

Appl. No. 09/870,952
Am dt. dated Dec. 19, 2003
Reply to Office Action of Nov. 4, 2003

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

Claim 1 (Currently amended): A heat dissipation device, comprising:

 a base having a first base surface;
 at least one fin extending from said first base surface;
 a spring clip channel defined proximate said at least one fin; and
 a load centering mechanism within said spring clip channel, said load centering
 mechanism integrally associated with said first base surface, wherein said load centering
mechanism comprises a pedestal extending from said first base surface.

Claim 2 (Canceled).

Claim 3 (Original): The heat dissipation device of claim 1, wherein said spring clip channel
further includes at least one sloped side adapted to orient a spring clip on said load centering
mechanism.

Appl. No. 09/870,952
Am dt. dated Dec. 19, 2003
Reply to Office Action of Nov. 4, 2003

Claim 4 (Currently amended): A heat dissipation device, comprising:
a base having a first base surface;
at least one fin extending from said first base surface;
a spring clip channel defined proximate said at least one fin; and
a load centering mechanism within said spring clip channel, said load centering
mechanism integrally associated with said first base surface ~~The heat dissipation device of claim~~
4, wherein said load centering mechanism includes at least one sloped side adapted to orient a
spring clip thereon.

Claim 5 (Original): The heat dissipation device of claim 1, further including at least one
depression defined in said base from said first base surface that defines said load centering
mechanism.

Claim 6 (Currently amended): A microelectronic assembly, comprising:
a microelectronic device; and
a heat dissipation device, including a base having a first base surface and an opposing
second surface, wherein said heat dissipation device makes thermal contact with said
microelectronic device, and including at least one fin extending from said first base surface, a
spring clip channel defined proximate said at least one fin, and a load centering mechanism

Appl. No. 09/870,952
Am dt. dated Dec. 19, 2003
Reply to Office Action of Nov. 4, 2003

within said spring clip channel, said load centering mechanism integrally associated with said first base surface, wherein said load centering mechanism of said heat comprises a pedestal extending from said first base surface.

Claim 7 (Canceled).

Claim 8 (Original): The microelectronic assembly of claim 6, wherein said spring clip channel further includes at least one sloped side adapted to orient a spring clip on said load centering mechanism.

Claim 9 (Currently amended): A microelectronic assembly, comprising:
a microelectronic device; and
a heat dissipation device, including a base having a first base surface and an opposing
second surface, wherein said heat dissipation device makes thermal contact with said
microelectronic device, and including at least one fin extending from said first base surface, a
spring clip channel defined proximate said at least one fin, and a load centering mechanism
within said spring clip channel, said load centering mechanism integrally associated with said
first base surface ~~The microelectronic assembly of claim 6, wherein said load centering~~
mechanism includes at least one sloped side adapted to orient a spring clip thereon.

Appl. No. 09/870,952
Amdt. dated Dec. 19, 2003
Reply to Office Action of Nov. 4, 2003

Claim 10 (Original): The microelectronic assembly of claim 6, further including at least one depression defined in said base from said first base surface that defines said load centering mechanism.

Claim 11 (Currently amended): A method for fabricating a heat dissipation device, comprising:
forming a base having a first base surface;
forming at least one fin extending from said first base surface;
forming a spring clip channel defined proximate said at least one fin; and
forming a load centering mechanism within said spring clip channel, said load centering mechanism integrally associated with said first base surface; and
wherein said forming said base, forming said at least one fin, forming said spring clip channel, and forming said load centering mechanism occur substantially simultaneously in a molding process.

Claim 12 (Canceled).

Claim 13 (Original): A method for fabricating a heat dissipation device, comprising:
forming a base having a first base surface;

Appl. No. 09/870,952
Amdt. dated Dec. 19, 2003
Reply to Office Action of Nov. 4, 2003

forming at least one fin extending from said first base surface;
forming a spring clip channel defined proximate said at least one fin; and
forming a load centering mechanism within said spring clip channel, said load centering
mechanism integrally associated with said first base surface, and The method of claim 11,
wherein forming said load centering mechanism comprises forming a pedestal extending from
said first base surface.

