PROJECT DEVELOPMENT PHASE - SPRIT II

Date	12 October 2022
Feam ID	PNT2022TMID27512
Project Title	Water Quality Analysis and
•	Prediction using Machine Learning
Геат Leader	Jaffrin Deno M
Геат Member	Sharan Gonsalous Johni, Manoj A,
	Juan simon Boris V
Maximum Marks	8 Marks
# pip install matplotlib	
# pip install seaborn	
pip instail stastin	
# import all needed libraries	
mport pandas as pd	
mport pandas as pu mport numpy as np	
mport os	
mport matplotlib.pyplot as plt	import seaborn as
ns from sklearn.model selectio	on import
rain test split	•
crain_test_spiit	
from sklearn.preprocessing impo	rt StandardScaler
from sklearn.preprocessing impo	
from sklearn.preprocessing impo	
from sklearn.preprocessing impo	ort MinMaxScaler
rom sklearn.ensemble import Ra	ndomForestRegressor
from sklearn.tree import Decisi	
sklearn.linear model import Log	
klearn.linear_model import Lin	
from sklearn.metrics import acc	
recall_score, f1_score, r2_score	fusion matrix, classification report
rom eklasyn matrice import con	TUSION MATRIX. CLASSITICATION REPORT

```
1
           2 1475
2
           3
               3181
3
           4
               3182
4
           5
               1400
                                             LOCATIONS STATE Temp D.O.
(mq/1) \setminus
O ZUARI AT D/S OF PT. WHERE KUMBARJRIA CANAL JOI... GOA 29.8
5.7
                                 ZUARI AT PANCHAWADI GOA 29.5
1
6.3
2
                         RIVER ZUARI AT BORIM BRIDGE GOA 29.7
5.8
3
                         RIVER ZUARI AT MARCAIM JETTY GOA 29.5
5.8
4
                         MANDOVI AT NEGHBOURHOOD OF PANAJI, GOA GOA
                           30
5.5
    PH CONDUCTIVITY (µmhos/cm) B.O.D. (mg/l) \
0
  7.2
          189
                2
1 6.9
          179 1.7
2 6.9
          64 3.8
  7.3
          83
                1.9
4 7.4
               1.5
         81
  NITRATENAN N+ NITRITENANN (mg/l) FECAL COLIFORM (MPN/100ml) \
0
                               0.2
                                    4953
1
                               0.1
                                      3243
2
                               0.5
                                     5382
3
                               0.4
                                      3428
4
                               0.1
                                    2853
  TOTAL COLIFORM (MPN/100ml) Mean year
0
                           8391 2014
1
                            5330 2014
2
                            8443 2014
3
                            5500 2014
                           4049 2014
# no need this because it give value error of continuous value error
df.drop(['Unnamed: 0'],inplace=True,axis=1)
l=['Temp','D.O. (mg/l)','PH','CONDUCTIVITY (µmhos/cm)','B.O.D.
(mg/l)','NITRATENAN N+ NITRITENANN (mg/l)','FECAL COLIFORM
(MPN/100ml)','TOTAL COLIFORM (MPN/100ml)Mean']
df[df[1] == "NAN"]
     STATION CODE LOCATIONS STATE Temp D.O. (mg/l) PH \
0
                     NaN NaN NaN NaN NaN
             NaN
```

