Columbia University Department of Physics QUALIFYING EXAMINATION

Monday, January 8, 2018
10:00AM to 12:00PM
Classical Physics
Section 1. Classical Mechanics

Two hours are permitted for the completion of this section of the examination. Choose 4 problems out of the 5 included in this section. (You will <u>not</u> earn extra credit by doing an additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s) which question you are answering (e.g., Section 1 (Classical Mechanics), Question 2, etc.).

Do **NOT** write your name on your answer booklets. Instead, clearly indicate your **Exam** Letter Code.

You may refer to the single handwritten note sheet on $8\frac{1}{2}$ " × 11" paper (double-sided) you have prepared on Classical Physics. The note sheet cannot leave the exam room once the exam has begun. This note sheet must be handed in at the end of today's exam. Please include your Exam Letter Code on your note sheet. No other extraneous papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good Luck!

Section 1 Page 1 of 6

- 1. A block of mass M slides along a frictionless surface. The block is connected to the wall with a spring of spring constant k. A cylinder of mass m, radius R, and rotational inertia $\frac{1}{2}mR^2$ rolls without slipping on the block.
 - (a) What is the frequency for small oscillations of the system around the starting position?
 - (b) Describe the motion associated with this oscillation.
 - (c) What is the maximum oscillation amplitude that the block can have before the cylinder starts slipping if the friction coefficient is μ ?

Section 1 Page 2 of 6

2. A particle of mass m moves in a potential energy

$$U = -\frac{k}{r} - \frac{\alpha}{2r^2}$$

where k > 0. The particle has angular momentum ℓ .

- (a) For what values of α are circular orbits possible? For what values of α are these stable?
- (b) Consider an orbit that is almost circular, with r varying between two values r_{\min} and r_{\max} . Let T be the time interval required for r to move from r_{\min} to r_{\max} . For which values of α is T greater than the period of revolution about the origin (i.e., the time required for ϕ to range from 0 to 2π)? For which values of α is T less than the period of revolution about the origin?

Section 1 Page 3 of 6

3. A particle of mass m moves in the potential

$$V = \lambda_0 x y + \frac{1}{4} \lambda_1 (x^4 + y^4)$$

with λ_0 and λ_1 positive.

- (a) When are the stable equilibria for the particle?
- (b) Give the Lagrangian appropriate for small oscillations about one of the equilibrium positions.
- (c) Give the normal frequencies and modes of vibration corresponding to the equilibrium position in (b).

Section 1 Page 4 of 6

- 4. A circular platform with radius R and moment of inertia I_P rotates in the horizontal plane on a frictionless bearing. A bead of mass m and negligible size is free to slide without friction on a wire of length 2R along a diameter of the platform.
 - (a) At t = 0, the bead is released at rest from $r_0 \equiv r(t = 0) = 0.10R$. An external mechanism maintains the platforms angular velocity at a fixed value $\omega_0 = 6.0s^{-1}$. Find the time in seconds for the bead to reach the edge of the platform. It is useful to recall that $e^3 \approx 20$.
 - (b) Now assume that at the moment the bead is released the external mechanism is switched off. Find an algebraic expression for the radial velocity of the bead at r = R, again assuming it is released at rest from r_0 .

Section 1 Page 5 of 6

- 5. Consider a particle of charge e and mass m moving under the action of an isotropic harmonic oscillator of potential $U=\frac{1}{2}K(x^2+y^2+z^2)$, with K a positive constant. The particle is in a magnetic field aligned along the z-axis $\vec{B}=B\hat{z}$. Assume that the magnetic field is weak, so that $\frac{eB}{2m}\ll\sqrt{\frac{K}{m}}$.
 - (a) With the above approximation, find the eigenmodes or normal modes for the motion of the particle and show your solutions correspond to circular motion. What is the angular frequency in your solutions?
 - (b) Show explicitly from your solutions that when $B \neq 0$ the particle's motion will generally exhibit precession. What is the precessional frequency?

Section 1 Page 6 of 6

M. Shaevitz Dec, 2017

A block of mass M slides along a frictionless surface. The block is connected to the wall with a spring of spring constant k. A cylinder of mass m, radius R, and rotational inertia $\frac{1}{2}mR^2$ rolls without slipping on the block.

