SECCOMP) | SEM-III | R-19 | FH-23 | 26-05-23

Paper / Subject Code: 50922 / Discrete Structures & Graph Theory

OP CODE : 30226

(3 Hours)

Total Marks: 80

N.B.: (1) Question Number 1 is compulsory

- (2) Solve any three questions from the remaining questions
- (3) Make suitable assumptions if needed
- (4) Assume appropriate data whenever required. State all assumptions clearly.

1.	a.	Define the following with suitable example a)Ring b) Cyclic Group c) Monoid d)Normal Subgroup e) Planar Graph	5
	b.	Check whether $[(p \rightarrow q) \land \neg q] \rightarrow p$ is a tautology	5 .
	c.	Determine the number of positive integers n where $1 \le n \le 100$ and n is not divisible by	5
	d.	2,3 or 5. Prove by mathematical induction that 2+5+8++(3n-1) = n(3n+1)/2	5
2	a	Define Equivalence Relation. Let A be a set of integers, Let R be a Relation on AXA defined by (a,b) R (c,d) if and only if ad = bc. Prove that R is an Equivalence Relation	8
	b.	Let A={a, b, c, d, e} 1 0 1 1 0 0 1 0 0 1 MR= 0 1 0 0 1	8
		1 0 1 0 0 0 0 0 1 1 Find the transitive closure of it using Warshall's algorithm.	
	c	Let G be a group. Prove that the identity element 'e' is unique.	4
3	a	Prove that set $G = \{1,2,3,4,5,6\}$ is a finite abelian group of order 6 with respect to multiplication module 7	8

ii) $\{0,1,0,-1,0,1,0,-1...\}$.

i) {1,1,1...}

Determine whether the following graphs are isomorphic. Justify your answer.

Give the exponential generating function for the sequences

A Function $f: R \to \left\{\begin{array}{c} 7 \\ 3 \end{array}\right\} \to R \to \left\{\begin{array}{c} 4 \\ 3 \end{array}\right\}$ is defined as

$$f(x) = (4x - 5)/(3x - 7)$$

8

Prove that f is Bijective and find the rule for f

30226

1

Paper / Subject Code: 50922 / Discrete Structures & Graph Theory

Show that (2,5) encoding function $e:B^2$

- e(00)=00000
- e(01)=01110
- e(10)=10101
- e(11)=11011
- is a group code.
- Check whether Euler cycle and Euler Path exist in the Graph given below. If yes Mention them

- 5. Consider the Set A={1,2,3,4,5,6} under multiplication Modulo 7.
 - 1) Prove that it is a Cyclic group.

- State and explain the extended Pigeonhole principle. How many friends must you have to guarantee that at least five of them will have hirthdays in the
- 4

- Functions f,g,h are defined on a set X={a,b,c} as
 - $f = \{(a,b),(b,c),(c,a)\}$
 - $g = \{(a,b),(b,a),(b,b)\}$
 - $h = \{(a,a),(b,b),(c,a)\}$

6.

- Find fog, gof. Are they equal?
- Find fogoh and fohog?

- 8
- Define Bounded Lattice and Distributive Lattice. Check if the following diagram is a Distributive

Draw the Hasse Diagram of D₇₂ and D₁₀₅ and check whether they are Lattice.

8

- Define the following with suitable example.
 - a)Hamiltonian path
- b) Euler Circuit c) Sub Lattice d) Group e) Surjective Function