

Non-parametric Bayesian Models

Jie Tang

Department of Computer Science and Technology

Tsinghua University

Contents

- Introduction
- 2 Gaussian Process
 - Multivariate Gaussian Distribution
 - Definition
 - GP Regression
- 3 Dirichlet Process
 - Definition
 - Stick Breaking Construction
 - Blackwell-MacQueen Urn Scheme
 - Chinese Restaurant Process
 - DP Mixture

Contents

- 1 Introduction
- 2 Gaussian Process
 - Multivariate Gaussian Distribution
 - Definition
 - GP Regression
- 3 Dirichlet Process
 - Definition
 - Stick Breaking Construction
 - Blackwell-MacQueen Urn Scheme
 - Chinese Restaurant Process
 - DP Mixture

Introduction

We'll talk about *nonparametric Bayesian methods* in following slides

Regression, classification – Gaussian Process Clustering – Dirichlet Process What is *nonparametric* ?

What is Bayesian?

What is Nonparametric Model?

Nonparametric doesn't mean there are no parameters.

Parametric model assumes a finite set of parameters.

Finite model parameters captures everything about the data Predictions for future data are made merely through parameters, independent from observed data. Model complexity are bounded, even with infinite data

Nonparametric model assumes the model can't be specified by a finite set of parameters. But often a infinite-dimensional parameter space will work.

Model complexity can grow with data

Consider a linear model

No matter how many samples are trained, number of parameters are fixed (w,b)

How about k-NN?

2 samples

10 samples

100 samples

Parameters are unbounded as dataset grow larger Nonparametric!

What about SVM?

Linear SVM

$$y = sign(w^T x)$$

What about SVM?

Linear SVM

$$y = sign(w^T x)$$

Kernel SVM

$$y = \mathsf{sign}(\sum_{i} \alpha_{i} y_{i} \kappa(x_{i}, x)))$$

Parametric vs. Nonparametric

Parametric Models:

Inflexible. Simple and easy to interpret.

Performs well and fast, if model captures the data correctly Otherwise will give inconsistent result

Nonparametric Models:

Flexible.

Complex and hard to interpret, thus giving inaccurate estimation

Question: which of the following algorithm belongs to parametric models?

- (A) k-NN
- (B) SVM
- (C) Logistic Regression
- (D) Decision Tree

What is Bayesian?

Consider a regression problem Given training data D, we aim to find a model f. For each sample x, return a prediction y How to give an optimal y?

What is Bayesian?

```
Consider a regression problem Given training data D, we aim to find a model f. For each sample x, return a prediction y How to give an optimal y?

MLE

MAP

Bayesian
```

Maximum Likelihood Estimation

In training, we maximize a likelihood

$$f^* = \underset{f}{\operatorname{arg\,max}} L(f|D) = \underset{f}{\operatorname{arg\,max}} p(D|f)$$

In prediction, just feed f with x

$$p(y|x,D) = p(y|f^*,x)$$

Maximum A Posteriori

To avoid overfitting, we place a prior on the model

$$f^* = \arg\max_{f} \frac{p(D|f)p(f)}{p(D)}$$

Prediction process remains the same

$$p(y|x,D) = p(y|f^*,x)$$

Bayesian Model

In training, we just estimate the posterior distribution of f (same as MAP)

$$p(f|D) = \frac{p(D|f)p(f)}{p(D)}$$

In prediction, we no longer want a point estimation. Instead, we consider all possible models and take the expectation

$$p(y|x,D) = \int_f p(y|f,x)p(f|D) df$$

Why Bayesian?

Infinite Exchangeability:

$$\forall n, \forall \sigma, p(x_1, \ldots, x_n) = p(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$$

De Finetti's Theorem: If $(x_1, x_2, ...)$ are infinite exchangeable, then there exists a random variable f, $\forall n$,

$$p(x_1,\ldots,x_n)=\int_f\prod_{i=1}^np(x_i|f)p(f)\,\mathrm{d}f$$

Why Bayesian?

Infinite Exchangeability:

$$\forall n, \forall \sigma, p(x_1, \ldots, x_n) = p(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$$

De Finetti's Theorem: If $(x_1, x_2, ...)$ are infinite exchangeable, then there exists a random variable f, $\forall n$,

$$p(x_1,\ldots,x_n)=\int_f\prod_{i=1}^np(x_i|f)p(f)\,\mathrm{d}f$$

How to define the prior p(f)?

