CS1231S Discrete Structures

AY 24/25 Sem 1 — github/omgeta

Definitions

Special types of integers:

- i. n is even $\leftrightarrow \exists k \in \mathbb{Z} \ (n=2k)$
- ii. n is odd $\leftrightarrow \exists k \in \mathbb{Z} \ (n = 2k + 1)$
- iii. n is prime $\leftrightarrow (n > 1) \land \forall r, s \in \mathbb{Z}^+$ $(n = rs \rightarrow (r = 1 \land s = n) \lor (r = n \land s = 1))$
- iv. n is composite $\leftrightarrow \exists r, s \in \mathbb{Z}^+$ $(n = rs \land (1 < r < n) \land (1 < s < n))$

Floor and ceiling for $x \in \mathbb{R}$:

- i. $\forall x \in \mathbb{R}, n \in \mathbb{Z} (|x| = n \leftrightarrow n < x < n + 1)$
- ii. $\forall x \in \mathbb{R}, n \in \mathbb{Z} \ (\lceil x \rceil = n \leftrightarrow n 1 < x < n)$

Divisibility:

i.
$$d|n \leftrightarrow \exists k \in \mathbb{Z} \ (n = dk)$$

Congruence:

i.
$$a \equiv b \pmod{n} \leftrightarrow n \mid (a-b) \leftrightarrow a-b = nk$$

Useful Results

Divisor results:

- i. $\forall a, b \in \mathbb{Z}^+ \ (a \mid b \to a \le b)$ (Th. 4.4.1)
- ii. Only divisors of 1 are 1 and -1 (Th. 4.4.2)
- iii. $\forall a, b \in \mathbb{Z} \ (a \mid b \land b \mid c \rightarrow a \mid c)$ (Th. 4.4.3)
- iv. $\forall n \in \mathbb{Z}^+ \ (n \text{ is divisible by a prime})$ (Th. 4.4.4)

Real results:

- i. $\forall x, y \in \mathbb{R} \ (|x+y| \le |x| + |y|)$ (Triangle Inequality)
- ii. $\forall x, m \in \mathbb{R}, \mathbb{Z} (\lfloor x + m \rfloor = \lfloor x \rfloor + m)$ (Th. 4.6.1)

Quotient-Remainder Theorem:

- i. $\forall n \in \mathbb{Z}, d \in \mathbb{Z}^+, \exists q, r \in \mathbb{Z} \ (n = dq + r \land 0 \le r \le d)$
- ii. $n \text{ div } d = q \wedge n \text{ mod } d = r$

1. Logic

Statement forms are expressions made up of statement variables and logical operators.

Operators of a compound statement of p, q are given by:

i. $p \equiv q$	(equivalent)
ii. $\sim p$	(NOT)

iii.
$$p \wedge q$$
 (AND)

iv.
$$p \lor q$$
 (OR)

v.
$$p \oplus q$$
 (XOR)
vi. $p \to q$ (implies)

vii.
$$p \leftrightarrow q$$
 (iff)

where implication $p \to q$ can be re-expressed as:

- i. if p then q
- ii. p only if q
- iii. p is sufficient for q
- iv. q if p
- v. q is necessary for r

Quantified statements are made up of predicates P(x) over a domain D with logical operators and quantifiers in the form:

i.
$$\forall x \in D, P(x)$$
 (Universal statement)

ii.
$$\exists x \in D, P(x)$$
 (Existential statements)

Arguments

Arguments are a sequence of statements, beginning with premises and ending with a conclusion.

Valid arguments have the condition: if all premises are true, then the conclusion is true.

Sound arguments are valid and all premises are true.

Rules of Inference

- i. $p \rightarrow q$ p $\therefore q$ (Modus ponens)
- ii. $p \to q$ $\sim q$ $\therefore \sim p$ (Modus tollens)
- iii. p .: $p \lor q$ (Generalization)
- iv. $p \wedge q$ $\therefore p$ (Specialization)
- v. p q $\therefore p \land q$ (Conjunction)
- vi. $p \lor q$ $\sim p$ $\therefore q$ (Elimination)
- vii. $p \to q$ $q \to r$ $\therefore p \to r$ (Transitivity)
- viii. $p \lor q$ $p \to r$ $q \to r$ $\therefore r$ (Proof by division into cases)
- ix. $\sim p \to \mathbf{f}$ $\therefore p$ (Contradiction)
- x. $\forall x \in D, P(x)$ $\therefore P(c)$ if $c \in D$ (Universal instantiation)
- xi. P(c) for arbitary $c \in D$ $\therefore \forall x \in D, P(x)$ (Universal generalization)
- xii. $\exists x \in D, P(x)$ $\therefore P(c)$ for some $c \in D$ (Existential instantiation)
- xiii. P(c) for some $c \in D$ $\therefore \exists x \in D, P(x)$ (Existential generalization)

