

CUSTOMER APPROVAL SHEET

	Company	A. C						
	Name							
	MODEL							
	CUSTOMER	Title:						
	APPROVED	Name :						
	APPROVAL FOR SPECIFICATIONS ONLY (Spec. Ver) APPROVAL FOR SPECIFICATIONS AND ES SAMPLE (Spec. Ver) APPROVAL FOR SPECIFICATIONS AND CS SAMPLE (Spec. Ver) CUSTOMER REMARK:							
AUO PM : P/N : Comm	nent :							

Page : 2/30

Doc.	version:	0.0
Total	pages:	54
Date	:	2009/05/04

Product Specification 6" COLOR TFT-LCD MODULE

Model Name: A060FW03 V0

Planned Lifetime: From 2009/Apr. To 2011/Jun.

Phase-out Control: From 2011/Mar. To 2011/Jun.

EOL Schedule: 2011/Jun.

> Preliminary Specification

> Final Specification

Note: The content of this specification is subject to change.

© 2009 AU Optronics All Rights Reserved, Do Not Copy.

Page : 3/30

Record of Revision

Version	Revise Date	Page	Content
0.0	2009/05/04		Draft
			× C
			×0,
			AL FOR
	A		
	c'a (5	
		~	
	40 h		
(
7			

Version: 0.0

Page : 4/30

Contents:

<u>A.</u> B.	Physical specifications Electrical specifications	
	1. Pin assignment	6
	2. Absolute maximum ratings	8
	3. Electrical characteristics	9
	3.1 Operating conditions (GND=0V)	9
	3.2 Electrical characteristics (GND=AGND=0V)	9
	3.2 Electrical characteristics (GND=AGND=0V)	9
	4. Input timing AC characteristic	10
	5. Input timing condition	11
	6. Touch Function Timing Diagram	14
	7. Serial control interface AC characteristic	15
	7.1 The configuration of serial data at SDA terminal is at below	16
	7.2 SPI write mode timing chart	16
	7.2 SPI write mode timing chart	16
	1. Serial setting table	18
<u>C.</u>	Optical specification (Note 1.Note 2. Note 3)	23
<u>D.</u>	Reliability test items:	27
<u>E.</u>	Packing form	29
E.		
	Outline dimension	

Version: 0.0

5/30 Page

A. Physical specifications

		0 1/1	
NO.	ltem (1.12)	Specification (2004)	Remark
1	Display resolution (dot)	480(W)×272(H) (tri-gate)	
2	Active area (mm)	132.48 (W) × 75.072 (H)	
3	Screen size (inch)	6 (Diagonal)	
4	Dot pitch (mm)	0.276 (W) × 0.092 (H)	4
5	Color configuration	R. G. B. strip tri-gate	Net
6	Overall dimension (mm)	143.9 (W) × 88.3 (H) × 3.9 (D)	Note 1
7	Weight (g)	87±10	
8 Nata 4: D	Panel surface treatment lefer to F. Outline Dimension	Hard coating	
	Confidential	SUBOR INTERNAL	

Version: 0.0

Page : 6/30

B. Electrical specifications

1. Pin assignment

1. Pili assigninent		1/0			
No.	Pin Name	I/O	structure	Description	Remarks
1	GND	G		GND	
2	GND	G		GND	
3	VDD	P		Power supply	
4	VDD	P		Power supply	
5	GRB	I	Type 3	Global Reset Pin (active low),	
6	INT_R	0	Type 1	Interrupt signal for touch panel function	
7	SCL	1	Type 3	Serial command clock input pin	
8	SDA	I/O	Type 4	Serial command data input pin	
9	CSB	I	Type 3	Serial command chip select pin	
10	R0	I	Type 2	Red Data Signal (LSB)	
11	R1	I	Type 2	Red Data Signal	
12	R2	I	Type 2	Red Data Signal	
13	R3	I	Type 2	Red Data Signal	
14	R4	I	Type 2	Red Data Signal	
15	R5	I	Type 2	Red Data Signal	
16	R6	I	Type 2	Red Data Signal	
17	R7	I	Type 2	Red Data Signal (MSB)	
18	INT_T	0	Type 1	Touch indicator signal.	
19	GND	G	X->-	GND	
20	GND	G _A		GND	
21	DE	CLO	Type 2	Data enable input	
22	DCLK		Type 2	Data clock input	
23	VSYNC) 1	Type 2	Vertical synchronizing signal	
24	HSYNC	I	Type 2	Horizontal synchronizing signal	
25 /4	G0	1	Type 2	Green Data Signal (LSB)	
26	G 1	I	Type 2	Green Data Signal	
27	G2	I	Type 2	Green Data Signal	
28	G3	I	Type 2	Green Data Signal	
29	G4	I	Type 2	Green Data Signal	
30	G5	I	Type 2	Green Data Signal	
31	G6	I	Type 2	Green Data Signal	

