

Designing Wireless Broadband Access for Energy Efficiency

Are Small Cells the Only Answer?

Emil Björnson¹, Luca Sanguinetti^{2,3}, Marios Kountouris^{3,4}

- ¹ Linköping University, Linköping, Sweden
- ² University of Pisa, Pisa, Italy
- ³ CentraleSupélec, Gif-sur-Yvette, France
- ⁴ Huawei Technologies, Paris, France

INTRODUCTION

Energy Efficiency

Benefit-Cost Analysis of Networks

Definition: Energy Efficiency (EE):

$$EE [bit/Joule] = \frac{Average Sum Rate [bit/s/km^{2}]}{Power Consumption [Joule/s/km^{2}]}$$

- Future networks: 1000x more data → 1000x higher EE
- How to Improve Energy Efficiency?
 - One approach: Reduce radiated power
 Achieved by smaller cells

Is Smaller Cells the Only Answer?

- 1. Formulate EE maximization mathematically
- 2. Optimize cell density and other parameters what do we get?

PROBLEM FORMULATION

System Model and Average Rate

Random Network Deployment

Access points (AP) positions as Poisson point process (PPP) Ψ_{λ}

M antennas per AP, K users per cell

Pathloss: $\omega^{-1}(\text{distance [km]})^{-\alpha}$

Scenario: Downlink Broadband Access

Perfect channel knowledge

Transmit power per user: ρ

Zero-forcing precoding

Hardware distortion at users: ϵ^2

Proposition 1: Lower Bound on Average Rate

$$\underline{R} = B \cdot \log_2 \left(1 + \frac{(1 - \epsilon^2)(M - K)}{\frac{2K}{\alpha - 2} + \epsilon^2(M - K) + \frac{M}{(\pi \lambda)^{\alpha/2}} \frac{\omega \sigma^2}{\rho}} \right)$$

5

Generic Power Consumption Model

- Many Components Consume Power
 - Radiated transmit power
 - Baseband signal processing (e.g., precoding)
 - Active circuits (e.g., converters, mixers, filters)

Area Energy Consumption [Joule/s/km²]:

$$AEC = \lambda \left(\frac{K\rho}{\eta} + C_0 + D_0 M + C_1 K + D_1 M K \right)$$

$$Power amplifier$$

$$(\eta is efficiency)$$

$$Circuit power per transceiver chain$$

Nonlinear increasing function of M and K

Fixed power (backhaul, load-ind. processing)

Cost of digital signal processing (e.g., precoding)

Many coefficients: η , C_i , D_i for i = 0,1

Problem Formulation

Energy Efficiency Optimization

maximize
$$\frac{\lambda K \underline{R}}{\rho, \lambda, M, K} \frac{\lambda \left(\frac{K\rho}{\eta} + C_0 + D_0 M + C_1 K + D_1 M K\right)}{\lambda \left(\frac{R}{\eta} + C_0 + D_0 M + C_1 K + D_1 M K\right)}$$
 subject to
$$\underline{R}/B = \gamma$$

Optimization variables:

ho = transmit power, $\lambda =$ AP density, M = antennas per AP, K = users per AP

Spectral efficiency (SE) constraint γ needed to not get overly low rates

-

ANALYTICAL AND NUMERICAL RESULTS

Optimality of Small Cells

Theorem 1: Optimal AP Density

The EE increases with λ .

EE maximized as $\lambda \rightarrow \infty$ *or at some upper value* λ_{max}

Saturation Property

Higher density $\lambda \rightarrow$ Less transmit power \rightarrow Eventually negligible Simulations show saturation at $\lambda \geq 10^2$ 50 meters between APs: Saturation appears in practice!

