Алгоритмын шинжилгээ, зохиомж

Б.Наранчимэг

Мэдээлэл, компьютерийн ухааны тэнхим ХШУИС, МУИС

naranchimeg@seas.num.edu.mn

Өмнөх хичээлээр

- Алгоритмын ангилал
 - Шугаман алгоритм
 - Салаалсан алгоритм
 - Давталт алгоритм
- Салаасан алгоритм
 - Гүйцэд салаалсан
 - Гүйцэд бус салаалсан
- Давталт алгоритм
 - Тоолуурт давталт
 - Эхэндээ нөхцөлтэй давталт
 - Ардаа нөхцөлтэй давталт

Агуулга

- Алгоритмлах үе шат
 - Алгоритмыг зохиох
 - Алгоритмыг шалгах
 - Алгоритмыг шинжлэх, үнэлэх

Алгоритм зохиох

- Алдаагүй ажилладаг
- Ажиллах хугацааг аль болох богино байх
- Компьютерийн тусламжтайгаар хэрэгжүүлэн хариуг олох

Алгоритм зохиох

- Компьютерийн тусламжтай бодлого бодох, асуудал шийдэх үйл явц
 - Бодлого асуудлыг шинжлэх
 - Алгоритмчлах
 - Програм бичих
- Бодлогыг шинжлэх
 - Бодлогоо сайтар ойлгох
 - Өгөгдөл ба үр дүнгүүдийг тодорхойлох
 - Бодлогоо нарийвчлан томъёолох

Бодлого шинжлэх

- 1. Бодлогын оролт буюу өгөгдөл нь юу, юунаас бүрдэхийг тогтоох
- 2. Бодлогын гаралт буюу хариу нь юу байхыг тодорхойлох
- 3. Өгөгдлийн хамгийн энгийн тохиолдолд бодлогыг гараар бодож харгалзах хариуг нь олж болох эсэхэд хариулт өгөх
- 4. Бодлогын алгоритмд тооцооны хурд ямар байхыг тогтоох
- 5. Бодлогын оновчтой хариуг яг олох нь тухайн бодлогын хувьд ямар ач холбогдолтойг нягтлах

Бодлого шинжлэх

- 6. Бодлогын төрлийг тогтоох
 - Тоон хэмжигдэхүүний бодлого
 - Геометрийн бодлого
 - Графын бодлого
 - Мөр хэмжигдэхүүний бодлого

Алгоритм зохиоход шаардагдах мэдлэг

- Арга зүйн мэдлэг
 - Өгөгдлийн бүтэц (data structure)
 - Хуваан эзлэх аргачлал (divide and conquer)
 - Хайлтын аргууд (search algorithms)
 - Динамик програмчлал (dynamic programming)
- Практик мэдлэг
 - Төсөөтэй болон сонгодог бодлогууд
 - Эвклидийн алгоритм

- 1. Алгоритмын бүрэлдэхүүн хэсгүүдийг тодорхойлж, алгоритмыг бүдүүвч байдлаар илэрхийлэх
 - Ерөнхий зохиомж гаргах (жишээ нь: блок схем)
- 2. Бүрэлдэхүүн хэсэг тус бүрийг бодох арга, алгоритмын сонголт хийх
 - Уг бодлоготой төсөөтэй бодлого өмнө нь бодож байсан эсэх
 - Өмнө бодож байсан бодлогуудын бодолтыг нэгтгэн тухайн бодлогыг бодож болох эсэх
 - Тухайн бодлогыг бодож болох аргуудын жагсаалтыг гаргах
 - Бодлогыг бодох хамгийн тохиромжтой аргыг сонгох

- 3. Алгоритмд хэрэглэгдэх хэмжигдэхүүнийг тодорхойлох
 - Хувьсагч, тогтмол
 - Тоо, төрөл, нэрийг зааж өгөх

Хувьсагч

- Хувьсагчийг нэрлэх
 - А-Z, а-z // заавал үсгээр эхлэх
 - 0-9 тоо агуулж болно.
 - _ тэмдэгт ашиглаж болно.
 - Тухайн програм дахин давтагдахгүй нэр (unique)
- Жишээ нь
 - fName
 - Lname
 - First_name

- A1
- B2
- ArrayA

- 4. Хэмжигдэхүүнүүдийн хамаарлыг математикийн илэрхийлэл, томъёо, нөхцөл, тэгшитгэл ашиглах бичих
 - +, -, *, / Арифметик үйлдэл
 - >, < , >=, <= Жиших
 - != Тэнцүү биш
 - == Тэнцүү
 - = Утга оноох
 - OR, NOT, AND логик үйлдлүүд

- 5. Математикийн томъёо, нөхцлүүдийн биелэгдэх дэс дарааллыг тогтооно.
- 6. Алгоритмын бүрэлдэхүүн хэсэг бүрийн алгоритмыг зохионо.
- 7. Алгоритмын бүрэлдэхүүн хэсгүүдийн алгоритмуудыг нэгтгэн өгсөн бодлогын алгоритмыг бичнэ.

