# Fundamental Data Mining Algorithms

Weinan Zhang

Shanghai Jiao Tong University

http://wnzhang.net

# What is Data Mining?

 Data mining is about the extraction of non-trivial, implicit, previously unknown and potentially useful principles, patterns or knowledge from massive amount of data.

- Data Science is the subject concerned with the scientific methodology to properly, effectively and efficiently perform data mining
  - an interdisciplinary field about scientific methods, processes, and systems

# A Typical Data Mining Process



Service new round operation

- Data mining plays a key role of enabling and improving the various data services in the world
- Note that the (improved) data services would then change the world data, which would in turn change the data to mine

#### **REVIEW**

# An Example in User Behavior Modeling

| Interest | Gender | Age | BBC Sports | PubMed | Bloomberg<br>Business | Spotify |
|----------|--------|-----|------------|--------|-----------------------|---------|
| Finance  | Male   | 29  | Yes        | No     | Yes                   | No      |
| Sports   | Male   | 21  | Yes        | No     | No                    | Yes     |
| Medicine | Female | 32  | No         | Yes    | No                    | No      |
| Music    | Female | 25  | No         | No     | No                    | Yes     |
| Medicine | Male   | 40  | Yes        | Yes    | Yes                   | No      |

Expensive data

Cheap data

#### A 7-field record data

- 3 fields of data that are expensive to obtain
  - Interest, gender, age collected by user registration information or questionnaires
- 4 fields of data that are easy or cheap to obtain
  - Raw data of whether the user has visited a particular website during the last two weeks, as recorded by the website log

#### **REVIEW**

# An Example in User Behavior Modeling

| Interest | Gender | Age | BBC Sports | PubMed | Bloomberg<br>Business | Spotify |
|----------|--------|-----|------------|--------|-----------------------|---------|
| Finance  | Male   | 29  | Yes        | No     | Yes                   | No      |
| Sports   | Male   | 21  | Yes        | No     | No                    | Yes     |
| Medicine | Female | 32  | No         | Yes    | No                    | No      |
| Music    | Female | 25  | No         | No     | No                    | Yes     |
| Medicine | Male   | 40  | Yes        | Yes    | Yes                   | No      |

Expensive data

Cheap data

Deterministic view: fit a function

Age = f(Browsing=BBC Sports, Bloomberg Business)

• Probabilistic view: fit a joint data distribution

p(Interest=Finance | Browsing=BBC Sports, Bloomberg Business)
p(Gender=Male | Browsing=BBC Sports, Bloomberg Business)

## Content of This Lecture

Prediction 
$$X \Rightarrow Y$$

- Frequent patterns and association rule mining
  - Apriori
  - FP-Growth algorithms

- Neighborhood methods
  - K-nearest neighbors

# Frequent Patterns and Association Rule Mining

This part are mostly based on Prof. Jiawei Han's book and lectures

<a href="http://hanj.cs.illinois.edu/bk3/bk3">http://hanj.cs.illinois.edu/bk3/bk3</a> slidesindex.htm
<a href="https://wiki.cites.illinois.edu/wiki/display/cs512/Lectures">https://wiki.cites.illinois.edu/wiki/display/cs512/Lectures</a>

#### **REVIEW**

# A DM Use Case: Frequent Item Set Mining



#### Some intuitive patterns:

{milk, bread, butter} {onion, potatoes, beef}

#### Some non-intuitive ones:

{diaper, beer}

#### **REVIEW**

## A DM Use Case: Association Rule Mining



| WRAPPING PAPER     | 0.99        |
|--------------------|-------------|
| INSTANT COFFEE GOL | D 1.99      |
| INSTANT COFFEE GOL | D 1.99      |
| ORANGE JUICE 1.5L  | 0.79        |
| ORANGE JUICE 1.5L  | 0.79        |
| RICE CRACKERS SALT | 0.29        |
| RICE CRACKERS SALT | 0.29        |
| PLAIN MARGARINE    | 0.44        |
| GARDEN GLOVES      | 1.49        |
| FREE RANGE EGGS    | 1.05        |
| ASSORTED MUESLI    | 1.49        |
| COOKIES            | 1.05        |
| MACARONI           | 0.42        |
| BUTTERM'LK DESSERT | 0.29        |
| BUTTERMILK DESSERT | 0.29        |
| BUTTERMILK DESSERT | 0.29        |
| BUTTERMILK DESSERT | 0.29        |
|                    | TOTAL 14.23 |
|                    | CASH 20.00  |
| C                  | HANGE 5.77  |
| *THANK YOU AND O   | GOODBYF*    |

#### Some intuitive patterns:

 $\{\text{milk, bread}\} \Rightarrow \{\text{butter}\}\$  $\{\text{onion, potatoes}\} \Rightarrow \{\text{burger}\}\$ 

#### Some non-intuitive ones:

 $\{\text{diaper}\} \Rightarrow \{\text{beer}\}$ 

# Frequent Pattern and Association Rules

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- Association rule:
  - Let  $I = \{i_1, i_2, ..., i_m\}$  be a set of m items
  - Let  $T = \{t_1, t_2, ..., t_n\}$  be a set of transactions that each  $t_i \subseteq I$
  - An association rule is a relation as

$$X \rightarrow Y$$
, where  $X, Y \subset I$  and  $X \cap Y = \emptyset$ 

- Here X and Y are itemsets, could be regarded as patterns
- First proposed by Agrawal, Imielinski, and Swami in the context of frequent itemsets and association rule mining
  - R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93

# Frequent Pattern and Association Rules

- Motivation: Finding inherent regularities in data
  - What products were often purchased together?— Beer and diapers?!
  - What are the subsequent purchases after buying a PC?
  - What kinds of DNA are sensitive to this new drug?
  - Can we automatically classify web documents?

### Applications

 Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

# Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
  - Association, correlation, and causality analysis
  - Sequential, structural (e.g., sub-graph) patterns
  - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
  - Classification: discriminative, frequent pattern analysis
  - Cluster analysis: frequent pattern-based clustering
  - Data warehousing: iceberg cube and cube-gradient
  - Semantic data compression: fascicles
  - Broad applications

# Basic Concepts: Frequent Patterns

| Tid | Items bought                     |  |
|-----|----------------------------------|--|
| 1   | Beer, Nuts, Diaper               |  |
| 2   | Beer, Coffee, Diaper             |  |
| 3   | Beer, Diaper, Eggs               |  |
| 4   | Nuts, Eggs, Milk                 |  |
| 5   | Nuts, Coffee, Diaper, Eggs, Milk |  |



- itemset: A set of one or more items
- k-itemset  $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contain X (i.e., the probability that a transaction contains X)
- An itemset X is frequent if X's support is no less than a minsup threshold

# Basic Concepts: Association Rules

| Tid | Items bought                     |  |  |
|-----|----------------------------------|--|--|
| 1   | Beer, Nuts, Diaper               |  |  |
| 2   | Beer, Coffee, Diaper             |  |  |
| 3   | Beer, Diaper, Eggs               |  |  |
| 4   | Nuts, Eggs, Milk                 |  |  |
| 5   | Nuts, Coffee, Diaper, Eggs, Milk |  |  |



- Find all the rules X → Y
   with minimum support and
   confidence
  - support, s, probability that a transaction contains X ∪ Y

$$s = \frac{\#\{t, (X \cup Y) \subset t\}}{n}$$

 confidence, c, conditional probability that a transaction having X also contains Y

$$c = \frac{\#\{t, (X \cup Y) \subset t\}}{\#\{t, X \subset t\}}$$

# Basic Concepts: Association Rules

| Tid | Items bought                     |  |
|-----|----------------------------------|--|
| 1   | Beer, Nuts, Diaper               |  |
| 2   | Beer, Coffee, Diaper             |  |
| 3   | Beer, Diaper, Eggs               |  |
| 4   | Nuts, Eggs, Milk                 |  |
| 5   | Nuts, Coffee, Diaper, Eggs, Milk |  |



- Set the minimum thresholds
  - *minsup* = 50%
  - *minconf* = 50%
- Frequent Patterns:
  - Beer:3, Nuts:3, Diaper:4, Eggs:3
  - {Beer, Diaper}:3
- Association rules: (many more!)
  - Beer  $\rightarrow$  Diaper (60%, 100%)
  - Diaper  $\rightarrow$  Beer (60%, 75%)
  - Nuts → Diaper (60%, 100%)
  - Diaper → Nuts (80%, 50%)
  - ..

## Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of subpatterns, e.g.,  $\{i_1, ..., i_{100}\}$  contains  $\binom{1}{100} + \binom{1}{100} + ... + \binom{1}$
- Solution: Mine closed patterns and max-patterns instead
- An itemset X is closed if X is frequent and there exists no super-pattern  $Y \supset X$ , with the same support as X
  - proposed by Pasquier, et al. @ ICDT'99
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern  $Y \supset X$ 
  - proposed by Bayardo @ SIGMOD'98
- Closed pattern is a lossless compression of freq. patterns
  - Reducing the # of patterns and rules

# Closed Patterns and Max-Patterns

- Exercise. DB =  $\{\langle i_1, ..., i_{100} \rangle, \langle i_1, ..., i_{50} \rangle\}$ 
  - min\_sup = 1.
- What is the set of closed itemset?
  - $\langle a_1, ..., a_{100} \rangle : 1$
  - <*a*<sub>1</sub>, ..., *a*<sub>50</sub>>: 2
- What is the set of max-pattern?
  - <*a*<sub>1</sub>, ..., *a*<sub>100</sub>>: 1
- What is the set of all patterns?
  - !!

