

Termodinámica (FIS1523) Gases ideales

Felipe Isaule felipe.isaule@uc.cl

Lunes 14 de Abril de 2025

Resumen clase anterior

- Definimos la calidad para mezclas saturadas.
- Revisamos las tablas termodinámicas para líquidos comprimidos y vapores sobrecalentados.

Clase 12: Gases ideales

- Ecuaciones de estado.
- Gases ideales.
- Ley de los gases ideales.

- Bibliografía recomendada:
- → Cengel (3.6).

Clase 12: Gases ideales

- Ecuaciones de estado.
- Gases ideales.
- Ley de los gases ideales.

Ecuaciones de estado

- Las tablas termodinámicas proporcionan información muy precisa respecto a las propiedades de una sustancia.
- Sin embargo, es más práctico tener ecuaciones que dicten cómo se relacionan las propiedades termodinámicas, incluso si sólo son aproximaciones.
- Tales ecuaciones son llamadas ecuaciones de estado.
- Usualmente relacionan propiedades tales como la temperatura, la presión, y el volumen.

Ecuaciones de estado

- La ecuación de estado más simple y conocida es la de un gas ideal.
- Sin embargo, la obtención de ecuaciones de estado es un tema importante en muchos sistemas físicos.
- Ejemplos:
 - Gases ideales cuánticos.
 - Gases ultrarelativistas.
 - → Materia nuclear.

Clase 12: Gases ideales

- Ecuaciones de estado.
- Gases ideales.
- Ley de los gases ideales.

- Como se postuló en clases anterior, en un gas las interacciones entre partículas son muy débiles.
- Un gas ideal corresponde a un gas teórico donde no existen interacciones entre sus partículas constituyentes.

- Los gases se comportan como gases ideales a temperaturas altas y presiones bajas. En tales condiciones
 - La energía potencial disminuye.
 - El tamaño de las partículas se vuelve insignificante con respecto a la separación entre ellas.
- Varios gases se comportan como gases ideales en condiciones cotidianas:
 - → Gases nobles, Oxígeno, Nitrógeno, Dióxido de Carbono.
- Sin embargo, el vapor de agua normalmente no se puede considerar un gas ideal.

- En este curso estudiamos gases ideales clásicos.
- Estos son gases que siguen la llamada **estadística de Maxwell-Boltzmann**.
- Sin embargo, a **temperaturas ultrabajas** se pueden estudiar **gases ideales cuánticos**.
 - → Gas ideal de Bose: Estadística de Bose-Einstein.
 - → Gas ideal de Fermi. Estadística de Fermi-Dirac.

Clase 12: Gases ideales

- Ecuaciones de estado.
- Gases ideales.
- Ley de los gases ideales.

Ley de los gases ideales

• La ecuación de estado de un gas ideal está dictada por la Ley de los gases ideales:

$$P\nu=RT,$$
 La temperatura debe estar en **Kelvins**.

donde P es la presión, ν es el volúmen específico, T es la temperatura, , y R es la **constante del gas**.

• La **constante** R es **diferente para cada gas**.

Sustancia	R, kJ/kg · K		
Aire	0.2870		
Helio	2.0769		
Argón	0.2081		
Nitrógeno	0.2968		

Moles

- Usualmente nos interesa trabajar con ciertas cantidades de sustancia.
- La cantidad de sustancia se suele medir en moles.
- Un mol de sustancia contiene un número de Avogadro de partículas N_A (átomos o moléculas).

1 mol
$$\longrightarrow$$
 $N_a = 6.02 \times 10^{23}$ partículas

• <u>Ejemplo</u>: En un mol de agua hay:

 N_a moléculas de H_2O

 $2N_a$ átomos de H

 N_a átomos de O

Moles

- La masa molar M corresponde a la masa de un mol.
- Entonces, la **masa total** m de una sustancia es:

$$m = nM$$
,

donde n es el **número de moles** en la sustancia.

• La masa molar de un **elemento** está dada por su **masa atómica relativa** A_r multiplicada por la **constante de masa molar** M_u :

$$M = A_r M_u,$$
 $M_u = 1 \text{ gr/mol.}$

 La masa molar de un compuesto está entonces dada por la suma de las masas molares de sus constituyentes.

Ejemplo 1:

• Encuentre la masa de 7.5x10²⁴ átomos de Arsénico, el que tiene una masa molar de 74.9 gr/mol.

Ejemplo 1:

• Encuentre la masa de 7.5x10²⁴ átomos de Arsénico, el que tiene una masa molar de 74.9 gr/mol.

La masa de un átomo de Arsénico:

$$m_{\rm As} = \frac{M}{N_A} = \frac{74.9 \text{ gr/mol}}{6.02 \times 10^{23} \text{ mol}^{-1}} = 1.24 \times 10^{-22} \text{ gr}$$

Entonces, la masa total:

$$m = 7.5 \times 10^{24} m_{\text{As}} = 7.5 \times 1.24 \times 10^{-22} \text{ gr}$$

$$\longrightarrow \boxed{m = 933 \text{ gr}}$$

Constante del gas

 La constante de un gas se determina a partir de

$$R = \frac{R_u}{M},$$

donde M es la masa molar y R_u es la **constante universal de los gases**. Su valor es:

$$R_u = 8.31447 \text{ kJ/kmol K}.$$

Masa molar, constante de gas y propiedades del punto crítico

Sustancia	Fórmula	Masa molar, <i>M</i> kg/kmol	Constante de gas, R kJ/kg · K*
Agua	H ₂ O	18.015	0.4615
Aire	_	28.97	0.2870
Alcohol etílico	C ₂ H ₅ OH	46.07	0.1805
Alcohol metílico	с́н _з ŏн	32.042	0.2595
Amoniaco	NH_3	17.03	0.4882
Argón	Ar	39.948	0.2081
Benceno	C ₆ H ₆	78.115	0.1064
Bromo	Br ₂	159.808	0.0520
<i>n</i> -Butano	C_4H_{10}	58.124	0.1430
Cloro	Cl ₂	70.906	0.1173
Cloroformo	CHCl₃	119.38	0.06964
Cloruro metílico	CH ₃ CI	50.488	0.1647
Criptón	Kr	83.80	0.09921
Diclorodifluorometano (R-12)	CCI ₂ F ₂	120.91	0.06876
Diclorofluorometano (R-21)	CHCl₂F	102.92	0.08078
Dióxido de carbono	CO ₂	44.01	0.1889
Dióxido de sulfuro	SO_2	64.063	0.1298
Etano	C_2H_6	30.070	0.2765
Etileno	C_2H_4	28.054	0.2964
Helio	He	4.003	2.0769
<i>n</i> -Hexano	C_6H_{14}	86.179	0.09647
Hidrógeno (normal)	H_2	2.016	4.1240
Metano	CH ₄	16.043	0.5182
Monóxido de carbono	CO	28.011	0.2968
Neón	Ne	20.183	0.4119
Nitrógeno	N_2	28.013	0.2968
Óxido nitroso	N ₂ O	44.013	0.1889
Oxígeno	O_2	31.999	0.2598
Propano	C_3H_8	44.097	0.1885
Propileno	C₃H ₆	42.081	0.1976
Tetracloruro de carbono	CCI ₄	153.82	0.05405
Tetrafluoroetano (R-134a)	CF ₃ CH ₂ F	102.03	0.08149
Triclorofluorometano (R-11)	CCI ₃ F	137.37	0.06052
Xenón	Xe	131.30	0.06332

Ley de los gases ideales

 Las definiciones anteriores nos permiten escribir la Ley de los gases ideales como

$$\frac{\nu = V/m}{mR = nR_u} \longrightarrow PV = nR_uT,$$

que es la forma usual en que se escribe.

También se puede escribir como

$$PV = mRT.$$

 $^{\circ}$ Muchas veces la constante universal se escribe simplemente como R, por lo que es importante fijarse con qué ecuación estamos trabajando.

Ejemplo 2:

Un globo esférico de 9m de diámetro se llena con helio a 27
 °C y 200 kPa. Determine la cantidad de moles y la masa del helio en el globo. Asuma un gas ideal.

