Matemática Condensada

John MacQuarrie

April 5, 2023

Matemática Consensada é um jeito novo de resolver problemas fundamentais que aparecem quando tentar fazer álgebra com objetos topológicos. Em álgebra normal temos:

Theorem 0.1. (10 teorema de isomorfismo) Seja $\rho: G \to H$ um homomorfismo de grupos abelianos (ou espaços vetoriais ou módulos ou que seja). Então

$$G/\text{Ker}(\rho) \cong \text{Im}(\rho)$$
.

Quando nossos grupos tem topologias, todos os mapas têm que ser contínuos, e isso gera problemas:

Example 0.2. \mathbb{R} como a topologia normal é um grupo topológico. Considere também $\mathbb{R}^{\mathrm{dis}}$, isto é, \mathbb{R} , mas agora com a topologia discreta, então TODO subconjunto de $\mathbb{R}^{\mathrm{dis}}$ é aberto. Como *grupos*, $\mathbb{R} \cong \mathbb{R}^{\mathrm{dis}}$. Mas o mapa contínuo

$$\rho: \mathbb{R}^{\mathrm{dis}} \to \mathbb{R}$$
$$x \mapsto x$$

não é iso, pois seu inverso não é contínuo. Como grupos *topológicos*, não são iso. Mais precisamente $\mathbb{R}^{\text{dis}}/\text{Ker}(\rho) = \mathbb{R}^{\text{dis}} \not\cong \text{Im}(\rho)$ – o 1o Teorema de Iso falhou!

Matemática condensada vai resolver esse problema!

Topologias de Grothendieck e sites

X – espaço topológico

C – categoria tendo produtos e equalizadores (exemplos: **Set**, **Ab**,k–Vec, R – **Mod**,...).

Denote por $\mathcal{O}(X)$ o poset dos subconjuntos abertos de X, tratado como categoria. Um *prefeixe* tradicional é um functor contravariante $F : \mathcal{O}(X) \to \mathcal{C}$. Para definir feixe, considere qualquer subconjunto aberto $U \in \mathcal{O}(X)$ e qualquer cobertura de U por abertos $U = \bigcup_{i \in I} U_i$. Obtemos o seguinte diagrama:

$$F(U) \xrightarrow{\alpha} \prod_{i \in I} F(U_i) \xrightarrow{\beta} \prod_{i,j \in I} F(U_i \cap U_j) . \tag{*}$$

 α : Para cada i, a inclusão $\iota_i:U_i\to U$ dá um mapa $F(\iota_i):F(U)\to F(U_i)$, assim o produto universal do produto dá um mapa $F(U)\to \prod_i F(U_i)$.

 β , γ : Para cada j, k, temos o seguinte diagrama NÃO comutativo:

com β_{jk} , γ_{jk} as composições correspondentes. Agora a propriedade universal do segundo produto, aplicada nos β_{jk} dá β , e aplicada nos γ_{jk} dá γ .

Diremos que o prefeixe F é um *feixe*, se o mapa α de (*) é o equalizador de β e γ .

Como entendo, a observação do Grothendieck era que tem valor em considerar feixes $\mathcal{D} \to \mathcal{C}$, com \mathcal{D} mais geral que $\mathcal{O}(X)$. Para definir feixe, a gente precisava da noção de *cobertura*:

Definition 0.3. (informal) Uma cobertura de um objeto c de uma categoria C é uma coleção de flechas $f_i: x_i \to c$.

Um *site* é uma categoria $\mathcal C$ junto com, para cada $c \in \mathcal C$, uma coleção de cobeturas destacadas. As regras são:

- 1. Para qualquer isomorfismo $f:c'\to c$, $\{f\}$ é uma cobertura destacada de c.
- 2. Se $\{f_i: x_i \to c\}$ é uma cobertura e $\rho: d \to c$ é uma flecha, obtemos mapas assim:

$$d \times_{c} x_{i} \longrightarrow x_{i}$$

$$g_{i} \downarrow \qquad \qquad \downarrow f_{i}$$

$$d \xrightarrow{\rho} c$$

A regra é que $\{g_i: d \times_c x_i \to d\}$ tem que ser uma cobertura destacada.

3. Se $\{f_i:c_i\to c\}$ é uma cobertura destacada e para cada $i,\{g_{ij}:c_{ij}\to c_i\}$ é uma cobertura destacada, então $\{f_ig_{ij}:c_{ij}\to c\}$ é mais uma cobertura destacada.

Observação: Estamos supondo aqui que C tem pullbacks. Tem uma versão mais geral, e de fato podemos ter que usar esta versão mais geral (veja depois da Proposição 0.19).

