Modelowanie i Analiza Systemów Informatycznych

Laboratoria nr 10

wersja 3.1

Temat: Sieci Petriego – konstrukcja uogólnionych stochastycznych sieci Petriego.

Zadanie 1. (5 pts)

Polecenie: Na 1. laboratorium z sieci Petriego z łukami hamującymi, w zadaniu 3, została utworzona sieć modelująca historię wiadomości przesyłanych między dwoma użytkownikami, gdzie wiadomość mogła się zgubić.

> Zamień przejścia tej sieci, którą utworzyłeś, na natychmiastowe i czasowe przejścia z realistycznymi wykładniczymi zmiennymi losowymi. Jeśli jedno z dwóch dostępnych przejść powinno być odpalone wcześniej, uczyń jego odpalenie bardziej prawdopodobnym.

Zadanie 2. (5 pts)

Polecenie: Na laboratorium z sieci Petriego z łukami czasowymi, w zadaniu 3, została utworzona sieć modelująca światła uliczne na przejściu dla pieszych, gdzie pieszy naciskał przycisk, aby przejść przez jezdnię. Zamień przejścia tej sieci, którą utworzyłeś, na natychmiastowe i czasowe przejścia z realistycznymi wykładniczymi zmiennymi losowymi. Jeśli jedno z dwóch dostępnych przejść powinno być odpalone wcześniej, uczyń jego odpalenie bardziej prawdopodobnym.

Wsparcie do zadań

uogólnione stochastyczne sieci Petriego

Uogólniona stochastyczna sieć Petriego to taka sieć, w której:

- każde przejście jest natychmiastowe lub czasowe;
- na odpalenie natychmiastowego przejścia się nie czeka (zerowy *czas odpalenia*);
- do odpalenie czasowego przejścia potrzeba czasu, a czas odpalenia jest zdefiniowany przez wykładniczą zmienną losową λ (λ_i dla t_i);
- istnieją też łuki hamujące.

Czas odpalenia przejścia to długość czasu, od momentu kiedy to przejście staje się dostępne, do momentu kiedy to przejście jest odpalone.

Średni czas do odpalenia przejścia t_i w oznakowaniu M_j wynosi $\frac{1}{\lambda_i(M_i)}$.

Najpierw odpalane są przejścia natychmiastowe, następnie odpalane są przejścia czasowe w kolejności zdefiniowanej przez ich parametry λ , gdzie im większe jest λ_i , tym większe jest też prawdopodobieństwo odpalenia t_i , a więc tym mniejszy może być czas odpalenia t_i .

Polecane strony

- Petri Nets: Properties, Analysis and Applications
- Generalized Stochastic Petri Nets: A Definition at the Net Level and Its Implications