

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

Test Report for FCC

FCC ID:UDCREM900

				T CC ID-ODCI ILINI300
rt Number	ESTF15	50803-010(1)		
Company name	CEYON	I TECHNOLOGY	CO.,LTD.	
Address		•		ngye-Dong, Paldal-Gu,
Telephone	82-31-223-0003			
Product name	UHF RFID Reader			
Model No.	REI	M900-R01	Manufacturer	CEYON TECHNOLOGY CO.,LTD.
Serial No.	CYRD08070086		Country of origin	KOREA
2008-4-	7 ~ 2008-	-4-15	Date of issue	15-Apr-08
97-1 H	oiuk-Ri M			∕i-Do, Korea
	FCC F	PART 15 2007,	ANSI C 63.4 200	03
facility registration	number 94696			
Senior Engineer M.J.Song (Signal)				
ewed by Engineering Manager J.M.Yang				
OK, Pass = Pass	ed, Fail:	= Failed, N/A =	not applicable	
	Company name Address Telephone Product name Model No. Serial No. 2008-4- 97-1 H facility registration Senior Engineering	Company name CEYON Address 14F Sa Suwons Telephone 82-31- Product name UHF Rf Model No. REI Serial No. CYR 2008-4-7 ~ 2008- 97-1 Hoiuk-Ri M FCC F facility registration number Senior Engineer M. Engineering Manager	Company name CEYON TECHNOLOGY Address 14F Samsung Insuranc Suwon-City, Gyeonggi Telephone 82-31-223-0003 Product name UHF RFID Reader Model No. REM900-R01 Serial No. CYRD08070086 2008-4-7 ~ 2008-4-15 ESTECH. C 97-1 Hoiuk-Ri Majang-Myon, Icl FCC PART 15 2007, facility registration number 94696 Senior Engineer M.J.Song Engineering Manager J.M.Yang	Company name CEYON TECHNOLOGY CO.,LTD. 14F Samsung Insurance B/D. #942-9, In Suwon-City, Gyeonggi-Do, Korea Telephone 82-31-223-0003 Product name UHF RFID Reader Model No. REM900-R01 Manufacturer Serial No. CYRD08070086 Country of origin 2008-4-7 ~ 2008-4-15 Date of issue ESTECH. Co., Ltd. 97-1 Hoiuk-Ri Majang-Myon, Icheon-city, Kyungle FCC PART 15 2007, ANSI C 63.4 200 facility registration number 94696 Senior Engineer M.J.Song

- * Note
- This test report is not permitted to copy partly without our permission
- This test result is dependent on only equipment to be used
- This test result based on a single evaluation of one sample of the above mentioned

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 1 of 30

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

Contents

1. Laboratory Information	••••••	4
2. Description of EUT		5
3. Test Standards	•••••	6
4. Measurement condition		7
5. Carrier Frequency Separation and 20dB Bandwidth		10
5.1 Test procedure		10
5.2 Test instruments and measurement setup		10
5.3 Measurement results		10
5.4 Trace data ······		11
6. Maximum Peak Output Power ······		13
7. Number of Hopping Frequency		14
7.1 Test procedure		14
7.2 Measurement results		14
8. Time of Occupancy (Dwell Time)		16
8.1 Test procedure		16
8.2 Test instruments and measurement setup		16
8.3 Measurement results		16
8.4 Trace data ·····		17
9. Band-Edge and Out of Band Emissions		18
9.1 Test procedure		18
9.2 Test instruments and measurement setup		18
9.3 Measurement results		18
9.4 Trace data of band-edge & out of emissioin		19

Rm 1015, World Venture Center II, 426–5 Gasan-dong, Guncheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

10. Measurement of radiated emission	22
10.1 Measurement equipment	22
10.2 Environmental conditions	22
10.3 Test data ······	23
10.4 Restricted Band Edges	27
11. Measurement of conducted emission	29
11.1 Measurement equipment	29
11.2 Environmental conditions	29
11.3 Test data ······	30

Appendix 1. Spectral diagram

Appendix 2. Antenna Requirement

1. Laboratory Information

1.1 General

This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and is tested in accordance with the measurement procedures as indicated in this report.

ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd.

ESTECH Lab assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1.2 Test Lab.

Corporation Name: ESTECH Co. Ltd

Head Office: Rm 1015, World Venture Center II, 426-5, Gasan-dong, Geumcheon-gu, Seoul, Kor-(Safety & Telecom. Test Lab)

EMC Test Lab: 58-1 Osan-Ri, GaNam-Myon, YeoJoo-Gun, KyungKi-Do, Korea 97-1 Hoiuk-Ri Majang-Myon, Icheon-city, KyungKi-Do, Korea

1.3 Official Qualification(s)

MIC: Granted Accreditation from Ministry of Information & Communication for EMC, Safety and Telecommunication

KOLAS: Accredited Lab By Korea Laboratory Accreditation Schema base on CENELEC requirements

FCC: Filed Laboratory at Federal Communications Commission

VCCI: Granted Accreditation from Voluntary Control Council for Interference from ITE

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 4 of 30

2. Description of EUT

2.1 Summary of Equipment Under Test

Product Name : UHF RFID Reader Model Number : REM900-R01

Modulation Type : ASK
Transfer Rate : 1Mbps
Number of Channel : 50 ch

Serial Number : CYRD08070086

Manufacturer : CEYON TECHNOLOGY CO.,LTD.

Country of origin : KOREA

Rating : INPUT:AC 120V,60Hz Output:DC9V,3A

Receipt Date : 7-Dec-07

X-tal lists : 20MHz,18.432MHz,7.3728MHz

2.2 General descriptions of EUT

-UHF RFID Reader offers RFID. The RFID frequency hopping transceiver is designed to operate between 902 and 928MHz.

- the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) stream. It is also comply with FHSS requirements in Section 15.247(a)(1).
- : Its hopping sequence is pseudo random, all channels used equally on average. The receiver input bandwidth approximately equal the transmit band bandwidth, and its hop in sequence with the transmit signal.
- the system does not coordinate its channel selection/hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 5 of 30

3. Test Standards

Test Standard: FCC PART 15 (2007)

This Standard sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. It also contains the technical specifications, administrative requirements and other conditions relating to the marketing of Part 15 devices.

Test Method: ANSI C 63.4 (2003)

This standard sets forth uniform methods of measurement of radio-frequency (RF) signals and noise emitted from both unintentional and intentional emitters of RF energy in the frequency range 9 kHz to 40 GHz. Methods for the measurement of radiated and AC power-line conducted radio noise are covered and may be applied to any such equipment unless otherwise specified by individual equipment requirements. These methods cover measurement of certain decides that deliberately radiate energy, such as intentional emitters, but does not cover licensed transmitters. This standard is not intended for certification/approval of avionic equipment or for industrial, scientific, and medical (ISM) equipment These method apply to the measurement of individual units or systems comprised of multiple units

Summary of Test Results

Applied Satandard: 47 CFR Part 15, Subpart C					
Standard	Test Type	Result	Remark	Limit	
15.207	AC Power Conducted Emission	Pass	Meet the requirement		
15.209	Intentional Radiated Emission	Pass	Meet the requirement		
15.247(a)(1)(i)	Carrier Frequency Separation & 20 Bandwidth	Pass	Meet the requirement	< 500kHz	
15.247(b)	Maximum Peak ouput power	Pass	Meet the requirement	30dBm(1W)	
15.247(a)(1)(i)	Number of Hopping Frequency	Pass	Meet the requirement	>50	
15.247(c)	Transmitter Radiated Emission	Pass	Meet the requirement		
15.247(a)(1)(i)	Time of Occupancy (Dwell Time)	Pass	Meet the requirement	<400ms	
15.247(c)	Band Edge Measurement	Pass	Meet the requirement		

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 6 of 30

4. Measurement Condition

4.1 EUT Operation.

a. Channel

Ch.	Frequency	Ch.	Frequency
0	902.75 MHz	25	915.25 MHz
1	903.25 MHz	26	915.75 MHz
2	903.75 MHz	27	916.25 MHz
3	904.25 MHz	28	916.75 MHz
4	904.75 MHz	29	917.25 MHz
24	914.75 MHz	49	927.25 MHz

b. Measurement Channel: Low(902.75MHz), Middle(915.25MHz), High(927.25MHz)

c. Test Mode : ASKd. Test rate : 1Mbps

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 7 of 30

4.2 EUT Operation.

- * The EUT was in the following operation mode during all testing
- * The operational conditions of the EUT was determined by the manufacturer according to the typical use of the EUT with respect to the expected hightest level of emission
- * After setting the EUT by the provided Test Program, tested under transmission/receiving condition continuously at specific channel frequency.

