JEGYZŐKÖNYV KLASSZIKUS FIZIKA LABORATÓRIUM

08. MÉRÉS - MIKROSZKÓP VIZSGÁLATA. LENCSE GÖRBÜLETI SUGARÁNAK MÉRÉSE FOLYADÉK TÖRÉSMUTATÓJÁNAK MÉRÉSE ABBE-FÉLE REFRAKTOMÉTERREL

• Mérést végezte : Brindza Mátyás

• Mérést végző Neptun-azonosítója: Z2R8XS

• Jegyzőkönyv leadásának időpontja : 2021.08.31.

A mérés célja:

A mérés két főbb részből áll. Az elsőben egy mikroszkóp objektívjeinek nagyítását, fókusztávolságát és numerikus appertúráját határozzuk meg. A másodikban lencsék göbületi sugarát vizsgáljuk Newton-gyűrűk segítségével.

Mérőeszkzök:

- Fénymikroszkóp
- Tubushosszabító
- Okulár
- 3db objektív
- Spektrállámopa
- Homorú lencse
- Domború lencse
- Plexi-tömb

A mérés elméleti háttere:

A mikroszkóp vizsgálata

Nagyítás és fókusztávolság

A mikroszkóp szögnagyító eszköz, mely jellemezhető a nagyításával. Hogy ezt megadhassuk, jellemeznünk kell a szerkezeti részeit - az objektívet és az okulárt. A nagyítás definíció szerint a K képméret és a T tárgyméret hányadosa. A nagyításra fennáll egy további összefüggés is.

$$N_{obj} = \frac{K}{T} = \frac{\Delta}{f}$$

ahol Δ a tubushosz és f az objektív fókusztávolsága. A méréshez a tubushoz végére helyezett objektív-mikrométert és a tárgyasztalon lévő objektív-mikrométert használjuk. A mért értékek kivonandók egymásból, így kapjuk meg K-t és T-t:

$$K = K_2 - K_1$$
$$T = T_2 - T_1$$

Ezután meghatározható a fókusztávolság is, ám a tubushosszat nem tudjuk közvetlenül mérni. A probléma megoldására tubushosszabítót használunk, melynek ismert a hossza, így:

$$f = \frac{\Delta_2 - \Delta_1}{N_{obj,2} - N_{obj,1}}$$

Numerikus apertúra

Az objektív egyik fontos tulajdonsága a felbontóképessége, azaz mekkora távolságban különböztethető meg két pont egymástól. Ezt az Abbe-féle leképezési törvény írja le:

$$d = \frac{\lambda}{n \cdot sin(u)} = \frac{\lambda}{A}$$

ahol d a két pont távolsága, λ a fény hullámhossza, n a törésmutató, u a félnyílásszög, A pedig a keresett numerikus apertúra.

A paraméterek meghatározásához a következőképp kell eljárni. Egy h magasságú plexitömbre egy pengét helyezünk, majd átrakjuk őket a tárgyasztalra. Miután a képet élesre állítottuk, távolítsuk el a plexi tömböt és az okulárt cseréljük lyukblendére. Vizsgáljuk meg, mekkora a távolságra kell eltolnunk a pengét, hogy az objektívbe érkező fény eltakarja. Ahhoz, hogy A-t ki tudjuk számolni, kell u érték is, mely az alábbi képlet alapján számolandó:

$$u = artg(\frac{a}{2 \cdot h})$$

A lencsék vizsgálata

Newton-gyűrűk segítségével meghatározhatóak a lencsék görbületi sugarai. A fény interferencia-tulajdonságai alapján a kiolátsi és erősítési helyek gyűrűk alakjában jelennek meg, melyek összefüggnek a lencse sugarával.

Domború lencse

Az interferenciagyűrűk sugarai között az alábbi összefüggés érvényesül:

$$r_k^2 = k \cdot \lambda \cdot R + c$$

ahol λ a fény hullámhossza, R a lencse görbületi sugara, c egy konstans és $k=1,\,2,\,3,\,\dots$ Az $r_k^2(k)$ összefüggésre illesztett egyenes meredekségéből meghatározható R.

