Алонзо Чёрч ~ 40 годы. Развитие идеи, что все - функция

Рассмотрим алфавит

$$pre - \lambda - term \ T := \left\{ egin{aligned} x \ (variable; set \ of \ small \ letter \ with \ indices); \ (T,T) \ (application); \ \lambda x. \ T \ (abstraction). \end{aligned}
ight.$$

х, у - метапеременные для переменных большие буквы - метапеременные для Т

Назовем два $pre-\lambda-terms$ (P, Q) α - эквивалентными, если

2. P = (S₁T₁) Q = (S₂T₂) и S₁ =
$$\alpha$$
S₂, T₁ = α T₂

3. Р =
$$(\lambda x.\,A)\,Q\,=\,\lambda y.\,B\,and\,A[x:=t]B[y:=t]\,t$$
 - свободная переменна

Равенство <=> текстовое совпадение

$$A[x := B] = \left\{ egin{aligned} B, \ A = x \ A, \ A = y, \ y! = x \ P[x := B] \ Q[x : B] \ A = (PQ) \ \lambda y. \ p[x := B] \ if \ A = \lambda y. \ P \ and \ y \
eq x \ A \ if \ A = \lambda x. \ P \end{aligned}
ight.$$

Example

$$(\lambda x. (\lambda y. (yx)))[x := p] \rightarrow \lambda t. [(\lambda y. (y. x))][x := p] \rightarrow \lambda t. \lambda y ((y. x)[x := p]) \rightarrow \lambda t. \lambda y. y[x := p]x[x := p] \rightarrow (\lambda t. (\lambda y. yp))$$

- 1. аппликация левоассоциативна: x. y. r. t = (((xy)r)t)
- 2. λ берёт всё, что дают: $((\lambda a. (\lambda b(((((ab)c)d)e))f)g)$

$$FV(T) = \left\{ egin{aligned} \{x\}, T = x \ FV(P) \cup FV(Q), T = PQ \ FV(P) \setminus \{x\}, T = \lambda x. \ P \end{aligned}
ight.$$

lambda term - класс эквивалентности lambda-term'ов по отношению эквивалентности

 $def \beta$ -редекс

 $\operatorname{def} \alpha \mathrel{->_{\beta}} \mathsf{B}$ находятся в отношении β - редукции, если

- 1. A = PQ B = RS. P -> $_{\beta}$ R Q = $_{\alpha}$ S либо (знаки отрази)
- 2. A B редекс A = (λ x.P) Q, B = p[x := Q] при условии, что Q обобщается для подстановки для x в P

example

$$\begin{split} \lambda a.\,\lambda b.\,a &- \mathrm{M} = T \\ \lambda a.\,\lambda b.\,b &- \mathrm{H} = F \\ And &= \lambda x.\,\lambda y.\,x\,y\,F \\ And\,T\,F = ((\lambda x.\,\lambda yx\,y\,F)T)F \rightarrow_{\beta} ((\lambda y.\,x\,y\,F)[x:=T])F = \\ &= (\lambda y.\,T\,y\,F)F \rightarrow_{\beta} T\,F\,F = ((\lambda a.\,\lambda b.\,a)F)F) \rightarrow_{\beta} (\lambda b.\,F)F \rightarrow_{\beta} F \end{split}$$

Чёрчевские нумералы

$$\lambda f. \lambda x. f^n x$$

$$f^k(x)=\left\{egin{array}{l} x,n=0\ f(f^{n-1},n>0) \end{array}
ight.$$

$$\overline{2} = \lambda n. \lambda f. \lambda x. n f (f x)$$

Карринг: a(+) b: let plus a = fun x -> x + a

plus 1 3 = (plus 1)
$$3 = 4$$

def Нормальная форма - нет ни одного β -редексов (невозможно редуцировать)

example:
$$\omega = \lambda f. \lambda x. x. x$$

$$\Omega = \omega \omega$$

statement Ω не имеет норм.

$$(\lambda x. x. x)\omega = \omega. \omega$$

У выражения существует нормальная форма, если существует последовательность \to_{β} , приводящая к нормальной форме

Теорема Чёрча Росса

Существует не более одной нормальной формы у любого выражения

def *Транзитивное, рефлексивное и симметричное замыкание* (\to_{β}) - отношение β -редуцируемости (β -редукции)

