# UVM Verification Project Report SPI Core Wishbone Compatible



#### Ahmad Mukhtar

National University of Sciences and Technology (NUST) Chip Design Centre (NCDC), Islamabad, Pakistan

November 28, 2024

# Contents

| 1 | TA  | SK:1   | Verification Plan                                                                                                          | 2  |
|---|-----|--------|----------------------------------------------------------------------------------------------------------------------------|----|
| 2 |     | DUT I  | l Verification Instructions Register Model                                                                                 |    |
| 3 | Tes | t Resu | lts                                                                                                                        | 5  |
|   | 3.1 | Test F | Results                                                                                                                    | 5  |
|   |     | 3.1.1  | Test Case 1: Reset Test                                                                                                    | 5  |
|   |     | 3.1.2  | Test Case 1: Reset Test error                                                                                              | 6  |
|   |     | 3.1.3  | Test Case 2: Complete read write between the protocols                                                                     | 7  |
|   |     | 3.1.4  | Test Case 2: Complete read write between the protocols error                                                               | 8  |
|   |     | 3.1.5  | $test_2 \dots \dots$ | 9  |
|   |     | 3.1.6  | $test_3$                                                                                                                   | 10 |
|   |     | 3.1.7  | Test Case 4: Write buffer Collision                                                                                        | 11 |
|   |     | 3.1.8  | Test Case 5: Read buffer Full                                                                                              | 12 |
|   |     | 3.1.9  | Test Case 5: Read buffer Full                                                                                              | 13 |

## 1. TASK:1 Verification Plan

The following table outlines the comprehensive verification plan for the SPI Core design, covering all critical features and corresponding test cases:

#### Verification Plan Overview

This plan ensures a structured approach to validating SPI Core which Wishbone Compatible functionalities, with test cases designed for edge scenarios and regular operations.

| Test<br>Case<br>ID | Test Name                                   | Objective                                                                    | Features to Verify                          | Stimulus                                                                                                                                 | Expected Result |
|--------------------|---------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| TC1                | Reset Test                                  | Verify control register reset values after asynchronous reset.               | Directed (reset-only focus).                | Upon reset,<br>empty control<br>registers is re-<br>set, and data<br>pointers reset to<br>initial states.                                |                 |
| TC2                | Complete Read-/Write Test between Protocols | Verify correct read/write operations between Wishbone and SPI protocols.     | Directed (cross-protocol verification).     | DUT correctly<br>reads and<br>writes data be-<br>tween protocols.<br>Wishbone mas-<br>ter writes, SPI<br>master reads<br>and vice versa. |                 |
| TC3                | Write Buffer Full Test                      | Verify system behavior when write buffer is full.                            | Directed (buffer overflow test).            | System stops<br>accepting writes<br>when buffer<br>is full, flags<br>indicate full<br>condition.                                         |                 |
| TC4                | Write Buffer Collision Test                 | Verify system's behavior during a buffer overflow/collision in write buffer. | Directed (overflow and collision handling). | System detects<br>buffer overflow<br>or collision and<br>handles it cor-<br>rectly without<br>data corruption.                           |                 |
| TC5                | Read Buffer Full Test                       | Verify FIFO asserts full flag when buffer is full.                           | Directed (continuous writes).               | full flag asserts when buffer is full, no further data can be written, write pointer stops incrementing.                                 |                 |

Table 1.1: Verification Plan for WB SPI

# 2. Usage and Verification Instructions

The following table provides clear, concise instructions on how to configure and execute the verification process for the WB SPI design:

#### Usage Instructions

Follow these steps to configure, run, and verify the FIFO design using the provided testbench.

| Step                | Action                                                                                                                                                                                   | Example                                              |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 1. Set Parameters   | Configure FIFO depth, data width, and test case number in random_test.                                                                                                                   | <pre>depth = 16;<br/>width = 32;<br/>test = 4;</pre> |
| 2. Select Test Case | Choose the desired test case (1-7):  1: Reset Test 2: Synchronous Reset Test 3: Depth Check Test 4: Full Flag Test 5: Empty Flag Test 6: Write After Read Test 7: Exhaustive Random Test | test = 1 for Reset Test.                             |
| 3. Run Simulation   | Execute the testbench using your simulator (e.g., Cadence Xcelium).                                                                                                                      | xrun -f file.f                                       |
| 4. Check Results    | Analyze logs and scoreboard outputs for Pass/Fail.                                                                                                                                       | Expected Data = 15,<br>Actual Data = 15              |
| 5. Verify Coverage  | Review the coverage report to ensure 100% coverage of states and transitions in the test number 7.                                                                                       | Coverage metrics logged in the simulation tool.      |

Table 2.1: Usage and Verification Instructions for FIFO Design

# 2.1 DUT Register Model

#### 2.1.1 DUT Register Model



Figure 2.1: reseter model of the dut  ${\bf wb}_s pi$ .

## 3. Test Results

#### 3.1 Test Results

#### 3.1.1 Test Case 1: Reset Test



Figure 3.1: Simulation result for Reset Test.

#### 3.1.2 Test Case 1: Reset Test error

Figure 3.2: Simulation result for Reset Test.

# 3.1.3 Test Case 2: Complete read write between the protocols



Figure 3.3:  $test_2$ .

# 3.1.4 Test Case 2: Complete read write between the protocols error

Figure 3.4: test<sub>2</sub>.

#### 3.1.5 test<sub>2</sub>



Figure 3.5: Simulation result for Depth Check Test.

## 3.1.6 test<sub>3</sub>

Figure 3.6:  $test_3$ .

#### 3.1.7 Test Case 4: Write buffer Collision



Figure 3.7: test<sub>4</sub>.

#### 3.1.8 Test Case 5: Read buffer Full



Figure 3.8: test 5.

#### 3.1.9 Test Case 5: Read buffer Full

Figure 3.9:  $test_5$ .