

Collaboration avec C-S Communication

<u>Introduction</u>

> Contexte du projet :

Il s'agit de rendre les procédures d'usinage d'une pièce avec des machines à commande numérique et plus particulièrement la réalisation du programme de commande (dit "Gcode") accessibles au plus grand nombre.

> Mission du projet :

Concevoir un **éditeur** permettant de vérifier et corriger un programme G-code donné, ainsi qu'une **aide contextuelle** se basant sur les **connaissances en usinage** afin d'aider le programmeur à éditer/écrire son programme en restant cohérent avec le modèle de conception voulu et les propriétés mécaniques du matériau utilisé.

Plan de la présentation

- Project Management Lifecycle
- II. Programmation de commande numérique
- III. Base de connaissances en usinage matériau/outil
- IV. Environnement de programmation
- V. Perspectives d'évolution du projet (simulation, pilotage par rétroaction)

> Gestion du projet en 4 étapes :

1) Création du projet :

> Charte du projet :

-Différentes variantes de G-Code

- -Programme Open Source
- -Difficile d'être compatible avec tous les interpréteurs qui existent
- -Connaissances d'usinage difficiles à trouver

Du 23-Octobre-2017 Au 15 Avril

environnement de

développement qui

aide à a la

programmation du G-

Code

-Editeur

-Coloration syntaxique

-Base de connaissance usinage

-Aide contextuelle

-Interpréteur de langage G-Code

Expert Cs Com: M. Felecan Peter Superviseur ESIEE: M.Hadi Daoud Mousselmal

Equipe projet : Étudiants de l'ESIEE

Tétar Adrien :

Chef de projet/Responsable développement informatique

Pliya Tatiana & Sbitri Youssra: Co-

Responsables gestion de projet/Consultants en usinage

2) Planification du projet :

➤ Gantt:

tâche 1 : Réunion d'introduction

tâche 2 : Réunion avec l'entreprise et le partage des rôles dans l'équipe

tâche 3 : Documentation (G-code, machines cartésiennes...)

tâche 4 : Rédaction du cahier des charges

tâche 5 : Rédaction de la charte de projet

tâche 6 : Création d'un environnement de développement(éditeur+parseur)

tâche 7 : Création d'une BD(matériaux, propriétés, outils, machines ..)

tâche 8 : Création d'un projet PLM

tâche 9 : Créaction d'une aide contextuelle en se basant sur une BD d'usinage

> tâche 10 : Réunion de mise au point équipe/tuteur/industriel

tâche 11: Rédaction du rapport projet

tâche 12 : Finalisation des livrables

tâche 13 : Réunion finale équipe / industriel

tâche 14: Finalisation du PLM

tâche 15 : Préparation de la présentation

2) Planification du projet :

> Partage des tâches :

_	
Tétar Adrien	Documentation + Rédaction du cahier des charges + Création d'un environnement de développement + Aide contextuelle + Rédaction rapport
Sbitri Youssra	Documentation + Rédaction du cahier des charges + Rédaction de la charte + Planning et partage des tâches + Développement de la BD usinage + Préparation de la présentation
Pliya Tatiana	Documentation + Rédaction du cahier des charges + Création de la BD usinage + PLM de projet + Rédaction rapport + Préparation de la présentation

> Etat d'avancement du projet :

- **V** Phase de création du raite
- **▽** Phase de planification
- **✓** Phase d'exécution am
- Livrables non terminés
- Phase de tests
- 🔀 Validation et livraison

II. <u>Programmation de commande numérique</u>

- Usinage par enlèvement de matière : tournage, traisage, perçage, gravure, chariotage, alésage, défonçage
- > Découpe avec : couteau, laser, jet d'eau, plasma, flamme ou oxydation
- > poinçonnage
- > impression 3D : par dépôt de matière ("fabrication additive"), durcissement d'une résine

