Appendix I: Two potential modeling methods

In this section we delve deeper into the rationale for reformulating the frame-wise classification problem as a mixed-integer programming (MIP) under *Assumption 1* and *Assumption 2*, and for adopting the particular MIP structure used in the paper.

Under Assumption 1, only the intersection of all videos contains valid production actions, while Assumption 2 stipulates that the action sequence be fixed. The task is therefore equivalent to locating, within the reference video, the subsequence that also appears in every other video.

There are *two* possible modeling routes, shown in Figures 15 and 16. Figure 15 corresponds to the formulation adopted in the paper: for each frame in video *i* we identify the most similar frame in the reference video, and only after all videos have been processed do we take the intersection to decide whether a reference action is truly indispensable. The assignment of frames within each video is thus *independent*. By contrast, Figure 16 starts from each reference frame *k* and asks whether that frame appears in *every* other videos.

Figure 15 Locating, in the reference video, the subset of actions that appears in every production video (fixed step sequence). Each action in the other videos "votes" for its counterpart in the reference.

Figure 16 Alternative global formulation: each reference frame is directly checked against every production video.

Optimality. Because both formulations exploit exactly the same prior knowledge (Assumptions 1–2), the "no-free-lunch" principle implies that their expected error rates are identical once the assumptions are fully utilized.

Hyper-parameter simplicity. At first glance, Figure 16 appears more attractive because each decision "looks at" all videos simultaneously. In practice, however, one must define a distance threshold a such that $d_{k,t} < a$ is deemed a match—an approach reminiscent of control-chart techniques in anomaly detection. This threshold is highly scenario-dependent and undermines generalizability. It is not a likelihood ratio test or regularization term, but an absolute value threshold of whether a frame is matched or not. Under this modeling method we need to solve model (14).

Minimise
$$\sum_{k=0}^{l_0} \left(\sum_{i=1}^n \sum_{t=0}^{l_i} d(\mathbf{z}_{i,t}, \mathbf{z}_{0,k}) x_{i,k,t} + (1 - s_k) a \right), \tag{14a}$$

s.t.
$$\sum_{t=0}^{l_i} x_{i,k,t} \le 1, \forall i \in \{1,\dots,n\}, \ k \in \{0,\dots,l_0\},$$
 (14b)

$$\sum_{t=0}^{l_i} \sum_{k=0}^{l_0} x_{i,k,t} \ge n s_k, \tag{14c}$$

$$x_{i,k,t+1} \le 1 - x_{i,k',t}, \forall k \in \{0,\dots,l_0\}, k' > k,$$
 (14d)

$$x_{i,0,0} = 1, \forall i \in \{0,\dots,n\},$$
 (14e)

$$x_{i,l_i,l_0} = 1, \forall i \in \{0,\dots,n\},$$
 (14f)

$$x_{i,k,t} \in \{0,1\}, s_k \in \{0,1\}, \forall i \in \{1,\dots,n\}, t \in \{0,\dots,l_i\}, k \in \{0,\dots,l_0\}.$$
 (14g)

Here $s_k = 1$ indicates that reference frame k represents a *necessary* action, whereas $x_{i,k,t} = 1$ records that frame t of video i is aligned to reference frame k. The cost in (14a) incurs $d(\mathbf{z}_{i,t}, \mathbf{z}_{0,k})$ when a match is made, and a penalty a when the reference frame is skipped. Constraint (14c) says that a frame can be retained ($s_k = 1$) only if *every* video supplies at least one matching frame; together with (14b) this is equivalent to requiring n distinct matches in total. Constraint (14d) enforces the monotone ordering mandated by Assumption 2.

In contrast, the formulation in Figure 15 requires no such threshold: each frame in video i simply chooses its closest reference action. If a perfect match exists, its distance $d_{k,t}$ will indeed be minimal, so minimizing (14a) lets the correct alignment emerge automatically. The only additional parameter is the skip-penalty r_i to further improve robustness, which is interpretable via a likelihood-ratio argument. The formal mathematical formulation is shown in model (15) and the interpretation of the model can be found in the main text.

Minimize
$$\sum_{i=1}^{n} \left(\sum_{t=0}^{l_i} \sum_{k=0}^{l_0} d(\mathbf{z}_{i,t}, \mathbf{z}_{0,k}) x_{i,t,k} + \sum_{k=0}^{l_0} \left(1 - \sum_{t=0}^{l_i} x_{i,t,k} \right)^+ r_i \right), \tag{15a}$$

s.t.
$$\sum_{k=0}^{l_0} x_{i,t,k} = 1, \forall i \in \{1, \dots, n\}, \ t \in \{0, \dots, l_i\},$$
 (15b)

$$x_{i,t+1,k} \le 1 - x_{i,t,k'}, \forall k \in \{0,\dots,l_0\}, \ k' > k,$$
 (15c)

$$x_{i,0,0} = 1, \forall i \in \{0, \dots, n\},$$
 (15d)

$$x_{i,l_i,l_0} = 1, \forall i \in \{0,\dots,n\},$$
 (15e)

$$x_{i,t,k} \in \{0,1\}, \forall i \in \{1,\dots,n\}, t \in \{0,\dots,l_i\}, k \in \{0,\dots,l_0\}.$$
 (15f)

Computational complexity. Model (14) is a model similar to a multiple alignment with SP-score problem. SP-score ("sum-of-pairs score") is a classical objective in multiple-sequence alignment: one inserts gaps so that all m sequences have equal length, then sums the pairwise alignment costs over the $\binom{m}{2}$ sequence pairs. The optimization task is to find an alignment with the minimum SP-score and this problem has proved to be NP-complete (Elias 2006); obtaining an optimal solution at industrial scale is therefore infeasible. And we cannot transfer it into a DP formulation to solve it in polynomial time. We further validate this with numerical experiment on a computer with a CPU of i9 14900k. As shown in Table 8, with a reference sequence length of only L = 50, model (14) contains over 7.8k binary variables and the solver required 548 seconds without finding an optimal solution (the objective remained unresolved). In contrast, the model (15) formulation (our DP-based approach) remains tractable: By breaking the problem into independent alignments and exploiting domain assumptions, our method bypasses this complexity barrier. The DP-based formulation scales efficiently, providing exact solutions where the alternative formulation fails.

L_0	#Variables	Build Time (s)	Solve Time (s)	Objective
10	374	0.01	0.06	11.671587
20	1344	0.07	4.64	18.476656
50	7854	1.05	548.96+	Unsolved

Table 8 The alternative model is intractable with only 3 videos and each length of 50.

Appendix J: Example of SOP generated by proposed method

In this section, we present a randomly selected example from the test production videos, showcasing the generated text description of standard operations along with the corresponding ground truth for each dataset. It can be seen that most action descriptions are accurate; however, some specific terms for production parts or tools were not correctly matched. As large vision-language models continue to improve in their captioning capabilities, especially with the development of models tailored for industrial datasets, the performance of our algorithm is expected to improve significantly as well.

Figure 17 (a) Example of commercial aircraft spoiler, (b) Al-generated spoiler production sketch map.

