Floating Point

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value
Representation

5 3/4 101.112

27/8 10.1112

1 7/16 1 . **0111**₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$$

■ Use notation 1.0 – ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
 - Value Representation
 - **•** 1/3 0.01010101[01]...2
 - 1/5 0.00110011[0011]...2
 - 1/10 0.000110011[0011]...2
- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB s is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

S	ехр	frac
---	-----	------

Precision options

■ Single precision: 32 bits

S	ехр	frac
1	8-bits	23-bits

■ Double precision: 64 bits

Extended precision: 80 bits (Intel only)

S	ехр	frac
1	15-bits	63 or 64-bits

"Normalized" Values

 $v = (-1)^s M 2^E$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits

- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field

"Normalized" Values

 $v = (-1)^s M 2^E$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

 $v = (-1)^s M 2^E$ E = Exp - Bias

- Value: float F = 15213.0;
 - $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$
- Significand

$$M = 1.101101101_2$$

frac= $101101101101_000000000_2$

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

Result:

0 10001100 11011011011010000000000 s exp frac

Denormalized Values

$$v = (-1)^{s} M 2^{E}$$

E = 1 - Bias

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac

Denormalized Values

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced

Special Values

- **■** Condition: exp = **111**...**1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only) $v = (-1)^s M 2^E$

_	s	exp	frac	E	Value			n: E = Exp — Bias
	0	0000	000	-6	0			d: E = 1 — Bias
	0	0000	001	-6	1/8*1/64	=	1/512	
Denormalized numbers	0	0000	010	-6	2/8*1/64	=	2/512	
	0	0000	110	-6	6/8*1/64	=	6/512	
	0	0000	111	-6	7/8*1/64	=	7/512	
	0	0001	000	-6	8/8*1/64	=	8/512	
	0	0001	001	-6	9/8*1/64	=	9/512	
	•••							
	0	0110	110	-1	14/8*1/2	=	14/16	
	0	0110	111	-1	15/8*1/2	=	15/16	
Normalized	0	0111	000	0	8/8*1	=	1	
numbers	0	0111	001	0	9/8*1	=	9/8	
	0	0111	010	0	10/8*1	=	10/8	
	•••							
	0	1110	110	7	14/8*128	=	224	
	0	1110	111	7	15/8*128	=	240	
	0	1111	000	n/a	inf			

s	exp	frac	E	Value
0	0000	000	-6	0
0	0000	001	-6	1/8*1/64 = 1/512
0	0000	010	-6	2/8*1/64 = 2/512

 $v = (-1)^s M 2^E$ n: E = Exp - Biasd: E = 1 - Bias

closest to zero

0 1111 000	n/a	inf	

Denormalized

numbers

s exp frac E Value

$v = (-1)^s M 2^E$
n: E = Exp - Bias
d: E = 1 - Bias

closest to zero

Denormal	ized
numbers	

Hullibers								
	0	0000	110	-6	6/8*1/64	=	6/512	
	0	0000	111	-6	7/8*1/64	=	7/512	largest denorm
	0	0001	000	-6	8/8*1/64	=	8/512	smallest norm
	0	0001	001	-6	9/8*1/64	=	9/512	
	0	1111	000	n/a	inf			

s exp frac E Value

				largest denorm
	0 0001 000	-6	8/8*1/64 = 8/512	smallest norm
	0 0001 001	-6	9/8*1/64 = 9/512	
	•••			
	0 0110 110	-1	14/8*1/2 = 14/16	
	0 0110 111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 0111 000	0	8/8*1 = 1	
numbers				
	0 1111 000	n/a	inf	

s exp frac E Value

$$v = (-1)^{s} M 2^{E}$$

 $n: E = Exp - Bias$
 $d: E = 1 - Bias$

 0 1110 110	7	14/8*128 = 224	
		·	
0 1110 111	7	15/8*128 = 240	largest norm
0 1111 000	n/a	inf	

Dynamic Range (Positive Only) $v = (-1)^s M 2^E$

_	s	exp	frac	E	Value			n: E = Exp – Bias
	0	0000	000	-6	0			d: E = 1 - Bias
	0	0000	001	-6	1/8*1/64	=	1/512	closest to zero
Denormalized	0	0000	010	-6	2/8*1/64	=	2/512	
numbers	•••							
	0	0000	110	-6	6/8*1/64	=	6/512	
	0	0000	111	-6	7/8*1/64	=	7/512	largest denorm
	0	0001	000	-6	8/8*1/64	=	8/512	smallest norm
	0	0001	001	-6	9/8*1/64	=	9/512	
	0	0110	110	-1	14/8*1/2	=	14/16	
	0	0110	111	-1	15/8*1/2	=	15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1	=	1	
numbers	0	0111	001	0	9/8*1	=	9/8	closest to 1 above
	0	0111	010	0	10/8*1	=	10/8	
	•••							
	0	1110	110	7	14/8*128	=	224	
	0	1110	111	7	15/8*128	=	240	largest norm
	0	1111	000	n/a	inf			

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

■ Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

- $\blacksquare x +_f y = Round(x + y)$
- $\blacksquare X \times f y = Round(x \times y)$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

FP Multiplication

- $-(-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point Addition

- \blacksquare (-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}
 - Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

(−1)^s M

- Fixing
 - If M ≥ 2, shift M right, increment E
 - ■if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Interesting Numbers

{single, double}

Description	exp	frac	Numeric Value
-------------	-----	------	---------------

■ Smallest Pos. Denorm.
$$00...00 \quad 00...01 \quad 2^{-\{23,52\}} \times 2^{-\{126,1022\}}$$

■ Single
$$\approx 1.4 \times 10^{-45}$$

■ Double
$$\approx 4.9 \times 10^{-324}$$

■ Largest Denormalized
$$00...00 11...11 (1.0 - \varepsilon) \times 2^{-\{126,1022\}}$$

• Single
$$\approx 1.18 \times 10^{-38}$$

■ Double
$$\approx 2.2 \times 10^{-308}$$

Just larger than largest denormalized

■ Largest Normalized
$$11...10 11...11 (2.0 - \varepsilon) \times 2^{\{127,1023\}}$$

■ Single
$$\approx 3.4 \times 10^{38}$$

■ Double $\approx 1.8 \times 10^{308}$

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?

