## Particle spectrograph

## Wave operator and propagator

| Source constraints                                                   |                                                                                                                                                                                                                                         |                |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| SO(3) irreps                                                         | Fundamental fields                                                                                                                                                                                                                      | Multiplicities |
| $t_{0+}^{#2} == 0$                                                   | $\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$                                                                                                                                                                              | 1              |
| $\tau_{0}^{\#1} - 2  \bar{l}  k  \sigma_{0}^{\#1} == 0$              | $\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$                                          | 1              |
| $\tau_{1}^{\#2}\alpha + 2ik \ \sigma_{1}^{\#2}\alpha = 0$            | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$     | 3              |
| $\tau_{1}^{\#1}{}^{\alpha} == 0$                                     | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$                                                                                                  | 3              |
| $\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$  | $\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$                                                                              | 3              |
|                                                                      | $2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$                                                               |                |
|                                                                      | $\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$                                                                                                                                 |                |
|                                                                      | $\partial_{\chi}\partial^{\chi} t^{eta lpha} + 2  \partial_{\delta}\partial_{\chi}\partial^{eta} \sigma^{lpha \chi \delta}$                                                                                                             |                |
| $\tau_{2}^{\#1}\alpha\beta - 2ik \ \sigma_{2}^{\#1}\alpha\beta == 0$ | $t_{2}^{\#1}\alpha\beta - 2ik \ \sigma_{2}^{\#1}\alpha\beta == 0 \ -i \ (4 \ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2 \ \partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi} -$ | 5              |
|                                                                      | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$                                               |                |
|                                                                      | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$                                               |                |
|                                                                      | $3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$                                                           |                |
|                                                                      | $4\ i \ k^{\chi}\ \partial_{arepsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\deltaarepsilon}_{\ \ \delta}$ -                                                                                                              |                |
|                                                                      | $6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -                                                                                                                 |                |
|                                                                      | $6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$                                                                                                                 |                |
|                                                                      | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$                                                                                                                    |                |
|                                                                      | $6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$                                                                                                                 |                |
|                                                                      | $6  i  k^{\chi}  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{eta \delta lpha}$ -                                                                                                                  |                |
|                                                                      | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} t^{\chi}_{\chi}$ -                                                                                                                    |                |
|                                                                      | $4  \mathbb{I}   \eta^{\alpha\beta}   k^{\chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$                                                                             |                |
| Total constraints/gauge generators:                                  | ge generators:                                                                                                                                                                                                                          | 16             |

| Ī                                  |                                   |                                  |                                 |                                  |                                    |                           |                                     | ı                       |                                                                                                         |                                                                                                      |
|------------------------------------|-----------------------------------|----------------------------------|---------------------------------|----------------------------------|------------------------------------|---------------------------|-------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| $\tau_{1}^{\#2}$                   | 0                                 | 0                                | 0                               | $\frac{2ik}{t_1 + 2k^2t_1}$      | $\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$ | 0                         | $\frac{2k^2}{(1+2k^2)^2t_1}$        |                         |                                                                                                         | α                                                                                                    |
| $\tau_{1^-}^{\#1}{}_{\alpha}$      | 0                                 | 0                                | 0                               | 0                                | 0                                  | 0                         | 0                                   |                         |                                                                                                         | 3 /E 0                                                                                               |
| $\sigma_{1}^{\#2}{}_{lpha}$        | 0                                 | 0                                | 0                               | $\frac{\sqrt{2}}{t_1 + 2k^2t_1}$ | $\frac{1}{(1+2k^2)^2t_1}$          | 0                         | $-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$ |                         |                                                                                                         | $\theta \Rightarrow \epsilon \alpha \mid \Lambda \Leftrightarrow \theta \Rightarrow \epsilon \alpha$ |
| $\sigma_{1^{-}\alpha}^{\#1}$       | 0                                 | 0                                | 0                               | 0                                | $\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$ | 0                         | $-\frac{2ik}{t_1+2k^2t_1}$          |                         |                                                                                                         | _                                                                                                    |
| $\tau_{1}^{\#1}_{\alpha\beta}$     | $-\frac{i\sqrt{2}k}{t_1+k^2t_1}$  | $\frac{ik}{(1+k^2)^2t_1}$        | $\frac{k^2}{(1+k^2)^2t_1}$      | 0                                | 0                                  | 0                         | 0                                   |                         | $\sigma_{\alpha\beta\chi}$ +                                                                            | $\theta$ , $p$                                                                                       |
| $\sigma_{1}^{\#2}{}_{\!\!4}$       | $-\frac{\sqrt{2}}{t_1+k^2t_1}$    | $\frac{1}{(1+k^2)^2 t_1}$        | $-\frac{ik}{(1+k^2)^2t_1}$      | 0                                | 0                                  | 0                         | 0                                   | Quadratic (free) action | $S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$ | 1 + 1                                                                                                |
| $\alpha\beta$                      | 0                                 | $\frac{\sqrt{2}}{t_1 + k^2 t_1}$ | $\frac{i\sqrt{2}k}{t_1+k^2t_1}$ | 0                                | 0                                  | 0                         | 0                                   | ic (free                | $\int (f^{\alpha\beta} t)$                                                                              |                                                                                                      |
| $\sigma_{1}^{\#1}{}_{\alpha\beta}$ | $\sigma_{1}^{\#1} + \alpha \beta$ |                                  | $\tau_{1}^{#1} + \alpha \beta$  | $\sigma_{1}^{\#1} +^{lpha}$      | $\sigma_{1}^{\#2} +^{\alpha}$      | $\tau_{1}^{\#1} + \alpha$ | $\tau_1^{\#2} + \alpha$             | at                      |                                                                                                         |                                                                                                      |

