

SEQUENCE LISTING

<110> THE GENERAL HOSPITAL CORPORATION
SHELLEY, CARL SIMON
FAROKHZAD, OMID C.

<120> METHODS FOR DIAGNOSING AND TREATING TUMORS AND SUPPRESSING CD PROMOTERS

<130> M00765.70064

<140> not yet assigned

<141> 2003-09-23

<150> US 60/412,964

<151> 2002-09-23

<160> 28

<170> PatentIn version 3.2

<210> 1

<211> 1879

<212> DNA

<213> Homo sapiens sialophorin

<400> 1

gcctcgggag gtggtgagt gacctggccc cagtgctgcg tccttatcag ccgagccgg	60
cccaagcttt gtcctgcct gtttgcctgg aaatggccac gtttcctt ctccttgggg	120
tgctgggtt aagccccagac gctctggga gcacaacagc agtgcagaca cccaccccg	180
gagagccttt ggtctctact agcgagcccc tgagctaaa gatgtacacc acttcaataa	240
caagtgaccc taaggccgac agcactgggg accagacctc agccctaccc ccctcaactt	300
ccatcaatga gggatccctt ctggactt ccattggtgc cagcactgg tcccccttac	360
ctgagccaac aacctaccag gaagttcca tcaagatgtc atcagtgc caggaaaccc	420
ctcatgcaac cagtcatcct gctgttccca taacagcaaa ctctcttagga tcccacaccc	480
tgacaggtgg aaccataaca acgaactctc cagaaacctc cagtaggacc agtggagccc	540
ctgttaccac ggcagcttagc tctctggaga cctccagagg cacctctgg cccctctta	600
ccatggcaac tgtctctctg gagacttcca aaggcacctc tggacccctt gttaccatgg	660
caactgactc tctggagacc tccactggga ccactggacc ccctgtacc atgacaactg	720
gctctctgg gccctccagg gggccagtg gacccctt gttaccatgg	780
aatgtatgtc tccaacgacc tccaccaacg caagcactgt gcccttccgg aacccagatg	840
agaactcactg aggcatgctg ccagtggttg tgcttggc cctgctggcg gtcatagtcc	900
tcgtggctt gtcctgttg tggcgccggc ggcagaagcg gcggactggg gccctcggtgc	960
tgagcagagg tggcaagcgt aacggggtgg tggacgcctg ggctggcca gcccaggtcc	1020

ctgaggaggg ggccgtgaca gtgaccgtgg gagggtcgg gggcgacaag ggctctgggt	1080
tccccatgg ggaggggtct agccgtcggc ccacgctcac cacttcttt ggcagacgga	1140
agtctcgcca gggctccctg gcgatggagg agctgaagtc tgggtcaggc cccagcctca	1200
aaggggagga ggagccactg gtggcagtg aggatggggc tgtggacgcc ccagctcctg	1260
atgagcccga agggggagac ggggctgccc cttaagtgtc ggtgaatagt gaggctggag	1320
gccggaatct cagccagcct ccagcacctt ccctctcacc atcccactgc cccctcgctc	1380
ccatgttcc acccggcacc ctgatcctca cccgaatctc ctttttttt ttcttttag	1440
acagagttc gctttgtcgc ccaggctgga gtgcaatgca cgatctcagt tcactgcaac	1500
ctctgcctcc taagttcagg cgattctcct gcctcagctt cccgagtaac tgagattaca	1560
ggcacccacc accatgcccc gctgctttt tgtattttg gtagagatgg ggtttcacca	1620
tgttgcttag gctggctca aactcctgac ctcaggtgat ctacctgcct cagcctccca	1680
aagtgtgtag attacagaca tgagcctccg cgccttgcct cctcacccac ctcttcactc	1740
tgaatcctca tgaggcttct cagccctgga tttcctgctg ccattcctcac ccagcacccca	1800
caactagcgc ctgggcaggg cagggctggc acctctcaac gtctgtggac tgaatgaata	1860
aaccctcctc atccacccc	1879

<210> 2

<211> 400

<212> PRT

<213> Homo sapiens sialophorin

<400> 2

Met Ala Thr Leu Leu Leu Leu Gly Val Leu Val Val Ser Pro Asp			
1	5	10	15

Ala Leu Gly Ser Thr Thr Ala Val Gln Thr Pro Thr Ser Gly Glu Pro		
20	25	30

Leu Val Ser Thr Ser Glu Pro Leu Ser Ser Lys Met Tyr Thr Thr Ser		
35	40	45

Ile Thr Ser Asp Pro Lys Ala Asp Ser Thr Gly Asp Gln Thr Ser Ala		
50	55	60

Leu Pro Pro Ser Thr Ser Ile Asn Glu Gly Ser Pro Leu Trp Thr Ser			
65	70	75	80

Ile Gly Ala Ser Thr Gly Ser Pro Leu Pro Glu Pro Thr Thr Tyr Gln		
85	90	95

Glu Val Ser Ile Lys Met Ser Ser Val Pro Gln Glu Thr Pro His Ala		
100	105	110

Thr Ser His Pro Ala Val Pro Ile Thr Ala Asn Ser Leu Gly Ser His		
115	120	125

Thr Val Thr Gly Gly Thr Ile Thr Thr Asn Ser Pro Glu Thr Ser Ser	
---	--

130.	135	140
Arg Thr Ser Gly Ala Pro Val Thr Thr Ala Ala Ser Ser Leu Glu Thr		
145	150	155
Ser Arg Gly Thr Ser Gly Pro Pro Leu Thr Met Ala Thr Val Ser Leu		
165	170	175
Glu Thr Ser Lys Gly Thr Ser Gly Pro Pro Val Thr Met Ala Thr Asp		
180	185	190
Ser Leu Glu Thr Ser Thr Gly Thr Thr Gly Pro Pro Val Thr Met Thr		
195	200	205
Thr Gly Ser Leu Glu Pro Ser Ser Gly Ala Ser Gly Pro Gln Val Ser		
210	215	220
Ser Val Lys Leu Ser Thr Met Met Ser Pro Thr Thr Ser Thr Asn Ala		
225	230	235
Ser Thr Val Pro Phe Arg Asn Pro Asp Glu Asn Ser Arg Gly Met Leu		
245	250	255
Pro Val Ala Val Leu Val Ala Leu Leu Ala Val Ile Val Leu Val Ala		
260	265	270
Leu Leu Leu Leu Trp Arg Arg Arg Gln Lys Arg Arg Thr Gly Ala Leu		
275	280	285
Val Leu Ser Arg Gly Gly Lys Arg Asn Gly Val Val Asp Ala Trp Ala		
290	295	300
Gly Pro Ala Gln Val Pro Glu Glu Gly Ala Val Thr Val Thr Val Gly		
305	310	315
Gly Ser Gly Gly Asp Lys Gly Ser Gly Phe Pro Asp Gly Glu Gly Ser		
325	330	335
Ser Arg Arg Pro Thr Leu Thr Thr Phe Phe Gly Arg Arg Lys Ser Arg		
340	345	350
Gln Gly Ser Leu Ala Met Glu Glu Leu Lys Ser Gly Ser Gly Pro Ser		
355	360	365
Leu Lys Gly Glu Glu Glu Pro Leu Val Ala Ser Glu Asp Gly Ala Val		
370	375	380
Asp Ala Pro Ala Pro Asp Glu Pro Glu Gly Gly Asp Gly Ala Ala Pro		
385	390	395
60		
cttccctgcc tccctcaggt cccagctctt gtcctgcct gtttgctgg aaatggccac		
gcttctcctt ctccctgggg tgctgggt aagcccagac gctctggga gcacaacagc		
120		
agtgcagaca cccacctccg gagagccttt ggtctctact agcgagcccc tgagctaaa		
180		

<210> 3
<211> 1893
<212> DNA
<213> Homo sapiens

<400> 3
cttccctgcc tccctcaggt cccagctctt gtcctgcct gtttgctgg aaatggccac
gcttctcctt ctccctgggg tgctgggt aagcccagac gctctggga gcacaacagc
agtgcagaca cccacctccg gagagccttt ggtctctact agcgagcccc tgagctaaa

gatgtacacc acttcaataa caagtgaccc taaggccgac agcactgggg accagacctc	240
agccctacct ccctcaactt ccatcaatga gggatcccct ctttgactt ccattggtgc	300
cagcactggt tcccctttac ctgagccaac aacctaccag gaagttcca tcaagatgtc	360
atcagtgccc caggaaaccc ctcatgcaac cagtcacccct gctgttccca taacagcaaa	420
ctctcttagga tcccacaccc tgacaggtgg aaccataaca acgaactctc cagaaacctc	480
cagtaggacc agtggagccc ctgttaccac ggcagctagc tctctggaga cctccagagg	540
cacctctgga cccctctta ccatggcaac tgtctcttg gagacttcca aggcaccc	600
tggacccct gttaccatgg caactgactc tctggagacc tccactggga ccactggacc	660
ccctgttacc atgacaactg gctctctgga gccctccagc gggccagtg gacccaggt	720
ctctagcgta aaactatcta caatgatgtc tccaacgacc tccaccaacg caagcaactgt	780
gccctccgg aacccagatg agaactcactg aggcatgctg ccagtggtcg tgcttgtggc	840
cctgtggcg gtcatagtcc tcgtggctct gtcctgtcg tggccggc ggcagaagcg	900
gcggactggg gccctcgtgc tgagcagagg cggcaagcgt aacgggtgg tggacgcctg	960
ggctggcca gcccaggtcc ctgaggaggg ggccgtgaca gtgacgtgg gagggtccgg	1020
ggcgacaag ggctctgggt tccccatgg ggaggggtct agccgtccgc ccacgctcac	1080
cacttcttt ggcagacgga agtctcgcca gggctccctg gcgtatggagg agctgaagtc	1140
tgggtcaggc cccagcctca aaggggagga ggagccactg gtggccagtg aggtggggc	1200
tgtggacgcc ccagctccctg atgagccgaa agggggagac gggctgccc cttaagtgtc	1260
ggtgaatagt gaggctggag .gccgaaatct cagccagcct ccagcacctt ccctctcacc	1320
atcccactgc cccctcgctc ccatgtttcc accccggcacc ctgatcctca cccgaatctc	1380
ctttttttt ttcttttag acagagttc gctttgtcgc ccaggctgga gtgcaatgca	1440
cgatctcagt tcactgcaac ctctgcctcc taagttcagg cgattctct gcctcagctt	1500
cccgagtaac tgagattaca ggcaccacc accatgccc gctgttttt tttttttt	1560
gttagagatgg gtttccacca tgggtcttag gctggctca aactcctgac ctcagggtat	1620
ctacctgcct cagcctccca aagtgttag attacagaca tgagcctccg cgcctgcct	1680
cctcaccac ctcttcactc tgaatcctca tgaggcttct cagccctgga tttcctgctg	1740
ccatccctcac ccagcacccca caactagcgc ctggcaggg caggctggc acctctcaac	1800
gtctgtggac tgaatgaata aaccctcctc atccacccct aaaaaaaaaaaa aaaaaaaaaaa	1860
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaa	1893

