мАи

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (национальный исследовательский университет)»

ОТЧЕТ ПО КУРСОВОЙ РАБОТЕ

по дисциплине «Системы массового обслуживания»

Студент:	Дюсекеев А. Е.
Группа:	M8O-101M-21
Руководитель	: Борисов А. В
Оценка:	
Лата:	

Содержание

Постановка задачи	3
Теоретическая часть	4
Выполнение работы	9
Задание 1	9
Задание 2	11
Задание 3	13
Задание 4-7	17
Выводы	21

Постановка задачи

Пусть $X = \{X_t, t = 0,1,2...\}$ — однородная марковская цепь со множеством состояний $\{e_1,e_2,e_3,e_4\}$ $\{e_k-k$ — й единичный вектор — столбец) и матрицей переходных вероятностей

$$P = \begin{bmatrix} 0 & 1 & 0 & 0\\ \sin^2(\frac{\pi n}{5}) & 0 & \cos^2(\frac{\pi n}{5}) & 0\\ 0 & 0 & 0 & 1\\ \cos^2(\frac{\pi n}{10}) & 0 & \sin^2(\frac{\pi n}{10}) & 0 \end{bmatrix}.$$
(1)

Начальное распределение $\pi_0 =$

$$(\frac{1}{2}sin^2(\frac{\pi n}{6}), \frac{1}{2}cos^2(\frac{\pi n}{6}), \frac{1}{2}sin^2(\frac{\pi n}{12}), \frac{1}{2}cos^2(\frac{\pi n}{12}))^T$$
 (n – номер студента в группе).

Цепь доступна косвенному наблюдению

$$Y_t = CX_t + \sigma X_t V_t, \qquad t = 1,2,3,...,$$
 (2)

где $\{V_t\}$ — последовательность независимых стандартных гауссовских случайных величин,

$$C = (1, 2, 3, 4), \qquad \sigma = (5, 6, 7, 8).$$

- 1. С помощью метода производящих функций найти эволюцию распределения $\pi(t)$ в зависимости от момента времени t.
- 2. Выяснить, является ли марковская цепь X эргодической. Найти все стационарные распределения.
- 3. По наблюдениям (2) построить
 - 3.1. тривиальную оценку $\tilde{X}_t = M[X_t]$, ее ошибку $\tilde{\Delta}_t = \tilde{X}_t X_t$ и безусловную ковариационную матрицу ошибки оценки $\tilde{k}_t = cov(\tilde{\Delta}_t, \tilde{\Delta}_t)$,
 - 3.2. наилучшую линейную оценку фильтрации \bar{X}_t , ее ошибку $\bar{\Delta}_t = \bar{X}_t X_t$ и безусловную ковариационную матрицу ошибки оценки $\bar{k}_t = cov(\bar{\Delta}_t, \bar{\Delta}_t)$,
 - 3.3.наилучшую нелинейную оценку фильтрации $\hat{X}_t = M[X_t|Y_1,...,Y_t]$ ее ошибку $\hat{\Delta}_t = \hat{X}_t X_t$ и условную ковариационную матрицу ошибки оценки $\hat{k}_t = cov(\hat{\Delta}_t, \hat{\Delta}_t|Y_1,...,Y_t)$.
- 4. Путем осреднения по пучку траекторий (1 000 000 реализаций) построить безусловную ковариационную матрицу ошибки оценки $\hat{\mathbf{k}}_t = cov(\widehat{\Delta}_t, \widehat{\Delta}_t)$.
- 5. Результаты оценивания состояний марковской цепи X_t и соответствующие ковариационные матрицы привести в виде таблиц и графиков.
- 6. Выполнить пункты 3-5 для $\sigma = (50, 60, 70, 80)$ и $\sigma = (100, 100, 100, 100)$.
- 7. Проанализировать полученные результаты и сделать выводы.

Теоретическая часть

Определение 1. Случайный процесс с дискретным временем, сечение которого является дискретной случайной величиной, называется цепью.

