高三化学

考生注意:

- 1. 本试卷分选择题和非选择题两部分。满分100分,考试时间75分钟。
- 2. 答题前,考生务必用直径 0.5 毫米黑色墨水签字笔将密封线内项目填写清楚。
- 3. 考生作答时,请将答案答在答题卡上。选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径 0.5 毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
- 4. 本卷命题范围:高考范围。
- 5. 可能用到的相对原子质量: H 1 C 12 O 16 Na 23 Cu 64 W 184
- 一、选择题:本题共 14 小题,每小题 3 分,共计 42 分。在每小题列出的四个选项中,只有一项是符合题目要求的。
- 1. 化学促进科技进步和社会发展。下列说法错误的是
 - A. 古陶瓷修复所用的熟石膏,其成分为 $2CaSO_4 \cdot H_2O$
 - B. 东方超环(人造太阳)使用的²H(氘)、³H(氚)是不同的核素
 - C. 中国空间站存储器所用的材料石墨烯与金刚石互为同素异形体
 - D. "北斗卫星"授时系统的"星载铷钟"含铷元素,其单质遇水能缓慢反应放出 H2
- 2. 下列有关化学用语错误的是

A. 中子数为 10 的氧原子: 18 O

B. NH₃ 的 VSEPR 模型:

Н Н

C. 甲胺的电子式:H: C:N:H

Н

D. 乙烯分子中的 π 键:_H.

- 3. 已知一定条件下 PCl_3 与 NH_3 可发生如下反应: $PCl_3 + 6NH_3 \longrightarrow P(NH_2)_3 + 3NH_4Cl$ 。下列有关说法错误的是
 - A. P(NH₂)₃是非极性分子

B. 第一电离能:Cl>P

C. NH₄Cl 中含有配位键

D. NH。的沸点高于 PH。

4. 化学是以实验为基础的科学。下列实验操作正确且能达到实验目的的是

选项	实验操作	实验目的
A	将铜丝插入稀硫酸中,加热	制备 SO ₂
В	将 SO ₂ 通人新制氯水中	探究 SO₂的漂白性
С	向苯和苯酚的混合物中加入浓溴水,振荡后静置,分液	除去苯中混有的苯酚
D	向乙酸和乙酸乙酯的混合物加入饱和 Na ₂ CO ₃ 溶液后分液	除去乙酸乙酯中的乙酸

5. 樱黄素(乙)具有抗过敏、抗炎、抗肿瘤和保护心脑血管等多方面生物活性。以金雀异黄酮(甲)为原料, 经碘甲烷甲基化合成樱黄素的反应如下,下列说法正确的是

- A. 甲、乙所含官能团种类不相同
- B. 1 mol 的甲、乙分别与足量溴水反应,均消耗 4 mol Br₂
- C. 甲、乙既能与 NaOH 溶液反应,又能与 Na₂CO₃溶液反应
- D. 一定条件下,甲与足量的 H2加成产物的分子中有8个手性碳原子
- 6. 工业上制备金属 K 的一种方法是 KF 与 CaC_2 反应, $2KF+CaC_2$ $\xrightarrow{1273\sim1327 \, ^{\circ}C}$ $CaF_2+2C+2K$,钾蒸气用石蜡收集,纯度可达 99%以上。下列有关说法正确的是
 - A. KF 的熔点高于 CaF₂

- B. CaC2中存在离子键和非极性键
- C. 每生成 1 mol C 转移 2 mol 电子
- D. 实验室中少量金属钾可以保存在四氯化碳中
- 7. 已知甲、乙为单质, 丙为化合物, 能实现下述转化关系:

$$\Psi + Z \xrightarrow{\underline{\text{s.k.}}} \overline{\text{p. }} \overline{\text{p. }} \overline{\text{r. }} \overline{\text$$

