Introduction to Artificial Intelligence

Daniel RACOCEANU

RECEIVER OPERATING CHARACTERISTICS

Update Oct. 2020

Origin of the ROC curve

Receiver Operating Characteristics

Signal Detection Theory

- A fundamental way of analysing a classifier:
 - Suppose we are interested in detecting a single pulse.
 - We can read an internal signal x.

- The signal is distributed
 - around mean μ_2 when an external signal **is** present
 - and around mean μ_1 when **no** external signal is present.
- Assume the distributions have the same variances:

$$p(x|\omega_i) \sim N(\mu_i,\sigma^2)$$

 $p(x|\omega_i)$

Error Probabilities and Integrals

• Components of the probability of error for equal priors and non-optimal decision point x^* . The optimal point x_B minimizes the total shaded area and gives the Bayes error rate.

Signal Detection Theory

- The detector uses x^* to decide if the external signal is present.
- **Discriminability** characterizes how difficult it will be to decide if the external signal is present without knowing x^* .

$$d' = \frac{\left|\mu_2 - \mu_1\right|}{\sigma}$$

• Even if we do not know μ_1 , μ_2 , σ or x^* , we can find d by using a receiver operating characteristic or ROC curve, as long as we know the state of nature for some experiments.

Definitions

- A **Hit** is the probability that the internal signal is above x^* given that the external signal is present. $P(x>x^*|x\in\omega_2)$
- A Correct Rejection is the probability that the internal signal is below x^* given that the external signal is not present. $P(x < x^* | x \in \omega_1)$
- A False Alarm (False Positive) is the probability that the internal signal is above x^* despite there being no external signal present.

 $P(x > x * | x \in \omega_1)$

■ A Miss-Detection (False Negative) is the probability that the internal signal is below x^* given that the external signal is present. $P(x < x^* | x \in \omega_2)$

Confusion Matrix

- Consider the two-category case and define
 - ω_1 : target is present,
 - ω_2 : target is not present.
- Confusion Matrix

		Predicted condition (Test Outcome)		
		$\omega_{\mathtt{1}}$ (Predicted Condition positive)	$\omega_{\scriptscriptstyle 2}$ (Predicted Condition negative)	
True condition (Gold Standard)	$\omega_{\mathtt{1}}$ (Condition positive)	✓ Hit (TP)	→ False Negative (FN)	
	ω_{2} (Condition negative)	• False Positive (FP)	✓ Correct Rejection (TN)	

		Predicted condition (Test Outcome)		
		ω_{1} (Predicted Condition positive)	ω_{2} (Predicted Condition negative)	
True condition (Gold Standard)	ω_{1} (Condition positive)	✓ Hit (TP)		
	$\omega_{ m 2}$ (Condition negative)	False Positive (FP)	✓ Correct Rejection (TN)	

- Sensitivity (True Positive Rate = Recall): TPR=TP/P=TP/(TP+FN)
 - MED: test sensitivity is the ability of a test to correctly identify those with the disease
- Specificity (True Negative Rate): SPC = TN/N=TN/(TN+FP)
 - MED: ability of the test to correctly identify those without the disease
- Fall-out (False Positive Rate): FPR=FP/N=FP/(FP+TN)=1-SPC
- Precision (Positive Predictive Value): PPV=TP/(TP+FP)
- Accuracy: ACC= (TP+TN)/(TP+FP+FN+TN)
- F1 score: F1=2TP/(2TP+FP+FN)
 - Harmonic mean of precision and sensitivity

the diagnostic power of any test is determined by both its sensitivity and its specificity !!!

		Predicted condition (Test Outcome)		
		ω_{1} (Predicted Condition positive)	$\ensuremath{\omega_2}$ (Predicted Condition positive)	
True condition (Gold Standard)	ω_{1} (Condition positive)	✓ Hit (TP)		
	ω ₂ (Condition negative)	 False Positive (FP-Type I error) 	✓ Correct Rejection (TN)	✓ Specificity (True Negative Rate): SPC = TN/N=TN/(TN+FP)

Graphical illustration

High sensitivity and low specificity

Low sensitivity and high specificity

- We can experimentally determine the rates, in particular the Hit-Rate and the False-Alarm-Rate.
- Basic idea is to assume our densities are fixed (reasonable) but vary our threshold x*, which will thus change the rates.
- The receiver operating characteristic plots the hit rate against the false alarm rate.
- What shape curve do we want?

FPR= 1-Specificity

A gentle introduction to ROC

Role of the ROC

- The trade-off between Specificity and Sensitivity is explored in ROC analysis as a trade off between TPR and FPR (Recall and respectively Fall-out)
- Giving them equal weight optimizes
 - Informedness = Specificity+Sensitivity-1 = TPR-FPR, the magnitude of which gives the probability of an informed decision between the two classes:
 - > 0 represents and appropriate use of information,
 - represents a chance-level performance,
 - < 0 represents a perverse use of information.

12/12