How Firms Operate with the Option to Default?

Part I: Liquidity/Covenant Default

Consider the following dynamic problem for the equity holders in the firm,

$$e(z,k,b) = \max_{k',b'} [d(z,k,k',b,b') + \mathbb{E}_z M e(z',k',b')],$$

s.t.
$$d(z,k,k',b,b') = \pi(z,k) - i(k,k') + b' - R^b b - \tau(z,k,b),$$

where $d(\cdot)$ is the value of gross distributions

Operating profits obey,

$$\pi = zk^{\alpha_k}l^{\alpha_l} - Wl$$

Investment is:

$$i(k, k') = k' - (1 - \delta)k,$$

Suppose that taxes payments are:

$$\tau(z, k, b) = \tau_c \left[\pi(z, k) - \delta k - b \left(R^b - 1 \right) \right]$$

where $\tau_c = 0.15$.

Suppose firms will default whenever

$$(1 - \tau_c)\pi(z, k) + (1 - \delta)k < b$$

The stochastic process for z is given by:

$$\log(z') = (1 - \rho) \log \bar{z} + \rho \log(z) + \sigma \epsilon'.$$

and the innovations ϵ are follow a truncated standard normal distribution.

To solve the model use the following initial parameter values: M = 0.99, $\delta = 0.1$, $\alpha_k = 0.3$, $\alpha_l = 0.6$, W = 2, $\rho = 0.7$, $\sigma = 0.05$. There is also a (proportional) cost of issuing equity, $\lambda = 0.025$.

- a) Compute and plot the probability of default next period, conditional on the value of the shocks today p(z, b', k').
- b) Use the conditional default probability to compute the required rate of return by bondholders, $R^b(b', k'; z)$ that ensures they make 0 profits. Assume for simplicity

bondholders get paid 0 upon default.

c) Solve the Bellman equation for the equity holders taking as given the function for the required rate of return by bondholders, $R^b(\cdot)$.

Consider now a world with many such firms and no entry or exit. Specifically, suppose that upon hitting the default threshold debt claims are settled so b=0. The restructured firm continues to operate but with capital, k=0 and the previous productivity shock, z.

- d) Compute the stationary distribution of firms. Use this distribution to construct a table reporting the cross-sectional average values of:
 - (1) probability of default, $p(\cdot)$;
 - (2) required return on risky bonds, $R^b(\cdot)$;
 - (3) leverage ratio, b/k;
 - (4) investment to capital ratio, i/k.
 - (5) fraction of firms issuing equity;

Part II: Method of Simulated Moments

Consider the stationary distribution of the model above.

a) Estimate the following leverage and investment regressions on the steady-state distribution of firms and report the coefficients:

$$i/k = \beta_0 + \beta_1 Q + \beta_2 \pi/k$$

$$b/k = \gamma_0 + \gamma_1 Q + \gamma_2 \pi/k + \gamma_3 \log(k)$$

In what follows assume all structural parameters are known except ρ and λ . Suppose we have the following empirical estimates of the regression coefficients: $\beta_1 = 0.004$, $\beta_2 = 0.2$; $\gamma_1 = -0.15$, $\gamma_2 = -0.4$, $\gamma_3 = 0.05$.

b) Estimate the values of ρ and λ using indirect inference and the above five moments. To do this construct a grid with only 5 values for each of these two parameters, centered around the choice value above.

Part III: Optimal Default

Now consider the following dynamic problem for the equity holders in the firm,

$$e(z, k, b) = \max_{k', b'} [d(z, k, k', b, b') + \mathbb{E}_z M \max\{e(z', k', b'), 0\}],$$

where $d(\cdot)$ is the value of gross distributions and the innovations ϵ are follow a truncated standard normal distribution.

- a) Assume $R^b = 1.01R^f$. Solve the Bellman equation for equity and plot the optimal investment and default decision for the equity holders.
- b) Compute and plot the probability of default next period, conditional on the value of the shocks today p(z, b', k').
- c) Now use the conditional default probability to compute the required rate of return by bondholders, $R^b(b', k'; z)$ that ensures they make 0 profits. Assume for simplicity bondholders get paid 0 upon default.
- d) Solve the Bellman equation for the equity holders taking as given this new function for the required rate of return by bondholders, $R^b(\cdot)$. Plot this new value function against the one found in section a).