# Boosting algorithms

What's Boosting in ML?

How Boosting algorithms work?

Types of Boosting algorithm.

### Boosting algorithms

- Boosting is an ensemble learning techniques that uses a set of ML algorithms to combines weak learner (or base learner) to form a strong learner in order to increase the accuracy of the model.
- During the training phase, the performance of the model is improved by assigning a higher weight to the previous incorrectly classified subjects.



### How does Boosting algorithm work?

Basic concept behind the working of the boosting algorithm is to generate multiple weak learner and combine their predictions to form one strong rule



Step1: Assigns equal weight to each data point and fit the ML model to the data. ——> evaluate the model performance

Step2: False predictions are assigned to the next dataset with higher weightage on these incorrect predictions.

Step3: Repeat step 2 until the algorithm can correctly predict the outcome variable.

### Ensemble learning

#### Bagging - Parallel

dataset

Build multiple ML models using same algorithm with subset of training dataset randomly selected from the full training dataset



#### **Boosting - Sequential**

Perform iterative process to reduce errors of previous models by selecting points which give wrong predictions and try to predict them with successive model.



### Types of Boosting algorithms

- 1. AdaBoost (Adaptive Boosting)
- 2. Gradient Boosting
- 3. XGBoost

### AdaBoost

### AdaBoost (Adaptive boosting)

Step1: Each data point is weighted equally for the first decision stump.





**Note:** AdaBoost can also be used on a regressions problem, but it's most commonly seen in classification problems.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.314&rep=rep1&type=pdf

### Original AdaBoost algorithm

- 1. Given a training dataset (X, y) which contains data points  $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$
- 2. Construct distribution of  $W_t$  on  $\{1, 2, 3, ..., m\}$ , where  $W_t(i)$  is the weight attributed to subject i on the iteration t
- 3. Initial weight are calculated by  $W_1(i) = 1/m$ , and the next weight are calculated by

$$W_{t+1}(i) = W_t(i)F_i/Z_t$$

- Where  $F_i=e^{-\alpha_t}$  if  $M_t(i)\neq y_i$ , and  $F_i=e^{\alpha_t}$  if  $M_t(i)=y_i$
- $\epsilon_t = \sum_{i=1}^m W_t(i) \times \delta_i \text{ where } \delta_i = 0 \text{ if } M_t(i) = y_i \text{, and } \delta_i = 1 \text{ if } M_t(i) \neq y_i \text{ Mis-classified}$
- $\alpha_t = \frac{1}{2} ln(\frac{1 \epsilon_t}{\epsilon_y})$
- 4. Build up a classifier (weak learner)  $M_t: X \to \{-1,1\}$
- 5. The final classification considered using the weighted average of the classifier

$$sign(\sum_{t=1}^{T} \alpha_t M_t(x))$$

### Main concepts behind AdaBoost



Random forest



**AdaBoost** 

- Technically, stumps are weak learner, that is not great at making accurate classifications. AdaBoost combined a lot of weak learners to make classification.
- In a random forest, each decision tree is made independently of the others.
   In contrast, Forest of stumps made with Adaboost, order is matter. (the error that the first stump makes influence how the second stump is made, and .... so on ...)
- Hence some stump will get more weight in the classification than others.

| STA   | LOC | SYS | AGE |
|-------|-----|-----|-----|
| Dead  | No  | 36  | 27  |
| Dead  | No  | 48  | 59  |
| Dead  | Yes | 44  | 77  |
| Dead  | No  | 62  | 54  |
| Alive | Yes | 112 | 87  |
| Alive | Yes | 108 | 69  |
| Alive | No  | 140 | 63  |
| Alive | Yes | 138 | 30  |

- STA life status
- LOC level of consciousness
- Sys systolic blood pressure
- Age patient's age

Step1: All subjects get the same weight:  $W_1(i) = 1/m = 1/8$ 

| STA   | LOC | SYS | AGE | Subject weight |
|-------|-----|-----|-----|----------------|
| Dead  | No  | 36  | 27  | 1/8            |
| Dead  | No  | 48  | 59  | 1/8            |
| Dead  | Yes | 44  | 77  | 1/8            |
| Dead  | No  | 62  | 54  | 1/8            |
| Alive | Yes | 112 | 87  | 1/8            |
| Alive | Yes | 108 | 69  | 1/8            |
| Alive | No  | 140 | 63  | 1/8            |
| Alive | Yes | 138 | 30  | 1/8            |

Step2: Build up the first stump

| STA   | LOC | SYS | AGE | Subject weight |
|-------|-----|-----|-----|----------------|
| Dead  | No  | 36  | 27  | 1/8            |
| Dead  | No  | 48  | 59  | 1/8            |
| Dead  | Yes | 44  | 77  | 1/8            |
| Dead  | No  | 62  | 54  | 1/8            |
| Alive | Yes | 112 | 87  | 1/8            |
| Alive | Yes | 108 | 69  | 1/8            |
| Alive | No  | 140 | 63  | 1/8            |
| Alive | Yes | 138 | 30  | 1/8            |



#### Step2: Build up the first stump

| STA                  | LOC | SYS | AGE | Subject weight |
|----------------------|-----|-----|-----|----------------|
| Dead                 | No  | 36  | 27  | 1/8            |
| Dead                 | No  | 48  | 59  | 1/8            |
| Dead                 | Yes | 44  | 77  | 1/8            |
| Dead                 | No  | 62  | 54  | 1/8            |
| Alive                | Yes | 112 | 87  | 1/8            |
| Al <mark>iv</mark> e | Yes | 108 | 69  | 1/8            |
| Al <mark>ive</mark>  | No  | 140 | 63  | 1/8            |
| Alive                | Yes | 138 | 30  | 1/8            |



Step3: Evaluate the prediction error of the stump

| _ | STA   | LOC | SYS | AGE | Subject weight |       |            | LO  |         |           |
|---|-------|-----|-----|-----|----------------|-------|------------|-----|---------|-----------|
|   | Dead  | No  | 36  | 27  | 1/8            |       | L          |     |         |           |
| , | Dead  | No  | 48  | 59  | 1/8            |       | No         | 1   | Yes     | ¬         |
|   | Dead  | Yes | 44  | 77  | 1/8            |       | Dead       |     | Alive   |           |
| _ | Dead  | No  | 62  | 54  | 1/8            | Corre | ct Incorre | ect | Correct | Incorrect |
|   | Alive | Yes | 112 | 87  | 1/8            | 3     | 1          |     | 3       | 1         |
| Ţ | Alive | Yes | 108 | 69  | 1/8            |       | i          |     |         |           |
|   | Alive | No  | 140 | 63  | 1/8            |       |            |     |         |           |
| - | Alive | Yes | 138 | 30  | 1/8            | •     |            |     |         |           |

Total Error = 
$$\epsilon_t = \sum_{i=1}^{m} W_t(i) \times \delta_i = (1/8)(6)(0)+(1/8)(2)(1) = 2/8$$

where  $\delta_i=0$  if  $M_{t}(i)=y_i$ , and  $\delta_i=1$  if  $M_{t}(i)\neq y_i$ 

Step4: Calculate the amount of say (weight:  $\alpha_t$ ) of the stump

| _   | STA   | LOC | SYS | AGE | Subject weight |   |
|-----|-------|-----|-----|-----|----------------|---|
|     | Dead  | No  | 36  | 27  | 1/8            |   |
| ,.  | Dead  | No  | 48  | 59  | 1/8            |   |
|     | Dead  | Yes | 44  | 77  | 1/8            |   |
| *** | Dead  | No  | 62  | 54  | 1/8            | • |
| _   | Alive | Yes | 112 | 87  | 1/8            |   |
| Ţ   | Alive | Yes | 108 | 69  | 1/8            |   |
|     | Alive | No  | 140 | 63  | 1/8            | į |
| •   | Alive | Yes | 138 | 30  | 1/8            | • |
|     |       |     |     |     |                |   |

$$\alpha_t = \frac{1}{2} ln(\frac{1 - \epsilon_t}{\epsilon_t})$$

Total Error = 
$$\epsilon_t = \sum_{i=1}^m W_t(i) \times \delta_i$$
 = (1/8)(6)(0)+(1/8)(2)(1) = 2/8

where  $\delta_i = 0$  if  $M_{\it t}(i) = y_{\it i}$ , and  $\delta_i = 1$  if  $M_{\it t}(i) \neq y_{\it i}$ 