Example 0.4. $C = \mathcal{O}(X)$. Uma cobertura destacada de U é qualquer cobertura de U por abertos. Axioma 2 está dizendo que, se $U = \bigcup_i U_i$ é uma cobertura de U e $V \subseteq U$, então $V = \bigcup (U_i \cap V)$ é uma cobertura de V.

Example 0.5. (O exemplo mais importante pra gente!) $\mathcal{C} = \mathbf{Top}$ (ou alguma subcategoria dela). As coberturas destacadas são conjuntos finitos de mapas "juntamente sobrejetivos". Isto é, uma cobertura de $X \in \mathbf{Top}$ é $\{f_1: Y_1 \to X, \dots, f_n: Y_n \to X\}$ tal que $\bigcup_{i=1}^n \mathrm{Im}(f_i) = X$.

Uma coisa super útil é que um único mapa sobrejetivo $f: Y \rightarrow\!\!\!\!\rightarrow X$ é uma cobertura. Eles usam isso muito, pois Y pode ser "mais fácil" do que X.

Conjuntos profinitos

Um *conjunto profinito* é um limite inverso de conjuntos finitos discretos, tomado na categoria dos espaços topológicos.

Example 0.6. Considere o seguinte subespaço de \mathbb{R} :

$$C = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\} \cup \{0\},\$$

uma "sequência convergente". Os pontos $\frac{1}{n}$ são isolados: $\{\frac{1}{n}\}$ é aberto. Mas os abertos que contém 0 são *cofinitos*.

Obtemos C como o limite inverso da sequência de conjuntos finitos

...
$$\xrightarrow{\rho_3} \{0, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\} \xrightarrow{\rho_2} \{0, \frac{1}{2}, \frac{1}{3}\} \xrightarrow{\rho_1} \{0, \frac{1}{2}\}$$

onde ρ_n manda elementos da imagem para eles mesmo, e elementos fora para 0.

Theorem 0.7. *Um espaço X é profinito se, e somente se, ele é compacto, Hausdorff, e totalmente desconexo (isto é, o componente conexo de um ponto x \in X é \{x\}).*

Example 0.8. Uma *compactificação* de um espaço X é um espaço compacto Hausdorff C, junto com um mergulo $X \to C$ com imagem densa no contradomínio. Existe uma "melhor compactificação":

A compactificação de Stone-Cech de X é um espaço compacto Hausdorff $\beta(X)$, junto com um mapa contínuo $\rho: X \to \beta(X)$, que satisfaz a seguinte propriedade universal:

Dado qualquer mapa $f: X \to C$ com C compacto Hausdorff, existe um único mapa $\gamma: \beta(X) \to C$ tal que o diagrama

comuta.

Fato: Se Z é discreto, então $\beta(Z)$ é totalmente desconexo, logo profinito.

Suponha que *X* já é compacto Hausdorff e considere a seguinte situação:

"id" é um mapa para um espaço compacto Hausdorff, assim a propriedade universal nos dá um único mapa $\gamma: \beta(X^{\mathrm{dis}}) \to X$, que é sobre já que id é sobre.

Então suponha que nosso site é **CHaus** como em Exemplo 0.5. Esta conta mostra que todo objeto de **CHaus** pode ser coberta por um conjunto profinito!

 $\beta(X^{\mathrm{dis}})$ é melhor ainda: um espaço compacto Hausdorff D é extremamente deconexo (ED) se para qualquer sobrejeção contínua $\alpha:C\to D$ com C compacto Hausdorff, existe $\gamma:D\to C$ contínua tal que $\alpha\gamma=\mathrm{id}_D$. Ou seja, espaços ED são projetivos na categoria dos espaços compacto Hausdorff. Tais espaços são sempre profinitos.

De fato $\beta(X^{\mathrm{dis}})$ é sempre ED: dado $\alpha: C \to \beta(X^{\mathrm{dis}})$, defina um splitting $\mu: \beta(X^{\mathrm{dis}}) \to C$ de α só como conjuntos. Já que X^{dis} é discreto, o mapa $\mu\rho$ é contínuo, e assim existe um mapa contínuo $\gamma: \beta(X^{\mathrm{dis}}) \to C$ tal que $\gamma\rho = \mu\rho$. Temos $\alpha\gamma\rho = \alpha\mu\rho = \rho$. Mas $\mathrm{id}\rho = \rho$ também, assim pela unicidade na propriedade universal de $\beta(X^{\mathrm{dis}})$, $\alpha\gamma = \mathrm{id}$ e γ é um splitting de α .

Assim no site **CHaus**, todo objeto possui uma cobertura *projetiva*!

A(s) categoria(s) condensada(s)

Ponto Técnico: Para evitar problemas com classes, fixamos um cardinal λ e decidimos que só queremos entender objetos de cardinalidade no máximo λ . Seja κ o limite da sequência

$$\lambda < 2^{\lambda} < 2^{2^{\lambda}} < \cdots$$

Seja κ – **Prof** o site dos conjuntos profinitos de tamanho menor do que κ , com coberturas coleções finitas de mapas contínuas juntamente sobrejetivas.

Definition 0.9. Seja C uma categoria legal: **Set**, **Ab**, R – **Mod**,... Um *conjunto/grupo abeliano/módulo*, ... κ-*condensado* é um feixe

$$T: \kappa - \mathbf{Prof}^{\mathrm{op}} \to \mathcal{C}.$$

Equivalentamente (segundo Scholze) uma coisa condensada é um functor contravariante $T: \kappa - \mathbf{Prof} \to \mathcal{C}$ tal que

- $T(\emptyset) = *$ (o objeto terminal de \mathcal{C})
- $\forall S_1, S_2 \in \kappa \mathbf{Prof}$,

$$T(S_1 \sqcup S_2) = T(S_1) \times T(S_2)$$

• Dado um mapa sobrejetivo $\rho: S' \to S$ em κ – **Prof**, obtemos o pullback

$$S' \times_S S' \xrightarrow{p_2} S'$$

$$\downarrow^{\rho}$$

$$S' \xrightarrow{\rho} S$$

Aplicando *T* , obtemos

$$T(S) \xrightarrow{T(\rho)} T(S') \xrightarrow{T(p_1)} T(S' \times_S S').$$

A condição é que $T(\rho)$ seja o equalizador de $T(p_1)$ e $T(p_2)$.

Denote por κ – **Cond**(\mathcal{C}) a categoria dos conjuntos/grupos/módulos κ -condensados.

Example 0.10. Seja *X* um espaço/grupo/*R*-módulo etc. topológico. Então

$$\underline{X} := \operatorname{CMap}(-, X) : \kappa - \operatorname{Prof} \to \operatorname{Set}/\operatorname{Ab}/R - \operatorname{Mod}$$
 etc.

é um conjunto/grupo/R-módulo condensada.

Example 0.11. Considere o conjunto profinito

$$C = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\} \cup \{0\}.$$

Vamos avaliar alguns exemplos em *C*:

• $\mathbb{R} = CMap(-, \mathbb{R})$:

 $CMap(C, \mathbb{R}) \cong \{\text{sequências convergentes em } \mathbb{R}\}.$

• $\mathbb{R}^{\text{dis}} = \text{CMap}(-, \mathbb{R}^{\text{dis}})$:

 $CMap(C, \mathbb{R}^{dis}) \cong \{ sequências eventualmente constantes em \mathbb{R} \}$

pois f ∈ CMap(C, \mathbb{R}^{dis}) é contínua, e logo $f^{-1}(f(0))$ é cofinito em C!

• $\mathbb{R}^{\mathrm{dis}} \to \mathbb{R}$ induz um mapa $\underline{\mathbb{R}^{\mathrm{dis}}} \to \underline{\mathbb{R}}$: aplicado em C, dá a inclusão de mapas eventualmente constantes em sequências convergentes. O mapa $\underline{\mathbb{R}^{\mathrm{dis}}} \to \underline{\mathbb{R}}$ tem um conúcleo $Q: \kappa - \mathbf{Prof} \to \mathbf{Ab}$ que é (o feixificação?) de

$$P \mapsto \frac{\mathrm{CMap}(P, \mathbb{R})}{\mathrm{CMap}(P, \mathbb{R}^{\mathrm{dis}})}.$$

Temos

$$Q(*) = \frac{\text{CMap}(*, \mathbb{R})}{\text{CMap}(*, \mathbb{R}^{\text{dis}})} = \frac{\mathbb{R}}{\mathbb{R}} = 0,$$

mas

$$Q(C) = \frac{\text{seq convergentes}}{\text{seq. event. const.}} = \text{algo enorme!}$$

[Ou, bem, os valores do prefeixe são esses...]

Definition 0.12. Seja T um conjunto condensado. O *conjunto subjacente* de T é T(*).

Example 0.13. 1. Sendo *X* um espaço topológico,

$$\underline{X}(*) = \mathrm{CMap}(*, X) = X,$$

o conjunto subjacente de X!

2. Mas Q (do exemplo anterior) é um feixe interessante tendo conjunto subjacente Q(*) = 0.

Definition 0.14. T um conjunto condensado. Daremos uma topologia pro conjunto subjacente assim: $T(*)_{top}$ é T(*) como conjunto, com a topologia do quociente do mapa

$$\left(\bigsqcup_{\substack{S \text{ profinito} \\ |S| < \kappa \\ \gamma: S \to T}} S\right) \to T(*),$$

que faz sentindo, lembrando que $S = \underline{S}(*)$.

