Logik

Aussagenlogik

Aussage Satz/Formel entweder wahr oder falsch: ..-form" bei zu wenig Infos.

Theoreme sind wahre Aussagen.

Junktoren

Negation $\neg A$ "Nicht" (!, ~, \rightarrow)

Konjunkt. $A \wedge B$ "und" (&&, \Box)

Disjunkt. $A \vee B$ "oder" (11, \Rightarrow)

Implikat. $A \Rightarrow B$ "Wenn, dann" $_{,,}\mathcal{B}^{"}$ (\rightarrow, if)

 $\mathcal{A} \Rightarrow \mathcal{B}$ " \mathcal{A} hinreichend"

 $\mathcal{B} \Rightarrow \mathcal{A} ... \mathcal{A}$ notwendig"

Äquiv. $\mathcal{A} \Leftrightarrow \mathcal{B}$ "Genau dann, wenn" $(\leftrightarrow, \equiv, ==, \implies)$

Wahrheitswertetabelle mit 2ⁿ Zeilen für n Atome. Konstruktionssystematik: Frequenz pro Atom verdoppeln.

\mathcal{A}	\mathcal{B}	$\neg \mathcal{A}$	$\mathcal{A}\wedge\mathcal{B}$	$A \lor B$	$\mathcal{A} \Rightarrow \mathcal{B}$	$\mathcal{A} \Leftrightarrow \mathcal{B}$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

X	ente Formeln ⇔	D	
	Bezeichnung		
$A \wedge B$	$B \wedge A$	Kommutativ	
$A \vee B$	$B \lor A$	Nominutativ	
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Assoziativ	
$A \vee (B \vee C)$	$(A \lor B) \lor C$	Assoziativ	
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributiv	
$A \vee (B \wedge C)$	$(A \lor B) \land (A \lor C)$	Distributiv	
$A \wedge A$	A	Idempotenz	
$A \vee A$	A	idempotenz	
$\neg \neg A$	A	Involution	
$\neg(A \land B)$	$\neg A \lor \neg B$	De-Morgan	
$\neg(A \lor B)$	$\neg A \land \neg B$	DE-WORGAN	
$A \wedge (A \vee B)$	A	Absorption	
$A \vee (\mathbf{A} \wedge B)$	A	Absorption	
$A \Rightarrow B$	$\neg A \lor B$		
$\neg(A \Rightarrow B)$	$A \wedge \neg B$	Elimination	
$A \Leftrightarrow B$	$(A \Rightarrow B) \land (B \Rightarrow A)$		

Axiomatik

Axiome als wahr angenommene Aussagen: an Nützlichkeit gemessen.

Anspruch, aber nach GÖDELS Unvollständigkeitssatz nicht möglich:

- Unabhängig
- Vollständig
- Widerspruchsfrei

Prädikatenlogik

Quantoren Innerhalb eines Univer-

Existenzg. ∃ "Mind. eines"

Individuum ∃! ..Genau eines"

Allq. ∀ "Für alle"

Quantitative Aussagen

Erfüllbar $\exists x F(x)$

Widerlegbar $\exists x \neg F(x)$

Tautologie $\top = \forall x F(x)$ (alle Schlussregeln)

Kontradiktion $\perp = \forall x \neg F(x)$

	Häufige Fehler
Bezeichnung	
Ausgeschlossenes Drittes	 Nicht vorau
Modus ponens	sen ist

Abschwächung

Oder: Ange-

zeige

Klassische Tautologien $A \vee \neg A$

 $A \wedge (A \Rightarrow B) \Rightarrow B$

 $(A \wedge B) \Rightarrow A$

 $A \Rightarrow (A \lor B)$

Häufige Fehler

Beweistechniken

nommen

Negation (DE-MORGAN)

 $\neg \exists x F(x) \Leftrightarrow \forall x \neg F(x)$

 $\neg \forall x F(x) \Leftrightarrow \exists x \neg F(x)$

• $\exists x (P(x) \Rightarrow Q(x)) \not\Rightarrow \exists x P(x)$

 $\bullet \neg \exists x \exists y P(x,y) \Leftrightarrow \forall x \neg \exists y P(x,y)$

Achtung: Aus falschen Aussagen kön-

nen wahre und falsche Aussagen folgen.

 $\neg B$.

Fallunters. Aufteilen, lösen, zusammen-

schränkung der Allgemeinheit"

 $A \Leftrightarrow B \Leftrightarrow C \Leftrightarrow \cdots$

1. Anfang: Zeige $F(n_0)$. 2. **Schritt:** Angenommen F(n)

Starke Induktion: Angenommen

 $n \in \mathbb{N}$.

 $=A \Rightarrow B \Rightarrow C \Rightarrow \cdots \Rightarrow A$

(Hypothese), zeige

F(n+1) (Behauptung

 $F(k) \quad \forall n_0 \leq k \leq$

 $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$

führen. O.B.d.A = "Ohne Be-

Angenommen $A \wedge \neg B$, zeige Kontradiktion. (Reductio ad ab-

Direkt $A \Rightarrow B$ Angenommen

A, zeige B.

(Kontraposition).

Widerspruch $(\neg A \Rightarrow \bot) \Rightarrow A$

Ring (Transitivität der Implikation)

Induktion $F(n) \quad \forall n > n_0 \in \mathbb{N}$

surdum)

• $U = \emptyset^{\mathbb{C}}$ nicht notwendig

•	Nicht voraussetzen,	was	zu	bewei-
	sen ist			

• Äguival. von Implikat. unterscheiden (Zweifelsfall immer Implikat.)

$$f(1) = 0, \mathbf{r}_{11}r_{12}r_{13}r_{14} \dots$$

$$f(2) = 0, r_{21} \mathbf{r}_{22} r_{23}r_{24} \dots$$

$$f(3) = 0, r_{31}r_{32} \mathbf{r}_{33} r_{34} \dots$$

$$f(4) = 0, r_{41}r_{42}r_{43} \mathbf{r}_{44} \dots$$

$$\vdots$$

(CANTORS Diagonalargumente)

Naive Mengenlehre

Mengen Zusammenfassung Objekte "Elemente".

Element $x \in M$ "enthält"

Leere M. $\emptyset = \{\}$

Universum U

Einschränkung $\{x \mid F(x)\}$

Relationen

Teilmenge $N \subseteq M$ $\Leftrightarrow \forall n \in N : n \in M$

Gleichheit M=N $\Leftrightarrow M \subseteq N \land N \subseteq M$

Mächtigkeit

 $|M| \begin{cases} = n & \text{endlich} \\ \geq \infty & \text{unendlich} \end{cases}$ $= |N| \Leftrightarrow \exists f_{\mathsf{bijekt.}} : M \to N$

Abzählbar $\exists f_{\mathsf{surj.}} : \mathbb{N} \to M$

- Endliche Mengen, ∅, ℕ, ℤ, □
- $M_{\text{abz.}} \wedge N_{\text{abz.}} \Rightarrow (M \cup N)_{\text{abz.}}$ (= $\{m_1, n_1, m_2, n_2, \dots\}$)
- $M_{abz} \wedge N \subseteq M \Rightarrow N_{abz}$

Operationen

Vereinig. $M \cup N$ \Leftrightarrow $\{x \mid x \in M \lor x \in N\}$

Schnitt $M \cap N \Leftrightarrow \{x \mid x \in M \land x \in A\}$ N (= \emptyset "disjunkt")

Diff. $M \setminus N \Leftrightarrow \{x \mid x \in M \land x \notin N\}$

Komplement M^{\complement} $\{x \mid x \notin M\}$

Alle logischen Äguivalenzen gelten auch für die Mengenoperationen.

Häufige Fehler

• $\forall M : \emptyset \subseteq M$, nicht $\forall M : \emptyset \in M$

Quantitative Relationen

Sei Indexmenge I und Mengen $M_i \quad \forall i \in I.$

 $\bigcup_{i \in I} M_i := \{ x \mid \exists i \in I : x \in M_i \}$ $\bigcap_{i=1}^{n} M_i := \{x \mid \forall i \in I : x \in M_i\}$

Neutrale Elemente

- $\bigcup_{i \in \emptyset} M_i = \emptyset$ ("hinzufügen")
- $\bigcap_{i \in \emptyset} M_i = U$ ("wegnehmen")

Potenzmenge

 $\mathcal{P}(M) := \{ N \mid N \subset M \}$ $|\mathcal{P}(M)| = 2^{|M|} \quad (\in / \notin \mathsf{binär})$

Auswahlaxiom (AC)

Für Menge \mathcal{X} nicht-leerer Mengen:

$$\exists c: \mathcal{X} \to \bigcup \mathcal{X}$$

$$\forall X \in \mathcal{X} : c(X) \in X$$

Nutzung kennzeichnen!

