

CS32G020 用户手册

32 位 Type-C&PD 控制器 REV 1.5

芯海科技(深圳)股份有限公司

地 址:深圳市南山区蛇口南海大道1079号花园城数码大厦A座9楼 电 话: +(86 755)86169257 传 真: +(86 755)86169057

网站: www.chipsea.com 邮编: 518067

微信号: 芯海科技

版本历史

历史版本	修改内容	版本日期
REV 1.0	初始版本	2018-05-05
REV 1.1	1、增加用户配置区,P15 ^P 18 2、增加加密区说明,P18 ^P 19	2018-09-03
REV 1.2	1、删除外部晶振	2018-10-24
REV 1.3	1、增加章节9产品命名规则 2、章节5描述更新 3、QC3.0特性RDM下拉电阻阻值更新	2019-02-13
REV 1.4	1、修改 DAC DNL、INL 特性, P36 2、修改笔误, P5、P15 3、QFN24 封装厚度修改, P40 4、加密区增加烧录模式加密地址及说明, P20	2019-04-02
REV 1.5	1、QFN24 封装厚度修改,P40 2、QFN32 封装参数说明修改,P41 3、增加比较器响应时间,P37 4、更新典型应用图,P30	2019-08-08

目 录

版	i 本历史	2
目	录	3
1	产品概述	5
	1.1 功能描述	5
	1.2 主要特性	5
	1.3 选型表	
2	框图	7
	2.1 功能模块框图	7
	2.2 内部电路框图	
3	管脚图	
J		
	3.2 QFN32 3.3 管脚描述	
4)	
	4.1 MCU 子系统	15
	4.2 Flash	15
	4.3 LDROM	
	4.4 用户配置区	
	4.5 加密区	
	4.6 USB PD	
	4.7 VBUS PFE 控制口	
	4.8 ADC	21
	4.9 DAC	
	4.10 模拟比较器 4.11 GPI0	
	4.11 GF10	
	4. 12. 1 I2C	
	4. 12. 2 SPI	
	4. 12. 3 UART	
	4.13 定时器	
	4.14 看门狗定时器	
	4. 14. 1 WDT	23
	4. 14. 2 WWDT	24
	4.14.3 WDT Lite	24
	4.15 运算单元	
	4.15.1 单周期乘法器	
	4. 15. 2 硬件除法器	
	4. 15. 3 CRC32 计算单元	
	4.16 电源管理	
	4. 16. 1 正常工作模式4. 16. 2 睡眠模式	
	4.16.3 Deep-Sleep1 模式	
	4. 16. 4 Deep-Sleep2 模式	
	4.16.5 Deep Power-Down 模式	
3/	745	CS-QR-YF-054A02

5	5 应用程序烧录	27
	5.1 通过串行烧录口进行 FLASH 烧录	27
	5.2 通过 TYPE-C 口升级应用程序	27
	5.3 通过 SWD 口烧录	
	5.4 烧录方式选择	28
6	5 典型应用	30
	6.1 移动电源典型应用	30
	6.2 车充典型应用	
	6.3 电源适配器典型应用	31
7	' 电气特性	32
	7.1 极限值	
	7.2 直流电气特性	
	7.3 交流电气特性	
	7.3.1 内部 24/8MHz RC 振荡器	
	7.3.2 内部 10KHz RC 振荡器	
	7. 3. 3 PLL 特性	
	7. 3. 4 I2C 特性	
	7.3.5 Flash 特性	35
	7.4 模拟量特性	35
	7.4.1 12bit ADC	35
	7.4.2 11bit DAC	36
	7.4.3 比较器	36
	7.4.4 内部参考电压	
	7.4.5 LDO 规格和 Power 管理	
	7.4.6 欠压复位	
	7.4.7 上电复位	
	7.4.8 Type-C 特性	
	7. 4. 9 QC3. 0 特性	
8	3	40
	8.1 QFN24-PIN(4mm*4mm*0.55, E=0.5mm)	40
	8.2 QFN32 (5mm*5mm*0. 75mm, E=0. 5mm)	
9	产品命名规则	42
	9.1 产品型号说明	42
	9.2 产品印字说明	44
1	0 订货信息	45

1产品概述

1.1 功能描述

CS32G020 系列是芯海科技推出的支持 USB Type-C 和 PD3. 0 协议的 USB Type-C 控制器,可应用于 PC 电源适配器、手机充电器、移动电源、车充、HUB 等领域。CS32G020 内嵌 ARM® Cortex™-M0 内核,主频最高 48MHz,可以支持很广范围的工业控制应用和需要高性能 CPU 的场合。内置 64K 字节程序 flash,数据 flash 大小可配置(与程序 flash 共享),4K 字节 LDROM,8K 字节 SRAM。CS32G020 封装包括 QFN24 和 QFN32。

1.2 主要特性

Type-C 和 USB PD 支持

- 支持 USB PD3.0 协议,支持 PPS
- CC 口可配置的 RP 和 RD
- 支持 2 路 Type-C 口,可以独立进行 PD 通信
- CC 口支持 21V 耐压
- 内置2个高压(21V)控制口
- 支持快速角色交换 (FRS)

其他协议

- 支持 QC4.0+、SCP、FCP、AFC 协议
- 支持 BC1.2、Apple 2.4A
- 支持 DP、DM 上的所有配置
- 支持 FCP、AFC 等多种快充协议输入

外设

- 最多 27 个通用 (GPIO) 脚
- 3个16-bit 定时器,8位预分频
- 1组UART
- 1组SPI
- 1组 I2C (支持主从模式)
- 2个模拟比较器
- 12 位模数转换器 (ADC)
- 11 位数模转换器(DAC)
- 欠压检测(BOD)

32 位 MCU

- 内核 ARM®Cortex™-MO 核,主频最高 48MHz
- 60K Flash 内存用来存放应用程序 (APROM)
- 可配置的数据 flash(Data Flash)
- 4KB 启动代码空间 (LDROM)
- 内嵌 8KB SRAM
- 系统启动区间可配置,可以从APROM, LDROM或SRAM启动

时钟和晶振

- 24/8MHz 内部 oscillator (HSI) (25℃, 5V,1% 误差)
- 10 KHz 内部低功耗 oscillator (LSI)

工作模式 (低功耗模式,多钟低功耗策略)

● Normal 模式 ,工作电流 10mA@5V,

25°C

- Sleep 模式,工作电流 2mA@5V, 25℃
- Deep-Sleep1模式,工作电流 100uA@5V,25℃
- Deep-Sleep2 模式 ,工作电流 12uA@5V,25℃
- Deep Power-Down 模式,工作电流 2.5uA@5V,25℃

芯片安全性

- 对 Flash 存储器提供多级保密策略
- 提供 CRC-32 计算单元,多项式为 0x4C11DB7(与以太网标准相同)
- 内置 SRAM 支持奇偶校验

工作条件

- 工作温度:-40℃~85℃
- 工作电压:2.5V~5.5V

封装

- QFN24
- QFN32

应用范围

- 适配器
- 移动电源
- 车充 ● HUB

1.3 选型表

型号	Flash	SRAM	10	сс 🏻	PD 模块	死 电 池 功能	QC PHY	Timer	ADC	DAC	封装
CS32G020K8U6	64K	8K	27	2组	2	支持	2路	3*16bit	24 通 道	11bit	QFN32
CS32G020E8U6	64K	8K	19	2组	2	不支持	2路	3*16bit	20 通 道	11bit	QFN24

2框图

2.1 功能模块框图

图1 CS32G020 系统框图

2.2 内部电路框图

图2 内部电路框图

3管脚图

3.1 QFN24

图3 QFN24管脚图 (Top View)

3.2 QFN32

图4 QFN32 管脚图 (Top View)

3.3 管脚描述

管脚类型缩写说明

I: 数字输入口

0: 数字输出口

I/0: 数字输入输出口

AI: 模拟输入口 AO: 模拟输出口

P: 电源

表 3-1 引脚说明表

	1		ı	
QFN32 -PIN	QFN24 -PIN	管脚名称	管脚	描述
		PB9	I/0	通用输入/输出引脚
1		AINP9	ΑI	AINP9 输入
2		PB13	I/0	通用输入/输出引脚
Δ		AINN9	ΑI	AINN9 输入
		PA12	I/0	通用输入/输出引脚
		UARTO_RXD	Ι	UARTO 接收信号
3	1	AINP7	ΑI	AINP7 输入
3	1	CC1_B	I/0	USB PD1 CC1 端
		C1P	ΑI	比较器 1 正端输入
		COP	AI	比较器 0 正端输入
		PA13	I/0	通用输入/输出引脚
		AINN7	AI	AINN7 输入
4	2	CC2_B	/I/0	USB PD1 CC2 端
		C1P	ΑI	比较器 1 正端输入
		COP	ΑI	比较器 0 正端输入
5	3	VCONN_SRC	P	VCONN 电源输入端, 需输入 4.5V 到 5.5V 电压
		PA14	I/0	通用输入/输出引脚
		AINP8	ΑI	AINP8 输入
6	4	CC2_A	I/0	USB PD0 CC2 端
		C1P	ΑI	比较器 1 正端输入
	_ \-	COP	ΑI	比较器 0 正端输入
		PA15	I/0	通用输入/输出引脚
	2/1	AINN8	ΑI	AINN8 输入
7	5	CC1_A	I/0	USB PD0 CC1 端
	3	C1P	ΑI	比较器 1 正端输入
		COP	ΑI	比较器 0 正端输入
		WKUP1	Ι	掉电模式唤醒引脚,高电平有效
8		PB12	I/0	通用输入/输出引脚
0		TM_TRG2	Ι	定时器外部触发输入2
9	6	PB11	I/0	通用输入/输出引脚
ت 	U	LOAD_IN	Ι	通用输入/输出引脚并支持 800K 下拉电阻
10	7	LDO_CAP	AO	LDO 输出引脚, 需接 4.7uF 电容
11	8	VDD	P	IO 电源 (1.8V~5.5V)
12	9	SAR_ADC_VREF	AO	SAR_ADC 参考电压输出,需要外接 1uF 电容

		口門之门		*:
		PA0	I/0	通用输入/输出引脚
		AINPO	ΑI	AINPO 输入
		C1N	ΑI	比较器 1 负端输入
		I2CO_SCL	I/0	I2C0 时钟信号
		UARTO_TXD	0	UARTO 发送信号
13	10	SPIO_CLK	I/0	SPI0 时钟信号
		PWM0	0	PWMO 输出
		EINTO	Ι	EINTO 输入
		TO	Ι	定时器 0 输入
		INT_VREF	AO	内部参考电压输出
		CMP1_VREF	ΑI	比较器 1 参考电压输出
		PA1	I/0	通用输入/输出引脚
		AINNO	ΑI	AINNO 输入
		C1P	ΑI	比较器1正端输入
14	11	SWDIO	I/0	SWD 数据信号
		SPIO_MOSI	I/0	SPI0 主机输出/从机输入信号
		PWM1	0	PWM1 输出
		PDA	I/0	烧录数据口
		PA2	I/0	通用输入/输出引脚
	12	AINP1	ΑI	AINP1 输入
		C1N	ΑI	比较器 1 负端输入
15		SWDCLK	I	SWD 时钟信号
		PWM2	0 _	PWM2 输出
		PCL	I	烧录时钟口
16		PB10	I/0	通用输入/输出引脚
		PA3	I/0	通用输入/输出引脚
		AINN1	AI	AINN1 输入
		C1P	AI	比较器1正端输入
		CON	AI	比较器 0 负端输入
		I2CO SDA	I/0	12C0 数据信号
17	13	UARTO RXD	I	UARTO 接收信号
		SPIO MISO	I/0	SPI0 主机输入/从机输出信号
	V	PWM2	0	PWM2 输出
	- K	EINT1	I	EINT1 输入
	_\\ X	T1	I	定时器 1 输入
		DAC_OUT	AO	DAC 输出
	A	PA4	I/0	通用输入/输出引脚
X		AINP2	AI	AINP2 输入
		C1P	AI	比较器 1 正端输入
18	14	COP	AI	比较器0正端输入
10	17	PWM1	0	PWM1 输出
		DM1	AI	QC 端口组 1 负端输入
		QCDM1 VREF	AO	QCDM1 VREF 电压输出
		PA5	I/0	通用输入/输出引脚
		AINN2	AI	AINN2 输入
19	15	CON	AI	比较器 0 负端输入
		LOW	ΛŢ	レニーイメイロウ U メヒン町イカリノヘ
		SPIO SS	I/0	SPI0 片选信号

