

UNIVERSITE DE PARAKOU

École Nationale de Statistique, de Planification et de Démographie

Filière : Statistique appliquée ANNÉE D'ÉTUDE : Master 1

Éléments d'algèbre et d'analyse pour statisticien

Parakou, le 10 décembre 2024

Année Académique : 2024-2025

Enseignante : Dr. Marie Reine A. KAKPO BAGAN

 ${\bf Email: kakpo 73@} \textit{gmail.com}$

Table des matières

1	Esp	ace vec	ctoriel 4
	1.1	$\mathbb{K} \operatorname{esp}$	ace vectoriel
	1.2		naison linéaire de vecteurs d'un \mathbb{K} espace vectoriel 5
	1.3		es libres-Familles liées d'un \mathbb{K} espace vectoriel
	1.4		ninant de vecteurs d'un \mathbb{K} espace vectoriel 6
	1.5	Systèn	ne générateur
	1.6	Base d	'un \mathbb{K} espace vectoriel
	1.7		space vectoriel
		1.7.1	Sous espace engendré par une famille de vecteurs
		1.7.2	Somme de sous espace vectoriels
		1.7.3	Dimension d'un sous espace vectoriel
2	Calc	cul ma	triciel 11
_	2.1		ion et propriétés
	2.2		ogies des matrices
		2.2.1	Matrice colonne
		2.2.2	Matrice ligne
		2.2.3	Matrice nulle
		2.2.4	Matrice carrée d'ordre n
		2.2.5	Matrice unité et matrice Scalaire
		2.2.6	Matrice diagonale
		2.2.7	Matrice triangulaire
	2.3	Opérat	tion sur les matrices
		2.3.1	Somme de deux matrices
		2.3.2	Produit d'une matrice par un Scalaire
		2.3.3	Produit d'une matrice par un scalaire
		2.3.4	Produit de deux matrices
		2.3.5	Égalité entre deux matrices
		2.3.6	Transposition d'une matrice
		0.0	

	2.4	Calcul du déterminant
		2.4.1 Matrice Carré d'ordre 2
		2.4.2 Matrice Carré d'ordre supérieur ou égale à 2
	2.5	Inverse d'une matrice
		2.5.1 Définitions et propriétés
		2.5.2 Détermination de l'inverse d'une matrice
	2.6	Rang d'une matrice
	2.7	Diagonalisation d'une matrice
		2.7.1 Polynômes caractéristique d'une matrice
		2.7.2 Valeur propre, vecteur propre d'une matrice
		2.7.3 Sous espace vectoriel associé à une valeur propre
		2.7.4 Obtention d'une matrice diagonale
	2.8	Triangularisation d'une matrice
3	Sys	tème d'équations linéaires 22
	3.1	Généralité
		3.1.1 Forme générale de système d'équations linéaires
		3.1.2 Écriture matricielle de systèmes d'équations linéaires
	3.2	Résolution de systèmes d'équations linéaires
		3.2.1 Méthode de Pivot de Gausse
		3.2.2 Méthode Matricielle
		3.2.3 Méthode du déterminant ou de Cramer
4		olication linéaire 26
	4.1	Définition et propriétés
	4.2	Composition d'applications linéaires
	4.3	Matrice associé à une application linéaire
	4.4	Image et noyau d'une application linéaire
	4.5	Rang d'une application linéaire
	4.6	Exercice
5		ctions numériques de plusieurs variables 30
	5.1	Fonctions de plusieurs variables
		5.1.1 Définition et exemples
		5.1.2 Graphe
		5.1.3 Norme et distance sur un espace vectoriel
		5.1.4 Ouvert et fermé
	5.2	Limites et Continuité
		5.2.1 Limites des suites de R^n
		5.2.2 Limites d'une fonction de plusieurs variables
		5.2.3 Continuité
	5.3	Dérivés Partielles et Différentielle
		5.3.1 Dérivabilité des fonctions de \mathbb{R}^n dans \mathbb{R}^p

		5.3.2	Dérivés Partielles
		5.3.3	Application différentiable
		5.3.4	Vecteur gradient
		5.3.5	Matrice jacobienne
	5.4	Foncti	on de classe C^1
		5.4.1	Inégalité des accroissements finis
		5.4.2	Application lipschitzienne
		5.4.3	Théorème d'inversion local et de des fonctions implicites 40
	5.5	Dérivé	s d'ordres supérieurs et application à l'étude d'extrema 4
		5.5.1	Dérivées partielles successives
		5.5.2	Matrice Hessienne
		5.5.3	Application aux extremums locales
6	Inté	grable	s Multiples 4 ²
	6.1	Intégra	ale à paramètres
		6.1.1	Théorème de convergence dominé
		6.1.2	Cas d'un intégrale sur un segment
		6.1.3	Cas d'une intégrale généralisé
	6.2	Intégr	rale d'une fonction continue sur un domaine simple
		6.2.1	Intégration sur un domaine de \mathbb{R}^2
		6.2.2	Intégration en dimensions supérieures
	6.3	Exerci	0 1 00

Chapitre 1

Espace vectoriel

1.1 \mathbb{K} espace vectoriel

Définition 1.1 Soit E un ensemble non vide. On dit que E est un $\mathbb{K}(\mathbb{K} = \mathbb{R} \text{ ou } \mathbb{K} = \mathbb{C})$ espace vectoriel si E est muni d'une loi de composition interne

vérifiant :

1.
$$\forall (x,y) \in E \times E, x \blacklozenge y = y \blacklozenge x \ (Commutativité)$$

2.
$$\forall (x,y,z) \in E \times E \times E, \ x \blacklozenge (y \blacklozenge z) = (x \blacklozenge y) \blacklozenge z \ (associativit\'e)$$

3.
$$\forall x \in E, x \blacklozenge e = e \blacklozenge x (\blacklozenge admet un élément neutre e dans E)$$

4.
$$\forall x \in E \text{ il existe } x' \in E \text{ tel que } x \blacklozenge x' = x' \blacklozenge x = e \text{ (u' est appelé symétrique de u)}$$
 et une loi de composition externe

$$*: \mathbb{K} \times E \longrightarrow E$$

 $(\alpha, x) \longmapsto \alpha * x$

vérifiant :

5.
$$\forall (\alpha, \beta) \in \mathbb{K} \times \mathbb{K}, \ \alpha * (\beta * x) = (\alpha * \beta)x \ (associativité)$$

6.
$$\forall (\alpha, x, y) \in \mathbb{K} \times E \times E, \ \alpha * (x \blacklozenge y) = \alpha * x \blacklozenge \alpha * y \ (distributivit\'e de * par rapport \grave{a} \ \blacklozenge)$$

7.
$$\forall (\alpha, \beta, x) \in \mathbb{K} \times \mathbb{K} \times E$$
, $(\alpha \blacklozenge \beta) * x = \alpha * x \blacklozenge \beta * y$ (distributivité de * par rapport à \blacklozenge)

8.
$$\forall x \in E, 1_{\mathbb{K}} * x = x \ (\text{ \'el\'ement neutre })$$

Les éléments de E sont appelés des vecteurs et les éléments de \mathbb{K} sont appelés des scalaires.

Exemple 1.1 1. $\mathbb{R}^2 = \{(x,y), x \in \mathbb{R}, y \in \mathbb{R}\}$ muni de l'addition et de la multiplication est un \mathbb{R} espace vectoriel.

- 2. $\mathbb{R}^3 = \{(x, y, z), x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}\}$ muni de l'addition et de la multiplication est un \mathbb{R} espace vectoriel.
- 3. $\mathbb{R}^n = \{(x_1, x_2, x_3, ..., x_n), x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, x_3 \in \mathbb{R}..., x_n \in \mathbb{R}\}$ muni de l'addition et de la multiplication est un \mathbb{R} espace vectoriel.

1.2 Combinaison linéaire de vecteurs d'un \mathbb{K} espace vectoriel

Définition 1.2 Soient $u_1, u_2, u_3, ..., u_n$ des vecteurs d'un \mathbb{K} espace vectoriel E et $\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n$ des scalaires. On appelle combinaison linéaire des vecteurs $u_1, u_2, u_3, ..., u_n$, le vecteur $\alpha_1 * u_1 + \alpha_2 * u_2 + \alpha_3 * u_3, ... + \alpha_n * u_n$.

Exemple 1.2 le vecteurs w=(21,13) est une combinaison linéaire des vecteurs (1,6) et (6,1).

Exemple 1.3 Soit $u = (3, \sqrt{5}, -8, 0)$ et $v = (1, -4, -7, -\sqrt{2})$. Calculer 2u-5v et $\sqrt{5}u + \frac{1}{2}v$.

1.3 Familles libres-Familles liées d'un \mathbb{K} espace vectoriel

Définition 1.3 Soit $u_1, u_2, u_3, ..., u_n$ des vecteurs d'un \mathbb{K} espace vectoriel E.

On dit que la famille $\{u_1, u_2, u_3, ..., u_n\}$ est libre

$$\alpha * u_1 + \alpha * u_2 + \alpha_3 * u_3, \dots + \alpha_n * u_n = e \Longrightarrow \alpha_1 = e, \ \alpha_2 = e, \ \alpha_3 = e, \dots, \alpha_n = e$$

On dit aussi que le système $\{u_1, u_2, u_3, ..., u_n\}$ est libre ou que les vecteurs $u_1, u_2, u_3, ..., u_n$ sont linéairement indépendants.

Exemple 1.4 Soit u=(-1,1) et v=(1,0) deux vecteurs de \mathbb{R}^2

 $on \ a :$

$$\alpha u + \beta v = 0 \iff (-\alpha + \beta, \alpha) = (0, 0)$$

$$\iff \begin{cases} -\alpha + \beta = 0 \\ \alpha = 0 \\ \Rightarrow \alpha = 0, \beta = 0 \end{cases}$$

donc la famille $\{u, v\}$ est libre.

On dit que la famille $\{u_1, u_2, u_3, ..., u_n\}$ est liée

$$\alpha * u_1 + \alpha * u_2 + \alpha_3 * u_3, \dots + \alpha_n * u_n = e \Longrightarrow \alpha_1 \neq e, \ \alpha_2 \neq e, \ \alpha_3 \neq e, \dots, \alpha_n \neq e$$

On dit aussi que les vecteurs $u_1, u_2, u_3, ..., u_n$ ne sont pas linéairement indépendants.

Exemple 1.5 On considère les vecteurs u et v suivants :

Cas 1:
$$u=(-1,3)$$
 et $v=(2,1)$

Cas 2:
$$u = (-1, 3, 0), v = (2, 1, 0)$$
 et $w = (1, 1, 1)$

Dans chacun des cas dis s'il s'agit d'une famille libre ou d'une famille liée.

1.4 Déterminant de vecteurs d'un K espace vectoriel

Définition 1.4 Soit $u_1, u_2, u_3, ..., u_n$ des vecteurs d'un \mathbb{K} espace vectoriel E. On appelle déterminant des vecteurs $u_1, u_2, u_3, ..., u_n$, le nombre réel noté $\det(u_1, u_2, u_3, ..., u_n)$.

Dans l'espace vectoriel \mathbb{R}^2 le déterminant de deux vecteurs $x=(x_1,x_2)$ et $y=(y_1,y_2)$ est

$$\det(x,y) = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} = x_1 y_2 - x_2 y_1.$$

Dans l'espace vectoriel \mathbb{R}^3 le déterminant de trois vecteurs $x=(x_1,x_2,x_3), y=(y_1,y_2,y_3)$ et $Z=(z_1,z_2,z_3)$ est

$$\det(x, y, z) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

qui sera défini dans le chapitre suivant.

1.5 Système générateur

Définition 1.5 Soit $\{u_1, u_2, u_3, ..., u_n\}$ une famille de vecteurs d'un \mathbb{K} espace vectoriel E. On dit que $\{u_1, u_2, u_3, ..., u_n\}$ est une famille génératrice de E, ou que $\{u_1, u_2, u_3, ..., u_n\}$ un système générateur ou encore que la famille $\{u_1, u_2, u_3, ..., u_n\}$ engendre E si tout élément de E s'écrit comme combinaison linéaire des vecteurs $u_1, u_2, u_3, ..., u_n$.

Exemple 1.6 Dans chacun des cas suivants dit si la famille U de vecteurs E engendre E.

