Individuals and Organizations as Sources of State Effectiveness and Consequences for Policy Design

Michael Best Stanford SIEPR

> Jonas Hjort Columbia

David Szakonyi George Washington

April 2017

Outline

Introduction

Context & Data

Sources of State Effectiveness

Theory

Decomposition Method

Correlates of Bureaucrat & Organization Effectiveness

Consequences for Policy Design "Buy Local" Policy Identification

Conclusion

ightharpoonup Same policy ightarrow different outcomes in different settings

- lacktriangleright Same policy ightarrow different outcomes in different settings
 - ▶ VAT in low/high income countries

- lacktriangleright Same policy ightarrow different outcomes in different settings
 - VAT in low/high income countries
 - ► NREGA across India

- lacktriangleright Same policy ightarrow different outcomes in different settings
 - VAT in low/high income countries
 - NREGA across India
 - ▶ Post office returning mail

- lacktriangleright Same policy ightarrow different outcomes in different settings
 - VAT in low/high income countries
 - NREGA across India
 - ▶ Post office returning mail
- ▶ Bureaucrats and public organizations different across settings

- lacktriangleright Same policy ightarrow different outcomes in different settings
 - VAT in low/high income countries
 - ► NREGA across India
 - ▶ Post office returning mail
- ▶ Bureaucrats and public organizations different across settings
- ▶ How much of variation in policy outcomes due to bureaucracy?

- lacktriangleright Same policy ightarrow different outcomes in different settings
 - VAT in low/high income countries
 - NREGA across India
 - ▶ Post office returning mail
- ▶ Bureaucrats and public organizations different across settings
- ▶ How much of variation in policy outcomes due to bureaucracy?
- ▶ How does policy affect impact of bureaucratic heterogeneity?

- lacktriangleright Same policy ightarrow different outcomes in different settings
 - VAT in low/high income countries
 - NREGA across India
 - ▶ Post office returning mail
- ▶ Bureaucrats and public organizations different across settings
- ▶ How much of variation in policy outcomes due to bureaucracy?
- ▶ How does policy affect impact of bureaucratic heterogeneity?
- ► Towards: How does optimal policy depend on who implements it?

- lacktriangleright Same policy ightarrow different outcomes in different settings
 - VAT in low/high income countries
 - ► NREGA across India
 - ▶ Post office returning mail
- ▶ Bureaucrats and public organizations different across settings
- ▶ How much of variation in policy outcomes due to bureaucracy?
- ▶ How does policy affect impact of bureaucratic heterogeneity?
- ► Towards: How does optimal policy depend on who implements it?
- ▶ We investigate these questions in the Russian public sector

1. Study well-defined output "produced" throughout public sector – input prices paid. Admin data on universe of procurement auctions

- Study well-defined output "produced" throughout public sector input prices paid. Admin data on universe of procurement auctions
- 2. Simple model: Suppliers choose whether to enter auction Heterogeneous state effectiveness affects entry costs

- Study well-defined output "produced" throughout public sector input prices paid. Admin data on universe of procurement auctions
- 2. Simple model: Suppliers choose whether to enter auction Heterogeneous state effectiveness affects entry costs
- 3. Exploit "movers" to identify causal effect of bureaucrats and organizations under constant policy regime

- Study well-defined output "produced" throughout public sector input prices paid. Admin data on universe of procurement auctions
- 2. Simple model: Suppliers choose whether to enter auction Heterogeneous state effectiveness affects entry costs
- 3. Exploit "movers" to identify causal effect of bureaucrats and organizations under constant policy regime
 - Magnitude of effects?

- Study well-defined output "produced" throughout public sector input prices paid. Admin data on universe of procurement auctions
- 2. Simple model: Suppliers choose whether to enter auction Heterogeneous state effectiveness affects entry costs
- 3. Exploit "movers" to identify causal effect of bureaucrats and organizations under constant policy regime
 - ► Magnitude of effects?
 - How do effective burs and orgs achieve lower prices?

- Study well-defined output "produced" throughout public sector input prices paid. Admin data on universe of procurement auctions
- 2. Simple model: Suppliers choose whether to enter auction Heterogeneous state effectiveness affects entry costs
- 3. Exploit "movers" to identify causal effect of bureaucrats and organizations under constant policy regime
 - Magnitude of effects?
 - ► How do effective burs and orgs achieve lower prices?
- 4. Hold bur & org constant and vary task. Study "buy local" policy:

- Study well-defined output "produced" throughout public sector input prices paid. Admin data on universe of procurement auctions
- 2. Simple model: Suppliers choose whether to enter auction Heterogeneous state effectiveness affects entry costs
- 3. Exploit "movers" to identify causal effect of bureaucrats and organizations under constant policy regime
 - Magnitude of effects?
 - How do effective burs and orgs achieve lower prices?
- 4. Hold bur & org constant and vary task. Study "buy local" policy:
 - ▶ Variation across products and time ⇒ Diff in Diff strategy

- Study well-defined output "produced" throughout public sector input prices paid. Admin data on universe of procurement auctions
- 2. Simple model: Suppliers choose whether to enter auction Heterogeneous state effectiveness affects entry costs
- 3. Exploit "movers" to identify causal effect of bureaucrats and organizations under constant policy regime
 - Magnitude of effects?
 - How do effective burs and orgs achieve lower prices?
- 4. Hold bur & org constant and vary task. Study "buy local" policy:
 - ► Variation across products and time ⇒ Diff in Diff strategy
 - ► Interact with bur/org effects ⇒ How does impact depend on bur/org effectiveness?