Parametric Approach

In previous courses, we focused on parametric representation of f, e.g.

$$f(x) = w^T x$$

Instead of defining prior on function itself, we define prior on the parameters

$$p(w) = \mathcal{N}(0, \sigma^2 I)$$

Now, we define the prior on the function f directly

Contents

- 1 Introduction
- Question Process
 - Multivariate Gaussian Distribution
 - Definition
 - GP Regression
- 3 Dirichlet Process
 - Definition
 - Stick Breaking Construction
 - Blackwell-MacQueen Urn Scheme
 - Chinese Restaurant Process
 - DP Mixture

Warmup: Multivariate Gaussian

Before introducing Gaussian Process, let's recall multivariate Gaussian distribution first.

We say a n-dimensional random variable \mathbf{x} follows multivariate Gaussian

$$extbf{ extit{x}} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

if

$$\rho(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n |\mathbf{\Sigma}|}} \exp\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\}$$

where

$$\mathbb{E}[\mathbf{x}] = \boldsymbol{\mu}$$

$$\mathbb{E}[(x_i - \mu_i)(x_j - \mu_j)] = \Sigma_{ij}$$

Marginal Distribution

Suppose

$$\left[egin{array}{c} oldsymbol{x_1} \ oldsymbol{x_2} \end{array}
ight] \sim \mathcal{N}\left(\left[egin{array}{c} oldsymbol{\mu_1} \ oldsymbol{\mu_2} \end{array}
ight], \left[egin{array}{c} oldsymbol{\Sigma_{11}} & oldsymbol{\Sigma_{12}} \ oldsymbol{\Sigma_{21}} & oldsymbol{\Sigma_{22}} \end{array}
ight]
ight)$$

Integrating x2 out,

$$extbf{x}_1 \sim \mathcal{N}(\mu_1, \Sigma_{11})$$

Just drop irrelevant components

Conditional Distribution

Suppose

$$\left[egin{array}{c} oldsymbol{x}_1 \ oldsymbol{x}_2 \end{array}
ight] \sim \mathcal{N}\left(\left[egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array}
ight], \left[egin{array}{c} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{array}
ight]
ight)$$

Then

$$egin{aligned}
ho(x_1|x_2) &= \mathcal{N}(x_1|\mu_{1|2}, \Sigma_{1|2}) \ \mu_{1|2} &= \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2) \ \Sigma_{1|2} &= \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} \end{aligned}$$

We will use it later How to get that?

Some Details

First, we diagonalize the variance matrix to ease the inverse matrix calculation

$$\left[\begin{array}{cc} \Sigma_{11}/\Sigma_{22} & O \\ O & \Sigma_{22} \end{array}\right] = \left[\begin{array}{cc} \emph{I}_1 & -\Sigma_{12}\Sigma_{22}^{-1} \\ O & \emph{I}_2 \end{array}\right] \left[\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array}\right] \left[\begin{array}{cc} \emph{I}_1 & O \\ -\Sigma_{22}^{-1}\Sigma_{21} & \emph{I}_2 \end{array}\right]$$

Define $\Sigma/\Sigma_{22}=\Sigma_{11}-\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$ here. Then

$$\begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}^{-1} = \begin{bmatrix} I_1 & O \\ -\Sigma_{22}^{-1}\Sigma_{21} & I_2 \end{bmatrix}$$
$$\begin{bmatrix} (\Sigma/\Sigma_{22})^{-1} & O \\ O & \Sigma_{22}^{-1} \end{bmatrix} \begin{bmatrix} I_1 & -\Sigma_{12}\Sigma_{22}^{-1} \\ O & I_2 \end{bmatrix}$$

More Details

Check the exponent of $p(x_1, x_2)$:

$$(x_{1} - \mu_{1}, x_{2} - \mu_{2}) \begin{bmatrix} \Sigma_{11} \Sigma_{12} \\ \Sigma_{21} \Sigma_{22} \end{bmatrix}^{-1} \begin{pmatrix} x_{1} - \mu_{1} \\ x_{2} - \mu_{2} \end{pmatrix}$$

$$= \begin{pmatrix} x_{1} - \mu_{1} \\ x_{2} - \mu_{2} \end{pmatrix}^{T} \begin{bmatrix} I_{1} & O \\ -\Sigma_{22}^{-1} \Sigma_{21} I_{2} \end{bmatrix} \begin{bmatrix} (\Sigma/\Sigma_{22})^{-1} & O \\ O & \Sigma_{22}^{-1} \end{bmatrix}$$

$$\begin{bmatrix} I_{1} - \Sigma_{12} \Sigma_{22}^{-1} \\ O & I_{2} \end{bmatrix} \begin{pmatrix} x_{1} - \mu_{1} \\ x_{2} - \mu_{2} \end{pmatrix}$$

$$= (x_{1} - \mu_{1} - \Sigma_{12} \Sigma_{22}^{-1} (x_{2} - \mu_{2}))^{T} (\Sigma/\Sigma_{22})^{-1}$$

$$(x_{1} - \mu_{1} - \Sigma_{12} \Sigma_{22}^{-1} (x_{2} - \mu_{2})) + C$$

Note that $p(x_1|x_2) = \frac{p(x_1,x_2)}{p(x_2)}$, and C is just the exponent of $p(x_2)$. From the equation we can get the mean and variance of the conditional distribution.

Contents

- 1 Introduction
- ② Gaussian Process
 - Multivariate Gaussian Distribution
 - Definition
 - GP Regression
- 3 Dirichlet Process
 - Definition
 - Stick Breaking Construction
 - Blackwell-MacQueen Urn Scheme
 - Chinese Restaurant Process
 - DP Mixture

Gaussian Process

Gaussian Process is a generalization of multivariate Gaussian to infinite variables – *stochastic process*

$$\forall x_1, \dots, x_n, (f(x_1), \dots, f(x_n))$$
 is jointly Gaussian

A Gaussian Process is fully specified by mean function m(x) and covariance function $\kappa(\mathbf{x}, \mathbf{x}')$

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$$

 $\kappa(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))]$

Then,

$$(f(\mathbf{x_1}), f(\mathbf{x_2}), \dots, f(\mathbf{x_n}))^T \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K})$$

where

$$\mu_i = m(\mathbf{x_i}), K_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$$

We require κ to be a positive definite kernel.

Contents

- 1 Introduction
- Question Process
 - Multivariate Gaussian Distribution
 - Definition
 - GP Regression
- 3 Dirichlet Process
 - Definition
 - Stick Breaking Construction
 - Blackwell-MacQueen Urn Scheme
 - Chinese Restaurant Process
 - DP Mixture

GP Regression with noise-free observations

For simplicity, let's start with predictions using noise free observations

Training set
$$D = \{(x_i, f_i)\}$$
, where $f_i = f(x_i)$
Noise free! – No uncertainty.

Test set \mathbf{X}_* . We want to predict outputs f_*

From definition of GP,

$$\left(egin{array}{c} f \ f_{*} \end{array}
ight)\sim\mathcal{N}\left(\left(egin{array}{c} \mu \ \mu_{*} \end{array}
ight), \left[egin{array}{cc} \mathcal{K} & \mathcal{K}_{*} \ \mathcal{K}_{*}^{\mathcal{T}} & \mathcal{K}_{**} \end{array}
ight]
ight)$$

GP Regression with noise-free observations

Using results of marginal multivariate Gaussian,

$$egin{aligned}
ho(extbf{f}_*| extbf{X}_*, extbf{X}, extbf{f}) &= \mathcal{N}(\mu_*,\Sigma_*) \ \mu_* &= \mu(extbf{X}_*) + extbf{K}_*^ au extbf{K}^{-1}(extbf{f} - \mu(extbf{X})) \ \Sigma_* &= extbf{K}_{**} - extbf{K}_*^ au extbf{K}^{-1} extbf{K}_* \end{aligned}$$

We usually set $\mu(\mathbf{x}) = 0$, because GP can model the mean arbitrarily well.

Visualization

Let's see some samples from GP prior and posterior.

Training data points are marked with '+'. No uncertainty at training data. Why?

Visualization

Let's see some samples from GP prior and posterior.

Training data points are marked with '+'.

No uncertainty at training data. Why?

$$\Sigma_* = \mathbf{K}_{**} - \mathbf{K}_*^T \mathbf{K}^{-1} \mathbf{K}_* = 0$$
 when \mathbf{K}_* and \mathbf{K}_{**} are sub-matrices of \mathbf{K} – Noise-free

GP Regression with noisy observations

When observations are noisy, the true f is hidden. Instead, we observe f plus a Gaussian noise

$$y = f(\mathbf{x}) + \epsilon$$

where

$$\epsilon \sim \mathcal{N}(0, \sigma_y^2)$$

Now

$$\operatorname{cov}[y_p, y_q] = \kappa(\mathbf{x_p}, \mathbf{x_q}) + \sigma_y^2 \delta_{pq}$$

in other words

$$cov[\boldsymbol{y}|\boldsymbol{X}] = \boldsymbol{K} + \sigma_y^2 \boldsymbol{I} \triangleq \boldsymbol{K}_y$$

