Quadratic forms and eigenvalues 1

Given the following quadratic forms, we request:

- 1. Write each quadratic form in matrix form.
- 2. Compute the eigenvalues of the associated matrix.
- a) In \mathbb{R}^2

$$\phi(x_1, x_2) = 4x_1^2 + 4x_1x_2 + 7x_2^2.$$

b) In \mathbb{R}^2

$$\phi(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2.$$

c) In \mathbb{R}^3

$$\phi(x_1, x_2, x_3) = 2x_1^2 + 4x_1x_2 + 2x_2^2 - 3x_3^2.$$

Solution

a)

Let the quadratic form be

$$\phi: \mathbb{R}^2 \to \mathbb{R}, \quad \phi(x_1, x_2) = 4x_1^2 + 4x_1x_2 + 7x_2^2.$$

1) Matrix form

To express ϕ in matrix form, we seek a symmetric matrix Q such that

$$\phi(x_1, x_2) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} Q \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Notice that the term $4x_1x_2$ corresponds to $2q_{12}x_1x_2$. Therefore, if $q_{11} = 4$ and $q_{22} = 7$, then $2q_{12} = 4$ implies $q_{12} = 2$. The associated matrix is thus

$$Q = \begin{pmatrix} 4 & 2 \\ 2 & 7 \end{pmatrix}.$$

Hence,

$$\phi(x_1, x_2) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 2 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

2) Eigenvalues of the associated matrix

To find the eigenvalues of Q, we solve

$$\det(Q - \lambda I) = 0.$$

This is equivalent to

$$\det \begin{pmatrix} 4 - \lambda & 2 \\ 2 & 7 - \lambda \end{pmatrix} = (4 - \lambda)(7 - \lambda) - (2)(2) = 0.$$

Expanding,

$$(4 - \lambda)(7 - \lambda) - 4 = (28 - 4\lambda - 7\lambda + \lambda^2) - 4 = \lambda^2 - 11\lambda + 24.$$

We seek the roots of the polynomial $\lambda^2 - 11\lambda + 24$. Observing that

$$\lambda^2 - 11\lambda + 24 = (\lambda - 8)(\lambda - 3),$$

we obtain

$$\lambda_1 = 8$$
 and $\lambda_2 = 3$.

b)

Let the quadratic form be

$$\phi: \mathbb{R}^2 \to \mathbb{R}, \quad \phi(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2.$$

1) Matrix form

To express ϕ in matrix form, we seek a symmetric matrix Q such that

$$\phi(x_1, x_2) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} Q \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Notice that the term $2x_1x_2$ corresponds to $2q_{12}x_1x_2$. Therefore, if the coefficient of x_1^2 is 1 (i.e., $q_{11} = 1$) and the coefficient of x_2^2 is 1 (i.e., $q_{22} = 1$), we must have

$$2q_{12} = 2 \implies q_{12} = 1.$$

Thus, the associated matrix is

$$Q = \begin{pmatrix} 1 & 1 \\ & \\ 1 & 1 \end{pmatrix}.$$

Hence,

$$\phi(x_1, x_2) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

2) Eigenvalues of the associated matrix

To find the eigenvalues of Q, we solve

$$\det(Q - \lambda I) = 0.$$

This is equivalent to

$$\det\begin{pmatrix} 1-\lambda & 1 \\ 1 & 1-\lambda \end{pmatrix} \ = \ (1-\lambda)^2-1 \ = \ 0.$$

Expanding the equation:

$$(1-\lambda)^2 - 1 = 1 - 2\lambda + \lambda^2 - 1 = \lambda^2 - 2\lambda$$

which simplifies to

$$\lambda(\lambda - 2) = 0.$$

Thus, the eigenvalues are:

$$\lambda_1 = 0$$
 and $\lambda_2 = 2$.

 $\mathbf{c})$

Let the quadratic form be

$$\phi: \mathbb{R}^3 \to \mathbb{R}, \quad \phi(x_1, x_2, x_3) = 2x_1^2 + 4x_1x_2 + 2x_2^2 - 3x_3^2.$$

1) Matrix form

To express ϕ in matrix form, we seek a symmetric matrix Q such that

$$\phi(x_1, x_2, x_3) = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} Q \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

We observe that:

- The coefficient of x_1^2 is 2, so $q_{11} = 2$.
- The coefficient of x_2^2 is 2, so $q_{22} = 2$.

- The coefficient of x_3^2 is -3, so $q_{33} = -3$.
- The term $4 x_1 x_2$ corresponds to $2 q_{12} x_1 x_2$, hence $q_{12} = 2$.
- No mixed terms involving x_3 appear, so $q_{13} = q_{23} = 0$.

Thus, the associated matrix is

$$Q = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix}.$$

Hence,

$$\phi(x_1, x_2, x_3) = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

2) Eigenvalues of the associated matrix

To find the eigenvalues of Q, we solve

$$\det(Q - \lambda I) = 0.$$

Notice that Q has a block-diagonal form:

$$Q = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ \hline 0 & 0 & -3 \end{pmatrix}.$$

The 2×2 block is

$$\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix},$$

and the 1×1 block is -3.

The eigenvalues of the 2×2 block are found from

$$\det \begin{pmatrix} 2-\lambda & 2 \\ 2 & 2-\lambda \end{pmatrix} = (2-\lambda)^2 - 4 = \lambda^2 - 4\lambda.$$

Thus,

$$\lambda(\lambda - 4) = 0,$$

which gives the eigenvalues:

$$\lambda = 0$$
 and $\lambda = 4$.

The third eigenvalue, corresponding to the 1×1 block, is

$$\lambda = -3$$
.

Therefore, the eigenvalues of Q are:

$$\lambda_1 = 4, \quad \lambda_2 = 0, \quad \lambda_3 = -3.$$