International Summer School Areal linguistics & languages of Russia September 9-15, 2018 HSE, Voronovo campus, Moscow

Valency classes in an areal typological perspective

Sergey Say Institute for Linguistic Studies, RAS and St. Petersburg State University serjozhka@yahoo.com

Structure of the talk

- Background
- Goals (and limitations)
- Data collection
- Distance metrics
- Results
- Conclusions

Structure of the talk

- Background
- Goals (and limitations)
- Data collection
- Distance metrics
- Results
- Conclusions

- The valency of a verb = "the list of its arguments with their coding properties"
- Coding properties:
 - flagging (cases & adpositions)
 - indexing (agreement, cross-referencing)
 - word order (rarely)

[Den Kindern] gefällt [der Schneemann].
the.pl.dat child.pl.dat please.3sg the.sg.nom snowman.sg.nom
'The children like the snowman.'

- Immediate problem for typology: coding properties are language-specific
- If notions such as "Instrumental case" or "Agreement slot #3" are language-specific, then where can we find a tertium comparationis?

- The usual answer: compare with other predicates in the same language
 - Classical alignment typology: is S aligned with (≈ encoded similarly to) A or P?
 - Ditransitive alignment: is P aligned with T (theme) or R (recipient)?
 - Predicative possession (e.g. in Stassen's work)
 - etc.
- All of these questions produce relatively simple categorical variables

Predicative possession [Stassen, WALS]

Such data are amenable to areal interpretation

- Such data are amenable to areal interpretation
- but we need sets of pre-established gross values
- and it mostly works for "big" construction types, such as predicative possessive constructions or ditransitive constructions with 'give'
- Not all constructions are like that => wordlist-based typology

• E.g. [Bossong 1998]

- experiential predicates in European languages
- 10 predicates: 'see', 'forget', 'remember', 'be cold', 'be hungry',
 'be thirsty', 'have a headache', 'be glad', 'be sorry', 'like'
- o two possibilities for each verb:
 - "generalized": I'm cold; I like this shirt, etc.
 - "inverted": меня тошнит, mir gefällt dieses Buch, etc.
- Complicated scoring technique for languages (variation is taken into account)
 - ⇒ numerical variable
 - ⇒ relatively easy for mapping and areal analysis

- Smaller values correspond to predominance of "generalized" predicates
- The SAE (Standard Average European) zone is clearly seen

The data are from [Bossong 1998], the figure is from [Haspelmath 2001]

- Some other wordlist-based typological studies into valency patterns
 - Split-S: A-like vs. P-like vs. G-like [Nichols 2008]
 - Causative~Inchoative alternation and valence orientation
 [Nedjalkov 1969; Haspelmath 1993; Nichols et al. 2004; WATP]
 - "a posteriori" wordlist-based approach in [Bickel et al. 2014]

 One more SAE feature: bivalent reflexive and passive-like emotion predicates

a.	English amaze be amazed	German wundern verwundert sein (über)	French étonner être étonné	Polish dziwić być ździwionym
	(at)	sich wundern (über)	s'étonner (de)	dziwić się (DAT)
b.	interest	interessieren	intéresser	interesować
	be interested (in)	interessiert sein (an)	être intéressé (par)	byćzainteresowanym
		sich interessieren (für)	s'intéresser (à)	interesować się (INSTR)
c.	(anger) (be angry) (get angry)	ärgern verärgert sein (über) sich ärgern (über)	fâcher être fâché se fâcher	gniewać być rozgniewanym gniewać się
đ.	sadden	betrüben	désoler	martwić
۵.	be sad(dened)	betrübt sein (über) sich betrüben	être désolé se désoler (de)	być zmartwionym martwić się
e.	worry	beunruhigen	préoccuper	niepokoić
	be worried (about)	beunruhigt sein (über) sich beunruhigen	être préoccupé se préoccuper	być zaniepokojonym niepokoić się

• "The preposition or oblique case governed by the reflexive or resultative verb is not predictable" [Haspelmath 2001: 65]

English	German	French	Polish
a. amaze	wundern	étonner	dziwić
be amazed	verwundert sein (über)		być ździwionym
(at)			1
	sich wundern (über)	s'étonner (de)	dziwić się (DAT)
b. interest	interessieren	intéresser	interesować
be interested (in)	interessiert sein (an)	être intéressé	byćzainteresowanym
		(par)	_
	sich interessieren (für)	s'intéresser (à)	interesować się
	_		(INSTR)
c. (anger)	ärgern	fâcher	gniewać
(be angry)	verärgert sein (über)	être fâché	być rozgniewanym
(get angry)	sich ärgern (über)	se fâcher	gniewać się
d. sadden	betrüben	désoler	martwić
be sad(dened)	betrübt sein (über)	être désolé	być zmartwionym
	sich betrüben	se désoler (de)	martwić się
e. worry	beunruhigen	préoccuper	niepokoić
be worried (about)	beunruhigt sein (über)	être préoccupé	być zaniepokojonym
	sich beunruhigen	se préoccuper	niepokoić się

- Valency Patterns Leipzig Online Database (ValPaL project) [http://www.valpal.info/]
- [Malchukov & Comrie (eds.) 2015]

- 80 verb meanings
- 36 languages

«A verb is considered transitive if it contains an A and a P argument A and P are defined as the arguments of a verb with at least two arguments that are coded like the 'breaker' and the 'broken thing' micro-roles of the 'break' verb» [Haspelmath 2015: 136]

Tsunoda's implicational hierarchy of transitivity

```
«1a) direct effect (kill, break subtype) >
1b) direct effect (hit, shoot subtype) >
2a) perception (see subtype) >
2b) perception (look subtype) >
3) pursuit (search, wait) >
4) knowledge (know, understand, remember, forget) >
5) feeling (love, like, fant, need) >
```

... and its reassessment with the ValPal data

6) possession (have)» [Tsunoda 1981, modified and shortened in 1985].

BREAK	1.00	CARRY	.95	LIKE	.78	GO	.05
TEAR	1.00	COVER	.95	TELL	.78	LIVE	.05
SHOW	1.00	POUR	.95	FOLLOW	.74	SIT DOWN	.03
BEAT	1.00	WASH	.94	LOOK AT	.73	LAUGH	.03
CUT	1.00	SHAVE	.93	MEET	.70	SCREAM	.03
TAKE	1.00	SEE	.93	FEAR	.53	SINK (intr.)	.03
KILL	1.00	SEND	.93	THINK	.52	COUGH	.0
HIT	1.00	BUILD	.93	CLIMB	.49	JUMP	.0
FRIGHTEN	.98	EAT	.93	SHOUT AT	.45	FEEL COLD	.0
GIVE	.98	DRESS	.92	LEAVE	.42	DIE	.0
THROW	.98	HUG	.90	SAY	.41	BE SAD	.0
TIE	.98	SEARCH FOR	.88	TALK	.40	BE HUNGRY	.0
PUT	.98	KNOW	.88	SING	.38	ROLL (intr.)	.0
FILL	.98	TOUCH	.84	FEEL PAIN	.12	BURN (intr.)	.0
HIDE	.97	NAM E	.80	BLINK	.11	BE DRY	.0
LOAD	.96	HELP	.78	PLAY	.10	RAIN	.0
PEEL	.96	SMELL	.78	RUN	.05	BE A HUNTER	.0
ASK FOR	.95			SIT	.05		

Typical problems

- short wordlists (4-70 verbs) ≈ only major patterns
- sets of values are often pre-established

Consequences

- we know which verbs are most likely to be transitive, but:
- we don't know much about internal organization of minor (non-canonical) valency classes
- and the ways in which genetic and areal factors affect valency class systems

Structure of the talk

- Background
- Goals (and limitations)
- Data collection
- Distance metrics
- Results
- Conclusions

- Research questions
 - To what extent are valency class systems similar in areally and genetically related languages?
 - How can we identify and measure these similarities?
 - What is the depth of genetic effects = how stable are valency class systems?
 - What is the granularity of areal effects?

