Хормонална регулация на устойчивостта към нискотемпературен стрес на популации *Arabis alpina* от френските Алпи и Рила планина

Марко Илиев КОЛАКСЪЗОВ

Редовен докторант в Катедра "Физиология на растенията", Биологически факултет, Софийски Университет "Св. Климент Охридски",

Научен ръководител: проф. д-р Евгени АНАНИЕВ

НИСКОТЕМПЕРАТУРЕН СТРЕС ПРИ РАСТЕНИЯТА

- Стрес външен фактор, оказващ неблагоприятно въздействие
- Видове стрес
 - Биотичен патогени (вироиди, вируси, гъби, плесени), растителноядни организми (herbivores), паразитни, конкурентни растения (засенчващи, плевелни)
 - Абиотичен високи, ниски температури, обезводняване, висока концентрация на соли, хипоксия (преовлажняване на корените и недостиг на кислород)
- Видове нискотемпературен стрес
 - Chilling stress преохлаждане (при ниски температури над нулата, (+) 5°C)
 - Freezing stress измръзване (при температури под нулата, (–) 7-8°C)

ОБЕКТ НА ИЗСЛЕДВАНЕ — ARABIS ALPINA L., МОДЕЛНО РАСТЕНИЕ ЗА ИЗСЛЕДВАНЕ НА ТОЛЕРАНТНОСТТА КЪМ НИСКИ ТЕМПЕРАТУРИ

- Многогодишно розетъчно растение от сем. Brassicaceae
- Разпространение от 500 m до 3200 m надморска височина (в зависимост от географската ширина)
- Среща се в повечето европейски страни, на Канарските острови, северна и източна Африка, Етиопия, Арабския полуостров и централна Азия
- Геномния размер е около 375 Mb (n = 8 хромозоми)
- Самооплождащ се диплоид

Arabis alpina от Алпите, Vercors и Рила планина

ЦЕЛ И ЗАДАЧИ

Основната цел на настоящата дисертационна работа е да се изследват механизмите на регулацията на устойчивостта на *Arabis alpina* към нискотемпературен стрес.

Конкретни експериментални задачи:

- 1. Подбор на популации на A. alpina от френските Алпи и от Рила планина, които са толерантни към минусови температури (-7°C).
- 2. Сравнителен анализ на толерантни и нетолерантни популации A. alpina към минусови температури, както се следва:
- измерване на изтичането на електролити (electrolyte leakage) от растителните клетки като мярка за интегритета на клетките след нискотемпературния стрес
- Определяне на нетната фотосинтетична активност посредством апарат LCpro+ (CO $_2$ поглъщане)
- Определяне съдържанието на фотосинтетични пигменти (хлорофил "a" и "b" и каротеноиди) посредством HPLC анализ.
 - Изследване съдържанието на токофероли като неензимни антиоксиданти

ЦЕЛ И ЗАДАЧИ (продължение)

- 3. Определяне на функционалното състояние на ФСІІ и ФСІ посредством методите на бързата хлорофилна флуоресценция (prompt fluorescence) и съответно разсейването на модулираната 820 nm светлина
- 4. Определяне ендогенното съдържанието на фитохормони (абсцизиева киселина АБК, цитокинини СК, жасмонова киселина) посредством HPLC-GS анализ
- 5. Изследване скоростта на транскрипция (qRT-PCR анализ) на гени от метаболизма (ABA1; NCED3,5; AAO3; CYP707A1) и сигналната трансдукция на AБК (ABCG40) и съответно на цитокинините (IPT1,2,3; CKX1,2,5,7) (ARR1,5,7).
- 6. Транскрипционен (qRT-PCR анализ) на фотосинтетични гени както следва:
- гени за белтъци на ФСІІ (psbA; psbH; *PSBO2*; *OE23*; *PSBS*)
- гени за белтъци на ФСІ (psaB; PSAD2; PSAG; PSAH1; PSAN; LHCAIII)
- други фотосинтетични гени (petA; *PETC*; rbcL; *RBCS*)

ЕКСПЕРИМЕНТАЛНА СХЕМА

- Отглеждане на растения от семена на *A. alpina* (Т толерантни, NT нетолерантни и от Рила планина) при 22°C
- Аклимация при 4°C (chilling stress) за 4 дни
- Нискотемпературен стрес (freezing stress) при -7°С (12ч, на тъмно).