Yes

- But may generate infinity or NaN
- Commutative?

Yes

Associative?

- No
- Overflow and inexactness of rounding
- \bullet (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
- 0 is additive identity?
- Every element has additive inverse?
- Almost

Yes

- Yes, except for infinities & NaNs
- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c$?

Almost

Except for infinities & NaNs

Mathematical Properties of FP Mult

- Compare to Commutative Ring
 - Closed under multiplication?
 - But may generate infinity or NaN
 - Multiplication Commutative?
 - Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding
 - Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
 - 1 is multiplicative identity?
 - Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding
 - 1e20*(1e20-1e20)=0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonicity
 - $a \ge b \& c \ge 0 \Rightarrow a * c \ge b *c$?
 - Except for infinities & NaNs

Almost

Yes

Yes

No

Yes

No

Ariane 5

- Exploded 37 seconds after liftoff
- Cargo worth \$500 million
- Why
 - Computed horizontal velocity as floating point number
 - Converted to 16-bit integer
 - Worked OK for Ariane 4
 - Overflowed for Ariane 5
 - Used same software

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Additional Slides

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	- \$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
■ Round down $(-\infty)$	\$1	\$1	\$1	\$2	- \$2
• Round up $(+\infty)$	\$2	\$2	\$2	\$3	-\$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Rounding

Rounding changes the statistical properties (such as mean and variance) of the numbers.

Rounding: Nearest Even

- Each value is rounded to the closest number
- midway values are rounded to the closest EVEN number
- does not change the statistical properties (such as mean and variance) of the numbers,
- Default rounding mode

Rounding (4 modes together)

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

- Binary Fractional Numbers
 - "Even" when least significant bit is 0
 - "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary 10.00 <mark>011</mark> 2	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2 %	11.002	(1/2—up)	3
2 5/8	10.10100 ₂	10.102	(1/2—down)	2 1/2

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction

- s exp frac

 1 4-bits 3-bits
- Postnormalize to deal with effects of rounding

Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

S	ехр	frac
1	4-bits	3-bits

- Requirement
 - Set binary point so that numbers of form 1.xxxxx
 - Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent (
128	1000000	1.000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	0011111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

Round up conditions

- Round = 1, Sticky = $1 \rightarrow > 0.5$
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

- Issue
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Rounding in C

- http://www.gnu.org/s/libc/manual/html_node/Rounding-Functions.html
 - double rint (double x), float rintf (float x), long double rintl (long double x) These functions round x to an integer value according to the current rounding mode. See <u>Floating Point Parameters</u>, for information about the various rounding modes. The default rounding mode is to round to the nearest integer; some machines support other modes, but round-to-nearest is always used unless you explicitly select another.
 - If x was not initially an integer, these functions raise the inexact exception.
- http://www.gnu.org/s/libc/manual/html_node/Floating-Point-Parameters.html#Floating-Point-Parameters
 - FLT_ROUNDS characterizes the rounding mode for floating point addition. Standard rounding modes:
 - -1: The mode is indeterminable.
 - 0: Rounding is towards zero.
 - 1: Rounding is to the nearest number.
 - 2: Rounding is towards positive infinity.
 - 3:Rounding is towards negative infinity.

Using Union to Access Bit Patterns

```
typedef union {
  float f;
  unsigned u;
} bit_float_t;
```

```
u
f
0 4
```

```
float bit2float(unsigned u)
{
  bit_float_t arg;
  arg.u = u;
  return arg.f;
}
```

```
unsigned float2bit(float f)
{
  bit_float_t arg;
  arg.f = f;
  return arg.u;
}
```

Same as (float) u?

Same as (unsigned) f?

Using f instead of i?

```
float f=0;
for (f=0;f<10000000000.0;f+=1)
printf("%f\n");
```

- What would happen?
- What would happen if we had a "short float" representation?

```
s exp frac 8-bits
```

Quiz 1

- Write a C expression that will yield a word consisting of the least significant byte of x and the remaining bytes of y. For instance, for operands x = 0x89ABCDEF and y = 0x76543210, the Result = 0x765432EF. Your code should work for all word sizes (short/int/long). Write the C expression that would be inserted into the blank shown below:
- Result = $(x&0xFF) | (y&\sim0xFF)$;
- Answers such as

Quiz 2

e= 11 bits => Bias=2^(e-1)-1 = 2^10-1= 1023

S	ехр	frac

1 11-bits

- 52-bits
- Smallest Positive Nonzero number as double

 - Value = (-1)^0 * 2^(-52) *2^(1-1023) = 2^(-1074)
- Largest positive Non-infinity number as double
 - e= 11 bits => Bias=2^(e-1)-1 = 2^10-1= 1023

 - Value = (-1)^0 * 2^(-52) *2^(1-1023) = 2^(-1074)

23-hits

s exp frac	\ IEXI)	frac
------------	---------	------

- Float representation of 1024.75 in Hex
- Binary representation
 - 1024.75 = 10000000000.11
 - = 1.00000000011 * 2^10
 - M=1.00000000011
 - frac = 0000000000110000000000
 - E=10
 - exp= Bias + E = 137 = 10001001

- 0x44801800

