EE 160 SIST, Shanghai Tech

Linear Time-Invariant Control Systems

Introduction

Proportional Control

Proportional-Differential Control

Proportional-Integral Control

Boris Houska 6-1

Contents

Introduction

Proportional Control

Proportional-Differential Control

Proportional-Integral Control

Let $A\in\mathbb{R}^{n_x\times n_x}$, $B\in\mathbb{R}^{n_x\times n_u}$, and $b\in\mathbb{R}^{n_x}$ be given. The differential equation

$$\dot{x}(t) = Ax(t) + Bu(t) + b$$
 with $x(0) = x_0$

- \bullet $x: \mathbb{R} \to \mathbb{R}^{n_x}$ is the state trajectory
- $u: \mathbb{R} \to \mathbb{R}^{n_u}$ is the control input
- $x_0 \in \mathbb{R}^{n_x}$ is the initial value

Let $A\in\mathbb{R}^{n_x\times n_x}$, $B\in\mathbb{R}^{n_x\times n_u}$, and $b\in\mathbb{R}^{n_x}$ be given. The differential equation

$$\dot{x}(t) = Ax(t) + Bu(t) + b$$
 with $x(0) = x_0$

- ullet $x:\mathbb{R} o \mathbb{R}^{n_x}$ is the state trajectory
- $u: \mathbb{R} \to \mathbb{R}^{n_u}$ is the control input
- $x_0 \in \mathbb{R}^{n_x}$ is the initial value

Let $A\in\mathbb{R}^{n_x\times n_x}$, $B\in\mathbb{R}^{n_x\times n_u}$, and $b\in\mathbb{R}^{n_x}$ be given. The differential equation

$$\dot{x}(t) = Ax(t) + Bu(t) + b$$
 with $x(0) = x_0$

- ullet $x:\mathbb{R} o \mathbb{R}^{n_x}$ is the state trajectory
- $u: \mathbb{R} \to \mathbb{R}^{n_u}$ is the control input
- $ullet \ x_0 \in \mathbb{R}^{n_x}$ is the initial value

Let $A\in\mathbb{R}^{n_x\times n_x}$, $B\in\mathbb{R}^{n_x\times n_u}$, and $b\in\mathbb{R}^{n_x}$ be given. The differential equation

$$\dot{x}(t) = Ax(t) + Bu(t) + b$$
 with $x(0) = x_0$

- ullet $x:\mathbb{R} o \mathbb{R}^{n_x}$ is the state trajectory
- \bullet $u: \mathbb{R} \to \mathbb{R}^{n_u}$ is the control input
- $x_0 \in \mathbb{R}^{n_x}$ is the initial value

Linear Input-Output Systems

Assumption: we can observe a linear combination of the states,

$$y(t) = Cx(t) + d.$$

The matrix $C \in \mathbb{R}^{n_y \times n_x}$ and $d \in \mathbb{R}^{n_y}$ are given.

- $ullet y:\mathbb{R} o \mathbb{R}^{n_y}$ is the output function
- The corresponding system

$$\dot{x}(t) = Ax(t) + Bu(t) + b$$
 with $x(0) = x_0$
 $y(t) = Cx(t) + d$

is called a linear input-output system.

Linear Input-Output Systems

Assumption: we can observe a linear combination of the states,

$$y(t) = Cx(t) + d.$$

The matrix $C \in \mathbb{R}^{n_y \times n_x}$ and $d \in \mathbb{R}^{n_y}$ are given.

- $ullet y:\mathbb{R} o \mathbb{R}^{n_y}$ is the output function
- The corresponding system

$$\dot{x}(t) = Ax(t) + Bu(t) + b \quad \text{with} \quad x(0) = x_0$$

$$y(t) = Cx(t) + d$$

is called a linear input-output system

Linear Input-Output Systems

Assumption: we can observe a linear combination of the states,

$$y(t) = Cx(t) + d.$$

The matrix $C \in \mathbb{R}^{n_y \times n_x}$ and $d \in \mathbb{R}^{n_y}$ are given.

- $ullet y:\mathbb{R} o \mathbb{R}^{n_y}$ is the output function
- The corresponding system

$$\dot{x}(t) = Ax(t) + Bu(t) + b$$
 with $x(0) = x_0$
 $y(t) = Cx(t) + d$

is called a linear input-output system.

