第二章

理财与投资基础

学习目标:通过本章学习,了解货币时间价值的概念,掌握复利现值、终值等的计算方法,了解年金的类别及其计算方法。

本章主要内容

第一节 货币时间价值的概念

第二节 单利和复利

第三节 终值和现值

第四节 年金的终值和现值

第一节 货币时间价值的概念

- •思考:
- •什么是货币时间价值?
- •什么是货币购买力?

不同时点货币的价值,可能不相等

- 货币价值随时间增加
 - 2017年底,存100元在银行,年利率2%,2018年底,变 为102元
- 货币价值随时间减少
 - 1368年底,存100两黄金,扣除保管费用和自然损耗, 1644年底,变为98两黄金
 - 投资100元入股市,一年后亏损为80元
- 货币价值随时间不变
 - 2000年底, 放100元纸币在抽屉, 2018年底, 仍为100元
 - 2018的100元,能买到与2000年的100元同样的东西吗?
- 由此,需要经过现金流量计算,把不同时点的货币 换算到相同时点上,才能进行加减和比较

例子:将不同时点货币换算到同一时点

- 某人的投资收益率 为10%
- · 方案一: 未来3年内 每年年末得到100元
- 方案二:第3年年末一次性得到330元
- 方案三:第1年年初一次性得到250元
- 方案一是否比方案 二合算?
- 方案一是否比方案

例子: 将不同时点货币换算到同一时点

- •某人的投资收益率为10%
- 方案一: 未来3年内每年年末得到100元
- 折现到现在价值:
- 100×2. 486(年金现值系数)=248.6(元)
- 方案二: 第3年年末一次性得到330元
- 折现到现在价值:
- 330×0.751 (复利现值系数)=247.83 (元)
- 方案三: 第1年年初一次性得到250元
- •结论:方案一获得钱数高于方案二,但低于方案方案三,方案三最合算。
- 其中的差额(1.4元, 2.17元)就是货币时间价值。

货币时间价值(TVM)

- 货币的时间价值
 - 使用这个概念,一般指货币价值随时间增加的情况
 - 指货币经历一定时间的投资和再投资,所增加的价值
- 例如,将现在的1元钱存入银行,年利率10%,1 年后可得到1.10元。
- 1元钱经过1年时间增加的0.10元,就是货币的时间价值。

1元 ——————1.1元

1年后(利率i=10%的情况下)

准确理解货币时间价值的概念

・需要注意的问题:

- ✓ 时间价值产生于生产流通领域,消费领域不产生时间价值
- ✓ 时间价值产生于资金运动之中
- ✓ 时间价值的大小取决于资金周转速度的快慢

思 考:

- 1、将钱放在口袋里会产生时间价值吗?
- 2、停顿中的资金会产生时间价值吗?
- 3、企业加速资金的周转会增加时间价值吗?

货币时间价值包括: 纯时间价值、通货膨胀预期、风险补偿收益

- 1、货币的时间价值与通货膨胀率
- ◆ 货币的时间价值增加,不代表购买力同等增加
- ◆ 要考虑通货膨胀率, 计算实际收益率(名义收益率减去通货膨胀率)
- ◆ 例子: 扣除通货膨胀率后,改革开放以后银行 存款实际利率为负数。

货币时间价值: 纯时间价值、通货膨胀预期、风险补偿收益

- 2、货币的时间价值与风险补偿收益率
- ◆ 货币的时间价值越大,并不表示投资越合算
- ◆ 要考虑投资风险, 用名义收益率减去风险补

偿收益率

货币时间价值的故事

- ◆纯时间价值:假设银行利率10%,今年的10元钱与去年的10元钱的价值是不同的,因为如果去年将10元存入银行,今年就11元了,那么去年10元的增值与今年10元的差额就是纯时间价值!
- ◆通货膨胀预期:就是预期未来发生的通货膨胀率。一旦发生通货膨胀,过去的钱肯定比现在的钱更值!如今年通胀率是10%,那么去年的10元相当于今年的11元,那么此时资金的时间价值就是1元。
- ◆风险补偿收益:例如,将10元投入股市,一年后该股票涨到了11元,此时获得资本利得1元,这一元就是风险补偿收益。
- ◆货币时间价值的用处:是为了比较不同资本之间的机会成本,选择对自身最有利的投资机会进行投资,从而获取更多的收益!!

相对数(百分比):

*时间价值率*是扣除风险报酬和通货膨胀后的真实报酬率。

通常用短期国库券利率来表示。 银行存贷款利率、债券利率、股票的股利率等都是投资报酬率,而不是时间价值率。 只有在没有风险和通货膨胀的情况下,时间价值率才与以上各种投资报酬率相等。

绝对数: *时间价值额*是资金在生产经营过程中带来的真实增值额。

即时间价值额,是投资额与时间价值率的乘积。

如何准确理解货币时间价值的概念?

1、从理论上讲,货币时间价值相当于没有风险、没有通货膨胀条件下的社会平均资金利润率。

既然是投资行为就会存在一定程度的风险。包括违约风险、期限风险和流动性风险等,而且在市场经济的条件下通货膨胀因素也是不可避免的。

所以, 市场利率的构成为:

$$K = KO + IP + DP + LP + MP$$

式中: K——利率(指名义利率)

K0——纯利率

IP——通货膨胀补偿(或称通货膨胀贴水)

DP——违约风险报酬

LP---流动性风险报酬

MP——期限风险报酬

其中,纯利率是指没有风险和没有通货膨胀情况下的均衡点利率,即社会平均资金利润率。

2、在实践中,如果通货膨胀率很低,可以用政府债券利率来表现货币时间价值。

结论

货币时间价值

=平均报酬率-通货膨胀率-风险报酬率

一般假定没有风险和通货膨胀,以利率代表时间价值

问题

- 1、你认为银行在确定你存款利率高低的时候会考虑哪些因素?
- 2、如果你购买股票,你期望的报酬率应该考虑哪些 因素?

