TTIC 31250 An Introduction to the Theory of Machine Learning

Avrim Blum 04/13/20

Lecture 3: The Perceptron Algorithm

Algorithm for learning a "large margin" linear separator in \mathbb{R}^d .

Online setting:

- Examples arrive one at a time.
- Given x, predict label y.
- Told correct answer.

Goal: bound number of mistakes under assumption there exists w^* such that $w^* \cdot x \ge 1$ on positives and $w^* \cdot x \le -1$ on negatives.

Perceptron alg: makes at most $||w^*||^2 \max(||x||^2)$ mistakes.

Perceptron alg makes $\leq \|w^*\|^2 \max(\|x\|^2)$ mistakes if $\exists w^*$ with $w^* \cdot x \geq 1$ on all positives and $w^* \cdot x \leq -1$ on all negatives.

How to think about this:

- $\frac{w^* \cdot x}{\|w^*\|}$ is distance of x to hyperplane $w^* \cdot x = 0$.
- Our assumption is equivalent to assuming exists a separator of margin $\gamma = \frac{1}{\|w^*\|}$.
- If points all lie in a ball of radius R, then mistake bound is at most R^2/γ^2 .
- Notice this is scale-invariant.

Perceptron alg makes $\leq \|w^*\|^2 \max(\|x\|^2)$ mistakes if $\exists w^*$ with $w^* \cdot x \geq 1$ on all positives and $w^* \cdot x \leq -1$ on all negatives.

Algorithm:

- Initialize $w = \vec{0}$. Predict positive if $w \cdot x > 0$, else predict negative.
- Mistake on positive: $w \leftarrow w + x$.
- Mistake on negative: $w \leftarrow w x$.

Example: (0.01,1) - (1,1) +

(1,0) +

(0.01,1) -

(1,1) +

(1,0) +

(1,1)

(.99,0)

Algorithm:

Initialize $w = \vec{0}$. Use $w \cdot x > 0$.

- Mistake on pos: w ← w+x.
- Mistake on neg: w ← w-x.

<u>Analysis</u>

Perceptron alg makes at most $\|w^*\|^2 R^2$ mistakes if $\exists w^*$ with $w^* \cdot x \ge 1$ on all positives and $w^* \cdot x \le -1$ on all negatives, and all $\|x\| \le R$.

Proof: consider $w \cdot w^*$ and ||w||

Each mistake increases w · w* by at least 1.

$$(w + x) \cdot w^* = w \cdot w^* + x \cdot w^* \ge w \cdot w^* + 1.$$

So after M mistakes, $w \cdot w^* \ge M$.

• Each mistake increases www by at most R^2 .

$$(w + x) \cdot (w + x) = w \cdot w + 2(w \cdot x) + x \cdot x \le w \cdot w + R^2$$
.

So, after M mistakes, $||w||^2 \le MR^2$, so $||w|| \le \sqrt{M}R$.

Since
$$\frac{w \cdot w^*}{\|w^*\|} \le \|w\|$$
, get $\frac{M}{\|w^*\|} \le \sqrt{M}R$ so $\sqrt{M} \le \|w^*\|R$.

Lower bound

Perceptron alg makes at most $\|\mathbf{w}^*\|^2 R^2$ mistakes if $\exists \mathbf{w}^*$ with $\mathbf{w}^* \cdot \mathbf{x} \ge 1$ on all positives and $\mathbf{w}^* \cdot \mathbf{x} \le -1$ on all negatives, and all $\|\mathbf{x}\| \le R$.

In general it's not possible to get $< R^2/\gamma^2$ mistakes with a deterministic algorithm.

Proof: consider R^2/γ^2 coordinate vectors scaled to length R. $w^* = (\pm x_1 \pm x_2 \pm \cdots \pm x_{R^2/\gamma^2})/R$

 $|w^* \cdot x| = 1$ for all the input vectors, so can force all mistakes.

 $||w^*|| = \frac{\sqrt{R^2/\gamma^2}}{R} = \frac{1}{\gamma}$, so all margins are γ as desired.

What if no perfect separator?

In this case, a mistake could cause $|w \cdot w^*|$ to drop.

The hinge-loss of w* on positive x is $\max(0, 1 - w^* \cdot x)$: the amount by which the inequality $w^* \cdot x \ge 1$ is not satisfied.

The hinge-loss of w* on negative x is $\max(0, 1 + w^* \cdot x)$: the amount by which the inequality $w^* \cdot x \le -1$ is not satisfied.

What if no perfect separator?

In this case, a mistake could cause $|w \cdot w^*|$ to drop.

Theorem: on any sequence of examples S, the Perceptron algomakes at most $\min_{w^*} \left[\|w^*\|^2 R^2 + 2L_{hinge}(w^*, S) \right]$ mistakes.

 $L_{hinge}(w^*, S) = \text{total hinge}$ loss of w^* on set S.

Equivalently: how far you would have to move all the points to have them on the correct side by γ , in units of γ .

What if no perfect separator?

In this case, a mistake could cause $|w \cdot w^*|$ to drop.

Theorem: on any sequence of examples S, the Perceptron algomakes at most $\min_{w^*} \left[\|w^*\|^2 R^2 + 2L_{hinge}(w^*, S) \right]$ mistakes.

Proof sketch:

- After M mistakes, $w \cdot w^* \ge M L_{hinge}(w^*, S)$.
- Still have: after M mistakes, $||w||^2 \le MR^2$.
- Again use fact that $(w \cdot w^*)^2 \le ||w||^2 ||w^*||^2$.
- Solve: $(M L_{hinge})^2 \le MR^2 ||w^*||^2$. Do some algebra.

$$M^2 - 2ML_{hinge} + L_{hinge}^2 \le MR^2 ||w^*||^2$$

$$M \le R^2 ||w^*||^2 + 2L_{hinge} - L_{hinge}^2 / M.$$

Kernel functions

What if the decision boundary between positive and negatives (e.g., spam and non-spam email) looks more like a circle than a linear separator?

Idea: Kernel functions / "kernel trick":

A pairwise function K(x,x') is a kernel if there exists a function ϕ from input space to a new space (of possibly much higher dimension) such that $K(x,x') = \phi(x) \cdot \phi(x')$.

- Example: $K(x, x') = (1 + x \cdot x')^2$.
- Verify this is a kernel for special case that examples in \mathbb{R}^2 :
- $K(x,x') = (1 + x_1x_1' + x_2x_2')^2 = 1 + 2x_1x_1' + 2x_2x_2' + x_1^2x_1'^2 + 2x_1x_2x_1'x_2' + x_2^2x_2'^2 = \phi(x) \cdot \phi(x')$ for $\phi(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1, x_2, x_2^2)$.

Kernel functions

What if the decision boundary between positive and negatives (e.g., spam and non-spam email) looks more like a circle than a linear separator?

Idea: Kernel functions / "kernel trick":

If can modify Perceptron so that only interacts with data via taking dot-products, and then replace $x \cdot x'$ with K(x,x'), then algorithm will act as if data was in higher-dimensional ϕ -space.

- Called "kernelizing" the algorithm.
- E.g., for $\phi(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2)$, the weight vector $w^* = (-100, 0, 0, 1, 0, 1)$ gives a circle of radius 10 as decision boundary $w^* \cdot \phi(x) = 0$.

Kernel functions

What if the decision boundary between positive and negatives (e.g., spam and non-spam email) looks more like a circle than a linear separator?

Idea: Kernel functions / "kernel trick":

If can modify Perceptron so that only interacts with data via taking dot-products, and then replace $x \cdot x'$ with K(x,x'), then algorithm will act as if data was in higher-dimensional ϕ -space.

- How to kernelize Perceptron?
- Easy: weight vector always a sum of previous examples (or their negations), e.g., $w = x^{(1)} + x^{(3)} x^{(6)}$. So, to predict on new x, just compute $w \cdot x = x^{(1)} \cdot x + x^{(3)} \cdot x x^{(6)} \cdot x$. Now replace dot-product with kernel.