Homework 6 by Jingmin Sun

Mar. 5 2020

ALL REFERENCE NUMBERS ARE CORRESPONDING TO THE TEXT

1. Page 99, 2

We can prove this by contradiction. Assume there exists $j = 1, 2 \cdots m$, such that dim $V_j = \infty$, then we can get that

$$\dim (V_1 \times V_2 \times \dots \times V_m) = \dim V_1 + \dim V_2 + \dim V_3 + \dots \dim V_m$$
$$= \infty$$

which is not finite, then we can get V_j is finite dimensional for each $j = 1, 2 \cdots m$

2. Page 99, 4

Suppose $f \in \mathcal{L}(V_1 \times \cdots V_m, W)$, and $f_i \in \mathcal{L}(V_i, W)$ such that $i = 1, 2, \cdots m$ So, let's define $\phi : \mathcal{L}(V_1 \times \cdots V_m, W) \to \mathcal{L}(V_1, W) \times \mathcal{L}(V_2, W) \times \cdots \times \mathcal{L}(V_m, W)$, such that $\phi : f \mapsto f_1 \times f_2 \times f_3 \cdots \times f_m$, and

$$\phi(f(v_1 \times \cdots v_m)) = f_1(v_1) \times \cdots \times f_m(v_m)$$

And we can easily see that $f(V_1 \times \cdots V_m) \in W$, since $f_i(V_i) \in W$. It is obvious that ϕ is linear, and we can define $\phi : \mathcal{L}(V_1, W) \times \mathcal{L}(V_2, W) \times \cdots \times \mathcal{L}(V_m, W) \to \mathcal{L}(V_1 \times \cdots V_m, W)$ and $\psi : f_1 \times f_2 \times f_3 \cdots \times f_m \mapsto f$ and

$$\psi(f_1(v_1) \times \cdots f_m(v_m)) = f(v_1 \times \cdots v_m)$$

So we can calculate:

$$\phi(\psi(f_1(v_1) + \dots + f_m(v_m))) = \phi(f(v_1 \dots + v_m))$$
$$= f_1(v_1) + \dots + f_m(v_m)$$

And similarly,

$$\psi(\phi(f(v_1 \cdots v_m))) = \psi(f_1(v_1) + \cdots f_m(v_m))$$
$$= f(v_1 \cdots v_m)$$

So there is an isomorphism between two space, so they are isomorphic.

3. Page 99,7

Since v + U = x + W, we can get that for all $u \in U$, we can get find $w \in W$ such that

$$v + u = x + w$$

suppose $u = \vec{0}$, so

$$v = x + w_1$$

for some $w_1 \in w$, and $v - x \in W$ follows, which means

$$u = x + w - v = -(v - x) + w \in W$$

Thus, $U \subseteq W$. Similarly, $W \subseteq U$, so U = W.

4. Page 99,11

(a) To prove it is an affine subset, we need to show that A is closed under affine combination, which means if $a_1, a_2, a_3 \cdots a_k \in A$, there exists $\sum_{i=1}^k \sigma_i = 1$, and

$$\sum_{i} \sigma_{i} a_{i} = \sigma_{1} a_{1} + \cdots + \sigma_{k} a_{k}$$

$$= \sigma_{1} (\lambda_{1,1} v_{1} + \cdots + \lambda_{1,m} v_{m}) + \cdots + \sigma_{k} (\lambda_{k,1} v_{1} + \cdots + \lambda_{k,m} v_{m})$$

$$= \sum_{i=1}^{k} \sigma_{i} \lambda_{i,1} v_{1} + \cdots + \sum_{i=1}^{k} \sigma_{i} \lambda_{i,m} v_{m}$$

And we can get the sum of the coefficients are

$$\sum_{j=1}^{m} \sigma_m \lambda_{i,m} = \sum_{j=1}^{m} \sigma_m = 1$$

So, A is an affine subset of V.