<210> 4
<211> 400
<212> PRT

<213> Homo sapiens

<400> 4
Met Ala Thr Leu Leu Leu Leu Gly Val Leu Val Val Ser Pro Asp
1 5 10 15
Ala Leu Gly Ser Thr Thr Ala Val Gln Thr Pro Thr Ser Gly Glu Pro
20 25 30
Leu Val Ser Thr Ser Glu Pro Leu Ser Ser Lys Met Tyr Thr Thr Ser
35 40 45
Ile Thr Ser Asp Pro Lys Ala Asp Ser Thr Gly Asp Gln Thr Ser Ala
50 55 60
Leu Pro Pro Ser Thr Ser Ile Asn Glu Gly Ser Pro Leu Trp Thr Ser
65 70 75 80
Ile Gly Ala Ser Thr Gly Ser Pro Leu Pro Glu Pro Thr Thr Tyr Gln
85 90 95
Glu Val Ser Ile Lys Met Ser Ser Val Pro Gln Glu Thr Pro His Ala
100 105 110
Thr Ser His Pro Ala Val Pro Ile Thr Ala Asn Ser Leu Gly Ser His
115 120 125
Thr Val Thr Gly Gly Thr Ile Thr Thr Asn Ser Pro Glu Thr Ser Ser
130 135 140
Arg Thr Ser Gly Ala Pro Val Thr Thr Ala Ala Ser Ser Leu Glu Thr
145 150 155 160
Ser Arg Gly Thr Ser Gly Pro Pro Leu Thr Met Ala Thr Val Ser Leu
165 170 175
Glu Thr Ser Lys Gly Thr Ser Gly Pro Pro Val Thr Met Ala Thr Asp
180 185 190
Ser Leu Glu Thr Ser Thr Gly Thr Thr Gly Pro Pro Val Thr Met Thr
195 200 205
Thr Gly Ser Leu Glu Pro Ser Ser Gly Ala Ser Gly Pro Gln Val Ser
210 215 220
Ser Val Lys Leu Ser Thr Met Met Ser Pro Thr Thr Ser Thr Asn Ala
225 230 235 240
Ser Thr Val Pro Phe Arg Asn Pro Asp Glu Asn Ser Arg Gly Met Leu
245 250 255
Pro Val Ala Val Leu Val Ala Leu Leu Ala Val Ile Val Leu Val Ala
260 265 270
Leu Leu Leu Trp Arg Arg Arg Gln Lys Arg Arg Thr Gly Ala Leu
275 280 285
Val Leu Ser Arg Gly Gly Lys Arg Asn Gly Val Val Asp Ala Trp Ala
290 295 300

Gly Pro Ala Gln Val Pro Glu Glu Gly Ala Val Thr Val Thr Val Gly
305 310 315 320

Gly Ser Gly Gly Asp Lys Gly Ser Gly Phe Pro Asp Gly Glu Gly Ser
325 330 335

Ser Arg Arg Pro Thr Leu Thr Phe Phe Gly Arg Arg Lys Ser Arg
340 345 350

Gln Gly Ser Leu Ala Met Glu Glu Leu Lys Ser Gly Ser Gly Pro Ser
355 360 365

Leu Lys Gly Glu Glu Pro Leu Val Ala Ser Glu Asp Gly Ala Val
370 375 380

Asp Ala Pro Ala Pro Asp Glu Pro Glu Gly Asp Gly Ala Ala Pro
385 390 395 400

<210> 5

<211> 1924

<212> DNA

<213> Human leukosialin

<400> 5
cctctgagcc cagccctccc tagcatcacc acttccatcc cattcctcag ccaagagcca 60
ggaatcctga ttccagatcc cacgcttccc tgcctccctc aggtcccagc tcttgctcct 120
gcctgtttgc ctggaaatgg ccacgcttct ctttcctt ggggtgctgg tggtaagccc 180
agacgctctg gggagcacaa cagcagtgc aacacccacc tccggagagc ctttggtctc 240
tactagcgag cccctgagct caaagatgta caccacttca ataacaagtg accctaaggc 300
cgacagcaact ggggaccaga cctcagccct acctccctca acttccatca atgagggatc 360
ccctcttgg acttccattt gtgccagcac tggttccctt ttacctgagc caacaaccta 420
ccaggaagtt tccatcaaga tgtcatcagt gccccagggaa acccctcatg caaccagtca 480
tcctgctgtt cccataacag caaactctctt aggatcccac accgtgacag gtggaaccat 540
aacaacgaac tctccagaaa cctccagtag gaccagtgg acccccttta ccacggcagc 600
tagctctctg gagacctcca gaggcaccc tggacccctt cttaccatgg caactgtctc 660
tctggagact tccaaaggca cctctggacc ccctgttacc atggcaactg actctctgga 720
gacccactt gggaccactg gacccctgtt taccatgaca actggctctc tggagccctc 780
cagcccccc agtggacccc aggtctctag cgtaaaacta tctacaatga tgtctccaa 840
gacccacc aacgcaagca ctgtgccctt ccggAACCA gatgagaact cacgaggcat 900
gctgcccagt gctgtgcttg tggccctgtt ggcggcata gtcctcgtgg ctctgctcct 960
gctgtggcgc cggcggcaga agcggcggac tggggccctc gtgctgagca gaggcggcaa 1020
gcgttaacggg gtggtgacg cctgggctgg gccagccag gtcctgagg agggggccgt 1080

gacagtgacc	gtgggagggt	ccggggcga	caagggctct	gggttccccg	atggggaggg	1140
gtctagccgt	cggcccacgc	tcaccacttt	cittggcaga	cgaaagtctc	gccaggcgc	1200
cctggcgatg	gaggagctga	agtctggtc	aggcccagc	ctcaaagggg	aggaggagcc	1260
actggtgcc	agtgaggatg	gggctgtgga	cgccccagct	cctgatgagc	ccgaaggggg	1320
agacggggct	gcccctaag	tgtcggtaaa	tagtgaggct	ggaggccgca	atctcagcca	1380
gcctccagca	ccttccctct	caccatccca	ctgccccctc	gctccatgt	ttccacccgg	1440
caccctgatc	ctcacccgaa	tctccctttt	tttttcttt	tgagacagag	tttcgcttt	1500
tgcggcaggc	tggagtgcaa	tgcacgatct	cagttcactg	caacctctgc	ctcctaagtt	1560
caggcgattc	tcctgcctca	gcttcccgag	taactgagat	tacaggcacc	caccaccatg	1620
cccagctgct	tttttgtatt	tttggtagag	atggggtttc	accatgttgg	ctaggctgg	1680
ctcaaactcc	tgacctcagg	tgatctacct	gcctcagcct	cccaaagtgc	tgagattaca	1740
gacatgagcc	tccgcgcctt	gcctcctcac	ccacctttc	actctgaatc	ctcatgaggc	1800
ttctcagccc	tggatttcct	gctgccatcc	tcacccagca	cccacaacta	gcgcctggc	1860
agggcagggc	tggcacctct	caacgtctgt	ggactgaatg	aataaacct	cctcatccac	1920
ccct						1924

<210> 6

<211> 400

<212> PRT

<213> Homo sapiens leukosialin

<400> 6

Met	Ala	Thr	Leu	Leu	Leu	Leu	Gly	Val	Leu	Val	Val	Ser	Pro	Asp
1									5		10			15

Ala	Leu	Gly	Ser	Thr	Thr	Ala	Val	Gln	Thr	Pro	Thr	Ser	Gly	Glu	Pro
									20		25			30	

Leu	Val	Ser	Thr	Ser	Glu	Pro	Leu	Ser	Ser	Lys	Met	Tyr	Thr	Thr	Ser
									35		40			45	

Ile	Thr	Ser	Asp	Pro	Lys	Ala	Asp	Ser	Thr	Gly	Asp	Gln	Thr	Ser	Ala
									50		55			60	

Leu	Pro	Pro	Ser	Thr	Ser	Ile	Asn	Glu	Gly	Ser	Pro	Leu	Trp	Thr	Ser
									65		70			75	

Ile	Gly	Ala	Ser	Thr	Gly	Ser	Pro	Leu	Pro	Glu	Pro	Thr	Thr	Tyr	Gln
									85		90			95	

Glu	Val	Ser	Ile	Lys	Met	Ser	Ser	Val	Pro	Gln	Glu	Thr	Pro	His	Ala
									100		105			110	

Thr	Ser	His	Pro	Ala	Val	Pro	Ile	Thr	Ala	Asn	Ser	Leu	Gly	Ser	His
									115		120			125	

Thr	Val	Thr	Gly	Gly	Thr	Ile	Thr	Thr	Asn	Ser	Pro	Glu	Thr	Ser	Ser
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