GP Regression with noisy observations

Take m(x) = 0 here Similar to noise-free result

$$\begin{pmatrix} \mathbf{y} \\ \mathbf{f_*} \end{pmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} \mathbf{K_y} & \mathbf{K_*} \\ \mathbf{K_*}^T & \mathbf{K_{**}} \end{bmatrix} \right)$$

$$egin{aligned}
ho(extbf{f}_*| extbf{X}_*, extbf{X}, extbf{y}) &= \mathcal{N}(\mu_*,\Sigma_*) \ \mu_* &= extbf{K}_*^ op extbf{K}_y^{-1} extbf{y} \ \Sigma_* &= extbf{K}_{**} - extbf{K}_*^ op extbf{K}_y^{-1} extbf{K}_* \end{aligned}$$

Deeper Insight

Feed the result with a single sample x_*

$$\rho(f_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\mathbf{k}_*^T \mathbf{K}_{\mathbf{y}}^{-1} \mathbf{y}, k_{**} - \mathbf{k}_*^T \mathbf{K}_{\mathbf{y}}^{-1} \mathbf{k}_*)$$
$$\bar{f}_* = \sum_i \alpha_i \kappa(\mathbf{x}_i, \mathbf{x}_*) \qquad \alpha = \mathbf{K}_{\mathbf{y}}^{-1} \mathbf{y}$$

What can we find?

Deeper Insight

Feed the result with a single sample x_*

$$p(f_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\mathbf{k}_*^T \mathbf{K}_{\mathbf{y}}^{-1} \mathbf{y}, k_{**} - \mathbf{k}_*^T \mathbf{K}_{\mathbf{y}}^{-1} \mathbf{k}_*)$$
$$\bar{f}_* = \sum_i \alpha_i \kappa(\mathbf{x}_i, \mathbf{x}_*) \qquad \alpha = \mathbf{K}_{\mathbf{y}}^{-1} \mathbf{y}$$

What can we find?

Although we define GP on infinite dimension, it's suffices to consider only n+1 dimension.

In terms of prediction mean, GP regression can be considered as linear predictor when features are projected to high dimension space using feature map $\phi(\cdot)$ implied by κ . (Recall $\kappa(x_i, x_i) = \phi(x_i)^T \phi(x_i)$)

Effect of Kernel Parameters

Kernel parameters are crucial in GP

RBF kernel:
$$\kappa(\mathbf{x}_i, \mathbf{x}_j) = \sigma_f^2 \exp\{(\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{M}(\mathbf{x}_i - \mathbf{x}_j)\} + \sigma_y^2 \delta_{ij}$$
 $M = I$
 $M = \text{diag}(1, 3)^{-2}$
 $M = (1, -1; -1, 1) + \text{diag}(6, 6)^{-2}$

Contents

- 1 Introduction
- 2 Gaussian Process
 - Multivariate Gaussian Distribution
 - Definition
 - GP Regression
- 3 Dirichlet Process
 - Definition
 - Stick Breaking Construction
 - Blackwell-MacQueen Urn Scheme
 - Chinese Restaurant Process
 - DP Mixture

Example: Clustering

We're give a data set which are generated by a mixture of Gaussian.

How to model the data and cluster them?

Gaussian Mixture Clustering

Suppose the dataset is generated by K Gaussian components

Generating process:

$$egin{aligned} \phi_k &= (\mu_k, \Sigma_k) \sim \mathcal{NIW}(
u) \ &\pi \sim \mathsf{Dirichlet}(lpha/K, \ldots, lpha/K) \ &z_i \sim \mathsf{Multinomial}(\pi) \ &x_i \sim \mathcal{N}(\mu_{z_i}, \Sigma_{z_i}) \end{aligned}$$

where

 $\mathcal{N}\mathcal{I}\mathcal{W}(\nu)$: conjugate prior of Gaussian Dirichlet(...): conjugate prior of multinomial z_i : mixture indicator of x_i

How to choose K?

How many clusters?

How to choose K?

How many clusters?

What if let $K \to \infty$?

Infinity Mixture Models

Imagine $K \gg 0$,

In Bayesian inference, we integrate ϕ_k and π out. Number of latent variables would not grow with K-No overfitting

At most n active components are associated with data This is an *infinite mixture model* Issue: can we take $K \to \infty$? What's the limiting model?

