DSC 530 - Spring 2023

AARON BROWN

Week 12 - Final Project

```
In [1]: from os.path import basename, exists

def download(url):
    filename = basename(url)
    if not exists(filename):
        from urllib.request import urlretrieve

        local, _ = urlretrieve(url, filename)
        print("s " + local)

    download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/thinkst download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/thinkpl

In [2]: import pandas as pd

covid_data = pd.read_csv('/Users/aaronbrown/Documents/ClassWork/DSC 530 -Dat ranking_data = pd.read_csv('/Users/aaronbrown/Documents/ClassWork/DSC 530 -D
```

Statistical Question/Hypothesis

To find and determine key relationships between variables that infleuence the total number of cases in the United States, by state and counties.

About Our Data

covid_data: This is data taken from the peak COVID year of 2020. It contains key COVID-19 information, including variables of interest such as: state, county, cases, deaths, and date of the record.

ranking_data: contains variables from health status, and chronic conditions, like: percent_fair_or_poor_health percent_smokers percent_adults_with_obesity percent_excessive_drinking income_ratio percent_adults_with_diabetes

Data Cleaning/Preparation

Removing unneeded columns.

```
In [3]: covid_county = covid_data.drop(columns = ['fips'])
    covid_county
```

Out[3]:		date	county	state	cases	deaths
	0	2020-01-21	Snohomish	Washington	1	0
	1	2020-01-22	Snohomish	Washington	1	0

2	2020-01-23	Snohomish	Washington	1	0
3	2020-01-24	Cook	Illinois	1	0
4	2020-01-24	Snohomish	Washington	1	0
•••					
185643	2020-05-28	Sweetwater	Wyoming	26	0
185644	2020-05-28	Teton	Wyoming	100	1
185645	2020-05-28	Uinta	Wyoming	12	0
185646	2020-05-28	Washakie	Wyoming	34	3
185647	2020-05-28	Weston	Wyoming	1	0

 $185648 \text{ rows} \times 5 \text{ columns}$

Two new variables will be created: peak_case and peak_deaths.

```
In [4]: covid_county = covid_county.sort_values(['county','state','date'])
    covid_county['peak_case'] = covid_county.groupby(['county','state'])['cases'
    covid_county
```

Out[4]:		date	county	state	cases	deaths	peak_case
Out[4]: -	5000	2020-03-19	Abbeville	South Carolina	1	0	0.0
	5873	2020-03-20	Abbeville	South Carolina	1	0	0.0
	6877	2020-03-21	Abbeville	South Carolina	1	0	0.0
	7997	2020-03-22	Abbeville	South Carolina	1	0	0.0
	9208	2020-03-23	Abbeville	South Carolina	1	0	0.0
	•••						
	173083	2020-05-24	Ziebach	South Dakota	1	0	0.0
	176048	2020-05-25	Ziebach	South Dakota	1	0	0.0
	179013	2020-05-26	Ziebach	South Dakota	1	0	0.0
	181985	2020-05-27	Ziebach	South Dakota	1	0	0.0
	184963	2020-05-28	Ziebach	South Dakota	1	0	0.0

 $185648 \text{ rows} \times 6 \text{ columns}$

Data is grouped by: County, State.

Out[5]:		date	county	state	cases	deaths	peak_case	peak_deaths
	5000	2020-03-19	Abbeville	South Carolina	1	0	0.0	0.0
	5873	2020-03-20	Abbeville	South Carolina	1	0	0.0	0.0
	6877	2020-03-21	Abbeville	South Carolina	1	0	0.0	0.0
	7997	2020-03-22	Abbeville	South Carolina	1	0	0.0	0.0
	9208	2020-03-23	Abbeville	South Carolina	1	0	0.0	0.0
	•••					•••		
	173083	2020-05-24	Ziebach	South Dakota	1	0	0.0	0.0
	176048	2020-05-25	Ziebach	South Dakota	1	0	0.0	0.0
	179013	2020-05-26	Ziebach	South Dakota	1	0	0.0	0.0
	181985	2020-05-27	Ziebach	South Dakota	1	0	0.0	0.0
	184963	2020-05-28	Ziebach	South Dakota	1	0	0.0	0.0

185648 rows × 7 columns

Removes states from the rank_county data that have missing values in the "county" column.

