Chapitre 1: multiples, diviseurs, nombres premiers

Cours

Si on a trois nombres a, b et c tels que

$$a \times b = c$$

On dit que

- a et b sont des diviseurs de c.
- c est un multiple de a et de b.
- On dit que c est divisible par a et b.

Exemple

- 2 est un diviseur de 6.
- 7 est un diviseur de 21.
- 6 est un multiple de 2.
- 6 est un multiple de 3.
- 48 est un multiple de 4.

Cours : Critères de divisibilité

Parfois, on peut rapidement savoir si un nombre est un diviseur d'un autre nombre.

- Si le dernier chiffre d'un nombre est pair, ce nombre est un multiple de 2.
- Si la somme des chiffres d'un nombre est un multiple de 3, ce nombre est un multiple de 3.
- Si le dernier chiffre d'un nombre est 0 ou 5, ce nombre est un multiple de 5.
- Si la somme des chiffres d'un nombre est un multiple de 9, ce nombre est un multiple de 9.

Exemple

- 1244 est un multiple de 2, car 4 est un multiple de 2.
- 546 est un multiple de 3, car 5 + 4 + 6 = 15, qui est un multiple de 3.
- 200, 15, 35... Sont des multiples de 5.
- 279 est un multiple de 9, car 2 + 7 + 9 = 18 est un multiple de 9.

Cours

Une $\underline{\text{division euclidienne}}$ se fait entre deux nombres entiers a et b. Il en résulte un $\underline{\text{quotient}}$ et un reste.

$$\begin{array}{c|c} a & b \\ \vdots & \mathsf{quotient} \end{array}$$

 $a = b \times quotient + reste$

On obtient le quotient en soustrayant b aux chiffres de a.

Exemple

Faisons par exemple la division euclidienne de 377 par 12 :

On obtient ainsi un **quotient** de 31, et un **reste** de 5.

Cours

Un <u>nombre premier</u> est un nombre qui n'a que 1 et lui même comme diviseurs.

Note : il y a une **infinité** de nombres premiers.

Exemple

2, 3, 5 et 7 sont des nombres premiers.

On peut obtenir tous les nombres premiers entre 1 et 100 en utilisant un crible d'Eratosthène :

Règles:

- Barrer le nombre 1.
- Entourer le 2 (premier nombre non barré), puis barrer tous ses multiples.
- Entourer le premier nombre ni entouré ni barré, et barrer tous ses multiples.
- Répéter la consigne précédente, jusqu'à ce que tous les nombres soient soit entourés soit barrés.

*	2	3	**	5) 6(7	%	X	1 00
11	12	13	24	25	246	17	148	19	20
24	22	23	24	25	26	24	28	29	340
31	32	33	34	35	36	(37)	38	39	340
41	42	43	44	45	46	47	48	49	5 0
54	52	53	54	3 55	56	5 7	58	59	360
61	62	6 €	64	765	366	67	68	769	70
71	72	73	74	75	76	Ħ	78	79	36 0
284	82	83	8 4	385	3 6	87	388	89	39 0
94	92	393	94	9 5	36	97)	34 8	399	100

Cours : Décomposition en nombres premiers

Tout nombre peut être <u>décomposé</u> en un produit de nombres premiers.

Pour trouver tous les diviseurs premiers d'un nombre, il faut essayer de diviser ce nombre par **tous** les nombres premiers qui lui sont inférieurs, jusqu'à n'avoir que des nombres premiers.

Exemple

- On veut décomposer 15 en nombres premiers :
 - 15 n'est pas un multiple de 2.
 - \bigcirc 15 est un multiple de 3 : on écrit 15 = 3 × 5.
 - 3 et 5 sont tous les deux premiers, donc on peut s'arrêter là.
- On veut décomposer 18 en nombres premiers :
 - \bigcirc 18 est un multiple de 2 : on écrit 18 = 2 × 9.
 - 9 n'est pas un multiple de 2.
 - \bigcirc 9 est un multiple de 3 : on écrit 18 = 2 × 3 × 3.
 - 2 et 3 sont tous les deux premiers, donc on peut s'arrêter là.

On remarque que le même nombre premier peut apparaître **plusieurs fois** dans la décomposition!

- On veut décomposer 231 en nombres premiers :
 - Grâce aux Critères de divisibilité, on peut déterminer que 231 et un multiple de 3 : on écrit 231 = 3 x 77.
 - 77 n'est pas un multiple de 2.
 - 77 n'est pas un multiple de 3.
 - 77 n'est pas un multiple de 5.

- \bigcirc 77 est un multiple de 7 : on écrit 231 = 3 × 7 × 11.
- 3, 7 et 11 sont tous premiers, donc on peut s'arrêter là.
- $32 = 2 \times 16 = 2 \times 2 \times 8 = 2 \times 2 \times 2 \times 4 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$.

Cours

Le <u>PGCD</u> est le <u>Plus Grand Commun Diviseur</u> : c'est le plus grand nombre qui divise deux nombres donnés.

Pour le calculer :

- On fait la liste des diviseurs premiers des deux nombres.
- On prend tous les nombres qui apparaissent dans les **deux** listes, et on les multiplient entre eux.

Exemple

On veut calculer le PGCD de 12 et de 20 (noté PGCD(12, 20)) :

$$12 = 2 \times 2 \times 3$$

Donc PGCD(12, 20) = $2 \times 2 = 4$.

Exemple

On veut calculer le PGCD de 60 et de 126 :

$$60 = 2 \times 2 \times 3 \times 5$$

$$60 = 2 \times 2 \times 3 \times 5$$

$$126 = 2 \times 3 \times 3 \times 7$$

Donc PGCD(60, 126) = $2 \times 3 = 6$.