Metastability

The Synchronization Problem

- **★** Microprocessors are synchronous systems.
- **★** Data sources (peripheral devices, memories, etc.) provide data mostly asynchronously with respect to the microprocessor.
- **★** Therefore the control signals of the data source have to be synchronized to the system clock.
- **★** In synchronization circuits the timing requirements of flip-flops (t_{su}, t_h) are violated.

Metastable Behaviour

Critical time window td = 10... 150 ps

$$MTBF = \frac{1}{f_{in} x f_{CLK} x t_d}$$

Example:

MTBF =
$$\frac{1}{1 \text{ kHz x 1 MHz x 30 ps}} = 33.3 \text{ s}$$

Metastable Evaluation Test Circuit

Metastable Characteristics of Logic Families

Mean Time between Failures of a Synchronizer

$$MTBF = \frac{exp (T x \Delta t)}{f_{in} x f_{CLK} x T_O}$$

- **★** There is no way to avoid metastable states in synchronization circuits.
- **★** Fast Logic Circuits return quicker from a metastable to a stable state.
- **★** The probability of system failures is greatly reduced by a delayed test of the synchronization circuit.

	T [ns-1]	T _o [s]
74STD	0,74	2,9E-4
74LS	0.72	4.8E-3
74S	0.36	1.3E-9
74ALS	1.02	8.8E-6
74AS	4.03	1.4E3
74F	9.20	1.9E8
74BCT	1.51	1.14E-6
47AB⊤	3.61	0.033
74HC	0.55	1.48E-6
74AHC	1.41	2.9E-4
74AC	2.80	1.1E-4
74LV	0.60	1.38E-5
74LVC	4.40	4.008
74ALVC	4.60	1.047
74LVT	2.13	1.52E-4

Calculation of System Reliability

Assumptions: System clock rate 10 MHz

Average access rate to 100 kHz

the global memory

Logic family SN74ALS

Required: Mean time between > 100 years

failure

100 years = 3.2 x 10⁹ s =
$$\frac{\text{exp (1.02 x } \Delta t)}{100 \text{ kHz x 10 MHz x 8.8 x 10}^{-6}}$$

$$\Delta t = 37 \text{ ns}$$

To meet the required system reliability, the test of the synchronization circuit output signal has to be delayed by 37 ns.

Example for Synchronization Failure

Possible failure:

Due to an undefined logic level caused by a metastable state at the output of the synchronization flip-flop, the OR gate forces an interrupt to the state control logic, while the priority logic provides a wrong interrupt vector.

Metastable-hardened Synchronization Circuit

The output of a dual-rank synchronizer provides a defined (but not necessarily correct) logic level, if

Note: The output signal response is delayed by one clock period.

Circuits for Synchronizer Applications

Improved system reliability due to dual-rank synchronizer SN74AS4374

Mean Time between Failure of a Dual-rank Synchronizer

$$MTBF(2) = \frac{\exp(T \times t)}{f_{CLK} \times f_{in(2)} \times T_o}$$

$$f_{in(2)} = \frac{1}{MTBF(1)}$$

$$= \frac{f_{CLK} \times f_{in(1)} \times T_o}{\exp(T \times 1 / f_{CLK})}$$

$$MTBF(2) = \frac{\exp(T \times t) \times \exp(T \times 1 / f_{CLK})}{f_{CLK}^2 \times f_{in}(1) \times T_o^2}$$

Note: The flip-flop (2) will only fall into a metastable state, if the output of flip-flop (1) violates the timing requirements at the input of flip-flop (2)

Reliability of Clocked FIFOs

Multi-Stage Flag Synchronization reduces the Probability of Metastable States

CLOCK

ASYNCH
FLAG

FIRST
STAGE

SYNCH
FLAG

Second flip-flop stage filters metastable events from first stage, increasing the MTBF by several orders of magnitude.

