

Net-Zero America - new york state report

2021-03-15

These data underlie graphs and tables presented in the Princeton Net-Zero America study:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020. Report available at https://netzeroamerica.princeton.edu.

Notes

- These data are all data from the study available at https://netzeroamerica.prince-ton.edu.
- The Net-Zero America study describes five pathways to reach net-zero emissions and one "no new policies" reference scenario. In this document, state-level results are grouped by scenario. For some scenarios, the study generated national, but not statelevel results.
- Within results for a given scenario, data tables are organized into corresponding sections of the full net-zero study (e.g., Pillar 1, Pillar 2, etc.)
- For Pillar 6 (Land sinks), values shown are maximum carbon storage potentials.

Data by category and subcategory

1	E+ scenario - PILLAR I: Efficiency/Electrification - Commercial	I
2	E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	1
3	E+ scenario - PILLAR 1: Efficiency/Electrification - Overview	1
4	E+ scenario - PILLAR 1: Efficiency/Electrification - Residential	1
5	E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	2
6	E+ scenario - PILLAR 2: Clean Electricity - Generating capacity	2
7	E+ scenario - PILLAR 2: Clean Electricity - Generation	3
8	E+ scenario - PILLAR 3: Clean fuels - Bioenergy	3
9	E+ scenario - PILLAR 4: CCUS - CO2 capture	3
10	E+ scenario - PILLAR 4: CCUS - CO2 pipelines	3
11	E+ scenario - PILLAR 4: CCUS - CO2 storage	4
12	E+ scenario - PILLAR 6: Land sinks - Agriculture	4
13	E+ scenario - PILLAR 6: Land sinks - Forests	5
14	E+ scenario - IMPACTS - Fossil fuel industries	7
15	E+ scenario - IMPACTS - Health	7
16	E+ scenario - IMPACTS - Jobs	7
17	E- scenario - PILLAR 1: Efficiency/Electrification - Commercial	9
18	E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	9
19	E- scenario - PILLAR 1: Efficiency/Electrification - Overview	9
20	E- scenario - PILLAR 1: Efficiency/Electrification - Residential	9
21	E- scenario - PILLAR 1: Efficiency/Electrification - Transportation 10	J
22	E- scenario - PILLAR 6: Land sinks - Agriculture	J
23	E- scenario - PILLAR 6: Land sinks - Forests	1
24	E- scenario - IMPACTS - Health	3
25	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	4
26	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand . 14	4
27	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview 14	4
28	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential	4
29	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation 1	5
30	E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity	5
31	E+RE+ scenario - PILLAR 2: Clean Electricity - Generation	5
32	E+RE+ scenario - PILLAR 6: Land sinks - Agriculture	6
33	E+RE+ scenario - PILLAR 6: Land sinks - Forests	5
34	E+RE+ scenario - IMPACTS - Health	9
35	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial 19	9
36	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand 20	J
37	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview	J
38	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential	J
39	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation 20	J
40	E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity	1
41	E+RE- scenario - PILLAR 2: Clean Electricity - Generation	1
42	E+RE- scenario - PILLAR 6: Land sinks - Agriculture	1
/.2	E-DE scanario - DILLAP 6-Land sinks - Egreets	^

44	E+RE- scenario - IMPACTS - Health	25
45	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	25
46	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	25
47	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview	25
48	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential	25
49	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	26
50	E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity	26
51	E-B+ scenario - PILLAR 2: Clean Electricity - Generation	26
52	E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy	27
53	E-B+ scenario - PILLAR 4: CCUS - CO2 capture	27
54	E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines	27
55	E-B+ scenario - PILLAR 4: CCUS - CO2 storage	27
56	E-B+ scenario - PILLAR 6: Land sinks - Agriculture	27
57	E-B+ scenario - PILLAR 6: Land sinks - Forests	29
58	E-B+ scenario - IMPACTS - Health	31
59	REF scenario - PILLAR 1: Efficiency/Electrification - Commercial	31
60	REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	32
61	REF scenario - PILLAR 1: Efficiency/Electrification - Overview	32
62	REF scenario - PILLAR 1: Efficiency/Electrification - Residential	32
63	REF scenario - PILLAR 1: Efficiency/Electrification - Transportation	32
64	REF scenario - PILLAR 6: Land sinks - Forests	33
65	REF scenario - PILLAR 6: Land sinks - Forests - REF only	35
66	REF scenario - IMPACTS - Health	35

Table 1: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		89,684	98,037				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	18.5	33.7	75.3	83.5	83.9	84	84
Resistance (%)							
Sales of cooking units - Gas (%)	81.5	66.3	24.7	16.5	16.1	16	16
Sales of space heating units - Electric	0.625	15.6	51.1	76.3	79.8	80.3	80.2
Heat Pump (%)							
Sales of space heating units - Electric	2.13	4.73	12.8	18	19.1	18.8	18.9
Resistance (%)							
Sales of space heating units - Fossil (%)	19.1	14.5	2.85	0.124	0	0	0
Sales of space heating units - Gas Furnace	78.2	65.2	33.3	5.6	1.11	0.87	0.863
(%)							
Sales of water heating units - Electric	0.224	7.35	41	58.7	61	61.2	61.2
Heat Pump (%)							
Sales of water heating units - Electric	1.34	5.14	22.3	36.4	38.5	38.7	38.7
Resistance (%)							
Sales of water heating units - Gas Furnace	97	86.3	36.3	4.73	0.256	0	0
(%)							
Sales of water heating units - Other (%)	1.45	1.19	0.377	0.184	0.175	0.176	0.176

