Functional Analysis (MTH414) Finals Questions $$\operatorname{Bank}$$

Mostafa Hassanein $30~{\rm May}~2024$

Definitions

Definition 1 (Metric space). A metric space is an ordered pair (X, d), where X is a set, and $d: X \times X \longrightarrow R$ is a distance function such that $\forall x, y, z \in X$:

M1 (Non-negativity): $d(x,y) \ge 0$

M2 (Definiteness): $d(x,x) = 0 \iff x = 0$

M3 (Symmetry): d(x,y) = d(y,x)

M4 (Triangle inequality): $d(x,z) \le d(x,y) + d(y,z)$

Note: To save time, you could just mention that d satisfies the axioms of non-negativity, definiteness, symmetry, triangle inequality.

Definition 2 (Open set). An open set is a set X where $\forall x \in X$:

 $\exists r: B(x,r)$ is wholly contained inside X.

Alternatively:

A subset M of a metric space X is said to be open if it contains a ball about each of its points.

Definition 3 (Closed set). A closed set is a set that is <u>not</u> open. Alternatively:

A subset K of X is said to be closed if its complement (in X) is open.

Definition 4 (Interior point). A point x is an interior point of a set $M \subseteq X$ if M is a neighborhood of x.

Definition 5 (Dense set). A subset M of a metric space X is dense in X if $\overline{M} = X$.

Definition 6 (Separable space). A space X is separable if it contains a <u>countable subset</u> M which is <u>dense</u> in X

Definition 7 (Complete space). A space X is complete if every Cauchy sequence in X converges.

Definition 8 (Finite dimensional vector space). A vector space V is finite dimensional if $\exists n \in N$, such that X contains a set of n linearly independent vectors, whereas any set of n+1 vectors is linearly dependent.

Definition 9 (Infinite dimensional vector space). A vector space V is infinite dimensional if it is <u>not</u> finite dimensional.

Definition 10 (Normed space). Is an ordered pair (X, ||), where X is a vector space, and $||: X \longrightarrow R$ is a norm function such that $\forall x, y \in X$:

N1 (Non-negativity): $||x|| \ge 0$

N2 (Definiteness): $||x|| = 0 \iff x = 0$

N3 (Homogeneity): $||\alpha x|| = \alpha ||x||$

N4 (Triangle inequality): $||x+y|| \le ||x|| + ||y||$

Definition 11 (Banach space). Is a complete normed space.

Definition 12 (Hilbert space). Is a complete inner product space.

Definition 13 (Linear operator). A linear operator $T: X \longrightarrow Y$ is a mapping between vector spaces such that $\forall x, y \in X$ and $\forall \alpha \in K$:

$$T(\alpha x + y) = \alpha Tx + Ty$$

Definition 14 (Linear functional). A linear functional $f: X \longrightarrow K$ is a linear operator whose domain is a vector space X and whose range is the scalar field K of X.

Definition 15 (Bounded linear operator). A linear operator $T: X \longrightarrow Y$ between normed vector spaces is bounded if $\exists c \in R$ such that:

$$\forall x \in X: ||Tx|| \le c||x||$$

Definition 16 (Inner product space). Is an ordered pair $(X, \langle \rangle)$, where X is a vector space, and $\langle \rangle : X \times X \longrightarrow R$ is an inner-product function such that $\forall x, y, z \in X$:

 $\begin{array}{ll} IP1 \; (\text{Non-negativity}): & \langle x,x\rangle \geq 0 \\ IP2 \; (\text{Definiteness}): & \langle x,x\rangle = 0 \iff x = 0 \\ IP3.1 \; (\text{Additivity}): & \langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle \\ IP3.2 \; (\text{Homogeneity}): & \langle \alpha \, x,x\rangle = \alpha \, \langle x,x\rangle \\ IP4 \; (\text{Conjugate symmetry}): & \langle x,y\rangle = \overline{\langle y,x\rangle} \end{array}$

