Theory of Computation: CS-202

Regular Expression

Outline

□ Regular Expressions

□ Regular Languages

Finite Automata

Finite Automata without output

Finite Automata with output

Finite Automata with output

Formal definition of Regular Expression

Let \sum be a given input alphabet, then

- 1. φ , λ and $a \in \Sigma$ are all regular expression, called primtive Regular Expression (R.E).
- 2. If r_1 and r_2 are R. E. then $(r_1 + r_2)$, $(r_1 \cdot r_2)$, r_1^* and (r_1) are also R.E.
- 3. A string is a R.E. if we can derive it from the premitive R.E. by a finite number of application of the rule 2.
- 4. Order of operator, (), *, ., +

Example

Consider the expression r=(a+b.c)*

Let $r_1=b$ and $r_2=c$, then r1. r2 is a regular expression.

Let r_3 = a and r_4 = r1 . r2 then r_3 + r_4 is a R. E.

Let
$$r_5 = (r_3 + r_4)$$

$$r_6 = (r_5)$$

 (r_6) * is also a R.E.

 \Rightarrow r is a R.E.

Order and precedence of operator

- 1. Star closure precedes concatenation.
- 2. Concatenation precedes union.

Language associated with Regular Expression

The language L(r) denoted by any regular expression (r) is defined by the following rules:

- 1. φ is a regular expression denoting empty set $\{\}$.
- 2. λ is a regular expression denoting $\{\lambda\}$.
- 3. \forall a \in \sum , 'a' is a regular expression denoting {a}. If r_1 and r_2 are regular expression, then
- 4. $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
- 5. $L(r_1, r_2) = L(r_1) \cdot L(r_2)$
- 6. $L((r_1))=L(r_1)$
- 7. $L(r_1)^* = (L(r_1))^*$

Find Language associated with Regular Expression r=(a+b)* (a+bb)

We have, r=(a+b)*(a+bb)

```
\begin{split} L(r) = & L((a+b)^*(a+bb)) \\ &= L((a+b)^*) \ L(a+bb) \\ &= (L(a+b))^* \ L(a) \cup L(bb) \\ &= (L(a) \cup L(b))^* \ L(a) \cup L(bb) \\ &= \{a,b\}^* \ \{a,bb\} \\ &= \{\lambda,a,b,aa,bb,ab,ba,aaa...\} \ \{a,bb\} \\ &= \{a,b,aa,bb,ba,aaa..... \ bb,abb,aabb,...... \} \\ So, L(r) \ is \ the \ set \ of \ all \ the \ strings \ on \ \{a,b\} \ terminated \ by \ either \ a \ or \ bb. \end{split}
```

 $L(r_1, r_2) = L(r_1) \cdot L(r_2)$

 $L((r_1))=L(r_1)$

 $L(r_1)^* = (L(r_1))^*$

Find Language associated with Regular Expression r=(a)* (a+b)

We have, r=(a)*(a+b)

```
L(r) = L((a)*(a+b))
      = L((a)^*) L(a+b)
      = (L(a)) * L(a) \cup L(b)
      = (L(a))^* L(a) \cup L(b)
       = \{a\} * \{a, b\}
       = \{\lambda, a, aa, aaa...\} \{a, b\}
       = \{a, aa, aaa.....b, ab, aab,....\}
                                                 L(r_1 + r_2) = L(r_1) \cup L(r_2)
                                                                L(r_1, r_2) = L(r_1) \cdot L(r_2)
                                                                           L((r_1))=L(r_1)
                                                                       L(r_1)^* = (L(r_1))^*
```

Find Language associated with Regular Expression r=(aa)* (bb)*b

We have, r=(aa)*(bb)*b

$$L(r) = \{ a^{2m} b^{2n+1} : m, n \ge 0 \}$$

1. Write Regular Expression for the set of strings over {0, 1} which starts with '01'

R. E.
$$r = 01 (0+1)*$$

2. Write Regular Expression for the set of strings over {0, 1} which starts and ends with '0'

R. E.
$$r = 0 (0+1)*0$$

3. Write Regular Expression for the set of strings over {0, 1} which starts and ends with different symbol

R. E.
$$r = 0 (0+1)*1 + 1 (0+1)*0$$

4. Write Regular Expression for the set of strings over {0, 1} which starts and ends with '0'

R. E.
$$r = 0 (0+1)*0$$

5. Write Regular Expression for the set of strings of length 2 over {0, 1}

R. E.
$$r = (0+1)(0+1)$$

6. Write Regular Expression for the set of strings of length ≥ 2 over $\{0, 1\}$

R. E.
$$r = (0+1)(0+1)(0+1)*$$

- 7. Write Regular Expression for the set of strings (w) over{a, b}, where, $n_a(w)=2$
 - R. E. $r = b^* a b^* a b^*$
- 8. Write Regular Expression for the set of strings (w) over{a, b}, where, $n_b(w)$ mod 3=0

R. E.
$$r = a^*(a^* b a^* b a^* b a^*)^*$$

0, 3, 6,

9. Write Regular Expression for the set of strings (w) over{a, b}, where, |w| mod 3=0

R. E.
$$r = ((a+b)(a+b)(a+b))*$$

10. Write Regular Expression for the set of strings (w) over{a, b}, where, |w| mod 3=2

R. E.
$$r = (a+b)(a+b)((a+b)(a+b)(a+b))*$$

Practice Problems

- 1. Write Regular Expression for the set of strings of length ≤ 2 over $\{0, 1\}$.
- 2. Write Regular Expression for the set of strings (w) over{a, b}, where, $n_a(w) \mod 3=1$.

3. Write Regular Expression for the set of strings (w) over{a, b}, where, |w| mod 4=3.

Suggested readings

- 1. An introduction to FORMAL LANGUAGES and AUTOMATA by PETER LINZ.
- 2. Introduction to Automata Theory, Languages, And Computation by JOHN E. HOPCROFT, RAJEEV MOTWANI, JEFFREY D. ULLMAN
- 3. Theory of computer science: automata, languages and computation by K.L.P MISHRA

Thank you