SUB

Exame de EE540 - Teoria Eletromagnética

Prof. Michel -(12 de Julho de 2006)-

Nome: Daniel da Costa Ricchil RA: 031962

1) Uma onda plana de 3GHz, linearmente polarizada na direção y, se propaga na direção +x em um meio não magnético que possue $\epsilon = 2.5\epsilon_0$ e uma tangente de perda de 10^{-2} .

🙀 Determine a distância na qual a amplitude da onda propagante cairá pela metade.

Determine a impedância característica, o comprimento de onda, a velocidade de fase e a velocidade de grupo da onda nesse meio.

- c) Assumindo que $\vec{E} = 50 \sin(6\pi 10^9 t + \pi/3) \hat{e}_y (V/m)$ em x = 0, escreva a expressão do campo magnético instantâneo \vec{H} para todo x e t.
- d) Escreva a expressão do valor médio do vetor de Poynting.
- 2) Uma onda plana circularmente polarizada positiva representada pelo fasor

$$\vec{E} = E_0(\hat{e}_x - j\hat{e}_y)e^{-j\beta z}$$

incide normalmente sobre uma parede perfeitamente condutora em z=0.

A Determine a polarização da onda refletida.

Encontre a corrente induzida sobre a parede condutora.

\(\) Obtenha a expressão instantânea do campo elétrico total.
\(\)

3) Uma onda plana com polarização paralela incide sobre uma interface plana em z = 0 que separa dois meios dielétricos perfeitos como mostrado na figura do formulário.

O meio I possui parâmetros ϵ_1 , μ_1 e o meio 2 parâmetros ϵ_2 , μ_2 .

Escreva as expressões dos fasores dos campos refletidos e transmitidos.

b) Escreva a expressão instantânea dos campos transmitidos.

🚫 c) O que é o chamado àngulo de Brewster? Deduza a expressão matemática que o define.

- d) Assumindo que $\epsilon_2 < \epsilon_1$ e $\theta_i > \theta_c$: (i) calcule o coeficiente de atenuação da onda no meio 2. (ii) Verifique que a potência média transmitida para o meio 2 é nula.
- Considere o guia retangular de lados a e b mostrado na Fig.2.. Considere que o guia é preenchido com ar e que as paredes são condutores perfeitos.

Faça a dedução dos modos TM_{mn} desse guia. (Escreva a equação diferencial fundamental para esses modos, explícite as condições de contorno e, usando a solução da equação diferencial, encontre os fasores que definem esses modos).

Escreva a frequência de corte ν_{mn} do modo TM_{mn} , bem como as expressões para a contante de fase β_{mn} , velocidade de fase $(v_f)_{mn}$ e velocidade de grupo $(v_g)_{mn}$.

 \searrow Mostre que em qualquer ponto dentro do guia $\vec{E} \perp \vec{H}$.

Considere agora que a = 0.5cm e b = 0.4cm. Considerando apenas os modos TM_{mn} , caso desejemos trabalhar apenas com o TM_{11} , a qual intervalo de freqüências devemos nos restringir?

$$E_i(x, z) = E_{i0}(\mathbf{a}_x \cos \theta_i - \mathbf{a}_z \sin \theta_i) e^{-j\beta_1(x \sin \theta_i + z \cos \theta_i)}$$

$$H_i(x, z) = \mathbf{a}_y \frac{E_{i0}}{\eta_1} e^{-j\beta_1(x \sin \theta_i + z \cos \theta_i)}$$

$$\begin{split} \Gamma_{||} &= \frac{E_{r0}}{E_{t0}} = \frac{\eta_{3} \cos \theta_{t} - \eta_{4} \cos \theta_{t}}{\eta_{2} \cos \theta_{t} + \eta_{1} \cos \theta_{t}} \\ \tau_{||} &= \frac{E_{r0}}{E_{r0}} = \frac{2\eta_{2} \cos \theta_{t}}{\eta_{3} \cos \theta_{t} + \eta_{1} \cos \theta_{t}} \end{split}$$

Figura 1:

Figura 2: