Problem 1 (2.2.35). Use the Mayer-Vietoris sequence to show that a nonorientable closed surface, or more generally a finite simplicial complex X for which $H_1(X)$ contains torsion, cannot be embedded as a subspace of \mathbb{R}^3 in such a way as to have a neighborhood homeomorphic to the mapping cylinder of some map from a closed orientable surface to X. [This assumption on a neighborhood is in fact not needed if one deduces the result from Alexander duality in 3.3]

 \square

Problem 2 (2.2.38). Show that the commutative diagram

with the two sequences across the top and bottom exact, gives rise to an exact sequence

$$\cdots \to E_{n+1} \to B_n \to C_n \oplus D_n \to E_n \to B_{n-1} \to \cdots$$

where the maps are obtained from those in the previous diagram in the obvious way, except that $B_n \to C_n \oplus D_n$ has a minus sign in one coordinate.

Proof.

Problem 3 (2.B.1). Compute $H_i(S^n \setminus X)$ when X is he subspace of S^n homeomorphic to $S^k \vee S^\ell$ or to $S^k \mid \mid S^\ell$.

Proof.