Homorú lencse

Az előbbi módon kell eljárni, azonban R helyett R_{eff} effektív görbeületi sugarat kapunk, melyre az igaz, hogy:

$$\frac{1}{R_{eff}} = \frac{1}{R_{domboru}} - \frac{1}{R_{homoru}}$$

Mérési adatok és kiértékelés

A mikroszkóp vizsgálata

Az objektív nagyításának mérése

	K_1 $[mm]$	$T_1 [mm]$	$K_2 [mm]$	$T_2 [mm]$
kis objektív	2.40	5	6.37	6
nagy objektív	0.25	8	7.55	9
tükrös objektív	2.26	8	5.24	9
hiba	0.005	0.01	0.005	0.01

Az objektív nagyításának mérése

Ezekből kiszámolhatóak a tárgy- és képméretek, amikből már a nagyítások is.

	K [mm]	T [mm]
kis objektív	3.97	1
nagy objektív	7.3	1
tükrös objektív	2.98	1

Az objektív nagyításának mérése - tárgy- és képméretek

A hibaszámoláshoz használatos képlet:

$$\frac{\Delta N}{N} = \frac{\Delta K}{K} + \frac{\Delta T}{T}$$

Az objektívek nagyításai:

$$N_{kis} = 3.97 \pm 0.447$$

 $N_{nagy} = 7.3 \pm 0.078$
 $N_{tukor} = 2.98 \pm 0.348$

Az objektív fókusztávolságának mérése

	K_1 $[mm]$	$T_1 [mm]$	$K_2 [mm]$	$T_2 [mm]$
kis objektív	1.07	5	6.24	6
nagy objektív	1.26	5	5.83	5.5
tükrös objektív	2.48	2	6.71	3
hiba	0.005	0.01	0.005	0.01

Az objektív fókusztávolságának mérése

A tubushosszabbító hossza tolómérővel mérve: $L=(40\pm0.05)mm$

A nagyítások:

$$N'_{kis} = 5.17 \pm 0.0567$$

4

	K [mm]	T [mm]
kis objektív	5.17	1
nagy objektív	4.57	0.5
tükrös objektív	4.23	1

Az objektív fókusztávolságának mérése - tárgy- és képméretek

$$N'_{nagy} = 9.14 \pm 0.1928$$

 $N'_{tukor} = 4.23 \pm 0.0473$

A fókusztávolságok az alábbi módon állnak elő:

$$f = \frac{\Delta_2 - \Delta_2}{N_{obj,2} - N_{obj,2}} = \frac{L}{N' - N}$$
$$\frac{\Delta f}{f} = \frac{\Delta L}{L} + \frac{\Delta (N' - N)}{N' - N}$$

Így a három objektív fókusztávolsága:

$$f_{kis} = 33.333333mm \pm 2.85833mm$$

 $f_{nagy} = 21.73913mm \pm 4.947463mm$
 $f_{t\ddot{u}k\ddot{o}r} = 32.00000mm \pm 2.231mm$

Numerikus apertúra

- Az átlátszó műanyag magasítólap magassága: $h=12.3mm,\,\Delta h=0.05mm$
- fényhullámhossz: $\lambda = 589nm$
- A levegő törésmutatója: n=1
- A kis objektív esetén az a távolság: $a_{kicsi} = 71.5mm 69.2mm = 2.3mm \pm 0.02mm$
- Anagy objektív esetén az a távolság: $a_{nagy} = 72.0mm 68.3mm = 3.7mm \pm 0.02mm$

Hibaszámoláshoz szükséges képletek:

$$\frac{\Delta s}{s} = \frac{\Delta a}{a} + \frac{\Delta h}{h}$$

$$\Delta u = \frac{1}{1+s^2} \cdot \Delta s$$

$$\Delta A = n \cdot \sin(u) \cdot \Delta u$$

$$\frac{\Delta d}{d} = \frac{\Delta \lambda}{\lambda} + \frac{\Delta A}{A}$$

Feltételezzük, hogy a hullámhossznak a hibája 0.5nm, valamint hogy a abszolút hibája kétszerese a T méréshez használt műszeréének.

