Maestría en Computo Estadístico Álgebra Matricial Tarea 6

14 de octubre de 2020 Enrique Santibáñez Cortés Repositorio de Git: Tarea 6, AM.

Todos los cálculos deben ser a mano.

1. Dados los vectores (1, -1, -2), (-1, -5, -8), (2, 1, 1), (2, -8, -14), encuentre la dimensión y una base del espacio generado por ellos.

RESPUESTA

Recordemos el siguiente lema y teorema.

Lema: 1 (Visto en clase) Sea $A = \{a_1, \dots, a_n\}$ un conjunto de vectores que formar algún subespacio $S \subset \mathbb{R}^m$. Supongamos que podemos encontrar un vector a_i en A tal que se puede expresar como una combinación lineal de los otros vectores de A. Entonces

$$gen(A - \{a_i\}) = gen(A),$$

donde $A - \{a_i\}$ denota todos los elementos de A a excepción de a_i .

Teorema: 1 (Visto en clase) Sea $A = \{a_1, \dots, a_n\}$ un conjunto de vectores que formar algún subespacio $S \subset \mathbb{R}^m$. Sea $A = [a_1, a_2, \dots, a_n]$ la matriz de tamaño $m \times n$ formada por los vectores a_i como columnas. Entonces A es linealmente independiente si solo si el sistema homogeno tiene solución única la solución trivial, es decir, si el sistema Ax = 0 solo tiene la solución trivial x = 0.

Denotemos a los vectores como $v_1 = (1, -1, -2), v_2 = (-1, -5, -8), v_3 = (2, 1, 1)$ y $v_4 = (2, -8, -14)$. Veamos cual es el espacio generado por los vectores,

$$H = gen(\{v_1, v_2, v_3, v_4\}) = \{x : x = \alpha_1(1, -1, -2) + \alpha_2(-1, -5, -8) + \alpha_3(2, 1, 1) + \alpha_4(2, -8, -14)\}.$$

Considerando el lema 1 podemos encontrar una igualdad considerando solo vectores linealmente independientes. Usando el teorema 1 y eliminación gaussiana podemos determinar si son vectores linealmente independiente y de ser el caso encontrar solo los vectores que lo sean.

$$\begin{pmatrix}
1 & -1 & 2 & 2 \\
-1 & -5 & 1 & -8 \\
-2 & -8 & 1 & -14
\end{pmatrix}
\xrightarrow{R_2 \to R_2 + R_1}
\xrightarrow{R_3 \to R_3 + 2R_1}
\begin{pmatrix}
1 & -1 & 2 & 2 \\
0 & -6 & 3 & -6 \\
0 & -10 & 5 & -10
\end{pmatrix}
\xrightarrow{R_3 \to R_3 - 5R_2/3}
\begin{pmatrix}
1 & -1 & 2 & 2 \\
0 & -6 & 3 & -6 \\
0 & 0 & 0 & 0
\end{pmatrix}.$$
(1)

Por lo anterior, tenemos que los vectores v_1 y v_2 son linealmente independientes, entonces por el lema 1

$$H = gen(\{v_1, v_2, v_3, v_4\}) = gen(\{v_1, v_2\}).$$

Por lo que una base para H (el espacio generado por los vectores $\{v_1, v_2, v_3, v_4\}$) sería considerando los vectores $v_1 = (1, -1, -2), v_2 = (-1, -5, -8)$ ya que estos vectores cumple la

definición de base 2: linealmente independiente y cumplen que generan a H. Ahora como la definición de la dimensión de un espacio vectorial esta definido como

Definición: 1 Sea V un espacio vectoria. La dimensión de V es el número de vectores en cualquier base de V.

Entonces ocupando la definición 1, la dimensión del espacio generado por los vectores $\{v_1, v_2, v_3, v_4\}$ es el número de vectores que tienen cualquier base, en este caso como ya encontramos que una base la cual tiene 2 vectores podemos **concluir que la dimensión es 2**.

2. Determine sí los vectores (3, -1, -1, 1), (1, -6, 3, 0), (0, 5, -1, 2), (1, 0, 1, 0) forman una base de \mathbb{R}^4 .

RESPUESTA

Recordemos la definición de base.

Definición: 2 Sea V un espacio vectorial, $W \subset V$ un subespacio. Una base de W es un subconjunto de W linealmente independiente que genera W.

Veamos si los vectores del problema generan a \mathbb{R}^4 . Para ello sea A la matriz generada que tienen como columnas los vectores del problema, es decir,

$$A = \begin{pmatrix} 3 & 1 & 0 & 1 \\ -1 & -6 & 5 & 0 \\ -1 & 3 & -1 & 1 \\ 1 & 0 & 2 & 0 \end{pmatrix}.$$

y sea $r = (r_1, r_2, r_3, r_4) \in \mathbb{R}^4$. Entonces si el siguiente sistema Ax = r tiene solución única, podemos decir que los vectores generan a \mathbb{R}^4 . Para ver si tiene solución única procedemos a resolver el sistema con reduciendo la matriz aumentada a su forma escalonada.

$$\begin{pmatrix} 3 & 1 & 0 & 1 & r_1 \\ -1 & -6 & 5 & 0 & r_2 \\ -1 & 3 & -1 & 1 & r_3 \\ 1 & 0 & 2 & 0 & r_4 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_4} \begin{pmatrix} 1 & 0 & 2 & 0 & r_4 \\ -1 & -6 & 5 & 0 & r_2 \\ -1 & 3 & -1 & 1 & r_3 \\ 3 & 1 & 0 & 1 & r_1 \end{pmatrix} \xrightarrow{R_2 \to R_2 + R_1} \begin{pmatrix} 1 & 0 & 2 & 0 & r_4 \\ 0 & -6 & 7 & 0 & r_2 + r_4 \\ 0 & 3 & 1 & 1 & r_3 + r_4 \\ 3 & 1 & 0 & 1 & r_1 \end{pmatrix} \xrightarrow{R_4 \to R_4 - 3R_1} \xrightarrow{R_3 \to 2R_3 + R_2}$$

$$\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & -6 & 7 & 0 \\ 0 & 0 & 9 & 2 \\ 0 & 1 & -6 & 1 \end{pmatrix} \xrightarrow{r_2 + r_4} \begin{array}{c} r_2 + r_4 \\ 2(r_3 + r_4) + r_2 + r_4 \\ r_1 - r_4 \end{pmatrix} \xrightarrow{R_4 \to 6R_4 + R_2} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & -6 & 7 & 0 \\ 0 & 0 & 9 & 2 \\ 0 & 0 & -29 & 6 \\ 6(r_1 - r_4) + r_2 + r_4 \end{pmatrix} \xrightarrow{R_4 \to 9R_4 + 29R_3} \xrightarrow{R_4 \to 6R_4 + R_2} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & -6 & 7 & 0 \\ 0 & 0 & 9 & 2 \\ 0 & 0 & -29 & 6 \\ 6(r_1 - r_4) + r_2 + r_4 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 2 & 0 \\
0 & -6 & 7 & 0 \\
0 & 0 & 9 & 2 \\
0 & 0 & 0 & 112
\end{pmatrix}
\xrightarrow{r_4}$$

$$\begin{array}{c|ccccc}
r_2 + r_4 \\
2r_3 + 3r_4 + r_2 \\
6r_1 - 5r_4 + r_2 + 29(2r_3 + 3r_4 + r_2).
\end{array}$$

Como la forma escalonada de la matriz aumentada tiene 4 pivotes podemos decir que el sistema tiene solución única, y por lo tanto, los vectores del problema generan a \mathbb{R}^4 .

