

# cs4341 Digital Logic & Computer Design

Lecture Notes 7

#### **Omar Hamdy**

Assistant Professor

Department of Computer Science

#### **Example: Multiple Output Circuits**

- ➤ In many cases, there are more than one output required to carry out the desired function behavior.
- Example, 4-input priority circuit
  - The circuit has 4-outputs that signals which input should be given the priority when more than one input are requesting it.
  - > The circuit allows only one output signal to be high at any time.
  - $\triangleright$  Assume inputs A<sub>3</sub> (highest priority), A<sub>2</sub>, A<sub>1</sub>, A<sub>0</sub>(lowest priority)
  - $\triangleright$  Assume outputs  $Y_3$  indicating  $A_3$  gets the priority,  $Y_2$  indicating  $A_2$  gets the priority, and so on.

## 4-Input Priority Circuit Design Approach 1

> One approach is to build the truth table, determine the minterms for each output, express each output in SOM form, then draw the circuit.

| A <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> | Y <sub>3</sub> | Y <sub>2</sub> | Y <sub>1</sub> | Y <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0              |
| 0              | 0              | 0              | 1              | 0              | 0              | 0              | 1              |
| 0              | 0              | 1              | 0              | 0              | 0              | 1              | 0              |
| 0              | 0              | 1              | 1              | 0              | 0              | 1              | 0              |
| 0              | 1              | 0              | 0              | 0              | 1              | 0              | 0              |
| 0              | 1              | 0              | 1              | 0              | 1              | 0              | 0              |
| 0              | 1              | 1              | 0              | 0              | 1              | 0              | 0              |
| 0              | 1              | 1              | 1              | 0              | 1              | 0              | 0              |
| 1              | 0              | 0              | 0              | 1              | 0              | 0              | 0              |
| 1              | 0              | 0              | 1              | 1              | 0              | 0              | 0              |
| 1              | 0              | 1              | 0              | 1              | 0              | 0              | 0              |
| 1              | 0              | 1              | 1              | 1              | 0              | 0              | 0              |
| 1              | 1              | 0              | 0              | 1              | 0              | 0              | 0              |
| 1              | 1              | 0              | 1              | 1              | 0              | 0              | 0              |
| 1              | 1              | 1              | 0              | 1              | 0              | 0              | 0              |
| 1              | 1              | 1              | 1              | 1              | 0              | 0              | 0              |

$$\rightarrow$$
  $Y_0 = m_1 = A'_3 A'_2 A'_1 A_0$ .

$$Y_1 = m_2 + m_3 = A'_3A'_2A_1A'_0 + A'_3A'_2A_1A_0$$

$$\triangleright$$
 Simplify = A'<sub>3</sub>A'<sub>2</sub>A<sub>1</sub> ... why?

$$Y_2 = m_4 + m_5 + m_6 + m_7 = A'_3A_2A'_1A'_0 + A'_3A_2A'_1A_0 + A'_3A_2A_1A'_0 + A'_3A_2A_1A'_0$$

$$\triangleright$$
 Simplify = A'<sub>3</sub>A<sub>2</sub> ... why?

$$Y_3 = m_8 + m_9 + m_{10} + m_{11} + m_{12} + m_{13} + m_{14} + m_{15} = A_3 A'_2 A'_1 A'_0 + A_3 A'_2 A'_1 A_0 + A_3 A'_2 A_1 A'_0 + A'_3 A'_2 A_1 A_0 + \dots$$

$$\triangleright$$
 Simplify = A<sub>3</sub> ... why?

Draw the circuit using the PLA approach

### 4-Input Priority Circuit Design Approach 2

- > Careful review of the circuit function, we notice:
  - $\triangleright$  Y<sub>3</sub> output is 1 when A<sub>3</sub> is 1 and does not care about the values of any other input.
  - $\rightarrow$  Therefore,  $Y_3 = A_3$
  - $\triangleright$  Y<sub>2</sub> output is 1 when 1) A<sub>3</sub> is 0, 2) A<sub>2</sub> is 1 and does not care about the input values of A<sub>1</sub> or A<sub>0</sub>
  - Y<sub>1</sub> output is 1 when 1)  $A_3$  is 0, 2)  $A_2$  is 0, 3)  $A_1$  is 1 and does not care about the input value of  $A_0$
  - $\triangleright$  Y<sub>0</sub> output is 1 when 1) A<sub>3</sub> is 0, 2) A<sub>2</sub> is 0, 3) A<sub>1</sub> is 0 and 4) A<sub>0</sub> is 1

The concept of "Don't Care" can be represented with symbol X in the truth table, and can

simplify the design process

| A <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | A <sub>o</sub> |   |   | Y <sub>1</sub> | Y <sub>0</sub> |
|----------------|----------------|----------------|----------------|---|---|----------------|----------------|
| 0              | 0              | 0              | 0              | 0 | 0 | 0              | 0              |
| 0              | 0              | 0              | 1              | 0 | 0 | 0              | 1              |
| 0              | 0              | 1              | Χ              | 0 | 0 | 1              | 0              |
| 0              | 1              | Χ              | Χ              | 0 | 1 | 0              | 0              |
| 1              | Χ              | Χ              | Χ              | 1 | 0 | 0              | 0              |



### Multilevel Combinational Logic Design

- In many cases, multi-level circuit designs can reduce the number of true gates required.
- Example: Implementation of 3-input XOR function (remember, there is no actual 3-input XOR gate)
- Truth table out is 1 if the inputs have odd number of 1s





 $A \oplus B \oplus C = (A \oplus B) \oplus C (2 \text{ gates})$ 



#### **Circuit Optimization**

- ➤ The goal is to obtain the simplest implementation for a given function
- ➤ We need a methodical approach to simplify any design using a specific procedure or algorithm
- ➤ Circuit simplicity has to be quantified or measured against some criteria (cost, efficiency, power consumption, etc)
- > Using algebraic rules can be challenging and not systematic
- K-Map is a simple straightforward procedure to simplify Boolean functions

#### Karnaugh Map (K-Map)

- ➤ A K-map is a diagram made of a collection of adjacent squares:
  - > Each square represents a minterm
  - ➤ The collection of squares is a graphical representation of a Boolean function
  - > Adjacent squares differ in the value of one variable only
  - ➤ Alternative algebraic expressions for the same function are derived by recognizing patterns of squares
- > The K-map can be viewed as a reorganized version of the truth table

#### Importance of K-Map

- > K-Maps provide means of:
  - > Finding optimum or near optimum
    - > SOP and POS standard forms
    - > Two-level AND/OR and OR/AND circuits
  - > Visualizing concepts related to manipulating Boolean expressions
  - ➤ Demonstrating concepts used by computer-aided design programs to simplify large circuits

#### 2-Variable K-Map

> If we represent each minterm as a box, then we have:





$$m_2 = xy'$$
  $m_3 = xy$ 

How to connect?

# 2-Variable K-Map



#### To Do List

- > Review lecture notes, and try the examples yourself
- ➤ Work on assignment 1