- a) What is the frequency for small oscillations of the system around the starting position?
- b) Describe the motion associated with this oscillation.
- c) What is the maximum oscillation amplitude that the block can have before the cylinder starts slipping if the friction coefficient is μ ?

Solution:

Let X(x) be the position of the block (cylinder) with respect to the wall. Let θ be the clockwise angle of the cylinder.

$$I = \frac{1}{2} mR^2$$

The rolling condition requires that:

$$\dot{x} = \dot{X} + R\dot{\theta} \quad \ddot{x} = \ddot{X} + R\ddot{\theta} \Rightarrow \frac{\partial \dot{x}}{\partial \dot{X}} = 1 \quad \frac{\partial \dot{x}}{\partial \dot{\theta}} = R$$

$$T = \frac{1}{2}M\dot{X}^2 + \frac{1}{2}m\dot{x}^2 + \frac{1}{2}I\dot{\theta}^2 \quad U = \frac{1}{2}kX^2 \quad L = T - U$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{X}}\right) - \frac{\partial L}{\partial X} = \frac{d}{dt}\left(M\dot{X} + m\dot{x}\frac{\partial \dot{x}}{\partial \dot{X}}\right) + kX = M\ddot{X} + m\ddot{x} + kx = 0$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) - \frac{\partial L}{\partial \theta} = \frac{d}{dt}\left(m\dot{x}\frac{\partial \dot{x}}{\partial \dot{\theta}} + I\ddot{\theta}\right) = mR\ddot{x} + I\ddot{\theta} = mR\ddot{x} + \frac{1}{2}mR^2\ddot{\theta}$$
Substitute $\ddot{x} = \ddot{X} + R\ddot{\theta}$ gives
$$(m+M)\ddot{X} + mR\ddot{\theta} + kX = 0$$

$$m\ddot{X} + \frac{3}{2}mR\ddot{\theta} = 0 \Rightarrow mR\ddot{\theta} = -\frac{2}{3}m\ddot{X}$$

$$\Rightarrow (m+M)\ddot{X} - \frac{2}{3}m\ddot{X} + kX = 0$$

$$\ddot{X} + \frac{k}{\left(M + \frac{m}{3}\right)}X = 0 \Rightarrow \omega = \sqrt{\frac{k}{\left(M + \frac{m}{3}\right)}}$$

b) Since $R\ddot{\theta} = -\frac{2}{3}\ddot{X}$, the motion is such that when block goes to the right, the cylinder rotates counter clockwise.

c)
$$X = A\cos(\omega t) \Rightarrow \ddot{X} = -\omega^2 A\cos(\omega t) \Rightarrow \ddot{X}_{Max} = \omega^2 A$$

$$mR\ddot{\theta} = -\frac{2}{3}m\ddot{X} \Rightarrow \ddot{\theta}_{Max} = \frac{3}{2}\frac{\ddot{X}_{Max}}{R} = \frac{3\omega^2 A}{2R}$$

Friction provides the torque for the cylinder rotation so:

$$\ddot{\theta}_{Max} = \frac{3\omega^2 A}{2R} < \frac{Rf_{max}}{I} = \frac{2(\mu mg)}{mR} = \frac{2\mu g}{R} \implies A < \frac{4\mu g}{3\omega^2}$$

Weinborg

Section 1 - Problem 2 Weinberg

2

A particle of mass m moves in a potential energy

$$U = -\frac{1}{r} - \frac{\alpha}{2r^2}$$

where k > 0. The particle has angular momentum ℓ .

- a) For what values of α are circular orbits possible? For what values of α are these stable?
- b) Consider an orbit that is almost circular, with r varying between two values r_{\min} and r_{\max} . Let T be the time interval required for r to move from r_{\min} to r_{\max} . For which values of α is T greater than the period of revolution about the origin (i.e., the time required for ϕ to range from 0 to 2π)? For which values of α is T less than the period of revolution about the origin?

