Homework 2

Zankhana Mehta: 002320268

mehta.zan@northeastern.edu

QUESTION 1

import pandas as pd
from ISLP import load_data
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.metrics import accuracy_score,log_loss

In [4]: df=load_data("Auto")

In [7]: df.head()

Out[7]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	oriç
name								
chevrolet chevelle malibu	18.0	8	307.0	130	3504	12.0	70	
buick skylark 320	15.0	8	350.0	165	3693	11.5	70	
plymouth satellite	18.0	8	318.0	150	3436	11.0	70	
amc rebel sst	16.0	8	304.0	150	3433	12.0	70	
ford torino	17.0	8	302.0	140	3449	10.5	70	
	chevrolet chevelle malibu buick skylark 320 plymouth satellite amc rebel sst	name chevrolet chevelle nalibu buick skylark 320 plymouth satellite amc rebel sst ford 17.0	name chevrolet chevelle 18.0 8 malibu buick skylark 15.0 8 320 plymouth satellite 18.0 8 amc rebel sst 16.0 8 ford 17.0 8	name chevrolet chevelle the chevelle malibu 18.0 8 307.0 buick skylark skylark 320 15.0 8 350.0 plymouth satellite 18.0 8 318.0 amc rebel sst 16.0 8 304.0 ford 17.0 8 302.0	name chevrolet chevelle chevelle malibu 18.0 8 307.0 130 buick skylark skylark 320 15.0 8 350.0 165 plymouth satellite 18.0 8 318.0 150 amc rebel sst 16.0 8 304.0 150 ford 17.0 8 302.0 140	name chevrolet chevelle chevelle malibu 18.0 8 307.0 130 3504 buick skylark skylark 320 15.0 8 350.0 165 3693 plymouth satellite 18.0 8 318.0 150 3436 amc rebel sst 16.0 8 304.0 150 3433 ford 17.0 8 302.0 140 3449	name chevrolet chevelle chevelle malibu 18.0 8 307.0 130 3504 12.0 buick skylark skylark 320 15.0 8 350.0 165 3693 11.5 plymouth satellite 18.0 8 318.0 150 3436 11.0 amc rebel sst 16.0 8 304.0 150 3433 12.0	name chevrolet chevelle chevelle malibu 18.0 8 307.0 130 3504 12.0 70 buick skylark 320 15.0 8 350.0 165 3693 11.5 70 plymouth satellite 18.0 8 318.0 150 3436 11.0 70 amc rebel sst 16.0 8 304.0 150 3433 12.0 70

In [9]: df.shape

Out[9]: (392, 8)

```
In [11]:
          df=df[df['horsepower'].notna()]
          df.shape
Out[11]: (392, 8)
          Part a
In [14]: mpg_median=df['mpg'].median()
          print(mpg_median)
         22.75
In [16]: df['mpg01'] = df['mpg'].apply(lambda x: 1 if x > mpg_median else 0)
          df.head()
Out[16]:
                    mpg cylinders displacement horsepower weight acceleration year orig
              name
          chevrolet
           chevelle
                     18.0
                                 8
                                            307.0
                                                          130
                                                                3504
                                                                              12.0
                                                                                     70
             malibu
              buick
                                 8
                                                                                     70
            skylark
                     15.0
                                            350.0
                                                          165
                                                                3693
                                                                               11.5
               320
          plymouth
                                 8
                                                                                     70
                     18.0
                                            318.0
                                                          150
                                                                3436
                                                                              11.0
           satellite
               amc
                     16.0
                                                          150
                                                                              12.0
                                                                                     70
                                 8
                                            304.0
                                                                3433
           rebel sst
               ford
                     17.0
                                 8
                                                          140
                                                                              10.5
                                                                                     70
                                            302.0
                                                                3449
             torino
In [18]: mpg01_counts = df['mpg01'].value_counts()
```

```
print(mpg01_counts)
```

mpg01 196

196 1

Name: count, dtype: int64

Part b

```
In [21]: features = ['mpg', 'horsepower', 'weight', 'acceleration', 'displacement','d
         pd.plotting.scatter_matrix(df[features], figsize=(10, 10), diagonal='kde')
         plt.show()
```


- 1. Horsepower: There's a clear negative correlation between mpg and horsepower. As horsepower increases, mpg (miles per gallon) decreases. This suggests that cars with higher horsepower tend to have lower gas mileage.
- 2. Weight: Similar to horsepower, there's a strong negative correlation between mpg and weight. Heavier cars tend to have lower gas mileage.
- 3. Acceleration: The relationship between mpg and acceleration is not as clear. There appears to be some mild correlation where cars with higher acceleration might have slightly higher mpg, but it's not as strong.
- 4. Displacement: There's also a negative correlation between mpg and displacement. Cars with larger engine displacements tend to have lower gas mileage.

