

CaroloCup 2015 - OttoCar

Einleitung

Hardware-Architektur

Entwicklung des Rahmens

- Komplette Vorentwicklung im CAD
- Ausarbeitung von Lastfällen (Kollisionen, Schwingung)
- Rahmenskelett mittel 3D Druck hergestellt

Poly Jet Modeling Verfahren zu Drucken

Hohe Genauigkeit

Rel. Schneller Druck

Regelung

Elektronik

Wahr nehm

ung

Mech

anik

Hardware-Architektur

Entwicklung der Elektronik

Elektronik

Stom-/

Hardware-Architektur

Entwicklung der Elektronik

Elektronik

Binarisierung

- 1 Topview Projektion
- 2 Adaptives Thresholding
- Morphologische Operatoren

- Punktketten & Abstraktion

Erstellung Punktketten

Klassifikation & Plausibilisierung

Abstraktion

Fahrbahmodell

Abstraktion auf:

Zieltrajektorie

Mech anik Wahr nehm ung

- Auswahl der besten Markierungshypothesen (Links, Mitte, Rechts)
- Berechnung der Zieltrajektorie

Konfidenz

Winkelbeschleunigung der Punktketten

– Kreuzungen / Fehlstellen

Dynamisches Einspurmodell

Elektronik

	<u>Die Zustande</u>
ψ	Gierwinkel
δ	Lenkwinkel
ν	Geschwindigkeit
β	Schwimmwinkel
$\begin{bmatrix} x_1, \ x_2 \end{bmatrix}$	Schwerpunktkoordinaten

Dia Zustända

<u>Der Parametervektor</u>

$$m{p} = m{p} \left(m{
ho_L}, \ m, \ l, \ r, \ C, \ J, \ f_r, \ c_w A, \ \Xi, \ T, \ \gamma
ight)$$
Können am Müssen Durch
Fahrzeug geschätzt Annahmen
gemessen werden festgelegt
werden

Parameterschätzung

Fahrspurverfolgung: MPC

$$\min_{u}: J = \sum_{k=1}^{3} \left\{ \left(Position \ Auto\left(u, \ t_{k}\right) - Polylinie\left(t_{k}\right)\right)^{2} \right\} + Gierwinkel(u, \ t_{3})^{2}$$

Hindernisse, Stopplinien und Einparken

Elektronik

Hindernisumfahrung

- 1. Erkennung eines Hindernisses
- 2. Translation der Trajektorie auf die Nebenfahrbahn
- 3. Drei Wege Authentifizierung, ob Hindernis umfahren wurde
- 4. Verwendung der Originaltrajektorie

1.

Distanzregelung für das Stopplinien- und Einparkszenarium

Funktion Einparken

Konzept

Regelung

Mech anik

Wahr nehm ung

- Spurregler des Rundkurses
- Ein seitlicher IR-Sensor &
 Odometrie
- Feste Einparktrajektorie

Probleme & Lösungen

Regelung

Mech Wahr nehm ung

Wahrnehmung: Elektronik

- Polylinien → Lösung des Korrespondenzproblems (Benutzung von Spline-Kurven)
- Bewegungsunschärfe bei hohen Geschwindigkeiten (Linienerkennung im Kamerabild, Topviewprojektion der Linien)

Hardware:

Besseres Chassis

Regelung:

• Berechnung mehrerer Eingänge pro Optimierung (Optimierung vom Code, schnellere CPU)

Einparken:

- Bessere Erkennung von Parklücken (mehr Sensoren)
- Fahrzeug ist zu lang für enge Lücken (Fahrzeug verkürzen)

Hinderniserkennung:

- Laserscanner fehlt
- Reaktiver Ansatz → Fahrtplanung/Kartenbasierte Lokalisierung

Kostenaufteilung

Regelung

Mech anik Wahr nehm ung

Elektronik

Bauteil	Kosten in €
Unterbau Tamiya TT01E	120
3D-Druck Chassis	250
Platine	100
NUC	250
Kamera	600
Akku	40
Infrarotsensoren	24
Sonstige Kleinteile	20
Gesamtbetrag	1.384

Danke für ihre Aufmerksamkeit!

Schnelle Fahrt - Zusatz

Anhang Reglungskonzept

Dynamisches Einspurmodell - Zusatz

Physikalische Größe	Nominalwert
Fahrzeugmasse	$m=2~{ m kg}$
Radabstand	$l=0,3~\mathrm{m}$
Reifenradius	$r=0,02~\mathrm{m}$
Motorverteilung	$\gamma=0,5$
Motorübersetzung	$\Xi=0,4\cdot 10^4$
Schräglaufübersetzung	C=0,2
Trägheitsmoment	$J=0,5~\mathrm{Nm}$
Rollwiderstandsbeiwert	$f_r=3$
Luftwiderstandsbeiwert	$c_w A=0,2$

Gesamtmodell der Zustandsraumgleichungen

$\dot{x_1} =$	$x_6\cos\left(x_3+x_5 ight)$
$\vec{x_2} =$	$x_6\sin{(x_3+x_5)}$
$\dot{x_3} =$	x_4
$\dot{x_5} =$	$-x_4 + p_4 \frac{x_7 \cos(x_7 - x_5)}{x_6} - p_4 \arctan\left(\frac{l_v x_4}{x_6}\right) \frac{\cos(x_7 - x_5)}{x_6} + \dots$
	$p_5rac{x_7u_2}{x_6}-p_5rac{x_5u_2}{x_6}+p_6\arctan\left(rac{l_hx_4}{x_6} ight)rac{1}{x_6}-p_7rac{x_5u_2}{x_6}+p_9x_4^2x_5x_6$
$\dot{x_6} =$	$p_4x_7x_5-p_4x_7^2-p_4\arctan\left(rac{l_vx_4}{x_6} ight)x_7+p_4\arctan\left(rac{l_vx_4}{x_6} ight)x_5+\dots$
	$p_5 u_2 \cos(x_7 - x_5) + p_6 \arctan\left(rac{l_h x_4}{x_6} ight) x_5 + \dots$
	$p_7u_2-p_8x_6-p_9x_6^2x_4^2-p_{10}x_6^2\\$
$\dot{x_7} =$	$-rac{x_7}{p_{11}} + rac{u_1}{p_{11}}$

Anhang Reglungskonzept

Dynamisches Einspurmodell - Zusatz

Anhang Regelungskonzept

- Fahrspurverfolgung: MPC - Zusatz

PI-Regler für die Geschwindigkeit

Fehleranalyse der MPC-Kostenfunktion

Beispiel Fahrspurregelung: Position des Fahrzeuges in Weltkoordinaten