The amount of say: 
$$\alpha_t = \frac{1}{2}ln(\frac{1-\epsilon_t}{\epsilon_t})$$



Step4: Calculate **the amount of say** (weight:  $\alpha_t$ ) of the stump

|    | STA   | LOC | SYS | AGE | Subject weight | 1 1 _ ~                                                        |
|----|-------|-----|-----|-----|----------------|----------------------------------------------------------------|
| •  | Dead  | No  | 36  | 27  | 1/8            | $\alpha_t = \frac{1}{2} ln(\frac{1 - \epsilon_t}{\epsilon_t})$ |
|    | Dead  | No  | 48  | 59  | 1/8            | $\frac{\alpha_t}{2} - \frac{\alpha_t}{\epsilon_t}$             |
|    | Dead  | Yes | 44  | 77  | 1/8            | 1 	 1 - 2/8                                                    |
| •  | Dead  | No  | 62  | 54  | 1/8            | $= \frac{1}{2}ln(\frac{1-2/8}{2/8})$                           |
|    | Alive | Yes | 112 | 87  | 1/8            | 2 210                                                          |
| ٠  | Alive | Yes | 108 | 69  | 1/8            | = 0.549                                                        |
|    | Alive | No  | 140 | 63  | 1/8            |                                                                |
| -1 | Alive | Yes | 138 | 30  | 1/8            | 1 ■ ■ <sup>-</sup>                                             |

Total Error = 
$$\epsilon_t = \sum_{i=1}^{m} W_t(i) \times \delta_i = (1/8)(6)(0)+(1/8)(2)(1) = 2/8$$

where  $\delta_i = 0$  if  $M_{\it t}(i) = y_{\it i}$ , and  $\delta_i = 1$  if  $M_{\it t}(i) \neq y_{\it i}$ 

#### Get back to the step1: Reweight the subjects using previous stump.

|   | STA   | LOC | SYS | AGE | Subject weight | New weight* |
|---|-------|-----|-----|-----|----------------|-------------|
| · | Dead  | No  | 36  | 27  | 1/8            | 0.072       |
|   | Dead  | No  | 48  | 59  | 1/8            | 0.072       |
|   | Dead  | Yes | 44  | 77  | 1/8            | 0.216       |
|   | Dead  | No  | 62  | 54  | 1/8            | 0.072       |
|   | Alive | Yes | 112 | 87  | 1/8            | 0.072       |
| , | Alive | Yes | 108 | 69  | 1/8            | 0.072       |
|   | Alive | No  | 140 | 63  | 1/8            | 0.216       |
|   | Alive | Yes | 138 | 30  | 1/8            | 0.072       |
|   | ALLVE | 163 | 130 | 30  | 170            | 0.072       |

New weight\* = 
$$W_{t+1}(i) = W_t(i) \times e^{\alpha_t}$$
; if  $M_t(i) \neq y_i$   
=  $W_t(i) \times e^{-\alpha_t}$ ; if  $M_t(i) = y_i$ 



#### Get back to the step1: Reweight the subjects using previous stump.

| STA       | LOC | SYS | AGE | Subject weight | New weight | Normalized weight |
|-----------|-----|-----|-----|----------------|------------|-------------------|
| Dead      | No  | 36  | 27  | 1/8            | 0.072      | 0.083             |
| <br>Dead  | No  | 48  | 59  | 1/8            | 0.072      | 0.083             |
| Dead      | Yes | 44  | 77  | 1/8            | 0.216      | 0.250             |
| <br>Dead  | No  | 62  | 54  | 1/8            | 0.072      | 0.083             |
| Alive     | Yes | 112 | 87  | 1/8            | 0.072      | 0.083             |
| <br>Alive | Yes | 108 | 69  | 1/8            | 0.072      | 0.083             |
| Alive     | No  | 140 | 63  | 1/8            | 0.216      | 0.250             |
| <br>Alive | Yes | 138 | 30  | 1/8            | 0.072      | 0.083             |

New weight (final) = 
$$W_{t+1}(i)$$
 =  $W_t(i)$  x  $\frac{e^{\alpha_t}}{Z_t}$ ; if  $M_t(i) \neq y_i$  =  $W_t(i)$  x  $\frac{e^{-\alpha_t}}{Z_t}$ ; if  $M_t(i) = y_i$ 

#### Get back to the step2: Build up the next stump

| STA   | LOC | SYS | AGE | Adjusted subject weight |
|-------|-----|-----|-----|-------------------------|
| Dead  | No  | 36  | 27  | 0.083                   |
| Dead  | No  | 48  | 59  | 0.083                   |
| Dead  | Yes | 44  | 77  | 0.250                   |
| Dead  | No  | 62  | 54  | 0.083                   |
| Alive | Yes | 112 | 87  | 0.083                   |
| Alive | Yes | 108 | 69  | 0.083                   |
| Alive | No  | 140 | 63  | 0.250                   |
| Alive | Yes | 138 | 30  | 0.083                   |

Instead of using a weighted Gini or weighted Entropy index, we can make a new collection of data points that contains duplicate copies of the data points correspond to their weights.

| STA   | LOC | SYS | AGE | Adjusted<br>subject weight |
|-------|-----|-----|-----|----------------------------|
| Dead  | No  | 36  | 27  | 0.083                      |
| Dead  | No  | 48  | 59  | 0.083                      |
| Dead  | Yes | 44  | 77  | 0.250                      |
| Dead  | No  | 62  | 54  | 0.083                      |
| Alive | Yes | 112 | 87  | 0.083                      |
| Alive | Yes | 108 | 69  | 0.083                      |
| Alive | No  | 140 | 63  | 0.250                      |
| Alive | Yes | 138 | 30  | 0.083                      |

Weighted random sampling with replacement

| STA | LOC | SYS | AGE |
|-----|-----|-----|-----|
|     |     |     |     |
|     |     |     |     |
|     |     |     |     |
|     |     |     |     |
|     |     |     |     |
|     |     |     |     |
|     |     |     |     |
|     |     |     |     |

| STA   | LOC | SYS | AGE | Adjusted<br>subject weight |
|-------|-----|-----|-----|----------------------------|
| Dead  | No  | 36  | 27  | 0.083                      |
| Dead  | No  | 48  | 59  | 0.083                      |
| Dead  | Yes | 44  | 77  | 0.250                      |
| Dead  | No  | 62  | 54  | 0.083                      |
| Alive | Yes | 112 | 87  | 0.083                      |
| Alive | Yes | 108 | 69  | 0.083                      |
| Alive | No  | 140 | 63  | 0.250                      |
| Alive | Yes | 138 | 30  | 0.083                      |

Weighted random sampling with replacement

| STA   | LOC | SYS | AGE |
|-------|-----|-----|-----|
| Dead  | Yes | 44  | 77  |
| Dead  | Yes | 44  | 77  |
| Alive | No  | 140 | 63  |
| Dead  | No  | 36  | 27  |
| Dead  | No  | 48  | 59  |
| Dead  | Yes | 44  | 77  |
| Alive | No  | 140 | 63  |
| Dead  | No  | 36  | 27  |

#### Get back to the step2: Build up the next stump

Use the new collection of data points as a training data

| STA   | LOC | SYS | AGE | Weight |
|-------|-----|-----|-----|--------|
| Dead  | Yes | 44  | 77  | 1/8    |
| Dead  | Yes | 44  | 77  | 1/8    |
| Alive | No  | 140 | 63  | 1/8    |
| Dead  | No  | 36  | 27  | 1/8    |
| Dead  | No  | 48  | 59  | 1/8    |
| Dead  | Yes | 44  | 77  | 1/8    |
| Alive | No  | 140 | 63  | 1/8    |
| Dead  | No  | 36  | 27  | 1/8    |



repeat ...







