Boolean Relation Determinization

Outline

- Introduction
- Problem Formulation
- Preliminaries
- Proposed Method
- Conclusion

Introduction

- Boolean relations are more powerful at representing flexibility than functions.
- $Ex:R = \neg x_1 \neg x_2 \neg y_1 \neg y_2 + \neg x_1 \neg x_2 y_1 y_2 + x_1 \neg x_2 \neg y_1 \neg y_2 + x_2 y_1 y_2$

- Boolean relations are a generalization of incompletely specified functions.
- Ex: when it is a single output mapping: $F = x_2$

Introduction (cont'd)

- Determinize by introducing parametric parameters
- Range-preserving

- Determinize by choosing one-to-one mapping among one-to-many mappings.
- Deterministically reducing

Problem Formulation

- Given a multi-output relation R, where non-determinism exists, what is the minimum number of variables needed to be additionally introduced to determinize R?
- It is NP-Complete

Preliminaries

- **Lemma1**. Given a set of cubes $C_n = \{c_1, c_2, ..., c_n\}$ if the pairwise intersection of any two cubes, $c_i \cap c_j$, where $i \neq j$ and $i, j \leq n$, is not empty, then $c_1 \cap c_2 \cap \cdots \cap c_n$ is not empty.
- Lemma2. Maximal Clique is NP-Complete.
- Theorem1. The determinization of a boolean relation is NP-Complete
- Theorem2. Max-SAT is an NP-Complete problem: Given a CNF formula F and an integer k, is there a truth assignment that can satisfy at least k clauses in F?

Proposed Method

- Conversion to Undirected Graph
- Conversion to Max-SAT Problem
- Unate Recursive with Branch and Bound

Conversion to Undirected Graph

- A relation R can be converted into a graph G
 - a. Expand the output part until no don't care bits
 - b. Construct a vertex for each row
 - c. An edge is inserted if two rows conflict
 - d. Find maximum-clique Q by Bron-Kerbosch algorithm
 - e. The minimum number of variables should be $log_2(|Q|)$

	x_1	x_2	y_1	y_2		x_1	x_2		y_2
r_1	-	-	0	1	r'_1	-	-	0	1
r_2				-	r_2'	-	1	1	0
					r_3'	-	1	1	1
r_3	0	-	-	1	r'_4	0	-	0	1
					r_5'	0	- 1 1 -	1	1

Conversion to Max-SAT

- A relation R can be converted into a CNF formula
 - a. Allocate one literal ℓ for each row, and finally one dummy literal z
 - b. Construct two clauses for each row $i \leq n$

a.
$$(\ell_i \vee z)(\ell_i \vee \neg z)$$

c. Iterate through each row $j \le n, i \ne j$, construct one clause if no conflict

a.
$$(\neg \ell_i \lor \neg \ell_j)$$

d. The entire CNF formula should be

$$F = \prod_{\substack{1 \le i \le n \\ i < u, v \le n}} (\ell_i \lor z)(\ell_i \lor \neg z) \ (\neg \ell_i \lor \neg \ell_u)...(\neg \ell_i \lor \neg \ell_v),$$

- e. Feed into any MAX-SAT solver, e.g. QMaxSAT
- f. |Q| =The number of literals assigned to 1 (excepting z)
- g. The minimum number of literals = $log_2|Q|$

$$F = (\ell_1 \lor z)(\ell_1 \lor \neg z)(\neg \ell_1 \lor \neg \ell_4)$$
$$(\ell_2 \lor z)(\ell_2 \lor \neg z)$$
$$(\ell_3 \lor z)(\ell_3 \lor \neg z)(\neg \ell_3 \lor \neg \ell_5)$$
$$(\ell_4 \lor z)(\ell_4 \lor \neg z)$$
$$(\ell_5 \lor z)(\ell_5 \lor \neg z),$$

$$(\ell_1, \ell_2, \ell_3, \ell_4, \ell_5, z) = (0, 1, 1, 1, 0, 0)$$

- Idea: Prevent exponential time output expansion.
- Max-Output Clique:
 - Construct graph **G** without expanding the output part
 - Find the clique in which has the maximum number of output minterm

_	x_1	x_2	y_1	y_2	01
r_1	-	-	0	1	
r_2	-	1	1	-	→ /
r_3	0	-	-	1	r ₂

- Lemma. Given a set of cubes $C_n = \{c_1, c_2, ..., c_n\}$ if the pairwise intersection of any two cubes, $c_i \cap c_j$, where $i \neq j$ and $i, j \leq n$, is not empty, then $c_1 \cap c_2 \cap \cdots \cap c_n$ is not empty.
- Theorem. Given a set of cubes $C_n = \{c_1, c_2, ..., c_n\}$, C_n is unate iff $c_1 \cap c_2 \cap \cdots \cap c_n$ is not empty.
- Theorem. Every unate leaf of input part is a clique in the graph

- If we only split the variable that is not unate, each unate leaf will be a maximal clique in the graph
 - In each unate leaf, compute the number of output minterm
 - Find the maximum number of output minterm among all unate leaves

- Use branch and bound to skip some branches
 - Bound the branch by currently largest number
 - \circ Each branch must less than the summation of the number of minterms in each row, which has time complexity only O(n)

- Example
 - This example is already unate in input
- Find the number of literals needed
 - Make the output cubes orthogonal to count the number of output minterms
 - Compute the summation of number of minterms in each cube

Experimental Result

Unate splitting method outperformed all other methods

	benc	hmark		Graph	MaxSAT	Unate	
Name	NX	NY	NM	NV	Time	Time	Time
c17_po1	2	2	3	2	1.40E-4	7.15E-3	2.63E-5
c432_po0	12	6	64	6	7.95E-2	_	1.59E-4
c432_po1	12	7	511	9	_	_	9.43E+0
3540n728	18	9	240	8	1.40E+2	_	4.30E+0
499n177	9	5	16	4	2.34E+0		3.16E-2
880n316	9	5	92	7	1.11E-1	_	1.38E-2
880n359	21	11	2048	12	_	-	3.61E+0

TABLE III: The number of x variables(NX), the number of y variables(NY), max number of y minterns to the same x (NM), the number of required number of additional variables(NV) and the comparisons of CPU times(secs), the notation – means that the tool crashes or could not finish in 1000 secs.