WHAT IS CLAIMED IS:

1	1. A method of forming a side-by-side read/write head, comprising:
2	forming a write head and a read head side-by-side, wherein the write head
3	includes a first layer having a first pole tip that defines a width of a written track and the
4	read head includes a magnetic sensor element and shields, yokes for the shields being
5	canted to allow the read head to be positioned closer to the write head.
1	2. The method of claim 1, wherein the forming the write head including the
2	first pole tip further comprises forming the first pole tip first.
_	
1	3. The method of claim 2, wherein the forming the write head and the read
2	head side-by-side further comprises forming a first shield layer juxtaposed to the first
3	pole layer, the first pole layer, forming a first insulation layer over the first shield layer,
4	forming a second insulating layer over the first pole layer, forming a second shield layer
5	over the first insulating layer and forming a pedestal layer over the second insulation
6	layer.
1	4. The method of claim 3, wherein the forming the first shield layer
1	4. The method of claim 3, wherein the following the first shield layer
2	juxtaposed to the first pole layer further comprises forming a first isolation layer
3	separating the first shield layer and the first pole layer.
1	5. The method of claim 3, wherein the forming the second shield layer
2	juxtaposed to the pedestal layer further comprises forming a second isolation layer
3	separating the second shield layer and the pedestal layer.

1 6. The method of claim 3, wherein the forming the first shield layer 2 juxtaposed to the first pole layer further comprises simultaneously forming the first shield 3 layer and the first pole layer. 1 7. The method of claim 3, wherein the forming the second shield layer and 2 the pedestal layer further comprises simultaneously forming the second shield layer and 3 the pedestal layer. 1 8. The method of claim 3 further comprising simultaneously forming leads 2 over the first insulating layer and a write coil over the second insulating layer. 1 9. The method of claim 3, wherein the forming the first and second isolation 2 layers further comprises forming the first and second isolation layers providing a fixed 3 distance between the first shield layer and the first pole layer and the second shield layer 4 and the pedestal layer. 1 10. The method of claim 3 further comprising forming the sensor element 2 between the first and second shields. 1 11. The method of claim 3, wherein forming the first pole layer having the 2 first pole tip further comprises forming the first pole layer having a central axis and the 3 first pole tip is offset from the central axis towards the sensor element to provide closer

track alignment.

1	12. A side-by-side read/write head, comprising:
2	a write head and a read head formed side-by-side, wherein the write head includes
3	a first layer having a first pole tip that defines a width of a written track and the read head
4	includes a magnetic sensor element and shields, yokes for the shields being canted to
5	allow the read head to be positioned closer to the write head.
1	13. The side-by-side read/write head of claim 12, wherein the write head and
2	the read head comprises a stack of thin films disposed on an undercoat, wherein the first
3	pole tip is disposed at the bottom of the thin film stack.
1	14. The side-by-side read/write head of claim 13, wherein the write head and
2	the read head further comprise:
3	a first shield layer juxtaposed to a first pole layer;
4	a first insulation layer is formed over the first shield layer and a second insulating
5	layer is formed over the first pole layer; and
6	a second shield layer formed over the first insulating layer and a pedestal layer
7	formed over the second insulation layer.
1	15. The side-by-side read/write head of claim 14, wherein the first shield layer
2	juxtaposed to the first pole layer further comprises a first isolation layer separating the
3	first shield layer and the first pole layer.

1 16. The side-by-side read/write head of claim 14, wherein the second shield layer juxtaposed to the pedestal layer further comprises a second isolation layer 2 3 separating the second shield layer and the pedestal layer. 17. The side-by-side read/write head of claim 14 further comprising leads 1 2 formed over the first insulating layer and a write coil formed over the second insulating 3 layer simultaneously. 1 18. The side-by-side read/write head of claim 14, wherein the first isolation 2 layer has a fixed distance between the first shield layer and the first pole layer and the 3 second isolation layer has a fixed distance between second shield layer and the pedestal 4 layer. 1 19. The side-by-side read/write head of claim 14 further comprising a sensor 2 element between the first and the second shield. 1 20. The side-by-side read/write head of claim 14, wherein the first pole layer

has a central axis and the first pole tip is offset from the central axis towards the sensor

element to provide closer track alignment.

2

1	21. A magnetic storage system, comprising:
2	a moveable magnetic storage medium;
3	an actuator; and
4	a side-by-side read/write head coupled to the actuator, wherein the write head
5	includes a first layer having a first pole tip that defines a width of a written track and the
6	read head includes a magnetic sensor element and shields, yokes for the shields being
7	canted to allow the read head to be positioned closer to the write head.
1	22. The system of claim 21, wherein the write head and the read head
2	comprises a stack of thin films disposed on an undercoat, wherein the first pole tip is
3	disposed at the bottom of the thin film stack.
1	23. The system of claim 22, wherein write head and the read head further
2	comprise a first shield layer juxtaposed to a first pole layer, the first pole layer having a
3	first pole tip for defining a width of a written track, a first insulation layer is formed over
4	the first shield layer and a second insulating layer is formed over the first pole layer and a
5	second shield layer is formed over the first insulating layer and a pedestal layer is formed
6	over the second insulation layer for forming a read head and a write head structure
7	respectively
1	24. The system of claim 22, wherein the first shield layer juxtaposed to the
2	first pole layer further comprises a first isolation layer separating the first shield layer and
3	the first pole layer.

25. 1 The system of claim 22, wherein the second shield layer juxtaposed to the 2 pedestal layer further comprises a second isolation layer separating the second shield 3 layer and the pedestal layer. 1 26. The system of claim 22 further comprising leads formed over the first 2 insulating layer and a write coil formed over the second insulating layer simultaneously. 27. 1 The system of claim 22, wherein the first isolation layers has a fixed 2 distance between the first shield layer and the first pole layer and the second isolation 3 layers has a fixed distance between second shield layer and the pedestal layer. 28. 1 The system of claim 22 further comprising a sensor element between the 2 first and second shield. 1 29. The system of claim 22, wherein the first pole layer has a central axis and

the first pole tip is offset from the central axis towards the sensor element to provide

closer track alignment.

2

- 30. A side-by-side read/write head, comprising:
- write means and read means formed side-by-side, wherein the write means
- 3 includes a first means having a first pole means for defining a width of a written track
- 4 and the read means includes sensor means and shield means for shielding the sensor
- 5 means, wherein the shield means further includes yoke means for concentrating magnetic
- 6 flux therebetween, the yoke means being canted to allow the read means to be positioned
- 7 closer to the write means.