Curso de Pós-Graduação em Ciências Veterinárias - UFRRJ

Métodos Estatísticos

Prof: Wagner Tassinari

wagner.tassinari@ini.fiocruz.br

Introdução à Estatística

Introdução à Estatística

O que é estatística ?

O que é isso ?

...é a ciência da arte de torturar os dados ???

O que é estatística?

- A Estatística é uma Ciência que tem por objetivo planejar, coletar, tabular, analisar e interpretar informações para tomada de decisões acertadas mediante incertezas.
- Bioestatística → Aplicação da estatística na área de saúde.

Exemplos da importância da Estatística na saúde:

- 1. Antes de novo medicamento (ou tratamentos) ser colocado no mercado é necessário um ensaio clínico.
 - Os dados desse estudo precisam ser processados, descritos e analisados para a determinação da eficácia e segurança.
- 2. A Lei Seca cumpriu seu propósito?
- 3. A leptospirose pode estar associada a chuvas e/ou fatores socioeconômicos ?

Objetivos da estatística

- O objetivo principal é sempre transformar os dados em informações.
- Tais dados ou observações se distinguem segundo as variáveis estudadas.

Alguns conceitos

Alguns conceitos

- Dados: qualquer característica passível de observação em uma população ou amostra;
- População: conjunto de elementos que possuem características em comum;
- Amostra: qualquer subconjunto de uma população;

"A qualidade das informações depende da qualidade dos dados!!!"

Variável

- São atributos ou características (de animais, coisas, indivíduos e lugares) que são medidas, observadas ou controladas em uma pesquisa;
- Diferem em muitos aspectos, principalmente no papel que a elas é dado em uma pesquisa e na forma como podem ser medidas.

Variável

Variável

• Categorizando uma variável quantitativa

Nível da Pressão Arterial	Classificação
< 120 sistólica e < 80 diastólica	ldeal
< 130 sistólica e < 85 diastólica	Normal
130-139 sistólica ou 86-89 diastólica	Normal-Alta
140-159 sistólica ou 90-99 diastólica	Hipertensão Estágio 1
160-179 sistólica ou 100-109 diastólica	Hipertensão Estágio 2
>110 sistólica ou >180 diastólica	Hipertensão Estágio 3
Diastólica normal com sistólica > 140	Hipertensão Sistólica Isolada

Fonte: Manuais de Cardiologia

Questão 1: Classifique as variáveis em qualitativa (nominal ou ordinal) ou variável quantitativa (discreta ou contínua).

- 1. Concentração de chumbo em uma amostra de água (mg/dl)
- Duração de tempo que um paciente de câncer sobrevive depois do diagnóstico
- 3. Número de abortos prévios que uma mãe grávida teve
- 4. Resultado de um teste rápido para HIV (positivo ou negativo)
- 5. A região (estado UF) de moradia

Questão 1: Classifique as variáveis em qualitativa (nominal ou ordinal) ou variável quantitativa (discreta ou contínua). (cont.)

- 6. Sexo do paciente Contato com animal infectado por leishmaniose ou esporotricose (gato ou cachorro)
- 7. Faixa etária em que está situado o paciente
- 8. Cor ou raça do paciente
- 9. Peso (em kg) do paciente

Questão 2: Qual a diferença entre as variáveis ordinais e as nominais ?

Questão 3: Quais as vantagens e desvantagens de transformar variáveis contínuas em discretas ou ordinais ?

Questão 4: Classifique cada uma das seguintes variáveis em: variável qualitativa nominal, variável qualitativa ordinal, variável quantitativa discreta ou variável quantitativa contínua.

- 1. Nível educacional
- 2. peso (kg)
- 3. altura (cm)
- 4. idade (em anos completos)
- 5. glicemia (mg/dL)
- 6. colesterol sérico (mg/dL)
- 7. pressão sistólica (mmHg)
- 8. motivo do exame

Questão 4: Classifique cada uma das seguintes variáveis em: variável qualitativa nominal, variável qualitativa ordinal, variável quantitativa discreta ou variável quantitativa contínua. (cont.)

- 9. contato com areia e/ou terra na região peridomiciliar
- 10. número de lesões em um animal
- 11. RIFI-IgG (título e classificação: positiva ou negativa)
- 12. raça/cor de uma pessoa
- 13. ingestão de carne crua ou mal cozida
- 14. profissão

Gabarito

Gabarito[']

Questão 1:

- 1. Variável quantitativa contínua
- 2. Variável quantitativa contínua
- 3. Variável quantitativa discreta
- 4. Variável qualitativa (ou categórica) nominal
- 5. Variável qualitativa (ou categórica) nominal
- 6. Variável qualitativa (ou categórica) nominal
- 7. Variável qualitativa (ou categórica) nominal
- 8. Variável qualitativa (ou categórica) ordinal
- 9. Variável quantitativa contínua

Gabarito

Questão 2:

- Os dados ordinais representam informações com algum tipo de ordenação, como por exemplo: nível de escolaridade (fundamental, médio e superior).
- Enquanto os dados nominais são classificados em categorias ou classes não ordenadas, por exemplo: sexo, raça/cor. Tanto os dados ordinais quando os nominais não possuem importância em sua magnitude.

Gabarito

Questão 3:

- A vantagem consiste na facilidade de interpretação dos resultados, como por exemplo: transformar o IMC aferido em uma medida ordinal, classificando em abaixo do peso, normal, sobrepeso e obeso.
- A desvantagem está na perda de detalhes da informação.

Gabarito[']

Questão 4:

- 1. nível educacional variável qualitativa ordinal
- 2. peso (kg) variável quantitativa contínua
- 3. altura (cm) variável quantitativa contínua
- 4. idade (em anos completos) variável quantitativa discreta
- 5. glicemia (mg/dL) variável quantitativa contínua
- 6. colesterol sérico (mg/dL) variável quantitativa contínua
- 7. pressão sistólica (mmHg) variável quantitativa contínua

Gabarito

Questão 4: (cont.)

- 8. motivo do exame variável qualitativa nominal
- 9. contato com areia e/ou terra na região peridomiciliar variável qualitativa nominal
- 10. número de lesões em um animal variável quantitativa discreta
- 11. RIFI-IgG (título e classificação: positiva ou negativa) variável qualitativa nominal
- 12. raça/cor de uma pessoa variável qualitativa nominal
- 13. ingestão de carne crua ou mal cozida variável qualitativa nominal
- 14. profissão variável qualitativa nominal

Amostragem

Amostragem

Amostragem

- Amostra: subconjunto de unidades representativo da população de pesquisa, que pode ser constituída por indivíduos, animais, cepas, cobaias, regiões entre outros.
- Previamente à seleção da amostra, é preciso estabelecer o tamanho da amostra requerido para cumprir o objetivo da pesquisa.
- Define-se, então, o processo de amostragem que se refere à utilização de técnicas de amostragem, visando a representatividade da amostra e a redução dos custos.

Por que usar amostra?

- Custo e demora dos censos
- Populações muito grandes
- Impossibilidade física de examinar toda a população
- Comprovado valor científico das informações coletadas por meio de amostras

Resumindo as vantagens são: custo menor, menor tempo e objetivos mais amplos.

 Se os dados amostrais não forem coletados de maneira apropriada, eles podem ser de tal modo inúteis que nenhuma "manipulação" estatística poderá salvá-los.

- ERRO AMOSTRAL é a diferença entre um resultado amostral e o verdadeiro resultado populacional;
- Não podemos evitar a ocorrência do ERRO AMOSTRAL, porém podemos limitar seu valor através da escolha de uma amostra de tamanho adequado;
- Obviamente, o ERRO AMOSTRAL e o TAMANHO DA AMOSTRA seguem sentidos contrários. Quanto maior o tamanho da amostra, menor o erro cometido e vice-versa.

