12. The S_m^n Theorem

In the previous sections we defined various notions of *computability*, and investigated their *interrelationship*.

In the remaining 3 sections of these notes, we will study some interesting properties of the indexing (or $G\ddot{o}del\ numbering$) of \mathcal{G} -computable functions.

Notes:

- 1. We will write "comp" for " \mathcal{G} -computable", and "COMP" for the class " \mathcal{G} -COMP".
- 2. Although our indexing of computable functions is induced by our GN of the programming language \mathcal{G} , it can be shown that the results below (\mathbf{S}_m^n theorem, fixed point and recursion theorems, and Rice's theorem) hold under very general assumptions on the indexing of computable functions.

The main result of this section, the \mathbf{S}_{m}^{n} Theorem of Kleene (also known as the **parameter theorem**), is very useful for manipulating indices of functions, and is one of the main tools in the proof of the recursion theorem (Sec. 13).

Theorem 12.1 (S_m^n **Thm)**. For all m, n > 0, there is an (n + 1)-ary function $S_m^n \in PR$ such that for all $u_1, \ldots, u_n, x_1, \ldots, x_m, y$,

$$\varphi_y^{(m+n)}(\vec{x}, \vec{u}) \simeq \varphi_{S_m^n(y, \vec{u})}^{(m)}(\vec{x}).$$

For some intuition on what this theorem says, let m = n = 1. Then there exists a binary PR function $S = S_1^1$ such that for all x, u, y,

$$\varphi_y^{(2)}(x,u) = \varphi_{S(y,u)}(x).$$

We may think of $\varphi_y^{(2)}$ for fixed y and u as a unary function $\lambda x \cdot \varphi_y^{(2)}(x, u)$. This function is comp, with gn z (say). So for all x,

$$\varphi_z(x) \simeq \varphi_y^{(2)}(x, u).$$

The theorem says that z depends primitive recursively on y and u, i.e.

$$z = S(y, u)$$
 for $S \in PR$.

Proof: By induction on n:

• Basis: n = 1. We want a PR function S_m^1 such that for $\vec{x} \equiv x_1, \dots, x_m$,

$$\varphi_y^{(m+1)}(\vec{x}, u) \simeq \varphi_{S_m^1(y, u)}^{(m)}(\vec{x}).$$

Note that \mathcal{P}_y is the progam for $\varphi_y^{(m+1)}$. For fixed y and u we now want a program \mathcal{Q} for computing $\lambda \vec{x} \cdot \varphi_y^{(m+1)}(\vec{x}, u)$. We can think of \mathcal{Q} as consisting of two parts:

 Q_1 : initialise X_{m+1} to u, Q_2 : then execute \mathcal{P}_y .

Clearly, we can take

$$Q_1 \equiv \begin{bmatrix} X_{m+1} + + \\ \vdots \\ X_{m+1} + + \end{bmatrix} u \text{ times}$$

Now the gn of the instruction ' $X_{m+1}++$ ' is (see p. 6-7)

$$\langle 0, \langle 1, 2m+1 \rangle \rangle = 16m+10.$$

So

$$\#(\mathcal{Q}_1) = \prod_{i=1}^u \left(p_i^{16m+10} \right) \doteq 1$$
$$= q_1(u) \text{ (say)}$$
and $\#(\mathcal{Q}_2) = y$,

where $q_1 \in PR$. Therefore

$$\#(Q) = concat(q_1(u) + 1, y + 1) - 1$$

= $S_m^1(y, u)$,

where $S_m^1 \in PR$ (by Lemma 6.11).

• Induction step: Suppose the result holds for n = k. Then

$$\varphi_{y}^{(m+k+1)}(\vec{x}, u_{1}, \dots, u_{k+1})$$

$$\simeq \varphi_{S_{m+k}^{1}(y, u_{k+1})}^{(m+k)}(\vec{x}, u_{1}, \dots, u_{k})$$

$$\simeq \varphi_{S_{m}^{k}(S_{m+k}^{1}(y, u_{k+1}), u_{1}, \dots, u_{k})}^{(m)}(\vec{x}).$$

By defining

$$S_m^{k+1}(y, u_1, \dots, u_{k+1})$$

= $_{df} S_m^k(S_{m+k}^1(y, u_{k+1}), u_1, \dots, u_k)$

the result follows. \square

NOTE: In the UFT (Thm 7.5) and the \mathbf{S}_{m}^{n} Thm we have two powerful tools for forming new computable functions from old:

• The UFT states that $\varphi_y^{(n)}(\vec{x})$ is a computable function of y and \vec{x} together, i.e. it provides a way to **move arguments up** from the index.

Example: $\varphi_{\varphi_z(y)}^{(2)}(x, \varphi_{\varphi_u(x)}(z))$ is a computable function of u, x, y, z.

• The S_m^n Thm makes it possible to move arguments down to the index while preserving primitive recursiveness.

Example: Suppose f is a 5-ary computable function of x, y, z, u, v. Then the arguments y, u, v (say) can be moved down to the index, i.e.

$$f(x, y, z, u, v) \simeq \varphi_{q(y, u, v)}(x, z)$$

for some $g \in PR$.

• These two tools can be used "simultaneously".

EXAMPLE: We show that there is a function $g \in PR$ such that for all u and v, $\varphi_u \circ \varphi_v = \varphi_{g(u,v)}$. Indeed, for some computable function f and some PR function g,

$$\varphi_u(\varphi_v(x)) \simeq f(u, v, x), \quad \text{(by UFT)}$$

 $\simeq \varphi_{g(u,v)}(x), \quad \text{(by S}_m^n).$