Updated schedule:

you need to hand in 7 of 10 6 of 9 exercises to be admitted to the exam

Week	Reading	Tuesday	Wednesday	
Week 1: April 15-16	None	Introduction	No lecture	
Week 2: April 22-23	 Logic in Action, Ch. 4 (Sec. 4.5-4.6) Elements of Formal Semantics, Ch. 2 	Predicate Logic	Overflow (if necessary)	
Week 3: April 29-30	Elements of Formal Semantics, Ch. 3 (Parts 1-2)	Type Theory	Exercise 1: Predicate Logic	
Week 4: May 6-7	Elements of Formal Semantics, Ch. 3 (Part 3)	Lambda Calculus	Exercise 2: Type Theory	
Week 5: May 13-14	Generalized Quantifiers (Stanford Encyclopedia of Philosophy)	Generalized Quantifiers	Exercise 3: Lambda Calculus	
Week 6: May 20-21	Event-Based Semantics (Lasersohn, 2012)	Event Semantics	Exercise 4: Generalized Quantifiers	
Week 7: May 27-28	None	Lexical Semantics	Exercise 5: Event Semantics	
Week 8: June 3-4	Dynamic Semantics (Stanford Encyclopedia of Philosophy)	Dynamic Semantics	Exercise 6: Lexical Semantics	
Week 9: June 10-11	Discourse Representation Theory (Stanford Encyclopedia of Philosophy)	DRT	Exercise 7: Dynamic Semantics	
Week 10: June 17-18	None	Presuppositions in DRT	Exercise 8: DRT	
Week 11: June 24-25	None	Implicature Current Issues and Applications	Exercise 9: Presuppositions in DRT	
Week 12: July 1-2	None	Current Issues and Applications Exam Review	Exercise 10: Implicature Take-home Practice Exam	
Week 13: July 8-9	None	Exam Review No lecture	Take-home Practice Exam No lecture	
Week 14: July 15-16	None	Exam	No lecture	

Discourse Representation Theory (DRT)

Week 9

Recap: dynamic semantics

Basic semantic value: context-change potential

Existential quantification over: the discourse

Quantification is: unselective

Discourse Representation Theory

 Mentalist, representationalist, and dynamic theory of the interpretation of discourse

- Ingredients:
 - Discourse Representation Structures (DRSs)
 - Construction procedure for DRSs
 - Model-theoretic interpretation (at the discourse level)

Basic features of DRT

DRT models linguistic meaning as anaphoric potential (through DRS construction) plus truth conditions (through model embedding)

- DRT explains the ambivalent character of indefinite noun phrases:
 - Indefinite NPs are expressions that introduce new reference objects into the context (like DPL)

Discourse Representation Structures

A context is represented as a Discourse Representation Structure (DRS)
consisting of a set of discourse referents and a set of conditions

DRS syntax

- A discourse representation structure (DRS) K is a pair (U_K, C_K) , where:
 - \circ $U_{\kappa} \subseteq U_{\rho}$ and U_{ρ} is a set of **discourse referents**
 - \circ C_{κ} is a set of well-formed **DRS conditions**
- Well-formed DRS conditions:

o
$$R(u_1, ..., u_n)$$
 where: R is an n-place relation, $u_i \in U_D$

$$\circ \quad \mathsf{u} = \mathsf{v} \qquad \qquad \mathsf{u}, \, \mathsf{v} \in U_{D}$$

$$\circ$$
 u = a u $\in U_D$, a is a constant

$$\circ$$
 $\neg K_1$ K_1 is a DRS

o
$$K_1 \Rightarrow K_2$$
 K_1 and K_2 are DRSs

$$\circ$$
 $K_1 \vee K_2$ K_1 and K_2 are DRSs

DRS example

"A farmer does not own a donkey."

х		
farn	ner(x)	
Г	donkey (y) own(x,y)	

Anaphora and accessibility

"A farmer does not own a donkey. # He feeds it."

Anaphora and accessibility

"Mary knows a professor. If she owns a book, he reads it. # It fascinates him."

Anaphora and accessibility

"Mary knows a professor. If she owns a book, he reads it."

Non-accessible discourse referents

- "If a professor owns a book, he reads it. It has 300 pages."
- "It is not the case that a professor owns a book. He reads it."
- "Every professor owns a book. He reads it."
- "If every professor owns a book, he reads it."
- "Peter owns a book, or Mary reads it."
- "Peter reads a book, or Mary reads a newspaper article. It is interesting."

