

2	Electrical, Electromagnetic, and Optical Characterization of the InP/InGaAs Alloy System
3	
4	A Thesis Proposal
5	Presented to the Faculty of the
6	Department of Electronics and Communications Engineering
7	Gokongwei College of Engineering
8	De La Salle University
9	
10	In Partial Fulfillment of the
1	Requirements for the Degree of
12	Bachelor of Science in Electronics and Communications Engineering
13	
14	by
15	DELA CRUZ, Juan A.
16	FRANCO, Nat B.
17	RIANZARES, Max C.

May, 2016

ORAL DEFENSE RECOMMENDATION SHEET

This thesis proposal, entitled **Electrical, Electromagnetic, and Optical Characterization of the InP/InGaAs Alloy System**, prepared and submitted by thesis group, ESG-04, composed of:

DELA CRUZ, Juan A. FRANCO, Nat B. RIANZARES, Max C.

in partial fulfillment of the requirements for the degree of **Bachelor of Science in Electronics and Communications Engineering** (**BS-ECE**) has been examined and is recommended for acceptance and approval for **ORAL DEFENSE**.

Dr. Francisco D. Baltasar
Adviser

May 27, 2016

THESIS PROPOSAL APPROVAL SHEET

35

36

37 38

39

40

41

42

43

44 45

46

47

48

49

50

52

53

54

This thesis proposal entitled Electrical, Electromagnetic, and Optical Characterization of the InP/InGaAs Alloy System, prepared and submitted by: DELA CRUZ, Juan A. FRANCO, Nat B. RIANZARES, Max C. with group number ESG-04 in partial fulfillment of the requirements for the degree of Bachelor of Science in Electronics and Communications Engineering (BS-ECE) has been examined and is recommended for acceptance and approval. PANEL OF EXAMINERS Dr. Amado Z. Hernandez Chair Dr. Jose Y. Alonzo Dr. Mariana X. Mercado Member Member Dr. Francisco D. Baltasar Adviser

Date: May 27, 2016

SILLE UN	-	_	0 1	1 -	• •	•	•	
MILE	De	La	Sal	le	U	nive	ersity	V
AMIL							•	/

ACKNOWLEDGMENT

59

60

61

Write this prior to hard binding if you have submitted all requirements and are told by your adviser that you have passed.

TANILI TANILI	De	La	Salle	Universit	ty
---------------	----	----	-------	-----------	----

62 ABSTRACT

- Keep your abstract short by giving the gist/nutshell of your thesis proposal.
- 64 *Index Terms*—alloy system, characterization, InP, InGaAs.

TABLE OF CONTENTS

Oran De	efense Recommendation Sheet	ii
Thesis l	Proposal Approval Sheet	iii
Acknow	vledgment	v
Abstrac	t	vi
Table of	f Contents	vii
List of l	Figures	X
List of	Tables	xi
Abbrev	iations	xii
Notatio	n	xiii
Glossar	${f y}$	xiv
Listings		XV
Chapte	r 1 INTRODUCTION	1
1.1	Background of the Study	2
1.2	Prior Studies	4
1.3	Problem Statement	4
1.4	Objectives	5
	1.4.1 General Objective(s)	5
	1.4.2 Specific Objectives	5
1.5	Significance of the Study	5
1.6	Assumptions, Scope and Delimitations	6
1.7	Description and Methodology	6
1.8	Overview	6
Chapte	r 2 LITERATURE REVIEW	7

90	Referen	nces	11
91	Append	lix A ANSWERS TO QUESTIONS TO THIS THESIS PROPOSAL	12
92	A1	How important is the problem to practice?	13
93	A2	How will you know if the solution/s that you will achieve would be better	
94		than existing ones?	13
95		A2.1 How will you measure the improvement/s?	13
96		A2.1.1 What is/are your basis/bases for the improvement/s?	14
97		A2.1.2 Why did you choose that/those basis/bases?	14
98		A2.1.3 How significant are your measure/s of the improvement/s?	14
99	A3	What is the difference of the solution/s from existing ones?	15
100		A3.1 How is it different from previous and existing ones?	15
101	A4	What are the assumptions made (that are behind for your proposed solution	
102		to work)?	15
103		A4.1 Will your proposed solution/s be sensitive to these assumptions? .	16
104		A4.2 Can your proposed solution/s be applied to more general cases	
105		when some of the assumptions are eliminated? If so, how?	16
106	A5	What is the necessity of your approach / proposed solution/s?	16
107		A5.1 What will be the limits of applicability of your proposed solution/s?	17
108		A5.2 What will be the message of the proposed solution to technical	1.7
109		people? How about to non-technical managers and business men?	17
110	A6	How will you know if your proposed solution/s is/are correct?	17
111		A6.1 Will your results warrant the level of mathematics used (i.e., will	10
112	^ 7	the end justify the means)?	18 18
113	A7	Is/are there an/_ alternative way/s to get to the same solution/s?	10
114 115		examples to your proposed solution/s?	18
116		A7.2 Is there an approximation that can arrive at the essentially the same	10
117		proposed solution/s more easily?	19
118	A8	If you were the examiner of your proposal, how would you present the	1)
119	110	proposal in another way?	19
120		A8.1 What are the weaknesses of your proposal?	19
		J r	
121	Append	lix B USAGE EXAMPLES	21
122	B1	Equations	22
123	B2	Notations	24
124	В3	Abbreviation	30
125	B4	Glossary	32
126	B5	Figure	33
127	В6	Table	39

128	B7 Algorithm or Pseudocode Listing	4.
129	B8 Program/Code Listing	4:
130	B9 Referencing	4
131	B9.1 A subsection	4
132	B9.1.1 A sub-subsection	49
133	B10 Index	5
134	B11 Adding Relevant PDF Pages (e.g. Standards, Datasheets, Specification	
135	Sheets, Application Notes, etc.)	5
136	Appendix C PUBLICATION LIST AND AWARD	5
137	Appendix D VITA	5
138	Index	5

IICT	\cap	URES
LIJI	U E	UNES

139

140	B.1	A quadrilateral image example	33
141	B.2	Figures on top of each other. See List. B.6 for the corresponding LATEX code.	35
142	B.3	Four figures in each corner. See List. B.7 for the corresponding LATEX code	37

	LIST	OF	TAB	LES
--	------	----	-----	-----

B.1	Feasible triples for highly variable grid	39
B.2	Calculation of $y = x^n$	43

ABBREVIATIONS

147	AC	Alternating Current	30
148	CSS	Cascading Style Sheet	30
149	HTML	Hyper-text Markup Language	30
150	XML	eXtensible Markup Language	30

NOTATION

32
32
22
32
32
22
22

Throughout this thesis proposal, mathematical notations conform to ISO 80000-2 standard, e.g. variable names are printed in italics, the only exception being acronyms like e.g. SNR, which are printed in regular font. Constants are also set in regular font like j. Functions are also set in regular font, e.g. in $\sin(\cdot)$. Commonly used notations are t, f, $j = \sqrt{-1}$, n and $\exp(\cdot)$, which refer to the time variable, frequency variable, imaginary unit, nth variable, and exponential function, respectively.

165 GLOSSARY

166

LISTINGS

167

168	B.1	Sample LATEX code for equations and notations usage	23
169	B.2	Sample LATEX code for notations usage	27
170	B.3	Sample LATEX code for abbreviations usage	31
171	B.4	Sample LATEX code for glossary and notations usage	32
172	B.5	Sample LATEX code for a single figure	34
173	B.6	Sample LATEX code for three figures on top of each other	36
174	B.7	Sample LATEX code for the four figures	38
175	B.8	Sample LATEX code for making typical table environment	41
176	B.9	Sample LATEX code for algorithm or pseudocode listing usage	44
177	B.10	Computing Fibonacci numbers	45
178	B.11	Sample LATEX code for program listing	46
179	B.12	Sample LATEX code for referencing sections	47
180	B.13	Sample LATEX code for referencing subsections	48
181	B.14	Sample LATEX code for referencing sub-subsections	49
182	B.15	Sample LATEX code for Index usage	50
183		Sample LATEX code for including PDF pages	51

Chapter 1

INTRODUCTION

Contents

1.1	Background of the Study
	Prior Studies
1.3	Problem Statement
1.4	Objectives
	1.4.1 General Objective(s)
	1.4.2 Specific Objectives
1.5	Significance of the Study
1.6	Assumptions, Scope and Delimitations 6
1.7	Description and Methodology
1.8	Overview

1.1 Background of the Study

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor.

Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

1.2 Prior Studies

Put here a summary of your literature review. Preferably, a table showing the summary would be helpful. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

1.3 Problem Statement

1.4 Objectives

1.4.1 General Objective(s)

268 To ...;

266

267

269

272

274

275

276

277

278

279

280

281

282

283

284

1.4.2 Specific Objectives

270 1. To ...;

271 2. To ...;

3. To ...;

273 4. To ...;

5. To ...;

1.5 Significance of the Study

1.6 Assumptions, Scope and Delimitations

Bulletize your scope in one group, and then bulletize the delimitations in another. Bulletize your assumptions as well.

1.7 Description and Methodology

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

1.8 Overview

Provide here a brief summary and what the reader should expect from each succeeding chapter. Show how each chapter are connected with each other.

	De La Salle University	
301	Chapter 2	
302	LITERATURE REVIEW	
303 304 305 306	2.1 Summary 10	

Cite and summarize here relevant and significant literature (dissertations, theses, journals, patents, notable conference papers) to prove that no one has done your work yet.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor.

Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

		2. Literature Rev	riew
		De La Salle University	
354	2.1	Summary	
			10
			10

355 REFERENCES

356

357

358

359

[ISO, 2009] ISO (2009). 80000-2. Quantities and units—Part 2: Mathematical signs and symbols to be used in the natural sciences and technology.

[Oetiker et al., 2014] Oetiker, T., Partl, H., Hyna, I., and Schlegl, E. (2014). *The Not So Short Introduction to LTEX* 2_E Or LTEX 2_E in 157 minutes. n.a.

Produced: May 27, 2016, 08:21

Appendix A ANSWERS TO QUESTIONS TO THIS THESIS PROPOSAL

Contents

A1	How important is the problem to practice?	13
A2	How will you know if the solution/s that you will achieve would be better	
	than existing ones?	13
	A2.1 How will you measure the improvement/s?	13
	A2.1.1 What is/are your basis/bases for the improvement/s?	14
	A2.1.2 Why did you choose that/those basis/bases?	14
	A2.1.3 How significant are your measure/s of the improvement/s?	14
A3	What is the difference of the solution/s from existing ones?	15
	A3.1 How is it different from previous and existing ones?	15
A4	What are the assumptions made (that are behind for your proposed solution	
	to work)?	15
	A4.1 Will your proposed solution/s be sensitive to these assumptions? .	16
	A4.2 Can your proposed solution/s be applied to more general cases	
	when some of the assumptions are eliminated? If so, how?	16
A5	What is the necessity of your approach / proposed solution/s?	16
	A5.1 What will be the limits of applicability of your proposed solution/s?	17
	A5.2 What will be the message of the proposed solution to technical	
	people? How about to non-technical managers and business men?	17
A6	How will you know if your proposed solution/s is/are correct?	17
	A6.1 Will your results warrant the level of mathematics used (i.e., will	
	the end justify the means)?	18
A7	Is/are there an/_ alternative way/s to get to the same solution/s?	18
	A7.1 Can you come up with illustrating examples, or even better, counter	
	examples to your proposed solution/s?	18
	A7.2 Is there an approximation that can arrive at the essentially the same	
	proposed solution/s more easily?	19
A8	If you were the examiner of your proposal, how would you present the	
	proposal in another way?	19
	A8.1 What are the weaknesses of your proposal?	19

A1 How important is the problem to practice?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A2 How will you know if the solution/s that you will achieve would be better than existing ones?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A2.1 How will you measure the improvement/s?

A2.1.1 What is/are your basis/bases for the improvement/s?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A2.1.2 Why did you choose that/those basis/bases?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A2.1.3 How significant are your measure/s of the improvement/s?

A3 What is the difference of the solution/s from existing ones?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A3.1 How is it different from previous and existing ones?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A4 What are the assumptions made (that are behind for your proposed solution to work)?

A4.1 Will your proposed solution/s be sensitive to these assumptions?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A4.2 Can your proposed solution/s be applied to more general cases when some of the assumptions are eliminated? If so, how?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A5 What is the necessity of your approach / proposed solution/s?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris.

Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A5.1 What will be the limits of applicability of your proposed solution/s?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A5.2 What will be the message of the proposed solution to technical people? How about to non-technical managers and business men?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A6 How will you know if your proposed solution/s is/are correct?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla

tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A6.1 Will your results warrant the level of mathematics used (i.e., will the end justify the means)?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A7 Is/are there an/_ alternative way/s to get to the same solution/s?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A7.1 Can you come up with illustrating examples, or even better, counter examples to your proposed solution/s?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor.

Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A7.2 Is there an approximation that can arrive at the essentially the same proposed solution/s more easily?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A8 If you were the examiner of your proposal, how would you present the proposal in another way?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A8.1 What are the weaknesses of your proposal?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor.

Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

	De La Salle University	
622 623	Appendix B USAGE EXAMPLES	
	21	

The user is expected to have a working knowledge of LATEX. A good introduction is in [Oetiker et al., 2014]. Its latest version can be accessed at http://www.ctan.org/ tex-archive/info/lshort.

627

B1 Equations

629 630

631 632

633

634

635

636

The following examples show how to typeset equations in LATEX. This section also shows examples of the use of \gls{} commands in conjunction with the items that are in the notation.tex file. Please make sure that the entries in notation.tex are those that are referenced in the LATEX document files used by this Thesis Proposal. Please comment out unused notations and be careful with the commas and brackets in notation.tex .

In (B.1), the output signal y(t) is the result of the convolution of the input signal x(t)and the impulse response h(t).

$$y(t) = h(t) * x(t) = \int_{-\infty}^{+\infty} h(t - \tau) x(\tau) d\tau$$
(B.1)

Other example equations are as follows.

$$\begin{bmatrix} V_1 \\ \overline{I_1} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_2 \\ \overline{I_2} \end{bmatrix}$$
 (B.2)

$$\frac{1}{2} < \left\lfloor \operatorname{mod}\left(\left\lfloor \frac{y}{17} \right\rfloor 2^{-17\lfloor x\rfloor - \operatorname{mod}(\lfloor y\rfloor, 17)}, 2\right) \right\rfloor, \tag{B.3}$$

$$|\zeta(x)^3 \zeta(x+iy)^4 \zeta(x+2iy)| = \exp \sum_{n,p} \frac{3+4\cos(ny\log p) + \cos(2ny\log p)}{np^{nx}} \ge 1$$
 (B.4)

The verbatim LATEX code of Sec. B1 is in List. B.1.

Listing B.1: Sample LATEX code for equations and notations usage

```
The following examples show how to typeset equations in \LaTeX.
2
3
    In~\eqref{eq:conv}, the output signal \gls{not:output_sigt} is the
        result of the convolution of the input signal \gls{not:input_sigt}
        and the impulse response \gls{not:ir}.
 4
5
    \begin{eqnarray}
6
         y\left( t \right) = h\left( t \right) * x\left( t \right)=\int_{-\}
             infty}^{+\infty}h\left( t-\tau \right)x\left( \tau \right) \
       \label{eq:conv}
8
    \end{eqnarray}
    Other example equations are as follows.
10
11
12
    \begin{eqnarray}
       \left[ \dfrac{ V_{1} }{ I_{1} } \right] =
13
14
       \begin{bmatrix}
15
          A & B \\
16
          C & D
17
       \end{bmatrix}
18
       \label{left} $$ \left[ \dfrac{ V_{2} }{ I_{2} } \right] \right] $$ \left[ \dfrac{ V_{2} }{ I_{2} } \right] $$
19
       \label{eq:ABCD}
20
    \end{eqnarray}
21
22
    \begin{eqnarray}
23
    {1\over 2} < \left( \int_{\infty} \mathbf{y} \right) 
        right\rfloor 2^{-17 \lfloor x \rfloor - \mathrm{mod}(\lfloor y\
        rfloor, 17)},2\right)\right\rfloor,
24
    \end{eqnarray}
25
26
    \begin{eqnarray}
27
    | \text{zeta(x)^3} \text{zeta(x+iy)^4} \text{zeta(x+2iy)} | =
   \ensuremath{\mbox{ \ exp\sum_{n,p}\frac{3+4\cos(ny\log p) +\cos (2ny\log p)}{np^{nx}}\ge 1}
28
    \end{eqnarray}
```


B2 Notations

638

639

640

641

642

643

646

647

648

649

650

651

In order to use the standardized notation, the user is highly suggested to see the ISO 80000-2 standard [ISO, 2009]. The following were taken from <code>isomath-test.tex</code>.

Math alphabets

If there are other symbols in place of Greek letters in a math alphabet, it uses T1 or OT1 font encoding instead of OML.

$$\begin{array}{ll} \text{mathnormal} & A,B,\Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,\alpha,\beta,\pi,\nu,\omega,v,w,0,1,9\\ \text{mathit} & A,B,\Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,f\!f,f\!i,\beta,\stackrel{\circ}{,},!,v,w,0,1,9\\ \text{mathrm} & A,B,\Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,f\!f,f\!i,\beta,\stackrel{\circ}{,},!,v,w,0,1,9\\ \text{mathbf} & \mathbf{A},\mathbf{B},\Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,f\!f,f\!i,\beta,\stackrel{\circ}{,},!,v,w,0,1,9\\ \text{mathsf} & A,B,\Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,f\!f,f\!i,\beta,\stackrel{\circ}{,},!,v,w,0,1,9\\ \text{mathtt} & A,B,\Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,\uparrow,\downarrow,\beta,\stackrel{\circ}{,},!,v,w,0,1,9 \end{array}$$

New alphabets bold-italic, sans-serif-italic, and sans-serif-bold-italic.

```
mathbfit A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, v, w, o, 1, 9 mathsfit A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, v, w, o, 1, 9 mathsfbfit A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, v, w, o, 1, 9
```

Do the math alphabets match?

 $axlpha\omega axlpha\omega$ ax $lpha\omega$ $TC\Theta\Gamma TC\Theta\Gamma$

Vector symbols

Alphabetic symbols for vectors are boldface italic, $\lambda = e_1 \cdot a$, while numeric ones (e.g. the zero vector) are bold upright, a + 0 = a.

Matrix symbols

Symbols for matrices are boldface italic, too: $\Lambda = E \cdot A$.

¹However, matrix symbols are usually capital letters whereas vectors are small ones. Exceptions are physical quantities like the force vector F or the electrical field E.

652 Tensor symbols

654

653 Symbols for tensors are sans-serif bold italic,

$$\boldsymbol{\alpha} = \boldsymbol{e} \cdot \boldsymbol{a} \iff \alpha_{ijl} = e_{ijk} \cdot a_{kl}.$$

The permittivity tensor describes the coupling of electric field and displacement:

$$oldsymbol{D} = \epsilon_0 oldsymbol{\epsilon}_{\mathrm{r}} oldsymbol{E}$$

Bold math version

655

656

658

659

660

661

662

663

664

665

667

668

The "bold" math version is selected with the commands \boldmath or \mathversion{bold}

mathnormal $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, v, w, 0, 1, 9$

mathit $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, ff, fi, \beta, ^{\circ}, !, v, w, 0, 1, 9$

mathrm $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, ff, fi, \beta, ^{\circ}, !, v, w, 0, 1, 9$

mathbf $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, ff, fi, \beta, ^{\circ}, !, v, w, 0, 1, 9$

mathsf $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, ff, fi, \beta, ^{\circ}, !, v, w, 0, 1, 9$

 $mathtt \qquad A,B,\Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,\uparrow,\downarrow,\beta,\,\,{}^{\circ},\,!\,,v,w,0,1,9$

New alphabets bold-italic, sans-serif-italic, and sans-serif-bold-italic.

mathbfit $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, v, w, o, 1, 9$

mathsfit $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, \nu, w, o, 1, 9$

mathsfbfit $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, \nu, w, o, 1, g$

Do the math alphabets match?

αχαωαχαωαχαω ΤΟΘΓΤΟΘΓ

Vector symbols

Alphabetic symbols for vectors are boldface italic, $\lambda = e_1 \cdot a$, while numeric ones (e.g. the zero vector) are bold upright, a + 0 = a.

Matrix symbols

Symbols for matrices are boldface italic, too: $\Lambda = E \cdot A$.

Tensor symbols

666 Symbols for tensors are sans-serif bold italic,

$$lpha = e \cdot a \iff lpha_{ijl} = e_{ijk} \cdot a_{kl}.$$

The permittivity tensor describes the coupling of electric field and displacement:

$$D = \epsilon_0 \epsilon_r E$$

²However, matrix symbols are usually capital letters whereas vectors are small ones. Exceptions are physical quantities like the force vector F or the electrical field E.

The verbatim LaTeX code of Sec. B2 is in List. B.2.

Listing B.2: Sample LATEX code for notations usage

```
670
          % A teststring with Latin and Greek letters::
671
672
          \newcommand{\teststring}{%
673
          % capital Latin letters
674
       4
          % A,B,C,
       5
675
          А,В,
676
       6
          % capital Greek letters
677
          % \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Upsilon, \Phi, \Psi,
678
          \Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,
679
       9
          % small Greek letters
680
       10
          \alpha,\beta,\pi,\nu,\omega,
681
          \% small Latin letters:
       11
682
       12
          % compare \nu, \nu, \nu, and \nu
683
       13
684
      14
          % digits
685
      15
          0,1,9
686
      16
687
      17
688
      18
689
      19
          \subsection * { Math alphabets }
690
      20
691
      21
          If there are other symbols in place of Greek letters in a math
692
      22
          alphabet, it uses T1 or OT1 font encoding instead of OML.
693
      23
694
      24
          \begin{eqnarray*}
695
      25
          \mbox{mathnormal} & & \teststring \\
          \mbox{mathit} & & \mathit{\teststring}\\
696
697
      27
          \mbox{mathrm} & & \mathrm{\teststring}\\
698
      28
          \mbox{mathsf} & & \mathsf{\teststring}\\
mbox{mathtt} & & \mathtt{\teststring}
699
      29
700
      30
701
      31
          \end{eqnarray*}
           New alphabets bold-italic, sans-serif-italic, and sans-serif-bold-
702
      32
703
               italic.
704
          \begin{eqnarray*}
705
      34
          \mbox{mathbfit}
                                & & \mathbfit{\teststring}\\
      35
706
          \mbox{mathsfit}
                                & & \mathsfit{\teststring}\\
707
      36
          \mbox{mathsfbfit} & & \mathsfbfit{\teststring}
708
      37
          \end{eqnarray*}
709
      38
710
      39
          Do the math alphabets match?
711
      40
712
       41
713
          \mathnormal {a x \alpha \omega}
714
      43
          \mathbfit
                        {a x \alpha \omega}
715
       44
          \mathsfbfit{a x \alpha \omega}
716
      45
          \quad
717
       46
          \mathsfbfit{T C \Theta \Gamma}
718
       47
          \mathbfit
                         {T C \Theta \Gamma}
          \mathnormal {T C \Theta \Gamma}
719
      48
720
      49
721
      50
722
      51
          \subsection *{ Vector symbols}
723
      52
```

De La Salle University

```
724
          Alphabetic symbols for vectors are boldface italic,
725
          726
      55
          while numeric ones (e.g. the zero vector) are bold upright,
          \vec{a} + \vec{0} = \vec{a}.
727
      56
728
      57
729
          \subsection * { Matrix symbols }
730
      59
      60
731
          Symbols for matrices are boldface italic, too: %
732
      61
          \footnote{However, matrix symbols are usually capital letters whereas
733
              vectors
734
          are small ones. Exceptions are physical quantities like the force
735
      63
          vector $\vec{F}$ or the electrical field $\vec{E}$.%
736
      64
737
      65
          $\matrixsym{\Lambda}=\matrixsym{E}\cdot\matrixsym{A}.$
738
739
      67
740
          \subsection*{Tensor symbols}
      68
741
      69
742
       70
          Symbols for tensors are sans-serif bold italic,
743
      71
744
      72
          ١[
745
              \tensorsym{\alpha} = \tensorsym{e}\cdot\tensorsym{a}
      73
746
      74
              \quad \Longleftrightarrow \quad
747
      75
              \alpha_{ijl} = e_{ijk} \cdot a_{kl}.
          \]
748
      76
749
      77
750
      78
751
      79
          The permittivity tensor describes the coupling of electric field and
752
      80
          displacement: \[
          \label{lem:constraint} $$\operatorname{D}=\operatorname{O}\times _{0}\times _{0}\times _{0}. $$
753
      81
754
      82
755
      83
756
      84
757
      85
          \newpage
758
      86
          \subsection * { Bold math version }
759
      87
760
          The ''bold'' math version is selected with the commands
      88
761
      89
          \verb+\boldmath+ or \verb+\mathversion{bold}+
762
      90
763
      91
          {\boldmath
764
      92
              \begin{eqnarray*}
765
      93
              \mbox{mathnormal} & & \teststring \\
              \mbox{mathit} & & \mathit{\teststring}\\
766
      94
767
      95
              \mbox{mathrm} & & \mathrm{\teststring}\\
              \mbox{mathbf} & & \mathbf{\teststring}\\
mbox{mathsf} & & \mathsf{\teststring}\\
768
      96
769
      97
770
      98
              \mbox{mathtt} &
                               & \mathtt{\teststring}
771
      99
              \end{eqnarray*}
772
      100
               New alphabets bold-italic, sans-serif-italic, and sans-serif-bold-
773
                   italic.
774
      101
              \begin{eqnarray*}
                                     & \mathbfit{\teststring}\\
775
      102
              \mbox{mathbfit}
                                    &
      103
776
              \mbox{mathsfit}
                                    & & \mathsfit{\teststring}\\
777
      104
              \mbox{mathsfbfit} & & \mathsfbfit{\teststring}
778
      105
              \end{eqnarray*}
779
      106
780
      107
              Do the math alphabets match?
```

De La Salle University

```
781
      108
782
      109
             \mathnormal {a x \alpha \omega}
783
      110
                           {a x \alpha \omega}
784
      111
             \mathbfit
785
             \mathsfbfit{a x \alpha \omega}
      112
786
      113
             \quad
             \mathsfbfit{T C \Theta \Gamma}
787
      114
788
                           {T C \Theta \Gamma}
      115
             \mathbfit
789
      116
             \mathnormal {T C \Theta \Gamma}
790
      117
791
      118
792
      119
             \subsection *{ Vector symbols}
793
      120
794
      121
             Alphabetic symbols for vectors are boldface italic,
795
      122
             \ \ \vec{\lambda} = \vec{e}_{1} \cdot\vec{a}$,
796
      123
             while numeric ones (e.g. the zero vector) are bold upright,
797
      124
             \ \ \vec{a} + \vec{0} = \vec{a}$.
798
      125
799
      126
800
      127
801
      128
802
      129
             \subsection *{Matrix symbols}
803
      130
804
      131
             Symbols for matrices are boldface italic, too: %
      132
805
             \footnote{However, matrix symbols are usually capital letters whereas
806
807
      133
             are small ones. Exceptions are physical quantities like the force
808
      134
             vector $\vec{F}$ or the electrical field $\vec{E}$.%
809
      135
810
      136
             $\matrixsym{\Lambda}=\matrixsym{E}\cdot\matrixsym{A}.$
      137
811
812
      138
813
      139
             \subsection*{Tensor symbols}
814
      140
815
      141
             Symbols for tensors are sans-serif bold italic,
816
      142
817
      143
             \[
                  \tensorsym{\alpha} = \tensorsym{e}\cdot\tensorsym{a}
818
      144
      145
819
                  \quad \Longleftrightarrow \quad
820
      146
                  \alpha_{ijl} = e_{ijk} \cdot a_{kl}.
821
      147
822
      148
823
      149
             The permittivity tensor describes the coupling of electric field and
      150
824
             displacement: \[
825
      151
             \c {D}=\ensuremath{\c D}=\ensuremath{\c C}\
      152
836
```


B3 Abbreviation

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

850

851

852

853

854

855

856

This section shows examples of the use of LATEX commands in conjunction with the items that are in the abbreviation.tex and in the glossary.tex files. Please see List. B.3. To lessen the LATEX compilation time, it is suggested that you use \acr{ } only for the first occurrence of the word to be abbreviated.

Again please see List. B.3. Here is an example of first use: alternating current (ac). Next use: ac. Full: alternating current (ac). Here's an acronym referenced using \acr : hyper-text markup language (html). And here it is again: html. If you are used to the glossaries package, note the difference in using \gls: hyper-text markup language (html). And again (no difference): hyper-text markup language (html). Here are some more entries:

- extensible markup language (xml) and cascading style sheet (css).
- Next use: xml and css.
- Full form: extensible markup language (xml) and cascading style sheet (css).
- Reset again.
- Start with a capital. Hyper-text markup language (html).
- Next: Html. Full: Hyper-text markup language (html).
- Prefer capitals? Extensible markup language (XML). Next: XML. Full: extensible markup language (XML).
- Prefer small-caps? Cascading style sheet (CSS). Next: CSS. Full: cascading style sheet (CSS).
- Resetting all acronyms.
- Here are the acronyms again:
- Hyper-text markup language (HTML), extensible markup language (XML) and cascading style sheet (CSS).
- Next use: HTML, XML and CSS.
- Full form: Hyper-text markup language (HTML), extensible markup language (XML) and cascading style sheet (CSS).

• Provide your own link text: style sheet.

858

The verbatim LaTeX code of Sec. B3 is in List. B.3.

Listing B.3: Sample LATEX code for abbreviations usage

```
Again please see List.~\ref{lst:abbrv}. Here is an example of first use:
       \acr{ac}. Next use: \acr{ac}. Full: \gls{ac}. Here's an acronym
      referenced using \verb | \acr |: \acr{html}. And here it is again: \
      acr{html}. If you are used to the \texttt{glossaries} package, note
      difference): \gls{html}. Here are some more entries:
   \begin{itemize}
5
      \item \acr{xml} and \acr{css}.
7
      \item Next use: \acr{xml} and \acr{css}.
8
      \item Full form: \gls{xml} and \gls{css}.
9
10
      \item Reset again. \glsresetall{abbreviation}
11
12
      \item Start with a capital. \Acr{html}.
13
14
15
      \item Next: \Acr{html}. Full: \Gls{html}.
16
      \item Prefer capitals? \renewcommand{\acronymfont}[1]{\
17
         MakeTextUppercase{#1}} \Acr{xml}. Next: \acr{xml}. Full: \gls{xml}
18
      \item Prefer small-caps? \renewcommand {\acronymfont}[1] {\textsc{#1}}
19
         \Acr{css}. Next: \acr{css}. Full: \gls{css}.
20
21
      \item Resetting all acronyms.\glsresetall{abbreviation}
22
23
      \item Here are the acronyms again:
24
25
      \item \Acr{html}, \acr{xml} and \acr{css}.
26
      \item Next use: \Acr{html}, \acr{xml} and \acr{css}.
27
28
      \item Full form: \Gls{html}, \gls{xml} and \gls{css}.
29
      \item Provide your own link text: \glslink{[textbf]css}{style}
31
32
   \end{itemize}
```


Glossary B4

859

860

862

863

864

865

867

868

869

870

871

872

This section shows examples of the use of \gls{} commands in conjunction with the items that are in the glossary.tex and notation.tex files. Note that entries in notation.tex are prefixed with "not: "label (see List. B.4).

Please make sure that the entries in notation.tex are those that are referenced in the LATEX document files used by this Thesis Proposal. Please comment out unused notations and be careful with the commas and brackets in notation.tex .

- Matrices are usually denoted by a bold capital letter, such as A. The matrix's (i, j)th element is usually denoted a_{ij} . Matrix I is the identity matrix.
- A set, denoted as S, is a collection of objects.
- The universal set, denoted as \mathcal{U} , is the set of everything.
- The empty set, denoted as \emptyset , contains no elements.
- The cardinality of a set, denoted as |S|, is the number of elements in the set.

The verbatim LaTeX code for the part of Sec. B4 is in List. B.4.

Listing B.4: Sample LATEX code for glossary and notations usage

```
\begin{itemize}
2
3
      \item \Glspl{matrix} are usually denoted by a bold capital letter,
          such as \mathbf{A}, The \gls{matrix}'s (i,j)th element is
          usually denoted a_{ij}. \Gls{matrix} $\mathbf{I}$ is the
          identity \gls{matrix}.
4
5
      \item A set, denoted as \gls{not:set}, is a collection of objects.
6
      \item The universal set, denoted as \gls{not:universalSet}, is the
          set of everything.
8
      \item The empty set, denoted as \gls{not:emptySet}, contains no
9
          elements.
10
      \item The cardinality of a set, denoted as \gls{not:cardinality}, is
          the number of elements in the set.
12
   \end{enumerate}
```

11

32

B5 Figure

874

875

This section shows several ways of placing figures. PDFLATEX compatible files are PDF, PNG, and JPG. Please see the figure subdirectory.

Fig. B.1 A quadrilateral image example.

Fig. B.1 is a gray box enclosed by a dark border. List. B.5 shows the corresponding LATEX code.

Listing B.5: Sample LATEX code for a single figure

```
begin{figure}[!htbp]

centering

includegraphics[width=0.5\textwidth]{example}

caption{A quadrilateral image example.}

label{fig:example}

end{figure}

cleardoublepage

Fig.~\ref{fig:example} is a gray box enclosed by a dark border. List.~\

ref{lst:onefig} shows the corresponding \LaTeX \ code.

end{figure}
```


(a) A sub-figure in the top row.

(b) A sub-figure in the middle row.

(c) A sub-figure in the bottom row.

Fig. B.2 Figures on top of each other. See List. B.6 for the corresponding LATEX code.

Listing B.6: Sample LATEX code for three figures on top of each other

```
\begin{figure}[!htbp]
   \centering
   \subbottom[A sub-figure in the top row.]{
   \includegraphics[width=0.35\textwidth]{example}
   \label{fig:top}
   \subbottom[A sub-figure in the middle row.]{
   \includegraphics[width=0.35\textwidth]{example}
10
   \label{fig:mid}
11
   \tvfill
12
   \subbottom[A sub-figure in the bottom row.]{
13
14
   \includegraphics[width=0.35\textwidth]{example}
15
   \label{fig:botm}
16
17
   \caption{Figures on top of each other}
   \label{fig:tmb}
18
   \end{figure}
```


Fig. B.3 Four figures in each corner. See List. B.7 for the corresponding LaTeX code.

Listing B.7: Sample LATEX code for the four figures

```
\begin{figure}[!htbp]
   \centering
   \subbottom[A sub-figure in the upper-left corner.]{
   \includegraphics[width=0.45\textwidth]{example}
   \label{fig:upprleft}
   \subbottom[A sub-figure in the upper-right corner.]{
   \includegraphics[width=0.45\textwidth]{example}
10
   \label{fig:uppright}
11
12
   \vfill
   \subbottom[A sub-figure in the lower-left corner.]{
13
   \includegraphics[width=0.45\textwidth]{example}
   \label{fig:lowerleft}
15
16
17
   \hfill
   \subbottom[A sub-figure in the lower-right corner]{
18
   \includegraphics[width=0.45\textwidth]{example}
19
20
   \label{fig:lowright}
21
   \verb|\caption{Four figures in each corner. See List.~\ref{lst:fourfigs} for
       the corresponding \LaTeX \ code.}
   \label{fig:fourfig}
   \end{figure}
```


B6 Table

879

This section shows an example of placing a table (a long one). Table B.1 are the triples.

TABLE B.1 FEASIBLE TRIPLES FOR HIGHLY VARIABLE GRID

Time (s)	Triple chosen	Other feasible triples
0	(1, 11, 13725)	(1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
2745	(1, 12, 10980)	(1, 13, 8235), (2, 2, 0), (2, 3, 0), (3, 1, 0)
5490	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
8235	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
10980	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
13725	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
16470	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
19215	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
21960	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
24705	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
27450	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
30195	(2, 2, 2745)	(2, 3, 0), (3, 1, 0)
32940	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
35685	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
38430	(1, 13, 10980)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
41175	(1, 12, 13725)	(1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
43920	(1, 13, 10980)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
46665	(2, 2, 2745)	(2,3,0),(3,1,0)
49410	(2, 2, 2745)	(2,3,0),(3,1,0)
52155	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
54900	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
57645	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
60390	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
63135	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
65880	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
68625	(2, 2, 2745)	(2, 3, 0), (3, 1, 0)
71370	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
74115	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
76860	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
79605	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
82350	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
85095	(1, 12, 13725)	(1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
87840	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
90585	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
93330	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0) (2, 2, 2745), (2, 3, 0), (3, 1, 0)
96075	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
98820	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
101565	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
104310	(1, 13, 15725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
107055	(1, 13, 10470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
107033	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
112545	(1, 13, 13723)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
115290	(1, 12, 10470)	(1, 13, 13723), (2, 2, 2743), (2, 3, 0), (3, 1, 0) (2, 2, 2745), (2, 3, 0), (3, 1, 0)
118035	(1, 13, 10470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
120780	(1, 13, 15723)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
123525	(1, 13, 10470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0) (2, 2, 2745), (2, 3, 0), (3, 1, 0)
12323	(1, 13, 13/23)	(2, 2, 27+3), (2, 3, 0), (3, 1, 0) Continued on next page

Continued on next page

Continued from previous page

Time (s)	Triple chosen	Other feasible triples
126270	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
129015	(2, 2, 2745)	(2,3,0),(3,1,0)
131760	(2, 2, 2745)	(2,3,0),(3,1,0)
134505	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
137250	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
139995	(2, 2, 2745)	(2,3,0),(3,1,0)
142740	(2, 2, 2745)	(2,3,0),(3,1,0)
145485	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
148230	(2, 2, 2745)	(2,3,0),(3,1,0)
150975	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
153720	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
156465	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
159210	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
161955	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
164700	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)

880

List. B.8 shows the corresponding LATEX code.

Listing B.8: Sample LATEX code for making typical table environment

```
882
          \begin{center}
883
884
       2
          {\scriptsize
885
          \beta_{0.0} = \frac{1}{2}
886
          \caption{Feasible triples for highly variable grid} \label{tab:triple_
887
888
              grid} \\
889
          \hline
890
          \hline
          \textbf{Time (s)} &
891
       7
892
       8
          \textbf{Triple chosen} &
893
       9
          \textbf{Other feasible triples} \\
894
      10
          \hline
895
      11
          \endfirsthead
          \multicolumn{3}{c}%
896
      12
897
          {\textit{Continued from previous page}} \\
      13
898
      14
          \hline
899
      15
          \hline
900
      16
          \textbf{Time (s)} &
901
      17
          \textbf{Triple chosen} &
902
      18
          \textbf{Other feasible triples} \\
903
      19
          \hline
904
      20
          \endhead
905
      21
          \hline
906
      22
          \multicolumn{3}{r}{\textit{Continued on next page}} \\
907
      23
          \endfoot
908
      24
          \hline
909
      25
          \endlastfoot
910
      26
          \hline
911
      27
          0 & (1, 11, 13725) & (1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
912
      28
913
          2745 & (1, 12, 10980) & (1, 13, 8235), (2, 2, 0), (2, 3, 0), (3, 1, 0)
914
      29
915
          5490 & (1, 12, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
916
917
      31
          8235 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
918
919
      32
          10980 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
920
              0) \\
921
          13725 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 1)
               0) \\
922
          16470 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
923
      34
          19215 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
924
925
               0) \\
926
          21960 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
               0) \\
927
          24705 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
928
      37
               0) \\
929
          27450 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
930
      38
               0) \\
931
932
      39
          30195 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
          32940 \& (1, 13, 16470) \& (2, 2, 2745), (2, 3, 0), (3, 1, 0) \setminus
933
      40
934
          35685 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
935
      42 | 38430 & (1, 13, 10980) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
```

De La Salle University

```
41175 & (1, 12, 13725) & (1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1,
936
937
           43920 & (1, 13, 10980) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
938
           46665 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
939
       45
940
           49410 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
       46
941
           52155 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
942
                0) \\
           54900 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
943
       48
944
       49
           57645 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0)
           60390 & (1, 12, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) 63135 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0)
945
       50
                                                                                //
946
947
       52
           65880 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0)
           68625 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
948
       53
           71370 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
949
950
           74115 & (1, 12, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
951
           76860 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
           79605 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \
952
       57
           82350 & (1, 12, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
85095 & (1, 12, 13725) & (1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1,
953
       58
954
955
           87840 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
956
           90585 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
957
       61
958
           93330 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \
959
           96075 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
           98820 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
960
       64
           101565 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
961
       65
962
       66
           104310 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
           107055 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
109800 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
963
       67
964
       68
           112545 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3,
965
       69
               1, 0) \\
966
           115290 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
967
968
           118035 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
           120780 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \
969
           123525 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
126270 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3,
970
       73
971
972
               1, 0)
                      11
973
           129015 &
                     (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
           131760 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
974
975
           134505 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
       77
976
       78
           137250 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
977
           139995 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
           142740 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
       80
978
979
       81
           145485 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3,
980
           148230 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
150975 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
981
982
       83
           153720 & (1, 12, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
983
984
           156465 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
985
           159210 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
986
           161955 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
987
           164700 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
988
       89
           \end{tabularx}
989
       90
           \end{center}
999
```


B7 Algorithm or Pseudocode Listing

993 994 995 Table B.2 shows an example pseudocode. Note that if the pseudocode exceeds one page, it can mean that its implementation is not modular. List. B.9 shows the corresponding LATEX code.

Table B.2 Calculation of $y = x^n$

Input(s):

 $\begin{array}{lll} n & : & n \text{th power; } n \in \mathbb{Z}^+ \\ x & : & \text{base value; } x \in \mathbb{R}^+ \end{array}$

Output(s):

y: result; $y \in \mathbb{R}^+$

Require: $n \ge 0 \lor x \ne 0$

Ensure: $y = x^n$

- 1: $y \Leftarrow 1$
- 2: if n < 0 then
- $X \Leftarrow 1/x$
- 4: $N \Leftarrow -n$
- 5: else
- 6: $X \Leftarrow x$
- 7: $N \Leftarrow n$
- 8: **end if**
- 9: while $N \neq 0$ do
- 10: **if** N is even **then**
- 11: $X \Leftarrow X \times X$ 12: $N \Leftarrow N/2$
- 13: **else** $\{N \text{ is odd}\}$
- 14: $y \Leftarrow y \times X$
- 15: $N \Leftarrow N 1$
- 16: **end if**
- 17: end while

Listing B.9: Sample LATEX code for algorithm or pseudocode listing usage

```
\begin{table}[!htbp]
  1
  2
                      \caption{Calculation of $y = x^n$}
  3
                      \label{tab:calcxn}
                      {\footnotesize
  4
                      \begin{tabular}{111}
  5
                      \hline
  7
                      \hline
                      {\bfseries Input(s):} & & \\
  8
  9
                      n & : & nth power; n \in \mathbb{Z}^{+}
10
                      x & : & base value; x \in \mathbb{R}^{+}
11
12
                      {\bfseries Output(s):} & & \\
                      y & : & result; y \in \mathbb{R}^{+} \\
13
14
                      \hline
15
                      \hline
16
17
                      \end{tabular}
18
19
                      \begin{algorithmic}[1]
20
                      {\normalfont} \{ \normalfont 
                                \REQUIRE $n \geq 0 \vee x \neq 0$
21
                                \ENSURE $y = x^n$
22
                               \STATE $y \Leftarrow 1$
23
                                \IF { n < 0 }
24
25
                                                     \STATE $X \Leftarrow 1 / x$
                                                     \STATE $N \Leftarrow -n$
26
27
                                \ELSE
28
                                                     \STATE $X \Leftarrow x$
29
                                                     \STATE $N \Leftarrow n$
                                \ENDIF
30
                                \WHILE{$N \neq 0$}
31
32
                                                     \IF{$N$ is even}
33
                                                                         \STATE $X \Leftarrow X \times X$
                                                                         \STATE $N \Leftarrow N / 2$
34
35
                                                     \ELSE[$N$ is odd]
36
                                                                         \STATE $y \Leftarrow y \times X$
37
                                                                         \STATE $N \Leftarrow N - 1$
38
                                                    \ENDIF
                                \ENDWHILE
39
40
41
                      \end{algorithmic}
            \end{table}
```


B8 Program/Code Listing

List. B.10 is a program listing of a C code for computing Fibonacci numbers by calling the actual code. Please see the code subdirectory.

Listing B.10: Computing Fibonacci numbers in C (./code/fibo.c)

```
/* fibo.c -- It prints out the first N Fibonacci
2
                  numbers.
3
   #include <stdio.h>
7
   int main(void) {
8
        int n;
                       /* Number of fibonacci numbers we will print */
9
                       /* Index of fibonacci number to be printed next */
        int current; /* Value of the (i)th fibonacci number */
10
11
        int next; /* Value of the (i+1)th fibonacci number */
12
        int twoaway; /* Value of the (i+2)th fibonacci number */
13
        printf("HowumanyuFibonacciunumbersudouyouuwantutoucompute?u");
14
        scanf("%d", &n);
15
16
        if (n \le 0)
           printf("The\sqcupnumber\sqcupshould\sqcupbe\sqcuppositive.\setminusn");
17
18
        else {
          printf("\n\n\tI_\tuFibonacci(I)\n\t=========\n");
19
20
          next = current = 1;
21
          for (i=1; i<=n; i++) {
22
       printf("\t^d_{\sqcup}\t^d_{\sqcup}d\n", i, current);
       twoaway = current+next;
current = next;
23
24
               = twoaway;
25
       next
27
28
   | }
29
30
   /* The output from a run of this program was:
31
32
   How many Fibonacci numbers do you want to compute? 9
33
34
           Fibonacci(I)
35
36
37
       2
             1
38
       3
             2
39
             3
       4
40
       5
             5
41
       6
             8
42
       7
             13
43
       8
            21
44
45
46
```


List. B.11 shows the corresponding LaTeX code.

Listing B.11: Sample LaTeX code for program listing

List.~\ref{lst:fib_c} is a program listing of a C code for computing Fibonacci numbers by calling the actual code. Please see the \verb| code | subdirectory.

B9 Referencing

Referencing chapters: This appendix is in Appendix B, which is about examples in using various LaTeX commands.

Referencing sections: This section is Sec. B9, which shows how to refer to the locations of various labels that have been placed in the LaTeX files. List. B.12 shows the corresponding LaTeX code.

Listing B.12: Sample LATEX code for referencing sections

Referencing sections: This section is Sec.~\ref{sec:ref}, which shows how to refer to the locations of various labels that have been placed in the \LaTeX \ files. List.~\ref{lst:refsec} shows the corresponding \LaTeX \ code.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

B9.1 A subsection

Referencing subsections: This section is Sec. B9.1, which shows how to refer to a subsection. List. B.13 shows the corresponding LaTeX code.

Listing B.13: Sample LaTeX code for referencing subsections

Referencing subsections: This section is Sec.~\ref{sec:subsec}, which
shows how to refer to a subsection. List.~\ref{lst:refsub} shows the
corresponding \LaTeX \ code.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

B9.1.1 A sub-subsection

Referencing sub-subsections: This section is Sec. B9.1.1, which shows how to refer to a sub-subsection. List. B.14 shows the corresponding LaTeX code.

Listing B.14: Sample LATEX code for referencing sub-subsections

Referencing sub-subsections: This section is Sec. \ref{sec:subsubsec},
 which shows how to refer to a sub-subsection. List. \ref{lst:
 refsubsub} shows the corresponding \LaTeX \ code.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

1040

1041

1042

1043

1045

1046

1047

B10 Index

For key words or topics that are expected (or the user would like) to appear in the Index, use index{key}, where key is an example keyword to appear in the Index. For example, Fredholm integral and Fourier operator of the following paragraph are in the Index.

If we make a very large matrix with complex exponentials in the rows (i.e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the Fredholm integral equation of the 2nd kind, namely the Fourier operator that defines the continuous Fourier transform.

List. B.15 is a program listing of the above-mentioned paragraph.

Listing B.15: Sample LaTeX code for Index usage

If we make a very large matrix with complex exponentials in the rows (i. e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the \index{ Fredholm integral} Fredholm integral equation of the 2nd kind, namely the \index{Fourier} Fourier operator that defines the continuous Fourier transform.

1049

1050

1051 1052

B11 Adding Relevant PDF Pages (e.g. Standards, Datasheets, Specification Sheets, Application Notes, etc.)

Selected PDF pages can be added (see List. B.16), but note that the options must be tweaked. See the manual of pdfpages for other options.

Listing B.16: Sample LATEX code for including PDF pages

```
1 \includepdf[pages={8-10},%
2 offset=3.5mm -10mm,%
3 scale=0.73,%
4 frame]
5 {./reference/Xilinx2015-UltraScaleArchitectureOverview.pdf}
```


EXILINX.

UltraScale Architecture and Product Overview

Virtex UltraScale FPGA Feature Summary

Table 6: Virtex UltraScale FPGA Feature Summary

	VU065	VU080	VU095	VU125	VU160	VU190	VU440
Logic Cells	626,640	780,000	940,800	1,253,280	1,621,200	1,879,920	4,432,680
CLB Flip-Flops	716,160	891,424	1,075,200	1,432,320	1,852,800	2,148,480	5,065,920
CLB LUTs	358,080	445,712	537,600	716,160	926,400	1,074,240	2,532,960
Maximum Distributed RAM (Mb)	4.8	3.9	4.8	9.7	12.7	14.5	28.7
Block RAM/FIFO w/ECC (36Kb each)	1,260	1,421	1,728	2,520	3,276	3,780	2,520
Total Block RAM (Mb)	44.3	50.0	60.8	88.6	115.2	132.9	88.6
CMT (1 MMCM, 2 PLLs)	10	16	16	20	30	30	30
I/O DLLs	40	64	64	80	120	120	120
Fractional PLLs	5	8	8	10	15	15	0
Maximum HP I/Os ⁽¹⁾	468	780	780	780	650	650	1,404
Maximum HR I/Os ⁽²⁾	52	52	52	104	52	52	52
DSP Slices	600	672	768	1,200	1,560	1,800	2,880
System Monitor	1	1	1	2	3	3	3
PCIe Gen3 x8	2	4	4	4	5	6	6
150G Interlaken	3	6	6	6	8	9	0
100G Ethernet	3	4	4	6	9	9	3
GTH 16.3Gb/s Transceivers	20	32	32	40	52	60	48
GTY 30.5Gb/s Transceivers	20	32	32	40	52	60	0

- Notes:
 1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
- 2. HR = High-range I/O with support for I/O voltage from 1.2V to 3.3V.

DS890 (v2.1) April 27, 2015 **Preliminary Product Specification** www.xilinx.com

EXILINX.

UltraScale Architecture and Product Overview

Virtex UltraScale Device-Package Combinations and Maximum I/Os

Table 7: Virtex UltraScale Device-Package Combinations and Maximum I/Os

Package ⁽¹⁾⁽²⁾⁽³⁾	Package	VU065	VU080	VU095	VU125	VU160	VU190	VU440
	Dimensions (mm)	HR, HP GTH, GTY						
FFVC1517	40x40	52, 468 20, 20	52, 468 20, 20	52, 468 20, 20				
FFVD1517	40x40		52, 286 32, 32	52, 286 32, 32				
FLVD1517	40x40				52, 286 40, 32			
FFVB1760	42.5x42.5		52, 650 32, 16	52, 650 32, 16				
FLVB1760	42.5x42.5				52, 650 36, 16			
FFVA2104	47.5x47.5		52, 780 28, 24	52, 780 28, 24				
FLVA2104	47.5x47.5				52, 780 28, 24			
FFVB2104	47.5x47.5		52, 650 32, 32	52, 650 32, 32				
FLVB2104	47.5x47.5				52, 650 40, 36			
FLGB2104	47.5x47.5					52, 650 40, 36	52, 650 40, 36	
FFVC2104	47.5x47.5			52, 364 32, 32				
FLVC2104	47.5x47.5				52, 364 40, 40			
FLGC2104	47.5x47.5					52, 364 52, 52	52, 364 52, 52	
FLGB2377	50x50							52, 1248 36, 0
FLGA2577	52.5x52.5						0, 448 60, 60	
FLGA2892	55x55							52, 1404 48, 0

- Go to Ordering Information for package designation details.
 All packages have 1.0mm ball pitch.
 Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the UltraScale Architecture Product Selection Guide for details on inter-family migration.

DS890 (v2.1) April 27, 2015 **Preliminary Product Specification** www.xilinx.com

EXILINX.

UltraScale Architecture and Product Overview

Virtex UltraScale+ FPGA Feature Summary

Table 8: Virtex UltraScale+ FPGA Feature Summary

	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P
Logic Cells	689,640	1,051,010	1,379,280	2,068,920	2,147,040	2,862,720
CLB Flip-Flops	788,160	1,201,154	1,576,320	2,364,480	2,453,760	3,271,680
CLB LUTs	394,080	600,577	788,160	1,182,240	1,226,880	1,635,840
Max. Distributed RAM (Mb)	12.0	18.3	24.1	36.1	34.8	46.4
Block RAM/FIFO w/ECC (36Kb each)	720	1,024	1,440	2,160	2,016	2,688
Block RAM (Mb)	25.3	36.0	50.6	75.9	70.9	94.5
UltraRAM Blocks	320	470	640	960	1,152	1,536
UltraRAM (Mb)	90.0	132.2	180.0	270.0	324.0	432.0
CMTs (1 MMCM and 2 PLLs)	10	20	20	30	12	16
Max. HP I/O(1)	520	832	832	832	624	832
DSP Slices	2,280	3,474	4,560	6,840	8,928	11,904
System Monitor	1	2	2	3	3	4
GTY Transceivers 32.75Gb/s	40	80	80	120	96	128
PCIe Gen3 x16 and Gen4 x8	2	4	4	6	3	4
150G Interlaken	3	4	6	9	9	12
100G Ethernet w/RS-FEC	3	4	6	9	6	8

Virtex UltraScale+ Device-Package Combinations and Maximum I/Os

Table 9: Virtex UltraScale+ Device-Package Combinations and Maximum I/Os

Package	Package Dimensions (mm)	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P
(1)(2)(3)		HP, GTY	HP, GTY	HP, GTY	HP, GTY	HP, GTY	HP, GTY
FFVC1517	40x40	520, 40					
FLVF1924	45x45					624, 64	
FLVA2104	47.5x47.5		832, 52	832, 52	832, 52		
FHVA2104	52.5x52.5 ⁽⁴⁾						832, 52
FLVB2104	47.5x47.5		702, 76	702, 76	702, 76	624, 76	
FHVB2104	52.5x52.5 ⁽⁴⁾						702, 76
FLVC2104	47.5x47.5		416, 80	416, 80	416, 104	416, 96	
FHVC2104	52.5x52.5 ⁽⁴⁾						416, 104
FLVA2577	52.5x52.5				448, 120	448, 96	448, 128

- Go to Ordering Information for package designation details.
- 2. All packages have 1.0mm ball pitch.
- Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale devices with the same sequence. The footprint compatible devices within this family are outlined.
 These 52.5x52.5mm overhang packages have the same PCB ball footprint as the corresponding 47.5x47.5mm packages (i.e., the same last letter and number sequence) and are footprint compatible.

DS890 (v2.1) April 27, 2015 **Preliminary Product Specification** www.xilinx.com

10

^{1.} HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.

SILLEDIN		•		— •	•
	De.	La Sa	lle l	Jniv	ersitv
MANILA		_ ,, ,			j

Appendix C PUBLICATION LIST AND AWARD

Journal

1059 1. ...

1056

1057

1060 2. ...

1061 Conference

1062 1. ...

1063 2. ...

	O4 la a rea
1064	Others

1065 1. ...

1066 2. ...

1067 Award

1068 1. ...

1069 2. ...

Appendix D VITA

Juan A. dela Cruz received the B.Sc., M.Sc., and Ph.D. degrees in chemistry all from the Pamantasan ng Pilipinas, San Juan, Metro Manila, Philippines, in 2011, 2013 and 2016 respectively. He is currently taking up his B.Sc. Electronics and Communications Engineering studies. He has developed several high-speed packet-switched network systems and node modules. His research interests include high-speed packet-switched networks, high speed radio interface design, discrete simulation and statistical models for packet switches.

Nat B. Franco received the B.Sc., M.Sc., and Ph.D. degrees in chemistry all from the Pamantasan ng Pilipinas, San Juan, Metro Manila, Philippines, in 2011, 2013 and 2016 respectively. He is currently taking up his B.Sc. Electronics and Communications Engineering studies. He has developed several high-speed packet-switched network systems and node modules. His research interests include high-speed packet-switched networks, high speed radio interface design, discrete simulation and statistical models for packet switches.

Max C. Rianzares received the B.Sc., M.Sc., and Ph.D. degrees in chemistry all from the Pamantasan ng Pilipinas, San Juan, Metro Manila, Philippines, in 2011, 2013 and 2016 respectively. He is currently taking up his B.Sc. Electronics and Communications Engineering studies. He has developed several high-speed

packet-switched network systems and node modules. His research interests include high-speed packet-switched networks, high speed radio interface design, discrete simulation and statistical models for packet switches.

SILEUM	-		11 🔻	•	•
	De J	La Sa	lle l	Jnive	ersity
ANIC					J

INDEX

contributions, 28

Fourier operator, 70 Fredholm integral, 70

summary, 4