2022 C1 Block Test Revision Package Solutions **Chapter 4 Functions**

1(i) AJC12/C1BT/Q9(a)

 $h: x \mapsto e^{(3-x)^2}, 0 \le x \le 3.$

Let
$$y = h(x) = e^{(3-x)^2}$$

 $x = 3 \pm \sqrt{\ln y}$

Since $0 \le x \le 3$, $x = 3 - \sqrt{\ln y}$

Domain of $h^{-1} = \text{Range of } h = \lceil 1, e^9 \rceil$

$$h^{-1}(x) = 3 - \sqrt{\ln x}, \quad 1 \le x \le e^9$$

1(ii)
$$h^{-1}h(x) = h h^{-1}(x) = x$$

Thus for $h^{-1}h(x) = h h^{-1}(x)$, $D_h = D_{h^{-1}} = R_h$

Since $D_h = [0,3]$ and $R_h = [1,e^9]$ i.e. $x \in [0,3] \cap [1,e^9] = [1,3]$

 $\therefore 1 \le x \le 3$

DHS10/ C1BT/O6 2(i)

Any horizontal line y = k, $k \in \mathbb{R}$ cuts the graph of y = f(x) at most once.

.. f is one-one, hence f-1 exists.

Let
$$y = \frac{x}{2-x}$$
 \Rightarrow $2y - xy = 1-x$ i.e. $x = \frac{y}{y-1}$

$$\therefore f^{-1}: x \mapsto \frac{2x-1}{x-1}, \quad x > 1 \qquad (D_{f^{-1}} = R_f = (1, \infty])$$

2(ii) Use
$$\frac{1-x}{2-x} = x$$
 or $\frac{2x-1}{x-1} = x$ or $\frac{1-x}{2-x} = \frac{2x-1}{x-1}$
 $x^2 - 3x + 1 = 0$
 $x = \frac{3 \pm \sqrt{5}}{2}$
 $= \frac{3+\sqrt{5}}{2}$ (rej $\frac{3-\sqrt{5}}{2}$ as $x > 1$)

2(iii) Since
$$R_f = (1, \infty) \subseteq [1, \infty) = D_g \Rightarrow gf$$
 exists.

$$(gf)^{-1}(x) = 3$$
$$x = gf(3)$$
$$= g(2)$$

The alternative method of finding $(gf)^{-1}(x)$ is too complex

3(a) NJC11/C1BT/Q11(b)&(c)

Let
$$h^{-1}\left(-\frac{1}{2}\right) = m$$

Then
$$h(m) = -\frac{1}{2}$$

$$h(m) = m(m^2 - m - 1) = -\frac{1}{2}$$

Using G.C.
$$m^3 - m^2 - m + \frac{1}{2} = 0$$
,

m = 0.403 or 1.45 (rejected $\because -\frac{1}{3} < x < 1$) or -0.855 (rejected $\because -\frac{1}{3} < x < 1$) m = 0.403 (to 3 s.f.)

3(b)
$$R_h = \left(-1, \frac{5}{27}\right)$$

$$D_s = (-2, \infty)$$

Since $R_h \subseteq D_g$, composite function gh exists.

$$gh(x) = g(x(x^2 - x - 1))$$

$$=\ln(x^3-x^2-x+2)$$

$$D_{gh} = D_h = (-\frac{1}{3}, 1)$$

Range of gh = $\left(0, \ln \frac{59}{27}\right)$

y = g(x)

4(i) VJC11/C1BT/Q7
Let
$$y = h(x) = ax + b$$

$$x = \frac{y - b}{a}$$

Since h^{-1} and g meet on the y axis

$$\therefore \mathbf{h}^{-1}(x) = \frac{x-b}{a}, x \in \mathbb{R}$$

4(ii)
$$h^{-1}(2) = g(2) \implies \frac{2-b}{a} = 3^2$$

 $\implies 2-b = 9a \quad \cdots (1)$

$$h^{-1}\left(0\right)=g\left(0\right)$$

$$\Rightarrow -\frac{b}{a} = 3^0$$

$$\Rightarrow -b = a$$
 ·····(2)

Solving (1) & (2),
$$a = \frac{1}{4}$$
 & $b = -\frac{1}{4}$

4(iii) Let
$$(gh)^{-1}(3) = k$$

 $\Rightarrow gh(k) = 3 \Rightarrow 3^{ak+b} = 3$

$$\Rightarrow ak + b = 1 \Rightarrow k = \frac{1 - b}{a} = \frac{1 + \frac{1}{4}}{\frac{1}{4}} = 5$$

