

语法分析 Part7: 规范的LR方法

李诚

国家高性能计算中心(合肥)、信息与计算机国家级实验教学示范中心 计算机科学与技术学院 2023年09月25日

SLR(1)文法的描述能力有限

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$\begin{array}{c|c}
I_0: \\
S \to \cdot V = E \\
S \to \cdot E \\
V \to \cdot *E \\
V \to \cdot \text{id} \\
E \to V
\end{array}$$

$$= \begin{cases}
I_6: \\
S \to V = \cdot E \\
E \to \cdot V \\
V \to \cdot *E \\
V \to \cdot \text{id}
\end{cases}$$

SLR(1)文法的描述能力有限

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$\begin{bmatrix}
I_0: \\
S \to V = E \\
S \to E \\
V \to * E \\
V \to * id \\
E \to V
\end{bmatrix} = \begin{bmatrix}
I_6: \\
S \to V = * E \\
E \to V \\
V \to * E \\
V \to * id
\end{bmatrix}$$

项目
$$S \rightarrow V \cdot = E$$
使得 action[2, =] = s6

项目
$$E \rightarrow V \cdot$$
使得 action[2, =] = r5 因为Follow(E)={=, \$}

SLR(1)文法的描述能力有限

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$\begin{bmatrix}
I_0: \\
S \to \cdot S \\
S \to \cdot V = E \\
S \to \cdot E \\
V \to \cdot * E \\
V \to \cdot * id \\
V \to \cdot * Id
\end{bmatrix} = \begin{bmatrix}
I_6: \\
S \to V = \cdot E \\
E \to \cdot V \\
V \to \cdot * E \\
V \to \cdot * Id
\end{bmatrix}$$

产生移进-归约冲突,但该文法不是二义的。

项目
$$S \rightarrow V \cdot = E$$
使得 action[2, =] = s6 项目 $E \rightarrow V \cdot$ 使得 action[2, =] = r5 因为Follow(E)={=, \$}

Ø 规范的LR分析

- ·目标:在识别活前缀DFA的状态中,增加信息,排除一些不正确的 归约操作
- •方法:添加了前向搜索符
 - 一个项目 $A \rightarrow \alpha \cdot \beta$,如果最终用这个产生式进行归约之后,期望看见的符号是a,则这个加点项的前向搜索符是a。
 - 上述项目可以写成: $A \rightarrow \alpha \cdot \beta$, α
- ·与SLR(1)分析的区别
 - 项目集的定义发生了改变: LR(0) => LR(1)
 - closure(I)和GOTO函数需要修改

Ø 规范的LR分析

- ·目标:在识别活前缀DFA的状态中,增加信息,排除一些不正确的 归约操作
- ·方法:添加了前向搜索符
 - •一个项目 $A \rightarrow \alpha \cdot \beta$,如果最终用这个产生式进行归约之后,期望看见的符号是a,则这个加点项的前向搜索符是a。
 - 上述项目可以写成: $A \rightarrow \alpha \cdot \beta$, a
- ·与SLR(1)分析的区别
 - 项目集的定义发生了改变: LR(0) => LR(1)
 - closure(I)和GOTO函数需要修改

Ø 规范的LR分析

- ·目标:在识别活前缀DFA的状态中,增加信息,排除一些不正确的 归约操作
- ·方法:添加了前向搜索符
 - •一个项目 $A \rightarrow \alpha \cdot \beta$,如果最终用这个产生式进行归约之后,期望看见的符号是a,则这个加点项的前向搜索符是a。
 - 上述项目可以写成: $A \rightarrow \alpha \cdot \beta$, a
- ·与SLR(1)分析的区别
 - 项目集的定义发生了改变: LR(0) => LR(1)
 - closure(I) 和GOTO函数需要修改

规范的LR分析

•LR(1)项目:

$$[A \rightarrow \alpha \cdot \beta, a]$$

- 当项目由两个分量组成, 第一分量为SLR中的项, 第二分量为搜索符(向前看符号)
- LR(1)中的1代表了搜索符a的长度

P

规范的LR分析

•LR(1)项目:

