

Rethinking Kernel Methods for Node Representation Learning on Graphs

Yu Tian^{1*} Long Zhao^{1*} Xi Peng² Dimitris Metaxas¹

¹ Rutgers University

² University of Delaware

* Equal Contribution

Highlights

- We study the problem of learning node representations on graphs.
- We propose a learnable kernel-based framework for node classification.
- We demonstrate the validity of our learnable kernel function and show that our formulation is powerful enough to express any p.s.d. kernels.
- A novel feature aggregation mechanism for learning node representation is derived.

Kernel Concepts

- A kernel $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a function of two arguments: K(x,y) for $x,y \in \mathcal{X}$.
- The kernel function K is symmetric: K(x, y) = K(y, x).

$$K(x_1,x_1) \cdots K(x_1,x_N)$$
• K is a p.s.d. kernel \Leftrightarrow $K = \vdots \cdots K(x_N,x_1) \cdots K(x_N,x_N)$

$$K(x_N,x_1) \cdots K(x_N,x_N)$$
positive semidefinite for any $\{x_i\}_{i=1}^N$.

Graph Kernels

- Given two graphs $G_i = (V_i, E_i)$ and $G_j = (V_j, E_j)$, the graph kernel $K_G(G_i, G_j) \coloneqq \sum_{v_i \in V_i} \sum_{v_j \in V_j} k_{base} (f(v_i), f(v_j))$.
- K_G should be p.s.d and symmetric.
- Drawback: hand-crafted kernel, little learnable params.

Representation Learning on Graphs

- Representation learning as an encoder-decoder framework: $\mathcal{L} = \sum_{(v_i, v_j) \in \mathcal{D}} \ell\left(ENC_{DEC(v_i, v_j)}, s_G(v_i, v_j)\right)$.
- *ENC_DEC*: encoder-decoder function.
- s_G : measuring the similarity between nodes in G.
- ℓ: loss function.

Learning Kernels for Node Representation

- Replace ENC_DEC with a kernel function K_{θ} : $\mathcal{L} = \sum_{(v_i, v_j) \in \mathcal{D}} \ell\left(K_{\theta}(v_i, v_j), s_G(v_i, v_j)\right)$.
- Decouple K_{θ} into two components: $K_{\theta}(v_i, v_j) = k_{base}(g_{\theta}(v_i), g_{\theta}(v_j))$

base p.s.d. kernel k_{base}

learnable feature mapping function g_{θ}

- Theorem 1 (validity): k_{base} is p.s.d. $\Rightarrow K_{\theta}$ is p.s.d.
- 1 Theorem 2 (powerful): For some k_{base} , $k_{base}(g_{\theta}(v_i), g_{\theta}(v_j))$ can express any p.s.d. kernel.

Feature Mapping Function:

- $g_{\theta}(V) \coloneqq \left(\sum_{h} \omega_{h} \cdot \left(\bar{A}^{h} \odot M^{(h)}\right)\right) \cdot MLP^{(l)}(X_{V})$ $M^{(h)}(i,j) = 1 \text{ if } v_{j} \text{ is a h-hop neighbor of } v_{i}$ $\omega_{h} \text{ learnable}$
- GCN as feature mapping: g_{GCN}
- GAT as feature mapping: g_{GAT}

Base Kernel k_{base} :

• Dot product $k_{\langle \cdot, \cdot \rangle}$:

$$k_{base}(x,y) = \langle x, y \rangle$$

• RBF kernel k_{RBF} :

$$k_{base}(x,y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right)$$

Similarity Metric s_G and Criteria ℓ :

• We require that the similarity of node pairs with the same label (v_i, v_j) is greater than those with distinct labels (v_i, v_k) by a margin:

$$\mathcal{L}_K = \sum_{(v_i, v_j, v_k) \in \mathcal{T}} \ell\left(K_{\theta}(v_i, v_j), K_{\theta}(v_i, v_k)\right)$$

$$\ell\left(K_{\theta}(v_i, v_j), K_{\theta}(v_i, v_k)\right) = \left[K_{\theta}(v_i, v_k) - K_{\theta}(v_i, v_j) + \alpha\right]_{+}$$

Inference for Node Classification:

- Nearest Centroid Classifier \mathcal{C}_K :
 - $y^* = \operatorname*{argmax}_{y \in Y} \mu_y, \mu_y = \frac{1}{|V_y|} \sum_{v_i \in V_y} K_\theta(\mu, v_i)$
- Softmax Classifier C_Y :

$$\mathcal{L}_{Y} = -\sum_{v_{i} \in V} q(y_{i}) \log \left(\sigma(g_{\theta}(v_{i}))\right)$$

Results

Results of Node Classification

Method	Cora [24]	Citeseer [11]	Pubmed [32]
KLED [9]	82.3	-	82.3
GCN [21]	86.0	77.2	86.5
GAT [40]	85.6	76.9	86.2
FastGCN [5]	85.0	77.6	88.0
$\mathcal{K}_1 = \{k_{\langle\cdot,\cdot angle}, g_{ heta}, \mathcal{L}_K, \mathcal{C}_K\}$	86.68 ± 0.17	77.92 ± 0.25	89.22 ± 0.17
$\mathcal{K}_2 = \{k_{ ext{RBF}}, g_{ heta}, \mathcal{L}_K, \mathcal{C}_K\}$	86.12 ± 0.05	78.68 ± 0.38	89.36 ± 0.21
$\mathcal{K}_3 = \{k_{\langle \cdot, \cdot \rangle}, g_{\theta}, \mathcal{L}_{K+Y}, \mathcal{C}_Y\}$	$\textbf{88.40} \pm \textbf{0.24}$	$\textbf{80.28} \pm \textbf{0.03}$	$\textbf{89.42} \pm \textbf{0.01}$
$\mathcal{N}_1 = \{g_{ heta}, \mathcal{L}_Y, \mathcal{C}_Y\}$	87.56 ± 0.14	79.80 ± 0.03	89.24 ± 0.14
$\mathcal{K}_1^* = \{k_{\langle \cdot, \cdot \rangle}, g_{ ext{GCN}}, \mathcal{L}_K, \mathcal{C}_K\}$	87.04 ± 0.09	77.12 ± 0.23	87.84 ± 0.12
$\mathcal{K}_2^* = \{k_{\langle \cdot, \cdot \rangle}, g_{ ext{GAT}}, \mathcal{L}_K, \mathcal{C}_K\}$	86.10 ± 0.33	77.92 ± 0.19	_

Ablation Study on Node Feature Aggregation Schema

Variants of \mathcal{K}_3	Cora [24]	Citeseer [11]	Pubmed [32]
Default	$\textbf{88.40} \pm \textbf{0.24}$	$\textbf{80.28} \pm \textbf{0.03}$	89.42 ± 0.01
1-hop 3-hop	85.56 ± 0.02 88.25 ± 0.01	77.73 ± 0.02 80.13 ± 0.01	88.98 ± 0.01 89.53 ± 0.01
1-layer 3-layer	82.60 ± 0.01 86.33 ± 0.04	77.63 ± 0.01 78.53 ± 0.20	85.80 ± 0.01 89.46 ± 0.05
c = 0.25 $c = 0.50$ $c = 0.75$ $c = 1.00$	69.33 ± 0.09 76.98 ± 0.10 84.25 ± 0.01 87.31 ± 0.01	74.48 ± 0.03 77.47 ± 0.04 77.99 ± 0.01 78.57 ± 0.01	84.68 ± 0.02 86.45 ± 0.01 87.45 ± 0.01 88.68 ± 0.01

t-SNE Visualization of Node Embeddings on Citeseer Dataset

