Sensitivity of the Polyakov Loop to Chiral Symmetry Restoration

David, Olaf, Frithjof, Anirban, Mugdha

Universität Bielefeld

Bielefeld Lattice Seminar, 30 June 2020

Global symmetry breaking

At $m = \infty$ with $N_c = 3$, the deconfinement order parameter is the Polyakov loop

$$P_{ec x} \equiv rac{1}{3} \operatorname{tr} \prod_{ au} U_4 \left(ec x, au
ight), \qquad \quad P \equiv rac{1}{N_\sigma^3} \sum_{ec x} P_{ec x},$$

which relates to color averaged quark-antiquark free energy

$$\exp\left[-rac{F_{qar{q}}(r,T)}{T}
ight] = \langle P_{ec{x}}P_{ec{y}}^{\dagger}
angle pprox \langle \operatorname{Re}P
angle^2 \quad (\text{at large } r).$$

Hence $\langle \operatorname{Re} P \rangle = 0$ in the confined phase. In this phase $\langle \operatorname{Re} P \rangle$ is invariant under global \mathbb{Z}_3 , which otherwise transforms non-trivially as $P \to z P$. Spontaneous breaking above T_d .

At m=0 the chiral condensate $\langle \bar{\psi}\psi \rangle$ transforms non-trivially under SU(2)_A. Hence $\langle \bar{\psi}\psi \rangle > 0$ signals chiral symmetry breaking. Spontaneous breaking below T_c .

The original question

What are good observables that indicate deconfinement in QCD?

At infinite quark mass

In pure SU(3) gauge theory, inflection points found at similar locations¹.

FIG. 2. $\langle \overline{\psi}\psi \rangle$ and W vs $\beta = 6/g^2$ for SU(3) gauge theory on (a) 2×8^3 and (b) 4×8^3 lattices.

¹J. Kogut et al., Phys. Rev. Lett. 50.6, 393-396 (1983).

At larger-than-physical quark mass

Similar locations² also for $N_f = 2 + 1$, physical m_s , and $m_\pi \approx 220$ [MeV].

FIG. 11 (color online). Renormalized Polyakov loop on lattices with temporal extent N = 4, 6 and 8 (left) and the normalized difference of light and strange quark chiral condensates defined in Eq. (36). The vertical lines show the location of the transition temperature determined in [18] on lattices with temporal extent N = 4 (right line) and in this analysis for N = 6 (left line).

²M. Cheng et al., Phys. Rev. D, 77.1, 014511 (2008).

At smaller-than-physical quark mass

No longer the case for highly improved fermion actions, and at lower quark masses³.

³D. A. Clarke et al., arXiv:1911.07668 [hep-lat], (2019).

How can we understand this behavior?

- At $m < \infty$, P still has inflection point somewhere.
- This is (often?) interpreted as some remnant of the $m = \infty$ critical behavior.
- But in the chiral limit, there is no clear global symmetry for deconfinement.
- Moreover *P* is purely gluonic, which means it's trivially invariant under chiral rotations.
- Therefore, from the perspective of some \mathcal{L}_{eff} written in the chiral limit, it should rather be an energy-like operator, and we might expect it to inherit its behavior from the chiral transition in the same way any other energy-like operator would.

Let's explore this idea analytically and numerically.

Some useful quantities

$$H \equiv m_I/m_s$$

$$t = (T - T_c)/T_c$$

$$z \equiv z_0 t H^{-1/\beta \delta}$$

symmetry breaking parameter

reduced temperature

scaling variable

$$\chi_{mP} \equiv \frac{\partial \langle \operatorname{Re} P \rangle}{\partial H} = \langle \operatorname{Re} P \cdot \Psi \rangle - \langle \operatorname{Re} P \rangle \langle \Psi \rangle$$
 mixed susceptibility

$$\Psi \equiv rac{1}{2} \hat{m}_s \, {
m tr} \, M_I^{-1}$$

$$F_q(T) = \lim_{r \to \infty} \frac{1}{2} F_{q\bar{q}}(r, T) = -T \log \langle \operatorname{Re} P \rangle$$
 heavy quark free energy

$$\frac{1}{T} \frac{\partial F_q(T, H)}{\partial H} = -\frac{\chi_{mP}}{\langle \operatorname{Re} P \rangle}$$

P dependence on H

Being energy-like, P inherits singular behavior from 3d O(N) universality class⁴:

$$\langle P \rangle = \underbrace{\mathcal{A} \mathcal{H}^{(1-lpha)/eta \delta} f_f'(z)}_{ ext{singular part}} + \underbrace{f_{\mathrm{reg}}(T,H)}_{ ext{regular part}}$$

with universal free energy scaling function f_f and critical exponents α , β , and δ . Prime indicates derivative w.r.t. z. We use O(2) since we will work at fixed $N_{\tau}=8$, so

$$\beta = 0.3490, \qquad \delta = 4.780, \qquad \alpha = -0.017.$$

In $H \rightarrow 0$ limit, keeping only leading terms:

$$\langle P \rangle \sim a(T) - egin{cases} b_-(T) \ H & T < T_c \ b_0 \ H^{(1-lpha)/eta \delta} & T = T_c \ b_+(T) \ H^2 & T > T_c \end{cases} \qquad rac{1-lpha}{eta \delta} = 0.61$$

⁴J. Engels and F. Karsch, Phys. Rev. D, 85, 094506 (2012).