Definition 17 (Strong convergence). A sequence (x_n) in a normed space X converges strongly if $\exists x \in X$ such that:

$$\lim_{n \to \infty} ||x_n - x|| = 0.$$

Definition 18 (Weak convergence). A sequence (x_n) in a normed space X converges weakly if $\exists x \in X$ such that $\forall f \in X'$:

$$\lim_{n \to \infty} f(x_n) = f(x).$$

True or false (without proof)

1.	The sequence space l^{∞} is a metric space.	True
2.	The complex plane $\mathbb C$ is separable.	True
3.	Every Cauchy sequence in a metric space is convergent sequence.	False
4.	The function sapce $\mathbb{C}[a,b]$ is both a Banach space and a Hilbert space.	False
5.	The integral operator is a bounded linear operator.	True
6.	All normed spaces are inner product spaces.	False
7.	The space l^p with $p \neq 2$ is a Hilbert space.	False

Proofs

Theorem 1 (Completeness of \mathbb{R}^n and \mathbb{C}^n).

Proof

Let F denote either R or C. Then F is a complete field.

Let (x_m) be a Cauchy sequence in F^n , where $x_m = (x_1^{(m)}, \dots, x_n^{(m)})$.

Since (x_m) is Cauchy, then $\forall \epsilon > 0$, $\exists N$ such that $\forall m, r \geq N$:

$$d(x_m, x_r) = \left(\sum_{j=1}^n (x_j^{(m)} - x_j^{(r)})^2\right)^{1/2} < \epsilon$$

 $\Longrightarrow \forall j \in 1, \dots, n: (x_j^{(m)} - x_j^{(r)})^2 < \epsilon^2$

 $\Longrightarrow \forall j \in 1, \dots, n: |x_j^{(m)} - x_j^{(r)}| < \epsilon$

 $\Longrightarrow \forall j \in {1, \dots, n}:$ The sequence $(x_j^{(1)}, x_j^{(2)}, \dots)$ is Cauchy

 $\Longrightarrow \forall j \in 1, \dots, n$: The sequence $(x_j^{(1)}, x_j^{(2)}, \dots)$ converges (by the completeness of F).

Denote the limit of the above sequences by x_j .

Next, we define our candidate limit as follows:

$$x = (x_1, \dots, x_n)$$

Finally, it is clear that $x \in F^n$, and $\forall m \geq N$:

$$d(x_m, x) < \epsilon$$

This shows that x is indeed the limit of (x_n) , and proves completeness of F^n .

Theorem 2 (Completeness of the function space C[a,b]).

Proof

Let (x_m) be a Cauchy sequence in C[a, b], and J = [a, b].

Then, $\forall \epsilon > 0$, $\exists N$ such that $\forall m, n > N$:

$$d(x_m, x_n) = \max_{t \in J} |x_m(t) - x_n(t)| < \epsilon \tag{1}$$

 $\Longrightarrow \forall t_0 \in J: |x_m(t_0) - x_n(t_0)| < \epsilon$

 $\Longrightarrow \forall t_0 \in J$: The sequence $(x_1(t_0), x_2(t_0), \ldots)$ is a Cauchy sequence of real numbers

 $\Longrightarrow \forall t_0 \in J : \text{ The sequence } (x_1(t_0), x_2(t_0), \ldots) \text{ converges (by completeness of R)}.$

Denote the limit of the above sequences by $x_{lim}(t_0)$.

Next, we define our candidate limit x. We define x pointwise as follows:

$$\forall t \in J : x(t) = x_{lim}(t)$$

Now we show that $(x_m(t))$ converges uniformly on J. To do this we take the limit of (1) as $n \to \infty$:

$$d(x_m, x) = \max_{t \in J} |x_m(t) - x(t)| < \epsilon$$

$$\Longrightarrow \forall t_0 \in J : |x_m(t_0) - x(t_0)| < \epsilon$$

$$\Longrightarrow (x_m(t)) \text{ converges uniformly on } J.$$

Finally, since the x_m 's are continuous on J and the convergence is uniform, then the limit function x is continuous on J, and hence $x \in C[a, b]$.

