ICS 233 – Computer Architecture & Assembly Language

Assignment 4 Solution

Floating-Point Representation and Arithmetic

- 1. What is the decimal value of the following single-precision floating-point numbers?

Solution:

a) Sign is negative

```
Exponent value = 01011010_2 - 127 = -37
Significand = 1.001 \ 0100 \ 0000 \ 0000 \ 0000_2
Decimal value = -1.00101_2 \times 2^{-37} = -1.15625 \times 2^{-37} = -8.412826 \times 10^{-12}
```

b) Sign is positive

Exponent value =
$$10001101_2 - 127 = 14$$

Significand = $1.100 \ 1000 \ 0000 \ 0000 \ 0000 \ 0000_2$
Decimal value = $1.1001_2 \times 2^{14} = 1.5625 \times 2^{14} = 25600$

- 2. Show the IEEE 754 binary representation for: -75.4 in ...
 - a) Single Precision
 - **b**) Double precision

Solution:

$$75 = 10010112$$

$$0.4 = 0.\overline{01102} = 0.011001102 ...$$

$$75.4 = 1001011.\overline{01102} = 1.001011\overline{01102} \times 2^{6}$$

- a) Single-Precison: Biased exponent = 6 + 127 = 1331 10000101 00101101100110011001101₂ (rounded to nearest)
- b) Double-Precision:Biased exponent = 6 + 1023 = 1029
 - 1 1000000101

- 3. $x = 1100 \, 0110 \, 1101 \, 1000 \, 0000 \, 0000 \, 0000 \, 0000 \, (binary)$ and $y = 0011 \, 1110 \, 1110 \, 0000 \, 0000 \, 0000 \, 0000 \, (binary)$ are single-precision floating-point numbers. Perform the following operations showing all work:
 - a) x + y
 - **b**) x * y

```
Solution:
```

```
Value of Exponent(x) = 10001101_2 - 127 = 14
 x = -1.101 \ 1000 \ 0000 \ 0000 \ 0000 \ 0000_2 \times 2^{14}
 Value of Exponent(y) = 011111101_2 - 127 = -2
 y = 1.110 0000 0000 0000 0000 0000_2 \times 2^{-2}
 a) x + y
     -1.101\ 1000\ 0000\ 0000\ 0000\ 0000_2\ \times\ 2^{14}
    + 1.110 0000 0000 0000 0000 0000_2 \times 2^{-2}
     -1.101\ 1000\ 0000\ 0000\ 0000\ 0000_2\ \times\ 2^{14}
    + 0.000 0000 0000 0000 1110 0000_2 \times 2^{14} (shift right 16)
    1 0.010 1000 0000 0000 0000 0000<sub>2</sub> \times 2<sup>14</sup> (2's complement)
    0 0.000 0000 0000 0000 1110 0000<sub>2</sub> \times 2<sup>14</sup>
    1 0.010 1000 0000 0000 1110 0000_2 \times 2^{14} (add)
     - 1.101 0111 1111 1111 0010 0000_2 \times 2^{14} (2's complement)
    Result is negative and is normalized
    All shifted out bits were zeros, so result is also exact
    x + y = 1 10001101 101 0111 1111 1111 0010 0000<sub>2</sub>
 b) \times v
    Biased exponent(x*y) = 10001101<sub>2</sub> + 01111101<sub>2</sub> - 127
    Biased exponent(x*y) = 139 = 10001011<sub>2</sub>
    Sign(x*y) = 1 (negative)
                                    1.101 1000 0000 0000 0000 00002
                                  × 1.110 0000 0000 0000 0000 0000<sub>2</sub>
 1 1111
     1101 1000 0000 0000 0000 0000<sub>2</sub>
   11011 0000 0000 0000 0000 000<sub>2</sub>
 1.10110 0000 0000 0000 0000 002
10.11110 1000 0000 0000 0000 00002
 Normalize by shifting right 1 bit and increment exponent
 Significand = 1.011\ 1101\ 0000\ 0000\ 0000\ 0000_2
 Biased exponent = 139+1 = 140 = 10001100_2
```

Significand is already rounded

- **4.** x = 0101 **1111 1011 1110 0100 0000 0000 0000** (in binary) and y = 0011 **1111 1111 1000 0000 0000 0000 0000** (in binary) and z = 1101 **1111 1011 1110 0100 0000 0000 0000** (in binary) represent single precision IEEE 754 floating-point numbers. Perform the following operations showing all work:
 - a) x + y
 - **b)** Result of (a) + z
 - c) Why is the result of (b) counterintuitive?