J.1. Aircraft Spoiler Production

Step	Procedure	Predicted	Predicted Procedure
Name		Step	
Applying	The worker places the yel-	Name Applying	The worker in the video is responsible for apply-
composite	low composite material on	the red	ing a substance to the spoiler, which is a part of
material.	the tooling. And the yellow	paint	the airplane wing. The substance is applied to the
	layer is removed with red	to the	spoiler to ensure that it is properly coated and ready
	material remain and wait for	spoiler.	for use. The worker carefully applies the sub-
	dry out.		stance to the spoiler, ensuring that it is evenly
			distributed and free of any bubbles or imperfec-
			tions. The worker then uses a tool to smooth out
			the substancetool to smooth out the substance,
			ensuring that it is applied correctly and that the
Insert	The worker stick the yel-	The step	spoiler is ready for use. The worker in the video is responsible for clean-
rigid	low rigid structure on the red	involves	ing the spoiler of an airplane. He starts by wiping
structure.	material and cover it with	clean-	the spoiler with a cloth, then applies a black sub-
Strattare.	red cloth carefully. After	ing the	stance to the spoiler and wipes it off. Finally, he
	that, he insert the green	spoilers.	applies a green substance to the spoiler and wipes
	combined rigid structure.	_	it off.wipes it off.
Apply	The worker wipe the com-	Assemble	The worker in the video is responsible for assem-
compen-	bined rigid structureThe	and test.	bling the spoilers. He starts by placing the spoiler
sation	worker wipe the combined		on a table and then proceeds to install the
tape	rigid structure, pushes it		spoiler He starts by placing the spoiler on a table
	down to make sure the structure is stuck in the		and then proceeds to install the spoiler on the air-
	toolingpushes it down to		plane. He then installs the spoiler on the table and moves it to the airplane. The worker also installs
	make sure the structure is		the spoiler on the table and moves it to the airplane.
	stuck in the tooling and		the sponer on the table and moves it to the uniplane.
	apply green compensation		
	tape, this step should be per-		
	formed under the collabora-		
	tion of multiple workers.		
_	The worker is responsible	Cleaning	The worker in the video is responsible for cleaning
mold and	for assembling and inspect-	the	the spoiler of an airplane. He starts by cleaning
inspect-	ing the spoilers. Starting by	spoiler.	the spoiler with a cloth and then proceeds to clean
ing.	placing the metal mold on the table and then proceeds		the spoiler with a brush. After that, he cleans the spoiler with a sponge and then wipes it down with
	to secure it in placeplacing		a cloth. Finally, he cleans the spoiler with a brush
	the metal mold on the table		again.
	and then proceeds to secure		
	it in place. Then moves		
	on to the inspecting phase,		
	where the worker checks the		
	spoiler's functionality and		
	ensures that it is working cor-		
	rectly.		

Seal up	The worker starts by cover	Wrap-	The worker in the video is responsible for applying
•	the spoiler with a red trans-	ping the	a substance to the spoiler applying a substance to
	parent plastic filmcover the	spoilers	the spoiler, which is a part of an airplane wing.
	spoiler with a red transparent	in plastic.	He uses a brush to apply the substance evenly on
	plastic film, then uses a tool	_	the spoiler, ensuring that the entire surface is
	to scrape off the excess part.		covered. ensuring that the entire surface is cov-
			ered. The purpose of this operation is to improve
			the aerodynamics of the spoiler, which helps in
			reducing air resistance and increasing the overall
			performance of the airplane.
Seal up	The worker uses blue tape to	\	
_	seal up the plastic film.		·
Process	The worker should starts by	Cleaning	The worker in the video is responsible for clean-
cover	placing the process cover	and pol-	ing the spoiler, which is a part of the airplane
plate	plate on the spoiler and	ishing the	wing. He uses a cloth to wipe the spoiler clean and
-	then proceeds to connect the	spoiler.	then applies a substance to it. The substance is
	wires to the spoiler.		likely a cleaning solution or a protective coating.
			The worker then wipes the spoiler again to ensure
			that it is clean and free of any debris or contami-
			nants. This process is crucial to ensure the spoiler's
			proper functioning and to maintain the airplane's
			overall performance.
Apply	The worker is responsible	Wrap-	The worker in the video is responsible for the pro-
white	for covering the airplane	ping the	duction of airplane spoilers. He is seen using a tool
cloth	spoiler with a white cloth and	spoiler.	to cut a piece of paper , which is then placed on
	scrape off the excess part		a table. He then uses a vacuum to clean the table,
	of it and make sure the cloth		ensuring that it is free of any debris.
	cover all the spoiler.		
Bagging.	The worker is responsible	Wrapping	The worker in the video is responsible for cov-
	for covering the airplane	the	ering the airplane spoiler with a plastic sheet.
	spoiler with a plastic sheet.	spoiler in	He starts by cutting the plastic sheet to the
	Workers should carefully	plastic.	appropriate size, then places it over the airplane
	wraps the sheet around the		spoiler. He then uses a tool to press the plastic
	spoiler and ensures that it		sheet down onto the spoiler, ensuring that it is
	is securely in place. Then		securely in place.
	tapes the plastic sheet to		
	the spoiler.		
Vacuum.	The worker should connect	Wrapping	The worker in the video is seen covering the air-
	the vacuum pump to pump	the spoil-	
	out the air under the plas-	ers.	a tool to press the plastic sheet onto the spoiler,
	tic film. Finally, he press		ensuring that it is securely in place. This is a
	the plastic down again to		crucial step in the production process, as it helps to
	ensure that all the air can		protect the spoiler from dust and debris while it is
	be evacuated by the vac-		being transported or stored. The worker's attention
	uum pump and the plastic		to detail and precision in this operation is essential
	film is tightly attached to		to ensure that the spoiler is properly protected and
	the workbench.		ready for use.