4.3 Configuration and Peripherals (SINGLE ANTENNA)

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 8-1 of 30

4.2 EUT Operation.

- * The EUT was in the following operation mode during all testing
- * The operational conditions of the EUT was determined by the manufacturer according to the typical use of the EUT with respect to the expected hightest level of emission
- * After setting the EUT by the provided Test Program, tested under transmission/receiving condition continuously at specific channel frequency.

4.3 Configuration and Peripherals (DUAL ANTENNA)

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 8-2 of 30

4.4 EUT and Support equipment (Single Antenna Model: FDC-08)

Equipment Name	Model Name	S/N	Manufacturer	Remark (FCC ID)
UHF RFID Reader	REM900-R01	CYRD08070086	CEYON TECHNOLOGY CO.,LTD.	EUT
Adapter	PA-090250S	FS-0610094	Perfect Power	
UHF Fixed RFID Antenna	FDC-08	FD-0801011	Electro Megnetic Wave	
UHF Fixed RFID Antenna	FDC-08	FD-0801021	Electro Megnetic Wave	
UHF Fixed RFID Antenna	FDC-08	FD-0801008	Electro Megnetic Wave	
UHF Fixed RFID Antenna	FDC-08	FD-0801019	Electro Megnetic Wave	

4.5 Cable Connecting (Single Antenna Model: FDC-08)

Start Equip	ment	End Equipment Ca		nt End Equipment Cable Standard		Remark
Name	I/O port	Name	I/O port	Length	Shielded	Heiliaik
UHF RFID Reader	TX/RX0	UHF Fixed RFID	-	1.5	Shielded	
UHF RFID Reader	TX/RX1	UHF Fixed RFID	-	1.5	Shielded	
UHF RFID Reader	TX/RX2	UHF Fixed RFID	-	1.5	Shielded	
UHF RFID Reader	TX/RX3	UHF Fixed RFID	-	1.5	Shielded	
UHF RFID Reader	DC POWER	ADAPTER	-	2	Unshielded	

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 9-1 of 30

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

4.4 EUT and Support equipment (Single Antenna Model: FSC-06)

Equipment Name	Model Name	S/N	Manufacturer	Remark (FCC ID)
UHF RFID Reader	REM900-R01	CYRD08070086	CEYON TECHNOLOGY CO.,LTD.	EUT
Adapter	PA-090250S	FS-0610094	Perfect Power	
UHF Fixed RFID Antenna	FSC-06	FS-0712100	Electro Megnetic Wave	
UHF Fixed RFID Antenna	FSC-06	FS-0712096	Electro Megnetic Wave	
UHF Fixed RFID Antenna	FSC-06	FS-0610094	Electro Megnetic Wave	
UHF Fixed RFID Antenna	FSC-06	FS-0712053	Electro Megnetic Wave	

4.5 Cable Connecting (Single Antenna Model: FSC-06)

Start Equip	ment	End Equipment		End Equipment Cable Standard		Remark
Name	I/O port	Name	I/O port	Length	Shielded	Heillaik
UHF RFID Reader	TX/RX0	UHF Fixed RFID Antenna	-	1.5	Shielded	
UHF RFID Reader	TX/RX1	UHF Fixed RFID Antenna	-	1.5	Shielded	
UHF RFID Reader	TX/RX2	UHF Fixed RFID Antenna	_	1.5	Shielded	
UHF RFID Reader	TX/RX3	UHF Fixed RFID Antenna	-	1.5	Shielded	
UHF RFID Reader	DC POWER	adapter	-	2	Unshielded	

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 9-2 of 30

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

4.4 EUT and Support equipment (Dual Antenna Model: FSDC-07)

Equipment Name	Model Name	S/N	S/N Manufacturer	
UHF RFID Reader	REM900-R01	CYRD08070086	CEYON TECHNOLOGY CO.,LTD.	EUT
Adapter	PA-090250S	FS-0610094	Perfect Power	
UHF Fixed RFID Antenna	FSDC-07	FS-0710076	Electro Megnetic Wave	
UHF Fixed RFID Antenna	FSDC-07	FS-0710079	Electro Megnetic Wave	
UHF Fixed RFID Antenna	FSDC-07	FS-0710080	Electro Megnetic Wave	
UHF Fixed RFID Antenna	FSDC-07	FS-0710077	Electro Megnetic Wave	

4.5 Cable Connecting (Dual Antenna Model: FSDC-07)

Start Equip	ment	End Equipment Cable Stan		End Equipment Cable Standard		Remark
Name	I/O port	Name	I/O port	Length	Shielded	пешак
UHF RFID Reader	TX/RX0	UHF Fixed RFID Antenna	_	1.5	Shielded	
UHF RFID Reader	TX/RX1	UHF Fixed RFID Antenna	_	1.5	Shielded	
UHF RFID Reader	TX/RX2	UHF Fixed RFID Antenna	_	1.5	Shielded	
UHF RFID Reader	TX/RX3	UHF Fixed RFID Antenna	_	1.5	Shielded	
UHF RFID Reader	RX0	UHF Fixed RFID Antenna	_	1.5	Shielded	
UHF RFID Reader	RX1	UHF Fixed RFID Antenna	_	1.5	Shielded	
UHF RFID Reader	RX2	UHF Fixed RFID Antenna	_	1.5	Shielded	
UHF RFID Reader	RX3	UHF Fixed RFID Antenna	_	1.5	Shielded	
UHF RFID Reader	DC POWER	Adapter	_	2	Unshielded	

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 9-3 of 30

5. Carrier Frequency Separation and 20dB Bandwidth

5.1 Test procedure

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

5.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- . RBW= 10KHz
- . VBW= 100KHz
- . Span= 500kHz
- . Sweep= suitable duration based on the EUT specification.

20dB Bandwidth Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US41421291	2009-01-11
Attenuator	8491A	54309	2009-01-14
-Spectrum Analyzer <=> EUT	Loss: 20dB	-	

5.3 Measurement results

EUT	UHF RFID Reader	MODEL	REM900-R01
MODE	ASK	ENVIRONMENTAL CONDITION	24℃, 43%RH
INPUT POWER	DC 9V		

CHANNEL	Channel Frequency (MHz)	Bandwidth at 20dB below(kHz)	Channel Separation (MHz)	Limit (kHz)	PASS/FAIL
0	902.75	75.40	0.5	<500	PASS
25	915.25	78.80	0.5	<500	PASS
49	927.25	78.90	0.5	<500	PASS

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 10 of 30

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

5.4 Trace data

Channel Separation

20dB bandwidth Low Channel

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 11 of 30

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference **Test Report**

20dB bandwidth Mid Channel

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 12 of 30

6. MAXIMUM PEAK OUTPUT POWER

6.1 Test procedure

The transmitter antenna terminal is connected to the input of a Spectrum Analyzer. Measurement is made while EUT is operating in transmission mode at the appropriate center frequency. The maximum peak output power measurement is 30dBm.

The spectrum analyzer is set to as following.

- . RBW= 1MHz
- . VBW= 3MHz
- . Span= 2MHz
- . Sweep= 1ms

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US41421291	2009-01-11
Attenuator	8491A	54309	2009-01-14
-Spectrum Analyzer <=> EUT	Loss: 20dB	-	

6.2 Measurement results

EUT	UHF RFID Reader	MODEL	REM900-R01
MODE	ASK	ENVIRONMENTAL CONDITION	24℃, 43%RH
INPUT POWER	DC 9V		

CHANNEL	Channel	Peak Power Output(dBm)		Limit[1W]	PASS/
CHANNEL	Frequency (MHz)	(dBm)	(W)	(dBm)	FAIL
0	902.75	28.58	0.7211	30.0	PASS
25	915.25	28.68	0.7379	30.0	PASS
49	927.25	28.35	0.6839	30.0	PASS

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 13 of 30

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

7. Number of Hopping Frequency

7.1 Test procedure

According to §15.247(a)(1)(i), For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

7.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- . RBW= 100KHz
- . VBW= 1MHz
- . Span= the frequency band of operation
- . Sweep= suitable duration based on the EUT specification.

