Variational Inference for Inverse Reinforcement Learning with Gaussian Processes: Supplementary Material

Paulius Dilkas (2146879)

16th November 2018

1 Derivatives of the Evidence Lower Bound

1.1 $\partial/\partial \mathbf{m}$

We begin by removing terms independent of m:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \mathbf{m}} &= -\frac{1}{2} \frac{\partial}{\partial \mathbf{m}} [\mathbf{m}^{\mathsf{T}} \mathbb{E}[\mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1}] \mathbf{m}] + \frac{\partial}{\partial \mathbf{m}} [\mathbf{t}^{\mathsf{T}} \mathbb{E}[\mathbf{K}_{\mathbf{r}, \mathbf{u}}^{\mathsf{T}} \mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1}] \mathbf{m}] \\ &- \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\partial}{\partial \mathbf{m}} \mathbb{E}[V_r(s_{i,t})] - \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s_{i,t}, a_{i,t}, s') \frac{\partial}{\partial \mathbf{m}} \mathbb{E}[V_r(s')]. \end{split}$$

Here

$$\begin{split} \frac{\partial}{\partial \mathbf{m}}[\mathbf{m}^\intercal \mathbb{E}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}]\mathbf{m}] &= (\mathbb{E}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}] + \mathbb{E}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}]^\intercal)\mathbf{m}, \\ \frac{\partial}{\partial \mathbf{m}}[\mathbf{t}^\intercal \mathbb{E}[\mathbf{K}_{\mathbf{r},\mathbf{u}}^\intercal \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}]\mathbf{m}] &= \mathbf{t}^\intercal \mathbb{E}[\mathbf{K}_{\mathbf{r},\mathbf{u}}^\intercal \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}], \end{split}$$

and

$$\frac{\partial}{\partial \mathbf{m}} \mathbb{E}[V_r(s)] = \frac{\partial}{\partial \mathbf{m}} \iiint V_r(s) p(\mathbf{r}|\boldsymbol{\lambda}, \mathbf{X}_{\mathbf{u}}, \mathbf{u}) \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) q(\boldsymbol{\lambda}) \, d\mathbf{r} \, d\mathbf{u} \, d\boldsymbol{\lambda}
= \iiint V_r(s) p(\mathbf{r}|\boldsymbol{\lambda}, \mathbf{X}_{\mathbf{u}}, \mathbf{u}) \frac{\partial}{\partial \mathbf{m}} \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) q(\boldsymbol{\lambda}) \, d\mathbf{r} \, d\mathbf{u} \, d\boldsymbol{\lambda},$$
(1)

where

$$\begin{split} \frac{\partial}{\partial \mathbf{m}} \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) &= \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) \frac{\partial}{\partial \mathbf{m}} \left[-\frac{1}{2} (\mathbf{u} - \mathbf{m})^\intercal \mathbf{S}^{-1} (\mathbf{u} - \mathbf{m}) \right] \\ &= \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) \left(-\frac{1}{2} \right) (\mathbf{S}^{-1} + \mathbf{S}^{-\intercal}) (\mathbf{u} - \mathbf{m}) \frac{\partial}{\partial \mathbf{m}} [\mathbf{u} - \mathbf{m}] \\ &= \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) \frac{1}{2} (\mathbf{S}^{-1} + \mathbf{S}^{-\intercal}) (\mathbf{u} - \mathbf{m}). \end{split}$$

Substituting it back into (1) gives

$$\begin{split} \frac{\partial}{\partial \mathbf{m}} \mathbb{E}[V_r(s)] &= \frac{1}{2} \iiint V_r(s) (\mathbf{S}^{-1} + \mathbf{S}^{-\intercal}) (\mathbf{u} - \mathbf{m}) p(\mathbf{r} | \boldsymbol{\lambda}, \mathbf{X}_{\mathbf{u}}, \mathbf{u}) \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) q(\boldsymbol{\lambda}) \, d\mathbf{r} \, d\mathbf{u} \, d\boldsymbol{\lambda} \\ &= \frac{1}{2} \mathbb{E}[V_r(s) (\mathbf{S}^{-1} + \mathbf{S}^{-\intercal}) (\mathbf{u} - \mathbf{m})]. \end{split}$$

Hence

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \mathbf{m}} &= -\frac{1}{2} (\mathbb{E}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}] + \mathbb{E}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}]^{\mathsf{T}}) \mathbf{m} + \mathbf{t}^{\mathsf{T}} \mathbb{E}[\mathbf{K}_{\mathbf{r},\mathbf{u}}^{\mathsf{T}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}] \\ &- \frac{1}{2} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}[V_r(s_{i,t}) (\mathbf{S}^{-1} + \mathbf{S}^{-\mathsf{T}}) (\mathbf{u} - \mathbf{m})] \\ &- \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s_{i,t}, a_{i,t}, s') \mathbb{E}[V_r(s') (\mathbf{S}^{-1} + \mathbf{S}^{-\mathsf{T}}) (\mathbf{u} - \mathbf{m})]. \end{split}$$

1.2 $\partial/\partial S$

Similarly to the previous section,

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \mathbf{S}} &= \frac{1}{2} \frac{\partial}{\partial \mathbf{S}} \log |\mathbf{S}| - \frac{1}{2} \frac{\partial}{\partial \mathbf{S}} \operatorname{Tr}[\mathbb{E}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}]\mathbf{S}] \\ &- \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\partial}{\partial \mathbf{S}} \mathbb{E}[V_r(s_{i,t})] - \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s_{i,t}, a_{i,t}, s') \frac{\partial}{\partial \mathbf{S}} \mathbb{E}[V_r(s')], \end{split}$$

where

$$\frac{\partial}{\partial \mathbf{S}} \log |\mathbf{S}| = \mathbf{S}^{-\intercal},$$

and

$$\frac{\partial}{\partial \mathbf{S}} \operatorname{Tr}[\mathbb{E}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}]\mathbf{S}] = \mathbb{E}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}]^{\intercal}$$

by The Matrix Cookbook [1]. Then

$$\frac{\partial}{\partial \mathbf{S}} \mathbb{E}[V_r(s)] = \iiint V_r(s) q(\mathbf{r}) \frac{\partial}{\partial \mathbf{S}} \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) q(\boldsymbol{\lambda}) d\mathbf{r} d\mathbf{u} d\boldsymbol{\lambda},$$

where

$$\begin{split} \frac{\partial}{\partial \mathbf{S}} \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) &= \frac{\partial}{\partial \mathbf{S}} \left[\frac{1}{(2\pi)^{m/2} |\mathbf{S}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{u} - \mathbf{m})^\mathsf{T} \mathbf{S}^{-1} (\mathbf{u} - \mathbf{m})\right) \right] \\ &= \frac{\partial}{\partial \mathbf{S}} \left[\frac{1}{(2\pi)^{m/2} |\mathbf{S}|^{1/2}} \right] \exp\left(-\frac{1}{2} (\mathbf{u} - \mathbf{m})^\mathsf{T} \mathbf{S}^{-1} (\mathbf{u} - \mathbf{m})\right) \\ &+ \frac{1}{(2\pi)^{m/2} |\mathbf{S}|^{1/2}} \frac{\partial}{\partial \mathbf{S}} \left[\exp\left(-\frac{1}{2} (\mathbf{u} - \mathbf{m})^\mathsf{T} \mathbf{S}^{-1} (\mathbf{u} - \mathbf{m})\right) \right] \\ &= \frac{1}{(2\pi)^{m/2}} \frac{\partial}{\partial \mathbf{S}} \left[\frac{1}{|\mathbf{S}|^{1/2}} \right] \exp\left(-\frac{1}{2} (\mathbf{u} - \mathbf{m})^\mathsf{T} \mathbf{S}^{-1} (\mathbf{u} - \mathbf{m})\right) \\ &- \frac{1}{2} \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) \frac{\partial}{\partial \mathbf{S}} [(\mathbf{u} - \mathbf{m})^\mathsf{T} \mathbf{S}^{-1} (\mathbf{u} - \mathbf{m})]. \end{split}$$

