§8.线性空间的同构

一、同构映射的定义

二、同构的有关结论

引入

我们知道,在数域P上的n维线性空间V中取定一组基后,V中每一个向量 α 有唯一确定的坐标 (a_1,a_2,\cdots,a_n) ,向量的坐标是P上的n元数组,因此属于 P^n . 这样一来,取定了V的一组基 $\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n$ 对于V中每一个向量 α ,令 α 在这组基下的坐标 (a_1,a_2,\cdots,a_n) 与 α 对应,就得到V到 P^n 的一个单射

$$\sigma: V \to P^n, \ \alpha \mapsto (a_1, a_2, \dots, a_n)$$

反过来,对于 P^n 中的任一元素 (a_1, a_2, \dots, a_n)
 $\alpha = \varepsilon_1 a_1 + \varepsilon_2 a_2 + \dots + \varepsilon_n a_n$ 是 V 中唯一确定的元素,
并且 $\sigma(\alpha) = (a_1, a_2, \dots, a_n)$,即 σ 也是满射.
因此, σ 是 V 到 P^n 的——对应.

这个对应的重要性表现在它与运算的关系上.

任取
$$\alpha,\beta \in V$$
,设

$$\alpha = a_1 \varepsilon_1 + a_2 \varepsilon_2 + \dots + a_n \varepsilon_n, \quad \beta = b_1 \varepsilon_1 + b_2 \varepsilon_2 + \dots + b_n \varepsilon_n$$
则 $\sigma(\alpha) = (a_1, a_2, \dots, a_n), \quad \sigma(\beta) = (b_1, b_2, \dots, b_n)$
从而 $\sigma(\alpha + \beta) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$

$$= (a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = \sigma(\alpha) + \sigma(\beta)$$

$$\sigma(k\alpha) = (ka_1, ka_2, \dots, ka_n) \qquad \forall k \in P$$

$$= k(a_1, a_2, \dots, a_n) = k\sigma(\alpha),$$

这就是说,V中的向量用Pn坐中的坐标表示后,它们的运算可以归结为它们的坐标的运算.

一、同构映射的定义

设V,V'都是数域P上的线性空间,如果映射 σ : $V \to V'$ 具有以下性质:

- i) σ 为双射
- ii) $\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta), \forall \alpha, \beta \in V$
- iii) $\sigma(k\alpha) = k\sigma(\alpha), \forall k \in P, \forall \alpha \in V$

则称 σ 是V到V'的一个同构映射,并称线性空间 V与V'同构,记作 $V \simeq V'$.

例1、V为数域P上的n维线性空间, $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为V的一组基,则前面V到Pn的一一对应

$$\sigma: V \to P^n,$$

$$\alpha \mapsto (a_1, a_2, \dots, a_n) \quad \forall \alpha \in V$$

这里 (a_1,a_2,\cdots,a_n) 为 α 在 $\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n$ 基下的坐标,

就是一个V到Pn的同构映射,所以 $V \simeq P^n$.

二、同构的有关结论

- 1、数域P上任一n维线性空间都与Pn同构.
- 2、设V,V'是数域P上的线性空间, σ 是V到V'的同构映射,则有

1)
$$\sigma(0) = 0$$
, $\sigma(-\alpha) = -\sigma(\alpha)$.

$$2) \quad \sigma(k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r)$$

$$= k_1 \sigma(\alpha_1) + k_2 \sigma(\alpha_2) + \dots + k_r \sigma(\alpha_r),$$

$$\alpha_i \in V, \quad k_i \in P, \quad i = 1, 2, \dots, r.$$

- 3) V中向量组 $\alpha_1,\alpha_2,\dots,\alpha_r$ 线性相关(线性无关)的充要条件是它们的象 $\sigma(\alpha_1),\sigma(\alpha_2),\dots,\sigma(\alpha_r)$ 线性相关(线性无关).
 - 4) $\dim V = \dim V'$.
 - 5) σ : $V \to V'$ 的逆映射 σ^{-1} 为 V'到V 的同构映射.
 - 6) 若W是V的子空间,则W在 σ 下的象集

$$\sigma(W) = \{ \sigma(\alpha) | \alpha \in W \}$$

是的 V 子空间,且 $\dim W = \dim \sigma(W)$.

证: 1) 在同构映射定义的条件iii) $\sigma(k\alpha) = k\sigma(\alpha)$ 中分别取 k = 0与k = -1, 即得

$$\sigma(0) = 0, \ \sigma(-\alpha) = -\sigma(\alpha)$$

- 2) 这是同构映射定义中条件ii)与iii)结合的结果.
- 3) 因为由 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r = 0$

可得
$$k_1\sigma(\alpha_1) + k_2\sigma(\alpha_2) + \cdots + k_r\sigma(\alpha_r) = 0$$

反过来,由
$$k_1\sigma(\alpha_1) + k_2\sigma(\alpha_2) + \cdots + k_r\sigma(\alpha_r) = 0$$

可得
$$\sigma(k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r) = 0$$
.

而 σ 是一一对应,只有 $\sigma(0) = 0$.

所以可得 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r = 0$.

因此, $\alpha_1,\alpha_2,\dots,\alpha_r$ 线性相关(线性无关)

- $\Leftrightarrow \sigma(\alpha_1), \sigma(\alpha_2), \dots, \sigma(\alpha_r)$ 线性相关(线性无关).
 - 4) 设 dimV = n, $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为V 中任意一组基.
- 由2) 3) 知, $\sigma(\varepsilon_1)$, $\sigma(\varepsilon_2)$, …, $\sigma(\varepsilon_n)$ 为 σ 的一组基.

所以 $\dim V' = n = \dim V$.

5) 首先 $\sigma^{-1}: V' \to V$ 是1-1对应,并且 $\sigma \circ \sigma^{-1} = I_{V'}$, $\sigma^{-1} \circ \sigma = I_{V}$, I为恒等变换. 仟取 $\alpha', \beta' \in V'$, 由于 σ 是同构映射,有 $\sigma(\sigma^{-1}(\alpha'+\beta')) = \sigma \circ \sigma^{-1}(\alpha'+\beta') = \alpha'+\beta'$ $= \sigma \circ \sigma^{-1}(\alpha') + \sigma \circ \sigma^{-1}(\beta') = \sigma(\sigma^{-1}(\alpha')) + \sigma(\sigma^{-1}(\beta'))$ $= \sigma(\sigma^{-1}(\alpha') + \sigma^{-1}(\beta'))$ 再由 σ 是 単射,有 $\sigma^{-1}(\alpha' + \beta') = \sigma^{-1}(\alpha') + \sigma^{-1}(\beta')$ 同理,有 $\sigma^{-1}(k\alpha') = k\sigma^{-1}(\alpha')$, $\forall \alpha' \in V', \forall k \in P$ 所以, σ^{-1} 为 V'到V的同构映射.

6) 首先,
$$\sigma(W) \subseteq \sigma(V) = V'$$

且: $0 = \sigma(0) \in \sigma(W)$, ∴ $\sigma(W) \neq \emptyset$

其次,对 $\forall \alpha', \beta' \in \sigma(W)$,有W中的向量 α, β 使 $\sigma(\alpha) = \alpha', \sigma(\beta) = \beta'$.

于是有
$$\alpha' + \beta' = \sigma(\alpha) + \sigma(\beta) = \sigma(\alpha + \beta)$$

 $k\alpha' = k\sigma(\alpha) = \sigma(k\alpha), \forall k \in P$

由于W为子空间,所以 $\alpha + \beta \in W$, $k\alpha \in W$.

从而有 $\alpha' + \beta' \in \sigma(W)$, $k\alpha' \in \sigma(W)$.

所以 $\sigma(W)$ 是 V'的子空间.

显然, σ 也为W到 $\sigma(W)$ 的同构映射, 即

$$W \cong \sigma(W)$$

故 $\dim W = \dim \sigma(W)$.

注

由2可知,同构映射保持零元、负元、线性组合 及线性相关性,并且同构映射把子空间映成子空间. 3、两个同构映射的乘积还是同构映射.

证:设 σ : $V \to V'$, τ : $V' \to V''$ 为线性空间的同构映射,则乘积 $\tau \circ \sigma \in V$ 到V'' 的1-1对应.

任取
$$\alpha$$
, $\beta \in V$, $k \in P$, 有
$$\tau \circ \sigma(\alpha + \beta) = \tau(\sigma(\alpha) + \sigma(\beta))$$

$$= \tau(\sigma(\alpha)) + \tau(\sigma(\beta)) = \tau \circ \sigma(\alpha) + \tau \circ \sigma(\beta)$$

$$\tau \circ \sigma(k\alpha) = \tau(\sigma(k\alpha)) = \tau(k\sigma(\alpha))$$

$$= k\tau(\sigma(\alpha)) = k\tau \circ \sigma(\alpha)$$

所以,乘积 $\tau \circ \sigma$ 是 V到V'' 的同构映射.

注

同构关系具有:

对称性:
$$V \cong V' \Rightarrow V' \cong V$$

传递性:
$$V \cong V'$$
, $V' \cong V'' \Rightarrow V \cong V''$

4、数域P上的两个有限维线性空间 V_1, V_2 同构 \Leftrightarrow dim V_1 = dim V_2 .

证: "⇒" 若 $V_1 \cong V_2$,由性质2之4) 即得 $\dim V_1 = \dim V_2.$

" \Leftarrow " 若 $\dim V_1 = \dim V_2$, 由性质1,有 $V_1 \cong P^n$, $V_2 \cong P^n$ $\therefore V_1 \cong V_2$.

例2、把复数域看成实数域R上的线性空间,

证明: $C \cong \mathbb{R}^2$

证:证维数相等.

首先, $\forall x \in C$, x 可表成 x = a1 + bi, $a,b \in R$

其次, 若 a1+bi=0, 则 a=b=0.

所以,1,i为C的一组基, dim C = 2.

 ∇ , dim $R^2 = 2$

所以, $\dim C = \dim R^2$. 故, $V_1 \cong V_2$.

例3、全体正实数R+关于加法田与数量乘法。:

$$a \oplus b = ab, k \circ a = a^k$$

作成实数域R上的线性空间.

把实数域R看成是自身上的线性空间.

证明: $R^+ \cong R$, 并写出一个同构映射.

证:作对应 $\sigma: R^+ \to R$, $\sigma(a) = \ln a$, $\forall a \in R^+$ 易证 σ 为 R^+ 到 R 的 1-1 对 应.

且对 $\forall a,b \in R^+$, $\forall k \in R$,有

$$\sigma(a \oplus b) = \sigma(ab) = \ln ab = \ln a + \ln b = \sigma(a) + \sigma(b)$$
 $\sigma(k \circ a) = \sigma(a^k) = \ln a^k = k \ln a = k\sigma(a)$
所以, σ 为 ρ +到 ρ 的 同 构 映 射 数 ρ + $\sim \rho$

所以, σ 为 R^+ 到R 的同构映射. 故 $R^+ \cong R$.

方法二: 作对应 $\tau: R \to R^+, \tau(x) = e^x, \forall x \in R$

易证: τ 为R到 R^+ 的1—1对应,而且也为同构映射.

事实上, τ 为 σ 的逆同构映射.