2016 Algorithm HW2 Sol utions

指導教授: 謝孫源教授

助教: 盧緯 張耕華 楊順翔 許景添

Question 1(10pts)

Let 's say that two elements at indices $i_1 < i_2$ are equal to each other. In the sorted array, they take place at indices $j_1+1=j2$. Since the COUNTING-SORT processes the input array in reverse order, $A[i_2]$ is put in $B[j_2]$ first and then $A[i_1]$ is put in $A[j_2]$. Since the two elements preserve their order, the algorithm is stable.

Question 1(10pts)

- ▶ 解釋 COUNTING-SORT 不寫 proof 扣五分
- ▶ 語意不清楚扣五分

Question 2(10pts)

COW		SEA		TAB		BAR
$\overline{\text{DOG}}$		TEA		BAR		$_{ m BIG}$
SEA		MOB		EAR		BOX
RUG		TAB		TAR		COW
ROW		DOG		SEA		DIG
MOB		RUG		TEA		DOG
BOX		$\overline{\text{DIG}}$		DIG		EAR
TAB	\Rightarrow	$_{ m BIG}$	\Rightarrow	$_{ m BIG}$	\Rightarrow	FOX
BAR		BAR		MOB		MOB
EAR		EAR		DOG		NOW
TAR		TAR		cow		ROW
$\overline{\text{DIG}}$		cow		ROW		RUG
BIG		ROW		NOW		SEA
TEA		NOW		BOX		TAB
NOW		BOX		FOX		TAR
FOX		FOX		RUG		TEA

Question 3(10pts)

Question 3(10pts)

沒箭頭,沒字母扣三分 重大錯誤扣五分

Question 4

w[i][j]

	1	2	3	4	5	6
1	0	0.2	0.4	0.6	0.9 5	1
2		0	0.1 5	0.3 5	0.7	0.7 5
3			0	0.2	0.5 5	0.6
4				0	0.3 5	0.4
5					0	0.0 5
6						0

e[i][j]

	1	2	3	4	5	6
1	0	0.2 5	0.5 5	1.0 5	1.8 5	2
2		0	0.1 5	0.5	1.2	1.3
3			0	0.2	0.7 5	0.8 5
4				0	0.3 5	0.4 5
5					0	0.0 5
6						0

Question 4

Root[i][j]

	1	2	3	4	5
1	1	1	2	3	3
2		2	3	3 or 4	4
3			3	4	4
4				4	4
5					5

- (a) Cost =
- 2
- (b) Structure of an optimal binary search tree :

^{*} 注意是" binary search tree": 小的在左,大的在右

Question 5

M[i][j]

	1	2	3	4	5	6
1	0	1575 0	7875	9375	1187 5	1512 5
2		0	2625	4375	7125	1050 0
3			0	750	2500	5375
4				0	1000	3500
5					0	5000
6						0

S[i][j]

	2	M	4	5	6	
1	1	1	W	M	M	
2		2	3	3	3	
3			3	3	3	
4				4	5	
5					5	

So, ANS=
$$((A_1(A_2A_3))$$

 $((A_4A_5)A_6))$

minimum number of scalar multiplications = 15125

Question 6(10pts)

解答:

$$m[1,2] = m[1,1] + m[2,2] + p_0 p_1 p_2 = 30 , k = 1$$

$$m[2,3] = m[2,2] + m[3,3] + p_1 p_2 p_3 = 60 , k = 2$$

$$m[3,4] = m[3,3] + m[4,4] + p_2 p_3 p_4 = 48 , k = 3$$

$$m[1,3] = \min \begin{cases} m[1,1] + m[2,3] + p_0 p_1 p_3 = 150 , k = 1 \\ m[1,2] + m[3,3] + p_0 p_2 p_3 = 66 , k = 2 \end{cases}$$

$$m[2,4] = \min \begin{cases} m[2,2] + m[3,4] + p_1 p_2 p_4 = 88 , k = 2 \\ m[2,2] + m[4,4] + p_1 p_3 p_4 = 180 , k = 3 \end{cases}$$

$$m[1,4] = \min \begin{cases} m[1,1] + m[2,4] + p_0 p_1 p_4 = 148 , k = 1 \\ m[1,2] + m[3,4] + p_0 p_2 p_4 = 102 , k = 2 \\ m[1,3] + m[4,4] + p_0 p_3 p_4 = 138 , k = 2 \end{cases}$$

Question 7(10pts)

- 🕨 overlapping subproblem હૈ
- optimal substructure

Question 8(10pts)

Solution:

No

子問題有無限多個,且當背包承重為小數時無法查表 只有答案給 5 分

Question 9(10pts)

- ► LCS 長度 = 6 <1,0,0,1,1,0> or <1,0,1,1,0,1> or <1,0,1,0,1,1>
- 若兩序列擺相反則答案為 <0,1,0,1,0,1>
- 配分
 - > 沒箭頭扣三分

Question 10(10pts) fractional-knapsack problem(5pts)

item	value	weight	Value/wei ght
1	8	6	4/3
2	6	5	6/5
3	3	3	3/3

- Maximum capacity of knapsack is 8
- (4/3)*6 + (6/5)*(8-6) = 8 + 12/5 = 10.2

Question 10(10pts) cont. 0/1-knapsack problem(5pts)

Solution:

profit[i][j]:

is maximum value that can be attained with weight le ss than or equal to j using item s up to I weight[i]:

Weight of item i v[i]:

Value of item i

$$profit[i][j] = \begin{cases} profit[i-1][j], & if \ weight[i] > j \\ \max \begin{pmatrix} profit[i-1][j], \\ profit[i-1][j-weight[i]] + v[i] \end{pmatrix}, & otherwise \end{cases}$$

Question 10(10pts) cont. 0/1-knapsack problem

Solution:

	1	2	3	4	5	6	7	8
j i								
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	8	8	8
2	0	0	0	0	6	8	8	8
3	0	0	3	3	6	8	8	9