Fachbereich 2
Informatik
Vorkurs **Informatik**

Lektion 3

SPEICHERN VON INFORMATIONEN

JSON - Java Script Object Notation

```
id: 000000001,
"firstName": "John",
                                                    title: "JavaScript: Beginners Guide",
"lastName": "Smith",
                                                    author: "Martin Fowler",
"age": 25,
                                                    format: "ebook",
"address":
                                                    price: 12.00
   "streetAddress": "21 2nd Street",
   "city": "New York".
   "state": "NY",
   "postalCode": "10021"
"phoneNumber":
                                      id: 1200000001
                                      title: "JavaScript: Beginners Guide",
     "type": "home",
                                      author: "Darren Jones",
     "number": "212 555-1234"
                                      year: 2016,
    },
                                      format: "ebook",
                                      price: 29.00,
     "type": "fax",
                                      description: "Learn JavaScript from scratch!",
     "number": "646 555-4567"
                                      rating: "4.5/5",
                                      review: [
                                         { name: "James", text: "Javascript Cookbook" },
                                         { name: "Elene", text: "Excellent book for beginners" }
                                    }
```

Tickets, orders, bills, address lists inventory

```
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address":
    "streetAddress": "21 2nd Street",
    "city": "New York",
    "state": "NY",
    "postalCode": "10021"
},
"phoneNumber":
      "type": "home",
      "number": "212 555-1234"
    },
      "type": "fax",
      "number": "646 555-4567"
```


XML Darstellung

Siehe Moodle

```
<?xml version="1.0" ?>
- <Adressbuch>
 - <Kunde Name="Max Mustermann">
   < <Adresse>
      <Strasse>Musterstrasse 14</Strasse>
      <PLZ>12345</PLZ>
      <Ort>Mustehausen</Ort>
    </Adresse>
   </Kunde>
 - <Kunde Name="August Ausgedacht">
   < <Adresse>
      <Strasse>Gibts-Nicht-Weg 37</Strasse>
      <PLZ>67890</PLZ>
      <Ort>Augsburg</Ort>
    </Adresse>
   </Kunde>
 </Adressbuch>
```


Speicherung weiterer Informationstypen

Bilder werden in einzelne Punkte zerlegt. Jeder Bildpunkt hat eine Farbe, die sich aus den Grundfarben Rot, Grün und Blau zusammensetzt. Die Anteile der Grundfarben werden als Zahlen angegeben, so dass man pro Bildpunkt drei Zahlen codiert.

 Fazit: alle Informationen werden in Zahlen umgewandelt, die binär gespeichert und verarbeitet werden

Digitalisierung

Analoge Darstellung:

Die Darstellung einer Größe heißt analog, wenn diese Darstellung nur kontinuierliche Werte (entsprechend einem Intervall aus einer Menge der reellen Zahlen) annehmen kann. Eine analoge Darstellung hat daher unendlich viele Werte.

Digitale Darstellung:

Die Darstellung einer Größe heißt diskret (unterscheidbar, trennbar, abzählbar), wenn diese Darstellung durch eine endliche Menge von Werten beschrieben wird. Die einzelnen Werte können dabei aus einem diskreten oder kontinuierlichen (analogen) Wertebereich stammen.

Abtasttheorem

- Auflösung: Anzahl der Bits, die zur Darstellung des Eingangssignals verwendet werden.
- Abtastrate (Samplingrate): die Häufigkeit, mit der ein Signal pro Zeitintervall abgetastet wird.
- Die Abtastung kann asynchron oder synchron vorgenommen werden.
- Datenrate: Dateneinheiten pro Zeiteinheit (Bit/s, kbit/s)
- Abtasttheorem:
 - Ein Signal muss nach dem Abtasttheorem von Shannon (Nyquist-Shannonsche Abtasttheorem) mit einer Abtastfrequenz abgetastet werden, die größer ist als die doppelte Maximalfrequenz des Eingangssignals.

Über- / Unterabtastung

- Überabtastung: kein Informationsgewinn, jedoch Aufwandssteigerung bei Übertragung und Speicherung – z.B. bei einem sich nicht ändernden Signal
- Unterabtastung: Informationsverlust gegenüber dem Eingangssignal – bei einer zu niedrig gewählten Abtastfrequenz Keine verlustfreie Rekonstruktion des Signals möglich
- Beispiel für Unterabtastung:

Eingangssignal

Rekonstruiertes Signal

Speicherung weiterer Informationstypen

- Töne sind Schwingungen/Wellen. In festen
 Zeitintervallen wird ein Wert abgetastet und als
 Zahl codiert.
- Fazit: Alle
- Informationen werden in Zahlen umgewandelt, die binär gespeichert und verarbeitet werden

Sampling

Vorteile / Nachteile digitaler Daten

Vorteile digitaler Daten

- Effiziente Speicherung
- Schnelle Übertragung
- Skalierbarkeit
- Unbegrenzte Vervielfältigung ohne Verlust möglich
- Selektiver/wahlfreier Zugriff