Определение 2. $X = (\{X_n\}, \{\mathcal{F}_n\})$ - стохастическая последовательность, если для любого натурального п X_n - F_n - измеримая случайная величина.

Определение 3. Стохастическая последовательность $X = (\{X_n\}, \{\mathcal{F}_n\}),$ принимающая значения из конечного или счетного множества называется марковской цепью (МЦ), если $\forall n \geq m > 0, \ \forall B \in \mathcal{B}(\mathbb{R})$ - борелевское множество:

$$P\{X_n \in B | \mathcal{F}_m\} = P\{X_n \in B | X_m\}$$

В простейшем случае условное распределение последующего состояния МЦ зависит только от текущего состояния и не зависит от всех предыдущих состояний.

Будем рассматривать МЦ с дискретным временем с пространством состояний $E = \{e_1, \dots, e_k, \dots\}$.

Определение 4. Матрица P(n), где $P_{i,j}^{(n)} = P(X_n = e_i | X_{n-1} = e_j)$, называется матрицей переходных вероятностей на n-м шаге.

Определение 5. Вероятность $\pi_k(n) = P\{X_n = e_k\}$, $e_k \in E$, называется вероятностью состояния e_k в момент времени $n \ge 0$, а вектор $\pi(n) = \{\pi_0(n), \pi_1(n), ...\}^T$ - распределением вероятностей состояний МЦ X в момент $n \ge 0$.

Известно, что при каждом $n \ge 1$ выполнено рекуррентное соотношение:

$$\pi(n) = P^{T}(n)\pi(n-1).$$

Определение 6. МЦ называется однородной, если матрица переходных вероятностей не зависит от номера шага, то есть $P_{i,j}^{(n)} = P_{i,j}$, $\forall n \in \mathbb{N}$

Для таких цепей при определённых условиях выполняется следующее свойство: $\pi(n) \xrightarrow{n \to \infty} \pi_{\infty}$.

Определение 7. Распределение $\tilde{\pi}$ называется стационарным распределением, если выполняется следующее равенство:

$$\tilde{\pi} = P^T \tilde{\pi}$$
 $(\sum_i \tilde{\pi}_i = 1, \ \tilde{\pi}_i > 0).$

Определение 8. Марковская цепь называется эргодической, если $\exists \pi_j = \lim_{n \to \infty} P_{i,j}^{(n)}$, причем $\sum_j \pi_j = 1$, $\pi_j > 0$.

Для выяснения условий эргодичности однородной МЦ необходимо ввести классификацию ее возможных состояний.

Пусть $p_{i,j}^k = P\{X_k = e_j | X_0 = e_i\}$ - вероятность перехода за k шагов из состояния e_i в состояние e_j , пусть также $f_{ii}^{(k)} = P\{X_k = i, X_l \neq i \ \forall \ 1 \leq l \leq k-1 | X_0 = i\}$ обозначает вероятность первого возвращения за k шагов в состояние e_i .

Определение 9. Состояние $e_k \in E$ называется несущественным, если найдется $e_j \in E$, такое, что $p_{k,j}^{(m)} > 0$ для некоторого $m \ge 1$, но $p_{j,k}^{(n)} = 0$ для всех $n \ge 1$. В противном случае состояние e_k называется существенным.

Определение 10. Состояния $e_k, e_j \in E$ называются сообщающимися, если найдутся $m, n \ge 1$, такие, что $p_{k,j}^{(m)} > 0$ и $p_{j,k}^{(n)} > 0$.

Определение 11. Состояние $e_j \in E$ называется возвратным, если $f_{ii} = 1$ и невозвратным, если $f_{ii} < 1$, где $f_{ii} = \sum_{k=1}^{\infty} f_{ii}^{(k)}$.

Определение 12. Пусть d_j — наибольший общий делитель чисел $\{n \ge 1: P_{jj}^{(n)} > 0\}$. Состояние e_j называется периодическим с периодом d_j , если $d_j > 1$. В противном случае состояние — апериодическое.