F_q dependence on H

Using $F_q = -T \log \langle P \rangle$ and

$$\langle P \rangle = AH^{(1-\alpha)/\beta\delta}f_f'(z) + f_{\text{reg}}(T, H)$$

one obtains after expanding the logarithm

$$rac{F_q(T,H)}{T} = -\tilde{A}H^{(1-lpha)/eta\delta}f_f'(z) - ilde{f}_{
m reg}(T,H)$$

Same form as $\langle P \rangle$, so we can expect similar small H behavior (same leading powers) as before.

Set up

- $N_f = 2 + 1$ with HISQ action
- $N_{\tau} = 8$
- $N_s/N_{ au} \geq 4$
- m_s fixed to its physical value
- ullet m_s/m_ℓ varies from 20 to 160 (160 MeV $\gtrsim m_\pi \gtrsim$ 58 MeV)
- T in the vicinity of chiral crossover
- Renormalization constants, when needed, from TUMQCD⁵

Gold line: static-light meson contribution computed in HRG⁶.

⁶A. Bazavov and P. Petreczky, Phys. Rev. D, 87.9, 094505 (2013).

Results: P dependence on H

General form

$$F_q \sim \mathit{a}(T) - egin{cases} b_-(T) \; H & T < T_c \ b_0 \; H^{0.61} & T = T_c \ b_+(T) \; H^2 & T > T_c \end{cases}$$

suggests 3-parameter fits

$$\begin{split} P_{\sin}(H) &= \exp\left[a + bH^c \right], \\ P_{\text{poly}}(H) &= \exp\left[a + bH + cH^2 \right]. \end{split}$$

Former fit near $T_c^{N_{ au}=8} pprox 144$ [MeV]

$$c = \begin{cases} 0.71(15) & T = 144.77 \text{ [MeV]} \\ 0.63(11) & T = 150.76 \text{ [MeV]}. \end{cases}$$

Derivatives with respect to H

Derivatives of observables w.r.t. H will be more sensitive to H. Hence we compute

$$\begin{split} \chi_{mP} &= \frac{\partial \left\langle \operatorname{Re} P \right\rangle}{\partial H} = -AH^{(\beta-1)/\beta\delta} f_G'(z) + \frac{\partial}{\partial H} f_{\operatorname{reg}}(T,H), \\ &\frac{1}{T} \frac{\partial F_q(T,H)}{\partial H} = -\tilde{A}H^{(\beta-1)/\beta\delta} f_G'(z) - \frac{\partial}{\partial H} \tilde{f}_{\operatorname{reg}}(T,H), \end{split}$$

where the order parameter scaling function f_G is related to f_f by

$$f_G(z) = -\left(1 + \frac{1}{\delta}\right)f_f(z) + \frac{z}{\beta\delta}f'_f(z).$$

and

$$\frac{\beta - 1}{\beta \delta} = -0.39$$

Results: χ_{mP} and $\partial_H F_q$

$$\chi_{mP} \sim -rac{\partial F_q}{\partial H} \sim -H^{-0.39} + {\sf regular}$$

Results: Rescaled susceptibilities

Singular part suggests 3-parameter fits, e.g.

$$H^{(1-eta)/eta\delta}\partial_H F_q = - ilde{A}f_G'\left(z_0rac{T-T_c}{T_c}H^{-1/eta\delta}
ight)$$

They deliver $T_c = 145.5(5)$, 144.3(6) [MeV] (compare $T_c^{N_\tau = 8} = 144(2)$ [MeV])

Summary, work in progress

- The Polyakov loop is sensitive to the chiral phase transition near the chiral limit.
- In particular χ_{mP} and $\partial_H F_q$ diverge as $H \to 0$ according to the O(2) universality class.
- Would like to quantify the contribution of regular terms to χ_{mP} .
- Would like to understand temperature derivatives.

Thanks for your attention.

Additional details: P dependence on V

 N_{σ} dependence of P. $N_{\tau}=8$ and $m_{s}/m_{l}=80$ for these.

Additional details: χ_P finite size scaling

Finite size scaling of various susceptibilities for $T \approx 140$ [MeV] (left) and $T \approx 165$ [MeV] (right). $N_{\tau} = 8$ and $m_s/m_l = 80$ for these.

Additional details: current statistics

m_s/m_l	N_{σ}	avg. # TU
20	32	99 000
27	32	1 500 000
40	40	110 000
80	56	35 000
	40	33 000
	32	73 000
160	56	17 000