Proof for N = 2 case:

$$\begin{pmatrix} N=2 \\ \bigwedge_{n=1}^{N=2} x_n \end{pmatrix} \lor y = (x_1 \lor y) \land (x_2 \lor y)$$
$$= \bigwedge_{n=1}^{N=2} (x_n \lor y)$$

by Theorem G.1 page 148

by definition of \land

¹⁴ 🏿 Birkhoff (1948) page 134, 🌒 Burris and Sankappanavar (1981) page 11

¹⁵ Saliĭ (1988) page 24

Proof that $(N \text{ case}) \implies (N + 1 \text{ case})$:

$$\begin{pmatrix} \bigwedge_{n=1}^{N+1} x_n \end{pmatrix} \lor y = \left[\left(\bigwedge_{n=1}^{N} x_n \right) \land x_{N+1} \right] \lor y$$
 by definition of \land

$$= \left[\left(\bigwedge_{n=1}^{N} x_n \right) \lor y \right] \land (x_{N+1} \lor y)$$
 by Theorem G.1 page 148
$$= \left[\bigwedge_{n=1}^{N} (x_n \lor y) \right] \land (x_{N+1} \lor y)$$
 by left hypothesis
$$= \bigwedge_{n=1}^{N+1} (x_n \lor y)$$
 by definition of \land

2. Proof that $\left(\bigvee_{n=1}^{N} x_n\right) \wedge y = \bigwedge_{n=1}^{N} (x_n \wedge y)$: by *principle of duality* (Theorem D.4 page 121).

Theorem G.8. ¹⁶ Let $(X, \vee, \wedge; \leq)$ be a lattice.

NPROOF:

$$x \le y \le z \implies x \land (y \lor z) \qquad = x \land z \qquad = x \qquad = x \lor x \qquad = (x \land y) \lor (x \land z)$$

$$x \le z \le y \implies x \land (y \lor z) \qquad = x \land y \qquad = x \qquad = x \lor x \qquad = (x \land y) \lor (x \land z)$$

$$z \le x \le y \implies x \land (y \lor z) \qquad = x \land y \qquad = x \qquad = x \lor z \qquad = (x \land y) \lor (x \land z)$$

$$y \le z \le x \implies x \land (y \lor z) \qquad = x \land z \qquad = z \qquad = y \lor z \qquad = (x \land y) \lor (x \land z)$$

$$y \le x \le z \implies x \land (y \lor z) \qquad = x \land z \qquad = x \qquad = y \lor x \qquad = (x \land y) \lor (x \land z)$$

$$z \le y \le x \implies x \land (y \lor z) \qquad = x \land y \qquad = y \qquad = y \lor z \qquad = (x \land y) \lor (x \land z)$$

Theorem G.9. ¹⁷ Let $Y^X \triangleq \{f : X \to Y\}$ (the set of all functions from the set X to the set Y).

$$(Y, \oslash, \oslash; \gtrless) \text{ is a distributive lattice} \Longrightarrow (Y^X, \lor, \land; \leq) \text{ is a distributive lattice}$$

$$\text{where } f \leq g \iff f(x) \gtrless g(x) \quad \forall x \in X$$

№ Proof:

$$\begin{aligned} \big[f \wedge (g \vee h) \big](x) &= f(x) \oslash (g(x) \oslash h(x)) \\ &= (f(x) \oslash g(x)) \oslash (f(x) \oslash h(x)) \\ &= \big[f \wedge g \big](x) \vee \big[f \wedge h \big](x) \end{aligned} \qquad \text{because } (Y, \oslash, \oslash; \lessdot) \text{ is distributive}$$

MacLane and Birkhoff (1999) page 484

¹⁶ MacLane and Birkhoff (1999) page 484

G.2.4 Examples

Example G.1. ¹⁸For any pair of natural numbers $n, m \in \mathbb{N}$, let n|m represent the relation "m divides n", lcm(n, m) the least common multiple of n and m, and gcd(n, m) the greatest common divisor of n and m.

E X

(\mathbb{N} , gcd, lcm; |) is a *distributive* lattice.

♥Proof:

1. For all $m \in \mathbb{N}$, m can be analyzed as a product of prime factors such that

$$m = 2^{e(1)}3^{e(2)}5^{e(3)}7^{e(4)} \cdots p_k^{e(k)}$$

where e(n) is a function $e: \mathbb{N} \to \mathbb{W}$ expressing the number of prime factors p_n in m. For example,

$$84 = 2^2 3^1 7^1$$
 \implies $e(1) = 2$, $e(2) = 1$, $e(3) = 0$, $e(4) = 1$, $e(5) = 0$, $e(6) = 0$, ...

- 2. Because \mathbb{W} is a chain and by Theorem G.8 page 164, (\mathbb{W} , \vee , \wedge ; \leq) is a distributive lattice where \leq is the standard ordering on \mathbb{W} and \vee and \wedge are defined in terms of \leq .
- 3. Let $\mathbb{W}^{\mathbb{N}}$ represent the set of all functions $e: \mathbb{N} \to \mathbb{W}$. By Theorem G.9 page 164, $(\mathbb{W}^{\mathbb{N}}, \emptyset, \emptyset; \angle)$ is also a distributive lattice where \angle is defined in terms of \leq as

$$e \le f \iff e(n) \le f(n) \quad \forall n \in \mathbb{N}.$$

4. Again by Theorem G.9 page 164, (N, gcd, lcm; |) is a distributive lattice because m|k if $e_m(n) \ge e_k(n)$.

Proposition G.3. ¹⁹ Let X_n be a finite set with order $n = |X_n|$. Let l_n be the number of unlabeled lattices on X_n , m_n the number of unlabeled modular lattices on X_n , and d_n the number of unlabeled distributive lattices on X_n .

							rı										
		n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	H	l_n	1											37622			
	M	m_n											157	343			
ı		d_n	1	1	1	1	2	3	5	8	15	26	47	82	151	269	494

Example G.2. ²⁰ There are a total of five unlabeled lattices on a five element set; and of these five, three are distributive (Proposition G.3 page 165). Example D.11 (page 126) illustrated all five of the unlabeled lattices, Example F.5 (page 144) illustrated the 4 modular lattices, and the following table illustrates the 3 distributive lattices. Note that none of these lattices are *complemented* (none are *Boolean* (Definition I.1 page 173)).

¹⁹ l_n : □ Sloane (2014) ⟨http://oeis.org/A006966⟩ | m_n : □ Sloane (2014) ⟨http://oeis.org/A006981⟩ | d_n : □ Sloane (2014) ⟨http://oeis.org/A006982⟩ | l_n : □ Heitzig and Reinhold (2002) | m_n : □ Thakare et al. (2002)? | d_n : □ Erné et al. (2002), page 17

²⁰ Erné et al. (2002), pages 4–5

Example G.3. ²¹ There are a total of 15 unlabeled lattices on a six element set; and of these 15, five are distributive (Proposition G.3 page 165). Example D.12 (page 126) illustrated all 15 of the unlabeled lattices, Example F.6 (page 144) illustrated the 8 modular lattices, and the following illustrates the 5 distributive lattices.

Note that none of these lattices are *complemented* (none are *Boolean* (Definition I.1 page 173)).

Example G.4. ²² There are a total of 53 unlabeled lattices on a seven element set; and of these, 8 are *distributive* (Proposition G.3 page 165). Example D.13 (page 126) illustrated all 53 of the unlabeled lattices, Example F.8 (page 145) illustrated the 16 *modular* lattices, and the following illustrates the 8 distributive lattices. Note that none of these lattices are *complemented* (none are *Boolean* (Definition l.1 page 173)).

²² Erné et al. (2002), pages 4–5

²¹ Erné et al. (2002), pages 4–5

APPENDIX H	
I	
	COMPLEMENTED LATTICES

H.1 Definitions

Definition H.1. Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a BOUNDED LATTICE (Definition E.1 page 135).

```
An element x' \in X is a complement of an element x in L if

1. x \wedge x' = 0 (non-contradiction) and

2. x \vee x' = 1 (excluded middle).
```

An element x' in L is the unique complement of x in L if x' is a complement of x and y' is a complement of $x \implies x' = y'$. L is **complemented** if every element in X has a complement in X. L is **uniquely complemented** if every element in X has a unique complement in X. A complemented lattice that is not uniquely complemented is **multiply complemented**. A **complemented lattice** is optionally denoted $(X, \vee, \wedge, 0, 1; \leq)$.

Definition H.1 (previous) introduced the concept of a *complement* of a lattice. Definition H.2 (next) introduces the concept of a *relative complement* in an *interval* (Definition ?? page ??).

Definition H.2. ² *Let* $L \triangleq (X, \vee, \wedge; \leq)$ *be a lattice.*

```
An element y \in X is a relative complement of x in [a,b] with respect to L if

1. x \lor y = b and
2. x \land y = a.

A lattice L is relatively complemented if every element in every closed interval [a,b] in L has a complement in [a,b].
```

H.2 Examples

D E F

Example H.1. ³ The lattice $(2^{\{x,y,z\}}, \cup, \cap; \subseteq)$ of Example D.2 page 124 is a complemented lattice. The "lattice complement" of each element *A* is simply the "set complement" $A^c \triangleq 2^{\{x,y,z\}} \setminus A$:

¹ Stern (1999) page 9, Birkhoff (1948) page 23

² Birkhoff (1948) page 23

		A ^c		$A \cup A^{c}$			$A\cap A^{c}$	
	cØ	$= \{x, y, z\}$	Ø	$\cup \{x, y, z\}$	$\} = \{x, y, z\}$	Ø	$\cap \{x, y, z\}$	$=\emptyset$
	$c\{x\}$	$= \{y, z\}$	{ <i>x</i> }	$\cup \{y,z\}$	$= \{x, y, z\}$	{ <i>x</i> }	$\cap \{y,z\}$	$= \emptyset$
	c { <i>y</i> }	$= \{x, z\}$	{ <i>y</i> }	$\cup \{x,z\}$	$= \{x, y, z\}$	{ <i>y</i> }	$\cap \{x, z\}$	$= \emptyset$
E X	$c\{x,y\}$	$= \{z\}$	$\{x,y\}$	$\cup \{z\}$	$= \{x, y, z\}$	$\{x,y\}$	$\cap \{z\}$	$= \emptyset$
	$c\{z\}$	$= \{x, y\}$	{ z }	$\cup \{x,y\}$	$= \{x, y, z\}$	{ z }	$\cap \{x,y\}$	$= \emptyset$
	$c\{x,z\}$	$= \{y\}$	$\{x,z\}$	$\cup \{y\}$	$= \{x, y, z\}$	$\{x,z\}$	$\cap \{y\}$	$= \emptyset$
	$c\{y,z\}$	$= \{x\}$	$\{y,z\}$	$\cup \{x\}$	$= \{x, y, z\}$	$\{y,z\}$	$\cap \{x\}$	$= \emptyset$
	$c\{x, y, z$	$=\emptyset$	$\{x, y, z\}$	}∪Ø	$= \{x, y, z\}$	$\{x, y, z\}$	} ∩ Ø	$=\emptyset$

Example H.2 (factors of 12). ⁴ The lattice $L \triangleq (\{1, 2, 3, 4, 6, 12\}, \text{lcm, gcd}; |)$ (illustrated to the right) is *non-complemented*. In particular, the elements 2 and 6 have no complements in L:

Example H.3. ⁵The lattice illustrated in the figure to the right is *complemented*. In this complemented lattice, complements are *not unique*. For example, the complement of x is both y and z, the complement of y is both x and y, and the complement of z is both x and y.

Example H.4. Here are some more examples:

Example H.5.

E X Of the 53 unlabeled lattices on a 7 element set (Example D.13 page 126),

- 0 are complemented with unique complements,
- 17 are complemented with multiple complements, and
- 36 are non-complemented.

H.3 Properties

Theorem H.1 (next) is a landmark theorem in mathematics.

Theorem H.1. ⁶

⁶ ■ Dilworth (1945) page 123, Ø Saliĭ (1988) page 51, Ø Grätzer (2003) page 378 ⟨Corollary 3.8⟩

⁴ Durbin (2000) page 271, Salii (1988) pages 26–27

⁵ Durbin (2000) page 271

H.3. PROPERTIES Daniel J. Greenhoe page 169

For every lattice L, there exists a lattice U such that

1. $L \subseteq U$ (L is a sublattice of U)

2. U is Uniquely complemented.

"I therefore propose the following problem...". With these words, Edward Huntington in a 1904 paper introduced one of the most famous problems in mathematical history; a question that took some 40 years to answer, and that in the end had a very surprising solution. Huntington's problem was essentially this: *Are all uniquely complemented lattices also distributive*? This question is significant because if a lattice is both complemented and distributive, then it is *uniquely complemented* (Corollary H.1—next) and, more importantly, is a *Boolean algebra* (Definition I.1 page 173). Being a Boolean algebra is very significant in that it implies the lattice has several powerful properties including that it satisfies *de Morgan's laws* (Theorem D.3 page 120) and that it is isomorphic to an *algebra of sets* (Theorem A.4 page 52).

A uniquely complemented lattice that satisfies any one of a number of other conditions is distributive (Theorem H.2 page 169, Literature item 3 page 170). So there was ample evidence that the answer to Huntington's question is "yes". But the final answer to Huntington's problem is actually "no"—an answer that took the mathematical community 40 years to find. The resulting effort had a profound impact on lattice theory in general. In fact, George Grätzer, in a 2007 paper, identified uniquely complemented lattices as one of the "two problems that shaped a century of lattice theory". 9

This final solution to Huntington's problem was found by Robert Dilworth and published in a 1945 paper. And the answer is this: *Every lattice is a sublattice of a uniquely complemented lattice* (Theorem H.1 page 168). To understand why this answers the question, consider either the *M3 lattice* (Definition G.3 page 151) or the *N5 lattice* (Definition F.4 page 140). Neither of these lattices are *distributive* (Theorem G.2 page 152), but yet either of them can be a sublattice in a uniquely complemented lattice (by *Dilworth's theorem*). That is, it is therefore possible to have a lattice that is both *uniquely complemented* and *non-distributive*.

```
Corollary H.1. <sup>11</sup> Let L \triangleq (X, \vee, \wedge; \leq) be a lattice.
```

```
\begin{bmatrix}
c \\
o \\
R
\end{bmatrix}

\begin{cases}
1. L \text{ is } DISTRIBUTIVE & and \\
2. L \text{ is } COMPLEMENTED
\end{cases}

\Rightarrow \qquad \{L \text{ is } UNIQUELY \text{ COMPLEMENTED}\}
```

♥Proof:

L is complemented

```
\Leftrightarrow \forall x \in L \exists a, b \text{ such that } a, b \text{ are complements of } x \text{ in } L by definition of complement page 167 by definition of complement page 167 by definition of complement page 167 by Theorem G.3 page 155
```

Theorem H.2 (Huntington properties). ¹² Let **L** be a lattice.

```
<sup>7</sup>For more discussion, see Literature item 7 page 171

<sup>8</sup> ■ Huntington (1904) page 305

<sup>9</sup> ■ Grätzer (2007) page 696

<sup>10</sup> ■ Dilworth (1945) page 123

<sup>11</sup> ■ MacLane and Birkhoff (1999) page 488, ■ Saliĭ (1988) page 30 ⟨Theorem 10⟩

<sup>12</sup> ■ Roman (2008) page 103, ■ Adams (1990) page 79, ■ Saliĭ (1988) page 40, ■ Dilworth (1945) page 123, ■ Grätzer (2007), page 698
```


 \implies L is uniquely complemented

Theorem H.3 (Peirce's Theorem). ¹³ Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a bounded lattice. Let $Cy \triangleq \{y' \in X | y' \text{ is a complement of } y\}$.

```
 \left\{ \forall y' \in \mathbb{C}y, \ x \nleq y' \implies x \land y \neq 0 \right\} \implies \left\{ \begin{array}{c} 1. \quad \textbf{L is UNIQUELY COMPLEMENTED} \quad and \\ 2. \quad \textbf{L is DISTRIBUTIVE} \end{array} \right\}
```

H.4 Literature

Literature survey:

- 1. General treatment of lattice varieties:
- 2. Distributive lattices:

 - Balbes and Dwinger (1975)
- 3. Uniquely complemented lattices:
 - Dilworth (1945) ("Every lattice is a sublattice of a lattice with unique complements.")

 - Adams (1990) pages 79-84

 - Roman (2008) page 103
 - Bergman (1929) (uniquely complemented + *modular* = distributive)

 - Birkhoff and Ward (1939a) ⟨uniquely complemented + atomic = distr.⟩
- 4. Projective distributive lattices:
 - **Balbes** (1967)
 - Balbes and Horn (1970)
- 5. Median property:
 - Birkhoff and Kiss (1947a)
 - Birkhoff and Kiss (1947b)

 - **Evans** (1977)

 - Bandelt and Hedlíková (1983)
 - Birkhoff and Ward (1987) pages 1−8
 - Artamonov (2000) page 554 (median algebras)
- 6. Properties of lattices
 - (a) The fact that lattices are not in general *distributive* was not always universally accepted. In a famous 1880 paper, Charles S. Peirce(Peirce, 1880b)33 presents distributivity as a property of all lattices but says that "the proof is too tedius to give".

¹³ ■ Saliĭ (1988) pages 38–39 ("Peirce's Theorem"), ■ Peirce (1902 January 31 entry), ■ Peirce (1903) (letter to Huntington), ■ Peirce (1904) (letter to Huntington), ■ Huntington (1904)

H.4. LITERATURE Daniel J. Greenhoe page 171

- 7. Note about *Huntington's problem* concerning uniquely complemented lattices:
 - (a) Salii¹⁴ suggests that Huntington's problem is actually motivated by and a simple extension of *Peirce's Theorem* (Theorem H.3 page 170). That is, Huntington's problem is equivalent to asking if the uniquely complemented property is equivalent to the left hypothesis in Peirce's Theorem.
 - (b) George Grätzer in a 2007 paper seems to indicate that Huntington's 1904 paper 15 is *not* the original source of "Huntington's problem". In particular, Grätzer says "...Neither gives any references as to the origin of the problem. G. Birkhoff and M. Ward, 1933, reference E. V. Huntington, 1904, for the lattice axioms, which Huntington stated as being due to E. Schröder, but not for the problem. If the reader is surprised, I suggest he try to read the original paper of E. V. Huntington, and there he may find the clue. In my earlier papers on the subject, I reference only R. P. Dilworth, 1945, but in my lattice books (e.g., [7]) I give the correct reference. But I have no recollection of reading E. V. Huntington, 1904, until the preparation for this article." (Grätzer (2007), page 699) The reference [7] is Grätzer (2003). In this reference, Dilworth's 1945 theorem is presented on page 378, and its historical background is discussed on page 392. However, this discussion does not seem to give credit for Huntington's problem to anyone other than Huntington (1904). Perhaps it is Peirce that Grätzer has in mind with these comments—but so far the person referred to by Grätzer is unclear (to me). See also http://groups.google.com/group/sci.math/browse_thread/thread/b7790be1efe8946e#
- 8. General treatment of lattice varieties:

Jipsen and Rose (1992)

9. Atomic lattices:

 \blacksquare Birkhoff (1938), page 800 (see footnote \ddagger)

¹⁴ Saliĭ (1988) pages 38–39 ("Peirce's Theorem")

¹⁵ Huntington (1904) page 305

APPENDIX			
•			
			•

That the symbolic processes of algebra, invented as tools of numerical calculation, should be competent to express every act of thought, and to furnish the grammar and dictionary of an all-containing system of logic, would not have been believed until it was proved... by Mr. Boole. The unity of the forms of thought in all the applications of reason, however remotely separated, will one day be matter of notoriety and common wonder: and Boole's name will be remembered in connection with one of the most important steps towards the attainment of knowledge.

BOOLEAN LATTICES

Augustus de Morgan (1806–1871), British mathematician and logician, $^{\,1}$

I.1 Definition and properties

A *Boolean algebra* (next definition) is a *bounded* (Definition E.1 page 135), *distributive* (Definition G.2 page 148), and *complemented* (Definition H.1 page 167), *lattice* (Definition D.3 page 119).

Definition I.1. ²

D

E

The BOUNDED LATTICE (Definition E.1 page 135) $\mathbf{L} \triangleq (X, \vee, \wedge, 0, 1; \leq)$ is **Boolean** if

- 1. L is COMPLEMENTED (Definition H.1 page 167) and
- 2. L is DISTRIBUTIVE (Definition G.2 page 148)

A BOUNDED LATTICE L that is BOOLEAN is a **Boolean algebra** or a **Boolean lattice**. A BOOLEAN LATTICE with 2^N elements is denoted L_2^N .

Several examples of *Boolean lattices* are illustrated in Example J.2 (page 198).

Proposition I.1.

```
The algebraic structure \mathbf{A} \triangleq (X, \vee, \wedge, 0, 1; \leq) is a Boolean algebra (Definition I.1 page 173) if

1. (X, \vee, \wedge, 0, 1; \leq) is a BOUNDED LATTICE (Definition E.1 page 135) and

2. x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) \quad \forall x, y, z \in X \quad \text{(DISTRIBUTIVE)} and

3. x \wedge x' = 0 \quad \forall x \in X \quad \text{(NON-CONTRADICTION)} and

4. x \vee x' = 1 \quad \forall x \in X \quad \text{(EXCLUDED MIDDLE)}.
```

image: http://en.wikipedia.org/wiki/Augustus_De_Morgan

¹ quote: @ DeMorgan (1872) page 80

² MacLane and Birkhoff (1999) page 488, Jevons (1864)

PROOF: This follows directly from Definition I.1 (page 173).

Boolean algebras support the *principle of duality* (next theorem).

Theorem I.1 (Principle of duality). 3 Let $\mathbf{B} \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a Boolean algebra.

```
 \begin{cases} \phi \text{ is an identity on } \textbf{\textit{B}} \text{ in terms} \\ of the operations} \\ \vee, \wedge, ', 0, \text{ and } 1 \end{cases} \implies \textbf{T} \phi \text{ is also an identity on } \textbf{\textit{B}} \\ \text{where the operator } \textbf{\textit{T}} \text{ performs the following mapping on the operations in } X^X \text{:} \\ 0 \rightarrow 1, \quad 1 \rightarrow 0, \quad \vee \rightarrow \wedge, \quad \wedge \rightarrow \vee
```

PROOF: For each of the identities in the definition of Boolean algebras (Proposition I.5 page 189), the operator **T** produces another identity that is also in the definition:

```
T(1a) = T[x \lor y]
                                  = y \lor x
                                                                                                                   = (1b)
                                                               = [x \wedge y]
                                                                                     = y \wedge x
\mathbf{T}(1b) = \mathbf{T}[x \wedge y]
                                  = v \wedge x
                                                               = [x \lor y]
                                                                                     = v \vee x
                                                                                                                      (1a)
\mathbf{T}(2a) = \mathbf{T}[x \lor (y \land z) = (x \lor y) \land (x \lor z)] = [x \land (y \lor z) = (x \land y) \lor (x \land z)] = (2b)
\mathbf{T}(2b) = \mathbf{T}[x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)] = [x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)] =
T(3a) = T[x \lor 0]
                                                                                                                        (3b)
\mathbf{T}(3b) = \mathbf{T}[x \wedge 1]
                                  = x
                                                               = [x \lor 0]
                                                                                     = x
                                                                                                                       (3a)
T(4a) = T[x \lor x']
                                  = 1
                                                               = [x \wedge x']
                                                                                     = 0
                                                                                                                        (4b)
T(4b) = T[x \wedge x']
                                                               = [x \lor x']
                                                                                                                       (4a)
```

Therefore, if the statement ϕ is consistent with regards to the Boolean algebra \boldsymbol{B} , then $T\phi$ is also consistent with regards to the Boolean algebra \boldsymbol{B} .

I.2 Order properties

The definition of Boolean algebras given by Definition I.1 is a set of postulates known as *Huntington's* FIRST SET. Lemma I.1 (next) gives a link between *Huntington's* FIRST SET of Boolean algebra postulates and the *classic 10* set of Boolean algebra postulates (Theorem I.2 page 178).

Lemma I.1. 4 Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a bounded lattice.

```
\forall x, y, z \in X
         1
                                                                                                    (COMMUTATIVE)
                                                                                                                         and
              x \lor (y \land z) = (x \lor y) \land (x \lor z) \quad x \land (y \lor z) = (x \land y) \lor (x \land z)
                                                                                                   (DISTRIBUTIVE)
                                                                                                                         and
             x \lor 0
                             = x
                                                         x \wedge 1
                                                                        = x
                                                                                                    (IDENTITY)
                                                                                                                          and
       (4) x \lor x'
                                                                                                    (COMPLEMENTED)
      then
              \forall x, y, z \in X
Ε
                                                        x \wedge x
                                                                                                                           and
                                                       x \wedge (y \wedge z) = (x \wedge y) \wedge z
              x \lor (y \lor z) = (x \lor y) \lor z
                                                                                                 (ASSOCIATIVE)<sup>5</sup>
                                                                                                                           and
                                                        x \wedge (x \vee y) = x
              x \lor (x \land y) = x
         3.
                                                                                                  (ABSORPTIVE)
                                                                                                                           and
              x \vee 1
                                                        x \wedge 0
         4.
                                                                                                  (BOUNDED)
                                                                                                                           and
                                = x' \wedge y'
              (x \lor y)'
                                                        (x \wedge y)'
                                                                                                  (DE MORGAN'S LAWS).
```

 $^{\circ}$ PROOF: For each pair of properties, it is only necessary to prove one of them, as the other follows by the *principle of duality* (Theorem I.1 _{page} 174). Let the *join* ∨ be represented by +, the operation *meet* ∧ represented by · or juxtaposition, and let ∧ have algebraic precedence over ∨.

⁵ K.D. Joshi comments that having the *associative* property as a result of an axiom rather than as an axiom, is a very unusual and "remarkable property" in the world of algebras. *Joshi* (1989) pages 225–226

⁴ ■ Huntington (1904) pages 292–296 ("1st set"), ■ Joshi (1989) pages 224–227

1. Proof that x + x = x and xx = x (*idempotent* properties):

$$x + x = (x + x) \cdot 1$$
 by *identity* property, ③b
 $= (x + x)(x + x')$ by *complemented* property, ④a
 $= x + (xx')$ by *distributive* property, ②a
 $= x + 0$ by *complemented* property, ④b
 $= x$ by *identity* property, ③a

2. Proof that x + 1 = 1 and $x \cdot 0 = 0$ (bounded properties):

$$x + 1 = (x + 1) \cdot 1$$
 by *identity* property, ③b
 $= 1 \cdot (x + 1)$ by *commutative* property, ①b
 $= (x + x')(x + 1)$ by *complemented* property, ④a
 $= x + (x' \cdot 1)$ by *distributive* property, ②a
 $= x + x'$ by *identity* property, ③b
 $= 1$ by *complemented* property, ④a

3. Proof that x + (xy) = x and x(x + y) = x: (*absorptive* properties)

$$x + (x \cdot y) = (x \cdot 1) + (xy)$$
 by *identity* property, ③b
 $= x \cdot (1 + y)$ by *distributive* property, ②b
 $= x \cdot (y + 1)$ by *commutative* property, ①a
 $= x \cdot 1$ by item (2)
 $= x$ by *identity* property, ③b

- 4. Proof that (x + y) + z = x + (y + z) and (xy)z = x(yz) (associative properties): Let $a \triangleq x(yz)$ and $b \triangleq (xy)z$.
 - (a) Proof that a + x = b + x:

a + x = x(yz) + x	by definition of <i>a</i>	
= x(yz) + x1	by <i>identity</i> property,	$\Im b$
= x(yz+1)	by distributive property,	②a
=x(1)	by <i>bounded</i> property,	item (2)
= x	by <i>identity</i> property,	$\Im b$
=x(x+z)	by <i>absorptive</i> property,	item (3)
= (x + xy)(x + z)	by <i>absorptive</i> property,	item (3)
= x + (xy)z	by distributive property,	②b
= (xy)z + x	by commutative property,	①a,b
= b + x	by definition of <i>b</i>	

(b) Proof that a + x' = b + x':

by definition of a	
by commutative property,	①a,b
by distributive property,	②b
by complemented property,	@a
by <i>identity</i> property,	3 b
by distributive property,	②b
by <i>identity</i> property,	3 b
by commutative property,	①b
by complemented property,	@a
by distributive property,	②b
by distributive property,	②b
by commutative property,	①a
by definition of b	
	by commutative property, by distributive property, by complemented property, by identity property, by distributive property, by identity property, by commutative property, by complemented property, by distributive property, by distributive property, by distributive property, by commutative property,

(c) Proof that x(yz) = (xy)z:

$x(yz) \triangleq a$	by definition of <i>a</i>	
= a + a	by <i>idempotent</i> property,	item (1)
= a + a1 + 0	by <i>identity</i> property,	③a,b
= a + a(x + x') + xx'	by complemented property,	@a,b
= a + ax + ax' + xx'	by <i>distributive</i> property,	②a
= a + ax' + xa + xx'	by <i>commutative</i> property,	①a,b
= aa + ax' + xa + xx'	by <i>idempotent</i> property,	item (1)
= a(a+x') + x(a+x')	by <i>distributive</i> property,	②a
= (a+x)(a+x')	by <i>distributive</i> property,	②a
= (b+x)(a+x')	by item (4a)	
= (b+x)(b+x')	by item (4b)	
= (b+x)b + (b+x)x'	by <i>distributive</i> property,	②a
= b(b+x) + x'(b+x)	by <i>commutative</i> property,	①b
= bb + bx + x'b + x'x	by <i>distributive</i> property,	②a
= b + bx + x'b + x'x	by <i>idempotent</i> property,	item (1)
= b + bx + bx' + x'x	by commutative property,	①b
= b + b(x + x') + x'x	by <i>distributive</i> property,	②a
$= b + b \cdot 1 + 0$	by complemented property,	@a,b
= b + b	by <i>identity</i> property,	③a,b
= b	by <i>idempotent</i> property,	item (1)
$\triangleq (xy)z$	by definition of b	

- 5. Proof that (x + y)' = x'y' and (xy)' = x' + y': (*de Morgan* properties)
 - (a) Proof that (x + y) + (x'y') = 1:

(x+y) + (x'y')		
= [(x + y) + x'] [(x + y) + y']	by distributive property,	②a
= [x' + (x + y)][y' + (x + y)]	by commutative property,	①a
= [(x' + (x + y))1][(y' + (x + y))1]	by <i>identity</i> property,	3b

$$= [1(x' + (x + y))][1(y' + (y + x))]$$
 by *distributive* property, ②b
$$= [(x' + x)(x' + (x + y))][(y' + y)(y' + (y + x))]$$
 by *complemented* property, ④a
$$= [x' + (x(x + y))][y' + (y(y + x))]$$
 by *distributive* property, ②a
$$= [x' + x][y' + y]$$
 by *absorptive* property, item (3)
$$= [1][1]$$
 by *complemented* property, ④a
$$= [1][1]$$
 by *bounded* property, item (2)

(b) Proof that (x + y)(x'y') = 0:

$$(x+y)(x'y') = [x(x'y')] + [y(x'y')]$$
by distributive property, ②b

$$= [0+x(x'y')] + [0+y(x'y')]$$
by identity property, ③a

$$= [(xx') + x(x'y')] + [(yy') + y(x'y')]$$
by complemented property, ④b

$$= [x(x'+x'y')] + [y(y'+x'y')]$$
by distributive property, ②b

$$= [xx'] + [yy']$$
by absorptive property, item (3)

$$= [0] + [0]$$
by complemented property, ④b

$$= [0] + [0]$$
by bounded property, item (2)

(c) Proof that (x + y)' = x'y':

The quanities (x + y) and x'y' are *complements* of each other as demonstrated by item (5a) ((x + y) + (x'y') = 1) and item (5b) ((x + y)(x'y') = 0). Therefore, (x + y)' = x'y'.

and

and

Proposition I.2. $^6Let \ \textbf{\textit{B}} \triangleq (X, \vee, \wedge, 0, 1; \leq) \ be \ a \ Boolean \ algebra.$

The pair (X, \leq) is an Ordered set. In particular,

1. $x \leq x$ $\forall x \in X$ (reflexive)

2. $x \leq y$ and $y \leq z \implies x \leq z \ \forall x,y,z \in X$ (transitive)

3. $x \leq y$ and $y \leq x \implies x = y \ \forall x,y \in X$ (anti-symmetric).

№Proof:

1. Proof that \leq is *reflexive* in (X, \leq) :

$$x \le x \iff x \lor x = x$$
 by definition of \le (Definition I.1 page 173) \iff true by Lemma I.1 page 174

2. Proof that \leq is *transitive* in (X, \leq) :

$$\left\{ (x \leq y) \text{ and } (y \leq z) \right\} \iff \left\{ (x \vee y = y) \text{ and } (y \vee z = z) \right\} \text{ by definition of } \leq \text{(Definition I.1 page 173)}$$

$$\Longrightarrow (x \vee z)$$

$$= x \vee (y \vee z)$$

$$= (x \vee y) \vee z$$
 by associative property of Lemma I.1 page 174
$$= y \vee z$$

$$= z$$

3. Proof that \leq is *anti-symmetric* in (X, \leq) :

⁶ Sikorski (1969), page 7

Proposition I.3. Let $(X, \vee, \wedge, 0, 1; \leq)$ be a Boolean algebra.

P R	$x \lor y$	<i>is the</i> least upper bound	of x and y in (X, \leq) .
P	$x \wedge y$	<i>is the</i> greatest lower bound	of x and y in (X, \leq) .

Theorem I.2 (classic 10 Boolean properties). ⁷

	$\mathbf{A} \triangleq (X, \vee, \wedge, 0, 1; \leq) \text{ is a Boolean algebra} \iff \forall x, y, z \in X$								
	$x \lor x$	=	x	$x \wedge x$	=	x	(IDEMPOTENT)	and	
	$x \lor y$	=	$y \lor x$	$x \wedge y$	=	$y \wedge x$	(COMMUTATIVE)	and	
	$x \lor (y \lor z)$	=	$(x \lor y) \lor z$	$x \wedge (y \wedge z)$	=	$(x \wedge y) \wedge z$	(ASSOCIATIVE)	and	
	$x \lor (x \land y)$	=	X	$x \wedge (x \vee y)$	=	x	(ABSORPTIVE)	and	
H	$x \lor (y \land z)$	=	$(x \lor y) \land (x \lor z)$	$x \wedge (y \vee z)$	=	$(x \land y) \lor (x \land z)$	(DISTRIBUTIVE)	and	
M	$x \lor 0$	=	X	$x \wedge 1$	=	x	(IDENTITY)	and	
	$x \vee 1$	=	1	$x \wedge 0$	=	0	(BOUNDED)	and	
	$x \vee x'$	=	1	$x \wedge x'$	=	0	(COMPLEMENTED)	and	
	$(x \vee y)'$	=	$x' \wedge y'$	$(x \wedge y)'$	=	$x' \vee y'$	(de Morgan)	and	
	(x')'	=	x				(INVOLUTORY).		
	property with emphasis on ∨			dual property with emphasis on ∧			property name	,	

№ Proof:

1. Proof that Proposition I.5 (page 189) \implies Theorem I.2 (page 178):

1.	Proof that A is <i>idempotent</i> :	by 1	of Lemma I.1	page 174
2.	Proof that A is <i>commutative</i> :	by 1	of Proposition I.5	page 1 <mark>89</mark>
3.	Proof that A is associative:	by 2	of Lemma I.1	page 174
4.	Proof that A is absorptive:	by 3	of Lemma I.1	page 174
5.	Proof that A is <i>distributive</i> :	by 2	of Proposition I.5	page 189
6.	Proof that A is <i>identity</i> :	by 3	of Proposition I.5	page 189
7.	Proof that A is <i>bounded</i> :	by 4	of Lemma I.1	page 174
8.	Proof that A is <i>complemented</i> :	by 4	of Proposition I.5	page 189
9.	Proof that A is <i>involutory</i> :	by	Corollary H.1	page 169
10.	Proof that A is de Morgan:	by 5	of Lemma I.1	page 174

2. Proof that Proposition I.5 (page 189) \leftarrow Theorem I.2 (page 178):

```
    Proof that A is commutative: by 2 of Theorem I.2 page 178
    Proof that A is distributive: by 5 of Theorem I.2 page 178
    Proof that A is identity: by 6 of Theorem I.2 page 178
    Proof that A is complemented: by 8 of Theorem I.2 page 178
```

₽

Lemma I.2.

Ŀ	$(X, \vee, \wedge, 0, 1; \leq)$	<u> </u>	$\begin{cases} 1. & x' \lor (x \land y) = x' \lor y \forall x, y \in X \text{(Sasaki hook)} \\ 2. & x \lor (x' \land y) = x \lor y \forall x, y \in X \end{cases}$	and
M	<i>is a</i> Boolean algebra) 	$ (2. x \lor (x' \land y) = x \lor y \forall x,y \in X $	

⁷ ■ Huntington (1904) pages 292–293 ("1st set"), ■ Huntington (1933) page 280 ("4th set"), ■ MacLane and Birkhoff (1999) page 488, ■ Givant and Halmos (2009) page 10, ■ Müller (1909) pages 20–21, ■ Schröder (1890), ■ Whitehead (1898) pages 35–37

♥Proof:

$$x' \lor (x \land y) = \underbrace{x' \lor (x' \land y)}_{x'} \lor (x \land y) \qquad \text{by } absorption \text{ property (Theorem I.2 page 178)}$$

$$= x' \lor \left[(x' \lor x) \land y \right] \qquad \text{by } associative \text{ and } distributive \text{ properties (Theorem I.2 page 178)}$$

$$= x' \lor [1 \land y] \qquad \text{by } excluded \text{ middle property (Theorem I.2 page 178)}$$

$$= x' \lor y \qquad \text{by } definition \text{ of } 1 \text{ (Definition C.21 page 116)}$$

$$x \lor (x' \land y) = \underbrace{x \lor (x \land y)}_{x} \lor (x \land y) \qquad \text{by } absorption \text{ property (Theorem I.2 page 178)}$$

$$= x \lor \left[(x \lor x') \land y \right] \qquad \text{by } associative \text{ and } distributive \text{ properties (Theorem I.2 page 178)}$$

$$= x \lor \left[1 \land y \right] \qquad \text{by } excluded \text{ middle property (Theorem I.2 page 178)}$$

$$= x \lor y \qquad \text{by } definition \text{ of } 1 \text{ (Definition C.21 page 116)}$$

Theorem I.3. ⁸ *Let* | X | *be the number of elements in a finite set* X.

A is a Boolean algebra

 \Longrightarrow

 $|\mathbf{A}| = 2^n$ for some $n \in \mathbb{N}$.

Example I.1. Here are some lattices that are Boolean algebras.

Theorem I.4.

