LSST-like Lensing Dataset: Generator & Metrics

(for advisor meeting)

October 9, 2025

Setup & Notation (simple view)

- We simulate three LSST bands: g, r, i with PSF and 10-year coadd.
- For each sample we render:
 - I_{subA}: with subhalo, with noise.
 - I_{cleanA}: no subhalo, with the *same* noise seed.
 - I_{cleanB}: no subhalo, with an *independent* noise seed.
- Residuals per pixel (vector over the 3 bands):

$$\begin{split} \mathbf{r}_{\mathsf{sub}} &= \mathbf{I}_{\mathsf{subA}} - \mathbf{I}_{\mathsf{cleanA}}, & \mathbf{r}_{\mathsf{null}} &= \mathbf{I}_{\mathsf{cleanB}} - \mathbf{I}_{\mathsf{cleanA}}. \\ R_{\mathsf{sub}}(x,y) &= \|\mathbf{r}_{\mathsf{sub}}(x,y)\|_2, & R_{\mathsf{null}}(x,y) &= \|\mathbf{r}_{\mathsf{null}}(x,y)\|_2. \end{split}$$

What we save as source_rgb

- Source-only rendering (no lens), same grid and PSF as images.
- LSST-like color composite with a simple $\sqrt{\cdot}$ stretch at the 95th percentile.
- Channel map: RGB \leftarrow (i, r, g).

$$RGB = \left(\sqrt{i/i_{95}}, \ \sqrt{r/r_{95}}, \ \sqrt{g/g_{95}}\right).$$

Old vs New Generator (at a glance)

Old

- Used a **ring mask** near θ_E .
- SNR computed on the ring only.
- Sometimes no source-only visualization.

New (this work)

- No mask: we use the full image.
- SNR is global (more stable).
- We save source_rgb for quick checks.
- Noise pairing kept (same band seeds in A; different in B).

SNR proxy (old)

• Previously, SNR was measured on an annulus around the Einstein ring:

$$SNR_{old} = \frac{RMS_{ring}(R_{sub})}{RMS_{ring}(R_{null})}.$$

This depends on the mask size and location.

SNR proxy (now, full image)

• We compute SNR on the **entire frame**:

$$SNR = \frac{\mathsf{RMS}_{\mathsf{full}}(R_{\mathsf{sub}})}{\mathsf{RMS}_{\mathsf{full}}(R_{\mathsf{null}})}, \quad \mathsf{RMS}_{\mathsf{full}}(A) = \sqrt{\frac{1}{HW} \sum_{x,y} A(x,y)^2}.$$

- Simple idea: "how different subA is from cleanA" compared to typical noise (cleanB cleanA).
- Threshold for detectability: $y = \mathbb{I}\{SNR \ge T_{snr}\}$ (e.g., $T_{snr} = 20$).

How SNR relates to χ^2 here

• If we use the paired null to estimate variance, a global chi-square-like score is:

$$\chi^2_{\text{signal}} \propto \sum_{x,y} \frac{R_{\text{sub}}(x,y)^2}{R_{\text{null}}(x,y)^2}.$$

• Our RMS-based SNR collapses this to a single ratio:

$$\chi^2_{\text{signal}} \equiv \text{SNR}^2$$
.

ullet This $\chi^2_{
m signal}$ is a **global detection statistic** (not divided by DoF).

How we compute χ^2 (this code)

$$\boxed{\chi^2_{\mathsf{signal}} = \mathsf{SNR}^2 = \left(\frac{\mathsf{RMS}_{\mathsf{full}}(\mathit{R}_{\mathsf{sub}})}{\mathsf{RMS}_{\mathsf{full}}(\mathit{R}_{\mathsf{null}})}\right)^2} \ .}$$

- No DoF normalization here $(\chi^2_{\text{reduced}} \text{ would be } \chi^2_{\text{signal}}/\text{DoF})$.
- Goal: a robust, simple **one-number** "is there a signal?" indicator.

Scores (optional)

- Binary: $y = \mathbb{I}\{SNR \geq T_{snr}\}.$
- Continuous (from SNR):

$$\operatorname{score}_{\mathrm{SNR}} = \sigma(a[\log_{10}(\mathrm{SNR}) - b]), \quad \sigma(z) = \frac{1}{1 + e^{-z}}.$$

• Continuous (from χ^2_{signal}): use $\chi^2_{\text{signal}} = \text{SNR}^2$ in a similar mapping if desired.

Practical details

- Noise pairing: same seed per band for A; independent seed for B.
- Saved arrays: I_{subA} (vis), I_{cleanA} (vis), residual stacks in linear space.
- Mass sampling: log-uniform (configurable).
- Source preview: source_rgb helps spot issues quickly.

Takeaways

- SNR now uses the **whole image** ⇒ more stable than ring-based.
- We define a consistent global statistic: $\chi^2_{\text{signal}} = \text{SNR}^2$.
- We store source_rgb (source-only, LSST-like) for easy visual checks.
- ullet Threshold $T_{\rm snr}$ controls positive rate; can also use continuous scores.