Contents

Introduction

Proportional Control

Proportional-Differential Control

Proportional-Integral Control

Steady states

For a constant control input, $u(t)=u_{\mathsf{ref}}$, the system

$$\dot{x}(t) = Ax(t) + Bu_{\rm ref} + b \quad \text{ with } \quad x(0) = x_0$$

is a linear time-invariant differential equation.

ullet If A is invertible, steady-state given by

$$x_{\rm ref} = -A^{-1} \left(B u_{\rm ref} + b \right)$$

Steady states

For a constant control input, $u(t)=u_{\mathsf{ref}}$, the system

$$\dot{x}(t) = Ax(t) + Bu_{\text{ref}} + b \quad \text{with} \quad x(0) = x_0$$

is a linear time-invariant differential equation.

ullet If A is invertible, steady-state given by

$$x_{\mathsf{ref}} = -A^{-1} \left(B u_{\mathsf{ref}} + b \right)$$

Set-points

If the goal is to bring the system to the set-point $y_{\rm ref}$, we would like to adjust $u_{\rm ref}$ such that

$$y_{\text{ref}} = Cx_{\text{ref}} + d = -CA^{-1} (Bu_{\text{ref}} + b) + d$$
.

If $n_y=n_u$ and $CA^{-1}B$ invertible, we find

$$u_{\text{ref}} = [CA^{-1}B]^{-1} (d - CA^{-1}b - y_{\text{ref}})$$

and
$$x_{\text{ref}} = -A^{-1} \left(B u_{\text{ref}} + b \right)$$

Set-points

If the goal is to bring the system to the set-point $y_{\rm ref}$, we would like to adjust $u_{\rm ref}$ such that

$$y_{\text{ref}} = Cx_{\text{ref}} + d = -CA^{-1} (Bu_{\text{ref}} + b) + d$$
.

If $n_y = n_u$ and $CA^{-1}B$ invertible, we find

$$u_{\text{ref}} = [CA^{-1}B]^{-1} (d - CA^{-1}b - y_{\text{ref}})$$

and
$$x_{\text{ref}} = -A^{-1} \left(B u_{\text{ref}} + b \right)$$
.

Proportional control

Recall: P-control law given by $(K \in \mathbb{R}^{n_u \times n_y})$

$$u(t) = \ u_{\rm ref} + K(y(t) - y_{\rm ref})$$

Proportional control of linear input output systems

Overview:

$$y(t) = Cx(t) + d$$
 output function

$$u(t) = u_{\text{ref}} + K(y(t) - y_{\text{ref}})$$
 proportional control law

$$\dot{x}(t) = Ax(t) + Bu(t) + b$$
 linear control system (model)

Closed-loop dynamics:

$$\dot{x}(t) = \underbrace{(A + BKC)}_{=A_{\rm cl}} x(t) + \underbrace{(b + B(u_{\rm ref} + K(d - y_{\rm ref})))}_{=b_{\rm cl}}$$

$$x(0) = x_0.$$

Proportional control of linear input output systems

Overview:

$$y(t) = Cx(t) + d$$
 output function
$$u(t) = u_{\rm ref} + K(y(t) - y_{\rm ref})$$
 proportional control law
$$\dot{x}(t) = Ax(t) + Bu(t) + b$$
 linear control system (model)

Closed-loop dynamics:

$$\begin{array}{rcl} \dot{x}(t) & = & \underbrace{\left(A+BKC\right)}_{=A_{\rm cl}} x(t) + \underbrace{\left(b+B(u_{\rm ref}+K(d-y_{\rm ref}))\right)}_{=b_{\rm cl}} \\ \\ x(0) & = & x_0 \; . \end{array}$$

Closed-Loop Trajectories

Closed-loop dynamics:

$$\dot{x}(t) = \underbrace{(A+BKC)}_{=A_{\rm cl}} x(t) + \underbrace{(b+B(u_{\rm ref}+K(d-y_{\rm ref})))}_{=b_{\rm cl}}$$

$$x(0) = x_0 .$$

- x_{ref} is a steady-state (by construction)
- If A_{cl} is invertible, explicit solution given by

$$x(t) = e^{A_{\rm cl}t}(x_0 - x_{\rm ref}) + x_{\rm ref}$$

Limit behavior

• If the eigenvalues of the matrix $A_{\rm cl} = A + BKC$ have negative real parts,

$$\lim_{t\to\infty}e^{A_{\rm cl}t}\to 0\;,$$

the system is called asymptotically stable.

The closed loop trajectory of asymptotically stable system satisfies

$$\lim_{t \to \infty} x(t) = \lim_{t \to \infty} e^{A_{\rm cl} t} (x_0 - x_{\rm ref}) + x_{\rm ref} = x_{\rm ref} .$$

Tuning the proportional gain

 \bullet We would like to choose the proportional gain K such that all eigenvalues of

$$A_{cl} = A + BKC$$

have negative real-parts.

• Idea: if we have single-input-single-output system, we can scatter-plot

$$Re(eig(A + BKC))$$

as a function of K.

ullet We will later about more systematic methods for choosing K...