表								
		PWM0	0	PWMO 输出				
		DP1	ΑI	QC 端口组1正端输入				
		QCDP1_VREF	AO	QCDP1_VREF 电压输出				
20	16	NRST	Ι	复位引脚输入,默认有上拉电阻 40K				
		PA6	I/0	通用输入/输出引脚				
		AINP3	ΑI	AINP3 输入				
		C1P	ΑI	比较器 1 正端输入				
21	17	COP	ΑI	比较器 0 正端输入				
		PWM2	0	PWM2 输出				
		DMO	AI	QC 端口组 0 负端输入				
		QCDMO VREF	AO	QCDMO VREF 电压输出				
		PA7	I/0	通用输入/输出引脚				
		AINN3	AI	AINN3 输入				
		UARTO TXD	0	UARTO 发送信号				
		SPIO MOSI	I/0	SPI0 主机输出/从机输入信号				
		PWM1	0	Si 10 生が細い/ 外が細さに 9 PWM1 輸出				
22	18	WKUP0	I	掉电模式唤醒引脚,高电平有效				
		STADC	I	ADC 触发输入引脚				
		CON	AI	比较器0负端输入				
		DP0	AI	QC 端口组 0 正端输入				
		QCDPO VREF	AO	QCDPO VREF 电压输出				
		PB0	I/0	通用输入/输出引脚				
		AINP4	AI _	AINP4 输入				
		COD	AI	比较器 0 正端输入				
23		TM TRG1	I	定时器外部触发输入1				
		PWMO	0	PWMO 输出				
		PWMOL PWMOL	0	FWMO 和出 互补 PWMOL 输出				
		PB1	I/0	通用输入/输出引脚				
9.4		AINN4	AI	AINN4 输入 PWM1 输出				
24		PWM1	0	****				
		PWMOH	0	互补 PWMOH 输出				
0.5		PB7	I/0	通用输入/输出引脚				
25		PWM2H	0	互补 PWM2H 输出				
26	11	PB8	I/0	通用输入/输出引脚				
	7/1	PWM2L	0	互补 PWM2L 输出				
		PA8	I/0	通用输入/输出引脚				
		AINP5	AI	AINP5 输入				
		I2CO_SDA	I/0	12C0 数据信号				
27	19	UARTO_RXD	I	UARTO 接收信号				
		SPIO_SS	I/0	SPIO 片选信号				
		PWM0	0	PWMO 输出				
		EINT2	I	EINT2 输入				
		T2	Ι	定时器 2 输入				
		PA9	I/0	通用输入/输出引脚				
28	20	AINN5	AI	AINN5 输入				
	40	I2CO_SCL	I/0	I2C0 时钟信号				
		UARTO_TXD	0	UARTO 发送信号				

		SPIO_MISO	I/0	SPI0 主机输入/从机输出信号				
		PA10	I/0	通用输入/输出引脚				
		AINP6	ΑI	AINP6 输入				
29	21	COP	ΑI	比较器0正端输入				
		PWM1	0	PWM1 输出				
		PWM1L	0	互补 PWM1L 输出				
		PA11	I/0	通用输入/输出引脚				
	22	AINN6	ΑI	AINN6 输入				
30		CON	ΑI	比较器 0 负端输入				
		PWM2	0	PWM2 输出				
		PWM1H	0	互补 PWM1H 输出				
		PB2	I/0	通用输入/开漏输出引脚				
31	23	PWM2	0	PWM2 输出				
		VBUS_EN2	0	高压控制开关,开漏输出				
		PB3	I/0	通用输入/开漏输出引脚				
32	24	VBUS_EN1	I/0	高压控制开关,开漏输出				
32	24	C1P	ΑI	比较器1正端输入				
		СКО	0	频率分频器输出				
_		EPAD	GND	地				

4 功能介绍

4.1 MCU 子系统

MCU 子系统特性如下

- CS32G020 系列是 32 位的微处理器,内嵌 ARM® Cortex™-MO 内核
- 可用于工业控制和需要高性能、低功耗的应用。
- 内核包含串行调试接口(SWD),可用于开发调试以及应用程序烧录
- 支持4个断点和2个观察点。

4.2 Flash

CS32G020 内嵌 60K 字节片上 flash,用作应用程序存储器(APROM),Flash 控制器特性如下

- 高达 24MHz 的零等待连续地址读访问
- 60KB 应用程序存储空间(APROM)
- 4KB 启动代码空间(LDROM)
- 可配置的数据 flash, 512 字节页擦除单元
- 所有内部 Flash 页擦除单位为 512 字节
- 支持在系统编程(ISP)/在应用编程(IAP)用于更新片上Flash EPROM

图 4-1 Flash 存储控制器框图

4.3 LDROM

LDROM 用来存储 BootLoader,CS32G020 共 4K 字节 BootLoader 空间。用户不能修改 LDROM 区间程序。

4.4 用户配置区

用户配置区是内部可编程的配置区。用户配置区在 Flash 内存的地址为 0x0030_0000,0x0030_0004,0x0030_0008,0x0030_000C 总共 4 个字。它的内容用于在系统启动时配置一些外设的寄存器。其中低半字为用户配置位,高位为用户配置位的取反。

CONFIGO (地址= 0x0030_0000)

31	30	29	28	27	26	25	24
~CWDTEN	~CLIRC_EN	保	留	~CDELAY	[1:0]	~XT_SEL	~HIRC_SEL
23	22	21	20	19	18	17	16
~CBODEN	~(CBOV[2:0]		~CBORST	~CHVRST	保留	保留
15	14	13	12	11	10	9	8
CWDTEN	CLIRC_EN	保	留	CDELAY	[1:0]	XT_SEL	HIRC_SEL
7	6	5	4	3	2	1	0
CBODEN	C	CBORST	CHVRST	保留	保留		

表 4-1

Bits	描述	
31:16	保留	低 16 位的反码
15	CWDTEN	看门狗使能控制 0 = 芯片上电后使能看门狗定时器。
		1 = 上电时看门狗默认关闭.
14	CLIRC_EN	LIRC 使能控制 0 = LIRC 的 10K 时钟源总是使能的,软件无法关闭. 1 = LIRC 的 10K 时钟源由 LIRC_EN (CLKCON[3])控制
13:12	保留	保留
11:10	CDELAY[1:0]	复位延时选择 00 = 20ms 01 = 40ms 10 = 60ms 11 = 98ms CDELAY[1:0]为延时选择位,当延时选择位与校验位反相时有效,其他情况都使用最长延时 98ms。
9	保留	保留
8	HIRC_SEL	内部高速振荡器频率选择 1 = 24MHz 0 = 8MHz
7	CBODEN	欠压检测使能 0= 上电后使能欠压检测 1= 上电后禁用欠压检测 注:欠压检测使能后,同时会使能 6.5V 高压检测;禁用时,也会禁用

			No. 4 Co.
		6.5V 高压检测。	
6:4	CB0V[2:0]	欠压电压选择 000 = 1.8V 001 = 2.0V 010 = 2.4V 011 = 2.7V 100 = 3.0V 101 = 3.6V 110 = 4.0V	
3	CBORST	欠压复位使能 0 = 上电后使能欠压复位 1 = 上电后禁用欠压复位	
2	CHVRST	6.5V 高压复位使能 0 = 上电后使能 6.5V 高压复位 1 = 上电后禁用 6.5V 高压复位	
1:0	保留	保留	

CONFIG1 (地址= 0x0030_0004)

	<u></u>						
31	30	29	28	27	26	25	24
~CWDTSEN	保留	~CWDTSIS[2:0]			Ŷ	2:0]	
23	22	21	20	19	18	17	16
~CBS[1:0]				保留			~DFEN
15	14	13	12	11	10	9	8
CWDTSEN	保留	C	CWDTSIS[2:0]	FRD_CFG[2			:0]
7	6	5	4	3	2	1	0
CBS	[1:0]			保留			DFEN

表 4-2

Bits	描述				
31:16	保留	低 16 位的反码			
15	CWDTSEN	精简版看门狗使能控制 0 = 芯片上电后使能看门狗定时器。 1 = 上电时看门狗默认关闭.			
14	保留	保留			
13:11	CWDTSIS[2:0]	选择精简版看门狗定时器的超时间隔。 复位延迟 CDELAY[1:0]=00 或 01 000 = 2 ¹³ *T _{LIRC} 001 = 2 ¹⁴ * T _{LIRC} 010 = 2 ¹⁵ * T _{LIRC} 011 = 2 ¹⁶ * T _{LIRC} 100 = 2 ¹² * T _{LIRC} 101 = 2 ¹¹ * T _{LIRC} 111 = 2 ¹¹ * T _{LIRC} 110 = 2 ¹² * T _{LIRC} 110 = 2 ¹³ * T _{LIRC}			

>K/\\\/		_/ '''	•••
		$\begin{array}{llll} 001 &=& 2^{14} * T_{LIRC} \\ 010 &=& 2^{15} * T_{LIRC} \\ 011 &=& 2^{16} * T_{LIRC} \\ 100 &=& 2^{13} * T_{LIRC} \\ 101 &=& 2^{14} * T_{LIRC} \\ 110 &=& 2^{15} * T_{LIRC} \\ 111 &=& 2^{16} * T_{LIRC} \end{array}$	
10:8	FRD_CFG[2:0]	正常工作时 Flash 取指配置 此 3 位必须配置为 000	
7:6	CBS[1:0]	芯片启动选择 [CBS[1] 1 0 [CBS[0] 1 0	说明 芯片从 APROM 启动 LDROM 启动 说明 没有 IAP 功能 IAP 功能使能
5:1	保留	保留	
0	DFEN	数据 Flash 使能 0 = 使能数据 flash 1 = 禁用数据 flash	

CONFIG2(地址= 0x0030_0008)

	.ш. опосос_о								
31	30	29	28	27	26	25	24		
	~DFBADR[15:8]								
23	22	21	20	19	18	17	16		
			~DFBAD	R[7:0]					
15	14	13	12	11	10	9	8		
	DFBADR[15:8]								
7 6 5 4 3 2 1 0									
			DFBADI	R[7:0]					

