A) EQUIVALENCE TEST

Equivalence test (TOST approach) was performed for the following six comparisons:

Independent groups

- 1. Tilt angles during fixed and free condition
- 2. Safety margin of Index finger during fixed and free condition
- 3. Safety margin of Middle finger during fixed and free condition
- 4. Safety margin of Little finger during fixed and free condition

Dependent groups

- 5. Ring and little finger normal force during free condition
- 6. Percentage of normal force shared by ring and little fingers during free condition

B) SESOI calculation (or equivalence bounds) for Independent groups

(i) For a desired level of statistical power of 95%, with the sample size of 15, alpha =0.05, we get equivalence bounds in **R** package as following.

```
> powerTOSTtwo (alpha=0.05, N=15, statistical_power=0.95) The equivalence bounds to achieve 95 % power with N = 15 are -1.32 and 1.3 2 .
```

[1] -1.316293 1.316293

(ii)For a desired level of statistical power of 95%, with the sample size of 15, alpha =0.05, we get smallest effect size of interest (d=SESOI) in GPower as following (performed for confirmation).

Effect size =1.36 (approximately same as we got in R package)

iii) Formula for equivalence bounds calculation (for independent group) used in R

$$Equivalence\ bounds = \frac{\sqrt{2}\left[qnorm(1-\alpha) + qnorm\left[1-\left(\frac{1-power}{2}\right)\right]\right]}{\sqrt{n}}$$

Above formula for equivalence bounds derived from (Chow et al. 2007)

$$n = \frac{(\sigma_1^2 + \sigma_2^2)(z_{\alpha/2} + z_{\beta})^2}{\delta^2}$$

$$\sigma_1^2 = \sigma_2^2 = \sigma = SD = 1$$
 Mean=1

$$\delta = \frac{\sqrt{2}(z_{\alpha/2} + z_{\beta})^{\square}}{\sqrt{n}}$$

Equivalence bounds (d) =
$$\frac{\sqrt{2}[t_{0.95} + t_{0.975}]}{\sqrt{n}}$$

Equivalence bounds
$$(d) = \frac{\sqrt{2} \ [t]}{\sqrt{n}}$$

qnorm is the R function that calculates the inverse c. d. f. of the normal distribution.By providing probability to the qnorm function, it returns associated z score. Alpha=0.05, power=0.95

Z score of $t_{0.95}$ =1.645,

95% of the values in a population that is normally distributed with mean 0 and standard deviation 1 will lie below 1.645

Z score of $t_{0.975}$ =1.96

97.5% of the values in a population that is normally distributed with mean 0 and standard deviation 1 will lie below 1.96

$$n=15$$
, we get $d=1.414*(3.606/3.87)=1.31$

t Table											
cum. prob	t .50	t .75	t .80	t .85	t .90	t.95	t .975	t .99	t .995	t .999	t .9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6 7	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
						dence Le					

Therefore, -1.31 was taken as lower equivalence bounds and 1.31 taken as upper equivalence bounds for tost comparisons that involved independent groups

iv) Observed effect size calculating formula for independent groups

$$d=rac{|m_1-m_2|}{\sqrt{rac{s_1^2+s_2^2}{2}}}$$

Observed effect size for tilt angle data from GPower= 0.1402

C) SESOI calculation (or equivalence bounds) for dependent groups

(i)For a desired level of statistical power of 95%, with the sample size of 15, alpha =0.05, we get equivalence bounds in **R** package as following.

> $\frac{\text{powerTOSTpaired}}{\text{calpha}=0.05}$, N=15, $\frac{\text{statistical power}=0.95}{\text{mover with N}}$)
The equivalence bounds to achieve 95 % power with N = 15 are -0.93 and 0.9 3.

[1] -0.9307599 0.9307599

(ii)For a desired level of statistical power of 95%, with the sample size of 15, alpha =0.05, we get smallest effect size of interest (dz=SESOI) in GPower as following (performed for confirmation).

