Chapter 8. Generalized linear model (I)

8.1 Data and Statistical Models

(1) Types of data

data: numerical (quantitative) and categorical (qualitative)

- numerical: continuous and discrete

- categorical : nominal and ordinal

(2) Types of categorical data

- response: binary (dichotomous) and polytomous (polychotomous)

- categorical covariate : factor and level

(3) Types of models

- categorical response : logistic and log-linear

- continuous response : multiple linear regression and ANOVA

8.2 Exponential Family

(1) Definition

Let Y be r.v. with pdf

$$f(y; \theta, \phi) = \exp\left[\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right],$$

then Y belongs to an *exponential family* with *natural* (*canonical*) parameter θ if ϕ is known. Also, we assume that $a(\cdot)$, $b(\cdot)$, $c(\cdot, \cdot)$ are known functions.

(i) $N(\mu, \sigma^2)$ case

$$f(y;\theta,\phi) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\}$$
$$= \exp\left\{\frac{1}{\sigma^2} \left(y\mu - \frac{\mu^2}{2}\right) - \frac{1}{2} \left(\frac{y^2}{\sigma^2} + \log(2\pi\sigma^2)\right)\right\}$$

so that $\theta = \mu$, $\phi = \sigma^2$ and

$$a(\phi) = \phi, \ b(\theta) = \frac{\theta^2}{2}, \ c(y, \ \phi) = -\frac{1}{2} \left\{ \frac{y^2}{\sigma^2} + log(2\pi\sigma^2) \right\}$$

(ii) $P(\lambda)$ case

$$f(y; \theta, \phi) = \lambda^y e^{-\lambda} y!, \quad y = 0, 1, 2, \cdots$$

= $\exp(y \log \lambda - \lambda - \log y!)$

so that $\theta = log\lambda$, $\phi = 1$ and

$$a(\phi) = 1, \ b(\theta) = e^{\theta}, \ c(y, \ \phi) = -\log y!$$

$$-59 -$$

(iii) $B(n, \pi)$ case

$$f(y;\theta,\phi) = \binom{n}{y} \pi^{y} (1-\pi)^{n-y}, \quad y = 0, 1, \dots, n$$

$$= \exp\left\{\frac{\frac{1}{n} y log\left(\frac{\pi}{1-\pi}\right) + log(1-\pi)}{1/n} + log\left(\frac{n}{y}\right)\right\}$$

so that
$$\theta=\log\left(\frac{\pi}{1-\pi}\right)$$
, $\phi=1/n$ and
$$a(\phi)=\phi,\ b(\theta)=\log(1+e^{\theta}),\ c(y,\ \phi)=\log\left(\frac{1/\phi}{y}\right)$$

(2) Properties

Let

$$l(\theta; \phi, y) = log f(y; \theta, \phi)$$

be the log-likelihood function, then we have the following theorem, called *Bartlett identity*.

Theorem 8.1

$$E\left(\frac{\partial l}{\partial \theta}\right) = 0, \ E\left(\frac{\partial^2 l}{\partial \theta^2}\right) + E\left[\left(\frac{\partial l}{\partial \theta}\right)^2\right] = 0$$

(Proof)

$$E\left(\frac{\partial l}{\partial \theta}\right) = \int \frac{1}{f(y;\theta)} \left(\frac{\partial}{\partial \theta}\right) f(y;\theta) dy = \int \frac{\partial}{\partial \theta} f(y;\theta) dy = \frac{\partial}{\partial \theta} \int f(y;\theta) dy = 0$$
$$-60 -$$

$$\frac{\partial^2 l}{\partial \theta^2} = \frac{\partial}{\partial \theta} \left(\frac{\frac{\partial}{\partial \theta} f(y; \theta)}{f(y; \theta)} \right) = \frac{\frac{\partial^2}{\partial \theta^2} f(y; \theta)}{f(y; \theta)} - \left\{ \frac{\frac{\partial}{\partial \theta} f(y; \theta)}{f(y; \theta)} \right\}^2$$

$$E\left(\frac{\partial^2 l}{\partial \theta^2}\right) = \int \frac{\partial^2}{\partial \theta^2} f(y;\theta) dy - E\left[\left(\frac{\partial l}{\partial \theta}\right)^2\right] = \frac{\partial^2}{\partial \theta^2} \int f(y;\theta) dy - E\left[\left(\frac{\partial l}{\partial \theta}\right)^2\right] = -E\left[\left(\frac{\partial l}{\partial \theta}\right)^2\right]$$

which completes the proof.

We call $U = \frac{\partial l}{\partial \theta}$ score function and

$$-E\left(\frac{\partial^2 l}{\partial \theta^2}\right) = E\left[\left(\frac{\partial l}{\partial \theta}\right)^2\right]$$

is called *Fisher information number*. Now, we apply the Bartlett identity in Theorem 8.1 to the exponential family. The log-likelihood function is

$$l(\theta; y) = \frac{\{y\theta - b(\theta)\}}{a(\phi)} + c(y, \phi)$$

and we have

$$\frac{\partial l}{\partial \theta} = \frac{\{y - b'(\theta)\}}{a(\phi)}, \quad \frac{\partial^2 l}{\partial \theta^2} = -\frac{b''(\theta)}{a(\phi)}$$

hence, we have

$$E(Y) = \mu = b'(\theta).$$

Also, from
$$-\frac{b''(\theta)}{a(\phi)} + \frac{Var(Y)}{a^2(\phi)} = 0$$
, we have
$$Var(Y) = b''(\theta)a(\phi).$$

We call $b''(\theta)$ variance function, and ϕ dispersion parameter. Further, we can express θ in terms of $\mu = E(Y)$, and we denote the variance function as $V(\mu)$.

