

Silicon Power Transistors

MJW21193 (PNP) MJW21194 (NPN)

The MJW21193 and MJW21194 utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners and linear applications.

Features

- Total Harmonic Distortion Characterized
- High DC Current Gain
- Excellent Gain Linearity
- High SOA
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	250	Vdc
Collector-Base Voltage	V _{CBO}	400	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector-Emitter Voltage - 1.5 V	V _{CEX}	400	Vdc
Collector Current - Continuous	I _C	16	Adc
Collector Current - Peak (Note 1)	I _{CM}	30	Adc
Base Current - Continuous	Ι _Β	5.0	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	P_{D}	200 1.43	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	– 65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width = 5 μ s, Duty Cycle \leq 10%.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.7	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	40	°C/W

1

16 AMPERES COMPLEMENTARY SILICON POWER TRANSISTORS 250 VOLTS, 200 WATTS

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MJW21193G	TO-247 (Pb-Free)	30 Units/Rail
MJW21194G	TO-247 (Pb-Free)	30 Units/Rail

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•	-	
Collector–Emitter Sustaining Voltage $(I_C = 100 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	250	_	-	Vdc
Collector Cutoff Current $(V_{CE} = 200 \text{ Vdc}, I_B = 0)$	I _{CEO}	_	-	100	μAdc
Emitter Cutoff Current $(V_{CE} = 5 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	-	100	μAdc
Collector Cutoff Current (V _{CE} = 250 Vdc, V _{BE(off)} = 1.5 Vdc)	I _{CEX}	_	-	100	μAdc
SECOND BREAKDOWN					
Second Breakdown Collector Current with Base Forward Biased $(V_{CE} = 50 \text{ Vdc}, t = 1 \text{ s (non-repetitive)} $ $(V_{CE} = 80 \text{ Vdc}, t = 1 \text{ s (non-repetitive)} $	I _{S/b}	4.0 2.25	- -	_ _	Adc
ON CHARACTERISTICS					1
DC Current Gain ($I_C = 8$ Adc, $V_{CE} = 5$ Vdc) ($I_C = 16$ Adc, $I_B = 5$ Adc)	h _{FE}	20 8	- -	80 -	
Base–Emitter On Voltage ($I_C = 8$ Adc, $V_{CE} = 5$ Vdc)	V _{BE(on)}	-	-	2.2	Vdc
Collector–Emitter Saturation Voltage ($I_C = 8$ Adc, $I_B = 0.8$ Adc) ($I_C = 16$ Adc, $I_B = 3.2$ Adc)	V _{CE(sat)}	- -	- -	1.4 4	Vdc
DYNAMIC CHARACTERISTICS					
$\label{eq:total Harmonic Distortion at the Output} V_{RMS} = 28.3 \text{ V, } f = 1 \text{ kHz, } P_{LOAD} = 100 \text{ W}_{RMS} & h_{FE} \\ \text{unmatcher} \\ \text{(Matched pair h}_{FE} = 50 \ @ 5 \text{ A/5 V)} & h_{FE} \\ \text{matched} \\$	i	-	0.8	-	%
Current Gain Bandwidth Product (I _C = 1 Adc, V _{CE} = 10 Vdc, f _{test} = 1 MHz)	f _T	4	-	-	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f_{test} = 1 \text{ MHz})$	C _{ob}	-	-	500	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Figure 1. Typical Current Gain Bandwidth Product

Figure 2. Typical Current Gain Bandwidth Product

TYPICAL CHARACTERISTICS

NPN MJW21194

1000

100

100

100

100

100

10 100

10 100

10 COLLECTOR CURRENT (AMPS)

Figure 3. DC Current Gain, V_{CE} = 20 V

Figure 4. DC Current Gain, V_{CE} = 20 V

Figure 5. DC Current Gain, V_{CE} = 5 V

Figure 6. DC Current Gain, V_{CE} = 5 V

Figure 7. Typical Output Characteristics

Figure 8. Typical Output Characteristics

TYPICAL CHARACTERISTICS (continued)

Figure 9. Typical Saturation Voltages

Figure 10. Typical Saturation Voltages

Figure 11. Typical Base-Emitter Voltage

Figure 12. Typical Base-Emitter Voltage

Figure 13. Active Region Safe Operating Area

Figure 14. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 13 is based on $T_{J(pk)} = 150^{\circ}C$; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

Figure 15. MJW21193 Typical Capacitance

Figure 16. MJW21194 Typical Capacitance

Figure 17. Typical Total Harmonic Distortion

Figure 18. Total Harmonic Distortion Test Circuit

TO-247 CASE 340L **ISSUE G**

DATE 06 OCT 2021

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER

	MILLIMETERS		INC	INCHES	
DIM	MIN.	MAX.	MIN.	MAX.	
Α	20.32	21.08	0.800	0.830	
В	15.75	16.26	0.620	0.640	
С	4.70	5.30	0.185	0.209	
D	1.00	1.40	0.040	0.055	
Ε	1.90	2.60	0.075	0.102	
F	1.65	2.13	0.065	0.084	
G	5.45	5.45 BSC		0.215 BSC	
Н	1.50	2.49	0.059	0.098	
J	0.40	0.80	0.016	0.031	
К	19.81	20.83	0.780	0.820	
L	5.40	6.20	0.212	0.244	
N	4.32	5.49	0.170	0.216	
Р		4.50		0.177	
Q	3.55	3.65	0.140	0.144	
U	6.15	6.15 BSC		BSC	
W	2.87	3.12	0.113	0.123	

	SCALE 1:1	
2X F—	B	SEATING PLANE

⊕ 0.25 (0.010)**W** Y AS

GENERIC MARKING DIAGRAM*

STYLE 1:		STYLE 2:	
PIN 1.	GATE	PIN 1.	ANOI
2.	DRAIN	2.	CATH
3.	SOURCE	3.	ANOI
4.	DRAIN	4.	CATH

STYLE 5: PIN 1. CATHODE

2. ANODE

3. GATE 4. ANODE

HODE (S) DDE 2 HODES (S)

PIN 1. MAIN TERMINAL 1 2. MAIN TERMINAL 2

3. GATE 4. MAIN TERMINAL 2

STYLE 3: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

STYLE 4: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

XXXXX = Specific Device Code Α = Assembly Location

Υ = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB15080C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales