

Concurrency Appreciation

Johannes Åman Pohjola UNSW Term 3 2022

Definitions

Definition

Concurrency is an abstraction for the programmer, allowing programs to be structured as multiple threads of control, called processes. These processes may communicate in various ways.

Example Applications: Servers, OS Kernels, GUI applications.

Anti-definition

Concurrency is **not** *parallelism*, which is a means to exploit multiprocessing hardware in order to improve performance.

Sequential vs Concurrent

We could consider a *sequential* program as a *sequence* (or *total order*) of *actions*:

$$\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \cdots$$

The ordering here is "happens before". For example, processor instructions:

LD RO, X
$$\longrightarrow$$
 LDI R1,5 \longrightarrow ADD RO,R1 \longrightarrow ST X,RO

A concurrent program is not a total order but a partial order.

This means that there are now multiple possible *interleavings* of these actions — our program is non-deterministic where the interleaving is selected by the scheduler.

Concurrent Programs

Consider the following concurrent processes, sharing a variable n.

var <i>n</i> := 0					
	$\mathbf{var} \; x := n;$				
p ₂ :	n:=x+1;	q ₂ :	n := y - 1;	r ₂ :	n:=z+1;

Question

What are the possible returned values?

A Sobering Realisation

How many scenarios are there for a program with n processes consisting of m steps each?

	n=2	3	4	5	6
m=2	6	90	2520	113400	$2^{22.8}$
3	20	1680	$2^{18.4}$	$2^{27.3}$	$2^{36.9}$
4	70	34650	$2^{25.9}$	$2^{38.1}$	$2^{51.5}$
5	252	$2^{19.5}$	$2^{33.4}$	$2^{49.1}$	$2^{66.2}$
6	924	$2^{24.0}$	2 ^{41.0}	$2^{60.2}$	281.1

$$\frac{(nm)!}{m!^n}$$

Volatile Variables

var $y, z := 0, 0$					
p ₁ :	var x;	q ₁ :	y := 1;		
p ₂ :	x := y + z;	q ₂ :	z := 2;		

Question

What are the possible final values of x?

What about x = 2? Is that possible?

It is possible, as we cannot guarantee that the statement p_2 is executed atomically — that is, as one step.

Typically, we require that each statement only accesses (reads from or writes to) at most one shared variable at a time. Otherwise, we cannot guarantee that each statement is one atomic step. This is called the *limited critical reference* restriction.

Synchronisation

In order to reduce the number of possible interleavings, we must allow processes to synchronise their behaviour, ensuring more orderings (and thus fewer interleavings).

The red arrows are synchronisations.

Atomicity

The basic unit of synchronisation we would like to implement is to group multiple steps into one atomic step, called a *critical section*. A sketch of the problem can be outlined as follows:

forever do	forever do
non-critical section	non-critical section
pre-protocol	pre-protocol
critical section	critical section
post-protocol	post-protocol

The non-critical section models the possibility that a process may do something else. It can take any amount of time (even infinite). Our task is to find a pre- and post-protocol such that certain atomicity properties are satisfied.

Desiderata

We want to ensure two main properties:

- Mutual Exclusion No two processes are in their critical section at the same time.
- Eventual Entry (or starvation-freedom) Once it enters its pre-protocol, a process will eventually be able to execute its critical section.

Question

Which is safety and which is liveness? Mutex is safety, Eventual Entry is liveness.

First Attempt

We can implement **await** using primitive machine instructions or OS syscalls, or even using a busy-waiting loop.

	var turn := 1			
fore	forever do		ever do	
p ₁	non-critical section	q_1	non-critical section	
p ₂	await $turn = 1$;	q_2	await $turn = 2$;	
p ₃	critical section	q ₃	critical section	
p ₄	turn := 2	q ₄	turn := 1	

Question

Mutual Exclusion? Yup! Eventual Entry? Nope! What if q₁ never finishes?

Second Attempt

var wantp, wantq := False, False			
forever do		forever do	
p_1	non-critical section	q_1	non-critical section
p ₂	await $wantq = False;$	q_2	await wantp = False;
p ₃	wantp := True;	q ₃	wantq := True;
p ₄	critical section	q ₄	critical section
p ₇	wantp := False	q ₇	wantq := False

Mutual exclusion is violated if they execute in lock-step (i.e. $p_1q_1p_2q_2p_3q_3$ etc.)