► Findings: Sources of state effectiveness

- ► Findings: Sources of state effectiveness
 - 1. Large bureaucrat & organization effects: 60% of sd of output

- ► Findings: Sources of state effectiveness
 - 1. Large bureaucrat & organization effects: 60% of sd of output
 - 2. Effective burs/orgs = lower entry costs, higher participation

- ► Findings: Sources of state effectiveness
 - 1. Large bureaucrat & organization effects: 60% of sd of output
 - 2. Effective burs/orgs = lower entry costs, higher participation
- ► Findings: Buy local policy

- Findings: Sources of state effectiveness
 - 1. Large bureaucrat & organization effects: 60% of sd of output
 - 2. Effective burs/orgs = lower entry costs, higher participation
- ► Findings: Buy local policy
 - 1. Government does not end up paying more on average

- Findings: Sources of state effectiveness
 - 1. Large bureaucrat & organization effects: 60% of sd of output
 - 2. Effective burs/orgs = lower entry costs, higher participation
- ► Findings: Buy local policy
 - 1. Government does not end up paying more on average
 - 2. Price/competition effects depend negatively on bur/org effects.

- ► Findings: Sources of state effectiveness
 - 1. Large bureaucrat & organization effects: 60% of sd of output
 - 2. Effective burs/orgs = lower entry costs, higher participation
- ► Findings: Buy local policy
 - 1. Government does not end up paying more on average
 - 2. Price/competition effects depend negatively on bur/org effects.
 - 3. Optimal preferences 0 when effectiveness high, >0 for low ability

- ► Findings: Sources of state effectiveness
 - 1. Large bureaucrat & organization effects: 60% of sd of output
 - 2. Effective burs/orgs = lower entry costs, higher participation
- ► Findings: Buy local policy
 - 1. Government does not end up paying more on average
 - 2. Price/competition effects depend negatively on bur/org effects.
 - 3. Optimal preferences 0 when effectiveness high, >0 for low ability
- Implications

- ► Findings: Sources of state effectiveness
 - 1. Large bureaucrat & organization effects: 60% of sd of output
 - 2. Effective burs/orgs = lower entry costs, higher participation
- ► Findings: Buy local policy
 - 1. Government does not end up paying more on average
 - 2. Price/competition effects depend negatively on bur/org effects.
 - 3. Optimal preferences 0 when effectiveness high, >0 for low ability
- Implications
 - 1. Large returns to improving bureaucratic effectiveness.

- ► Findings: Sources of state effectiveness
 - 1. Large bureaucrat & organization effects: 60% of sd of output
 - 2. Effective burs/orgs = lower entry costs, higher participation
- ► Findings: Buy local policy
 - 1. Government does not end up paying more on average
 - 2. Price/competition effects depend negatively on bur/org effects.
 - 3. Optimal preferences 0 when effectiveness high, >0 for low ability
- Implications
 - 1. Large returns to improving bureaucratic effectiveness.
 - 2. Subsidizing entry and improving bureaucracy substitutes when state effectiveness low

Outline

Introduction

Context & Data

Sources of State Effectiveness

Theory

Decomposition Method

Correlates of Bureaucrat & Organization Effectiveness

Consequences for Policy Design "Buy Local" Policy Identification

Conclusion

Procurement in Russia

- Decentralized procurement with centralized rules. 104,000
 Federal, regional, municipal public bodies procure independently.
- ► No centralized civil service, procurement officers hired much like private sector.
- ▶ Majority (52%) of purchases by electronic descending auction.
- ► Detailed data on all procurement available in online procurement register the Unified Register of Federal and Municipal Contracts
- ► We collected the data on all auction requests, review protocols, bids, and final contracts 2011–2015
- ▶ Key issue: Lack of entry. Motivates endogenous entry model

Procurement Timeline

- 1. Organization requesting goods "hires" a bureaucrat for the purchase. Strict rules on internal/external bureaucrat.
- Together, write documentation (technical specifications, deposit, maximum price, auction date). Bureaucrat publishes and publicizes ("auction SEO")
- 3. Bureaucrat blindly checks eligibility of applications to participate
- 4. If >1 eligible participants, auction is held. If not, award at reservation price.
- 5. Blind, descending English auction held on independent online platform. Winner is lowest bid / "last man standing" after no bids for 10 minutes
- 6. Lowest bidder awarded contract, unless bid does not satisfy technical specification

Flow Chart

Outline

Introduction

Context & Data

Sources of State Effectiveness

Decomposition Method

Correlates of Bureaucrat & Organization Effectiveness

Consequences for Policy Desigr "Buy Local" Policy Identification

Conclusion

Outline

Introduction

Context & Data

Sources of State Effectiveness

Theory

Decomposition Method

Correlates of Bureaucrat & Organization Eff

Consequences for Policy Design

"Buy Local" Policy Identification

Conclusion

Endogenous Entry Auction Model

- ► Government buying from 2 potential suppliers, F & L
- ▶ Mechanism: Open outcry descending auction. Reserve price = 1
- ▶ Fulfillment costs: $G_F\left(v_F\right) \sim \mathcal{U}\left[0,1\right]$, $G_L\left(v_L\right) \sim \mathcal{U}\left[\mu,1\right]$, $0 < \mu < 1$.
- ▶ Timing
 - 1. Suppliers i=F,L learn v_i , decide whether to pay entry cost $c\geq 0$
 - 2. Government observes entry decisions
 - 2.1 If both enter: Hold auction
 - 2.2 If only 1 enters: Awarded contract at price 1
 - 2.3 If neither enter: Randomly pick supplier, award contract at price 1