Teorema: 2 (Visto en clase) Sea $S = \{a_1, \dots, a_n\} \subset \mathbb{R}^n$. S es linealmente independiente si y solo si la matriz formada con los a_i como columnas es invertirle.

Es sencillo ver en el procedimiento en dónde se encontro la forma escalonada reducida de la matriz aumentada observar que la forma escalonada de la matriz A tiene 4 pivotes, entonces que podemos decir que A es invertible y por lo tanto decir que los vectores (3, -1, -1, 1), (1, -6, 3, 0), (0, 5, -1, 2), (1, 0, 1, 0) son linealmente independientes.

Y por lo tanto, como los vectores (3,-1,-1,1), (1,-6,3,0), (0,5,-1,2), (1,0,1,0) son linealmente independientes y además generan a \mathbb{R}^4 podemos concluir (utilizando la definición de base 2) que los vectores forman una base para \mathbb{R}^4 .

3. Sean $x_1, x_2, ..., x_r$ linealmente independientes en \mathbb{R}^n . Si A es una matriz $n \times n$ invertible, demuestre que $Ax_1, Ax_2, ..., Ax_r$ son linealmente independientes.

RESPUESTA

Para la demostración se ocupara el siguiente lema y la definición del rango.

Lema: 2 Si $A_{m \times n}$ una matriz no singular y $B_{n \times n}$ una matriz entonces

$$\rho(AB) = \rho(B)$$
 y $\mathcal{C}(AB) = \mathcal{C}(B)$.

Definición: 3 Sea A una matriz $m \times n$. El rango de A es el número de renglones linealmente independientes de A.

Con los $x_i's$ podemos formar una matriz B tal que las columnas sean los vectores x_i , es decir,

$$B = \begin{pmatrix} x_1 & x_2 & \cdots & x_r \end{pmatrix}.$$

Ahora, como los vectores $x_i's$ son linealmente independientes podemos decir $\rho(B) = r$ (definición del rango 3). Ahora formemos una matriz C tal que sus columnas sean los vectores $Ax_i's$, es decir,

$$C = \begin{pmatrix} Ax_1 & Ax_2 & \cdots & Ax_r \end{pmatrix}.$$

Como A es no singular y ocupando el lema 2 tenemos que

$$\rho(C) = \rho(AB) = \rho(B) = r.$$

Como el $\rho(C) = r$, podemos decir que la matriz C tiene r columnas independientes, pero como las columnas de C son los $Ax_i's$ podemos concluir que $Ax_1, Ax_2, ..., Ax_r$ son linealmente independientes.

4. Dada la matriz

$$\begin{pmatrix}
2 & 9 & 4 & -3 & 10 \\
1 & 7 & 2 & 3 & -4 \\
1 & 6 & 2 & 0 & 2 \\
3 & 9 & 6 & 0 & 6
\end{pmatrix}$$

encuentre bases para $\mathcal{N}(A)$, $\mathcal{C}(A)$ y $\mathcal{R}(A)$. Encuentra el rango de A, la nulidad de A y la dimensión de $\mathcal{R}(A)$.

RESPUESTA

Recordemos las definiciones de espacio columna, nulo y renglon.

Definición: 4 Sea A una matriz de tamaño m × n. El espacio columna de A es

$$C(A) = \{ y \in \mathbb{R}^m | y = Ax \text{ para algún } x \in \mathbb{R}^n \}$$

El rango de una matriz A es la dimensión de C(A), y se denota como $\rho(A)$.

Definición: 5 Sea A una matriz de tamaño $m \times n$. El espacio renglón de A es

$$\mathcal{R}(A) = \{ y \in \mathbb{R}^n | y = A^t x \text{ para algún } x \in \mathbb{R}^m \}$$

Definición: 6 Sea A una matriz de tamaño $m \times n$. El espacio nulo de A es

$$\mathcal{N}(A) = \{ \boldsymbol{x} \in R^n | A\boldsymbol{x} = \boldsymbol{0}. \}$$

La nulidad de A es la dimensión de $\mathcal{N}(A)$, y se denota v(A).

El espacio columna de A por definición 4 se puede interpretar como

 $C(A) = gen\{a_1, a_2, \dots, a_n\}, \text{ donde } a_i \text{ son las columns de } A.$

$$= \operatorname{gen} \left\{ \begin{pmatrix} 2\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 9\\7\\6\\9 \end{pmatrix}, \begin{pmatrix} 4\\2\\2\\6 \end{pmatrix}, \begin{pmatrix} -3\\3\\0\\0 \end{pmatrix}, \begin{pmatrix} 10\\-4\\2\\6 \end{pmatrix} \right\}.$$

Ahora, ocupando el lema 1 podemos encontrar vectores linealmente independientes tal que

$$C(A) = \operatorname{gen} \left\{ \begin{pmatrix} 2\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 9\\7\\6\\9 \end{pmatrix}, \begin{pmatrix} 4\\2\\2\\6 \end{pmatrix}, \begin{pmatrix} -3\\3\\0\\0 \end{pmatrix}, \begin{pmatrix} 10\\-4\\2\\6 \end{pmatrix} \right\} = \operatorname{gen} \{v_i, \dots, v_j\}$$

4

donde los v_i, \dots, v_j son vectores de las columnas de A. Entonces ocupando 1 y eliminación gaussiana determinaremos cuales columnas de A son linealmente independientes.

