Álgebra lineal II, Grado en Matemáticas

Septiembre 2014

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Coeficientes de Fourier.
- (b) Autovalor o valor propio.
- (c) Polinomio anulador de un endomorfismo.
- (d) Forma canónica de Jordan.

Ejercicio 1: (2 puntos)

Sea $\Phi: \mathbb{R}^n \to \mathbb{R}$ una forma cuadrática cuya signatura es (p,q), con $p+q \leq n$. Demuestre que:

- a) p es la máxima dimensión de un subespacio $U \subset \mathbb{R}^n$ tal que Φ restringida a U es definida positiva.
- b) q es la máxima dimensión de un subespacio $V \subset \mathbb{R}^n$ tal que Φ restringida a V es definida negativa.

Ejercicio 2: (3 puntos)

En un espacio vectorial euclídeo (V, <, >) de dimensión 4.

- a) Determine una base ortogonal $B = \{v_1, v_2, v_3, v_4\}$ tal que v_2, v_3 y v_4 pertenezcan al hiperplano $U: x_1 + x_2 = 0$.
- b) Determine un vector no nulo u, cuya proyección ortogonal sobre U sea un vector del plano de ecuaciones $\Pi: (x_1 = 0, x_2 = 0)$.

Ejercicio 4: (3 puntos)

Dado el endomorfismo f, de un espacio vectorial de dimensión 6, con matriz de Jordan

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

- a) Determine sus polinomios característico y mínimo, los autovalores y sus multiplicidades algebraicas y geométricas.
- b) Justifique que no existen hiperplanos invariantes irreducibles.
- c) Dé la ecuación de un hiperplano reducible.
- d) Dé las ecuaciones de un plano que contenga infinitas rectas invariantes.

Soluciones

Coeficientes de Fourier (pág. 112): Sea (V, <, >) un espacio vectorial euclídeo y $||\cdot||$ la norma definida a partir del producto escalar <, >. Los coeficientes de Fourier de un vector $v \in V$, respecto a una base ortogonal $\mathcal{B} = \{v_1, ..., v_n\}$ de V, son las coordenadas $(x_1, ..., x_n)$ de v en \mathcal{B} y tienen la siguiente expresión

$$x_i = \frac{\langle v, v_i \rangle}{\langle v_i, v_i \rangle}, \ i = 1, ..., n.$$

Autovalor o valor propio (pág. 206): Un autovalor de un endomorfismo f, de un \mathbb{K} -espacio vectorial V, es un escalar $\lambda \in \mathbb{K}$ tal que existe un vector no nulo $v \in V$ que satisface $f(v) = \lambda v$.

Polinomio anulador de un endomorfismo: Dados un endomorfismo f, de un \mathbb{K} -espacio vectorial V y $p(t) = a_n t^n + ... + a_1 t + a_0$ un polinomio con coeficientes en \mathbb{K} . Se dice que p anula a f o que es un polinomio anulador de f si el endomorfismo:

$$p(f) = a_n f^n + \dots + a_1 f + a_0 I, \quad f^n = f \circ \stackrel{n}{\cdots} \circ f,$$

es nulo.

Forma canónica de Jordan (pág. 220) Dado un endomorfismo f en un K-espacio vectorial V, se llama forma canónica de Jordan a una matriz de f que sea una matriz de Jordan, es decir, una matriz diagonal por bloques de modo que cada bloque es una matriz cuadrada triangular superior y todos sus elementos nulos salvo los de la diagonal principal, que son todos iguales, y los de la subdiagonal superior que son iguales a 1. La forma canónica de Jordan es única salvo permutación de los bloques.

Ejercicio 1:

Sea $\Phi: \mathbb{R}^n \to \mathbb{R}$ una forma cuadrática cuya signatura es (p,q), con $p+q \leq n$. Demuestre que:

- a) p es la máxima dimensión de un subespacio $U \subset \mathbb{R}^n$ tal que Φ restringida a U es definida positiva.
- b) q es la máxima dimensión de un subespacio $V \subset \mathbb{R}^n$ tal que Φ restringida a V es definida negativa.

