Sesión 7

Problema 1. Calcular la función de cuantía de las distribuciones marginales X e Y, dada la conjunta:

Problema 2. Dada la variable aleatoria bidimensional (X,Y) con la siguiente función de densidad conjunta:

$$f(x,y) = k \cdot (x^2 + y^2)$$
; para valores $0 \le y \le x \le 1$

Calcular:

- a) El valor de k
- b) Funciones de densidad marginales
- c) $P(Y \le 0.4/X 0.5)$

Problema 3. Sea *X* el número de iPhone 7 vendidos durante una semana en un Centro Comercial. La función de cuantía (función de probabilidad) de X es:

Χ	0	1	2	3	4
<i>f</i> (<i>x</i>)	0,1	0,2	0,3	0,25	0,15

El número *Y* de clientes que compra el IPhone con un seguro es:

$$Y = \begin{cases} 0 & \text{st } X = 0, 1, 2 \\ X - 2 & \text{en otro case} \end{cases}$$

- a) Calcular la función de cuantía (función de probabilidad) de la variable (X,Y)
- b) ¿Son independientes X e Y?
- c) Calcular la función de cuantía condicional (función de probabilidad condicional) $g_1(x/Y=1)$

Problema 4. Sea una variable aleatoria bidimensional con la siguiente función de densidad conjunta:

$$f(x,y) = kxy$$
, para $2 \le x \le 4 \lor 2 \le y \le 4$

Se pide:

- a) Calcular el valor de k.
- b) Calcular las funciones de densidad marginales.
- c) Calcular las funciones de densidad condicionales.
- d) Calcular $P(2 < x \le 3 / 1.5 < y \le 3.75)$