$$\begin{pmatrix} 2 & 9 & 4 & -3 & 10 \\ 1 & 7 & 2 & 3 & -4 \\ 1 & 6 & 2 & 0 & 2 \\ 3 & 9 & 6 & 0 & 6 \end{pmatrix} \xrightarrow{R_2 \to 2R_2 - R_1} \begin{pmatrix} 2 & 9 & 4 & -3 & 10 \\ 0 & 5 & 0 & 9 & -18 \\ 0 & 3 & 0 & 3 & -6 \\ 3 & 9 & 6 & 0 & 6 \end{pmatrix} \xrightarrow{R_3 \to 5R_3/3} \begin{pmatrix} 2 & 9 & 4 & -3 & 10 \\ 0 & 5 & 0 & 9 & -18 \\ 0 & 5 & 0 & 5 & -10 \\ 2 & 6 & 4 & 0 & 4 \end{pmatrix} \xrightarrow{R_3 \to R_3 - R_2} \xrightarrow{R_4 \to 2R_4/3} \begin{pmatrix} 2 & 9 & 4 & -3 & 10 \\ 0 & 5 & 0 & 9 & -18 \\ 0 & 5 & 0 & 5 & -10 \\ 2 & 6 & 4 & 0 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 9 & 4 & -3 & 10 \\ 0 & 5 & 0 & 9 & -18 \\ 0 & 0 & 0 & -4 & 8 \\ 0 & -3 & 0 & 3 & -6 \end{pmatrix} \xrightarrow{R_4 \to 5R_4/3} \begin{pmatrix} 2 & 9 & 4 & -3 & 10 \\ 0 & 5 & 0 & 9 & -18 \\ 0 & 0 & 0 & -4 & 8 \\ 0 & -5 & 0 & 5 & -10 \end{pmatrix} \xrightarrow{R_4 \to R_4 + R_2} \begin{pmatrix} 2 & 9 & 4 & -3 & 10 \\ 0 & 5 & 0 & 9 & -18 \\ 0 & 0 & 0 & -4 & 8 \\ 0 & 0 & 0 & 14 & -28 \end{pmatrix} \xrightarrow{R_4 \to R_4 + 14R_3/2} \xrightarrow{R_4 \to R_4 + R_2} \begin{pmatrix} 2 & 9 & 4 & -3 & 10 \\ 0 & 5 & 0 & 9 & -18 \\ 0 & 0 & 0 & -4 & 8 \\ 0 & 0 & 0 & 14 & -28 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 9 & 4 & -3 & 10 \\ 0 & 5 & 0 & 9 & -18 \\ 0 & 0 & 0 & -4 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}. \tag{2}$$

Por lo anterior podemos concluir que las columnas a_1, a_2 y a_4 son linealmente independientes y también que

$$C(A) = \operatorname{gen} \left\{ \begin{pmatrix} 2\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 9\\7\\6\\9 \end{pmatrix}, \begin{pmatrix} 4\\2\\2\\6 \end{pmatrix}, \begin{pmatrix} -3\\3\\0\\0 \end{pmatrix}, \begin{pmatrix} 10\\-4\\2\\6 \end{pmatrix} \right\} = \operatorname{gen} \left\{ \begin{pmatrix} 2\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 9\\7\\6\\9 \end{pmatrix}, \begin{pmatrix} -3\\3\\0\\0 \end{pmatrix} \right\}.$$

Entonces como los vectores $\left\{ \begin{pmatrix} 2\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 9\\7\\6\\9 \end{pmatrix}, \begin{pmatrix} -3\\3\\0\\0 \end{pmatrix} \right\}$ son linealmente independiente y generan a $\mathcal{C}(A)$

podemos decir que son **una base para** C(A) (por la definición de base 2). Y entonces, como el rango de A es la dimensión del espacio columna de A podemos concluir por 1 que el **rango de A** es 4, es decir, $\rho(A) = 3$.

Ahora, el espacio nulo de una matriz A por definición 6 podemos decir que todas las soluciones del sistema Ax = 0 son el espació nulo. Entonces resolvemos el sistema utilizando eliminación guassiana y llevan a la A a su forma escalonada reducida (retomamos la matriz en el paso

$$\begin{pmatrix} 2 & 9 & 4 & -3 & 10 \\ 1 & 7 & 2 & 3 & -4 \\ 1 & 6 & 2 & 0 & 2 \\ 3 & 9 & 6 & 0 & 6 \end{pmatrix} \xrightarrow{Pasos\ de\ 2} \begin{pmatrix} 2 & 9 & 4 & -3 & 10 \\ 0 & 5 & 0 & 9 & -18 \\ 0 & 0 & 0 & -4 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_3 \Rightarrow -R_3/4} \begin{pmatrix} 2 & 9 & 4 & -3 & 10 \\ 0 & 5 & 0 & 9 & -18 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \Rightarrow R_1 + 3R_3} \xrightarrow{R_2 \Rightarrow R_2 - 9R_3}$$

$$\begin{pmatrix} 2 & 9 & 4 & 0 & 4 \\ 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \Rightarrow R_1/2} \begin{pmatrix} 1 & 9/2 & 2 & 0 & 2 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \Rightarrow R_1 - 9R_2/5} \begin{pmatrix} 1 & 0 & 2 & 0 & 2 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Por lo tanto, la solución general del sistema Ax = 0 es $x_1 + 2x_3 + 2x_5 = 0$, $x_2 = 0$, $x_4 - 2x_5 = 0$, y x_3, x_5 libres, esto implica (dando valores a $x_5 = 0, x_3 = 1$ y $x_5 = 1, x_3 = 0$ para encontrar la solución al sistema general) que

$$\mathcal{N}(A) = \operatorname{gen} \left\{ \begin{pmatrix} -2\\0\\0\\2\\1 \end{pmatrix}, \begin{pmatrix} -2\\0\\1\\0\\0 \end{pmatrix} \right\}.$$

Y en conclusión una base para **el espacio nulo de** A es $\left\{\begin{pmatrix} -2\\0\\0\\2\\1\end{pmatrix}, \begin{pmatrix} -2\\0\\1\\0\\0\end{pmatrix}\right\}$ y **la nulidad de** A

sería la dimensión de $\mathcal{N}(A)$ que sería 2.

Por último, es espacio renglón de por definición 5 se puede interpretar como

 $\mathcal{R}(A) = \text{gen}(\{a_1^t, a_2^t, \dots, a_n^t\})$ donde a_i^t son las columnas de A.

$$= \operatorname{gen}\left\{ \begin{pmatrix} 2\\9\\4\\-3\\10 \end{pmatrix}, \begin{pmatrix} 1\\7\\2\\3\\-4 \end{pmatrix}, \begin{pmatrix} 1\\6\\2\\0\\2 \end{pmatrix}, \begin{pmatrix} 3\\9\\6\\0\\6 \end{pmatrix} \right\}.$$

Utilizando un razonamiento análogo al que se hizo para encontrar una base del espacio C(A), encontremos los vectores linealmente independientes.