Если для A и B существует конечная поледовательность X $_{\rm n}$... X $_{\rm n}$ X $_{\rm 1}$ = A, X $_{\rm n}$ = B, $X_i
ightarrow_{eta} X_{i+1}$

To
$$A \rightarrow_{\beta} B$$

def Транзитивное, рефлексивное и симметричное замыкание (\rightarrow_{β}) - есть $(=_{\beta})$

R-отношение $\subseteq U^2$

R обладает ромбовидным свойством, если для любых A, B, C $\in U$

1.
$$B \neq C$$

2.
$$(A, B) \in R \ (A, C) \in R$$

Существует $D \in U$:

$$(B,D)\in R\ (C,D)\in R$$

eta-редукция не обладает ромбовидным свойством

 def комбинатор - λ -выражение без свободных переменных

 $Identit\ddot{a}t = \lambda x. x$

 $verSchmelrung = \lambda x.\,\lambda y.\,\lambda z.\,x\;z\;(y\;z)$

Теорема Чёрча Росса

 $(\twoheadrightarrow_{\beta})$ обладает ромбовидным свойством

 $\mathsf{def} \ (\Rightarrow_{\beta})$ отношение параллельной β -редукции

 $A \rightrightarrows_{\beta}$, если

1.
$$A \equiv \lambda x. P, B = \lambda x. Q, P \Longrightarrow_{\beta} Q$$

2.
$$A = (\lambda x. \, P)Q, B = P[x = Q]$$
 (если есть в каждой подстановке)

3.
$$A = P_1Q_1, B = P_2Q_2$$

$$P_1 = P_2 \text{ or } P_1 \rightrightarrows_{\beta} P_2$$

$$Q_1=Q_2\ or Q_1
ightrightarrows_eta\ Q_2$$

4.
$$A = x, B = x, x \Longrightarrow_{\beta} x$$

stat схема доказательства Чёрча Росса

- 1. (\Rightarrow_{β}) обладает ромбовидным свойством
- 2. Если R обладает ромбовидным свойством, то R^* транзитивное замыкание обладает ромбовидным свойством
- 3. Из (1) и (2) следует, что $(\Rightarrow_{\beta})^*$ обладает ромбовидным свойством
- 4. $(\rightarrow_{\beta}) \subseteq (\rightrightarrows_{\beta})$
- 5. $(\Longrightarrow_{\beta})^* \subseteq (\twoheadrightarrow_{\beta})$
- 6. $(\Longrightarrow_{\beta})^* = (\twoheadrightarrow_{\beta})$
- 7. $(--)_{\beta}$) обладает ромбовидным свойством

Следствие из теоремы Чёрча Росса

У λ -терма не может быть двух не равных нормальных форм

Пусть
$$A woheadrightarrow_{\beta} X, A woheadrightarrow_{\beta} Y$$
, причём $X \neq Y$

Тогда по ромбовидному свойству существует $T:X \twoheadrightarrow_{\beta} T,\ Y \twoheadrightarrow_{\beta} T$

Если
$$X=T,Y=T$$
, то $X=Y$ невозможно

Значит одно из равенств не выполняется, пусть $X \neq T$

Значит Х - ненормальная форма А

 $\mathsf{def}\left(=_{\beta}\right)$ - транзитивное, рефлексивное и симметричное замыкание (\to_{β})

Ү - комбинатор

Оператор неподвижной терма

$$\Omega = (\lambda x. x x)(\lambda x. x x)$$

$$Y = \lambda f. (\lambda x. f(x x))(\lambda x. f(x x))$$

$$x =_{\beta} A x$$
, $x = ?$

Давайте рассмотрим x = YA

$$\begin{array}{l} YA =_{\beta} A(YA) \\ YA = (\lambda f.\,(\lambda x.\,f(x\,x))(\lambda x.\,f(x\,x)))A \to_{\beta} \\ (\lambda x.\,A(x\,x))(\lambda x.\,A(x\,x)) \to_{\beta} A[(\lambda x.\,A(x\,x))(\lambda x.\,A(x\,x))] \\ Fact = \lambda f.\,\lambda a.\,((>)\,a\,\,0) \\ ((*)\,a\,[f\,((-1)\,a)])\,1 \\ ---- \\ (Y\,Fact)\,3 \to Fact\,(Y\,Fact)\,3 \to_{\beta} \\ (*)\,3\,((Y\,Fact)\,2) \to (*)\,3\,[(*)\,2\,[(*)\,1\,[Y\,Fact\,0]]] \end{array}$$

Нормальный порядок редукции

def самый левый редекс - это редекс с минимальной редукцией его первого символа

Нормальный порядок редукции - редуцируете самый левый редекс

Теорема

Если нормальная форма существует, то она может быть получена п. л. (??)

