11) Begining point (2,5) (5,8) (4,9) as initial cluster centers

		Oshla	1	1	(01.0	1
	_	Points	(2,5)	(2(5,8)	(3(4,4)	
	1	(2,10)	25	13	5	C3
	2	(2,5)	0	18	20	CI
	3	(814)	37	25	41	C2
	4	(5,9)	25	1	1	C3
1	5	(7,5)	25	13	25	C 2
F	6	(6,4)	17	17	2)	CI
1	Y	(112)	10	52	58	CI
1	8	(419)	20	2	0	C3
+	9	(10,10)	89	29	37	C2

[C1] Old (enteroid: (2,5) Point: (2,5), (6,4) (1,2) New Centeroid: (3,3.6)

[2] Old Centeroid (5,8).
Points: (8,4)(7,5)(10,10)
New Centeroid: (8.3,6.3)

[3]: Old Centeroid: (4,9)
Points: (4,9)(2,10)(5,9)
New Centeroid: (3.6,9.3)

(Euclidean distance) is used, between claster center and point to min distance is valuster belonging

		1 - 15	12 / ///	Le. (1) 1 (1)			
111)		Points	c1 (3,3·6)	(2(8.3,63)	(3.6,93		
	1	(2,10)	41.96	5338	3.05	c 3	(C1) Old Centeroid: (3,3.6) Points: (2,5)(6,4)(1,2)
	2	(2,5)	2.96	41.38	21:05	C1	New Centeroid: (3,3.6)
	3	(8,4)	25.16	5.38	47.45	(2	
	4	(5,9)	33.16	18-18	2.05	(3	Points: (8,4)(7,5)(10,10)
	5	(7,5)	17.96	2.38	30.05	(2	New Centeroid: (8.3,6.3)
	6	(6,4)	9.16	10.28	33.85	CI	(B) Old Cenkroid: (3.6,9.3)
	Y	(112)	6-56	71.78	60.05	CI	Points: (2,10) (8,9) (4,9)
	8	(419)	30-16	25.78	0.25	(3	New Centeroid: (3.6, 9.3)
	1	(10,10)	89.96	16.58	41.45	(2	Above are resulting centers and
							resulting dusters final

Question B PI P3 P2 Pa 75 PI 1 0.10 P2 0.41 0.64 047 0.44 1 0.55 P4 0.35 698 0.85 0.76 1 PS 1, (P2, P5) Single (max) Complete (minimum) (notrophoan) (P2,P5) PI Pq P4 (P2, P5) P3 PI PI PI P3 0.41 P3 1 0.41 0.44 0.55 P4 P4 0.55 0.44 1 0.35 (0.85) 0.76 (P2, (P2,P5) 0.35 0.64 0.44 P5) ((P2,P5), P3) ((P2,P5), P3) P4 ((P2,P5), P3) PI ((P2,P5), P3) Pa PI P4 6.55) P4 1 0.55 ((P2, P5), P3) 0.34 0.44 ((P2,P8),P3) 0.41 (0.76 ((P2,P5),P3)(P1,P4) ((P2,P5),P3),P4) (P1, P4) (P21P5),P3)

(((P2,P5),P3),P4)

PI

((P2,P5),P3),P4) 0.41

(P1,P4)

((P2,P5),P3) 0.35

Scanned by CamScanner	~ .		~ ~
Scarnica by Carriscarnic	Scanned	by	CamScannei

Questanc

one-dimensional: {6,12,18,24,25,28,30,42,48}

(1:15

- 18

$$\frac{(1.48)^{2}}{(1.8-7.5)^{2}+(12-7.5)^{2}+($$

$$-6$$
 -24 -12 -25

28

- 48

Centeroids

C1'.5 (6)

centeroids of the In this way both clusters keep moving until

born me clusters are stable.

e1: 6056 (6,12) 10,

c1: 9 (6,12,18)

C2: 30.41 (24,25,28,30) 42,48)

	9 8	inc	ale	l'in-	k d	uster	ine																		
	The	2	twi	00	luste	rs p	mode	Lleo	la	re		((28,	30).	25).	16	. 1	2)	. (19	8.	24	1)	7
			6	12	24	25	28	31	0 4	2 4	-8	18				~ 7	(, .		, `		,	•	11	J
	6	0	-	-					-	1		7													
	24	6		0	0				-	4		1													
	25			12	0	0				1		+													
	28			16	4	3	0					-													
	30			18	6	5	2	0				+													
	42			30	18	17	14	12	0		_	1													
	48	4	2.	36	24	23	20	18		6		1													
	18	13	2	6	6	7	10	12	24	36	3	0													
1										1		-	†												
-			6	12	18	2.8	30		42	48	1	(24,	25)												
-	6		0				-	-			1														
	12		6	0																					
1.	18		12	6	0							44													
0	28		22	16	10	0			181																
	30		24	18	12	2	0						# 2												
	42	T.	36	30	24	14	12	0																	
1	48	1	42	36	30	20	18	36	6	0															