Therefore, the space C[a, b] is complete.

Theorem	3	(Compactness)	١.

Proof.

Theorem 4 (Banach fixed point theorem (Contraction Theorem)).

Consider a metric space X=(X,d), where $X\neq\emptyset$. Suppose that X is complete and let $T:X\longrightarrow X$ be a contraction on X. Then T has precisely one fixed point.

Proof.

Proof sketch:

First, we construct a sequence (x_n) and show that it is Cauchy, so that it converges in the complete space X.

Second, we prove that its limit, x, is a fixed point of T.

Finally, we show that T has no other fixed points.

Choose any $x_0 \in X$, and define the sequence (x_n) recursively as follows:

$$x_n = \begin{cases} x_0, & n = 0 \\ Tx_{n-1}, & n > 0 \end{cases}$$

We now show that (x_n) is Cauchy.

Because T is a contraction we have:

$$d(x_{m+1}, x_m) = d(Tx_m, Tx_{m-1})$$

$$\leq \alpha d(x_m, x_{m-1})$$

$$= \alpha d(Tx_{m-1}, Tx_{m-2})$$

$$\leq \alpha^2 d(x_{m-1}, x_{m-2})$$

$$\vdots$$

$$= \alpha^m d(x_1, x_0)$$
(1)

Applying the triangle inequality to (1), we get $\forall n > m$:

$$d(x_m, x_n) \le d(x_m, x_{m+1}) + d(x_{m+1}, x_{m+2}) + \dots + d(x_{n-1}, x_n)$$

$$\le (\alpha^m + \alpha^{m+1} + \dots + \alpha^{n-1}) d(x_0, x_1)$$
(2)

Applying the geometric series formula to (2), we get:

$$d(x_m, x_n) = \alpha^m \frac{1 - \alpha^{n-m}}{1 - \alpha} d(x_0, x_1)$$

$$= \beta^m d(x_0, x_1) \qquad \text{for some } 0 < \beta < 1$$

$$< \epsilon \qquad \qquad \forall \epsilon, \text{ and } \forall m, n > N(\epsilon)$$

 $\implies (x_n)$ is Cauchy.

 \implies (x_n) converges by the completeness of X to a limit point, say x.

Next, we show that the point x is a fixed point of T.

By the triangle inequality, we have:

$$\begin{split} d(x,Tx) &\leq d(x,x_m) + d(x_m,Tx) \\ &\leq d(x,x_m) + \alpha \; d(x_{m-1},x) \\ &< \epsilon & \forall \epsilon > 0 \text{ and } \forall m \geq N(\epsilon) \end{split}$$

$$\implies d(x, Tx) = 0$$

$$\implies x = Tx$$

 $\implies x$ is a fixed point of T.

Finally, we show that x is the only fixed point of T. Suppose x and x' are fixed points of T, then:

$$\begin{aligned} d(x,x') &= d(Tx,Tx') \leq \alpha \ d(x,x') \\ \Longrightarrow d(x,x') &= 0 \\ \Longrightarrow x &= x'. \end{aligned}$$

Theorem 5 (Fredholm Integral Equation).

Proof.

A Fredhom integral equation of the second kind has the form:

$$x(t) - \mu \int_{a}^{b} k(t, \tau) x(\tau) d\tau = v(t) \tag{1}$$

where:

[a,b]: is a given interval.

x: is an unknown function on [a, b].

 μ : is a parameter/constant.

k: The kernel of the equation, is a function defined on the square G = [a, b|x[a, b].

v: is a given function on [a, b].