 $[A \rightarrow \alpha \cdot \beta, a]$

- 当项目由两个分量组成,第一分量为SLR中的项,第二分量为搜索符 (向前看符号)
- LR(1)中的1代表了搜索符a的长度

•使用注意事项:

- 当 β 不为空时,a不起作用
- 当 β 为空时,如果下一个输入符号是a,将按照 $A \rightarrow \alpha$ 进行归约
 - a的集合是FOLLOW(A)的子集

规范的LR分析

•LR(1)项目:

$$[A \rightarrow \alpha \cdot \beta, a]$$

- 当项目由两个分量组成,第一分量为SLR中的项,第二分量为搜索符 (向前看符号)
- LR(1)中的1代表了搜索符a的长度
- •LR(1)项目[$A \rightarrow \alpha \cdot \beta, \alpha$]对活前缀 γ 有效:
 - •如果存在着推导 $S \Rightarrow^*_{rm} \delta Aw \Rightarrow_{rm} \delta \alpha \beta w$, 其中:
 - $\gamma = \delta \alpha$;
 - a是w的第一个符号,或者w是 ε 且a是\$

规范的LR分析: 举例

• 例
$$S \rightarrow BB$$
 $B \rightarrow bB \mid a$

LR(1)项目[$A \rightarrow \alpha \cdot \beta, a$]对活前缀 γ 有效: 存在着推导 $S \Rightarrow^*_{rm} \delta Aw \Rightarrow_{rm} \delta \alpha \beta w$,其中: $\gamma = \delta \alpha$; $a \neq w$ 的第一个符号,或者 $w \neq \epsilon \leq a \neq s$

从最右推导 $S \Rightarrow^*_{rm} bbBba \Rightarrow_{rm} bbbBba$ 看出:

 $\diamondsuit A = B$, $\alpha = b$, $\beta = B$, $\delta = bb$, $\gamma = \delta \alpha = bbb$, w = ba

 $[B \rightarrow b \cdot B, b]$ 对活前缀 $\gamma = bbb$ 是有效的

规范的LR分析: 举例

• 例
$$S \rightarrow BB$$
 $B \rightarrow bB \mid a$

LR(1)项目[$A \rightarrow \alpha \cdot \beta, a$]对活前缀 γ 有效: 存在着推导 $S \Rightarrow^*_{rm} \delta Aw \Rightarrow_{rm} \delta \alpha \beta w$,其中: $\gamma = \delta \alpha$; $a \neq w$ 的第一个符号,或者 $w \neq \epsilon \epsilon a \neq s$

从最右推导 $S \Rightarrow^*_{rm} bbBba \Rightarrow_{rm} bbbBba$ 看出:

 $\Rightarrow A = B, \ \alpha = b, \ \beta = B, \ \delta = bb, \ \gamma = \delta \alpha = bbb, \ w = ba$

 $[B \rightarrow b \cdot B, b]$ 对活前缀 $\gamma = bbb$ 是有效的

规范的LR分析一步骤

- 构造LR(1)项目集规范族
 - 也就是构造识别活前缀的DFA
- ·构造规范的LR分析表
 - 状态之间的转换关系

构造LR(1)项目集规范族

- ·基础运算1: 计算闭包CLOSURE(I)
 - I中的任何项目都属于CLOSURE(I)
 - 若有项目 $[A \rightarrow \alpha \cdot B\beta, a]$ 在CLOSURE(I)中,而 $B \rightarrow \gamma$ 是文法中的产生式,b是FIRST(βa)中的元素,则 $[B \rightarrow \cdot \gamma, b]$ 也属于CLOSURE(I)

保证在用 $B \rightarrow \gamma$ 进行归约后,

- 出现的输入字符b是句柄 $\alpha B\beta$ 中B的后继符号
- 或者是 $\alpha B\beta$ 归约为A后可能出现的终结符。

构造LR(1)项目集规范族

- •基础运算2: 通过GOTO(I,X)算CLOSURE(J)
 - · 将J置为空集
 - 若有项目 $[A \rightarrow \alpha \cdot X\beta, a]$ 在I中,那么将项目 $[A \rightarrow \alpha X \cdot \beta, a]$ 放入J中
 - 计算并返回CLOSURE(J)

