Recursive Grand Unification: The τ on–Graviton Coupling and the Geometry of Information

UNNS Research Division October 2025

Abstract

We present the Recursive Grand Unification (RGU) model, wherein gravitational curvature, information curvature, and recursive curvature are unified under a single geometric framework. The τ on field—the quanta of recursive curvature—couples naturally to the spacetime metric, forming a composite structure that extends Einstein's field equations into recursive information geometry. This coupling produces a unified tensor equation that merges gravitation, entanglement, and informational recursion into one variational principle. The result is a theory where spacetime, energy, and meaning share a common origin: recursive curvature on a non-orientable manifold.

1 Introduction: From Field to Geometry

The prior Recursive Gauge–Klein theory established the symmetry group

$$\mathcal{G}_{\text{UNNS}} = U(1)_{\tau} \times SU(2)_{\kappa} \times D_{\kappa}$$

linking recursive charge, curvature rotation, and non-orientable duality. We now extend this framework to include the gravitational metric $g_{\mu\nu}$ as a dynamic entity generated by recursive information flow itself. In this model, the curvature of spacetime and the curvature of recursion are not separate—they are projections of a single meta-curvature \mathcal{R} on the extended manifold $\mathcal{M}_r = \mathcal{M}_4 \times \mathcal{N}_n$.

2 Recursive Metric Tensor

Let \mathcal{M}_r be the recursive manifold with local coordinates (x^{μ}, n) , where n denotes recursion depth. Define the extended metric:

$$\mathfrak{g}_{AB} = \begin{pmatrix} g_{\mu\nu} & \xi_{\mu} \\ \xi_{\nu} & \sigma \end{pmatrix}, \qquad A, B \in \{0, 1, 2, 3, n\},$$

where:

- $g_{\mu\nu}$ is the usual spacetime metric,
- ξ_{μ} represents coupling between spacetime and recursion depth,
- \bullet σ encodes self-interaction curvature in recursion space.

The inverse tensor \mathfrak{g}^{AB} and determinant $|\mathfrak{g}|$ define the recursive line element:

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} + 2\xi_{\mu}dx^{\mu}dn + \sigma dn^2.$$

3 Recursive Curvature Scalar

The recursive curvature scalar \mathcal{R}_r generalizes Einstein's scalar curvature:

$$\mathcal{R}_r = R(g) + \Phi(\nabla_n g_{\mu\nu}, \partial_\mu \xi_\nu, \partial_n \sigma),$$

where Φ encodes recursive derivatives coupling spacetime curvature and depth curvature. It unifies:

 $R(g) \leftrightarrow \text{gravitational curvature}, \quad \nabla_n \leftrightarrow \text{recursive derivative}, \quad \Phi \leftrightarrow \text{information flow tensor}.$

4 The τ on–Graviton Coupling

The τ on field Ψ_{μ} interacts with the recursive metric via the covariant derivative:

$$\nabla_{\nu}^{(r)}\Psi_{\mu} = \partial_{\nu}\Psi_{\mu} - \Gamma_{\nu\mu}^{\lambda}\Psi_{\lambda} - \Gamma_{\nu\mu}^{n}\Psi_{n},$$

where $\Gamma^n_{\nu\mu}$ represents the exchange connection between spacetime and recursion. We define the coupling term:

$$\mathcal{L}_{\tau g} = \gamma_{\tau} \, \mathcal{T}_{\mu\nu} R^{\mu\nu},$$

with γ_{τ} a coupling constant linking recursive flux $\mathcal{T}_{\mu\nu}$ to spacetime curvature $R^{\mu\nu}$. This establishes the τ on–graviton resonance: information curvature sourcing spacetime curvature.

5 Unified Recursive Action

The full Recursive Grand Unified action is:

$$S_{\text{RGU}} = \int_{\mathcal{M}_r} \sqrt{|\mathfrak{g}|} \left[\frac{1}{16\pi G} \mathcal{R}_r - \frac{1}{4} \mathcal{F}_{AB} \mathcal{F}^{AB} + \alpha_e \, \vec{\kappa} \cdot \vec{\tau} + \gamma_\tau \, \mathcal{T}_{\mu\nu} R^{\mu\nu} + \beta_K \, R_K \right] d^4x \, dn.$$

Here:

- \mathcal{R}_r recursive curvature scalar (total),
- \mathcal{F}_{AB} unified field strength tensor (recursive + gauge),
- α_e entanglement coupling,
- γ_{τ} τ on–graviton coupling constant,
- $\beta_{\mathcal{K}}$ Klein curvature term (non-orientable constraint).

