11.8 Power series

Why power series?

- 1. 提供一個用來表示一些在數學物理化學界最重要的函數的方法。
- 2. 提供一個對某些難以微積的函數可以簡單計算微分積分的方法。
- 3. 提供一個逼近無理數或超越 (transcendental) 數的方法。

$$e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots = \sum_{n=0}^{\infty} \frac{1}{n!},$$

$$\ln 2 = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n},$$

$$\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1},$$

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

0.1 Power series, radius/interval of convergence

Define: A *power series* 冪級數 is a series of the form (從 n = 0 開始)

$$\left| \sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots \right|$$

where c_n 's are constants called the *coefficients* 係數 of the series.

A power series may converge for some x and diverge for others. The sum of the series is a function (可以看成函數值是級數和的函數, 定義域是收斂處。)

$$f(x) = \sum_{n=0}^{\infty} c_n x^n$$

whose domain is the set of all x for which the series converges. More generally,

$$\left| \sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \dots \right|$$

is called a **power series** in (x-a), or **centered** at a or about a.

Recall: 你我約定 $x^0 = 1$, 也答應永遠都不爲 x = 0 擔心。

Theorem 1 For a given power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ there are only three possibilities:

- (i) The series converges only when x = a.
- (ii) The series converges for all x.
- (iii) There is a positive number R such that the series converges if |x-a| < R and diverges if |x-a| > R.

Proof. Find R by the Completeness Axiom of Real Numbers.

Define: The number R is called the *radius of convergence* 收斂半徑 of the power series: in case (i) R = 0, (ii) $R = \infty$.

Define: The *interval of convergence* 收斂區間 of the power series, also the domain of $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$: (i) $[a,a] = \{a\}$, (ii) $(-\infty,\infty)$, (iii) |x-a| < R can be written as a-R < x < a+R.

When x is an endpoint, $x = a \pm R$, anything can be happened, so there are four possibilities: (a-R,a+R), (a-R,a+R], [a-R,a+R), [a-R,a+R]. 是哪個? 要檢驗 $x = a \pm R$ 會不會收斂。

Skill: 用 Ratio (或 Root) Test 找 R, 再用其他的檢查 $x = a \pm R$ 的時候。

	Radius	Interval	
$\overline{}(i)$	0	$\{a\}$	中心收斂, 半徑爲零。
(ii)	∞	$(-\infty,\infty)$	處處收斂, 半徑無限。
		(a-R,a+R)	
(iii)	R	(a-R,a+R]	內收外發。
		[a-R,a+R)	
		[a-R,a+R]	

Note:
$$\sum_{n=0}^{\infty} c_n x^n$$
 (or $\sum_{n=0}^{\infty} c_n (x-a)^n$) 在中心 0 (or a) 一定會收斂, 總和 = $c_0 + c_1 0^1 + c_2 0^2 + \dots + c_n 0^n + \dots = c_0$. 在幂級數中心呼喊收斂。

Recall:
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n (:= 1 + x + x^2 + \dots + x^n + \dots) \iff |x| < 1.$$

Attention: 冪級數會等於 (可以當成) 函數是有區域限定。(收斂區間)

Ex: take
$$x = -1$$
, $\frac{1}{1-x} = \frac{1}{2}$, $\sum_{n=0}^{\infty} (-1)^n$ does not exist (diverges).

$$1 - 1 + 1 - 1 + \dots + (-1)^n + \dots \neq \frac{1}{2}$$
.

Example 0.1 For what values of x is the series $\sum_{n=0}^{\infty} n! x^n$ convergent?

(中心) If
$$x = 0$$
, $\sum_{n=0}^{\infty} n! x^n = 0! + 1! 0^1 + 2! 0^2 + \dots = 1$, converges.

(找半徑) If
$$x \neq 0$$
 (才能約分), $(a_n = n!x^n,$ 要包含 x^n 。)

(找半徑) If
$$x \neq 0$$
 (才能約分), $(a_n = n!x^n, \ \text{要包含 } x^n \circ)$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!x^{n+1}}{n!x^n} \right| = \lim_{n \to \infty} (n+1)|x| = \infty. \ (\not < 1, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)$$

By the Ratio Test,
$$\sum_{n=0}^{\infty} n! x^n$$
 converges only when $x=0$.

(radius and interval of convergence are 0 and $[0,0] = \{0\}$.)

$$\oint: \sum_{n=0}^{\infty} n! x^n = 0! = 1 \iff x = 0. \text{ Who is } f(x)? 1.$$

Example 0.2 For what values of x is the series $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ convergent?

(中心) If
$$x = 3$$
, $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n} = 0$, converges.

(找半徑) If
$$x \neq 3$$
, $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(x-3)^{n+1}}{n+1}}{\frac{(x-3)^n}{n}} \right| = \lim_{n \to \infty} \frac{|x-3|}{1+\frac{1}{n}} = |x-3|.$

By the Ratio Test, $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n} \left\{ \begin{array}{ll} \text{converges} & \text{if } |x-3| < 1, \text{ and } \\ \text{diverges} & \text{if } |x-3| > 1. \end{array} \right.$

(査端點) $|x-3| < 1 \iff 2 < x < 4$.

