2023-2024 学年高三摸底调研测试物理答案

题号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	С	С	В	D	A	С	В	A	В	С	BCD	AC	ВС	AC	BD

16. (6分) (1)50.0 (3分)

(2)56(3分)

(1) 由图 1 与实验步骤可知, 小明采用等效替代法测量压力传感器的阻值, 故压力传感器的阻值等于电阻 箱阻值,由题图2可得电阻箱阻值为50Ω,故此时压力传感器的电阻值为

50Ω。(2) 由题图 3 可知压力传感器的阻值与其受到的压力大小成线性关系,设关系式为 R=kF+b,结合图 3 可得 k=-0.25, b=250, 即 R=-0.25F+250, 将 R=110 代入解得 F=560N, 解得重物的质量为 m=56kg。

17. (9 分)(1) 11.1 (2 分) 15.5 (2 分) (2) 7.04×10⁻⁷ (3 分)

18. (10 分) 解:包裹与传送带共速前,对包裹受力分析得: $mg \sin \theta + \mu mg \cos \theta = ma_1.......1$ 分

根据运动学规律得: $v_1 = a_1 t_1 \dots 1$ 分

$$x_1 = \frac{v_1}{2} t_1 \dots 1$$
 分

解得 $a_1 = 10$ m/s²......1 分

 $t_1 = 0.2s......1$ 分

 $x_1 = 0.2 \text{ m}$

包裹与传送带共速后,对包裹受力分析得: $mg sin θ - μmg cos θ = ma_2......1$ 分

根据运动学规律得: $\frac{H}{\sin \theta} - x_1 = v_1 t_2 + \frac{1}{2} a_2 t_2^2 \dots 1$ 分

 $a_2 = 2m/s^2 \dots 1$ 分

 $t_2 = 2s......1$ 分

t = 2.2s.....1 分

19. (12 分)解: (1)A 运动 s 的过程中,由动能定理得: $qEs = \frac{1}{2}mv_0^2$2 分

 $P = mv_0......1$ 分

解得P = 4kgm/s......1 分

(2) AB 碰撞,由动量守恒得: $m_A v_0 = m_A v_A + m_B v_B$1 分

由能量守恒得: $\frac{1}{2}$ $m_A v_0^2 = \frac{1}{2} m_A v_A^2 + \frac{1}{2} m_B v_B^2 \dots 1$ 分

B 与 C 相互作用至共速,由动量守恒得: $m_B v_B = (m_B + m_C) v_{\pm}$1 分

解得 $v_B = 3.2 \text{m/s.......}$ 分

$$v_{\pm} = 2.4 \text{m/s.......} 分$$

(3) 对 B 与 C 由能量守恒得: $\mu m_C g L = \frac{1}{2} m_B v_B^2 - \frac{1}{2} (m_B + m_C) v_{\pm}^2$2 分

解得L = 1.92m......1 分

20. (13 分)解: (1) A 进入磁场时,由法拉第电磁感应定律得: E = BLv.......1 分

由欧姆定律得: $I = \frac{E}{R}$1 分

由牛顿第二定律得: BIL = ma......1分

解得:
$$a = \frac{B^2L^2v}{mR}$$
.......1分

(2) 进入磁场的整个过程中: $q = \overline{I}\Delta t$1 分

$$\overline{I} = \frac{BL\overline{v}}{R}.....1$$
 分

解得:
$$q = \frac{BL\overline{v}\Delta t}{R} = \frac{BL^2}{R}$$
......2 分

(或者解法 2
$$q = \frac{\Delta\Phi}{R} = \frac{BL^2}{R}$$
......4 分)

(3) 设线框 A 全部进入磁场时速度为 v_1 ,由动量定理得: $\overline{F}\Delta t = mv - mv_1.......1$ 分

$$\overline{F} = B\overline{I}L = \frac{B^2L^2\overline{v}}{R}.....1$$
 \mathcal{H}

所以:
$$\frac{B^2L^3}{R} = mv - mv_1......1$$
 分

线框 A 出磁场,由动量定理得: $B\overline{l_1}L\Delta t_1=rac{B^2L^2x}{R}=mv_1........1$ 分

解得:
$$x = \frac{mvR}{B^2L^2} - L......1$$
 分

或者解法 2: 对线框 A 进出磁场全过程用动量定理得: $\overline{F}\Delta t = mv.......2$ 分

BĪLΔt =
$$\frac{B^2L^2 (L+x)}{R}$$
......2 分

解得:
$$x = \frac{mvR}{R^2L^2} - L......1$$
 分