Let's restrict this equation to the function space C[a, b], with the metric:

$$d(x,y) = \max_{t \in J} |x(t) - y(t)|$$

We assume that $v \in C[a,b]$ and k is continuous on G. Then, k is bounded on G:

$$\forall t, \tau \in G: |k(t,\tau) \le c$$

Next, we we assume that the solution to (1) is a fixed point of some operator T, therefore we can replace x with Tx in (1) to get:

$$Tx(t) = v(t) + \mu \int_{a}^{b} k(t,\tau)x(\tau)d\tau \tag{2}$$

Since v and k are continuous, then (2) defines an operator $T:C[a,b]\longrightarrow C[a,b].$

Next, we derive the condition for T to be a contraction:

$$\begin{split} d(Tx,Ty) &= \max_{t \in J} |Tx(t) - Ty(t)| \\ &= |\mu| \max_{t \in J} |\int_a^b k(t,\tau)(x(\tau) - y(\tau))| \, d\tau \\ &\leq |\mu| \max_{t \in J} \int_a^b |k(t,\tau)| \, |x(\tau) - y(\tau)| \, d\tau \\ &\leq |\mu| \, c \, \max_{\sigma \in J} |x(\sigma) - y(\sigma)| \int_a^b d\tau \\ &= |\mu| \, c \, d(x,y) \, (b-a) \\ &= \alpha \, d(x,y) \end{split} \qquad \text{where } \alpha = |\mu| \, c \, (b-a) \end{split}$$

 $\implies T$ is a contraction when $|\mu| < \frac{1}{c(b-a)}.$

We now state the existence and uniqueness of a solution to (1): Given the restrictions stated above, (1) has a solution $x \in J$. x is the limit of the iterative sequence (x_0, x_1, \ldots) , where x_0 is any point in C[a, b], and:

$$x_{n+1}(t) = v(t) + \mu \int_a^b k(t,\tau) x_n(\tau) d\tau.$$

Theorem 6 (Volterra Integral Equation).

Proof

We assume that the solution is a fixed point of some operator T, and replace x with Tx:

$$Tx(t) = v(t) + \mu \int_{a}^{\tau} k(t, \tau) x(\tau) d\tau$$

Since k is continuous on R, and R is closed and bounded, then k is bounded:

$$\forall t, \tau \in R: |k(t,\tau)| \le c$$

And, $\forall x, y \in C[a, b]$ we have:

$$d(Tx, Ty) = |Tx(t) - Ty(t)|$$

$$= |\mu| |\int_a^t k(t, \tau)[x(\tau) - y(\tau)] d\tau|$$

$$\leq |\mu| \int_a^t |k(t, \tau)| |x(\tau) - y(\tau)| d\tau$$

$$\leq |\mu| c d(x, y) \int_a^t d\tau$$

$$\leq |\mu| c (t - a) d(x, y)$$

$$(1)$$

Next, we show by induction that:

$$|T^m x(t) - T^m y(t)| \le |\mu|^m c^m \frac{(t-a)^m}{m!}$$
 (2)

Base case (1): Holds by (1).

Inductive step (m+1):

Suppose the I.H. holds for m, then:

$$\begin{split} |T^{k+1}x(t) - T^{k+1}y(t)| &= |\mu| \mid \int_a^t k(t,\tau) \left[T^m x(t) - T^m y(t) \right] d\tau \mid \\ &\leq |\mu| \ c \int_a^t \ |\mu|^m c^m \frac{(t-a)^m}{m!} d\tau \\ &= |\mu|^{m+1} \ c^{m+1} \, \frac{(t-a)^{m+1}}{(m+1)!} d(x,y). \end{split}$$

Using $t - a \le b - a$ on the RHS of (2), and taking the max over $t \in J$ on the LHS, we get:

$$d(T^m x, T^m y) \le \alpha_m d(x, y)$$
 where $\alpha_m = |\mu|^m c^m \frac{(b-a)^2}{m!}$

This implies that for any fixed μ and sufficiently large m, $\alpha < 1$. Hence T^m is a contraction on C[a, b] and has a unique fixed point.