Simple groups, fixed point ratios and applications II

Hong Yi Huang

University of Bristol

8 April 2021

Based on the survey article by Tim Burness¹

¹T.C. Burness. *Simple groups, fixed point ratios and applications*. Local representation theory and simple groups, 267–322, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2018.

Overview

This lecture is divided into three parts:

- Introduction to simple groups and fixed point ratios;
- Generation of simple groups;
- Base sizes and Saxl graphs for almost simple groups.

Last time

- Classification of finite simple groups;
- Maximal subgroups of almost simple groups;
- Fixed point ratios.

Problem.

- Classify almost simple primitive groups with soluble stabiliser.
- Classify almost simple primitive groups with stabiliser a *p*-group.

CFSG

Theorem (CFSG).

Let G be a non-abelian finite simple group. Then G is isomorphic to one of the following groups:

- A_n with $n \geq 5$;
- classical simple groups:
 - ▶ linear: $L_n(q)$ for $n \ge 3$ or $q \ge 4$;
 - ▶ symplectic: $PSp_{2n}(q)$ for $n \ge 2$, except $PSp_4(2)$;
 - ▶ unitary: $U_n(q)$ for $n \ge 3$, except $U_3(2)$;
 - rightharpooned representation or P $\Omega_{2n+1}^{\pm}(q)$ for $n \geq 3$ and q odd, or P $\Omega_{2n}^{\pm}(q)$ for $n \geq 4$;
- exceptional simple groups of Lie type;
- 26 sporadic groups.

We refer the reader to Proposition 2.9.1 in Kleidman-Liebeck or (1.2) in Wilson for the isomorphisms of finite simple groups.

4 D > 4 A > 4 B > 4 B > B 9 9 9

Alternating groups

By O'Nan-Scott, a maximal subgroup of an almost simple group with socle A_n is in one of the classes below.

Class	Descriptions	Structure in S_n	Conditions
\mathscr{A}_1	Intransitive	$S_m \times S_k$	$m+k=n, m \neq k$
\mathscr{A}_2	Imprimitive	$S_a \wr S_b$	$n = ab$, $a, b \ge 2$
\mathscr{A}_3	Affine	$AGL_d(p)$	$n = p^d$, p prime
\mathscr{A}_4	Product action	$S_a \wr S_b$	$n = a^b$, $a \ge 5$, $b \ge 2$
\mathscr{A}_5	Diagonal	T^k .(Out(T) \times S_k)	$n = T ^{k-1}, \ k \ge 2,$
			T non-abelian simple
\mathscr{S}	Almost simple	S	S is primitive on [n]

Classical groups

By Aschbacher, a maximal subgroup of an almost simple classical group is in one of the classes below.

Class	Descriptions
$\overline{\mathscr{C}_1}$	Stabiliser of subspaces, or pairs of subspaces, of V
\mathscr{C}_2	Stabilisers of decompositions $V = \bigoplus_{i=1}^{t} V_i$, where dim $V_i = a$
\mathscr{C}_3	Stabilisers of prime degree extension fields of \mathbb{F}_q
\mathscr{C}_{4}	Stabiliser of decompositions $V=V_1\otimes V_2$
\mathscr{C}_5	Stabilisers of prime index subfields of \mathbb{F}_q
\mathscr{C}_6	Normalisers of symplectic-type r -groups, $r \neq p$
\mathscr{C}_7	Stabilisers of decompositions $V = \bigotimes_{i=1}^{t} V_i$, where dim $V_i = a$
\mathscr{C}_8	Stabilisers of nondegenerate forms on V
\mathscr{S}	Almost simple absolutely irreducible subgroups

Today

We will introduce the generation problem of simple groups and some related results, which includes

- The 2-generation property of simple groups;
- Random generations of simple groups;
- Spreads and uniform spreads;
- Generating graphs;

and how fixed point ratios are applied to these problems.

Outline

- Fixed point ratios
- ② Generation of simple groups
- Spreads
- Generating graphs

Fixed point ratios

Let G be a permutation group on Ω . Recall that the **fixed point ratio** of $x \in G$ is

$$\operatorname{fpr}(x) = \frac{|C_{\Omega}(x)|}{|\Omega|},$$

where $C_{\Omega}(x) = \{ \alpha \in \Omega \mid x \in G_{\alpha} \}$ is the set of fixed point of x.

Fixed point ratios

Let G be a permutation group on Ω . Recall that the **fixed point ratio** of $x \in G$ is

$$\operatorname{fpr}(x) = \frac{|C_{\Omega}(x)|}{|\Omega|},$$

where $C_{\Omega}(x) = \{\alpha \in \Omega \mid x \in G_{\alpha}\}$ is the set of fixed point of x. In particular, if G is transitive with stabiliser H, then

$$\operatorname{fpr}(x) = \frac{|x^G \cap H|}{|x^G|}.$$

Outline

- Fixed point ratios
- 2 Generation of simple groups
- Spreads
- 4 Generating graphs

A group *G* is called 2-**generated** if $G = \langle x, y \rangle$ for some $x, y \in G$.