Third Attempt

	var wantp, wantq := False, False			
forever do		forever do		
p ₁	non-critical section	q_1	non-critical section	
p ₂	wantp := True;	q_2	wantq := True;	
p ₃	await $wantq = False;$	q ₃	await $wantp = False;$	
p ₄	critical section	q ₄	critical section	
p ₇	wantp := False	q ₇	wantq := False	

Now we have a stuck state (or *deadlock*) if they proceed in lock step, so this violates eventual entry also.

Fourth Attempt

	var wantp, wantq := False, False			
forever do		forever do		
p_1	non-critical section	q_1	non-critical section	
p ₂	wantp := True;	q_2	wantq := True;	
p ₃	while wantq do	q 3	while wantp do	
p ₄	wantp := False;	q ₄	wantq := False;	
p ₅	wantp := True	q ₅	wantq := True	
	od		od	
p ₆	critical section	q ₆	critical section	
p ₇	wantp := False	q ₇	wantq := False	

We have replaced the deadlock with live lock (looping) if they continuously proceed in lock-step. Still potentially violates eventual entry.

Fifth Attempt

```
var wantp, wantq := False, False
                       var turn := 1
forever do
                                 forever do
      non-critical section
                                       non-critical section
                                 q_1
p_1
      wantp = True;
                                       wantq = True;
p_2
                                 q_2
      while wantq do
                                       while wantp do
                                 q_3
p_3
         if turn = 2 then
                                          if turn = 1 then
                                 q_4
p_4
            wantp := False;
                                             wantq := False;
p_5
                                 q_5
           await turn = 1;
                                            await turn = 2;
                                 q_6
p_6
            wantp := True
                                            wantq := True
                                 q_7
p<sub>7</sub>
         fi
                                          fi
      od
                                       od
      critical section
                                       critical section
pg
                                 q<sub>8</sub>
      turn := 2
                                       turn := 1
p_9
                                 q_9
      wantp := False
                                       wantq := False
p_{10}
                                 q<sub>10</sub>
```

Reviewing this attempt

The fifth attempt (Dekker's algorithm) works well except if the scheduler pathologically tries to run the loop at $q_3 \cdots q_7$ when turn = 2 over and over rather than run the process p (or vice versa).

What would we need to assume to prevent this?

Fairness

The *fairness assumption* means that if a process can always make a move, it will eventually be scheduled to make that move.

With this assumption, Dekker's algorithm is correct.

Machine Instructions

There exists algorithms to generalise this to any number of processes (Peterson's algorithm), but they're outside the scope of this course.

What about if we had a single machine instruction to swap two values atomically, XC?

	$ extbf{var} \ common := 1$			
$\mathbf{var}\ tp := 0$		$\mathbf{var}\ tq := 0$		
forever do		forever do		
p ₁	non-critical section	q_1	non-critical section	
	repeat		repeat	
p ₂	XC(tp, common)	q_2	XC(tq, common);	
p ₃	until $tp = 1$	q ₃	until $tq = 1$	
p ₄	critical section	q ₄	critical section	
p ₅	XC(tp, common)	q ₇	XC(tq, common)	

Locks

The variable *common* is called a *lock*. A lock is the most common means of concurrency control in a programming language implementation. Typically it is abstracted into an abstract data type, with two operations:

- Taking the lock the first exchange (step p_2/q_2)
- Releasing the lock the second exchange (step p_5/q_5)

var lock			
forever do		forever do	
p_1	non-critical section	q_1	non-critical section
p ₂	take (lock)	q_2	take (lock);
p ₃	critical section	q ₃	critical section
p ₄	release (lock)	q ₄	release (lock);

Dining Philosophers

Five philosophers sit around a dining table with a huge bowl of spaghetti in the centre, five plates, and five forks, all laid out evenly. For whatever reason, philosophers can eat spaghetti only with two forks^a. The philosophers would like to alternate between eating and thinking.

^aMore convincing with chopsticks.

```
forever do

think

pre-protocol

eat

post-protocol
```

For philosopher $i \in 0...4$:

```
f_0, f_1, f_2, f_3, f_4

forever do

think

take(f_i)

take(f_{(i+1) \mod 5})

eat

release(f_i)

release(f_{(i+1) \mod 5})
```

Deadlock is possible (consider lockstep).

Fixing the Issue

f_0, f_1, f_2, f_3, f_4		
Philosophers 03	Philosopher 4	
forever do	forever do	
think	think	
$take(f_i)$	$take(f_0)$	
$take(f_{(i+1) \bmod 5})$	$take(f_4)$	
eat	eat	
$release(f_i)$	$release(f_0)$	
$\mathbf{release}(f_{(i+1) \mod 5})$	$release(f_4)$	

We have to enforce a global ordering of locks.