Discussion on the Linearity of Naive Bayes

Lu Sun

March 27, 2020

Given input variables $X^{\top} = (X_1, X_2, ..., X_d) \in \mathbb{R}^d$ and corresponding output response $Y \in \{1, 2, ..., K\}$, we construct the naive Bayes classifier according to

$$P(Y|X) \propto \prod_{j=1}^{d} P(X_j|Y)P(Y). \tag{1}$$

Generally, naive Bayes is NOT a linear classifier. However, once the conditional probability $P(X_i|Y)$ ($\forall j$) are from the *exponential family*

$$P(X_j|Y=k) = h(X_j) \exp(\boldsymbol{\eta}_{ik}^{\top} \boldsymbol{\phi}(X_j) - A(\boldsymbol{\eta}_{jk})), \quad \forall j, k,$$
 (2)

the naive bayes classifier has a linear decision boundary in a particular feature space. In (2), η_{jk} denotes a parameter vector for X_j given Y = k, and $h(\cdot)$, $\phi(\cdot)$ and $A(\cdot)$ are know functions.

In naive Bayes, the decision boundary between classes k and ℓ ($\forall k \neq \ell$) is determined by

$$\ln \frac{P(Y=k|X)}{P(Y=\ell|X)} = 0. \tag{3}$$

We rewrite the left hand of (3) as follows:

$$\ln \frac{P(Y=k|X)}{P(Y=\ell|X)} = \ln \frac{\prod_{j=1}^{d} P(X_{j}|Y=k)P(Y=k)}{\prod_{j=1}^{d} P(X_{j}|Y=\ell)P(Y=\ell)}$$

$$= \sum_{j=1}^{d} \ln \frac{P(X_{j}|Y=k)}{P(X_{j}|Y=\ell)} + \ln \frac{P(Y=k)}{P(Y=\ell)}$$

$$= \sum_{j=1}^{d} \left((\eta_{jk} - \eta_{j\ell})^{\top} \phi(X_{j}) - (A(\eta_{jk}) - A(\eta_{j\ell})) \right) + \ln \frac{\pi_{k}}{\pi_{\ell}}$$

$$= \sum_{j=1}^{d} \beta_{j}^{\top} \phi(X_{j}) + \beta_{0}, \tag{4}$$

where $\pi_k = P(Y = K) \ (\forall k)$ and

$$\beta_{j} = \eta_{jk} - \eta_{j\ell},$$

$$\beta_{0} = \ln \frac{\pi_{k}}{\pi_{\ell}} - (A(\eta_{jk}) - A(\eta_{j\ell})).$$
(5)

Therefore, naive Bayes has a linear decision boundary in a transformed feature space $\phi(X)$, provided a exponential family $P(X_i|Y)$ $(\forall j)$.

In fact, a collection of probability distributions are from the exponential family, such as Bernoulli, categorical, binomial, multinomial, Gaussian, poisson, beta, Dirichlet, and so on. For example,

Bernoulli:
$$\phi(X_j) = X_j, \ X_j \in \{0, 1\},$$

$$\text{Categorical:} \quad \phi(X_j) = \begin{pmatrix} \mathbf{1}_{X_j = 1} \\ \vdots \\ \mathbf{1}_{X_j = M} \end{pmatrix}, \ X_j \in \{1, 2, ..., M\},$$

$$\text{Multinomial:} \quad \phi(X_j) = X_j,$$

$$\text{Gaussian:} \quad \phi(X_j) = \begin{pmatrix} X_j \\ X_j^2 \end{pmatrix},$$

$$(6)$$

where $\mathbf{1}_{X_j=m}$ is the indicator function, equaling 1 if $X_j=m$ and 0 otherwise, $\forall m$.

In conclusion, once $P(X_j|Y)$ follows Bernoulli or multinomial distributions, naive Bayes is a linear classifier. In contrast, once $P(X_j|Y)$ are from categorical or gaussian distributions, naive Bayes becomes a linear classifier in the transformed feature space $\phi(X)$.