A group G is called 2-generated if $G = \langle x, y \rangle$ for some $x, y \in G$.

Theorem.

Every finite simple group is 2-generated.

A group G is called 2-generated if $G = \langle x, y \rangle$ for some $x, y \in G$.

Theorem.

Every finite simple group is 2-generated.

Example.

- $A_n = \langle (123), (12 \cdots n) \rangle$ if n is odd;
- $A_n = \langle (123), (23 \cdots n) \rangle$ if *n* is even.

A group G is called 2-generated if $G = \langle x, y \rangle$ for some $x, y \in G$.

Theorem.

Every finite simple group is 2-generated.

Example.

- $A_n = \langle (123), (12 \cdots n) \rangle$ if n is odd;
- $A_n = \langle (123), (23 \cdots n) \rangle$ if *n* is even.

It follows the following problems

- How abundant are such pairs (x, y)?
- What if we restrict |x| and |y|?
- What if we fix $x \neq 1$?

Let G be a finite group, let $k \in \mathbb{N}^*$ and let

$$\mathbb{P}(G,k) = \frac{|\{(x_1,\ldots,x_k) \in G^k : G = \langle x_1,\ldots,x_k \rangle\}|}{|G|^k}$$

be the probability that k randomly chosen elements generate G.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ りへ○

Hong Yi Huang (UoB)

Let G be a finite group, let $k \in \mathbb{N}^*$ and let

$$\mathbb{P}(G,k) = \frac{|\{(x_1,\ldots,x_k) \in G^k : G = \langle x_1,\ldots,x_k \rangle\}|}{|G|^k}$$

be the probability that k randomly chosen elements generate G. If $G \neq \langle x, y \rangle$, then $x, y \in H$ for some maximal subgroup H of G.

Hong Yi Huang (UoB)

Let G be a finite group, let $k \in \mathbb{N}^*$ and let

$$\mathbb{P}(G,k) = \frac{|\{(x_1,\ldots,x_k) \in G^k : G = \langle x_1,\ldots,x_k\rangle\}|}{|G|^k}$$

be the probability that k randomly chosen elements generate G. If $G \neq \langle x, y \rangle$, then $x, y \in H$ for some maximal subgroup H of G. Thus,

$$1 - \mathbb{P}(G,2) \le \sum_{H \in \mathcal{M}} \frac{|H|^2}{|G|^2} = \sum_{H \in \mathcal{M}} |G:H|^{-2} =: Q(G),$$

where \mathcal{M} is the set of maximal subgroups of G.

4□ > 4□ > 4 = > 4 = > = 90

Let G be a finite group, let $k \in \mathbb{N}^*$ and let

$$\mathbb{P}(G,k) = \frac{|\{(x_1,\ldots,x_k) \in G^k : G = \langle x_1,\ldots,x_k \rangle\}|}{|G|^k}$$

be the probability that k randomly chosen elements generate G. If $G \neq \langle x, y \rangle$, then $x, y \in H$ for some maximal subgroup H of G. Thus,

$$1 - \mathbb{P}(G,2) \le \sum_{H \in \mathcal{M}} \frac{|H|^2}{|G|^2} = \sum_{H \in \mathcal{M}} |G:H|^{-2} =: Q(G),$$

where \mathcal{M} is the set of maximal subgroups of G. To prove G is 2-generated, it suffices to show that

$$Q(G) = \sum_{H \in \mathcal{M}} |G:H|^{-2} < 1.$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Example.

Let $G = A_5$. Then maximal subgroups of G up to conjugacy are

- Intransitive: $(S_3 \times S_2) \cap A_5$, $(S_4 \times S_1) \cap A_5$;
- Primitive: $AGL_1(5) \cap A_5$.

Example.

Let $G = A_5$. Then maximal subgroups of G up to conjugacy are

- Intransitive: $(S_3 \times S_2) \cap A_5$, $(S_4 \times S_1) \cap A_5$;
- Primitive: $AGL_1(5) \cap A_5$.

Thus,

$$Q(G) = \sum_{H \in \mathcal{M}} |G:H|^{-2}$$
$$= \frac{6}{60} + \frac{12}{60} + \frac{10}{60}$$
$$= \frac{7}{15} < 1.$$

Example.

Let $G = A_5$. Then maximal subgroups of G up to conjugacy are

- Intransitive: $(S_3 \times S_2) \cap A_5$, $(S_4 \times S_1) \cap A_5$;
- Primitive: $AGL_1(5) \cap A_5$.

Thus,

$$Q(G) = \sum_{H \in \mathcal{M}} |G:H|^{-2}$$
$$= \frac{6}{60} + \frac{12}{60} + \frac{10}{60}$$
$$= \frac{7}{15} < 1.$$

Indeed, $\mathbb{P}(G,2) = 19/30$.

Example.

