STRUCTURED LOW-RANK APPROXIMATION WITH APPLICATIONS

School of Electronics and Computer Science, University of Southampton Ivan Markovsky,

Structured low-rank approximation

minimize (over \widehat{w}) $||w - \widehat{w}||$ subject to rank $(\mathscr{S}(\widehat{w})) \leq r$

— given data

— structured matrix

— rank specification

data approximation (smoothed data)

Example: model order reduction

— impulse response of a high order system ${\mathcal W}$

Hankel matrix

— order of an approximate LTI system

 $\widehat{\mathcal{W}}$ — impulse response of the approximate system

Example: approximate GCD

— coefficients of two (degree-d) polynomials

Sylvester matrix

— degree of the approximate GCD

 \widehat{W} — coef. of polynomials with degree-n-r GCD

Example: approximate system identification

w — observed trajectory (inputs and outputs) $\mathcal{S}(w)$ — Hankel matrix r = Tm + n — complexity specification

— traj. of *n*th order LTI system with *m* inputs \widehat{W}

1. equal treatment of variables **Notes:**

2. abstraction of the model representation

EPSRC proposal aiming at:

- Robust and efficient local optimization methods
- Effective heuristics (subspace and relaxations methods)
- Applications in bioI, biomedical SP, computer algebra

References

- I. Markovsky. Structured low-rank approximation and its applications. Automatica, 44(4):891–909, 2007.
- I. Markovsky et al. Exact and Approximate Modeling of Linear Systems: A Behavioral Approach, SIAM, 2006.