LOGICA I LLENGUATGES

PROBLEMES

Llenguatges regulars

Exercici 1. Sigui $\Sigma = \{a, b, c\}$. Siguin $L_1 = \{a, bc, ba\}$ i $L_2 = \{\lambda, bcc, a\}$. Determinar els llenguatges L_1L_2 , L_2L_1 , $L_1L_2 \cup L_2L_1$ i $L_1L_2 \cap L_2L_1$.

Exercici $\underline{2}.$ Considerem el següent autòmat determinista M, on q_4 és l'únic estat acceptador:

Llavors, es demana:

- (a) Determinar L(M).
- (b) Simular M mitjançant un programa en JAVA.

Exercici 3. Construir autòmats deterministes que reconeguin els següents llenguatges sobre l'alfabet $\{0,1\}$:

- (a) $\{\lambda, 0, 1\}$.
- (b) $\{x \in \{0,1\}^* : x \text{ acaba en } 1000 \}.$
- (c) $\{x \in \{0,1\}^* : n_0(x) \text{ és un múltiple de } 3\}.$

<u>Exercici 4</u>. Construir autòmats deterministes que reconeguin els següents llenguatges:

- (a) $\{x \in \{0,1\}^* : x \text{ és de la forma } 0^n \text{ per a algun } n > 0\}.$
- (b) $\{x \in \{0,1\}^* : x \text{ és de la forma } 0^n \text{ per a algun } n > k\}$ on $k \ge 0$ és un nombre fixat.
 - (c) $\{x \in \{0,1\}^* : x \text{ acaba en 1 i no conté } 00\}.$

<u>Exercici</u> 5. Construir autòmats deterministes que reconeguin els següents llenguatges:

- (a) $\{x \in \{0,1\}^* : x \text{ conté com a subparaula } 01\}.$
- (b) $\{x \in \{0,1\}^* : x \text{ conté com a subparaules } 01 \text{ i } 10\}.$
- (c) $\{x \in \{0,1\}^* : x \text{ no conté com a subparaula } 01\}.$
- (d) $\{x \in \{0,1\}^* : x \text{ no conté com a subparaules ni } 00 \text{ ni } 11\}.$

<u>Exercici</u> 6. Per cada un dels següents autòmats indeterministes, determinar les paraules de les llistes corresponents que són reconegudas:

Llista de paraules: λ , aa, aba, abb, ab, ababab.

Llista de paraules: $\lambda,\,b,\,ba,\,ab,\,bb,\,bba.$

 $\underline{\text{Exercici 7}}.$ (a) Dissenyar un autômat indeterminista per reconèixer els números de telèfon de les províncies de Catalunya.

(b) Explicar com a partir de l'autòmat de l'apartat (a), es pot dissenyar un programa en JAVA per reconèixer aquests números.

Exercici 8. Mitjançant l'algorisme vist a classe, construir un autòmat determinista equivalent a l'autòmat indeterminista $M = (\{A, B, C, D, E\}, \{a, b\}, \Delta, A, \{B, C\})$ on Δ està definida per la següent taula:

$ \begin{array}{c cccc} A & 0 & A \\ \hline A & \lambda & B \\ \hline B & 0 & C \\ \hline B & \lambda & D \\ \hline C & 1 & B \\ \hline C & 0 & D \\ C & 0 & D \\ \hline C & 0 & D \\ C & 0 & D \\ \hline C & 0 & D \\ C & 0 & D \\ \hline C & 0 & D \\ C &$			
$ \begin{array}{c cccc} B & 0 & C \\ \hline B & \lambda & D \\ \hline C & 1 & B \end{array} $	A	0	A
$ \begin{array}{c cccc} B & \lambda & D \\ \hline C & 1 & B \end{array} $	\overline{A}	λ	B
C 1 B	\overline{B}	0	C
	\overline{B}	λ	D
$D \cap D$	C	1	B
$D \mid 0 \mid D$	D	0	D

Exercici 9. Mitjançant l'algorisme vist a classe, construir un autòmat determinista equivalent a l'autòmat indeterminista $M=(\{P,Q,R,S\},\,\{a,b\},\,\Delta,P,\{P,Q\})$ on Δ està definida per la següent taula:

P	a	S
\overline{P}	a	Q
\overline{P}	λ	Q
\overline{Q}	b	Q
\overline{Q}	λ	R
R	b	P
\overline{S}	a	S
S	b	R

Exercici 10. Mitjançant l'algorisme vist a classe, construir un autòmat determinista equivalent a l'autòmat indeterminista $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \Delta, q_0, \{q_4\})$ on Δ està definida per la següent taula:

q_0	1	q_1
q_0	1	q_2
$\overline{q_0}$	0	q_4
q_1	1	q_0
q_2	1	q_3
q_3	0	q_0

- Exercici 11. (a) Construir un autòmat indeterminista per reconèixer nombres decimals que continguin: (a) un signe + o opcional; (b) una paraula de dígits; (c) un punt decimal; (d) una segona paraula de dígits. Tant la primera paraula de dígits com la segona poden estar buides, però almenys una de les dues paraules no pot estar buida.
- (b) Explicar com es pot dissenyar un programa en JAVA per reconèixer nombres decimals.

Exercici 12. Modificar l'autòmat vist a classe per dissenyar l'analitzador lèxic d'un compilador, de manera que es reconeguin també els nombres decimals segons la definició donada en l'exercici 11.

<u>Exercici 13</u>. Escriure un analitzador lèxic en JAVA per les següents categories sintàctiques:

- (a) paraules formades per lletres.
- (b) nombres enters sense signe.
- (c) la suma +.
- (d) la resta -.
- (e) l'assignació =.
- (f) la paraula reservada **print**.

<u>Exercici 14</u>. Explicar com dissenyar un analitzador lèxic per reconèixer les següents categories sintàctiques:

- (a) identificadors formats per lletras i dígits de manera que el primer caràcter és una lletra.
 - (b) nombres enters.
 - (c) l'assignació =.
 - (d) els predicats ==, < i <=.