project-4

In [1]: import pandas as pd
 from matplotlib import pyplot as plt
 %matplotlib inline

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_
0	842302	М	17.99	10.38	122.80	1001.0	0.
1	842517	М	20.57	17.77	132.90	1326.0	0.
2	84300903	М	19.69	21.25	130.00	1203.0	0.
3	84348301	М	11.42	20.38	77.58	386.1	0.
4	84358402	М	20.29	14.34	135.10	1297.0	0.
564	926424	М	21.56	22.39	142.00	1479.0	0.
565	926682	М	20.13	28.25	131.20	1261.0	0.
566	926954	М	16.60	28.08	108.30	858.1	0.
567	927241	М	20.60	29.33	140.10	1265.0	0.
568	92751	В	7.76	24.54	47.92	181.0	0.

569 rows × 32 columns

In [3]: df.head()

Out[3]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_m
0	842302	М	17.99	10.38	122.80	1001.0	0.11
1	842517	М	20.57	17.77	132.90	1326.0	0.08
2	84300903	М	19.69	21.25	130.00	1203.0	0.10
3	84348301	М	11.42	20.38	77.58	386.1	0.14
4	84358402	М	20.29	14.34	135.10	1297.0	0.10

5 rows × 32 columns

```
In [4]: df.tail()
```

Out[4]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_m
564	926424	М	21.56	22.39	142.00	1479.0	0.11
565	926682	М	20.13	28.25	131.20	1261.0	0.09
566	926954	М	16.60	28.08	108.30	858.1	0.08
567	927241	М	20.60	29.33	140.10	1265.0	0.11
568	92751	В	7.76	24.54	47.92	181.0	0.05

5 rows × 32 columns

```
In [5]: plt.scatter(df["radius_mean"],df["texture_mean"])
    plt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
```

Out[5]: Text(0, 0.5, 'texture_mean')


```
In [6]: from sklearn.cluster import KMeans
    km=KMeans()
    km
```

Out[6]: KMeans()

```
y_predicted
Out[7]: array([6, 4, 7, 0, 4, 6, 4, 1, 1, 1, 1, 4, 2, 1, 1, 3, 4, 4, 7, 6, 6, 5,
               6, 7, 4, 4, 1, 4, 1, 6, 2, 0, 2, 2, 4, 4, 1, 0, 1, 1, 1, 1, 2, 0,
               1, 4, 0, 0, 5, 1, 1, 6, 0, 4, 1, 0, 4, 1, 0, 5, 5, 0, 1, 5, 1, 1,
               0, 0, 0, 6, 4, 5, 2, 6, 0, 4, 5, 4, 2, 0, 0, 6, 7, 2, 5, 4, 1, 2,
               1, 6, 1, 1, 6, 0, 4, 7, 0, 0, 5, 0, 1, 5, 0, 0, 0, 6, 0, 0,
               0, 1, 0, 0, 5, 1, 5, 6, 1, 4, 5, 4, 7, 6, 6, 6, 1, 4, 6, 2, 5, 4,
                        1,
                           0, 5, 6, 5, 5, 4, 0, 6, 5, 5, 0, 4, 6, 0, 1,
                           5, 5, 0, 4, 4, 1, 7, 4, 5, 4, 2, 6, 5, 0, 6, 5, 5, 5,
               0, 4, 1, 5, 7, 2, 4, 5, 1, 5, 4, 0, 0, 6, 1, 1, 0, 3, 1, 6, 1, 4,
               7, 1, 0, 4, 2, 1, 0, 6, 0, 4, 1, 6, 7, 0, 7, 2, 1, 6, 0, 0, 7, 2,
               6, 6, 0, 4, 6, 6, 5, 6, 1, 1, 4, 3, 3, 2, 5, 1, 2, 7, 3, 3, 6, 5,
               0, 1, 2, 0, 0, 6, 1, 5, 7, 0, 4, 4, 4, 6, 2, 6, 1, 3, 2, 4, 4, 4,
               4, 2, 0, 1, 6, 0, 6, 5, 7, 5, 2, 0, 5, 4, 0, 6, 2, 5, 4, 4, 6, 0,
               0, 5, 0, 0, 0, 4, 6, 0, 5, 6, 5, 0, 0, 1, 4, 0, 2, 0, 0, 1, 6, 5,
               6, 6, 0, 6, 5, 5, 0, 0, 5, 4, 0, 0, 5, 4, 5, 7, 5, 0, 6, 0, 4, 4,
               6, 0, 0, 5, 0, 4, 6, 4, 0, 7, 6, 0, 5, 7, 5, 5, 0, 6, 5, 5, 0, 4,
               7, 1, 5, 0, 0, 6, 5, 0, 0, 1,
                                             0, 4, 6, 7, 2, 0, 7, 7, 1, 6, 4, 4,
               6, 6, 0, 3, 6, 0, 5, 5, 1, 0, 6, 1, 5, 6, 5, 2, 5, 0, 4, 7, 0, 6,
               0, 0, 5, 0, 4, 5, 0, 6, 5, 0, 6, 1, 4, 0, 0, 0, 0, 1, 3, 1, 0, 4,
               5, 1, 0, 6, 5, 0, 0, 0, 5, 1, 0, 0, 1, 0, 4, 4, 6, 0, 0, 6, 0, 6,
               0, 2, 6, 0, 4, 1, 2, 6, 0, 7, 1, 2, 3, 6, 0, 3, 3, 1, 1, 3, 2, 7,
                           1, 0, 2, 0, 0, 3, 6, 3, 5, 6, 1, 6, 5, 4, 0, 0, 6, 0,
               6, 6, 6, 4, 5, 4, 1, 6, 4, 5, 1, 4, 0, 0, 4, 7, 6, 1, 6, 7, 5, 5,
               0, 0, 6, 1, 5, 6, 1, 6, 4, 0, 4, 4, 0, 6, 5, 7, 0, 0, 5, 5, 0, 5,
               6, 5, 0, 0, 6, 7, 0, 7, 1, 1, 1, 1, 5, 1, 1, 3, 1, 1, 5, 0, 0, 1,
               1, 1, 3, 1, 3, 3, 0, 3, 1, 1, 3, 3, 3, 2, 7, 2, 2, 2, 1])
```