Определение 13. МЦ называется неразложимой, если все ее состояния – существенные и сообщающиеся. Иначе МЦ называется разложимой.

Определение 14. Неразложимая МЦ называется апериодической, если все её состояния — апериодические (d=1).

<u>Теорема 1.</u> Для того чтобы конечная МЦ была эргодической, необходимо и достаточно, чтобы она была неразложимой и апериодической.

Если для МЦ верно, что для любых i, j = 0,1,... существуют независящие от i пределы

$$p_{i,i}^{(n)} \rightarrow p_i > 0$$
 при $n \rightarrow \infty$,

где числа $\{p_i\}$ являются единственным решением системы уравнений:

$$p_{j} = \sum_{k=0}^{\infty} p_{k,j} p_{k}$$
, $j = 0,1,...$

$$\sum_{j=0}^{\infty} p_j = 1,$$

то цепь называется эргодической, а распределение вероятностей $p = \{p_0, p_1, ...\}^T$ - стационарным распределением МЦ.

Определение 15. Производящая функция $\varphi(z)$ неслучайной последовательности $\{f_n\}$, $n \geq 0$ — это формальный степенной ряд

$$\varphi(z) = \sum_{n=0}^{\infty} f(n)z^n, \ z \in \mathbb{C}$$

Производящие функции дают возможность описывать большинство сложных последовательностей довольно просто, а иногда найти для них явные формулы.

f_n	$\varphi(z)$	f_n	$\varphi(z)$	f_n	$\varphi(z)$
1	$\frac{1}{1-z}$	$lpha^n$	$\frac{1}{1-\alpha z}$	n	$\frac{z}{\left(1-z\right)^2}$

Алгоритм метода производящих функций:

- 1. Найти $\left(I \frac{1}{z}P^T\right)^{-1}\pi(0)$, где I единичная матрица, соответствующей размерности, P матрица переходных вероятностей, I единичная матрица.
- 2. Найти обратное z преобразование полученного вектора, т.е. обратное z преобразование каждого элемента вектора для получения аналитического выражения для $\pi(n)$.

Фильтрация марковских цепей

Пусть дана линейная негауссовская система наблюдения:

$$\begin{cases} X_t = a(X_{t-1}, t, V_t, \theta) \\ Y_t = A(X_t, t, W_t, \theta) \end{cases}$$

 X_t - вектор состояний системы (ненаблюдаемый) в момент времени t;

 Y_t - вектор наблюдений;

 V_t - шумы в уравнении состояний;

 W_t - шумы в уравнении наблюдений;

 θ – вектор параметров.

Задача фильтрации состоит в определении с.к.-оптимальной оценки $\hat{X}_t = \hat{X}(t,Y)$ процесса X_t по наблюдениям $Y = (y_1, ..., y_t)$.

С.к. – оптимальной оценкой является условное математическое ожидание:

$$J(\hat{X}_t) = M\left[\left\|\hat{X}_t - X_t\right\|^2\right] \to \min_{\hat{X}_t \in \mathcal{X}}$$

Если \mathcal{X} — множество всех функций $\hat{X}(t,Y): M\left[\left\|\hat{X}\right\|^2\right] < \infty$, то оптимальная оценка $\hat{X}_t = M[X_t|Y]$. Более того, если $J(\hat{X}_t) = M\left[\left\|\hat{X}_t - X_t\right\|^2|Y\right]$, то $\hat{X}_t = M[X_t|Y]$ - оптимальная оценка.

Тривиальная оценка представляется в виде: $M[X_t] = \pi(t)$.

