The Gradient Descent Algorithm

George Michailidis

gmichail@ucla.edu

STAT 102B

Key take home message from Lecture 1.1

To solve the problem

$$\min_{x \in \mathbb{R}^n} f(x) \tag{1}$$

we require:

1. Solve the gradient equation

$$\nabla f(x) = 0 \tag{2}$$

- 2. For the solution x^* of (2) evaluate the Hessian matrix of f(x) at x^* ; i.e.,
 - if $H(x^*) \succ 0$, then x^* is a minimum
 - if $H(x^*) \prec 0$, then x^* is a maximum
 - otherwise, x^* is a saddle point

George Michailidis Gradient Descent 2 / 37

Remarks

- We focus on unconstrained optimization problems; i.e., $D = \mathbb{R}^n$ Even if the original optimization problem is constrained (i.e., $x \in D$), we assume that it has been transformed to an unconstrained one (recall the method of Lagrange multipliers from calculus)
- To determine whether the Hessian is positive, negative or neither at x*, we
 use the eigenvalue decomposition and check if all the eigenvalues are
 positive, negative or both, respectively
- Many functions, can have both maxima, minima and saddle points

George Michailidis Gradient Descent 3 / 37

Example: Univariate function with both minima and maxima

Consider the function $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = x^4 - 4x^2$$

Figure 1: Plot of f(x)

George Michailidis Gradient Descent 4 / 37

Many statistical and machine learning problems lead to optimization problems that have unique global minima

A brief discussion of a broad class of objective functions that have unique global minima will be presented later on

George Michailidis Gradient Descent 5 / 37

Many statistical and machine learning problems lead to optimization problems that have unique global minima

A brief discussion of a broad class of objective functions that have unique global minima will be presented later on

Next, we introduce a general purpose algorithm (and its variants) that iteratively solves the gradient equation $\nabla f(x) = 0$

5 / 37 Gradient Descent

Problem Setup - I

Objective: Let $f: \mathbb{R}^n \to \mathbb{R}$

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{3}$$

We will study iterative descent algorithms

Outline of the algorithm:

- 1. Pick an initial point $x_0 \in \mathbb{R}^n$ (initial guess)
- 2. Successively generate sequence of $x_1, x_2, \dots, x_k, x_{k+1} \dots$ such that

$$f(x_{k+1}) \leq f(x_k) \qquad k = 1, 2, \cdots \tag{4}$$

George Michailidis Gradient Descent 6 / 37

Problem Setup - II

Illustration of the Setting

Figure 2: Plot of $f(x) = 3x_1^2 + 2x_2^2$

Problem Setup - III

Factors in designing iterative descent algorithms:

- what direction to move: descent direction
- 2. how far to move in that direction: step size (in the machine learning literature, this factor is also referred to as the learning rate)
- 3. when to stop: stopping criterion

George Michailidis Gradient Descent 8 / 37

How to generate the iterates x_k ?

The idea of iterative descent algorithms is to generate the next iterate x_{k+1} according to the rule

$$x_{k+1} = x_k + \eta_k \mathbf{d}_k, \tag{5}$$

where $\eta_k \in \mathbb{R}_+$ is the step size (learning rate) and $d_k \in \mathbb{R}^n$ a descent direction

George Michailidis Gradient Descent 9 / 37

Descent direction design

Assume that f is differentiable; i.e., $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ exists everywhere

Then, by a first order Taylor expansion we get

$$f(x_{k+1}) = f(x_k + \eta_k d_k) \approx f(x_k) + \eta_k \left[\nabla f(x_k) \right]^{\top} d_k$$
 (6)

Since we require $f(x_{k+1}) < f(x_k)$ we obtain that the following relationship should hold

$$\left[\nabla f(x_k)\right]^{\top} d_k < 0 \tag{7}$$

George Michailidis 10 / 37 Gradient Descent

Step size design

Let
$$g(\eta) = f(x_k + \eta d_k)$$

Then,

$$g'(\eta) = \nabla f(x_k + \eta d_k)^{\top} d_k \Longrightarrow g'(0) = \nabla f(x_k)^{\top} d_k < 0$$
 (8)

by the design of the descent direction

Hence, there exists $\eta > 0$ such that

$$g(\eta) \approx g(0) + \eta g'(0) \Longrightarrow g(\eta) \le g(0) \Longrightarrow f(x_k + \eta d_k) \le f(x_k)$$
 (9)