0.15

Total amount of say = -1.8

STA = Dead(1)



Total amount of say = 1.19

# AdaBoosting using R

fit.ada AdaBoost.M1

```
120 samples
```

4 predictor

3 classes: 'setosa', 'versicolor', 'virginica'

No pre-processing

Resampling: Bootstrapped (5 reps)

Summary of sample sizes: 24, 24, 24, 24, 24

Resampling results across tuning parameters:

| coeflearn | maxdepth | mfinal | logLoss A | NUC I     | orAUC     | Accuracy    | Kappa I  | Mean_F1   |
|-----------|----------|--------|-----------|-----------|-----------|-------------|----------|-----------|
| Breiman   | 1        | 50     | 0.4750813 | 0.9697754 | 0.3008532 | 2 0.9375000 | 0.906250 | 0.9373596 |
| Breiman   | 1        | 100    | 0.4767168 | 0.9803060 | 0.4699178 | 0.9375000   | 0.906250 | 0.9373596 |
| Breiman   | 1        | 150    | 0.4756446 | 0.9783854 | 0.4825737 | 0.9354167   | 0.903125 | 0.9352625 |
| Breiman   | 2        | 50     | 0.3659022 | 0.9818685 | 0.7150678 | 0.9354167   | 0.903125 | 0.9352625 |
| Breiman   | 2        | 100    | 0.3745246 | 0.9817708 | 0.7789088 | 0.9354167   | 0.903125 | 0.9352625 |
| Breiman   | 2        | 150    | 0.3806631 | 0.9822754 | 0.7898933 | 0.9354167   | 0.903125 | 0.9352625 |

# AdaBoosting using R





# Gradient Boosting (BGM)

- Regression
- Classification

# Gradient Boosting for Regression

Let  $(X, y) = \{(\mathbf{x_i}, y_i)\}_{i=1}^n$  be a training dataset, and  $L(y_i, F(\mathbf{x_i}))$  be differentiable Loss function.

Step 1: fit the null model (model with only constant term)  $\Longrightarrow F_0(\mathbf{X}) = \operatorname*{argmin} \sum_{i=1}^{\infty} L(y_i, \gamma)$ 

Step2: for m in 1:M

- 1. Compute  $e_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_{m-1}(x)}$  for i = 1, 2, ..., n
- 2. Fit a regression tree to the  $e_{im}$  values and create terminal region  $R_{jm}$  for  $j=1,...,J_m$
- 3. For  $j = 1, 2,...,J_m$  compute  $\gamma_{jm} = \underset{x}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma)$
- 4. Update  $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \nu \sum_{\substack{\text{Learning rate} \\ [0,1]}}^{J_m} \gamma_{jm} I(x \in R_{jm})$

Output:  $F_M(\mathbf{X})$ 

Let  $(X, \mathbf{y}) = \{(\mathbf{x_i}, y_i)\}_{i=1}^n$  be a training dataset, and  $L(y_i, F(\mathbf{x_i}))$  be differentiable Loss function.

#### Training dataset

| SES  | Level     | Gender | Discipline |
|------|-----------|--------|------------|
| -1.0 | Primary   | Male   | 27         |
| 0.5  | Secondary | Female | 59         |
| 1.0  | UnderGrad | Female | 77         |
| 1.5  | Primary   | Male   | 54         |
| 1.5  | UnderGrad | Male   | 87         |
| 1.0  | Secondary | Female | 69         |

# $\sum_{i=1}^{n} \frac{1}{2} (y_i - \hat{y}_i)^2$

#### **Loss Function**

$$L(y_i, F(\mathbf{x_i}) = \hat{y}_i) = \frac{1}{2} (y_i - \hat{y}_i)^2$$
$$\frac{\partial L}{\partial \hat{y}_i} = -(y_i - \hat{y}_i)$$

SSE = 
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

where  $F(\mathbf{X_i})$  is a function that give us the predicted values.

Step 1: fit the null model (model with only constant term)  $\Longrightarrow F_0(\mathbf{X}) = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^{\infty} L(y_i, \gamma)$ 

 $L(y_i, \gamma) = \frac{1}{2}(y_i - \gamma)^2$  is loss function; where  $y_i$  and  $\gamma$  refer to observed and predicted value respectively.

$$\sum_{i=1}^{n} L(y_i, \gamma)$$
 is the overall Loss function

argmin means we need to find a predicted value that minimized the above sum.

$$\frac{\partial \sum_{i=1}^{n} L(y_i, \gamma)}{\partial \gamma} = -\sum_{i=1}^{n} (y_i - \gamma) = 0$$

$$\Rightarrow \gamma = \frac{\sum_{i=1}^{n} y_i}{n}$$
 Hence, given the loss function  $L(y_i, \gamma) = \frac{1}{2} (y_i - \gamma)^2$  the value of  $\gamma$  that minimizes the above sum is the average of the observed outcome. 
$$\Rightarrow F_0(\mathbf{X}) = \gamma = \frac{\sum_{i=1}^{n} y_i}{n}$$

Step 1: fit the null model (model with only constant term)  $\Longrightarrow F_0(\mathbf{X}) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^{\gamma} L(y_i, \gamma)$ 

| SES  | Level     | Gender | Discipline |
|------|-----------|--------|------------|
| -1.0 | Primary   | Male   | 27         |
| 0.5  | Secondary | Female | 59         |
| 1.0  | UnderGrad | Female | 77         |
| 1.5  | Primary   | Male   | 54         |
| 1.5  | UnderGrad | Male   | 87         |
| 1.0  | Secondary | Female | 69         |

Hence, 
$$F_0(\mathbf{X}) = \frac{27 + 59 + \ldots + 69}{6} = 62.17$$

That means the null model (or initial predicted value) is a tree with just one leaf.

62.17

- Gradient boost starts by making a single leaf, instead of a tree or stump.
- This leaf represent an prior or initial guess for the weight of all subjects

**Step2:** for m in 1:M  $\longleftarrow$  We will produce M trees. (i.e. M=100)

1. Compute 
$$e_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_{m-1}(x)}$$
 for  $i = 1, 2, ..., n$ 

- 2. Fit a regression tree to the  $e_{im}$  values and create terminal region  $R_{jm}$  for  $j=1,...,J_m$ 3. For  $j=1,\,2,...,J_m$  compute  $\gamma_{jm}=\operatorname*{argmin}_{x}\sum_{x_i\in R_{ij}}L(y_i,F_{m-1}(x_i)+\gamma)$ 4. Update  $F_m(\mathbf{x})=F_{m-1}(\mathbf{x})+\nu\sum_{j=1}^{J_m}\gamma_{jm}I(x\in R_jm)$

### Step2: for m in 1:M

Let m = 1

1. Compute 
$$e_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_{m-1}(x)}$$
 for  $i = 1, 2, ..., n$   
Since the loss function is  $L(y_i, F(\mathbf{x_i})) = \hat{y}_i = \frac{1}{2}(y_i - \hat{y}_i)^2$ ,
$$e_{i(m=1)} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_0(x)}$$

$$= -\left[\frac{\partial L(y_i, F_0(\mathbf{x_i}))}{\partial F_0(\mathbf{x_i})}\right] \text{ ; where } F_0(\mathbf{x_i}) = \mu = 62.17$$

$$= (y_i - 62.17)$$

hence,  $e_{im}$  is a residual of  $\emph{i}$ -th sample, and  $\emph{m}$ -th trees

$$e_{1,1} = 27 - 62.17 = -35.17$$
...
 $e_{6,1} = 69 - 62.17 = 6.83$ 

## **Step2:** for *m* in 1 : *M*

|      |                          |        | ,          |                                                  |
|------|--------------------------|--------|------------|--------------------------------------------------|
| SES  | Level                    | Gender | Discipline | (Pseudo) Residual=actual-predicted ( $e_{i,1}$ ) |
| -1.0 | Primary                  | Male   | 27         | -35.17                                           |
| 0.5  | Secondary                | Female | 59         | -3.17                                            |
| 1.0  | UnderGrad                | Female | 77         | 14.83                                            |
| 1.5  | Primary                  | Male   | 54         | -8.17                                            |
| 1.5  | Un <mark>der</mark> Grad | Male   | 87         | 24.83                                            |
| 1.0  | Secondary                | Female | 69         | 6.83                                             |

