Topology Optimization for MBB beam using Neural Network

Hongye Gu & Justin Guilfoyle Mechanical Engineering 04/27/2021

Engineering Background

Data-driven Topology optimization:

- Topology Optimization(TO) is the process of determining the optimum design for an engineering challenge where the design is defined as a set of point.
- All TO methods have a high computational cost
 - Finite Element Analysis
 - Gradient-Based Optimizer
 - Genetic Algorithms
- Machine learning can be used to supplement or replace the costly TO algorithm
- NN Designs may offer preliminary designs for TO which would reduce computational costs

Problem Statement

• Problem setup:

- o nelx = 200
- o nely = 30

Boundary conditions:

 Fixed joints on both bottom left and right corners

Input variables:

- Force location (50-150)
- Force magnitude (0-1)

Responses:

- 2D design for MBB beam
- Performance Metric:
 - Compliance

Data Source

Data Generation:

- Simulation:
 - 99-line topology optimization Matlab code^[2]
 - Robust scalable with many features
- Design of Experiments(DOE):
 - Latin Hypercube Sampling
- Data types :
 - Training & Validation Data
 - X: Force Magnitude & Location (.csv)
 - Y: Design (.csv) & Compliance (.csv)
 - Y_{alt}: Design (.bmp)

Data Visualization

Dataset:

- 80 iterations of gradient-based TO
- Density ~ Element Shade

$$\circ$$
 $\rho \in [0,1]$

Black/White Design for TO

- 25/5 sample set for Single-load case
- 60/15 sample set for Single-load cases
- 80/20 sample set for Multi-load cases

Fig. Data visualization for one load

Model:

Neural Network

Reasons:

- Number of Inputs << Number of Outputs
 - Layers can produce more Output Values
- Material Configuration of Topology Optimization
 - Complex Layering of Numerical Subroutines
- Image Generation
 - Nonlinear Relationship between Pixels

Single Loading Cases

Training data set: 25 Validation data set: 5 Only dense layers

[inf, 0.0]

Layer (1	уре)	Output	Shape	Param #
input_1	(InputLayer)	[(None	, 2)]	0
dense (I	ense)	(None,	4)	12
dense_1	(Dense)	(None,	4)	20
dense_2	(Dense)	(None,	16)	80
dense_3	(Dense)	(None,	64)	1088
dense_4	(Dense)	(None,	256)	16640
dense_5	(Dense)	(None,	1024)	263168
dense_6	(Dense)	(None,	2048)	2099200
dense_7	(Dense)	(None,	4096)	8392704
dense_8	(Dense)	(None,	6000)	24582000
dense_9	(Dense)	(None,	6000)	36006000

Total params: 71,360,912 Trainable params: 71,360,912

Non-trainable params: 0

Results

Increasing the number of data and layers

Training data set: 60 Validation dataset: 15

[0.04168110340833664, 0.0]

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 2)]	0
dense (Dense)	(None, 4)	12
dense_1 (Dense)	(None, 4)	20
dense_2 (Dense)	(None, 16)	80
dense_3 (Dense)	(None, 64)	1088
dense_4 (Dense)	(None, 256)	16640
dense_5 (Dense)	(None, 256)	65792
dense_6 (Dense)	(None, 1024)	263168
dense_7 (Dense)	(None, 1024)	1049600
dense_8 (Dense)	(None, 2048)	2099200
dense_9 (Dense)	(None, 4096)	8392704
dense_10 (Dense)	(None, 6000)	24582000
dense_11 (Dense)	(None, 6000)	36006000

Total params: 72,476,304
Trainable params: 72,476,304

Non-trainable params: 0

Alternative Layering Scheme

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 6)]	0
reshape (Reshape)	(None, 3, 2, 1)	0
conv2d_transpose (Conv2DTran	(None, 3, 2, 4)	68
conv2d_transpose_1 (Conv2DTr	(None, 3, 2, 16)	6416
conv2d_transpose_2 (Conv2DTr	(None, 3, 2, 512)	131584
flatten (Flatten)	(None, 3072)	0
dense (Dense)	(None, 6000)	18438000
Total params: 18,576,068 Trainable params: 18,576,068 Non-trainable params: 0		

Multiple Loading Cases

Multiple loading case (3 loading)

Training data set: 80

Validation dataset: 20

input_1 (InputLayer)	[(None, 6)]	0
dense (Dense)	(None, 4)	28
dense_1 (Dense)	(None, 4)	20
dense_2 (Dense)	(None, 16)	80
dense_3 (Dense)	(None, 16)	272
dense_4 (Dense)	(None, 64)	1088
dense_5 (Dense)	(None, 64)	4160
dense_6 (Dense)	(None, 256)	16640
dense_7 (Dense)	(None, 256)	65792
dense_8 (Dense)	(None, 1025)	263425
dense_9 (Dense)	(None, 1025)	1051650
dense_10 (Dense)	(None, 4096)	4202496
dense_11 (Dense)	(None, 4096)	16781312
dense_12 (Dense)	(None, 4096)	16781312
dense_13 (Dense)	(None, 4096)	16781312
dense_14 (Dense)	(None, 6000)	24582000
dense_15 (Dense)	(None, 6000)	36006000
dense_16 (Dense)	(None, 6000)	36006000

Output Shape

Param #

Total params: 152,543,587 Trainable params: 152,543,587 Non-trainable params: 0

Layer (type)

[0.10625715553760529, 0.0]

Results

UNIVERSITY OF CONNECTICUT

Feasibility of NN Designs

UTC Institute
for Advanced
Systems Engineering
UNIVERSITY OF CONNECTICUT

NN Designs as TO Input

Results (40 Iterations)

- Compliance improved for 35%
 - 0.065% Relative Improvement
 - 0.946% Relative Error
- Time Savings (2.5 s/iter)
 - 80 iterations \rightarrow 200s
 - 40 iterations \rightarrow 100s
- 50% Time Reduction

Summary

Summary

- Identified a Problem:
 - Computational cost of Topology Optimization
- Performed Data Generation
 - o TOP99^[2]
- Applied a Machine Learning Technique:
 - Neural Network

Results

- Unfiltered NN designs are not feasible due to intermediate densities
- Filtered NN Designs can be used to support feasible designs

Application

- Initial density field for topology optimization algorithm
 - Reduces overall computational cost

Thank you!