Планински масив	местообитание	Надм. вис. (m)	местност	изложение
Vercors	F005-16; -18; -25	1842 m	Côte2000II (Villard de Lans)	север
Ecrins	GAL-19; -P; -T	2600 m	Galibier	юго-запад
Рила	RILA	2300 m	"Седемте езера"	изток

Ефект на ниските температури върху *A. alpina* от различни популации

Controll (22°C)

Chilling stress (4°C, 4 days)

Freezing stress (-7°C, 12h in darkness)

Recovery (4°C, 4 days)

Ефект на ниските температури върху различни популации на *A. alpina*

	22°C	4°C	-7°C	Recovery 4°C	Recovery 22°C
GAL-19 (frost tolerant)					
F005-25 (non-tolerant to frost)					
RILA 2013					

ИЗТИЧАНЕ НА ЕЛЕКТРОЛИТИ ОТ КЛЕТКАТА (ELECTROLYTE LEAKAGE)

СЪДЪРЖАНИЕ НА ХЛОРОФИЛНИ ПИГМЕНТИ

СЪДЪРЖАНИЕ НА КАРОТЕНОИДНИ ПИГМЕНТИ

СЪДЪРЖАНИЕ НА ТОКОФЕРОЛ

НЕТНА ФОТОСИНТЕТИЧНА АКТИВНОСТ

БЪРЗА ХЛОРОФИЛНА ФЛУОРЕСЦЕНЦИЯ (PROMPT FLUORESCENCE) НА T И NT ПОПУЛАЦИИ A. alpina

БЪРЗА ХЛОРОФИЛНА ФЛУОРЕСЦЕНЦИЯ НА A. alpina ОТ РИЛА ПЛАНИНА

ПАРАМЕТРИ НА БЪРЗАТА ХЛОРОФИЛНА ФЛУОРЕСЦЕНЦИЯ

РАЗСЕЙВАНЕ НА МОДУЛИРАНА 820 nm СВЕТЛИНА ПРИ ТИ NT ПОПУЛАЦИИ A. ALPINA КАТО МЯРКА ЗА АНАЛИЗ НА ФСІ

РАЗСЕЙВАНЕ НА МОДУЛИРАНА 820 nm СВЕТЛИНА *A. ALPINA* OT РИЛА ПЛАНИНА

qRT-PCR АНАЛИЗ НА ГЕНИ ЗА БЕЛТЪЦИ ОТ ФСІІ И ФСІ

qRT-PCR АНАЛИЗ НА ДРУГИ ГЕНИ

petA – cytochrome f PETC – cytochrome b6f, Rieske FeS protein *PTAC16* – chloroplast transcription factor rbcL – RUBISCO large subunit RBCS - RUBISCO small subunit γ -TMT – tocopherol methyl transferase PAP – phospholipid associated protein 18SRNA – 18S rRNA (reference

gene)

HPLC/GS АНАЛИЗ НА АБК И РАЗГРАДНИ МЕТАБОЛИТИ НА АБК

qRT-PCR АНАЛИЗ НА ГЕНИ ОТ МЕТАБОЛИЗМА И ТРАНСПОРТА НА АБК

СЪДЪРЖАНИЕ НА БИОЛОГИЧНО АКТИВНИ ЦИТОКИНИНИ

СЪДЪРЖАНИЕ НА РАЗЛИЧНИ ФОРМИ НА CIS-ZEATINS

qRT-PCR АНАЛИЗ НА ГЕНИ ОТ МЕТАБОЛИЗМА И СИГНАЛНАТА ТРАНСДУКЦИЯ НА ЦИТОКИНИНИТЕ

IPT – генна фамилия

IPT1; IPT3 – гени за синтеза на биологично активни цитокинини IPT2 – ген за синтеза на *cis*-зеатин от тРНК

СКХ – генна фамилия

CKX1 – bioactive+cZ (vacuole)

CKX2 – bioactive (apoplast and RER)

CKX5 – bioactive, less cZ (apoplast)

CKX7 – cZ, less iP (cytosol)

ОБЩА ПРЕДПОЛАГАЕМА СХЕМА НА ТОЛЕРАНТНОСТТА КЪМ НИСКИ ТЕМПЕРАТУРИ ПРИ А.

ПРИНОСИ

- 1. След период на аклимация при ниски положителни температури (4°C) е установена толерантна спрямо минусов стрес (-7°C) популация на *Arabis alpina* L. с местобитание Рила планина, район "Седемте рилски езера". Тази популация е сходна с известна вече толерантна популация Т на *A. alpina* от френските Алпи. Двете толерантни популации се различават от популацията NT на *A. alpina* от планината Vercors (Франция), която е нетолерантна към минусовия стрес.
- 2. За първи път е показано, че за разлика от нетолерантната популация NT, толератните към измръзване (freezing stress) популации Т на *A. alpina* от френските Алпи и от Рила планина могат да възстановят интензивността на нетната фотосинтеза след третиране при -7°C отново чрез преминаване през период на аклимация при 4°C.
- 3. Сравнителният анализ между популациите Т и NT на A. alpina показа, че за разлика от NT, където и двата типа нискотемпературен стрес при 4° С и -7° С водят до силно намаление главно на хлорофил a и основните каротеноидни пигменти лутеин и β -каротен, при толерантната популация Т съдържанието им остава относително постоянно. На фона на еднаквите промени в пигментите от ксантофиловия цикъл (увеличение на зеаксантина за сметка на виолаксантина) и при двете популации, запазеното съдържание на лутеин и β -каротен при популацията Т може да е свързано с обезпечаване на нейната толерантност към минусовия стрес. Също така резултатите показаха, че ксантофиловият цикъл при A. alpina може да се активира след стрес даже в отсъствие на светлина.

- 4. Комплексният сравнителен анализ чрез методите на хлорофилната флуоресценция и транскрипционния (qRT-PCR) анализ на гени за белтъци от ФСІ и ФСІІ показа по-висока чувствителност на ФСІ към двата типа нискотемпературен стрес. Параметрите на хлорофилната флуоресценция и транскрипцията на гените от ФСІІ (psbA, psbH и HCF136) са относително толерантни към третиране с ниски температури само при популацията Т, а генът за белтъка PSBS даже се стимулира след третиране с нискотемпературен стрес.
- 5. За първи път в две различни по своята толерантност към минусови температури (-7°С) популации на *A. alpina* е проведен комплексен анализ включващ определяне съдържанието на АБК и всички типове цитокинини, както и транскрипцията на основни гени на техния метаболизъм и сигнална трансдукция. Установено е запазване нивата на основния биологично активен цитокинин iPR заедно със *cis*-ZR само в популацията Т, докато АБК и нейните окислени форми РА и DPA бяха запазени и в двете популации Т и NT. Промените в съдържанието на АБК и цитокинините корелираше със скоростта на транскрипция на гени от тяхната биосинтеза, разграждане и транспорт (ABA1, NCED3, NCED5, AAO3, CYP707A1 и ABCG40, съответно за АБК) и IPT1, IPT3, IPT2, CKX1 и CKX2 за СК.
- 6. Анализът на основни параметри на фотосинтезата, заедно със съдържанието на ключови хормони и експресията на гени от техния метаболизъм, ни дава основание да предположим, че толерантността към нискотемпературен стрес (-7°C) на популацията Т на *А. alpina* от френските Алпи може да се дължи на комплекс от фактори включващи запазване на високо съдържание на биологично активни и *cis*-форми на цитокинините като основни регулатори на процеса фотосинтеза; повисока метаболитна и сигнална активност на АБК; запазване на високо съдържание на фотосинтетичните пигменти (включително тези от ксантофиловия цикъл), активността на ФСІ и поглъщането на СО₂, които водят и до по-добро справяне с активните кислородни форми, образувани в процеса фотосинтеза и по-висока фотосинтетична активност.

СПИСЪК НА ПУБЛИКАЦИИТЕ НА РЕДОВЕН ДОКТОРАНТ МАРКО КОЛАКСЪЗОВ

СПИСЪК НА ПУБЛИКАЦИИТЕ

- **M. Kolaksazov**, F. Laporte, K. Ananieva, P. Dobrev, M. Herzog, E. D. Ananiev, 2013. Effect of Chilling and Freezing Stresses on Jasmonate Content in *Arabis alpina*. *Bulg. J. Agr. Sci.*, 19(2): 15–17
- **Example 2.** Kolaksazov M., F. Laporte, V. Goltsev, M. Herzog, E. D. Ananiev. 2014. Effect of frost stress on chlorophyll fluorescence and modulated 820 nm reflection in *Arabis alpina* population from Rila mountain. *Genetics Plant Physiol.*, 4(1-2): 44-56
- 3. E. D. Ananiev., <u>M. Kolaksazov</u>, F Laporte, M Kunz, M Herzog, Effect of cold stress on photosynthesis in plants from two populations of *Arabis alpina*. (submitted)
- 4. Dolya Pavlova, Frédéric Laporte, <u>Marko Kolaksazov</u>, Evguéni D. Ananiev, Michel Herzog, 2014. Pollen morphological studies on *Arabis alpina* L. (Brassicaceae) populations from the Alps and Rila mounatin.

