

Primary objective

- Surveillance of potentially invasive pests and pathogens
 - Tropilaelaps, Apis cerana

Secondary objectives

- Geographical and temporal distribution of existing threats:
 - Pests and diseases Nosema, Varroa, Viruses
 - **Pesticides**
- Longitudinal monitoring as a better predictor of colony health

Importance of APHIS NHBDS results

- Provide context to honey bee health studies
- Nation-wide database of disease levels comparable across years
- Free disease diagnostics to the beekeeper

History

- **2009**: Pilot survey in 3 states
 - Test sampling methodology
- 2010: Limited survey in 13 state
 - Increased state participation
 - Data sampled over much of calendar year
- **2011**: National Survey in 34 states
- **2012**: National Survey in 34 states
- **2013**: National Survey in 30 states
 - Puerto Rico, Guam and Grenada
- **2014**: National Survey in 20 states
 - Little/no funding for states to survey
 - Puerto Rico, Guam and Grenada

History

- June 20, 2014 Presidential Memorandum directed USDA and EPA to cochair a Pollinator Health Taskforce to take steps to develop new publicprivate partnerships and increase citizen engagement.
- USDA Pollinator Working Group Chaired by Deputy Secretary
 - White House Strategy to Protect Pollinators
 - Pollinator Research Action Plan (PRAP)

History

- **2015**: 38 states and Puerto Rico.
- 2016: 39 states, Puerto Rico, and Guam
 - Sampling >1100 apiaries
 - Highest participation to date
 - Highlights the importance that the survey receives funding
- **2017**: 43 states and territories
- **2018**: 42 states and territories

Sample types

Includes: Target:

Intro

Tropilaelaps Bump test

Alcohol sample Apis cerana

Varroa

Nosema (not species specific)

Live bee box Viruses

Lake Sinai virus-2 (LSV-2)

Acute bee paralysis virus (ABPV)

Chronic bee paralysis virus (CBPV)

Deformed wing virus (DWV)

Kashmir bee virus (KBV)

Israeli acute paralysis virus (IAPV)

Varroa Destructor Virus (VDV-1)

Wax sample Pesticides (200 targets)

Demographics and management info Pre-sampling survey

Sampling protocol

- In each participating state: 2 approaches of sampling
- 24 total samples (as previous years)

General sampling

14 beekeepers = 14 samples

Plan 3 or 4 sampling periods

Samples:

Intro

- Bump sample
- Alcohol sample
- Live bee sample

Longitudinal sampling

5 beekeepers = 10 samples

Spring sample & Fall sample

Colonies to be identified by stickers

- Bump sample
- Alcohol sample
- Live bee sample
- Wax sample

Sampling protocol

General sampling

Longitudinal sampling

As before, prioritize beekeepers :

- Managing large operations
- Queen/package/nucs producers
- In areas at high risk for exotics invasion

Requirements for participation:

- Minimum 10 colonies
- Commitment to take online Loss and Management Survey (point of contact: UMD)
- Pre-sampling survey to be handed at time of sampling

Sampling protocol

General sampling

Longitudinal sampling

In the yard, make sure that colonies are picked at random. Particularly, colonies should NOT be preferentially sampled because they seem "healthy" or "sickly"

Wax sampling

- Total # of pesticide residues in wax shown* to be a better predictor of colony mortality and queen events (a predictor of imminent colony mortality)
- A small section of wax is cut out from a brood frame
- Sent to USDA AMS Lab in NC

^{*}Traynor, K. S. et al. In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Sci. Rep. 6, 33207; doi: 10.1038/srep33207 (2016).

Varroa Prevalence by year

5

Mites per 100 bees

2009-2010

(n=80)

2010-2011

(n=344)

2011-2012

(n=857)

2012-2013

(n=733)

2013-2014

(n=679)

Intro

Average Varroa Load by year

2014-2015

(n=516)

2015-2016

(n=776)

2016-2017

(n=898)

2017-2018

(n=562)

Varroa Seasonality

Varroa Load by Month: 2009-2017

Varroa Seasonality

Nosema Prevalence by year

Nosema Prevalence: 2009-2017

Average Nosema Load by year

Economic threshold for nosema is 1 million spores per bee

Nosema Seasonality

Nosema Seasonality

Monthly Average *Nosema* Spore Load: All Years

Viral Prevalence over the years

Viral Prevalence by Survey Year (2009-2017)

Viral Seasonality: ABPV

Viral Seasonality: CBPV

Viral Seasonality: DWV

Viral Seasonality: IAPV

Viral Seasonality: KBV

Viral Seasonality: LSV-2

Viral Seasonality: VDV

VDV: Varroa Destructor Virus

- Discovered in the US by Dr. Eugene Ryabov working with Dr. Jay Evans at the USDA BRL in Beltsville, MD.
- Using RNA sequencing, VDV1 was detected in 66% of National Survey samples in 2016, but detected in only 2.7% of colonies tested in 2010
- VDV1 is in the same family of viruses with Deformed Wing Virus (detected in 90% of all colonies)
- Evidence of DWV-VDV1 recombinants in the US
 - More virulent

VDV: Varroa Destructor Virus

- Published December 12, 2017 in Nature Scientific Reports
- VDV1 has been added to the list of viruses for the National Honey Bee Survey.

 We also plan to go back and run our archived samples from 2011-2015 to track how the virus spread

Pesticides

2011-2016

Histogram of Number of Pesticide Samples Detected per Bee Bread Sample (n=1078)

2017

Histogram of Number of Pesticide Samples Detected per Wax Sample (n=174)

Pesticides

2011-2016

Overall Distribution of Categories of Pesticides in National Survey Bee Bread Samples (n=1078)

Each sample can be positive for multiple pesticides, therefore a higher number of detections per category than samples is possible.

2017

Overall Distribution of Categories of Pesticides in National Survey Wax Samples (n=174)

Each sample can be positive for multiple pesticides, therefore a higher number of detections per category than samples is possible.

Pesticides

Bee Bread

Intro

- n=1078, 3051 detections
- 2.8 average pesticide detections per sample
- 17.9% of samples had no pesticides detected

Wax

- n=174, 2709 detections
- 15.5 average pesticide detections per sample
- No samples with 0 pesticide detections

Protocol

Results

Pesticides

Explore the data online

All of this information is also available online!
Go to:
bip2.beeinformed.org
State Reports

Acknowledgements

- Robyn Rose, Josie Ryan, Heather Moylett (APHIS)
- USDA ARS Honey Bee Lab in Beltsville, MD
- University of Maryland Honey Bee Lab