Let $G = L_2(13)$. Then maximal subgroups of G up to conjugacy are

Group	Class	Туре
13:6	\mathscr{C}_1	P_1
D_{12}	\mathscr{C}_2	$GL_1(13) \wr S_2$
D_{14}	\mathscr{C}_3	$GL_1(13^2)$
A_4	\mathscr{C}_6	2^{1+2} . $Sp_2(2)$

Example.

Let $G = L_2(13)$. Then maximal subgroups of G up to conjugacy are

Group	Class	Туре
13:6	\mathscr{C}_1	P_1
D_{12}	\mathscr{C}_2	$GL_1(13) \wr S_2$
D_{14}	\mathscr{C}_3	$GL_1(13^2)$
A_4	\mathscr{C}_6	2^{1+2} . $Sp_2(2)$

Thus,

$$Q(G) = \sum_{H \in \mathcal{M}} |G:H|^{-2} = \frac{72}{1092} + \frac{12}{1092} + \frac{14}{1092} + \frac{12}{1092} = \frac{29}{273} < 1.$$

Example.

Let $G = L_2(13)$. Then maximal subgroups of G up to conjugacy are

Group	Class	Туре
13:6	\mathscr{C}_1	P_1
D_{12}	\mathscr{C}_2	$GL_1(13) \wr S_2$
D_{14}	\mathscr{C}_3	$GL_1(13^2)$
A_4	\mathscr{C}_6	2^{1+2} . $Sp_2(2)$

Thus,

$$Q(G) = \sum_{H \in \mathcal{M}} |G: H|^{-2} = \frac{72}{1092} + \frac{12}{1092} + \frac{14}{1092} + \frac{12}{1092} = \frac{29}{273} < 1.$$

Indeed, $\mathbb{P}(G,2) = 165/182$.

MAGMA functions

```
Q:=function(G);
m:=0;
X:=MaximalSubgroups(G);
for i in [1..#X] do
    m:=m+1/Index(G,H);
end for;
return m;
end function;
```

MAGMA functions

```
P:=function(G);
m:=0;
g:=#G;
for x in G do
  for y in G do
     if \#sub < x | y > eq g then
        m := m+1;
     end if;
  end for;
end for;
return m/g/g;
end function;
```

Theorem.

Let (G_n) be any sequence of finite simple groups such that $|G_n| \to \infty$ with n. Then $\lim_{n\to\infty} Q(G_n) = 0$ and so $\lim_{n\to\infty} \mathbb{P}(G,2) = 1$.

Theorem.

Let (G_n) be any sequence of finite simple groups such that $|G_n| \to \infty$ with n. Then $\lim_{n \to \infty} Q(G_n) = 0$ and so $\lim_{n \to \infty} \mathbb{P}(G, 2) = 1$.

Theorem.

We have $\mathbb{P}(G,2) \geq 53/90$ for every finite simple group G, with the equality if and only if $G = A_6$.

(a, b)-generation

Let G be a finite group. Then G is called (a,b)-generated if $G=\langle x,y\rangle$ for some |x|=a and |y|=b.

Hong Yi Huang (UoB)

(a, b)-generation

Let G be a finite group. Then G is called (a,b)-generated if $G=\langle x,y\rangle$ for some |x|=a and |y|=b.

Example.

- S_n is (2, n)-generated.
- A_n is (3, n)-generated if n is odd, and (3, n-1)-generated if n is even.
- D_{2n} is both (2,2)-generated and (2,n)-generated.
- A (2,2)-generated group is isomorphic to D_{2n} .

Let G be a finite group and $\mathbb{P}_{a,b}(G)$ be the probability of

"G is generated by randomly chosen elements of order a and b".

Then G is (a, b)-generated $\iff \mathbb{P}_{a,b}(G) > 0$.

Let G be a finite group and $\mathbb{P}_{a,b}(G)$ be the probability of

"G is generated by randomly chosen elements of order a and b".

Then G is (a, b)-generated $\iff \mathbb{P}_{a,b}(G) > 0$.

Suppose |x|=a and |y|=b. If $G\neq \langle x,y\rangle$ then $x,y\in H$ for some maximal subgroup H of G.

Let G be a finite group and $\mathbb{P}_{a,b}(G)$ be the probability of

"G is generated by randomly chosen elements of order a and b".

Then G is (a,b)-generated $\iff \mathbb{P}_{a,b}(G) > 0$. Suppose |x| = a and |y| = b. If $G \neq \langle x,y \rangle$ then $x,y \in H$ for some maximal subgroup H of G. Thus,

$$1-\mathbb{P}_{a,b}(G)\leq \sum_{H\in\mathcal{M}}\frac{i_a(H)i_b(H)}{i_a(G)i_b(G)},$$

where $i_m(X)$ denotes the number of elements of order m in X.

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Example.

