

3D Imaging Using Interferenceless Coded Aperture Correlation Holography (I-COACH)

Noah Plant

Metrology Lab, Department of Applied Physics and Material Sciences

Traditional Holography:

- Captures 3D images

- Captures 3D images
- Requires 2 points of view, an object wave and a reference wave.

- Captures 3D images
- Requires 2 points of view, an object wave and a reference wave.
- Directly captures images (No Reconstruction Required)

- Captures 3D images
- Requires 2 points of view, an object wave and a reference wave.
- Directly captures images (No Reconstruction Required)

Traditional Holography:

- Captures 3D images
- Requires 2 points of view, an object wave and a reference wave.
- Directly captures images (No Reconstruction Required)

Digital Holography:

Traditional Holography:

- Captures 3D images
- Requires 2 points of view, an object wave and a reference wave.
- Directly captures images (No Reconstruction Required)

Digital Holography:

- Captures 3D images

Traditional Holography:

- Captures 3D images
- Requires 2 points of view, an object wave and a reference wave.
- Directly captures images (No Reconstruction Required)

Digital Holography:

- Captures 3D images
- Requires 2 points of view

Traditional Holography:

- Captures 3D images
- Requires 2 points of view, an object wave and a reference wave.
- Directly captures images (No Reconstruction Required)

Digital Holography:

- Captures 3D images
- Requires 2 points of view
- Indirectly captures images (Uses reconstruction techniques)

I-COACH:

- Captures 3D Images

- Captures 3D Images
 - 2D images are captured and reconstructed at multiple planes.

- Captures 3D Images
 - 2D images are captured and reconstructed at multiple planes.

- Captures 3D Images
 - 2D images are captured and reconstructed at multiple planes.

- Captures 3D Images
 - 2D images are captured and reconstructed at multiple planes.

- Captures 3D Images
- Requires 1 point of view

- Captures 3D Images
- Requires 1 point of view
 - No reference wave required

- Captures 3D Images
- Requires 1 point of view
 - No reference wave required
 - 3D information is obtained by a prerecorded library of point spread functions of (PSFs)

- Captures 3D Images
- Requires 1 point of view
 - No reference wave required
 - 3D information is obtained by a prerecorded library of point spread functions of (PSFs)
 - These PSFs show how a single point source of light interacts with the system.

- Captures 3D Images
- Requires 1 point of view
 - No reference wave required
 - 3D information is obtained by a prerecorded library of point spread functions of (PSFs)
 - These PSFs show how a single point source of light interacts with the system.

Figure 1) A simulated PSF recorded at the axial plane z=4cm

Figure 2) A simulated PSF recorded at the axial plane z=5cm

- Captures 3D Images
- Requires 1 point of view
- Uses a spatial light modulator (SLM) to modulate light

- Captures 3D Images
- Requires 1 point of view
- Uses a spatial light modulator (SLM) to modulate light
 - Light from the object interacts with the SLM to change the recorded information.

- Captures 3D Images
- Requires 1 point of view
- Uses a spatial light modulator (SLM) to modulate light
 - Light from the object interacts with the SLM to change the recorded information.

Figure 3) A simulated PSF recorded with diffractive phase mask (left) and cubic phase (right)

- Captures 3D Images
- Requires 1 point of view
- Uses a spatial light modulator (SLM) to modulate light
 - Light from the object interacts with the SLM to change the recorded information.
 - This is done by uploading phase masks which act as digital lenses.

Figure 3) A simulated PSF recorded with diffractive phase mask (left) and cubic phase (right)

- Captures 3D Images
- Requires 1 point of view
- Uses a spatial light modulator (SLM) to modulate light
 - Light from the object interacts with the SLM to change the recorded information.
 - This is done by uploading phase masks which act as digital lenses.

Figure 3) A simulated PSF recorded with diffractive phase mask (left) and cubic phase (right)

- Captures 3D Images
- Requires 1 point of view
- Uses a spatial light modulator to modulate light
- Indirectly captures images

- Captures 3D Images
- Requires 1 point of view
- Uses a spatial light modulator to modulate light
- Indirectly captures images
 - Reconstruction combines the 2D image that is recorded by the camera with the library of PSF's to create a 3D image.

