PROJECT REPORT

IIIT NAGPUR

VISHAL PATEL (BT18ECE042)

TOPIC = 2BIT-BINARY SUBTRACTOR

SUBJECT-CMOS

Half Subtractor: Circuit

LOGIC GATE

Truth Table

First Bit	Second Bit	Difference (EX-OR Out)	Borrow (NAND Out)
0	0	0	0

1	0	1	0
0	1	1	1
1	1	0	0

Applications of Half Subtractor

The applications of half subtractor include the following.

- Half subtractor is used to reduce the force of audio or radio signals
- It can be used in amplifier to reduce the sound distortion
- Half subtractor is used in ALU
- It can be used to increase and decrease operators and also calculates the addresses
- Half subtractor is used to subtract the least significant column numbers. For the subtraction of multi-digit numbers, it can be used for the LSB.

Require only 3 gates

1 NOT(inverter)

2 AND(NAND+INVERTER)

3 XOR

1:INVERTER

2: AND (NAND+INVERTER)

Output of NAND given to inverter and you get AND logic;

DIFFERENCE =XOR OF A AND B; BORROW =NOT A AND B

3: XOR Gate

MICROWIND DESIGN

INVERTER DESIGN FOR IMPLEMENT AND and XOR LOGIC

INVERTER

NAND DESIGN

XOR DESIGN

PSPICE CODE:

- 3 PART
- 1 INVERTER
- 2 NAND
- 3 XOR

DESIGN AS A SUB CIRCUIT

1. IMAGE 1 FOR INVERTER

CODE OF INVERTER:

Take above image as reference to write below code:

.subckt inverter 2 3 1 mn 3 2 0 0 mod1 l=1u w=100u mp 3 2 1 1 mod2 l=1u w=100u .model mod1 nmos level=54 version=4.7 .model mod2 pmos level=54 version=4.7 .ends

2 = from where input have taken;

3 =return output to which node;

1 =location of vdd;

2. NAND

Code for nand gate

.subckt nand 2 3 4 1 mn1 5 3 0 0 mod1 l=1u w =100u mn2 4 2 5 5 mod1 l=1u w =100u mp1 4 2 1 1 mod2 l=1u w=100u mp2 4 3 1 1 mod2 l=1u w=100u

.model mod1 nmos level=54 version=4.7 .model mod2 pmos level=54 version=4.7 .ends

- 2 =first input which we want
- 3 =second input which we want
- 4 =output where we want
- 1 =location of ground

3.XOR

CODE FOR XOR

.subckt xor 1 2 3 4 6 10 mn1 5 3 0 0 mod1 l=1u w =100u mn2 5 2 0 0 mod1 l=1u w =100u mn3 6 1 5 5 mod1 l=1u w =100u mn4 6 4 5 5 mod1 l=1u w =100u mp1 7 1 10 10 mod2 l=1u w =100u mp2 6 4 7 7 mod2 l=1u w =100u mp3 6 2 8 8 mod2 l=1u w =100u mp4 8 3 10 10 mod2 l=1u w =100u

.model mod1 nmos level=54 version=4.7 .model mod2 pmos level=54 version=4.7 .ends

1=INPUT A
2=INPUT B
3 =INPUT NOT A
4=INPUT NOT B

6=FOR OUTPUT 10 =LOCATION OF GROUND

FINAL CODE

Project HALF SUBTRACTOR

.subckt inverter 2 3 1 mn 3 2 0 0 mod1 l=1u w=100u mp 3 2 1 1 mod2 l=1u w=100u .model mod1 nmos level=54 version=4.7 .model mod2 pmos level=54 version=4.7 .ends

.subckt nand 2 3 4 1 mn1 5 3 0 0 mod1 l=1u w =100u mn2 4 2 5 5 mod1 l=1u w =100u mp1 4 2 1 1 mod2 l=1u w=100u mp2 4 3 1 1 mod2 l=1u w=100u

.model mod1 nmos level=54 version=4.7 .model mod2 pmos level=54 version=4.7 .ends

.subckt xor 1 2 3 4 6 10 mn1 5 3 0 0 mod1 l=1u w =100u mn2 5 2 0 0 mod1 l=1u w =100u mn3 6 1 5 5 mod1 l=1u w =100u mn4 6 4 5 5 mod1 l=1u w =100u

```
mp1 7 1 10 10 mod2 l=1u w =100u
mp2 6 4 7 7 mod2 l=1u w =100u
mp3 6 2 8 8 mod2 l=1u w =100u
mp4 8 3 10 10 mod2 l=1u w =100u
```

.model mod1 nmos level=54 version=4.7 .model mod2 pmos level=54 version=4.7 .ends

Vdd 10 0 dc 5v

va 12 0 pulse(0 5 0 0 0 10ms 20ms) \$ input a vb 13 0 pulse(0 5 0 0 0 5ms 20ms) \$ input b xinv_a 12 14 10 inverter \$ input not a xinv_b 13 15 10 inverter \$ input not b

xxor_output_difference 12 13 14 15 16 10 xor xborrow 12 15 17 10 nand

.tran 0.1ms 100ms .control run plot v(12) V(13) V(16) V(17) .endc .end

OUTPUT:

