b-mehdi.jimdo.com

Correction Algorithmique et programmation Session de contrôle 2009

Exercice 1:

NB: On acceptera toute proposition équivalente.

1. La trace d'exécution de la fonction f pour les cas suivants :

$$T: \boxed{5 \ 7 \ 6 \ 3} \ ; m = 6 \text{ et } n = 4$$

$$f(6,4,T) = f(6,3,T) = vrai$$

$$T: \boxed{5 \ 7 \ 6 \ 3} \ ; m = 1 \text{ et } n = 4$$

$$0.5 \text{ pour la trace}$$

$$0.25 \text{ pour le Résultat}$$

f(1,4,T) = f(1,3,T) = f(1,2,T) = f(1,1,T) = f(1,0,T) = faux

- 2. La fonction f permet de vérifier l'existence d'un entier m dans un tableau T de n entiers
- 3. Forme récursive de la fonction f (1 pt)
 - 0) DEF FN f(m,n: entier; T: vect): booléen 0,25 1) Si n = 0 Alors $f \leftarrow faux$ 0,25 Sinon Si T[n]=m alors $f \leftarrow vrai$ Sinon $f \leftarrow f(m, n-1, T)$ FinSi 2) Fin f
- 4. Forme itérative de la fonction f (1 pt)
 - 0,25 0) DEF FN f(m,n: entier; T: vect): booléen

Exercice 2:

1) Analyse du module de calcul de la valeur de X: (2 pts)

DEF FN Piece: réel	0,5
Résultat = Piece ← X	0,5
X=[X ← 0, S2 ← 0]	0,25
Répéter	
X ← X+0,01	0,25
S1 ← S2	0.25
$S2 \leftarrow ((\sqrt{3} - 4)/2) * X^2 + X$	0,25
Jusqu'à S2-S1 <=0	0,25

NB: Il est possible de trouver une autre solution basée sur le calcul de la dérivée de S(x).

L'aire S de la pièce est égale à $S = ((\sqrt{3} - 4)/2)*x^2 + x$.

L'aire S est maximale
$$\Rightarrow$$
 la dérivée s'annule \Rightarrow 2* $((\sqrt{3} - 4)/2)$ * $x + 1 = 0$
 $\Rightarrow x = -1/(2*((\sqrt{3} - 4)/2))$

Tableau de déclaration des obiets globaux

Objet	Type/Nature	Rôle
X	réel	valeur du côté du triangle

Algorithme:

- 0) DEF FN Piece : Réel
- 1) X**←**0, S2**←**0

2) Répéter

 $X \leftarrow X + 0.01$ S1**←**S2 $S2 \leftarrow ((\sqrt{3} - 4)/2) \times X^2 + X$

Jusqu'à S2-S1<=0

- 3) Piece ←X
- 4) Fin Piece

Problème:

Analyse du programme principal

Nom: calcul_integral

Résultat = écrire ("VI1 par la méthode des trapèzes : ",VI1, "VI2 par la méthode d'une subdivision aléatoire : ",VI2, "La valeur absolue de la différence est ", VI1 – VI2) $VI1 \leftarrow FN TRAPEZES(n)$

VI2← FN SUBDIVISIONS(n)

Répéter

N= donnée(''introduire le nombre de subdivisions : '')

Jusqu'à n dans [101..999]

Fin calcul_integral

Tableau de déclaration des obiets globaux

Objet	Type/Nature	Rôle
VI1	Réel	Valeur de l'intégral par la méthode des trapèzes
VI2	Réel	Valeur de l'intégral par méthode d'une subdivision aléatoire
N	Entier	Nombre de subdivisions
TRAPEZES	Fonction	Fonction qui calcule selon la méthode des trapèzes, une valeur
		approchée de l'aire en question
SUBDIVISIONS	Fonction	Fonction qui calcule selon la méthode des subdivisions aléatoires,
		une valeur approchée de l'aire en question

Algorithme du programme principal

- 0) Début calcul_integral
- 1) Répéter

Ecrire(''introduire le nombre de subdivisions : '')

Lire(n)

Jusqu'à n dans [101..999]