The two remaining derivatives can be taken with the help of *The Matrix Cookbook* [1]:

$$\begin{split} \frac{\partial}{\partial \mathbf{S}} \left[\frac{1}{|\mathbf{S}|^{1/2}} \right] &= -\frac{1}{2} |\mathbf{S}|^{-3/2} \frac{\partial |\mathbf{S}|}{\partial \mathbf{S}} = -\frac{1}{2} |\mathbf{S}|^{-3/2} |\mathbf{S}| \mathbf{S}^{-\intercal} = -\frac{1}{2|\mathbf{S}|^{1/2}} \mathbf{S}^{-\intercal}, \\ \frac{\partial}{\partial \mathbf{S}} [(\mathbf{u} - \mathbf{m})^{\intercal} \mathbf{S}^{-1} (\mathbf{u} - \mathbf{m})] &= -\mathbf{S}^{-\intercal} (\mathbf{u} - \mathbf{m}) (\mathbf{u} - \mathbf{m})^{\intercal} \mathbf{S}^{-\intercal}. \end{split}$$

Plugging them back in gives

$$\frac{\partial}{\partial \mathbf{S}} \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) = -\frac{1}{2} \mathbf{S}^{-\intercal} \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) + \frac{1}{2} \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) \mathbf{S}^{-\intercal} (\mathbf{u} - \mathbf{m}) (\mathbf{u} - \mathbf{m})^\intercal \mathbf{S}^{-\intercal},$$

and

$$\begin{split} \frac{\partial}{\partial \mathbf{S}} \mathbb{E}[V_r(s)] &= \frac{1}{2} \iiint V_r(s) (\mathbf{S}^{-\intercal} (\mathbf{u} - \mathbf{m}) (\mathbf{u} - \mathbf{m})^\intercal \mathbf{S}^{-\intercal} - \mathbf{S}^{-\intercal}) q(\mathbf{r}) \mathcal{N}(\mathbf{u}; \mathbf{m}, \mathbf{S}) q(\boldsymbol{\lambda}) \, d\mathbf{r} \, d\mathbf{u} \, d\boldsymbol{\lambda} \\ &= \frac{1}{2} \mathbb{E}[V_r(s) (\mathbf{S}^{-\intercal} (\mathbf{u} - \mathbf{m}) (\mathbf{u} - \mathbf{m})^\intercal \mathbf{S}^{-\intercal} - \mathbf{S}^{-\intercal})]. \end{split}$$

Therefore

$$\frac{\partial \mathcal{L}}{\partial \mathbf{S}} = \frac{1}{2} \mathbf{S}^{-\intercal} - \frac{1}{2} \mathbb{E} [\mathbf{K}_{\mathbf{u}, \mathbf{u}}^{-1}]^{\intercal} - \frac{1}{2} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E} [V_r(s_{i,t}) (\mathbf{S}^{-\intercal} (\mathbf{u} - \mathbf{m}) (\mathbf{u} - \mathbf{m})^{\intercal} \mathbf{S}^{-\intercal} - \mathbf{S}^{-\intercal})]$$

$$- \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s_{i,t}, a_{i,t}, s') \mathbb{E} [V_r(s') (\mathbf{S}^{-\intercal} (\mathbf{u} - \mathbf{m}) (\mathbf{u} - \mathbf{m})^{\intercal} \mathbf{S}^{-\intercal} - \mathbf{S}^{-\intercal})].$$

1.3 $\partial/\partial\alpha_i$

We begin in the usual way:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \alpha_{j}} &= -\frac{1}{2} \frac{\partial}{\partial \alpha_{j}} \mathbb{E}[\text{Tr}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-2}]] - \frac{1}{2} \frac{\partial}{\partial \alpha_{j}} \mathbb{E}[\text{Tr}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{S}]] - \frac{1}{2} \frac{\partial}{\partial \alpha_{j}} \mathbb{E}[\mathbf{m}^{\mathsf{T}}\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{m}] - \frac{1}{2} \frac{\partial}{\partial \alpha_{j}} \mathbb{E}[\log |\mathbf{K}_{\mathbf{u},\mathbf{u}}|] \\ &+ \frac{\partial}{\partial \alpha_{j}} \mathbb{E}[\mathbf{t}^{\mathsf{T}}\mathbf{K}_{\mathbf{r},\mathbf{u}}^{\mathsf{T}}\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{m}] + \frac{\partial}{\partial \alpha_{j}} [\alpha_{j} + \log \Gamma(\alpha_{j}) + (1 - \alpha_{j})\psi(\alpha_{j})] \\ &- \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\partial}{\partial \alpha_{j}} \mathbb{E}[V_{r}(s_{i,t})] - \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s_{i,t}, a_{i,t}, s') \frac{\partial}{\partial \alpha_{j}} \mathbb{E}[V_{r}(s')]. \end{split}$$