Effect size (equivalence bound) =1.002 (approximately same as we got in R package)

iii) Formula for equivalence bounds calculation (for dependent group)

$$Equivalence\ bounds = \frac{\left[qnorm(1-\alpha) + qnorm\left[1 - \left(\frac{1-power}{2}\right)\right]\right]}{\sqrt{n}}$$

Equivalence bounds
$$(dz) = \frac{[t_{0.95} + t_{0.975}]}{\sqrt{n}}$$

Equivalence bounds
$$(dz) = \frac{[t]}{\sqrt{n}}$$

$$n=15$$
, we get $dz=(3.606/3.87)=0.931$

The relationship between Cohen's d and dz is a factor of $\sqrt{2}$ (Lakens,2017)

Therefore, -0.93 was taken as lower equivalence bounds and 0.93 taken as upper equivalence bounds for tost comparisons that involved dependent groups

iv) Observed effect size calculating formula for dependent groups

$$d=rac{|m_1-m_2|}{\sqrt{s_1^2+s_2^2-(2rs_1s_2)}}$$

Observed effect size for Ring and little finger normal force data from GPower= 0.1407

TOST Results from R package

Tilt angle data during fixed and free condition

```
> TOSTtwo(m1=4.13, m2=3.83, sd1=2.31, sd2=1.82, n1=15, n2=15, Tow_eqbound=-1.31,
high_eqbound=1.31,0.05,var.equal=TRUE)
TOST results:
                                       p-value lower bound: 0.0002
t-value lower bound: 3.98
t-value upper bound: -3.19 degrees of freedom: 28
                                       p-value upper bound: 0.002
Equivalence bounds (Cohen's d):
low eqbound: -1.31 high eqbound: 1.31
Equivalence bounds (raw scores):
low eqbound: -2.7241 high eqbound: 2.7241
TOST confidence interval: lower bound 90% CI: -0.992 upper bound 90% CI: 1.592
NHST confidence interval:
lower bound 95% CI: -1.255 upper bound 95% CI: 1.855
Equivalence Test Result:
The equivalence test was significant, t(28) = -3.192, p = 0.00174, given equivalence bounds of -2.724 and 2.724 (on a raw scale) and an alpha of 0.0
Null Hypothesis Test Result:
The null hypothesis test was non-significant, t(28) = 0.395, p = 0.696, gi
ven an alpha of 0.05.
Based on the equivalence test and the null-hypothesis test combined, we ca
n conclude that the observed effect is statistically not different from ze
ro and statistically equivalent to zero.
```

Equivalence bounds -2.724 and 2.724 Mean difference = 0.3 TOST: 90% CI [-0.992; 1.592] significant NHST: 95% CI [-1.255; 1.855] non-significant -3 -2 -1 0 1 2 3 Mean Difference

2) SMz Index fixed vs SMz Index free

```
> TOSTtwo(m1=0.4580, m2=0.5540,sd1=0.26,sd2=0.25,n1=15,n2=15,low_eqbound=-1.31,high_eqbound=1.31,var.equal=TRUE)
TOST_results:
                                            p-value lower bound: 0.008
t-value lower bound: 2.56
t-value upper bound: -4.62 degrees of freedom: 28
                                            p-value upper bound: 0.00004
Equivalence bounds (Cohen's d):
low eqbound: -1.31 high eqbound: 1.31
Equivalence bounds (raw scores):
low eqbound: -0.3341 high eqbound: 0.3341
TOST confidence interval: lower bound 90% CI: -0.254 upper bound 90% CI: 0.062
NHST confidence interval:
lower bound 95% CI: -0.287
upper bound 95% CI: 0.095
Equivalence Test Result:
The equivalence test was significant, t(28) = 2.557, p = 0.00814, given equivalence bounds of -0.334 and 0.334 (on a raw scale) and an alpha of 0.05
Null Hypothesis Test Result:
The null hypothesis test was non-significant, t(28) = -1.031, p = 0.311, g iven an alpha of 0.05.
Based on the equivalence test and the null-hypothesis test combined, we ca
n conclude that the observed effect is statistically not different from ze
ro and statistically equivalent to zero.
```

