

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:SSSPTA1623PAZ

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * Welcome to STN International * * * * * * * * *

NEWS 1 Web Page for STN Seminar Schedule - N. America
NEWS 2 AUG 10 Time limit for inactive STN sessions doubles to 40
 minutes
NEWS 3 AUG 18 COMPENDEX indexing changed for the Corporate Source
 (CS) field
NEWS 4 AUG 24 ENCOMPLIT/ENCOMPLIT2 reloaded and enhanced
NEWS 5 AUG 24 CA/CAplus enhanced with legal status information for
 U.S. patents
NEWS 6 SEP 09 50 Millionth Unique Chemical Substance Recorded in
 CAS REGISTRY
NEWS 7 SEP 11 WPIDS, WPINDEX, and WPIX now include Japanese FTERM
 thesaurus
NEWS 8 OCT 21 Derwent World Patents Index Coverage of Indian and
 Taiwanese Content Expanded
NEWS 9 OCT 21 Derwent World Patents Index enhanced with human
 translated claims for Chinese Applications and
 Utility Models
NEWS 10 NOV 23 Addition of SCAN format to selected STN databases
NEWS 11 NOV 23 Annual Reload of IFI Databases
NEWS 12 DEC 01 FRFULL Content and Search Enhancements
NEWS 13 DEC 01 DGENE, USGENE, and PCTGEN: new percent identity
 feature for sorting BLAST answer sets
NEWS 14 DEC 02 Derwent World Patent Index: Japanese FI-TERM
 thesaurus added
NEWS 15 DEC 02 PCTGEN enhanced with patent family and legal status
 display data from INPADOCDB
NEWS 16 DEC 02 USGENE: Enhanced coverage of bibliographic and
 sequence information
NEWS 17 DEC 21 New Indicator Identifies Multiple Basic Patent
 Records Containing Equivalent Chemical Indexing
 in CA/CAplus
NEWS 18 JAN 12 Match STN Content and Features to Your Information
 Needs, Quickly and Conveniently
NEWS 19 JAN 25 Annual Reload of MEDLINE database
NEWS 20 FEB 16 STN Express Maintenance Release, Version 8.4.2, Is
 Now Available for Download
NEWS 21 FEB 16 Derwent World Patents Index (DWPI) Revises Indexing
 of Author Abstracts
NEWS 22 FEB 16 New FASTA Display Formats Added to USGENE and PCTGEN
NEWS 23 FEB 16 INPADOCDB and INPAFAMDB Enriched with New Content
 and Features
NEWS 24 FEB 16 INSPEC Adding Its Own IPC codes and Author's E-mail
 Addresses

NEWS EXPRESS FEBRUARY 15 10 CURRENT WINDOWS VERSION IS V8.4.2,
AND CURRENT DISCOVER FILE IS DATED 15 JANUARY 2010.

NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS LOGIN Welcome Banner and News Items

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN customer agreement. This agreement limits use to scientific research. Use for software development or design, implementation of commercial gateways, or use of CAS and STN data in the building of commercial products is prohibited and may result in loss of user privileges and other penalties.

* *

FILE 'HOME' ENTERED AT 13:55:56 ON 23 FEB 2010

=> file reg	COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST		0.22	0.22

FILE 'REGISTRY' ENTERED AT 13:56:16 ON 23 FEB 2010
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2010 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 21 FEB 2010 HIGHEST RN 1206966-88-2
DICTIONARY FILE UPDATES: 21 FEB 2010 HIGHEST RN 1206966-88-2

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 26, 2009.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stngen/stndoc/properties.html>

=>
Uploading c:\documents and settings\pzucker\my documents\examination auxillary files\10566995\10566995 amdt 11.23.09 ring cmpds

L1 STRUCTURE UPLOADED

=> d 11
L1 HAS NO ANSWERS
L1 STR

Structure attributes must be viewed using STN Express query preparation.

=> search l1 sss sam

SAMPLE SEARCH INITIATED 13:56:56 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 12484 TO ITERATE

16.0% PROCESSED 2000 ITERATIONS

0 ANSWERS

INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**

PROJECTED ITERATIONS: 242984 TO 256376

PROJECTED ANSWERS: 0 TO 0

L2 0 SEA SSS SAM L1

=> search l1 sss full

FULL SEARCH INITIATED 13:57:13 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 251170 TO ITERATE

100.0% PROCESSED 251170 ITERATIONS

31 ANSWERS

SEARCH TIME: 00.00.01

L3 31 SEA SSS FUL L1

=> d scan

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclohexene-1-acetic acid, α -methoxy-, methyl ester
MF C10 H16 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):32

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclopentene-1-acetic acid, α -[(2E)-3-phenyl-2-propen-1-yl]oxy]-,
(1R,2S,5R)-5-methyl-2-(1-methylethyl)cyclohexyl ester
MF C26 H36 O3

Absolute stereochemistry.
Double bond geometry as shown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclohexene-1-acetic acid, α -(acetyloxy)-, ethyl ester, (R)- (9CI)
MF C12 H18 O4

Absolute stereochemistry. Rotation (-).

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclohexene-1-acetic acid, α -(acetyloxy)-,
5-methyl-2-(1-methylethyl)cyclohexyl ester,
[1R-[1 α (R*),2 β ,5 α]]- (9CI)
MF C20 H32 O4

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 1-Cyclohexene-1-acetic acid, α -propoxy-
 MF C11 H18 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 1-Cyclohexene-1-acetic acid, α -(1,1-dimethylethoxy)-,
 1,1-dimethylethyl ester
 MF C16 H28 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 1-Cyclopentene-1-acetic acid, α -[(2E)-2-hexen-1-yloxy]-,
 (1R,2S,5R)-5-methyl-2-(1-methylethyl)cyclohexyl ester
 MF C23 H38 O3

Absolute stereochemistry.
 Double bond geometry as shown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cycloheptene-1-acetic acid, α -(acetyloxy)-, ethyl ester, (R)-
(9CI)
MF C13 H20 O4

Absolute stereochemistry. Rotation (-).

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cycloheptene-1-acetic acid, α -(acetyloxy)-,
5-methyl-2-(1-methylethyl)cyclohexyl ester,
[1R-[1 α (R*),2 β ,5 α]]- (9CI)
MF C21 H34 O4

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclohexene-1-acetic acid, α -methoxy-
MF C9 H14 O3
CI COM

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclohexene-1-acetic acid, α -(acetyloxy)- α -(2-propen-1-yloxy)-, hexyl ester
MF C19 H30 O5

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclopentene-1-acetic acid, α -[(2Z)-2-hexen-1-yloxy]-,
(1R,2S,5R)-5-methyl-2-(1-methylethyl)cyclohexyl ester
MF C23 H38 O3

Absolute stereochemistry.
Double bond geometry as shown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 1-Cyclopentene-1-acetic acid, α -(acetyloxy)-,
 5-methyl-2-(1-methylethyl)cyclohexyl ester,
 [1R-[1 α (S*)],2 β ,5 α]- (9CI)
 MF C19 H30 O4

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 1-Cyclopentene-1-acetic acid, α -(acetyloxy)-, ethyl ester
 MF C11 H16 O4

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclopentene-1-acetic acid, α -[[[(3,5-dichlorophenyl)amino]carbonyl]oxy]-, methyl ester
MF C15 H15 Cl2 N O4

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclohexene-1-acetic acid, α,α -dimethoxy-, methyl ester
MF C11 H18 O4

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclopentene-1-acetic acid, α -methoxy-, 1,1-dimethylethyl ester
MF C12 H20 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN

IN 1-Cyclohexene-1-acetic acid, α -(acetyloxy)-,
5-methyl-2-(1-methylethyl)cyclohexyl ester,
[1R-[1 α (S*)],2 β ,5 α]- (9CI)
MF C20 H32 O4

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclohexene-1-acetic acid, α -(acetyloxy)-, ethyl ester
MF C12 H18 O4

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclopentene-1-acetic acid, α -[[[(4-
chlorophenyl)amino]carbonyl]oxy]-, methyl ester
MF C15 H16 Cl N O4

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN

IN 1-Cyclopentene-1-acetic acid, α -(carboxymethoxy)-
MF C9 H12 O5

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN Propanedioic acid, 2-(acetyloxy)-2-(1-cyclopenten-1-yl)-, 1,3-diethyl ester
MF C14 H20 O6

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cycloheptene-1-acetic acid, α -(acetyloxy)-,
5-methyl-2-(1-methylethyl)cyclohexyl ester,
[1R-[1 α (S*),2 β ,5 α]]- (9CI)
MF C21 H34 O4

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cycloheptene-1-acetic acid, α -(acetyloxy)-, ethyl ester
MF C13 H20 O4

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclohexene-1-acetic acid, α -[(chloroacetyl)oxy]-, methyl ester,
(S)- (9CI)
MF C11 H15 Cl O4

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 1-Cyclohexene-1-acetic acid, α -(carboxymethoxy)-
MF C10 H14 O5

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 1-Cyclohexene-1-acetic acid, α -methoxy-, compd. with phenylmethyl carbamimidothioate (1:1)
 MF C9 H14 O3 . C8 H10 N2 S

CM 1

CM 2

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 1-Cyclopentene-1-acetic acid, α -[(2Z)-4-[[tris(1-methylethyl)silyl]oxy]-2-buten-1-yl]oxy]-, (1R,2S,5R)-5-methyl-2-(1-methylethyl)cyclohexyl ester
 MF C30 H54 O4 Si

Absolute stereochemistry.
 Double bond geometry as shown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 1-Cyclopentene-1-acetic acid, α -(acetyloxy)-, ethyl ester, (R)- (9CI)
 MF C11 H16 O4

Absolute stereochemistry. Rotation (-).