= Based on the scatter plots:

Horsepower and weight seem to be the most useful features for predicting whether a car has high or low gas mileage (mpg01). Both features show a strong negative correlation with mpg, meaning that as these values increase, the gas mileage tends to decrease. Displacement is also a good predictor, as it shows a similar trend to weight and horsepower, though perhaps not as strong. Acceleration shows weaker correlation, making it less likely to be a strong predictor of mpg01.

```
In [23]: features = ['horsepower', 'weight', 'acceleration', 'displacement']
fig, axes = plt.subplots(2, 2, figsize=(10, 8))

axes = axes.ravel()

for i, feature in enumerate(features):
    df.boxplot(column=feature, by='mpg01', ax=axes[i])
    axes[i].set_title(f'Boxplot of {feature} by mpg01')
    axes[i].set_xlabel('mpg01 (0 = low mileage, 1 = high mileage)')
    axes[i].set_ylabel(feature)

plt.tight_layout()
plt.suptitle('')
plt.show()
```


Horsepower, weight and displacement are the most significant features for predicting whether a car will have high or low gas mileage (mpg01). All three show strong separations between low and high mileage cars, with low mileage cars being heavier, more powerful, and having larger engines.

```
In [27]: sns.set(style="ticks", color_codes=True)
    features = ['horsepower', 'weight', 'acceleration', 'displacement','cylinder
    sns.pairplot(df, vars=features, hue='mpg01', palette='coolwarm', diag_kind='
    plt.show()
```


In [28]: # we will also find the correlation between feature varibales to understand
 correlation_matrix = df.corr()
 print(correlation_matrix)

```
cylinders
                                   displacement
                                                 horsepower
                                                               weight \
                   mpg
              1.000000
                        -0.777618
                                      -0.805127
                                                  -0.778427 -0.832244
mpg
cylinders
             -0.777618
                         1.000000
                                       0.950823
                                                   0.842983 0.897527
displacement -0.805127
                                                             0.932994
                         0.950823
                                       1.000000
                                                   0.897257
horsepower
            -0.778427
                         0.842983
                                       0.897257
                                                   1.000000 0.864538
weiaht
             -0.832244
                         0.897527
                                       0.932994
                                                   0.864538
                                                            1.000000
acceleration 0.423329
                        -0.504683
                                      -0.543800
                                                  -0.689196 -0.416839
              0.580541
                        -0.345647
                                      -0.369855
                                                  -0.416361 - 0.309120
year
origin
              0.565209
                        -0.568932
                                      -0.614535
                                                  -0.455171 -0.585005
mpg01
              0.836939
                        -0.759194
                                      -0.753477
                                                  -0.667053 - 0.757757
              acceleration
                                        origin
                                                   mpg01
                                vear
                            0.580541
mpg
                  0.423329
                                      0.565209
                                                0.836939
cylinders
                 -0.504683 - 0.345647 - 0.568932 - 0.759194
displacement
                 -0.543800 - 0.369855 - 0.614535 - 0.753477
horsepower
                 -0.689196 -0.416361 -0.455171 -0.667053
                 -0.416839 -0.309120 -0.585005 -0.757757
weight
acceleration
                  1.000000 0.290316 0.212746
                                                0.346822
                  0.290316 1.000000 0.181528
                                                0.429904
year
                  0.212746 0.181528
                                     1.000000
                                                0.513698
origin
mpg01
                  0.346822 0.429904 0.513698
                                                1.000000
```

In the above correlation matrix we see that for the mpg01 column the it is highly negatively correlated to cylinders, displacement, horsepower and weight. Whereas, acceleration, year and origin have lower correlation.

The features **horsepower**, **weight**, **cylinders and displacement** are clearly strong predictors of mpg01. Cars with lower values in these features (blue points) tend to have higher mileage, while cars with higher values (orange points) tend to have lower mileage.

