GATE: CH - 58.2022

EE23BTECH11224 - Sri Krishna Prabhas Yadla*

Question: In the block diagram shown in the figure, the transfer function $G = \frac{K}{\tau s + 1}$ with K > 0 and $\tau > 0$. The maximum value of K below which the system remains stable is _____(rounded off to two decimal places) (GATE CH 2022)

Solution:

Parameter	Value	Description	
G	$\frac{K}{\tau s+1}$	Transfer function shown in blocks	
Y		Laplace transform of y(output)	
U		Laplace transform of u(input)	
X,Z		Laplace transform of x and z	
T	$\frac{Y}{U}$	Transfer function of complete system	

TABLE 1
PARAMETERS

Fig. 1. Block Diagram

$$X = XG^2 + YG \tag{1}$$

$$\implies X = \frac{YG}{1 - G^2} \tag{2}$$

$$Z = XG \tag{3}$$

$$Y = Z + UG \tag{4}$$

$$Y = XG + UG \tag{5}$$

$$Y = \frac{YG^2}{1 - G^2} + UG$$
(6)

$$\implies Y = \frac{UG(1 - G^2)}{1 - 2G^2} \tag{7}$$

From Table 1,

$$T = \frac{G(1 - G^2)}{1 - 2G^2} \tag{8}$$

So, Characteristic equation : $1 - 2G^2 = 0$

$$1 - 2\frac{K^2}{(\tau s + 1)^2} = 0 (9)$$

$$\implies \tau^2 s^2 + 2\tau s + 1 - 2K^2 = 0 \tag{10}$$

s^n	a_0	a_2	a_4		
s^{n-1}	a_1	a_3	a_5		
s^{n-2}	$b_1 = \frac{a_1 a_2 - a_3 a_0}{a_1}$	$b_2 = \frac{a_1 a_4 - a_5 a_0}{a_1}$			
s^{n-3}	$c_1 = \frac{b_1 a_3 - b_2 a_1}{b_1}$:			
:	:	÷			
s^1	:	:			
s^0	a_n				
TABLE 2					

From Table 2:

s^2	$ au^2$	$1 - 2K^2$		
s^1	2τ	0		
s^0	$1 - 2K^2$			
TABLE 3				

ROUTH ARRAY

Given $\tau > 0$ and K > 0, for system to be stable,

$$1 - 2K^2 \ge 0 \tag{11}$$

$$\implies 0 < K \le \frac{1}{\sqrt{2}}$$

$$K_{max} \approx 0.71$$
(12)

$$K_{max} \approx 0.71$$
 (13)