Weak Focusing versus "Strong" Focusing

eak rocusing versus Sirong	rocusing	
	Weak foc.	Strong foc.
Kinetic energy [MeV]	232.79	
Number of periods	14	14
Circumference [m]	263	300
Focusing parameter in bends, m	0.199	0
Tunes, Q _× /Q _y	1.229 / 0.456	2.32 / 0.31
Maximum beta-function, β _x /β _y [m]	34 / 91.7	29.1 / 204
Dispersion	45.5	17.35
Maximum momentum deviation: ∆p/p _{max}	±3.3·10 ⁻⁴	±8.6·10 ⁻⁴ •
Rms momentum spread	1.1.10-4 *	2.9·10 ⁻⁴ *
Hor. norm. acceptance [mm mrad]	5 *	5.8 *
Hor. /vert. norm. emittance [mm mrad]	0.56*/1.52	0.31*/2.2*
Revolution frequency [kHz]	682.1	597.3
Momentum compaction, α	1.785	0.51
Slip-factor: $\eta = \alpha - 1/\gamma^2$	1144	-0.132
Transition energy ($\gamma_{tr} = 1/\sqrt{\alpha}$), [MeV]	/NXA *	376

Operation above transition because $\alpha>1$