An Alternative View of Mixture Model

Mixture parameter for each data point can be sampled directly

 z_i is absorbed into a discrete probability measure G

 δ_{ϕ_k} is an atom positioned at ϕ_k θ_i is the sampled Gaussian parameter to generate x_i

$$egin{aligned} \phi_k &\sim H \ \pi_k &\sim ext{Dirichlet}(lpha/K, \ldots, lpha/K) \ G &= \sum_{k=1}^K \pi_k \delta_{\phi_k} \ heta_i &\sim G \ x_i &\sim p(x_i| heta_i) \end{aligned}$$

An Alternative View of Mixture Model

H: continuous

G: discrete, with mass at ϕ_k

Recall

$$G = \sum_{k=1}^{K} \pi_k \delta_{\phi_k}$$

Take $K \to \infty$,

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

To execute Bayesian inference, we need to find a prior for G

An Alternative View of Mixture Model

H: continuous

G: discrete, with mass at ϕ_k

Recall

$$G = \sum_{k=1}^{K} \pi_k \delta_{\phi_k}$$

Take $K \to \infty$.

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

To execute Bayesian inference, we need to find a prior for *G Dirichlet Process*

Warmup: Dirichlet Distribution

Dirichlet distribution is a distribution over the K-dim probability simplex

$$\Omega_{\mathcal{K}} = \{(\pi_1, \ldots, \pi_{\mathcal{K}}) : \pi_k \geq 0, \sum_k \pi_k = 1\}$$

We say (π_1, \ldots, π_K) is Dirichlet distributed with parameters $(\alpha_1, \ldots, \alpha_K)$, if

$$p(\pi_1,\ldots,\pi_K) = \frac{\Gamma(\sum_k \alpha_k)}{\prod_k \Gamma(\alpha_k)} \prod_k \pi_k^{\alpha_k-1}$$

Warmup: Properties of Dirichlet Distribution

Aggregation Property:

If

$$(\pi_1, \ldots, \pi_i, \pi_{i+1}, \ldots, \pi_K) \sim \mathsf{Dirichlet}(\alpha_1, \ldots, \alpha_i, \alpha_{i+1}, \ldots, \pi_k)$$

then

$$(\pi_1,\ldots,\pi_i+\pi_{i+1},\ldots,\pi_K)\sim \mathsf{Dirichlet}(\alpha_1,\ldots,\alpha_i+\alpha_{i+1},\ldots,\pi_k)$$

Inverse of Aggregation Property:

lf

$$(\pi_1, \dots, \pi_k) \sim \mathsf{Dirichlet}(\alpha_1, \dots, \alpha_K)$$
 $t \sim \mathsf{Beta}(\alpha_i \beta, \alpha_i (1 - \beta))$
 $(\mathsf{aka}(t, 1 - t) \sim \mathsf{Dirichlet}(\beta \alpha_i, (1 - \beta) \alpha_i))$

then

$$(\pi_1, \ldots, t\pi_i, (1-t)\pi_{i+1}, \ldots, \pi_K)$$

 $\sim \mathsf{Dirichlet}(\alpha_1, \ldots, \beta\alpha_i, (1-\beta)\alpha_{i+1}, \ldots, \alpha_K)$

Warmup: Dirichlet-Multinomial conjugacy

Dirichlet-Multinomial conjugacy: If

$$(\pi_1, \dots, \pi_K) \sim \mathsf{Dirichlet}(\alpha_1, \dots, \alpha_K)$$

 $z \sim \mathsf{Multinomial}(\pi_1, \dots, \pi_K)$

then

$$(\pi_1, \dots, \pi_k)|z \sim \mathsf{Dirichlet}(\alpha_1 + \delta_z(1), \dots, \pi_K + \delta_z(K))$$

Contents

- 1 Introduction
- 2 Gaussian Process
 - Multivariate Gaussian Distribution
 - Definition
 - GP Regression
- 3 Dirichlet Process
 - Definition
 - Stick Breaking Construction
 - Blackwell-MacQueen Urn Scheme
 - Chinese Restaurant Process
 - DP Mixture

Starting from π , slice the space finer and finer, what do we get?

$$(\pi) \sim extit{Dirichlet}(lpha) \ (\pi_1, \pi_2) \sim extit{Dirichlet}(lpha_1, lpha_2) \ (\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}) \sim extit{Dirichlet}(lpha_{11}, lpha_{12}, lpha_{21}, lpha_{22}) \dots$$

Because the dividing schema is arbitrary, finally, any finite partition of π should follow Dirichlet distribution.

