

RECUPERAÇÃO DE ELETRICIDADE - EEB21 / 2021

- * Respostas corretas sem os devidos cálculos não serão consideradas. Descrever todas as etapas e cálculos para encontrar a resposta.
- * A resolução da prova deve ser legível.
- * Respostas finais com (no mínimo) 1 casa decimal e com as unidades.

Aluno:	Data: / /

1) Para o circuito abaixo, utilizando a técnica de análise nodal, determine a corrente i_a e a potência absorvida pelo resistor de $10~\Omega$.

$i_a =$	$P_{10\Omega} =$
---------	------------------

2) Para o circuito abaixo, utilizando o teorema de Thévenin e de Norton, encontre a corrente I_{RL} para a carga de 2 Ω .

$V_{TH} =$	$R_{TH} = R_N =$	$I_N =$	$I_{RL} =$

RECUPERAÇÃO DE ELETRICIDADE – EEB21 / 2021

3) No circuito abaixo, determine a expressão para $i_L(t)$ para t > 0 e calcule $i_L(t)$ para $t = 10 \ \mu s$.

$I_{L}(t)$	=	$I_{L}(10 \mu) =$

4) No circuito RLC abaixo, encontre $v_C(t)$ para t > 0.

 $v_{C}(t) =$