注意: GOTO(I,X)中的X可以是终结符或非终结符

构造LR(1)项目集规范族

・具体算法

- •初始项目集I₀:
 - $I_0 = \text{CLOSURE}([S' \rightarrow S, \$])$ 将\\$作为向前的搜索符
- •设C为最终返回的项目集族,初始为 $C=\{I_0\}$
- 重复以下步骤
 - 对C中的任意项目集I, 重复
 - 对每一个文法符号X(终结符或非终结符)
 - 如果GOTO(I,X) ≠ Ø 且 GOTO(I,X) ∉ C, 那么将GOTO(I,X)放入C
 - 注: 上述GOTO(I,X)是上一页ppt中计算闭包的GOTO
 - · 当C中项目集不再增加为止

S'→·S, \$	I_{θ}

步骤一: 从初始项开始

$$S \xrightarrow{S} S \xrightarrow{S} I_0$$

$$S \xrightarrow{S} BB$$

步骤二: 计算非核心项目 的第一个分量

$$S \rightarrow S,$$
 I_0 $S \rightarrow BB,$

步骤三:通过FIRST(ε\$) 计 算非核心项目的第二个分量

$$S \xrightarrow{\cdot} S, \$ I_0$$

$$S \xrightarrow{\cdot} BB, \$$$

$$B \xrightarrow{\cdot} bB$$

$$B \xrightarrow{\cdot} a$$

步骤二: 计算非核心项目 的第一个分量

$$S \xrightarrow{\cdot} S$$
, \$ I_0
 $S \xrightarrow{\cdot} BB$, \$
 $B \xrightarrow{\cdot} bB$, b/a
 $B \xrightarrow{\cdot} a$, b/a

步骤三:通过FIRST(B\$) 计 算非核心项目的第二个分量

构造规范的LR分析表

- · 构造识别拓广文法G'活前缀的DFA
 - 基于LR(1)项目族来构造
- · 状态i的action函数如下确定:
 - 如果 $[A \rightarrow \alpha \cdot a\beta, b]$ 在 I_i 中,且 $goto(I_i, a) = I_j$,那么置action[i, a]为sj(此时,不看b)
 - 如果 $[A \rightarrow \alpha \cdot , a]$ 在 I_i 中,且 $A \neq S'$,那么置action[i, a]为rj(此时,不再看 FOLLOW(A))
 - 如果 $[S' \rightarrow S \cdot, \$]$ 在 I_i 中,那么置action[i, \$] = acc

如果上述构造出现了冲突,那么文法就不是LR(1)的

构造规范的LR分析表

- · 构造识别拓广文法G'活前缀的DFA
- · 状态i的action函数如下确定:
 - 参见上页ppt
- · 状态i的goto函数如下确定:
 - 如果 $goto(I_i, A) = I_j$, 那么goto[i, A] = j

❷ 构造规范的LR分析表

- · 构造识别拓广文法G'活前缀的DFA
- · 状态i的action函数如下确定:
 - 参见上页ppt
- ·状态i的goto函数如下确定:
 - 如果 $goto(I_i, A) = I_i$, 那么goto[i, A] = j
- ·分析器的初始状态是包含 $[S' \rightarrow S, \$]$ 的项目集对应的状态

用上面规则未能定义的所有条目都置为error

非SLR(1)文法-revisit

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$\begin{bmatrix}
I_0: \\
S \to \cdot S \\
S \to \cdot V = E \\
S \to \cdot E \\
V \to \cdot *E \\
V \to \cdot *id
\end{bmatrix} = \begin{bmatrix}
V \\
I_2: \\
S \to V \cdot E \\
E \to V
\end{bmatrix} = \begin{bmatrix}
I_6: \\
S \to V = \cdot E \\
E \to \cdot V \\
V \to \cdot *E \\
V \to \cdot *id
\end{bmatrix}$$

产生移进-归约冲突,但该文法不是二义的。

项目
$$S \rightarrow V \cdot = E$$
使得action[2,=]=s6
项目 $E \rightarrow V \cdot$ 使得action[2,=]=r5
因为Follow(E)={=,\$}