		county	state	percent_fair_or_poor_health	percent_smokers	percent_adults_v
	1	Autauga	Alabama	20.882987	18.081557	
	2	Baldwin	Alabama	17.509134	17.489033	
	3	Barbour	Alabama	29.591802	21.999985	
	4	Bibb	Alabama	19.439724	19.114200	
	5	Blount	Alabama	21.745293	19.208672	
	•••					
	3188	Sweetwater	Wyoming	14.813082	18.073422	
	3189	Teton	Wyoming	11.914358	14.546369	
	3190	Uinta	Wyoming	15.537464	17.212675	
	3191	Washakie	Wyoming	15.955971	16.859400	
	3192	Weston	Wyoming	13.934025	16.693134	

3140 rows × 8 columns

Out[6]:

Combines data to help compare the number of cases and deaths with other mortality encouraging conditions (eg. smoking, obesity, drinking, and overall health status).

In [7]: sample_data = covid_county[covid_county.date == '2020-05-28']
 sample_data

Out[7]:		date	county	state	cases	deaths	peak_case	peak_deaths
	184868	2020-05-28	Abbeville	South Carolina	37	0	2.0	0.0
	183742	2020-05-28	Acadia	Louisiana	401	22	4.0	4.0
	185332	2020-05-28	Accomack	Virginia	807	12	27.0	0.0
	183210	2020-05-28	Ada	Idaho	803	22	3.0	0.0
	183436	2020-05-28	Adair	lowa	8	0	0.0	0.0
	•••							
	182770	2020-05-28	Yuma	Arizona	822	11	40.0	1.0
	182962	2020-05-28	Yuma	Colorado	20	0	1.0	0.0
	185288	2020-05-28	Zapata	Texas	8	0	0.0	0.0
	185289	2020-05-28	Zavala	Texas	11	0	0.0	0.0
	184963	2020-05-28	Ziebach	South Dakota	1	0	0.0	0.0

2978 rows × 7 columns

In [8]: health_totals = pd.merge(sample_data[['county','state','cases','deaths']], r
health_totals

$\cap \sqcup +$	· [Q	1 -
out	. LO	1 -

		county	state	cases	deaths	percent_fair_or_poor_health	percent_smokers	р
	0	Abbeville	South Carolina	37	0	19.895036	17.323519	
	1	Acadia	Louisiana	401	22	20.890035	21.534088	
	2	Accomack	Virginia	807	12	20.089199	18.316929	
	3	Ada	Idaho	803	22	11.474882	11.990701	
	4	Adair	Iowa	8	0	13.854797	15.583571	
	•••				•••			
	2973	Yuma	Arizona	822	11	22.726376	13.327036	
	2974	Yuma	Colorado	20	0	15.268202	14.277809	
	2975	Zapata	Texas	8	0	35.610705	17.275488	
	2976	Zavala	Texas	11	0	40.990687	19.871284	
	2977	Ziebach	South Dakota	1	0	29.166512	32.021175	

2978 rows × 10 columns

Will exclude 160+ observations from the data due to missing values in cases/deaths. An additional 87 counties will be dropped to to missing health data values.

```
In [9]: health_totals.dropna()
```

:		county	state	cases	deaths	percent_fair_or_poor_health	percent_smokers	р
	0	Abbeville	South Carolina	37	0	19.895036	17.323519	
	1	Acadia	Louisiana	401	22	20.890035	21.534088	
	2	Accomack	Virginia	807	12	20.089199	18.316929	
	3	Ada	Idaho	803	22	11.474882	11.990701	
	4	Adair	Iowa	8	0	13.854797	15.583571	
	•••							
	2973	Yuma	Arizona	822	11	22.726376	13.327036	
	2974	Yuma	Colorado	20	0	15.268202	14.277809	
	2975	Zapata	Texas	8	0	35.610705	17.275488	
	2976	Zavala	Texas	11	0	40.990687	19.871284	
	2977	Ziebach	South Dakota	1	0	29.166512	32.021175	

2891 rows × 10 columns

Histograms

Out[9]:

```
In [10]: covid_county.peak_case.plot.hist(bins = 20, logy = True, title = 'Cases of F
Out[10]: <AxesSubplot:title={'center':'Cases of Peak Year'}, ylabel='Frequency'>
```



```
In [11]:
         covid_county1 = covid_county.loc[covid_county['peak_case']>0]
         covid_county1.peak_case.plot.hist(bins = 20,logy = True, title = 'Cases of F
         <AxesSubplot:title={'center':'Cases of Peak Year'}, ylabel='Frequency'>
```