Введём импликацию: Э, аксиомы:

- $(A\supset (A\supset B))\supset (A\supset B)$
- $(A\supset A)$
- $A =_{\beta} B \implies A \supset B \& B \supset A$

Теория противоречива, если $\vdash \alpha$

$$\Phi_A:\Phi_A=_{\beta}\Phi_A\supset A$$

$$egin{aligned} \Phi_A &=_eta \Phi_A \supset A \ \Phi_A \supset (\Phi_A \supset A) \ (\Phi_A \supset (\Phi_A \supset A)) \supset (\Phi_A \supset A) \ \Phi_A \supset A(\Phi_A \supset A) =_eta \Phi_A \end{aligned} \ egin{aligned} \Phi_A &= Y(\lambda x. \, x \supset A) =_eta \ (\lambda x. \, x \supset A)[Y(\lambda x. \, x \supset A)] = [Y(\lambda x. \, x \supset A)] \supset A \end{aligned} \ X &= \{a \mid a \not\in a\} \ \emptyset - 0 \ type \ \{\emptyset\} - 1 \ type \ \{\{\emptyset\}\} - 2 \ type \ \{\{\emptyset\},\emptyset\} = \overline{2} \ a \not\in a \ n \ n + 1 \end{aligned}$$

$$T::=T_{\lambda}\mid T o T$$
 $T_{\lambda}=\{lpha,eta,\gamma\}$ - множество элементарных (атомарных) типов Λ -выражение A имеет тип au в контексте Γ $\Gamma\vdash A: au$ $\Gamma=\{x_1: au_1;x_2: au_2;\dots;x_n: au_n\}$ если:

1.
$$\overline{\Gamma,x:\tau\vdash x: au}$$
 х не входит в Γ (аксиома) 2. $\frac{\Gamma,x:\tau\vdash A:\sigma}{\Gamma\vdash\lambda x.\ A: au o\sigma}$ х не входит в Γ (введение имплации)

3.
$$\frac{\Gamma \vdash A: au o \sigma \; \Gamma \vdash B: au}{\Gamma \vdash (A\; B): \sigma}$$
 (удаление импликации)

Просто-типизированное λ -исчисление (по Карри)

Импликационный фрагмент ИИВ

Термы:

- 1. α, β, γ (переменные)
- 2. $(\tau \rightarrow \sigma)$

А. Гильбертовский вид:

1.
$$\alpha \rightarrow \beta \rightarrow \alpha$$

2.
$$(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta \rightarrow \gamma)$$

3. M.P.
$$\frac{\alpha \ \alpha \to \beta}{\beta}$$

В. Нормальный вывод:

$$\frac{\left[\text{посылка }1,\left[\text{посылка }2\left[\dots\right]\right]\right]}{\text{заключение}}$$

1. Аксиома:
$$\overline{ au o au}$$

2. Ввод импликации:
$$\frac{\sigma \tau}{\sigma}$$

2. Ввод импликации:
$$\frac{\sigma \, au}{\sigma o au}$$
3. Удаление импликации: $\frac{\sigma \, \sigma}{\sigma} \to au$

$$\begin{array}{c} \overline{\Gamma, x:\tau \vdash x:\tau} \\ \underline{\Gamma, x:\sigma \vdash B:\tau} \\ \overline{\Gamma \vdash \lambda x.B:\sigma \rightarrow \tau} \\ \underline{\Gamma \vdash A:\sigma \ \Gamma \vdash B:\sigma \rightarrow \tau} \\ \underline{\Gamma \vdash B:A:\tau} \end{array}$$

Закон Пирса: ((lpha
ightarrow eta)
ightarrow lpha)
ightarrow lpha

0. Сохранение типа:
$$A \to_{\beta} B, \Gamma \vdash A : \alpha \implies \Gamma \vdash B : \alpha$$

1. Теорема Чёрча-Россера для просто-типизированного λ -исчисленияС

$$\vdash A : \alpha
A \to_{\beta} B
A \to_{\beta} C$$

Тогда существует $\Gamma \vdash D : \alpha$, что $B \twoheadrightarrow_{\beta} D$ и $C \twoheadrightarrow_{\beta} D$

