Information Retrieval 1 Term-based Retrieval

Ilya Markov

i.markov@uva.nl

University of Amsterdam

Document representation and matching

Evaluation

Document representation & matching

Conversationa search

Learning to rank

IR—user interaction

Recommender systems

Outline

- 1 Vector space model
- 2 Language modeling in IR
- **BM25**

Outline

- 1 Vector space model
- 2 Language modeling in IR
- 3 BM25

. . .

Documents as vectors

vocabulary of all documents

	Anthony	Julius	The	Hamlet	Othello	Macbeth
	and	Caesar	Tempest			
\downarrow	Cleopatra					
Anthony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0
	/ 1					

1: this word occurs

0: this word does not occur

roduction to Information Retrieval"

Match using cosine similarity

similarity between a word in doc and a word in query

$$sim(d,q) = \cos(ec{v}(d),ec{v}(q)) = rac{ec{v}(d)\cdotec{v}(q)}{\|ec{v}(d)\|\cdot\|ec{v}(q)\|}$$
 v的绝对值=si ze of vocab $= rac{\sum_{i=1}^{|V|}d_i\cdot q_i}{\sqrt{\sum_{i=1}^{|V|}d_i^2}\cdot\sqrt{\sum_{i=1}^{|V|}q_i^2}}$

Manning et al., "Introduction to Information Retrieval"

Ilya Markov

vocab

word antho occured 15 doc1	ny has 7 times in	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
Caesar	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
Cleopatra	57	0	0	0	0	0	
mercy	2	0	3	8	5	8	
worser	2	0	1	1	1	5	

Manning et al., "Introduction to Information Retrieval"

Term frequency

we can use either raw tf, or log tf. depends on the project

Raw term frequency
$$tf(t,d)$$

Log term frequency $\begin{cases} 1+\log tf(t,d) & \text{if } tf(t,d)>0 \\ 0 & \text{otherwise} \end{cases}$

Inverse document frequency

分子分母互换位置

- df(t) document frequency of term t
- N total number of documents in a collection

Inverse document frequency

the word with low tf has high idf.this is the effect of inverted df

10000 docs contain fly

Term	df(t)	idf(t)
calpurnia	1	6
animal	100	4
sunday	1000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

for N = 1,000,000 and \log_{10}

Manning et al., "Introduction to Information Retrieval"

TF-IDF

$$\mathsf{TF}\mathsf{-}\mathsf{IDF}(t,d) = tf(t,d) \cdot idf(t)$$

Term frequency

these two are standard tf and standard idf

- Inverse document frequency
 - $\log \frac{N}{df(t)}$
 - $\max\{0, \log \frac{N df(t)}{df(t)}\}$

Vector space model summary

- Documents and queries as vectors
- Match using cosine similarity
- Weights can be
 - binary
 - 2 term frequency
 - 3 TF-IDF

Outline

- 1 Vector space mode
- 2 Language modeling in IR
 - Method
 - Smoothing
- 3 BM2!

Outline

- 2 Language modeling in IR
 - Method
 - Smoothing

Language model

A statistical language model is a probability distribution over sequences of words.

- Given a sequence of length m
- A language model assigns probability $P(w_1, ..., w_m)$ to this sequence
- Unigram language model

$$P(w_1,\ldots,w_m)=P(w_1)\ldots P(w_m)$$

Bi-gram language model

$$P(w_1, \ldots, w_m) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_2) \ldots P(w_m \mid w_{m-1})$$

https://en.wikipedia.org/wiki/Language_model

Vector space model

Model M	1	Model M ₂		
the	0.2	the	0.15	
a	0.1	a	0.12	
frog	0.01	frog	0.0002	
toad	0.01	toad	0.0001	
said	0.03	said	0.03	
likes	0.02	likes	0.04	
that	0.04	that	0.04	
dog	0.005	dog	0.01	
cat	0.003	cat	0.015	
monkey	0.001	monkey	0.002	

Manning et al., "Introduction to Information Retrieval"

Ilya Markov i.markov@uva.nl Information Retrieval 1 16

Documents as distributions

Unigram language model

$$P(t \mid M_d) = \frac{tf(t,d)}{dI(d)}$$

- A document is a multinomial distribution over words
- If some vocabulary terms do not appear in document d, then $P(t \mid M_d) = 0$
- This is addressed by smoothing

Match using query likelihood model (QLM)

Likelihood of a document given a query

$$P(d \mid q) = \frac{P(q \mid d)P(d)}{P(q)}$$

• The prior distribution over queries P(q) does not affect matching for a particular query

$$P(d \mid q) \stackrel{rank}{=} P(q \mid d)P(d)$$

lacktriangle Usually, the prior distribution over documents P(d) is assumed to be uniform

$$P(d \mid q) \stackrel{rank}{=} P(q \mid d) = P(q \mid M_d)$$

how many times the word t occurs in doc $\ensuremath{\mathsf{d}}$

"Bag of words" assumption: terms are independent

$$P(q \mid M_d) = \prod_{t \in q} P(t \mid M_d) = \prod_{t \in q} \frac{tf(t, d)}{dl(d)}$$
 len of a doc

Match using KL-divergence

$$KL(M_d || M_q) = \sum_{t \in V} P(t \mid M_q) \log \frac{P(t \mid M_q)}{P(t \mid M_d)}$$

