Northeastern University, Department of Mathematics

MATH 5110: Applied Linear Algebra and Matrix Analysis.

• Instructor: **He Wang** Email: **he.wang@northeastern.edu**

§6 Determinant

Contents

1.	Motivation	1
2.	Cofactor expansion	2
3.	Row Operations and Determinant	5
4.	Linearity Property of the determinant function and Cramer's Rule	9

1. Motivation

2. Cofactor expansion

Definition 1. Let A be an $n \times n$ matrix.

The first row cofactor expansion formula for the determinant of A is

Facts about **permutation groups**.

Let [n] be the set of n integers $[n] = \{1, 2, \dots, n\}$.

The **permutation group** (symmetric group) S(n) is

A transposition is a permutation in S(n) that only switch 2 numbers.

The **sign** of a permutation $\sigma \in S(n)$ is

$$sign(\sigma) = (-1)^{T(\sigma)}$$

where $T(\sigma)$ is the number of transposition of σ .

Another equivalent way to determine the sign of σ is

$$sign(\sigma) = (-1)^{N(\sigma)},$$

where $N(\sigma)$ is the number of inversions of σ .

An inversion of $(\sigma(1) \ \sigma(2) \ \dots \ \sigma(n))$ is the pair of numbers $(\sigma(i) > \sigma(j))$ for i < j.

Page 2

Proposition 2. If τ is obtained from σ by switch two numbers i, j, then $sign(\tau) = -sign(\sigma)$.

Theorem 3. If A is an $n \times n$ matrix, then

$$\det(A) = \sum_{\sigma \in S(n)} \operatorname{sign}(\sigma) \prod_{i=1}^{n} a_{i,\sigma(i)}$$
$$= \sum_{\sigma \in S(n)} \operatorname{sign}(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \cdots a_{n,\sigma(n)}.$$

Proof. This theorem can be proved by induction on n. For n = 1, it is true. Suppose the formula is true for n - 1, let's show that it is true for n.

$$\sum_{\sigma \in S(n)} \operatorname{sign}(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \cdots a_{n,\sigma(n)}$$

$$= \sum_{i=1}^{n} a_{1i} \sum_{\sigma \in S(n); \sigma(1)=i} \operatorname{sign}(\sigma) a_{2,\sigma(2)} \cdots a_{n,\sigma(n)}$$

$$= \sum_{i=1}^{n} a_{1i} \sum_{\sigma \in S(n); \sigma(1)=i} (-1)^{1+i} \operatorname{sign}(\sigma(2) \dots \sigma(n)) a_{2,\sigma(2)} \cdots a_{n,\sigma(n)}$$

$$= \sum_{i=1}^{n} (-1)^{1+i} a_{1i} \det A_{1i}$$

$$= \det A$$

Example 4. Let A be the 3×3 matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$sign(1 2 3) = 1$$
 $sign(1 3 2) = -1$
 $sign(2 1 3) = -1$
 $sign(2 3 1) = 1$
 $sign(3 1 2) = 1$
 $sign(3 2 1) = -1$

 \Box

Hence we have

$$\det(A) = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33} - a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$$

Example 5. Find the determinant of
$$A = \begin{bmatrix} 0 & 4 & 2 \\ 5 & 2 & 2 \\ 0 & 2 & -1 \end{bmatrix}$$
. Is A invertible?

Definition 6. Let A be an $n \times n$ matrix. Its (i, j)-th cofactor C_{ij} is

Using cofactors, the first row cofactor expansion formula for the determinant of A is

Theorem 7. The determinant of an $n \times n$ matrix A can be computed by he i-th row cofactor expansions

and the j-th column cofactor expansions

Example 8. Find the determinant of
$$A = \begin{bmatrix} 1 & 2 & 3 & 1.2 \\ 0 & 0 & 0 & 2 \\ 5 & 6 & 7 & \pi \\ 0 & 1 & 2 & \sqrt{2} \end{bmatrix}$$

Theorem 9. Let A be an $n \times n$ triangular matrix, the determinant

Example 10. Find out for which value of λ the matrix $A - \lambda I$ is not invertible, where

$$A = \begin{bmatrix} 2 & \sqrt{2} & 1.7 \\ 0 & 3 & 12 \\ 0 & 0 & 5 \end{bmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \cdots & \vdots \\ b_1 + c_1 & b_2 + c_2 & \cdots & b_n + c_n \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \cdots & \vdots \\ b_1 & b_2 & \cdots & b_n \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \cdots & \vdots \\ c_1 & c_2 & \cdots & c_n \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

3. Row Operations and Determinant

Recall the three types of elementary row operations:

- 1. (Replacement)
- 2. (Interchange)
- 3. (Scaling)

Theorem 12 (Row Operations and the Determinant). Let A be an $n \times n$ matrix.

Example 13. In a matrix A, if the i-th row equals the j-th row, then

Example 14. In a matrix A, if the i-th row is a scalar product of the j-th row, then

Theorem 15. An $n \times n$ matrix A is invertible if and only if $\det A \neq 0$.

Proposition 16. Let A be an $n \times n$ matrix.

$$\det(kA) = (k^n)(\det A).$$

Theorem 17 (Determinants of Products of Matrices). Let A and B be two $n \times n$ matrices.

$$\det(AB) = (\det A)(\det B).$$

Proposition 18. Let A be an $n \times n$ matrix.

$$\det(A^m) = (\det(A))^m$$

Proposition 19. Let A be an $n \times n$ invertible matrix.

$$\det(A^{-1}) = \frac{1}{\det A}.$$

Question: How about $\det(A + B)$? Is it $\det(A) + \det(B)$?

Example 20. Find the determinant of $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$. Is A invertible?

Example 21. Find the determinant of
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 9 \\ 3 & 6 & 11 & 12 \\ 4 & 8 & 15 & 16 \end{bmatrix}$$
. Is A invertible?

Definition 22 (Elementary Column Operations).

- 1. (Column Replacement) Add to one column the multiple of another column.
- 2. (Column Interchange) Interchange two columns.
- 3. (Column Scaling) Multiply all entries of a given column by a scalar.

Theorem 23 (Column Operations and the Determinant). Let A be an $n \times n$ matrix and let B be a matrix obtained from A by a single elementary row operation.

1. If B is obtained from A by a Column Replacement operation, then

$$\det B = \det A$$
.

2. If B is obtained from A by a Column Interchange operation, then

$$\det B = -\det A.$$

3. If B is obtained from A by a Column Scaling operation by a factor k, then $\det B = k \det A.$

Theorem 24 (Determinant of the Transpose Matrix).

$$\det A^T = \det A$$
.

Example 25. Vandermonde determinant

$$\det(A) = \begin{vmatrix} 1 & 1 & 1 \\ a_1 & a_2 & a_3 \\ a_1^2 & a_2^2 & a_3^2 \end{vmatrix} =$$

More generally, by induction on n, we can proved that

$$\det(A) = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n \\ a_1^2 & a_2^2 & a_3^2 & \cdots & a_n^2 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \cdots & a_n^{n-1} \\ a_1^n & a_2^n & a_3^n & \cdots & a_n^n \end{vmatrix} =$$

Block Matrix.

Theorem 26. If $M = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$, then, $\det(M) = \det(A) \det(C).$

Example 27. Find the determinant of
$$M = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix} = \begin{bmatrix} 1 & 2 & 11 & \sqrt{3} \\ 2 & 3 & \pi & 12 \\ 0 & 0 & 3 & 9 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

4. Linearity Property of the determinant function and Cramer's Rule

Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix}$ be an $n \times n$ matrix

Theorem 28 (Linearity and Determinants). The transformation T defined above is a linear transformation, that is

Proof. By Theorems 24, 12 and Proposition 11.

Example 29 (Finding matrix for the determinant transformation for a given A).

Consider a matrix equation $A\vec{x} = \vec{b}$ in which A is an $n \times n$ matrix. Let

$$A_i(\vec{b}) = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_{i-1} & \vec{b} & \vec{a}_{i+1} & \dots & \vec{a}_n \end{bmatrix}$$

Theorem 30 (Cramer's Rule). If A is invertible, the unique solution \vec{x} of the matrix equation $A\vec{x} = \vec{b}$ is given by

Proof. First, from cofactor expansion, $\det(A_i(\vec{b})) = \sum_{j=1}^n b_j C_{ij}$.

$$a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = \frac{1}{\det(A)} \left(\sum_{i=1}^n a_{ki} \sum_{j=1}^n b_j C_{ij} \right)$$

$$= \frac{1}{\det(A)} \left(\sum_{j=1}^n b_j \sum_{i=1}^n a_{ki} C_{ij} \right)$$

$$= \frac{1}{\det(A)} (b_k \det(A))$$

$$= b_k$$

for any $k = 0, 1, \dots, n$. This verifies that (x_1, \dots, x_n) is a solution of $A\vec{x} = \vec{b}$.

Let C be the associated $n \times n$ matrix of cofactors defined as:

$$C = \begin{bmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{22} & \dots & C_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n1} & C_{n2} & \dots & C_{nn} \end{bmatrix}$$

The transpose of C is called the **adjugate matrix of** A, denoted by adjA:

$$adjA = C^{T} = \begin{bmatrix} C_{11} & C_{21} & \dots & C_{n1} \\ C_{12} & C_{22} & \dots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \dots & C_{nn} \end{bmatrix}$$

Theorem 31. If A is a invertible matrix then $A^{-1} = \frac{1}{\det A} \cdot adjA$