8.3 Construction of GLMs

The *GLM* (*Generalized Linear Models*), suggested by Nelder and Wedderburn (1972), consists of 3 parts;

- 1. Y_1, \dots, Y_n are independent and belongs to an exponential family.
- 2. $\eta = \sum_{j=0}^{p-1} X_j \beta_j$ is called *linear predictor*, where $X_0 \equiv 1$.
- 3. There exists a function g, called a *link function*, s.t. $g(\mu_i) = \eta_i$, where η_i is the linear predictor and $\mu_i = E(Y_i)$. Also, g is assumed to be monotone and differentiable

The classical multiple linear model can be regarded as a special case of GLM with

$$\mu_i = \sum_{j=0}^{p-1} x_{ij} \, \beta_j = \eta_i$$

$$- 62 -$$

with identity link function.

For the binomial response, 3 popular link functions are as follows;

1. logit :
$$\eta = log\{\mu/(1-\mu)\}, \ 0 < \mu < 1$$

- 2. probit : $\eta = \Phi^{-1}(\mu)$, $\Phi(\cdot)$
- 3. complementary log-log : $\eta = log\{-log(1-\mu)\}$

A link function satisfying $\theta = \eta$ is called *natural* (*canonical*) *link*, and natural link functions for each distribution is as follows;

normal :
$$\eta = \mu$$

Poisson :
$$\eta = log\mu$$

binomial :
$$\eta = log\{\mu/(1-\mu)\}$$

gamma :
$$\eta = \mu^{-1}$$

inverse Gaussian :
$$\eta = \mu^{-2}$$

Also, properties of exponential families are summarized in the followings;

distribution	Normal	Poisson	Binomial	Gamma	Inverse Gaussian
notation	$N(\mu, \sigma^2)$	$P(\mu)$	$B(m, \pi)$	$G(\mu, \nu)$	$IG(\mu, \sigma^2)$
dispersion	σ^2	1	1/ <i>m</i>	$s\nu^{-1}$	σ^2
$b(\theta)$	$\theta^2/2$	e^{θ}	$log(1+e^{\theta})$	$-log(-\theta)$	$-(-2\theta)^{1/2}$
$\mu(\theta)$	θ	e^{θ}	$e^{\theta}/(1+e^{\theta})$	$-1/\theta$	$(-2\theta)^-1/2$
natural link	identity	log	logit	inverse	$1/\mu^2$
$V(\mu)$	1	μ	$\mu(1-\mu)$	μ^2	μ^3

8.4 Estimation of Regression Coefficients

In the GLMs, estimation of $oldsymbol{eta}$ is done by the maximum likelihood method. But, the score function

$$\frac{\partial l}{\partial \boldsymbol{\beta}} = \left(\frac{\partial l}{\partial \beta_j}\right)_{j=0, \dots, p-1} = \mathbf{0}$$

does not give an explicit solution for β . Therefore, we use iteration methods such as Newton-Raphson method or Fisher's scoring method. In fact, they are based on the Taylor expansion. The 1st Taylor expansion of f(y) about $y=\mu$ is

$$f(y) \simeq f(\mu) + (y - \mu)f'(\mu)$$

and we apply it to $\partial l / \partial \beta_j$, then we have

$$0 = \frac{\partial l}{\partial \beta_j}$$

$$\simeq \frac{\partial l}{\partial \beta_j}\Big|_{\beta_j = \hat{\beta}_j^{(0)}} + (\beta_j - \hat{\beta}_j^{(0)}) \cdot \frac{\partial^2 l}{\partial \beta_j^2}\Big|_{\beta_j = \hat{\beta}_j^{(0)}}, \quad j = 0, \dots, p-1,$$

where $\hat{\beta}_{j}^{(0)}$ is an initial value. In matrix notation for β_{j} $j=0, 1, \cdots, p-1$,

$$\begin{array}{ll} \mathbf{0} &= \frac{\partial l}{\partial \boldsymbol{\beta}} \\ &\simeq & \frac{\partial l}{\partial \boldsymbol{\beta}} \Big]_{\boldsymbol{\beta} = \boldsymbol{\hat{\beta}}^{(0)}} + \frac{\partial^2 l}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} \Big]_{\boldsymbol{\beta} = \boldsymbol{\hat{\beta}}^{(0)}} \cdot (\boldsymbol{\beta} - \boldsymbol{\hat{\beta}}^{(0)}) \end{array}$$

and let the solution of $\boldsymbol{\beta}$ in the above equation be $\boldsymbol{\hat{\beta}}^{(1)}$, then

$$\hat{\boldsymbol{\beta}}^{(1)} = \hat{\boldsymbol{\beta}}^{(0)} - A^{-1}(\hat{\boldsymbol{\beta}}^{(0)}) \cdot \boldsymbol{U}(\hat{\boldsymbol{\beta}}^{(0)}),$$

where $A^{-1}(\boldsymbol{\hat{\beta}}^{(0)})$ is the inverse matrix of $p \times p$ matrix

$$A(oldsymbol{\hat{oldsymbol{eta}}}^{(0)}) = -\left[rac{\partial^2 l}{\partial oldsymbol{eta} \partial oldsymbol{eta}'}igg|_{oldsymbol{eta} = oldsymbol{\hat{oldsymbol{eta}}}^{(0)}}
ight]$$

and $oldsymbol{U}(oldsymbol{\hat{eta}}^{(0)})$ is given by

$$\boldsymbol{U}(\boldsymbol{\hat{\beta}}^{(0)}) = \left[\frac{\partial l}{\partial \boldsymbol{\beta}} \Big|_{\boldsymbol{\beta} = \boldsymbol{\hat{\beta}}^{(0)}} \right]$$

Next, we iterate the above process using $\hat{\pmb{\beta}}^{(1)}$ as an initial vector, and we have

$$\hat{\boldsymbol{\beta}}^{(t+1)} = \hat{\boldsymbol{\beta}}^{(t)} + A^{-1}(\hat{\boldsymbol{\beta}}^{(t)}) \cdot \boldsymbol{U}(\hat{\boldsymbol{\beta}}^{(t)}), \quad t = 0, 1, \cdots$$

We continue this process until $\hat{\pmb{\beta}}^{(t+1)}$ is close enough to $\hat{\pmb{\beta}}^{(t)}$. If we use

$$I = -E\left(\frac{\partial^2 l}{\partial \beta \partial \beta'}\right)$$

instead of *A*, then it is called Fisher's scoring method.

Theorem 8.2 We can express

$$U = X'W(y-\mu)\frac{\partial \eta}{\partial \mu},$$

where
$$W=\mathrm{diag}(w_{ii})=V^{-1}\,\left(rac{\partial\mu}{\partial\eta}
ight)^2$$
 and $V=a(\phi)\mathrm{diag}(
u_{ii}).$ Also, $I=X'WX$

(Proof) First, we compute $\mathbf{U} = (U_0, \cdots, U_{p-1})'$, where

$$U_{j} = \frac{\partial l}{\partial \beta_{j}} = \sum \frac{\partial l_{i}}{\partial \beta_{j}} = \sum \frac{\partial l_{i}}{\partial \theta} \frac{\partial \theta}{\partial \mu_{i}} \frac{\partial \mu_{i}}{\partial \eta_{i}} \frac{\partial \eta_{i}}{\partial \beta_{j}}$$

and

$$l = \sum l_i = \sum [y_i \theta - b_i(\theta) a(\phi) + c(y_i, \phi)] = \frac{1}{a(\phi)} \sum \{y_i \theta - b(\theta)\} + \sum c(y_i, \phi)$$

and hence

$$\frac{\partial l_i}{\partial \theta} = \frac{1}{a(\phi)} (y_i - b'(\theta)) = \frac{1}{a(\phi)} (y_i - \mu_i)$$

$$\frac{\partial \theta}{\partial \mu_i} = \left(\frac{\partial \mu_i}{\partial \theta}\right)^{-1} = \left(\frac{\partial b_i'(\theta)}{\partial \theta}\right)^{-1} = \frac{1}{\nu_{ii}}$$

$$\frac{\partial \eta_i}{\partial \beta_j} = x_{ij}$$

so that

$$U_{j} = \sum_{i} \frac{(y_{i} - \mu_{i})}{a(\phi)} \frac{1}{\nu_{ii}} \frac{\partial \mu_{i}}{\partial \eta_{i}} x_{ij} = \sum_{i} (y_{i} - \mu_{i}) w_{ii} \frac{\partial \eta_{i}}{\partial \mu_{i}} x_{ij},$$

where
$$w_{ii} = \left(\frac{\partial \mu_i}{\partial \eta_i}\right)^2 / a(\phi) \nu_{ii}$$
.

On the other hand, we compute $I = (I_{jk})$, j, k = 0, \cdots , p - 1, then

$$I_{jk} = -E\left(\frac{\partial^{2}l}{\partial\beta_{j}\partial\beta_{k}}\right) = -E\left(\frac{\partial U_{j}}{\partial\beta_{k}}\right)$$

$$= -E\left[\frac{\partial}{\partial\beta_{k}}\left\{\sum (y_{i} - \mu_{i})w_{ii}\frac{\partial\eta_{i}}{\partial\mu_{i}}x_{ij}\right\}\right] = \sum \frac{\partial\mu_{i}}{\partial\beta_{k}}w_{ii}\frac{\partial\eta_{i}}{\partial\mu_{i}}x_{ij}$$

$$= \sum \frac{\partial\eta_{i}}{\partial\beta_{k}}w_{ii}x_{ij} = \sum x_{ik}w_{ii}x_{ij}$$

which completes the proof.

Now, the Fisher's scoring method is

$$\boldsymbol{\hat{\beta}}^{(t+1)} = \boldsymbol{\hat{\beta}}^{(t)} + \boldsymbol{I}^{-1}(\boldsymbol{\hat{\beta}}^{(t)})\boldsymbol{U}(\boldsymbol{\hat{\beta}}^{(t)})$$

and if we multiply $I(\boldsymbol{\hat{\beta}}^{(t)})$ on both sides, we have

$$I(\boldsymbol{\hat{eta}}^{(t)}) \boldsymbol{\hat{eta}}^{(t+1)} = I(\boldsymbol{\hat{eta}}^{(t)}) \boldsymbol{\hat{eta}}^{(t)} + oldsymbol{U}(\boldsymbol{\hat{eta}}^{(t)})$$

