Cvičení 5: Charakteristiky a aplikace diod

C5.1: Dioda – vlastnosti

V-A charakteristika, mezní parametry, katalogový list

C5.2: Modely diod a jejich užití

Statické modely: exponenciální, ideální, linearizovaný po částech... Analýza stejnosměrného pracovního bodu obvodu diody CP5.1 a CP5.2

C5.3: Náhradní lineární modely (NLO) diody

Určení pracovního bodu ČP5.3 Odečet parametrů NLO diody CP5.4 NLO pro změny veličin, výpočet střídavého přenosu obvodu CP5.4, 5.5

C5.4: Teplotní závislost V-A charakteristiky diody

Teplotní závislost závěrného proudu diody Teplotní závislost propustného úbytku diody CP5.6

C5.5: Zenerova dioda

Činitel stabilizace CP5.7

C5.1 Dioda – vlastnosti

C5.1 Dioda – vlastnosti

Mezní parametry

C5.1 Dioda – vlastnosti

Katalogový list

1N4001 - 1N4007 General Purpose Rectifiers

Features

- Low forward voltage drop.
- High surge current capability.

DO-41
COLOR BAND DENOTES CATHODE

U_{RRM} Reverse Repetetive Maximum Voltage

I_{FAV}

 U_F

Forward **AV**erage Current

Forward Surge Maximum Current

Absolute Maximum Ratings * T_A = 25 ℃ unless otherwise noted

Symbol	Parameter	Value						Units	
		4001	4002	4003	4004	4005	4006	4007	Ullits
V _{RRM}	Peak Repetitive Reverse Voltage	50	100	200	400	600	800	1000	V
I _{F(AV)}	Average Rectified Forward Current .375 " lead length @ T _A = 75°C	1.0					Α		
I _{FSM}	Non-Repetitive Peak Forward Surge Current 8.3ms Single Half-Sine-Wave	30					Α		
I ² t	Rating for Fusing (t<8.3ms)	3.7					A ² sec		
T _{STG}	Storage Temperature Range	-55 to +175					°C		
TJ	Operating Junction Temperature	-55 to +175				°C			

^{*} These ratings are limiting values above which the serviceability of any semiconductor device may by impaired.

Thermal Characteristics

Symbol	Parameter	Value	Units
PD	Power Dissipation	3.0	W
R _{eJA}	Thermal Resistance, Junction to Ambient	50	°C/W

Electrical Characteristics T_A = 25 ℃ unless otherwise noted

Symbol	Parameter	Value	Units
V _F	Forward Voltage @ 1.0A	1.1	V
I _{rr}	Maximum Full Load Reverse Current, Full Cycle T _A = 75	°C 30	μА
I _R	Reverse Current @ Rated V_R $T_A = 25$ $T_A = 100$	°C 5.0 °C 50	μA μA
C _T	Total Capacitance V _R = 4.0V, f = 1.0MHz	15	pF

© 2009 Fairchild Somiconductor Compration

www.fairchildeomi.com

Forward Voltage
Reverse Current

Úplné odporové (statické) modely

Exponenciální

Úplné odporové (statické) modely

Ideální

závěrná polarizace

$$\textbf{U}_{\textbf{AK}} < \textbf{0} \quad \Rightarrow \quad \textbf{I}_{\textbf{A}} = \textbf{0}$$

propustná polarizace

$$I_A > 0 \implies U_{AK} = 0$$

Úplné odporové (statické) modely

Linearizovaný po částech

$$\mathbf{U}_{\mathbf{AK}} < \mathbf{U}_{0} \quad \Rightarrow \quad \mathbf{I}_{\mathbf{A}} = \mathbf{0}$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

 U_0,R_D – paramery modelu

Úplné odporové (statické) modely

Aproximace konstantním zdrojem napětí

$$U_{AK} < U_{0} \implies I_{A} = 0$$

$$I_A > 0 \implies U_{AK} = U_A$$

pro Si@300K U₀š0.6-0.7V

Příklad CP5.1:

Pro zadané hodnoty napětí U_1 určete hodnoty napětí U_2 a proud odporem R_1 , je-li R_1 a R_2 = 1 kOhm. Uvažujte VA charakteristiku diody dle obrázku.

A.
$$U_1 = +10V$$

B.
$$U_1 = -10V$$

Příklad CP5.1:

Při $U_1 = +10V$ je napětí U_{AK} diody záporné

(pokračování)

Řešení A:

dioda **nevede** proud – diodu nahradíme rozpojenými svorkami

$$U_2 = U_1 \frac{R_2}{R_1 + R_2} = 10 \frac{1k}{1k + 1k} = 5V$$

$$I_{R1} = \frac{U_1}{R_1 + R_2} = \frac{10}{1k + 1k} = 5mA$$

Příklad CP5.1:

(pokračování)

Při $U_1 = -10V$ je napětí U_{AK} diody kladné, větší než 0.7V

Řešení B:

dioda vede proud – diodu nahradíme zdrojem napětí 0.7V

Příklad CP5.2:

Vypočtěte hodnotu odporu R_1 . $U_{CC} = 3,3V$, $U_{AK} = 0,7V$ a $I_A = 2mA$.