Ejemplo 2:

Un globo esférico de 9m de diámetro se llena con helio a 27
 °C y 200 kPa. Determine la cantidad de moles y la masa del helio en el globo. Asuma un gas ideal.

Primero calculemos el volumen del globo:

$$V = \frac{4\pi}{3}r^3 = \frac{4\pi}{3}(4.5 \text{ m})^3 = 381 \text{ m}^3$$

Por ser un gas ideal, el número de moles:

$$n = \frac{PV}{R_u T} = \frac{200000 \text{ Pa } 381 \text{ m}^3}{(273 + 27)^{\circ} \text{K } 8314.47 \text{ J/kmol K}}$$

$$\longrightarrow \boxed{n = 30.6 \text{ kmol}}$$

Finalmente, la masa:

$$m = nM$$

$$= 30.6 \times 10^{3} \text{ mol} \times 4.003$$

$$\longrightarrow \boxed{m = 122.5 \text{ kg}}$$

Ley de los gases ideales

 Al trabajar con un gas ideal con masa fija, podemos relacionar dos estados mediante:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}.$$

• Esta ecuación nos permite **relacionar dos estados** en un **proceso** con **gases ideales**.

Ejemplo 3:

 La presión manométrica de un neumático de automóvil se mide como 210 kPa antes de un viaje, y 220 kPa después del viaje, en una ubicación donde la presión atmosférica es de 95 kPa. Suponiendo que el volumen del neumático permanece constante y la temperatura del aire antes del viaje es de 25 °C, determine la temperatura del aire en el neumático después del viaje. Asuma que el aire es un gas ideal.

Ejemplo 3:

• La presión manométrica de un neumático de automóvil se mide como 210 kPa antes de un viaje, y 220 kPa después del viaje, en una ubicación donde la presión atmosférica es de 95 kPa. Suponiendo que el volumen del neumático permanece constante y la temperatura del aire antes del viaje es de 25 °C, determine la temperatura del aire en el neumático después del viaje. Asuma que el aire es un gas ideal.

Primero calculamos las presiones absolutas:

$$P_1 = P_{\text{man},1} + P_{\text{atm}} = 210 \text{ kPa} + 95 \text{ kPa} = 305 \text{ kPa}$$

$$P_2 = P_{\text{man},2} + P_{\text{atm}} = 220 \text{ kPa} + 95 \text{ kPa} = 315 \text{ kPa}$$

Ahora utilizamos:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$T = 25$$
 °C
 $P_g = 210$ kPa

Felipe Isaule

Ejemplo 4:

• Un recipiente rígido cuyo volumen se desconoce está dividido en dos partes mediante una división. Un lado del recipiente contiene un gas ideal a 927 °C. El otro lado está al vacío y tiene un volumen del doble de la parte que contiene el gas. Posteriormente se quita la separación, y el gas se expande para llenar todo el recipiente. Por último, se aplica calor al gas hasta que la presión es igual a la presión inicial. Determine la temperatura final del gas.

Ejemplo 4:

Un recipiente rígido cuyo volumen se desconoce está dividido en dos partes mediante una división. Un lado del recipiente contiene un gas ideal a 927 °C. El otro lado está al vacío y tiene un volumen del doble de la parte que contiene el gas. Posteriormente se quita la separación, y el gas se expande para llenar todo el recipiente. Por último, se aplica calor al gas hasta que la presión es igual a la presión inicial. Determine la temperatura final del gas.

Tenemos dos instantes: inicial, final (recipiente lleno). En ambos tenemos un gas ideal.

Del enunciado:

$$P_1 = P_2$$

$$V_2 = 3V_1$$

Entonces:

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\frac{V_1}{T_1} = \frac{3V_1}{T_2} \longrightarrow T_2 = 3T_1$$

$$T_2 = 3(273 + 927)^{\circ} \text{K} = 3600^{\circ} \text{K}$$

$$\longrightarrow T_2 = 3327^{\circ} \text{K}$$

Resumen

- Hemos definido las ecuaciones de estado.
- Definimos el concepto de gas ideal.
- Enunciamos la Ley de gases ideales. También definimos los moles y la constante de gases ideales.
- Próxima clase:
 - → Factor de compresibilidad.