Book of Proof: Part III, More on Proof

January 17, 2018

If-and-Only-If Proof

Outline for If-and-Only-If Proof

```
Proposition P if and only if Q.

Proof.

"Only if"

[Prove P \Rightarrow Q by whatever means you can.]

"If"

[Prove Q \Rightarrow P by whatever means you can.]
```

Theorem Suppose A is an $n \times n$ matrix. The following statements are equivalent:

- a. A is invertible.
- b. Ax = b has a unique solution for every $b \in \mathbb{R}^n$.
- c. Ax = 0 has only the trivial solution.
- d. The reduced row echelong form of A is I_n .
- e. $det(A) \neq 0$.
- f. The matrix A does not have 0 as an eigenvector.

$$a \Rightarrow b \Rightarrow c$$
 $\uparrow \qquad \qquad \downarrow$
 $f \Leftarrow e \Leftarrow d$

Proposition There exists an even prime number.

Proposition There exists an even prime number.

Proof. Two is an even prime number.

Proposition There exists an even prime number.

Proof. Two is an even prime number.

Proposition There exists an integer that can be expressed as the sum of two perfect cubes in two different ways.

Proposition There exists an even prime number.

Proof. Two is an even prime number.

Proposition There exists an integer that can be expressed as the sum of two perfect cubes in two different ways. *Proof.*

$$1^3 + 12^3 = 1729$$
$$9^3 + 10^3 = 1729$$

Proposition 7.1 If $a, b \in \mathbb{N}$ then there exist $k, \ell \in \mathbb{Z}$ for which $gcd(a, b) = ak + b\ell$.

Proposition 7.1 If $a, b \in \mathbb{N}$ then there exist $k, \ell \in \mathbb{Z}$ for which $\gcd(a, b) = ak + b\ell$.

Proof. Suppose $a, b \in \mathbb{N}$. Consider the set $A = \{ax + by : x, y \in \mathbb{Z}\}$. A contains positive integers and 0. Let $d \in A$ be the smallest positive integer. $d = ak + b\ell$ for some $k, \ell \in \mathbb{Z}$. We will show that $d = \gcd(a, b)$. First, prove that $d \mid a$ and $d \mid b$. Then show that it is the largest such number.

Proposition 7.1 If $a, b \in \mathbb{N}$ then there exist $k, \ell \in \mathbb{Z}$ for which $gcd(a, b) = ak + b\ell$.

Proof. $d = ak + b\ell$ is the smallest positive element of $A = \{ax + by : x, y \in \mathbb{Z}\}$. Show that $d \mid a$. Use division algorithm: a = qd + r.

$$r = a - qd$$

$$= a - q(ak + b\ell)$$

$$= a(1 - qk) + b(-q\ell)$$

So $r \in A$, $0 \le r < d$, so r = 0. So a = qd + r = qd and so $d \mid a$.

Proposition 7.1 If $a, b \in \mathbb{N}$ then there exist $k, \ell \in \mathbb{Z}$ for which $gcd(a, b) = ak + b\ell$.

Proof. $d = ak + b\ell$ is the smallest positive element of $A = \{ax + by : x, y \in \mathbb{Z}\}$. Show that $d \mid a$. Use division algorithm: a = qd + r.

$$r = a - qd$$

$$= a - q(ak + b\ell)$$

$$= a(1 - qk) + b(-q\ell)$$

So $r \in A$, $0 \le r < d$, so r = 0. So a = qd + r = qd and so $d \mid a$. A similar argument shows $d \mid b$.

Proposition 7.1 If $a, b \in \mathbb{N}$ then there exist $k, \ell \in \mathbb{Z}$ for which $gcd(a, b) = ak + b\ell$.

Proof. $d = ak + b\ell$ is the smallest positive element of $A = \{ax + by : x, y \in \mathbb{Z}\}$, and $d \mid a$ and $d \mid b$.

$$a = \gcd(a, b) \cdot m$$

$$b = \gcd(a, b) \cdot n$$

$$d = ak + b\ell$$

$$= \gcd(a, b) \cdot mk + \gcd(a, b) \cdot n\ell$$

$$= \gcd(a, b)(mk + n\ell)$$

$$d \ge \gcd(a, b)$$

$$d = \gcd(a, b)$$

Proofs involving sets

How to show $a \in \{x : P(x)\}$

Show that P(a) is true.

How to show $a \in \{x \in S : P(x)\}$

- 1. Verify that $a \in S$.
- 2. Show that P(a) is true.

Proofs involving sets

How to Prove $A \subseteq B$ (Direct approach)

```
Proof. Suppose a \in A.

:
Therefore a \in B.
```

How to Prove $A \subseteq B$ (Contrapositive approach)

```
Proof. Suppose a \notin B.

∴

Therefore a \notin A.
```

Proofs involving sets

```
How to Prove A = B

Proof.

[Prove that A \subseteq B.]

[Prove that B \subseteq A.]
```

Disproof

How to disprove P**:** Prove $\sim P$.

Disproof

How to disprove P**:** Prove $\sim P$.

How to disprove $\forall x \in S, P(x)$:

Produce an example of $x \in S$ where P(x) is false.

Disproof

How to disprove P**:** Prove $\sim P$.

