Monte Carlo Simulation Lab Assignment-8

Yash Vanjani (140123046) Mathematics and Computing IIT Guwahati

April 5th, 2016

Q 1 Use the following Monte Carlo estimator to approximate the expected value

$$I = E(exp(\sqrt{U}))$$

where $U \backsim u[0,1]: I_M = \frac{1}{M} \sum_{i=1}^M Y_i$, where $Y_i = exp(\sqrt{U_i} \text{ with } U_i \backsim u[0,1]$. Take all values of M to be $10^2, 10^3, 10^4$ and 10^5 . Determine the 95% confidence interval for I_M for all the four values of M that you have taken

Solution: R code:

```
1 m<-vector ("numeric")
 2|m[1]=10^2
 3|m[2]=10^3
 4|m[3]=10^4
 5|m[4]=10^5
 6 for (i in 1:4)
 7
    {
         u<-runif(m[i])
 8
         Y<-vector("numeric")
          for(j in 1:m[i])
10
11
               Y[j]=exp(sqrt(u[j]))
12
13
         I=sum(Y)/m[i]
14
         var=var(Y)
15
         \min = \mathbf{I} - (1.95 * \mathbf{sqrt} (\mathbf{var}) / \mathbf{sqrt} (\mathbf{m}[i]))
16
17
         \mathbf{max} = \mathbf{I} + (1.95 * \mathbf{sqrt} (\mathbf{var}) / \mathbf{sqrt} (\mathbf{m}[i]))
         cat("\nI_",m[i]," = ",I,"\n")
cat("var_",m[i]," = ",var,"\n")
cat("min_",m[i]," = ",min,"\n")
cat("max_",m[i]," = ",max,"\n")
18
19
20
21
22 }
```

Observations:-

The result is given as the following table with columns M, mean of random variable, variance of random variable and upper and lower endpoint of 95% confidence interval.

M	Mean	Variance	Lower endpoiont	Upper endpoint
10^{2}	2.013587	0.2133722	1.923512	2.103662
10^{3}	2.004278	0.1839995	1.977826	2.030729
10^4	2.005147	0.1936897	1.996565	2.013729
10^5	1.999698	0.1940106	1.996982	2.002414

Results:-

- 1. The theoretical mean is 2.
- 2. The empirical mean tends to 2 as number of iterations increase.
- 3. 95% confidence interval for 10^5 is (1.996982, 2.002414).

Q 2 Repeat the above exercise using antithetic variates via t he following estimator and calculate the percentage of variance reduction:

```
I_{M} = \frac{1}{M} \sum_{i=1}^{M} Y_{i}
where Y_{i} = \frac{exp(\sqrt{U_{i}}) + exp(\sqrt{1 - U_{i}})}{2}
with U_{i} \sim u[0, 1]
```

Solution: R code:

```
1 m<-vector ("numeric")
 2|m[1]=10^2
 3|m[2]=10^3
 4|m[3]=10^4
 5|m[4]=10^5
 6 for (i in 1:4)
 7
        u<-runif(m[i])
 8
 9
        Y<-vector("numeric")
        for (j in 1:m[i])
10
11
             Y[j]=exp(sqrt(u[j]))
12
13
        I_y=sum(Y)/m[i]
14
15
        \mathbf{var}_{-}\mathbf{y} = \mathbf{var}(\mathbf{Y})
16
        Z<-vector("numeric")
        for (j in 1:m[i])
17
18
             Z[j]=(exp(sqrt(u[j]))+exp(sqrt(1-u[j])))/2
19
20
21
        I_z=sum(Z)/m[i]
22
        var_z=var(Z)
23
        \min = I_z - (1.95 * sqrt(var_z) / sqrt(m[i]))
24
        \mathbf{max} = \mathbf{I}_{z} + (1.95 * \mathbf{sqrt}(\mathbf{var}_{z}) / \mathbf{sqrt}(\mathbf{m}[i]))
        cat ("\nI_", m[i], " = ", I_z, "\n")
cat ("var_", m[i], " = ", var_z, "\n")
cat ("min_", m[i], " = ", min, "\n")
cat ("max_", m[i], " = ", max, "\n")
25
26
27
28
29
        delta = (\mathbf{var}_y - \mathbf{var}_z) / \mathbf{var}_y * 100
30
        cat ("Percentage of variance reduction for ",m[i]," random numbers = "
              , delta, "\n")
31 }
```

Observations:-

The result is given as the following table with columns M, mean of random variable, variance of random variable and upper and lower endpoint of 95% confidence interval and variance reduction percentage.

