Adjoint Paths

by Adam Nemecek, Sven Nilsen, 2020

In this paper we formalize adjoint paths using path semantics.

An adjoint path is a relationship between two asymmetric normal paths of `f`:

$$f[g_0 \times id \rightarrow id] \le f[id \times g_1 \rightarrow id]$$

 $f: T \rightarrow U$

This relationship is represented by `f`, which is called the "adjoint path".

Since `id` maps to same type `T \rightarrow T`, it follows that `g_0` and `g_1` also maps to same type:

$$g_0: T \to T$$
$$g_1: T \to T$$

Since these two normal paths are the same, it means that they both use the same function:

$$f[g_0 \times id \rightarrow id] \le h$$

$$f[id \times g_1 \rightarrow id] \le h$$

$$f(x, y) = h(g_0(x), y)$$

$$f(x, y) = h(x, g_1(y))$$

$$f[id \times g_1 \rightarrow id] \le h \qquad f(x, y) = h(x, g_1(y))$$

$$h(g_0(x), y) = h(x, g_1(y))$$

The function `g₀` is called the "left side" or "left adjoint".

The function `g₁` is called the "right side" or "right adjoint".

When the left side g_0 is equal to the right side g_1 , it is called a "self-adjoint operator".

Every function is a self-adjoint path using the `id` function as a self-adjoint operator:

$$f[id \times id \rightarrow id] \le f[id \times id \rightarrow id] \le f$$