Алгоритм метода оптимальной линейной фильтрации:

- 1. Начальные условия: $\hat{X}_0 = m_0^X = \pi(0)$, $\hat{K}_0 = \text{cov}(X_0, X_0) = diag(\pi(0)) \pi(0)\pi(0)^T$.
- 2. Наилучший прогноз: $\tilde{X}_t = P^T \hat{X}_{t-1}$, ковариация ошибки прогноза: $\tilde{K}_t = P^T \hat{K}_{t-1} P$.
- 3. Найти оценку фильтра Калмана и ковариацию ошибки оценки: $\hat{X}_t = \tilde{X}_t + \tilde{K}_t C (C^T \tilde{K}_t C + R_t^V)^{-1} (Y_t C^T \tilde{X}_t) \,, \quad \hat{K}_t = \tilde{K}_t \tilde{K}_t C (C^T \tilde{K}_t C + R_t^V)^{-1} C^T \tilde{K}_t \,, \quad \text{где} \\ R_t^V = \sigma^T diag(\pi(t)) \sigma \, \text{ интенсивность дискретного белого шума.}$

Алгоритм метода оптимальной нелинейной фильтрации:

- 1. Начальные условия: $\hat{X}_0 = \pi(0)$.
- 2. Одношаговый прогноз: $\tilde{X}_t = P^T \hat{X}_{t-1}$.
- 3. Найти оптимальную оценку состояния МЦ по формуле:

$$\hat{x}_{t}^{i} = P\{X_{t} = e_{i} \mid Y_{t}\} = \frac{\frac{\tilde{x}_{t}^{i}}{\sigma_{i}} \varphi_{V}(\frac{Y_{t} - C_{i}}{\sigma_{i}})}{\sum_{n=1}^{N} \frac{\tilde{x}_{t}^{n}}{\sigma_{n}} \varphi_{V}(\frac{Y_{t} - C_{n}}{\sigma_{n}})}$$

где \tilde{x}_{ι}^{i} - компоненты вектора \tilde{X}_{ι} .

Условная ковариация: $\hat{k_t} = \text{cov}(\hat{\Delta}_t, \hat{\Delta}_t \mid Y_t) = diag(\hat{X_t}) - \hat{X_t}\hat{X_t}^T$.

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ Sih (\frac{\pi u}{5}) & 0 & \cos^2(\frac{\pi u}{5}) & 0 \\ 0 & 0 & 0 & 1 \\ \cos^2(\frac{\pi u}{10}) & 0 & \sin^2(\frac{\pi u}{10}) & 0 \end{bmatrix}, \quad \mathcal{T}_6 = \frac{1}{2} \begin{bmatrix} Sih^2(\frac{\pi c}{6}) \\ Cos^2(\frac{\pi c}{12}) \\ Cos^2(\frac{\pi c}{10}) \\ \cos^2(\frac{\pi c}{10}) \end{bmatrix}$$

Temerule:

C nomonytho ulmogol uponybogornyux pynnymi Honimu zbonnoupuo polempegenermo
$$x(t)$$
b zabnemnoemu em monerma bremenu t
 $I-z$ $P^{\dagger}=\begin{bmatrix} 1-z sih^{2}(\pi) & 0-z cos^{2}(\frac{\pi}{2}) \\ -z & 1 & 0 & 0 \end{bmatrix}=\begin{bmatrix} 0-z cos^{2}(\pi) & 1-z sih^{2}(\frac{\pi}{2}) \\ 0 & 0 & -z & 1 \end{bmatrix}$

$$\Delta = 1.(-1)^{1+1} \det \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 1 \end{bmatrix} = (1-2)(1+2)$$

$$T^{-1} = \frac{1}{2} \cdot \begin{bmatrix} 1 - z^2 & 0 & 0 & 0 \\ z - z^3 & 1 - z^2 & 0 & 0 \\ z^2 & z & 1 & z \\ z^3 & z^2 & z & 1 \end{bmatrix}$$

$$(I - z P^T)^{-1} = \frac{1}{1 - z} A + \frac{1}{1 + z} B = \frac{1}{1 - z} A + \frac{1}{1 - (-z)} B$$

$$C_0 = \left(\frac{1}{2} \sin^2\left(\frac{5\pi}{6}\right), \frac{1}{2} \cos^2\left(\frac{5\pi}{6}\right), \frac{1}{2} \sin^2\left(\frac{3\pi}{72}\right), \frac{1}{2} \cos^2\left(\frac{5\pi}{72}\right)\right)$$

