ABSTRACT

From off-grid charging of electronic devices to energising independent wireless sensor networks, the demand for stand-alone, low-power generators from renewable energy sources is becoming ever more prevalent. This study aims to address this need, by numerically investigating a cruciform energy harvester that comprises of an elastically supported circular cylinder, and a downstream strip plate at right angles in the Reynolds number range $1.1 \times 10^3 \le \text{Re} \le 14.6 \times 10^3$ and Scruton number 9.94. The continuity and three dimensional, unsteady Reynolds-averaged Navier-Stokes equations are solved on the numerical domain using a free and open-source C++ library called OpenFOAM. The Spalart-Allmaras turbulence model is used to provide closure to the governing equations. Previous studies on the power output from a 10 mm diameter cylinder show that meaningful power generation only begins when the reduced velocity U^* , exceeds 15 and produces a consistent output in the order of 1 mW over the whole observation window. To improve upon this, a more fundamental understanding of why this observation takes place is indispensable. This is done by investigating the temporal evolution of the lift and displacement signals using the Hilbert-Huang transform, leading to the discovery of a route through which a significant quantity of energy is lost during energy harvesting. To eliminate said route, this work examines energy harvesting of a generalised cruciform structure, with varying cruciform angles, and discovered the following. For steep-angled cruciforms ($45 \le \alpha$ (°) ≤ 67.5) this study found asymmetries in the vortical structures that prevents lock-in and thus high-amplitude vibrations from taking place. However, for shallow-angled cruciforms $(0 \le \alpha(^{\circ}) \le 22.5)$, this work discovered a high degree of symmetry in the distribution of vortical structures, leading to the onset of meaningful power generation as early as $U^* = 9.1$ up to the upper limit of observation, with a maximum mechanical power that is one order of magnitude larger than the highest reported by similar studies in the literature. Finally, the mechanical power and efficiency of the generalised cruciform energy harvester are presented as a map in cruciform angle-reduced velocity $(\alpha(^{\circ}) - U^{*})$ parameter space, thus making it possible for future engineers to tailor the design of their cruciform energy harvester to their specific power and efficiency needs.

ABSTRAK

Daripada pengecasan peranti elektronik di luar grid sehingga pentenagaan rangkaian sensor tanpa wayar, permintaan untuk sistem penjana berkuasa rendah dari sumber tenaga boleh diperbaharui adalah semakin meningkat. Kajian ini bertujuan untuk memenuhi keperluan tersebut, dengan cara menyelidik sebuah sistem pemungut tenaga jenis krusiform yang terdiri daripada sebuah silinder bulat yang disokong secara elastik, dan sekeping plat jalur yang diletakkan pada sudut tegak di hilirnya dalam julat nombor Reynolds $1.1 \times 10^3 \le \text{Re} \le 14.6 \times 10^3$ dan nombor Scruton 9.94. Persamaan keselanjaran dan Navier-Stokes purata Reynolds tidak stabil tiga dimensi diselesaikan dalam domain numerikal menggunakan OpenFOAM, sebuah pustaka C++ yang percuma dan bersumber terbuka. Model gelora Spalart-Allmaras digunakan untuk melengkapkan persamaan tersebut. Kajian terdahulu tentang kuasa dari silinder berdiameter 10 mm menunjukkan penjanaan kuasa yang signifikan bermula apabila halaju terturun U^* melebihi 15, seraya menghasilkan kuasa dalam julat 1 mW secara konsisten. Kefahaman yang lebih mendalam tentang pencetus respon mekanikal tersebut adalah diperlukan untuk membolehkan penambahbaikan terhadap keputusan ini. Ini dilakukan dengan mengkaji evolusi temporal bagi daya angkat dan sesaran menggunakan penjelmaan Hilbert-Huang, yang membawa kepada penemuan proses yang membazirkan jumlah tenaga yang signifikan dalam aktiviti penjanaan kuasa. Bagi merencat proses tersebut, tinjauan dilakukan terhadap pemungut tenaga daripada bentuk krusiform yang lebih umum, sekaligus membawa kepada penemuan-penemuan berikut. Bagi krusiform bersudut tinggi (45 $\leq \alpha$ (°) \leq 67.5), kajian ini mendapati asimetri dalam struktur vorteks yang menghalang kejadian frekuensi terkunci, serta penghasilan amplitud getaran yang tinggi, daripada berlaku. Di sudut yang lain, bagi krusiform bersudut rendah (0 $\leq \alpha$ (°) \leq 22.5), kajian ini mendapati darjah kesimetrian yang tinggi dalam taburan struktur vorteks di sekeliling krusiform tersebut, yang membenarkan pemungutan tenaga yang signifikan bermula seawal $U^* = 9.1$ sehingga batasan tertinggi pemerhatian dalam penyelidikan ini, dengan penghasilan kuasa maksimum satu peringkat magnitud lebih tinggi daripada yang tertinggi pernah dilaporkan dalam kajian yang setara. Akhir sekali, tulisan ini memetakan kuasa dan kecekapan mekanikal bagi krusiform terubahsuai tersebut dalam ruang parameter sudut krusiform-halaju terturun ($\alpha(^{\circ}) - U^{*}$), sekaligus membolehkan penyesuaian rekabentuk pemungut tenaga mengikut perincian kuasa dan kecekapan yang diperlukan.