Compression

Burrows Wheeler Transform

Janosch Ruff

Georg-August-Universität Göttingen

January 12, 2021

Structure

Compression

- Compression
- 2 Burrows Wheeler Transform
- 3 Inverting the Burrows-Wheeler Transfrom
- 4 Outlook

Core idea

Compression

•00000

Definition

Data compression is the process of encoding information by using fewer bits than its original representation.

- Idea: Transform a string to make it "more compressible".
- Question: Why is a string more compressible than another?

What is compressible? Kolmogorov Complexity

"Kolmogorov complexity is a notion every computer scientist should know about but not every computer scientist knows."

Definition

Fix a programming Language. Then the Kolmogorov Complexity $C(\cdot)$ for a string ω is defined by

 $C(\omega) \coloneqq \textit{Bit length of the shortest program that outputs } \omega \quad (1)$

 "Kolmogorov complexity represents the limit for optimal compressors and thus is the Gold Standard for compression."

Compression examples Stochastic Process

Figure 1: Flipping a coin

Example 1 a simple pattern: 10101010..101010

Example 2 the first 128 bits of π :

010001..

Motivation

Compression

000000

- Observation: A string with low Kolmogorov Complexity has a "structure" but some structures are simpler to see than others.
- Idea: Construct an algorithm to transform a string that discovers the patterns given by "low" Kolmogorov Complexity.
- Aim: Exploit discovered patterns to improve compression.

Kolmogorov Complexity Properties

- The Kolmogorov Complexity is not computable.
- The Kolmogorov Complexity of a string is at most the length of the string itself $C(\omega) \leq |\omega| + \mathcal{O}(1)$ (ω hard coded).
- No "magic universal compressor" exists and $\exists \omega$ s.t. $C(\omega) \ge |\omega|$ (There are always strings that are not compressible).
- Let ϕ be a computable bijection then $C(\phi(\omega)) = C(\omega) + C(\phi) + O(1) = C(\omega) + O(1)$
- An incompressible string ξ with $C(\xi) = |\xi| + \mathcal{O}(1)$ is equivalent to an algorithmic random string.

Sorting A simple idea

Compression

000000

- Idea: Enforce a structure by sorting the string.
- Example original string:
 "kolmogorov complexity is a notion every computer scientist should know about but not every computer scientist knows."
- Example string after sorting:
 "aabbcccccdeeeeeeeeghiiiiiiikkklllmmmmnnnnnn
 ooooooooooooppprrrrrsssssssttttttttttttuuuuuvvvwwxyyy"
- Result: Long runs of letters and thus easier to compress.
- Problem: How to recover the original string from the string after being sorted?

Sorting A little bit more sufisticated

- Next idea: Sort the word to discover potential patterns.
- Implementation: Output the letter which occurs in the original string before the sorted letter.
- Example: "BANANA\$" \xrightarrow{BWT} " \xrightarrow{ANNB} \$AA"

\$BANANA
A\$BANAN
ANA\$BAN
ANANA\$B
BANANA\$
NA\$BANA
NANA\$BA

Properties Questions

- Can the sorting be done in linear time $\mathcal{O}(n)$?
- Is it easy to find a good compressor φ for $BWT(\omega)$?
- Is the transformed string invertible $BWT^{-1}(BWT(\omega)) = \omega$?

Outlook

Sorting In linear time

 Notice that the green colored substrings is a Suffix Tree/ Suffix Array of the string "BANANA\$"

\$BANANA

A\$BANAN

ANASBAN

ANANA\$B

BANANA\$

NA\$BANA

NANA\$BA

• Lemma: We can construct a Suffix Array in linear time.

