ANSWERS:

Q1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset.

- 1. Data type of columns in a table
- 2. Time period for which the data is given
- 3. Cities and States of customers ordered during the given period

A1.

1. How to find the Data type of columns in a table

There are two ways of doing it .

a. By clicking the table name under the data set in google big query.

b. Second method is by providing query as below:-

```
select column_name,data_type
FROM `target-384505.Target_data.INFORMATION_SCHEMA.COLUMN_FIELD_PATHS`
WHERE table_name = 'Products'
```

1 select column_name, data_type 2 FROM `target-384505.Target_data.INFORMATION_SCHEMA.COLUMN_FIELD_PATHS` 3 WHERE table_name = 'Products' Query results 占 SA JOB INFORMATION RESULTS **JSON EXECUTION DETAILS** EX Row column_name data_type 1 product_id STRING 2 product_category STRING 3 product_name_length INT64 4 product_description_length INT64

INT64

INT64

INT64

INT64

Above both examples are for Products table.

Here are the schema for other tables:-

product_photos_qty

product_weight_g

product_length_cm

product_height_cm

Customers table:-

5

6

7

8

Filter Enter property name or value					
	Field name	Туре			
	customer_id	STRING			
	customer_unique_id	STRING			
	customer_zip_code_prefix	INTEGER			
	customer_city	STRING			
	customer_state	STRING			

Geolocation Table:-

∓ Fil	ter Enter property name or value			
	Field name	Туре	Mode	Collat
	geolocation_zip_code_prefix	INTEGER	NULLABLE	
	geolocation_lat	FLOAT	NULLABLE	
	geolocation_Ing	FLOAT	NULLABLE	
	geolocation_city	STRING	NULLABLE	
	geolocation_state	STRING	NULLABLE	

Order_items table:-

- Filter Eliter property manie or value

Field name	Туре	Mode	Collati
order_id	STRING	NULLABLE	
order_item_id	INTEGER	NULLABLE	
product_id	STRING	NULLABLE	
seller_id	STRING	NULLABLE	
shipping_limit_date	TIMESTAMP	NULLABLE	
price	FLOAT	NULLABLE	
freight_value	FLOAT	NULLABLE	

Order_review table:-

= Filter Enter property name or value

Field name	Туре	Mode	Collation
review_id	STRING	NULLABLE	
order_id	STRING	NULLABLE	
review_score	INTEGER	NULLABLE	
review_comment_title	STRING	NULLABLE	
review_creation_date	TIMESTAMP	NULLABLE	
review_answer_timestamp	TIMESTAMP	NULLABLE	

Orders table:-

Ci Linco property manne or raide

Field name	Туре	Mode	Collation	De
order_id	STRING	NULLABLE		
customer_id	STRING	NULLABLE		
order_status	STRING	NULLABLE		
order_purchase_timestamp	TIMESTAMP	NULLABLE		
order_approved_at	TIMESTAMP	NULLABLE		
order_delivered_carrier_date	TIMESTAMP	NULLABLE		
order_delivered_customer_date	TIMESTAMP	NULLABLE		
order_estimated_delivery_date	TIMESTAMP	NULLABLE		

Payments table:-

ilter Enter property name or value

Field name	Туре	Mode	Collation	D
order_id	STRING	NULLABLE		
payment_sequential	INTEGER	NULLABLE		
payment_type	STRING	NULLABLE		
payment_installments	INTEGER	NULLABLE		
payment_value	FLOAT	NULLABLE		

Sellers table:-

Field name	Туре	Mode	Collation
seller_id	STRING	NULLABLE	
seller_zip_code_prefix	INTEGER	NULLABLE	
seller_city	STRING	NULLABLE	
seller_state	STRING	NULLABLE	

2. Time period for which data was given is 2016 -2018

For month wise the minimum order purchase date was 2016- sept and max date was 2018-oct.

For month wise minimum order delivery date is 2016 – Oct and maximum order delivery date is 2018-oct.

```
SELECT CONCAT(EXTRACT(year from MIN(order_delivered_customer_date)),'-
',FORMAT_DATETIME('%b',MIN(order_delivered_customer_date))) as min_date FROM `target-
384505.Target_data.orders`;
SELECT CONCAT(EXTRACT(year from MAX(order_delivered_customer_date)),'-
',FORMAT_DATETIME('%b',MAX(order_delivered_customer_date))) as max_date FROM `target-
384505.Target_data.orders`;
    SELECT CONCAT(EXTRACT(year from MIN
    (order_delivered_customer_date)), '-', FORMAT_DATETIME
    ('%b',MIN(order_delivered_customer_date))) as
    min_date FROM `target-384505.Target_data.orders`;
    SELECT CONCAT(EXTRACT(year from MAX
    (order_delivered_customer_date)), '-', FORMAT_DATETIME
    ('%b', MAX(order_delivered_customer_date))) as
    max_date FROM `target-384505.Target_data.orders` ;
                                 Press Alt+F1 for accessibility options.
Query results
     JOB INFORMATION
                             RESULTS
                                           JSON
       min_date
)W
       2016-Oct
7 SELECT CONCAT(EXTRACT(year from MAX
    (order_delivered_customer_date)), '-', FORMAT_DATETIME
    ('%b', MAX(order_delivered_customer_date))) as
   max_date FROM `target-384505.Target_data.orders`;
                                 Press Alt+F1 for accessibility options.
Query results
                                          JSON
    JOB INFORMATION
                            RESULTS
                                                      EX
      max_date
      2018-Oct
```

3. City and state for the given time period :-

```
SELECT distinct geolocation_city as city,geolocation_state as state FROM `targe t-384505.Target_data.geolocation` g inner join `target-384505.Target_data.customers` c ON g.geolocation_zip_code_prefix = c.customer_z ip_code_prefix

WHERE EXISTS (SELECT 1 FROM `Target_data.orders` o where o.customer_id = c.cust omer_id );
```


2. In-depth Exploration:

- 1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?
- 2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

A2.

select EXTRACT(year from order_delivered_carrier_date) as order_date, Count(o rder_id) as order_count from `Target_data.orders` where EXTRACT(year from o rder_delivered_carrier_date) IS NOT NULL group by order_date order by order_date;

Row	order_date	order_count
1	2016	281
2	2017	43328
3	2018	54049

As we can see, with each consecutive year the order count has only increased, which indicates a positive growth trend for e-commerce in Brazil.

```
SELECT b.order_date, b.order_month, b.order_count
FROM(select a.order_date, a.order_month, a.order_count, dense_rank() over(partitio
n by a.order_date order by a.order_count desc) as ranking
FROM(select EXTRACT(year from order_delivered_carrier_date) as order_date, FORMA
T_DATETIME('%b', order_delivered_carrier_date) as order_month, Count(order_id) as
order_count
from `Target_data.orders` where EXTRACT(year from order_delivered_carrier_date
) IS NOT NULL group by order_date, order_month order by order_date) a
order by a.order_date) b
WHERE b.ranking = 1;
```

JOB IN	JOB INFORMATION RESULTS		JSON	EXECUTION DETAIL	S
Row	order_date	order_month	le.	order_count	
1	2016	Oct		247	
2	2017	Nov		6637	
3	2018	Mar		7178	

From the above analysis we can conclude that the peak month in every year is different. For 2016, Oct had the highest order count of 247. For 2017, Nov had the highest order count of 6637 and In 2018 March it had all time highest with the order count of 7178.