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 1-Cyclopentene-1-acetic acid, α -(acetyloxy)-,
 5-methyl-2-(1-methylethyl)cyclohexyl ester,
 [1R-[1 α (R*), 2 β , 5 α]]- (9CI)
 MF C19 H30 O4

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L3 31 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 1-Cyclohexene-1-acetic acid, α -(2-methoxy-2-oxoethoxy)-, methyl
 ester
 MF C12 H18 O5

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

ALL ANSWERS HAVE BEEN SCANNED

- => e1-Cyclopentene-1-acetic acid, α -methoxy-, 1,1-dimethylethyl ester/cn
L4 0 E1-CYCLOPENTENE-1-ACETIC ACID, A-METHOXY-, 1,1-DIMETHYLETHYL ESTER/CN
- => e 1-Cyclopentene-1-acetic acid, α -methoxy-, 1,1-dimethylethyl ester/cn
E1 1 1-CYCLOPENTENE-1-ACETIC ACID, TERT-BUTYL ESTER/CN
E2 1 1-CYCLOPENTENE-1-ACETIC ACID, TRIMETHYLSILYL ESTER/CN
E3 0 --> 1-CYCLOPENTENE-1-ACETIC ACID, A-METHOXY-, 1,1-DIMETHYLETHYL ESTER/CN
E4 1 1-CYCLOPENTENE-1-ACETIC-CARBOXY-14C ACID, 3-CARBOXY-, DIETHYL ESTER/CN
E5 1 1-CYCLOPENTENE-1-ACETO-2',5'-XYLIDIDE/CN
E6 1 1-CYCLOPENTENE-1-ACETO-O-TOLUIDIDE/CN
E7 1 1-CYCLOPENTENE-1-ACETO-P-TOLUIDIDE/CN
E8 1 1-CYCLOPENTENE-1-ACETONITRILE/CN
E9 1 1-CYCLOPENTENE-1-ACETONITRILE, A,A-DIMETHYL-3-OXO-/CN
E10 1 1-CYCLOPENTENE-1-ACETONITRILE, A,2,4,4-TETRAMETHYL-5-OXO-/CN
E11 1 1-CYCLOPENTENE-1-ACETONITRILE, A-(((1-METHYLETHYL)SULFONYL)OXY)IMINO)-/CN
E12 1 1-CYCLOPENTENE-1-ACETONITRILE, A-((3,3,3-TRIFLUOROPROPYL)SULFONYL)METHYL)-/CN
- => e 1-Cyclopentene-1-acetic acid, α -methoxy-, 1,1-dimethylethyl ester/cn
E1 1 1-CYCLOPENTENE-1-ACETANILIDE, N,2,3,3-TETRAMETHYL-/CN
E2 1 1-CYCLOPENTENE-1-ACETIC ACID/CN
E3 0 --> 1-CYCLOPENTENE-1-ACETIC ACID, A-METHOXY-, 1,1-DIMETHYLETHYL ESTER/CN
E4 1 1-CYCLOPENTENE-1-ACETIC ACID, A,A,2-TRIMETHYL-, ET ESTER/CN
E5 1 1-CYCLOPENTENE-1-ACETIC ACID, A,A,2-TRIMETHYL-, ETHYL ESTER/CN
E6 1 1-CYCLOPENTENE-1-ACETIC ACID, A,A-DIFLUORO-, ETHYL ESTER/CN
E7 1 1-CYCLOPENTENE-1-ACETIC ACID, A,A-DIMETHYL-/CN
E8 1 1-CYCLOPENTENE-1-ACETIC ACID, A,A-DIMETHYL-, ETHYL ESTER/CN
E9 1 1-CYCLOPENTENE-1-ACETIC ACID, A,A-DIMETHYL-, METHYL ESTER/CN
E10 1 1-CYCLOPENTENE-1-ACETIC ACID, A,A-DIMETHYL-5-PHENYLMETHYL-, METHYL ESTER/CN
E11 1 1-CYCLOPENTENE-1-ACETIC ACID, A,2-DIMETHYL-5-OXO-, (5-(2-THIENYLMETHYL)-3-FURANYL)METHYL ESTER/CN
E12 1 1-CYCLOPENTENE-1-ACETIC ACID, A,3,3,5-TETRAMETHYL-, ET HYDROXYL ESTER/CN
- => e 1-Cyclopentene-1-acetic acid, α -methoxy-, 1,1-dimethylethyl ester/cn
E1 1 1-CYCLOPENTENE-1-ACETIC ACID, A-ISOCYANO-A-METHYL-, METHYL ESTER/CN
E2 1 1-CYCLOPENTENE-1-ACETIC ACID, A-METHOXY-, 1,1-DIMETHYLETHYL ESTER/CN
E3 0 --> 1-CYCLOPENTENE-1-ACETIC ACID, A-METHOXY-, 1,1-DIMETHYLETHYL ESTER/CN
E4 1 1-CYCLOPENTENE-1-ACETIC ACID, A-METHYL-/CN
E5 1 1-CYCLOPENTENE-1-ACETIC ACID, A-METHYL-, (5-(PHENYLMETHYL)-3-FURANYL)METHYL ESTER/CN
E6 1 1-CYCLOPENTENE-1-ACETIC ACID, A-METHYL-, 1,1-DIMETHYLETHYL ESTER/CN

E7 1 THYL ESTER/CN
 1 -CYCLOPENTENE-1-ACETIC ACID, A-METHYL-, ETHYL ESTER/C
 N
 E8 1 1-CYCLOPENTENE-1-ACETIC ACID, A-METHYL-, METHYL ESTER/
 CN
 E9 1 1-CYCLOPENTENE-1-ACETIC ACID, A-METHYL-A-(((3,3,
 3-TRIFLUOROPROPYL)SULFONYL)METHYL)-, METHYL ESTER/CN
 E10 1 1-CYCLOPENTENE-1-ACETIC ACID, A-METHYL-A-((3,3,3
 -TRIFLUOROPROPYL)SULFONYL)-, METHYL ESTER/CN
 E11 1 1-CYCLOPENTENE-1-ACETIC ACID, A-METHYL-A-(PHENYL
 THIO)-, METHYL ESTER/CN
 E12 1 1-CYCLOPENTENE-1-ACETIC ACID, A-METHYL-2-((4-METHYL-3-
 FURANYL)METHYL)-3-(PHENYLMETHOXY)-/CN

=> e2

L5 1 "1-CYCLOPENTENE-1-ACETIC ACID, A-METHOXY-, 1,1-DIMETHYLETHYL ESTER"/CN

=> d 15

L5 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2010 ACS on STN
 RN 286455-99-0 REGISTRY
 ED Entered STN: 18 Aug 2000
 CN 1-Cyclopentene-1-acetic acid, α -methoxy-, 1,1-dimethylethyl
 ester (CA INDEX NAME)
 MF C12 H20 O3
 SR CA
 LC STN Files: CA, CAPLUS

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1907 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

=> file caplus			
COST IN U.S. DOLLARS	SINCE FILE	TOTAL	
FULL ESTIMATED COST	ENTRY	SESSION	
	209.54	209.76	

FILE 'CAPLUS' ENTERED AT 14:02:40 ON 23 FEB 2010
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the

American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 23 Feb 2010 VOL 152 ISS 9
FILE LAST UPDATED: 22 Feb 2010 (20100222/ED)
REVISED CLASS FIELDS (/NCL) LAST RELOADED: Dec 2009
USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Dec 2009

CAplus now includes complete International Patent Classification (IPC) reclassification data for the third quarter of 2009.