Endogenous Entry Auction Model: Equilibrium

- Open outcry auction ≈ 2nd price auction
 ⇒ dominant strategy to bid true cost.
- ▶ Enter if $v_i \leq \overline{d}_i$. \overline{d}_F , \overline{d}_L satisfy

$$U\left(\overline{d}_{F}; \overline{d}_{F}, \overline{d}_{L}\right) - c = \Pr\left(\text{L stays out}\right) \frac{1}{2} \left(1 - \overline{d}_{F}\right)$$

$$U\left(\overline{d}_{L}; \overline{d}_{F}, \overline{d}_{L}\right) - c = \Pr\left(\text{F stays out}\right) \frac{1}{2} \left(1 - \overline{d}_{L}\right)$$

ightharpoonup Comparative statics on entrants n and price p

$$\frac{\partial \mathsf{E}[n]}{\partial c} < 0$$
 $\frac{\partial \mathsf{E}[p]}{\partial c} > 0$

 Buyers who impose larger entry costs attract fewer entrants and pay higher prices

Outline

Introduction

Context & Data

Sources of State Effectiveness

Theory

Decomposition Method

Correlates of Bureaucrat & Organization Effectiveness

Consequences for Policy Design

"Buy Local" Policy Identification

Conclusion

 \blacktriangleright Model log price for item i purchased for organization j by bureaucrat $b\left(i,j\right)$ as

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \tilde{\alpha}_{b(i,j)} + \tilde{\psi}_j + \varepsilon_i$$

 $ightharpoonup \mathbf{X}_i$ includes log quantity, good FEs, month FEs, size, region

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \tilde{\alpha}_{b(i,j)} + \tilde{\psi}_j + \varepsilon_i$$

- $ightharpoonup {f X}_i$ includes log quantity, good FEs, month FEs, size, region
- lacktriangle Goal: Estimate magnitude of $\operatorname{Var}\left(ilde{lpha}
 ight)$ and $\operatorname{Var}\left(ilde{\psi}
 ight)$

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \tilde{\alpha}_{b(i,j)} + \tilde{\psi}_j + \varepsilon_i$$

- $ightharpoonup {f X}_i$ includes log quantity, good FEs, month FEs, size, region
- lacktriangle Goal: Estimate magnitude of $\operatorname{Var}\left(ilde{lpha}
 ight)$ and $\operatorname{Var}\left(ilde{\psi}
 ight)$
- ▶ 4 Challenges

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \tilde{\alpha}_{b(i,j)} + \tilde{\psi}_j + \varepsilon_i$$

- $ightharpoonup {f X}_i$ includes log quantity, good FEs, month FEs, size, region
- lacktriangle Goal: Estimate magnitude of $\operatorname{Var}\left(ilde{lpha}
 ight)$ and $\operatorname{Var}\left(ilde{\psi}
 ight)$
- ▶ 4 Challenges
- 1. Like-for-like comparisons: quality-adjusted prices

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \tilde{\alpha}_{b(i,j)} + \tilde{\psi}_j + \varepsilon_i$$

- $ightharpoonup {f X}_i$ includes log quantity, good FEs, month FEs, size, region
- lacktriangle Goal: Estimate magnitude of $\operatorname{Var}\left(ilde{lpha}
 ight)$ and $\operatorname{Var}\left(ilde{\psi}
 ight)$
- ▶ 4 Challenges
- 1. Like-for-like comparisons: quality-adjusted prices
- 2. Effects only identified within "connected sets" linked by mobility

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \tilde{\alpha}_{b(i,j)} + \tilde{\psi}_j + \varepsilon_i$$

- $ightharpoonup {f X}_i$ includes log quantity, good FEs, month FEs, size, region
- lacktriangle Goal: Estimate magnitude of $\operatorname{Var}\left(ilde{lpha}
 ight)$ and $\operatorname{Var}\left(ilde{\psi}
 ight)$
- ▶ 4 Challenges
- 1. Like-for-like comparisons: quality-adjusted prices
- 2. Effects only identified within "connected sets" linked by mobility
- 3. Causal identification requires "exogenous mobility"

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \tilde{\alpha}_{b(i,j)} + \tilde{\psi}_j + \varepsilon_i$$

- $ightharpoonup {f X}_i$ includes log quantity, good FEs, month FEs, size, region
- lacktriangle Goal: Estimate magnitude of $\operatorname{Var}\left(ilde{lpha}
 ight)$ and $\operatorname{Var}\left(ilde{\psi}
 ight)$
- ▶ 4 Challenges
- 1. Like-for-like comparisons: quality-adjusted prices
- 2. Effects only identified within "connected sets" linked by mobility
- 3. Causal identification requires "exogenous mobility"
- 4. Sampling error inflates variances

Challenge 1: Measuring Procurement "Output"

- Outcome: Quality-adjusted unit prices paid
- ▶ 2 Approaches
 - 1. Hedonics: Measure and price quality-relevant attributes, restrict attention to homogeneous goods (Bandiera et al. 2009, Best et al. 2017)
 - 2. Partitioning: Identify groups without significant within-group quality variation (Syverson, trade/IO literature)
- \blacktriangleright Here: Use text analysis methods to group goods at \sim HS-10 level
- Robustness:
 - 1. Pharmaceuticals subsample. Barcode-level controls
 - 2. Trace gradient wrt good homogeneity (Rauch 1999, Khandelwal 2010)

Text Analysis procedure

- ▶ Data contains detailed product descriptions in contracts.
- ▶ Use these to group purchases into homogenous categories.
- 1. Train classifier on customs product descriptions
- 2. Apply to procurement data
- 3. Identify unreliably classified goods
- 4. Cluster unclassified goods

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \tilde{\alpha}_{b(i,j)} + \tilde{\psi}_j + \varepsilon_i$$

- ▶ 4 Challenges
- 1. Like-for-like comparisons: quality-adjusted prices Text classification to control for quality in \mathbf{X}_i
- 2. Separate identification *within "connected sets"* linked by mobility ⇒ Can't identify all bureaucrat & organization effects
- 3. Causal identification requires "exogenous mobility"
- 4. Sampling error inflates variances

▶ Abowd et al (1999, 2002): bureaucrat and organization effects only identified *within* "connected sets" linked by mobility

- ▶ Abowd et al (1999, 2002): bureaucrat and organization effects only identified *within* "connected sets" linked by mobility
- ▶ Private Sector: largest connected set >90% of data. Here: 25%.