 To explain this pattern, we need to formalize accessibility of discourse referents!

Accessible discourse referents

- The following discourse referents are accessible from a DRS condition:
 - Referents in the same local DRS
 - Referents in a superordinate DRS
 - Referents in an antecedent DRS, if the condition occurs in the consequent DRS

We need a formal notion of DRS subordination

Subordination

- DRS K_1 is an **immediate sub-DRS** of a DRS $K = (U_K, C_K)$ iff
 - C_K contains a condition of the form: $\neg K_1$, $K_1 \Rightarrow K_2$, $K_2 \Rightarrow K_1$, $K_1 \lor K_2$ or $K_2 \lor K_1$
- DRS K_1 is a **sub-DRS** of DRS K (notation: $K_1 \le K$) iff
 - \circ $K_1 = K$, or
 - K₁ is an immediate sub-DRS of K, or
 - there is a DRS K_2 such that $K_1 \le K_2$ and K_2 is an immediate sub-DRS of K
- DRS K₁ is a proper sub-DRS of DRS K iff
 - \circ $K_1 \leq K$ and $K_1 \neq K$

Accessible discourse referents: formal definition

• Let K, K_n , K_m be DRSs such that:

$$K_n, K_m \le K \text{ and } x \in U_{K\square} \text{ and } \gamma \in C_{K\square}$$

- Then, x is accessible from γ in K iff
 - \circ $K_m \leq K_n$ or
 - there are K_h , $K_i \le K$ such that:

$$K_n \Rightarrow K_h \in C_{K_i}$$
 and $K_m \leq K_h$

Free and bound variables in DRT

- A DRS variable x, introduced in the conditions of DRS K_1 , is **bound** in global DRS K iff there exists a DRS $K_2 \le K$, such that:
 - $x \in U_{\kappa}$, and
 - \circ K_2 is accessible from K_1 in K
- Properness: a DRS is proper iff it does not contain any free variables
- Purity: a DRS is pure iff it does not contain any otiose declarations of variables
 - i.e. $x \in U_{K_1}$ and $x \in U_{K_2}$ and $K_1 \le K_2$

From text to DRS

Text
$$\Sigma = \langle \ S_1, \qquad S_2, \qquad ..., \qquad S_n \rangle$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 Syntactic analysis
$$P(S_1) \quad P(S_2) \quad ... \quad P(S_n)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$DRS \qquad \qquad K_1 \quad \longrightarrow \quad K_2 \quad \longrightarrow \quad ... \quad \longrightarrow \quad K_n$$

DRS construction algorithm

- Let the following be a well-formed, **reducible** DRS condition:
 - \circ Conditions of form α or $\alpha(x_1, ..., x_n)$, where α is a context-free parse tree
- DRS construction algorithm:
 - Given a text $\Sigma = (S_1, ..., S_n)$, and a DRS K_0 (= (\emptyset , \emptyset), by default)
 - Repeat for i = 1, ..., n:
 - Add parse tree $P(S_i)$ to the conditions of K_{i-1}
 - Apply DRS construction rules to reducible conditions of K_{i-1} , until no more reduction steps are possible
 - The resulting DRS is K_i , the discourse representation of text Σ

хy	
farmer(x) donkey(y) owns(x, y)	


```
xyzu
farmer(x)
donkey(y)
owns(x, y)
z = x
u = y
beat(z, u)
```

Construction rules: indefinite NPs

• given a reducible condition α in DRS K, with [S [NP β] [VP γ]] or [VP [V γ] [NP β]] as a substructure, such that $\beta = \epsilon \delta$, where ϵ is an indefinite article:

```
(i) add a new discourse referent x to U_{\kappa}
```

- (ii) replace β in α by x
- (iii) add $\delta(x)$ to C_{κ}

Construction rules: proper names

- Given a global DRS K*, and some K ≤ K*, such that α is a reducible condition in DRS K, with [S [NP β] [VP γ]] or [VP [V γ] [NP β]] as a substructure, such that β is a proper name
 - (i) add a new discourse referent x to U_{κ^*}
 - (ii) replace β in α by x
 - (iii) add $x = \beta$ to C_{K^*}

 Given a reducible condition α in DRS K, with [S if [S β] (then) [S γ]] as a substructure:

