基礎コンピュータ工学 第2章 情報の表現 (パート1:ビット)

https://github.com/tctsigemura/TecTextBook

本スライドの入手:

基礎コンピュータ工学第2章 情報の表現(/

情報の表現

コンピュータの内部で情報が表現されるか。 どのような回路で扱うことができるか.

コンピュータは電気で動くので情報も電気で表現する必要がある.

情報の表現 = (人:音声,文字,絵,... コンピュータ:電圧,電流)

基礎コンピュータ工学第2章 情報の表現 (バ

電気を用いた情報の表現(おおかみ情報)

電気の「ON/OFF」を用いて情報を表現する.

基礎コンピュータ工学第2章 情報の表現 (バ・

基礎コンピュータ工学第2章 情報の表現 (パー

ビット

前例のような「二つのどちらか」を表す情報が「情報の最小単位」にな る. 情報の最小単位のことを「ビット (bit)」と呼ぶ.

on/off のどちらか → 情報の最小単位(ビット)

ビットの値は「ON/OFF」ではなく、「1/0」で書く.

 $\begin{pmatrix} \mathsf{ON} & : & 1 \\ \mathsf{OFF} & : & 0 \end{pmatrix}$

「おおかみが来た情報」をビットで表現する。

ビット値 意味 おおかみは来ていない 0 (off) 1 (on) おおかみが来た!!

基礎コンピュータ工学第2章 情報の表現(バー

複雑な情報は複数のランプ(ビット)の組み合わせで表現する。

より複雑な情報の表現(拡張おおかみ情報)

ビットの組合せと表現できる情報

拡張おおかみ情報は2ビットで4種類の情報を表現した。一般にはnビットで 2^n 種類の情報を表現できる。

ビット数	ビットの組合せ	組合せ数
1	0 1	$2^1 (= 2)$ $2^2 (= 4)$
2	00 01 10 11	$2^2 (= 4)$
3	000 001 010 011	
	100 101 110 111	$2^3 (= 8)$
n		2^n

「拡張おおかみ情報」のように, ビットの組合せに意味を持たせることで様々な情報を表現できる.

ビットの組合せの意味を表にして定義する。

基礎コンピュータ工学第2章 情報の表現 (パー

ビット, ニブル, バイト

「ビット」は情報の最小単位

「ビット」は小さすぎるので「4ビット」,「8ビット」まとめたものもある.

名前	ビット数	組合せの数
ビット (bit)	1	$2^1 = 2$
ニブル (nibble) バイト (bvte)	4	$2^4 = 16$
バイト (byte)	8	$2^8 = 256$

スマホの容量: 32GB, 64GB, 128GB (「B」は**バイト**の意味) USBメモリの容量: 32GB, 64GB, 128GB (「B」は**バイト**の意味) 通信速度制限: 7GB を超えると制限される(「B」は**バイト**の意味)

通信速度:通常は 100Mbps (「b」は**ビット**の意味) 通信速度:制限されると 128kbps (「b」は**ビット**の意味)

参考:bps:【bits per second / ビット毎秒】

基礎コンピュータ工学第2章 情報の表現 (バー

数値の表現

これまで、ビットの組合せの意味決める。(表などにする) ビットの組合せの意味を**ルールで決める**場合もある。 コンピュータの内部では数値は**2進数**で表現する。

10 進数

- 0~9の10種類の数字だけを使用する数値の表現方法。
- 一桁毎に10倍の重みを持つ

2 進数

- 0, 1の2種類の数字だけを使用する数値の表現方法.
- 一桁毎に2倍の重みを持つ
- 0, 1の2種類の数字をビットの0, 1と対応付けしやすい.
- nビット(桁)の2進数で0~2ⁿ−1までの値を表現できる。

基礎コンピュータ工学第2章 情報の表現(バー

10 /

4ビットの2進数 意味 b_3 b_2 b_1 b_0 0 0 0 Ω 0 0 0 0 1 1 0 Ω 0 1 2 0 3 0 1 1 0 0 0 4 5 1 0 1 0 1 1 6 0 0 1 1 7 0 0 0 8 9 1 0 0 10 1 0 1 1 11 0 0 12 1 0 13 1 1 1 0 14 1 1 15 基礎コンピュータ工学第2章 情報の表現 (バー

宿題

宿題

- 1) 言葉の確認 (ビット、ニブル、バイト)
- 2) n ビットの組合せの数 3ビットで表現できる情報の種類は何種類か? 32種類の情報表現するためには何ビット必要か?
- 3) 0₁₀ (0000₂) ~ 15₁₀ (1111₂) の範囲を 2 進数で数を数える練習をしなさい. (小学校の 1 年生が 1 0 まで数える練習をするように)

基礎コンピュータ工学第2章 情報の表現(パー

12/