130	135	140
Arg Thr Ser Gly Ala Pro Val Thr Thr Ala Ala Ser Ser Leu Glu Thr		
145	150	155
Ser Arg Gly Thr Ser Gly Pro Pro Leu Thr Met Ala Thr Val Ser Leu		
165	170	175
Glu Thr Ser Lys Gly Thr Ser Gly Pro Pro Val Thr Met Ala Thr Asp		
180	185	190
Ser Leu Glu Thr Ser Thr Gly Thr Thr Gly Pro Pro Val Thr Met Thr		
195	200	205
Thr Gly Ser Leu Glu Pro Ser Ser Gly Ala Ser Gly Pro Gln Val Ser		
210	215	220
Ser Val Lys Leu Ser Thr Met Met Ser Pro Thr Thr Ser Thr Asn Ala		
225	230	235
Ser Thr Val Pro Phe Arg Asn Pro Asp Glu Asn Ser Arg Gly Met Leu		
245	250	255
Pro Val Ala Val Leu Val Ala Leu Leu Ala Val Ile Val Leu Val Ala		
260	265	270
Leu Leu Leu Trp Arg Arg Arg Gln Lys Arg Arg Thr Gly Ala Leu		
275	280	285
Val Leu Ser Arg Gly Gly Lys Arg Asn Gly Val Val Asp Ala Trp Ala		
290	295	300
Gly Pro Ala Gln Val Pro Glu Glu Gly Ala Val Thr Val Thr Val Gly		
305	310	315
Gly Ser Gly Gly Asp Lys Gly Ser Gly Phe Pro Asp Gly Glu Gly Ser		
325	330	335
Ser Arg Arg Pro Thr Leu Thr Thr Phe Phe Gly Arg Arg Lys Ser Arg		
340	345	350
Gln Gly Ser Leu Ala Met Glu Glu Leu Lys Ser Gly Ser Gly Pro Ser		
355	360	365
Leu Lys Gly Glu Glu Pro Leu Val Ala Ser Glu Asp Gly Ala Val		
370	375	380
Asp Ala Pro Ala Pro Asp Glu Pro Glu Gly Gly Asp Gly Ala Ala Pro		
385	390	395
400		

<210> 7
<211> 2288
<212> DNA
<213> Homo spaiens leukosialin

<400> 7
ggagcctcgg gaggtggtgg agtgacctgg ccccaagtgct gcgtccttat cagccgagcc 60
ggtcccgact ctgtcttcgt cctgtttgcc tggaaatggc cacgcttctc cttctccttg 120
gggtgctggt ggtaagccca gacgctctgg ggagcacaac agcagtgcag acaccacat 180

ccggagagcc tttggtctct actagcgagc ccctgagctc aaagatgtac accactcaa	240
taacaagtga ccctaaggcc gacagcactg gggaccagac ctcagcccta cctccctcaa	300
cttccatcaa tgagggatcc cctcttgga cttccattgg tgccagcaact ggttcccctt	360
tacctgagcc aacaacctac caggaagttt ccatcaagat gtcatcagtg ccccaggaaa	420
ccccctcatgc aaccagtcat cctgctgttc ccataacagc aaactctcta ggatcccaca	480
ccgtgacagg tggaaaccata acaacgaact ctccagaaac ctccagtagg accagtggag	540
ccccctgttac cacggcagct agctctctgg agacctccag aggacacctt ggaccccctc	600
ttaccatggc aactgtctct ctggagactt ccaaaggcac ctctggaccc cctgttacca	660
tggcaactga ctctctggag acctccactg ggaccactgg accccctgtt accatgacaa	720
ctggctctct ggagccctcc agcggggcca gtggacccca ggtctctagc gtaaaactat	780
ctacaatgat gtctccaacg acctccacca acgcaagcac tgtgcccttc cggaacccag	840
atgagaactc aegaggcatg ctgccagtgg ctgtgcttgc ggccctgctg gcggtcatag	900
tcctcgtggc tctgctcctg ctgtggcgcc ggccggcagaa gcggccggact gggccctcg	960
tgctgagcag aggccggcaag cgtaacgggg tggtgacgc ctgggctggg ccagcccagg	1020
tccctgagga gggggccgtg acagtgaccg tgggagggtc cggggcgcac aagggtctcg	1080
ggttccccga tggggagggg tctagccgtc ggcccacgtt caccactttc tttggcagac	1140
ggaagtctcg ccagggctcc ctggcgatgg aggagctgaa gtctgggtca ggccccagcc	1200
tcaaaggga ggaggagcca ctggtgccca gtgaggatgg ggctgtggac gccccagctc	1260
ctgatgagcc cgaaggggga gacggggctg ccccttaagt gtcggtaat agtggggctg	1320
gaggccggaa tctcagccag cctccagcac cttccctctc accatcccac tgccccctcg	1380
ctccccatgtt tccaccggc accctgatcc tcacccgaat ctcccttttt tttttttttt	1440
gagacagagt ttgcgtttgt cgcccaggct ggagtcaat gcacgatctc agttcactgc	1500
aacctctgcc tcctaagttc aggcgattct cctgcctcag cttcccgagt aactgagatt	1560
acaggcaccc accaccatgc ccagctgctt tttgtattt ttggtagaga tgggtttca	1620
ccatgttggc taggctggc tcaaactctt gacctcaggt gatctacctg ctcagccctc	1680
ccaaagtgtt gagattacag acatgagcc cccgcgccttgc cttccctcacc cacctttca	1740
ctctgaatcc tcatgaggt tctcagccct ggatttcctg ctgccatcct cacccagcac	1800
ccacaactag cgcctggca gggcaggct ggcacccctc aacgtctgtg gactgaatga	1860
ataaaaccctc ctcttacaaa tgccaaaatt cattcagtt tgatgataaa cactgaggcc	1920
caatggcctt tatcatctag ggagtatgaa gaatgagcaa gaggcttaact cagcgtgagt	1980
taccctggga aaggaaagaa gaaatggttc atataggaca cacatagata cttcaaggg	2040

10/30

tgtttgtaga gttgtttctt aagtagttgg tttcccttcac agaaaaggttct taaactcaga	2100
atatacccat ccatgcaccc caccagcaat acaaagaccc caaacaaaaa attactatat	2160
tcttacccta cgcatggctt cctcccttc ttgacgcttt tcataatgtg caaagtcatc	2220
aaagattgag gtggtatgct tgaaaagtagc aattattttta agcacttgct tagcttttc	2280
aaggggacg	2288

<210> 8
<211> 400
<212> PRT
<213> Homo sapiens leukosialin

<400> 8
Met Ala Thr Leu Leu Leu Leu Leu Gly Val Leu Val Val Ser Pro Asp
1 5 10 15

Ala Leu Gly Ser Thr Thr Ala Val Gln Thr Pro Thr Ser Gly Glu Pro
20 25 30

Leu Val Ser Thr Ser Glu Pro Leu Ser Ser Lys Met Tyr Thr Thr Ser
 35 40 45

Ile Thr Ser Asp Pro Lys Ala Asp Ser Thr Gly Asp Gln Thr Ser Ala
50 55 60

Leu Pro Pro Ser Thr Ser Ile Asn Glu Gly Ser Pro Leu Trp Thr Ser
65 70 75 80

Ile Gly Ala Ser Thr Gly Ser Pro Leu Pro Glu Pro Thr Thr Tyr Gln
85 90 95

Glu Val Ser Ile Lys Met Ser Ser Val Pro Gln Glu Thr Pro His Ala
100 105 110

Thr Ser His Pro Ala Val Pro Ile Thr Ala Asn Ser Leu Gly Ser His
115 120 125

Thr Val Thr Gly Gly Thr Ile Thr Thr Asn Ser Pro Glu Thr Ser Ser
130 135 140

Arg Thr Ser Gly Ala Pro Val Thr Thr Ala Ala Ser Ser Leu Glu Thr
145 150 155 160

Ser Arg Gly Thr Ser Gly Pro Pro Leu Thr Met Ala Thr Val Ser Leu
165 170 175

Glu Thr Ser Lys Gly Thr Ser Gly Pro Pro Val Thr Met Ala Thr Asp
 180 185 190

Ser Leu Glu Thr Ser Thr Gly Thr Thr Gly Pro Pro Val Thr Met Thr
195 200 205

Thr Gly Ser Leu Glu Pro Ser Ser Gly Ala Ser Gly Pro Gin Val Ser
210 215 220

Ser Val Lys Leu Ser Thr Met Met Ser Pro Thr Thr Ser Thr Asn Ala
225 . . 230 . . 235 . . 240

Ser Thr Val Pro Phe Arg Asn Pro Asp Glu Asn Ser Arg Gly Met Leu
 245 250 255

Pro Val Ala Val Leu Val Ala Leu Leu Ala Val Ile Val Leu Val Ala
 260 265 270

Leu Leu Leu Trp Arg Arg Arg Gln Lys Arg Arg Thr Gly Ala Leu
 275 280 285

Val Leu Ser Arg Gly Gly Lys Arg Asn Gly Val Val Asp Ala Trp Ala
 290 295 300

Gly Pro Ala Gln Val Pro Glu Glu Gly Ala Val Thr Val Thr Val Gly
 305 310 315 320

Gly Ser Gly Gly Asp Lys Gly Ser Gly Phe Pro Asp Gly Glu Gly Ser
 325 330 335

Ser Arg Arg Pro Thr Leu Thr Thr Phe Phe Gly Arg Arg Lys Ser Arg
 340 345 350

Gln Gly Ser Leu Ala Met Glu Glu Leu Lys Ser Gly Ser Gly Pro Ser
 355 360 365

Leu Lys Gly Glu Glu Glu Pro Leu Val Ala Ser Glu Asp Gly Ala Val
 370 375 380

Asp Ala Pro Ala Pro Asp Glu Pro Glu Gly Gly Asp Gly Ala Ala Pro
 385 390 395 400

<210> 9
 <211> 5050
 <212> DNA
 <213> Homo sapiens leukosialin (CD43)

