Advanced String Algorithms

Substring search

Lecture Outline

- Prerequisites
- Substring Search (The Naive Way)
- Rabin-Karp Algorithm
- Knuth-Morris-Pratt Algorithm
- Applications of Rabin-Karp and Knuth-Morris-Pratt Algorithm
- Additional String Algorithms
- Quote of the Day

Pre-requisites

- Math II
- String manipulation in Python
- Time and Space complexity analysis

What is a substring search?

Naive Method

String: a b c d a b c d f 1 2 3 4 5 6 7 8 9 Pattern: a b c d f

1 2 3 4 5 6 7 8 9

Pattern: a b c d f

1 2 3 4 5 6 7 8 9

</br>

Pattern: a b c d f

1 2 3 4 5 6 7 8 9

Pattern: abcdf

1 2 3 4 5 6 7 8 9

Pattern: abcdf

1 2 3 4 5 6 7 8 9

Pattern: abcdf

String: abcdabcdf 1 2 3 4 5 6 7 8 9 Pattern: abcdf

1 2 3 4 5 6 7 8 9

Хj

Pattern: a b c d f


```
String: a b c d a b c d f

1 2 3 4 5 6 7 8 9

Pattern: a b c d f

1 2 3 4 5
```


1 2 3 4 5 6 7 8 9

Хj

Pattern: a b c d f

AGAINNN!!!

String: abcdabcdf 1 2 3 4 5 6 7 8 9

Pattern: a b c d f

1 2 3 4 5 6 7 8 9

X j

Pattern: a b c d f

Hmm:/

Again?

String: abcdabcdf 1 2 3 4 5 6 7 8 9 Pattern: abcdf

1 2 3 4 5 6 7 8 9

Pattern: a b c d f

1 2 3 4 5 6 7 8 9

Pattern: abcdf

1 2 3 4 5 6 7 8 9

Pattern: abcdf

1 2 3 4 5 6 7 8 9

////

Pattern: abcdf

1 2 3 4 5 6 7 8 9

Pattern: abcdf

Practice Problem

Find the index of the first occurrence in a string


```
class Solution:
     def strStr(self, haystack: str, needle: str) -> int:
           if len(needle) > len(haystack):
                 return -1
           i = j = 0
           while i < len(haystack):</pre>
                 ans = i
                 while i < len(haystack) and haystack[i] == needle[j]:</pre>
                       i += 1
                       j += 1
                       if j == len(needle):
                             return ans
                 i = ans + 1
                 j = 0
           return -1
```


Rabin-Karp Algorithm

Average O(n + m) Time

Encoding Strings

For s = "abcad",

let's start thinking in base alphabets.

Encoding Strings

For
$$s =$$
"abcad",

Encoding Strings

This will result in an edge case if we represent strings this way

"aaa" =>
$$0 * 26^2 + 0 * 26^1 + 0 * 26^0 = 0$$

There are two ways to fix this problem

- 1. Encode the length in the hash (messy)
- 2. Don't use 0, encode (alphabet + 1) size

Operations on Hashes

Operation: addLast

$$let \alpha = 26 + 1$$

"abc" =>
$$(1 * a^2 + 2 * a^1 + 3 * a^0)$$

"x" =>
$$(24 * a^0)$$

"abc" + "x" =>
$$(1 * \alpha^2 + 2 * \alpha^1 + 3 * \alpha^0) * \alpha + (24 * \alpha^0)$$

"abcx" =>
$$1 * a^3 + 2 * a^2 + 3 * a^1 + 24 * a^0$$

Operation: pollFirst

$$let \alpha = 26 + 1$$

"abcx" = let's try to remove the `a`?

"abcx" =>
$$1 * a^3 + 2 * a^2 + 3 * a^1 + 24 * a^0$$

"bcx" =>
$$(1 * a^3 + 2 * a^2 + 3 * a^1 + 24 * a^0) - (1 * a^3)$$

"bcx" =>
$$2 * \alpha^2 + 3 * \alpha^1 + 24 * \alpha^0$$

For Rabin-Karp, the above two operations suffice for most cases

Operation: addFirst

$$let a = 26 + 1$$

"x" =>
$$(24 * a^0)$$

"abc" =>
$$(1 * a^2 + 2 * a^1 + 3 * a^0)$$

"xabc" =>
$$(24 * a^0) * a^3 + (1 * a^2 + 2 * a^1 + 3 * a^0)$$

Operation: pollLast

$$let \alpha = 26 + 1$$

"abcx" = let's try to remove the `x`?

