

Digital Logic and System Design

2: Representation

COL215, I Semester 2023-2024

Venue: LHC 111

'E' Slot: Tue, Wed, Fri 10:00-11:00

Instructor: Preeti Ranjan Panda

panda@cse.iitd.ac.in

www.cse.iitd.ac.in/~panda/

Dept. of Computer Science & Engg., IIT Delhi

A Digital System

- Represent and Manipulate
 DISCRETE Values
 - Instead of **CONTINUOUS** Values (Analog System)
- FINITE set of elements

Why Digital?

- Information is lost! Why bother?
- Precise representation
- Reproducibility of results
 - E.g., fewer errors due to atmospheric conditions
- Ease of design
 - We'll see in this course!
- Sophisticated automation techniques
- High speed
- Low cost

Can we reduce the information loss?

Errors can be reduced by taking more data points

[Recall Fundamental Theorem of Integral Calculus]

Example Digital Systems

- Camera
 - Where is the digital element?
- Phone (over data connection)
 - What is digital about it?
- Computer
 - Was always digital

Representation

- Need ways to represent data
 - Store and Retrieve
 - Manipulate
- How do we represent the data on right?
- Sequence of NUMBERS

Representation:

[2, 4, 3, 1, -3, -2, 3, 4, 2, 4, 3, 1]

Representing a Number

- Can a number be represented exactly?
 - Integer?
 - Rational number?
 - Real number?
 - Complex number?
- Needs to be element of a FINITE set

Representation:

[2, 4, 3, 1, -3, -2, 3, 4, 2, 4, 3, 1]

Need to impose some restrictions

- Limited range
 - e.g., [-100, 200]
- Simple way:
 - FIXED number of digits
 - Each digit can take a **FIXED** number of values

Decimal Representation

- Number **3465** is a DECIMAL number
 - **base** is **10**
 - each **digit** of number $\in \{0,1,2,3,4,5,6,7,8,9\}$
- Interpretation:

$$3465 = 3 \times 10^3 + 4 \times 10^2 + 6 \times 10^1 + 5 \times 10^0$$

Other Bases

- We could represent the same number in a different BASE (also called RADIX)
 - E.g., Base 12
 - in Base 12, each digit of number $\in \{0,1,2,3,4,5,6,7,8,9,10,11\}$
 - 3465₁₀ = 2009_{12} = $2 \times 12^3 + 0 \times 12^2 + 0 \times 12^1 + 9 \times 12^0$
- ...or base **5**
 - in this base, each digit of number ∈ {0,1,2,3,4}
 - $3465_{10} = 102330_5 = 1 \times 5^5 + 0 \times 5^4 + 2 \times 5^3 + 3 \times 5^2 + 3 \times 5^1 + 0 \times 5^0$

Representing Integers in Arbitrary Bases

- Base r
- n-digit number a_{n-1...}a₂a₁a₀
 - Digits $a_{n-1,...,}a_{2,}a_{1,}a_{0} \in \{0,1,2,...,r-1\}$
- Interpretation of number in base r:

$$\mathbf{a_{n-1}} \times r^{n-1} + \mathbf{a_{n-2}} \times r^{n-2} + ... + \mathbf{a_2} \times r^2 + \mathbf{a_1} \times r^1 + \mathbf{a_0} \times r^0$$

Binary Numbers

- Binary number: Base 2
- n-digit number $a_{n-1}...a_2a_1a_0$
 - Digits $a_{n-1,...,a_2,a_1,a_0} \in \{0,1\}$
- Interpretation of number in base 2:

$$\mathbf{a_{n-1}} \times 2^{n-1} + \mathbf{a_{n-2}} \times 2^{n-2} + \dots + \mathbf{a_2} \times 2^2 + \mathbf{a_1} \times 2^1 + \mathbf{a_0} \times 2^0$$

•
$$1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$
= $8 + 4 + 1 = 13_{10}$

Thus, 1101₂ is another way to represent thirteen

Which base should we use?

- Need reliable way to:
 - Store numbers
 - Manipulate numbers
- Decimal system:
 - need to find a way to represent 10 different entities for each digit
- Binary system:
 - find a way to represent 2 different things
- Modern digital systems: 2 voltage levels
 - 1 V (or 2V, etc.) represents '1'
 - 0 V represents '0'

13 or 15 or 1101?

