

## Al for Health & Well-care

Enhancing care from bedside to daily life across the lifespan



Rupal Patel, Ph.D.
Satish Tadikonda, Ph.D.
Nikhil Bhojwani, BS, MBA



## Agenda

1 Why Now?

2 Promise & Perils of Al

3 Use Cases

4 Summary / Q& A





# Why Now?

The context and need for AI in Health and Well-care



#### Intelligence

Human traits that enable us to:

- Perceive
- Contextualize
- Interpret
- Learn
- Communicate
- Act

### **Artificial Intelligence**

1/+ trait manifest in software to:

- **Enhance**: Do the same thing better
- **Substitute**: Do something different
- Augment: Do better, together



## Why AI for Health & Well-care?

- Skyrocketing costs: aging demographics, innovations & new science
- Massive amounts of structured and unstructured data
- Not enough skilled labor to meet the rising demand



## Why now?

Accelerated growth of computation

■ More computation 

improved performance







#### The Promise of AI for Health and Well-care

- Enhanced and personalized patient care
- Satisfied and focused clinicians
- Reduced administrative burden & greater efficiency
- Rapid & Impactful Innovation
- Trustworthy & effective public health
- Revitalized and modernized education





## **Use Cases**

Al for Healthcare and Wellness



## Al use cases are wide ranging: examples

|                    | Measure            | Decide                 | Execute               |
|--------------------|--------------------|------------------------|-----------------------|
| Care delivery      | Diagnose condition | Recommend treatment    | Deliver treatment     |
| Public health      | Identify risk      | Recommend intervention | Intervene             |
| Administration     | Identify gaps      | Prioritize actions     | Automate              |
| Research           | Reveal causality   | Identify drugs         | Prepare submissions   |
| Patient engagement | Assess status      | Personalize plan       | Communicate           |
| Education          | Assess baseline    | Recommend content      | Disseminate and teach |



## **AI for Care Delivery**

#### Measure

#### **Diagnose condition**

Examine medical images at similar or better accuracy and much faster than humans alone

#### **TEMPUS**

### O GLASS

#### Decide

#### **Recommend treatment**

Predict patient response to treatment pathways and personalize drugs and other treatment

#### Execute

#### **Deliver treatment**

Monitor a patient's health status and autonomously administer drugs in optimal doses





#### Al for Public Health

#### Measure

**Identify risk** 

Find public health signals in non-traditional data sources





#### Decide

**Recommend intervention** 

Recommend optimal influencers of public health behavior



#### **Execute**

Intervene

Respond at scale to misinformation using a chatbot



#### Al for Administration

#### Measure

#### **Identify Gaps**

Identify claims fraud, underwriting risk, improper payment and abuse

#### **SHIFT**

#### Decide

#### **Prioritize Action**

Digitize and streamline manual prior authorization by payers



#### **Execute**

#### **Automate**

Automatically generate claims denial appeals for health systems





#### Al for Research

#### Measure

#### **Reveal Causality**

Identify biological causes of diseases through rapid literature searches, genomic databases or experimental data at scale

causaly



#### Decide

#### **Identify drugs**

Narrow down biological targets that can be modulated to treat diseases; Perform *insilico* drug design to identify efficacious drug molecules





#### **Execute**

#### **Prepare submissions**

"One-Click BLA" for automating the very human-effort-intensiv e process of compiling documents for a biologics license application to the FDA



## Al for Patient Engagement

#### Measure

#### Assess status

Assess structure, function, and signals to account for change in patient status





#### Decide

#### Personalize plan

Leverage data from similar patients along with individual patient signs to prescribe personalized intervention plan

# FitnessAl

#### Execute

#### Communicate

Deliver intervention or plan in a systematic, engaging and understandable manner









## The Perils

Responsible Al



#### The Potential Perils

#### Concerns

- Safety
- Interpretability
- Privacy
- Fairness
- Accountability
- Reliability

#### **Safeguards**

- Guidelines and guardrails
- Explainable decision making
- Enhanced protection and limited access
- Manage and increased awareness of bias
- Transparency and multi-staged checks
- Periodic reassessment and monitoring





# Summary



## **Summary**

- Al can help us meet three key challenges in health & well-care:
  - Skyrocketing costs
  - An explosion of data gathered on each patient / client
  - Insufficient labor to meet the needs of patients/ clients in need
- Potential dangers require thoughtful consideration and guardrails
- Need public awareness and open discussion to communicate change and build trust
- Al is a tool to enhance and augment human capability not replace clinicians & scientists