Now, if we use the result of Theorem 8.2, then the left hand side becomes

$$X'WX\hat{\boldsymbol{\beta}}^{(t+1)}$$

and the right hand side becomes

$$X'WX\hat{\pmb{\beta}}^{(t)} + X'W(y-\hat{\pmb{\mu}})\frac{\partial \eta}{\partial \mu} = X'W\left\{\hat{\pmb{\eta}}^{(t)} + (y-\hat{\pmb{\mu}}^{(t)})\frac{\partial \eta}{\partial \mu}\right\} = X'Wz^{(t)},$$

where $\hat{\pmb{\eta}}^{(t)} = \pmb{X} \hat{\pmb{\beta}}^{(t)}$, $\hat{\pmb{\mu}}^{(t)} = g^{-1}(\hat{\pmb{\eta}}^{(t)})$ and

$$z^{(t)} = \hat{\boldsymbol{\eta}}^{(t)} + (\boldsymbol{y} - \hat{\boldsymbol{\mu}}^{(t)}) \frac{\partial \eta}{\partial \mu}$$
$$- 67 -$$

which is called adjusted dependent variable. Finally, we have

$$X'WX\hat{\beta}^{(t+1)} = X'Wz^{(t)}, \quad t = 0, 1, \cdots$$

and it has the same form as the weighted LSE, so that it is called *IRLS* (*Iterative Reweighted Least Squares*).

8.5 Goodness-of-Fit Measures for GLMs

There are two types of goodness-of-fit measures for GLMs : deviance and Pearson's chi-square statistic

(1) Deviance

Let $\hat{\beta}_{max}$ and $\hat{\beta}$ be estimators of β under the maximal model and the current model, respectively. Also, let L be the likelihood function. Then, the likelihood ratio test statistic is

$$\lambda = \frac{L(\hat{\boldsymbol{\beta}}_{max}; y)}{L(\hat{\boldsymbol{\beta}}; y)}.$$

If the current model is good, then λ will be close to 1, and if not, then it will be very large. Based on this idea, Nelder and Wedderburn (1972 suggested the *deviance*, defined as

$$D = 2\log \lambda = 2[l(\hat{\beta}_{max}; y) - l(\hat{\beta}; y)]$$

It can be shown that the deviance D is asymptotically χ^2 distribution with d.f. n-p if the model is good (i.e., under the null hypothesis). Hence, we conclude (reject the null hypothesis) that the current model is not good if $D > \chi^2_{\alpha}(n-p)$.

Ex.8.5 (p.313) (Normal dist.) Let Y_1, \dots, Y_n be independent $N(\mu_i, \sigma^2)$, then the log-likelihood becomes

$$l(\beta; y) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu_i)^2 - \frac{n}{2} log(2\pi\sigma^2)$$

Now, under the maximal model, we have $E(Y_i) = \mu_i$, $i = 1, \dots, n$, then the MLE of μ_i is $\hat{\mu}_i = y_i$. Therefore, the log-likelihood under the maximal model is

$$l(\hat{\boldsymbol{\beta}}_{max}; \boldsymbol{y}) = -\frac{n}{2}log(2\pi\sigma^2)$$

On the other hand, if we assume that the current model is $E(Y_i) = \mu$ (i.e., one parameter), then the MLE of μ is $\hat{\mu} = \bar{y}$. Hence, the log-likelihood under the current model becomes

$$l(\hat{\beta}; y) = -\frac{1}{2\sigma^2} \sum (y_i - \bar{y})^2 - \frac{n}{2} log(2\pi\sigma^2).$$

Therefore, the deviance is

$$D = 2 \left[l(\hat{\boldsymbol{\beta}}_{max}; \boldsymbol{y}) - l(\hat{\boldsymbol{\beta}}; \boldsymbol{y}) \right] = \frac{1}{\sigma^2} \sum (y_i - \bar{y})^2 - 69 -$$

which follows exactly χ^2 distribution with d.f. n-1.

Ex.8.6 (p.314) (Poisson dist.) Let Y_1, \dots, Y_n be independent $P(\lambda_i)$, then the log-likelihood function is

$$l(\boldsymbol{\beta}; \boldsymbol{y}) = \sum y_i \log \lambda_i - \sum \lambda_i - \sum \log y_i!$$

and under the maximal model $E(Y_i) = \lambda_i$, the MLE is $\hat{\lambda}_i = y_i$, so that

$$l(\hat{\boldsymbol{\beta}}_{max}; \boldsymbol{y}) = \sum y_i log y_i - \sum y_i - \sum log y_i!$$

On the other hand, if we assume that the current model is $E(Y_i) = \lambda$ (i.e., one parameter), then the MLE of λ is $\hat{\lambda} = \bar{y}$. Hence, the log-likelihood under the current model becomes

$$l(\hat{\boldsymbol{\beta}}; \boldsymbol{y}) = \sum y_i log \bar{y} - n\bar{y} - \sum log y_i!$$

Hence, the deviance is

$$D = 2 \left[\sum y_i log y_i - \sum y_i log \bar{y} \right] = 2 \sum y_i log (y_i / \bar{y})$$

which follows approximately $\chi^2(n-1)$.