Solución:

Que la signatura de Φ es (p,q) significa que en cualquier base de vectores conjugados existen exactamente p vectores $v_1, ..., v_p$ con $\Phi(v_i) > 0$; exactamente q vectores $w_1, ..., w_q$ con $\Phi(u_i) < 0$ y para el resto de vectores v de la base se cumple $\Phi(v) = 0$.

a) Procedemos por reducción al absurdo. Supongamos que existe un subespacio vectorial U con $\dim U = s > p$ y tal que $\Phi|_U$ es definida positiva. Tomamos una base de vectores conjugados de U: $B_U = \{u_1, ..., u_p, ..., u_s\}$. Por ser Φ definida positiva en U se tiene $\Phi(u_i) > 0$ para i = 1, ..., s. Si ampliamos la base de U hasta formar una base B de vectores conjugados de V:

$$B = \{u_1, ..., u_s, u_{s+1}, ..., u_n\}$$

encontramos una contradicción con la definición de signatura expuesta en el párrafo anterior, ya que en esta base existen s > p vectores $u_1, ..., u_s$ tales que $\Phi(u_i) > 0$.

b) Se procede de forma totalmente análoga.

Ejercicio 2:

En un espacio vectorial euclídeo (V, <, >) de dimensión 4.

- a) Determine una base ortogonal $B = \{v_1, v_2, v_3, v_4\}$ tal que v_2, v_3 y v_4 pertenezcan al hiperplano $U: x_1 + x_2 = 0$.
- b) Determine un vector no nulo u, cuya proyección ortogonal sobre U sea un vector del plano de ecuaciones $\Pi: (x_1 = 0, x_2 = 0)$.

Solución: En primer lugar, hay que tener en cuenta que si nos dan ecuaciones de un subespacio vectorial, éstas estarán siempre referidas a una base ortonormal, pongamos B'. Así, (x_1, x_2, x_3, x_4) representa al vector v de coordenadas (x_1, x_2, x_3, x_4) en B'.

a) Buscamos una base ortogonal de U que vamos a construir teniendo en cuenta una base ortogonal del plano $\Pi \subset U$ dado en el apartado b. De este modo, vamos adelantando trabajo para el siguiente apartado.

Base ortogonal de Π : {(0,0,1,0), (0,0,0,1)}.

Base ortogonal de $U: \{(1,-1,0,0), (0,0,1,0), (0,0,0,1)\}$ ampliando la de Π .

Para completar la base ortogonal de V en las condiciones pedidas, ampliamos la base ortogonal de U con un vector de U^{\perp} . El complemento ortogonal de U tiene ecuaciones:

$$U^{\perp}: \{x_1 - x_2 = 0, \ x_3 = 0, \ x_4 = 0\}$$

Así, podemos tomar $(1,1,0,0) \in U^{\perp}$ y formar la base pedida

$$B = \{v_1 = (1, 1, 0, 0), v_2 = (1, -1, 0, 0), v_3 = (0, 0, 1, 0), v_4 = (0, 0, 0, 1)\}.$$

En este caso, se puede escoger fácilmente una base ortogonal, a simple vista, por lo que no se debe perder tiempo en buscar una base genérica y luego ortogonalizar.

b) sea u un vector no nulo de V. Su proyección sobre U se puede escribir en términos de los coeficientes de Fourier relativos a la base ortogonal $\{v_2 = (1, -1, 0, 0), v_3 = (0, 0, 1, 0), v_4 = (0, 0, 0, 1)\}$. de U:

$$proy_{U}(u) = \frac{\langle u, v_{2} \rangle}{\langle v_{2}, v_{2} \rangle} v_{2} + \frac{\langle u, v_{3} \rangle}{\langle v_{3}, v_{3} \rangle} v_{3} + \frac{\langle u, v_{4} \rangle}{\langle v_{4}, v_{4} \rangle} v_{4}. \tag{1}$$

Para que se cumpla $proy_U(u) \in \Pi$ basta con que dicho vector sea combinación lineal de los vectores v_3 y v_4 -que son base de Π - y para ello es suficiente que el coeficiente de v_2 en (1) sea 0. Es decir, es suficiente

$$< u, v_2 > = 0$$

o lo que es lo mismo, que u sea ortogonal a v_2 . Así, u puede ser cualquier vector de v_2^{\perp} .

