Problème SAT

Quentin Fortier

April 14, 2022

Théorème

Toute formule logique φ est équivalente à une formule sous **forme normale disjonctive**, c'est à dire de la forme $\varphi = c_1 \vee ... \vee c_n$ où c_i est de la forme $x_1 \wedge ... \wedge x_p$ avec $x_1, ..., x_p$ des littéraux (variable ou négation d'une variable).

Théorème

Toute formule logique φ est équivalente à une formule sous **forme normale disjonctive**, c'est à dire de la forme $\varphi = c_1 \vee ... \vee c_n$ où c_i est de la forme $x_1 \wedge ... \wedge x_p$ avec $x_1, ..., x_p$ des littéraux (variable ou négation d'une variable).

Preuve:

$$\varphi \ = \ \bigvee_{ \substack{ v \text{ valuation} \\ \operatorname{tq} \ [\![\varphi]\!]_v = 1 }} \ \bigwedge_{ \substack{ x \in V \\ \operatorname{tq} \ v(x) = 1 }} x$$

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

Preuve:

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

<u>Preuve</u>: $\neg \varphi$ est équivalente à une forme normale disjonctive, c'est à dire $\neg \varphi \equiv c_1 \lor ... \lor c_k$ où chaque c_i est de la forme $\ell_1 \land ... \land \ell_p$.

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

<u>Preuve</u>: $\neg \varphi$ est équivalente à une forme normale disjonctive, c'est à dire $\neg \varphi \equiv c_1 \lor ... \lor c_k$ où chaque c_i est de la forme $\ell_1 \land ... \land \ell_p$. Alors $\neg \neg \varphi = \neg (c_1 \lor ... \lor c_k) \equiv \neg c_1 \land ... \land \neg c_k$ (de Morgan).

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

<u>Preuve</u>: $\neg \varphi$ est équivalente à une forme normale disjonctive, c'est à dire $\neg \varphi \equiv c_1 \lor ... \lor c_k$ où chaque c_i est de la forme $\ell_1 \land ... \land \ell_p$. Alors $\neg \neg \varphi = \neg (c_1 \lor ... \lor c_k) \equiv \neg c_1 \land ... \land \neg c_k$ (de Morgan). Et $\neg c_i = \neg (\ell_1 \land \ell_2 \land ... \land \ell_p) \equiv \neg \ell_1 \lor ... \lor \neg \ell_p$ (de Morgan).

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

<u>Preuve</u>: $\neg \varphi$ est équivalente à une forme normale disjonctive, c'est à dire $\neg \varphi \equiv c_1 \lor ... \lor c_k$ où chaque c_i est de la forme $\ell_1 \land ... \land \ell_p$. Alors $\neg \neg \varphi = \neg (c_1 \lor ... \lor c_k) \equiv \neg c_1 \land ... \land \neg c_k$ (de Morgan).

Et $\neg c_i = \neg(\ell_1 \land \ell_2 \land \dots \land \ell_p) \equiv \neg \ell_1 \lor \dots \lor \neg \ell_p$ (de Morgan).

Donc $\varphi \equiv \neg \neg \varphi$ est bien équivalente à une forme normale conjonctive.

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

Alors $\neg \neg \varphi = \neg (c_1 \lor ... \lor c_k) \equiv \neg c_1 \land ... \land \neg c_k$ (de Morgan).

Et $\neg c_i = \neg(\ell_1 \land \ell_2 \land \dots \land \ell_p) \equiv \neg \ell_1 \lor \dots \lor \neg \ell_p$ (de Morgan).

Donc $\varphi \equiv \neg \neg \varphi$ est bien équivalente à une forme normale conjonctive.

Autre preuve possible : par induction structurelle sur φ .

Exercice X2016

Question 20 Pour chacune des formules suivantes, utiliser l'involutivité de la négation, l'associativité et la distributivité des connecteurs \wedge et \vee , ainsi que les lois de De Morgan pour transformer la formule en FNC. Seul le résultat du calcul est demandé :

- a) $(x_1 \vee \neg x_0) \wedge \neg (x_4 \wedge \neg (x_3 \wedge x_2))$
- b) $(x_0 \wedge x_1) \vee (x_2 \wedge x_3) \vee (x_4 \wedge x_5)$

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

1-SAT :

Problème *k*-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

- \bullet 1-SAT : satisfiable ssi φ ne contient pas à la fois une variable et sa négation.
 - Complexité : O(n), n étant le nombre de variables dans φ .
- **2**-SAT:

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

- \bullet 1-SAT : satisfiable ssi φ ne contient pas à la fois une variable et sa négation.
 - Complexité : O(n), n étant le nombre de variables dans φ .
- 2-SAT : se ramène à un problème de graphe dont les sommets sont les littéraux de φ .
 - Pour toute clause $\ell_1 \vee \ell_2$, équivalente à $\neg \ell_1 \implies \ell_2$, on ajoute un arc $(\neg \ell_1, \ell_2)$.
 - φ est alors satisfiable ssi aucune composante fortement connexe ne contient une variable et sa négation.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT en complexité polynomiale.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT en complexité polynomiale.

<u>Preuve</u> : soit φ une formule k-SAT et $c=\ell_1\vee\ldots\vee\ell_k$ une de ses clauses.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT en complexité polynomiale.

<u>Preuve</u> : soit φ une formule k-SAT et $c=\ell_1\vee\ldots\vee\ell_k$ une de ses clauses. Alors :

$$c \equiv (\ell_1 \vee \ell_2 \vee x_1) \wedge (\neg x_1 \vee \ell_3 \vee x_2) \wedge (\neg x_2 \vee \ell_4 \vee x_3) \dots \wedge (\neg x_{k-3} \vee \ell_{k-1} \vee \ell_k)$$

où x_1 , ..., x_{k-3} sont des nouvelles variables.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT en complexité polynomiale.

<u>Preuve</u> : soit φ une formule k-SAT et $c=\ell_1\vee\ldots\vee\ell_k$ une de ses clauses. Alors :

$$c \equiv (\ell_1 \vee \ell_2 \vee x_1) \wedge (\neg x_1 \vee \ell_3 \vee x_2) \wedge (\neg x_2 \vee \ell_4 \vee x_3) \dots \wedge (\neg x_{k-3} \vee \ell_{k-1} \vee \ell_k)$$

où x_1 , ..., x_{k-3} sont des nouvelles variables.

On peut donc transformer φ en une formule 3-SAT, en multipliant au plus par k le nombre de variables.