Drumuri minime de sursă unică în grafuri aciclice DAG (fără circuite)

Drumuri minime de sursă unică în grafuri aciclice

Ipoteze:

- Graful <u>nu</u> conţine circuite
- Arcele pot avea <u>şi cost negativ</u>

Drumuri minime de sursă unică în grafuri aciclice

Amintim:

Când considerăm un vârf v, pentru a calcula d(s,v) ar fi util să ştim deja $\delta(s,u)$ pentru orice u cu uv \in E

· atunci putem calcula distanțele după relația

$$\delta(s,v) = \min\{\delta(s,u) + w(u,v) \mid uv \in E\}$$

Drumuri minime de sursă unică în grafuri aciclice

Amintim:

Când considerăm un vârf v, pentru a calcula d(s,v) ar fi util să ştim deja $\delta(s,u)$ pentru orice u cu uv $\in E \implies$

 Ar fi utilă o ordonare a vârfurilor astfel încât dacă uv∈E, atunci u se află înaintea lui v

O astfel de ordonare <u>există</u> dacă graful <u>nu</u> conține circuite = sortarea topologică

- Fie G = (V, E) graf orientat
- Sortare topologică a lui G = ordonare a vârfurilor astfel încât dacă uv ∈ E atunci u se află înaintea lui v în ordonare
 - Nu este neapărat unică

- Fie G = (V, E) graf orientat
- Sortare topologică a lui G =

ordonare a vârfurilor astfel încât dacă uv ∈ E atunci u se află înaintea lui v în ordonare

Aplicaţii

- Ordinea de calcul în proiecte în care intervin relații de dependență / precedență (exp: calcul de formule, ordinea de compilare când clasele/pachetele depind unele de altele)
- Detecție de deadlock
- Determinarea de drumuri critice

Activitatea

1

A B C D

1 3 2
2 3 6 0 0
3 4 "=B1+D2" "=2*B2" "=2*C1+C2"

formulele din celulele B2...D2

În ce ordine trebuie executate activitățile?

În ce ordine se evaluează formulele? Probleme – dacă există dependențe circulare

- Fie G = (V, E) graf orientat
- Sortare topologică a lui G = ordonare a vârfurilor astfel încât dacă uv ∈ E atunci u se află înaintea lui v în ordonare
- Propoziţie. Dacă G este aciclic atunci G are o sortare topologică

- Fie G = (V, E) graf orientat
- Sortare topologică a lui G = ordonare a vârfurilor astfel încât dacă uv ∈ E atunci u se află înaintea lui v în ordonare
- Propoziţie. Dacă G este aciclic atunci G are o sortare topologică
 - Demonstrație ⇒ Algoritm?

- ▶ Fie G = (V, E) graf orientat
- **Lemă.** Dacă G este aciclic, atunci G are cel puţin un vârf v cu gradul intern 0 ($d^-(v) = 0$).

- Fie G = (V, E) graf orientat
- **Lemă.** Dacă G este aciclic, atunci G are cel puţin un vârf v cu gradul intern 0 ($d^-(v) = 0$).

Demonstrație: considerăm un drum elementar maxim. Extremitatea inițială a sa are grad intern 0

(v. si dem. Proprietății: un arbore cu n > 2 vârfuri are minim 2 vârfuri terminale)

- Fie G = (V, E) graf orientat
- **Lemă.** Dacă G este aciclic, atunci G are cel puţin un vârf v cu gradul intern 0 ($d^-(v) = 0$).
- Algoritm

```
cât timp |V(G)|>0 execută alege v cu d^-(v) = 0 adauga v in ordonare G \leftarrow G - v
```

Corectitudinea - rezultă din Lemă + inducție

Pseudocod

Algoritm

```
cât timp |V(G)|>0 execută alege v cu d^-(v) = 0 adauga v in ordonare G \leftarrow G - v
```


Algoritm

```
cât timp |V(G)|>0 execută

alege v cu d<sup>-</sup>(v) = 0

adauga v in ordonare
G \leftarrow G - v
```

Implementare – similar BF

 Pornim cu <u>toate</u> vârfurile cu grad intern 0 și le adăugăm într-o coadă

•

Algoritm

```
cât timp |V(G)|>0 execută alege v cu d^-(v) = 0 adauga v in ordonare G \leftarrow G - v
```

