Model Selection

15 Today: Non-Bayestan methods.

too simple

Core challenge in ML: how to generalize? -> want to predict well in the future!

mostly focus on how to identify if a model will generalize (rest of course: ways to generalize)

@ Examples:

HW: sunspok is Republicans in Senate simple case:

- suppose we have N=8 data points
- data: 2n: 2000 dims, all binary all 2nd ~ P P = 0.5
 - yn = ×n1 (perfect predictor of y given x)

- What is the probability that $y_n = x_{n2}$ for all n in [...N (N=8): $(\frac{1}{2})^N = (\frac{1}{256})$
- -What is the probability that there is at least one spunious perfect correlation? $(d \neq 1)$

$$Pr(\frac{\text{at (east}}{\text{one}}) = 1 - Pr(\frac{\text{no}}{\text{spurious}})^{-1} = 1 - (\frac{255}{256})^{1999} \approx 1$$

What can we do? Today: statistical techniques, but I always inspect for plausibility

2) this will not discover issues due to confounds retait

(assume test data is like train data)

■ Validation / Cross-Validation

ALLOW / OLOS		
train [V	natidation,	test
train	hoose a hodel	evaluate the best model from validation

What if we want of mant confidence intervals?

(And not enough data)

5 cross-validation:

Lidation: test

lets consider all the different for we could

train. 0.95 train: 0,72

1) Will adding more data help for model A? model B?

- 2) Should we have a validation split in our train?
- 3) Which model will have stable or similar results if we then on another dataset to train.