TODO

- Discription of the microstucture.
- Discription of the model
- Pictures
- \bullet macroscopic problem
- cell problem

Program structure

- General things
 - parameter file
- Microscopic problem
 - declare parameter
 - make grid
 - distribute levelset, material
 - assemble system
 - assemble rhs
 - boundary and interface conditions
 - solve
 - visualize solution
- Homogenized problem
 - Cell problem
 - * make grid
 - * levelset
 - * assemble system
 - * assemble rhs
 - * periodic boundary condition, (interface condition?)
 - * solve
 - * visualize
 - Makroscopic Problem
 - * compute tensor
 - * make grid
 - * assemble system
 - * assemble rhs
 - * boundary condition
 - * solve
 - \ast visualize solution
- ullet Domain discription

Abbildung 1: Microscopic problem

- PDE + Explaination and application
- trouble with microstructure
- assumption of periodicity
- homogenization process
- cell problem and macroscopic problem
- How does the equation change, interface and boundary condition
- Implementation details
 - unfitted mesh and level set function
 - xfem

_

- three scale homogenization
- small cut problem
- ghost penalty

1 Homogenization

We consider a composite material in the domain $\Omega = S \cup P$, where S denotes the solid phase, and P denotes the pores.

We consider the following PDE on the microscopic domain.

$$\nabla \cdot (D_V \nabla u) = f(x) \qquad x \in S \tag{1}$$

$$D_V \nabla u \cdot \nu = k(u - \bar{u}) \qquad x \in \Gamma$$
 (2)

The diffusion D_V is defined as

$$D_V(x) = \begin{cases} D_V = const, & x \in S \\ 0, & x \in P \end{cases}$$

To derive a homogenized problem we separate the scale in two parts. We assume D_V to be constant in S. Ansatz:

$$u_{\varepsilon}(x,y) = u_0(x,y) + \varepsilon u_1(x,y) + \varepsilon^2 u_2(x,y) + \mathcal{O}(\varepsilon^3)$$
(3)

Chain rule for the gradient:

$$\nabla = (\nabla_x + \frac{1}{\varepsilon} \nabla_y) \tag{4}$$

The left hand side of (1) becomes:

$$\partial_t u_{\varepsilon} = \partial_t \left(u_0(x, y) + \varepsilon u_1(x, y) + \varepsilon^2 u_2(x, y) \right) \tag{5}$$

The right hand side of (1) becomes:

$$\nabla \cdot (D_V \nabla u_{\varepsilon}) = \nabla \cdot (D_V \nabla (u_0 + \varepsilon u_1 + \varepsilon^2 u_2))$$

$$= (\nabla_x + \frac{1}{\varepsilon} \nabla_y) \cdot (D_V (\nabla_x + \frac{1}{\varepsilon} \nabla_y) (u_0 + \varepsilon u_1 + \varepsilon^2 u_2))$$

$$= D_V (\varepsilon^{-2} (\nabla_y \cdot \nabla_y u_0)$$

$$+ \varepsilon^{-1} (\nabla_x \cdot \nabla_y u_0 + \nabla_y \cdot \nabla_x u_0 + \nabla_y \cdot \nabla_y u_1)$$

$$+ \varepsilon^0 (\nabla_x \cdot \nabla_x u_0 + \nabla_x \cdot \nabla_y u_1 + \nabla_y \cdot \nabla_x u_1 + \nabla_y \cdot \nabla_y u_2)$$

$$+ \varepsilon^1 (\nabla_x \cdot \nabla_x u_1 + \nabla_x \cdot \nabla_y u_2 + \nabla_y \cdot \nabla_x u_2)$$

$$+ \varepsilon^2 (\nabla_x \cdot \nabla_x u_2))$$

Comparing the orders of ε we get for ε^{-2} :

$$\nabla_{u} \cdot \nabla_{u} u_{0}(x, y) = 0 \tag{6}$$

Because of the periodicity in y it is $u_0(x, y) = u_0(x)$.

