6.2 a) $T_1 = -i\hbar \frac{d}{dq} R_1(\theta_1) \Big|_{\theta_1=0} = -i\hbar \frac{d}{d\theta_1} \Big(\begin{array}{c} 0 \\ 1 \\ she \theta_1 \\ \end{array} \begin{array}{c} cos \theta_1 \\ -sin \theta_1 \\ cos \theta_1 \\ \end{array} \Big) \Big|_{\theta_1=0}$ = -it (Oese 0 -1 coso, -sino,) = -it (Oese 0 -1 coso, -sino,) $U_1 = -i\hbar \frac{d}{d\varphi_1} B_1(\varphi_1) |_{\Psi_1 = 0} = -i\hbar \frac{d}{d\varphi_2} \left(\frac{\cosh(\psi_1)}{-\sinh(\psi_1)} - \frac{\sinh(\psi_1)}{\cosh(\psi_1)} \right)$ $= -i\hbar \left(\frac{\sinh(\psi_1)}{-\cosh(\psi_1)} - \frac{\sinh(\psi_1)}{\sinh(\psi_1)} \right) = -i\hbar \left(\frac{\partial}{\partial \varphi_2} - \frac{\partial}{\partial \varphi_2} \right)$ O_{2xx} b) [J, K] = J, K, - K, J, = -t' | Orx 0 -1 | Orx) + h' (0, -1) | Orx $= \frac{1}{100} \left(\frac{O_{242}}{O_{242}} \right) + \frac{1}{100} \left(\frac{O_{242}}{O_{242}} \right) = 0$

Hilroy