Let $G = L_2(13)$. Then maximal subgroups of G up to conjugacy are

Group	Class	Туре
13:6	\mathscr{C}_1	P_1
D_{12}	\mathscr{C}_2	$GL_1(13) \wr S_2$
D_{14}	\mathscr{C}_3	$GL_1(13^2)$
A_4	\mathscr{C}_6	2^{1+2} . $Sp_2(2)$

20 / 37

Example.

Let $G = L_2(13)$. Then maximal subgroups of G up to conjugacy are

Group	Class	Туре
13:6	\mathscr{C}_1	P_1
D_{12}	\mathscr{C}_2	$GL_1(13) \wr S_2$
D_{14}	\mathscr{C}_3	$GL_1(13^2)$
A_4	\mathscr{C}_6	2^{1+2} . $Sp_2(2)$

It follows that

$$1 - \mathbb{P}_{2,3}(G) \le \sum_{H \in \mathcal{M}} \frac{i_2(H)i_3(H)}{i_2(G)i_3(G)}$$

$$= \frac{338}{16562} \times 14 + \frac{14}{16562} + 0 + \frac{24}{16562} \times 14$$

$$= 45/91 < 1.$$

MAGMA functions

```
ii:=function(G,r);
S:=Subgroups(G:OrderEqual:=r);
m:=0;
for j in [1..#S] do
    H:=S[j]'subgroup;
    m:=m+(r-1)*Index(G,Normalizer(G,H));
end for;
return m;
end function;
```

MAGMA functions

```
Qi:=function(G,r,s);
X:=MaximalSubgroups(G);
m := 0;
iGr:=ii(G,r);
iGs:=ii(G,s);
for j in [1..#X] do
  H:=X[j]'subgroup;
  m:=m+Index(G,H)*(ii(H,r)*ii(H,s))/(iGr*iGs);
end for;
return m, RealField(4)!m;
end function;
```

• Miller, 1901: A_n is (2,3)-generated unless n = 6, 7, 8.

- Miller, 1901: A_n is (2, 3)-generated unless n = 6, 7, 8.
- Liebeck and Shalev, 1996:
 - All but finitely many finite simple classical groups other than $PSp_4(2^f)$ or $PSp_4(3^f)$ are (2,3)-generated.
 - ▶ $PSp_4(2^f)$ and $PSp_4(3^f)$ are not (2,3)-generated.

- Miller, 1901: A_n is (2, 3)-generated unless n = 6, 7, 8.
- Liebeck and Shalev, 1996:
 - All but finitely many finite simple classical groups other than $PSp_4(2^f)$ or $PSp_4(3^f)$ are (2,3)-generated.
 - $ightharpoonup PSp_4(2^f)$ and $PSp_4(3^f)$ are not (2,3)-generated.
- Lübeck and Malle, 1999: Every simple exceptional group of Lie type is (2,3)-generated, except for $G_2(2)' \cong U_3(3)$ and Suzuki groups ${}^2B_2(2^{2n+1})$, which is (2,5)-generated.

- Miller, 1901: A_n is (2, 3)-generated unless n = 6, 7, 8.
- Liebeck and Shalev, 1996:
 - All but finitely many finite simple classical groups other than $PSp_4(2^f)$ or $PSp_4(3^f)$ are (2,3)-generated.
 - ▶ $PSp_4(2^f)$ and $PSp_4(3^f)$ are not (2,3)-generated.
- Lübeck and Malle, 1999: Every simple exceptional group of Lie type is (2,3)-generated, except for $G_2(2)' \cong U_3(3)$ and Suzuki groups ${}^2B_2(2^{2n+1})$, which is (2,5)-generated.
- Wolder, 1989: Every sporadic simple group is (2,3)-generated, except for M_{11} , M_{22} , M_{23} and McL.

- Miller, 1901: A_n is (2, 3)-generated unless n = 6, 7, 8.
- Liebeck and Shalev, 1996:
 - All but finitely many finite simple classical groups other than $PSp_4(2^f)$ or $PSp_4(3^f)$ are (2,3)-generated.
 - ▶ $PSp_4(2^f)$ and $PSp_4(3^f)$ are not (2,3)-generated.
- Lübeck and Malle, 1999: Every simple exceptional group of Lie type is (2,3)-generated, except for $G_2(2)' \cong U_3(3)$ and Suzuki groups ${}^2B_2(2^{2n+1})$, which is (2,5)-generated.
- Wolder, 1989: Every sporadic simple group is (2,3)-generated, except for M_{11} , M_{22} , M_{23} and McL.

Theorem.

All sufficiently large non-abelian finite simple groups are (2,3)-generated, with the exception of $PSp_4(2^f)$, $PSp_4(3^f)$ and $^2B_2(2^{2n+1})$.

◆ロト ◆問ト ◆意ト ◆意ト · 意 · 釣۹で

Classical Groups

Theorem (Liebeck and Shalev, 1996).