Inverting the Burrows-Wheeler Transfrom

Transformation Using Suffix Array

- Concatenation $\alpha = \omega \cdot \$ \cdot \omega$ (e.g. $\omega = "BANANA" \xrightarrow{\alpha} "BANANA$BANANA"$
- ullet Create a suffix array of $\omega \cdot \$$

(e.g.
$$\omega = \text{"BANANA"} \xrightarrow{SA} [6,5,3,1,0,4,2]$$

- [6]\$BANANA
- [5]A\$BANAN
- [3]ANA\$BAN
- [1]ANANA\$B
- [0]BANANA\$
- [4]NA\$BANA
- [2]NANA\$BA
- $\eta[i] = \alpha[SA[i] + n]$ where $|\omega| = n$ and $0 \le i \le n$.

Inverting the Burrows-Wheeler Transfrom

Transformation Algorithm

Algorithm 1 $BWT(\omega)$

- 1: $\alpha \leftarrow \omega \$ \omega$
- 2: $n \leftarrow |\omega|$
- 3: $\Gamma \leftarrow \mathsf{SuffixArray}(\omega\$)$
- 4: η ← ε
- 5: $i \leftarrow 0$
- 6: while $i \le n$ do
- 7: $\eta[i] \leftarrow \alpha[\Gamma[i] + n]$
- 8: $i \leftarrow i + 1$
- 9: end while
- 10: return η

Properties Answers

Compression

- Can the sorting be done in linear time $\mathcal{O}(n)$? \checkmark
- Is it easy to find a good compressor φ for $BWT(\omega)$?
- Is the transformed string invertible $BWT^{-1}(BWT(\omega)) = \omega$?

Compressibilty Why $BWT(\omega)$ is easier to compress?

- Observation: $\eta[i]$ is the letter which occurs before $\omega_{sort}[i]$.
- This shows that η depends on a sorted list (e.g. consider the word "banana", then "n" occurs always before "a" and thus we can expect *runs* of "n".)
- There exists no "magic universal compressor" but we can apply a custom-made compression scheme φ exploiting the properties of a transformed string with predictable properties.
- Kolmogorov Complexity tells us $C(BWT(\omega)) = C(\omega) + \mathcal{O}(1)$ but BWT clusters the letters based on the structure of ω and reveals hidden patterns what makes it easier to compress for φ .

Properties Answers

Compression

- Can the sorting be done in linear time $\mathcal{O}(n)$? \checkmark
- Is it easy to find a good compressor φ for $BWT(\omega)$? \checkmark
- Is the transformed string invertible $BWT^{-1}(BWT(\omega)) = \omega$?

Inverse Functions Basics

Figure 2: Example of an inverse function f

Unsort the sorted string

- Observation: $\eta[i]$ is the letter which occurs before $\omega_{sort}[i]$.
- Idea: Reconstructing ω from η by finding the letter occurring before the letter $\eta[i]$ in ω .

First Last Column

- Observation: We know in which row of the sorted list (first column) the element $\eta[k]$ can be found (because it is sorted).
- \bullet The last element in this row indicates the letter which occurs before $\omega_{sort}[k]$

F..L \$1..A₁

 $A_1..N_1$ $A_2..N_2$

 $A_3...B_1$ $B_1...\$_1$

 $N_1..A_2$

 $N_2..A_3$

• Observation: The structure of the first row is completely predictable since it is sorted and thus only the last column is needed to recreate ω from η hence, $\exists BWT^{-1}(\eta) = \omega$.

000000

Inverting the Burrows-Wheeler Transfrom

BWT⁻¹ Algorithm

Algorithm 2 BWT $^{-1}(\eta)$

- 1: $\pi \leftarrow \text{permutation}(\eta)$
- 2: $\omega \leftarrow \epsilon$
- 3: $n \leftarrow |\eta|$
- 4: $i \leftarrow n-1$
- 5: $k \leftarrow 0$
- 6: while $i \ge 0$ do
- 7: $\omega[i] \leftarrow \eta[k]$
- 8: $i \leftarrow i 1$
- 9: $k \leftarrow \pi[k]$
- 10: end while
- 11: return ω

