EECS 325: Take Home Final

Shaochen (Henry) ZHONG, sxz517

Due and submitted on 05/01/2020 EECS 325, Dr. WANG

Single Choice Questions

- 1. (i) c
 - (ii) b
 - (iii) a
 - (iv) d
- 2. d
- 3. c
- 4. c
- 5. e

Short Answer Questions

1

It will operate between Alice's email client and Alice's outgoing mail server; also Alice's outgoing mail server and Bob's incoming mail server.

$\mathbf{2}$

IGP is for intra-AS routing, means navigating packets within the same AS; BGP is for inter-AS routing, means navigating packets across different AS.

3

When cwnd exceeds ssthresh $(\frac{1}{2} \text{ of current cwnd})$.

It is possible, when a timeout occurs or triple duplicate ACK is received (as some packets are getting through).

4

Yes.

A router's number of IP Addresses is equal to the number of interface it has to connect to different subnets. There will be no same IP Address used for multiple different subnets.

IP Fragmentation

 $\frac{2400-20}{700-20} = 3.5 \approx 4$. Thus, 4 fragmentations are generated.

Seg Num	$\frac{\text{Length}}{\text{(bytes)}}$	Flagflag	Offset
1	700	1	0
2	700	1	85
3	700	1	170
4	360	0	255

IP Addressing

• subnet 1: 223.1.13.0/25

• subnet 2: 223.1.13.128/26

• subnet 3: 223.1.13.192/26

Routing Algorithm

\mathbf{S}	\mathbf{N}'	D(v), p(v)	D(w), p(w)	D(x), p(x)	D(y), p(y)	D(z), p(z)
0	u	2, u	∞	1, u	∞	∞
1	ux	2, u	4, x	1, u	2, x	∞
2	uxy	2, u	3, y	1, u	2, x	4, y
3	uxyv	2, u	3, y	1, u	2, x	4, y
4	uxyvw	2, u	3, y	1, u	2, x	4, y
5	uxyvwz	2, u	3, y	1, u	2, x	4, y

The least-cost path is: $u \to x \to y \to z$

Data Link Layer

(a)

Known that G = 10101 and r = 4, now we have $\frac{D \cdot 2^r}{G} = \frac{1101101011110000}{10101} = ...0011$ The CRC code will be 110110101110011. (b)

No. Let the error be 10101, we have F(x) = 110110101110011 and $G'(X) = x^4 + x^2 + 1$. Then we must have $\frac{F(x) + G'(x)}{G(x)} = \frac{G'(x)}{G(x)} = \dots 0$ in terms of the reminder. Thus, it cannot detect odd number of bit errors.

Multiple Access Protocol

For B to be success at any slot we have $P(B) = p(1-p)^2$ since A and C should not be success at this slot. Thus, for B to be success for the first time in S_4 , we have $(1-P(B))^3 \cdot P(B) = (p(1-p)^2)^3 \cdot p(1-p)^2 = (1-p(1-p)^2)^3 \cdot p(1-p)^2$.

Course Evaluation

(b)