第二节 单利和复利

>两种计算利息的方法

▶单利

〉复利

思考: 是单利还是复利?

以"三年期定期存款"的方式存1万元,年利率3.5%,利息不计入下期本金。

- (1) 银行三年后一次性支付本息;
- (2) 银行每过一年,支付一次利息。

请思考,上述计息方法,是单利计息还是复利计息?

> 单利与复利的区别

- ▶前几期获得的利息,能否在后几期获得收益(利息或再投资收益)
- ▶单利:前几期获得的利息,不能在后期获得收益
 - ▶在多个计息期里,利息不计入本金,不在下期获取利息的计息方式
 - >并且, 利息不每期发放, 无法获得再投资收益
- ▶复利(利滚利): 前几期获得的利息, 能在后期获得收益

 - >或者, 利息每期发放, 可以获得再投资收益

单利计算的例子

按年利率10%存100元到银行,单利计算利息,2年后到期一次性还本付息,2年后能得到多少钱?

解: 本息和=100+100×10%+100×10%=120元

其中: 本金100元, 利息20元

小常识:

- ·银行挂牌的存款利率都是单利,银行每年按这个利率计算利息,但是只在存款到期时才和本金一并支付
- ·比如,2年期定期存款利率是2.79%,存100元,2年的利息总和是100元×2.79%×2=5.58元,2年后得到的本息和是105.58元(税前)

复利计算的例子

在年收益率10%的基金帐户上投资100元,每年分红一次,分红转入本金计息,2年后将得到多少钱?

问题分解:

1年后,获得100×(1+10%)=110元,本金积累到110元;

2**年后,获得**110× (1+10%) =121元。

一次性计算方法: $100 \times (1+10\%) \times (1+10\%) = 121元$

或者: 100× (1+10%) ² = 121元

121元的构成:

- **—**100**元,原始本金**
- **—10元,第1年利息**
- —10元,原始本金的第2年利息
- —1元,第1年利息在第2年赚的利息

复利原则

复利,重复累积盈利: 20年10%的复利可增长5.7倍, 20年20%的复利可增长为37倍, 30%的复利增长高达189倍

格子数	米粒数	
1	1	T.
2	2	
3	4	
4	8	
5	16	
6	32	
7	64	
8	128	
9	256	
10	512	
20	524288	
30	536870912	4
40	549755813888	
50	562949953421312	
64	9223372036854780000	

复利的威力:投资时间越长,获利越多

第三节 终值和现值

- ≻终值 (Future Value, FV)
 - ・某时点一笔资金,在未来某时点的价值

- **➢现值 (Present Value, PV)**
 - >未来一笔资金, 在之前某时点的价值

例1:

现金流量图

计算现金流量中的符号表示:

I——利息(interest), 6元

i, r——利息率, 折现率, 每一利息期的利率, 6%

n, t——计算利息的期数, 年、半年、季度、月

P, PV——现值(present value), 100元

F, FV——终值(future value), 106元

一、单利的终值和现值

单利的终值: F=P+P×i×n=P× (1+i×n)

单利的现值: P=F÷(1+i×n)

例1: 你在银行存入1000元, 利率为10%, 单利计

息,期限3年,三年后可得到本利和为:

F = 1000 + 1000×10%×3 = 1300元

例2:某人希望三年后得到1300元,银行存款利率为10%,单利计息,他应在三年前存多少钱?

P = 1300÷ (1+10%×3) = 1000元

二、复利的终值

- n为期数, F为**复利终值**, F_n为第n期复利终值, P为 本金(现值), i为**复利**利率,则:
- 第一期: F₁ = P + P × i = P × (1 + i)
- 第二期: $F_2 = F_1 + F_1 \times i = F_1 \times (1+i) = P \times (1+i) \times (1+i) = P \times (1+i)^2$
- 第三期: $F_3 = F_2 + F_2 \times i = F_2 \times (1+i) = P \times (1+i) \times (1+i) \times (1+i) \times (1+i) = P \times (1+i)^3$
- •
- 第n期: F_n = F_{n-1} + F_{n-1} × i = F_{n-1} × (1+i) = P × (1+i)ⁿ