How to disprove $\forall x \in S, P(x)$:

Produce an example of $x \in S$ where P(x) is false.

How to disprove $P(x) \Rightarrow Q(x)$:

Produce an example of x where P(x) is true but Q(x) is false.

Mathematical Induction

n	sum of the first n odd natural numbers	n^2
1	1=	1
2	1+3=	4
3	1+3+5 =	9
4	$1+3+5+7 = \dots$	16
5	$1+3+5+7+9 = \dots$	25
:	:	:
n	$1+3+5+7+9+11+\cdots+(2n-1)=\ldots$	n^2
:	:	:

Mathematical Induction

Mathematical Induction

Outline for Proof by Induction

Proposition The statements S_1, S_2, S_3, \ldots are all true.

Proof.

- (1) Prove that S_1 is true.
- (2) Prove that for $k \in \mathbb{N}$, $S_k \Rightarrow S_{k+1}$ is true.

Proposition If $n \in \mathbb{N}$, then $1 + 3 + 5 + 7 + ... + (2n - 1) = n^2$.

- (1) If n = 1, then we need to prove $1 = 1^2$, which is obviously true.
- (2) Assume

$$1+3+5+7+...+(2k-1)=k^2$$
 for some $k \in \mathbb{N}$.

:

Therefore,

$$1+3+5+7+...+(2(k+1)-1)=(k+1)^2$$

Proposition If $n \in \mathbb{N}$, then $1 + 3 + 5 + 7 + ... + (2n - 1) = n^2$.

- (1) If n = 1, then $1 = 1^2$, which is true.
- (2) Assume $1 + 3 + 5 + 7 + ... + (2k 1) = k^2$ for some $k \in \mathbb{N}$. Then

$$1+3+5+7+...+2(k+1)-1 =$$

$$1+3+5+7+...+(2k-1)+(2(k+1)-1) = k^2+(2(k+1)-1)$$

$$= k^2+2d+1$$

$$= (k+1)^2$$

Therefore,

$$1+3+5+7+...+(2(k+1)-1)=(k+1)^2$$

Proposition If $n \in \mathbb{N}^0$, then $5 \mid (n^5 - n)$.

Proof.

- (1) If n = 0, then we need to prove $5 \mid (0^5 0)$, which is true.
- (2) Assume $5 \mid (k^5 k)$ for some $k \in \mathbb{N}^0$.

:

Therefore
$$5 \mid ((k+1)^5 - (k+1))$$
.

What can we get from definitions?

Proposition If $n \in \mathbb{N}^0$, then $5 \mid (n^5 - n)$.

Proof.

- (1) If n = 0, then we need to prove $5 \mid (0^5 0)$, which is true.
- (2) Assume $5 \mid (k^5 k)$ for some $k \in \mathbb{N}^0$.

Then $(k^5 - k) = 5a$ for some $a \in \mathbb{N}$.

:

Then $((k+1)^5 - (k+1)) = 5b$ for some $b \in \mathbb{N}$. Therefore $5 \mid ((k+1)^5 - (k+1))$.

Proposition If $n \in \mathbb{N}^0$, then $5 \mid (n^5 - n)$.

Proof.

(1) If n = 0, then we need to prove $5 \mid (0^5 - 0)$, which is true.

(2) Assume $5 \mid (k^5 - k)$ for some $k \in \mathbb{N}^0$.

Then $(k^5 - k) = 5a$ for some $a \in \mathbb{N}$.

$$(k+1)^5 - (k+1) = k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1 - k - 1$$

$$= (k^5 - k) + 5k^4 + 10k^3 + 10k^2 + 5k$$

$$= 5a + 5k^4 + 10k^3 + 10k^2 + 5k$$

$$= 5(a + k^4 + 2k^3 + 2k^2 + k)$$

Then $((k+1)^5 - (k+1)) = 5b$ for some $b \in \mathbb{N}$. Therefore $5 \mid ((k+1)^5 - (k+1))$.

Strong Induction

Outline for Proof by Induction

Proposition The statements S_1, S_2, S_3, \ldots are all true.

Proof.

- (1) Prove that S_1 is true.
- (2) Prove that for $k \in \mathbb{N}$, $S_k \Rightarrow S_{k+1}$ is true.

Outline for Proof by Strong Induction

Proposition The statements S_1, S_2, S_3, \ldots are all true.

Proof.

- (1) Prove that S_1 is true. (Or the first several S_n .)
- (2) Prove that for $k \in \mathbb{N}$, $(S_1 \wedge S_2 \wedge S_3 \wedge ... \wedge S_k) \Rightarrow S_{k+1}$ is true.

Smallest Counterexample

Outline for Proof by Induction

Proposition The statements S_1, S_2, S_3, \ldots are all true.

Proof.

- (1) Prove that S_1 is true.
- (2) Prove that for $k \in \mathbb{N}$, $S_k \Rightarrow S_{k+1}$ is true.

Outline for Proof by Smallest Counterexample

Proposition The statements S_1, S_2, S_3, \ldots are all true.

Proof.

- (1) Prove that S_1 is true.
- (2) Suppose that not every S_n is true.
- (3) Let S_k be the smallest false one.
- (4) Then S_{k-1} is true and S_k is false.
- (5) Use this to get a contradiction.