Average value of Discipline score

62.17

## Step2: for m in 1:M

Let m=1

1. Compute 
$$e_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_{m-1}(x)}$$
 for  $i = 1, 2, ..., n$ 

- 2. Fit a regression tree to the  $e_{im}$  values and create terminal region  $R_{jm}$  for  $j=1,...,\!J_m$ 
  - We will build a regression tree to predict the residual instead of outcome.

| ,    |           |        | -          | ,         |
|------|-----------|--------|------------|-----------|
| SES  | Level     | Gender | Discipline | $e_{i,1}$ |
| -1.0 | Primary   | Male   | 27         | -35.17    |
| 0.5  | Secondary | Female | 59         | -3.17     |
| 1.0  | UnderGrad | Female | 77         | 14.83     |
| 1.5  | Primary   | Male   | 54         | -8.17     |
| 1.5  | UnderGrad | Male   | 87         | 24.83     |
| 1.0  | Secondary | Female | 69         | 6.83      |
|      |           | _      |            |           |
|      |           | Р      | redict     |           |



The leaves are the terminal regions  $R_{jm}$  for  $j=1,2,...,J_m=4$ 

## Step2: for m in 1:M

Let m = 1

1. Compute 
$$e_{im}=-\left[\frac{\partial L(y_i,F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x)=F_{m-1}(x)}$$
 for  $i=1,\ 2,...,\ n$ 

- 2. Fit a regression tree to the  $e_{im}$  values and create terminal region  $R_{jm}$  for  $j=1,...,J_m$
- 3. For  $j=1,\ 2,...,J_m$  compute  $\gamma_{jm}=\operatorname*{argmin}_{x}\sum_{x_i\in R_{ij}}L(y_i,F_{m-1}(x_i)+\gamma)$

For the each leaf in the new regression tree, we calculate the new estimate value  $(\gamma_{im})$  of the output value for each leaf

| _ | SES  | Level     | Gender | Discipline | New prediction   |
|---|------|-----------|--------|------------|------------------|
| _ | -1.0 | Primary   | Male   | 27         |                  |
|   | 0.5  | Secondary | Female | 59         |                  |
|   | 1.0  | UnderGrad | Female | 77         |                  |
| _ | 1.5  | Primary   | Male   | 54         |                  |
|   | 1.5  | UnderGrad | Male   | 87         | 62.17+24.83 = 87 |
| • | 1.0  | Secondary | Female | 69         |                  |

$$\gamma_{1,1} = \underset{\gamma}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma)$$

$$= \underset{\gamma}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} \frac{1}{2} (y_i - (F_{m-1}(\mathbf{x_i}) + \gamma))^2$$

$$= \underset{\gamma}{\operatorname{argmin}} \frac{1}{2} (87 - (62.17 + \gamma))^2$$

$$= \underset{\gamma}{\operatorname{argmin}} \frac{1}{2} (24.83 - \gamma))^2 \implies \frac{\partial \frac{1}{2} (24.83 - \gamma))^2}{\partial \gamma} = 0$$

$$\implies \gamma = 24.83$$





| SES  | Level     | Gender | Discipline | New prediction     |
|------|-----------|--------|------------|--------------------|
| -1.0 | Primary   | Male   | 27         | 62.17-35.17 = 27   |
| 0.5  | Secondary | Female | 59         | 62.17-1.50 = 60.67 |
| 1.0  | UnderGrad | Female | 77         | 62.17+14.83 = 77   |
| 1.5  | Primary   | Male   | 54         | 62.17-1.50 = 60.67 |
| 1.5  | UnderGrad | Male   | 87         | 62.17+24.83 = 87   |
| 1.0  | Secondary | Female | 69         | 62.17-1.50 = 60.67 |

Overfit

## Step2: for m in 1:M

Let m=1

1. Compute 
$$e_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_{m-1}(x)}$$
 for  $i = 1, 2, ..., n$ 

- 2. Fit a regression tree to the  $e_{im}$  values and create terminal region  $R_{jm}$  for  $j=1,...,\!J_m$
- 3. For  $j = 1, 2,...,J_m$  compute  $\gamma_{jm} = \underset{x}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma)$

4. Update 
$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_j m)$$

This is the new prediction

$$F_1(\mathbf{x}) = 62.17 + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_j m)$$

- $\nu \in (0,1)$  is the learning rate
- Learning rate is an effect of the regression tree on the final prediction



| SES  | Level     | Gender | Discipline | New prediction           |
|------|-----------|--------|------------|--------------------------|
| -1.0 | Primary   | Male   | 27         | 62.17-35.17(0.1) = 58.65 |
| 0.5  | Secondary | Female | 59         | 62.17-1.50(0.1) = 62.02  |
| 1.0  | UnderGrad | Female | 77         | 62.17+14.83(0.1) = 63.65 |
| 1.5  | Primary   | Male   | 54         | 62.17-1.50(0.1) = 62.02  |
| 1.5  | UnderGrad | Male   | 87         | 62.17+24.83(0.1) = 64.65 |
| 1.0  | Secondary | Female | 69         | 62.17-1.50(0.1) = 62.02  |



- We will see that with the learning rate = 0.1, the prediction values are not as good as the prediction values with learning rate = 1.0. However there are little better than initial prediction = 62.17.
- Hence, by scaling the tree with a learning rate results in a small step in the right direction.
- Empirical study shows that taking lots of small steps in the right direction results in better predictions with a testing dataset (lower variance).

Repeat step2: Build another tree based on the error of

69

previous tree.

SES

-1.0

0.5

1.0

1.5

1.5

1.0

Secondary

Female



6.83

6.98

Repeat step2: Build another tree based on the error of previous tree.

|      |           |        |            | ,         |
|------|-----------|--------|------------|-----------|
| SES  | Level     | Gender | Discipline | Residual2 |
| -1.0 | Primary   | Male   | 27         | -31.65    |
| 0.5  | Secondary | Female | 59         | -3.02     |
| 1.0  | UnderGrad | Female | 77         | 13.35     |
| 1.5  | Primary   | Male   | 54         | -8.02     |
| 1.5  | UnderGrad | Male   | 87         | 22.35     |
| 1.0  | Secondary | Female | 69         | 6.98      |



Combine the original leaf with the new tree to make a new prediction of an individual discipline from the



= Prediction value

Combine the original leaf with the new tree to make a new prediction of an individual discipline from the training data

| SES               | Level     | Gender | Discipline | Prediction1 | Prediction2                               |
|-------------------|-----------|--------|------------|-------------|-------------------------------------------|
| -1.0              | Primary   | Male   | 27         | 58.65       | 62.17+0.1*(-35.17)+(0.1)*(-31.65) = 55.49 |
| 0. <mark>5</mark> | Secondary | Female | 59         | 62.02       | ORI                                       |
| 1.0               | UnderGrad | Female | 77         | 63.65       | NGKON                                     |
| 1.5               | Primary   | Male   | 54         | 62.02       | IIILALO                                   |
| 1.5               | UnderGrad | Male   | 87         | 64.65       |                                           |
| 1.0               | Secondary | Female | 69         | 62.02       |                                           |

repeat ...

### **GBM Hyperparameters**

- n.trees: number of trees
- bag.fraction: proportion of observations to be sampled in each tree
- n.minobsinnode: minimum number of observations in the trees terminal nodes
- interaction.depth: maximum nodes per tree
- shrinkage: learning rate



# Gradient Boosting for Regression

Let  $(X, y) = \{(\mathbf{x_i}, y_i)\}_{i=1}^n$  be a training dataset, and  $L(y_i, F(\mathbf{x_i}))$  be differentiable Loss function.

Step 1: fit the null model (model with only constant term)  $\Longrightarrow F_0(\mathbf{X}) = \operatorname*{argmin} \sum_{i=1}^{\infty} L(y_i, \gamma)$ 

Step2: for m in 1:M

- 1. Compute  $e_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_{m-1}(x)}$  for i = 1, 2, ..., n
- 2. Fit a regression tree to the  $e_{im}$  values and create terminal region  $R_{jm}$  for  $j=1,...,J_m$
- 3. For  $j = 1, 2,...,J_m$  compute  $\gamma_{jm} = \underset{x}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma)$
- 4. Update  $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \nu \sum_{\substack{\text{Learning rate} \\ [0,1]}}^{J_m} \gamma_{jm} I(x \in R_{jm})$

Output:  $F_M(\mathbf{X})$ 

# Gradient Boosting for Classification

Let  $(X, y) = \{(\mathbf{x_i}, y_i)\}_{i=1}^n$  be a training dataset, and  $L(y_i, F(\mathbf{x_i}))$  be differentiable Loss function.

Step 1: fit the null model (model with only constant term)  $\Longrightarrow F_0(\mathbf{X}) = \operatorname*{argmin} \sum_{i=1}^{\infty} L(y_i, \gamma)$ 

Step2: for m in 1:M

- 1. Compute  $e_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_{m-1}(x)}$  for i = 1, 2, ..., n
- 2. Fit a regression tree to the  $e_{im}$  values and create terminal region  $R_{jm}$  for  $j=1,...,J_m$
- 3. For  $j = 1, 2,...,J_m$  compute  $\gamma_{jm} = \underset{x}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma)$
- 4. Update  $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \nu \sum_{\substack{\text{Learning rate} \\ [0,1]}}^{J_m} \gamma_{jm} I(x \in R_{jm})$

Output:  $F_M(\mathbf{X})$ 

#### **Training Dataset**

| LOC | SYS | AGE | STA   |
|-----|-----|-----|-------|
| No  | 36  | 27  | Dead  |
| No  | 48  | 59  | Dead  |
| Yes | 44  | 77  | Dead  |
| No  | 62  | 54  | Dead  |
| Yes | 112 | 87  | Alive |
| Yes | 108 | 69  | Alive |
| No  | 140 | 63  | Alive |
| Yes | 138 | 30  | Alive |

- STA life status
- LOC level of consciousness
- Sys systolic blood pressure
- Age patient's age

### How to define the Loss function?



Let  $y_i$  be patient status (STA), and by using probability theory, we have

$$y_i \sim Ber(p)$$

where p is the predicted probability, and  $y_i$  is the observed value of STA (0 = dead or 1 = alive)

So, the observation model is

$$p(y_i) = p^{y_i}(1-p)^{1-y_i}$$
;  $y_i = 0, 1$ 

Hence the likelihood function is

$$p(\mathbf{y} | p) = \prod_{i=1}^{n} p^{y_i} (1 - p)^{1 - y_i}$$

Consistency between y and p

#### How to define the Loss function?



$$p(\mathbf{y}|p) = \prod_{i=1}^{n} p^{y_i} (1-p)^{1-y_i}$$

$$log[p(\mathbf{y}|p)] = log[\prod_{i=1}^{n} p^{y_i} (1-p)^{1-y_i}]$$

$$log(p^{y_i} (1-p)^{1-y_i})$$

$$log(p^{y_i}) + log((1-p)^{1-y_i})$$

$$y_i log(p) + (1-y_i) log((1-p))$$

 The Log-likelihood of the data given the prediction is

$$\sum_{i=1}^{n} [y_i log(p) + (1 - y_i) log(1 - p)]$$
per observation
log-likelihood

#### log-likelhood function

$$\sum_{i=1}^{n} \{ y_i log(p) + (1 - y_i) log(1 - p) \}$$

| LOC | SYS | AGE | STA   | Log-likelihood   |                                                   |
|-----|-----|-----|-------|------------------|---------------------------------------------------|
| No  | 36  | 27  | Dead  | log(0.5)=-0.6931 | $\leftarrow$ (0) $log(0.5) + (1 - 0)log(1 - 0.5)$ |
| No  | 48  | 59  | Dead  | log(0.5)=-0.6931 |                                                   |
| Yes | 44  | 77  | Dead  | log(0.5)=-0.6931 |                                                   |
| No  | 62  | 54  | Dead  | log(0.5)=-0.6931 |                                                   |
| Yes | 112 | 87  | Alive | log(0.5)=-0.6931 | $ \leftarrow (1)log(0.5) + (1-1)log(1-0.5) $      |
| Yes | 108 | 69  | Alive | log(0.5)=-0.6931 |                                                   |
| No  | 140 | 63  | Alive | log(0.5)=-0.6931 |                                                   |
| Yes | 138 | 30  | Alive | log(0.5)=-0.6931 |                                                   |

- Since Likelihood is a goodness of fit of the model and log() function is an one to one increasing function, then larger value of log-likelihood means better prediction.
- That is why, when building logistic regression, the goal is to maximize the log-likelihood.

## Review



Since 
$$\frac{p}{1-p} = e^{F(X)} \implies log(\frac{p}{1-p}) = log(odds) = F(X)$$

## Loss function

 Hence, if we want to use the log-likelihood as a Loss function (where a smaller values represent better fitting model), then we have to multiply the log-likelihood by (-1) that is:

$$L(y, F(\mathbf{X})) = -\sum_{i=1}^{n} \{y_i log(p_i) + (1 - y_i) log(1 - p_i)\}$$
Sometimes called logLoss or Cross-entropy

Consider per observation of (-1) x log-likelihood

$$\begin{aligned} -[y_i log(p_i) + (1 - y_i) log(1 - p_i)] &\Longrightarrow -y_i log(p_i) - (1 - y_i) log(1 - p_i) \\ &\Longrightarrow -y_i (log(p_i) - log(1 - p_i)) - log(1 - p_i) \\ &\Longrightarrow -y_i [log(\frac{p_i}{1 - p_i})] - log(1 - p_i) \\ &\Longrightarrow -y_i [log(odds_i)] - log[1 - \frac{e^{log(odds_i)}}{1 + e^{log(odds_i)}}] \end{aligned}$$

$$-y_{i}[log(odds)] - log[1 - \frac{e^{log(odds)}}{1 + e^{log(odds)}}]$$

$$\Longrightarrow -y_i[log(odds)] - log[\frac{1 + e^{log(odds)} - e^{log(odds)}}{1 + e^{log(odds)}}]$$

$$\Longrightarrow -y_i[log(odds)] - log[\frac{1}{1 + e^{log(odds)}}]$$

$$\Rightarrow -y_{i}[log(odds)] - log[\frac{1}{1 + e^{log(odds)}}]$$

$$\Rightarrow -y_{i}[log(odds)] - [log(1) - log(1 + e^{log(odds)})]$$

$$\Longrightarrow -y_i[log(odds)] - [log(1) - log(1 + e^{log(odds)})]$$

$$L(y_i, F(\mathbf{x}_i)) = -y_i log(odds) + log(1 + e^{log(odds)})$$
 <----- This is our Loss function.

