Short-range correlation physics from operator evolution

Anthony Tropiano¹, Dick Furnstahl¹, Scott Bogner²

¹Ohio State University, ²Michigan State University

APS DNP Meeting – Virtual Meeting October 30, 2020

ajt, S.K. Bogner, and R.J. Furnstahl, arXiv:2006.11186 Phys. Rev. C 102, 034005 (2020)

Motivation

- Recent experiments have been able to isolate processes where short-range correlation (SRC) physics is dominant and well described by SRC phenomenology
- High RG resolution description of SRC physics
 - SRC pairs are components in the nuclear wave function with relative momenta above the Fermi momentum

Motivation

- Recent experiments have been able to isolate processes where short-range correlation (SRC) physics is dominant and well described by SRC phenomenology
- High RG resolution description of SRC physics
 - SRC pairs are components in the nuclear wave function with relative momenta above the Fermi momentum
- Alternative viewpoint
 - Using renormalization group (RG) methods we can tune the scale to low RG resolution
 - The SRC *physics* is shifted into the reaction operators from the nuclear wave function (which becomes soft)

Motivation

- Experiments often rely on soft nuclear structure components (e.g., nuclear shell model) but mismatch scales by using high RG resolution reaction operators
- One can use low RG resolution operators to consistently match scales in structure and reaction components

SRG formalism

 We use the similarity renormalization group (SRG) to evolve operators to low RG resolution

$$O(s) = U(s)O(0)U^{\dagger}(s)$$

where $s = 0 \rightarrow \infty$ and U(s) is unitary

• In practice, solve differential flow equation

$$\frac{dO(s)}{ds} = [\eta(s), O(s)]$$

with SRG generator $\eta(s) \equiv \frac{dU(s)}{ds}U^{\dagger}(s) = [G, H(s)]$ and Hamiltonian H(s)

SRG formalism

 We use the similarity renormalization group (SRG) to evolve operators to low RG resolution

$$O(s) = U(s)O(0)U^{\dagger}(s)$$

where $s = 0 \rightarrow \infty$ and U(s) is unitary

• In practice, solve differential flow equation

$$\frac{dO(s)}{ds} = [\eta(s), O(s)]$$

with SRG generator $\eta(s) \equiv \frac{dU(s)}{ds}U^{\dagger}(s) = [G, H(s)]$ and Hamiltonian H(s)

• G gives the scheme and s gives the scale

AV18 at low RG resolution

• $G = H_D(s)$ for banddiagonal decoupling and $G = H_{BD}(s)$ for block-diagonal decoupling scheme

Scheme

[fm]

0.75

0.5

0.25

-0.25

-0.5

-0.75

AV18 at low RG resolution

- $G = H_D(s)$ for banddiagonal decoupling and $G = H_{BD}(s)$ for block-diagonal decoupling scheme
- Parameters $\lambda = s^{-1/4}$ and Λ_{BD} describe the decoupling scale of the evolved Hamiltonian

[fm]

0.75

0.5

0.25

-0.25

-0.5

-0.75

Deuteron wave function at low RG resolution

- AV18 wave function has significant SRC
- What happens to the wave function at low RG resolution?

Fig. 2: SRG evolution of deuteron wave function in coordinate space for AV18 and Gezerlis N2LO¹.

Deuteron wave function at low RG resolution

- SRC physics in AV18 (scheme dependent) is gone from wave function at low RG resolution
- Deuteron wave functions become soft and D-state probability goes down
- Observables such as asymptotic D-S ratio are the same

Fig. 2: SRG evolution of deuteron wave function in coordinate space for AV18 and Gezerlis N2LO¹.

Connection to experiments

- In analyzing scattering observables, there is scale and scheme dependence in factorization of structure and reaction
- General problem for any matrix element $\langle \psi_f | O | \psi_i \rangle$

Connection to experiments

- In analyzing scattering observables, there is scale and scheme dependence in factorization of structure and reaction
- General problem for any matrix element $\langle \psi_f | O | \psi_i
 angle$
- Use low RG resolution wave function to calculate high-energy reactions by consistently evolving the operator

$$\langle \psi_f(0) | O(0) | \psi_i(0) \rangle = \langle \psi_f(s) | O(s) | \psi_i(s) \rangle$$

 Mismatch of scales leads to incorrect observable (e.g., theory knockout cross section compared to experiment)

• Use simple operator $a_q^{\dagger}a_q$ which projects onto relative momentum q $a_q^{\dagger}a_q \sim \delta(k-q)\delta(k'-q)$

Scheme

Fig. 3: SRG evolution of $a_q^{\dagger}a_q$ for q=3 fm⁻¹ in the 3S_1 - 3S_1 channel. Transformations done with AV18.

