CS 5003: Parameterized Algorithms

Lectures 34-35

Krithika Ramaswamy

IIT Palakkad

Treewidth

- * A tree decomposition of a graph G is a pair (T,B) where T is a tree and B: $V(T) \rightarrow 2^{V(G)}$
 - * For each vertex v in G, there is a node x in V(T) such that v is in B(x)
 - * For each edge $e=\{u, v\}$ in G, there is a node x in V(T) such that u are v are in B(x)
 - * For each vertex v in G, the set $\{x \in V(T) : v \in B(x)\}$ induces a connected graph
- * Width of a tree decomposition $T = w(T) = \max \{|B(x)| : x \in V(T)\} 1$
- * Treewidth of G, tw(G) = min {w(T): T is a tree decomposition of G}
- An optimal tree decomposition of G is a tree decomposition of G of width tw(G)

Treewidth

- * A simple tree decomposition (T, B) is one where there is no pair of distinct nodes x and y in T such that $B(x) \subseteq B(y)$
- * Any simple tree decomposition (T, B) of G satisfies IV(T)I <= IV(G)I
- * For any G, there is an opt tree decomposition that is simple
- * Given G, k, there exists an algorithm running in $2^{0(k^3)}$ n time that returns a tree decomp of G of width <=k (if one exists)

- * If H is a subgraph of G, then tw(H) <= tw(G)
- * If tw(G) <=k, G has a vertex of degree at most k
 - * Look at a simple opt tree decomposition
 - * Leaf t has a vertex v that is not in any other bag
 - * v has neighbours only in B(t) and |B(t)| <= k+1
- * If tw(G) <=k, G has at most nk (k+1 choose 2) edges

thus O(nk) edges.

- Induction on n (base: n=k+1)
- * Induction step: Let v be a vertex of deg <=k
- * $tw(G-v) \leftarrow tw(G)$ and G-v has $\leftarrow (n-1)k (k+1)$ choose 2) edges
- * G has <= nk (k+1 choose 2) edges

- * If G is a tree, then tw(G) <= 1
 - * Induction on n: base case: n=1, 2
 - * Let v be a leaf in G. By induction hypothesis, tw(G-v) <= 1
 - * Look at an optimal tree decomposition of G-v
 - * To this, add a leaf node with bag \(\nu, \bu)\) adjacent to a node containing u
- * If G is a cycle, then tw(G)<=2
 - * Let v be a vertex in G
 - * G-v is a path and hence tw(G-v)<=1
 - * Take an opt tree decomposition of G-v and add v to every bag
- * If G is a cycle, then tw(G)>=2
 - * Suppose tw(G)=1
 - * Look at a simple opt tree decomposition
 - * Leaf t has a vertex v that is not in any other bag
 - * v has neighbours only in B(t) i.e., v has degree 1

- * A graph G on n vertices has tw <= 1 iff G is a forest
 - * (\Leftarrow) If G is a forest, then tw(G) <= 1
 - * (\Rightarrow) If G is a graph with tw(G) <= 1, then
 - * If tw=0, then G is a tree on single vertex
 - If tw=1 and G has a cycle C, then as tw(G(V(C),E(C)))=2 and tw(G(V(C),E(C)))<=tw(G), it follows that tw(G)>=2
- * A graph G on n vertices has tw = n-1 iff G is a complete graph
 - * Let G be a non-complete graph
 - * Let u and v be non-adjacent
 - * Then G has a tree decomposition consisting of 2 nodes with bags $V(G)\setminus\{u\}$ and $V(G)\setminus\{v\}$
 - * Suppose the complete graph on n vertices has tw <=n-2
 - * There is a vertex v with degree at most n-2

- * Every bag of a tree decomposition T is a separator
 - For any two adjacent nodes x and y in T,
 - * $B(x) \cap B(y)$ is a separator of G
 - * $B(x) \cap B(y)$ separates $V(T \setminus T_x)$ and $V(T_x)$

- * Every bag of a tree decomposition T is a separator
 - For any two adjacent nodes x and y in T,
 - * $B(x) \cap B(y)$ is a separator of G
 - * $B(x) \cap B(y)$ separates $V(T \setminus T_x)$ and $V(T_x)$

- * Every bag of a tree decomposition T is a separator
 - For any two adjacent nodes x and y in T,
 - * $B(x) \cap B(y)$ is a separator of G
 - * $B(x) \cap B(y)$ separates $V(T \setminus T_x)$ and $V(T_x)$

- * Every bag of a tree decomposition T is a separator
 - For any two adjacent nodes x and y in T,
 - * $B(x) \cap B(y)$ is a separator of G
 - * $B(x) \cap B(y)$ separates $V(T \setminus T_x)$ and $V(T_x)$

For any two adjacent nodes x, y in T, B(x) \cap B(y) separates V(T\T_x) & V(T_x)

- * Consider a path P between a in $V(T \setminus T_x)$ and b in $V(T_x)$
- * $P = (a, v_1, v_2, ..., v_k, b)$
 - * P has a pair of vertices v_i in $V(T \setminus T_x)$ and v_{i+1} in $V(T_x)$ (or)
 - * P has a vertex v_i in $V(T \setminus T_x) \cap V(T_x)$
- * Thus, there is i s.t v_i is in $B(x) \cap B(v)$

Note that V(Tx) and the other thing doesn't include vertices of B(x) intersection B(y). So, these two trees have no

Pefinition: Nice Tree Pecomposition (T, B)

- * T is a rooted tree
- * $B(root) = \emptyset$ and $B(x) = \emptyset$ for each leaf x in T
- * Every non-leaf node of T is one of the following 3 types
 - * Introduce node
 - * Forget node
 - * Join node

* Introduce node:

* a node t with exactly one child t' such that $B(t) = B(t') \cup \{v\}$ for some vertex v not in B(t')

* Forget node:

* a node t with exactly one child t' such that $B(t') = B(t) \cup \{v\}$ for some vertex v not in B(t)

* Join node:

* a node t with 2 children t_1 and t_2 such that $B(t) = B(t_1) = B(t_2)$

Lemma: There is a poly-time algorithm that given a simple tree decomposition (T, B) of G, outputs a nice tree decomposition (T', B') s.t $w(T') \leftarrow w(T)$ and |V(T')| = 0.

binary tree

B(t)

B(t)

†2

B(t)

t₁

Lemma: There is a poly-time algorithm that given a nice tree decomposition (T, B) of G, outputs a nicer tree decomposition (T', B') s.t w(T') = w(T) and |V(T')| is O(|V(G)|*w(T)).

O(|V(G)|*w(T)) + O(|V(G)|*w(T)) = O(..) Also once we have introduced edge node, we can consider it for deciding closest to roc

- * For every edge {u, v} in G, there is exactly one introduce edge node with label uv
 - * Look at a node t' closest to root containing u,v in its bag
 - * Add an introduce edge node t as the parent of t'