Testes de Hipótese

MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Testes de Hipóteses

Um teste de hipótese é uma técnica de análise usada para estimar se uma hipótese sobre a população está correta, usando os dados de uma amostra.

Hipóteses Estatísticas sobre médias

Suposições:

H ₀	Hipótese nula	Suposição feita sobre a população, que pode ou não ser rejeitada
H ₁	Hipótese alternativa	Suposição contrária sobre a população, que pode ser validada somente se H ₀ for rejeitada

Ex.:

- H_0 : a média é **igual** a 30
- H₁: a média é **diferente** de 30

As Hipóteses

Hipótese Nula

- Também definida como H_o;
- Podemos rejeitá-la em favor da hipótese alternativa, ou não rejeitá-la, caso haja evidência de que esteja correta.

Hipótese Alternativa

- Também definida como H_a;
- Só é válida quando a hipótese nula é rejeitada, ou seja, ela é a alternativa à nossa suposição principal.

ATENÇÃO! Nunca podemos dizer que aceitamos uma hipótese nula! Podemos fazer uma analogia:

- H₀: Pedro é inocente de um crime de assassinato;
- H₁: Pedro é culpado de um crime de assassinato;

Podemos rejeitar a hipótese de que Pedro seja inocente se apresentarmos provas o suficiente pra isso. Porém, se não tivermos provas o suficiente para identificá-lo como culpado, também não podemos dizer que ele é inocente por falta de provas.

O passo a passo

Passo 1

Interprete a situação de modo a identificar a suposição sobre a **média populacional** μ;

Passo 2

Construa as **hipóteses**, considerando a média em questão e defina qual o tipo de teste (unilateral, bilateral);

Passo 3

Obtenha o **grau de significância** e os **dados da amostra** fornecida – se o teste for bilateral, a **significância** é a **metade**;

Passo 4

Verifique qual o **tipo de distribuição** mais apropriado (normal ou t-Student) – de acordo com o tamanho da amostra e se o desvio populacional foi informado;

Passo 5

Calcule a estatística de teste, usando:

$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$
 (para a normal)

Passo 6

Obtenha a **região crítica**, usando o grau de significância e a tabela Normal Padrão ou t-Student.

Passo 7

Interprete a **estatística de teste** de acordo com a **região crítica** para verificar se a hipótese nula será ou não será rejeitada. Se z ou t corresponder a valores da região crítica, rejeite H_0 , caso contrário, não rejeite H_0 .

Tipos de Teste

Os tipos de hipótese definem qual será a região crítica a ser considerada:

Bilateral

- H₀: a média é igual a algum valor
- H₁: a média é diferente de algum valor

Unilateral à direita

- H₀: a média é igual (ou menor) a algum valor
- H₁: a média é maior a algum valor

Unilateral à esquerda

- H_0 : a média é igual (ou maior) a algum valor
- H₁: a média é menor a algum valor

Como saber qual distribuição utilizar?

Como interpretar um teste?

Devemos comparar a estatística do teste com a região crítica obtida através da distribuição!

De acordo com o nível de significância e com o tipo de teste, obtemos a região crítica

Estatística do teste

$$Z_{calc} = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

Utilizamos o valor de Z calculado para verificar se ele está na região crítica!

Teste de Hipóteses para duas amostras

O procedimento é o mesmo, apenas consideramos as estatísticas de teste a seguir:

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

$$t = \frac{x_1 - x_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- Obs.: para t-Student, o grau de liberdade é o menor entre os valores de n_1-1 e n_2-1 .
- Obs. 2: considere que o teste acima é válido para amostras de populações diferentes. Não será cobrado testes para amostras da mesma população (amostras dependentes), pois a estimação da variância é feita de outra forma.

Tipos de Teste de 2 amostras

Bilateral

- H₀: a dif. entre médias é igual a zero
- H₁: a dif. entre médias é diferente de zero

Unilateral à direita

- H_0 : a dif. entre médias é igual ou menor a zero
- H₁: a dif. entre médias é maior que zero

Unilateral à esquerda

- H₀: a dif. entre médias é igual ou maior a zero
- H₁: a dif. entre médias é menor que zero

Tipos de Teste de 2 amostras

Bilateral

- H₀: as duas médias são iguais
- H₁: as duas médias são diferentes

Unilateral à direita

- H₀: a média 1 é igual ou menor a média 2
- H₁: a média 1 é maior que a média 2

Unilateral à esquerda

- H₀: a média 1 é igual ou maior a média 2
- H₁: a média 1 é menor que a média 2

1. Uma fábrica anuncia que o índice de nicotina dos cigarros da marca X apresenta-se abaixo de 26 mg por cigarro. Um laboratório realiza 10 análises do índice obtendo: 26, 24, 23, 22, 28, 25, 27, 26, 28, 24.

