ML HW 8 - Deep Learning 2

Monday, January 18, 2021 10:56 AM

Homework

Problem 2: You are trying to solve a regression task and you want to choose between two approaches

- 1. A simple linear regression model.
- 2. A feed forward neural network $f_{\boldsymbol{W}}(\boldsymbol{x})$ with L hidden layers, where each hidden layer $l \in \{1,...,L\}$ has a weight matrix $\boldsymbol{W}_l \in \mathbb{R}^{D \times D}$ and a ReLU activation function. The output layer has a weight matrix $\boldsymbol{W}_{L+1} \in \mathbb{R}^{D \times 1}$ and no activation function.

In both models, there are no bias terms.

Your dataset D contains data points with nonnegative features x_n and the target y_n is continuous:

$$D = \{x_n, y_n\}_{n=1}^N$$
, $x_n \in \mathbb{R}_{\geq 0}^D$, $y_n \in \mathbb{I}$

Let $\boldsymbol{w}_{LS}^* \in \mathbb{R}^D$ be the optimal weights for the linear regression model corresponding to a global minimum of the following least squares optimization problem:

$$w_{LS}^* = \underset{w \in \mathbb{R}^D}{\operatorname{arg min}} \mathcal{L}_{LS}(w) = \underset{w \in \mathbb{R}^D}{\operatorname{arg min}} \frac{1}{2} \sum_{n=1}^{N} (w^T x_n - y_n)^2$$

Let $W_{NN}^* = \{W_1^*, \dots, W_{L,1}^*\}$ be the optimal weights for the neural network corresponding to a global minimum of the following optimization problem:

$$W_{NN}^* = \underset{W}{\operatorname{arg min}} \mathcal{L}_{NN}(W) = \underset{W}{\operatorname{arg min}} \frac{1}{2} \sum_{i=1}^{N} (f_W(x_n) - y_n)^2$$

Assume that the optimal W_{NN}^* you obtain are non-negative. What will the relation $(<, \leq \stackrel{\frown}{=} \geq, >)$ between the neural network loss $\mathcal{L}_{NN}(W_{NN}^*)$ and the linear regression loss $\mathcal{L}_{LS}(w_{LS}^*)$ be? Provide a mathematical argument to justify your answer.

Note that for any non-negative x and any non-negative W it holds $\operatorname{ReLU}(xW) = xW$.

Therefore, since our data points have non-negative features x_i and the optimal weights W_{NN}^* are non-negative, every ReLU layer is equivalent to a linear layer when plugging in the optimal weights. This means we can write

$$f_{W_{NN}^*}(x_i) = ReLU(ReLU(ReLU(x_i^T W_1^*)W_2^*) \cdots W_L^*)W_{L+1}^*$$

 $= x_i^T W_1^* W_2^* \cdots W_{L+1}^*$
 $= x_i^T w_1^* \cdots w_{L+1}^*$

where we defined $\boldsymbol{w}_{NN}^{\star} = \boldsymbol{W}_{1}^{\star} \boldsymbol{W}_{2}^{\star} \cdots \boldsymbol{W}_{L+1}^{\star}$. From this we can see that the neural network with optimal weights behaves like a linear regression with a different set of weights $\boldsymbol{w}_{NN}^{\star}$.

Note also that linear regression is a special case of the above neural network, i.e. for any weights w_{LS} you can find weights W_{NN} that produce the same output.

Given the above facts and since we the optimal weights correspond to a global minima we can conclude that $\mathcal{L}_{NN}(\boldsymbol{W}_{NN}^*) = \mathcal{L}_{LS}(\boldsymbol{w}_{LS}^*)$ and the optimal weights found by solving the least squares optimization problem will be $\boldsymbol{w}_{LS}^* = \boldsymbol{w}_{NN}^*$.

b) n contrast to (a), now assume that the optimal weights \mathbf{w}_{LS}^* you obtain are non-negative.

What will the relation $(<, \leq, = \bigcirc)$ between the linear regression loss $\mathcal{L}_{LS}(\mathbf{w}_{LS}^*)$ and the neural network loss $\mathcal{L}_{NN}(\mathbf{W}_{NN}^*)$ be? Provide a mathematical argument to justify your answer.

As stated in (a) linear regression is a special case of the above neural network, i.e. for any weights w_{LS} you can find weights W_{NN} that produce the same output. That is, everything that can be learned with a linear regression can be learned equally well with a neural network.

However, the reverse direction doesn't hold, since in principle neural networks can learn more complicated functions compared to linear regression. Moreover, the given fact that w_{LS}^* are non-negative does not tell us anything about the optimal weights of the neural network W_{NN}^* .

Therefore it holds $\mathcal{L}_{NN}(\boldsymbol{W}_{NN}^*) \leq \mathcal{L}_{LS}(\boldsymbol{w}_{LS}^*)$ since the neural network can potentially find a better fit for the data (e.g. by taking advantage of non-linearity).

