16/11/2017 HackerRank

Points: 25 Rank: 183204

Dashboard > Data Structures > Advanced > Ticket to Ride

Ticket to Ride **■**

Problem Submissions

Leaderboard

Discussions

Editorial 🖴

Simon received the board game Ticket to Ride as a birthday present. After playing it with his friends, he decides to come up with a strategy for the game.

There are n cities on the map and n-1 road plans. Each road plan consists of the following:

- Two cities which can be directly connected by a road.
- The length of the proposed road.

The entire road plan is designed in such a way that if one builds all the roads, it will be possible to travel between any pair of cities.

A ticket enables you to travel between two different cities. There are *m* tickets, and each ticket has a cost associated with it. A ticket is considered to be *useful* if there is a path between those cities.

Simon wants to choose two cities, u and v, and build a minimal number of roads so that they form a simple path between them. Let s_t be the sum of costs of all useful tickets and s_r be the sum of lengths of all the roads Simon builds. The profit for pair (u, v) is defined as $s_t - s_r$. Note that v and v are not necessarily unique and may be the same cities.

Given n road plans and m ticket prices, help Simon by printing the value of his maximum possible profit on a new line.

Input Format

The first line contains single positive integer, n, denoting the number of cities.

Each of the n-1 subsequent lines contains three space-separated integers describing the respective values of u, v, and l for a road plan, where $1 \le u$, $v \le n$, and $u \ne v$. Here, u and v are two cities that the road plan proposes to connect and l is the length of the proposed road.

The next line contains a single positive integer, m, denoting the number of tickets.

Each of the m subsequent lines contains three space-separated integers describing the respective values of u, v, and c for a ticket from city u to city v (where c is the cost of the ticket).

Constraints

- $1 \le n \le 2 \times 10^5$
- $1 \le m \le 10^5$
- $1 \le l, c \le 10^9$

Output Format

Print a single integer denoting the the maximum profit Simon can make.

Time Limits

- 6 seconds for Java and C#.
- Please refer to our Environment page to see time limits for other languages.

Sample Input

16/11/2017 HackerRank

```
7
1 2 1
1 3 1
1 4 4
4 5 1
4 6 1
4 7 1
5
5 7 3
3 6 2
3 4 10
2 7 15
1 6 7
```

Sample Output

13

Explanation

Simon can maximize his profit by choosing the pair (3,6).

The roads on the path between them are (3,1), (1,4), and (4,6). The total road length is $s_r = 1 + 4 + 1 = 6$.

The useful tickets are (3,6), (3,4), and (1,6). The total ticket cost is $s_t=2+10+7=19$.

The profit is $s_t - s_r = 19 - 6 = 13$.

f in Submissions:<u>42</u> Max Score:100 Difficulty: Expert Rate This Challenge: ☆☆☆☆☆

```
Current Buffer (saved locally, editable) & 49
                                                                                          Java 7
1 ▼ import java.io.*;
2 import java.util.*;
   import java.text.*;
3
    import java.math.*;
   import java.util.regex.*;
6
7 ▼ public class Solution {
8
        public static void main(String[] args) {
9 ▼
10 ▼
            /* Enter your code here. Read input from STDIN. Print output to STDOUT. Your class should be named Solution. */
11
12
   }
13
                                                                                                                    Line: 1 Col: 1
```

16/11/2017 HackerRank

<u> </u>	Test against custom input	Run Code	Submit Code

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature