

Kinematics

ME 2984

"We see in order to move; we move in order to see." - William Gibson

Project Proposals

- Project Proposals are due in 1 week
- 1 page to describe initial proposal for class project
- Start forming teams and putting together ideas
 - 1 proposal per team, every student must ensure a proposal includes them

Review Week

- Next week
 - Topic Review
 - Q&A
 - Project discussions
- Survey for gathering questions is out
 - Submit 3 5 questions
 - Most popular questions will be discussed

Office Hours

- Open window directly after class
 - 30 minutes
- By appointment only outside that
 - Confirmed appointments only
 - Limiting appointments to 15 minute slots day homework is due

Assignment 2 Review

What are Kinematics?

- The study of motion of bodies (kinetics)
- Without taking masses or forces into account (dynamics)
- Many robots tend to require consideration of both kinematics and dynamics

Areas of Kinematics

- Kinematic Analysis
 - Given a linkage, analyze its motion
- Kinematic Synthesis
 - Design a linkage to match a motion profile
- Forward Kinematics
 - How do joint motions translate to motion of whole robot
- Inverse Kinematics
 - How should individual joints move to effect a desired robot motion

Vector Notation

- •• **P** or $\vec{P} = [p_x, p_y]^T$
 - Column or Row

Unit Vectors

•
$$\hat{i} = (1,0,0)$$

•
$$\hat{j} = (0,1,0)$$

•
$$\hat{k} = (0,0,1)$$

$$\vec{P} = p_1 \hat{\imath} + p_2 \hat{\jmath}^+ p_3 \hat{k}$$

Source: Wikipedia

Vector Math

Magnitude

•
$$||a|| = \sqrt{a_1 + a_2 + a_3}$$

Addition and Subtraction

•
$$\vec{a} + \vec{b} = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k}$$

•
$$\vec{a} - \vec{b} = (a_1 - b_1)\hat{\imath} + (a_2 - b_2)\hat{\jmath} + (a_3 - b_3)\hat{k}$$

Vector Math

- Multiplication
 - $x\vec{a} = xa_1\hat{\imath} + xa_2\hat{\jmath} + xa_3\hat{k}$
 - Dot Product
 - $\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos\theta =$ $a_1 b_1 + a_2 b_2 + a_3 b_3$
 - Cross Product
 - $\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos\theta =$ Source: Wikipedia $(a_2b_3 a_3b_2)\hat{\imath} + (a_3b_1 a_1b_3)\hat{\jmath} + (a_1b_2 a_2b_1)\hat{k}$

Coordinate Frames

- Fixed Frame vs moving frame
 - $\overrightarrow{s_p} = s_1 \hat{\imath}$
 - $\hat{i} = I\cos\theta + J\sin\theta$
 - $\hat{P} = p_1 I + p_2 J + p_3 K$

Source: MIT

Coordinate Transforms

••
$$v_x' = v_x \cos\theta + v_y \sin\theta$$

•
$$v_y' = -v_x \cos\theta + v_y \sin\theta$$

Transformation Matrix

Source: Continuum Mechanics

Vehicle Kinematics

- Use encoders to measure wheel velocities
 - Calculate Distance/Tick * total count
 - Robot motion can be described in terms
 - of wheel velocities
 - "No Slip" condition

Source: Field Robotics

Wheeled Platforms

- Ackerman Steer
- Bicycle
- Differential Steer
- Holonomic Drive

Ackerman Model

- Standard car model
- Wheels turn different amounts to minimize slip
- Instantaneous
 Center of Rotation
- Kinematics are hard

Image Credit: Alonzo Kelly

Bicycle Model

- Simple Car Model
 - Similar given no roll
- Collapses down to two wheels
 - Can derive kinematics!

Image Credit: Jarrod Snider

$$tan(\delta) = \frac{L}{R}$$

$$\dot{x} = v * cos(\theta)$$

$$\dot{y} = v * sin(\theta)$$

$$\dot{\theta} = v * \frac{tan(\delta)}{L}$$

Differential Drive

- Two independent wheels
- Can turn in place
- Simplified model of K.H.A.N.

Holonomic Drive

- What is holonomic?
 - #ControllableDOF = #TotalDOF
 - Trains are holonomic!
- Maneuverable
- Harder to control

Video Credit: AndyMark

QUESTIONS?