Version: 0.0

Page : 7/30

		ī	1	
32	G7	I	Type 2	Green Data Signal (MSB)
33	В0	I	Type 2	Blue Data Signal (LSB)
34	B1	I	Type 2	Blue Data Signal
35	B2	I	Type 2	Blue Data Signal
36	В3	I	Type 2	Blue Data Signal
37	B4	I	Type 2	Blue Data Signal
38	B5	I	Type 2	Blue Data Signal
39	В6	I	Type 2	Blue Data Signal
40	В7	I	Type 2	Blue Data Signal (MSB)
41	GND	G		GND
42	GND	G		GND
43	GND	G		GND
44	GND	G		GND
45	VLED-	Р		LED backlight cathode
46	VLED+	Р		LED backlight anode
47	GND	G		GND
48	GND	G		GND
49	GND	G		GND
50	GND	G		GND

I: Input; O: Output. P: Power. I/O input/output

Note: Definition of scanning direction. Refer to figure as below

Version: 0.0

Page: 8/30

I/O Pin Structure:

Pull high/low resistor is $800k\Omega$

2. Absolute maximum ratings

Item	Symbol	Condition	Min.	Max.	Unit	Remark
Power voltage	VDD	GND=0	-0.5	5.0	V	
Input signal voltage	CSB,SDA,SCL, VSYNC,HSYNC, DCLK,R0~R7,G0~G7, B0~B7	GND=0	-0.3	3.6	V	
Operating temperature	Тора	-	1		$^{\circ}\!\mathbb{C}$	Ambient temperature
Storage temperature	Tstg	-	1		$^{\circ}$	Ambient temperature

Page : 9/30

3. Electrical characteristics

3.1 Operating conditions (GND=0V)

	Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Powe	er supply	VDD	3.0	3.3	3.6	٧	Note 1
Input	H Level	V _{IH}	0.7* VDD	-	VDD	V	
Signal voltage	L Level	V_{IL}	GND	ı	0.3* VDD	V	. 1
Touch Panel Sensing Rate				60		Hz	Note 2
Touch Pane	el Data Update			60		Hz	Note 2

Note 1: A build-in power on reset circuit for VDD is provided within the integrated LCD driver IC.

Note 2: Touch panel sensing rate and data update rate are synchronized with frame frequency.

3.2 Electrical characteristics (GND=AGND=0V)

Paramete	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Input Current	I_{DD}	VDD 0.0V		20		mA	Note 1
for V _{DD}	for V _{DD}	VDD=3.3V		TBD		uA	Note 1

Note 1: Test Condition: black pattern, DCLK=27MHz, Frame rate: 60Hz, other registers are default setting.

3.3 Backlight driving conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED current	IL	~	80		mA	
LED voltage	V _L	2.95	3.2	3.45	V	

Page : 10/30

4. Input timing AC characteristic

(VDD=3.0 ~3.6V, GND=0V, TA=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
CLK time	T _{DCLK}	72.25	105.49	110.62	ns	
CLK High time	PW_{CH}	38.91			ns	
CLK Low time	PW_{CL}	38.91			ns	1
DCLK duty cycle		40	50	60	%	
HSYNC setup time	T _{HS}	5	-	-	ns	
HSYNC hold time	PW_{HH}	10	-	-	ns	
Data setup time	T _{DS}	5	-	-	ns	159
Data hold time	PW_{DH}	10	-	-	ns	
DE setup time	T _{ES}	5	-	-	ns (\
DE hold time	PW_{HE}	10	-	-	ns	

Fig1. Input timing detail

Page: 11/30

5. Input timing condition

Page : 12/30

HV mode (default)

Fig2. HV mode - Vertical Input timing chart

Fig3. DE mode - Vertical Input timing chart

Page : 13/30

Horizontal Timing of Input

HV mode (default)

Fig4. HV mode - Horizontal Input timing chart

DE mode (set by SPI command)

Fig5. DE mode - Horizontal Input timing chart

Page: 14/30

6. Touch Function Timing Diagram

Note 1: INT_R: The interrupt signal when coordinate is ready.

