VLTIMATE MATHEMATICS: BY AJAY MITTAL

SUBJECTIVE TEST: EXAM NO:5 (ovuall)

SECTION: A (ONE MARKS EACH)

Only 1 + For the set A={1,2,3}, define a water R in the set A as forms: R={(1,1), (2,2), (3,3), (1,3)} write the ordered pair to be added to R to make it the smallest equivalence relation _____

Onlie 2 - set A has 3 climents and the set B has 4 climents
then the number of injective mappings that can be
defined from A to B is

(A) 144 (B) 12 (C) 24 (D) 64

ON 3 the R be turulation defined in N by

9Rb if 2a+3b=30 then R=

Ont 4 The value of $\sin \left(2 \cot^{-1}(-\frac{5}{12}) \right)$ is

(A) $\frac{110}{169}$ (B) $\frac{120}{169}$ (C) $-\frac{120}{169}$ (O) $\frac{169}{120}$

ON 5 to While one branch of sector other than
Principle value Branch _____

ONE:6 - The Principal value of the expression cos'[cos(-680)]

(A) $\frac{27}{9}$ (B) $\frac{-27}{9}$ (C) $\frac{34x}{9}$ (P) $\frac{7}{9}$

QNI. 7 7 [2x 3] [1 2] [x] = 0 then x equals
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{1}{2} = \frac{1}{2} = \frac{1}$
ONS. 8 - 7 A and B are two Skew-symmetric matrices of Same order, then AB is Symmetric matrix
(A) A = B (B) AB = BA (C) AB = -BA (e) none y these
Onit 9 to f matrix $A = [a_{ij}]_{3\times 2}$ when $a_{ij} = 1$; $i \neq j$ then A^2 is equal to
then A^2 is equal to
(1) A (1) O (C) I (1) none of them
On 10 x The maximum value of $S = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1+\sin \alpha & 1 \end{bmatrix}$ is
(b) 5 (b) 1 (c) 5 (b) 1/2
ONI 11 + 1/3 the value of a third order determinant of 12, then the value of the determinant farmed by leplacing each element by its cofactor will be
1) 12 (B) 144 (C) (12)3 (b) (12)4
0m12+ & f(n1= 1cosn), find f'(32/4)=
ONI_13 + The hunchon $f(\pi) = [\pi]$ where $[\pi]$ or a greatest integer hunchon, is continued at
(4) 3 (B) 2 (C) 1 (D) 1. 5 Scanned with CamScanner

Oni 14+ Differential coefficient of Sec (fentin) is (4) 7 1+x2 (B) 1 VI+x2 VI+x2 (C) x JHx2 (D) x VI+x2
Oni 15 - The number of points at which the function $f(\pi) = \frac{1}{\log \pi } \text{ is clis continuous is}$
4) 2 (B) 4 (C) 3 (D) 1
ON-16 + Dervahire of x2 wist x13 is
On 17 th Slope of the normal to the court $x = 1 - a \sin \theta$ and $y = b \cos^2 \theta$ at $0 = \frac{3}{2}$ as
(A) $\frac{a}{2b}$ (B) $-\frac{2b}{a}$ (C) $\frac{2b}{a}$ (D) none of then
On <u>s 18</u> - Maximum value of $f(\pi) = - \pi+1 + 3$ os (4) 2 (B) 3 (C) 1 (D) 4
Durvative of ten-1 (1+sinx) =
ON-20+ B'AB & Symmetre if A is
SECTION: B (TWO MARKS EACH)
Find the slope of the tengent to the course $x = t^2 + 3t - 8$; $y = 2t^2 - 2t - 5$ at the point $(2,-1)$

Scanned with CamScanner

On. 23 +
$$\frac{7}{8}$$
 $\chi^{9} = e^{\chi - y}$ then Show that $\frac{dy}{dx} = \frac{\log y}{(1 + \log x)^{2}}$

OM-24 + $f(\pi) = \pi |\pi|$ show that $f(\pi)$ is differentiable at x = 0 je show LHO = RHD

OM-25 + find matern A such that
$$\begin{bmatrix}
2 & -1 \\
1 & 0
\end{bmatrix} A = \begin{bmatrix}
-1 & -8 & -10 \\
1 & -2 & -5 \\
9 & 22 & 15
\end{bmatrix}$$

QN. 26 + $f: R_+ \rightarrow [Y, \omega)$ and $f(Y) = \chi^2 + y$. Show that f is bijechne

SECTION: C (FOUR MARKS EACH)

ON-27 + Find the equation of the Marmal to the Care

22=44 which "passes" through the point (1,2)

 $O_{N-28} + 7 = Sint$ and y = Sin(pt) then show hat $(1-x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + \beta^2 y = 0$

ON-29 + Find the value of a and b so that the

$$f(x) = \begin{cases} \frac{1 - 51n^{3}x}{3\cos^{2}n} & x < 7/2 \\ a & x < 7/2 \end{cases}$$

$$\frac{1 - 51n^{3}x}{3\cos^{2}n} & x < 7/2$$

$$\frac{b(1 - 51nx)}{(7 - 2x)^{2}} & x > 7/2 \end{cases}$$

$$\frac{b(1 - 51nx)}{(7 - 2x)^{2}} & x > 7/2 \end{cases}$$

two squay matrices, find AB and 'heng' Solve ten system y linear quakons x - y = 3 ; 2x + 3y + 4z = 17 and y + 2z = 7OM-31 + Using maters mulhplication, to divide

Rs 30,000 in two different topos of benely. The first Bond pays 5% interest per year and the second bond buys 7% Interest payear. How to devide Re 30,000 among the two types of bonds. of the frust fund must obtain an annual torus intenst y Rs 2000

OMI 32 A Plan that tn(3+1 cos'g) + tm (3-1 cos'g) = 2b

SECTION - D (SIX MARKS EACH)

ONI 33 La) by R be a lilation on set A of ordered pairs of the Integers (natural numbers) dyina by

(x,y) R (4,v) it and only it xv= yu. show that R is an equivalence relation.

(b) lu. A= {1,2,3}, then find the number of equivalence relations (containing (1,2)

ond hence" find A^{-1} and also A^{4}

Our 35 - Show that the volume of the largest cone that can be inscribed in a sphere of ladius R is $\frac{8}{27}$ of the volume of the sphere

 $\frac{O_{M+36} + (9)}{5} + \frac{7}{5} \frac{1-31^{2}}{1-31^{2}} + \frac{7}{5} \frac{1-y^{2}}{1-31^{2}} = \frac{3}{5} \frac{8ncw}{1-31}$

(6) Show derivating of Cet (VI+sinx + VI-sinx)

is in dependent of x

End & TEST