401 HW 1

James Oswald

September 2020

1

1.1 Calculus, Taylor series

Consider the function $f(x) = \frac{\sin(x)}{x}$.

1.1.1

Compute the limit $\lim_{x\to 0} f(x)$ using l'Hopital's rule.

l'Hopital's rule states that when $\lim_{x\to c} a(x) = \lim_{x\to c} b(x) = 0$ or $\pm\infty$:

$$\lim_{x \to c} \frac{a(x)}{b(x)} = \lim_{x \to c} \frac{a'(x)}{b'(x)}$$

Therefore since the preconditions are met:

$$\lim_{x \to 0} \sin(x) = 0$$

$$\lim_{x \to 0} x = 0$$

We can apply l'Hopital's rule and get:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1}$$

Since:

$$(\sin(x))' = \cos(x)$$
$$(x)' = 1$$

Evaluating we get:

$$\lim_{x\to 0}\frac{\cos(x)}{1}=\lim_{x\to 0}\cos(x)=1$$

Therefore:

$$\lim_{x \to 0} f(x) = 1$$

1.1.2

Use Taylor's remainder theorem to get the same result:

a) Write down $P_1(x)$, the first-order Taylor polynomial for $\sin(x)$ centered at a=0.

By definition, a first order Taylor polynomial for a function f(x) centered at a takes the form:

$$P_1(x) = f(a) + f'(a)(x - a)$$

So we get that for sin(x) at a = 0:

$$P_1(x) = \sin(0) + \cos(0)(x - 0)$$

= 0 + 1x
= x

Therefore:

$$P_1(x) = x$$

b) Write down a good upper bound on the absolute value of the remainder $R_1(x) = \sin(x) - P_1(x)$, using your knowledge about the derivatives of $\sin(x)$. The goal here is to show that $R_1(x)/x$ is negligible.

By definition, the remainder is:

$$R_n(x) = \frac{f^{n+1}(a)}{(n+1)!}(x-a)^{n+1}$$

Since in this case n = 1, a = 0, and $f(x) = \sin(x)$ we get:

$$R_1(x) = \frac{f''(0)}{2!}x^2$$
$$= \frac{-\sin(0)}{2}x^2$$
$$= \frac{0}{2}x^2$$
$$= 0$$

Thus, the upper bound of the remainder is 0, and we have shown that $R_1(x)/x$ is negligible since:

$$0/x = 0$$
 when $x \to 0$

c) Express f(x) as $f(x) = \frac{P_1(x)}{x} + \frac{R_1(x)}{x}$, and compute the limits of the two terms as $x \to 0$.

By our previous calculations of $P_1(x)$ and $R_1(x)$ we get:

$$\frac{\sin(x)}{x} = \frac{x}{x} + \frac{0}{x}$$

Now applying limit rules and taking the limit of both sides we get:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \left(\frac{x}{x} + \frac{0}{x}\right)$$
$$= \lim_{x \to 0} \frac{x}{x} + \lim_{x \to 0} \frac{0}{x}$$
$$= 1 + 0$$
$$= 1$$

Thus:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Which is the same result as derived by using l'Hopital's rule.

1.2 Asymptotic notation

Recall the definitions of the asymptotic notations. We will say that f(x) has "order of growth x^{α} as $x \to x_0$ " (where x_0 is either some fixed real number or $\pm \infty$) if $f(x) = \Theta(x^{\alpha})$ as $x \to x_0$.

1.2.1

Consider the functions $f(x) = x \sin(x)$ and g(x) = x. Is $f(x) = \Theta(g(x))$ as $x \to \infty$? Why or why not? (Hint: As always, you should refer back carefully to the definition of $\Theta(\cdot)$.)

By definition of Big Theta, $f(x) = \Theta(g(x))$ iff:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = c \text{ and } 0 < c < \infty$$

In our case we have $f(x) = x \sin(x)$ and g(x) = x so:

$$\lim_{x \to \infty} \frac{x \sin(x)}{x}$$
$$\lim_{x \to \infty} \sin(x)$$

But we know that:

$$\lim_{x \to \infty} \sin(x) = \text{DNE}$$

and since its DNE, no c exists between 0 and ∞ . Therefore f(x) is not $\Theta(g(x))$

1.2.2

Suppose that we know that $f(x) = x + \Theta(x^2)$ and $g(x) = \Theta(x) > 0$ as $x \to 0$. Determine the order of growth of f(x) + g(x).