下列说法错误的是

- A. 若丙溶于水得到蓝绿色溶液,则甲可能为 Cl2
- B. 若"溶液"遇 Na₂CO₃放出 CO₂气体,则甲可能是 H₂
- C. 若丙溶于水后得到强碱溶液,则甲可能是 O₂
- D. 若"溶液"滴加 NaOH 溶液产生白色沉淀,则甲可能是 Mg
- 8. 丙二醇醚类化合物具有很强的溶解能力,素有"万能溶剂"之称。 环氧丙烷醚化反应生成丙二醇醚的反应机理如图所示(R指烃基)。下列说法错误的是
 - A. 反应过程中 H+作催化剂
 - B. 反应过程中有配位键形成
 - C. 反应过程中有 C-O 的断裂和形成
 - D. 中间产物乙中 C 原子杂化方式均为 sp³
- 9. 叠氮化钠(NaN₃)可用于汽车安全气囊的制造,N₂O与 NaNH₂发生反

应可以生成 NaN₃,反应方程式为 N₂O+2NaNH₂——NaOH+NH₃+NaN₃。下列有关说法错误的是

A. 键角: NH₂ > NH₃

B. 电负性: H > Na

C. NaNH₂溶液显碱性

D. 1 mol N₃ 中含 2 mol σ键

10. 过渡金属的氮化物和碳化物都表现了较好的催化性能,由碳(C)、钨(W)两种元素形成的两种碳化物甲(晶胞边长为 a nm)和乙(晶胞边长为 b nm)的立方晶胞结构如图所示。下列说法正确的是

A. 碳化物甲的化学式为 WC

D. 甲、乙两种晶胞的密度比为 $b^3:2a^3$

B. 晶体甲中与 W 原子距离最近的 W 原子有 8 个

C. 晶胞乙中两个 C 原子最近距离为 $\frac{\sqrt{2}}{2}b$ nm

【高三1月质量检测·化学 第2页(共6页)】

11. 实验室以水泥厂的废料(主要成分为 MgO,含少量 MnO、 Fe_2O_3 、FeO、 Al_2O_3 、 SiO_2 等杂质)为原料制 $\&MgSO_4$ • 7 H_2O 的实验流程如下:

过量稀
$$H_2SO_4$$
 NaClO MgO ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ □ pH → 操作 a → MgSO $_4$ • 7 H_2O

下列与流程相关的装置或操作正确且能达到实验目的的是

- A. 可在装置甲中进行"酸浸"操作
- B. 按图乙所示操作检验"氧化"步骤中 Fe2+是否完全氧化
- C. 用装置丙过滤"调 pH"后所得悬浊液
- D. 用装置丁加热烘干 MgSO₄ 7H₂O 晶体
- 12. X,Y,Z,W 为原子序数依次增大的四种短周期元素。X 与 Z 同族,Z 的核电荷数是 X 的 2 倍。Y 原子 K 层的电子数与 M 层的电子数的乘积等于其 L 层的电子数。下列说法错误的是
 - A. 非金属性: X>Z>Y

- B. Y、W 的单质均可与 NaOH 溶液反应
- C. 化合物 Z_2W_2 中各原子均满足 8 电子稳定结构 D. X 与 Y 形成的二元化合物可溶于水
- 13. 盐酸羟胺(NH₂OH•HCl)是一种常见的还原剂,工业上采用如图 1 所示方法利用 NO 制备盐酸羟胺,图 2 是用图 1 的电池处理含 Cl⁻、NO₃ 的酸性废水的装置。下列说法正确的是

- A. 图 2 电解池工作时 a 电极应与 Pt 电极相连
- B. 处理 1 mol NO₃, 电路中转移 5 mol e⁻
- C. 电池工作时,每消耗 2.24 L(标准状况下)NO, 左室溶液质量增加 3.3 g
- D. 电池工作一段时间后,正负极区溶液的 pH 均下降
- 14. 25 ℃时,用 0. 10 mol·L⁻¹的 NaOH 溶液滴定 50 mL 等浓度的一元 ^{-lgc(H+)}* 酸 HA 溶液,混合溶液的 pH 及 -lgc(H+)* [c(H+)* 指水电离出的 H+浓度]与滴入 NaOH 溶液体积关系如图所示(忽略体积变化)。