For the normal distribution with p parameters β_0 , β_1 , \cdots , β_{p-1} in the current model, let the MLE of μ_i , $i=1,\cdots,n$ be $\hat{\mu}_i$, then the log-likelihood is

$$l(\hat{\boldsymbol{\beta}}; \boldsymbol{y}) = -\frac{1}{2\sigma^2} \sum (y_i - \hat{\mu}_i)^2 - \frac{n}{2} log(2\pi\sigma^2)$$
$$-70 -$$

and, therefore, the deviance is

$$D = 2[l(\hat{\beta}_{max}; y) - l(\hat{\beta}; y)] = \sum (y_i - \hat{\mu}_i)^2 / \sigma^2$$

which is exactly the same as SSE/σ^2 in the multiple regression model, and follows $\chi^2(n-p)$.

Here are deviance for the distributions in the exponential family.

Normal: $\sum (y_i - \hat{\mu}_i)^2 / \sigma^2$

Poisson : $2\sum\{y_ilog(y_i / \hat{\mu}_i) - (y_i - \hat{\mu}_i)\}$

Binomial : $2\sum \{y_i log(y_i / \hat{\mu}_i) + (m_i - y_i) log[(m_i - y_i) / (m_i - \hat{\mu}_i)\}$

Gamma : $2\sum \{-log(y_i / \hat{\mu}_i) + (y_i - \hat{\mu}_i) / \hat{\mu}_i\}$

Inverse gaussian : $\sum (y_i - \hat{\mu}_i)^2 / (\hat{\mu}_i^2 y_i)$

(2) Pearson's χ^2 statistic

Another goodness-of-fit measure in the GLMs is the Pearson's χ^2 defined as

$$X^2 = \sum (y_i - \hat{\mu}_i)^2 / V(\hat{\mu}_i)$$

where $V(\hat{\mu}_i)$ is the variance function. It can be shown that X^2 is asymptotically $\chi^2(n-p)$. Under the Gaussian distribution, $D=X^2$ and X^2 follows exactly $\chi^2(n-p)$.

8.6 Testing and Residuals

(1) Testing

Assume that the current model consists of *p*-parameters $\boldsymbol{\beta} = (\beta_0, \dots, \beta_{q-1}, \beta_q, \dots, \beta_{p-1})'$, and consider

$$H_0: \beta_q = \cdots = \beta_{p-1} = 0$$

Hence, under H_0 , the model consists of q parameters. Now, the test statistics is the difference between (D_1) (deviance under the current model) and (D_0) (deviance under the null model) Let $\hat{\beta}_0$ and $\hat{\beta}_1$ be estimates of β under the null model and the current model, respectively. Then,

$$\Delta D = D_0 - D_1$$

$$= 2[l(\hat{\beta}_{max}; y) - l(\hat{\beta}_0; y)] - 2[l(\hat{\beta}_{max}; y) - l(\hat{\beta}_1; y)]$$

$$= 2[l(\hat{\beta}_1; y) - l(\hat{\beta}_0; y)].$$

Since D_1 is asymptotically $\chi^2(n-p)$, and D_0 is asymptotically $\chi^2(n-q)$, it can be shown that ΔD is asymptotically $\chi^2(p-q)$. Therefore, we reject H_0 if $\Delta D > \chi^2_{\alpha}(p-q)$.

- (2) Residuals
- (i) Pearson residual

The Pearson residual is defined as

$$r_{Pi} = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$$

and note that

$$X^2 = \sum_{i=1}^n r_{Pi}^2$$

(ii) Anscombe residual

Since the Pearson residual do not follow the normal distribution, Anscombe suggested a transformation $A(\ \cdot\)$, defined as

$$A(\ \cdot\)=\int V^{-1/3}(\mu)d\mu$$

For example, in the Poisson distribution, $V(\mu) = \mu$, so that

$$\int \mu^{-1/3} d\mu = \frac{3}{2} \mu^{2/3}$$

and by the delta method, we have $\sqrt{V(A(Y))} \approx A'(\mu) \sqrt{V(\mu)} = \mu^{-1/3} \mu^{1/2} = \mu^{1/6}$. Hence,

$$r_{Ai} = rac{rac{3}{2}(y_i^{2/3} - \hat{\mu}_i^{2/3})}{\hat{\mu}_i^{1/6}}$$

(iii) deviance residual

Recall that $D = \sum d_i$, and the deviance residual is defined as

$$r_{Di} = \operatorname{sign}(y_i - \hat{\mu}_i) \sqrt{d_i}$$

For example, in the Poisson case,

$$r_{Di} = \operatorname{sign}(y_i - \hat{\mu}_i) \left\{ 2(y_i \log\left(\frac{y_i}{\hat{\mu}_i}\right) - y_i + \hat{\mu}_i) \right\}^{1/2}$$

8.7 ANOVA models

(1) ANOVA models

analysis of variance model : continuous response and categorical covariates

one covariate case : one-factor experiment (one-way classification)
two covariates case : two-factor experiment (two-way classification)

(2) Estimation

We can write the ANOVA model as a multiple linear regression model $y=X\beta+\varepsilon$, however, X is not a full-rank matrix, so that X'X is singular. Therefore, we cannot have the unique solution for β in the normal equation;

$$X'X\hat{\beta}=X'y$$

In this case, we have to assign some constraints. Assume that X is $n \times p$ (p < n) matrix. If q column vectors are linearly independent among p column vectors, then we have to assign p - q constraints to β . There are two methods of assigning constraints; sum - to - zero constraint and corner - point constraint.

First, we consider oneway ANOVA, and data structure for oneway ANOVA with *J* levels are given in Table 8.5.