"abcx" =>
$$1 * \alpha^3 + 2 * \alpha^2 + 3 * \alpha^1 + 24 * \alpha^0$$

"abc" =>
$$((1 * a^3 + 2 * a^2 + 3 * a^1 + 24 * a^0) - (24 * a^0)) / a$$

"abc" =>
$$1 * a^2 + 2 * a^1 + 3 * a^0$$

Therefore, the last operation is trickier than we made it look like; since it involves knowing division under mod

TIP: Precompute all a^k

TIP: Pick a Prime number for modulus.

Typically, 10 ** 9 + 7

(Fermat's Little theorem)

Why Choose a Prime Modulus in Rabin-Karp?

- Reduces Hash Collisions: Primes ensure a uniform distribution of hash values.
- Prevents Overflow: Large prime modulus like 10 ** 9 + 7 keeps hash values within limits.
- Fermat's Little Theorem: Enables efficient calculation of modular inverses for rolling hashes.

TIP: Use multiple primes to decrease the chance of collisions

Rabin-Karp: Demonstration

String: abacdabazxywp

pattern: abaz

Rabin-Karp: Demonstration

pattern: abaz

String: abacdabazxywp

 $(1*a^3+2*a^2+1*a^1+3*a^0)$

Rabin-Karp: Demonstration

pattern: abaz

String: abacdabazxywp


```
class Solution:
   def strStr(self, haystack: str, needle: str) -> int:
       MOD = 10**9 + 7
       base = 27
       def convert(char):
            return ord(char) - 96
       def add_last(Hash, char):
            return (Hash * base + convert(char)) % MOD
       def poll_first(Hash, char, base_power):
            return (Hash - convert(char) * base power) % MOD
```



```
N1, N2 = len(haystack), len(needle)
if N1 < N2:
    return -1
# Precompute base powers mod MOD
base_powers = [1] * (N2 + 1)
for i in range(1, N2 + 1):
    base powers[i] = (base powers[i - 1] * base) % MOD
target = window_hash = 0
# Calculate the hash of the needle and the initial window in haystack
for char in needle:
    target = add last(target, char)
for i in range(N2):
    window_hash = add_last(window_hash, haystack[i])
```



```
if window hash == target:
    # Verify the actual substring matches
    if haystack[:N2] == needle:
        return 0
# Slide the window over the haystack
for right in range(N2, N1):
    left = right - N2
    window hash = add last(window hash, haystack[right])
    window_hash = poll_first(window_hash, haystack[left], base_powers[N2])
    if window_hash == target:
       # Verify the actual substring matches
        if haystack[left+1:right+1] == needle:
            return right - N2 + 1
```


Note: If you have to do things under mod given your constraints, a hash match doesn't necessarily mean you found the string.

Note: You have to do a string equality check just to be sure.

Most people don't feel confident after writing a probabilistic algorithm such as Rabin-Karp,

you should be able to submit and be able to sleep at night.

Knuth-Morris-Pratt algorithm

Guaranteed O(n + m) Time

This algorithm was invented by Donald Knuth, Von Pratt and independently by James Morris

Key Idea: Take advantage of the successful comparisons we make between the string and the pattern.

Example

S = adsgwadsdsgwadsgz

P = dsgwadsgz

Example

S = <u>a</u>dsgwadsdsgwadsgz

P = <u>d</u>sgwadsgz

Example

S = a<u>d</u>sgwadsdsgwadsgz

P = <u>d</u>sgwadsgz

S = a<u>dsg</u>wadsdsgwadsgz

P = <u>dsg</u>wadsgz

S = a<u>dsg</u>wadsdsgwadsgz

P = <u>dsg</u>wadsgz

S = a<u>dsgw</u>adsdsgwadsgz

P = <u>dsgw</u>adsgz

S = a<u>dsgwa</u>dsdsgwadsgz

P = <u>dsgwa</u>dsgz

S = a<u>dsgwad</u>sdsgwadsgz

P = <u>dsgwad</u>sgz

S = a<u>dsgwads</u>dsgwadsgz

P = <u>dsgwadsgz</u>

S = a<u>dsgwadsd</u>sgwadsgz

P = <u>dsgwadsg</u>z

So it looks for a suffix that is also a prefix in the matched substring before the mismatch

dsgwads

In our example, we will jump back to 'g' in the string P and we will not go back in our string S.

