1. For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t assuming that the algorithm to solve the problem takes f(n) microseconds. (1 second = 1,000,000 microseconds). Recall that $\log n$ denotes the logarithm in base 2 of n. Your input sizes do not have to be very precise. Close approximations are good enough.

	1 Second	1 Minute	1 Hour
log <i>n</i>			
sqrt(n)			
n			
<i>n</i> log <i>n</i>			
n²			
n ³			
2 ⁿ			
n!			

2. Arrange n^2 apples in a square. From each row find the largest one and let A be the smallest of these. From each column find the smallest one and let B be the largest of these. Which one is bigger, A or B? Give reasons.

3. Consider the following recursive algorithm.

```
ALGORITHM Min1(A[0..n-1])

// Input: An array A[0..n-1] of real numbers

if (n = 1) return A[0]

else temp \leftarrow Min1(A[0..n-2])

if (temp \leq A[n-1] return temp

else return A[n-1]
```

- a. What does this algorithm compute?
- b. Set up a recurrence relation for the algorithm's basic operation count and solve it.
- 4. Show that $n^3 n$ is always divisible by 3.
- 5. Is $n^5 n$ always divisible by 5?
- 6. Given x, compute x^{62} in only eight multiplications (no divisions allowed!).