"The scale of geographical patterning is the size of the areal unit – local, subcontinental, larger than continental, global – within which the geographical distribution of a feature displays some clear and describable pattern. For example, ... nominal classes tend to cluster areally and form hotbeds which are generally smaller than continental in size (subcontinental)" [Nichols 1992: 185]

Number of genders [WALS]

Bivalent verbs

 Because bivalent verbs are especially prone to show deviant valency behaviour [Bickel et al. 2014] and here, languageinternal lexical distributions can be especially complex

• 130 verb meanings

- Because we need many meanings in order to discern finer signals in the data
- Just one macro-area: Northern Eurasia
 - Because this it is possible to rely exclusively on primary data (it is not feasible to extract reliable data on as many as 130 verbs from published sources)
 - and still have a relatively dense grid of languages covered

- It comes at a price
 - convenience sample: I depend on availability of experts and speakers
 - the wordlist can be biased in many ways
 - cross-validation is problematic
 - some meanings can be marginal or non-attested in some languages

Structure of the talk

- Background
- Goals (and limitations)
- Data collection
- Distance metrics
- Results
- Conclusions

- 130 predicates
- Predicates are provided with contexts in order to make cross-linguistic comparison more accurate

```
#21 (Peter was crossing the river in a boat)
'Peter reached the bank'
A
P
```

#22. (The wall was covered with fresh paint)

'Peter touched the wall' (and got dirty)

A

Predicates

- only predicates that can be expected to be bivalent
- many predicates that are known to tend to deviate from the transitive prototype

Translations

- elicited from native speakers (some exceptions, e.g. Latin)
- annotated for argument coding devices (flagging and indexing) by language experts
- variation in argument realization, synonyms etc. are disregarded: one pattern annotated for each predicate

 Valency classes: two verbs belong to the same valency class iff their two arguments are coded by identical devices respectively

Armenian (Eastern)

#	Predicate	Translation	Valency Class
21	reach	Petros-ə hasav ap'-i-n Petros[NOM]-DEF reach:AOR:3SG bank-DAT-DEF	NOM DAT
22	touch	'P. reached the bank' Petros-ə dipav pat-i-n	_
50	-441-	Petros[NOM]-DEF touch: AOR: 3SG wall-DAT-DEF 'Petros touched the wall'	NOM_DAT
53	attack	Arĵ-ə harjakvec' jknors-i vra bear[NOM]-DEF attack:AOR:3SG fisherman-DAT on 'A bear attacked a fisherman'	NOM_DATvra

- One class in each language was identified as transitive
 - in the sense of e.g. [Haspelmath 2011]: the class encompassing 'break'
- The number of valency classses: from 7 (Modern Greek) to 33 (Abaza)

Data collection: sample

- 57 languages of Northern Eurasia*
 - roughly, to the North of 35°N
 - including two extinct languages: Latin and Ancient Greek
 - 9 families (following WALS)
 - 24 genera (following WALS)
- Total datapoints: 6799
 - = 7410 (57 lgs x 130 predicates) − 611 gaps (≈11 per language)

^{*}In this presentation. Further languages currently in the database are Adyghe, Bulgarian, Chuvash, Croatian and Udmurt

Data collection: sample (coloured by genera)

