Normal curvatures of torii

Anton Petrunin

Abstract

We give an optimal lower bound on principle curvatures of immersed n-torus in a Euclidean ball of large dimension.

1 Gauss formula

Let L be a smooth n-dimensional submanifold in a Riemannian manifold M. Let us denote by $\mathbf{T}_n L$ and $\mathbf{N}_n L$ the tangent and normal spaces of L at p.

Recall that second fundamental form \mathbb{I} at p is a symmetric quadratic form on T_pL with values in N_pL . It is uniquely defined by the following identity

$$\mathbf{II}(\mathbf{v}, \mathbf{v}) := \gamma_{\mathbf{v}}''(0),$$

where $V \in T_pL$ and γ_V an L-geodesic that starts at p with initial velocity vector V.

Given $p \in L$, denote by Sc(p), H(p), and $\mathcal{K}(p)$ the scalar curvature, the mean curvature vector, and the average value of $|\mathbb{I}(U,U)|^2$ at p respectively.

Let us denote by Sc the *outer scalar curvature* of L in M; that is, if e_1, \ldots, e_n is an orthonormal basis of T_pL , then

$$\widetilde{\mathrm{Sc}}(p) = 2 \cdot \sum_{i < j} K_{ij},$$

where K_{ij} denotes sectional curvature of M in the direction spanned by e_i and e_j .

The following formula is closely related to [5, 5.B].

1.1. Formula. The following identity

$$\operatorname{Sc} - \widetilde{\operatorname{Sc}} = \frac{3}{2} \cdot |H|^2 - \frac{n \cdot (n+2)}{2} \cdot \mathcal{K}$$

holds for any smooth n-dimensional submanifold L in a Riemannian manifold.

Proof. Without loss of generality, we can assume that the ambient manifold is flat; in particular $\widetilde{Sc} = 0$.

Assume codim L=1. Choose $p\in L$; denote by k_1,\ldots,k_n the principal curvatures of L at p. Note that

$$|H|^2 = \sum_{i} k_i^2 + 2 \cdot \sum_{i < j} k_i \cdot k_j.$$

Further,

$$n \cdot (n+2) \cdot \mathcal{H} = 3 \cdot \sum_{i} k_i^2 + 2 \cdot \sum_{i < j} k_i \cdot k_j.$$

The last identity follows since \mathcal{K} is the average value of $\left(\sum_{i}k_{i}\cdot x_{i}^{2}\right)^{2}$ on the unit sphere $\mathbb{S}^{n-1}\subset\mathbb{R}^{n}$. One has to take into account that the following functions have unit average values: $\frac{1}{3}\cdot n\cdot (n+2)\cdot x_{i}^{4}$ and $n\cdot (n+2)\cdot x_{i}^{2}\cdot x_{j}^{2}$ for $i\neq j$. Here we assume that (x_{1},\ldots,x_{n}) are the standard coordinates in \mathbb{R}^{n} .

By Gauss formula,

$$Sc = 2 \cdot \sum_{i < j} k_i \cdot k_j.$$

It remains to rewrite this formula using the expressions for $|H|^2$ and \mathcal{K} .

If $\operatorname{codim} L = k > 1$, then the second fundamental form can be presented as a direct sum of k real-valued quadratic forms $\mathbb{I}_1 \oplus \cdots \oplus \mathbb{I}_k$; that is,

$$\mathbf{I} = e_1 \cdot \mathbf{I}_1 + \dots + e_k \cdot \mathbf{I}_k,$$

where e_1, \ldots, e_k is an orthonormal basis of N_pL . Denote by Sc_i , H_i , and K_i the values associated with II_i . From above, we get

$$\operatorname{Sc}_i = \frac{3}{2} \cdot |H_i|^2 - \frac{n \cdot (n+2)}{2} \cdot \mathcal{K}_i$$

for each i.

Note that

$$Sc = Sc_1 + \dots + Sc_k,$$

$$|H^2| = |H_1|^2 + \dots + |H_k|^2,$$

$$\mathcal{K} = \mathcal{K}_1 + \dots + \mathcal{K}_k.$$

Hence the general case follows.

2 Embeddings into sphere

The obtained formula shows that some results in [3–5] are exact. In this and the following section, we will list of some of them.

Let us denote by \mathbb{T}^n the *n*-dimensional torus — the smooth manifold diffeomorphic to the product of *n* circles. The next statement follows from the formula since any Riemannian metric on the torus has nonpositive scalar curvature at some point.

