Graph automorphism

From Wikipedia,

In the mathematical field of graph theory, an automorphism of a graph is a form of symmetry in which the graph is mapped onto itself while preserving the edgevertex connectivity. Formally, an automorphism of a graph G = (V, E) is a permutation of the vertex set V, such that the pair of vertices (u, v) form an edge if and only if the pair (f(u), f(v)) also form an edge. That is, it is a graph isomorphism from G to itself.

The full automorphism groups of Q_n

Since Q_n is vertex-symmetric and there exists an automorphism y = f(x, I) = x xor I, where I is the identity node.

When I = 0, a permutation (0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15) in Q4

When I = 1, a permutation (1, 0, 3, 2, 5, 4, 7, 6, 9, 8,11,10,13,12,15,14) in Q4

When I = 3, a permutation (2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13) in Q4

When I = 4, a permutation (3, 2, 1, 0, 7, 6, 5, 4,11,10, 9, 8,15,14,13,12) in Q4

When I = 5, a permutation (4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11) in Q4

When I = 6, a permutation (5, 4, 7, 6, 1, 0, 3, 2,13,12,15,14, 9, 8,11,10) in Q4

When I = 7, a permutation (6, 7, 4, 5, 2, 3, 0, 1,14,15,12,13,10,11, 8, 9) in Q4

When I = 8, a permutation (7, 6, 5, 4, 3, 2, 1, 0,15,14,13,12,11,10, 9, 8) in Q4

When I = 9, a permutation (8, 9,10,11,12,13,14,15, 0, 1, 2, 3, 4, 5, 6, 7) in Q4

When I = 10, a permutation (9, 8,11,10,13,12,15,14, 1, 0, 3, 2, 5, 4, 7, 6) in Q4 When I = 11, a permutation (10,11, 8, 9,14,15,12,13, 2, 3, 0, 1, 6, 7, 4, 5) in Q4

When I = 12, a permutation (11,10, 9, 8,15,14,13,12, 3, 2, 1, 0, 7, 6, 5, 4) in Q4

When I = 13, a permutation (12,13,14,15, 8, 9,10,11, 4, 5, 6, 7, 0, 1, 2, 3) in Q4

When I = 14, a permutation (13,12,15,14, 9, 8,11,10, 5, 4, 7, 6, 1, 0, 3, 2) in Q4

When I = 15, a permutation (14,15,12,13,10,11, 8, 9, 6, 7, 4, 5, 2, 3, 0, 1) in Q4

When I = 16, a permutation (15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) in Q4

For example, Figure 1 (a), (b), (c), (d) show Q4 with indentity node I = 0, 1, 12, 9, respectively.

Figure 1.

The full automorphism groups of LTQ_n $\,$

The full automorphism group of LTQn with $n \ge 4$ has exactly two orbits, and the odd and even vertices belong to the same group.

While identity node I is even, there exists an automorphism y = f(x, I) = x xor I. When I = 0, a permutation (0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15) in LTQ4 When I = 2, a permutation (2, 3, 0, 1, 6, 7, 4, 5,10,11, 8, 9,14,15,12,13) in LTQ4

When I = 4, a permutation (4, 5, 6, 7, 0, 1, 2, 3,12,13,14,15, 8, 9,10,11) in LTQ4

When I=6, a permutation (6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9) in LTQ4

When I=8, a permutation (8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7) in LTQ4

When I = 10, a permutation (10,11, 8, 9,14,15,12,13, 2, 3, 0, 1, 6, 7, 4, 5) in LTQ4

When I = 12, a permutation (12,13,14,15, 8, 9,10,11, 4, 5, 6, 7, 0, 1, 2, 3) in LTQ4

When I = 14, a permutation (14,15,12,13,10,11, 8, 9, 6, 7, 4, 5, 2, 3, 0, 1) in LTQ4 For example, Figure 2 (a), (b) show LTQ4 with indentity node I = 0, 2, respectively.

Figure 2.

While identity node I is odd, there exists an automorphism y = f(x, I) = x xor I. When I = 1, a permutation (1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 0) in LTQ4 When I = 3, a permutation (3, 0, 1, 6, 7, 4, 5,10,11, 8, 9,14,15,12,13, 2) in LTQ4 When I = 5, a permutation (5, 6, 7, 0, 1, 2, 3,12,13,14,15, 8, 9,10,11, 4) in LTQ4 When I = 7, a permutation (7, 4, 5, 2, 3, 0, 1,14,15,12,13,10,11, 8, 9, 6) in LTQ4 When I = 9, a permutation (9,10,11,12,13,14,15, 0, 1, 2, 3, 4, 5, 6, 7, 8) in LTQ4 When I = 11, a permutation (11, 8, 9,14,15,12,13, 2, 3, 0, 1, 6, 7, 4, 5,10) in LTQ4 When I = 13, a permutation (13,14,15, 8, 9,10,11, 4, 5, 6, 7, 0, 1, 2, 3,12) in LTQ4 When I = 15, a permutation (15,12,13,10,11, 8, 9, 6, 7, 4, 5, 2, 3, 0, 1,14) in LTQ4 For example, Figure 3 (a), (b) show LTQ4 with indentity node I = 1, 11, respectively.

Figure 3.

Simulation on hypercube Qn

Descriptions:

- 1. In Q_n , $3 \le n \le 9$
- 2. Randomly generate 1,000,000 instances of node lists (source s, destination d, failure node f) and s != d != f
- 3. For each instances, calculate the path length of (s, d, f) under (i) no failure
 - (ii) a single node failure

Example 1, instances (13, 0, 1), see Figure 4 (a),

- (i) no failure, 13 -> 5 -> 1 -> 0
- (ii) a single node failure, $13 \rightarrow 5 \rightarrow 1$ fails, go to SNH 4 $\rightarrow 0$

Example 2, instances (13, 1, 9), see Figure 4 (b),

- (i) no failure, 13 -> 9 -> 1
- (ii) a single node failure, $13 \rightarrow 9$ fails, go to SNH $12 \rightarrow 4 \rightarrow 0 \rightarrow 1$

Example 3, instances (2, 12, 1), see Figure 4 (c),

- (i) no failure, $2 \rightarrow 3 \rightarrow 1 \rightarrow 9 \rightarrow 13 \rightarrow 12$
- (ii) a single node failure, 2 -> 3 -> 1 fails, go to SNH 7 -> 6 -> 4 -> 12

Example 4, instances (4, 9, 12), see Figure 4 (d),

- (i) no failure, 4 -> 12 -> 8 -> 9
- (ii) a single node failure, $4 \rightarrow 12$ fails, go to SNH 5 -> 1 -> 9

Figure 4.

Simulation on locally twisted cube LTQn

Descriptions:

- 1. In LTQ_n, $3 \le n \le 9$
- 2. Randomly generate 1,000,000 instances of node lists (source s, destination d, failure node f) and s = d = f
- 3. For each instances, calculate the path length of (s, d, f) under
 - (i) no failure
 - (ii) a single node failure

Example 1, instances (13, 0, 1), see Figure 5 (a),

- (i) no failure, 13 -> 1 -> 0
- (ii) a single node failure, $13 \rightarrow 1$ fails, go to SNH $15 \rightarrow 9 \rightarrow 8 \rightarrow 0$

Example 2, instances (8, 2, 3), see Figure 5 (b),

- (i) no failure, 8 -> 9 -> 5 -> 3 -> 2
- (ii) a single node failure, $8 \rightarrow 9 \rightarrow 5 \rightarrow 3$ fails, go to SNH $7 \rightarrow 6 \rightarrow 2$

Figure 5.

Simulation 1.

Descriptions:

- 1. In Q_3(8 nodes, 12 links)
- 2. Randomly generate 1,000,000 instances of node lists (source s, destination d, failure node f) and s = d = f
- 3. For each instances, calculate the path length of (s, d, f) under
 - (i) no failure
 - (ii) a single node failure
- 4. Calculate three statistical quantities: the average path length (Avg.), the standard deviation of path length (Std), and the maximum path length and the number of its occurrences (Max.)
- 5. Calculate the number of times the fault falls into (s, d)

Simulation results by dual-PRTs: (i) Avg. = 2.000351, Std = 0.925494, Max. = 4 (142789 times); (ii) Avg. = 2.000187, Std = 0.925361, Max. = 4 (142707 times), the fault falls into (s, d)=166885 times (16.69%)

Simulation 2.

Descriptions:

- 1. In Q_4(16 nodes, 32 links)
- 2. Randomly generate 1,000,000 instances of node lists (source s, destination d, failure node f) and s = d = f
- 3. For each instances, calculate the path length of (s, d, f) under
 - (i) no failure
 - (ii) a single node failure
- 4. Calculate three statistical quantities: the average path length (Avg.), the standard deviation of path length (Std), and the maximum path length and the number of its occurrences (Max.)
- 5. Calculate the number of times the fault falls into (s, d)

Simulation results by dual-PRTs: (i) Avg. = 2.532640, Std = 1.155438, Max. = 5 (66970 times); (ii) Avg. = 2.580110, Std = 1.191283, Max. = 7 (4661 times), the fault falls into (s, d)=109839 times (10.98%)

Simulation results by 2 CISTs: (i) Avg. = 3.232948, Std = 1.549985, Max. = 7 (33326 times); (ii) Avg. = 3.393706, Std = 1.851529, Max. = 11 (2697 times), the fault falls into (s, d)=159376 times (15.94%)

Simulation 3.