(per observation)

**Note:** the prediction function  $F_i(\mathbf{x_i}) = log(odds)$ 

Next step, we need to show that the Loss function is differentiable.

$$\frac{\partial}{\partial log(odds)} - y_i log(odds) + log(1 + e^{log(odds)})$$

$$= -y_i + \frac{e^{\log(odds_i)}}{1 + e^{\log(odds_i)}}$$
$$= -y_i + p_i$$

#### Loss function

$$L(y, F(\mathbf{X})) = \sum_{i=1}^{n} \left[ -y_i log(odds_i) + log(1 + e^{log(odds_i)}) \right]$$

$$\frac{\partial}{\partial log(odds)} L(y, F(\mathbf{X})) = \sum_{i=1}^{n} [-y_i + p_i]$$

**Step 1:** fit the null model (model with only constant term)  $\Longrightarrow F_0(\mathbf{X}) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^n L(y_i, \gamma)$ 

Since 
$$L(y,\gamma) = \sum_{i=1}^{n} \left[ -y_i \gamma + log(1+e^{\gamma}) \right]$$
, and  $\frac{\partial}{\partial \gamma} L(y,\gamma) = -\sum_{i=1}^{n} y_i + np$ 

Let  $\frac{\partial}{\partial \gamma} L(y,\gamma) = -\sum_{i=1}^{n} y_i + np = 0$ 

$$\Rightarrow p = \frac{\sum_{i=1}^{n} y_i}{n}$$

No  $\frac{1}{36}$ 

No  $\frac{1}{36}$ 

No  $\frac{1}{36}$ 

Pead

No  $\frac{1}{36}$ 

No  $\frac{1}{36}$ 

Pead

No  $\frac{1}{36}$ 

No  $\frac{1}{36}$ 

Pead

No  $\frac{1}{36}$ 

No  $\frac{1}{36}$ 

No  $\frac{1}{36}$ 

Pead

No  $\frac{1}{36}$ 

From the initial predicted probability, we have  $log(odds) = log(\frac{p}{1-p}) = 0 = F_0(\mathbf{x})$ 

Step 1: fit the null model (model with only constant term)  $\Longrightarrow F_0(\mathbf{X}) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^n L(y_i, \gamma)$   $\Longrightarrow F_0(\mathbf{X}) = 0$ 

**Step2:** for m in 1: M

- 1. Compute  $e_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_{m-1}(x)}$  for i = 1, 2, ..., n
- 2. Fit a regression tree to the  $e_{im}$  values and create terminal region  $R_{jm}$  for  $j=1,...,J_m$
- 3. For  $j = 1, 2, ..., J_m$  compute  $\gamma_{jm} = \underset{x}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma)$
- 4. Update  $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_j m)$

Step 1: fit the null model (model with only constant term)  $\Longrightarrow F_0(\mathbf{X}) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^{\infty} L(y_i, \gamma)$   $\Longrightarrow F_0(\mathbf{X}) = 0$ 

**Step2:** for m = 1

1. Compute 
$$e_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_{m-1}(x)}$$
 for  $i = 1, 2, ..., n$ 

$$e_{i1} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_0(x)}$$

$$= -\left[-y_i + \frac{e^0}{1 + e^0}\right]$$

$$= y_i - 0.5$$

|   | LOC | SYS | AGE | STA   | e <sub>i1</sub> |         |
|---|-----|-----|-----|-------|-----------------|---------|
|   | No  | 36  | 27  | Dead  | -0.5            |         |
|   | No  | 48  | 59  | Dead  | -0.5            |         |
|   | Yes | 44  | 77  | Dead  | -0.5            |         |
| \ | No  | 62  | 54  | Dead  | -0.5            |         |
|   | Yes | 112 | 87  | Alive | 0.5             | 1 − 0.5 |
|   | Yes | 108 | 69  | Alive | 0.5             |         |
|   | No  | 140 | 63  | Alive | 0.5             |         |
|   | Yes | 138 | 30  | Alive | 0.5             |         |
|   |     |     | -   | -     | -               | •       |

Step 1: fit the null model (model with only constant term)  $\Longrightarrow F_0(\mathbf{X}) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^{\infty} L(y_i, \gamma)$   $\Longrightarrow F_0(\mathbf{X}) = 0$ 

**Step 2:** for m = 1

1. Compute 
$$e_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_{m-1}(x)}$$
 for  $i = 1, 2, ..., n$ 

2. Fit a regression tree to the  $e_{im}$  values and create terminal region  $R_{jm}$  for  $j=1,...,J_m$ 

| 100 | CVC      | ACE    | CTA   |                 |
|-----|----------|--------|-------|-----------------|
| LOC | SYS      | AGE    | STA   | e <sub>i1</sub> |
| No  | 36       | 27     | Dead  | -0.5            |
| No  | 48       | 59     | Dead  | -0.5            |
| Yes | 44       | 77     | Dead  | -0.5            |
| No  | 62       | 54     | Dead  | -0.5            |
| Yes | 112      | 87     | Alive | 0.5             |
| Yes | 108      | 69     | Alive | 0.5             |
| No  | 140      | 63     | Alive | 0.5             |
| Yes | 138      | 30     | Alive | 0.5             |
|     | <u> </u> | •••••  | -     | <b>/</b>        |
|     |          | Predic | † /   |                 |
|     |          | rroute |       |                 |



Step 1: fit the null model (model with only constant term)  $\Longrightarrow F_0(\mathbf{X}) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^{\infty} L(y_i, \gamma)$   $\Longrightarrow F_0(\mathbf{X}) = 0$ 

**Step 2:** for m = 1

1. Compute 
$$e_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_{m-1}(x)}$$
 for  $i = 1, 2, ..., n$ 

- 2. Fit a regression tree to the  $e_{im}$  values and create terminal region  $R_{jm}$  for  $j=1,...,J_m$
- 3. For  $j = 1, 2,...,J_m$  compute  $\gamma_{jm} = \underset{i}{\operatorname{argmin}} \sum_{j=1}^{\infty} L(y_i, F_{m-1}(x_i) + \gamma)$



$$\gamma = \frac{\sum_{i=1}^n e_{im}}{\sum_{i=1}^n p_i (1-p_i)}, \text{ where } p = \frac{e^{log(odds)}}{1+e^{log(odds)}}$$

**Step 1:** fit the null model (model with only constant term)  $\Longrightarrow F_0(\mathbf{X}) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^n L(y_i, \gamma)$ 

**Step 2:** for 
$$m = 1$$

1. Compute 
$$e_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x_i}))}{\partial F(\mathbf{x_i})}\right]_{F(x) = F_{m-1}(x)}$$
 for  $i = 1, 2, ..., n$ 

2. Fit a regression tree to the  $e_{im}$  values and create terminal region  $R_{jm}$  for  $j=1,...,J_m$ 

 $\implies F_0(\mathbf{X}) = 0$ 

- 3. For  $j=1,\ 2,...,J_m$  compute  $\gamma_{jm}=\operatorname*{argmin}_{\gamma}\sum_{x_i\in R_{ij}}L(y_i,F_{m-1}(x_i)+\gamma)$
- 4. Update  $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_j m)$

$$F_1(\mathbf{x}) = F_0(\mathbf{x}) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_j m)$$

- $\nu \in (0,1)$  is the learning rate
- Learnign rate is an effect of the regression tree on the final prediction



$$R_{11}$$
  $R_{21}$ 

$$\gamma_{11} = \frac{-0.5}{0.25} = -2 \qquad \gamma_{21} = \frac{0.5}{0.25} = 2$$

$$\gamma_{11} = \frac{-0.5}{0.25} = -2$$
 $\gamma_{21} = \frac{0.5}{0.25} = 2$ 
 $F_1(\mathbf{x}) = 0 + (0.9) \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_j m)$ 

| LOC | SYS | AGE | STA   | New predicted log(odds) | prob(Alive)       |
|-----|-----|-----|-------|-------------------------|-------------------|
| No  | 36  | 27  | Dead  | -1.8                    | 0.141851064900488 |
| No  | 48  | 59  | Dead  | -1.8                    | 0.141851064900488 |
| Yes | 44  | 77  | Dead  | -1.8                    | 0.141851064900488 |
| No  | 62  | 54  | Dead  | -1.8                    | 0.141851064900488 |
| Yes | 112 | 87  | Alive | 1.8                     | 0.858148935099512 |
| Yes | 108 | 69  | Alive | 1.8                     | 0.858148935099512 |
| No  | 140 | 63  | Alive | 1.8                     | 0.858148935099512 |
| Yes | 138 | 30  | Alive | 1.8                     | 0.858148935099512 |

repeat ...

