MATEMATIKA DISKRIT 2: PERMUTASI

AYU LATIFAH, ST., MT.

PERMUTASI

Sebuah bijeksi dari sebuah himpunan A ke dirinya sendiri disebut sebuah permutasi dari A. Jika $A = \{a_1, a_2, ..., a_n\}$ sebuah himpunan hingga dan p adalah sebuah bijeksi pada A, kita daftar elemen-elemen A dan nilai-nilai fungsi $p(a_1), p(a_2), ..., p(a_n)$ yang bersesuaian dalam bentuk berikut.

$$\begin{pmatrix} a_1 & a_2 & \dots & a_n \\ p(a_1) & p(a_2) & \dots & p(a_n) \end{pmatrix}$$

PERMUTASI

Amati bahwa bentuk di atas menggambarkan secara lengkap p karena dia memberikan nilai p untuk setiap elemen A.

Sering dituliskan dalam bentuk,

$$p = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ p(a_1) & p(a_2) & \dots & p(a_n) \end{pmatrix}$$

Jadi jika p adalah sebuah permutasi dari sebuah himpunan hingga $A = \{a_1, a_2, ..., a_n\}$, maka sekuen $p(a_1), p(a_2), ..., p(a_n)$ adalah hanya penyusunan kembali dari elemen-elemen A.

Ambil $A = \{1, 2, 3\}$. Maka seluruh permutasi dari A adalah

$$1_A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \qquad p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \qquad p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix},$$

$$p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix},$$

$$p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \qquad p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \qquad p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}.$$

$$p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Dengan menggunakan permutasi-permutasi di atas, cari p_4^{-1} dan $p_3 \circ p_2$.

Jawab.

Dengan melihat p_4 sebagai sebuah fungsi, diperoleh $p_4 = \{(1,3), (2,1), (3,2)\}.$

Maka
$$p_4^{-1} = \{(3, 1), (1, 2), (2, 3)\} = \{(1, 2), (2, 3), (3, 1)\}$$

Jadi

$$p_4^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = p_3$$

Fungsi p_2 memetakan I ke 2 dan p_3 memetakan 2 ke 3, sehingga $p_3 \circ p_2$ memetakan I ke 3. Selanjutnya, p_2 memetakan 2 ke I dan p_3 memetakan I ke 2, sehingga $p_3 \circ p_2$ memetakan 2 ke 2. Akhirnya, p_2 memetakan 3 ke 3 dan p_3 memetakan 3 ke I, sehingga $p_3 \circ p_2$ memetakan 3 ke I. Jadi

$$p_3 \circ p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = p_5.$$

Komposisi dari dua permutasi adalah permutasi lain, biasa disebut **product** dari permutasi-permutasi tersebut.

ILUSTRASI PENCARIAN PRODUCT PERMUTASI

$$p_3 \circ p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

TEOREMA

Jika $A = \{a_1, a_2, ..., a_n\}$ himpunan dengan n elemen, maka ada $n! = n \cdot (n - 1) \dots 2 \cdot 1$ permutasi dari A.

PERMUTASI SIKLIK

Ambil $b_1, b_2, ..., b_r$ adalah r elemen yang berbeda dari himpunan $A = \{a_1, a_2, ..., a_n\}$. Permutasi $p: A \rightarrow A$ didefinisikan oleh

$$p(b_1) = b_2$$
 $p(b_2) = b_3$

:

 $p(b_{r-1}) = b_r$
 $p(b_r) = b_1$
 $p(x) = x \text{ jika } x \in A, x \notin \{b_1, b_2, ..., b_r\}$

disebut **cyclic permutation** dengan panjang r, atau **cycle** dengan panjang r, dan dituliskan dengan $(b_1, b_2, ..., b_r)$.

Ambil $A = \{1, 2, 3, 4, 5\}$. Siklus (cycle) (1, 3, 5) menyatakan permutasi

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{pmatrix}.$$

Amati, jika $p = (b_1, b_2, ..., b_r)$ sebuah siklus dengan panjang r, maka p dapat juga dituliskan mulai dengan sembarang b_i , $1 \le i \le r$, dan bergerak ke kanan. Jadi,

$$(1,3,5) = (3,5,1) = (5,1,3).$$

Catat bahwa notasi untuk sebuah siklus tidak mengindikasikan jumlah elemen dalam himpunan A.