(i) remove
$$\alpha$$
 from C_{κ}

(ii) add $K_1 \Rightarrow K_2$ to C_K , such that:

$$\circ K_{1} = (\emptyset, \{\beta\})$$

$$\circ K_2 = (\varnothing, \{\gamma\})$$

Remark: $K_1 \Rightarrow K_2$ is called a **duplex** condition— K_1 is the antecedent DRS and K_2 is the **consequent** DRS

Construction rules: universal NPs

given a reducible condition α in DRS K, with [S [NP β] [VP γ]] or [VP [V γ] [NP β]] as a substructure, such that β = εδ, where ε is a universal quantifier:

- (i) remove α from C_{κ}
- (ii) add $K_1 \Rightarrow K_2$ to C_K , such that:

$$\circ K_1 = (\{x\}, \{\delta(x)\})$$

$$\circ K_2 = (\varnothing, \{\alpha'\})$$

 \circ where α ' is obtained from α by replacing β with x

Construction rules: negation

given a reducible condition α in DRS K, with [S β [VP doesn't [VP γ]]] as a substructure

```
(i) remove \alpha from C_{\kappa}
```

(ii) add $\neg K_1$ to C_K , such that:

$$\circ K_{1} = (\emptyset, \{[S \beta [VP \gamma]\})$$

Construction rules: clausal disjunction

- given a reducible condition α in DRS K, with [[S β] or [S γ]] as a substructure
 - (i) remove α from C_{κ}
 - (ii) add $K_1 \vee K_2$ to C_K , such that:
 - $\circ K_{1} = (\emptyset, \{\beta\})$
 - $\circ K_2 = (\varnothing, \{\gamma\})$

From text to DRS

Text
$$\Sigma = \langle \ S_1, \qquad S_2, \qquad ..., \qquad S_n \rangle$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 Syntactic analysis
$$P(S_1) \quad P(S_2) \quad ... \quad P(S_n)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K_1 \quad \longrightarrow \quad K_2 \quad \longrightarrow \quad K_n \quad \longrightarrow \quad Interpretation \ by \ model \ embedding: \ truth \ conditions \ of \ \Sigma$$

DRS interpretation: model embedding

- Given a DRS $K = (U_K, C_K)$, with $U_K \subseteq U_D$:
 - Let $M = (U_M, V_M)$ be a FOL model structure that is **appropriate for** K, i.e. a model structure that provides interpretations for all predicates and relations in K
- K is true in M iff:
 - there exists an embedding function for K in M that verifies all conditions in K
- An embedding function for DRS K in model M is defined as:
 - o a (partial) function f: $U_D \rightarrow U_M$ such that $U_K \subseteq dom(f)$

Verifying by embedding

```
g \supseteq_U f :=
(dom(g) = dom(f) \cup U) \land \forall x[x \in dom(f) \rightarrow f(x) =
g(x)]
```

• An embedding f of K in M verifies K in M (f $\models_M K$) iff f verifies every condition $\alpha \in C_K$ (f $\models_M K$ for all $\alpha \in C_K$)

```
0 \quad f \vDash_{M} R(x_{1}, ..., x_{n}) \quad \text{iff} \quad (f(x_{1}), ..., f(x_{n})) \in V_{M}(R)
0 \quad f \vDash_{M} x = y \quad \text{iff} \quad f(x) = f(y)
0 \quad f \vDash_{M} x = a \quad \text{iff} \quad f(x) = V_{M}(a)
0 \quad f \vDash_{M} \neg K_{1} \quad \text{iff} \quad \text{there is no } g \supseteq_{U \sqsubseteq_{1}} f \text{ such that } g \vDash_{M} K_{1}
0 \quad f \vDash_{M} K_{1} \lor K_{2} \quad \text{iff} \quad \text{there is a } g_{1} \supseteq_{U \sqsubseteq_{1}} f \text{ such that } g_{1} \vDash_{M} K_{1}
0 \quad f \vDash_{M} K_{1} \Rightarrow K_{2} \quad \text{iff} \quad \text{for all } g_{1} \supseteq_{U \sqsubseteq_{1}} f \text{ such that } g_{1} \vDash_{M} K_{1}
```

iff for all $g_1 \supseteq_{U_{\square_1}} f$ such that $g_1 \models_M K_1$: there is a $g_2 \supseteq_{U_{\square_2}} g_1$ such that $g_2 \models_M K_2$