If
$$(X, \vee, \wedge, 0, 1; \leq)$$
 is a Boolean algebra then
$$\begin{cases}
\frac{tautology}{\left(\bigwedge_{n=1}^{N} x_{n}\right)} = \bigvee_{n=1}^{N} (\neg x_{n}) & \neg \left(\bigvee_{n=1}^{N} x_{n}\right) = \bigwedge_{n=1}^{N} (\neg x_{n}) & \forall x_{n} \in X, N \in \mathbb{N} \\
\left(\bigwedge_{n=1}^{N} x_{n}\right) \vee y = \bigwedge_{n=1}^{N} (x_{n} \vee y) & \left(\bigvee_{n=1}^{N} x_{n}\right) \wedge y = \bigvee_{n=1}^{N} (x_{n} \wedge y) \\
\left(\bigvee_{n=1}^{N} x_{n}\right) \wedge y = \bigvee_{n=1}^{N} (x_{n} \wedge y) & \left(\bigvee_{n=1}^{N} x_{n}\right) \wedge y = \bigvee_{n=1}^{N} (x_{n} \wedge y)
\end{cases}$$

№PROOF:

1. Proof that $\neg \left(\bigwedge_{n=1}^{N} x_n \right) = \bigvee_{n=1}^{N} (\neg x_n)$ (by induction):

Proof for N = 1 case:

$$\neg \left(\bigwedge_{n=1}^{N=1} x_n \right) = \neg x_n \qquad \text{by definition of } \land \\
= \bigvee_{n=1}^{N=1} (\neg x_n) \qquad \text{by definition of } \lor$$

 \blacksquare

⁸ Joshi (1989) page 237

Proof for N = 2 case:

$$\neg \left(\bigwedge_{n=1}^{N=2} x_n \right) = (\neg x_1) \lor (\neg x_2)$$

$$= \bigvee_{n=1}^{N=2} (\neg x_n)$$

by Theorem I.2 page 178

by definition of \vee

Proof that $(N \text{ case}) \implies (N + 1 \text{ case})$:

$$\neg \left(\bigwedge_{n=1}^{N+1} x_n \right) = \neg \left[\left(\bigwedge_{n=1}^{N} x_n \right) \land x_N \right] \\
= \left(\neg \bigwedge_{n=1}^{N} x_n \right) \lor (\neg x_{N+1}) \\
= \left[\bigvee_{n=1}^{N} (\neg x_n) \right] \lor (\neg x_{N+1}) \\
= \bigvee_{n=1}^{N+1} (\neg x_n)$$

by definition of \land

by Theorem I.2 page 178

by left hypothesis

by definition of \vee

2. Proof that $\neg \left(\bigvee_{n=1}^{N} x_n \right) = \bigwedge_{n=1}^{N} (\neg x_n)$:

$$\neg \left(\bigvee_{n=1}^{N} x_n\right) = \neg \left(\bigvee_{n=1}^{N} (\neg \neg x_n)\right)$$
$$= \neg \neg \left(\bigwedge_{n=1}^{N} (\neg x_n)\right)$$
$$= \bigwedge_{n=1}^{N} (\neg x_n)$$

by Theorem I.2 page 178

by previous result 1.

by Theorem I.2 page 178

3. Proof that $\left(\bigwedge_{n=1}^{N} x_n\right) \vee y = \bigvee_{n=1}^{N} (x_n \vee y)$ (by induction):

Proof for N = 1 case:

$$\left(\bigwedge_{n=1}^{N=1} x_n\right) \lor y = x_1 \lor y$$
$$= \bigwedge_{n=1}^{N=1} (x_n \lor y)$$

by definition of \land

by definition of \wedge

Proof for N = 2 case:

$$\begin{pmatrix} \bigwedge_{n=1}^{N=2} x_n \end{pmatrix} \lor y = (x_1 \lor y) \land (x_2 \lor y)$$
 by Theorem I.2 page 178
$$= \bigwedge_{n=1}^{N=2} (x_n \lor y)$$
 by definition of \land

Proof that (N case) \implies (N + 1 case):

$$\begin{pmatrix} \bigwedge_{n=1}^{N+1} x_n \end{pmatrix} \lor y = \left[\left(\bigwedge_{n=1}^{N} x_n \right) \land x_{N+1} \right] \lor y$$
 by definition of \land

$$= \left[\left(\bigwedge_{n=1}^{N} x_n \right) \lor y \right] \land (x_{N+1} \lor y)$$
 by Theorem I.2 page 178
$$= \left[\bigwedge_{n=1}^{N} (x_n \lor y) \right] \land (x_{N+1} \lor y)$$
 by left hypothesis
$$= \bigwedge_{n=1}^{N+1} (x_n \lor y)$$
 by definition of \land

4. Proof that $\left(\bigvee_{n=1}^{N} x_n\right) \wedge y = \bigwedge_{n=1}^{N} (x_n \wedge y)$:

$$\left(\bigvee_{n=1}^{N} x_{n}\right) \wedge y = \neg \neg \left[\left(\bigvee_{n=1}^{N} x_{n}\right) \wedge y\right]$$
 by Theorem I.2 page 178
$$= \neg \left[\neg \left(\bigvee_{n=1}^{N} x_{n}\right) \vee (\neg y)\right]$$
 by Theorem I.2 page 178
$$= \neg \left[\left(\bigwedge_{n=1}^{N} (\neg x_{n})\right) \vee (\neg y)\right]$$
 by previous result 2.
$$= \neg \left(\bigwedge_{n=1}^{N} [(\neg x_{n}) \vee (\neg y)]\right)$$
 by previous result 3.
$$= \left(\bigvee_{n=1}^{N} \neg [(\neg x_{n}) \vee (\neg y)]\right)$$
 by previous result 1.
$$= \bigvee_{n=1}^{N} (x_{n} \wedge y)$$
 by Theorem I.2 page 178

I.3 Additional operations

Propositional logic has a total of $2^4 = 16$ operations in the class of functions $\{0, 1\}^{\{0, 1\}^2}$ (see page 36). The 16 logic operations of propositional logic can all be represented using the logic operations of *disjunction* \lor , *conjunction* \land , and *negation* \neg . Using these representations, all 16 operations can be generalized to *Boolean algebras* using the equivalent Boolean algebra/lattice operations of *join*, *meet*, and *complement*. Several of these additional operations for Boolean algebras are defined in Definition I.2 (next).

Definition I.2 (additional Boolean algebra operations). 10 Let $(X, \vee, \wedge, 0, 1; \leq)$ be a Boolean algebra. The following table defines additional operations in $X^{X\times X}$ in terms of \vee , \wedge , and '. Let $x' \triangleq 'x$

⁹ 💋 Givant and Halmos (2009), page 32

and $y' \triangleq 'y$.

name	symbol			definition	
rejection	\downarrow	$x \downarrow y$	≜	$x' \wedge y'$	$\forall x,y \in X$
exception	_	x-y	≜	$x \wedge y'$	$\forall x,y \in X$
adjunction	÷	$x \div y$	≜	$x \vee y'$	$\forall x,y \in X$
Sheffer stroke		x y	≜	$x' \vee y'$	$\forall x,y \in X$
Boolean addition	\triangle	$x \triangle y$	≜	$(x' \wedge y) \vee (x \wedge y')$	$\forall x,y \in X$
inhibit x	Θ	$x \ominus y$		$x' \wedge y$	$\forall x,y \in X$
implication	\Rightarrow	$x \Rightarrow y$	≜	$x' \vee y$	$\forall x,y \in X$
biconditional	\Leftrightarrow	$x \Leftrightarrow y$	≜	$(x \land y) \lor (x' \land y')$	$\forall x,y \in X$

Theorem I.5. 11

	OICIII	1101		
	٧	(join)	is the dual of \downarrow	(rejection)
	\wedge	(meet)	is the dual of	(Sheffer stroke)
ı	\triangle	(Boolean addition)	is the dual of \Leftrightarrow	(biconditional)
	_	(exception)	is the dual of \Rightarrow	(implication)
	÷	(adjunction)	is the dual of Θ	(inhibit x)

№PROOF:

$$(join) \quad (x \lor y)' = x' \land y' \\ = x \downarrow y \quad (rejection) \qquad \text{by de Morgan's law property (Theorem 1.2 page 178)} \\ = x \downarrow y \quad (rejection) \qquad \text{by definition of } rejection \downarrow \text{ (Definition 1.2 page 182)} \\ (meet) \quad (x \land y)' = x' \lor y' \qquad \text{by de Morgan's law property (Theorem 1.2 page 178)} \\ = x|y \quad (Sheffer stroke) \qquad \text{by definition of } Sheffer stroke \mid \text{ (Definition 1.2 page 182)} \\ (Boolean addition) \quad (x \triangle y)' = (x'y \lor xy')' \qquad \text{by def. of } Boolean addition} \triangle \text{ (Definition 1.2 page 182)} \\ = (x \lor y')(x' \lor y) \qquad \text{by } de Morgan's law \text{ property (Theorem 1.2 page 178)} \\ = xx' \lor xy \lor y'x' \lor y' y \qquad \text{by } de Morgan's law \text{ property (Theorem 1.2 page 178)} \\ = xy \lor x'y' \qquad \text{by definition of } exception - \text{ (Definition 1.2 page 182)} \\ \text{(exception)} \quad (x - y)' = (xy')' \qquad \text{by definition of } exception - \text{ (Definition 1.2 page 182)} \\ = x' \lor y \qquad \text{by } de Morgan's law \text{ property (Theorem 1.2 page 182)} \\ \text{(adjunction)} \quad (x \div y)' = (x \lor y')' \qquad \text{by definition of } adjunction \Rightarrow \text{ (Definition 1.2 page 182)} \\ \text{(adjunction)} \quad (x \oplus y)' = (x')' \qquad \text{by definition of } inhibit x \oplus \text{ (Definition 1.2 page 182)} \\ \text{(complement } x) \quad (x \oplus y)' = (x')' \qquad \text{by definition of } inhibit x \oplus \text{ (Definition 1.2 page 182)} \\ \text{(complement } y) \quad (x \oplus y)' = (y')' \qquad \text{by definition of } complement x \oplus \text{ by } involutory \text{ property (Theorem 1.2 page 178)} \\ = x \Rightarrow y \quad (transfer x) \qquad \text{by definition of } complement y \oplus \text{ by } involutory \text{ property (Theorem 1.2 page 178)} \\ \text{by definition of } complement y \oplus \text{ by } involutory \text{ property (Theorem 1.2 page 178)} \\ \text{by } involutory \text{ property (Theorem 1.2 page 178)} \\ \text{by } definition of complement } y \oplus \text{ by } involutory \text{ property (Theorem 1.2 page 178)} \\ \text{by } definition of complement } y \oplus \text{ by } involutory \text{ property (Theorem 1.2 page 178)} \\ \text{by } definition of complement } y \oplus \text{ by } involutory \text{ property (Theorem 1.2 page 178)} \\ \text{by } definition of complement } y \oplus \text{ by } involutory \text{ property (Theorem 1.2 page 178)} \\ \text{by } definition of complement$$

Theorem I.6. 12 Let $(X, \vee, \wedge, 0, 1; \leq)$ be a Boolean algebra.

¹² Givant and Halmos (2009) page 39

^{11 @} Givant and Halmos (2009) page 33

♥Proof:

1. Proof that $x \le y \iff y' \le x'$:

I.4. REPRESENTATION

$x \le y \iff x \land y = x$	by definition of $meet \land$,	Definition C.22 page 116
$\iff (x \land y)' = x'$	by de Morgan's law property,	Theorem I.2 page 178
$\iff x' \lor y' = x'$	by de Morgan's law property,	Theorem I.2 page 178
$\iff y' \le x'$	by definition of $join \lor$,	Definition C.21 page 116

2. Proof that $x \le y \implies x - y = 0$:

$$x - y = x \wedge y'$$
 by definition of *exception* –, Definition I.2 page 182
 $\leq y \wedge y'$ by left hypothesis
 $= 0$ by definition of *complement*, Definition H.1 page 167

3. Proof that $x \le y \iff x - y = 0$:

$$x - y = 0 \iff x \land y' = 0$$
 by definition of *exception* –, Definition I.2 page 182

I.4 Representation

A Boolean algebra (X, \vee , \wedge , 0, 1; \leq) can be represented in terms of five operators (see Theorem I.2 page 178):

- $\ensuremath{\clubsuit}$ the binary operators join \lor and meet \land ,
- the unary operator complement ', and
- the nullary opeartors 0 and 1.

However, it is also possible to represent a Boolean algebra with fewer operators— in fact, as few as one operator. When a set of operators can completely represent all the operators of a Boolean algebra, then that set is called *functionally complete* (next definition).

Definition I.3. ¹³ Let $\mathbf{B} \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a Boolean algebra.

A set of operators Φ is **functionally complete** in **B** if \vee , \wedge , ', 0, and 1 can all be expressed in terms of Φ .

¹³ Whitesitt (1995) page 69

—>

Here are some examples of functionally complete sets:

$\{\downarrow\}$	(rejection)	Theorem I.9	page 184
{ }	(Sheffer stroke)	Theorem I.10	page 184
$\{\div, 0\}$	(adjunction and 0)	Theorem I.12	page 186
$\{-, 1\}$	(exception and 1)	Theorem I.13	page 186
{v, '}	(join and complement)	Theorem I.7	page 184
{\lambda, '}	(meet and complement)	Theorem I.8	page 184
$\{\triangle, \land, 1\}$	(Boolean addition, meet, and 1)	Theorem I.14	page 187
$\{\triangle, \vee, 1\}$	(Boolean addition, join, and 1)	Theorem I.15	page 188
$\left\{ \triangle, -, ' \right\}$	(Boolean addition, exception, and complement)	Theorem I.16	page 188

Theorem I.7. Let $\mathbf{B} \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a Boolean Algebra.

```
The set \{\lor, '\} is FUNCTIONALLY COMPLETE with respect to B. In particular, x \land y = (x' \lor y)' \quad \forall x, y \in X
0 = (x \lor x')' \quad \forall x \in X
1 = x \lor x' \quad \forall x \in X
```

[♠]Proof:

T H M

```
x \wedge y = (x \wedge y)'' by involutory property Theorem I.2 page 178

= (x' \vee y')' by de Morgan's Law property Theorem I.2 page 178

1 = x \vee x' by complement property Theorem I.2 page 178

0 = 1' by complement property Theorem I.2 page 178
```

Theorem I.8. Let $\mathbf{B} \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a Boolean Algebra.

```
The set \{\land, '\} is FUNCTIONALLY COMPLETE with respect to B. In particular, x \lor y = (x' \land y)' \quad \forall x, y \in X
0 = x \land x' \quad \forall x \in X
1 = (x \land x')' \quad \forall x \in X
```

№ Proof:

$$x \lor y = (x \lor y)''$$
 by *involutory* property Theorem I.2 page 178
 $= (x' \land y')'$ by de Morgan's Law property Theorem I.2 page 178
 $0 = x \land x'$ by complement property Theorem I.2 page 178
 $1 = 0'$ by complement property Theorem I.2 page 178

Theorem I.9. ¹⁴ Let $\mathbf{B} \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a Boolean algebra. Let \downarrow represent the REJECTION operator (Definition I.2 page 182).

```
The set \{\downarrow\} is functionally complete with respect to {\bf B}. In particular, x\vee y=(x\downarrow y)\downarrow (x\downarrow y) \qquad \forall x,y\in X x\wedge y=(x\downarrow x)\downarrow (y\downarrow y) \qquad \forall x,y\in X x'=x\downarrow x \qquad \forall x\in X 0=x\downarrow (x\downarrow x) \qquad \forall x\in X 1=[x\downarrow (x\downarrow x)]\downarrow [x\downarrow (x\downarrow x)] \qquad \forall x\in X
```

¹⁴ Givant and Halmos (2009) page 33

I.4. REPRESENTATION Daniel J. Greenhoe page 185

NPROOF:

$$x' = (x \lor x)'$$

$$= x \downarrow x$$

$$x \lor y = (x \lor y)''$$

$$= (x \downarrow y)'$$

$$= (x \downarrow y) \downarrow (x \downarrow y)$$

$$x \land y = (x \land y)''$$

$$= (x' \lor y')'$$

$$= (x' \lor y')'$$

$$= (x' \lor y')'$$

$$= (x' \lor x')'$$

$$= (x \lor x) \downarrow (x \lor y)$$

$$x \land y = (x \land y)''$$

$$= (x' \lor x')'$$

$$= (x \lor x) \downarrow (x \lor y)$$

$$x \land y = (x \land y)''$$

$$= (x \lor x) \lor (x \lor y)$$

$$= (x \lor x')'$$

$$= (x \lor x')''$$

$$= (x \lor x')''$$

$$= (x \lor x')'' \lor (x \lor x')'$$

$$= (x \lor x')' \lor (x \lor x')$$

$$= (x \lor x')' \lor (x \lor x')$$

$$= (x \lor x')' \lor (x \lor x')$$

$$= (x \lor x') \lor (x \lor x')$$

$$=$$

Theorem I.10. Let $B \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a Boolean algebra. Let | represent the Sheffer Stroke operator (Definition I.2 page 182).

```
The set {|} is functionally complete with respect to B. In particular, x \lor y = (x|x)|(y|y) \quad \forall x,y \in X x \land y = (x|y)|(x|y) \quad \forall x,y \in X x' = x|x \quad \forall x \in X 0 = [x|(x|x)]|[x|(x|x)] \quad \forall x \in X 1 = x|(x|x) \quad \forall x \in X
```

♥Proof:

T

H M

$x' = (x \wedge x)'$	by Theorem I.2 page 178
=x x	by definition of page 182
$x \lor y = (x \lor y)''$	by Theorem I.2 page 178
$= (x' \wedge y')'$	by de Morgan's Law page 178
=x' y'	by definition of page 182
= (x x) (y y)	by first result
$x \wedge y = (x \wedge y)''$	by Theorem I.2 page 178
= (x y)'	by definition of page 182
= (x y) (x y)	by first result
1 = 0'	
$=(x\wedge x')'$	by Theorem I.2 page 178
=x (x')	by definition of page 182
=x (x x)	

$$0 = (x \wedge x')$$
 by Theorem I.2 page 178

$$= (x \wedge x')''$$
 by Theorem I.2 page 178

$$= (x \wedge x')' | (x \wedge x')'$$
 by definition of | page 182

$$= [x|(x')] | [x|(x')]$$

$$= [x|(x|x)] | [x|(x|x)]$$

₽

Besides the *rejection* singleton $\{\downarrow\}$ and the Sheffer stroke singleton $\{\mid\}$, there are no single opertor sets that are *functionally complete* (next theorem).

Theorem I.11. ¹⁵ Let $\mathbf{B} \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a Boolean algebra. Let \downarrow be the REJECTION operator and \mid be the SHEFFER STROKE operator.

Theorem I.12. Let $\mathbf{B} \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a Boolean algebra. Let \div represent the adjunction operator (Definition 1.2 page 182).

```
The set \{\div, 0\} is functionally complete with respect to \textbf{\textit{B}}. In particular, x \lor y = x \div (0 \div y) \qquad \forall x,y \in X x \land y = 0 \div [(0 \div x) \div y] \qquad \forall x,y \in X x' = 0 \div x \qquad \forall x \in X y \in X
```

№PROOF:

```
x' = 0 \lor x'
                                         by Theorem I.2 page 178
      = 0 \div x
                                         by definition of ÷ (Definition I.2 page 182)
x \lor y = x \lor y''
                                         by Theorem I.2 page 178
      = x \div (y')
                                         by definition of ÷ (Definition I.2 page 182)
      = x \div (0 \div y)
                                         by previous result
x \wedge y = (x' \vee y')'
                                         by de Morgan's law property Theorem I.2 page 178
      =(x' \div y)'
                                         by definition of \div (Definition I.2 page 182)
      = [(0 \div x) \div y]'
                                         by previous result
      = 0 \div [(0 \div x) \div y]
                                         by previous result
    1 = x \vee x'
                                         by complement property Theorem I.2 page 178
      = x \div x
                                         by definition of ÷ (Definition I.2 page 182)
```

₽

Theorem I.13. ¹⁶ Let $\mathbf{B} \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a Boolean algebra. Let – represent the exception operator (Definition I.2 page 182).

```
The set \{-, 1\} is functionally complete with respect to \textbf{\textit{B}}. In particular, x \lor y = 1 - [(1-x) - y] \quad \forall x,y \in X x \land y = x - (1-y) \quad \forall x,y \in X x' = 1 - x \quad \forall x \in X 0 = x - x \quad \forall x \in X
```

¹⁶ Bernstein (1914) pages 89–91

¹⁵ Quine (1979) page 49, **Zyliński** (1925) page 208 $\langle \downarrow = \phi_{15}, \mid = \phi_2 \rangle$

I.4. REPRESENTATION Daniel J. Greenhoe page 187

№ Proof:

```
x' = 1 \wedge x'
                                        by Theorem I.2 page 178
      = 1 - x
                                        by definition of - (Definition I.2 page 182)
x \wedge y = x \wedge y''
                                        by Theorem I.2 page 178
      = x - (v')
                                       by definition of - (Definition I.2 page 182)
      = x - (1 - y)
                                        by previous result
x \lor y = (x' \land y')'
                                        by de Morgan's law property Theorem I.2 page 178
      =(x'-y)'
                                        by definition of - (Definition I.2 page 182)
      = [(1-x)-y]'
                                       by previous result
      = 1 - [(1 - x) - y]
                                        by previous result
    0 = x \wedge x'
                                       by complement property Theorem I.2 page 178
                                        by definition of — (Definition I.2 page 182)
      = x - x
```

Theorem I.14. ¹⁷ Let $\mathbf{B} \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a Boolean algebra.

```
The set \{\triangle, \land, 1\} is Functionally complete with respect to B. In particular, x \lor y = xy \triangle x \triangle y \quad \forall x,y \in X x' = x \triangle 1 \quad \forall x \in X 0 = x \triangle x \quad \forall x \in X
```

[♠]Proof:

T H M

```
x' = x' \vee 0
                                                                             by Theorem I.2 page 178
              = (x' \land 1) \lor (x \land 0)
                                                                             by Theorem I.2 page 178
              = (x' \wedge 1) \vee (x \wedge 1')
              = x \triangle 1
                                                                             by definition of △ (Definition I.2 page 182)
           0 = 0 \lor 0
                                                                             by Theorem I.2 page 178
              = (x' \wedge x) \vee (x \wedge x')
                                                                             by Theorem I.2 page 178
              = x \triangle x
                                                                             by definition of \triangle (Definition I.2 page 182)
xy \oplus x \oplus y = (xy) \triangle (x \triangle y)
                                                                             by associative property Theorem I.2 page 178
              = (xy) \oplus (x'y \lor xy')
                                                                             by definition of \triangle (Definition I.2 page 182)
              = (xy)'(x'y \lor xy') \lor (xy)(x'y \lor xy')'
                                                                             by definition of △ (Definition I.2 page 182)
              = (x' \lor y')(x'y \lor xy') \lor (xy) \Big[ (x'y)'(xy')' \Big]
                                                                             by de Morgan's law Theorem I.2 page 178
              = (x' \lor y')(x'y \lor xy') \lor (xy)[(x'' \lor y')(x' \lor y'')]
                                                                             by de Morgan's law Theorem I.2 page 178
              = (x' \lor y')(x'y \lor xy') \lor (xy)[(x \lor y')(x' \lor y)]
              = (x'y \lor xy') \lor (xy)[xy \lor x'y']
              = (x'y \lor xy') \lor xy
              = (x'y \lor xy') \lor (xy \lor xy)
                                                                             by idempotent property Theorem I.2
              = (xy \lor x'y) \lor (xy \lor xy')
                                                                             by Theorem I.2 page 178
              = (x \lor x')y \lor x(y \lor y')
                                                                             by distributive property Theorem I.2
              = (1)y \lor x(1)
              = x \lor y
```

¹⁷ Roth (2006) page 42

Negation, Implication, and Logic [VERSIDN 051] https://github.com/dgreenhoe/pdfs/blob/master/nil.pdf

₿

Theorem I.15. Let $\mathbf{B} \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a Boolean Algebra.

The set $\{\triangle, \lor, 1\}$ is FUNCTIONALLY COMPLETE with respect to **B**. In particular, $x \land y = [(x \triangle 1) \lor (y \triangle 1)] \triangle 1 \quad \forall x,y \in X$ $x' = x \triangle 1 \quad \forall x \in X$ $\forall x \in X$

№ Proof:

T H M

$$0 = x \triangle x$$

$$x' = x \triangle 1$$

$$x \wedge y = (x' \vee y')'$$

$$= [(x \triangle 1) \vee (y \triangle 1)] \triangle 1$$

Theorem I.16. Let $\mathbf{B} \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a Boolean Algebra.

The set $\{\triangle, -, '\}$ is Functionally complete with respect to **B**. In particular, $x \lor y = (x - y) \triangle y \quad \forall x, y \in X$

 $x \lor y = (x - y) \triangle y \qquad \forall x, y \in X$ $x \land y = x - (x - y) \qquad \forall x, y \in X$ $0 = x \triangle x \qquad \forall x \in X$

№ Proof:

Т Н М

> $x \lor y = x(y \lor y') \lor y$ $= xy \lor xy' \lor y$ by distributive property (Theorem I.2 page 178) $= (y \lor xy) \lor xy'$ by associative property (Theorem I.2 page 178) by $absorptive\ property\ (Theorem\ I.2\ page\ 178)$ $= y \lor xy'$ $= (v \lor x'v) \lor xv'$ by absorptive property (Theorem I.2 page 178) by distributive and idempotent properties (Theorem I.2 page 178) $= (y \lor x')y \lor (xy')y'$ $= (xy')'y \lor (xy')y'$ by de Morgan's law property (Theorem I.2 page 178) $= (xy') \triangle y$ by definition of \triangle (Definition 1.2 page 182) $= (x - y) \triangle y$ by definition of - (Definition I.2 page 182) $x \wedge y = xx' \vee xy$ $= x(x' \vee y)$ by distributive and idempotent properties (Theorem 1.2 page 178) by de Morgan's law property (Theorem I.2 page 178) = x(x''y')'= x(xy')'by involutory property (Theorem I.2 page 178) = x(x - y)'by definition of — (Definition I.2 page 182) = x - (x - y)by definition of — (Definition I.2 page 182) 0 = xx'= x - (x - x')by previous result

I.5. CHARACTERIZATIONS Daniel J. Greenhoe page 189

I.5 Characterizations

★ The algebra of symbolic logic...has recently assumed some importance as an independent calculus; it may therefore be not without interest to consider it from a purely mathematical or abstract point of view... **

Edward V. Huntington (1874–1952), American mathematician¹⁸

Order characterizations

An order characterization of Boolean algebras has already been given by Definition I.1 (page 173): A lattice is a Boolean algebra if and only if it is *distributive* and *complemented*.

Proposition I.4. ¹⁹ Let $\mathbf{A} \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a bounded and complemented lattice.

```
 \left\{ \begin{array}{l} \textbf{A is a} \\ \textbf{Boolean algebra} \end{array} \right\} \quad \Longleftrightarrow \quad \left\{ \begin{array}{l} 1. \quad 1' = 0 \\ 2. \quad (x \wedge y')' = y \vee (x' \wedge y') \quad \forall x, y \in X \quad (\text{Elkan's law}) \end{array} \right\}
```

Algebraic characterizations

This section presents several algebraic characterizations. One such characterization has already been provided by Theorem I.2 (page 178)— the standard properties of Boolean algebras characterized by 19 identities. If a system satisfies these 19 identities, then that system *is* a Boolean algebra. However, the set of 19 identities is very much an *over*-specification. It is possible to characterize Boolean algebras using much fewer relationships, from which all of the 19 identities of Theorem I.2 can be derived. Here are some of these reduced characterizations:

```
Huntington's first set:
                                      8 relationships,
                                                       Proposition I.5
                              (1904)
                                                                         page 189
Huntington's fourth set:
                              (1933)
                                      4 relationships,
                                                       Proposition I.6
                                                                         page 191
Huntington's fifth set:
                                                                         page 191
                              (1933)
                                      3 relationships,
                                                       Proposition I.7
Stone:
                              (1935)
                                      7 relationships,
                                                       Proposition I.8
                                                                         page 192
Byrne's Formulation A:
                              (1946)
                                      3 relationships,
                                                       Proposition I.9
                                                                         page 192
Byrne's Formulation B:
                              (1946)
                                      2 relationships,
                                                       Proposition I.10
                                                                         page 194
```

All of these characterizations use 3 variables. It might be reasonable to ask if there exists a characterization that uses only two variables. The answer is "No", as demonstrated by the next theorem.

Theorem I.17. 20

There does NOT exist a characterization of Boolean algebras consisting of only 2 variables.

Proposition I.5 (Huntington's first set). ²¹ Let X be a set, \leq a relation in 2^{XX} , \vee and \wedge binary operations in $X^{X \times X}$, ' an unary operation in X^X , and 0 and 1 nullary operations on X.

```
18 quote: ☐ Huntington (1904) page 288
image: http://en.wikipedia.org/wiki/Edward_V._Huntington

19 ☐ Kondo and Dudek (2008) page 1035, ☐ Elkan et al. (1994), page 3 ⟨Elkan's law⟩

20 ☐ Sikorski (1969), page 3, ☐ Diamond and McKinsey (1947) page 961, ☐ Gerrish (1978), page 36

21 ☐ Gerrish (1978), page 35, ☐ Saliĭ (1988) page 33 ⟨"Huntington's Theorem"⟩, ☐ Joshi (1989) page 222 ⟨(B1)−(B4)⟩,
☐ Huntington (1904) pages 292−293 ⟨"1st set"⟩, ☐ Huntington (1933) page 277 ⟨"1st set"⟩, ☐ Givant and Halmos (2009)

page 10
```



```
(X, \vee, \wedge, 0, 1; \leq) is a Boolean algebra if for all x, y, z \in X
 1. x \vee y
                      = y \lor x
                                                  x \wedge y
                                                                  = y \wedge x
                                                                                               (COMMUTATIVE)
 2. x \lor (y \land z) = (x \lor y) \land (x \lor z) \quad x \land (y \lor z) = (x \land y) \lor (x \land z) (distributive)
    x \vee 0
                                                  x \wedge 1
                      = x
                                                                   = x
                                                                                               (IDENTITY)
 4. x \vee x'
                                                  x \wedge x'
                                                                   = 0
                      = 1
                                                                                               (COMPLEMENTED)
and where the relation \leq is defined as x \leq y \iff x \vee y = y \quad \forall x,y \in X.
```

The property $x \lor x' = 1$ is referred to as "the law of the EXCLUDED MIDDLE". The property $x \land x' = 0$ is referred to as "the law of NON-CONTRADICTION".

№ Proof:

- 1. Proof that **A** is a Boolean algebra \implies **A** is a distributive complemented lattice:
 - (a) Proof that *A* is *distributive*: by Definition I.1 page 173
 - (b) Proof that **A** is *complemented*: by Definition I.1 page 173
 - (c) Proof that A is bounded: by Lemma I.1 page 174
 - (d) Proof that A is a lattice:
 - i. Proof that *A* is *idempotent*: by Lemma I.1 page 174
 - ii. Proof that *A* is *commutative*: by Definition I.1 page 173
 - iii. Proof that A is associative: by Lemma I.1 page 174
 - iv. Proof that A is absorptive: by Lemma I.1 page 174
 - v. Therefore, by Theorem D.3 (page 120), A is a lattice
- 2. Proof that A is a Boolean algebra \iff A is a distributive complemented lattice:
 - (a) Proof that *A* is *commutative*: by property of lattices, Theorem D.3 page 120
 - (b) Proof that **A** is *distributive*: by right hypothesis
 - (c) Proof that **A** has *identity*:

$$x \lor 0 = x \lor (x \land x')$$
 by *complemented* property in right hypothesis
 $= x$ by *absorptive* property of lattices Theorem D.3 page 120
 $x \land 1 = x \land (x \lor x')$ by *complemented* property in right hypothesis
 $= x$ by *absorptive* property of lattices Theorem D.3 page 120

(d) Proof that **A** is *complemented*: by right hypothesis

Huntington's fourth set (next) characterizes Boolean algebras in terms of the standard properties of *idempotent*, *commutative*, and *associative* (see Theorem I.2 $_{page}$ 178), and also in terms of an additional property called *Huntington's axiom*, 22 or (in terms of x and y), x *commutes* y. Huntington's axiom is significant in the context of *orthomodular* lattices in that an orthomodular lattice that satisfies Huntington's axiom is a Boolean algebra. 23

² Givant and Halmos (2009) page 13 (problem 7)

Proposition I.6 (Huntington's fourth set). ²⁴ Let $\mathbf{A} \triangleq (X, \vee, \wedge; \leq)$ be an Algebraic Structure.

	<u> </u>					
	A is a Boolean algebra \iff					
P	$\int 1. X \vee X$	=	X	$\forall x \in X$	(IDEMPOTENT)	and)
R	$\int 2. x \vee y$	=	$y \lor x$	$\forall x,y \in X$	(COMMUTATIVE)	and
Р	$\begin{cases} 2. & x \lor y \\ 3. & (x \lor y) \lor z \end{cases}$	=	$x \lor (y \lor z)$	$\forall x,y,z \in X$	(ASSOCIATIVE)	and (
	$(x' \vee y')' \vee (x' \vee y)'$	=	x	$\forall x,y \in X$.	(Huntington's axiom)	J

№PROOF:

- 1. Proof that [A is a Boolean algebra] \implies [A satisfies the 4 pairs of properties]:
 - (a) Proof that $x \lor x = x$ (*idempotent* property with respect to \lor): by 1a of Lemma I.1 (page 174).
 - (b) Proof that $x \lor y = y \lor x$ (*commutative* property with respect to \lor): by 1a of this proposition.
 - (c) Proof that $(x \lor y) \lor z = x \lor (y \lor z)$ (associative property with respect to \lor): by 2a of Lemma I.1 (page 174).
 - (d) Proof that $(x \land y) \lor (x \land y') = x$ (*Huntington's axiom*):

$$(x \land y) \lor (x \land y') = x \land (y \lor y')$$
 by 2a (distributive property wrt \lor)
= $x \land 1$ by 3a (complemented property wrt \lor)
= x by 4b (identity property wrt \land)

- 2. Proof that [A is a Boolean algebra] \Leftarrow [A satisfies the 4 pairs of properties]:
 - (a) Proof that $x \lor y = y \lor x$: by 2 of Definition I.1 page 173.
 - (b) Proof that $x \wedge y = y \wedge x$:
 - (c) Proof that $x \lor (y \land z) = (x \lor y) \land (x \lor z)$:
 - (d) Proof that $x \land (y \lor z) = (x \land y) \lor (x \land z)$:
 - (e) Proof that $x \lor x' = 1$:
 - (f) Proof that $x \wedge x' = 0$:
 - (g) Proof that $x \lor 0 = x$:
 - (h) Proof that $x \wedge 1 = x$:

Proposition I.7 (Huntington's fifth set). ²⁵ Let $\mathbf{A} \triangleq (X, \vee, \wedge; \leq)$ be an ALGEBRAIC STRUCTURE.

²⁴ Huntington (1933) page 280 ("4th set")

²⁵ Givant and Halmos (2009) page 13, Huntington (1933) page 286 ("5th set")

Proposition I.8 (Stone). ²⁶ Let $\mathbf{A} \triangleq (X, \vee, \wedge; \leq)$ be an ALGEBRAIC STRUCTURE.

A is a Boolean algebra 1. $x \lor y$ $= y \lor x$ $\forall x, y \in X$ (JOIN COMMUTATIVE) and $x \wedge (y \vee z)$ $= (x \wedge y) \vee (x \wedge z)$ $\forall x,y,z \in X$ (LEFT DISTRIBUTIVE) and P R P 3. $(x \lor y) \land z$ $= (x \wedge z) \vee (y \wedge z)$ $\forall x,y,z \in X$ (RIGHT DISTRIBUTIVE) and 4. $x \vee 0$ $\forall x \in X$ and(JOIN IDENTITY) $\exists x'$ such that $x \lor x' = 1$ and $x \land x' = 0$ $\forall x \in X$ (COMPLEMENTED) and $x \lor x$ $\forall x \in X$ (IDEMPOTENT) and $x \wedge x$ $\forall x \in X$

Proposition I.9 (Byrne's Formulation A). ²⁷ Let $\mathbf{A} \triangleq (X, \vee, \wedge; \leq)$ be an Algebraic Structure.

```
A is a Boolean algebra \iff
 \begin{cases}
1. & x \lor y &= y \lor x & \forall x,y \in X & \text{(commutative)} & \text{and} \\
2. & (x \lor y) \lor z &= x \lor (y \lor z) & \forall x,y,z \in X & \text{(ASSOCIATIVE)} & \text{and} \\
3. & x \lor y' = z \lor z' &\iff x \lor y = x & \forall x,y,z \in X.
\end{cases}
```

[♠]Proof:

P

R P

- 1. Proof that **A** is a Boolean algebra \implies 3 identities:
 - (a) *commutative* property: By Theorem I.2 (page 178), all Boolean algebras are *commutative*.
 - (b) associative property: By Theorem I.2 (page 178), all Boolean algebras are associative.
 - (c) Proof that $x \lor y' = y \lor y' \implies x \lor y = x$:

$$x \lor y = y \lor x$$
 by Boolean hypothesis and Theorem I.2 page 178
 $= y \lor (x')'$ by Boolean hypothesis and Theorem I.2 page 178
 $= y \lor (x')'$ by Boolean hypothesis and Theorem I.2 page 178
 $= x' \lor (x')'$ by $x \lor y' = y \lor y'$ hypothesis
 $= x' \lor x$ by Boolean hypothesis and Theorem I.2 page 178
 $= x$ by Boolean hypothesis and Theorem I.2 page 178

(d) Proof that $x \lor y' = y \lor y' \iff x \lor y = x$:

$$x \lor y' = (x \lor y) \lor y'$$
 by $x \lor y = x$ hypothesis
 $= x \lor (y \lor y')$ by Boolean hypothesis and Theorem I.2 page 178
 $= x \lor 1$ by Boolean hypothesis and Theorem I.2 page 178
 $= x$ by Boolean hypothesis and Theorem I.2 page 178

- 2. Proof that \mathbf{A} is a Boolean algebra \iff 3 identities:
 - (a) Proof that $x \lor x = x$ (*idempotent* property): because $x \lor x' = x \lor x'$ and by identity 3
 - (b) Proof that $x \lor x' = y \lor y'$: by item (2a) and identity 3
 - (c) Proof that $x \lor y = x$ and $y \lor z = y \implies x \lor z = x$:

$x \lor z = (x \lor y) \lor z$	by $x \lor y = x$ hypothesis
$= x \vee (y \vee z)$	by identity 2 (associative property)
$= x \vee y$	by $y \lor z = y$ hypothesis
= x	by $x \lor y = x$ hypothesis

²⁶ Stone (1935) page 705

²⁷ 🏿 Givant and Halmos (2009) page 13, 📳 Byrne (1946) page 270 ("Formulation A")

(d) Proof that x'' = x (*involutory* property):

$$x'' \lor x' = x' \lor x''$$
 by identity 1 (commutative property) (I.1)
 $= z \lor z'$ by item (2b)

 $x'' \lor x = x''$ by equation (I.1) and identity 3 (I.2)

 $x''' \lor x'' = x'''$ by equation (I.2) (I.3)

 $x'''' \lor x'' = x''''$ by equation (I.2) (I.4)

 $x'''' \lor x = x'''''$ by equation (I.5), and item (2c) (I.5)

 $x'''' \lor x'' = x' \lor x'$ by equation (I.6) and identity 3 (I.6)

 $x''' \lor x''' = x' \lor x'$ by equation (I.3) (I.8)

 $= x' \lor x''' \lor x''' \lor x'$ by equation (I.7)

 $x \lor x''' = x \lor x' \lor x'$ by equation (I.8)

 $= z \lor z' \lor x''' \lor x' \lor x'$ by equation (I.8)

 $= z \lor z' \lor x''' \lor x'' \lor x' \lor x'' \lor x'' \lor x'' \lor x''' \lor x'' \lor x''' \lor x'' \lor x$

by identity 1 (commutative property)

(e) Proof that $x \lor (x' \lor y)'' = z \lor z'$:

$$x \lor (x' \lor y)'' = x \lor (x' \lor y)$$
 by item (2d) (involutory property)
 $= (x \lor x') \lor y$ by identity 2 (associative property)
 $= y \lor (x \lor x')$ by identity 1 (commutative property)
 $= y \lor (y \lor y')$ by item (2b)
 $= (y \lor y) \lor y'$ by identity 2 (associative property)
 $= y \lor y'$ by item (2a)
 $= z \lor z'$ by item (2b)

by equation (I.10)

(f) Proof that $x \lor (x' \lor y)' = x$: by item (2e) and identity 3

 $= x \vee x''$

(g) Proof that $x \vee y'' \vee (x \vee y)' = z \vee z'$:

$$x \lor y'' \lor (x \lor y)' = x \lor y \lor (x \lor y)'$$
 by item (2d)
= $z \lor z'$ by item (2b)

(h) Proof that $x \lor (x \lor y)' = x \lor y'$:

$$x \lor (x \lor y)' = x \lor (x \lor y)' \lor y'$$
 by item (2g) and identity 3
 $= x \lor y' \lor (x \lor y)'$ by identity 1 (*commutative* property)
 $= x \lor y' \lor [(x \lor y')'z]$ by item (2f)
 $= x \lor y'$ by item (2f)

(i) Proof that $\left[\left(x'\vee y'\right)'\vee\left(x'\vee y\right)'\right]\vee x'=z\vee z'$:

$$\left[(x' \lor y')' \lor (x' \lor y)' \right] \lor x' = x' \lor \left[(x' \lor y')' \lor (x' \lor y)' \right]$$
 by identity 1 (*commutative* property)
$$= \left[x' \lor (x' \lor y')' \right] \lor (x' \lor y)'$$
 by identity 2 (*associative* property)
$$= (x' \lor y'') \lor (x' \lor y)'$$
 by item (2h)
$$= (x' \lor y) \lor (x' \lor y)'$$
 by item (2d) (*involutory*)
$$= z \lor z'$$
 by item (2b)

(j) Proof that $(x' \lor y')' \lor (x' \lor y)' = x$ (*Huntington's axiom*):

$$\underbrace{(x' \lor y')' \lor (x' \lor y)'}_{\text{"}x" \text{ in identity 3}} = \underbrace{(x' \lor y')' \lor (x' \lor y)'}_{\text{"}x" \text{ in identity 3}} \lor \underbrace{x}_{\text{"}y"} \text{ by item (2i) and identity 3}$$

$$= \underbrace{x \lor (x' \lor y)'}_{x \text{ by item (2f)}} \lor (x' \lor y')' \text{ by identity 1 (commutative property)}$$

$$= \underbrace{x \lor (x' \lor y)'}_{x \text{ by item (2f)}} \text{ by item (2f)}$$

$$= \underbrace{x \lor (x' \lor y')'}_{x \text{ by item (2f)}} \text{ by item (2f)}$$

- (k) The three identities therefore imply that **A**
 - i. is idempotent (item (2a)),
 - ii. is *commutative* (identity 1),
 - iii. is associative (identity 2), and
 - iv. satisfies *Huntington's axiom* (item (2j)).

Therefore, by Proposition I.6 page 191 (Huntington's Fourth Set), A is a Boolean algebra.

Proposition I.10 (Byrne's Formulation B). ²⁸ Let $\mathbf{A} \triangleq (X, \vee, \wedge; \leq)$ be an algebraic structure.

Theorem I.18. ²⁹ Let $A \triangleq (X, \vee, \wedge; \leq)$ be an algebraic structure.