1.
$$E = \mathbb{R}^2$$
, $U = \{u_1, u_2\}$ avec $u_1 = ((1, 0) \text{ et } u_2 = (0, 1))$

2.
$$E = \mathbb{R}^2$$
, $U = \{u_1, u_2\}$ avec $u_1 = ((-1, 3) \text{ et } u_2 = (2, 1))$

3.
$$E = \mathbb{R}^2$$
, $U = \{u_1, u_2\}$ avec $u_1 = ((-1, 3) \text{ et } u_2 = (2, -6))$

4.
$$E = \mathbb{R}^3$$
, $U = \{u_1, u_2, u_3\}$ avec $u_1 = (1, 0, 0)$, $u_2 = (0, 1, 0)$ et $u_3 = (0, 0, 1)$

Proposition 1.1 • Une famille constituée d'un seul vecteur u est libre si et seulement si $u \neq e$

- Si la famille $\{u_1, u_2, u_3, ..., u_n\}$ est libre alors tous ses éléments sont deux \tilde{A} deux distincts.
- Si la famille $\{u_1, u_2, u_3, ..., u_n\}$ est libre, alors toutes ses sous familles sont aussi libres.
- Tout famille contenant une famille liée est aussi liée.
- Tout famille contenant le vecteur nul est liée.
- La famille $\{u_1, u_2, u_3, ..., u_n\}$ est liée si et seulement si un au moins de ses éléments s'écrit comme combinaison linéaire des autres.
- Dans l'espace vectoriel \mathbb{R}^n , toute famille de plus de n vecteurs est liée.
- Dans l'espace vectoriel \mathbb{R}^n , toute famille libre formé de n vecteurs est une famille génératrice de \mathbb{R}^n .
- Dans l'espace vectoriel \mathbb{R}^n , toute famille génératrice de \mathbb{R}^n de n vecteurs une famille libre.
- Dans l'espace vectoriel \mathbb{R}^n , toute famille de moins de n vecteurs n'est pas une famille génératrice de \mathbb{R}^n .

1.6 Base d'un \mathbb{K} espace vectoriel

Définition 1.6 Soit $\mathcal{B} = \{u_1, u_2, u_3, ..., u_n\}$ une famille de vecteurs d'un \mathbb{K} espace vectoriel E.

On dit que la famille \mathcal{B} est une base de E si \mathcal{B} est une famille génératrice et libre de E. Si \mathcal{B} est une base constituée de n vecteurs d'un \mathbb{K} espace vectoriel E alors toute autre base de E contient n vecteurs.

Le nombre de vecteurs d'une base de E est appelé dimension de E.

Proposition 1.2 Si $\mathcal{B} = \{u_1, u_2, u_3, ..., u_n\}$ est une base d'un \mathbb{K} espace vectoriel E alors tout élément $u \in E$ s'écrit de manière unique sous la forme :

$$u = \alpha * u_1 + \alpha * u_2 + \alpha_3 * u_3, ... + \alpha_n * u_n.$$

Les nombres $u_1, u_2, u_3, ..., u_n$ pris dans cet ordre sont appelés les coordonnés du vecteurs u dans la base \mathcal{B} . On note $u(u_1, u_2, u_3, ..., u_n)$.

Exemple 1.7 $\dim(\mathbb{R}) = 1$, $\dim(\mathbb{R}^n) = n$

Exemple 1.8 Soit $\mathcal{B} = \{e_1, e_2\}$ avec $e_1 = (1, 0)$ et $e_2 = (0, 1)$ Montrer que \mathcal{B} est une base de \mathbb{R}^2 .

1.7 Sous espace vectoriel

Définition 1.7 Soit E un \mathbb{K} espace vectoriel et F un sous ensemble non vide de E. On dit F est sous espace vectoriel de E si F est un \mathbb{K} espace vectoriel.

Propriété 1.1 Soit E un \mathbb{K} espace vectoriel et F un sous ensemble non vide de E. F est sous espace vectoriel de E si et seulement si :

$$\forall (u, v) \in F \times F, \quad u + v \in F$$

$$\forall (\lambda, u) \in F \times \mathbb{K}, \quad \lambda * u \in F.$$

Proposition 1.3 L'intersection de deux sous espaces vectoriels est un sous-espace vectoriel.

La somme de deux sous espaces vectoriels est un espace vectoriel.

Exemple 1.9 1. Soit $F = \{(x,0)\}$. Montrer que F est un sous espace vectoriel de \mathbb{R}^2

- 2. $F = \{(x, y, 2)\}$. Vérifier si F est un sous espace vectoriel de \mathbb{R}^3 .
- 3. $F = \{(x, y, z) \in \mathbb{R}^3 | x y + 3z = 0\}$. Montrer que F est un sous espace vectoriel de \mathbb{R}^3 .
- 4. $F = \{(x, y, z) \in \mathbb{R}^3 | x y = 0\}$. Montrer que F est un sous espace vectoriel de \mathbb{R}^3 .

Exercice 1.1 Dans chacun des cas suivants dit si F est un sous espace vectoriel de \mathbb{R}^3

- 1. $F = \{(x, y, z) \in \mathbb{R}^3 | x = 1\}.$
- 2. $F = \{(x, y, z) \in \mathbb{R}^3 | x + y^2 = 0\}.$
- 3. $F = \{(x, y, z) \in \mathbb{R}^3 | x + y = 0, x y = 1\}.$
- 4. $F = \{(x, y, z) \in \mathbb{R}^3 | x + y = 0, x y = 0\}.$
- 5. $F = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0, x + 2y + 3z = 0, x z = 0 = 0\}.$

1.7.1 Sous espace engendré par une famille de vecteurs

Définition 1.8 Soit $U = \{u_1, u_2, u_3, ..., u_n\}$ une famille de vecteurs d'un \mathbb{K} espace vectoriel E. On appelle sous espace engendré par par U noté Vect(U), l'ensemble de toutes les combinaisons linéaires des vecteurs de U. C'est à dire

$$Vect(U) = \{\alpha * u_1 + \alpha * u_2 + \alpha_3 * u_3, ... + \alpha_n * u_n, \alpha_i \in \mathbb{K}, i = 1, 2, 3, ..., n\}.$$

Vect(U) est le plus petit sous espace de E contenant S au sens de l'inclusion.

1.7.2 Somme de sous espace vectoriels

Définition 1.9 Soit $G_1, G_2, G_3, ..., G_n$ des sous espace vectoriel d'un \mathbb{K} espace vectoriel E. On appelle somme des sous espaces $G_1, G_2, G_3, ..., G_n$, le sous-espace de E notée $G_1 + G_2 + G_3 + ... + G_n$ engendré par la famille des vecteurs de $G_1 \cup G_2 \cup G_3 \cup ... \cup G_n$.

- $Si\ G_1 \cap G_2 \cap G_3 \cap ... \cap G_n = e$, la somme $G_1 + G_2 + G_3 + ... + G_n$ est directe et la note $G_1 \oplus G_2 \oplus G_3 \oplus ... \oplus G_n$
- Lorsque lorsque n=2 et $E=G_1\oplus G_2$, on dit que les vecteurs G_1 et G_2 sont supplémentaires dans E.

Proposition 1.4 Soit $G_1, G_2, G_3, ..., G_n$ des sous espace vectoriel d'un \mathbb{K} espace vectoriel E.

- $G_1 + G_2 + G_3 + \dots + G_n = \{u_1 + u_2 + u_3 + \dots + u_n, u_i \in G_i\}$
- $G_1 \cap G_2 \cap G_3 \cap ... \cap G_n = e$ alors pour tout vecteur u dans $G_1 \oplus G_2 \oplus G_3 \oplus ... \oplus G_n$ il existe un unique $(u_1, u_2, u_3, ..., u_n) \in G_1 \times G_2 \times G_3 \times ... \times G_n$ tel que

$$u = u_1 + u_2 + u_3 + \dots + u_n$$
.

1.7.3 Dimension d'un sous espace vectoriel

Proposition 1.7.1 Soit E un \mathbb{K} espace vectoriel E de dimension n alors :

• Tout sous espace vectoriel F de E est de dimension finie et $\dim(F) < \dim(E)$.

• Pour tout sous espace vectoriel F de E, il existe un sous espace vectoriel G de E tel que $F \oplus G = E$. De plus

$$\dim(E) = \dim(F) + \dim(G).$$

• Si F et G sont sous espaces vectoriel de E alors

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G).$$

Exemple 1.10 Soient $A = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$ et $B = \{(x, y, z) \in \mathbb{R}^3 | x - y + z = 0\}$.

- 1. Montrer que A et B sont des sous espace vectoriel de \mathbb{R}^3
- 2. Sont -ils en somme directe?

Chapitre 2

Calcul matriciel

2.1 Définition et propriétés

Définition 2.1 Soient n et p deux entiers naturels non nuls donnés. On appelle matrice de type $n \times p$ à coefficients dans \mathbb{K} (\mathbb{R} ou \mathbb{C}) un tableau $M = (m_{ij})$, $1 \le i \le n$, $1 \le j \le p$ de n lignes et de p colonnes de nombres dans \mathbb{K} .

$$M = \left(\begin{array}{ccc} m_{1,1} & \cdots & m_{1,p} \\ \vdots & \ddots & \vdots \\ m_{n,1} & \cdots & m_{n,p} \end{array}\right).$$

i est l'indice de la ligne dans M, j est l'indice de la colonne dans M et les nombres m_{ij} sont appelés les coefficients de la matrice .

On note $\mathcal{M}_{n,p}(\mathbb{K})$ l'ensemble des matrices de type (n,p) à coefficients dans \mathbb{K}).

Exemple 2.1

$$M = \left(\begin{array}{cccc} 3 & -1 & 1 & 4 \\ 8 & 2 & 0 & 5 \\ 6 & -6 & 3 & -6 \end{array}\right)$$

est une matrice de 3 lignes et 4 colonnes et $M \in \mathcal{M}_{3,4}(\mathbb{K})$.

2.2 Typologies des matrices

2.2.1 Matrice colonne

On appelle matrice colonne d'ordre n, toute matrice de type (n, 1).

Exemple 2.2

$$M = \begin{pmatrix} 3 \\ 8 \\ 6 \\ 1 \end{pmatrix}$$

est matrice colonne d'ordre 4.

2.2.2 Matrice ligne

On appelle matrice ligne d'ordre q, toute matrice de type (1,q).

Exemple 2.3

$$M = \left(\begin{array}{ccc} 3 & \frac{1}{2} & \sqrt{3} \end{array} \right)$$

est matrice colonne d'ordre 3.

2.2.3 Matrice nulle

On appelle matrice nulle de type (n, p), la matrice notée $[\]_{n,p}$ dont tous les termes sont nuls.

Exemple 2.4

2.2.4 Matrice carrée d'ordre n

On appelle matrice carré d'ordre n, toute matrice de type $(n,\,n),\,c$ 'est -à - dire toute matrice de n lignes et n colonnes.

Si $M = (m_{ij})$ est une matrice carrée d'ordre n, les éléments $m_{11}, m_{22}, ...$ et m_{nn} sont les termes diagonaux de la matrice M.

Exemple 2.5

$$M = \left(\begin{array}{ccc} 20 & 1 & 0 \\ -4 & 0 & 0 \\ 3 & 0 & 1 \end{array}\right)$$

est une matrice carré d'ordre 3.

2.2.5 Matrice unité et matrice Scalaire

On appelle matrice unité d'ordre n, la matrice carré d'ordre n, noté I_n dont tous les termes sont nuls sauf ceux de la diagonale qui sont égaux chacun à 1.

Exemple 2.6

$$I_3 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

est une matrice unité d'ordre 3.

On appelle matrice scalaire d'ordre n, toute matrice de la forme αI_n où α est un scalaire.

Exemple 2.7

$$I_3 = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} = 3I_4$$

est une matrice Scalaire d'ordre 4.

2.2.6 Matrice diagonale

Soient $1 \le i \le n$ et $1 \le j \le n$

On appelle matrice diagonale, toute matrice carré d'ordre n $M = (m_{ij})$ telle que $m_{ij} = 0$ pour tout $i \neq j$.

Exemple 2.8

$$M = \left(\begin{array}{ccc} 20 & 0 & 0\\ 0 & -3 & 0\\ 0 & 0 & 1 \end{array}\right)$$

est une matrice diagonale.

2.2.7 Matrice triangulaire

Soient $1 \le i \le n$ et $1 \le j \le n$

On appelle matrice triangulaire supérieur, toute matrice carré d'ordre n $M = (a_{ij})$ telle que $m_{ij} = 0$ pour tout i > j.

On appelle matrice triangulaire inférieur, toute matrice carré d'ordre n $M = (m_{ij}), 1 \le i \le n, 1 \le j \le p$ telle que $m_{ij} = 0$ pour tout i < j.

Exemple 2.9

$$M = \left(\begin{array}{ccc} 20 & 1 & 5\\ 0 & -3 & 6\\ 0 & 0 & 1 \end{array}\right)$$

est une matrice supérieur tandis que

$$P = \left(\begin{array}{ccc} 20 & 0 & 0 \\ -4 & 4 & 0 \\ 3 & 78 & 1 \end{array}\right)$$

est une matrice triangulaire inférieur d'ordre 3.

2.3 Opération sur les matrices

2.3.1 Somme de deux matrices

Soient $M = m_{ij}$ et $P = p_{ij}$ deux matrices de type(n,q). La somme de la matrice M et de la matrice P est notée M+P et est définie par

$$M + P = (m_{ij} + p_{ij})$$

pour tout $i \in [|1, n|]$ et pour tout $j \in [|1, q|]$.

