FCC Part 15

TEST REPORT

For

MOBILE PHONE

Model Name: X200

Brand Name: BESTPOWER

FCC ID: X56-X200

Report No.: AGC10141201SZ03-1E4B

Date of Issue: Feb.03, 2010

Prepared For

Smart Communication Device Corporation Limited 10F, Building A, Guo Qi Plaza, Shang Bu Road, Fu Tian District, Shenzhen, GuangDong, China

TEL: 0086-755-2588 0420

FAX: 0086-755-2588 0410

Prepared By

Attestation of Global Compliance Co., Ltd.

2F., No.2 Building, Huafeng No.1 Technical Industrial Park, Sanwei,
Xixiang, Baoan District, Shenzhen

TEL: 0086-755-2908 1966

FAX: 0086-755-2600 8484

Page 1 of 46

VERIFICATION OF COMPLIANCE

Applicant:	Smart Communication Device Corporation Limited			
Address	10F, Building A, Guo Qi Plaza, Shang Bu Road, Fu Tian District, Shenzhen, GD, China			
Product Description:	MOBILE PHONE			
Brand Name:	BESTPOWER			
Model Number:	X200			
FCC ID	X56-X200			
Report Number:	AGC10141201SZ03-1E4B			
Date of Test:	Dec. 20, 2009 to Dec.31, 2009			

WE HEREBY CERTIFY THAT:

The above equipment was tested by Shenzhen Attestation of Global Compliance Science & Technology Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2009) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

Checked By:

Jekey Zhang

Jekey Zhang

Feb.03, 2010

Authorized By

King Zhang

Feb.03, 2010

TABLE OF CONTENTS

1.GEN	NERAL INFORMATION	4
1.1	PRODUCT DESCRIPTION	4
1.2	RELATED SUBMITTAL(S) / GRANT (S)	4
1.3	TEST METHODOLOGY	4
1.4	TEST FACILITY	
1.5	SPECIAL ACCESSORIES	
1.6	EQUIPMENT MODIFICATIONS	
2. SYS	STEM TEST CONFIGURATION	5
2.1	CONFIGURATION OF TESTED SYSTEM	5
2.2	EQUIPMENT USED IN TESTED SYSTEM	5
3. SUI	MMARY OF TEST RESULTS	6
4. DES	SCRIPTION OF TEST MODES	6
	NDUCTION EMISSIONS	
5.1	MEASUREMENT PROCEDURE:	7
5.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	7
5.3	MEASUREMENT EQUIPMENT USED:	7
5.4	LIMITS AND MEASUREMENT RESULT:	
<u>5.5</u>	TEST RESULT OF LINE CONDUCTED EMISSION TEST	
6. MA	XIMUM OUTPUT POWER	11
6.1 N	MEASUREMENT PROCEDURE:	11
6.27	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	11
	MEASUREMENT EQUIPMENT USED:	
6.4 L	LIMITS AND MEASUREMENT RESULT:	15
7. 20 E	DB BANDWIDTH	17
7.1 N	MEASUREMENT PROCEDURE	17
	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	MEASUREMENT EQUIPMENT USED:	
	LIMITS AND MEASUREMENT RESULTS:	
8. MA	XIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	19
	MEASUREMENT PROCEDURE:	
	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	MEASUREMENT EQUIPMENT USED:	
	LIMITS AND MEASUREMENT RESULT:	
9. OU7	T OF BAND EMISSION	20

·	Page 3 of
9.1 MEASUREMENT PROCEDURE:	20
9.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	20
9.3 MEASUREMENT EQUIPMENT USED:	
9.4 LIMITS AND MEASUREMENT RESULT:	20
10. NUMBER OF HOPPING FREQUENCY	29
10.1 MEASUREMENT PROCEDURE	29
10.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	29
10.3 MEASUREMENT EQUIPMENT USED	29
10.4 LIMITS AND MEASUREMENT RESULT:	29
11.TIME OF OCCUPANCY (DWELL TIME)	31
11.1 MEASUREMENT PROCEDURE	31
11.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	31
11.3 MEASUREMENT EQUIPMENT USED	31
11.4 LIMITS AND MEASUREMENT RESULT	31
12.FREQUENCY SEPARATION	32
12.1 MEASUREMENT PROCEDURE	37
12.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	37
12.3 MEASUREMENT EQUIPMENT USED	
12.4 LIMITS AND MEASUREMENT RESULT	37
APPENDIX I	39
PHOTOGRAPHS OF THE EUT	39
PPENDIX II	44