Jadi siklus (3, 2, 1, 4) boleh jadi sebuah permutasi dari himpunan $\{1, 2, 3, 4\}$ atau dari himpunan $\{1, 2, 3, 4, 5, 6, 7, 8\}$.

Perlu disebutkan secara eksplisit himpunan dimana siklus tersebut didefinisikan.

Mengikuti dari definisi bahwa sebuah siklus dengan panjang I pada sebuah himpunan A, jika dan hanya jika dia adalah permutasi identitas I_A .

Karena siklus adalah permutasi, dapat dibentuk product mereka, dan product dari dua siklus tidak harus sebuah siklus.

Ambil $A = \{1, 2, 3, 4, 5, 6\}$. Hitung $(4, 1, 3, 5) \circ (5, 6, 3)$ dan $(5, 6, 3) \circ (4, 1, 3, 5)$. Jawab.

$$(4,1,3,5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 1 & 4 & 6 \end{pmatrix}$$

dan

$$(5,6,3) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 5 & 4 & 6 & 3 \end{pmatrix}.$$

$$\mathsf{Maka}(4,1,3,5) \circ (5,6,3) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 1 & 4 & 6 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 5 & 4 & 6 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 1 & 6 & 5 \end{pmatrix}$$

$$\mathsf{dan} \quad (5,6,3) \circ (4,1,3,5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 5 & 4 & 6 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 1 & 4 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 6 & 1 & 4 & 3 \end{pmatrix}.$$

Terlihat $(4, 1, 3, 5) \circ (5, 6, 3) \neq (5, 6, 3) \circ (4, 1, 3, 5)$.

DISJOINT CYCLES

Dua siklus dari himpunan A dikatakan sebagai **saling lepas** (**disjoint**) jika tidak ada elemen A yang muncul di kedua siklus tersebut sekaligus.

Jika $p_1 = (a_1, a_2, ..., a_r)$ dan $p_2 = (b_1, b_2, ..., b_s)$ adalah siklus-siklus disjoint pada A, maka $p_1 \circ p_2 = p_2 \circ p_1$

Ambil $A = \{1, 2, 3, 4, 5, 6\}.$

Maka siklus (1, 2, 5) dan (3, 4, 6) adalah disjoint, sedangkan siklus (1, 2, 5) dan (2, 5, 6) tidak.

TEOREMA

Sebuah permutasi dari sebuah himpunan hingga yang bukan permutasi identitas atau sebuah siklus dapat dituliskan sebagai sebuah product dari disjoint cycle dengan panjang ≥ 2 .

Tulis permutasi

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 6 & 5 & 2 & 1 & 8 & 7 \end{pmatrix}$$

dari himpunan $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ sebagai product dari disjoint cycles.

Jawab.

Mulai dengan I, diperoleh bahwa p(1) = 1, p(3) = 6, dan p(6), sehingga didapat cycle (1, 3, 6).

Selanjutnya, pilih 2 (elemen pertama pada A yang tidak muncul pada cycle sebelumnya), diperoleh p(2) = 4, p(4) = 5, dan p(5) = 2. Sehingga didapatkan cycle (2, 4, 5).

Sekarang pilih 7, elemen pertama dari A yang tidak muncul pada cycle sebelumnya. Karena p(7) = 8 dan p(8) = 7, diperoleh cycle (7, 8).

Maka, p dapat dituliskan sebagai product dari disjoint cycles,

$$p = (7, 8) \circ (2, 4, 5) \circ (1, 3, 6).$$

Mudah ditunjukkan, jika sebuah permutasi dituliskan sebagai sebuah product dari disjoint cycles, product tersebut adalah unik kecuali urutan dari cycle-cycle tersebut.

PERMUTASI GENAP & PERMUTASI GANJIL

Cycle dengan panjang 2 disebut sebuah transposition.