Part c

```
In [33]: X = df[['horsepower', 'weight', 'acceleration', 'displacement','cylinders']]
y = df['mpg01']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rar

print("Training set size:", X_train.shape[0])

print("Test set size:", X_test.shape[0])

Training set size: 313
Test set size: 79
```

Part d

```
In [36]: model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```

```
y_prob=model.predict_proba(X_test)

accuracy = accuracy_score(y_test, y_pred)
test_err=1-accuracy
ll=log_loss(y_test,y_prob)
print("Accuracy score:",accuracy)
print("Test error:",test_err)
print("Test Loss:",ll)
```

Accuracy score: 0.8987341772151899 Test error: 0.10126582278481011 Test Loss: 0.2855911457875017

Part e

```
In [39]: lda_model = LinearDiscriminantAnalysis()
lda_model.fit(X_train, y_train)
y_pred_lda = lda_model.predict(X_test)
y_prob_lda=lda_model.predict_proba(X_test)

acc =accuracy_score(y_test, y_pred_lda)
test_er=1-acc
ll2=log_loss(y_test,y_prob_lda)
print("Accuracy:", acc)
print("Test error:",test_er)
print("Test loss:", ll2)
```

Accuracy: 0.8987341772151899 Test error: 0.10126582278481011 Test loss: 0.37429222612767143

QUESTION 2

Bootstrapping is a resampling technique in machine learning that involves repeatedly drawing samples from a data set with replacement. So in a bootstrap sample, each observation is chosen randomly with replacement from the original sample of n observations.

Part a

Since the bootstrap process randomly samples with replacement, the probability of selecting any one observation (including the first one) in a single draw is 1/n.

Thus, the probability that the first bootstrap observation is not the first observation from the original sample is: 1-(1/n)

The process is the same for every observation in the bootstrap sample. So, the

probability that the last observation is not the first observation from the original sample is the same as the first observation: 1-(1/n)

Part b

We want to find the probability that the first observation from the original sample does not appear at all in the bootstrap sample. Each time we sample, the probability of not selecting the first observation is 1-(1/n) We do this sampling n times for the bootstrap sample, so the probability that the first observation is never selected is (1-1/n)^n

When $n=10 (1-1/10)^10 = (9/10)^10 = 0.348678$ So, the probability that the first observation does not appear in the bootstrap sample is approximately **34.87**%

When $n=100 (1-1/100)^100 = (99/100)^10 = 0.366$ So, the probability that the first observation does not appear in the bootstrap sample when n=100 is approximately **36.60%**

QUESTION 3

```
In [43]: from ISLP import load_data
   import numpy as np
   import statsmodels.api as sm
   from sklearn.utils import resample
   from sklearn.neighbors import KNeighborsRegressor
```

```
In [45]: og_df=load_data('College')
    og_df.head()
```

Out[45]:		Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	C
	0	Yes	1660	1232	721	23	52	2885	537	
	1	Yes	2186	1924	512	16	29	2683	1227	
	2	Yes	1428	1097	336	22	50	1036	99	
	3	Yes	417	349	137	60	89	510	63	
	4	Yes	193	146	55	16	44	249	869	

```
In [47]: og_df.shape
Out[47]: (777, 18)
In [49]: og_df['Accept_rate']=og_df['Accept']/og_df['Apps']
og_df.head()
```

Out[49]:		Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	C
	0	Yes	1660	1232	721	23	52	2885	537	
	1	Yes	2186	1924	512	16	29	2683	1227	
	2	Yes	1428	1097	336	22	50	1036	99	
	3	Yes	417	349	137	60	89	510	63	
	4	Yes	193	146	55	16	44	249	869	

```
In [51]: test_df=og_df.drop(columns=['Accept', 'Apps'])
   test_df.head()
```

Out[51]:		Private	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.
	0	Yes	721	23	52	2885	537	7440	
	1	Yes	512	16	29	2683	1227	12280	
	2	Yes	336	22	50	1036	99	11250	
	3	Yes	137	60	89	510	63	12960	
	4	Yes	55	16	44	249	869	7560	

```
In [53]: #mapping categorical variable
  test_df['Private'] = test_df['Private'].map({'Yes': 1, 'No': 0})
  test_df.head()
```

Out[53]:		Private	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.
	0	1	721	23	52	2885	537	7440	
	1	1	512	16	29	2683	1227	12280	
	2	1	336	22	50	1036	99	11250	
	3	1	137	60	89	510	63	12960	
	4	1	55	16	44	249	869	7560	

Part a

```
In [56]: mu_hat = test_df['Accept_rate'].mean()
    print(f"Population mean: ",mu_hat)
```

Population mean: 0.7469277072775414

Part b

```
In [59]: std_dev = test_df['Accept_rate'].std()
    n = len(test_df['Accept_rate'])
    std_error = std_dev / np.sqrt(n)
    print(f"Standard error: ",std_error)
```

Standard error: 0.005277323728707518

Part c

