BioPerl

Février 2016

Bérénice Batut

■ berenice.batut@udamail.fr

Principe

- Collection de module Perl
- Objectif: Faciliter le developpement de scripts Perl pour des applications bioinformatiques
- Open-source via une organisation GitHub
- Soutenu par Open Bioinformatics Foundation

Histoire

- 1996 : Début
- 2002
 - Premier Open Bio Hackathon
 - BioPerl 1.0
 - Article

Actuellement

- GitHub
 - 31 contributeurs
- Dernière release: 1.6.924 en Juillet 2014
- Orienté-objet
- > 40 Modules Perl

Comparaison avec les autres Bio Toolkits

Bio Toolkits

	Release 1.0	Dernière release	Article majeur	Citations
BioPerl	2002	07/2014	2002	1 306
BioPython	2000	10/2015	2009	608
BioJava	2008	07/2015	2008	201
BioRuby	2006	07/2015	_	-
BioPHP	2003	?	_	-
BioJS	2013	09/2014	2013	44
Bioconductor	2001	10/2015		

Installation

Installation sous Linux/Mac OS

```
$ (sudo) cpan -i CPAN
$ cpan
cpan[1]> d /BioPerl/
Reading '/Users/cidam/.cpan/Metadata'
   Database was generated on Thu, 14 Jan 2016 13:53:43 GMT
Distribution   B0ZO/Fry-Lib-BioPerl-0.15.tar.gz
Distribution   CDRAUG/Dist-Zilla-PluginBundle-BioPerl-0.20.tar.gz
Distribution   CJFIELDS/BioPerl-1.6.901.tar.gz
Distribution   CJFIELDS/BioPerl-1.6.923.tar.gz
Distribution   CJFIELDS/BioPerl-1.6.924.tar.gz
...
11 items found
cpan[2]> install CJFIELDS/BioPerl-1.6.924.tar.gz
```

Installation sous Windows

DSSL

Manipulation de séquences

Représentation d'une séquence

3 types d'objets pour une séquence

- Bio::PrimarySeq
 - Séquence + nom
 - Fichier fasta
- Bio::SeqFeatureI
 - Caractéristique sur une séquence (séquence, localisation et annotation)
 - Entrée simple d'une table de caractéristique EMBL/GenBank/DDBJ
- Bio::Seq
 - 1 séquence et une collection de caractéristiques
 - Entrée simple d'une table EMBL/GenBank/DDBJ

Classe Bio::Seq

Classe Bio::Seq

```
NAME
     Bio::Seq - Sequence object, with features
...

DESCRIPTION
     A Seq object is a sequence with sequence features placed on it.
     The Seq object contains a PrimarySeq object for the actual sequence and also implements its interface.
...
```

Créer d'un objet Bio::Seq

```
use Bio::Seq;

my $seqobj = Bio::Seq->new(
    -seq => "ACTGTGTCC",
    -id => "Chlorella sorokiniana",
    -accession_number => "CAA41635"
);
```

Méthodes (1)

Méthodes renvoyant des chaines de caractères et acceptant parfois des chaine de caractères pour modifier des propriétés

```
$seqobj->seq();
                                # string of sequence
$seqobj->subseq(5,10);
                                # part of the sequence as a string
$seqobj->accession_number(); # when there, the accession number
                                # one of 'dna','rna',or 'protein'
$seqobj->alphabet();
                        # when there, the version
$seqobj->version()
$seqobj->keywords();
                                # when there, the Keywords line
$seqobj->length()
                                # length
$seqobj->desc();  # description
$seqobj->primary_id();  # a unique id for this sequence regardless
# of its display_id or accession number
$seqobj->display_id();
                                # the human readable id of the sequence
```

Méthodes (2)

Méthodes renvoyant des nouveaux objet Bio::Seq

```
$seqobj->trunc(5,10) # truncation from 5 to 10 as new object
$seqobj->revcom # reverse complements sequence
$seqobj->translate # translation of the sequence
```

Méthodes (3)

Méthode pour déterminer si une chaine de caractère peut être accepter par la méthode seq()

\$seqobj->validate_seq(\$string)

Manipulation de séquences

Traduction

```
$translated_obj = $seqobj;
if( $seqobj->alphabet() == 'dna'){
    $translated_obj = $seqobj->translate();
}
print $translated_obj->seq(),"\n";
```

