Algebraic Databases

Patrick Schultz, David Spivak MIT

Ryan Wisnesky Categorical Informatics

LambdaConf 2017

Introduction

- ► This talk describes a new "algebraic" way to formalize databases based on category theory.
- Category theory was designed to migrate theorems from one area of mathematics to another, but researchers at MIT developed a way to use it to migrate data from one computer system to another.
- Research has culminated in an open-source prototype ETL and data integration tool, AQL (Algebraic Query Language), available at catinf.com.
- Outline:
 - Part 0: Review of basic category theory.
 - Part 1: Introduction to AQL.
 - AQL demo.
 - Optional interlude: additional AQL constructions.
 - Part 2: How AQL instances model the simply-typed λ -calculus.
 - AQL demo.

Category Theory

- ightharpoonup A category ${\mathcal C}$ consists of
 - ▶ a set of *objects*, Ob(C)
 - ▶ forall $X, Y \in \mathsf{Ob}(\mathcal{C})$, a set $\mathcal{C}(X, Y)$ of morphisms a.k.a arrows
 - ▶ forall $X \in \mathsf{Ob}(\mathcal{C})$, a morphism $id \in \mathcal{C}(X,X)$
 - ▶ forall $X,Y,Z \in \mathsf{Ob}(\mathcal{C})$, a function $\circ \colon \mathcal{C}(Y,Z) \times \mathcal{C}(X,Y) \to \mathcal{C}(X,Z)$ s.t.

$$f \circ id = f$$
 $id \circ f = f$ $(f \circ g) \circ h = f \circ (g \circ h)$

- The category Set has sets as objects and functions as arrows, and the "category" Haskell has types as objects and expressions as arrows.
- ▶ A functor $F: \mathcal{C} \to \mathcal{D}$ between categories \mathcal{C}, \mathcal{D} consists of
 - ▶ a function $Ob(C) \rightarrow Ob(D)$
 - $\quad \hbox{ forall } X,Y \in Ob(\mathcal{C}), \hbox{ a function } \mathcal{C}(X,Y) \to \mathcal{D}(F(X),F(Y)) \hbox{ s.t. }$

$$F(id) = id$$
 $F(f \circ g) = F(f) \circ F(g)$

The functor P: Set → Set takes each set to its power set, and the functor
 List: Haskell → Haskell takes each type t to the type List t.

Schemas and Instances

		Emp		
ID	mgr	works	first	last
101	103	q10	Al	Akin
102	102	×02	Bob	Во
103	103	q10	Carl	Cork

Dept			
ID	sec	name	
q10	102	CS	
×02	101	Math	

String	
ID	
Al	
Bob	

Categorical Semantics of Schemas and Instances

- The meaning of a schema S is a category $[\![S]\!]$.
 - $\mathsf{Ob}(\llbracket S \rrbracket)$ is the nodes of S.
 - Forall nodes X, Y, $[\![S]\!](X, Y)$ is the set of finite paths $X \to Y$, modulo the path equivalences in S.
 - ▶ Path equivalence in S may not be decidable! ("the word problem")
- A morphism of schemas (a "schema mapping") $S \to T$ is a functor $[\![S]\!] \to [\![T]\!]$.
 - It can be defined as an equation-preserving function:

$$nodes(S) \rightarrow nodes(T)$$
 $edges(S) \rightarrow paths(T).$

- ▶ An S-instance is a functor [S] → Set.
 - ▶ It can be defined as a set of tables, one per node in S and one column per edge in S, satisfying the path equivalences in S.
- A morphism of S-instances $I \to J$ (a "data mapping") is a natural transformation $I \to J$.
 - ullet Instances on S and their mappings form a category, written S-inst.

Why "Algebraic"?