23 0

(24,25) 18 (3

5

17

3

6

	6	12	18	42	48	(24,25)	(28,30)				
6	0										
12	6	0									
_18	12	6	0								
_42	36	30	24	0							
48	42	36	30	6	0	N House					
(24,25)	18	13	6	17	23	0					
(28,30)	22	16	10	12	18	(3)	0				
	1			,			7				
	6	12	18	42	48	((24,25),(28,30))				
_ 6	0										
12	(b)	0					ï				
18	12	6	0								
42	36	30	24	0							
48	42	36	30	6.	0		1				
(24,25),	18	13	6	12	18	0	der en				
-		•	1		1/						
((6,12),18) (42,48) ((24,25) (26,30))											
(6,12),18)		0									
(42,48)		24		0							
(26,25), (6) 12											
							-				

	(12,48)	×
(42,48)	0	
[(24,25),18), $(24,25),$ $(28,30)]$	[12]	0

- d) Whim produced more natural clustering in this case
- e) k means trijes to stabalize the clusters by constantly shifting centeroid and changing clusters to reduce errors and become Stable.

Part II

Question D

1. Naive Baye's

$$P((=1|+)=4/5=08$$

$$P(A=0|+) = 2/5 = 0.4$$

$$P(B=0|+) = 4/5 = 0.8$$

$$P((=0|+)=1/5=0.2$$

$$P(+|A=1,B=1,C=0) = P(A=1,B=1,C=0) + P(+)$$

$$P(A=1,B=1,C=0)$$

$$= \frac{P(A=1|+) \cdot P(B=1|+) \cdot P((=0|+) \cdot P(+))}{P(A=1,B=1,C=0)}$$

$$= \frac{0.6 \pm 0.2 \pm 0.2 \pm 0.5}{P(A=1, B=1, C=0)} = 0.012/p(A=1, B=1, C=0)$$

$$P(-|A=1,B=1,C=0) = P(A=1,B=1,C=D|-).P(-1)$$

$$= P(A=1|-) \cdot P(B=1|-) \cdot P(c=0|-) \cdot P(-)$$

$$P(A=1|+) = (3+2)/(5+4) = 5/q = 0.55$$

$$P(A=1|+) = (2+2)/(5+4) = 4/q = 0.44$$

$$P(B=1|+) = (2+2)/(5+4) = 3/q = 0.23n_c = number of times AAB$$

$$P(B=1|+) = (2+2)/(5+4) = 3/q = 0.44 \text{ happened}$$

$$P(C=0|+) = (1+2)/(5+4) = 3/q = 0.44 \text{ happened}$$

$$P(C=0|+) = (1+2)/(5+4) = 3/q = 0.35 \text{ number of times happened}$$

$$P(C=0|-) = (0+2)/(5+4) = 2/q = 0.22$$

$$P(A=1, B=1, C=0) = 40.$$

$$P(A=1, B=1, C=0) = \frac{P(A=1, B=1, C=0|+) \cdot P(+)}{P(A=1, B=1, C=0)}$$

$$= \frac{P(A=1|+) \cdot P(B=1|+) \cdot P(C=0|+) \cdot P(+)}{P(A=1, B=1, C=0)}$$

$$= \frac{P(A=1|+) \cdot P(B=1|+) \cdot P(C=0|+) \cdot P(+)}{P(A=1, B=1, C=0)}$$

$$= \frac{P(A=1, B=1, C=0)}{P(A=1, B=1, C=0)} = \frac{P(A=1, B=1, C=0)}{P(A=1, B=1, C=0)}$$

$$= \frac{P(A=1|-) \cdot P(B=1|-) \cdot P(C=0|-) \cdot P(C)}{P(A=1, B=1, C=0)}$$

P(A=1, B=1, (=0) = 0.021296/K
This belongs to class [+ve]

= 0.44 + 0.44 + 0.22 + 0.5 = 0.042592 xos

E when one of the conditional probabilities is zero, the estimate for Scanditional probabilities using mestimate probabilities in zero, the estimate for its better, since we don't want the entire expression to become

Zero.