Abbildungen

Abbildung f von X (Definitionsb.) nach Y (Werteb.) ordnet jedem $x \in X$ eindeutig ein $y \in Y$ zu.

Totalität $\forall x \in X \exists y \in Y : f(x) = y$

 $f(x) = a \land f(x) = b \Rightarrow a = b$

$$\mathbf{f}:X\to Y$$

Urbilder $f^{-1}(Y') = \{x \in X \mid f(x) \in$ Y'} $Y' \subset Y$

Graph $gr(f) := \{(x, f(x)) \mid x \in X\}$

Identität

$$\operatorname{id}_A:A\to A$$
 $\operatorname{id}_A(a):=a\quad \forall a\in A$

Umkehrfunktion $f^{-1}: Y \to X$ wenn f bijektiv und $(f\circ f^{-1})(y)=y$ Vollst. $\forall {\bf x},{\bf y}\in M:(x,y)\in R\lor$ bzw. $f; f^{-1} = id_X \wedge f^{-1}; f = id_X$ Für die Relation f^{-1} gilt:

- $x \in f^{-1}(\{f(x)\})$
- $f(f^{-1}(\{y\})) = \{y\}$ falls fsurjektiv

Eigenschaften

Injektiv
$$\forall x_1, x_2 \in X :$$

 $x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$

Surjektiv $\forall y \in Y \exists x \in X : \mathbf{y} = \mathbf{f}(\mathbf{x})$

surjektiv

Verkettung $f \circ q : A \to C$

$$(f \circ g)(a) = f(g(a))$$

(der Reihenfolge nach)

Relationen

Kartesisches Produkt

$$X_1 \times \cdots \times X_n := \{(x_1, \cdots, x_n) \mid x_1 \in X_1, \cdots, x_n \in X_n\}$$

Eindeutigkeit $\forall x \in X \forall a,b \in Y$: **Relation** \sim von/auf M nach N ist Teilmenge $R \subseteq M \times N$. $(R' \subseteq N \times P)$

$$m \sim n \Leftrightarrow (m, n) \in R$$

 \equiv Reflexiv $\forall x \in M : (\mathbf{x}, \mathbf{x}) \in R$ $\Leftrightarrow \mathsf{id}_M \subseteq R$

Irreflexiv $\forall x \in M : (x, x) \notin R$ $\Leftrightarrow id_M \cap R = \emptyset$

 \equiv Sym. $\forall (x, y) \in R : (y, x) \in R$ $\Leftrightarrow R \subseteq R^{-1}$

 \prec Antis. $\forall x, y : ((x, y) \in R \land (y, x) \in R)$ $R) \Rightarrow \mathbf{x} = \mathbf{v}$ $\Leftrightarrow R \cap R' \subseteq \mathsf{id}_M$

 \equiv Transitiv $\forall x, y, z : ((x, y) \in R \land$ $(y,z) \in R$ \Rightarrow $(\mathbf{x},\mathbf{z}) \in R$ $\Leftrightarrow R: R \subseteq R$

 $(y,x)\in R$ $\Leftrightarrow R \cup R^{-1} = M \times M$

Spezielle Relationen

Inverse Relation R^{-1} mit $R \in M \times$ $\{(n,m) \in N \times M \mid (m,n) \in R\}$

Komposition R; R mit $R' \in N \times P :=$ $\{(m,p)\in M\times P\mid \exists n\in N:$ $(m,n) \in R \land (n,p) \in R'$

Leere Relation 0

Bijektiv/Invertierbar wenn injektiv und **Identität** id_M := $\{(m, m) \mid m \in M\}$ (=)

All relation $M \times M$

 \ddot{A} \ddot{a} metrisch und transitiv. (Gleichheit***)

Äquivalenzklasse [m] auf M. Vertreter $m \in M$.

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

$$\Leftrightarrow [m]_{\equiv} = [x]_{\equiv}$$

Zerlegung $\mathcal{N} \subseteq \mathcal{P}(M)$ von M.

- ∅ ∉ N
- $M = \bigcup \mathcal{N}$
- $N \cap N' = \emptyset$ $(N, N' \in \mathcal{N} : N \neq N')$
- (Korrespondiert zur ÄR.)

Quotient (\mathbf{M}/\equiv) Sei \equiv ÄR. auf M. (ist Zerlegung)

$$(M/\equiv):=\{[m]_{\equiv}\mid m\in M\}$$

(Korrespondiert zur ÄK.)

Ordnungsrelation ≺ reflexiv, antisymmetrisch. transitiv

Minimale $x \ \forall m \in M \setminus \{x\} : m \not\prec$

Untere Schranken $m \in \downarrow X$ $\forall x \in X : m \prec x$

Kleinstes $\min_{\prec} X \in X$

Totale Ordnung + vollständig (Trichotomie)

Analysis

Reelle Zahlen R

Angeordnete Körper

(Gilt auch für \mathbb{Z} und \mathbb{Q})

Körperaxiome $(\mathbb{R}, +, *)$ $a, b, c \in \mathbb{R}$

sym- Addition $(\mathbb{R}, +)$

Assoziativität

a + (b + c) = (a + b) + c

Kommutativität

a+b=b+a

Neutrales Element Null $a+0=a \quad 0 \in \mathbb{R}$

Inverses "Negativ"

$$a + (-a) = 0 \quad (-a) \in \mathbb{R}$$

Multiplikation $(\mathbb{R}, *)$

Assoziativität a*(b*c) = (a*b)*c

Kommutativität a * b = b * a

Neutrales Element Eins

 $a * 1 = a \quad 1 \in \mathbb{R} \setminus \{0\}$

Inverses "Kehrwert"

$$a * (a^{-1}) = 1$$

 $a \neq 0, (a^{-1}) \in \mathbb{R}$

Distributivität

$$\mathbf{a} * (b+c) = \mathbf{a} * b + \mathbf{a} * c$$

Totale Ordnung

Transitivität

$$a < b \land b < c \Rightarrow a < c$$

Trichotomie Entweder

$$a < b \text{ oder } a = b \text{ oder } b < a$$

 $\Rightarrow Irreflexivität (a < b \Rightarrow a \neq b)$

Addition

$$a < b \Rightarrow a + c < b + c$$

Multiplikation

$$a < b \Rightarrow a * c < b * c \quad 0 < c$$

Bei Additiver oder Multiplikativer In- **Potenzen** $a^{\frac{x}{y}} = \sqrt[y]{a^x}$ version dreht sich die Ungleichung.

Archimedes Axiom

$$\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x$$
$$n > \frac{1}{x}$$

Teilbarkeit

$$a|b \Leftrightarrow \exists n \in \mathbb{Z} : b = a*n$$

($\Rightarrow \sqrt{2} \notin \mathbb{Q}$, da mit $\frac{a}{\hbar} = \sqrt{2}$ nicht teilerfremd)

Häufige Fehler

- Nicht durch Null teilen/kürzen
- Nicht -x < 0 annehmen
- Multiplikation mit negativen Zahlen kehrt Ungleichungen

Operationen

Brüche

- \bullet $\frac{a}{b} * \frac{c}{d} = \frac{ac}{bd}$
- $\bullet \quad \frac{a}{\iota} \stackrel{*d}{=} \frac{ad}{\iota}$
- \bullet $\frac{a}{a} + \frac{b}{a} = \frac{a+b}{a}$
- \bullet $\frac{a}{b} + \frac{c}{d} = \frac{ad+cb}{bd}$