复利终值计算公式

复利的终值: $F = P \times (1 + i)^n = P \times (F/P, i, n)$

其中, (1+i)ⁿ称为<mark>复利终值系数</mark>, 用符号(F/P, i, n)表示。

例如: (F/P, 6%, 3)表示利率6%、期限3期的 复利终值系数。

复利终值系数表

ex pusts			-0.44	***				-0.00										4.00				
复利率	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%	16%	17%	18%	19%	20%	25%	30%
年数	投	簽	斧	理	1	ノ	/7	卢	http	://h	exun	. com	/919/	defa	ult.	html						
1	1.01	1	1	1	1.1	1.1	1.1	1.1	1.09	1.1	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19	1.2	1.25	1.3
2	1.02	1	1.1	1.1	1.1	1.1	1.2	1.2	1.19	1,21	1.23	1.25	1.28	1.3	1.32	1.35	1.37	1.392	1.42	1.44	1.563	1.69
3	1.03	1.1	1.1	1.1	1.2	1.2	1.2	1.3	1.3	1.33	1.37	1.41	1.44	1.48	1.52	1.56	1.6	1.643	1.69	1.728	1.953	2.197
4	1.04	1.1	1.1	1.2	1.2	1.3	1.3	1.4	1.41	1.46	1.52	1.57	1.63	1.69	1.75	1.81	1.87	1.939	2.01	2.074	2.441	2.856
5	1.05	1.1	1.2	1.2	1.3	1.3	1.4	1.5	1.54	1.61	1.69	1.76	1.84	1.93	2.01	2.1	2.19	2.288	2.39	2.488	3.052	3.713
	1.06	1.1	1.2	1.3	1.3	1.4	1.5	1.6	1.68	1.77	1.87	1.97	2.08	2.2	2.31	2.44	2.57	2.7	2.84	2.986	3.815	4.827
7	1.07	1.2	1.2	1.3	1.4	1.5	1.6	1.7	1.83	1.95	2.08	2.21	2.35	2.5	2.66	2.83	3	3.185	3.38	3.583	4.768	6.275
8	1.08	1.2	1.3	1.4	1.5	1.6	1.7	1.9	1.99	2.14	2.31	2.48	2.66		3.06	3.28		3.759	4.02	4.3	5.96	8.157
9	1.09	1.2	1.3	1.4	1.6	1.7	1.8	2		2.36	2.56	2.77	3	3.25	3.52	3.8		4.435	4.79	5.16	7.451	10.604
10	1.11	1.2	1.3			1.8	2	2.2		2.59	2.84	3.11	3.4	3.71	4.05	4.41		5.234	5.7	6.192	9.313	13.786
	1.12	_	_		1.7	1.9	2.1	2.3	_	2.85	3.15	3.48	3.84	_	4.65	5.12	5.62	6.176	6.78	7.43	11.64	17.922
	1.13				-	2		_		3.14	3.5	3.9	4.34		5.35			7.288	8.06	8.916		23.298
	1.14		1.5		1.9	_	2.4	2.7		3.45		4.36			6.15			8.599	9.6			30.288
	1.15	1.3	1.5	1.7	2	2.3	2.6	2.9		3.8	4.31	4.89		6.26	7.08	7.99		10.15		12.84	22.74	39, 374
15	1.16	1.4	1.6	1.8	2.1	2.4	2.8	3.2	3.64	4.18	4.79	5.47	6.25	7.14	8.14	9.27	10.5	11.97	13.6	15.41	28, 42	51, 186
16	1.17	1.4	1.6	1.9	2.2	2.5	3	3.4	3.97	4.6	5.31	6.13	7.07	8.14	9.36	10.8	12.3	14.13	16.2	18.49	35.53	66.542
17	1.18	1.4	1.7	2	2.3	2.7	3.2	3.7	4.33	5.05	5.9	6.87	7.99	9.28	10.8	12.5	14.4	16.67	19.2		44, 41	86.504
18	1.2	1.4	1.7	2	2.4	2.9	3.4	4		5.56	6.54	7.69		10.6	12.4	14.5		19.67		26.62	55.51	112.46
	1.21	1.5	1.8	2.1	2.5	3	3.6	4.3		6.12	7.26	8.61	10.2	12.1	14.2	16.8		23.21		31.95	69.39	146. 19
20	1.22	1.5	1.8	2.2	2.7	3.2	3.9	4.7	5.6	6.73	8.06	9.65	11.5		16.4	19.5	23.1	27.39	32.4	38.34	86.74	190.05
21	1,23	1.5	1.9	2.3	2.8	3.4	4.1	5	6.11	7.4	8.95	10.8	13	15.7	18.8	22.6		32.32	38.6	46.01	108.4	247.07
22	1.25	1.6	1.9	2.4	2.9	3.6	4.4	5.4	6.66	8.14	9.93	12.1	14.7	17.9	21.7	26.2	31.6	38.14	45.9	55.21	135.5	321.18
23	1.26	1.6	2	2.5	3.1	3.8	4.7	5.9	7.26	8.95	11	13.6	16.6	20.4	24.9	30.4	37	45.01	54.6	66.25	169.4	417.54
24	1.27	1.6	2	2.6	3.2	4.1	5.1	6.3	7.91	9.85	12.2	15.2	18.8	23.2	28.6	35.2	43.3	53.11	65	79.5	211.8	542.8
25	1.28	1.6	2.1	2.7	3.4	4.3	5.4	6.9	8.62	10.8	13.6	17	21.2	26.5	32.9	40.9	50.7	62.67	77.4	95.4	264.7	705.64
26	1.3	1.7	2.2	2.8	3.6	4.6	5.8	7.4	9.4	11.9	15.1	19	24	30.2	37.9	47.4	59.3	73.95	92.1	114.5	330.9	917.33
27	1.31	1.7	2.2	2.9	3.7	4.8	6.2	8	10.2	13.1	16.7	21.3	27.1	34.4	43.5	55	69.3	87.26	110	137.4	413.6	1192.5
28	1.32	1.7	2.3	3	3.9	5.1	6.7	8.6	11.2	14.4	18.6	23.9	30.6	39.2	50.1	63.8	81.1	103	130	164.8	517	1550.3
	1.34	1.8	2.4	3.1	4.1	5.4	7.1	9.3	12.2	15.9	20.6	26.8	34.6	44.7	57.6	74	94.9	121.5	155	197.8	646.2	2015.4
30	1.35	1.8	2.4	3.2	4.3	5.7	7.6	10		17.4	22.9	30	39.1	51	66.2	85.9	111	143.4	185	237.4	807.8	2620
	1.49		3.3	_	7	10	15	22	_	45.3	65	93.1	133	189	268	379		750.4	1052	1470	7523	36119
-	1.65		4.4	7.1	12	18	30	47		117	185	289	451	700	1084	1671	2566	3927	5989	9100		497929

复利终值计算例子:

》你投资某项目,投入金额128万元,项目投资年收益率为10%,投资年限为5年,收益可累积入本金,在最后一年收回投资额及收益,则企业最终可收回多少钱?

