Resumen Módulo 1

October 2019

1 Antecedentes históricos

1.1 Conceptos

Información: es una agrupación de datos relacionados y ordenados de manera que resultan útiles para realizar alguna actividad y tomar decisiones.

Datos: son los elementos que constituyen la información.

Ciencias de la computación: Esta área estudia la manera de representar problemas complejos y de solucionarlos mediante la realización de alguna secuencia de acciones matemáticas que puedan implementarse en la computadora.

Informática: Esta área estudia el uso de la computadora en entidades que emplean información para su funcionamiento y también la analiza como un recurso.

Involucra su estructura semántica dos términos: información y automática: La ciencia del tratamiento sistemático y eficaz, realizado especialmente mediante máquinas automatizadas, de la información, contempla como vehículo del saber humano y de la comunicación en los ámbitos técnico, económico y social.

1.2 Cronología

1642	Blaise Pascal	Pascalina. Sumas y restas
1822	Charles Babbage	Maquina diferenial. Calculaba tablas
1833	Charles Babbage	Máquina analítica, tenía unidad de almacenamiento. Suma, resta, multiplica y divide
1835 - 1850	Lady Ada Augusta Lovelace	Programación por tarjtas perforadas
1887–1890	Herman Hollerith	Máquina tabuladora, acumulaba y clasificaba información. Programable. Se usó para el censo
1896	Herman Hollerith	Funda Tabulating Machine Company
1911	Tabulating Machin Co.	Se fusiona y se crea Computing-Tabulating-Recording Co.
1924	Thomas J. Watson	Cambia el nombre a International Bussines Machines Co.
1920–1950	Electromech. Accounting Mach.	Crean la Maq. de contabilidad electromecánica a base de tarjetas
1941	Konrad Zuse	Primer computadora programable: Z3 (Binario)
1937 - 1942	John V. Atanasoff	Primer computadora digital: Atanasoff-Berry Computer
1944	Howard Aiken	Primer computadora electromecánica: MARK I. IBM + Harvard
1946	Mauchly & Eckert	Primer computador electrónico: ENIAC
1949	John von Neumann	Almacenamiento de programas en memoria. EDVAC
1951	Mauchly & Eckert	UIVAC 1, primer ordenador comercial

2 El computador electrónico

2.1 Generaciones de computadoras

Criterios:

- 1. Forma en la que están construidas.
- 2. Forma de comunicación entre el usuario y la maquina.

2.1.1 Primera generación

1950-1959

UNIVAC I IBM 701

Remington Rand 1103 IBM 702

IBM 630 UNIVAC 80 y 90

IBM 704 y 709 Burroughs 220

UNIVAC 1105

- 1. Por medio de circuitos de tubos de vacío.
- 2. Mediante programación en lenguaje máquina.

Datos

- Máquinas grandes y costosas (decenas o cientos de miles de dólares).
- Unidades de entrada por tarjetas perforadas.
- Usaban cilindros magnéticos para almacenar información e instrucciones.

2.1.2 Segunda generación

1960-1964

Burroughs 5000 ATLAS
Philco 212 UNIVAC M460
CDC 1604 y 3000 IBM 7090, 7094
UNIVAC 1107 NCR 315
RCA 501 y 601

- 1. Construidas con transistores.
- 2. Se programan en lenguajes ensamblador y de alto nivel.

Datos:

- Máquinas más pequeñas y con menos ventilación.
- Usaban redes de núcleos magnéticos en vez de tambores.

2.1.3 Tercera generación

1964-1970

IBM 360 CDC 6000 IMB 370 UNIVAC 1108 y 1110 CDC 7000 Cyber

- 1. Fabricación a base de circuitos integrados.
- 2. Manejo mediante el control de sistemas operativos.

Datos:

- Desprendían menos calor, eran más eficientes.
- Más pequeñas y más rápidas.
- Se usaban tanto para análisis numérico como administrativo o procesamiento de archivos.
- Multiprogramación.

2.1.4 Cuarta generación

1971-1982

Intel 8008 Motorola 6800 IBM 5150 Altair 8800

- 1. Se fabrican con microprocesadores.
- 2. No hay un avance significativo. Las características de esta generación son:
 - Acceso a bases de datos.
 - Gestión de interfaz gráfica.
 - Desarrollo web.

Datos:

- Se desarrollan microcomputadoras (PC).
- Memoria en chips.

2.1.5 Quinta generación

A partir de 1983 (Software) y de 2004 (Hardware). El software de quinta generación aun no es comercial, sigue en desarrollo.

- 1. Procesamiento en paralelo mediante arquitecturas.
- 2. Programación mediante lenguaje natural.

2.2 Clasificación

2.2.1 Por su forma de procesar datos

- Analógica
 - Usa números reales en su procesamiento.
 - Son muy veloces.
 - Sus valores son derivables.
 - Usan el principio de la regla de cálculo.
- Híbrida
 - Atacan problemas específicos.
 - Los datos de entrada provienen de mediciones.
 - Procesador digital.
- Digital
 - Menor ruido en señales.
 - Usa números discretos y algebraicos.
 - Microescala.

2.2.2 Por su capacidad

- Supercomputadora. La supercomputadora es lo máximo en computadora, es la más rápida y, por lo tanto, la más cara. Cuesta millones de dólares y se hacen de dos a tres al año. Procesan billones de instrucciones por segundo. Son utilizadas para trabajos científicos, particularmente para crear modelos matemáticos del mundo real, llamados simulación.
- Mainframe. Son computadoras grandes, capaces de utilizar cientos de dispositivos de entrada y salida. Procesan millones de instrucciones por segundo. Su principal función es procesar grandes cantidades de datos rápidamente. Estos datos están accesibles a los usuarios del mainframe o a los usuarios de las microcomputadoras cuyos terminales están conectados a éste. Su costo fluctúa entre varios cientos de miles de dólares hasta el millón. Requieren de un sistema especial para controlar la temperatura y la humedad. También requieren de un personal profesional especializado para procesar los datos y darle el mantenimiento.
- Minicomputadora. Se desarrolló en la década de 1960 para llevar a cabo tareas especializadas, tales como el manejo de datos de comunicación. Son más pequeñas, más baratas y más fáciles de mantener e instalar que los mainframes. Su costo está entre los cincuenta mil hasta varios cientos de miles. Usadas por negocios, colegios y agencias gubernamentales. Su mercado ha ido disminuyendo desde que surgieron las microcomputadoras.
- Microcomputadora. Es la más pequeña, gracias a los microprocesadores, más barata y más popular en el mercado. Su costo fluctúa entre varios cientos de dólares hasta varios miles de dólares. Puede funcionar como unidad independiente o estar en red con otras microcomputadoras o como un terminal de un mainframe para expandir sus capacidades.

2.3 Teoría fundamental del conteo

Su representación es la siguiente:

$$\dots + x_4 B^4 + x_3 B^3 + x_2 B^2 + x_1 B^1 + x_0 B^0 + x_{-1} B^{-1} + x_{-2} B^{-2} \dots$$

donde x_i es el *i*-ésimo coeficiente y B es la base del sistema.

- La primer posición siempre serán las unidades (1)
- La segunda posición siempre será el valor de la base (B)

El número de caracteres está limitado al número de la base. Es decir, en base decimal existen 10 (0-9), en binario solo 2 (0-1), etc.

2.3.1 Conversión de base B a decimal

El número 2389 en base 9 tiene coeficientes: por lo que, B=9 y

coeficiente	posición	Factor de multipliación
2	2	9^{2}
3	1	9^1
8	0	9_0

$$2(9^2) +3(9^1) +8(9^0)$$

 $2(81) +3(9) +8(1).$

En base decimal corresponde al número 162+27+8=197.

2.3.2 Conversión de decimal a base B

Restas sucesivas.

Se convierte cualquier número A en decimal a base B:

- Buscar un número n tal que $B^n \leq A$.
- Buscar un coeficiente x_n tal que $x_n B^n \leq A$. Con $x_n < B$.
- Restar $A x_n B^n$ y repetir el proceso hasta que la resta resulte 0.

Ejemplo: Convertir 615 a base 8

- Buscar n: $8^0 = 1, 8^2 = 64, 8^3 = 512 < 615$. n = 3.
- Buscar x_3 : $(1)(8^3) = 512 \le 615$. $x_3 = 1 < 8$.
- Restar: $615 \mathbf{1}(8^3) = 103$.
- $103 \mathbf{1}(8^2) = 39$. $n = 2, x_2 = 1$.
- $39 4(8^1) = 7$. $n = 1, x_1 = 4$.
- $7 7(8^0) = 0$. $n = 0, x_0 = 7$.
- El resultado es 1147₈.

Divisiones sucesivas.

Se convierte cualquier número A en decimal a base B:

- Se realiza una división entera con residuo A/B = entero + residuo. El residuo es el primer coeficiente x_0 .
- Repetir el proceso con la parte entera hasta que ésta sea un número menor a B, siendo el coeficiente más significativo.