Let
$$y = -x^3 + 1$$
.

$$x^3 = 1 - y$$

$$x = (1-y)^{\frac{1}{3}}$$

$$\boldsymbol{D}_{\boldsymbol{f}^{-1}} = \boldsymbol{R}_{\boldsymbol{f}} = \mathbb{R}$$

$$\therefore \mathbf{f}^{-1}: x \mapsto (1-x)^{\frac{1}{3}}, \ x \in \mathbb{R}$$

5(ii)
$$fg^{-1}(x) + 7 = 0$$

$$fg^{-1}(x) = -7$$

$$f(g^{-1}(x)) = -7$$

$$f^{-1}[f(g^{-1}(x))] = f^{-1}(-7)$$

$$g^{-1}(x) = (1-(-7))^{\frac{1}{3}} = 2$$

$$2 = g^{-1}(x)$$

$$x = g(2) = e^4 - 2$$

Without finding g-1

Student will need to take f⁻¹ on both sides

Note:
$$f^{-1}[f(x)] = x$$

TJC10/C1BT/Q9

For $-\frac{1}{2} \le x \le \frac{1}{2}$,

 $y = 2\sqrt{1 - 4x^2}$ $y^2 = 4\left(1 - 4x^2\right)$

 $\frac{y^2}{4} + \frac{x^2}{1} = 1$

Note that $y = 2\sqrt{1 - 4x^2}$ is the upper half of the ellipse

6(ib) $R_f = [0, 2]$

$$D_g = (-\infty, e)$$

Since $R_f \subseteq D_g$: gf exists

Range of gf = [ln(e-2), 1]

6(ii) For f^{-1} exists, f has to be one-one. Minimum value of c = 0.

- · Use equal scales on both axes
- Label the graphs (f must be 1-1 for f⁻¹ to exist)
- Show end points
- Show symmetry about line y=x
- Show intersection on the line y=x (if any)

7(a) AJC11/C1BT/Q11

$$h^{2}(x) = a + \frac{1}{a + \frac{1}{x - a} - a} = a + x - a = x$$

Must simplify!

 $h^{3}(x) = h(x) = a + \frac{1}{x-a}$

$$h^4(x) = x$$

For this domain, range remains unchanged at $[0, \infty)$

$$h^{7}(x) = h(x) = a + \frac{1}{x - a}$$

7(bi) domain of
$$f = (-1, 0]$$

Note that $f^{-1}f(x) = x$

Note that the graph of f^{-1} is a reflection of the graph of f in the line y = x

8(a) AJC10/C1BT/Q12

$$f(x) = \frac{1}{x^2}, x \in \mathbb{R}, x \neq 0 \text{ and } g(x) = e^{|x|}, x \in \mathbb{R}$$

$$R_f=\left(0,\infty\right)$$

$$D_g = \mathbb{R}$$
 ,

Since $R_f \subseteq D_g$: gf exists.

$$gf(x) = g\left[\frac{1}{x^2}\right] = e^{\left|\frac{1}{x^2}\right|} = e^{\frac{1}{x^2}}$$

$$\therefore gf(x) = e^{\frac{1}{x^2}}, x \in \mathbb{R}, x \neq 0$$

From the graph, $R_{gf} = (1, \infty)$

8(bi)

Since every horizontal line y = k cuts the graph of y = h(x) at most once, then h is one-one and thus, h^{-1} exists.

Graph of y = h(x) is symmetric about the line y = x.

 \Rightarrow Reflection of h (i.e. h⁻¹) in the line y = x is the same graph (as h)

$$\Rightarrow h^{-1} = h$$

8(bii)

Since
$$h^{-1} = h$$
, $h^{2}(x) = h^{-1}h(x) = x$.