表 4-3

Ī	Bits	描述	
	31:16	~DFBADR[15:0]	低 16 位的反码
	15:0	DFBADR[15:0]	数据 Flash 基地址 其数据 flash 基地址由用户定义。因为片上 flash 擦除单元为 512 字 节,所以强制保持 bit 8-0 为 0 DFBA[15:0]值最小为 200h,如果小于 200h,等同为 200h,即 APROM 空间 最小为 0.5KB

CONFIG3(地址= 0x0030 000C)

31	30	29	28	27	26	25	24	
	~SWD_EN[7:0]							
23 22 21 20 19 18 17						16		

	保留							
15 14 13 12 11 10 9 8								
	SWD_EN[7:0]							
7	7 6 5 4 3 2 1 0							
	保留							

表 4-4

Bits	描述		
31:24	~SWD_EN[7:0]	SWD_EN[7:0] 取反位	
23:16	保留	必须为 0xFF	
15:8	SWD_EN[7:0]	SWD 调试使能位 0x55: 禁止 SWD 调试功能 其他: 使能 SWD 调试功能	
7:0	保留	必须为 0x00	\)

4.5 加密区

表 4-:

	bl. L.t	777 HIL
序号	地址	说明
		用户模式下 Flash 前 32KB 主区读使能配置
		Bit 31~16:低 16 位的取反,用于进行校验。校验失败则默认加
		密。
		Bit15: 1表示 2KB(0x0000_7800~0x0000_7FFF)读使能
		0 表示 2KB(0x0000 7800~0x0000 7FFF)读禁止
1	0x0030_0200	
		bit 1: 1 表示 2KB(0x0000 0800~0x0000 0FFF)读使能
		0 表示 2KB(0x0000 0800 ² 0x0000 0FFF)读禁止
		bit 0: 1表示 2KB(0x0000 0000 [~] 0x0000 07FF)读使能
		0 表示 2KB(0x0000 0000 [~] 0x0000 07FF)读禁止
	-	用户模式下 Flash 后 32KB 主区读使能配置
		Bit 31~16:低 16 位的取反,用于进行校验。校验失败则默认加
		密。
		Bit15: 1表示 2KB(0x0000_F800~0x0000_FFFF)读使能
2	0x0030_0204	0 表示 2KB(0x0000_F800~0x0000_FFFF) 读禁止
2	0x0030_0204	•••
		bit 1: 1表示 2KB(0x0000_8800~0x0000_8FFF)读使能
		0 表示 2KB(0x0000 8800~0x0000 8FFF)读禁止
		bit 0: 1表示 2KB(0x0000 8000~0x0000 87FF)读使能
		0 表示 2KB(0x0000 8000~0x0000 87FF)读禁止
		用户模式下 Flash 前 32KB 主区写使能配置
		Bit 31~16:低 16 位的取反,用于进行校验。校验失败则默认加
		密。
3	0x0030_0208	Bit15: 1表示 2KB(0x0000 7800~0x0000 7FFF)写使能
		0 表示 2KB(0x0000_7800~0x0000_7FFF) 写禁止
		···

>R////						
		bit 1: 1表示 2KB(0x0000_0800~0x0000_0FFF)写使能				
		0 表示 2KB(0x0000_0800~0x0000_0FFF) 写禁止				
		bit 0: 1表示 2KB(0x0000_0000~0x0000_07FF)写使能				
		0 表示 2KB(0x0000_0000 [~] 0x0000_07FF) 写禁止				
		用户模式下 Flash 后 32KB 主区写使能配置				
		Bit $31^{\sim}16$:低 16 位的取反,用于进行校验。校验失败则默认加				
		密。				
		Bit15: 1 表示 2KB(0x0000_F800~0x0000_FFFF) 写使能				
4	0x0030 020C	0 表示 2KB(0x0000_F800~0x0000_FFFF) 写禁止				
		bit 1: 1 表示 2KB(0x0000_8800~0x0000_8FFF) 写使能				
		0 表示 2KB(0x0000_8800~0x0000_8FFF) 写禁止				
		bit 0: 1表示 2KB(0x0000_8000~0x0000_87FF)写使能				
		0 表示 2KB(0x0000_8000~0x0000_87FF) 写禁止				
		用户模式下 Flash 前 32KB 主区擦除使能配置				
		Bit 31~16:低 16 位的取反,用于进行校验。校验失败则默认加				
	0x0030_0210	密。				
		bit 15: 1表示 2KB(0x0000_7800~0x0000_7FFF)擦除使能				
5		0 表示 2KB(0x0000_7800~0x0000_7FFF)擦除禁止				
		1:4 1. 1 丰二 0/1 (0 0000 0000 0000 0000 0000 / 持水 住台				
		bit 1: 1表示 2KB(0x0000_0800 [^] 0x0000_0FFF)擦除使能				
		0 表示 2KB(0x0000_0800~0x0000_0FFF)擦除禁止 bit 0: 1 表示 2KB(0x0000_0000~0x0000_07FF)擦除使能				
		0 表示 2KB(0x0000 0000 0x0000 07FF)擦除使能				
		用户模式下 Flash 后 32KB 主区擦除使能配置				
		Bit $31^{\sim}16$:低 16 位的取反,用于进行校验。校验失败则默认加				
		密。				
		bit 15: 1表示 2KB(0x0000 7800~0x0000 7FFF)擦除使能				
		0 表示 2KB(0x0000_7800 0x0000_7717) 擦除禁止				
6	0x0030_0214	···				
		bit 1: 1表示 2KB(0x0000 8800~0x0000 8FFF)擦除使能				
		0 表示 2KB(0x0000_8800~0x0000_8FFF) 擦除禁止				
		bit 0: 1表示 2KB(0x0000 8000~0x0000 87FF)擦除使能				
		0 表示 2KB(0x0000_8000 [°] 0x0000_87FF)擦除禁止				
	0x0030_0214~	保留				
7	0x0030_021C					
	Y	烧录模式下 Flash64KB 主区读使能配置				
X		Bit31: 1表示 2KB(0x0000_F800~0x0000_FFFF)读使能				
X		0表示 2KB(0x0000_F800~0x0000_FFFF)读禁止				
	00020 0220	- ,				
8	0x0030_0220	bit 1: 1 表示 2KB(0x0000_0800~0x0000_0FFF)读使能				
		0表示 2KB(0x0000_0800~0x0000_0FFF)读禁止				
		bit 0: 1 表示 2KB(0x0000_0000~0x0000_07FF)读使能				
		0表示 2KB(0x0000_0000~0x0000_07FF)读禁止				

4.6 USB PD

CS32G020 支持 2 组 Type-C 口, Type-C 口特性如下

- 每组 CC 口独立可配置的 5.1K 下拉电阻和 80/180/330uA 电流源
- 支持死电池检测功能
- CC 口设备接入自动检测,用户可以直接查询检测结果
- 支持快速角色交换检测
- 支持低功耗模式下设备接入自动唤醒

USB PD 模块支持 USB PD3.0 协议, 2组 CC 口可以独立通信, 互不影响。

USBPD 物理层

USB PD 物理层包含一个发送器和一个接收器,在 PD3.0 协议基础上,使用 BMC 编码后的数据通过 CC 口通信。所有通信都是半双工的。物理层或者 PHY 层加入了冲突避免机制,可以尽量减少通道上的通信错误。USB-PD 模块包含了 R_P 和 R_D , R_P 和 R_D 用来实现连接检测、端口初始化和 USB DFP/UFP 识别。 R_P 电阻是用上拉电流源实现的。

根据 USB Type-C 协议规范,一个 Type-C 控制器在没有上电时,必须根据它的电源角色在 CC 口上接入固定的电阻。移动电源做 Sink 时,必须在 CC 口上接入 R_0 ,而作为电源适配器,则两个 CC 口都必须悬空。为了适应这种应用,CS32G020 在没有上电时,CC 口上可以配置死电池电阻 R_0 。QFN32 封装 CC 口会有死电池检测功能,QFN24 封装 CC 口没有死电池检测功能。

4.7 VBUS PFE 控制口

CS32G020 集成了 2 个 PFET 控制输出口来驱动 VBUS 控制开关。它们是 VBUS_EN1 (PB3) 和 VBUS_EN2 (PB2) 口,这两个口为开漏输出,只支持输出低电平或者做高阻输入,输出高需要外接上拉电阻实现。

4.8 ADC

CS32G020 包含 一个 20+4 通道 12 位的 SAR 型模拟-数字转换器 (SAR A/D 转换器)。主要特性如下:

- 模拟输入电压范围: 0~VDD
- 12 位分辨率
- 最多 10 对差分输入通道
- 最多 20+4 路单端模拟输入通道
- 高达 200KHz SPS 采样速率
- 5 种操作模式
 - ◆ 单次转换模式: A/D 在指定通道完成一次转换
 - ◆ 突发模式: A/D 转换在指定单个通道连续进行,并将结果顺序地存入数据寄存器
 - ◆ 单周期扫描模式: A/D 转换在所有指定通道完成一次转换(从低序号通道到高序号通 道)
 - ◆ 有限周期扫描模式:每个通道转换指定次数后切换下一个通道,可配置丢掉前面指定次数转换结果计算,可配置去掉最大最小值计算
 - ◆ 连续扫描模式: A/D 转换连续执行单周期扫描模式直到软件停止 A/D 转换
- 每个通道的转换结果存储在相应数据寄存器内,并带有有效和溢出标志

SAR_ADC VREF 口是内部参考电压输出,必须外接一个 1uF 电容。CS32G020 支持最多 10 对差分输入通道,也可以配置为单端模式。

4.9 DAC

CS32G020 内置一个 11 位电压输出型数字模拟转换器,最大转换速率 200KHz SPS,参考电压可以选择内部 2V、3V、4V 参考电压。

4.10 模拟比较器

CS32G020 最多有 2 个比较器,可以在不同的配置下使用。当正端输入大于负端输入时,比较器输出逻辑"1",否则输出"0"。 当比较器输出值改变,每个比较器可以配置发生中断。模拟比较器主要特性如下:

- 模拟输入电压范围: 0~V_{DD}
- 支持迟滞功能
- 支持 8 档输出滤波功能
- 支持输出反转功能
- 每个模拟比较器正/负端可以选择输入内部参考电压
- 支持失调电压校准功能
- 每个比较器支持一个中断向量

4.11 GPIO

CS32G020 最多有 27 个通用 I/0 引脚,这些引脚和其它功能共享。27 个引脚分为 2 个端口,分别命名为 PA, PB,每个端口最多有 16 个引脚。每个引脚都是独立的,都有相应的寄存器来控制引脚工作模式与数据。

每个引脚的 I/0 类型可由软件独立地配置为输入、输出、开漏。主要特性如下:

- 3种 I/0 模式:
 - 输入模式带高阻
 - 推挽输出
 - 开漏输出
- Schmitt 触发输入模式由 Px_TYPEn[15:0]选择使能或禁止
- 每个 I/O 引脚都可以作为中断源,支持边沿/电平触发
- 引脚中断功能使能后,引脚的唤醒功能也将被使能
- 每个 I/0 可配置为上拉或下拉功能

4.12 通信接口

CS32G020 支持3种通用通信接口,他们分别是I2C、SPI、UART。

4. 12. 1 I2C

I2C 为 2 线,双向串行总线,为设备之间的数据通讯提供了简单有效的方法。I2C 标准是多主机总线,包括冲突检测和仲裁机制以防止在两个或多个主机试图同时控制总线时发生数据冲突。