$$\begin{pmatrix} 2 & 1 & 1 & 3 \\ 9 & 7 & 6 & 9 \\ 4 & 2 & 2 & 6 \\ -3 & 3 & 0 & 0 \\ 10 & -4 & 2 & 6 \end{pmatrix} \xrightarrow{R_3 \Rightarrow R_3 - 2R_1} \begin{pmatrix} 2 & 1 & 1 & 3 \\ 9 & 7 & 6 & 9 \\ 0 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 0 & -9 & -3 & -9 \end{pmatrix} \xrightarrow{R_2 \Rightarrow 2R_2 - 9R_1} \begin{pmatrix} 2 & 1 & 1 & 3 \\ 0 & 5 & 3 & -9 \\ 0 & 0 & 0 & 0 \\ 0 & 9 & 3 & 9 \\ 0 & -9 & -3 & -9 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_5}$$

$$\begin{pmatrix} 2 & 1 & 1 & 3 \\ 0 & 5 & 3 & -9 \\ 0 & -9 & -3 & -9 \\ 0 & 9 & 3 & 9 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_3 \Rightarrow 5R_3 + 9R_2} \begin{pmatrix} 2 & 1 & 1 & 3 \\ 0 & 5 & 3 & -9 \\ 0 & 0 & 12 & -126 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Por lo anterior podemos concluir que los vectores a_1^t, a_2^t y a_3^t son linealmente independientes y que

$$\mathcal{R}(A) = \operatorname{gen}\left\{ \begin{pmatrix} 2\\9\\4\\-3\\10 \end{pmatrix}, \begin{pmatrix} 1\\7\\2\\3\\-4 \end{pmatrix}, \begin{pmatrix} 1\\6\\2\\0\\2 \end{pmatrix}, \begin{pmatrix} 3\\9\\6\\0\\6 \end{pmatrix} \right\} = \operatorname{gen}\left\{ \begin{pmatrix} 2\\9\\4\\-3\\10 \end{pmatrix}, \begin{pmatrix} 1\\7\\2\\3\\-4 \end{pmatrix}, \begin{pmatrix} 1\\6\\2\\0\\2 \end{pmatrix} \right\}.$$

Entonces como los vectores $\left\{ \begin{pmatrix} 2\\9\\4\\-3\\10 \end{pmatrix}, \begin{pmatrix} 1\\7\\2\\3\\-4 \end{pmatrix}, \begin{pmatrix} 1\\6\\2\\0\\2 \end{pmatrix} \right\}$ son linealmente independiente y generan a

 $\mathcal{R}(A)$ podemos decir que son una base para $\mathcal{R}(A)$ (por la definición de base 2). Y entonces, la dimensión del espacio renglon de A es 3.

Nota: Se muestra que $C(A) = \mathcal{R}(A)$ y que $C(A) + \mathcal{N}(A) = n$.

5. Dadas las bases $\mathcal{B} = \{(3, -1, -1), (1, -6, 3), (0, 5, -1)\}$ y $\mathcal{C} = \{(3, 0, 6), (2, 2, -4), (1, -2, 3)\}$ de \mathbb{R}^3 , encuentre la matriz de cambio de base de \mathcal{B} a \mathcal{C} y la matriz de cambio de base de \mathcal{C} a \mathcal{B} . Encuentre las coordenadas del vector (-2, 7, 1) con respecto a cada una de las bases.

RESPUESTA

Recordemos la definición de la matriz de cambio de base(vista en clase).

Definición: 7 Si $(v_i)_{B_2}$ es el vector (en \mathbb{R}^n) de coordenadas de v_i con respecto a la base B^2 , v_{B_1} es el vector de coordenadas de v con respecto a la base B_1 y v_{B_2} es el vector de coordenadas de v con respecto a la base B_2 , entonces existe una matrix invertible A dada por $A = ((v_1)_{B_2} \cdots (v_2)_{B_2})$ (es decir, tiene los vectores de coordenadas como columnas) tal que $v_{B_2} = Av_{B_1}$. A es la matriz de cambio de coordenadas de la base B_1 a la base B_2 .

Teorema: 3 Si A es la matriz de cambio de coordenadas de la base \mathcal{B}_1 a la base \mathcal{B}_2 entonces A^{-1} es la matriz de cambio de coordenadas de la base \mathcal{B}_2 a la base \mathcal{B}_1 .

Con la definición 7, podemos encontrar la matriz de cambio de base de \mathcal{B} a la base canónica de \mathbb{R}^3 denotemosla como la matriz P, y la matriz de cambio de la base \mathcal{C} a la base canónica denotermosla como la matriz Q. Ocupando 3 podemos demostrar sea $x \in \mathbb{R}^3$, entonces

$$\left. \begin{array}{l} x = Px' \\ x = Qx'' \end{array} \right\} \Rightarrow Px' = Qx'' \Rightarrow x'' = (Q^{-1}P)x'.$$

Con lo anterior, ya podemos calcular fácilmente la matriz de cambio de bases:

$$P = \begin{pmatrix} 3 & 1 & 0 \\ -1 & -6 & 5 \\ -1 & 3 & -1 \end{pmatrix}, \quad Q = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & -2 \\ 6 & -4 & 3 \end{pmatrix}.$$

Calculemos la matriz inversa de Q, utilizando la matriz aumentada.

$$\begin{pmatrix} 3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 2 & -2 & 0 & 1 & 0 \\ 6 & -4 & 3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \Rightarrow R_1 - R_2} \begin{pmatrix} 3 & 0 & 3 & 1 & -1 & 0 \\ 0 & 2 & -2 & 0 & 1 & 0 \\ R_3 \Rightarrow R_3 - 2R_1 & 0 & -8 & 1 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 \Rightarrow R_3 + 3R_2} \xrightarrow{R_3 \Rightarrow R_3 - 2R_1}$$

$$\begin{pmatrix} 3 & 0 & 3 & 1 & -1 & 0 \\ 0 & 2 & -2 & 0 & 1 & 0 \\ 0 & 0 & -7 & -2 & 4 & 1 \end{pmatrix} \xrightarrow{R_3 \Rightarrow -R_3/7} \begin{pmatrix} 3 & 0 & 3 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & \frac{2}{7} & -\frac{4}{7} & -\frac{1}{7} \end{pmatrix} \xrightarrow{R_2 \Rightarrow R_1/3 - R_3}$$

$$\begin{pmatrix} 1 & 0 & 0 & \frac{-6+7}{21} & \frac{12-7}{21} & \frac{1}{7} \\ 0 & 1 & 0 & \frac{2}{7} & \frac{-8+7}{14} & -\frac{1}{7} \\ 0 & 0 & 1 & \frac{2}{7} & -\frac{4}{7} & -\frac{1}{7} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & \frac{1}{21} & \frac{5}{21} & \frac{1}{7} \\ 0 & 1 & 0 & \frac{2}{7} & -\frac{1}{14} & -\frac{1}{7} \\ 0 & 0 & 1 & \frac{2}{7} & -\frac{4}{7} & -\frac{1}{7} \end{pmatrix} \Rightarrow Q^{-1} = \begin{pmatrix} \frac{1}{21} & \frac{5}{21} & \frac{1}{7} \\ \frac{2}{7} & -\frac{1}{14} & -\frac{1}{7} \\ \frac{2}{7} & -\frac{4}{7} & -\frac{1}{7} \end{pmatrix}$$