Transposisi adalah sebuah cycle $p = (a_i, a_j)$, dengan $p(a_i) = a_j$ dan $p(a_j) = a_i$.

Jika $p = (a_i, a_i)$ adalah sebuah transposition dari A, maka $p \circ p = I_A$, permutasi identitas dari A.

Setiap cycle dapat dituliskan sebagai product dari transposisi.

Misal,
$$(1, 2, 3, 4, 5) = (1, 5) \circ (1, 4) \circ (1, 3) \circ (1, 2)$$
.

COROLLARY

Setiap permutasi dari sebuah himpunan hingga dengan sekurangnya dua elemen dapat dituliskan sebagai sebuah perkalian dari transposisi-transposisi.

Amati bahwa transposisi-transposisi pada corollary di atas tidak perlu disjoint.

Tuliskan permutasi

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 6 & 5 & 2 & 1 & 8 & 7 \end{pmatrix}$$

sebagai sebuah product dari transposisi.

Jawab.

Telah diperoleh $p = (7, 8) \circ (2, 4, 5) \circ (1, 3, 6)$.

Karena dapat dituliskan

$$(1,3,6) = (1,6) \circ (1,3)$$

$$(2, 4, 5) = (2, 5) \circ (2, 4),$$

Diperoleh

$$p = (7,8) \circ (2,5) \circ (2,4) \circ (1,6) \circ (1,3).$$

Telah diamati di atas bahwa setiap cycle dapat dituliskan sebagai perkalian dari transposisitransposisi.

Hal ini dapat dilakukan dalam berbagai cara yang berbeda.

Misal,

$$(1,2,3) = (1,3) \circ (1,2)$$

$$= ((2,1) \circ (2,3)$$

$$= (1,3) \circ (3,1) \circ (1,3) \circ (1,2) \circ (3,2) \circ (2,3)$$

Membawa bahwa setiap permutasi pada sebuah himpunan dengan dua atau lebih elemen dapat dituliskan sebagai sebuah perkalian transposisi-transposisi dalam berbagai cara.

TEOREMA

Jika sebuah permutasi dari sebuah himpunan hingga dapat dituliskan sebagai sebuah perkalian dari sejumlah genap transposisi, maka permutasi tersebut **tidak akan pernah dapat** dituliskan sebagai sebuah perkalian dari sejumlah ganjil transposisi, dan sebaliknya.

Sebuah permutasi dari sebuah himpunan hingga disebut **genap** jika dia dapat dituliskan sebagai sebuah perkalian dari sejumlah genap transposisi, dan disebut **ganjil** jika dia dapat dituliskan sebagai sebuah perkalian dari sejumlah ganjil transposisi.

Apakah permutasi

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 7 & 6 & 3 & 1 \end{pmatrix}$$

genap atau ganjil?

Jawab

Pertama tuliskan p sebagai perkalian dari disjoint cycle, diperoleh

$$p = (3, 5, 6) \circ (1, 2, 4, 7).$$

Selanjutnya, tuliskan masing-masing cycle sebagai perkalian dari transposisi-transposisi.

$$(1,2,4,7)$$
 = $(1,7) \circ (1,4) \circ (1,2)$

$$(3,5,6) = (3,6) \circ (3,5).$$

Maka

$$p = (3,6) \circ (3,5) \circ (1,7) \circ (1,4) \circ (1,2).$$

Karena p adalah sebuah perkalian dari sejumlah ganjil transposisi, dia adalah sebuah permutasi ganjil.

Mengikuti dari definisi permutasi genap dan ganjil, maka

- (a) Perkalian dari dua permutasi genap adalah genap.
- (b) Perkalian dari dua permutasi ganjil adalah ganjil.
- (c) Perkalian dari sebuah permutasi genap dan sebuah permutasi ganjil adalah permutasi ganjil.

TEOREMA

Ambil $A = \{a_1, a_2, ..., a_n\}$ sebuah himpunan hingga dengan n elemen, $n \ge 2$. Terdapat n!/2 permutasi genap dan n!/2 permutasi ganjil.

SEKIAN DANTERIMA KASIH