Récupération de statistiques sur une séquence

Classe Bio::Tools::SeqStats

```
$ perldoc Bio::Tools::SeqStats
NAME
       Bio::Tools::SeqStats - Object holding statistics
       for one particular sequence
DESCRIPTION
   Bio::Tools::SeqStats is a lightweight object for the calculation of
   simple statistical and numerical properties of a sequence. By
   "lightweight" I mean that only "primary" sequences are handled by tl
   object. The calling script needs to create the appropriate primary
   sequence to be passed to SeqStats if statistics on a sequence featu
   are required. Similarly if a codon count is desired for a frame-
   shifted sequence and/or a negative strand sequence, the calling scr
   needs to create that sequence and pass it to the SeaStats object.
```

Méthodes

- count_monomers
 - Comptage du nombre de chaque type de monomère
- get_mol_wt
 - Calcul du poids moléculaire
- count_codons
 - Comptage du nombre de chaque type de codons
- hydropathicity
 - Calcul l'hydrophaticité moyenne de Kyte-Doolittle

QCM

```
sub f{
    my ($x,$y) = @_;
    $$x = 20;
    $z = $y+10;
    return (\$z);
}
my $v = 10;
my $w = 20;
my $x = f(\$v,$w);
my $y = $$x + $v;
```

Que contient \$y?

□30

40

□ 50

□ 60

Manipulation de fichiers de séquences

Classe Bio::SeqIO

```
$ perldoc Bio::SeqIO
NAME
    Bio::SeqIO - Handler for SeqIO Formats
DESCRIPTION
   Bio::SeqIO is a handler module for the formats in the SeqIO set (eg
   Bio::SeqIO::fasta). It is the officially sanctioned way of getting
   the format objects, which most people should use.
   The Bio::SeqIO system can be thought of like biological file handle:
   They are attached to filehandles with smart formatting rules (eg,
   genbank format, or EMBL format, or binary trace file format) and call
   either read or write sequence objects (Bio::Seq objects, or more
   correctly, Bio::SegI implementing objects, of which Bio::Seg is one
```

Constructeur

- Paramètres possibles
 - -file
 - -string
 - -format: fasta, nexus, fastq, quality, excel, raw, tab, ...
 - -alphabet: dna, rna ou protein
- Création d'un objet Bio::SeqIO:ouverture d'un flux sur le fichier ou la chaine de caractères

Méthodes

- next_seq
 - Lecture du prochain objet "séquence" dans le flux
 - Renvoi d'un objet Bio::Seq ou rien si aucune séquence disponible
- write_seq
 - Ecriture d'un object Bio: Seq dans le flux
- format, alphabet, ...

Ecrire de séquences dans un fichier

Lecture des séquences d'un fichier

```
use Bio::SeqIO;

$seqio_obj = Bio::SeqIO->new(-file => "sequence.fasta",
        -format => "fasta" );

while ($seq_obj = $seqio_obj->next_seq){
    print $seq_obj->seq,"\n";
}
```

QCM

```
sub f{
    my ($x,$y) = @_;
    $$x = 20;
    $z = $y+10;
    return (\$z);
}
my $v = 10;
my $w = 20;
my $x = f(\$v,$w);
my $y = $$x + $v;
```

Que contient \$y?

 \Box 30

40

□ 50

□ 60

Accès aux bases de données

Récupération d'une séquence dans une base de données

Bases de données accessibles

Base de données	Module
GenBank	Bio::DB::GenBank
SwissProt	Bio::DB::SwissProt
GenPept	Bio::DB::GenPept
EMBL	Bio::DB::EMBL
SeqHound	Bio::DB::SeqHound
Entrez Gene	Bio::DB::EntrezGene
RefSeq	Bio::DB::RefSeq

Classe Bio::DB::GenBank

```
$ perldoc Bio::DB::GenBank

NAME
    Bio::DB::GenBank - Database object interface to GenBank

...

DESCRIPTION

Allows the dynamic retrieval of Bio::Seq sequence objects from the GenBank database at NCBI, via an Entrez query
...
```

Constructeur

```
use Bio::DB::GenBank;

$db_obj = Bio::DB::GenBank->new;
```

Méthodes

- get_Seq_by_id(\$unique_id)
- get_Seq_by_acc(\$accession_number)
- get_Seq_by_version(\$versioned_accession_number)
- get_Seq_by_gi(\$genbank_gi_number)