Implementare – similar BF

- Pornim cu toate vârfurile cu grad intern 0 și le adăugăm într-o coadă
- Repetăm:
 - extragem un vârf din coadă
 - îl eliminăm din graf (= scădem gradele interne ale vecinilor, nu îl eliminăm din reprezentare)

_

Algoritm

```
cât timp |V(G)|>0 execută alege v cu d^-(v) = 0 adauga v in ordonare G \leftarrow G - v
```

Implementare – similar BF

- Pornim cu toate vârfurile cu grad intern 0 și le adăugăm într-o coadă
- Repetăm:
 - extragem un vârf din coadă
 - îl eliminăm din graf (= scădem gradele interne ale vecinilor, nu îl eliminăm din reprezentare)
 - adăugăm în coadă vecinii al căror grad intern devine 0

Exemplu

C: 1 3

C: 1 3

C: 1 3

C: 1 3 6 5 4

C: 1 3 6 5 4

2

C: 1 3 6 5 4

2

C: 1 3 6 5 4 2

2

C: 1 3 6 5 4 2

C: 1 3 6 5 4 2

Sortare topologică: 1 3 6 5 4 2

```
coada C \leftarrow \emptyset;
adauga in C toate vârfurile v cu d<sup>-</sup>[v]=0
```

```
coada C ← Ø;
adauga in C toate vârfurile v cu d⁻[v]=0

cat timp C ≠ Ø executa
   i ← extrage(C);
   adauga i in sortare
   pentru ij ∈ E executa
```

```
coada C ← Ø;
adauga in C toate vârfurile v cu d⁻[v]=0

cat timp C ≠ Ø executa
   i ← extrage(C);
   adauga i in sortare
   pentru ij ∈ E executa
   d⁻[j] = d⁻[j] - 1
```

```
coada C ← Ø;
adauga in C toate vârfurile v cu d⁻[v]=0

cat timp C ≠ Ø executa
   i ← extrage(C);
   adauga i in sortare

   pentru ij ∈ E executa
        d⁻[j] = d⁻[j] - 1
        daca d⁻[j]=0 atunci
        adauga(j, C)
```


- Ce se întâmplă dacă graful conține totuși circuite?
- Cum detectăm acest lucru pe parcursul algoritmului?

Alt algoritm

- Există un algoritm bazat pe DF, pornind de la următoarea observație:
 - Dacă fin[u] = momentul la care a fost finalizat vârful u în parcurgerea DF avem:

```
uv \in E \Rightarrow fin[u] > fin[v]
```

•

- Există un algoritm bazat pe DF, pornind de la următoarea observație:
 - Dacă fin[u] = momentul la care a fost finalizat vârful u în parcurgerea DF avem:

```
uv \in E \Rightarrow fin[u] > fin[v]
```

 Atunci sortare descrescătoare în raport cu final => sortare topologică

- Există un algoritm bazat pe DF, pornind de la următoarea observație:
 - Dacă fin[u] = momentul la care a fost finalizat vârful u în parcurgerea DF avem:

```
uv \in E \Rightarrow fin[u] > fin[v]
```

- Atunci sortare descrescătoare în raport cu final => sortare topologică
 - ⇒ Idee algoritm: Memorăm vârfurile într-o stivă pe măsura finalizării lor; ordinea în care sunt scoase din stivă = sortare topologică

```
Stack S;

void df(int i) {
    viz[i]=1;
    for ij ∈ E
        if(viz[j]==0) df(j);
    //i este finalizat
    push(S, i)
}

for(i=1;i<=n;i++)
    if(viz[i]==0) df(i);</pre>
```

```
Stack S;
void df(int i) {
     viz[i]=1;
     for ij \in E
          if(viz[j]==0) df(j);
     //i este finalizat
     push(S, i)
 for (i=1;i<=n;i++)
          if(viz[i]==0) df(i);
 while( not S.empty()){
        u = S.pop();
        adauga u in sortare
 }
```

Drumuri minime de sursă unică în grafuri aciclice DAG (fără circuite)