Wurzeln $b^n = a \Leftrightarrow b = \sqrt[n]{a}$

- \bullet $\sqrt[n]{a * b} = \sqrt[n]{a} * \sqrt[n]{b}$
- $\sqrt[n]{\sqrt[m]{a}} = \sqrt[n*m]{a}$
- $\sqrt[n]{a} < \sqrt[n]{b}$ 0 < a < b
- $\sqrt[n+1]{a} < \sqrt[n]{a}$ 1 < a
- $\sqrt[n]{a} < \sqrt[n+1]{b}$ 0 < a < 1

$$\sqrt[n]{a^n} = |a| \quad a \in \mathbb{R}$$

- $\bullet \ a^{\times} * b^{\times} = (a * b)^{\times}$
- $\bullet \ a^x * a^y = a^{x+y}$
- $\bullet (a^x)^y = a^{x*y}$

Dezimaldarstellung

Gauss-Klammer $[y] := \max\{k \in \mathbb{Z} \mid$ $k \leq y$ = |y|

$$[y] = k \Leftrightarrow k \leq y < k+1$$

Existenz $\forall x \geq 0 \exists ! (a_n)_{n \in \mathbb{N}}$ mit

- $a_n \in \{0, \dots, 9\} \quad \forall n \in \mathbb{N}$

Die Umkehrung gilt mit Lemma:

$$x = \sum_{n=0}^{\infty} \frac{a_n}{10^n}$$

Lemma $x \geq 0$, $(a_n)_{n \in \mathbb{N}}$ Dezi. von x

$$\neg(\exists N \in \mathbb{N} \forall n \ge N : a_n = 9)$$

$$x \in \mathbb{Q} \Leftrightarrow (a_n)_{n \in \mathbb{N}}$$
 periodisch

Intervalle

Sei $A \subseteq \mathbb{R}, A \neq \emptyset, a_0 \in A$.

Geschlossen
$$[a;b] := \{x \in \mathbb{R} \mid a \le x \le b\}$$
 ("Ecken sind mit enthalten")

Offen $(a; b) := \{x \in \mathbb{R} \mid a < x < b\}$ (Bei ∞ immer offen, da $\infty \notin \mathbb{R}$)

Kleinstes/Größtes Element

Minimum $min(A) := a_0$ $\Leftrightarrow \forall a \in A : \mathbf{a}_0 \le a$

Maximum $\max(A) := a_0$ $\Leftrightarrow \forall a \in A : \mathbf{a} \leq a_0$ $(\nexists^{\min}/_{\max}(a;b))$

Beschränktheit A heißt

Oben beschränkt $\exists s \in \mathbb{R} \forall a \in A$: $\mathbf{a} \leq s$

Vollständigkeit

Infimum (klein) $\inf(A)$ $:= \max\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{s} \leq a\}$

Supremum (groß) sup(A) $:= \min\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{a} \le s\}$ **Vollständigkeitsaxiom** $\exists \sup(A)$.

Folgen

Folge $(a_n)_{n\in\mathbb{N}}$ in A ist eine Abb. f: $\mathbb{N} \to A \text{ mit } a_n = f(n).$

Arithmetische Folge $a_{n+1} = a_n + d$ $a_n = a + (n-1) * d \quad d, a \in \mathbb{R}$

Geometrische Folge $a_{n+1} = a_n * q$ $a_n = q^n \quad q \in \mathbb{R}$

Rekursion a_n ist auf a_{n-1} definiert.

$$a_{n+1} = F(n, a_n) \quad \forall n \in \mathbb{N}$$

 $F: A \times \mathbb{N} \to A$

Primfaktorzerlegung $n \in \mathbb{N}, n \geq 2$

$$\exists p_1,\ldots,p_n\in\mathbb{P}:n=\mathbf{p_1}*\cdots*\mathbf{p_n}$$

Summen und Produkte

Summe $\sum_{i=1}^{n} i = 1 + 2 + \cdots + n$

Produkt $\prod_{i=1}^{n} i = 1 * 2 * 3 * \cdots * n$

Fakultät $n! = \prod^n i \ (0! = 1)$

Gaussche Summe $n \in \mathbb{N}$

$$\sum^{n} i = \frac{n * (n+1)}{2}$$

Unten beschränkt $\exists s \in \mathbb{R} \forall a \in A$: Geom. Summe $q \in \mathbb{R} \setminus \{0\}, n \in \mathbb{N}_0$

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$

Bernoulli Unglei. $n \in \mathbb{N}_0, x \ge -1$

$$(1+x)^n \ge 1 + nx$$

Binom. Koeff. $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

- Rechnen: $\frac{n>k}{0<(n-k)}$
- \bullet $\binom{n}{0} = \binom{n}{n} = 1$
- \bullet $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$

Binomischer Satz $n \in \mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} * a^{n-k} b^k$$

Grenzwerte

$$\textbf{Betrag} \quad |x| := \left\{ \begin{array}{ccc} & x & 0 \leq x \\ - & x & x < 0 \end{array} \right.$$

Lemma |x * y| = |x| * |y|

Dreiecksungleichung $|x+y| \le |x| + |y|$

Umgekehrte Dreiecksungleichung $||x| - |y|| \le |x - y|$

Konvergenz

Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}, a\in\mathbb{R}.$

$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow$$

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} n \ge n_0 :$$

$$|\mathbf{a}_n - \mathbf{a}| \le \epsilon$$

$$(a - \epsilon \le a_n \le a + \epsilon)$$

• $a_n \xrightarrow{n \to \infty} a \Leftrightarrow \lim_{n \to \infty} a_n = a$

Beschränkt + monoton \Rightarrow konvergent:

$$\lim_{n \to \infty} a_n = \begin{cases} \inf\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\text{fall.}} \\ \sup\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\text{steig.}} \end{cases}$$

Nullfolgen $\lim_{n\to\infty} a_n = 0$

- $\lim_{n\to\infty}\frac{1}{n^k}=0$ $k\in\mathbb{N}$
- $\lim_{n\to\infty} nq^n = 0$

Folgen gegen 1

- $\lim_{n\to\infty} \sqrt[n]{a} = 1$ a>0
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Bestimmt Divergent

$$\begin{array}{c} a_n \xrightarrow{n \to \infty} \infty \Leftrightarrow \\ \forall R > 0 \exists n \geq n_0 \in \mathbb{N} : a_n \geq R \\ a_n \xrightarrow{n \to \infty} -\infty \Leftrightarrow \\ \forall R < 0 \exists n \geq n_0 \in \mathbb{N} : a_n \leq R \end{array}$$

$$\lim_{n \to \infty} q^n \begin{cases} = 0 & (-1;1) \\ = 1 & = 1 \\ \geq \infty & > 1 \\ \text{div.} & \leq -1 \end{cases}$$

Monotonie

Monoton fallend

$$a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$$

Monoton steigend

$$a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$$

Beschränktheit

$$\exists k > 0 \forall n \in \mathbb{N} : |\mathbf{a}_n| \le \mathbf{k}$$

- Konvergent ⇒ beschränkt
- Unbeschränkt ⇒ divergent

Grenzwertsätze

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$$

- $a_n \xrightarrow{n \to \infty} a \land a_n \xrightarrow{n \to \infty} b$ $\Rightarrow a = b \text{ (Max. einen Grenzw.)}$
- $a = 0 \land (b_n)_{beschr.}$ $\Leftrightarrow \lim_{n \to \infty} a_n b_n = 0$
- $a_n \le b_n \Leftrightarrow a \le b$ (nicht <)

$$\bullet \lim_{n \to \infty} \begin{cases} a_n \pm b_n = a \pm b \\ a_n * b_n = a * b \\ a_n * c = a * c \\ \sqrt[k]{a_n} = \sqrt[k]{a} \\ |a_n| = |a| \end{cases}$$

Einschachtelungssatz

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$

$$\forall n \ge N \in \mathbb{N} : \mathbf{a_n} \le \mathbf{c_n} \le \mathbf{b_n}$$

$$(\exists) \lim_{n \to \infty} c_n = \mathbf{a}$$

Spezielle Folgen

Teilfolge streng mnt. Folge $(b_k)_{n\in\mathbb{N}}$ mit $(n_k)_{k\in\mathbb{N}}$, sodass $b_k = \mathbf{a}_{nk} \quad \forall k \in \mathbb{N}$.

$$\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} a_{nk} = a$$

(da n_k mnt. steigend)

$$\forall (a_n)_{n \in \mathbb{N}} \exists (a_{nk})_{k \in \mathbb{N}_{mnt}}$$
 (nicht streng!)

