

Machine Learning

Week 5: Classification Performance Metrics

Outline

"Numbers have an important story to tell. They rely on you to give them a voice."—Stephen Few

- Confusion matrix
- Accuracy
- Precision
- Recall
- F-Score
- Area under ROC

Data Description

Breast cancer data set: Medical data from 681 women (instances)
 who has potentially cancerous tumors (12 attributes)

Class attribute (1)

0: Tumor is malignant (238)

1: Tumor is benign (443)

Other attributes (2)

PID: Patient ID

Date: Diagnosis Date

Predictor attributes (9)

Adhes - marginal adhesion

BNucl - bare nuclei

Chrom - bland chromatin

Epith - epithelial cell size

Mitos – mitoses

NNucl - normal nucleoli

Thick - clump thickness

UShap - cell shape uniformity

USize - cell size uniformity

* A predictor is assigned the value 1 if it is normal and the value 10 if it is most abnormal

Sample Dataset

PID	Date	Adhes	BNucl	Chrom	Epith	Mitos	NNucl	Thick	UShape	USize	Class
1	01/03/2007	1	1	3	2	1	1	5	1	1	1
2	12/12/2005	5	10	3	7	1	2	5	4	4	1
3	14/08/2016	1	2	3	2	1	1	3	1	1	1
4	02/02/2001	1	4	3	3	1	7	6	8	8	1
5	14/11/2014	3	1	3	2	1	1	4	1	1	1
6	22/09/2011	8	10	9	7	1	7	8	10	10	0
7	18/05/2015	7	8	8	9	2	8	8	6	6	0
8	27/04/2011	5	9	9	10	2	6	7	9	9	0
9	19/02/2003	8	6	8	3	1	3	5	10	10	0
10	25/07/2011	10	5	6	6	4	4	10	7	7	0

Prepare Data

Remove attributes. Not useful predictors.

PID	Date	Adhes	BNucl	Chrom	Epith	Mitos	NNucl	Thick	UShape	USize	Class
1	01/03/2007	1	1	3	2	1	1	5	1	1	1
2	12/12/2005	5	10	3	7	1	2	5	4	4	1
3	14/08/2016	1	2	3	2	1	1	3	1	1	1
4	02/02/2001	1	4	3	3	1	7	6	8	8	1
5	14/11/2014	3	1	3	2	1	1	4	1	1	1
6	22/09/2011	8	10	9	7	1	7	8	10	10	0
7	18/05/2015	7	8	8	9	2	8	8	6	6	0
8	27/04/2011	5	9	9	10	2	6	7	9	9	0
9	19/02/2003	8	6	8	3	1	3	5	10	10	0
10	25/07/2011	10	5	6	6	4	4	10	7	7	0

Class attribute

Predictor attributes

Test Options

- Set up train and test sets
 - Percentage split: Splits the data and separates x% of the data for training and the rest for testing
 - Supplied test set: Prepare own external file as training set
 - **K-fold cross validation**: Data set is divided into *k* subsets. Each time, one of the *k* subsets is used as the test set and the other *k-1* subsets are put together to form a training set. Then the average error across all *k* trials is computed.

Cross Validation

Confusion Matrix

N = 10	Predic	Total		
		0	1	
Actual Class	0: Malignant	3 (TP)	2 (FN)	5
	1: Benign	1 (FP)	4 (TN)	5
То	4	6	10	

True Positives (TP): Actual class of the data point was TRUE and the predicted is also TRUE (positive class)

Ex: The case where a tumor is malignant and the model classifying the tumor as malignant

True Negatives (TN): Actual class of the data point was FALSE and the predicted is also FALSE (negative class)

Ex: The case where the tumor is benign and the model classifying the tumor as benign

False Positives (FP): Actual class of the data point was FALSE and the predicted is TRUE.

Ex: A tumor being benign and the model classifying the tumor as malignant

False Negatives (FN): Actual class of the data point was TRUE and the predicted is FALSE.