Nachteile digitaler Daten

- Digitalisierung analoger Dokumente ist immer mit Qualitätsverlust verbunden.
- Nur mit technischen Hilfsmitteln lesbar
- Begrenzte Lebensdauer der Datenträger (Bsp.: Haltbarkeit magnetischer Speicher ca. 10 -15 Jahre)
- Lesegeräte veralten und stehen nicht mehr zur Verfügung
- Beispiel: MP3 hört sich nicht so reich an wie die originale Musik

Pixelgrafik vs. Vektorgrafik

```
<svg height="100" width="100">
<circle cx="50" cy="50" r="50" fill="gray" />
</svg>
```


Siehe auch: Beispiel. svg

Quelle: Fit fürs Studium

https://de.serlo.org/93789/ vektor-vs-pixelgrafik-i

Bildbearbeitung in Python: PIL, Pillow

```
from PIL import Image
im = Image.open('foo.png')
im.show()
width = photo.size[0] #define W and H
height = photo.size[1]
for y in range(0, height): #each pixel has coordinates
  for x in range(0, width):
     RGB = photo.getpixel((x,y))
     R,G,B = RGB \# now you can use the RGB value
```


Movies

- Formats: mp4, mjpeg, divX
- Computer generated movies

https://en.wikipedia.org/wiki/MPEG-4 Part 14

DATEIEN

Dateiverwaltung

Drei Anforderungen an die langfristige Speicherung von Informationen:

- 1. Es muss möglich sein, sehr große Mengen von Informationen zu speichern.
- 2. Die Informationen müssen die Terminierung der Prozesse, die diese verwenden, überleben.
- 3. Es muss für mehrere Prozesse möglich sein, gleichzeitig auf die Informationen zuzugreifen.

- Informationen werden auf Platten und anderen externen
 Speichermedien in Einheiten, genannt Dateien, abgelegt
- Prozesse können diese lesen und ggf. beschreiben
- Dateien sind logische Betriebsmittel

Files (Dateien)

- Files werden durch einen Namen referenziert
- Files können beliebige Informationen beinhalten:
 - Source Programme (C#, Java, ...)
 - Object Programme
 - Dokumentation
 - numerische Daten
 - Media ...

- Verzeichnis enthält Dateien
- Pfad:
 - Wurzel/Verzeichnis/Verzeichnis/Datei

Hexeditors

http://www.rapidtables.com/convert/number/hex-to-ascii.htm

https://de.wikipedia.org/wiki/Hex-Editor

Implementierung

- Programm mit Zugriffsroutinen
- Treiberroutinen im Betriebssystem
- Dateivariable im Programm (file)
- Dateikontrollblock (User & System)
- Pufferbereich im Hauptspeicher
- Dateiverzeichnis für Festplatte
- Sektorzuordnung auf Festplatte

Operationen auf Dateien

- Erzeugen (Create)
- Entfernen (Delete)
- Kopieren (Copy)
- Umbenennen (Rename)
- Öffnen(Open)
- Schließen (Close)
- Lesen (Read)
- Schreiben (Write)

Dateiverwaltung

- Hat die Aufgabe, Dateien auf die konkreten Gegebenheiten der Speichermedien abzubilden:
 - In welche Sektoren bzw. auf welche Spuren und Köpfe wird eine gerade geschriebene Text-Datei auf die Platte geschrieben, oder
 - Wo ist die Version des Textes, das gestern gespeichert wurde?
- In diesem Sinne stellt das Betriebssystem das Konzept der Datei als Behälter für Daten aller Art zur Verfügung.
- Moderne Dateisysteme sind hierarchisch aufgebaut

Dateiverwaltung

- Mehrere Dateien können zu einem Ordner zusammengefasst werden: Verzeichnis (directory)
- Da Ordner sowohl normale Dateien als auch andere Ordner enthalten können, entsteht eine baumähnliche Struktur mit einem Wurzelordner (engl. root) an der Spitze.
- Jede Datei erhält einen Namen, unter der sie gespeichert und wiedergefunden werden kann.
- Zusätzlich werden Erweiterungen verwendet, welche die Dateiinhalte spezifizieren und Attribute.

Arten von Dateisystemen

Dateisystem	FAT 16	VFAT	FAT 32	NTFS
Urspung	MS-DOS	Windows 95	Windows 95b	Windows NT
Maximale Dateigröße	2 GByte	4 GByte	2 Terabyte	16 Exabyte
Maximale Partitions- größe	2 GByte	4 Gbyte	2 Terabyte	16 Exabyte (2Gigabyte)
Maxim. Länge der Datei- und Verzeich- nisnamen	8	255	255	255
Datei- und Verzeichnis- attribute	3	3	3	erweitert

Computer file

- https://en.wikipedia.org/wiki/Computer_file
- Just as words can be written to paper, so can information be written to a computer file.
- Files are organized into one-dimensional arrays of bytes
- Located in memory or storage
- Computer files are organised in a file system
- File permissions and protection
- Suffix describes file type by convention (txt, jpeg, mp3, docx, ...)

