# Métodos Numéricos Ecuaciones Diferenciales Ordinarias

Daniel Barragán 1

<sup>1</sup>Escuela de Ingeniería de Sistemas y Computación Universidad del Valle

June 22, 2015



### Agenda

- Ecuaciones Diferenciales Ordinarias
  - Introducción
  - Método de Euler
  - Mejoras al Método Euler
- Métodos de Runge-Kutta
  - Introducción
  - Segundo Orden
  - Cuarto Orden y Superior
- Sistemas de Ecuaciones
  - Introducción
  - Método de Euler
  - Método de Runge-Kutta



 En esta sección se presentan los métodos para solucionar ecuaciones diferenciales ordinarias

$$\frac{dy}{dt} = f(t, y)$$

 Los métodos a tratar presentan la forma general (phi es llamada función de incremento):

$$y_{i+1} = y_i + \phi h$$

• La pendiente estimada por  $\phi$  se emplea para encontrar a partir de un valor actual  $y_i$ , un valor siguiente  $y_{i+1}$ , sobre una distancia h

- Si la fórmula se aplica intervalo por intervalo a lo largo de una trayectoria, se le llama método de un paso o métodos de Runge-Kutta. En los métodos de un paso el valor de la función de incremento se obtiene a partir de un solo punto
- Si se emplean varios puntos para estimar el valor siguiente, el método se llama método de múltiples pasos

• La primera derivada proporciona una estimación de la pendiente en  $t_i$ . El término  $f(t_i, y_i)$  es la ecuación diferencial evaluada en  $t_i$  y  $y_i$ 

$$\phi = f(t_i, y_i)$$

La estimación de la pendiente se reemplaza en:

$$y_{i+1} = y_i + f(t_i, y_i)h$$



### Ecuaciones Diferenciales Ordinarias. Método de Euler.



 Problema: Emplee el método de Euler para integrar la función desde t=0 hasta t=4 con un stepsize de 1. La condición inicial es t=0, y=2.

$$y' = 4e^{0.8t} - 0.5y$$

La solución analítica es:

$$y = \frac{4}{1.3}(e^{0.8t} - e^{-0.5t}) + 2e^{-0.5t}$$

#### Solución:

Para el primer paso

$$y(1) = y(0) + f(0,2)(1)$$
  
 $f(0,2) = 4e^{0} - 0.5(2) = 3$   
 $y(1) = 2 + 3(1) = 56$ 

Para el segundo paso

$$y(2) = y(1) + f(1,5)(1)$$
$$f(1,5) = 4e^{0.8(1)} - 0.5(5) = 6.40216$$
$$y(2) = 5 + 6.40216 = 11.40216$$

### Ecuaciones Diferenciales Ordinarias. Método de Euler.

#### Solución:

| t | $y_{ m true}$ | ${\cal Y}_{ m Euler}$ | $ \varepsilon_i $ (%) |
|---|---------------|-----------------------|-----------------------|
| 0 | 2.00000       | 2.00000               |                       |
| 1 | 6.19463       | 5.0000                | 19.28                 |
| 2 | 14.84392      | 11.40216              | 23.19                 |
| 3 | 33.67717      | 25.51321              | 24.24                 |
| 4 | 75.33896      | 56.84931              | 24.54                 |

## Ecuaciones Diferenciales Ordinarias. Método de Euler.

#### Solución:



Estabilidad del Método de Euler.

 Problema Propuesto: Solucione la ecuación diferencial a través del método de Euler. Concluya acerca de la estabilidad de la solución en relación con el valor del stepsize

$$\frac{dy}{dt} = -ay$$

## Mejoras al Método Euler Introducción

- En el método de Euler, la pendiente en el comienzo del intervalo se asume igual a lo largo de todo el intervalo
- En esta sección se presentan dos modificaciones para corregir este error

 Una mejora a la estimación de la pendiente se consigue encontrando una pendiente al comienzo y otra al final del intervalo



Ecuación del predictor

$$y_{i}^{'} = f(t_{i}, y_{i})$$
  
 $y_{i+1}^{0} = y_{i} + f(t_{i}, y_{i})h$ 

Ecuación del corrector

$$y'_{i+1} = f(t_{i+1}, y^0_{i+1})$$

$$\overline{y}' = \frac{f(t_i, y_i) + f(t_{i+1}, y^0_{i+1})}{2}$$

$$y_{i+1} = y_i + \frac{f(t_i, y_i) + f(t_{i+1}, y^0_{i+1})}{2}h$$

Iteraciones del corrector

$$\mathbf{y}_{i+1}^{j} = \mathbf{y}^{m} + \frac{f(t_{i}, \mathbf{y}_{i}^{m}) + f(t_{i+1}, \mathbf{y}_{i+1}^{j-1})}{2}h$$