№ Proof:

- 1. Proof that **A** is a *distributive lattice*: by 1 and 2 and by Theorem G.4 (page 158).
- 2. Define $0 \triangleq x \land x'$ and $1 \triangleq x \lor x'$.
- 3. Proof that 0 is the *join-identity* element and that 1 is the *meet-identity* element:

$$x \vee 0 = x \vee (y \wedge y')$$
 by definition of 0 (item (2) page 194)
$$= (x \vee x) \vee (y \wedge y')$$
 by *idempotent* property of lattices (Theorem D.3 page 120)
$$= x \vee [x \vee (y \wedge y')]$$
 by *associative* property of lattices (Theorem D.3 page 120)
$$= x \vee [x \wedge (y \vee y')]$$
 by 3 by *absorptive* property of lattices (Theorem D.3 page 120)
$$x \wedge 1 = x \wedge (y \vee y')$$
 by definition of 1 (item (2) page 194)
$$= (x \wedge x) \wedge (y \vee y')$$
 by *idempotent* property of lattices (Theorem D.3 page 120)
$$= x \wedge [x \wedge (y \vee y')]$$
 by *associative* property of lattices (Theorem D.3 page 120) by 3
$$= x \wedge [x \vee (y \wedge y')]$$
 by 3 by *absorptive* property of lattices (Theorem D.3 page 120) by 3 by *absorptive* property of lattices (Theorem D.3 page 120)

²⁹ Sholander (1951) pages 28–29, P1, P2, P3*

²⁸ Byrne (1946) page 271 ("Formulation B")

I.6. LITERATURE Daniel J. Greenhoe page 195

4. Proof that **A** is bounded with 0 being the greatest lower bound and 1 being the least upper bound:

```
x \wedge 0 = (x \vee 0) \wedge 0 by identity property (item (3) page 194)

= 0 \wedge (0 \vee x) by commutative property of lattices (Theorem D.3 page 120)

= 0 by absorptive property of lattices (Theorem D.3 page 120)

x \vee 1 = (x \wedge 1) \vee 1 by identity property (item (3) page 194)

= 1 \vee (1 \wedge x) by commutative property of lattices (Theorem D.3 page 120)

= 1 by absorptive property of lattices (Theorem D.3 page 120)
```

- 5. Proof that **A** is *complemented*: Because **A** is *bounded* with greatest lower bound 0 and least upper bound 1 (item (4)) and because $x \wedge x' = 0$ and $x \vee x' = 1$ (definition of 0 and 1 (item (2) page 194)).
- 6. Proof that **A** is a *Boolean algebra*: Because **A** is *distributive* (item (1)) and *complemented* (item (5)), and by Definition I.1 (page 173).

I.6 Literature

Literature survey:

1. General information about Boolean algebras:

```
Sikorski (1969)Dwinger (1971)
```

Dwinger (1971)Dwinger (1961)

Monk (1989)

Givant and Halmos (2009)

- 2. Characterizations:
 - (a) Survey of characterizations:

Padmanabhan and Rudeanu (2008)

(b) Characterizations in terms of traditional *binary* operations *join* \vee , *meet* \wedge , and *complement* ':

```
■ Huntington (1904) ⟨
```

∤ Huntington (1933) ⟨

\alpha Diamond (1933)

Diamond (1934)

Stone (1935)

☐ Hoberman and McKinsey (1937)

Frink (1941) $\langle 4 \text{ identities involving } \vee, \wedge, ' \rangle$

Newman (1941)

Braithwaite (1942)

 $\ensuremath{\not =} \ensuremath{\mathsf{Byrne}}$ (1946) 〈Form. A and B〉

Gerrish (1978) (independence of Huntington's characterizations)

(c) Characterizations in terms of non-traditional binary operations:

Sheffer (1913) ⟨rejection ↓⟩

■ Bernstein (1914) ⟨exception –⟩

Bernstein (1916) ⟨rejection ↓⟩

Bernstein (1933) ⟨rejection ↓⟩

*B*ernstein (1934) ⟨implication \Rightarrow ⟩

Bernstein (1936) \langle complete disjuction $\triangle \rangle$

Byrne (1948) (inclusion)

₿

- (d) Characterizations in terms of ternary operations:
 - Whiteman (1937) ternary rejection
- (e) Characterizations involving *Elkan's law*:
 - Mondo and Dudek (2008) (for bounded lattices)
 - Renedo et al. (2003) (for orthomodular lattices)
 - ☐ Trillas et al. (2004) ⟨for orthocomplemented lattices⟩
- 3. Analytic properties:
 - Vladimirov (2002)
- 4. Miscellaneous:
 - Montague and Tarski (1954)
 - Rudeanu (1961) ⟨referenced by
 Sikorski (1969)⟩
- 5. Actually, "Boolean algebras" are not really "algebras". Rather, they are "a commutative ring with unit, without nilpotents, and having idempotents which stood for classes"
- 6. Pioneering works related to Boolean algebras:
 - **Boole** (1847)
 - **Boole** (1854)
 - Jevons (1864) (join and meet operations)
 - Peirce (1870a) (order concepts)
 - Huntington (1904) ⟨axiomization⟩
- 7. History of development of Boolean algebra:
 - **Burris** (2000)

APPENDIX J	
1	
	ORTHOCOMPI EMENTED I ATTICES

Orthocomplemented lattices (Definition J.1 page 198) are a kind of generalization of *Boolean algebras*. The relationship between lattices of several types, including orthocomplemented and Boolean lattices, is stated in Theorem J.7 (page 209) and illustrated in Figure J.1 (page 197).

Figure J.1: lattice of orthocomplemented lattices

Orthocomplemented Lattices I.1

Definition J.1.1

Definition J.1. Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a BOUNDED LATTICE (Definition E.1 page 135).

An element $x^{\perp} \in X$ is an **orthocomplement** of an element $x \in X$ if

$$1. \quad x^{\perp \perp} \qquad = \quad x$$

(INVOLUTORY)

$$2. \quad x \wedge x^{\perp} = 0$$

(NON-CONTRADICTION)

3.
$$x \le y \implies y^{\perp} \le x^{\perp} \quad \forall y \in X \quad (\text{ANTITONE}).$$

The LATTICE L is orthocomplemented (L is an orthocomplemented lattice) if every element x in X has an ORTHOCOMPLEMENT x^{\perp} in X.

Definition J.2. ²

D

Ε

The O_6 lattice is the ordered set $(\{0, p, q, p^{\perp}, q^{\perp}, 1\}, \leq)$ with cover relation $<= \{(0, p), (0, q), (p, q^{\perp}), (q, p^{\perp}), (p^{\perp}, 1), (q^{\perp}, 1)\}.$ The O_6 lattice is illustrated by the Hasse diagram to the right.

Example J.1. 3

The O_6 lattice (Definition J.2 page 198) is an

orthocomplemented lattice (Definition J.1 page 198).

Example J.2. ⁴There are a total of 10 **orthocomplemented lattices** with 8 elements or less. These 10, along with 3 other orthocomplemented lattices with 10 elements, are illustrated next:

Lattices that are **orthocomplemented** but *non-orthomodular* and hence also *not modular* orthocomplemented and non-Boolean:

O₆ lattice

Lattices that are **orthocomplemented** and **orthomodular** but *not modular* orthocomplemented and hence also non-Boolean:

⁴ ■ Beran (1985) pages 33–42, ■ Maeda (1966) page 250, ■ Kalmbach (1983) page 24 (Figure 3.2), ■ Stern (1999) page 12, # Holland (1970), page 50

¹

☐ Stern (1999) page 11, ☐ Beran (1985) page 28, ☐ Kalmbach (1983) page 16, ☐ Gudder (1988) page 76, ☐ Loomis (1955) page 3, Birkhoff and Neumann (1936) page 830 (L71–L73)

² ■ Kalmbach (1983) page 22, A Holland (1970), page 50, Beran (1985) page 33, Stern (1999) page 12, The O₆ *lattice* is also called the **Benzene ring** or the **hexagon**.

³ Holland (1963), page 50

Lattices that are **orthocomplemented**, **orthomodular**, and **modular orthocomplemented** but *non-Boolean*:

10. M_4 lattice

11. M_6 lattice

Lattices that are **orthocomplemented**, **orthomodular**, **modular orthocomplemented** and **Boolean**:

0**0**1
12. *L*₁ *lattice*

13. L_2 lattice

14. L_2^2 lattice

15. L_2^3 lattice

16. L_2^4 lattice

EX

E X Daniel J. Greenhoe

The structure $\left(2^{\mathbb{R}^N}, +, \cap, \emptyset, \boldsymbol{H}; \subseteq\right)$

is an orthocomplemented lattice where

- \bowtie \mathbb{R}^N is an **Euclidean space** with dimension N
- $2^{\mathbb{R}^N}$ is the set of all subspaces of \mathbb{R}^N
- \checkmark V + W is the *Minkowski sum* of subspaces V and W
- $\vee V \cap W$ is the *intersection* of subspaces V and W

Example J.4.

The structure $(2^H, \oplus, \cap, \emptyset, H; \subseteq)$ is an **orthocomplemented lattice** where

- # is a Hilbert space
- 44 is the set of all closed subspaces of H
- X + Y is the *Minkowski sum* of subspaces X and Y
- $X \oplus Y \triangleq (X + Y)^{-}$ is the *closure* of X + Y
- $\not\subseteq$ $X \cap Y$ is the *intersection* of subspaces X and Y

J.1.2 Properties

Theorem J.1. ⁵ *Let* $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ *be a* BOUNDED LATTICE.

	- , , , , ,							
		(1).	$0_{ op}$	=	1		(BOUNDARY CONDITION)	and
т	(<i>L is</i>	(2).	1^{\perp}	=	0		(BOUNDARY CONDITION)	and
Ĥ	$\{$ orthocomplemented $\} \Longrightarrow \Phi$	(3).	$(x \lor y)^{\perp}$	=	$x^{\perp} \wedge y^{\perp}$	$\forall x,y \in X$	(DISJUNCTIVE DE MORGAN)	and
M	(Definition J.1 page 198)	(4).	$(x \wedge y)^{\perp}$	=	$x^{\perp} \lor y^{\perp}$	$\forall x,y \in X$	(CONJUNCTIVE DE MORGAN)	and
		(5).	$x \vee x^{\perp}$	=	1	$\forall x \in X$	(EXCLUDED MIDDLE).	

 $^{\text{N}}$ PROOF: Let x^{\perp} $\triangleq \neg x$, where \neg is an *ortho negation* function (Definition 1.3 page 4). Then, this theorem follows directly from Theorem 1.5 (page 8). \Longrightarrow

Corollary J.1. Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a BOUNDED LATTICE (Definition E.1 page 135).

$$\left\{ \begin{array}{l} \textit{L is orthocomplemented} \\ \textit{(Definition J.1 page 198)} \end{array} \right\} \implies \left\{ \begin{array}{l} \textit{L is complemented} \\ \textit{(Definition H.1 page 167)} \end{array} \right\}$$

PROOF: This follows directly from the definition of *orthocomplemented lattices* (Definition J.1 page 198) and *complemented lattices* (Definition H.1 page 167).

Example J.5.

The O_6 lattice (Definition J.2 page 198) illustrated to the left is both **orthocomplemented** (Definition J.1 page 198) and **multiply complemented** (Definition H.1 page 167). The lattice illustrated to the right is **multiply complemented**, but is **non-orthocomplemented**.

NPROOF:

1. Proof that O_6 *lattice* is multiply complemented: b and q are both *complements* of p.

 $^{^5}$ @ Beran (1985) pages 30–31, \blacksquare Birkhoff and Neumann (1936) page 830 $\langle L74 \rangle$, @ Cohen (1989) page 37 $\langle 3B.13.$ Theorem \rangle

2. Proof that the right side lattice is multiply complemented: a, p, and q are all *complements* of r.

Lemma J.1 (next) is useful in proving that *de Morgan*'s laws (Theorem A.8 page 60) hold in orthocomplemented lattices (Theorem J.1 page 200) and in proving the characterization of Theorem J.2 (page 201).

Lemma J.1. ⁶ Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be an Orthocomplemented lattice (Definition J.1 page 198).

[♠]Proof: This follows directly from Lemma 1.2 (page 5).

Lemma J.2. Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be an ORTHOCOMPLEMENTED LATTICE (Definition J.1 page 198).

L E M

The set $\{0, x, x^{\perp}\}$ is distributive (Definition G.1 page 147) for all $x \in X$.

♥Proof:

$$\begin{array}{llll} 0 \wedge (x \vee x^{\perp}) = 0 & \text{by } lower \, bounded \, \text{property} & \text{(Proposition E.2 page 135)} \\ &= 0 \vee 0 & \text{by } join \, identity & \text{(Proposition E.2 page 135)} \\ &= (0 \wedge x) \vee (0 \wedge x^{\perp}) & \text{by } lower \, bounded \, \text{property} & \text{(Proposition E.2 page 135)} \\ 0 \wedge (x^{\perp} \vee x) = 0 & \text{by } lower \, bounded \, \text{property} & \text{(Proposition E.2 page 135)} \\ &= 0 \vee 0 & \text{by } join \, identity & \text{(Proposition E.2 page 135)} \\ &= (0 \wedge x^{\perp}) \vee (0 \wedge x) & \text{by } lower \, bounded \, \text{property} & \text{(Proposition E.2 page 135)} \\ &= (0 \wedge x^{\perp}) \vee (0 \wedge x) & \text{by } join \, identity & \text{(Proposition E.2 page 135)} \\ &= 0 & \text{by } non\text{-}contradiction \, \text{property} & \text{(Definition J.1 page 198)} \\ &= 0 \vee 0 & \text{by } join \, identity & \text{(Proposition E.2 page 135)} \\ &= (x \wedge x^{\perp}) \vee 0 & \text{by } non\text{-}contradiction \, \text{property} & \text{(Definition J.1 page 198)} \\ &= (x \wedge x^{\perp}) \vee (x \wedge 0) & \text{by } lower \, bounded \, \text{property} & \text{(Proposition E.2 page 135)} \\ &\times \wedge (0 \vee x^{\perp}) = x \wedge (x^{\perp} \vee 0) & \text{by } commutative \, \text{property} \, \text{of } lattices \\ &= (x \wedge x^{\perp}) \vee (x \wedge 0) & \text{by } previous \, \text{result} \\ &= (x \wedge 0) \vee (x \wedge x^{\perp}) & \text{by } commutative \, \text{property} \, \text{of } lattices \\ &x^{\perp} \wedge (0 \vee x) = (x^{\perp} \wedge x) \vee (x^{\perp} \wedge 0) & \text{by } x \wedge (x^{\perp} \vee 0) \, \text{result} \\ &x^{\perp} \wedge (0 \vee x) = (x^{\perp} \wedge 0) \vee (x^{\perp} \wedge x) & \text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge (0 \vee x^{\perp}) \, \text{result} \\ &\text{by } x \wedge$$

I.1.3 Characterization

Theorem J.2. ⁷ Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be an algebraic structure.

Daniel J. Greenhoe

T H M	L is an orthocomplemented lattice	·		$(z^{\perp} \wedge y^{\perp})^{\perp} \vee x$ $x \wedge (x \vee y)$	= =		$\forall x, y, z \in X$ $\forall x, y \in X$	and and
M	ormocompiementea unitée		3.	$x \lor (y \land y^{\perp})$	=	x	$\forall x,y \in X$.	

№ Proof:

1. Proof that orthocomplemented lattice \implies 3 properties:

$$(z^{\perp} \wedge y^{\perp})^{\perp} \vee x = \left[(z^{\perp})^{\perp} \vee (y^{\perp})^{\perp} \right] \vee x$$
 by $de \, Morgan \, property \, (Theorem \, J.1 \, page \, 200)$

$$= (z \vee y) \vee x \qquad \qquad \text{by } involutory \, property \, (Definition \, J.1 \, page \, 198)$$

$$= x \vee (z \vee y) \qquad \qquad \text{by } commutative \, property \, (Theorem \, D.3 \, page \, 120)$$

$$= x \vee (y \vee z) \qquad \qquad \text{by } commutative \, property \, (Theorem \, D.3 \, page \, 120)$$

$$= (x \vee y) \vee z \qquad \qquad \text{by } associative \, property \, (Theorem \, D.3 \, page \, 120)$$

$$x \wedge (x \vee y) = x \qquad \qquad \text{by } absorptive \, property \, (Theorem \, D.3 \, page \, 120)$$

$$x \vee (y \wedge y^{\perp}) = x \vee 0 \qquad \qquad \text{by } complemented \, property \, (Definition \, J.1 \, page \, 198)$$

$$= x \qquad \qquad \text{by } complemented \, property \, (Definition \, J.1 \, page \, 198)$$

$$= x \qquad \qquad \text{by } complemented \, property \, (Definition \, J.1 \, page \, 198)$$

- 2. Proof that orthocomplemented lattice \iff 3 properties:
 - (a) Proof that **L** is *meet-idempotent*:

$$x \wedge x = x \wedge \left[x \vee (y \wedge y^{\perp}) \right]$$
 by (3)
= $x \wedge \left[x \vee (y \wedge y^{\perp}) \right]$ by (3)
= x by (2)

- (b) Define $0 \triangleq xx^{\perp}$ for some $x \in X$. Proof that 0 is the *greatest lower bound* of L: The element 0 is the greatest lower bound if and only if $xx^{\perp} = yy^{\perp} \quad \forall x, y \in X...$
 - i. Proof that $(xx^{\perp})^{\perp \perp} = (xx^{\perp}) \quad \forall x \in X$:

$$(xx^{\perp})^{\perp \perp} = (xx^{\perp})^{\perp \perp} + (xx^{\perp})$$
 by (3)

$$= [(xx^{\perp})^{\perp}(xx^{\perp})^{\perp}]^{\perp} + (xx^{\perp})$$
 by item (2a)

$$= [(xx^{\perp}) + (xx^{\perp})] + (xx^{\perp})$$
 by (1)

$$= [(xx^{\perp})] + (xx^{\perp})$$
 by (3)

$$= (xx^{\perp})$$
 by (3)

ii. Proof that $a = (xx^{\perp}) + a \quad \forall a, x \in X$:

$$a = a + (xx^{\perp})$$
 by (3)

$$= [a + (xx^{\perp})] + (xx^{\perp})$$
 by (3)

$$= [(xx^{\perp})^{\perp}(xx^{\perp})^{\perp}]^{\perp} + a$$
 by (1)

$$= [(xx^{\perp})^{\perp}]^{\perp} + a$$
 by item (2a)

$$= (xx^{\perp}) + a$$
 by item (2(b)i)

⁷ Beran (1985) pages 31–33, Beran (1976) pages 251–252

iii. Proof that $(xx^{\perp}) = (yy^{\perp}) \quad \forall x, y \in X$:

$$(xx^{\perp}) = (xx^{\perp}) + (yy^{\perp})$$
 by (3)
= (yy^{\perp}) by item (2(b)ii)

(c) Proof that $x + 0 = 0 + x = x \quad \forall x \in X$ (join identity):

$$x + 0 = x + (yy^{\perp})$$
 by item (2(b)iii)
 $= x$ by (3)
 $0 + x = (uu^{\perp}) + x$ by item (2(b)iii)
 $= x$ by item (2(b)iii)

(d) Proof that $x + y = (y^{\perp}x^{\perp})^{\perp} \quad \forall x, y \in X$:

$$(y^{\perp}x^{\perp})^{\perp} = (y^{\perp}x^{\perp})^{\perp} + 0$$
 by item (2c)
= $(0+x) + y$ by (1)
= $x + y$ by item (2c)

(e) Proof that $x + x = x^{\perp \perp} \quad \forall x \in X$:

$$x + x = (x^{\perp}x^{\perp})^{\perp}$$
 by item (2d)
= $(x^{\perp})^{\perp}$ by item (2a)

(f) Proof that $x + y = y + x \quad \forall x, y \in X$ (*join-commutative*):

$$x + y = (x + 0) + y$$
 by item (2c)

$$= (0^{\perp} x^{\perp})^{\perp} + y$$
 by item (2d)

$$= (y + x) + 0$$
 by (1)

$$= y + x$$
 by item (2c)

(g) Proof that $(x + y) + z = x + (y + z) \quad \forall x, y, z \in X$ (*join-associative*):

$$(x + y) + z = (z^{\perp}y^{\perp})^{\perp} + x$$
 by (1)
= $(y + z) + x$ by item (2d)
= $x + (y + z)$ by item (2f)

(h) Proof that $x^{\perp \perp} = x \quad \forall x \in X$ (*involutory*):

$$x^{\perp \perp} = (x^{\perp}) \perp \qquad \text{by definition of } x^{\perp \perp}$$

$$= [x^{\perp}(x^{\perp} + x)] \perp \qquad \text{by (2)}$$

$$= [x^{\perp}(x^{\perp}x^{\perp \perp})^{\perp}] \perp \qquad \text{by item (2d)}$$

$$= (x^{\perp}x^{\perp \perp}) + x \qquad \text{by item (2d)}$$

$$= (0) + x \qquad \text{by item (2b)}$$

$$= x \qquad \text{by item (2c)}$$

(i) Proof of *de Morgan*'s laws:

$$(x+y)^{\perp} = (y+x)^{\perp}$$
 by item (2g)

$$= \left[\left(x^{\perp} y^{\perp} \right)^{\perp} \right]^{\perp}$$
 by item (2d)

$$= x^{\perp} y^{\perp}$$
 by item (2h)

$$(xy)^{\perp} = (x^{\perp \perp} y^{\perp \perp})^{\perp}$$
 by item (2h)
= $y^{\perp} + x^{\perp}$ by item (2d)
= $x^{\perp} + y^{\perp}$ by item (2g)

(j) Proof that $(xy)z = x(yz) \quad \forall x, y, z \in X$ (meet-commutative):

$$xy = (xy)^{\perp \perp}$$
 by item (2h)
 $= (x^{\perp} + y^{\perp})^{\perp}$ by item (2i)
 $= (y^{\perp} + x^{\perp})^{\perp}$ by item (2g)
 $= y^{\perp \perp} x^{\perp \perp}$ by item (2i)
 $= yx$ by item (2i)

(k) Proof that $(xy)z = x(yz) \quad \forall x, y, z \in X$ (meet-associative):

$$(xy)z = [(xy)z]^{\perp} \perp \qquad \text{by item (2h)}$$

$$= [(xy)^{\perp} + z^{\perp}]^{\perp} \qquad \text{by item (2i)}$$

$$= [(x^{\perp} + y^{\perp}) + z^{\perp}]^{\perp} \qquad \text{by item (2i)}$$

$$= [x^{\perp} + (y^{\perp} + z^{\perp})]^{\perp} \qquad \text{by item (2g)}$$

$$= x^{\perp \perp} (y^{\perp} + z^{\perp})^{\perp} \qquad \text{by item (2i)}$$

$$= x^{\perp \perp} (y^{\perp \perp} z^{\perp \perp}) \qquad \text{by item (2i)}$$

$$= x(yz) \qquad \text{by item (2h)}$$

(l) Proof that x + (xz) = x (*join-meet-absorptive*):

$$x \lor (xz) = [x + (xz)]^{\perp \perp}$$
 by item (2h)

$$= [x^{\perp}(xz)^{\perp}]^{\perp}$$
 by item (2i)

$$= [x^{\perp}(x^{\perp} + z^{\perp})]^{\perp}$$
 by item (2i)

$$= [x^{\perp}]^{\perp}$$
 by (2)

$$= x$$
 by item (2h)

- (m) Because *L* is *commutative* (item (2f) and item (2j)), *associative* (item (2g) and item (2k)), and *absorptive* ((2) and item (2l)), and by Theorem D.8 (page 128), *L* is a *lattice*.
- (n) Define $1 \triangleq x + x^{\perp}$ for some $x \in X$. Proof that 1 is the *least upper bound* of L: The element 1 is the least upper bound if and only if $x + x^{\perp} = y + y^{\perp} \quad \forall x, y \in X$...

$$1 = (x + x^{\perp})$$
 by definition of 1
$$= (x + x^{\perp})^{\perp \perp}$$
 by item (2h)
$$= (xx^{\perp})^{\perp}$$
 by item (2j)
$$= (xx^{\perp})^{\perp}$$
 by item (2(b)iii)
$$= (yy^{\perp})^{\perp}$$
 by item (2(b)iii)
$$= y^{\perp} + y^{\perp \perp}$$
 by item (2i)
$$= y^{\perp} + y$$
 by item (2h)
$$= y + y^{\perp}$$
 by item (2f)

- (o) Proof that *L* is *antitone*: by Theorem 1.4 (page 8).
- (p) Proof that *L* is *complemented*: by item (2(b)iii) and item (2n).
- (q) Because *L* is a *bounded* (item (2b) and item (2n)) lattice (item (2m)), and because *L* is *complemented* (item (2p)), is *involutory* (item (2h)), and is *antitone* (item (2o)), and by Definition J.1 (page 198), *L* is an *orthocomplemented lattice*.

J.1.4 Restrictions resulting in Boolean algebras

Proposition J.1. 8 Let $L = (X, \vee, \wedge, 0, 1; \leq)$ be a LATTICE (Definition D.3 page 119).

PROOF: To be a *Boolean algebra*, **L** must satisfy the 8 requirements of *boolean algebras* (Definition 1.1 page 173):

- 1. Proof for *commutative* properties: These are true for *all* lattices (Definition D.3 page 119).
- 2. Proof for *join-distributive* property: by hypothesis (2).
- 3. Proof for *meet-distributive* property: by *join-distributive* property and the *Principle of duality* (Theorem D.4 page 121) for lattices.
- 4. Proof for *identity* properties: because L is a *bounded lattice* and by definitions of 1 (*least upper bound*), 0 (*greatest lower bound*), \vee , and \wedge .
- 5. Proof for *complemented* properties: by hypothesis (1) and definition of *orthocomplemented lattices* (Definition J.1 page 198).

Proposition J.2. Let $L = (X, \vee, \wedge, 0, 1; \leq)$ be a LATTICE (Definition D.3 page 119).

 $\left\{ \begin{array}{ll} 1. & \textit{L is orthocomplemented} \\ 2. & \textit{Every } x \in \textit{L is in the center of L} \end{array} \right. \text{(Definition J.1 page 198)} \quad and \\ \left\{ \begin{array}{ll} 2. & \textit{Every } x \in \textit{L is in the center of L} \end{array} \right. \text{(Definition K.4 page 216)} \end{array} \right\} \quad \Longleftrightarrow \quad \left\{ \begin{array}{ll} \textit{L is} \\ \textit{Boolean} \end{array} \right\}$

New Proof:

- 1. Proof that $(1,2) \implies Boolean$: L is Boolean because it satisfies Huntington's Fourth Set (Proposition I.6 page 191), as demonstrated by the following ...
 - (a) Proof that $x \lor x = x$ (*idempotent*): \boldsymbol{L} is a *lattice* (by definition of \boldsymbol{L}), and all lattices are *idempotent* (Definition D.3 page 119).
 - (b) Proof that $x \lor y = y \lor x$ (*commutative*): **L** is a *lattice* (by definition of **L**), and all lattices are *commutative* (Definition D.3 page 119).
 - (c) Proof that $(x \lor y) \lor z = x \lor (y \lor z)$ (associative): \boldsymbol{L} is a lattice (by definition of \boldsymbol{L}), and all lattices are associative (Definition D.3 page 119).
 - (d) Proof that $(x^{\perp} \vee y^{\perp})^{\perp} \vee (x^{\perp} \vee y)^{\perp} = x$ (*Huntington's axiom*):

 $(x^{\perp} \vee y^{\perp})^{\perp} \vee (x^{\perp} \vee y)^{\perp} = (x^{\perp} \perp \wedge y^{\perp} \perp) \vee (x^{\perp} \perp \wedge y^{\perp})$ by $de\ Morgan\ property\ (Theorem\ J.1\ page\ 200)$ $= (x \wedge y) \vee (x \wedge y^{\perp})$ by $involution\ property\ (Definition\ J.1\ page\ 198)$ = x by definition of $center\ (Definition\ K.4\ page\ 216)$

- 2. Proof that (1) \leftarrow Boolean:
 - (a) Proof that $x \vee x^{\perp} = 1$: by definition of *Boolean algebras* (Definition 1.1 page 173).
 - (b) Proof that $x \wedge x^{\perp} = 0$: by definition of *Boolean algebras* (Definition I.1 page 173).

⁸ A Kalmbach (1983) page 22

- (c) Proof that $x^{\perp \perp} = x$: by *involutory* property of *Boolean algebra* (Theorem I.2 page 178).
- (d) Proof that $x \le y \implies y^{\perp} \le x^{\perp}$:

$$y^{\perp} \leq x^{\perp} \iff y^{\perp} = y^{\perp} \wedge x^{\perp}$$
 by Lemma D.1 page 121
$$\iff y^{\perp \perp} = (y^{\perp} \wedge x^{\perp})^{\perp}$$
 by $de \ Morgan \ property \ (Theorem 1.2 page 178)$
$$\iff y = y \vee x$$
 by $involutory \ property \ (Theorem 1.2 page 178)$
$$\iff y = y \qquad by \ x \leq y \ hypothesis$$

3. Proof that (2) \Leftarrow Boolean: for all $x, y \in L$

$$(x \wedge y) \vee (x \wedge y^{\perp}) = [(x \wedge y) \vee x] \wedge [(x \wedge y) \vee y^{\perp}]$$
 by *distributive* property (Theorem I.2 page 178)
$$= x \wedge [(x \wedge y) \vee y^{\perp}]$$
 by *absorptive* property (Theorem I.2 page 178)
$$= x \wedge [(x \vee y^{\perp}) \wedge (y \vee y^{\perp})]$$
 by *distributive* property (Theorem I.2 page 178)
$$= x \wedge (x \vee y^{\perp}) \wedge 1$$
 by *complement* property (Theorem I.2 page 178)
$$= x$$
 by *absorptive* property (Theorem I.2 page 178)
$$\Rightarrow x \otimes y \quad \forall x, y \in \mathbf{L}$$
 by Definition K.2 page 213
$$\Rightarrow x \text{ is in the } center \text{ of } \mathbf{L} \text{ for all } x \in \mathbf{L}$$
 by Definition K.4 page 216

Example J.6.

The O_6 *lattice* (Definition J.2 page 198) illustrated to the left is **orthocomplemented** (Definition J.1 page 198) but **non-join-distributive** (Definition G.2 page 148), and hence *non-Boolean*. The lattice illustrated to the right is **orthocomplemented** *and* **distributive** and hence also **Boolean** (Proposition J.1 page 204). Alternatively, the right side lattice is **orthocomplemented** *and* every element is in the *center*, and hence also **Boolean** (Proposition J.2 page 205).

Note that of the 5 lattices on 5 element sets (Example D.11 page 126), the 15 lattices on 6 element sets (Example D.12 page 126), and 53 lattices on 7 element sets (Example D.13 page 126), **none** are **uniquely complemented**.

№ Proof:

E X

1. Proof that the O_6 *lattice* is *non-join-distributive*:

$$x \lor (x^{\perp} \land z^{\perp}) = x \lor 0$$

$$= x$$

$$\neq z^{\perp}$$

$$= 1 \land z^{\perp}$$

$$= (x \lor x^{\perp}) \land (x \lor z^{\perp})$$

2. Proof that the O_6 *lattice* is also *non-meet-distributive*:

$$z^{\perp} \wedge (x \vee z) = z^{\perp} \wedge 1$$

$$= z^{\perp}$$

$$\neq x$$

$$= x \vee 1$$

$$= (z^{\perp} \wedge x) \vee (z^{\perp} \wedge z)$$

J.2 Orthomodular lattices

J.2.1 Properties

Definition J.3. 9 Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be an algebraic structure.

D E F L is an orthomodular lattice if

- 1. L is an ORTHOCOMPLEMENTED LATTICE
- 2. $x \le y \implies x \lor (x^{\perp} \land y) = y$

 $\forall x, v \in X$ (orthomodular identity)

Example J.7.

The O_6 lattice (Definition J.2 page 198) is orthocomplemented, but non-orthomodular (and hence, non-modular and non-Boolean).

Example J.8. 10 Let \boldsymbol{H} be a Hilbert space and $2^{\boldsymbol{H}}$ the set of closed linear subspaces of \boldsymbol{H} .

$$(2^{\overline{H}}, \oplus, \cap, \emptyset, \overline{H}; \subseteq)$$
 is an orthomodular lattice.

This concept is illustrated to the right where $X, Y \in 2^H$ are linear subspaces of the linear space H and

$$X \subseteq Y \implies Y = X \oplus (X^{\perp} \cap Y).$$

Theorem J.3. ¹¹ Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a lattice.

- T H M
- 1. \boldsymbol{L} is orthomodular and
- 2. $y \odot x$ and $z \odot x$

- \Longrightarrow
- $(x, y, z) \in \mathbb{D}$

J.2.2 Characterizations

Theorem J.4. 12 Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be an ORTHOCOMPLEMENTED LATTICE (Definition J.1 page 198). Let @ and @* be the modularity relation and dual modularity relation, respectively (Definition F.1 page 137), \bot the orthogonality relation (Definition K.1 page 211), and @ the commutes relation (Definition K.2 page 213).

⁹
Kalmbach (1983) page 22,
Lidl and Pilz (1998) page 90,
Husimi (1937)

¹⁰ Iturrioz (1985) pages 56–57

¹¹ **/** Kalmbach (1983) page 25, **/** Holland (1963) pages 69−70 ⟨Тнеогем 3⟩, **/** Foulis (1962) page 68 ⟨Тнеогем 5⟩

The following statements are Equivalent:

1. L is orthomodular $\Leftrightarrow 2. \quad x \leq y \text{ and } y \land x^{\perp} = 0 \implies x = y$ $\Leftrightarrow 3. \quad L \text{ does not contain the } O_6 \text{ lattice}$ $\Leftrightarrow 4. \quad x \circledcirc y \iff y \circledcirc x (\circledcirc \text{ is symmetric})$ $\Leftrightarrow 5. \quad x \circledcirc x^{\perp} \quad \forall x \in X$ $\Leftrightarrow 6. \quad x \circledcirc^* x^{\perp} \quad \forall x \in X$ $\Leftrightarrow 7. \quad x \lor \left[x^{\perp} \land (x \lor y)\right] = x \lor y \quad \forall x, y \in X$ $\Leftrightarrow 8. \quad x \leq y \implies \exists p \in X \text{ such that } x \perp p \text{ and } x \lor p = y$

№ Proof:

1. Proof that *orthomodular* \iff *symmetric*: by Proposition K.3 (page 214).

J.2.3 Restrictions resulting in Boolean algebras

Theorem J.5. ¹³ Let $L = (X, \vee, \wedge, 0, 1; \leq)$ be an algebraic structure.

$$\left\{
\begin{array}{l}
\text{L is an orthomodular lattice} & \text{and} \\
(x \wedge y^{\perp})^{\perp} = y \vee (x^{\perp} \wedge y^{\perp}) \\
\text{ELKAN'S LAW}
\end{array}
\right\}$$

$$\Rightarrow \left\{
\begin{array}{l}
\text{L is a} \\
\text{Boolean algebra} \\
\text{(Definition I.1 page 173)}
\end{array}
\right\}$$

Definition J.4. 14

E

The MO_2 lattice is the ordered set $(\{0, x, y, x^{\perp}, y^{\perp}, 1\}, \leq)$ with cover relation $\leftarrow = \{(0, x), (0, y), (0, x^{\perp}), (0, y^{\perp}), (x, 1), (y, 1), (x^{\perp}, 1), (y^{\perp}, 1)\}$ This lattice is also called the **Chinese lantern**.

Theorem J.6. ¹⁵ Let $\mathbf{M} = (X, \vee, \wedge, 0, 1; \leq)$ be an Orthomodular lattice.

¹³ Renedo et al. (2003) page 72

¹⁵ **☐** Iturrioz (1985) page 57, **☐** Carrega (1982) ⟨cf Iturrioz 1985 page 57⟩

J.3 Modular orthocomplemented lattices

Definition J.5. Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a BOUNDED LATTICE (Definition E.1 page 135).

D E F L is a modular orthocomplemeted lattice if

- 1. L is orthocomplemented (Definition J.1 page 198) and
- 2. **L** is **modular** (Definition F.3 page 138)

J.4 Relationships between orthocomplemented lattices

Theorem J.7. ¹⁶ Let L be a lattice.

Remark J.1. ¹⁷Lattice number 8 in Example J.2 (page 198) was originally introduced by Dilworth as a counterexample to *Husimi's conjecture* (1937). Kalmbach(1983) points out that this lattice was the first example of a *finite orthomodular* lattice.

¹⁷ ■ Dilworth (1940), ■ Dilworth (1990), **a** Kalmbach (1983) page 9

RELATIONS ON LATTICES WITH NEGATION

The relations in this chapter are typically defined on an *orthocomplemented lattice* (Definition J.1 page 198). Here, some relations are generalized to a *lattice with negation* (Definition 1.5 page 5). A *lattice* (Definition D.3 page 119) with an *ortho negation* negation successfully defined on it is an *orthocomplemented lattice* (Definition J.1 page 198). In many cases, these relations only work well on an *orthocomplemented lattice*, and thus many results are restricted to orthocomplemented lattices.

K.1 Orthogonality

Proposition K.1. Let $(X, \vee, \wedge, 0, 1; \leq)$ be an ORTHOCOMPLEMENTED LATTICE (Definition J.1 page 198).

№PROOF:

D E F

$$x \leq y \implies x \vee x^{\perp} \leq y \vee x^{\perp}$$
 by monotone property of lattices (Proposition D.1 page 121)
$$\implies 1 \leq y \vee x^{\perp}$$
 by excluded middle property of ortho lattices (Definition J.1 page 198)
$$\implies x^{\perp} \vee y = 1$$
 by upper bounded property of bounded lattices (Definition E.1 page 135)
$$x \leq y \implies x \wedge y^{\perp} \leq y \wedge y^{\perp}$$
 by monotone property of lattices (Proposition D.1 page 121)
$$\implies x \wedge y^{\perp} \leq 0$$
 by non-contradiction property of ortho lattices (Definition J.1 page 198)
$$\implies x \wedge y^{\perp} = 0$$
 by lower bounded property of bounded lattices (Definition E.1 page 135)

Definition K.1. 1 Let $(X, \vee, \wedge, \neg, 0, 1; \leq)$ be a LATTICE WITH NEGATION (Definition 1.5 page 5).

The **orthogonality** relation $\bot \in 2^{XX}$ is defined as $x \bot y \iff x \le \neg y$ If $x \bot y$, we say that x is **orthogonal** to y.

¹ Stern (1999) page 12, Loomis (1955) page 3

Lemma K.1. Let $(X, \vee, \wedge, \neg, 0, 1; \leq)$ be a LATTICE WITH NEGATION (Definition 1.5 page 5).

	-
1	
-	
н	
-	
М.	
VI	

$$\left\{ \begin{array}{ccc} x \perp y & \text{(orthogonal Definition K.1 page 211)} \end{array} \right\} \qquad \Longrightarrow \qquad \left\{ \begin{array}{ccc} y \perp x & \text{(symmetric)} \end{array} \right\}$$

№ Proof:

$$x \perp y \implies x \leq \neg y$$
 by definition of \bot (Definition K.1 page 211)
 $\implies (\neg \neg y) \leq \neg x$ by antitone property (Definition J.1 page 198)
 $\implies y \leq \neg x$ by weak double negation property of negation (Definition 1.2 page 4)
 $\implies y \perp x$ by definition of \bot (Definition K.1 page 211)

Lemma K.2. 2 *Let* (X, \vee , \wedge , 0, 1; \leq) *be an* ORTHOCOMPLEMENTED LATTICE (*Definition J.1 page 198*).

	200 (21, 1,	/ (, 0, 1 , <u>_</u>) be core	J 1 1 1	110001/11	 	122		•
L E M	$x\perp y$ ORTHOGONAL (Definition K.1 page 211)			$\begin{array}{c} x \wedge y \\ x^{\perp} \vee y^{\perp} \end{array}$		and	}	

♥Proof:

$$\begin{array}{lll} x\perp y \implies x \leq y^{\perp} & \text{by definition of } \bot \text{ (Definition K.1 page 211)} \\ \implies x \wedge y \leq y^{\perp} \wedge y & \text{by } monotone \text{ property of } lattices \text{ (Proposition D.1 page 121)} \\ \implies x \wedge y \leq y \wedge y^{\perp} & \text{by } commutative \text{ property of } lattices \text{ (Theorem D.3 page 120)} \\ \implies x \wedge y \leq 0 & \text{by } non\text{-}contradiction \text{ property of } ortho \textit{ negation (Definition 1.3 page 4)} \\ \implies x \wedge y = 0 & \text{by } lower \textit{ bound } property \text{ of } bounded \textit{ lattices (Definition E.1 page 135)} \\ \\ x\perp y \implies x \leq y^{\perp} & \text{by definition of } \bot \text{ (Definition K.1 page 211)} \\ \implies x^{\perp} \vee x \leq x^{\perp} \vee y^{\perp} & \text{by } monotone \text{ property of } lattices \text{ (Proposition D.1 page 121)} \\ \implies x \vee x^{\perp} \leq x^{\perp} \vee y^{\perp} & \text{by } commutative \text{ property of } lattices \text{ (Theorem D.3 page 120)} \\ \implies 1 \leq x^{\perp} \vee y^{\perp} & \text{by } excluded \textit{ middle property of } ortho \textit{ lattices (Theorem 1.5 page 8)} \\ \implies x^{\perp} \vee y^{\perp} & \text{by } upper \textit{ bound } property \text{ of } bounded \textit{ lattices (Definition E.1 page 135)} \\ \end{array}$$

Remark K.1. In an orthocomplemented lattice L, the orthogonality relation \bot is in general non-associative. That is

$$\left\{\begin{array}{ccc} x & \perp & y & \text{and} \\ y & \perp & z \end{array}\right\} \quad \Longrightarrow \quad x \perp z$$

 \mathbb{Q} Proof: Consider the L_2^4 Boolean lattice in Example J.2 (page 198).