Exemple 2.10 Soient

$$M = \left(\begin{array}{rrr} -2 & 1 & 5 \\ 7 & 0 & 3 \\ 0 & 0 & 10 \end{array}\right)$$

et

$$M = \left(\begin{array}{ccc} 20 & 0 & 0 \\ 0 & 0 & -4 \\ 0 & 0 & 1 \end{array}\right).$$

$$M + P = \left(\begin{array}{ccc} 18 & 1 & 5 \\ 7 & 0 & -1 \\ 0 & 0 & 11 \end{array}\right)$$

2.3.2 Produit d'une matrice par un Scalaire

Soient $M \in \mathcal{M}_{n,q}(\mathbb{K})$ et $\alpha \in \mathbb{K}$.

Le produit $\alpha.M$ est définie par $\alpha.M = \alpha.m_{ij}$, pour tout $i \in [|1,n|]$ et pour tout $j \in [|1,q|]$.

Exemple 2.11 Soit

$$M = \left(\begin{array}{ccc} 18 & 1 & \sqrt{3} \\ 7 & 0 & -1 \\ 0 & 0 & 1 \end{array}\right).$$

 $On \ a :$

$$\sqrt{3}.M = \begin{pmatrix} 18\sqrt{3} & \sqrt{3} & 3\\ 7\sqrt{3} & 0 & -\sqrt{3}\\ 0 & 0 & \sqrt{3} \end{pmatrix}$$

Propriété 2.1 Soit M, P et Q des matrices carrées de même taille on a :

a- Commutativit'e: M+P=P+M

b- Associativité : M+(P+Q)=(M+P)+Q=M+M+Q

2.3.3 Produit d'une matrice par un scalaire

Définition 2.2 Soit M une matrice et k un réel. La produit de M par le $r\tilde{A}$ © el k est la matrice, not ée kM, dont les coefficients sont obtenus en multipliant tous les coefficients de M par k.

Propriété 2.2 Soit M et P deux matrices carrées de même taille et deux réels k et k on a :

- a- (k+k') M=kM+k'M
- b- k(M+P) = kM+kP
- c- (kk')M = k(k'M)
- d- $(kM) \times M \times ()kP = k(M \times P)$

Exercice 2.1 Montrer que $\mathcal{M}_{n,p}(\mathbb{R})$ mini de l'addition et de la multiplication est un \mathbb{R} espace vectoriel.

2.3.4 Produit de deux matrices

Définition 2.3 Soient $M = m_{ij}$ une matrice de type(n,q) et et $P = p_{ij}$ une matrice de type(q,r). Le produit MP est une matrice de type (n,r) définie par $MP = (C_{ij})$ pour tout $i \in [1,n]$ et pour tout $j \in [1,r]$. où

$$C_{ij} = \sum_{k=1}^{q} m_{i,k} \times p_{k,j}$$

Propriété 2.3 Soit M,P et Q trois matrice carrés de même taille et k un Scalaire on a :

- a- Associativité : $(M \times P) \times Q = M \times (P \times Q) = M \times P \times Q$.
- b- Distributivité : $M \times (P + Q) = M \times P + M \times Q$
- c- $(M+P) \times Q = M \times Q + P \times Q$.

Remarque 2.3.1 • Le produit MP n'est possible que si le nombre de colonnes de M est égal au nombre de lignes de P.

- Le produit MP est possible sans que le produit PM ne soit possible.
- Le produit AB et BA peuvent être possible à la fois sans être égaux. S'ils sont égaux on dit que les matrices M et P commutent.
- Si M est matrice carré de type(n,p) alors $I_nM = MI_p = M$.

Exemple 2.12 Soient

$$A = \left(\begin{array}{ccc} 5 & 1 & 3 \\ -2 & 3 & -3 \end{array}\right)$$

et

$$B = \left(\begin{array}{ccc} 6 & 4 & 0 \\ -1 & 0 & -3 \\ -1 & -2 & -8 \end{array}\right).$$

Calculer le produit AB.Le produit BA est-il possible?

2.3.5 Égalité entre deux matrices

Soient $M=m_{ij}$ et $P=p_{ij}$ deux matrices de type(n,q). M et P sont égaux si et seulement si $m_{ij}=p_{ij}$ pour tout $i\in[|1,n|]$ et pour tout $j\in[|1,q|]$.

Exemple 2.13 Soient

$$M = \left(\begin{array}{ccc} x - y + z & 0 & 0\\ 0 & 0 & 3y - z\\ 0 & 0 & z \end{array}\right)$$

et

$$M = \left(\begin{array}{ccc} 20 & 0 & 0\\ 0 & 0 & -4\\ 0 & 0 & 1 \end{array}\right).$$

Déterminer x,y et z pour que M soit égale à P.

2.3.6 Transposition d'une matrice

Définition 2.4 On appelle transposé d'une matrice $M = (m_{ij})$ de type (n, p), la matrice de type (p, n), noté tM telle que ${}^tM = (m_{ji})$.

Exemple 2.14 Soit la matrice M définie par

$$M = \left(\begin{array}{ccc} 20 & 0 & 0\\ 0 & 0 & -4\\ 0 & 0 & 1\\ 1 & 1 & -1 \end{array}\right).$$

 $On \ a :$

$${}^{t}M^{=}\left(egin{array}{cccc} 20 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & -4 & 1 & -1 \end{array}
ight).$$

Proposition 2.1 Soient M et P et α un Scalaire.

$$^{t}(M+P) = {}^{t}M + {}^{t}P$$

$$^{t}(\alpha M) = \alpha^{t}M$$

$$(^tMP) t = {}^tP^tM$$

$$t(tM) = M$$

2.3.7 Matrice symétrique - Matrice Asymétrique

Une matrice M est dite symétrique si $M^t = M$ et Asymétrique si $M^t = -M$.

2.4 Calcul du déterminant

Le calcul du déterminant n'est possible que pour des matrices carrés.

2.4.1 Matrice Carré d'ordre 2

Soit M une matrice carré d'ordre 2. Soit

$$M = \left(\begin{array}{cc} m_{1,1} & m_{1,2} \\ m_{2,1} & m_{2,2} \end{array}\right)$$

On appelle déterminant de M note det(M), le scalaire définie par :

$$\det(M) = \begin{vmatrix} m_{1,1} & m_{1,2} \\ m_{2,1} & m_{2,2} \end{vmatrix} = m_{1,1} \times m_{2,2} - m_{2,1} \times m_{1,2}.$$

Exemple 2.15 $\det(I_2) = 1$,

2.4.2 Matrice Carré d'ordre supérieur ou égale à 2

Soit $M=(m_{ij})$ une matrice carré d'ordre $n\geq 2$. Le déterminant de M est définie par

$$\det(M) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} m_{ij} = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} m_{ij}$$

où $(-1)^{i+j}a_{ij}$ est Cofacteur associé à un coefficient à l'élément m_{ij} et a_{ij} est mineur associé à l'élément m_{ij}

Mineur associé à un coefficient

Définition 2.5 Soit $M = (m_{ij})$ une matrice carré d'ordre n.

On appelle mineur associé à l'élément m_{ij} de M, le déterminant d'ordre (n-1) noté a_{ij} obtenu en barrant dans le déterminant de la matrice M la ième et la jème colonne.

Exemple 2.16 $D\widetilde{A}$ © terminer le mineur associé à chacun des termes a_{11} , a_{13} et a_{33} de la $Matrice\ M$.

$$M = \left(\begin{array}{ccc} 2 & 4 & -5 \\ 1 & -2 & 3 \\ 0 & -4 & 1 \end{array}\right).$$

Cofacteur associé à un coefficient

Définition 2.6 Soit $M = (m_{ij})$ une matrice carré d'ordre n.

On appelle cofacteur associé à l'élément m_{ij} de M, le réel noté M_{ij} tel que $M_{ij} = (-1)^{i+j}a_{ij}$.

Exemple 2.17 Déterminer le cofacteur associé à chacun des termes m_{11} , m_{13} et m_{33} de la Matrice M.

$$M = \left(\begin{array}{ccc} 2 & 4 & -5 \\ 1 & -2 & 3 \\ 0 & -4 & 1 \end{array}\right).$$

Exemple 2.18 Calculer le déterminant de la Matrice

$$M = \left(\begin{array}{ccc} 2 & 4 & -5 \\ 1 & -2 & 3 \\ 0 & -4 & 1 \end{array}\right).$$

Remarque 2.4.1 Soit M une matrice carré d'ordre 3 d'un \mathbb{K} espace vectoriel E. C'est- \widetilde{A} -dire

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}.$$

 $On \ a :$

 $\det(M) = m_{11}m_{22}m_{33} + m_{21}m_{32}m_{13} + m_{31}m_{12}m_{23} - (m_{13}m_{22}m_{31} + m_{23}m_{32}m_{11} + m_{33}m_{12}m_{21})$

Cette méthode est appelée la méthode de Saruis.

2.5 Inverse d'une matrice

2.5.1 Définitions et propriétés

Soit $M = (m_{ij})$ une matrice carré d'ordre n. La matrice M est dite inversible ou régulière s'il existe une Matrice carré P d'ordre n telle que $MP = PM = I_n$, où I_n est la matrice carréd'ordre n.

La matrice P lorsqu'elle existe est appelée l'inverse de M et notée M^{-1} .

Proposition 2.2 Soient M et P deux matrices carrés d'ordre n. on a :

- A est inversible si et seulement si $det(M) \neq 0$.
- Si M et P sont inversible alors MP est inversible et $(MP)^{-1} = P^{-1}M^{-1}$
- Si M est inversible alors $\det(M^{-1}) = \frac{1}{\det(M)}$.
- Si M est inversible alors αM est inversible et $(\alpha M)^{-1}$ = $\frac{1}{\alpha}(M)^{-1}$.
- Si M est inversible alors M^t est invisible et $({}^t\dot{M})^{-1} = {}^t(M^{\overset{\alpha}{-1}})$.

2.5.2 Détermination de l'inverse d'une matrice

Définition 2.7 Soit M une matrice carré inversible. On appelle comatrice de M, la matrice notée Com(M), obtenue en remplaçant dans la matrice A chaque terme par son cofacteur. $Com(M) = (M_{ij})$ où M_{ij} est le cofacteur associé au terme m_{ij} de la matrice M. Dans ce cas on a:

$$M^{-1} = \frac{1}{\det(M)}^t Com(M).$$

Exemple 2.19 Soit B la matrice définie par

$$B = \left(\begin{array}{ccc} 2 & 4 & 3 \\ 1 & -2 & 3 \\ 0 & -4 & 1 \end{array}\right).$$

B est-il inversible? Si oui déterminer son inverse.

2.6 Rang d'une matrice

Définition 2.8 On appelle rang d'une matrice M, noté rg(M) est le plus grand ordre des matrices carrées inversibles extraites de M.

Proposition 2.3

- Une matrice de type (n, p) est de rang au plus min(n, p).
- Une matrice carré d'ordre n inversible est de rang n.
- Si M est une matrice carré d'ordre n de déterminant nul alors $rg(M) \leq n-1$.

Exemple 2.20 Soit B la matrice définie par

$$B = \left(\begin{array}{ccc} 3 & 3/2 & 2\\ 1 & 1/2 & 1/2\\ 0 & 0 & 1/2 \end{array}\right).$$

Déterminer le rang de B.

2.7 Diagonalisation d'une matrice

Définition 2.9 Une matrice M de $\mathcal{M}_n(\mathbb{K})$ est dite diagonalisable s'il existe une matrice inversible P et une matrice diagonale D telles que

$$M = PDP^{-1}$$

On dit que M est semblable à D.

Propriété 2.4 Une matrice M de $\mathcal{M}_n(\mathbb{K})$ est diagonalisable si, et seulement si, il existe une base de \mathbb{K}^n formée de vecteurs propres de M.

2.7.1 Polynômes caractéristique d'une matrice

Définition 2.10 On appelle polynôme caractéristique d'une matrice carré M d'ordre n, le polynôme noté $P(\lambda)$ tel que

$$P(\lambda) = \det(M - \lambda I_n).$$

Exemple 2.21 Déterminer le polynôme caractéristique de la matrice

$$B = \left(\begin{array}{ccc} 3 & 3 & 2 \\ 1 & 1 & 2 \\ 0 & -2 & 1 \end{array}\right).$$

2.7.2 Valeur propre, vecteur propre d'une matrice

Définition 2.11 Soient λ un scalaire et M une matrice carré d'ordre n d'un \mathbb{K} - espace vectoriel E. On dit que λ est une valeur propre de M s'il existe un vecteur $v \in E$ tel que

$$Mv = \lambda v$$
.

v est appelé vecteur propre associé à la valeur propre λ .

L'ensemble des valeurs propres de M est appelé spectre de M et est noté Spect(M).

Proposition 2.4 Soit M une matrice carré d'ordre n d'un \mathbb{K} - espace vectoriel E.

$$\lambda \in Spect(M) \iff \det(M - \lambda I_n) = 0$$

Exemple 2.22 Déterminer les valeurs propres de la matrice M et les vecteurs propres à ces valeurs propres.

$$B = \left(\begin{array}{ccc} 3 & 3 & 2 \\ 1 & 1 & 2 \\ 0 & 0 & 0 \end{array}\right).$$

2.7.3 Sous espace vectoriel associé à une valeur propre

Définition 2.12 Soient M une matrice carré d'ordre n et λ une valeur propre de M. L'ensemble des vecteurs propres associés à la valeur propre λ , est un sous espace vectoriel noté E_{λ} . Il est appelé sous espace propre à la valeur propre λ .

Exemple 2.23 Déterminer les sous espaces aux valeurs propres de la matrice M.

$$B = \left(\begin{array}{ccc} 3 & 3 & 2 \\ 1 & 1 & 2 \\ 0 & 0 & 0 \end{array}\right).$$

- **Propriété 2.5** Une Matrice M est diagonalisable si et seulement si son polynôme caractéristique est scindé.
 - Une Matrice M est diagonalisable si et seulement si La dimension du sous-espace propre associé à une valeur propre est égale à l'ordre de multiplicité de la valeur propre correspondante.

2.7.4 Obtention d'une matrice diagonale

Pour diagonaliser une matrice M on suit les étapes suivantes :

- 1. Déterminer le polynôme caractéristique de la M.
- 2. On détermine les valeurs propres de M.
- 3. On détermine pour chaque valeur propre X de M l'espace propre associé.
- 4. Construire la matrice diagonale D formée des valeurs propres.
- 5. On construit la matrice inversible P dont la k-iè me colonne est formée des coordonnées d'un vecteur propre associé à la valeurs propre qui se trouve dans la k-ième colonne de la matrice D.
- 6. On calcul l'inverse de P .
- 7. On a la matrice diagonale $M = PDP^{-1}$

Exemple 2.24 Soit la matrice

$$B = \left(\begin{array}{rrr} 3 & 0 & -1 \\ 2 & 4 & 2 \\ -1 & 0 & 3 \end{array}\right).$$

- 1. Déterminer les valeurs propre de B.
- 2. Déterminer les sous espaces propres associés à ces valeurs propres.
- 3. La matrice B est-elle diagonalisable. Si oui diagonaliser B.

2.8 Triangularisation d'une matrice

Pour triangulariser une matrice M il faut :

- 1. Calculer le polynôme caractéristique de M.
- 2. Déterminer les valeurs propres de M qui ne sont autre que les racine du polynôme caractéristique de M
- 3. Détermine pour chaque valeur propre de M l'espace propre associé
- 4. Construire la matrice diagonale D formée des valeurs propres, construire la matrice inversible P dont les colonnes sont les coordonnées des vecteurs dans la base canonique et la matrice triangulaire supérieure T dont les colonnes sont les coordonnées des vecteurs $Mv_1, Mv_2, Mv_3...Mv_n$ dans la base $(v_1, v_2, v_3, ..., v_n)$.
- 5. Calculer l'inverse de P .
- 6. Obtenir enfin $M = M = PTP^{-1}$.

Exemple 2.25 Triangulariser la matrice B de l'exemple suivant.

Chapitre 3

Système d'équations linéaires

Dans ce chapitre nous considérons un \mathbb{R} espace vectoriel.

3.1 Généralité

Définition 3.1 On appelle équations linéaires à p inconnus $x_1, x_2, \dots x_n$, toute relation de la forme

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

où $a_1, a_2, \dots a_n$ sont et b des nombres réels.

Exemple 3.1 x+y+z=0, -2x+z=1 et -3x+y+8z=10

Définition 3.2 On appelle système de n équations linéaires à p inconnus une liste de n équations linéaires.

Une solution du système linéaire est une liste de p nombres réels $(s_1, s_2, \dots s_p)$ (un puplet) tels que si l'on substitue s_1 pour x_1 , s_2 pour x_2 , etc., dans le système linéaire, on obtient une égalité. L'ensemble des solutions du système est l'ensemble de tous ces p-uplets.

Résoudre un système d'équations linéaires, c'est trouver l'ensemble S de toutes les solutions.

Deux systèmes sont équivalents lorsqu'ils ont le même ensemble de solutions.

À partir de là , le jeu pour résoudre un système linéaire donné consistera à le transformer en un système équivalent dont la résolution sera plus simple que celle du système de départ.

Théorème 3.1 Un système d'équations linéaires n'a soit aucune solution, soit une seule solution, soit une infinité de solutions.

3.1.1 Forme générale de système d'équations linéaires

Définition 3.3 Unsystème d'équations linéaires est tout système de la forme :

$$\begin{cases} m_{11}x_1 + m_{12}x_2 + \dots + m_{1j}x_j + \dots + m_{1p}x_p = y_1 \\ m_{21}x_1 + m_{22}x_2 + \dots + m_{2j}x_j + \dots + m_{2p}x_p = y_2 \\ & \vdots \\ m_{i1}x_1 + m_{i2}x_2 + \dots + m_{ij}x_j + \dots + m_{ip}x_p = y_j \\ & \vdots \\ m_{n1}x_1 + m_{n2}x_2 + \dots + m_{nj}x_j + \dots + m_{np}x_p = y_p \end{cases}$$

où les m_{ii} et les y_i sont des nombres réels et les x_i sont des inconnus.

Exemple 3.2

$$\begin{cases} x + y + z = 1 \\ 2x + y - 3z = -2 \\ x - 4y + z = 1 \\ 2x + 5y - z = 0 \end{cases}$$

3.1.2 Écriture matricielle de systèmes d'équations linéaires

Définition 3.4 On appelle écriture matricielle d'un systèmes d'équations linéaires (S), toute écriture de la forme

$$MX = Y$$

où A est matrice, X le vecteur contenant les inconnus du système et Y le vecteur contenant les nombres réels du second membre.

Exemple 3.3 L'écriture matricielle du systèmes d'équations linéaires de l'exemple précédente est : MX=Y où

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -3 \\ 1 & -4 & 1 \\ 2 & 5 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad Y = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

3.2 Résolution de systèmes d'équations linéaires

3.2.1 Méthode de Pivot de Gausse

Elle consiste à effectuer des opérations élémentaires sur les lignes qui transforment le système en un système équivalent plus facile à résoudre.

On obtient un système équivalent :

- en intervertissant deux lignes
- en multipliant une ligne Li par un réel non nul k

— en ajoutant à une ligne Li une autre ligne

Exemple 3.4

$$(S_1): \begin{cases} 2x+y+z=7\\ 4x+3y-3z=7\\ 3x+y-2z=2 \end{cases} \qquad (S_2): \begin{cases} x+2y+3z=3\\ 2x+3y+8z=1\\ 3x+2y+17z=1 \end{cases} \qquad (S_2): \begin{cases} x+2y-3z=6\\ 2x-y+4z=2\\ 4x+3y-2z=14 \end{cases}$$

3.2.2 Méthode Matricielle

Dans cette partie, on suppose que le système possède autant d'équations que d'inconnues. Ainsi, une écriture matricielle du système est $\mathbf{MX} = \mathbf{Y}$, où $M = (m_{ij})$ est une est une matrice carré d'ordre n et \mathbf{X} est un vecteur de n inconnus. Si $\det(M) \neq 0$ alors le système d'équations linéaire est dit de Cramer et admet une unique solution donnée par la matrice colonne \mathbf{X} qui peut déterminer par :

Méthode d'inversion de matrice

Propriété 3.1 Soit M une matrice carrée inversible de taille n et Y une matrice colonne à n lignes. Alors le système linéaire d'écriture matricielle MX = Y admet une unique solution donnée par la matrice colonne

$$X = M^{-1}Y.$$

Exemple 3.5 Revolver le système (S_1) de l'exemple précédent par la méthode d'inversion de matrice.

3.2.3 Méthode du déterminant ou de Cramer

Si $det(M) \neq 0$ alors le système admet donc une solution unique $(x_1, x_2, ..., x_n)$ telle que

$$x_i = \frac{\Delta_{x_i}}{\det(M)}$$

où Pour tout $i = 1, 2, ..., \Delta_{x_i}$ désigne le déterminant de la matrice obtenue en remplaçant la ième colonne de M par la matrice colonne Y.

Exemple 3.6

$$(S_1): \begin{cases} 2x + y + z = 7 \\ 4x + 3y - 3z = 7 \\ 3x + y - 2z = 2 \end{cases}$$

$$S_1 \iff \begin{pmatrix} 2 & 1 & 1 \\ 4 & 3 & -3 \\ 3 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 7 \\ 7 \\ 2 \end{pmatrix}$$

$$\begin{vmatrix} 2 & 1 & 1 \\ 4 & 3 & -3 \\ 3 & 1 & -2 \end{vmatrix} = -12 \neq 0$$

donc

$$\Delta_x = \begin{vmatrix} 7 & 1 & 1 \\ 7 & 3 & -3 \\ 2 & 1 & -2 \end{vmatrix} = -12, \quad \Delta_y = \begin{vmatrix} 2 & 7 & 1 \\ 4 & 7 & -3 \\ 3 & 2 & -2 \end{vmatrix} = -36, \quad \Delta_z = \begin{vmatrix} 2 & 1 & 7 \\ 4 & 3 & 7 \\ 3 & 1 & 2 \end{vmatrix} = -24$$

et

$$x = \frac{-12}{-12} = 1$$
, $y = \frac{-36}{-12} = 3$, $z = \frac{-24}{-12} = 2$.

L'ensemble solution du système S est alors (1,3,2).

Chapitre 4

Application linéaire

4.1 Définition et propriétés

Définition 4.1 Soient E et F deux espaces vectoriels et f une application de E dans F. On dit que f est une application linéaire si pour tout $(\alpha, \beta) \in \mathbb{K}^2$ et pour tout $(u, v) \in E \times E$ on a:

$$f(\alpha u + \beta v) = \alpha f(u) + \beta f(v).$$

- L'ensemble des applications linéaires de E dans F est noté $\mathcal{L}(E,F)$.
- Tout application linéaire définie de E vers E est appelé endomorphisme de E et on l'ensemble des endomorphisme de E est noté $\mathcal{L}(E)$.
- Tout application linéaire définie de E vers \mathbb{R} est appelé une forme linéire sur E.
- Tout application linéaire définie de E vers F et bijective est appelé est un isomorphisme.
- Tout application linéaire définie de E vers E est appelé et bijective est appelé automorphisme.

Exemple 4.1 Montrer que l'application

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

 $(x, y, z) \longmapsto (x, -y, -z)$

est linéaire.

Proposition 4.1 Soient f et g deux applications linéaires de E dans F et λ un réel.

- f + g est une application linéaire.
- $-\lambda f$ est une application linéaire.

4.2 Composition d'applications linéaires

Définition 4.2 Soient f une application définie de E dans F et g une application définie de F dans G. L'application notée $g \circ f$ définie par

$$g \circ f : E \longrightarrow G$$

$$x \longmapsto g[f(x)]$$

est une application linéaire appelé la composée de g par f.

Exemple 4.2 On considère les applications linéaires f et g définies par :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

 $(x,y) \longmapsto f(x) = (x, x + 3y, x - y)$

et

$$g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

 $(x, y, z) \longmapsto g(x) = (x + z, y + z).$

Déterminer $g \circ f$ et $f \circ g$.

Proposition 4.2 La composée de deux automorphismes $f \in \mathcal{L}(E)$ et $g \in \mathcal{L}(E)$ est aussi un automorphisme de $\mathcal{L}(E)$ et on a

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

4.3 Matrice associé à une application linéaire

Définition 4.3 Soient E et F deux K-espaces vectoriels de dimensions respectives p et n, $\mathcal{B} = (e_1; e_2, ..., e_p)$ une base de E, $\mathcal{C} = (e_1; e_2, ..., e_n)$ une base de F et $f \in \mathcal{L}(E, F)$.

On appelle matrice Matrice de f relativement aux bases \mathcal{B} et \mathcal{C} notée $Mat_{\mathcal{B},\mathcal{C}}(f)$, la matrice de la famille $f(\mathcal{B}) = (f(e_1, e_2, ..., e_n))$ dans la base \mathcal{C} .

$$f(e_1), \cdots f(e_j), \cdots f(e_p)$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$Mat_{\mathcal{B},\mathcal{C}}(f) = \begin{pmatrix} a_{11} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{i,j} & \cdots & a_{i,n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{p1} & \cdots & a_{p,j} & \cdots & a_{p,n} \end{pmatrix}$$

Si E=F et $\mathcal{B}=\mathcal{C}$, la matrice $Mat_{\mathcal{B},\mathcal{B}}(f)$ est simplement notée $Mat_{\mathcal{B}}(f)$.