1	NaN	NaN NaN	NaN	NaN	NaN			
2	NaN		NaN		NaN			
3	NaN	NaN NaN		NaN				
4	NaN	NaN NaN						
890	NaN	NaN 1	NaN 1	NaN		NaN	NaN	
891	NaN	NaN 1	NaN 1	NaN		NaN	NaN	
892	NaN	NaN 1	NaN 1	NaN		NaN	NaN	
893	NaN	NaN 1	NaN 1	NaN		NaN	NaN	
894	NaN	NaN 1	NaN 1	NaN		NaN	NaN	
CONI	OUCTIVITY (umhos/cm) B.	.O.D.	(mg/l)	rin (RATENA	N N+ NITR	ITENANN
$(mg/l) \setminus$								
0		NaN	NaN					
NaN								
1		NaN	NaN					
NaN								
2		NaN	NaN					
NaN								
3		NaN	NaN					
NaN								
4		NaN	NaN					
NaN								
• •		• • •						
890		NaN	NaN					
NaN								
891		NaN	NaN					
NaN								
892		NaN	NaN					
NaN		NI - NI	27 - 27					
893		NaN	NaN					
NaN		N - N	NT - NT					
894 Nan		NaN	NaN					
NaN	COLLEODM	(MPN/100ml)	т∩тл1	COLT	□ ∩DM	(MDN / 1	00ml\Moan	1102 Y
0 FECA1	- COLLECKM	(MPN/100M1) NaN	IOIAI	ь СОПТ.	r Olvin	(1.1E.IN \ T	NaN	_
1		NaN					Nan	
2		NaN					Nan	
3		NaN					Nan	
4		NaN					Nan	
••		• • •					• • •	
890		NaN					NaN	
891		NaN					NaN	
892		NaN					NaN	
893		NaN					NaN	
894		NaN					NaN	
	x 12 colu	mns] # drop						

```
df.drop(df.index[df[i] == "NAN"], inplace=True, axis=0)
    df.drop(df.index[df[i] == " "],inplace=True,axis=0)
# convert all data type into float
for i in 1:
df[i]=df[i].astype('float')
df.describe()
       STATION CODE
                            Temp D.O. (mg/1)
                                                      PH \
         879.000000 879.000000 879.000000 879.000000
count
       2194.318544
                      26.093743
                                    6.310728
                                                 7.232628
mean
std
         807.389674
                      3.261618
                                     1.300479
                                                 0.606125
          17.000000
                      16.000000
                                     0.200000
                                                 2.600000
min
       1548.000000
25%
                      24.450000
                                     5.900000
                                                 6.950000
50%
       2290.000000
                      27.000000
                                     6.700000
                                                 7.200000
75%
       2708.000000
                      28.400000
                                     7.100000
                                                 7.600000
       3473.000000
                      33.000000
                                     9.900000
                                                 8.400000
max
       CONDUCTIVITY (umhos/cm) B.O.D. (mg/l) \
                    879.000000
                                  879.000000
count
                   1650.803185
                                     4.924061
mean
                                    12.770214
std
                   4927.777303
                     27.000000
                                     0.100000
min
25%
                     75.000000
                                     1.200000
50%
                    159.000000
                                     1.800000
75%
                    505.500000
                                      3.300000
                  37227.000000 185.800000
max
       NITRATENAN N+ NITRITENANN (mg/l) FECAL COLIFORM (MPN/100ml) \
count
                             879.000000
                                                          8.790000e+02
                                1.644994
                                                          6.869346e+05
mean
                                                          1.209315e+07
std
                                2.896984
min
                                0.000000
                                                          2.000000e+00
25%
                                0.280000
                                                          2.550000e+01
```

for i in 1:

```
50%
                                0.590000
                                                          1.990000e+02
75%
                                1.775000
                                                           9.965000e+02
                               20.300000
                                                           2.725216e+08
max
       TOTAL COLIFORM (MPN/100ml) Mean
                                               year
                          8.790000e+02
                                         879.000000
count
                          1.110502e+06 2012.559727
mean
                          2.069025e+07
                                           1.102190
std
                          4.000000e+00 2010.000000
min
                          9.000000e+01 2012.000000
25%
                          5.000000e+02 2013.000000
50%
75%
                          2.425000e+03 2014.000000
max
                          5.110909e+08 2014.000000
# viewing the column of state
color=sns.color palette() int level =
df['STATE'].value counts()
plt.figure(figsize=(25,8))
sns.barplot(int level.index,int level.values,alpha=0.9,color=color[5])
plt.ylabel('count of data ',fontsize=12)
plt.xlabel('State', fontsize=12)
plt.show()
C:\ProgramData\Anaconda3\lib\site-packages\seaborn\ decorators.py:36:
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variables as keyword args: x, y.
From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

viewing the column data of year