- Amostras desnecessariamente grandes acarretam desperdício de tempo e de dinheiro;
- Amostras excessivamente pequenas podem levar a resultados não confiáveis.

MODEL CALCULATIONS

"Garbage In-garbage Out" Paradigm

in. Diet. by Tribune Media Services. In

Características desejáveis de uma amostra

- Capacidade de generalizar estimativas da amostra para toda a população
- Menor erro amostral possível, dado o custo, tempo e restrições operacionais
- Capacidade de medir a precisão das estimativas

Tamanho da amostra

O tamanho da amostra depende:

- Margem de erro que o pesquisador admite em seus resultados;
- 2. Nível de confiança da estimativa;
- Quantidade (média, porcentagem, etc) da característica de interesse.

- A Estatística baseia-se na análise de dados coletados por intermédio da amostragem aleatória simples → toda unidade tem chance igual e independente de ser escolhida
- Na prática, entretanto, em virtude dos custos do trabalho de campo, é difícil a utilização da amostra aleatória simples.

- Amostragem Probabilística (aleatória): a probabilidade de um elemento da população ser escolhido é conhecida;
- Amostragem Não Probabilística (não aleatória): Não se conhece a probabilidade de um elemento da população ser escolhido para participar da amostra.

- Para obter uma amostra representativa da população, com a precisão requerida e os custos disponíveis para a pesquisa, são utilizadas técnicas de amostragem:
 - Amostragem aleatória simples
 - Amostragem sistemática
 - Amostragem estratificada
 - Amostragem por conglomerados
 - Amostragem em múltiplos estágios
 - Amostragem por conveniência

Amostragem Aleatória

Cada elemento da população tem a mesma chance de ser escolhido. Em geral utilizam-se computadores para gerar números de telefone aleatórios.

Amostragem Estratificada

Classificar a população em, ao menos, dois estratos e extrair uma amostra de cada um.

Amostragem Sistemática

Escolher cada elemento de ordem k.

Amostragem por Conglomerado

Dividir em seções a área populacional, selecionar aleatoriamente algumas dessas seções e tomar todos os elementos das mesmas.

- Amostragem aleatória: elementos são retirados ao acaso da população, sendo equivalente a um sorteio lotérico. Todo elemento tem igual probabilidade de ser selecionado.
- Os elementos podem ser escolhidos por diversos métodos: sorteio, tabelas de números aleatórios e uso de computadores.
- Vantagem: Maior facilidade na análise estatística.
- Desvantagens: Maior dificuldade na implementação prática da coleta de dados. Deve-se possuir uma lista dos elementos da população.

- Amostragem sistemática: ocorre quando os elementos da população encontram-se ordenados e a retirada é feita periodicamente.
- Vantagem: facilidade na determinação dos elementos que vão compor a amostra. Escolhe-se um ponto inicial e em seguida, seleciona-se cada k-ésimo (tal como cada 10°) elemento da população.

- Amostragem por conglomerados: começamos dividindo a área da população em seções (ou conglomerados); em seguida selecionamos algumas dessas seções e, finalmente, tomamos todos os elementos (ou uma amostra) das seções escolhidas.
- Vantagens: Maior facilidade prática e menor custo.
- Amostragem estratificada: subdividimos a população em, no mínimo, duas subpopulações que compartilham das mesmas características (ex: sexo) e, em seguida, extraímos uma amostra de cada estrato.
- Vantagens: Maior facilidade prática. Menor custo dependerá do tipo de inferência.

- Amostragem de conveniência (não probabilística):
 Utilizam-se resultados que já estão disponíveis ou são de fácil acesso.
- Os estatísticos têm muitas restrições ao uso de amostras por conveniência.
- Em alguns casos, as amostras de conveniência constituem a única maneira de estudar determinado problema.
- Desvantagens: Sem poder inferencial, n\u00e3o permite a utiliza\u00e7\u00e3o de t\u00e9cnicas estat\u00edsticas.