Out[11]:

In [12]: covid_county.peak_deaths.plot.hist(bins = 20,logy = True, title = 'Deaths of
Out[12]: <AxesSubplot:title={'center':'Deaths of Peak Year'}, ylabel='Frequency'>

In [13]: health_totals.cases.plot.hist(bins = 20, title = 'Number Cases by County')
Out[13]: <AxesSubplot:title={'center':'Number Cases by County'}, ylabel='Frequency'>

Number Cases by County

Percent with Poor/Fair Health Status


```
In [15]: health_totals_1 = pd.DataFrame()
    health_totals_1['mean'] = health_totals.mean()
    health_totals_1['median'] = health_totals.median()
    health_totals_1['var'] = health_totals.var()
    health_totals_1['std'] = health_totals.std()
    health_totals_1
```

/var/folders/8g/4dlsnvvj517738w04p6b2xk80000gn/T/ipykernel 89579/3720952239. py:2: FutureWarning: Dropping of nuisance columns in DataFrame reductions (w ith 'numeric only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. health totals 1['mean'] = health totals.mean() /var/folders/8g/4dlsnvvj517738w04p6b2xk80000gn/T/ipykernel 89579/3720952239. py:3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (w ith 'numeric only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. health_totals_1['median'] = health_totals.median() /var/folders/8g/4dlsnvvj517738w04p6b2xk80000gn/T/ipykernel_89579/3720952239. py:4: FutureWarning: Dropping of nuisance columns in DataFrame reductions (w ith 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. health totals 1['var'] = health totals.var() /var/folders/8g/4dlsnvvj517738w04p6b2xk80000gn/T/ipykernel 89579/3720952239. py:5: FutureWarning: Dropping of nuisance columns in DataFrame reductions (w ith 'numeric only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

health_totals_1['std'] = health_totals.std()

Out[15]:		mean	median	var	std			
	cases	581.075890	43.000000	2.089346e+07	4570.936959			
	deaths	34.123909	1.000000	1.686084e+05	410.619516			
	percent_fair_or_poor_health	18.034635	17.343802	2.234296e+01	4.726834			
	percent_smokers	17.532791	17.087545	1.255117e+01	3.542763			
	percent_adults_with_obesity	33.026591	33.300000	2.948427e+01	5.429942			
	percent_excessive_drinking	17.483325	17.559710	1.008055e+01	3.174989			
	income_ratio	4.520333	4.411360	5.491752e-01	0.741064			
	percent_adults_with_diabetes	12.237759	11.700000	1.635616e+01	4.044275			
In [16]:	<pre>covid_county2['mean'] = covid_county1[['peak_case', 'peak_deaths']].mean() covid_county2['median'] = covid_county1[['peak_case', 'peak_deaths']].median(covid_county2['var'] = covid_county1[['peak_case', 'peak_deaths']].var() covid_county2['std'] = covid_county1[['peak_case', 'peak_deaths']].std() covid_county2</pre>							
Out[16]:			var	std 				
	· -	3.0 14241.760.0 158.26		80397				
	peak_deaths 1.103234	0.0 156.20	0400 12.50	50397				
In [17]:	<pre>import thinkstats2 import thinkplot</pre>							
	Probability Mass Fundament	ction (PM	1F)					
In [18]:	<pre>pmf_peak_cases = thinkst pmf_peak_deaths = thinks pmf_peak_cases.Normalize pmf_peak_deaths.Normalize</pre>	tats2.Pmf(d						
Out[18]:	0.99999999999943							
In [19]:	<pre>thinkplot.PrePlot(2,cols thinkplot.Pmfs([pmf_peak thinkplot.Show(xlabel = thinkplot.PrePlot(2) thinkplot.SubPlot(2)</pre>	_cases,pmf_			0,0,0.31])			

thinkplot.Pmfs([pmf_peak_cases,pmf_peak_deaths])
thinkplot.Show(xlabel = 'Occurences Per day',axis = [0,200,0,0.31])

thinkplot.SubPlot(2)

<Figure size 800x600 with 0 Axes>

Initially was working with a filter to compare the data between the State of New York and the rest of the USA. Yet I realized that sinze Deaths are dependent on Cases, you can think of it as a subset with an unfortunate categorical variable. The data continues outside the scope of the graph but to be able to see the nuances I decided to cut off the tail end. The Light blue graph represents the probability of the number of people to die on a certain day due to coronavirus. The darker blue represents the probability of the number of cases that will happen on a certain day.