Sabe-se que o índice de nicotina dos cigarros da marca X se distribui normalmente com variância 5,36 mg². Pode-se aceitar a afirmação do fabricante, ao nível de 5%?

Vamos seguir o passo a passo que definimos antes...

Passo 1

Interprete a situação de modo a identificar a suposição sobre a **média populacional µ**.

O problema diz: "Uma fábrica anuncia que o índice de nicotina dos cigarros da marca X apresenta-se abaixo de 26 mg por cigarro."

Logo, estamos supondo que a média populacional é menor que 26 mg por cigarro.

Passo 2

Construa as **hipóteses**, considerando a média em questão e defina qual o tipo de teste (unilateral, bilateral);

O problema diz: "Uma fábrica anuncia que o índice de nicotina dos cigarros da marca X apresenta-se **abaixo** de 26 mg por cigarro."

Nosso objetivo é testar esta hipótese, de forma que devemos **rejeitar** ou **não rejeitar** a hipótese contrária. Logo, as hipóteses serão:

- H_0 : a média é **maior ou igual** a 26 mg.
- H_1 : a média é **menor** que 26 mg.

Dessa forma, o teste é unilateral à esquerda.

Passo 3

Obtenha o **grau de significância** e os **dados da amostra** fornecida – se o teste for bilateral, a **significância** é a **metade**;

A amostra fornecida é 26, 24, 23, 22, 28, 25, 27, 26, 28, 24. Dessa forma, calculando a média, temos: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} \bar{x}_i = \frac{253}{10} = 25,3.$

O nível de significância a ser considerado é 5% (0,05). Se fosse um teste bilateral, teríamos que considerar 2,5% (0,025).

Passo 4

Verifique qual o **tipo de distribuição** mais apropriado (normal ou t-Student) – de acordo com o tamanho da amostra e se o desvio populacional foi informado;

Verificamos que, apesar do tamanho da amostra ser menor que 30, o valor do desvio padrão populacional é conhecido, portanto usaremos a distribuição normal para calcular a estatística do teste.

Passo 5

Calcule a estatística de teste, usando:

$$Z=rac{ar{x}-\mu}{\sigma/\sqrt{n}}$$
 (para a normal) ou $t=rac{ar{x}-\mu}{s/\sqrt{n}}$ (para a t-Student)

Utilizando os dados já fornecidos, calculamos a estatística:

$$Z_{calc} = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} = \frac{25,3 - 26}{\sqrt{5,36}/\sqrt{10}} = \frac{25,3 - 26}{0,73} = -0,959$$

Passo 6

Obtenha a **região crítica**, usando o grau de significância e a tabela Normal Padrão ou t-Student.

Antes de obtermos o valor de Z correspondente à região crítica na tabela, é importante observar que a tabela possui valores correspondentes à região de 0 até z_0 , quando precisamos procurar pelo valor de z até infinito.

Neste caso precisamos procurar na tabela o valor de z correspondente a 0,5 – alfa!

Passo 6

Obtenha a **região crítica**, usando o grau de significância e a tabela Normal Padrão ou t-Student.

Com o nível de significância = 0,05, obtemos o valor correspondente a 0,5 – 0,05 = 0,45 na tabela da Normal Padrão (ao lado) que é 1,64.

Obs.: como não há 0,45 na tabela, pegamos o valor mais próximo, 0,4495.

Logo, a região crítica é $[-\infty, -1.64]$

z ₀	0	1	2	3	4	5
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599

Se fôssemos usar a distribuição t-Student:

- O valor da região crítica estará na parte interna da tabela, logo procuraremos pelo valor 0,45 nas colunas (ao contrário da Normal Padrão).
- O valor será correspondente a n 1 graus de liberdade, aonde n é o tamanho da amostra. Como o tamanho da amostra é 10, temos 9 graus de liberdade.