Languages and language experts

-			_	T-			_
Lg	Family	Genus	Expert	Lg	Family	Genus	Expert
Abaza	NorthwestCaucasian	NorthwestC	Peter Arkadiev	Ingush	NakhDaghestanian	Nakh	Johanna Nichols
Albanian	IndoEuropean	Albanian	Varvara Diveeva	Irish	IndoEuropean	Celtic	Dmitry Nikolaev
Armenian Eastern	IndoEuropean	Armenian	Vasilisa Krylova	Italian	IndoEuropean	Romance	Anna Alexandrova
Azerbaijani	Altaic	Turkic	Lejla Kurbanova	Japanese	Japanese	Japanese	Yukari Konuma
Bagwalal	NakhDaghestanian	AvarAndicT	Dmitry Gerasimov	Kalmyk	Altaic	Mongolic	Sergey Say
Bashkir	Altaic	Turkic	Sergey Say	KomiPermyak	Uralic	Finnic	Ekaterina Sergeeva
Basque	Basque	Basque	Natalia Zaika	KomiZyrian	Uralic	Finnic	Ekaterina Sergeeva
Belarusian	IndoEuropean	Slavic	Olga Gorickaja	Latin	IndoEuropean	Romance	Inna Popova
Buriat	Altaic	Mongolic	Mikhail Knazev	Latvian	IndoEuropean	Baltic	Natalia Perkova
Chukchee	ChukotkoKamchatkan	NorthernCh	Maria Pupynina	Lezgi	NakhDaghestanian	Lezgic	Ramazan Mamedshax
Czech	IndoEuropean	Slavic	Anastasija Makarova	Lithuanian	IndoEuropean	Baltic	Natalia Zaika
Dutch	IndoEuropean	Germanic	Mikhail Knazev	Macedonian	IndoEuropean	Slavic	Vladimir Fedorov
Enets	Uralic	Samoyedic	Maria Ovsjannikova	MokshaMordvin	Uralic	Finnic	Maria Kholodilova
English	IndoEuropean	Germanic	Dmitry Nikolaev	Nanai	Altaic	Tungusic	Daria Mischenko
ErzyaMordvin	Uralic	Finnic	Ksenia Shagal	NorwegianBokmal	IndoEuropean	Germanic	Olga Kuznecova
Estonian	Uralic	Finnic	Irina Külmoja	Ossetic	IndoEuropean	Iranian	Arsenij Vydrin
Evenki	Altaic	Tungusic	Nadezhda Bulatova,	Polish	IndoEuropean	Slavic	Georgij Moroz
			Elena Perekhvalskaja	Romanian	IndoEuropean	Romance	Daria Suetina
Finnish	Uralic	Finnic	Ksenia Shagal	RomaniKalderash	IndoEuropean	Indic	Kirill Kozhanov
French	IndoEuropean	Romance	Elena Kordi	Russian	IndoEuropean	Slavic	Sergey Say
Gascon	IndoEuropean	Romance	Natalia Zaika	Rutul	NakhDaghestanian	Lezgic	Anastasia Vasilisina, S
Georgian	Kartvelian	Kartvelian	Alexander Rostovtsev-	Serbian	IndoEuropean	Slavic	A.Makarova
German	IndoEuropean	Germanic	Sandra Birzer	Slovene	IndoEuropean	Slavic	Andreja Žele, Mladen
GreekAncient	IndoEuropean	Greek	Ildar Ibragimov	Spanish	IndoEuropean	Romance	Elena Gorbova
GreekModern	IndoEuropean	Greek	Ekaterina Zheltova	Turkish	Altaic	Turkic	Maria Ovsjannikova
HillMari	Uralic	Finnic	Ksenia Studenikina	Tuvan	Altaic	Turkic	Arzhaana Syuryun
Hungarian	Uralic	Ugric	Vasilisa Zhigulskaja	Udihe	Altaic	Tungusic	Elena Perkhvalskaja
Icelandic	IndoEuropean	Germanic	Ingunn Hreinberg Indr	Ukrainian	IndoEuropean	Slavic	Natalia Zaika

Yakut

Altaic

Turkic

Ajtalina Nogovitsyna

IngrianFinnish

Uralic

Finnic

Daria Mischenko

Structure of the talk

- Background
- Goals (and limitations)
- Data collection
- Distance metrics
- Results
- Conclusions