Exemple 4.3 On considère l'application linéaire $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ définie par

$$g(x) = (x + y + z, -x + 2y + 2z).$$

Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et soit $\mathcal{C} = (f_1, f_2)$ la base canonique de \mathbb{R}^2 . on a $g(e_1) = (1, -1)$, $g(e_2) = (1, 2)$ et $g(e_3) = (1, 2)$ donc la matrice de g relativement aux bases \mathcal{B} et \mathcal{C} et

$$Mat_{\mathcal{B},\mathcal{C}}(g) \left(\begin{array}{ccc} 1 & 1 & 1 \\ -1 & 2 & 2 \end{array} \right)$$

Exemple 4.4 Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'application linéaire définie par

$$f(x) = (x - y + z, -2x + y - z, x - z),$$

Déterminer la matrice de g relativement à la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 .

Proposition 4.3 Soit E, F, G des \mathbb{K} espace vectoriel.

- $Si\ f \in \mathcal{L}(E,F)\ et\ g \in \mathcal{L}(E,F)\ alors\ Mat_{\mathcal{B},\mathcal{C}}(f+g) = Mat_{\mathcal{B},\mathcal{C}}(f) + Mat_{\mathcal{B},\mathcal{C}}(g).$
- $Si \ f \in \mathcal{L}(E, F) \ et \ \lambda \in \mathbb{K} \ alors \ Mat_{\mathcal{B}, \mathcal{C}}(\lambda f) = \lambda Mat_{\mathcal{B}, \mathcal{C}}(f).$
- $Si\ f \in \mathcal{L}(E,F)\ et\ g \in \mathcal{L}(F,G)\ alors\ Mat_{\mathcal{B},\mathcal{C}}(g \circ f) = Mat_{\mathcal{B},\mathcal{C}}(f) \times Mat_{\mathcal{B},\mathcal{C}}(g).$

4.4 Image et noyau d'une application linéaire

Définition 4.4 Soient E et F deux espaces vectoriels et f une application de E dans F et f est une application linéaire définie de E vers F.

On appelle image de f le sous espace vectoriel de F noté Im(f) tel que

$$Im(f) = f(E) = \{f(u), u \in E.\}$$

On appelle noyau de f le sous espace vectoriel de E noté Ker(f) tel que

$$Ker(f) = f^{-1}(0_F) = \{u \in E \mid f(u) = 0.\}$$

Exemple 4.5 On consière l'application linéaire $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ définie par

$$g(x) = (x + y + z, -x + 2y + 2z).$$

Soit $(x, y, z) \in Ker(f)$ on a:

$$\begin{cases} x+y+z=0\\ -x+2y+2z=0 \end{cases}$$

donc

$$Ker(f) = \{(0,y,-y)\} = Vect \, \{(0,1,-1)\}$$

et

$$Im(f) = Vect\left\{ (1,-1); (1,2), (1,2) \right\}$$

Exemple 4.6 Déterminer le noyau et l'image de l'application linéaire $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ définie par

$$f(x) = (x - y + z, -2x + y - z, x - z),$$

Proposition 4.4 Soient E et F deux espaces vectoriels et f une application de E dans F et f est une application linéaire définie de E vers F. L'application f est

- $surjective \ si \ et \ seulement \ si \ Im(f)=F,$
- injective si et seulement si $Ker(f) = \{O_E\}$.

4.5 Rang d'une application linéaire

Définition 4.5 On appelle rang de l'application linéaire f, noté rg(f) la dimension de Im(f).

$$rg(f) = dim(Im(f))$$

Théorème 4.1 Soient E et F deux espaces vectoriels et f une application linéaire de E dans F. Si E est de dimension finie, il en est de même pour Im(f) et Ker(f) et

$$\dim(Im(f)) + \dim(Ker(f)) = \dim(E).$$

4.6 Exercice

Exercice 4.1 Soit $B=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 . Soit $f:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ une application linéaire définie par

$$f(x, y, z) = (x + 4y + 4z; -x - 3y - 3z; 2y + 3z)$$

Soit $a = e_1 - e_2 + e_3$, $b = 2e_1 - e_2 + e_3$ et $c = 2e_1 - 2e_2 + e_3$ trois vecteurs de \mathbb{R}^3 .

- 1. Montrer que f est une application linéaire.
- 2. Montrer que B' = (a, b, c) est une base de \mathbb{R}^3 .
- 3. a)- Déterminer la matrice de passage P de B à B'.
 - b)- Donner la matrice $A = mat_B(f)$ de f dans la base B et en déduire la matrice $R = mat_{B'}(f)$ de f dans la base B'.
 - c)- Calculer $P^{-1}AP$ en fonction de R et calculer R^n .
 - d)- Déduire les valeurs de A^{4n} .

Chapitre 5

Fonctions numériques de plusieurs variables

5.1 Fonctions de plusieurs variables

5.1.1 Définition et exemples

Définition 5.1 Soit \mathcal{U} un sous ensemble de \mathbb{R}^n . On fonction numérique de plusieurs variables toute fonction définie de \mathcal{U} vers \mathbb{R}^p qui à tout élément $(x_1, x_2, ..., x_n)$ associe

$$f(x_1, x_2, ..., x_n) = (f_1(x_1, x_2, ..., x_n), f_2(x_1, x_2, ..., x_n), ..., f_p(x_1, x_2, ..., x_n))$$

où $f_1, f_2, ..., f_p$ sont des fonctions définies de \mathbb{R}^n dans \mathbb{R} .

Exemple 5.1 Représenter le domaine de définition maximal de la fonction

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto \left(\frac{x+y}{x-y}, x \ln(y)\right)$$

L'ensemble des fonctions définies de \mathcal{U} vers \mathbb{R}^p est un \mathbb{R} - espace vectoriel.

5.1.2 Graphe

On rappelle que le graphe d'une fonction de \mathbb{R} dans \mathbb{R} est une courbe de \mathbb{R}^2 . C'est l'ensemble des points(x, f(x)) pour x parcourant R. Pour une fonction f de \mathbb{R}^2 dans \mathbb{R} , Il s'agira d'une surface de l'espace. On l'a définit de la même façon comme étant l'ensemble des points de \mathbb{R}^3 de la forme (x, y, f(x, y)).

Définition 5.2 Soit f une fonction définie de $\mathcal{U} \subset \mathbb{R}^n$ vers \mathbb{R}^p . On appelle graphe de f l'ensemble

$$\{(x, f(x)), x \in \mathcal{U}\} \subset \mathcal{U} \times \mathbb{R}^p.$$

Il s'agit d'un objet à n dimension dans un espace de dimension (n+p).

Exercice 5.1 Soit $\mathcal{U} = \{(x,y) \in \mathbb{R}^2, y \geq 0\}$. On considère la fonction $f : \mathcal{U}$ vers \mathbb{R} définie par $f(x,y) = x \cos(2\pi y)$. Parmi les points suivants, lesquels appartiennent au graphe de f:

$$(1,1,0)$$
, $(1,0,1,0)$, $(1,-1,1)$, $(0,1)$.

5.1.3 Norme et distance sur un espace vectoriel

Définition 5.3 Soit E un \mathbb{R} -espace vectoriel. On appelle norme sur E une application $N: E \longrightarrow \mathbb{R}^+$ qui vérifie les propriétés suivantes :

- (i) $\forall x \in E, N(x) = 0 \iff x = 0_E$
- (ii) $\forall x \in E, \ \forall \lambda \in \mathbb{R}, N(\lambda x) = |\lambda| N(x)$
- (iii) $\forall (x,y) \in E^2, N(x+y) \leq N(x) + N(y)$

Définition 5.4 Soit E un \mathbb{R} -espace vectoriel. On appelle distance sur E une application $d: E \times E \longrightarrow \mathbb{R}^+$ qui vérifie les propriétés suivantes :

- (i) $\forall (x,y) \in E^2, d(x,y) = 0 \iff x = y$
- (ii) $\forall (x,y) \in E^2, d(x,y) = d(y,x)$
- (iii) $\forall (x, y, z) \in E^3, d(x, z) \le d(x, y) + d(y, z)$

On déduit alors que si N une norme sur \mathbb{R} -espace vectoriel alors l'application $d:(x,y) \mapsto d(x,y) = N(x-y)$ est une distance sur E.

Exercice 5.2 1. Montrer la fonction valeur absolue est une norme sur \mathbb{R} .

2. Soit $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$, on définit

$$||x||_1 = \sum_{i=1}^n |x_i| , ||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} , ||x||_{\infty} \max_{1 \le i \le n} |x_i| .$$

Montrer que $||x||_1$, $||x||_2$ et $||x||_{\infty}$ sont des normes sur \mathbb{R}^n .

Définition 5.5 Soit E un \mathbb{R} -espace vectoriel. Soient N_1, N_2 deux normes sur E. On dit que N_1 et N_2 sont équivalentes s'il existe une constante C > 0 telle que pour tout $x \in E$ on a:

$$N_1(x) \le CN_2(x)$$
 et $N_2(x) \le CN_1(x)$

Proposition 5.1 Soit E un \mathbb{R} -espace vectoriel de dimension finie. Alors toutes les normes sur E sont équivalentes.

5.1.4 Ouvert et fermé

Définition 5.6 Soit E un \mathbb{R} -espace vectoriel et \parallel . \parallel une norme sur E. On appelle boule ouverte de centre x et de rayon r, l'ensemble B(x,r) tel que

$$B(x,r) = \{ y \in E, ||x - y|| < r \}.$$

On appelle boule fermée de centre x et de rayon r, l'ensemble $B(\bar{x},r)$ tel que

$$B(\bar{x},r) = \{y \in E, ||x - y|| \le r\}.$$

On appelle sphère de centre x et de rayon r, l'ensemble S(x,r) tel que

$$S(x,r) = \{ y \in E, ||x - y|| = r \}.$$

Définition 5.7 Soit \mathcal{O} une partie de E. On dit que \mathcal{O} est ouvert si pour tout $x \in \mathcal{O}$ il existe r > 0 tel que $B(x,r) \subset \mathcal{O}$. On dit qu'une partie \mathcal{F} de E est fermé si son complémentaire $E - \mathcal{F}$ est ouvert.

Exemple 5.2 Dans \mathbb{R} muni de la valeur absolue

- \triangleright Un intervalle de la forme]a,b[avec a < b est ouvert
- \triangleright un intervalle de la forme [a,b] avec a < b est fermé,
- \triangleright un intervalle de la forme [a, b[ou]a, b] avec a < b n'est ni ouvert ni fermé,
- \triangleright R et l'ensemble vide ϕ sont à la fois ouverts et fermés.

Une boule ouverte est un ensemble ouvert de E et une boule fermée ou une sphère sont des ensembles fermés de E.

Définition 5.8 Soit $x \in \mathbb{R}^n$ et \mathcal{V} une partie de \mathbb{R}^n . On dit que \mathcal{V} est un voisinage de a il existe r > 0 tel que $B(x, r) \subset \mathcal{V}$.

Définition 5.9 On dit qu'une partie A de \mathbb{R}^n est bornée il existe $r \geq 0$ tel que $B(x,r) \subset A$.

Définition 5.10 On dit qu'une partie A de \mathbb{R}^n est compacte s'il est bornée et fermée.

Exemple 5.3 Parmi Les intervalles fermés et bornés de \mathbb{R} sont compacts.

5.2 Limites et Continuité

5.2.1 Limites des suites de R^n

Définition 5.11 On munit \mathbb{R}^n de la norme $\|\cdot\|_{\mathbb{R}^n}$. Soit $(x_m)_{m\in\mathcal{N}}$ une suite d'éléments de \mathbb{R}^n et $l\in\mathbb{R}^n$. On dit que $(x_m)_{m\in\mathcal{N}}$ converge vers l et on note

$$x_m \longrightarrow l$$

$$m \to +\infty$$

si

$$\forall \epsilon > 0 , \exists N \in \mathcal{N}, \forall m \in \mathcal{N}, m \geq N \Longrightarrow \|x_m - l\|_{\mathbb{R}^m} \leq \epsilon$$

Proposition 5.2 On munit \mathbb{R}^n de la norme $\|\cdot\|_{\mathbb{R}^n}$

- 1- Soient $(x_m)_{m \in \mathcal{N}}$ une suite d'éléments de \mathbb{R}^n , $l_1 \in \mathbb{R}^n$ et $l_2 \in \mathbb{R}^n$. Si $(x_m)_{m \in \mathcal{N}}$ converge vers l_1 et $(x_m)_{m \in \mathcal{N}}$ vers l_2 lorsque $m \longrightarrow +\infty$ alors $l_1 = l_2$.
- 2- Soient $(x_m)_{m\in\mathcal{N}}$ et $(y_m)_{m\in\mathcal{N}}$ deux suites d'éléments de \mathbb{R}^n . Soient l_1 et l_2 deux éléments de \mathbb{R}^n , λ_1 et λ_2 deux nombres réels. Si

$$x_m \longrightarrow l_1 \quad et \quad y_m \longrightarrow l_2$$

 $m \to +\infty \quad m \to +\infty$

alors

$$\lambda_1 x_m + \lambda_2 y_m \longrightarrow \lambda_1 l_1 + \lambda_2 l_2$$

$$m \to +\infty$$

Définition 5.12 Soit $(x_m)_{m \in \mathcal{N}}$ une suite d'éléments de \mathbb{R}^n , on dit que $(x_m)_{m \in \mathcal{N}}$ est de Cauchy si

$$\forall \epsilon > 0 , \exists N \in \mathcal{N}, \forall m, k \in \mathcal{N}, m \geq N, k \geq N \Longrightarrow \|x_m - x_k\|_{\mathbb{R}^m} \leq \epsilon$$

Proposition 5.3 Toute suite de Cauchy dans \mathbb{R}^n est convergente. On dit que \mathbb{R}^n est complet

Définition 5.13 Soit \mathcal{U} une partie de \mathbb{R}^n . On appelle adhérence de \mathcal{U} et on note $\bar{\mathcal{U}}$, l'ensemble des éléments \mathbb{R}^n qui sont limites des éléments de \mathcal{U} .