Häufungspunkt *h* mit einer Teilfolge

$$\lim_{n \to \infty} a_{nk} = h$$

• $\lim_{n\to\infty} a_n = a \Leftrightarrow \exists ! : h = a$

Bolzano-Weierstraß

$$(a_n)_{n \in \mathbb{N}_{beschr.}} \Rightarrow \exists h_{H"auf.}$$

(Beschränkte Teilfolgen besitzen mind. einen Häufungspunkt)

Cauchy-Folge

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 :$$
$$|a_n - a_m| \le \epsilon$$

(Konv. ohne bekannten Grenzwert)

Vollständigkeit von ℝ

$$(a_n)_{n\in\mathbb{N}_{\text{CAUCHY}}}\Leftrightarrow\exists\lim_{n\to\infty}a_n$$

$$(\exists \lim_{n \to \infty} a_n \Rightarrow (a_n)_{n \in \mathbb{N}_{\text{CAUCHY}}}$$

$$\Rightarrow (a_n)_{n \in \mathbb{N}_{\text{beschr.}}}$$

$$\Rightarrow \exists h \quad \text{(BW)}$$

$$\Rightarrow \lim_{n \to \infty} a_n = h)$$

Stetigkeit

Berührungspunkt $D \subseteq \mathbb{R}, a \in \mathbb{R}$

$$\begin{split} a \ \mathsf{BP.} \ \mathsf{von} \ D \\ \Leftrightarrow \exists (x_n)_{n \in \mathbb{N}} \ \mathsf{in} \ D : x_n \xrightarrow{n \to \infty} a \\ \Leftrightarrow \forall \delta > 0 \exists x \in D : |x - a| \leq \delta \end{split}$$

 $\mathbb{R}, y \in \mathbb{R}, a$ BP. von D

$$\begin{split} \lim_{x \to a} f(x) &= y \\ \Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ in } D: \\ x_n \xrightarrow{n \to \infty} a \Rightarrow f(x_n) \xrightarrow{n \to \infty} y \\ \Leftrightarrow \forall \epsilon > 0 \exists \delta > 0 \forall x \in D: \\ |x - a| &\leq \delta \Rightarrow |f(x) - y| &\leq \epsilon \end{split}$$

(Grenzwertsätze gelten analog)

Stetig an Stelle f stetig bei a

$$\begin{split} \lim_{x \to a} f(x) &= f(a) \\ \Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ in } D: \\ x_n \xrightarrow{n \to \infty} a \Rightarrow f(x_n) \xrightarrow{n \to \infty} f(a) \\ \Leftrightarrow \forall \epsilon > 0 \exists \delta > 0 \forall x \in D: \\ |x - a| &\leq \delta \Rightarrow |f(x) - f(a)| \leq \epsilon \end{split}$$

(U.A. stetig: Summen, Produkte, Quotienten, Verkettungen stetiger Fkt. und Polynome)

Einseitiger Grenzwert $x_0^{<}/_{>}a \in D$

$$\lim_{x\nearrow/\searrow a} f(x) = y \qquad \text{konvergiert} \qquad konvergiert$$

$$\Leftrightarrow \forall (x_n)_{n\in\mathbb{N}} \text{ in } D:$$

$$(x_n \xrightarrow{n\to a} a \land \forall \mathbf{n} : \mathbf{x_n}^{\leq}/\geqslant \mathbf{a})$$

$$\Rightarrow f(x_n) \xrightarrow{n\to \infty} y \qquad \mathbf{Geom.} \quad \sum_{k=0}^{\infty} q^k = \frac{1}{1-q} \quad q \in \mathbb{R}$$

$$\Leftrightarrow \lim f(x) = y \land x_0^{\leq}/\geqslant a \in D \qquad \mathbf{Harmon.} \quad \sum_{k=1}^{\infty} \frac{1}{k} \text{ divergent}$$

Grenzwert gegen ∞ *D* unbeschränkt

Lemma

$$\lim_{x \to \infty} f(x) = y$$

$$\Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ in } D:$$

$$x_n \xrightarrow{n \to \infty} \infty \Rightarrow f(x_n) \xrightarrow{n \to \infty} y$$

$$\Leftrightarrow \forall \epsilon > 0 \exists x_0 \in \mathbb{R} \forall x \in D:$$

$$\bullet \sum_{k=1}^{\infty} a_k, \sum_{k=1}^{\infty} b_k \text{ konvergent}$$

$$- \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} (a_k + b_k)$$

$$- c* \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} c* a_k$$

 $x > x_0 \Rightarrow |f(x) - y| < \epsilon$

 $\Leftrightarrow \forall (x_n)_{n\in\mathbb{N}} \text{ in } :$

 $x_n \xrightarrow{n \to \infty} a \Rightarrow f(x_n) \xrightarrow{n \to \infty} \infty$

 $\Leftrightarrow \forall R > 0 \exists \delta > 0 \forall x \in D$:

 $|x - a| < \delta \Rightarrow f(x) > R$

Eigenschaften stetiger Funktionen

Lemma $f(a) > \eta \Rightarrow \forall x \exists \delta > 0 \in$ $D \cap [a - \delta, a + \delta] : f(x) > \eta$

Zwischenwert $[a;b] \subseteq \mathbb{R}, f:[a;b] \rightarrow$

f(a) < c < f(b)

 $\Rightarrow \exists \xi \in (a;b) : f(\xi) = c$

Korollar $f(a)*f(b) < 0 \Rightarrow \exists \xi \in (a;b)$:

Reihe $(s_n)_{n\in\mathbb{N}}=\sum_{k=1}^\infty a_k$ mit den Gliedern $(a_k)_{k\in\mathbb{N}}.$

Grenzwert ebenfalls $\sum_{k=1}^{\infty} a_k$, falls s_n

Geom. $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$ $q \in (-1; 1)$

Allg. Harmon. $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ konvergiert

nte Partialsumme $s_n = \sum_{k=1}^n a_k$

konvergiert

Spezielle Reihen

Reihen

 $f(\xi) = 0$ (versch. Vorzeichen)

 \mathbb{R} stetig, $f(a) \neq f(b)$

 $\begin{array}{l} \bullet \ \exists N \in \mathbb{N} \ : \ (\sum_{k=N}^{\infty} a_k)_{\text{konv.}} \Rightarrow \\ (\sum_{k=1}^{\infty} a_k)_{\text{konv.}} \ \text{(Es reicht spätere} \\ \text{Glieder zu betrachten)} \end{array}$

$$\begin{array}{l} \bullet \ (\sum_{k=1}^{\infty} a_k)_{\mathrm{konv.}} \\ \Rightarrow \ \forall N \in \mathbb{N} \ : \ (\sum_{k=N}^{\infty} a_k)_{\mathrm{konv.}} \\ \Rightarrow \lim_{N \to \infty} \sum_{k=N}^{\infty} a_k = 0 \end{array}$$

Konvergenzkriterien

Cauchy

$$\Leftrightarrow (\sum_{k=1}^{n} a_{k})_{n \in \mathbb{N}} \text{ CAUCHY}$$

$$(\sum_{k=1}^{\infty} a_{k})_{\text{konv.}}$$

$$\Leftrightarrow \forall \epsilon > 0 \exists n_{0} \in \mathbb{N} \forall n > m > n_{0} :$$

$$|\sum_{k=m+1}^{n} a_{k}| \leq \epsilon$$

Notwendig

$$(\sum_{n=1}^{\infty} a_n)_{\text{konv.}} \Rightarrow \lim_{n \to \infty} a_n = 0$$

$$\lim_{n\to\infty} a_n \neq 0 \Rightarrow (\sum_{n=1} a_n)_{\text{div.}}$$

Beschränkt $a_n \geq 0 \ (\Rightarrow mnt.) \ \forall n \in \mathbb{N}$

$$(\sum_{n=1}^{\infty} a_n)_{beschr.} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{konv.}$$

Majorante $0 \le \mathbf{a_n} \le \mathbf{b_k} \quad \forall n \in \mathbb{N}$

$$(\sum_{n=1}^{\infty} b_n)_{\mathsf{konv.}} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{\mathsf{konv.}}$$

Quotient $a_n \geq 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n} \begin{cases} <1\to (\sum_{n=1}^\infty a_n)_{\mathsf{konv}} \\ >1\to (\sum_{n=1}^\infty a_n)_{\mathsf{div}}. \end{cases}$$