Optimization of Remaining Variables

Theorem 2: Optimal Transmit Power

Constraint satisfied if
$$\rho^* = \frac{\frac{2^{\gamma}-1}{1-2^{\gamma}\epsilon^2} \frac{\omega \sigma^2 \Gamma(\alpha/2+1)}{(\pi\lambda)^{\alpha/2}}}{M-K-\frac{2^{\gamma}-1}{1-2^{\gamma}\epsilon^2} \frac{2K}{\alpha-2}}$$

Removes ρ from EE optimization problem (Only M and K remain)

Theorem 3: Optimal Number of Antennas (fixed K)

$$\textit{EE maximized by } M^* = K + \frac{2K(2^{\gamma}-1)}{(\alpha-2)(1-2^{\gamma}\epsilon^2)} + \sqrt{\frac{2^{\gamma}-1}{1-2^{\gamma}\epsilon^2}} \, \frac{K\omega\sigma^2\Gamma(\alpha/2+1)}{\eta(\pi\lambda)^{\alpha/2}(D_0+D_1K)}$$

Theorem 4: Optimal Number of Users (fixed $M/K = \beta$)

$$\textit{EE maximized by } K^* = \sqrt{\frac{\frac{2^{\gamma} - 1}{1 - 2^{\gamma} \epsilon^2} \frac{\omega \sigma^2 \Gamma(\alpha/2 + 1)}{\eta(\pi \lambda)^{\alpha/2}}}{\beta D_1 (\beta - 1 - \frac{2^{\gamma} - 1}{1 - 2^{\gamma} \epsilon^2} \frac{2}{\alpha - 2})} + \frac{C_0}{\beta D_1}}$$

Iterate between these till convergence:

Find real-valued global solution

Tradeoffs and connections established formulas!

Simulation Parameters

Simulation Parameter	Symbol	Value
Pathloss exponent	α	3.76
Pathloss over noise at 1 km	ω/σ^2	33 dBm
Amplifier efficiency	η	0.39
Level of hardware impairments	ϵ	0.05
Bandwidth	В	20 MHz
Static power	C_0	10 W
Circuit power per active user	C_1	0.1 W
Circuit power per AP antenna	D_0	1 W
Signal processing coefficient	D_1	3.12 mW

Impact of Number of Antennas and Users

Is it Ridiculous with 200 Antennas?

Dimensionality: Half-wavelength Antenna Spacing

Example: 3.7 GHzSpacing: 4 cm

Array = Flat-screen TV

60 cm

160 dual-polarized antennas, LuMaMi testbed, Lund University

Why Massive MIMO, Not Only Small Cells?

Small cells improve SNR, but not SINR
Massive MIMO improves SINRs by precoding
Circuit power costs are shared between users

Impact of User Density

Simulation

Fixed user density μ users/km²

EE maximization with: $K\lambda = \mu$

Range: $\mu = 10^2$ (rural) to $\mu = 10^5$ (mall)

Low User Density

Add more cells with $K \approx 1$ Most important to reduce pathloss

High User Density

Small cells with Massive MIMO Saturation for $\mu \ge 100$

Covers most practical scenarios: EE independent of user load!

SUMMARY

Summary

- Designing Networks for Energy Efficiency
 - Optimize: AP density, transmit power, and antennas/users per cell
 - Analytical optimization: EE maximizing network deployment was found!
 - Solution: Small cells with Massive MIMO capability
 - Intuition: Small cells → Negligible transmit power
 Massive MIMO → Less interference, share costs over users

Further Results:

- Take channel estimation and imperfect channel knowledge into account
- 1. E. Björnson, L. Sanguinetti, M. Kountouris, "Deploying Dense Networks for Maximal Energy Efficiency: Small Cells Meet Massive MIMO," Submitted to IEEE JSAC. (http://arxiv.org/pdf/1505.01181)
- E. Björnson, L. Sanguinetti, M. Kountouris, "Energy-Efficient Future Wireless Networks: A Marriage between Massive MIMO and Small Cells," Proceedings of IEEE SPAWC, July 2015. (http://arxiv.org/pdf/1506.01051)

QUESTIONS?

Visit Emil Björnson online:

http://www.commsys.isy.liu.se/en/staff/emibj29