2. Теорема об Изоморфизме Карри-Ховарда

$$(\Longrightarrow)$$
 Пусть $\Gamma \vdash A: \alpha$, тогда $|\Gamma \Vdash_{\text{и и в}} |\alpha|$ $|\Gamma| = |\{x_1: \tau_1, \ldots, x_n: \tau_n\}| = \{|\tau_1|, \ldots, |\tau_n|\}$ $|\tau|$ - отображение типа в высказывание (\Longleftrightarrow) Пусть $\Gamma \vdash \alpha$

Тогда найдётся
$$\Gamma': |\Gamma'| = \Gamma, |lpha'| = lpha'.$$
 существует А, что $\Gamma' \vdash A: lpha'$

Доказательство: индукция по структуре

Изоморфизм К-Х

тип - высказывание

терм - докозательство

свободная переменная - гипотеза

3. О замкнутости ИФИИВ (интуиционный фрагмент ИИВ)

```
Пусть \alpha - формула с "\to" только (без &, |, !) 
Тогда \vdash_{\text{имв}} \alpha \iff \vdash_{\text{ифиив}} \alpha
```

Исчисление по Чёрчу

```
\Lambda ::= X - variable \ |(\Lambda \ \Lambda)| \ (\lambda x^{	au}. \ \Lambda), \ x имеет тип 	au е.g. паскаль чуть больше, чем Чёрчу хаскель и окамль - типизация по Карри по Черчу - точно определяем тип
```

 $\lambda x:\sigma.\,A$ - альтернативный синтаксис

Теорема: ИФИИВ замкнут относительно доказуемости

```
\vdash_{\text{иив}} \alpha \Longrightarrow \vdash_{\text{ифиив}} \alpha
\Leftarrow : \vdash_{\text{ифиив}} \alpha \Longrightarrow \vdash_{\text{иив}} \alpha \text{ очевидно}
\Rightarrow : \vdash_{\text{иив}} \alpha \Longrightarrow \vdash_{\text{ифиив}} \alpha
```

Теорема: модели Крипке полны для ИИВ

 $\Gamma dash \phi \Leftrightarrow orall$ шкал (моделей) Крипке С $dash_C \Gamma \implies dash_C \phi$

Теорема Полнота интуционного фрагмента

```
\Gamma \vdash_{\mathsf{M} \, \Phi} \alpha \Leftrightarrow C— модель Крипке \Vdash_C \Gamma \implies \Vdash_C \alpha (вынуждено)
⇒ очевидно
\Leftarrow пусть \Gamma \nvdash_{\mathsf{M} \, \Phi} \, \alpha
W = \{ \Delta \mid \Gamma \subseteq \Delta, \Delta \text{ замкнуто относительно } \vdash_{\mathsf{M},\Phi} \}
\{\Delta \mid \Gamma \subseteq \Delta, if \ \Delta \vdash \beta, then \ \beta \in \Delta\}
w_0 \leqslant w_1 \Leftrightarrow w_0 \subseteq w_1
w_2 \Vdash p \Leftrightarrow p \in w_2
(р - пропозициональная переменная)
Покажем, что w_i \Vdash \alpha \Leftrightarrow \alpha \in w_2
По предположению теоремы \Gamma \Vdash \alpha во всех моделях, в том числе и в этой, значит, \Vdash_w \alpha
Значит, \Gamma \vdash_{\mathsf{M} \Phi} \alpha (по определению \Vdash)
По предположению теоремы, \Vdash_C \Gamma влечёт \Vdash_C \alpha в любой С
Возьмём w в каждой С
Заметим, что \Vdash_w \Gamma \implies \Vdash_w \alpha (по ф Т)
Также очевидно \Vdash_w \Gamma. Значит, \Vdash_w \alpha
Значит, \Gamma \vdash_{{}_{\mathsf{H}}\,\Phi} \alpha (по определению \Vdash)
```


1. Пусть
$$A:(lpha olpha) o(lpha olpha)$$
 (= u) $F:
u o
u o
u$ (u - это тип числа)

def

$$E(a,b) = egin{cases} p_1, a = b = 0 \ p_2(a), b = 0 \ p_3(b), a = 0 \ p_4, (a,b), a, b > 0 \end{cases}$$

