Résolution de l'équation $\sin x = a$

Cette équation n'admet des solutions que si $a \in [-1, 1]$.

Soit α un angle tel que $\sin \alpha = a$.

Les solutions de l'équation $\sin x = a$ sont toutes les déterminations de α et de $\pi - \alpha$.

$$\sin x = \sin \alpha \quad \Leftrightarrow \quad \begin{cases} x = \alpha + 2k\pi \\ \text{ou} & k \in \mathbb{Z} \\ x = \pi - \alpha + 2k\pi \end{cases}$$

×

Résolution de l'équation $\cos x = a$

Cette équation n'admet des solutions que si $a \in [-1, 1]$.

Soit α un angle tel que $\cos \alpha = a$.

Les solutions de l'équation $\cos x = a$ sont toutes les déterminations de α et de $-\alpha$.

$$\cos x = \cos \alpha \quad \Leftrightarrow \quad \begin{cases} x = \alpha + 2k\pi \\ & \text{ou} \end{cases} \qquad k \in \mathbb{Z}$$
$$x = -\alpha + 2k\pi$$

Résolution de l'équation $\tan x = a$

Soit α un angle tel que $\tan \alpha = a$.

Les solutions de l'équation $\tan x = a$ sont toutes les déterminations de α et de $\pi + \alpha$.

 $\tan x = \tan \alpha \ \Leftrightarrow \ x = \alpha \! + \! k \, \pi \, , \ k \in \mathbb{Z}$

Résolution de l'équation $\cot x = a$

Soit α un angle tel que $\cot \alpha = a$.

Les solutions de l'équation $\cot x = a$ sont toutes les déterminations de α et de $\pi + \alpha$.

$$\cot x = \cot \alpha \quad \Leftrightarrow \quad x = \alpha + k \, \pi \,, \quad k \in \mathbb{Z}$$