```
In [62]: n = 1000
bootstrap_means = []
for i in range(n):
    bootstrap_sample = test_df['Accept_rate'].sample(frac=1, replace=True)
    bootstrap_means.append(bootstrap_sample.mean())
bootstrap_std_error = np.std(bootstrap_means)
print(f"Bootstrap standard error: ",bootstrap_std_error)
```

Bootstrap standard error: 0.0052420348658755835

The bootstrap estimated error is less than the standard error this is subject to the resampling of the dataset.

Part d

```
In [66]: lower_bound = mu_hat - 2 * bootstrap_std_error
upper_bound = mu_hat + 2 * bootstrap_std_error
print(f"CI: [",lower_bound, upper_bound,"]")
```

CI: [0.7364436375457902 0.7574117770092926]

Part e

```
In [69]: X = test_df['Top10perc']
y = test_df['Accept_rate']
X_with_const = sm.add_constant(X) #intercept

model = sm.OLS(y, X_with_const).fit()
initial_params = model.params
print(f"Initial Parameters: Intercept (B0) = {initial_params.iloc[0]}, Coeff

n = 1000
bootstrap_betas = np.zeros((n, 2)) # Store [B0, B1]

for i in range(n):
    bootstrap_sample = resample(og_df)
    X_boot = bootstrap_sample['Top10perc']
    y_boot = bootstrap_sample['Accept_rate']
```

```
X_boot_with_const = sm.add_constant(X_boot)

bootstrap_model = sm.OLS(y_boot, X_boot_with_const).fit()
bootstrap_betas[i] = bootstrap_model.params

bootstrap_std_err = np.std(bootstrap_betas, axis=0)
statsmodels_std_err = model.bse

print(f"Bootstrap Standard Errors: Intercept (B0) = ", bootstrap_std_err[0],
print(f"Statsmodels Standard Errors: Intercept (B0) = ",statsmodels_std_err.

Initial Parameters: Intercept (B0) = 0.8569331798627102, Coefficient (B1) =
-0.003991699070596205
Bootstrap Standard Errors: Intercept (B0) = 0.009534588380208407 Coefficient (B1) = 0.00033143848075090185
Statsmodels Standard Errors: Intercept (B0) = 0.00860399673826018 Coefficient (B1) = 0.00026300038151207936
```

Part f

```
In [72]: knn = KNeighborsRegressor(n_neighbors=10)
         X = test_df[['Top10perc']].values
         y = test_df['Accept_rate'].values
         knn.fit(X, y)
         top10perc value = np.array([[76]]) # Value for prediction
         predicted_accept_rate = knn.predict(top10perc_value)
         print(f"Predicted Accept rate for Top10perc=76 (original model):", predicted
         n = 1000
         bootstrap_predictions = []
         for i in range(n):
             bootstrap sample = resample(test df)
             X_bootstrap = bootstrap_sample[['Top10perc']].values
             y_bootstrap = bootstrap_sample['Accept_rate'].values
             knn.fit(X_bootstrap, y_bootstrap)
             bootstrap pred = knn.predict(top10perc value)
             bootstrap_predictions.append(bootstrap_pred[0])
         bootstrap_predictions = np.array(bootstrap_predictions)
         bootstrap_standard_error = np.std(bootstrap_predictions)
```

print(f"Bootstrap estimated standard error of the predicted Accept rate:", t

Predicted Accept rate for Top10perc=76 (original model): 0.41277623410287206 Bootstrap estimated standard error of the predicted Accept rate: 0.032532585 28267341