Criterio de error para la convergencia del corrector

$$\varepsilon_{a} = \left| \frac{y_{i+1}^{j} - y_{i+1}^{j-1}}{y_{i+1}^{j}} \right| x 100$$

Por su relación directa con la regla trapezoidal el error de truncamiento es:

$$E_t = -\frac{1}{12}f''(\xi)(h)^3$$

 Problema: Use el método de Heun para integrar la función desde t = 0 hasta t = 4 con stepsize de 1. La condición inicial en t = 0 es y = 2. Emplee un criterio de parada de 0.00001% para terminar las iteraciones del corrector

$$y' = 4e^{0.8t} - 0.5y$$

#### Solución:

La derivada en 
$$(t_0, y_0) = (0, 2)$$

$$y' = 4e^{0.8t} - 0.5y$$

$$y_0^{'} = 4e^0 - 0.5(2) = 3$$

#### Solución:

Con el valor de la pendiente calculado anteriormente se emplea la ecuación del predictor

$$y_0' = f(t_0, y_0)$$
$$y_1^0 = y_1 + f(t_0, y_0)h$$
$$y_1^0 = 2 + 3(1) = 5$$

### Mejoras al Método Euler Método de Heun

#### Solución:

Con el valor de la predicción para  $y_1^0$  se calcula la pendiente  $y_1'$ 

$$y_1' = f(t_1, y_1^0)$$

$$y_1' = 4e^{0.8t_1} - 0.5y_1^0$$

$$y_1' = 4e^{0.8(1)} - 0.5(5) = 6.402164$$

#### Solución:

Con el valor de las pendientes en  $t_0$  y  $t_1$ , se obtiene un promedio y se aplica el corrector

$$\overline{y}' = \frac{3 + 6.402164}{2} = 4.701082$$
 $y_1^1 = 2 + 4.701082(1) = 6.701082$ 

#### Solución:

La estimación puede ser mejorada realizando mas iteraciones del corrector

$$\mathbf{y_{i+1}^{j}} = y^{m} + \frac{f(t_{i}, y_{i}^{m}) + f(t_{i+1}, \mathbf{y_{i+1}^{l-1}})}{2}h$$

$$y_{1}^{2} = 2 + \frac{3 + 4e^{0.8(1)} - 0.5(6.701082)}{2}1 = 6.275811$$

$$y_{1}^{3} = 2 + \frac{3 + 4e^{0.8(1)} - 0.5(6.275811)}{2}1 = 6.382129$$

## Mejoras al Método Euler Método del Punto Medio

 Otra mejora a la estimación de la pendiente se consigue encontrando una pendiente en el punto medio del intervalo



Ecuación del predictor

$$y_{i+1/2} = y_i + f(t_i, y_i) \frac{h}{2}$$
$$y'_{i+1/2} = f(t_{i+1/2}, y_{i+1/2})$$

## Mejoras al Método Euler Método del Punto Medio

Ecuación del corrector

$$\mathbf{y_{i+1}} = y_i + f(t_{i+1/2}, \mathbf{y_{i+1/2}})h$$

No se puede iterar el corrector.

Este método tiene relación directa con las fórmulas de integración de Newton-Cotes para intervalos abiertos

#### Métodos de Runge-Kutta Introducción

- Estos métodos logran la exactitud de las series de taylor sin requerir el cálculo de derivadas de alto orden
- La forma generalizada es:

$$y_{i+1} = y_i + \phi h$$

 $\phi$  es llamada la función de incremento y corresponde a una pendiente sobre el intervalo



## Métodos de Runge-Kutta Introducción

• La forma general de la función de incremento  $\phi$  es:

$$\phi = a_1 k_1 + a_2 k_2 + \ldots + a_n k_n$$

Donde **a** son constantes y **k** (p y q son constantes):

$$k_1 = f(t_i, y_i)$$

$$k_2 = f(t_i + p_1 h, y_i + q_{11} k_1 h)$$

$$k_3 = f(t_i + p_2 h, y_i + q_{21} k_1 h + q_{22} k_2 h)$$

$$\vdots$$

$$k_n = f(t_i + p_{n-1}h, y_i + q_{n-1,1}k_1h + q_{n-1,2}k_2h + \ldots + q_{n-1,n-1}k_{n-1}h)$$