2.
 select case when EXTRACT(HOUR from order_purchase_timestamp) >= 0 and EXTRACT
 T(HOUR from order_purchase_timestamp) <=4 then 'Dawn' when EXTRACT(HOUR from
 order_purchase_timestamp) >= 5 and EXTRACT(HOUR from order_purchase_timestam
 p) <=11 then 'Morning' when EXTRACT(HOUR from order_purchase_timestamp) >= 12 a
 nd EXTRACT(HOUR from order_purchase_timestamp) <= 16 then 'Afternoon' when EXT
 RACT(HOUR from order_purchase_timestamp) >= 17 and EXTRACT(HOUR from order_pur
 chase_timestamp) <= 21 then 'Evening' else 'Night' end As timestmp, Count(orde
 r_id) as order_placed
 FROM `Target_data.orders`
 Group By timestmp;</pre>

Row	timestmp //	order_placed
1	Morning	22428
2	Dawn	4552
3	Evening	30311
4	Afternoon	32211
5	Night	9939

As from the above picture we can see mostly customers like to buy in Evening or Afternoon. With the most purchases made during Afternoon we can conclude customers like to order/purchase mostly at afternoon.

But Normally customers would make purchase at any time of the day but Morning ,Evening and Afternoon being the most customer's preferred purchasing time.

- 3. Evolution of E-commerce orders in the Brazil region:
 - 1. Get month on month orders by states
 - 2. Distribution of customers across the states in Brazil

A3.

```
    select c.customer_state AS state, COUNT(distinct CASE WHEN FORMAT_DATETIME('%b'

       , order_purchase_timestamp) = 'Jan' THEN Order_id END) As January,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Feb'THEN
Order_id END) As February,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Mar' THEN
Order_id END) As March,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Apr' THEN
Order_id END) As April,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'May' THEN
Order_id END) As May,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Jun' THEN
Order_id END) As June,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Jul' THEN
Order_id END) As July,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Aug' THEN
Order_id END) As August,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Sep' THEN
Order_id END) As September,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Oct' THEN
Order_id END) As October,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Nov' THEN
Order_id END) As November,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Dec' THEN
Order_id END) As December
FROM `Target_data.orders` o
INNER JOIN `Target_data.customers` c ON o.customer_id = c.customer_id
GROUP BY c.customer_state;
```

1 select c.customer_state AS state, COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Jan'
THEN Order_id END) As January,
2 COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Feb'THEN Order_id END) As February,
Press Alt+F1 for accessibility options.

Que	ery results					≛ SAV	E RESULTS 🔻	M EXPLOR	E DATA ▼	\$	×
JOB	INFORMATION	RESULTS	JSON	EXECUTION I	DETAILS	EXEC	CUTION GRAPH	PREVIEW			
w	state		January //	February	March	11	April	May	June	11	July
1	RJ		990	1176	5	1302	1172	1321	1	128	
2	RS		427	473	3	569	488	559		526	
3	SP		3351	3357	7	4047	3967	4632	4	104	
4	DF		151	196	5	207	183	208		220	
5	PR		443	460)	504	500	524		478	
6	MT		96	84	4	71	92	104		83	
7	MA		66	67	7	77	73	65		59	
8	AL		39	39	9	40	51	46		34	
1	state	January //	February //	March //	April //	May	June //	July	August //	Septemb	oer /
8	AL		39 39	40	51		46 34	40	34		20
9	MG		971 1063	1237	1061	11	90 1080	1111	1177		511

Press Al

SELECT c.customer_state , COUNT(distinct c.customer_id) as customer_count FR
 Target_data.customers` c GROUP BY c.customer_state

12 PA

13 BA

14 CE

RO

1 select g.geolocation_state AS state, COUNT(distinct c.customer_id) as customer_count FROM <u>`Target_</u>
 INNER JOIN <u>`Target_data.geolocation`</u> gron c.customer_zip_code_prefix = g.geolocation_zip_code_pref
2 GROUP BY g.geolocation_state;

Query results **▲** SAVE RESULTS ▼ **M** EXPLORE **EXECUTION GRAPH PREVIEW** JOB INFORMATION **RESULTS JSON EXECUTION DETAILS** Row customer_count state SE ΑL Ы ΑP ΑM RR AC