The Number of Hopping Frequency Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US41421291	2009-01-11
Attenuator	8491A	54309	2009-01-14
-Spectrum Analyzer <=> EUT	Loss: 20dB		

7.3 Measurement results

EUT	UHF RFID Reader	MODEL	REM900-R01
MODE	ASK	ENVIRONMENTAL CONDITION	24℃, 44%RH
INPUT POWER	DC 9V		
Numb	er of CH	Limit (Number of CH)	PASS/FAIL

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 14 of 30

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

7.4 Trace data

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 15 of 30

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

8. Time of Occupancy (Dwell Time)

8.1 Test procedure

According to \$15.247(a)(1)(i), For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

8.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- . RBW= 30kHz
- . VBW= 30kHz
- . Span= zero span, centered on a hoppong channel
- . Sweep= as necessary to capture the entire dwell time per hoppong channel

The Time of Occupancy Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US41421291	2009-01-11
Attenuator	8491A	54309	2009-01-14
-Spectrum Analyzer <=> EUT	Loss: 20dB	-	

8.3 Measurement results

EUT	UHF RFID Reader	MODEL	REM900-R01
MODE	ASK	ENVIRONMENTAL CONDITION	25℃, 43%RH
INPUT POWER	DC 9V		

Channel	Pulse Time(ms)	Limit (ms)	PASS/FAIL
25	60.31	400	PASS

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 16 of 30

ESTECH Co., Ltd. Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

8.4 Trace data

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 17 of 30

9. Band-Edge and Out of Band Emissions.

9.1 Test procedure

The radio frequecy power at 20dB down from the highest inband power level is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The band edge&out of band emission shall be at least 20dB below of the highest inband power level.

9.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- . RBW= 100KHz
- . VBW= 100KHz
- . Span= suitable frequency span
- . Sweep= suitable duration based on the EUT specification.

Out of Emission Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US41421291	2009-01-11
Attenuator	8491A	54309	2009-01-14
-Spectrum Analyzer <=> EUT	Loss: 20dB		

9.3 Measurement results of out of emission

EUT	UHF RFID Reader	MODEL	REM900-R01
MODE	ASK	ENVIRONMENTAL CONDITION	24℃, 44%RH
INPUT POWER	DC 9V		

* Refer to attach spectrum analyzer data chart.

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 18 of 30

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

9.4 Trace data

Low Channel

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 19 of 30

Rm 1015, World Venture Center II, 426–5 Gasan-dong, Guncheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

Mid Channel

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 20 of 30

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

High Channel

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 21 of 30

10. Measurement of radiated disturbance (Single Antenna Model: FDC-08)

Above 30 MHz Electric Field strength was measured in accordance with FCC Part 15 (2007) & ANSI C 63.4 (2003). The test setup was made according to FCC Part 15 (2007) & ANSI C 63.4 (2003) on an open test site, which allows a 3m distance measurement. The EUT was placed in the center of wooden turntable. The height of this table was 0.8m. The measurement was conducted with both horizontal and vertical antenna polarization. The turntable has fully rotated. For further description of the configuration refer to the picture of the test setup.

10.1 Measurement equipments (Single Antenna Model: FDC-08)

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
TEST Receiver	ESVS10	Rohde & Schwarz	838562/002	2009. 1. 24
Spectrum Analyzer	R3262C	ADVANTEST	61720116	2008. 4. 20
LogBicon Antenna	VULB 9160	Schwarzbeck	3142	2008. 5. 07
Turn Table	2087	EMCO	2129	_
Antenna Mast	2070-01	EMCO	9702-203	_
ANT Mast Controller	2090	EMCO	1535	_
Horn Antenna	BBHA 9120 D	Schwarzbeck	469	2008. 6. 05
Amplifier	8447F	HP	2805A02972	2008. 6. 26
Turn Table Controller	2090	EMCO	1535	_
Spectrum Analyzer	R3273	ADVANTEST	121200664	2008. 11. 27
PREAMPLIFIER	8449B	HP	3008A00581	2009. 3. 07

10.2 Environmental Condition (Single Antenna Model: FDC-08)

Test Place : Open site(3m)

Temperature (°C) : 15 °C Humidity (%) : 68 %

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 22-1 of 30

10. Measurement of radiated disturbance (Single Antenna Model: FSC-06)

Above 30 MHz Electric Field strength was measured in accordance with FCC Part 15 (2007) & ANSI C 63.4 (2003). The test setup was made according to FCC Part 15 (2007) & ANSI C 63.4 (2003) on an open test site, which allows a 3m distance measurement. The EUT was placed in the center of wooden turntable. The height of this table was 0.8m. The measurement was conducted with both horizontal and vertical antenna polarization. The turntable has fully rotated. For further description of the configuration refer to the picture of the test setup.

10.1 Measurement equipments (Single Antenna Model: FSC-06)

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
TEST Receiver	ESVS10	Rohde & Schwarz	838562/002	2009. 1. 24
Spectrum Analyzer	R3262C	ADVANTEST	61720116	2008. 4. 20
LogBicon Antenna	VULB 9160	Schwarzbeck	3142	2008. 5. 07
Turn Table	2087	EMCO	2129	_
Antenna Mast	2070-01	EMCO	9702-203	_
ANT Mast Controller	2090	EMCO	1535	_
Horn Antenna	BBHA 9120 D	Schwarzbeck	469	2008. 6. 05
Amplifier	8447F	HP	2805A02972	2008. 6. 26
Turn Table Controller	2090	EMCO	1535	_
Spectrum Analyzer	R3273	ADVANTEST	121200664	2008. 11. 27
PREAMPLIFIER	8449B	HP	3008A00581	2009. 3. 07

10.2 Environmental Condition (Single Antenna Model: FSC-06)

Test Place : Open site(3m)

Temperature (°C) : $18 \, ^{\circ}$ C Humidity (%) : $67 \, ^{\circ}$

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 22-2 of 30

Am 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

10. Measurement of radiated disturbance (Dual Antenna Model: FSDC-07)

Above 30 MHz Electric Field strength was measured in accordance with FCC Part 15 (2007) & ANSI C 63.4 (2003). The test setup was made according to FCC Part 15 (2007) & ANSI C 63.4 (2003) on an open test site, which allows a 3m distance measurement. The EUT was placed in the center of wooden turntable. The height of this table was 0.8m. The measurement was conducted with both horizontal and vertical antenna polarization. The turntable has fully rotated. For further description of the configuration refer to the picture of the test setup.

10.1 Measurement equipments (Dual Antenna Model: FSDC-07)

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
TEST Receiver	ESVS10	Rohde & Schwarz	838562/002	2009. 1. 24
Spectrum Analyzer	R3262C	ADVANTEST	61720116	2008. 4. 20
LogBicon Antenna	VULB 9160	Schwarzbeck	3142	2008. 5. 07
Turn Table	2087	EMCO	2129	_
Antenna Mast	2070-01	EMCO	9702-203	_
ANT Mast Controller	2090	EMCO	1535	_
Horn Antenna	BBHA 9120 D	Schwarzbeck	469	2008. 6. 05
Amplifier	8447F	HP	2805A02972	2008. 6. 26
Turn Table Controller	2090	EMCO	1535	_
Spectrum Analyzer	R3273	ADVANTEST	121200664	2008. 11. 27
PREAMPLIFIER	8449B	HP	3008A00581	2009. 3. 07

10.2 Environmental Condition (Dual Antenna Model: FSDC-07)

Test Place : Open site(3m)

Temperature (°C) : 15 °C Humidity (%) : 48 %

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 22-3 of 30

Remark

ESTECH Co., Ltd.

Rm 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

10.3-1 Test data (Single Antenna Model: FDC-08)

Test Date: 14-Apr-08 Measurement Distance: 3 m

fest bate.	·			Correction	Factor	R	esult Value	
Frequency (MHz)	Reading (dB#V)	Position (V/H)	Height (m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
30.40	20.10	V	1.0	11.12	0.2	40.0	31.42	-8.58
68.98	24.20	V	1.0	10.72	0.9	40.0	35.81	-4.19
70.64	24.30	Н	3.0	9.86	0.9	40.0	35.06	-4.94
77.20	23.00	Н	2.5	8.93	0.8	40.0	32.72	-7.28
107.89	20.70	Н	3.0	9.36	1.2	43.5	31.25	-12.25
126.20	19.80	V	1.0	11.18	1.4	43.5	32.37	-11.13
240.02	10.40	V	1.0	11.14	2.6	46.0	24.14	-21.86
279.99	8.60	Н	1.1	12.18	2.8	46.0	23.56	-22.44
372.37	7.80	Н	1.0	14.47	3.4	46.0	25.65	-20.35
384.40	11.90	Н	1.0	14.89	3.6	46.0	30.38	-15.62
420.43	11.20	Н	1.0	15.86	3.8	46.0	30.86	-15.14
444.46	10.10	Н	1.0	16.41	4.0	46.0	30.51	-15.49
	H: Horizontal, *CL = Cable Lo	ss-Amplifier		f above1000Mhz	<u>z</u>)			

^{*}CL = Cable Loss(In case of below1000Mhz)

Report Number: ESTF150803-010(1), Web: www. estech.co. kr Pag

^{*}Checked in max located antenna and the maximum measured data were reported.

