北尾早霧・砂川武貴・山田知明 『定量的マクロ経済学と数値計算』

(日本評論社、2024年刊)

正誤情報一覧

2025.09.24

本書にて、下記の通り補足説明と訂正がございます。ここにお詫びして訂正いたします。 また、ご指摘をいただいた Bocconi 大学の福田慧氏には深く御礼申し上げます。 第 1 版第 1 刷 (2024 年) 時点の訂正となります。

第2章

ページ等	誤	正
p.47、(2.12)	$a_{1,i}$	$a_{1,j}$
式		
p.51、(2.14)	$g(g(a_{1,i},l_1,l_2))$	$g(g(a_{1,i},l_1),l_2)$
式		
p.53、2行目	$\sigma = 0.1$	$\sigma_{m{\epsilon}}=0.1$
p.53、6行目	2.1%	0.21%
p.54、2行目	$a_{2,i}$	$a_{1,i}$

第3章

ページ等	誤	正
p.60、2行目	$V_t(k)$	$V_t(k_t)$
p.60、4行目	$k_1 = g_t(k_0) \to k_2 = g_t(k_1) \to \dots$	$k_1 = g_0(k_0) \to k_2 = g_1(k_1) \to \dots$
p.63、図 3.1	(a) 2 次関数の点	(a) <mark>3</mark> 次関数の点
p.63、図 3.1	(b) 2 次関数を近似	(b) <mark>3</mark> 次関数を近似
p.64、下の	t = 0, 1,, T	t = 0, 1,, T - 1
数式		
p.73、1行目	k^i	k _i

ページ等	誤	正
p.74、下か	$k' = g^{[0]}(k^i)$	$k' = g^{[0]}(k_i)$
ら2行目		
p.75、最終	オイラー方程式 $u'(c) = \beta u'(f(k') +$	オイラー方程式 $u'(c) = \beta u'(f(k') +$
行 ~p.76、	$(1-\delta)k - g(k'))f'(k')$	$(1-\delta)k'-g(k'))(f'(k')+1-\delta)$
1行目		
p.76、2行目	$\frac{\beta u'([g(k_i)]^{\alpha} + (1 - \delta)g(k_i) - g(g(k_i)))f'(g(k_i))}{u'(k_i^{\alpha} + (1 - \delta)k_i - g(k_i))} - 1$	$\frac{\beta u'([g(k_i)]^{\alpha} + (1-\delta)g(k_i) - g(g(k_i)))(f'(g(k_i) + 1 - \delta)}{u'(k_i^{\alpha} + (1-\delta)k_i - g(k_i))} -$
	, , , , , , , , , , , , , , , , , , , ,	1
p.80	$S_j = \Pi_{i=1}^{j-1} s_i$	$S_j = \Pi_{i=1}^j s_i$
p.81	$c_j + a_{j+1} \le \eta_j z + (1+r)a_j$	$c + a' \le \eta_j z + (1+r)a$
p.81	$c_j + a_{j+1} \le ss + (1+r)a_j$	$c + a' \le ss + (1+r)a$

第4章

ページ等	誤	正
p.87、最終	k	k_t
行		
p.88	$\mathcal{L}_0 \equiv \max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \{u(c_t)$	$\mathcal{L}_0 \equiv \sum_{t=0}^{\infty} \left\{ u(c_t) \right\}$
p.88	$= \max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \{u(c_0)$	$=\{u(c_0)$
p.91、下か	k' = f(k) - c	$k' = \tilde{f}(k) - c$
ら3行目		
p.93、2行目	c を探すためには、	c_i を探すためには、
p.95	誤差の絶対値の平均値	誤差の絶対値
p.97	誤差の絶対値の平均値	誤差の絶対値
p.102, (4.1)	$N(0,\sigma_z^2)$	$N(0,\sigma_{\epsilon}^2)$
式		
p.102、4行	分散 σ_z^2	分散 σ ² ε
目		
p.102、最終	$N(0,\sigma^2)$	$N(0,\sigma_{\epsilon}^2)$
行		
p.103	$\mathcal{L}_0 \equiv \max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \mathbf{E}_0 \sum_{t=0}^{\infty} \{u(c_t)$	$\mathcal{L}_0 \equiv \mathbf{E}_0 \sum_{t=0}^{\infty} \{ u(c_t) \dots$
p.103	$= \max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \{u(c_0)$	$=\{u(c_0)$
p.104	$\mathbf{E}_t \varphi(z_{t+1}) = \sum_{k=1}^{N_k} p_{jk} \varphi(z_k)$	$E_t \varphi(z_{t+1}) = \sum_{k=1}^{N_z} p_{jk} \varphi(z_k)$