```
color=sns.color_palette() int_level =

df['year'].value_counts()

plt.figure(figsize=(25,8))
sns.barplot(int_level.index,int_level.values,alpha=0.9,color=color[5])
plt.ylabel('count of year',fontsize=12) plt.xlabel('year',fontsize=12)
plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

State and year comparision with ph rate

```
plt.figure(figsize=(20,20))
g=sns.catplot(data=df,kind="bar",x="STATE",y="PH",hue="year")
plt.title("Travil")

Text(0.5, 1.0, 'Travil')
<Figure size 2000x2000 with 0 Axes>
```


df['year'].value_counts().plot(kind='pie',figsize=(7,7),autopct='%1.0f
%%')
<AxesSubplot:ylabel='year'>


```
plt.figure(figsize=(20,10))
sns.heatmap(df.corr(),annot=True)
plt.show()
```


Create column for the pure water range and split with undrikingable water

```
df['PH Range']=pd.cut(x=df['PH'],bins=[0,6.49,7.5,14],labels=['0-
6.49','6.5-7.5','7.5-14']) df['Water Qu']=df['PH Range'].map({'6.5-
7.5':1,'7.5-14':0,'0-6.49':0}) df.drop(df.index[df['PH
Range'] == "NaN"], inplace=True, axis=0) df.describe()
       STATION CODE
                             Temp D.O. (mg/1)
                                                        PH \
         879.000000 879.000000
                                   879.000000
                                               879.000000
count
mean
       2194.318544
                        26.093743
                                     6.310728
                                                  7.232628
std
       807.389674
                        3.261618
                                     1.300479
                                                  0.606125
          17.000000
                        16.000000
                                     0.200000
                                                  2.600000
min
2.5%
       1548.000000
                        24.450000
                                     5.900000
                                                  6.950000
       2290.000000
                        27.000000
                                     6.700000
                                                  7.200000
50%
75%
       2708.000000
                        28.400000
                                     7.100000
                                                  7.600000
       3473.000000
                        33.000000
                                     9.900000
                                                  8.400000
max
       CONDUCTIVITY (umhos/cm)
                                B.O.D. (ma/1)
                     879.000000
                                    879.000000
count
                    1650.803185
                                      4.924061
mean
                    4927.777303
                                     12.770214
std
                                     0.100000
min
                      27.000000
```

```
50%
     159.000000 1.800000 75%
                                  505.500000
3.300000 max 37227.000000 185.800000
```

print(df[col].describe())

```
NITRATENAN N+ NITRITENANN (mg/l) FECAL COLIFORM (MPN/100ml) \
                             879.000000
                                                        8.790000e+02
count
                               1.644994
                                                        6.869346e+05
mean
std
                                2.896984
                                                        1.209315e+07
min
                               0.000000
                                                        2.000000e+00
25%
                               0.280000
                                                        2.550000e+01
50%
                               0.590000
                                                        1.990000e+02
75%
                               1.775000
                                                       9.965000e+02
max
                                                        2.725216e+08
                              20.300000
       TOTAL COLIFORM (MPN/100ml) Mean
                                               year Water Qu
count
                         8.790000e+02 879.000000 879.000000
mean
                         1.110502e+06 2012.559727
                                                       0.673493
std
                         2.069025e+07
                                           1.102190
                                                       0.469202
min
                         4.000000e+00 2010.000000
                                                     0.000000
2.5%
                         9.000000e+01 2012.000000
                                                       0.000000
50%
                         5.000000e+02 2013.000000
                                                       1.000000
75%
                         2.425000e+03 2014.000000
                                                       1.000000
max
                         5.110909e+08 2014.000000
                                                      1.000000
# Box plot for comparing the ph with other column and finding the
outliers
col pruning=['Temp','D.O. (mg/1)','CONDUCTIVITY (\u03c4mhos/cm)','B.O.D.
(mg/l)','NITRATENAN N+ NITRITENANN (mg/l)','FECAL COLIFORM
(MPN/100ml)']
for col in col pruning:
    print("\n\n")
    coldesc=df[col].describe()
    col IQR=coldesc[6]-coldesc[4]
    col Lower=coldesc[4]-(1.5*col IQR)
    col Higher=coldesc[6]+(1.5*col IQR)
     print(col Lower,col Higher)
      df.drop(df.index[(df[col] < col_Lower) +</pre>
(df[col]>col Higher)],inplace=True,axis=0)
    df.drop(df.index[(df[col]>col Higher)],inplace=True,axis=0)
    sns.boxplot(x='Water Qu',y=df[col],data=df) plt.show()
```


