CIS 412 DATABASE MANAGEMENT SYSTEMS

DISTRIBUTED DATABASES

- Computers at various sites
- Connected with communications network or network
- Distributed database: single logical database physically divided among networked computers
- Distributed database management system
 (DDBMS): supports and manipulates distributed databases

DISTRIBUTED DATABASES (CONTINUED)

FIGURE 9-1: Communications network

DISTRIBUTED DATABASES (CONTINUED)

- Computers in a network communicate through messages
- Access delay required for every message
 - Fixed amount of time
- Communication time = access delay + (data volume / transmission rate)

CHARACTERISTICS OF DISTRIBUTED DBMSs

- Homogeneous DDBMS: same local DBMS at each site
- Heterogeneous DDBMS: at least two sites at which local DBMSs are different
- Shared characteristics of DDBMSs
 - Location transparency
 - Replication transparency
 - Fragmentation transparency

LOCATION TRANSPARENCY

- Remote site: site other than one where user is
- Local site: site where user is
- Location transparency: users do not need to be aware of location of data in a distributed database

REPLICATION TRANSPARENCY

- Data replication creates update problems that can lead to data inconsistencies
- Replication transparency: users unaware of steps taken by DDBMS to update various copies of data

FRAGMENTATION TRANSPARENCY

- Data fragmentation: DDBMS can divide and manage a logical object among various locations under its control
 - Data placed at the location where it is most often accessed
- Fragmentation transparency: users unaware of fragmentation

FRAGMENTATION TRANSPARENCY (CONTINUED)

Part

PartNum	Description	OnHand	Class	Warehouse	Price
AT94	Iron	50	HW	3	\$24.95
BV06	Home Gym	45	SG	2	\$794.95
CD52	Microwave Oven	32	AP	1	\$165.00
DL71	Cordless Drill	21	HW	3	\$129.95
DR93	Gas Range	8	AP	2	\$495.00
DW11	Washer	12	AP	3	\$399.99
FD21	Stand Mixer	22	HW	3	\$159.95
KL62	Dryer	12	AP	1	\$349.95
KT03	Dishwasher	8	AP	3	\$595.00
KV29	Treadmill	9	SG	2	\$1,390.00

FIGURE 9-2: Premiere Products Part table data

FRAGMENTATION TRANSPARENCY (CONTINUED)

Fragment Part1

PartNum	Description	OnHand	Class	Warehouse	Price
CD52	Microwave Oven	32	AP	1	\$165.00
KL62	Dryer	12	AP	1	\$349.95

Fragment Part2

PartNum	Description	OnHand	Class	Warehouse	Price
BV06	Home Gym	45	SG	2	\$794.95
DR93	Gas Range	8	AP	2	\$495.00
KV29	Treadmill	9	SG	2	\$1,390.00

Fragment Part3

PartNum	Description	OnHand	Class	Warehouse	Price
AT94	Iron	50	HW	3	\$24.95
DL71	Cordless Drill	21	HW	3	\$129.95
DW11	Washer	12	AP	3	\$399.99
FD21	Stand Mixer	22	HW	3	\$159.95
KT03	Dishwasher	8	AP	3	\$595.00

FIGURE 9-3: Fragmentation of Part table data by warehouse

ADVANTAGES OF DISTRIBUTED DATABASES

- Local control of data
- Increased database capability
- System availability
- Improved performance

DISADVANTAGES OF DISTRIBUTED DATABASES

- Update of replicated data
 - Primary copy
- More complex query processing
- More complex treatment of concurrent update
 - Local deadlock: occurs at a single site in a distributed database
 - Global deadlock: involves more than one site
- More complex recovery measures
 - Two-phase commit: one site acts as coordinator

DISADVANTAGES OF DISTRIBUTED DATABASES (CONTINUED)

- More difficult management of data dictionary
- More complex database design
- More complicated security and backup requirements

RULES FOR DISTRIBUTED DATABASES (C.J. DATE)

- Local autonomy
- No reliance on a central site
- Continuous operation
- Location transparency
- Fragmentation transparency
- Replication transparency

Rules for Distributed Databases (Continued)

- Distributed query processing
- Distributed transaction management
- Hardware independence
- Operating system independence
- Network independence
- DBMS independence

CLIENT/SERVER SYSTEMS

- File server architecture
 - **File server**: stores user files on the network
- Client/server architecture
 - **Server**: computer providing data to clients
 - Back-end processor or back-end machine
 - **Clients**: computers connected to a network and used by users to access data
 - Front-end processor or front-end machine

CLIENT/SERVER SYSTEMS (CONTINUED) Computers connected to a network

FIGURE 9-4: File server architecture

CLIENT/SERVER SYSTEMS (CONTINUED)

Client computers connected to a network

FIGURE 9-5: Two-tier client/server architecture

CLIENT/SERVER SYSTEMS (CONTINUED)