Distance metrics

For each pair of languages

- Genetic distance
- Areal distance
- Structural distances

Distance metrics: genetic

- Three levels, based on WALS:
 - 1: same genus
 - 2: same family, different genera
 - 3: different families

E.g.: DistGenetic (Eastern Armenian, Azerbaijani) = 3

Distance metrics: geographic

- Calculated as the geographic distance (in kilometers) between the two points associated with individual languages
- Coordinates are taken from WALS
- The distance is calculated using distCosine() from the R package geosphere [Hijmans 2016]
- NB: this is a very coarse metric for languages spoken over vast areas
- For statistical purposes, the decimal logarithm of the distance is used, e.g.

DistGeo (Eastern Armenian, Azerbaijani) = 277 km LogDistGeo (Eastern Armenian, Azerbaijani) = 2.44

Distance metrics: structural

- Structural distances:
 - DistTrRat: measures (dis)similarity in transivity prominence
 - DistTrProf: measures (dis)similarity in transivity profiles
 - DistValPat: measures (dis)similarity between systems of valency classes

 Transitivity Ratio (TrRatio): the number of transitive verbs divided by the total number of verbs, cf. [Haspelmath 2015]

E.g. TrRatio (Azerbaijani) = 0.48 (58 transitive verbs / 121 total)

 DistTrRatio is the absolute value of the difference between transitivity prominence in the two languages

DistTrRatio (Azerbaijani, Eastern Armenian) = |0.48 - 0.50| = 0.02

- Transitivity profile of a language: sets of +/- transitive verbs
- DistTrProf measures (dis)similarity between "transitivity profiles"
- The relative Hamming distance: the ratio of predicates that are transitive in one language and intransitive in the other

	Eastern Armenian	Azerbaijani
win	TR	INTR
be_afraid	INTR	INTR
believe	INTR	INTR
see	TR	TR
reach	INTR	INTR
touch	INTR	INTR
forget	INTR	TR
wait	TR	TR
know	TR	TR
avoid	INTR	INTR

		Azerbaijani	
		t	i
Eastern	t	53	8
Armenian	i	5	53

DistrTrProf (Eastern Armenian, Azerbaijani) = (5+8)/(53+8+5+53) = 13 / 119 = 0.109

Low DistTrProf entails low DistTrRat, but not vice versa.

ls this a big difference or a small difference?

- Standardization: z-scores
- Mean value of DistTrProf among all pairs = 0.209, and σ = 0.07

z (DistrTrProf (Eastern Armenian, Azerbaijani)) =
$$\frac{0.109 - 0.209}{0.07}$$
 = -1.43

NB: Negative z-scores signal more similarity between languages!

- Cross-linguistic identification of minor valency classes (cf. "ablative verbs"?, "instrumental verbs"?) is not feasible (see above)
- Measuring (dis)similarity in valency class systems is the biggest challenge
- I propose **DistValPat**, a metric based on entropy and MI (mutual information)
- Entropy ≈ the amount of information (conveyed by the valency class assignment)

$$H(x) = -\sum_{i=1}^{\kappa} p(x_i) \cdot \log(p(x_i))$$

Hypothetical Language 1: All verbs belong to the same class H = 0

Hypothetical Language 2: 130 verb classes $H = -\log(\frac{1}{130}) \approx 4.87$

Entropy

	Armenian	Azerbaijani	
take	TR	TR	
see	TR	TR	
influence	NOMvra	NOMDAT	
encounter	TR		
enter	NOMNOM		
win	TR	NOMDAT	
go_out	NOMABL	NOMABL	
drive	TR	TR	
bend	TR	TR	
tell	NOMDAT	TR	
hold	TR	TR	
catch_up	NOMDAT	NOMDAT	
milk	TR	TR	
reach	NOMDAT	NOMDAT	
touch	NOMDAT	NOMDAT	
fight	NOMhet		
be_friends	NOMhet		
think	NOMmasin	NOMABL	
H (Entropy)	1.658	1.462	