CAS Information Use Policies apply and are available at:

<http://www.cas.org/legal/infopolicy.html>

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> 15
L6 1 L5

=> d 16 ti fbib abs

L6 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2010 ACS on STN
TI Regiochemistry of molybdenum-catalyzed O-H insertions of vinylcarbenoids
AN 2000:443464 CAPLUS <<LOGINID::20100223>>
DN 133:176928
TI Regiochemistry of molybdenum-catalyzed O-H insertions of vinylcarbenoids
AU Davies, H. M. L.; Yokota, Y.
CS Department of Chemistry, State University of New York at Buffalo, Buffalo,
NY, 14260-3000, USA
SO Tetrahedron Letters (2000), 41(25), 4851-4854
CODEN: TELEAY; ISSN: 0040-4039
PB Elsevier Science Ltd.
DT Journal
LA English
AB Molybdenum-catalyzed decomposition of vinyldiazoacetates generates
vinylcarbenoids that preferentially react with alcs. at the vinylogous
position of the vinylcarbenoid rather than at the carbenoid site.
OSC.G 10 THERE ARE 10 CAPLUS RECORDS THAT CITE THIS RECORD (10 CITINGS)
RE.CNT 25 THERE ARE 25 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

=>
=> FILE REG
COST IN U.S. DOLLARS SINCE FILE TOTAL
ENTRY SESSION
FULL ESTIMATED COST 18.60 228.36

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE TOTAL
ENTRY SESSION
CA SUBSCRIBER PRICE -0.85 -0.85

FILE 'REGISTRY' ENTERED AT 14:21:31 ON 23 FEB 2010
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2010 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 21 FEB 2010 HIGHEST RN 1206966-88-2
DICTIONARY FILE UPDATES: 21 FEB 2010 HIGHEST RN 1206966-88-2

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 26, 2009.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stngen/stndoc/properties.html>

=> E 1-Cyclohexene-1-acetic acid, α -methoxy-/CN
E1 1 1-CYCLOHEXENE-1-ACETIC ACID, A-HYDROXY-6-OXO-, (1R,2S,
5R)-5-METHYL-2-(1-METHYLETHYL)CYCLOHEXYL ESTER, (AS)-/
CN
E2 1 1-CYCLOHEXENE-1-ACETIC ACID, A-ISOCYANO-A-METHYL
-, METHYL ESTER/CN
E3 1 --> 1-CYCLOHEXENE-1-ACETIC ACID, A-METHOXY-/CN
E4 1 1-CYCLOHEXENE-1-ACETIC ACID, A-METHOXY-, COMPD. WITH P
HENYLMETHYL CARBAMIMIDOTHIOATE (1:1)/CN
E5 1 1-CYCLOHEXENE-1-ACETIC ACID, A-METHOXY-, METHYL ESTER/
CN
E6 1 1-CYCLOHEXENE-1-ACETIC ACID, A-METHYL-/CN
E7 1 1-CYCLOHEXENE-1-ACETIC ACID, A-METHYL-, (5-(PHENYLMETH
YL)-3-FURANYL)METHYL ESTER/CN
E8 1 1-CYCLOHEXENE-1-ACETIC ACID, A-METHYL-, (S)-/CN
E9 1 1-CYCLOHEXENE-1-ACETIC ACID, A-METHYL-, 1,1-DIMETHYLET
HYL ESTER/CN
E10 1 1-CYCLOHEXENE-1-ACETIC ACID, A-METHYL-, 2-(DIETHYLAMIN
O)ETHYL ESTER/CN
E11 1 1-CYCLOHEXENE-1-ACETIC ACID, A-METHYL-, 2-DIETHYLAMINO
ETHYL ESTER/CN
E12 1 1-CYCLOHEXENE-1-ACETIC ACID, A-METHYL-, 2-HYDROXY-.ALP
HA.-METHYLCYCLOHEXANEACETIC ACID Γ -LACTONE/CN

=> E3
L7 1 "1-CYCLOHEXENE-1-ACETIC ACID, A-METHOXY-"/CN

=> D L7

L7 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2010 ACS on STN
RN 105105-90-6 REGISTRY
ED Entered STN: 08 Nov 1986
CN 1-Cyclohexene-1-acetic acid, α -methoxy- (CA INDEX NAME)
MF C9 H14 O3
CI COM
SR CA
LC STN Files: BEILSTEIN*, CA, CAPLUS, CASREACT
(*File contains numerically searchable property data)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

2 REFERENCES IN FILE CA (1907 TO DATE)
 2 REFERENCES IN FILE CAPLUS (1907 TO DATE)

=> FILE CAPLUS

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	8.09	236.45
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	0.00	-0.85

FILE 'CAPLUS' ENTERED AT 14:22:15 ON 23 FEB 2010
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 23 Feb 2010 VOL 152 ISS 9
 FILE LAST UPDATED: 22 Feb 2010 (20100222/ED)
 REVISED CLASS FIELDS (/NCL) LAST RELOADED: Dec 2009
 USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Dec 2009

CAplus now includes complete International Patent Classification (IPC) reclassification data for the third quarter of 2009.

CAS Information Use Policies apply and are available at:

<http://www.cas.org/legal/infopolicy.html>

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> L7
 L8 2 L7

=> D L8 1-2 TI FBIB ABS

L8 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2010 ACS on STN
TI Cyclohexene-1-carboxaldehyde
AN 1959:34474 CAPLUS <>LOGINID::20100223>>
DN 53:34474
OREF 53:6110d-h
TI Cyclohexene-1-carboxaldehyde
AU Bergmann, Ernst D.; Becker, Abraham
CS Hebrew Univ., Jerusalem, Israel
SO Journal of Organic Chemistry (1958), 23, 1553-4
CODEN: JOCEAH; ISSN: 0022-3263
DT Journal
LA Unavailable
OS CASREACT 53:34474
AB Cyclohexenyltrichloromethylcarbinol (I) heated with 4 moles of 20% NaOH gave 25% cyclohexenylglycolic acid (II), but the yield of cyclohexene-1-carboxaldehyde (III) was more variable, much polymeric material being formed. All expts. failed to pyrolyze I in the presence of KOH, K₂CO₃, or Cu powder, or to split it by means of concentrated H₂SO₄ or Pb(OAc)₄. I (82%) was prepared from 1 mole Cl₃CCHO, 2 moles cyclohexene, and 14 g. AlCl₃, b15 150°. I (1 mole) and 2 moles NaOMe in 500 ml. MeOH refluxed 3 hrs., the alc. removed, the solid filtered off, washed, and the filtrate and washings treated with H₂O and 200 ml. Et₂O, the ethereal layer dried, and distilled gave 90% dicyclohexenyl glycolide (IV), b20 140°. I (57 g.) and 50 g. NaOH in 100 ml. H₂O refluxed 1 hr., cooled, extracted with Et₂O, and acidified gave 10 g. II, b30 155°, m. 125°. IV (27.6 g.) refluxed 3 hrs. with 8 g. NaOH in 100 ml. H₂O yielded 30 g. I, which solidified spontaneously and m. 125° without further purification. Treatment of I with 5 moles NaOH in MeOH or PrOH gave cyclohexenylmethoxy-acetic acid (V), b0.1 124°, and cyclohexenylpropoxy-acetic acid (VI), b25 156°, resp. Pyrolysis of V and VI with Cu powder gave 54 and 73% III, so that the over-all yield, calculated on cyclohexene, was 15 and 49%, resp. NaOH (50 g.) in 200 ml. MeOH mixed with 57 g. I and the mixture refluxed 1 hr. after the exothermic reaction subsided, the alc. removed, H₂O added, and the mixture extracted with Et₂O and the aqueous layer acidified gave 23 g. V. The same result was obtained when NaOMe was used instead of NaOH. IV (27.6 g.), 18 g. NaOMe, and 100 ml. alc. refluxed 2 hrs., H₂O added, and the mixture acidified gave 31 g. V. NaOH (50 g.) in 300 ml. PrOH refluxed 1 hr. with 57 g. I gave 36 g. VI, b25 156°. V (17 g.) and 1 g. Cu powder heated 2 hrs. at 200° gave 3.7 g. III, b1 61°. Similarly, 10 g. VI and 1 g. Cu powder heated 2 hrs. at 200° gave 4.5 g. III; 2,4-dinitrophenylhydrazone, m. 212° (BuOH).

L8 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2010 ACS on STN
TI Olefinic acid. VIII. α-Bromocyclohexylideneacetic acid
AN 1954:3364 CAPLUS <>LOGINID::20100223>>
DN 48:3364
OREF 48:574c-i,575a-b
TI Olefinic acid. VIII. α-Bromocyclohexylideneacetic acid
AU Newman, D. D. E.; Owen, L. N.
CS Imperial Coll. Sci. Technol., London
SO Journal of the Chemical Society (1952) 4713-21
CODEN: JCSOA9; ISSN: 0368-1769
DT Journal
LA Unavailable
OS CASREACT 48:3364
AB cf. C.A. 44, 4863i. Cyclohexylideneacetic acid (I), m. 90-1°, has a maximum absorption at 2260A. (ϵ 13,200). In the presence of BF₃, cyclohexanone and CH₂CO react to give 1-cyclohexeneacetic acid, m. 36-7°; 1,2-dibromide, m. 119-20°. Br (15.9 g.) in 30 cc. HOAc was added over 1 hr. to 13.5 g. I in 80 cc. HOAc at 15°.