. Por lo tanto, la matriz de cambio de base de \mathcal{B} a \mathcal{C} es

$$Q^{-1}P = \begin{pmatrix} \frac{1}{21} & \frac{5}{21} & \frac{1}{7} \\ \frac{2}{7} & -\frac{1}{14} & -\frac{1}{7} \\ \frac{2}{7} & -\frac{4}{7} & -\frac{1}{7} \end{pmatrix} \begin{pmatrix} 3 & 1 & 0 \\ -1 & -6 & 5 \\ -1 & 3 & -1 \end{pmatrix} = \begin{pmatrix} \frac{3-5-3}{21} & \frac{1-30+9}{21} & \frac{25-3}{21} \\ \frac{12+1+2}{14} & \frac{4+6-6}{14} & \frac{-5+2}{14} \\ \frac{6+4+1}{7} & \frac{2+24-3}{7} & \frac{-20+1}{7} \end{pmatrix} = \begin{pmatrix} -\frac{5}{21} & -\frac{20}{21} & \frac{22}{21} \\ \frac{15}{14} & \frac{2}{7} & -\frac{3}{14} \\ \frac{11}{7} & \frac{23}{7} & -\frac{19}{7} \end{pmatrix}.$$

Ahora, utilizando el teorema 3 podemos calcular la matriz de cambio de base de \mathcal{C} a \mathcal{B} solamente calculando la inversad de la matriz de cambio de base de \mathcal{B} a \mathcal{C} , es decir,

$$\begin{pmatrix} -\frac{5}{21} & -\frac{20}{21} & \frac{22}{21} & 1 & 0 & 0 \\ \frac{15}{14} & \frac{2}{7} & -\frac{3}{14} & 0 & 1 & 0 \\ \frac{11}{7} & \frac{23}{7} & -\frac{19}{7} & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \Rightarrow -21R_1/5} \begin{pmatrix} 1 & 4 & -\frac{22}{5} & -\frac{21}{5} & 0 & 0 \\ \frac{15}{14} & \frac{2}{7} & -\frac{3}{14} & 0 & 1 & 0 \\ \frac{11}{7} & \frac{23}{7} & -\frac{19}{9} & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \Rightarrow R_2 - 15R_1/14} \xrightarrow{R_3 \Rightarrow R_3 - 11R_1/7}$$

$$\begin{pmatrix} 1 & 4 & -\frac{22}{5} & -\frac{21}{5} & 0 & 0 \\ 0 & -4 & -\frac{9}{2} & \frac{9}{2} & 1 & 0 \\ 0 & -3 & \frac{21}{5} & \frac{33}{5} & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \Rightarrow -R_2/4} \begin{pmatrix} 1 & 4 & -\frac{22}{5} & -\frac{21}{5} & 0 & 0 \\ 0 & 1 & -\frac{9}{8} & -\frac{9}{8} & -\frac{1}{4} & 0 \\ 0 & -3 & \frac{21}{5} & \frac{33}{5} & 0 & 1 \end{pmatrix} \xrightarrow{R_3 \Rightarrow R_3 + 3R_2}$$

$$\left(\begin{array}{ccc|c} 1 & 4 & -\frac{22}{5} & -\frac{21}{5} & 0 & 0 \\ 0 & 1 & -\frac{9}{8} & -\frac{9}{8} & -\frac{1}{4} & 0 \\ 0 & 0 & \frac{33}{40} & \frac{129}{40} & -\frac{3}{4} & 1 \end{array} \right) \stackrel{R_3 \Rightarrow 40R_3/33}{\longrightarrow} \left(\begin{array}{ccc|c} 1 & 4 & -\frac{22}{5} & -\frac{21}{5} & 0 & 0 \\ 0 & 1 & -\frac{9}{8} & -\frac{9}{8} & -\frac{1}{4} & 0 \\ 0 & 0 & 1 & \frac{43}{11} & -\frac{10}{11} & \frac{40}{33} \end{array} \right) \stackrel{R_1 \Rightarrow R_1 + 22R_3/5}{\longrightarrow} \stackrel{R_2 \Rightarrow R_2 + 8R_3/9}{\longrightarrow}$$

$$\begin{pmatrix} 1 & 4 & 0 & 13 & -4 & \frac{16}{3} \\ 0 & 1 & 0 & \frac{36}{11} & -\frac{14}{11} & \frac{15}{11} \\ 0 & 0 & 1 & \frac{43}{11} & -\frac{10}{11} & \frac{40}{33} \end{pmatrix} \xrightarrow{R_1 \Rightarrow R_1 - 4R_2} \begin{pmatrix} 1 & 0 & 0 & -\frac{1}{11} & \frac{12}{11} & -\frac{4}{33} \\ 0 & 1 & 0 & \frac{36}{11} & -\frac{14}{11} & \frac{15}{11} \\ 0 & 0 & 1 & \frac{43}{11} & -\frac{10}{11} & \frac{40}{33} \end{pmatrix}.$$

Es decir, la matriz de cambio de base de \mathcal{C} a \mathcal{B} es

$$\begin{pmatrix}
-\frac{1}{11} & \frac{12}{11} & -\frac{4}{33} \\
\frac{36}{11} & -\frac{14}{11} & \frac{15}{11} \\
\frac{43}{11} & -\frac{10}{11} & \frac{40}{33}
\end{pmatrix}.$$

Ejemplo númerico. Para determinar el vector (-2,7,1) en la base \mathcal{C} , tenemos que

$$x = Qx'' \Rightarrow Q^{-1}x = x''.$$

Entonces, el vector (-2,7,1) en la base \mathcal{C} se puede calcular como

$$(-2,7,1)_{\mathcal{C}} = \begin{pmatrix} \frac{1}{21} & \frac{5}{21} & \frac{1}{7} \\ \frac{2}{7} & -\frac{1}{14} & -\frac{1}{7} \\ \frac{2}{7} & -\frac{4}{7} & -\frac{1}{7} \end{pmatrix} \begin{pmatrix} -2 \\ 7 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{-2+35+3}{21} \\ \frac{-28-7-2}{14} \\ \frac{-4-28-1}{7} \end{pmatrix} = \begin{pmatrix} \frac{12}{7} \\ -\frac{17}{14} \\ -\frac{33}{7} \end{pmatrix}.$$

