

1 CLAIMS

2

3 1. Apparatus for mobilising drill cuttings in a
4 well, comprising at least one vane, and two or more
5 blades defining at least one fluid conduit between
6 adjacent blades, the blades and vane being rotatable
7 relative to one another.

8

9 2. Apparatus according to claim 1, wherein the
10 blades are configured to create a pressure
11 difference in a fluid flowing through the at least
12 one fluid conduit.

13

14 3. Apparatus according to claim 1 or claim 2,
15 comprising a sleeve adapted to fit over a drill
16 string in the well.

17

18 4. Apparatus according to claim 3, wherein the or
19 each vane is provided on the sleeve.

20

21 5. Apparatus according to any preceding claim,
22 wherein the blades project radially outward to a
23 greater extent than the or each vane.

24

25 6. Apparatus according to any of claims 3 to 5,
26 wherein the blades are mounted on a bushing that is
27 rotatably mounted on the sleeve.

28

29 7. Apparatus according to any of claims 3 to 6,
30 wherein the blades are arranged substantially
31 parallel to an axis of rotation of the sleeve.

32

1 8. Apparatus according to claim 6, wherein the
2 blades are offset with respect to an axis of
3 rotation of the bushing such that the blades extend
4 helically around the bushing.

5

6 9. Apparatus according to claim 8, wherein the
7 blades are offset at an angle of 3-10° with respect
8 to the axis of rotation.

9

10 10. Apparatus according to any of claims 3 to 9,
11 comprising fixing means for attaching the sleeve to
12 the drill string.

13

14 11. Apparatus according to claim 10, wherein the
15 fixing means comprises a clamp means.

16

17 12. Apparatus according to claim 11, wherein the
18 clamp means comprise an annular clamp.

19

20 13. Apparatus according to any preceding claim,
21 wherein the or each vane is rotationally fixed to a
22 drill string such that rotation of the drill string
23 causes rotation of the or each vane.

24

25 14. Apparatus according to any preceding claim,
26 wherein the or each vane is configured to create
27 thrust when rotated in a fluid.

28

29 15. Apparatus according to any preceding claim,
30 wherein the blades have an asymmetric profile.

31

1 16. Apparatus according to any preceding claim,
2 wherein the blades are shaped in the form of foils,
3 so that the fluid conduits defined between adjacent
4 blades on the bushing change in profile.

5

6 17. Apparatus according to any preceding claim,
7 wherein the at least one fluid conduit is relatively
8 narrow at an end proximal to a drill bit and
9 relatively wider towards another end distal from the
10 drill bit.

11

12 18. Apparatus according to any preceding claim,
13 wherein a cross section through the blades is in the
14 form of an hour glass.

15

16 19. Apparatus according to claim 18, wherein the
17 blades are shaped to have a wide root radially inner
18 most adjacent the bushing, a wide top at the
19 radially outermost part of the blade arranged to
20 bear against the borehole wall, and a narrower
21 cutaway portion between the root and top.

22

23 20. Apparatus according to any of claims 6 to 18,
24 wherein the bushing is formed from a rigid material.

25

26 21. Apparatus according to any of claims 3 to 20,
27 wherein the sleeve has an annular body to
28 accommodate a tubular therethrough.

29

30 22. Apparatus according to claim 21, wherein the
31 annular body has at least one vane integrally formed
32 therewith.

1

2 23. Apparatus according to a claim 21, wherein the
3 sleeve has at least one vane-receiving recess
4 therein to receive and retain at least one modular
5 vane.

6

7 24. Apparatus according to any of claims 6 to 23,
8 wherein the bushing has blades integrally formed
9 therewith.

10

11 25. Apparatus according to any of claims 6 to 23,
12 wherein the bushing has blade-receiving recesses
13 therein to receive and retain modular blades.

14

15 26. Apparatus according to any of claims 3 to 25,
16 wherein the at least one vane lies parallel to the
17 axis of rotation of the sleeve.

18

19 27. Apparatus according to any of claims 3 to 25,
20 wherein the at least one vane is curved so as to
21 scoop fluid from an area surrounding the vanes.

22

23 28. Apparatus according to claim 27, wherein the at
24 least one vane is configured in a sinusoidal shape.

25

26 29. Apparatus according to claim 27 or claim 28,
27 wherein the at least one vane is offset with respect
28 to the axis of rotation of the sleeve such that one
29 end of the at least one vane is circumferentially
30 spaced around the sleeve from the other end.

1 30. Apparatus according to claim 29, wherein the
2 direction of offset of the at least one vane is in
3 an opposite direction to the offset of the blades.

4

5 31. Apparatus according to any preceding claim,
6 wherein the at least one vane has a concave surface.

7

8 32. Apparatus according to claim 31, wherein the
9 concave surface is provided on one side of the or
10 each vane facing the direction of rotation.

11

12 33. Apparatus according to a claim 32, wherein the
13 side of the or each vane is shaped to have a greater
14 radius of curvature at one end than at another end.

15

16 34. Apparatus according to any preceding claim,
17 wherein the at least one vane has one or more
18 notches cut away from a radially outermost portion
19 thereof.

20

21 35. A drill cuttings agitation assembly, comprising
22 a tubular, at least one vane, and two or more blades
23 defining at least one fluid conduit between adjacent
24 blades, wherein the at least one vane and the blades
25 are rotatable relative to one another.

26

27 36. A method of agitating drill fluid in an oil or
28 gas well, the method comprising passing the drill
29 fluid past at least one vane rotatable relative to
30 two or more blades.

31

1 37. A method according to claim 36, including
2 configuring the blades to create a pressure
3 difference in fluid flowing through at least one
4 fluid conduit defined by the two or more blades.

5

6 38. A method according to any of claims 36 or 37,
7 including providing the at least one vane on a
8 sleeve.

9

10 39. A method according to claim 38, including
11 providing blades on a bushing and rotatably mounting
12 the bushing with respect to the sleeve.

13

14 40. A method according to any of claims 36 to 39,
15 including mounting and rotationally fixing the at
16 least one vane on a drill string.

17

18 41. A method according to claim 40, including
19 rotating the drill string to rotate the at least one
20 vane, thereby agitating the drill fluid in the
21 environment.

22

23 42. A method according to any of claims 40 and 41,
24 including centralising the sleeve within a bore in
25 which the drill string is located, by means of the
26 blades.

27