# The Downward Closure Property and Scalable Mining Methods

- The downward closure property of frequent patterns
  - Any subset of a frequent itemset must be frequent
  - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
  - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
  - Apriori
    - R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94
  - Frequent pattern growth (FP-growth)
    - J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD'00

## Scalable Frequent Itemset Mining Methods

Apriori: A Candidate Generation-and-Test Approach

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94

FPGrowth: A Frequent Pattern-Growth Approach without candidate generation

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD'00

### Apriori: A Candidate Generation & Test Approach

 Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!

#### Method:

- Initially, scan data once to get frequent 1-itemset
- Generate length (k+1)-sized candidate itemsets from frequent k-itemsets
- Test the candidates against data
- Terminate when no frequent or candidate set can be generated

# The Apriori Algorithm—An Example

Database

 $Sup_{min} = 2$ 

| Tid | Items      |  |
|-----|------------|--|
| 10  | A, C, D    |  |
| 20  | B, C, E    |  |
| 30  | A, B, C, E |  |
| 40  | B, E       |  |

|                 | $C_1$ |
|-----------------|-------|
| 1 <sup>st</sup> | scan  |

| Itemset | sup |
|---------|-----|
| {A}     | 2   |
| {B}     | 3   |
| {C}     | 3   |
| {D}     | 1   |
| {E}     | 3   |

| $L_1$   | Itemset | sup |
|---------|---------|-----|
|         | {A}     | 2   |
|         | {B}     | 3   |
| <b></b> | {C}     | 3   |
|         | {E}     | 3   |

| $L_2$ | Itemset | sup |
|-------|---------|-----|
|       | {A, C}  | 2   |
|       | {B, C}  | 2   |
|       | {B, E}  | 3   |
|       | {C, E}  | 2   |

| $C_2$    | Itemset | sup |
|----------|---------|-----|
|          | {A, B}  | 1   |
|          | {A, C}  | 2   |
| <b>—</b> | {A, E}  | 1   |
|          | {B, C}  | 2   |
|          | {B, E}  | 3   |
|          | {C, E}  | 2   |

| $c_2$                | Itemset |
|----------------------|---------|
|                      | {A, B}  |
| 2 <sup>nd</sup> scan | {A, C}  |
|                      | {A, E}  |
|                      | {B, C}  |
|                      | {B, E}  |
|                      | {C, E}  |

| $C_3$ | Itemset   |  |
|-------|-----------|--|
|       | {B, C, E} |  |

| 3 <sup>rd</sup> scan | L |
|----------------------|---|
| _                    |   |