 $E:\mathbb{N}^2 o\mathbb{N}$

 $p_i(a,b)$ - полином

$$p^{k_i}(a,b) = x_1 a^{k_1} b^0 + x_2 a^{k_1-1} b^1 + \ldots + x_{k_1+i,k_1} a^0 b^{k_1} + p^{k_1-1}(a,b) = \sum_{0 \leqslant i,j < k} y_{ij} a^i b^j p^0(a,b) = x_0$$

 ${f def}$ f(a, b) - полином от а и b, если существует k, существует $\{y_{ij}\}_{0\leqslant i,j< k}$, что $f(a,b)=\sum_{0\leqslant i,j,< k}y_{ij}a^ib^j$

Тогда существует E(a, b): для любых а и b: $F\overline{a}\overline{b}=_{\beta}\overline{E(a,b)}$ (результат функции eta-эвивалентен)

Теорма $\lambda_{ ightarrow}$ сильно нормализуемо

Любой терм A: lpha сильно нормализуем

	λ		логика	решение
e.g.	$?\vdash ?:? // (\ dash \lambda x. x: lpha ightarrow lpha$)			
1.	$\Gamma/?\vdash ?: lpha$	"Задача обитаемости типа"	существует ли доказательство α в контексте Γ	перебор деревьев
2.	$\Gamma/? \vdash M:?$	"Вывод типа / реконструкция типа"	Понять, что доказываем	унификация
3.	$\Gamma \vdash M : \alpha$	"Проверка вывода"	дз номер 2 по мл	сводится ко второй

все 3 задачи решаются в $\lambda_{
ightarrow}$ (экспоненциальные алгоритмы)

В исчислении сложнее, чем лямбда-исчисление неразрешимы все 3 задачи. (ех: исчисление предикатов)

Алгоритм унификации, Задача реконструкции типа, Расширение языка

```
\begin{split} \Gamma \vdash M : ? \\ ? \vdash M : ? \\ ? \vdash Y : ? \end{split}
```

Алгебраический терм - либо переменная: $A ::= X \mid (f \ A \dots A)$

```
e.g. f (u a a) (u b x) X - множество переменных F - множество функциональных символов \{f_n\} f_n T_1 \dots T_n, где f_n - n-местный функциональный символ
```

Подстановка: S_o - подстановка переменных

$$S_0:X o A$$

 S_0 тождественна почти везде (кроме конечного количества переменных)

$$S_0$$
 задаётся $(< x_1, T_1>, \ldots, < x_k, T_k>)$

$$S_o(P) = Q$$

 S_0 задаётся $(< a, f \ x \ x >)$

Тогда
$$S_0(a) = f x x$$

$$S_0(x) = x$$

$$S_o(b) = b$$

$$S_0(a) = \left\{egin{aligned} T_i, a = x_i \ a, ext{HeT} \ i: \ a = x_i \end{aligned}
ight. \ S(T) = \left\{egin{aligned} f_n(S(T_1)) \ldots (S(T_n)), T = f_n \ T_1 \ldots T_n \ S_0(x), T = x \end{aligned}
ight.$$

def *задача унификации*: пусть задано уравнение в алгебраических термах: $T_A = T_B$. Найти такую S (<все такие S>), что $S(T_A) \equiv S(T_B)$.

e.g.
$$f\left(g\ a\ b\right)\ t=f\ p\ (g\ a\ b)$$
 $S_0(p)=S_0(t)=g\ a\ b$ - решение $S_o(a)=h\ u\ v\ w$ - тоже решение. И если соберём подстановки вместе - тоже решение

$$\mathsf{def}\: S, T$$
 - подстановки, $S\circ T, S\circ T(A) = S(T(A))$

def будем говорить, что S - *наиболее общее решение*, если для любого U существует $T:\,U=T\circ S$

$$S(p)=S(t)=g\ a\ b$$
 - более общее решение, так как $T(a)=h\ u\ v\ w$, $U=T\circ S$

 def подстановка U - частный случай подстановки S, если существует $T:\ U = T \circ S$

def решение \equiv *унификатор*

def система уравнений
$$egin{cases} P_1=Q_1 \\ \dots & \text{эквивалента} \\ P_n=Q_n \end{cases} egin{cases} M_1=N_1 \\ \dots & \text{, если для любой подстановки при} \\ M_k=N_k \\ i=\overline{1,n} \ S(P_i)\equiv S(Q_i) \ \text{выполнено} \ S(M_j)\equiv S(N_j) \ \text{при} \ j=\overline{1,k} \ \text{и наоборот} \end{cases}$$