In [7]: y predicted=km.fit predict(df[["radius mean","texture mean"]])

In [8]: df["cluster"]=y_predicted
 df.head()

Out[8]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_m
0	842302	М	17.99	10.38	122.80	1001.0	0.11
1	842517	М	20.57	17.77	132.90	1326.0	0.08
2	84300903	М	19.69	21.25	130.00	1203.0	0.10
3	84348301	М	11.42	20.38	77.58	386.1	0.14
4	84358402	М	20.29	14.34	135.10	1297.0	0.10

5 rows × 33 columns

```
In [9]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["radius_mean"],df1["texture_mean"],color="pink")
    plt.scatter(df2["radius_mean"],df2["texture_mean"],color="violet")
    plt.scatter(df3["radius_mean"],df3["texture_mean"],color="skyblue")
    plt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
```

Out[9]: Text(0, 0.5, 'texture_mean')

Out[10]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_m
0	842302	М	17.99	0.022658	122.80	1001.0	0.11
1	842517	М	20.57	0.272574	132.90	1326.0	0.08
2	84300903	М	19.69	0.390260	130.00	1203.0	0.10
3	84348301	М	11.42	0.360839	77.58	386.1	0.14
4	84358402	М	20.29	0.156578	135.10	1297.0	0.10

5 rows × 33 columns

```
In [11]: scaler.fit(df[["radius_mean"]])
    df["radius_mean"]=scaler.transform(df[["radius_mean"]])
    df.head()
```

Out[11]:

	Ia	alagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smootnness_m
0	842302	М	0.521037	0.022658	122.80	1001.0	0.11
1	842517	М	0.643144	0.272574	132.90	1326.0	0.08
2	84300903	М	0.601496	0.390260	130.00	1203.0	0.10
3	84348301	М	0.210090	0.360839	77.58	386.1	0.14
4	84358402	М	0.629893	0.156578	135.10	1297.0	0.10