A schema can be identified with an algebraic (equational) theory.

```
\label{eq:continuous} \mbox{Emp Dept String}: \mbox{Type} \qquad \mbox{first last}: \mbox{Emp} \rightarrow \mbox{String} \qquad \mbox{name}: \mbox{Dept} \rightarrow \mbox{String} \mbox{works}: \mbox{Emp} \rightarrow \mbox{Dept} \qquad \mbox{mgr}: \mbox{Emp} \rightarrow \mbox{Emp} \qquad \mbox{secr}: \mbox{Dept} \rightarrow \mbox{Emp} \forall e: \mbox{Emp. works}(\mbox{manager}(e)) = \mbox{works}(e) \qquad \forall d: \mbox{Dept. works}(\mbox{secretary}(d)) = d
```

- This perspective makes it easy to add functions such as
 + : Int, Int → Int to a schema. See Algebraic Databases.
- ▶ An S-instance can be identified with the initial algebra of an algebraic theory extending S.

```
\label{eq:mgr} \begin{array}{lll} 101 \ 102 \ 103 : \mathsf{Emp} & \mathsf{q}10 \ \mathsf{x}02 : \mathsf{Dept} \\ \\ \mathsf{mgr}(101) = 103 & \mathsf{works}(101) = \mathsf{q}10 & \dots \end{array}
```

 Treating instances as theories allows instances that are infinite or inconsistent (e.g., Alice=Bob).

Functorial Data Migration

A schema mapping $F \colon S \to T$ induces three data migration functors:

▶ Δ_F : T-inst \to S-inst (like project)

$$S \xrightarrow{F} T \xrightarrow{I} \mathbf{Set}$$

$$\Delta_F(I) := I \circ F$$

▶ Π_F : S-inst \to T-inst (right adjoint to Δ_F ; like join)

$$\forall I, J. \quad S\text{-inst}(\Delta_F(I), J) \cong T\text{-inst}(I, \Pi_F(J))$$

▶ Σ_F : S-inst → T-inst (left adjoint to Δ_F ; like outer union then merge)

$$\forall I, J. \quad S\text{-inst}(J, \Delta_F(I)) \cong T\text{-inst}(\Sigma_F(J), I)$$

Δ (Project)

 $\stackrel{\Delta_F}{\longleftarrow}$

	N1		ı	12
ID	name	salary	ID	age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

	N					
ID	name	salary	age			
a	Alice	\$100	20			
b	Bob	\$250	20			
С	Sue	\$300	30			

Π (Product)

 Π_F

	N1		1	1 2
ID	name	salary	ID	age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

N						
ID	name	salary	age			
a	Alice	\$100	20			
b	Alice	\$100	20			
С	Alice	\$100	30			
d	Bob	\$250	20			
е	Bob	\$250	20			
f	Bob	\$250	30			
g	Sue	\$300	20			
h	Sue	\$300	20			
i	Sue	\$300	30			

Σ (Outer Union)

	N1		1	V 2
ID	Name	Salary	ID	Age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

	N				
	ID	Name	Salary	Age	
	а	Alice	\$100	$null_1$	
Σ_F	b	Bob	\$250	$null_2$	
	С	Sue	\$300	$null_3$	
	d	$null_4$	$null_5$	20	
	е	$null_6$	$null_7$	20	
	f	$null_8$	$null_9$	30	

Unit of $\Sigma_F \dashv \Delta_F$

	N1		1	N2
ID	Name	Salary	ID	Age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

	N N				
	ID	Name	Salary	Age	
	a	Alice	\$100	$null_1$	
Σ_F	b	Bob	\$250	$null_2$	
	С	Sue	\$300	$null_3$	
	d	$null_4$	$null_5$	20	
	е	$null_6$	$null_7$	20	
Δ_F	f	$null_8$	$null_9$	30	
K					

N1				N2
ID	Name	Salary	ID	Age
a	Alice	\$100	a	$null_1$
b	Bob	\$250	b	$null_2$
С	Sue	\$300	С	$null_3$
d	$null_4$	$null_5$	d	20
е	$null_6$	$null_7$	е	20
f	$null_8$	$null_9$	f	30

 $\mid \eta \mid$

A Foreign Key

 Π_F, Σ_F

	N:	N2			
ID	name	salary	f	ID	age
1	Alice	\$100	4	4	20
2	Bob	\$250	5	5	20
3	Sue	\$300	6	6	30

			N			
	ID	name	salary	age		
→	a	Alice	\$100	20		
	b	Bob	\$250	20		
	С	Sue	\$300	30		

AQL vs SQL

Data migration triplets of the form

$$\Sigma_F \circ \Pi_G \circ \Delta_H$$

can be expressed using relational algebra and keygen, provided:

- *F* is a discrete op-fibration (ensures union compatibility).
- ► The difference-free fragment of relational algebra can be expressed using such triplets. See *Relational Foundations*.
- ► Such triplets can be written in "foreign-key aware" SQL-ish syntax.