Ejercicio 3:

Dado el endomorfismo f, de un espacio vectorial de dimensión 6, con matriz de Jordan

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

- a) Determine sus polinomios característico y mínimo, los autovalores y sus multiplicidades algebraicas y geométricas.
- b) Justifique que no existen hiperplanos invariantes irreducibles.
- c) Dé la ecuación de un hiperplano reducible.
- d) Dé las ecuaciones de un plano que contenga infinitas rectas invariantes.

Solución:

(a) Como la matriz es triangular, los autovalores están en la diagonal principal. Así, tenemos dos autovalores $\lambda_1 = 1$ y $\lambda_2 = -1$ con multiplicidades algebraicas $\alpha_1 = 2$ y $\alpha_2 = 4$, respectivamente. Las multiplicidades algebraicas son las multiplicidades como raíces del polinomio característico, luego

$$p_f(\lambda) = (1 - \lambda)^2 (2 - \lambda)^4.$$

El polinomio mínimo tiene como raíces los autovalores de f y es divisor del polinomio característico

$$p_{\min}(\lambda) = (1 - \lambda)^a (2 - \lambda)^b, \ a \le 2 \ y \ b \le 4.$$

Para determinar a y b se estudia cuál es el subespacio máximo asociado a cada autovalor, que a la vista de la matriz de Jordan se identifica con el subespacio generalizado i-ésimo, siendo i el tamaño del bloque de Jordan de mayor dimensión asociado al autovalor que corresponda.

$$E^{2}(1) = M(1) \Rightarrow a = 2,$$

 $E^{3}(2) = M(2) \Rightarrow b = 3.$

Por otro lado, las multiplicidades geométricas son las dimensiones de los subespacios propios:

$$d_1 = \dim V(1) = 6 - rg(A - I) = 6 - 5 = 1,$$

 $d_2 = \dim V(2) = 6 - rg(A - 2I) = 6 - 4 = 2;$

que pueden observarse directamente mirando a la matriz ya que coinciden con el número de bloques de Jordan asociados a cada autovalor.

(b) Todo subespacio irreducible debe estar contenido en un subespacio máximo. En este caso los subespacios máximos tienen dimensiones

$$\dim M(1) = 2$$
 y $\dim M(2) = 3$,

por lo que nunca podrán contener a un hiperplano ya que es un subespacio de dimensión 5.

(c) Sea $B = \{v_1, ..., v_6\}$ la base a la que está referida la matriz de f, se tiene que $M(1) = L(v_1, v_2)$ y $M(2) = L(v_3, v_4, v_5, v_6)$. Entre otras opciones, podemos formar un subespacio reducible invariante H

como suma de dos subespacios invariantes $H = U_1 + U_2$ contenidos en M(1) y M(2) respectivamente. Por otro lado, sabemos que los vectores asociados a un bloque de Jordan generan un subespacio irreducible, por lo tanto, teniendo en cuenta el bloque de dimensión 2 asociado al autovalor 1, y el de dimensión 3 asociado al autovalor 2, podemos tomar

$$U_1 = L(v_1, v_2)$$
 y $U_2 = L(v_3, v_4, v_5)$,

y obtendremos un subespacio suma de dimensión 5, como queríamos. Las ecuaciones de este subespacio H, respecto a la base B, son:

$$H: \{x_6 = 0\}.$$

(d) Para que un plano Π contenga infinitas rectas invariantes, debe ocurrir que la restricción de f a Π tenga una matriz de la forma $f_{|\Pi}$ de la forma:

$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$
,

o lo que es lo mismo, Π tendrá una base formada por dos autovectores asociados al mismo autovalor λ . La única posibilidad es $\Pi = L(v_3, v_6)$ los dos autovectores de la base asociados a $\lambda = 2$. Se observa que $\Pi = V(2)$. Las ecuaciones de este plano son:

$$\Pi: \{x_1 = 0, x_2 = 0, x_4 = 0, x_5 = 0\}.$$