First,

$$\frac{\partial}{\partial \alpha_j} [\alpha_j + \log \Gamma(\alpha_j) + (1 - \alpha_j)\psi(\alpha_j)] = 1 + \psi(\alpha_j) - \psi(\alpha_j) + (1 - \alpha_j)\psi'(\alpha_j) = 1 + (1 - \alpha_j)\psi'(\alpha_j)$$

by the definition of ψ . The remaining terms can all be treated in the same way, as they all contain expectations of scalar functions that are independent of α_j , and α_j only occurs in $\Gamma(\lambda_j; \alpha_j, \beta_j)$. Thus we can work with an abstract function as follows:

$$\frac{\partial}{\partial \alpha_{j}} \mathbb{E}[f(k_{\lambda}, \mathbf{r})] = \frac{\partial}{\partial \alpha_{j}} \iiint f(k_{\lambda}, \mathbf{r}) q(\lambda) q(\mathbf{r}) q(\mathbf{u}) d\lambda d\mathbf{r} d\mathbf{u}$$

$$= \iiint f(k_{\lambda}, \mathbf{r}) q(\lambda_{0}) \cdots q(\lambda_{j-1}) \frac{\partial}{\partial \alpha_{j}} \left[\frac{\beta_{j}^{\alpha_{j}}}{\Gamma(\alpha_{j})} \lambda_{j}^{\alpha_{j}-1} \right] e^{-\beta_{j} \lambda_{j}}$$

$$q(\lambda_{j+1}) \cdots q(\lambda_{d}) q(\mathbf{r}) q(\mathbf{u}) d\lambda d\mathbf{r} d\mathbf{u}.$$

Then

$$\begin{split} \frac{\partial}{\partial \alpha_{j}} \left[\frac{\beta_{j}^{\alpha_{j}}}{\Gamma(\alpha_{j})} \lambda_{j}^{\alpha_{j}-1} \right] &= \frac{\frac{\partial}{\partial \alpha_{j}} [\beta_{j}^{\alpha_{j}} \lambda_{j}^{\alpha_{j}-1}] \Gamma(\alpha_{j}) - \beta_{j}^{\alpha_{j}} \lambda_{j}^{\alpha_{j}-1} \Gamma'(\alpha_{j})}{(\Gamma(\alpha_{j}))^{2}} \\ &= \frac{\beta_{j}^{\alpha_{j}} \lambda_{j}^{\alpha_{j}-1} \frac{\partial}{\partial \alpha_{j}} [\alpha_{j} \log \beta_{j} + (\alpha_{j}-1) \log \lambda_{j}] \Gamma(\alpha_{j}) - \beta_{j}^{\alpha_{j}} \lambda_{j}^{\alpha_{j}-1} \Gamma'(\alpha_{j})}{(\Gamma(\alpha_{j}))^{2}} \\ &= \frac{\beta_{j}^{\alpha_{j}} \lambda_{j}^{\alpha_{j}-1} (\log \beta_{j} + \log \lambda_{i}) \Gamma(\alpha_{j}) - \beta_{j}^{\alpha_{j}} \lambda_{j}^{\alpha_{j}-1} \Gamma'(\alpha_{j})}{(\Gamma(\alpha_{j}))^{2}} \\ &= \frac{\beta_{j}^{\alpha_{j}} \lambda_{j}^{\alpha_{j}-1}}{\Gamma(\alpha_{j})} \left(\log \beta_{j} + \log \lambda_{j} - \frac{\Gamma'(\alpha_{j})}{\Gamma(\alpha_{j})} \right), \end{split}$$

which means that

$$\frac{\partial}{\partial \alpha_{j}} \mathbb{E}[f(k_{\lambda}, \mathbf{r})] = \iiint f(k_{\lambda}, \mathbf{r}) q(\lambda_{0}) \cdots q(\lambda_{j-1}) \frac{\beta_{j}^{\alpha_{j}}}{\Gamma(\alpha_{j})} \lambda_{j}^{\alpha_{j}-1} e^{-\beta_{j}\lambda_{j}} \left(\log \beta_{j} + \log \lambda_{j} - \frac{\Gamma'(\alpha_{j})}{\Gamma(\alpha_{j})} \right)
q(\lambda_{j+1}) \cdots q(\lambda_{d}) q(\mathbf{r}) q(\mathbf{u}) d\lambda d\mathbf{r} d\mathbf{u}$$

$$= \iiint f(k_{\lambda}, \mathbf{r}) \left(\log \beta_{j} + \log \lambda_{j} - \frac{\Gamma'(\alpha_{j})}{\Gamma(\alpha_{j})} \right) q(\lambda) q(\mathbf{r}) q(\mathbf{u}) d\lambda d\mathbf{r} d\mathbf{u}$$

$$= \mathbb{E} \left[f(k_{\lambda}, \mathbf{r}) \left(\log \beta_{j} + \log \lambda_{j} - \frac{\Gamma'(\alpha_{j})}{\Gamma(\alpha_{j})} \right) \right]$$

$$= \left(\log \beta_{j} - \frac{\Gamma'(\alpha_{j})}{\Gamma(\alpha_{j})} \right) \mathbb{E}[f(k_{\lambda}, \mathbf{r})] + \mathbb{E}[f(k_{\lambda}, \mathbf{r}) \log \lambda_{j}].$$

With these results in mind, we can simplify the initial expression to

$$\frac{\partial \mathcal{L}}{\partial \alpha_{j}} = 1 + (1 - \alpha_{j}) \psi'(\alpha_{j}) + \left(\log \beta_{j} - \frac{\Gamma'(\alpha_{j})}{\Gamma(\alpha_{j})}\right) \left(-\frac{1}{2} \mathbb{E}[\text{Tr}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-2}]] - \frac{1}{2} \mathbb{E}[\text{Tr}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}]] - \frac{1}{2} \mathbb{E}[\text{Tr}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}]] - \frac{1}{2} \mathbb{E}[\text{Tr}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}]] - \frac{1}{2} \mathbb{E}[\text{Tr}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}]] + \mathbb{E}[\mathbf{t}^{\mathsf{T}}\mathbf{K}_{\mathbf{t},\mathbf{u}}^{\mathsf{T}}\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}] - \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}[V_{r}(s_{i,t})] - \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s_{i,t}, a_{i,t}, s') \mathbb{E}[V_{r}(s')] \right) - \frac{1}{2} \mathbb{E}[\text{Tr}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-2}] \log \lambda_{j}] - \frac{1}{2} \mathbb{E}[\text{Tr}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}] \log \lambda_{j}] - \frac{1}{2} \mathbb{E}[\log |\mathbf{K}_{\mathbf{u},\mathbf{u}}| \log \lambda_{j}] + \mathbb{E}[\mathbf{t}^{\mathsf{T}}\mathbf{K}_{\mathbf{t},\mathbf{u}}^{\mathsf{T}}\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{m} \log \lambda_{j}] - \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E}[V_{r}(s_{i,t}) \log \lambda_{j}] - \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s_{i,t}, a_{i,t}, s') \mathbb{E}[V_{r}(s') \log \lambda_{j}].$$

1.4 $\partial/\partial\beta_j$

Finally,

$$\frac{\partial \mathcal{L}}{\partial \beta_{j}} = -\frac{1}{2} \frac{\partial}{\partial \beta_{j}} \mathbb{E}[\text{Tr}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-2}]] - \frac{1}{2} \frac{\partial}{\partial \beta_{j}} \mathbb{E}[\text{Tr}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{S}]] - \frac{1}{2} \frac{\partial}{\partial \beta_{j}} \mathbb{E}[\mathbf{m}^{\mathsf{T}}\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{m}] - \frac{1}{2} \frac{\partial}{\partial \beta_{j}} \mathbb{E}[\log |\mathbf{K}_{\mathbf{u},\mathbf{u}}|] + \frac{\partial}{\partial \beta_{j}} \mathbb{E}[\mathbf{t}^{\mathsf{T}}\mathbf{K}_{\mathbf{r},\mathbf{u}}^{\mathsf{T}}\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{m}] - \frac{\partial}{\partial \beta_{j}} [\log \beta_{j}] - \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\partial}{\partial \beta_{j}} \mathbb{E}[V_{r}(s_{i,t})] - \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s_{i,t}, a_{i,t}, s') \frac{\partial}{\partial \beta_{j}} \mathbb{E}[V_{r}(s')].$$