Nesse caso, o valor obtido é 1,8331, então a região crítica seria:

$$[-\infty, -1,8331]$$

_		p									
t	0	0,30	0,35	0,40	0,45	0,47	0,475	0,48	0,49	0,495	
	1	1,3764	1,9626	3,0777	6,3138	10,5789	12,7062	15,8945	31,8205	63,6567	
	2	1,0607	1,3862	1,8856	2,9200	3,8964	4,3027	4,8487	6,9646	9,9248	
	3	0,9785	1,2498	1,6377	2,3534	2,9505	3,1824	3,4819	4,5407	5,8409	
	4	0,9410	1,1896	1,5332	2,1318	2,6008	2,7764	2,9985	3,7469	4,6041	
	5	0,9195	1,1558	1,4759	2,0150	2,4216	2,5706	2,7565	3,3649	4,0321	
	6	0,9057	1,1342	1,4398	1,9432	2,3133	2,4469	2,6122	3,1427	3,7074	
	7	0,8960	1,1192	1,4149	1,8946	2,2409	2,3646	2,5168	2,9980	3,4995	
	8	0,8889	1,1081	1,3968	1,8595	2,1892	2,3060	2,4490	2,8965	3,3554	
	9	0,8834	1,0997	1,3830	1,8331	2,1504	2,2622	2,3984	2,8214	3,2498	
	10	0,8791	1,0931	1,3722	1,8125	2,1202	2,2281	2,3593	2,7638	3,1693	
	11	0,8755	1,0877	1,3634	1,7959	2,0961	2,2010	2,3281	2,7181	3,1058	

Passo 7

Interprete a **estatística de teste** de acordo com a **região crítica** para verificar se a hipótese nula será ou não será rejeitada. Se z ou t corresponder a valores da região crítica, rejeite H_0 , caso contrário, não rejeite H_0 .

O valor da estatística do teste calculado foi de -0,959, que se encontra **fora** da região crítica.

Logo, **não** podemos rejeitar H₀, ou seja, não possuímos evidência suficiente para afirmar que a nicotina nos cigarros é menor do que 26 mg. Então, com base nessa amostra, a afirmação do fabricante é falsa.

1) Uma fábrica de automóveis anuncia que seus carros consomem, em média, 10 litros de gasolina por 100 quilômetros, com desvio padrão de 0,8 litros. Uma revista desconfia que o consumo é maior e resolve testar essa afirmação. Para tal, analisa 35 automóveis dessa marca, obtendo como consumo médio 10,2 litros por 100 quilômetros. Considerando que o consumo siga o modelo Normal, o que a revista pode concluir sobre o anúncio da fábrica ao nível de 1%?

2) A altura dos adultos de uma certa cidade tem distribuição normal com média de 164 cm e desvio padrão de 5,82 cm. Deseja-se saber se as condições sociais desfavoráveis vigentes na parte pobre da cidade causam um retardamento no crescimento dessa população. Para isso, levantou-se uma amostra de 144 adultos dessa parte da cidade, obtendo-se a média de 162 cm. Pode esse resultado indicar que os adultos residentes na área são em média mais baixos que os demais habitantes da cidade ao nível de 5%?

3) A vida média das lâmpadas elétricas produzidas por uma empresa era de 1.120 horas. Uma amostra de 8 lâmpadas extraída recentemente apresentou a vida média de 1.070 horas, com desvio padrão de 125h e distribuição normal para a vida útil. Testar a hipótese de que a vida média das lâmpadas não se alterou ao nível de 1%.

4) Uma máquina é projetada para fazer esferas de aço de 1 cm de raio. Uma amostra de 10 esferas é produzida e tem o raio médio de 1,004 cm, com s = 0,003. Há razões para suspeitar que a máquina esteja produzindo esferas com raio maior que 1 cm, ao nível de 10%?

5) De duas populações normais X_1 e X_2 com variâncias 25, levantaram-se duas amostras de tamanhos $n_1 = 9$ e $n_2 = 16$, obtendo-se:

$$\sum_{i=1}^{9} x_{1_i} = 27 \qquad \sum_{j=1}^{16} x_{2_j} = 32$$

Ao nível de 10%, testar as hipóteses:

$$\begin{cases} H_0: \mu_1 - \mu_2 = 0 & 1^{\text{a}} \text{ população: } X_1: N(\mu_1, 25)n_1 = 9 \\ H_1: \mu_1 - \mu_2 \neq 0 & \overline{x}_1 = \frac{27}{9} \rightarrow \overline{x}_1 = 3 \end{cases}$$

$$2^{a}$$
 população: X_2 : $N(\mu_2, 32)n_2 = 16$

Dúvidas