$$h^{5}\left(-\frac{a}{2}\right) = h^{4}\left[h\left(-\frac{a}{2}\right)\right]$$
$$= h\left(-\frac{a}{2}\right)$$

$$x = \sqrt{a^2 - x^2}$$

$$x^2 = a^2 - x^2$$

$$2x^2 = a^2$$

$$x = \frac{a}{\sqrt{2}}$$

$$f(3x) = 9x^2 + 1$$

9(ii)
$$fg(x) = f(x-3) = (x-3)^{2} + 1$$

$$gf(x) = g(x^{2} + 1) = x^{2} - 2$$

$$|fg(x) - gf(x)| \le \sqrt{3}x + 4$$

$$|x^{2} - 6x + 9 + 1 - x^{2} + 2| \le \sqrt{3}x + 4$$

$$|-6x + 12| \le \sqrt{3}x + 4$$

$$-\sqrt{3}x - 4 \le -6x + 12 \le \sqrt{3}x + 4$$

9(iii)
$$\frac{5x-8}{x-1} = x$$

$$5x-8 = x^2 - x$$

$$x^2 - 6x + 8 = 0$$

$$(x-2)(x-4) = 0$$

Since
$$x > 3$$
, $x = 4$

9(iv)
$$y = \frac{5x-8}{x-1}$$

 $xy - y = 5x-8$
 $x = \frac{y-8}{y-5}$
 $\therefore h^{-1}(x) = \frac{x-8}{x-5}, \frac{7}{2} < x < 5$

Remember to include domain

9(iv)

10(i) RI11/C1BTP1/Q9

$$f(x) = \begin{cases} (x-2)^2 + 1 & \text{for } x \in \mathbb{R}, \ x \le 2, \\ x^2 - 3 & \text{for } x \in \mathbb{R}, \ x > 2. \end{cases}$$

10(ii)
$$g(x) = \frac{3x+4}{x+1}$$
 for $x \in \mathbb{R}, x \ge 0$.

$$R_g = (3,4]$$

$$fg(x) = \left(\frac{3x+4}{x+1}\right)^2 - 3$$

$$fg(x) = \frac{6x^2 + 18x + 13}{x^2 + 2x + 1}$$

$$fg(x) = \frac{6x^2 + 18x + 13}{x^2 + 2x + 1}$$
$$fg(x) = \frac{6x^2 + 18x + 13}{(x+1)^2}$$

10(iii) Horizontal asymptote is
$$y = 6$$

Note: Since $x \ge 0$, there is no vertical asymptote.

10(iv) Largest value of
$$k$$
 is 2.

10(v)
$$y = (x-2)^2 + 1$$

 $x = 2 \pm \sqrt{y-1}$
Since $x \le 2 \implies x = 2 - \sqrt{y-1}$
i.e. $h^{-1}(x) = 2 - \sqrt{x-1}$
 $h^{-1}: x \to 2 - \sqrt{x-1}, \quad x \in \mathbb{R}, x \ge 1$.

$$f(x) = \begin{cases} 5 - x^2 & \text{for } 0 < x \le 2, \\ 2x - 3 & \text{for } 2 < x \le 4. \end{cases}$$

$$f(5) + f(2015) = f(1) + f(3)$$

= $(5-1^2) + (2(3)-3)$
= 7

12(i) VJC15/C1BT/Q2

12(ii)

For
$$0 \le x < 1$$
, $\cos^{-1} x = \frac{\pi}{3} \Rightarrow x = \frac{1}{2}$

For
$$1 \le x < 2$$
,, $\frac{\pi}{2}x - \frac{\pi}{2} = \frac{\pi}{3} \Rightarrow x = \frac{5}{3}$

From the graph,

$$0 \le x < \frac{1}{2}$$
 or $\frac{5}{3} < x < \frac{5}{2}$ or $\frac{11}{3} < x \le 4$.

13(i) CJC16/C1BT/Q11

$$R_g = [-4, \infty)$$

$$D_f = (-5, \infty)$$

Since $R_g \subseteq D_f$, fg exists.

$$fg(x) = f(x^{2} - 4)$$

$$= \ln\left[\left(x^{2} - 4\right)^{2} + 2\left(x^{2} - 4\right) + 5\right]$$

$$= \ln\left(x^{4} - 8x^{2} + 16 + 2x^{2} - 8 + 5\right)$$

$$= \ln\left(x^{4} - 6x^{2} + 13\right)$$

$$D_{fg} = D_g = \left(-\infty, \infty\right)$$

To find range of fg:

Mapping $R_g = [-4, \infty)$ as domain for f

Consider $x \ge -4$ in the graph of y = f(x), $R_{fg} = [1.39, \infty)$

13(ii)

Since the horizontal line y=2 cuts the graph twice, f is not a one-one function, thus the inverse does not exist.