Select-From-Where Syntax

Find the name of every manager's department:

```
AQL SQL select e.manager.works.name select d.name from Emp as e from Emp as e1, Emp as e2, Dept as d where e1.manager = e2.ID and e2.works = d.ID
```

AQL Demo

- ▶ The AQL IDE implements Δ , Σ , Π in software.
 - catinf.com
- ▶ The AQL IDE "execution engine" is an automated theorem prover.
 - Value proposition: AQL catches mistakes at compile time that existing ETL / data integration tools catch at runtime – if at all.
 - Data import and export by JDBC-SQL and CSV.

Interlude - Additional Constructions

- Pivot.
- Pushouts.
- Non-equational data integrity constraints.
- AQL vs comprehension calculi.

Pivot (Instance ⇔ Schema)

		Emp		
ID	mgr	works	first	last
101	103	q10	Al	Akin
102	102	×02	Bob	Во
103	103	q10	Carl	Cork

Dept					
ID	name				
q10	CS				
x02	Math				

Richer Constraints

- Not all data integrity constraints are equational (e.g., keys).
- A data mapping $\varphi:A\to E$ defines a constraint: instance I satisfies φ if for every $\alpha:A\to I$ there exists an $\epsilon:E\to I$ s.t $\alpha=\epsilon\circ\varphi$.

- Most constraints used in practice can be captured the above way.
- See Database Queries and Constraints via Lifting Problems and Algebraic Model Management.

Pushouts

A pushout of p, q is f, q s.t. for every f', g' there is a unique m s.t.:

- The category of schemas has all pushouts.
- \blacktriangleright For every S, the category S-inst has all pushouts.
- ▶ See Algebraic Data Integration.

Pushouts of Schemas

Pushouts of Instances

AQL vs LINQ

- Treating entity sets as types rather than terms makes AQL a conceptual dual to comprehension calculi (e.g., LINQ). See QINL: Query-Integrated Languages, or co-LINQ.
- LINQ enriches programs with (schemas, queries and instances).
 - Collections are terms

```
Employee: Set Int manager: Set (Int \times Int)
```

- e: Employee *is not* a judgment.
- ▶ There is a term \in : Int \times Set Int \rightarrow Bool.
- ► AQL enriches (schemas, queries and instances) with programs.
 - Collections are types

$$Employee \colon Type \quad manager \colon Employee \to Employee$$

- e: Employee is a judgment.
- ▶ There *is not* a term \in : Employee \times Type \rightarrow Bool.
- LINQ is more popular, but AQL's style is common in Coq, Agda, etc.

AQL is "one level up" from LINQ

- LINQ
 - Schemas are collection types over a base type theory

Set
$$(Int \times String)$$

Instances are terms

$$\{(1,\mathsf{CS})\} \cup \{(2,\mathsf{Math})\}$$

Data migrations are functions

$$\pi_1$$
: Set (Int × String) \rightarrow Set Int

- AQL
 - Schemas are type theories over a base type theory

Dept, name: Dept
$$\rightarrow$$
 String

Instances are term models (initial algebras) of theories

$$d_1, d_2$$
: Dept, $name(d_1) = CS$, $name(d_2) = Math$

Data migrations are functors

$$\Delta_{\mathsf{Dept}} \colon (\mathsf{Dept}, \mathsf{name} \colon \mathsf{Dept} \to \mathsf{String}) \operatorname{-} \mathsf{inst} \to (\mathsf{Dept}) \operatorname{-} \mathsf{inst}$$

Part 2

- For every schema S, S-inst models simply-typed λ -calculus (STLC).
- ▶ The STLC is the core of typed functional languages ML, Haskell, etc.
- We will use the internal language of a cartesian closed categor, which is equivalent to the STLC.
- Lots of "point-free" functional programming ahead.

