A FIRST COURSE

IN

NUMERICAL ANALYSIS

A FIRST COURSE

IN

NUMERICAL ANALYSIS

MAT4001 Notebook

Prof. Yutian Li

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	vii
Notat	tions	ix
1	Week1	. 1
1.1	Wednesday	1
1.1.1	Introduction to Imaginary System	. 1
1.1.2	Algebraic and geometric properties	. 3
1.1.3	Polar and exponential forms	. 5

Acknowledgments

This book is from the MAT4001 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 1

Week1

1.1. Wednesday

1.1.1. Introduction to Imaginary System

Definition 1.1 [Complex Number] A complex number z is a pair of real numbers:

$$z = (x, y),$$

where x is the real part and y is the imaginary part of z, denoted as

$$Rez = x \quad Imz = y$$

Note that the complex multiplication does not correspond to any standard vector operation. However, $(\mathbb{C},+)$ and $(\mathbb{C}\setminus\{0\},\cdot)$ forms a field:

$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$$
$$z_1 + z_2 = z_2 + z_1$$
$$z + 0 = 0 + z = z$$
$$z + (-z) = (-z) + z = 0$$

There is no other Eucliean space that can form a field.

Proposition 1.1 zz' = 0 if and only if z = 0 or z' = 0.

Proof. Rewrite the product as a linear system

$$\begin{pmatrix} x & -y \\ y & x \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

and discuss the determinant of the coefficient matrix.

Solving quadratic equation with one unknown. We can apply the imaginary number to solve the quadratic equations. For example, to solve $z^2 - 2z + 2 = 0$, the first method is to substitute z with x + iy; the second method is to simplify it into standard form to solve it.

Definition 1.2 If $z \neq 0$, then z^{-1} is the complex number satisfying $z \cdot z^{-1} = 1$.

Suppose z = (x,y) and $z^{-1} = (u,v)$. After simplification, we derive

$$\begin{cases} xu - yv = 1 \\ xv + yu = 0 \end{cases} \implies \begin{cases} u = \frac{x}{x^2 + y^2} \\ v = \frac{-y}{x^2 + y^2} \end{cases}$$

Definition 1.3 [Division] The division between complex numbers is defined as:

$$\frac{z_1}{z_2} = z_1 \cdot z_2^{-1}$$
, when $z_2 \neq 0$

■ Example 1.1

$$\frac{3-4i}{1+i} = (3-4i)\left(\frac{1}{2} - \frac{1}{2}i\right) = -\frac{1}{2} - \frac{7}{2}i$$

$$\frac{10}{(1+i)(2+i)(3+i)} = \frac{10}{(1+3i)(3+i)} = \frac{10}{10i} = \frac{1}{i} = -i$$

Definition 1.4 [Complex Conjugate] The complex number x - iy is called the **complex conjugate** of z = x + iy, which is denoted by \bar{z} .

The following properties hold for complex conjugate:

$$\overline{z_1 \pm z_2} = \bar{z}_1 \pm \bar{z}_2, \quad \overline{z_1 z_2} = \bar{z}_1 \bar{z}_2. \quad \overline{\frac{z_1}{z_2}} = \frac{\bar{z}_1}{\bar{z}_2}$$

$$Rez = \frac{z+\bar{z}}{2}$$
, $Imz = \frac{z-\bar{z}}{2i}$

1.1.2. Algebraic and geometric properties

Definition 1.5 [Algebraic Region]

- 1. The complex plane: the z-plane, i.e., $\mathbb C$ 2. Vector in $\mathbb R^2$: $(x,y)=x+iy=z\in\mathbb C$ 3. Modulus of z:

$$|z| = \sqrt{x^2 + y^2}$$
 distance to the origin

Note that

$$|z| = 0 \iff z = 0, \quad |z_1 - z_2| = 0 \iff z_1 = z_2$$

6 [Circle in plane] A circle with center z_0 and radius R is defined as follows

$$\{z \in \mathbb{C} \mid |z - z_0| = R\}$$

Proposition 1.2 Complex roots of polynomials with real coefficients appear in conjugate pairs.

Proof. Given $P(z_0) = 0$, we derive

$$P(z_0) = \overline{P(z_0)} = 0.$$

Note that a polynomial with real coefficients of degree 3 must have at least one real root.

Conjugate Product. Note that the conjugate product leads to the square of modulus:

$$z \cdot \bar{z} = |z|^2 \iff (x + iy)(x - iy) = x^2 + y^2$$

Such a property can be used to simplify quotient of two complex numbers:

$$\frac{z_1}{z_2} = \frac{z_1\bar{z}_2}{|z_2|^2} = \frac{x_1x_2 + y_1y_2 + (y_1x_2 - x_1y_2)i}{x_2^2 + y_2^2}$$

$$\frac{-1+3i}{2-i} = \frac{(-1+3i)(2+i)}{(2-i)(2+i)} = \frac{-5+5i}{5} = -1+i$$
$$|z_1+z_2|^2 + |z_1-z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$

We can use conjugate to show the **triangle inequality**:

Proposition 1.3 — Triangle Inequality. $|z_1 + z_2| \le |z_1| + |z_2|$.

Proof.

$$|z_{1} + z_{2}|^{2} = (z_{1} + z_{2})\overline{(z_{1} + z_{2})}$$

$$= |z_{1}|^{2} + |z_{2}|^{2} + z_{1}\overline{z}_{2} + \overline{z_{1}}\overline{z}_{2}$$

$$= |z_{1}|^{2} + |z_{2}|^{2} + 2\operatorname{Re}(z_{1}\overline{z}_{2})$$

$$\leq |z_{1}|^{2} + |z_{2}|^{2} + 2|z_{1}\overline{z}_{2}|$$

$$= |z_{1}|^{2} + |z_{2}|^{2} + 2|z_{1}z_{2}| = (|z_{1}| + |z_{2}|)^{2}.$$

Corollary 1.1 1. $||z_1| - |z_2|| \le |z_1 \pm z_2|$.

2. If $|z| \le 1$, then $|z^2 + z + 1| \le 3$

Proof. 1. Note that

$$|z_1| = |z_1 \pm z_2 \mp z_2| \le |z_1 \pm z_2| + |z_2| \implies |z_1| - |z_2| \le |z_1 \pm z_2|$$

Similarly, $|z_2| - |z_1| \le |z_1 \pm z_2|$.

2.

$$|z^2 + z + 1| \le |z^2| + |z + 1| \le |z|^2 + |z| + 1 \le 1 + 1 + 1 = 3.$$

Proposition 1.4 — Cauchy-Schwarz inequality. If $z_1,...,z_n$ and $w_1,...,w_n$ are complex numbers, then

$$\left[\sum_{k=1}^{n} z_k w_k\right]^2 \le \left[\sum_{k=1}^{n} |z_k|^2\right] \left[\sum_{k=1}^{n} |w_k|^2\right]$$

1.1.3. Polar and exponential forms

Definition 1.7 [Polar Form] The polar form of a nonzero complex number z is:

$$z = r(\cos\theta + i\sin\theta)$$

where (r, θ) is the polar coordinates of (x, y).

$$(r,\theta) \implies (x,y): \begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

$$(x,y) \implies (r,\theta) : \begin{cases} r = \sqrt{x^2 + y^2} \\ \tan \theta = \frac{y}{x} \end{cases}$$

Note that θ is said to be the **argument** of z, i.e., $\theta = \arg z$. The augument is not unique, i.e.,

$$z = r(\cos\theta + i\sin\theta)r(\cos(\theta + 2\pi) + i\sin(\theta + 2\pi))$$

If given an argument of z, then we form the set of arguments of z:

$$\{\theta + 2n\pi \mid n \in \mathbb{Z}\}$$

Definition 1.8 [Principal Value] The principal value of $\arg z$, denoted by $\arg z$, is the unique value of $\arg z$ such that $-\pi < \arg z \leq \pi$

Actually, $(\mathbb{C},+)$ forms a group:

Also, $(\mathbb{C} \setminus \{0\}, \cdot)$ forms a group.

The product for imaginary numbers is different from vector product:

$$\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2$$

Also, we can define the crossover product $\vec{v} \times \vec{w}$.

modulus:

$$|z| = \sqrt{x^2 + y^2}$$

direction angle (Argument):

$$\tan \theta = \frac{y}{x}$$

Using the polar coordination, we find z = x + iy can be transformed into

$$z = r\cos\theta + ir\sin\theta$$
$$= r(\cos\theta + i\sin\theta)$$
$$= r[\cos(\theta + 2n\pi) + i\sin(\theta + 2n\pi)]$$

Principal argument:

$$-\pi < \text{Arg}z \le \pi$$

Conjugate form of imaginary number:

$$\bar{z} = x - iy$$

$$\overline{z+w} = \bar{z} + \bar{w}$$

$$z \cdot \bar{z} = |z|^2$$

$$\frac{1}{z} = \frac{\bar{z}}{|z|^2}$$

Proposition 1.6
$$|z+w|^2 + |z-w|^2 = 2|z|^2 + 2|w|^2$$
.

Proposition 1.7

$$\Re z = \frac{z + \bar{z}}{2}, \ \Im z = \frac{z - \bar{z}}{2i}$$