Consider the case

$$A=\left(egin{array}{cc} 1 & 1 \\ 1 & -2 \end{array}
ight) \; , \;\; B=\left(egin{array}{c} 0 \\ 1 \end{array}
ight) \quad {
m and} \quad C=(1\;0)$$

$$\lambda_{1,2} = -\frac{1}{2} \pm \sqrt{\frac{1}{4} + 3 + K}$$

- ullet Thus, for K<-3 the closed-loop system is asymptotically stable.
- For K<-3.25 the closed-loop response "oscillates" $(\operatorname{Im}(\lambda)\neq 0)$

Consider the case

$$A=\left(egin{array}{cc} 1 & 1 \\ 1 & -2 \end{array}
ight) \; , \;\; B=\left(egin{array}{c} 0 \\ 1 \end{array}
ight) \quad {
m and} \quad C=(1\;0)$$

$$\lambda_{1,2} = -\frac{1}{2} \pm \sqrt{\frac{1}{4} + 3 + K}$$

- ullet Thus, for K<-3 the closed-loop system is asymptotically stable.
- ullet For K<-3.25 the closed-loop response "oscillates" $({\sf Im}(\lambda)
 eq 0)$

Consider the case

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & -2 \end{array}\right) \;,\;\; B = \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \quad \text{and} \quad C = (1\;0)$$

$$\lambda_{1,2} = -\frac{1}{2} \pm \sqrt{\frac{1}{4} + 3 + K}$$

- ullet Thus, for K<-3 the closed-loop system is asymptotically stable.
- ullet For K<-3.25 the closed-loop response "oscillates" $({\sf Im}(\lambda)
 eq0)$

Consider the case

$$A=\left(egin{array}{cc} 1 & 1 \\ 1 & -2 \end{array}
ight) \; , \;\; B=\left(egin{array}{c} 0 \\ 1 \end{array}
ight) \quad {
m and} \quad C=(1\;0)$$

$$\lambda_{1,2} = -\frac{1}{2} \pm \sqrt{\frac{1}{4} + 3 + K}$$

- ullet Thus, for K<-3 the closed-loop system is asymptotically stable.
- For K<-3.25 the closed-loop response "oscillates" $\left(\operatorname{Im}(\lambda)\neq 0\right)$

Contents

Introduction

Proportional Control

Proportional-Differential Control

Proportional-Integral Contro

PD control

Recall: PD-control law given by $(K, K_{\mathrm{D}} \in \mathbb{R}^{n_u \times n_y})$

$$u(t) = u_{\text{ref}} + K(y(t) - y_{\text{ref}}) + K_{\text{D}}\dot{y}(t)$$

Reformulation

Overview:

$$y(t) \ = \ Cx(t) + d \qquad \qquad \text{output function}$$

$$u(t) = u_{\rm ref} + K(y(t) - y_{\rm ref}) + K_{\rm D} \dot{y}(t)$$
 PD control law

$$\dot{x}(t) \hspace{0.2cm} = \hspace{0.2cm} Ax(t) + Bu(t) + b \hspace{1.2cm} \text{linear control system (model)}$$

Substitution:

$$u(t) - u_{\text{ref}} = KC(x(t) - x_{\text{ref}}) + K_{\text{D}}C(Ax(t) + Bu(t) + b$$

= $[I - K_{\text{D}}CB]^{-1}(KC + K_{\text{D}}CA)(x(t) - x_{\text{ref}})$

Reformulation

Overview:

$$y(t) = Cx(t) + d$$
 output function
$$u(t) = u_{\rm ref} + K(y(t) - y_{\rm ref}) + K_{\rm D}\dot{y}(t) \quad {\rm PD~control~law}$$

$$\dot{x}(t) = Ax(t) + Bu(t) + b \qquad \qquad {\rm linear~control~system~(model)}$$

Substitution:

$$\begin{array}{lcl} u(t) - u_{\mathsf{ref}} &=& KC(x(t) - x_{\mathsf{ref}}) + K_{\mathsf{D}}C\left(Ax(t) + Bu(t) + b\right) \\ \\ &=& \left[I - K_{\mathsf{D}}CB\right]^{-1}\left(KC + K_{\mathsf{D}}CA\right)\left(x(t) - x_{\mathsf{ref}}\right) \end{array}$$