J.2. Water Valve Production

Step	Procedure	Predicted	Predicted Procedure
Name		Step	
		Name	

Inserting rubber stopper	The left hand holds the object1, while the right hand rotates the object1 and insert the rubber stopper. The left hand then releases the object1 and flip it, and the right hand continues to rotate the object1.	Tightening the cap	The left hand holds the object, while the right hand rotates it. The left hand then releases the object, and the right hand picks it up. The left hand then rotates the object again, and the right hand picks it up again. This process is repeated a few times.
Assembling intermediate valve	The left hand holds the object1, while the right hand insert the intermediate valve body, and the right hand flip the assembled parts.	Assembly step 1: Install the water valve.	The left hand holds the object, while the right hand rotates it. The left hand then releases the object, and the right hand rotates it again. This process is repeated several times.
		Assembly step 1: Attach the metal pipe to the valve body.	The left hand holds the container and the right hand rotates the container. The left hand then releases the container and the right hand rotates the container again. The left hand then rotates the container again and the right hand rotates the container.
Fastening inter- mediate valve	The left hand holds the object, while the right hand fastening the screw.	Assembly step 1: Attach the water valve to the pipe.	The left hand unscrews the top of the object, and the right hand inserts a metal pipe into the hole. The left hand then screws the top back on.
Aseemble the lower valve	The left hand holds the assembled intermediate valve body and inserts it into the lower part of the valve.		
Aseemble the middle valve	The left hand holds the assembled workpieces and the right hand put the sealing ring and middle valve body on it.	Tightening the nut	The left hand unscrews the lid of the coffee press, and the right hand inserts a metal rod into the coffee press. The left hand then screws the lid back on and tightens it with the right hand. The right hand then rotates the metal rod to press the coffee grounds.
Insert sealing element	The left hand and right hand inserts the sealing element into the hole. The left hand then pull the metal part back in place.		
Insert cop- per head	The right hand insert the copper head.		
Attach the handle to the valve	The left hand holds the valve, while the right hand rotates the handle to tighten the screw.	Assembly step 1.	The left hand holds the handle of the tool, while the right hand rotates the handle to tighten the screw. The left hand then rotates the handle to loosen the screw.

Attach the handle to the valve	The left hand is responsible for turning the knob, while the right hand is responsible for pulling the handle. The left hand then releases the handle, and the right hand pulls the handle again. This process is repeated several times. The right hand holds the han-		
the handle	dle of the tool while the right left tighten the screw.		
Fastening the handle	The left hand holds the valve and the right hand rotates the screw driver to fasten the screw on the handle. This process is repeated until the screw is tightened to the desired level.	Tightening the nut	The left hand is shown holding a tool, while the right hand is shown holding a screw. The left hand then proceeds to insert the tool into the screw, and the right hand rotates the screw. The left hand then removes the tool and the right hand rotates the screw again. This process is repeated a few times, and the left hand then inserts the tool again and rotates the screw.
Fastening the handle	The left hand is responsible for holding the tool, while the right hand is responsible for adjusting the screw. The left hand then rotates the tool, while the right hand uses the tool to tighten the screw. The left hand then rotates the tool again, and the right hand uses the tool to tighten the screw. This process is repeated until the screw is tightened to the desired level.	Tightening the nut	The left hand holds the vice grip and the right hand holds the vice grip tool. The left hand then rotates the vice grip tool to tighten the vice grip. The right hand then rotates the vice grip tool to loosen the vice grip.
Cover the plastic cover	The right hand cover the plastic cover on the handle.	Assembly step 1.	The left hand is responsible for adjusting the pipe, while the right hand is responsible for tightening the pipe. The left hand rotates the pipe to the desired position, and then the right hand tightens the pipe using the wrench.
Attach clamp to the lower valve	The left hand and right hand clamp the clamp onto the lower valve body and middle valve body, and tighten the screw of the clamp with the right hand.	Assembly step 1: Attach the handle to the valve.	The left hand holds the metal piece, while the right hand rotates the metal piece. The left hand then inserts the metal piece into the hole, and the right hand rotates the metal piece to tighten it.
Attach clamp to the upper valve	The left hand and right hand clamp the clamp onto the upper valve body and middle valve body, and tighten the screw of the clamp with the right hand.	Assembly step 1.	The left hand holds the pipe and rotates it, while the right hand rotates the pipe with the left hand. The left hand then rotates the pipe with the right hand.