- (b) Let S be an affine subset of V, since it contains $v_1 \cdots v_m$, and by the definition, we can get that it contains any vector that $v = \sum_{i=1}^m \sigma_i v_i$ with $\sum_{i=1}^m \sigma_i = 1$. Thus, every element of A contains in S. so S contains A.
- (c) Since for all $a \in A$, we can write represent in this way:

$$a = \lambda_1 v_1 + \dots + \lambda_m v_m$$

= $v_1 + \lambda_2 (v_2 - v_1) + \dots + \lambda_m (v_m - v_1)$

So, we can get $A \subseteq v_1 + U$, where $U = \text{span}\{v_2 - v_2, \dots v_m - v_1\}$

And the reverse is true **Proof Omitted**

And $\dim(U) \leq m-1$ is obvious, since there are m-1 vectors in the spanning set.

5. Page 100.13

Since $v_1 + U, \dots v_m + U$ is a set of basis of V/U, so we can get

$$v + U = \sum_{i=1}^{m} \lambda_i (v_i + U)$$

for all $v \in V$, and we can have

$$v - \sum_{i=1}^{m} \lambda_i(v_i) \in U$$

Let $u_1 \cdots u_n$ be a set of basis of U, we can have

$$v - \sum_{i=1}^{m} \lambda_i(v_i) = \sum_{j=1}^{n} \sigma_j u_j$$
$$v = \sum_{j=1}^{n} \sigma_j u_j + \sum_{i=1}^{m} \lambda_i(v_i)$$

So $V = \operatorname{span}\{u_1 \cdots u_n, v_1 \cdots v_m\}$

And we can prove they are linear independent by letting

$$\sum_{i} \lambda_i u_i + \sum_{j} \sigma_j v_j = 0$$

And this shows:

$$\sum_{i=1}^{m} \lambda_i(v_i + U) = 0$$

and $\lambda_i = 0$ for all i follows. And $\sigma_j = 0$ for all j as well, so they are linearly independent.

6. Page 100,15

Since

$$\dim \operatorname{range} \phi + \dim \operatorname{null} \phi = \dim V$$

And since dim $V/(\text{null }\phi) = \text{range } \phi$, and since range $\phi \subseteq \mathbb{F}$, and $\phi \neq 0$ so dim range $\phi = 1$.

7. Page 100,16

Since dim V/U = 1, so there is an isomorphism between this set and \mathbb{F} .

Let
$$f = \mathcal{L}(V/U, \mathbb{F})$$
, and $\pi(v) = v + U$, (null $\pi = U$)). So let's define $\phi(v) = f(\pi(v))$

Since if $\pi(v) = 0$, $\phi(v) = 0$, and if $\pi(v) \neq 0$, $\phi(v) \neq 0$ (since f is isomorphism).

Thus, we can have null $\phi = \text{null } \pi = U$

8. Page 100,17

Since $\dim(V/U) + \dim U = \dim V$, and we can extend the basis of U to V, since U is a subspace of V. **Details omitted.**

9. Page 113,3

Let $v = v_1, v_2 \cdots v_n$ as a basis of V, then we can get the dual basis is $\phi_1 \cdots \phi_n$, and

$$\phi_j(v_k) = \begin{cases} 1 & \text{if } k = j \\ 0 & \text{otherwise} \end{cases}$$

So that we have $\phi(v) = 1$

10. Page 113,5

Define
$$P_i \in \mathcal{L}(V_i, V_1 \times \cdots \times V_m)$$
 as

$$P_i(x) = xe_i$$

where e_i is defined as the vector of length m and

$$e_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Let
$$\phi \in \mathcal{L}((V_1 \times \cdots V_m)', V_1' \times \cdots V_m')$$
, and

$$\phi(f) = (P_1'f, \cdots P_m'f)$$

Injectivity: Suppose $(P'_1f, \cdots P'_mf) = (P'_1g, \cdots P'_mg)$, then we xan get

$$f(xe_1, xe_2 \cdots xe_m) = g(xe_1, xe_2 \cdots xe_m)$$
$$f = g$$

Hence injective.