(This problem is meant to get you comfortable with manipulating asymptotic notation when it appears in expressions. When I say something like " $f(x) = x + \Theta(x^2)$ ", this means that there is some function $h(x) = \Theta(x^2)$, and f(x) = x + h(x). That is, the fact that $h(x) = \Theta(x^2)$ is the only thing you know about h(x).)

First expanding f(x) + g(x) we see:

$$f(x) + g(x) = x + \Theta(x^2) + g(x)$$

We know that this means there exists some function $h(x) = \Theta(x^2)$. As $x \to 0$ the g(x) term which is $\Theta(x)$ dominates the unknown h(x) term which is $\Theta(x^2)$, meaning the order of growth of f(x) + g(x) as $x \to 0$ will be $\Theta(x)$.

1.2.3

Suppose that we know that $f(x) = e^{\Theta(x)}$ as $x \to \infty$. Does this imply that $f(x) = \Theta(e^x)$? (Hint: Think carefully about the definition of $\Theta(\cdot)$, and consider $f(x) = e^{2x}$.)

By the definition of $\Theta(\cdot)$, we see that $f(x) = e^{\Theta(x)}$ implies there exists constants c_1 and c_2 such that:

$$e^{c_1 \cdot x} \le f(x) \le e^{c_2 \cdot x}$$

we see that for any c_1 and c_2 , f(x) is still bounded by $\Theta(e^x)$ on both sides, therefore $f(x) = \Theta(e^x)$

1.3 Relative versus absolute error

1.3.1

Suppose that you are approximating a function g(n) by some function f(n). Suppose, further, that you know that the absolute error in approximating g(n) by f(n) satisfies |f(n)-g(n)|=o(1) as $n\to\infty$ (that is, $\lim_{n\to\infty}|f(n)-g(n)|=0$). Is it true that the relative error also decays to 0? If not, come up with functions f(n) and g(n) for which this is not true. (Hint: Come up with some g(n) and f(n) satisfying g(n)=o(1) and $f(n)/g(n)=\Theta(1)$.)

Let $f(x) = \frac{1}{n}$ and let $g(x) = \frac{1}{3n}$ both are o(1). These functions satisfy the constraint of having absolute error approach 0 when approximating g(x) with f(x):

$$\lim_{n \to \infty} |f(n) - g(n)| = \lim_{n \to \infty} \left| \frac{1}{n} - \frac{1}{3n} \right| = \lim_{n \to \infty} \frac{2}{3n} = 0$$

However, when computing the relative error we find:

$$\frac{\frac{2}{3n}}{\frac{1}{3n}} = 2$$

and since:

$$\lim_{n\to\infty} 2 = 2$$

we see that the relative error doesn't decay to 0, but rather stays constant.

1.4 Matlab warmup/Gentle linear algebra review

1.4.1 Exercise 2

See the attached diary file for MATLAB results

$$A = \begin{pmatrix} 10 & -3 \\ 4 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}, v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, w = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

a)
$$v^T w = \begin{pmatrix} 1 \\ 2 \end{pmatrix}^T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 1 \end{pmatrix} = \begin{pmatrix} 3 \end{pmatrix}$$

b)
$$vw^T = \begin{pmatrix} 1\\2 \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix}^T = \begin{pmatrix} 1\\2 \end{pmatrix} \begin{pmatrix} 1&1 \end{pmatrix} = \begin{pmatrix} 1\cdot1&1\cdot1\\2\cdot1&2\cdot1 \end{pmatrix} = \begin{pmatrix} 1&1\\2&2 \end{pmatrix}$$

$$Av = \begin{pmatrix} 10 & -3 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}$$

d)
$$A^T v = \begin{pmatrix} 10 & -3 \\ 4 & 2 \end{pmatrix}^T \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 10 & 4 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 18 \\ 1 \end{pmatrix}$$

e)
$$AB = \begin{pmatrix} 10 & -3 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 13 & -6 \\ 2 & 4 \end{pmatrix}$$

f)
$$BA = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 10 & -3 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 10 & -3 \\ -2 & 7 \end{pmatrix}$$

g)
$$A^2 = \begin{pmatrix} 10 & -3 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} 10 & -3 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 88 & -36 \\ 48 & -8 \end{pmatrix}$$

h) The vector y for which By = w

$$y = B^{-1}w = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

i) The vector x for which Ax = v

$$x = A^{-1}v = \begin{pmatrix} 10 & -3 \\ 4 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{16} & \frac{3}{32} \\ -\frac{1}{8} & \frac{5}{16} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \end{pmatrix}$$

1.4.2 Exercise 3