2. Set Theory

Sets are unordered collections of objects with elements described as:

i.
$$\{a, b, ...\}$$
 (Set-Roster Notation)
ii. $\{x \in U : P(x)\}$ (Set-Builder Notation)

iii.
$$\{t(x): x \in U\}$$
 (Replacement Notation)

Operators on sets A, B are given by:

i.
$$A \subseteq B \leftrightarrow x \in A \to x \in B$$
 (Subset)

ii.
$$A = B \leftrightarrow A \subseteq B \land B \subseteq A$$
 (Equality)

iii.
$$\overline{A} = \{x : x \notin A\}$$
 (Complement)

iv.
$$A \cap B = \{x : x \in A \land x \in B\}$$
 (Intersection)

v.
$$A \cup B = \{x : x \in A \lor x \in B\}$$
 (Union)

vi.
$$A \setminus B = \{x : x \in A \land x \notin B\}$$
 (Official)

vii.
$$A \times B = \{(a, b) : a \in A \land b \in B\}$$
 (Cartesian product)

viii.
$$\mathcal{P}(A) = \{X : X \subseteq A\}$$
 (Powerset)

ix.
$$|A| = \text{number of elements in A}$$
 (Cardinality)

Theorem 6.2.3.:

i.
$$A \cap B \subseteq A$$
 and $A \cap B \subseteq B$ (Inclusion of \cap)

ii.
$$A \subseteq A \cup B$$
 and $B \subseteq A \cup B$ (Inclusion in \cup)

iii.
$$A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$$
 (Transitivity of subsets)

Partitions

Partitions of a set A are groupings of its elements into non-empty, mutually disjoint subsets such that every element of A is included in exactly one subset.

Properties of a partition $\{A_1, A_2, \dots, A_n\}$ of set A, are:

i.
$$A_i \cap A_j = \phi$$
 for all $i \neq j$ (Mutually disjoint)

ii.
$$\bigcup_{i=1}^{n} A_i = A$$
 (Exhaustiveness)

3. Relations

Relation R from domain A to codomain B is given by:

i.
$$R = \{(a, b) \in A \times B : aRb \leftrightarrow P(a, b)\}$$

ii.
$$R^{-1} = \{(b, a) \in B \times A : aRb\}$$
 (Inverse)

Possible properties of a relation R on A are:

i.
$$\forall a \in A \ (aRa)$$
 (Reflexive)

ii.
$$\forall a \in A \ (a \not R a)$$
 (Irreflexive)

iii.
$$\forall a, b \in A \ (aRb \to bRa)$$
 (Symmetric)

iv.
$$\forall a, b \in A \ (aRb \land bRa \rightarrow a = b)$$
 (Anti-symmetric)

v.
$$\forall a, b \in A \ (aRb \rightarrow bRa)$$
 (Asymmetric)

vi.
$$\forall a, b, c \in A \ (aRb \land bRc \rightarrow aRc)$$
 (Transitive)

Composition of relations $R \subseteq A \times B$, $S \subseteq B \times C$, $T \subseteq C \times D$ is given by:

i.
$$S \circ R = \{(a, c) \in A \times C : \exists b \in B \ (aRb \land bSc)\}$$

ii.
$$T \circ (S \circ R) = (T \circ S) \circ R$$
 (Associative)

iii.
$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$$
 (Inverse)

Transitive closure R^t of relation R is the smallest transitive relation containing R such that:

- i. R^t is transitive
- ii. $R \subseteq R^t$
- iii. S is any other transitive relation of $R \to R^t \subseteq S$

Equivalence Relation

Relation \sim is an equivalence relation if and only if it is reflexive, symmetric and transitive.

Partitions induced by equivalence relation \sim on A are defined by:

i.
$$[a]_{\sim} = \{x \in A : a \sim x\}$$
 (Equivalence class)

ii.
$$A/\sim = \{[x]_\sim : x \in A\}$$
 (Set of equivalence classes)

Useful Results:

i.
$$a \sim b \to [a]_{\sim} = [b]_{\sim}$$
 (Lem. 8.3.2)

ii. either
$$[a]_{\sim} = [b]_{\sim}$$
 or $[a]_{\sim} \cap [b]_{\sim} = \phi$ (Lem. 8.3.2)

Partial Order

Relation \leq is a partial order if and only if it is reflexive, anti-symmetric and transitive. Partially ordered set (poset) of A w.r.t. partial order \leq is denoted by (A, \leq) .

Extremal elements $c \in A$ of a partial order \leq on A are given by:

- i. c is maximal $\leftrightarrow \forall x \in A \ (c \leq x \to c = x)$
- ii. c is minimal $\leftrightarrow \forall x \in A \ (x \preccurlyeq c \rightarrow c = x)$
- iii. c is the largest $\leftrightarrow \forall x \in A \ (x \leq c)$
- iv. c is the smallest $\leftrightarrow \forall x \in A \ (c \leq x)$

Total Order

Total order \leq^* on A is a relation such that:

- i. \leq^* is a partial order
- ii. $\forall a, b \in A \ (a \leq^* b \vee b \leq^* a)$ (Totally comparable)

Totally ordered sets (A, \preceq^*) are well-ordered if and only if every non-empty subset of A contains a smallest element:

$$\forall S \in \mathcal{P}(A), S \neq \phi \rightarrow (\exists x \forall y \in S \ (x \preccurlyeq^* y))$$

Linearizations

A linearization is a derivation of a total order \leq * from a partial order \leq on A such that:

$$\forall a, b \in A \ (a \leq b \rightarrow a \leq^* b)$$

4. Functions

Function f from domain set X to codomain set Y, denoted $f: X \to Y$ is a relation satisfying:

i.
$$\forall x \in X \ \exists y \in Y \ ((x,y) \in f)$$
 (F1)

ii.
$$\forall x \in X \ \forall y_1, y_2 \in Y \ (((x, y_1) \in f \land (x, y_2) \in f) \to y_1 = y_2)$$
 (F2)

iii.
$$\forall x \in X \exists ! y \in Y ((x, y) \in f)$$
 (F3=F1+F2)

Setwise functions for $f: X \to Y$ on sets $A \subseteq X$, $B \subseteq Y$ are given by:

i.
$$f(A) = \{f(x) : x \in A\}$$
 (Setwise image)

ii.
$$f^{-1}(B) = \{x \in X : f(x) \in B\}$$
 (Setwise preimage)

Possible properties of a function $f: X \to Y$ are:

i.
$$\forall x_1, x_2 \in X \ (f(x_1) = f(x_2) \to x_1 = x_2) \ (Injective)$$

ii.
$$\forall y \in Y \ \exists x \in X \ (y = f(x))$$
 (Surjective)

iii.
$$\forall y \in Y \ \exists ! x \in X \ (y = f(x))$$
 (Bijective)

Inverse function $f^{-1}: Y \to X$ is uniquely given by:

i.
$$\forall x \in X \ \forall y \in Y \ (y = f(x) \leftrightarrow x = f^{-1}(y))$$

ii.
$$f$$
 is bijective $\leftrightarrow f$ has an inverse (Th. 7.2.3)

Composition of functions $f: X \to Y, g: Y \to Z,$ $h: Z \to W$ is given by:

i.
$$(g \circ f) : X \to Z = (g \circ f)(x) = g(f(x))$$

ii.
$$(h \circ g) \circ f = h \circ (g \circ f)$$
 (Associative)

iii.
$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
 (Inverse)

iv.
$$f \circ id_X = f$$
 and $id_Y \circ f = f$ (Th. 7.3.1)

v.
$$g \circ f$$
 is injective $\leftrightarrow f, g$ are injective (Th. 7.3.3)

vi.
$$g \circ f$$
 is surjective $\leftrightarrow f, g$ are surjective (Th. 7.3.4)

Sequences

Sequence a_0, a_1, \cdots can be represented by:

i.
$$a(n) = a_n, \forall n \in \mathbb{Z}_{>0}$$

ii.
$$a_0, a_1, \dots = b_0, b_1, \dots \leftrightarrow a(n) = b(n), \forall n \in \mathbb{Z}_{>0}$$

Strings

Strings over set A are given by:

i.
$$a_0 a_1 \cdots a_{l-1}$$
 where $l \in \mathbb{Z}_{\geq 0}$

ii. ε is the empty string

iii.
$$a_0 a_1 \cdots a_{l-1} = b_0 b_1 \cdots b_{l-1} \leftrightarrow a_i = b_i, \forall i \in [0, l-1]$$

Well-Defined Functions

(Injective) Function $f: X \to Y$ is well-defined if and only if (Surjective) $\forall x_1, x_2 \in X$:

i.
$$(x_1 = x_2 \to f(x_1) = f(x_2))$$
 (General)

ii.
$$(x_1 \sim x_2 \to f(x_1) = f(x_2))$$
 (w.r.t ~)

iii.
$$([x_1] = [x_2] \to [f(x_1)] = [f(x_2)])$$
 (w.r.t $[x]$)

5. Cardinality

Cardinality of sets A, B is the same, |A| = |B| if and only if there is a bijection $f: A \to B$

Countability of set A is given by:

i.
$$|A| = |\mathbb{Z}_n|$$
 for some $n \in \mathbb{Z}^+$ ((Countably) Finite)

ii.
$$|A| = |\mathbb{Z}^+| = \aleph_0$$
 (Countably Infinite)