	Armenian	Azerbaijani	Joint Distribution
take	TR	TR	TR_TR
see	TR	TR	TR_TR
influence	NOMvra	NOMDAT	NOMvra_NOMDAT
encounter	TR		TR_NOMCOM
enter	NOMNOM		NOMNOM_NOMCOM
win	TR	NOMDAT	TR_NOMDAT
go_out	NOMABL	NOMABL	NOMABL_NOMABL
drive	TR	TR	TR_TR
bend	TR	TR	TR_TR
tell	NOMDAT	TR	NOMDAT_TR
hold	TR	TR	TR_TR
catch_up	NOMDAT	NOMDAT	
milk	TR	TR	TR_TR
reach	NOMDAT	NOMDAT	
touch	NOMDAT	NOMDAT	
fight	NOMhet		NOMhet_NOMCOM
be_friends	NOMhet		NOMhet_NOMCOM
think	NOMmasin	NOMABL	NOMmasin_NOMABL
H (Entropy)	1.658	1.462	2.196

- MI (Mutual Information) = H (X) + H (Y) H (X, Y)
- MI (Armenian, Azerbaijani) = 1.658 + 1.462 2.196 = 0.924
- Higher MI values reflect higher similarity between valency class systems in the two languages
- MI was calculated using R package infotheo [Meyer 2014]

Hypothetical situation 1: two identical systems

$$I(X; Y) = H(X) + H(Y) - H(X, Y) \approx 0.69 + 0.69 - 0.69 = 0.69$$

Hypothetical situation 2: two systems with nothing in common

$$I(X;Y) = H(X) + H(Y) - H(X,Y) \approx 0.69 + 0.69 - 1.39 = 0$$

Hypothetical situation 3: something more realistic

$$I(X;Y) = H(X) + H(Y) - H(X,Y) \approx 0.69 + 0.69 - 1.26 \approx 0.13$$

Converting MI into a distance metric

DistValPat (L1, L2) =
$$1 - \frac{\frac{MI(L1,L2)}{H(L1)} + \frac{MI(L1,L2)}{H(L2)}}{2}$$

- DistValPat is high if the joint entropy is high relative to individual entropies
- DistValPal is higher if valency class systems are divergent

- DistValPal (Armenian, Azerbaijani) = 0.405
- z (DistValPat(Armenian, Azerbaijani)) = $\frac{0.405-0.499}{0.096}$ = -0.97
- This means that valency class assignment in Armenian and Azerbaijani is rather similar: the distance between the two languages is almost one standard deviation below the mean

Distance metrics: summary

- Pairs of languages: 1596 = (57*56)/2
- 5 distance metrics for each pair:
 - genetic
 - geographical
 - 3 structural

Structure of the talk

- Background
- Goals (and limitations)
- Data collection
- Distance metrics
- Results
- Conclusions

Results

 All the three structural distance metrics correlate positively with both the genetic and areal distance

Results

 All the three structural distance metrics correlate positively with both the genetic and areal distance.

=> Expected

But the devil is in the detail

Results: transitivity prominence

- Transitivity / intransitivity prominence is primarily an areal phenomenon with subcontinental degree of granularity
 - Transitivity peaks are in Central Western Europe and in the Far East
 - Intransitivity peaks are in the Caucasus and in the Eastern Europe

Results: transitivity prominence

The ratio of intransitive verbs

Results: transitivity prominence

- Genera are relatively homogeneous in terms of transitivity prominence: DistTrRatio's are low
- No traceable family-size effects, e.g. both Indo-European and Uralic languages are very diverse

Results: transitivity profiles

- DistTrProf: significant genetic signal not only on the level of individual genera, but also on the family-size level
- Also visible on the MDS (Multidimensional scaling) plot