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0$$
:
 $S \rightarrow \cdot S$, \$
 $S \rightarrow \cdot V = E$, \$
 $S \rightarrow \cdot E$, \$
 $V \rightarrow \cdot * E$, =
 $V \rightarrow \cdot id$, =
 $E \rightarrow \cdot V$, \$
 $V \rightarrow \cdot * E$, \$
 $V \rightarrow \cdot id$, \$

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0$$
:
 $S \xrightarrow{\cdot} \cdot S$, \$
 $S \rightarrow \cdot V = E$, \$
 $S \rightarrow \cdot E$, \$
 $V \rightarrow \cdot * E$, =
 $V \rightarrow \cdot id$, =
 $E \rightarrow \cdot V$, \$
 $V \rightarrow \cdot * E$, \$
 $V \rightarrow \cdot id$, \$

计算闭包:

定义里: $[A \rightarrow \alpha B \beta, a]$

这里: $[S' \rightarrow \varepsilon \cdot S \varepsilon, \$]$

 $FIRST(\beta a)$

 $FIRST(\varepsilon \$) = \{\$\}$

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0$$
:
 $S \xrightarrow{\cdot} \cdot S$, \$
 $S \rightarrow \cdot V = E$, \$
 $S \rightarrow \cdot E$, \$
 $V \rightarrow \cdot * E$, =
 $V \rightarrow \cdot id$, =
 $E \rightarrow \cdot V$, \$
 $V \rightarrow \cdot * E$, \$
 $V \rightarrow \cdot id$, \$

计算闭包:

定义里: $[A \rightarrow \alpha B \beta, a]$

这里: $[S' \rightarrow \varepsilon \cdot S \varepsilon, \$]$

 $FIRST(\beta a)$

 $FIRST(\varepsilon)=\{ \}$

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0$$
:
 $S \rightarrow \cdot V = E$, \$
 $S \rightarrow \cdot E$, \$
 $V \rightarrow \cdot *E$, =
 $V \rightarrow \cdot id$, =
 $E \rightarrow \cdot V$, \$
 $V \rightarrow \cdot *E$, \$
 $V \rightarrow \cdot id$, \$

计算闭包:

定义里: $[A \rightarrow \alpha B \beta, a]$

FIRST(βa)
FIRST(= E\$)={=}

这里:

 $[S \rightarrow \varepsilon \cdot V = E, \$]$

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0$$
:
 $S \xrightarrow{\cdot} \cdot S$, \$
 $S \xrightarrow{\cdot} \cdot V = E$, \$
 $S \xrightarrow{\cdot} \cdot E$, \$
 $V \xrightarrow{\cdot} \cdot E$, =
 $V \xrightarrow{\cdot} \cdot id$, =
 $E \xrightarrow{\cdot} \cdot V$, \$
 $V \xrightarrow{\cdot} \cdot * E$, \$

计算闭包:

定义里: $[A \rightarrow \alpha B \beta, a]$

FIRST(β a)
FIRST(= E\$)={=}

这里:

 $[S \rightarrow \varepsilon \cdot V = E, \$]$

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0$$
:
 $S \rightarrow \cdot S$, \$
 $S \rightarrow \cdot V = E$, \$
 $S \rightarrow \cdot E$, \$
 $V \rightarrow \cdot * E$, =
 $V \rightarrow \cdot id$, =
 $E \rightarrow \cdot V$, \$
 $V \rightarrow \cdot * E$, \$
 $V \rightarrow \cdot id$, \$

计算闭包:

定义里: $[A \rightarrow \alpha B \beta, a]$

FIRST(β a)
FIRST(= E\$)={=}

这里:

 $[S \rightarrow \varepsilon \cdot V = E, \$]$

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0$$
:
 $S \rightarrow \cdot S$, \$
 $S \rightarrow \cdot V = E$, \$
 $S \rightarrow \cdot E$, \$
 $V \rightarrow \cdot *E$, =
 $V \rightarrow \cdot id$, =
 $E \rightarrow \cdot V$, \$
 $V \rightarrow *E$, \$
 $V \rightarrow *E$, \$

计算闭包:

定义里: $[A \rightarrow \alpha B \beta, a]$

这里: $[S \rightarrow \varepsilon \cdot E \varepsilon, \$]$

 $FIRST(\beta a)$

 $FIRST(\varepsilon)=\{ \} \}$

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0: S' \rightarrow \cdot S, \$$$

$$S \rightarrow \cdot V = E, \$$$

$$S \rightarrow \cdot E, \$$$

$$V \rightarrow \cdot *E, =$$

$$V \rightarrow \cdot id, =$$

$$E \rightarrow \cdot V, \$$$

$$V \rightarrow \cdot *E, \$$$

$$V \rightarrow \cdot id, \$$$

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0:$$

$$S \rightarrow \cdot V = E, \$$$

$$S \rightarrow \cdot E, \$$$

$$V \rightarrow \cdot *E, =/\$$$

$$V \rightarrow \cdot id, =/\$$$

$$E \rightarrow \cdot V, \$$$

可通过合并搜索符简化

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0:$$
 $S \rightarrow \cdot V = E, \$$

$$S \rightarrow \cdot E, \$$$

$$V \rightarrow \cdot *E, =/\$$$

$$V \rightarrow \cdot id, =/\$$$

$$E \rightarrow \cdot V, \$$$

$$\begin{array}{c|c}
\$ \\
E, \$ \\
-/\$
\end{array}
\qquad
\begin{array}{c|c}
V & \hline
I_2: \\
S \to V \cdot = E, \$ \\
E \to V \cdot, \$
\end{array}$$

项目
$$[S \rightarrow V \cdot = E, \$]$$
使得 action $[2, =] = s6$ 项目 $[E \rightarrow V \cdot, \$]$ 使得 action $[2, \$] = r5$ 因为 $\{\$\}$ 是Follow $(E)=\{=, \$\}$ 的真子集

每一个SLR(1)文法都是LR(1)的

② LR分析法总结

		SLR	LR(1)
初始状态		$[S' \rightarrow \cdot S]$	$[S' \rightarrow :S, \$]$
项目集		LR(0) CLOSURE(I)	LR(1), CLOSURE(I) 搜索符考虑FISRT(βa)
动作	移进	$[A \rightarrow \alpha \cdot a\beta] \in I_i$ $GOTO(I_i, a) = I_j$ $ACTION[i, a] = sj$	$[A \rightarrow \alpha a \beta, b] \in I_i$ $GOTO(I_i, a) = I_j$ $ACTION[i, a] = sj$
	归约	$[A \rightarrow \alpha \cdot] \in I_{i,} A \neq S'$ $a \in \text{FOLLOW}(A)$ ACTION[i, a] = rj	$[A \rightarrow \alpha, a] \in I_i$ $A \neq S$ ' $ACTION[i, a] = rj$
	接受	$[S' \rightarrow S \cdot] \in I_i$ ACTION[i, \$] = acc	$[S' \rightarrow S \cdot , \$] \in \mathbf{I}_{i}$ ACTION[i, \\$] = acc
	出错	空白条目	空白条目
GOTO		$\begin{aligned} \mathbf{GOTO}(I_i, A) &= I_j \\ \mathbf{GOTO}[i, A] &= j \end{aligned}$	$\begin{aligned} \mathbf{GOTO}(I_i, A) &= I_j \\ \mathbf{GOTO}[i, A] &= j \end{aligned}$
状态量		少(几百)	多(几千)

② LR和LL分析方法的比较

	LR(1)方 法	LL(1)方法
建立分析树	自底而上	自顶而下
归约or推导	规范归约	最左推导
决定使用产生式 的时机	看见产生式整个右部推出的 串后(句柄)	看见产生式推出的第一个终结符 后
对文法的限制	无	无左递归、无公共左因子
分析表	状态×文法符号,大	非终结符×终结符,小
分析栈	状态栈,信息更多	文法符号栈
确定句柄	根据栈顶状态和下一个符号 便可以确定句柄和归约所用 产生式	无句柄概念
语法错误	决不会将出错点后的符号移 入分析栈	和LR一样,决不会读过出错点 而不报错

语法分析技术总结

一起努力 打造国产基础软硬件体系!

李诚

国家高性能计算中心(合肥)、信息与计算机国家级实验教学示范中心 计算机科学与技术学院 2023年09月25日