Calculating the permutation Algorithm

Algorithm 3 permutation(η)

```
1: \pi \leftarrow [0] \cdot |\eta|
```

2:
$$\Lambda, \vartheta \leftarrow [0] \cdot |\Sigma|$$

3: **for**
$$i = 0, 1, ..., |\eta| - 1$$
 do

4:
$$\Lambda[\eta[i]] \leftarrow \Lambda[\eta[i]] + 1$$

6: **for**
$$i = 1, 2, ..., |\eta| - 1$$
 do

7:
$$\vartheta[i] \leftarrow \vartheta[i-1] + \Lambda[i-1]$$

9: **for**
$$i = 0, 1, 2, ..., |\eta| - 1$$
 do

10:
$$\pi[i] \leftarrow \vartheta[\eta[i]]$$

11:
$$\vartheta[\eta[i]] \leftarrow \vartheta[\eta[i]] + 1$$

12: end for

13: return π

Properties Answers

- Can the sorting be done in linear time $\mathcal{O}(n)$? \checkmark
- Is it easy to find a good compressor φ for $BWT(\omega)$? \checkmark
- Is the transformed string invertible $BWT^{-1}(BWT(\omega)) = \omega?$ \checkmark

Further upgrades What can be improved?

Compression

• Question: Is it possible to do the BWT without an additional special character \$?

Figure 3: Example sketch of a bijective function

Bijection Lyndon Words

Definition

A **Lyndon Word** is strictly smaller than any of its proper suffixes and strictly smaller in lexicographic order than all of its rotations.

- Lyndon Words of the binary alphabet: 0,1,00,01,10,1,10,0,00,001,1,10,0,10,1,10,0,000,0001,...
- Chen–Fox–Lyndon Theorem: Every word can be uniquely factored into $\omega_1\omega_2..\omega_m$ Lyndon words where $\omega_i \geq_{\mathsf{lex}} \omega_{i+1}$.
- "BANANA" $\xrightarrow{\mathsf{Factors}}$ "B" $>_{\mathsf{lex}}$ "AN" \geq_{lex} "AN" $>_{\mathsf{lex}}$ "A"
- Compute a list of all Lyndon factors of ω and their respective rotations and sort this list by $u \prec_{\omega} v$ such that $uuu...<_{\text{lex}} vvv...$
- $\begin{array}{c} \bullet \;\; B|AN|AN|A \xrightarrow{\mathsf{Rotations}} \; B|AN, NA|AN, NA|A \\ \xrightarrow{\mathsf{Sort}} \;\; A <_\omega \;\; AN \leq_\omega \;\; AN <_\omega \;\; B <_\omega \;\; NA \leq_\omega \;\; NA \\ \xrightarrow{\mathsf{Chars}} \;\; ANNBAA \end{array}$

BBWT Algorithm

Algorithm 4 BBWT(ω)

1: $\omega_1\omega_2..\omega_m \leftarrow \text{LyndonFactors}(\omega)$

2: *χ* ← Ø

3: **for** i = 1, 2, ..., m **do**

4: $\chi \cup \mathsf{CyclicRotations}(\omega_i)$

5: end for

6: $\tau \leftarrow \mathsf{OmegaSort}(\chi)$

7: $\eta \leftarrow \mathsf{LastChars}(\tau)$

8: return η

 Open Problem: Can line 6 the sorting based on comparing infinite periodic repetitions be done in linear time?

Inverting BBWT **Key Observations**

- Observation: If $\eta = BBWT(\omega)$, then the last character of ω_m (and hence of ω) is $\eta[0]$.
- We can reconstruct ω by reconstructing the i-th Lyndon Factor ω_i by using the computation of the Algorithm permutation.
- Question: How do we notice that we completed the i-th Lyndon Factor and where do we proceed?
- Idea: Keep track of visited letters in η telling us if we would "recycle" this letter and we have to skip it in which case we notice that the last letter of ω_{i-1} is next to the last letter of ω_i .

BBWT⁻¹

Algorithm 5 BWT⁻¹(η)

```
1: \pi \leftarrow \mathsf{permutation}(\eta)
```

2:
$$\nu \leftarrow [\mathsf{False}] \cdot |\eta|$$

3:
$$j, k \leftarrow 0$$

4: **for**
$$i = |\eta| - 1, |\eta| - 2, ..., 0$$
 do

5: while
$$\nu[k] \neq \text{False do}$$

6:
$$j \leftarrow j + 1$$

7:
$$k \leftarrow j$$

9:
$$\omega[i] \leftarrow \eta[k]$$

10:
$$\nu[k] \leftarrow \mathsf{True}$$

11:
$$k \leftarrow \pi[k]$$

Conclusion Remarks

File	Size	BWT-compression		S-compression		Gain	
		bytes	ratio	bytes	ratio	absolute	relative
BIB	111,261	32,022	28.78%	31,197	28.04%	0.74%	2.58%
BOOK1	768,771	242,857	31.59%	235,913	30.69%	0.90%	2.86%
BOOK2	610,856	170,783	27.96%	166,881	27.32%	0.64%	2.28%
GEO	102,400	66,370	64.81%	66,932	65.36%	-0.55%	-0.85%
NEWS	377,109	135,444	35.92%	131,944	34.99%	0.93%	2.58%
OBJ1	21,504	12,727	59.18%	12,640	58.78%	0.40%	0.68%
OBJ2	246,814	98,395	39.87%	94,565	38.31%	1.55%	3.89%
PAPER1	53,161	19,816	37.28%	18,931	35.61%	1.66%	4.47%
PAPER2	82,199	28,084	34.17%	27,242	33.14%	1.02%	3.00%
PAPER3	46,526	18,124	38.95%	17,511	37.64%	1.32%	3.38%
PAPER4	13,286	6,047	45.51%	5,920	44.56%	0.96%	2.10%
PAPER5	11,954	5,815	48.64%	5,670	47.43%	1.21%	2.49%
PAPER6	38,105	14,786	38.80%	14,282	37.48%	1.32%	3.41%
PIC	513,216	59,131	11.52%	52,406	10.21%	1.31%	11.37%
PROGC	39,611	15,320	38.68%	14,774	37.30%	1.38%	3.56%
PROGL	71,646	18,101	25.26%	17,916	25.01%	0.26%	1.02%
PROGP	49,379	13,336	27.01%	13,010	26.35%	0.66%	2.44%
TRANS	93,695	22,864	24.40%	22,356	23.86%	0.54%	2.22%
Total	3,251,493	980,022	30.14%	950,090	29.22%	0.92%	3.05%
Median	76,923	21,340	36.60%	20,644	35.30%	0.94%	2.58%

Figure 4: Comparing performance between BWT-based compression and S-based (BBWT) compression of the Calgary corpus.

Sources Further material

- The original paper on Burrows-Wheeler Transform "A Block-sorting Lossless Data Compression Algorithm" by Burrows & Wheeler was published in 1994.
- The paper "A Bijective String Sorting Transform" by Gil & Scott has been used as the main source for the presentation and might serve for further studies in bijective BWT.
- The data compressor bzip2 uses BWT in combination with Move-to-front transform and Huffman coding to compress files.
- Another home for BWT has been found in the field of Bioinformatics in the form of FM-index here smoothly introduced by Ben Langmead to approximate string alignment.
- As a light introduction into the world of Kolmogorov Complexity or rather Algorithmic Information Theory the lecture given by Shai Ben-David is a nice starting point.

Appendix Duval's Algorithm

- The algorithm originally published in the paper "Factorizing words over an ordered alphabet" by Duval in 1983 computes the Lyndon Factors of the word ω in linear time $\mathcal{O}(|\omega|)$.
- A complete python implementation of the two transform versions and further compression techniques is provided here.

```
#Python implementation of Duval's Algorithm for Lyndon Factors
def duval(w):
  i = 0
 n = len(w)
 factors = []
 while(i < n):
    j = i + 1
    while(j < n and w[k] <= w[j]):
      if(w[k] < w[j]):
        k = i
      else:
        k += 1
      i += 1
    while(i <= k):
      factors.append(w[i:i+j-k])
      i += j-k
 return(factors)
```