

STOCK PRICE ANALYSIS

A DEEP LEARNING APPROACH TO FORECASTING STOCK PRICES

ANJANA P | SULEKHA P S

29.79

PROJECT OVERVIEW

Objective

To analyze and predict stock prices for Amazon, Google, Microsoft, and Apple using machine learning.

Problem Statement

To analyze the stock prices of companies based on historical data.

Approach Summary

Using an LSTM model to capture complex temporal patterns in stock prices, leveraging deep learning to enhance prediction accuracy.

SCOPE OF WORK

01

Data Exploration

02

Data Preprocessing

03

Feature Selection

04

Model
Building and
Training

05

Evaluation and Visualization

06

Reporting Findings

DATA COLLECTION

DATA SOURCE

Yahoo Finance library for reliable and timely stock data.

FEATURES

Opening price

Closing price

High

Low

Adjusted closing price

Trading volume

SELECTED STOCKS

Amazon

Google

Microsoft

Apple

TIME FRAME

Historical data from the previous year was utilized to train and test the model, capturing important price patterns.

DATA PREPROCESSING

Ensure the data is accurate, consistent, and scaled properly to improve model performance.

O1 Handling Missing Values: Forward Fill Method

O2 Duplicates Removal

03 Normalization & Scaling

Adjusted Closing Prices

Volume of Sales

Moving Averages

$$SMA = (P1 + P2 + ... + Pn) / n$$

Daily Returns

Daily Return(t)
=
Price(t)-Price(t-1)/
Price(t-1)

Joint Plot - Google Vs Google

Joint Plot - Google Vs Microsoft

Pair Plot

Pair Grid- Closing Prices

Pair Grid- Daily Returns

Risk Analysis

Correlation Heatmaps

MODEL SELECTION

- Algorithm Chosen: Long Short-Term Memory (LSTM)
- Why LSTM?

MODEL ARCHITECTURE

Input 60-day sliding window used for timeseries analysis. Layer **Two LSTM** 128 units and 64 units respectively, with return sequences for deeper learning. Layers 2 Dense Final output layer for price prediction. Layers **Activation &** LSTM layers use ReLU activation; Mean Squared Error (MSE) as the loss function. **Loss Functions** Adam optimizer for efficient **Optimizer** convergence.

MODEL TRAINING & EVALUATION

30EpochsBatch SizeTraining Process

Data Splitting

Root Mean Squared Error (RMSE)

Evaluation Metric

APPLE - Closing Price

Prediction Graph

THANK YOU