Therefore we get from the ε^{-1} :

$$\nabla_x \cdot \nabla_y u_0(x) = \nabla_y \cdot \nabla_x u_0(x) = 0 \tag{7}$$

It follows:

$$\nabla_y \cdot \nabla_y u_1(x, y) = 0 \tag{8}$$

We write u_1 as linear combination of u_0

$$u_1(x,y) = \sum_{j=1}^{n} w_j(y) \partial_{x_j} u_0(x)$$
 (9)

The y-gradient can be written as

$$\nabla_y u_1(x,y) = \nabla_y \sum_{j=1}^n w_j(y) \partial_{x_j} u_0(x)$$
(10)

$$= \sum_{j=1}^{n} \partial_{x_j} u_0(x) \nabla_y w_j(y)$$
(11)

$$= \sum_{i=1}^{n} \partial_{x_j} u_0(x) \sum_{i=1}^{n} e_i \partial_{y_i} w_j(y)$$

$$\tag{12}$$

Or component-wise

$$\partial_{y_i} u_1(x,y) = \sum_{j=1}^n \partial_{x_j} u_0(x) \partial_{y_i} w_j(y)$$

It is obvious that $\nabla_x u_0(x)$ can be represented as:

$$\nabla_x u_0(x) = \sum_{i=1}^n e_i \partial_{x_i} u_0(x) \tag{13}$$

From the ε^0 term we get:

$$\partial_t u_0 = D_V(\nabla_x \cdot \nabla_x u_0 + \nabla_x \cdot \nabla_y u_1 + \nabla_y \cdot \nabla_x u_1 + \nabla_y \cdot \nabla_y u_2)$$

We integrate over the cell:

$$\int_{Y_S} \partial_t u_0 \, \mathrm{d} \, y = D_V \left(\int_{Y_S} \nabla_x \cdot (\nabla_x u_0 + \nabla_y u_1) \, \mathrm{d} \, y + \int_{Y_S} \nabla_y \cdot (\nabla_x u_1 + \nabla_y u_2) \, \mathrm{d} \, y \right)$$

Since $u_0(x)$ is independent of y it becomes:

$$\int_{Y_S} \partial_t u_0 \, \mathrm{d} \, y = \mid Y_S \mid \partial_t u_0$$

Dividing by $|Y_S|$ we get:

$$\partial_t u_0 = \frac{1}{|Y_S|} D_V \left(\int_{Y_S} \nabla_x \cdot (\nabla_x u_0 + \nabla_y u_1) \, \mathrm{d}y + \int_{Y_S} \nabla_y \cdot (\nabla_x u_1 + \nabla_y u_2) \, \mathrm{d}y \right)$$

The first integral then becomes:

$$\begin{split} D_V \int_{Y_S} \nabla_x \cdot \left(\nabla_x u_0(x) + \nabla_y u_1(x,y) \right) \mathrm{d}\,y \\ &= \frac{1}{|Y_S|} D_V \int_{Y_S} \nabla_x \cdot \left(\sum_{i=1}^n e_i \partial_{x_i} u_0(x) + \sum_{j=1}^n \partial_{x_j} u_0(x) \sum_{i=1}^n e_i \partial_{y_i} w_j(y) \right) \mathrm{d}\,y \\ &= \frac{1}{|Y_S|} D_V \int_{Y_S} \sum_{i=1}^n \partial_{x_i}^2 u_0(x) + \sum_{j=1}^n \sum_{i=1}^n \partial_{x_i} \partial_{x_j} u_0(x) \partial_{y_i} w_j(y) \, \mathrm{d}\,y \\ &= \frac{1}{|Y_S|} D_V \int_{Y_S} \sum_{i=1}^n \sum_{j=1}^n \delta_{ij} \partial_{x_i} \partial_{x_j} u_0(x) + \sum_{i=1}^n \sum_{j=1}^n \partial_{x_i} \partial_{x_j} u_0(x) \partial_{y_i} w_j(y) \, \mathrm{d}\,y \\ &= \frac{1}{|Y_S|} D_V \int_{Y_S} \sum_{i=1}^n \sum_{j=1}^n \partial_{x_i} \partial_{x_j} u_0(x) (\delta_{ij} + \partial_{y_i} w_j(y)) \, \mathrm{d}\,y \\ &= \sum_{i=1}^n \sum_{j=1}^n \partial_{x_i} \partial_{x_j} u_0(x) \frac{1}{|Y_S|} D_V \int_{Y_S} (\delta_{ij} + \partial_{y_i} w_j(y)) \, \mathrm{d}\,y \end{split}$$