- 2) VI1 \leftarrow FN TRAPEZES(n)
- 3) VI2← FN SUBDIVISIONS(n)
- 4) écrire ("VI1 par la méthode des trapèzes : ",VI1," VI2 par méthode d'une subdivision aléatoire :
 - ",VI2, "La valeur absolue de la différence est", VI1 VI2
- 5) Fin calcul_integral

Analyse de la fonction TRAPEZES

DEF FN TRAPEZES (n : entier) : réel

Résultat = TRAPEZES ← VI

 $VI=[VI \leftarrow ((exp(-1) + exp(-4))/2)/n]$ Pour i de 1 à n-1 faire

$$VI \leftarrow VI + (\exp(-(1+i/n)^2))/n$$

FinPour

i = compteur

Fin TRAPEZES

Tableau de déclaration des objets de la fonction TRAPEZES

Objet	Type/Nature	Rôle
VI	Réel	Valeur de l'intégral par la méthode des trapèzes
I	Entier	compteur

Algorithme de la fonction TRAPEZES

- 0) DEF FN TRAPEZES (n : entier) : réel
- 1) VI $\leftarrow ((\exp(-1) + \exp(-4))/2)/n$

Pour i de 1 à n-1 faire

$$VI \leftarrow VI + (\exp(-(1+i/n)^2))/n$$

FinPour

- 2) TRAPEZES ← VI
- 3) Fin TRAPEZES

Analyse de la fonction SUBDIVISIONS

DEF FN SUBDIVISIONS (n : entier) : réel	
Résultat = SUBDIVISIONS ← VI	
$VI \leftarrow (S1+S2)/2$	
$S1=[S1 \leftarrow 0]$ Pour i de 0 à n-1 faire	
$S1 \leftarrow S1 + (V[i+1] - V[i]).exp(-(V[i])^2)$	
FinPour	
$S2=[S2 \leftarrow 0]$ Pour i de 0 à n-1 faire	
$S2 \leftarrow S2 + (V[i+1] - V[i]).exp(-(V[i+1])^2)$	
FinPour	
i = compteur	
V = PROC REMPLISSAGE (n, V)	
PROC TRI (n, V)	
Fin SUBDIVISIONS	

Commentaires

- Détermination de la valeur de I2
- Détermination de la somme S1
- Détermination de la somme S2
- V est un tableau rempli aléatoirement puis trié par la méthode d'insertion.

Tableau de déclaration des nouveaux types

Туре
Vect = tableau de 999 réels

Tableau de déclaration des objets de la fonction SUBDIVISIONS

Objet	Type/Nature	Rôle
VI	Réel	Valeur de l'intégral par la méthode des subdivisions
S 1	Réel	Valeur de la somme S1
S2	Réel	Valeur de la somme S2
i	Entier	Compteur
V	Vect	Tableau contenant les valeurs des x _i
Tri	Procédure	Une procédure qui permet de trier les éléments de V
		par la méthode d'insertion

- 0) DEF FN SUBDIVISIONS (n:entier): réel
- 1) PROC REMPLISSAGE(n,V)
- 2) PROC TRI(n,V)
- 3) $S1 \leftarrow 0$

Pour i de 0 à n-1 faire

$$S1 \leftarrow S1 + (V[i+1] - V[i]).exp(-(V[i])^2)$$

FinPour

4) $S2 \leftarrow 0$

Pour i de 0 à n-1 faire

$$S2 \leftarrow S2 + (V[i+1] - V[i]).exp(-(V[i+1])^2)$$

FinPour

- 5) $VI \leftarrow (S1+S2)/2$
- 6) SUBDIVISIONS ← VI
- 7) Fin SUBDIVISIONS

Analyse de la procédure TRI

DEF PROC TRI (n : entier ; Var T : Vect)
Résultat = T
T = [] Pour i de 1 à n faire
$Aux \leftarrow T[i]$
j←i
Tant que $(T[j-1] > aux)$ et $(j>1)$ Faire
$T[j] \leftarrow T[j-1]$
j ← j-1
Fin Tant que
$T[j] \leftarrow aux$
FinPour
i,j = compteurs
Fin TRI

Commentaires

• Application du tri par insertion sur un tableau T

Tableau de déclaration des objets de la Procédure TRI

Objet	Type/Nature	Rôle
i	Entier	Compteur
j	Entier	Compteur
aux	Réel	Variable auxiliaire

