Esperienza di laboratorio: Misura della temperatura solare

Ghedi Pietro, Madarena Andrea, Roccasanta Aurelio, Silvestri Daniele

Indice

1	Obiettivi	3
2	Introduzione teorica 2.1 Temperatura superficiale del sole	3 3 4
3	Apparato sperimentale e misura 3.1 Strumenti di misura	
4	Dati 4.1 Dati fissi 4.2 Variabili 4.2.1 Curva di riscaldamento 4.2.2 Curva di raffredamento	6
5	Analisi dati 5.1 Analisi Temperatura solare	
6	6.1 Temperatura solare	10 10

1 Obiettivi

L'esperienza si propone due obiettivi:

- Determinare la temperatura solare superficiale mediante lo studio della curva di riscaldamento di un corpo che assumiamo nero in seguito all'esposizione al sole.
- Determinare l'emissività del corpo mediante la sua curva di raffredamento per verificare la correttezza dell'assunto.

2 Introduzione teorica

2.1 Temperatura superficiale del sole

Ogni corpo ad un data temperatura emette onde elettromagnetiche a diverse frequenze, per unità di superficie, secondo la legge di Stefan-boltzmann:

$$I = \sigma \epsilon T^4$$

- \bullet I è la intensità della radiazione
- σ è la costante di Stefan-Boltzmann (5.670 × 10⁻⁸ W m⁻² K⁻⁴),
- \bullet T è la temperatura assoluta del corpo in kelvin (K).
- ϵ è l'emissività,

Quest'ultima, in particolare, ha un valore compreso tra $0 < \epsilon < 1$, vale $\epsilon = 1$ solo nel caso di un corpo nero:

Esso è un oggetto idealizzato con la proprietà di assorbire tutta la radiazione elettromagnetica incidente su di esso e di riemetterla completamente con uno spettro caratteristico che dipende solo dalla sua temperatura.

È possibile schematizzare con buona approssimazione il sole come un corpo nero, il cui spettro di emissione include le lunghezze d'onda della radiazione visibile. In condizioni reali un corpo nero a tutti gli effetti non esiste: possiamo solo costruire corpi grigi, che sono con varie gradazioni assimilabili a dei corpi neri.

Essendo oggetti reali, sono generalmente immersi all'interno dell'atmosfera terrestre, con la quale scambiano calore. La legge che tiene conto nel calcolo della potenza anche di questo fattore è data da:

$$W = \sigma S \epsilon (T^4 - T_A^4)$$

Nella quale T_A è la temperatura dell'ambiente e S è la superficie totale dell'oggetto, questa quantità corrisponde alla variazione di energia interna del corpo (U)in funzione del tempo, per cui si ha:

$$\frac{dU}{dt} = -W = \sigma S \epsilon (T_A^4 - T^4) = C \frac{dT}{dt}$$

Esponendo l'oggetto al sole, oltre allo scambio termico con l'ambiente il corpo assorbe calore dalla radiazione solare dalla superficie esposta al sole (S_1) , si ha quindi:

$$C\frac{dT}{dt} = \sigma S \epsilon (T_A^4 - T^4) + \gamma^2 \sigma S_1 T_S^4$$

Dove γ^2 è un fattore correttivo che tiene conto della distanza D del corpo dal sole $\gamma = \frac{R_S}{D}$ Da cui ottieniamo la relazione che ci permette di ricavare T_s :

$$T_S = \sqrt[4]{\frac{1}{\gamma^2 \sigma S_1} \left[C \frac{dT}{dt} + \sigma S \epsilon (T^4 - T_A^4) \right]}$$

Ad un certo punto, il corpo raggiungerà una temperatura d'equilibrio Te per cui l'energia assorbita dal Sole e dall'ambiente sarà uguale all'energia irradiata. Si ha, quindi una variazione di T nulla a una T_e :

$$T_S = \sqrt[4]{\frac{S\epsilon}{\gamma^2 S_1} (T_e^4 - T_A^4)}$$

2.2 Emissività corpo

Per stimare invece l'emissività del corpo, lo si scalda e se ne segue la curva di raffreddamento. Tale operazione è stata eseguita sia col corpo immerso nell'ambiente che a vuoto. Note la capacità termica C, la temperatura ambiente T_a e la temperatura del corpo T, si ha:

$$\epsilon = \frac{dT}{dt} \frac{C}{S\sigma(T_A^4 - T^4)}$$

3 Apparato sperimentale e misura

3.1 Strumenti di misura

Strumento	Errore di sensibilità
Cronometro digitale	$5 \cdot 10^{-3} \text{ S}$
Bilancia digitale	$5 \cdot 10^-5 \text{ Kg}$
Termocoppia e termoristenza	$5 \cdot 10^{-2} \text{ K}$
Calibro Palmer digitale	$5 \cdot 10^{-6}m$
Metro a nastro	$5 \cdot 10^{-4}m$