For finite simple classical groups G, as $|G| \to \infty$ we have

$$\mathbb{P}_{2,3}(G) \to \begin{cases} 0 & \text{if } G = \mathsf{PSp}_4(p^f) \text{ with } p = 2 \text{ or } 3 \\ \frac{1}{2} & \text{if } G = \mathsf{PSp}_4(p^f) \text{ with } p \neq 2, 3 \\ 1 & \text{otherwise.} \end{cases}$$

Theorem (Liebeck and Shalev, 2002).

If a, b are primes, not both equal to 2, then $\mathbb{P}_{a,b}(G) \to 1$ as $|G| \to \infty$, for all simple classical groups G of sufficiently large rank.

< ロ > ← □

(2, r)-generation

Theorem (King, 2017).

Every non-abelian finite simple group is (2, r)-generated for some prime $r \ge 3$.

(2, r)-generation

Theorem (King, 2017).

Every non-abelian finite simple group is (2, r)-generated for some prime $r \ge 3$.

Conjecture.

Let G be a non-abelian finite simple group. Then one of the following cases occurs:

- G is (2,3)-generated;
- ② G is (2,5)-generated and G is one of the folloing groups:
 - \bullet A_6 , A_7 , A_8 ;
 - M₁₁, M₂₂, M₂₃, McL;

 - **1** $L_2(9)$, $L_3(4)$, $L_4(2)$;
 - \bullet U₃(5), U₄(2), U₄(3), U₅(2);
 - $P\Omega_8^+(2)$, $P\Omega_8^+(3)$;
- $G = U_3(3)$ and G is (2,7)-generated.

Outline

- Fixed point ratios
- Q Generation of simple groups
- Spreads
- 4 Generating graphs

Let G be a finite group.

Definition (Spreads).

G has **spread** *k* if for any $x_1, \ldots, x_k \in G \setminus \{1\}$, there exists $y \in G$ such that $\langle x_i, y \rangle = G$ for all *i*.

Let G be a finite group.

Let $s(G) \ge 0$ be the **exact spread** of G.

Definition (Spreads).

G has **spread** k if for any $x_1, \ldots, x_k \in G \setminus \{1\}$, there exists $y \in G$ such that $\langle x_i, y \rangle = G$ for all i.

Let G be a finite group.

Definition (Spreads).

G has **spread** k if for any $x_1, \ldots, x_k \in G \setminus \{1\}$, there exists $y \in G$ such that $\langle x_i, y \rangle = G$ for all i.

Let $s(G) \ge 0$ be the **exact spread** of G.

Definition (Uniform spreads).

G has **uniform spread** k if there exists a conjugacy class C of G such that for any $x_1, \ldots, x_k \in G \setminus \{1\}$, there exists $y \in C$ such that $\langle x_i, y \rangle = G$ for all i.

Let G be a finite group.

Definition (Spreads).

G has **spread** k if for any $x_1, \ldots, x_k \in G \setminus \{1\}$, there exists $y \in G$ such that $\langle x_i, y \rangle = G$ for all i.

Definition (Uniform spreads).

Let s(G) > 0 be the **exact spread** of G.

G has **uniform spread** k if there exists a conjugacy class C of G such that for any $x_1, \ldots, x_k \in G \setminus \{1\}$, there exists $y \in C$ such that $\langle x_i, y \rangle = G$ for all i.

Let $u(G) \ge 0$ be the **exact uniform spread** of G.

Let G be a finite group.

Definition (Spreads).

G has **spread** k if for any $x_1, \ldots, x_k \in G \setminus \{1\}$, there exists $y \in G$ such that $\langle x_i, y \rangle = G$ for all i.

Let $s(G) \ge 0$ be the **exact spread** of G.

Definition (Uniform spreads).

G has **uniform spread** k if there exists a conjugacy class C of G such that for any $x_1, \ldots, x_k \in G \setminus \{1\}$, there exists $y \in C$ such that $\langle x_i, y \rangle = G$ for all i.

Let $u(G) \ge 0$ be the **exact uniform spread** of G.

- $u(G) \leq s(G)$.
- $s(G) = \infty \iff u(G) = \infty \iff G$ is cyclic.

4□ > 4□ > 4 = > 4 = > = 90

Let G be a finite group.

Definition (Spreads).

G has **spread** *k* if for any $x_1, \ldots, x_k \in G \setminus \{1\}$, there exists $y \in G$ such that $\langle x_i, y \rangle = G$ for all *i*.

Let $s(G) \ge 0$ be the **exact spread** of G.

Definition (Uniform spreads).

G has **uniform spread** k if there exists a conjugacy class C of G such that for any $x_1, \ldots, x_k \in G \setminus \{1\}$, there exists $y \in C$ such that $\langle x_i, y \rangle = G$ for all i.

Let $u(G) \ge 0$ be the **exact uniform spread** of G.

- $u(G) \leq s(G)$.
- $s(G) = \infty \iff u(G) = \infty \iff G$ is cyclic.
- $u(S_6) = 0$ and $s(S_6) = 2$.
- $u(A_5) = s(A_5) = 2$.

