Energy Storage Elements (1): Capacitors

Lecture 10 October 25th, 2018

Jae W. Lee (<u>jaewlee@snu.ac.kr</u>)
Computer Science and Engineering
Seoul National University

Slide credits: Prof. Anant Agarwal at MIT

Outline

Textbook: 9.1, 9.2 (Capacitors only)

- Constitutive Laws
- Series and Parallel Connections

MOSFET Modeling with Capacitor

n-channel MOSFET

Ideal Linear Capacitor

$$= +q - q = 0$$

Ideal Linear Capacitor

$$v(t) =$$

$$i = \frac{dq}{dt}$$

$$= \frac{d(Cv)}{dt}$$

$$= C\frac{dv}{dt}$$

A capacitor is a memory device

→ history matters!

Ideal Linear Capacitor

- Observations from i(t) = C dv/dt
 - For DC voltage: Capacitor is an open circuit
 - For i to be finite, v(t) must be continuous
 - Typical units: uF ~ pF

Current Source and Capacitor

• What is v(t)?

Step input

Voltage Source and Capacitor

Voltage across a capacitor must be continuous!

Capacitor Voltage is Continuous

$$i_R(0-) = 1mA$$

$$\frac{dv_C}{dt}(0-) = ? \quad \frac{dv_C}{dt}(0+) = ?$$

Exercise

■ Switch is closed at t=0. Find $\frac{dv_C}{dt}$ (0+).

Energy Storage-Memory Device

■ Stored energy = $\omega_E(t)$

$$\frac{d\omega_E(t)}{dt} = i(t)v(t)$$

$$d\omega_E(t) = v(t)(i(t)dt) = v(t)dq(t)$$

$$\omega_E = \int_0^q v \, dx = \frac{q^2(t)}{2C} = \frac{Cv(t)^2}{2}$$

7 (ms)

Capacitor Loop: Charge Conservation

Question: Is energy conserved?

Combining Capacitors in a Circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Capacitances in series combine like resistors in parallel

$\begin{array}{c|cccc} + & \overline{i(t)} & \downarrow i_1 & \downarrow i_2 & \downarrow i_3 \\ \hline v(t) & & C_1 & C_2 & C_3 \end{array}$

$$C_{\rm EQ} = C_1 + C_2 + C_3$$

Capacitances in parallel add

Series connection:

Parallel connection: