Homework Assignment 2

- On I/O operations
- 4% of your final grade
 - Individual work, no collaboration is allowed
- One-week turnaround time
 - Due on 2/21 before class

Recap from last class

- The CPU Bus
 - A set of wires and protocols for CPU to communicate with memory and I/O devices.
 - Four-cycle handshake protocol
 - Timing diagram for typical bus access
- Timing diagram syntax:
 - Constant value (0/1), stable, changing, unknown.

ECE 1175 Embedded Systems Design

Cache and Memory

Wei Gao

Embedding A Computer

Cache in the Memory System

- Cache controller mediates between CPU and memory system
- Sends a memory request to both cache and main memory
- If requested location is in cache, request to main memory is aborted

Terms

- Cache hit: required location is in cache.
- Working set: set of memory locations used by program in a time interval.
- Cache miss: required location is not in cache.
 - Compulsory (cold) miss: location has never been accessed.
 - Capacity miss: working set is too large.
 - Conflict miss: multiple locations in working set map to same cache entry.

Memory System Performance

- h = cache hit rate: the percentage of cache hits
- t_{cache} = cache access time,
- t_{main} = main memory access time.
- Average memory access time:
 - $t_{av} = ht_{cache} + (1-h)t_{main}$
- Example: $t_{cache} = 10ns$, $t_{main} = 100ns$, h = 97%
 - $t_{av} = 97\%*10$ ns + (1-97%)*100ns = 12.7ns

Multi-Level Cache Access Time

- h₁ = cache hit rate for L1
- h₂ = cache hit rate for L2
- Average memory access time:
 - $t_{av} = h_1 t_{L1} + (1-h_1)(h_2 t_{L2} + (1-h_2)t_{main})$

Cache Performance Improvement

- To maximize cache hit rate
 - Keep most frequently-accessed memory items in fast cache.
- It is impossible to put everything in small cache
 - Need a good policy to decide which items should be in cache
 - e.g. who should be your favorite 5 people?
 - Nationwide unlimited calls by T-Mobile

Cache Entry Replacement Policies

- Replacement policy: strategy for choosing which cache entry to throw out to make room for a new memory location.
- Popular strategies:
 - Random
 - Randomly pick one to throw out; requires less hardware
 - Least-recently used (LRU)
 - Throw out the block that has been used farthest in the past, assuming the chance to use it in the future is small
 - Least-frequently used (LFU)
 - Throw out the block that was least frequently used in the past

Cache Write Operations

- Cache writes are more complicated than reads
 - Need to update memory as well as cache
- Write-through: immediately copy write to main memory.
 - ✓ Ensures cache and memory are consistent
 - × Additional memory traffic
- Write-back: write to main memory only when location is removed from cache.
 - ✓ Reduces the number of times we write to memory.
 - May cause inconsistency between cache and memory

Cache Organizations

- How should we map memory to cache?
 - Fully-associative: any memory location can be stored anywhere in the cache.
 - Ideal, best cache hit rate but implementation is complex and slow
 - Almost never implemented
 - Direct-mapped: each memory location maps onto exactly one cache entry.
 - Simplest, fastest but least flexible
 - Easy to have conflicts
 - N-way set-associative: each memory location can go into one of n sets.
 - Compromised solution

Direct-Mapped Cache

Direct-Mapped Cache

- Memory address divided to three sections
 - Index: which block to find; tag: compared to the tag used in cache for cache hit; offset: which word in the block is

Problems of Direct-Mapped Cache

- Many locations map onto the same cache block.
- Conflict misses are easy to generate:
 - Array a[] uses locations 0, 1, 2, ...
 - Mapped to cache 0, 1, 2
 - Array b[] uses locations 1024, 1025, 1026, ...
 - Also mapped to cache 0, 1, 2
 - Operation a[i] + b[i] generates conflict misses.

N-Way Set-Associative Cache

- N set of direct-mapped caches
- Each set is implemented with a direct-mapped cache
- A cache request is broadcasted to all sets simultaneously

Memory Management Unit

- Memory size is not large enough for all applications?
- Memory management unit (MMU)
 - Provides a larger virtual memory than physical memory
 - Translates logical addresses to physical addresses

Memory Management Tasks

- Allows programs to move in physical memory during execution.
- Allows virtual memory:
 - memory images kept in secondary storage;
 - images returned to main memory on demand during execution.
- Page fault: request for location not resident in memory.

Segments and Pages

Memory Devices

- Types of memory devices
 - RAM (Random-Access Memory)
 - Address can be read in any order, unlike magnetic disk/tape
 - Usually used for data storage
 - DRAM vs. SRAM.
 - ROM (Read-Only Memory)
 - Usually used or program storage
 - Mask-programmed vs. field-programmable.

Memory Device Organization

- Data stored in a 2-D array of memory cells
- Address split into row and column address
 - n = r + c
- Enable controls the tristating of data onto the memory's pins
- R/W controls the direction of data transfer

RAM (Random-Access Memory)

- SRAM (Static RAM)
 - Faster, usually used for caches
 - Easier to integrate with logic.
 - Higher power consumption.
- DRAM (Dynamic RAM)
 - Structurally simpler
 - Only1 transistor and 1 capacitor are required per bit, compared with 6 transistors used in SRAM
 - Can reach very high density

Typical Generic SRAM

- CE' is the chip enable input. CE' = 1, data pins are disabled
- R/W'=1 means the current operation is read; R/W'=0 means write
- Adrs is the address for read or write
- Data is a bundle of signals for data transfer

Generic SRAM Timing

Read operation

- CE's is set to 0 to enable the chip with R/W'=1
- An address is put on the address lines
- After some delay, data appear on the data lines

Generic DRAM Device

- The interface of DRAM is more complex
 - To minimize the # of pins
- Address line provides only half of the address
 - (RAS') row address select
 - (CAS') column address select

Generic DRAM Timing

- First, RAS' is set to 0 and row part of address is on the address lines
- Next, CAS' is set to 0 and column part of address is on

Page Mode Access of DRAM

- Slower than SRAM, how to improve DRAM performance?
- Supply one row address and many column addresses
 - Programs often access several locations in the same memory region

Read-Only Memory (ROM)

- Factory-programmed ROM
 - Not programmable in the lab
 - Also called Mask-programmed ROM
- Field-programmable ROM
 - Programmable once only
 - Cheapest but less flexible (e.g., Antifuse-programmable ROM)
 - Re-programmable ROM
 - UV-erasable PROM
 - Flash PROM
 - Modern form of electrically erasable PROM
 - Reprogrammed inside a typical system, such as Tmotes
 - Can be erased in blocks instead of a whole chip

Summary

- Caches
 - Cache mediates between CPU and memory system
 - Average memory access time
- Cache organizations
 - Direct-mapped cache
 - N-way set-associative
- Memory management: segment/page based
- Memory devices
 - RAM (Random Access Memory) vs. ROM (Read-Only Memory)
 - Memory device organization
 - SRAM (Static RAM) vs. DRAM (Dynamic RAM)