Aalborg Tekniske Gymnasium

STUDIEOMRÅDE-PROJEKT

Fysik A & el-teknik A

En fjernstyret kanon & det skrå kast

Forfatter:
Nikolai Bonderup
Sebastian Lassen
Lucas Rasmussen

Vejleder:
Pia Thomsen
Tom Berthelsen

December 17, 2018

1 Indledning

Projektet ligger under studieområdet, hvilket her betyder at vi skal kombinere vores teknikfag med et af vores studieretningsfag. Vi har i gruppen valgt at bruge Fysik A, da dette virkede som det mest oplagte valg ift. bidragelse med projektrelevant teori. Projektet skal derfor også overholde forskellige krav fra SO, el-tek og fysik A, som bliver yderligere fremhævet i kravspecifikationen.

Vi har i gruppen besluttet os for at bygge en fjernstyret airsoft kanon, da dette produkt vil tilfredsstille alle de givne el-tek krav, samt at fysikteorien omkring det skrå kast kan bruges til at bestemme, hvor dets projektil vil ramme og hvor hurtigt det bevæger sig. Det kan gøres ved at måle, hvor langt kanonen skyder og hvilken vinkel løbet er peget op med, for så derefter at beregne mundingshastigheden vha. formler for det skrå kast. Dette kan så krydstjekkes med en målt projektilhastighed for, at opnå et fysikeksperiment udført med hjælp af elektriske komponenter.

2 Kravspecifikationer

De opstillede krav fra el-tek:

Der skal bruges en "interrupt" (HW - Kontakt, SW - Timer).

• Der skal altså i projektet bruges enten en kontakt eller timer i vores kredsløb. Det er påkrævet at denne har en relevant betydning for selve kredsløbet og ikke har en meningsløs funktion.

Der skal være et sensor input: analog til digital konvertering.

• Dette forstås som at der skal bruges en type sensor, som måler noget analogt, der derefter kan oversættes til noget digitalt vha. en mikroprocessor. Dette kunne for eksempel være en afstandssensor.

Digital til Analog konvertering.

• Dette vil ved brug af Arduino i de fleste tilfælde være at bruge et PWM signal til kontrol af et elektronisk element.

Der skal bruges datakommunikation (til pc, viserinstrument eller trådløst element).

• Dette ville være en form for input/output type af kontrol i forhold til vores produkt. Her skal gruppen kunne give en eller anden form for ordre til produktet og produktet skal så udføre en bestemt handling. Dette kunne opfyldes ved at styre kanonens vinkel med en controller vha. bluetooth.

Et print til en mikrocontroller.

• Der skal til produktet bruges et selvproduceret mikrocontrollerprint. Denne microcontroller skal kunne styre en af hovedelementerne i selve produktet for at opfylde kravet om at have en relevant funktion.

Udover de specifikke krav skal der også indrages relevant fysikteoretisk arbejde, som udmunder i afleveringen af videnskabelig dokumentation vedrørende det valgte fysikteori og el-tek produkt.

3 Projektanalyse

I dette projekt skal vi kombinere Fysik A og el-tek til et SO forløb. I projektet er der flere faglige mål som skal opfyldes indenfor området el-tek og fysik. Selve opgaven lyder på at gøre brug af de elementer som er at finde under kravspecifikationer. I problemanalysen skal disse elementer altså gennemgås og der skal vurderes, hvilket et af dem bliver det største "problem" at arbejde med.

Det mest udfordrende bliver at få skabt kommunikation mellem selve kanonen og et kontrolelement. Der skal være en modtager og afsender, måske endda en af hver på både kontrolmodul og kanon-modulet alt efter hvor avanceret arbejdet med denne del af projektet skal være.

Et andet udfordrende problem bliver, hvordan selve lade- og affyringsmekanismen skal hænge sammen så den kan virke ved fjernstyring. Her skal flere forskellige typer motorer styres præcist gennem bluetooth.

4 Projektformulering

Hvordan kan vi bygge et produkt som opfylder de faglige mål for projektet og som bygger på fysikteoretiske koncepter?

Til problemformuleringen kan flere underspørgsmål udformes:

- Hvordan kan et mikrocontroller print fabrikeres?
- Hvordan vil man integrere datakommunikation i produktet?
- Hvilke former for sensorer kan bruges i løsningen og til den videnskabelige dokumentation?
- Hvordan kan produktet bruges til at vise noget relevant fysikteori?

5 Projektafgrænsning

Vi har planlagt at arbejde med en kanon som skal kunne rotere 360 grader, samt have et vinkelinterval til affyring af kanonen på mindst 100 grader. Den fjernstyrede kanon skal være i stand til at modtage information fra et kontrolmodul. Dette skal ske ved brug af en bluetooth enhed eller et andet trådløst kommunikationsmodul. Der skal altså laves en mikrocontroller som kan styre kanonen gennem disse trådløse moduler ved at få kommandoer fra et kontrolmodul.

Fig. 1: Koncept af kanon.

Selve kanons affyringsmekanisme laves enten med en "airsoft" pneumatisk gearkasse, hvor en DC motor bruges til at trække en fjeder op. Denne fjeder laver et lufttryk i gearkassens trykkammer som kan bruges til at skyde et projektil afsted. Selve robottens krop laves vha. 3D print af de enkelte komponenter, der sættes sammen med enten lim eller skruer.

Til udarbejdningen af det fysikvidenskabelige dokumentation kan der påmonteres forskellige afstandssensorer, som bruges til at måle projektilets hastighed. Derudover kan der alternativt måles, hvor langt projektilet bliver affyret for så, at kunne beregne dets hastighed, hvis affyringsvinklen er kendt.

Fig. 2: Fysik relevant til kanonen.

6 Tidsplan

Uge			47		49+50	51	2	3	4+5+6
Timer			10		21	8	2	11	14
Dato		11/61	23/11	25/11	Teknik Uge	ė	- 3	ė	ં
Aktivitet	Ansvarlig								
Gruppemappe	Lucas	n/d							
Logbøger	Sebastian	n/d	p/u		р	р	р	р	р
Tidsplan	Lucas	P/n	p/u		р	р	р	р	р
Forside	خ				р			d	d
Titelblad	خ				р			d	d
Indholdsfortegnelse	خ				р			d	d
Projektbeskrivelse	Alle	n/d	n/d	A	р				
Idegenereing	Alle	n/d	n/d						
Systemsbeskrivelse	5				р	р	р	р	р
Hardware design	خ				р	۵	р	Ф	р
Software design	ځ				р	۵	р	ď	р
Flowchart	خ				р	р	р	р	р
Konstruktion af produkt	ځ				р		р	ď	р
test og løsningsvurdering	خ							р	р
Konklusion	ځ								Ф
literaturliste	5				р	р	р	р	р
Aflervering af produkt og rapport	۲								a

Fig. 3: Første udkast af en tidsplan.