Clustering

Compressing Data

Can we describe these tweets with fewer bits of information?

Edgelord tweets

Compressing Data

Can we describe these images with fewer bits of information?

- Album cover images
- Concert images
- Cat images
- Friends images

Clusters and Compression

Clustering is a form of data compression

 Many times data exists in distinct clusters

 If we can find these clusters, we can summarize the data in terms of the clusters

Clusters and Generative Al

- We give the AI data for analysis
- For moderate amounts of data, we can put it all in the prompt
 - Moderate = 128,000 tokens of text
 - Moderate = 250 images
- For large amounts of data, the Al can't handle it
 - We need to compress the data for the Al
 - Clustering allows us to compress the data

Clusters and Embeddings

- Good embeddings of data map similarity into geometry
- Finding clusters then reduces to finding geometrically clustered data points

Embeddings

Clustering Pipeline

- To cluster data we will use the following steps
 - Embed with a neural network in high dimensions (transformer or ResNet)
 - Embed in low dimensions (PCA)
 - Cluster data (K-means)

PRINCIPLE COMPONENT ANALYSIS (PCA)

Embedding Data in 1 Dimension

Cluster 1

Cluster 2

> 0.0

-0.5

-1.0

-1.5

0.0

Embedding Data in 1 Dimension

Cluster 1

Cluster 2

0.0

Direction of Maximum Variance

- If we project the data onto the direction of maximum variance, we can separate clusters
- How do we find this direction?

Covariance Matrices

- We can describe data with dimension d with a d x d covariance matrix
- This matrix encodes the direction of maximum variance

$$d = 2$$

$$\Sigma = \begin{bmatrix} E[XX] & E[XY] \\ E[YX] & E[YY] \end{bmatrix}$$

Principal Components

- The ellipse around the data is encoded in the covariance matrix
- The axes of the ellipse are the principal components
- The length of the axes are the standard deviations

$$\Sigma = \begin{bmatrix} 1.0 & 0.55 \\ 0.55 & 1.0 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3.76 & 0 \\ 0 & 1.08 \end{bmatrix} \left(\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \right)^{-1}$$

Principal Component Analysis (PCA)

- PCA lets us compute the projection of data onto the principal components (PCs) of its covariance matrix very quickly
- PCA was invented in 1901
- Has many names depending on the field you are in
 - Karhunen-Loève transform
 - Hotelling transform
 - eigenvalue decomposition
 - singular value decomposition
 - proper orthogonal decomposition
 - factor analysis
 - spectral decomposition
 - empirical orthogonal functions

PCA Algorithm

- 1. Center data at zero (subtract the means)
- 2. Make data variance 1 in each dimension
- 3. Compute covariance matrix
- 4. Compute the principal components (PCs) with the largest variance (fit)
- 5. Project the data onto each PC to obtain the PCA embedding (*transform*)

PCA Example

Compute covariance matrix and PC 1

Project data to PC 1

Pros and Cons of PCA

Pros

- Extremely fast algorithm (good for big datasets)
- Easy to interpret (each PC is a direction of high variance, probably due to some data property)

Cons

 Does not give the best embedding for some highdimensional datasets

K-MEANS CLUSTERING

K-Means Clustering

 K-means clustering is a simple algorithm for clustering any kind of data (once it is embedded in a vector space)

Invented in 1957

Still one of the most popular ways to cluster data

K-Means Clustering Algorithm

- 1. Choose the number of clusters k
- 2. Initialize the cluster centers randomly
- 3. Repeat this iteration
 - 1. Assign each data point to the cluster whose center it is closest to
 - 2. Set the center of a cluster equal to the center of mass of the data points assigned to it
- 4. Stop when the cluster centers stop changing

K-Means Example

Community Detection

- An important problem in social networks is finding communities – clusters of people in a network
- Data = network structure
- Clustering algorithm = spectral clustering (Kmeans on spectral embeddings)

Challenges with Community Detection

- Today network data is hard to collect ⊗
 - We can use Chrome plugins like TwFollow

 It's ok, we can use AI to find communities based on user (non-network) data ☺

Community Detection With Embeddings and K-Means

 User profile has a username, name, location, and bio

 Embed this data with a transformer, then use K-means to find the communities

Community Detection With Al

- User profile has a username, name, location, and bio
- We can feed all this raw data to the Al and ask it to give us the communities

AI Enhanced Clustering

- In the old days, the end goal of clustering was to assign each data point to a cluster
- Today with generative AI, we can go further and understand the clusters
 - Title
 - Description of underlying theme
 - Representative examples
- We can feed these cluster summaries to the Al for use in other tasks

Coding Session

- Cluster tweets
 - OpenAl transformer embeddings and K-means clustering
 - ChatGPT to describe clusters
- Cluster images
 - ResNet embeddings and and K-means clustering
 - ChatGPT to describe clusters
- Find communities in a social network using no network data
 - OpenAl transformer embeddings and K-means clustering
 - ChatGPT
 - ChatGPT to describe communities