PHOTOGRAPHS OF THE TEST SETUP44

Page 4 of 46

GENERAL INFORMATION

1.1 PRODUCT DESCRIPTION

The EUT is a short range, lower power; **MOBILE PHONE** designed as an "Communication Device". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following:

Operation Frequency	2.402 GHz to 2.480GHz
Rated Output Power	3.42 dBm
Modulation	GFSK
Number of channels	79
Antenna Designation	Integrated Antenna
Power Supply	Internal Lion Composite Battery DC 3.6~4.2V
Travel Adapter	Output :DC5.0V

1.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: X56-X200** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

1.3 TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (2009). Radiated testing was performed at an antenna to EUT distance 3 meters.

1.4 TEST FACILITY

All measurement facilities used to collect the measurement data are located at Word Standardization Certification & Testing Co., Ltd.

1-2/F, Dachong Keji Building, No.28 of Tonggu Road, Nanshan District, Shenzhen, 518057, China The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2009. FCC register No.: 276008

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

1.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

1.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 5 of 46

1. SYSTEM TEST CONFIGURATION

2.1 CONFIGURATION OF TESTED SYSTEM

2.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID
1	MOBILE PHONE	BESTPOWER	X200	X56-X200
2	СМИ	R&S	CMU200	1
3	Charger	BESTPOWER	X200	

Page 6 of 46

3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.207	Conduction Emission	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Maximum Output Power	Compliant
§15.247	20 dB Bandwidth	Compliant
§15.247	Band Edges	Compliant
§15.247	Spurious Emission	Compliant
§15.247	Frequency Separation	Compliant
§15.247	Number of Hopping Frequency	Compliant
§15.247	Time of Occupancy	Compliant

4. DESCRIPTION OF TEST MODES

- 1. The EUT has been set to operate continuously on the lowest, the middle and the highest operation frequency individually.
- 2. The EUT stays in continuous transmitting mode on the operation frequency being set.

Page 7 of 46

5. CONDUCTION EMISSIONS

5.1 MEASUREMENT PROCEDURE:

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4.
- 2. Support equipment, if needed, was placed as per ANSI C63.4.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4. The EUT received DC3.7V through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

5.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

5.3 MEASUREMENT EQUIPMENT USED:

Conducted Emission Test Site							
Name of Equipment Manufacturer Model Serial Number Cal. Date							
Test Receiver	Rohde & Schwarz	ESCS30	828985/018	05/29/2010			
LISN	Rohde & Schwarz	ESH2-Z5	834549/005	05/29/2010			
LISN	Rohde & Schwarz	ESH2-Z5	834549/005	05/29/2010			
50 Coaxial Switch	Anritsu	MP59B	M20531	05/29/2010			

Page 8 of 46

5.4 LIMITS AND MEASUREMENT RESULT:

LIMITS OF LINE CONDUCTED EMISSION TEST

Fraguency	Maximum RF Line Voltage		
Frequency	Q.P.(dBuV)	Average(dBuV)	
150kHz~500kHz	66-56	56-46	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

^{1**}Note: 1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

Page 9 of 46

TEST RESULT OF LINE -L CONDUCTED EMISSION TEST

Page 10 of 46

TEST RESULT OF LINE -N CONDUCTED EMISSION TEST

Page 11 of 46

6. MAXIMUM OUTPUT POWER

6.1 MEASUREMENT PROCEDURE:

CONDUCTED METHOD

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Set SPA Centre Frequency = Operation Frequency, RBW= 1 MHz, VBW= 1 MHz.
- 5. Set SPA Trace 1 Max hold, then View.

RADIATED METHOD According to ANSI C63.4:2009

6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

CONDUCTED METHOD

RADIATED EMISSION TEST SETUP

RADIATED MISSION TEST SETUP BELOW 30MHz

Page 12 of 46

RADIATED MISSION TEST SETUP 30MHz-1000MHz

RADIATED MISSION TEST SETUP ABOVE 1000MHz

EIRP TEST SETUP

TEST SETUP BELOW 1GHZ

Page 13 of 46

TEST SETUP ABOVE 1GHZ

Page 14 of 46

6.3 MEASUREMENT EQUIPMENT USED:

Description	Manufacturer	Model	SERIAL NUMBER	Cal. Date	Cal. Due
Spectrum Analyzer	Spectrum Analyzer Rohde & Schwarz		849720/019	05/29/2009	05/29/2010
Amplifier	H.P.	8449B	3008A00277	05/29/2009	05/29/2010
Horn Antenna	Sunol Sciences	DRH-118	A052604	05/29/2009	05/29/2010
Horn Antenna	A.H. Systems Inc.	SAS-574		09/05/2009	09/05/2010
EMI Test Receiver	Rohde & Schwarz	ESCI	100028	05/29/2009	05/29/2010
Amplifier	H.P.	HP8447E	1937A01046	05/29/2009	05/29/2010
Broadband Antenna	Sunol Sciences	JB1	A040904-2	05/29/2009	05/29/2010
LOOP ANTENNA	R&S	HM525		08/27/2009	08/27/2010

Page 15 of 46

6.4 LIMITS AND MEASUREMENT RESULT:

LIMITS AND MEASUREMENT RESULT						
Applicable		Measurement Result				
Limits	Frequency	EIRP (dBm)	Conducted (dBm)	Criteria		
30 dBm	2.402GHz	3.37	2.82	PASS		
30 dBm	2.441GHz	3.42	2.92	PASS		
30 dBm	2.480GHz	3.23	2.72	PASS		

TEST PLOT OF BOTTOM CHANNEL

Page 16 of 46

TEST PLOT OF MIDDLE CHANNEL

TEST PLOT OF TOP CHANNEL

Page 17 of 46

7. 20 DB BANDWIDTH

7.1 MEASUREMENT PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW= 100 KHz.
- 4. Set SPA Trace 1 Max hold, then View.

7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The Same as described in Section 6.2

7.3 MEASUREMENT EQUIPMENT USED:

The same as described in Section 6.3

7.4 LIMITS AND MEASUREMENT RESULTS:

LIMITS AND MEASUREMENT RESULT				
Applicable Limits	Measurement Result			
	Test Da	Criteria		
	Bottom Channel	1.054	PASS	
	Middle Channel	1.043	PASS	
	Top Channel	1.052	PASS	

TEST PLOT OF BANDWIDTH FOR BOTTOM CHANNEL

Page 18 of 46

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR TOP CHANNEL

Page 19 of 46

8. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY (N/A)

8.1 MEASUREMENT PROCEDURE:

- (1). The EUT was placed on a turn table which is 0.8m above ground plane.
- (2). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (3), Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (4). Set SPA Centre Frequency = Operation Frequency, RBW= 3 KHz, VBW= 10 KHz., Sweep time= Auto
- (5). Set SPA Trace 1 Max hold, then View.

8.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

8.3 MEASUREMENT EQUIPMENT USED:

SHIELDING ROOM					
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.
Spectrum Analyzer	Agilent	E4440A	US41421290	04/16/2009	04/15/2010

8.4 LIMITS AND MEASUREMENT RESULT:

LIMITS AND MEASUREMENT RESULT							
Applicable Limite		Measurement Res	sult				
Applicable Limits	Test Data (dl	Criteria					
	Bottom Channel						
8 dBm / 3KHz	Middle Channel						
	Top Channel						

Page 20 of 46

9. OUT OF BAND EMISSION

9.1 MEASUREMENT PROCEDURE:

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW= 100 KHz.
- 4. Set SPA Trace 1 Max hold, then View.

9.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The Same as described in section 6.2

- 1. Conducted test setup
- 2. Radiated Emission test Setup below 1Ghz and Above 1GHz

9.3 MEASUREMENT EQUIPMENT USED:

The Same as described in section 6.3

9.4 LIMITS AND MEASUREMENT RESULT:

LIMITS AND MEASUREMENT RESULT							
Applicable Limite	Measurement R	esult					
Applicable Limits	Test Data	Criteria					
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest	At least -20dBc than the limit Specified on the BOTTOM Channel	PASS					
level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS					

Report No.: AGC10141201SZ03-1E4B Page 21 of 46

TEST PLOT OF BAND ELDG FOR BOTTOM CHANNEL

Page 22 of 46

TEST PLOT OF OUT OF BAND EMISSIONS FOR BOTTOM CHANNEL - 1

TEST PLOT OF OUT OF BAND EMISSIONS FOR BOTTOM CHANNEL - 2

Report No.: AGC10141201SZ03-1E4B Page 23 of 46

TEST PLOT OF OUT OF BAND EMISSIONS FOR MIDDLE CHANNEL - 1

TEST PLOT OF OUT OF BAND EMISSIONS FOR MIDDLE CHANNEL - 2

Report No.: AGC10141201SZ03-1E4B Page 24 of 46

TEST PLOT OF OUT OF BAND EMISSIONS FOR TOP CHANNEL - 1

TEST PLOT OF OUT OF BAND EMISSIONS FOR TOP CHANNEL - 2

Page 25 of 46

RADIATED EMISSION BELOW 1GHZ

Site 966 Chamber #1

Limit: FCC Part15 RE-Class B_30-1000MHz

EUT:

M/N: Mode: Note: Polarization: Horizontal Temperature: 26
Power: Humidity: 60 %

Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	*	30.0000	24.49	4.96	29.45	40.00	-10.55	peak			
2		121.5486	25.25	-4.35	20.90	43.50	-22.60	peak			
3		185.1379	26.75	-7.63	19.12	43.50	-24.38	peak			
4	i i	379.9141	27.23	-2.76	24.47	46.00	-21.53	peak			
5	9	665.8035	25.93	5.22	31.15	46.00	-14.85	peak			
6	- 1	760.7036	29.18	3.47	32.65	46.00	-13.35	peak			

Page 26 of 46

Site 966 Chamber #1

Limit: FCC Part15 RE-Class B_30-1000MHz

EUT:

M/N: Mode: Note: Polarization: Vertical

Power: Distance: 3m Temperature: 26

Humidity: 60 %

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		30.1054	24.65	1.38	26.03	40.00	-13.97	peak			
2		39.9942	28.68	-1.73	26.95	40.00	-13.05	peak			
3		69.1141	25.54	-10.44	15.10	40.00	-24.90	peak			
4		131.2965	26.06	-5.50	20.56	43.50	-22.94	peak			
5		423.5403	31.73	-0.19	31.54	46.00	-14.46	peak			
6	*	848.0563	27.22	6.63	33.85	46.00	-12.15	peak			

Page 27 of 46

Band Edge Emission: MEASUREMENT PROCEDURE

- 1, Set the EUT Work on the top, the bottom operation frequency individually.
- 2. Set SPA Centre Frequency = Operation Frequency, span=100MHz, RBW= 1 MHz, VBW= 1MHz.
- 3. The band edges was measured and receorded.

TEST SET-UP

The Same as described in section 6.2 Radiated Emission test Setup Above 1GHz

	Band Edge Emission for Bottom Channel									
Frequency	Antenna Pol.	Field Strength	Field Strength	Limit (PK)	Limit (AV)	Momo				
GHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	Memo				
2.386	Н	59.78	46.90	74	54	*				
2.400	Н	57.12	47.35	74	54	*				
2.386	V	58.34	44.43	74	54	*				
2.400	V	55.21	42.35	74	54	*				

	Band Edge Emission for Top Channel									
Frequency	Antenna Pol.	Field Strength	Field Strength	Limit (PK)	Limit (AV)	Memo				
GHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	iviemo				
2.483	Н	57.32	48.34	74	54	*				
2.484	Н	55.56	47.67	74	54	*				
2.496	Н	49.67	44.23	74	54	*				
2.483	V	56.78	46.34	74	54	*				
2.484	V	54.54	46.45	74	54	*				
2.496	V	48.56	43.55	74	54	*				

Page 28 of 46

MEASUREMENT PROCEDURE

- 1, Set the EUT Work on the top, the middle, the bottom operation frequency individually.
- 2. Set SPA Centre Frequency = Operation Frequency, RBW= 1MHz, VBW= 1MHz.
- 3. The Restricted Band Emission was measured and receorded.

TEST SET-UP

The Same as described in section 6.2 Radiated Emission test Setup Above 1GHz

	Restricted Band Emission for Bottom Channel									
Frequency	Antenna Pol.	Field Strength	Field Strength	Limit (PK)	Limit (AV)	Memo				
GHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	iviemo				
4.81	Н	55.45	48.23	74	54	*				
4.81	V	56.56	47.54	74	54	*				
Above	Н			74	54	*				
4.81 GHz	V			74	54	*				

	Restricted Band Emission for Middle Channel									
Frequency	Antenna Pol.	Field Strength	Field Strength	Limit (PK)	Limit (AV)	Momo				
GHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	Memo				
4.88	Н	54.34	48.43	74	54	*				
4.88	V	56.45	46.45	74	54	*				
Above	Н			74	54	*				
4.88 GHz	V			74	54	*				

	Restricted Band Emission for Top Channel									
Frequency	Antenna Pol.	Field Strength	Field Strength	Limit (PK)	Limit (AV)	Momo				
GHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	Memo				
4.95	Н	57.65	47.01	74	54	*				
4.95	V	56.23	46.66	74	54	*				
Above	Н			74	54	*				
4.95GHz	V			74	54	*				

[&]quot;--" Indicated the test value is much lower to limit.

Marker

Page 29 of 46

10. NUMBER OF HOPPING FREQUENCY

10.1 MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer Start = 2.4GHz Stop = 2.4835GHz, span=20MHz
- 4. Set the Spectrum Analyzer as RBW = VBW = 300KHz

10.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

1. Conducted Method.

10.3 MEASUREMENT EQUIPMENT USED

The Same as described in section 6.3

10.4 LIMITS AND MEASUREMENT RESULT:

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS

Page 30 of 46

TEST PLOT FOR NO. OF TOTAL CHANNELS -2

Page 31 of 46

11. TIME OF OCCUPANCY (DWELL TIME)

11.1 MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- 3. Set center frequency of spectrum analyzer = Operating frequency
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0 Hz,

11.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2 Conducted Method

11.3 MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

11.4 LIMITS AND MEASUREMENT RESULT

```
The dwell time = Time Slot Length * Hop Rate / Number of Hopping Channels * 0.4 * 79 L-CH:

DH1 Time Slot = 0.370 (ms) * (1600/(2*79))*31.6 = 118.4 (ms)

DH3 Time Slot = 1.627(ms) * (1600/(4*79))*31.6 = 260.3 (ms)

DH5 Time Slot = 2.870 (ms) * (1600/(6*79))*31.6 = 306.1 (ms)

M-CH:

DH1 Time Slot = 0.373 (ms) * (1600/(2*79))*31.6 = 119.4 (ms)

DH3 Time Slot = 1.627 (ms) * (1600/(4*79))*31.6 = 260.3 (ms)

DH5 Time Slot = 2.860 (ms) * (1600/(6*79))*31.6 = 305.0 (ms)

H-CH:

DH1 Time Slot = 0.370(ms) * (1600/(2*79))*31.6 = 118.4 (ms)

DH3 Time Slot = 1.627 (ms) * (1600/(4*79))*31.6 = 260.3 (ms)

DH5 Time Slot = 2.860(ms) * (1600/(4*79))*31.6 = 260.3 (ms)

DH5 Time Slot = 2.860(ms) * (1600/(6*79))*31.6 = 305.0 (ms)
```

Report No.: AGC10141201SZ03-1E4B Page 32 of 46

TEST PLOT DH1 MODE BOTTOM CHANNEL

TEST PLOT DH3 MODE BOTTOM CHANNEL

Report No.: AGC10141201SZ03-1E4B Page 33 of 46

TEST PLOT DH5 MODE BOTTOM CHANNEL

TEST PLOT DH1 MODE MIDDLE CHANNEL

Page 34 of 46

TEST PLOT DH3 MODE MIDDLE CHANNEL

TEST PLOT DH5 MODE MIDDLE CHANNEL

Page 35 of 46

TEST PLOT DH1 MODE TOP CHANNEL

TEST PLOT DH3 MODE TOP CHANNEL

Page 36 of 46

TEST PLOT DH5 MODE TOP CHANNEL

Page 37 of 46

12. FREQUENCY SEPARATION 12.1 MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- 3. Set center frequency of spectrum analyzer = Middele of Operating frequency
- 4. Set the spectrum analyzer as RBW, VBW=100KHz, Span = 5 MHz,

12.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

12.3 MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

12.4 LIMITS AND MEASUREMENT RESULT

CHANNEL	CHANNEL SEPARATION	LIMIT	RESULT
OHAMMEL	KHz	KHz	
CH01-CH02	992		Pass
CH39-CH40	1009	>=25 KHz or 2/3 20 dB BW	Fass
CH78-CH79	992		

Page 38 of 46

TEST PLOT FOR FREQUENCY SEPARATION -2

TEST PLOT FOR FREQUENCY SEPARATION -3

Page 39 of 46

APPENDIX I PHOTOGRAPHS OF THE EUT

TOP VIEW OF SAMPLE

Report No.: AGC10141201SZ03-1E4B Page 40 of 46

LEFT VIEW OF SAMPLE

Page 41 of 46

RIGHT VIEW OF SAMPLE

FRONT VIEW OF SAMPLE

Page 42 of 46

Page 43 of 46

INTERNAL PHOTO OF SAMPLE – 2

Page 44 of 46

PPENDIX II

PHOTOGRAPHS OF THE TEST SETUP

CONDUCTED EMISSION TEST

Report No.: AGC10141201SZ03-1E4B Page 45 of 46

----END OF REPORT----