Histogram Matching a b c d $p_r(r_k)$ $p_z(z_q)$.30 .30 **FIGURE 3.22** (a) Histogram of a 3-bit image. (b) .25 .25 .20 .20 Specified .15 .15 histogram. (c) Transformation .10 .10 .05 .05 function obtained from the specified histogram. 0 0 1 3 2 3 5 2 4 (d) Result of performing histogram $G(z_q)$ $p_z(z_q)$ specification. Compare (b) and (d). T(L) .15 .10 .05

255

128

Intensity

192

FIGURE 3.24
(a) Transformation function for histogram equalization. equalization.
(b) Histogram-equalized image (note the washedout appearance).
(c) Histogram of (b).

۵.	Assuming	continu	מתפט	intensity	values, let	Say	an	im age	has	The
	in ten en e	PDF	Buch	ovs :		U		(

Find the transformation function that will produce an image whose intervily PDF is:

$$P_{Z}(Z) = \begin{cases} 3Z^2 & D \leq r \leq L-1 \\ (L-1)^3 & D & \text{otherwise} \end{cases}$$

Solution: The transformation function is given as:

$$S = T(E) = (L-1) \int P(W) dW \rightarrow (I)$$

$$T(E) = (L-1) \int 2W dW$$

$$= 2(L-1)^{2}$$

$$= 2(L-1)^{2}$$

$$= 2(L-1) \int 2W dW$$

$$= 2(L-1)^{2}$$

$$= 2(L-1) \int 2W dW$$

$$G(z) = (L-1) \int_{0}^{z} P_{2}(t) dt \longrightarrow (3)$$

$$= (L-1) \int_{0}^{z} 3t^{2} dt$$

$$= \underbrace{3(L-1)}_{0}^{z} t^{2} dt$$

$$= \underbrace{3(L-1)}_{0}^{z} \cdot \underbrace{2}_{0}^{z} = \underbrace{2}_{0}^{3} \cdot \underbrace{2}_{0}^{3} = \underbrace{2}_{0}^{3}$$

$$= \frac{3}{(L-1)^2} \cdot \frac{Z^3}{3} = \frac{Z^3}{(L-1)^2}$$

$$(Q(Z) = Z^3$$

$$(L-1)^2 \rightarrow Q$$

We know that,
$$G(z) = S$$

$$\Rightarrow z^{3} = S$$

$$L-1)^{2} = S$$

$$\Rightarrow z = [L-1)^{2} \cdot S]^{3}$$
From eq (2) we have $S = S^{2}$

$$L-1$$

$$Z = [(L-1)^{2} \cdot S^{2}]^{1/3}$$

←

For the discrete case:

The transformation function for discrete intensity values is

formulated as: $S = T(R_k) \rightarrow T$

S_k = (L-1) $\sum_{j=0}^{k} P_{r}(r_{j}^{*}) \rightarrow \bigcirc$ Normalized histogram

Pr (nj) = MK K=0,1,2... L-1

$$S_{k} = (L-1) \underbrace{\sum_{j=0}^{k} \underbrace{n_{j}}_{MN}}_{k}$$

$$= (L-1) \underbrace{\sum_{j=0}^{k} n_{j}}_{N} \xrightarrow{\rightarrow} \underbrace{3}$$

The transformation of unction for specified Pdf
is formulated as:

$$C_1(2q) = T(2k)$$

$$C_1(2q) = S$$

$$Zq = G^{-1}(S) \rightarrow S$$

Problem:	P.	101	b le	m	:
----------	----	-----	------	---	---

٩k	nk	Pr (YK)= MK	SK	Round	PL(SK)
0	790	D.19	1.33	1	0.19
1	1023	٥٠25	3.08	3	D · 25
ચ	850	0.81	4·ss	8	۵٠2۱
ઢ	656	0.16	5.67	6 2	0.24
4	329	0.08	6.83	6 1	URY
5	245	b · 06	6.55	7 9	
6	122	8.03	6.86	7	0 · 10
7	81	9·02	7.00	7 7	

	K
-3	
6,7	
مار ا	
4	'
9.1-1-0	
	1

	79	P2 (29)	Actual value Pz LZK)	٦q	9 (za)
,	Z _D = D	⊚ - 0 0	D	D	Ð
	Z, = (D . DO	D	1	Ð
	72= a	ø·00	0	a	Ð
	- 3	6.15	0.19	3	1
	= 4	0.20	0.25	4	à
	- 5	0.30	0.21	5	5
	= b	Ø · 90	0-24	6	6
	= 7	0.15	0.109	٦	7

9=0
$$G(z_0) = 7 \times P(z_0) = 7 \times 0 = 0$$

9=1 $G(z_1) = 7 \times P(z_0) + 7 \times P(z_1) = 0$
9=2 $G(z_2) = 0 + 7P(z_3) = 0 + 0 = 0$
93 = $G(z_3) = 0 + 7P(z_3) = 0 + 7 \times 0 = 1 \cdot 0$
94 = $G(z_4) = 1 \cdot 0$
95 + $G(z_4) = 1 \cdot 0$
95 + $G(z_5) = 2 \cdot 4$
96 = $G(z_5) = 2 \cdot 4$
97 = $G(z_7) = 5 \cdot 9$
95 + $G(z_7) = 5 \cdot 9$
96 + $G(z_7) = 5 \cdot 9$
97 = $G(z_7) = 5 \cdot 9$
98 + $G(z_7) = 5 \cdot 9$
99 + $G(z_7) = 5 \cdot 9$
99 + $G(z_7) = 5 \cdot 9$
90 + $G(z_7) = 6 \cdot 9$
90 + $G(z_$

