Prof. Dr. Adrian Ulges

Empolis Workshop "Machine Learning"

Machine Learning 101

Hochschule RheinMain Department DCSM (Design, Computer Science, Media)

Überblick

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

Machine Learning 101

- Grundlagen, Begriffsbildung
- Design-Cycle, Benchmarking, Cross-Validation
- Python-Beispiel: Titanic

- Arthur Samuel (1959): "The field of study that gives computers the ability to learn without being explicitly programmed"
- Tom Mitchell (1998): "A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with Experience E."

ML: Beispiele

- Large-scale hierarchical Text Classification (categorize Wikipedia articles into one of 325,056 categories)
- Sentiment Analysis on Movie Reviews
- Job Recommendation (predict which jobs users will apply to)
- Axa Driver Telematics challenge (given GPS routes, identify a cars driver)
- Flight Quest (optimize flight routes based on wheather and traffic)
- TFI Restaurant Revenue Prediction (predict annual sales of restaurants)
- Algorithmic Trading challenge
- Whale Detection Challenge
- Merck molecular Activity Challenge
- Psychopathy Prediction based on Tweets
- Forecasting ESC Votings

ML: Eingabedaten

- Die *Eingabedaten* für Lernverfahren sind üblicher Weise aus Samples und Labels.
- Samples x₁,...,x_n: beschreiben Objekte der Welt Geldspieler und Stürmer, 1,81 m,7 (Bilder / Dokumente / Personen / Queries / Situationen / ...)
- Samples bestehen üblicher Weise aus Merkmalen
- Typen von Merkmalen ...
 - nominal (Kategorien ohne Ordnung, z.B. Farben)
 - ordinal (Kategorien mit Ordnung, z.B. Häufigkeiten)
 - Intervallskaliert (Zahlen mit Abstandsmaß, z.B. Kalendertage)
 - verhältnisskaliert (Zahlen mit Nullpunkt, z.B. Gewicht)
 - Fehlend!
- Alternativen (z.B. objekt-orientiert, Graphen): Heute nicht
- Labels y₁,...,y_n: repräsentieren eine Aussage über Objekte
 - Eine Zuordnung zu einer Klasse / Gruppe
 - Ein reellwertiges Attribut (z.B. ein Preis)