```
In [74]: def bootstrap_knn(X, y, top10perc_value, K, n=1000):
             knn = KNeighborsRegressor(n_neighbors=K)
             bootstrap predictions = []
             for i in range(n):
                 # Resample the data with replacement
                 bootstrap_sample = resample(test_df)
                 X_bootstrap = bootstrap_sample[['Top10perc']].values
                 y_bootstrap = bootstrap_sample['Accept_rate'].values
                 knn.fit(X_bootstrap, y_bootstrap)
                 bootstrap pred = knn.predict(top10perc value)
                 bootstrap_predictions.append(bootstrap_pred[0])
             bootstrap_standard_error = np.std(bootstrap_predictions)
             return bootstrap_standard_error
         X = test df[['Top10perc']].values # Features
         y = test_df['Accept_rate'].values # Target
         top10perc value = np.array([[76]]) # Value for prediction
         se_knn_5 = bootstrap_knn(X, y, top10perc_value, K=5)
         print(f"Bootstrap estimated standard error of the predicted Accept_rate (K=5
         se_knn_50 = bootstrap_knn(X, y, top10perc_value, K=50)
         print(f"Bootstrap estimated standard error of the predicted Accept rate (K=5
         X_with_const = sm.add_constant(X) # Add intercept (constant term) to the fe
         linear_model = sm.OLS(y, X_with_const).fit()
         top10perc_value_with_const = sm.add_constant(top10perc_value, has_constant='
         predicted_accept_rate_linear = linear_model.predict(top10perc_value_with_cor
         linear_se = linear_model.bse[1] # Standard error for the Top10perc coeffici
         print(f"Standard error for the linear regression model:",linear_se)
        Bootstrap estimated standard error of the predicted Accept_rate (K=5):
                                                                                0.04
        090085017450626
        Bootstrap estimated standard error of the predicted Accept_rate (K=50): 0.0
        27858210045884412
```

Standard error for the linear regression model: 0.00026300038151207936

Part g

KNN Regression with K=5: A smaller K (closer neighbors) tends to lead to predictions that are more sensitive to local variations in the data, which may result in higher variability and a higher standard error.

KNN Regression with K=50: A larger K (more neighbors) results in smoother predictions that are less sensitive to small variations in the data, and reduces the standard error due to averaging over a larger number of points. The decrease in error is due to decrease in the variance as the k increases.

QUESTION 4

Part a

```
from sklearn.linear_model import LinearRegression
In [79]:
          import statsmodels.api as sm
In [81]: test_df.head()
Out[81]:
             Private Enroll Top10perc Top25perc F.Undergrad P.Undergrad Outstate Room.
          0
                   1
                        721
                                    23
                                               52
                                                         2885
                                                                        537
                                                                                7440
                   1
                                               29
                                                                       1227
          1
                        512
                                    16
                                                         2683
                                                                               12280
          2
                   1
                       336
                                    22
                                               50
                                                          1036
                                                                         99
                                                                               11250
                                                                               12960
          3
                   1
                        137
                                    60
                                               89
                                                           510
                                                                         63
          4
                   1
                        55
                                    16
                                               44
                                                           249
                                                                        869
                                                                                7560
In [83]: test df.shape
Out[83]: (777, 17)
```

```
best_model = None

for predictor in predictors:
    X = test_df[[predictor]]
    X_with_const = sm.add_constant(X)

model = sm.OLS(y, X_with_const).fit()
    r2 = model.rsquared

if r2 > best_r2:
    best_r2 = r2
    best_predictor = predictor
    best_model = model

print(f"The best one-predictor model is with ",best_predictor," with R-squar print(best_model.summary())
```

The best one-predictor model is with Top10perc with R-squared: 0.22913012 842545943

OLS Regression Results

=========	========				========		
== Dep. Variable	:	Accept_r	ate	R-squ	ared:		0.2
29			01.0	الما الم	D. a muse mands		0.0
Model: 28			0LS	Adj.	R-squared:		0.2
Method:		Least Squa	rac	F_cta	tistic:		23
0.4		Least Squa	163	1 –3 ta	CISCIC.		23
Date:	Sur	n. 13 Oct 2	024	Prob	(F-statistic)	:	9.56e-
46	.	.,			(. 516.125126)	-	0.000
Time:		22:28	:35	Log-L	ikelihood:		488.
30							
No. Observati	ons:		777	AIC:			-97
2.6							
Df Residuals:			775	BIC:			-96
3.3							
Df Model:			1				
Covariance Ty	pe:	nonrob	ust				
=======================================	========	=======	=====		========	========	======
	coef	std err		+	P> t	[0 025	a 97
5]	0001	314 611			17 0	[0:025	0.37
const	0.8569	0.009	99	597	0.000	0.840	0.8
74							
Top10perc	-0.0040	0.000	-15	5.178	0.000	-0.005	-0.0
03							
=========	========	=======	====		========	=======	======
==		40	020	المام المام			1 0
Omnibus: 68		40.	930	Durbi	n-Watson:		1.8
		0	000	largu	o Boro (IB):		46.0
Prob(Omnibus) 29	•	0.	000	Jarqu	e-Bera (JB):		40.0
Skew:		-0.	576	Prob(1B):		1.01e-
10		31	5		/-		2.010
Kurtosis:		3.	307	Cond.	No.		6
0.8							
=========	=========		====				======
==							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Part b