 La ecuación del método de Runge-Kutta de segundo orden es:

$$y_{i+1} = y_i + (a_1k_1 + a_2k_2)h$$

Donde  $k_1$  y  $k_2$  son:

$$k_1 = f(t_i, y_i)$$
  
 $k_2 = f(t_i + p_1 h, y_i + q_{11} k_1 h)$ 

 Los valores a<sub>1</sub>, a<sub>2</sub>, p<sub>1</sub> y q<sub>11</sub> son estimados igualando la ecuación de segundo orden de Runge-Kutta a una serie de Taylor de segundo orden

$$a_1 + a_2 = 1$$
 $a_2 p_1 = \frac{1}{2}$ 
 $a_2 q_{11} = \frac{1}{2}$ 

Se tienen 3 ecuaciones y 4 incognitas. Se debe asumir un valor para una de las incognitas

Especificando un valor para a<sub>2</sub>

$$a_1 = 1 - a_2$$

$$p_1 = q_{11} = \frac{1}{2a_2}$$

Se pueden escoger una cantidad infinita de valores para  $a_2$ , por esto existe una cantidad infinita de métodos de Runge-Kutta de segundo orden

 A continuación se presentan tres versiones del método de Runge-Kutta de segundo orden que resultan de emplear valores de 1/2, 1 y 2/3 para a<sub>2</sub>

• Método de Heun sin Iteración Al sustituir con  $a_2 = 1/2$  se tiene  $a_1 = 1/2$  y  $p_1 = q_{11} = 1$ 

$$y_{i+1} = y_i + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)h$$

Donde  $k_1$  y  $k_2$ :

$$k_1 = f(t_i, y_i)$$
  
 $k_2 = f(t_i + h, y_i + k_1 h)$ 

Note que  $k_1$  es la pendiente al comienzo del intervalo y  $k_2$  es la pendiente al final del intervalo



#### Método del Punto Medio

Al sustituir con  $a_2 = 1$  se tiene  $a_1 = 0$  y  $p_1 = q_{11} = 1/2$ 

$$y_{i+1} = y_i + k_2 h$$

Donde  $k_1$  y  $k_2$ :

$$k_1 = f(t_i, y_i)$$
  
 $k_2 = f(t_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h)$ 

#### Método de Raiston

Al sustituir con  $a_2 = 2/3$  se tiene  $a_1 = 1/3$  y  $p_1 = q_{11} = 3/4$ 

$$y_{i+1} = y_i + \left(\frac{1}{3}k_1 + \frac{2}{3}k_2\right)h$$

Donde  $k_1$  y  $k_2$ :

$$k_1 = f(t_i, y_i)$$

$$k_2 = f(t_i + \frac{3}{4}h, y_i + \frac{3}{4}k_1h)$$

Con este método se obtiene el menor error de truncamiento



## Métodos de Runge-Kutta Cuarto Orden

- Los métodos de Runge-Kutta mas usados son los de cuarto orden
- Existen infinitas versiones al igual que para los métodos de Runge-Kutta de segundo orden

La forma mas comunmente usada es:

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$$

Donde  $k_1$ ,  $k_2$ ,  $k_3$  y  $k_4$  son:

$$k_1 = f(t_i, y_i)$$

$$k_2 = f(t_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h)$$

$$k_3 = f(t_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h)$$

$$k_4 = f(t_i + h, y_i + k_3h)$$

 Gráfico de las pendientes en el método de cuarto orden de Runge-Kutta



• **Problema:** Use el método clásico de cuarto orden de Runge-Kutta para integrar la función desde t = 0 hasta t = 1 con un stepsize de 1 y y(0) = 2

$$y' = 4e^{0.8t} - 0.5y$$

La solución analítica es 6.194631

### Solución:

Calculando la pendiente en el comienzo con  $t_0 = 0$  y  $y_0 = 2$ 

$$k_1=f(t_0,y_0)$$

$$k_1 = f(0,2) = 4e^{0.8(0)} - 0.5(2) = 3$$

### Solución:

El valor de  $k_1$  se emplea para calcular el valor de y y la pendiente en el punto medio

