Wednesday, Feb 9

Sampling Distributions of \bar{x} and \hat{p}

- 1. The mean of \bar{x} equals μ_x (i.e., $\mu_{\bar{x}} = \mu_x$). The standard deviation of \bar{x} is σ_x/\sqrt{n} (i.e., $\sigma_{\bar{x}} = \sigma_x/\sqrt{n}$).
- 2. The mean of \hat{p} equals p (i.e., $\mu_{\hat{p}} = p$). The standard deviation of \hat{p} is $\sqrt{p(1-p)/n}$ (i.e., $\sigma_{\hat{p}} = \sqrt{p(1-p)/n}$).

Proportions are Means

Suppose we have a population distribution for successes and failures, but we define a random variable x so that x = 1 if we observe a success, and x = 0 if we observe a failure.

$$\begin{array}{c|c}
x & P(x) \\
\hline
1 & p \\
0 & 1-p
\end{array}$$

The mean of x is

$$\mu_x = \sum x P(x) = 1 \times p + 0 \times (1 - p) = p,$$

and the standard deviation of x is

$$\sigma_x = \sqrt{\sum (x - \mu)^2 P(x)} = \sqrt{(1 - p)^2 \times p + (0 - p)^2 \times (1 - p)} = \sqrt{p(1 - p)}.$$

The mean of a sample of observations of x (i.e., \bar{x}) is a proportion. For example, if our observations of x are 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, then the mean is

$$\bar{x} = \frac{1+1+0+1+0+0+0+1+1+1}{10} = 0.6,$$

which is also the proportion of observations where we observe a success. So $\hat{p} = \bar{x}$.

Now applying what we know about the sampling distribution of \bar{x} , we have

$$\mu_{\bar{x}} = \mu_x = p,$$

$$\sigma_{\bar{x}} = \sigma_x / \sqrt{n} = \sqrt{p(1-p)} / \sqrt{n} = \sqrt{p(1-p)/n}.$$

Central Limit Theorem

Central Limit Theorem: If $X_1, X_2, ..., X_n$ are independently and identically distributed random variables so that $E(X_i) = \mu$ and $E(X_i - \mu)^2 = \sigma^2 < \infty$, then

$$\sqrt{n}(\bar{X} - \mu)/\sigma \stackrel{d}{\to} N(0, 1),$$

where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, and where $\stackrel{d}{\to}$ denotes convergence in distribution.

Central Limit Theorem (Layperson's Version): As n increases, the *shape* of the sampling distribution of \bar{x} "approaches" that of a normal distribution.

Example: Suppose we roll n=2 fair 6-sided dice. What is the shape of the sampling distribution of the mean number of dots (i.e., \bar{x})?

Note: Because each side has probability 1/6, the probability of each sample is $1/6 \times 1/6 = 1/36$.

Table 1: Population Distribution

\overline{x}	P(x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

Table 2: Sample Space

		Second Die				
First Die	1	2	3	4	5	6
1	1.0	1.5	2.0	2.5	3.0	3.5
${f 2}$	1.5	2.0	2.5	3.0	3.5	4.0
3	2.0	2.5	3.0	3.5	4.0	4.5
4	2.5	3.0	3.5	4.0	4.5	5.0
5	3.0	3.5	4.0	4.5	5.0	5.5
6	3.5	4.0	4.5	5.0	5.5	6.0

Table 3: Sampling Distribution

\bar{x}	$P(\bar{x})$
1.0	1/36
1.5	2/36
2.0	3/36
2.5	4/36
3.0	5/36
3.5	6/36
4.0	5/36
4.5	4/36
5.0	3/36
5.5	2/36
6.0	1/36

What if we roll n = 3, n = 5, or n = 7 dice?

Here is another demonstration that uses simulation to illustrate the central limit theorem.

The *practical* implication of the central limit theorem is that we can often assume that the shape of the sampling distribution of \bar{x} (or \hat{p}) is approximately that of a normal distribution.

Applying the Central Limit Theorem

Recall that the empirical rule states that approximately 95% of observations are within two standard deviations of the mean. Adapting this to a normal probability distribution, we can say that there is approximately a probability of 0.95 that the random variable will be within two standard deviations of the mean of the distribution.

- 1. The probability that \bar{x} will be between $\mu_x 2\sigma_x/\sqrt{n}$ and $\mu_x + 2\sigma_x/\sqrt{n}$ is approximately 0.95.
- 2. The probability that \hat{p} will be between $p 2\sqrt{p(1-p)/n}$ and $p + 2\sqrt{p(1-p)/n}$ is approximately 0.95.

Example: Recall Darwin's experiment that compared cross-fertilization and self-fertilization.

	Fertili	zation	
Obs	Cross	Self	Difference
1	23.500	17.375	6.125
2	12.000	20.375	-8.375
3	21.000	20.000	1.000
4	22.000	20.000	2.000
5	19.125	18.375	0.750
:	:	:	:
15	12.000	18.000	-6.000

1. Let x be the difference in height for a given pair of seedlings. Assume that x has a mean of 3 and a standard deviation of 5. So $\mu_x = 3$, but Darwin didn't know that. So he'd use \bar{x} to estimate μ_x . How close might it be? What are the mean and standard deviation of \bar{x} based on a sample of n = 15 observations? What is the interval that has a probability of approximately 0.95 of containing \bar{x} ?

2. Let x be which seedling is taller, with the following population distribution.

x	P(x)
cross	0.8
self	0.2

So here the seedling produced by cross-fertilization is more likely to be taller than one produced by self-fertilization. This would be useful to know, but Darwin didn't know the value of p. But he could estimate it based on a sample of observations using \hat{p} , the proportion of pairs in a sample of observations in which the seedling produced by cross-fertilization is taller. What are the mean and standard deviation of \hat{p} based on a sample of n = 15 observations? What is the interval that has a probability of approximately 0.95 of containing \hat{p} ?

Estimation

Estimation is a kind of inference in which we use a statistic to estimate a parameter.

- 1. We can use \bar{x} (i.e., the mean of a sample of n observations of x) to estimate the mean of a single observation (i.e., μ_x).
- 2. We can use \hat{p} (i.e., the proportion of observations in a sample of n observations where we observed a "success") to estimate the probability of a "success" (i.e., p).

Note: Parameters like μ_x and p have a couple of interpretations here. One is that they are properties of the population distribution. But in a survey with a finite number of observations, μ_x is also the mean of *all* observations in the population, and p is a proportion based on *all* observations in the population. This is because in these cases the population distribution is both a probability distribution and also the distribution of all observations in the population.

The sampling distributions of \bar{x} and \hat{p} are what we use to determine how effective these statistics are at estimating the parameters μ_x and p, respectively.

- 1. Both \bar{x} and \hat{p} are **unbiased**, meaning that the mean of \bar{x} equals μ_x , and the mean of \hat{p} equals p.
- 2. A **standard error** is the standard deviation of a statistic. The standard error of \bar{x} is σ_x/\sqrt{n} , and the standard error of \hat{p} is $\sqrt{p(1-p)/n}$.
- 3. The **central limit theorem** implies that (unless n is very small) we can regard the *shape* of the sampling distributions of \bar{x} and \hat{p} as approximately that of a normal distribution for the purpose of computing probabilities concerning \bar{x} or \hat{p} .

The above statements require certain technical assumptions about how the data are collected. We will discuss that in a later lecture.