count	879.000000
mean	26.093743
std	3.261618
min	16.000000
25%	24.450000
50%	27.000000
75%	28.400000
max	33.000000

Name: Temp, dtype: float64

count 878.000000 mean

6.306640 std

1.295557 min

0.200000

25%

50%

75%

max

5.900000 6.700000 7.100000 8.800000

D.O. (mg/l), dtype: float64

25% 50% 75% max Name:

```
count 745.000000
mean 222.344966 std
243.275990 min
27.000000
69.000000
120.000000
274.000000
1110.000000
CONDUCTIVITY (µmhos/cm), dtype: float64
```

25% 50% 75% max

count 675.000000 mean

1.939630 std

1.140444 min

0.100000

25%

50%

75%

max

1.100000

1.600000

2.500000

6.100000

B.O.D. (mg/1), dtype: float64

25% 50% 75% max Name:

25% 50% 75% max


```
486.000000
count
          284.436214
mean
          383.079776
std
            2.000000
min
25%
           22.000000
50%
          131.500000
75%
          380.750000
         1850.000000
max
Name: FECAL COLIFORM (MPN/100ml), dtype: float64
df.drop(['year'],inplace=True,axis=1)
df.drop(['STATION CODE', 'LOCATIONS', 'STATE', 'PH Range', 'Water
Qu'], inplace=True, axis=1)
```

transforming your data so that it fits within a specific scale

mean	0.600061	0.724280	0.813046	0.147103
std	0.157548	0.118957	0.101386	0.177769
min	0.000000	0.000000	0.000000	0.000000
25%	0.534091	0.695122	0.754386	0.038853
50%	0.629870	0.743902	0.807018	0.077706
75%	0.701299	0.792683	0.877193	0.184089
max	1.000000	1.000000	1.000000	1.000000
count	B.O.D. (mg/1) 486.000000	NITRATENAN N-	+ NITRITENANN (mg/	
mean	0.307922		0.254	203
std	0.204720		0.214	196
min	0.000000		0.000	000
25%	0.150000		0.095	238
50%	0.233333		0.190	476
75%	0.450000		0.351	190
max	1.000000		1.000	000
count	FECAL COLIFORM	(MPN/100ml) 486.000000	TOTAL COLIFORM (MPN/100ml)Mean 486.000000
mean		0.152833		0.013122
std		0.207294		0.047275
min		0.000000		0.00000
25%		0.010823		0.001265
50%		0.070076		0.005544
75%		0.204951		0.014127
max		1.000000		1.000000
// ***				