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120KHz for Quasi−peak detection at frequency below 1GHz.

10.3-1 Test data (Single Antenna Model: FSC-06)

Test Date: 7-Apr-08 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correction	Factor	R	esult Value	
(MHz)	(dB₩)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
32.04	17.80	V	1.0	11.12	0.2	40.0	29.12	-10.88
67.79	23.20	V	1.0	10.72	0.9	40.0	34.81	-5.19
70.32	24.10	Н	3.0	9.86	0.9	40.0	34.86	-5.14
77.40	22.80	Н	2.5	8.93	8.0	40.0	32.52	-7.48
108.11	21.80	Н	3.0	9.36	1.2	43.5	32.35	-11.15
120.36	18.10	V	1.0	11.17	1.4	43.5	30.67	-12.83
134.86	16.50	Н	2.4	11.96	1.4	43.5	29.85	-13.65
139.44	17.60	V	1.0	11.97	1.4	43.5	30.96	-12.54
240.04	10.30	V	1.0	11.14	2.6	46.0	24.04	-21.96
280.00	8.40	Н	1.2	12.47	2.8	46.0	23.67	-22.33
372.38	8.00	Н	1.0	14.47	3.4	46.0	25.85	-20.15
384.41	12.00	Н	1.0	14.89	3.6	46.0	30.48	-15.52
420.43	11.00	Н	1.0	15.86	3.8	46.0	30.66	-15.34
444.45	9.90	Н	1.0	16.41	4.0	46.0	30.31	-15.69

H: Horizontal, V: Vertical

Remark

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page

^{*}CL = Cable Loss-Amplifier Gain(In case of above1000Mhz)

^{*}CL = Cable Loss(In case of below1000Mhz)

^{*}Checked in max located antenna and the maximum measured data were reported.

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120KHz for Quasi-peak detection at frequency below 1GHz.

Am 1015, World Venture Center II, 426–5 Gasan-dong, Guncheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

10.3-1 Test data (Dual Antenna Model: FSDC-07)

Test Date: 7-Apr-08 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correction	Factor	R	esult Value	
(MHz)	(dB₩)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
32.03	19.10	V	1.0	11.12	0.2	40.0	30.42	-9.58
65.80	18.40	V	1.0	10.71	0.9	40.0	30.01	-9.99
70.90	23.80	Н	3.0	9.86	0.9	40.0	34.56	-5.44
75.20	21.90	Н	2.4	8.92	0.8	40.0	31.62	-8.38
105.44	21.80	Н	2.9	9.35	1.2	43.5	32.35	-11.15
133.64	16.70	Н	2.3	11.96	1.4	43.5	30.05	-13.45
240.04	10.50	V	1.0	11.14	2.6	46.0	24.24	-21.76
280.01	8.50	Н	1.3	12.47	2.8	46.0	23.77	-22.23
372.37	8.10	Н	1.0	14.47	3.4	46.0	25.95	-20.05
384.40	11.80	Н	1.0	14.89	3.6	46.0	30.28	-15.72
420.44	11.20	Н	1.0	15.86	3.8	46.0	30.86	-15.14
444.46	10.10	Н	1.0	16.41	4.0	46.0	30.51	-15.49

H: Horizontal, V: Vertical

Remark

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 23-3 of 30

^{*}CL = Cable Loss-Amplifier Gain(In case of above1000Mhz)

^{*}CL = Cable Loss(In case of below1000Mhz)

^{*}Checked in max located antenna and the maximum measured data were reported.

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120KHz for Quasi-peak detection at frequency below 1GHz.

Am 1015, World Venture Center II, 426–5 Gasan-dong, Gumcheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

10.3-2 Test data (CH0) - (Single Antenna Model: FDC-08)

Test Date: 15-Apr-08 Measurement Distance: 3 m

	•	1						1
Frequency	Reading	Position	Height	Correction	Factor	R	esult Value	
(MHz)	(dB≠V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
			Quas	si-peak				
902.75	100.20	Н	2.0	23.21	6.5	*OB	129.91	_
902.75	100.60	V	1.0	23.21	6.5	*OB	130.31	_
		F	EAK(RBW	/ VBW-1MH	Hz)			
1805.50	49.81	Н	1.6	25.15	-28.0	74.0	46.96	-27.04
1805.50	52.00	V	1.2	25.15	-28.0	74.0	49.15	-24.85
2708.25	44.40	Н	2.0	27.68	-29.2	74.0	42.88	-31.12
2708.25	44.46	V	1.2	27.68	-29.2	74.0	42.94	-31.06
3611.00	44.99	Н	1.2	28.72	-28.8	74.0	44.91	-29.09
3611.00	45.62	V	1.5	28.72	-28.8	74.0	45.54	-28.46
		A٧	(RBW 1MF	Hz / VBW 10)Hz)			
1805.50	42.55	Н	1.6	25.15	-28.0	54.0	39.70	-14.30
1805.50	46.34	V	1.2	25.15	-28.0	54.0	43.49	-10.51
2708.25	32.23	Н	2.0	27.68	-29.2	54.0	30.71	-23.29
2708.25	33.80	V	1.2	27.68	-29.2	54.0	32.28	-21.72
3611.00	34.20	Н	1.2	28.72	-28.8	54.0	34.12	-19.88
3611.00	36.80	V	1.5	28.72	-28.8	54.0	36.72	-17.28
Remark	H: Horizontal, V: Vertical TEST MODE: CH 0 (902.75MHz) *The TX signal isn't detected from 5th harmonics. *OB = Operating band *Checked in max located antenna and the maximum measured data were reported.							

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 24-1 of 30

Am 1015, World Venture Center II, 426–5 Gasan-dong, Gumcheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

10.3-2 Test data (CH0) - (Single Antenna Model: FSC-06)

Test Date: 8-Apr-08 Measurement Distance: 3 m

1001 2410	0 7 (61 00				mododi			
Frequency	Reading	Position	Height	Correction	Factor	R	esult Value	
(MHz)	(dB₩)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
			Quas	si-peak				
902.75	100.10	Н	1.6	23.21	6.5	*OB	129.81	_
902.75	99.20	V	1.2	23.21	6.5	*OB	128.91	_
		F	PEAK(RBW	/ VBW-1MH	Hz)			
1805.50	47.81	Н	1.8	25.15	-28.0	74.0	44.96	-29.04
1805.50	49.64	V	1.7	25.15	-28.0	74.0	46.79	-27.21
2708.25	44.05	Н	1.4	27.68	-29.2	74.0	42.53	-31.47
2708.25	44.22	\	2.0	27.68	-29.2	74.0	42.70	-31.30
3611.00	44.46	Н	1.6	27.68	-29.2	74.0	42.94	-31.06
3611.00	45.59	V	1.4	27.68	-29.2	74.0	44.07	-29.93
		A۱	/(RBW 1MH	tz / VBW 10)Hz)			
1805.50	40.50	Н	1.8	25.15	-28.0	54.0	37.65	-16.35
1805.50	43.25	\	1.7	25.15	-28.0	54.0	40.40	-13.60
2708.25	33.30	Н	1.4	27.68	-29.2	54.0	31.78	-22.22
2708.25	32.31	\	2.0	27.68	-29.2	54.0	30.79	-23.21
3611.00	33.16	Н	1.6	27.68	-29.2	54.0	31.64	-22.36
3611.00	35.65	V	1.4	27.68	-29.2	54.0	34.13	-19.87
Remark	*Checked in m	isn't detected ax located ant	from 5th harm tenna and the	E: CH 0 (902.75 nonics. *OB = C maximum measi f above 1000Mh	perating b ured data v			

^{*}CL = Cable Loss(In case of below 1000Mhz)

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page

^{*}Reading (dB/W) = Quasi-peak Value (In Case of below 1000Mhz)

Am 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

10.3-2 Test data (CH0) - (Dual Antenna Model: FSDC-07)

