PRÁCTICA 6: ESTUDIO DE LÁMINAS RETARDADORAS

Intensidad emergente :
$$I = I_{P1} \operatorname{sen}^2 \left(\frac{\delta}{2} \right) \operatorname{sen}^2(2\alpha)$$

$$Ip1 = intensidad sale de P1$$

$$S = \text{desfase } R$$

Ajuste lineal:
$$\frac{I}{Ip_1} = \frac{\sin^2(\frac{\delta}{2})}{\sin^2(2\alpha)}$$

· Líneas neutras

Angulos	Imin
0	0,484
90	0,65
180	0,704
270	0,694

- Desfase de la lámina : Medimos Iexp entre $\alpha = 0^{\circ}$ y $\alpha = 90^{\circ}$
- Intensidad de referencia Ip1: Medimos I solo con P1 a 0°

• Factor de transmisión Lámina R :
$$T_R = \frac{It}{I_i}$$

• Factor de transmisión de P2:
$$T_{P2} = \frac{It 90^{\circ}}{Ii 90^{\circ}}$$

 $It 90 = P_1 y_1 P_2 a 90^{\circ}$

· Intensidad experimental normalizada y corregida:

Inormaliz =
$$\frac{\text{Iexp}}{\text{Ip}_1 \text{TR Tp}_2}$$

desfase $1,49091139 \approx \frac{\pi}{2} \cos^{2}$ $85,4229302^{\circ} \approx 90^{\circ}$

SEGUNDA PARTE R puede cambiar estado de polarización

Prueba A

 P_1 a 45°, R a 0°, P_2 gira 0-180° I \approx cte luz circularmente polarizada

Prueba B

P₁ a 30°, R a 0°, P₂ gira 0-180° elépticamente polarizade