INT_T: The indicator signal of touch.

Note 2: The COORDINATE DATA must read out at INT_R rising edge.

Note 3: INT_T is same with conventional touch panel interrupt signal.

When $INT_T = HIGH$ means touch; when $INT_T = LOW$ means no touch.

Note 4: Update Rate is synchronized with VSYNC frequency.

Page : 15/30

7. Serial control interface AC characteristic

Parameter	Symbol	Min.	Тур.	Max.	Unit.
Serial clock	T _{SCK}	100			ns
SCL pulse duty	T_{SCW}	40	50	60	%
Serial data setup time	T _{IST}	50			ns
Serial data hold time	T _{IHD}	50			ns
Serial clock high/low	T _{SSW}	50			ns
CSB setup time	T _{CST}	50			ns
CSB hold time	T _{CHD}	50			ns
Chip select distinguish	T _{CD}	400			ns
Delay from CSB to Vsync	T _{CV}	1			us

Page: 16/30

7.1 The configuration of serial data at SDA terminal is at below

MSB															LSB
A6	A5	A4	A3	A2	A1	A0	D8	D7	D6	D5	D4	D3	D2	D1	D0
Address						R/W				DA	TA				

7.2 SPI write mode timing chart

7.3 SPI read mode timing chart

- 1. At power-on, the default values specified for each parameter (in Figure 1) are taken.
- 2. If less than 16-bit data are read during the CSB low time period, the data is cancelled.
 - a. The write operation is cancelled.
 - b. The read operation is interrupt.
- 3. If more than 16-bit data are read during the CSB low time period, the last 16 bits are kept.
 - a. Address & R/W are always defined form CSB falling edge.
 - b. The write operation load last 8 bit data before CSB rising edge.
 - c. The read operation is "D0" which output to SDA until CSB rising edge.
- 4. All items are setting in anytime and enable at the falling edge of the VSYNC(HV mode) or the rising edge of the End Frame(DE mode), except GRB.
- 5. When GRB is activated through the serial interface, all registers are cleared except the GRB value.
- 6. Register R/W setting: D8 = "L" → write mode; D8 = "H" → read mode.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

17/30 Page

7. The register values are valid when VCC already goes to high and after VSYNC(HV mode) or End Frame(DE mode) starts.

- 8. It is suggested that VSYNC, HSYNC, DCLK(for HV mode) or DE, DCLK(for DE mode) always exists in the same time. But if HSYNC, DE, DCLK stops, only VSYNC operating, the register setting is still valid.
- 9. If the chip goes to standby mode, the register value will still keep. MCU can wake up the chip only by changing standby mode value from low to high.
- 10. The register setting values are rewritten by the influence of static electricity, a noise, etc. to unsuitable value, incorrect operating may occur. It is suggested that the SPI interface will setup as frequently as possible.

18/30 Page

1. Serial setting table

(1) Initial register settings:

Reg			ΑI	DDRES	SS			R/W				DA	TA			
No.	A6	A5	A4	A3	A2	A1	A0	D8	D7	D6	D5	D4	D3	D2	D1	D0
R4	0	0	0	0	1	0	0	0	0	1	0	1	1	0	1	0
R5	0	0	0	0	1	0	1	0	0	1	1	1	0	0	0	0
R48	0	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0
R49	0	1	1	0	0	0	1	0	0	0	1	0	0	1	1	0
R50	0	1	1	0	0	1	0	0	1	0	0	0	0	1	0 🔨	0
R51	0	1	1	0	0	1	1	0	0	0	0	1	1	1	1	0
R52	0	1	1	0	1	0	0	0	1	0	0	1	0	1 /	0	0
R53	0	1	1	0	1	0	1	0	0	0	0	0	0	0		1

Note: This initial register settings need to be registered before using.