Wurzel $a_n \geq 0 \quad \forall n \in \mathbb{N}$

$$\sum_{k=1}^{\infty} a_k, \sum_{k=1}^{\infty} b_k \text{ konvergent} \\ -\sum_{k=1}^{\infty} \mathbf{a}_k + \sum_{k=1}^{\infty} \mathbf{b}_k = \lim_{n \to \infty} \sqrt[n]{a_n} \begin{cases} < \mathbf{1} \to (\sum_{n=1}^{\infty} a_n)_{\text{konv.}} & \bullet \exp(x) > 0 \\ > \mathbf{1} \to (\sum_{n=1}^{\infty} a_n)_{\text{div.}} & \bullet \frac{1}{\exp(x)} = \exp(-x) \end{cases}$$

$$\bullet x < y \Rightarrow \exp(x) < 0$$

$$(\sum_{n=1}^{\infty} |a_n|)_{\text{konv.}} \Rightarrow (\sum_{n=1}^{\infty} a_n)_{\text{konv.}}$$

$$|\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|$$

(Dreiecksungleichung)

Leibniz $(a_n)_{n\in\mathbb{N}}$ mnt. Nullfolge

$$(\sum_{n=1}^{\infty} (-1)^n * a_n)_{\mathsf{konv.}}$$

Grenzwert $a_n, b_n \geq 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n o \infty} rac{a_n}{b_n} > 0 \Rightarrow$$
 $(\sum_{n=1}^{\infty} a_n)_{\mathsf{konv.}} \Leftrightarrow (\sum_{n=1}^{\infty} b_n)_{\mathsf{konv.}}$

Exponentialfunktion

$$\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{x!}$$

- $\exp(1) = e \approx 2,71828 \notin \mathbb{Q}$ $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$

$$\exp(x) * \exp(y) = \exp(x + y)$$

Cauchy-Produkt

uotient
$$a_n \geq 0 \quad \forall n \in \mathbb{N}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \begin{cases} < 1 \to (\sum_{n=1}^{\infty} a_n)_{\mathsf{konv.}} \\ > 1 \to (\sum_{n=1}^{\infty} a_n)_{\mathsf{div.}} \end{cases} (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

Korollar

- $x < y \Rightarrow \exp(x) < \exp(y)$
- $\bullet \exp(r * x) = (\exp(x))^r$
- $\bullet \exp(r) = e^r$

Algorithmen auf Datenstrukturen

Algorithmus Handlungsvorschrift aus endlich vielen Einzelschritten zur Problemlösung.

- Korrektheit (Test-based dev.)
- Terminierung (TOURING)
- Effizienz (Komplexität)

Formen (High to low) Menschl. Sprache, Pseudocode, Mathematische Ausdrücke. Quellcode. Binärcode

Divide & Conquer

Divide Zerlegen in kleinere Teilproble-

Conquer Lösen der Teilprobleme mit gleicher Methode (rekursiv)

Merge Zusammenführen der Teillösungen

Effizienz

Raum/Zeit-Tradeoff: Zwischenspeichern vs. Neuberechnen

Programmlaufzeit/-allokationen	Komplexität
Einfluss äußerer Faktoren	Unabh.
Konkrete Größe	Asymptotische Schätzung

Inputgröße n Jeweils

- Best-case C_B
- Average-case
- Worst-case C_W

Asymptotische /Speicherkomplexität

Groß-O-Notation Kosten $C_f(n)$ mit $q: \mathbb{N} \to \mathbb{R} \exists c > 0 \exists n_0 > 0 \forall n \geq n_0$

Untere Schranke
$$\Omega(f)$$
 $C_f(n) \ge c * g(n)$

Obere Schranke
$$O(f)$$

 $C_f(n) \le c * g(n)$

(Beweis: q und c finden)

Groß-O	Wachstum	Klasse	
O(1)	Konstant		
$O(\log n)$	Logarithmisch		
O(n)	Linear		ösbar
$O(n \log n)$	Nlogn		lösl
$O(n^2)$	Quadratisch	Del mentall o(k)	
$O(n^3)$	Kubisch	Polynomiell $O(n^k)$	
$O(2^n)$	Exponentiell	Exponentiell $O(\alpha^n)$	
O(n!)	Fakultät		hart
$O(n^n)$			

Rechenregeln

Elementare Operationen, Kontrollstr. $\in \mathbf{O}(1)$

$$\begin{array}{cc} \textbf{Abfolge} \ O(g) & \mathsf{nach} & O(f) \\ O(\max(f;g)) & \end{array}$$

$$\begin{array}{c} \mathbf{Rekursion} \ \in k \ \mathsf{Aufrufe} * O(f) \ \mathsf{teuerste} \\ \mathsf{Operation} \end{array}$$

$$\textbf{Mastertheorem} \quad a \geq 1, \ b > 1, \ \Theta \geq 0$$

$$T(n) = a * T(\frac{n}{b}) + \Theta(n^k)$$

$$\Rightarrow \begin{cases} \Theta(n^k) & a < b^k \\ \Theta(n^k \log n) & a = b^k \\ \Theta(n^{\log_b a}) & a > b^k \end{cases}$$

Floor/Ceiling Runden

Floor |x| nach unten

Ceiling $\lceil x \rceil$ nach oben

Zeit- Suchverfahren

Lineare Liste endlich, geordnete (nicht sortierte) Folge n Elemente $L := [a_0, \ldots, a_n]$ gleichen Typs.

$$\begin{array}{lll} \textbf{Array} & \textbf{Sequenzielle Abfolge im Speicher, statisch, Index} & O(1), \text{ schnelle} \\ \textbf{Suchverfahren} & \boxed{L[0] \mid \cdots \mid L[n-1]} \\ \end{array}$$

Auswahlproblem Finde *i*-kleinstes Element in unsortierter Liste $\in \Theta(n)$

$$\begin{split} & \textbf{Algorithm: } i\text{-Smallest Element} \\ & \textbf{Input: } \text{Unsortierte Liste } L, \text{ Level } i \\ & \textbf{Output: } \text{Kleinstes Element } x \\ & p \leftarrow L[L.\text{len} - 1] \\ & \text{for } k = 0 \text{ to } L.\text{len} - 1 \text{ do} \\ & \text{if } L[k] > p \text{ then} \\ & | Push (L_{<}, L[k]) \\ & \text{if } L[k] > p \text{ then} \\ & | Push (L_{>}, L[k]) \\ & \text{end} \\ & \text{end} \\ & \text{if } L_{<}.\text{len} = i - 1 \text{ then} \\ & | \text{return } p \text{ if } L_{<}.\text{len} > i - 1 \text{ then} \\ & | \text{return } i\text{-Smallest Element } L_{<} \\ & \text{if } L_{<}.\text{len} < i - 1 \text{ then} \\ & | \text{return } i\text{-Smallest Element } (L_{>} \\ & | i - 1 - L_{<}.\text{len}) \\ & \text{end} \\ & \text{end} \\ & \text{end} \\ & \text{lend } i\text{-Smallest Element } L_{<} \\ & \text{if } L_{<}.\text{len} > i - 1 \text{ then} \\ & \text{lend } i\text{-Smallest Element } L_{<} \\ & \text{lend } i\text{-Smallest Element } \\ & \text{lend } i\text{-Smallest Element } L_{<} \\ & \text{lend } i\text{-Smallest Element } L_{<} \\ & \text{lend } i\text{-Smallest Element } \\ \\ & \text{lend } i\text{-Smallest Element } \\ \\ & \text{lend } i\text{-Smallest El$$

Sortierte Listen

$$\begin{array}{lll} \mathbf{Bin\ddot{ar}} & C_W(n) &=& \lfloor \log_2 n \rfloor &+& 1, \\ C_A(n) & \stackrel{n \to \infty}{\approx} \log_2 n \in O(\log n) & & \end{array}$$

Algorithm: Binary Search Input: Sortierte Liste
$$L$$
, Predikat x Output: Index i von x if L -len $= 0$ then $| return - 1$ else $| m \leftarrow \lfloor \frac{L - \ln n}{2} \rfloor$ if $x = L[m]$ then $| return m$ if $x < L[m]$ then $| return Binary Search $[L[0], \ldots, L[m-1]]$ if $x > L[m]$ then $| return m + 1 + Binary Search$$

Sprung Kosten Vergleich a, Sprung b mit optimaler Sprungweite:

[L[m+1], ..., L[L.len-1]]

$$m = \left\lfloor \sqrt{(\frac{a}{b})*n)} \right\rfloor$$

$$C_A(n) = \frac{1}{2}(\lceil \frac{n}{m} \rceil * a + mb) \in O(\sqrt{n})$$

$$\begin{aligned} & \textbf{Algorithm:} \ \text{Jump Search} \\ & \textbf{Input:} \ \text{Sortierte Liste} \ L, \ \text{Predikat} \ x \\ & \textbf{Output:} \ \text{Index} \ i \ \text{von} \ x \\ & m \leftarrow \lfloor \sqrt{n} \rfloor \\ & \text{while} \ i < L. \ \text{Ind} \ \text{do} \\ & i \leftarrow i + m \\ & \text{if} \ x < L[i] \ \text{then} \\ & \text{return Search} \\ & \text{end} \\ & \text{end} \end{aligned}$$

- k-Ebenen Sprungsuche $\in O(\sqrt[k]{n})$
- ullet Partitionierung in Blöcke m mög-

Exponentiell $\in O(\log x)$

Algorithm: Exponential Search Input: Sortierte Liste L, Predikat xOutput: Index i von xwhile x > L[i] do $i \leftarrow 2 * i$ end return Search $[L \mid i/2 \mid, \ldots, L[i-1]]$

Unbekanntes n möglich

$$\begin{array}{lll} \textbf{Interpolation} & C_A(n) = & 1 & + \\ \log_2 \log_2 n, & C_W(n) \in O(n) & & \end{array}$$

Algorithm: Searchposition

$$\begin{array}{l} \text{Input: Listengrenzen } \left[u,\,v\right] \\ \text{Output: Suchposition } p \\ \text{return } \left\lfloor u + \frac{x-L[u]}{L[v]-L[u]}(v-u) \right\rfloor \end{array}$$

Algorithm: Interpolation Search

$$\begin{array}{ll} \text{Input: Sortierte Liste } [L[u], \ldots, L[v]], \operatorname{Predikat } x \\ \text{Output: Index } i \ von \ x \\ \text{if } x < L[u] \lor x > L[v] \ \text{then} \\ \text{p} \ \leftarrow \operatorname{Searchposition}(u,v) \\ \text{if } x = L[p] \ \text{then} \\ \text{return } p \\ \text{if } x > L[p] \ \text{then} \\ \text{return Interpolation Search}(p+1,v,x) \\ \text{else} \\ \text{return Interpolation Search}(u,p-1,x) \\ \text{end} \end{array}$$

Häufigkeitsordnungen mit Zugriffswahrscheinlichkeit p_i : $C_A(n) =$

Frequency-count Zugriffszähler pro Element

Transpose Tausch mit Vorgänger

Move-to-front

Verkettete Listen

Löschen $\in O(1)$

Algorithm: Delete

return n

```
Innut: Zeiger n auf Vorgänger des löschendes Elements
if p \neq \emptyset \land p \rightarrow \textit{next} \neq \emptyset then
       p 
ightarrow \mathsf{next} \leftarrow (p 
ightarrow \mathsf{next}) 
ightarrow \mathsf{next}
```

desh. sehr dynamisch

Suchen $C_A(n) = \frac{n+1}{2} \in O(n)$

Algorithm: Search Linked List Input: Verkettete Liste L, Predikat xOutput: Zeiger p auf x $p \leftarrow L$.head while $p \rightarrow$ $p \leftarrow p \rightarrow \text{next}$ end

Doppelt Verkettet Zeiger auf Vorgänger | (key) | value | prev | next

- Bestimmung des Vorgängers (bei Einfügen, Löschen) $\in O(1)$ statt O(n)
- Höherer Speicheraufwand

Skip

- Zeiger auf Ebene i zeigt zu nächstem 2ⁱ Element
- Suchen $\in O(\log n)$

$$\begin{array}{ll} \textbf{(Perfekt)} \ \, \mathsf{Einf\"{u}gen}, \ \ \, \mathsf{L\"{o}schen} \ \ \, \in O(n) \\ & \text{(Vollst. Reorga.)} \end{array}$$

Randomisiert Höhe zufällig vollst. Reorga.) $P(h) = \frac{1}{2^{h+1}}$: Einfügen, Löschen $\in \mathbf{O}(\log \mathbf{n})$

Spezielle Listen

ADT "Abstrakte Datentypen"

auf letztem Element $\in O(1)$

Queue $Q = || \texttt{HEAD}, \cdots, \texttt{TAIL} \ \mathsf{Vorne} |$ Löschen, hinten einfügen $\in O(1)$

Priority Queue
$$P = \begin{bmatrix} p_0 & p_1 & \cdots & p_n \\ a_0 & a_1 & \cdots & a_n \end{bmatrix}$$

Jedes Element a hat Priorität p ;
Entfernen von Element mit höchs-

Sortierverfahren

ter (MIN) Priorität

Sortierproblem

Gegeben (endliche) Folge von Schlüsseln (von Daten) $(K_i)_{i \in I}$

Gesucht Bijektive Abbildung $\pi:I\to$ I (Permutation), sodass $K_{\pi(i)}$ < $K_{\pi(i+1)} \quad \forall i \in I$

mit Optimierung nach geringen

- Schlüsselvergleichen C
- Satzbewegungen M

Eigenschaften

Ordnung Allgemein vs. speziell: Ordnung wird nur über Schlüsselvergleiche hergestellt

Relation Stabil vs. instabil: Vorherig relative Reihenfolge bleibt erhalten

Speicher In situ vs. ex situ: Zusätzlicher Speicher notwendig

Lokal Intern vs. extern: Alles im RAM oder Mischung vorsortierter externer Teilfolgen

Ordnung $\forall x, y \in X$

Reflexiv $x \le x$

Antisym. $x \le y \land y \le x \Rightarrow x = y$

Transitiv $x \le y \land y \le z \Rightarrow x = z$

Total (Vollständig) $x \le y \lor y \le x$

(ohne Total: "Halbordnung")

Grad der Sortierung

Anzahl der Inversionen Anzahl kleinerer Nachfolger für jedes Element:

$$\begin{split} &\operatorname{inv}(L) := |\{(i,j) \mid \\ &0 \leq i < j \leq n-1, \\ &L[i] \geq L[j]\}| \end{split}$$

Anzahl der Runs Ein Run ist eine sortierte Teilliste, die nicht nach links oder rechts verlängert werden kann. Die Anzahl der Runs ist:

$$\begin{aligned} & \mathsf{runs}(L) := |\{i \mid \\ & 0 \leq i < n-1, \\ & L[i+1] < L[i]\}| + 1 \end{aligned}$$

Längster Run Anzahl der Elemente der längsten sortierten Teilliste:

```
las(L) := max\{r.len \mid
     r ist Run in L}
rem(L) := L.len - las(L)
```

Einfache Sortierverfahren O(n²)

Selection Entferne kleinstes Element in unsortierter Liste und füge es sortierter Liste an.

```
Algorithm: Selectionsort
Input: Liste L
Output: Sortierte Liste L
for i \leftarrow 0 to L.len - 2 do
     for i \leftarrow i + 1 to L.len - 1 do
           if L[i] < L[\mathit{min}] then
             min ← j
     end
     if min \neq i then
       Swap L[min], L[i]
if I_{i} len = 0 then
     return -1
```

Insertion Verschiebe erstes Element aus unsortierter Liste von hinten durch sortierte Liste, bis das vorgehende Element kleiner ist.

```
Algorithm: Insertionsort
Input: Liste L
Output: Sortierte Liste L
for i \leftarrow 1 to L.len - 1 do
        if L[i] < L[i-1] then
                 temp \leftarrow L[i]
                 j \leftarrow i
                 \begin{array}{c} \text{while } temp < L[j-1] \land j > 0 \text{ do} \\ \mid L[j] \leftarrow L[j-1] \end{array}
                 end
                 L[j] \, \leftarrow \, temp
```

mente können im Durchlauf ignoriert Siegerpfad aus. werden!

```
Algorithm: Bubblesort
Input: Liste L
Output: Sortierte Liste L
i \leftarrow L.len
swapped \leftarrow 1
while swapped do
      swapped \leftarrow 0
       for i \leftarrow 0 to i-2 do
             if L[j] > L[j+1] then
| Swap L[j], L[j+1]
                     swapped \leftarrow 1
       end
end
```