Equivalence bounds -0.334 and 0.334 Mean difference = -0.096 TOST: 90% CI [-0.254;0.062] significant NHST: 95% CI [-0.287;0.095] non-significant -0.4 -0.2 0.0 0.2 0.4

Mean Difference

3) SMz Middle fixed vs SMz Middle free

```
> TOSTtwo(m1=0.2022, m2=0.3591,sd1=0.19,sd2=0.28,n1=15,n2=15,low_eqbound=-1.31,high_eqbound=1.31,var.equal=TRUE)
TOST_results:
t-value lower bound: 1.79
t-value upper bound: -5.38
                                                 p-value lower bound: 0.042
                                                 p-value upper bound: 0.000005
degrees of freedom : 28
Equivalence bounds (Cohen's d):
low eqbound: -1.31 high eqbound: 1.31
Equivalence bounds (raw scores): low eqbound: -0.3134 high eqbound: 0.3134
TOST confidence interval: lower bound 90% CI: -0.306 upper bound 90% CI: -0.008
NHST confidence interval:
lower bound 95% CI: -0.336
upper bound 95% CI: 0.022
Equivalence Test Result:
The equivalence test was significant, t(28) = 1.792, p = 0.042, given equivalence bounds of -0.313 and 0.313 (on a raw scale) and an alpha of 0.05.
Null Hypothesis Test Result:
The null hypothesis test was non-significant, t(28) = -1.796, p = 0.0833,
given an alpha of 0.05.
Based on the equivalence test and the null-hypothesis test combined, we can conclude that the observed effect is statistically not different from ze
```

ro and statistically equivalent to zero.

Equivalence bounds -0.313 and 0.313 Mean difference = -0.157 TOST: 90% CI [-0.306;-0.008] significant NHST: 95% CI [-0.336;0.022] non-significant -0.4 -0.2 0.0 0.2 0.4

Mean Difference

4) SMz Little fixed vs SMz Little free

```
> TOSTtwo(m1=0.7063, m2=0.6659, sd1=0.19, sd2=0.19, n1=15, n2=15, low_eqbound=-
1.31,high_eqbound=1.31,var.equal=TRUE)
TOST_results:
t-value lower bound: 4.17
t-value upper bound: -3.01
                                         p-value lower bound: 0.0001
p-value upper bound: 0.003
degrees of freedom: 28
Equivalence bounds (Cohen's d): low eqbound: -1.31 high eqbound: 1.31
Equivalence bounds (raw scores): low eqbound: -0.2489 high eqbound: 0.2489
TOST confidence interval:
lower bound 90% CI: -0.078 upper bound 90% CI: 0.158
NHST confidence interval:
Tower bound 95% CI: -0.102 upper bound 95% CI: 0.183
Equivalence Test Result:
The equivalence test was significant, t(28) = -3.005, p = 0.00277, given e quivalence bounds of -0.249 and 0.249 (on a raw scale) and an alpha of 0.0
Null Hypothesis Test Result:
The null hypothesis test was non-significant, t(28) = 0.582, p = 0.565, gi
ven an alpha of 0.05.
Based on the equivalence test and the null-hypothesis test combined, we ca
n conclude that the observed effect is statistically not different from ze
```

ro and statistically equivalent to zero.

Equivalence bounds -0.249 and 0.249 Mean difference = 0.04 TOST: 90% CI [-0.078;0.158] significant NHST: 95% CI [-0.102;0.183] non-significant -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 Mean Difference