Gradient Descent 11 / 37

Gradient Descent Algorithm - I

The most common choice for the descent direction is $-\nabla f(x)$, the negative of the gradient

Note that

$$\nabla f(x_k)^{\top} [-\nabla f(x_k)] = -||\nabla f(x_k)||_2^2 < 0,$$
 (10)

and hence $d_k = -\nabla f(x_k)$ is indeed a descent direction

George Michailidis Gradient Descent 12 / 37

Gradient Descent Algorithm - II

- 1. Select $x_0 \in \mathbb{R}^n$
- 2. While stopping criterion>tolerance do:
 - $x_{k+1} = x_k \eta_k \nabla f(x_k)$
 - Calculate the value of the stopping criterion

George Michailidis Gradient Descent 13 / 37

Gradient Descent Algorithm - III

Common choices of stopping criteria:

1.

$$\|\nabla f(x_k)\|_2 \leq \text{tolerance}$$

If $\|\nabla f(x_k)\|_2 \approx 0$, then for all practical purposes, we have found an x_k that solves the gradient equation (2)

2.

$$|f(x_{k+1}) - f(x_k)| \le \text{tolerance}$$

Improvements in function value are saturating

3.

$$||x_{k+1} - x_k||_2 \le \text{tolerance}$$

Movement between iterates has become small

The tolerance parameter is usually set to a small value, such to 10^{-5} or 10^{-6}

George Michailidis Gradient Descent 14 / 37

Gradient Descent Algorithm - III

Common choices of stopping criteria:

1.

$$\|\nabla f(x_k)\|_2 \leq \text{tolerance}$$

If $\|\nabla f(x_k)\|_2 \approx 0$, then for all practical purposes, we have found an x_k that solves the gradient equation (2)

2.

$$|f(x_{k+1}) - f(x_k)| \le \text{tolerance}$$

Improvements in function value are saturating

3.

$$||x_{k+1} - x_k||_2 \le \text{tolerance}$$

Movement between iterates has become small

The tolerance parameter is usually set to a small value, such to 10^{-5} or 10^{-6}

Which one to choose? We will revisit this issue, since the best choice depends on additional properties of the f function

George Michailidis Gradient Descent 14 / 37

Illustration of GD through a 1-Dim Example - I

Let

$$f: \mathbb{R} \to \mathbb{R}$$
, with $f(x) = 2x^2 + 2x - 16$

We have that $\frac{df}{dx} = 4x + 2$ and $\frac{d^2f}{dx^2} = 4 > 0$, hence the function is twice differentiable

Its global minimum is at $\frac{df}{dx} = 0 \Longrightarrow x = -\frac{1}{2}$

George Michailidis Gradient Descent 15 / 37

Illustration of GD through a 1-Dim Example - II

$$f(x) = 2x^2 + 2x - 16$$

Figure 3: Iterates x_k , with $x_0 = 3.5, \eta = 0.1$

George Michailidis Gradient Descent 16 / 37

Illustration of GD through a 1-Dim Example - III

$$f(x) = 2x^2 + 2x - 16$$

Gradient Descent with Step Size: 0.01

Figure 4: Iterates x_k , with $x_0 = 3.5$, $\eta = 0.01$

George Michailidis Gradient Descent 17 / 37

Illustration of GD though a 1-Dim Example - IV

$$f(x) = 2x^2 + 2x - 16$$

Gradient Descent with Step Size: 0.5

Figure 5: Iterates x_k , with $x_0 = 3.5, \eta = 0.5$

George Michailidis Gradient Descent 18 / 37

Illustration of GD through a 1-Dim Example - V

Iterate	Value
<i>X</i> ₀	3.5
x_1	-4.5
x_2	3.5
<i>X</i> ₃	-4.5
• • •	
	x ₀ x ₁ x ₂