Similarly to the previous section, we can handle all derivatives of expectations in the same way:

$$\frac{\partial}{\partial \beta_{j}} \mathbb{E}[f(k_{\lambda}, \mathbf{r})] = \frac{\partial}{\partial \beta_{j}} \iiint f(k_{\lambda}, \mathbf{r}) q(\lambda) q(\mathbf{r}) q(\mathbf{u}) d\lambda d\mathbf{r} d\mathbf{u}$$

$$= \iiint f(k_{\lambda}, \mathbf{r}) q(\lambda_{0}) \cdots q(\lambda_{j-1}) \frac{\lambda_{j}^{\alpha_{j}-1}}{\Gamma(\alpha_{j})} \frac{\partial}{\partial \beta_{j}} [\beta_{j}^{\alpha_{j}} e^{-\beta_{j} \lambda_{j}}]$$

$$q(\lambda_{j+1}) \cdots q(\lambda_{d}) q(\mathbf{r}) q(\mathbf{u}) d\lambda d\mathbf{r} d\mathbf{u}.$$

Since

$$\frac{\partial}{\partial \beta_j} [\beta_j^{\alpha_j} e^{-\beta_j \lambda_j}] = \alpha_j \beta_j^{\alpha_j - 1} e^{-\beta_j \lambda_j} - \beta_j^{\alpha_j} e^{-\beta_j \lambda_j} \lambda_j = \beta_j^{\alpha_j} e^{-\beta_j \lambda_j} \left(\frac{\alpha_j}{\beta_j} - \lambda_j \right),$$

we have that

$$\frac{\partial}{\partial \beta_{j}} \mathbb{E}[f(k_{\lambda}, \mathbf{r})] = \iiint f(k_{\lambda}, \mathbf{r}) q(\lambda_{0}) \cdots q(\lambda_{j-1}) \frac{\beta_{j}^{\alpha_{j}}}{\Gamma(\alpha_{j})} \lambda_{j}^{\alpha_{j}-1} e^{-\beta_{j}\lambda_{j}} \left(\frac{\alpha_{j}}{\beta_{j}} - \lambda_{j}\right)
q(\lambda_{j+1}) \cdots q(\lambda_{d}) q(\mathbf{r}) q(\mathbf{u}) d\lambda d\mathbf{r} d\mathbf{u}$$

$$= \iiint f(k_{\lambda}, \mathbf{r}) \left(\frac{\alpha_{j}}{\beta_{j}} - \lambda_{j}\right) q(\lambda) q(\mathbf{r}) q(\mathbf{u}) d\lambda d\mathbf{r} d\mathbf{u}$$

$$= \mathbb{E}\left[f(k_{\lambda}, \mathbf{r}) \left(\frac{\alpha_{j}}{\beta_{j}} - \lambda_{j}\right)\right] = \frac{\alpha_{j}}{\beta_{j}} \mathbb{E}[f(k_{\lambda}, \mathbf{r})] - \mathbb{E}[f(k_{\lambda}, \mathbf{r})\lambda_{j}].$$