```
In [88]: import itertools
In [90]: best_r2_2 = -1
         best_predictors_2 = None
         best_model_2 = None
         for predictor_pair in itertools.combinations(predictors, 2):
             X = test_df[list(predictor_pair)]
             X_with_const = sm.add_constant(X)
             model = sm.OLS(y, X_with_const).fit()
             r2 = model.rsquared
             #check for best r2
             if r2 > best_r2_2:
                 best_r2_2 = r2
                 best_predictors_2 = predictor_pair
                 best_model_2 = model
         print(f"The best two-predictor model is with predictors '{best_predictors_2|
         print(best_model.summary())
```

The best two-predictor model is with predictors 'Private' and Top10perc with R-squared: 0.25662146039174905

OLS Regression Results

=========		=======	=====	=====	==========		=======
Dep. Variable	: :	Accept_r	ate	R-sq	uared:		0.2
29 Model:			0LS	Δdi	R-squared:		0.2
28		· ·	OLS	Adji	K Squarea:		012
Method:		Least Squa	res	F-sta	atistic:		23
0.4	6	12.0-1.2	004	Darah	/E -+-+:-+:-\:		0 50-
Date: 46	Sur	1, 13 Oct 2	024	Prob	(F-statistic):		9.56e-
Time:		22:28	:38	Log-l	_ikelihood:		488.
30				- 3			
No. Observati	lons:		777	AIC:			-97
<pre>2.6 Df Residuals:</pre>			775	BIC:			-96
3.3			775	DIC:			-90
Df Model:			1				
Covariance Ty	/pe:	nonrob	ust				
			=====	=====			=======
==	coef	std err		+	P> t	[0.025	0.97
5]	2021	Jea eri			17 [5]	[0.023	0137
	0 0560	0 000	00	507	0.000	0 040	0.8
74	0.0309	0.009	99	. 397	0.000	0.040	0.0
Top10perc	-0.0040	0.000	-15	.178	0.000	-0.005	-0.0
03							
			=====	=====			=======
== Omnibus:		40.	930	Durb	in-Watson:		1.8
68				54.5.	in nacsoni		1.0
Prob(Omnibus)	:	0.	000	Jarqı	ue-Bera (JB):		46.0
29		0	F-7-C	Darah	(3D) -		1 01 -
Skew: 10		-0.	5/0	Prob	(JR):		1.01e-
Kurtosis:		3.1	307	Cond	. No.		6
0.8							-
==========			=====	=====			=======
==							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. $\$

Part c

```
In [93]: #similar to part a
         best_r2_one = -1
         best_one_predictor = None
         best_one_model = None
         for predictor in predictors:
             X = test df[[predictor]]
             X with const = sm.add constant(X)
             model = sm.OLS(y, X_with_const).fit()
             r2 = model.rsquared
             if r2 > best_r2_one:
                 best r2 one = r2
                 best_one_predictor = predictor
                 best_one_model = model
         print(f"The best one-predictor model is with ",best_one_predictor," with R-s
         #finding the second best
         remaining_predictors = [p for p in predictors if p != best_one_predictor]
         best r2 two = -1
         best_two_predictors = None
         best_two_model = None
         for predictor in remaining_predictors:
             X_two = test_df[[best_one_predictor, predictor]]
             X_two_with_const = sm.add_constant(X_two)
             model = sm.OLS(y, X_two_with_const).fit()
             r2 = model.rsquared
             if r2 > best_r2_two:
                 best_r2_two = r2
                 best two predictors = [best one predictor, predictor]
                 best_two_model = model
         print(f"The best two-predictor model is with predictors", best two predictors
         print(best two model.summary())
        The best one-predictor model is with Top10perc with R-squared: 0.22913012
```

842545943

The best two-predictor model is with predictors Top10perc and Private wit h R-squared: 0.2566214603917484

OLS Regression Results

```
Dep. Variable:
                       Accept rate
                                     R-squared:
                                                                    0.2
57
```

0.2 Model: 0LS Adj. R-squared:

55 Mathada		Lanat Com		C -+-	****		12
Method: 3.6		Least Squ	ares	r–sta	tistic:		13
Date:	S	un, 13 Oct	2024	Prob	(F-statistic):		1.44e-
50		-					
Time:		22:2	8:39	Log-L	ikelihood:		502.
41 No. Observat:	ionc:		777	AIC:			-99
8.8	10115		///	AIC.			-99
Df Residuals			774	BIC:			-98
4.8							
Df Model:			2				
Covariance Ty	•						
==							
	coef	std err		t	P> t	[0.025	0.97
5]							
const	0.8229	0.011	77	7.807	0.000	0.802	0.8
44	0.0223	0.011			01000	01002	0.0
Top10perc	-0.0042	0.000	-16	5.114	0.000	-0.005	-0.0
04							
Private 76	0.0555	0.010	5	350	0.000	0.035	0.0
					=========	======	=======
==							
Omnibus:		34	.044	Durbi	n-Watson:		1.9
18				_			
Prob(Omnibus)):	0	.000	Jarqu	e-Bera (JB):		37.6
76 Skew:		-0	503	Prob(1R)•		6.58e-
09		ō	. 505	1.00(<i>55</i> /1		01300
Kurtosis:		3	.389	Cond.	No.		9
5.2							
=======================================	=======	=======	=====	======	=========	======	=======
==							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Part d

- a. For the one predictor model there is one model for each predictor so total 16 models.
- b. For the two-predictor model all possible combinations of 2 predictors are considered. The number of ways to select 2 predictors from 16 is C(n,k), where n is the total number of predictors and k is the number of predictors. Hence C(16,2)=120 models

c. In the c part we implement forward stepwise selection. We find the predictor 1 which gives us 16 models then we use that predictor and get the second best predictor where another 15 times modelling is done for the remaining predictors. So in total we implement 16+15 models = **31 models**

QUESTION 5