- ▶ Abowd et al (1999, 2002): bureaucrat and organization effects only identified *within* "connected sets" linked by mobility
- ▶ Private Sector: largest connected set >90% of data. Here: 25%.
- ▶ Normalize connected-set means to 0, estimate CS intercepts $\gamma_{s(b,j)}$

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \alpha_{b(i,j)} + \psi_j + \gamma_{s(b,j)} + \varepsilon_i$$

 $ightharpoonup \alpha_b$, ψ_j and γ_s are identified.

- ▶ Abowd et al (1999, 2002): bureaucrat and organization effects only identified *within* "connected sets" linked by mobility
- ▶ Private Sector: largest connected set >90% of data. Here: 25%.
- ▶ Normalize connected-set means to 0, estimate CS intercepts $\gamma_{s(b,j)}$

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \alpha_{b(i,j)} + \psi_j + \gamma_{s(b,j)} + \varepsilon_i$$

- $ightharpoonup \alpha_b, \ \psi_i \ \ \text{and} \ \ \gamma_s \ \ \text{are identified}.$
- ▶ Lower bounds: $\operatorname{Var}\left(\alpha_{b}\right) < \operatorname{Var}\left(\tilde{\alpha}_{b}\right), \ \operatorname{Var}\left(\psi_{j}\right) < \operatorname{Var}\left(\tilde{\psi}_{j}\right)$

- ▶ Abowd et al (1999, 2002): bureaucrat and organization effects only identified *within* "connected sets" linked by mobility
- ▶ Private Sector: largest connected set >90% of data. Here: 25%.
- ▶ Normalize connected-set means to 0, estimate CS intercepts $\gamma_{s(b,j)}$

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \alpha_{b(i,j)} + \psi_j + \gamma_{s(b,j)} + \varepsilon_i$$

- $ightharpoonup \alpha_b, \ \psi_i \ \text{and} \ \gamma_s \ \text{are identified}.$
- ▶ Lower bounds: $\operatorname{Var}\left(\alpha_{b}\right) < \operatorname{Var}\left(\tilde{\alpha}_{b}\right), \ \operatorname{Var}\left(\psi_{j}\right) < \operatorname{Var}\left(\tilde{\psi}_{j}\right)$
- ▶ Total effect: $\operatorname{Var}\left(\tilde{\alpha}_b + \tilde{\psi}_j\right) = \operatorname{Var}\left(\alpha_b + \psi_j\right) + \operatorname{Var}\left(\gamma_s\right)$

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \alpha_{b(i,j)} + \psi_j + \gamma_{s(b,j)} + \varepsilon_i$$

- ▶ 4 Challenges
- 1. Like-for-like comparisons: quality-adjusted prices Text classification to control for quality in \mathbf{X}_i
- 2. Separate identification within "connected sets" linked by mobility Alternative normalization: $\tilde{\alpha}, \tilde{\psi} \to \alpha, \psi, \gamma$
- 3. Causal identification requires "exogenous mobility"
 - ⇒ Need to rule out key confounders
- 4. Sampling error inflates variances

▶ Identification comes from *movers*

- ▶ Identification comes from *movers*
- 1. Moves uncorrelated with confounders: "exogenous mobility"
 - ▶ No moving in response to shocks/drift
 - ► No sorting on omitted match effects
 - lacktriangle NB does *not* rule out sorting on lpha and ψ

- ▶ Identification comes from *movers*
- 1. Moves uncorrelated with confounders: "exogenous mobility"
 - ▶ No moving in response to shocks/drift
 - ► No sorting on omitted match effects
 - lacktriangle NB does *not* rule out sorting on lpha and ψ
- 2. log-linearity of "production function"
 - No (strong) omitted match effects

- ▶ Identification comes from *movers*
- 1. Moves uncorrelated with confounders: "exogenous mobility"
 - ▶ No moving in response to shocks/drift
 - ► No sorting on omitted match effects
 - lacktriangle NB does *not* rule out sorting on lpha and ψ
- 2. log-linearity of "production function"
 - ▶ No (strong) omitted match effects
- ▶ Event study analysis of organizations switching bureaucrats
 - ▶ Time trends
 - Symmetry

Bureaucrats Switching Goods Organizations Switching Goods 3-day spells

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \alpha_{b(i,j)} + \psi_j + \gamma_{s(b,j)} + \varepsilon_i$$

- ▶ 4 Challenges
- 1. Like-for-like comparisons: quality-adjusted prices Text classification to control for quality in X_i
- 2. Separate identification within "connected sets" linked by mobility Alternative normalization: $\tilde{\alpha}, \tilde{\psi} \to \alpha, \psi, \gamma$
- 3. Causal identification requires "exogenous mobility" Event study evidence consistent
- 4. Sampling error inflates variances
 - ⇒ Risk conflating signal variation with noise

▶ Goal: How big are $Var(\tilde{\alpha}_b)$ and $Var(\tilde{\psi}_j)$?

