CSE 212: Data Structures and Algorithms

Lecture 8.3: Search Trees Dr. Vidhya Balasubramanian

Search Trees

- Trees can be used to organize data such that searching for elements is easy
- Different search trees
 - Binary Search Trees
 - AVL Trees
 - Multi-way search trees
 - (2,4) trees
 - Red-black trees

Binary Search Trees

- Is a binary tree storing keys (or key-element pairs) at its nodes and satisfying the following properties:
 - The left subtree of a node contains only nodes with keys less than the node's key
 - The right subtree of a node contains only nodes with keys greater than the node's key.
 - Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v. key(u) ≤ key(v) ≤ key(w)
 - Both the left and right subtrees must also be binary search trees
 - Values are stored only in internal nodes (in the text book)
- Also called ordered or sorted binary tree

 CSE 212: Data Structures and
 Algorithms

 Amrita Vishwa Vidyapeetham

Binary Search Trees

- Binary trees are very efficient for sorting and searching
- Fundamental data structure used to construct more abstract data structures
 - e.g sets, multisets, and associative arrays

Searching

- Can be recursive or iterative
- Start by examining the root and traverse
- If the key is less than the root, search the left subtree else search the right subtree
- Repeat until the key is found or remaining subtree is null
- Complexity :O(h)

Src: Goodrich notes

Searching: Iterative Algorithm

Algorithm find(k, root):

```
curnode ← root
while curnode is not null:
   if curnode.key == k:
      return curnode
   else if k < curnode.key:
      curnode ← curnode.left
   else
      curnode ← curnode.right</pre>
```

Searching: Recursive Algorithm

Algorithm find-recursive(k, node): // call initially with node = root

```
if node.key == k:
    return node
else if k < node.key:
    find-recursive(k, node.left)
else
    find-recursive(k, node.right)</pre>
```

Insertion

- insertItem(k,n) inserts a node with key k, into the tree with root node n
- Assume k is not already in the tree, and let let w be the leaf reached by the search
- We insert k at node w or add it as a child of w

Depending on the relative value it is a left child or right

child

CSE 212: Data Structures and Algorithms

Insertion

```
    Procedure InsertItem(k,n):

      if (k < n.key):
         if (n.left == null):
             n.left = Node(k)
         else:
             InsertItem(k,n.left)
      else if (k > n.key):
         if (n.right == null):
             n.right = Node(k)
         else:
             InsertItem(k,n.right)
 CSE 212: Data Structures and
```

Algorithms

Deletion

- Three cases
 - Deleting a leaf or external node:
 - Just remove the node
 - Deleting a node with one child
 - Remove the node and replace it with its child
 - Deleting a node with two children
 - Instead of deleting the node replace with its
 - inorder successor node
 - Inorder predecessor node

Deleting node with one child

- removeElement(k):
 - First find the node n with key k using the search method
 - Remove using removeAboveExternal(n.child)
 - set the parent of n's child to n's parent
 - set the child of n's parent to n's child.

CSE 212: Data Structures and Algorithms

Deleting node with two children

- Naive Approach:
 - to set n's parent to point to one of R's subtrees, and then reinsert the remaining subtree's nodes one at a time
- Find the best values in one of the subtrees to replace n
 - The least key value greater than (or equal to) the one being removed or
 - the greatest key value less than the one being removed

Deleting a node with two children

Deleting a node with two children from a binary search tree. The triangles represent subtrees of arbitrary size, each with its leftmost and rightmost child nodes at the bottom two vertices.

Deletion of node with two children

- find the node w that follows v in an inorder traversal
- copy key(w) into node v
- we remove node w and its left child z
 - Using the removeAboveExternal(z) method

- Insert into an initially empty binary search tree, items with the following keys (in the same order)
 - 30, 40, 24, 58, 48, 26, 11, 13
 - What happens if the values are entered in ascending order starting from 11
 - Try the reverse order: 13, 11, 26, 48, 58, 24, 40, 30

- Consider the following binary search tree
 - Illustrate what happens when we add the values 3.5 and then 4.5 to this tree
 - Illustrate what happens when we remove the values 3 and then 5 from the tree in figure

CSE 212: Data Structures and Algorithms

 If we have some BinarySearchTree and perform the operations add(x) followed by remove(x) (with the same value of x) do we necessarily return to the original tree?

