1.
$$H(s) = \frac{1}{s-x}$$
 $f[H(s)] = e^{xt}$

positive = stable

 $x = -3 = 1$ e^{-3t}
 $X = -3 = 1$ $e^$

3. May at
$$30 \text{ Hz}$$
?

$$y(t) = 3 + 2\sin(20t) + 8\cos(30t)$$

$$\frac{8}{2} = 4$$

$$\frac{1}{2} = 4$$

$$-30 - 20 \quad 20 \quad 30$$

Sampling Ex y(E)= 2 + 45in(20E) + 6 cos (30E) ts = 200 What is mag. at 220? 2 200 -170 170 100 200 220 230

Nyquist: 12 = 2-30 200 = (e0

Eq.	ter	Band Pass + Band Stop
		to get
		Muri

$$f[0(t-c)] = \frac{e^{-cs}}{s}$$

$$\frac{1}{S} = \frac{e^{-2s}}{S} = \frac{1-e^{-2s}}{S}$$

$$\frac{P_1C_5R_2+P_1}{P_1C_5R_2+P_1+P_2}$$

Dyquist Thm. ILS 32 Ilmax 2, max = 2.60 = 120 Alt. you have Fs of 180 Hz, what is the max or aliasing? 90 Hz $9. \Delta f = \frac{Fs}{NFFT} = \frac{200}{256} = 0.781$ 10. Filter Circuits -> through inductor -> tIPF through capacitor - LPF -> Resister -> Band pass -> Inductor + Capacitor - Band Stop

151.41 MB