2.1. Theorem. Suppose $\iota \colon \mathbb{T}^n \hookrightarrow \mathbb{S}^q$ is a smooth immersion. Then

$$\mathcal{K}(p) \geqslant 2 \cdot \frac{n-1}{n+2}$$

at some point $p \in \mathbb{T}^n$.

In particular, there is a tangent direction of \mathbb{T}^n with normal curvature at least

$$\kappa_n = \sqrt{2 \cdot \frac{n-1}{n+2}}.$$

It was shown [5] that there is an isometric embedding of the torus \mathbb{T}^n with a flat metric that has normal curvature κ_n in any direction at any point. In particular, the above bound on normal curvature is optimal. The compression lemma [4], implies that any closed smooth manifold is diffeomorphic to a submanifold with normal curvatures at most $\sqrt{2}$ in the unit sphere of sufficiently

large dimension. Moreover, the induced Riemannian metric can be chosen to be proportional to any given metric g. Applying the theorem, we get the following.

2.2. Corollary. The bound $\sqrt{2}$ is optimal.

3 Embeddings into ball

Let us denote by \mathbb{B}^q the unit ball in q-dimensional Euclidean space. The following lemma was essentially proved by István Fáry [2]; see also the survey of Serge Tabachnikov [6].

3.1. Lemma. Let $\iota \colon \mathbb{T}^n \hookrightarrow \mathbb{B}^q$ be a smooth immersion. Then the average value of |H| is at least n.

Proof. Consider the function $u: p \mapsto \frac{1}{2} \cdot |\iota(p)|^2$ on \mathbb{T}^n . Note that

$$\Delta u = n + \langle H, \iota \rangle.$$

It follows that the average value of $\langle H, \iota \rangle$ is -n. Since $|\iota| \leq 1$, we get the result

Since Sc = $\frac{3}{2} \cdot |H|^2 - \frac{n \cdot (n+2)}{2} \cdot \mathcal{K}$ (see 1.1), the lemma implies the following.

- **3.2. Proposition.** Let L be a flat closed n-dimensional manifold that is isometrically immersed in \mathbb{B}^q . Then the average value of K on L is at least $3 \cdot \frac{n}{n+2}$.
- **3.3. Theorem.** Suppose $\iota \colon \mathbb{T}^2 \to \mathbb{B}^q$ is a smooth immersion. Then the average value of \mathcal{K} on \mathbb{T}^2 is at least $\frac{3}{2}$.

Proof. By 3.1, the average value of $|H|^2$ is at least 4. Applying the formula and Gauss–Bonnet, we get the result.

3.4. Theorem. Let $\iota \colon \mathbb{T}^n \hookrightarrow \mathbb{B}^q$ be a smooth immersion. Then its maximal normal curvature is at least $\sqrt{3 \cdot \frac{n}{n+2}}$.

Frame of the proof. The case n=2 follows from 3.3; so we can assume that $n \ge 3$. We will prove that if the normal curvatures at most 2, then

$$\mathbf{0} \qquad \qquad \mathcal{K} \geqslant 3 \cdot \frac{n}{n+2}$$

at some point. Clearly it implies 3.4. The following lemma tells how we are going to use the assumtion on normal curvatures. In case $n \leq 4$, the proof below implies \bullet without this assumption.

3.5. Lemma. Let $\iota: M \hookrightarrow \mathbb{B}^q$ be a smooth immersion with normal curvatures at most 2. Given $p \in M$, denote by $\beta(p)$ the angle between $\iota(p)$ and the normal space at $\iota(p)$. Then

$$|\iota| \leqslant \cos \beta.$$

Proof. Assume the inequality does not hold at p. Shoot a geodesic in M that runs from p at angle $\beta(p)$ from $\iota(p)$. Since this geodesic has curvature at most 2, it will leave \mathbb{B}^q in time π — a contradiction.

Let g be a Riemannian metric on \mathbb{T}^n . Suppose $n \geq 3$, and $u \colon \mathbb{T}^n \to \mathbb{R}$ is a positive function. Here is the well-known formula for the scalar scalar curvature of the metric $u^{\frac{4}{n-2}} \cdot g$:

 $\left(\operatorname{Sc}\cdot u - 4\cdot\frac{n-1}{n-2}\cdot\Delta u\right)\cdot u^{\frac{n-2}{n+2}};$

see for example [1, 6.3]. Recall that any Riemannian metric g on \mathbb{T}^n has non-positive scalar curvature at some point. Hence we get the following.