Жишээ бодлого 1

• Өгсөн натурал тоо n-ын хувьд

$$2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots + \frac{2^n}{n!}$$

$$2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots + \frac{2^n}{n!}$$

- 1. Алгоритмын бүрэлдэхүүн хэсгүүдийг тодорхойлж, алгоритмыг бүдүүвч байдлаар илэрхийлэх
 - Ерөнхий зохиомж гаргах (жишээ нь: блок схем)
- Алгоритмын ерөнхий зохиомж
 - Өгөгдлийг оруулах
 - Ээлжит нэмэгдэхүүнийг олох
 - Нэмэгдэхүүнүүдийн нийлбэрчлэх
 - Үр дүнг хэвлэх

$$2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots + \frac{2^n}{n!}$$

- 2. Бүрэлдэхүүн хэсэг тус бүрийг бодох арга, алгоритмын сонголт хийх
- Бүрэлдэхүүн хэсэг
 - 2ⁿ
 - n!

$$2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots + \frac{2^n}{n!}$$

- 3. Алгоритмд хэрэглэгдэх хэмжигдэхүүнийг тодорхойлох
 - Хувьсагч, тогтмол
 - Тоо, төрөл, нэрийг зааж өгөх
- Нэмэгдэхүүний дугаарыг заах хэмжигдэхүүн (i)
- Ээлжит нэмэгдэхүүний хүртвэр ба хуваарийг заах хэмжигдэхүүнүүд (a, k)
- Нийлбэр хадгалах хэмжигдэхүүн (s)
- Оролтын өгөгдлийн хэмжигдэхүүн (n)
- Гаралтын өгөгдлийн хэмжигдэхүүн (s)

$$2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots + \frac{2^n}{n!}$$

- 4. Хэмжигдэхүүнүүдийн хамаарлыг математикийн илэрхийлэл, томъёо, нөхцөл, тэгшитгэл ашиглах бичих
- Алгоритмчлалд нийлбэрийн өмнөх утга дээр шинэ нэмэгдэхүүнийг нэмэхэд гарах утгыг уг нийлбэрийнхээ хаягаар хадгалах зарчмаар нийлбэрийг олдог.

$$s = s + \frac{a}{k}$$

• Үүнтэй ижил а, k хэмжигдэхүүнүүдийг олох томъёонууд харгалзан

$$a = a * 2$$
, $k = k * i$

а, k, s, i хувьсагчдын эхний утгууд ... байна.

$$2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots + \frac{2^n}{n!}$$

5. Математикийн томъёо, нөхцлүүдийн биелэгдэх дэс дарааллыг тогтооно.

$$2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots + \frac{2^n}{n!}$$

- 5. Алгоритмын бүрэлдэхүүн хэсэг бүрийн алгоритмыг зохионо.
- 6. Алгоритмын бүрэлдэхүүн хэсгүүдийн алгоритмуудыг нэгтгэн өгсөн бодлогын алгоритмыг бичнэ.

Бодлого

• Өгсөн [a, b] завсарт орших тэгш тоонуудын нийлбэрийг ол

Summary

- 1. Алгоритмын бүрэлдэхүүн хэсгүүдийг тодорхойлж, алгоритмыг бүдүүвч байдлаар илэрхийлэх
- 2. Бүрэлдэхүүн хэсэг тус бүрийг бодох арга, алгоритмын сонголт хийх
- 3. Алгоритмд хэрэглэгдэх хэмжигдэхүүнийг тодорхойлох
- 4. Хэмжигдэхүүнүүдийн хамаарлыг математикийн илэрхийлэл, томъёо, нөхцөл, тэгшитгэл ашиглах бичих
- 5. Математикийн томъёо, нөхцлүүдийн биелэгдэх дэс дарааллыг тогтооно.
- 6. Алгоритмын бүрэлдэхүүн хэсэг бүрийн алгоритмыг зохионо.
- 7. Алгоритмын бүрэлдэхүүн хэсгүүдийн алгоритмуудыг нэгтгэн өгсөн бодлогын алгоритмыг бичнэ.