Algorithme de la procédure TRI

- 0) DEF PROC TRI (n: entier; Var T: Vect)
- 1) Pour i de 1 à n faire

$$Aux \leftarrow T[i]$$

j←

Tant que (T[j-1] > aux) et (j>1) Faire

$$T[j] \leftarrow T[j-1]$$

 $j \leftarrow j-1$

Fin Tant que

$$T[i] \leftarrow aux$$

FinPour

2) Fin TRI

b-mehdi.jimdo.com

Analyse de la procédure REMPLISSAGE

DEF PROC REMPLISSAGE (n : entier; Var T : Vect)

Résultat = T
$T=[T[0] \leftarrow 1 ; T[n] \leftarrow 2]$
Pour i de 1 à n-1 faire
Répéter
$T[i] \leftarrow 1 + RANDOM$
Jusqu'à Vérif (i,T)
FinPour
i = compteur
Fin REMPLISSAGE

Commentaires

- Cette procédure permet de générer la suite $(X_i)_{0 < i < n}$ où $X_0 = 1$, $X_i = V[i]$ et $X_n = 2$.
- Puisque la fonction RANDOM renvoie un réel compris entre 0 et 1 au sens strict, il faut prévoir de ranger dans T, les 2 valeurs (1 et 2) pour construire la suite X_i
- La valeur obtenue au hasard (1+ random), ne sera considérée que si elle n'existe pas dans
 le tableau. (car selon l'énoncé, V contient n-

Tableau de déclaration des objets de la Procédure REMPLISSAGE		
Objet Type/Nature Rôle		
i	Entier	Compteur
X	Réel	L'entier à déterminer au hasard
Vérif	Fonction	Fonction qui vérifie l'existence d'un élément dans les I
		premiers éléments de T

Algorithme de la procédure REMPLISSAGE

- 0) DEF PROC REMPLISSAGE (n : entier; Var T : Vect)
- 1) $T[0] \leftarrow 1$ $T[n] \leftarrow 2$

Pour i de 1 à n-1 faire

Répéter

 $T[i] \leftarrow 1 + RANDOM$

Jusqu'à Vérif (i,T)

FinPour

2) Fin REMPLISSAGE

Analyse de la fonction Vérif

J
DEF FN VERIF (j: entier; T: Vect): booléen
Résultat = Vérif ← V
$V = [V \leftarrow Vrai, x \leftarrow T[j]] Répéter$
$Si x = T[j-1] alors V \leftarrow faux$
Sinon j← j-1
FinSi
Jusqu'à (V=faux) ou (j=1)
Fin VERIF

• On aurait pu e

- On aurait pu exploiter la fonction f de l'exercice 1
- Cette fonction vérifie que la valeur T[j] n'existe pas dans le tableau.

Algorithme de la fonction Vérif

- 0) DEF FN VERIF (j: entier; T: Vect): booléen
- 1) $V \leftarrow Vrai, x \leftarrow T[j]$

Répéter

Si x = T[j-1] alors $V \leftarrow faux$ Sinon $j \leftarrow j-1$

FinSi

Jusqu'à (V=faux) ou (j=1)

- 2) Vérif ← V
- 3) Fin VERIF

Barème du problème

	ANALYSES (8 pts)	ALGO (4 pts) / -0,25 par erreur
PP Affichage de I_1 , I_2 et $ I_1-I_2 $ Calcul de I_1	1,5 pts = 0,5 cohérence + 1 modularité 0,75 pts = 3 x 0,25 1 pt = 0,25 init + 0,25 boucle Pour + 0,25 VI \leftarrow Vi + 0,25 Trapèzes \leftarrow VI 1,25 pt= 0,5 S ₁ +0,5 S ₂ +0,25 appels tri et remp	0,75 pt 0,5 pt 0,5 pt 0,5 pt
Tri de V Remplissage de V	1 pt = 0,25 boucle Pour + 0,25 init + 0,25 décalage +0,25 Insertion 1pt = 0,5 remplissage + 0,5 Vérification	0,5 pt $1 \text{ pt} = 0.5 + 0.5$ 0.25 pt
Saisie de N Divers : - TDO - Paramètres et modes de passages	0,5pt=0,25 lecture+0,25 répéter et condition 0,5 pt 0,5 pt	, I