Sinais e Sistemas 1 - Atividade P2

Prof. Igor Peretta

Entrega: 26/abr/2018

1 Recursos computacionais

O curso terá como base o software multi-plataforma wxMaxima:

http://andrejv.github.io/wxmaxima/

Um tutorial em português:

http://maxima.sourceforge.net/docs/tutorial/pt/max.pdf

Outros softwares poderão compor os recursos do curso, mas serão anunciados a seu tempo.

2 Instruções

2.1 Constantes

As constantes que serão utilizadas nessa etapa avaliativa $(M_1, M_2, M_3 e M_4)$ tem relação direta com a sua matrícula. Para encontrar seus valores, utilize o seguinte procedimento:

- Sua matrícula tem o formato 00000 EEE000, onde θ é um dígito e E um caractere alfabético.
- A constante M_1 é igual ao número representado pelos 3 primeiros dígitos dos 5 primeiros dígitos de sua matrícula.
- A constante M_2 é igual ao número representado pelos 2 últimos dígitos dos 5 primeiros dígitos de sua matrícula.
- A constante M_3 depende do curso no qual você está matriculado, de acordo com a seguinte tabela:

Curso	M_3
EAU	1
ECP	5
EEL	10
ETE	15
Outros	20

• A constante M_4 é igual ao número representado pelos 3 últimos dígitos de sua matrícula.

Considere o exemplo de uma matrícula 11112ECP029. Logo, para a matrícula exemplo, $M_1=111,\ M_2=12,\ M_3=5$ e $M_4=29$.

2.2 Entrega da atividade

A entrega da presente atividade avaliativa será feita através de envio pelo Moodle, em local indicado.

3 Calcule usando o wxMaxima:

3.1 Operações com sinais

3.1.1 Questão 1

Considere o sinal $f(t) = M_2 \exp(-M_1 t) \cos(2\pi M_1 t) u(t)$, onde u(t) é a função degrau.

- 1. Mostre o gráfico de f(t) e da função igual a f(t), mas deslocada em M_4 no tempo (com atraso).
- 2. Mostre o gráfico de f(t) e da função igual a f(t), mas escalonada por um fator de M_3 .
- 3. Mostre o gráfico de f(t) e da função igual a f(t), mas refletida no tempo.

3.1.2 Questão 2

Mostre o gráfico do sinal g(t) = exp(-st), com $s \in \mathbb{C}$, sendo $s = M_3 + i M_4$. Dica: não esqueça que g(t) possui o domínio e a imagem complexos, ou seja, é necessário tratar as partes reais e imaginárias de g(t).