Two-tier architecture

- Server performs database functions
- Clients perform presentation functions
 - Fat client
 - Thin client

Three-tier architecture

- Clients perform presentation functions
- Database server performs database functions
- **Application servers** perform business functions and interface between clients and database server

CLIENT/SERVER SYSTEMS (CONTINUED)

FIGURE 9-6: Three-tier client/server architecture

ADVANTAGES OF CLIENT/SERVER SYSTEMS

- Lower network traffic
- Improved processing distribution
- Thinner clients
- Greater processing transparency
- Increased network, hardware, and software transparency
- Improved security
- Decreased costs
- Increased scalability

Web Access to Databases

- Internet and World Wide Web (or the Web)
- Web page: digital document on the Web
- Web server: stores Web pages
- Web client: computer requesting a Web page
- Each Web page has a Uniform Resource Locator (URL)
- Hypertext Transfer Protocol (HTTP): data communication method used to exchange data on the Internet

WEB ACCESS TO DATABASES (CONTINUED)

- Web browser: computer program that retrieves a Web page from a Web client
- Transmission Control Protocol/Internet Protocol (TCP/IP): standard protocol for communication on the Internet
- Web pages usually created using Hypertext Markup Language (HTML)

Web Access to Databases (continued)

FIGURE 9-7: Retrieving a Web page on the Internet

WEB ACCESS TO DATABASES (CONTINUED)

- Static vs. dynamic Web pages
 - Static Web pages: same content for all Web clients
 - **Dynamic Web pages**: content changes in response to inputs and choices from Web clients
- Server-side extensions or server-side scripts
- Client-side extensions or client-side scripts
- Three-tier Web-based architecture
 - Web clients
 - Web server
 - Database server

WEB ACCESS TO DATABASES (CONTINUED)

FIGURE 9-8: Three-tier Web-based architecture

XML

- HTML
 - Describes content and appearance of Web pages
 - Does not describe structure and meaning of data
- Extensible Markup Language (XML)
 - Tags can define meaning and structure of data
 - An XML document should begin with an XML declaration

XML (CONTINUED)

- Extensible Hypertext Markup Language (XHTML)
 - Markup language based on XML
 - Stricter version of HTML
- Defining structure, characteristics, and relationships of data
 - Document Type Definition (DTD)
 - XML schema
- Presentation of data
 - Stylesheet

XML (CONTINUED)

```
<xsd:element name="Rate" minOccurs="0" jetType="double"</pre>
       sqlSType="float" type="xsd:double">
<xed:annotation>
<xed:appinfo>
<fieldProperty name="ColumnWidth" type="3" value="840"/>
<fieldProperty name="ColumnOrder" type="3" value="0"/>
<fieldProperty name="ColumnHidden" type="1" value="0"/>
<fieldProperty name="DecimalPlaces" type="2" value="255"/>
<fieldProperty name="Required" type="1" value="0"/>
<fieldProperty name="DisplayControl" type="3" value="109"/>
<fieldProperty name="TextAlign" type="2" value="0"/>
<fieldProperty name="AggregateType" type="4" value="-1"/>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>
```

FIGURE 9-10: XML schema for the Rate element from the Rep table

XML (CONTINUED) Web browser uses XML and XSL documents to display a Web page Web DTD or Web XSL browser XML schema client **XQuery XML** XML document processor processor Web client obtains An XML Database information from HTML or **XML** processor uses an XML document server XHTML a DTD or an XML processor using XQuery schema and an XML document to interact with a Web database server **XSL XSLT** browser connected to a database An XML processor uses XSLT to transform an XML document into an HTML or XHTML document, which a Web Database browser uses with an XSL document to display a Web page

FIGURE 9-11: Interaction among XML and related languages

DATA WAREHOUSES

- Online transaction processing (OLTP) systems
 - Users use transactions when interacting with an RDBMS

Data warehouse

- Subject-oriented, integrated, time-variant, nonvolatile collection of data in support of management's decision-making process
- Used for analysis of existing data
- Resolves performance issues suffered by operational RDBMSs and OLTPs

DATA WAREHOUSES (CONTINUED)

FIGURE 9-12: Data warehouse architecture

DATA WAREHOUSE STRUCTURE AND ACCESS

- Star schema
 - Fact table
 - Dimension table
- Online analytical processing (OLAP) software: for access to a data warehouse
- **Data cube**: a shape for visualizing a data warehouse as a multidimensional database
- **Data mining**: uncovering new knowledge, patterns, trends, and rules from data in a data warehouse

Data Warehouse Structure and Access (Continued)

FIGURE 9-13: A star schema with four dimension tables and a central fact table

Data Warehouse Structure and Access (continued)

FIGURE 9-14: A data cube representation of the Part, Customer, and Time dimensions