(2) Register settings:

Reg			ΑĽ	DRE	SS			R/W									
No.	A6	A5	A 4	A3	A2	A1	A0	D8	D7	D6	D5	D4	D3	D2			
R0	0	0	0	0	0	0	0	0	0	1 ^	0	1	Χ	0	0	GRB(1)	
R1	0	0	0	0	0	0	1	0	STB (1)	1	X	0	1		101		
R2	0	0	0	0	0	1	0	0	DEM (0)	X	0	1			VDL(1000)		
R3	0	0	0	0	0	1	1	0 <				HDI	_(1000	_0000			
R23	0	0	1	0	1	1	1	0) ′	010			010	ı	CHLR(0)	0	
R47	0	1	0	1	1	1	1	0		1	10111			Х	SENSING_ 0)		
R65	1	0	0	0	0	0	1	X				RD	COOF	RDATA	4		
R67	1	0	-	0	0	1 🦠		0	0	0	0	0	0	Χ	AEN (0)	X	

Page : 19/30

Register R0

Bit0	GRB setting
0	The controller is reset. Reset all registers to default value.
1	Normal operation(default)

Register R1

Bit7	STB setting
0	T-CON, source driver and DC-DC converters are off, all outputs are GND, and all level shift outputs are high Z.
1	Normal operation(default)

Register R2

Bit7	DEM setting	145
0	The setting is HV mode.	
1	The setting is DE mode.	1

Bit3-0	VDL setting.
0000	$T_{VE} = T_{Vetyp} - 8$ Hs period.
0001	$T_{VE} = T_{Vetyp} - 7$ Hs period.
0010	$T_{VE} = T_{Vetyp} - 6$ Hs period.
0011	$T_{VE} = T_{Vetyp} - 5$ Hs period.
0100	$T_{VE} = T_{Vetyp} - 4$ Hs period.
0101	$T_{VE} = T_{Vetyp} - 3$ Hs period.
0110	$T_{VE} = T_{Vetyp} - 2$ Hs period.
0111	$T_{VE} = T_{Vetyp} - 1$ Hs period.
1000	$T_{VE} = T_{Vetyp}$. (T_{VE} =27 (typ)). (default)
1001	$T_{VE} = T_{Vetyp} + 1$ Hs period.
1010	$T_{VE} = T_{Vetyp} + 2$ Hs period.
1011	$T_{VE} = T_{Vetyp} + 3$ Hs period.
1100	$T_{VE} = T_{Vetyp} + 4$ Hs period.
1101	$T_{VE} = T_{Vetyp} + 5$ Hs period.
1110	$T_{VE} = T_{Vetyp} + 6$ Hs period.
1111	$T_{VE} = T_{Vetyp} + 7$ Hs period.

Vertical input timing. (HV mode)

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page : 20/30

Register R3

Bit7-0	HDL setting.
00100110	Prohibited
00100111	$T_{HE} = T_{Hetyp} - 39$ CLK period ($T_{HE} = 4$ (min)).
10000000	$T_{HE} = T_{Hetyp} (T_{HE}=43 (typ)). (default)$
11010111	$T_{HE} = T_{Hetyp} + 87$ CLK period ($T_{HE} = 130$ (max)).
11011000	Prohibited

Horizontal input timing. (HV mode)

Register R23

Bit1	CHLR setting
0	Shift from left to right: D1→D2→D3→Dm.
1	Shift from right to left: Dm→Dm-1→D2→D1.

Note: m=480

Register R47

Bit1-0	SENSING_RATE (Sensing rate setting) (M)
00	M = 0 (60Hz) (default)
01	M = 1 (30Hz)
10	M = 2 (15Hz)
11	M = 31

Note: 1. "M=0"(60Hz) setting just can be used in coordinates mode.

2. Sensing rate setting (M) will affect outputting frequency of coordinates.

Register R67

	Bit1	AEN (Enable Touch Panel Algorithm)
	0	Touch Panel algorithm is disabled (default)
ion	1	Touch Panel algorithm is enable

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 21/30

Register R65

	Reg No	ADDRESS							R/W	DATA						
		D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1
	R65	1	0	0	0	0	0	1	R	RDCOORDATA (Read Sensing Coordinates from SPI directly)						

Note 1: This register (command) will output 8*2*9bit data, so the SPI clock must be faster than 10KHz (8*2*9*60 = 10K).

Note 2: Definition of sensing coordinates (X1,Y1)~(X8,Y8) are mapping to display physical coordinates as shown in figure below.