Exemple 5.4 — Soit
$$x \in \mathbb{R}^n$$
, $\forall r > 0$ l'adhérence de $B(x,r)$ est $\bar{B}(x,r)$ — L'adhérence de $\mathbb{R}^2 - (0,0)$ est \mathbb{R}^2

5.2.2 Limites d'une fonction de plusieurs variables

On munit \mathbb{R}^n de la norme $\|\cdot\|_{\mathbb{R}^n}$ et \mathbb{R}^p de la norme $\|\cdot\|_{\mathbb{R}^p}$. Soit \mathcal{U} une partie de \mathbb{R}^n et $f:\mathcal{U}\longrightarrow\mathbb{R}^p$.

Définition 5.14 Soit $a \in \mathcal{U}$ et $l \in \mathbb{R}^p$. On dit que f tend vers l lorsque x tend vers a et on note

$$f(x) \longrightarrow l$$

 $x \to a$

si

$$\forall \epsilon > 0 \; , \; \exists \delta > 0 \; , \; \forall x \in \mathcal{U} \; , \quad \|x - a\|_{\mathbb{R}^n} \le \delta \implies \|f(x) - l\|_{\mathbb{R}^p} \le \epsilon$$

Proposition 5.5 Soient f et g deux fonctions définies d'une partie \mathcal{U} de \mathbb{R}^n à valeurs dans \mathbb{R}^p . Soit $a \in \overline{\mathcal{U}}$. Soit $\lambda \in \mathbb{R}$. Soient l_1, l_2 deux nombres réels. On suppose que f(x) et g(x) tendent respectivement vers l_1 et l_2 quand x tend vers a.

$$(\lambda f + g)(x) \longrightarrow \lambda l_1 + l_2$$

 $x \to a$

et

$$(fg)(x) \longrightarrow l_1 l_2$$

 $x \to a$

Si $l_1=0$ et g est bornée au voisinage de a, alors on a :

$$(fg)(x) \longrightarrow 0$$

 $x \to a$

Si $l_1 \neq 0$ alors f ne s'annule pas au voisinage de a et

$$\frac{1}{f(x)} \longrightarrow \frac{1}{l_1}$$
$$x \to a$$

Proposition 5.6 Soit f une fonction d'une partie \mathcal{U} de \mathbb{R}^n à valeurs dans \mathbb{R}^p . Soit $a \in \overline{\mathcal{U}}$. On suppose f(x) tend vers une limite $l \in \mathbb{R}^p$. Soit g une fonction d'une partie \mathcal{U}' de \mathbb{R}^p à valeurs dans \mathbb{R}^m . On suppose $l' \in \overline{\mathcal{U}}'$ et que g(y) tend vers une limite $l' \in \mathbb{R}^m$ quand y tend vers l. Alors g(f(x)) tend vers l' quand x tend vers a.

Proposition 5.7 Soit f une fonction d'une partie \mathcal{U} de \mathbb{R}^n à valeurs dans \mathbb{R}^p . Soit $a \in \mathcal{U}$ et $l \in \mathbb{R}^p$. Alors f(x) tend vers l quand x tend vers a si et seulement si pour toute suite $(x_m) \in \mathcal{U}$ tendent vers a dans \mathbb{R}^n , la suite $(f(x_m))$ tend vers l dans \mathbb{R}^p .

Proposition 5.8 Soit f une fonction d'une partie \mathcal{U} de \mathbb{R}^2 à valeurs dans \mathbb{R} . Soient $a = (a_1, a_2) \in \overline{\mathcal{U}}$ et $l \in \mathbb{R}$. Alors f(x) tend vers l quand x tend vers a si et seulement s'il existe une fonction $\epsilon : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ qui tend vers 0 en 0 et telle que pour tous r > 0 et θ vérifiant $(r \cos(\theta), r \sin(\theta)) \in \mathcal{U}$ et on a

$$|f(a_1 + r\cos(\theta), a_2 + r\sin(\theta) - f(a_1, a_2)| \le \epsilon(r)$$

5.2.3 Continuité

Définition 5.15 Soit f une fonction d'une partie \mathcal{U} de \mathbb{R}^n à valeurs dans \mathbb{R}^p . Soit $a \in \overline{\mathcal{U}}$

- f est continue en a si et seulement si f tend vers f(a) lorsque x tend vers a.
- f est continue en sur \mathcal{U} lorsque f est continue en tout point de \mathcal{U} .

Exemple 5.5 — La fonction constante est continue.

- l'application $(x_1, x_2) \longmapsto x_1$ est continue sur \mathbb{R}^2 .
- toute norme sur \mathbb{R}^n définit une fonction continue de \mathbb{R}^n dans R.

Définition 5.16 On appelle fonction polynômiale sur \mathbb{R}^n une application qui s'écrit comme une somme de termes qui sont eux-mêmes des produits de fonctions coordonnées, autrement dit une fonction de la forme :

$$f: (x_1, x_2, x_3..., x_n) \longmapsto \sum_{\alpha_1 \alpha_2...\alpha_n = 0}^{N} c_{\alpha_1 \alpha_2...\alpha_n} x_1^{\alpha_1} x_2^{\alpha_1} x_3^{\alpha_2}..., x_n^{\alpha_n}$$

Exemple 5.6

Proposition 5.9 Toute fonction polynômiale sur \mathbb{R}^n est continue. Plus généralement toute fraction rationnelle dont le dénominateur ne s'annule pas sur un domaine $\mathcal{U} \subset \mathbb{R}^n$ est bien définie et continue sur ce domaine.

Exemple 5.7

Proposition 5.10 L'image d'un compact par une fonction continue est un compacte

Proposition 5.11 Soit K un compact de \mathbb{R}^n et f une fonction continue de K dans R. Alors f est bornée et atteint ses bornes.

5.3 Dérivés Partielles et Différentielle

5.3.1 Dérivabilité des fonctions de R^n dans R^p

Soit I un intervalle de \mathbb{R} et

$$f: \mathbb{R} \longrightarrow \mathbb{R}^p$$

 $t \longmapsto (f_1(t), ..., f_p(t))$

où les fonctions $(f_1,...,f_p)$ sont définies de I vers \mathbb{R} .

Proposition 5.12 La fonction f est continue sur I si et seulement si les fonctions $f_1, ..., f_p$ sont continues sur I.

Définition 5.17 Soit $t_0 \in I$. On dit que f est dérivable en t_0 si le quotient

$$\frac{f(t) - f(t_0)}{t - t_0}$$

admet une limite dans \mathbb{R}^p quand t tend vers t_0 . Cette limite est $f'(t_0)$.

On dit que f est dérivable sur I si elle est dérivable en tout point de I. Dans ce cas on appelle fonction dérivée l'application $f': t \longmapsto f'(t)$

Proposition 5.13 La fonction f est dérivable sur I si et seulement si les fonctions $f_1, ..., f_p$ sont dérivable sur I, et dans ce cas on a pour tout $t \in I$

$$f'(t) = (f'_1(t), ..., f'_p(t)).$$

Exercice 5.3

$$f: \mathbb{R} \longrightarrow \mathbb{R}^2$$

 $t \longmapsto (\cos(t), \sin(t))$

Montrer que f est dérivable sur \mathbb{R} , que $f(0) = f(2\pi)$, et que pourtant la dérivée de f en 0 ne s'annule jamais.

5.3.2 Dérivés Partielles

Pour la suite , on se donne un ouvert \mathcal{O} de \mathbb{R}^n , une fonction f définie de \mathcal{O} dans \mathbb{R}^p et $a=(a_1,a_2...a_n)\in\mathcal{O}$. On note $(e_1,e_2,...,e_n)$ la base canonique de \mathbb{R}^n .

Définition 5.18 Soit $v \in \mathbb{R}^n - (0,0)$ On dit que f admet une dérivée en a suivant v si l'application $\psi : t \longmapsto f(a+tv)$ est dérivable en θ . La dérivé en θ noté $\psi'(0)$ est alors appelée dérivée de f en a suivant v.

Exemple 5.8 La fonction $f:(x,y) \in \mathbb{R}^2 - \{(0,0)\} \longmapsto y^2 \ln(x)$ telle que f(0,0) = 0 admet (0,0) une dérivée suivant tout vecteur v de \mathbb{R}^2 .

Exercice 5.4 Calculer la dérivée de l'application $f:(x,y) \mapsto x^2 - y^2$ au point a=(1, 2) suivant le vecteur v=(3, 5).

Définition 5.19 Soit $k \in [|1, n|]$,

On dit que la k-ième dérivée partielle de f existe au point a si l'application

$$t \longmapsto f(a_1, a_2, ...a_k + te_k, a_{k+1}, ..., a_n) = f(a + te_k)$$

est dérivable en 0. Dans ce cas la k_ime dérivée partielle est noté

$$\frac{\partial f(a)}{\partial x_k}$$
 ou $\partial_k f(a)$.

Autrement dit si elle existe, la k-ième dérivée partielle de f au point a n'est autre que la dérivée de f en a suivant e_k .

5.3.3 Application différentiable

Cette partie est consacrée à l'introduction de la notion fondamentale du cours de Calcul Différentiel :celle d'application différentiable. Plus précisément :

- Nous définissons cette notion. Nous montrons de quelle manère elle précise la notion de fonction continue.
- Nous l'illustrons par plusieurs exemples, de nature variée.
- Nous étudions les propriétés générales des applications différentiables.

Soit $f: \mathcal{O} \in \mathbb{R}^n \longleftrightarrow \mathbb{R}^p$ et soit $a \in \mathcal{O}$.

Définition 5.20 On dit que f est différentiable en a s'il existe une application linéaire $L: \mathbb{R}^n$ dans \mathbb{R}^p telle que pour tout $h \in \mathbb{R}^n$ on

$$f(a + h) = f(a) + L(h) + o(||h||)$$

où $o(\|h\|) \longrightarrow 0$ lorsque h tend vers 0. Autrement dit s'il existe une application ϵ_a définie au voisinage de 0 telle que $\epsilon(h) \longrightarrow 0$ lorsque h tend vers 0 et pour tout $h \in \mathbb{R}^n$ on a

$$f(a + h) = f(a) + L(h) + ||h|| \epsilon_a(h).$$

f est différentiable sur O si elle est différentiable en tout de O

L'application linéaire L est unique et est appelé différentielle de f au point a. On la note $d_a f$.

L'application $d_a f: \mathcal{O} \longrightarrow \mathcal{L}(\mathbb{R}^p, \mathbb{R}^p), x \longmapsto d_x f$ est appelée différentielle de f sur \mathcal{O} .

Exemple 5.9 1. L'application $f : \mathbb{R}^2 \longleftrightarrow \mathbb{R}^2$ définie par :

$$f(x,y) = (2x + y; 3x - 2y)$$

est différentiable sur \mathbb{R}^2 .

2. L'application $f: \mathbb{R}^2 \longleftrightarrow \mathbb{R}$ définie par

$$f(x,y) = 3x - y$$

est différentiable sur \mathbb{R}^2 .

Proposition 5.14 Si f est différentiable en a, alors f est continue en a

Proposition 5.15 Si f est différentiable en a, alors elle est dérivable en a suivant tout vecteur $v \in \mathbb{R}^n - (0,0)$ et cette dérivée vaut $d_a f(v)$.

Exercice 5.5 Démontrer les proposition 5.14et 5.15.

