

Figure 1: (A) Total annual blue crab Landings (mean \pm standard error),(B) total annual blue crab landings (mean \pm standard error) subset to 2004-2018, and (C) mean annual landings CPUE (mean \pm standard error) for all reporting areas within the Charleston Harbor watershed (Ashley River, Wando River, Cooper River and Charleston Harbor)

Figure 2: Mean annual blue crab (total catch) CPUE (mean \pm standard error) for all SCDNR Crustacean Section fisheries independent surveys, including Harbor Trawl (A), Creek Trawl (B), and Ashley River Potting Survey (C).

Figure 3: Mean annual blue crab (total catch) CPUE (mean \pm standard error) from SCDNR non-CRMS fisheries independent surveys, including SCECAP Open Water Trawl (A), SCECAP Tidal Creek Trawl (B), and the Inshore Fisheries Trammel Net survey

	G	ear		Sample	Data		
Survey	Gear Method	Gear Type	Sample Area	Sample Interval	Sample Method	N(events)	CPUE Standardization
CRMS							
Creek Trawl	Active	6m Trawl, 2.54cm stretch mesh	Ashley River, Wando River	Monthly, May-Sep	Fixed Stations	1827	Time
Harbor Trawl	Active	4.6m Trawl, 0.6cm D mesh	Ashley River, Charleston Harbor	Monthly	Fixed Stations	2956	Time, Gear
Ashley Fall Potting	Passive	0.6 x 0.6 x 0.46m Pot, 3.8 cm mesh	Ashley River	Monthly, Oct-Nov	Randomized Block w/in a Fixed Station	128	Time
ERS							
SCECAP Tidal Creeks	Active	5m trawl, 1.9cm bar mesh	Charleston Harbor Systemwide	Jun - Aug	Random Stratified	62	Volumetric
SCECAP Open Water	Active	5m trawl, 1.9cm bar mesh	Charleston Harbor Systemwide	Jun - Aug	Random Stratified	92	Volumetric
IFRS							
Trammel Net	Passive	$183 \times 2.1 \text{m}$ trammel net	Charleston Harbor Systemwide	Monthly	Random Stratified	4736	None (Total)

Table 1: SCDNR fisheries independent survey methodology

		Size			Legal (Size)		Class (Sex/Maturity)				
Survey	Total CPUE	Juvenile	Subadult	Adult	Legal	Sublegal	Immature Female	Mature Female	Immature Male	Mature Male	
CRMS											
Creek Trawl	X	X	X	X	X	X	X	X	X	X	
Harbor Trawl	X	X	X	X	X	X	X	X	X	X	
Ashley Fall Potting	X				X	X					
ERS											
SCECAP Tidal Creeks	X	X	X	X	X	X					
SCECAP Open Water	X	X	X	X	X	X					
IFRS											
Trammel Net	X										

Table 2: Lifestage data for blue crab by SCDNR fisheries independent survey

Table 3: OLS regression of total Creek Trawl CPUE by all lifestages from all surveys.

		Summary Statistics						
Dependent Variable	Explanatory Variable	p-value	r2	F-statistic	Degrees of Freedom			
Total CPUE	Subadult (1-yr. lag)	0.007774	0.1809	7.949	36			
Total CPUE	Adult (1-yr. lag)	0.031200	0.1225	5.028	36			
Total CPUE	Immature Female (1-yr. lag)	0.050070	0.1025	4.111	36			
Total CPUE	Immature Male (1-yr. lag)	0.048540	0.1038	4.169	36			
Total CPUE	Mature Male (1-yr. lag)	0.002197	0.2321	10.880	36			
Total CPUE	Sublegal (1-yr. lag)	0.025290	0.1314	5.448	36			
Total CPUE	Legal (1-yr. lag)	0.031200	0.1225	5.028	36			
Total CPUE	Total CPUE (1-yr lag)	0.019060	0.1434	6.027	36			
Total CPUE	Subadult (2-yr. lag)	0.001926	0.2432	11.250	35			
Total CPUE	Immature Female (2-yr. lag)	0.010380	0.1733	7.337	35			
Total CPUE	Immature Male (2-yr. lag)	0.004023	0.2131	9.481	35			
Total CPUE	Mature Female (2-yr lag)	0.019000	0.1473	6.048	35			
Total CPUE	Mature Male (2-yr. lag)	0.030760	0.1265	5.067	35			
Total CPUE	Sublegal (1-yr. lag)	0.004317	0.2102	9.316	35			
Total CPUE	Total CPUE (2-yr lag)	0.004898	0.2050	9.024	35			

 Table 4: OLS regression of all non-Creek Trawl survey total CPUEs by all lifestages from all surveys.