Height Balanced Trees

- The height of a binary search tree depends on many factors
 - Order of insertion of values
 - Impact of deletions
- Worst case performance of search is linear
- Balance the height of the binary search trees so that the search cost is always O(logn)
 - Height Balance Property
 - For every internal node v of T, the height of the children of v differ by atmost 1

AVL Trees

- Is a binary search tree that satisfies the height-balance property
 - Self balancing search tree
- Named after its inventors
 - Adel'son- Vel'skii, and Landis

www.cs.uiuc.ed

u

AVL Trees

- Height balanced
 - Subtree of an AVL tree is also an AVL tree
- The height of an AVL tree storing n items is O(log n)
- Searching
 - As in an ordinary binary search tree
 - Cost : O(log n)

Insertion

- Node w is inserted as a leaf node as in binary search tree
- Check if height balance property still holds
 - Calculate balance factor
 - BalanceFactor = height(left-subtree) height(right-subtree)
 - if the balance factor remains -1, 0, or +1 then no rotations are necessary, else need to rebalance
- Let z be first node going up from w towards root that is unbalanced
 - Let y be child of z with higher height, and is ancestor of w
 - Let x be child of y with higher height and is ancestor of w
 - Due to insertion height of y is higher than its sibling

Trinode Restructuring

- Let the subtree that needs to be restructured be rooted at z.
 - Let (a,b,c) be an inorder listing of x, y, z
- Trinode restructure temporarily renames nodes x,y,z as a,b,c in the order of inorder listing
- Modification of T caused by trinode restructure is called rotation
- Goal is to make b the top node
 - If b=y, restructure method is called single rotation
 - If b=x, trinode restructure method is called double rotation

Single Rotations

Double Rotations

Pseudocode

- Algorithm restructure(x): //y is parent of x, and z is grandparent
- Let (a,b,c) be inorder listing of x,y, and z and let (T_0,T_1,T_2,T_3) be inorder listing of subtrees of x,y and z rooted at x,y, z
- Replace subtree rooted at z with new subtree rooted at b
- Let a be the left child of b, and let T_0 and T_1 be the left and right subtrees of a respectively
- Let c be the right child of b, and let T₂ and T₃ be the left and right subtrees of c respectively

Rotations: Tree Restructuring

- If balance factor of P is -2 then the right subtree outweighs the left subtree of the given node, and the balance factor of the right child (R) must be checked.
 - The left rotation with P as the root is necessary
 - If the balance factor of R is -1
 - single left rotation with P as root is done (Right-right case)
 - If balance factor of R is 1 (right-left case)
 - first rotation is a right rotation with R as the root
 - second is a left rotation with P as the root
- Vice versa for left-left and left right case

AVL Rotations: Another Look

CSE 212: Data S Algorithms

AVL Insertion: Example

- Draw the AVL tree resulting from the insertion of an item with key 52, 95, 65 in the tree in the left given below
- Show the result (including appropriate rotations) of inserting the following values into the tree on the right
 - 39, 300,50,1

of Engineering Amrita Vishwa Vidyapeetham

Deletion

- Removal is done initially as in a binary search tree
- The node removed or replaced usually ends up in an empty external node
 - Parent may become unbalanced

Rebalancing

- Let z be the first unbalanced node encountered while travelling up the tree from w.
 - Let y be the child of z with the larger height, and let x be the child of y with the larger height.
- We perform restructure(x) to restore balance at z.
- This restructuring may upset the balance of another node higher in the tree, continue checking for balance until the root of T is reached

Restructuring after deletion: Example

Src: Goodrich notes

CSE 212: Data Structures and

Algorithms

Analysis

- Single restructure : O(1)
 - using a linked-structure binary tree
- Finding an element: O(log n)
 - height of tree is O(log n)
- Insertion: O(log n)
 - initial find: O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)
- Removal: O(log n)
 - initial find: O(log n)
 - restructuring up the tree, maintaining heights is O(log n)

CSE 212: Data Structures and Algorithms

- Consider the following sequence of keys
 - 5,16,22,45,2,10,18,30,50,12, 1
 - Create an AVL tree by inserting one element at a time in order
 - What happens when you delete 16, 30 from the tree