After removal of HOAc and recrystn. of the solid product from light petr. gave 1, α -dibromocyclohexaneacetic acid (II), m. 136-7°. II (2.0 g.), shaken with 200 cc. 0.12N NaOH for 1 hr., extracted with ether, the exts. dried and distilled, gave 0.88 g. ω -bromomethylenecyclohexane (III), b15 75-6°, n19D 1.5165, also obtained by heating I with pyridine for 1 hr. at 60-5°. Oxidation of III with KMnO₄ gave cyclohexanone. An ice cold solution of NaOEt (2.15 g. Na and 30 cc. absolute EtOH) was added to a solution of 12.5 g. II in 50 cc. absolute EtOH at -15°, the solution warmed to room temperature in 16 hrs., the alc. removed, and the residue acidified, gave 7.8 g. α -bromocyclohexylideneacetic acid (IV), m. 120°; λ EtOHmax.: 2260, 2420, 2470, 2510A.; p-bromophenacyl ester, m. 113°. A mixture of 0.99 g. IV and 10 cc. 5N NaOMe-MeOH boiled for 24 hrs. gave α -methoxy-1-cyclohexeneacetic acid (V), m. 59-60°, λ EtOHmax. 2260A.; Me ester, b16 125°, b0.5 90°, n15D 1.4712; S-benzylthiuronium salt m. 179°. Reaction rate data for the formation of V from IV indicates a rearrangement to α -bromo-1-cyclohexeneacetic acid (VII) precedes methanolysis. Acidification of the residue from the isolation V gave, on filtration, the double salt (C₈H₁₃O)₂CO₂H.₂(C₈H₁₃O)₂CO₂Na, m. 201-2°. Evaporation of the filtrate gave an oil which, with CH₂N₂, gave what is probably a mixture of VI and Me α -methoxycyclohexylideneacetate. Heating 4.5 g. IV 24 hrs. with 45 cc. 5N MeONa-MeOH gave, on dilute with water, extraction with Et₂O, and acidification of the aqueous solns., 2-hydroxy- α -methoxycyclohexaneacetic acid lactone (VIII), b30 120°, n16D 1.4710, and V. A solution of 2.17 g. V in 20 cc. CC₁₄, ozonized at 0°, and steam distilled after decomposition at 100° with 2N H₂SO₄, gave methoxymethyl cyclopentyl ketone; semicarbazone, m. 192-3°. Oxidation of V with KMnO₄ gave adipic acid. Hydrogenation of V at pH 9 over Pd-C catalyst in H₂O gave α -methoxycyclohexaneacetic acid (IX), m. 67°. Et cyclohexaneacetate (X), b0.2 42-3°, n15D 1.4470, prepared by reduction of PhCH₂CO₂Et, gave cyclohexaneacetic acid, b0.3 75°, m. 26-7°. α -Hydroxycyclohexaneacetic acid (XI) (5.7 g.), m. 135°, was obtained by treating 12.5 g. Et α -bromocyclohexaneacetate (XII) (b0.4 86-7°) with 100 cc. 2.5N NaOH and 50 cc. dioxane for 16 hrs. on a steam bath. XI (2.05 g.), 12 g. Ag₂O, and 20 g. MeI shaken together, heated at 65° for 2 hrs., extracted with Et₂O, the exts. evaporated, C₆H₆ added, water removed by azeotropic distillation, and the residue remethylated gave 1.48 g. Me α -methoxycyclohexaneacetate (XIII), b30 120°, n16D 1.4520; hydrolysis gave IX; p-bromophenacyl ester, m. 70°. XII (6.4 g.) heated for 16 hrs. with 50 cc. 2N MeONa-MeOH, poured into H₂O, extracted with Et₂O, and the dried exts. distilled, gave IX. IX (1.3 g.) neutralized with 2N NaOH, 0.87 g. KMnO₄ in 50 cc. H₂O added slowly at -15°, and warmed to room temperature, gave 0.30 g. α -oxocyclohexaneacetic acid (XIV), b10 98°, m. 45-9°; 2,4-dinitrophenylhydrazone, m. 211-12°. V does not isomerize in 48 hrs. with 5N MeONa-MeOH at 100°. IV gave polymeric products when heated with 2N NaOH 2.5 days at 125°. 2-Methoxycyclohexanone (XV) (b15 76°, n20D 1.4535) was prepared by methylation of 2-hydroxycyclohexanone; semicarbazone of XV, m. 178-9°. XV reacts with 2,4-dinitrophenylhydrazine to give 1,2-cyclohexandione bis(2,4-dinitrophenylhydrazone), m. 220-1°, and XV 2,4-dinitrophenylhydrazone, m. 135°. XV (4.43 g.), 2.26 g. activated Zn, 5.8 g. BrCH₂CO₂Et, 14 cc. C₆H₆, and 12 cc. MePh were heated on a steam bath (vigorous reaction) until the Zn dissolved, filtered, the filtrate decomposed with ice cold 2N HCl; the organic layer, separated, washed with saturated NaHCO₃ until neutral, and distilled, gave Et 1-hydroxy-2-methoxycyclohexaneacetate (XVI), b0.5 79-82°, n20D 1.4590; hydrolysis gave impure acid (XVII), n14D 1.4736. XVII dehydrated with Ac₂O gave a mixture (XVIII) (n35D 1.4945) of the lactones of

2-hydroxycyclohexylideneacetic acid (XIX) (25%) (m. 21-4°) and
2-hydroxy-1-cyclohexeneacetic acid (75%). XVIII dissolved in 2N NaOH,
warmed for 10 min., diluted with water, and extracted with ether, and the
aqueous
solution acidified, gave XIX and impure 2-oxocyclohexaneacetic acid;
2,4-dinitrophenylhydrazone, m. 191-3°; semicarbazone, m.
192-3°.

OSC.G 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS)

=> FILE REG
COST IN U.S. DOLLARS

	SINCE FILE	TOTAL
	ENTRY	SESSION
FULL ESTIMATED COST	9.70	246.15

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE	TOTAL
	ENTRY	SESSION
CA SUBSCRIBER PRICE	-1.70	-2.55

FILE 'REGISTRY' ENTERED AT 14:26:20 ON 23 FEB 2010
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2010 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file
provided by InfoChem.

STRUCTURE FILE UPDATES: 21 FEB 2010 HIGHEST RN 1206966-88-2
DICTIONARY FILE UPDATES: 21 FEB 2010 HIGHEST RN 1206966-88-2

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 26, 2009.

Please note that search-term pricing does apply when
conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and
predicted properties as well as tags indicating availability of
experimental property data in the original document. For information
on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stndoc/properties.html>

=>
Uploading C:\Documents and Settings\PZucker\My Documents\Examination Auxillary
files\10566995\10566995 PHENOXPHENYL.str

L9 STRUCTURE UPLOADED

=> D L9
L9 HAS NO ANSWERS
L9 STR

Structure attributes must be viewed using STN Express query preparation.

=> SEARCH L9 SSS SAM

SAMPLE SEARCH INITIATED 14:26:51 FILE 'REGISTRY'

SAMPLE SCREEN SEARCH COMPLETED - 101 TO ITERATE

100.0% PROCESSED 101 ITERATIONS
SEARCH TIME: 00.00.01

0 ANSWERS

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**

PROJECTED ITERATIONS: 1418 TO 2622

PROJECTED ANSWERS: 0 TO 0

L10 0 SEA SSS SAM L9

=> SEARCH L9 SSS FULL

FULL SEARCH INITIATED 14:27:00 FILE 'REGISTRY'

FULL SCREEN SEARCH COMPLETED - 2054 TO ITERATE

100.0% PROCESSED 2054 ITERATIONS
SEARCH TIME: 00.00.01

0 ANSWERS

L11 0 SEA SSS FUL L9

=> LOGOFF HOLD

COST IN U.S. DOLLARS

SINCE FILE

TOTAL

ENTRY SESSION

FULL ESTIMATED COST

192.03 438.18

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)

SINCE FILE

TOTAL

ENTRY SESSION

CA SUBSCRIBER PRICE

0.00 -2.55

SESSION WILL BE HELD FOR 120 MINUTES
STN INTERNATIONAL SESSION SUSPENDED AT 14:27:21 ON 23 FEB 2010

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:SSSPTA1623PAZ

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * Welcome to STN International * * * * * * * * *