Data structure for oneway ANOVA with J levels

-	level		response		total
-	A 1	Y ₁₁	Y ₁₂	 γ ₁	Υ ₁
	Δ ₂	γ_{-1}	V	 V_2	ν ₂ .
	A_2	121	1 22	 Y_{2n_2}	12.
	:	:	:	:	:
	A_I	Y_{I1}	Y_{I2}	 Y_{In_I}	Y_I .

We assume that $\varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$, and let $N = \sum_{j=1}^{J} n_j$ and

$$y = (Y_{11}, \dots, Y_{n1}, \dots, Y_{J1}, \dots, Y_{Jn_I})'$$

Further, we assume that $n_j \equiv K$ for all $j = 1, \dots, J$, so that N = JK.

Also, note that the deviance can be written as

$$D = \frac{1}{\sigma^2} \sum (y_i - \hat{y}_i)^2 = \frac{1}{\sigma^2} (y'y - \hat{\beta}'X'y)$$

(i) sum-to-zero constraint

Note that we may write

$$E(Y_{jk}) = \mu + \alpha_j, \quad j = 1, \dots, J; \quad k = 1, \dots, K,$$

where μ is an overall effect of the response and α_j is the relative effect of jth level. When we write $y=X\beta+\varepsilon$, then

$$X \\ JK \times (J+1) = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{1} \end{bmatrix} , \quad \beta = \begin{bmatrix} \mu \\ \alpha_1 \\ \vdots \\ \alpha_J \end{bmatrix}$$

where $\mathbf{1} = (1, \dots, 1)'$ and $\mathbf{0} = (0, \dots, 0)'$ are K-vectors. Hence,

$$\frac{\mathbf{X}'\mathbf{X}}{(J+1)\times(J+1)} = \begin{bmatrix} N & K & \cdots & K \\ K & K & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ K & 0 & 0 & \cdots & K \end{bmatrix} , \quad \mathbf{X}'\mathbf{y} = \begin{bmatrix} Y_{\cdot \cdot} \\ Y_{1 \cdot} \\ \vdots \\ Y_{J \cdot} \end{bmatrix}$$

Note that the 1st column of X'X is sum of the other J columns, so that the rank of X'X is J, and therefore, we need one constraint on β . Here, we assign sum-to-zero-constraint, i.e., $\sum_{j=1}^{J} \alpha_j = 0$. Under this constraint,

$$\hat{\mu} = \frac{Y_{..}}{N} = \bar{y}_{..}, \quad \hat{\alpha}_j = \frac{Y_{j.}}{K} - \frac{Y_{..}}{N} = \bar{y}_{j.} - \bar{y}_{..}$$

and

$$\hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{y} = \frac{Y_{..}^2}{N} + \sum_{i=1}^{J} Y_{j.} \left(\frac{Y_{j.}}{K} - \frac{Y_{..}}{N} \right) = \frac{1}{K} \sum_{i=1}^{J} Y_{j.}^2$$

In this estimation, we have $\sum_{j=1}^{J} \hat{\alpha}_j = 0$ due to the constraint $\sum_{j=1}^{J} \alpha_j = 0$.

(ii) corner-point constraint

The corner point constraint assumes that any specific relative effect α_j is zero. For example, if we need one constraint, then we may assume $\alpha_1 = 0$. Under this constraint, we have

$$X$$

$$JK \times J = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & \cdots & 1
\end{bmatrix}, \quad \beta = \begin{bmatrix} \mu \\ \alpha_2 \\ \vdots \\ \alpha_J \end{bmatrix}$$

and therefore,

$$\mathbf{X}'\mathbf{X} \\
J \times J = \begin{bmatrix}
N & K & K & \cdots & K \\
K & K & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
K & 0 & 0 & \cdots & K
\end{bmatrix}, \quad \mathbf{X}'\mathbf{y} = \begin{bmatrix}
Y \\
Y_2 \\
\vdots \\
Y_{J}
\end{bmatrix}$$

Now, X'X becomes non-singular and the estimator of β is

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\mu} \\ \hat{\alpha}_2 \\ \vdots \\ \hat{\alpha}_J \end{bmatrix} = \frac{1}{K} \begin{bmatrix} Y_1. \\ Y_2. - Y_1. \\ \vdots \\ Y_J. - Y_1. \end{bmatrix}$$

Also, we have

$$\hat{\beta}'X'y = \frac{1}{K} \left[Y_{..} Y_{1.} + \sum_{j=2}^{J} Y_{j.} (Y_{j.} - Y_{1.}) \right] = \frac{1}{K} \sum_{j=1}^{J} Y_{j.}^{2}$$

Note that $D = (y'y - \hat{\beta}'X'y)/\sigma^2$, so that the deviance based on both methods (sum-to-zero constraint and the corner point constraint) are the same.