ML: Eingabedaten

Prof. Adrian Ulges

	Α	В	С	D	E	F	G	Н	1	J	K	L
1	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
2	1	0	3	Braund, Mr. Owen Harris	male	22			0 A/5 21171	7.25		S
3	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38		1	0 PC 17599	71.2833	C85	С
4	3	1	3	Heikkinen, Miss. Laina	female	26	()	0 STON/O2. 3101282	79	25	S
5	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35		1	0 1138	803 53.1	C123	S
6	5	0	3	Allen, Mr. William Henry	male	35	()	0 3734	50 8.05		S
7	6	0	3	Moran, Mr. James	male		()	0 3308	877 8.4583		Q
8	7	0	1	McCarthy, Mr. Timothy J	male	54	()	0 174	63 51.8625	E46	S
9	8	0	3	Palsson, Master. Gosta Leonard	male	2		3	1 3499	009 210	75	S
10	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27	()	2 347	42 11.1333		S
11	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14		1	0 237	36 30.0708		С
12	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4		1	1 PP 9549	16.7	G6	S
13	12	1	1	Bonnell, Miss, Elizabeth	female	58	()	0 113	83 26.55	C103	S
14	13	0	3	Saundercock, Mr. William Henry	male	20	()	0 A/5. 2151	8.05		S
15	14	0	3	Andersson, Mr. Anders Johan	male	39		1	5 3470	82 312	75	S
16	15	0	3	Vestrom, Miss, Hulda Amanda Adolfina	female	14	. ()	0 3504	06 7.8542		S
17	16	1	2	Hewlett, Mrs. (Mary D Kingcome)	female	55	()	0 2487	706	16	S
18	17	0		Rice, Master, Eugene	male	2		1	1 3826	552 291	25	Q
19	18	1		Williams, Mr. Charles Eugene	male)	0 2443		13	S
20	19	0		Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)	female	31			0 345		18	S
21	20	1		Masselmani, Mrs. Fatima	female		()		349 72		С
22	21			Fynney, Mr. Joseph J	male	35			0 2398		26	S
23	22			Beesley, Mr. Lawrence	male	34			0 2486		13 D56	S
24	23			McGowan, Miss, Anna "Annie"	female	15		-		23 8.0292		Q
25	24			Sloper, Mr. William Thompson	male	28				88 35.5	A6	S
26	25			Palsson, Miss. Torborg Danira	female	8		_	1 3499			S
27	26			Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)	female	38				77 31.3875		S
28	27			Emir, Mr. Farred Chehab	male					31 72		C
29	28	_		Fortune, Mr. Charles Alexander	male	19		_	2 199		63 C23 C25 C27	S
30	29	_		O'Dwyer, Miss. Ellen "Nellie"	female					59 7.8792	020 020 02.	Q
31	30			Todoroff, Mr. Lalio	male					16 7.8958		S
32	31			Uruchurtu, Don, Manuel E	male	40			0 PC 17601	27.7208		C
33	32			Spencer, Mrs. William Augustus (Marie Eugenie)	female	10			0 PC 17569	146.520		C
34	33			Glynn, Miss, Mary Agatha	female			•		77 7.75	5.0	Q
35	34			Wheadon, Mr. Edward H	male	66			0 C.A. 24579	10.5		S
36	35			Meyer, Mr. Edward 11	male	28			0 PC 17604	82,1708		Č
37	36			Holverson, Mr. Alexander Oskar	male	42			0 113		52	S
38	37	_		Mamee, Mr. Hanna	male	72				77 7.2292	J2	C
39	38			Cann. Mr. Ernest Charles	male	21			0 A./5. 2152	8.05		S
40	39			Vander Planke, Miss. Augusta Maria	female	18			0 345		18	S
41	40			Nicola-Yarred, Miss. Jamila	female	14				551 11.2417		C
41 42	41			Ahlin, Mrs. Johan (Johanna Persdotter Larsson)	female	40		•	-	546 94		S
42 43	41			Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)	female	27		•	0 73		21	S
43 44	42			Kraeff. Mr. Theodor		21				253 7.8958	۷ ا	C
44	43	0	3	Niaeli, Nii. Theodol	male		(J	3492	8008.1		U

ML: Eingabedaten

Prof. Adrian Ulges

ML: Problemstellungen

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

Überwachtes Lernen
Unüberwachtes Lernen
Halbüberwachtes Lernen

Transduktives vs. Induktives Lernen

Reinforcement Learning Active Learning

- Überwachtes Lernen
 - **Gegeben**: Trainings samples $x_1, ..., x_n$ und Labels $y_1, ..., y_n$
 - Aufgabe: Ordne Samples x die richtige Klasse y zu
- Unüberwachtes Lernen
 - Gegeben: Trainingssamples x₁,...,x_n ohne Labels
 - Wichtig, denn wir besitzen oft viele Daten aber keine Labels!
 - Aufgabe: Inferenz der Struktur der Daten
- Halbüberwachtes Lernen (Mischform)
 - **Gegeben**: Trainings samples $x_1, ..., x_n$, manche mit Labels
- Weitere Unterscheidungen:
 - Transdutives vs. Induktives Lernen
 - Reinforcement learning, active learning

Unüberwachtes Lernen

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

Dimensionality Reduction: Komprimiere die Daten

Itemset Mining: Finde häufige Substrukturen in den Daten

Anomaly Detection: Finde Outlier / Ausreißer in den Daten

Überwachtes Lernen

- Zum überwachten Lernen: Hier unterscheiden wir zwei Fragestellungen: Regression und Klassifikation
- Klassifikation
 - Die Labels y₁,...,y_n sind nominale Variablen (d.h., Klassen)
 - Aufgabe: Ordne Sample x einer Klasse y zu
 - Beispiel: SPAM-Filter, Optical Character Recognition (OCR)

Regression

- Die Labels y₁,...,y_n sind reellwertige Variablen
- Aufgabe: Ordne einem Sample x einen Zahlenwert zu
- Beispiel: Fahrtdauer-Prognose im Routenplaner

- Szenario: Klassifikation (ordne ein Sample x einer Klasse y zu)
- Ziel: Berechne P(y|x) für jede Klasse y. Hieraus ergeben sich Entscheidungsregionen und -Grenzen.