I2C 总线通过两根线(SDA和SCL) 在连接在总线上的设备间传输数据,总线的主要特征包括:

- 支持主机和从机模式
- 主机和从机之间双向数据传输
- 多主机总线(无中心主机)
- 多主机同时发送数据仲裁,总线上串行数据不会被损坏
- 支持7位寻址模式
- 支持快速模式和标准模式

- 可编程的时钟适用不同速率控制
- 独立的发送接收缓存,各8级

4.12.2 SPI

CS32G020 支持 1 个精简版 SPI 接口,包括 master 模式和 slave 模式。

SPI 接口允许 MCU 与其他 SPI 接口设备进行全双工、同步、串行通信,它有两种模式: 主模式和从模式。SPI 通信一般使用 4 线通信,即 SPICLK,MOSI,MISO,SPISS 这 4 根信号线,有时为了节省一个接口,也使用 3 线通信,即只包括 SPICLK,MOSI,MISO 这 3 根信号线。两个 SPI 设备通信时,一个作主机,一个作从机,SPI 接口间通信均由主机发起,主机发送时钟(SPICLK)和从机选择信号(SPISS)控制数据交换,主机和从机可同时发送和接收数据。

4. 12. 3 UART

CS32G020 主要提供 1 个可编程全双工串行通信接口。该接口能同时进行数据的发送和接收。该 UART 主要特性如下:

- 1组 UART
- 支持同时数据的发送和接收;
- 波特率可配
- 支持自动波特率
- 接收和发送都有 8 级的 FIFO, RX_FIFO(8*9Bit), TX_FIFO(8*9Bit)
- 接收中断支持非空中断和接收水线中断
- 发送中断支持发送空中断和发送水线中断
- 支持 8/9 位数据发送和接收

4.13 定时器

定时器控制器包括 3 组 16 位的定时器,TIMERO^{*}TIMER2 ,方便用户实现定时控制应用。定时器模块可支持例如时间计数,外部硬件触发,时钟产生,PWM 输出和互补 PWM 输出等功能。

定时器主要特性如下

- 3组 16-位定时器,带16位向上计数器和一个4位的预分频计数器
- 支持计数功能
- 支持 PWM 功能
- 支持互补 PWM 输出, 死区可调
- 最快支持 96MHz 时钟计数

4.14 看门狗定时器

看门狗定时器用于在软件运行至未知状态时执行系统复位功能。可以防止系统无限制地挂机,除此之外,看门狗定时器还可将 CPU 由空闲/睡眠模式唤醒。CS32G020 内置 3 个看门狗计数器,他们分别是看门狗定时器(WDT),窗看门狗(WWDT),精简版看门狗(WDT Lite)。

4, 14, 1 WDT

WDT 模块使能只受代码选项控制,一旦配置为使能后,软件无法关闭,只能清狗。WDT 主要特性如下

- 18 位自由运行的计数器用于看门狗超时间隔。
- 超时间隔可选 (2⁴ ~ 2¹⁸) WDT_CLK 周期,超时时间范围在 104 ms ~ 26.3168 s (如果 WDT_CLK = 10 KHz)。
- 支持看门狗复位延迟, 复位延迟时间可选 3/18/130/1026 * WDT CLK。

- 当 CWDTEN (CONFIG[31] 看门狗使能位) 位等于 0 时,支持上电使能看门狗。
- 如果看门狗时钟源选择 10 kHz, 支持看门狗超时唤醒功能。
- 如果看门狗时钟源选择 32.768 kHz 外部低速晶振,支持看门狗超时唤醒功能。

4.14.2 WWDT

窗看门狗定时器用来在一个指定的窗周期中实现系统复位,避免软件无限期进入不可控状态。主要特性如下

- 6-bit 下数计数器当前值(WWDTCVAL)和 6-bit 比较窗口值(WINCMP)使 WWDT 超时窗周期 更有弹性
- 支持 4-bit 值,编程 WWDT 计数器最大 11-bit 预分频计数器周期

4.14.3 WDT Lite

该 WDT 主要用于 Powerdown 模式唤醒,其他模式下,WDT Lite 无效。主要特性如下

- ◆ 在 5V 域电源下工作,掉电模式依然可以工作
- ◆ 时钟源为 LIRC 10KHz
- ◆ 仅在掉电模式下支持唤醒 CPU 功能

4.15 运算单元

CS32G020 硬件支持 3 种常见运算,他们是单周期乘法器、硬件除法器、CRC32 计算单元。

4.15.1 单周期乘法器

乘法器为32位单周期乘法器,在使用时可以直接进行32位数据乘法,不需要配置任何寄存器,使用方便。

4.15.2 硬件除法器

硬件除法器(HDIV)用来提高应用程序的效率。硬件除法器是一个有符号,整数除法器,提供商和余数输出。除法器主要特性如下:

- 有符号 (2的补码) 整数计算
- 32-bit 被除数,16 位除数计算能力
- 32-bit 商和 32-bit 余数输出 (16-bit 余数带符号扩展到 32 位)
- 除 0 警告标志
- 每次计算需要 16 个 HCLK 时钟周期
- 写除数触发计算
- 当读商和余数的时候自动等待计算完成

4.15.3 CRC32 计算单元

CRC 计算单元可以用来按照既定的多项式算法,依据输入数据快速算出循环冗余校验的结果码。在很多应用中,通常使用循环冗余校验的技术来检查数据传输或存储的完整性。在功能安全标准范围内,这提供了校验 Flash 存储可靠性的技术手段。CRC 计算单元可随时计算软件签名,使得可以在通讯和存储的时候就地完成签名比较。

CRC32 计算单元主要特性:

- 采用的 CRC-32(与以太网标准相同)多项式 0x4C11DB7 $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$
- 操作 8, 16, 32 位数据
- CRC 初值可预置

- 单输入/输出 32 位数据寄存器
- 配有输入缓冲区可以在总线停顿的时候不影响实时计算
- 每次 CRC 计算在 4 个 AHB 时钟周期 (HCLK) 内完成
- 配有通用目的的8位寄存器(可被用来当作临时存储)
- 用来提供 I/0 数据的可逆性选项

4.16 电源管理

为满足不同应用对时钟和功耗的要求,CS32G020 提供 5 种工作模式,包括正常工作模式、S1eep模式、Deep-S1eep模式 1、Deep-S1eep模式 2 和 Power-Down模式。以上几种模式的进入与唤醒方式见下表

表 4-6

模式	进入	唤醒	时钟影响	电压影响	唤醒延时
睡眠模式 (sleep)	(LPMODE=000)+WFI	任一中断	CPU 时钟关闭,对其它时钟及模拟	无(数字电 路供电主 LDO 和副	MO 内核固有延时
(втеер)	(LPMODE=000)+WFE	唤醒时间	时钟无影响	LDO 打开)	MO 内核固有延时
深度睡眠模式 1 (deepsleep1)	(LPMODE=001)+ WFI 或 WFE	任一外部中 断,支持 LSE 或 LSI 的中断	HSE , HSI	数字电路 供电主 LDO 和副 LDO 打开	HSE 或 HSI 起振稳 定延时+ MO 内核固 有延时
深度睡眠模式 2 (deepsleep2)	(LPMODE=011)+ WFI 或 WFE	(WDT/WWDT), BOD 中断,比 较器中断	关闭	数字电路 供电主 LDO 关,副 LDO 开	主 LDO 开启延时 +LDO 切换+ HSE 或 HSI 起振稳定延时+ MO 内核固有延时
掉电模式 (Powerdown)	(LPMODE=1x1)+ WFI 或 WFE	唤醒引脚, NRST 复位, POR 复位	HSE, HSI, LSE 和 LSI 关闭	数字电路 供电主 LDO 和副 LDO 关闭	复位延时

4.16.1 正常工作模式

正常工作模式下,ARM®Cortex™-MO 内核正常跑指令,不同的外设时钟可以独立配置,也可以单独禁止或使能。各模拟模块也可以通过使能位禁止或使能。正常工作模式下,功耗较大。

4.16.2 睡眠模式

睡眠模式下,ARM Cortex- MO 核的时钟停止工作,指令也暂停执行,各时钟振荡器不停止工作。 任何中断都可唤醒睡眠模式,使内核恢复执行指令。

睡眠模式下,处理器状态寄存器,外设寄存器和内部存储器值都保持不变,引脚的逻辑电平保持静态,RESET 保持有效。

外设功能不受影响,已经打开使能的模块在睡眠模式下继续工作。 模拟模块的状态有模块使能位决定。

4.16.3 Deep-Sleep1 模式

深度睡眠模式 1 下,ARM Cortex- MO 核的系统时钟停止工作,指令也暂停执行。内部高速振荡器 HSI 停止工作,LSI 若使能打开则继续运行。通过外部中断或 WDT 中断或复位可以唤醒 Deep-Sleep1 模式。

Deep-Sleep 模式下,处理器状态寄存器,外设寄存器和内部存储器值都保持不变,引脚的逻辑电平保持静态。, RESET 保持有效。

由于时钟停止,外设停止工作,为保证深度睡眠模式下功耗,建议将模拟模块,如 SAR_ADC、比较器、运算放大器等关闭,节省功耗。

深度睡眠模式下,FLASH 处于掉电状态来降低静态漏电功耗,唤醒时 FLASH 需要较长的时间重新开始工作。

4.16.4 Deep-Sleep2 模式

深度睡眠模式 2 下,ARM Cortex- MO 核的系统时钟停止工作,指令也暂停执行。内部高速振荡器 HSI 停止工作,LSI 若使能打开则继续运行。通过外部中断或 WDT 中断或复位可以唤醒 Deep-Sleep2 模式。

Deep-Sleep2 模式比 Deep-Sleep1 模式功耗更低。但唤醒时间也要长一些。

Deep-Sleep 模式下,处理器状态寄存器,外设寄存器和内部存储器值都保持不变,引脚的逻辑电平保持静态。, RESET 保持有效

由于时钟停止,外设停止工作,为保证深度睡眠模式下功耗,建议将模拟模块,如 SAR_ADC、比较器、运算放大器等关闭,节省功耗。

深度睡眠模式下,FLASH 处于掉电状态来降低静态漏电功耗,唤醒时 FLASH 需要较长的时间重新开始工作。

4.16.5 Deep Power-Down 模式

深度掉电模式下,整个芯片的电源(关闭内置 LDO)和时钟都处于关闭状态。WKUPO 和 WKUP1 引脚除外,WKUPO 和 WKUP1 引脚输入一个上升沿时,可把芯片从 Deep Power-Down 模式唤醒。使能 WKUPO 和 WKUP1 时,这两个引脚将强制打开一个下拉电阻,当检测到上升沿输入时,将芯片复位。

Deep Power-Down 模式下,处理器状态寄存器,外设寄存器和内部存储器值都不再保持,RESET 引脚也无效

芯片从 Deep Power-Down 模式被唤醒时,内置 LDO 打开,芯片重新开始工作。

5 应用程序烧录

CS32G020 支持三种方式来更新应用程序:

- 1、通过串行烧录接口烧录应用程序
- 2、通过 Type-C 口固件升级更新应用程序
- 3、通过 SWD 接口进行烧录,这种方式仅用于调试

通常情况下,CS32G020通过串行烧录接口进行烧录。当产品生产完成,需要进行应用程序更新时,可以通过串行烧录接口或者BootLoader程序调用Type-C口进行更新。