If
$$x = 4$$
, then $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n} \stackrel{\text{Ph. } x=4}{\equiv} \sum_{n=1}^{\infty} \frac{1}{n}$ (harmonic series) diverges.

If
$$x=2$$
, then $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n} \stackrel{\text{fth } x=2}{=} \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ (= $-\ln 2$) converges by the

Alternating Series Test
$$(\frac{1}{n} \searrow 0)$$
. $\therefore \sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ converges for $2 \le x < 4$.

(radius and interval of convergence are 1 and [2,4).)

Note: $a_n = c_n(x-a)^n$, c_n 有 n! 用比值 Ratio, 有 c^n 用開根 Root。

沒規定只能用一種:
$$\sqrt[n]{\left|\frac{(x-3)^n}{n}\right|} = \frac{|x-3|}{\sqrt[n]{n}} \to |x-3| \text{ as } n \to \infty \ (\sqrt[n]{n} \to 1).$$

$$\oint : \sum_{n=1}^{\infty} \frac{(x-3)^n}{n} = -\ln|x-4| \iff x \in [2,4).$$

Example 0.3 Find the domain of the Bessel function of order 0 defined by

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$

If x = 0, $J_0(0)$ converges.

If
$$x \neq 0$$
, $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(-1)^{n+1} x^{2(n+1)}}{2^{2(n+1)} ((n+1)!)^2}}{\frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}} \right| = \lim_{n \to \infty} \frac{x^2}{4(n+1)^2} = 0 < 1.$

By the Ratio Test, $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$ converges for all x, the domain of the Bessel function J_0 is $(-\infty, \infty) = \mathbb{R}$.

(radius and interval of convergence are ∞ and $(-\infty, \infty)$.)

Skill:
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \left(\text{or } \sqrt[n]{|a_n|} \right) = \begin{cases} \infty, & \Longrightarrow R = 0; \\ 0, & \Longrightarrow R = \infty; \\ ?, & ? \le 1 \iff |x - a| \le R. \end{cases}$$

Example 0.4 Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$.

(中心) If x = 0, converges.

(找半徑) If $x \neq 0$,

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}}}{\frac{(-3)^n x^n}{\sqrt{n+1}}} \right| = \lim_{n \to \infty} 3|x| \sqrt{\frac{1 + \frac{1}{n}}{1 + \frac{2}{n}}} = 3|x|.$$

By the Ratio Test, $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$ converges if $(3|x| < 1 \iff)|x| < \frac{1}{3}$ and

diverges if $(3|x| > 1 \iff)|x| > \frac{1}{3}$.

So the radius of convergence is $\frac{1}{3}$.

(查端點)
$$|x| < \frac{1}{3} \iff -\frac{1}{3} < x < \frac{1}{3}$$
.

If
$$x = -\frac{1}{3}$$
, then $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}} = \sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}} \stackrel{\text{\tiny TB}}{=} \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$,

p-series with $p = \frac{1}{2} \le 1$, diverges.

If
$$x = \frac{1}{3}$$
, then $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}} \stackrel{\text{\tiny [PR]}}{=} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$,

converges by the Alternating Series Test $(\frac{1}{\sqrt{n}} \searrow 0)$.

So the interval of convergence is $\left(-\frac{1}{3}, \frac{1}{3}\right]$.

Note: 不一定每個冪級數收斂時的函數都能寫得出來。

Example 0.5 Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}$.

(中心) If x = -2, converges.

(找半徑) If $x \neq -2$,

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(n+1)(x+2)^{n+1}}{3^{n+2}}}{\frac{n(x+2)^n}{3^{n+1}}} \right| = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \frac{|x+2|}{3} = \frac{|x+2|}{3}.$$

By the Ratio Test, $\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}$ converges if $(\frac{|x+2|}{3} < 1 \iff)|x+2| < 3$

and diverges if $(\frac{|x+2|}{3} > 1 \iff)|x+2| > 3$.

So the radius of convergence is 3.

(查端點) $|x+2| < 3 \iff -5 < x < 1$.

If
$$x = -5$$
, then $\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}} = \sum_{n=0}^{\infty} \frac{n(-3)^n}{3^{n+1}} = \frac{1}{3} \sum_{n=1}^{\infty} (-1)^n n$,

diverges by the Test for Divergence $(\lim_{n\to\infty} (-1)^n n \not\equiv)$.

If
$$x = 1$$
, then $\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}} = \sum_{n=0}^{\infty} \frac{n(3)^n}{3^{n+1}} = \frac{1}{3} \sum_{n=1}^{\infty} n$,

diverges by the Test for Divergence $(\lim_{n\to\infty} n = \infty \ \nexists)$.