Proposition 5.16 Si f est différentiable en a alors toutes les dérivées partielles de f existent au point a et pour tout $v = (v_1, v_2, v_3, ..., v_n) \in \mathbb{R}^n$ on a :

$$d_a f(h) = \sum_{k=1}^{n} v_k \frac{\partial f}{\partial x_k}(a)$$

Exemple 5.10 1. Déterminer la différentielle $d_a f$ en a = (0,0) de l'application $f : \mathbb{R}^2 \longleftrightarrow \mathbb{R}^2$ définie par :

$$f(x,y) = (2x + y; 3x - 2y).$$

2. Déterminer la différentielle $d_a f$ en a=(1,2) de l'application $f:\mathbb{R}^2\longleftrightarrow\mathbb{R}$ définie par

$$f(x,y) = 3x - y.$$

Proposition 5.17 (Produit et quotient de fonctions différentiables).

Soient f et g deux fonctions définies de \mathcal{O} dans \mathbb{R}^p différentiables en a. alors

1. pour tout λ , $\mu \in \mathbb{R}$, $\lambda f + \mu q$ est différentiable en a et

$$d_a(\lambda f + \mu g) = \lambda d_a f + \mu d_a g$$

Alors pour tout λ , $\mu \in \mathbb{R}$, $\lambda f + \mu g$ est différentiable en a et

$$d_a(\lambda f + \mu q) = \lambda d_a f + \mu d_a q.$$

Le produit fg est différentiable au point a, et

$$d_a(fq) = q(a)d_af + f(a)d_aq.$$

 $Si\ g(a) \neq 0\ alors\ rac{f}{g}\ est\ différentiable\ en\ a\ et$

$$d_a \frac{f}{g} = \frac{1}{g(a)^2} \left(g(a) d_a f - f(a) d_a g \right)$$

Proposition 5.18 (Composition d'applications différentiables) Soient $f: \mathcal{O} \in \mathbb{R}^n \longrightarrow \mathbb{R}^p$ et $: \mathcal{O}' \in \mathbb{R}^p \longrightarrow \mathbb{R}^q$ deux applications telles que f soit différentiable au point $a \in \mathcal{O}$ et g soit différentiable au point $b = f(a) \in \mathcal{O}'$ et $f(\mathcal{O}) \subset V$. Alors $f \circ g$ est différentiable au point a et

$$d_a f \circ g = d_b g \circ d_a f.$$

5.3.4 Vecteur gradient

Définition 5.21 Soit $a \in \mathcal{O}$ et p=1. O On appelle gradient de f en a le vecteur

$$\Delta f(a) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) \\ \frac{\partial f}{\partial x_2}(a) \\ \vdots \\ \frac{\partial f}{\partial x_n}(a) \end{pmatrix} \in \mathbb{R}^n$$

Proposition 5.19 Pour tout $a \in \mathcal{O}$, le vecteur gradient Δf est l'unique vecteur tel que pour tout $h \in \mathbb{R}^n$,

$$d_a f(h) = \langle \Delta f(a), h \rangle,$$

où pour tout $u = (u_1, \dots : u_n)$ et $v = (v_1, \dots : v_n)$ de \mathbb{R}^n

$$\langle u, v \rangle = \sum_{i=1}^{n} u_i v_i.$$

5.3.5 Matrice jacobienne

Dans cette partie $p \geq 2$

Définition 5.22 Si f est différentiable en a, alors on appelle matrice jacobienne de f en a et on note $Jac_a f$ la matrice de $d_a f$ dans les bases canoniques de \mathbb{R}^n et \mathbb{R}^p :

$$Jac_a f = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \cdots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_p}{\partial x_1}(a) & \cdots & \frac{\partial f_p}{\partial x_n}(a) \end{pmatrix}.$$

5.4 Fonction de classe C^1

Soit \mathcal{O} un ouvert de \mathbb{R}^2 et $f: \mathcal{O} \longrightarrow \mathbb{R}^p$.

Définition 5.23 On dit que f est de classe C^1 sur O si toutes ses dérivées partielles sont définies et continues sur O.

Théorème 5.1 On suppose que f est de classe de classe C^1 sur O. Alors f est différentiable sur O.

Définition 5.24 Soit \mathcal{O} un ouvert de \mathbb{R}^2 et $f: \mathcal{O} \longrightarrow \mathbb{R}^p$ une fonction différentiable.

Définition 5.25 Soit $a,b \in \mathcal{O}$ on définit $[a,b] \in \mathcal{O}$ par

$$[a,b] = \{(1-\lambda)a + \lambda b, \lambda \in [0,1]\}$$

.

5.4.1 Inégalité des accroissements finis

Cas des fonctions à valeurs dans R

Théorème 5.2 Si $f: \mathcal{O} \in \mathbb{R}^m \longrightarrow \mathbb{R}^n$ est continue sur [a,b] et différentiable en tout point de [a,b[, alors il existe une constante $c \in [a,b[$ tel que

$$(f(b) - f(a)) \le d_c f(b - a)$$

Cas des fonctions vectorielles définies sur un segment de R

Théorème 5.3 Si $f:[a,b] \in \mathbb{R} \longrightarrow \mathbb{R}^n$ est continue sur [a,b] et différentiable]a,b[, alors

$$||f(b) - f(a)|| \le \sup_{c \in]a,b[} ||f'(c)|| \times (b-a)$$

Le cas général : fonction de \mathbb{R}^m vers \mathbb{R}^n

Théorème 5.4 (Inégalité des accroissements finis sur \mathbb{R}^m) Si $f: \mathcal{O} \in \mathbb{R}^m \longrightarrow \mathbb{R}^n$ est continue sur le segment $]a,b[\in \mathcal{O}, alors]$

$$||f(b) - f(a)|| \le \sup_{t \in]a,b[} ||d_a f|| \times ||b - a||$$

5.4.2 Application lipschitzienne

Définition 5.26 Soit $f: \mathcal{O} \longrightarrow \mathbb{R}^p$ et soit $k \geq 0$. On dit que f est k-lipschitzienne si

$$\forall (u, v) \in \mathcal{O} \times \mathcal{O}, \quad \|f(u) - f(v)\| \le k \|u - v\|.$$

Lorsque $k \in [0, 1]$, on dit que f est contractante.

Exemple 5.11 Montrer f est contractante

5.4.3 Théorème d'inversion local et de des fonctions implicites

Définition 5.27 Soient E et F deux espaces de Banach. Soit \mathcal{O} un ouvert de E et f: $\mathcal{O} \longrightarrow F$ et f est de classe \mathcal{C}^1 sur \mathcal{O} .

- On dit que f est un difféomorphisme (sur son image) si f est une bijection de \mathcal{O} sur un ouvert $\mathcal{V} \subset F$ et si f^{-1} classe \mathcal{C}^1 sur \mathcal{V} .
- On dit que f est un difféomorphisme local en $a \in E$ s'il existe un voisinage ouvert \mathcal{U} de a dans \mathcal{O} tel que la restriction de f à \mathcal{U} soit un difféomorphisme.

Remarque 5.4.1 Pour que f soit un difféomorphisme, il faut et suffit que f soit injective et que ce soit un difféomorphisme local en chaque point de \mathcal{U} .

Théorème 5.5 (Inversion local) Pour que f soit un difféomorphisme local en a, il faut et suffit que f'(a) soit bijectif.

Fonctions implicites : cas des fonctions définies de \mathbb{R}^2 vers \mathbb{R}

Théorème 5.6 Soit \mathcal{O} un ouvert de \mathbb{R}^2 et $F: \mathcal{O} \longrightarrow \mathbb{R}$ et f est de classe \mathcal{C}^k , $k \geq 1$. Soit $(a,b)) \in \mathbb{R}^2$ tel que

$$F(a,b) = 0$$
 et $\frac{\partial F}{\partial u}(a,b) \neq 0$.

Alors il existe des voisinages V et W respectifs de a et b dans \mathbb{R} et une application ϕ : $V \longrightarrow W$ de classe \mathcal{C}^k , tel que $V \times W \subset \mathcal{O}$ et pour tout $(x,y) \in V \times W$,

$$F(x,y) = 0 \iff y = \phi(x).$$

En outre on peut choisir V et W de sorte que la dérivée partielle ∂F ne s'annule pas sur $V \times W$ et alors

$$\forall x \in V, \quad \phi'(x) = -\frac{\frac{\partial}{\partial x} F(x, \phi(x))}{\frac{\partial}{\partial y} F(x, \phi(x))}.$$

Fonctions implicites : cas générale

Théorème 5.7 Soit \mathcal{O} un ouvert de $\mathbb{R}^m \times \mathbb{R}^p$ et $f: \mathcal{O} \longrightarrow \mathbb{R}$ et f est de classe \mathcal{C}^k , $k \geq 1$. Soit $(a,b)) \in \mathbb{R}^m \times \mathbb{R}^p$ tel que f(a,b) = 0 et la différentielle partielle $d_y f(a,b)$ est inversible. Alors il existe un voisinages V de a dans \mathbb{R}^m , un voisinages W de b dans \mathbb{R}^p et une application $\phi: V \longrightarrow W$ de classe \mathcal{C}^k , tel que $V \times W \subset \mathcal{O}$ et pour tout $(x,y) \in V \times W$,

$$F(x,y) = 0 \iff y = \phi(x).$$

En outre on peut choisir V et W de sorte que $d_y f(x,y)$ soit inversible pour tout $(x,y) \in V \times W$ et alors

$$d\phi(x) = -(d_y f(x, \phi(x)))^{-1} \circ d_x (f(x, \phi(x))).$$

5.5 Dérivés d'ordres supérieurs et application à l'étude d'extrema

5.5.1 Dérivées partielles successives

Soit f une fonction d'un ouvert $\mathcal{O} \in \mathbb{R}^n$ à valeur dans \mathbb{R}^p

Définition 5.28 \triangleright On dit que f est de classe \mathcal{C}^2 sur \mathcal{O} si elle est de classe \mathcal{C}^1 sur \mathcal{O} et que toutes ses dérivées partielles sont de classe sur \mathcal{C}^1 .

- \triangleright On dit que f est de classe \mathcal{C}^k sur \mathcal{O} si elle est de classe \mathcal{C}^1 sur \mathcal{O} et que toutes ses dérivées partielles sont de classe sur $\mathcal{C}^{(k-1)}$.
- \triangleright On dit que f est de classe $\mathcal{C}^{+\infty}$ sur \mathcal{O} si elle est de classe \mathcal{C}^k sur \mathcal{O} et $k \in \mathbb{N}^*$.
- \triangleright Si f est de classe C^2 sur \mathcal{O} pour tout $i, j \in [|1, n|]$ on note

$$\frac{\partial^2 f}{\partial x_j^2} = \frac{\partial f}{\partial x_j} \left(\frac{\partial f}{\partial x_j} \right) \quad et \quad \frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial f}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)$$

Exercice 5.6 Calculer, en tout point (x, y) où elles sont définies, toutes les dérivées partielles secondes des fonctions de deux variables suivantes :

$$f_1:(x,y)\longmapsto x^2 \quad ; f_2;(x,y)\longmapsto x^2\cos(y) \quad ; \quad f_3:(x,y)\longmapsto x^y$$

Théorème 5.8 On suppose que f est de classe C^2 sur \mathcal{O} pour tout $i, j \in [|1, n|]$ on a sur \mathcal{O}

$$\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

5.5.2 Matrice Hessienne

Soit f une fonction de classe C^2 sur \mathcal{O} à valeurs dans \mathbb{R} a et $\in \mathcal{O}$. On appelle Hessienne de f en a la matrice (symétrique) noté $Hess_a f$ et

$$Hess_a f = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(a) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(a) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(a) \end{pmatrix}.$$

5.5.3 Application aux extremums locales

Soit f une fonction d'un ouvert $\mathcal{O} \in \mathbb{R}^n$ à valeur dans \mathbb{R} .

Définition 5.29 — On dit que f admet un point critique en a si $\Delta f(a) = 0$.

- On dit que f admet un maximum (minimum) local en a s'il existe r > 0 tel que pour tout $x \in B(a,r)$ on a $f(x) \leq f(a)$ ($f(x) \geq f(a)$).
- On dit que f admet un maximum (minimum) local strict en a s'il existe r > 0 tel que pour tout $x \in B(a,r)$ on a f(x) < f(a) $(f(x) \ge f(a))$.
- On dit que f admet un extremum local en a si elle admet un maximum ou un minimum local en a.

Proposition 5.20 On suppose que f est de classe C^1 et admet un extremum local en a. Alors $d_a f = 0$ ou, ce qui est équivalent, $\Delta f(a) = 0$.

Définition 5.30 Pour tout $h \in \mathbb{R}^n$ on définit Soit

$$Q_a f(h) = \frac{1}{2} {}^{t} h Hess_a(f) h.$$

- $-Q_a(f)$ est positive si pour tout $h \in \mathbb{R}^n$, $Q_a(f)(h) \geq 0$;
- $Q_a(f)$ est négative si pour tout $h \in \mathbb{R}^n$, $Q_a(f)(h) \leq 0$;
- $Q_a f$ est définie Positive si pour tout $h \in \mathbb{R}^n$, $Q_a(f)(h) > 0$;
- $Q_a f$ est définie négative si pour tout $h \in \mathbb{R}^n$, $Q_a(f)(h) < 0$;

Proposition 5.21 Soit a un point critique de f.

