Project Name. Diabetes Prediction

Made by. Mohammed Fadhel

Dr. Ahlam Al-Hamdani

Project Overview:

This project aims to develop a predictive model using artificial intelligence to determine whether a person has diabetes or not. This is done by utilizing historical data stored in a dataset called "diabetes.csv". The dataset contains nine columns representing the input features (X Features) and one column representing the output (Y Output), which indicates whether the person has diabetes.

The data was preprocessed by cleaning and analyzing it to ensure the quality of inputs used in the model. Afterward, two different algorithms were applied to predict the person's health condition:

- 1. Decision Tree
- 2. Logistic Regression

The goal of the model is to provide accurate predictions based on the available features

Libraries that used:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.linear model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import confusion matrix
from sklearn.metrics import accuracy score , recall score , f1 score
from sklearn.metrics import classification report
from sklearn.tree import DecisionTreeClassifier
plt.style.use('fivethirtyeight')
import warnings
warnings.filterwarnings('ignore')
```

Open dataset:

```
data = pd.read_csv('C:\\Users\\AI\\Desktop\\diabetesPredction\\diabetes.csv')
```

Explore Data

data.head(7)

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	${\bf Diabetes Pedigree Function}$	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
5	5	116	74	0	0	25.6	0.201	30	0
6	3	78	50	32	88	31.0	0.248	26	1

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767

Data columns (total 9 columns):

	,		
#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

<pre>data.describe()</pre>									
	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

data.duplicated().sum()

0

Analysis

data.corr()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	-0.033523	0.544341	0.221898
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	0.137337	0.263514	0.466581
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	0.041265	0.239528	0.065068
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	0.183928	-0.113970	0.074752
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	0.185071	-0.042163	0.130548
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	0.140647	0.036242	0.292695
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	1.000000	0.033561	0.173844
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	0.033561	1.000000	0.238356
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	0.173844	0.238356	1.000000

sns.heatmap(data.corr() , annot=True)

<Axes: >


```
sns.countplot(x = 'Outcome', data=data , palette=['g' , 'r'])
```

<Axes: xlabel='Outcome', ylabel='count'>


```
plt.figure(figsize=(20,6))
plt.subplot(1,3,1)
plt.title('Counter Plot')
sns.countplot(x = 'Pregnancies', data = data )

plt.subplot(1,3,2)
plt.title('Distribution Plot')
sns.boxenplot(y=data['Pregnancies'])

plt.subplot(1,3,3)
plt.title('Box Plot')
sns.boxenplot(y=data['Pregnancies'])

plt.show
```

<function matplotlib.pyplot.show(close=None, block=None)>

Creat Model

```
: # تاليان إلى ميزات الى ميزات الى ميزات الى ميزات الى الميزات الميزا
```

```
# قبالة الإصابة الإصابة الاصابة المنبؤ بحالة الإصابة الإصابة الإصابة المنبؤ بحالة الإصابة المنبؤ بحالة الإصابة المستحدم المنبؤ بحالة المستخدم المنبؤ المستخدم المنبؤ المستخدم المنبؤ المستخدم المنبؤ المستخدم المنبؤ المستخدم المنبؤ الم
```

model_choice = input("(2 أو 1) انخل رقم الخيار (1 أو 1)")

اختر النموذج الذي ترغب في استخدامه: 1. Decision Tree

Logistic Regression
 أنخل رقم الخيار (1 أو 2):

```
Ē
تحقق من اختيار المستخدم #
if model_choice not in ['1', '2']:
    (".اختيان غير صحيح. يرجى اختيان 1 أو 2")print
    إدخال بيانات المستخدم #
    user_input = []
    features = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age']
    for feature in features:
        value = float(input(f"أنخل قيمة {feature}: "))
        user_input.append(value)
    اختيار النموذج بناءً على اختيار المستخدم #
    if model_choice == '1':
        selected_model = dt_model
        model name = "Decision Tree"
    else:
        selected model = 1r model
        model name = "Logistic Regression"
    التنبؤ #
    prediction = predict_diabetes(selected_model, user_input)
    "غير مريض سكري" if prediction == 1 else "غير مريض سكري" =
    print(f"التموذج المختار (model_name)")
    print(f"التبن (outcome)")
Pregnancies: 10 أنخل قيمة
Glucose: 139 أدخل قيمة
BloodPressure: 80 أنخل قمة
8 SkinThickness: انخل قمة
Insulin: 0 اُدخل قيمة
BMI: 27.1 أدخل قيمة
DiabetesPedigreeFunction: 1.441 أدخل قيمة
Age: 57 أدخل قيمة
النموذج المختار: Decision Tree
التنبؤ: غير مريض سكرى
```