

Sistemas Críticos

Paulo Portugal, Francisco Vasques {pportugal, vasques}@fe.up.pt

Sistemas de Segurança Crítica

- Objetivos da Disciplina
 - Abrir os horizontes dos Engenheiros Informáticos para os Sistemas de Segurança Crítica;
 - » "Security": ... não ocorrência de <u>avarias intencionais;</u>
 - » "Safety": ...não ocorrência de <u>avarias acidentais</u>;
 - » "Safety-Critical System": quando uma avaria pode ter consequências catastróficas...

Sistemas Críticos 2

Objetivos da Disciplina

- Abordar noções ligadas à <u>Segurança</u>, fundamentais para desenvolvimento de Sistemas de Segurança Crítica.
 - » "Security": ... não ocorrência de avarias intencionais;
 - » "Safety": ...não ocorrência de <u>avarias acidentais</u>;
 - » "Safety-Critical System": quando uma avaria pode ter consequências catastróficas...

Sistemas Críticos

Universidade do Porto
FEUP Faculdade de

Sistemas de Segurança Crítica

Objetivos da Disciplina

- Abordar noções ligadas metodologias e técnicas para garantir <u>Tolerância a Falhas</u> ao nível das aplicações.
 - » "Security": ... não ocorrência de <u>avarias intencionais;</u>
 - » "Safety": ...não ocorrência de <u>avarias acidentais</u>;
 - » "Safety-Critical System": quando uma avaria pode ter consequências catastróficas...

Sistemas Críticos

- Especificação
 - definição do SIL do sistema
 SIL -> Nível de Integridade de Segurança
 - definição de um conjunto de medidas a tomar para garantir a segurança do sistema.

Table A.1 – SIL-table

Tolerable Hazard Rate THR per hour and per function	Safety Integrity Level
10 ⁻⁹ ≤ THR < 10 ⁻⁸	4
10 ⁻⁸ ≤ THR < 10 ⁻⁷	3 ((///
10 ⁻⁷ ≤ THR < 10 ⁻⁶	12/2
10 ⁻⁶ ≤ THR < 10 ⁻⁵	j. V

Sistemas Críticos

- <u>Técnicas de Verificação e Validação</u>
 - O sistema pode ter sido <u>adequadamente verificado</u> (garantia de conformidade com a especificação)...
 - mas <u>inadequadamente validado</u> (garantia de conformidade com os requisitos).

Sistemas Críticos

9

Sistemas de Segurança Crítica

■ Certificação

 É necessário que uma entidade externa certifique que todo o sistema crítico foi concebido e desenvolvido através da utilização de procedimentos seguros.

Sistemas Críticos

- Âmbito da Segurança
 - A garantia da segurança de um sistema não está unicamente ligada ao hardware e/ou software utilizados, envolvendo todos os aspectos ligados ao ciclo de vida do sistema, desde a sua concepção, até à sua instalação, utilização e manutenção.

Sistemas Críticos

11

Programa

- Introdução aos Sistemas Críticos.
 - Taxonomia.
 - Apresentação de casos de estudo.
 - Critérios de segurança.

Sistemas Críticos

Programa

Tolerância a falhas

- Técnicas de tolerância a falhas em hardware
 - Redundância de hardware: estática, dinâmica e híbrida
 - Redundância temporal
 - Redundância de informação

Sistemas Críticos

13

Programa

Tolerância a falhas

- Tolerância a Falhas em <u>software</u>:
 - Recuperação para trás vs Recuperação para a frente
 - Diversidade de Conceção/Implementação
 - Diversidade de Dados
 - Diversidade Temporal
 - Formas de Adjudicação de Resultados

Sistemas Críticos

Programa

- Verificação e validação:
 - Modelação da confiança no funcionamento: conceitos básicos;
 - Técnicas de modelação: blocos de fiabilidade e árvores de falhas
 - Fiabilidade do Software: conceitos, modelos, estimação de parâmetros
 - Modelação de arquiteturas HW/SW.

Sistemas Críticos

15

Programa

- Desenvolvimento de Sistemas Críticos
 - Análise de situações perigosas ("hazards")
 - Análise de risco.
 - Prevenção de falhas
 - Gestão de qualidade para Sistemas Críticos

Sistemas Críticos

Bibliografia

- Safety Critical Computer Systems
 Neil Storey, Addison-Wesley
- Software Safety and Reliability
 Debra S. Herrmann, IEEE Computer Society
- Software Fault Tolerance -Techniques and Implementation

Laura L. Pullum, Artech House

Sistemas Críticos

Avaliação Exame Final - 50% Trabalho - 50%