- $a^{\perp} \perp p$ because $a^{\perp} \leq p^{\perp}$.
- $p \perp r$ because $p \leq r^{\perp}$.
- But yet a^{\perp} is *not* orthogonal to r because $a^{\perp} \nleq r^{\perp}$.

Example K.1.

In the O_6 lattice (Definition J.2 page 198), there are a total of $\binom{6}{2} = \frac{6!}{(6-2)!2!} = \frac{6\times 5}{2} = 15$ distinct unordered (the \bot relation is *symmetric* by Lemma K.1 page 212 so the order doesn't matter) pairs of elements.

Of these 15 pairs, 8 are orthogonal to each other, and 0 is orthogonal to itself, making a total of 9 orthogonal pairs:

х	\perp	y	х	\perp	0	y^{\perp}	T	0
x	\perp	x^{\perp}	у	\perp	0	1	\perp	0
у	Τ	y^{\perp}	x^{\perp}	Τ	0	0	Τ	0

² Holland (1963), page 67

Example K.2.

In lattice 5 of Example J.2 (page 198), there are a total of $\binom{10}{2} = \frac{10!}{(10-2)!2!} = \frac{10\times9}{2} = 45$ distinct unordered pairs of elements.

Of these 45 pairs, 18 are orthogonal to each other, and 0 is orthogonal to itself, making a total of 19 orthogonal pairs:

p	Т	p^{\perp} x^{\perp}	х	Τ	x^{\perp}	у	Τ	z	x^{\perp}	T	0
р	\perp	x^{\perp}	х	\perp	y	у	\perp	0	y^{\perp}	\perp	0
р	\perp	y	х	\perp	z.	z.	\perp	z^{\perp}	z^{\perp}	\perp	0
p	\perp	\boldsymbol{z}	x	\perp	0	z	\perp	0	0	\perp	0
p	丄	$z \\ 0$	у	\perp	y^{\perp}	p^{\perp}	T	0			

Example K.3.

EX

K.2 Commutativity

The *commutes* relation is defined next. Motivation for the name "commutes" is provided by Proposition K.4 (page 216) which shows that if x commutes with y in a lattice L, then x and y commute in the *Sasaki projection* $\phi_x(y)$ on L.

Definition K.2. 3 Let $L \triangleq (X, \vee, \wedge, \neg, 0, 1; \leq)$ be a LATTICE WITH NEGATION (Definition 1.5 page 5).

Proposition K.2. 4 *Let* $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ *be an* Orthocomplemented Lattice.

P	x© 0	and	0© x	$\forall x \in X$	x©y	\iff	$x © y^{\perp}$	$\forall x,y \in X$
R	<i>x</i> ©1	and	1©x	$\forall x \in X$	$x \le y$	\Longrightarrow	x © y	$\forall x,y \in X$
Р	x© x			$\forall x \in X$	$x \perp y$	\Longrightarrow	x © y	$\forall x,y \in X$

[♠]Proof:

$$(x \wedge 0) \vee (x \wedge 0^{\perp}) = 0 \vee (x \wedge 0^{\perp})$$
 by lower bound property of bounded lattices (Definition E.1 page 135)
$$= 0 \vee (x \wedge 1)$$
 by boundary condition of ortho negation (Theorem 1.5 page 8)
$$= 0 \vee (x)$$
 by upper bound property of bounded lattices (Definition E.1 page 135)
$$= x$$
 by lower bound property of bounded lattices (Definition E.1 page 135)
$$\Rightarrow x @ 0$$
 by definition of @ relation (Definition K.2 page 213)
$$= 0$$
 by lower bound property of bounded lattices (Definition E.1 page 135)
$$= 0$$
 by lower bound property of bounded lattices (Definition E.1 page 135)
$$= 0$$
 by lower bound property of bounded lattices (Definition E.1 page 135) by lower bound property of bounded lattices (Definition E.1 page 135) by definition of @ relation (Definition K.2 page 213)


```
(x \wedge 1) \vee (x \wedge 1^{\perp}) = x \vee (x \wedge 1^{\perp})
                                                            by lower bound property of bounded lattices (Definition E.1 page 135)
                       = x \lor (x \land 0)
                                                            by boundary condition of ortho negation (Theorem 1.5 page 8)
                       =(x)\vee(0)
                                                            by lower bound property of bounded lattices (Definition E.1 page 135)
                       = x
                                                            by lower bound property of bounded lattices (Definition E.1 page 135)
                 \implies x@1
                                                            by definition of © relation (Definition K.2 page 213)
(1 \land x) \lor (1 \land x^{\perp}) = (x) \lor (x^{\perp})
                                                            by non-contradiction prop. of ortho negation (Definition 1.3 page 4)
                                                            by excluded middle property of ortho negation (Theorem 1.5 page 8)
                 \implies 1@x
                                                            by definition of © relation (Definition K.2 page 213)
(x \wedge x) \vee (x \wedge x^{\perp}) = x \vee (x \wedge x^{\perp})
                                                            by idempotent property of lattices (Theorem D.3 page 120)
                                                            by non-contradiction prop. of ortho negation (Definition 1.3 page 4)
                       = x \vee (0)
                                                            by lower bound property of bounded lattices (Definition E.1 page 135)
                       = x
                 \implies x @ x
                                                            by definition of © relation (Definition K.2 page 213)
                 x \odot y \implies (x \wedge y^{\perp}) \vee (x \wedge y^{\perp \perp})
                                                            by definition of © (Definition K.2 page 213)
                       = (x \wedge y^{\perp}) \vee (x \wedge y)
                                                            by involution property of ⊥ (Definition J.1 page 198)
                       = (x \wedge y) \vee (x \wedge y^{\perp})
                                                            by commutative property of lattices (Definition D.3 page 119)
                                                            by x \odot y hypothesis and Definition K.2 page 213
                 \implies x @ v^{\perp}
                                                            by definition of © relation (Definition K.2 page 213)
                x \odot y^{\perp} \implies (x \wedge y) \vee (x \wedge y^{\perp})
                                                            by definition of © (Definition K.2 page 213)
                       = (x \wedge y^{\perp \perp}) \vee (x \wedge y^{\perp})
                                                            by involution property of ⊥ (Definition J.1 page 198)
                       = (x \wedge y^{\perp}) \vee (x \wedge y^{\perp \perp})
                                                            by commutative property of lattices (Definition D.3 page 119)
                                                            by x \odot y^{\perp} hypothesis and Definition K.2 page 213
                       = x
                 \implies x @ v
                                                            by definition of © relation (Definition K.2 page 213)
                x \le y \implies (x \land y) \lor (x \land y^{\perp})
                                                            by definition of © (Definition K.2 page 213)
                       = x \lor (x \land y^{\perp})
                                                            by x \le y hypothesis
                                                            by absorptive property (Theorem D.3 page 120)
                       = x
                        \implies x @ y
                                                            by definition of © (Definition K.2 page 213)
                x \perp y \implies (x \wedge y) \vee (x \wedge y^{\perp})
                                                            by definition of © (Definition K.2 page 213)
                       = 0 \lor (x \land y^{\perp})
                                                            by Lemma K.2 page 212
                                                            by x \perp y hypothesis (x \perp y \implies x \leq y^{\perp})
                       = 0 \lor x
                       = x \vee 0
                                                            by commutative property (Theorem D.3 page 120)
                                                            by identity property of bounded lattices
                       = x
                                                            by definition of © (Definition K.2 page 213)
                        \implies x @ y
```

Definition K.3. Let \odot be the COMMUTES relation (Definition K.2 page 213) on a LATTICE WITH NEGATION $L \triangleq (X, \vee, \wedge, \neg, 0, 1; \leq)$ (Definition 1.5 page 5).

In general, the commutes relation is not *symmetric*. But Proposition K.3 (next) describes some conditions under which it *is* symmetric.

Proposition K.3. ⁵ Let $(X, \vee, \wedge, 0, 1; \leq)$ be an Orthocomplemented lattice (Definition J.1 page 198).

⁵ Holland (1963) page 68, Nakamura (1957) page 158

$$\begin{cases} x \odot y \implies y \odot x \end{cases} \iff \begin{cases} x \leq y \implies y = x \lor (x^{\perp} \land y) \end{cases} \text{ (orthomodular identity)} \qquad (2) \\ \Leftrightarrow \qquad \left\{ x \leq y \implies x = y \land (x \lor y^{\perp}) \right\} \qquad (x = \phi_{y}(x) \text{ (Sasaki projection)}) \qquad (3) \\ \Leftrightarrow \qquad \left\{ y = (x \land y) \lor \left[y \land (x \land y)^{\perp} \right] \right\} \qquad (4) \\ \Leftrightarrow \qquad \left\{ x = (x \lor y) \land \left[x \lor (x \lor y)^{\perp} \right] \right\}$$

№PROOF:

1. Proof that (2) \iff (3):

$$x \leq y \implies y^{\perp} \leq x^{\perp}$$

$$\implies x^{\perp} = y^{\perp} \lor (y^{\perp \perp} \land x^{\perp})$$

$$\implies (x^{\perp})^{\perp} = [y^{\perp} \lor (y^{\perp \perp} \land x^{\perp})]^{\perp}$$

$$\implies x = [y^{\perp} \lor (y^{\perp \perp} \land x^{\perp})]^{\perp}$$

$$= y^{\perp \perp} \land (y^{\perp \perp} \land x^{\perp})^{\perp}$$

$$= y \land (y \land x^{\perp})^{\perp}$$

$$= y \land (y^{\perp} \lor x^{\perp})$$

$$= y \land (y^{\perp} \lor x)$$

$$= y \land (x \lor y^{\perp})$$

- by *antitone* property (Definition J.1 page 198) by left hypothesis
- by *involutory* property (Definition J.1 page 198)
 by *de Morgan* property (Theorem J.1 page 200)
 by *involutory* property (Definition J.1 page 198)
 by *de Morgan* property (Theorem J.1 page 200)
 by *involutory* property (Definition J.1 page 198)
 by *commutative* property (Theorem D.3 page 120)
- $x < y \implies y^{\perp} < x^{\perp}$ by antitone property (Definition J.1 page 198) $\implies v^{\perp} = x^{\perp} \wedge (y^{\perp} \vee x^{\perp \perp})$ by right hypothesis $\implies (y^{\perp})^{\perp} = [x^{\perp} \wedge (y^{\perp} \vee x^{\perp \perp})]^{\perp}$ $\implies y = [x^{\perp} \land (y^{\perp} \lor x^{\perp \perp})]^{\perp}$ by *involutory* property (Definition J.1 page 198) $= x^{\perp \perp} \vee \left(y^{\perp} \vee x^{\perp \perp} \right)^{\perp}$ by de Morgan property (Theorem J.1 page 200) $= x \vee (y^{\perp} \vee x)^{\perp}$ by involutory property (Definition J.1 page 198) $= x \lor (y^{\perp \perp} \land x^{\perp})$ by de Morgan property (Theorem J.1 page 200) $= x \vee (y \wedge x^{\perp})$ by involutory property (Definition J.1 page 198) $= x \lor (x^{\perp} \land y)$ by commutative property (Theorem D.3 page 120)
- 2. Proof that (2) \iff (4):

$$(xy) \lor [y(xy)^{\perp}] = u \lor [yu^{\perp}]$$

= $u \lor [u^{\perp}y]$
= y

where
$$u \triangleq xy \leq y$$
 by *commutative* property of lattices (Theorem D.3 page 120) by left hypothesis

$$x \le y \implies x \lor (x^{\perp}y) = xy \lor [(xy)^{\perp}y]$$
 by $x \le y$ hypothesis
= $xy \lor [y(xy)^{\perp}]$ by $x \le y$ hypothesis
= y by right hypothesis

3. Proof that (3) \iff (5):

$$(x \lor y)[x \lor (x \lor y)^{\perp}] = u[x \lor u^{\perp}]$$

= x

where
$$x \le u \triangleq x \lor y$$
 by left hypothesis

$$x \le y \implies y(x \lor y^{\perp}) = (x \lor y)[x \lor (x \lor y)^{\perp}]$$
 by $x \le y$ hypothesis by right hypothesis

4. Proof that $(1) \implies (2)$:

$$x \le y \implies x \circledcirc y$$
 by Proposition K.2 page 213
 $\implies y \circledcirc x$ by symmetry hypothesis (left hypothesis)
 $\implies y = (y \land x) \lor (y \land x^{\perp})$ by definition of \circledcirc (Definition K.2 page 213)
 $\implies y = x \lor (y \land x^{\perp})$ by $x \le y$ hypothesis
 $\implies y = x \lor (x^{\perp} \land y)$ by commutative property of lattices (Theorem D.3 page 120)

- 5. Proof that (2) \implies (4):
 - (a) lemma: proof that $x \odot y \implies x^{\perp} y = (xy)^{\perp} y$:

Daniel J. Greenhoe

$$x \odot y \implies x^{\perp}y = (xy \vee xy^{\perp})^{\perp}y$$
 by definition of \odot (Definition K.2 page 213)
 $= (xy)^{\perp}(xy^{\perp})^{\perp}y$ by $de\ Morgan$'s law (Theorem 1.4 page 8)
 $= (xy)^{\perp}\left[\left(x^{\perp}\vee y^{\perp}\right)y\right]$ by $de\ Morgan$'s law (Theorem 1.4 page 8)
 $= (xy)^{\perp}\left[\left(x^{\perp}\vee y\right)y\right]$ by $involutory$'s property (Definition J.1 page 198)
 $= (xy)^{\perp}y$ by $absorptive$ property of lattices (Theorem D.3 page 120)

(b) Completion of proof for $(2) \implies (4)$:

```
x \odot y \implies xy \lor y(xy)^{\perp} = xy \lor (xy)^{\perp}y by commutative property (Theorem D.3 page 120)

= xy \lor x^{\perp}y by x \odot y hypothesis and item (5a)

= (yx) \lor [yx^{\perp}] by commutative property (Theorem D.3 page 120)

\implies y \odot x by definition of © (Definition K.2 page 213)
```

Theorem K.1. ⁶ Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be an ORTHOCOMPLEMENTED LATTICE (Definition J.1 page 198).

```
 \begin{cases} x @ c & \forall x \in X \end{cases} \iff \left\{ \textbf{\textit{L} is isomorphic to } [0:c] \times \left[0:c^{\perp}\right] \right\}  with isomorphism \theta(x) \triangleq \left([0:c], \left[0:c^{\perp}\right]\right).
```

Proposition K.4. ⁷ *Let* $(X, \vee, \wedge, 0, 1; \leq)$ *be an* ORTHOMODULAR *lattice*.

K.3 Center

An element in an *orthocomplemented lattice* (Definition J.1 page 198) is in the *center* of the lattice if that element *commutes* (Definition K.2 page 213) with every other element in the lattice (next definition). *All* the elements of an *orthocomplemented lattice* are in the *center* if and only if that lattice is *Boolean* (Proposition J.2 page 205).

Definition K.4. ⁸ *Let* © *be the* COMMUTES *relation* (Definition K.2 page 213) on a LATTICE WITH NEGATION $L \triangleq (X, \vee, \wedge, \neg, 0, 1; \leq)$ (Definition 1.5 page 5).

- ⁷ Foulis (1962) page 66, Sasaki (1954) ⟨cf Foulis 1962⟩
- ⁸ Holland (1970), page 80

—>

Proposition K.5. Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be an ORTHOCOMPLEMENTED LATTICE (Definition J.1 page 198).

0 and 1 are in the center of L.

№ Proof: This follows directly from Definition K.2 (page 213) and Proposition K.2 (page 213).

Theorem K.2. 9 Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be an orthocomplemented lattice (Definition J.1 page 198).

The CENTER of L is BOOLEAN (Definition 1.1 page 173).

Example K.4.

The **center** of the O_6 **lattice** (Definition J.2 page 198) is the set $\{0, x, z, 1\}$. The elements x^{\perp} and z^{\perp} are **not** in the center of L. The O_6 lattice is illustrated to the right, with the center elements as solid dots. Note that the center is the *Boolean* lattice L_2^2 (Proposition J.2 page 205).

№PROOF:

- 1. Proof that 0 and 1 are in the *center* of *L*: by Proposition K.5 (page 217).
- 2. Proof that x is in the center of L:

$$(x \wedge x) \vee (x \wedge x^{\perp}) = x \vee 0 \qquad = x \qquad \Longrightarrow x @ x$$
$$(x \wedge z) \vee (x \wedge z^{\perp}) = 0 \vee x \qquad = x \qquad \Longrightarrow x @ z$$

 $x \odot x$, $x \odot x^{\perp}$, $x \odot z^{\perp}$, $x \odot 0$, and $x \odot 1$ by Proposition K.2 (page 213).

3. Proof that *z* is in the *center* of *L*:

$$(z \wedge z) \vee (z \wedge z^{\perp}) = z \vee 0 \qquad = z \qquad \Longrightarrow z \otimes z$$
$$(z \wedge x) \vee (z \wedge x^{\perp}) = 0 \vee z \qquad = z \qquad \Longrightarrow z \otimes z$$

 $z \odot z$, $z \odot x^{\perp}$, $z \odot z^{\perp}$, $z \odot 0$, and $z \odot 1$ by Proposition K.2 (page 213).

4. Proof that x^{\perp} and z^{\perp} are *not* in the *center* of L:

$$(x^{\perp} \wedge y) \vee (x^{\perp} \wedge y^{\perp}) = y \vee 0 \qquad \qquad = y \qquad \Longrightarrow x^{\perp} \textcircled{e}_{z}$$
$$(z^{\perp} \wedge x) \vee (z^{\perp} \wedge x^{\perp}) = x \vee 0 \qquad \qquad = x \qquad \Longrightarrow z^{\perp} \textcircled{e}_{z}$$

Example K.5.

The **center** the lattice illustrated to the right (Example J.2 page 198), with center elements as solid dots, is the set $\{0,1,p,y,z,x^{\perp},y^{\perp},z^{\perp},\}$. The elements x and p^{\perp} are *not* in the *center* of \boldsymbol{L} . Note that the center is the *Boolean* lattice \boldsymbol{L}_2^3 (Proposition J.2 page 205).

⁹ Jeffcott (1972) page 645 (\$5. Main theorem)

№ Proof:

- 1. Proof that 0 and 1 are in the *center* of *L*: by Proposition K.5 (page 217).
- 2. Proof that *x* is in the *center* of *L*:

$$(x \wedge p) \vee (x \wedge p^{\perp}) = x \vee 0 \qquad = x \qquad \Longrightarrow x © p$$

$$(x \wedge y) \vee (x \wedge y^{\perp}) = 0 \vee x \qquad = x \qquad \Longrightarrow x © y$$

$$(x \wedge z) \vee (x \wedge z^{\perp}) = 0 \vee x \qquad = x \qquad \Longrightarrow x © z$$

 $x \odot x$, $x \odot x^{\perp}$, $x \odot p^{\perp}$, $x \odot p^{\perp}$, $x \odot z^{\perp}$, $x \odot z^{$

3. Proof that *y* is in the *center* of *L*:

$$(y \wedge x) \vee (y \wedge x^{\perp}) = 0 \vee y \qquad = y \qquad \Longrightarrow y \otimes x$$
$$(y \wedge p) \vee (y \wedge p^{\perp}) = 0 \vee y \qquad = y \qquad \Longrightarrow y \otimes p$$
$$(y \wedge z) \vee (y \wedge z^{\perp}) = 0 \vee y \qquad = y \qquad \Longrightarrow y \otimes z$$

 $y \odot y$, $y \odot x^{\perp}$, $y \odot p^{\perp}$, $y \odot y^{\perp}$, $y \odot z^{\perp}$, $y \odot 0$, and $y \odot 1$ by Proposition K.2 (page 213).

4. Proof that *z* is in the *center* of *L*:

$$(z \wedge x) \vee (z \wedge x^{\perp}) = 0 \vee z \qquad = z \qquad \Longrightarrow z @ x$$

$$(z \wedge p) \vee (z \wedge p^{\perp}) = 0 \vee z \qquad = z \qquad \Longrightarrow z @ p$$

$$(z \wedge y) \vee (z \wedge y^{\perp}) = 0 \vee z \qquad = z \qquad \Longrightarrow z @ y$$

 $z \odot z$, $z \odot x^{\perp}$, $z \odot p^{\perp}$, $z \odot y^{\perp}$, $z \odot z^{\perp}$, $z \odot 0$, and $z \odot 1$ by Proposition K.2 (page 213).

5. Proof that x^{\perp} is in the *center* of **L**:

$$(p^{\perp} \wedge x) \vee (p^{\perp} \wedge x^{\perp}) = 0 \vee p^{\perp} \qquad \qquad = p^{\perp} \qquad \Longrightarrow p^{\perp} © x$$

$$(p^{\perp} \wedge y) \vee (p^{\perp} \wedge y^{\perp}) = y \vee z \qquad \qquad = p^{\perp} \qquad \Longrightarrow p^{\perp} © y$$

$$(p^{\perp} \wedge z) \vee (p^{\perp} \wedge z^{\perp}) = z \vee y \qquad \qquad = p^{\perp} \qquad \Longrightarrow p^{\perp} © z$$

 $p^{\perp} @ x^{\perp}$, $p^{\perp} @ p^{\perp}$, $p^{\perp} @ y^{\perp}$, $p^{\perp} @ z^{\perp}$, $p^{\perp} @ 0$, and $p^{\perp} @ 1$ by Proposition K.2 (page 213).

6. Proof that y^{\perp} is in the *center* of **L**:

$$(y^{\perp} \wedge x) \vee (y^{\perp} \wedge x^{\perp}) = x \vee z \qquad \qquad = y^{\perp} \qquad \Longrightarrow y^{\perp} @ x$$

$$(y^{\perp} \wedge p) \vee (y^{\perp} \wedge p^{\perp}) = p \vee z \qquad \qquad = y^{\perp} \qquad \Longrightarrow y^{\perp} @ p$$

$$(y^{\perp} \wedge z) \vee (y^{\perp} \wedge z^{\perp}) = z \vee p \qquad \qquad = y^{\perp} \qquad \Longrightarrow y^{\perp} @ z$$

 $p^{\perp} @ x^{\perp}$, $p^{\perp} @ p^{\perp}$, $p^{\perp} @ y^{\perp}$, $p^{\perp} @ z^{\perp}$, $p^{\perp} @ 0$, and $p^{\perp} @ 1$ by Proposition K.2 (page 213).

7. Proof that z^{\perp} is in the *center* of **L**:

$$(z^{\perp} \wedge x) \vee (z^{\perp} \wedge x^{\perp}) = x \vee y \qquad \qquad = z^{\perp} \qquad \Longrightarrow z^{\perp} @x$$

$$(z^{\perp} \wedge p) \vee (z^{\perp} \wedge p^{\perp}) = p \vee y \qquad \qquad = z^{\perp} \qquad \Longrightarrow y^{\perp} @p$$

$$(z^{\perp} \wedge y) \vee (z^{\perp} \wedge y^{\perp}) = z \vee p \qquad \qquad = z^{\perp} \qquad \Longrightarrow y^{\perp} @z$$

 $z^{\perp} @ x^{\perp}$, $z^{\perp} @ p^{\perp}$, $z^{\perp} @ y^{\perp}$, $z^{\perp} @ z^{\perp}$, $z^{\perp} @ 0$, and $z^{\perp} @ 1$ by Proposition K.2 (page 213).

8. Proof that *p* and x^{\perp} are *not* in the *center* of *L*:

$$(p \wedge x) \vee (p \wedge x^{\perp}) = x \vee 0$$
$$(x^{\perp} \wedge p) \vee (x^{\perp} \wedge p^{\perp}) = 0 \vee p^{\perp}$$

$$= x$$
$$= p^{\perp}$$

$$\implies p \mathfrak{D} x$$

$$\implies x$$

₽

Example K.6.

E X

The **center** of the lattice illustrated to the right is illustrated with solid dots. Note that the center is the *Boolean* lattice L_2^2 (Proposition J.2 page 205).

Example K.7.

E X

In a Boolean lattice, such as the one illustrated to the right, every element is in the center (Proposition J.2 page 205).

APPENDIX L

_VALUATIONS ON LATTICES

Definition L.1. Let $L \triangleq (X, \vee, \wedge; \leq)$ be a LATTICE (Definition D.3 page 119).

D E F

```
A function v \in \mathbb{R}^X is a valuation on L if
```

$$V(x \lor y) + V(x \land y) = V(x) + V(y) \forall x,y \in X$$

Proposition L.1. Let $v \in \mathbb{R}^X$ be a function on a lattice $L \triangleq (X, \vee, \wedge; \leq)$ (Definition D.3 page 119).


```
\left\{ \ \textit{\textbf{L} is} \ \text{LINEAR} \ \textit{(Definition D.3 page 119)} \ \right\} \qquad \Longrightarrow \qquad \left\{ \ \ \text{v} \ \textit{is} \ \textit{a} \ \text{VALUATION} \ \textit{(Definition L.1 page 221)} \ \right\}
```

 $^{\textcircled{N}}$ Proof: Let $x, y \in X$ such that $x \leq y$ or $y \leq x$.

$$V(x \lor y) + V(x \land y) = V(x) + V(y)$$

because *L* is *linear*

Example L.1. ² Consider the *real valued lattice* $L \triangleq (\mathbb{R}, \vee, \wedge; \leq)$. The *absolute value* function $|\cdot|$ is a *valuation* on L.

№ PROOF: *L* is *linear* (Definition D.3 page 119), so v is a *valuation* by Proposition L.1 (page 221).

Definition L.2. ³ Let X be a set and \mathbb{R}^{\vdash} the set of non-negative real numbers.

A function $d \in \mathbb{R}^{\vdash X \times X}$ is a **metric** on X if 1. $d(x, y) \geq 0$ $\forall x,y \in X$ (NON-NEGATIVE) and D 2. $d(x, y) = 0 \iff x = y$ $\forall x,y \in X$ (NONDEGENERATE) and $3. \quad \mathsf{d}(x,y) = \mathsf{d}(y,x)$ $\forall x,y \in X$ (SYMMETRIC) and 4. $d(x, y) \le d(x, z) + d(z, y) \quad \forall x, y, z \in X$ (SUBADDITIVE/TRIANGLE INEQUALITY).4 A metric space is the pair (X, d). A metric is also called a distance function.

² Khamsi and Kirk (2001) page 119 (\$5.7)

⁴ Euclid (circa 300BC) (Book I Proposition 20)

Actually, it is possible to significantly simplify the definition of a metric to an equivalent statement requiring only half as many conditions. These equivalent conditions (a "*characterization*") are stated in Theorem L.1 (next).

Theorem L.1 (metric characterization). ⁵ Let d be a function in $(\mathbb{R}^{\vdash})^{X \times X}$.

```
 \begin{cases} 1. & d(x,y) = 0 \iff x = y \quad \forall x,y \in X \quad and \\ 2. & d(x,y) \leq d(x,y) \neq x,y,z \in X \end{cases}
```

Definition L.3 (next) defines the *open ball*. In a *metric space* (Definition L.2 page 221), sets are often specified in terms of an *open ball*; and an open ball is specified in terms of a metric.

Definition L.3. 6 *Let* (X, d) *be a* METRIC SPACE (Definition L.2 page 221).

```
An open ball centered at x with radius r is the set B(x,r) \triangleq \{y \in X | d(x,y) < r\}.

A closed ball centered at x with radius r is the set \overline{B}(x,r) \triangleq \{y \in X | d(x,y) \leq r\}.

A unit ball centered at x is the set \overline{B}(x,1).

A closed unit ball centered at x is the set \overline{B}(x,1).
```

Theorem L.2. ⁷ Let $v \in \mathbb{R}^X$ be a function on a LATTICE $L \triangleq (X, \vee, \wedge; \leq)$ (Definition D.3 page 119).

```
 \begin{array}{l} \mathsf{T} \\ \mathsf{H} \\ \mathsf{M} \end{array} \begin{array}{l} 1. \quad \mathsf{V}(x \vee y) + \mathsf{V}(x \wedge y) = \mathsf{V}(x) + \mathsf{V}(y) \quad \forall x, y \in X \quad \text{(VALUATION)} \quad and \\ 2. \quad x \leq y \implies \mathsf{V}(x) \leq \mathsf{V}(y) \qquad \quad \forall x, y \in X \quad \text{(ISOTONE)} \end{array} \right\} \\ \Longrightarrow \left\{ \begin{array}{l} \mathsf{d}(x,y) \triangleq \\ \mathsf{V}(x \vee y) - \mathsf{V}(x \wedge y) \\ \textit{is a METRIC on } \mathbf{L} \end{array} \right.
```

Definition L.4. ⁸ Let v be a VALUATION (Definition L.1 page 221) on a LATTICE $L \triangleq (X, \vee, \wedge; \leq)$ (Definition D.3 page 119). Let d(x, y) be the METRIC defined in Theorem L.2 (page 222).

The pair (L, d) is called a METRIC LATTICE.

For *finite modular* lattices, the *height* function h(x) (Definition E.3 page 136) can serve as the isotone valuation that induces a metric (next proposition). Such a height function actually satisfies the stronger condition of being *positive* (rather than just being *isotone*)—all *positive* functions are also *isotone*.

Proposition L.2. 9 Let h(x) be the HEIGHT (Definition E.3 page 136) of a point x in a BOUNDED LATTICE (Definition E.1 page 135) $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$.

```
\begin{cases}
1. & L \text{ is MODULAR} \quad and \\
2. & L \text{ is FINITE}
\end{cases}

\Rightarrow \begin{cases}
1. & h(x \lor y) + h(x \land y) = h(x) + h(y) \quad \forall x, y \in X \quad (\text{VALUATION}) \quad and \\
2. & x \le y \implies h(x) \le h(y) \quad \forall x, y \in X \quad (\text{POSITIVE})
\end{cases}

\Rightarrow \begin{cases}
1. & h(x \lor y) + h(x \land y) = h(x) + h(y) \quad \forall x, y \in X \quad (\text{VALUATION}) \quad and \\
2. & x \le y \implies h(x) \le h(y) \quad \forall x, y \in X \quad (\text{ISOTONE})
\end{cases}
```

Theorem L.3. ¹⁰ Let v be a VALUATION (Definition L.1 page 221) on a LATTICE $L \triangleq (X, \vee, \wedge; \leq)$ (Definition D.3 page 119). Let d(x, y) be the METRIC defined in Theorem L.2 (page 222).

```
 \left\{ \begin{array}{c} \textbf{(\textit{\textbf{L}},d)} \ \textit{is a} \ \textit{METRIC LATTICE} \\ \textit{(Definition L.4 page 222)} \end{array} \right\} \qquad \Longrightarrow \qquad \left\{ \begin{array}{c} \textbf{\textit{\textbf{L}} is MODULAR} \\ \textit{(Definition F.3 page 138)} \end{array} \right\}
```


⁵ Michel and Herget (1993), page 264, Giles (1987), page 18

⁶ Aliprantis and Burkinshaw (1998), page 35

⁷ Deza and Laurent (1997) page 105 ((8.1.2)), Birkhoff (1967) pages 230–231

⁸ Deza and Laurent (1997) page 105, Birkhoff (1967) page 231 (§X.2)

⁹ Birkhoff (1967) page 230

Example L.2. The function h on the Boolean (and thus also modular) lattice L_2^3 illustrated to the right is a valuation (Definition L.1 page 221) that is positive (and thus also isotone, Example L.2 page 222). Therefore

$$d(x, y) \triangleq h(x \lor y) - h(x \land y) \qquad \forall x, y \in X$$

is a *metric* (Definition L.4 page 222) on L_2^3 . For example,

$$d(b,q) \triangleq h(b \lor q) - h(b \land q) = h(1) - h(0) = 3 - 0 = 3.$$

The *closed unit ball* centered at b (Definition L.3 page 222) and illustrated with solid dots to the right is

$$\mathsf{B}(b,1) \triangleq \{ x \in X | \mathsf{d}(b,x) \le 1 \} = \{ b, p, r, 0 \}$$

Example L.3. The height function h (Definition E.3 page 136) on the orthocomplemented but non-modular lattice O₆ illustrated to the right is not a valuation because for example

$$h(a \lor c) + h(a \land c) = h(1) + h(0) = 3 + 0 = 3 \neq 2 = 1 + 1 = h(a) + h(b)$$
. Moreover, we might expect the "distance" from a to c to be 2. However, if we attempt to use $h(x)$ to define a metric on O_6 , then we get

$$d(a,c) \triangleq h(a \lor c) - h(a \land c) = h(1) - h(0) = 3 - 0 = 3 \neq 2.$$

L.1 Projections

Definition L.5. ¹¹ Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be an ORTHOCOMPLEMENTED LATTICE (Definition J.1 page 198).

A function $\phi_x \in X^X$ is a **Sasaki projection** on $x \in X$ if $\phi_x(y) \triangleq (y \vee x^{\perp}) \wedge x$.

The Sasaki projections ϕ_x and ϕ_y are **permutable** if $\phi_x \circ \phi_y(u) = \phi_y \circ \phi_x(u) \quad \forall u \in X$.

Proposition L.3. Let $\phi_x(y)$ be the Sasaki projection of y onto x (Definition L.5 page 224) in an orthocomplemented lattice $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$.

№PROOF:

$$x \leq y \implies \varphi_x(y) \triangleq \left(y \vee x^\perp\right) \wedge x \qquad \text{by definition of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= 1 \wedge x \qquad \text{by } x \leq y \text{ hypothesis and Proposition K.1 page 211}$$

$$= x \qquad \text{by property of bounded lattices (Proposition E.2 page 135)}$$

$$y \leq x \implies \boxed{y} = y \wedge x \qquad \text{by definition of } \vee \text{(Definition C.21 page 116)}$$

$$= \boxed{\varphi_x(y)} \qquad \text{by definition of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$\leq (y \vee x^\perp) \wedge x \qquad \text{by definition of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$\leq \boxed{x} \qquad \text{by definition of } \wedge \text{(Definition C.22 page 116)}$$

$$y \leq x \text{ and } Boolean \implies \varphi_x(y) = (y \vee x^\perp) \wedge x \qquad \text{by definition of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by definition of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by definition of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by } definition \ of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by } definition \ of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by } definition \ of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by } definition \ of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by } definition \ of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by } definition \ of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by } definition \ of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by } definition \ of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by } definition \ of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by } definition \ of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by } definition \ of } Sasaki \ projection \ (\text{Definition L.5 page 224})$$

$$= (y \wedge x) \vee (x^\perp \wedge x) \qquad \text{by } d$$

Proposition L.4. Let $\phi_x(y)$ be the Sasaki projection of y onto x (Definition L.5 page 224) in an orthocomplemented lattice $(X, \vee, \wedge, 0, 1; \leq)$.

₽

 $[\]ensuremath{\textit{@}}$ Sasaki (1954) page 300 (Def.5.1, cf Foulis 1962)

№Proof:

Example L.4.

Here are some examples of projections in the O_6 *lattice* onto the element x: $\phi_n(q)$ (q(because $p \perp q$) $\phi_p(p^{\perp})$ (p^{\perp}) (because $p \perp p^{\perp}$) E X (because $p \le q^{\perp}$) (p)(because $q^{\perp} \leq 1$) $\phi_p(1)$ (1 (because $p \le 1$) $\phi_n(0)$ (because $p \perp 0$)

Example L.5.

Example L.6.

E X Let \mathbb{R}^3 be the 3-dimensional Euclidean space (Example J.3 page 199) with subspaces Z and V. Then the projection operator $P_{Z^{\perp}}$ onto Z^{\perp} is a sasaki projection $\phi_{Z^{\perp}}$. In particular $\Phi_{Z^{\perp}}V \triangleq \phi_{Z^{\perp}}(V)$

$$P_{Z^{\perp}}V \triangleq \phi_{Z^{\perp}}(V)$$

$$\triangleq (V + Z^{\perp \perp}) \cap Z^{\perp}$$

$$= (V + Z) \cap Z^{\perp}$$
as illustrated to the right.

₽

	RIRI IOCRA	DHV

- Jan Łukasiewicz. On three-valued logic. In Storrs McCall, editor, *Polish Logic*, 1920–1939, pages 15–18. Oxford University Press, 1920. ISBN 9780198243045. URL http://books.google.com/books?vid=ISBN0198243049&pg=PA15. collection published in 1967.
- M. E. Adams. Uniquely complemented lattices. In Kenneth P. Bogart, Ralph S. Freese, and Joseph P.S. Kung, editors, *The Dilworth theorems: selected papers of Robert P. Dilworth*, pages 79–84. Birkhäuser, Boston, 1990. ISBN 0817634347. URL http://books.google.com/books?vid=ISBN0817634347.
- Donald J. Albers and Gerald L. Alexanderson. *Mathematical People: Profiles and Interviews*. Birkhäuser, Boston, 1985. ISBN 0817631917. URL http://books.google.com/books?vid=ISBN0817631917.
- Charalambos D. Aliprantis and Owen Burkinshaw. *Principles of Real Analysis*. Acedemic Press, London, 3 edition, 1998. ISBN 9780120502578. URL http://www.amazon.com/dp/0120502577.
- Charalambos D. Aliprantis and Owen Burkinshaw. *Positive Operators*. Springer, Dordrecht, 2006. ISBN 9781402050077. URL http://books.google.com/books?vid=ISBN1402050070. reprint of Academic Press 1985 edition.
- Claudi Alsina, Enric Trillas, and Laura Valverde. On non-distributive logical connectives for fuzzy sets. *BUSEFAL*, 3:18–29, 1980.
- Claudi Alsina, Enric Trillas, and Laura Valverde. On some logical connectives for fuzzy sets theory. *Journal of Mathematical Analysis and Applications*, 93:15–26, April 30 1983. doi: 10.1016/0022-247X(83)90216-0. URL http://www.sciencedirect.com/science/article/pii/0022247X83902160.
- Tom M. Apostol. *Mathematical Analysis*. Addison-Wesley series in mathematics. Addison-Wesley, Reading, 2 edition, 1975. ISBN 986-154-103-9. URL http://books.google.com/books?vid=ISBN0201002884.
- Aristotle. Metaphysics book iv. In *Aristotle: Metaphysics, Books I–IX*, number 271 in Loeb Classical Library, pages 146–207. Harvard University Press (1933), Cambridge MA. ISBN 0674992997. URL http://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Aristot.+Met.+4.1003a.
- V.A. Artamonov. Varieties of algebras. In Michiel Hazewinkel, editor, *Handbook of Algebras*, volume 2, pages 545–576. North-Holland, Amsterdam, 1 edition, 2000. ISBN 044450396X. URL http://books.google.com/books?vid=ISBN044450396X&pg=PA545.

Arnon Avron. Natural 3-valued logics—characterization and proof theory. *The Journal of Symbolic Logic*, 56(1):276–294, March 1991. URL http://www.jstor.org/stable/2274919.

- R. W. Bagley. On the characterization of the lattice of topologies. *Journal of the London Math Society*, 30:247–249, 1955. URL http://jlms.oxfordjournals.org/cgi/reprint/s1-30/2/247. MR 16,788.
- Kirby A. Baker. Equational classes of modular lattices. *Pacific Journal of Mathematics*, 28(1):9–15, 1969. URL http://projecteuclid.org/euclid.pjm/1102983605.
- Raymond Balbes. Projective and injective distributive lattices. *Pacific Journal of Mathematics*, 21 (3):405–420, 1967. URL http://projecteuclid.org/euclid.pjm/1102992388.
- Raymond Balbes and Philip Dwinger. *Distributive Lattices*. University of Missouri Press, Columbia, February 1975. ISBN 0826201636. URL http://books.google.com/books?vid=ISBN098380110X. 2011 reprint edition available (ISBN 9780983801108).
- Raymond Balbes and Alfred Horn. Projective distributive lattices. *Pacific Journal of Mathematics*, 33(2):273–279, 1970. URL http://projecteuclid.org/euclid.pjm/1102976963.
- Hans-J. Bandelt and Jarmila Hedlíková. Median algebras. *Discrete Mathematics*, 45(1):1–30, 1983. URL http://www.sciencedirect.com/science/journal/0012365X.
- Robert G. Bartle. *A Modern Theory of Integration*, volume 32 of *Graduate studies in mathematics*. American Mathematical Society, Providence, R.I., 2001. ISBN 0821808451. URL http://books.google.com/books?vid=ISBN0821808451.
- Eric Temple Bell. Exponential numbers. *The American Mathematical Monthly*, 41(7):411–419, August–September 1934. URL http://www.jstor.org/stable/2300300.
- Rirchard Bellman and Magnus Giertz. On the analytic formalism of the theory of fuzzy sets. *Information Sciences*, 5:149–156, 1973. doi: 10.1016/0020-0255(73)90009-1. URL http://www.sciencedirect.com/science/article/pii/0020025573900091.
- Nuel D. Belnap, Jr. A useful four-valued logic. In John Michael Dunn and George Epstein, editors, *Modern Uses of Multiple-valued Logic: Invited Papers from the 5. International Symposium on Multiple-Valued Logic, Held at Indiana University, Bloomington, Indiana, May 13 16, 1975; with a Bibliography of Many-valued Logic by Robert G. Wolf, volume 2 of Episteme, pages 8–37.* D. Reidel, 1977. ISBN 9789401011617. URL http://www.amazon.com/dp/9401011613.
- Ladislav Beran. Three identities for ortholattices. *Notre Dame Journal of Formal Logic*, 17(2):251–252, 1976. doi: 10.1305/ndjfl/1093887530. URL http://projecteuclid.org/euclid.ndjfl/1093887530.
- Ladislav Beran. Boolean and orthomodular lattices a short characterization via commutativity, volume 23. Czech Republic, 1982. URL http://journalseek.net/cgi-bin/journalseek/journalsearch.cgi?field=issn&query=0001-7140.
- Ladislav Beran. *Orthomodular Lattices: Algebraic Approach*. Mathematics and Its Applications (East European Series). D. Reidel Publishing Company, Dordrecht, 1985. ISBN 90-277-1715-X. URL http://books.google.com/books?vid=ISBN902771715X.
- Sterling Khazag Berberian. *Introduction to Hilbert Space*. Oxford University Press, New York, 1961. URL http://books.google.com/books?vid=ISBN0821819127.