Per misurare il coefficiente γ attraverso un espediente geometrico abbiamo usato un lungo cilindro di cartone con entrambe le estremità coperte, una con del cartoncino nero forato al centro e una con della carta traslucida, puntato verso il sole.

3.2 Processo di misura

Si è usato per corpo nero un blocco di alluminio verniciato di nero, posto sul fondo di un cilindro metallico cavo anch'esso verniciato nero, sono state misurate le dimensioni del corpo. Un foro alla base permette di inserire una termoresistenza a contatto col corpo nero che, collegata ad un tester, ha permesso di monitorarne la temperatura. Una ulteriore temocoppia è stata usata per monitorare la temperatura ambientale. Esposto al sole il blocco, si è dunque registrata la variazione di temperatura nel tempo.

Per misurare il coefficiente γ attraverso un espediente geometrico abbiamo usato un lungo cilindro di cartone con entrambe le estremità coperte: quella esposta al sole è coperta da un cartoncino nero su cui è praticato un piccolo foro; sulla base opposta invece, sulla quale viene proiettata l'immagine solare, un foglio di carta millimetrata opaca ha permesso la lettura della misura.

Figura 1: Misura di γ

Infine per ricavare ϵ , e dunque la curva di raffreddamento del corpo nero si sono registrate le temperature del corpo immerso in un ambiente più freddo allo scorrere del tempo, dopo esser stato questo riscaldato con una lampada da laboratorio. Le misure della curva di raffreddamento sono state fatte in ambiente.

4 Dati

4.1 Dati fissi

Tra le misurazioni ci sono i dati fissi, cioè quelli che non dipendono dal tempo tra cui:

- La massa del corpo misurata 3 volte risulta coerente al valore $m = (20, 94 \pm 0, 05)q$
- Dalla quale si ricava il valore della capacità termica C=mc dove c è il calore specifico $c=880J/Kg\cdot K$ il valore, con errore dovuto solo alla massa calcolato per propagazione di errori massimi, $C=(18,43\pm0,0044)J/K$
- Le 3 dimensioni del corpo $l_1 l_2 l_3$ misurate anch'esse 3 volte,

lato	$l \pm \Delta l$				
l_1	$20,034 \pm 0,009 \text{ mm}$				
l_2	$20,110 \pm 0,011 \text{ mm}$				
l_3	$19,998 \pm 0,006 \text{ mm}$				

• Da cui si ricavano: -La superficie totale $S = 2(l_1l_2 + l_1l_3 + l_2l_3)$ $\Delta S = \Delta l_1(l_2 + l_3) + \Delta l_2(l_1 + l_3) + \Delta l_3(l_1 + l_2)$ Da cui $S \pm \Delta S = (2411, 37 \pm 1, 04)mm^2$

```
-La superficie esposta al sole S_e = l_1 \cdot l_2 \Delta S_e = \Delta l_1 l_2 + \Delta l_2 l_1

Da cui S_e \pm \Delta S_e = (402, 884 \pm 0, 361) mm^2

-Il volume V = l_1 \cdot l_2 \cdot l_3 \Delta V = \Delta l_1 (l_2 l_3) + \Delta l_2 (l_1 l_3) + \Delta l_3 (l_1 l_2)

Da cui V \pm \Delta V = (8056, 87 \pm 10, 44) mm^3
```

• il Raggio del "telescopio" $R = (9, 1 \pm 0, 5)mm$ e la lunghezza $L = (2.0039 \pm 0, 0005)m$ i quali danno un valore di $\gamma = 4, 52 \cdot 10^{-3}$ con errore $2, 05 \cdot 10^{-4}$ che lo rende compatibile col valore conosciuto di gamma sapendo Raggio del sole e distanza terra sole, $\gamma = 4, 65 \cdot 10^{-3}$. Per i calcoli da ora si userà questo valore senza errori associati

4.2 Variabili

4.2.1 Curva di riscaldamento

Di seguito (Tabella 1)le misure della curva di riscladamento del corpo esposto al sole È facile notare come a partire circa metà in poi la variazione di temperatura sia piuttosto altalenante: ciò è dovuto agli agenti esterni, soprattutto vento e nuvole, che hanno raffreddato il corpo nero a intervalli molto irregolari e con gradazioni molto diverse. Si nota chiaramente una diminuzione dello scambio termico fino al raggiungimento della temperatura di equilibrio.