9	ē. Deci	siou Tr	æ.		Information Gain Heweistics Using Entropy.						
Ī	×1	X2	XZ	×	$E_{x}[I(x)] = -\sum_{x \in X} p(x) \cdot log p(x)$						
	a	C	K	-1	E(Target) = - [P(+1).log p(+1) + P(+1).log p(+1)]						
	9	ω	K	-1							
	6	ω	٧	+1	$E(\text{Target}) = -[(\frac{5}{11})\log_2(\frac{5}{11}) + (\frac{6}{11})\log_2(\frac{6}{11})]$						
-	9	C	٧	+1							
	6	w	k	-1	E(Target) = 0.994						
	a	C	S	+1	Olnformation Gain for XI:						
	6	ω	S	+1	IG(X) = E(Target) - E(Adrget, A)						
	9	U	4	-1							
	b	C	V	-1	$E(Tavget_{AK}) = P(a) \cdot E(a) + P(b) \cdot E(b).$						
	6	С	5	+1	E(0) = - [P(4) log P(4) + P(6): log P(6)]						
-	b	8	À	-1	$= -\left[(3/5) \cdot \log_2(3/5) + (2/5) \log_2(2/5) \right]$						
					= 0.97 E(6) = -[p(+ve)log p(+ve) + p(-ve).log p(-ve)]						
					$E(b) = -[P(+ve) \log P(ve) + (3/c) \cdot \log_2(3/c)]$						
					$= -[(3/6) \log_2(3/6) + (3/6) \cdot \log_2(3/6)]$						
	$E(Target, A) = P(a) \cdot E(a) + P(b) \cdot E(b)$										
	$=\frac{5}{11} \times 0.97 + \frac{6}{11} \times 1$										
	= 0.980										
					IG(X) = E(Target) - E(Target, X)						
					$= 0994 - 0.986 = 8.5 \times 10^{-3} = 0.85 \times 10^{-2}$						

DInformation Gain for 12 IG(x2) = E(Target) - E (Target, x2) $E(\operatorname{Target}, X_2) = P(c) \cdot E(c) + P(g) \cdot E(g) + P(v) \cdot E(v) + P(\omega) \cdot E(\omega)$ E(c) = - [Pfre(c)+log_P+re(c) + Pfre(c) + log_P-re(c)] $= -\left[\frac{3}{5} \cdot \log_2 \frac{3}{5} + \frac{2}{5} \log_2 \frac{2}{5}\right] = 0.961$ E(g) = -[P+re(g).log_P+re(g) + P_(g).log_P-(g)] = -[0+ - 1.09 -]=0 E(U) = -[P+(U). log_ P+(U) + P_(U). log_ P_(U)] = - [0+ - 109, -] = 0 $E(\omega) = -\left[P_{+}(\omega), \log_{2}P_{+}(\omega) + P_{-}(\omega), \log_{2}P_{-}(\omega)\right]$ $= -\left[\frac{2}{4}\log_{2}\frac{2}{4} + \frac{2}{4}\log_{2}\frac{2}{4}\right] = 1$ $E(\text{Target}, \chi_2) = \frac{5}{11}.(0.961) + 0 + 0 + \frac{4}{11}.(1) = 0.800 = 80 \times 10^{-2}$ $FTG(x_2) = 0.994 - 0.800 = 0.193 = 19.3 \times 10^{-2}$ 1 Information Gain for X3 IG(x3) = E(Target) - E(Target, x3). E (Target, x3) = P(K). E(K) + P(S). E(S). + P(Y). E(V).

$$E(K) = -[P_{+}(K).log_{2}P_{+}(K) + P_{-}(K).log_{3}P_{-}(K)] = -[\frac{0}{3} + \frac{3}{3}log_{3}^{2}] = 0$$

$$E(s) = -[P_{+}(s).log_{2}P_{+}(s) + P_{-}(s).log_{2}P_{-}(s)] = -[\frac{9}{3}log_{23}^{3} + 0] = 0$$

IG(x3) = E(Target) - E (Target, x3) = 0994 - 0.436 = 0.557 = 65.7 x 10-2

$$IG(x_1) = 0.85 \times 10^{-2}$$

 $IG(x_2) = 14.3 \times 10^{-2}$
 $IG(x_3) = 56.7 \times 10^{-2}$

x3 is highest Information Gain. Hence, it will be the head of Decision tree.

						-
1	×1	X2	×3	X ₄	7	Pred
1	Ь	170	f	d	1	-1
1	9	150	f	d	+1	+1
1	Ь	60	4	d	+1	-1
L	ь	80	9			-1

Accoracy = \$ x100 = \$ \$ \$ 66%.

Accoracy is 66 %.