DistTrProf = Hamming distance between transitivity profiles

MDS plot for DistTrProf = Hamming distance between transitivity profiles

Results: transitivity profiles

- However, Uralic languages are somewhat distorted
 - Enets patterns with other languages of Siberia
 - Hungarian patterns with Standard Average European languages
 - Permic, Mordvinic and Mari are between Slavic and Altaic
 - Baltic Finnic languages are unlike anything else

Results: transitivity profiles

 Given a certain level of DistTrRat, genetically related languages show lower DistTrProf

DistTrRat, DistTrProf & Genetic relatedness

Results: transitivity profiles

- This would not be expected if the transitivityprominence scale of verbs were universal
- Probably, verb hierarchies of transitivity prominence are family-specific, e.g.:
 - Experiential predicates ('see', 'know', 'love', 'want') are
 especially prone to be intransitive in Nakh-Daghestanian
 - Verbs of contact ('follow', 'reach', 'touch', 'kiss', 'attack') are especially prone to be intransitive in Uralic (though not Hungarian)
 - etc.

Results: transitivity profiles

- Next slide: the role of geographic distance
 - X-axis: geographic distance in kilometers
 - Y-axis: mean DistTrProf for pairs of languages spoken closer than N kilometers to each other (cumulative mean)
 - separately for three levels of genetic distance

This method is inspired by [Wichmann & Holman 2009: 75 ff.]

DistTrProf = Hamming distance between transitivity profiles

Results: transitivity profiles

- Robust genetic signal: three curves are very different
- If genetic factor is levelled out, the role of geographic proximity rapidly fades away after ≈2000 km

Results: valency class systems

 DistValPat displays no family-level effects, only genus-level effects

DistValPat = Entropy-based distance between valency class systems

Results: valency class systems

- DistValPat: geographical effects (next slide)
 - The curves for languages from same vs. different families show no consistent effect for distances > 1000 km
 - DistValPat shows the strongest areal signal for both genetically related and unrelated languages
 - Caucasus is an exception: many pairs of geographically proximate languages with huge DistValPat; this accounts for the anomaly on the left margin of the orange curve

DistValPat = Entropy-based distance between valency class systems

Results: valency class systems

- DisValPat displays a stronger and more lasting effect of geographic distance than DistTrProf
 - See the next slide: pairs of genetically related languages are disregarded, z-scores are re-calculated

Two metrics for genetically unrelated languages

Results

- Areal effects are clearly visible if the distance matrix is visualized using the NeighborNet algorithm
 - implemented in the SplitsTree software [Huson & Bryant 2006]

NeighborNet, DistValPat: (dis)similarity in bivalent valency class systems

Structure of the talk

- Background
- Goals (and limitations)
- Data collection
- Distance metrics
- Results
- Conclusions

Conclusions

- Transitivity prominence is an areal phenomenon with subcontinental granularity
- Similarities in transitivity profiles: strong genetic effects, no large-scale geographic effects
- Similarities in valency class organization, including minor classes: no family-level genetic effects, strong areal effects

Conclusions

Plausible explanation

- valency patterns of individual verbs change relatively fast and are easily transferable in language contact
- languages are relatively stable in terms of those semantic features that are relevant for the assignment of the [+/-] transitivity values to individual verbs
- and transitivity hierarchies of verb meanings can be familyspecific

Acknowledgements

- Language experts (see above)
- My colleagues from the Institute for linguistic studies, RAS, who participated in research projects supported by the Russian Foundation for Humanities
- And especially Maria Ovsjannikova who created the plots in R

Thank you!