Claim 14 (Original): The method of claim 11, wherein forming said load centering mechanism
comprises attaching said load centering mechanism to said base first surface within said spring
clip channel.

Claim 15 (Original): The method of claim 11, wherein forming said base, forming said at least
one fin, and forming said spring clip channel occur substantially simultaneously in a extrusion
process, and forming said load centering mechanism comprises milling away a portion of said
spring clip channel.

Claim 16 (Original): The method of claim 11, wherein forming said load centering mechanism
comprises forming at least one depression extending into said base from said base first surface
within said spring clip channel.

Appl. No. 09/870,952
Amdt. dated Dec. 19, 2003
Reply to Office Action of Nov. 4, 2003

Claim 17 (Original): The method of claim 11, wherein forming said spring clip channel further includes forming at least one sloped side adapted to orient a spring clip on said load centering mechanism.

Claim 18 (Currently amended): A method for fabricating a heat dissipation device, comprising:
forming a base having a first base surface;
forming at least one fin extending from said first base surface;
forming a spring clip channel defined proximate said at least one fin;
forming a load centering mechanism within said spring clip channel, said load centering mechanism integrally associated with said first base surface; and

The method of claim 11, wherein forming said load centering mechanism further includes forming at least one sloped side adapted to orient a spring clip thereon.

Claim 19 (Canceled).

Claim 20 (Canceled).

Claim 21 (New): The heat dissipation device of claim 4, wherein said spring clip channel further

Appl. No. 09/870,952
Amdt. dated Dec. 19, 2003
Reply to Office Action of Nov. 4, 2003

includes at least one sloped side adapted to orient a spring clip on said load centering mechanism.

Claim 22 (New): The heat dissipation device of claim 4, further including at least one depression defined in said base from said first base surface that defines said load centering mechanism.

Claim 23 (New): The microelectronic assembly of claim 9, wherein said spring clip channel further includes at least one sloped side adapted to orient a spring clip on said load centering mechanism.

Claim 24 (New): The microelectronic assembly of claim 9, further including at least one depression defined in said base from said first base surface that defines said load centering mechanism.

Claim 25 (New): The method of claim 13, wherein forming said load centering mechanism comprises attaching said load centering mechanism to said base first surface within said spring clip channel.

Appl. No. 09/870,952
Amtd. dated Dec. 19, 2003
Reply to Office Action of Nov. 4, 2003

Claim 26 (New): The method of claim 13, wherein forming said base, forming said at least one fin, and forming said spring clip channel occur substantially simultaneously in a extrusion process, and forming said load centering mechanism comprises milling away a portion of said spring clip channel.

Claim 27 (New): The method of claim 13, wherein forming said load centering mechanism comprises forming at least one depression extending into said base from said base first surface within said spring clip channel.

Claim 28 (New): The method of claim 13, wherein forming said spring clip channel further includes forming at least one sloped side adapted to orient a spring clip on said load centering mechanism.

Claim 29 (New): The method of claim 13, wherein forming said load centering mechanism further includes forming at least one sloped side adapted to orient a spring clip thereon.

Claim 30 (New): The method of claim 18, wherein forming said load centering mechanism comprises attaching said load centering mechanism to said base first surface within said spring clip channel.

Appl. No. 09/870,952
Amdt. dated Dec. 19, 2003
Reply to Office Action of Nov. 4, 2003

Claim 31 (New): The method of claim 18, wherein forming said base, forming said at least one fin, and forming said spring clip channel occur substantially simultaneously in a extrusion process, and forming said load centering mechanism comprises milling away a portion of said spring clip channel.

Claim 32 (New): The method of claim 18, wherein forming said load centering mechanism comprises forming at least one depression extending into said base from said base first surface within said spring clip channel.

Claim 33 (New): The method of claim 18, wherein forming said spring clip channel further includes forming at least one sloped side adapted to orient a spring clip on said load centering mechanism.

Claim 34 (New): The method of claim 18, wherein forming said load centering mechanism further includes forming at least one sloped side adapted to orient a spring clip thereon.