## Component-wise Gradient boosting



- 1. Initialize the function estimate  $\hat{f}^{[0]}$  with offset values. Note that  $\hat{f}^{[0]}$  is a vector of length n. In the following paragraphs, we will generally denote the vector of function estimates at iteration m by  $\hat{f}^{[m]}$ .
- 2. Specify a set of base-learners. Base-learners are simple regression estimators with a fixed set of input variables and a univariate response. The sets of input variables are allowed to differ among the base-learners. Usually, the input variables of the base-learners are small subsets of the set of predictor variables  $x_1, \ldots, x_p$ . For example, in the simplest case, there is exactly one base-learner for each predictor variable, and the base-learners are just simple linear models using the predictor variables as input variables. Generally, the base-learners considered in this paper are either penalized or unpenalized least squares estimators using small subsets of the predictor variables as input variables (see Section 3.2.1 for details and examples). Each base-learner represents a modeling alternative for the statistical model. Denote the number of base-learners by P and set m = 0.
- 3. Increase m by 1, where m is the number of iterations.
- 4. a) Compute the negative gradient  $-\frac{\partial \rho}{\partial f}$  of the loss function and evaluate it at  $\hat{f}^{[m-1]}(\mathbf{x}_i^{\top})$ ,  $i = 1, \ldots, n$  (i.e., at the estimate of the previous iteration). This yields the negative gradient vector

$$\mathbf{u}^{[m]} = \left(u_i^{[m]}\right)_{i=1,...,n} := \left(-\frac{\partial}{\partial f}\rho\left(y_i,\hat{f}^{[m-1]}(\mathbf{x}_i^\top)\right)\right)_{i=1,...,n} \;.$$

- b) Fit each of the P base-learners to the negative gradient vector, i.e., use each of the regression estimators specified in step 2 separately to fit the negative gradient. The resulting P regression fits yield P vectors of predicted values, where each vector is an estimate of the negative gradient vector  $\mathbf{u}^{[m]}$ .
- c) Select the base-learner that fits  $\mathbf{u}^{[m]}$  best according to the residual sum of squares (RSS) criterion and set  $\hat{\mathbf{u}}^{[m]}$  equal to the fitted values of the best-fitting base-learner.
- d) Update the current estimate by setting  $\hat{f}^{[m]} = \hat{f}^{[m-1]} + \nu \,\hat{\mathbf{u}}^{[m]}$ , where  $0 < \nu \le 1$  is a real-valued step length factor.
- 5. Iterate Steps 3 and 4 until the stopping iteration  $m_{\text{stop}}$  is reached (the choice of  $m_{\text{stop}}$  is discussed below).

### Package 'compboost'

October 28, 2018

Type Package

Title C++ Implementation of Component-Wise Boosting

Version 0.1.0

Maintainer Daniel Schalk <daniel.schalk@stat.uni-muenchen.de>

**Description** C++ implementation of component-wise boosting implementation of component-wise boosting written in C++ to obtain high runtime performance and full memory control. The main idea is to provide a modular class system which can be extended without editing the source code. CHULALONGKORN Therefore, it is possible to use R functions as well as C++ functions for custom base-learners, losses, logging mechanisms or stopping criteria.

License MIT + file LICENSE

**Encoding UTF-8** 

LazyData true

RoxygenNote 6.1.0

Imports Rcpp (>= 0.11.2), methods, glue, R6, checkmate

LinkingTo Rcpp, RcppArmadillo

Suggests RcppArmadillo (>= 0.9.100.5.0), ggplot2, testthat, rpart,

- > boostLinear()
- > boostSplines()

# Automated Feature Selection via component-wise boosting algorithm



https://www.youtube.com/watch?v=ucSt28PPUPY&t=1264s

https://github.com/STATWORX/bounceR

#### Feature Selection

- Features contain information about the outcome variable.
- More features = more information?
  - = better prediction performance?



(STATWORX, 2018)

#### Feature Selection

- Irrelevant features
- Redundant feature

#### Feature Selection methods

- Filter methods using bivariate statistic
- Wrapper methods
  - EDU @ CHULALONGKORN iteratively searching for the best feature set
  - Model-based approach

```
Result: Stability Score Distribution for Feature Space S
foreach n\_rounds in N\_ROUNDS do
   initialize Stability Score Distribution \Omega^j;
   foreach n\_mods in N\_MODS do
       draw s_i features from S^*;
       bootstrap q_i obs from Q obs;
       run componentwise boosting on set (q_i, s_i);
       penalize score in \Omega^j for s_i^- for not surviving boosting run;
       reward score in \Omega^j for s_i^+ for surviving boosting run;
       if score for feature k < threshold then
           cut feature k from S^*
       return Stability Score Distribution \Omega_{updated}^{j}
   end
   return average stability score distribution \Omega
end
```

```
# load devtools
install.packages(devtools)
library(devtools)

# download from our public repo
devtools::install_github("STATWORX/bounceR")

# source it
library(bounceR)
```

#### About Our Algorithm: Usage

Sure, you have a lot of tuning parameters, however we put them all together in a nice and handy little interface. By the way, we set the defaults based on several simulation studies, so you can - sort of - trust them - sometimes.

#### About Our Package: Content

The package contains a variety of useful functions surrounding the topic of feature selection, such as:

- Convenience:
  - sim data: a function simulating regression and classification data, where the true feature space is known
- Filtering:
  - featureFiltering: a function implementing several popular filter methods for feature selection
- · Wrapper:
  - featureSelection: a function implementing our home grown algorithm for feature selection
- Methods:
  - print.sel\_obj: an S4 priniting method for the object class "sel\_obj"
  - plot.sel\_obj: an S4 ploting method for the object class "sel\_obj"
  - summary.sel obj: an S4 summary method for the object class "sel\_obj"
  - builder: method to extract a formula with n features from a "sel\_obj"



# XGBoost Trees

- Regression
- Classification









## Support Vector Machine

- Introduction
- Support Vector Classification Linear Kernels
- Polynomial Kernels
- Radius Basis Function Kernels





#### Feature Selection Problem

## Why do we need feature selection?



With too many features, most models can't be identified or are noisy



The rigth combination of features boosts performance, not algorithm.



Features are all information you have to predict your outcome.

ref: STATWORX

#### How can we do feature selection?

- Manualy selecting (testing) all feature set.
- Using correlation matrix to filter the relevant features.
- Loop over all feature set combinations and evaluate them based on performance gain

## Gradient Boost for Regression

> head(dat)

|   | R.D.Spend               | Administration | Marketing.Spend | State      | Profit   |
|---|-------------------------|----------------|-----------------|------------|----------|
| 1 | 165349.2                | 136897.80      | 471784.1        | New York   | 192261.8 |
| 2 | 162597.7                | 151377.59      | 443898.5        | California | 191792.1 |
| 3 | 153441.5                | 101145.55      | 407934.5        | Florida    | 191050.4 |
| 4 | 1443 <mark>7</mark> 2.4 | 118671.85      | 383199.6        | New York   | 182902.0 |
| 5 | 142 <mark>107.3</mark>  | 91391.77       | 366168.4        | Florida    | 166187.9 |
| 6 | 1318 <mark>76.9</mark>  | 99814.71       | 362861.4        | New York   | 156991.1 |

Average value of profit 112,013.00

- Then Gredient Boost builds a tree.
- Like AdaBoost, this tree is based on the error made by the previous tree.
- In contrast with AdaBoost, this tree is usually larger than a stump.