Countability of set B via sequences is given by:

i. B is countable $\leftrightarrow b_0, b_1, \dots \in B$ is a sequence in which every element of B appears (Lem. 9.2)

Useful Results:

i. Subset of countable set is countable (Th. 7.4.3)

ii. Sets with uncountable subsets are uncountable (Coro. 7.4.4)

iii. Every infinite set has a countably infinite subset (Prop. 9.3)

iv. A_1, \dots, A_n are countably infinite $\to A_1 \times \dots \times A_n$ is countably infinite (Th. 9.2.5)

v. $A_1, A_2 \cdots$ are countable $\rightarrow \bigcup_{i=1}^{\infty} A_i$ is countable (Th. 9.2.5)

vi. B is countably infinite and C is finite $\rightarrow B \cup C$ is countable (Tut. 8Q2)

vii. A_1, A_2, \cdots are finite $\to \bigcup_{i=1}^n A_i$ is finite (Tut. 8Q3)

viii. A_1, A_2, \cdots are countable $\to \bigcup_{i=1}^n A_i$ is countable (Tut. 8Q4)

ix. B is infinite and C is finite \rightarrow there is bijection $B \cup C \rightarrow B$ (Tut. 8Q6)

x. A is countably infinite $\to \mathcal{P}(A)$ is uncountable (Tut. 8Q7)

Pigeonhole Principle

For finite sets A, B:

- i. \exists injection $f: A \to B \to |A| \le |B|$
- ii. \exists surjection $f: A \to B \to |A| \ge |B|$ (Dual)

Generalised PHP for a function $f: X \to Y$:

- i. $k < \frac{|X|}{|Y|} \to \exists y \in Y \ (|f^{-1}(y)| \ge k+1)$
- ii. $\forall y \in Y \ (|f^{-1}(y)| \le k) \to |X| \le k|Y|$ (Contrap.)

Cantor's Diagonalization

- 1. Suppose not, that is, (0,1) is countable
- 2. Since it is not finite, it is countably infinite
- 3. We list elements x_i of (0,1) in a sequence:

$$x_{1} = 0.a_{11}a_{12}a_{13} \cdots a_{1n} \cdots$$

$$x_{2} = 0.a_{21}a_{22}a_{23} \cdots a_{2n} \cdots$$

$$\cdots$$

$$x_{n} = 0.a_{n1}a_{n2}a_{n3} \cdots a_{nn} \cdots$$

$$\cdots$$

4. Construct $d = 0.d_1d_2d_3\cdots d_n\cdots$ s.t.

$$d = \begin{cases} 1, & \text{if } a_{nn} \neq 1 \\ 2, & \text{if } a_{nn} = 1 \end{cases}$$

- 5. Note $\forall n \in \mathbb{Z}^+, d_n \neq a_{nn}$. Thus, $d \neq x_n, \forall n \in \mathbb{Z}^+$
- 6. This contradicts $d \in (0,1)$. $\therefore (0,1)$ is uncountable.

6. Counting

Counting Formula: $\binom{n}{r} = \frac{n!}{r!(n-r)!}, P(n,r) = \frac{n!}{(n-r)!}$

Binomial Theorem: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

Pascal's Formula:
$$\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$$

Inclusion/Exclusion Principle for finite sets A, B, C:

- i. $|A \cup B| = |A| + |B| |A \cap B|$
- ii. $|A \cup B \cup C| = |A| + |B| + |C| + |A \cap B \cap C| |A \cap B| |A \cap C| |B \cap C|$

Number of ways to:

- i. Permute n distinct = n!
- ii. Permute n with n_1, n_2 identical $= \frac{n!}{n_1!n_2!}$
- iii. Choose r of n distinct = $\binom{n}{r}$
- iv. Choose r groups of n identical = $\binom{n+r-1}{n}$ $(x_1 + \cdots + x_r = n)$
- v. Permute r of n distinct = P(n,r)
- vi. Permute r of n distinct (repeat) = n^r

Useful results:

- i. Choose 2 groups of r, m from n distinct $= \binom{n}{r} \binom{n-r}{m}$
- ii. Choose k groups of r from n distinct = $\frac{\binom{n}{r}\binom{n-r}{r}\cdots\binom{r}{r}}{k!}$
- iii. Permute n distinct with r together = (n r + 1)!r!
- iv. Permute n, m distinct but separated $= m! \binom{m+1}{n} n!$
- v. Permute n distinct in a circle = (n-1)!
- vi. Permute n distinct with r together in a circle = (n-r)!r!
- vii. Permute n, m distinct but separated in a circle $= m! \binom{m}{n} n!$
- viii. Permute n distinct in a circle with 2 opposite = (n-2)!
- ix. Permute n distinct in a circle with r identical $=\frac{(n-1)!}{r!}$

