Лабораторная работа №2

Задача о погоне

Джахангиров Илгар Залид

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
5	Выводы	12

Список иллюстраций

4.1	таблица																	9
4.2	таблица																	10
43	таблина																	11

1 Цель работы

Построить математическую модель для выбора правильной стратегии при решении примера задаче о погоне.

2 Задание

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 9.9 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4,1 раза больше скорости браконьерской лодки.

- 1. Записать уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Найти точку пересечения траектории катера и лодки

3 Теоретическое введение

Кривая погони — кривая, представляющая собой решение задачи о «погоне», которая ставится следующим образом. Пусть точка А равномерно движется по некоторой заданной кривой. Требуется найти траекторию равномерного движения точки Р такую, что касательная, проведённая к траектории в любой момент движения, проходила бы через соответствующее этому моменту положение точки А [wiki:bash?].

4 Выполнение лабораторной работы

Формула для выбора варианта: (1032225689%70)+1 = 20 вариант.

Запишем уравнение описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).

Принимем за $t_0=0, x_0=0$ – место нахождения лодки браконьеров в момент обнаружения, $x_{k0}=k$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров x_{k0} ($\theta=x_{k0}=0$), а полярная ось r проходит через точку нахождения катера береговой охраны.

Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса θ , только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстояниих от полюса. За это время лодка пройдет x, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние,

вычисляется как $\frac{x}{v}$ или $\frac{k-x}{4.1v}$ (во втором случае $\frac{k+x}{4.1v}$). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояниех можно найти из следующего уравнения:

$$\dfrac{x}{v}=\dfrac{k-x}{4.1v}$$
 – в первом случае $\dfrac{x}{v}=\dfrac{k+x}{4.1v}$ – во втором

Отсюда мы найдем два значения $x_1=\dfrac{9.9}{5,1}$ и $x_2=\dfrac{9.9}{3,1}$, задачу будем решать для двух случаев.

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и - v_τ тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса, $v_r = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $\frac{dr}{dt} = v$.

Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\dfrac{d\theta}{dt}$ на радиус $r, r\dfrac{d\theta}{dt}$. Получаем:

// Параметры v = 1; // Скорость лодки (можно задать любое значение, например, 1 км/ч) t = 0:0.1:10; // Время от 0 до 10 часов с шагом 0.1

// Случай 1: Катер впереди лодки $x_c1 = 9.9 + 4.1 * v * t;$ // Траектория катера $x_b1 = 0 + v * t;$ // Траектория лодки

// Случай 2: Катер позади лодки x_c2 = -9.9 + 4.1 * v * t; // Траектория катера x_b2 = 0 + v * t; // Траектория лодки

// Построение графиков scf(0); plot(t, x_c1, 'r', t, x_b1, 'b'); xlabel('Время (ч)'); ylabel('Расстояние (км)'); title('Случай 1: Катер впереди лодки'); legend(['Катер'; 'Лодка']);

scf(1); plot(t, x_c2, 'r', t, x_b2, 'b'); xlabel('Время (ч)'); ylabel('Расстояние (км)'); title('Случай 2: Катер позади лодки'); legend(['Катер'; 'Лодка']);

```
m.sci (C:\Users\liqar Chahangirow\Documents\work\study\2025-2026\Математическая Моделирование\matmod\m.sci) - SciNote:
m.sci 💥
1 //-Параметры
2 V = -1; -//-Скорость подки - (можно - задать - любое - значение, - например, -1 - км/ч)
3 t = ·0:0.1:10; ·// ·Время · от · 0 · до · 10 · часов · с · шагом · 0.1
5 // - Случай - 1: - Катер - впереди - лодки
6 x_cl = 9.9 + 4.1 * v * t; // Траектория катера
7 x_bl = 0 + v * t; // Траектория - лодки
9 //-Случай-2:-Катер-позади-лодки
10 x_c2 -= -9.9 -+ -4.1 - * -v - * -t; -//-Траектория - катера
11 x_b2 -= · 0 · + · v · * · t; · // · Траектория · лодки
12
13 //-Построение-графиков
14 scf(0);
15 plot(t, x_cl, 'r', t, x_bl, 'b');
16 <u>xlabel('Время · (ч)');</u>
17 ylabel ('Расстояние - (км) ');
18 <u>title ('Случай - 1: - Катер - впереди - лодки')</u>;
19 <u>legend(['Катер'; 'Лодка']);</u>
20
21 scf(1);
22 plot(t, x_c2, .'r', .t, .x_b2, .'b');
23 <u>xlabel('Время · (ч)');</u>
24 <u>vlabel ('Расстояние - (км) ');</u>
25 title ('Случай - 2: -Катер - позади - лодки');
26 <u>legend(['Катер'; 'Лодка']);</u>
27
```

Рис. 4.1: таблица

Рис. 4.2: таблица

Рис. 4.3: таблица

5 Выводы

В процессе выполнения данной лабораторной работы я построил математическую модель для выбора правильной стратегии при решении примера задаче о погоне.