The gradient descent algorithm does NOT converge

George Michailidis Gradient Descent 19 / 37

Illustration of GD through a 1-Dim Example - VI

Suppose that $\eta = 1$

	Iterate	Value
Sequence of iterates:	<i>x</i> ₀	3.5
	x_1	-12.5
	<i>X</i> ₂	35.5
	<i>X</i> ₃	-108.5
	<i>X</i> 5	323.5

The gradient descent algorithm DIVERGES

Illustration of GD through a 1-Dim Example - VII

$$f(x) = 2x^2 + 2x - 16$$

Gradient Descent with Step Size: 0.25

Figure 6: Iterates x_k , with $x_0 = 3.5$, $\eta = 0.25$

George Michailidis Gradient Descent 21 / 37

Illustration of GD through a 1-Dim Example - VIII

Suppose that $\eta = 0.249999$

Sequence of iterates:	Iterate	Value
	<i>x</i> ₀	3.5
	x_1	-0.499984
	<i>X</i> ₂	-0.5

The gradient descent algorithm converges fast (2 steps)

George Michailidis Gradient Descent 22 / 37

Summary Regarding the Step Size based on the 1-Dimensional Example

The selection of the step size (learning rate) η matters!!

- A very small step size, results in a lot of iterations for the gradient descent algorithm to converge to the minimum
- A very large step size may result in the gradient descent algorithm to diverge
- A really good choice of the step size makes the gradient descent algorithm converge in fewer iterations

In the illustrative example, the step size η was kept fixed for all iterations (e.g., $\eta=0.1$ throughout)

What if we started with a reasonable large value and gradually reduce the step size i.e., use a variable step size η_k across iterations

George Michailidis Gradient Descent 23 / 37

Gradient Descent

Illustration of the GD Rationale

Figure 7: Blue point is x_k ; Red point is x_{k+1} , the minimizer of the function $h(z) = f(x_k) + [\nabla f(x_k)]^{\top} (z - x_k) + \frac{1}{n} ||z - x_k||_2^2$

The GD algorithm finds the minimum of a local quadratic approximation of the f(x) function at the current update x_k ; the approximation depends on the step size selected

George Michailidis Gradient Descent 25 / 37

Illustration of GD on a function in \mathbb{R}^2

Let $f: \mathbb{R}^2 \to \mathbb{R}$, with

$$f(x) \equiv f(x_1, x_2) = 3x_1^2 + 0.5x_2^2 + 2x_1x_2$$

We have that

$$\nabla f(x) = \begin{bmatrix} 6x_1 + 2x_2 \\ x_2 + 2x_1 \end{bmatrix}$$

Some algebra gives that the global minimum is $x_{min} = (0,0)$, since

$$\nabla^2 f(x) = \begin{bmatrix} 6 & 2 \\ 2 & 1 \end{bmatrix}$$

a positive definite matrix (its determinant is positive)

George Michailidis Gradient Descent 26 / 37

Results for the 2-Dim Example Function - I

 $\eta=0.05$ and tolerance =0.000001 $\hat{x}_{min}=$ (-0.004873299,0.013892708), so not quite close to the theoretical value!!

George Michailidis Gradient Descent 27 / 37

Results for the 2-Dim Example Function - II

 $\eta=0.05$ and tolerance =0.000000001 $\hat{x}_{min}=$ (-4.896064e - 05, 1.395761e - 04), so practically the theoretical solution

George Michailidis Gradient Descent 28 / 37

Results for the Example Function - III

 $\eta=0.29$ and tolerance =0.000000001

 $\hat{x}_{min}=(-4.527236e-05,-1.572929e-05),$ so practically the theoretical solution, but fewer iterations

George Michailidis Gradient Descent 29 / 37

Some Remarks

As with the 1-dim example, the step size matters a lot

In all the illustrative examples presented thus far, a fixed value of η was used

What strategies can we employ to select iterate dependent stepsizes; i.e., η_k instead of a fixed η

George Michailidis Gradient Descent 30 / 37

Selection Strategies for the Step Size η

- 1. Exact Line Search method
- 2. Backtracking line search method
- 3. Constant step size

George Michailidis Gradient Descent 31 / 37

Gradient Descent

Appendix

Rationale for the Gradient Descent Algorithm - I

Assume that $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable such that $\nabla^2 f(\cdot)$ is positive definite for all $x \in \mathbb{R}^n$ and also f has a unique minimum