BIBLIOGRAPHY Daniel J. Greenhoe page 229

Yurij M. Berezansky, Zinovij G. Sheftel, and Georgij F. Us. *Functional Analysis: Volume I (Operator Theory, Advances and Applications, Volume 85*), volume 85 of *Operator Theory Advances and Applications*. Birkhäuser, Basel, 1996. ISBN 3764353449. URL http://books.google.com/books?vid=ISBN3764353449. translated into English from Russian.

- Gustav Bergman. Zur axiomatik der elementargeometrie. *Monatshefte für Mathematik*, 36(1): 269–284, December 1929. ISSN 0026-9255. URL http://www.springerlink.com/content/n30211355u2k/.
- Benjamin Abram Bernstein. A complete set of postulates for the logic of classes expressed in terms of the operation "exception," and a proof of the independence of a set of postulates due to del ré. *University of California Publications on Mathematics*, 1(4):87–96, May 15 1914. URL http://www.archive.org/details/113597_001_004.
- Benjamin Abram Bernstein. A simplification of the whitehead-huntington set of postulates for boolean algebras. *Bulletin of the American Mathematical Society*, 22:458–459, 1916. ISSN 0002-9904. doi: 10.1090/S0002-9904-1916-02831-X. URL http://www.ams.org/bull/1916-22-09/S0002-9904-1916-02831-X/.
- Benjamin Abram Bernstein. Simplification of the set of four postulates for boolean algebras in terms of rejection. *Bulletin of the American Mathematical Society*, 39:783–787, October 1933. ISSN 0002-9904. doi: 10.1090/S0002-9904-1933-05738-5. URL http://www.ams.org/bull/1933-39-10/S0002-9904-1933-05738-5/.
- Benjamin Abram Bernstein. A set of four postulates for boolean algebra in terms of the "implicative" operation. *Transactions of the American Mathematical Society*, 36(4):876–884, October 1934. URL http://www.jstor.org/stable/1989830.
- Benjamin Abram Bernstein. Postulates for boolean algebra involving the operation of complete disjunction. *The Annals of Mathematics*, 37(2):317–325, April 1936. URL http://www.jstor.org/stable/1968444.
- Garrett Birkhoff. On the combination of subalgebras. *Mathematical Proceedings of the Cambridge Philosophical Society*, 29:441–464, October 1933a. doi: 10.1017/S0305004100011464. URL http://adsabs.harvard.edu/abs/1933MPCPS..29..441B.
- Garrett Birkhoff. On the combination of subalgebras by garrett birkhoff. In Garrett Birkhoff, Gian-Carlo Rota, and Joseph S. Oliveira, editors, *Selected Papers on Algebra and Topology*, Contemporary mathematicians, pages 9–32. Birkhäuser, Boston, 1933b. ISBN 0817631143. URL http://books.google.com/books?vid=ISBN0817631143. This book published in 1987 by Birkhäuser.
- Garrett Birkhoff. On the combination of topologies. *Fundamenta Mathematicae*, 26:156–166, 1936a. ISSN 0016-2736. URL http://matwbn.icm.edu.pl/ksiazki/fm/fm26/fm26116.pdf.
- Garrett Birkhoff. The logic of quantum mechanics. *Annals of Mathematics*, 37(4):823–843, October 1936b. URL http://www.jstor.org/stable/1968621.
- Garrett Birkhoff. Rings of sets. *Duke Math. J.*, 3(3):443-454, 1937. doi: 10.1215/S0012-7094-37-00334-X. URLhttp://projecteuclid.org/euclid.dmj/1077490201.
- Garrett Birkhoff. Lattices and their applications. *Bulletin of the American Mathematical Society*, 44:1:793–800, 1938. doi: 10.1090/S0002-9904-1938-06866-8. URL http://www.ams.org/bull/1938-44-12/S0002-9904-1938-06866-8/.
- Garrett Birkhoff. *Lattice Theory*. American Mathematical Society, New York, 1 edition, 1940. URL http://www.worldcat.org/oclc/1241388.

Garrett Birkhoff. *Lattice Theory*. American Mathematical Society, New York, 2 edition, 1948. URL http://books.google.com/books?vid=ISBN3540120440.

- Garrett Birkhoff. *Lattice Theory*, volume 25 of *Colloquium Publications*. American Mathematical Society, Providence, 3 edition, 1967. ISBN 0-8218-1025-1. URL http://books.google.com/books?vid=ISBN0821810251.
- Garrett Birkhoff and P. Hall. Applications of lattice algebra. *Mathematical Proceedings of the Cambridge Philosophical Society*, 30(2):115–122, 1934. doi: 10.1017/S0305004100016522. URL http://adsabs.harvard.edu/abs/1934MPCPS..30..115B.
- Garrett Birkhoff and S.A. Kiss. A ternary operation in distributive lattices. *Bulletin of the American Mathematical Society*, 53:749–752, 1947a. ISSN 1936-881X. doi: 10.1090/S0002-9904-1947-08864-9. URL http://www.ams.org/bull/1947-53-08/S0002-9904-1947-08864-9.
- Garrett Birkhoff and S.A. Kiss. A ternary operation in distributive lattices. In J.S. Oliveira and G.C. Rota, editors, *Selected Papers on Algebra and Topology by Garrett Birkhoff*, Contemporary mathematicians, pages 107–110. Birkhäuser (1987), Boston, 1947b. ISBN 0817631143. URL http://books.google.com/books?vid=ISBN0817631143.
- Garrett Birkhoff and John Von Neumann. The logic of quantum mechanics. *The Annals of Mathematics*, 37(4):823–843, October 1936. URL http://www.jstor.org/stable/1968621.
- Garrett Birkhoff and Morgan Ward. A characterization of boolean algebras. *The Annals of Mathematics*, 40(3):609–610, July 1939a. URL http://www.jstor.org/stable/1968945.
- Garrett Birkhoff and Morgan Ward. A characterization of boolean algebras. In J.S. Oliveira and G.C. Rota, editors, *Selected Papers on Algebra and Topology by Garrett Birkhoff*, Contemporary mathematicians, pages 89–90. Birkhäuser (1987), Boston, 1939b. ISBN 0817631143. URL http://books.google.com/books?vid=ISBN0817631143.
- Garrett Birkhoff and Morgan Ward. *Selected Papers on Algebra and Topology by Garrett Birkhoff.* Contemporary mathematicians. Birkhäuser (1987), Boston, 1987. ISBN 0817631143. URL http://books.google.com/books?vid=ISBN0817631143.
- George D. Birkhoff and Garrett Birkhoff. Distributive postulates for systems like boolean algebras. *Transactions of the American Mathematical Society*, 60(1):3–11, July 1946. URL http://www.jstor.org/stable/1990239.
- Thomas Scott Blyth. *Lattices and ordered algebraic structures*. Springer, London, 2005. ISBN 1852339055. URL http://books.google.com/books?vid=ISBN1852339055.
- George Boole. *The Mathematical Analysis of Logic*. Macmillan, Barclay, & Macmillan, Cambridge, 1847. URL http://www.archive.org/details/mathematicalanal00booluoft.
- George Boole. An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities. Walton and Maberly, London, 1854. URL http://www.archive.org/details/investigationof100boolrich.
- Umberto Bottazzini. *The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass*. Springer-Verlag, New York, 1986. ISBN 0-387-96302-2. URL http://books.google.com/books?vid=ISBN0387963022.
- Bourbaki. Éléments de mathématique. Prewmieère partie: Les structures fondamentales de l'analyse. Livre I: Théorie des ensembles (Fascicule des résultats). Hermann & Cie, Paris, 1939.

BIBLIOGRAPHY Daniel J. Greenhoe page 231

R.B. Braithwaite. Characterisations of finite boolean lattices and related algebras. *Journal of the London Mathematical Society*, 17:180–192, 1942. URL http://jlms.oxfordjournals.org/cgi/reprint/s1-17/3/180.

- Gunnar Brinkmann and Brendan D. McKay. Posets on up to 16 points. *Order*, 19(2):147–179, June 2002. ISSN 0167-8094 (print) 1572-9273 (online). doi: 10.1023/A:1016543307592. URL http://www.springerlink.com/content/d4dbce7pmctuenmg/.
- Jason I. Brown and Stephen Watson. Self complementary topologies and preorders. *Order*, 7(4): 317–328, 1991. ISSN 0167-8094 (print) 1572-9273 (online). doi: 10.1007/BF00383196. URLhttp://www.springerlink.com/content/t164x9114754w4lq/.
- Jason I. Brown and Stephen Watson. The number of complements of a topology on n points is at least 2ⁿ (except for some special cases). *Discrete Mathematics*, 154(1–3):27–39, 15 June 1996. doi: 10.1016/0012-365X(95)00004-G. URL http://dx.doi.org/10.1016/0012-365X(95)00004-G.
- Stanley Burris. The laws of boole's thought. Apil 4 2000. URL www.math.uwaterloo.ca/~snburris/htdocs/MYWORKS/TALKS/ams-boole.ps.
- Stanley Burris and Hanamantagida Pandappa Sankappanavar. *A Course in Universal Algebra*. Number 78 in Graduate texts in mathematics. Springer-Verlag, New York, 1 edition, 1981. ISBN 0-387-90578-2. URL http://books.google.com/books?vid=ISBN0387905782. 2000 edition available for free online.
- Stanley Burris and Hanamantagida Pandappa Sankappanavar. A course in universal algebra. Retypeset and corrected version of the 1981 edition, 2000. URL http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html.
- Lee Byrne. Two brief formulations of boolean algebra. *Bulletin of the American Mathematical Society*, 52:269–272, 1946. ISSN 1936-881X. doi: 10.1090/S0002-9904-1946-08556-0. URL http://www.ams.org/bull/1946-52-04/S0002-9904-1946-08556-0/.
- Lee Byrne. Boolean algebra in terms of inclusion. *American Journal of Mathematics*, 70(1):139–143, January 1948. URL http://www.jstor.org/stable/2371939.
- Lee Byrne. Short formulations of boolean algebra. *Canadian Journal of Mathematics*, 3(1):31–33, 1951.
- Florian Cajori. A history of mathematical notations; notations mainly in higher mathematics. In *A History of Mathematical Notations; Two Volumes Bound as One*, volume 2. Dover, Mineola, New York, USA, 1993. ISBN 0-486-67766-4. URL http://books.google.com/books?vid=ISBN0486677664. reprint of 1929 edition by *The Open Court Publishing Company*.
- J.C. Carrega. Exclusion d'algèbres. *Comptes Rendus des Seances de l'Academie des Sciences*, 295: 43–46, 1982. Sirie I: Mathematique.
- Gianpiero Cattaneo and Davide Ciucci. Lattices with interior and closure operators and abstract approximation spaces. In James F. Peters and Andrzej Skowron, editors, *Transactions on Rough Sets X*, volume 5656 of *Lecture notes in computer science*, pages 67–116. Springer, 2009. ISBN 9783642032813.
- Arthur Cayley. A memoir on the theory of matrices. *Philosophical Transactions of the Royal Society of London*, 148:17–37, 1858. ISSN 1364-503X. URL http://www.jstor.org/view/02610523/ap000059/00a00020/0.

S. D. Chatterji. The number of topologies on *n* points. Technical Report N67-31144, National Aeronautics and Space Administration, July 1967. URL http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19670021815 1967021815.pdf. techreport.

- Gustave Choquet. Theory of capacities. *Annales de l'institut Fourier*, 5:131–295, 1954. doi: 10.5802/aif.53. URL http://aif.cedram.org/item?id=AIF_1954__5__131_0.
- Roberto Cignoli. Injective de morgan and kleene algebras. *Proceedings of the American Mathematical Society*, 47(2):269–278, February 1975. URL http://www.ams.org/journals/proc/1975-047-02/S0002-9939-1975-0357259-4/S0002-9939-1975-0357259-4.pdf.
- David W. Cohen. *An Introduction to Hilbert Space and Quantum Logic*. Problem Books in Mathematics. Springer-Verlag, New York, 1989. ISBN 0-387-96870-9. URL http://books.google.com/books?vid=ISBN1461388430.
- Louis Comtet. Recouvrements, bases de filtre et topologies d'un ensemble fini. *Comptes rendus de l'Acade'mie des sciences*, 262(20):A1091–A1094, 1966. Recoveries, bases and filter topologies of a finite set.
- Louis Comtet. *Advanced combinatorics: the art of finite and infinite.* D. Reidel Publishing Company, Dordrecht, 1974. ISBN 978-9027704412. URL http://books.google.com/books?vid=ISBN9027704414. translated and corrected version of the 1970 French edition.
- Corneliu Constantinescu. *Spaces of measures*. Walter De Gruyter, Berlin, 1984. ISBN 3110087847. URL http://books.google.com/books?vid=ISBN3110087847.
- Edward Thomas Copson. *Metric Spaces*. Number 57 in Cambridge tracts in mathematics and mathematical physics. Cambridge University Press, London, 1968. ISBN 978-0521047227. URL http://books.google.com/books?vid=ISBN0521047226.
- Peter Crawley and Robert Palmer Dilworth. *Algebraic Theory of Lattices*. Prentice-Hall, January 1973. ISBN 0130222690. URL http://books.google.com/books?vid=ISBN0130222690.
- Brian A. Davey and Hilary A. Priestley. *Introduction to Lattices and Order*. Cambridge mathematical text books. Cambridge University Press, Cambridge, 2 edition, May 6 2002. ISBN 978-0521784511. URL http://books.google.com/books?vid=ISBN0521784514.
- Anne C. Davis. A characterization of complete lattices. *Pacific Journal of Mathematics*, 5(2):311–319, 1955. URL http://projecteuclid.org/euclid.pjm/1103044539.
- Sheldon W. Davis. *Topology*. McGraw Hill, Boston, 2005. ISBN 007-124339-9. URL http://www.worldcat.org/isbn/0071243399.
- William H. E. Day. The complexity of computing metric distances between partitions. *Mathematical Social Sciences*, 1:269–287, May 1981. ISSN 0165-4896. doi: 10.1016/0165-4896(81)90042-1. URL http://www.sciencedirect.com/science/article/B6V88-4582D9S-27/2/4e955bb32fd3bfeb49850b2014b4ca2d.
- Charles Jean de la Vallée-Poussin. Sur l'intégrale de lebesgue. *Transactions of the American Mathematical Society*, 16(4):435–501, October 1915. URL http://www.jstor.org/stable/1988879.
- Augustus de Morgan. On the syllogism, no. iv. and on the logic of relations. *Transactions of the Cambridge Philosophical Society*, 10:331–358, 1864a. read 1860 April 23, reprinted by Heath.

BIBLIOGRAPHY Daniel J. Greenhoe page 233

Augustus de Morgan. On the syllogism, no. iv. and on the logic of relations. In Peter Lauchlan Heath, editor, *On the Syllogism: And Other Logical Writings*, Rare masterpieces of philosophy and science, pages 208–246. Routledge & Kegan Paul (1966), London, 1864b. URL http://books.google.com/books?ei=__WRSbTLG5WYkwSe0_30Cg&id=YNENAAAAIAAJ.

- Andreas de Vries. Algebraic hierarchy of logics unifying fuzzy logic and quantum logic. The registered submission date for this paper is 2007 July 14, but the date appearing on paper proper is 2009 December 6. The latest year in the references is 2006, July 14 2007. URL http://arxiv.org/abs/0707.2161.
- Richard Dedekind. Ueber die von drei moduln erzeugte dualgruppe. *Mathematische Annalen*, 53:371–403, January 8 1900. URL http://resolver.sub.uni-goettingen.de/purl/?GDZPPN002257947. Regarding the Dual Group Generated by Three Modules.
- Augustus DeMorgan. *A Budget of Paradoxes*. Ayer Publishing, Freeport, 2 edition, 1872. ISBN 0836951190. URL http://www.archive.org/details/budgetofparadoxe00demouoft.
- René Descartes. Regulae ad directionem ingenii. 1684a. URL http://www.fh-augsburg.de/~harsch/Chronologia/Lspost17/Descartes/des_re00.html.
- René Descartes. Rules for Direction of the Mind. 1684b. URL http://en.wikisource.org/wiki/Rules_for_the_Direction_of_the_Mind.
- D. Devidi. Negation: Philosophical aspects. In Keith Brown, editor, *Encyclopedia of Language & Linguistics*, pages 567–570. Elsevier, 2 edition, April 6 2006. ISBN 9780080442990. URL http://www.sciencedirect.com/science/article/pii/B0080448542012025.
- D. Devidi. Negation: Philosophical aspects. In Alex Barber and Robert J Stainton, editors, *Concise Encyclopedia of Philosophy of Language and Linguistics*, pages 510–513. Elsevier, April 6 2010. ISBN 9780080965017. URL http://books.google.com/books?vid=ISBN0080965016&pg=PA510.
- Elena Deza and Michel-Marie Deza. *Dictionary of Distances*. Elsevier Science, Amsterdam, 2006. ISBN 0444520872. URL http://books.google.com/books?vid=ISBN0444520872.
- Michel-Marie Deza and Elena Deza. *Encyclopedia of Distances*. Springer, 2009. ISBN 3642002331. URL http://www.uco.es/users/malfegan/Comunes/asignaturas/vision/Encyclopedia-of-distances-2009.pdf.
- Michel Marie Deza and Monique Laurent. *Geometry of Cuts and Metrics*, volume 15 of *Algorithms and Combinatorics*. Springer, Berlin/Heidelberg/New York, May 20 1997. ISBN 354061611X. URL http://books.google.com/books?vid=ISBN354061611X.
- A. H. Diamond. The complete existential theory of the whitehead-huntington set of postulates for the algebra of logic. *Transactions of the American Mathematical Society*, 35(4):940–948, October 1933. URL http://www.jstor.org/stable/1989601.
- A. H. Diamond. Simplification of the whitehead-huntington set of postulates for the algebra of logic. *Bulletin of the American Mathematical Society*, 40:599–601, 1934. ISSN 0002-9904. doi: 10.1090/S0002-9904-1934-05925-1. URL http://www.ams.org/bull/1934-40-08/S0002-9904-1934-05925-1/.
- A. H. Diamond and J.C.C. McKinsey. Algebras and their subalgebras. *Bulletin of the American Mathematical Society*, 53:959–962, 1947. ISSN 0002-9904. doi: 10.1090/S0002-9904-1947-08916-3. URL http://www.ams.org/bull/1947-53-10/S0002-9904-1947-08916-3/.

page 234 Daniel J. Greenhoe BIBLIOGRAPHY

Emmanuele DiBenedetto. *Real Analysis*. Birkhäuser Advanced Texts. Birkhäuser, Boston, 2002. ISBN 0817642315. URL http://books.google.com/books?vid=ISBN0817642315.

- Jean Alexandre Dieudonné. *Foundations of Modern Analysis*. Academic Press, New York, 1969. ISBN 1406727911. URL http://books.google.com/books?vid=ISBN1406727911.
- R.P. Dilworth. On complemented lattices. *Tôhoku Mathematical Journal*, 47:18–23, 1940. ISSN 0040-8735. URL http://projecteuclid.org/tmj.
- R.P. Dilworth. Lattices with unique complements. *Transactions of the American Mathematical Society*, 57(1):123–154, January 1945. URL http://www.jstor.org/stable/1990171.
- R.P. Dilworth. A decomposition theorem for partially ordered sets. *Annals of Mathematics*, 51(1): 161–166, January 1950a. doi: 10.2307/1969503. URL http://www.jstor.org/stable/1969503.
- R.P. Dilworth. A decomposition theorem for partially ordered sets. In Kenneth P. Bogart, Ralph S. Freese, and Joseph P.S. Kung, editors, *The Dilworth theorems: selected papers of Robert P. Dilworth*, page ? Birkhäuser (1990), Boston, 1950b. ISBN 0817634347. URL http://books.google.com/books?vid=ISBN0817634347.
- R.P. Dilworth. The role of order in lattice theory. In Ivan Rival, editor, *Ordered sets: proceedings of the NATO Advanced Study Institute held at Banff, Canada, August 28 to September 12, 1981*, volume 83 of *NATO advanced study institutes series, Series C, Mathematical and physical sciences*, pages 333–353. D. Reidel Pub. Co., 1982. ISBN 9027713960. URL http://books.google.com/books?vid=ISBN9027713960.
- R.P. Dilworth. Aspects of distributivity. *Algebra Universalis*, 18(1):4–17, February 1984. ISSN 0002-5240. doi: 10.1007/BF01182245. URL http://www.springerlink.com/content/14480658xw08pp71/.
- R.P. Dilworth. On complemented lattices. In Kenneth P. Bogart, Ralph S. Freese, and Joseph P.S. Kung, editors, *The Dilworth theorems: selected papers of Robert P. Dilworth*, pages 73–78? Birkhäuser, Boston, 1990. ISBN 0817634347. URL http://books.google.com/books?vid=ISBN0817634347.
- Maurice d'Ocagne. Sur une classe de nombres remarquables. *American Journal of Mathematics*, 9 (4):353–380, June 1887. URL http://www.jstor.org/stable/2369478.
- John Doner and Alfred Tarski. An extended arithmetic of ordinal numbers. *Fundamenta Mathematicae*, 65:95–127, 1969. URL http://matwbn.icm.edu.pl/tresc.php?wyd=1&tom=65.
- J. J. Duistermaat and J. A. C. Kolk. *Distributions: Theory and Applications*. Cornerstones. Birkhäuser, Basel, 2010. ISBN 0817646728. URL http://books.google.com/books?vid=ISBN0817646728.
- Nelson Dunford and Jacob T. Schwartz. *Linear operators. Part 1, General Theory*, volume 7 of *Pure and applied mathematics*. Interscience Publishers, New York, 1957. ISBN 0471226394. URL http://www.amazon.com/dp/0471608483. with the assistance of William G. Bade and Robert G. Bartle.
- J. Michael Dunn. Intuitive semantics for first-degree entailments and `coupled trees'. *Philosophical Studies*, 29(3):149–168, 1976. URL http://link.springer.com/article/10.1007/BF00373152.

J. Michael Dunn. Generalized ortho negation. In Heinrich Wansing, editor, *Negation: A Notion in Focus*, volume 7 of *Perspektiven der Analytischen Philosophie / Perspectives in Analytical Philosophy*, pages 3–26. De Gruyter, January 1 1996. ISBN 9783110876802. URL http://books.google.com/books?vid=ISBN3110876809.

- J. Michael Dunn. A comparative study of various model-theoretic treatments of negation: A history of formal negation. In Dov M. Gabbay and Heinrich Wansing, editors, *What is Negation?*, volume 13 of *Applied Logic Series*, pages 23–52. De Gruyter, 1999. ISBN 9780792355694. URL http://books.google.com/books?vid=ISBN0792355695.
- John R. Durbin. *Modern Algebra; An Introduction*. John Wiley & Sons, Inc., 4 edition, 2000. ISBN 0-471-32147-8. URL http://www.worldcat.org/isbn/0471321478.
- Philip Dwinger. Introduction to Boolean algebras, volume 40 of Hamburger mathematische Einzelschriften. Physica-Verlag, Würzburg, 1 edition, 1961. URL http://books.google.com/books?id=en6W0gAACAAJ.
- Philip Dwinger. Introduction to Boolean algebras, volume 40 of Hamburger mathematische Einzelschriften. Physica-Verlag, Würzburg, 2 edition, 1971. URL http://www.amazon.com/dp/3790800864.
- Charles Elkan, H.R. Berenji, B. Chandrasekaran, C.J.S. de Silva, Y. Attikiouzel, D. Dubois, H. Prade, P. Smets, C. Freksa, O.N. Garcia, G.J. Klir, Bo Yuan, E.H. Mamdani, F.J. Pelletier, E.H. Ruspini, B. Turksen, N. Vadiee, M. Jamshidi, Pei-Zhuang Wang, Sie-Keng Tan, Shaohua Tan, R.R. Yager, and L.A. Zadeh. The paradoxical success of fuzzy logic. *IEEE Expert*, 9(4):3–49, August 1994. URL http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=336150. "see also IEEE Intelligent Systems and Their Applications".
- Paul Erdös and A. Tarski. On families of mutually exclusive sets. *Annals of Mathematics*, pages 315–329, 1943. URL http://www.renyi.hu/~p_erdos/1943-04.pdf.
- Marcel Erné, Jobst Heitzig, and Jürgen Reinhold. On the number of distributive lattices. *The Electronic Journal of Combinatorics*, 9(1), April 2002. URL http://www.emis.de/journals/EJC/Volume_9/Abstracts/v9i1r24.html.
- Euclid. Elements. circa 300BC. URL http://farside.ph.utexas.edu/euclid.html.
- Elliot Evans. Median lattices and convex subalgebras. In Eligius Tamás Schmidt B. Csákány, Ervin Fried, editor, *Universal Algebra*, volume 29 of *Colloquia mathematica Societatis János Bolyai*, Amsterdam, June 27 July 1 1977. Proceedings of the Colloquium on Universal Algebra, Esztergom 1977, North-Holland (1982). ISBN 0444854053. URL http://books.google.com/books?vid=ISBN0444854053.
- J.W. Evans, Frank Harary, and M.S. Lynn. On the computer enumeration of finite topologies. *Communications of the ACM Association for Computing Machinery*, 10:295–297, 1967. ISSN 0001-0782. URL http://portal.acm.org/citation.cfm?id=363282.363311.
- David Ewen. *The Book of Modern Composers*. Alfred A. Knopf, New York, 1950. URL http://books.google.com/books?id=yHw4AAAAIAAJ.
- David Ewen. *The New Book of Modern Composers*. Alfred A. Knopf, New York, 3 edition, 1961. URL http://books.google.com/books?id=bZIaAAAAMAAJ.
- Jonathan David Farley. Chain decomposition theorems for ordered sets and other musings. *African Americans in Mathematics DIMACS Workshop*, 34:3–14, June 26–28 1996. URL http://books.google.com/books?vid=ISBN0821806785.

page 236 Daniel J. Greenhoe BIBLIOGRAPHY

Jonathan David Farley. Chain decomposition theorems for ordered sets and other musings. *arXiv.org preprint*, pages 1–12, July 16 1997. URL http://arxiv.org/abs/math/9707220.

- Gy. Fáy. Transitivity of implication in orthomodular lattices. *Acta Scientiarum Mathematicarum*, 28(3–4):267–270, 1967. ISSN 0001-6969. URL http://www.acta.hu/acta/.
- P. D. Finch. Quantum logic as an implication algebra. *Bulletin of the Australian Mathematical Society*, 2:101–106, 1970. URL http://dx.doi.org/10.1017/S0004972700041642.
- János Fodor and Ronald R. Yager. Fuzzy set-theoretic operators and quantifiers. In Didier Dubois and Henri Padre, editors, *Fundamentals of Fuzzy Sets*, volume 7 of *The Handbooks of Fuzzy Sets*, pages 125–195. Springer Science & Business Media, 2000. ISBN 9780792377320. URL http://books.google.com/books?vid=ISBN079237732X.
- David J. Foulis. A note on orthomodular lattices. *Portugaliae Mathematica*, 21(1):65–72, 1962. ISSN 0032-5155. URL http://purl.pt/2387.
- Abraham Adolf Fraenkel. *Abstract Set Theory*. Studies in logic and the foundations of mathematics. North-Holland Publishing Company, Amsterdam, 1953. URLhttp://books.google.com/books?ei=Z_irR50r017AiQHCqfmmBg&id=E_NLAAAAMAAJ.
- Maurice René Fréchet. Sur quelques points du calcul fonctionnel (on some points of functional calculation). *Rendiconti del Circolo Matematico di Palermo*, 22:1–74, 1906. Rendiconti del Circolo Matematico di Palermo (Statements of the Mathematical Circle of Palermo).
- Maurice René Fréchet. Les Espaces abstraits et leur théorie considérée comme introduction a l'analyse générale. Borel series. Gauthier-Villars, Paris, 1928. URL http://books.google.com/books?id=9czoHQAACAAJ. Abstract spaces and their theory regarded as an introduction to general analysis.
- Friedrich Gerard Friedlander and Mark Suresh Joshi. *Introduction to the Theory of Distributions*. Cambridge University Press, Cambridge, 2 edition, 1998. ISBN 9780521649711. URL http://books.google.com/books?vid=ISBN0521649714.
- Orrin Frink, Jr. Representations of boolean algebras. *Bulletin of the American Mathematical Society*, 47:755–756, 1941. ISSN 0002-9904. doi: 10.1090/S0002-9904-1941-07554-3. URL http://www.ams.org/bull/1941-47-10/S0002-9904-1941-07554-3/.
- Otto Frölich. Das halbordnungssystem der topologischen räume auf einer menge. *Mathematische Annalen*, 156:79–95, 1964. URL http://resolver.sub.uni-goettingen.de/purl? GDZPPN002293501.
- Paul Abraham Fuhrmann. *A Polynomial Approach to Linear Algebra*. Springer Science+Business Media, LLC, 2 edition, 2012. ISBN 978-1461403371. URLhttp://books.google.com/books?vid=ISBN1461403375.
- Haim Gaifman. The lattice of all topologies on a denumerable set. *Notices of the American Mathematical Society*, 8(356), 1961. ISSN 0002-9920 (print) 1088-9477 (electronic).
- Haim Gaifman. Remarks on complementation in the lattice of all topologies. *Canadian Journal of Mathematics*, 18(1):83–88, 1966. URL http://books.google.com/books?id=eLgzWbwnW2QC.
- F. Gerrish. The independence of "huntington's axioms" for boolean algebra. *The Mathematical Gazette*, 62(419):35–40, March 1978. URL http://www.jstor.org/stable/3617622.

John Robilliard Giles. *Introduction to the Analysis of Metric Spaces*. Number 3 in Australian Mathematical Society lecture series. Cambridge University Press, Cambridge, 1987. ISBN 978-0521359283. URL http://books.google.com/books?vid=ISBN0521359287.

- John Robilliard Giles. *Introduction to the Analysis of Normed Linear Spaces*. Number 13 in Australian Mathematical Society lecture series. Cambridge University Press, Cambridge, 2000. ISBN 0-521-65375-4. URL http://books.google.com/books?vid=ISBN0521653754.
- Steven Givant and Paul Halmos. *Introduction to Boolean Algebras*. Undergraduate Texts in Mathematics. Springer, 2009. ISBN 0387402934. URL http://books.google.com/books?vid=ISBN0387402934.
- Siegfried Gottwald. Many-valued logic and fuzzy set theory. In Ulrich Höhle and S.E. Rodabaugh, editors, *Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory*, volume 3 of *The Handbooks of Fuzzy Sets*, pages 5–90. Kluwer Academic Publishers, 1999. ISBN 9780792383888. URL http://books.google.com/books?vid=ISBN0792383885.
- George A. Grätzer. *Lattice Theory; first concepts and distributive lattices*. A Series of books in mathematics. W. H. Freeman & Company, San Francisco, June 1971. ISBN 0716704420. URL http://books.google.com/books?vid=ISBN0716704420.
- George A. Grätzer. *General Lattice Theory*. Birkhäuser Verlag, Basel, 2 edition, 1998. ISBN 0-8176-5239-6. URL http://books.google.com/books?vid=ISBN0817652396.
- George A. Grätzer. *General Lattice Theory*. Birkhäuser Verlag, Basel, 2 edition, January 17 2003. ISBN 3-7643-6996-5. URL http://books.google.com/books?vid=ISBN3764369965.
- George A. Grätzer. Two problems that shaped a century of lattice theory. *Notices of the American Mathematical Society*, 54(6):696–707, June/July 2007. URL http://www.ams.org/notices/200706/.
- George A. Grätzer. *Universal Algebra*. Springer, 2 edition, July 2008. ISBN 0387774866. URL http://books.google.com/books?vid=ISBN0387774866.
- A.A. Grau. Ternary boolean algebra. *Bulletin of the American Mathematical Society*, 53:567–572, 1947. ISSN 1936-881X. doi: 10.1090/S0002-9904-1947-08834-0. URL http://www.ams.org/bull/1947-53-06/S0002-9904-1947-08834-0.
- Stanley Gudder. *Quantum Probability*. Probability and Mathematical Statistics. Academic Press, August 28 1988. ISBN 0123053404. URL http://books.google.com/books?vid=ISBN0123053404.
- Norman B. Haaser and Joseph A. Sullivan. *Real Analysis*. Dover Publications, New York, 1991. ISBN 0-486-66509-7. URL http://books.google.com/books?vid=ISBN0486665097.
- Hans Hahn and Arthur Rosenthal. *Set Functions*. University of New Mexico Press, 1948. ISBN 111422295X. URL http://books.google.com/books?vid=ISBN111422295X.
- Theodore Hailperin. Boole's algebra isn't boolean algebra. *Mathematics Magazine*, 54(4):173–184, September 1981. URL http://www.jstor.org/stable/2689628.
- Paul R. Halmos. *Measure Theory*. The University series in higher mathematics. D. Van Nostrand Company, New York, 1950. URL http://www.amazon.com/dp/0387900888. 1976 reprint edition available from Springer with ISBN 9780387900889.

Paul R. Halmos. *Lectures in Boolean Algebras*. Van Nostrand Reinhold, London, New York, 1972. URL http://books.google.com/books?id=1s99IAAACAAJ.

- Paul Richard Halmos. *Naive Set Theory*. The University Series in Undergraduate Mathematics. D. Van Nostrand Company, Inc., Princeton, New Jersey, 1960. ISBN 0387900926. URL http://books.google.com/books?vid=isbn0387900926.
- H. Hamacher. On logical connectives of fuzzy statements and their affiliated truth function". In R. Trappi, editor, *Cybernetics and Systems '76: Proceedings of the Third European Meeting on Cybernetics and Systems Research.* Kluwer Academic Publishers, 1976.
- Gary M. Hardegree. The conditional in abstract and concrete quantum logic. In Cliff A. Hooker, editor, *The Logico-Algebraic Approach to Quantum Mechanics: Volume II: Contemporary Consolidation*, The Western Ontario Series in Philosophy of Science, Ontario University of Western Ontario, pages 49–108. Kluwer, May 31 1979. ISBN 9789027707079. URL http://www.amazon.com/dp/9027707073.
- Godfrey H. Hardy. *A Mathematician's Apology*. Cambridge University Press, Cambridge, 1940. URL http://www.math.ualberta.ca/~mss/misc/A%20Mathematician's%20Apology.pdf.
- Juris Hartmanis. On the lattice of topologies. *Canadian Journal of Mathematics*, 10(4):547–553, 1958. URL http://books.google.com/books?&id=OPDcFxeiBesC.
- Felix Hausdorff. *Grundzüge der Mengenlehre*. Von Veit, Leipzig, 1914. URL http://books.google.com/books?id=KTs4AAAAMAAJ. Properties of Set Theory.
- Felix Hausdorff. Grundzüge der Mengenlehre. Gruyter, Berlin, 2 edition, 1927. ???
- Felix Hausdorff. *Set Theory*. Chelsea Publishing Company, New York, 3 edition, 1937. ISBN 0828401195. URL http://books.google.com/books?vid=ISBN0828401195. 1957 translation of the 1937 German *Grundzüge der Mengenlehre*.
- Jean Van Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. Harvard University Press, Cambridge, Massachusetts, 1967. URL http://www.hup.harvard.edu/catalog/VANFGX.html.
- Jobst Heitzig and Jürgen Reinhold. Counting finite lattices. *Journal Algebra Universalis*, 48(1):43–53, August 2002. ISSN 0002-5240 (print) 1420-8911 (online). doi: 10.1007/PL00013837. URL http://citeseer.ist.psu.edu/486156.html.
- Edwin Hewitt and Kenneth A. Ross. *Abstract Harmonic Analysis*. Springer, New York, 2 edition, 1994. ISBN 0387941908. URL http://books.google.com/books?vid=ISBN0387941908.
- Arend Heyting. Die formalen regeln der intuitionistischen logik i. In *Sitzungsberichte der Preussischen Akademie der Wissenschaften*, pages 42–56, 1930a. English translation of title: "The formal rules of intuitionistic logic I". English translation of text in Mancosu 1998 pages 311–327.
- Arend Heyting. Die formalen regeln der intuitionistischen logik ii. In *Sitzungsberichte der Preussischen Akademie der Wissenschaften*, pages 57–71, 1930b. English translation of title: "The formal rules of intuitionistic logic II".
- Arend Heyting. Die formalen regeln der intuitionistischen logik iii. In *Sitzungsberichte der Preussischen Akademie der Wissenschaften*, pages 158–169, 1930c. English translation of title: "The formal rules of intuitionistic logic III".

Arend Heyting. Sur la logique intuitionniste. *Bulletin de la Classe des Sciences*, 16:957–963, 1930d. English translation of title: "On intuitionistic logic". English translation of text in Mancosu 1998 pages 306–310.

- David Hilbert, Lothar Nordheim, and John von Neumann. über die grundlagen der quantenmechanik (on the bases of quantum mechanics). *Mathematische Annalen*, 98:1–30, 1927. ISSN 0025-5831 (print) 1432-1807 (online). URL http://dz-srv1.sub.uni-goettingen.de/cache/toc/D27776.html.
- Solomon Hoberman and J. C. C. McKinsey. A set of postulates for boolean algebra. *Bulletin of the American Mathematical Society*, 43:588–592, 1937. ISSN 0002-9904. doi: 10.1090/S0002-9904-1937-06611-0. URL http://www.ams.org/bull/1937-43-08/S0002-9904-1937-06611-0/.
- Ulrich Höhle. Probabilistic uniformization of fuzzy topologies. *Fuzzy Sets and Systems*, 1(4):311–332, October 1978. URL http://dx.doi.org/10.1016/0165-0114(78)90021-0.
- Samuel S. Holland, Jr. A radon-nikodym theorem in dimension lattices. *Transactions of the American Mathematical Society*, 108(1):66–87, July 1963. URL http://www.jstor.org/stable/1993826.
- Samuel S. Holland, Jr. The current interest in orthomodular lattices. In James C. Abbott, editor, *Trends in Lattice Theory*, pages 41–126. Van Nostrand-Reinhold, New York, 1970. URL http://books.google.com/books?id=ZfA-AAAAIAAJ. from Preface: "The present volume contains written versions of four talks on lattice theory delivered to a symposium on Trends in Lattice Theory held at the United States Naval Academy in May of 1966.".
- Lars Hömander. *The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis*. Classics in Mathematics. Springer, Berlin, 2003. ISBN 3540006621. URL http://books.google.com/books?vid=ISBN3540006621.
- Laurence R. Horn. *A Natural History of Negation*. The David Hume Series: Philosophy and Cognitive Science Reissues. CSLI Publications, reissue edition, 2001. URL http://emilkirkegaard.dk/en/wp-content/uploads/A-natural-history-of-negation-Laurence-R.-Horn.pdf.
- Alfred Edward Housman. *More Poems*. Alfred A. Knopf, 1936. URL http://books.google.com/books?id=rTMiAAAAMAAJ.
- Edward Vermilye Huntington. Sets of independent postulates for the algebra of logic. *Transactions of the American Mathematical Society*, 5(3):288–309, July 1904. ISSN 00029947. URL http://www.jstor.org/stable/1986459.
- Edward Vermilye Huntington. New sets of independent postulates for the algebra of logic, with special reference to whitehead and russell's principia mathematica. *Transactions of the American Mathematical Society*, 35(1):274–304, January 1933. doi: 10.2307/1989325. URL http://www.jstor.org/stable/1989325.
- K Husimi. Studies on the foundations of quantum mechanics i. *Proceedings of the Physico-Mathematical Society of Japan*, 19:766–789, 1937.
- John R. Isbell. Median algebra. *Transactions of the American Mathematical Society*, 260(2):319–362, August 1980. URL http://www.jstor.org/stable/1998007.
- Chris J. Isham. *Modern Differential Geometry for Physicists*. World Scientific Publishing, New Jersey, 2 edition, 1999. ISBN 9810235623. URLhttp://books.google.com/books?vid=ISBN9810235623.

C.J. Isham. Quantum topology and quantisation on the lattice of topologies. *Classical and Quantum Gravity*, 6:1509–1534, November 1989. doi: 10.1088/0264-9381/6/11/007. URL http://www.iop.org/EJ/abstract/0264-9381/6/11/007.

