Real and Fake News

Sara Satti Data Science Career Track

Objective

Build a model to distinguish whether an article is Real or Fake

Outline

- Data Wrangling
- Exploring the Data
- WordClouds
- Statistical Analysis
- Machine Learning
- Model Comparisons
- Stress tests
- Conclusions
- Recommendations

Data Wrangling

TAKE OUR

- entries ('title' or 'text' cols)

 Feature engineering: day
- Feature engineering: day, month, year, title_length and text_length.
- Label and combine Fake and Real datasets.

Exploring the Data

Exploring the Data

Wordcloud - real

Wordcloud - real_clean

Statistical Analysis

- Highest correlation title_length and label
- Label has lowest correlation to text_length

- Samples are independent (pearson's cor coef = 0.006)
- T-statistic of 133, p-value=0 => probably different distributions.

Machine Learning

Models Scores

Models	Default f1-test %	Default accuracy_test%		Gridsearch (f1)%	Manual search (f1)%	
NB-title	94.7		94.3	95.9		
NB-text	94.2		93.5			99
PA-title	94.4		94	97.1		
PA-text	99.2		99.1		9	9.9
NB-title+title-length				96.6	High Probabilit	y: Fak

Models utilizing 'text' have better scores.

Baseline models

- Model using title and title_length had a slightly improved f1 score (95.9 to 96.6%).
- Top 10 words with highest probability of being fake are those with highest probability of being real are shown in table on the right.

	99.9						
High Probability: Fake - 0							
	0	1					
trump	-5.566555	-5.954347					
clinton	-6.713613	-7.223483					
people	-6.727913	-7.172907					
obama	-6.799353	-7.268737					
just	-6.808980	-8.331467					
president	-6.825714	-6.512761					
hillary	-6.916015	-8.306236					
like	-6.925802	-8.254563					
said	-6.969460	-5.604735					

-6.971478

twitter -7.119299

white -7 173577

-7 230487

-8.411468

-7 171077

donald

Real - 1

said

president

government

washington

republican

united

state

-6.969460 -5.604735

-5.566555 -5.954347

-6.825714 -6.512761

-7.466123 -6.677177

-7.437559 -6.688530 -7.896958 -6.766397

-8.344308 -6.800625

-7.422574 -6.808282 -7.836224 -6.874244

-7.634992 -6.910864

-7 392271 -6 972526

reuters -10.827249 -6.360286

Model Comparisons

	fit_time	score_time	test_accuracy	test_precision	test_recall	test_f1	test_roc_auc	model
14	0.101197	0.036804	0.940035	0.922046	0.972071	0.946398	0.984526	NB
13	0.105860	0.037898	0.936713	0.919807	0.969495	0.943998	0.984676	NB
11	0.108679	0.041983	0.930257	0.905336	0.972474	0.937705	0.983096	NB
12	0.109706	0.037899	0.931119	0.909481	0.967679	0.937678	0.981786	NB
10	0.154584	0.043884	0.936550	0.921781	0.967477	0.944076	0.984115	NB
7	0.395985	0.031872	0.988636	0.986057	0.992817	0.989426	0.999051	PA
8	0.398936	0.030916	0.994056	0.993031	0.996187	0.994607	0.999479	PA
6	0.409977	0.030889	0.991785	0.991276	0.993523	0.992399	0.999366	PA
9	0.422870	0.025932	0.991958	0.989162	0.996148	0.992642	0.999096	PA
5	0.448551	0.031915	0.991610	0.990255	0.994632	0.992439	0.999464	PA
0	1.756302	0.035906	0.984443	0.982143	0.989896	0.986004	0.998215	LogReg
3	1.834098	0.049234	0.984790	0.979624	0.993009	0.986271	0.998443	LogReg
4	1.842074	0.033909	0.981818	0.977785	0.989085	0.983402	0.997354	LogReg
1	1.867212	0.027925	0.983569	0.981660	0.988018	0.984829	0.997783	LogReg
2	2.711757	0.047864	0.980944	0.975838	0.988900	0.982325	0.997647	LogReg

0.94

0.92

- NB has lowest training time.
- PA has highest f1 score.
- Logistic Regression is the slowest in training.

Stress Tests

0 1

accuracy

macro avg weighted avg

[[4 1] [2 3]]

	100								(CT) (FIG.)	(Const.)
16212	0	0 House Dem	Aide: We Didn	't Even See Comey's Let	House Dem Aide: We	e Didn't Even Se	ee Comey's Let	t 1	81	4930
	1	1 FLYNN: Hi	illary Clinton, B	Big Woman on Campus	Ever get the	feeling your life	circles the rou	ı 0	55	4160
	2	2	Why the	Truth Might Get You Fired	Why the Truth Mi	ght Get You Fire	ed October 29,	1	33	7692
	3	3 15 Ci	ivilians Killed Ir	n Single US Airstrike Hav	Videos 15 Civ	vilians Killed In S	Single US Airstr	r 1	63	3237
	4	4 Iraniar	n woman jailed	for fictional unpublished	Print \nAn Iranian	woman has bee	en sentenced to	1	93	938
	5	5 Jackie Mase	on: Hollywood	Would Love Trump if He		times. Jackie M			124	1192
NB-text: a	Iphak	oetics on	ly	Elton John's 6 Favorite	[[1 4] [1 4]]	C)	PA-text	C .		729
precision 1	recall	f1-score	support	ch Socialist Party's Pre		precision	recall	f1-score	support	923
				cript for Donald Trump'	0	0.50	0.20	0.29	5	177
0.67	0.80	0.73	5		1	0.50	0.80	0.62	5	1555
0.75	0.60	0.67	5	Jkraine and Russia, Co						261
					accuracy			0.50	10	
		0.70	10		macro avg	0.50	0.50	0.45	10	
0.71	0.70	0.70	10		weighted avg	0.50	0.50	0.45	10	
0.71	0.70	0.70	10							

title

[[1 4] [0 5]]		A)	NB-text			
		precision	recall	f1-score	support	
	0	1.00	0.20	0.33	5	
	1	0.56	1.00	0.71	5	
accur	acy			0.60	10	
macro	avg	0.78	0.60	0.52	10	
weighted	avg	0.78	0.60	0.52	10	

[[2 3] [3 2]]	B) N	B-title		
[0 2]]	precision	recall	f1-score	support
0	0.40	0.40	0.40	5
1	0.40	0.40	0.40	5
accuracy			0.40	10
macro avg	0.40	0.40	0.40	10
weighted avg	0.40	0.40	0.40	10

text label title_length text_length

Conclusions

Supervised learning worked well in predicting whether a news article is Real or Fake from within the **same kaggle dataset**. However, when introducing articles from other datasets, the performance was considerably lower. Removal of characters, numbers and symbols from the body of the news article considerably improved the performance of the models. Maximum improvement was seen in the **Naive Bayes model where accuracy increased by 10% (from 60% to 70%)**, **Fake news f1-score increased by 40%(from 33-73%)**, and **f1-score for Real news dropped by 4% (71-67%)**.

Numerical, categorical and datetime features were skipped in order to focus on Natural Language features.

Title_length of the Fake and Real data showed a separation between their means. A multi-feature model using 'title' and 'title_length' was tested. This model led to a slight improvement in the performance (from f1:95.9 to 96.6%) when compared to the 'title' only model.

Recommendations

Combine features from title, and text and perhaps title_length to produce a model containing these and any other numerical features extracted from the data(datetime).

It is recommended that more complex methods such as neural networks are tested in the future in order to further generalize the model.