Verbesserte

Sortierverfahren

 $O(n \log n)$

Shell Insertionsort, nur werden Elemente nicht mit Nachbarn getauscht, sondern in t Sprüngen h_i , die kleiner werden (Kamm). Im letzten Schritt dann Insertionsort ($h_t = 1$); somit Sortierung von grob bis fein, also Reduzierung der Tauschvorgänge.

```
Algorithm: Shellsort
Input: Liste L, Absteigende Liste von Sprunggrößen H
Output: Sortierte Liste L
foreach h in H do
       for i \leftarrow h to L.len - 1 do
              temp \leftarrow L[i]
              for j \leftarrow i; temp < L[j-h] \land j \ge h;
               j \leftarrow j - h \text{ do}
L[i] \leftarrow L[i]
                    L[j] \leftarrow L[j-h]
              L[j] \leftarrow \mathsf{temp}
       end
end
```

Quick Rekursiv: Pivot-Element in der Mitte. Teillisten L_{\leq} . L_{\geq} . sodass $\forall l_{\leq} \in$ $L_{\leq} \forall l_{\geq} \in L_{\geq} : l_{\leq} < x < L_{\geq}$. Zerlegung: Durchlauf von Links bis $L[i] \ge x$ und von Rechts bis $L[i] \le x$, dann tauschen.

```
Algorithm: Quicksort
Input: Liste L, Indices l, r
Output: L sortiert zwischen l und r
if l \geq r then
i \,\leftarrow\, l
j \leftarrow r
\operatorname{piv} \leftarrow L[\lfloor \frac{l+r}{2} \rfloor]
         while L[i] < piv do
        end
        while L[j]>\operatorname{\it piv}\operatorname{\it do}
        if i < j then
                Swap L[i], L[j]
 while i \leq j;
Quicksort (L, l, j)
Quicksort (L, i, r)
```

Bubble Vertausche benachbarte Ele- Turnier Liste also Binärbaum, bestimmente, durchlaufe bis nichts vertauscht me $\min(L)$ durch Austragen des Turwerden muss. Achtung: Die hinteren Ele- niers, entferne Sieger und wiederhole von

> Heap Stelle Max-Heap (größtes Element in der Wurzel) her, gib Wurzel aus und ersetze mit Element ganz rechts in unterster Ebene.

```
Algorithm: Max-Heapify
Input: Liste L, Index i der MHE widerspricht und
       \forall j > i erfüllen MHE
Output: Liste L mit MHE \forall j \geq i
l \leftarrow 2i + 1
r \leftarrow 2i + 2
if l < L.len \wedge L[l] > L[i] then
      largest \leftarrow l
else
       \mathsf{largest} \leftarrow i
if r < L \, . \mathit{len} \wedge L[r] > L[\mathit{largest}] then
      largest ← 1
if largest \neq i then
      Swap L[i], L[largest]
      Max-Heapify L, largest
Algorithm: Build-Max-Hean
Input: Liste L
Output: Liste L mit MHE
for i \leftarrow |\frac{L.len}{2}| - 1 to 0 do
      Max-Heapify L, i
```

Algorithm: Heapsort Input: Liste LOutput: Sortierte Liste L Build-Max-Heap L for $i \leftarrow L \cdot len - 1$ to 1 do Swap L[0], L[i]

 ${\tt Max-Heapify}\ L\,,\,0$

Merge Zerlege Liste in k Teile, sortiere **Lexikographische Ordnung** \leq diese (mit Mergesort) und verschmelze Adie sortierten Teillisten (merge).

```
Algorithm: 2-Merge
Input: Liste L mit L[l \dots m-1] und L[m \dots r]
       sortiert, Indices l, m, r
Output: Liste L mit L[l \dots r] sortiert
i \leftarrow l
k \leftarrow m
for i \leftarrow 0 to r - l do
      if k > r \lor (j < m \land L[j] \le L[k]) then
             B[i] \leftarrow L[j]
             j \leftarrow j + 1
       else
             B[i] \leftarrow L[k]
end
for i \leftarrow 0 to r - l do
      L[l+i] \leftarrow B[i]
Algorithm: Rekursives 2-Mergesort
Input: Liste L, Indices L, r
Output: Liste L mit L[l \dots r] sortiert
if l \geq r then
       return
      m \leftarrow \lfloor \frac{l + r + 1}{2} \rfloor
```

Mergesort L, l, m-1

Mergesort L, m, r

Merge L, l, m, r

Iteratives 2-Mergesort

```
Algorithm: Iteratives 2-Mergesort
Input: Liste {\cal L}
Output: Sortierte Liste {\cal L}
for k \leftarrow 2; k < n; k \leftarrow k * 2 do
       for i \leftarrow 0; i + k \leq n; i \leftarrow i + k do
              Merge L, i, \min(i+k-1, n-1),
                i + \frac{k}{2}
      end
Merge L, 0, n-1, \frac{k}{2}
```

Natürliches Mergesort Verschmelzen von benachbarten Runs (Ausnutzen der Vorsortierung)

Untere Schranke allgemeiner Sor- Replacement Selectionsort Lese $\,r\,<\,$ tierverfahren

Jedes allgemeine Sortierverfahren benötigt im Worst- und Average-case Schlüsselvergleiche von mindestens:

$$\Omega(n \log n)$$

(Siehe Pfadlänge auf Entscheidungsbaum)

Spezielle Sortierverfahren O(n)

Distribution Abspeichern der Frequenz jedes Elementes k auf F[k]; Ausgeben jedes Index F[k] mal.

 $= \{a_1, \ldots, a_n\}$ ein Alphabet, dass sich mit gegebener Ordnung $a_1 < \cdots < a_n$ wie folgt auf dem Lexikon $A* = \bigcup_{n \in \mathbb{N}_0} A^n$ fortsetzt:

$$v = (v_1, \dots, v_p) \le w = (w_1, \dots, w_q)$$

$$\Leftrightarrow \forall 1 \le i \le p : v_i = w_i \quad p \le q$$

$$\forall \forall 1 \le j \le i : v_j = w_j \quad v_i < w_i$$

Fachverteilen Sortieren von n k-Tupeln in k Schritten: Sortieren nach letztem Element, vorletzem usw.

Große Datensätze sortieren

Indirekt Liste von Zeigern Z[i] = i auf die eigentlichen Listenelemente. Schlüsselvergleiche mit L[Z[i]], Satzbewegungen nur als Zeigertausch in Z. Anschließend linear kopieren.

Extern Zerlegen in m Blöcke, sortieren im Hauptspeicher (Run) der mind. m+1Blöcke groß ist, verschmelzen der Runs (m-Wege-Merge).

Ausgeglichenes 2-Wege-Mergesort

Daten auf Band n, sortieren von Block $r_1 < n$ auf zweites Band und r_2 auf drittes Band, löschen des ersten Bandes und Merge 2rabwechselnd auf erstes (neues $2r_1$) und viertes Band (neues $2r_2$) und wiederholen.

n Elemente auf Priority-Queue Q. Falls $x = \min(Q) > \text{letztem Ele-}$ ment auf zweiten Band, schreibe x aus. sonst schreibe Q auf Band. Wiederhole auf dritten Band und dann merge.

