## 一、单选题

| 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|----|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| С  | D | С | С | В | A | A | В | A | A  | С  | С  | D  | С  | A  |
| 16 |   |   |   |   |   |   |   |   |    |    |    |    |    |    |

| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| С  | С  | В  | D  | В  | A  | В  | D  | В  | A  | С  | D  | D  | A  | С  |

# 二、填空题

- 1. ① 独立编址 ② 统一编址 (顺序可交换)
- 2. ① 0x8001
- 3. ① 16 ② 字位同时
- 5. ① <u>1024 或 1K 或 2<sup>10</sup></u>
- 6. ① FIQ 快中断 ② USR 用户 ③ SYS 系统
- 7. ① 双工
- 8. ① SVC 管理 ② 0x00000000 ③ 1
- 9. ① 字符设备 ② 块设备 ③ 网络设备 (顺序可交换)
- 10. ① 32 ② 4
- 11. ① 黑盒测试
- 12. ① =ULCON0 ② #0x23 (或#0xA3) ③ ① ①②

#### 三、应用分析题

- 1. 试说明现代计算机系统中存储器系统是如何分层的? 为什么要分层,主要解决了哪些问题? (7分)
  - 答: (1) 微机中的存储器子系统一般分为四级,即:寄存器组、高速缓存、内存和外存。(4分)
    - 第一级寄存器组位于微处理器的内部,速度最快,但数目较少;
    - 第二级高速缓存 Cache 是为了解决 CPU 与主存之间的速度不匹配问题而设置的,其性能是速度快、容量小。
    - 第三级内部存储器(即主存)容量大、速度较慢(相对于 Cache),通常用于存放运行的程序和数据。
    - 第四级外部存储器容量巨大,可读可写,单位存储成本最低,且可以脱机保存信息。
  - (2) 现代微机把这些不同容量、不同速度的存储器按一定的体系结构组织起来,形成一个统一的存储系统,主要是为了解决存储容量、存取速度和价格之间的矛盾。(3分)
- 2. 微处理器设计中采用RISC或CISC架构时,有何根本区别? ARM处理器采用的是何种架构? 试例举ARM处理器采用这种架构所具备的一些典型特征。(8分)

答:(1)从设计的各方面比较如下:(5分)

|              | RISC                       | CISC                    |  |  |  |  |  |  |
|--------------|----------------------------|-------------------------|--|--|--|--|--|--|
| 设计重点         | 降低指令执行的硬件复杂度,但对编译器有更高的要求   | 侧重指令执行的硬件功能性,控制器的硬件设计复杂 |  |  |  |  |  |  |
| 指令集          | 指令种类少,长度固定,且执行简单,可在单时钟周期完成 | 指令复杂,长度通常不固定,执行也需要多个周期  |  |  |  |  |  |  |
| 流水线          | 指令处理过程可被拆分成能够被流水线并行执行的规则步骤 | 指令执行通常需要调用微程序           |  |  |  |  |  |  |
| 寄存器          | 有更多的通用寄存器                  | 专用寄存器较多。                |  |  |  |  |  |  |
| load-store结构 | 为避免耗时的访存操作,把访存与数据处理分开。     | 处理器能够直接处理内存中的数据。        |  |  |  |  |  |  |

- (2) ARM 处理器采用了 RISC 架构,具备的典型 RISC 特征有:指令种类少,长度固定;采用多级流水;具有较多的通用寄存器;使用专用的 LDR/STR 存储器访问指令。(3分)
- 3. 某非流水式处理器时钟周期为4ns,其平均CPI是4。若对此处理器进行升级,引入了5级流水线,但时钟周期增加了1ns。对一典型程序,采用了流水线的新版处理器所实现的加速比是多少?新、旧两版处理器的MIPS各是多少?(7分)
  - 答: (1) 对于一个有 N 条指令的典型程序来说:

非流水式处理器的总执行时间 $T_0 = (4 \times N) \times 4ns = 1.6N \times 10^{-9} s$ 

5 级流水处理器的总执行时间  $T_1 = (N+5-1) \times 5ns = 2(N+4) \times 10^{-9} s$ 

加速比=
$$\frac{T_0}{T_1} = \frac{3.2N}{N+4}$$
, N很大时加速比 $\approx$ 3.2(3分)

