$$f(x) = x_1^3 + 2x_2^2 + 2x_1x_2 + 5$$

$$f_1(x) = 4x_1, f_2(x) = 4x_2, f_{11}(x) = 4,$$

 $f_{12}(x) = f_{21}(x) = 1, f_{22}(x) = 4$

$$f_1(x) = 5x_1, f_2(x) = 7x_2, f_{11}(x) = 1,$$

 $f_{12}(x) = f_{21}(x) = 4, f_{22}(x) = 2$

$$\bigcirc$$
 $-$

$$f_1(x) = 3x_1^2 + 2x_2, f_2(x) = 4x_2 + 2x_1,$$

 $f_{11}(x) = 6x_1, f_{12}(x) = f_{21}(x) = 2, f_{22}(x) = 4$

$$f_1(x) = 2x_1, f_2(x) = 2x_2, f_{11}(x) = 2,$$

 $f_{12}(x) = f_{21}(x) = 0, f_{22}(x) = 2$

 Να βρεθούν οι μερικές παράγωγοι πρώτης και δεύτερης τάξης για τη δοσμένη συνάρτηση

$$f(x) = 5x_1^2 + x_2$$

$$f_1(x) = 4x_1, f_2(x) = 4x_2, f_{11}(x) = 4,$$

 $f_{12}(x) = f_{21}(x) = 1, f_{22}(x) = 4$

$$f_1(x) = 5x_1, f_2(x) = 7x_2, f_{11}(x) = 1,$$

 $f_{12}(x) = f_{21}(x) = 4, f_{22}(x) = 2$

$$f_1(x) = 10x_1, f_2(x) = 1, f_{11}(x) = 10,$$

 $f_{12}(x) = f_{21}(x) = 0, f_{22}(x) = 0$

$$f_1(x) = 2x_1, f_2(x) = 2x_2, f_{11}(x) = 2,$$

 $f_{12}(x) = f_{21}(x) = 0, f_{22}(x) = 2$

$$f(x_1, x_2) = e^{-(x_1 + x_2)}$$

$$1 - x_1 - x_2 + x_1^2 + x_2^2$$

$$1-x_1^2-x_2^2\\$$

 $1 - 2x_1 - 2x_2$

 \circ

Σωστή απάντηση

✓ Ποια τα στάσιμα σημεία της παρακάτω συνάρτησης: *	1/1
$f(x) = \frac{1}{3}x^3 + x^2 + \frac{8}{9}x - 1$	
-4/3 και -2/3	✓
Ο 1 και 0	
1/2 και -1/2	
✓ Έστω η παρακάτω συνάρτηση. Να βρεθούν τα τοπικά ακρότατα και αντίστοιχα αν είναι μέγιστα ή ελάχιστα.	*1/1
$f(x) = 2x^3 - 2x^2$	
Τοπικό μέγιστο στο 0 και τοπικό ελάχιστο στο -1.	
Ο Τοπικό μέγιστο στο 1 και τοπικό ελάχιστο στο 0.	
Τοπικό μέγιστο στο -1 και τοπικό ελάχιστο στο 2/3.	
Τοπικό μέγιστο στο 0 και τοπικό ελάχιστο στο 2/3.	~

$$f(x) = x^3 - x^2 + 1$$

- Στο x=-5.
- Στο x=0.
- Στο x=5.
- Στο x=2/3.

Σωστή απάντηση

Στο x=-5.

✓ Να βρεθεί το σημείο στο οποίο μεγιστοποιείται η παρακάτω συνάρτηση *1/1 στο διάστημα [-1, 1]:

$$f(x) = x^3 - 2x^2 + 1$$

- Στο x=4/3.
- Στο x=-1.
- Στο x=1.
- Στο x=0.

✓ Να βρεθούν τα στάσιμα σημεία της παρακάτω συνάρτησης (δηλ. οι τιμές *1/1 των x οι οποίες μηδενίζουν το διάνυσμα κλίσης της f):

$$f(x) = 2x_1 + x_2 - x_1^2 - x_2^2 + x_1 x_2$$

- (x1, x2)=(5/3, 4/3).
- (x1, x2)=(0,1).
- (x1, x2)=(1, 0).
- (x1, x2)=(1, 1).

✓ Να βρεθούν τα στάσιμα σημεία της παρακάτω συνάρτησης (δηλ. οι τιμές *1/1 των x οι οποίες μηδενίζουν το διάνυσμα κλίσης της f):

$$f(x) = x_1 + 2x_2 - 2x_1x_2 + x_1^2$$

- (x1, x2)=(1,1).
- (x1, x2)=(0,1).
- (x1, x2)=(1, 3/2).
- (x1, x2)=(3/2, 1).

Να βρεθούν τα στάσιμα σημεία της παρακάτω συνάρτησης (δηλ. οι τιμές *1/1 των x οι οποίες μηδενίζουν το διάνυσμα κλίσης της f):

$$f(x) = x_1 + 2x_2 + x_3 - x_3^2 + x_1^2 + x_2^2$$

- (x1, x2, x3)=(-1/2, -1, 1/2).
- (x1, x2, x3)=(1, 0, 1).
- (x1, x2, x3)=(1/2, 0, 1/2).
- (x1, x2, x3)=(1, 1, 1).