

Analyzing the <u>Cyber-Resilience</u> of Autonomic Software-defined OT Networks in offshore wind Power Plants.

Presented By:

Agrippina Wanjiru Mwangi Energy and Resources Group Copernicus Institute of Sustainable Development Utrecht University, The Netherlands

Contributors: Alfan Presekal, Alex Ştefanov, Elena Fumagalli, Mikkel Gryning, Madeleine Gibescu

Cyber-security Quagmire in Offshore Wind Power Plants

"The key notion of cyber resilience is acceptance of cyber compromise as a likely event, and the system suffering as a result; the focus is on the system's ability to recover and adapt, not just resist."

Alexander Kott & Igor Linkov (2021) US Combat Capabilities Development Command's Army Research Laboratory

1. Kott, A. and Linkov, I., 2021. To Improve Cyber Resilience, Measure It. IEEE Computer, 54(2), Feb.2021, pp.80-85.

2. Kott, A. and Theron, P., 2020. Doers, Not Watchers: Intelligent Autonomous Agents Are a Path to Cyber Resilience. IEEE Security & Privacy, 18(3), pp.62-66.

3. I. Kamara, "European cybersecurity standardisation: a tale of two solitudes in view of Europe's cyber resilience," Innovation: The European Journal of Social Science Research, pp. 1–20, 2024.

Securing software-defined OT Networks in offshore wind power plants

TABLE I OFFSHORE WPP SPECIFIC VULNERABILITIES AND ATTACKS MAPPED TO CVE IDS [19] AND MITRE ATT&CK REFERENCES [20]

Category	Attack	CVE ID	MITRE ATT&CK	REFERENCE CODE
SCADA & ICS	Modbus TCP Write Single Register Attack	✓	1	CVE-2019-10988, T0860
	DNP3 Malformed Packet	✓	/	CVE-2015-7916, T0856
	IEC 60870-5-104 Exploit	✓	1	CVE-2022-29544, T0859
	Modbus Read Device ID Spoof	Х	/	-, T0859
IoT Exploits	IoT Botnet Infection	✓	1	CVE-2016-10401, T0747
	MQTT Unauthorized Access	✓	1	CVE-2017-7653, T0852
	CoAP Unauthorized Access	✓	/	CVE-2019-15889, T0853
DoS/DDoS	UDP Chargen (RFC864) DoS Attack	✓	1	CVE-1999-0103, T1498
	HTTP Slowloris (RFC793, RFC7230) DoS Attack	✓	/	CVE-2007-6750, T1499
	FTP/SSH Brute-Force	X	1	-, T1110
Unauthorized Access	SNMP Unauthorized Access	✓	1	CVE-2017-6736, T1021
	ICMP Redirect Attack	Х	/	-, T1595
Network Scanning	Nmap XMAS/FIN/UDP Scan	X	1	-, T1046
Malware & Exploits	Malware Download	✓	1	CVE-2016-0034, T1203
	SMB EternalBlue	✓	/	CVE-2017-0144, T1210
	RDP BlueKeep	✓	1	CVE-2019-0708, T1210
Credential Dumping	LDAP Credential Dumping	X	1	-, T1003
	SSL Strip Attack	✓	1	CVE-2009-3555, T1557
DNS-based Attacks	DNS Exfiltration	X	1	-, T1071
	DNS Tunneling	✓	1	CVE-2019-6487, T1572

mysql> select * from threat	_severity;				
id timestamp	source_ip	cve_id	mitre_id	severity_level	severity_label
1 2025-03-28 10:22:14	192.168.1.101	CVE-2019-6487	T1572	4	Critical

Points to the vulnerabilities and is suited for threat severity classification (Z) in the DEFENSE Module.

Threat modelling, Incident classification, and attack behavior detection in the multi-log ingestion at the ORIENT Module.

Securing software-defined OT Networks in offshore wind power plants

https://services.nvd.nist.gov/rest/json/cves/2.0?cveId={cve_id}

Proposed Approach:

Autonomic, event-driven OpenFlow Random Host Mutation (OF-RHM) Framework

OpenFlow Random Host Mutation (OF-RHM) is a key Moving Target Defense technique designed for use with OpenFlow-based software defined networks

"Moving Target Defense (MTD) is a cyber-resilience strategy introduces dynamism into the protected systems and networks, thereby increasing the uncertainty and complexity for attackers while maintaining usability for legitimate users."

Jafarian et al., 2012

1. Network behavior and performance indicators of Cyber-Resilience

Wireshark capture of network throughput (packets/sec) under both reconnaissance and late-stage (DDoS) attacks for 10 minutes.

2. Quantitative Assessment using Generalised Stochastic PetriNets (GSPN)

TABLE III
GSPN SCENARIOS FOR SIMULATING ATTACK-DEFENSE
DYNAMICS

Scenario	$\lambda_{ ext{attack}}$	$\mu_{ m compromise}$	$\delta_{ m detect}$	$ ho_{ m recover}$
Passive Reconnaissance	0.01	0.001	0.85	0.3
Loud Scan (Stealthy Scan)	0.30	0.010	0.65	0.25
Slow Advanced Persistent Threats	0.02	0.010	0.25	0.1
Ransomware	0.70	0.500	0.35	0.05
Insider Leak	0.15	0.080	0.15	0.4
DoS Burst	0.90	0.050	0.60	0.15

2. Quantitative Assessment using Generalised Stochastic PetriNets (GSPN)

1) Probability of System Compromise: At time t, the proportion of markings in vulnerable or compromised states is given such that,

$$\mathbb{P}_{\text{comp}}(t) = \frac{\sum_{p \in \mathcal{P}_{\text{comp}}} \mathcal{M}_p(t)}{\sum_{p \in \mathcal{P}} \mathcal{M}_p(t)}$$
(11)

where $\mathcal{P}_{\text{comp}} \subseteq \mathcal{P}$ is the subset of places representing compromised states and $\mathcal{M}_p(t)$ is the number of tokens in place p at time t.

2. Quantitative Assessment using Generalized Stochastic PetriNets (GSPN)

The attack containment rate (ACR(%)) was computed as the ratio of the number of attacks detected and mitigated $(\mathcal{A}_{\text{mitigated}})$ to the total number of attacks launched $(\mathcal{A}_{\text{total}})$, as expressed in eqn. 9:

$$ACR(\%) = \frac{|\mathcal{A}_{\text{mitigated}}|}{|\mathcal{A}_{\text{total}}|} \times 100$$
 (9)

2. Quantitative Assessment using Generalized Stochastic PetriNets (GSPN)

The cyber-resilience index (CRI) was computed as ratio such that

$$CRI(t) = \frac{RecoveryRate(t)}{DisruptionImpact(t) + \epsilon}$$
 (12)

where the RecoveryRate(t) is the number of tokens that return to place, \mathcal{P}_{norm} , and the DisruptionImpact(t) is the total weighted transitions to degraded or failed states.

Insights from Testbed Transient Studies

False positive Rate or a case of over-defending?

Q&A

Utrecht Sharing science, shaping tomorrow

Partners

