ScaleShift

オンプレミス / クラウドで実現する機械学習環境

June, 2019

ScaleShift

Docker ベース、オープンソースの Web クライアント アプリケーションです

・モデル構築フェーズ

- NGC / 自社リポジトリから機械学習 Docker イメージをワンクリックで取得
- その任意の Docker イメージを Jupyter notebook コンテナとして起動

・モデル学習フェーズ

- 構築に利用したライブラリごと Docker イメージに固めリポジトリへ保存
- クリックだけで Kubernetes クラスタ / Rescale へ大規模計算タスクを送信

基本的な動き

How does it work?

ScaleShift の起動

ローカルに Web サーバーが立ち上がります

機械学習ソフトウェアのインストール

NGC / プライベートレジストリ からワンクリックでダウンロード

Jupyter notebook でのモデル構築

Jupyter でラップしたコンテナがかんたんに起動

大規模計算のためのラッピング

依存ライブラリやソースコード群をまとめ、ひとつのイメージに固めます

社内クラスタ / クラウドへ計算タスク投入

投入先に応じて必要な API が実行されます

Kubernetes 連携

Integration with a kubernetes cluster

機械学習 と Kubernetes

Web 界隈を中心にコンテナオーケストレーションのデファクトになった k8s。 機械学習の文脈でもコンテナ利用が盛んになり、応用事例が増えています。

- NVIDIA が公式にサポートを表明 [GTC 2018 Keynote, March 27]
- Mercari ML Ops Night Vol.1 [株式会社 メルカリ / May 23, 2018] https://mercari.connpass.com/event/85931/presentation/
- Jupyter だけで機械学習を実サービス展開できる基盤 [株式会社リクルートライフスタイル] https://engineer.recruit-lifestyle.co.jp/techblog/2018-10-04-ml-platform/
- Kubernetesによる機械学習基盤への挑戦 [株式会社 Preferred Networks / Dec 4, 2018] https://www.slideshare.net/pfi/kubernetes-125013757

ScaleShift + Kubernetes 構成例

1. 機械学習ソフトウェアの選択

2. モデル構築

NGC

3. 実行環境・入力データの転送

NGC

4. 大規模計算の実行を指示

NGC

5. 大規模計算の実行

NGC

6. 計算結果の確認

NGC

Kubernetes 設定 / タスク実行画面

ScaleShift の設定

Configurations

外部連携

	連携機能	設定値
NVIDIA GPU CLOUD	• NVIDIA 社の管理する機械学習 Docker イメージの 一覧 / 詳細情報取得、イメージのダウンロード	API キー & ユーザ設定
プライベートレジストリ	• 自社で管理する機械学習 Docker イメージの 一覧情報取得、イメージのダウンロード	接続先 & ユーザ設定
AWS	機械学習 Docker イメージのダウンロードローカルファイルシステムと S3 間のデータ連携	(実装予定)
Kubernetes	・ 社内クラスタ / クラウドでの大規模計算実行	kubecfg
Rescale	• Rescale プラットフォームでの大規模計算実行	地域指定 & API キー

起動オプション (抜粋)

docker-compose.yml に設定を記載、起動できます

	設定概要	初期値
SS_JUPYTER_MINIMUM_PORT	コンテナへの接続ポート動的割当開始番号	30000
SS_LOG_LEVEL	アプリケーションのログ出力レベル	warn
SS_WORKSPACE_HOST_DIR	ホスト側の作業データ保存領域	なし (指定必須)
SS_NGC_REGISTRY_ENDPOINT	NGC 接続先	https://registry.nvidia.com
SS_NGC_REGISTRY_USER_NAME	NGC ユーザー名	\$oauthtoken
SS_RESCALE_SINGULARITY_VERSION	Rescale での Singularity ランタイムバージョン	3.2.0
SS_RESCALE_JOB_WALLTIME	Rescale でのタスク実行最大時間	3600