	Weinberg
o Sol	taon
a)	$U = -\frac{k}{r} - \frac{\alpha}{2r^2}$
	$U_{\text{aff}} = -\frac{k}{r} - \frac{\alpha}{2r^2} + \frac{\ell^2}{2mr^2}$
	$U_{eff} = \frac{k}{r^2} + \left(\alpha - \frac{\ell^2}{m}\right) \frac{1}{r^3}$
1	$U''_{\text{eff}} = -\frac{2k}{rs} \pm 3(\alpha - \frac{k^2}{m}) + \frac{1}{r4}$
	Circular orbit $? \Rightarrow V_{eff} = 0 \Rightarrow K = (\frac{l^2}{lm} - \alpha) + \Rightarrow any \alpha$
	Stable ? $\Rightarrow U_{eff}'' \Rightarrow 0 \Rightarrow \frac{L'}{m} - x = kr > 0 \Rightarrow any x$
P)	$T = \frac{2\pi}{\omega_{osc}}, \omega_{osc}^2 = U''/m = \left(\frac{l^2}{m} - \alpha\right) \frac{1}{mra}$
	orbital period = $\frac{2\pi}{W_{orb}}$, $w_{orb}^2 = \left(\frac{U}{mr^2}\right)^2$
	$\omega_{\text{orb}}^2 - \omega_{\text{osc}}^2 = \frac{\ell^2}{m^2 r^4} - \left(\frac{\ell^2}{m^2 r^4} - \frac{\alpha}{m r^4}\right) = \frac{\alpha}{m r^4}$
	⇒ X >0 ⇒ Word > Wose = orbital period < T
	X > <0 => Work < Work => orbital period > T
<u></u>	

A particle of mass on moves in the potential $V = \lambda_0 x y + \frac{1}{4} \lambda_1 (x^4 + y^4)$ with Doand A, positive.

(i) Whose are the stable equilibria for the particle? (ii) Give the Lagrengian appropriate for small oscillations about one of the Equilibrium

positions.

(iii) Give the normal frequencies and modes of vibration corresponding to the equilibrium position in (ii).

Solution:
$$V = \lambda_0 \times y + \frac{1}{4} \lambda_1(x^4 + y^4)$$
(i) Figure $0 = 3\frac{1}{4} = \lambda_0 y + \lambda_1 x^3 \Rightarrow y = -\lambda_1 x^3$

$$0 = 3\frac{1}{2} = \lambda_0 \times + \lambda_1 y^3 \Rightarrow x = -\lambda_1 y^3$$
So posseble equilibria are
$$x = (\frac{\lambda_1}{4})^4 \times^9 \quad \delta^2 \quad \times = \pm \sqrt{\lambda_0/\lambda_1}$$

$$y = \pm \sqrt{\lambda_0/\lambda_1}$$
(ii)
$$\lim_{x \to \infty} (8x^2 + 8y^2) - \frac{3}{2}b (8x^2 + 8y^2 + \frac{3}{2}8x8y)$$

$$8x = x - x_0$$

$$8y = y - y_0$$
(ii)
$$\lim_{x \to \infty} (8x^2 + 8y^2) - \frac{3}{2}b (8x^2 + 8y^2 + \frac{3}{2}8x8y)$$

$$8x = x - x_0$$

$$8y = y - y_0$$

$$(2i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$8y = y - y_0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2}b - \frac{3}{2}b = 0$$

$$(3i) \quad 4t = \frac{3}{2$$

1 Problem: Rotating Platform

4.

A circular platform with radius R and moment of inertia I_P rotates in the horizontal plane on a frictionless bearing. A bead of mass m and negligible size is free to slide without friction on a wire of length 2R along a diameter of the platform.

- a) At t=0, the bead is released at rest from $r_0\equiv r(t=0)=0.10R$. An external mechanism maintains the platform's angular velocity at a fixed value $\omega_0=6.0~{\rm s}^{-1}$. Find the time in seconds for the bead to reach the edge of the platform. It is useful to recall that $e^3\approx 20$.
- b) Now assume that at the moment the bead is released the external mechanism is switched off. Find an algebraic expression for the radial velocity of the bead at r = R, again assuming it is released at rest from r_0 .