NEWS 1 Web Page for STN Seminar Schedule - N. America
NEWS 2 AUG 10 Time limit for inactive STN sessions doubles to 40
 minutes
NEWS 3 AUG 18 COMPENDEX indexing changed for the Corporate Source
 (CS) field
NEWS 4 AUG 24 ENCOMPLIT/ENCOMPLIT2 reloaded and enhanced
NEWS 5 AUG 24 CA/CAplus enhanced with legal status information for
 U.S. patents
NEWS 6 SEP 09 50 Millionth Unique Chemical Substance Recorded in
 CAS REGISTRY
NEWS 7 SEP 11 WPIDS, WPINDEX, and WPIX now include Japanese FTERM
 thesaurus
NEWS 8 OCT 21 Derwent World Patents Index Coverage of Indian and
 Taiwanese Content Expanded
NEWS 9 OCT 21 Derwent World Patents Index enhanced with human
 translated claims for Chinese Applications and
 Utility Models
NEWS 10 NOV 23 Addition of SCAN format to selected STN databases
NEWS 11 NOV 23 Annual Reload of IFI Databases
NEWS 12 DEC 01 FRFULL Content and Search Enhancements
NEWS 13 DEC 01 DGENE, USGENE, and PCTGEN: new percent identity
 feature for sorting BLAST answer sets
NEWS 14 DEC 02 Derwent World Patent Index: Japanese FI-TERM
 thesaurus added
NEWS 15 DEC 02 PCTGEN enhanced with patent family and legal status
 display data from INPADOCDB
NEWS 16 DEC 02 USGENE: Enhanced coverage of bibliographic and
 sequence information
NEWS 17 DEC 21 New Indicator Identifies Multiple Basic Patent
 Records Containing Equivalent Chemical Indexing
 in CA/CAplus
NEWS 18 JAN 12 Match STN Content and Features to Your Information
 Needs, Quickly and Conveniently
NEWS 19 JAN 25 Annual Reload of MEDLINE database
NEWS 20 FEB 16 STN Express Maintenance Release, Version 8.4.2, Is
 Now Available for Download
NEWS 21 FEB 16 Derwent World Patents Index (DWPI) Revises Indexing
 of Author Abstracts
NEWS 22 FEB 16 New FASTA Display Formats Added to USGENE and PCTGEN
NEWS 23 FEB 16 INPADOCDB and INPAFAMDB Enriched with New Content
 and Features
NEWS 24 FEB 16 INSPEC Adding Its Own IPC codes and Author's E-mail

Addresses

NEWS EXPRESS FEBRUARY 15 10 CURRENT WINDOWS VERSION IS V8.4.2,
AND CURRENT DISCOVER FILE IS DATED 15 JANUARY 2010.

NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS LOGIN Welcome Banner and News Items

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN customer agreement. This agreement limits use to scientific research. Use for software development or design, implementation of commercial gateways, or use of CAS and STN data in the building of commercial products is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 08:00:54 ON 24 FEB 2010

FILE 'REGISTRY' ENTERED AT 08:01:10 ON 24 FEB 2010
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2010 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 22 FEB 2010 HIGHEST RN 1207159-36-1
DICTIONARY FILE UPDATES: 22 FEB 2010 HIGHEST RN 1207159-36-1

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 26, 2009.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stngen/stndoc/properties.html>

=>
Uploading C:\Documents and Settings\PZucker\My Documents\Examination Auxillary files\10566995\10566995 coire.str

L1 STRUCTURE UPLOADED

=> d l1
L1 HAS NO ANSWERS
L1 STR

Structure attributes must be viewed using STN Express query preparation.

```
=> search l1 sss sam
SAMPLE SEARCH INITIATED 08:01:54 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED -      1512 TO ITERATE

100.0% PROCESSED      1512 ITERATIONS          2 ANSWERS
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE    **COMPLETE**
                        BATCH     **COMPLETE**
PROJECTED ITERATIONS:      27908 TO      32572
PROJECTED ANSWERS:           2 TO       124

L2          2 SEA SSS SAM L1

=> d scan

L2      2 ANSWERS      REGISTRY  COPYRIGHT 2010 ACS on STN
IN      3-Butenoic acid, 2-(2,6-dimethylphenoxy)-3-methyl-
MF      C13 H16 O3
```


PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):2

L2 2 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 3-Butenoic acid, 2-[(9,10-dihydro-4-hydroxy-9,10-dioxo-1-anthracyl)oxy]-
3-(phenylthio)-, ethyl ester
MF C26 H20 O6 S

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

ALL ANSWERS HAVE BEEN SCANNED

=> e 3-Butenoic acid, 2-(2,6-dimethylphenoxy)-3-methyl-/cn
E1 1 3-BUTENOIC ACID, 2-(2,5-DIMETHOXYPHENYL)-2-OXOETHYL ESTER/CN
E2 1 3-BUTENOIC ACID, 2-(2,6-DICHLOROPHENYL)HYDRAZIDE/CN
E3 1 --> 3-BUTENOIC ACID, 2-(2,6-DIMETHYLPHENOXY)-3-METHYL-/CN
E4 1 3-BUTENOIC ACID, 2-(2,6-DIMETHYLPHENOXY)-3-METHYL-, METHYL E
STER/CN
E5 1 3-BUTENOIC ACID, 2-(2,6-DIMETHYLPHENYL)HYDRAZIDE/CN
E6 1 3-BUTENOIC ACID, 2-(2,6-XYLYL)HYDRAZIDE/CN
E7 1 3-BUTENOIC ACID, 2-(2-(((1,1-DIMETHYLETHYL)DIMETHYLSILYL)OXY
ETHYL)-3-METHYL-, ETHYL ESTER/CN
E8 1 3-BUTENOIC ACID, 2-(2-(((1,1-DIMETHYLETHYL)DIPHENYLSILYL)OXY
ETHYLIDENE)-4-(4-((5-((3AS,4S,6AR)-HEXAHYDRO-2-OXO-1H-THIEN
O(3,4-D) IMIDAZOL-4-YL)-1-OXOPENTYL)AMINO)PHENYL)-, 2-(2-(((7
-DIETHYLAMINO)-2-OX/CN
E9 1 3-BUTENOIC ACID, 2-(2-(((1,1-DIMETHYLETHYL)DIPHENYLSILYL)OXY
ETHYLIDENE)-4-(4-((6-((7-NITRO-2,1,3-BENZOXADIAZOL-4-YL)AMI
NO)-1-OXOHEXYL)AMINO)PHENYL)-, 2-(2-(((7-(DIETHYLAMINO)-2-OX
O-2H-1-BENZOPYRAN-3-/CN
E10 1 3-BUTENOIC ACID, 2-(2-(((1,1-DIMETHYLETHYL)DIPHENYLSILYL)OXY
ETHYLIDENE)-4-PHENYL-, 2-(2-(((7-(DIETHYLAMINO)-2-OXO-2H-1-
BENZOPYRAN-3-YL)CARBONYL)AMINO)ETHOXY)ETHYL ESTER, (2E,3E)-/
CN
E11 1 3-BUTENOIC ACID, 2-(2-(((2-((2-((AMINOIMINOMETHYL)AMINO)-4-
THIAZOLYL)METHYL)THIO)ETHYL)IMINO)(METHYLTHIO)METHYL)HYDRAZI
NYLIDENE)-4-PHENYL-/CN
E12 1 3-BUTENOIC ACID, 2-(2-(((2-PROPEN-1-YLOXY)CARBONYL)OXY)ETHOX
Y)ETHYL ESTER/CN

```
=> e3
L3          1 "3-BUTENOIC ACID, 2-(2,6-DIMETHYLPHENOXY)-3-METHYL-"/CN

=> file caplus
COST IN U.S. DOLLARS           SINCE FILE      TOTAL
                                         ENTRY        SESSION
FULL ESTIMATED COST             6.97          7.19
```

FILE 'CAPLUS' ENTERED AT 08:03:02 ON 24 FEB 2010
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 24 Feb 2010 VOL 152 ISS 9
FILE LAST UPDATED: 23 Feb 2010 (20100223/ED)
REVISED CLASS FIELDS (/NCL) LAST RELOADED: Dec 2009
USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Dec 2009

CAPLUS now includes complete International Patent Classification (IPC) reclassification data for the third quarter of 2009.