8	RJ	12852
9	GO	2020
10	MA	747
11	PE	1652
12	PB	536
13	ES	2033
14	PR	5045

Α4.

```
1. SELECT a.Year , ROUND((a.payments/SUM(a.payments) OVER())*100,2) as Percentage_
    Diff FROM (select EXTRACT(year from o.order_purchase_timestamp) AS Year, SUM(p.
    payment_value) AS payments
    FROM `Target_data.payments` p INNER JOIN `Target_data.orders` o ON p.order_id =
        o.order_id
    WHERE FORMAT_DATETIME('%b',o.order_purchase_timestamp) IN ('Jan','Feb','Mar','A
        pr','May','Jun','Jul','Aug')
    AND EXTRACT(year from o.order_purchase_timestamp) IN (2017,2018)
    GROUP BY Year
    order by Year) a
    Order BY a.Year;
```

Row	Year	Percentage_Diff	
1	2017	29.68	
2	2018	70.32	

Percentage Increase in value from 2017 to 2018 is (70.32-29.68) a 40.64 positive growth

```
2. SELECT c.customer_state, ROUND(AVG(price),2) as Avg_price, ROUND(SUM(price),2) as
        sum_price, ROUND(AVG(freight_value),2) AS avg_fright, ROUND(SUM(freight_value),2
    )as sum_fright
FROM `Target_data.order_items` oi
INNER JOIN `Target_data.orders` o
ON o.order_id = oi.order_id
INNER JOIN `Target_data.customers` c
ON c.customer_id = o.customer_id
GROUP BY c.customer_state;
```


A5.

1.

SELECT IFNULL(ABS(DATE_DIFF(o.order_purchase_timestamp,o.order_estimated_delivery_date,DAY)),0) as Difference_between_purchase_and_EstimatedDelivery,

 $\begin{tabular}{ll} IFNULL (ABS(DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY)), \begin{tabular}{ll} 0 \end{tabular} as \\ \end{tabular}$

Difference_between_EstimatedDelivery_and_delivered
FROM `Target_data.orders` o

4 SELECT IFNULL(ABS(DATE_DIFF(o.order_purchase_timestamp,o.order_estimated_delivery_date,DAY)),0) as Difference_between_purchase_and_EstimatedDelivery, 5 IFNULL(ABS(DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY)),0) as

6 Difference_between_EstimatedDelivery_and_delivered

7 FROM `Target data.orders` o

Query results

Press Alt+I

EXPLORE D.

▲ SAVE RESULTS ▼

•	,						
JOB IN	NFORMATION	RESULTS	JSON	EX	ECUTION DETAILS	EXECUTION GRAPH	PREVIEW
Row	Difference_betwe	een_purchase_and_E	EstimatedDeliv	ery /	Difference_between_Es	stimatedDelivery_and_delive	red //
1				50			0
2				6			0
3				44			0
4				54			0
5				56			0
6				54			0

54	0
56	0
41	0
3	0
3	0
47	0
44	0
43	0
	56 41 3 3 47 44

SELECT IFNULL(DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY),0) as Time_to_delivery, IFNULL(DATE_DIFF(o.order_delivered_customer_date,o.order_estimated_delivery_date,DAY) , 0) as diff_estimated_delivery FROM `Target_data.orders` o

3.

11

12

13

SELECT c.customer_state, $ROUND(AVG(freight_value), 2)$ as $Mean_of_frieghtValue, ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY)), 2)$ as $Time_to_delivery$,

6

2

0

 $\begin{array}{l} {\sf ROUND}({\sf AVG}({\sf DATE_DIFF}({\sf o.order_delivered_customer_date,o.order_estimated_delivery_date,DAY})), \\ {\sf 2}) \ \ {\sf as} \ \ {\sf diff_estimated_delivery} \end{array}$