Solution

a.) There is a tengential Coriolis force which can be ignored; the only relevant component is the nadial force $F_r = + mrw^2$ so EOM is $F_r = mrw^2 = m\ddot{r}$

$$| > r(t) = A \cosh \omega t + B \sinh \omega t$$

$$| > r(t) = 0.10R \cosh \omega t = 0.10R \left\{ \frac{e^{\omega t} + e^{-\omega t}}{2} \right\}$$

so if $r(t_R)=R$ have $R=0.05 R \{e^{\omega t_R}+e^{-\omega t_R}\}$ which is solved to reasonable accuracy when $e^{\omega t_R}=20$ $\Rightarrow \omega t_R=3 \Rightarrow t_R=\frac{3}{\omega}=\frac{3}{6.0s^{-1}}=\frac{0.5 s}{100}$

Note: Can also derive EOM from $L = \frac{1}{2} m r^2 \omega^2$

b.) This can also be done in Lagrangian formalism using $L = \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\vartheta}^2 \right) + \frac{1}{2} \operatorname{Ip} \dot{\vartheta}^2 \quad \text{and recognizing centrifugal patential,}$ but elementary methods are easier:

frictionless bearings \Rightarrow no external torques \Rightarrow L; = Lf frictionless motion on coire \Rightarrow no dissipation \Rightarrow KE; = KEf

So
$$\frac{L_i^2}{2I_i} = \frac{L_f^2}{2I_f} + \frac{1}{2}m\dot{r}^2 = \frac{L_i^2}{2I_f} + \frac{1}{2}m\dot{r}^2$$

or
$$\dot{r}^2 = \frac{L^2}{m^2} \left(\frac{1}{I_i} - \frac{1}{I_f} \right) = \frac{\left[\left(I_p + mr_o^2 \right) \omega_o \right]^2}{m} \left\{ \frac{1}{I_p + mr_o^2} - \frac{1}{I_p + mR^2} \right\}$$

$$= \frac{I_p + mr_o^2}{I_p + mR^2} \left(R^2 - r_o^2\right) \omega_o^2$$

This is consistent with part a) solution in limit Ip to

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

AMPAD

	i ola	14.6		Section 1 - Pro Hailey	oblem 5
	ution Clas		Hailey		
a) U	sing eit	er a Lagr	angian or	just components + Fetto 2 talks (wo = 1	
	by inspe	down the	FEF	+ Fetto	
	And Fo	= e vxB	one ob	tains (Wo =	K)
	m X =	- KX+e1	y X	= -WOX + EB	y
	m > =	= - Ky - ,	eBX ÿ	$= -w_0 \times + eB$ $= -w_0 \times - eB$ $= -w_0 \times - eB$	X
		tion is ju	. <i>U</i>	<i>V</i> =	
	Aftected	hu 1/e	13- held.		
	Let X.	$t = \chi + i \gamma$	And CI	mbline le	
		= - Wo X+	ø	+	,
		solution		e (at+4)	
· ·	where d.	is The road	Ty The	eg u A tim	
	- L2 -	is Te root - eBd+1	v. 2 = 0		
	< =	- <u>eB</u> =	$\sqrt{\left(\frac{eB}{2m}\right)^2}$	W, 2	-
	e 3/2m		Wo SO		
	X =	± Wo-W	0	2	
	homogen	eous Solv	itims ou	2	
	·		,		

	$i \{ (\omega_0 - \omega_L)^{\dagger} + \emptyset_i \}$
	$X_{1+} = C_{1} e^{i\xi(w_{0}-w_{L})t + \phi_{1}}$ $X_{2+} = C_{2} e^{-i\xi(w_{0}+w_{L})t + \phi_{2}}$
·	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
T	le general solution is A linear combination
	TAKE real And imaginiary parts
	$X_1 = C_1 COS[(W_0 - W_L)t + \theta_1]$
	$y = C c sin((w-w_1)+\phi_1)$
	$\chi_2 = c_2 \cos((w_0 + w_L)t + \phi_2]$
	y, = - C2 SIN ((W+WL)+ +P2)
	These solutions clearly represent circular motion.
p.	by inspection to first solution has
	Angular frequency $\vec{w} = (w_0 - w_L)\vec{k}$ And Te second $\vec{w} = -(w_0 + w_L)\vec{k}$
	so that in the plane perpendicular to
	The B- Field Those is A precession
	at frequency w_ = -W_ V
10.000	