CAS Information Use Policies apply and are available at:

<http://www.cas.org/legal/infopolicy.html>

This file contains CAS Registry Numbers for easy and accurate substance identification.

```
=> 13
L4          1 L3
```

```
=> d 14 ti fbib abs
```

L4 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2010 ACS on STN
TI p-[(Diethylamino)ethoxy]phenyl-p-tolyl-p-fluorophenylethanol
AN 1963:441367 CAPLUS <<LOGINID::20100224>>
DN 59:41367
OREF 59:7409c-h
TI p-[(Diethylamino)ethoxy]phenyl-p-tolyl-p-fluorophenylethanol
AU Supniewski, J.; Staronkowa, E.
CS Polish Acad. Sci., Krakow, Pol.
SO Bulletin de l'Academie Polonaise des Sciences, Serie des Sciences Biologiques (1962), 10, 185-8
CODEN: BAPBAN; ISSN: 0001-4087
DT Journal
LA English
GI For diagram(s), see printed CA Issue.
AB 1-[p-[(Diethylamino)ethoxy]phenyl]1-(p-tolyl)-2-(p-fluorophenyl)ethanol
(I) prepared as follows, was injected intraperitoneally in 2% solution of the hydrochloride in daily doses of 50 mg./kg. After 5 days treatment of 10

rats, the mean serum cholesterol level fell from 44.3 ± 0.7 to 23.0 ± 0.7 mg.-%. Intraperitoneal injection of I into white mice indicated L.D.50 of 165 mg./kg. The drug induced akinesia, ptosis, and sedation, followed by clonic convulsions and death from respiratory paralysis. For the preparation of I, p-methyl-p-hydroxybenzophenone (II) was prepared by the method of Homer and Medem (CA 47, 1639e). To a mixture of 65 g. II in 26 ml. H₂O and 250 ml. EtOH containing 24.7 g. NaOH at 10°, 53.3 g. 1-(diethylamino)-2-chloroethane (obtained by heating 1-(diethylamino)-2-hydroxyethane with excess thionyl chloride) was added. The mixture was boiled 1 hr., cooled, the precipitated NaCl removed, and the EtOH distilled. The residue (96 g.) in C₆H₆ was washed with 1% NaOH, and with H₂O, dried over K₂CO₃, and the C₆H₆ distilled. This residue (93 g.) dissolved in 200 ml. Me₂CO was added to 250 ml. Me₂CO containing 38 g. crystalline oxalic acid. The crude oxalate obtained was washed with Me₂CO, dried at 105°, and recrystd. from EtOH and Me₂CO (870:250 ml.) to give 72.3 g. of the oxalate, m. 150-1°. The oxalate in 400 ml. H₂O was neutralized with 22.5 g. KOH in 35 ml. H₂O and extracted with C₆H₆. The extract dried over K₂CO₃ and the C₆H₆ distilled gave 55.3 g. p-methoxy-p[(diethylamino)ethoxy]benzophenone (III). To 1.15 g. Mg turnings, activated with I in 40 ml. anhydrous Et₂O, 7.18 g. p-fluoro- α -chlorotoluene in 50 ml. Et₂O was added. The mixture was heated 1 hr., cooled, and 10 g. III in 35 ml. Et₂O added. This mixture was boiled 1 hr., cooled, and poured into 100 ml. H₂O containing 11 g. NH₄Cl. The Et₂O layer was separated and added to the Et₂O extract of the H₂O layer. The exts. were washed with H₂O, dried with Na₂SO₄, and the Et₂O removed. The residue was dissolved in 10 ml. iso-PrOH and 10 ml. ligroine, filtered, and cooled. The separated crystals were washed with iso-PrOH and ligroine (1:1) and dried at 80° to give 79% of I, m. 104-6°. The m.p. was unchanged by recrystg. from EtOH and H₂O.

OSC.G 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (1 CITINGS)

=> d 14 it

L4 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2010 ACS on STN
IT Blood serum
 (cholesterol in, 1-[p-[2-(diethylamino)ethoxy]phenyl]-2-(p-fluorophenyl)-1-p-tolyethanol effect on)
IT 14753-08-3 93351-45-2
 (Derived from data in the 7th Collective Formula Index (1962-1966))
IT 90-95-9P, Benzophenone, 4-[2-(diethylamino)ethoxy]-4'-methyl-3828-26-0P, Ethanol, 1-[p-[2-(diethylamino)ethoxy]phenyl]-2-(p-fluorophenyl)-1-p-tolyl- 39581-62-9P, Crotonic acid, 2-(o-hydroxyphenyl)-3-methyl-, γ -lactone 62191-63-3P, Butyric acid, 4-(oo-hydroxyphenyl)-3-methyl- 65566-55-4P, Crotonic acid, 3-methyl-2-phenoxy- 66591-16-0P, 2,5-Cresataldehyde, (2,4-dinitrophenyl)hydrazone 75933-69-6P, Crotonic acid, 4-phenoxy-, methyl ester 79228-74-3P, Crotonic acid, 3-methyl-4-phenoxy-85615-16-3P, 3-Butenoic acid, 4-(o-methoxyphenyl)-3-methyl-, methyl ester 89641-41-8P, 2-Pentenoic acid, 2-bromo-, methyl ester 90843-51-9P, Crotonic acid, 2-phenoxy- 91142-96-0P, 3-Butenoic acid, 4-(o-hydroxyphenyl)-3-methyl- 91496-48-9P, 3-Butenoic acid, 4-(o-hydroxyphenyl)-3-methyl-, methyl ester 91496-59-2P, Crotonic acid, 3-methyl-2-phenoxy-, methyl ester 91496-60-5P, Crotonic acid, 3-methyl-4-phenoxy-, methyl ester 91496-61-6P, Crotonic acid, 3-methyl-2-(p-tolyloxy)- 91496-62-7P, Crotonic acid, 3-methyl-4-(p-tolyloxy)- 91496-90-1P, 3-Pentenoic acid, 4-(o-hydroxyphenyl)-, methyl ester 92016-85-8P, 3-Butenoic acid, 3-methyl-4-phenoxy- 92016-89-2P, Crotonic acid, 2-phenoxy-, methyl ester

92016-98-3P, 2-Pentenoic acid, 2-phenoxy- 92864-20-5P, 3-Butenoic acid,
 3-methyl-2-(2,6-xylyloxy)-, methyl ester 92864-34-1P, Crotonic acid,
 3-methyl-2-(2,6-xylyloxy)-, methyl ester 92864-35-2P, Crotonic acid,
 3-methyl-4-(2,6-xylyloxy)-, methyl ester 93305-47-6P, Crotonic acid,
 2-(6-hydroxy-m-tolyl)-3-methyl-, γ -lactone 93351-67-8P, Valeric
 acid, 4-(o-hydroxyphenyl)- 97024-30-1P, Crotonic acid,
 3-methyl-2-(p-tolyloxy)-, methyl ester 97024-31-2P, Crotonic acid,
 3-methyl-4-(p-tolyloxy)-, methyl ester 97024-32-3P, Crotonic acid,
 3-methyl-2-(2,6-xylyloxy)- 98017-53-9P, 3-Butenoic acid,
 4-(6-hydroxy-m-tolyl)-3-methyl-, methyl ester 98017-54-0P,
 3-Butenoic acid, 3-methyl-2-(2,6-xylyloxy)- 98017-58-4P, Crotonic acid,
 3-methyl-4-(2,6-xylyloxy)- 106404-90-4P, Benzophenone,
 4-[2-(diethylamino)ethoxy]-4'-methyl-, oxalate 859038-83-8P, Butyric
 acid, 4-(6-hydroxy-m-tolyl)-3-methyl-
 RL: PREP (Preparation)
 (preparation of)

=> 98017-54-0

REG1stRY INITIATED

Substance data SEARCH and crossover from CAS REGISTRY in progress...
 Use DISPLAY HITSTR (or FHITSTR) to directly view retrieved structures.

L6

1 L5

=> display hitstr 16

ENTER ANSWER NUMBER OR RANGE (1):1

L6 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2010 ACS on STN
 IT 98017-54-0P, 3-Butenoic acid, 3-methyl-2-(2,6-xylyloxy)-
 RL: PREP (Preparation)
 (preparation of)
 RN 98017-54-0 CAPLUS
 CN 3-Butenoic acid, 2-(2,6-dimethylphenoxy)-3-methyl- (CA INDEX NAME)

=> file reg
 COST IN U.S. DOLLARS
 FULL ESTIMATED COST

SINCE FILE ENTRY	TOTAL SESSION
7.52	20.19

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	0.00	-0.85

FILE 'REGISTRY' ENTERED AT 08:07:36 ON 24 FEB 2010
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2010 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 22 FEB 2010 HIGHEST RN 1207159-36-1
 DICTIONARY FILE UPDATES: 22 FEB 2010 HIGHEST RN 1207159-36-1

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 26, 2009.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stngen/stndoc/properties.html>

=> d his

(FILE 'HOME' ENTERED AT 08:00:54 ON 24 FEB 2010)