Outline

- 2 Language modeling in IR/
 - Method
 - Smoothing

Jelinek-Mercer smoothing

- cf(t) collection frequency of term t
- cl collection length

vocabulary size

Ilya Markov

i.markov@uva.nl

Information Retrieval 1

Dirichlet smoothing

• A unigram language model can be seen as a multinomial distribution over words $\mathcal{L}_d(n_1, \ldots, n_k \mid p_1, \ldots, p_k)$

•
$$n_i = tf(t_i, d)$$

• $p_i = P(t_i \mid M_d)$

• The conjugate prior for multinomial is the Dirichlet distribution $P_{prior}(p_1, \ldots, p_k; \alpha_1^{pr}, \ldots, \alpha_k^{pr})$

$$\bullet$$
 μ is a smoothing parameter $(\lambda = \frac{dl}{dl + \mu})$

• The posterior is the Dirichlet distribution with parameters $\alpha_i^{po} = n_i + \alpha_i^{pr} = tf(t_i, d) + \mu P(t_i \mid M_c)$

Dirichlet smoothing

$$P_s(t \mid M_d) = \frac{tf(t_i, d) + \mu P(t_i \mid M_c)}{dl(d) + \mu}$$

Language modeling for IR summary

- Documents and queries as distributions
- Match using QLM or KL-divergence
- Smoothing
 - Jelinek-Mercer smoothing
 - Dirichlet smoothing

BM25

Outline

- 1 Vector space mode
- 2 Language modeling in IR
- **3** BM25

BM25

$$BM25 = \sum_{t \in q} \log \left[\frac{N}{df(t)} \right] \cdot \frac{(k_1 + 1) \cdot tf(t, d)}{k_1 \cdot \left[(1 - b) + b \cdot \frac{dI(d)}{dI_{avg}} \right] + tf(t, d)}$$

- k_1 , b parameters
- dl(d) length of document d
- dl_{avg} average document length

if 10 doc in total. then dlavg = (dl (doc1)+...+dl (doc10))/10 k1 controls tf b controls doc len

BM25

BM25 is a weighting scheme in inverted index
$$IDF = inverse \ doc$$
 frequency
$$BM25 = \sum_{t \in q} log \left[\frac{N}{df(t)} \right] \cdot \frac{(k_1 + 1) \cdot tf(t, d)}{k_1 \cdot \left[(1 - b) + b \cdot \frac{dI(d)}{dI_{avg}} \right] + tf(t, d)}$$
 BM25 = sum of IDF

- What if $k_1 \in \{0, \infty\}$?
- What of $b \in \{0, 1\}$?
- What if tf(t, d) is small/large? $k_1 \in [1.2, 2], b = 0.75$

BM25 for long queries

$$BM25 = \sum_{t \in q} \log \left[\frac{N}{df(t)} \right] \cdot \frac{(k_1 + 1) \cdot tf(t, d)}{k_1 \cdot \left[(1 - b) + b \cdot \frac{dI(d)}{dI_{ave}} \right] + tf(t, d)} \cdot \frac{(k_3 + 1)tf(t, q)}{k_3 + tf(t, q)}$$

Experimental comparison

Collection	Method	Parameter	MAP	R-Prec.	Prec@10
Trec8 T	Okapi	Okapi	0.2292	0.2820	0.4380
	BM25				
	JM	$\lambda = 0.7$	0.2310	0.2889	0.4220
			(p=0.8181)	(p=0.3495)	(p=0.3824)
	Dir	$\mu = 2,000$	0.2470	0.2911	0.4560
			(p=0.0757)	(p=0.3739)	(p=0.3710)
	Dis	$\delta = 0.7$	0.2384	0.2935	0.4440
			(p=0.0686)	(p=0.0776)	(p=0.6727)
	Two-Stage	auto	0.2406	0.2953	0.4260
			(p=0.0650)	(p=0.0369)	(p=0.4282)

Figure: TREC-8 Newswire, ad-hoc track, queries 401-450, title-only

G. Bennett, "A Comparative Study of Probabilistic and Language Models for Information Retrieval"

Ilya Markov i.markov@uva.nl Information Retrieval 1 2

Experimental comparison

Collection	Method	Parameter	MAP	R-Prec.	Prec@10
TREC-	Okapi	Okapi	0.1522	0.2056	0.2918
2001 T	BM25				
	JM	$\lambda = 0.7$	0.1113	0.1505	0.2122
			(p=0.0003)	(p=0.0037)	(p=0.0003)
	Dir	$\mu = 2,000$	0.1774	0.2238	0.3184
			(p=0.0307)	(p=0.3236)	(p=0.3165)
	Dis	$\delta = 0.7$	0.1370	0.1906	0.2653
			(p=0.0511)	(p=0.053)	(p=0.1348)
	Two-Stage	auto	0.1441	0.1934	0.2898
			(p=0.2963)	(p=0.3992)	(p=0.8962)

Figure: TREC-2001 Web data, ad-hoc track, queries 501–550, title-only

G. Bennett, "A Comparative Study of Probabilistic and Language Models for Information Retrieval"

Ilya Markov i.markov@uva.nl Information Retrieval 1 2

Content-based retrieval summary

- Vector space model
 - Documents and queries as vectors
 - Match using cosine similarity
- Language modeling in IR
 - Documents and queries as discrtibutions
 - Match using QLM or KL-divergence
- BM25

Materials

Query likelihood

- Manning et al., Chapters 6, 9, 11, 12
- Croft et al., Chapter 7