EXCEL

Links

- http://www.klickdichschlau.at/ecdl_uebungen_excel.php
- http://www.excelmexel.de/HTMLExc2007/Exc2007-toc.htm
- https://www.edv-lehrgang.de/relative-und-absolutezellbezuege/
- http://www.excellernen.de/excel-pivot-tabelle/
- http://www.online-excel.de/excel/

Überblick

- VisiCalc, Lotus1-2-3, ...
- http://bricklin.com/history/vcexecutable.htm
- Formeln in eine Zelle schreiben: =A1+A2
- Ab Excel 2007 stellt ein Tabellenblatt exakt 1.048.576
 Zeilen und 16.384 Spalten zur Verfügung (2^20 Zeilen und 2^14 Spalten)
- Anzahl Zellen: 17.179.869.184
- Formeln/Funktions-Assistent/Ranges

Tipps

- Formatierung
- anpassungsfähige Formel mit relativen Bezügen

- Bereichsnamen / Namensmanager
- Tabellen verschieben/kopieren
- Liste/Tabelle
- Textfunktionen

Tipps

- =SUMME(Sommer)+SUMME(Winter)
- =WENNFEHLER()
- =ZUFALLSZAHL()
- =WENN(A1>A2;1-A1+A2;A1-A2)
- =CODE(Text)

EXCEL: SVerweis

 Der SVerweis durchsucht die erste Spalte einer Matrix und durchläuft die Zeile nach rechts, um den Wert einer Zelle zurückzugeben

Syntax

=SVERWEIS(Suchkriterium; Datenbereich; Spaltennummer; [Datenbereich sortiert?])

Beispiel

=SVERWEIS("Mike"; Liste; 4; Falsch)

Ergebnis: Findet den Namen "Mike" in der Liste und gibt den Wert in der 4. Spalte zurück

- SVERWEIS(8;B7:E16;4;FALSCH)
- Suchkriteriem mit Platzhalter möglich "Tob*"
- Sortiert: WAHR/FALSCH

EXCEL: WENN-DANN

- Mit WENN definiert man logische Bedingungen:
- =WENN(E7<50000;0%;WENN(E7<100000;5%;10%))

EXCEL: Pivot-Tabelle

- Daten, die in Tabellenform vorliegen, können strukturiert ausgewertet werden
- Ursprungsdaten werden so zusammengefasst, dass wichtige Eigenschaften der Daten pointiert dargestellt sind -> einfache Auswertungen
- Gruppierung absolutes non plus ultra

Verkäufer	Standort	Monat/Jahr	Umsatz
Tom	München	Januar 13	150.000€
Uwe	München	Januar 13	250.000€
Tim	Hamburg	Januar 13	20.000€
Max	Hamburg	Januar 13	300.000€
Michael	Berlin	Januar 13	100.000€
Silke	Berlin	Januar 13	400.000€
Tom	München	Februar 13	300.000€
Uwe	München	Februar 13	200.000€
Tim	Hamburg	Februar 13	50.000€
Max	Hamburg	Februar 13	450.000€
Michael	Berlin	Februar 13	70.000€
Silke	Berlin	Februar 13	360.000€

http://www.excellernen.de/excel-pivot-tabelle/

EXCEL: Diagramme

 Excel Pivot-Tabellen gelten für viele Poweruser als absolutes non plus ultra.

http://www.excellernen.de/excel-diagramme-erstellen/

Übung: Erstelle folgendes Schleifenprogramm

https://wettbewerb.jwinf.de/contents/4207%252F17553711644667 92490%252F1068298329102906460?sell=2

Das Aktivitätsdiagramm

- Mit dem Aktivitätsdiagramm (engl. Activity diagram) werden Abläufe beschrieben, dabei werden folgende Aspekte berücksichtigt
 - Start und Ende einer Aktivität
 - Verzweigungen
 - Bedingungen
- Mit Aktivitätsdiagrammen werden damit Regeln für die Abläufe beschrieben, d.h. alle möglichen Abläufe, nicht jedoch ein individueller Ablauf
- Sie werden eingesetzt, um
 - Geschäftsprozesse darzustellen
 - Use-Cases genauer zu beschreiben
 - Die Funktionsweise einer Operation genau darzustellen

Beispiel eines Aktivitätsdiagramms

Abbildung 12.10: Aktivitätsdiagramme zu "Kaffee kochen" und "Ware bezahlen"

Elemente des Aktivitätsdiagramms

In Aktivitätsdiagrammen werden folgende Elemente verwendet:

- Aktivitäten: gesamte Einheit eines Aktivitätsmodell bestehend aus einer Folge von Aktionen
- Aktionen: beschreibt ein Verhalten oder eine ausführbare Funktion, die innerhalb der Aktivität nicht weiter zerlegt wird
- **Objektknoten**: Ausprägung eines bestimmten Typs (Getränk, Rechnung,...)
- Verbindende Kanten: Übergänge zwischen zwei Knoten (Aktion, Objekt)
- Kontrollelemente für die Ablaufsteuerung:
 - parallelisieren und synchronisieren
 - verzweigen und zusammenführen
 - Bedingungen zur Lenkung auswerten
 - mehrfache Prozesse instanziieren
 - asynchrone Ereignisse in Prozesse eingreifen
 - parametrisieren von Abläufen
 - verknüpfen von Abläufen mit Objekten