G is $\frac{3}{2}$ -generated $\iff s(G) \ge 0 \implies G/N$ cyclic for any $1 \ne N \lhd G$.

Example.

If G is abelian, then

- $s(G) \ge 0 \iff G$ is cyclic or $G \cong \mathbb{Z}_p^2$;
- $u(G) \ge 0 \iff G$ is cyclic.

Hong Yi Huang (UoB)

G is $\frac{3}{2}$ -generated $\iff s(G) \geq 0 \implies G/N$ cyclic for any $1 \neq N \lhd G$.

Example.

If G is abelian, then

- $s(G) \ge 0 \iff G$ is cyclic or $G \cong \mathbb{Z}_p^2$;
- $u(G) \ge 0 \iff G$ is cyclic.

We have also

- $s(S_3) = 3$, $u(S_3) = 2$;
- $s(A_4) = 4$, $u(A_4) = 3$;
- $s(D_4) = 2$, $u(D_4) = 0$;
- $s(D_{2p}) = p$, $u(D_{2p}) = p 1$, where p is an odd prime;
- $s(S_4) = u(S_4) = 0$;
- $s(D_{2n}) = u(D_{2n}) = 0$ if *n* composite.

Theorem (Breuer, Guralnick & Kantor, 2008).

 $G \text{ simple } \Longrightarrow u(G) \geq 2.$

Theorem (Breuer, Guralnick & Kantor, 2008).

 $G \text{ simple } \Longrightarrow u(G) \geq 2.$

Let G be a finite group. For $x, y \in G$, let

$$\mathbb{P}(x,y) = \frac{|\{z \in y^G : G = \langle x,z \rangle\}|}{|y^G|}$$

be the probability that a randomly chosen $z \in y^G$ generates G with x. Set

$$Q(x,y)=1-\mathbb{P}(x,y).$$

Lemma.

Suppose there exists an element $y \in G$ and $k \in \mathbb{N}^*$ such that Q(x,y) < 1/k for all $1 \neq x \in G$. Then $u(G) \geq k$.

Lemma.

Suppose there exists an element $y \in G$ and $k \in \mathbb{N}^*$ such that Q(x,y) < 1/k for all $1 \neq x \in G$. Then $u(G) \geq k$.

Proof.

Let $x_1, \ldots, x_k \in G \setminus \{1\}$ and let E denote the event $E_1 \cap \cdots \cap E_k$, where E_i is the event that $G = \langle x_i, z \rangle$ for a randonly chosen conjugate $z \in y^G$.

Lemma.

Suppose there exists an element $y \in G$ and $k \in \mathbb{N}^*$ such that Q(x,y) < 1/k for all $1 \neq x \in G$. Then $u(G) \geq k$.

Proof.

Let $x_1, \ldots, x_k \in G \setminus \{1\}$ and let E denote the event $E_1 \cap \cdots \cap E_k$, where E_i is the event that $G = \langle x_i, z \rangle$ for a randonly chosen conjugate $z \in y^G$. We need to show that $\mathbb{P}(E) > 0$. Indeed,

$$egin{aligned} \mathbb{P}(E) &= 1 - \mathbb{P}(ar{\mathcal{E}}_1 \cup \cdots \cup ar{\mathcal{E}}_k) \ &\geq 1 - \sum_{i=1}^k \mathbb{P}(ar{\mathcal{E}}_i) = 1 - \sum_{i=1}^k Q(x_i, y) \ &> 1 - k \cdot rac{1}{k} = 0. \end{aligned}$$

This completes the proof.

Let $\mathcal{M}(y)$ be the set of maximal subgroups of G containing y.

Corollary.

Suppose there is an element $y \in G$ and $k \in \mathbb{N}^*$ such that

$$\sum_{H \in \mathcal{M}(y)} \mathsf{fpr}(x, G/H) < \frac{1}{k}$$

for all elements $x \in G$ of prime order. Then $u(G) \ge k$.

Let $\mathcal{M}(y)$ be the set of maximal subgroups of G containing y.

Corollary.

Suppose there is an element $y \in G$ and $k \in \mathbb{N}^*$ such that

$$\sum_{H \in \mathcal{M}(y)} \mathsf{fpr}(x, G/H) < \frac{1}{k}$$

for all elements $x \in G$ of prime order. Then $u(G) \ge k$.

Proof.

Fix $1 \neq x \in G$ and let $z \in y^G$. Then $G \neq \langle x, z \rangle \iff \langle x', y \rangle \leq H$ for some $x' \in x^G$ and $H \in \mathcal{M}(y)$.

Let $\mathcal{M}(y)$ be the set of maximal subgroups of G containing y.

Corollary.

Suppose there is an element $y \in G$ and $k \in \mathbb{N}^*$ such that

$$\sum_{H \in \mathcal{M}(y)} \mathsf{fpr}(x, G/H) < \frac{1}{k}$$

for all elements $x \in G$ of prime order. Then $u(G) \ge k$.

Proof.