Por lo tanto, el vector en la base \mathcal{B} es

$$(-2,7,1)_{\mathcal{B}} = \begin{pmatrix} -\frac{1}{11} & \frac{12}{11} & -\frac{4}{33} \\ \frac{36}{11} & -\frac{14}{11} & \frac{15}{11} \\ \frac{43}{11} & -\frac{10}{11} & \frac{40}{33} \end{pmatrix} \begin{pmatrix} \frac{12}{7} \\ -\frac{17}{14} \\ -\frac{33}{7} \end{pmatrix} = \begin{pmatrix} \frac{-12(17)}{11(14)} + \frac{4(33)}{11(17)} + \frac{-15(33)}{11(14)} + \frac{-15(33)}{11(17)} \\ \frac{-12(43)}{11(17)} + \frac{-10(-17)}{11(14)} + \frac{-40(33)}{33(7)} \end{pmatrix} = \begin{pmatrix} -\frac{10}{11} \\ \frac{8}{11} \\ \frac{23}{11} \end{pmatrix}. \quad \blacksquare.$$

6. Demuestre que dados cualquier conjunto finito S de vectores en \mathbb{R}^n , existe una matriz A tal que $\mathcal{N}(A) = \text{gen}(S)$. De un ejemplo de esto en \mathbb{R}^3 y justifíquelo, es decir, encuentre un método para encontrar A.

RESPUESTA

Teorema: 4 Si V un espacio vectorial y $W \subset V$ un subespacio. Si dimW = dimV, entonces V = W.

Sea S el conjunto de vectores $\{s_1, s_2, \dots, s_r\}$, $s_j \in \mathbb{R}^n$, y sea $\{v_1, v_2, \dots v_k\}$ los vectores linealmente independiente del conjunto S, en donde todos los $v_j's$ pertenecen al conjunto de los vectores $\{s_1, s_2, \dots, s_r\}$ y $k \leq r$ (por construcción). Entonces ocupando el teorema 1 tenemos que

$$gen(S) = gen(\{v_1, v_2, \cdots, v_k\}).$$
 (3)

Ahora, sea A una matriz de tamaño de $n \times k$

$$A = ((a_1) \quad (a_2) \quad \cdots \quad (a_n)) = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1k} & a_{2k} & \cdots & a_{nk} \end{pmatrix}$$

tal que los vectores $\{v_1,v_2,\cdots,v_k\}$ son todas las posibles soluciones (independientes) de

$$Ax = 0$$
,

es decir, para cada vector $v_i = \begin{pmatrix} v_{i1} \\ v_{i2} \\ \vdots \\ v_{in} \end{pmatrix}$ se cumple que

$$Av_{i} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1k} & a_{2k} & \cdots & a_{nk} \end{pmatrix} \begin{pmatrix} v_{i1} \\ v_{i2} \\ \vdots \\ v_{in} \end{pmatrix} = \mathbf{0}.$$

Como se cumple para todos los vectores $\{v_1, v_2, \cdots, v_k\}$ es equivalente a decir que

$$A((v_1) (v_2) \cdots (v_k)) = 0 \Leftrightarrow$$

$$(A((v_1) (v_2) \cdots (v_k))^t = 0^t \Leftrightarrow$$

$$((v_1)^t (v_2)^t \cdots (v_n)^t) A^t = 0 \Leftrightarrow$$

$$\begin{pmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ v_{k1} & v_{k2} & \cdots & v_{kn} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

Por lo tanto, A existe y se puede escribir como el conjunto solución del sistema homogéneo formado por los vectores independientes $\{v_1, v_2, \cdots, v_k\}$. Ahora demostremos que $\mathcal{N}(A) = \text{gen}(S)$, para ello observemos que como $\{v_1, v_2, \cdots, v_k\}$ son soluciones del sistema homogéneo Ax = 0 esto implica que para cualquier $w = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k$ entonces

$$Aw = A(\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k) = A(\alpha_1 v_1) + A(\alpha_2 v_2) + \dots + A(\alpha_k v_k)$$

= $\alpha_1 (Av_1) + \alpha_2 (Av_2) + \dots + \alpha_k (Av_k) = 0.$

Entonces cualquier w que se pueda expresar como combinación lineal de los vectores $\{v_1, v_2, \dots, v_k\}$ este cumple que $w \in \mathcal{N}(A)$, entonces podemos decir que

$$gen(\{v_1, v_2, \cdots, v_k\}) \subset \mathcal{N}(A).$$

Y por construcción como $dim(\text{gen}(\{v_1, v_2, \cdots, v_k\}) = k \text{ y } dim(\mathcal{N}(A)) = k, \text{ es decir, } dim(\text{gen}(\{v_1, v_2, \cdots, v_k\}) = dim(\mathcal{N}(A)).$ Ocupando el teorema 4 podemos concluir que

$$gen(\{v_1, v_2, \cdots, v_k\}) = \mathcal{N}(A).$$

Y por lo tanto, ocupando el resultado anterior y 3

$$\mathcal{N}(A) = \operatorname{gen}(\{v_1, v_2, \cdots, v_k\}) = \operatorname{gen}(S) \Leftrightarrow \mathcal{N}(A) = \operatorname{gen}(S).$$

Ejemplo númerico. Sea $S = \left\{ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} \right\}$. Veamos si los vectores son linealmente indepen-

diente, para eso ocuparemos el teorema 1

$$\begin{pmatrix} 2 & 2 \\ -1 & -3 \\ 1 & 2 \end{pmatrix} \xrightarrow{R_2 \to 2R_2 + R_1} \begin{pmatrix} 2 & 2 \\ 0 & -4 \\ 0 & 4 \end{pmatrix} \xrightarrow{R_3 \to R_3 + R_2} \begin{pmatrix} 2 & 2 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Lo anterior implica que los vectores son linealmente independientes, y por lo tanto

 $dim\left(\operatorname{gen}\left\{\begin{pmatrix}2\\-1\\1\end{pmatrix},\begin{pmatrix}2\\-3\\2\end{pmatrix}\right\}\right) = 2. \text{ Ahora, encontremos la matriz } A \text{ tal que los vectores } \left\{\begin{pmatrix}2\\-1\\1\end{pmatrix},\begin{pmatrix}2\\-3\\2\end{pmatrix}\right\}$

son soluciones del sistema homogéneo Ax = 0. Utilizando la metodología que se describió anteriormente para encontrar las columnas de A, tenemos que encontrar las soluciones del sistema

$$\begin{pmatrix} 2 & -1 & 1 \\ 2 & -3 & 2 \end{pmatrix} \begin{pmatrix} a_{11} \\ a_{12} \\ a_{13} \end{pmatrix} = 0.$$

Ocupando reducción gaussiana resolvemos el sistema anterior

$$\begin{pmatrix} 2 & -1 & 1 \\ 2 & -3 & 2 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} 2 & -1 & 1 \\ 0 & -2 & 1 \end{pmatrix} \xrightarrow{R_2 \to -R_2/2} \begin{pmatrix} 2 & 0 & \frac{1}{2} \\ R_1 \to R_1 + R_2 \end{pmatrix} \xrightarrow{R_1 \to R_1/2} \begin{pmatrix} 1 & 0 & \frac{1}{4} \\ 0 & 1 & -\frac{1}{2} \end{pmatrix}.$$

Por lo tanto, sistema tiene la solución general $a = a_{13} \begin{pmatrix} -\frac{1}{4} \\ \frac{1}{2} \\ 1 \end{pmatrix}$, si hacemos $a_{13} = 1$, entonces una solu-

ción es $a = \begin{pmatrix} -\frac{1}{4} \\ \frac{1}{2} \\ 1 \end{pmatrix}$. Por lo tanto, la matriz A que tiene como solución los vectores $\left\{ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} \right\}$ en el sistema homogéneo Ax = 0 es

$$A = \begin{pmatrix} -\frac{1}{4} & \frac{1}{2} & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

Observemos que dim $(\mathcal{N}(A)) = 2 = dim \left(\operatorname{gen} \left\{ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} \right\} \right)$. Ahora, como cualquier vector que sea combinación lineal de les conjunts S, es decir $u = c \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ este implies que

que sea combinación lineal de los conjunto S, es decir, $w = \alpha \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$ esto implica que

$$\begin{pmatrix} -\frac{1}{4} & \frac{1}{2} & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} w = \begin{pmatrix} -\frac{1}{4} & \frac{1}{2} & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} \end{pmatrix} = \alpha \begin{pmatrix} -\frac{1}{4} & \frac{1}{2} & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} -\frac{1}{4} & \frac{1}{2} & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$$

= 0.

Entonces, cualquier $w \in \text{gen}\left\{ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} \right\} \Rightarrow w \in \mathcal{N}\left(\begin{pmatrix} -\frac{1}{4} & \frac{1}{2} & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right)$, y como dim $(\mathcal{N}(A)) = dim\left\{ \text{gen}\left\{ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} \right\} \right\}$ por el teorema 4 podemos concluir

$$\operatorname{gen}\left\{ \begin{pmatrix} 2\\-1\\1 \end{pmatrix}, \begin{pmatrix} 2\\-3\\2 \end{pmatrix} \right\} = \mathcal{N}\left(\begin{pmatrix} -\frac{1}{4} & \frac{1}{2} & 1\\0 & 0 & 0\\0 & 0 & 0 \end{pmatrix} \right). \quad \blacksquare.$$

7. Sea F la matriz por bloques

$$F = \begin{pmatrix} A & B \\ 0 & E \end{pmatrix}$$

Demuestre que $\rho(F) \ge \rho(A) + \rho(E)$. De un ejemplo donde la desigualdad sea estricta.

RESPUESTA

Recordemos los siguientes teoremas vistos en clase.

Teorema: 5 Si A es una matriz y B es una submatriz de A entonces

$$\rho(B) \le \rho(A).$$

Teorema: 6 Sea V un espacio vectorial y U, W son subespacios de V entonces

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W)$$

Teorema: 7 Sean A, B matrices con el mismo número de renglones. Entonces

$$C((A B)) = C(A) + C(B).$$

Ocupando el teorema 7 tenemos que

$$\mathcal{C} \begin{pmatrix} A & B \\ 0 & E \end{pmatrix} = \mathcal{C} \begin{pmatrix} A \\ 0 \end{pmatrix} + \mathcal{C} \begin{pmatrix} B \\ E \end{pmatrix}.$$

Ahora, ocupando el teorema 6 tenemos que el rango

$$\dim \left(\mathcal{C} \begin{pmatrix} A & B \\ 0 & E \end{pmatrix} \right) = \dim \left(\mathcal{C} \begin{pmatrix} A \\ 0 \end{pmatrix} \right) + \dim \left(\mathcal{C} \begin{pmatrix} B \\ E \end{pmatrix} \right) - \dim \left(\mathcal{C} \begin{pmatrix} A \\ 0 \end{pmatrix} \cap \begin{pmatrix} B \\ E \end{pmatrix} \right)$$

Por definición la dimensión de cualquier subespacio vectorial es mayor o igual a cero, entonces esto implica que lo anterior es

$$\dim \left(\mathcal{C} \begin{pmatrix} A & B \\ 0 & E \end{pmatrix} \right) \ge \dim \left(\mathcal{C} \begin{pmatrix} A \\ 0 \end{pmatrix} \right) + \dim \left(\mathcal{C} \begin{pmatrix} B \\ E \end{pmatrix} \right) = \rho \left(\begin{pmatrix} A \\ 0 \end{pmatrix} \right) + \rho \left(\begin{pmatrix} B \\ E \end{pmatrix} \right) \tag{4}$$

Ahora, ocupando el teorema 5 y como A es submatriz de $\begin{pmatrix} A \\ 0 \end{pmatrix}$ y también como E es submatriz de $\begin{pmatrix} B \\ E \end{pmatrix}$ podemos usar que

$$\rho\left(\begin{pmatrix} A \\ 0 \end{pmatrix}\right) \ge \rho(A) \quad \text{y} \quad \rho\left(\begin{pmatrix} B \\ E \end{pmatrix}\right) \ge \rho(E).$$

Por lo tanto, sustituyendo en 4 podemos concluir que

$$\rho(F) = \dim \left(\mathcal{C} \begin{pmatrix} A & B \\ 0 & E \end{pmatrix} \right) \ge \rho \left(\begin{pmatrix} A \\ 0 \end{pmatrix} \right) + \rho \left(\begin{pmatrix} B \\ E \end{pmatrix} \right) \ge \rho(A) + \rho(E), \Rightarrow \rho(F) \ge \rho(A) + \rho(E). \quad \blacksquare.$$

Ejemplo númerico Un ejemplo en donde se cumple la desigualdad, sea $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

 $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ y $E=\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$ entonces por definición del rango de una matriz podemos observar que

$$\rho(A) = 1$$
 y $\rho(E) = 2$.

Ahora calculemos el rango de la matriz $F = \begin{pmatrix} A & B \\ 0 & E \end{pmatrix}$, para eso calculemos la forma reducido la de matriz

$$\begin{pmatrix} A & B \\ 0 & E \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \xrightarrow{R_3 \to R_3 - R_2} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}.$$

Esto implica que $\rho(F) = 4$, y por lo que se muestra que $\rho(F) = 4 > 3 = \rho(A) + \rho(E)$, es decir, $\rho(F) > \rho(A) + \rho(E)$.

8. Sea A una matriz cuadrada $n \times n$. Si $\rho(A^k) = \rho(A^{k+1})$ para algún $k \ge 1$, demuestre que $\rho(A^{k+1}) = \rho(A^{k+2})$.