FILE 'REGISTRY' ENTERED AT 08:01:10 ON 24 FEB 2010

L1 STRUCTURE UPLOADED
 L2 2 SEARCH L1 SSS SAM
 E 3-BUTENOIC ACID, 2-(2,6-DIMETHYLPHENOXY)-3-METHYL-/CN
 L3 1 E3

FILE 'CAPLUS' ENTERED AT 08:03:02 ON 24 FEB 2010

L4 1 L3
 S 98017-54-0/REG#

FILE 'REGISTRY' ENTERED AT 08:04:38 ON 24 FEB 2010

L5 1 S 98017-54-0/RN

FILE 'CAPLUS' ENTERED AT 08:04:39 ON 24 FEB 2010

L6 1 S L5

FILE 'REGISTRY' ENTERED AT 08:07:36 ON 24 FEB 2010

=> search l1 sss full
 FULL SEARCH INITIATED 08:09:08 FILE 'REGISTRY'
 FULL SCREEN SEARCH COMPLETED - 30069 TO ITERATE

100.0% PROCESSED 30069 ITERATIONS	28 ANSWERS
SEARCH TIME: 00.00.01	

L7 28 SEA SSS FUL L1

=> d scan

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 3-Hexenoic acid, 3-methyl-5-oxo-2-phenoxy-
MF C13 H14 O4

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):38

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 3-Butenoic acid, 2-[(9,10-dihydro-4-hydroxy-9,10-dioxo-1-anthracenyl)oxy]-
3-(phenylthio)-, ethyl ester
MF C26 H20 O6 S

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 3-Butenoic acid, 4-phenyl-2-[2-(trifluoromethyl)phenoxy]-, methyl ester,
(3E)-
MF C18 H15 F3 O3

Double bond geometry as shown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 2-phenoxy-4-phenyl-,
 (3R)-tetrahydro-4,4-dimethyl-2-oxo-3-furanyl ester, (2S,3E)-
 MF C22 H22 O5

Absolute stereochemistry.
 Double bond geometry as shown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 2-(3,4-dichloro-2,6-dimethylphenoxy)-3-methyl-,
 [4-(2-propyn-1-yl)phenyl]methyl ester
 MF C23 H22 Cl2 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN INDEX NAME NOT YET ASSIGNED
MF C14 H16 O5

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 3-Butenoic acid, 4,4-difluoro-2-phenoxy-3-[(trimethylsilyl)oxy]-,
trimethylsilyl ester
MF C16 H24 F2 O4 Si2

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 3-Butenoic acid, 2-(4-nitrophenoxy)-, ethyl ester
MF C12 H13 N O5

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN

IN 3-Butenoic acid, 4-phenyl-2-[4-(trifluoromethyl)phenoxy]-, methyl ester
MF C18 H15 F3 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 3-Butenoic acid, 2-(2,6-dimethylphenoxy)-3-methyl-, methyl ester
MF C14 H18 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN Ruthenium, dichloro[4-methoxy-2-(methoxycarbonyl)-4-oxo-3-phenoxy-1-buten-1-ylidene]bis(tricyclohexylphosphine)-, (SP-5-31)-
MF C49 H78 Cl2 O5 P2 Ru
CI CCS

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 4,4-dibromo-2-phenoxy-3-[(trimethylsilyl)oxy]-,
 trimethylsilyl ester
 MF C16 H24 Br2 O4 Si2

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 2-[{6-(1-chloroethenyl)-1-naphthalenyl}oxy]-3-methyl-,
 (4,5,6,7-tetrahydrobenzo[b]thien-2-yl)methyl ester
 MF C26 H25 Cl O3 S

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 4-phenyl-2-[4-(trifluoromethyl)phenoxy]-
 MF C17 H13 F3 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 2-(2,6-dimethylphenoxy)-3-methyl-
 MF C13 H16 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 2-[4-methoxy-5-methyl-2-(1-methyl-2-propen-1-yl)phenoxy]-
 , methyl ester
 MF C17 H22 O4

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 2-(4-phenoxyphenoxy)-, ethyl ester
 MF C18 H18 O4

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 2-Naphthalenecarboxylic acid, 6-[[1-[(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)methoxy]carbonyl]-2-methyl-2-propen-1-yl]oxy]-, 2-propen-1-yl ester
 MF C28 H23 N O7

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 2-phenoxy-4-phenyl-, phenylmethyl ester
 MF C23 H20 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 3-Butenoic acid, 2-[(9,10-dihydro-4-hydroxy-9,10-dioxo-1-anthracyl)oxy]-
MF , ethyl ester
C20 H16 O6

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 3-Butenoic acid, 2-[5-methyl-2-(1-methyl-2-propen-1-yl)-4-
 (phenylmethoxy)phenoxy]-, methyl ester
MF C23 H26 O4

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 3-Butenoic acid, 2-phenoxy-4-phenyl-, ethyl ester, (E)- (9CI)
MF C18 H18 O3

Double bond geometry as shown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 2-Naphthalenecarboxylic acid, 5-[[2-chloro-1-[(2-chloro-5-phenoxy-3-thienyl)methoxy]carbonyl]-2-propen-1-yl]oxy]-, 2-propyn-1-yl ester
MF C29 H20 Cl2 O6 S

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 3-Butenoic acid, 2-phenoxy-4-phenyl-
MF C16 H14 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 2-[(5,8-dihydro-4-hydroxy-5,8-dioxo-1-naphthalenyl)oxy]-, ethyl ester
 MF C16 H14 O6

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 4-phenyl-2-[2-(trifluoromethyl)phenoxy]-, (3E)-
 MF C17 H13 F3 O3

Double bond geometry as shown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 3-Butenoic acid, 2-(4-methoxyphenoxy)-, methyl ester
MF C12 H14 O4

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L7 28 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
IN 3-Butenoic acid, 4,4-dichloro-2-(4-cyanophenoxy)-,
[3-(phenylmethyl)phenyl]methyl ester
MF C25 H19 Cl2 N O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

ALL ANSWERS HAVE BEEN SCANNED

```
=> save temp allcorrectng/a
ENTER L#, L# RANGE, ALL, OR (END):17
ANSWER SET L7 HAS BEEN SAVED AS 'ALLCORRECTNG/A'
```

```
=>
Uploading C:\Documents and Settings\PZucker\My Documents\Examination Auxillary
files\10566995\10566995 two-ring cmpds.str
```

L8 STRUCTURE UPLOADED

```
=> d 18
L8 HAS NO ANSWERS
L8 STR
```


Structure attributes must be viewed using STN Express query preparation.

```
=> search 18 sss full subset = 17
FULL SUBSET SEARCH INITIATED 08:14:37 FILE 'REGISTRY'
FULL SUBSET SCREEN SEARCH COMPLETED -          28 TO ITERATE

100.0% PROCESSED      28 ITERATIONS           8 ANSWERS
SEARCH TIME: 00.00.01
```

L9 8 SEA SUB=L7 SSS FUL L8

=> d scan

```
L9      8 ANSWERS  REGISTRY COPYRIGHT 2010 ACS on STN
IN      3-Butenoic acid, 2-phenoxy-4-phenyl-, phenylmethyl ester
MF      C23 H20 O3
```


PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):8

```
L9      8 ANSWERS  REGISTRY COPYRIGHT 2010 ACS on STN
IN      3-Butenoic acid, 4-phenyl-2-[2-(trifluoromethyl)phenoxy]-, methyl ester,
       (3E)-
MF      C18 H15 F3 O3
```

Double bond geometry as shown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L9 8 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 4-phenyl-2-[4-(trifluoromethyl)phenoxy]-, methyl ester
 MF C18 H15 F3 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L9 8 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 2-phenoxy-4-phenyl-
 MF C16 H14 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L9 8 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 2-phenoxy-4-phenyl-, ethyl ester, (E)- (9CI)
 MF C18 H18 O3

Double bond geometry as shown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L9 8 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 4-phenyl-2-[4-(trifluoromethyl)phenoxy]-
 MF C17 H13 F3 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L9 8 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 4-phenyl-2-[2-(trifluoromethyl)phenoxy]-, (3E)-
 MF C17 H13 F3 O3

Double bond geometry as shown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L9 8 ANSWERS REGISTRY COPYRIGHT 2010 ACS on STN
 IN 3-Butenoic acid, 2-phenoxy-4-phenyl-,
 (3R)-tetrahydro-4,4-dimethyl-2-oxo-3-furanyl ester, (2S,3E)-
 MF C22 H22 O5

Absolute stereochemistry.
 Double bond geometry as shown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

ALL ANSWERS HAVE BEEN SCANNED

=> file caplus			
COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION	
FULL ESTIMATED COST	242.92	263.11	
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION	
CA SUBSCRIBER PRICE	0.00	-0.85	

FILE 'CAPLUS' ENTERED AT 08:15:18 ON 24 FEB 2010
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 24 Feb 2010 VOL 152 ISS 9
 FILE LAST UPDATED: 23 Feb 2010 (20100223/ED)
 REVISED CLASS FIELDS (/NCL) LAST RELOADED: Dec 2009
 USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Dec 2009

CAplus now includes complete International Patent Classification (IPC) reclassification data for the third quarter of 2009.

