Spatial Data Analysis I, SPRING 2021

Lab Exercise 2:

- *** You will get the additional extra credit from the first problem submitted by the due date (March 31)
- 1. Consider a one-dim random field $\{Z(s): s \geq 0\}$, which satisfies E[Z(s)] = 0 and $Cov[Z(s), Z(t)] = \sigma^2 min(s, t)$. Note that min(s, t) = s if s < t (= t otherwise).
- a) Show that Z(s) is intrinsic stationary and that intrinsic stationarity does not imply the second-order stationarity.
- b) Define Y(s) = Z(s+1) Z(s): $s \in \mathbb{R}$. Show that $\{Y(s) : s \in \mathbb{R}\}$ is second-order stationary.
- c) Derive the covariance function $C_Y(h)$ of $\{Y(s): s \in \mathbb{R}\}$. Find also its semivariogram and identify its nugget effect, sill and range.
- 2. Suppose that $\epsilon(\mathbf{s}) = \epsilon_{ME}(\mathbf{s}) + \epsilon_{NE}(\mathbf{s})$ where $\epsilon_{ME}(\mathbf{s})$ is an error process due to measurement errors and $\epsilon_{NE}(\mathbf{s})$ is locally (smooth) stationary, independent of $\epsilon_{ME}(\mathbf{s})$. Let θ_0 represent the measurement error variance and let $C_{NE}(\mathbf{h};\theta)$ represent the covariance function of $\epsilon_{NE}(\mathbf{s})$. Derive the covariance function of $\epsilon(\mathbf{s})$ in terms of $C_{NE}(\mathbf{h};\theta)$ or $C_{ME}(\mathbf{h};\theta)$, etc.

^{***}The first (R) problem posted on the moodle should be submitted.