- ▶ Goal: How big are $Var(\tilde{\alpha}_b)$ and $Var(\tilde{\psi}_j)$?
- With sampling error: $\hat{\alpha}_b = \alpha_b + \eta_b$, and $\hat{\psi}_j = \psi_j + \eta_j$.

- ▶ Goal: How big are $Var(\tilde{\alpha}_b)$ and $Var(\tilde{\psi}_j)$?
- With sampling error: $\hat{\alpha}_b = \alpha_b + \eta_b$, and $\hat{\psi}_j = \psi_j + \eta_j$.
- ▶ Incidental parameters: $\hat{\alpha}_b$, $\hat{\psi}_j$ consistent as # obs on $b, j \to \infty$ (Scott 1948, Lancaster 2000)
- $\Rightarrow \text{Var}(\eta_b), \text{Var}(\eta_i) > 0, \Rightarrow \text{overestimate Var}(\alpha_b), \text{Var}(\psi_i)$

- ▶ Goal: How big are $Var(\tilde{\alpha}_b)$ and $Var(\tilde{\psi}_j)$?
- With sampling error: $\hat{\alpha}_b = \alpha_b + \eta_b$, and $\hat{\psi}_j = \psi_j + \eta_j$.
- ▶ Incidental parameters: $\hat{\alpha}_b$, $\hat{\psi}_j$ consistent as # obs on $b, j \to \infty$ (Scott 1948, Lancaster 2000)
- $\Rightarrow \text{Var}(\eta_b), \text{Var}(\eta_i) > 0, \Rightarrow \text{overestimate Var}(\alpha_b), \text{Var}(\psi_i)$
 - ► Limited mobility bias: too few "movers" (Abowd et al 2004, Andrews et al 2008)
- $\Rightarrow \operatorname{Cov}(\eta_b, \eta_j) < 0$, Underestimate $\operatorname{Cov}(\alpha_b, \psi_j)$

- ▶ 2 approaches to correct for sampling error.
- 1. Non-parametric: split-sample estimates

$$\widehat{\mathsf{Var}}^{SS}\left(lpha_{b}
ight) = \mathsf{Cov}\left(\hat{lpha}_{b}^{1},\hat{lpha}_{b}^{2}
ight)$$

- ▶ 2 approaches to correct for sampling error.
- 1. Non-parametric: split-sample estimates

$$\widehat{\mathsf{Var}}^{SS}\left(\alpha_{b}\right) = \mathsf{Cov}\left(\hat{\alpha}_{b}^{1}, \hat{\alpha}_{b}^{2}\right)$$

2. More parametric: random effects (shrinkage) approach.

- ▶ 2 approaches to correct for sampling error.
- 1. Non-parametric: split-sample estimates

$$\widehat{\mathsf{Var}}^{SS}\left(\alpha_{b}\right) = \mathsf{Cov}\left(\hat{\alpha}_{b}^{1}, \hat{\alpha}_{b}^{2}\right)$$

- 2. More parametric: random effects (shrinkage) approach.
 - Estimate variance components ${
 m Var}\left(\hat{lpha}\right)=\sigma_{lpha}^2+\sigma_{\eta}^2$

- ▶ 2 approaches to correct for sampling error.
- 1. Non-parametric: split-sample estimates

$$\widehat{\mathsf{Var}}^{SS}\left(lpha_{b}
ight) = \mathsf{Cov}\left(\hat{lpha}_{b}^{1},\hat{lpha}_{b}^{2}
ight)$$

- 2. More parametric: random effects (shrinkage) approach.
 - Estimate variance components $Var(\hat{\alpha}) = \sigma_{\alpha}^2 + \sigma_{\eta}^2$
 - ▶ Bootstrap $\Rightarrow s_b^2, s_j^2$.

- ▶ 2 approaches to correct for sampling error.
- 1. Non-parametric: split-sample estimates

$$\widehat{\mathsf{Var}}^{SS}\left(\alpha_{b}\right) = \mathsf{Cov}\left(\hat{\alpha}_{b}^{1}, \hat{\alpha}_{b}^{2}\right)$$

- 2. More parametric: random effects (shrinkage) approach.
 - Estimate variance components $\operatorname{Var}\left(\hat{\alpha}\right) = \sigma_{\alpha}^2 + \sigma_{\eta}^2$
 - ▶ Bootstrap $\Rightarrow s_b^2, s_j^2$.

- ▶ 2 approaches to correct for sampling error.
- 1. Non-parametric: split-sample estimates

$$\widehat{\mathsf{Var}}^{SS}\left(\alpha_{b}\right) = \mathsf{Cov}\left(\hat{\alpha}_{b}^{1}, \hat{\alpha}_{b}^{2}\right)$$

- 2. More parametric: random effects (shrinkage) approach.
 - Estimate variance components $Var(\hat{\alpha}) = \sigma_{\alpha}^2 + \sigma_{\eta}^2$
 - ▶ Bootstrap $\Rightarrow s_b^2, s_j^2$.
 - $\qquad \qquad \bullet \ \, \hat{\sigma}_{\alpha}^{2} = \mathsf{Var}\left(\hat{\alpha}\right) \mathsf{E}_{b}\left[s_{b}^{2}\right]$
 - Form minimum mean-squared error linear predictions of α : $\hat{\alpha}_b^{Sh} = \frac{\hat{\sigma}_\alpha^2}{\hat{\sigma}^2 + s_a^2} \hat{\alpha}_b$

$$p_i = \mathbf{X}_i \boldsymbol{\beta} + \alpha_{b(i,j)} + \psi_j + \gamma_{s(b,j)} + \varepsilon_i$$

