Clustering Challenge for Sound QI

Analyzed by Homayoun Gerami 21 July 2021 The provided cross-plot for guidance, from a similar geological units, and my quick observations:

Observations:

- The Attributes "X" and "Y" have very different ranges of values, and hence clustering without a proper scaling maybe dominated by the attribute with larger values
- The overlain classes, suggest better separability of the data points with the attribute "X" than "Y"

Data loading and quick EDA: Scatter Matrix

- I noticed samples with 0.0 values, highlighted in dashed red line, for the Y attribute.
- I have removed them so that clustering have better chance of success

Data loading and quick EDA: Scatter Matrix after removing 0.0 values

1 df_Cleaned1 In [134]: Out[134]: Х 0 2690.201 22.937439 1 2679.136 22.541031 2 2663.628 20.859741 3 2652.534 20.203293 4 2647.038 20.485809 **142405** 2773.997 106.855255 **142406** 2781.634 112.347260 **142407** 2793.332 117.831955 **142408** 2807.608 115.843094 **142409** 2817.894 106.925797 141501 rows × 2 columns

Applying Standard Scaler on "X" and "Y"

Scatter Matrix after removing 0.0 values & applying Standard-Scaler

 Standard-Scaler: standardize features by removing the mean and scaling to unit variance [1]; applying this function on attributes is recommended for most of the clustering methods, to work properly and being less biased by original magnitude of the attributes

Clustering methods tested for this challenge:

- K-means
- Gaussian Mixture Model (GMM)
- Agglomerative clustering (AC)
- Spectral Clustering (the result of this method is not presented in this file, as it was not promising)

K-means

- K-means clustering: It is very simple to implement and fast to run. The number of clusters need to be set before clustering, and the algorithm attempt to minimize sum-of-squared distances from each data point to its respective cluster center
- The algorithm always converges, but the results are sensitive to the initial cluster assignments
- For 'm' data points together, there are k^m possibilities to converge , K= number of clusters, and hence most of the times the algorithm will converge to a local minimum [2]

K-means results:

Optimum number of clusters, suggested by the 'elbow' plot:

Optimum number of clusters - 4

Out[128]: KMeans(n_clusters=4)

K-means clustering results:

Gaussian Mixture Model (GMM)

• A density p(X) may be multi-modal, and we can model it as mixture of uni-modal distribution (eg: Gaussians)[2]

GMM results:

Out[143]: Text(0, 0.5, 'Score')

GMM clustering results:

Agglomerative Clustering (AC)

• Recursively merges the pair of clusters that minimally increases a given linkage distance[3], each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy [4]

A dendrogram (right) representing nested clusters (left).

Subsampling before doing AC

Agglomerative clustering (AC) is a much more CPU intensive technique, than the other two clustering ones, and implementing that
on our original dataset, with over 140000 data points, was very time consuming. I have subsampled the original data to be able to
demonstrate this technique. While doing subsampling, I attempted to preserve the original signature and distribution of the
dataset

Scatter Matrix After Subsampling

Original size: (141501 x 2) subsampling

Subsampled size: (125319 x 2)

AC results:

Clusters found by AgglomerativeClustering

AC clustering results:

Observation and Conclusion (1/2):

- Three unsupervised clustering methods were implemented on the provided dataset, k-means, GMM and AC.
- K-means works well with the spherical clusters, something that may not be well relevant to the clusters associated with geophysical cross-plots
- I believe GMM is more adoptive approach for geoscience purposes than the K-means
- AC is much more time/CPU consuming approach that the other two methods, and I had to perform data subsampling to perform this method. I however think that this approach may have some potential values in the geoscience routine

Observation and Conclusion (2/2):

AC clustering results:

GMM clustering results:

GMM may separated better these units

References

- [1] https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
- [2] Georgia Tech Machine Learning course, ISYE 6740, Yao Xie, Ph.D.
- [3] https://en.wikipedia.org/wiki/Hierarchical clustering
- [4] https://www.statisticshowto.com/hierarchical-clustering/