Step1: Build up the initial leaf

| SES  | Level            | Gender | Discipline |
|------|------------------|--------|------------|
| -1.0 | Primary          | Male   | 27         |
| 0.5  | Secondary        | Female | 59         |
| 1.0  | UnderGrad        | Female | 77         |
| 1.5  | Primary          | Male   | 54         |
| 1.5  | UnderGrad        | Male   | 87         |
| 1.0  | Secondary Female |        | 69         |
|      |                  |        |            |

Average value of Discipline score

62.17

Step2: Build a tree based on the error from the first tree.

| ,                                                | ,         |        | •          |                                       |  |  |
|--------------------------------------------------|-----------|--------|------------|---------------------------------------|--|--|
| SES                                              | Level     | Gender | Discipline | (Pseudo)Residual = actual - predicted |  |  |
| -1.0                                             | Primary   | Male   | 27         | -35.17                                |  |  |
| 0.5                                              | Secondary | Female | 59         | -3.17                                 |  |  |
| 1.0                                              | UnderGrad | Female | 77         | 14.83                                 |  |  |
| 1.5                                              | Primary   | Male   | 54         | -8.17                                 |  |  |
| 1.5                                              | UnderGrad | Male   | 87         | 24.83                                 |  |  |
| 1.0                                              | Secondary | Female | 69         | 6.83                                  |  |  |
| Predict UnderGrad No SES>1.0 SES>0 Yes No Yes No |           |        |            |                                       |  |  |

14.83

-1.50

-35.17

24.83

## Gradient Boosting using R

```
> install.packages("gbm")
```

> library(gbm)

#### Step2: Build a tree based on the error from the first tree.

| SES  | Level     | Gender | Learning Discipline |         | Avacada          |
|------|-----------|--------|---------------------|---------|------------------|
| -1.0 | Primary   | Male   | 27                  |         | Average value of |
| 0.5  | Secondary | Female | 59                  |         | LD score         |
| 1.0  | UnderGrad | Female | 77                  | <b></b> | 62.17            |
| 1.5  | Primary   | Male   | 54                  |         |                  |
| 1.5  | UnderGrad | Male   | 87                  |         |                  |
| 1.0  | Secondary | Female | 69                  |         |                  |
|      |           |        |                     | i       |                  |

**Objective:** we will create a forest of stumps with AdaBoost to predict a patient status (1 = alive or 0 = dead)

> head(dat,10)

ID STA AGE CAN SYS TYP LOC Weight1 142 0.005 1 8 0 27 1 0 2 12 0 59 0 112 0.005 1 0 0 100 0.005 3 14 77 0 0 0 4 28 0 54 0 142 0 0.005 1 0.005 5 32 0 87 0 110 1 0 6 38 69 110 0 0.005 0 1 7 40 0 63 0 104 0 0 0.005 8 41 0 30 0 144 1 0 0.005 9 42 0 35 0 108 0.005 1 0 10 50 0 70 138 0 0 0.005

1. Give an equal weight to each data point.

**Objective:** we will create a forest of stumps with AdaBoost to predict a patient status (1 = alive or 0 = dead)

0.005

> head(dat, 10) ID STA AGE CAN SYS TYP LOC Weight1 0.005 1 8 0 27 142 1 0 2 12 59 0 112 0.005 1 0 100 0.005 3 14 77 0 0 0 0 4 28 142 0.005 0 54 1 0 0.005 5 32 0 87 0 110 1 0 110 0.005 6 38 0 0 69 1 7 40 0 63 0 104 0 0 0.005 8 41 0 30 0 144 0 0.005 1 9 42 35 108 0.005 1 0 10 50

138

0

70

0

0

1. Give an equal weight to each data point.

$$weight = \frac{1}{m} = \frac{1}{200}$$

2. Make the first stump



**Objective:** we will create a forest of stumps with AdaBoost to predict a patient status (1 = alive or 0 = dead)

head(da+ 10)

| >  | head( | dat | ,10) |     |     |     |     |         |
|----|-------|-----|------|-----|-----|-----|-----|---------|
|    | ID    | STA | AGE  | CAN | SYS | TYP | LOC | Weight1 |
| 1  | 8     | 0   | 27   | 0   | 142 | 1   | 0   | 0.005   |
| 2  | 12    | 0   | 59   | 0   | 112 | 1   | 0   | 0.005   |
| 3  | 14    | 0   | 77   | 0   | 100 | 0   | 0   | 0.005   |
| 4  | 28    | 0   | 54   | 0   | 142 | 1   | 0   | 0.005   |
| 5  | 32    | 0   | 87   | 0   | 110 | 1   | 0   | 0.005   |
| 6  | 38    | 0   | 69   | 0   | 110 | 1   | 0   | 0.005   |
| 7  | 40    | 0   | 63   | 0   | 104 | 0   | 0   | 0.005   |
| 8  | 41    | 0   | 30   | 0   | 144 | 1   | 0   | 0.005   |
| 9  | 42    | 0   | 35   | 0   | 108 | 1   | 0   | 0.005   |
| 10 | 50    | 0   | 70   | 1   | 138 | 0   | 0   | 0.005   |
|    |       |     |      |     |     |     |     |         |

1. Give an equal weight to each data point.

$$weight = \frac{1}{m} = \frac{1}{200}$$

2. Make the first stump



3. Evaluate classification error of LOC

Confusion Matrix and Statistics

**Objective:** we will create a forest of stumps with AdaBoost to predict a patient status (1 = alive or 0 = dead)

#### > head(dat, 10)

1. Give an equal weight to each data point.

$$weight = \frac{1}{m} = \frac{1}{200}$$

2. Make the first stump



3. Evaluate classification error of LOC

#### Main concepts behind AdaBoost



Forest of stumps made with AdaBoost, some stumps get more weight in the final classification than others.

#### Main concepts behind AdaBoost



AdaBoost

### Random Forest



Deposit

Yes No 1

#### A Formal view on AdaBoost

- 1. Given a training dataset (X, y) which contains data points  $(x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)$
- 2. For iteration t = 1,2,...,T
  - Construct distribution of  $W_t$  on  $\{1, 2, 3, ..., m\}$ , where  $W_t(i)$  is the weight attributed to subject i on the iteration t
    - Let  $W_1(i) = 1/m$
  - Build up a classifier  $M_t: X \to \{0,1\}$
  - Compute the error associated to the classifier, let  $e_t(i) = 1$  if  $M_t(i) \neq y_i$ , and  $e_t(i) = 0$  if  $M_t(i) = y_i$

In a random forest, each time you make a tree, you make a full sized tree.

# Out-of-bag error vs Out-sample error

- OOB error only estimate errors (not AUC, sens, spec,...)
- Can't compare OBB error to other types of models

## Estimate the accuracy of a random forest

Out of bag error

1. Create a "bootstrapped" dataset

#### Tree models



**Leaf Nodes** 

# Advantages

- Simple to understand, interpret, visualize
- Can handle both numerical and categorical features

No need to standardised

No need to create dummy variables

or normalised

Can handle missing data

- Robust to outliers, then trees require little or no data preparation
- Can model non-linearity in the data
- Trees can handle large datasets

# Disadvantages

- Large trees can be hard to interpret.
- Trees models tend to perform high variance. Hence the models need to be tuned up by choosing the most appropriate hyperparameter.

## Tree-based models

- Classification trees
- Regression trees
- Bagged Trees
- Random Forests
- Boosted Trees (GBM)



# Classification Trees

### Split the data into "pure" regions



- Decision tree model makes classification decision based on the decision boundaries.
- The example above, there are 100% pure sub-region (only one class for each region)

#### How to determine the best split?



Goal of classification tree is to partition data at a node into subset that are as pure as possible.

# Impurity measure

- Measure of a node specifies how mixed the resulting subsets are.
- We want to fine a node specifies that minimised the impurity measure
- Common impurity measures
  - Entropy
  - Gini impurity
  - Misclassification rate



#### Show some calculation

# Building up the model

- 1. Split data into train and test dataset. (80/20)
- 2. Train classification tree using train dataset

# For classification splitting, the list can contain any of: the vector of prior probabilities (component prior), the loss matrix (component loss) or the splitting index (component split). The priors must be positive and sum to 1. The loss matrix must have zeros on the diagonal and positive off-diagonal elements. The splitting index can be gini or information. The default priors are proportional to the data counts, the losses default to 1, and the split defaults to gini.



#### **Apple**

- Discipline = 70
- No time to study





Decision tree ask a question, and then classifies the subject based on the answer.



Decision tree for numeric data.