下列说法正确的是

- A. 滴定过程中应选用甲基橙作指示剂
- B. 点 a 溶液中, $c(HA)>c(Na^+)>c(A^-)$
- C. 点 b 溶液中 $c(OH^-) \approx \sqrt{5} \times 10^{-5.6} \text{ mol} \cdot L^{-1}$
- D. 点 c 溶液呈中性, $c(A^-)=c(Na^+)$

二、非选择题:本题共4小题,共58分。

15. (14 分)过氧化尿素[CO(NH₂)₂・H₂O₂,无毒无味的白色粉末,易溶于水,水溶液离解为尿素和 H₂O₂,45 ℃以上能分解]是一种新型精细化工产品,也是一种新型的固体消毒剂和氧化剂,其合成原理如下: CO(NH₂)₂ + H₂O₂ $\xrightarrow{30}$ ℃ CO(NH₂)₂・H₂O₂。实验过程:在三口烧瓶(实验装置如图所示)中加入一定比例的双氧水、尿素和稳定剂,搅拌,固体溶解后,升温至30 ℃,反应 40 min,加入包膜剂,继续搅拌 10 min。然后降温至 0 ℃,结晶 3 h 后,抽滤,将滤饼置于烘箱中,50 ℃下烘干 2 h,得到最终的过氧化尿素产品。

回答下列问题:

- (1)仪器 A 的名称是。
- (2)过氧化尿素是过氧化氢和尿素的加合产物,二者之间通过_____(填"配位键"或"氢键")相结合。
- (3)从抽滤后的母液中分离出 H_2O_2 和尿素,可采用的操作是 (填字母)。

A. 盐析、过滤

B. 减压蒸馏、结晶

C. 分液、过滤

D. 减压蒸馏、萃取

(4)过氧化尿素的纯度与干燥温度的关系如图所示:

干燥温度高于 50 ℃后过氧化尿素的纯度下降的原因是

- (5)为测定产品中活性氧的含量,称取干燥样品 4.000~g,溶解,在 250~mL 容量瓶中定容。准确量取 25~mL 于锥形瓶中,加入 2~mL $6.0~mol L^{-1}$ 硫酸,然后用 $0.1000~mol L^{-1}$ 的 $KMnO_4$ 标准溶液 滴定,滴定终点时,消耗 $KMnO_4$ 溶液 16.00~mL(已知 $KMnO_4$ 溶液与尿素不反应)。
 - ①写出用 KMnO4标准溶液滴定时反应的离子方程式:_____。
 - ②本实验 KMnO₄溶液滴定过程中操作滴定管的图示正确的是____(填字母)。

③活性氧的计算公式为 $X = \frac{0.04c_{\text{标准溶液}}V_{\text{标准溶液}}(\text{mL})}{m_{\text{KH}}} \times 100\%$,根据滴定结果,可确定产品中活性

氧的含量为_____%

④若滴定前滴定管尖嘴处有气泡,滴定后消失,会使测得的活性氧含量_____(填"偏高""偏低"或"不变")。

16. (14 分)以废旧锂离子电池(主要成分为 LiCoO₂)为原料制备棒状草酸钴晶体(CoC₂O₄ • 2H₂O,微溶 于水,溶解度随温度升高而逐渐增大)的一种方法如下图所示。该法经济可行,为工业化回收废旧锂 电池中有色金属提供了依据。

(5)"沉钴"时也可用 H_2 C_2 O_4 溶液代替 $(NH_4)_2$ C_2 O_4 ,反应为 $Co^{2+}(aq) + H_2C_2O_4(aq)$ \longrightarrow $CoC_2O_4(s) + 2H^+(aq)$,则该反应 的平衡常数为 ______。若平衡时 c $(H_2$ C_2 $O_4) = 0.05 mol·L^{-1}$,pH = 1.5,则此时 Co^{2+} 是否沉淀完全?