Probability

Probability of event E in sample space S, P(E), is given by:

i.
$$P(E) = \frac{|E|}{|S|}$$
, where $0 \le P(E) \le 1$

ii.
$$P(\overline{E}) = 1 - P(E)$$
 (Complement)

iii.
$$A \cap B = \phi \rightarrow P(A \cup B) = P(A) + P(B)$$
 (Disjoint)

iv.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 (Union)

Conditional probability of B given A, P(B|A), is given by:

i.
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
 (Th. 9.9.1)

ii.
$$P(A \cap B) = P(B|A) \cdot P(A)$$
 (Th. 9.9.2)

iii.
$$P(A) = \frac{P(A \cap B)}{P(B|A)}$$
 (Th. 9.9.3)

Baye's Theorem, for sample space S being a union of mutually disjoint $B_1, \dots B_n$:

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{P(A|B_1)P(B_1) + \dots + P(A|B_n)P(B_n)}$$

Mutually exclusive events A, B have special results:

i.
$$P(A \cap B) = 0$$
 (Intersection)

ii.
$$P(A \cup B) = P(A) + P(B)$$
 (Union)

Independent events A, B have special results:

i.
$$P(A \cap B) = P(A) \cdot P(B)$$
 (Intersection)

ii.
$$P(A|B) = P(A)$$
 (Conditional)

Expected Value

Expected value of an experiment X, E(X), with real numbers a_1, \dots, a_n at probabilities p_1, \dots, p_n is given by:

i.
$$E(X) = \sum_{k=1}^{n} a_k p_k = a_1 p_1 + \dots + a_n p_n$$

ii.
$$E(g(X)) = \sum_{k=1}^{n} g(a_k) p_k$$

iii.
$$E(aX \pm b) = aE(X) \pm b$$

Linearity of Expectation for (not necessarily independent) random experiments X, Y have their sum given by:

$$E(X + Y) = E(X) + E(Y)$$

7. Graphs

is given by:

Undirected graph G = (V, E) consists of edges $e = \{v, w\} \in E$ connecting adjacent vertices $v, w \in V$. Adjacent edges are incident on the same endpoints. Degree of vertex v, $\deg(v)$, is given by:

- i. deg(v) = no. edges incident on v
- ii. $deg(G) = 2 \times |E|$ (Handshake Th.)
- iii. deg(G) is even (Coro. 10.1.2)
- iv. Any graph has even number of vertices of odd degree (Prop. 10.1.3)

Directed graph (digraph) G = (V, E) consists of ordered edges $e = (v, w) \in E$ from $v \in V$ to $w \in V$. Indegree and outdegree of vertex v, $\deg^-(v)$ and $\deg^+(v)$,

- i. $deg^-(v) = no.$ edges ending on v
- ii. $deg^+(v) = no.$ edges originating from v
- iii. $\sum_{v \in V} \deg^-(v) + \sum_{v \in V} \deg^+(v) = |E|$

Graph $H = (V_H, E_H)$ is a subgraph of graph G = (V, E) iff $V_H \subseteq V$ and $E_H \subseteq E$.

Trails, Paths and Circuits

Walk is a finite alternating sequence of adjacent vertices and edges in the form $v_0e_1v_1e_2\cdots v_{n-1}e_nv_n$ with length being the number of edges n.

Trivial walk consists of the single vertex.

Closed walk is a walk starting and ending at the same vertex.

Trail is a walk with no repeated edge.

Path is a trail with no repeated vertex.

Circuit/cycle is a closed walk of length at least 3 with no repeated edge (i.e. a trail).

Simple circuit/cycle is a cycle with no repeated vertex except the first and last (i.e. a partial path).

Adjacency matrix of graph G with |V| = n is the $n \times n$ matrix $A = (a_{ij})$ such that $a_{ij} =$ edges connecting v_i to v_j :

i. $(A^n)_{ij}$ = number of walks of length n from v_i to v_j

Connectedness

Vertices are connected iff there is a walk between them. Graphs are connected iff there is a walk between every two vertices.

Lemma 10.2.1 for connected graph G:

- i. There is a path between any two distinct vertices
- ii. If G contains a cycle with vertices v, w and one edge is removed from the cycle, then there still exists a trail from v to w
- iii. If G contains a cycle, then an edge can be removed from the cycle without disconnecting G

Graph H is a connected component of G iff H is a connected subgraph of G, and no other connected subgraph of G has H as a subgraph.