Pseudocod

- Considerăm vârfurile în ordinea dată de sortarea topologică
 - Pentru fiecare vârf u relaxăm arcele uv către vecinii săi (pentru a găsi drumuri noi către aceștia)

s - vârful de start

```
//initializam distante - ca la Dijkstra
```

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
```

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
       pentru fiecare uv∈E executa
```

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
       pentru fiecare uv∈E executa
             daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre>
                   d[v] = d[u] + w(u,v)
                   tata[v] = u
```

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
       pentru fiecare uv∈E executa
             daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre>
                   d[v] = d[u] + w(u,v)
                   tata[v] = u
scrie d, tata
```

Exemplu

Etapa 1 – determinăm o ordonare topologică a vârfurilor

Sortare topologică: 1 3 6 5 4 2

 <u>Etapa 2</u> - parcurgem vârfurile în ordinea dată de sortarea topologică și relaxăm pentru fiecare vârf arcele care ies din acesta

Sortare topologică 1, 3, 6, 5, 4, 2

1, 3, 6, 5, 4, 2

s=3 - vârf de start

Ordine de calcul distanțe:

1, 3, 6, 5, 4, 2

s=3 - vârf de start

d/tata [
$$\infty/0$$
, $\infty/0$, $0/0$, $0/0$, $0/0$, $0/0$, $0/0$, $0/0$, $0/0$]

s=3 - vârf de start

s=3 - vârf de start

Ordine de calcul distanțe:

1 nu este accesibil din s, puteam să nu îl considerăm (să ignorăm vârfurile din ordonare topologică aflate înaintea lui s)

s=3 - vârf de start

$d/tata$ $[\infty/0,$	² ∞/0,	0/0,	⁴ ∞/0,	$\infty/0$,	∞/ ⁶]
$u = 1: [\infty/0,$	$\infty/0$,	O /o,	$\infty/0$,	∞/o ,	∞/o]
u = 3:					
			d[v] = m	in{d[v],d	l[u]+w(u,v)

s=3 - vârf de start

$d/tata = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $u = 1: [\infty/0, $	$\infty/0$, $\infty/0$,	0/o, 0/o,	⁴ ∞/0, ∞/0,	$\infty/0$, $\infty/0$,	$\infty/0$] $\infty/0$]
u = 3:	· / · · ,	. ,	, ,	· / • ,	,, ,
			d[v] = m	in{d[v],d	l[u]+w(u,v)

s=3 - vârf de start

d/tata	$[\infty/0,$	² ∞/0,	0 /o,	⁴ ∞/0,	$\infty/0$,	$\infty/0$]	
u = 1:	[∞/o ,	$\infty/0$,	O /o,	$\infty/0$,	∞/o ,	∞/0]	
u = 3:	[∞/o ,	8 /3,	0/0,	$\infty/0$,	4 /3,	$\infty/0$]	
				d[v] = m	in{d[v],d	l[u]+w(u,v	7)

s=3 - vârf de start

Ordine de calcul distanțe:

2 ∞/0,	070,	4 ∞/0,	$\infty/0$,	∞/0]
∞/o ,	0/0,	∞/o ,	∞/0,	∞/0]
8/3,	0/0,	∞/0,	4/3,	∞/0]
	2 ∞/0, ∞/0, 8/3,	∞/o , 0/o ,	$\infty/0$, $0/0$, $\infty/0$,	$\infty/0$, $0/0$, $\infty/0$, $\infty/0$,

 $d[v] = min\{d[v],d[u]+w(u,v)\}$

s=3 - vârf de start

Ordine de calcul distanțe:

d/tata [$\infty/0$,	² ∞/0,	0/0,	$\frac{4}{\infty}/0$,	$\infty/0$,	$\infty/0$]
u = 1: [$\infty/0$,	∞/o ,	0/0,	$\infty/0$,	$\infty/0$,	∞/o]
u = 3: [$\infty/0$,	8/3,	O /o,	$\infty/0$,	4 /3,	∞/o]
u = 6: [$\infty/0$,	8/3,	O /o,	$\infty/0$,	4 /3,	∞/0]

 $d[v] = min\{d[v],d[u]+w(u,v)\}$

s=3 - vârf de start

Ordine de calcul distanțe:

$d/tata \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, ² /0,	0 /70,	⁴ ∞/0,	∞ ⁵ /0,	∞/ ⁶]
$u = 1$: $[\infty/0]$, ∞/0,	O /o,	$\infty/0$,	$\infty/0$,	∞/0]
$u = 3$: $[\infty/0]$, 8/3,	0/0,	$\infty/0$,	4/3,	$\infty/0$]
$u = 6$: $[\infty/0]$, 8/3,	O /o,	$\infty/0$,	4 /3,	$\infty/0$]
u = 5:					

 $d[v] = min\{d[v],d[u]+w(u,v)\}$

s=3 - vârf de start

Ordine de calcul distanțe:

d/tata	$\begin{bmatrix} \infty/0, \end{bmatrix}$	² ∞/0,	0 /o,	⁴ ∞/0,	$\infty/0$,	$\infty/0$]
u = 1:	$[\infty/0,$	$\infty/0$,	0/0,	∞/o ,	$\infty/0$,	∞/o]
u = 3:	$[\infty/0,$	8 /3,	0/0,	∞/o ,	4 /3,	∞/0]
u = 6:	[∞/o,	8 /3,	0/0,	∞/o ,	4 /3,	∞/0]
u = 5:	[∞/o,	8 /3,	0/0,	6/5,	4 /3,	∞/0]

 $d[v] = min\{d[v],d[u]+w(u,v)\}$

s=3 - vârf de start

Ordine de calcul distanțe:

d/tata [$\infty/0$,	$\infty^2/0$,	0 /o,	⁴ ∞/0,	$\infty/0$,	$\infty/0$]
u = 1: [$\infty/0$,	$\infty/0$,	0/0,	∞/o ,	$\infty/0$,	∞/o]
u = 3: [$\infty/0$,	8 /3,	0/0,	∞/o ,	4 /3,	∞/o]
u = 6: [$\infty/0$,	8/s ,	0/0,	∞/o ,	4 /3,	∞/o]
u = 5: [$\infty/0$,	8/s,	0/0,	6/5,	4 /3,	∞/o]
u = 4:						

 $d[v] = \min\{d[v], d[u] + w(u, v)\}$

s=3 - vârf de start

Ordine de calcul distanțe:

d/tata [$\infty/0$,	$\infty^2/0$,	0/0,	⁴ ∞/0,	$\infty/0$,	$\infty/0$]
u = 1: [$\infty/0$,	$\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	∞/o]
u = 3: [$\infty/0$,	8 /3,	0/0,	$\infty/0$,	4 /3,	∞/o]
u = 6: [$\infty/0$,	8 /3,	O /o,	$\infty/0$,	4 /3,	∞/o]
u = 5: [$\infty/0$,	8 /3,	O /o,	6/5,	4 /3,	∞/o]
u = 4: [$\infty/0$,	7/4,	O /o,	6/5,	4 /3,	∞/o]

 $d[v] = \min\{d[v], d[u] + w(u, v)\}$

s=3 - vârf de start

Ordine de calcul distanțe:

$d/tata$ $[\infty/0,$	∞/o,	0 /o,	⁴ ∞/0,	∞^{5} 0,	$\infty/0$]
$u = 1: [\infty/0,$	$\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	∞/o]
$u = 3: [\infty/0,$	8/3,	0/0,	$\infty/0$,	4 /3,	∞/o]
$u = 6: [\infty/0,$	8/3,	0/0,	$\infty/0$,	4 /3,	∞/o]
$u = 5: [\infty/0,$	8/3,	0/0,	6/5,	4 /3,	∞/o]
$u = 4: [\infty/0,$	7/4,	0/0,	6/5,	4/3,	∞/o]
u = 2:					

 $d[v] = \min\{d[v], d[u] + w(u, v)\}$

Sortare topologică 1, 3, 6, 5, 4, 2

s=3 - vârf de start

Ordine de calcul distanțe:

1, 3, 6, 5, 4, 2

d/tata	$[\infty/0,$	$\infty^2/0$,	0 /o,	⁴ ∞/0,	∞ ⁵ /0,	$\infty/0$]
u = 1:	$[\infty/0,$	$\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	∞/o]
u = 3:	$[\infty/0,$	8/3,	0/0,	$\infty/0$,	4 /3,	∞/o]
u = 6:	$[\infty/0,$	8/3,	0/0,	$\infty/0$,	4 /3,	∞/o]
u = 5:	$[\infty/0,$	8/3,	0/0,	6/5,	4 /3,	∞/o]
u = 4:	$[\infty/0,$	7/4,	0/0,	6/5,	4/3,	∞/o]
u = 2:	$[\infty/0,$	7/4,	0/0,	6/5,	4 /3,	∞/o]

s=3 - vârf de start

Ordine de calcul distanțe:

d/tata 1 2 3 4 5 6
Soluție [
$$\infty/0$$
, 7/4, 0/0, 6/5, 4/3, $\infty/0$]

Un drum minim de la 3 la 2?

Observaţie

- Este suficient să considerăm în ordonarea topologică doar vârfurile accesibile din s
- În exemplu fără 1 și 6

Complexitate

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
       pentru fiecare uv∈E executa
             daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre>
                   d[v] = d[u] + w(u,v)
                   tata[v] = u
scrie d, tata
```

Complexitate

- Iniţializare
- Sortare topologică
- m * relaxare uv

$$-> O(m+n)$$

$$O(m + n)$$

Corectitudine

 Algoritmul funcționează corect și dacă există arce cu cost negativ

 Algoritmul funcționează corect și dacă există arce cu cost negativ - Inducție după numărul de iterații

Când algoritmul ajunge la vârful u avem

 Algoritmul funcționează corect și dacă există arce cu cost negativ - Inducție după numărul de iterații

Când algoritmul ajunge la vârful u avem

Varianta 2 de demonstrație - similar Dijkstra

Fie P s-u drum minim și x predecesorul lui u pe acest drum.

x este înaintea lui u în SortTop => (ip. inducție)

$$d[x] = \delta(s; x) = w([s P x])$$

Varianta 2 de demonstrație - similar Dijkstra

Fie P s-u drum minim și x predecesorul lui u pe acest drum.

x este înaintea lui u în SortTop => (ip. inducție)

$$d[x] = \delta(s; x) = w([s \underline{P} x])$$

după relaxarea arcului xu avem:

$$d[u] \le d[x] + w(xu) = w([s \underline{P} x]) + w(xu) =$$

$$= w([s P u]) = \delta(s; u)$$

Varianta 2 de demonstrație - similar Dijkstra

Fie P s-u drum minim și x predecesorul lui u pe acest drum.

x este înaintea lui u în SortTop => (ip. inducție)

$$d[x] = \delta(s; x) = w([s \underline{P} x])$$

după relaxarea arcului xu avem:

$$d[u] \le d[x] + w(xu) = w([s \underline{P} x]) + w(xu) =$$

$$= w([s P u]) = \delta(s; u)$$

Dar $\delta(s; u) \leq d[u]$ (estimare superioară) => $\delta(s; u) = d[u]$

Aplicație – Drumuri critice

- Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:
 - durata fiecărei activități

0

0

- Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:
 - durata fiecărei activități
 - perechi (i, j) = activitatea i trebuie să se încheie înainte să înceapă j (activitatea j depinde de i)

0

- Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:
 - durata fiecărei activități
 - perechi (i, j) = activitatea i trebuie să se încheie înainte să înceapă j
 - activitățile se pot desfășura și în paralel

- Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:
 - durata fiecărei activități
 - perechi (i, j) = activitatea i trebuie să se încheie înainte să înceapă j
 - activitățile se pot desfășura și în paralel

Se cere: timpul minim de finalizare a proiectului (dacă începe la ora 0) + planificarea activităților

- n = 6
 - Activitatea 1 durata 7
 - Activitatea 2 durata 4
 - Activitatea 3 durata 30
 - Activitatea 4 durata 12
 - Activitatea 5 durata 2
 - Activitatea 6 durata 5
 - · (1, 2)
 - · (2, 3)
 - · (3, 6)
 - · (4, 3)
 - · (2, 6)
 - · (3, 5)

$$w(i,j) = ?$$

w(i,j) = durata activității i

= întârzierea minimă între începutul activității i și începutul activității j (mai general)

w(i,j) = durata activității i

= întârzierea minimă între începutul activității i și începutul activității j (mai general)

Timpul minim de finalizare a proiectului = ?

Timpul minim de finalizare a proiectului = costul maxim al unui drum de la S la T

Timpul minim de finalizare a proiectului = costul maxim al unui drum de la S la T

Drum CRITIC

- Durata minimă a proiectului = costul maxim al unui drum de la S la T
 - Drum critic = drum de cost maxim de la S la T
 - Orice întârziere în desfășurarea unei activități de pe acest drum duce la creșterea timpului de terminare al proiectului
 - PERT/CPM Program Evaluation and Review Technique / Critical Path Method

- Durata minimă a proiectului = costul maxim al unui drum de la S la T
- Timpul minim de început al unei activități u = costul maxim al unui drum de la S la u

activitatea 1: intervalul de desfășurare (0,7)

activitatea 3: intervalul de desfășurare (12, 42)

Putem modifica algoritmul de determinare de drumuri minime în grafuri aciclice a.î. să determine drumuri maxime (de cost maxim) de la s la celelalte vârfuri?

Putem modifica algoritmul de determinare de drumuri minime în grafuri aciclice a.î. să determine drumuri maxime (de cost maxim) de la S la celelalte vârfuri

- Problema este echivalentă cu a determina drumuri minime din S în graful în care înlocuim fiecare pondere w(e) cu -w(e)
- Modificăm astfel doar inițializarea distanțelor (cu -∞ în loc de + ∞) și inversam condiția de la relaxarea arcelor pentru a calcula maxim în loc de minim
- Corectitudine rezultă din corectitudinea algoritmului pentru drumul minim

Drumuri maxime de sursă unică în grafuri aciclice

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = -\infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
       pentru fiecare uv∈E executa
            daca d[u]+w(u,v) > d[v] atunci //relaxam uv
                   d[v] = d[u] + w(u,v)
                   tata[v] = u
scrie d, tata
```