$$y(0+1/2) = y_0 + k_1 \frac{h}{2}$$

$$y(0.5) = 2 + 3(0.5) = 3.5$$

$$k_2 = f(t_0 + \frac{1}{2}h, y_0 + \frac{1}{2}k_1h)$$

$$k_2 = f(0.5, 3.5) = 4e^{0.8(0.5)} - 0.5(3.5) = 4.217299$$

### Solución:

El valor de  $k_2$  se emplea para calcular otro valor de y y de pendiente en el punto medio

$$y(0+1/2) = y_0 + k_2 \frac{h}{2}$$

$$y(0.5) = 2 + 4.217299(0.5) = 4.1086649$$

$$k_3 = f(t_0 + \frac{1}{2}h, y_0 + \frac{1}{2}k_2h)$$

$$k_3 = f(0.5, 4.108649) = 4e^{0.8(0.5)} - 0.5(4.108649) = 3.912974$$

### Solución:

El valor de  $k_3$  se emplea para calcular el valor de y y la pendiente en el final del intervalo

$$y(1.0) = y_0 + k_3 h$$

$$y(1.0) = 2 + 3.912974(1.0) = 5.912974$$

$$k_4 = f(t_0 + h, y_0 + k_3 h)$$

$$k_4 = f(1.0, 5.912974) = 4e^{0.8(1.0)} - 0.5(5.912974) = 5.945677$$

#### Solución:

Finalmente las cuatro estimaciones de pendientes se combinan para obtener una pendiente promedio.

$$\phi = \frac{1}{6} \left[ 3 + 2(4.217299) + 2(3.912974) + 5.945677 \right] = 4.2037$$

La pendiente promedio se emplea para hacer una predicción en el final del intervalo

$$y(1.0) = 2 + 4.201037(1.0) = 6.201037$$



- Existen métodos de Runge-Kutta de quinto orden y superior.
- El costo computacional aumenta y se consideran por este motivo menos eficientes
- Un ejemplo es la ecuación de Butcher:

$$y_{i+1} = y_i + \frac{1}{90}(7k_1 + 32k_3 + 12k_4 + 32k_5 + 7k_6)h$$

Los valores para k son:

$$k_{1} = f(t_{i}, y_{i})$$

$$k_{2} = f(t_{i} + \frac{1}{4}h, y_{i} + \frac{1}{4}k_{1}h)$$

$$k_{3} = f(t_{i} + \frac{1}{4}h, y_{i} + \frac{1}{8}k_{1}h + \frac{1}{8}k_{2}h)$$

$$k_{4} = f(t_{i} + \frac{1}{2}h, y_{i} - \frac{1}{2}k_{2}h + k_{3}h)$$

$$k_{5} = f(t_{i} + \frac{3}{4}h, y_{i} + \frac{3}{16}k_{1}h + \frac{9}{16}k_{4}h)$$

$$k_{6} = f(t_{i} + h, y_{i} - \frac{3}{7}k_{1}h + \frac{2}{7}k_{2}h + \frac{12}{7}k_{3}h - \frac{12}{7}k_{4}h + \frac{8}{7}k_{5}h)$$

 Existen problemas en ingeniería que requieren la solución de sistemas de n ecuaciones diferenciales ordinarias

$$\frac{dy_1}{dt} = f_1(t, y_1, y_2, \dots, y_n)$$

$$\frac{dy_2}{dt} = f_2(t, y_1, y_2, \dots, y_n)$$

$$\vdots$$

$$\frac{dy_n}{dt} = f_n(t, y_1, y_2, \dots, y_n)$$

Para la solución se requieren *n* condiciones iniciales



# Sistemas de Ecuaciones Introducción

- Los métodos vistos para una ecuación se pueden extender a sistemas de múltiples ecuaciones.
- El procedimiento para solucionar un sistema de ecuaciones implica aplicar las técnicas vistas para cada ecuación diferencial en cada paso

 Un ejemplo es el cálculo de la velocidad y posición en el problema de caída libre

$$\frac{dx}{dt} = v$$

$$\frac{dv}{dt} = g - \frac{c_d}{m}v^2$$

Si la plataforma de lanzamiento es estacionaria, las condiciones iniciales serían x(0) = v(0) = 0

• Las soluciones analíticas para la velocidad y posición son:

$$v(t) = \sqrt{rac{gm}{c_d}} anh \left( \sqrt{rac{gc_d}{m}} t 
ight)$$
 $x(t) = rac{m}{c_d} \ln \left[ \cosh \left( \sqrt{rac{gc_d}{m}} t 
ight) 
ight]$ 

