

IA PER LA MODA

Data Visualization & Orange 28/03/2022

Alessia Angeli

Studente di dottorato in Data Science and Computation Dipartimento di Informatica – Scienza e Ingegneria

VARLAB: VIRTUAL AND AUGMENTED REALITY LAB

CV (in breve)

- Studente di dottorato in Data Science and Computation
- Laurea Magistrale in Matematica, curriculum generale/applicativo
- Laurea Triennale in Matematica

Contatti

DATA SCIENCE

Data Visualization

Maths

Machine and Deep Learning

Augmented Reality

Fashion

Riprendiamo... (in parte)

Data Visualization – Plots/Graphs

Alessia Angeli

Studente di dottorato in Data Science and Computation Dipartimento di Informatica – Scienza e Ingegneria

Quantitative Attributes

Scatter plot
Histogram
Scatter plot matrix
Box plot
Violin plot
Radar chart

Scatter plot

What?

• 2 quantitative attributes;

Why?

- Visualizzare correlazioni e distribuzioni;
- Identificare outliers, patterns e clusters;

Remarks

- Fino a ~100 items;
- Colore e dimesione possono essere usati per codificare categorical attributes aggiuntivi (bubble plot).

Definizione

DISTRIBUZIONE DI PROBABILITA': Una distribuzione di probabilità è un modello matematico che associa ai valori (possibili) di una variabile aleatoria (continua o discreta) le probabilità che tali valori possano essere assunti da tale variabile. Formalmente le distribuzioni vengono espresse da funzioni matematiche, **funzione densità di probabilità** e **funzione di probabilità**, rispettivamente per variabili aleatorie continue e discrete.

ESEMPIO

Si lanciano 2 dadi e si considera come variabile aleatoria la somma risultante.

Somma	# Combinazioni	Probabilità
2	1	0.03
3	2	0.06
4	3	0.08
5	4	0.11
6	5	0.14
7	6	0.17
8	5	0.14
9	4	0.11
10	3	0.08
11	2 5 26	0.06
12	$_{1}^{2}$ Σ 36	$\sum_{0.03} \sum_{0.03} 1$

Histogram

What?

1 quantitative attribute;

Why?

- Visualizzare distribuzioni;
- Identificare patterns e range;

Remarks

- Una linea (o un'area) può essere visualizzata per mostrare la funzione di densità calcolata;
- Gli items possono essere visualizzati con dei punti.

Definizione

MATRICE: una matrice è una tabella ordinata. Le righe orizzontali vengono chiamate *righe* della matrice e le righe verticali colonne della matrice.

Generalmente una matrice si indica con una lettera maiuscola e viene scritta nel modo seguente:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

dove i pedici di ogni elemento della matrice indicano, rispettivamente, la riga e la colonna in cui l'elemento è posizionato.

Quindi a_{ij} è l'elemento della matrice A che si trova nella riga i-esima e nella colonna j-esima.

Scatter plot matrix

What?

N quantitative attributes;

Why?

- Visualizzare correlazioni e distribuzioni;
- Identificare outliers, patterns e clusters;

Remarks

- Fino a ~12 attributi e ~100 items;
- E' possibile visualizzare solo la parte triangolare inferiore della matrice.

Statistica descrittiva – alcune definizioni

Considerando un insieme di dati numerici si definiscono:

5 7 4 6 5

MEDIA (MEDIA ARITMETICA): rapporto tra la somma dei dati e il numero dei dati.

MODA: il valore del dato che si presenta con maggiore frequenza (possono essere presenti più valori di moda).

5 – dato con massima frequenza (2)

MEDIANA: è il valore centrale tra i dati ordinati in modo crescente o decrescente. Se l'insieme contiene un numero di dati dispari c'è un unico valore centrale e questo è la mediana. Se l'insieme contiene un numero di dati pari, invece, ci sono due valori centrali e di solito come mediana viene considerata la media aritmetica di questi.

5 – è il valore centrale in 4 5 5 6 7

Statistica descrittiva – alcune definizioni

Oltre alla mediana, che divide a metà un insieme di dati ordinati, vengono usati anche altri indici che dividono tale insieme in determinate percentuali detti quantili, quartili e percentili.

PERCENTILI: sono un caso particolare dei quantili e, come si intuisce dal nome, dividono l'insieme di dati ordinati in 100 parti.

- il 1° percentile lascia alla sua sinistra un centesimo (1%) degli elementi dell'insieme ordinato;
- il 10° percentile lascia alla sua sinistra il 10% degli elementi;
- il 50° percentile (che coincide con la mediana) lascia alla sua sinistra il 50% degli elementi;
- •

QUARTILI: questi si ottengono dividendo l'insieme di dati ordinati in 4 parti uguali.

- il primo quartile (che coincide con il 25-esimo percentile) è il valore che lascia alla sua sinistra il 25% degli elementi;
- il **secondo quartile** (che coincide con la mediana e con il 50-esimo percentile) è il valore che lascia alla sua sinistra il 50% dei dati;
- il **terzo quartile** (che coincide con il 75-esimo percentile) è il valore che lascia il 75% degli elementi a sinistra e il 25% a destra.