Then, a second order Taylor expansion of the function f(x) around a point $a \in \mathbb{R}^n$ is given by

$$f(x) \approx f(a) + \left[\nabla f(a)\right]^{\top} (x-a) + \frac{1}{2} (x-a)^{\top} \nabla^2 f(a) (x-a)$$

Recall that this approximation is accurate for any x close to the prespecified point a

George Michailidis Gradient Descent 33 / 37

Rationale for the Gradient Descent Algorithm - II

Let us consider a point x_0 (the initialization of the gradient descent algorithm) as a (i.e., $a = x_0$) and we are interested in an update x_1 (close to x_0), such that

$$f(x_1) < f(x_0)$$

Since we are interested in minimizing f, we want at every iteration to have $f(x_{k+1}) < f(x_k)$

Then, the Taylor expansion formula gives

$$f(x_1) \approx f(x_0) + [\nabla f(x_0)]^{\top} (x_1 - x_0) + \frac{1}{2} (x_1 - x_0)^{\top} \nabla^2 f(x_0) (x_1 - x_0),$$

and since we want $f(x_1) < f(x_0)$ we obtain that

$$\left[\nabla f(x_0)\right]^{\top}(x_1-x_0)+\frac{1}{2}(x_1-x_0)^{\top}\nabla^2 f(x_0)(x_1-x_0)<0$$

George Michailidis Gradient Descent 34 / 37

Rationale for the Gradient Descent Algorithm - III

Then, the question becomes how to select x_1 , assuming that $\nabla f(x_0) \neq 0$?

First, let us consider the following simplification. Note that since we have assumed that $\nabla^2 f(x)$ is positive definite in the domain of f, then there exists $\eta > 0$, such that

$$\nabla^2 f(x) \ge \frac{1}{\eta} > 0$$

and the Taylor expansion formula becomes

$$f(x_1) \approx f(x_0) + \left[\nabla f(x_0)\right]^{\top} (x_1 - x_0) + \frac{1}{2\eta} (x_1 - x_0)^{\top} (x_1 - x_0)$$

To find the optimal x_1 , we will minimize the approximation with respect to x_1 ; i.e.,

$$\min_{x_1} \ \left[f(x_0) + \left[\nabla f(x_0) \right]^\top (x_1 - x_0) + \frac{1}{2\eta} \|x_1 - x_0\|_2^2 \right]$$

George Michailidis Gradient Descent 35 / 37

Rationale for the Gradient Descent Algorithm - IV

To do so, we take the derivative with respect to x_1 , set it to zero and solve for x_1 ; i.e.,

$$\frac{d}{dx_1} \left[f(x_0) + \left[\nabla f(x_0) \right]^\top (x_1 - x_0) + \frac{1}{2\eta} \|x_1 - x_0\|_2^2 \right] = \nabla f(x_0) + \frac{1}{\eta} (x_1 - x_0)$$

Then,

$$\nabla f(x_0) + \frac{1}{n}(x_1 - x_0) = 0 \Longrightarrow x_1 = x_0 - \eta \nabla f(x_0)$$

It is easy to check that x_1 is indeed a minimum, since the second derivative of the approximation function with respect to x_1 is $\frac{1}{\eta}>0$

George Michailidis Gradient Descent 36 / 37

Rationale for the Gradient Descent Algorithm - V

What about the requirement that $f(x_1) < f(x_0)$ or equivalently that

$$\left[\nabla f(x_0)\right]^{\top}(x_1-x_0)+\frac{1}{2}(x_1-x_0)^{\top}\nabla^2 f(x_0)(x_1-x_0)<0?$$

Plug in the optimal $x_1 = x_0 - \eta \nabla f(x_0)$ to obtain

$$\left[\nabla f(x_0)\right]^{\top}(x_1-x_0)+\frac{1}{2}(x_1-x_0)^{\top}\nabla^2 f(x_0)(x_1-x_0)=-\frac{\eta}{2}\left[\nabla f(x_0)\right]_2^2<0$$

George Michailidis Gradient Descent 37 / 37