Fix $1 \neq x \in G$ and let $z \in y^G$. Then $G \neq \langle x, z \rangle \iff \langle x', y \rangle \leq H$ for some $x' \in x^G$ and $H \in \mathcal{M}(y)$. So

$$Q(x,y) \leq \sum_{H \in \mathcal{M}(y)} \frac{|x^G \cap H|}{|x^G|} = \sum_{H \in \mathcal{M}(y)} \mathsf{fpr}(x,G/H). \quad \Box$$

Example.

Let
$$G = A_{2m}$$
 with $m \ge 4$ and $k = m - (2, m - 1)$. Set

$$y=(1,\ldots,k)(k+1,\ldots,n)\in G.$$

Example.

Let $G = A_{2m}$ with $m \ge 4$ and k = m - (2, m - 1). Set

$$y=(1,\ldots,k)(k+1,\ldots,n)\in G.$$

Observe that

• $(k, 2m - k) = 1 \implies$ if $H \in \mathcal{M}(y)$ is transitive, then H is primitive;

Example.

Let $G = A_{2m}$ with $m \ge 4$ and k = m - (2, m - 1). Set

$$y=(1,\ldots,k)(k+1,\ldots,n)\in G.$$

Observe that

- $(k, 2m k) = 1 \implies \text{if } H \in \mathcal{M}(y) \text{ is transitive, then } H \text{ is primitive;}$
- y^{2m-k} is a k-cycle with $1 < k < 2m/2 \implies H \in \mathcal{M}(y)$ cannot be primitive (Marggraf 1892);

Example.

Let $G = A_{2m}$ with $m \ge 4$ and k = m - (2, m - 1). Set

$$y=(1,\ldots,k)(k+1,\ldots,n)\in G.$$

Observe that

- $(k, 2m k) = 1 \implies \text{if } H \in \mathcal{M}(y) \text{ is transitive, then } H \text{ is primitive;}$
- y^{2m-k} is a k-cycle with $1 < k < 2m/2 \implies H \in \mathcal{M}(y)$ cannot be primitive (Marggraf 1892);
- $H \in \mathcal{M}(y)$ is intransitive $\implies H = (S_k \times S_{2m-k}) \cap G$;

Example.

Let $G = A_{2m}$ with $m \ge 4$ and k = m - (2, m - 1). Set

$$y=(1,\ldots,k)(k+1,\ldots,n)\in G.$$

Observe that

- $(k, 2m k) = 1 \implies \text{if } H \in \mathcal{M}(y) \text{ is transitive, then } H \text{ is primitive;}$
- y^{2m-k} is a k-cycle with $1 < k < 2m/2 \implies H \in \mathcal{M}(y)$ cannot be primitive (Marggraf 1892);
- $H \in \mathcal{M}(y)$ is intransitive $\implies H = (S_k \times S_{2m-k}) \cap G$;
- $\operatorname{fpr}(x, G/H) < 1/3 \implies u(G) \ge 3$.

Outline

- Fixed point ratios
- Q Generation of simple groups
- Spreads
- Generating graphs

Let G be a finite group.

Generating graph $\Gamma(G)$: vertex set $G \setminus \{1\}$, $x \sim y$ if $\langle x, y \rangle = G$.

Let G be a finite group.

Generating graph $\Gamma(G)$: vertex set $G \setminus \{1\}$, $x \sim y$ if $\langle x, y \rangle = G$.

Example.

 $\langle x, y \rangle \neq S_3 \text{ iff } x, y \in \{(123), (132)\}. \text{ So } \Gamma(S_3) \cong K_5 - K_2.$

Hong Yi Huang (UoB)

Let G be a finite group.

Generating graph $\Gamma(G)$: vertex set $G \setminus \{1\}$, $x \sim y$ if $\langle x, y \rangle = G$.

Example.

$$\langle x, y \rangle \neq S_3 \text{ iff } x, y \in \{(123), (132)\}. \text{ So } \Gamma(S_3) \cong K_5 - K_2.$$

- G is 2-generated $\iff \Gamma(G)$ is non-empty;
- G is $\frac{3}{2}$ -generated \iff $\Gamma(G)$ has no isolated vertex;
- $\Gamma(G)$ is complete $\iff G \cong \mathbb{Z}_p$ or \mathbb{Z}_2^2 ;

Let G be a finite group.

Generating graph $\Gamma(G)$: vertex set $G \setminus \{1\}$, $x \sim y$ if $\langle x, y \rangle = G$.

Example.

$$\langle x, y \rangle \neq S_3 \text{ iff } x, y \in \{(123), (132)\}. \text{ So } \Gamma(S_3) \cong K_5 - K_2.$$

- G is 2-generated $\iff \Gamma(G)$ is non-empty;
- G is $\frac{3}{2}$ -generated \iff $\Gamma(G)$ has no isolated vertex;
- $\Gamma(G)$ is complete $\iff G \cong \mathbb{Z}_p$ or \mathbb{Z}_2^2 ;
- $s(G) \ge 2 \implies \Gamma(G)$ is connected of diameter 2;

Let G be a finite group.