PD Closed-Loop Response

Explicit solution for the PD closed-loop response trajectory is given by

$$x(t) = e^{A_{\rm cl}t}(x_0 - x_{\rm ref}) + x_{\rm ref}$$

with

$$A_{cl} = A + B [I - K_D CB]^{-1} (KC + K_D CA)$$

Remark: In practice, we often have CB=0. In this case the closed-loop response matrix is given by

$$A_{\rm cl} = A + BKC + BK_{\rm D}CA .$$

PD Closed-Loop Response

Explicit solution for the PD closed-loop response trajectory is given by

$$x(t) = e^{A_{\rm cl}t}(x_0 - x_{\rm ref}) + x_{\rm ref}$$

with

$$A_{cl} = A + B [I - K_D CB]^{-1} (KC + K_D CA)$$

Remark: In practice, we often have CB=0. In this case the closed-loop response matrix is given by

$$A_{cl} = A + BKC + BK_DCA .$$

Consider the case

$$A = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \;,\;\; B = \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \quad \text{and} \quad C = (1 \; 0)$$

$$\lambda_{1,2} = \frac{K_{\rm D}}{2} \pm \sqrt{\frac{K_{\rm D}^2}{4} + 1 + K}$$

- ullet If K<-1 and $K_{
 m D}<0$, we have asymptotic stability
- ullet If we set $K=-1-rac{K_{
 m D}^2}{4}$, $\lambda_{1,2}=rac{K_{
 m D}}{2}$ can be tuned by choosing $K_{
 m D}$

Consider the case

$$A = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \;,\;\; B = \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \quad \text{and} \quad C = (1 \; 0)$$

$$\lambda_{1,2} = \frac{K_{\rm D}}{2} \pm \sqrt{\frac{K_{\rm D}^2}{4} + 1 + K}$$

- ullet If K<-1 and $K_{
 m D}<0$, we have asymptotic stability
- ullet If we set $K=-1-rac{K_{
 m D}^2}{4}$, $\lambda_{1,2}=rac{K_{
 m D}}{2}$ can be tuned by choosing $K_{
 m D}$

Consider the case

$$A = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \;,\;\; B = \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \quad \text{and} \quad C = (1 \; 0)$$

$$\lambda_{1,2} = \frac{K_{\rm D}}{2} \pm \sqrt{\frac{K_{\rm D}^2}{4} + 1 + K}$$

- ullet If K<-1 and $K_{
 m D}<0$, we have asymptotic stability
- ullet If we set $K=-1-rac{K_{
 m D}^2}{4}$, $\lambda_{1,2}=rac{K_{
 m D}}{2}$ can be tuned by choosing $K_{
 m D}$

Consider the case

$$A = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \;,\;\; B = \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \quad \text{and} \quad C = (1 \; 0)$$

$$\lambda_{1,2} = \frac{K_{\rm D}}{2} \pm \sqrt{\frac{K_{\rm D}^2}{4} + 1 + K}$$

- ullet If K<-1 and $K_{
 m D}<0$, we have asymptotic stability
- \bullet If we set $K=-1-\frac{K_{\rm D}^2}{4}$, $\lambda_{1,2}=\frac{K_{\rm D}}{2}$ can be tuned by choosing $K_{\rm D}$

Contents

Introduction

Proportional Control

- Proportional-Differential Control
- Proportional-Integral Control

PI control

Recall: PI-control law given by $(K, K_{\mathrm{I}} \in \mathbb{R}^{n_u \times n_y})$

$$u(t) = u_{\mathsf{ref}} + K(y(t) - y_{\mathsf{ref}}) + K_{\mathsf{I}} \int_0^t (y(\tau) - y_{\mathsf{ref}}) \,\mathrm{d}\tau$$

Reformulation

Main idea: Introduce the auxiliary state

$$z(t) = \begin{pmatrix} x(t) - x_{\text{ref}} \\ \int_0^t \left[x(\tau) - x_{\text{ref}} \right] d\tau \end{pmatrix}$$

Closed-loop differential equation

$$\dot{z}(t) = \underbrace{\begin{pmatrix} A + BKC & BK_{\text{I}}C \\ I & 0 \end{pmatrix}}_{=A_{\text{Cl}}} z(t) \quad \text{with} \quad z(0) = \begin{pmatrix} x_0 - x_{\text{ref}} \\ 0 \end{pmatrix}$$

Explicit solution: $x(t) = x_{\text{ref}} + (10) e^{A_{\text{cl}}t} z(0)$

Reformulation

Main idea: Introduce the auxiliary state

$$z(t) = \begin{pmatrix} x(t) - x_{\text{ref}} \\ \int_0^t \left[x(\tau) - x_{\text{ref}} \right] d\tau \end{pmatrix}$$

Closed-loop differential equation:

$$\dot{z}(t) = \underbrace{\begin{pmatrix} A + BKC & BK_{\mathsf{I}}C \\ I & 0 \end{pmatrix}}_{=A_{\mathsf{I}}} z(t) \quad \text{with} \quad z(0) = \begin{pmatrix} x_0 - x_{\mathsf{ref}} \\ 0 \end{pmatrix}$$

Explicit solution: $x(t) = x_{\rm ref} + (10) e^{A_{\rm cl} t} z(0)$.