0.02

0.015

0.01

0.005

-0.005

-0.01

-0.015

-0.02

- Use simple operator $a_q^{\dagger}a_q$ which projects onto relative momentum q $a_q^{\dagger}a_q \sim \delta(k-q)\delta(k'-q)$
- Smooth induced contributions at low momentum reproduce UV physics of the original NN potential

0.02

0.015

0.01

0.005

-0.005

-0.01

-0.015

-0.02

Consistently evolve the wave functions!

Fig. 4: SRG evolution of $\psi_d^2(k)$.

Fig. 3: SRG evolution of $a_q^{\dagger}a_q$ for q=3 fm⁻¹ in the 3S_1 - 3S_1 channel. Transformations done with AV18.

[fm⁶]

 $\lambda = 1.5 \text{ fm}^{-1}$

 $\Lambda_{BD} = 1.5 \text{ fm}^{-1}$

0.02

0.015

0.01

0.005

-0.005

-0.01

-0.015

-0.02

- Expectation value $\langle \psi_d | a_q^\dagger a_q | \psi_d \rangle$ is driven to low-momentum
- Note, each panel gives the correct result from unitarity of transformation!

Fig. 5: SRG-evolved matrix elements of $\langle \psi | a_q^{\dagger} a_q | \psi \rangle$ with AV18 in the 3S_1 - 3S_1 channel and q=3 fm⁻¹.

- 10⁻³

10-4

10-5

10-6

 10^{-7}

10-8

• At high RG resolution 3S_1 - 3S_1 channel contributes to $\sim 25\%$ of the expectation value $\langle \psi_d | a_q^\dagger a_q | \psi_d \rangle$ (heavy contribution from tensor force)

Fig. 5: SRG-evolved matrix elements of $\langle \psi | a_q^{\dagger} a_q | \psi \rangle$ with AV18 in the 3S_1 - 3S_1 channel and q=3 fm⁻¹.

- At high RG resolution 3S_1 3S_1 channel contributes to $\sim 25\%$ of the expectation value $\langle \psi_d | a_q^\dagger a_q | \psi_d \rangle$ (heavy contribution from tensor force)
- At low RG resolution 3S_1 3S_1 channel contributes to $\sim 95\%$ of the expectation value $\langle \psi_d | a_q^\dagger a_q | \psi_d \rangle$

- 10⁻³

10-4

10-5

 10^{-6}

 10^{-7}

NN pair ratios

- At high RG resolution, the tensor force and the repulsive core of the NN interaction kicks nucleon pairs into SRCs
- Seen in the ratio of pairs produced where np dominates because the tensor force requires spin triplet pairs (pp are spin singlets)

Fig. 6: (a) Ratio of two-nucleon to single-nucleon electron-scattering cross sections for carbon as a function of missing momentum. (b) Fraction of np to p and pp to p pairs versus the relative momentum. Figure from CLAS collaboration publication¹.

NN pair ratios

- At low RG resolution, SRCs are suppressed in

Fig. 7: Ratio of 3S_1 to 1S_0 SRG transformations for low momentum k_0 and high momentum q

NN pair ratios

- At low RG resolution,
- Cs are suppressed in a potential $(b, 0)^{5}$ and $(b, 0)^{5}$ are potential $(b, 0)^{5}$ and $(b, 0)^{5}$ and $(b, 0)^{5}$ are potential $(b, 0)^{5}$ an Consider the ratio of the
- Reproduces the characteristics of the cross section ratios with low RG resolution operators

Fig. 7: Ratio of ${}^{3}S_{1}$ to ${}^{1}S_{0}$ SRG transformations for low momentum k_0 and high momentum q

Summary and outlook

- Results suggest that we can analyze high-energy nuclear reactions with low RG resolution structure (e.g., shell model) and evolved operator (and correct initial operator)
 - Matching resolution scale between structure and reactions is crucial!

Summary and outlook

- Results suggest that we can analyze high-energy nuclear reactions with low RG resolution structure (e.g., shell model) and evolved operator (and correct initial operator)
 - Matching resolution scale between structure and reactions is crucial!
- Ongoing work:
 - Calculate pair distributions in nuclei (N=Z, N>Z) using local density approximation
 - Relate to quenching in knock-out reactions by applying to different processes with factorization

Back up slides

Fig. 8: Ratio of SRG transformations U(k,q) at low- and high-momentum values with respect to high-momentum q, and fixing the low-momentum of the denominator k_0 and varying the low-momentum of the numerator k_i .