Multivariate Discrete Random Variables

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Goal	
Learn to model interactions between multiple uncertain discrete quantiti	ies

Notation

Deterministic variables: a, b, x, y

Random variables: \tilde{a} , \tilde{b} , \tilde{x} , \tilde{y}

Deterministic variables represent fixed values

Random variables represent uncertain values

They are described probabilistically, we don't say

the random variable ã equals 3

but rather

the probability that ã equals 3 is 0.5

What is a random variable?

Data scientist:

An uncertain variable described by probabilities estimated from data

Mathematician:

A function mapping outcomes in a probability space to real numbers

Mathematical characterization of multiple random variables

Practical description of multiple random variables via probabilities

Estimation from data

Rolling a die twice

Probability space representing two rolls of a six-sided die

Outcomes:

$$\omega := \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} \qquad \omega_1, \omega_2 \in \{1, 2, 3, 4, 5, 6\}$$

Random variables

$$ilde{a}(\omega):=\omega_1$$
 $ilde{b}(\omega):=\omega_2$ $ilde{c}(\omega):=\omega_1+\omega_2$

The outcome fixes the values of all random variables simultaneously

If
$$\omega = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 $\tilde{a}(\omega) = 3$ $\tilde{b}(\omega) = 1$ $\tilde{c}(\omega) = 4$

Definition of random variable

Probability space (Ω, \mathcal{C}, P)

Function
$$\tilde{a}:\Omega\to\mathbb{R}$$
 maps Ω to discrete set $\{a_1,a_2,\ldots\}$

 \tilde{a} is a discrete random variable if the sets

$$A_i := \{ \omega \mid \tilde{a}(\omega) = a_i \}$$
 $i = 1, 2, \dots$

are in the collection ${\mathcal C}$ so that the probability

$$P(\tilde{a}=a_i):=P(A_i)$$
 $i=1,2,\ldots$

is well defined

Probability mass function

Sample space

$$A_1:=\{ ilde{a}=a_1\}$$
 $A_2:=\{ ilde{a}=a_2\}$ Ω

$$B_1:=\left\{ ilde{b}=b_1
ight\}$$
 $B_2:=\left\{ ilde{b}=b_2
ight\}$

Ω

$$A_1 \cap B_1$$
 $A_2 \cap B_1$ $A_1 \cap B_2$ $A_2 \cap B_2$

Ω

Sample space

Ω

$$A_1:=\{ ilde{s}=s_1\}$$
 $A_2:=\{ ilde{s}=s_2\}$ Ω

$$B_1:=\left\{ ilde{b}=b_1
ight\}$$
 $B_2:=\left\{ ilde{b}=b_2
ight\}$

$$A_1 \cap B_1 \qquad A_2 \cap B_1$$

$$A_1 \cap B_2 \qquad A_2 \cap B_2$$

Ω

Joint probability mass function

The joint pmf of $\tilde{a}:\Omega\to A$ and $\tilde{b}:\Omega\to B$ is defined as

$$p_{\tilde{a},\tilde{b}}(a,b) := P(\tilde{a} = a, \tilde{b} = b)$$

Joint pmf

Random vector

Each entry $\tilde{x}[i]$ is a random variable in the same probability space

$$ilde{x} := egin{bmatrix} ilde{x}[1] \ ilde{x}[2] \ hdots \ ilde{x}[d] \end{bmatrix}$$

Joint probability mass function

The joint pmf of a discrete random vector \tilde{x} is

$$p_{\tilde{x}}(x) := P(\tilde{x}[1] = x[1], \tilde{x}[2] = x[2], \dots, \tilde{x}[d] = x[d])$$

Computing probabilities

For any set S

$$\begin{split} \mathrm{P}\left(\left(\tilde{a},\tilde{b}\right) \in S\right) &= \mathrm{P}\left(\cup_{(a,b) \in S} \left\{\tilde{a} = a, \tilde{b} = b\right\}\right) \\ &= \sum_{(a,b) \in S} \mathrm{P}\left(\tilde{a} = a, \tilde{b} = b\right) \\ &= \sum_{(a,b) \in S} p_{\tilde{a},\tilde{b}}\left(a,b\right) \end{split}$$

Similarly, for a d-dimensional random vector

$$P\left(\tilde{x}\in S\right) = \sum_{x\in S} p_{\tilde{x}}\left(x\right)$$

Computing probabilities

$$P(\{\tilde{a}<2,\tilde{b}>1\})=p_{\tilde{a},\tilde{b}}(1,2)+p_{\tilde{a},\tilde{b}}(1,3)=0.5$$

Properties

Joint pmfs are nonnegative (they are probabilities)

$$\sum_{a\in A}\sum_{b\in B}p_{\tilde{a},\tilde{b}}\left(a,b\right)=\mathrm{P}\left(\left\{\tilde{a}\in A\right\}\cap\left\{\tilde{b}\in B\right\}\right)=1$$

$$\sum_{x[1]\in R_1} \sum_{x[2]\in R_2} \cdots \sum_{x[d]\in R_d} p_{\tilde{x}}(x) = 1$$

Any function with these properties is a valid joint pmf

Estimating a joint pmf from data

If data equal

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

How would you estimate $p_{\tilde{a},\tilde{b}}([\frac{1}{2}])$?

Empirical joint pmf

Data: $X := \{x_1, x_2, \dots, x_n\}$

The empirical joint pmf is

$$p_X(v) := \frac{\sum_{i=1}^n 1_{x_i=v}}{n},$$

where $1_{x_i=v}$ equals one if $x_i=v$ and zero otherwise

Movie ratings

Movielens dataset

Users give 1-5 ratings to movies

Goal: Model ratings for Independence Day and Mission Impossible

Movie ratings

Independence Day

macpendence buy									
	1	2	3	4	5				
1	2	3	5	1	0				
2	3	12	18	11	5				
3	5	14	37	41	17				
4	6	15	20	47	19				
5	0	0	4	12	17				
	3	2 3 3 5 4 6	1 2 1 2 3 2 3 12 3 5 14 4 6 15	1 2 3 1 2 3 5 2 3 12 18 3 5 14 37 4 6 15 20	1 2 3 4 1 2 3 5 1 2 3 12 18 11 3 5 14 37 41 4 6 15 20 47				

Mission Impossible

Empirical joint pmf (%)

Independence Day

aspeniasnes 2 ay								
		1	2	3	4	5		
	1	0.6	1	1.6	0.3	0		
	2	1	3.8	5.7	3.5	1.6		
	3	1.6	4.5	11.8	13.1	5.4		
	4	1.9	4.8	6.4	15	6.1		
	5	0	0	1.3	3.8	5.4		

Mission Impossible

Precipitation in Oregon

Goal: Model precipitation in Coos Bay, Corvallis, John Day

Precipitation in Oregon

Empirical joint pmf (%)

Mathematical definition of multivariate discrete random variables

Definition and properties of the joint pmf

How to estimate the joint pmf from data