3.6. Claim. Let g be a Riemannian metric on \mathbb{T}^n . Then, for any positive smooth function u on \mathbb{T}^n , the function

$$\operatorname{Sc} \cdot u - 4 \cdot \frac{n-1}{n-2} \cdot \Delta u$$

returns a nonpositive value at some point.

This claim plays central role in the following proof.

Proof of 3.4. Consider the function $u: p \mapsto \exp(-\frac{k}{2} \cdot |\iota(p)|^2)$. We will apply the following formula

$$\Delta(\varphi \circ f) = \varphi' \cdot \Delta f + \varphi'' \cdot |\nabla f|^2$$

to $f : p \mapsto \frac{1}{2} \cdot |\iota(p)|^2$ and $\varphi : x \mapsto \exp(-k \cdot x)$; so $u = \varphi \circ f$. Set $\alpha = \measuredangle(H, \iota)$ and β as in 3.5. Note that

$$\beta \leqslant \alpha \leqslant \pi - \beta.$$

Observe that

$$\Delta f = n + |H| \cdot |\iota| \cdot \cos \alpha, \quad |\nabla f| = |\iota| \cdot \sin \beta, \quad \varphi' = -k \cdot \varphi, \quad \varphi'' = k^2 \cdot \varphi.$$

Therefore

$$\Delta u = u \cdot [-k \cdot n - k \cdot |H| \cdot |\iota| \cdot \cos \alpha + k^2 \cdot |\iota|^2 \cdot (\sin \beta)^2].$$

By 1.1,

$$Sc = -\frac{n \cdot (n+2)}{2} \cdot \mathcal{K} + \frac{3}{2} \cdot |H|^2.$$

By 3.6, the function

$$\begin{aligned} &\operatorname{Sc} \cdot u - 4 \cdot \frac{n-1}{n-2} \cdot \Delta u = \\ &= u \cdot \left[-\frac{n \cdot (n+2)}{2} \cdot \mathcal{K} + \frac{3}{2} \cdot |H|^2 + 4 \cdot \frac{n-1}{n-2} \cdot k \cdot |H| \cdot |\iota| \cdot \cos \alpha - \right. \\ &\left. + 4 \cdot \frac{n-1}{n-2} \cdot (k \cdot n - k^2 \cdot |\iota|^2 \cdot (\sin \beta)^2) \right] \end{aligned}$$

returns a nonpositive value at some point $p \in \mathbb{T}^n$.

Choose

$$k = \frac{3}{4} \cdot \frac{n-2}{n-1} \cdot n$$
, so $n = \frac{4}{3} \cdot \frac{n-1}{n-2} \cdot k$.

At the point p, we have

$$\begin{split} \frac{n\cdot(n+2)}{2}\cdot\mathcal{K}\geqslant \frac{3}{2}\cdot(|H|+n\cdot|\iota|\cdot\cos\alpha)^2 - \frac{3}{2}\cdot n^2\cdot|\iota|^2\cdot\cos^2\alpha + \\ + 3\cdot n^2 - \frac{9}{4}\cdot\frac{n-2}{n-1}\cdot n^2\cdot|\iota|^2\cdot(\sin\beta)^2\geqslant \\ \geqslant \frac{3}{2}\cdot n^2. \end{split}$$

The last inequality follows since $\cos^2 \beta + \sin^2 \alpha \le 1$ and $|\iota|^2 + \sin^2 \beta \le 1$; see **2** and 3.5. Hence **1** follows.

References

- [1] T. Aubin. Nonlinear analysis on manifolds. Monge-Ampère equations. Vol. 252. Grundlehren der mathematischen Wissenschaften. 1982.
- [2] I. Fáry. "Sur certaines inégalités géométriques". Acta Sci. Math. 12 (1950), 117– 124.
- [3] M. Gromov. Curvature, Kolmogorov Diameter, Hilbert Rational Designs and Overtwisted Immersions. 2022.
- [4] M. Gromov. Isometric Immersions with Controlled Curvatures. 2022.
- [5] M. Gromov. Scalar Curvature, Injectivity Radius and Immersions with Small Second Fundamental Forms. 2022.
- [6] S. Tabachnikov. "The tale of a geometric inequality." MASS selecta: teaching and learning advanced undergraduate mathematics. 2003, 257–262.