• Problema Encuentre la velocidad y posición para el problema de caída libre empleando el método de Euler. Asuma que en t = 0, x = v = 0 e integre hasta t=10s con un stepsize de 2s. Utilice los siguientes valores g = 9.81 m/s², m = 58.1 kg y cd = 0.25 kg/m

## Sistemas de Ecuaciones Método de Euler

### Solución

$$\frac{dx}{dt} = v$$

$$\frac{dv}{dt} = g - \frac{c_d}{m}v^2$$

Las ODEs pueden ser usadas para estimar las pendientes en t = 0.s

$$\frac{dx}{dt} = 0$$

$$\frac{dv}{dt} = 9.81 - \frac{0.25}{68.1}(0)^2 = 9.81$$

#### Solución

$$y_0' = f(t_0, y_0)$$
  
 $y_2 = y_0 + f(t_0, y_0)h$ 

El método de Euler se emplea para estimar los valores en t = 2

$$x(2) = 0 + 0(2) = 0$$
  
 $v(2) = 0 + 9.81(2) = 19.62$ 

## Sistemas de Ecuaciones Método de Euler

### Solución

$$\frac{dx}{dt} = v$$

$$\frac{dv}{dt} = g - \frac{c_d}{m}v^2$$

Las ODEs pueden ser usadas para estimar las pendientes en t = 2s

$$\frac{dx}{dt} = 19.62$$

$$\frac{dv}{dt} = 9.81 - \frac{0.25}{68.1}(19.62)^2 = 8.39684$$

#### Solución

$$y_2' = f(t_2, y_2)$$
  
 $y_4 = y_2 + f(t_2, y_2)h$ 

El proceso se repite para estimar los valores en t = 4

$$x(4) = 0 + 19.62(2) = 39.24$$
  
 $v(4) = 19.62 + (8.39684)2 = 36.41368$ 

## Sistemas de Ecuaciones Método de Euler

### Solución

| t  | $x_{\mathrm{true}}$ | $v_{ m true}$ | $x_{ m Euler}$ | $v_{ m Euler}$ | $\varepsilon_{t}(x)$ | $\varepsilon_{t}\left(v\right)$ |
|----|---------------------|---------------|----------------|----------------|----------------------|---------------------------------|
| 0  | 0                   | 0             | 0              | 0              |                      |                                 |
| 2  | 19.1663             | 18.7292       | 0              | 19.6200        | 100.00%              | 4.76%                           |
| 4  | 71.9304             | 33.1118       | 39.2400        | 36.4137        | 45.45%               | 9.97%                           |
| 6  | 147.9462            | 42.0762       | 112.0674       | 46.2983        | 24.25%               | 10.03%                          |
| 8  | 237.5104            | 46.9575       | 204.6640       | 50.1802        | 13.83%               | 6.86%                           |
| 10 | 334.1782            | 49.4214       | 305.0244       | 51.3123        | 8.72%                | 3.83%                           |

## Sistemas de Ecuaciones Método de Runge-Kutta

Problema Encuentre la velocidad y posición para el problema de caída libre empleando el método de Runge-Kutta de cuarto orden. Asuma que en t = 0, x = v = 0 e integre hasta t=10s con un stepsize de 2s. Utilice los siguientes valores g = 9.81m/s², m = 58.1kg y cd = 0.25kg/m

## Sistemas de Ecuaciones Método de Runge-Kutta

#### Solución

$$\frac{dx}{dt} = f_1(t, x, v) = v$$

$$\frac{dv}{dt} = f_2(t, x, v) = g - \frac{c_d}{m}v^2$$

Método de Runge-Kutta

#### Solución

Encontrando las pendientes en el inicio y los valores de x y v en el punto medio

$$k_{1,1} = f_1(0,0,0) = 0$$

$$k_{1,2} = f_2(0,0,0) = 9.81 - \frac{0.25}{68.1}(0)^2 = 9.81$$

$$x(1) = x(0) + k_{1,1}\frac{h}{2} = 0 + 0\frac{2}{2} = 0$$

$$v(1) = v(0) + k_{1,2}\frac{h}{2} = 0 + 9.81\frac{2}{2} = 9.81$$

## Método de Runge-Kutta

#### Solución

Encontrando el primer conjunto de pendientes en el punto medio y el segundo conjunto de predicciones en el punto medio