Box plot

What?

 N quantitative attributes (oppure 1 quantitative attribute ed 1 categorical key);

Why?

- Visualizzare distribuzioni;
- Identificare outliers, valori estremi, range etc.;

Remarks

- Il colore può codificare un categorical attribute aggiuntivo;
- Possibile effettuare raggruppamenti.

Qualitative Attributes

Bar plot
Multi-set bar plot
Pie chart
Word Cloud

• • •

Bar plot

What?

- 1 quantitative attribute;
- 1 categorical key;

Why?

- Confrontare/evidenziare valori;
- Identificare valori estremi;

Remarks

- Fino a ~100 barre;
- Keys vs valori ordinati;
- Non adatto per visualizzare trends.

Top 5 Directors - Netflix

Top 5 Actors - Netflix

Multi-set bar plot

What?

- 1 quantitative attribute;
- 2 categorical keys;

Why?

- Confrontare valori;
- Identificare patterns;

Remarks

- Visualizzare fino a ~100 barre;
- Riuscire a raggruppare/confrontare items, patterns.

Sentiment of contents - Netflix

2 Categorical Keys

Heatmap

• • •

Definizione

MATRICE DI CONFUSIONE: è un metodo per visualizzare le performance di un algoritmo rispetto ad un problema di classificazione dove gli outputs possono essere due o più classi.

Nel caso di problema di classificazione binario (due classi in outputs) la matrice di confusione sarà composta da quattro elementi: True Positive (TP), False Positive (FP), False Negative (FN), True Negative (TN).

Actual Values

Inoltre, la matrice di confusione è estremamente comoda per calcolare *Precision*, *Recall*, *Accuratezza*, ... (se ne parlerà nelle prossime lezioni).

Heatmap

What?

- 2 categorical key;
- 1 quantitative attribute;

Why?

- Visualizzare correlazioni;
- Identificare patterns, outliers;
- Confusion matrix for classification result visualization;

Remarks

- Fino a ~1M di items;
- L'ordine delle keys influisce la visibilità dei patterns.

Quantity of contents produced over the years - Netflix

For dealing with time

Line graph Stacked area graph

• • •

Line graph

What?

- 1 ordered key -> time;
- 1 quantitative attribute;

Why?

Identificare e confrontare trends;

Remarks

- Fino a 10-20 linee;
- Il colore può codificare un categorical attribute additivo.

Data Visualization – Visualization Tools

Alessia Angeli

Studente di dottorato in Data Science and Computation Dipartimento di Informatica – Scienza e Ingegneria

Visualization tools – overview

In questa lezioni utilizzeremo **Orange** per costruire grafici.

Esistono però molti altri strumenti , più o meno ad alto livello, per poterlo fare:

- Excel;
- Google Fogli;
- Python;
- R;
- Matlab;
- Tableau;

Visualization tools – overview (python)

Dato che avete visto, e vedrete, un po' di Python nelle altre lezioni, di seguito sono riportate le librerie di Python più utilizzate per costruire e visualizzare grafici:

- Pandas → costruzione e gestione dataset (dataframe)
- Matplotlib → visualizzazione
- <u>Seaborn</u> → visualizzazione
- Plotly → visualizzazione

Data Visualization & Orange

Alessia Angeli

Studente di dottorato in Data Science and Computation Dipartimento di Informatica – Scienza e Ingegneria

Download Orange

Screenshots

Workflows

Download

Blog

ocs

Workshops

Donate

Data Mining Fruitful and Fun

Open source machine learning and data visualization.

Build data analysis workflows visually, with a large, diverse toolbox.

Download Orange

https://orangedatamining.com/

Download Orange

Screenshots

Workflows

Download

Blog

Docs

Workshops

Donate

Linux / Source

Download the latest version for Windows

Download Orange 3.31.1

Orange – Visualization 1

- 1. DATA → VISUALIZE DATA and SELECT → TABLE OF SELECTED DATA
- 2. DATA → TABLE OF DATA and SELECT → VISUALIZE SELECTED DATA scatter plot

Orange – Visualization 2

- 1. DATA → TABLE OF DATA
- 2. DATA → VISUALIZE DATA in different ways:
 - scatter plot
 - bar plot
 - line plot
 - distribution (histogram)
 - box plot

Orange – Visualization 3

- 1. DATA → TABLE OF DATA
- 2. DATA → MODEL (classification tree):
 - VISUALIZE MODEL and SELECT:
 - TABLE OF SELECTED DATA
 - VISUALIZE SELECTED DATA in different ways:
 - scatter plot
 - box plot
 - MODEL TEST AND SCORE → confusion matrix
- 3. DATA → COMPUTE DISTANCES:
 - VISUALIZE DISTANCES distance matrix
 - VISUALIZE DISTANCE MAP distance map
 - MODEL (hierarchical clustering) and SELECT:
 - TABLE OF SELECTED DATA
 - VISUALIZE SELECTED DATA scatter plot

Orange – Domestic Animals Example

Orange – Fashion Style Example

Data Table (2)

Alessia Angeli

Dipartimento di Informatica – Scienza e Ingegneria

alessia.angeli2@unibo.it