AI 305 Introduction to Machine Learning

Homework1

Question 1:

Suppose we have a data set with five predictors, X1 = GPA, X2 = IQ, X3 = Level (1 for College and 0 for High School), X4 = product between GPA and IQ, and X5 = product between GPA and Level. The response is starting salary after graduation (in thousands of dollars). Suppose we use least squares to fit the model, and estimate $\beta_0 = 50$; $\beta_1 = 20$; $\beta_2 = 0.07$; $\beta_3 = 35$; $\beta_4 = 0.01$; $\beta_5 = -10$.

- a. Predict the salary of a college graduate with IQ of 110 and a GPA of 4.0.
- b. Explain the effect of the low values of $\beta 2$ and $\beta 4$ comparing to the high absolute values of $\beta 1$, $\beta 3$, and $\beta 5$.
- c. True or false: (Justify)
 - i. For a fixed value of IQ and GPA, high school graduates earn more, on average, than college graduates.
 - ii. True or false: For a fixed value of IQ and GPA, high school graduates earn more, on average, than college graduates provided that the GPA is high enough.

Question 2:

Suppose we collect data for a group of students in a statistics class with variables X1 =hours studied, X2 =undergrad GPA, and Y = receive an A. We fit a logistic regression and produce estimated coefficient,

$$\beta_0 = -6$$
; $\beta_1 = 0.05$; $\beta_2 = 1$.

- a. Estimate the probability that a student who studies for 40 h and has an undergrad GPA of 3.5 gets an A in the class.
- b. How many hours would the student in part (a) need to study to have a 50% chance of getting an A in the class?

Question 3:

Consider the following set of examples representing dataset for classifying care according set of features into positive or negative cars.

Color	Type	Doors	Tires	Class
Red	SUV	2	Whitewall	+
Blue	Minivan	4	Whitewall	-
Green	Car	4	Whitewall	-
Red	Minivan	4	Blackwall	-
Green	Car	2	Blackwall	+
Green	SUV	4	Blackwall	-
Blue	SUV	2	Blackwall	-
Blue	Car	2	Whitewall	+
Red	SUV	2	Blackwall	-
Blue	Car	4	Blackwall	- 🚗
Green	SUV	4	Whitewall	+
Red	Car	2	Blackwall	+
Green	SUV	2	Blackwall	-
Green	Minivan	4	Whitewall	-

Draw the decision tree representing these dataset using:

- a. Misclassification rate
- b. Entropy and Information gain
- c. Gini impurity.

Question 4:

This problem involves hyperplanes in two dimensions.

- a. Sketch the hyperplane 1 + 3X1 X2 = 0. Indicate the set of points for which 1 + 3X1 X2 > 0, as well as the set of points for which 1 + 3X1 X2 < 0.
- b. On the same plot, sketch the hyperplane -2 + X1 + 2X2 = 0. Indicate the set of points for which -2 + X1 + 2X2 > 0, as well as the set of points for which -2 + X1 + 2X2 < 0.

Question 5:

Maximal margin classifier on a sample data set.

a. We are given n = 7 observations in p = 2 dimensions. For each observation, there is an associated class label. Sketch the observations.

Obs.	X_1	X_2	Y
1	3	4	Red
2	2	2	Red
3	4	4	Red
4	1	4	Red
5	2	1	Blue
6	4	3	Blue
7	4	1	Blue

- b. Sketch the optimal separating hyperplane, and provide the equation for this hyperplane (of the form $\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$,=0).
- c. Describe the classification rule for the maximal margin classifier. It should be something along the lines of "Classify to Red if $\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$,>0, and classify to Blue otherwise." Provide the values for β_0 , β_1 , and β_2 .
- d. On your sketch, indicate the margin for the maximal margin hyperplane.
- e. Indicate the support vectors for the maximal margin classifier.
- f. Argue that a slight movement of the seventh observation would not affect the maximal margin hyperplane.
- g. Sketch a hyperplane that is not the optimal separating hyperplane, and provide the equation for this hyperplane.
- h. Draw an additional observation on the plot so that the two classes are no longer separable by a hyperplane.