5.1 通过串行烧录口进行 Flash 烧录

批量生产时,芯海科技会提供专用的烧录工具进行烧录。

烧录文件的格式为 hex 文件,该文件通过编译器生成,通过烧录器下载并写入 Flash,即可完成烧录。

串行烧录接口烧录时连接方式如下图所示。芯片由烧录硬件的电源供电,将烧录时钟、数据口、NRST 口一一对应。

图 5-1 串行烧录接口烧录 CS32G020

5.2 通过 Type-C 口升级应用程序

CS32G020 芯片出厂时都带有 BoostLoader 升级程序,可支持 PD3.0 固件升级功能,通过 CC 数据线连接配套的固件升级工具即可完成软件升级。

烧录文件的格式为 hex 文件,该文件通过编译器生成,通过 CS32G020 配置上位机和固件升级工具,通过 PD3.0 非块传输方式,下载并烧录到 FLASH,即可完成烧录。

固件升级工具烧录连接方式如下图所示:

图 5-2 Type-C 接口烧录 CS32G020

5.3 通过 SWD 口烧录

CS32G020 支持通过 SWD 口进行烧录调试,当进行调试或者少量烧录时,可以使用 SWD 口进行烧录。使用 SWD 口进行调试的前提是 CS32G020 的 SWD 口没有被复用为其他功能口。

图 5-3 SWD 口烧录 CS32G020

5.4 烧录方式选择

对于芯片的烧录方式,根据不同情况,可以有不同的选择。

- 当对裸片进行烧录时,可以使用专用烧录器或者 SWD 口进行烧录。
- 当芯片已经上板,并且烧录口和 SWD 口有预留出来,则可以使用专用烧录器或者 SWD 口进行烧录。

- 当芯片已经上板且有使用 Type-C 口,并支持 bootloader 升级,则可以使用 bootloader 进行 烧录。
- 进行方案开发时,可以使用 SWD 进行烧录,烧录简单且便于调试
- 量产时建议使用专用烧录器进行烧录,我们有提供两种烧录器:一拖四烧录器和简易烧录器。 简易烧录器仅做开发用,量产时不建议使用,量产尽量使用一拖四烧录器。

6典型应用

6.1 移动电源典型应用

图 6-1 移动电源典型应用图

6.2 车充典型应用

图 6-2 车充典型应用

6.3 电源适配器典型应用

图 6-3 电源适配器典型应用

7电气特性

7.1 极限值

表 7-1

符号	参数	最小值	最大值	单位
V _{DD} -V _{AGND}	直流电源电压	-0.3	6. 0	V
$V_{\rm IN}$	引脚输入电压	V _{AGND} -0.3	V _{DD} +0.3	V
$V_{\text{CC_PIN}}$	CC □ (PA12、PA13、PA14、PA15) 输	-	24	V
	入电压			
$V_{\text{VBUS_ENn}}$	VBUS_EN1 (PB3) 、VBUS_EN2 (PB2)	-	24	V
	口输入电压			
T_{A}	工作温度	-40	85	° C
T_{ST}	存储温度	-55	150	° C
$I_{ ext{VDD}}$	VDD 最大流入电流	-	120	mA
$I_{ ext{GND}}$	GND 最大流出电流	_	120	mA
	单一管脚最大灌电流	_	35	mA
т	单一管脚最大流出电流	-	35	mA
I_{10}	所有管脚最大灌电流总和	-	100	mA
	所有管脚最大输出电流总和	-	100	mA

7.2 直流电气特性

 $(V_{DD}-V_{GND}=2.5^{\circ}5.5V, T_{A}=25 ^{\circ}C)$

表 7-2

符号	参数	最小值	典型值	最大值	单位	测试条件
V_{DD}	工作电压	2.5	5	5. 5	V	-40 °C $^{\sim}+85$ °C, up to $48\mathrm{MHz}$
$ m V_{AGND}/ \ AV_{AGND}$	电源地	-0.3	0	0.3	V	
LDO	输出电压	1. 35	1.5	1.65	V	V _{DD} ≥1.8V
$R_{ ext{PH}}$	PA, PB 和 NRST 上拉电阻	3/	40 70		kΩ kΩ	V _{DD} =5V V _{DD} =3V
R_{PD}	PA, PB 和 TESTEN 下拉电阻		40		kΩ kΩ	V _{DD} =5V V _{DD} =3V
I_{LK}	PA, PB 的输入漏电 流	-1	-	1	uA	V _{DD} =5V, 0 <v<sub>IN< V_{DD} 开漏模式或输入模式</v<sub>
	PA, PB 输入低电平	-0.3	-	$V_{\scriptscriptstyle DD}/2$	V	V _{DD} =4.5V
V_{IL1}	(禁止 Schmitt 输 入)	-0.3	_	V _{DD} /2	V	V _{DD} =3. OV
	PA, PB 输入高电平	$V_{DD}/2$	_	V _{DD} +0.3	V	V _{DD} =5.5V
V _{IH1}	(禁止 Schmitt 输 入)	V _{DD} /2	-	V _{DD} +0.3	V	V _{DD} =3. 0V
V _{ILS1}	NRST 负向门槛电 压(Schmitt 输入)	-0.3	-	0. 2V _{DD}	V	-
V_{IHS1}	NRST 正向门槛电 压(Schmitt 输入)	0.7V _{DD}	_	V _{DD} +0.3	V	-
$V_{\rm ILS2}$	PA, PB 负向门槛电 压(Schmitt 输入)	-0.3	_	0. 3V _{DD}	V	-
$V_{ m IHS2}$	PA, PB 正向门槛电 压 (Schmitt 输入)	0.7V _{DD}	-	V _{DD} +0.3	V	-
V_{OL1}	PA, PB 输出低电	_	0	-	V	-