ページ等	誤	正
p.104	$k=1,,N_k$	$k=1,,N_z$
p.105	ここで、 $h(k,z_j)$ は z_j の関数にもなって	ここで、 $h(k,z_j;\mathbf{b})$ は z_j の関数にもなっ
	いる	ている
p.106	N=21	$N_k = 21$
p.109	$k_{t+1}^{(n)} = \tilde{f}(k_t^{(n)}) - k_t^{(n)} - c_t^{(n)}$	$k_{t+1}^{(n)} = \tilde{f}(k_t^{(n)}) - c_t^{(n)}$
p.110	位相図から、ある c_0 (正しい値とは限ら	$k_0 < k_{ss}$ のとき、位相図から、ある c_0 (正
	ない)に対して、	しい値とは限らない)に対して、

第5章

ページ等	誤	正
p.122、下か	均衡における金利	定常均衡における金利
ら3行目		
p.125、3行	今期の労働生産性ℓと、ℓの不確実性	今期の労働生産性ℓと、ℓ'の不確実性
目		
p.126、下か	となる。	となる。 $u'''>0$ である効用関数のもと
ら7行目		では、
p.127、第1	4行目、 $V'(a)$ 以下の説明。	$V_a(a, {\color{red}\ell})$ が成り立ち、これは家計の予算
パラグラフ		制約式と矛盾する。 $c_t=ar{c}$ とすると、資
		産および l が不変でない限り、 $ar{c} + a' = ar{c}$
		(1+r)a+wl は成立しえないからであ
		る。
p.132、2 行	Pについて固有値1	P' について固有値 1
目		

第6章

ページ等	誤	正
p.146、脚注	$c_1 + \frac{c_2}{1+r} + \frac{c_3}{1+r} = \dots$	$c_1 + \frac{c_2}{1+r} + \frac{c_3}{(1+r)^2} = \dots$
1)		

第7章

ページ等	誤	正
p.184、3番	$0 = \lambda y_n + \kappa \pi_i^{(n)}$	$0 = \lambda y_i^{(n)} + \kappa \pi_i^{(n)}$
目の式		
p.189	$\Phi_t(j) = \frac{\phi}{2} (\frac{P_t(j)}{P_{t-1}(j)} - \Pi)^2 Y_t(j)$ として定	$\phi_t(j) = rac{\phi}{2} (rac{P_t(j)}{P_{t-1}(j)} - ar{\Pi})^2 Y_t(j)$ として定式
	式化され、、Пは定常状態における粗	化され、、 👖 は定常状態における粗イ
	インフレ率である。	ンフレ率である。
p.190	自然産出量の水準である。	自然産出量の水準である $(以下では \chi_H =$
		1を仮定)。
p.191、	$C_t + G_t + AC_t = Y_t$	$C_t + G_t + \frac{\phi}{2} (\Pi_t - \bar{\Pi})^2 Y_t = Y_t$
(7.20) 式		
p.191、該当	П	П
箇所全て		
p.191、	$Rar{\Pi}\left(rac{\Pi}{ar{\Pi}} ight)^{\psi_1}$	$Rar{\Pi} \left(rac{\Pi_t}{ar{\Pi}} ight)^{\psi_1}$
(7.24) 式		
p.191	$R_{n,t}^*$ はシャドーレートである。	$R_{n,t}^*$ はシャドーレートである。ここで、
		$\Pi^* = ar{\Pi}$ 、すなわち目標インフレ率は定
		常状態における粗インフレ率と等しくな
		る。
p.191、脚注	$c_t = \mathbf{E}_t c_{t+1} - \tau^{-1} (r_{n,t} - \mathbf{E}_t \pi_{t+1})$	$c_t = \mathbf{E}_t c_{t+1} - \tau^{-1} (r_{n,t} - \mathbf{E}_t \pi_{t+1})$
33	$-\mathbf{E}_t \gamma_{t+1})$	$- E_t z_{t+1}$
p.192	$\exp(\gamma_t) \equiv \Gamma_t \approx \bar{\Gamma}(1+\gamma_t)$	$\exp(\gamma_t) \equiv \Gamma_t \approx \bar{\Gamma}(1+z_t)$
p.192、	γ_{t+1}	z_{t+1}
$\lceil \exp(\gamma_t) \equiv$		
Γ_t \approx		
$\bar{\Gamma}(1 + \gamma_t)$		
を代入し		
て、」より		
後の式		
p.195、2 箇	$\sum_{j=1}^{N}$	$\sum_{j=1}^{N_s}$
所		