СПИСЪК НА ПУБЛИКАЦИИТЕ ПО ДИСЕРТАЦИОННИЯ ТРУД:

- **1.** <u>M. Kolaksazov</u>, F. Laporte, K. Ananieva, P. Dobrev, M. Herzog, E. D. Ananiev, 2013. Effect of Chilling and Freezing Stresses on Jasmonate Content in *Arabis alpina*. *Bulg. J. Agr. Sci.*, 19(2): 15–17
- **Example 2.** Kolaksazov M., F. Laporte, V. Goltsev, M. Herzog, E. Ananiev. 2014. Effect of frost stress on chlorophyll fluorescence and modulated 820 nm reflection in *Arabis alpina* population from Rila mountain. *Genetics Plant Physiol.*, 4(1-2): 44-56
- 3. E. D. Ananiev., M. Kolaksazov, F Laporte, M Kunz, M Herzog, Effect of cold stress on photosynthesis in plants from two populations of *Arabis alpina*. (submitted)

УЧАСТИЯ В МЕЖДУНАРОДНИ КОНФЕРЕНЦИИ И СИМПОЗИУМИ:

- **1.** Marko Kolaksazov, Frédéric Laporte, Kalina Ananieva, Petre Dobrev, Michel Herzog, Evguéni Ananiev. Effect of chilling and freezing stresses on jasmonate content in *Arabis alpina*. Youth Scientific Conference "Kliment days" 22-23 November 2012, Sofia, Bulgaria.
- **Marko Kolaksazov**, Kiril Mishev, Frédéric Laporte, Michel Herzog, Evguéni D Ananiev. Comparative study of frost-tolerant *Arabis alpina* populations from the region of "The Seven Rila Lakes" and the French Alps. International conference "Kliment's days", 20-22 November 2013, Sofia, Bulgaria (Book of Abstracts MB3, p.35)
- 3. Ananiev E. D., Laporte F., Ananieva K., **Kolaksazov M.**, Dobrev P., Motyka V., Herzog M., 2014. Hormonal regulation of frost tolerance in populations of *Arabis alpina* L. from French Alpis and Rila mountain. "Plant Physiology and Genetics Achievements and Challenges", 24-26 September 2014, Sofia, Bulgaria (Book of Abstracts, O-08, p.18)
- 4. Pavlova D., Laporte F., **Kolaksazov M.**, Ananiev E. D., Herzog M., 2014. Pollen morphological studies on *Arabis alpina* L. (Brassicaceae) populations from the Alps and Rila mounatin. "Plant Physiology and Genetics Achievements and Challenges", 24-26 September 2014, Sofia, Bulgaria (Book of Abstracts, P-31-T1, p.42)

УЧАСТИЯ В НАУЧНО-ИЗСЛЕДОВАТЕЛСКИ ПРОЕКТИ:

- 1. Френско-Български проект за двустранно сътрудничество РИЛА 01/7, 21.06.2013 към Фонд "Научни Изследвания" при МОН. Тема на проекта: "Хормонална регулация на толерантността към нискотемпературен стрес при Arabis alpina. Сравнителен анализ на популациите от Алпите и Рила планина." (проектът продължава)
- 2. Изследователски проект в подкрепа на докторанти № 20 / 28.04.2014 от СУ "Св. Кл. Охридски" на тема: "**Устойчивост към нискотемпературен стрес на популации** *Arabis alpina* **от френските Алпи и Рила планина** " (отчетен)

БЛАГОДАРНОСТИ

- 1. На целия колектив на Катедра "Физиология на растенията" за колегиалното отношение и моралната подкрепа.
- 2. На проф. Мишел Херцог и Фредерик Лапорт от LECA (Laboratoire d'Ecologie Alpine) при Ун-т "Joseph Fourier", Гренобъл, Франция за приема и предоставената възможност за съвместната работа по транскрипционния анализ на гени (qRT-PCR анализ).
- 3. На д-р Вацлав Мотика, д-р Петре Добрев за HPLC/GS анализа на ендогенното съдържание на фитохормони на *A. alpina* в Института по Експериментална ботаника, Прага, Чешка Република.
- 4. На проф. В. Голцев и неговия екип от Катедра "Биофизика" при БФ на СУ за предоставената възможност за работа с апарата М-РЕА.

БЛАГОДАРЯ ЗА ВНИМАНИЕТО!