$$C(t) = \frac{1}{2} \left[A + (-1)^t B\right] \cdot C(0)$$

$$Y_{pabrietine} \text{ Soutoryun}$$

Bonacums, elmence en maprobases le yens X sprogne cust. Houmer bee commence

Unote yello X elburace spagniecical relotacyment a gornalmouno, runovor crea bruta pepoignorumnoù a aneprogniecicat. Toccarripune repagnoremacius; m.n. l. M4 X az motoro cocuroruma S; monuro repeñnu b S; za hormel queno monto, m. l. bel cocuroruma cyngecubernoll a cootragraphenal y nero culgyem uno MUz X repolymorema.

Iaccusurpuru aufmagnissacius; umadre yent trus aneprograme mon reobscognus a goanameuro, unotor bel le comoreque Journ augusquierunen, uno 6 garmone cuyral til bomontullucia (mancumontottom conjuit genument beex gluss uguset bozbyramol = 2 = a comodfind refungament c hepriogone 2 Uz vero aregyem, uno Mly X mogure choic Hairgene unaupropagnible pacciffegenepuna:
3 annuene annemy ypoberenui, ypu youdun reprenyessen Ty = (sin 2 st) st2 + (cash 12) . st4 M2 = JG $\mathcal{I}_3 = (\cos^2 \pi) \cdot \mathcal{I}_2 + (\sin^2 \frac{\pi}{2}) \cdot \mathcal{I}_q$ Ry = X3 111 + 112 + 113 + 114 - 1 3 duenum 6 houghenteur cucuneme agres uz yprabrement na your ropumpoline: $\mathcal{I}_{1}=(Sih^{2}\mathcal{I})\cdot\mathcal{I}_{2}+(\cos^{2}\frac{\mathcal{I}_{1}}{2})\cdot\mathcal{I}_{4}$ The = The $\Re_2 = \frac{\Delta_2}{\Delta} = 0.5$ T4=5C2 Sy + 5/2 + 5/2 + 5/2 + 5/4 Ucround curalphora My = Ay = -0,5 fractifle 10 4110

Задание 3

Для решения поставленной задачи была написана программа на языке Jupyter notebook. Были получены 3 вида оценок состояний марковской цепи. представлены на графиках. Каждому состоянию соответствует отдельный график, где черным цветом изображена реализация марковской цепи, красным цветом изображена тривиальная оценка, оранжевым цветом изображена линейная оценка и синим цветом изображена нелинейная оценка. Так, для $\sigma = (5, 6, 7, 8)^T$ были получены следующие результаты:

Рис. 1. Реализация МЦ и ее оценки при $\sigma = (5, 6, 7, 8)^T$

Для каждой из оценок были получены соответствующие ковариационные матрицы ошибок этих оценок:

Табл. 1. Безусловная ковариационная матрица ошибки тривиальной оценки при $\sigma = (5,6,7,8)^T$

0.064373	-0.049721	0.046581	-0.035978
-0.049721	0.062239	-0.035978	0.045036
0.046581	-0.035978	0.033706	-0.026034
-0.035978	0.045036	-0.026034	0.032589

Табл. 2. Безусловная ковариационная матрица ошибки линейной оценки при $\sigma = (5,6,7,8)^T$

0.010023	-0.005345	-0.000140	-0.004537
-0.005345	0.249219	-0.007299	-0.236574
-0.000140	-0.007299	0.013635	-0.006195
-0.004537	-0.236574	-0.006195	0.247307

Табл. 3. Условная ковариационная матрица ошибки нелинейной оценки при $\sigma = (5,6,7,8)^T$

Рис. 2. Реализация МЦ и ее оценки при $\sigma = (50, 60, 70, 80)^T$

Для каждой из оценок были получены соответствующие ковариационные матрицы ошибок этих оценок:

0.219601	-0.100368	-0.067497	-0.051736
-0.100368	0.226482	-0.043815	-0.082299
-0.067497	-0.043815	0.167868	-0.056556
-0.051736	-0.082299	-0.056556	0.190591