Ordine de calcul distanțe: S, 1, 4, 2, 3, 5, 6, T

Drum critic ⇒ succesiune de activități care determină durata proiectului

- Durata minimă a proiectului: 47
- Activități critice: 4 3 6
- Intervalele de desfășurare pentru fiecare activitate:
 - 1: (0, 7)
 - 2: (7, 8)
 - 3: (12, 42)
 - 4: (0, 12)
 - 5: (12, 42)
 - 6: (42, 47)

Drumuri maxime

Putem modifica algoritmul lui Dijkstra de determinare de drumuri minime în grafuri (nu neapărat aciclice) a.î. să determine drumuri maxime (elementare) de la s la celelalte vârfuri?

Drumuri maxime

Putem modifica algoritmul lui Dijkstra de determinare de drumuri minime în grafuri (nu neapărat aciclice) a.î. să determine drumuri maxime (elementare) de la S la celelalte vârfuri

• Modificăm astfel doar inițializarea distanțelor (cu $-\infty$ în loc de $+\infty$) și inversam condiția de la relaxarea arcelor pentru a calcula maxim în loc de minim

Corectitudine - probabil similar cu Dijkstra?!!

Drumuri maxime

Putem modifica algoritmul lui Dijkstra de determinare de drumuri minime în grafuri (nu neapărat aciclice) a.î. să determine drumuri maxime (elementare) de la S la celelalte vârfuri

- Modificăm astfel doar inițializarea distanțelor (cu $-\infty$ în loc de $+\infty$) și inversam condiția de la relaxarea arcelor pentru a calcula maxim în loc de minim
 - Corectitudine probabil similar cu Dijkstra?!!

Temă - Drumuri de capacitate maximă

- Problemă: Într-o rețea orientată de comunicație
 - w(e) = capacitatea legăturii e (exp: lățimea de bandă, diametrul unei conducte etc)
 - Pentru un drum P
 - $w(P) = \min \{w(e) \setminus e \in E(P)\}$
 - = cantitatea de informație care se poate transmite
 de-a lungul drumui P
 - capacitatea minimă a arcelor ce îl compun (pentru ca informația să poată trece prin toate arcele drumului)

Date două vârfuri s și t, să se determine un drum de capacitate maximă de la s la t - Propuneți un algoritm bazat pe o idee similară cu cea din algoritmul lui Dijkstra. Justificați corectitudinea algoritmului propus.