CAS Information Use Policies apply and are available at:

<http://www.cas.org/legal/infopolicy.html>

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> 19

L10

4 L9

=> d 110 1-4 ti fbib abs

L10 ANSWER 1 OF 4 CAPLUS COPYRIGHT 2010 ACS on STN

TI Preparation of 4-phenyl-but-3-enoic acid derivatives, as peroxisome proliferator-activated receptors (PPAR) ligands, in particular PPAR α and PPAR γ agonists, for the treatment and prevention of diabetes, dyslipidemia, atherosclerosis

AN 2005:119915 CAPLUS <<LOGINID::20100224>>

DN 142:219047

TI Preparation of 4-phenyl-but-3-enoic acid derivatives, as peroxisome proliferator-activated receptors (PPAR) ligands, in particular PPAR α and PPAR γ agonists, for the treatment and prevention of diabetes, dyslipidemia, atherosclerosis

IN Zeiller, Jean Jacques; Dumas, Herve; Guyard Dangremont, Valerie; Berard, Isabelle; Contard, Francis; Guerrier, Daniel; Ferrand, Gerard; Bonhomme, Yves

PA Merck Sante, Fr.

SO Fr. Demande, 38 pp.

CODEN: FRXXBL

DT Patent

LA French

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	FR 2858615	A1	20050211	FR 2003-9610	20030804
	FR 2858615	B1	20061222		
	AU 2004263254	A1	20050217	AU 2004-263254	20040714
				FR 2003-9610	A 20030804
				WO 2004-EP7776	W 20040714
	CA 2534493	A1	20050217	CA 2004-2534493	20040714
				FR 2003-9610	A 20030804
				WO 2004-EP7776	W 20040714
	WO 2005014521	A1	20050217	WO 2004-EP7776	20040714
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
	RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
				FR 2003-9610	A 20030804
EP	1658260	A1	20060524	EP 2004-740992	20040714
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK				
				FR 2003-9610	A 20030804
				WO 2004-EP7776	W 20040714
JP	2007501190	T	20070125	JP 2006-522255	20040714
				FR 2003-9610	A 20030804
				WO 2004-EP7776	W 20040714
US	20060178434	A1	20060810	US 2006-566995	20060202
				FR 2003-9610	A 20030804
				WO 2004-EP7776	W 20040714

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

OS CASREACT 142:219047; MARPAT 142:219047

GI

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

AB Title compds. I [wherein R1 = alkyl, (un)substituted heterocycl, (un)substituted aryl or/and (un)condensed with a (un)saturated monocyclic or polycyclic; R2, R3 = independently H, (un)substituted aryl; or R2R3 = alkylene; R = H, aryl/alkyl; their acid and base addition salts; with proviso; their derivs., solvates, and stereoisomers and their mixts., and their pharmaceutically acceptable salts] were prepared as peroxisome proliferator-activated receptors (PPAR)- α and PPAR γ agonists for treating diabetes, dyslipidemia, atherosclerosis (no data). For example, II was prepared, in 4 steps, reacting 2-oxo-4-phenylbut-3-enoic acid sodium salt with methanol, followed by reduction, alkylation of the alc. with MeI, and saponification III at a concentration of 50 μ M was a PPAR α and PPAR γ agonist, showing induced luciferase activity via PPAR α /Gal4 and PPAR γ /Gal4 with a factor of induction of 2.3 and 6.4, resp. Thus, I and their compns. are useful for treating and preventing dyslipidemia, atherosclerosis and diabetes (no data).

RE.CNT 12 THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L10 ANSWER 2 OF 4 CAPLUS COPYRIGHT 2010 ACS on STN
TI Chiral catalyst enhancement of diastereocontrol for O-H insertion reactions of styryl- and phenyldiazoacetate esters of pantolactone
AN 2002:586128 CAPLUS <>LOGINID::20100224>>
DN 138:89461
TI Chiral catalyst enhancement of diastereocontrol for O-H insertion reactions of styryl- and phenyldiazoacetate esters of pantolactone
AU Doyle, Michael P.; Yan, Ming
CS Department of Chemistry, University of Arizona, Tucson, AZ, 85721-0041,
USA
SO Tetrahedron Letters (2002), 43(34), 5929-5931
CODEN: TELEAY; ISSN: 0040-4039
PB Elsevier Science Ltd.
DT Journal
LA English
OS CASREACT 138:89461
AB The chiral dirhodium(II) catalyst Rh₂(MeAZ)₄ (Me 4-oxo-2-azetidinecarboxylate) increases diastereocontrol for intermol. O-H insertion reactions of diazo esters having a chiral auxiliary over that achieved with Rh₂(OAc)₄.
OSC.G 29 THERE ARE 29 CAPLUS RECORDS THAT CITE THIS RECORD (29 CITINGS)
RE.CNT 26 THERE ARE 26 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L10 ANSWER 3 OF 4 CAPLUS COPYRIGHT 2010 ACS on STN
TI A Stereospecific Access to Allylic Systems Using Rhodium(II)-Vinyl Carbenoid Insertion into Si-H, O-H, and N-H Bonds
AN 1997:198048 CAPLUS <>LOGINID::20100224>>
DN 126:211638
OREF 126:40925a, 40926a
TI A Stereospecific Access to Allylic Systems Using Rhodium(II)-Vinyl Carbenoid Insertion into Si-H, O-H, and N-H Bonds
AU Bulugahapitiya, Priyadarshanie; Landais, Yannick; Parra-Rapado, Liliana; Planchenault, Denis; Weber, Valery
CS College Propedeutique, Universite de Lausanne, Lausanne-Dorigny, 1015, Switz.

SO Journal of Organic Chemistry (1997), 62(6), 1630-1641
CODEN: JOCEAH; ISSN: 0022-3263
PB American Chemical Society
DT Journal
LA English
AB Rhodium-catalyzed decomposition of α -vinyl diazo esters in the presence of silanes, alcs., ethers, amines, and thiols has been shown to produce the corresponding α -silyl, α -hydroxy, α -alkoxy, α -amino, and α -thioalkoxy esters in generally good yield with a complete retention of the stereochem. of the double bond of the diazo precursor. An extension of the process in homochiral series has also been devised using either a chiral auxiliary attached to the ester function or achiral α -vinyl diazo esters and Doyle's chiral catalyst Rh₂(MEPY)4. In the former approach, pantolactone as chiral auxiliary gave diastereoselectivities of up to 70%, while the second approach produced the desired allylsilane with ee as high as 72%. On the other hand, Rh₂(MEPY)4-catalyzed insertion into the O-H bond of water led to poor or no enantioselectivity in good agreement with recent literature reports.
OSC.G 58 THERE ARE 58 CAPLUS RECORDS THAT CITE THIS RECORD (59 CITINGS)
RE.CNT 119 THERE ARE 119 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L10 ANSWER 4 OF 4 CAPLUS COPYRIGHT 2010 ACS on STN
TI Electronic versus steric effects in 5-endo-trig-like electrophilic cyclizations
AN 1995:974892 CAPLUS <>LOGINID::20100224>>
DN 124:176328
OREF 124:32707a,32710a
TI Electronic versus steric effects in 5-endo-trig-like electrophilic cyclizations
AU Landais, Yannick; Planchenault, Denis
CS Inst. de Chimie Organique, Univ. de Lausanne, Lausanne-Dorigny, 1015, Switz.
SO Synlett (1995), (11), 1191-3
CODEN: SYNLES; ISSN: 0936-5214
PB Thieme
DT Journal
LA English
OS CASREACT 124:176328
GI

AB Electronically and sterically differentiated allylic substituents such as RO, NPhP, PhS, and PhSO₂ groups were used to demonstrate the influence of electronic and/or steric effects in the stereocontrol of the PhSeCl-promoted electrophilic 5-endo-trig-like cyclizations of 2-substituted-3-alkenols, (E)-PhCH:CHCHXCH₂OH (1, X = OH, OEt, OCH₂CF₃, OPh, NPh, SPh). 1 Reacted with PhSeCl/K₂CO₃ to give predominantly the 2,4-trans-tetrahydrofuran I, however, the cis-2,4-diastereoisomer II was predominant for X = NPh and SPh for reasons of electronic effects.
OSC.G 19 THERE ARE 19 CAPLUS RECORDS THAT CITE THIS RECORD (19 CITINGS)

```

=>
=> logoff hold
COST IN U.S. DOLLARS          SINCE FILE      TOTAL
                                ENTRY        SESSION
FULL ESTIMATED COST          25.90          289.01

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE      TOTAL
                                                ENTRY        SESSION
CA SUBSCRIBER PRICE           -3.40

```