Package 'growthmodels'

May 22, 2023

Type Package
Title Nonlinear Growth Models
Version 1.3.1
Date 2023-05-22
Author Daniel Rodriguez
Maintainer Daniel Rodriguez <daniel.rodriguez.perez@gmail.com></daniel.rodriguez.perez@gmail.com>
Description A compilation of nonlinear growth models.
License GPL-3
<pre>URL https://github.com/drodriguezperez/growthmodels</pre>
BugReports https://github.com/drodriguezperez/growthmodels/issues
Suggests testthat
RoxygenNote 7.2.3
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2023-05-22 19:00:02 UTC
R topics documented:
growthmodels-package 2 blumberg 3 brody 4 chapmanRichards 5 generalisedLogistic 6 generalisedRichard 7 gompertz 8 janoschek 9 logistic 10 loglogistic 11

grow	hmodels-package growthmodels: Nonlinear Growth Models	_
Index		21
	weibull	20
	vonBertalanffy	
	stannard	18
	schnute	
	richard	
	negativeExponential	
	monomolecular	
	mmf	12

Description

A compilation of nonlinear growth models.

Details

Package: growthmodels

Version: 1.2.0 License: GPL-3

Author(s)

Daniel Rodriguez <daniel.rodriguez.perez@gmail.com>

References

- D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
- M. M. Kaps, W. O. W. Herring, and W. R. W. Lamberson, "Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle.," Journal of Animal Science, vol. 78, no. 6, pp. 1436-1442, May 2000.
- A. Tsoularis and J. Wallace, "Analysis of logistic growth models.," Math Biosci, vol. 179, no. 1, pp. 21-55, Jul. 2002.
- A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.

Michael J. Panik, "Growth Curve Modeling: Theory and Applications", John Wiley & Sons, December 2013.

http://en.wikipedia.org/wiki/Generalised_logistic_function

blumberg 3

blumberg

Blumberg growth model

Description

Computes the Blumberg growth model and its inverse

$$y(t) = \frac{\alpha * (t + t_0)^m}{w_0 + (t + t_0)^m}$$

Usage

```
blumberg(t, alpha, w0, m, t0 = 0)

blumberg.inverse(x, alpha, w0, m, t0 = 0)
```

Arguments

t	time
alpha	upper asymptote
w0	a reference value at $t = t0$
m	slope of growth
t0	time shift (default 0)
Х	size

Author(s)

Daniel Rodriguez

References

A. Tsoularis and J. Wallace, "Analysis of logistic growth models.," Math Biosci, vol. 179, no. 1, pp. 21-55, Jul. 2002.

```
growth <- blumberg(0:10, 10, 2, 0.5)
# Calculate inverse function
time <- blumberg.inverse(growth, 12, 2, 0.5)</pre>
```

4 brody

b	r	od	ĺ۷

Brody growth model

Description

Computes the Brody growth model and its inverse

$$y(t) = \alpha - (\alpha - w_0)exp(-kt)$$

Usage

```
brody(t, alpha, w0, k)
brody.inverse(x, alpha, w0, k)
```

Arguments

t	time
alpha	upper asymptote
w0	the value at $t = 0$
k	growth rate
x	size

Author(s)

Daniel Rodriguez

References

M. M. Kaps, W. O. W. Herring, and W. R. W. Lamberson, "Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle.," Journal of Animal Science, vol. 78, no. 6, pp. 1436-1442, May 2000.

```
growth <- brody(0:10, 10, 5, 0.3)
# Calculate inverse function
time <- brody.inverse(growth, 10, 5, 0.3)</pre>
```

chapmanRichards 5

chapmanRichards

Chapman-Richards growth model

Description

Computes the Chapman-Richards growth model and its inverse

$$y(t) = \alpha(1 - \beta exp(-kt)^{1/(1-m)})$$

Usage

```
chapmanRichards(t, alpha, beta, k, m)
chapmanRichards.inverse(x, alpha, beta, k, m)
```

Arguments

t	time
alpha	upper asymptote
beta	growth range
k	growth rate
m	slope of growth

x size

Author(s)

Daniel Rodriguez

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

```
growth <- chapmanRichards(0:10, 10, 0.5, 0.3, 0.5)
# Calculate inverse function
time <- chapmanRichards.inverse(growth, 10, 0.5, 0.3, 0.5)</pre>
```

6 generalisedLogistic

generalisedLogistic Generalised Logistic growth model

Description

Computes the Generalised Logistic growth model

$$y(t) = A + \frac{U - A}{1 + \beta exp(-k(t - t_0))}$$

Usage

```
generalisedLogistic(t, A, U, k, beta, t0) generalisedLogistic.inverse(x, A, U, k, beta, t0 = 0)
```

Arguments

t	time
A	the lower asymptote
U	the upper asymptote
k	growth range
beta	growth range
t0	time shift (default 0)

size

Author(s)

