I numeri complessi

Si chiama numero complesso una qualunque coppia ordinata (a,b) di numeri reali. L'insieme dei numeri complessi è denotato da C.

Il numero (0,1), denotato dalla lettera i, è detto unità immaginaria ed è tale che: $i^2 = -1$.

Da esso deriva la forma algebrica di un numero complesso:

$$(a,b) = a + ib$$

con cui è possibile eseguire le operazioni fondamentali con le stesse regole del calcolo letterale.

Se: x = a + ib definisce modulo di x il numero:

$$|x| = \sqrt{a^2 + b^2}$$

Si definisce complesso coniugato di x il numero \bar{x} dato da:

$$\bar{x} = a - ib$$

Siano
$$x = (a,b), y = (c,d)$$
. Si ha:

$$x + y = (a,b) + (c,d) = (a+c) + i(b+d)$$

$$x - y = (a,b) - (c,d) = (a+c) - i(b+d)$$

$$x \cdot y = (ac - bd, ad + bc)$$

$$\frac{1}{x} = \frac{a - ib}{a^2 + b^2} \qquad se \qquad a^2 + b^2 > 0$$

Pertanto, se: x = (1,2), y = (3,4)

$$x + y = 4 + 6i$$

$$x - y = 4 - 6i$$

$$x \cdot y = -5 + 10i$$

$$\frac{1}{x} = \frac{1-2i}{5}$$
; $|x| = \sqrt{5}$; $\overline{x} = 1-2i$;

Interpretazione geometrica dei numeri complessi.

E' possibile rappresentare in un altro modo i numeri complessi utile per trovare le radici n-esime di un numero complesso.

Dato un sistema di riferimento cartesiano, indicando con l'asse delle x l'asse reale e con l'asse delle y l'asse immaginario, essendo il numero complesso una coppia ordinata di numeri vi è una corrispondenza biunivoca tra i numeri complessi e i punti del piano. Sia $z=(a,b)\in C$ e P il punto del piano che lo rappresenta. Se P non coincide con l'origine, indicando con $\rho=\sqrt{a^2+b^2}$ la misura di OP, si ha:

$$a = \rho \cos \theta$$
, $b = \rho \sin \theta$

Il numero ρ viene detto modulo (indicato con |z|) e β argomento di z. Si ha le seguente <u>forma trigonometrica</u> di un numero complesso:

$$z = \rho(\cos\theta + i\sin\theta)$$

Si ha la <u>formula di De Moivre</u> per la potenza n-esima di z:

$$z^{n} = \rho^{n}(\cos n\theta + i\sin n\theta) \qquad n \in N$$

Tale formula è fondamentale per determinare la radice n-esima di un numero complesso. Vogliamo trovare quei complessi $w = \phi(\cos \tau + i \sin \tau)$, se esistono, tali che:

$$w^n = z$$
.

Si ha che esiste un unico $\phi \in \Re$ e $k \in \mathbb{Z}$ tali che:

$$\phi^n = \rho$$
, $n\tau = \vartheta + 2k\pi$

Pertanto per $\forall k \in \mathbb{Z}$, l'equazione $w^n = z$ ammette delle soluzioni che si calcolano da:

$$w_k = \sqrt[n]{\rho} \left(\cos\frac{\vartheta + 2k\pi}{n} + i\sin\frac{\vartheta + 2k\pi}{n}\right)$$

Sembrerebbe che ci siano infinite radici n-esime, in realtà quelle a due a due distinte sono n, date dalla formula precedente con $k \in \{0,1,2,...,n-1\}$.

Un caso particolare è dato dalle <u>radici n-esime dell'unità</u>. Esse sono indicate con e_k e sono date da:

$$e_k = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} \qquad \forall k \in \{0,1,2,\dots,n-1\}$$

Potenza complessa

Dato un numero complesso z = x + iy chiameremo potenza di base e ed esponente z il numero complesso:

$$e^z = e^x (\cos y + i \sin y)$$

che è nota come <u>formula di Eulero</u> da cui è possibile definire le funzioni trigonometriche di un numero complesso:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} , \qquad \cos z = \frac{e^{iz} + e^{-iz}}{2} \qquad \forall z \in C$$

In particolare, se $x \in \Re$:

$$e^{ix} = \cos x + i \sin x$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$
 $\cos x = \frac{e^{ix} + e^{-ix}}{2}$

Si ha anche la famosa <u>identità di Eulero</u>: $e^{i\pi} + 1 = 0$