QUANTITATIVE METHODS STATISTICAL CONCEPTS

Tomi Heimonen (he/him)

Computing and New Media Technologies University of Wisconsin-Stevens Point

CONTENT

- Statistical concepts
 - Data types
 - Variable types
- Descriptive statistics
- Fundamentals of statistical inference

BIG PICTURE

- Quantitative research requires **measurement** of something: depending on what is being measured, different **data types** are used.
- Data type influences (in part) the kinds of **statistical methods** can be used to analyze the metrics.
- Measurements are generally a form of **dependent variable** measured in connection to **independent variables** (e.g., different treatments or conditions).
- Measurements form a **sample** with specific characteristics, such as minimum and maximum values, mean, and standard deviation, and variance.
- **Descriptive statistics** describe sample characteristics which can be used to estimate population characteristics (**inferential statistics**).

DATA TYPES

- Nominal: data indicates mutually exclusive categories; ordering of the values is not meaningful
 - Examples: gender, name, favorite ice cream flavor
- Ordinal: data values can be ordered; values are not equidistant
 - Example: responses to a survey question: "This website was easy to use" Agree, Neutral, Disagree
- Interval: same as ordinal; differences between values are equidistant
 - Example: temperature (difference between 60 and 70 degrees is the same as between 70 and 80 degrees)
- Ratio: same as interval, but there is zero point ratios of measurements are meaningful
 - Example: weight, height (4 pounds is four times as much as 1 pound)

INDEPENDENT AND DEPENDENT VARIABLES

- Independent variables (IV) are systematically varied (or "manipulated") and dependent variables (DV) are the response measures that are collected.
 - Levels of IV, such as different types of ads shown to consumers, are often called "conditions" or "factors"; one or several IV can be manipulated in the same study.
- Many statistical analyses are designed for examining the effect of independent variables on dependent variables.
 - The objective of the statistical analysis is to examine whether the conditions have a statistically significant effect on the observed outcomes.
 - Example: Effect of vaccine type on treatment success
 - In other words, outcome did not occur purely by random chance.

OTHER TYPES OF VARIABLES

- There are also variables we want to **control** (= keep constant) so that they do not affect the outcome.
 - Examples: temperature, lighting conditions, time of day, ...
- The study setting, participants, technology etc. can introduce other unintended variables that, if not controlled for, can **confound** the results.
 - Can in different ways affect the relationship between IV and DV.
 - Example: participants' socioeconomic status when studying educational interventions
 - Often tricky to tease out the impact of these variables!
- Some variables we want to **randomize** to reduce bias and improve generalizability, such as assignment of participants to different conditions.

MEASURING VARIABLES

- Variables can have different ranges of possible values within the context of a specific study.
- **Discrete variables**: values can come from a finite set of possible values.
 - Typically nominal, but also ordinal or interval/ratio data can take discrete form.
 - Examples: ethnic background (nominal), course grade (A-F; ordinal), blood pressure level (when the values are grouped into "high", "normal", "low")
- Continuous variables: infinite number of possible values, often within some reasonable range.
 - In practice, continuous variables are always interval/ratio type.
 - Example: the time it takes for an athlete to run a 100-meter dash (bounded by 0)
- The types of the statistical analyses that are appropriate depend on the types of independent and dependent variables.*

DESCRIPTIVE STATISTICS

DESCRIPTIVE STATISTICS

- Descriptive statistics characterize the **main features** of the sample.
- Measures of **central tendency** where does the "center point" of the data lie?
 - **Mode** most common value
 - **Median** the middle value
 - **Arithmetic mean** ("average") sum of all values divided by number of values
- Measures of variability how much does the data "spread" around the center point?
 - Range distance between smallest and largest value
 - **Variance** how far the values are spread around the mean
 - Standard deviation conceptually the same as variance, but expressed in units of the original values
- It is often helpful to also represent the data graphically to identify possible outliers or missing data.

TERMINOLOGY: SAMPLE VS. POPULATION

- **Population** = all possible measurements for the given variable
 - Example: current speed of all vehicles on the interstate
- **Sample** = a representative set of measurements from the population
 - Example: current speed of 100 randomly selected vehicles
- A measure of a sample variable is called a **statistic**.
- A measure of a population variable is called a **parameter**.

MEASURES OF VARIABILITY FOR POPULATION AND SAMPLES

- Range of values in the sample can be used to "quality control" the data.
 - Remove **outliers** values at extreme ends of the range and verify **coding** are all data values correctly inputted?
- Variance measures the spread of the data set:
 - Formula: $S^2 = \frac{\sum_{i=1}^{n} (x_i \bar{x})^2}{n-1}$
 - $x_i = i^{th}$ value, $\bar{x} =$ sample mean, n = number of values
- Standard deviation expresses dispersion in the same units as the mean.
 - Formula: $s = \sqrt{s^2}$
- In a normal distribution (variables that follow a symmetrical distribution around the mean), about 68% of values fall within one standard deviation of the mean and 99.7% within three standard deviations.

