

RF Exposure Report

Report No.: SA170825E04

FCC ID: UXX-S5A741A

Test Model: S5A741A

Received Date: Aug. 25, 2017

Test Date: Sep. 22 to 25, 2017

Issued Date: Oct. 16, 2017

Applicant: Cradlepoint, Inc.

Address: 1111 W. Jefferson Street Suite 400 Boise, ID 83702 USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies.

Report No.: SA170825E04 Page No. 1 / 10 Report Format Version: 6.1.1

Table of Contents

Relea	se Control Record	3
1	Certificate of Conformity	4
2	RF Exposure	5
2.1	Limits For Maximum Permissible Exposure (MPE)	5
2.2	MPE Calculation Formula	5
	Classification	
2.4	Antenna Gain	6
2.5	Calculation Result of Maximum Conducted Power	7
Appe	ndix	9

Release Control Record

Issue No.	Description	Date Issued
SA170825E04	Original release.	Oct. 16, 2017

Certificate of Conformity 1

Product: Integrated Mobile Broadband Router

Brand: cradlepoint

Test Model: S5A741A

Sample Status: ENGINEERING SAMPLE

Applicant: Cradlepoint, Inc.

Test Date: Sep. 22 to 25, 2017

Standards: FCC Part 2 (Section 2.1091)

KDB 447498 D01 General RF Exposure Guidance v06

IEEE C95.1-1992

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: ______, Date: ______, Oct. 16, 2017 Wendy Wu / Specialist

Approved by: **Date:** Oct. 16, 2017

May Chen / Manager

2 RF Exposure

2.1 Limits For Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time (minutes)					
Limits For General Population / Uncontrolled Exposure									
0.3-1.34	614	1.63	(100)*	30					
1.34-30	1.34-30 824/f 2.19		(180/f ²)*	30					
30-300	27.5	0.073	0.2	30					
300-1500			f/1500	30					
1500-100,000			1.0	30					

f = Frequency in MHz; *Plane-wave equivalent power density

2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 40cm away from the body of the user. So, this device is classified as **Mobile Device**.

Report No.: SA170825E04 Page No. 5 / 10 Report Format Version: 6.1.1

2.4 Antenna Gain

2.4	4 Antenna Gain WLAN											
Ant Set.		nsmitter Circu dio 1 5G	Radio 2	- Model	Frequer	ncy range Hz)	Antenna Type	Conne Type		Cable Length (mm)	Cable Loss(dB)	excluding cable loss Antenna Gain(dBi)
	GPIO 0 Chai	n0 Chain1	-		2.4~2.4835 5.15~5.85		Dipole	R-SM	IA	230	0.8 1.4	2.5 3.5
	GPIO 0 Chai	n1 Chain0	-			2.4835 ~5.85	Dipole	R-SM	IA	230	0.8 1.4	2.5 3.5
1	GPIO 1 Chai	n1 -	Chain2	RFA-25-F17M3-		2.4835 ~5.85	Dipole	R-SM	IA	230	0.8 1.4	2.5 3.5
'	-	-	Chain3	B70-25		2.4835 ~5.85	Dipole	R-SM	IA	230	0.8 1.4	2.5 3.5
	-	-	Chain0			2.4835 ~5.85	Dipole	R-SM	IA	230	0.8 1.4	2.5 3.5
	GPIO 1 Chai	n0 -	Chain1			2.4835 ~5.85	Dipole	R-SM	IA	230	0.8 1.4	2.5 3.5
	GPIO 0 Chai	n0 Chain1	-			2.4835 ~5.85	Dipole	R-SM	IA	230	0.8 1.4	5 5
	GPIO 0 Chai	n1 Chain0	-			2.4835 ~5.85	Dipole	R-SM	IA	230	0.8 1.4	5 5
2	GPIO 1 Chai	n1 -	Chain2	TWX-1513RSXX -711	2.4~2.4835 5.15~5.85 Dipole		Dipole	R-SM	IA	230	0.8 1.4	5 5
_	-	-	Chain3	,		2.4835 ~5.85	Dipole	R-SM	IA	230	0.8 1.4	5 5
	-	-	Chain0			2.4~2.4835 5.15~5.85		R-SM	IA	230	0.8 1.4	5 5
	GPIO 1 Chai	n0 -	Chain1		5.15	2.4835 ~5.85	Dipole	R-SM	IA	230	0.8 1.4	5 5
					3G/LTE							
Ant Set.	Transmitter Circuit	Mode	el	Antenna Gain wi		Frequency range		Antenn Type	a	Connecte Type	r Cable Length (mm)	Cable Loss (dB)
1	Main	YWX-6252S	ABX-711	1.0dBi@2300~23 2dBi@690~230 3dBi@2320~27	00MHz	2300~23 690~230 2320~27	00MHz	Dipole)	SMA	230	0~1G 0.5dB 1~3G 0.9dB
'	Aux	YWX-6252S	ABX-711	1.0dBi@2300~2320MHz 2dBi@690~2300MHz 3dBi@2320~2700MHz		2300~2320MHz 690~2300MHz 2320~2700MHz		Dipole)	SMA	230	0~1G 0.5dB 1~3G 0.9dB
0	Main	YWX-6241S <i>F</i>	XXX-711D	1.0dBi@2300~23 2dBi@690~230 3dBi@2320~27	00MHz	2300~23 690~230 2320~27	00MHz	Dipole	÷	SMA	230	0~1G 0.5dB 1~3G 0.9dB
2	Aux	YWX-6241S <i>A</i>	XXX-711D	1.0dBi@2300~23 2dBi@690~230 3dBi@2320~27	00MHz	2300~2320MHz 690~2300MHz 2320~2700MHz		Dipole	;	SMA	230	0~1G 0.5dB 1~3G 0.9dB
		T		GPS								
	Antenna Gai			Frequency range		Antenna Type		Connecter Type			9	
	GPS: 1 GLONASS			GPS: 1574.4 GLONASS: 160			Dipole SMA					

Note:

^{1.} For WLAN: Ant set 2 was selected for the final test.

