(2º parcial) 14 de enero de 2015

1. Dado el siguiente programa C:

```
float prod( float a, float b)
    { return a*b }
float sum(int a, int b)
    { float t
      if (a <= 5) {t= prod(a,b); return t;}</pre>
                                                 // <--- TDS
                                                 // <--- PILA
      return suma(a-1, b-1);}
                                                 // <--- PC1
    }
int main ()
    { int a; int b;
                                                 // <--- PC2
       a = 7;
                                                 // <--- TDS
      b = 9;
       printf( "Resultado %f\n", sum(a, b));
```

- a) (0,75 ptos.) Suponiendo que la talla de enteros es 2 y la de los reales es 4, mostrad el contenido completo de la TDS en el punto de control TDS.
- b) (0,5 ptos.) Indicad el desplazamiento relativo de las variables a y b que aparecen en las instrucciones de los puntos de control: PC1 y PC2.
- c) (0,75 ptos.) Mostrad el contenido (en términos de Registros de Activación) del estado de la pila de ejecución cada vez que se pasa por las instrucciones del punto de control PILA.
- 2. (1,5 ptos.) Contestad brevemente a las siguientes cuestiones:
 - a) ¿Cómo se realiza el proceso de asignación de registros mediante coloreado de grafos?
 - b) Describid las acciones necesarias para cargar un registro de activación en un lenguaje de alto nivel basado en bloques.
 - c) Indicad dos formas de realizar la selección de instrucciones en la generación de código y descríbelas brevemente.
- 3. (3.5 ptos.) Diseñad un ETDS que genere código intermedio para el siguiente fragmento de una gramática:

```
S \rightarrow \text{repeat-if } E \text{ then } S \text{ else } S \text{ until } E
```

repeat-if es una instrucción repetitiva en la que, dependiendo del valor de la expresión E^1 , se ejecutará S^1 en caso de que sea TRUE y S^2 en caso de FALSE. Este proceso se repetirá hasta que la expresión E^2 sea TRUE.

4. (1 pto.) Dado el siguiente fragmento de código intermedio de un bloque básico, aplicad las optimizaciones locales a partir de su GDA. A la salida del bloque solo estarán activas las variables: a, b, x, y, z.

$\boxed{(100)}$	$t_1 := 10$	(106)	$t_5 := c + x$	(112)	z := x + y
(101)	$t_2 := t_1 * 2$	(107)	$x := t_5$	(113)	$t_8 := 1$
(102)	$c := t_2$	(108)	$t_6 := d * y$	(114)	$a := z + t_9$
(103)	$t_3 := 5$	(109)	b := c + x	(115)	$t_9 := 1$
(104)	$t_4 := t_3 + 2$	(110)	$t_7 := d * y$	(116)	z := x * y
(105)	$d := t_4$	(111)	$y := t_7$	(117)	a := b + 1

5. Dado el siguiente fragmento de código intermedio:

(100)	k := 0	(105)	$t_4 := 5$	(110)	$t_9 := t_3 + t_8$
(101)	m := 100	(106)	$t_5 := t_4 * 2$	(111)	$A[t_2] := t_9$
(102)	$t_1 := k * 2$	(107)	$t_6 := t_1 + t_5$	(112)	if k > m goto 115
(103)	$t_2 := t_1 * 2$	(108)	$t_7 := t6 * 2$	(113)	k := k + 1
(104)	$t_3 := A[t_2]$	(109)	$t_8 := A[t_7]$	(114)	goto 102

- a) (0.5 ptos.) Determinad los bloques básicos que forman el bucle. Extraed el código invariante e indicad las variables de inducción y sus ternas asociadas.
- b) (0.75 ptos.) Aplicad el algoritmo de reducción de intensidad.
- c) (0.75 ptos.) Aplicad el algoritmo de eliminación de variables de inducción.