```
In [101... from sklearn.model_selection import train_test_split,cross_val_score
    from sklearn.linear_model import Ridge, Lasso
    from sklearn.metrics import mean_squared_error
    from sklearn.preprocessing import StandardScaler
```

Part a

```
In [104... X=test_df.drop('Accept_rate',axis=1)
    y=test_df['Accept_rate']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rar
    X_train.head()
    #y_train.head()
```

Out[104		Private	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Roo
	739	0	478	12	25	2138	227	4470	
	133	1	249	23	57	1698	894	9990	
	234	1	198	7	20	545	42	11750	
	55	1	156	25	55	421	27	6500	
	639	0	588	56	86	1846	154	9843	

Part b

```
In [107... lamda = np.arange(0.001, 100, 10)
    best_lambda = None
    lowest_mse = float('inf')

# Loop over each lambda for cross validation
for lam in lamda:
    ridge = Ridge(alpha=lam)

    mse = -cross_val_score(ridge, X_train, y_train, cv=10, scoring='neg_mear
    if mse < lowest_mse:
        lowest_mse = mse</pre>
```

```
best_lambda = lam

print(f"Best lambda (alpha):",best_lambda)
print(f"Lowest cross-validated MSE:", lowest_mse)

final_ridge = Ridge(alpha=best_lambda)
final_ridge.fit(X_train, y_train)

y_pred = final_ridge.predict(X_test)

test_mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error on test set: {test_mse}")

non_zero_coeff = np.sum(final_ridge.coef_ != 0)
print(f"Number of non-zero coefficients",non_zero_coeff)
```

Best lambda (alpha): 0.001 Lowest cross-validated MSE: 0.01353330874547807 Mean Squared Error on test set: 0.019014581265742247 Number of non-zero coefficients 16

Part c

```
In [110... lamda = np.arange(0.001, 100, 10)
          best_lambda = None
          lowest mse = float('inf')
          for lam in lamda:
              lasso = Lasso(alpha=lam, max_iter=10000)
             mse = -cross_val_score(lasso, X_train, y_train, cv=10, scoring='neg_mear
              if mse < lowest_mse:</pre>
                  lowest mse = mse
                  best_lambda = lam
          print(f"Best lambda:",best_lambda)
         print(f"Lowest cross-validated MSE:",lowest_mse)
          final_lasso = Lasso(alpha=best_lambda, max_iter=10000)
          final_lasso.fit(X_train, y_train)
         y_pred = final_lasso.predict(X_test)
         test_mse = mean_squared_error(y_test, y_pred)
          print(f"Mean Squared Error on test set: {test_mse}")
          non_zero_coefficients = np.sum(final_lasso.coef_ != 0)
          print(f"Number of non-zero coefficients",non_zero_coefficients)
```

```
Best lambda: 0.001
Lowest cross-validated MSE: 0.01353790620465565
Mean Squared Error on test set: 0.018875975839989893
Number of non-zero coefficients 16
```

Part_d

Both Ridge and Lasso selected the same lambda value (0.001). Since the data was not standardized, this could significantly affect both Ridge and Lasso regression results. Ridge penalizes large coefficients but does not inherently differentiate between variables with different scales like Top10perc vs Outstate. Lasso applies absolute shrinkage, but it is more sensitive to feature scaling. As a result, predictors with larger scales may dominate the model, preventing some coefficients from being driven to zero.

The test set Mean Squared Error (MSE) for both models is very close, with Lasso slightly outperforming Ridge. The difference between Ridge (0.0190) and Lasso (0.0189) is very small, indicating both models performed similarly on the test set.

Both models retained all 16 coefficients as non-zero. Ridge typically shrinks coefficients towards zero but rarely eliminates any of them, which aligns with the result here. Lasso, however, is expected to perform feature selection by setting some coefficients exactly to zero. The fact that it did not eliminate any predictors suggests that variables with larger scales might have dominated, making it harder for Lasso to identify less relevant features.

Part a(Standardized)