Categorical Abstract Machine Language (CAML)

▶ Types *t*:

$$t ::= 1 \mid t \times t \mid t^t$$

▶ Terms f, g:

$$id_{t}: t \to t \qquad ()_{t}: t \to 1 \qquad \pi_{s,t}^{1}: s \times t \to s \qquad \pi_{s,t}^{2}: s \times t \to t$$

$$eval_{s,t}: t^{s} \times s \to t \qquad \frac{f: s \to u \quad g: u \to t}{g \circ f: s \to t} \qquad \frac{f: s \to t \quad g: s \to u}{(f,g): s \to t \times u}$$

$$\frac{f: s \times u \to t}{\lambda f: s \to t^{u}}$$

Equations:

$$\begin{split} id \circ f &= f \qquad f \circ id = f \qquad f \circ (g \circ h) = (f \circ g) \circ h \qquad () \circ f = () \\ \pi^1 \circ (f,g) &= f \qquad \pi^2 \circ (f,g) = g \qquad (\pi^1 \circ f, \pi^2 \circ f) = f \\ eval \circ (\lambda f \circ \pi^1, \pi^2) &= f \qquad \lambda (eval \circ (f \circ \pi^1, \pi^2)) = f \end{split}$$

Programming AQL in CAML

- \triangleright For every schema S, the category S-inst is cartesian closed.
 - Given a type t, you get an S-instance [t].
 - Given a term $f: t \to t'$, you get a data mapping $[f]: [t] \to [t']$.
- AQL implements the translation [-] when [S] is finite.
- ► S-inst is further a topos (model of higher-order logic / set theory).
- We consider the following schema in the examples that follow:

Programming AQL in CAML: Unit

▶ The unit instance 1 has one row per table:

▶ The data mapping $()_t: t \to 1$ sends every row in t to the only row in 1. For example,

$$p, q, r, t \xrightarrow{()_t} x$$

Programming AQL in CAML: Products

Products $s \times t$ are computed row-by-row, with evident projections $\pi^1: s \times t \to s$ and $\pi^2: s \times t \to t$. For example:

							a			b		
а		b		a		a b			ID	f		ID
ID	f	ID	×	ID	f	ID	_	(1,a)	(3,c)		(3,c)	
1	3	3	^	а	С	С	_	(1,b)	(3,c)		(3,d)	
2	3	4		b	С	d		(2,a)	(3,c)		(4,c)	
							_	(2,b)	(3,c)		(4,d)	

- ▶ Given data mappings $f: s \to t$ and $g: s \to u$, how to define $(f,g): s \to t \times u$ is left to the reader.
 - hint 1: try it on π^1 and π^2 and verify that $(\pi^1, \pi^2) = id$.
 - hint 2: try it in the AQL tool (requires "FQL" mode).

Programming AQL in CAML: Exponentials

• Exponentials t^s are given by finding all data mappings $s \to t$:

а		b		a			b	1
ID	f	ID] _	ID	f		ID] ₌
1	3	3		a	С		С] _
2	3	4		b	С		d	1

a	
ID	f
$1 \mapsto a, 2 \mapsto b, 3 \mapsto c, 4 \mapsto d$	$3 \mapsto c, 4 \mapsto d$
$1 \mapsto b, 2 \mapsto a, 3 \mapsto c, 4 \mapsto d$	$3 \mapsto c, 4 \mapsto d$
$\boxed{1 \mapsto a, 2 \mapsto a, 3 \mapsto c, 4 \mapsto d}$	$3 \mapsto c, 4 \mapsto d$
$1 \mapsto b, 2 \mapsto b, 3 \mapsto c, 4 \mapsto d$	$3 \mapsto c, 4 \mapsto d$
$1 \mapsto a, 2 \mapsto b, 3 \mapsto d, 4 \mapsto c$	$3 \mapsto d, 4 \mapsto c$
$1 \mapsto b, 2 \mapsto a, 3 \mapsto d, 4 \mapsto c$	$3 \mapsto d, 4 \mapsto c$
$1 \mapsto a, 2 \mapsto a, 3 \mapsto d, 4 \mapsto c$	$3 \mapsto d, 4 \mapsto c$
$1 \mapsto b, 2 \mapsto b, 3 \mapsto d, 4 \mapsto c$	$3 \mapsto d, 4 \mapsto c$

b	
ID	
$3 \mapsto c, 4 \mapsto c$	
$3 \mapsto c, 4 \mapsto d$	
$3 \mapsto d, 4 \mapsto c$	
$3 \mapsto d, 4 \mapsto d$	

• Defining eval and λ are left to the reader.

AQL Demo II

Concusion

- We described a new "algebraic" approach to databases based on category theory.
 - Schemas are categories, instances are set-valued functors.
 - Three adjoint data migration functors, Σ, Δ, Π .
 - Instances on a schema model the simply-typed λ -calculus.
- Our approach is implemented in AQL, an open-source project, available at catinf.com.
- Collaborators welcome!