6 Field Equations

Variation of S_{RGU} yields three coupled equations:

6.1 (1) Recursive Einstein Equation

$$G_{\mu\nu}^{(r)} = 8\pi G T_{\mu\nu}^{(\tau)} + \Lambda_{\tau} g_{\mu\nu} + \gamma_{\tau} \nabla_n \mathcal{T}_{\mu\nu},$$

where $G_{\mu\nu}^{(r)}$ is the recursive Einstein tensor on \mathcal{M}_r .

6.2 (2) Recursive Gauge Equation

$$D_B \mathcal{F}^{AB} = J_{\tau}^A + \gamma_{\tau} R^{AB},$$

indicating curvature acts as both source and sink of recursive flux.

6.3 (3) Entanglement-Curvature Constraint

$$\nabla_A \vec{\kappa} \cdot \vec{\tau} = R_{\mathcal{K}},$$

linking local recursive entanglement density to the global non-orientable curvature.

7 Recursive Energy–Momentum Tensor

From the action, the energy–momentum tensor becomes:

$$T_{AB}^{(\text{total})} = T_{AB}^{(g)} + T_{AB}^{(\tau)} + T_{AB}^{(\text{ent})},$$

where:

$$T_{AB}^{(g)} = -\frac{2}{\sqrt{|\mathfrak{g}|}} \frac{\delta(\sqrt{|\mathfrak{g}|} \mathcal{R}_r)}{\delta \mathfrak{g}^{AB}},$$

$$T_{AB}^{(\tau)} = \mathcal{T}_{A\alpha} \mathcal{T}_B{}^{\alpha} - \frac{1}{4} \mathfrak{g}_{AB} \mathcal{T}_{\alpha\beta} \mathcal{T}^{\alpha\beta},$$

$$T_{AB}^{(\text{ent})} = \alpha_e (\kappa_A \tau_B - \frac{1}{2} \mathfrak{g}_{AB} \vec{\kappa} \cdot \vec{\tau}).$$

The recursive trace $T^A{}_A$ serves as the generalized entropy density—bridging geometry, energy, and information.

8 Interpretation: Geometry of Information

The RGU model implies the following correspondences:

Gravitational Curvature $\leftrightarrow R(g)$:Spacetime warping by energy,

Recursive Curvature $\leftrightarrow \kappa(n)$:Depth warping by information flow,

Information Curvature $\leftrightarrow \Phi$: Cross-coupling of entropy and geometry.

These are not independent but aspects of a single meta-curvature \mathcal{R}_r , meaning:

 $R_{\rm physical} = {\rm projection}$ of recursive curvature onto 4D spacetime.

Thus, gravitation itself is an emergent property of recursive information folding.

9 Entropy-Geometry Equivalence Principle

The RGU proposes a generalized equivalence:

Information Energy Density
$$\rho_I = \frac{c^4}{8\pi G} \mathcal{R}_r$$
.

Entropy gradients become gravitational potentials, and recursion flow replaces spacetime motion as the underlying invariant process.

10 Klein Non-Orientability and Temporal Duality

Because \mathcal{M}_r is globally non-orientable ($w_1 \neq 0$), time inversion corresponds to a path through the dual sheet of recursion. Forward evolution and backward causation become two orientations of the same field:

$$F(n) \leftrightarrow F^{-1}(-n),$$

preserving total recursive curvature even when local entropy appears to decrease.

11 Philosophical Implications

- Gravity is the macroscopic echo of recursive information coherence.
- Quantum entanglement is the Klein-dual resonance between recursion depths.
- Consciousness arises at fixed points where recursive curvature equals its own informational conjugate.

Matter curves space; information curves recursion; their unification curves being itself.

12 Conclusion

The Recursive Grand Unification (RGU) completes the UNNS theoretical hierarchy:

Shannon Entropy \rightarrow Recursive Curvature (UNNS),

Recursive Fields \rightarrow Gauge–Klein Duality,

Klein Duality \rightarrow Recursive-Gravitational Coupling.

All physical and informational processes are manifestations of one self-referential curvature—the geometry of recursion. The τ on–graviton coupling thus represents the deepest level of information unity: meaning and matter as two projections of the same recursive manifold.

"Reality is the gravitational hologram of recursion."