CMA202 B - Cálculo 2 - Física Noturno

29 de Março de 2018 Prova 1

Nome: ____

Q:	1	2	3	4	5	Total
P:	25	10	20	25	25	105
N:						

	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8
GRR								

Ache o domínio da função f(x,y) e faça um esboço do domínio.

(a)
$$10 f(x,y) = \frac{1}{x+y-(d_5+1)} - \frac{1}{x-y-(d_6+1)}$$

(b) 15
$$f(x,y) = \frac{\ln(y+x^2)}{\sqrt{16-x^2-y^2}}$$

Desenhe as curvas de nível de $f(x,y) = \sqrt[4]{x+y}$ para $k = -(d_7+1), 0, 1, 2$.

Mostre que os limites seguintes não existem:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^4 + (d_8+1)x^2y^2 + 2x^3y}{(x^2+y^2)^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y + 1}{2x^2 + y - 1}$$

(a) 10 Determine as derivadas parciais de primeira ordem de $z = 2xy + \sqrt{xy}$.

(b) 15 Consider
$$f(x) = \begin{cases} \frac{5xy^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
. Calcule $f(1,2) - \frac{\partial f}{\partial x}(1,2) - \frac{\partial f}{\partial y}(1,2)$.

- (a) 15 Identifique a região de \mathbb{R}^2 onde f(x,y) é diferenciável.
- (b) 10 Encontre a linearização L(x,y) no ponto P(2,2,5).