PAI2/PAI3/PAI3/PAI3/PAI3/PAI3/PAI3/PAI3/PAI3	※ スパバルリスニー・ロ	1. 风后刚人时					••••
Name		平(除					
Name		PA12/PA13/PA14/P					
PA							
Vult 平 (路 PA12/PA13/PA14/P A15/PB2/PB3) Vm - V - V - V - PA12/PA13/PA14/P A15/PB2/PB3 输出 Kce+* Vm - V - - V - - V - - V - - V - - V - - V - - V - - V - - V - V -							
PAI2/PAI3/PAI4/P							
No.	V_{OH1}	1,4,	_	$V_{\scriptscriptstyle DD}$	_	V	_
PA12/PA13/PA14/P							
Va2 A15/PB2/PB3 输出		A15/PB2/PB3)					
低电平		PA12/PA13/PA14/P					
PAI2/PAI3/PAI4/P	V_{0L2}	A15/PB2/PB3 输出	_	0	_	V	-
PAI2/PAI3/PAI4/P		低电平					
Via A15/P81/PA13/PA14/PA13 - Via - 0.7 Via - 0.0 Setting the state of							输出高电平与负载有关, 如果是
Name							
15m	V_{OH2}		_	$V_{DD} - 0.7$	$V_{\scriptscriptstyle DD}$	V	
PBO/PBI/PBT/		高电平					
Description		DD0 /DD1 /DD7 /					11.0
Ion	$I_{ ext{OHO}}$		_	15	_	mA	$V_{DD}=5.0V$
PA, PB 源电流(推				_			
Laz	$I_{ ext{OH}1}$		_	8	_	mA -	$V_{DD}=5.0V$
PBO/PBI/PBT/ PBS/PA10/PA11	Т		_	1	_	mΔ	V=3 OV
The color The	1 OH2	挽输出)		T		ши	V DD 3. 0 V
I	т	PB0/PB1/PB7/		0.1			W -E OW
Ince	LOLO	PB8/PA10/PA11	_	21	_	mA	V _{DD} -5. UV
Ince	$I_{0l,1}$	除 Ino 中的口外的	-	12	-	mA	$V_{DD}=5.0V$
1022 挽输出 - 5 - mA		<u> </u>					
Tible Tib	I_{0L2}		_	5	-	mA	$V_{DD}=3.0V$
Ingle		1) U			_		V==5 0V 体能所有外设 体能
Inext 运行模式下的工作 电流能TRC 24MHz, HCLK=48MHz - 8 - mA Vn=5.0V, 关闭所有外设, 关闭 PLL Inext - 9 - mA Vn=3.3V, 使能所有外设, 使能 PLL Inext - 7 - mA Vn=5.0V, 使能所有外设, 使能 PLL Inext - 2.5 - mA Vn=5.0V, 关闭所有外设, 关闭 PLL Inext - 2.5 - mA Vn=5.0V, 关闭所有外设, 关闭 PLL Inext - 2.5 - mA Vn=5.0V, 关闭所有外设, 使能 PLL Inext - 2 - mA Vn=5.0V, 关闭所有外设, 使能 PLL Inext - 2 - mA Vn=5.0V, 关闭所有外设, 使能 PLL Inext - 7 - mA Vn=5.0V, 关闭所有外设, 使能 PLL Inext - 4 - mA Vn=5.0V, 关闭所有外设, 使能 PLL Inext - 4 - mA Vn=3.3V, 关闭所有外设, 使能 PLL Inext - 4 - mA Vn=3.3V, 关闭所有外设, 使能 PLL Inext - 4 </td <td>$I_{ ext{IDLE1}}$</td> <td></td> <td>_</td> <td>10</td> <td></td> <td>mA</td> <td></td>	$I_{ ext{IDLE1}}$		_	10		mA	
India						Y	
电流@IRC 24MHz	$I_{ ext{IDLE2}}$	运行模式下的工作	_	8		mA	
Iners HCLK=48MHz - 9 - mA No=3.3V. 使能所有外设,使能PLL Iners - 7 - mA No=3.3V. 关闭所有外设,使能PLL Iners - 3 - mA V _{00=5.0V.} 使能所有外设,使能PLL Iners - 2.5 - mA V _{00=5.0V.} 关闭所有外设,使能PLL Iners - 2.5 - mA V _{00=3.3V.} 使能所有外设,使能PLL Iners - 2 - mA V _{00=3.3V.} 关闭所有外设,使能PLL Iners - 7 - mA V _{00=3.3V.} 关闭所有外设,使能PLL Iners - 4 - mA V _{00=5.0V.} 关闭所有外设,使能所有外设,使能PLL Iners - 4 - mA V _{00=3.3V.} 使能所有外设,使能所有外设,使能PLL Iners - 4 - mA V _{00=3.3V.} 关闭所有外设,使能所有外设,使能用记。PLL Iners - 4 - mA V _{00=3.3V.} 关闭所有外设,使能所有外设,使能用记。PLL Iners - 4 - mA V _{00=3.3V.} 关闭所有外设,使能所有外设,使能用记。PLL Iners - - - - - - - -				Δ			
Index - 7 - mA V _w =3.3V, 关闭所有外设, 使能 PLL V _w =5.0V, 使能所有外设, 使能 PLL V _w =5.0V, 使能所有外设, 使能 PLL V _w =5.0V, 关闭所有外设, 使能 PLL V _w =5.0V, 关闭所有外设, 关闭 PLL V _w =5.0V, 关闭所有外设, 关闭 PLL V _w =3.3V, 使能所有外设, 使能 PLL V _w =3.3V, 使能所有外设, 使能 PLL V _w =3.3V, 使能所有外设, 使能 PLL V _w =3.3V, 关闭所有外设, 使能 PLL V _w =5.0V, 使能所有外设, 使能 PLL V _w =5.0V, 使能所有外设, 关闭 PLL V _w =5.0V, 使能所有外设, 使能 PLL V _w =6.5 Indias - 4 - mA V _w =3.3V, 使能所有外设, 使能 PLL V _w =6.5, 0V, 关闭所有外设, 使能 PLL V _w =6.5, 0V, 使能所有外设, 使能 PLL V _w =6.5, 0V, 使能所有外设, 使能 PLL V _w =6.5, 0V, 使能所有外设, 使能 PLL V _w =6.5, 0V, 关闭所有外设, 使能 PLL V _w =6.5, 0V, 关闭所有外设, V _w =6.5, 0V, 关闭所有外设 Indias 运行模式下的工作 电流间IRC 10KHz, HCLK=10KHz - 110 - uA V _w =6.0V, 关闭所有外设 Indias 运行模式下的工作 电流间IRC 10KHz, HCLK=10KHz - 105 - uA V _w =6.0V, 关闭所有外设 Indias - 92 - uA V _w =3.3V, 关闭所有外设 Indias - 90 - uA V _w =6.0V, 关闭所有外设 Indias - 12 - uA V _w =6.0V, M _w =6.0V,	T.,,,,,,			Q	_	mΔ	V _{DD} =3.3V, 使能所有外设, 使能
Tible Tib	1 IDLE3	HOLK TOMHZ				ши	PLL
IDBLES - 3 - PLL IDBLES 运行模式下的工作电流@IRCSMHz,HCLK=8MHz - 2.5 - mA V ₁₀₀ =5. 0V,使能所有外设,关闭 PLL IDBLES - 2.5 - mA V ₁₀₀ =5. 0V,关闭所有外设,使能 PLL IDBLES - 2 - mA V ₁₀₀ =3. 3V,关闭所有外设,使能 PLL IDBLES - 7 - mA V ₁₀₀ =5. 0V,使能所有外设,使能 PLL IDBLES - 7 - mA V ₁₀₀ =5. 0V,使能所有外设,使能 PLL IDBLES - 4 - mA V ₁₀₀ =5. 0V,使能所有外设,使能 PLL IDBLES - 4 - mA V ₁₀₀ =5. 0V,使能所有外设,使能 PLL IDBLES - - 4 - mA V ₁₀₀ =5. 0V,使能所有外设,使能 PLL IDBLES - 4 - mA V ₁₀₀ =5. 0V,使能所有外设,使能 PLL IDBLES - - 110 - uA V ₁₀₀ =5. 0V,使能所有外设,使能 PLL IDBLES - - - - - uA V ₁₀₀ =5. 0V,使能所有外设 IDBLES - - - - - -	т			7	_	A	V _{DD} =3.3V, 关闭所有外设, 使能
Tidles	1 IDLE4		_	1		mA	PLL
Tidles					_		V _{nn} =5 0V. 使能所有外设. 使能
Indes 运行模式下的工作电流@IRC8MHz, HCLK=8MHz - 2.5 - mA Vw=5.0V, 关闭所有外设, 关闭 所有外设, 关闭 PLL Indes - 2.5 - mA Vw=3.3V, 使能所有外设, 使能 PLL Indes - 2 - mA Vw=3.3V, 关闭所有外设, 使能 PLL Indes - 7 - mA Vw=5.0V, 关闭所有外设, 使能 PLL Indes - 4 - mA Vw=5.0V, 关闭所有外设, 使能 PLL Indes - 4 - mA Vw=3.3V, 使能所有外设, 使能 PLL Indes - 4 - mA Vw=3.3V, 关闭所有外设, 使能 PLL Indes - 4 - mA Vw=3.3V, 关闭所有外设, 使能 PLL Indes - 110 - uA Vw=5.0V, 使能所有外设, 使能 PLL Indes - 110 - uA Vw=5.0V, 使能所有外设 Indes - 105 - uA Vw=5.0V, 关闭所有外设 Indes + - 105 - uA Vw=5.0V, 关闭所有外设 Indes + - 92 - uA Vw=3.3V, 关闭所有外设 Reputation	I _{IDLE5}			3		mA	
Tidles Edf 模式下的工作		\wedge	3/				
IDLET 电流 LRC SMHz , HCLK = SMHz	I_{IDLE6}	运行模式下的工作	-	2.5	_	mA	
IDDLE7 HCLK=8MHz - 2.5 - mA Nm=3.3 V, 使能所有外设,使能PLL IDDLE9 - 2 - mA Vm=3.3 V, 关闭所有外设,使能PLL IDDLE9 - 7 - mA Vm=5.0V,使能所有外设,使能PLL IDDLE9 - 4 - mA Vm=5.0V,关闭所有外设,失闭所有外设,失闭原有外设,失闭原有外设,失闭原有外设,失闭所有外设,失闭原有外设,大闭原有外设,大闭原有外设,大闭原有外设,大阳、有外边,大阳、大阳、大阳、大阳、大阳、大阳、大阳、大阳、大阳、大阳、大阳、大阳、大阳、大		电流@IRC8MHz,					
IDLES - 2 - mA V ₀₀ =3. 3V, 关闭所有外设, 使能 PLL IDLES - 7 - mA V ₀₀ =5. 0V, 使能所有外设, 使能 PLL IDLES - 4 - mA V ₀₀ =5. 0V, 关闭所有外设, 关闭 PLL IDLES - 4 - mA V ₀₀ =5. 0V, 关闭所有外设, 关闭 Ff 外设, 关闭 Ff 外设, 关闭 Ff 外设, 使能 PLL IDLES - 4 - mA V ₀₀ =3. 3V, 关闭 Ff 外设, 使能 PLL IDLES - 4 - mA V ₀₀ =3. 3V, 关闭 Ff 外设, 使能 PLL IDLES - 110 - uA V ₀₀ =5. 0V, 使能 所有外设, 使能 PLL IDLES - 110 - uA V ₀₀ =5. 0V, 关闭 Ff 外设, 使能 Ff 外设 IDLES - 105 - uA V ₀₀ =5. 0V, 关闭 Ff 外设 IDLES - 0 - uA V ₀₀ =3. 3V, 关闭 Ff 外设 IDLES - 0 - uA V ₀₀ =5. 0V, 所有 振荡器和模拟模 IDLES - 0 - uA V ₀₀ =5. 0V, 所有 ff 小设 IDLES - 0 - uA V ₀₀ =5. 0V, 所有 ff 小设 IDLES	I IDLE7		-	2.5	_	mA	
Indes — 2 mA PLL Indes — 7 — mA Vop=5.0V, 使能所有外设,使能 PLL Indes — 4 — mA Vop=5.0V, 关闭所有外设,关闭 PLL Indes — 4 — mA Vop=3.3V, 使能所有外设,使能 PLL Indes — 4 — mA Vop=3.3V, 关闭所有外设,使能 PLL Indes — 110 — uA Vop=5.0V,使能所有外设 PLL Indes — 110 — uA Vop=5.0V,使能所有外设 PLL Indes — 105 — uA Vop=5.0V,使能所有外设 PLL Indes — 105 — uA Vop=3.3V,关闭所有外设 PLL Indes — 92 — uA Vop=3.3V,关闭所有外设 PLL Ippid 深度睡眠模式 2 下 传机 电流 (不关 — 12 — uA Vop=5.0V,所有振荡器和模拟模 中、以向=5.0V,所有振荡器和模拟模 块关闭,IO 不接负载 块关闭,IO 不接负载 中、 12 — uA Vop=5.0V,所有、所有、以向	- IDEE1						
IIDLEIS — 7 — mA Vop=5.0V,使能所有外设,使能PLL IIDLEIO 运行模式下的工作电流@IRC 24MHz,HCLK=24MHz — 4 — mA Vop=5.0V,关闭所有外设,关闭 PLL IIDLEIS — 6.5 — mA Vop=3.3V,使能所有外设,使能 PLL IIDLEIS — 4 — mA Vop=3.3V,关闭所有外设,使能 PLL IIDLEIS — 110 — uA Vop=5.0V,使能所有外设 PLL IIDLEIS — 105 — uA Vop=5.0V,关闭所有外设 PLL IIDLEIS — 105 — uA Vop=3.3V,使能所有外设 PLL IIDLEIS — 92 — uA Vop=3.3V,关闭所有外设 PLL IPWDI 深度睡眠模式 2 下 持机 电流 (不关 — 12 — uA Vop=5.0V,所有振荡器和模拟模 块关闭,IO 不接负载	т	Y /_ X _ '	_	9	_	m A	V _{DD} =3.3V, 关闭所有外设, 使能
IDLE9 — 7 — PLL IDLE10 运行模式下的工作电流@IRC 24MHz, HCLK=24MHz, HCLK=24MHz — 4 — mA V ₁₀₀ =5.0V, 关闭所有外设, 关闭所有外设, 使能 PLL IDLE11 — 4 — mA V ₁₀₀ =3.3V, 使能所有外设, 使能 PLL IDLE13 — — 4 — mA V ₁₀₀ =3.3V, 关闭所有外设, 使能 PLL IDLE14 — — — uA V ₁₀₀ =5.0V, 使能所有外设 IDLE14 — — — uA V ₁₀₀ =5.0V, 关闭所有外设 IDLE15 — — — uA V ₁₀₀ =3.3V, 使能所有外设 IDLE16 — — — uA V ₁₀₀ =3.3V, 关闭所有外设 IPWD1 深度睡眠模式 2 下, 持 机 电 流 (不 关 — — 12 — uA V ₁₀₀ =5.0V, 所有振荡器和模拟模块关闭, IO 不接负载	1 IDLE8			2		IIIA	PLL
IDLE9 — 7 — PLL IDLE10 运行模式下的工作电流@IRC 24MHz, HCLK=24MHz, HCLK=24MHz — 4 — mA V ₁₀₀ =5.0V, 关闭所有外设, 关闭所有外设, 使能 PLL IDLE11 — 4 — mA V ₁₀₀ =3.3V, 使能所有外设, 使能 PLL IDLE13 — — 4 — mA V ₁₀₀ =3.3V, 关闭所有外设, 使能 PLL IDLE14 — — — uA V ₁₀₀ =5.0V, 使能所有外设 IDLE14 — — — uA V ₁₀₀ =5.0V, 关闭所有外设 IDLE15 — — — uA V ₁₀₀ =3.3V, 使能所有外设 IDLE16 — — — uA V ₁₀₀ =3.3V, 关闭所有外设 IPWD1 深度睡眠模式 2 下, 持 机 电 流 (不 关 — — 12 — uA V ₁₀₀ =5.0V, 所有振荡器和模拟模块关闭, IO 不接负载	_			_	_		V _{DD} =5.0V, 使能所有外设, 使能
IIDLEIO 运行模式下的工作电流@IRC 24MHz, HCLK=24MHz - 4 - mA VDD=5. OV, 关闭所有外设,关闭 PLL IIDLEII - 6.5 - mA VDD=3. 3V, 使能所有外设,使能 PLL IIDLEIS - 4 - mA VDD=3. 3V, 关闭所有外设,使能 PLL IIDLEIS - 110 - uA VDD=5. OV, 使能所有外设 IIDLEIS + 105 - uA VDD=5. OV, 关闭所有外设 IIDLEIS + 105 - uA VDD=5. OV, 关闭所有外设 IIDLEIS + 92 - uA VDD=3. 3V, 使能所有外设 IPWDI 深度睡眠模式 2 下,待 机 电 流 (不 关 - 12 - uA VDD=5. OV, 所有振荡器和模拟模块块关闭, IO 不接负载	I _{IDLE9}		_	7		mA	
Tide		- X			_		
IIDLEII 电流@IRC 24MHz, HCLK=24MHz - 6.5 - mA V _{DD} =3.3V, 使能所有外设,使能 PLL IIDLEI3 - 4 - mA V _{DD} =3.3V, 关闭所有外设,使能 PLL IIDLEI3 - 110 - uA V _{DD} =5.0V, 使能所有外设 IIDLEI3 - 105 - uA V _{DD} =5.0V, 关闭所有外设 IIDLEI5 HCLK=10KHz - 92 - uA V _{DD} =3.3V, 关闭所有外设 IIDLEI6 - 90 - uA V _{DD} =3.3V, 关闭所有外设 IPWDI 深度睡眠模式 2 下 持机电流(不关 - 12 - uA V _{DD} =5.0V, 所有振荡器和模拟模块块闭, IO 不接负载	I IDLE10		_	4		mA	
IDLEII HCLK=24MHz - 6.5 mA PLL IDLEIS - 4 - mA VD=3.3V, 关闭所有外设, 使能 PLL IDLEIS - 110 - uA VD=5.0V, 使能所有外设 IDLEIS - 105 - uA VD=5.0V, 关闭所有外设 IDLEIS HCLK=10KHz - 92 - uA VD=3.3V, 使能所有外设 IDLEIS - 90 - uA VD=3.3V, 关闭所有外设 IPWDI 深度睡眠模式 2 下 持机电流(不关 - 12 - uA VD=5.0V, 所有振荡器和模拟模块块闭, IO不接负载		电流@IRC 24MHz,					
IIDLE13 — 4 — mA V _{DD} =3. 3V, 关闭所有外设,使能PLL IIDLE13 — 110 — uA V _{DD} =5. 0V, 使能所有外设 IIDLE14 — 105 — uA V _{DD} =5. 0V, 关闭所有外设 IIDLE15 — 92 — uA V _{DD} =3. 3V, 使能所有外设 IIDLE16 — 90 — uA V _{DD} =3. 3V, 关闭所有外设 IPWD1 深度睡眠模式 2 下 持机电流(不关 — 12 — uA V _{DD} =5. 0V, 所有振荡器和模拟模块块闭, IO 不接负载	I IDLE11	HCLK=24MHz	_	6. 5	_	mA	
IDLEIS — 4 mA PLL IDLEIS — 110 — uA V _{DD} =5. 0V, 使能所有外设 IDLEI4 — 105 — uA V _{DD} =5. 0V, 关闭所有外设 IDLEI5 — 92 — uA V _{DD} =3. 3V, 使能所有外设 IDLEI6 — 90 — uA V _{DD} =3. 3V, 关闭所有外设 IPWDI 深度睡眠模式 2 下 持 机 电 流 (不 关 — 12 — uA V _{DD} =5. 0V, 所有振荡器和模拟模块失闭, IO 不接负载							
Indicated 上面 PLL Indicated 运行模式下的工作电流@IRC 10KHz, HCLK=10KHz - 110 - uA Void=5.0V,使能所有外设 - 105 - uA Void=5.0V,关闭所有外设 - 92 - uA Void=3.3V,使能所有外设 Indicated - 90 - uA Void=3.3V,关闭所有外设 Ipwid 深度睡眠模式 2 下 待机电流(不关 - 12 - uA Void=5.0V,所有振荡器和模拟模块关闭,IO不接负载	I IDI F12		_	4	_	mA	
IDLE14 E行模式下的工作 电流@IRC 10KHz, HCLK=10KHz - 105 - uA V _{DD} =5. 0V, 关闭所有外设 uA IDLE15 HCLK=10KHz - 92 - uA V _{DD} =3. 3V, 使能所有外设 uA IDLE16 - 90 - uA V _{DD} =3. 3V, 关闭所有外设 V _{DD} =5. 0V, 所有振荡器和模拟模 块关闭, IO 不接负载							
IDLEIS 电流@IRC 10KHz, HCLK=10KHz - 105 - uA V _{DD} =5. 0V, 关闭所有外设 IDLEIS HCLK=10KHz - 92 - uA V _{DD} =3. 3V, 使能所有外设 IPIDI 深度睡眠模式 2 下 待 机 电 流 (不 关) - 12 - uA V _{DD} =5. 0V, 关闭所有外设 WDD=5. 0V, 所有振荡器和模拟模块关闭, IO 不接负载	I _{IDLE13}	·	_	110	-	uA	
IDLEIS 电流 GIRC TORHZ, HCLK=10KHz - 92 - uA V _{DD} =3. 3V, 使能所有外设 IDLEIG 90 - uA V _{DD} =3. 3V, 关闭所有外设 IPWDI 深度睡眠模式 2 下 待 机 电 流 (不 关 - 12 - uA V _{DD} =5. 0V, 所有振荡器和模拟模块	$I_{ ext{IDLE}14}$			105	-	uA	VDD=5.0V, 关闭所有外设
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			_	92	_	uA	
IPWD1 深度睡眠模式 2 下 待 机 电 流 (不 关 - 12 - uA V _{DD} =5. OV, 所有振荡器和模拟模 块关闭, IO 不接负载		HCLV=10KHZ	-	90	-	uA	
待 机 电 流 (不 关		深度睡眠模式り下					
	$I_{ ext{PWD1}}$		_	12	_	uA	
1PHD2	Т		_	0	_	11 Λ	
	⊥ PWD2	נטטו	_	L O	_	uЛ	YDD 5.57,/71 日 JK / 77 66 714 (天 15/1)

