ГРУППЫ 20.Б07— 20.Б10 V семестр, 2022/2023 уч. год Задание №1

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Пусть дано алгебраическое или трансцендентное уравнение вида

$$f(x) = 0, \tag{1}$$

причем, известно, что все интересующие вычислителя корни находятся на отрезке [A, B], на котором функция f(x) определена и непрерывна.

Требуется найти все корни уравнения (1) на [A, B] нечетной кратности (здесь A, B, f(x) – параметры задачи).

Решение задачи разбить на два этапа:

- 1. Процедура отделения корней уравнения (1) на отрезке [A, B];
- 2. Уточнение корней уравнения (1) на отрезках перемены знака вида [a_i, b_i]
 - а. Методом половинного деления (методом бисекции);
 - b. Методом Ньютона (методом касательных);
 - с. Модифицированным методом Ньютона;
 - d. Методом секущих

с заданной точностью $\varepsilon > 0$ (ε – параметр задачи).

Примечания:

- 1) Требования к оформлению задачи: вывести на печать название темы, исходные параметры задачи: А, В, вид функции f(x), ε .
- 2) Отделение корней произвести способом табулирования [A, B] с шагом h>0 (где h=(B-A)/N, $N\geq 2$ параметр задачи). При реализации выбирать достаточно малые значения h. Результатом решения задачи отделения корней является последовательный вывод отрезков перемены знака функции f(x) вида [a_i, b_i] из [A, B], а также указание их количества.
- 3) При уточнении корней на каждом из отрезков [a_i, b_i] указанными методами, выводить на печать (для каждого метода)
 - название метода (для порядка));
 - начальное(ые) приближение(я) к корню;
 - количество шагов m (в каждом методе своё) для достижения точности ε , такой что $|x_m x_{m-1}| < \varepsilon$;
 - приближенное решение x_m уравнения (1), найденное каждым из упомянутых методов с точностью ε ;
 - $|x_m x_{m-1}|$ (в методе бисекции выводить длину последнего отрезка);
 - абсолютную величину невязки для прибл. решения x_m : $|f(x_m) \theta|$.

Тестовые задачи:

1. $f(x) = x - 10$ ·s	sin(x)	[A, B] = [-5; 3]	$\varepsilon = 10^{-6}$
2. $f(x)=2^{-x}-\sin^{2}(x)$	(\mathbf{x})	[A, B] = [-5; 10]	$\epsilon = 10^{-6}$
3. $f(x)=2^x-2 cc$	os(x)	[A, B] = [-8; 10]	$\epsilon = 10^{-6}$
$4. f(x) = \operatorname{sqrt}(4x + x)$	-7) $-3 \cdot \cos(x)$	[A, B] = [-1,5; 2]	$\epsilon=10^{\text{-8}}$
5. $f(x) = x \cdot \sin(x)$) – 1	[A, B] = [-10; 2]	$\epsilon=10^{\text{-}5}$
6. $f(x) = 8 \cdot \cos(x)$	-x-6	[A, B] = [-9; 1]	$\epsilon = 10^{7}$

7.
$$f(x)=10 \cdot \cos(x) - 0.1 \cdot x^2$$
 [A, B] = [-8; 2] $\epsilon = 10^{-5}$

8.
$$f(x) = 4 \cdot \cos(x) + 0.3 \cdot x$$
 [A, B] = [-15; 5] $\varepsilon = 10^{-5}$

9.
$$f(x) = 5 \cdot \sin(2x) - \operatorname{sqrt}(1-x)$$
 [A, B] = [-15; -10] $\varepsilon = 10^{-6}$

10.
$$f(x)=1,2\cdot x^4+2\cdot x^3-13\cdot x^2-14,2\cdot x-24,1$$
 [A, B] = [-5; 5] $\epsilon=10^{-6}$

11.
$$f(x)= 2 \cdot x^2 - 2^x - 5$$
 [A, B] = [-3; 7] $\epsilon = 10^{-5}$

12.
$$f(x) = 2^{-x} + 0.5 \cdot x^2 - 10$$
 [A, B] = [-3; 5] $\varepsilon = 10^{-8}$

13.
$$f(x) = \sin(x) + x^3 - 9x + 3$$
 [A, B] = [-5; 4] $\varepsilon = 10^{-8}$

14.
$$f(x) = x - \cos^2(\pi x)$$
 [A, B] = [-1; 2] $\varepsilon = 10^{-8}$

15.
$$f(x)=(x-1)^2 - \exp(-x)$$
 [A, B] = [-1; 3] $\varepsilon = 10^{-8}$

16.
$$f(x) = \sin(5x) + x^2 - 1$$
 [A, B] = [-3; 3] $\varepsilon = 10^{-8}$

17.
$$f(x) = cos(3x) - x^3$$
 [A, B] = [-2; 1] $\epsilon = 10^{-8}$