^{2.} For 2.4GHz configuration mode, GPIO 0 and GPIO 1 were pre-tested and the worst case was found in GPIO 0, therefore only the test data of the modes were recorded in this report.

2.5 Calculation Result of Maximum Conducted Power

For WLAN (Radio 1)

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm²)
2412-2462	833.916	7.21	40	0.21817	1
5180-5240	681.538	6.61	40	0.15530	1
5745-5825	873.145	6.61	40	0.19896	1

NOTE:

2.4GHz: Directional gain = 4.20dBi + 10log(2) = 7.21dBi 5GHz: Directional gain = 3.60dBi + 10log(2) = 6.61dBi

For WLAN (Radio 2)

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
5180-5240	789.037	9.62	40	0.35956	1
5745-5825	996.851	9.62	40	0.45425	1

NOTE:

5GHz: Directional gain = 3.60dBi + 10log(4) = 9.62dBi

For 3G/LTE (Radio 3) (FCC ID: RI7LM940)

Band I		Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
698-716	223.9	2.00	40	0.01765	0.4665*

Note: *Limit of Power Density = F/1500

For 3G/LTE Modem (FCC ID: N7NMC7455)

Frequency Band (MHz)	Band Max Power (mW)		Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm²)
698-716	251.189	1.99	40	0.01975	0.4665

Note: *Limit of Power Density = F/1500

Note: The Max Power = Max tune up power including tolerance.

Conclusion:
The formula of calculated the MPE is:
CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1
CPD = Calculation power density
LPD = Limit of power density
WLAN 2.4GHz <radio 1=""> + WLAN 5GHz <radio 1=""> + WLAN 5GHz <radio 2=""> + 3G/LTE <radio 3=""> + 3G/LTE Modem = $0.21817/1 + 0.15530/1 + 0.45425/1 + 0.01765/0.4665 + 00.01975/0.4665 = 0.90790$ Therefore the maximum calculations of above situations are less than the "1" limit.</radio></radio></radio></radio>

Appendix

3G/LTE module

MPE Evaluation for FCC ID: RI7LM940 Radio Module

Mode	Equipment		ter Range Hz)	Max	imum	Antenna Gain		Density /cm²)	Ratio
	Category	Start	Stop	(dBm)	(W)	(dBi)	Vaule	Limit	
	Band II	1852.4	1907.6	24	0.2512	3	0.02493	1	0.02493
UMTS	Band IV	1712.4	1752.6	24	0.2512	3	0.02493	1	0.02493
	Band V	826.4	846.6	24	0.2512	2	0.0198	0.55093	0.03594
	Band 2	1850.7	1909.3	23.5	0.2239	3	0.02222	1	0.02222
	Band 4	1710.7	1754.3	23.5	0.2239	3	0.02222	1	0.02222
	Band 5	824.7	848.3	24	0.2512	2	0.0198	0.5498	0.03601
	Band 7	2502.5	2567.5	23.5	0.2239	3	0.02222	1	0.02222
	Band 12	699.7	715.3	23.5	0.2239	2	0.01765	0.46646	0.03784
	Band 13	779.5	784.5	23.5	0.2239	2	0.01765	0.51966	0.03396
LTE	Band 17	706.5	713.5	23.5	0.2239	2	0.01765	0.471	0.03747
	Band 25	1850.7	1914.3	23.5	0.2239	3	0.02222	1	0.02222
	Band 26	814.7	848.3	24	0.2512	2	0.0198	0.54313	0.03646
	Band 30	2307.5	2312.5	23	0.1995	3	0.0198	1	0.01980
	Band 38	2572.5	2617.5	23.5	0.2239	3	0.02222	1	0.02222
	Band 41	2498.5	2687.5	23.5	0.2239	3	0.02222	1	0.02222
	Band 66	1710.7	1779.3	23.5	0.2239	3	0.02222	1	0.02222

3G/LTE Modem MPE Evaluation for FCC ID: N7NMC7455 Radio Module

Operating	TX Freq Ra	ange (MHz)	Max Time-Avg (Cond Power		Power Dens	sity (mW/cm ²)	
Mode	Start	Stop	(dBm)	(W)	Gain (dBi)	Vaule	Limit	Ratio
WCDMA Band II LTE Band 2	1850	1910	24	0.25	4	0.0312	1	0.03123
WCDMA Band IV LTE Band 4	1710	1755	24	0.25	4	0.0312	1	0.03123
WCDMA Band V LTE Band 5	824	849	24	0.25	1.99	0.0197	0.54933	0.03579
LTE Band 7	2500	2570	23	0.2	2.8	0.019	1	0.01895
LTE Band 12	699	716	24	0.25	1.99	0.0197	0.466	0.04219
LTE Band 13	777	787	24	0.25	1.99	0.0197	0.518	0.03795
LTE Band 25	1850	1915	24	0.25	4	0.0312	1	0.03123
LTE Band 26	814	849	24	0.25	1.99	0.0197	0.54266	0.03623
LTE Band 30	2305	2315	23	0.2	1	0.0125	1	0.01252
LTE Band 41	2496	2690	23	0.2	2.8	0.019	1	0.01895

--- END ---