RULES FOR OLAP SYSTEMS (E.F. CODD)

- Multidimensional conceptual view
- Transparency
- Accessibility
- Consistent reporting performance
- Client/server architecture
- Generic dimensionality

RULES FOR OLAP SYSTEMS (CONTINUED)

- Dynamic sparse matrix handling
- Multiuser support
- Unrestricted, cross-dimensional operations
- Intuitive data manipulation
- Flexible reporting
- Unlimited dimensions and aggregation levels

OBJECT-ORIENTED DBMSs

- Complex objects: graphics, drawings, photographs, video, sound, voice mail, spreadsheets, etc.
- RDBMSs store complex objects using special data types
 - Binary large objects (BLOBs)
- Object-oriented DBMSs used with applications whose focus is on complex objects

WHAT IS AN OBJECT-ORIENTED DBMS?

- **Object**: set of related attributes along with associated actions
- Object-oriented database management system (OODBMS): database management system in which data and associated actions are encapsulated into objects

OBJECTS AND CLASSES

- Represent each entity as an *object* rather than a relation
- List attributes vertically below object names
 - Follow each attribute by name of domain
- Objects can contain other objects
- An object can contain a portion of another object

METHODS AND MESSAGES

- **Methods**: actions defined for a class
- Defined during data definition process
- Executed when user sends a message to the object

METHODS AND MESSAGES (CONTINUED)

```
Add Order (WOrders)
       Add row to Orders table
              OrderNum = WOrderNum
              OrderDate = WOrderDate
              CustomerNum = WCustomerNum
       For each order line record in WOrders DO
              Add row to Orderline table.
                     OrderNum = WOrderNum
                      PartNum = WPartNum
                      NumOrdered = WNumOrdered
                      QuotedPrice = WQuotedPrice
              Update Part table (WHERE PartNum = WPartNum)
                                   = Allocated + WNumOrdered
                      Allocated:
Delete Order (WOrderNum)
       Delete row from Orders table (WHERE OrderNum = WOrderNum)
       For each OrderLine record (WHERE OrderNum = WOrderNum) DO
              Delete row from OrderLine table
              Update Part table (WHERE Part.PartNum = OrderLine.PartNum)
                      Allocated
                                   = Allocated - NumOrdered
```

FIGURE 9-22: Two methods for the Premiere Products object-oriented database

INHERITANCE

Subclass

- Every occurrence of subclass is considered an occurrence of the class
- Subclass *inherits* structure and methods of the class

Unified Modeling Language (UML)

- Used to model all aspects of software development for object-oriented systems
 - Includes a way to represent database designs
- Class diagram: most relevant diagram type for database design
 - Rectangles represent classes
 - Lines joining classes represent relationships; called associations
 - Visibility symbol indicates whether other classes can view or update value in attribute

Unified Modeling Language (UML) (Continued)

FIGURE 9-24: Class diagram for the Premiere Products database

Unified Modeling Language (UML) (CONTINUED)

- Multiplicity: number of objects that can be related to an individual object
- Constraints
- Superclass
- Generalization: relationship between a superclass and a subclass

Unified Modeling Language (UML) (CONTINUED)

FIGURE 9-26: Class diagram with a generalization and a constraint

RULES FOR OODBMSS

- Complex objects
- Object identity
- Encapsulation
- Information hiding
- Types of classes
- Inheritance
- Late binding

Rules for OODBMSs (Continued)

- Computational completeness
- Extensibility
- Persistence
- Performance
- Concurrent update support
- Recovery support
- Query facility

SUMMARY

- Distributed database: single logical database physically divided among computers at several sites on a network
- Location transparency, replication transparency, and fragmentation transparency are important characteristics of DDBMSs
- Two-tier client/server architecture: DBMS runs on file server and server sends only the requested data to the clients

SUMMARY (CONTINUED)

- Three-tier client/server architecture: clients perform presentation functions, database servers perform database functions, and application servers perform business functions
- Web servers interact with Web clients using HTTP and TCP/IP to display HTML Web pages
- Dynamic Web pages, not static Web pages, are used in e-commerce
- XML was developed because of need for data exchange between organizations and inability of HTML to specify structure and meaning of data

SUMMARY (CONTINUED)

- XHTML: markup language based on XML; stricter version of HTML
- Data warehouse: subject-oriented, integrated, time-variant, nonvolatile collection of data in support of management's decision-making process
- Users perceive data in a data warehouse as a multidimensional database in data cube shape
- Data mining: uncovering new knowledge, patterns, trends, and rules from data stored in a data warehouse

SUMMARY (CONTINUED)

- Object-oriented DBMSs deal with data as objects
 - Object: set of related attributes and actions associated with the attributes
 - OODBMS: database management system in which data and actions that operate on the data are encapsulated into objects
- UML: an approach to model all aspects of software development for object-oriented systems