Test Date: 8-Apr-08 Measurement Distance: 3 m

Test Date .	est Date: 0-Api-00 Measurement Distance: 3 III							
Frequency	Reading	Position	Height	Correction	Factor	R	esult Value	
(MHz)	(dB≠V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
			Quas	si-peak				
902.75	100.80	Н	1.6	23.21	6.5	*OB	130.51	_
902.75	100.50	\	1.2	23.21	6.5	*OB	130.21	_
		F	EAK(RBW	/ VBW-1MH	Hz)			
1805.50	46.52	Н	1.5	25.15	-28.0	74.0	43.67	-30.33
1805.50	46.74	V	1.0	25.15	-28.0	74.0	43.89	-30.11
2708.25	45.50	Н	1.4	27.68	-29.2	74.0	43.98	-30.02
2708.25	47.09	V	1.7	27.68	-29.2	74.0	45.57	-28.43
3611.00	45.40	Н	1.6	27.68	-29.2	74.0	43.88	-30.12
3611.00	46.60	V	1.4	27.68	-29.2	74.0	45.08	-28.92
		A۱	/(RBW 1MH	Hz / VBW 10)Hz)			
1805.50	33.90	Н	1.5	25.15	-28.0	54.0	31.05	-22.95
1805.50	34.09	V	1.0	25.15	-28.0	54.0	31.24	-22.76
2708.25	33.32	Н	1.4	27.68	-29.2	54.0	31.80	-22.20
2708.25	34.84	V	1.7	27.68	-29.2	54.0	33.32	-20.68
3611.00	34.42	Н	1.6	27.68	-29.2	54.0	32.90	-21.10
3611.00	36.70	V	1.4	27.68	-29.2	54.0	35.18	-18.82
Remark	*Checked in m	isn't detected ax located ant oss-Amplifier (from 5th harm enna and the i Gain(In case o	E: CH 0 (902.75 nonics. *OB = O maximum measu f above 1000Mh nz)	perating b Ured data v			

^{*}Reading (dB/N) = Quasi-peak Value (In Case of below 1000Mhz)

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 24-3 of 30

10.3-3 Test data (CH25) - (Single Antenna Model: FDC-08)

Test Date: 15-Apr-08 Measurement Distance: 3 m

Croqueney.	Dooding	Position	Hoight	Correction	Factor	R	esult Value		
Frequency (MHz)	Reading (dB₩)	(V/H)	Height (m)	Ant Factor (dB)	Cable (dB)	Limit (dBW/m)	Result (dB#V/m)	Margin (dB)	
			Qua	si-peak					
915.25	97.80	Н	2.0	23.23	6.5	*OB	127.53	_	
915.25	100.40	V	1.0	23.23	6.5	*OB	130.13	_	
		F	EAK(RBW	/ VBW-1MH	Hz)				
1830.50	1830.50 48.04 H 1.0 25.21 -29.1 74.0 44.15 -29.85								
1830.50	49.66	V	1.7	25.21	-29.1	74.0	45.77	-28.23	
2745.75	44.09	Н	1.2	27.77	-29.9	74.0	41.96	-32.04	
2745.75	44.64	V	1.0	27.77	-29.9	74.0	42.51	-31.49	
3661.00	44.46	Н	1.8	28.82	-29.5	74.0	43.78	-30.22	
3661.00	45.66	V	1.3	28.82	-29.5	74.0	44.98	-29.02	
		AV	(RBW 1M	- Hz / VBW 10)Hz)				
1830.50	39.95	Н	1.0	25.21	-29.1	54.0	36.06	-17.94	
1830.50	42.65	V	1.7	25.21	-29.1	54.0	38.76	-15.24	
2745.75	32.00	Н	1.2	27.77	-29.9	54.0	29.87	-24.13	
2745.75	33.12	V	1.0	27.77	-29.9	54.0	30.99	-23.01	
3661.00	33.10	Н	1.8	28.82	-29.5	54.0	32.42	-21.58	
3661.00	35.22	V	1.3	28.82	-29.5	54.0	34.54	-19.46	
Remark	H: Horizontal, V: Vertical TEST MODE: CH 25 (915.25MHz) *The TX signal isn't detected from 5th harmonics. *OB = Operating band *Checked in max located antenna and the maximum measured data were reported.								

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 25-1 of 30

10.3-3 Test data (CH25) - (Single Antenna Model: FSC-06)

Test Date: 8-Apr-08 Measurement Distance: 3 m

Teet Bate	0 Apr 00				Modeda		1100	O III
Frequency	Reading	Position H	Height	Correction	Factor	R	esult Value	
(MHz)	(dB₩)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
			Qua	si-peak				
915.25	100.10	Н	1.5	23.23	6.5	*OB	129.83	_
915.25	99.30	V	1.1	23.23	6.5	*OB	129.03	_
		F	PEAK(RBW	/ VBW-1MH	Hz)			
1830.50	47.55	Н	1.6	25.21	-29.1	74.0	43.66	-30.34
1830.50	48.59	V	1.2	25.21	-29.1	74.0	44.70	-29.30
2745.75	44.48	Н	1.0	27.77	-29.9	74.0	42.35	-31.65
2745.75	43.30	V	1.3	27.77	-29.9	74.0	41.17	-32.83
3661.00	44.70	Н	1.8	27.77	-29.9	74.0	42.57	-31.43
3661.00	46.07	V	1.1	27.77	-29.9	74.0	43.94	-30.06
		A۱	/(RBW 1MH	Hz / VBW 10)Hz)			
1830.50	39.90	Н	1.6	25.21	-29.1	54.0	36.01	-17.99
1830.50	42.30	V	1.2	25.21	-29.1	54.0	38.41	-15.59
2745.75	33.10	Н	1.0	27.77	-29.9	54.0	30.97	-23.03
2745.75	32.31	V	1.3	27.77	-29.9	54.0	30.18	-23.82
3661.00	33.09	Н	1.8	27.77	-29.9	54.0	30.96	-23.04
3661.00	37.15	V	1.1	27.77	-29.9	54.0	35.02	-18.98
Remark	H: Horizontal, V: Vertical TEST MODE: CH 25 (915.25MHz) *The TX signal isn't detected from 5th harmonics. *OB = Operating band *Checked in max located antenna and the maximum measured data were reported. *CL = Cable Loss-Amplifier Gain(In case of above 1000Mhz) *CL = Cable Loss(In case of below 1000Mhz) *Reading (dB,\(\mu\)) = Quasi-peak Value (In Case of below 1000Mhz)							

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 25-2 of 30

ESTECH Co., Ltd. Am 1015, World Venture Center II, 426–5 Gasan-dong, Gumcheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference **Test Report**

10.3-3 Test data (CH25) - (Dual Antenna Model: FSDC-07)

Test Date: 8-Apr-08 Measurement Distance: 3 m

Test Date .	est Date : o-Api-00							
Frequency	Reading	Position	Height	Correction	Factor	R	esult Value	
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
			Qua	si-peak				
915.25	100.20	Н	1.5	23.23	6.5	*OB	129.93	_
915.25	100.80	V	1.1	23.23	6.5	*OB	130.53	-
		F	PEAK(RBW	/ VBW-1MH	Hz)			
1830.50	47.70	Н	1.2	25.21	-29.1	74.0	43.81	-30.19
1830.50	48.60	V	1.1	25.21	-29.1	74.0	44.71	-29.29
2745.75	46.40	Н	1.5	27.77	-29.9	74.0	44.27	-29.73
2745.75	46.20	V	1.7	27.77	-29.9	74.0	44.07	-29.93
3661.00	45.80	Н	1.8	27.77	-29.9	74.0	43.67	-30.33
3661.00	47.21	V	1.1	27.77	-29.9	74.0	45.08	-28.92
		A۱	/(RBW 1MH)Hz)			
1830.50	36.90	Н	1.2	25.21	-29.1	54.0	33.01	-20.99
1830.50	36.20	V	1.1	25.21	-29.1	54.0	32.31	-21.69
2745.75	33.80	Н	1.5	27.77	-29.9	54.0	31.67	-22.33
2745.75	33.80	V	1.7	27.77	-29.9	54.0	31.67	-22.33
3661.00	35.10	Н	1.8	27.77	-29.9	54.0	32.97	-21.03
3661.00	39.80	V	1.1	27.77	-29.9	54.0	37.67	-16.33
Remark	*Checked in m	isn't detected ax located an	I from 5th harm tenna and the	E: CH 25 (915.2 nonics. *OB = C maximum measi f above 1000Mr	perating b ured data v			