第8章

ページ等	誤	正
p.199、脚注	$a' = f(a, \mu(a))$	$a' = f(a, \mu)$
1		
p.209, (8.8)	$\max\{-\xi w_t + \max_{k'>0}\{-k' +$	$\max\{-\xi w_t + \max_{k'>0}\{-k' + \}\}$
式	$\beta \mathbf{E}(\frac{p_{t+1}}{p_t})v(k';\mu_{t+1},A_{t+1})\} - (1 -$	$\beta \mathbf{E}(\frac{p_{t+1}}{p_t})v(k';\mu_{t+1},A_{t+1})\}, - (1 -$
	$\delta)k + \beta \mathbf{E}(\frac{p_{t+1}}{p_t})v((1-\delta)k; \mu_{t+1}, A_{t+1})\}$	$\delta)k + \beta \mathbf{E}(\frac{p_{t+1}}{p_t})v((1-\delta)k; \mu_{t+1}, A_{t+1})\}$
p.223、式の	$N = \sum_{i} \int g_h(a, l_i) \mu(a, l_i) da$	$N = \sum_{i} \frac{\mathbf{l}_{i}}{\int} g_{h}(a, l_{i}) \mu(a, l_{i}) da$
2つ目		

付録 B.1

ページ等	誤	正
p.240、最終	$\dots + c_i x_i^2 + d_i x_i^2$	$\dots + c_i x_i^2 + d_i x_i^3$
行		
p.241、1行		$\ldots + c_{i+1}x_i^2 + d_{i+1}x_i^3$
目		
p.241、2 行	$b_i + 2c_i x_i + 3d_i x_i^3$	$b_i + 2c_i x_i + 3d_i x_i^2$
目		
p.241、3行	$\dots = 6d_ix_i$	$\ldots = \frac{2c_{i+1}}{6} + 6d_i x_i$
目		
p.242	$y = g(x) = \frac{1}{1+x^2}, x \in [-5, 5]$	$y = g(x) = \frac{1}{1+25x^2}, x \in [-1,1]$
	$\left[\begin{array}{cc}g(x_0)\end{array}\right]$	$\left[\begin{array}{c}g(x_0;\boldsymbol{\theta})\end{array}\right]$
p.244、最後	$g(x_1)$	$g(x_1; \boldsymbol{\theta})$
の式		
	$\left[\begin{array}{c}g(x_{N-1})\end{array}\right]$	$\left[g(x_{N-1};\boldsymbol{\theta})\right]$
p.245、3行	g(x)	$g(x; \boldsymbol{\theta})$
目5行目		
p.245	k_j の値は $[k_1,k_N]$ の間にあるとすると、	k_j の値は $[k_0,k_{N-1}]$ の間にあるとすると、
p.245、脚注	$k_j = \varphi^{-1}(x_j) = k_1 + 0.5(1 + x_j)(k_N)$	$k_j = \varphi^{-1}(x_j) = k_1 + 0.5(1 + x_j)(k_{N-1})$
3	$-k_1$)	$-k_0$)

付録 B.2

ページ等	誤	正
p.247、7行	f(x) = 0 の接線	関数 $f(x)$ の接線
目		
p.249、2 行 目	$J(x) = \begin{bmatrix} \frac{\partial f(x_0, y_0)}{\partial x} & \frac{\partial f(x_0, y_0)}{\partial y} \\ \frac{\partial g(x_0, y_0)}{\partial x} & \frac{\partial g(x_0, y_0)}{\partial y} \end{bmatrix}$	$J(x) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} & \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial y} \end{bmatrix}$
p.249、3行	1 次元のケースと同様に、 $\mathbf{x}_1, \mathbf{x}_2,$,の流	1 次元のケースと同様に、 \mathbf{x}_0 の値を所与
目	列を計算して、	<mark>として、 x₁, x₂,,</mark> の流列を計算して、
p.249、13	図 B.5 の例では、 $f(x_1)f(x_L) < 0$ である	図 B.5 の例では、 $f(x_1)f(x_L) < 0$ である
行目	ので、 x_1 を新しい x_H とする。	ので、 x_1 を新しい x_L とする。
p.255、2 行	繰り返し計算の2回目および3回目でも、	繰り返し計算の2回目でも、同様の操作
目	同様の操作を行う。一方で、繰り返し計	を行う。一方で、繰り返し計算の3回目
	算の4回目では	では

付録 C.2

ページ等	誤	正
p.258	$u< ilde{p}_{ij}$ を満たすような最大の j を選ぶ	$u< ilde{p}_{ij}$ を満たすような最小の j を選ぶ
	ことができる。	ことができる。

付録 C.3

ページ等	誤	正
p.257	平均値ゼロから	平均値 $(1- ho)^{-1}c$ から
p.259	(C.1) 式を N 個のグリッドを持つマルコ	(C.1) 式 (ここでは簡単化のため $c=0$ と
	フ連鎖で近似する。	する)を N 個のグリッドを持つマルコ
		フ連鎖で近似する。