$$k_{2,1} = f_1(1,0,9.81) = 9.8100$$

$$k_{2,2} = f_2(1,0,9.81) = 9.81 - \frac{0.25}{68.1}(9.81)^2 = 9.4567$$

$$x(1) = x(0) + k_{2,1}\frac{h}{2} = 0 + 9.8100\frac{2}{2} = 9.8100$$

$$v(1) = v(0) + k_{2,2}\frac{h}{2} = 0 + 9.4567\frac{2}{2} = 9.4567$$

## Sistemas de Ecuaciones Método de Runge-Kutta

#### Solución

Encontrando el segundo conjunto de pendientes en el punto medio y las predicciones en el final del intervalo

$$k_{3,1} = f_1(1, 9.8100, 9.4567) = 9.4567$$

$$k_{3,2} = f_2(1, 9.8100, 9.4567) = 9.81 - \frac{0.25}{68.1}(9.4567)^2 = 9.4817$$

$$x(2) = x(0) + k_{3,1}h = 0 + 9.4567(2) = 18.9134$$

$$v(2) = v(0) + k_{3,2}h = 0 + 9.4817(2) = 18.9634$$

Método de Runge-Kutta

#### Solución

Encontrando las pendientes en el final del intervalo

$$k_{4,1} = f_1(2, 18.9134, 18.9634) = 18.9634$$

$$k_{4,2} = f_2(2, 18.9134, 18.9634) = 9.81 - \frac{0.25}{68.1}(18.9634)^2 = 8.4898$$

Método de Runge-Kutta

### Solución

Los valores de *k* se emplean para estimar los valores en el final del intervalo

$$x(2) = 0 + \frac{1}{6} [0 + 2(9.8100 + 9.4567) + 18.9634] 2 = 19.1656$$
  
 $v(2) = 0 + \frac{1}{6} [9.8100 + 2(9.4567 + 9.4817) + 8.4898] 2 = 18.7256$ 

## Sistemas de Ecuaciones Método de Runge-Kutta

### Solución

| t  | $x_{\mathrm{true}}$ | $v_{ m true}$ | $x_{ m RK4}$ | $v_{ m RK4}$ | $\varepsilon_{t}(x)$ | $\varepsilon_{t}\left(v\right)$ |
|----|---------------------|---------------|--------------|--------------|----------------------|---------------------------------|
| 0  | 0                   | 0             | 0            | 0            |                      |                                 |
| 2  | 19.1663             | 18.7292       | 19.1656      | 18.7256      | 0.004%               | 0.019%                          |
| 4  | 71.9304             | 33.1118       | 71.9311      | 33.0995      | 0.001%               | 0.037%                          |
| 6  | 147.9462            | 42.0762       | 147.9521     | 42.0547      | 0.004%               | 0.051%                          |
| 8  | 237.5104            | 46.9575       | 237.5104     | 46.9345      | 0.000%               | 0.049%                          |
| 10 | 334.1782            | 49.4214       | 334.1626     | 49.4027      | 0.005%               | 0.038%                          |

 Las ecuaciones de segundo orden u orden superior se pueden re-expresar como un sistema de ecuaciones

Problema Dadas la condiciones iniciales, y(0) = 1, y'(0) = 0 solucione la ecuación diferencial desde t=0 hasta t=4 con un tamaño de paso de 0.1 empleando el método de RK de cuarto orden.

$$\frac{d^2y}{dt^2} + 4y = 0$$

Nota: Grafique la solución aproximada y la solución exacta y = cos(2t)



### Solución

Las ecuación de segundo orden se puede re-expresar como un sistema de dos ecuaciones diferenciales de primer orden

$$\frac{dy}{dt} = f_1(t, y, z) = z$$

$$\frac{dz}{dt} = f_2(t, y, z) = -4y$$

$$\frac{dz}{dt} = f_2(t, y, z) = -4y$$

 Solución Encontrando las pendientes en el inicio y los valores de y y z en el punto medio

$$k_{1,1} = f_1(0,1,0) = 0$$

$$k_{1,2} = f_2(0,1,0) = -4(1) = -4$$

$$y(0.05) = y(0) + k_{1,1} \frac{h}{2} = 1 + 0(0.05) = 1$$

$$z(0.05) = z(0) + k_{1,2} \frac{h}{2} = 0 - 4(0.05) = -0.2$$

 Solución Encontrando el primer conjunto de pendientes en el punto medio y el segundo conjunto de predicciones en el punto medio