| Itemset   | sup |
|-----------|-----|
| {B, C, E} | 2   |

# The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
L_k: frequent itemset of size k
L_1 = \{ frequent items \};
for (k = 1; L_k != \emptyset; k++) do
  C_{k+1} = candidates generated from L_k;
  for each transaction t in database do
      increment the count of all candidates in C_{k+1} that are contained
       in t;
   end
   L_{k+1} = candidates in C_{k+1} with min_support;
end
return \bigcup_k L_k;
```

# Implementation of Apriori

- How to generate candidates?
  - Step 1: self-joining  $L_k$
  - Step 2: pruning
- Example of candidate generation
  - *L*<sub>3</sub>={*abc, abd, acd, ace, bcd*}
  - Self-joining:  $L_3 \times L_3$ 
    - abcd from abc and abd
    - acde from acd and ace
  - Pruning:
    - acde is removed because ade is not in L<sub>3</sub>
  - $C_{\Delta} = \{abcd\}$

# How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
  - The total number of candidates can be very huge
  - One transaction may contain many candidates
- Method:
  - Candidate itemsets are stored in a hash-tree
  - Leaf node of hash-tree contains a list of itemsets and counts
  - Interior node contains a hash table
  - Subset function: finds all the candidates contained in a transaction

# Counting Supports of Candidates Using Hash Tree



## Scalable Frequent Itemset Mining Methods

Apriori: A Candidate Generation-and-Test Approach

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94

FPGrowth: A Frequent Pattern-Growth Approach without candidate generation

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD'00

### Construct FP-tree from a Transaction Database

| <u>TID</u> | Items bought             | (ordered) frequent items |                 |
|------------|--------------------------|--------------------------|-----------------|
| 100        | {f, a, c, d, g, i, m, p} | {f, c, a, m, p}          |                 |
| 200        | {a, b, c, f, l, m, o}    | {f, c, a, b, m}          |                 |
| 300        | {b, f, h, j, o, w}       | {f, b}                   | min_support = 3 |
| 400        | {b, c, k, s, p}          | {c, b, p}                |                 |
| 500        | {a, f, c, e, l, p, m, n} | {f, c, a, m, p}          | <b>{}</b>       |

- Scan DB once, find frequent 1-itemset (single item pattern)
- Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree



# Partition Patterns and Databases

• Frequent patterns can be partitioned into subsets according to f-list

- F-list = *f-c-a-b-m-p*
- Patterns containing p
- Patterns having m but no p
- Patterns having b but no m nor p
- ...
- Patterns having c but no a nor b, m, p
- Pattern f
- Completeness and non-redundency



### Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern base



#### **Conditional** pattern bases

| <u>item</u> | cond. pattern base |
|-------------|--------------------|
| С           | f:3                |
| а           | fc:3               |
| b           | fca:1, f:1, c:1    |
| m           | fca:2, fcab:1      |
| p           | fcam:2, cb:1       |

## Recursion: Mining Each Conditional FP-tree



# Benefits of the FP-tree Structure

### Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction

#### Compactness

- Reduce irrelevant info—infrequent items are gone
- Items in frequency descending order: the more frequently occurring, the more likely to be shared
- Never be larger than the original database

## Performance of FPGrowth in Large Datasets



FP-Growth vs. Apriori

## Advantages of the Pattern Growth Approach

#### Divide-and-conquer

- Decompose both the mining task and DB according to the frequent patterns obtained so far
- Lead to focused search of smaller databases

#### Other factors

- No candidate generation, no candidate test
- Compressed database: FP-tree structure
- No repeated scan of entire database
- Basic operations: counting local frequent items and building sub FP-tree, no pattern search and matching
- A good open-source implementation and refinement of FPGrowth
  - FPGrowth+: B. Goethals and M. Zaki. An introduction to workshop on frequent itemset mining implementations. Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003

## Content of This Lecture

Prediction 
$$X \Rightarrow Y$$

- Frequent patterns and association rule mining
  - Apriori
  - FP-Growth algorithms

- Neighborhood methods
  - K-nearest neighbors

# K Nearest Neighbor Algorithm (KNN)

- A non-parametric method used for data prediction
  - For each input instance x, find k closest training instances  $N_k(x)$  in the feature space
  - The prediction of x is based on the average of labels of the k instances

$$\hat{y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

 For classification problem, it is the majority voting among neighbors

$$p(\hat{y}|x) = \frac{1}{k} \sum_{x_i \in N_k(x)} 1(y_i = \hat{y})$$

# kNN Example

#### 15-nearest neighbor



# kNN Example

#### 1-nearest neighbor



# K Nearest Neighbor Algorithm (KNN)

- Generalized version
  - Define similarity function  $s(x, x_i)$  between the input instance x and its neighbor  $x_i$

 Then the prediction is based on the weighted average of the neighbor labels based on the similarities

$$\hat{y}(x) = \frac{\sum_{x_i \in N_k(x)} s(x, x_i) y_i}{\sum_{x_i \in N_k(x)} s(x, x_i)}$$

# Non-Parametric kNN

- No parameter to learn
  - In fact, there are N parameters: each instance is a parameter
  - There are *N/k* effective parameters
    - Intuition: if the neighborhoods are non-overlapping, there would be *N/k* neighborhoods, each of which fits one parameter
- Hyperparameter *k* 
  - We cannot use sum-of-squared error on the training set as a criterion for picking k, since k=1 is always the best
  - Tune k on validation set

# Efficiency Concerns

- It is often time consuming to find the *k* nearest neighbors
  - A native solution needs to go through all data instances for each prediction
- Some practical solutions
  - Build inverse index (from feature to instance). We shall get back to this later in Search Engine lecture
  - Parallelized computing (e.g., with GPU parallelization)
  - Pre-calculation with some candidate instances
    - With triangle inequality
  - Learning hashing code
  - Approximation methods

# Further Reading

Xindong Wu et al. Top 10 algorithms in data mining.
 2008.

http://www.cs.uvm.edu/~icdm/algorithms/10Algorithms-08.pdf

 C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naïve Bayes, CART

# Backup Slides

# Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
  - The number of frequent itemsets to be generated is sensitive to the minsup threshold
  - When minsup is low, there exist potentially an exponential number of frequent itemsets
  - The worst case: MN where M: # distinct items, and N: max length of transactions
- The worst case complexity vs. the expected probability
  - Ex: Suppose Walmart has 10<sup>4</sup> kinds of products
    - The chance to pick up one product 10<sup>-4</sup>
    - The chance to pick up a particular set of 10 products: ~10-40
    - What is the chance this particular set of 10 products to be frequent 10<sup>3</sup> times in 10<sup>9</sup> transactions?