_____(填"是"或"否",离子浓度 \leq 1. 0×10^{-5} mol·L $^{-1}$ 即可认为沉淀完全)。 17. (15 分)CO、SO₂等烟道气对环境有污染,需经处理后才能排放,处理含 CO、SO₂烟道气的一种方法是

- 将其在催化剂作用下转化为单质 $S(1):2CO(g)+SO_2(g)$ — $S(1)+2CO_2(g)$ ΔH 。回答下列问题:
 - (1)已知 CO 的燃烧热为 283.0 kJ·mol⁻¹;S(l)+O₂(g)—SO₂(g) ΔH =-296.8 kJ·mol⁻¹。则上述反应的 ΔH =_____kJ·mol⁻¹。
 - (2)其他条件相同、催化剂不同时发生上述反应。 SO_2 的转化率随反应温度的变化如图 1 所示。 Fe_2O_3 和 NiO 作催化剂均能使 SO_2 的转化率达到最高,不考虑催化剂价格因素,选择 Fe_2O_3 的主要 优点是______。某种铁镍合金的立方晶胞如图 2 所示,铁原子的配位数为______,晶体中,铁与镍数目之比为_____。

(3)在容积为 2 L 的密闭容器中,充入 2 mol CO	和 1 mol SO ₂ ,在一定统	条件下发生上述反应,体系混合
气体中 CO2的物质的量分数随时间的变化如	1图 3 所示:	
①0~2 min 内的平均反应速率 v(CO)=	$\underline{\hspace{1cm}}$ mol • L^{-1} • m	in^{-1} .
②2 min 后改变下列条件能使上述反应的速率	增大,且平衡向正向移动	的是(填字母)。
a. 选用更高效的催化剂	b. 升高温度	
c. 及时分离出 CO ₂	d. 增加 CO 的浓度	
(4)在密闭容器中,充入 2 mol CO 和 1 mol SO	2,发生上述反应,SO2	↑SO₂的平衡转化率
的平衡转化率随温度、压强的变化如图 4 所	$ec{\pi}$.	80%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
①压强 $p_1 p_2 p_3$ 由大到小的关系是		80%
②B 点对应条件下 $K_x = $ [对于]		60%C
$\Longrightarrow pC(g)+qD(g), K_x = \frac{x^p(C) \cdot x^q(D)}{x^m(A) \cdot x^n(B)}$, x 为物质的量分数]。	p_1 p_2 p_1/K
③A点和C点压强平衡常数之比为	(用分压代替浓	T_1 T_2
度,分压=总压×物质的量分数)。		图 4
18. (15 分)喹啉酮及其衍生物是一类重要的杂环化	合物,大部分存在于各	-种天然植物的生物碱中,因其
具有多样的生物活性,被广泛地应用于农药、医	药、化工等重要领域。	一种喹啉酮衍生物 M 的合成
路线如下:		
O	O	O
OH CH₅OH、浓硫酸 B CICOCI、AICI₅ CI	O KNO ³ 'H ⁵ SO ⁴ HC	CH ₂ CH ₂ OH、浓硫酸 △/回流
A		NO_2
	С	D
E Fe,NH ₄ Cl O 对甲基苯磺酸 CH ₅ OH NH ₂	O H O NaBH,	но
回答下列问题:		
(1)A 的化学名称是		
	的名称是	
(3)A→B、D→E 的过程中回流的目的是		o
(4)E的结构简式为。		
(5)写出一定条件下,G 与足量 NaOH 溶液反应	的化学方程式:	0
(6)在 M 的同分异构体中,同时满足下列条件的	共有种(不	考虑立体异构);
①苯环上有两个取代基;		
O		
 ②含—CHO和 —C—NH ₂ 两种官能团。		
写出其中含有手性碳原子的同分异构体的结	构筒式:	(任写一种)。