Word 2vec

- word2vec architecture
- subsampling
- negative sampling
- GLOVE
- FastText
- ELMO

Seminar - ranking of messages

Lecture 1. Milana Shkhanukova, 2023

Recap

• В чем был главный недостаток TF-IDF и One-Hot encoding?

N-gram embeddings, CBOW

Problem? Our words appear together, it matters.

Guess the word by its context, CBOW – Continuous Bag-of-Words

Continuous - continuous vector representations to represent words. Each word is represented as a dense vector in a continuous vector space.

Окно - это количество токенов в одну сторону, на которое мы смотрим

CBOW

N-gram embeddings, Skip-gram

Problem? Our words appear together, it matters.

Skip-gram

What is n?

Я люблю пить кофе по утрам одна

Пить люблю я кофе по утрам одна

N = 3

Контекст = пить кофе по

Контекст = я люблю пить + по утрам одна

N-window size

this paper notes that larger windows tend to produce more topical similarities (i.e. dog, bark and leash will be grouped together, as well as walked, run and walking), while smaller windows tend to produce more functional and syntactic similarities (i.e. Poodle, Pitbull, Rottweiler, or walking, running, approaching)

Some questions

- Are context words at different distances equally important? If not, how can we modify co-occurrence counts? Контекст везде одинаковый?
- В какой модели у нас есть информация о порядке слов?

Cross entropy loss

р(х) - распределение, которое мы получили

q(x) - распределение истинное

$$H(q, p) = -\sum_{x} q(x) \log p(x)$$

Word2vec

Процесс обучения

Процесс обучения

V - размер словаря

N - размер эмбеддинга (200)

$$\mathbf{W}-V imes N \ \mathbf{W}^{'}-N imes V$$

$$\mathbf{W}^T \cdot \mathbf{x} = h \Longrightarrow (N \times V) \cdot (V \times 1) = N \times 1$$

$$\mathbf{W}^T = [w_1^T w_2^T \cdots w_V^T] \Rightarrow \sum_{i=1}^V w_i^T \mathbf{x}_i = w_k^T = h$$

$$\mathbf{W}^{'T} \cdot h = y \Longrightarrow (V \times N) \cdot (N \times 1) = V \times 1$$

$$\mathbf{W}^{'} = [w_1^{'}w_2^{'}\cdots w_V^{'}] \Rightarrow y_j = (\mathbf{W}^{'}{}^T\cdot h)_j = (w_j^{'})^Tw_k^T = \langle\ w_k,w_j^{'}
angle$$

Матрица с представлением слова как центрального

Матрица с представлением слова как контекстного

Процесс обучения

Я люблю пить кофе по утрам одна V=100 K=23, позиция слова кофе в словарь, j=45= пить, $[0,0,0,0,0,0,\ldots 1,\ldots]$

1) вытаскиваем 23 эмбеддинг, умножаем на матрицу контекстных эмбеддингов и получаем распределение на все контекст слова

Questions

- Какая модель работает быстрее?
- Какую проблему видите?

Subsampling

Problem? Some words are not meaningful.

Each word w in the training set is discarded with the probability computed by the formula

She drinks neither a cup of coffee nor a cup of tea for breakfast.

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$

(a cup of + coffee + nor a cup)

(drinks neither cup + coffee + cup tea breakfast)

t- chosen threshold, words with a frequency greater than t are discarded f(w_i) - frequency of w_i

Negative sampling

1. Пить и кофе - это близкие слова = контекстные 1 2. Кофе и машина - это разные далекие = не контекстные 0

Problem? Computationally intense to train over the whole vocab.

Dot product of v_{cat} :

- with u_{cute} increase,
- with <u>all other</u> u decrease

Dot product of v_{cat} :

- with u_{cute} increase,
- with a subset of other u decrease

Parameters to be updated:

- v_{cat}
- u_w for all w in |V| + 1 vectors the vocabulary

Parameters to be updated:

- v_{cat}
- u_{cute} and u_w for $w \in \mathbb{R} + 2$ vectors in K negative examples

Recipe

Somewhat standard setting is:

- Model: Skip-Gram with negative sampling;
- Number of negative examples: for smaller datasets, 15-20; for huge datasets (which are usually used) it can be 2-5.
- Embedding dimensionality: frequently used value is 300, but other variants (e.g., 100 or 50) are also possible.

Я люблю пить **кофе Кофе** - это лучший напиток
Моя мама готовит **кофе** по утрам
Есть **кофе** - есть бодрость

{кофе: [1, 2,4 23,424 ,], пить: [1,3452423, 4236 ,}

Types

Glove

Problem? Need global info.

Global information from corpus to learn vectors

Уменьшаем лосс слов, которые редко встречаются

Before training count occurrences of pairs [word; , word;] in corpus

Compute probabilities:

$$P_{ij} = rac{Count(v_i, v_j)}{Count(v_i)}, Count(v_i) = \sum_k Count(v_i, v_k)$$

Objective function:

Я люблю пить **кофе Кофе** - это лучший напиток
Моя мама готовит **кофе** по утрам
Есть **кофе** - есть бодрость

На самолете кофе никогда не наливают

$$J(\theta) = \frac{1}{2} \sum_{i,j=1}^{W} f(P_{ij}) (u_i^T v_j - \log P_{ij})^2$$
Discount factor for rare words

FastText

Problem? Need morph info

Убежал 2 Прибежал 1 Сбегал 3 Бегать 5 Перебежал 10

Убежал = у + бегать Прибежал = При + бегать Сбегал = с + бегать

21 обновим эмбеддинг для бегать

Out of vocabulary

Word2Vec

Vocabulary consists of:

words

Word vector is:

 one vector from the look-up table

Vocabulary consists of:

words and character n-grams

Word vector is:

 sum of word vector and vectors for its n-grams

FastText

Какие есть в этом плюсы?

- better understanding of morphology
 By assigning a distinct vector to each word, we ignore morphology.
 Giving information about subwords can let the model know that different tokens can be forms of the same word.
- representations for unknown words
 Usually, we can represent only those words, which are present in the vocabulary.
 Giving information about subwords can help to represent out-of-vocabulary words relying of their spelling.
- <u>handling misspellings</u>
 Even if one character in a word is wrong, this is another token, and, therefore, a completely different embedding (or even unknown word). With information about subwords, misspelled word would still be similar to the original one.

FastText

Какие есть в этом плюсы?

ELMO

Problem? We need context

https://arxiv.org/pdf/1802.05365.pdf

ELMO

Embeddings from Language Models

Language Modeling task - predict the next word

ELMO

Problem? We need context

- * Language Modeling task predict the next word
- * Bidirectional LSTM
- * Token embeddings

$$ELMo_k^{task} = \gamma_k \cdot (s_0^{task} \cdot x_k + s_1^{task} \cdot h_{1,k} + s_2^{task} \cdot h_{2,k})$$

ELMo comes up with the contextualized embedding through grouping together the hidden states (and initial embedding) in a certain way (concatenation followed by weighted summation).

Embedding of "stick" in "Let's stick to" - Step #2