- ▶ 4 Challenges
- 1. Like-for-like comparisons: quality-adjusted prices Text classification to control for quality in X_i
- 2. Separate identification within "connected sets" linked by mobility Alternative normalization: $\tilde{\alpha}, \tilde{\psi} \to \alpha, \psi, \gamma$
- 3. Causal identification requires "exogenous mobility" Event study evidence consistent
- 4. Sampling error inflates variances
 Estimate and adjust for sampling error

Shrinking Bureaucrat Effects

Variance Decomposition Results

	Prices (P) (1)	(s.e.) (2)	Participation (N) (3)	(s.e.) (4)
s.d. of Bureaucrat Effects (across items)	1.031	(0.0462)	0.919	(0.0418)
s.d. of Organization Effects (across items)	1.068	(0.0496)	0.888	(0.0468)
s.d. of Connected Set Effects (across items)	0.555	(0.035)	0.302	(0.0147)
s.d. of Bur $+$ Org Effects Within CS (across items)	0.876	(0.0154)	0.642	(0.00654)
s.d. of Total Bur $+$ Org Effects (across items)	1.036	(0.00126)	0.710	(0.00358)
s.d. of Y	2.417		1.355	
s.d. of $Y \mid good, month$	1.646		1.241	
Adjusted R-squared	0.955		0.837	
Sample Size	11,228,122		11,228,122	

Robustness:

1. Quality: Medicines; Product homogeneity

2. Connected Sets: Largest CS

3. Misspecification: Residuals Heat Map

Crude Counterfactual: Improving Bureaucrats

Counterfactual: Improving Bureaucrats & Organizations

Outline

Introduction

Context & Data

Sources of State Effectiveness

Theory

Decomposition Method

Correlates of Bureaucrat & Organization Effectiveness

Consequences for Policy Design

"Buy Local" Policy Identification

Conclusion

Correlates of Bureaucrat/Organization Effectiveness

- What do good and bad bureaucrats and organizations do differently?
- ▶ What attributes do good and bad bureaucrats have?

Correlates of Bureaucrat/Organization Effectiveness

- What do good and bad bureaucrats and organizations do differently?
- ▶ What attributes do good and bad bureaucrats have?
- ► Using detailed data on the levers they control at the "qualification stage", the "auction stage", and "the contracting stage" and how firms respond to their behaviors

Correlates of Bureaucrat/Organization Effectiveness

- What do good and bad bureaucrats and organizations do differently?
- ▶ What attributes do good and bad bureaucrats have?
- ► Using detailed data on the levers they control at the "qualification stage", the "auction stage", and "the contracting stage" and how firms respond to their behaviors
- ▶ Large number of rhs variables. For variable selection present
 - 1. Pairwise regression coefficients (standardized rhs vars)
 - 2. Post-LASSO coefficients

Figure: Correlates of Bureaucrat Effects: Qualification Stage

Organizations Later Stages

Figure: Correlates of Bureaucrat Effects: Bureaucrat Attributes

Organizations Later Stages

Sources of State Effectiveness: Summary

- 1. Bureaucrats & organizations explain 60% of variation in state output
- 2. Effective burs/orgs lower participation costs

- ▶ Ultimately bureaucrats and organizations implement policies
- ▶ What are the implications for policy design?
- Does impact of bur/org heterogeneity depend on policy?

Outline

Introduction

Context & Data

Sources of State Effectiveness

Theory

Decomposition Method

Correlates of Bureaucrat & Organization Effectiveness

Consequences for Policy Design

"Buy Local" Policy Identification

Conclusion

Outline

Introduction

Context & Data

Sources of State Effectiveness

Decomposition Method

Correlates of Bureaucrat & Organization Effectiveness

Consequences for Policy Design "Buy Local" Policy

Conclusion

- ► Motivation: classic mercantilist "support local business"
- ► Each spring presidency issues list of goods receiving preferences
 - ▶ Winner supplying foreign good receives 85% of winning bid
 - ▶ Winner supplying domestic good receives 100% of winning bid

- Motivation: classic mercantilist "support local business"
- ► Each spring presidency issues list of goods receiving preferences
 - ▶ Winner supplying foreign good receives 85% of winning bid
 - ▶ Winner supplying domestic good receives 100% of winning bid
- Bid preferences ubiquitous in procurement. e.g. California SME preferences.

- Motivation: classic mercantilist "support local business"
- ► Each spring presidency issues list of goods receiving preferences
 - ▶ Winner supplying foreign good receives 85% of winning bid
 - ▶ Winner supplying domestic good receives 100% of winning bid
- Bid preferences ubiquitous in procurement. e.g. California SME preferences.
- ▶ Do preferences affect prices?

- ▶ Motivation: classic mercantilist "support local business"
- ► Each spring presidency issues list of goods receiving preferences
 - ▶ Winner supplying foreign good receives 85% of winning bid
 - ▶ Winner supplying domestic good receives 100% of winning bid
- ▶ Bid preferences ubiquitous in procurement. e.g. California SME preferences.
- ▶ Do preferences affect prices?
- ▶ Do preferences affect impact of bureaucratic heterogeneity?

