Probability & Statistics

Problem set №2. Week starting on March 4th

- 1. Let Σ be a σ -field on a set Ω .
 - (a) Check that $\Omega \in \Sigma$.
 - (b) Suppose $A_k \in \Sigma$, with $k = 1, 2, 3, \dots$ Prove that $\bigcap A_k \in \Sigma$.
- 2. Let $\Omega = \{a, b, c\}$.
 - (a) Describe σ -fields on a set Ω .
 - (b) Give examples of functions X, Y such that X is random variable, and Y is not.
- 3. Let $\Omega = \{1, 2, 3, 4, 5\}$ and $S = \{1, 4\}$. Find the smallest σ -field containing S.
- 4. Find distribution function (CDF) and expected value E(X) of the random variable X:

$$x_i$$
 2 3 4 5 p_i 0.2 0.4 0.1 0.3

5. CDF F of random variable X is given by:

$$\begin{array}{cccc} x & (-\infty;-2) & [-2;3) & [3;5) & [5;\infty) \\ F(x) & 0 & 0.2 & 0.7 & 1 \end{array}$$

- 6. Let X be a discrete random variable. Check that E(aX + b) = a E(X) + b.
- 7. Let X be a continuous random variable. Prove that E(aX + b) = a E(X) + b.
- 8. **2p.** Check that
 - (a) $B(p,q+1) = B(p,q) \frac{q}{p+q}$, (b) B(p,q) = B(p,q+1) + B(p+1,q).
- 9. **2p.** Prove that $\Gamma(p)$ $\Gamma(q) = \Gamma(p+q)$ B(p,q), where $p,q \in \mathbb{R}$ and > 0 (so all the involved integrals exist).

Def. 1. Non-empty set Ω is called a sample space.

Def. 2. Set of subsets $\Sigma \subset 2^{\Omega}$ is called σ -field on sample space iff

- 1. $\bar{\Sigma} > 0$.
- 2. $A \in \Sigma \Rightarrow A^C \in \Sigma$. 3. $A_1, A_2, \ldots \in \Sigma \Rightarrow \bigcup A_k \in \Sigma$.

<u>Def. 3.</u> Function (from events to interval [0,1]) $P: \Sigma \to [0,1]$ is called **probability** iff

- 2. $A_i \cap A_j = \emptyset, \ i \neq j \Rightarrow P\left(\bigcup_{k \in \mathbb{N}} A_k\right) = \sum_{k \in \mathbb{N}} P\left(A_k\right).$

<u>Def. 4.</u> A triple (Ω, Σ, P) is called a **probability space**.

DEF. 5. Let (Ω, Σ, P) be a probability space. Function $X : \Omega \to \mathbb{R}$ is called **random variable** iff

$$\forall a \in \mathbb{R} \ X^{-1}((-\infty, a]) \in \Sigma.$$

Def. 6. **Beta function** is the value of the integral

$$B(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} dt, \ p > 0, \ q > 0.$$