Least value of k = -1. 13(iii)

13(iv) Let
$$y = f(x) \Rightarrow f^{-1}(y) = x$$

 $y = \ln(x^2 + 2x + 5)$
 $e^y = x^2 + 2x + 5$
 $e^y = (x+1)^2 + 4$
 $(x+1)^2 = e^y - 4$
 $x+1 = \pm \sqrt{e^y - 4}$

$$x = -1 + \sqrt{e^y - 4}$$
 or $-1 - \sqrt{e^y - 4}$ (rej.: $x > -1$)

$$f^{-1}(x) = -1 + \sqrt{e^x - 4}$$

D = R = (1.39 m)

$$D_{f^{-1}}=R_f=\left(1.39,\infty\right)$$

13(v)

14(i) TJC16/C1BT/Q11

Let
$$y = f(x) = 1 + \sqrt{2 - x}$$
, $0 \le x \le 2$

$$\Rightarrow y - 1 = \sqrt{2 - x}$$

$$\Rightarrow 2 - x = (y - 1)^{2}$$

$$\Rightarrow x = 2 - (y - 1)^{2}$$

Therefore, $f^{-1}(x) = 2 - (x-1)^2$

$$\mathbf{D}_{\mathbf{f}^{-1}} = \mathbf{R}_{\mathbf{f}} = \left[1, 1 + \sqrt{2} \right]$$

14(ii)

For $f(x)-f^{-1}(x)=0 \Rightarrow f(x)=f^{-1}(x)$

Consider the graph of y = f(x) and the graph of $y = f^{-1}(x)$ on the same diagram.

From diagram, there are three intersections, hence $f(x) - f^{-1}(x) = 0$ has 3 real roots.

Consider $f^{-1}(x) = x$ for one of the intersection:

$$f^{-1}(x) = x \Rightarrow 2 - (x-1)^2 = x$$

$$\Rightarrow x^2 - x - 1 = 0$$

$$\Rightarrow x = \frac{1 + \sqrt{5}}{2} \text{ or } x = \frac{1 - \sqrt{5}}{2}$$

Since $x \in [1, 1 + \sqrt{2}]$, $\therefore x = \frac{1 + \sqrt{5}}{2}$ (reject $x = \frac{1 - \sqrt{5}}{2}$)

The roots of the equation are x = 1, $x = \frac{1 + \sqrt{5}}{2}$ or x = 2

$$R_{\rm f} = \left[1, 1 + \sqrt{2}\right]$$

$$D_{\mathrm{g}}=\!\left[0,\infty\right)$$

Since $R_{\rm f} \subset D_{\rm g}$, the composite function gf exists. (Shown)

$$gf(x) = g(1 + \sqrt{2-x}) = a^{-1-\sqrt{2-x}}$$

$$D_{\rm gf} = D_{\rm f} = [0, 2]$$

Thus, gf: $x \to a^{-1-\sqrt{2-x}}$, $x \in \mathbb{R}$, $0 \le x \le 2$

14(iv)

Thus, $R_{gf} = \left[a^{-1-\sqrt{2}}, a^{-1} \right]$

15(i)

NJC18/C1BT/Q5

From the graph, $R_f = (-\infty, e]$

15(ii)

The line y = 1 cuts the graph of f twice so f is not a one-one function and its inverse does not exist.

15(iii)

k = 0

15(iv)

Let y = x + 2 for x < -1, the range for this piece is $(-\infty, 1)$.

x = y - 2

 $g^{-1}(x) = x - 2$ for x < 1.

Let $y = e^{1-x^2}$ for $-1 \le x \le 0$, the range for this piece is [1, e].

$$1 - x^2 = \ln y$$

$$x^2 = 1 - \ln y$$

 $x = \pm \sqrt{1 - \ln y}$ (reject positive as $-1 \le x \le 0$)

$$g^{-1}(x) = -\sqrt{1 - \ln x}$$
 for $1 \le x \le e$.

$$g: x \mapsto \begin{cases} x-2 & x < 1, \\ -\sqrt{1-\ln x} & 1 \le x \le e. \end{cases}$$

15(v)

16(i) VJC20/C1BT/Q5

$$f(2)=0, f(4)=f(2)+1=1$$

16(ii)

$$R_g = [0,3)$$

$$D_f = (0, 4]$$

Since $0 \in \mathbb{R}_g$ but $0 \notin \mathbb{D}_f$, hence $\mathbb{R}_g \nsubseteq \mathbb{D}_f$, fg does not exist.