ANALIZA III - LISTA 3

- 1. Znaleźć ekstrema warunkowe funkcji przy podanym ograniczeniu f(x, y, z) = x + y + z, przy warunkach $x^2 - y^2 = 1$, 2x + z = 1
- 2. Znaleźć ekstrema warunkowe funkcji przy podanych ograniczeniach

 - (a) f(x, y, z, w) = xw + yz, przy warunkach $x^2 + y^2 = 1$, $w^2 + z^2 = 1$ (b) $f(x, y, z) = y^3 + xz^2$, przy warunkach $x^2 + y^2 + z^2 = 1$, x y = 0
- 3. Znaleźć ekstrema warunkowe funkcji przy podanym ograniczeniu f(x, y, z) = xyz, przy warunkach $x^2 + y^2 + z^2 = 1$, x + y + z = 0
- 4. Znaleźć ekstrema warunkowe funkcji przy podanym ograniczeniu przy warunkach xy + yz + xz = 8, x + y + z = 5
- 5. Znajdź minimum funkcji f(x, y, z) = xyz przy warunkach $x^2 + y^2 + z^2 = 4$, x 2y = 20.
- 6*. Namiot bez podłogi, ma kształt cylindra ze stożkowym daszkiem. Jakie muszą być wymiary namiotu o ustalonej objętości V, aby uzyć jak najmniej materiału na jego budowę. Uzasadnić dlaczego to, co wyjdzie z rachunków daje najmniejsza powierzchnię. W tym celu zastanowić się jaki jest zakres parametrów.
- *7. Udowodnij nierówność Höldera

$$\sum_{i=1}^{n} a_i x_i \le \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} x_i^q\right)^{1/q},$$

gdzie p>1, $\frac{1}{p}+\frac{1}{q}=1$, $a_i,x_i\geq 0$. Wskazówka: Znajdź minimum prawej strony nierówności przy warunku $\sum_{i=1}^n a_i x_i=A$. Można zacząć od n=2.

8*. Udowodnij nierówność między średnią geometryczną, a arytmetyczną:

$$(x_1x_2...x_n)^{1/n} \le \frac{x_1 + x_2 + \dots + x_n}{n},$$

gdzie $x_i \ge 0$. Wskazówka: Znajdź maksimum funkcji $f(x_1, \dots, x_n) = x_1 \cdot \dots \cdot x_n$ przy warunku $\sum_{i=1}^{n} x_i = A$. Można zacząć od n = 2.

- 9*. Znajdź wartości ekstremalne funkcji $f(x) = \sum_{i,j=1}^n a_{i,j} x_i x_j$, przy warunku $x_1^2 + x_2^2 + x_3^2 + x_4^2 + x$ $\cdots + x_n^2 = 1$, gdzie macierz $[a_{i,j}]$ nie musi być symetryczna. Wskazówka: Zapoznaj się z przykładem 1.27 ze skryptu.
- **10. Jakie minimalne pole może mieć sześciokąt opisany na okręgu o promieniu 1 w \mathbb{R}^2 ? Odpowiedź uzasadnij. Uwaga na boki dążące do zera i nieskończoności.

*11. Dla macierzy

$$X = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$$

definiujemy $\|X\|^2=x^2+y^2+z^2+t^2$ i określamy metrykę $d(X,Y)=\|X-Y\|.$ Niech Σ będzie zbiorem macierzy 2×2 o wyznaczniku 0. Niech

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

Znajdź taką macierz $B \in \Sigma$, że wartość d(A, B) jest najmniejsza możliwa.

**12. Niech P_2 będzie zbiorem wielomianów jednej zmiennej stopnia co najwyżej 2 o współczynnikach rzeczywistych. Określamy odwzorowanie $\phi:P_2\to\mathbb{R}$ wzorem

$$\phi(f) = \int_0^1 f(x)^2 dx.$$

Niech $Q=\{f\in P_2: f(1)=1\}$. Znajdź $f\in Q$ taki, że wartość $\phi(f)$ jest najmniejsza możliwa. Odpowiedź uzasadnij.

**13. Definiujemy średnią potęgową stopnia α liczb $x_1, \dots, x_n > 0, \ \alpha \in \mathbb{R} \setminus \{0\}$ wzorem

$$M_{\alpha} = M_{\alpha}(x_1, \cdots, x_n) = \left(\frac{1}{n} \sum_{j=1}^{n} x_j^{\alpha}\right)^{1/\alpha}.$$

Udowodnić monotonicznść średnich potęgowych względem α .

Jak zdefiniować M_0 aby zachodził $M_{\alpha} \leq M_{\beta}$ dla wszystkich $\alpha \leq \beta \in \mathbb{R}$?

Wskazówki:

- Pokazać, że $M_{\alpha} \leq M_{\beta}$ dla $\alpha \leq \beta$ tego samego znaku; wystarczy sprowadzić to do przypadku obydwu α , β dodatnich. Zauważyć, że przemnożenie wszystkich $x_1,...,x_n$ przez t>0 zachowuje nierówność $M_{\alpha} \leq M_{\beta}$ czyli można się ograniczyć do jakiegoś zbioru ograniczonego.
- Zauważyć, że hipotetyczne M_0 powinno być (monotoniczną) granicą M_{α} gdy $\alpha \searrow 0$. Na początku poeksperymentować z n=2.
 - Jakie znane nierówności są szczególnymi przypadkami?
- **14. Dla $x = (x_1, ..., x_n)$, definiujemy $S_1(x) = x_1 + ... + x_n$ i

$$S_2(x) = \sum_{1 \le j \le k \le n} x_j x_k$$

Znaleźć infimum i supremum $S_2(x)$ pod warunkiem $S_1(x) = s$. Wskazówka: Założyć sobie najpierw n=2,3.

**15. Dla $x = (x_1, \dots, x_n), j = 1, \dots, n$

$$S_j(x) = \sum_{1 \le k_1 < \dots < k_j \le n} x_{k_1} \cdots x_{k_j}$$

oznacza j-tą elementarną funkcję symetryczną zmiennych x_1,\ldots,x_n . Znaleźć wartości ekstremalne $S_n(x)$ przy jednocześnie zachodzących warunkach $S_j(x)=s_j$ dla $j=1,\cdots,n-1$.

Zadanie już dla n=3 zasługuje na **. Nie wiem jak zrobić to zadanie. Podobno warto rozważyć wielomian $P(t)=(t-x_1)\cdots(t-x_n)$