RESPUESTA

Se ocuparan los siguientes teoremas vistos en clase.

Teorema: 8 Sea A una matriz $m \times n$ y B una matriz $n \times p$. Entonces

$$\rho(AB) = \rho(B) - \dim(\mathcal{N}(A) \cap \mathcal{C}(B)).$$

Teorema: 9 Sean A y B matrices tales que AB está bien definido. Entonces

i) Si
$$\rho(AB) = \rho(A)$$
 entonces $C(AB) = C(A)$.

Por definición del problema tenemos que $\rho(A^k) = \rho(A^{k+1})$ para algún $k \geq 1$, por el teorema 9 podemos decir que $\mathcal{C}(A^{k+1}) = \mathcal{C}(A^k)$. Y ahora ocupando el teorema 8 y como sabemos que $\rho(A^k) = \rho(A^{k+1})$ tenemos que

$$\rho(A^{k+1}) = \rho(AA^k) = \rho(A^k) - \dim(\mathcal{N}(A) \cap \mathcal{C}(A^k)). \quad \Rightarrow \dim(\mathcal{N}(A) \cap \mathcal{C}(A^k)) = 0. \tag{5}$$

Ahora, ocupando nuevamente el teorema 8 y como sabemos que $\mathcal{C}(A^{k+1}) = \mathcal{C}(A^k)$ tenemos que

$$\rho(A^{k+2}) = \rho(AA^{k+1}) = \rho(A^{k+1}) - \dim(\mathcal{N}(A) \cap \mathcal{C}(A^{k+1}))$$
$$= \rho(A^{k+1}) - \dim(\mathcal{N}(A) \cap \mathcal{C}(A^k)).$$

Por lo tanto, como $dim(\mathcal{N}(A) \cap \mathcal{C}(A^k)) = 0$ (por 5) podemos concluir que

$$\rho(A^{k+2}) = \rho(A^{k+1}). \quad \blacksquare.$$

9. Sea A una matriz cuadrada $n \times n$. Demuestre que existe un $1 \le p \le n$ tal que

$$\rho(A) > \rho(A^2) > \dots > \rho(A^p) = \rho(A^{p+1}) = \dots$$

RESPUESTA

Recordemos el teorema visto en clase:

Teorema: 10 Sean A y B matrices tales que AB está bien definido. Entonces $\rho(AB) \leq \rho(A)$.

Teorema: 11 $\rho(A) = 0$ si y solo si A = 0.

Ocupando el teorema 10, tenemos que

$$\rho(A) \ge \rho(A^2), \quad \rho(A^2) \ge \rho(A^3), \cdots, \rho(A^p) \ge \rho(A^{p+1}),$$

es decir,

$$\rho(A) \ge \rho(A^2) \ge \rho(A^3) \ge \cdots \ge \rho(A^p) \ge \rho(A^{p+1}) \ge \cdots$$

Entonces, ocupando lo demostrado en el ejercicio 8, podemos decir que cuando existe la igualdad para un p se cumple para todos los siguientes, es decir,

$$\rho(A) > \rho(A^2) > \rho(A^3) > \dots > \rho(A^p) = \rho(A^{p+1}) = \dots$$

Ahora, demostramos que p (en donde se cumple la primera igualdad) debe de estar en el intervalo [1, n]. Si p = 1 solo se cumple solo cuando A = 0 (por 11). Ahora, probemos cuando p > 1. Lo demostraremos por contradicción, supongamos que p > n, es decir, la igualdad se cumple en la potencia p = n + k, $k \in \mathbb{N}$, es decir,

$$\rho(A) > \rho(A^2) > \rho(A^3) > \dots > \rho(A^n) > \dots = \rho(A^{n+k}) = \dots$$
, donde $k \in \mathbb{N}$.

Por la definición de rango 3 tenemos que el rango de cualquier matriz $B_{n\times n}$ es menor o igual al número de columnas y mayor o igual que cero, es decir, $n \geq \rho(B) \geq 0$. Ahora como la igualdad se dio en p = n + k significa que ocurrieron estrictamente n + k desigualdades, pero esto implicaría que $\rho(A^{n+k}) < 0$, ya que se como se cumple estrictamente las desigualdades tendríamos que en cada potencia el rango disminuirá respecto a la potencia anterior, y como el rango esta acotado a n y como ocurren n + k desigualdades estrictas el rango sería negativo, pero por definición esto no es posible (llegamos a una contradicción), por lo tanto, $p \leq n$. Es decir, podemos concluir que existe un p tal que $1 \leq p \leq n$ que satisface

$$\rho(A) > \rho(A^2) > \rho(A^3) > \dots > \rho(A^p) = \rho(A^{p+1}) = \dots$$
 ...

10. Dada

$$A = \begin{pmatrix} 1 & 0 & 2 & 2 \\ 2 & 4 & 16 & 1 \\ -3 & 1 & -3 & 1 \end{pmatrix}$$

encuentre su factorización por rango.

RESPUESTA

Recordemos que la factorización por rango.

Definición: 8 El rango de una matriz A, $m \times n$, es el mínimo entero para el cual podemos encontrar una matriz C de tamaño $m \times r$ y R de tamaño $r \times n$ tal que A = CR.

Entonces tenemos que encontrar las matrices C y R de tamaños $3 \times r$ y $r \times 4$ respectivamente. Para ello llevemos a la matriz A a su forma escalonada reducida:

$$\begin{pmatrix} 1 & 0 & 2 & 2 \\ 2 & 4 & 16 & 1 \\ -3 & 1 & -3 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \xrightarrow{R_1 \to R_3 + 3R_1} \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 4 & 12 & -3 \\ 0 & 1 & 3 & 7 \end{pmatrix} \xrightarrow{R_2 \to R_2 / 4} \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 3 & -3/4 \\ 0 & 1 & 3 & 7 \end{pmatrix} \xrightarrow{R_2 \to R_3 - R_2} \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 3 & -3/4 \\ 0 & 0 & 0 & 31/4 \end{pmatrix} \xrightarrow{R_3 \to 4R_3/31} \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 3 & -3/4 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \to R_1 - 2R_3} \xrightarrow{R_2 \to R_2 + 3R_3/4} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Por lo anterior tenemos que el rango de la matriz A es r=3. Entonces observando la matriz escalonada reducida de A y haciendo una matriz con las columnas de A tal que las nuevas columnas de esta matriz sean linealmente independientes por lo que si consideramos la matriz escalonada reducida nos damos cuenta que las columnas 1,2 y 4 son linealmente independientes, por lo que podemos concluir que

$$A = \begin{pmatrix} 1 & 0 & 2 & 2 \\ 2 & 4 & 16 & 1 \\ -3 & 1 & -3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 4 & 1 \\ -3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = CR. \quad \blacksquare.$$