Verifying by embedding: example

 "Mary knows a professor. If she owns a book, he reads it." is true in

```
M = (U_M, V_M) iff there is an f: U_D \rightarrow U_M,
(with \{x, y\} \subseteq dom(f)) s.t.:
```

- o $f(x) = V_M(mary)$ and $f(y) \in V_M(professor)$
- o and $(f(x), f(y)) \in V_M(know)$
- o and for all $g \supseteq_{\{v, z\}} f$ such that g(v) = g(x), $g(z) \in V_M(book)$ and $(g(v), g(z)) \in V_M(own)$:
 - there exists $h \supseteq_{\{u, w\}} g$ s.t. h(u) = h(y), h(w) = h(z), and $(h(u), h(w)) \in V_M(read)$

```
x y

x = Mary

professor(y)

know(x,y)

v z

v = x

book(z)
owns(v,z)

x = Mary

u w

u = y

w = z

read(u,w)
```

DRT and compositionality

- DRT is a representational theory of meaning
 - Structural information that cannot be reduced to truth conditions is required to compute the semantic value of discourses
- DRT is non-compositional on truth conditions (in the traditional sense)
 - The difference in discourse-semantic status of the text pairs is not predictable through the truth conditions of its component sentences
- But wait a minute... can't we just combine type theoretic semantics and DRT?
 - \circ Use λ-abstraction and reduction as before, but where the target (type t) representations are DRSs, not formulas from type theory (or FOL)
 - This is called λ-DRT

λ-DRT

An expression in λ-DRT consists of a lambda prefix and a partially instantiated DRS

 $\circ \quad \text{"every student"} :: \langle \langle e, t \rangle, t \rangle \mapsto \lambda G. \quad \boxed{z \atop \text{student(z)}}$

- Alternative notation: $\lambda G.[\varnothing | [z | student(z)] \Rightarrow G(z)]$
 - "works" :: $\langle e, t \rangle \mapsto \lambda x.[\varnothing | work(x)]$

λ-DRT: β-reduction

"every student works"

Question: how do we define conjunction on DRSs?

Simple DRS merge: first try

• The **merge** operation (notation: $K_1 + K_2$) on two DRSs combines the universes and conditions of both DRSs into a new DRS

• Let
$$K_1 = [U_1 | C_1]$$
 and $K_2 = [U_2 | C_2]$:
• $K_1 + K_2 = [U_1 \cup U_2 | C_1 \cup C_2]$

Compositional analysis with merge

```
"a student" → λG.([z | student(z)] + G(z))
"works" → λx.[∅ | work(x)]
```

```
• "a student works" \mapsto \lambda G.([z \mid student(z)] + G(z))(\lambda x.[\varnothing \mid work(x)])
\Rightarrow_{\beta} [z \mid student(z)] + \lambda x.[\varnothing \mid work(x)](z)
\Rightarrow_{\beta} [z \mid student(z)] + [\varnothing \mid work(z)]
\Rightarrow_{\beta} [z \mid student(z), work(z)]
```

Compositional analysis with merge

- "Mary" $\rightarrow \lambda G.([z | z = mary] + G(z))$
- "she" $\rightarrow \lambda G.([v | v = z] + G(v))$

"Mary works. She is successful."

DRS merge: second try (directional)

- The merge operation on two DRSs combines the universes and conditions of both DRSs into a new DRS
- Let $K_1 = [U_1 | C_1]$ and $K_2 = [U_2 | C_2]$:
 - $\circ K_1 + K_2 = [U_1 \cup U_2 \mid C'_1 \cup C_2]$
 - where: C'_1 is C_1 such that all free variables in the conditions $\gamma \in C_1$ that also occur as discourse referents $u \in U_2$ are α-converted to new variables
- under this definition, merge is directional:

$$K_1 + K_2 \Leftrightarrow K_2 + K_1$$

Variable capturing

 In λ-DRT, discourse referents are captured via the interaction of β-reduction and DRS-binding:

```
\lambda K'([z \mid student(z), work(z)] + K')([v \mid v = z, successful(v)])

\Rightarrow_{\beta} [z \mid student(z), work(z)] + [v \mid v = z, successful(v)]

\Rightarrow_{\beta} [z \mid student(z), work(z), v = z, successful(v)]
```

- But the β-reduced DRS must be equivalent to the original DRS!
 - \circ This means that the potential for capturing discourse referents must be captured in the interpretation of λ -DRSs
 - Possible, but tricky