TP3 Pression - Mrabet Marin	Pt		Α	в с	D	Note
I. Régulation de pression simple boucle						
1 Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	0,5	Α				0,5
2 Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.						0,5
3 Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	Α				3
Déterminer un correcteur PI (avec Ti = τ) qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel EASYREG. On donnera la réponse théorique obtenue.	2	С				0,7 Vous n'avez pas utilisé la méthode proposée.
5 Donner pour ce réglage les valeurs théoriques du temps de réponse à ±5%, ainsi que la valeur du premier dépassement.	1,5	Α				1,5
6 Déduire de la question 4 les valeurs de Xp, Ti et Td du régulateur mixte.	1	Α				1
7 Comparer les performances théoriques avec les performances réelles.	1	D				0,05
II. Supervision Realiser la programmation du superviseur en respectant le synopsis ci-dessous. On devra pouvoir controler la commande, la consigne et le mode de fonctionnement par l'intermédiaire d'Intouch. La mesure s'affichera en temps	3	А				3
III. Profil de consigne						
1 Ajouter un bouton "Start" sur la vue du superviseur.	0,5	Α				0,5
2 Proposer une solution qui réponde au cahier des charges.	3	С	П			1,05
3 Implémenter votre solution sur le régulateur.	1	D				0,05
4 Réaliser des mesures qui permettent la validation de votre solution.	3	D				0,15
	•	No	ote :	12	/20	

TP3 Pression

I. Régulation de pression simple boucle

<u>Cahier des charges</u>: On se propose de réaliser une régulation de pression sur la maquette Pignat 1 (à votre gauche). L'organe de réglage sera la vanne V1.

1/ Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.

Entrée :

TagName	01M01_08		LIN Name	01M01_08	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>08	
			SiteNo	1	
PV	93.9	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mA
			LR_in	4.00	mA
HiHi	100.0	%	AI	19.03	mA
Hi	100.0	%	Res	0.000	Ohms
La	0.0	ov.			

PID 1:

TagName	PID_1		LIN Name	PID_1	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	9
PV	0.0	%	LAA	0.0	9
SP	0.0	%	HDA	100.0	9
OP	0.0	%	LDA	100.0	9
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	9
Track	0.0	%	TI	0.00	

Sortie:

TagName	V1		LIN Name	V1	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
→ OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	m.A
			LR_out	4.00	m.A
Out	0.0	%	AO	0.00	m.A
Track	0.0	%			
Trim	0.000	en A	Ontione	~0000	

2/ Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.

Pour OP=50% on a PV=50%.

3/ Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.

Delta X = 9,7%

Delta Y = 10%

K = DeltaX / DeltaY = 9,7/10 = 0,97

T0: 21:58:53 = 0s

t1:21:58:56 = 3s

t2:21:58:57=4s

Retard : T = 2.8(3-0)-1.8(4-3) = 6.6 s

Constante de temps : t = 5,5(4-3) = 5,5 s

4/ Déterminer un correcteur PI (avec $Ti = \tau$) qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel <u>EASYREG</u>. On donnera la réponse théorique obtenue.

$$Kr=T/t=6,6/5,5=1,2$$

Donc PI Série:

$$A = 0.8/K*Kr = 0.8/0.97*1.2 = 0.68$$

 $Ti = t = 5.5s$
 $Td = 0s$

5/ Donner pour ce réglage les valeurs théoriques du temps de réponse à $\pm 5\%$, ainsi que la valeur du premier dépassement.

Résultats des calculs

 $\omega_{min} = 0.02$; $\omega_{max} = 2$; raison = 1.05

Argument_{min} = -832.14889135126 ° -- Argument_{max} = -97.563049283961 °

 $Module_{min} = -24.278123015198 db -- Module_{max} = 15.557759236285 db$

 $X_{min} = 0 \%$; $X_{max} = 125.30886751726 \%$

Temps de réponse : 41s

Dépassement : 25%

40.5	5.4943411230288	94.505658876971
41	5.2384192612099	94.76158073879
44 E	4.0540350454044	05.040004054040

6/ Déduire de la question 4 les valeurs de Xp, Ti et Td du régulateur mixte.

$$A = 0.68$$

 $Xp = 100/A = 100/0.68 = 147.05$
 $Ti=5.5s$
 $Td=0s$

7/ Comparer les performances théoriques avec les performances réelles.

Xp est trop grand.

II. Supervision

1/ Réaliser la programmafion du superviseur en respectant le synopsis ci-dessous. On devra pouvoir contrôler la commande, la consigne et le mode de fonctionnement par l'intermédiaire d'Intouch. La mesure s'affichera en temps réel.

II. Profil de consigne

<u>Cahier des charges</u>: On désire rajouter au fonctionnement normal, un fonctionnement "profil". Après un appui sur le bouton "Start", la consigne devra suivre le profil cidessous.

Profil de consigne 40 30 20 10 20 30 40 50

Temps en s

1/ Ajouter un bouton "Start" sur la vue du superviseur.

2/ Proposer une solution qui réponde au cahier des charges.

Jnsp

3/Implémenter votre solution sur le régulateur.

Jnsp

4/Réaliser des mesures qui permettent la validation de votre solution.

Jnsp