Semi-Supervised Learning

Asmita, Natalie, Shikhar

Introduction

Motivation

- Labelled data is expensive and difficult to acquire or generate
 - o 100,000 images could cost you at least \$30,000 on Amazon Mechanical Turk
 - Manual labelling is tedious and time consuming
- Small labelled datasets might not be enough for developing generalizable models
- Unlabelled data is relatively inexpensive
- Semi-supervised learning is closer to human way of learning

Semi-supervised learning

Class of techniques which uses unlabelled data along with labelled data for training **Benefits**

 Improves model performance by more precise decision boundary (generalizable) compared to just using labelled data

Types of semi-supervised learning (Proxy labels)

Self-learning

Uses model's own predictions as proxy labels

Multi-view learning

Uses the predictions of models trained with different views of the data

Self-ensembling

Ensembles variations of a model's own predictions and uses these as feedback for learning

How it works

Self-learning

Step 1: Train your model on labelled data

Step 2: Predict on unlabelled data using the trained model

Step 3: Add images from unlabelled data to labelled data where model is highly confident (P > threshold) with prediction as true label

Multi-view Learning: Democratic co-learning

Self-ensembling: Ladder networks

Step 1: Train your model on labelled data

Step 2: Predict on unlabelled data

Step 3: Add perturbed version of images from unlabelled data to labelled data with prediction as true label

The model learns to develop **features that are invariant to noise** and predictive of the labels on the labelled training data

Demo

Demo – Comparing supervised vs. semi-supervised

```
RandomForestRegressor
                         CV-8 MSE: 1193.0077 (+/- 117500.2586)
XGBRegressor
                         CV-8 MSE: 1083.2088 (+/- 122498.1182)
GradientBoostingRegressor CV-8 MSE: 1085.1444 (+/- 124154.7107)
ExtraTreesRegressor
                         CV-8 MSE: 1212.6371 (+/- 98181.5808)
ElasticNet
                         CV-8 MSE: 1259.1340 (+/- 174781.8006)
KNeighborsRegressor
                         CV-8 MSE: 1230.1431 (+/- 172002.5180)
Ridge
                         CV-8 MSE: 1206.2309 (+/- 153934.3730)
BayesianRidge
                         CV-8 MSE: 1206.3157 (+/- 153576.2349)
PseudoLabeler
                         CV-8 MSE: 1082.6737 (+/- 128550.9096)
```

```
Here the sample_rate is 0.3.
```

So each time we take 30% of the unlabeled data and put it through the training set

Demo – Comparing supervised vs. semi-supervised

Applications: The mean teacher model

https://github.com/CuriousAl/mean-teacher

Step 1. Take a supervised model

Step 1. Take a supervised model

Step 2. Make a copy of it

Step 1. Take a supervised model - student

Step 2. Make a copy of it - teacher

Step 3. Update weights of the teacher after training each step

Step 1. Take a supervised model - student

Step 2. Make a copy of it - teacher

Step 3. Update weights of the teacher after training each step

Step 4. Add some cost and noise to teacher

Step 1. Take a supervised model - student

Step 2. Make a copy of it - teacher

Step 3. Update weights of the teacher after training each step

Step 4. Add some cost and noise to teacher

Step 5. Start using teacher as unlabelled dataset

For semi-supervised learning

Mean teachers are better role models

Source: https://github.com/CuriousAl/mean-teacher

Issues in Real Application

- Sensitive to amount of labeled and unlabeled data
 - More parameters to tune
- Performance can degrade substantially when unlabeled data contains a different distribution of classes than the labeled data
 - Say you are trying to train a model to distinguish between ten different faces, but you only have a few images for each of these ten faces.
- Realistically Small Validation Sets

Resources

- https://github.com/CuriousAl/mean-teacher
- http://ruder.io/semi-supervised/
- https://www.analyticsvidhya.com/blog/2017/09/pseudo-labelling-semi-supervis ed-learning-technique/
- https://en.wikipedia.org/wiki/Semi-supervised_learning
- https://www.kdnuggets.com/2018/01/value-semi-supervised-machine-learning.
 html
- https://www.google.co.in/about/stories/machine-learning-qa/
- https://www.robots.ox.ac.uk/~vgg/rg/papers/multimodallearning.pdf
- https://arxiv.org/pdf/1804.09170.pdf