(3) Testing

To test whether there are treatment effects or not, consider

$$H_0: \alpha_1 = \cdots = \alpha_I = 0$$

then, under H_0 , we have $E(Y_{jk}) = \mu$, so that X'X = N, $X'y = Y_{\cdot \cdot \cdot}$, $\hat{\beta} = \hat{\mu} = Y_{\cdot \cdot \cdot} / N$. Hence,

$$D_0 = \frac{1}{\sigma^2} (y'y - \hat{\beta}'X'y) = \frac{1}{\sigma^2} \left(\sum_{j=1}^{J} \sum_{k=1}^{K} Y_{jk}^2 - \frac{Y_{..}^2}{N} \right)$$

which is $\chi^2(N-1)$. On the other hand, under the current model,

$$D_1 = \frac{1}{\sigma^2} (y'y - \hat{\beta}'X'y) = \frac{1}{\sigma^2} \left(\sum_{j=1}^J \sum_{k=1}^K Y_{jk}^2 - \frac{1}{K} \sum_{j=1}^J Y_{j}^2 \right)$$

which is $\chi^2(N-J)$. Therefore, the test statistic is

$$\Delta D = D_0 - D_1 = \frac{1}{\sigma^2} \left(\frac{1}{K} \sum_{j=1}^{J} Y_{j}^2 - \frac{1}{N} Y_{..}^2 \right)$$

which is $\chi^2(J-1)$. Hence, if σ^2 is known, then we reject H_0 if

$$\Delta D > \chi_{\alpha}^2 (J-1)$$

If σ^2 is unknown, we use F – statistic, i.e,

$$F = \frac{D_0 - D_1}{(N-1) - (N-J)} / \frac{D_1}{(N-J)}$$

which follows F(J-1, N-J) distribution. Hence, we reject H_0 if $F > F_{\alpha}(J-1, N-J)$.

Ex.8.8 (p.321)

Heights of a plant for 3 types of fertilizers

	0 1		1		
A	4.17	5.58	5.18	6.11	
В	4.81	4.17	4.41	3.59	
C	6.31	5.12	5.54	5.50	

In this data, J = 3, K = 4, N = 12, and the ANOVA model is

$$E(Y_{jk}) = \mu + \alpha_j$$
, $j = 1, 2, 3; k = 1, 2, 3, 4$

and X and β are given by

$$X = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, \quad \beta = \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

and therefore,

$$X'X = \begin{bmatrix} 12 & 4 & 4 & 4 \\ 4 & 4 & 0 & 0 \\ 4 & 0 & 4 & 0 \\ 4 & 0 & 0 & 4 \end{bmatrix} , \quad X'y = \begin{bmatrix} Y_{\cdot \cdot} \\ Y_{1 \cdot} \\ Y_{2 \cdot} \\ Y_{3 \cdot} \end{bmatrix} = \begin{bmatrix} 60.49 \\ 21.04 \\ 16.98 \\ 22.47 \end{bmatrix}$$

Since X'X is singular, we assign the sum-to-zero constraint, $\alpha_1 + \alpha_2 + \alpha_3 =$

0, then

$$\hat{\beta} = \begin{bmatrix} \bar{Y}_{..} \\ \bar{Y}_{1.} - \bar{Y}_{..} \\ \bar{Y}_{2.} - \bar{Y}_{..} \\ \bar{Y}_{3.} - \bar{Y}_{..} \end{bmatrix} = \begin{bmatrix} 5.04 \\ 0.22 \\ -0.80 \\ 0.58 \end{bmatrix}$$

Also, we must have $\hat{\alpha}_1 + \hat{\alpha}_2 + \hat{\alpha}_3 = 0$. Now, $\hat{\beta}' X' y = 308.95$ gives $D = (y'y - \hat{\beta}' X' y) / \sigma^2 = (312.52 - 308.95) / \sigma^2 = 3.57 / \sigma^2$.

Next, under the corner-point constraint $\alpha_1 = 0$, X and β are given by

$$X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} , \quad \beta = \begin{bmatrix} \mu \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

and therefore,

$$X'X = \begin{bmatrix} 12 & 4 & 4 \\ 4 & 4 & 0 \\ 4 & 0 & 4 \end{bmatrix}$$
, $X'y = \begin{bmatrix} Y_{\cdot \cdot} \\ Y_{2 \cdot} \\ Y_{3 \cdot} \end{bmatrix} = \begin{bmatrix} 60.49 \\ 16.98 \\ 22.47 \end{bmatrix}$

Hence,

$$\hat{\beta} = \begin{bmatrix} \bar{Y}_{1.} \\ \bar{Y}_{2.} - \bar{Y}_{1.} \\ \bar{Y}_{3.} - \bar{Y}_{1.} \end{bmatrix} = \begin{bmatrix} 5.26 \\ -1.02 \\ 0.36 \end{bmatrix}$$

$$-80 -$$

Note that $\hat{\beta}'X'y = 308.95$ which is the same as the value under sum-to-zero constraint.

Now, consider H_0 : $\alpha_1 = \alpha_2 = \alpha_3 = 0$, then the deviance under H_0 is

$$D_0 = \frac{1}{\sigma^2} \left(\sum_{j=1}^3 \sum_{k=1}^4 Y_{jk}^2 - \frac{Y_{..}^2}{12} \right) = 7.60 / \sigma^2$$

so that $\Delta D = D_0 - D_1 = 4.03$ / σ^2 . Since σ^2 is unknown, we use *F*-statistic, i.e.,

$$F = \frac{(4.03 / \sigma^2)}{(11 - 9)} / \frac{(3.57 / \sigma^2)}{9} = 5.08$$

which is larger than $F_{.05}(2, 9) = 4.26$, we reject H_0 . On the other hand, if we replace σ^2 in ΔD by its estimator 3.57/9 = 0.40, the we have $\Delta D = 10.08$ which is larger than $\chi^2_{.05}(2) = 5.99$. Therefore, we have the same result as F-statistic.

