Aditya Shirode, Rhythm Shah, Shrenuj Gandhi

3. [6 points] Understanding asymptotic notation

In proving big-oh and big-omega bounds there is a relationship between the c that is used and the smallest n_0 that will work (for big-oh, the smaller the c, the larger the n_0 ; for big-omega, the larger the c, the larger the n_0). In each of the following situations, describe (the smallest integer) n_0 as a function of c. You'll have to use the ceiling function to ensure that n_0 is an integer. Your solution should also give you a lower bound (for big-oh) or an upper bound (for big-omega) on the constant c.

- (a) Let $f(n) = 3n^3 + 5n^2$ and prove that $f(n) \in O(n^3)$.
- (b) Let $f(n) = 2n^3 7n^2$ and prove that $f(n) \in \Omega(n^3)$.
- (c) Let $f(n) = 5n^3 + 2n^2$ and prove that $f(n) \in O(n^4)$. Note that the exponent on n is 4. 2 points for each part

Answer:

(a)
$$f(n) = 3n^3 + 5n^2$$

 $f(n) \in \mathcal{O}(g(n))$ iff $f(n) \le cg(n)$, for some $c > 0$, $n \ge n_0$

$$3n^3 + 5n^2 \le cn^3$$

$$3n + 5 \le cn$$

$$n(c-3) \ge 5$$

$$n \ge \left\lceil \frac{5}{c-3} \right\rceil$$
, which gives the lowest bound on c as $c > 3$

 \therefore Smallest $n_0 = 1$ and corresponding c can be 8.

As both values of c and n_0 are valid, we can say that $f(n) \in O(n^3)$

(b)
$$f(n) = 2n^3 - 7n^2$$

 $f(n) \in \Omega(g(n))$ iff $f(n) \ge cg(n)$, for some $c > 0$, $n \ge n_0$

$$2n^3 - 7n^2 \ge cn^3$$

$$2n - 7 \ge cn$$

$$n(2 - c) \ge 7$$

$$n \ge \left\lceil \frac{7}{2 - c} \right\rceil$$
, which gives the upper bound on c as $c < 2$

If we substitute c as 0.01, we get n as [3.51]

 \therefore Smallest $n_0 = 4$

As both values of c and n_0 are valid, we can say that $f(n) \in \Omega(n^3)$

(c)
$$f(n) = 5n^3 + 2n^2$$

 $5n^3 + 2n^2 \le cn^4$
 $5n + 2 \le cn^2$
 $cn^2 - 5n - 2 \ge 0$

This is the relationship between n and c. Lets take the smallest n_0 i.e. $n_0=1$. By solving the above equation, we get: $7 \le c$. \therefore Lower bound of c is 7.

As both values of c and n_0 are valid, we can say that $f(n) \in \mathcal{O}(n^4)$