Х

Daniel Rodriguez

References

http://en.wikipedia.org/wiki/Generalised_logistic_function

```
growth <- generalisedLogistic(0:10, 5, 10, 0.3, 0.5, 3)
# Calculate inverse function
time <- generalisedLogistic.inverse(growth, 5, 10, 0.3, 0.5, 3)</pre>
```

generalisedRichard 7

generalisedRichard

Generalised Richard growth model

Description

Computes the Generalised Richard growth model and its inverse

$$y(t) = A + \frac{U - A}{(1 + \beta exp(-k(t - t_0)))^{(1/m)}}$$

Usage

```
generalisedRichard(t, A, U, k, m, beta, t0)
generalisedRichard.inverse(x, A, U, k, m, beta, t0 = 0)
```

Arguments

t	time
A	the lower asymptote
U	the upper asymptote
k	growth range
m	slope of growth
beta	growth range
t0	time shift (default 0)
X	size

Author(s)

Daniel Rodriguez

References

http://en.wikipedia.org/wiki/Generalised_logistic_function

```
growth <- generalisedRichard(0:10, 5, 10, 0.3, 0.5, 1, 3)
time <- generalisedRichard.inverse(growth, 5, 10, 0.3, 0.5, 1, 3)</pre>
```

8 gompertz

gompertz

Gompertz growth model

Description

Computes the Gompertz growth model and its inverse

$$y(t) = \alpha exp(-\beta exp(-k^t))$$

Usage

```
gompertz(t, alpha, beta, k)
gompertz.inverse(x, alpha, beta, k)
```

Arguments

t time

alpha upper asymptote

beta growth displacement

k growth rate

x size

Author(s)

Daniel Rodriguez

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

```
growth <- gompertz(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- gompertz.inverse(growth, 10, 0.5, 0.3)</pre>
```

janoschek 9

_	ıar	nnc	cr	ıek
	aı	IUS		

Janoschek growth model

Description

Computes the Janoschek growth model and its inverse

$$y(t) = \alpha * (\alpha - \beta) \exp(-b * t^c))$$

Usage

```
janoschek(t, alpha, beta, b, c)
janoschek.inverse(x, alpha, beta, b, c)
```

Arguments

t	time
alpha	upper asymptote
beta	lower asymptote
b	growth parameter
С	shape parameter
x	size

Author(s)

Daniel Rodriguez

References

Michael J. Panik, "Growth Curve Modeling: Theory and Applications", John Wiley & Sons, December 2013.

```
growth <- janoschek(0:10, 10, 2, 0.5, 2)
# Calculate inverse function
time <- janoschek.inverse(growth, 12, 2, 0.5, 2)</pre>
```

10 logistic

logistic

Logistic growth model

Description

Computes the Logistic growth model

$$y(t) = \frac{\alpha}{1 + \beta exp(-kt)}$$

Usage

```
logistic(t, alpha, beta, k)
logistic.inverse(x, alpha, beta, k)
```

Arguments

+	time
L	unne

alpha upper asymptote
beta growth range
k growth rate
x size

Author(s)

Daniel Rodriguez

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

```
growth <- logistic(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- logistic.inverse(growth, 10, 0.5, 0.3)</pre>
```

loglogistic 11

loglogistic

Log-logistic growth model

Description

Computes the Log-logistic growth model

$$y(t) = \frac{\alpha}{1 + \beta exp(-klog(t))}$$

Usage

```
loglogistic(t, alpha, beta, k)
loglogistic.inverse(x, alpha, beta, k)
```

Arguments

t	time
alpha	upper asymptote
beta	growth range
L	amazzeth mata

k growth rate

x size

Author(s)

Daniel Rodriguez

References

A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.

```
growth <- loglogistic(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- loglogistic.inverse(growth, 10, 0.5, 0.3)</pre>
```

12 mitcherlich

mitcherlich

Mitcherlich growth model

Description

Computes the Mitcherlich growth model

$$y(t) = (\alpha - \beta k^t)$$

Usage

```
mitcherlich(t, alpha, beta, k)
mitcherlich.inverse(x, alpha, beta, k)
```

Arguments

t	time
---	------

alpha upper asymptote
beta growth range
k growth rate

x size

Author(s)

Daniel Rodriguez

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

```
growth <- mitcherlich(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- mitcherlich.inverse(growth, 10, 0.5, 0.3)</pre>
```

mmf

mmf

Morgan-Mercer-Flodin growth model

Description

Computes the Morgan-Mercer-Flodin growth model

$$y(t) = \frac{(w_0 \gamma + \alpha t^m)}{\gamma} + t^m$$

Usage

```
mmf(t, alpha, w0, gamma, m)
mmf.inverse(x, alpha, w0, gamma, m)
```

Arguments

t	time
alpha	upper asymptote
w0	the value at $t = 0$
gamma	parameter that controls the point of inflection
m	growth rate
Х	size

Author(s)

Daniel Rodriguez

References

A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.

```
growth <- mmf(0:10, 10, 0.5, 4, 1)
# Calculate inverse function
time <- mmf.inverse(growth, 10, 0.5, 4, 1)</pre>
```