dsgwads

S = adsgwa<u>ds</u>dsgwadsgz

P = <u>dsg</u>wadsgz

S = adsgwads<u>d</u>sgwadsgz

P = <u>d</u>sgwadsgz

S = adsgwadsgz

P = <u>dsgwadsg</u>z

S = adsgwads<u>dsg</u>wadsgz

P = <u>dsg</u>wadsgz

S = adsgwads<u>dsgwadsgz</u>

P = <u>dsgwadsgz</u>

The algorithm mainly has two parts to achieve this efficiently.

- 1. Preprocessing
- 2. Matching

Some vocabularies first:)

Prefix: Substring of a string that starts from the beginning of the string. Empty string ("") is a prefix of every string.

- "", "a", "ab", "aba", "abac", "abaca", "abacab" are prefix of "abacab"
- "", "a", "aba", "abab", "ababa", "ababab", "abababa" are prefix of "abababa"

Suffix: Substring of a string that ends at the end of the string. Empty string ("") is a suffix of every string.

- "abacab", "bacab", "acab", "cab", "ab", "b", "" are suffix of "abacab"

Proper Prefix: Prefix that is not equal to the string itself.

- "", "a", "ab", "aba", "abac", "abaca" are proper prefix of "abacab"
- "", "a", "aba", "abab", "ababa", "ababab" are proper prefix of "abababa"

Proper Suffix: Suffix that is not equal to the string itself.

- "bacab", "acab", "cab", "ab", "b", "" are proper suffix of "abacab"

Border: Substring of a string that is both proper prefix and proper suffix. The length of the border is often called the *Width of the Border*. Although, the term *Width* is rarely used.

- "", "ab" are borders of "abacab"
- "", "aba", "ababa" are borders of "abababa"

longest_border: Array that stores the length of *Longest Proper*Prefix that is also a Suffix of every prefix of string. More precisely,

longest_border[i] is the length of the longest border of the

string[0...i]

The Longest Border Array (LPS, π -table, or Prefix Table) is used in multiple algorithms. The naïve approach to built it is of $O(m^3)$ by adhering to the mathematical formula and searching for the longest proper prefix that is also a suffix, for every index.

```
for i = 1 to m-1

for k = 0 to i

if needle[0..k-1] == needle[i-(k-1)..i]

longest border[i] = k
```

However, we can follow the **greedy approach**, and can build it in **linear time**.

dsgwadsgz

LPS

LPS[i] = where to start matching in P after a mismatch at i + 1.

In other words, the length of the longest proper prefix that is a suffix in P[0....i]

d s g w a d s g z

0				

d s g w a d s g z

0	0							
---	---	--	--	--	--	--	--	--

i j d s g w a d s g z

	0	0	0						
--	---	---	---	--	--	--	--	--	--

i j d s g w a d s g z

0	0	0	0					
---	---	---	---	--	--	--	--	--

i j d s g w a d s g z

0 0 0 0 0 1

i j d s g w a d s g z

0	0	0	0	0	1	2	
		l .	l			1	

Now that W and Z don't match, i becomes LPS[i - 1]. This is because if we don't have a border of three, we want to try out less wider borders before going back to zero.

Here you can see, that \mathbf{c} and \mathbf{a} , don't much and we can't have a border of 4, but we clearly have a border of 3. That is why, we need to switch to $\mathbf{i} = \mathsf{LPS}[\mathbf{i} - 1]$ and then compare. Here $\mathsf{LPS}[\mathbf{i} - 1] = 2$.

And since a matches with a, LPS[j] = LPS[i] + 1

1. Practice: write the stub code for generating LPS table

```
def KMP part one(p : str) -> list:
     # todo
assert KMP part one('aaacaaaa') == [0, 1, 2, 0, 1, 2, 3, 3]
assert KMP part one ('dsgwadsgz') == [0, 0, 0, 0, 0, 1, 2, 3, 0]
```

Implementation

```
def KMP_part_one(p : str) -> list:
     m = len(p)
     i, j = 0, 1
     LPS = [0 for _ in range(m)]
     while j < m:
           if p[i] == p[j]:
                LPS[j] = i + 1
                i += 1
                j += 1
           else:
                if i == 0:
                      j += 1
                else:
                      i = LPS[i - 1]
     return LPS
```


What is the time complexity of building the LPS table this way?