Ejemplo: Convertir 615 a base 8

- 615/8 = 76 + 7. $x_0 = 7$.
- 76/8 = 9 + 4. $x_1 = 4$.
- 9/8 = 1 + 1. $x_3 = 1$, $x_2 = 1$.
- El resultado es 1147₈.

2.3.3 Conversión decimal fraccionario a base B

Se convierte cualquier número fraccionario A en decimal a base B:

- Se multiplica el valor fraccionario A por la base B. El valor entero es el coeficiente x_{-1} .
- Se toma la fracción del resultado anterior y se vuelve a multiplicar. El valor entero es el siguiente coeficiente x_{-2} .
- El ciclo de multiplicación puede terminar hasta que la fracción sea cero, puede ser periódico o puede nunca terminar.

Ejemplo: Convertir el valor decimal fraccionario 0.824 a base 8

• (0.824)8 = 6.592. $x_{-1} = 6$.

- (0.592)8 = 4.736. $x_{-2} = 4$.
- (0.736)8 = 5.888. $x_{-3} = 5$.
- (0.888)8 = 7.104. $x_{-4} = 7$.
- 0.824 = 0.6457...

2.3.4 Conversión binaria

Para convertir de binario a **octal**, se hacen grupos de **tres** partiendo del punto y se convierte cada grupo por separado.

Ejemplo: Convertir 110111011111100.1110111111 a octal

011 011 101 111 100.111 011 111 100= 33574.7374_8

Para convertir de binario a **hexadecimal**, se hacen grupos de **cuatro** partiendo del punto y se convierte cada grupo por separado.

Ejemplo: Convertir 110111011111100.1110111111 a hexadecimal

 $0011\ 0111\ 0111\ 1100.1110\ 1111\ 1100 = 0x377C.EFC$

2.3.5 Representación digital

Conversión BCD a binario: Se convierte cada dígito decimal por separado usando siempre 4 dígitos binarios:

$$43269 = 0100\ 0011\ 0010\ 0110\ 1001$$

Conversión binario a BCD: Se hacen grupos de 4 de derecha a izquierda y se convierta cada grupo por separado:

$$1\ 1001\ 0001\ 0101\ 1000 = 19158$$

Punto flotante:

- Se representan tanto números en sistema decimal como binario
- Se usa notación científica:

$$570 \to 5.7 \times 10^2$$

 $110011000 \to 1.10011 \times 2^8$

3 Tendencias y repercusiones

3.1 Tendencias

3.1.1 Motivación

- Mejora en la actividad económica
 - Baja en la inflación
 - Menores tipos de iteres
 - Crecimiento económico
- Automatización
 - Reducción de costes
 - Incremento de la rentabilidad
- Movilidad

• Servicios de cloud

Algunos datos del 2016

• Servicios en TI: +5.2%

• Hardware: -3.4%

• Software: +3.6%

3.1.2 Ejemplos

- Cosas autónomas
 - Robots
 - Drones
- Analítica aumentada
 - Aprendizaje autónomo
 - Búsqueda de patrones
- Gemelos digitales
 - Representación digital del mundo
- Privacidad y seguridad
 - El 43.6% de los usuarios de la nube perciben riesgos de robo de información (Según ONTSI)
- Blockchain
- Espacios virtuales
 - Simuladores
 - Juegos de realidad aumentada
- 5G
- Computación cuántica
 - Usan partículas subatómicas para representar la información (qubits)
- Internet de las cosas
 - Medio ambiente. Recolección de indicadores ambientales.
 - Hogar. Electrodomésticos, control y automatización, monitoreo.
 - Agricultura. Control de la producción, utilización de sensores.
 - Automotores. Mantenimiento de máquinas.
 - Salud. Control y tratamiento más eficiente, cuidado de personas mayores.
 - Industria y comercio. Inventarios y publicidad, analisis en el comportamiento de consumo.
 - Ciudades. Control de tráfico, inspección de edificios y estructuras.
- Procesamiento de lenguaje natural
- Reconocimiento de voz

- Reconocimiento de objetos
- Asistentes virtuales
- Desarrollo de sistemas que reduzcan los atascos en carretera
- Vehículos sin conductor

3.2 Repercusiones

- La inversión en TI (Servicios o Software) no siempre es redituable. Se debe invertir en
 - Capacitación
 - Cambio en la organización de trabajo.
- \bullet Conduct as adictivas
 - Produce aislamiento social
 - Descuido académico
 - Daños a la salud
- Acoso cibernético
- Estrés laboral
 - Uso excesivo