Ex: Tumor is malignant and the model classifying the tumor as benign

Accuracy

N = 10	Predic	Total		
		0	1	
Actual Class	0: Malignant	3 (TP)	2 (FN)	5
	1: Benign	1 (FP)	4 (TN)	5
Total		4	6	10

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Accuracy

Good measure when the classes in the data are nearly balanced.

Malignant = 5

Benign = 5

N = 10	Predic	Total		
		0	1	
Actual Class	0: Malignant	3 (TP)	2 (FN)	5
	1: Benign	1 (FP)	4 (TN)	5
Total		4	6	10

Accuracy =
$$\frac{TP+TN}{TP+TN+FP+FN}$$
 = $\frac{(3+4)/(3+4+1+2)}{(3+4+1+2)}$ = $\frac{7}{10}$ = 0.7

Accuracy

Accuracy is 80% even though the classifier assigned all 10 instances as BENIGN (1)
Malignant = 2
Benign = 8

* NEVER be used as a measure when classes in the data are a majority of one class

N = 10	Predic	Total		
		0	1	
Actual Class	0: Malignant	0 (TP)	2 (FN)	2
	1: Benign	0 (FP)	8 (TN)	8
То	0	10	10	

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Accuracy
=
$$(0 + 8) / (0 + 8 + 0 + 2)$$

= $8 / 10$
= 0.8

Precision

- Measures how good is the model at whatever it predicted
 - Example: Proportion of tumors predicted as malignant, which are actually malignant

$$Precision = \frac{TP}{TP + FP}$$

N = 10	Predic	Total		
		0	1	
Actual Class	0: Malignant	0 (TP)	2 (FN)	2
	1: Benign	1 (FP)	7 (TN)	8
То	1	9	10	

Precision

- Measures how good is the model at whatever it predicted
 - Example: Proportion of tumors predicted as malignant, which are actually malignant

$$Precision = \frac{TP}{TP + FP}$$

Precision		
= 0 / (0 +	1)
= 0 / 1		
= 0		

N = 10	Predic	Total		
		0	1	
Actual Class	0: Malignant	0 (TP)	2 (FN)	2
	1: Benign	1 (FP)	7 (TN)	8
Total		1	9	10

Recall

- Measures indicates how good is the model at picking the correct items
 - Example: Proportion of actual malignant tumors being predicted by the algorithm as being malignant

$$Recall = \frac{TP}{TP + FN}$$

N = 10	Predic	Total		
		0	1	
Actual Class	0: Malignant	0 (TP)	2 (FN)	2
	1: Benign	1 (FP)	7 (TN)	8
Total		1	9	10

Recall

- Measures indicates how good is the model at picking the correct items
 - Example: Proportion of actual malignant tumors being predicted by the algorithm as being malignant

$$Recall = \frac{TP}{TP + FN}$$

N = 10	Predic	Total		
		0	1	
Actual Class	0: Malignant	0 (TP)	2 (FN)	2
	1: Benign	1 (FP)	7 (TN)	8
Total		1	9	10

Recall	
= 0 / (0 +	2
= 0 / 2	
= 0	

F-Measure (F1)

- Harmonic mean of precision and recall
- A single score that represents both precision and recall

$$F1 = \frac{2 * Precision * Recall}{Precision + Recall}$$

```
Say precision = 0.4, recall = 0.7

F1 = (2 * 0.4 * 0.7) / (0.4 + 0.7)

= 0.56 / 1.1

= 0.51
```

Precision and Recall

Low Recall, Low Precision

High Recall, High Precision

Precision and Recall

Low Recall, Low Precision

High Recall, High Precision

Precision and Recall

High Recall, Low Precision

Low Recall, High Precision

Area Under ROC

- ROC: Receiver Operating Characteristic
- Represent model's ability to discriminate between positive and negative classes (for binary classification)

ROC area of 1.0 represents a model that made all predictions perfectly ROC area of 0.5 represents a model as good as random

- X-axis: 1 specificity (false positive rate = FP/(FP+TN))
- Y-axis: sensitivity (true positive rate = TP/(TP+FN))