Homework 1

Problem 1-3: Positive (semi-)definite matrices

Question: If AA is a matrix whose all elements are real,

- 1. Show that $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ is positive semi-definite, i.e. eigen values are all greater than or equal to 0.
- ^{2.} Positive semi-definite matrices have a nice property that for any vector \mathbf{x} , $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge \mathbf{0}$. Under what conditions does the equality occur?

In special case where all eigen values are all positive, the matrix A is called positive definite, and in such cases $x^T Ax > 0$

1) Given a matrix A with all real values let

$$S = A^T A$$

To be considered positive semi-definite we must have for a $\operatorname{vector} x$

$$x^T S x \ge 0$$

Substituting S we have

$$x^T A^T A x = ||Ax||^2 \ge 0$$

Therefore S must be positive semi-definite

2) The condition where $x^TSx = 0$ occurs only when x is the zero vector