Desenhos de Estudo

Desenhos de Estudo

- A maioria dos estudos quantitativos pertencem claramente a uma dessas duas categorias gerais:
 - Observacionais
 - Experimentais

Estudos Observacionais

- Visa observar, registrar analisar e verificar a associação fenômenos ou fatos, sem interferir no ambiente analisado;
- Ou seja, o pesquisador não influencia (ou tenta não influenciar) nenhuma variável, mas apenas as mede e procura por relações (correlações) entre elas;
- Estudos Observacionais podem gerar hipóteses para experimentação.

Estudos Experimentais

Estudos Experimentais

- Os experimentos ou ensaios são pesquisas feitas em condições previamente especificadas (planejadas) com a finalidade de obtenção de possíveis relações causais (causa e efeito) entre variáveis;
- Por exemplo, se o pesquisador descobrir que sempre que muda a variável A então a variável B também muda, então ele poderá concluir que A "influencia" B;
- Por exemplo, aumentar artificialmente a pressão sanguínea e registrar o nível de colesterol;

O que é Estatística Experimental ?

- Segundo Ronald Fisher (1951), a estatística experimental é a parte da estatística aplicada aos dados provenientes de experimentos;
- O principal objetivo nas análises estatísticas em estudos experimentais é verificar se existe diferença entre os grupos de estudo (tratamentos). E se essa diferença é devida a fatores não controlados, que podem ser controlados ou não (aleatórios).

Exemplo de um estudo experimental

Um pesquisador deseja testar um novo tipo de tratamento homeopático no tratamento da dermatobiose em um determinado rebanho leiteiro. Ele selecionou cinco animais e realizou a contagem dos bernes dois períodos distintos, para verificar se o tratamento era eficaz. Obeserve os dados:

Depois
11
22
22
19
15

O tratamento de fato é eficaz ?

Princípios Básicos dos Estudos Experimentais

- Repetição;
- Aleatorização ou Causalização;
- Cegamento;
- Controle Local (ex: Blocos, Fatores, etc.)

Repetição

- Este princípio serve para atender com segurança os dados experimentais que serão utilizados os seus valores médios;
- O número ideal de repetições de um experimento depende de vários fatores (variabilidade do meio, número de tratamentos, recursos financeiro, físicos e humano);
- Quanto maior a variabilidade do meio, maior deverá ser o número de repetições.

Aleatorização

- É a designação aleatória das unidades experimentais aos tratamentos;
- É a etapa mais importante no experimento (Fisher R.A.);
- Serve para que os tratamentos utilizados não sejam subestimados ou superestimados, ou seja, não ter influência do pesquisador. A alocação feita de maneira similar aos tratamentos e tenderão portanto a se contrabalancearem.

Cegamento

- A unidade experimental / o pesquisador não tem acesso à identificação de qual nível de tratamento se trata;
- Evita que determinados grupos de tratamentos sejam mais ou menos privilegiados pelo pesquisador.

Controle Local

- São possíveis fatores que podem alterar os resultados do experimento;
- Ex: Será um local escolhido para o experimento, onde o mesmo venha a ter pouca influência ambiental (heterogeneidade ambiental) e que nos tratamentos haja homogeneidade (a exemplo de locais com mesma características, tais como o mesmo solo, mesma temperatura, mesma luminosidade e etc);

Etapas do Método Estatístico

Fases do Método Estatístico

- Definição do problema: consiste na formulação correta do problema (ex: formulação das pergunts a serem respondidas)
- 2. **Planejamento:** determinar o procedimento necessário para resolver o problema
- Coleta ou levantamento dos dados: consiste na obtenção dos dados referentes ao trabalho desejado.
- 4. **Apuração dos dados ou sumarização:** consiste em resumir os dados, através de uma contagem e agrupamento.
- Apresentação dos dados: pode ser de forma tabular ou gráfica
- Análise e interpretação dos dados: fase mais importante e mais delicada

Fases do Método Estatístico