- Vasile I. Istrăţescu. *Inner Product Structures: Theory and Applications*. Mathematics and Its Applications. D. Reidel Publishing Company, 1987. ISBN 9789027721822. URL http://books.google.com/books?vid=ISBN9027721823.
- Luisa Iturrioz. Ordered structures in the description of quantum systems: mathematical progress. In *Methods and applications of mathematical logic: proceedings of the VII Latin American Symposium on Mathematical Logic held July 29-August 2, 1985*, volume 69, pages 55–75, Providence Rhode Island, July 29-August 2 1985. Sociedade Brasileira de Lógica, Sociedade Brasileira de Matemática, and the Association for Symbolic Logic, AMS Bookstore (1988). ISBN 0821850768.
- S. Jaskowski. Investigations into the system of intuitionistic logic. In Storrs McCall, editor, *Polish Logic*, 1920–1939, pages 259–263. Oxford University Press, 1936. ISBN 9780198243045. URLhttp://books.google.com/books?vid=ISBN0198243049&pg=PA259. collection published in 1967.
- Barbara Jeffcott. The center of an orthologic. *The Journal of Symbolic Logic*, 37(4):641–645, December 1972. doi: 10.2307/2272407. URL http://www.jstor.org/stable/2272407.
- S. Jenei. Structure of girard monoids on [0,1]. In Stephen Ernest Rodabaugh and Erich Peter Klement, editors, *Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets*, volume 20 of *Trends in Logic*, pages 277–308. Springer, 2003. ISBN 9781402015151. URL http://books.google.com/books?vid=ISBN1402015151.
- William Stanley Jevons. *Pure Logic or the Logic of Quality Apart from Quantity; with Remarks on Boole's System and the Relation of Logic and Mathematics*. Edward Stanford, London, 1864. URL http://books.google.com/books?id=WVMOAAAAYAAJ.
- William Stanley Jevons. Letters & Journal of W. Stanley Jevons. Macmillan and Co., London, 1886. URL http://oll.libertyfund.org/index.php?option=com_staticxt&staticfile=show.php% 3Ftitle=2079.
- Peter Jipsen and Henry Rose. *Varieties of Lattices*. Number 1533 in Lecture notes in mathematics. Springer Verlag, New York, 1992. ISBN 3540563148. URL http://www1.chapman.edu/~jipsen/JipsenRoseVol.html. available for free online.
- Peter Johnstone. *Stone Spaces*. Cambridge University Press, London, 1982. ISBN 0-521-23893-5. URL http://books.google.com/books?vid=ISBN0521337798. Library QA611.
- K. D. Joshi. *Foundations of Discrete Mathematics*. New Age International, New Delhi, 1989. ISBN 8122401201. URL http://books.google.com/books?vid=ISBN8122401201.
- Young Bae Jun, Yang Xu, and Keyun Qin. Positive implicative and associative filters of lattice implication algebras. *Bulletin of the Korean Mathematical Society*, pages 53–61, 1998. ISSN 1015-8634 (print), 2234-3016 (online). URL http://www.mathnet.or.kr/mathnet/kms_tex/31983.pdf.
- JA Kalman. Two axiom definition for lattices. *Revue Roumaine de Mathematiques Pures et Appliquees*, 13:669–670, 1968. ISSN 0035-3965.
- Gudrun Kalmbach. Orthomodular logic. In *Proceedings of the University of Houston*, pages 498–503, Houston, Texas, USA, 1973. Lattice Theory Conference. URL http://www.math.uh.edu/~hjm/1973_Lattice/p00498-p00503.pdf.

Gudrun Kalmbach. Orthomodular logic. *Mathematical Logic Quarterly*, 20(25–27):395–406, 1974. doi: 10.1002/malq.19740202504. URL http://onlinelibrary.wiley.com/doi/10.1002/malq.19740202504/abstract.

- Gudrun Kalmbach. *Orthomodular Lattices*. Academic Press, London, New York, 1983. ISBN 0123945801. URL http://books.google.com/books?vid=ISBN0123945801.
- Norihiro Kamide. On natural eight-valued reasoning. *Multiple-Valued Logic (ISMVL)*, 2013 *IEEE 43rd International Symposium on*, pages 231–236, May 22–24 2013. ISSN 0195-623X. doi: 10.1109/ISMVL.2013.43. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp? arnumber=6524669.
- Alexander Karpenko. *Łukasiewicz's Logics and Prime Numbers*. Luniver Press, Beckington, Frome BA11 6TT UK, January 1 2006. ISBN 9780955117039. URL http://books.google.com/books?vid=ISBN0955117038.
- John L. Kelley and T. P. Srinivasan. *Measure and Integral*, volume 116 of *Graduate texts in mathematics*. Springer, New York, 1988. ISBN 0387966331. URL http://books.google.com/books?vid=ISBN0387966331.
- John Leroy Kelley. *General Topology*. University Series in Higher Mathematics. Van Nostrand, New York, 1955. ISBN 0387901256. URL http://books.google.com/books?vid=ISBN0387901256. Republished by Springer-Verlag, New York, 1975.
- Mohamed A. Khamsi and W.A. Kirk. *An Introduction to Metric Spaces and Fixed Point Theory*. John Wiley, New York, 2001. ISBN 978-0471418252. URL http://books.google.com/books?vid=isbn0471418250.
- Stephen Cole Kleene. On notation for ordinal numbers. *The Journal of Symbolic Logic*, 3(4), December 1938. URL http://www.jstor.org/stable/2267778.
- Stephen Cole Kleene. *Introduction to Metamathematics*. North-Holland publishing C°, 1952.
- D. Kleitman and B. Rothschild. The number of finite topologies. *Proceedings of the American Mathematical Society*, 25(2):276–282, June 1970. URL http://www.jstor.org/stable/2037205.
- Anthony W Knapp. *Advanced Real Analysis*. Cornerstones. Birkhäuser, Boston, Massachusetts, USA, 1 edition, July 29 2005. ISBN 0817643826. URL http://books.google.com/books?vid=ISBN0817643826.
- Andrei Nikolaevich Kolmogorov and Sergei Vasil'evich Fomin. *Introductory Real Analysis*. Dover Publications, New York, 1975. ISBN 0486612260. URL http://books.google.com/books?vid=ISBN0486612260. "unabridged, slightly corrected republication of the work originally published by Prentice-Hall, Inc., Englewood, N.J., in 1970".
- Andrei Nikolaevich Kolmogorov and Sergei Vasil'evich Fomin. *Elements of the Theory of Functions and Functional Analysis: Volumes 1 and 2, Two Volumes Bound as One.* Dover Publications, New York, 1999. ISBN 0486406830. URL http://books.google.com/books?vid=ISBN0486406830.
- Michiro Kondo and Wieslaw A. Dudek. On bounded lattices satisfying elkan's law. *Soft Computing*, 12(11):1035–1037, September 2008. ISSN 1432-7643. doi: 10.1007/s00500-007-0270-z. URL http://www.springerlink.com/content/e36576406345uw1t/.
- A. Korselt. Bemerkung zur algebra der logik. *Mathematische Annalen*, 44(1):156–157, March 1894. ISSN 0025-5831. doi: 10.1007/BF01446978. URL http://www.springerlink.com/content/v681m56871273j73/. referenced by Birkhoff(1948)p.133.

page 242 Daniel J. Greenhoe BIBLIOGRAPHY

V. Krishnamurthy. On the number of topologies on a finite set. *The American Mathematical Monthly*, 73(2):154–157, February 1966. URL http://www.jstor.org/stable/2313548.

- Carlos S. Kubrusly. *The Elements of Operator Theory*. Springer, 2 edition, 2011. ISBN 9780817649975. URL http://books.google.com/books?vid=ISBN0817649972.
- Shoji Kyuno. An inductive algorithm to construct finite lattices. *Mathematics of Computation*, 33 (145):409–421, January 1979. URL https://doi.org/10.1090/S0025-5718-1979-0514837-9.
- R.E. Larson and S.J. Andima. The lattice of topologies: a survey. *Rocky Mountain Journal of Mathematics*, 5:177–198, 1975. URL http://rmmc.asu.edu/rmj/rmj.html.
- Azriel Levy. *Basic Set Theory*. Dover, New York, 2002. ISBN 0486420795. URL http://books.google.com/books?vid=ISBN0486420795.
- Rudolf Lidl and Günter Pilz. *Applied Abstract Algebra*. Undergraduate texts in mathematics. Springer, New York, 1998. ISBN 0387982906. URL http://books.google.com/books?vid=ISBN0387982906.
- Lynn H. Loomis. *The Lattice Theoretic Background of the Dimension Theory of Operator Algebras*, volume 18 of *Memoirs of the American Mathematical Society*. American Mathematical Society, Providence RI, 1955. ISBN 0821812181. URL http://books.google.com/books?id=P3V1_1XCFRkC.
- Saunders MacLane and Garrett Birkhoff. *Algebra*. Macmillan, New York, 1 edition, 1967. URL http://www.worldcat.org/oclc/350724.
- Saunders MacLane and Garrett Birkhoff. *Algebra*. AMS Chelsea Publishing, Providence, 3 edition, 1999. ISBN 0821816462. URL http://books.google.com/books?vid=isbn0821816462.
- M. Donald MacLaren. Atomic orthocomplemented lattices. *Pacific Journal of Mathematics*, 14(2): 597–612, 1964. URL http://projecteuclid.org/euclid.pjm/1103034188.
- Roger Duncan Maddux. The origin of relation algebras in the development and axiomatization of the calculus of relations. *Studia Logica*, 50(3–4):421–455, September 1991. ISSN 0039-3215. doi: 10.1007/BF00370681. URL http://eprints.kfupm.edu.sa/70735/1/70735.pdf.
- Roger Duncan Maddux. *Relation Algebras*. Elsevier Science, 1 edition, July 27 2006. ISBN 0444520139. URL http://books.google.com/books?vid=ISBN0444520139.
- Fumitomo Maeda. *Kontinuierliche Geometrien*, volume 95 of *Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen*. Springer-Verlag, Berlin, 1958.
- Fumitomo Maeda and Shûichirô Maeda. *Theory of Symmetric lattices*, volume 173 of *Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen*. Springer-Verlag, Berlin/New York, 1970. URL http://books.google.com/books?id=4oeBAAAAIAAJ.
- Shûichirô Maeda. On conditions for the orthomodularity. *Proceedings of the Japan Academy*, 42(3):247–251, 1966. ISSN 0021-4280. URL http://joi.jlc.jst.go.jp/JST.Journalarchive/pjab1945/42.247.
- Paolo Mancosu, editor. From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s. Oxford University Press, 1998. ISBN 9780195096323. URL http://www.amazon.com/dp/0195096320.

W. McCune and R. Padmanabhan. *Automated deduction in equational logic and cubic curves*. Number 1095 in Leture Notes in Artificial Intelligence. Springer, Berlin, 1996. ISBN 3540613986. URL http://books.google.com/books?vid=ISBN3540613986.

- William McCune, Ranganathan Padmanabhan, and Robert Veroff. Yet another single law for lattices. *Algebra Universalis*, 50(2):165–169, December 2003a. ISSN 0002-5240 (print) 1420-8911 (online). doi: 10.1007/s00012-003-1832-2.
- William McCune, Ranganathan Padmanabhan, and Robert Veroff. Yet another single law for lattices. pages 1–5, July 21 2003b. URL http://arxiv.org/abs/math/0307284.
- Ralph N. McKenzie. Equational bases for lattice theories. *Mathematica Scandinavica*, 27:24–38, December 1970. ISSN 0025-5521. URL http://www.mscand.dk/article.php?id=1973.
- Ralph N. McKenzie. Equational bases and nonmodular lattice varieties. *Transactions of the American Mathematical Society*, 174:1–43, December 1972. URL http://www.jstor.org/stable/1996095.
- J. E. McLaughlin. Atomic lattices with unique comparable complements. *Proceedings of the American Mathematical Society*, 7(5):864–866, October 1956. URL http://www.jstor.org/stable/2033551.
- Claudia Menini and Freddy Van Oystaeyen. *Abstract Algebra; A Comprehensive Treatment*. Marcel Dekker Inc, New York, April 2004. ISBN 0-8247-0985-3. URL http://books.google.com/books?vid=isbn0824709853.
- Anthony N. Michel and Charles J. Herget. *Applied Algebra and Functional Analysis*. Dover Publications, Inc., 1993. ISBN 0-486-67598-X. URL http://books.google.com/books?vid=ISBN048667598X. original version published by Prentice-Hall in 1981.
- D. G. Miller. Postulates for boolean algebra. *The American Mathematical Monthly*, 59(2):93–96, February 1952. URL http://www.jstor.org/stable/2307107.
- P. Mittelstaedt. Quantenlogische interpretation orthokomplementärer quasimodularer verbände. *Zeitschrift für Naturforschung A*, 25:1773–1778, 1970. URL http://www.znaturforsch.com/. English translation of title: "Quantum Logical interpretation ortho complementary quasi modular organizations".
- Ilya S. Molchanov. *Theory of Random Sets.* Probability and Its Applications. Springer, 2005. ISBN 185233892X. URL http://books.google.com/books?vid=ISBN185233892X.
- James Donald Monk. *Handbook of Boolean Algebras*. North-Holland, Amsterdam, 1989. ISBN 0444872914. URL http://books.google.com/books?vid=ISBN0444872914. 3 volumes.
- Richard Montague and Jan Tarski. On bernstein's self-dual set of postulates for boolean algebras. *Proceedings of the American Mathematical Society*, 5(2):310–311, April 1954. URL http://www.jstor.org/stable/2032243.
- Karl Eugen Müller. *Abriss der Algebra der Logik (Summary of the Algebra of Logic)*. B. G. Teubner, 1909. URL http://projecteuclid.org/euclid.bams/1183421830. "bearbeitet im auftrag der Deutschen Mathematiker-Vereinigung" (produced on behalf of the German Mathematical Society). "In drei Teilen" (In three parts).

page 244 Daniel J. Greenhoe BIBLIOGRAPHY

Markus Müller-Olm. 2. complete boolean lattices. In *Modular Compiler Verification: A Refinement-Algebraic Approach Advocating Stepwise Abstraction*, volume 1283 of *Lecture Notes in Computer Science*, chapter 2, pages 9–14. Springer, September 12 1997. ISBN 978-3-540-69539-4. URL http://link.springer.com/chapter/10.1007/BFb0027455. Chapter 2.

- James R. Munkres. *Topology*. Prentice Hall, Upper Saddle River, NJ, 2 edition, 2000. ISBN 0131816292. URL http://www.amazon.com/dp/0131816292.
- Masahiro Nakamura. The permutability in a certain orthocomplemented lattice. *Kodai Math. Sem. Rep.*, 9(4):158–160, 1957. doi: 10.2996/kmj/1138843933. URLhttp://projecteuclid.org/euclid.kmj/1138843933.
- H. Nakano and S. Romberger. Cluster lattices. *Bulletin De l'Académie Polonaise Des Sciences*, 19: 5–7, 1971. URL books.google.com/books?id=gkUSAQAAMAAJ.
- M.H.A. Newman. A characterisation of boolean lattices and rings. *Journal of the London Mathematical Society*, 16(4):256–272, 1941. URL http://jlms.oxfordjournals.org/cgi/reprint/s1-16/4/256.
- Hung T. Nguyen and Elbert A. Walker. *A First Course in Fuzzy Logic*. Chapman & Hall/CRC, 3 edition, 2006. ISBN 1584885262. URL http://books.google.com/books?vid=ISBN1584885262.
- Yves Nievergelt. Foundations of logic and mathematics: applications to computer science and cryptography. Birkhäuser, Boston, 2002. URL http://books.google.com/books?vid=ISBN0817642498.
- Vilém Novák, Irina Perfilieva, and Jiří Močkoř. *Mathematical Principles of Fuzzy Logic*. The Springer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston, 1999. ISBN 9780792385950. URL http://books.google.com/books?vid=ISBN0792385950.
- Oystein Ore. On the foundation of abstract algebra. i. *The Annals of Mathematics*, 36(2):406–437, April 1935. URL http://www.jstor.org/stable/1968580.
- Oystein Ore. Remarks on structures and group relations. *Vierteljschr. Naturforsch. Ges. Zürich*, 85: 1–4, 1940.
- S. V. Ovchinnikov. General negations in fuzzy set theory. *Journal of Mathematical Analysis and Applications*, 92(1):234–239, March 1983. doi: 10.1016/0022-247X(83)90282-2. URL http://www.sciencedirect.com/science/article/pii/0022247X83902822.
- James G. Oxley. *Matroid Theory*, volume 3 of *Oxford graduate texts in mathematics*. Oxford University Press, Oxford, 2006. ISBN 0199202508. URL http://books.google.com/books?vid=ISBN0199202508.
- R. Padmanabhan. Two identities for lattices. *Proceedings of the American Mathematical Society*, 20(2):409–412, February 1969. doi: 10.2307/2035665. URL http://www.jstor.org/stable/2035665.
- R. Padmanabhan and S. Rudeanu. *Axioms for Lattices and Boolean Algebras*. World Scientific, Hackensack, NJ, 2008. ISBN 9812834540. URL http://www.worldscibooks.com/mathematics/7007.html.
- Alessandro Padoa. *La Logique Déductive dans sa Dernière Phase de Développment*. Gauthier-Villars, Paris, 1912. URL http://books.google.com/books?&id=Z-OMJw8K8CgC.

Lincoln P. Paine. Warships of the World to 1900. Ships of the World Series. Houghton Mifflin Harcourt, 2000. ISBN 9780395984147. URL http://books.google.com/books?vid=ISBN9780395984149.

- Endre Pap. *Null-Additive Set Functions*, volume 337 of *Mathematics and Its Applications*. Kluwer Academic Publishers, 1995. ISBN 0792336585. URL http://www.amazon.com/dp/0792336585.
- Mladen Pavičić and Norman D. Megill. Is quantum logic a logic? pages 1–24, December 15 2008. URLhttps://arxiv.org/abs/0812.2698v1. Note: this paper also appears in the collection "Handbook of Quantum Logic and Quantum Structures: Quantum Logic" (2009).
- Giuseppe Peano. Calcolo geometrico secondo l'Ausdehnungslehre di H. Grassmann preceduto dalle operazioni della logica deduttiva. Fratelli Bocca Editori, Torino, 1888a. Geometric Calculus: According to the Ausdehnungslehre of H. Grassmann.
- Giuseppe Peano. Geometric Calculus: According to the Ausdehnungslehre of H. Grassmann. Springer (2000), 1888b. ISBN 0817641262. URL http://books.google.com/books?vid=isbn0817641262. originally published in 1888 in Italian.
- Giuseppe Peano. The principles of arithmetic, presented by a new method. In Jean Van Heijenoort, editor, From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931, pages 85–97. Harvard University Press (1967), Cambridge, Massachusetts, 1889. ISBN 0674324498. URL http://www.amazon.com/dp/0674324498. translation of Árithmetices principa, nova methodo exposita.
- Michael Pedersen. Functional Analysis in Applied Mathematics and Engineering. Chapman & Hall/CRC, New York, 2000. ISBN 9780849371691. URL http://books.google.com/books?vid=ISBN0849371694. Library QA320.P394 1999.
- Charles S. Peirce. Logic notebook. In *Writitings of Charles S. Peirce*, pages 337–350. ISBN 0253372011. URL http://books.google.com/books?vid=ISBN0253372011.
- Charles S. Peirce, December 24 1903. 1903 December 24 letter to Huntington, not known to still be in existence.
- Charles S. Peirce, 1904. 1904 February 14 letter to Huntington.
- Charles Sanders Peirce. *Notation for the Logic of Relatives resulting from an amplification of the conceptions of Boole's Calculus of Logic*. Welch, Bigelow, and Company, Cambridge, 1870a. URL http://www.archive.org/details/descriptionanot00peirgoog.
- Charles Sanders Peirce. Description of a notation for the logic of relatives, resulting from an amplification of the conceptions of boole's calculus of logic. In C. Hartshorne and P. Weiss, editors, *Collected Papers of Charles Sanders Peirce*. Harvard University Press (1958), 1870b. ISBN 0674138007. URL http://books.google.com/books?vid=ISBN0674138007.
- Charles Sanders Peirce. Description of a notation for the logic of relatives, resulting from an amplification of the conceptions of boole's calculus of logic. In Edward C. Moore, editor, *Writings of Charles S. Peirce: A Chronological Edition*, 1867–1871, pages 359–429. Indiana University Press (1984 January), 1870c. ISBN 025337202X. URL http://books.google.com/books?vid=ISBN025337202X.
- Charles Sanders Peirce. A boolean algebra with one constant. In Christian J.W. Kloesel, editor, *Writings of Charles S. Peirce, A Chronological Edition, 1879–1884*, volume 4, pages 218–221. Indiana University Press, Bloomington, 2 edition, 1880a. ISBN 0253372046. URL http://books.google.com/books?vid=ISBN0253372046. collection published in October 1989.

Charles Sanders Peirce. Note b: the logic of relatives. In *Studies in Logic by Members of the Johns Hopkins University*, pages 187–203. Little, Brown, and Co., Boston, 1883a. URL http://www.archive.org/details/studiesinlogic00peiruoft.

- Charles Sanders Peirce. Note b: the logic of relatives. In *Studies in Logic by Members of the Johns Hopkins University*, pages 187–. Adamant Media Corporation (2005 November 30), 1883b. ISBN 140219966X. URL http://books.google.com/books?vid=ISBN140219966X. reprint of the Little Brown and Co. edition.
- Charles Sanders Peirce. Note b: the logic of relatives. In *Studies in Logic by Members of the Johns Hopkins University*. J. Benjamins (1983), Boston, 1883c. URL http://books.google.com/books?id=YES2HAAACAAJ. reprint of the Little Brown and Co. edition.
- Charles Sanders Peirce. The simplest mathematics. In C. Hartshorne and P. Weiss, editors, *Collected Papers of Charles Sanders Peirce*, volume 4, pages 189–262. Harvard University Press, 1902. URL http://books.google.com/books?id=ZhcPOwAACAAJ.
- C.S. Peirce. On the algebra of logic. *American Journal of Mathematics*, 3(1):15–57, March 1880b. URL http://www.jstor.org/stable/2369442.
- Don Pigozzi. Equational logic and equational theories of algebras. Technical Report 135, Purdue University, Indiana, March 1975. URL http://www.cs.purdue.edu/research/technical_reports/#1975. 187 pages.
- Plato. Sophist. In *Plato in Twelve Volumes*, volume 12. Harvard University Press, Cambridge, MA, USA, circa 360 B.C. URL http://data.perseus.org/texts/urn:cts:greekLit:tlg0059.tlg007.perseus-eng1.
- Vaughan Pratt. Origins of the calculus of binary relations. In *Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science*, number 22–25 in LICS '92., pages 248–254, Santa Cruz, California, June 22–25 1992. IEEE Computer Society Technical Committee on Mathematical Foundations of Computing, Symposium on Logic in Computer Science, IEEE computer society Technical committee on mathematical foundations of computing, IEEE Computer Society Press (Los Alamitos, California). ISBN 0-8186-2735-2. doi: 10.1109/LICS.1992.185537. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=185537. free downloadable version available at http://boole.stanford.edu/pub/ocbr.pdf.
- Pavel Pudlák and Jiří Tůma. Every finite lattice can be embedded in a finite partition lattice (preliminary communication). *Commentationes Mathematicae Universitatis Carolinae*, 18(2):409–414, 1977. URL http://www.dml.cz/dmlcz/105785.
- Pavel Pudlák and Jiří Tůma. Every finite lattice can be embedded in a finite partition lattice. *Algebra Universalis*, 10(1):74–95, December 1980. ISSN 0002-5240 (print) 1420-8911 (online). doi: 10. 1007/BF02482893. URL http://www.springerlink.com/content/4r820875g8314806/.
- Charles Chapman Pugh. *Real Mathematical Analysis*. Undergraduate texts in mathematics. Springer, New York, 2002. ISBN 0-387-95297-7. URL http://books.google.com/books?vid=ISBN0387952977.
- Willard V. Quine. *Mathematical Logic*. Harvard University Press, Cambridge, Mass., 10 edition, 1979. ISBN 0674554515. URL http://books.google.com/books?vid=ISBN0674554515.
- Malempati Madhusudana Rao. *Measure Theory and Integration*. Number 265 in Monographs and textbooks in pure and applied mathematics. Marcel Dekker, New York, 2 edition, January 2004. ISBN 0-8247-5401-8. URL http://books.google.com/books?vid=ISBN0824754018.

Marlon C. Rayburn. On the lattice of σ -algebras. Canadian Journal of Mathematics, 21(3):755–761, 1969. URL http://books.google.com/books?id=wjBXeqo3az0C.

- E. Renedo, E. Trillas, and C. Alsina. On the law $(a \cdot b')' = b + a' \cdot b'$ in de morgan algebras and orthomodular lattices. *Soft Computing*, 8(1):71–73, October 2003. ISSN 1432-7643. doi: 10. 1007/s00500-003-0264-4. URL http://www.springerlink.com/content/7gdjaawe55111260/.
- Greg Restall. *An Introduction to Substructural Logics*. Routledge, 2000. ISBN 9780415215343. URL http://books.google.com/books?vid=ISBN041521534X.
- Greg Restall. Laws of non-contradiction, laws of the excluded middle, and logics. July 20 2001. URL http://consequently.org/papers/lnclem.pdf.
- Greg Restall. Laws of non-contradiction, laws of the excluded middle, and logics. In Graham Priest, J. C. Beall, and Bradley Armour-Garb, editors, *The Law of Non-contradiction*, chapter 4, pages 73–84. Oxford University Press, 2004. ISBN 978-0199265176. URL http://books.google.com/books?vid=ISBN0199265178&pg=PA73.
- Frigyes Riesz. Stetigkeitsbegriff und abstrakte mengenlehre. In Guido Castelnuovo, editor, *Atti del IV Congresso Internazionale dei Matematici*, volume II, pages 18–24, Rome, 1909. Tipografia della R. Accademia dei Lincei. URL http://www.mathunion.org/ICM/ICM1908.2/Main/icm1908.2.0018.0024.ocr.pdf. 1908 April 6–11.
- Frigyes Riesz. Les systèmes d'équations linéaires à une infinité d'inconnues (The linear systems of equations containing an infinite number of unknowns). Collection de monographies sur la théorie des fonctions. Gauthier-Villars, Paris, 1913. URL http://www.worldcat.org/oclc/1374913.
- J. Riečan. K axiomatike modulárnych sväzov. *Acta Fac. Rer. Nat. Univ. Comenian*, 2:257–262, 1957. URL http://www.mat.savba.sk/KTO_SME/riecan/riecan_publikacie.html.
- Steven Roman. *Lattices and Ordered Sets.* Springer, New York, 1 edition, 2008. ISBN 0387789006. URL http://books.google.com/books?vid=ISBN0387789006.
- Gian-Carlo Rota. The number of partitions of a set. *The American Mathematical Monthly*, 71(5): 498–504, May 1964. URL http://www.jstor.org/stable/2312585.
- Gian-Carlo Rota. The many lives of lattice theory. *Notices of the American Mathematical Society*, 44 (11):1440–1445, December 1997. URL http://www.ams.org/notices/199711/comm-rota.pdf.
- Ron M. Roth. *Introduction to Coding Theory*. Cambridge University Press, 2006. ISBN 0521845041. URL http://books.google.com/books?vid=ISBN0521845041.
- S. Rudeanu. On definition of boolean algebras by means of binary operations. *Revue Roumaine de Mathématiques Pures et Appliquées*, 6:171–183, 1961. referenced in Sikorski 1969.
- Walter Rudin. *Principles of Mathematical Analysis*. McGraw-Hill, New York, 3 edition, 1976. ISBN 007054235X. URL http://books.google.com/books?vid=ISBN007054235X. Library QA300.R8 1976.
- Walter Rudin. Functional Analysis. McGraw-Hill, New York, 2 edition, 1991. ISBN 0-07-118845-2. URL http://www.worldcat.org/isbn/0070542252. Library QA320.R83 1991.
- Bertrand Russell. *The Autobiography Of Bertrand Russell*. Little, Brown and Company, 1951. URL http://www.archive.org/details/autobiographyofb017701mbp.

Víacheslav Nikolaevich Salii. *Lattices with Unique Complements*, volume 69 of *Translations of mathematical monographs*. American Mathematical Society, Providence, 1988. ISBN 0821845225. URL http://books.google.com/books?vid=ISBN0821845225. translation of *Reshetki s edinstvennymi dopolneniiami*.

- Usa Sasaki. Orthocomplemented lattices satisfying the exchange axiom. *Journal of Science of the Hiroshima University*, 17:293–302, 1954. ISSN 0386-3034. URL http://journalseek.net/cgi-bin/journalseek/journalsearch.cgi?field=issn&query=0386-3034.
- Paul S. Schnare. Multiple complementation in the lattice of topologies. *Fundamenta Mathematicae*, 62, 1968. URL http://matwbn.icm.edu.pl/tresc.php?wyd=1&tom=62.
- Bernd Siegfried Walter Schröder. *Ordered Sets: An Introduction*. Birkhäuser, Boston, 2003. ISBN 0817641289. URL http://books.google.com/books?vid=ISBN0817641289.
- Ernst Schröder. Vorlesungen über die Algebra der Logik: Exakte Logik, volume 1. B. G. Teubner, Leipzig, 1890. URL http://www.archive.org/details/vorlesungenberd02mlgoog.
- Ernst Schröder. Vorlesungen über die Algebra der Logik: Exakte Logik, volume 3. B. G. Teubner, Leipzig, 1895. URL http://www.archive.org/details/vorlesungenberd03mlgoog.
- Henry Maurice Sheffer. A set of five independent postulates for boolean algebra, with application to logical constants. *Transactions of the American Mathematical Society*, 14(4):481–488, October 1913. URL http://www.jstor.org/stable/1988701.
- Henry Maurice Sheffer. Review of "a survey of symbolic logic" by c. i. lewis. *The American Mathematical Monthly*, 27(7/9):309–311, July–September 1920. URL http://www.jstor.org/stable/2972257.
- Alexander Shen and Nikolai Konstantinovich Vereshchagin. *Basic Set Theory*, volume 17 of *Student mathematical library*. American Mathematical Society, Providence, July 9 2002. ISBN 0821827316. URLhttp://books.google.com/books?vid=ISBN0821827316. translated from Russian.
- Sajjan G. Shiva. *Introduction to Logic Design*. CRC Press, 2 edition, 1998. ISBN 0824700821. URL http://books.google.com/books?vid=ISBN0824700821.
- Marlow Sholander. Postulates for distributive lattices. *Canadian Journal of Mathematics*, pages 28–30, 1951. URL http://books.google.com/books?hl=en&lr=&id=dKDdYkMCfAIC&pg=PA28.
- Yaroslav Shramko and Heinrich Wansing. Some useful 16-valued logics: How a computer network should think. *Journal of Philosophical Logic*, 34(2):121–153, April 2005. ISSN 1573-0433. doi: 10.1007/s10992-005-0556-5. URL http://link.springer.com/article/10.1007/s10992-005-0556-5.
- Roman Sikorski. *Boolean Algebras*, volume 25 of *Ergebnisse der Mathematik und ihrer Grenzbiete*. Springer-Verlag, New York, 3 edition, 1969. URL http://www.worldcat.org/oclc/11243.
- Neil J. A. Sloane. On-line encyclopedia of integer sequences. World Wide Web, 2014. URL http://oeis.org/.
- Sonja Smets. From intuitionistic logic to dynamic operational quantum logic. In Jacek Malinowski and Andrzej Pietruszczak, editors, *Essays in Logic and Ontology*, volume 91 of *Poznań studies in the philosophy of the sciences and the humanities*, pages 257–276. Rodopi, 2006. ISBN 9789042021303. URL http://books.google.com/books?vid=ISBN9042021306&pg=PA257.

Boleslaw Sobociński. Axiomatization of a partial system of three-value calculus of propositions. *Journal of Computing Systems*, 1:23–55, 1952.

- Boleslaw Sobociński. Equational two axiom bases for boolean algebras and some other lattice theories. *Notre Dame Journal of Formal Logic*, 20(4):865–875, October 1979. URL http://projecteuclid.org/euclid.ndjfl/1093882808.
- Richard P. Stanley. *Enumerative Combinatorics*, volume 49 of *Cambridge studies in advanced mathematics*. Cambridge University Press, 1 edition, 1997. ISBN 0-521-55309-1. URL http://books.google.com/books?vid=ISBN0521663512.
- Lynn Arthur Steen and J. Arthur Seebach. *Counterexamples in Topology*. Springer-Verlag, 2, revised edition, 1978. URLhttp://books.google.com/books?vid=ISBN0486319296. A 1995 "unabridged and unaltered republication" Dover edition is available.
- Anne K. Steiner. The lattice of topologies: Structure and complementation. *Transactions of the American Mathematical Society*, 122(2):379–398, April 1966. URL http://www.jstor.org/stable/1994555.
- Manfred Stern. *Semimodular Lattices: Theory and Applications*, volume 73 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, Cambridge, May 13 1999. ISBN 0521461057. URL http://books.google.com/books?vid=ISBN0521461057.
- M. H. Stone. Postulates for boolean algebras and generalized boolean algebras. *American Journal of Mathematics*, 57(4):703–732, October 1935. URL http://www.jstor.org/stable/2371008.
- M. H. Stone. The theory of representation for boolean algebras. *Transactions of the American Mathematical Society*, 40(1):37–111, July 1936. URL http://www.jstor.org/stable/1989664.
- Lutz Straßburger. What is logic, and what is a proof? In Jean-Yves Beziau, editor, *Logica Universalis: Towards a General Theory of Logic*, Mathematics and Statistics, pages 135–145. Birkhäuser, 2005. ISBN 9783764373047. URL http://books.google.com/books?vid=ISBN3764373040.
- Daniel W. Stroock. *A Concise Introduction to the Theory of Integration*. Birkhäuser, Boston, 3 edition, 1999. ISBN 0817640738. URL http://books.google.com/books?vid=ISBN0817640738.
- Patrick Suppes. *Axiomatic Set Theory*. Dover Publications, New York, 1972. ISBN 0486616304. URL http://books.google.com/books?vid=ISBN0486616304.
- Saburo Tamura. Two identities for lattices, distributive lattices and modular lattices with a constant. *Notre Dame Journal of Formal Logic*, 16(1):137–140, 1975. URL http://projecteuclid.org/euclid.ndjfl/1093891622.
- Terence Tao. *Epsilon of Room, I: Real Analysis: pages from year three of a mathematical blog,* volume 117 of *Graduate Studies in Mathematics.* American Mathematical Society, 2010. ISBN 9780821852781. URL http://books.google.com/books?vid=ISBN0821852787.
- Terence Tao. An Introduction to Measure Theory, volume 126 of Graduate Studies in Mathematics. American Mathematical Society, 2011. ISBN 9780821869192. URL http://books.google.com/books?vid=ISBN0821869191.
- Alfred Tarski. On the calculus of relations. *The Journal of Symbolic Logic*, 6(3):73–89, September 1941. URL http://www.jstor.org/stable/2268577.

Alfred Tarski. Equational logic and equational theories of algebras. In Helmut J. Thiele H. Arnold Schmidt, Kurt Schütte, editor, *Contributions to Mathematical Logic: Proceedings of the Logic Colloquium*, Studies in logic and the foundations of mathematics, pages 275–288, Hannover, August 1966. International Union of the History and Philosophy of Science, Division of Logic, Methodology and Philosophy of Science, North-Holland Publishing Company (1968). URL http://books.google.com/books?id=W7tLAAAAMAAJ.

- James Sturdevant Taylor. A set of five postulates for boolean algebras in terms of the operation "exception". 1(12):241–248, April 12 1920. URL http://www.archive.org/details/113597_001_012.
- Walter Taylor. Equational logic. *Houston Journal of Mathematics*, pages i–iii,1–83, 1979.
- Walter Taylor. *Equational Logic*, chapter Appendix 4, pages 378–400. Springer, New York, 2008. ISBN 978-0-387-77486-2. doi: 10.1007/978-0-387-77487-9. URL http://www.springerlink.com/content/rp1374214u122546/. an "abridged" version of Taylor 1979.
- N. K. Thakare, M. M. Pawar, and B. N. Waphare. A structure theorem for dismantlable lattices and enumeration. *Journal Periodica Mathematica Hungarica*, 45(1–2):147–160, September 2002. ISSN 0031-5303 (print) 1588-2829 (online). doi: 10.1023/A:1022314517291. URL http://www.springerlink.com/content/p6r26p872j603285/.
- Heinrich Franz Friedrich Tietze. Beiträge zur allgemeinen topologie i. *Mathematische Annalen*, 88 (3–4):290–312, 1923. URL http://link.springer.com/article/10.1007/BF01579182.
- E. Trillas, E. Renedo, and C. Alsina. On three laws typical of booleanity. *Fuzzy Information, 2004. Processing NAFIPS '04. IEEE Annual Meeting of the,* 2:520–523, 27–30 June 2004. doi: 10.1109/NAFIPS.2004.1337354. URL http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1337354.
- A.S. Troelstra and D. van Dalen. *Constructivism in Mathematics: An Introduction*, volume 121 of *Studies in Logic and the Foundations of Mathematics*. North Holland/Elsevier, Amsterdam/New York/Oxford/Tokyo, 1988. ISBN 0080570887. URL http://books.google.com/books?vid=ISBN0080570887.
- R. Vaidyanathaswamy. *Treatise on set topology, Part I.* Indian Mathematical Society, Madras, 1947. MR 9, 367.
- R. Vaidyanathaswamy. *Set Topology*. Chelsea Publishing, 2 edition, 1960. ISBN 0486404560. URL http://www.amazon.com/dp/0486404560. note: 978-0486404561 is a Dover edition: "This Dover edition, first published in 1999, is an unabridged republication of the work originally published in 1960 by Chelsea Publishing Company."
- A.C.M. van Rooij. The lattice of all topologies is complemented. *Canadian Journal of Mathematics*, 20(805–807), 1968. URL http://books.google.com/books?id=24hsmjEDbNUC.
- V. S. Varadarajan. *Geometry of Quantum Theory*. Springer, 2 edition, 1985. ISBN 9780387493862. URL http://books.google.com/books?vid=ISBN0387493867.
- Denis Artemevich Vladimirov. *Boolean Algebras in Analysis*. Mathematics and Its Applications. Kluwer Academic, Dordrecht, March 31 2002. URL http://books.google.com/books?vid=ISBN140200480X.
- John von Neumann. *Continuous Geometry*. Princeton mathematical series. Princeton University Press, Princeton, 1960. URL http://books.google.com/books?id=3bjq0gAACAAJ.

Anders Vretblad. Fourier Analysis and Its Applications, volume 223 of Graduate texts in mathematics. Springer, 2003. ISBN 9780387008363. URL http://books.google.com/books?vid=ISBN0387008365.