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 25-3 of 30

^{*}CL = Cable Loss-Amplifier Gain(In case of above 1000Mhz)

^{*}CL = Cable Loss(In case of below 1000Mhz)

^{*}Reading (dB/W) = Quasi-peak Value (In Case of below 1000Mhz)

10.3-4 Test data (CH49) - (Single Antenna Model: FDC-08)

Test Date: 15-Apr-08 Measurement Distance: 3 m

C	D = = =	Dogition	tion Hoight	Correction	Factor	Re	esult Value			
Frequency (MHz)	Reading (dB₩)	Position (V/H)	Height (m)	Ant Factor (dB)	Cable (dB)	Limit (dB≠V/m)	Result (dB#V/m)	Margin (dB)		
Quasi-peak										
927.25	98.80	Н	2.0	23.54	6.6	*OB	128.94	_		
927.25	99.10	V	1.0	23.54	6.6	*OB	129.24	_		
		F	EAK(RBW	/ VBW-1MH	Hz)					
1001.08	45.20	Н	1.1	23.57	-34.0	74.0	34.82	-39.18		
1001.08	44.40	V	1.0	23.57	-34.0	74.0	34.02	-39.98		
1854.50	46.58	Н	1.1	25.26	-30.1	74.0	41.74	-32.26		
1854.50	47.88	V	1.5	25.26	-30.1	74.0	43.04	-30.96		
2781.75	44.26	Н	2.0	27.86	-30.7	74.0	41.42	-32.58		
2781.75	45.05	V	1.2	27.86	-30.7	74.0	42.21	-31.79		
3709.00	45.75	Н	1.1	28.89	-28.9	74.0	45.74	-28.26		
3709.00	48.94	V	1.4	28.89	-28.9	74.0	48.93	-25.07		
		A٧	(RBW 1MH	Hz / VBW 10)Hz)					
1001.08	35.30	Н	1.1	23.57	-34.0	54.0	24.92	-29.08		
1001.08	33.40	V	1.0	23.57	-34.0	54.0	23.02	-30.98		
1854.50	37.58	Н	1.1	25.26	-30.1	54.0	32.74	-21.26		
1854.50	40.00	V	1.5	25.26	-30.1	54.0	35.16	-18.84		
2781.75	32.74	Н	2.0	27.86	-30.7	54.0	29.90	-24.10		
2781.75	34.36	V	1.2	27.86	-30.7	54.0	31.52	-22.48		
3709.00	36.59	Н	1.1	28.89	-28.9	54.0	36.58	-17.42		
3709.00	41.20	V	1.4	28.89	-28.9	54.0	41.19	-12.81		
Remark	H: Horizontal, V: Vertical TEST MODE: CH 49 (927.25MHz) *The TX signal isn't detected from 5th harmonics. *OB = Operating band *Checked in max located antenna and the maximum measured data were reported									

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Pa

Am 1015, World Venture Center II, 426–5 Gasan-dong, Gumcheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

10.3-4 Test data (CH49) - (Single Antenna Model: FSC-06)

Test Date: 8-Apr-08 Measurement Distance: 3 m

	O Apr 00	D 111	11.5.1.4	Correction	Factor	Result Value				
Frequency (MHz)	Reading (dB₩)	Position (V/H)	Height (m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dBW/m)	Margin (dB)		
Quasi-peak										
927.25	99.58	Н	1.1	23.54	6.6	*OB	129.72	_		
927.25	98.60	V	1.5	23.54	6.6	*OB	128.74	_		
		F	EAK(RBW	/ VBW-1MH	Hz)					
1001.16	44.30	Н	1.3	23.57	-34.0	74.0	33.92	-40.08		
1001.16	44.10	V	1.2	23.57	-34.0	74.0	33.72	-40.28		
1854.50	45.34	Н	1.9	25.26	-30.1	74.0	40.50	-33.50		
1854.50	47.04	V	1.7	25.26	-30.1	74.0	42.20	-31.80		
2781.75	44.21	Н	1.1	27.86	-30.7	74.0	41.37	-32.63		
2781.75	44.42	V	1.5	27.86	-30.7	74.0	41.58	-32.42		
3709.00	45.48	Н	1.8	25.26	-30.1	74.0	40.64	-33.36		
3709.00	47.02	V	1.1	25.26	-30.1	74.0	42.18	-31.82		
		A۷	(RBW 1MF	Hz / VBW 10)Hz)					
1001.16	34.20	Н	1.3	23.57	-34.0	54.0	23.82	-30.18		
1001.16	33.40	V	1.2	23.57	-34.0	54.0	23.02	-30.98		
1854.50	34.57	Н	1.9	25.26	-30.1	54.0	29.73	-24.27		
1854.50	39.80	V	1.7	25.26	-30.1	54.0	34.96	-19.04		
2781.75	32.98	Н	1.1	27.86	-30.7	54.0	30.14	-23.86		
2781.75	32.85	V	1.5	27.86	-30.7	54.0	30.01	-23.99		
3709.00	34.81	Н	1.8	27.86	-30.7	54.0	31.97	-22.03		
3709.00	38.12	V	1.1	27.86	-30.7	54.0	35.28	-18.72		
Remark	H: Horizontal, V: Vertical TEST MODE: CH 49 (927.25MHz) *The TX signal isn't detected from 5th harmonics. *OB = Operating band *Checked in max located antenna and the maximum measured data were reported.									

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 26-2 of 30

Am 1015, World Venture Center II, 426–5 Gasan-dong, Gumcheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

10.3-4 Test data (CH49) - (Dual Antenna Model: FSDC-07)

Test Date: 8-Apr-08 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correction	Factor	R	esult Value			
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)		
Quasi-peak										
927.25	99.20	Н	1.1	23.54	6.6	*OB	129.34	_		
927.25	99.70	V	1.4	23.54	6.6	*OB	129.84	-		
		F	EAK(RBW	/ VBW-1MI	Hz)					
1001.68	45.30	Н	1.1	23.57	-34.0	74.0	34.92	-39.08		
1001.68	44.20	V	1.0	23.57	-34.0	74.0	33.82	-40.18		
1854.50	46.30	Н	1.1	25.26	-30.1	74.0	41.46	-32.54		
1854.50	44.80	V	1.0	25.26	-30.1	74.0	39.96	-34.04		
2781.75	55.50	Н	1.0	27.86	-30.7	74.0	52.66	-21.34		
2781.75	52.80	V	1.0	27.86	-30.7	74.0	49.96	-24.04		
3709.00	46.48	Н	1.8	28.89	-28.9	74.0	46.47	-27.53		
3709.00	49.06	V	1.1	28.89	-28.9	74.0	49.05	-24.95		
		A۷	(RBW 1MF)Hz)					
1001.68	35.40	Н	1.1	23.57	-34.0	54.0	25.02	-28.98		
1001.68	34.20	V	1.0	23.57	-34.0	54.0	23.82	-30.18		
1854.50	38.20	Н	1.1	25.26	-30.1	54.0	33.36	-20.64		
1854.50	34.23	V	1.0	25.26	-30.1	54.0	29.39	-24.61		
2781.75	51.02	Н	1.0	27.86	-30.7	54.0	48.18	-5.82		
2781.75	47.40	V	1.0	27.86	-30.7	54.0	44.56	-9.44		
3709.00	36.98	Н	1.8	28.89	-28.9	54.0	36.97	-17.03		
3709.00	42.16	V	1.1	28.89	-28.9	54.0	42.15	-11.85		
Remark	H: Horizontal, V: Vertical TEST MODE: CH 49 (927.25MHz) *The TX signal isn't detected from 5th harmonics. *OB = Operating band *Checked in max located antenna and the maximum measured data were reported									

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 26

10.4 Restricted Band Edges (Single Antenna Model: FDC-08)

Band Edges(CH Low)

Comment: REM900-ROL SINGLE ANTENNA (FDC-00) HOR Date: 10.APR.2000 10:53:10

Detector mode:Peak

Polarity:Vertical

Comment: REM900-ROL SINGLE ANTENNA (FDC-00) VER Date: 10.APR.2000 10:54:50

Report Number: ESTF150803-010(1), Web: www. estech.co. kr

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference **Test Report**

(Single Antenna Model: FDC-08)

Band Edges(CH High)

