Q1 Processor Scheduling Concepts

8 Points

Below are some true/false conceptual questions on processor scheduling.

Q1.1 Round Robin

2 Points

Round Robin is a preemptive algorithm:

True

O False

Q1.2 I/O Queue

2 Points

The I/O queue is a priority queue that prioritizes on shorter jobs:

O True

False

Q1.3 FCFS

2 Points

One may experience a higher variance in response time for FCFS:

True

O False

Q1.4 Priority Scheduler

2 Points

Priority Scheduler prevents long-running computations from blocking shorter jobs:

True

O False

Q2 Shortest Remaining Time First (SRTF)

30 Points

Assume the scheduler uses the Shortest Remaining Time First (SRTF) algorithm. Consider the following three processes which each require **one** CPU burst followed by **one** I/O burst, followed by **one** final CPU burst. The scheduling starts at time TO.

Process ID	CPU burst #1 and #2	I/O burst
PO	3	1
P1	2	2
P2	1	3

Create a process diagram showing the current process on the CPU and the current process performing I/O at each unit of time. Download the template from Canvas, "Homework 6 - extra downloads" under Modules and fill out the process diagram. Attach a screenshot (PNG/JPG) of the complete template to the file attachment tab below.

For an example of what your table should look like, see "Homework 6 - extra downloads".

Answer (screenshot of table)

Q3 FCFS with Preemption

30 Points

Assume we schedule processes based on the FCFS with preemption algorithm and the process with the smallest ID takes higher priority *when breaking ties*. Consider the following three processes which each require **one** CPU burst followed by **one** I/O burst, followed by **one** final CPU burst.

Process ID	CPU burst #1	I/O burst	CPU burst #2
PO	1	1	2
P1	3	1	1
P2	2	2	1

Create a process diagram showing the current process on the CPU and the current process performing I/O at each unit of time. Download the template from Canvas, "Homework 6 - extra downloads" under Modules and fill out the process diagram. Attach a screenshot (PNG/JPG) of the complete template to the file attachment tab below.

For an example of what your table should look like, see "Homework 6 - extra downloads".

Answer (screenshot of table)

Q4 Waiting and Turnaround Times

32	Po	ints
		1111

The next question is regarding the Waiting Time and Turnaround Time for the Shortest Remaining Time First (SRTF) and FCFS with preemption algorithms shown in Questions 2 and 3.

Q4.1 Turnaround Time ((QZ)	1
-------------------------------	------	---

8 Points

What is the average turnaround time for the system in Question 2 (Round to 2 decimal places if needed)?

8.67

Q4.2 Waiting Time (Q2)

8 Points

What is the average waiting time for the system in Question 2 (Round to 2 decimal places if needed)?

2.67

Q4.3 Turnaround Time (Q3)

8 Points

What is the average turnaround time for the system in Question 3 (Round to 2 decimal places if needed)?

8

Q4.4 Waiting Time (Q3)

8 Points

What is the average waiting time for the system in Question 3 (Round to 2 decimal places if needed)?

3.33

Q4.5 Work

0 Points

If you would like partial credit in case of a wrong answer, include or attach your work here.

See attached files.

▼ H6 q2 work.jpg **L** Download

the process with the Smallest ID number will be scheduled first. * Note: The scheduler doesn't

Q3. FCFS w/ Preemption

consider I/o burst time. The scheduler's job is only Preemptive FCFS to optimize CPU usage.

from Homework 6. Fill out the table below with your answers for Q2,

Q4.3: System Turnaround time:

Turnaround time is how many jobs the CPU completes after a Certain amount of time has elapsed.

$$\left(t_{turnaround}\right)_{avg} = \frac{t_1 + t_2 + \dots + t_n}{n}$$

where n is the number of jobs.

$$\left(t_{\text{turnaround}}\right)_{\text{arg}} = \frac{t_{\text{Po}} + t_{\text{P2}} + t_{\text{P2}}}{3} = \frac{4 + 8 + 12}{3}$$

$$= \frac{24}{3} = 8 \text{ time units}$$

e= Process execution time

Amount of time the processor is running and is not working on a process after it arrives.

6 / 8 pts

2 / 2 pts

2 / 2 pts

0 / 2 pts

$$(t_{wait})_{avg} = \frac{(4-4) + (8-5) + (12-5)}{3} = \frac{0+3+7}{3}$$

= $\frac{10}{3} \approx 3.33$ time units

GRADED Homework 6 **STUDENT**

Eric Anders Gustafson

TOTAL POINTS

98 / 100 pts

QUESTION 1

1.4

Processor Scheduling Concepts 1.1 — Round Robin **1.2** — I/O Queue

2 / 2 pts 1.3 FCFS