M	Mean	Variance	Lower endpoiont	Upper endpoint	Variance Reduction (%age)
10^{2}	1.99814	0.001078075	1.991738	2.004543	99.48891
10^{3}	1.998315	0.001081175	1.996287	2.000342	99.47121
10^{4}	1.999851	0.001102568	1.999204	2.000499	99.4355
10^{5}	2.00008	0.001068032	1.999878	2.000281	99.45017

Results:-

- 1. The theoretical mean is 2.
- 2. The empirical mean tends to 2 as number of iterations increase.
- 3. 95% confidence interval for 10^5 is (1.999878, 2.000281).
- 4. The variance reduction for 10^5 iterations is 99.45017% which is desirable.

Q 3 Use \sqrt{U} to construct control variate estimate and repeat the above exercise. Calculate the percentage of variance reduction.

Solution: R code: Using \sqrt{U} as control variate estimate

```
1 m<-vector("numeric")
 2|m[1]=10^2
 3 | m[2] = 10^3
 4|m[3]=10^4
 5|m[4]=10^5
 6 for (i in 1:4)
 7
        u<-runif(m[ i ])
 8
 9
        Y<-vector("numeric")
        for (j in 1:m[i])
10
11
            Y[j]=exp(sqrt(u[j]))
12
13
        I_-y=sum(Y)/m[i]
14
15
        \mathbf{var}_{-}\mathbf{y} = \mathbf{var}(\mathbf{Y})
16
        v<-runif(m[i])
17
        Z<-vector("numeric")
18
19
        for ( j in 1:m[i])
20
            Z[j]=sqrt(u[j])
21
22
23
        I_z=sum(Z)/m[i]
24
        var_z=var(Z)
25
        \mathbf{c} < -(-1) * \mathbf{cov}(\mathbf{Y}, \mathbf{Z}) / \mathbf{var}(\mathbf{Z})
26
       W-vector("numeric")
27
        for (j in 1:m[i])
28
29
            W[j]=Y[j]+(c*(Z[j]-I_-Z))
30
31
32
        I_w=sum(W)/m[i]
        \mathbf{var}_{-}\mathbf{w} = \mathbf{var}(\mathbf{W})
33
34
35
        \mathbf{min} = \mathbf{I}_{-\mathbf{Z}} - (1.95 * \mathbf{sqrt} (\mathbf{var} (\mathbf{W})) / \mathbf{sqrt} (\mathbf{m} [\mathbf{i}]))
36
        max=I_z+(1.95*sqrt(var(W))/sqrt(m[i]))
37
        38
39
40
41
42
        delta = (\mathbf{var}_y - \mathbf{var}_w) / \mathbf{var}_y * 100
```

```
cat("Percentage of variance reduction for ",m[i]," random numbers = ", delta,"\n")

44
```

Observations:-

Using \sqrt{U} as control variate estimate

The result is given as the following table with columns M, mean of random variable, variance of random variable and upper and lower endpoint of 95% confidence interval and variance reduction percentage

M	Mean	Variance	Lower endpoiont	Upper endpoint	Variance Reduction (%age)
10^2	1.877849	0.002499348	0.5927332	0.6122307	98.70001
10^{3}	1.97944	0.002635716	0.6537804	0.660112	98.59785
10^{4}	2.004715	0.002702267	0.6682152	0.6702425	98.60314
10^{5}	2.003103	0.002697464	0.6679026	0.6685431	98.61584

Results:-

- 1. The theoretical mean is 2.
- 2. The empirical mean tends to 2 as number of iterations increase.
- 3. 95% confidence interval for 10^5 using \sqrt{U} is (0.6679026, 0.6685431).
- 5. The variance reduction is significantly less than antithetic method.