- Stephen Watson. The number of complements in the lattice of topologies on a fixed set. *Topology and its Applications*, 55(2):101–125, 26 January 1994. URL http://www.sciencedirect.com/science/journal/01668641.
- Alfred North Whitehead. *A Treatise on Universal Algebra with Applications*, volume 1. University Press, Cambridge, 1898. URL http://resolver.library.cornell.edu/math/1927624.
- Albert Whiteman. Postulates for boolean algebra in terms of ternary rejection. *Bulletin of the American Mathematical Society*, 43:293–298, 1937. ISSN 0002-9904. doi: 10.1090/S0002-9904-1937-06538-4. URL http://www.ams.org/bull/1937-43-04/S0002-9904-1937-06538-4/.
- Eldon Whitesitt. *Boolean Algebra and Its Applications*. Dover, New York, 1995. ISBN 0486684830. URL http://books.google.com/books?vid=ISBN0486684830.
- Philip M. Whitman. Lattices, equivalence relations, and subgroups. *Bulletin of the American Mathematical Society*, 52:507–522, 1946. ISSN 0002-9904. doi: 10.1090/S0002-9904-1946-08602-4. URL http://www.ams.org/bull/1946-52-06/S0002-9904-1946-08602-4/.
- J. B. Wilker. Rings of sets are really rings. *The American Mathematical Monthly*, 89(3):211–211, March 1982. URL http://www.jstor.org/stable/2320207.
- Yang Xu. Lattice implication algebras and mv-algebras. Chinese Quarterly Journal of Mathematics, 3:24–32, 1999. URL http://www.polytech.univ-savoie.fr/fileadmin/polytech_autres_sites/sites/listic/busefal/Papers/77.zip/77_05.pdf.
- Yang Xu, Da Ruan, Keyun Qin, and Jun Liu. *Lattice-Valued Logic: An Alternative Approach to Treat Fuzziness and Incomparability*, volume 132 of *Studies in Fuzziness and Soft Computing*. Springer, July 15 2003. ISBN 9783540401759. URL http://www.amazon.com/dp/354040175X/.
- Ronald R. Yager. On the measure of fuzziness and negation part i: Membership in the unit interval. *International Journal of General Systems*, 5(4):221–229, 1979. doi: 10.1080/03081077908547452. URL http://www.tandfonline.com/doi/abs/10.1080/03081077908547452.
- Ronald R. Yager. On the measure of fuzziness and negation ii: Lattices. *Information and Control*, 44(3):236–260, March 1980. doi: 10.1016/S0019-9958(80)90156-4. URL http://www.sciencedirect.com/science/article/pii/S0019995880901564.
- Eustachy Żyliński. Some remarks concerning the theory of deduction. *Fundamenta Mathematicae*, 7:203–209, 1925. URL http://matwbn.icm.edu.pl/tresc.php?wyd=1&tom=7.

page 252 Daniel J. Greenhoe BIBLIOGRAPHY

REFERENCE INDEX

Aliprantis and Burkinshaw
(2006), 111
Aliprantis and Burkinshaw
(1998), 40, 42, 52, 60, 72, 73,
96, 222
Adams (1990), 169, 170
Albers and Alexanderson
(1985), 133
Alsina et al. (1980), 1
Alsina et al. (1983), 1
Apostol (1975), 88
Aristotle, 3
Artamonov (2000), 170
Avron (1991), 11, 30, 31
Bagley (1955), 73, 74
Baker (1969), 133
Balbes (1967), 170
Balbes and Horn (1970), 170
Balbes and Dwinger (1975),
148, 170
Bandelt and Hedlíková
(1983), 170
Bartle (2001), 55
Bell (1934), 57
Bellman and Giertz (1973), 4,
5 Polyana (1077) 12 14 22
Belnap (1977), 13, 14, 32
Beran (1976), 201
Beran (1982), 190
Beran (1985), 5, 8, 104, 121,
128, 140, 151, 190, 198, 200,
201
Berberian (1961), 89, 97
Bernstein (1914), 181, 186,
195
Bernstein (1916), 195
Bernstein (1933), 195
Bernstein (1934), 35, 181, 195
Bernstein (1936), 195
Birkhoff (1933b), 133
Birkhoff (1933a), 105, 119,
120, 123, 133, 148

Birkhoff and Hall (1934), 152,
155
Birkhoff (1936b), 213
Birkhoff (1936a), 125
Birkhoff (1937), 73
Birkhoff (1938), 120, 171
Birkhoff (1940), 133
Birkhoff and Birkhoff (1946), 158
Birkhoff and Kiss (1947b),
170
Birkhoff and Kiss (1947a),
170
Birkhoff (1948), 105, 119, 122,
124, 132, 133, 148, 151, 152,
158, 162, 167
Birkhoff (1967), 112, 117, 124,
133, 136, 138, 221, 222
Birkhoff and Ward (1987),
170
Birkhoff and Neumann
(1936), 8, 198, 200
Blyth (2005), 155, 221, 222
Boole (1847), 196
Boole (1854), 196
Bottazzini (1986), 87
Bourbaki (1939), 87
Braithwaite (1942), 195
Brinkmann and McKay
(2002), 109
Brown and Watson (1991),
73, 103
Brown and Watson (1996),
55, 65, 73, 74
Berezansky et al. (1996), 53,
61, 71
Burris and Sankappanavar
(1981), 120, 124, 125, 128,
140, 148, 150–152, 162 Burris (2000), 196
Burris and Sankappanavar
(2000), 88, 111, 128, 129

Byrne (1946), 192, 194, 195 Byrne (1948), 195 Byrne (1951), 196 Carrega (1982), 208 Cattaneo and Ciucci (2009), 4 Cayley (1858), 97 Chatterji (1967), 55 Choquet (1954), 39 Cignoli (1975), 14 Cohen (1989), 8, 200 Comtet (1966), 55 Comtet (1974), 55, 57, 88, 90, 109 Constantinescu (1984), 73 Copson (1968), 60, 221 Crawley and Dilworth (1973), Davey and Priestley (2002), 123, 208 Davis (1955), 147 Davis (2005), 90, 93, 94 Day (1981), 73 Dedekind (1900), 104, 120, 124, 133, 140 de Morgan (1864b), 102 de Morgan (1864a), 102 DeMorgan (1872), 173 Devidi (2006), 3 Devidi (2010), 3 de Vries (2007), 4, 5, 14, 29 Deza and Laurent (1997), 221, 222 Deza and Deza (2006), 73, 132, 221 Deza and Deza (2009), 221 Diamond (1933), 195 Diamond (1934), 195 Diamond and McKinsey (1947), 189DiBenedetto (2002), 49 Dieudonné (1969), 60, 221 Dilworth (1990), 209

Dilworth (1940), 209
Dilworth (1945), 168–170
Dilworth (1950b), 112
Dilworth (1950a), 112
Dilworth (1982), 142
Dilworth (1984), 148, 170
Doner and Tarski (1969), 121
Duistermaat and Kolk (2010),
100
Dunford and Schwartz
(1957), 107, 125
Dunn (1976), 14
Dunn (1996), 3, 4
Dunn (1999), 3, 4
Durbin (2000), 92, 168
Dwinger (1961), 195
Dwinger (1971), 195
Elkan et al. (1994), 189
Erdös and Tarski (1943), 73
Erné et al. (2002), 165, 166
Euclid (circa 300BC), 221
Evans et al. (1967), 55
Evans (1977), 170
Ewen (1950), viii
Ewen (1961), viii
Farley (1996), 124 Farley (1997), 112, 115, 124
Fariey (1997), 112, 115, 124
Fáy (1967), 5, 201
? , 96
Finch (1970), 18, 25, 32, 33
Fodor and Yager (2000), 5, 9
Foulis (1962), 147, 207, 216
Fraenkel (1953), 92
Fréchet (1906), 221
Fréchet (1928), 221
Friedlander and Joshi (1998),
101
Frink (1941), 195
Frölich (1964), 65
Fuhrmann (2012), 80, 90
Gaifman (1961), 65, 73, 74
Gaifman (1966), 73
Gerrish (1978), 189
Giles (1987), 108, 222
Giles (2000), 99, 111
Givant and Halmos (2009),
35, 36, 121, 174, 178, 181, 182,
184, 189–192, 195
Gottwald (1999), 4
Grätzer (1971), 140, 170
Grätzer (1998), 104, 133
Grätzer (2003), 52, 112, 123,
168, 171
Grätzer (2007), 55, 169–171
Grätzer (2008), 170
Grau (1947), 170
Gudder (1988), 198
Haaser and Sullivan (1991),
73
Hahn and Rosenthal (1948),
39

Hailperin (1981), 196
Halmos (1950), 39, 52, 53, 55,
61, 71
Halmos (1960), 48, 75, 108,
113
Halmos (1972), 195
Hamacher (1976), 1
Hardegree (1979), 17, 24
Hartmanis (1958), 65, 73, 74
Hausdorff (1914), 49
Hausdorff (1937), 49, 52, 53,
73, 96, 108, 113, 221
Heijenoort (1967), viii
Heitzig and Reinhold (2002),
125, 144, 165
Hewitt and Ross (1994), 73
Heyting (1930a), 13, 32
Heyting (1930b), 13, 32
Heyting (1930c), 13, 32
Heyting (1930d), 13, 32
Hilbert et al. (1927), 97
Hoberman and McKinsey
(1937), 195
Höhle (1978), 4
Holland (1963), 198, 207,
212-214
Holland (1970), 121, 198, 213,
216
Horn (2001), 3
Housman (1936), viii
Huntington (1904), 169–171,
174, 178, 189, 195, 196
Huntington (1933), 178, 181,
189, 191, 195
Husimi (1937), 4, 207
Isbell (1980), 170
Isham (1989), 50, 64, 125
Isham (1999), 50, 64, 107, 125
Istrățescu (1987), 132, 221
Iturrioz (1985), 207–209
Jaskowski (1936), 13, 32
Jeffcott (1972), 217
Jenei (2003), 4
Jevons (1864), 120, 173, 196
Jevons (1886), 23
Jipsen and Rose (1992), 133,
170, 171
Johnstone (1982), 13, 32
Joshi (1989), 52, 174, 179, 189
Jun et al. (1998), 17, 24, 32
Kalman (1968), 133
TZ 1 1 1 (10E0) 1E 10 04
Kalmbach (1973), 17, 18, 24
Kalmbach (1973), 17, 18, 24,
25
25 Kalmbach (1974), 18, 25
25 Kalmbach (1974), 18, 25 Kalmbach (1983), 4, 17, 18,
25 Kalmbach (1974), 18, 25 Kalmbach (1983), 4, 17, 18, 24, 25, 198, 204, 207, 209, 213,
25 Kalmbach (1974), 18, 25 Kalmbach (1983), 4, 17, 18,
25 Kalmbach (1974), 18, 25 Kalmbach (1983), 4, 17, 18, 24, 25, 198, 204, 207, 209, 213, 216, 224
25 Kalmbach (1974), 18, 25 Kalmbach (1983), 4, 17, 18, 24, 25, 198, 204, 207, 209, 213, 216, 224 Kamide (2013), 34
25 Kalmbach (1974), 18, 25 Kalmbach (1983), 4, 17, 18, 24, 25, 198, 204, 207, 209, 213, 216, 224 Kamide (2013), 34 Karpenko (2006), 13, 32
25 Kalmbach (1974), 18, 25 Kalmbach (1983), 4, 17, 18, 24, 25, 198, 204, 207, 209, 213, 216, 224 Kamide (2013), 34
25 Kalmbach (1974), 18, 25 Kalmbach (1983), 4, 17, 18, 24, 25, 198, 204, 207, 209, 213, 216, 224 Kamide (2013), 34 Karpenko (2006), 13, 32

Kelley and Srinivasan (1988), 61,73 Khamsi and Kirk (2001), 221 Kleene (1938), 11, 30 Kleene (1952), 11, 30 Kleitman and Rothschild (1970), 55Knapp (2005), 102 Kolmogorov and **Fomin** (1975), 55, 73Kolmogorov **Fomin** and (1999), 73Kondo and Dudek (2008), 189, 196 Korselt (1894), 104, 123, 148, 151 Krishnamurthy (1966), 55 Kubrusly (2011), 49 Kyuno (1979), 125, 126 Larson and Andima (1975), 65, 73 Levy (2002), 52 Lidl and Pilz (1998), 4, 207 Loomis (1955), 198, 211 Łukasiewicz (1920), 11, 31 MacLane and Birkhoff (1967), 105, 133and MacLane Birkhoff (1999), 35, 73, 104, 105, 107, 117-120, 124, 164, 169, 173, 178 MacLaren (1964), 216 Maddux (1991), 102 Maddux (2006), 75, 102 Maeda (1958), 213 Maeda (1966), 137, 198 Maeda and Maeda (1970), 119, 137, 138, 145, 147, 207 Mancosu (1998), 13, 32 McCune and Padmanabhan (1996), 128, 134 McCune et al. (2003b), 128 McCune et al. (2003a), 128 McKenzie (1970), 126, 128, 133 McKenzie (1972), 133 McLaughlin (1956), 142 Menini and Oystaeyen (2004), 48, 107Michel and Herget (1993), 60, 90, 97, 99, 107, 108, 222 Miller (1952), 196 Mittelstaedt (1970), 18, 25, 32, 33 Molchanov (2005), 39 Monk (1989), 195 Montague and Tarski (1954), 196 Müller (1909), 35, 178 Müller-Olm (1997), 123 Munkres (2000), 49, 55, 82,

Pudlák and Tůma (1977), 69

111 Nakamura (1957), 207, 214, Nakano and Romberger (1971), 5Newman (1941), 195 Nguyen and Walker (2006), 4 Nievergelt (2002), 92 Novák et al. (1999), 4, 29, 34 d'Ocagne (1887), 57 Ore (1935), 105, 119, 120, 133, 139, 148 Ore (1940), 148 Ovchinnikov (1983), 9 Oxley (2006), 124 Padmanabhan and Rudeanu (2008), 121, 128, 133, 139, 142, 158, 195 Padoa (1912), 23 Paine (2000), vi Pap (1995), 39 Pavičić and Megill (2008), 13, 17, 24, 32, 33 Peano (1888b), 73 Peano (1888a), 73 Peano (1889), 35 Pedersen (2000), 107 Peirce (1870b), 102 Peirce (1870c), 102 Peirce (1870a), 102, 196 Peirce (1880b), 104, 120 Peirce (1880a), 181 Peirce (1883b), 102 Peirce (1883c), 102 Peirce (1883a), 75, 79, 80, 102 Peirce (1902), 181 Peirce (1903), 170 Peirce (1904), 170 Peirce, 170 Pigozzi (1975), 133 de la Vallée-Poussin (1915),

Pratt (1992), 102

Pudlák and Tůma (1980), 73 Pugh (2002), 116 Quine (1979), 35, 186 Rao (2004), 73 Rayburn (1969), 73 Renedo et al. (2003), 35, 190, 196, 208 Restall (2000), 13, 14, 32, 33 Restall (2001), 35 Restall (2004), 35 Riečan (1957), 142 Riesz (1909), 49 Riesz (1913), 97 Roman (2008), 55, 169, 170 Rota (1964), 55, 57, 73, 119 Rota (1997), 119 Roth (2006), 187 Rudin (1976), 116 Russell (1951), 37 Salii (1988), 52, 69, 142, 151, 163, 168–171, 189 Sasaki (1954), 213, 216, 224 Schnare (1968), 65, 73, 74 Schröder (1890), 35, 148, 178 Schröder (1895), 102 Schröder (2003), 92, 103 Sheffer (1913), 181, 195 Sheffer (1920), 107, 124, 164 and Vereshchagin (2002), 103, 108, 111, 113 Shiva (1998), 35, 36 Sholander (1951), 158, 194 Shramko and Wansing (2005), 34Sikorski (1969), 174, 177, 189, 195, 196 Smets (2006), 32, 33 Sobociński (1952), 11, 31 Sobociński (1979), 133 Stanley (1997), 113, 114, 125, Steen and Seebach (1978), 49

Steiner (1966), 64, 65, 73, 74 Stern (1999), 137, 142, 167, 198, 207, 211 Stone (1935), 192, 195 Stone (1936), 52, 73 Straßburger (2005), 29 Stroock (1999), 52 Suppes (1972), 78, 79, 82, 86, 87, 92, 102 **?**, 107, 167 Tamura (1975), 128, 133 Tao (2010), 39 Tao (2011), 39 Tarski (1941), 102 Tarski (1966), 126, 133 Taylor (1920), 181 Taylor (1979), 133 Taylor (2008), 133 Thakare et al. (2002), 165 Tietze (1923), 49 Trillas et al. (2004), 196 Troelstra and van Dalen (1988), 4Vaidyanathaswamy (1947), 65, 73, 74 Vaidyanathaswamy (1960), 60, 61, 65, 73, 74, 90, 93, 94 van Rooij (1968), 65, 73, 74 Varadarajan (1985), 7 Vladimirov (2002), 196 von Neumann (1960), 147 Vretblad (2003), 100–102 Watson (1994), 65, 73 Whitehead (1898), 35, 178 Whiteman (1937), 196 Whitesitt (1995), 35, 44, 183 Whitman (1946), 69 Wilker (1982), 61, 73 Xu (1999), 17, 24 Xu et al. (2003), 17, 24, 32, 33 Yager (1979), 9 Yager (1980), 9 Żyliński (1925), 186

page 256 Daniel J. Greenhoe Reference Index

SUBJECT INDEX

L_1 lattice, 199	additive, 93	Avant-Garde, vi
L_2 lattice, 199	adjunction, 37, 44, 44, 182,	axiom of extension, 95
$L_2^{\frac{7}{2}}$ lattice, 199	182, 184, 186	
$L_2^{\tilde{3}}$ lattice, 199	Adobe Systems Incorpo-	ball
$L_2^{\frac{7}{4}}$ lattice, 199	rated, vi	closed, 222
$L_2^{\frac{7}{2}}$ lattice, 199	algebra of sets, xi, 36, 40, 45,	open, <mark>222</mark>
M_2 lattice, 32	49, 52 , 52, 53, 59, 60, 71, 169	base set, 104
M_4 lattice, 199	algebraic ring, 53, 61, 62	Bell numbers, 57 , 57
M_6 lattice, 199	algebraic ring properties of	Benzene ring, 198
O ₆ lattice, 198, 200, 206, 207,	rings of sets, 61	Bernstein-Cantor-Schröder
212, 217, 225	algebraic structure, 158, 194	Theorem, 92
O_8 lattice, 198	algebraically isomorphic,	biconditional, 37 , 182 , 182
\mathbb{R}^3 Euclidean space, 213	129	bijective, xi, 7, 90 , 91, 111,
αf , 97	algebras of sets, 52, 59, 64, 67,	129
f + g, 97	68, 71, 72, 151	binary, 88 , 195
fg, 97	alphabetic order relation,	binary operation, 40
x commutes y, 190	109, 113	Birkhoff distributivity crite-
Łukasiewicz 3-valued logic,	alternate denial, 37	rion, 51, 148, 152 , 152
11, 18, 24, 31 , 31	alternative denial, 35, 36	Birkhoff's Theorem, 163
Łukasiewicz 5-valued logic,	AND, x, 36	BN ₄ , 14
32 , 32	and, 37	BN ₄ logic, 18, 24, 33 , 33
MFX, vi	anti-chain, 114	Boolean, 1, 15, 23, 29, 30, 33,
T _E X-Gyre Project, vi	anti-symmetric, 62, 63, 86 ,	52, 61, 165, 166, 173 , 173,
Xalate X, vi	86, 87, 104, 177	195, 199, 204–206, 208, 209,
GLB, 116	anti-symmetry, 103	216, 217, 219, 223, 224
LUB, 116	antichain, 112 , 112, 115	boolean, 197, 217
attention markers	antisymmetric, 117, 118	Boolean 4-valued logic, 32,
problem, 183	antitone, 3–14, 18–21, 25–28,	32
σ-algebra, 40, 52	198, 201, 204, 212, 215	Boolean addition, 37, 182,
σ-ring, 40, 53	antitonic, 3	182, 184
3-dimensional Euclidean	Aristotelian logic, <mark>29</mark>	Boolean algebra, 35, 52, 53,
space, 225	arithmetic axiom, 148	60, 115, 135, 148, 169, 173 ,
space, == 0	arity, 88	173, 178, 179, 182, 184–189,
absolute value, x, 221	associative, 35, 41, 51, 52, 59,	190 , 191, 192, 194, 197, 205,
absorbtive, 155	60, 81, 97–99, 114, 117, 119,	208
absorption, 21, 28, 179	120, 128, 149, 162, 174, 175,	boolean algebra, 205
absorptive, 17, 24, 35, 51, 52,	177–179, 187, 188, 190–194,	Boolean algebras, 36, 67, 95,
59, 60, 119, 120, 124, 128, 136,	202, 204, 205	135, 181
149, 150, 155–157, 162, 174,	associative property, 141,	boolean algebras, 52
175, 177, 178, 188, 190, 194,	142	Boolean lattice, 1, 18–22, 25–
195, 202, 204, 206, 214, 216	asymmetric, 86	29, 173 , 173, 212, 224
absorptive property, 141, 142	atomic, 142, 170	Boolean lattices, 1
·		

Parlambaria 20 20 20	alagura 200	accepting macceum wi
Boolean logic, 29 , 29, 30	closure, 200	counting measure, xi covering relation, 106
Boolean logics, 1	commutative, 8, 19, 21, 26,	
Boolean negation, 1	28, 35, 51–53, 59, 60, 98, 99,	covers, 105
Borel set, 72 , 72	114, 117, 119, 120, 128, 137,	de Morgan, 5, 6, 8, 12, 20,
both, 33	139, 140, 149, 155–158, 162,	27, 33, 60, 170, 176, 178, 201–
bottom, 36	174–178, 190–195, 201, 202,	203, 205, 215, 216
bound	204, 205, 212, 214–216	de Morgan logic, 29 , 29
greatest lower bound,	commutative property, 141,	de Morgan negation, 4, 4, 11–
116	142, 153	14, 29, 33
infimum, 116	commutes, 207, 213 , 213,	de Morgan's Law, 60
least upper bound, 116	214, 216	de Morgan's law, 182, 183,
supremum, 116	comparable, 103, 104 , 105,	186–188
boundary, 224	112, 115, 138, 142	de Morgan's Laws, 60, 179
boundary condition, 4, 6–9,	complement, x, 10, 36, 41,	de Morgan's laws, 35, 169,
200, 213, 214	44, 167 , 167, 181, 183, 184,	174
boundary condition (Theorem	186, 187, 195, 206	
1.5 page 8), 225	lattice, 167	de Morgan, Augustus, 173 definitions
boundary conditions, 7, 13	set, 167	
bounded, xi, 20, 27, 35, 60,	complement x , 36, 37, 44 ,	σ -algebra, 52
135 , 135, 173–175, 177, 178,	182	σ -ring, 53
189, 190, 195, 197, 204	complement x), 182	algebra of sets, 52
bounded lattice, 1, 3–5, 7–9,	complement y, 36, 37 , 44 ,	antichain, 112
17, 24, 136, 167, 173, 198, 200,	182	base set, 104
205, 208, 212–214, 222, 224	complement <i>y</i>), 182	Bell numbers, 57
bounded lattices, 211, 212	complemented, 35, 53, 60,	Benzene ring, 198
Byrne's Formulation A, 192	142, 165, 166, 167 , 168, 169,	bijective, 90
Byrne's Formulation B, 194	173–178, 189–192, 195, 197,	Boolean algebra, 173,
Byrne's Formulation A, 189	200, 202, 204, 205	190
Byrne's Formulation B, 189	complemented lattice, 167,	Boolean lattice, 173
•	200	Boolean logic, 29
cancellation, 155, 156	complements, 65, 177, 200	Borel set, 72
cancellation criterion, 155	complete, 116	Cartesian product, 48
cancellation hypothesis, 157	complete disjunction, 35, 36,	center, 216
Cancellation property, 148	37	chain, 105
cardinal arithmetic, 114	completeness axiom, 116	characteristic function,
cardinality, 40	composition function, 98	96
Cartesian product, x, 39, 48,	conjuction, 37	Chinese lantern, 208
48	conjugate, 99	classical 2-value logic,
cartesian product, 113	conjugate function, 99	34
center, 205, 206, 216 , 216–	conjunction, 36 , 36, 181	closed ball, 222
219	conjunctive de Morgan, 5, 8	closed set, 49
chain, 105 , 112, 115, 119, 136	conjunctive de morgan, 200	closed unit ball, 222
characteristic function, x, 96	conjunctive de Morgan	commutes, 213
characterization, 221	ineq., 5	complemented lattice,
characterizations, 148	conjunctive de Morgan in-	167
Boolean algebra, 189	equality, 7	conjugate, <mark>99</mark>
distributive lattices, 148	conjunctive distributive,	correspondence, 87
Chinese lantern, 208	147–149, 159–161	de Morgan logic, <mark>29</mark>
classic 10, 135, 174	conjunctive idempotence, 1	diamond, 151
classic 10 Boolean proper-	connected, 86	distance function, 221
ties, 178	continuous, xi, 5, 100	dual, 114 , 119
classic logic, 29	contrapositive, 3	equal, <mark>89</mark> , <mark>100</mark>
classical 2-value logic, 34 , 34	<u>-</u>	exponential numbers,
classical 2-valued logic, 35	converse, 79	57
classical bi-variate logic, 30	coordinate wise order rela-	fully ordered set, 105
classical implication, 1, 13,	tion, 113	function, 87
18, 23, 25, 30, 32–34	Coordinatewise order rela-	functionally complete,
classical logic, 29, 30	tion, 108	183
closed, 63	coordinatewise order rela-	fuzzy logic, <mark>29</mark>
closed ball, 222	tion, 108	Hasse diagram, 106
closed set, 49	correspondence, 87	hexagon, 198
closed unit ball, 222 , 223	cotinuous, 101	identity function, 86
		<u> </u>

Subject Index Daniel J. Greenhoe page 259

	image, 85	transformation, 87	emptyset, 41
	indicator function, 96	unit ball, 222	entailment, 17, 18, 23, 24
	injective, 90	Descartes, René, ix	equal, 89 , 100
	intuitionalistic logic, 29	diamond, 151	equality
	inverse, 79	dictionary order relation,	functions, 89
		•	
	isomorphism, 129	109, 113	equality by definition, x
	join semilattice, 117	difference, x, 37 , 41 , 44	equality relation, x
	Kleene logic, 29	Dilworth's theorem, 112,	equational bases, 148
	lattice, 119	115, 169	distributive lattices, 148
	lattice with negation, 5	Dirac delta distribution, 101	equational basis, 126
	linearly ordered set, 105	direct product, 113	equivalence, 29 , 36 , 37 , 37,
	logic, 29	direct sum, 113	44
	M3 lattice, 151	Discrete lattice, 124	equivalence relations, 86
	map, 87	discrete negation, 9, 12	Euclidean space, 200
	meet semilattice, 117	Discrete Time Fourier Series,	Euler numbers, 109, 125
	metric, 221	xi	examples
	metric space, 221	Discrete Time Fourier Trans-	Łukasiewicz 3-valued
	-		
	MO ₂ lattice, 208	form, xii	logic, 11, 18, 24, 31
	modular orthocom-	discrete topology, 50, 65	Łukasiewicz 5-valued
pleı	meted lattice, <mark>208</mark>	Dishkant implication, 18, 19,	logic, 32
	N5 lattice, 140	25, 26	Aristotelian logic, <mark>29</mark>
	number of topologies,	disjoint union, 113	BN ₄ , 14
55		disjunction, 36 , 36, 37, 181	BN ₄ logic, 18, 24, 33
	O ₆ lattice, 198	disjunctive de Morgan, 5, 8	Boolean 4-valued logic,
	one-to-one, 90	disjunctive de morgan, 200	32
	onto, 90	disjunctive de Morgan ineq.,	classical logic, 29
	open ball, 222	5	Coordinatewise order
	open set, 49	disjunctive de Morgan in-	relation, 108
	ordered set, 104	equality, 7	Discrete lattice, 124
	ortho logic, 29	disjunctive distributive, 147–	discrete negation, 9 , 12
	orthocomplemented	150, 161, 162	dual discrete negation,
latt	ice, 198	disjunctive idempotence, 1	9, 11
	orthogonal, 211	distance function, 221	factors of 12, 168
	orthogonality, 211	distributes, 98	Heyting 3-valued logic,
	orthomodular lattice,	distributions, 100	12 , 17, 24, 32
207		distributive, 19, 20, 22, 25, 27,	Jaśkowski's first matrix,
	partition, 55 , 136	29, 33, 35, 51–53, 59, 60, 114,	12, 32
	paving, 39	123, 144, 147 , 147, 148 , 148,	Kleene 3-valued logic,
	pentagon, 140	149, 152, 155, 162–166, 169,	11, 18, 24, 30
	permutable, 224	170, 173–179, 182, 187–191,	lattices on 1–3 element
	poset, 104	194, 195, 197, 201, 204, 206,	sets, 125
	power set, 39	224	lattices on 8 element
	-		
	preordered set, 103	distributive inequalities, 123,	sets, 126
	relation, 76	147	lattices on a 4 element
	relative complement,	distributive lattice, 50, 59,	set, 126
167		158	lattices on a 5 element
	ring of sets, 53	distributive lattices, 147	set, 126
	Sasaki projection, 224	distributive laws, 60, 163, 179	lattices on a 6 element
	Schwartz class, 100	distributivity, 1, 147, 157	set, 126
	set structure, 39	domain, x, 82	lattices on a 7 element
	subposet, 112	dual, 104, 114 , 119	set, 126
	supremum, 116	dual discrete negation, 9, 11	Lexicographical order
	surjective, 90	dual distributive, 147	relation, 108
	tempered distribution,	dual distributivity, 147	
100	_	dual modular, 137	quantum implication,
100			
	test function, 100	dual modularity, 137, 207	RM ₃ logic, 11, 18, 24, 31
	topological space, 49	duals, 121	Sasaki hook, 33
	topology, 49	Elkan's law, 135, 189, 196,	Sasaki hook logic, 17, 24
	topology on a finite set,	208	exception, 37 , 182 , 182–184,
49			186
	totally ordered set, 105	ellipse, 79 empty set xi 36, 44	excluded middle, 1, 5, 8, 18–
		ELITHIA SEL. XI. 30. 44	

page 260 Daniel J. Greenhoe Subject Index

22, 25–29, 167, 173, 179, 190,	tion, 29	Hasse diagram, 42, 64, 106,
200, 211, 212, 214	intuitionistic negation,	106, 107
exclusive OR, xi	4 , 9, 11–13	Hasse diagrams, 106
exclusive-or, 37	isomorphism, 129	height, 136, 222, 223
existential quantifier, xi	Kalmbach implication,	Heuristica, vi
explosion, 35	20, 26	hexagon, 198
exponential numbers, 57 , 57,	Kleene negation, 4, 11–	Heyting 3-valued logic, 12,
109, 125	15, 29–32, 34	17, 24, 32 , 32
	length, 136	Hilbert space, 200
factors of 12, 168	logical AND, 34	homogeneous, 98
false, x, 30, 32–36	logical equivalence, 34	homogenous, 97
field of sets, 167	logical OR, 34	horseshoe, 18, 25
finite, 40, 49, 69, 113, 135, 222	metric, 222, 223	Housman, Alfred Edward, vii
finite orthomodular, 209	minimal negation, 4 , 4,	Huntington properties, 148,
finite width, 170	5, 8, 9, 11–13, 29	169, 170
FontLab Studio, vi		
for each, xi	negation, 1, 4 , 10, 14, 15,	Huntington's FIRST SET, 174
Fourier Series, xi	212	Huntington's axiom, 190,
Fourier Transform, xi, xii	negation function, 1	191, 194, 205
Free Software Foundation, vi	negation functions, 1	Huntington's fifth set, 189,
fully ordered set, 105	negations, 1	191
function, 3, 4, 10, 75, 87 , 88,	non-tollens implication,	Huntington's first set, 189,
	20, 27	189
90, 221	one-to-one, 90	Huntington's Fourth Set,
+,×, 97	one-to-one and onto, 90	194, 205
arithmetic, 97	onto, 90	Huntington's fourth set, 189,
characteristic, 96	ortho negation, $1, 4, 8, 9$,	190, 191
conjugate, 99	11, 13–15, 19, 29, 30, 32, 200,	Huntington's problem, 171
domain, 82	211, 214	Husimi's conjecture, 209
equality, <mark>89</mark>	orthomodular identity,	•
identity, <mark>86</mark>	21, 28	idempotency, 225
indicator, 96	orthomodular negation,	idempotent, 20, 27, 35, 51,
inverse, 76, 79–81	4	52, 59, 60, 81, 97, 117, 119,
null space, 82	relevance implication,	120, 122, 123, 128, 130, 131,
range, 82	21, 28	149, 150, 157, 162, 174–176,
function addition, 97	Sasaki hook, 178	178, 187, 188, 190–192, 194,
function multiplication, 97		205, 214
function subtraction, 97	Sasaki implication, 19,	idempotent property, 153
functional, 88	25	identity, 35, 36 , 41, 53, 60,
functionally complete, 44,	set function, 39	174–178, 190, 191, 195, 205,
44, 45, 183 , 183–188	strict negation, 5, 5	214
functions, xi, 76	strong negation, 5	identity element, 86
absolute value, 221	subminimal negation, 3 ,	identity function, 86 , 86
bijective, 90	3, 9, 10	if, xi
Boolean negation, 1	subvaluation, 132	if and only if, xi
classical implication, 18,	surjective, <mark>90</mark>	image, x, 85
	unique complement,	-
23, 25, 30, 33, 34	167	image set, 82
complement, 167, 167	valuation, 221 , 221, 222	imaginary part, xi
de Morgan negation, 4,	fuzzy, 11–13, 32	implication, 1, 17 , 17–21, 23,
4, 11–14, 29	fuzzy logic, 29 , 29	24 , 24–32, 34, 36 , 37 , 37, 44 ,
Dishkant implication,	fuzzy negation, 1, 4 , 4, 7, 9,	182 , 182
19, 26	11–13, 29	implication function, 1
equivalence, <mark>29</mark>		implied by, xi, 36 , 37
function, 221	general lattices, 1	implies, xi
fuzzy negation, $1, 4, 7, 9$,	glb, 116	implies and is implied by, xi
11–13, 29	Golden Hind, <mark>vi</mark>	inclusive OR, <mark>xi</mark>
height, 136, 222, 223	greatest common divisor,	incomparable, 103, 104 , 105,
implication, 1, 17–21,	124, 164	112
23–28, 30–32, 34	greatest lower bound, xi, 50,	independent, 119, 128
implication function, 1	63, 116 , 116, 118, 119, 178,	indicator function, x, 96 , 96
indicator function, 96	195, 202, 205	indiscrete topology, 50, 65
injective, 90	group, 41, 98, 99	inequalities
intuitionalistic nega-	Gutenberg Press, vi	distributive, 123
1110110110110110 11050		and the state of t

Subject Index Daniel J. Greenhoe page 261

median, 123	Kleene condition, 4, 8, 12, 14,	left distributive, 99, 192
minimax, 122	15	Leibniz, Gottfried, ix, 23
modular, 124	Kleene logic, 29	length, 112 , 115, 136
infimum, 116	Kleene negation, 4 , 4 , 11–15 ,	lexicographical, 113
infinitely differentiable, 100	29–32, 34	
	29–32, 34	Lexicographical order rela-
inhibit x, 36 , 36, 44 , 182 , 182	labeled, 109	tion, 108
inhibit y, 36 , 37	largest algebra, 52	lexicographical order rela-
inhibit x, 35	lattice, 1, 5, 6, 8, 17, 19, 24, 26,	tion, 109
inhibit y, <mark>35</mark>	35, 50, 52, 59, 116, 119 , 119–	linear, 100, 119 , 221
injective, xi, 90 , 91	121, 124, 128, 135, 140, 147,	linear bounded, <mark>xi</mark>
inner-product, xi		linear order relation, 105
intersection, x, 37, 41, 44, 44,	148, 152, 155, 162, 173, 190,	linearly ordered, 32, 105, 164
63, 200	198, 201, 204, 205, 211, 212,	linearly ordered lattice, 30-
interval, 167	214, 221, 222	32
into, 90, 91	complemented, 167	linearly ordered set, 105
intuitionalistic logic, 29 , 29	distributive, 148	Liquid Crystal, <mark>vi</mark>
intuitionalistic negation, 4,	isomorphic, 129	logic, 1, 23, 29 , 29
29	M3, 151	logical AND, 34 , 35
	N5, 140, 142, 150	logical and, 35, 40
intuitionistic, 11–13, 32	product, 133	· ·
intuitionistic negation, 4, 7,	relatively comple-	logical equivalence, 34
9, 11–13	mented, 167	logical exclusive-or, 40
inverse, 41, 79 , 79, 129	Lattice characterization in 2	logical if and only if, 35
inverse function, 76, 79–81	equations and 5 variables,	logical implies, 35
involution, 205, 214	128	logical not, 40
involutory, 4–6, 8, 10–14, 19–	Lattice characterizations in 1	logical OR, 34 , 35
21, 26–28, 178, 182, 184, 188,		logical or, 35, 40
193, 198, 202–205, 215, 216	equation, 128	logics, 1
irreflexive, 86	lattice complement, 167	lower bound, 116, 116, 135,
irreflexive ordering relation,	lattice of partitions, 69	212–214
xi	lattice of topologies, 64, 65	lower bounded, 135, 135,
isomorphic, 111, 129 , 129–	lattice subvaluation metric,	201, 211
131	132	lub, 115
isomorphism, 111, 129 , 129	lattice valuation metric, 132	145, 116
isotone, 90, 93, 132 , 132, 136,	lattice with negation, 5 , 18,	M ₂ lattice, 33
222, 223	25, 29, 211–214, 216	M-symmetric, 138 , 143
222, 223	lattice with ortho negation,	M3 lattice, 151 , 151, 169
Jaśkowski's first matrix, 12,	34	map, <mark>87</mark>
32	lattices, 1, 21, 28, 52, 212	maps to, x
join, xi, 36, 37 , 116 , 148, 174,	lattices on 1–3 element sets,	material implication, 18, 25
•	125	maximin, 122
181–184, 195	lattices on 8 element sets,	median, 123, 148
join absorptive, 159–161	126	median inequality, 123, 147
join associatiave, 161	lattices on a 4 element set,	Median property, 148
join associative, 159		
join commutative, 159–162,	126	median property, 148–150
192	lattices on a 5 element set,	meet, xi, 36, 37 , 116 , 122, 148,
join idempotent, 158, 159	126	174, 181–184, 195
join identity, 192, 201, 202	lattices on a 6 element set,	meet associative, 161
join semilattice, 117, 117	126	meet commutative, 159–162
join super-distributive, 123,	lattices on a 7 element set,	meet idempotent, 158, 159
147	126	meet semilattice, 117, 117,
join-associative, 203	Law of Simplicity, 120	118
join-commutative, 203	law of the excluded middle,	meet sub distributive, 147
join-distributive, 205	35	meet sub-distributive, 123
join-identity, 135, 194	Law of Unity, 120	meet-associative, 204
join-meet-absorptive, 204	least common multiple, 124,	meet-commutative, 203
· -	164	meet-distributive, 205
joint denial, 35, 36 , 36	least upper bound, xi, 18, 24,	meet-idempotent, 202
Kalmbach implication, 18,	50, 63, 115, 116 , 117, 119,	meet-identity, 135, 194
20, 25, 26	136, 195, 204, 205	metric, xi, 221 , 222, 223
Kleene, 12	least upper bound , 63, 178	
		metric lattice, 222
Kleene 3-valued logic, 11, 18,	least upper bound property,	metric space, 221 , 222
24 , 30 , 30	116 , 116	metrics

page 262 Daniel J. Greenhoe Subject Index

lattice subvaluation, 132	non-semimodular, 142–145	difference, 37, 41, 44
lattice valuation, 132	non-tollens implication, 18,	direct product, 113
minimal negation, 4, 4, 5, 8–	20, 25, 27	direct sum, 113
13, 29	nondegenerate, 221	Discrete Time Fourier
minimax, 122	nor, 36	Series, xi
minimax inequality, 122–124	NOT, x	Discrete Time Fourier
Minkowski sum, 200	not x, 37	Transform, xii
MO ₂ lattice, 208	not y, 37	disjoint union, 113
modular, 124, 137, 138 , 139,	not antitone, 10, 15	disjunction, 36, 37
140, 142–144, 150, 152, 156,	not bijective, 91	empty set, 36 , 44
162, 166, 170, 197, 208, 209,	not injective, 91	emptyset, 41
222, 223	not modular orthocomple-	equivalence, 36, 37 , 37,
Modular inequality, 124	mented, 198	44
modular inequality, 124	not strong modus ponens,	exception, 37 , 182 , 182,
modular lattice, 142, 144	18, 25	183
modular orthocomple-	not surjective, 91	exclusive-or, 37
mented, 197, 199	null space, x, 82	false, 36
modular orthocomplemeted	nullary, 40, 88	Fourier Series, xi
lattice, 208	number of lattices, 125, 144,	Fourier Transform, xi, xii
modularity, 137, 156–158,	165	greatest lower bound, 50
207	number of posets, 109	identity, 36
modularity inequality, 124	number of topologies, 55	implication, 36, 37 , 37,
modus ponens, 17, 18, 23, 24		44 , 182 , 182
monotone, 211, 212	O ₆ lattice, 10, 18, 25, 198 , 198	implied by, 36 , 37
Monotony laws, 121	O ₆ lattice with ortho nega-	inhibit x , 36 , 36, 44 , 182 ,
multiply complemented,	tion, 33	182
167 , 168, 200	O ₆ orthocomplemented lat-	inhibit <i>y</i> , 36 , 37
multipy complemented, 10	tice, 33	inhibit x, 35
mutually exclusive, 55, 136	one, 37	inhibit y, 35
mutually exclusive, 33, 130	one-to-one, 90 , 91	•
N5 lattice, 140 , 140, 142, 150,	one-to-one and onto, 90, 91	intersection, 37 , 41 , 44 ,
169	only if, xi	63, 200
nand, 37	onto, 90 , 91	inverse, 129
negation, 1, 4 , 10, 14, 15, 36,	open, 49	join, 37 , 116 , 148, 174,
97, 181, 212	open ball, 222 , 222	182, 183, 195
negation x, 37	open set, 49	joint denial, 35, 36 , 36
negation y, 37	operations	least upper bound, 50,
negation function, 1	adjunction, 37 , 44 , 182 ,	117
negation functions, 1	182	logical AND, 35
· ·		logical and, 35, 40
negations, 1	alternate denial, 37	logical exclusive-or, 40
neither, 33	alternative denial, 35, 36	logical if and only if, 35
neutral, 30	and, 37	logical not, 40
non-associative, 212	biconditional, 37, 182,	logical OR, 35
non-Boolean, 1, 23, 33, 198,	182	logical or, 35, 40
199, 206, 207	Boolean addition, 37 ,	meet, 37 , 116 , 122, 148,
non-Boolean logics, 1	182 , 182	174, 182, 183, 195
non-complemented, 168	bottom, 36	Minkowski sum, 200
non-contradiction, 1, 4–15,	Cartesian product, 39	nand, 37
20, 27, 35, 167, 173, 190, 198,	cartesian product, 113	negation x , 37
201, 211, 212, 214, 224, 225	closure, 200	negation y, 37
non-distributive, 33, 51, 150,	complement, 41, 183,	nor, 36
163, 165, 169	195	$\cot x$, 37
non-empty, 55, 136	complement x , 36, 37 ,	not <i>y</i> , 37
non-join-distributive, 206	44, 182	
non-meet-distributive, 206	complement x), 182	one, 37
non-modular, 140, 142–145,	complement y , 36, 37 ,	or, 37
207, 223	44, 182	ordinal product, 113,
non-negative, 221	complement y), 182	114
non-orthocomplemented,	complete disjunction,	ordinal sum, 113
200	35, 36, 37	poset product, 133
non-orthomodular, 198, 207	conjuction, 37	product, 105
non-self dual 126	conjunction 36	projection x , 37, 44

SUBJECT INDEX Daniel J. Greenhoe page 263

projection <i>y</i> , 37 , 44	orthocomplemented, 30,	x commutes y, 190
rejection, 36 , 44 , 182 ,	197, 198 , 198–200, 204–209,	absolute value, x
182	223, 225	absorbtive, 155
Sasaki projection, 213,	Orthocomplemented lattice,	absorption, 21, 28, 179
215, 224, 225	197	absorptive, 17, 24, 35,
sasaki projection, 225	orthocomplemented lattice,	51, 52, 59, 60, 119, 120, 124,
Sasaki projection of y	1, 198 , 198, 200, 201, 205,	128, 136, 149, 150, 155–157,
onto <i>x</i> , 224	207, 211–214, 216, 217, 224,	162, 174, 175, 177, 178, 188,
set difference, 104	225	190, 194, 195, 202, 204, 206,
set inclusion, 62	orthocomplemented lat-	214, 216
	-	
Sheffer stroke, 37, 44,	tices, 198	absorptive property,
182 , 182	orthocomplemented O_6 lat-	141, 142
symmetric difference,	tice, 18, 25	algebra of sets, <mark>xi</mark>
37, 41, 44	orthogonal, 211 , 212	algebraic ring, 61
		-
ternary rejection, 196	orthogonality, 207, 211 , 212	•
top, 37	orthomodular, 4, 190, 197–	phic, 129
transfer x , 37, 182	199, 207–209, 216	AND, x
transfer y, 37, 182	orthomodular identity, 21,	anti-symmetric, 62, 63,
	•	
transfer x, 36	28, 207, 215	86 , 86, 87, 104, 177
transfer y, <mark>36</mark>	orthomodular lattice, 18, 21,	anti-symmetry, 103
true, 37	25, 28, 207 , 208	antisymmetric, 117, 118
union, 37 , 41 , 44 , 63	orthomodular negation, 4, 4	antitone, 3–14, 18–21,
	ortholiloadia liegation, 1, 1	
universal set, 37 , 41 , 44	partial order relation, 104	25–28, 198, 201, 204, 212, 215
Z-Transform, xii	-	antitonic, 3
zero, <mark>36</mark>	partially ordered set, 103,	arity, <mark>88</mark>
operator norm, xi	104 , 117, 118	associative, 35, 41, 51,
OR, 36	partition, 40, 55 , 55, 59, 113,	52, 59, 60, 81, 97–99, 114, 117,
	115, 136	
or, 37	partitions, 49, 59, 151	119, 120, 128, 149, 162, 174,
order, x, xi, 40	-	175, 177–179, 187, 188, 190–
metric, 108	paving, 39 , 39, 40	194, 202, 204, 205
order preserving, 111, 111,	Peirce's Theorem, 170, 171	associative property,
	pentagon, 140 , 140	- · ·
114, 129–131	permutable, 224	141, 142
order relation, 62, 103, 104 ,		asymmetric, <mark>86</mark>
104–107	pointwise order relation, 114	atomic, 142, 170
order relations, 86	Pointwise ordering relation,	bijective, 7, 91, 111, 129
	111	*
alphabetic, 108	poset, 103, 104	binary, 88 , 195
coordinatewise, 108	-	Boolean, 1, 15, 23, 29, 30,
dictionary, 108	order preserving, 111	33, 52, 61, 165, 166, 173 , 173,
lexicographical, 108	poset product, 105, 133	195, 199, 204–206, 208, 209,
	posets	
order structures, 129	number, 109, 125	216, 217, 219, 223, 224
order-reversing, 3	positive, 132 , 222, 223	boolean, 197, 217
ordered pair, x, 48	*	Boolean algebra, 148,
ordered set, 50, 62, 103, 104 ,	positive integers, 103	169, 179, 182, 191, 194
104, 107, 115, 116, 119, 129,	power set, xi, 39 , 39, 40, 49,	Boolean lattice, 1
	52, 53, 116, 163	
177	pre-topology, 59	boundary, 224
linearly, 105		boundary condition, 4,
totally, 105	preorder relation, 103, 103	6–9, 200, 213, 214
ordinal product, 113, 114	preordered set, 103	boundary condition (The-
	preserves joins, 129, 130	
ordinal sum, 113	preserves meets, 129, 131	orem 1.5 page 8), 225
ortho lattice, 17–21, 24–28,	-	boundary conditions, 7,
211, 212	Principle of duality, 121, 174,	13
ortho logic, 29, 29	205	bounded, 20, 27, 35, 60,
-	principle of duality, 121, 164,	
ortho logics, 1	174	135 , 135, 173–175, 177, 178,
ortho negation, 1, 4 , 4, 8, 9,	product, 105	189, 190, 195, 197, 204
11–15, 19, 26, 29, 30, 32, 200,	-	cancellation, 155, 156
211–214	lattice, 133	Cartesian product, x
ortho negations, 1	poset, 105	characteristic function,
	projection x , 37, 44	
ortho+distributivity=Boolean,	projection <i>y</i> , 37 , 44	X
1		closed, 63
ortho-complemented, 170	proper subset, x	commutative, 8, 19, 21,
orthocomplement, 198, 198	proper superset, x	26, 28, 35, 51–53, 59, 60, 98,
01 410 00 111 profit of the 100 to 100	properties	=0, =0, 00, 01 00, 00, 00, 00,

99, 114, 117, 119, 120, 128,	187–191, 194, 195, 197, 201,	independent, 119, 128
137, 139, 140, 149, 155–158,	204, 206, 224	indicator function, x
162, 174–178, 190–195, 201,	distributivity, 1, 157	infinitely differentiable,
202, 204, 205, 212, 214–216	domain, x	100
commutative property,	dual distributive, 147	injective, 91
141, 142, 153	dual modular, 137	inner-product, xi
comparable, 103, 104 ,	Elkan's law, 189, 196,	intersection, x
105, 112, 115, 138, 142	208	into, 91
complement, x, 186,		
-	empty set, xi	intuitionistic, 11–13, 32
187, 206	entailment, 17, 18, 23, 24	intuitionistic negation, 7
complemented, 35, 53,	equality by definition, x	inverse, 41
60, 142, 165, 166, 167 , 169,	equality relation, x	involution, 205, 214
173–178, 189–192, 195, 197,	excluded middle, 1, 5, 8,	involutory, 4–6, 8, 10–
200, 202, 204, 205	18–22, 25–29, 167, 173, 179,	14, 19–21, 26–28, 178, 182,
complete, 116	190, 200, 211, 212, 214	184, 188, 193, 198, 202–205,
conjunctive de Morgan,	exclusive OR, <mark>xi</mark>	215, 216
5, 8	existential quantifier, xi	irreflexive, <mark>86</mark>
conjunctive de morgan,	explosion, 35	irreflexive ordering rela-
200	false, x, 35	tion, xi
conjunctive de Morgan	finite, 40, 49, 69, 113,	isomorphic, 111, 129 ,
ineq., 5	135, 222	129–131
conjunctive de Morgan	finite orthomodular, 209	isomorphism, 111
inequality, 7	finite width, 170	isotone, 90, 132 , 132,
- •		
,	for each, xi	136, 222, 223
tive, 147–149, 159–161	functionally complete,	join, xi
conjunctive idempo-	44 , 44, 45, 183–188	join absorptive, 159–161
tence, 1	fuzzy, 11–13, 32	join associatiave, 161
connected, <mark>86</mark>	glb, 116	join associative, 159
continuous, 5, 100	greatest common divi-	join commutative, 159–
contrapositive, 3	sor, 124	162, 192
cotinuous, 101	greatest lower bound, <mark>xi</mark> ,	join idempotent, 158,
	greatest lower bound, xi,	join idempotent, 158, 159
counting measure, xi	119	159
counting measure, xi covers, 105	homogeneous, 98	join identity, 192, 201,
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20,	homogeneous, 98 homogenous, 97	join identity, 192, 201, 202
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201–	homogeneous, 98 homogenous, 97 Huntington properties,	join identity, 192, 201, 202 join super-distributive,
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170	join identity, 192, 201, 202 join super-distributive, 123, 147
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14,	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom,	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182,	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35,	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35,	119 homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119,	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive,
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131,	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive,
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x	119 homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176,	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131,	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive,
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x	119 homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176,	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan,	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194,	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8,
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15,
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200 disjunctive de Morgan	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153 identity, 35, 41, 53, 60,	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31 labeled, 109
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200 disjunctive de Morgan ineq., 5	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153 identity, 35, 41, 53, 60, 174–178, 190, 191, 195, 205,	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31 labeled, 109 lattice, 128, 155
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200 disjunctive de Morgan ineq., 5 disjunctive de Morgan	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153 identity, 35, 41, 53, 60, 174–178, 190, 191, 195, 205, 214	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31 labeled, 109 lattice, 128, 155 lattice complement, 167
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200 disjunctive de Morgan ineq., 5 disjunctive de Morgan inequality, 7	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153 identity, 35, 41, 53, 60, 174–178, 190, 191, 195, 205, 214 if, xi	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31 labeled, 109 lattice, 128, 155 lattice complement, 167 law of the excluded mid-
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200 disjunctive de Morgan ineq., 5 disjunctive de Morgan inequality, 7 disjunctive distributive,	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153 identity, 35, 41, 53, 60, 174–178, 190, 191, 195, 205, 214 if, xi if and only if, xi	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31 labeled, 109 lattice, 128, 155 lattice complement, 167 law of the excluded middle, 35
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200 disjunctive de Morgan ineq., 5 disjunctive de Morgan inequality, 7 disjunctive distributive, 147–150, 161, 162	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153 identity, 35, 41, 53, 60, 174–178, 190, 191, 195, 205, 214 if, xi if and only if, xi image, x	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31 labeled, 109 lattice, 128, 155 lattice complement, 167 law of the excluded middle, 35 least common multiple,
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200 disjunctive de Morgan ineq., 5 disjunctive de Morgan inequality, 7 disjunctive distributive, 147–150, 161, 162 disjunctive idempo-	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153 identity, 35, 41, 53, 60, 174–178, 190, 191, 195, 205, 214 if, xi if and only if, xi image, x imaginary part, xi	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31 labeled, 109 lattice, 128, 155 lattice complement, 167 law of the excluded middle, 35 least common multiple, 124
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200 disjunctive de Morgan ineq., 5 disjunctive de Morgan inequality, 7 disjunctive distributive, 147–150, 161, 162 disjunctive idempotence, 1	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153 identity, 35, 41, 53, 60, 174–178, 190, 191, 195, 205, 214 if, xi if and only if, xi image, x imaginary part, xi implied by, xi	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31 labeled, 109 lattice, 128, 155 lattice complement, 167 law of the excluded middle, 35 least common multiple, 124 least upper bound, xi,
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200 disjunctive de Morgan ineq., 5 disjunctive de Morgan inequality, 7 disjunctive distributive, 147–150, 161, 162 disjunctive idempotence, 1 distributes, 98	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153 identity, 35, 41, 53, 60, 174–178, 190, 191, 195, 205, 214 if, xi if and only if, xi image, x imaginary part, xi implied by, xi implies, xi	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31 labeled, 109 lattice, 128, 155 lattice complement, 167 law of the excluded middle, 35 least common multiple, 124 least upper bound, xi, 119
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200 disjunctive de Morgan ineq., 5 disjunctive de Morgan inequality, 7 disjunctive distributive, 147–150, 161, 162 disjunctive idempotence, 1 distributes, 98 distributive, 19, 20, 22,	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153 identity, 35, 41, 53, 60, 174–178, 190, 191, 195, 205, 214 if, xi if and only if, xi image, x imaginary part, xi implied by, xi implies, xi implies and is implied	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31 labeled, 109 lattice, 128, 155 lattice complement, 167 law of the excluded middle, 35 least common multiple, 124 least upper bound, xi, 119 least upper bound prop-
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200 disjunctive de Morgan ineq., 5 disjunctive de Morgan inequality, 7 disjunctive distributive, 147–150, 161, 162 disjunctive idempotence, 1 distributes, 98 distributive, 19, 20, 22, 25, 27, 29, 33, 35, 51–53, 59,	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153 identity, 35, 41, 53, 60, 174–178, 190, 191, 195, 205, 214 if, xi if and only if, xi image, x imaginary part, xi implied by, xi implies, xi implies and is implied by, xi	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31 labeled, 109 lattice, 128, 155 lattice complement, 167 law of the excluded middle, 35 least common multiple, 124 least upper bound, xi, 119 least upper bound property, 116
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200 disjunctive de Morgan ineq., 5 disjunctive de Morgan inequality, 7 disjunctive distributive, 147–150, 161, 162 disjunctive idempotence, 1 distributes, 98 distributive, 19, 20, 22, 25, 27, 29, 33, 35, 51–53, 59, 60, 114, 123, 144, 147, 147,	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153 identity, 35, 41, 53, 60, 174–178, 190, 191, 195, 205, 214 if, xi if and only if, xi image, x imaginary part, xi implied by, xi implies, xi implies and is implied by, xi inclusive OR, xi	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31 labeled, 109 lattice, 128, 155 lattice complement, 167 law of the excluded middle, 35 least common multiple, 124 least upper bound, xi, 119 least upper bound property, 116 left distributive, 99, 192
counting measure, xi covers, 105 de Morgan, 5, 6, 8, 12, 20, 27, 33, 60, 170, 176, 178, 201– 203, 205, 215, 216 de Morgan negation, 14, 33 de Morgan's law, 182, 183, 186–188 de Morgan's laws, 35, 169, 174 difference, x disjunctive de Morgan, 5, 8 disjunctive de morgan, 200 disjunctive de Morgan ineq., 5 disjunctive de Morgan inequality, 7 disjunctive distributive, 147–150, 161, 162 disjunctive idempotence, 1 distributes, 98 distributive, 19, 20, 22, 25, 27, 29, 33, 35, 51–53, 59,	homogeneous, 98 homogenous, 97 Huntington properties, 148, 170 Huntington's axiom, 190, 191, 194, 205 idempotency, 225 idempotent, 20, 27, 35, 51, 52, 59, 60, 81, 97, 117, 119, 120, 122, 123, 128, 130, 131, 149, 150, 157, 162, 174–176, 178, 187, 188, 190–192, 194, 205, 214 idempotent property, 153 identity, 35, 41, 53, 60, 174–178, 190, 191, 195, 205, 214 if, xi if and only if, xi image, x imaginary part, xi implied by, xi implies, xi implies and is implied by, xi	join identity, 192, 201, 202 join super-distributive, 123, 147 join-associative, 203 join-commutative, 203 join-distributive, 205 join-identity, 135, 194 join-meet-absorptive, 204 Kleene, 12 Kleene condition, 4, 8, 12, 14, 15 Kleene negation, 14, 15, 30, 31 labeled, 109 lattice, 128, 155 lattice complement, 167 law of the excluded middle, 35 least common multiple, 124 least upper bound, xi, 119 least upper bound property, 116

Subject Index Daniel J. Greenhoe page 265

linearly ordered, 32, 105,	206	tion, <mark>xi</mark>
164	non-modular, 140, 142-	relation, x
linearly ordered lattice,	145, 207, 223	relational and, x
30–32	non-negative, 221	relatively comple-
lower bound, 212–214	non-orthocomplemented,	mented, 167
lower bounded, 135,	200	right distributive, 97–99,
135, 201, 211	non-orthomodular, 198,	192
M ₂ lattice, 33	207	ring of sets, xi
M-symmetric, 138 , 143	non-self dual, 126	self-dual, 121, 126
maps to, x	non-semimodular, 142–	semimodular, 138 , 144,
median, 148	145	145
median inequality, 123,	nondegenerate, 221	set complement, 167
147	NOT, x	set of algebras of sets, xi
median property, 148–	not antitone, 10, 15	set of rings of sets, xi
150	not bijective, 91	set of topologies, xi
meet, <mark>xi</mark>	not injective, 91	span, xi
meet associative, 161	not modular orthocom-	strict, 5
meet commutative,	plemented, 198	strictly antitone, 5
159–162	not strong modus po-	strong, 5
meet idempotent, 158,	nens, 18, 25	strong entailment, 17–
159	not surjective, 91	21, 24–28, 30–32, 34
	,	
meet sub distributive,	null space, x	strong modus ponens,
147	nullary, 40, 88	17–19, 24, 25, 30–32, 34
meet sub-distributive,	one-to-one, 91	strongly connected, 86
123	one-to-one and onto, 91	subadditive, 221
meet-associative, 204	only if, xi	subminimal, 12
meet-commutative, 203	onto, 91	subset, x
meet-distributive, 205	open, 49	subspace lattice, 107
	-	
meet-idempotent, 202	open ball, 222	subvaluation, 132
meet-identity, 135, 194	operator norm, <mark>xi</mark>	super set, x
metric, xi	order, x, xi	surjective, 76, 89, 91, 93
modular, 124, 137, 138 ,	order preserving, 111,	symmetric, 86 , 86, 87,
139, 140, 143, 144, 150, 152,	111, 114, 129–131	137, 207, 208, 212, 214 , 214,
156, 162, 166, 170, 197, 208,	order-reversing, 3	215, 221
209, 222, 223	ordered pair, x	symmetric difference, x
modular orthocomple-	ortho negation, 15	symmetry, 103, 216
mented, 197, 199	ortho-complemented,	ternary, 88 , 196
modus ponens, 17, 18,	170	there exists, xi
23, 24	orthocomplemented,	topology of sets, <mark>xi</mark>
monotone, 211, 212	30, 197, 198 , 198–200, 204–	totally ordered, 105, 108
multiply comple-	209, 223, 225	transitive, 62, 63, 86 , 86,
mented, 167 , 168, 200	orthogonal, 212	87, 103, 104, 106, 117, 118,
multipy complemented,	orthomodular, 4, 190,	177
- · -		
10	197–199, 207–209, 216	triangle inequality, 221
mutually exclusive, 55,	orthomodular identity,	true, x, 35
136	207, 215	unary, 40, 88
non-associative, 212	positive, 132 , 222, 223	unbounded, 135
non-Boolean, 1, 23, 33,	power set, xi	union, x
198, 199, 206, 207	preserves joins, 129, 130	uniquely comp., 35
non-complemented,	preserves meets, 129,	uniquely comple-
-	-	
168	131	mented, 60, 148, 167 , 168–
non-contradiction, 1, 4–	principle of duality, 121,	170, 206
15, 20, 27, 35, 167, 173, 190,	174	universal quantifier, <mark>xi</mark>
198, 201, 211, 212, 214, 224,	proper subset, x	unlabeled, <mark>109</mark>
225	proper superset, x	upper bound, 6, 212, 213
non-distributive, 33, 51,	range, x	upper bounded, 135,
150, 163, 165, 169	real part, xi	135, 211
non-empty, 55, 136	reflexive, 62, 63, 86 , 86,	valuation, 132 , 132, 223
non-join-distributive,	87, 103, 104, 117, 118, 138,	vector norm, xi
206	139, 142, 177	weak double negation,
non-meet-distributive,	reflexive ordering rela-	4, 6, 9–13, 212

page 266 Daniel J. Greenhoe Subject Index

weak entailment, 17, 21,	function, 10	self-dual, 121, 126
24, 28, 31	horseshoe, 18, 25	semilattice
weak modus ponens,	identity element, 86	join, 117
17–21, 24–28, 31, 32, 34		•
	image set, 82	meet, 117, 118
width, 112 , 113, 115	implication, 17 , 24 , 29	semimodular, 138 , 144, 145
pstricks, vi	inverse, 79	Serpiński spaces, 50
quantum implication 10 25	Kalmbach implication,	set
quantum implication, 18, 25,	18, 25	power, 39
33	lexicographical, 113	ring, 53
quotes	lexicographical order re-	set complement, 167
de Morgan, Augustus,	lation, 109	set difference, 44, 104
173	linear order relation,	set function, 39
Descartes, René, ix	105	set inclusion, 62
Housman, Alfred Ed-	logical implies, 35	set of algebras of sets, <mark>xi</mark>
ward, vii	material implication, 18,	set of rings of sets, xi
Jevons, William Stanley,	25	set of topologies, xi
23	modularity, 137, 207	set structure, 39 , 39, 40, 55,
Leibniz, Gottfried, ix, 23	non-tollens implication,	59–63
Russull, Bertrand, vii, 37	18, 25	set structures
Stravinsky, Igor, <mark>vii</mark>	null space, 82	algebra of sets, 60
	order relation, 103, 104 ,	pre-topology, 59
range, x, 82	106, 107	sets
real part, xi	orthogonality, 207, 212	operations, 40, 42
real valued lattice, 221	partial order relation,	ordered set, 107
reflexive, 62, 63, 86, 86, 87,	104	
103, 104, 117, 118, 138, 139,		positive integers, 103
142, 177	partially ordered set,	Sheffer stroke, 37 , 44 , 44,
reflexive ordering relation, xi	104	182 , 182, 184–186
rejection, 36 , 44 , 44, 182 ,	pointwise order rela-	Sheffer stroke functions, 35
182, 184, 186	tion, 114	smallest algebra, 52
relation, x, 10, 39, 76 , 88, 137,	preorder relation, 103,	Sophist, 3
147	103	space
anti-symmetric, 87	quantum implication,	metric, 221, 222
inverse, 79	18, 25	topological, 49
	range, <mark>82</mark>	span, <mark>xi</mark>
reflexive, 87	relation, 10, 39	Stone, 189
symmetric, 87	relevance implication,	Stone Representation Theo-
transitive, 87	18, 25	rem, 52 , 60
relational and, x	Sasaki hook, 18, 25	Stravinsky, Igor, <mark>vii</mark>
relations, xi, 98	relative complement, 167,	strict, 5
alphabetic order rela-	167	strict negation, 5, 5
tion, 109, 113	relatively complemented,	strictly antitone, 5
classical implication, 13,	167	strong, 5
18, 25, 32	relevance implication, 18,	strong entailment, 17–21,
commutes, 207, 213 ,	21, 25, 28	24–28, 30–32, 34
213, 214, 216	right distributive, 97–99, 192	strong modus ponens, 17–
complement, 10	ring of sets, xi, 40, 45, 49, 53 ,	19, 24, 25, 30–32, 34
converse, 79	53, 55, 59, 61, 71, 73	strong negation, 5
coordinate wise order	rings of sets, 53–55, 59, 71,	strongly connected, 86
relation, 113	•	~ *
coordinatewise order	151	structures
relation, 108	RM ₃ logic, 11, 18, 24, 31 , 31	L_1 lattice, 199
covering relation, 106	Russull, Bertrand, vii, 37	L_2 lattice, 199
dictionary order rela-	Sasaki hook, 18, 25, 33 , 178	L_2^2 lattice, 199
tion, 109, 113		
Dishkant implication,		L_2^3 lattice, 199
	Sasaki hook logic, 17, 24, 33	L_2^4 lattice, 199 L_2^4 lattice, 199
18, 25	Sasaki hook logic, 17, 24, 33 Sasaki implication, 19, 25	-
18, 25 distributivity 147	Sasaki hook logic, 17, 24, 33 Sasaki implication, 19, 25 Sasaki projection, 213, 215,	L_2^{4} lattice, 199
distributivity, 147	Sasaki hook logic, 17, 24, 33 Sasaki implication, 19, 25 Sasaki projection, 213, 215, 224, 224, 225	$L_2^{ ilde{4}}$ lattice, 199 $L_2^{ ilde{5}}$ lattice, 199 M_2 lattice, 32
distributivity, 147 domain, 82	Sasaki hook logic, 17, 24, 33 Sasaki implication, 19, 25 Sasaki projection, 213, 215, 224, 224, 225 sasaki projection, 225	$L_2^{ ilde{4}}$ lattice, 199 $L_2^{ ilde{5}}$ lattice, 199
distributivity, 147 domain, 82 dual, 104	Sasaki hook logic, 17, 24, 33 Sasaki implication, 19, 25 Sasaki projection, 213, 215, 224, 224, 225 sasaki projection, 225 Sasaki projection of <i>y</i> onto <i>x</i> ,	$L_2^{\frac{7}{4}}$ lattice, 199 $L_2^{\frac{5}{2}}$ lattice, 199 M_2 lattice, 32 M_4 lattice, 199 M_6 lattice, 199
distributivity, 147 domain, 82	Sasaki hook logic, 17, 24, 33 Sasaki implication, 19, 25 Sasaki projection, 213, 215, 224, 224, 225 sasaki projection, 225	$L_2^{\frac{7}{4}}$ lattice, 199 L_2^{5} lattice, 199 M_2 lattice, 32 M_4 lattice, 199

Subject Index Daniel J. Greenhoe page 267

2		
\mathbb{R}^3 Euclidean space, 213	discrete topology, 50, 65	minimal negation, 4, 5,
Łukasiewicz 3-valued	distributive lattice, 50,	10
logic, 31	59, 158	MO ₂ lattice, 208
Łukasiewicz 5-valued	distributive lattices, 147	modular lattice, 142, 144
logic, 32	distributivity, 1	modular orthocom-
σ-algebra, 40, 52	dual, 114 , 119	plemeted lattice, 208
σ-ring, 40, 53	duals, 121	N5 lattice, 140 , 169
3-dimensional Eu-	equational basis, 126	negation, 14
clidean space, 225	Euclidean space, 200	non-Boolean logics, 1
algebra of sets, 40, 45,	<u> -</u>	_
	fully ordered set, 105	O_6 lattice, 10, 18, 25, 198 ,
49, 52 , 52, 59, 60, 71	function, 3, 4, 88, 90	198
algebras of sets, 52, 68,	fuzzy logic, 29 , 29	O ₆ lattice with ortho
71	fuzzy negation, 4	negation, 33
anti-chain, 114	general lattices, 1	O ₆ orthocomplemented
antichain, 112 , 112, 115	greatest lower bound,	lattice, 33
base set, 104	63, 205	open ball, 222 , 222
binary operation, 40	Hasse diagram, 42, 64,	open set, 49
BN ₄ logic, 33	106 , 107	order relation, 105
Boolean 4-valued logic,	Heyting 3-valued logic,	order structures, 129
32	32	ordered pair, 48
Boolean algebra, 35, 53,	Hilbert space, 200	ordered set, 103, 104 ,
60, 115, 135, 173 , 173, 178,	indiscrete topology, 50,	115, 116, 119, 129
189, 190 , 191, 192, 194, 197,	65	ortho lattice, 17–21, 24–
205, 208	intuitionalistic logic, 29 ,	28, 211, 212
	29	
boolean algebra, 205	_	ortho logic, 29 , 29
boolean algebras, 52	intuitionalistic nega-	orthologics, 1
Boolean lattice, 1, 18–22,	tion, 4	ortho negation, 1, 4, 12,
25–29, 173 , 173, 212, 224	intuitionistic negation,	14, 15, 19, 26, 212–214
Boolean lattices, 1	11	ortho negations, 1
Boolean logic, 29 , 29, 30	isomorphism, 129	Orthocomplemented
Boolean logics, 1	join semilattice, 117 ,	lattice, 197
bounded lattice, 1, 3–5,	117	orthocomplemented
7–9, 17, 24, 136, 167, 173, 198,	Kleene 3-valued logic,	lattice, 1, 198 , 198, 200, 201,
200, 205, 208, 212–214, 222,	30	205, 207, 211–214, 216, 217,
224	Kleene logic, <mark>29</mark>	224, 225
bounded lattices, 211,	Kleene negation, 4, 15	orthocomplemented
212	largest algebra, 52	lattices, 198
center, 205, 206, 216 ,	lattice, 1, 5, 6, 8, 17, 19,	orthocomplemented O ₆
216–219	24, 26, 35, 116, 119 , 119–121,	lattice, 18, 25
chain, 105 , 112, 115,	124, 128, 135, 140, 147, 173,	orthomodular lattice,
119, 136	198, 201, 204, 205, 211, 212,	18, 21, 25, 28, 207 , 208
classic logic, 29	214, 221, 222	orthomodular negation,
_		_
classical 2-value logic,	lattice of partitions, 69	4
34 , 34	lattice of topologies, 64,	partially ordered set,
classical 2-valued logic,	65	103, 117, 118
35	lattice with negation, 5 ,	partition, 40, 55 , 55, 59,
classical bi-variate logic,	18, 25, 29, 211–214, 216	113, 115, 136
30	lattice with ortho nega-	partitions, 49
classical implication, 1	tion, 34	paving, 39 , 39, 40
classical logic, 30	lattices, 1, 21, 28, 52, 212	pentagon, <mark>140</mark>
closed ball, 222	least upper bound, 63,	poset, 103, 104
closed set, 49	205	power set, 39 , 39, 40, 49,
closed unit ball, 222 , 223	linearly ordered set, 105	52, 53, 116
complement, 10	logic, 1, 23, 29 , 29	preordered set, 103
complemented lattice,	logics, 1	real valued lattice, 221
167, 200	lower bound, 135	relation, 88, 137, 147
complements, 65, 200	M3 lattice, 151, 169	relations, 98
	meet semilattice, 117,	
de Morgan pagation 4		ring of sets, 40, 45, 49,
de Morgan negation, 4,	118	53 , 53, 55, 59, 61, 71
12, 13	metric lattice, 222	rings of sets, 53–55, 71
diamond, 151	metric space, 222	RM ₃ logic, 31

page 268 Daniel J. Greenhoe Subject Index

Sasaki hook logic, 33	155	topology of sets, <mark>xi</mark>
Serpiński spaces, 50	Cancellation property,	topology on a finite set, 49
set structure, 39 , 39, 40,	148	topology on finite set, 40
55, 59–63	classic 10, 174	totally ordered, 105, 108
smallest algebra, 52	classic 10 Boolean prop-	totally ordered set, 105
subminimal negation, 4	erties, 178	transfer x, 37, 182
subposet, 112	de Morgan's Law, 60	transfer y, 37, 182
supremum, 116	Dilworth, 112	transfer x, 36
topological space, 49	Dilworth's theorem,	transfer y, <mark>36</mark>
topologies, 49, 50, 65	115, 169	transformation, 87
topology, 40, 49 , 50, 53,	distributive inequalities,	transitive, 62, 63, 86 , 86, 87,
59, 65, 71	123	103, 104, 106, 117, 118, 177
topology on a finite set,	Elkan's law, 135	triangle inequality, 221
49	Huntington properties,	trivial topology, 50
	169	
topology on finite set, 40		true, x, 30, 32–35, 37
totally ordered set, 105	Huntington's first set,	
trivial topology, 50	174	unary, 40, 88
unit ball, 222	Huntington's fifth set,	unbounded, 135
unlabeled lattices, 126	189, 191	undecided, 30
upper bound, 135	Huntington's first set,	union, x, 37 , 41 , 44 , 44, 63
subadditive, 221	189 , 189	unique complement, 167
subminimal, 12	Huntington's Fourth	uniquely comp., 35
subminimal negation, 3 , 3, 4,	Set, 194, 205	uniquely complemented, 60,
9, 10	Huntington's fourth set,	148, 167 , 168–170, 206
subposet, 112	189, 190, 191	unit ball, 222
subset, x	Lattice characterization	universal quantifier, xi
subspace lattice, 107	in 2 equations and 5 vari-	universal set, 37 , 41 , 44
subvaluation, 132, 132	ables, 128	unlabeled, 109
super set, x	Lattice characteriza-	unlabeled lattices, 126
supremum, 116	tions in 1 equation, 128	
surjective, xi, 76, 89, 90 , 91–	Median property, 148	upper bound, 6, 115, 116 ,
Suffective, XI, 70, 63, 30, 31-		
· ·		116, 135, 212, 213
93	minimax inequality,	upper bounded, 135 , 135,
93 symmetric, 86 , 86, 87, 137,	minimax inequality, 122–124	upper bounded, 135 , 135, 211
93 symmetric, 86 , 86, 87, 137, 207, 208, 212, 214 , 214, 215,	minimax inequality, 122–124 Modular inequality, 124	upper bounded, 135 , 135,
93 symmetric, 86 , 86, 87, 137, 207, 208, 212, 214 , 214, 215, 221	minimax inequality, 122–124 Modular inequality, 124 modularity inequality,	upper bounded, 135 , 135, 211
93 symmetric, 86 , 86, 87, 137, 207, 208, 212, 214 , 214, 215, 221 symmetric difference, x, 37 ,	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124	upper bounded, 135 , 135, 211
93 symmetric, 86 , 86, 87, 137, 207, 208, 212, 214 , 214, 215, 221 symmetric difference, x, 37 , 41 , 44 , 44	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121	upper bounded, 135 , 135, 211 Utopia, vi
93 symmetric, 86 , 86, 87, 137, 207, 208, 212, 214 , 214, 215, 221 symmetric difference, x, 37 ,	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean,	upper bounded, 135 , 135, 211 Utopia, vi valuation, 132 , 132, 221 , 221–223
93 symmetric, 86 , 86, 87, 137, 207, 208, 212, 214 , 214, 215, 221 symmetric difference, x, 37 , 41 , 44 , 44 symmetry, 103, 216	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values
93 symmetric, 86 , 86, 87, 137, 207, 208, 212, 214 , 214, 215, 221 symmetric difference, x, 37 , 41 , 44 , 44 symmetry, 103, 216 tempered distribution, 100	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170,	upper bounded, 135 , 135, 211 Utopia, vi valuation, 132 , 132, 221 , 221–223 values GLB, 116
93 symmetric, 86 , 86, 87, 137, 207, 208, 212, 214 , 214, 215, 221 symmetric difference, x, 37 , 41 , 44 , 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88 , 196	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116
93 symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering rela-	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33
93 symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40
93 symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded mid-	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121,	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34
93 symmetric, 86 , 86, 87, 137, 207, 208, 212, 214 , 214, 215, 221 symmetric difference, x, 37 , 41 , 44 , 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88 , 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound,
93 symmetric, 86 , 86, 87, 137, 207, 208, 212, 214 , 214, 215, 221 symmetric difference, x, 37 , 41 , 44 , 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88 , 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18,
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61 Bernstein-Cantor-	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189 Stone Representation	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18, 24, 116, 136
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61 Bernstein-Cantor-Schröder, 92	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189 Stone Representation Theorem, 52, 60 there exists, xi	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18, 24, 116, 136 lower bound, 116, 116
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61 Bernstein-Cantor- Schröder, 92 Birkhoff distributivity	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189 Stone Representation Theorem, 52, 60 there exists, xi top, 37	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18, 24, 116, 136 lower bound, 116, 116 maximin, 122
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61 Bernstein-Cantor- Schröder, 92 Birkhoff distributivity criterion, 51, 148, 152, 152	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189 Stone Representation Theorem, 52, 60 there exists, xi top, 37 topological space, 49	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18, 24, 116, 136 lower bound, 116, 116 maximin, 122 minimax, 122
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61 Bernstein-Cantor- Schröder, 92 Birkhoff distributivity criterion, 51, 148, 152, 152 Birkhoff's Theorem, 163	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189 Stone Representation Theorem, 52, 60 there exists, xi top, 37 topological space, 49 topologies, 49, 50, 65, 72	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18, 24, 116, 136 lower bound, 116, 116 maximin, 122 minimax, 122 neither, 33
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61 Bernstein-Cantor- Schröder, 92 Birkhoff distributivity criterion, 51, 148, 152, 152 Birkhoff's Theorem, 163 Byrne's FORMULATION	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189 Stone Representation Theorem, 52, 60 there exists, xi top, 37 topological space, 49 topologies, 49, 50, 65, 72 discrete, 49	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18, 24, 116, 136 lower bound, 116, 116 maximin, 122 minimax, 122 neither, 33 neutral, 30
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61 Bernstein-Cantor-Schröder, 92 Birkhoff distributivity criterion, 51, 148, 152, 152 Birkhoff's Theorem, 163 Byrne's FORMULATION A, 192	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189 Stone Representation Theorem, 52, 60 there exists, xi top, 37 topological space, 49 topologies, 49, 50, 65, 72 discrete, 49 indiscrete, 49	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18, 24, 116, 136 lower bound, 116, 116 maximin, 122 minimax, 122 neither, 33 neutral, 30 order, 40
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61 Bernstein-Cantor- Schröder, 92 Birkhoff distributivity criterion, 51, 148, 152, 152 Birkhoff's Theorem, 163 Byrne's FORMULATION A, 192 Byrne's FORMULATION	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189 Stone Representation Theorem, 52, 60 there exists, xi top, 37 topological space, 49 topologies, 49, 50, 65, 72 discrete, 49 indiscrete, 49 number of, 55	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18, 24, 116, 136 lower bound, 116, 116 maximin, 122 minimax, 122 neither, 33 neutral, 30 order, 40 orthocomplement, 198,
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61 Bernstein-Cantor-Schröder, 92 Birkhoff distributivity criterion, 51, 148, 152, 152 Birkhoff's Theorem, 163 Byrne's FORMULATION A, 192	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189 Stone Representation Theorem, 52, 60 there exists, xi top, 37 topological space, 49 topologies, 49, 50, 65, 72 discrete, 49 indiscrete, 49 number of, 55 trivial, 49	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18, 24, 116, 136 lower bound, 116, 116 maximin, 122 minimax, 122 neither, 33 neutral, 30 order, 40
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61 Bernstein-Cantor- Schröder, 92 Birkhoff distributivity criterion, 51, 148, 152, 152 Birkhoff's Theorem, 163 Byrne's FORMULATION A, 192 Byrne's FORMULATION	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189 Stone Representation Theorem, 52, 60 there exists, xi top, 37 topological space, 49 topologies, 49, 50, 65, 72 discrete, 49 indiscrete, 49 indiscrete, 49 number of, 55 trivial, 49 topology, 40, 49, 50, 53, 59,	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18, 24, 116, 136 lower bound, 116, 116 maximin, 122 minimax, 122 neither, 33 neutral, 30 order, 40 orthocomplement, 198,
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61 Bernstein-Cantor-Schröder, 92 Birkhoff distributivity criterion, 51, 148, 152, 152 Birkhoff's Theorem, 163 Byrne's FORMULATION A, 192 Byrne's FORMULATION B, 194	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189 Stone Representation Theorem, 52, 60 there exists, xi top, 37 topological space, 49 topologies, 49, 50, 65, 72 discrete, 49 indiscrete, 49 indiscrete, 49 indiscrete, 49 topology, 40, 49, 50, 53, 59, 65, 71	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18, 24, 116, 136 lower bound, 116, 116 maximin, 122 minimax, 122 neither, 33 neutral, 30 order, 40 orthocomplement, 198, 198
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61 Bernstein-Cantor-Schröder, 92 Birkhoff distributivity criterion, 51, 148, 152, 152 Birkhoff's Theorem, 163 Byrne's FORMULATION A, 192 Byrne's FORMULATION B, 194 Byrne's Formulation A,	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189 Stone Representation Theorem, 52, 60 there exists, xi top, 37 topological space, 49 topologies, 49, 50, 65, 72 discrete, 49 indiscrete, 49 indiscrete, 49 number of, 55 trivial, 49 topology, 40, 49, 50, 53, 59, 65, 71 discrete, 64	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18, 24, 116, 136 lower bound, 116, 116 maximin, 122 minimax, 122 neither, 33 neutral, 30 order, 40 orthocomplement, 198, 198 true, 30, 32–34
symmetric, 86, 86, 87, 137, 207, 208, 212, 214, 214, 215, 221 symmetric difference, x, 37, 41, 44, 44 symmetry, 103, 216 tempered distribution, 100 ternary, 88, 196 ternary rejection, 196 test function, 100 the law of the excluded middle, 95 theorems algebraic ring properties of rings of sets, 61 Bernstein-Cantor-Schröder, 92 Birkhoff distributivity criterion, 51, 148, 152, 152 Birkhoff's Theorem, 163 Byrne's FORMULATION A, 192 Byrne's FORMULATION B, 194 Byrne's Formulation A, 189	minimax inequality, 122–124 Modular inequality, 124 modularity inequality, 124 Monotony laws, 121 ortho+distributivity=Boolean, 1 Peirce's Theorem, 170, 171 Pointwise ordering relation, 111 Principle of duality, 121, 174, 205 Stone, 189 Stone Representation Theorem, 52, 60 there exists, xi top, 37 topological space, 49 topologies, 49, 50, 65, 72 discrete, 49 indiscrete, 49 indiscrete, 49 indiscrete, 49 topology, 40, 49, 50, 53, 59, 65, 71	upper bounded, 135, 135, 211 Utopia, vi valuation, 132, 132, 221, 221–223 values GLB, 116 LUB, 116 both, 33 cardinality, 40 false, 30, 32–34 greatest lower bound, 116, 118 infimum, 116 least upper bound, 18, 24, 116, 136 lower bound, 116, 116 maximin, 122 minimax, 122 neither, 33 neutral, 30 order, 40 orthocomplement, 198, 198 true, 30, 32–34 undecided, 30

LICENSE Daniel J. Greenhoe page 269

```
weak double negation, 4, 6, 28, 31 width, 112, 113, 115 9–13, 212 weak modus ponens, 17–21, weak entailment, 17, 21, 24, 24–28, 31, 32, 34 Z-Transform, xii zero, 36
```

License

This document is provided under the terms of the Creative Commons license CC BY-NC-ND 4.0. For an exact statement of the license, see

```
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
```

The icon expearing throughout this document is based on one that was once at https://creativecommons.org/

where it was stated, "Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license."

page 270 Daniel J. Greenhoe LAST PAGE