Starting from π , slice the space finer and finer, what do we get?

$$(\pi) \sim extit{Dirichlet}(lpha) \ (\pi_1, \pi_2) \sim extit{Dirichlet}(lpha_1, lpha_2) \ (\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}) \sim extit{Dirichlet}(lpha_{11}, lpha_{12}, lpha_{21}, lpha_{22}) \dots$$

Because the dividing schema is arbitrary, finally, any finite partition of π should follow Dirichlet distribution.

Dirichlet Process is a generalization of Dirichlet distribution to infinite many components – Recall Gaussian Process and multivariate Gaussian distribution.

Let G be a probability measure over Ω . For any measurable subset $A \subset \Omega$, $G(A) = p(x \in A), x \in \Omega$

Dirichlet process (DP) is a distribution over G.

We write

$$G \sim \mathsf{DP}(\alpha, H)$$

if for any finite partition (A_1, \ldots, A_n) of Ω ,

$$(G(A_1),\ldots,G(A_n)) \sim \mathsf{Dirichlet}(\alpha H(A_1),\ldots,\alpha H(A_n))$$

H is the base distribution

$$\mathsf{E}(\mathsf{G}(\mathsf{A})) = \mathsf{H}(\mathsf{A})$$

 α is the concentration parameter

$$Var(G(A)) = \frac{H(A)(1 - H(A))}{\alpha + 1}$$

Our definition is all about properties of DP. How to construct a concrete sample from DP?

Why is DP useful for clustering?

We'll see later

Posterior Dirichlet Process

We'll need the posterior Dirichlet Process later

Suppose
$$G \sim DP(\alpha, H)$$
, $\theta \sim G$

What is $p(\theta)$ and $G|\theta$?

For any $\theta \in A \subset \Omega$,

$$p(A) = \int_G G(A)p(G) dG = H(A)$$

So $\theta \sim H$

Posterior Dirichlet Process

Using Dirichlet-multinomial conjugacy, for any partition (A_1, \ldots, A_n) ,

$$(G(A_1), \ldots, G(A_n))|\theta$$

 $\sim \text{Dirichlet}(\alpha H(A_1) + \delta_{\theta}(A_1), \ldots, \alpha H(A_n) + \delta_{\theta}(A_n))$

where $\delta_{\theta}(A) = 1$ iff $\theta \in A$ So, the posterior is also a DP

$$G| heta \sim DP\left(lpha+1,rac{lpha H+\delta_{ heta}}{lpha+1}
ight)$$

Generalization for n observations:

$$G|\theta_1,\ldots,\theta_n \sim DP\left(\alpha+n,\frac{\alpha H+\sum_{i=1}^n \delta_{\theta_i}}{\alpha+n}\right)$$

We will construct a sample from DP based on the posterior

Contents

- 1 Introduction
- 2 Gaussian Process
 - Multivariate Gaussian Distribution
 - Definition
 - GP Regression
- 3 Dirichlet Process
 - Definition
 - Stick Breaking Construction
 - Blackwell-MacQueen Urn Scheme
 - Chinese Restaurant Process
 - DP Mixture

Stick Breaking

Define an infinite sequence of Beta random variables:

$$\beta_k \sim Beta(1, \alpha_0)$$
 $k = 1, 2, \dots$

And then define an infinite sequence of mixing proportions as:

$$\pi_1 = \beta_1$$
 $\pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_l)$ $k = 2, 3, ...$

This can be viewed as breaking off portions of a stick:

Stick Breaking Construction with Dirichlet Process

Sample θ_1 from H

Consider partition $(\theta_1, \Omega - \{\theta_1\})$

$$(G(\theta_1), G(\Omega - \{\theta_1\}))|\theta_1 \sim \mathsf{Dir}(\alpha H(\theta_1) + 1, \alpha H(\Omega - \{\theta_1\}))$$

Noting that $G(\Omega - \{\theta_1\}) = 1 - G(A_1)$, $H(\theta) = 0$, $H(\Omega) = 1$, we get

$$G(heta_1) \sim \mathsf{Beta}(1, lpha)$$

Let
$$\beta_1 = G(\theta_1)$$

$$G = \beta_1 \delta_{\theta_1} + (1 - \beta_1) G_1$$

where G_1 is a renormalized probability measure on $\Omega - \{\theta_1\}$ What is G_1 ?

