

EuroMembrane (EMS) 2022

Sorrento, Naples, Italy, November 2022

formation using in-situ microscopy and particle-tracking

- 1 Civil & Environmental Engineering, Technion Israel Institute of Technology
- 2 Nano-science and Nano-Technology program, Technion Israel Institute of Technology

V

Intro.

Our concept

Methods

Results

Concl.

Interfacial Polymerization (IP)

Our concept

Methods

Results

Concl.

Desalination by RO

The product of IP:

Crumpled polyamide film

Synthesis — Morphology — Performance

Why?

- ✓ Improve existing membranes
- ✓ Move towards 'green materials'

Park et al., Green Chem. 2021

Our concept

Methods

Results

Concl.

The Concept

Instability mechanisms

Smooth= Stable

https://www.youtube.com/watch?v=y0WRJtXvpSo

A Nulens and Ben Zvi et al., *JMS* (2022)

Instability mechanisms

Intro.

Our concept

Methods

Results

Our concept

Methods

Results

Concl.

Instability mechanisms During IP

Bubble

formation

Our concept

Methods

Results

Concl.

Gradients in interfacial tension drive a flow: Marangoni flow

Instability mechanisms

During IP

Intro.

Our concept

Methods

Results

How can we observe a flow in IP?

Intro.

Our concept

Our

Methods

Results

Concl.

Instability

Synthesis — Morphology

Performance

In-situ monitoring – insight of reaction dynamics

Motivation:

Methods:

Microfluidic device

<u>Aqueous phase</u>: fluorescent particles (1µm) + MPD

Organic phase: Isopar-G + TMC

Videos of 2D image over time ~39 frames/sec

Particle Tracking

Intro.

Our concept

Methods

Results

Manzo et al., Rep. on Prog. in Phys. (2015)

- Acquisition of the displacement using confocal microscopy
- Tracking particles using TrackMate plugin, Fiji.

What do we expect to see?

Intro.

Our concept

Methods

Results

Concl.

Random motion (Brownian) Tr

- No bulk flow.
- The motion is thermal-driven.

Directed motion

- Particles act as tracers that move with the bulk.
- Brownian + bulk directed motion

11

Observed trajectories

Intro.

Our concept

Methods

Results

Concl.

Low concentrations:

0.02% MPD; 0.001% TMC

Standard concentrations:

2% MPD; 0.1% TMC

Our concept

Methods

Results

Concl.

MPD diffusion Observed MPD partitioning trajectories

Interfacial tension

CO-Solvent:

2% MPD; 0.1% TMC +

Polymerization

High concentrations:

4% MPD; 0.2% TMC

Our concept

Methods

Results

Concl.

Observed trajectories

Additives in the

aqueous phase

Bubbling ¹

Sustains reaction

Interfacial tension \

SDS:

2% MPD +2% SDS; 0.1% TMC

NaHCO3:

2% MPD +2% NaHCO₃; 0.1% TMC

Our concept

Methods

Results

Concl.

Motion Parameters

net distance

1. Confinement ratio= net distance travelled

0 < Confinement ratio < 1

"Confined" movement~ Brownian motion Directed motion

2. Straight line speed= net distance total track time

total distance travelled = $\sum d_{i,i+1}$

max distance travelled = Max d_{ii}

mean directional change = $1/N \sum \alpha_{i,j+1}$

Motion Parameters

Intro.

Confinement ratio= net distance travelled

Straight line speed= net distance total track time

Methods

- Motion parameters increase when monomer concentrations increase and with the addition of co-solvent = more directed flow
- Motion parameters for the additives are like Brownian motion

V

Intro.

Our concept

Methods

Results

Concl.

Instability mechanisms During IP

Conclusions

Intro.

Our concept

Methods

Results

Concl.

Different motion behaviors between the tested conditions.

 At higher monomer concentrations and \or with a co-solvent a directed and fast motion towards the interface.

Addition of SDS or NaHCO3, resulted in Brownian motion.

Tracking particles provides us with new insights about IP.

Future work:

- Test other kinds of additives.
- Data analysis.

Acknowledgements

Thank you for Listening ©