Теорема

Для любой решение системы $\left\{egin{align*} P_1=Q_1 \\ \dots & \text{существует эквивалентное уравнение } M=N \\ P_n=Q_n \end{array}\right.$

Доказательство:

Пусть z_n - свежий (не используемый выражением выше) n-местный функциональный символ

Тогда
$$M:=z_n$$
 $P_1 \dots P_n$

$$N := z_n \quad Q_1 \dots Q_n$$

(индукция дальше)

def система уравнений имеет разрешенную форму, если оно имеет следующий вид:

1.
$$\left\{egin{array}{l} X_1 = T_1 \ \dots \ X_n = T_n \end{array}
ight.$$

2. Каждый X_i входит в систему ровно 1 раз

Теорема

Если система в разрешенном виде, то наиболее общее решение устроино так:

$$(\langle x_1, T_1 \rangle, \langle x_2, T_2 \rangle, \ldots, \langle x_n, T_n \rangle)$$

Доказательство: индукция 🗆

def система *несовместна*, если в системе есть уравнение вида: $x_i = f \dots x_i \dots, x_i$ входит в правую часть, но не равен ей

А также:
$$g_k \ T_1 \dots T_k = f_n \ Q_1 \dots Q_n$$
 $x_i = f \dots x_i \dots$ $q_k
eq f_n$

fact несоместная система не имеет решений (доказывается по индукции)

Алгоритм унификации

последовательность шагов - переписывание системы

- 1. T=x, где T не переменная $\Rightarrow x=T$
- 2. $x = x \Rightarrow \emptyset$
- 3. $f_k P_1 \dots P_k = g_l Q_1 \dots Q_l$

$$\circ$$
 Если $l=k$ и $f_k=g_l\Rightarrow \left\{egin{align*} P_1=Q_1 \ \dots \ P_k=Q_k \end{array}
ight.$ (редукция терма)

- система несовместна
- 4. Пусть $x=T\,$ и x входит куда-то ещё $P=Q\,$

(ислючение переменной)

$$\begin{cases} P_1 = Q_1 \\ \dots \\ P_s = Q_s \end{cases} \Rightarrow \begin{cases} P_1[x := T] = Q[x := T] \\ \dots \\ P_s[x := T] = Q_s[x := T] \end{cases}$$

Теорема

- 1. Алгоритм завершается за конечное время
- 2. Каждый шаг приводит к эквивалентной системе

Доказательство (hint):

Второй пункт - рутинная проверка

Первый пункт - индукция по тройке:

 (n_1, n_2, n_3) :

 n_1 - количество "неразрешённых" переменных

Разрешённая переменная - входящая в одно уравнение слева от равенства

 n_2 - общее количество вхождений функциональных символов в систему

 n_3 - количество уравнений типов (1) и (2)

Дальше индукция в лексикографическом порядке - упорядочить и have fun

// Неформально можно доказать:

- 1. Каждый шаг уменьшает тройку
- 2. У тройки есть минимум (невозможно уменьшать бесконечно)
- 3. Алг м либо приводит к несовместной, либо к разершённой

Аккуратное доказательство: 3 индукции

Когда мы доходим до (0, р, 0) - система в разрешённо форме

Сведние задачи унификации к задаче типизации

Рассморим λ -терм M по терму построим E_M - систему уравнений в алгебраических термах, где переменные - это переменные, а $f_2 \equiv (\to)$ и au_M - тип

	E_M	$ au_M$
$M\equiv x$	Ø	$lpha_x$ - свежая типовая переменная
$M \equiv PQ$	$E_p \cup E_Q \cup \{ au_p = au_q ightarrow lpha_M\}$	$lpha_M$ - свежая типовая переменная
$M \equiv \lambda x. P$	E_p	$ au_m = lpha_x ightarrow au_p$

Теорема

- 1. $\Gamma \vdash M:\sigma$, то существует решение S для E_M , чт $\sigma = S(au_M), S(lpha_x) = \Gamma(x), (x:S(lpha_x \in \Gamma))$
- 2. Пусть S решение E_M , $\Gamma = \{x: S(lpha_x)\}_x$. Тогда $\Gamma dash M: S(au_m)$