Cumulative Distribution Function (CDF)

Caculation and plot of the CDF - Number of Cases by County.

```
In [20]: cdf = thinkstats2.Cdf(covid_county.cases, label = 'Cases')
    thinkplot.Cdf(cdf)
    thinkplot.Show(xlabel = 'Total Number by County', y = 'CDF')
```


<Figure size 800x600 with 0 Axes>

```
In [21]: thinkplot.Cdf(cdf)
  thinkplot.Show(xlabel = 'Total Number by County', y = 'CDF',axis = [0,300,0,
```


<Figure size 800x600 with 0 Axes>

The slope produced by graphing the CDF indicated that about 70% of all US counties fall within 0-50 cases. To account for outliers, we appropriated 90% of the data.

Distribution of the Data

Since the CDF graph above looks very similar to a pareto distribution, we will log transform to see if a straight line is produced, suggesting a good fit.

/Users/aaronbrown/opt/anaconda3/lib/python3.9/site-packages/pandas/core/arra ylike.py:397: RuntimeWarning: divide by zero encountered in log10 result = getattr(ufunc, method)(*inputs, **kwargs)

A straight line is not produced here, which suggests that the Pareto Distribution is not a great fit either.

The Exponential Distribution does not appear to be a good estimate of the log-log CDF of the total number of cases by county.

```
In [24]: health_totals.plot(x= 'cases', y = 'percent_smokers', kind = 'scatter', logx
Out[24]: <AxesSubplot:xlabel='cases', ylabel='percent_smokers'>
```


Here, the "number of cases" by "percent of smokers" is plotted; smoking does not directly relate to the number of COVID cases, as we see above. The number of cases does not seem to increase (or decrease) with increased smoking percentages.

```
In [25]: health_totals.plot(x= 'deaths', y = 'percent_smokers', kind = 'scatter', log
Out[25]: <AxesSubplot:xlabel='deaths', ylabel='percent_smokers'>
```


Contrary to what was expected, the number of deaths did not seem to increase with increasing smoking perscentages. Seeing that COVID-19 is a respiratory disease, a more obvious relationship was expected between the two variables.

```
In [26]: health_totals.plot(x= 'cases', y = 'percent_fair_or_poor_health', kind = 'sc
Out[26]: <AxesSubplot:xlabel='cases', ylabel='percent_fair_or_poor_health'>
```


No significant relationship can be seen between the number of cases, and poor/fair overall health (above). A relationship between the number of deaths, and poor/fair overall health also seems to be nonexistant (below).

```
In [27]: health_totals.plot(x= 'deaths', y = 'percent_fair_or_poor_health', kind = 's
Out[27]: <AxesSubplot:xlabel='deaths', ylabel='percent_fair_or_poor_health'>
```


Below are the plots for "percent excessive drinking" vs the number of cases, and the number of deaths.

```
In [28]: health_totals.plot(x= 'cases', y = 'percent_excessive_drinking', kind = 'sca
Out[28]: <AxesSubplot:xlabel='cases', ylabel='percent_excessive_drinking'>
```


No obvious relationship can be determined between percent_excessive_drinking and cases.

In this case, the relationship between percent_excessive_drinking and deaths seems do direct in an upward trend.

```
In [30]: health_totals.plot(x= 'cases', y = 'percent_adults_with_diabetes', kind = 's
Out[30]: <AxesSubplot:xlabel='cases', ylabel='percent_adults_with_diabetes'>
```


Out[31]: <AxesSubplot:xlabel='deaths', ylabel='percent_adults_with_diabetes'>


```
In [32]: hat_filter = health_totals[health_totals.deaths > 5]
In [33]: hat_filter.plot(x= 'deaths', y = 'percent_adults_with_diabetes', kind = 'scalogx = True, alpha = .5, xlim = (5,1e4))
Out[33]: <AxesSubplot:xlabel='deaths', ylabel='percent_adults_with_diabetes'>
```


Out[34]: <AxesSubplot:xlabel='deaths', ylabel='percent_adults_with_obesity'>

In [35]: health_totals.corr()