Descriptions:

- 1. In Q_5(32 nodes, 80 links)
- 2. Randomly generate 1,000,000 instances of node lists (source s, destination d, failure node f) and s != d != f
- 3. For each instances, calculate the path length of (s, d, f) under
 - (i) no failure
 - (ii) a single node failure
- 4. Calculate three statistical quantities: the average path length (Avg.), the standard deviation of path length (Std), and the maximum path length and the number of its occurrences (Max.)
- 5. Calculate the number of times the fault falls into (s, d)

Simulation results by dual-PRTs: (i) Avg. = 3.031487, Std = 1.233263, Max. = 6 (32248 times); (ii) Avg. = 3.081363, Std = 1.295897, Max. = 8 (2178 times), the fault falls into (s, d)=67663 times (6.77%)

Simulation results by 2 CISTs: (i) Avg. = 4.271551, Std = 1.776452, Max. = 8 (32352 times); (ii) Avg. = 4.444931, Std = 2.058815, Max. = 12 (2058 times), the fault falls into (s, d)=109167 times (10.92%)

Simulation 4.

Descriptions:

- 1. In Q_6(64 nodes, 192 links)
- 2. Randomly generate 1,000,000 instances of node lists (source s, destination d, failure node f) and s != d != f
- 3. For each instances, calculate the path length of (s, d, f) under
 - (i) no failure
 - (ii) a single node failure
- 4. Calculate three statistical quantities: the average path length (Avg.), the standard deviation of path length (St\$ length and the number of its occurrences (Max.)
- 5. Calculate the number of times the fault falls into (s, d)

Simulation results by dual-PRTs: (i) Avg. = 3.523229, Std = 1.391281, Max. = 7

(15859 Times) (ii) Avg. = 3.561869, Std = 1.400612, Max. = 9 (766 Times), the fault falls into (s, d)= 40797 times (4.08%)

Simulation results by 2 CISTs: (i) Avg. = 5.277875, Std = 1.941123, Max. = 10 (8024 Times) (ii) Avg. = 5.417123, Std = 2.156235, Max. = 14 (503 Times), the fault falls into (s, d)= 69080 times (6.91%)

Simulation 5.

Descriptions:

- 1. In Q_7(128 nodes, 448 links)
- 2. Randomly generate 1,000,000 instances of node lists (source s, destination d, failure node f) and s = d = f
- 3. For each instances, calculate the path length of (s, d, f) under
 - (i) no failure
 - (ii) a single node failure
- 4. Calculate three statistical quantities: the average path length (Avg.), the standard deviation of path length (St\$ length and the number of its occurrences (Max.)
- 5. Calculate the number of times the fault falls into (s, d)

Simulation results by dual-PRTs: (i) Avg. = 4.016004, Std = 1.438708, Max. = 8 (7940 Times) (ii) Avg. = 4.042182, Std = 1.466437, Max. = 10 (248 Times), the fault falls into (s, d)= 23983 times (2.40%) Simulation results by 2 CISTs: (i) Avg. = 6.270518, Std = 2.077178, Max. = 12 (2038 Times) (ii) Avg. = 6.369486, Std = 2.205245, Max. = 16 (81 Times), the fault falls into (s, d)= 41668 times (4.17%)

Simulation 6.

Descriptions:

- 1. In Q_8(256 nodes, 1024 links)
- 2. Randomly generate 1,000,000 instances of node lists (source s, destination d, failure node f) and s != d != f
- 3. For each instances, calculate the path length of (s, d, f) under
 - (i) no failure
 - (ii) a single node failure
- 4. Calculate three statistical quantities: the average path length (Avg.), the standard deviation of path length (St\$ length and the number of its occurrences (Max.)
- 5. Calculate the number of times the fault falls into (s, d)

Simulation results by dual-PRTs: (i) Avg. = 4.510443, Std = 1.572223, Max. = 9 (3820 Times) (ii) Avg. = 4.526833, Std = 1.589101, Max. = 11 (72 Times), the fault falls into (s, d)= 13722 times (1.37%)

Simulation results by 2 CISTs: (i) Avg. = 7.263877, Std = 2.233631, Max. = 14 (478 Times) (ii) Avg. = 7.327195, Std = 2.294374, Max. = 18 (10 Times), the fault falls into (s, d)= 24573 times (2.46%)

Simulation 7.

Descriptions:

- 1. In Q_9(512 nodes, 2304 links)
- 2. Randomly generate 1,000,000 instances of node lists (source s, destination d, failure node f) and s != d != f
- 3. For each instances, calculate the path length of (s, d, f) under (i) no failure
 - (ii) a single node failure
- 4. Calculate three statistical quantities: the average path length (Avg.), the standard deviation of path length (St\$ length and the number of its occurrences (Max.)
- 5. Calculate the number of times the fault falls into (s, d)

Simulation results by dual-PRTs: (i) Avg. = 5.008286, Std = 1.608203, Max. = 10 (2017 Times) (ii) Avg. = 5.018454, Std = 1.617714, Max. = 12 (29 Times), the fault falls into (s, d)= 7718 times (0.77%) Simulation results by 2 CISTs: (i) Avg. = 8.257116, Std = 2.360037, Max. = 16 (127 Times) (ii) Avg. = 8.296446, Std = 2.369716, Max. = 20 (2 Times), the fault falls into (s, d)= 14191 times (1.42%)

Table 1. Simulation results: 3 length quantities on Qn when routing is in Scenario 1 (no fault).

	two CISTs			dual-PRTs		
	Avg.	Std	Max.	Avg.	Std	Max.
Q3				2.000351	0.925494	4 (142789 times)
Q4	3.232948	1.549985	7 (33326 times)	2.53264	1.155438	5 (66970 times)
Q5	4.271551	1.776452	8 (32352 times)	3.031487	1.233263	5 (32248 times)
Q6	5.277875	1.941123	10 (8024 times)	3.523229	1.391281	7 (15859 times)
Q7	6.270518	2.077178	12 (2038 times)	4.016004	1.438708	8 (7940 times)
Q8	7.263877	2.233631	14 (478 times)	4.510443	1.572223	9 (3820 times)
Q9	8.257116	2.360037	16 (127 times)	5.008286	1.608203	10 (2017 times)

2. Simulation results: 3 length quantities on Qn when routing is in Scenario 2 (a single node fault).

	two CISTs			dual-PRTs		
	Avg.	Std	Max.	Avg.	Std	Max.
Q3				2.000187	0.925361	4 (142707 times)
Q4	3.393706	1.851529	11 (2697 times)	2.58011	1.191283	7 (4661 times)

Q5	4.444931	2.058815	12 (2058 times)	3.081363	1.295897	8 (2178 times)
Q6	5.417123	2.156235	14 (503 times)	3.561869	1.400612	9 (766 times)
Q7	6.369486	2.205245	16 (81 times)	4.042182	1.466437	10 (248 times)
Q8	7.327195	2.294374	18 (10 times)	4.526833	1.589101	11 (72 times)
Q9	8.296446	2.369716	20 (2 times)	5.018454	1.617714	12 (29 times)

Table 3. Simulation results: 3 length quantities on LTQn when routing is in Scenario 1 (no fault).

	two CISTs			dual-PRTs		
	Avg.	Std	Max.	Avg.	Std	Max.
LTQ3				2.285303	0.755827	4 (142789 times)
LTQ4	2.931516	1.19693	6 (24848 times)	2.600489	0.949539	5 (66813 times)
LTQ5	3.869399	1.526712	8 (7999 times)	3.289709	1.396974	7 (32254 times)
LTQ6	4.825682	1.734439	10 (1970 times)	3.87026	1.581364	8 (15864 times)
LTQ7	5.793951	1.915318	12 (478 times)	4.411415	1.637678	9 (7920 times)
LTQ8	6.774469	2.066624	14 (122 times)	4.925867	1.757221	10 (3920 times)
LTQ9	7.765519	2.203155	16 (31 times)	5.432122	1.829297	11 (1879 times)

Table 4. Simulation results: 3 length quantities on LTQn when routing is in Scenario 2 (a single node fault)

	two CISTs			dual-PRTs		
	Avg.	Std	Max.	Avg.	Std	Max.
LTQ3				2.236596	0.91194	5 (23620 times)
LTQ4	3.026907	1.379224	9 (582 times)	2.636714	1.010564	6 (4782 times)
LTQ5	3.98309	1.670772	11 (133 times)	3.325073	1.443063	10 (538 times)
LTQ6	4.913578	1.84209	13 (12 times)	3.902035	1.615225	11 (392 times)
LTQ7	5.852506	1.978876	15 (1 times)	4.434017	1.711811	12 (165 times)
LTQ8	6.810781	2.101302	16 (9 times)	4.941104	1.774578	13 (51 times)
LTQ9	7.787632	2.221917	18 (1 times)	5.441689	1.83916	14 (14 times)