Lecture 1

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 1

- Introduction
- Definitions
- General Mole Balance Equation

- Batch (BR)
- Continuously Stirred Tank Reactor (CSTR)
- Plug Flow Reactor (PFR)
- Packed Bed Reactor (PBR)

Chemical Reaction Engineering

 Chemical reaction engineering is at the heart of virtually every chemical process. It separates the chemical engineer from other engineers.

Industries that Draw Heavily on Chemical Reaction Engineering (CRE) are:

CPI (Chemical Process Industries)

Examples like Dow, DuPont, Amoco, Chevron

Chapter 1

Dimersol G (an organometallic catalyst) unit (two CSTRs and one tubular reactor in series) to dimerize propylene into isohexanes. Institut Français du Pétrole process. [Photo courtesy of Editions Technip (Institut Français du Pétrole).]

Wetlands (Ch. 7 DVD-ROM)

Lu

Pharmacokinetics of Cobra Bites Multiple Reactions in a Batch (Body) Reactor

Cobra Bites (Ch. 8 DVD-ROM)

Nitroanaline Plant Explosion Exothermic Reactions That Run Away

Plant Safety (Ch. 11,12,13)

Materials on the Web

http://www.umich.edu/~elements/5e/

Let's Begin CRE

• Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Chemical Identity

- A chemical species is said to have reacted when it has lost its chemical identity.
- The identity of a chemical species is determined by the kind, number, and configuration of that species' atoms.

Chemical Identity

- A chemical species is said to have reacted when it has lost its chemical identity.
- There are three ways for a species to loose its identity:
- 1. Decomposition

$$CH_3CH_3 \rightarrow H_2 + H_2C = CH_2$$

2. Combination

$$N_2 + O_2 \rightarrow 2 NO$$

3. Isomerization

$$C_2H_5CH=CH_2 \rightarrow CH_2=C(CH_3)_2$$

- The reaction rate is the rate at which a species looses its chemical identity per unit volume.
- The rate of a reaction (mol/dm³/s) can be expressed as either:
 - The rate of Disappearance of reactant: -r_A
 or as
 - The rate of Formation (Generation) of product: rp

Consider the isomerization

$$A \rightarrow B$$

- r_A = the rate of formation of species A per unit volume
- -r_A = the rate of a disappearance of species A per unit volume
- r_B = the rate of formation of species B per unit volume

EXAMPLE: A→B

If Species B is being formed at a rate of

0.2 moles per decimeter cubed per second, i.e.,

 $r_B = 0.2 \text{ mole/dm}^3/\text{s}$

Then A is disappearing at the same rate:

 $-r_{\Delta}$ = 0.2 mole/dm³/s

The rate of formation (generation of A) is:

 r_{Δ} = -0.2 mole/dm³/s

 For a catalytic reaction we refer to -r_A, which is the rate of disappearance of species A on a per mass of catalyst basis. (mol/gcat/s)

NOTE: dC_A/dt is not the rate of reaction

Consider species j:

- r_j is the rate of formation of species j per unit volume [e.g. mol/dm³s]
- **2. r**_j is a function of concentration, temperature, pressure, and the type of catalyst (if any)
- **3. r**_j is independent of the type of reaction system (batch, plug flow, etc.)
- **4.** $\mathbf{r_j}$ is an algebraic equation, not a differential equation (e.g. $-r_A = kC_A$ or $-r_A = kC_A^2$)

General Mole Balances

$$\begin{bmatrix} Molar \ Flow \\ Rate \ of \\ Species \ j \ in \end{bmatrix} - \begin{bmatrix} Molar \ Flow \\ Rate \ of \\ Species \ j \ out \end{bmatrix} + \begin{bmatrix} Molar \ Rate \\ Generation \\ of \ Species \ j \end{bmatrix} = \begin{bmatrix} Molar \ Rate \\ Accumulation \\ of \ Species \ j \end{bmatrix}$$

$$F_{j0}$$
 F_{j} $+$ G_{j} $=$ $\frac{dA_{j}}{dt}$ $\left(\frac{mole}{time}\right)$ $\left(\frac{mole}{time}\right)$ $+$ $\left(\frac{mole}{time}\right)$ $=$ $\left(\frac{mole}{time}\right)$

