

# Social Network Analysis & Social Media Analytics

**Lecture 1.1: Introduction to SNA** 

# Representing Social Networks

#### **Networks as Graphs:**

- Sets of points joined with lines, showing patterns of interconnections among entities
- Points = Nodes
- Lines = Edges or Links



| points   | lines          | field            |
|----------|----------------|------------------|
| vertices | edges, arcs    | math             |
| nodes    | links          | computer science |
| sites    | bonds          | physics          |
| actors   | ties/relations | sociology        |

# **Types of Networks**

#### **Nodes** can be any entity participating in a set of relationships

- People (as friends, colleagues, etc.)
- Organizations
- Countries
- Documents (papers, webpages, etc.)
- and many others

#### **Links** may represent any type of relationship between nodes

- Friendships, cross-references
- Communication, information exchange
- and many others





# **Network Visualization and Structural Properties**

- Networks can be complex to represent, especially as size increases
  - Visual representation affects (careless) analysis!
  - Algorithms for network visualization
- Popularity is an elusive and inadequate measure of significance
  - There are many aspects affecting one's significance, such as position within the network, number of connections, mediating role, importance of connections, etc.



# Why study social networks?

While the <u>individual</u> components of a system are important, of equal (if not more) importance is the <u>pattern of connections</u> between these components

- These patterns may affect the structure, behavior, and performance of the system more than its participating entities
- Different networks of the same people will exhibit different properties and behavior
- The collective outcome of a social system is almost always very different from the sum of its parts

# Why study social networks?

# Scientists have long developed tools for analyzing, modeling and understanding network structures

 Many scientific fields involved (mathematics, statistics, economics, sociology, biology, computer science, and many more)

# Many questions arising in (human) social networks can be answered by borrowing knowledge from other fields

- **Epidemics (medicine)** has long studied how diseases spread through a population a YouTube video can become viral through a similar process
- **Graph theory (mathematics)** can answer questions, such as: who is the best connected node in a graph? What is the shortest path connecting two entities?
- Game theory (economics) addresses issues related to strategic behavior and payoffs in network settings

# **Example network properties**

#### Hubs

- Few nodes with extremely high degree (lots of connections)
- What are their implications in a network setting? (influence, learning)

#### Small worlds

- On average, distances between nodes are very small, compared to the size of the network ("six degrees of separation")
- Repercussions with regards to information diffusion

#### Communities

 The way a network breaks into distinct communities might reveal information about it (for example, an organization) that are not visible without network analysis

# What do we study in networks?

#### Two main sets of questions:

#### 1. Structure and evolution

Static / Dynamic aspects of network topology



#### 2. Behavior

Information diffusion/propagation
Opinion/Belief formation
Actors' choices and resulting outcomes
(learning, herding)



# **Example: online social networks**



- Facebook, Twitter, etc.
- Blogs, blog entries
- E-mail exchange networks
- Discussion forums
- Strength of friendships
- Influence
- Social Learning

# **Example: a network of terrorists**



- Sparse network.
- Members of the same team are far from each other and beyond the horizon of observability
- Less damage to the network if someone is captured or compromised
- Trade efficiency for secrecy.

Krebs, V. E. (2002), Uncloaking Terrorist
Networks, First Monday, (7) 4,
<a href="http://journals.uic.edu/ojs/index.php/fm/article/view/941/863">http://journals.uic.edu/ojs/index.php/fm/article/view/941/863</a>

# **Example: power networks**



How the 15<sup>th</sup> century Medici family rose to power in Florence, while not having the greatest wealth or the most seats in legislature (Jackson, M.O., Social and Economic Networks, Princeton University Press, 2008.)

# **Example (cont.): the Florentine marriages**



- Through marriages, the Medici had a crucial position of **centrality** in the social network (communication, brokering deals, etc.)
- For example, they lie on 52% of all shortest paths, followed by Guadagni (25%) and Strozzi (10%)

http://www.wolfram.com/mathematica/
new-in-9/social-network-analysis/centralityand-prestige-of-florentine-families.html