אוניברסיטת תל-אביב הפקולטה למדעים מדויקים בית הספר לפיזיקה ולאסטרונומיה

בחינת מעבר בקורס <u>מבוא לאסטרופיזיקה</u> סמסטר ב' תשס"ג, מועד ב' 2.10.2003

המורה: פרופ' דן מעוז מתרגלים: ערן אופק ודובי פוזננסקי

מספר ת.ז:

:הוראות

- 1. מותר להשתמש במחשבון בלבד.
- 2. דפי עזר מצורפים בסוף השאלון.
- 3. <u>תשובות</u> יש לכתוב אך ורק <u>על דפי השאלון</u> מתחת לכל שאלה. יש לכלול את שלבי הפתרון העיקריים.
 - 4. המחברות הן לטיוטה בלבד, ולא תיבדקנה.
 - 5. יש לענות על ארבע מתוך חמש שאלות.
 - 6. לכל שאלה משקל של 25.
 - .7 משך הבחינה 31⁄2 שעות.
- 8. פתרון השאלות <u>אינו</u> כרוך בפתרון אינטגרלים ומשוואות דיפרנציאליות בלתי טריויאליים, או ביטויים אלגבריים סבוכים, בעלי יותר מכמה איברים. אם אתם עוסקים בחשבונות מעין אלה, אינכם בדרך הנכונה.

בהצלחה!

- שטף .26.7MeV שטף משתחררת אנרגיה של 4 $p
 ightarrow ^4 He + 2 \bar{\nu}_e$ שטף .4. בכל ריאקציה בשמש: . $f_\Theta = 1.4 kWm^{-2}$ האנרגיה על פני כדור הארץ הוא
 - ב. חשבו תוך כמה שניות הופכת 0.1 ממסת המימן בשמש להליום.
- ג. צפיפות המסה הממוצעת בשמש היא $1.4 gr\cdot cm^{-3}$. מהו המהלך החופשי הממוצע של פוטונים לפיזור תומסון בצפיפות זו? הניחו הרכב מימן טהור מיונן לגמרי, וחתך $\sigma_T = 6.6 \times 10^{25} cm^2$ פעולה לפיזור תומסון
 - בתוך . $D = \sqrt{n} \cdot l$ היא ההתקדמות במהלך אקראי בעל n צעדים בעלי אורך היא . כמה זמן מגיע פוטון ממרכז השמש אל שפתה במהלך אקראי?

נשלט "נשלט, $\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi}{3}G\rho - \frac{kc^2}{R^2}$, הוכיחו כי בעידן "נשלט. 2

 ${f R}$ ע"י קרינה", כלומר $ho \propto R^{-3}$, מתקיים הקשר בין גיל היקום t וסקלת היקום

. כאשר
$$t_0, R_0$$
 הם הערכים כיום. $(1+z) \equiv \frac{R_0}{R(t)} = \left(\frac{t_0}{t}\right)^{\frac{2}{3}}$

- $H_{\alpha}(n=3 o n=2)$ ב. קו פליטה בספקטרום של גלקסיה רחוקה חשוד כקו פ. ב. קו פליטה בספקטרום של גלקסיה לאדום קוסמולוגית z=2 מהו אורך הגל של H_{α} במעבדה, באיזה אורך גל נצפה צפוי להראות קו פליטה λ_e , ומהו אורך הגל, λ_e מהגלקסיה?
 - ג. אם גיל היקום הוא $t_0=14Gyr$, וניתוח תכונות הגלקסיה מצביע על גיל גיל אם גיל היקום הוא 2Gyr בעת פליטת האור ממנה, מתי נוצרה הגלקסיה
- ד. ביננו לבין הגלקסיה קיים גז מימן מיונן המהווה 4% מצפיפות המסה ד. ביננו לבין הגלקסיה קיים גז מימן מיונן המהווה $10^{-29}\,gr\cdot cm^{-3}$ הקריטית $10^{-29}\,gr\cdot cm^{-3}$. הניחו שצפיפות זו קבועה, והמרחק לגלקסיה הוא t הוא העידן בו היא ניצפית. איזה חלק מהפוטונים מהגלקסיה , $c(t_0-t)$. $\sigma_T=6.6\times 10^{25}\,cm^2$