14 monomolecular

monomolecular

Monomolecular growth model

Description

Computes the monomolecular growth model

$$y(t) = \alpha(1 - \beta exp(-kt))$$

Usage

```
monomolecular(t, alpha, beta, k)
monomolecular.inverse(x, alpha, beta, k)
```

Arguments

ι	ume
alpha	upper asymptote

 $\begin{array}{ll} \text{beta} & \text{growth range} \\ \text{k} & \text{growth rate} \end{array}$

x size

Author(s)

Daniel Rodriguez

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

```
growth <- monomolecular(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- monomolecular.inverse(growth, 10, 0.5, 0.3)</pre>
```

negativeExponential 15

negativeExponential

Negative exponential growth model

Description

Computes the negative exponential growth model

$$y(t) = \alpha(1 - exp(-kt))$$

Usage

```
negativeExponential(t, alpha, k)
negativeExponential.inverse(x, alpha, k)
```

Arguments

t time

alpha upper asymptote

k growth rate

x size

Author(s)

Daniel Rodriguez

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

```
growth <- negativeExponential(0:10, 1, 0.3)
# Calculate inverse function
time <- negativeExponential.inverse(growth, 10, 0.3)</pre>
```

16 richard

richard

Richard growth model

Description

Computes the Richard growth model and its inverse

$$y(t) = \frac{\alpha}{(1 + \beta exp(-kt))^{(1/m)}}$$

Usage

```
richard(t, alpha, beta, k, m)
richard.inverse(x, alpha, beta, k, m)
```

Arguments

t	time
alpha	upper asymptote
beta	growth range
k	growth rate
m	slope of growth
Х	size

Author(s)

Daniel Rodriguez

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

```
growth <- richard(0:10, 10, 0.5, 0.3, 0.5)
time <- richard.inverse(growth, 10, 0.5, 0.3, 0.5)</pre>
```

schnute 17

schnute

Schnute growth model

Description

Computes the Schnute growth model

$$y(t) = \left[r_0 + \beta exp(kt)\right]^m$$

Usage

```
schnute(t, r0, beta, k, m)
schnute.inverse(x, r0, beta, k, m)
```

Arguments

t	time
r0	reference value
beta	growth displacement
k	growth rate
m	slope of growth

x size

Author(s)

Daniel Rodriguez

References

A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.

```
growth <- schnute(0:10, 10, 5, .5, .5)
# Calculate inverse function
time <- schnute.inverse(growth, 10, 5, .5, .5)</pre>
```

18 stannard

stannard

Stannard growth model

Description

Computes the Stannard growth model

$$y(t) = \alpha \left[1 + \exp(-(\beta + kt)/m) \right]^{-m}$$

Usage

```
stannard(t, alpha, beta, k, m)
stannard.inverse(x, alpha, beta, k, m)
```

Arguments

alpha upper asymptote

beta growth displacement

k growth rate

m slope of growth

x size

Author(s)

Daniel Rodriguez

References

A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.

```
growth <- stannard(0:10, 1, .2, .1, .5)
# Calculate inverse function
time <- stannard.inverse(growth, 1, .2, .1, .5)</pre>
```

vonBertalanffy 19

vonBert	alani	ffv

von Bertalanffy growth model

Description

Computes the von Bertalanffy growth model

$$y(t) = (\alpha^{(1-m)} - \beta * exp(-kt))^{(1/(1-m))}$$

Usage

```
vonBertalanffy(t, alpha, beta, k, m)
vonBertalanffy.inverse(x, alpha, beta, k, m)
```

Arguments

t	time
alpha	upper asymptote
beta	growth range
k	growth rate
m	slope of growth
Y	size

x size

Author(s)

Daniel Rodriguez

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

```
growth <- vonBertalanffy(0:10, 10, 0.5, 0.3, 0.5)
# Calculate inverse function
time <- vonBertalanffy.inverse(growth, 10, 0.5, 0.3, 0.5)</pre>
```

20 weibull

weibull

Weibull growth model

Description

Computes the Weibull growth model

$$y(t) = \alpha - \beta exp(-k * t^m)$$

Usage

```
weibull(t, alpha, beta, k, m)
weibull.inverse(x, alpha, beta, k, m)
```

Arguments

t	time
alpha	upper asymptote
beta	growth range
k	growth rate
m	slope of growth
x	size

Author(s)

Daniel Rodriguez

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

```
growth <- weibull(0:10, 10, 0.5, 0.3, 0.5)
# Calculate inverse function
time <- weibull.inverse(growth, 10, 0.5, 0.3, 0.5)</pre>
```

Index

```
blumberg, 3
brody, 4
{\it chapmanRichards}, {\it 5}
{\tt generalisedLogistic}, {\tt 6}
{\tt generalisedRichard}, \textcolor{red}{7}
gompertz, 8
growthmodels(growthmodels-package), 2
growthmodels-package, 2
janoschek, 9
logistic, 10
loglogistic, \\ 11
mitcherlich, 12
mitscherlich (mitcherlich), 12
mmf, 13
monomolecular, 14
negativeExponential, 15
richard, 16
schnute, 17
stannard, 18
vonBertalanffy, 19
weibull, 20
```