On Homogeneous Spiking Neural P System Variants

Ren Tristan A. de la Cruz¹, Francis George C. Cabarle^{1,2}, Iva Cedric H. Macababayao¹, Henry N. Adorna¹, and Xiangxiang Zeng³

¹Algorithms and Complexity Laboratory
Department of Computer Science, University of the Philippines - Diliman
Diliman 1101, Quezon City, Philippines

²Shenzhen Research Institute of Xiamen University
Xiamen University, Shenzhen 518000, Guangdong, China.

³ School of Information Science and Engineering
Hunan University 410082, Changsha, China
radelacruz@up.edu.ph, fccabarle@up.edu.ph, ivan.cedric10@gmail.com,
hnadorna@dcs.upd.edu.ph, zxxhust@gmail.com

Abstract. (ABSTRACT)

Keywords: Membrane Computing, Spiking Neural P Systems, Homogeneous Neurons, Structural Plasticity

- 1 Introduction
- 2 Spiking Neural P System and Some Variants
- 3 Homogenization of Spiking Neural P Systems
- 3.1 Representing Neurons as Labelled Transition Systems

We will use the concept of *labelled transition systems* to represent the activities (usages of rules, receiving spikes) in a neuron.

Definition 1 (Labelled Transition System). A labelled transition system is a tuple (S, L, \rightarrow) where S is a set of states, L is a set of labels, and \rightarrow is a relation of labelled transitions $(\rightarrow \subseteq S \times L \times S)$.

In the context of SNP systems, a *state* will be a set of natural numbers that represent a set of spike counts. For example, the state $\{4,5\}$ represents spike counts 4 and 5, the state $\{0,2,4,8,\ldots\}$ represents even spike counts, and the state $\{15,20,25,30,35,\ldots\}$ represents spike counts that are multiples of 5 greater that or equal to 15.

We will use *labels* of the form (α, β) where α is an integer while β represents an action of a rule. In SNP systems, labels with $\alpha < 0$ are used for transitions that represent events that involve rule usage while labels with $\alpha > 0$ are used for

transitions that represent events that involve reception of spikes. β represents an action (e.g. spiking, forgetting) of a rule so it value is more relevant to labels with $\alpha < 0$ which represent some rule usage. For example, in SNP systems that only use standard spiking rules without delay, the label (-2,a) is associated with a spiking rule that consumes 2 spikes while the label $(-5,\lambda)$ is associated with forgetting rule that consumes 5 spikes. Labels with $\beta = a$ represent spiking rules while labels with $\beta = \lambda$ represent either forgetting rules or reception of spikes. Since labels with $\alpha > 0$ represent reception of spikes, if there are no rule usage involve, we can simply set their β components to λ . For example, the label $(+3,\lambda)$ represents the event where the neuron receives 3 spikes in one step while the label $(+2,\lambda)$ represents the event where the neuron receives 2 spikes.

For label (α, β) , $\alpha \in \mathbb{Z}$ while $\beta \in \mathcal{A}$ where \mathcal{A} is some set of actions for a specific SNP system variant. In the previous example, $\mathcal{A} = \{a, \lambda\}$ was used for SNP systems that use standard spiking rules without delay. For SNP systems with extended spiking rules without delay, the set of actions can be $\mathcal{A} \subset \mathbb{N}$. $\beta \in \mathcal{A}$ is a natural number that represents the number of spikes produced by some extended spiking rule. For example, the label (-3,2) can represent a rule the consumes 3 spikes and produce 2 spikes while the label (-5,0) is a forgetting rule that consumes 5 spikes. For an given SNP system variant, the set of labels that will be used is some set $L \subseteq \mathbb{Z} \times \mathcal{A}$ where \mathcal{A} is the set of actions of the rules associated with the SNP system variant.

A transition is a tuple of the form $(S_x, (\alpha, \beta), S_y)$ where S_x and S_y are states and (α, β) is the transition label. The transition $(S_x, (\alpha, \beta), S_y)$ can also be written as $S_x \xrightarrow{(\alpha, \beta)} S_y$. For SNP systems, since S_x and S_y are sets of natural numbers representing sets of spike counts and (α, β) represents an event that might include consumption of spikes and/or reception of spikes, the transition $(S_x, (\alpha, \beta), S_y)$ has a particular form. For the transition $(S_x, (\alpha, \beta), S_y)$, the state S_y is defined in terms of state S_x and the α of the transition label, $S_y = \{s_x + \alpha \mid s_x \in S_x\}$. For example, if $S_x = \{2, 4, 6, 8, ...\}$ (set of even numbers) and $\alpha = -1$, then $S_y = \{1, 3, 5, 7, ...\}$ (set of odd numbers). Due to this particular form, we can simply write the transition $(S_x, (\alpha, \beta), S_y)$ as $(S_x, (\alpha, \beta))$. The S_y component is already implied. A transition relation \rightarrow is simply a set of transitions over a given set of states and set of labels.

We will use a labelled transition system to represent activities associated with a neuron. Each neuron in the system will have its own transition system representation.