Why O(M)?

- The total length of all "drops" (rollbacks in i (prevLPS)) is bounded by M, meaning no position is revisited unnecessarily.
- Even when i (prevLPS) drops after a mismatch, it cannot drop more than the interval already covered by j since the last time i was 0.


```
d s g w a d s g z

LPS 0 0 0 0 0 1 2 3 0

i
S = adsgwadsdsgwadsgz
j
```



```
d s g w a d s g z

LPS 0 0 0 0 0 1 2 3 0

i

S = adsgwadsdsgwadsgz

j
```



```
d s g w a d s g z

LPS 0 0 0 0 0 1 2 3 0

i
S = adsgwadsdsgwadsgz

j
```



```
d s g w a d s g z

LPS 0 0 0 0 0 1 2 3 0

i
S = adsgwadsdsgwadsgz

j
```



```
d s g w a d s g z

LPS 0 0 0 0 0 1 2 3 0

i
S = adsgwadsdsgwadsgz

j
```


$$i = LPS[i - 1]$$


```
d s g w a d s g z

LPS 0 0 0 0 0 1 2 3 0

i
S = adsgwadsdsgwadsgz
j
```



```
d s g w a d s g z

LPS 0 0 0 0 0 1 2 3 0

S = adsgwadsdsgwadsgz
```


d s g w a d s g z

LPS

ĺ

S = adsgwadsgz

j

d s g w a d s g z

LPS

Ĭ

S = adsgwadsgz

j

d s g w a d s g z

LPS

Ĭ

S = adsgwads<u>dsgwadsgz</u>

d s g w a d s g z

LPS

S = adsgwadsgz

J

MATCH

Implementation

```
class Solution:
      def strStr(self, haystack: str, needle: str) -> int:
            LPS = KMP_part_one(needle)
            i, j = 0, 0
            while j < n:
                  if needle[i] == haystack[j]:
                        i += 1
                        j += 1
                  else:
                        if i == 0:
                              j += 1
                        else:
                              i = LPS[i - 1]
                  if i >= m:
                        return j - m
            return -1
```


What is the time complexity of this Matching process?

Once again it's linear. O(length of the text)

Hint: Notice the behavior of the pointers during the construction of the LPS array and compare it with the way the pointers move during the pattern matching process

Practice Problem

Rotate String

Efficiency of the KMP algorithm

- Since the two portions of the algorithm have, respectively, complexities of O(m) and O(n), the complexity of the overall algorithm is O(m + n).
- These complexities are the same, no matter how many repetitive patterns are in P or S.

- Spell Checker
- Plagiarism Detection
- Text Editors
- Spam Filters
- Digital Forensics
- Matching DNA Sequences
- Intrusion Detection
- Search Engines
- Bioinformatics and Cheminformatics
- Information Retrieval System
- Language Syntax Checker

Additional String Algorithms

Z Algorithm

- Highly resembles KMP but simpler and versatile.
- Mostly used to find
 - Periodicity of a string
 - All Occurrences of a substring
- Relatively great at handling multiple patterns

Manacher's Algorithm

- is used to find the longest palindromic substring in a given string in linear time.
- can be used to count all pairs (i, j) such that substring s[i...j] is a palindrome in linear time.

Suffix Array

- Efficiently solve pattern matching, lexicographic order problems, and LCP (Longest Common Prefix) queries.
- Applications: Fast substring queries, string compression, DNA sequence alignment.

Practice Problems

- Repeated String Match
- Longest Happy Prefix
- Maximum Length of Repeated Subarray
- Repeated DNA Sequences
- <u>Permutation in String</u>
- Find Substring with a given hash value
- <u>Division + LCP (easy version)</u>

Resources

- Pattern Search with the Knuth-Morris-Pratt (KMP) algorithm
- Prefix function. Knuth-Morris-Pratt algorithm
- Knuth-Morris-Pratt (KMP) Pattern Matching Substring
 Search First Occurrence Of Substring
- Algorithms live: Rolling hash and bloom filters
- String Searching | USACO GUIDE

"It is not enough to be in the right place at the right time. You should also have an open mind at the right time."

- Paul Erdős