General Mole Balances

Chapter 1

Mole Balance

If spatially uniform:

$$G_j = r_j V$$

General Mole Balances

$$G_{j} = \sum_{i=1}^{n} r_{ji} \Delta V_{i}$$

Take limit

$$G_{j} = \sum_{i=1}^{n} r_{ji} \Delta V_{i} = \int r_{j} dV$$

General Mole Balances

General Mole Balance on System Volume V

$$In - Out + Generation = Accumulation$$

$$F_{A0} - F_{A} + \int r_{A} dV = \frac{dN_{A}}{dt}$$

Batch Reactor - Mole Balances

Batch

$$F_{A0} - F_A + \int r_A dV = \frac{dN_A}{dt}$$

$$F_{A0} = F_A = 0$$

Well-Mixed

$$\int r_{A}dV = r_{A}V$$

$$\frac{dN_A}{dt} = r_A V$$

Batch Reactor - Mole Balances

Integrating

$$dt = \frac{dN_A}{r_A V}$$

when
$$\begin{aligned} t &= 0 \quad N_A = N_{A0} \\ t &= t \quad N_A = N_A \end{aligned}$$

$$t = \int_{N_{A0}}^{N_A} \frac{dN_A}{-r_A V}$$

Time necessary to reduce the number of moles of A from N_{A0} to N_{A} .

Batch Reactor - Mole Balances

CSTR - Mole Balances

CSTR

$$F_{A0} - F_A + \int r_A dV = \frac{dN_A}{dt}$$

Steady State

$$\frac{dN_A}{dt} = 0$$

CSTR - Mole Balances

Well Mixed

$$\int r_A dV = r_A V$$

$$F_{A0} - F_A + r_A V = 0$$

$$V = \frac{F_{A0} - F_{A}}{-r_{A}}$$

CSTR volume necessary to reduce the molar flow rate from F_{A0} to F_{A} .

Polyethylene reactor; this 16-in inner-diameter reactor is designed to operate at 35,000 psi and 600°F; in operation, this reactor is in a vertical configuration. Courtesy of Autoclave Engineers, Division of Snap-tite, Inc.

$$\begin{bmatrix} In \\ at V \end{bmatrix} - \begin{bmatrix} Out \\ at V + \Delta V \end{bmatrix} + \begin{bmatrix} Generation \\ in \Delta V \end{bmatrix} = 0$$

$$F_{A|_{V}} - F_{A|_{V+\Delta V}} + r_{A}\Delta V = 0$$

Rearrange and take limit as $\Delta V \rightarrow 0$

$$\lim_{\Delta V \to 0} \frac{F_A \big|_{V + \Delta V} - F_A \big|_{V}}{\Delta V} = r_A$$

$$\frac{dF_A}{dV} = r_A$$

This is the volume necessary to reduce the entering molar flow rate (mol/s) from F_{A0} to the exit molar flow rate of F_{A} .

$$F_{A0} - F_A + \int r_A dV = \frac{dN_A}{dt}$$

Steady State

$$\frac{dN_A}{dt} = 0$$

$$F_{A0} - F_A + \int r_A dV = 0$$

Alternative Derivation

Plug Flow Reactor - Mole Balances

Differientiate with respect to V

$$0 - \frac{dF_A}{dV} = -r_A \qquad \qquad \qquad \qquad \frac{dF_A}{dV} = r_A$$

The integral form is: $V = \int_{F_{AO}}^{F_A} \frac{dF_A}{r_A}$

This is the volume necessary to reduce the entering molar flow rate (mol/s) from F_{A0} to the exit molar flow rate of F_{A} .