Stick Breaking Construction with Dirichlet Process

Consider arbitrary partition $(\theta_1, A_1, \dots, A_n)$, we have

$$(G(\theta_1), G(A_1), \ldots, G(A_n))$$

= $(\beta_1, (1 - \beta_1)G_1(A_1), \ldots, (1 - \beta_1)G_1(A_n))$
 $\sim (1, H(A_1), \ldots, H(A_n))$

Using conditional distribution of Dirichlet distribution,

$$\frac{1}{1-\beta_1}((1-\beta_1)G_1(A_1),\ldots,(1-\beta_1)G_1(A_n))\sim (H(A_1),\ldots,H(A_n))$$

So, we construct a new DP:

$$G_1 \sim DP(\alpha, H)$$

We can continue the breaking process likewise

Stick Breaking Construction with Dirichlet Process

Continue the process

$$G_2 = \beta_1 \delta_{\theta_1} + (1 - \beta_1) G_1$$

$$G_3 = \beta_1 \delta_{\theta_1} + (1 - \beta_1) (\beta_2 + (1 - \beta_2) G_2)$$

$$\vdots$$

$$G_k = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k}$$

where

$$eta_k \sim \mathsf{Beta}(1, lpha)$$
 $\pi_k = eta_k \prod_{i=1}^{k-1} (1 - eta_i)$
 $heta_k \sim H$

Stick Breaking Construction

The above process is called the *stick breaking construction*What can we find about DP from this construction?

A sample G from DP is discrete with probability 1 If we keep sampling from G, we'll get more and more repeated values

That's reasonable for clustering (why?)

Contents

- 1 Introduction
- 2 Gaussian Process
 - Multivariate Gaussian Distribution
 - Definition
 - GP Regression
- 3 Dirichlet Process
 - Definition
 - Stick Breaking Construction
 - Blackwell-MacQueen Urn Scheme
 - Chinese Restaurant Process
 - DP Mixture

But for clustering, we're actually interested in sampling mixture parameters $\theta_1, \theta_2, \ldots$ from Ω , integrating G out.

But for clustering, we're actually interested in sampling mixture parameters $\theta_1, \theta_2, \ldots$ from Ω , integrating G out.

It seems easy. If $\theta_1, \theta_2, \dots, \theta_n$ are independent given G, then we can simply sample each θ from H independently. Right?

But for clustering, we're actually interested in sampling mixture parameters $\theta_1, \theta_2, \ldots$ from Ω , integrating G out.

It seems easy. If $\theta_1, \theta_2, \dots, \theta_n$ are independent given G, then we can simply sample each θ from H independently. Right?

Unfortunately, the answer is No! θ s are no longer independent if we integrate G out

$$p(\theta_1, \theta_2, \dots, \theta_n) = \int_G \prod_{i=1}^n p(\theta_i|G)p(G) dG$$

Consider two samples θ_1, θ_2 .

$$egin{aligned} p(heta_2| heta_1) &= \int_G p(heta_2,G| heta_1) \,\mathrm{d}G \ &= \int_G p(heta_2|G) p(G| heta_1) \,\mathrm{d}G \end{aligned}$$

We have already known the posterior distribution of G given θ_1 ,

$$G| heta_1 \sim \mathsf{DP}(lpha+1,rac{lpha H + \delta_{ heta_1}}{lpha+1})$$

Then, given θ_1 , the second sample θ_2 can be sampled from the posterior base distribution.

The sampling process becomes quite simple

First sample:

$$heta_1 \sim H, \quad G | heta_1 \sim \mathsf{DP}(lpha + 1, rac{lpha H + \delta_{ heta_1}}{lpha + 1})$$

Second sample:

$$heta_2| heta_1\sim rac{lpha H+\delta_{ heta_1}}{lpha+1}, \quad G| heta_1, heta_2\sim \mathsf{DP}(lpha+2,rac{lpha H+\delta_{ heta_1}+\delta_{ heta_2}}{lpha+2})$$

*n*th sample:

$$|\theta_n|\theta_{1,...,n-1} \sim \frac{\alpha H + \sum_{k=1}^{n-1} \delta_{\theta_k}}{\alpha + n - 1}, \quad G|\theta_{1,...,n} \sim \mathsf{DP}(\alpha + n, \frac{\alpha H + \sum_{k=1}^{n} \delta_{\theta_k}}{\alpha + n})$$

One issue, how to sample from
$$\frac{\alpha H + \sum_{k=1}^{n-1} \delta_{\theta_k}}{\alpha + n - 1}$$
? With probability $\propto \alpha$, sample from H With probability $\propto n - 1$, randomly pick one from $\theta_1, \ldots, \theta_{n-1}$

The above sample process is called *Blackwell-MacQueen Urn Scheme*

Samples $\theta_1, \ldots, \theta_n$ induces a partition over $1, \ldots, n$, if we cluster repeated values together

Working with float value is annoying. We can postpone sampling from H – Chinese Restaurant Process

Contents

- 1 Introduction
- 2 Gaussian Process
 - Multivariate Gaussian Distribution
 - Definition
 - GP Regression
- 3 Dirichlet Process
 - Definition
 - Stick Breaking Construction
 - Blackwell-MacQueen Urn Scheme
 - Chinese Restaurant Process
 - DP Mixture

Chinese Restaurant Process

Generating process of CRP:

customer 1 sits at the table 1.

the n^{th} customer

With probability $\frac{n_k}{\alpha+n-1}$, sits at existing table k, where n_k is number of customers at table k.