Detector mode:Peak

Polarity: Horizontal

Comment: REM900-ROL SINGLE ANTENNA (FDC-00) HOR Date: 10.APR.2000 10:30:23

Detector mode:Peak

Polarity: Vertical

Comment: REM900-ROL SINGLE ANTENNA (FDC-00) VER Date: 10.APR.2000 10:32:09

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

(Single Antenna Model: FSC-06)

Band Edges(CH Low)

Detector mode:Peak

Polarity: Horizontal

Comment: REM900-ROL SINGLE ANTENNA (FDC-00) HOR Date: 10.APR.2000 10:53:10

Detector mode:Peak

Polarity:Vertical

Comment: REM900-ROL SINGLE ANTENNA (FDC-00) VER Date: 10.APR.2000 10:54:50

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference **Test Report**

(Single Antenna Model: FSC-06)

Band Edges(CH High)

Detector mode:Peak

Polarity: Horizontal

Comment: REM900-ROL SINGLE ANTENNA (FDC-00) HOR Date: 10.APR.2000 10:30:23

Detector mode:Peak

Polarity: Vertical

Comment: REM900-ROL SINGLE ANTENNA (FDC-00) VER Date: 10.APR.2000 10:32:09

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

(Dual Antenna Model: FSDC-07)

Band Edges(CH Low)

Detector mode:Peak

Polarity:Horizontal

Comment: REM900-ROL SINGLE ANTENNA (FDC-00) HOR Date: 10.APR.2000 10:53:10

Detector mode:Peak

Polarity:Vertical

Comment: REM900-ROL SINGLE ANTENNA (FDC-00) VER Date: 10.APR.2000 10:54:50

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference **Test Report**

(Dual Antenna Model: FSDC-07)

Band Edges(CH High)

Detector mode:Peak

Polarity: Horizontal

Comment: REM900-ROL SINGLE ANTENNA (FDC-00) HOR Date: 10.APR.2000 10:30:23

Detector mode:Peak

Polarity: Vertical

Comment: REM900-ROL SINGLE ANTENNA (FDC-00) VER Date: 10.APR.2000 10:32:09

11. Measurement of conducted disturbance (Single Antenna Model: FDC-08)

The continuous disturbance voltage of AC Mains in the frequency from 0.15 to 30 MHz was measured in accordance to FCC Part 15 (2007) & ANSI C 63.4 (2003) The test setup was made according to FCC Part 15 (2007) & ANSI C 63.4 (2003) in a shielded. The EUT was placed on a non-conductive table at least 80 above the ground plan. A grounded vertical reference plane was positioned in a distance of 40cm from the EUT. The distance from the EUT to other metal surfaces was at least 0.8m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0m.. The test receiver with Quasi Peak detector complies with CISPR 16.

11.1 Measurement equipments (Single Antenna Model: FDC-08)

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
TEST Receive	ESPI7	Rohde & Schwarz	100185	2008. 8. 26
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	_
LISN	ESH3-Z5	Schwarzbeck	838979/010	2009. 2. 29
LISN	NNLA8120A	Schwarzbeck	8120161	2009. 2. 29

11.2 Environmental Condition (Single Antenna Model: FDC-08)

Test Place : Shield Room

Temperature (°C) : $18 \, ^{\circ}$ C Humidity (%) : $48 \, ^{\circ}$

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 29-1 of 30

11. Measurement of conducted disturbance (Single Antenna Model: FSC-06)

The continuous disturbance voltage of AC Mains in the frequency from 0.15 to 30 MHz was measured in accordance to FCC Part 15 (2007) & ANSI C 63.4 (2003) The test setup was made according to FCC Part 15 (2007) & ANSI C 63.4 (2003) in a shielded. The EUT was placed on a non-conductive table at least 80 above the ground plan. A grounded vertical reference plane was positioned in a distance of 40cm from the EUT. The distance from the EUT to other metal surfaces was at least 0.8m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0m.. The test receiver with Quasi Peak detector complies with CISPR 16.

11.1 Measurement equipments (Single Antenna Model: FSC-06)

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
TEST Receive	ESPI7	Rohde & Schwarz	100185	2008. 8. 26
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	_
LISN	ESH3-Z5	Schwarzbeck	838979/010	2009. 2. 29
LISN	NNLA8120A	Schwarzbeck	8120161	2009. 2. 29

11.2 Environmental Condition (Single Antenna Model: FSC-06)

Test Place : Shield Room

Temperature (°C) : 21 °C Humidity (%) : 48 %

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 29-2 of 30

11. Measurement of conducted disturbance (Dual Antenna Model: FSDC-07)

The continuous disturbance voltage of AC Mains in the frequency from 0.15 to 30 MHz was measured in accordance to FCC Part 15 (2007) & ANSI C 63.4 (2003) The test setup was made according to FCC Part 15 (2007) & ANSI C 63.4 (2003) in a shielded. The EUT was placed on a non-conductive table at least 80 above the ground plan. A grounded vertical reference plane was positioned in a distance of 40cm from the EUT. The distance from the EUT to other metal surfaces was at least 0.8m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0m.. The test receiver with Quasi Peak detector complies with CISPR 16.

11.1 Measurement equipments (Dual Antenna Model: FSDC-07)

Equipment Name	Туре	Manufacturer	Serial No.	Next Calibration date
TEST Receive	ESPI7	Rohde & Schwarz	100185	2008. 8. 26
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	_
LISN	ESH3-Z5	Schwarzbeck	838979/010	2009. 2. 29
LISN	NNLA8120A	Schwarzbeck	8120161	2009. 2. 29

11.2 Environmental Condition (Dual Antenna Model: FSDC-07)

Test Place : Shield Room

Temperature (°C) : 20 °C Humidity (%) : 39 %

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 29-3 of 30

Rm 1015, World Venture Center II. 426–5 Gasan-dong, Guncheon-gu, Seoul, 158–803, Korea