Assembly	The left hand holds the yellow object, which
step 1:	is a paper towel, and the right hand holds the
Attach	machine. The left hand then wipes the machine
the valve	with the paper towel, while the right hand rotates
body to	the machine. The left hand then wipes the machine
the pipe.	again with the paper towel.
Attach the	The left hand holds the paper, while the right hand
valve to	rotates the object. The left hand then moves the
the pipe.	paper to the right hand, and the right hand rotates
	the object again. The left hand moves the paper to
	the right hand, and the right hand rotates the object
	one more time. The left hand moves the paper to
	the right hand, and the right hand rotates the object
	one final time.
	step 1: Attach the valve body to the pipe. Attach the valve to

Appendix K: Pseudo codes

K.1. DSF pseudo code

Algorithm 1 Dynamic Similarity Filtering (DSF)

```
1: function DSF(\mathbf{z}_{i,t})
         Initialize dp[k,t] \leftarrow \infty for all k,t
 2:
         dp[0,0] \leftarrow 0
 3:
         for each i ∈ {1, . . . , n} do
 4:
              for each k \in \{0, ..., l_0\} do
 5:
                  for each t \in \{0, ..., l_i\} do
 6:
                       Compute cost \leftarrow d(\mathbf{z}_{i,t}, \mathbf{z}_{0,k})
 7:
                       dp[k,t] \leftarrow \min(dp[k-1,t] + r_i, dp[k,t-1] + cost, dp[k-1,t-1] + cost)
 8:
                   end for
 9:
              end for
10:
         end for
11:
         Backtrack to determine x_{i,t,k}
12:
         for each k \in \{0, ..., l_0\} do
13:
              if \sum_{t=1}^{l_i} x_{i,t,k} = 0 for any i then
14:
                  \mathbf{z}_{0,k} is Redundant
15:
              else
16:
                   \mathbf{z}_{0,k} is Necessary
17:
              end if
18:
         end for
19:
         Refine index of clusters, eliminating redundant clusters
20:
         return DSF, p_k
21:
22: end function
```

K.2. CECD pseudo code

Algorithm 2 Cosine-Energy Change-point Detection

```
Require: A sequence of feature vectors \{\mathbf{z}_k\}_{k=1}^l
 1: function StepBoundaryDetection(\{\mathbf{z}_k\}_{k=1}^l, T=2N)
 2:
         Initialize a zero vector d with length l
         for k_c = N + 1 to l - N do
 3:
             Compute \hat{D}(k_c) for the window [k_c - N, k_c + N] according to Eqn. (7)
 4:
             Set d_{k_c} = \hat{D}(k_c)
 5:
         end for
         Initialize an empty list of change-points C
 7:
         for k_c = N + 1 to T - N do
 8:
             if d_{k_c}^* is the local maximum within window [k_c^* - N, k_c^* + N] then
 9:
                 Perform a permutation test to compute the p-value for k_c^*
 10:
                 if p-value < \alpha then
 11:
                     Add k_c^* to the list of change-points C
 12:
                 end if
 13:
             end if
 14:
         end for
 15:
         return C
 16:
17: end function
```