۶a

				Schlüsselvereleiche			Satzbewegungen		
Algo.	Stabil	Mem.	C_B	C_A	C_W	M_B	M_A	M_{W}	
Selection	×	1	n(n-1)	n(n-1)	n(n-1)	3(n - 1)	3(n-1)	3(n - 1)	
Insertion	/	1	n-1	$\stackrel{n\to\infty}{\approx} \frac{n(n-1)}{4} + n - \ln n$	$\frac{n(n-1)}{2}$	2(n - 1)	$\frac{n^2+3n-4}{4}+n-1$	$\frac{n^2 + 3n - 4}{2}$	5 (x)
Bubble	/	1	$\frac{n(n-1)}{2}$	n(n-1)	$\frac{n(n-1)}{2}$	0	$\frac{3n(n-1)}{4}$	$\frac{3n(n-1)}{2}$	0
				Best-case	Avera	Average-case Worst-case		ie	
Shell	×	1		-			-		
Quick	×	logn		$n \log n$	n log n		n ²		8
Turnier	×	2n-1		$n \log n$	n log n		nlogn		O(n log n)
Heap	×	1		$n \log n$	n log n		nlogn		ő
Merge	/	n		$n \log n$	n l	log n	$n \log n$		
			Untere :	Schranke $\Omega(n \log n)$ für al	lgemeine	Sortierverf	ahren		
Distribution	_	n		n		n	n log n, n	2	O(n)

Bäume

- Verallg. von Listen: Element/Knoten kann mehrere Nachfolger haben
- Darstellung von Hierarchien

Ungerichteter Graph (V, E) mit einer Menge Knoten V und Kanten $E \subseteq$ $V \times V$

Baum Ungerichteter Graph mit

Einfach keine Schleife (v)oder Doppelkanten (v)(w)

Zusammenhängend Für jede zwei Knoten gibt es genau eine Folge von Kanten die sie verbindet

Azyklisch kein Zyklus (Cycle) %

Wurzelbaum Baum mit genau einem Größen Knoten der Wurzel heißt

Orientierter Wurzelbaum Alle Knoten sind Wurzel ihrer disjunkten Unterbäume und haben verschiedene Werte gleichen Typs. (Im Nachfolgenden einfach nur "Baum")

Darstellungsarten

Graph

Array $[a, b, c, \emptyset, \emptyset, d, e]$

Klammer (a, (b), (c, (d), (e)))

Größen

Ordnung Max. Anzahl von Kindern jedes Knoten eines Baums

Tiefe Anzahl Kanten zwischen einem Knoten und Wurzel

Stufe Alle Knoten gleicher Tiefe

Höhe Max. Tiefe +1

Eigenschaften

Geordnet Kinder erfüllen Ordnung von links nach rechts

Vollständig Alle Blätter auf gleicher Stufe, jede Stufe hat max. Anzahl von Kindern

Binärbäume

Geordneter, orientierter Wurzelbaum der Ordnung 2.

Strikt Jeder Knoten hat 0 oder 2 Kinder (Kein Knoten hat genau 1 Kind).

Vollständig Jeder Knoten außer der letzten Stufe hat genau 2 Kinder.

Fast Vollständig Vollständig, außer Blätter können rechts fehlen.

Ausgeglichen Vollständig, aber Blätter auf letzten 2 Stufen

2 Binärbäume heißen

Ähnlich selbe Struktur

Äquivalent Ähnlich und selbe Knoten

- Für i Stufen max. 2i Knoten
- Für n Knoten genau n-1 Kanten
- Vollständiger B. mit n Knoten hat Höhe von $\log_2 n + 1$

Speicherung

Knoten | Index Links | Index Rechts

> Sequenziell Lesen vollst. Baum links nach rechts, oben nach unten, leere Elemente für fehlende Knoten (ineffizient für degenerierte Bäume)

Traversierung

- W Verarbeite Wurzel
- L Durchlaufe linken Unterbaum
- R Durchlaufe rechten Unterbaum

Konvention erst links, dann rechts:

- ullet WLR Preorder
- LWR Inorder
- LRW Postorder

Implementation rekursiv oder linear mit eigenem Stack (effizienter)

Gefädelte Binärbäume

Zeiger "Faden" in Knoten zeigt auf nächsten Knoten nach Durchlauford-

Nachteil: Zusätzlicher Speicheraufwand teilweise redundant; Lösung: Nur Null-Zeiger (Blätter) sind Fäden

rFaden zeigt auf Nachfolgerknoten

IFaden zeigt auf Vorgängerknoten

Binäre Suchbäume

Natürliche binäre Suchbäume

 $B_l < B_r < B_r$

Suchen rekursiv oder mit Durchlaufalg. $\in O(\ln n)$

Einfügen dort wo Suche terminiert

Löschen mit zwei nicht-leeren Unter-Verkettet Zeiger Links | Knoten | Zeiger Rechts im linken oder kleinsten Wert im rechten Unterbaum (Alt: Als gelöscht markieren)

Balancierte Binärbäume

Grundoperationen auf ausgeglichene Binärbäume kosten am wenigsten. Herstellung der Ausgeglichenheit in O(n)

Balancefaktor von Knoten x ist m-Wege-Suchbäume $BF(x) := h(B_l(x)) - h(B_r(x))$

k-Balanciert $\forall x \in B : |BF(x)| < k$

AVL-Baum 1-balancierter Binärer Suchbaum

Herstellung der Ausgeglichenheit durch Rotationen

- $BF(u) = -2, BF(v) \in \{0, -1\}$: Einfachrotation Links(u)
- Einfachrotation Rechts(u)
- BF(u) = -2, BF(v) = +1: Doppelrotation $Rechts(\mathbf{v}) + Links(\mathbf{u})$
- BF(u) = +2, BF(v) = -1: Doppelrotation $Links(\mathbf{v}) + Rechts(\mathbf{u})$

Für jeden AVL-Baum T der Höhe h

- $|T| > F_h$ (Fibonacci)
- $h \le \frac{\log_2(n\sqrt{5}+1)}{\log_2(\frac{1+\sqrt{5}}{2})}$

Fibonacci-Bäume B_0 ist leerer Baum, **Suchen** Finde größten Index im Knoten B_1 ist einzelner Knoten, B_h $BUILD(B_{h-1}, x, B_{h-2})$ für $h \geq 2$

der Höhe h)

Gewichtsbalancierte Binärbäume

Wurzelbalance $\rho(B) = \frac{n_l+1}{n+1}$ mit nKnoten und n_l Knoten im linken Unterbaum

Gewichtsbalanciert (BB)

 \forall Unterbaum \vec{B}' : $\alpha \leq \rho(B') <$

- $\alpha = 1/2$: Vollst. Binärbaum
- $\alpha < 1/2$: Zunehmend weniger ausgeglichen
- $\alpha = 0$: Keine Einschränkung

Mehrwegbäume

Breiter Baum als Indexstruktur für große externe Daten ("Seiten")

- *m*-ter Ordnung (max. *m* Kinder)
- Knoten mit max. b m-1 sortierten Einträgen: $\mathbf{P_0}|K_1|P_1|\dots|K_b|P_b$
- Werte im Unterbaum: K_i < $B_{P_i} < K_{i+1}$

B-Bäume der Klasse t ist (fast-• $BF(u) = +2, BF(v) \in \{0, -1\}$: ausgeglichener) 2t-Wege-Suchbaum

- Blätter der Wurzel gleich weit ent-
- ullet Alle Knoten außer Wurzel min. t-1. max. 2t-1 Werte und min. t. max. 2t Kinder (außer Blätter)
- Wurzel min. 1, max. 2t-1 Werte (oder B. leer) und min. 2, max. 2tKinder (oder Blatt)

Für n Knoten ist Höhe h < 1 + $\log_t \frac{n+1}{2}$

 $x \leq K_i$, suche in P_i

(Maximal unbalancierter AVL-Baum Einfügen Teilen voller (2t-1) Knoten bei Suche, einfügen im Blatt

Teilen (Elternknoten ist nicht voll, da vorher geteilt) Mittlerer Wert in Elternknoten. Werte links davon in linken Unterbaum

Löschen Verschieben o. Verschmelzen zu kleiner (t-1) Knoten bei Suche. dann entfernen

> Verschieben Kleinster Wert (ganz vorne) im rechten Unterbaum in Knoten ziehen, Knoten in linken Unterbaum rechts anfügen (und umgekehrt, je nach dem welcher Baum größer ist)

> Verschmelzen Beide Bäume zu klein, also t-1 zu einem Unterbaum zusammenfügen (2t-2)

B*-Bäume B-Baum Variante mit Daten in den Blättern. Blätter seguenziell verkettet; Standard in DBS

Binäre B-Bäume Alternative zu AVL-Bäumen

Digitale Suchbäume

Blattschlüssel = Zeichenkette/Wort des Pfads von Wurzel zu Blatt

Für max. Schlüssellänge l und Schlüsselteillänge k ist Höhe = l/k + 1

m-äre Tries Knoten enthalten (Null-)Zeiger für jeden Teilschlüssel der Länge k in $m = |\Sigma|^k$; Schlechte Speichernutzung, desh. Kompression des Knoten

PATRICIA-Tree

Präfix-/Radix-Baum

Exkurs Lineare Algebra

Matrixmul. $(m \times n)(n \times p) = (m \times p)$

$$(AB)_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

 $(Reihe \times Spalte)$