- (2) 非流水式处理器 CPI=4,则其执行速度=1/(4×4ns)=625MIPS。(2分) 5级流水处理器 CPI=1,则其执行速度=1/(1×5ns)=2000 MIPS。(2分)
- 4. 在某个以S3C2440微处理器为核心的嵌入式系统中,若采用GPIO来控制单个数码管的显示,可以采用哪种I/O传输方式,有何特点?若同样采用GPIO来构造矩阵键盘,可以采用哪几种I/O传输方式,有何优缺点? (8分)
- 答:(1) 若采用 GPIO 来控制单个数码管的显示,可以采用无条件传输方式。特点:方式简单,CPU 随时可无条件读/写数据,但无法保证数据总是有效,适用面窄。适用于数据变化缓慢,操作时间固定,可以被认为始终处于就绪状态的外设。(2分)
  - (2) 若采用 GPIO 来构造矩阵键盘,可以采用查询方式或中断方式。(2分)

查询方式优缺点:解决了 CPU 与外设间的同步问题,可靠性高,但 CPU 利用率低,低优先级外设可能无法及时得到响应。适用于 CPU 不太忙,传送速度不高的场合。(2分)

中断方式优缺点: CPU 利用率高,外设具有申请 CPU 中断的主动权,可以实现实时故障处理,实时响应外设的处理,但中断服务需要保护断点(占用存储空间,降低速度)。适用于 CPU 的任务较忙,传送速度要求不高的场合,尤其适用实时控制中紧急事件的处理。(2分)

5. 分析如下ARM汇编程序段,并回答相关问题(7分)

MOV R0, #0x01

LDR R1, =0xFFFFFFF

CMP R1, R0 ADDSLT R0, R0, R1

请问: 第三条指令CMP执行之后, 标志位Z=( 0 ), C=( 1 )。

整个程序段执行完成后, N=( 0 ), Z=( 1 ), C=( 1 ), V=( 0 ), R0=( 0 )。

6. 分析题意,并回答相关问题。(8分)

某ARM处理器数据总线宽度为32位,地址总线宽度为32位。

- (1) 如果采用某指标为8K×8bit的SRAM芯片给该处理器扩展64KB的存储器,地址从0x00002000开始,画出存储器扩展示意图。
- (2) 利用ARM汇编语言编写程序段,对该存储器从最低地址开始的100个字节进行初始化清零操作。

答:

(1) a. 首先计算需要的芯片数量及扩展方法: (1分)

芯片数量=64KB÷ (8K×8bit) =8 片

由于 ARM 处理器数据线为 32 位宽,所以需要 32÷8=4 片该 SRAM 芯片组成一组进行**位扩展**以满足宽度要求; 然后采用 2 组进行**字扩展**以满足容量要求。

b. 写出各芯片地址范围如下表所示: (2分)

|                 |  |                            | A31~A15 | A14 | A13 | A12 | A11 | A10 | A9 | A8 | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 |
|-----------------|--|----------------------------|---------|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|
| 第一组4片地址范围 红色为片选 |  | 0x2000~0x3FFF              | 0       | 0   | 1   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|                 |  | 0x2000 <sup>7</sup> 0x3FFF | 0       | 0   | 1   | 1   | 1   | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| 第二组4片地址范围 红色为片选 |  | 0x4000~0x5FFF              | 0       | 1   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|                 |  | UX4UUU′~UX3FFF             | 0       | 1   | 0   | 1   | 1   | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |

c. 根据上表画出存储器扩展示意图: (3分)



## (3) 编写程序段: (2分)

MOV R0, #0

MOV R1, #25

LDR R2, =0x2000

LOOP STMIA R2!, {R0}

SUBS R1, R1, #1

BNE LOOP

.....

# 附录:

S3C2440 UART0线路控制寄存器ULCON0(地址: 0x50000000):

| ULCONn             | Bit   | Description                                                                                                                      | Initial State |
|--------------------|-------|----------------------------------------------------------------------------------------------------------------------------------|---------------|
| Reserved           | [7]   |                                                                                                                                  | 0             |
| Infrared Mode      | [6]   | Determine whether or not to use the Infrared mode.                                                                               | 0             |
|                    |       | 0 = Normal mode operation<br>1 = Infrared Tx/Rx mode                                                                             |               |
| Parity Mode        | [5:3] | Specify the type of parity generation and checking during UART transmit and receive operation.                                   | 000           |
|                    |       | 0xx = No parity<br>100 = Odd parity<br>101 = Even parity<br>110 = Parity forced/checked as 1<br>111 = Parity forced/checked as 0 |               |
| Number of Stop Bit | [2]   | Specify how many stop bits are to be used for end-of-frame signal.                                                               | 0             |
|                    |       | 0 = One stop bit per frame<br>1 = Two stop bit per frame                                                                         |               |
| Word Length        | [1:0] | Indicate the number of data bits to be transmitted or received per frame.                                                        | 00            |
|                    |       | 00 = 5-bits 01 = 6-bits<br>10 = 7-bits 11 = 8-bits                                                                               |               |