Solution:

- a) $x = 1.011 \ 1110 \ 0100 \ 0000 \ 0000_2 \times 2^{64}$ $y = 1.111 \ 1000 \ 0000 \ 0000 \ 0000_2 \times 2^0$ Difference in exponent = 64
 Shift significand of y right by 64 bits and add to x
 The significand bits of y are truncated after rounding x + y = x because y is too small with respect to x
 Therefore, $x + y = 1.011 \ 1110 \ 0100 \ 0000 \ 0000 \ 0000_2 \times 2^{64}$
- c) We are computing (x+y) + z where z = -x Intuitively (x+y)+ -x = y which is not 0 However, in this example (x+y)+ -x = 0 This is because we have limited number of fraction bits
- **5.** IA-32 offers an 80-bit extended precision option with a 1 bit sign, 16-bit exponent, and 63-bit fraction (64-bit significand including the implied 1 before the binary point). Assume that extended precision is similar to single and double precision.
 - a) What is the bias in the exponent?
 - **b)** What is the range (in absolute value) of normalized numbers that can be represented by the extended precision option?

Solution:

- a) With a 16-bit exponent, bias = $2^{15} 1 = 32767$
- b) largest normalized $\approx 2 \times 2^{32767} = 2^{32768} = 1.415.. \times 10^{9864}$ smallest normalized: 1.0 $\times 2^{-32766} = 2.8259.. \times 10^{-9864}$

6. Using the refined division hardware, show the **unsigned** division of:

Dividend = **11011001** by Divisor = **00001010**

The result of the division should be stored in the Remainder and Quotient registers. Eight iterations are required. Show your steps.

Iteration	Remainder	Quotient	Divisor	Difference
0: Initialize	0000000	11011001	00001010	
1: SLL, Diff	0000001	10110010	00001010	< 0
2: SLL, Diff	00000011	01100100	00001010	< 0
3: SLL, Diff	00000110	11001000	00001010	< 0
4: SLL, Diff	00001101	10010000	00001010	00000011
4: Rem = Diff	00000011	1001000 <mark>1</mark>		
5: SLL, Diff	00000111	00100010	00001010	< 0
6: SLL, Diff	00001110	01000100	00001010	00000100
6: Rem = Diff	00000100	0100010 <mark>1</mark>		
7: SLL, Diff	00001000	10001010	00001010	< 0
8: SLL, Diff	00010001	00010100	00001010	00000111
8: Rem = Diff	00000111	00010101		

Check:

Dividend = 11011001_2 = 217 (unsigned)

 $Divisor = 00001010_2 = 10$

Quotient = 00010101_2 = 21 and Remainder = 00000111_2 = 7

7. Using the refined **signed** multiplication algorithm, show the multiplication of:

Multiplicand = 00101101 by Multiplier = 11010110 (signed)

The result of the multiplication should be a 16 bit signed number in HI and LO registers. Eight iterations are required because there are 8 bits in the multiplier. Show the steps.

Iteration	Multiplicand	Sign	HI	LO
0: Initialize	00101101		0000000	11010110
1: Shift right			0000000	01101011
2: LO[0] = 1	ADD	0	00101101	01101011
2: Shift right			00010110	10110101
3: LO[0] = 1	ADD	0	01000011	10110101
3: Shift right			00100001	11011010
4: Shift right			00010000	11101101
5: LO[0] = 1	ADD	0	00111101	11101101
5: Shift right			00011110	11110110
6: Shift right			00001111	01111011
7: LO[0] = 1	ADD	0	00111100	01111011
7: Shift right			00011110	00111101
8: LO[0] = 1	SUB	1	11110001	00111101
8: Shift right			11111000	10011110

```
Checking Result: Multiplicand = 00101101_2 = 45 multiplied by Multiplier = 11010110_2 = -42 Product = -1890 (decimal) = 11111000 10011110 (binary)
```