\sim			г	-	_	7	
()	1.1	+		-2	Ь.	- 1	-
w	u			.)	.)	- 1	-

	cases	deaths	percent_fair_or_poor_health	percent_sn
cases	1.000000	0.961989	-0.067480	-0.1
deaths	0.961989	1.000000	-0.075720	-0.
percent_fair_or_poor_health	-0.067480	-0.075720	1.000000	0.7
percent_smokers	-0.153402	-0.143611	0.733166	1.0
percent_adults_with_obesity	-0.174721	-0.171740	0.437596	3.0
percent_excessive_drinking	0.092551	0.090817	-0.663194	-0.4
income_ratio	0.105900	0.117204	0.548911	0.4
percent_adults_with_diabetes	-0.115397	-0.107484	0.485468	0.4

```
In [36]: hat_filter = health_totals[health_totals.deaths > 5]
hat_filter.corr()
```

percent_si	percent_ran_or_poor_nearth	acatiis	Cases	
-0.2	-0.110231	0.962790	1.000000	cases
-0.2	-0.127434	1.000000	0.962790	deaths
0.	1.000000	-0.127434	-0.110231	percent_fair_or_poor_health
1.0	0.733144	-0.240905	-0.260420	percent_smokers
0.6	0.593747	-0.270842	-0.275905	percent_adults_with_obesity
-0.4	-0.661982	0.131229	0.132584	percent_excessive_drinking
0.0	0.513058	0.170120	0.150393	income_ratio
0.6	0.586522	-0.182626	-0.196161	percent_adults_with_diabetes

cases

deaths percent fair or poor health percent sr

Here, we can see that there is a pretty obvious relationship between cases and deaths, likely since you have to have a case of COVID prior to dying from COVID. This chart also provides some additional insight to the realtionship between cases/deaths and our vaiables of interest. As we saw in previous graphs, our comparisons so far have been weak in terms of relationship strength, but the chart does shed light on other possible relationships between variables, for instance, a positive relationship is shown between "percent_smokers" and "percent_fair_or_poor_health", this is common knowledge, but interesting to see in our data.

Hypothesis Testing

To ensure that the relationships shown above are statistically reinforced, and that the probability that any effects are not occurring by chance, hypothesis testing is performed.

```
In [37]: class HypothesisTest(object):
              def init (self, data):
                  self.data = data
                  self.MakeModel()
                  self.actual = self.TestStatistic(data)
              def PValue(self, iters=1000):
                  self.test_stats = [self.TestStatistic(self.RunModel())
                                      for _ in range(iters)]
                  count = sum(1 for x in self.test_stats if x >= self.actual)
                  return count / iters
              def TestStatistic(self, data):
                  raise UnimplementedMethodException()
              def MakeModel(self):
                  pass
              def RunModel(self):
                  raise UnimplementedMethodException()
In [38]: class CorrelationPermute(thinkstats2.HypothesisTest):
              def TestStatistic(self, data):
                  xs, ys = data
                  test stat = abs(thinkstats2.Corr(xs, ys))
                  return test stat
              def RunModel(self):
                  xs, ys = self.data
                  xs = np.random.permutation(xs)
                  return xs, ys
         Correlation: percent_adults_with_obesity
In [39]: data = hat_filter.deaths, hat_filter.percent_adults_with_obesity
         ht = CorrelationPermute(data)
          pvalue = ht.PValue()
         pvalue
         0.0
Out[39]:
         Our P-value in this case is less than 0.001.
```

```
import statsmodels.api as sm
hat_filter = hat_filter.dropna()

y = hat_filter.deaths
X = hat_filter.percent_adults_with_obesity
model = sm.OLS(y, X).fit()
predictions = model.predict(X)
model.summary()
```

OLS Regression Results

Dep. Variables	:	deaths	R-sc	luared (ι	ıncente	ered):	0.081
Model	:	OLS	Adj. R-so	ุนared (เ	ıncente	ered):	0.080
Method	Least	Squares			F-sta	tistic:	69.22
Date	: Sat, 03 J	lun 2023		Prob	(F-stati	istic):	3.89e-16
Time:	:	19:34:55		Log	J-Likeli	hood:	-5553.7
No. Observations:	:	786				AIC:	1.111e+04
Df Residuals:	:	785				BIC:	1.111e+04
Df Model:	:	1					
Covariance Type:	: no	onrobust					
		coe	f std err	t	P> t	[0.02	5 0.975]
percent_adults_w	ith_obesit	y 2.5794	4 0.310	8.320	0.000	1.97	1 3.188
Omnibus:	966.975	Durbin-	-Watson:	1.9	927		
Prob(Omnibus):	0.000	Jarque-B	era (JB):	91329.8	98		
Prob(Omnibus): Skew:	0.000 · 6.295		era (JB): Prob(JB):		.00		