5 rows × 33 columns

```
y_predicted
Out[12]: array([4, 7, 7, 6, 7, 4, 7, 2, 2, 0, 2, 4, 5, 2, 2, 0, 2, 2, 7, 4, 4, 1,
                4, 3, 2, 7, 2, 7, 2, 4, 5, 6, 5, 5, 4, 2, 2, 6, 2, 2, 2, 6, 5, 2,
                2, 7, 1, 6, 1, 2, 6, 4, 6, 7, 2, 6, 7, 2, 6, 1, 1, 6, 2, 1, 0, 2,
                6, 6, 6, 4, 7, 1, 5, 4, 6, 2, 4, 7, 5, 6, 6, 4, 3, 5, 1, 7, 2, 5,
                2, 4, 2, 2, 4, 6, 2, 5, 6, 6, 1, 2, 0, 1, 6, 6, 6, 4, 6, 6, 3, 6,
                6, 6, 2, 6, 1, 6, 1, 4, 2, 7, 1, 7, 3, 4, 4, 4, 0, 7, 4, 5, 1, 2,
                         2, 6, 1, 4, 1, 1, 4, 6, 4, 1, 1, 6, 2, 4, 4, 2,
                4, 6, 7, 7, 1, 1, 6, 7, 7, 2, 3, 2, 1, 7, 5, 4, 1, 2, 4, 1, 1, 1,
                6, 2, 2, 4, 3, 5, 2, 1, 2, 1, 7, 6, 6, 4, 2, 2, 6, 0, 2, 4, 2, 7,
                7, 2, 6, 7, 3, 2, 6, 4, 6, 7, 2, 4, 7, 6, 3, 5, 2, 4, 6, 6, 7, 5,
                4, 4, 6, 2, 4, 4, 1, 4, 0, 2, 7, 0, 0, 5, 1, 2, 3, 7, 0, 5, 4, 4,
                6, 2, 5, 6, 4, 4, 0, 1, 5, 6, 7, 7, 7, 4, 5, 4, 2, 0, 5, 7, 7,
                7, 5, 6, 2, 4, 6, 4, 1, 3, 1, 5, 6, 1, 7, 4, 4, 5, 1, 7, 2, 4, 6,
                6, 4, 6, 6, 2, 2, 4, 6, 4, 4, 1, 6, 4, 6, 7, 6, 5, 6, 6, 0, 4, 1,
                4, 4, 6, 4, 4, 1, 6, 6, 1, 7, 6, 6, 1, 7, 4, 7, 1, 6, 4, 6, 2, 2,
                4, 6, 6, 1, 6, 7, 4, 7, 6, 3, 4, 1, 1, 7, 1, 1, 6, 4, 1, 1, 6, 2,
                3, 0, 1, 6, 6, 4, 1, 6, 6, 2, 6, 7, 4, 7, 5, 6, 7, 3, 2, 4, 7, 7,
                4, 4, 6, 0, 4, 6, 1, 1, 2, 6, 4, 2, 1, 4, 1, 5, 1, 1, 2, 3, 6, 4,
                2, 6, 1, 6, 7, 1, 6, 4, 1, 6, 4, 2, 7, 6, 6, 6, 6, 2, 0, 6, 6, 2,
                1, 6, 6, 4, 1, 2, 6, 6, 1, 6, 6, 6, 2, 6, 7, 7, 4, 2, 6, 4, 2, 4,
                6, 5, 4, 6, 7, 0, 5, 4, 2, 7, 6, 5, 0, 4, 6, 0, 0, 0, 0, 0, 5, 3,
                0, 6, 6, 2, 2, 6, 5, 6, 6, 0, 4, 0, 1, 4, 2, 4, 1, 2, 6, 2, 4, 4,
                4, 4, 4, 7, 1, 7, 2, 4, 7, 1, 2, 2, 6, 6, 7, 7, 4, 0, 4, 3, 1, 1,
                6, 6, 4, 2, 1, 4, 2, 4, 2, 6, 7, 7, 6, 4, 1, 3, 6, 2, 1, 1, 6, 1,
                4, 1, 6, 6, 4, 7, 6, 7, 2, 0, 0, 0, 1, 0, 0, 0, 2, 2, 1, 1, 6, 0,
                6, 6, 0, 6, 0, 0, 6, 0, 2, 0, 0, 0, 0, 5, 3, 5, 5, 5, 0])
```

In [12]: y predicted=km.fit predict(df[["radius mean","texture mean"]])

In [13]: df["New Cluster"]=y_predicted
 df.head()

Out[13]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_m
0	842302	М	0.521037	0.022658	122.80	1001.0	0.11
1	842517	М	0.643144	0.272574	132.90	1326.0	0.08
2	84300903	М	0.601496	0.390260	130.00	1203.0	0.10
3	84348301	М	0.210090	0.360839	77.58	386.1	0.14
4	84358402	М	0.629893	0.156578	135.10	1297.0	0.10

5 rows × 34 columns

```
In [14]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["radius_mean"],df1["texture_mean"],color="violet")
    plt.scatter(df2["radius_mean"],df2["texture_mean"],color="pink")
    plt.scatter(df3["radius_mean"],df3["texture_mean"],color="skyblue")
    plt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
```

Out[14]: Text(0, 0.5, 'texture_mean')


```
In [16]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["radius_mean"],df1["texture_mean"],color="violet")
    plt.scatter(df2["radius_mean"],df2["texture_mean"],color="pink")
    plt.scatter(df3["radius_mean"],df3["texture_mean"],color="skyblue")
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",maplt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
```

Out[16]: Text(0, 0.5, 'texture_mean')


```
In [17]: k_rng=range(9,18)
sse=[]
```

Out[18]: Text(0, 0.5, 'Sum of Squared Error')

for the given dataset we can use multiple models, for that models we get different types of accuracies but

```
In [ ]:
```