Weiran Zhou

University of science and technology of china , Hefei, China

(+86) 15155900822 | zwr408@mail.ustc.edu.cn | http://home.ustc.edu.cn/~zwr408/

EDUCATION

School of Physical Sciences, University of science and technology of china, China September 2017 - July 2021 (expected)

GPA (Overall): 3.87/4.3 (90.21/100) Ranking: top 5% in Applied Physics department

Core Courses in Physics: Optics: 98/100, Electromagnetism: 100/100, Theoretical Mechanics: 93/100, Electrodynamics: 98/100, Classic Mechanics: 91/100, Equations of Mathmatical Physics: 98/100.

RESEARCH EXPERIENCES

Nanosynthesis and Electrocatalysis

Advisor: Prof. Jie Zeng, National laboratory for physical sciences at the microscale

Project 1: Electro-oxidation of propylene by using silver nanomaterial

July,2019- Present

- ➤ Developed a synthesis method to finely control Ag₃PO₄ crystal shapes by tuning the amount of reactants, thus different crystal facets ((100), (110), (111)) could be exposed.
- ➤ Studied the dependence of Ag₃PO₄ crystal facet on catalytic activity and selectivity of propylene electro-oxidation process, where Ag₃PO₄ crystal with (100) facet turned out to achieve the highest catalytic activity.
- ➤ Simulated the absorption energy of propylene on different crystal facets of Ag₃PO₄, with (100) facet having the highest absorption energy.
- Synthesized AgX (X = Cl, Br, I) nanoparticles, and compared the possible effect of halogen on the electro-oxidation performance, where AgI particles ($0.8 \sim 1 \mu m$) were found to achieve the highest Faraday efficiency under constant voltage.
- > Currently performing Infrared spectrum, X-ray photoelectron spectroscopy tests on silver phosphate materials.

Project 2: Electro-reduction of CO₂ by In Nanoparticles

March, 2019 - May, 2019

- ➤ Used InNO₃ as metal precursor and acid-treated carbon as capping agent to synthsize Monodispersed In particles which were used as catalysis for electro-reduction of CO₂.
- > Carried out electrocatalytic characterizations using chromatograms to obtain good catalytic activity.

SCHOLARSHIP AND HONORS

1. Suzhou Nanophysics Institute Scholarship

2019

2. Outstanding student scholarship

2017 and 2018

3. Natural Science Electromagnetic Essay Contest

2015

SKILLS

Programming Languages: C, Java, Python, MATLAB, Latex;

Applications: Microsoft Office Suite, Photoshop, C-Free, Mathematica, Material Studio **Material characterization techniques:** scanning electron microscop, X-ray diffraction

STANDARDIZED ENGLISH TESTS

GRE V-152 + Q-170 + AW-3.0

TOEFL 101 (Reading: 30; Listening: 26; Speaking: 22; Writing: 23)