Ηλεκτρονική III

6° εξάμηνο

Εργαστηριακές Ασκήσεις και προσομοιώσεις με το SPICE

- 1. Γεννήτρια τριγωνικών κυματομορφών
- > 2. Γεννήτρια κλιμακωτής τάσης

1

Αλκης Χατζόπουλος - Εργαστήριο Ηλεκτρονικής - Τμ.Η.Μ.Μ.Υ. - Α.Π.Θ.

Ηλεκτρονική III

Γεννήτρια κλιμακωτής τάσης

Αλκης Χατζόπουλος - Εργαστήριο Ηλεκτρονικής - Τμ.Η.Μ.Μ.Υ. - Α.Π.Θ.

Ηλεκτρονική III

ΒΑΣΙΚΕΣ ΚΥΜΑΤΟΜΟΡΦΕΣ

Αλκης Χατζόπουλος - Εργαστήριο Ηλεκτρονικής – Τμ.Η.Μ.Μ.Υ. – Α.Π.Θ.

Ηλεκτρονική III

ΑΣΤΑΘΗΣ Α

1. Ασύμμετρος ασταθής πολυδονητής (A) με timer 555.

Για να επιτευγχθεί μικρός κύκλος εργασίας (duty cycle) $k=t_{ON}$ / Τ χρησιμοποιείται μία δίοδος παράλληλα με την αντίσταση R_2 , οπότε οι χρόνοι t_{ON} και t_{OFF} θα δίνονται από τις σχέσεις:

$$t_{ON} \approx 0.693 R_1 C_1$$
 (1)

$$t_{OFF} = 0.693 R_2 C_1$$
 (2)

Ο κύκλος εργασίας θα είναι $k = R_1 / (R_1 + R_2)$ και μπορεί προφανώς να πάρει οποιαδήποτε τιμή στο διάστημα 0 < k < 1.

Αλκης Χατζόπουλος - Εργαστήριο Ηλεκτρονικής – Τμ.Η.Μ.Μ.Υ. – Α.Π.Θ.

Ηλεκτρονική ΙΙΙ

ΑΣΤΑΘΗΣ Β

2. Ασύμμετρος ασταθής πολυδονητής (B) με τελεστικό ενισχυτή.

Για τον πολυδονητή Β έστω ότι:

$$\beta = R_i / (R_i + R_f)$$

και

$$n = \ln ([V_D - (1+\beta)V_{OSAT}]/[V_D - (1-\beta)V_{OSAT}]).$$

Η διάρκεια της εξόδου στο θετικό κόρο +VOSAT θα είναι:

$$t_{HIGH} = R_A C_2 n \tag{3}$$

ενώ η διάρκεια της εξόδου στον αρνητικό κόρο - Vosat θα είναι:

$$t_{LOW} = R_B C_2 n \tag{4}$$

Η περίοδος των ταλαντώσεων είναι $T=t_{HIGH}+t_{LOW}=(R_A+R_B)C_2$ n, ενώ ο κύκλος εργασίας (duty cycle) είναι : $k=t_{HIGH}$ / $T=R_A$ / (R_A+R_B) .

Αλκης Χατζόπουλος - Εργαστήριο Ηλεκτρονικής - Τμ.Η.Μ.Μ.Υ. - Α.Π.Θ.

Ηλεκτρονική ΙΙΙ

ΟΛΟΚΛΗΡΩΤΗΣ

3. Ολοκληρωτής.

Το ύψος κάθε βήματος της κλίμακας καθορίζεται από τη σχέση του ολοκληρωτή. Από το κύκλωμα της αναστρέφουσας εισόδου του τελεστικού ενισχυτή (σχήμα 1) προκύπτει:

$$V_c / R = V_0 - V_c / R \Rightarrow V_0 = 2V_c$$
 (5)

Το ρεύμα του πυκνωτή i_C είναι η διαφορά των ρευμάτων i_i και i_f , οπότε θα είναι:

$$i_{C} = i_{i} - i_{f} = (V_{1} - V_{C}) / R - (V_{C} - V_{0}) / R$$

 $\Rightarrow i_{C} = V_{1} / R$

Η τάση Vc του πυκνωτή είναι:

$$V_{C} = (1/C) \int i_{C} dt = (1/RC) \int V_{1} dt$$
 (7)

οπότε, λαμβάνοντας υπόψη την εξίσωση (5), η τάση εξόδου Vo είναι:

$$V_0 = (2/RC) \int V_1 dt$$
 (8)

Η εξίσωση (8) αιτιολογεί τη λειτουργία του κυκλώματος σαν ολοκληρωτή και με κατάλληλες αρχικές τιμές και όρια ολοκλήρωσης προκύπτει το ύψος κάθε σκαλοπατιού.

ΕΡΓΑΣΤΗΡΙΑΚΗ ΕΦΑΡΜΟΓΗ (1)