If a neuron has n spikes, we will say that the neuron in state S if $n \in S$. For example, let n = 10 be the number spikes in the neuron and $S_a = \{1\}$, $S_b = \{2, 4, 9, 10, \ldots\}$, $S_c = \{5, 10, 15, 20, \ldots\}$ be states, the neuron is not in state S_a since $n \notin S_a$ but it is in state S_b and S_c since $n \in S_a$ and $n \in S_b$. States can intersect since they are sets which means a neuron can be in multiple states at the same time.

Most states that are associated with a given neuron represent the regular expressions of the rules in the neuron. For example, in Figure 1, neuron 1 have the rules $r_1: a/a \to \lambda$ and $r_2: a^3(a^2)^*/a^2 \to a$. The state $S_a = \{1\}$ represents the

regular expression a of rule r_1 while the state $S_b = \{3, 5, 7, 9, 11, ...\}$ represents the regular expression $a^3(a^2)^*$ of rule r_2 . The state $S_c = \{0, 2, 4, 6, 8, ...\}$, the set of even spike counts, is also associated with neuron 1 even though it does not represent a regular expression of any of the rules in neuron 1. State S_c is relevant to neuron 1 because neuron 1 can be in state S_c . For example, if neuron 1 starts with 0 spike and only receives even number of spikes, then neuron 1 will stay in state S_3 .

For neuron 2 in Figure 1, it has the single rule $r_3:a^3/a^3\to a$ which means $S_z=\{3\}$ is associated with the neuron and it represents the regular expression a^3 of rule r_3 . Neuron 2 only has one incoming synapse so it can only receive one spike at a time assuming the use of non-extended/standard spiking rules. The only other relevant states for neuron 2 are $S_w=\{0\},\,S_x=\{1\},\,s_y=\{2\}.$ If neuron 2 starts with 0 spike, it will be state S_w . Neuron 2 will be in state S_x after receiving a spike, in state S_y after receiving a total of 2 spikes, and in state S_z after receiving a total of 3 spikes. At state S_z , neuron 2 will use rule r_3 consuming 3 spikes and returning to state S_w . Only states S_w, S_x, S_y, S_z are relevant to neuron 2 since it can only reach the spike counts in those states.

Fig. 1. Example Neurons

Fig. 2. Example Neurons

3.2 Operations on Labelled Transition Systems

Definition 2 (State Translation). A state translation is an operation on a state. As a function, it takes a state S and a natural number δ and maps it to the state S' defined as $S' = \{s + \delta \mid s \in S\}$. We denote state translation with the + symbol. i.e. $S' = S + \delta = \{s + \delta \mid s \in S\}$. We say that S' is "S translated by δ ".

For example, let $S = \{3, 5, 7\}$ and $\delta = 3$, then $S + 3 = \{6, 8, 10\}$. Let $S = \{3, 6, 9, 12, \ldots\} = \{3i\}_{i \geq 1}$ and $\delta = 1$, then $S + 1 = \{4, 7, 10, 13, \ldots\} = \{3i+1\}_{i \geq 1}$.

Definition 3 (Transition Translation). A transition translation is an operation on a transition. The function translate takes a transition $T = (S, (\alpha, \beta))$ and a natural number δ and maps it to the transition $T' = (S', (\alpha, \beta))$ where $S' = S + \delta$ (S (state) translated by δ). If the context is clear, we will use the same symbol + for transition translation. i.e. $T' = T + \delta$.

Definition 4 (Transition System Translation). A transition system translation is an operation on an entire transition system. As a function, it takes a transition system $TS = (S, L, \rightarrow)$ and a natural number δ and maps them to the transition system $TS' = (S', L, \rightarrow')$ where $S' = \{s + \delta \mid s \in S\}$ and $\rightarrow' = \{T + \delta \mid T \in \rightarrow\}$.

Definition 5 (State Scaling). State scaling is an operation on a state. As a function, it takes a state S and a natural number δ and maps them to the state S' defined as $S' = \{\delta \cdot s \mid s \in S\}$. We say that S' is "S scaled by δ " and we use the notation $\delta S'$ for S'.

Definition 6 (Transition Scaling). Transition scaling is an operation on a transition. As a function, it takes a transition $T = (S, (\alpha, \beta))$ and a natural number δ and maps them to the transition $T' = (S', (\alpha', \beta))$ where $S' = \delta S$ and $\alpha' = \delta \alpha$. We say that T' is "T scaled by δ " and we use the notation δT for T'.

Definition 7 (Transition System Scaling).

3.3 Procedures for Homogenizing Neurons' Rule Sets

Definition 8 (Matching Transistions).

Definition 9 (Non-deterministic State).

Definition 10 (Common Transition Set).

```
Algorithm 1: Combining Two Transitions Systems
   TS_1, T_2: Transition alphabet, rules
   Output: Write here the result
 1 StateSet \leftarrow \{\};
2 while While condition do
      instructions;
      if condition then
 4
          instructions1;
 5
          instructions2;
 6
 7
      else
          instructions3;
 8
      end
10 end
```

References