With probability $\frac{\alpha}{\alpha+n-1}$, sits at a new table K+1, where K is number of existing tables.

CRP teases apart clustering property of DP from base distribution ${\cal H}$

To get back to Blackwell-MacQueen Urn Scheme, sample θ_k for each table k

CRP and DP

We can prove that the order of customer coming in doesn't affect partition probability

Infinite Exchangeability:

$$\forall n, \forall \sigma, p(x_1, \ldots, x_n) = p(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$$

De Finetti's Theorem: If $(x_1, x_2, ...)$ are infinite exchangeable, then there exists a random variable θ , $\forall n$,

$$p(x_1,\ldots,x_n) = \int_{\theta} \prod_{i=1}^n p(x_i|\theta) p(\theta) d\theta$$

Here, DP is the distribution of θ

CRP and Clustering

We can view *data points* as customers, *clusters* as tables.

CRP defines a prior distribution on partition (cluster) of data.

Number of clusters can be induced

Combined with a parameterized probability distribution for each cluster, we can get a posterior

That's all we need in cluster settings

Contents

- 1 Introduction
- 2 Gaussian Process
 - Multivariate Gaussian Distribution
 - Definition
 - GP Regression
- 3 Dirichlet Process
 - Definition
 - Stick Breaking Construction
 - Blackwell-MacQueen Urn Scheme
 - Chinese Restaurant Process
 - DP Mixture

Gibbs Sampling DP Mixtures

Go back to original Gaussian Mixture clustering model. Let's place $DP(\alpha, H)$ as prior of G – DP mixture

Introduce z_i as cluster indicator for each x_i

We use collapsed Gibbs sampling for inference

$$p(z_i = k | \mathbf{z}_{-i}, \mathbf{x}, \boldsymbol{\nu}, \alpha) \propto p(z_i = k | \mathbf{z}_{-i}, \alpha) p(x_i | \mathbf{x}_{-i}, z_i = k, \mathbf{z}_{-i}, \boldsymbol{\nu})$$

where

$$p(z_i = k | \mathbf{z}_{-i}, \alpha) = \frac{n_k}{\alpha + n - 1}$$

for existing component k among z_{-i} , and

$$p(z_i = k | \mathbf{z}_{-i}, \alpha) = \frac{\alpha}{\alpha + n - 1}$$

for new component K+1, $\forall j \neq i, z_i \neq K+1$

Gibbs Sampling for DP Mixtures

What is $p(x_i|x_{-i}, z_i = k, z_{-i}, \nu)$?

For new component K+1, x_i is conditional independent from other data points

$$p(x_i|\mathbf{x}_{-i},z_i=K+1,\mathbf{z}_{-i},\mathbf{
u})=\int_{\phi}p(x_i|\phi)p(\phi|
u)\,\mathrm{d}\phi$$

For existing component k, x_i is conditional independent from data points in different cluster

$$p(x_i|\mathbf{x}_{-i}, z_i = k, \mathbf{z}_{-i}, \boldsymbol{\nu}) = \frac{p(x_i, \mathbf{x}_{-i}^{(k)}|\nu)}{p(\mathbf{x}_{-i}^{(k)}|\nu)}$$

It's model specific.

Visualization

Other Methods

Hierarchical Dirichlet Processes Infinite Hidden Markov Models Polya Trees Dirichlet (Diffusion) Trees Dirichlet Forest India Buffet Processes

(Zoubin Ghahramani, Non-parametric Bayesian Methods. 2005)

Outline

- Introduction
- 2 Gaussian Process
 - Multivariate Gaussian Distribution
 - Definition
 - GP Regression
- 3 Dirichlet Process
 - Definition
 - Stick Breaking Construction
 - Blackwell-MacQueen Urn Scheme
 - Chinese Restaurant Process
 - DP Mixture

Thanks.

HP: http://keg.cs.tsinghua.edu.cn/jietang/ **Email:** jietang@tsinghua.edu.cn