FROM `Target_data.order_items` oi

38

36

34

INNER JOIN `Target_data.orders` o

ON o.order_id = oi.order_id

INNER JOIN `Target_data.customers` c

ON c.customer_id = o.customer_id

GROUP BY c.customer_state;

```
4 SELECT c.customer_state,ROUND(AVG(freight_value),2) as Mean_of_frieghtValue,ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY)),2) as Time_to_delivery,

5 ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date,o.order_estimated_delivery_date,DAY)),2) as diff_estimated_delivery

6 FROM 'Target_data.order_items' oi

7 INNER JOIN 'Target_data.orders' o

8 ON o.order_id = oi.order_id

9 INNER JOIN 'Target_data.customers' c
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DE	TAILS EXECU	JTION GRAPH PREVIE
Row	customer_state	//	Mean_of_frie	ght Time_to_deliver	diff_estimated_d	
1	MT	**	28.17	7 17.51	-13.64	
2	MA		38.26	21.2	-9.11	
3	AL		35.84	23.99	-7.98	
4	SP		15.15	8.26	-10.27	
5	MG		20.63	11.52	-12.4	
6	DE		22.02	1770	10.55	
Row	customer_	_state	1,	Mean_of_frieght	Time_to_delivery	diff_estimated_c
Ę	5 DF			21.04	12.5	-11.27
6	5 MG			20.63	11.52	-12.4

10W	customer_state	Weari_or_megni	Tillie_to_delivery	diri_estirriated_c
5	DF	21.04	12.5	-11.27
6	MG	20.63	11.52	-12.4
7	PA	35.83	23.3	-13.37
8	BA	26.36	18.77	-10.12
9	GO	22.77	14.95	-11.37
10	RS	21.74	14.71	-13.2
11	TO	37.25	17.0	-11.46
12	AM	33.21	25.96	-18.98

4.

1. Highest average freight value by state

```
SELECT c.customer_state, ROUND(AVG(freight_value),2) as Mean_of_frieghtValue
FROM `Target_data.order_items` oi
INNER JOIN `Target_data.orders` o
ON o.order_id = oi.order_id
INNER JOIN `Target_data.customers` c
ON c.customer_id = o.customer_id
GROUP BY c.customer_state
Order By Mean_of_frieghtValue Desc Limit 5;
```

```
3 SELECT c.customer_state, ROUND(AVG(freight_value), 2) as Mean_of_frieghtValue
4 FROM Target_data.order_items oi
5 INNER JOIN Target_data.orders o
6 ON o.order_id = oi.order_id
7 INNER JOIN Target_data.customers c
8 ON c.customer_id = o.customer_id
9 GROUP BY c.customer_state
```

Query results

	SA		DE	CI.
-	SAI	<i>,</i> –	RE	oι

JO	B IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION
ow	/	customer_state	<i>(</i> ;	Mean_of_frieght		
	1	RR		42.98		
	2	PB		42.72		
	3	RO		41.07		
	4	AC		40.07		
	5	PI		39.15		

Top 5 lowest average freight value by state:-

```
SELECT c.customer_state, ROUND(AVG(freight_value),2) as Mean_of_frieghtValue
FROM `Target_data.order_items` oi
INNER JOIN `Target_data.orders` o
ON o.order_id = oi.order_id
INNER JOIN `Target_data.customers` c
ON c.customer_id = o.customer_id
GROUP BY c.customer_state
Order By Mean_of_frieghtValue ASC Limit 5;
```

2.

Top 5 states with highest/lowest average time to delivery

Top 5 states with highest delivery:-

```
SELECT c.customer_state, ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date,o.o
rder_purchase_timestamp, day)),2) as AVG_time_to_delivery
FROM `Target_data.orders` o
INNER JOIN `Target_data.customers` c
ON c.customer_id = o.customer_id
GROUP BY c.customer_state
Order By AVG_time_to_delivery DESC Limit 5;
```

```
AVG_time_to_delivery

FROM `Target_data.orders` o

INNER JOIN `Target_data.customers` c

ON c.customer_id = o.customer_id

GROUP BY c.customer_state

Order By AVG_time_to_delivery DESC Limit 5;

9

10
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row //	customer_state	h	AVG_time_to_de	
1	RR		28.98	
2	AP		26.73	
3	AM		25.99	
4	AL		24.04	
5	PA		23.32	

Top 5 lowest average time to delivery:-

```
SELECT c.customer_state, ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date,o.o
rder_purchase_timestamp, day)),2) as AVG_time_to_delivery
FROM `Target_data.orders` o
INNER JOIN `Target_data.customers` c
ON c.customer_id = o.customer_id
GROUP BY c.customer_state
Order By AVG_time_to_delivery ASC Limit 5;
```

JO	BIN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION
WC	11	customer_state	h	AVG_time_to_de		
	1	SP		8.3		
	2	PR		11.53		
	3	MG		11.54		
	4	DF		12.51		
	5	SC		14.48		

PERSONAL HISTORY

IOD INFORMATION

PROJECT HISTORY

3. Top 5 states where delivery is really fast/ not so fast compared to estimated date

Top 5 states where delivery is really fast compared to estimated date.