▶ 方法一:

```
F = 1 280 000 × (1+10%) <sup>5</sup> = 1 280 000×1.61
= 2 061 440 (元)
```

方法二:

```
F = P× (F/P, i, n) = 1 280 000×(F/P,10%,5)
= 1 280 000×1.6105=2061440 (元)
```

查表计算: 复利终值系数表

期限	利率								
	5%	10%	15%	20%					
1	1.0500	1.1000	1.1500	1.2000					
2	1.1025	1.2100	1.3225	1.4400					
3	1.1576	1.3310	1.5209	1.7280					
4	1.2155	1.4641	1.7490	2.0736					
5	1.2763	1.6105	2.0114	2.4883					

电子化计算

▶ 普通计算器

```
F = 1280000 \times (1+10\%)^{5} = 1280000 \times 1.61
```

➤ Excel函数: FV(Rate, Nper, Pmt, Pv, Type)

```
F = FV(10\%,5,0, 1280000,0) = 2,061,452.80
```

- ▶ hp12c财务计算器
- (1) 按1280000, 再按 PV
- (2) 按10, 再按 i (表示输入利率10%)
- (3) 按5, 再按 n
- (4) 求结果,按FV

注意: 期末考试允许这样写

```
=FV (i=10\%, n=5, pmt=0, pv=1280000) = 2,061,452.80
```

▶影响终值的因素

▶本金/现值

》利率

- ▶时间超过1期时,利率加倍,终值增加不只一倍
- ▶如: 10年期投资, r=10%, 终值系数=2.60

r=20%, 终值系数=6.20

》时间

>复利在短期内效果不明显,但随着期限延长,威力巨大

大科学家爱因斯坦说:

世界上最强大的力量不是原子弹,是:

"复利+时间"

复利计算公式:F=P*(1+i)n

复利是人类已知的世界第八大奇迹

30年后利率 8%下100元 的单利与复 利结果:

2018/9/22

Specific V	单利	1 - 85 90 W/TY	复利		
收益 10%	投资本金	利息	投资本金	利息	
第1年	10000	1000	10000	1000	
第2年	10000	1000	11000	1100	
第3年	10000	1000	12100	1210	
第4年	10000	1000	13310	1331	
第5年	10000	1000	14641	1464	
第10年	10000	1000	23579	2358	
第20年	10000	1000	61159	6116	
第30年	10000	1000	158631	15863	
利息合计		30000		164494	

三、复利的现值

复利的现值:
$$P = \frac{F}{(1+i)^n} = F \times (1+i)^{-n}$$

$$= F \times (P/F, i, n)$$

其中, (1+i)⁻ⁿ是把终值折算为现值的系数, 称为复利现值系数, 用符号(P/F, i, n)来表示。

例如, (P/F, 10%, 5)表示利率为10%、期限5期的复利现值系数。

复利现值计算例子:

▶某投资基金的年收益率为10%,你5年后需要得到150万元现金,那么,你现在应投资多少钱到基金中?

方法一:

```
P = 1500000 \times (1+10\%)^{-5}
= 1500000×0.6209 = 931350 (元)
```

方法二:

```
P = F×(P/F, i, n)=1500000×(P/F,10%,5)
=1500000×0.6209 = 931350(元)
```

复利现值系数表

复	利现值系	数表 (1	/[表)										
n.	1%	2%	3%	4%	5%	6%	8%	10%	12%	14%	15%	16%	18%
1	0.99	0.98	0.97	0.961	0. 952	0.943	0. 925	0.909	0.892	0.877	0.869	0.862	0.847
2	0.98	0.961	0.942	0.924	0. 907	0.889	0.857	0.826	0. 797	0. 769	0. 756	0.743	0.718
3	0.97	0.942	0.915	0.888	0.863	0.839	0. 793	0. 751	0.711	0.674	0.657	0.64	0.608
4	0.96	0. 923	0.888	0.854	0.822	0. 792	0. 735	0.683	0.635	0. 592	0.571	0. 552	0.515
5	0.951	0.905	0.862	0.821	0.784	0.747	0.68	0.62	0.567	0.519	0.497	0.476	0. 437
В	0.942	0.887	0.837	0.79	0.746	0.704	0.63	0.564	0.506	0. 455	0. 432	0.41	0. 37
7	0. 932	0.87	0.813	0.759	0.71	0.665	0.583	0.513	0. 452	0.399	0.375	0. 353	0.313
В	0. 923	0.853	0. 789	0.73	0.676	0.627	0.54	0.466	0. 403	0.35	0. 326	0.305	0. 266
9	0.914	0.836	0. 766	0.702	0.644	0.591	0.5	0.424	0.36	0.307	0.284	0. 262	0. 225
10	0.905	0.82	0.744	0.675	0.613	0.558	0. 463	0.385	0.321	0. 269	0.247	0. 226	0. 191
11	0.896	0.804	0. 722	0.649	0.584	0.526	0. 428	0.35	0. 287	0. 236	0.214	0.195	0. 161
12	0.887	0. 788	0.701	0.624	0.556	0.496	0.397	0.318	0. 256	0. 207	0. 186	0.168	0. 137
13	0.878	0.773	0.68	0.6	0.53	0.468	0.367	0.289	0. 229	0. 182	0.162	0.145	0.116
14	0.869	0. 757	0.661	0.577	0.505	0.442	0.34	0.263	0.204	0. 159	0.141	0.125	0.098
15	0.861	0.743	0.641	0.555	0.481	0.417	0.315	0.239	0. 182	0.14	0.122	0.107	0.083
16	0.852	0. 728	0.623	0.533	0. 458	0.393	0.291	0.217	0.163	0. 122	0.106	0.093	0.07
17	0.844	0.714	0.605	0.513	0.436	0.371	0.27	0. 197	0.145	0. 107	0.092	0.08	0.059
18	0.836	0.7	0.587	0.493	0.415	0.35	0.25	0.179	0.13	0.094	0.08	0.069	0.05
19	0.827	0.686	0.57	0.474	0.395	0.33	0.231	0.163	0.116	0.082	0.07	0.059	0.043
20	0.819	0.672	0.553	0. 456	0.376	0.311	0.214	0.148	0. 103	0.072	0.061	0.051	0.036

查表计算: 复利现值系数表

期限	利率						
	5%	10%	15%	20%			
1	0.9524	0.9091	0.8696	0.8333			
2	0.9070	0.8264	0.7561	0.6944			
3	0.8638	0.7513	0.6575	0.5787			
4	0.8227	0.6830	0.5718	0.4823			
5	0.7835	0.6209	0.4972	0.4019			

电子化计算

▶ 普通计算器

```
P = 1500000 \times (1+10\%)^{-5} = 1500000 \times 0.6209
```

- ➤ Excel函数: PV(Rate,Nper,Pmt,Fv,Type)
 - P= PV(10%,5,0, 1500000,0)=931381.98
- ▶ hp12c财务计算器
- (1) 按1500000, 再按 FV
- (2) 按10, 再按 i (表示输入利率10%)
- (3) 按5, 再按 n
- (4) 求结果,按PV

注意: 期末考试允许这样写

```
=PV(i=10\%, n=5, pmt=0, fv=15000) =931381.98
```

四、名义利率与有效年利率

- > 我国银行利率,有年利率、月利率、日利率三种。
- 年利率以百分比表示,月利率以千分比表示,日利率以万分 比表示。例如:
 - ▶ 年息九厘,写为9%,即每百元存款一年利息9元
 - ▶ 月息六厘,写为6‰,即每千元存款一月利息6元
 - ▶ 日息一厘,写为 1‰oo,即每万元存款一日利息l.5元
- ▶ 银行对上述三种利率采用如下换算公式
 - 年利率÷12=月利率
 - 月利率÷30=日利率 或 年利率÷360=日利率

思考题:

1年期定期存款,利率5%,利息支付有如下几种: 每年计算并支付利息一次: 半年计算并支付利息一次: 每季度计算并支付利息一次: 每月计算并支付利息一次: 每天计算并支付利息一次:

请问,1年后所获得的利息一样吗?

不同支付期下,5%年利率的实际收益率(有效年利率)

计息次数	m	每期收益率(%)	实际收益率 (%)
每年一次	1	5.0000	5.0000
半年一次	2	2.5000	5.0625
每季度一次	4	1.2500	5.0945
每月一次	12	0.4167	5.1162
每天一次	360	0.0139	5.1267
连续复利	∞	无穷小	5.1271

例如:每季度计息一次,经过1年(4个季度), 1元钱可增

值为: $(1+\frac{5\%}{4})^4$ 这1年的实际收益率为: $(1+\frac{5\%}{4})^4-1$

名义利率与有效年利率

- ・名义利率
 - · 指经济合同中的标价(报价)利率
 - 注意: 没有剔除掉通货膨胀的利率也叫名义利率, 与实际利率相对应
- 有效年利率 (Effective Annual Rate, EAR)
 - ・指考虑一年中复利计息次数后的实际利率,即实际 年利率

$$EAR = (1 + \frac{R}{M})^{M} - 1$$

 $EAR = (1 + \frac{R}{M})^{M} - 1$ • R表示名义利率,M表示 年中的计息次数

【例·计算题】假设你存入银行1000元,年利率8%,每季复利一次,问名义利率和实际利率各为多少,5年后可取多少钱?

解: r = 8%; m =4;

$$i = \left(1 + \frac{8\%}{4}\right)^4 - 1 = 8.24321\%$$

 $F = 1000 (1+ 8.24321\%)^5 = 1485.9474$

五、倍增计算的简易法则

· 在利率给定的情况下, 一笔投资需要多长时间 才能翻倍?

已知:现值、终值、利率,计算期限

某人准备存够10000元用以未来去香港旅游,现将5000元存入银行,存款年利率5%,复利计息,需要多长时间能积累到10000元?

提示: 建立方程 10000=5000*(1+5%)n

得: 2= (1+5%)ⁿ 两边取对数,得: n= $\frac{\ln 2}{\ln(1+5\%)}$

或使用excel函数: NPER(rate, pmt, pv, fv, type)

=NPER(5%,0,-5000,10000,0)=14.2年

倍增术——72法则

72 ÷ (投资年报酬率×100) = 投资倍增所需年数

- ・使本金加倍的时间约为 72 ÷ (i×100)
- · 对i 位于5-20%范围内折现率相当准确

例:假设某基金公司承诺14年时间倍增你的投资,那么其投资报酬率i是多少?

解: 由 72 ÷ (i×100) = 14 得 i = 5.14%

第四节 年金的终值和现值

- 年金:一定时期内,每次支付金额相等、方向相同、没有间断的系列款项,记做A。
- 按每次收付发生时点的不同, 年金可分为
 - 普通年金: 期末收付, 如工资、利息
 - · 预付年金: 期初收付, 如房租, 学费
 - · 延期年金: 最初若干期无收付款项, 后面若干期有等额收付款项
 - · 永续年金: 无限期支付, 如优先股股利
- ・预付年金(或延期年金), 转换考察时点后, 可 视为普通年金

一、普通年金

•普通年金又称后付年金,即一定

时期内每期期末等额收付的系列

款项。

普通年金终值

• 1. 普通年金终值: 等于每次支付的终值之和。

普通年金终值计算

• 普通年金终值计算公式:

$$F_A = A(1+i)^0 + A(1+i)^1 + A(1+i)^2 + ... + A(1+i)^{n-2} + A(1+i)^{n-1}$$

$$= A \times \left[\frac{(1+i)^n - 1}{i} \right]$$

$$= A \times (F/A, i, n) 年金终值系数$$

其中, $\frac{(1+i)^n-1}{i}$ 称为年金终值系数,用符号(F/A, i, n)表示。

例如: (F/Å, 6%, 3)表示利率6%、期限3期的年金终值系数。

例: 你要参加保险,每年交保费2400元,年末支付保险金,投保年限25年,投保收益率8%,25年后可得到多少钱?

 $F = A \times (F/A, i, n)$

 $=2400\times(F/A, 8\%, 25)$

=2400×73.106=175454.40(元)

年金终值系数表

期限		利率						
0	5%	8%	15%	20%				
5								
10								
20								
25		73.106						
30								

年金终值系数表

期数	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
1	1	1	1	1	1	1	1	1	1	1
2	2.01	2.02	2.03	2.04	2.05	2.06	2.07	2.08	2.09	2.1
3	3.0301	3.0604	3.0909	3. 1216	3. 1525	3.1836	3.2149	3.2464	3. 2781	3.31
4	4.0604	4. 1216	4. 1836	4.2465	4.3101	4.3746	4. 4399	4.5061	4. 5731	4.641
5	5. 101	5.204	5.3091	5. 4163	5. 5256	5.6371	5. 7507	5.8666	5. 9847	6.1051
6	6.152	6.3081	6. 4684	6.633	6.8019	6.9753	7. 1533	7. 3359	7. 5233	7.7156
7	7.2135	7. 4343	7.6625	7.8983	8.142	8.3938	8.654	8. 9228	9.2004	9.4872
8	8. 2857	8.583	8.8923	9.2142	9.5491	9.8975	10.2598	10.6366	11.0285	11.4359
9	9.3685	9.7546	10.1591	10.5828	11.0266	11.4913	11.978	12.4876	13.021	13.5795
10	10.4622	10.9497	11.4639	12.0061	12.5779	13.1808	13.8164	14.4866	15. 1929	15.9374
11	11.5668	12.1687	12.8078	13.4864	14.2068	14.9716	15.7836	16.6455	17.5603	18.5312
12	12.6825	13.4121	14. 192	15.0258	15.9171	16.8699	17.8885	18.9771	20.1407	21.3843
13	13.8093	14.6803	15.6178	16.6268	17.713	18.8821	20.1406	21.4953	22.9534	24.5227
14	14.9474	15.9739	17.0863	18.2919	19.5986	21.0151	22.5505	24.2149	26.0192	27.975
15	16.0969	17.2934	18.5989	20.0236	21.5786	23. 276	25. 129	27. 1521	29.3609	31.7725
16	17.2579	18.6393	20.1569	21.8245	23.6575	25.6725	27.8881	30.3243	33.0034	35.9497
17	18.4304	20.0121	21.7616	23.6975	25.8404	28. 2129	30.8402	33.7502	36.9737	40.5447
18	19.6147	21.4123	23.4144	25.6454	28. 1324	30.9057	33.999	37.4502	41.3013	45.5992
19	20.8109	22.8406	25. 1169	27.6712	30.539	33.76	37.379	41.4463	46.0185	51.1591
20	22.019	24. 2974	26.8704	29. 7781	33.066	36. 7856	40.9955	45. 762	51.1601	57.275
21	23. 2392	25. 7833	28.6765	31.9692	35.7193	39.9927	44.8652	50. 4229	56. 7645	64.0025
22	24. 4716	27. 299	30.5368	34.248	38.5052	43.3923	49.0057	55. 4568	62.8733	71.4027
23	25. 7163	28.845	32.4529	36.6179	41.4305	46.9958	53.4361	60.8933	69.5319	79.543
24	26.9735	30.4219	34.4265	39.0826	44.502	50.8156	58. 1767	66.7648	76. 7898	88. 4973
25	28. 2432	32.0303	36, 4593	41.6459	47. 7271	54.8645	63.249	73.1059	84.7009	98.3471
26	29. 5256	33.6709	38.553	44.3117	51.1135	59.1564	68.6765	79.9544	93.324	109. 1818
27	30.8209	35.3443	40.7096	47.0842	54.6691	63.7058	74. 4838	87.3508	102.7231	121.0999
28	32. 1291	37.0512	42.9309	49.9676	58. 4026	68. 5281	80.6977	95.3388	112.9682	134. 2099
29	33. 4504	38. 7922	45. 2189	52.9663	62.3227	73.6398	87.3465	103.9659	124. 1354	148.6309
30	34. 7849	40.5681	47.5754	56.0849	66. 4388	79.0582	94. 4608	113. 2832	136.3075	164.494