This gives us the final expression of $\frac{\partial \mathcal{L}}{\partial \beta_i}$:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \beta_{j}} &= -\frac{1}{\beta_{j}} - \frac{1}{2} \mathbb{E} \left[\text{Tr}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-2}] \left(\frac{\alpha_{j}}{\beta_{j}} - \lambda_{j} \right) \right] - \frac{1}{2} \mathbb{E} \left[\text{Tr}[\mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1}\mathbf{S}] \left(\frac{\alpha_{j}}{\beta_{j}} - \lambda_{j} \right) \right] \\ &- \frac{1}{2} \mathbb{E} \left[\mathbf{m}^{\mathsf{T}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{m} \left(\frac{\alpha_{j}}{\beta_{j}} - \lambda_{j} \right) \right] - \frac{1}{2} \mathbb{E} \left[\log |\mathbf{K}_{\mathbf{u},\mathbf{u}}| \left(\frac{\alpha_{j}}{\beta_{j}} - \lambda_{j} \right) \right] \\ &+ \mathbb{E} \left[\mathbf{t}^{\mathsf{T}} \mathbf{K}_{\mathbf{r},\mathbf{u}}^{-1} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{m} \left(\frac{\alpha_{j}}{\beta_{j}} - \lambda_{j} \right) \right] \\ &- \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbb{E} \left[V_{r}(s_{i,t}) \left(\frac{\alpha_{j}}{\beta_{j}} - \lambda_{j} \right) \right] - \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s_{i,t}, a_{i,t}, s') \mathbb{E} \left[V_{r}(s') \left(\frac{\alpha_{j}}{\beta_{j}} - \lambda_{j} \right) \right]. \end{split}$$

2 Proofs

Theorem 1 (Differentiating under the integral sign). Assume $f: R \times R \to R$ is such that $x \mapsto f(x,t)$ is measurable for each $t \in R$, that $f(x,t_0)$ is integrable for some $t_0 \in R$ and $\frac{\partial f(x,t)}{\partial t}$ exists for each (x,t). Assume also that there is an integrable $g: R \to R$ with $\left|\frac{\partial f(x,t)}{\partial t}\right| \leq g(x)$ for each $x,t \in R$. Then the function $x \mapsto f(x,t)$ is integrable for each t and the function $F: R \to R$ defined by

$$F(t) = \int_{R} f_t d\mu = \int_{R} f(x, t) d\mu(x)$$

is differentiable with derivative

$$F'(t) = \frac{d}{dt} \int_{R} f(x,t) \, d\mu(x) = \int_{R} \frac{\partial}{\partial t} f(x,t) \, d\mu(x).$$

Proof. Applying the mean value theorem to the function $t \mapsto f(x,t)$, for each $t = t_0$ we have to have some c between t_0 and t so that

$$f(x,t) - f(x,t_0) = \frac{\partial f}{\partial t}\Big|_{(x,c)} (t - t_0).$$

It follows that

$$|f(x,t) - f(x,t_0)| \le g(x)|t - t_0|$$

and so

$$|f(x,t)| \le |f(x,t_0)| + g(x)|t - t_0|.$$

Thus

$$\int_{B} |f(x,t)| \, d\mu(x) \le \int (|f(x,t_0)| + g(x)|t - t_0|) \, d\mu(x) = \int_{B} |f(x,t_0)| \, d\mu(x) + |t - t_0| \int_{B} g \, d\mu < \infty,$$

which establishes that the function $x \mapsto f(x,t)$ is integrable for each t.

To prove the formula for F(t) consider any sequence $(t_n)_{n=1}^{\infty}$ so that $\lim_{n\to\infty} t_n = t$ but $t_n \neq t$ for each t. We claim that

$$\lim_{n \to \infty} \frac{F(t_n) - F(t)}{t_n - t} = \int_R \frac{\partial f(x, t)}{\partial t} d\mu(x). \tag{2}$$

We have

$$\frac{F(t_n) - F(t)}{t_n - t} = \int_R \frac{f(x, t_n) - f(x, t)}{t_n - t} d\mu(x) = \int_R f_n(x) d\mu(x)$$

where

$$f_n(x) = \frac{f(x, t_n) - f(x, t)}{t_n - t}.$$

Notice that, for each x we know

$$\lim_{n \to \infty} f_n(x) = \left. \frac{\partial f}{\partial t} \right|_{(x,t)}$$

and so (2) will follow from the dominated convergence theorem once we show that $|f_n(x)| \leq g(x)$ for each x. That follows from the mean value theorem again because there is c between t and t_0 (with c depending on x) so that

$$f_n(x) = \frac{f(x, t_n) - f(x, t)}{t_n - t} = \frac{\partial f}{\partial t}\Big|_{(x, c)}.$$

So $|f_n(x)| \leq g(x)$ for each x.

References

[1] K. B. Petersen, M. S. Pedersen, et al. The matrix cookbook. *Technical University of Denmark*, 7(15):510, 2008.