Табл. 4. Безусловная ковариационная матрица ошибки тривиальной оценки при $\sigma = (50, 60, 70, 80)^T$

-1.374270	-1.206954	-0.994431	-0.873360
-1.206954	-0.757586	-0.873360	-0.548195
-0.994431	-0.873360	-0.719577	-0.631969
-0.873360	-0.548195	-0.631969	-0.396677

Табл. 5. Безусловная ковариационная матрица ошибки линейной оценки при $\sigma = (50, 60, 70, 80)^T$

0.018099 -0.011227 -0.000216 -0.006656 -0.011227 0.238147 -0.007128 -0.219792 -0.000216 -0.007128 0.011570 -0.004226 -0.006656 -0.219792 -0.004226 0.230674

Табл. 6. Условная ковариационная матрица ошибки нелинейной оценки при $\sigma = (50, 60, 70, 80)^T$

Для $\sigma = (100, 100, 100, 100)^T$ были получены следующие результаты:

Рис. 3. Реализация МЦ и ее оценки при $\sigma = (100, 100, 100, 100)^T$

Для каждой из оценок были получены соответствующие ковариационные матрицы ошибок этих оценок:

0.219601	-0.100368	-0.067497	-0.051736
-0.100368	0.226482	-0.043815	-0.082299
-0.067497	-0.043815	0.167868	-0.056556
-0.051736	-0.082299	-0.056556	0.190591

Табл. 7. Безусловная ковариационная матрица ошибки тривиальной оценки при $\sigma=(100,100,100,100)^T$

-0.656349	-0.660509	-0.474939	-0.477949
-0.660509	-0.340654	-0.477949	-0.246500
-0.474939	-0.477949	-0.343669	-0.345847
-0.477949	-0.246500	-0.345847	-0.178369

Табл. 8. Безусловная ковариационная матрица ошибки линейной оценки при $\sigma = (100, 100, 100, 100)^T$

Задание 4-7

Путем осреднения по пучку траекторий (50000 реализаций) была построена безусловная ковариационная матрица ошибки для каждой из оценок. Так, для $\sigma = (5, 6, 7, 8)^T$ были получены следующие результаты:

0.215378	-0.093479	-0.068108	-0.053792
-0.093479	0.216139	-0.053230	-0.069431
-0.068108	-0.053230	0.173313	-0.051975
-0.053792	-0.069431	-0.051975	0.175198

Табл. 9. Ковариационная матрица ошибки тривиальной оценки после осреднения при $\sigma = (5, 6, 7, 8)^T$

0.064373	-0.049721	0.046581	-0.035978
-0.049721	0.062239	-0.035978	0.045036
0.046581	-0.035978	0.033706	-0.026034
-0.035978	0.045036	-0.026034	0.032589

Табл. 9. Ковариационная матрица ошибки линейной оценки после осреднения при $\sigma = (5, 6, 7, 8)^T$

0.048280	-0.013381	-0.025488	-0.009411
-0.013381	0.186036	-0.009669	-0.162985
-0.025488	-0.009669	0.042742	-0.007585
-0.009411	-0.162985	-0.007585	0.179981

Табл. 11. Ковариационная матрица ошибки нелинейной оценки после осреднения при $\sigma = (5, 6, 7, 8)^T$

Таким образом, видим, что при $\sigma = (5, 6, 7, 8)^T$ наилучшие результаты показывает нелинейная оценка, хуже всех себя показывает тривиальная оценка.