So the interval of convergence is (-5,1).

$$\oint : \sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}} = \frac{x+2}{(x-1)^2} \iff x \in (-5,1).$$

♦ Additional: Application of power series

斐波那契數列: Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, . . .

$$f_n = f_{n-1} + f_{n-2}, \qquad f_1 = f_2 = 1.$$

Let $f(x) = \sum_{n=0}^{\infty} f_n x^n = x + x^2 + 2x^3 + \dots$, where $f_0 = 0$.

$$f(x) = x + x^{2} + 2x^{3} + 3x^{4} + \dots = \sum_{n=0}^{\infty} f_{n}x^{n}$$

$$-) x f(x) = x^{2} + x^{3} + 2x^{4} + \dots = \sum_{n=0}^{\infty} f_{n}x^{n+1} = \sum_{n=1}^{\infty} f_{n-1}x^{n}$$

$$-) x^{2} f(x) = x^{3} + x^{4} + \dots = \sum_{n=0}^{\infty} f_{n}x^{n+2} = \sum_{n=2}^{\infty} f_{n-2}x^{n}$$

$$(1 - x - x^{2})f(x) = x + \sum_{n=2}^{\infty} (f_{n} - f_{n-1} - f_{n-2})x^{n} = x.$$

$$f(x) = \frac{x}{1 - x - x^{2}} = \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \frac{1 + \sqrt{5}}{2}x} - \frac{1}{1 - \frac{1 - \sqrt{5}}{2}x} \right)$$

$$= \frac{1}{\sqrt{5}} \left[\sum_{n=0}^{\infty} \left(\frac{1 + \sqrt{5}}{2} \right)^{n} x^{n} - \sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right]$$

$$= \sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n} \right] x^{n},$$

$$f_{n} = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n} \right].$$

(radius of convergence ?)

解河內塔 (n連環): Towers of Hanoi: 1,3,7,15,...

$$h_n = 2h_{n-1} + 1, \qquad h_1 = 1.$$

Let
$$h(x) = \sum_{n=0}^{\infty} h_n x^n = x + 3x^2 + 7x^3 + \dots$$
, where $h_0 = 0$.

$$h(x) = x + 3x^2 + 7x^3 + 15x^4 + \dots = \sum_{n=0}^{\infty} h_n x^n$$

$$-)2xh(x) = 2x^2 + 6x^3 + 14x^4 + \dots = \sum_{n=0}^{\infty} 2h_n x^{n+1} = \sum_{n=1}^{\infty} 2h_{n-1} x^n$$

$$-) \frac{x}{1-x} = x + x^2 + x^3 + x^4 + \dots = \sum_{n=0}^{\infty} x^{n+1} = \sum_{n=1}^{\infty} x^n$$

$$(1-2x)h(x) = \frac{x}{1-x},$$

$$h(x) = \frac{x}{(1-x)(1-2x)} = \frac{1}{1-2x} - \frac{1}{1-x}$$

$$= \sum_{n=0}^{\infty} 2^n x^n - \sum_{n=0}^{\infty} x^n$$

$$= \sum_{n=0}^{\infty} (2^n - 1)x^n,$$

$$h_n = 2^n - 1.$$

(radius of convergence?)

♦ Extra: Some series sums

•
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$$
.

Proof. [Euler, 1735] $\because \sin n\pi = 0, \forall n \in \mathbb{Z}$, and

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$= x \prod_{n \in \mathbb{Z}} (1 - \frac{x}{n\pi}) = x(1 - \frac{x}{\pi})(1 + \frac{x}{\pi})(1 - \frac{x}{2\pi})(1 + \frac{x}{2\pi}) \cdots$$

$$= x - \sum_{n=0}^{\infty} \frac{1}{n^2} \frac{x^3}{\pi^2} + \sum_{1 \le n < k} \frac{1}{n^2 k^2} \frac{x^5}{\pi^4} + \cdots,$$

$$\frac{1}{3!} = \sum_{n=1}^{\infty} \frac{1}{n^2} \frac{1}{\pi^2}$$
 (compare coefficient of x^3),

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6};$$

$$\frac{1}{5!} = \sum_{1 \le n \le h} \frac{1}{n^2 k^2} \frac{1}{\pi^4}$$
 (compare coefficient of x^5),

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = (\sum_{n=1}^{\infty} \frac{1}{n^2})^2 - 2\sum_{1 \le n \le k} \frac{1}{n^2 k^2} = (\frac{\pi^2}{6})^2 - 2\frac{\pi^4}{120} = \frac{\pi^4}{90}.$$

•
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}.$$

Proof.

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \sum_{n=1}^{\infty} \frac{1}{(2n)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2}$$
$$= \frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{3}{4} \times \frac{\pi^2}{6} = \frac{\pi^2}{8}.$$

•
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \dots \approx 0.915965594177,$$

卡塔蘭常數 (Catalan's constant), 尚不知是否爲無理數, 是否爲超越數。