```
In [114... X=test_df.drop('Accept_rate',axis=1)
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(test_df[predictors])
    df_X_scaled = pd.DataFrame(X_scaled, columns = predictors)
    y=test_df['Accept_rate']
    X_train, X_test, y_train, y_test = train_test_split(df_X_scaled, y, test_siz_df_X_scaled.head()
```

[114		Private	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate
	0	0.612553	-0.063509	-0.258583	-0.191827	-0.168116	-0.209207	-0.746356
	1	0.612553	-0.288584	-0.655656	-1.353911	-0.209788	0.244307	0.457496
	2	0.612553	-0.478121	-0.315307	-0.292878	-0.549565	-0.497090	0.201305
	3	0.612553	-0.692427	1.840231	1.677612	-0.658079	-0.520752	0.626633
	4	0.612553	-0.780735	-0.655656	-0.596031	-0.711924	0.009005	-0.716508

Part b(Standardized)

Out

```
In [117...] lamda = np.arange(0.001, 100, 10)
         best lambda = None
         lowest_mse = float('inf')
         # Loop over each lambda for cross validation
          for lam in lamda:
             ridge = Ridge(alpha=lam)
             mse = -cross_val_score(ridge, X_train, y_train, cv=10, scoring='neg_mear
             if mse < lowest_mse:</pre>
                  lowest mse = mse
                  best_lambda = lam
          print(f"Best lambda (alpha):",best_lambda)
         print(f"Lowest cross-validated MSE:", lowest_mse)
          final_ridge = Ridge(alpha=best_lambda)
          final_ridge.fit(X_train, y_train)
         y_pred = final_ridge.predict(X_test)
         test_mse = mean_squared_error(y_test, y_pred)
         print(f"Mean Squared Error on test set:", test_mse)
         non_zero_coeff = np.sum(final_ridge.coef_ != 0)
         print(f"Number of non-zero coefficients", non zero coeff)
```

Best lambda (alpha): 30.001 Lowest cross-validated MSE: 0.013470438843064642 Mean Squared Error on test set: 0.01902206576269187 Number of non-zero coefficients 16

Part c(Standardized)

```
In [120...
         lamda = np.arange(0.001, 100, 10)
          best lambda = None
          lowest mse = float('inf')
          for lam in lamda:
              lasso = Lasso(alpha=lam, max_iter=10000)
             mse = -cross_val_score(lasso, X_train, y_train, cv=10, scoring='neg_mear
              if mse < lowest mse:</pre>
                  lowest_mse = mse
                  best lambda = lam
          print(f"Best lambda:",best_lambda)
          print(f"Lowest cross-validated MSE:",lowest_mse)
          final_lasso = Lasso(alpha=best_lambda, max_iter=10000)
          final_lasso.fit(X_train, y_train)
         y pred = final lasso.predict(X test)
         test_mse = mean_squared_error(y_test, y_pred)
          print(f"Mean Squared Error on test set:",test_mse)
          non_zero_coefficients = np.sum(final_lasso.coef_ != 0)
          print(f"Number of non-zero coefficients", non_zero_coefficients)
```

Best lambda: 0.001 Lowest cross-validated MSE: 0.013508366611471104 Mean Squared Error on test set: 0.01906846446038031 Number of non-zero coefficients 15

Part d(Standardized)

The lambda for ridge regression is 30.001, higher than the previous optimal value of 0.001 (before standardization). After standardization, all features are on the same scale, so the model can apply a larger penalty across all coefficients without favoring any particular feature. For lasso lambda is same as before. This indicates that the regularization strength needed didn't change much, even after standardization.

Test MSE for ridge is 0.01902. This is very close to the earlier test MSE (~0.01901), meaning the model's predictive ability has remained consistent even after scaling. In lasso The test error remains close to that from Ridge and Lasso before standardization, showing that scaling the data did not drastically affect model performance.

For ridge, the same number of non-zero coefficients suggests that all features in the

model are still useful predictors, even after standardization. Wheras in lasso 1 feature was dropped compared to the earlier output (where all 16 coefficients were non zero). Standardization helped Lasso perform better feature selection, by identifying and shrinking an unnecessary feature to zero.

In []:	