Generating graph $\Gamma(G)$: vertex set $G \setminus \{1\}$, $x \sim y$ if $\langle x, y \rangle = G$.

Example.

$$\langle x, y \rangle \neq S_3 \text{ iff } x, y \in \{(123), (132)\}. \text{ So } \Gamma(S_3) \cong K_5 - K_2.$$

- G is 2-generated $\iff \Gamma(G)$ is non-empty;
- G is $\frac{3}{2}$ -generated \iff $\Gamma(G)$ has no isolated vertex;
- $\Gamma(G)$ is complete $\iff G \cong \mathbb{Z}_p$ or \mathbb{Z}_2^2 ;
- $s(G) \ge 2 \implies \Gamma(G)$ is connected of diameter 2;

If G is non-abelian simple then

- $\Gamma(G)$ has no isolated vertex;
- $\Gamma(G)$ is connected of diameter at most 2.

Conjecture.

Let G be a finite group with $|G| \ge 4$. Then the following are equivalent:

- G has spread 1.
- G has spread 2.
- **3** G/N is cyclic for every non-trivial normal subgroup N.
- \bullet $\Gamma(G)$ has no isolated vertices.
- **o** $\Gamma(G)$ is connected.
- **o** $\Gamma(G)$ is connected with diameter at most 2.
- \circ $\Gamma(G)$ is Hamiltonian.

Hong Yi Huang (UoB) Fixed point ratios 8 April 2021 35/37

²Burness, Timothy; Guralnick, Robert; Harper, Scott; *The spread of a finite group*. Ann. of Math. (2) **193** (2021), no. 2, 619–687.

Conjecture.

Let G be a finite group with $|G| \ge 4$. Then the following are equivalent:

- G has spread 1.
- ② G has spread 2.
- **3** G/N is cyclic for every non-trivial normal subgroup N.
- \bullet $\Gamma(G)$ has no isolated vertices.
- **o** $\Gamma(G)$ is connected.
- **o** $\Gamma(G)$ is connected with diameter at most 2.
- \circ $\Gamma(G)$ is Hamiltonian.

$$(2) \implies (6) \implies (5) \implies (4) \iff (1) \implies (3) \iff (7) \text{ is obvious.}$$

Hong Yi Huang (UoB) Fixed point ratios 8 April 2021 35/37

²Burness, Timothy; Guralnick, Robert; Harper, Scott; *The spread of a finite group*. Ann. of Math. (2) **193** (2021), no. 2, 619–687.

Conjecture.

Let G be a finite group with $|G| \ge 4$. Then the following are equivalent:

- G has spread 1.
- ② G has spread 2.
- **3** G/N is cyclic for every non-trivial normal subgroup N.
- \bullet $\Gamma(G)$ has no isolated vertices.
- **o** $\Gamma(G)$ is connected.
- **o** $\Gamma(G)$ is connected with diameter at most 2.
- \circ $\Gamma(G)$ is Hamiltonian.

 $(2) \implies (6) \implies (5) \implies (4) \iff (1) \implies (3) \iff (7) \text{ is obvious.}$

Burness, Guralnick & Harper, 2021^2 : (3) \implies (2).

Hong Yi Huang (UoB) Fixed point ratios 8 April 2021 35 / 37

²Burness, Timothy; Guralnick, Robert; Harper, Scott; *The spread of a finite group*. Ann. of Math. (2) **193** (2021), no. 2, 619–687.

Conjecture.

Let G be a finite group with $|G| \ge 4$. Then the following are equivalent:

- G has spread 1.
- Q has spread 2.
- **3** G/N is cyclic for every non-trivial normal subgroup N.
- \bullet $\Gamma(G)$ has no isolated vertices.
- **o** $\Gamma(G)$ is connected.
- **o** $\Gamma(G)$ is connected with diameter at most 2.
- \circ $\Gamma(G)$ is Hamiltonian.
- $(2) \implies (6) \implies (5) \implies (4) \iff (1) \implies (3) \iff (7) \text{ is obvious.}$

Burness, Guralnick & Harper, 2021^2 : (3) \implies (2).

 $(3) \implies (7)$ is still open for insoluble groups.

Hong Yi Huang (UoB) Fixed point ratios 8 April 2021 35/37

²Burness, Timothy; Guralnick, Robert; Harper, Scott; *The spread of a finite group.*Ann. of Math. (2) **193** (2021), no. 2, 619–687.

Next time

In the next talk, we will introduce the bases for a permutation group, mainly in the almost simple primitive case. This includes

- Base sizes and Cameron's conjecture;
- Base sizes for almost simple primitive groups with soluble stabilisers;
- The Saxl graph of base-two permutation groups;
- Results and open problems on Saxl graphs.

We will also see how the fixed point ratio method is applied, and introduce some computational methods with ${\rm MAGMA}.$

Thank you for your attention!