<400> 9
 ccccccgtgca gaatgggcac cccgttacct ttctgagcca ctgtgcgcag aaaagagagc 60
 atgtttggcca ggctggtctc gaactcctga cctcaagtga tcagcctgcc ttacctcccc 120
 aagtccctggg attacaggcg tgaaccacca cgctcagcct ctgaatactt tgtactcaag 180
 ccattttca gtgctgtgtt tgcagtgagc acacccgagg gatgaagaca cgtctccctg 240
 tggaaacctg ggcttaccag ggcccctaga ggagggaaat ctctcaagct cagagctcta 300
 tggctgcgggt gcaggcccac tgtgtgcatt gtgtcagtct gggcccttcc atgttgcccc 360
 cgtggactt ggggtaaggg gaactgatgc aaacatcacg ctgctgtgc ttgggtgtgag 420
 caattaattc ctgtggctct cacccaggag tctcatgtct ttgggtcaga caaactcatc 480
 agcttgtaga aatggcacag tcccacgggc ctgttagaat cttctattgt gcacatgttg 540
 ctcttaaat atacaaatca gtttgattt taaaaaaatta tttatTTTT tagtgatagg 600
 agtttgcta cggtgccag gctggttca aactcttggg ctcaggaggt cctccactt 660
 tggcctggac tgccagcata atgtatcacc acacccggga ctgatttcg ttttcaaga 720

acaaaaaacca aaaacataca caaacgaga gtc当地 gctaaat taga ggaaagt cag 780
gaaatggaa cc当地aaag aagaaaatac ccccacctcc tactctcacc tatccaaaga 840
caatttaggtg aatcccttag tagatata tccagacggt tttccatata gattcccata 900
tctggccagg cgccgtggct cacacctgta atcctagcgc ttggggaggc tgaggcggat 960
ggaccacctg aggtcaggag ttcgagacca gcctgaccaa catggagaaa cctcgtctct 1020
acgaaaaata caaaaattagc cggcacagt ggtc当地 gctactcagg 1080
aggccgaggc aggagaattt cttgaaccta ggaggcagac attgtgctgà gccgagccaa 1140
gatcatgccca ttgcactaa ctccgcctta aaaaaaaaaaaa aaaagattcc cacatctta 1200
ctagttgca gaaataagat cctagcatat gcagtggtg ggaaccacct tggtttagcc 1260
acgtctctgt gactggggc cactgtggt accccccagct ccccgacag agtcaagagc 1320
tcaccagcct gcaaagggtt tcacggcccc cagccagact cggggcttc ctctgccc 1380
gctacttcct gggagctctg agggcaggaa atggc当地 acgtc当地 gc当地aaagc 1440
ttggggacca caaatgcaaa ggaaaccacc ctccc当地cc acctc当地ctt ctgcacc 1500
gagttctcag gtc当地atcc ccaccaccc cctctgagcc cagcc当地cc tagcatcacc 1560
acttccatcc cattcctcag ccaagagccca ggaatcctga ttccagatcc cacgcttccc 1620
tgcctccctc aggtgagccc cagaccccca ggcaccccg c tggccctga aggagcagg 1680
gatggtgctg tcttc当地cc gca gctgtgg gagcaggcgg gtggggcagg atggagg 1740
gggtggggtg ggtggagccca gggccactt ctttccct tggggccctg tccttccc 1800
tcttgc当地cc gc当地gggag gtggtgaggt gacctggccc cagtgctgca tc当地tatc 1860
ccgagccggta aagagggtg gacttggtgg ggtaggggcc tc当地gggca tggaaatgt 1920
cctgtggctt gaaaagactc tgacaggta tgatggaaag agattggag cc当地gggct 1980
gcacagggtc agggaggcc aggaggggct ggtcactgct ggaatctaag ctgctgaggc 2040
tggaggggagc ctcaggatgg ggctgatggg ggagctgcca gcatctgtt cttgtcatt 2100
tctgataaca gtaaaagccca gcatggaaaa aaccgttaaa cc当地gggtt ggc当地ggcc 2160
ttggcaggga agtggcaga ggggaggccc ggccagggtcc tccggcaact cccgc当地gtt 2220
ctgcttctcc ggctgcccac ctgcagggtcc cagcttgc tccctgctgt ttgc当地ggaa 2280
atggccacgc ttctc当地ctt ccttgggtg ctgggtgtaa gccc当地acgc tctggggagc 2340
acaacagcag tgca gacacc cacccccc gaggc当地ttgg tctctactag cgagccctg 2400
agctcaaaga tgtacaccac ttcaataaca agtgc当地cttccaggccgacag cactggggac 2460
cagacccctcag cc当地tacccctcc ctcaacttcc atcaatgagg gatccctct ttggacttcc 2520
attggtgccca gca gctggtcc cc当地tttaccc gägccaacaa cctaccaggaa agttccatc 2580

aagatgtcat cagtccccca ggaaacccct catgcaacca gtcatactgc tttccata	2640
acagcaaact ctcttaggatc ccacaccgtg acagggtggaa ccataacaac gaactctcca	2700
gaaacctcca gtaggaccag tggagccct gttaccacgg cagctagctc tctggagacc	2760
tccagaggca cctctggacc cccttattacc atggcaactg tctcttgga gacttccaaa	2820
ggcacctctg gacccctgt taccatggca actgactctc tggagacctc cactgggacc	2880
actggacccc ctgttaccat gacaactggc tctctggagc cctccagcg ggccagtgg	2940
ccccaggctctg ctacgtaaa actatctaca atgatgtctc caacgaccc caccaacgca	3000
agcaactgtgc cttccggaa cccagatgag aactcacgag gcatgtgcc agtggctgt	3060
cttggccccc tgctggcggt catagtcctc gtggctctgc tcctgtgtg gcgcggcg	3120
cagaagcggc ggactggggc ctcgtgctg agcagaggcg gcaagctaa cggggtgttg	3180
gacgcctggg ctgggccagc ccaggtccct gaggaggggg ccgtgacagt gaccgtggg	3240
gggtccgggg gcgacaaggg ctctgggttc cccgatgggg aggggtctag ccgtggccc	3300
acgctcacca ctttctttgg cagacggaag tctcgcagg gctccctggc gatggaggag	3360
ctgaagtctg ggtcaggccc cagcctcaaa ggggaggagg agccactggt ggccagtgg	3420
gatggggctg tggacgcccc agtcctgat gagcccgaag ggggagacgg ggctccccct	3480
taagtgtcgg tgaatagtga ggctggaggc cgcaatctca gccagctcc agcaccttcc	3540
ctctcaccat cccactgccc ctcgtctccc atgtttccac ccggcaccct gatcctcacc	3600
cgaatctcct tttttttttt ctgtttagac agagttcgc ttgtcgccc aggctggagt	3660
gcaatgcacg atctcagttc actgcaacct ctgcctcta agttcaggcg attctctgc	3720
ctcagcttcc cgagtaactg agattacagg cacccaccac catgcccagc tgtttttg	3780
tattttttgtt agagatgggg tttcaccatg ttggcttaggc tggctcaaa ctctgacct	3840
caggtgatct acctgcctca gcctccaaa gtgctgagat tacagacatg agcctccg	3900
ccttcctcc tcacccacct cttcactctg aatcctcatg aggctctca gccctggatt	3960
tcctgtgcc atcctcaccc agcaccacaca actagcgcct gggcaggca gggctggcac	4020
ctctcaacgt ctgtggactg aatgaataaa ccctcctcat ccaccctat ttatctccat	4080
caccatttcc ccctctttct tggctcgga aacggctgct gagtctccat cggccaaact	4140
tatctgcctt gtgatttct tgacaattct cttttcccc cagaacccac cctgggttga	4200
ccagagtctg ggaagaagga caagagaacc cggcaaactc ctccttagga ttaactttgt	4260
aaagcaccct tggccctgttag ctgcaaggc tggtaacccct gggcagcccg caaccaccc	4320
tagctctggg ccccccaggc cagcctggag catggctggg tggggccacc agcccatgct	4380
ctcaggcggg cctgtgatct ttcccaggc acatggactg taggctggcc ctggcccaca	4440

ccaccacact	ctccccagcc	atggacagag	gcagccagag	gcctcacgg	ttctcctccg	4500
agtttctggc	tgggtgttagt	tctcagaaac	cccagtgcct	gcgtgtgtcc	actcgtgggt	4560
gtggtttgtg	tgcaagagct	gaggatttgg	cgatgcttgg	gaggggtagt	tgtgggtaca	4620
gacggtgtgg	gggtgggaag	tggtgcagag	actgaagagg	gtcaacctgg	gcatggggga	4680
cacaggact	gctgagaacg	tgcgtgtcat	cttgctctg	atgggtgga	catagcagaa	4740
aatctaactc	tgtctgttagc	cccatacaga	atgccagggt	gagcacagt	gctgggtgcct	4800
ttaatcccag	cactttggaa	agttgaggca	ggaggatcgc	ttgagccag	gagttcgagt	4860
ctgaagtgag	ctgtgattgc	accactgcac	ttcagcctgg	gcaacagagt	gagccctgt	4920
ctcaaaaaag	aaaagaaaaa	gaaagccagg	cttcatggaa	agatcgtatg	tgtgacccaa	4980
tatgagttct	tcaagctcagc	catggtaatc	cttccttga	agtctccatt	tctgcagttac	5040
acatgcatgt						5050

<210> 10

<211> 400

<212> PRT

<213> Homo sapiens leukosialin (CD43)

<400> 10

Met	Ala	Thr	Leu	Leu	Leu	Leu	Gly	Val	Leu	Val	Val	Ser	Pro	Asp
1								5		10			15	

Ala	Leu	Gly	Ser	Thr	Thr	Ala	Val	Gln	Thr	Pro	Thr	Ser	Gly	Glu	Pro
							20		25			30			