$$k_{2,1} = f_1(0.05, 1, -0.2) = -0.2$$

$$k_{2,2} = f_2(0.05, 1, -0.2) = -4(1) = -4$$

$$y(0.05) = y(0) + k_{2,1} \frac{h}{2} = 1 - 0.2(0.05) = 0.99$$

$$z(0.05) = z(0) + k_{2,2} \frac{h}{2} = 0 - 4(0.05) = -0.2$$

 Solución Encontrando el segundo conjunto de pendientes en el punto medio y las predicciones en el final del intervalo

$$k_{3,1} = f_1(0.05, 0.99, -0.2) = -0.2$$

$$k_{3,2} = f_2(0.05, 0.99, -0.2) = -4(0.99) = -3.96$$

$$y(0,1) = y(0) + k_{3,1}h = 1 - 0.2(0.1) = 0.98$$

$$z(0,1) = z(0) + k_{3,2}h = 0 - 3.96(0.1) = -0.396$$

Solución Encontrando las pendientes en el final del intervalo

$$k_{4,1} = f_1(0.1, 0.98, -0.396) = -0.396$$
  
 $k_{4,2} = f_2(0.1, 0.98, -0.396) = -4(0.98) = -3.92$ 

## Ecuaciones de Orden Superior

Método de Runge-Kutta

### Solución

Finalmente las estimaciones de pendientes se combinan para obtener las pendientes promedio

$$\phi_1 = \frac{1}{6}[0 + 2(-0.2 - 0.2) - 0.396] = -0.1993$$

$$\phi_2 = \frac{1}{6}[-4 + 2(-4 - 3.96) - 3.92] = -3.9733$$

Las pendientes promedio se emplean para hacer una predicción en el final del intervalo

$$y(0.1) = 1 + (-0.1933)(0.1) = 0.98007$$
  
 $z(0.1) = 0 + (-3.9733)(0.1) = -0.39733$ 

#### Ecuaciones de Orden Superior Método de Runge-Kutta

#### Resultados

| t   | y aproximada | Z          | y analítica |
|-----|--------------|------------|-------------|
| 0   | 1            | 0          | 1           |
| 0.1 | 0.9800667    | -0.3973333 | 0.9800666   |
| 0.2 | 0.9210622    | -0.7788263 | 0.9210610   |
| 0.3 | 0.8253390    | -1.1292704 | 0.853356    |
| 0.4 | 0.6967130    | -1.434695  | 0.6967067   |
| 0.5 | 0.5403122    | -1.682924  | 0.5403023   |

# Ecuaciones de Orden Superior Método de Runge-Kutta

#### Gráfica





### Ecuaciones de Orden Superior Método de Runge-Kutta

 Problema Propuesto: Dadas las condiciones iniciales y(0)=2 y z(0)=4 solucione el sistema de ecuaciones desde t=0 hasta t=0.4 con un tamaño de paso de 0.1 empleando el método de RK de cuarto orden.

$$\frac{dy}{dt} = -2y + 5e^{-t}$$
$$\frac{dz}{dt} = -\frac{yz^2}{2}$$

Emplee el script **rk4sys.sci** para verificar el calculo correcto paso a paso de cada una de las pendientes.

#### Forma General

Ecuación Runge-Kutta de segundo orden:

$$y_{i+1} = y_i + (a_1k_1 + a_2k_2)h$$

Donde  $k_1$  y  $k_2$  son:

$$k_1 = f(t_i, y_i)$$
  
 $k_2 = f(t_i + p_1 h, y_i + q_{11} k_1 h)$ 

### Métodos de Runge-Kutta

Demostración Ecuación de Segundo Orden

#### Serie de Taylor:

Tres primeros términos de la serie de Taylor (con  $h = t_{i+1} - t_i$ ):

$$y_{i+1} = y_i + \frac{dy}{dt}\Big|_{t_i,y_i} h + \frac{1}{2!} \frac{d^2y}{dt^2}\Big|_{t_i,y_i} h^2 + O(h^3)$$

Teniendo en cuenta que:

$$\frac{dy}{dt}=f(t,y),y(0)=y_0$$

La serie de Taylor se reescribe asi:

$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{1}{2!}f'(t_i, y_i)h^2 + O(h^3)$$



#### Serie de Taylor:

Serie de Taylor

$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{1}{2!}f'(t_i, y_i)h^2 + O(h^3)$$

Reemplazando f'(t, y) en la serie de Taylor

$$f'(t,y) = \frac{\partial f(t,y)}{\partial t} + \frac{\partial f(t,y)}{\partial y} \frac{dy}{dt}$$