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

With a p-value < .05, we can assume that for every 1% of the county's populatio that is obese, 2.58 deaths can be expected.

```
In [41]: y = hat_filter.deaths
   X = hat_filter[['percent_adults_with_obesity', 'percent_smokers']]
   model = sm.OLS(y, X).fit()
   predictions = model.predict(X)
   model.summary()
```

OLS Regression Results

Dep. Variable:	deaths	R-squared (uncentered):	0.082
Model:	OLS	Adj. R-squared (uncentered):	0.079
Method:	Least Squares	F-statistic:	34.80
Date:	Sat, 03 Jun 2023	Prob (F-statistic):	3.31e-15
Time:	19:34:55	Log-Likelihood:	-5553.5
No. Observations:	786	AIC:	1.111e+04
Df Residuals:	784	BIC:	1.112e+04
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
percent_adults_with_obesity	1.2392	2.056	0.603	0.547	-2.796	5.274
percent_smokers	2.5691	3.895	0.660	0.510	-5.077	10.215

1.925	Durbin-Watson:	967.787	Omnibus:
91746.810	Jarque-Bera (JB):	0.000	Prob(Omnibus):
0.00	Prob(JB):	6.303	Skew:
16.0	Cond. No.	54.406	Kurtosis:

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

High p-values in this case suggests no relationship between deaths and percent_adults_with_obesity and percent_smokers.

```
In [42]: y = hat_filter.deaths
X = hat_filter[['percent_adults_with_obesity', 'percent_adults_with_diabetes
model = sm.OLS(y, X).fit()
predictions = model.predict(X)
model.summary()
```

OLS Regression Results

Dep. Variable:	deaths	R-squared (uncentered):	0.083
Model:	OLS	Adj. R-squared (uncentered):	0.080
Method:	Least Squares	F-statistic:	35.27
Date:	Sat, 03 Jun 2023	Prob (F-statistic):	2.15e-15
Time:	19:34:55	Log-Likelihood:	-5553.1
No. Observations:	786	AIC:	1.111e+04
Df Residuals:	784	BIC:	1.112e+04
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
percent_adults_with_obesity	4.1786	1.435	2.911	0.004	1.361	6.996
percent_adults_with_diabetes	-4.4038	3.860	-1.141	0.254	-11.980	3.173

1.921	Durbin-watson:	967.428	Omnibus:
91513.372	Jarque-Bera (JB):	0.000	Prob(Omnibus):
0.00	Prob(JB):	6.300	Skew:
14.1	Cond. No.	54.338	Kurtosis:

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [43]: y = hat_filter.deaths
X = hat_filter[['percent_adults_with_obesity', 'percent_fair_or_poor_health'
model = sm.OLS(y, X).fit()
predictions = model.predict(X)
model.summary()
```

Dep. Variable:		deaths	R-sq	uared (un	center	ed):		0.087
Model:	:	OLS /	Adj. R-sq	uared (un	center	ed):		0.085
Method:	: Least S	quares		I	-statis	tic:		37.39
Date:	: Sat, 03 Jui	n 2023		Prob (F	-statist	tic):	3.0	8e-16
Time:	: 19	:34:55		Log-	Likeliho	od:	-	5551.1
No. Observations:	:	786			A	AIC:	1.11	1e+04
Df Residuals:	:	784			E	BIC:	1.11	2e+04
Df Model:	1	2						
Covariance Type:	: non	robust						
		coef	std err	t	P> t	[0.0]	25	0.975]
percent_adults_w	ith_obesity	-0.8618	1.540	-0.560	0.576	-3.8	85	2.161
percent_fair_or_p	poor_health	6.3026	2.763	2.281	0.023	0.8	379	11.726
Omnibus:	964.791	Durbin-W	/atson:	1.925				
Prob(Omnibus):	0.000 Ja	rque-Ber	a (JB):	91146.118				
Skew:	6.268	Pro	ob(JB):	0.00				
Kurtosis:	54.244	Co	nd. No.	11.6				

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Other than in the simple regression model (death*percent_adults_with_obesity), the P-values above suggest no relationship between our dependent variable (death) and our entered variables. The Simple Linear Regression Model appears to be the best fit for our data.

Resources

http://thinkstats2.com Copyright 2016 Allen B. Downey MIT License: https://opensource.org/licenses/MIT