电子化计算

> 普通计算器

$$F = 2400 \times \frac{(1+8\%)^{25}-1}{8\%} = 2400 \times 1.61$$

➤ Excel函数: FV(Rate,Nper,Pmt,Pv,Type)

$$F = FV(8\%,25,2400,0,0) = 175454.26$$

- ▶ hp12c财务计算器
- (1) 按2400, 再按 PMT
- (2) 按8, 再按i
- (3) 按25, 再按 n
- (4) 求结果, 按FV

注意: 期末考试允许这样写

$$=FV(i=8\%, n=25, pmt=2400, pv=0) = 175454.26$$

例题:

- ▶你每年年末将2000元存入一个利率为3%的退休 金帐户,如果他准备30年后退休,到时你将有 多少钱?
- >2 000× (F/A, 3%, 30)
- $> = 2000 \times 47.5754$
- >=95 150.8 (元)

普通年金现值

• 1. 普通年金现值: 等于每次支付的现值之和

普通年金现值计算

• 普通年金现值计算公式:

$$P_A = A(1+i)^{-1} + A(1+i)^{-2} + ... + A(1+i)^{-(n-1)} + A(1+i)^{-n}$$

$$= A \times \left[\frac{1 - (1+i)^{-n}}{i}\right]$$

$$= A \times (P/A, i, n)$$

$$= A \times (B/A, i, n)$$

其中, $\frac{1-(1+i)^{-n}}{i}$ 称为年金现值系数,用符号(P/A, i, n)表示。

例如: (P/A, 6%, 3)表示利率6%、期限3期的年金现值系数

例: 你要出国3年,在国内每年年末需交房租100元,请 朋友代付房租。设银行存款利率10%,那么,你应当事先 在银行存多少钱,刚好够你每年取100元支付房租?

- $\bullet P = A \times (P/A, i, n)$
- $=100\times(P/A, 10\%, 3)$
- $=100\times2.4868$
- •=248.68 (元)

年金现值系数表

期限	利率							
0	5%	10%	15%	20%				
1								
2								
3		2.4868						
4								
5								

年金现值系数表

n	1%	2%	3%	4%	5%	6%	8%	10%	12%
1	0. 99	0.98	0.97	0.961	0.952	0.943	0. 925	0. 909	0.892
2	1.97	1.941	1.913	1.886	1.859	1.833	1.783	1.735	1.69
3	2.94	2.883	2.828	2. 775	2. 723	2.673	2.577	2. 486	2. 401
4	3.901	3.807	3.717	3.629	3.545	3. 465	3.312	3. 169	3. 037
5	4. 853	4. 713	4. 579	4. 451	4.329	4.212	3. 992	3.79	3.604
6	5. 795	5.601	5. 417	5. 242	5.075	4.917	4.622	4.355	4. 111
7	6. 728	6. 471	6. 23	6.002	5. 786	5. 582	5. 206	4.868	4. 563
8	7.651	7. 325	7.019	6. 732	6. 463	6. 209	5. 746	5. 334	4. 967
9	8. 566	8. 162	7. 786	7. 435	7. 107	6.801	6.246	5. 759	5. 328
10	9. 471	8. 982	8. 53	8.11	7. 721	7.36	6.71	6. 1446	5. 65
11	10.367	9. 786	9. 252	8. 76	8.306	7.886	7. 138	6. 495	5. 937
12	11.255	10. 575	9. 954	9. 385	8.863	8. 383	7. 536	6.813	6. 194
13	12. 133	11.348	10.634	9. 985	9. 393	8. 852	7.903	7. 103	6. 423
14	13.003	12.106	11.296	10.563	9.898	9. 294	8.244	7.366	6. 628
15	13.865	12.849	11.937	11.118	10.379	9.712	8. 559	7.606	6.81
16	14.717	13.577	12.561	11.652	10.837	10. 105	8.851	7.823	6. 973
17	15. 562	14. 291	13. 166	12. 165	11.274	10. 477	9. 121	8.021	7.119
18	16.398	14. 992	13.753	12.659	11.689	10.827	9.371	8. 201	7. 249
19	17. 226	15. 678	14. 323	13. 133	12.085	11.158	9.603	8.364	7. 365
20	18.045	16.351	14.877	13.59	12. 462	11.469	9.818	8.513	7. 469
21	18.856	17.011	15. 415	14.029	12.821	11.764	10.016	8.648	7.562
22	19.66	17.658	15. 936	14. 451	13. 163	12.041	10.2	8. 771	7.644
23	20.455	18 292	16. 443	14.856	13. 488	12.303	10.371	8. 883	7.718
24	21.243	18.913	16.935	15. 246	13.798	12.55	10. 528	8.984	7. 784

电子化计算

> 普通计算器

$$\mathbf{F} = 100 \times \frac{1 - (1 + 10\%)^{-3}}{10\%} = 100 \times 2.4868$$

- > Excel函数: PV(Rate, Nper, Pmt, Fv, Type)
 - F = PV(10%,3,100,0,0) = 248.69
- ▶ hp12c财务计算器
- (1) 按100, 再按 PMT
- (2) 按10, 再按 i
- (3) 按3, 再按 n
- (4) 求结果,按PV
- 注意: 期末考试允许这样写

$$=PV(i=10\%, n=3, pmt=100, fv=0) = 248.69$$

二、预付年金

预付年金: 指一定时期内<mark>每期期初等</mark>额收付的系列款项。

思考:

- ➤生活中预付年金的情形有哪些? (租金, 学费)
- ▶预付年金的现值和终值,分别在哪个时点上?