II. Programmation de commande numérique

II. Programmation de commande numérique

Fraisage CNC

- 1. 0100;
- 2. M6 T1;
- 3. G0 G90 G40 G54 X0 Y-5;
- 4. M13 S2500;
- 5. G0 G43 H1 Z-4;
- 6. G1 F150 Y20;
- 7. X40;
- 8. Y0;
- 9. X-5;
- 10. M9;
- 11. M5;
- 12. G0 G53 Z0;
- 13. G0 G53 Y0;
- 14. M30;
- 15. %

Sélection du plan de l'usinage

Coordonnées du point de destination avec avance par commande F

	SOLUTIONS									
PROBLEMES	Réduire la vitesse de coupe	Augmenter la vitesse de coupe	Réduire l'avance	Augmenter l'avance	Réduire la profondeur de coupe	Augmenter la profondeur de coupe	Choisir une nuance plus résistance à 1'usure	Choisir une nuance plus tenace	Choisir un petit rayon de bec	Choisir une géométrie positive
Usure en dépouille rapide	X						X			
Usure en entaille	X						X			
Usure en cratère rapide	X		X				X			X
Déformation plastique	X		X				X			
Formation d'arête rapportée		X								X
Petites fissures perpendiculaires à l'arête de coupe								X		
Petites fractures de l'arête (écaillage)		X						X		X
Rupture de plaquette			X		X			X		
Copeaux longs enchevêtrés				X		X			X	
Vibration	X			X	X				X	X

4	A	В	C	D	E	F
1	Matériaux		Propriétés physiques			Propriétés mécaniques
2			Masse volumique (g/cm^3)	Dureté (Mohs)	Module d'Young (Gpa)	Résistance à la traction (Mpa)
3	Céramiques					
4	Carbure de silicium		3,2	9		610
5	Nitrure d'aluminium		3,26	7	318	300
6	Sable					
7	Béton		2450			
8	Bois/Pierre		400-1000		0,01	2,5
9	Marbre					
10	Nylons					
11	Nylon 618					
12	Nylon 645					
13	Filament PETT					
14	Organiques					
15	Tissus biologiques					
16	Cires					
17	Matières alimentaires					
18	Métaux					
19	Acier inoxydable		7800		210	440-640
20	Acier maraging		8,1			
21	Aluminium		2700		67,5	30
22	Bronze		8800		106	126
23	Fonte		7250			
24	Plexiglass					
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 22 25 26 27 28 29 30 31 32 33 34 34	Cuivre		8930		100	40
26	Alliages					
27	Inconel					
28	Monel					
29	Uranus					
30	Hastelloy					
31	Plastiques					
32	PLA					
33	ABS					
34	PET					

1	A	B	С	D	E
9	Acier inoxydable		7800		210
20	Acier maraging		8,1		
21	Aluminium		2700		67,5
22	Bronze		8800		106
23	Fonte		7250		
24	Plexiglass				
25	Cuivre		8930		100
26	Alliages				
27	Inconel				
28	Monel				
29	Uranus				
30	Hastelloy				
31	Plastiques				
32	PLA				
33	ABS				
34	PET				
35	TPU				
36	PC				
37					
38				Machines d	e tournage (turning)
39	Matériaux		Dureté (indicatif) Brinell	vitesse de coupe (matériau de coupe : HSS)	vitesse d'ava
40	Aciers au carbone				
41		1212,1213,1215	100-150/150-200	150-160	
42		1108,1109,1115, 1117, 1118, 1120, 1126, 1211	100-150/150-200	130-120	
43		1132, 1137, 1139, 1140, 1144, 1146, 1151	175-225/275-325/325-375/375-425	120/75/50/40	
44		11L17, 11L18, 12L13, 12L14	100-150/150-200/200-250	140/145/110	
45		1006, 1008, 1009, 1010, 1012,	100-125/125-175/175-225/225-275	120/110/90/70	
46		1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022,			
47		1023, 1024, 1025, 1026, 1513, 1514			
48		1027, 1030, 1033,	125-175/175-225/225-275/275-2		
49		1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042,			
50		1043, 1045, 1046, 1048, 1049, 1050, 1052, 1524	1,		
51		1526, 1527, 1541			
52					
53					
54					