ANOVA table of the heights of a plant for 3 fertilizers

	1.0	CC	MC	Г	
S.V.	a.r.	55	IVI5	r	
treatment	2	4.03	2.02	5.08	
error	9	3.57	0.40		
total	11	7.60			

Ex.8.9 (p.324)

Now, we extend to twoway classification defined as

$$Y_{jkl} = \mu + \alpha_j + \beta_k + (\alpha\beta)_{jk} + \varepsilon_{jkl}, j = 1, \dots, J; k = 1, \dots, K; l = 1, \dots, L,$$

where μ is an overall effect, α_j is the main effect of factor A, β_k is the main effect of factor B, and $(\alpha\beta)_{jk}$ is the *interaction effect* of factors A and B. At each level, L replications are done. The data in Table 8.8 represents the effect of temperature and pressure on the viscosity of tire. Here, factor A is the temperature with J=3, factor B is the pressure with K=1, and L=10 replications are done at each level. Therefore, the total number of observations is N=JKL=12.

Table 8.8 Temperature, pressure, and viscosity of tire

				,		
temperature pressure	B_1		B_2		total	
A_1	6.8	6.6	5.3	6.1	24.8	
A_2	7.5	7.4	7.2	6.5	28.6	
A_3	7.8	9.1	8.8	9.1	34.8	
·	45.2		43.0		88.2	

Now, we are interested in 3 questions;

A : Is there the effect of temperature?

B: Is there the effect of pressure?

I: Is there the interaction effect of temperature and pressure?

which can be modelled as follows;

$$A : Y_{jkl} = \mu + \alpha_j + \varepsilon_{jkl}$$

$$B : Y_{jkl} = \mu + \beta_k + \varepsilon_{jkl}$$

$$I : Y_{jkl} = \mu + \alpha_j + \beta_k + \varepsilon_{jkl}$$

Now, under the full model, we have

$$\beta = \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \beta_1 \\ \beta_2 \\ (\alpha\beta)_{11} \\ (\alpha\beta)_{12} \\ (\alpha\beta)_{21} \\ (\alpha\beta)_{31} \\ (\alpha\beta)_{32} \end{bmatrix}, \quad X'y = \begin{bmatrix} Y_{...} \\ Y_{1..} \\ Y_{2..} \\ Y_{3..} \\ Y_{.1.} \\ Y_{.2.} \\ Y_{11.} \\ Y_{12.} \\ Y_{21.} \\ Y_{22.} \\ Y_{31.} \\ Y_{32.} \end{bmatrix} = \begin{bmatrix} 88.2 \\ 24.8 \\ 28.6 \\ 34.8 \\ 45.2 \\ 43.0 \\ 13.4 \\ 11.4 \\ 14.9 \\ 13.7 \\ 16.9 \\ 17.9 \end{bmatrix}$$

Note that X is 12×12 matrix, however, only 6 column vectors are linearly independent. Therefore, we need 6 = 12 - 6 constraints. If we use the sum-to-zero constraints, then

$$\alpha_1 + \alpha_2 + \alpha_3 = 0 \qquad \beta_1 + \beta_2 = 0$$

$$(\alpha \beta)_{11} + (\alpha \beta)_{12} = 0 \qquad (\alpha \beta)_{21} + (\alpha \beta)_{22} = 0$$

$$(\alpha \beta)_{31} + (\alpha \beta)_{32} = 0 \qquad (\alpha \beta)_{11} + (\alpha \beta)_{21} + (\alpha \beta)_{31} = 0$$

Under this constraints, we have

$$\hat{\beta} = (7.35, -1.15, -0.2, 1.35, 0.18, -0.18, 0.32, -0.32, 0.12, -0.12, -0.43, 0.43)'$$
 and $\hat{\beta}' X' y = 662.62$.

On the other hand, the corner point constraints can be written as

$$\alpha_1 = \beta_1 = (\alpha \beta)_{11} = (\alpha \beta)_{12} = (\alpha \beta)_{21} = (\alpha \beta)_{31} = 0$$

and under this constraints, we have

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}, \quad \beta = \begin{bmatrix} \mu \\ \alpha_2 \\ \alpha_3 \\ \beta_2 \\ (\alpha\beta)_{22} \\ (\alpha\beta)_{32} \end{bmatrix}$$

$$X'y = \begin{bmatrix} Y_{...} \\ Y_{2}_{..} \\ Y_{3}_{..} \\ Y_{12}_{.} \\ Y_{22}_{.} \\ Y_{32}_{.} \end{bmatrix} = \begin{bmatrix} 88.2 \\ 28.6 \\ 34.8 \\ 43.0 \\ 13.7 \\ 17.9 \end{bmatrix}$$

Therefore, we have $\hat{\beta} = (X'X)^{-1}X'y = (6.7, 0.75, 1.75, -1.0, 0.4, 1.5)'$ and $\hat{\beta}'X'y = 662.62$ which is the same as the value obtained under the sum-to-zero constraints.

Finally, we can test 3 current models *A*, *B*, *I*, and these can be done by the following ANOVA table.

Table 8.9 ANOVA table for the viscosity of tire data

				,		
S.V.	d.f.	S.S.	MS	F		
<i>A</i> (temperature)	2	12.74	6.37	25.82		
B(pressure)	1	0.40	0.40	1.63		
$A \times B$	2	1.21	0.60	2.45		
error	6	1.48	0.25			
total	11	15.83				

We see that the main effect of temperature is significant, however, the main effect of pressure and the interaction effect of temperature and pressure are not significant.