Řešení:

Sestavíme obvodovou rovnici proudové smyčky I_A
 Kirchhoffův zákon)

$$-U_{CC} + I_A \cdot R_1 + U_{AK} = 0$$

2) Vypočteme R₁.

$$R_1 = \frac{U_{CC} - U_{AK}}{I_A}$$

$$R_1 = \frac{3.3 - 0.7}{2.10^{-3}} = \frac{1300 \ [\Omega]}{}$$

Příklad CP5.3:

Určete pracovní bod P_0 diody v obvodu. $R_1=2k\Omega, U_{CC}=3V$.

Příklad CP5.3:

Určete pracovní bod P_0 diody v obvodu. R_1 =2k Ω , U_{CC} =3V.

Řešení:

Příklad CP5.4:

Příklad CP5.4:

Vypočtěte střídavou složku výstupního napětí $\Delta u_{výst}$. Δu_{vst} =10mV, R_1 = R_2 =1k Ω , U_1 =3V. (Pro střídavé signály nahraďte kapacitory zkratem).

Řešení:

Příklad CP5.4:

Vypočtěte střídavou složku výstupního napětí Δu_{výst}. $\Delta u_{vst} = 10 \text{ mV}, R_1 = R_2 = 1 \text{ k}\Omega, U_1 = 3 \text{ V}.$

Řešení: 1) Stejnosměrná složka obvodu

- Zjednodušení obvodu pro stejnosměrné účely

- Určení pracovního bodu

Příklad CP5.4:

Vypočtěte střídavou složku výstupního napětí $\Delta u_{výst}$. Δu_{vst} =10mV, R_1 = R_2 =1k Ω , U_1 =3V. (Pro střídavé signály nahraďte kapacitory zkratem).

Řešení:

Příklad CP5.4:

Vypočtěte střídavou složku výstupního napětí $\Delta u_{výst}$. Δu_{vst} =10mV, R_1 = R_2 =1k Ω , U_1 =3V. (Pro střídavé signály nahraďte kapacitory zkratem).

Řešení:

- 2) Střídavá složka obvodu
 - Náhradní lineární obvod pro změny veličin
 - Výpočet střídavého přenosu obvodu

$$\Delta u_{vyst} = \frac{\Delta u_{vst} \cdot R_2}{R_d + R_2} = \frac{10mV \cdot 1k}{100 + 1k} = 9,1 \ [mV]$$

19

Příklad CP5.5:

Vypočtěte střídavou složku výstupního napětí $\Delta u_{výst}$. Δu_{vst} =10mV, R_1 = R_2 =1k Ω , U_1 =**0V**. (Pro střídavé signály nahraďte kapacitory zkratem).

Řešení:

$$U_1=0V \Rightarrow I_A=0A$$

P₀ bude v počátku souřadnic $\Rightarrow R_d \rightarrow \infty$

$$\Delta u_{vyst} = \frac{\Delta u_{vst} \cdot R_2}{R_d + R_2} = \frac{10mV \cdot 1k}{\infty} = 0 [V]$$

Příklad CP5.6:

A: Vypočtěte hodnotu U_{AK} v propustném směru Si diody pro teplotu PN přechodu 150°C U_{CC} =800V, R₁=1kΩ, U_{AK} =0,65V@25°C. Teplotní koeficient uvažujte ΔU_{AK} / ΔT =-2mV/K.

- **B**: Vypočtěte samoohřev PN přechodu diody vlivem ztrátového výkonu pro 25°C a 150°C. U_{CC} =800V, R_1 =1kΩ Uvažujte tepelný odpor R_{THJA} =50K/W.
- **C**: Vypočtěte ztrátový výkon závěrně polarizovaného PN přechodu diody 1N4007 pro 25°C a 150°C. U_{CC}=**-800V**, R₁=1kΩ.

 U_{CC} a R_1 uvažujte jako teplotně nezávislé.

Příklad CP5.6:

A: Vypočtěte hodnotu U_{AK} v propustném směru Si diody pro teplotu PN přechodu 150°C U_{CC} =800V, R₁=1kΩ, U_{AK} =0,65V@25°C. Teplotní koeficient uvažujte ΔU_{AK} / ΔT =-2mV/K.

Řešení A:

Úbytek napětí v propustném směru křemíkové diody s PN přechodem lineárně klesá o 2mV/K.

$$U_{AKT2} = U_{AKT1} + (T_2 - T_1)^* (\Delta U_{AK} / \Delta T)$$

$$U_{AKT2} = 0.65 + (150 - 25)*(-2mV)$$

$$U_{AKT2} = 0.65 - 0.25 = 0.40V$$

Příklad CP5.6:

B: Vypočtěte samoohřev PN přechodu diody vlivem ztrátového výkonu pro 25°C a 150°C. U_{CC} =800V, R_1 =1kΩ Uvažujte tepelný odpor R_{TH.IA}=50K/W.

