Generative models for human activity recognition

ROY team: Ilya Zharikov,

Roman Isachenko,

Artem Bochkarev

Skolkovo Institute of Science and Technology Machine Learning course

March 20, 2017

Project goal

Aim

Classification model for complex-structured objects.

Applications:

- image processing;
- signal classification;
- topic modelling;
- time series analysis.

Problem

Initial object has no appropriate feature description.

Related work

- Wang W. et al. Human activity recognition using smart phone embedded sensors: A Linear Dynamical Systems method. Neural Networks (IJCNN), 2014 International Joint Conference on (pp. 1185-1190). IEEE.
- Wapisz J. R., Weiss G. M., Moore S. A. Activity recognition using cell phone accelerometers. ACM SigKDD Explorations Newsletter, 12(2), 74-82, 2011
- Kuznetsov M. P., Ivkin N. P. Time series classification algorithm using combined feature description. *Journal of Machine Learning and Data Analysis*, 2015.

Problem Statement

Let: $s \in \mathcal{S}$ — complex structured object; $y \in Y$ - class label;

Task

Suppose to be given the set of labeled data $\mathfrak{D} = \{(s_i, y_i)\}_{i=1}^m$. Our goal is to determine function f^* such that

$$f^* = \arg\min_{f} L(f, \mathfrak{D}),$$

where $L(\cdot, \cdot)$ is an error function and $f: \mathcal{S} \to Y$.

Approach

Suppose $f = g \circ h$, where

- **1** $h(s): S \to H \subset \mathbb{R}^n$ is map from S into feature space H;
- **2** $g(\mathbf{h}, \mathbf{\theta}) : H \to Y$ is parametric map (classification model).

Optimal parameters

h(s)

Choice of feature map h(s) by

- prior (expert) knowledge;
- minimizing error functional.

 $g(\boldsymbol{h}, \boldsymbol{\theta})$

Classification for
$$\{(\boldsymbol{h}_i, y_i)\}_{i=1}^m$$
, $\boldsymbol{h}_i = h(s_i)$:

$$\theta^* = \arg\min_{\theta} L(g, \theta, \mathfrak{D}).$$

E.g.: $g(\mathbf{h}, \boldsymbol{\theta})$ - classification model; $\boldsymbol{\theta}$ - model parameters; $L(g, \boldsymbol{\theta}, \mathfrak{D})$ - classification error function.

Time series example

Expert functions

Prior knowledge about the objects allows to choose the features.

Feature description

 $\mathbf{h}_i = h(s_i) \in \mathbb{R}^{40}$ — different statistics:

- 3 average accelerations;
- 3 standard deviations;
- 3 mean absolute deviations;
- 1 average acceleration;
- 30 values of histogram with 10 equal parts.

Autoregressive model

Data generation hypothesis

Let's assume that time series $s = (x_1, ..., x_T)$ is generated by the following autoregressive model:

$$\widehat{x}_t = w_0 + \sum_{j=1}^n w_j x_{t-j}.$$

Feature description

$$h(s) = \mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathbb{R}^{n+1}} \sum_{j=n+1}^{T} \|x_j - \hat{x}_j\|^2.$$

Singular Spectrum Analysis (SSA)

Let's consider a **trajectory matrix** for time series $s = (x_1, \dots, x_T)$:

$$\mathbf{X} = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ x_2 & x_3 & \dots & x_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{\mathsf{T}-n+1} & x_{\mathsf{T}-n+2} & \dots & x_{\mathsf{T}} \end{pmatrix}$$

Feature description

$$h(s) = (\lambda_1, \ldots, \lambda_n),$$

where $\{\lambda_i\}_{i=1}^n$ are eigenvalues of the matrix $\mathbf{X}^\mathsf{T}\mathbf{X}$, obtained by Singular Value Decomposition: $\mathbf{X}^\mathsf{T}\mathbf{X} = \mathbf{V} \cdot \mathrm{diag}(\lambda_1, \dots, \lambda_n) \cdot \mathbf{V}^\mathsf{T}$.

(?!) Splines

$WISDM^1$

Activity	# objects		
Standing	229	5.3%	
Walking	1917	44.4%	
Upstairs	466	10.8%	T
Sitting	277	6.4%	ľ
Jogging	1075	24.9%	
Downstairs	357	8.3%	Т
Total	4321		_

$USC-HAD^2$

Activity	# objects		
Walking-downstairs	951	7%	
Walking-upstairs	1018	7.4%	
Walking-forward	1874	13.8%	
Walking-right	1305	9.6%	Ī
Walking-left	1280	9.4%	ľ
Elevator-up	764	5.6%	ľ
Elevator-down	763	5.6%	İ
Standing	1167	8.6%	İ
Sitting	1294	9.5%	
Sleeping	1860	13.7%	İ
Jumping	495	3.6%	İ
Running	849	6.2%	i
Total	13620		

 $^{^{1}\}mathsf{http://www.cis.fordham.edu/wisdm/}$

²http://sipi.usc.edu/HAD/

Experiment

Datasets: WISDM, USC-HAD;

Feature extraction methods: expert functions;

autoregressive models;

singular spectral analysis;

splines;

Classification models: logistic regression;

support vector machine;

random forest;

Tuning parameters: cross-validation;

Quality measure: accuracy score.

Results

	Expert	AutoReg	SSA	Splines
Log-Reg	0.668	0.651	0.637	0.415
SVM	0.797	0.655	0.822	0.740
RF	0.871	0.703	0.840	0.736

Feature union

Conclusion

Done

- different approaches to classification of complex-structured objects were studied
- the results of experiments on human activities datasets outperform many previous methods

•

Future work

- new approaches to feature extraction (e.g. modified splines)
- implementing of structured learning methods