Examenul național de bacalaureat 2021 Proba E. c)

Matematică M pedagogic BAREM DE EVALUARE ȘI DE NOTARE

Testul 9

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

(30 de puncte) **SUBIECTUL I**

	` •	
1.	$\sqrt{81} - \sqrt{196} + (3\sqrt{2})^2 : \sqrt{9} = 9 - 14 + 18 : 3 =$	3p
	=-5+6=1	2p
2.	$f(x) = g(x) \Leftrightarrow x - 2 = x^2 + 5x + 2 \Leftrightarrow x^2 + 4x + 4 = 0$	3p
	Coordonatele punctului de intersecție a graficelor funcțiilor f și g sunt $x=-2$ și	_
	y = f(-2) = -4	2p
3.	$\sqrt{12 - x} = \sqrt{3x} \Longrightarrow 12 - x = 3x$	3p
	x = 3, care convine	2p
4.	După prima scumpire, prețul produsului este $400 + \frac{20}{100} \cdot 400 = 480$ de lei	3p
	După a doua scumpire, prețul produsului este $480 + \frac{15}{100} \cdot 480 = 552$ de lei	2p
5.	$m_{OA} = 3$	2p
	$m_d=3$, deci $m_{OA}=m_d$, de unde rezultă că dreapta OA este paralelă cu dreapta d	3p
6.	$\frac{AC}{\sin B} = \frac{BC}{\sin A} \Leftrightarrow \frac{AC}{\frac{1}{4}} = \frac{8}{\frac{1}{3}}$	3 p
	$\frac{1}{3} \cdot AC = 8 \cdot \frac{1}{4}, \text{ deci } AC = 6$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$1*2 = 6 \cdot 1 + 6 \cdot 2 - 3 \cdot 1 \cdot 2 - 10 =$	3p
	=12-10=2	2p
2.	x * y = 2 - 3xy + 6x + 6y - 12 = 2 - 3(xy - 2x - 2y + 4) =	3p
	=2-3(x(y-2)-2(y-2))=2-3(x-2)(y-2), pentru orice numere reale x și y	2p
3.	$x * \frac{5}{3} = 2 - 3(x - 2)(\frac{5}{3} - 2) = 2 - 3(x - 2) \cdot (-\frac{1}{3}) = 2 + x - 2 = x$, pentru orice număr real x	2p
	$\frac{5}{3} * x = 2 - 3\left(\frac{5}{3} - 2\right)(x - 2) = 2 - 3 \cdot \left(-\frac{1}{3}\right)(x - 2) = 2 + x - 2 = x, \text{ pentru orice număr real } x,$ $\det e = \frac{5}{3} \text{ este elementul neutru al legii de compoziție ,,*"}$	3 p
4.	N = 5 * n = 20 - 9n, pentru orice număr natural n	2p
	Pentru orice număr natural n , numărul $20-9n$ este întreg și, cum N este număr natural, rezultă că $20-9n \ge 0$, deci $n \le \frac{20}{9}$, de unde obținem $n=0$ sau $n=1$ sau $n=2$	3p
5.	$x*2=2$, $2*y=2$, pentru orice numere reale $x \neq y$	2p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

_			_
		((-10)*(-9)*(-8)**0*1)*2*3**10 = 2*(3**10) = 2	3 p
	6.	$\frac{1}{x}*(x^2+2)=6x^2-3x+2$, pentru orice număr real nenul x	2p
		$6x^2 - 3x + 2 = 5 \Leftrightarrow 2x^2 - x - 1 = 0$, de unde obținem $x = -\frac{1}{2}$ sau $x = 1$, care convin	3р

SUBIECTUL al III-lea

(30 de puncte)

	CTCL in the control of the purious control of	
1.	$M(1) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \Rightarrow \det(M(1)) = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 \cdot 2 - 1 \cdot 1 =$	3 p
	=2-1=1	2p
2.	$4M(2) - M(-1) = 4 \begin{pmatrix} 2 & 1 \\ 2 & 4 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} 9 & 3 \\ 9 & 18 \end{pmatrix} =$	3p
	$=3\begin{pmatrix}3&1\\3&6\end{pmatrix}=3M(3)$	2p
3.	$A \cdot A + 7M\left(1\right) = \begin{pmatrix} 17 & -7 \\ -7 & 10 \end{pmatrix} + \begin{pmatrix} 7 & 7 \\ 7 & 14 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 24 & 0 \\ 0 & 24 \end{pmatrix} = 24I_2$	2p
4.	$A - 2I_2 = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}, (A - 2I_2)M(1) = \begin{pmatrix} 2 \cdot 1 + (-1) \cdot 1 & 2 \cdot 1 + (-1) \cdot 2 \\ (-1) \cdot 1 + 1 \cdot 1 & (-1) \cdot 1 + 1 \cdot 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	3p
	$M(1)(A-2I_2) = I_2$, de unde rezultă că $A-2I_2$ este inversa matricei $M(1)$	2p
5.	$M(1)+M(2)+M(3)++M(9) = \begin{pmatrix} 45 & 9 \\ 45 & 90 \end{pmatrix}, aM(b) = \begin{pmatrix} ab & a \\ ab & 2ab \end{pmatrix}, \text{ unde } a \text{ si } b \text{ sunt}$	3р
	numere reale	
	$ \begin{pmatrix} 45 & 9 \\ 45 & 90 \end{pmatrix} = \begin{pmatrix} ab & a \\ ab & 2ab \end{pmatrix}, \text{ de unde obținem } a = 9 \text{ și } b = 5 $	2p
6.	$M(a) \cdot M(b) - M(b) \cdot M(a) = \begin{pmatrix} ab+b & a+2b \\ 3ab & a+4ab \end{pmatrix} - \begin{pmatrix} ba+a & b+2a \\ 3ba & b+4ba \end{pmatrix} = \begin{pmatrix} b-a & b-a \\ 0 & a-b \end{pmatrix},$	3p
	pentru orice numere reale a și b	
	$\det(M(a)\cdot M(b)-M(b)\cdot M(a)) = -(a-b)^2 \le 0, \text{ pentru orice numere reale } a \text{ și } b$	2p