Bid Preferences in Endogenous Entry Auction Model

- ▶ Introduce bid preferences favoring L. $\gamma = price/bid$ if F wins.
- ightharpoonup \Rightarrow bid shading by F: $b_F = v_F/\gamma$, $b_L = v_L$.
- ▶ Impact of $\gamma < 1$:
 - 1. $\mathsf{E}\left[p|\gamma\right] \mathsf{E}\left[p|\gamma = 1\right] \leqslant 0 \leftrightarrow c \geqslant \tilde{c}\left(\gamma\right)$
 - 2. $\partial \left(\mathsf{E}\left[p|\gamma \right] \mathsf{E}\left[p|\gamma = 1 \right] \right) / \partial c < 0$
- ► Intuition:
 - $\gamma = 1$: Higher c buyers attract fewer bidders
 - $\gamma < 1$ encourages entry by L, discourages F
 - lacktriangle Bigger boost to L's prospects in auction when face fewer F
 - ► Net entry up for high c buyers

Outline

Introduction

Context & Data

Sources of State Effectiveness

Theory

Decomposition Method

Correlates of Bureaucrat & Organization Effectiveness

Consequences for Policy Design

"Buy Local" Policy

Identification

Conclusion

► Sources of time × product variation:

- ► Sources of time × product variation:
 - ▶ Intra-year: Preferences switch on in late spring, off on 12/31

- ► Sources of time × product variation:
 - ▶ Intra-year: Preferences switch on in late spring, off on 12/31
 - Across goods: Different goods on list each year

- ► Sources of time × product variation:
 - ▶ Intra-year: Preferences switch on in late spring, off on 12/31
 - Across goods: Different goods on list each year
- ► ⇒ Difference-in-differences strategy:

$$p_{it} = \beta \mathsf{BuyLocalGood}_{it} \times \mathsf{BuyLocalPeriod}_t + \mathbf{X}_{it} \boldsymbol{\beta} + \varepsilon_{it}$$

 $ightharpoonup {f X}_a$ still includes log quantity, good and month FEs

- ► Sources of time × product variation:
 - ▶ Intra-year: Preferences switch on in late spring, off on 12/31
 - Across goods: Different goods on list each year
- ► ⇒ Difference-in-differences strategy:

$$p_{it} = \beta \mathsf{BuyLocalGood}_{it} \times \mathsf{BuyLocalPeriod}_t + \mathbf{X}_{it} \boldsymbol{\beta} + \varepsilon_{it}$$

- $ightharpoonup {f X}_a$ still includes log quantity, good and month FEs
- ▶ Does policy impact depend on the bureaucrat/organization implementing it?

- ► Sources of time × product variation:
 - ▶ Intra-year: Preferences switch on in late spring, off on 12/31
 - Across goods: Different goods on list each year
- ► ⇒ Difference-in-differences strategy:

$$p_{it} = \beta \mathsf{BuyLocalGood}_{it} \times \mathsf{BuyLocalPeriod}_t + \mathbf{X}_{it}\boldsymbol{\beta} + \varepsilon_{it}$$

- $ightharpoonup {f X}_a$ still includes log quantity, good and month FEs
- ▶ Does policy impact depend on the bureaucrat/organization implementing it?
- ▶ Interact BuyLocalGood $_i$ × BuyLocalPeriod $_i$ with $\hat{\alpha}_b$, $\hat{\psi}_j$ from regular auctions

Average Policy Impact

	P	rices (P)	Participation (N)	
	Analysis Sample	Largest Connected Set	Analysis Sample	Largest Connected Set
	(1)	(2)	(3)	(4)
log Standardized Quantity	-0.510***	-0.552***	0.032***	0.036***
	(0.027)	(0.019)	(0.003)	(0.004)
Preferenced (Good on list)	-0.050*	-0.043	-0.145***	-0.195***
	(0.028)	(0.047)	(0.040)	(0.053)
Preferenced (Good on list) * Policy Active	-0.012	-0.007	-0.050	-0.029
	(0.025)	(0.045)	(0.047)	(0.062)
Outcome Mean	5.69	6.26	1.64	1.68
Month, Good FEs	Yes	Yes	Yes	Yes
Year×Product×Size×Region FEs	Yes	Yes	Yes	Yes
Observations	21,017,045	3,973,832	21,017,045	3,973,832
R^2	0.592	0.620	0.276	0.272

Average Policy Impact: Graphical Analysis

Policy Impact Depends on Bur/Org Ability

	P	rices (P)	Participation (N)	
	Analysis Sample	Largest Connected Set	Analysis Sample	Largest Connected Set
	(1)	(2)	(3)	(4)
Bureaucrat FE * Preferenced (Good on list) * Policy Active	-0.183***	-0.119***	-0.279***	-0.286***
, , ,	(0.028)	(0.033)	(0.055)	(0.064)
Organization FE * Preferenced (Good on list) * Policy Active	-0.164^{***} (0.029)	-0.111*** (0.040)	-0.307*** (0.060)	-0.295^{***} (0.075)
Outcome Mean	5.69	6.26	1.64	1.68
Month, Good FEs	Yes	Yes	Yes	Yes
Year×Product×Size×Region FEs	Yes	Yes	Yes	Yes
Connected Set FEs	Yes	Yes	Yes	Yes
Observations	15,957,594	3,973,832	15,957,594	3,973,832
R^2	0.645	0.692	0.372	0.364

Policy Impact Depends on Bureaucratic Effectiveness

Buy Local Policy: Summary

- ▶ On average, the Buy Local policy has \sim 0 effect on prices achieved
- ► Contrary to US evidence on SME preferences: SMEs win, but prices go up (Krasnokoutskaya & Seim 2009, Roberts & Sweeting 2010, Marion 2007)
- ► The lower baseline bureaucrat/organization effectiveness, the more prices *decrease*. Prices decrease by up to 15 percent, similar magnitude price *increase* for those with high effectiveness.
- ► → optimal policy: 0 penalty if high effectiveness, >0 penalty if low effectiveness.
- ▶ → industrial policies, while costly when states have high effectiveness, can be a second-best optimal policy when state effectiveness is low.