Leu	Val	Ser	Thr	Ser	Glu	Pro	Leu	Ser	Ser	Lys	Met	Tyr	Thr	Thr	Ser
							35		40		45				

Ile	Thr	Ser	Asp	Pro	Lys	Ala	Asp	Ser	Thr	Gly	Asp	Gln	Thr	Ser	Ala
							50		55		60				

Leu	Pro	Pro	Ser	Thr	Ser	Ile	Asn	Glu	Gly	Ser	Pro	Leu	Trp	Thr	Ser
							65		70		75		80		

Ile	Gly	Ala	Ser	Thr	Gly	Ser	Pro	Leu	Pro	Glu	Pro	Thr	Thr	Tyr	Gln
							85		90		95				

Glu	Val	Ser	Ile	Lys	Met	Ser	Ser	Val	Pro	Gln	Glu	Thr	Pro	His	Ala
								100		105		110			

Thr	Ser	His	Pro	Ala	Val	Pro	Ile	Thr	Ala	Asn	Ser	Leu	Gly	Ser	His
							115		120		125				

Thr	Val	Thr	Gly	Gly	Thr	Ile	Thr	Thr	Asn	Ser	Pro	Glu	Thr	Ser	Ser
							130		135		140				

Arg	Thr	Ser	Gly	Ala	Pro	Val	Thr	Thr	Ala	Ala	Ser	Ser	Leu	Glu	Thr
							145		150		155		160		

Ser	Arg	Gly	Thr	Ser	Gly	Pro	Pro	Leu	Thr	Met	Ala	Thr	Val	Ser	Leu
								165		170		175			

15/30

Glu Thr Ser Lys Gly Thr Ser Gly Pro Pro Val Thr Met Ala Thr Asp
 180 185 190

Ser Leu Glu Thr Ser Thr Gly Thr Thr Gly Pro Pro Val Thr Met Thr
 195 200 205

Thr Gly Ser Leu Glu Pro Ser Ser Gly Ala Ser Gly Pro Gln Val Ser
 210 215 220

Ser Val Lys Leu Ser Thr Met Met Ser Pro Thr Thr Ser Thr Asn Ala
 225 230 235 240

Ser Thr Val Pro Phe Arg Asn Pro Asp Glu Asn Ser Arg Gly Met Leu
 245 250 255

Pro Val Ala Val Leu Val Ala Leu Leu Ala Val Ile Val Leu Val Ala
 260 265 270

Leu Leu Leu Trp Arg Arg Arg Gln Lys Arg Arg Thr Gly Ala Leu
 275 280 285

Val Leu Ser Arg Gly Gly Lys Arg Asn Gly Val Val Asp Ala Trp Ala
 290 295 300

Gly Pro Ala Gln Val Pro Glu Glu Gly Ala Val Thr Val Thr Val Gly
 305 310 315 320

Gly Ser Gly Gly Asp Lys Gly Ser Gly Phe Pro Asp Gly Glu Gly Ser
 325 330 335

Ser Arg Arg Pro Thr Leu Thr Thr Phe Phe Gly Arg Arg Lys Ser Arg
 340 345 350

Gln Gly Ser Leu Ala Met Glu Glu Leu Lys Ser Gly Ser Gly Pro Ser
 355 360 365

Leu Lys Gly Glu Glu Glu Pro Leu Val Ala Ser Glu Asp Gly Ala Val
 370 375 380

Asp Ala Pro Ala Pro Asp Glu Pro Glu Gly Gly Asp Gly Ala Ala Pro
 385 390 395 400

<210> 11

<211> 1879

<212> DNA

<213> Homo sapiens sialophorin (CD43)

<400> 11

gcctcgggag gtgggtggagt gacctggccc cagtgctgcg tccttatcag ccgagccgg 60
 cccagcttt gctcctgcct gtttgcctgg aatggccac gtttcctcctt ctccctgggg 120
 tgctgggttgt aagccccagac gctctgggga gcacaacagc agtgcagaca cccacctccg 180
 gagagccttt ggtctctact agcgagcccc tgagctcaaa gatgtacacc acttcaataa 240
 caagtgaccc taaggccgac agcactgggg accagacctc agccctacct ccctcaactt 300
 ccatcaatga gggatcccct ctttgactt ccattggtgc cagcactggc tccccttac 360

ctgagccaac aacctaccag gaagtttcca tcaagatgtc atcagtgc	420
ctcatcaac cagtcatcct gctgtccca taacagcaaa ctctcttagga tcccacaccg	480
tgacaggtgg aaccataaca acgaactctc cagaaacctc cagtaggacc agtggagccc	540
ctgttaccac ggcagctagc tctctggaga cctccagagg cacctctgga cccctctta	600
ccatggcaac tgtctctctg gagacttcca aaggcacctc tggacccctt gttaccatgg	660
caactgactc tctggagacc tccactggga ccactggacc ccctgttacc atgacaactg	720
gctctctgga gccctccagc gggccagtg gacccaggt ctctagcgta aaactatcta	780
caatgtatgtc tccaacgacc tccaccaacg caagcactgt gcccttcgg aacccagatg	840
agaactcacg aggcatgctg ccagtggctg tgcttgtggc cctgctggcg gtcatagtcc	900
tcgtggctct gctcctgctg tggcccccgc ggcagaagcg gcggactggg gccctcggtc	960
tgagcagagg tggcaagcgt aacggggtgg tggacgcctg ggctggcca gcccaggtcc	1020
ctgaggaggg ggccgtgaca gtgaccgtgg gagggtccgg gggcgacaag ggctctgggt	1080
tccccatgg ggaggggtct agccgtcggc ccacgctcac cactttctt ggcagacgga	1140
agtctcgcca gggctccctg gcgatggagg agctgaagtc tgggtcaggc cccagcctca	1200
aaggggagga ggagccactg gtggccagtg aggatggggc tggacgcggcc ccagctcctg	1260
atgagcccgaa agggggagac ggggctgccc cttaagtgtc ggtaatagt gaggctggag	1320
gccggaatct cagccagccct ccagcacctt ccctctcacc atcccactgc cccctcgctc	1380
ccatgtttcc accccggcacc ctgatcctca cccgaatctc ctttttttt ttctttttag	1440
acagagtttc gctttgtcgc ccaggctgga gtgcaatgca cgatctcagt tcactgcaac	1500
ctctgcctcc taagttcagg cgatttcct gcctcagctt cccgagtaac tgagattaca	1560
ggcacccacc accatgccc gctgctttt tttttttt gtagagatgg gtttcacca	1620
tgttgcttag gctggctctca aactcctgac ctcaggtgat ctacctgcct cagcctccca	1680
aagtgttag attacagaca tgagcctccg cgccttcct cctcacccac ctcttcactc	1740
tgaatcctca tgaggcttct cagccctgga tttcctgctg ccatcctcac ccagcacccaa	1800
caactagcgc ctgggcaggg cagggctggc acctctcaac gtctgtggac tgaatgaata	1860
aaccctccctc atccacccccc	1879

<210> 12
 <211> 400
 <212> PRT
 <213> Homo sapiens sialophorin (CD43)

<400> 12
 Met Ala Thr Leu Leu Leu Leu Gly Val Leu Val Val Ser Pro Asp
 1 5 10 15

Ala Leu Gly Ser Thr Thr Ala Val Gln Thr Pro Thr Ser Gly Glu Pro
20 25 30

Leu Val Ser Thr Ser Glu Pro Leu Ser Ser Lys Met Tyr Thr Thr Ser
35 40 45

Ile Thr Ser Asp Pro Lys Ala Asp Ser Thr Gly Asp Gln Thr Ser Ala
50 55 60

Leu Pro Pro Ser Thr Ser Ile Asn Glu Gly Ser Pro Leu Trp Thr Ser
65 70 75 80

Ile Gly Ala Ser Thr Gly Ser Pro Leu Pro Glu Pro Thr Thr Tyr Gln
85 90 95

Glu Val Ser Ile Lys Met Ser Ser Val Pro Gln Glu Thr Pro His Ala
100 105 110

Thr Ser His Pro Ala Val Pro Ile Thr Ala Asn Ser Leu Gly Ser His
115 120 125

Thr Val Thr Gly Gly Thr Ile Thr Thr Asn Ser Pro Glu Thr Ser Ser
130 135 140

Arg Thr Ser Gly Ala Pro Val Thr Thr Ala Ala Ser Ser Leu Glu Thr
145 150 155 160

Ser Arg Gly Thr Ser Gly Pro Pro Leu Thr Met Ala Thr Val Ser Leu
165 170 175

Glu Thr Ser Lys Gly Thr Ser Gly Pro Pro Val Thr Met Ala Thr Asp
180 185 190

Ser Leu Glu Thr Ser Thr Gly Thr Gly Pro Pro Val Thr Met Thr
195 200 205

Thr Gly Ser Leu Glu Pro Ser Ser Gly Ala Ser Gly Pro Gln Val Ser
210 215 220

Ser Val Lys Leu Ser Thr Met Met Ser Pro Thr Thr Ser Thr Asn Ala
225 230 235 240

Ser Thr Val Pro Phe Arg Asn Pro Asp Glu Asn Ser Arg Gly Met Leu
245 250 255

Pro Val Ala Val Leu Val Ala Leu Leu Ala Val Ile Val Leu Val Ala
260 265 270

Leu Leu Leu Leu Trp Arg Arg Arg Gln Lys Arg Arg Thr Gly Ala Leu
275 280 285

Val Leu Ser Arg Gly Gly Lys Arg Asn Gly Val Val Asp Ala Trp Ala
290 295 300

Gly Pro Ala Gln Val Pro Glu Glu Gly Ala Val Thr Val Thr Val Gly
305 310 315 320

Gly Ser Gly Gly Asp Lys Gly Ser Gly Phe Pro Asp Gly Glu Gly Ser
325 330 335

Ser Arg Arg Pro Thr Leu Thr Thr Phe Phe Gly Arg Arg Lys Ser Arg

18/30

340 345 350

Gln Gly Ser Ile Ala Met Glu Glu Leu Lys Ser Gly Ser Gly Pro Ser
 355 360 365
 Leu Lys Gly Glu Glu Glu Pro Leu Val Ala Ser Glu Asp Gly Ala Val
 370 375 380