Decimal System Octal System System

Octal System System

Choice based on engineering efficiency

- Should be easy/efficient to:
 - Store/Retrieve number
 - Manipulate numbers
- Charge stored on a capacitor
 - if capacitor is **charged**, a '1' is stored
 - if capacitor is discharged, a '0' is stored
 - Other physical phenomena could be used (e.g., magnetization direction)
- Since ANY number can be represented as a binary number, we have a way to store anything we want
- Binary is popular: easier to distinguish between 2 values
 - Exceptions: some memory types
 - Manipulation/computation usually in binary

Other Popular Bases

- Base 8 (Octal)
 - digits are: 0,1,2,3,4,5,6,7
- Base 16 (Hexadecimal)
 - digits are: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
 - 10=A, 11=B, 12=C, 13=D, 14=E, 15=F

Representing Real Numbers

• 3465.28 =
$$3 \times 10^{3} + 4 \times 10^{2} + 6 \times 10^{1} + 5 \times 10^{0} + 2 \times 10^{-1} + 8 \times 10^{-2}$$

• 1101.11₂ = $1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2}$
= $1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1 + 1 \times 0.5 + 1 \times 0.25$
= $8 + 4 + 1 + .5 + .25 = 13.75_{10}$
Integral Part Fractional Part

Conversion between Number Systems

- Conversion from some base to decimal system easy
 - use equation
- Conversion from decimal system to other base
 - repeated division by base
 - keep track of remainders

Example: Convert 35₁₀ to Base 2

Repeated Division by Base

	Quotient	Remainder
35 / 2 =	17	1
17 / 2 =	8	1
8 / 2 =	4	0
4/2=	2	0
2/2=	1	0
1 / 2 =	0	1

$$35_{10}$$
 to = 100011_2

When one base is a power of another...

• Convert 1100110011110011₂ into Hexadecimal (Base 16)

Convert 0.6875₁₀ to Binary

Repeated Multiplication

$$0.6875 \times 2 = 1.3750$$

$$0.3750 \times 2 = 0.7500$$

$$0.7500 \times 2 = 1.5000$$

$$0.5000 \times 2 = 1.0000$$

$$0.6875_{10} = 0.1011_2$$

Representing Negative Numbers

-5: **1** 0 0 0 0 1 0 **1**

One

Sign-magnitude representation Separate digit for sign One's complement representation Invert representation of positive number

-5: 1 1 1 1 1 0 1 1

Two's complement representation 1 + one's complement

Representing Integers in 2's Complement

- Range of integers for n-bit binary number: -2^{n-1} to $+2^{n-1}$ -1
- With 3 bits we can represent: -4 to +3
- Leftmost bit represents sign
 - 0: positive
 - 1: negative

Binary Arithmetic

Exactly the same rules as decimal

Binary Arithmetic: Subtraction

Subtraction: Convert to negative, then add

Why 2's complement?

- For negative numbers, 2's complement is popular in digital systems
- Only one encoding for zero
 - Compare: Sign magnitude +0 and -0
- Arithmetic is simpler in digital implementation
 - same circuit: just include sign bit in addition
 - don't need additional logic for sign
- Fixed #bits: careful about Overflow
 - result of operation might not fit
- To get familiar, work out exercises (Textbook, Chapter 1)

Bits and Bytes

- Bit a single binary digit (0 or 1)
- Byte 8 bits
- 1 integer usually 32 bits (4 bytes) or 64 bits (8 bytes)
- Boolean values (true/false)
 - 1 bit is sufficient
- Other computing mechanisms: Qubits
 - A qubit can be in State | 0> or | 1>
 - ...or a superposition of the two states: $\alpha \mid 0 > + \beta \mid 1 >$

Encodings: ASCII/Unicode

- Characters ('a', 'b',...) can be encoded
 - 1 byte in **ASCII** code (American Standard Code for Information Interchange)
 - Other codes (Unicode (All languages): up to 4 bytes)

Gray Code

- Only 1 bit changing between consecutive numbers
- Application coming up soon...

Gray Code

0: 000

1: **001**

2: **011**

3: **010**

4: **110**

5: **111**

6: **101**

7: **100**

Parity Code

- Add Parity bit to ensure
 even number of 1's
- Application: helps detect data corruption
 - One bit flipping
- Store/send Data + Parity bit

```
Data Parity Bit
01100011 0
11001101 1
01010101 0
```

Conclusion

- Digital systems use Binary Logic
 - 2 values (true/false, 0/1, etc.)
 - Binary operations (we will define them)
- Voltage value represents Logic value
 - Others: magnetization direction, state of material,...
- Interface with real world is often analog
 - Convert to digital, process, and convert back
- This is a simplification. Ongoing research:
 - Sometimes it is efficient to stay in **analog domain**
 - Different formalism needed for Quantum Machines

