Mathe-Abiturvorbereitung

Mathematik

- Kurvendiskussion
 - Nullstellen
 - Extrempunkte
 - Wendepunkte
 - o Globalverlauf
 - o Definitionsbereich
- Vektoren
- Integrale
- E-Funktionen
- Stochastik
 - Vier-Felder-Tafel
 - o Pfadregeln
 - Erwartungswert
 - o Binomialkoeffizient
 - Empirische Standardabweichung
 - o Sigma-Regeln
 - Erwartungswert μ
 - Standardabweichung
- Bearbeitung einer Textaufgabe in der Klausur

Kurvendiskussion

Übersicht

- 1. Definitionsbereich: $x \in \mathbb{R}$
- 2. Symetrie:
 - 1. Achsensymetrie: f(x) = f(-x)
 - 2. Punktsymetrie: f(-x) = -f(x)
- 3. Achsenschnittpunkt:
 - 1. y-Achse: f(0)
 - 2. x-Achse/Nullstellen: f(x) = 0

4. Extrempunkte:

1. Notwendige Bedingung: f'(x) = 0

2. Hinreichende Bedingung: $f'(x) = 0 \ \& f''(x)
eq 0$

3. Hochpunkt: f''(x) < 0

4. Tiefpunkt: f''(x) > 0

5. Wendepunkte

1. Notwendige Bedingung: f''(x) = 0

2. Hinreichende Bedingung: $f''(x) = 0 \ \& f'''(x)
eq 0$

3. Links-Rechts-Wendepunkt: f'''(x) < 0

4. Rechts-Links-Wendepunkt: f'''(x) > 0

6. Sattelpunkt:

1. Notwendige Bedingung: f'(x) = 0

2. Hinreichende Bedingung: f''(x) = 0

Nullstellen

PQ-Formel

$$x_{1,2} = -rac{P}{2} \pm \sqrt{rac{p^2}{4} - 4}$$

Quadratische Ergänzung

binomische Formeln

$$1.(a+b)^2 = 2a^2 + 2ab + b^2 \ 2.(a-b)^2 = 2a^2 - 2ab + b^2 \ 3.(a+b)^2 \cdot (a-b)^2 = a^2 - b^2$$

Wendepunkte

Notwendige Bedingung:
$$f''(x) = 0$$

Hinreichende Bedingung: $f'''(x) = + \neq 0 \rightarrow \text{rechts-links-Wendepunkt}$
Einsetzen in $f(x)$: $f(x) = a$

Extrempunkte

Notwendige Bedingung:
$$f'(x) = 0$$

Hinreichende Bedingung:
 $f''(x) = - \rightarrow$ **Hochpunkt**, Rechstkrümmung
 $f''(x) = + \rightarrow$ **Tiefpunkt**, Linkskümmung
Einsetzten in $f(x)$: $f(x) = a$

Sattelpunkte

Notwendige Bedingung: f'(x) = 0

Definitionsbereich

z.B.:
$$e \in \mathbb{R}$$

Globalverlauf

$$lim\ f(x): x o \infty \ lim\ f(x): x o -\infty$$

Symetrie

Achsensymetrie: f(x) = f(-x)Punktsymetrie: f(-x) = -f(x)

Vektoren

Skalarprodukt

$$ec{AB}*ec{AC}=egin{pmatrix} x_1\x_2\x_3 \end{pmatrix}*egin{pmatrix} y_1\y_2\y_3 \end{pmatrix}=x_1\cdot y_1+x_2\cdot y_2+x_3\cdot y_3$$

Wenn das **Skalarprodukt**:

- = 0 ist \rightarrow Die Vektoren liegen **orthogonal** zueinander/90°
- ullet $\neq 0$ ist $\, o\,$ Die Vektoren liegen **nicht** orthogonal zueinander

Lage zweier Geraden zueinander bestimmen

Mittelpunkt einer Geraden bestimmen

$$ec{m}=rac{1}{2}\cdot(ec{b}+ec{c})=rac{1}{2}\cdot\left(egin{pmatrix} x_1+y_1\ x_2+y_2\ x_3+y_3 \end{pmatrix}
ight)$$