Посмотрим, что будет при увеличении шума. Так, для $\sigma = (50, 60, 70, 80)^T$ были получены следующие результаты:

0.215258	-0.093324	-0.068094	-0.053840
-0.093324	0.216016	-0.053273	-0.069419
-0.068094	-0.053273	0.173406	-0.052039
-0.053840	-0.069419	-0.052039	0.175297

Табл. 10. Ковариационная матрица ошибки тривиальной оценки после осреднения при $\sigma = (50, 60, 70, 80)^T$

-1.374270	-1.206954	-0.994431	-0.873360
-1.206954	-0.757586	-0.873360	-0.548195
-0.994431	-0.873360	-0.719577	-0.631969
-0.873360	-0.548195	-0.631969	-0.396677

Табл. 113. Ковариационная матрица ошибки линейной оценки после осреднения при $\sigma = (50, 60, 70, 80)^T$

0.056146	-0.020208	-0.021699	-0.014239
-0.020208	0.202897	-0.014482	-0.168207
-0.021699	-0.014482	0.047189	-0.011008
-0.014239	-0.168207	-0.011008	0.193454

Табл. 124. Ковариационная матрица ошибки нелинейной оценки после осреднения при $\sigma = (50, 60, 70, 80)^T$

Видим, что в данном случае хуже всего уже линейная оценка.

Для $\sigma = (100, 100, 100, 100)^T$ были получены следующие результаты:

0.215308	-0.093367	-0.068136	-0.053804
-0.093367	0.216051	-0.053253	-0.069430
-0.068136	-0.053253	0.173439	-0.052050
-0.053804	-0.069430	-0.052050	0.175284

Табл. 15. Ковариационная матрица ошибки тривиальной оценки после осреднения при $\sigma = (100, 100, 100, 100)^T$

-0.656349	-0.660509	-0.474939	-0.477949
-0.660509	-0.340654	-0.477949	-0.246500
-0.474939	-0.477949	-0.343669	-0.345847
-0.477949	-0.246500	-0.345847	-0.178369

Табл. 136. Ковариационная матрица ошибки линейной оценки после осреднения при $\sigma = (100, 100, 100, 100)^T$

0.083473	-0.044854	-0.006166	-0.032453
-0.044854	0.249752	-0.032453	-0.172444
-0.006166	-0.032453	0.062106	-0.023487
-0.032453	-0.172444	-0.023487	0.228385

Табл. 17. Ковариационная матрица ошибки нелинейной оценки после осреднения при $\sigma = (100, 100, 100, 100)^T$

Видим, что в этом случае также хуже всего себя проявляет линейная оценка, хотя, судя по графикам, все они становятся близки к тривиальной оценке из-за большого количества шума.

Рассмотрим также пара показательных примеров. Так при $\sigma = (1, 10, 100, 1000)^T$, видим, что нелинейная оценка крайне близка к реализации МЦ:

Рис. 4. Реализация МЦ и ее оценки при $\sigma = (1, 10, 100, 1000)^T$

Выводы

Таким образом, в данной курсовой работе были изучены основные свойства марковских цепей. Установлено, что заданная цепь не является эргодической (в силу того, что ее состояния периодичны с периодом = 2). С помощью метода производящих функций найдена эволюция распределения $\pi(t)$. Найдено стационарное распределение. Выяснено, что оно не достигается при заданном векторе начальных вероятностей. Чтобы оно достигалось необходимо, чтобы выполнялись условия равенства $\pi_1^0 = \pi_2^0, \pi_3^0 = \pi_4^0$ (в силу периодичности состояний).

По наблюдениям (2) были построены оценки (тривиальная, линейная и нелинейная). Наиболее точные результаты дала нелинейная оценка. Линейная оценка дала менее точные результаты, но ее преимуществом является относительная простота реализации и тот факт, что нахождение ковариационной матрицы (показатель ее качества) заложено в ее алгоритм (не нужно вычислять отдельно). Наиболее хорошим случаем из заданных оказался случай, при котором $\sigma = (5,6,7,8)^T$ (шум невелик и каждая компонента отличается друг от друга). При увеличении шума, оценки показывают менее точные результаты, так как он заглушает полезный сигнал. Дополнительно были исследованы ситуации при которых шум был мал ($\sigma = (0.01,0.01,0.01,0.01)^T$), либо его компоненты сильно отличались друг от друга ($\sigma = (1,10,100,1000)^T$).