Electromagnetic Interference Test Report

11.3 Test data (CH 25)-(Single Antenna Model: FDC-08)

Test Date: 14-Apr-08

Correction Factor		Line	Quasi-peak Value			Average Value		
Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB≠V)	Limit (dB#V)	Reading (dB#V)	Result (dB)
0.15	8.0	N	66.00	50.44	51.34	56.00	39.22	40.12
0.17	8.0	Н	63.74	46.14	47.10	53.74	34.25	35.21
0.19	0.8	Н	61.92	39.65	40.67	51.92	29.23	30.25
0.21	0.9	N	60.41	34.23	35.31	50.41	24.85	25.93
0.21	0.9	Н	59.06	28.07	29.13	49.06	20.16	21.22
0.20	0.8	N	56.13	31.72	32.70	46.13	25.25	26.23
0.19	0.8	Н	56.00	29.00	29.99	46.00	21.16	22.15
0.22	0.8	Н	56.00	28.75	29.79	46.00	28.57	29.61
0.20	0.7	N	56.00	27.17	28.10	46.00	20.76	21.69
0.23	0.8	Н	56.00	28.80	29.87	46.00	22.97	24.04
0.24	0.9	Н	56.00	28.06	29.16	46.00	22.25	23.35
0.32	0.9	Н	56.00	28.48	29.75	46.00	22.62	23.89
0.38	1.0	Н	60.00	35.27	36.66	50.00	31.92	33.31
0.87	1.8	N	60.00	36.48	39.10	50.00	29.53	32.15
0.91	2.0	Н	60.00	35.02	37.95	50.00	23.37	26.30
0.91	2.1	N	60.00	36.29	39.28	50.00	30.81	33.80
0.93	2.2	N	60.00	36.36	39.54	50.00	29.83	33.01
0.94	2.3	Н	60.00	36.27	39.46	50.00	24.43	27.62
	Lisn (dB) 0.15 0.17 0.19 0.21 0.20 0.19 0.22 0.20 0.23 0.24 0.32 0.38 0.87 0.91 0.91 0.93	Lisn (dB) Cable (dB) 0.15 0.8 0.17 0.8 0.19 0.8 0.21 0.9 0.20 0.8 0.19 0.8 0.22 0.8 0.20 0.7 0.23 0.8 0.24 0.9 0.32 0.9 0.38 1.0 0.87 1.8 0.91 2.1 0.93 2.2	Lisn (dB) Cable (H/N) 0.15 0.8 N 0.17 0.8 H 0.19 0.8 H 0.21 0.9 N 0.21 0.9 H 0.20 0.8 N 0.19 0.8 H 0.22 0.8 H 0.22 0.8 H 0.23 0.8 H 0.24 0.9 H 0.32 0.9 H 0.32 0.9 H 0.38 1.0 H 0.87 1.8 N 0.91 2.0 H 0.93 2.2 N	Lisn (dB) (dB) (H/N) (dB/N) 0.15	Lisn (dB) Cable (dB) Line (H/N) Limit (dB,M) Reading (dB,M) 0.15 0.8 N 66.00 50.44 0.17 0.8 H 63.74 46.14 0.19 0.8 H 61.92 39.65 0.21 0.9 N 60.41 34.23 0.21 0.9 H 59.06 28.07 0.20 0.8 N 56.13 31.72 0.19 0.8 H 56.00 29.00 0.22 0.8 H 56.00 28.75 0.20 0.7 N 56.00 27.17 0.23 0.8 H 56.00 28.80 0.24 0.9 H 56.00 28.48 0.32 0.9 H 56.00 28.48 0.38 1.0 H 60.00 35.27 0.87 1.8 N 60.00 35.02 0.91 2.1 N 60.00	Lisn (dB) Cable (dB) (H/N) Limit (dB/M) Reading (dB/M) Result (dB/M) 0.15 0.8 N 66.00 50.44 51.34 0.17 0.8 H 63.74 46.14 47.10 0.19 0.8 H 61.92 39.65 40.67 0.21 0.9 N 60.41 34.23 35.31 0.21 0.9 H 59.06 28.07 29.13 0.20 0.8 N 56.13 31.72 32.70 0.19 0.8 H 56.00 29.00 29.99 0.22 0.8 H 56.00 28.75 29.79 0.20 0.7 N 56.00 27.17 28.10 0.23 0.8 H 56.00 28.80 29.87 0.24 0.9 H 56.00 28.48 29.75 0.38 1.0 H 60.00 35.27 36.66 0.87 1.8	Lisn (dB) Cable (dB) (H/N) Limit (dB,M) Reading (dB,M) Result (dB,M) Limit (dB,M) 0.15 0.8 N 66.00 50.44 51.34 56.00 0.17 0.8 H 63.74 46.14 47.10 53.74 0.19 0.8 H 61.92 39.65 40.67 51.92 0.21 0.9 N 60.41 34.23 35.31 50.41 0.21 0.9 H 59.06 28.07 29.13 49.06 0.20 0.8 N 56.13 31.72 32.70 46.13 0.19 0.8 H 56.00 29.00 29.99 46.00 0.22 0.8 H 56.00 28.75 29.79 46.00 0.23 0.8 H 56.00 27.17 28.10 46.00 0.24 0.9 H 56.00 28.48 29.75 46.00 0.32 0.9 H 56.00	Lisn (dB) Cable (dB) (H/N) Limit (dB/M) Reading (dB/M) Result (dB/M) Limit (dB/M) Reading (dB/M) <t< td=""></t<>

Remark

H: Hot Line, N: Neutral Line TEST MODE: CH 25 (915.25MHz)

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 30-1 of 30

11.3 Test data (CH 25)-(Single Antenna Model: FSC-06)

Test Date: 7-Apr-08

Frequency	Correction Factor		Line	Qu	asi-peak Va	alue	Д	verage Valu	le
(MHz)	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dB#V)	Result (dB)
0.15	0.15	0.8	Н	66.00	49.78	50.68	56.00	40.06	40.96
0.18	0.16	0.8	Ν	64.39	40.20	41.14	54.39	30.40	31.34
0.20	0.17	8.0	Н	63.74	41.60	42.56	53.74	31.79	32.75
0.21	0.12	0.3	Ν	63.41	37.75	38.19	53.41	31.91	32.35
0.23	0.18	0.8	Н	62.60	35.46	36.46	52.60	28.23	29.23
0.49	0.20	0.8	Н	56.10	34.23	35.21	46.10	28.79	29.77
1.09	0.18	0.8	Н	56.00	33.34	34.32	46.00	28.05	29.03
1.29	0.19	0.8	Н	56.00	33.41	34.41	46.00	27.20	28.20
1.83	0.22	0.8	Н	56.00	33.60	34.65	46.00	28.29	29.34
1.93	0.23	0.8	Н	56.00	33.46	34.52	46.00	27.64	28.70
2.07	0.23	0.8	N	56.00	32.51	33.59	46.00	25.53	26.61
2.32	0.24	0.9	Н	56.00	33.50	34.59	46.00	26.10	27.19
20.16	0.84	1.5	Н	60.00	37.27	39.62	50.00	26.02	28.37
21.88	0.87	1.7	Н	60.00	44.69	47.26	50.00	34.46	37.03
21.98	0.87	1.7	Ν	60.00	44.02	46.60	50.00	34.19	36.77
23.51	0.89	1.9	N	60.00	42.14	44.91	50.00	36.78	39.55
23.61	0.89	1.9	Н	60.00	43.22	46.00	50.00	33.49	36.27
26.28	0.93	2.2	Н	60.00	36.70	39.84	50.00	31.05	34.19
Remark	H: Hot Line, N: Neutral Line TEST MODE: CH 25 (915.25MHz)								

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 30-2 of 30

11.3 Test data (CH 25)-(Dual Antenna Model: FSDC-07)

Test Date: 7-Apr-08

Test Date :	, ,,,	80–10		,			,			
Frequency	Correction Factor		Line	Quasi-peak Value			Av	erage Valu	е	
(MHz)	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dB#V)	Result (dB)	
0.15	0.15	0.8	Η	66.00	53.31	54.21	56.00	38.91	39.81	
0.19	0.17	0.8	Ν	63.86	44.46	45.42	53.86	34.06	35.02	
0.20	0.17	0.8	Н	63.78	44.57	45.53	53.78	34.48	35.44	
0.24	0.19	0.8	Ν	61.96	39.76	40.78	51.96	30.21	31.23	
0.25	0.19	0.8	Н	61.76	36.21	37.24	51.76	30.40	31.43	
0.29	0.21	0.9	Ν	60.41	36.42	37.50	50.41	27.88	28.96	
0.84	0.20	0.8	Z	56.00	30.25	31.26	46.00	24.61	25.62	
0.89	0.19	0.8	Z	56.00	29.75	30.75	46.00	23.03	24.03	
1.33	0.20	0.8	Z	56.00	30.13	31.13	46.00	24.85	25.85	
1.62	0.21	0.8	Z	56.00	31.16	32.19	46.00	25.36	26.39	
1.83	0.22	0.8	Н	56.00	30.08	31.13	46.00	21.68	22.73	
2.02	0.11	0.3	Ν	56.00	31.56	31.98	46.00	24.51	24.93	
22.61	0.88	1.8	Ν	60.00	44.21	46.87	50.00	30.17	32.83	
22.68	0.88	1.8	Н	60.00	42.19	44.86	50.00	35.58	38.25	
23.04	0.88	1.8	Н	60.00	43.85	46.56	50.00	36.05	38.76	
24.19	0.90	2.0	Ν	60.00	45.02	47.88	50.00	30.66	33.52	
26.29	0.93	2.2	Н	60.00	41.51	44.66	50.00	33.93	37.08	
26.30	0.93	2.2	Ν	60.00	39.45	42.60	50.00	29.58	32.73	
Remark	H: Hot Line, N: Neutral Line TEST MODE: CH 25 (915.25MHz)									

Report Number: ESTF150803-010(1), Web: www. estech. co. kr Page 30-3 of 30

Appendix 1-1. Spectral diagram (Single Antenna Model: FDC-08)

Comment: REM900-ROL SINGLE ANTENNA (FDC-08) HOT Date: 14.APR.2008 11:07:57

Comment: REM900-ROL SINGLE ANTENNA (FDC-08) NEUTRAL

Date: 14.APR.2000 11:12:49

Appendix 1-2. Spectral diagram (Single Antenna Model: FSC-06)

Comment: REM900-R01 SING ANTENNA (FSC-06)-NEUTRAL Date: 7.APR.2008 21:41:18

*NEUTRAL

Comment: REM900-R01 SING ANTENNA (FSC-06)-NEUTRAL Date: 7.APR.2008 21:41:18

Appendix 1-3. Spectral diagram (Dual Antenna Model: FSDC-07)

10 MHz

Comment: REM900-R01 DUAL ANTENNA HOT Date: 7.APR.2008 13:55:00

*NEUTRAL

RBW 9 kHz MT 1 s Att 10 dB AUTO PREAMP OFF dBpV 90 1 MHz LIMIT CHECK PASS

Comment: REM900-R01 DUAL ANTENNA NEUTRAL Date: 7.APR.2008 13:49:33