Título del Tema

Subtítulo o Capítulo

Prof. Arnoldo Del Toro Peña

11 de agosto de 2025

Ejemplos de Verificación de Soluciones para Ecuaciones Diferenciales

Instrucciones

Verifique que la solución dada satisface la ecuación diferencial correspondiente.

Ejemplo 1

Ecuación diferencial:

$$\frac{dy}{dx} = \frac{2x}{y}$$

Solución propuesta:

$$y^2 = x^2 + C$$

Ejemplo 2

Ecuación diferencial:

$$\frac{dy}{dt} = \frac{1}{t^2 + 1}$$

Solución propuesta:

$$y = \arctan(t) + C$$

Ejemplo 3

Ecuación diferencial:

$$\frac{dz}{dx} = 2x\cos(x^2)$$

Solución propuesta:

$$z = \sin(x^2) + K$$

Ejemplo 4

Ecuación diferencial:

$$\frac{dP}{dt} = \frac{3t^2}{\sqrt{t^3 + 1}}$$

Solución propuesta:

$$P = 2\sqrt{t^3 + 1} + A$$

Ejemplo 5

Ecuación diferencial:

$$x\frac{dy}{dx} = y + x^2$$

Solución propuesta:

$$y = x \ln|x| + Cx$$

Proceso de Verificación

Para verificar cada solución:

- 1. Calcular la derivada de la solución propuesta con respecto a la variable independiente
- $2. \ \, {\bf Sustituir} \,$ tanto la función como su derivada en la ecuación diferencial original
- 3. Simplificar para comprobar que ambos lados de la ecuación son iguales
- 4. Concluir si la solución es correcta

Ejemplo de verificación (para el Ejemplo 2):

Si
$$y = \arctan(t) + C$$
, entonces: - $\frac{dy}{dt} = \frac{1}{t^2 + 1}$ - Sustituyendo en la ecuación: $\frac{1}{t^2 + 1} = \frac{1}{t^2 + 1}$

Ejemplo de verificación (para el Ejemplo 1):

Si $y^2 = x^2 + C$, entonces derivando implícitamente:

- $2y\frac{dy}{dx} = 2x$
- Por lo tanto: $\frac{dy}{dx} = \frac{x}{y}$
- Pero la ecuación original es $\frac{dy}{dx} = \frac{2x}{y}$
- \bullet ¡Esta solución NO es correcta! La solución correcta sería $y^2=2x^2+C$