AUtiliser le bon identifiant pour la bonne méthode

Récupération d'une séquence dans une base de données

```
use Bio::DB::GenBank;
use Bio::Seq;

$db_obj = Bio::DB::GenBank->new;

$seq_obj = $db_obj->get_Seq_by_id(2);
print $seq_obj->display_id(),"\n";
```

Récupération de plusieurs séquences avec des requêtes plus complexes

Bases de données et modules pour les requêtes

Base de données	Module
GenBank	Bio::DB::Query::GenBank
SwissProt	Bio::DB::Query::SwissProt
GenPept	Bio::DB::Query::GenPept
EMBL	Bio::DB::Query::EMBL
SeqHound	Bio::DB::Query::SeqHound
Entrez Gene	Bio::DB::Query::EntrezGene
RefSeq	Bio::DB::Query::RefSeq

Classe Bio::DB::Query::GenBank

```
$ perldoc Bio::DB::Query::GenBank
NAME
    Bio::DB::Query::GenBank - Build a GenBank Entrez Query
DESCRIPTION
    This class encapsulates NCBI Entrez queries. It can be used to
    store a list of GI numbers, to translate an Entrez query expression
    into a list of GI numbers, or to count the number of terms that
    would be returned by a query. Once created, the query object can
    be passed to a Bio::DB::GenBank object in order to retrieve the
    entries corresponding to the query.
```

Constructeur

- Paramètres possibles
 - -db:protein, nucleotide, ...
 - -query
 - -mindate
 - -maxdate
 - -reldate
 - -datetype
 - -ids
 - -maxids
- Création d'un objet Bio::DB::Query::GenBank: ouverture d'un flux sur des objets Bio::Seq

Méthodes

- count
 - Renvoi du nombre de résultats de la requête
- ids
 - Renvoi/Modifie la liste des identifiants des résultats

Récupération de plusieurs séquences

Parser des rapports de recherche

Classe Bio::SearchIO

```
$ perldoc Bio::SearchIO
NAME
    Bio::SearchIO - Driver for parsing Sequence Database Searches (BLAS
    FASTA, ...)
DESCRIPTION
    This is a driver for instantiating a parser for report files from
   sequence database searches. This object serves as a wrapper for the
   format parsers in Bio::SearchIO::* - you should not need to ever use
   those format parsers directly. (For people used to the SeqIO system
   we are deliberately using the same pattern).
```

Constructeur

- Paramètres possibles
 - -file
 - format
 - -output_format
 - -inclusion_threshold
 - -signif
 - -check_all_hits
 - -min_query_len
 - best
- Création d'un objet Bio::Search avec un flux sur le fichier

Formats

Name	Format
blast	BLAST (WUBLAST, NCBIBLAST, bl2seq)
fasta	FASTA -m9 and -m0
blasttable	BLAST -m9 or -m8 output (both NCBI and WUBLAST tabular)
megablast	MEGABLAST
blastxml	NCBI BLAST XML

6.4

Méthodes

- next_result
- write_result
- write_report
- result_count
- best_hit_only
- check_all_hits

Représentation des données dans Bio::Search

- Bio::Search
 - Bio::Search::Result
 - Bio::Search::Hit
 - Bio::Search::HSP (high-scoring segment pair)

Méthodes de Bio::Search::Result

- algorithm
- query_name
- query_accession
- query_length
- query_description
- database_name
- available_statistics
- available_parameters
- num_hits
- hits

Méthodes de Bio::Search::Hit

- name
- length
- accession
- description
- algorithm
- raw_score
- significance
- hsps
- num_hsps
- locus
- accession_number

Méthodes de Bio::Search::HSP(1)

- algorithm
- evalue
- expect
- frac_identical
- frac_conserved
- gaps
- query_string
- hit_string
- length('total'/'hit'/'query')
- num_conserved
- num_identical

Méthodes de Bio::Search::HSP (1)

- rank
- seq_inds('hit'/'query', 'identical'/
 'conserved'/ 'conserved-notidentical')
- score
- range('hit'/'query')
- percent_identity
- strand('hit'/'query')
- start('hit'/'query')
- end('hit'/'query')
- matches('hit'/'query')
- get_aln

Parcours d'un fichier issu d'une requête Blast

Références

- BioPerl GitHub Page
- Wiki BioPerl