计算机系统结构 富州自

习题3.10

 \bullet 有一个5段流水线,各段执行时间均为 Δt ,其预约表如下

时间 功能段	1	2	3	4	5	6	7
S1	$\sqrt{}$						$\sqrt{}$
S2		$\sqrt{}$			$\sqrt{}$		
S3			√	√			
S4				√			√
S5					$\sqrt{}$	$\sqrt{}$	

- (1)画出流水线任务调度的状态转移图。
- (2)分别求出允许不等时间间隔调度和等时间间隔调度的两种 最优调度策略,以及这两种调度策略的流水线最大吞吐率。
- (3)若连续输入10个任务, 求这两种调度策略的流水线实际吞 吐率和加速比。

计算机系统结构 圖 WD

习题3.10

▲1) 由预约表得出禁止表: F= {6, 3, 1}

为避免争用S1段,禁用启动距离: 6;为避免争用S2段,禁用启动距离: 1;为避免争用S4段,禁用启动距离: 3;为避免争用S5段,禁用启动距离: 1。

由禁止表得到出事冲突向量: $C_0 = (100101)$,由初始冲突向量和后继冲突向量的计算公式 $C_j = SHR^{(k)}(C_1) \lor C_0$,得状态转移图加下。

计算机系统结构 富州色

习题3.10

(2) 由状态转移图可得不发生段争用冲突的调度策略以及 平均延迟时间如下所示。

调度策略	平均延迟时间	调度策略	平均延迟时间
(2,2,5)	3∆ <i>t</i>	(4,5)	4.5∆ <i>t</i>
(2,5)	3.5∆ <i>t</i>	(5)	5∆ <i>t</i>
(4)	<i>4∆t</i>		

- ◆由上可知,允许不等时间间隔调度的最优调度策 略是(2,2,5),流水线最大吞吐率为: $1/3\Delta t$ 。
- ◆等时间间隔的调度的最优调度策略是(4),流水线 最大吞吐率为: $1/4\Delta t$ 。

计算机系统结构 富州色

习题3.10

3) 按调度策略(2,2,5), 连续输入10个任务的流水线实际 吞吐率与加速比分别为:

$$TP_1 = \frac{10}{(2+2+5+2+2+5+2+2+5+7)\Delta t} = \frac{10}{34\Delta t}$$
$$S_1 = \frac{10*7\Delta t}{34\Delta t} = 2.06$$

按调度策略(4), 连续输入10个任务:

$$TP_2 = \frac{10}{(4*9+7)\Delta t} = \frac{10}{43\Delta t}$$
$$S_2 = \frac{10*7\Delta t}{43\Delta t} = 1.63$$