- Captures 3D Images
- Requires 1 point of view
- Uses a spatial light modulator to modulate light
- Indirectly captures images
 - Reconstruction combines the 2D image that is recorded by the camera with the library of PSF's to create a 3D image.

- Captures 3D Images
- Requires 1 point of view
- Uses a spatial light modulator to modulate light
- Indirectly captures images
 - Reconstruction combines the 2D image that is recorded by the camera with the library of PSF's to create a 3D image.

- Captures 3D Images
- Requires 1 point of view
- Uses a spatial light modulator to modulate light
- Indirectly captures images
 - Reconstruction combines the 2D image that is recorded by the camera with the library of PSF's to create a 3D image.

Phase Masks

- Phase Masks modulate light acting as a digital lens.

- Phase masks modulate light acting as a digital lens.
- Phase masks change the PSF which in turn changes the image reconstruction.

- Phase masks modulate light acting as a digital lens.
- Phase masks change the PSF which in turn changes the image reconstruction.
- Some phase masks offer high axial resolution while others have high lateral resolution.

- Phase masks modulate light acting as a digital lens.
- Phase masks change the PSF which in turn changes the image reconstruction.
- Some phase masks offer high axial resolution while others have high lateral resolution.

Low axial resolution

PHASE MASK DESIGN

Phase Masks

- Phase masks modulate light acting as a digital lens.
- Phase masks change the PSF which in turn changes the image reconstruction.
- Some phase masks offer high axial resolution while others have high lateral resolution.

PHASE MASK DESIGN

Phase Masks

- Phase masks modulate light acting as a digital lens.
- Phase masks change the PSF which in turn changes the image reconstruction.
- Some phase masks offer high axial resolution while others have high lateral resolution.

PHASE MASK DESIGN

Phase Masks

- Phase masks modulate light acting as a digital lens.
- Phase masks change the PSF which in turn changes the image reconstruction.
- Some phase masks offer high axial resolution while others have high lateral resolution.

Low lateral resolution

High lateral resolution

EXPERIMENT DESCRIPTION

Experiment Description

- 2 different reconstruction techniques were used to reconstruct a simulated object at 2 different planes.

EXPERIMENT DESCRIPTION

Experiment Description

- 2 different reconstruction techniques were used to reconstruct a simulated object at 2 different planes.
 - Lucy Richardson Rosen Algorithm (LRRA)
 - Compressive LRRA (Comp. LRRA)

EXPERIMENT DESCRIPTION

Experiment Description

- 2 different reconstruction techniques were used to reconstruct a simulated object at 2 different planes.
 - Lucy Richardson Rosen Algorithm (LRRA)
 - Compressive LRRA (Comp. LRRA)
- The simulated object consisted of 2 handwritten numbers on different planes:

Cubic Phase

Spiral Lens

Diffractive Lens

Phase Mask

Cubic Phase

Spiral Lens

Diffractive Lens

Phase Mask

Object Intensity

Object

Intensity

Cubic Phase

Spiral Lens

Diffractive Lens

Phase Mask

Cubic Phase

Spiral Lens

Diffractive Lens

Phase Mask

Conclusion

Conclusion

 I-COACH is a viable method for capturing high-quality 3D images, offering significant advantages over traditional holography techniques.

Conclusion

- I-COACH is a viable method for capturing high-quality 3D images, offering significant advantages over traditional holography techniques.
- The use of digital phase masks, provides greater flexibility and freedom in image reconstruction.

Conclusion

- I-COACH is a viable method for capturing high-quality 3D images, offering significant advantages over traditional holography techniques.
- The use of digital phase masks, provides greater flexibility and freedom in image reconstruction.
- The compressive Lucy Richardson Rosen Algorithm (Comp. LRRA) is an effective algorithm for image reconstruction.

Future Work

• Gather an experimental PSF library using various heights and phase masks.

- Gather an experimental PSF library using various heights and phase masks.
- Reconstruct 3D object images through experimental methods.

- Gather an experimental PSF library using various heights and phase masks.
- Reconstruct 3D object images through experimental methods.
- Develop innovative reconstruction techniques utilizing neural networks and machine learning.

- Gather an experimental PSF library using various heights and phase masks.
- Reconstruct 3D object images through experimental methods.
- Develop innovative reconstruction techniques utilizing neural networks and machine learning.
- Design unique phase masks to offer new perspectives on objects.