$$f(x_1, x_2) = e^{x_2}(x_1^2 - x_1/x_2)$$

For function f - Draw the computation graph, Fill in the blanks for the forward pass AD and reverse pass AD tables at $(x_1, x_2) = (1, 2)$

Part 1 - Computation Graph

Forward Primal Trace

v_{-1}	$=x_1$	=1
v_0	$=x_2$	=2
v_1	$=e^{v_0}$	=7.389
v_2	$=v_{-1}^2$	=1
v_3	$= \frac{v_{-1}}{v_0}$	= 0.5
v_4	$= v_2 - v_3$	= 0.5
v_5	$= v_4 v_1$	= 3.694
y	$= v_5$	= 3.694

Part 2 - Forward Tangent Trace (Find $\frac{\partial f}{\partial x_1})$

$\dot{v_{-1}}$	=	=1
$\dot{v_0}$	=	=
v_1	=	=
$\dot{v_2}$	=	=
$\dot{v_3}$	=	=
$\dot{v_4}$	=	=
$\dot{v_5}$	=	=
$\overline{\dot{y}}$		=

Part 3 - Reverse Adjoint Trace

v_{-1}^-	=	=
$\bar{v_0}$	=	=
$\bar{v_1}$	=	=
$\bar{v_2}$	=	=
$\bar{v_3}$	=	=
$ar{v_4}$	=	=
\bar{v}_{5}	=	= 1