Quadratische Funktionen

D-Klasse Thema I

Wiederholung Lineare Funktionen

Quadratische Funktion

$$f(x) = x^2$$

• Erstelle eine Wertetabelle zu der Funktion $f(x) = x^2$ für die Werte x = -3 bis x = 3.

x	-3	-2	-1	0	1	2	3
$f(x) = x^2$							

- Zeichne den Graphen in ein Koordinatensystem. (1 Einheit = 1cm)
- Was fällt dir auf?

Die Normalparabel

Die einfachste quadratische Funktion hat die Gleichung $f(x) = x^2$. Ihr Graph heißt **Normalparabel**. Die Normalparabel ist nach oben geöffnet. Ihr tiefster Punkt (0|0) wird **Scheitelpunkt** genannt. Die y-Achse ist **Symmetrieachse**. Im Gegensatz zu Geraden nehmen die Werte der Parabel nicht gleichmäßig zu.

Gruppenaufgabe

Erstelle eine Wertetabelle zu folgenden Funktionen und zeichne sie in das Koordinatensystem der Normalparabel.

Gruppe A: $f(x) = 2x^2$

Gruppe B: $f(x) = 0.5x^2$

Gruppe C: $f(x) = -2x^2$

Gruppe D: $f(x) = -0.5x^2$

Der Öffnungsfaktor a

Ist die **Parabel** schmaler als eine Normalparabel, so bezeichnet man sie als **gestreckt**.

Verläuft die **Parabel** jedoch flacher als eine Normalparabel, bzw. ist sie weiter oder breiter als eine Normalparabel

Übung "Öffnungsfaktor a"

Faktor	Beispiel	Öffnung	Form der Parabel
a > 1	$f(x) = 3 x^2$		
a = 1			
0 < a < 1			
-1 < a < 0			
a = -1			
a = -1 a < -1			