Heat map for finding the corrlation between columns

plt.figure(figsize=(20,10))
sns.heatmap(df.corr(),annot=True)
plt.show()

df

Temp D.O. (mg/l)		PH CONDUCTIVITY		(µmhos/cm)	B.O.D.
$(mg/l) \setminus$					
14 0.740260 0.817073	0.771930		0.203515		
0.233333					
15 0.746753 0.817073	0.771930		0.148936		
0.150000					
26 0.811688 0.7195	12 0.85964	9		0.358927	
0.316667					
28 0.487013 0.731707	0.912281		0.062905		
0.800000					
29 0.779221 0.768293	0.929825		0.066605		
0.816667					
•••	• •				
•••					
882 0.370130 0.756098	0.789474		0.239593		
0.200000					
883 0.714286 0.695122	0.947368		0.126735		
0.550000					
884 0.707792 0.731707	0.929825		0.156337		
0.716667					
893 0.675325 0.682927	0.894737		0.137835		
0.566667					
894 0.740260 0.695122	0.947368		0.158187		

```
0.683333
      NITRATENAN N+ NITRITENANN (mg/l) FECAL COLIFORM (MPN/100ml) \
                             0.095238 0.591450
14
15
                             0.047619 0.694805
                                                          0.466450
26
                             0.047619
28
                             0.095238 0.007576
29
                             0.190476 0.007035
                                                               . . .
    0.052381 0.003247 883
                                 0.142857 0.204545
882
884
                             0.380952
                                                          0.228896
893
                             0.095238 0.286797
894
                             0.142857 0.282468
     TOTAL COLIFORM (MPN/100ml) Mean
14
                           0.036895
15
                           0.045859
26
                           0.023110
28
                           0.000482
29
                           0.000452
                           0.000377
882
883
                           0.007894
884
                           0.009702
893
                           0.008858
894
                           0.010274
[486 rows x 8 columns]
l=['Temp','D.O. (mg/l)','PH','CONDUCTIVITY (µmhos/cm)','B.O.D.
(mg/l)','NITRATENAN N+ NITRITENANN (mg/l)','FECAL COLIFORM
(MPN/100ml)','TOTAL COLIFORM
(MPN/100ml)Mean'] split=l.copy() y=df['PH']
split.remove('PH') x=df[split]
Split the Data
# train and test date spliting
x train, x test, y train, y test= train test split(x, y, test size=0.25,
random state=42)
x train
         Temp D.O. (mg/l) CONDUCTIVITY (µmhos/cm) B.O.D. (mg/l) \
                                          0.023127
795 0.577922
                 0.804878
                                                          0.083333
105 0.623377
                 0.560976
                                           0.025902
                                                         0.083333
```

```
355 0.785714 0.573171
                                         0.066605 0.450000
830 0.662338
                0.682927
                                         0.015726
                                                       0.100000
                                                       0.350000
775 0.500000
                0.768293
                                          0.164662
         . . .
. .
                      . . .
                                               . . .
                                                              . . .
               0.573171
226 0.642857
                                         0.730805
                                                       0.450000
532 0.545455
                0.731707
                                          0.037003
                                                        0.166667
661 0.415584
                0.658537
                                         0.407956
                                                        0.216667
808 0.584416
                0.817073
                                          0.024977
                                                        0.200000
220 0.629870
                0.682927
                                          0.127660
                                                        0.333333
    NITRATENAN N+ NITRITENANN (mg/l) FECAL COLIFORM (MPN/100ml)
                                                        0.160173
795
                            0.071429
                                                        0.091450
                            0.333333
105
                                                       0.056277
355
                            0.376190
                                                       0.385823
                            0.100000
830
                                                        0.000000
775
                            0.442857
                                                            . . .
. .
                                . . .
                                                       0.003788
226
                            0.476190
                                                       0.147727
                            0.252381
532
                                                       0.001623
                            0.204762
661
                                                       0.223485
                            0.195238
808
                                                       0.151515
220
                            0.000000
    TOTAL COLIFORM (MPN/100ml) Mean
795
                          0.010290
105
                          0.004655
355
                          0.007819
830
                          0.024496
775
                         0.000768
. .
                         0.000286
226
                          0.010033
532
                          0.000181
661
                          0.013694
808
                         0.005062
220
[364 rows x 7 columns]
# print(list(x train.iloc[1]))
LinearRegression
# fit the Linear regression model
regressor= LinearRegression()
regressor.fit(x train, y train)
y pred= regressor.predict(x test) #
```