Packed Bed Reactor - Mole Balances

PBR

$$F_{A}(W) - F_{A}(W + \Delta W) + r'_{A}\Delta W = \frac{dN_{A}}{dt}$$

Steady State

$$\frac{dN_A}{dt} = 0$$

$$\lim_{\Delta W \to 0} \frac{|F_A|_{W + \Delta W} - |F_A|_{W}}{\Delta W} = r_A$$

Packed Bed Reactor - Mole Balances

Rearrange:

$$\frac{dF_A}{dW} = r_A'$$

The integral form to find the catalyst weight is:

$$W = \int_{F_{A0}}^{F_A} \frac{dF_A}{r_A'}$$

PBR catalyst weight necessary to reduce the entering molar flow rate F_{A0} to molar flow rate F_{A} .

Reactor Mole Balances Summary

The GMBE applied to the four major reactor types (and the general reaction $A \rightarrow B$)

Reactor

Differential

Algebraic

Integral

$$\frac{dN_A}{dt} = r_A V$$

$$t = \int_{N_{A0}}^{N_A} \frac{dN_A}{r_A V}$$

CSTR

PFR

$$\frac{dF_A}{dV} = r_A$$

$$V = \frac{F_{A0} - F_A}{-r_A}$$

$$V = \int_{F_{A0}}^{F_A} \frac{dF_A}{r_A}$$

PBR

$$\frac{dF_A}{dW} = r_A'$$

$$W = \int_{F_{A0}}^{F_A} \frac{dF_A}{r_A'}$$

Reactors with Heat Effects

- EXAMPLE: Production of Propylene Glycol in an Adiabatic CSTR
- Propylene glycol is produced by the hydrolysis of propylene oxide:

$$CH_{2}-CH-CH_{3}+H_{2}O\xrightarrow{H_{2}SO_{4}}CH_{2}-CH-CH_{3}$$

$$O$$

$$OH$$

$$OH$$

What are the exit conversion X and exit temperature T?

Solution

Let the reaction be represented by

1. Mole Balance and design equation:

$$F_{A0} - F_A + r_A V = 0$$

The design equation in terms of X is

$$V = \frac{F_{A0}X}{-r_{A}}$$

2. Rate Law:

$$-r_{\rm A} = kC_{\rm A}$$

3. Stoichiometry (liquid phase, $v = v_0$):

$$C_{\rm A} = C_{\rm A0}(1-X)$$

4. Combining yields

$$V = \frac{F_{A0}X}{kC_{A0}(1-X)} = \frac{v_0X}{k(1-X)}$$

Solving for X as a function of T and recalling that $\tau = V/v_0$ gives

$$X_{\text{MB}} = \frac{\tau k}{1 + \tau k} = \frac{\tau A e^{-E/RT}}{1 + \tau A e^{-E/RT}}$$

This equation relates temperature and conversion through the mole balance.

b. Stoichiometry (C_{A0} , Θ_i , τ): The total liquid volumetric flow rate entering the reactor is

$$V = 300 \text{ gal} = 40.1 \text{ ft}^3$$

$$\tau = \frac{V}{v_0} = \frac{40.1 \text{ ft}^3}{326.3 \text{ ft}^3/\text{h}} = 0.123 \text{ h}$$

$$C_{A0} = \frac{F_{A0}}{v_0} = \frac{43.0 \text{ lb mol/h}}{326.3 \text{ ft}^3/\text{h}}$$

$$= 0.132 \text{ lb mol/ft}^3$$

For methanol:
$$\Theta_{\rm M} = \frac{F_{\rm M0}}{F_{\rm A0}} = \frac{71.87 \text{ lb mol/h}}{43.0 \text{ lb mol/h}} = 1.67$$

For water:
$$\Theta_{\rm B} = \frac{F_{\rm B0}}{F_{\rm A0}} = \frac{802.8 \text{ lb mol/h}}{43.0 \text{ lb mol/h}} = 18.65$$

c. Evaluate mole balance terms: The conversion calculated from the mole balance, $X_{\rm MB}$, is found from Equation (E8-8.5).