Euler and Hamilton

Euler trail is a trail passing every vertex atleast once, and every edge exactly once:

i. \exists Euler trail from v to $w \leftrightarrow G$ is connected, v and w have odd degree and all other vertices have even degree (Coro. 10.2.5)

Euler circuit is an Euler trail which is also a circuit, enstarting and ending at the same vertex:

- i. G has Euler circuit \rightarrow every vertex has positive even degree (Th. 10.2.2)
- ii. Some vertex has odd degree $\to G$ nas no Euler circuit (Contra. Th. 10.2.2)
- iii. G is connected and every vertex has positive even degree $\leftrightarrow G$ has Euler circuit (Th. 10.2.4)

Hamiltonian circuit is a simple circuit passing every vertex exactly once.

Proposition 10.2.6 for Hamiltonian graph G, there is a subgraph H:

- i. H contains every vertex in G
- ii. H is connected
- iii. H has same number of vertices as edges
- iv. Every vertex of H has degree 2

Special Graphs

Simple graph is an undirected graph with no loops or parallel edges (at most one edge between distinct vertices).

Complete graph of n > 0 vertices, K_n is a simple graph with exactly one edge between all distinct vertices.

Bipartite graph (bigraph) is a simple graph divisible into two disjoint sets U, V such that every edge connects a vertex in U to a vertex in V.

Complete bipartite graph of $|U| = m, |V| = n, K_{m,n}$, is a bipartite graph with exactly one edge between each vertex in U to each vertex in V.

Eulerian graph is a graph that contains an Euler circuit.

Hamiltonian graph is a graph that contains a Hamiltonian circuit.

Planar Graph is a graph that can be drawn without edges crossing:

i. faces =
$$|E| - |V| + 2$$
 (Euler's Formula)

Weighted Graph is a graph where each edge has a positive real weight, w(e), and total weight of the graph, w(G).

Isomorphisms

Graphs G = (V, E) and G' = (V', E') are isomorphic iff there are bijections which preserve the edge-endpoint functions:

$$g:V->V', \quad h:E->E'$$
 v is an endpoint of $e \leftrightarrow g(v)$ is an endpoint of $h(e)$

Simple graphs G = (V, E) and G' = (V', E') are isomorphic iff there is a permutation:

$$\pi: V \to V' \ \{v, w\} E \leftrightarrow \{\pi(v), \pi(w)\} \in E'$$

Theorem 10.4.1: Isomorphism relation is an equivalence relation on the set of all graphs.

8. Trees

Trees are simple graphs which are acylic and connected. Terminal vertices/ leafs are vertices with degree 1. Internal vertices are vertices with degree more than 1.

Properties of Trees:

- i. Non-trivial trees has at least one vertex of degree 1 (Lem. 10.5.1)
- ii. Any tree with n>0 vertices has n-1 edges (Th. 10.5.2)
- iii. If G is any connected graph, removing an edge of a circuit C keeps G connected (Lem. 10.5.3)
- iv. If G is a connected graph with n vertices and n-1 edges, then G is a tree (Th. 10.5.4)

Forests are simple graphs which are acyclic and not connected.

Special Trees

Rooted tree is a tree with a designated root vertex:

- i. Level of a vertex is the number of edges to the root
- ii. Height of a rooted tree is the maximum level of any vertex
- iii. A vertex's children are adjacent vertices one level deeper, with the vertex is their parent
- iv. A vertex is an ancestor if it lies on the path between the descendant vertex and the root

Binary tree is a rooted tree where each parent has maximum two children:

- i. Left/Right subtree is the binary tree whose root is the left/right child
- ii. Height h with t leaves $\to t \le 2^h \leftrightarrow \log_2 t \le h$ (Th. 10.6.2)

Full binary tree is a binary tree where each parent has exactly two children:

i. k internal vertices $\rightarrow 2k+1$ vertices and k+1 leaves (Th. 10.6.1)

DFS Traversal

Pre-order: F, B, A, D, C, E, G, I, H

In-order: A, B, C, D, E, F, G, H, I

Post-order: A, C, E, D, B, H, I, G, F

Pre-order:

- i. Print root
- ii. Traverse left subtree recursively
- iii. Traverse right subtree recursively

In-order:

- i. Traverse left subtree recursively
- ii. Print root
- iii. Traverse right subtree recursively

In-order:

- i. Traverse left subtree recursively
- ii. Traverse right subtree recursively
- iii. Print root

Spanning Trees

Spanning tree of a graph G is a subgraph tree containing every vertex of G.

Proposition 10.7.1:

- i. Every connected graph has a spanning tree
- ii. Any two spanning trees for a graph have the same number of edges

Minimum spanning tree of a weighted graph G is the spanning tree with the least possible total weight compared to other spanning trees of G.

Kruskal's Algorithm

Greedily add all lightest edges to the tree that do not form a cycle, until n-1 edges are added.

