Конспект по курсу: Теория вероятности и математическая статистика 1

Александра Лисицына 2

5 января 2019 г.

 $^{^1}$ читаемый Суслиной Ириной Александровной в 2018-2019 годах $^2\mathrm{студенткa}$ группы М3334

Оглавление

1	Вве	едение в теорию вероятностей	2
	1.1	Введение	2
	1.2	Дискретная вероятностная схема	2
	1.3	Несчётное вероятностное пространство	3
		1.3.1 Свойства действий	
		1.3.2 Связь А и Σ	Δ

Глава 1

Введение в теорию вероятностей

1.1 Введение

Определение 1.1.1. Вероятностное пространство — стандартная модель теории вероятности (Ω, Σ, P) .

Определение 1.1.2. Случайный эксперимент(испытание) — первичное понятие. Может быть повторён в идентичных условиях любое число раз. Результат эксперимента — элементарный исход. В результате эксперимента происходит один и только один исход.

Examples

- 1. Случайное двукратное бросание монеты $\Omega = \{\Gamma\Gamma, \Gamma P, P\Gamma, PP\}$
- 2. Случайное извленчение двух карт из колоды в 36 карт. Порядок не важен $card(\Omega) = |\Omega| = C_{36}^2 = 18 \times 35$
- 3. Бросание монеты до первого герба $\Omega = \{\Gamma, P\Gamma, PP\Gamma, \dots\}$
- 4. Поезда в метро ходят с интервалом 2 минуты. Человек появляется на платформе в произвольный момент. Сколько ему ожидать поезд? $\Omega = [0 \text{ мин}, 2 \text{ мин})$

1.2 Дискретная вероятностная схема

Пусть Ω — не более чем счётно

Определение 1.2.1. $\forall A\subseteq\Omega$ называют событием. Σ — множество всех подможеств Ω .

Определение 1.2.2. P = P(A) - cчётно-аддитивная мера, если

1.
$$\forall \omega \in \Omega \quad P(\omega) \in [0, 1], p(\omega) \geqslant 0$$

2.
$$\sum_{\omega \in \Omega} p(\omega) = 1$$

$$P \colon \Omega \to \mathbb{R}_+$$

$$\forall A \subseteq \Omega \quad P(A) = \sum_{\omega \in \Omega} p(\omega)$$

Пример. Классическая схема

$$|\Omega| = n$$

исходы равновозможны:

$$\omega \in \Omega p(\omega) = \frac{1}{\Omega} = \frac{1}{n}$$
$$\sum_{\omega \in \Omega} p(\omega) = \frac{1}{n} \sum_{\omega \in \Omega} 1 = 1$$

В примере априорном 1 $\Omega = \{\Gamma\Gamma, \, \Gamma\Gamma, \, \Gamma\Gamma, \, \GammaP\}$

$$p(\omega_i) = \frac{1}{\Omega} = \frac{1}{4}$$

А — присутствует герб

$$p(A) = p(\Gamma\Gamma) + p(\Gamma P) + p(P\Gamma) = \frac{3}{4}$$

1.3 Несчётное вероятностное пространство

Определение 1.3.1. Пусть Ω — более чем счётно \Rightarrow Σ — выделенная σ -алгебра из пдмножеств Ω . $A \in \Sigma \quad \Rightarrow A$ называют **соытием**.

Для определения \mathcal{A} — алгебра, Σ — σ -алгебра нужны действия:

- 1. Сложение (A+B)
- 2. Умножение $(A \cdot B)$
- 3. Разность $(A \backslash B)$

1.3.1 Свойства действий

1.
$$A + B = B + A$$
, $(A + B) + C = A + (B + C)$

2.
$$A \cdot B = B \cdot A$$
, $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

3.
$$A \cdot \Omega = A$$
, $A \cdot \emptyset = \emptyset$, $A + \Omega = \Omega$, $A + \emptyset = A$

4.
$$\overline{A} = \Omega \backslash A$$
, $A \cdot \overline{A} = \emptyset$

5.
$$A + \overline{A} = \Omega$$

6.
$$A \cdot B \subseteq A, A \cdot B \subseteq B$$

7.
$$\overline{\overline{A}} = A$$

8.
$$A \backslash B = A \cdot \overline{B}$$

9.
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

10.
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

11.
$$(A+B) \cdot C = A \cdot C + B \cdot C$$

12.
$$(A \backslash B) \cdot C = AC \backslash BC$$

Замечание. Свойства 9-11 обобщаются на любое число множеств

9.
$$\sum_{i=1}^{\infty} A_i = \prod_{i=1}^{\infty} \overline{A_i}$$

10.
$$\overline{\prod_{i=1}^{\infty} A_i} = \sum_{i=1}^{\infty} \overline{A_i}$$

11.
$$B \sum_{i=1}^{\infty} A_i = \sum_{i=1}^{\infty} BA_i$$

Определение 1.3.2. А называют алгеброй множеств если

- 1. $\Omega obsekm A$
- 2. $\Pi y cm b \ A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$
- 3. $\Pi y cm b \ A, B \in \mathcal{A} \Rightarrow A + B \in \mathcal{A}$

Утверждение 1. Алгебра замкнута относительно действий в конечном числе

Доказатель ство утверждения. 1. $\forall A, B \in \mathcal{A}$ $A \cdot B = \overline{A} + \overline{B} \Rightarrow A \cdot B \in \mathcal{A}$

2.
$$\forall A, B \in \mathcal{A} \quad A \backslash B = A \cdot \overline{B}$$

Определение 1.3.3. Σ называют σ -алгеброй множеств Ω , если Σ — алгебра и $A_i \in \Sigma$, $i=1,2,\ldots \Rightarrow \sum_i A_i \in \Sigma$

Определение 1.3.4. $<\Omega, \ \Sigma>$ называют измеримым пространством.

1.3.2 Связь \mathcal{A} и Σ

1. Пусть $|\Omega| = n$

 \mathcal{A} — содержит все элементы $\Omega \Rightarrow \mathcal{A} = \Sigma$

2. $|\Omega| = \mathbb{N}$

Пусть \mathcal{A} — содежит все элемнты Ω

 ${\mathcal A}$ не содержит, например, всех чётных натуральных чисел

3. Ω более чем счётно

Пусть $\Omega = \mathbb{R} \Rightarrow \Sigma$ порождается множеством интервалов (абсолютн любых). Если только [a, b), то она называется **борелевской** σ -алгеброй.

3амечание. Борелевская σ -алгебра отличается от Лебега тем, что она не замкнута.

Пусть $\Omega = \mathbb{R}^{\ltimes} \Rightarrow \Sigma$ порождается n-мерными кубами: $[a_1,b_1) \times [a_2,b_2) \times \dots$

Борелевская алгебра для $\mathbb R$ представляет собой множество элементов вида: $A = \sum\limits_{i=1}^n [a_i,b_i) \quad [a_i,b_i] \overset{i \neq j}{\bigcap} [a_j,b_j) = \emptyset$

Определение 1.3.5. 1. $\Omega = D - \partial ocmosephoe \ coбытие.$

- 2. \emptyset **невозможное** событие.
- 3. $A \cdot B = \emptyset \Rightarrow A \ u \ B$ называют несовместными.
- 4. \overline{A} npomusonoложное coбытие.