Surjectivity: for any $(f_1 \cdots f_m) \in V_1' \times \cdots V_m'$, define $f \in (V_1 \times V_m)'$:

$$f(x_1 \cdots x_m) = \sum_{i=1}^m f_i(x_i)$$

And we can get $\phi f = (f_1 \cdots f_m)$

11. Page 113,6

(a) If $v_1 \cdots v_m$ spans V, then $\Gamma(\phi) = \text{implies}$

$$\phi(v_1) = \dots = \phi(v_m) = 0$$

Hence $\phi = 0$. For all $v \in V$, $v = \sum_{i=1}^{m} k_i v_i$

Thus,

$$\phi(v) - \sum_{i=1}^{m} k_i \phi_i(v_i) = 0$$

implies $\phi = 0$, which implies Γ is injective.

And if Γ is injective, and $span(v_1 \cdots v_m) \neq V$, but we can always find a $\phi \in V'$ and $\phi(span(v_1 \cdots v_m)) = 0$ with $\phi \neq 0$ (by problem 4, proof similar to problem 3).

So Γ is not injective. Thus, $span(v_1 \cdots v_m) = V$.

(b) If $v_1 \cdots v_m$ is linearly independent, then there always exists $\phi \in V'$, such that $\phi(v_i) = f_i$, for any $(f_1, f_2 \cdots f_m) \in \mathbb{F}^m$. So, this implies surjectivity.

And if Γ is surjective, suppose $v_1 \cdots v_m$ is not linearly independent, which means $k_1 v_1 + \cdots + k_m v_m = 0$ and some of $k_i \neq 0$, so v_i can be written as a linear combination of $v_1 \cdots v_{i-1}, v_{i+1}, \cdots v_m$. So $(0,0,0\cdots 0,1,0\cdots 0)$ is not in range Γ . Otherwise we have $\phi \in \Gamma(\phi) = (0,0,\cdots 0,1,0\cdots 0)$. Then $\phi(v_j) = 0$ and $\phi(v_i) = 1$. And since v_i is a linear combination of other vectors in the basis, this will lead a contradiction that 0 = 1. So, $v_1 \cdots v_m$ is linearly independent.

12. Page 113,9

Since

$$(\psi(v_i)\phi_1 + \cdots + \psi(v_n)\phi_n)(v_i) = \psi(v_i)$$

So, $\psi = \psi(v_i)\phi_1 + \cdots + \psi(v_n)\phi_n$

13. Page 114,12

The identity map is that $I: V \to V$, with I(v) = v for all $v \in V$. And the dula map is:

$$I'(\phi) = \phi I$$
$$= \phi$$

which is an identity map.

14. **Page 114,15**

If T = 0, then for any $f \in W'$, and for any $v \in V$ m we have:

$$T'(f) = f(T(v)) = f(0) = 0$$

Thus T' = 0

Conversely, if T'=0, then suppose $T\neq 0$

Then there exists $v \in V$ such that $Tv \neq 0$. So there exists $\phi \in W'$ such that $\phi(Tv \neq 0)$ (by Problem 3), and $T'(\phi) = \phi(T(v)) \neq 0$, and contradicts with T' = 0. Then T = 0.

15. **Page 114,16**

Let $\Gamma: \mathcal{L}(V, W) \to \mathcal{L}(W', V')$ and $\Gamma(T = T')$ By 3.60 and 3.95, we can get dim $\mathcal{L}(V, W) = \dim \mathcal{L}(W', V')$. Suppose $\Gamma(S) = 0$ for some $S \in \mathcal{L}(V, W)$, then S' = 0 Hence for any $\phi \in W'$ and $v \in V$, we have $S'(\phi)(v) = \phi(Sv) = 0$. And by Problem 3, this implies Sv = 0 then S = 0. So Γ is injective. By theorem 3.69, we can get that Γ is invertible, and it is an isomorphism from $\mathcal{L}(V, W)$ to $\mathcal{L}(W', V')$.