Asp Ala Pro Ala Pro Asp Glu Pro Glu Gly Gly Asp Gly Ala Ala Pro
 385 390 395 400

<210> 13
 <211> 6503
 <212> DNA
 <213> Homo sapiens sialophorin (CD43)

<400> 13
 aagcttgcta attagaggaa agtcaggaaa tggaaaccat tcaaagaaga aaataccccc 60
 acctcctact ctcacctatc caaagacaat taggtgaatc ccttagtaga tatctttcca 120
 gacggtttgc catatagatt cccatatctg gccaggcgcg gtggctcaca cctgtaatcc 180
 tagcgcttgg ggaggcttag gcggatggac cacctgaggt caggagttcg agaccagcct 240
 gaccaacatg gagaaacctc gtctctacga aaaatacaaa attagccggg cacagtggtg 300
 caagcctgta atcccagcta ctcaggaggc cgaggcagga gaattgcttgc aacctaggag 360
 gcagacatttgc tgctgagccg agccaagatc atgccattgc actaaactcc gccttaaaaa 420
 aaaaaaaaaaa agattcccac atctttacta gtttgcagaa ataagatccct agcatatgca 480
 gtgtgttagga accacccctgg tttagccacg tctctgtgac tggggccac tgtggtgacc 540
 cccagctccc cggacagagt caagagctca ccagcctgca aaggtttca cggccccccag 600
 ccagactcgg gggcttcctc ttgcctgct acttcctggg agctctgagg gcaggaaatg 660
 ggcactca gtcctggcc taacagcttgc gggaccacaa atgcaagggaa aaccaccctc 720
 ccctcccacc tcctcctctg cacccttgc ttctcaggct cacattccca ccacccacct 780
 ctgagcccaag ccctccctag catcaccact tccatcccat tcctcagcca agagccagga 840
 atcctgattc cagatccac gttccctgc ctccctcagg tgagccccag accccccaggc 900
 accccctgg cccctgaagg agcaggtgat ggtgctgtct tcgcccagca gctgtgggag 960
 caggcgggtg gggcaggatg gaggggtggg tgggggtgggt ggagccagg cccacttcct 1020
 ttccccttgg ggcctgtcc ttcccagtct tgccccagcc tcgggaggtg gtggagtgac 1080
 ctggccccag tgcgtgtcc ttatcagccg agccgttaag agggtgagac ttgggtgggt 1140
 aggggcctca gtgggcctgg gaatgtgcct gtggcttggaa aagactctga caggttatga 1200
 tgggaagaga ttgggagcca ttgggctgca cagggtcagg gaagggcagg aggggctgg 1260
 cactgcttggaa atctaagctg ctgaggctgg agggagccctc aggtatgggc tgatggggga 1320
 gctgcagca tctgttcctc tgtcatttct gataacagta aaagccagca tggaaaaaac 1380

cgttaaacgc caggttggc ctggccgttg gcagggaaat gggcagaggg gagggccggc 1440
caggtcctcc ggcaactccc gcgtgttctg cttctccggc tgcccacctg caggtcccag 1500
ctcttgctcc tgccctgtttg cctggaaatg gccacgcttc tccttctcct tgggtgctg 1560
gtggtaagcc cagacgctct ggggagcaca acagcagtgc agacacccac ctccggagag 1620
ccttttgtct ctactagcga gccctgagc tcaaagatgt acaccacttc aataacaagt 1680
gaccctaagg ccgacagcac tggggaccag acctcagccc tacctccctc aacttccatc 1740
aatgagggat cccctcttg gacttcattt ggtgccagca ctggttcccc ttacactgag 1800
ccaacaacct accaggaatg ttccatcaag atgtcatcag tgccccagga aaccctcat 1860
gcaaccagtc atcctgctgt tccataaca gcaaactctc taggatccca caccgtgaca 1920
ggtggaacca taacaacgaa ctctccagaa acctccagta ggaccagtgg agccctgtt 1980
accacggcag cttagctctc ggagacctcc agaggcacct ctggacccccc tcttaccatg 2040
gcaactgtct ctctggagac ttccaaaggc acctctggac cccctgttac catggcaact 2100
gactctctgg agacctccac tgggaccact ggacccctg ttaccatgac aactggctct 2160
ctggagccct ccagcggggc cagtggaccc caggtctcta gcgtaaaact atctacaatg 2220
atgtctccaa cgacctccac caacgcaagc actgtgccct tccggaaccc agatgagaac 2280
tcacgaggca tgctgccagt ggctgtgctt gtggccctgc tggcggtcat agtccctgtg 2340
gctctgctcc tgctgtggcg cggcggcag aagcggcgga ctggggccct cgtgctgagc 2400
agaggccgca agcgtaacgg ggtgggtggac gcctgggctg ggccagccca ggtccctgag 2460
gagggggcccg tgacagtgac cgtgggaggg tccggggccg acaagggctc tggttcccc 2520
gatggggagg ggtctagccg tcggccacg ctcaccactt tctttggcag acgaaagtct 2580
cgccagggtc ccctggcgat ggaggagctg aagtctgggt caggcccccag cctcaaagg 2640
gaggaggagc cactggtggc cagtgaggat ggggctgtgg acgccccagc tcctgatgag 2700
cccgaagggg gagacggggc tgcccttaa gtgtcggtga atagtgaggc tggaggccgg 2760
aatctcagcc agcctccacg acctccctc tcaccatccc actgccccct cgtcccccatt 2820
tttccaccccg gcaccctgat cctcaccgcg atctcctttt ttttttctt ttgagacaga 2880
gtttcgcttt gtcgcccagg ctggagtgca atgcacgatc tcagttcaact gcaacctctg 2940
cctcctaagt tcaggcgatt ctccctgcctc agcttcccgta gtaactgaga ttacaggcac 3000
ccaccaccaat gcccagctgc tttttgtat ttttggtaga gatggggttt caccatgtt 3060
gctaggctgg tctcaaactc ctgacctcag gtgatctacc tgcctcagcc tcccaaagt 3120
ctgagattac agacatgagc ctccgcgcct tgccctctca cccacctctt cactctgaat 3180
cctcatgagg cttctcagcc ctggatttcc tgctgccatc ctcaccgc acccacaact 3240

tgtcaccgaa cgaacgtcgc tgtcctcagc tccacaccttccc	5160
tgttttctaa gccaggactg gtttttagtca ggtcctgggc gaatcctgaa aaaaagaggt	5220
agtacgggta aggaaggcac ccaacaggc tttcacaatc cagaaaaatataa	5280
gtgttaaaag agagggcacag gcccgggtgcg gtggctcagc cctgtaatct cagcactttg	5340
ggaggccaag gtgggcagat catgaggtca ggagttttag accagcctgg ccaatatgat	5400
gaaaccccgta ttctactaaa aatacAAAAG tttagccaggc atggtgtgtgt gtcctgtaa	5460
tcccagctac ttaggaggct gaggccagag aattgcttga accctggagt cagaggttgc	5520
agtgagccgg gatcatgccca ctgtactccca ggctgggtga caaagtgaga ctgtctcaaa	5580
aaataaaaaat aaataaaaata aataaaaagag aggcacaaac agtgttatga atgcaccaag	5640
gaaaatggtg cattcataaac tctcaggtga agcctaccaa gccatgcgtg tgtgcacata	5700
tgtgttacg tgtgcatgtg cgtgcgtgca tgtgcgtgcg tgcattgtgcc tgtgtgtgt	5760
tgtgtgcaca tgtgtgtgcg catgtgtgtg tgtgcgcgc tgtgtgtgtg catgcattgtt	5820
ctccccatgca tgtgtactgt ggcaagggag actttgagga agagattcca gtggctgagc	5880
agaagggctc gcattgccct ggcgaaaggt tggaaaggct cacctgagag tgtgtcgtgg	5940
cctttgtcat atccactgct tgattccctt cttaaaaat tatttttatt gttttctaca	6000
tatgagaacc accacacacccg gctaattttt gtattttttt tagagatggg gtttccat	6060
gttgtcccg ctggctctcaa actccgggc acaagagatc cacctgcctc agcctcccaa	6120
aatgctggga ctataggcat gagccactgc acccagccac tgcttcattc ctggtggtcg	6180
ctgtgcctgg catgttgcag atcctccatg aatatgcatt tgaatgaatg aatgaatgaa	6240
tgaatgaatg gagatgacgc ctcagagatt ctttctttt agatgaggc tcattctgtc	6300
acccagacta gagggcagtg gtgcaatcac agctcaccac agcctcaacc tcctgggcct	6360
cccaagtagc tgcatcaca ggtgtgcacc aacatgcccc gctaattttt ttttttaattt	6420
ttaatttgcata cagacagggt cttgctgtgt tgcccaggct ggtctcgaac tcctgggctc	6480
aagtggccct cccacctaag .ctt	6503

<210> 14
 <211> 400
 <212> PRT
 <213> Homo sapiens sialophorin (CD43)

