Department Of Mathematics Indian Institute Of Technology Delhi MAL 390 – Statistical Methods and Algorithms Major Test – 01-05-2015

Time: Two Hour Total Marks: 30

Q1. Consider the following bi-variate data table:

X	4	1	1	3	4	3	2	2	4	3	2	1	2	4	3	1
Y	1	1	4	1	4	2	4	3	3	4	2	3	1	2	3	2

Fit the two regression lines Y = a + bX and X = c + dY using the Least Square method and solving Normal equations.

What is the angle between the two lines? Justify your answer.

Use Least square theory to find the regression coefficients Y is regressed on $\alpha + \beta X$ for two non-zero constants α and β .

$$[3+1+2=6]$$

Q2. (a) Explain the Wilcoxon Signed Rank test for comparing the central tendencies of two populations.

Explain how Kendall's Tau is used for computing the correlation between bi-variate observations.

Compute the value of Tau for the following data:

X	4	1	5	3	2	
Y	1	3	4	2	5	

[2+2+2=6]

Q3. (a) Prove or Disprove: If T is the Maximum Likelihood estimator for θ , and Ψ is a strictly monotonic function, then $\Psi(T)$ is Maximum Likelihood estimator for $\Psi(\theta)$.

Prove or Disprove: If T is sufficient for θ , then T is also Maximum Likelihood estimator for θ .

Find the Maximum Likelihood estimate for $\frac{1}{\theta}$ from one observation on the random variable $X \sim \theta (1 - \theta)^{x-1}$, x = 1, 2, 3, ...

[2+2+2=6]

- Q4. (a) Distinguish between Most Powerful and Uniformly Most Powerful Critical regions while testing a statistical hypothesis.
 - (b) Use Neyman-Pearson Lemma to construct the Most Powerful Critical Region for testing $H_0: \theta = \theta_0$ vs. H1: $\theta = \theta_1$ where $\theta_0 < \theta_1$, based on a sample of size n taken from N(0, θ), at 95% level of confidence. Note: θ stands for the variance.

[2+4=6]

- Q5. (a) Describe the Lehmer's algorithm for generating random numbers.
 - (b) Suppose the following 10 random numbers are generated in the range 1 100:

15, 92, 81, 23, 18, 73, 64, 95, 41 and 32.

Use the above numbers to generate 10 random numbers from N(0,1) population. Justify your answer.

13 + 3 = 6