Outline

Introduction

Context & Data

Sources of State Effectiveness

Theory

Decomposition Method

Correlates of Bureaucrat & Organization Effectiveness

Consequences for Policy Desigr "Buy Local" Policy Identification

Conclusion

Conclusion

- Procurement as window into determinants of state's effectiveness
- Sources of State Effectiveness
 - ▶ Weber (1922) "Bureaucracy develops the more perfectly, the more it is 'dehumanized'... The individual bureaucrat cannot squirm out of the apparatus into which he has been harnessed"
 - $ightharpoonup \sim 1/2$ of variation in prices paid due to bureaucrats & organizations. Far from Weberian ideal.
 - Effective burs/orgs encourage entry
- ► Consequences for Policy Design
 - ▶ No average effect of bid preferences on prices.
 - ▶ Prices decrease for low effectiveness buyers; increase for effective
 - Optimal policy decreasing in bureaucratic effectiveness
- ► Low effectiveness ⇒ policy lowers prices. Like raising effectiveness.
- ► Tailoring policy to capacity substitute for raising capacity.

Appendix Slides

Shrinking Organization Effects

Shrinking Pair Effects

Back

Robustness: Homogeneity

- ▶ Use Sutton (1998) measure of differentiation
- ▶ Using more homogenous sample does not reduce bur/org effects

	(1) Quintile 1	(2) Quintile 2	(3) Quintile 3	(4) Quintile 4	(5) Quintile 5	(6) 10-Digit Codes
(1) s.d. of Bur + Org Effects Within CS (across items)	0.789	0.801	0.863	0.865	0.847	0.817
(2) s.d. of Total Bur + Org Effects (across items)	0.927	0.966	1.053	1.007	1.027	1.008
(3) s.d. of log P	1.752	2.175	2.291	2.390	2.433	2.388
(4) s.d. of log P good, month	1.271	1.444	1.532	1.574	1.599	1.526
(5) s.d. of Bur+Org Within Efs / s.d. of log P good, month	0.621	0.555	0.564	0.549	0.530	0.535
(6) s.d. of Bur+Org Total Efs / s.d. of log P good, month	0.729	0.669	0.687	0.640	0.643	0.660
(7) Sample Size	1,097,233	2,275,959	3,231,115	4,300,461	5,222,931	7,055,150

Robustness: Medicines Subsample

- Contract contains active ingredient, dosage, packaging, manufacturer
- ► Construct barcode-level FE

	Prices (P)	(s.e.) 2	Participation (N)	(s.e.) 4
(1) s.d. of Bureaucrat Effects	0.330	(0.0168)	0.786	(0.00907)
(2) s.d. of Organization Effects	0.282	(0.0134)	0.572	(0.00457)
(3) s.d. of Connected Set Effects	0.387	(0.0245)	0.217	(0.0028)
(4) s.d. of Bur + Org Effects Within CS (across pairs) (5) s.d. of Total Bur + Org Effects (across pairs)	0.225	(0.00723)	0.626	(0.0022)
	0.279	(0.0181)	0.628	(0.00427)
(6) s.d. of Bureaucrat Effects (across items)	0.191	(0.0149)	0.520	(0.00915)
(7) s.d. of Organization Effects (across items)	0.194	(0.0149)	0.449	(0.00911)
(8) s.d. of Connected Set Effects (across items)	0.201	(0.0133)	0.0823	(0.00224)
$ \begin{array}{l} \hbox{(9) s.d. of Bur} + \hbox{Org Effects Within CS (across items)} \\ \hbox{(10) s.d. of Total Bur} + \hbox{Org Effects (across items)} \\ \end{array} $	0.162	(0.00672)	0.518	(0.00193)
	0.251	(0.0152)	0.519	(0.00467)
(11) s.d. of Y (12) s.d. of Y good, month	2.048 0.404		1.204 1.066	
(13) Adjusted R-squared (14) Sample Size	0.997 200,816		0.849 200,816	

Back

Variance Decomposition Results: Largest Connected Set

	Prices (P) (1)	(s.e.) (2)	Participation (N) (3)	(s.e.) (4)
(1) s.d. of Bureaucrat Effects (2) s.d. of Organization Effects (3) s.d. of Bur + Org Effects (across pairs)	1.803 1.499 1.577	(0.187) (0.291) (0.00414)	1.282 0.970 1.155	(0.0564) (0.0689) (0.00281)
(4) s.d. of Bureaucrat Effects (across items) (5) s.d. of Organization Effects (across items) (6) s.d. of Bur + Org Effects (across items)	1.287 1.241 1.063	(0.244) (0.271) (0.00287)	0.883 0.792 0.656	(0.0813) (0.0823) (0.00216)
(7) s.d. of Y (8) s.d. of Y good, month	2.683 1.773		1.364 1.231	
(9) Adjusted R-squared (10) Sample Size	0.959 2,858,982		0.828 2,858,982	

Residuals Heat Map

Figure: No Correlation Between Effects and Residuals

Figure: No Correlation Between Effects and Residuals

Crude Counterfactual: Improving Organizations

Figure: Correlates of Bureaucrat Effects: Auction Stage

Organizations Back

Figure: Correlates of Bureaucrat Effects: Contracting Stage

Organizations Back

Figure: Correlates of Organization Effects: Qualification Stage

Figure: Correlates of Organization Effects: Organization Attributes

Figure: Correlates of Organization Effects: Auction Stage

Figure: Correlates of Organization Effects: Contracting Stage