<400> 14
 Met Ala Thr Leu Leu Leu Leu Gly Val Leu Val Val Ser Pro Asp
 1 5 10 15

Ala Leu Gly Ser Thr Thr Ala Val Gln Thr Pro Thr Ser Gly Glu Pro
 20 25 30

Leu Val Ser Thr Ser Glu Pro Leu Ser Ser Lys Met Tyr Thr Thr Ser
35 40 45

Ile Thr Ser Asp Pro Lys Ala Asp Ser Thr Gly Asp Gln Thr Ser Ala
50 55 60

Leu Pro Pro Ser Thr Ser Ile Asn Glu Gly Ser Pro Leu Trp Thr Ser
65 70 75 80

Ile Gly Ala Ser Thr Gly Ser Pro Leu Pro Glu Pro Thr Thr Tyr Gln
85 90 95

Glu Val Ser Ile Lys Met Ser Ser Val Pro Gln Glu Thr Pro His Ala
100 105 110

Thr Ser His Pro Ala Val Pro Ile Thr Ala Asn Ser Leu Gly Ser His
115 120 125

Thr Val Thr Gly Gly Thr Ile Thr Thr Asn Ser Pro Glu Thr Ser Ser
130 135 140

Arg Thr Ser Gly Ala Pro Val Thr Thr Ala Ala Ser Ser Leu Glu Thr
145 150 155 160

Ser Arg Gly Thr Ser Gly Pro Pro Leu Thr Met Ala Thr Val Ser Leu
165 170 175

Glu Thr Ser Lys Gly Thr Ser Gly Pro Pro Val Thr Met Ala Thr Asp
180 185 190

Ser Leu Glu Thr Ser Thr Gly Thr Thr Gly Pro Pro Val Thr Met Thr
195 200 205

Thr Gly Ser Leu Glu Pro Ser Ser Gly Ala Ser Gly Pro Gln Val Ser
210 215 220

Ser Val Lys Leu Ser Thr Met Met Ser Pro Thr Thr Ser Thr Asn Ala
225 230 235 240

Ser Thr Val Pro Phe Arg Asn Pro Asp Glu Asn Ser Arg Gly Met Leu
245 250 255

Pro Val Ala Val Leu Val Ala Leu Leu Ala Val Ile Val Leu Val Ala
260 265 270

Leu Leu Leu Leu Trp Arg Arg Arg Gln Lys Arg Arg Thr Gly Ala Leu
275 280 285

Val Leu Ser Arg Gly Gly Lys Arg Asn Gly Val Val Asp Ala Trp Ala
290 295 300

Gly Pro Ala Gln Val Pro Glu Glu Gly Ala Val Thr Val Thr Val Gly
305 310 315 320

Gly Ser Gly Gly Asp Lys Gly Ser Gly Phe Pro Asp Gly Glu Gly Ser
325 330 335

Ser Arg Arg Pro Thr Leu Thr Thr Phe Phe Gly Arg Arg Lys Ser Arg
340 345 350

Gln Gly Ser Leu Ala Met Glu Glu Leu Lys Ser Gly Ser Gly Pro Ser
355 360 365

Leu Lys Gly Glu Glu Glu Pro Leu Val Ala Ser Glu Asp Gly Ala Val
370 375 380

Asp Ala Pro Ala Pro Asp Glu Pro Glu Gly Gly Asp Gly Ala Ala Pro
385 390 395 400

<210> 15
<211> 2745
<212> DNA
<213> Homo sapiens heterogeneous nuclear ribonucleoprotein K

<400> 15
cgccagtttc ggcggctac tgcagcactg ggggttcgt ttgtggtccg acccagaacg 60
cttcagttct gctctgcaag gatataat aactgattgg tttgtcccctt taataaaaga 120
atatggaaac tgaacagcca gaagaaacct tccctaacac taaaaccaat ggtgaatttg 180
gtaaacgccc tgcagaagat atgaaagagg aacaagcatt taaaagatct agaaacactg 240
atgagatggt tgaattacgc attctgcttc agagcaagaa tgctgggca gtgattggaa 300
aaggaggcaa gaatattaag gctctccgta cagactacaa tgccagtgtt tcagtcccag 360
acagcagtgg ccccgagcgc atattgagta tcagtgtga tattgaaaca attggagaaa 420
ttctgaagaa aatcatccct accttggaaag agggcctgca gttgccatca cccactgcaa 480
ccagccagct cccgctcgaa tctgatgctg tggaaatgctt aaattaccaa cactataaaag 540
gaagtgactt tgactgcgag ttgaggctgt tgattcatca gagtcttagca ggaggaatta 600
ttgggtcaa aggtgctaaa atcaaagaac ttcgagagaa cactcaaacc accatcaagc 660
ttttccagga atgctgtcct cattccactg acagagttgt tcttattgga gaaaaacccg 720
atagggttgt agagtgcata aagatcatcc ttgatcttat atctgagtct cccatcaaag 780
gacgtgcaca gccttatgtat cccaaatttt acgtgaaac ctatgattat ggtggtttta 840
caatgatgtt tgatgacgt cgccggacgcc cagtgggatt tcccatgcgg ggaagaggtg 900
gttttgcacag aatgcctcct ggtcgggggtg ggcgtccatct agaagagatt 960
atgatgatat gagccctcgat cgaggaccac ctccccctcc tcccggacga ggcggccggg 1020
gtggtagcag agctcgaaat ctccctcttc ctccaccacc accacccatg gggggagacc 1080
tcatggccta tgacagaaga gggagacctg gagaccgtt cgcacggcatg gttggtttca 1140
gtgctgatga aacttggac tctgcaatag atacatggag cccatcagaa tggcagatgg 1200
cttatgaacc acagggtggc tccggatatg attattccta tgcaggggt cgtggctcat 1260
atggtgatct tggtgacactt attattacta cacaagtaac tattccaaa gattttggctg 1320
gatctattat tggcaaagggt ggtcagcgga ttaaacaaat ccgtcatgag tcgggagctt 1380
cgatcaaaat tgatgagcct ttggaaaggat ccgaagatcg gatcattacc attacaggaa 1440
cacaggacca gatacagaat gcacagtatt tgctgcagaa cagtgtgaag cagtatgcag 1500
atgttgaagg attctaattgc aagatatttt ttctttttta tagtgtgaag cagtattctg 1560

gaaaagttttt ctaagactag tgaagaactg aaggagtccct gcatctttt ttttttatct 1620
 gcttcgttt aaaaagccaa cattcctctg cttcataggt gttctgcatt tgaggtgtag 1680
 tgaaaatctt gctgttcacc agatgtaatg ttttagttcc ttacaaacag ggttgggggg 1740
 gggaaaggcg tgcaaaaact aacattgaaa ttttgaaca gcagcagagt gagtggattt 1800
 tattttcgt tatttgttggt gttttaaaaa attccccca tptaatttattt gtgaacacct 1860
 tgctttgtgg tcactgtaac atttgggggg tggcacaggg aggaaaagta acaatagtcc 1920
 acatgtccct ggcacatgtt cagagcagtg tgccagaatgt aatgctttt tgtaagaaac 1980
 gtttatgtat tttaaaaata aatttagtga acctattttt ggtggtcatt tttttttaa 2040
 gacagtcatt ttaaaatggt ggctgaattt cccaacccac ccccaaacta aacactaagt 2100
 ttaatttca gtcctctgt tggacatata agtgcacatctc ttgttgaca taggcaaaat 2160
 aacttggcaa acttagttct ggtgatttct tggatggttt gaaatcttattt gctggaaaga 2220
 aattccatca tacatattca tgcttataat aagctggga tttttgttt gttttgcaa 2280
 atgcttgcctt ctactttca acaattttct atgtagttt gtaagaacta aggtggggag 2340
 cagtaactaca agtttagtaa tggatgttactat aataccaga attctgatttgcagcaagtt 2400
 tattaaatcag aataacactt ggttatggaa gtgactaatg ctgaaaaat tgattttttt 2460
 tattagataa tttctcacct atagactaa actgtcaatt tgctctgt tgcttattgt 2520
 taaaacttgt aaaatataata tataacttgtt tttccattgt atgcaatttggaaatgg 2580
 atgtaccatt tctctgtgt atgttgattt atgtaggaat gtttggatc aattcaaaaa 2640
 aaaaaaaaaagat gaaaaaaagtt cctgtggatg ttttggatg tatctggca tttgtattga 2700
 tagttaaaat tcacttccaa ataaataaaa cacccatgtat gctat 2745

<210> 16

<211> 463

<212> PRT

<213> Homo sapiens heterogeneous nuclear ribonucleoprotein complex K

<400> 16

Met	Glu	Thr	Glu	Gln	Pro	Glu	Glu	Thr	Phe	Pro	Asn	Thr	Glu	Thr	Asn
1									10					15	

Gly	Glu	Phe	Gly	Lys	Arg	Pro	Ala	Glu	Asp	Met	Glu	Glu	Glu	Gln	Ala
									25					30	

Phe	Lys	Arg	Ser	Arg	Asn	Thr	Asp	Glu	Met	Val	Glu	Leu	Arg	Ile	Leu
									35					45	

Leu	Gln	Ser	Lys	Asn	Ala	Gly	Ala	Val	Ile	Gly	Lys	Gly	Gly	Lys	Asn
									50					60	

Ile	Lys	Ala	Leu	Arg	Thr	Asp	Tyr	Asn	Ala	Ser	Val	Ser	Val	Pro	Asp
									65					75	