		Summary Statistics						
Dependent Variable	Explanatory Variable	p-value	r2	F-statistic	Degrees of Freedom			
Harbor Trawl Total CPUE	Harbor Trawl Subadult (1-yr. lag)	0.02906	0.12890	5.181	35			
Trammel Net Total CPUE	Harbor Trawl Mature Female (1-yr lag)	0.04651	0.36137	5.028	11			

Figure 4: Ordinary Least Squares regression plots of most significant explanatory relatioships using lagged variables to predict survey total CPUEs. Mean annual Creek Trawl total CPUE by Creek Trawl subadults with a 2-yr lag (A), mean annual Creek Trawl total CPUE by Creek Trawl mature male CPUE with a 1-yr. lag (B).

Table 6: OLS multiple regression model results suggested by the dredge with all main effects significant.

		CPUE			CPUE			CPUE			CPUE			CPUE	
Predictors	Estimates	CI	р	Estimates	CI	р	Estimates	CI	р	Estimates	CI	р	Estimates	CI	р
(Intercept)	2.05	0.10 – 3.99	0.040	2.09	0.14 – 4.04	0.037	2.07	0.07 – 4.07	0.043	2.04	-0.01 – 4.09	0.051	2.00	-0.04 – 4.03	0.054
ImmatureMale2	0.83	0.12 – 1.55	0.024										1.20	0.43 – 1.97	0.003
MatureMale1	1.41	0.26 – 2.55	0.017	1.24	0.02 - 2.45	0.046	1.36	0.17 – 2.54	0.026	1.35	0.15 – 2.55	0.029			
Subadult2				0.64	0.07 – 1.22	0.030									
Sublegal2							0.38	0.02 - 0.74	0.039						
CPUE2										0.31	0.00 - 0.62	0.049			
CPUE1													1.35	0.26 – 2.44	0.017
ImmatureFemale1													-3.22	-6.30 – -0.14	0.041
Observations	37			37			37			37			37		,
R ² / R ² adjusted	0.335 / 0	.296		0.328 / 0	.288		0.319 / 0	.279		0.310 / 0.	.270		0.358 / 0	.299	

Table 6: Significant OLS regression relatioships of Landings CPUE by all lifestages from all surveys.

		Summary Statistics							
Dependent Variable	Explanatory Variable	p-value	r2	F-statistic	Degrees of Freedom				
Harbor Trawl (explana	tory variable)								
Mean Landings CPUE	Mature Male (1-yr. lag)	0.007659	0.4330	9.928	13				
Mean Landings CPUE	Subadult (1-yr. lag)	0.016680	0.3670	7.538	13				
Mean Landings CPUE	Total CPUE (1-yr. lag)	0.027710	0.3208	6.140	13				
Creek Trawl (explanate	ory variable)								
Mean Landings CPUE	Immature Male (1-yr. lag)	0.010420	0.4076	8.946	13				
Mean Landings CPUE	Sublegal (1-yr. lag)	0.014850	0.3772	7.875	13				
Mean Landings CPUE	Subadult (1-yr. lag)	0.019470	0.3532	7.100	13				
Mean Landings CPUE	Total CPUE (1-yr. lag)	0.023880	0.3346	6.538	13				
Mean Landings CPUE	Juvenile (1-yr. lag)	0.030140	0.3129	5.921	13				
Mean Landings CPUE	Immature Female (1-yr. lag)	0.033210	0.3038	5.672	13				

 $\textbf{Table 7:} \ \, \textbf{Significant OLS regression of all non-Creek Trawl survey Total Landings by all lifestages from all surveys.}$

		Summary Statistics							
Dependent Variable	Explanatory Variable	p-value	r2	F-statistic	Degrees of Freedom				
Ashley Potting Su									
Total Landings	Legal (2-yr. lag)	0.04050	0.1464	4.631	27				
Harbor Trawl (ex	planatory variable)								
Total Landings	Mature Male (1-yr. lag)	0.04897	0.1034	4.153	36				

Figure 5: Ordinary Least Squares regression plots of select significant explanatory relatioships using lagged variables to Charleston Harbor watershed Landings CPUEs. Mean annual landings CPUE by Harbor Trawl mature males with a 1-yr lag (A), and mean annual landings CPUE by Creek Trawl immature males CPUE with a 1-yr. lag (B).