x pred= regressor.predict(x train)

```
ypred pd=pd.DataFrame(('WQ':y test.values,'WQ Pred':y pred))
ypred pd['predicted']=ypred pd['WQ Pred'].map(lambda x:1 if x>0.5 else0)
ypred pd['WQ']=ypred pd['WQ'].map(lambda x:1 if x>0.7 else 0)
ypred pd.head()
   WQ
        WQ Pred predicted
   1 0.795986
0
               1
   1 0.845279
1
                1
   1 0.789093
                1
3
  1 0.802417 1
   1 0.861372
confusion=confusion matrix(ypred pd['WQ'],ypred pd['predicted'])
print(confusion)
[[8 0]]
[ 0 114]]
print(accuracy score(ypred pd['WQ'],ypred pd['predicted']))
0.9344262295081968
```

Decision Tree

```
# Fit the desiontree regression clf gini =
DecisionTreeRegressor(random state = 0)
clf gini.fit(x train, y train) y pred =
clf gini.predict(x test)
ypred pd=pd.DataFrame({'WQ':y test.values,'WQ Pred':y pred})
ypred pd['predicted']=ypred pd['WQ Pred'].map(lambda x:1 if x>0.7 else0)
ypred pd['WQ']=ypred pd['WQ'].map(lambda x:1 if x>0.7 else 0)
ypred pd.head()
   WO
        WQ Pred predicted
  1 0.947368 1
   1 0.947368
                1
1
2
   1 0.736842
                1
3
  1 0.789474
   1 0.719298
4
print('Model accuracy score with criterion gini index: {0:0.4f}'.
format(accuracy score(ypred pd['WQ'],ypred pd['predicted'])))
```

```
Model accuracy score with criterion gini index: 0.9180
```

Random Forest

```
# Fit the random forest regression
forest model = RandomForestRegressor(random state=1)
forest model.fit(x train, y train) melb preds =
forest model.predict(x test)
# print(mean absolute error(val y, melb preds))
ypred pd=pd.DataFrame({'WQ':y test.values,'WQ Pred':y pred})
ypred pd['predicted']=ypred pd['WQ Pred'].map(lambda x:1 if x>0.7 else0)
ypred pd['WQ']=ypred pd['WQ'].map(lambda x:1 if x>0.7 else 0)
ypred pd.head()
   WO
        WQ Pred predicted
\cap
  1 0.947368
               1
  1 0.947368 1
1
  1 0.736842 1
3 1 0.789474 1
  1 0.719298 1
print(accuracy score(ypred pd['WQ'], ypred pd['predicted']))
0.9180327868852459
```

Linear regression has the highest accuracy score = 0.93442

Pickle

```
# Load the model into pickle for serializing and deserializing a
Python object structure

import pickle

with open('model_pkl', 'wb') as files:
    pickle.dump(regressor, files)

with open('model_pkl', 'rb') as f:
    lr = pickle.load(f)
lr.predict([list(x_train.iloc[1])])

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py:450:
UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names
    warnings.warn(
```

```
array([0.74676269])
with open('model pkl', 'wb') as files:
    pickle.dump(clf gini, files)
with open('model pkl', 'rb') as f:
    lr = pickle.load(f)
lr.predict([list(x_train.iloc[1])])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py:450:
UserWarning: X does not have valid feature names, but
DecisionTreeRegressor was fitted with feature names
  warnings.warn( ar
ray([0.73684211])
with open('model pkl', 'wb') as files:
    pickle.dump(forest_model, files)
with open('model pkl' , 'rb') as f:
    lr = pickle.load(f)
lr.predict([list(x train.iloc[1])])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py:450:
UserWarning: X does not have valid feature names, but
RandomForestRegressor was fitted with feature names
warnings.warn( ar ray([0.74894737])
```