Dummy-Beispiel

x = (Größe,Gewicht)

P(C="Frau"|x) ist niedrig

P(C="Frau"|x) ist hoch

Größe

Hochschule RheinMain

ML: Terminologie

- Ansatz: Wir bestimmen für jede Klasse eine Klassifikatorfunktion Φ_ε^θ: IRⁿ → [0,1]
- Gegeben ein Objekt x, verwenden wir $\Phi_c^{\theta}(x)$ als **Approximation** für P(c|x), um x zu klassifizieren: Berechne $\Phi_c^{\theta}(x)$ für **alle Klassen c** und wähle die Klasse mit **maximalem Wert**.
- Die genaue Form von $\Phi_c^{\theta}(\mathbf{x})$ wird von den **Parametern** θ bestimmt. Die Parameter werden durch **Training** ermittelt
- Hierzu verwenden wir eine Trainingsmenge:
 - Beispiele (**Samples**) \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_n ∈ \mathbf{IR}^n
 - Klassenzuordnungen (*Labels*) $y_1, y_2, ..., y_n ∈ {1,...,C}$

Die Fähigkeit der eines Klassifikators, von den Trainingsdaten auf (neue) Testdaten zu schließen, bezeichnen wir als **Generalisierung**.

Hochschule RheinMain

- Zahlreiche Methoden des maschinellen Lernens beschäftigen sich mit der Approximation von P(y|x) ...
- Den universell besten Klassifikator gibt es nicht (→ No-free-lunch-Theorem)

ML: Design Cycle

Prof. Adrian Ulges Fachbereich DCSM / Informatik Hochschule RheinMain

- Design eines ML-Systems = iterative
 Auswahl von Daten / Merkmalen / Modellen / Parametern
- Schlüsseltreiber: Benchmarking

ML: Benchmarking

Prof. Adrian Ulges

- Wir unterteilen die Datenmenge in Trainingsund Testdaten
- Wir trainieren auf den Trainingsdaten und benchmarken auf den Testdaten
- Todsünde: "Testing on the Training Data"

Benchmarking: Gütemaße

Prof. Adrian Ulges Fachbereich DCSM / Informatik Hochschule RheinMain

		Anger	Boredom	Disgust	Fear	Happiness	Sadness	Neutral	Emotion Recog. Rate	
	Anger	19	0	2	0	3	0	0	79.2%	
_	Boredom	1	8	1	1	0	1	7	42.1%	
Emotlon	Disgust	0	1	6	0	1	0	3	54.5%	
Em	Fear	1	3	2	7	2	0	1	43.8%	
True	Happiness	3	0	3	2	5	0	2	33.3%	
-	Sadness	0	0	0	0	0	14	0	100.0%	
	Neutral	0	5	1	0	0	0 13		68.4%	
	HMM Recog. Rate	79.2%	47.1%	40.0%	70.0%	45.5%	93.3%	50.0%		

Bsp.: Confusion-Matrix (welche Klassen werden besonders häufig verwechselt?)

- Oft unterscheiden wir nur zwischen zwei Klassen (1 und 0)
- Wir unterscheiden vier Arten von Ergebnissen
 - true/false positive
 - true/false negatives
- Häufig ermitteln Klassifikatoren keine absolute Entscheidung, sondern einen Score s(x)
- Wir wählen eine Schwelle T und entscheiden uns für Klasse 1, falls s(x) >= T
- T bestimmt die Sensitivität des Klassifikators

Fachbereich DCSM / Informatik Hochschule RheinMain

 Wir variieren T und erhalten eine Kurve, die sogenannte ROC-Kurve

Validierungsdaten

Prof. Adrian UlgesFachbereich DCSM / Informatik
Hochschule RheinMain

- Einige Parameter des Klassifikators werden gelernt, andere (freie) Parameter werden manuell ("trial-anderror" / grid search) gesetzt
- Beispiel Entscheidungsbaum: maximale Tiefe
- Notwendig: Training → Validieren → Testen

Cross-Validation

Prof. Adrian Ulges

- Sind die Trainingsdaten klein, teilt man sie in Teile (oder "Folds") und trainiert/validiert mehrfach
- Die Ergebnisse werden über die Folds gemittelt