|                                                                                                                                |                                     | U                                  |                                              | 0                                          |                              | U   |                                        | U                      |                                                                                 |                                                               |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|----------------------------------------------|--------------------------------------------|------------------------------|-----|----------------------------------------|------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|
| $\sigma_{0^{+}}^{\#1}$                                                                                                         | † - <del></del>                     | $\frac{1}{(2k^2)^2}$               | $\frac{1}{t_1} \left  \frac{1}{t_1} \right $ | i √2 k<br>+2 k <sup>2</sup> ) <sup>2</sup> | $\frac{1}{t_1}$              | 0   |                                        | 0                      |                                                                                 | (                                                             |
| $	au_{0}^{\#1}$                                                                                                                | † - <del> (</del> 1+                | $i \sqrt{2} k$ $-2 k^2)^2$         | $\frac{1}{t_1}$ - $\frac{1}{t_1}$            | $2k^2 + 2k^2)^2$                           | $\frac{1}{t_1}$              | 0   |                                        | 0                      | $\sigma_{2}^{\sharp 1} \dagger^{\alpha \beta}$                                  | (1+                                                           |
| $	au_{0}^{\#2}$                                                                                                                |                                     | 0                                  |                                              | 0                                          |                              | 0   |                                        | 0                      | $\tau_{2}^{\#1} \dagger^{\alpha\beta}$                                          | $\frac{2}{(1+$                                                |
| $\sigma_0^{\#1}$                                                                                                               | +                                   | 0                                  |                                              | 0                                          |                              | 0   | $\frac{1}{k^2}$                        | $\frac{1}{r_2-t_1}$    | $\sigma_2^{\#1} \dagger^{lphaeta\chi}$                                          |                                                               |
|                                                                                                                                |                                     |                                    |                                              |                                            |                              |     |                                        |                        |                                                                                 |                                                               |
| $f_{1}^{\#2}$                                                                                                                  | 0                                   | 0                                  | 0                                            | $i k t_1$                                  | 0                            | (   | 0                                      | 0                      |                                                                                 |                                                               |
| $\omega_{1^{-}}^{\#2}{}_{lpha}f_{1^{-}}^{\#1}{}_{lpha}$                                                                        | 0                                   | 0                                  | 0                                            | 0                                          | 0                            | (   | 0                                      | 0                      |                                                                                 |                                                               |
| $\omega_{1^{-}}^{\#2}{}_{lpha}$                                                                                                | 0                                   | 0                                  | 0                                            | $\frac{t_1}{\sqrt{2}}$                     | 0                            | ,   | 0                                      | 0                      | tı ükt                                                                          | 1                                                             |
|                                                                                                                                | 0                                   | 0                                  | 0                                            | - <u>t1</u>                                | t1                           | 7 ( | 0                                      | $-ikt_1$               | $\frac{t_1}{2} - \frac{ikt_1}{\sqrt{2}}$ $\frac{ikt_1}{\sqrt{2}} k^2 t$         |                                                               |
| $f_{1}^{\#1}$ $\alpha \beta$                                                                                                   | $-\frac{ikt_1}{\sqrt{2}}$           | 0                                  | 0                                            | 0                                          | 0                            | ,   | 0                                      | 0                      | $\begin{array}{c c} \frac{ikt_1}{\sqrt{2}} & k^2 t \\ \hline 0 & 0 \end{array}$ | ·1                                                            |
| $\omega_1^{\#2}$                                                                                                               | $-\frac{t_1}{\sqrt{2}}$             | 0                                  | 0                                            | 0                                          | 0                            | (   | 0                                      | 0                      |                                                                                 | $\omega_{\scriptscriptstyle 	ext{C}}^{\scriptscriptstyle \#}$ |
| $\omega_{1}^{\#1}{}_{\alpha\beta}\ \omega_{1}^{\#2}{}_{\alpha\beta}\ f_{1}^{\#1}{}_{\alpha\beta}\ \omega_{1}^{\#1}{}_{\alpha}$ | $-\frac{t_1}{2}$                    | $-\frac{t_1}{\sqrt{2}}$            | $\frac{i k t_1}{\sqrt{2}}$                   | 0                                          | 0                            |     | 0                                      | 0                      | $\omega_{0^{+}}^{\#1} + f_{0^{+}}^{\#1} + -i$                                   | $-t$ $\sqrt{2}$                                               |
|                                                                                                                                | $\omega_{1}^{\#1} + ^{\alpha\beta}$ | $\omega_1^{\#2} + ^{\alpha \beta}$ | $f_1^{\#1} + \alpha^{eta}$                   | $\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$    | $\omega_{1}^{#2} +^{\alpha}$ |     | $f_{1}^{\#_{\perp}} \uparrow^{\infty}$ | $f_1^{\#2} +^{\alpha}$ | $f_{0+}^{#2} + \omega_{0-}^{#1} + \omega_{0-}^{#1}$                             | 0                                                             |
|                                                                                                                                |                                     |                                    |                                              |                                            |                              |     |                                        |                        |                                                                                 |                                                               |

| 2+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                 | $(t_1)^2 t_1$                      | $(1+2k^2)$                | $(2)^{2}t_{1}$                      | U                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------|------------------------------------|---------------------------|-------------------------------------|-----------------------|
| $	au_{2}^{\#1} + \sigma_{2}^{\#1} + \sigma$ | αβ                         | 2 i √<br>1+2 k² | $\frac{\overline{2} k}{(2)^2 t_1}$ | $\frac{4k^2}{(1+2k^2)^2}$ | $\frac{(2)^{2}t_{1}}{(2)^{2}t_{1}}$ | 0                     |
| $\sigma_2^{\#1} \dagger^{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | βχ                         | 0               |                                    | 0                         |                                     | $\frac{2}{t_1}$       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                 |                                    |                           |                                     |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                 |                                    |                           |                                     |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                 |                                    |                           |                                     |                       |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 1. /                     |                 |                                    |                           |                                     |                       |
| $\frac{t_1}{2}$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{i k t_1}{\sqrt{2}}$ | 0               |                                    |                           |                                     |                       |
| $\frac{i k t_1}{\sqrt{2}} k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $t^2 t_1$                  | 0               |                                    |                           |                                     |                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                          | <u>t</u> 1 2    |                                    |                           |                                     |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                          | υ#1<br>0+       |                                    | $f_{0^{+}}^{#1}$          | $f_{0}^{#2}$                        | $\omega_0^{\sharp 1}$ |
| $\omega_{0}^{\#1}$ †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                          | -t <sub>1</sub> | Ī١                                 | $\sqrt{2} kt_1$           | 0                                   | 0                     |
| $f_{0^{+}}^{#1}$ †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -Ī V                       | $\sqrt{2} ki$   | $t_1 - 2$                          | $2 k^2 t_1$               | 0                                   | 0                     |
| $f_{0+}^{#2} \dagger$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | 0               |                                    | 0                         | 0                                   | 0                     |
| $\omega_{0}^{\#1}$ †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 0               |                                    | 0                         | 0                                   | $k^2 r_2 - t_1$       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                 |                                    |                           |                                     |                       |

## Massive and massless spectra



| Massive particle |                                                 |                                                                                                 |  |  |  |  |  |
|------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Pole residue:    | $-\frac{1}{r_2} > 0$                            | -                                                                                               |  |  |  |  |  |
| Polarisations:   | 1                                               | Č                                                                                               |  |  |  |  |  |
| Square mass:     | $\frac{t_1}{r_2} > 0$                           | 7                                                                                               |  |  |  |  |  |
| Spin:            | 0                                               |                                                                                                 |  |  |  |  |  |
| Parity:          | Odd                                             | ()                                                                                              |  |  |  |  |  |
|                  | Pole residue: Polarisations: Square mass: Spin: | Pole residue: $-\frac{1}{r_2} > 0$ Polarisations: 1  Square mass: $\frac{t_1}{r_2} > 0$ Spin: 0 |  |  |  |  |  |

## Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$