- 1. Input: Connected weighted graph G = (V, E) with n vertices
- 2. T = (V, E'), where $E' = \phi$
- 3. While |E'| < n 1:
 - 3.1. Pop edge $e \in E$ of least weight
 - 3.2. Add e to E' if it does not produce a circuit
- 4. Output: Minimum spanning tree T

Prim's Algorithm

Beginning from a single vertex, find the adjacent edge with the least weight incident on a vertex not in the tree, and add it to the tree, until n-1 edges are added.

- 1. Input: Connected weighted graph G = (V, E) with n vertices
- 2. Choose v in V
- 3. Initialise T = (V', E'), where $V = \{v\}, E' = \phi$
- 4. For i = 1, n 1:
 - 4.1. Find $e \in E$ adjacent to a vertex in V and a vertex in V' with the least weight
 - 4.2. Pop edge $w \in V$ incident to e
 - 4.3. Add e to E' and w to V'
- 5. Output: Minimum spanning tree T

Methods of Proof

Direct Proof

- 1. Suppose P(x)
 - 1.1. ...
 - 1.2. Q(x)
- $2. \therefore P(x) \to Q(x)$

Proof by Exhaustion

- 1. Since $x \in A_1 \cup \ldots \cup A_n$
- 2. Case 1: $x \in A_1$
 - 2.1. ...
 - 2.2. S(x)
- 3. ...
- 4. Case $n: x \in A_n$
 - 4.1. ...
 - 4.2. S(x)
- 5. $\therefore S(x)$ for all cases

Proof by Construction

- 1. Let $x = x_0$
 - 1.1. $S(x_0)$
- $2. : \exists x(S(x))$

Or

- 1. Suppose P(x)
 - 1.1. ...
 - 1.2. Find valid conditions for x
- $2. : \exists x(S(x))$

Disproof by Counterexample

- 1. Let $x = x_0$
 - 1.1. $\sim S(x_0)$
- $2. : \sim (\forall x(S(x)))$

Proof by Contradiction

- 1. Suppose not, i.e. $\sim S(x)$
 - 1.1. ...
 - 1.2. This contradicts ...
- 2. Hence, the supposition is false.
- 3. : S(x)

Proof by Contraposition

- 1. Suppose $\sim Q(x)$
 - 1.1. ...
 - 1.2. $\sim P(x)$
- 2. Hence, $\sim Q(x) \rightarrow \sim P(x)$.
- $3. \therefore P(x) \to Q(x)$

Proof by 1MI/ Weak Induction

- 1. Let $P(n) \equiv \cdots, \forall n \in A_{\geq a}$
- 2. Basis step: Show P(a) is true.
- 3. Inductive hypothesis: Assume P(k) is true for some $k \ge a$
- 4. Inductive step: Show P(k+1) is true
- 5. $\therefore P(n)$ is true for all $n \in A_{\geq a}$

Proof by 2MI/ Strong Induction

- 1. Let $P(n) \equiv \cdots, \forall n \in A_{\geq a}$
- 2. Basis step: Show P(a) is true.
- 3. Inductive hypothesis: Assume P(i) is true for some $a \le i \le k$
- 4. Inductive step: Show P(k+1) is true
- 5. $\therefore P(n)$ is true for all $n \in A_{\geq a}$

Or

- 1. Let $P(n) \equiv \cdots, \forall n \in A_{>a}$
- 2. Basis step: Show $P(a) \wedge \cdots \wedge P(b)$ are true.
- 3. Inductive hypothesis: Assume P(k) is true for some $k \ge a$
- 4. Inductive step: Show P(k+b-a+1) is true
- 5. $\therefore P(n)$ is true for all $n \in A_{\geq a}$

Structural Induction

- 1. Let $P(n) \equiv \cdots, \forall n \in H$
- 2. Basis step: Show P(a) is true for all founders a.
- 3. Inductive hypothesis: Assume P(x) is true for some $x \in H$
- 4. Inductive step: Show P(f(x)) is true for all constructors f
- 5. $\therefore P(n)$ is true for all $n \in H$