16. Page 114,17

Since $\phi(u) = 0$ for all $u \in U$ means $U \subseteq \text{null } \phi$.

17. Page 114,20

If $\phi \in W^0$, then $\phi(w) = 0$ for all $w \in W$. As $U \subset W$, we also have $\phi(u) = 0$ for all $u \in W$. Hence $\phi \in U^0$. Thus $W^0 \subset U^0$

18. Page 114,22

It is easy to get $(U+W)^0 \subset U^0$ and $(U+W)^0 \subset W^0$ from Problem 20, then $(U+W)^0 \subset U^0 \cap W^0$ And suppose $f \in U^0 \cap W^0$, then we have f(u) = 0 and f(w) = 0 for all $u \in U$ and w in W. So f(u+w) = 0. And we can get $f \in (U+W)^0$, Hence $U^0 \cap W^0 \subset (U+W)^0$. Therefore $U+W^0 = U^0 \cap W^0$

19. **Page 115,23**

It's easy to get $U^0 \subset (U \cap W)^0$ and $W^0 \subset (U \cap W)^0$, which means $U^0 + W^0 \subset (U \cap W)^0$.

$$\dim(U^0 + W^0) = \dim U^0 + \dim W^0 - \dim(U^0 \cap W^0)$$

$$= \dim V - \dim U + \dim V - \dim W - \dim((U + W)^0)$$
 by Problem 22 and 3.106
$$= \dim V - \dim U + \dim V - \dim W - \dim V + \dim(U + W)$$
 by 3.106
$$= \dim V - \dim U - \dim W + \dim(U) + \dim W - \dim(U \cap W)$$

$$= \dim V - \dim(U \cap W)$$

Thus, $U^0 + W^0 = (U \cap W)^0$.

 $= \dim(U \cap W)^0$

20. Page 115,25

Let $u \in U$, so we can have $\phi(u) = 0$ for all $\phi \in U^0$, and since $U \subset V$, $u \in V$ then $U \subset \{v \in V : \phi(v) = 0 \text{ for all } \phi \in U^0\}$.

And if $v \in \{v \in V : \phi(v) = 0 \text{ for all } \phi \in U^0\}$. Let W = span (v), then we can get $\phi(w) = 0$ for all $w \in W$. Thus, $U^0 \subset W^0$. And by Problem 21, $W \subset U$. And $v \in U$, which means $\{v \in V : \phi(v) = 0 \text{ for all } \phi \in U^0\} \subset U$.

Proof of **Problem 21**:

Since $W^0 \subset U^0$, then from Problem 22 we can have:

$$(U+W)^0 = U^0 \cap W^0 = W^0$$

And by 3.106 we can have

$$\dim(U+W)^0 = \dim V - \dim(U+W)$$
$$\dim(W)^0 = \dim V - \dim(W)$$

Thus, $\dim U + W = \dim W$, since $W \subset U + W$ then U + W = W, which means $U \subset W$. Thus two sets equals.

21. Page 115,29

Hint: if $T \in \mathcal{L}(V, W)$, then range $T' = (\text{null } T)^0$

22. Page 115,32

I'll only prove one of them:

$$a \implies b$$
:

If T is invertible, then it is an isomorphism, and we can get $\mathcal{M}(T)$ is an isomorphism, which means by Problem 3.B.9, we can get $\mathcal{M}(T)(e_i)$ are linearly independent, and $\{e_i\}$ defined as above problem, and it's a set of basis of V. And $\mathcal{M}(T)(e_i) = \mathcal{M}(T)_{:.i}$, so the columns are linearly independent.