						块关闭, I0 不接负载
$I_{ ext{PWD3}}$	掉电模式下待机电 流	ı	2. 5	ı	uA	V _{DD} =5.0V, 所有振荡器和模拟模块关闭, IO 不接负载
$ m I_{PWD4}$	(关掉 LDO)	ı	1.5	ı	uA	V _{DD} =3.3V, 所有振荡器和模拟模块关闭,IO不接负载

7.3 交流电气特性

7.3.1 内部 24/8MHz RC 振荡器

表 7-3

符号	参数	最小值	典型值	最大值	单位	测试条件
	中心频率	_	24	-	MHz	$T_A=25$ °C, $V_{DD}=5V$
F _{HRC}	中心频率	-	8	-	MHz	$T_A=25$ °C, $V_{DD}=5V$
Γ HRC	拉班立 C	-1	-	+1	%	$T_A=25$ °C, $V_{DD}=5V$
	校准之后	-2	-	+2	%	$T_A = -40^85$ °C, VDD=2.5°5.5V
$I_{ ext{HRC}}$	工作电流		400		uA	T _A =25 °C, V _{DD} =5V

7.3.2 内部 10KHz RC 振荡器

表 7-4

符号	参数	最小值	典型值	最大值	单位	测试条件
V_{LRC}	电压	2.5	-	5. 5	V	_
	中心频率	- <	10	_	KHz	_
F_{LRC}	校准之后	-10	K x	+10	%	$T_A=25$ °C, $V_{DD}=5V$
	仅在之后	-30	_	+30	%	$T_A = -40^85 \text{ °C}, \text{ VDD} = 2.5^5.5V$
${ m I}_{ m LRC}$	工作电流		2	-	uA	$T_A=25$ °C, $V_{DD}=5V$

7.3.3 PLL 特性

表 7-5

符号	参数	最小值	典型值	最大值	单位	测试条件
D	PLL 输入时钟	2	6	24	MHz	T _A =25 °C
F _{PLL_IN}	PLL 输入时钟占空比	40	_	60	%	T _A =25 °C
F _{PLL_OUT}	PLL 倍频输出时钟	16	_	48	MHz	T _A =25 °C
T_{LOCK}	PLL 锁定时间	_	-	200	us	T _A =25 °C
Jitterpll	时钟抖动	-	_	300	ps	T _A =25 °C

7.3.4 I2C 特性

表 7-6 I2C 特性

符号	参数	标准	模式	快速様	注	单位
175	少 数	最小值	最大值	最小值	最大值	半世
V_{DD}^{-1}	工作电压	1.62	5. 5	1.62	5. 5	V
F _{SCL}	SCL 时钟频率	0	100	0	400	KHz
T _{HD} :STA	START 条件的保持时间	4	ı	0.6	_	μs
T_{LOW}	SCL 的低电平脉宽	4. 7	I	1.3		μs
$T_{\scriptsize ext{HIGH}}$	SCL 的高电平脉宽	4	_	0.6	_	μs
T _{SU} :STA	重复 START 信号的建立时间	4. 7	ı	0.6	_	μs
T _{HD} : DAT	I2C 总线设备的数据保持时	0	3. 45	0	0. 9	μs

	间					
T _{SU} : DAT	数据建立时间	250	_	100	_	ns
$T_{\rm r}$	SCL 和 SDA 信号的上升时间	_	1000	20+0. 1Cb ²	300	ns
T_{f}	SCL 和 SDA 信号的下降时间	_	300	20+0. 1Cb	300	ns
T _{SU} :STO	STOP 条件的建立时间	4	_	0.6	_	μs
$T_{ ext{BUF}}$	在 STOP 和 START 条件之间 的总线空闲时间	4. 7	_	1.3	_	μs
T_{SP}	可以被输入滤波滤掉的毛刺 脉宽	N/A	N/A	0	50	μs

注 1: 为 I2C 总线上拉电阻的电压,不一定要等于芯片电压,如芯片电源电压为 5V, I2C 总线上拉电阻电压可为 1.8V。

图 7-1 I2C 标准和快速模式时序定义

7.3.5 Flash 特性

表 7-7

符号	参数	最小值	典型值	最大值	单位	测试条件
T_{ERASE}	Flash Block 擦除时间	4	4.5ms	5	ms	-40 [~] 85 ° C
Twrite	Flash Word (32bit) 写时间			60	us	-40 [~] 85 °C
TE	Flash 擦写次数			20000	次	-40 [~] 85 °C
T_{DR}	Flash retention	100		_	years	25 ° C

7.4 模拟量特性

7.4.112bit ADC

表 7-8

符号	参数	最小值	典型值	最大值	单位	测试条件
$V_{\scriptscriptstyle DD}$	工作电压	2. 5	5	5. 5	V	-40 [~] 85 °C
$V_{\rm IN}$	模拟输入范围	0	_	VDD	V	_
${ m I}_{ m ADC}$	ADC 工作电流	-	0.75	-	mA	VDD=5V(VDD作为参考电压)
Tconv	ADC 转换时间	5	_	-	us	VDD=5V
DNL	微分非线性	-2	±1	2	LSB	VDD=5V

	积分非线性(全差分模式) INL	-3	-	3	LSB	全差分模式 VREF=0. 5V@[0- 60mV], VDD=5V
		-2	-	2	LSB	全差分模式 VREF=1V@[0- 60mV] , VDD=5V
INL		-4	-	4	LSB	全差分模式,参考电压不能选 VDD,,VDD=5V
		-7	_	7	LSB	单端模式 VREF=0.5V, VDD=5V
	积分非线性(单端模式)	-5	-	5	LSB	单端模式 VREF 为其他电压,, VDD=5V
E	全差分模式偏移误差	_	±2	-	LSB	VDD=5V
E ₀	单端模式偏移误差	1	±3	_	LSB	VDD=5V
$E_{\scriptscriptstyle G}$	增益误差	-4	_	+4	LSB	VDD=5V