Ser Ser Gly Pro Glu Arg Ile Leu Ser Ile Ser Ala Asp Ile Glu Thr
85 90 95

Ile Gly Glu Ile Leu Lys Lys Ile Ile Pro Thr Leu Glu Glu Gly Leu
100 105 110

Gln Leu Pro Ser Pro Thr Ala Thr Ser Gln Leu Pro Leu Glu Ser Asp
115 120 125

Ala Val Glu Cys Leu Asn Tyr Gln His Tyr Lys Gly Ser Asp Phe Asp
130 135 140

Cys Glu Leu Arg Leu Leu Ile His Gln Ser Leu Ala Gly Gly Ile Ile
145 150 155 160

Gly Val Lys Gly Ala Lys Ile Lys Glu Leu Arg Glu Asn Thr Gln Thr
165 170 175

Thr Ile Lys Leu Phe Gln Glu Cys Cys Pro His Ser Thr Asp Arg Val
180 185 190

Val Leu Ile Gly Gly Lys Pro Asp Arg Val Val Glu Cys Ile Lys Ile
195 200 205

Ile Leu Asp Leu Ile Ser Glu Ser Pro Ile Lys Gly Arg Ala Gln Pro
210 215 220

Tyr Asp Pro Asn Phe Tyr Asp Glu Thr Tyr Asp Tyr Gly Gly Phe Thr
225 230 235 240

Met Met Phe Asp Asp Arg Arg Gly Arg Pro Val Gly Phe Pro Met Arg
245 250 255

Gly Arg Gly Gly Phe Asp Arg Met Pro Pro Gly Arg Gly Arg Pro
260 265 270

Met Pro Pro Ser Arg Arg Asp Tyr Asp Asp Met Ser Pro Arg Arg Gly
275 280 285

Pro Pro Pro Pro Pro Gly Arg Gly Arg Gly Gly Ser Arg Ala
290 295 300

Arg Asn Leu Pro Leu Pro Pro Pro Pro Pro Arg Gly Gly Asp Leu
305 310 315 320

Met Ala Tyr Asp Arg Arg Gly Arg Pro Gly Asp Arg Tyr Asp Gly Met
325 330 335

Val Gly Phe Ser Ala Asp Glu Thr Trp Asp Ser Ala Ile Asp Thr Trp
340 345 350

Ser Pro Ser Glu Trp Gln Met Ala Tyr Glu Pro Gln Gly Gly Ser Gly
355 360 365

Tyr Asp Tyr Ser Tyr Ala Gly Gly Arg Gly Ser Tyr Gly Asp Leu Gly
370 375 380

Gly Pro Ile Ile Thr Thr Gln Val Thr Ile Pro Lys Asp Leu Ala Gly
385 390 395 400

Ser Ile Ile Gly Lys Gly Gly Gln Arg Ile Lys Gln Ile Arg His Glu
 405 410 415

Ser Gly Ala Ser Ile Lys Ile Asp Glu Pro Leu Glu Gly Ser Glu Asp
 420 425 430
 Arg Ile Ile Thr Ile Thr Gly Thr Gln Asp Gln Ile Gln Asn Ala Gln
 435 440 445

Tyr Leu Leu Gln Asn Ser Val Lys Gln Tyr Ser Gly Lys Phe Phe
 450 455 460

<210> 17
<211> 1144
<212> DNA
<213> Homo sapiens Pur (pur-alpha)

<400> 17		
cgactgaggc ggcgggcggga gcggcaggcg gcggcgccgc ggcagcggag cgcatca	60	
tggcggaccg agacagcggc agcgagcagg gtggtgccgc gctgggttcg ggcggctccc	120	
tggggcaccc cggctcgggc tcaggctecg gcggggggcgg tggtggccgc gggggcggcg	180	
gcggcagtgg cggcggcggc ggcggggccc caggggggct gcagcacgag acgcaggagc	240	
tggcctccaa gccccgtggac atccagaaca agcgtttcta cctggacgtg aagcagaacg	300	
ccaaggggccg ctccctgaag atcgccgagg tggcgcggg cggcaacaag agccgcctta	360	
ctctctccat gtcagtgcc gtggagttcc gcgactacct gggcacttc atcgagcact	420	
acgcgcagct gggcccccagc cagccgcgg acctggccca ggccgcaggac gagccgcgcc	480	
gggcgcctaa aagcgagttc ctggtgccgc agaaccgcaa gtactacatg gatctcaagg	540	
agaaccagcg cggccgccttc ctgcgcattcc gccagacggt caaccggggg cctggcctgg	600	
gctccacgca gggccagacc attgcgctgc ccgcgcaggg gctcatcgag ttccgtgacg	660	
ctctggccaa gctcatcgac gactacggag tggaggagga gccggccgag ctgcccggg	720	
gcacccctt gactgtggac aacaagcgct tcttcttgc tgtggctcc aacaagtacg	780	
gcgtgtttat gcgagtgagc gaggtgaagc ccacctatcg caactccatc accgtgcct	840	
acaagggtgtg ggccaagttc ggacacacct tctgcaagta ctcggaggag atgaagaaga	900	
ttcaagagaa gcagagggag aagcgggctg cctgtgagca gcttcaccag cagcaacagc	960	
agcagcagga ggagaccgcc gctgccactc tgctactgca gggtgagggaa gaaggggaag	1020	
aagattgatc aaacagaatg aaaccccccac acacacacac atgcatacac acacacacac	1080	
agccacacac acagaaaata tactgtaaag aaagagagaa aataaaaagt taaaaagtta	1140	
aaaaa	1144	

<210> 18
<211> 322
<212> PRT

<213> Homo sapiens purine-rich element binding protein A (PURA)

<400> 18
Met Ala Asp Arg Asp Ser Gly Ser Glu Gln Gly Gly Ala Ala Leu Gly
1 5 10 15

Ser Gly Gly Ser Leu Gly His Pro Gly Ser Gly Ser Gly Ser Gly Gly
20 25 30

Gly Gly Gly Gly Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly
35 40 45

Gly Ala Pro Gly Gly Leu Gln His Glu Thr Gln Glu Leu Ala Ser Lys
50 55 60

Arg Val Asp Ile Gln Asn Lys Arg Phe Tyr Leu Asp Val Lys Gln Asn
65 70 75 80

Ala Lys Gly Arg Phe Leu Lys Ile Ala Glu Val Gly Ala Gly Gly Asn
85 90 95

Lys Ser Arg Leu Thr Leu Ser Met Ser Val Ala Val Glu Phe Arg Asp
100 105 110

Tyr Leu Gly Asp Phe Ile Glu His Tyr Ala Gln Leu Gly Pro Ser Gln
115 120 125

Pro Pro Asp Leu Ala Gln Ala Gln Asp Glu Pro Arg Arg Ala Leu Lys
130 135 140

Ser Glu Phe Leu Val Arg Glu Asn Arg Lys Tyr Tyr Met Asp Leu Lys
145 150 155 160

Glu Asn Gln Arg Gly Arg Phe Leu Arg Ile Arg Gln Thr Val Asn Arg
165 170 175

Gly Pro Gly Leu Gly Ser Thr Gln Gly Gln Thr Ile Ala Leu Pro Ala
180 185 190

Gln Gly Leu Ile Glu Phe Arg Asp Ala Leu Ala Lys Leu Ile Asp Asp
195 200 205

Tyr Gly Val Glu Glu Pro Ala Glu Leu Pro Glu Gly Thr Ser Leu
210 215 220

Thr Val Asp Asn Lys Arg Phe Phe Asp Val Gly Ser Asn Lys Tyr
225 230 235 240

Gly Val Phe Met Arg Val Ser Glu Val Lys Pro Thr Tyr Arg Asn Ser
245 250 255

Ile Thr Val Pro Tyr Lys Val Trp Ala Lys Phe Gly His Thr Phe Cys
260 265 270

Lys Tyr Ser Glu Glu Met Lys Lys Ile Gln Glu Lys Gln Arg Glu Lys
275 280 285

Arg Ala Ala Cys Glu Gln Leu His Gln Gln Gln Gln Gln Gln Glu
290 295 300

Glu Thr Ala Ala Ala Thr Leu Leu Leu Gln Gly Glu Glu Glu Gly Glu
305 310 315 320

Glu Asp

<210> 19
<211> 22
<212> DNA
<213> Synthetic oligonucleotide (CD43 PyRo SS)

<400> 19
gggccccactt cctttccctt tg

22

<210> 20
<211> 16
<212> DNA
<213> Synthetic oligonucleotide (CD43 PyRo SSUB)

<220>
<221> misc_feature
<222> (9)..(10)
<223> bromouracil

<220>
<221> misc_feature
<222> (13)..(15)
<223> bromouracil

<220>
<221> misc_feature
<222> (20)..(21)
<223> bromouracil

<220>
<221> misc_feature
<222> (23)..(23)
<223> biotin

<400> 20
gggccccaccc ccccgbb

16

<210> 21
<211> 22
<212> DNA
<213> Synthetic oligonucleotide (CD43 Mut-11)

<400> 21
gggccccactt ctttcataata tg

22

<210> 22
<211> 20
<212> DNA
<213> Synthetic oligonucleotide (NS-SS)

<400> 22
gagtttagctc actcatttagg

20

<210> 23
<211> 21
<212> DNA
<213> Synthetic oligonucleotide (LUC-2)

<400> 23
atagccttat gcagttgctc t

21

<210> 24
<211> 39
<212> DNA
<213> Synthetic oligonucleotide (GeneRacer RNA Oligo)

<220>
<221> misc_feature
<222> (5)..(5)
<223> bromouracil

<220>
<221> misc_feature
<222> (21)..(21)
<223> bromouracil

<220>
<221> misc_feature
<222> (26)..(26)
<223> bromouracil

<220>
<221> misc_feature
<222> (31)..(31)
<223> bromouracil

<220>
<221> misc_feature
<222> (39)..(39)
<223> bromouracil

<400> 24
cgacggagca cgaggacacg acaggacgaa ggagagaaaa

39

<210> 25
<211> 54
<212> DNA
<213> Synthetic oligonucleotide (GeneRacer Oligo dT Primer)

<400> 25
gctgtcaacg atacgctacg taacggcatg acagtgtttt tttttttttt tttt

54

<210> 26
<211> 23
<212> DNA
<213> Synthetic oligonucleotide (GeneRacer 5' Primer)

<400> 26
cgactggagc acgaggacac tga

23

<210> 27
<211> 27
<212> DNA
<213> Synthetic oligonucleotide (GeneRacer 5' Nested Primer)

<400> 27
ggacactgac catggactga aggagta

27

<210> 28
<211> 33
<212> DNA
<213> Synthetic oligonucleotide (LUC-4)

<400> 28
cactacggta ggctgcgaaa tgttcatact gtt

33