Boolean Algebra Laws

Boolean Higebra Laws		
Identity	$p \wedge \mathbf{t} = p$	$p \vee \mathbf{f} = p$
Universal bound	$p \wedge \mathbf{f} = \mathbf{f}$	$p \lor \mathbf{t} = \mathbf{t}$
Idempotent	$p \wedge p = p$	$p \lor p = p$
Negation	$p \wedge \sim p = \mathbf{f}$	$p \lor \sim p = \mathbf{t}$
Double Negation	$\sim (\sim p) = p$	
Commutative	$p \wedge q = q \wedge p$	$p \vee q = q \vee p$
Associative	$(p \land q) \land r = p \land (q \land r)$	$(p \lor q) \lor r = p \lor (q \lor r)$
Distributive	$p \land (q \lor r) = (p \land q) \lor (p \land r)$	$p \lor (q \land r) = (p \lor q) \land (p \lor r)$
Absorption	$p \land (p \lor q) = p$	$p \lor (p \land q) = p$
De Morgan's	$\sim (p \land q) = \sim p \lor \sim q$	$\sim (p \lor q) = \sim p \land \sim q$
Implication	$p \to q \equiv \sim p \vee q$	
Contrapositive	$p \to q \equiv \sim q \to \sim p$	
Converse	$converse(p \to q) \equiv q \to p$	
Inverse	$inverse(p \to q) \equiv \sim p \to \sim q$	

Set Algebra Laws

Set Higebia Laws		
Identity	$A \cap U = A$	$A \cup \phi = A$
Universal bound	$A \cap \phi = \phi$	$A \cup U = U$
Idempotent	$A \cap A = A$	$A \cup A = A$
Complement	$A \cap \overline{A} = \phi$	$A \cup \overline{A} = U$
Double Negation	$\overline{\overline{A}} = A$	
Commutative	$A \cap B = B \cap A$	$A \cup B = B \cup A$
Associative	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \cup B) \cup C = A \cup (B \cup C)$
Distributive	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Absorption	$A \cap (A \cup B) = A$	$A \cup (A \cap B) = A$
De Morgan's	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	$\overline{A \cup B} = \overline{A} \cap \overline{B}$
Set Difference	$A \setminus B = A \cap \overline{B}$	

Appendix A

 $(a > \neq 0)$

 $(a \neq 0)$

 $(a \neq 0)$

Field Axioms:

F1.
$$a+b=b+a$$
 and $ab=ba$

F2.
$$(a + b) + c = a + (b + c)$$
 and $(ab)c = a(bc)$

F3.
$$a(b+c) = ab + ac$$
 and $(b+c)a = ba + ca$

F4.
$$0 + a = a + 0 = a$$
 and $1 \cdot a = a \cdot 1 = a$

F5.
$$a + (-a) = (-a) + a = 0$$

F6.
$$a \cdot (\frac{1}{a}) = (\frac{1}{a}) \cdot a = 1$$
 $(a \neq 0)$

Order Axioms:

O1.
$$a + b > 0$$
 and $ab > 0$ $(a > 0 \land b > 0)$

O2.
$$a$$
 is positive $\oplus -a$ is positive

O3. 0 is not positive

Algebra Laws:

T1.
$$b=c$$

$$(a+b=a+c)$$

T2.
$$\exists x(a+x=b)$$

T3.
$$b - a = b + (-a)$$

$$T4. -(-a) = a$$

T5.
$$a(b-c) = ab - ac$$

T6.
$$0 \cdot a = a \cdot 0 = 0$$

T7.
$$b = c$$

$$(ab = ac \land a \neq 0)$$

T8.
$$\exists x(ax = b)$$

T9.
$$b/a = b \cdot a^{-1}$$

T10.
$$(a^{-1})^{-1} = a$$

T10.
$$(a^{-1})^{-1} = a$$
 $(a \neq 0)$
T11. $a = 0 \lor b = 0$ $(ab = 0)$

T12
$$(-a)b - a(-b) - -ab$$
 $(-a)(-b) - ab$ and $-\frac{a}{a} - \frac{-a}{a} - \frac{a}{a}$

T12.
$$(-a)b = a(-b) = -ab$$
, $(-a)(-b) = ab$ and $-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}$

T13.
$$\frac{a}{b} = \frac{ac}{bc}$$
 $(b \neq 0 \land c \neq 0)$

T14.
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \qquad (b \neq 0 \land d \neq 0)$$

T15.
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

$$(b \neq 0 \land d \neq 0)$$

T16.
$$\frac{\overline{b}}{\overline{c}} = \frac{ad}{bc} \qquad (b \neq 0 \land c \neq 0 \land d \neq 0)$$

T17.
$$a < b \oplus b < a \oplus a = b$$

T18.
$$a < c$$
 $(a < b \land b < c)$

T19.
$$a+c < b+c$$

$$(a < b)$$

T20.
$$ac < bc$$
 $(a < b \land c > 0)$

T21.
$$a^2 > 0$$
 $(a \neq 0)$

T22.
$$1 > 0$$

T23.
$$ac > bc$$
 $(a < b \land c < 0)$

T24.
$$-a > -b$$
 $(a < b)$

T25.
$$a$$
 and b are both positive or both negative $(ab > 0)$

T26.
$$a+b < c+d$$

$$(a < c \land b < d)$$

T27.
$$0 < ab < cd$$
 $(0 < a < c \land 0 < b < d)$