- \triangleright Si f admet un minimum local en a, alors $Q_a(f)$ est positive.
- \triangleright Si f admet un maximum local en a, alors $Q_a(f)$ est négative.

Proposition 5.22 Soit a un point critique de f.

- \triangleright Si $Q_a(f)$ est définie positive, alors f admet un minimum local strict en a.
- \triangleright Si $Q_a(f)$ est définie négative, alors f admet un maximum local strict en a.

Définition 5.31 Soit a un point critique de f. On dit que a est un point selle de f si $Q_a(f)(h)$ prend des valeurs strictement positives et strictement négatives

Remarque 5.5.1 Si a est un point selle de f, alors f n'admet pas d'extremum local en a.

Proposition 5.23 Soit f une fonction d'un ouvert $\mathcal{O} \in \mathbb{R}^2$ à valeur dans \mathbb{R}^p Soit a un point critique de f.

- $\triangleright Si \det(Hess_a(f)) < 0$, alors a est un point selle de f.
- $\triangleright Si \det(Hess_a(f)) > 0$, alors a admet un extremum local strict en a.
 - $Si \Delta f(a) > 0$, c'est un minimum local.
 - $Si \Delta f(a) < 0$, c'est un maximum local.

Chapitre 6

Intégrables Multiples

6.1 Intégrale à paramètres

6.1.1 Théorème de convergence dominé

Théorème 6.1 Soit I un intervalle de R. On considère une suite de fonctions $(f_n)_{n\in\mathbb{N}}$ continues sur I. On suppose que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers une fonction f et qu'il existe une fonction g intégrable sur I telle que

$$\forall n \in \mathbb{N}, \ \forall t \in I, \ ||f_n(t)|| \le g(t).$$

Alors f est intégrable sur I et

$$\int_{I} f_n(t)dt \longrightarrow \int_{I} f(t)dt.$$

Exemple 6.1 Montrer que l'intégrale $I_n = \int_1^{+\infty} \frac{1}{n^2+t^2} dt$ converge pour tout $t \in \mathbb{N}$. Étudier la convergence de la suite $(I_n)_{n \in \mathbb{N}}$.

6.1.2 Cas d'un intégrale sur un segment

Soient $a, b \in \mathbb{R}$ avec a < b et J un intervalle non vide de \mathbb{R} . On considère une fonction f de $[a, b] \times J$ dans \mathbb{R} . On cherche à étudier l'application ϕ définie sur J par :

$$\phi(x) = \int_{a}^{b} f(t, x)dt.$$

Proposition 6.1 On suppose que f est continue sur $[a,b] \times J$. Alors ϕ est définie et continue. sur J.

Théorème 6.2 On suppose que J est un intervalle ouvert. On suppose que f est continue sur $[a,b] \times J$ et admet une dérivée partielle $\frac{\partial}{\partial x}$ continue sur $[a,b] \times J$. Alors l'application ϕ précédente est bien définie sur J, elle est de classe C^1 et

$$\forall x \in J, \ \phi'(x) = \int_a^b \frac{\partial}{\partial x} f(t, x) dt$$

Exemple 6.2 Soit $f: \mathbb{R} \longleftrightarrow \mathbb{R}$ définie par

$$f(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{t^2+1} dt.$$

Montrer que f est continue sur \mathbb{R} .

6.1.3Cas d'une intégrale généralisé

Soient $a \in \mathbb{R}, b \in [a, +\infty] \cup \{+\infty\}$, J un intervalle de R et f une fonction de $[a, b] \times J$ dans \mathbb{R} . On s'intéresse, lorsqu'elle est bien définie, à la fonction ϕ définie sur J par

$$\phi(x) = \int_{a}^{b} f(t, x)dt.$$

Continuité sous le signe intégrale

Théorème 6.3 On suppose que f est continue sur $[a,b] \times J$ et qu'il existe une fonction g continue de [a, b] dans \mathbb{R} telle que

- (i) $\forall t \in [a, b[, \forall x \in J | f(t, x)] \leq g(t)$
- (ii) L'intégrale $\int_a^b g(t)dt$ converge.

Alors l'application ϕ est bien définie et continue sur J.

Dérivation sous le signe intégrale

Théorème 6.4 On suppose que l'intervalle J est ouvert. On suppose que f est continue sur $[a,b[\times J]$ et que l'intégrale généralisé $\int_a^b f(t,x)dt$ pour tout $x\in J$. On suppose que la dérivée partielle $\frac{\partial}{\partial x}$ est définie et continue $[a,b] \times J$. Enfin on suppose qu'il existe une fonction g continue de [a,b] dans $\mathbb R$ telle que

- (i) $\forall t \in [a, b[\ , \forall x \in J \mid \frac{\partial}{\partial x} f(t, x)] \leq g(t)$
- (ii) L'intégrale $\int_a^b g(t)dt$ converge.

Alors pour tout $x \in J$, $\int_a^b \frac{\partial}{\partial x} f(t,x) dt$ est absolument convergente, l'application ϕ est bien définie de classe C^1 sur J et

$$\forall x \in J, \ \phi'(x) = \int_a^b \frac{\partial}{\partial x} f(t, x) dt.$$

Exemple 6.3 Pour tout $x \in \mathbb{R}$ on pose

$$\phi(x) = \int_0^{+\infty} e^{-t^2} \cos(tx) dt.$$

Montrer que la fonction ϕ est continue et dérivable sur \mathbb{R}

6.2 Intégrale d'une fonction continue sur un domaine simple

6.2.1 Intégration sur un domaine de \mathbb{R}^2

Définition 6.1 Une partie A de \mathbb{R}^2 est dite élémentaire s'il existe $a, b, c, d \in \mathbb{R}$ avec a < b et c < d, et des fonctions ϕ_1, ϕ_2 continues sur [a, b] et ψ_1, ψ_2 continues sur [c, d] telles que $\phi_1(x) \leq \phi_2(x)$ pour tout $x \in [a, b]$, $\psi_1(y) \leq \psi_2(y)$ pour tout $y \in [c, d]$ et

$$A = \{(x, y) \in \mathbb{R}^2, a \le x \le b, \ \phi_1(x) \le y \le \phi_2(x)\}$$
$$= \{(x, y) \in \mathbb{R}^2, c \le y \le d, \ \psi_1(x) \le x \le \psi_2(x)\}.$$

L'intérieur de A est

$$\dot{A} = \{(x, y) \in \mathbb{R}^2, a < x < b, \ \phi_1(x) < y < \phi_2(x)\}$$
$$= \{(x, y) \in \mathbb{R}^2, c < y < d, \ \psi_1(x) < x < \psi_2(x)\}$$

.

Exemple 6.4 — Le pavé $[a,b] \times [c,d]$ avec a < b et c < d est une partie élémentaire $de \mathbb{R}^2$.

$$A = \left\{ (x, y) \in \mathbb{R}^2, -1 \le x \le 1, \ -\sqrt{1 - x^2} \le y \le \sqrt{1 - x^2} \right\}$$
$$= \left\{ (x, y) \in \mathbb{R}^2, -1 \le y \le 1, \ -\sqrt{1 - y^2} \le x \le \sqrt{1 - y^2} \right\}$$

Théorème 6.5 (Fubini) Soient A une partie élémentaire de \mathbb{R}^2 et f une fonction continue sur A. Avec les notations de la définition précédente, on a:

$$\int_{A} f(x,y) dx dy = \int_{a}^{b} \left(\int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x,y) dy \right) = \int_{c}^{d} \left(\int_{\psi_{1}(x)}^{\psi_{2}(x)} f(x,y) dx \right) dy$$

Exemple 6.5 — Calculer l'intégrale de la fonction $(x,y) \longrightarrow xy^2$ sur le pavé $[0,1] \times [1,2]$.

— Calculer l'intégrale de la fonction $(x,y) \longrightarrow xy^2$ sur $T = \{(x,y) \in [0,1]^2, y \le x\}$

Définition 6.2 On appelle partie simple de un ensemble S qui s'écrit comme union finie de parties élémentaires $A_1, ..., A_n$ d'intérieurs deux à deux disjoints :

$$\forall i, j \in [|1, n|, i \neq j \implies] A_i \cap A_j = \phi$$

Si f est une fonction continue sur S, on définit alors

$$\int_{S} = \sum_{k=1}^{n} \int_{A_k} f$$

Exemple 6.6 $\{(x,y) \in \mathbb{R}^2, 1 \leq \sqrt{x^2 + y^2} \leq 2\}$ est une partie simple de \mathbb{R}^2

Définition 6.3 Soit A une partie élémentaire de \mathbb{R}^2 . Alors on appelle aire de A la quantité

$$\int \int_A 1 dx dy$$

Exemple 6.7 Calculer l'aire des domaines suivants :

- $T = \{(x, y) \in [0, 1]^2, y \le x\}.$
- Le disque de centre 0 et de rayon 1.

Définition 6.4 Soit A une partie simple de \mathbb{R}^2 . On appelle centre de gravité de A le point de coordonnées

$$(x_G, y_G) = \frac{1}{Aire(D)} \left(\int \int_D x dx dy, \int \int_D y dx dy \right)$$

Exemple 6.8 Déterminer centre de gravité du disque D de centre (x_0, y_0) et de rayon R.

6.2.2 Intégration en dimensions supérieures

Définition 6.5 Soit V une partie simple de \mathbb{R}^3 . On appelle volume de V la quantité

$$\int \int_{V} 1 dx dy$$

Exemple 6.9 Calculer le volume de du domaine $T = \{(x, y, z) \in [0, 1]^3, x + y + z \le 1\}.$

6.3 Exercice

Exercice 6.1 Représenter l'ensemble de définition de la fonction f dans chacun des cas suivants :

$$f(x,y) = \ln(2x + y - 2) \quad f(x,y) = \sqrt{1 - xy} \quad f(x,y) = \frac{\ln(y - x)}{x}$$
$$f(x,y) = \sqrt{4 - x^2 - y^2} + \frac{1}{\sqrt{x^2 + y^2 - 1}}$$

Exercice 6.2 1. Montrer que si x et y sont deux réels, on a

$$2|xy| \le x^2 + y^2.$$

2. Soit f l'application de $\mathbb{R}^2 - \{(0,0)\}$ dans \mathbb{R} définie par :

$$f(x,y) = \frac{3x^2 + xy}{\sqrt{x^2 + y^2}}.$$

Montrer que pour tout $x \in \mathbb{R}^2 - \{(0,0)\}$ on a :

$$|f(x,y)| \le 4 ||(x,y)||_2$$
.

En déduire que f admet une limite en (0,0).

Exercice 6.3 Étudier la limite en (0,0) des fonctions suivantes.

- 1. $f(x,y) = (x+y)\sin(\frac{1}{x^2+y^2})$
- 2. $g(x,y) = \frac{x^2-y^2}{x^2+y^2}$
- 3. $h(x,y) = \frac{|x-y|}{x^2+y^2}$

Exercice 6.4 Soit f la fonction définie de \mathbb{R}^2 à valeurs dans \mathbb{R} par :

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & si(x,y) \neq (0,0) \\ 0 & si(x,y) \neq (0,0) \end{cases}$$

- 1. Montrer que f est continue sur \mathbb{R}^2 .
- 2. Montrer que f est de classe C^1 sur \mathbb{R}^2 .
- 3. Déduire que f est différentiable sur \mathbb{R}^2 et déterminer sa différentielle.

Exercice 6.5 Justifie l'existence de dérivés partielles des fonctions suivantes, et les calculer.

- 1. $f(x,y) = e^x \cos(y)$.
- 2. $g(x,y) = (x^2 + y^2) : (xy)$. 3. $\sqrt{1 + x^2y^2}$.

Exercice 6.6 Soit $f : \mathbb{R}^2 \longleftrightarrow \mathbb{R}^2$ une fonction de classe \mathcal{C}^1 .

- 1. On définit $g: \mathbb{R} \longleftrightarrow \mathbb{R}$, par $g(t) = f(2+2t,t^2)$. Démontrer que g est de \mathcal{C}^1 et calculer sa dérivé g'(t) en fonction des dérivés partielles de f.
- 2. On définit $h: \mathbb{R}^2 \longleftrightarrow \mathbb{R}^2$, par $h(u,v) = f(uv,u^2+v^2)$. Démontrer que h est de \mathcal{C}^1 et exprimer les dérivés partielles $\frac{\partial h}{\partial u}$ et $\frac{\partial h}{\partial v}$ en fonction des dérivés partielles $\frac{\partial f}{\partial x}$ et