Řešení B:

Samoohřev (zvýšení teploty PN přechodu oproti okolní teplotě) vlivem proudu protékajícího diodou vypočteme jako součin ztrátového výkonu diody a jejího tepelného odporu:

$$\Delta T_i = R_{THJA} * P_{D1}$$

$$\Delta T_i = R_{THJA} * P_{D1}$$
 @ $P_{D1} = U_{AK} * I_A = U_{AK} * (U_{CC} - U_{AK})/R_1$

pro 25°C: $P_{D1} = U_{AK}^* I_A = 0.65^*(800-0.65)/1k = 0.52 W$

$$\Delta T_j = R_{THJA} * P_{D1} = 50*0,52W = 26 K$$

pro 150°C: $P_{D1} = U_{AK}^* I_A = 0.40^* (800-0.40)/1 k = 0.32 \text{ mW}$

$$\Delta T_j = R_{THJA} * P_{D1} = 50*0,32W = 16 K$$

Příklad CP5.6:

C: Vypočtěte ztrátový výkon závěrně polarizovaného PN přechodu diody 1N4007 pro 25°C a 150°C. U_{CC}=**-800V**, R₁=1kΩ.

Řešení C:

Hodnotu závěrných proudů odečteme z grafu pro 80% závěrného napětí

pro 25°C:

$$P_{D1} = U_{AK}^* I_A = -800^*(-0.15u) = 120 uW$$

pro 150°C:

$$P_{D1} = U_{AK}^* I_A = -800^*(-200u) = 0.16 W !!!$$

Příklad CP5.7:

Vypočtěte hodnotu činitele napěťové stabilizace S_{\cup} stabilizátoru se Zenerovou diodou.

 $R_1 = 200\Omega, U_1 = 15V.$

Příklad CP5.7:

Vypočtěte hodnotu činitele napěťové stabilizace S_U stabilizátoru se Zenerovou diodou.

$$R_1 = 200\Omega, U_1 = 15V.$$

Řešení:

Činitel napěťové stabilizace je poměr vstupního a výstupního zvlnění, vztažený k napájecímu a stabilizovanému napětí:

eny k napajecimu a stabilizovanemu nape
$$\Delta u_1$$

$$S_U = \frac{\frac{\Delta u_1}{U_1}}{\frac{\Delta u_2}{U_2}} = \frac{\Delta u_1}{\Delta u_2} \cdot \frac{U_2}{U_1}$$

Příklad CP5.7:

Vypočtěte hodnotu činitele napěťové stabilizace S_U

stabilizátoru se Zenerovou diodou.

 $R_1 = 200\Omega, U_1 = 15V.$

Řešení:

$$S_U = \frac{\frac{\Delta u_1}{U_1}}{\frac{\Delta u_2}{U_2}} = \frac{\Delta u_1}{\Delta u_2} \cdot \frac{U_2}{U_1}$$

Pro odvození vztahu mezi Δu_1 a Δu_2 sestavíme NLO pro změny obvodových veličin:

$$\Delta u_1 = -\Delta i_A \cdot (R_d + R_1)$$
$$\Delta u_2 = -\Delta i_A \cdot R_d$$

$$S_U = \frac{\Delta u_1}{\Delta u_2} \cdot \frac{U_2}{U_1} = \frac{R_d + R_1}{R_d} \cdot \frac{U_2}{U_1}$$

kde R_d je diferenciální odpor Zenerovy diody v jejím pracovním bodu.

Příklad CP5.7:

Vypočtěte hodnotu činitele napěťové stabilizace S_U stabilizátoru se Zenerovou diodou.

 $R_1 = 200\Omega, U_1 = 15V.$

Určení pracovního bodu a dif. odporu Zenerovy diody – sestrojíme zatěžovací přímku:

$$U_{1} + I_{A} \cdot R_{1} + U_{AK} = 0$$

$$U_{AK} = -U_{1} - I_{A} \cdot R_{1}$$

$$U_{AK} = -15 - I_{A} \cdot 200$$

Příklad CP5.7:

Vypočtěte hodnotu činitele napěťové stabilizace S_U stabilizátoru se Zenerovou diodou. R_1 =200 Ω , U_1 =15V.

Řešení:

Určíme pracovní bod Zenerovy diody a odečteme R_d

$$R_d = \frac{\Delta U}{\Delta I} = \frac{1,3V}{80mA} \approx 16 [\Omega]$$

Dosadíme do vzorce pro činitel napěťové stabilizace S_{II}:

$$S_U = \frac{\Delta u_1}{\Delta u_2} \cdot \frac{U_2}{U_1} = \frac{R_d + R_1}{R_d} \cdot \frac{U_2}{U_1} = \frac{16 + 200}{16} \cdot \frac{10}{15} = 9$$