Származtatott mennyiségek :

$$\bullet \ u_{kis} = 0.093224 \pm 0.000897648$$

•
$$u_{nagy} = 0.149287 \pm 0.000415$$

•
$$A_{kis} = 0.09309 \pm 8.3562 \cdot 10^{-5}$$

$$\bullet \ A_{nagy} = 0.14873 \pm 6.17823 \cdot 10^{-5}$$

Végül

$$d_{kis} = 0.006327mm \pm 1.105076 \cdot 10^{-5}mm$$

$$d_{nagy} = 0.0039601mm \pm 5.0067 \cdot 10^{-6}mm$$

A lencsék vizsgálata

Domború lencse

1	gyűrű n sorszáma	1	2	3	4	5	6	7	8	9	10
	$x_{bal}[mm]$	4.55	4.16	3.87	3.66	3.47	3.29	3.10	2.94	2.82	2.66
	$x_jobb[mm]$	5.78	6.15	6.44	6.64	6.87	7.01	7.17	7.31	7.45	7.54

Newton-gyűrűk domború lencse esetén

A tükrös objektívet használva felírható a sugarakra:

$$r_k = \frac{1}{N_{tukor}} \cdot \frac{x_{jobb} - x_{bal}}{1}$$

gyűrű n sorszáma	1	2	3	4	5	6	7	8	9	10
$r_k[mm]$	0.2064	0.3339	0.4312	0.5	0.5705	0.6242	0.6829	0.7332	0.7768	0.8188
$r_k^2[mm^2]$	0.0426	0.1115	0.1859	0.25	0.3254	0.3896	0.4663	0.5376	0.6035	0.6704

Newton-gyűrűk sugara domború lencse esetén

A domború lencse esetén illesztett egyenes

Az illesztés eredménye:

$$m = 0.070097mm^2 \pm 0.0003381 = \lambda \cdot R_{domboru}$$

$$R_{domboru} = 119.01019mm \pm 0.67503mm$$

Homorú lencse

Az illesztés eredménye:

$$m = 0.1449604mm^2 \pm 0.0008809 = \lambda \cdot R_{eff}$$

7

gyűrű n sorszáma	1	2	3	4	5	6	7	8	9	10
$x_{bal}[mm]$	2.53	2.03	1.61	1.34	1.11	0.87	0.60	0.40	0.20	0.02
$x_{jobb}[mm]$	4.80	5.27	5.60	5.93	6.21	6.46	6.64	6.88	7.00	7.20

Newton-gyűrűk domború lencse esetén

gyűrű n sorszáma	1	2	3	4	5	6	7	8	9	10
$r_k[mm]$	0.3809	0.5436	0.6695	0.7701	0.8557	0.9379	1.0134	1.0872	1.1409	1.2047
$r_k^2[mm^2]$	0.1451	0.2955	0.4482	0.5931	0.7322	0.8797	1.027	1.1821	1.3017	1.4513

Newton-gyűrűk sugara homorú lencse esetén

A homorú lencse esetén illesztett egyenes

$$R_{eff} = 246.112796mm \pm 1.704526mm$$

$$\frac{\Delta R_{homoru}}{R_{homoru}} = \frac{\Delta R_{eff}}{R_{eff}} + \frac{\Delta R_{domboru}}{R_{domboru}} + \frac{\Delta (R_{eff} - R_{domboru})}{R_{eff} - R_{domboru}}$$

$$R_{homoru} = 230.443178mm \pm 7.21737mm$$

Diszkusszió

A relatív hibák abszolút elfogadhatóak. A legnagyobb hiba a homorú görbületi sugárnál van, és az is csak 3%. A mérés sikeresnek mondható.

Felhasznált irodalom

[1] Böhönyey - Havancsák - Huhn: Mérések a klasszikus fizika laboratóriumban, szerkesztette: Havancsák Károly, ELTE Eötvös Kiadó, Budapest, 2003.