Questions: Introduction to complex numbers

Tom Coleman

Summary

A selection of questions for the study guide on introduction to complex numbers.

Before attempting these questions, it is highly recommended that you read Guide: Introduction to complex numbers.

Q1

Using complex numbers, find solutions to the following equations.

- 1.1. $x^2 = -1$
- 1.2. $x^2 + 9 = 0$
- 1.3. $y^2 + 160 = 16$
- 1.4. $x^2 1 = 0$

$\mathbf{Q}\mathbf{2}$

For each of the complex numbers below, give their real and imaginary parts. (In this question, a,b are real numbers.)

- 2.1. $z_1 = 2 + 3i$.
- 2.2. $z_2 = -23 + 32i$.
- 2.3. $z_3 = 3 3i$.
- 2.4. $z_4 = 3i$.
- 2.5. $z_5 = -3 2i$.
- 2.6. $z_6 = a + 2bi$.
- 2.7. $z_7 = 2$.
- 2.8. $z_8 = 3/2 + 2i/3$.
- 2.9. $z_9 = 22 33i$.
- 2.10. $z_{10} = 333 + 22i$.

$$2.11. \hspace{0.5cm} z_{11} = 2i - 2.$$

2.12.
$$z_{12} = -3i - 2$$
.

Q3

Find the complex conjugate for every complex number in Q2.

Q4

Draw z_1, z_4, z_5, z_7 and their conjugates on the same Argand diagram, making sure to label both your axes and each complex number on the diagram. Can you spot a relationship between a complex number and its conjugate, with respect to the Argand diagram?

After attempting the questions above, please click this link to find the answers.

Version history and licensing

v1.0: initial version created 10/24 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.