4.2.2 Curva di raffredamento

Di seguito (tabella 2) le misure della curva di raffredamento del corpo a contatto con l'ambiente, Si può notare come la variazione di temperatura nell'unità di tempo diventi sempre minore e nell'ultima fase quasi pari a zero, a conferma del raggiungimento della temperatura di equilibrio.

Figura 2: Curva di riscaldamento

t(s)	T(k)	t	Т	t	Т
0	298,20	680	318,90	1360	327,50
20	298,70	700	319,30	1380	327,60
40	299,40	720	319,70	1400	327,70
60	300,10	740	$320,\!10$	1420	327,70
80	300,90	760	$320,\!50$	1440	327,80
100	301,60	780	320,70	1460	327,80
120	$302,\!30$	800	321,10	1480	327,90
140	303,10	820	$321,\!40$	1500	328,00
160	303,90	840	321,80	1520	328,10
180	304,70	860	322,00	1540	328,30
200	$305,\!40$	880	322,30	1560	$328,\!40$
220	$306,\!10$	900	322,70	1580	328,60
240	306,80	920	322,90	1600	328,70
260	$307,\!50$	940	323,10	1620	328,80
280	308,20	960	$323,\!40$	1640	329,00
300	308,80	980	323,70	1660	329,10
320	309,50	1000	324,00	1680	$329,\!20$
340	$310,\!20$	1020	324,30	1700	329,30
360	310,80	1040	324,60	1720	329,50
380	311,40	1060	324,80	1740	329,60
400	312,00	1080	$325,\!10$	1760	329,80
420	312,60	1100	$325,\!30$	1780	330,00
440	313,10	1120	$325,\!50$	1800	330,20
460	313,70	1140	$325,\!80$	1820	330,30
480	314,20	1160	326,00	1840	$330,\!40$
500	314,70	1180	$326,\!20$	1860	330,60
520	$315,\!20$	1200	$326,\!30$	1880	330,70
540	315,70	1220	$326,\!50$	1900	330,80
560	316,10	1240	$326,\!80$	1920	330,90
580	$316,\!60$	1260	326,90	1940	331,10
600	317,10	1280	$327,\!10$	1960	331,30
620	$317,\!50$	1300	$327,\!20$	1980	$331,\!50$
640	318,00	1320	$327,\!30$	2000	331,60
660	318,50	1340	327,40	2020	331,80

Tabella 1: Curva di riscaldamento

t(s)	T(K)	t	Τ	t	Τ
0	330,6	680	316,9	1360	310,4
20	330,1	700	316,6	1380	310,3
40	329,5	720	316,4	1400	310,2
60	328,9	740	316,1	1420	310
80	328,3	760	315,9	1440	309,9
100	327,8	780	315,6	1460	309,8
120	327,3	800	315,4	1470	309,7
140	326,9	820	315,2	1480	309,7
160	326,3	840	315	1490	309,6
180	325,8	860	314,7	1500	309,6
200	325,4	880	314,5	1510	309,5
220	324,9	900	314,3	1520	309,4
240	324,4	920	314,1	1540	309,3
260	324	940	313,9	1560	309,2
280	323,6	960	313,8	1580	309,1
300	323,2	980	313,6	1600	309
320	322,8	1000	313,4	1620	308,9
340	322,4	1020	313,2	1640	308,8
360	322	1040	313	1660	308,6
380	321,6	1060	312,8	1680	308,5
400	321,2	1080	312,6	1700	308,4
420	320,9	1100	312,5	1720	308,3
440	320,5	1120	312,3	1740	308,2
460	320,2	1140	312,1	1760	308,2
480	319,9	1160	312	1780	308,1
500	319,5	1180	311,8	1800	307,9
520	319,3	1200	311,7	1820	307,8
540	318,9	1220	311,5	1840	307,8
560	318,6	1240	311,3	1860	307,7
580	318,3	1260	311,1	1880	307,6
600	318	1280	311	1900	307,5
620	317,7	1300	310,8	1920	307,4
640	317,4	1320	310,7	1940	307,3
660	317,2	1340	310,6	1960	307,3