- 1. Να υπολογιστούν τα υπόλοιπα στοιχεία για το κύκλωμα του σχήματος 1 έτσι ώστε η παραγόμενη κλίμακα τάσης να έχει τα εξής χαρακτηριστικά:
 - α) ύψος κάθε βήματος : 0.6 Volt
 - β) συνολική διάρκεια βήματος t_s: 4 msec
 - γ) ολική διάρκεια κλίμακας t_o: 18 msec
 - δ) χρονική απόσταση μεταξύ κλιμάκων : 2 msec.
- 2. Να κατασκευαστούν οι δύο ασταθείς πολυδονητές με τα επιθυμητά χαρακτηριστικά. Να σχεδιαστούν οι κυματομορφές εξόδου τους V_1 και V_2 καθώς και η τάση $V_{\textbf{C1}}$ του timer.
 - 3. Να κατασκευαστεί το κύκλωμα του ολοκληρωτή.
- 4. Να συνδεθεί ολόκληρο το κύκλωμα του σχήματος 1 με την προσθήκη της διάταξης ανόρθωσης και των τρανζίστορ εκφόρτισης T_1 και συγχρονισμού T_2 .
- 5. Να παρατηρηθούν οι κυματομορφές V₀, V₁, V₃ και V_{C1} και να σχεδιαστούν σε κατάλληλο διάγραμμα (όπως στο σχήμα 2). Η V₀ ξεκινάει ακριβώς από το μηδέν; Γιατί;
- 6. Να διακοπεί η σύνδεση στη βάση του T_2 και να εξηγηθεί η "ολίσθηση" της κλίμακας. Να ξαναγίνει η σύνδεση του T_2 .

Αλκης Χατζόπουλος - Εργαστήριο Ηλεκτρονικής – Τμ.Η.Μ.Μ.Υ. – Α.Π.Θ.

Ηλεκτρονική III

ΕΡΓΑΣΤΗΡΙΑΚΗ ΕΦΑΡΜΟΓΗ (2)

- 7. Να συναρμολογηθεί το κύκλωμα του σχήματος 3 και να συνδεθεί η έξοδος V₀ στην V_{IN}. Να συνδεθούν οι X και Y είσοδοι του παλμογράφου όπως φαίνεται στο σχήμα και να τεθεί ο παλμογράφος σε λειτουργία X-Y.
- 8. Να σχεδιαστούν οι χαρακτηριστικές εξόδου (υ_{CE} i_C) του τρανζίστορ που εμφανίζονται, σε κατάλληλα βαθμολογημένους άξονες με παράμετρο το I_B. Να εξηγηθεί η αντιστοιχία των μεγεθών.

Σχήμα 3. Κύκλωμα για την εμφάνιση χαρακτηριστικών εξόδου του τρανζίστορ (curve tracer).

Προσομοίωση με το SPICE

Εικόνα 11.10 Κύκλωμα Γεννήτριας

Αλκης Χατζόπουλος - Εργαστήριο Ηλεκτρονικής – Τμ.Η.Μ.Υ. – Α.Π.Θ. Ηλεκ

Ηλεκτρονική III

9

Κύκλωμα ασταθή Α

Εικόνα 11.11 Ασταθής Πολυδονητής Α

$$\begin{split} t_{ON} &\approx 0.693 \cdot R_1 \cdot C \\ t_{OFF} &\approx 0.693 \cdot R_2 \cdot C \\ (duty\ cycle)\ k = \frac{t_{ON}}{T} = \frac{t_{ON}}{t_{ON} + t_{OFF}} \\ k &= \frac{R_1}{R_1 + R_2}, 0 < k < 1 \end{split}$$

Κυματομορφές ασταθή Α

Εικόνα 11.14 Κυματομορφές των τάσεων V_1 και V_{c1}

Αλκης Χατζόπουλος - Εργαστήριο Ηλεκτρονικής – Τμ.Η.Μ.Μ.Υ. – Α.Π.Θ.

Ηλεκτρονική III

11

Κύκλωμα ασταθή Β

$$t_{HIGH} = R_A \cdot C_2 \cdot n$$

$$t_{LOW} = R_B \cdot C_2 \cdot n$$

$$n = \ln \left(\frac{V_D - (1 + \beta) \cdot V_{OSAT}}{V_D - (1 - \beta) \cdot V_{OSAT}} \right)$$

$$\beta = \frac{R_i}{R_i + R_f}$$

Κυματομορφές ασταθή Β

Κύκλωμα ολοκληρωτή

Εικόνα 11.13 Ολοκληρωτής

Συνολικό κύκλωμα γεννήτριας κλιμακωτής τάσης

Εικόνα 11.10 Κύκλωμα Γεννήτριας

Αλκης Χατζόπουλος - Εργαστήριο Ηλεκτρονικής - Τμ.Η.Μ.Μ.Υ. - Α.Π.Θ.

Ηλεκτρονική III

Κυματομορφές συνολικής λειτουργίας

Εικόνα 11.16 κυματομορφές $V_{O},\ V_{1},\ V_{3}$ και V_{C1}

Αλκης Χατζόπουλος - Εργαστήριο Ηλεκτρονικής – $T\mu$.H.M.Y. – A. Π . Θ . Ηλεκτρονική III

15

Κύκλωμα για παραγωγή χαρακτηριστικών i-v.

Εικόνα 11.17 Κύκλωμα για την εμφάνιση χαρακτηριστικών εξόδου του τρανζίστορ (curve tracer)

17

Αλκης Χατζόπουλος - Εργαστήριο Ηλεκτρονικής - Τμ.Η.Μ.Μ.Υ. - Α.Π.Θ.

Ηλεκτρονική III

Χαρακτηριστικές i-v

Εικόνα 11.27 Χαρακτηριστικές Εξόδου ($u_{\it CE}-i_{\it C}$) του $\it transistor~T_{\it 3}$

Κυματομορφές Vo – ανάλυση ως προς την θερμοκρασία

Εικόνα 11.28 Κυματομορφές εξόδου V_o για διάφορες θερμοκρασίες (-100^oC , 0^oC , 27^oC και 100^oC)

19

Αλκης Χατζόπουλος - Εργαστήριο Ηλεκτρονικής - Τμ.Η.Μ.Μ.Υ. - Α.Π.Θ. Ηλεκτρονική ΙΙΙ