Ponto Técnico: A topologia obtida sobre T(*) é "compactamente gerada". Os espaços de interesse pra gente são CG, assim fica mais fácil só trabalhar com CG espaços.

Example 0.15. Se X é cg, então $\underline{X}(*)_{top} \cong X$ como espaço topológico.

Mais que isso:

Proposition 0.16. *O functor* $\underline{(-)} = \operatorname{CMap}(-,X) : \kappa - \operatorname{\mathbf{CGTop}} \to \kappa - \operatorname{\mathbf{Cond}}(\operatorname{\mathbf{Set}})$ *é adjunto à direita ao functor*

$$(-)(*)_{top}: \kappa-\mathbf{Cond}(\mathbf{Set}) \to \kappa-\mathbf{CGTop}.$$

Se X é um espaço topológico compactamente gerado, a counidade $\varepsilon_X : \underline{X}(*)_{top} \to X$ é o isomorfismo natural.

É abstract nonsense que a counidade de uma adjunção é um isomorfismo se, e somente se, o adjunto à direita é plenamente fiel, assim:

Corollary 0.17. O functor

$$\kappa - \mathbf{CGTop} \to \kappa - \mathbf{Cond}(\mathbf{Set})$$
 $X \mapsto \underline{X} = \mathbf{CMap}(-, X)$

é plenamente fiel.

Scholze afirma que segue formalmente disso que o corolário vale com outras categorias C, assim por exemplo

$$\kappa - \mathbf{CGAb} \to \kappa - \mathbf{Cond}(\mathbf{Ab})$$

$$X \mapsto \underline{X} = \mathbf{CMap}(-, X)$$

é plenamente fiel. Pode ou não ser um saco que a Proposição 0.16 NÃO generaliza direto, porque se T é um grupo abeliano condensado, pode acontecer que $T(*)_{top}$ não é um grupo topológico. Eu teria gostado de afirmar que se X é um grupo topológico e Q é como acima, então

$$\operatorname{Hom}(Q, \underline{X}) \cong \operatorname{Hom}(Q(*)_{\operatorname{top}}, X) = \operatorname{Hom}(0, X) = 0,$$

mas isso não segue direto dos resultados acima.

A categoria condensada é muito boa

Podemos mergulhar nossa categoria de grupos abelianos topológicos dentro de κ – **Cond**(**Ab**): falta ver por que vale a pena fazer isso!

Theorem 0.18. A categoria κ – **Cond**(**Ab**) é igualmente bem comportada com **Ab**: é abeliana, e satisfaz as mesmas propriedades adicionais como **Ab**: por exemplo, possui limites e colimites arbitrários.

A prova disso usa umas equivalências. Temos inclusões de categorias:

Podemos tratar cada deles como um site com coberturas conjuntos finitos de mapas juntamente sobrejetivos.

Proposition 0.19. Seja C uma categoria tipo **Set**, **Ab**, ... As categorias de feixes

$$\begin{aligned} \mathbf{EDSet} &\to \mathcal{C}, \\ \mathbf{PSet} &\to \mathcal{C}, \\ \mathbf{CHTop} &\to \mathcal{C} \end{aligned} \quad (= \mathbf{Cond}(\mathcal{C})!)$$

são equivalentes.

A equivalência mais interessante parece ser a primeira. Feixes de **EDSet** tem pros e contras:

PRO: Já que espaços ED são projetivos, a condição chata de feixe segue de graça das outras: um feixe $T : \mathbf{EDSet} \to \mathcal{C}$ é simplesmente um prefeixe tal que

$$T(\varnothing) = *$$
 e $T(S_1 \sqcup S_2) = T(S_1) \times T(S_2)!$

CONTRA: Se S_1 , S_2 são ED, o produto $S_1 \times S_2$ é quase nunca ED. Assim a categoria **EDSet** não tem pullbacks, e assim precisamos usar uma outra definição de site, com crivos.

Matheus nos contará mais sobre essas equivalências semana que vem!

Proposition 0.20. A categoria EDCond(Ab) (logo Cond(Ab)) tem suficientes projetivos.

Podemos construir projetivos assim: o functor $\mathbf{EDCond}(\mathbf{Ab}) \to \mathbf{EDCond}(\mathbf{Set})$ que manda $T \mapsto T$ possui adjunto à esquerda. Ele manda $T : \mathbf{EDSet} \to \mathbf{Set}$ pro feixificação $\mathbb{Z}[T]$ do functor que manda $S \in \mathbf{EDSet}$ para $\mathbb{Z}[T(S)] \in \mathbf{Ab}$.