- א. מצאו ביטוי עבור כוח הגאות האורכי הפועל בין פלגי גופו העליון והתחתון, א. מצאו ביטוי עבור כוח הגאות האורכי בונחי l,m,M,n בקרוב . $l<< r_{\scriptscriptstyle c}$
- ב. מצאו מספרית את n שעבורו האסטרונאוט יקבל מתיחה אורכית השקולה ה. מצאו מספרית את אורכית $M=10^6 M_{\odot}$ ו $M=10 M_{\odot}$ עבור הארץ, עבור הארץ, עבור הארץ, של פני כדור הארץ, עבור הארץ, עבור אורכית השקולה
 - ג. מצאו ביטוי עבור כוח הגאות הרוחבי הלוחץ על גוף האסטרונאוט, במונחי ג. מצאו ביטוי עבור כוח הגאות $w << r_{\rm s}$ בקרוב w,m,M,n
 - ד. תוך שימוש בסילוני החללית, האסטרונאוט נמצא במנוחה ביחס לחור השחור, במרחק של 1.01 רדיוסי שוורצשילד מהחור השחור, עקב המתיחה $100H_z$ הנעימה, האסטרונאוט נאנח לתוך מכשיר הקשר. תדירות צלילי האנחה $100H_z$ חשבו האם אנחתו תשמע על פני כדור הארץ, כאשר נתון שתחום השמע האנושי הוא כ- $20,000H_z$ 20.

4. משוואת המצב של גז מנוון של אלקטרונים לא יחסותיים היא

$$P_{e} = \left(\frac{3}{\pi}\right)^{\frac{2}{3}} \frac{h^{2}}{20m_{e}m_{p}^{\frac{5}{3}}} \left(\frac{Z}{A}\right)^{\frac{5}{3}} \rho^{\frac{5}{3}}$$

א. מצאו מספרית את היחס $\frac{P_e}{P_{th}}$ בין לחץ האלקטרונים המנוונים ללחץ התרמי

הרכב , $T\sim 10^7 K$, $\rho\sim 10^6\, gr\cdot cm^{-3}$ הניחו , והרכב , והרכב , והרכב פננס לבן. הניחו .

- ב. משואות מבנה של הכוכב מובילות ליחסי הפרופורציה המקורבים
- את לקבל מנת המצב על מנת לקבל את . $P \sim \frac{GM \rho}{r}$, $\rho \sim \frac{M}{r^3}$

תלות הרדיוס של ננס לבן במסה שלו.

- ג. בהסתמך על סעיף ב' חשבו מספרית את הרדיוס של ננס לבן בעל מסת $10^4 K$ שמש אחת. מהי ההארה L של הננס הלבן, אם טמפרטורת פני השטח היא Lהביעו תשובותיכם ביחידות הארת שמש L
- ד. אם ה"מסה האפלה" של גלקסיה (המהווה 90% מכלל המסה ברדיוס של 30kpc עשויה מננסים לבנים, איזה חלק מהארת הגלקסיה יגיע מההילה האפלה (30kpc הארת הכוכבים הרגילים היא $10^{10}L_{\odot}$, ולמסה האפלה צפיפות מספרית

$$n(r < 1kpc) = 0$$
, $n(r = 1 - 30kpc) \propto \frac{1}{r^2}$

. מקור אור $v(r) = v_c$, "שטוחה", מקור אור . מקור אור . מקור מאחורי הגלקסיה אך במרחק כפול מהצופה, מעודש כבידתית ל- "טבעת איינשטיין" (ראו ציור).

א. בהנחה של זויות קטנות, מצאו את א. בהנחה של זויות קטנות, במונחי , $heta_{\scriptscriptstyle E}$, הרדיוס הזויתי של טבעת איינשטיין, במונחי $heta_{\scriptscriptstyle E}$