Selected references

- Aikhenvald A.Y., Dixon R.M.W., Onishi M. (eds). 2001. Non-canonical marking of subjects and objects. Amsterdam/Philadelphia: John Benjamins.
- Bhaskararao P., Subbarao K.V. (eds). 2004. Non-nominative Subjects. 2 vols. Amsterdam/Philadelphia: John Benjamins.
- Bickel, Balthasar, Taras Zakharko, Lennart Bierkandt & Alena Witzlack-Makarevich, 2014. Semantic role clustering: An empirical assessment of semantic role types in non-default case assignment. Studies in language, 38 (3). Advances in research in semantic roles. 485-511.
- Bossong, Georg. 1998. Le marquage de l'expérient dans les langues d'Europe'. In: Feuillet (ed.). Actance et valence dans les langues de l'Europe. Berlin: Mouton de Gruyter. 259–94.
- Dixon, R.M.W., Aikhenvald, A.Y. (eds). 2000: Changing valency: case studies in transitivity. Cambridge.
- Dowty D. 1991. Thematic proto-roles and argument selection. Language 67. 547-619.
- Haspelmath, Martin. 1993. More on the typology of inchoative / causative verb alternations. In: Comrie, Bernard & Maria Polinsky (eds.) Causatives and Transitivity. Amsterdam: Benjamins. 87–120.
- Haspelmath, Martin. 2001. Non-canonical marking of core arguments in European languages. In: Aikhenvald et al. eds. 53-83.
- Haspelmath, Martin. 2011. On S, A, P, T, and R as comparative concepts for alignment typology. *Lingustic Typology* 15(3). 535–567.
- Haspelmath, Martin. 2015. Transitivity prominence. In: Malchukov & Comrie (eds.), 131-147.

Selected references

- Hijmans, Robert J. 2016. geosphere: Spherical Trigonometry. R package version 1.5-5. https://CRAN.R-project.org/package=geosphere
- Hopper, P.J., Thompson, S.A. 1980. Transitivity in grammar and discourse. Language. 1980, 56. (2). P. 251–299.
- Kittilä, S. 2002. Transitivity: towards a comprehensive typology. Turku, 2002.
- Levin, Beth. 1993. English Verb Classes and Alternations. Chicago: University of Chicago Press.
- Malchukov, A. 2006. Transitivity parameters and transitivity alternations: constraining covariation. In: Case, valency and transitivity, ed. by L. Kulikov, A. Malchukov, P. de Swart. Amsterdam, Philadelphia. P. 175–190.
- Meyer, Patrick E. 2014. infotheo: Information-Theoretic Measures. R package version 1.2.0. https://CRAN.R-project.org/package=infotheo
- Næss, Å. 2007. Prototypical Transitivity. Amsterdam, Philadelphia.
- Nedjalkov, V.P. 1969. Nekotorye verojatnostnye universalii v glagolnom slovoobrazovanii. In: F. Vardul' (ed.). Jazykovye universalii i lingvisticheskaja tipologija. Moscow: Nauka. 106-114.
- Nichols, Johanna. 1992. Linguistic Diversity in Space and Time. Chicago: University of Chicago Press.
- Nichols, Johanna. 2008. Why are stative-active languages rare in Eurasia? Typological perspective on split subject marking. In Mark Donohue and Søren Wichmann (eds). The Typology of Semantic Alignment Systems, 121-139. Oxford: Oxford University Press.

Selected references

- Nichols, Johanna, David A. Peterson & Jonathan Barnes. 2004. Transitivizing and detransitivizing languages. Linguistic Typology 8: 149–211.
- Say, S. 2014. Bivalent Verb Classes in the Languages of Europe: A Quantitative Typological Study. *Language dynamics and change*, 4 (2014), 116–166.
- Tsunoda, T. 1981. Split case-marking patterns in verb-types and tense / aspect / mood // Linguistics. Vol. 19. P. 389–438.
- Tsunoda, Tasaku. 1985. Remarks on transitivity. *Journal of Linguistics* 21. 385–396.
- WATP: The World Atlas of Transitivity Pairs [http://watp.ninjal.ac.jp/en/]
- Wichmann, S. & Holman, E. 2009. Assessing temporal stability for linguistic typological features. Munchen: LINCOM Europa.
- Wichmann, Søren. 2015. Statistical observations on implicational (verb) hierarchies. In: Malchukov & Comrie (eds.), 155-181.