Se tiene:

$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{1}{2!} \left( \frac{\partial f}{\partial t} \Big|_{t_i, y_i} + \frac{\partial f}{\partial y} \Big|_{t_i, y_i} \times \frac{dy}{dt} \right) h^2 + O(h^3)$$

#### Serie de Taylor:

Continuamos desarrollando la expresión anterior

$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{1}{2!} \left( \frac{\partial f}{\partial t} \Big|_{t_i, y_i} + \frac{\partial f}{\partial y} \Big|_{t_i, y_i} \times \frac{dy}{dt} \right) h^2 + O(h^3)$$

$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{1}{2} \frac{\partial f}{\partial t} \Big|_{t_i, y_i} h^2 + \frac{1}{2} \frac{\partial f}{\partial y} \Big|_{t_i, y_i} f(t_i, y_i)h^2 + O(h^3)$$

Esta ecuación se igualará mas adelante a la ecuación de segundo orden de Runge-Kutta después de haber reexpresado  $k_1$  y  $k_2$ 

### Reexpresando k<sub>1</sub> y k<sub>2</sub>:

El termino  $k_2$  se puede reescribir como una serie de Taylor de dos variables (primeros tres términos):

$$k_{2} = f(t_{i} + p_{1}h, y_{i} + q_{11}k_{1}h)$$

$$k_{2} = f(t_{i}, y_{i}) + p_{1}h\frac{\partial f}{\partial t}\Big|_{t_{i}, y_{i}} + q_{11}k_{1}h\frac{\partial f}{\partial y}\Big|_{t_{i}, y_{i}} + O(h^{2})$$

### • Reexpresando $k_1$ y $k_2$ :

Reemplazando en la ecuación  $y_{i+1} = y_i + (a_1k_1 + a_2k_2)h$  con las expresiones desarrolladas para  $k_1$  y  $k_2$ 

$$a_1k_1h=a_1f(t_i,y_i)h$$

$$\begin{aligned} a_{2}k_{2}h &= a_{2}\left(f(t_{i},y_{i}) + p_{1}h\frac{\partial f}{\partial t}\Big|_{t_{i},y_{i}} + q_{11}k_{1}h\frac{\partial f}{\partial y}\Big|_{t_{i},y_{i}} + O(h^{2})\right)h\\ a_{2}k_{2}h &= a_{2}f(t_{i},y_{i})h + a_{2}p_{1}h^{2}\frac{\partial f}{\partial t}\Big|_{t_{i},y_{i}} + a_{2}q_{11}k_{1}h^{2}\frac{\partial f}{\partial y}\Big|_{t_{i},y_{i}} + O(h^{3}) \end{aligned}$$

#### • Reexpresando $k_1$ y $k_2$ :

La ecuación resultante es:

$$y_{i+1} = y_i + (a_1 + a_2)f(t_i, y_i)h + a_2p_1h^2\frac{\partial f}{\partial t}\Big|_{t_i, y_i} + a_2q_{11}k_1h^2\frac{\partial f}{\partial y}\Big|_{t_i, y_i} + O(h^3)$$

Ahora procedemos a igualar esta ecuación con la serie de Taylor desarrollada

#### Obteniendo coeficientes a<sub>1</sub>, a<sub>2</sub>, p<sub>1</sub> y q<sub>11</sub>:

Forma general con  $k_1$  y  $k_2$ 

$$(a_1 + a_2)f(t_i, y_i)h + a_2p_1h^2\frac{\partial f}{\partial t}\Big|_{t_i, y_i} + a_2q_{11}k_1h^2\frac{\partial f}{\partial y}\Big|_{t_i, y_i} + O(h^3)$$

Serie de Taylor

$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{1}{2} \frac{\partial f}{\partial t} \Big|_{t_i, y_i} h^2 + \frac{1}{2} \frac{\partial f}{\partial y} \Big|_{t_i, y_i} f(t_i, y_i)h^2 + O(h^3)$$



Obteniendo coeficientes a<sub>1</sub>, a<sub>2</sub>, p<sub>1</sub> y q<sub>11</sub>:

$$a_1 + a_2 = 1$$
 $a_2 p_1 = \frac{1}{2}$ 
 $a_2 q_{11} = \frac{1}{2}$ 

### Bibliografía I



#### S. Chapra.

Applied Numerical Methods with MATLAB For Engineers and Scientists, Sixth Edition.

Mac Graw Hill, 2010.