DECLIFE

```
SELECT c.customer_state,ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date,o.o
rder_estimated_delivery_date, day)),2) as AVG_time_to_delivery
FROM `Target_data.orders` o
INNER JOIN `Target_data.customers` c
ON c.customer_id = o.customer_id
GROUP BY c.customer_state
Order By AVG_time_to_delivery ASC Limit 5;
```

ICON

EVECUTION DETA

JUB INFORMATION		RESULIS	JSUN	EXECUTION DETA
Row	customer_state	//	AVG_time_to_de	
1	AC		-19.76	
2	RO		-19.13	
3	AP		-18.73	
4	AM		-18.61	
5	RR		-16.41	

Top 5 states where delivery is not so fast compared to estimated date.

```
SELECT c.customer_state,ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date,o.o
rder_estimated_delivery_date, day)),2) as AVG_time_to_delivery
FROM `Target_data.orders` o
INNER JOIN `Target_data.customers` c
ON c.customer_id = o.customer_id
```

```
GROUP BY c.customer_state
Order By AVG_time_to_delivery DESC Limit 5;
```

Row	customer_state	AVG_time_to_de
1	AL	-7.95
2	MA	-8.77
3	SE	-9.17
4	ES	-9.62
5	BA	-9.93

Α6.

1. Month over Month count of orders for different payment types

```
select p.payment_type AS payment_type, COUNT(distinct CASE WHEN FORMAT_DATETIME
('%b', order_purchase_timestamp) = 'Jan' THEN p.Order_id END) As January,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Feb
'THEN p.Order_id END) As February,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Mar
' THEN p.Order_id END) As March,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Apr
' THEN p.Order_id END) As April,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'May
' THEN p.Order_id END) As May,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Jun
' THEN p.Order_id END) As June,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Jul
' THEN p.Order_id END) As July,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Aug
' THEN p.Order_id END) As August,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Sep
' THEN p.Order_id END) As September,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Oct
' THEN p.Order_id END) As October,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Nov
' THEN p.Order_id END) As November,
COUNT(distinct CASE WHEN FORMAT_DATETIME('%b', order_purchase_timestamp) = 'Dec
' THEN p.Order_id END) As December
FROM `Target_data.payments` p
INNER JOIN `Target_data.orders` o
ON p.order_id = o.order_id
INNER JOIN `Target_data.customers` c
ON o.customer_id = c.customer_id
GROUP BY p.payment_type;
```

low	payment_type	January //	February //	March //	April //	May //	June //
1	credit_card	6093	6582	7682	7276	8308	7248
2	voucher	337	288	395	353	374	373
3	not_defined	0	0	0	0	0	0
4	debit_card	118	82	109	124	81	208
5	UPI	1715	1723	1942	1783	2035	1807

2. Count of orders based on the no. of payment installments

```
select p.payment_installments AS payment_installments,COUNT(distinct p.order_i)
AS Order_count
FROM `Target_data.payments` p
INNER JOIN `Target_data.orders` o
ON p.order_id = o.order_id
INNER JOIN `Target_data.customers` c
ON o.customer_id = c.customer_id
GROUP BY p.payment_installments ORDER BY p.payment_installments;
      payment_installr Order_count
  1
              0
                           2
  2
              1
                        49060
              2
                        12389
  3
              3
                        10443
  4
                        7088
              4
  5
              5
                        5234
  6
  7
              6
                        3916
  7"
                             3916
  8
                 7
                             1623
  9
                 8
                             4253
```