3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Problem 4

```
Calculate 2^{560}, 3^{560}, 5^{560}, 7^{560} (mod 561) (Hint: 561 = 3 \times 11 \times 17)
```

```
2^{560} = 3773962424821541352241554580988268890
916921220416440428376206300245624162
392148852086126725177658767541468375
030763844899770584629924792632561434
251432696043649395326976
\equiv ??? (mod 561)
```

- \triangleright Can we calculate A⁵⁶⁰ (mod 561)?
- We cannot use Fermat's Little Thm because 561 = 3×11×17 is not a prime number.

```
Claim A \equiv B \pmod{561} if and only if A \equiv B \pmod{3}, A \equiv B \pmod{11}, and A \equiv B \pmod{17}.
```

Proof of Claim ($561 = 3 \times 11 \times 17$)

 $A \equiv B \pmod{561}$

- \Leftrightarrow A-B is divisible by 561.
- \Leftrightarrow A-B is divisible by 3, 11, and 17.
- \Leftrightarrow A \equiv B (mod 3), A \equiv B (mod 11), and A \equiv B (mod 17).

We need to calculate A^{560} (mod N) for N=3, 11, 17.

- (mod 3) By Fermat's Little Thm, $A^2 \equiv 1 \pmod{3}$ if A is not divisible by 3. $A^{560} = (A^2)^{280} \equiv 1^{280} \equiv 1 \pmod{3}$.
- (mod 11) If A is not divisible by 11, $A^{560} = (A^{10})^{56} \equiv 1^{56} \equiv 1 \pmod{11}.$
- (mod 17) If A is not divisible by 17, $A^{560} = (A^{16})^{35} \equiv 1^{35} \equiv 1 \pmod{17}.$ $(560 = 16 \times 35)$

: 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Problem 4

Conclusion

If A and 561 are relatively prime (GCD(A,561)=1), $A^{560} \equiv 1 \pmod{561}$.

Answer
$$2^{560} \equiv 5^{560} \equiv 7^{560} \equiv 1 \pmod{561}$$

 \triangleright How can we calculate 3^{560} (mod 561)?

$$3^{560} \equiv \mathbf{0} \pmod{3}, \quad 3^{560} \equiv \mathbf{1} \pmod{11, 17}.$$

By Chinese Remainder Thm, there is a unique A $(0 \le A \le 560)$ satisfying $A \equiv 0 \pmod{3}$, $A \equiv 1 \pmod{11, 17}$. In fact, A = 375.

Answer $3^{560} \equiv 375 \pmod{561}$

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Problem 4

If A and 561 are relatively prime (GCD(A,561)=1), $A^{560} \equiv 1 \pmod{561}$.

> 561 is an example of Carmichael Numbers. It is also an example of pseudo-prime numbers.