$$X_{\text{MB}} = \frac{(2.084 \times 10^{12}) \exp(-16,306/T)}{1 + (2.084 \times 10^{12}) \exp(-16,306/T)}$$
, T is in R

The energy balance for this adiabatic reaction in which there is negligible energy input provided by the stirrer is

$$X_{\text{EB}} = \frac{\sum \Theta_i C_{P_i} (T - T_{i0})}{-[\Delta H_{\text{Rx}}^{\circ}(T_R) + \Delta C_P (T - T_R)]}$$

d. Evaluate energy balance terms

$$\Sigma\Theta_i C_{P_i} = C_{P_A} + \Theta_B C_{P_B} + \Theta_M C_{P_M}$$
$$= 35 + (18.65)(18) + (1.67)(19.5)$$

Substituting all the known quantities into the energy balance gives us

$$X_{\text{EB}} = \frac{(403.3 \text{ Btu/lb mol} \cdot ^{\circ}\text{F})(T - 535)^{\circ}\text{F}}{-[-36,400 - 7(T - 528)] \text{ Btu/lb mol}}$$

$$X_{\rm EB} = -\frac{\sum \Theta_i C_{P_i} (T - T_{i0})}{\Delta H_{\rm Rx}^{\circ} (T_R) + \Delta C_P (T - T_R)}$$

$$X_{\rm EB} = \frac{403.3(T - 535)}{36,400 + 7(T - 528)}$$

7. Solving.

T	$X_{ m MB}$	$X_{\rm EB}$
(°R)	[Eq. (E8-8.10)]	[Eq. (E8-8.12)]
535	0.108	0.000
550	0.217	0.166
565	0.379	0.330
575	0.500	0.440
585	0.620	0.550
595	0.723	0.656
605	0.800	0.764
615	0.860	0.872
625	0.900	0.980

Analysis

We have applied our CRE algorithm to calculate the Conversion (X=0.84) and Temperature (T=614 °R) in a 300 gallon CSTR operated adiabatically.

Algorithm

Keeping Up

Separations

Filtration

Distillation

Adsorption

These topics do not build upon one another.

Reaction Engineering

Mole Balance

Rate Laws

Stoichiometry

These topics build upon one another.

Algorithm

Heat Effects
Isothermal Design
Stoichiometry
Rate Laws
Mole Balance

CRE Algorithm

Algorithm

Mole Balance

Rate Laws

Be careful not to cut corners on any of the CRE building blocks while learning this material!

Otherwise, your Algorithm becomes unstable.

End of Lecture 1

The reactor is 3.5 m in diameter and 38 m tall. [Schematic and photo courtesy of Sasol/Sastech PT Limited.]

Penicillium chrysogenum

Hippo Digestion (Ch. 2)

Modeling the Digestive System of a Hippopotamus*

Matthew Robertson, Fredrik Persson, Brian Vicente, Professor H. Scott Fogler

"Even hippo's like Chemical Reaction Engineering."

Supplemental Slides **Additional Applications of CRE** H₂, C₂H₄ C_2H_6 $C_2H_6 \rightarrow C_2H_4 + H_2$ Separator O2, C2Ha, N2, C2HaO $V = 81 \text{ ft}^3$ X = 0.8W = 45.440 lbX = 0.60 C_2H_4O H₂O 0.9 wt % H₆SC Absorber C₂H₄O (a.g.) 200 million b $V=197\,h^{\alpha}$ EG/year X = 0.80

Chemical Plant for Ethylene Glycol (Ch. 5)

CoH_oO + H_oO

Oil Recovery (Ch. 7)

Lu

Pharmacokinetics of Cobra Bites Multiple Reactions in a Batch (Body) Reactor

Cobra Bites (Ch. 8 DVD-ROM)

Effective Lubricant
Design Scavenging
Free Radicals
Lubricant Design (Ch. 9)

Nitroanaline Plant Explosion Exothermic Reactions That Run Away

Plant Safety (Ch. 11,12,13)