Längenformel eines Vektors

$$\sqrt{a^2+b^2+c^2}$$

Beispiel:

$$\sqrt{2^2 + 2^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3$$

Punktprobe

$$egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix} + k \cdot egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix} = egin{pmatrix} c_1 \ c_2 \ c_3 \end{pmatrix}
ightarrow egin{pmatrix} a_1 + b_1 \cdot k = c_1 \ a_2 + b_1 \cdot k = c_2 \ a_3 + b_1 \cdot k = c_3 \end{pmatrix}
ightarrow egin{pmatrix} k = x \ k = y \ k = z \end{pmatrix}$$

Beispiel:

$$\begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} + k \cdot \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} = \begin{pmatrix} -12 \\ 23 \\ -34 \end{pmatrix} \rightarrow \begin{vmatrix} -2 + 2 \cdot k = -12 \\ 3 - 5 \cdot k = 23 \\ 1 + 7 \cdot k = -34 \end{vmatrix} \rightarrow \begin{vmatrix} k = -5 \\ k = -4 \\ k = -5 \end{vmatrix}$$

Stochastik

Empirische Standardabweichung

$$\overline{s} = \sqrt{p_1 \cdot (x_1 - \overline{x})^2 + p_2 \cdot (x_2 - \overline{x})^2 + p_3 \cdot (x - \overline{x})^3 + ...}$$

Erwartungswert

$$E(x) = 1 \cdot P(X = 1) + 2 \cdot P(X = 2) + 3 \cdot P(X = 3) + \dots$$

Binomialkoeffizient

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$
 binomPDF: $P(X=Y) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$ binomCDF: $P(X \le Y) = p(x=y) + p(x=y-1) + ... + p(x=y-y)$

Vier-Felder Tafel

	В	\overline{B}	
A	Wahrscheinlichkeit AB	Wahrscheinlichkeit $A\overline{B}$	Wahrscheinlichkeit ${\cal A}$
\overline{A}	Wahrscheinlichkeit $\overline{A}B$	Wahrscheinlichkeit \overline{AB}	Wahrscheinlichkeit \overline{A}
	Wahrscheinlichkeit ${\cal B}$	Wahrscheinlichkeit \overline{B}	1

Beispiel:

	B	\overline{B}	
A	0.21	0.49	0.7
\overline{A}	0.06	0.24	0.3
	0.27	0.73	1

Sigma-Regeln

Intervalle abschätzen für $\sigma > 3$

$$90\% \rightarrow 1.64 \cdot \sigma$$
 $95\% \rightarrow 1.96 \cdot \sigma$
 $99\% \rightarrow 2.58 \cdot \sigma$

Erwartungswert µ

$$\mu = n \cdot p$$

Standardabweichung

$$\sigma = \sqrt{n \cdot p \cdot (1 - p)}$$

Sigma-Regeln anwenden (mit 90%)

Gegeben:
$$n, p$$

$$\mu = n \cdot p$$

$$\sigma = \sqrt{n \cdot p \cdot (1 - p)}$$
Wenn $\sigma > 3$ ist:
$$1, 64 \cdot \sigma = d$$

$$\mu - d \le X \le \mu + d$$

$$P(\mu - d \text{ (aufrunden)} < X\mu + d \text{ (abrunden)})$$

$$P(\mu - d \text{ (abrunden)} < X\mu + d \text{ (aufrunden)})$$

Hinweis: Dies kann mit dem binomCDF befehl im CAS berechnet werden. Das Ergebnis welches am nächsten über 0.9 liegt ist das bessere Ergebnis

Beispiel:

$$\begin{array}{c} n=920,\ p=58\%\\ \mu=920\cdot 0.58=533.6\\ \sigma=\sqrt{920\cdot 0.58\cdot 0.42}=14.9703\\ 1.64\cdot 14.9703=24.5513\\ 533.6-24.5513\leq X\leq 533.6+24.5513\\ \rightarrow 509.0487\leq X\leq 558.1513\\ P(510\leq X\leq 558)=0.8982\\ P(509\leq X\leq 559)=0.9114\\ \rightarrow P(509\leq X\leq 559)\ \mathrm{ist\ das\ richtige\ Ergebnis} \end{array}$$

Bearbeitung einer Textaufgabe in der Klausur

1.
$$f(x)$$

$$f'(x)$$

$$f''(x)$$

$$f'''(x)$$
hinschreiben und im CAS definieren

2. Worfür steht x bzw. t Wofür steht f(x) bzw. A(t) \rightarrow Was bedeutet f' bzw. A'(x)

3. Teilaufgaben genau lesen:

lst x gegeben oder gesucht ?
lst f(x) gegeben oder gesucht ?