

DETECCIÓN DE RETINOPATÍA DIABÉTICA Y SUS ETAPAS

Nelson Alexis Cáceres Carreño Jenny Marcela Santamaría Rincón

Inteligencia Artificial II

Detección de la retinopatía diabética y sus etapas

La retinopatía diabética es la principal causa de ceguera en la población mundial, esta enfermedad es una complicación de la diabetes que afecta los ojos y es causada por el daño a los vasos sanguíneos que van al tejido sensible a la luz que se encuentra en el fondo del ojo(retina).

Conjunto de datos

0 -> Sin retinopatía diabética

1 -> leve

2 -> moderada

3 -> Grave

4 -> Retinopatía diabética proliferativa

Datos originales

Conjunto de datos

0 -> Sin retinopatía diabética

1 -> leve

2 -> moderada

3 -> Grave

4 -> Retinopatía diabética proliferativa

Data augmentation

CALLBACKS

```
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(
    monitor='val_f1_score',
    factor=0.5,
    patience=4,
    verbose=1,
    mode='max',
    cooldown=4,
    min_lr=0.0000001)
```

02

```
early = tf.keras.callbacks.EarlyStopping(
    monitor='val_f1_score',
    mode='max',
    patience=20)
```

03

```
checkpoint_path = 'save_model/checkpointXception.h5'
checkpoint = tf.keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_path,
    save_weights_only=True,
    monitor='val_f1_score',
    mode='max',
    verbose=1,
    save_best_only=True)
```

CREACIÓN DEL MODELO

Layer (type)	Output	Shape	Param #
xception (Functional)	(None,	4, 4, 2048)	20861480
global_max_pooling2d (Global	(None,	2048)	0
flatten (Flatten)	(None,	2048)	0
dense (Dense)	(None,	256)	524544
dropout_1 (Dropout)	(None,	256)	0
dense_1 (Dense)	(None,	256)	65792
dense_2 (Dense)	(None,	5)	1285
Total params: 21,453,101 Trainable params: 21,398,573 Non-trainable params: 54,528			
None number of layers to train:	160		

CREACIÓN DEL MODELO

Matriz de confusión

Detección de retinopatía diabética

Matriz de confusión

Curva ROC y AUC

Conclusiones (1)

El algoritmo propuesto identifica eficazmente si una persona padece o no de retinopatía diabética, sin embargo, a la hora de predecir la etapa en la cual se encuentra la enfermedad hay un gran conflicto con la clase moderada, ya que, no logra reconocer de forma satisfactoria esta clase y tampoco es precisa su clasificación, provocando a su vez una disminución en la precisión de la clasificación de las muestras sanas.

Trabajo futuro 🔀

Existen diferentes técnicas de procesamiento de imágenes que pueden ser utilizadas y podrían mejorar la tasa de verdaderos positivos y reducir los falsos negativos, además, se recomienda buscar un conjunto de imágenes más amplio, que no presente tanto ruido, fallos de iluminación y desenfoques que dificulten la detección de zonas especificas.