AISI	Composition *, %								
No.	С	Mn	Р	S	No.				
Resulfurized									
1108	0.08 to 0.13	0.50 to 0.80	0.040 max	0.08 to 0.13	1108				
1109	0.08 to 0.13	0.60 to 0.90	0.040 max	0.08 to 0.13	1109				
1110	0.08 to 0.13	0.30 to 0.60	0.040 max	0.08 to 0.13	1110				
1116	0.14 to 0.20	1.10 to 1.40	0.040 max	0.16 to 0.23	1116				
1117	0.14 to 0.20	1.00 to 1.30	0.040 max	0.08 to 0.13	1117				
1118	0.14 to 0.20	1.30 to 1.60	0.040 max	0.08 to 0.13	1118				
1119	0.14 to 0.20	1.0 to 1.30	0.040 max	0.24 to 0.33	1119				
1132	0.27 to 0.34	1.35 to 1.65	0.040 max	0.08 to 0.13	1132				
1137	0.32 to 0.39	1.35 to 1.65	0.040 max	0.08 to 0.13	1137				
1139	0.35 to 0.43	1.35 to 1.65	0.040 max	0.13 to 0.20	1139				
1140	0.37 to 0.44	0.70 to 1.00	0.040 max	0.08 to 0.13	1140				
1141	0.37 to 0.45	1.35 to 1.65	0.040 max	0.08 to 0.13	1141				
1144	0.40 to 0.48	1.35 to 1.65	0.040 max	0.24 to 0.33	1144				
1145	0.42 to 0.49	0.70 to 1.00	0.040 max	0.04 to 0.07	1145				
1146	042 to 0.49	0.70 to 1.00	0.040 max	0.08 to 0.13	1146				
1151	0.48 to 0.55	0.70 to 1.00	0.040 max	0.08 to 0.13	1151				
Resulfurized and rephosphorized									
1211	0.13 max	0.60 to 0.90	0.07 to 0.12	0.10 to 0.15	1211				
1212	0.13 max	0.70 to 1.00	0.07 to 0.12	0.16 to 0.23	1212				
1213	0.13 max	0.70 to 1.00	0.07 to 0.12	0.24 to 0.33	1213				
1215	0.09 max	0.75 to 1.05	0.04 to 0.09	0.26 to 0.35	1215				
12L 14++	0.15 max	0.85 to 1.15	0.04 to 0.09	0.26 to 0.35	12L14				

Free-Machining Grades

Brinell, Vickers, Rockwell High Speed Steel Carbure Revêtement dur, nitrure de chrome

$$n \not= \frac{Vc}{\pi * d}$$

$$Vf = fz \times z \times N$$

$$\downarrow \quad \text{Tournage}$$

$$(z=1)$$

$$Vf = Vfz * N$$

```
*Untitled
                                                                                                 ×
File Help
 1 ; Simple G Code Example Mill
     ; From: http://www.helmancnc.com/simple-g-code-example-mill-g-code-programming-for-beginners/
     T1 M6
     (Linear / Feed - Absolute)
     G0 G90 G40 G21 G17 G94 G80
     G54 X-75 Y-75 S500 M3 (Position 6)
     G43 Z100 H1
     G01 Z5
     G01 Z-20 F100
     G01 X-40
                                (Position 1)
     G01 Y40 M8
                                (Position 2)
     G01 X40
                                (Position 3)
     G01 Y-40
                                (Position 4)
     G01 X-75
                                (Position 5)
     G01 Y-75
                                (Position 6)
     G0 Z100
     M30
18
```

```
class Lexer {
public:
  Lexer(const std::wstring& text);
  Token::Token next();
private:
 void scan_integer_();
  Token::Token tokenize alpha ();
  Token::Token tokenize_comment_();
  Token::Token tokenize number ();
  unsigned pos_;
  const std::wstring& text;
  size_t text_length_;
};
```

```
class Parser {
public:
 Parser(const std::wstring& text);
 ~Parser();
 Program parse();
private:
 void add word no dupl (std::vector<Word>& words, WordSet& rec words);
 void advance lexer ();
 Block fetch block ();
 std::wstring fetch comment ();
 Header fetch header ();
 unsigned fetch unsigned ();
 Word fetch word ();
 Lexer* lexer;
 Token::Token cur_token_;
 Token::Token next token;
 const std::wstring& text;
};
```

```
PROGRAM = HEADER (BLOCK)*
HEADER = PGM_START (IDENT)? END_BLOCK
BLOCK = (SEQ_NUMBER)? DATA_WORDS END_BLOCK
DATA_WORDS = (G_WORD)* ( (DIM_WORD)+ (IERP_WORD)* (ADV_WORD)* )? (SPIN_WORD)* (TOOL_WORD)* (AUX_WORD)*
G WORD = "G" PARAM
DIM WORD = ("X" | "Y" | "Z" | "U" | "V" | "W" | "P" | "Q" | "R" | "A" | "B" | "C") PARAM
IERP_WORD = ("I" | "J" | "K") PARAM
ADV WORD = ("E" | "F") PARAM
SPIN WORD = "S" PARAM
TOOL WORD = ("D" | "T") PARAM
AUX WORD = "M" PARAM
PGM START = "%"
IDENT = DIGITS | COMMENT
COMMENT = "(" [^%:]* ")"
SEQ NUMBER = "N" 3 * DIGIT
END BLOCK = "\n"
PARAM = (DIGITS "=")? NUMBER
NUMBER = ("+" | "-") ((DIGIT) + ("." (DIGIT)*)? | "." (DIGIT) + )
```

```
Program { header: Header, blocks: std::vector<Block> }
Header { identifier: std::optional<std::variant<unsigned, wstring>> }
Block { number: std::optional<BlockNumber>, data_words: std::vector<Word> }
BlockNumber { value: unsigned }
Word { type: Token::Type, value: float }
```

```
class Visitor;
class BaseNode {
public:
 virtual void accept(class Visitor*) = 0;
};
/* */
class Program : public BaseNode {
public:
 Program() { }
 void accept(Visitor* v);
 Header header;
 std::vector<Block> blocks:
class Visitor {
public:
 virtual void visit(Program* p) { };
};
```

Structure du programme :


```
class SpeedVisitor : public Visitor {
 SpeedVisitor() { }
 void visit(Word* w) {
    if (w->kind == Token::G) {
      if (w->value == 70) {
         units = SpeedVisitor::Imperial;
      } else if (w->value == 71) {
         units = SpeedVisitor::Metrics;
      } else if (w->value == 96) {
         speed kind = SpeedVisitor::ConstantSurfaceSpeed;
      } else if (w->value == 97) {
         speed kind = SpeedVisitor::RevPerMinute;
    } else if (w->kind == Token::S) {
      speed records .emplace back(0, w->value, calcSpindleSpeed());
  struct SpeedRecord { unsigned line; float value; float calculatedValue; }
};
```

Paramètres machine-outil :

```
si G96:
     // le Δd est la différence entre le diamètre initial de la pièce et celui où on se
     // trouve en fin de mouvement
     si !G50 et \Delta d >= threshold:
          warn
     si G70:
          // on convertit les mètres par minute en pouces par minute
         SS = \frac{V_c}{39.37}
     sinon: // G71
         SS = V_c
sinon: // G97
    SS = \frac{1000 \times V_c}{\pi \times d}
```

```
si fraiseuse:
  si G95:
     FR = f_z \times Z
  sinon: // G94
     FR = f_z \times Z \times N
sinon: // tourneuse
  si G95:
      FR = f
  sinon: // G94
     FR = f \times N
```

V. Perspectives d'évolution du projet

- Simulation sur machine cartésienne : Transition du code vers la réalité
- Pilotage avec rétroaction : Vérification et retour d'expérience pour une amélioration

Merci de votre attention ©

Pliya Tatiana Tétar Adrien