5) Ring and little finger Normal force during free condition

```
> TOSTpaired(n=15,m1=2.6993, m2=2.8611,sd1=0.8475,sd2=0.7194,r12=-0.079,low_eqbound_dz=-0.93,high_eqbound_dz=0.93)
TOST results:
t-value lower bound: 3.06
t-value upper bound: -4.14
degrees of freedom: 14
                                           p-value lower bound: 0.004 p-value upper bound: 0.0005
Equivalence bounds (Cohen's dz):
low eqbound: -0.93 high eqbound: 0.93
Equivalence bounds (raw scores):
low eqbound: -1.0734 high eqbound: 1.0734
TOST confidence interval: lower bound 90% CI: -0.687 upper bound 90% CI: 0.363
NHST confidence interval:
Tower bound 95% CI: -0.801 upper bound 95% CI: 0.477
Equivalence Test Result:
The equivalence test was significant, t(14) = 3.059, p = 0.00425, given equivalence bounds of -1.073 and 1.073 (on a raw scale) and an alpha of 0.05
Null Hypothesis Test Result:
The null hypothesis test was non-significant, t(14) = -0.543, p = 0.596, g
iven an alpha of 0.05.
Based on the equivalence test and the null-hypothesis test combined, we ca
n conclude that the observed effect is statistically not different from ze
ro and statistically equivalent to zero.
```

Equivalence bounds -1.073 and 1.073 Mean difference = -0.162 TOST: 90% CI [-0.687;0.363] significant NHST: 95% CI [-0.801;0.477] non-significant -1.0 -0.5 0.0 0.5 1.0 Mean Difference

5)% of Ring and little finger Normal force shared during free condition

```
> TOSTpaired(n=15,m1=30.97, m2=33.35,sd1=8.25,sd2=7.20,r12=-0.66,low_eqbou
nd_dz=-0.93, high_eqbound_dz=0.93)
TOST results:
t-value lower bound: 2.95
t-value upper bound: -4.26
degrees of freedom: 14
                                          p-value lower bound: 0.005 p-value upper bound: 0.0004
Equivalence bounds (Cohen's dz): low eqbound: -0.93 high eqbound: 0.93
Equivalence bounds (raw scores):
low eqbound: -13.0965 high eqbound: 13.0965
TOST confidence interval:
lower bound 90% CI: -8.784 upper bound 90% CI: 4.024
NHST confidence interval:
lower bound 95% CI: -10.179
upper bound 95% CI: 5.419
Equivalence Test Result:
The equivalence test was significant, t(14) = 2.947, p = 0.0053, given equivalence bounds of -13.097 and 13.097 (on a raw scale) and an alpha of 0.0
Null Hypothesis Test Result:
The null hypothesis test was non-significant, t(14) = -0.655, p = 0.523, g
iven an alpha of 0.05.
Based on the equivalence test and the null-hypothesis test combined, we ca
n conclude that the observed effect is statistically not different from ze
ro and statistically equivalent to zero.
```


SUMMARY

COMPARISON	OBSERVED EFFECT SIZE	STANDARDISED EQUIVALENCE BOUNDS		NULL HYPOTHESIS TEST		TOST TEST		EQUIVALENT (YES/NO)
		LOWER LIMIT	UPPER LIMIT	t values	p values	t values	p values	
Tilt angle (fixed and free conditions)	d= 0.1402	-1.31	1.31	t(28) = 0.395	p = 0.696	t(28) = -3.192	p = 0.00174	Yes
Safety Margin of index (fixed and free conditions)	d= 0.3703	-1.31	1.31	t(28) = -1.031	p = 0.311	t(28) = 2.557	p = 0.00814	Yes
Safety Margin of Middle (fixed and free conditions)	d= 0.6408	-1.31	1.31	t(28) = -1.796	p = 0.0833	t(28) = 1.792	p = 0.042	Yes
Safety Margin of little (fixed and free conditions)	d= 0.2095	-1.31	1.31	t(28) = 0.582	p = 0.565	t(28) = - 3.005	p = 0.00277	Yes
R and L Normal force (free condition)	dz=0.1407	-0.93	0.93	t(14) = -0.543	p = 0.596	t(14) = 3.059	p = 0.00425	Yes
% of Normal force shared by R and L (free condition)	dz=0.1690	-0.93	0.93	t(14) = -0.655	p = 0.523	t(14) = 2.947	p = 0.0053	Yes

REFERENCES

Chow, S.-C., Wang, H., & Shao, J. (2007). Sample Size Calculations in Clinical Research, Second Edition - CRC Press Book. Pg 28

Lakens, D. (2017). Equivalence tests: a practical primer for t tests, correlations, and metaanalyses. *Social psychological and personality science*, 8(4), 355-362.