Tabella 2: Curva di raffreddamento

Figura 3: Curva di raffreddamento

5 Analisi dati

5.1 Analisi Temperatura solare

Come visto sopra, la relazione della T_S è

$$T_S = \sqrt[4]{\frac{1}{\gamma^2 \sigma S_1} \left[C \frac{dT}{dt} + \sigma S \epsilon (T^4 - T_A^4) \right]}$$

Il fattore $\frac{dT}{dt}$ si può approsimare con il coefficente angolare della retta passante per $(t_{j-1}T_{j-1})$ e (t_j, T_j)

$$\frac{dT}{dt} \approx \frac{T_j - T_{j-1}}{t_j - t_{j-1}}$$

Sono state ovviamente scartati nel calcolo i valori di $\frac{dT}{dt}$ nulli o addirittura negativi, questi ultimi palese indice dell'instabilità delle condizioni climatiche in cui si è svolta la rilevazione.

L'errore associato è

$$\Delta T_{S} = \frac{T_{S}}{4} \cdot \left(\frac{\Delta S_{e}}{S_{e}} + \frac{1}{C\frac{dT}{dt_{j}} + S\sigma(T_{a}^{4} + T_{j}^{4})} \left(C\frac{dT}{dt_{j}} \left(\frac{\Delta C}{C} + \frac{\Delta dT}{\Delta T} + \frac{\Delta dt}{\Delta t}\right) + \left(S\sigma(T_{a}^{4} - T^{4})\right) \left(\frac{\Delta S}{S} + 4\Delta T\frac{T^{3} + T_{a}^{3}}{T^{4} - T_{a}^{4}}\right)\right)$$

$$T_{S} \pm \Delta T_{S} = (6193, 21 \pm 45, 12)$$

5.2 Analisi emissività

Come già introdotto, si userà la relazione:

$$\epsilon = \frac{dT}{dt} \frac{C}{S\sigma(T_A^4 - T^4)}$$

Si userà ancora una volta l'approssimazione dell fattore $\frac{dT}{dt}$ ccon il coefficente angolare della retta passante per $(t_{j-1}T_{j-1})$ e (t_j, T_j)

$$\frac{dT}{dt} \approx \frac{T_j - T_{j-1}}{t_j - t_{j-1}}$$

L'errore per ϵ è ottenuto con l'espressione:

$$\Delta \epsilon = \epsilon \left(\frac{\Delta dT}{\Delta T} + \frac{\Delta dt}{\Delta t} + \frac{\Delta C}{C} + \frac{\Delta S}{S} + 4\Delta T \frac{T^3 + T_a^3}{T^4 - T_a^4}\right)\right)$$

Si ottiene quindi un valore di ϵ pari a:

$$\epsilon \pm \Delta \epsilon = (0,725 \pm 0,011)$$

6 Conclusioni

6.1 Temperatura solare

Come già si è discusso in fase di analisi dati, la causa principale dell'incoerenza del valore trovato per la temperatura fotosferica è da imputarsi alla variabilità delle condizioni climatiche, che hanno impedito unoo svolgimento lineare dell'esperimento. Vi sono tuttavia altri fattori che si è scelto di trascurare nell'elaborazione dei dati.

Innanzitutto non si è considerato lo scambio di calore del corpo con l'ambiente per conduzione termica, essendo questo di molto minore entità rispetto alla componente radiativa consiederata. Allo stesso modo non si è tenuto conto dell'effetto di scattering di Rayleight. Si tratta della diffusione della radiazione da parte delle molecole in atmosfera, si manifesta quando le dimensioni delle particelle sono molto minori della lunghezza d'onda della luce incidente, come nel caso di molecole di N2 e O2.

6.2 Emissività

Le misure e i risultati per il calcolo di ϵ sono in generale soddisfacenti. La misura in ambiente restituisce un valore di emissività sicuramente incompatibile con $\epsilon = 1$ atteso per un corpo nero. Ciò è da imputare probabilmente a quello scambio di calore per conduzione termica di cui si è accennato nella sezione precedente, che in questa misurazione viene ad assumere importanza rilevante.