外部最大输入阻抗计算公式:

$$R_{ain} < \frac{T_s}{9C_{ADC}} - R_{ADC}$$

其中 RADC=2.3k 和 CADC=17.5pF 分别指 ADC 内部的采样电阻和采样电容。

采样时间 Ts/us	2	4	8	16
外部阻抗	10.5	92 1	18 5	99. 3
Rain/k	10. 5	25. 1	40. 5	99. 3

注释:该表格由设计保证,未经测试验证。(如果输入口选择 AINP7、AINP7、AINP8、AINN8 其中一个,R_{ADC}=3.3k)

7.4.211bit DAC

表 7-9

符号	参数	最小值	典型值	最大值	单位	测试条件
VDD	工作电压	2.5	5	5. 5	V	-40 [~] 85 °C
I _{DAC}	DAC 工作电流	-	0. 75	_	mA	VDD=5V(VDD作为参考电压)
T_{CONV}	DAC 转换速率	5	-		us	VDD=5V
RLOAD	电阻负载	5			kΩ	开启 BUFFER
CLOAD	电容负载		'	50	pF	开启 BUFFER
DAC_OUT min	DAC 最小输出	0.2	-		V	开启 BUFFER
DAC_OUT max	DAC 最大输出	-	-	VDD- 0. 2	V	开启 BUFFER
Tsettling	DAC 建立时间	-	3	4	uS	CLOAD≤50pF, RLOAD≥5K 10BIT 输入码从最小到最大跳 变,到 DAC_OUT 稳定在最终值± 1LSB 的时间
Update rate	刷新率	-		200	KS/s	CLOAD≤50pF, RLOAD≥5K 输入码变化 1LSB, DAC_OUT 变化
Twakeup	唤醒时间	-	6. 5	10	uS	CLOAD≤50pF, RLOAD≥5K DAC 从关闭到输出与输入码相对 应值
DNL	微分非线性	-1	ı	1	LSB	_
INL	积分非线性	-4	ı	4	LSB	-
E_{G}	增益误差	-0.5	_	-0.5	%	_

7.4.3 比较器

表 7-10

符号	参数	最小值	典型值	最大值	单位	测试条件
V_{CMP}	工作电压	2.5	5	5. 5	V	-40 °C ∼+85 °C
TA	温度	-40	25	85	° C	ı
$V_{\rm IN}$	输入电压范围	0	1	VDD	V	1
Icomp	工作电流		60		uA	$VDD=2.5V^{\sim}5V$
PSRR	电源电压抑制比	-	60	-	dB	_
Tresp	响应时间	1	1	10	uS	VDD=2.5V~5V
CMRR	共模抑制比	ı	60	ı	dB	-
CMP LSB	最小分辨率	1	2	1	mV	-
V_{offset}	失调电压	-2	ı	2	mV	$2.5V^{\sim}5.5V$, -40 °C $\sim +85$ °C

7.4.4 内部参考电压

表 7-11

符号	参数	最小值	典型值	最大	单	测试条件
				值	位	
		-1%	1. 0	+1%	V	VDD=5. 0V, T _A =25 °C
		-2%	1. 0	-2%	V	VDD=2. 5~5. 5V, T _A =-40~85 °C
		-1%	2. 0	+1%	V	VDD=5. 0V, T _A =25 °C
		-2%	2. 0	-2%	V	VDD=2.5°5.5V, T _A =-40°85 °C
$V_{\scriptscriptstyle RIN}$	内部参考电压	-1%	3. 0	+1%	V	VDD=5. 0V, T _A =25 °C
		-2%	3. 0	-2%	V	VDD=3.3~5.5V, T _A =-40~85 °C
		-1%	4.0	+1%	V	VDD=5. 0V, T _A =25 °C
		-2%	4.0	-2%	V	VDD=4.3~5.5V, T _A =-40~85 °C
		_	VDD	-	V	VDD=5. 0V, T _A =25 °C
		0.00	0.00	0.05	V	VDD>2. 7V
		0. 275	0. 325	0.38	V	VDD>2. 7V
		0. 55	0. 60	0.65	V	VDD>2. 7V
		0.85	1. 00	1. 15	V	VDD>2. 7V
CMPO VREF	比较器 0 参考电	1. 80	2. 00	2. 20	V	VDD>2. 7V
CMLO_AKEL	压	2. 40	2. 70	3.00	V	VDD>3. 2V
		2. 70	3. 00	3.30	V	VDD>3. 5V
		3. 00	3. 30	3.60	V	VDD>3. 8V
		1.00	1. 20	1.40	V	VDD>2. 7V
		2. 25	2. 40	2.65	V	VDD>2. 9V

注: VDD 需比参考电压大 0.5V 才能保证参考电压的精度。

7.4.5 LDO 规格和 Power 管理

表 7-12

	符号	参数	最小值	典型值	最大值	单位	测试条件
\forall	V_{DD}	输入电压	2.5	-	5. 5	V	_
	V _{LDO}	输出电压	1.35	1.5	1.65	V	-
	T_A	工作温度	-40	25	85	° C	_
	C_{LDO}	电容	-	4. 7	-	uF	$R_{ESR} < 1 \Omega$

注: 为保证电源稳定, 要在 LDO 和最近的 VSS 之间接一颗 4.7uF 电容。

7.4.6 欠压复位

表 7-13

符号	参数	最小值	典型值	最大值	单位	测试条件
VDD	工作电压	0	-	5. 5	V	_
TA	工作温度	-40	25	85	° C	-

I_{BOD}	静态电流	-	1	140	uА	VDD=5.5V
		1.65	1.8	1. 95	V	T _A =-40~85 °C
		1.85	2.0	2. 15	V	$T_{A} = -40^{85} C$
		2.2	2.4	2.6	V	T _A =-40~85 °C
V	欠压电压	2.5	2.7	2.9	V	$T_{A} = -40^{85} C$
V_{BOD}	(上升沿)	2.8	3. 0	3. 2	V	$T_{A} = -40^{85} C$
		3. 3	3.6	3. 9	V	$T_{A} = -40^{85} C$
		3.6	4.0	4.4	V	$T_{A} = -40^{85} C$
		6.0	6. 5	7.0	V	$T_{A} = -40^{85} C$
		1.65	1.8	1. 95	V	$T_{A} = -40^{85} C$
		1.85	2.0	2. 15	V	$T_{A} = -40^{85} C$
		2.2	2.4	2.6	V	$T_{A} = -40^{85} C$
V	欠压电压	2.5	2. 7	2.9	V	$T_{A} = -40^{85} C$
V_{BOD}	(下降沿)	2.8	3. 0	3. 2	V	$T_{A} = -40^{85} C$
		3. 3	3.6	3. 9	V	T _A =-40~85 °C
		3.6	4.0	4.4	V	T _A =-40~85 °C
		6.0	6. 5	7. 0	V	$T_{A} = -40^{\circ}85 ^{\circ}C$

7.4.7 上电复位

表 7-14

符号	参数	最小值	典型值	最大值	单位	测试条件
T_{A}	工作温度	-40	25	85	° C	-
$V_{\text{POR_th}}$	复位释放阈值电压	_	1.6	-	V	_
$V_{\text{POR_start}}$	上电复位的启动电压	_	_	100	mV	_
RR _{VDD}	上电复位的电压上升率	0.025	- /	1	V/ms	_
$T_{\texttt{POR_Dealy}}$	上电复位延迟	20ms		120ms		
TPOR	上电复位需要电压保持	0. 5	- - >	_	ms	_
	在 V _{POR_start} 的最短时间	0.0			IIIS	

图 7-2

7.4.8 Type-C 特性

 $(VDD = 5V, T_A = 25$ °C, 如无其他说明则都是此条件)

表 7-15

符号	参数	最小值	典型值	最大值	单位	测试条件
VDD	工作电压范围	2. 5	5	5. 5	V	25 °C
עעי	工作电压范围	2. 7	5	5. 5	V	-40 °C ~+85 °C
Dro	CC1、CC2	73	80	87	uА	VDD>3V
Rp	001, 002	165	180	195	uA	VDD>3V

聚点滴之芯·成浩瀚之海

		303	330	357	uА	VDD>3V
Rd	下拉电阻	4.6	5. 1	5. 6	KΩ	$VDD=2.7V^{\sim}5V$
$T_{\tt settle_pd}$	PD 方波的上升和 下降时间	300	-	1300	ns	CC 口建议接 330pf 电容

7.4.9 QC3.0 特性

 $(VDD = 5V, T_A = 25^{\circ}C, 如无其他说明则都是此条件)$

表 7-16

符号	参数	最小值	典型值	最大值	单位	测试条件
VDD	工作电压范围	2. 5	5	5. 5	V	25 °C
עטיי	工厂电压范围	2. 7	5	5. 5	V	-40 °C ~+85 °C
RDP	DPn 下拉电阻	300	500	1500	KΩ	
RDM	DMn 下拉电阻	16	18	20	KΩ	
	DPn 和 DMn 短接电 阻	-	20	40	Ω	

8封装信息

8.1 QFN24-PIN(4mm*4mm*0.55, e=0.5mm)

SIDE VIEW

图 8-1

表 8-

CAMDOLC	MIN	NOR	MAX
SYMBOLS		(mm)	
A	0. 50	0. 55	0.60
A1	0.00	0.02	0. 05
b	0. 20	0. 25	0. 30
c	0. 10	0. 15	0. 20
D	3. 90	4. 00	4. 10
D2	2. 70	2. 80	2. 90
е		0. 50BSC	
Ne		2. 50BSC	
Nd		2. 50BSC	
E	3. 90	4. 00	4. 10
E2	2. 70	2. 80	2. 90
L	0. 35	0. 40	0. 45
h	0.30	0. 35	0. 40

8.2 QFN32 (5mm*5mm*0.75mm, e=0.5mm)

BOTTOM VIEW

图 8-2

表 8-2

SYMBOLS	MIN	NOR	MAX			
SIMBOLS	(mm)					
A	0.70 0.75 0.80					
A1	0.00	0.02	0. 05			
b	0. 20	0. 25	0. 30			
b1		0. 16REF				
c	0. 15	0. 20	0. 25			
D	4. 90	5. 00	5. 10			
D2	3. 40	3. 50	3. 60			
е		0. 50BSC				
Ne		3. 50BSC				
Nd		3. 50BSC				
E	4. 90	5. 00	5. 10			
E2	3. 40	3. 50	3. 60			
L	0. 25	0.30	0. 35			
h	0. 30	0.35	0. 40			

- 9 产品命名规则
 - 9.1 产品型号说明

9.2 产品印字说明

芯片正面印字一般有3行:

第一行为公司名称,为CHIPSEA。

第二行为产品型号。对于一些小尺寸封装,会对产品型号进行缩减。

第三行为日期码。从左端起算,前两位为公历年号后两位;第三第四位为本年度日历周数,不足两位时左端补 0;最后三位为产品随机号。

例如, CS32G020K8U6 的印字如下:

CHIPSEA G020K8U6 YYWWXXX

10 订货信息

表 10-1

产品型号	封装	环保 RoHS	工作温度	包装
CS32G020K8U6	QFN32	Yes	-40 °C ~85 °C	托盘装
CS32G020E8U6	QFN24	Yes	-40 °C ~85 °C	托盘装