Definition of sensing coordinate

Page : 22/30

Note 3: User can use this register (command) to reading sensing coordinate directly and the SPI sequence is different with other commands. The SPI sequence is as follows:

Page : 23/30

C. Optical specification (Note 1, Note 2, Note 3)

· ·		,			ĺ			
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
	Rise	Tr		-	10	40	ms	
Response time	Fall	Tf	θ=0°	-	25	50	ms	Note 4, 6
Contrast ratio		CR	At optimized viewing angle	200	300	-	(Note 5, 6
	Тор			60	70	-		
	Bottom			60	70	-	15	
Viewing angle	Left		CR≧10	60	70	-	deg.	Note 6, 7
	Right			60	70	_ (7	
Brightness			θ=0°	150	180		nits	Note 8
White chromaticity		Х		0.26	0.31	0.36		
		у	θ=0°	0.28	0.33	0.38		
		Х		0.53	0.58	0.63		
Red chroma	ticity	у	θ=0°	0.29	0.34	0.39		
Green chromaticity		X	θ=0°	0.29	0.34	0.39		
Green chrom	alicity	у	0=0	0.51	0.56	0.61		
Divo obreme	tioit.	X	0.00	0.09	0.14	0.19		
Blue chromaticity		у	θ=0°	0.09	0.14	0.19		
Uniformity		ΔY_L	%	75	80		%	Note 10

Note 1. Ambient temperature = 25° C.

Note 2. To be measured in the dark room.

Note 3.To be measured on the center area of panel with a field angle of 1 by Topcon luminance meter BM-7, after 10 minutes operation under 25 mA.

Note 4. Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Page: 24/30

Note 5. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR) = Photo detector output when LCD is at "White" state

Photo detector output when LCD is at "Black" state

Note 6. White $Vi=V_{i5} + 1.5V$

Black $Vi=V_{i50} \pm 2.0V$

"±" Means that the analog input signal swings in phase with COM signal.

" + " Means that the analog input signal swings out of phase with COM signal.

 $V_{\rm i50}$. The analog input voltage when transmission is 50%

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 7. Definition of viewing angle:

Refer to figure as below.

Page : 25/30

Note 8. Measured at the center area of the panel in gray level 255

Note 9 CF Arrangement

Page : 26/30

Note 10. Luminance Uniformity of these 9 points is defined as below:

Uniformity = \frac{\text{minimum luminance in 9 points (1-9)}}{\text{maximum luminance in 9 points (1-9)}}

Page : 27/30

D. Reliability test items:

No.	Test items	Condit	Remark	
1	High temperature storage	Ta= 70°C	240Hrs	
2	Low temperature storage	Ta= -25°C	240Hrs	
3	High temperature operation	Ta= 60°C	240Hrs	
4	Low temperature operation	Ta= 0°C	240Hrs	A 41
5	High temperature and high humidity	Ta= 60°C . 90% RH	240Hrs	Operation
6	Heat shock	-25°C ~80°C /50 cycle 2	Hrs/cycle	Non-operation
7	Electrostatic discharge	Air mode:+/- 8KV Contact mode: +-4kV	, 45°	Base on AUO's Standard testing method
8	Vibration (with carton)	Random vibration: 0.015G ² /Hz from 5~20 –6dB/Octave from 200	. 6	IEC 68-34
9	Drop (with carton)	Height: 60cm 1 corner, 3 edges, 6 su	ırfaces	

Note: Ta: Ambient temperature.

Note 2. ESD Testing Flow as the below

Note 3. ESD testing method.

1. Ambient: 24~26°C, 56~65%RH

2. Instruments: Noiseken ESS-2000,

3. Operation System: TBD

4. Test Mode: TBD

5. Test Method:

a. Contact Discharge: Max±20KV, 150pF(330Ω) 1sec, 5 points, 10 times/point

b. Air Discharge: Max ±20KV, 150pF(330Ω) 1sec, 5 points, 10 times/point

6. Test point:

Version 0.0

28/30 Page

7. The metal casing is connected to ground (0V) at four corners.

8. All register commands are repeating transfer.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page : 29/30

E. Packing form

Page : 30/30

F. Outline dimension

"To avoid applying pressure or stress on the products. These will cause visual defects or luminance non-uniformity on the lighting area."

"The protection film in the back side of LCM should be tear off before assembly."

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.