预付年金的计算

• 计算预付年金的终值与现值,可先计算前一期的普通年金终值与现值,再乘以(1+i)调整为预付年金的终值与现值。

• 现值公式: P = A × (P/A, i, n) × (1+i)

终值公式: F = A×(F/A, i, n) × (1+i)

电子化计算

▶ 普通计算器

乘以(1+i)

➤ Excel函数: PV(Rate, Nper, Pmt, Fv, Type)

FV(Rate, Nper, Pmt, Pv, Type)

其中,Type取1表示现金流发生在期初

- ▶ hp12c财务计算器
- 按g,再按 BEG,出现BEGIN时,表示现金流发生在期初

三、递延年金

• 指第一次支付发生在第二期或第二期以后的年金。

思考:

➤ 递延年金的现值和终值,分别在哪个时点上?

递延年金终值与现值计算步骤:

- 递延年金终值的计算
 - 直接按普通年金求出年金终值
- 递延年金的现值计算:
 - 求出递延年金在递延期(第n期)的现 值;
 - · 然后再将此现值调整为第一期期初的现值。

递延年金计算例子:

- •你向银行借入一笔款项,年利率为8%,银行规定从 第八年末至第二十年年末每年偿还1000元(递延7期, 支付13期的递延年金),该笔款项的现值相当于多少?
- •在递延期(第八年年初)的现值
- $= 1000 \times (P/A, 8\%, 13)$
- •调整为第一年年初的现值
- $= 1000 \times (P/A, 8\%, 13) \times (P/F, 8\%, 7)$
- =1000×7.536×0.5835=4397.31(元)

四、永续年金

- 无限期定额支付的年金, 称为永续年金
 - 例如:把钱存在银行,每期取回固定的利息,直到 永远,永不取回本金
- 永续年金现值计算公式: P = A ÷ i

思考题

- >生活中永续年金的情形有哪些?
 - ▶优先股
 - ▶永久债券

永续年金现值计算

- 你们同学拟在母校中国矿业大学建立一项永久性的奖学金,每年计划颁发10000元奖金。若利率为10%,那你们现在应存入多少钱?
- P=10000÷ 10%=100000(元)

案例:

▶某人听到消息,市面上有一种优先股,每年可分得股息8元,市价是100元/股,假定银行存款年利率6%,请考虑是否要购入这种优先股?

解:

- PV = $A \div r = 8 \div 6\% = 133.33(元)$
- · 也即, 6%折现率下, 优先股的价值高于现行价格
- 结论:
 - 如果这一优先股的风险与银行存款差不多,可购买优先股
 - · 如果这一优先股的风险高于银行存款,则不能确定购买优先股是否合算

总结:

复利终值系数: $(1+i)^n = (F/P, i, n)$

复利现值系数: $(1+i)^{-n} = (P/F, i, n)$

年金终值系数: $\frac{(1+i)^n-1}{i} = (F/A, i, n)$

年金现值系数: $\frac{1-(1+i)^{-n}}{i}$ = (P/A, i, n)

关于资金价值的计算

- 复利终值=现值×复利终值系数
- 复利现值=终值×复利现值系数
- 年金现值=年金×年金现值系数
- 年金终值=年金×年金终值系数

Excel理财函数总结:

终值计算函数: FV(Rate, Nper, Pmt, Pv, Type)

现值计算函数: PV(Rate, Nper, Pmt, Fv, Type)

期限计算函数: Nper(Rate,Pmt,Pv,Fv,Type)

利率计算函数: Rate(Nper,Pmt,Pv,Fv,Type)

每期支付计算函数: Pmt(Rate, Nper, Pv, Fv, Type)

个人理财规划的基本思路

无论进行什么 方面的理财规 划基本思路均

可归纳为2种

思路1 先设定每年能赚取或留存的资金,然后根据目标需要的资金来计算多长时间能完成目标

推论

- •理财目标的实现,与年储蓄额,投资额, 投资回报率,目标期限等相关
- •目标合理与否的评判取决与年储蓄额,投资额,投资回报率,目标期限是否合理
- •目标期限的弹性与目标本身有关

第二章

理财与投资基础

课外作业

课外作业货币时间价值案例分析

2013年1月,王语嫣和萧峰合伙投资一套房产,王语嫣投入20万元,作为首付款;2013年到2018年12月这六年来,房子一直由萧峰居住,并每月支付按揭贷款2500元。 2019年1月份该房转让,转让净价为127万元。设定两人持有房产时间为6年、72个月。

问题:你认为房屋转让收入127万元应该如何在王语嫣和 萧峰之间分配?请设计出一个分配方案来。如果萧峰支付 的2500元中有1500元是房租,真正投资款只有1000元, 则房款又应如何分配?

提示: 先按72个月计算利率,再分别计算两人投资的终值,并以其为权重进行分配。

牵牵结束

谢谢各俭同学!

有问题猜提问!

2018.9.18