GRAPHING DESCRIPTIVE STATISTICS

- **Bar chart**: series of rectangular bars proportional in size to the values they represent useful for summarizing categorical data.
- **Histogram**: bar chart that represents the frequency distribution of continuous data
- **Box plot**: graphical summary of the distribution based on min, max, median and 25th and 75th percentiles.
- **Scatter plot**: Visualizes data along two axes useful when trying to observe any relationships between two variables

STATISTICAL INFERENCE

STATISTICAL INFERENCE

- Inferential statistics is concerned with **drawing conclusions about a population** based on a sample.
- Why is this relevant? Because researchers rarely have access to the whole population due to its size, cost or other factors.
- General process for statistical inference:
 - Draw a random sample from the population.
 - Calculate a **sample statistic**.
 - Estimate the **population parameter** (generally one of the measures of central tendency) based on the sample statistic and, if known, population characteristics.
 - Estimates can be **point estimates** (e.g., sample mean) or **interval estimates** (confidence interval).

Sample 3

0

Sample 1 True population mean

Sample 2

150

- Little bit of theory: We generally make inferences based on the **sampling distribution** of the sample statistic of interest.
- Sampling distribution is a **probability distribution** of the statistic based on a large number of samples of size *n* from the population.
 - Sampling distribution gives the likelihood of obtaining a specific value of the statistic when taking a random sample from the population.
- Sampling distributions are used by statistical tests to calculate probabilities of interest for example, the likelihood that two separate samples were drawn from the same underlying population.

SAMPLING DISTRIBUTION OF THE MEAN

- Distribution of sample means drawn at random from a population; has the following properties:
 - Its mean is the same as the population mean.
 - Its variance is the population variance divided by the sample size.
 - Its standard deviation is the **standard error of the mean** (σ_M) : σ / \sqrt{n}
 - It is **normally distributed regardless of the shape of the population distribution** if the sample size is sufficiently large (conventionally, when sample size is larger than 30).
- Why does this matter? Many statistical tests are based on a known sampling distributions this allows us to estimate the probability of obtaining the sample statistic in order to make inferences.

CONFIDENCE INTERVAL

- Confidence interval is an **interval estimate** for an unknown population parameter.
- Confidence level indicates how certain we are that the **true parameter value** falls within the confidence interval.
 - Traditionally, 95% and 99% confidence levels are used.
- Confidence interval for the mean is calculated based on the sampling distribution of the mean using:
 - sample size
 - standard error of the mean = measures precision of sample mean as an estimate of population mean
 - α = alpha, the probability that true population parameter value lies outside the confidence interval complement of the confidence level

CONFIDENCE INTERVAL WHEN POPULATION PARAMETERS ARE KNOWN

- Confidence interval formula: M \mp Z_{.95} \times $\sigma_{\rm M}$
 - M is the sample mean
 - $Z_{.95}$ is the number of standard deviations extending from the mean that contain 95% of values in the standard normal distribution (95% = 1.96 standard deviations in a normal distribution)
 - $\sigma_{\rm M}$ is the standard error of the mean: $\sigma_{\rm M}=\frac{\sigma}{\sqrt{n}}$
- Example: Confidence interval for a sample of five numbers (2, 3, 5, 6, 9) from a normal distribution with a standard deviation of 2.5
 - Sample size: 5
 - Sample mean: 5
 - Population standard deviation: 2.5
 - Standard error of the mean: $2.5/\sqrt{5} = 1.118$
 - Confidence interval: $5 \mp (1.96 \times 1.118) = 5 \mp 2.19$

Population mean falls somewhere between 2.81 and 7.19.

CONFIDENCE INTERVAL CALCULATION WHEN POPULATION PARAMETERS ARE UNKNOWN

- A more common scenario in experimental research involving people.
- Approach: Use the **t-distribution** to look up the **critical value** based on the **sample degrees of freedom** (sample size 1) and desired confidence level.
- Formula: $M \mp t_{.95} \times s_M$
- s_M = estimate of the standard error of the mean = $\frac{s}{\sqrt{N}}$
- Example:
 - Sample mean: 35.5
 - Sample variance: 56.8
 - Sample size: 8
 - Critical value of t for df(7) = 2.365
 - Estimate of the standard error of the mean: $\sqrt{56.8}/\sqrt{8} = 2.66$
 - Confidence interval: $35.5 \mp (2.365 \times 2.66) = 35.5 \mp 6.29$
 - The confidence interval for the mean ranges from 29.2 to 41.8

INTERPRETING CONFIDENCE INTERVALS

- Does CI represent that there is 95% probability that the true population mean lies within the confidence interval?
 - Not exactly it means that if we take multiple samples from the population, the true population mean will fall within the CI in 95% of the time.
- In many cases, CI alone is sufficient to make basic inferences with respect to a hypothesis about the population parameter.
- Example:
 - Baseline fitness score before a training program is 45.
 - After completing a training program, we obtain a 95% CI [48, 54] because 45 does not fall within the CI, the effect is statistically significant → training program is effective.

FROM CONFIDENCE INTERVAL TO MORE COMPLEX SCENARIOS

- Calculating the CI for a single sample is one of the simplest forms of inference but what if we wanted to compare two different samples, or study multiple IVs or DVs?
- The generalized approach is to carry out **hypothesis testing**, which requires us to
 - State two competing hypotheses the **null hypothesis** (H_0 ; status quo) and an **alternative hypothesis** (H_a ; an effect, difference or relationship exists in the population)
 - Select the appropriate statistical tests to test the hypotheses and the **significance level** (α) threshold for rejecting the null hypothesis.
 - Design the experiment, collect data and calculate test statistic and probability (**p-value**) of observing the test statistic or more extreme values under the null hypothesis.
 - Based on test results, determine if we can reject the null hypothesis.
 - Interpret and report the results.