We introduce now:

$$\hat{D}_{ij} = \frac{1}{|Y_S|} D_V \int_{Y_S} (\delta_{ij} + \partial_{y_i} w_j(y)) \,\mathrm{d}y$$
(14)

Then we get:

$$D_V \int_{Y_S} \nabla_x \cdot (\nabla_x u_0(x) + \nabla_y u_1(x, y)) \, \mathrm{d}y = \sum_{i=1}^n \sum_{j=1}^n \partial_{x_i} \partial_{x_j} u_0(x) \hat{D}_{ij}$$
 (15)

Consider the second integral and integrate by parts:

$$D_V \int_{Y_S} \nabla_y \cdot (\nabla_x u_1 + \nabla_y u_2) \, \mathrm{d} \, y = D_V \int_{\Gamma} (\nabla_x u_1 + \nabla_y u_2) \cdot \nu \, \mathrm{d} \, \Gamma(y)$$
 (16)

Putting these two integrals together we get:

$$\int_{Y_S} \partial_t u_0(x) \, \mathrm{d} \, y = \sum_{i=1}^n \sum_{j=1}^n \partial_{x_i} \partial_{x_j} u_0(x) \hat{D}_{ij} + D_V \int_{\Gamma} (\nabla_x u_1 + \nabla_y u_2) \cdot \nu_y \, \mathrm{d} \Gamma(y)$$

$$\tag{17}$$

Where ν_y is the normal vector in the y scale.

We consider now the boundary condition. Using the ansatz function we get:

$$k(u_0 + \varepsilon u_1 + \varepsilon^2 u_2 - \bar{u}) = D_V(\varepsilon^{-1} \nabla_u u_0$$
(18)

$$+\varepsilon^0(\nabla_x u_0 + \nabla_y u_1) \tag{19}$$

$$+\varepsilon(\nabla_x u_1 + \nabla_u u_2) \tag{20}$$

$$+\varepsilon^2 \nabla_x u_2 \cdot \nu$$
 (21)

Where ν is the normal vector in the macroscale. ??? To apply the boundary condition, we need to express ν in terms of ν_y . Since the microstucture is represented in cell problem, we get the direction of the normal from ν_y but to get unit vector we have to scale it with $\frac{1}{\varepsilon}$. So it is $\nu = \frac{\nu_y}{\varepsilon}$

Therefore the boundary condition (18), becomes:

$$k(u_0 + \varepsilon u_1 + \varepsilon^2 u_2 - \bar{u}) = D_V(\varepsilon^{-2} \nabla_y u_0$$

$$+ \varepsilon^{-1} (\nabla_x u_0 + \nabla_y u_1)$$

$$+ \varepsilon^0 (\nabla_x u_1 + \nabla_y u_2)$$

$$+ \varepsilon \nabla_x u_2) \cdot \nu_y$$

$$(22)$$

Now we sort the terms by orders of ε and get:

$$\varepsilon^{-1}D_V(\nabla_y u_0(x)) \cdot \nu = 0 \tag{24}$$

$$D_V(\nabla_x u_0 + \nabla_y u_1) \cdot \nu = 0$$

$$\varepsilon D_V(\nabla_x u_1 + \nabla_y u_2) \cdot \nu = k(u_0 - \bar{u})$$

$$\varepsilon^2 D_V(\nabla_x u_2) \cdot \nu = \varepsilon k u_1$$

$$0 = \varepsilon^2 k u_2$$
(25)

Applying the boundary condition to (17) and with the assumption $k \approx \varepsilon$ we get:

$$\int_{Y_S} \partial_t u_0(x) \, \mathrm{d} \, y = \sum_{i=1}^n \sum_{j=1}^n \partial_{x_i} \partial_{x_j} u_0(x) \hat{D}_{ij} + D_V \int_{\Gamma} (\nabla_x u_1 + \nabla_y u_2) \cdot \nu \, \mathrm{d} \, \Gamma(y)$$
(26)

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \partial_{x_i} \partial_{x_j} u_0(x) \hat{D}_{ij} + \int_{\Gamma} u_0(x) - \bar{u} \, \mathrm{d} \, \Gamma(y)$$
 (27)

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \partial_{x_i} \partial_{x_j} u_0(x) \hat{D}_{ij} + |\Gamma| (u_0 - \bar{u})$$
 (28)