Table 2: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		7.59	7.79	18.2	19.6	18.4	19.5
Cumulative 5-yr (billion \$2018)							

Table 3: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	690	677	650	604	560	538	533
Final energy use - Industry (PJ)	488	505	512	521	523	530	532
Final energy use - Residential (PJ)	880	819	735	612	496	413	364
Final energy use - Transportation (PJ)	1,161	1,104	995	858	731	647	604

Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		14.3	15.2				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	34.6	48.6	91.2	99.6	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	65.4	51.4	8.8	0.443	0	0	0
Sales of space heating units - Electric	3.63	16.2	66.1	89	91.7	91.9	92
Heat Pump (%)							
Sales of space heating units - Electric	8.47	10.5	6.04	3.28	2.89	2.96	3.08
Resistance (%)							
Sales of space heating units - Fossil (%)	24.2	32.1	10.3	4.74	4.39	4.24	4.06
Sales of space heating units - Gas (%)	63.7	41.2	17.6	3.03	0.991	0.876	0.88
Sales of water heating units - Electric	0	6.54	37.2	51.7	53.5	53.6	53.6
Heat Pump (%)							
Sales of water heating units - Electric	18.7	35.7	39.8	45.4	46.3	46.4	46.3
Resistance (%)							
Sales of water heating units - Gas Furnace	71.1	52	21.9	2.85	0.155	0	0
(%)							
Sales of water heating units - Other (%)	10.3	5.8	1.12	0.083	0.037	0.038	0.038

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -		2,187	5,658	9,084	13,794	14,977	14,299
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.56		3.54		15		24.1
units)							
Public EV charging plugs - L2 (1000 units)	4.23		85.1		360		579
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.44	1.72	1.21	0.387	0.073	0.013	0
Vehicle sales - Light-duty - EV (%)	4.28	16.3	48.1	82.5	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.3	76.7	47.1	15.8	3.2	0.587	0
Vehicle sales - Light-duty - hybrid (%)	4.78	4.8	3.33	1.23	0.301	0.066	0
Vehicle sales - Light-duty - hydrogen FC	0.11	0.333	0.194	0.06	0.012	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.097	0.093	0.059	0.021	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 6: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

0	0	_				
	U	0	0	0	0	0
0	0	0	0.005	0.001	0	0.013
0	0	0.008	0	0.001	0	0
	0.393	0.409	15.9	10.9	11	11.3
	0.782	0.412	15.4	10.8	9.53	12.4
	6.82	6.34	2.75	6.46	14.1	7.55
	11.5	11.2	5.23	7.17	8.6	3.67
	0	5.05	7.37	1.23	3.44	1.04
	0	8.47	7.67	1.8	3.59	1.05
0	139	309	8,081	13,473	20,193	28,731
0	139	309	8,081	13,473	20,193	28,731
2,262	3,350	4,275	5,350	6,543	7,836	9,243
1,833	7,796	13,995	16,919	24,198	40,970	50,515
538	7,318	18,965	24,276	32,544	43,697	50,427
						•
3,484	3,484	5,593	8,894	9,475	11,179	11,722
					.	,
3,484	3,484	5,579	8,988	9,855	11,607	12,160
			,			,
	0 0 0 2,262 1,833	0 0 0 0 0 0 0.393 0.782 6.82 11.5 0 0 0 139 0 139 2,262 3,350 1,833 7,796 538 7,318 3,484 3,484	0 0 0.008 0.393 0.409 0.782 0.412 6.82 6.34 11.5 11.2 0 5.05 0 8.47 0 139 309 0 139 309 2,262 3,350 4,275 1,833 7,796 13,995 538 7,318 18,965 3,484 3,484 5,593	0 0 0.008 0 0.393 0.409 15.9 0.782 0.412 15.4 6.82 6.34 2.75 11.5 11.2 5.23 0 5.05 7.37 0 8.47 7.67 0 139 309 8,081 0 139 309 8,081 2,262 3,350 4,275 5,350 1,833 7,796 13,995 16,919 538 7,318 18,965 24,276 3,484 3,484 5,593 8,894	0 0 0.008 0 0.001 0.393 0.409 15.9 10.9 0.782 0.412 15.4 10.8 6.82 6.34 2.75 6.46 11.5 11.2 5.23 7.17 0 5.05 7.37 1.23 0 8.47 7.67 1.8 0 139 309 8,081 13,473 0 139 309 8,081 13,473 2,262 3,350 4,275 5,350 6,543 1,833 7,796 13,995 16,919 24,198 538 7,318 18,965 24,276 32,544 3,484 3,484 5,593 8,894 9,475	0 0 0.008 0 0.001 0 0.393 0.409 15.9 10.9 11 0.782 0.412 15.4 10.8 9.53 6.82 6.34 2.75 6.46 14.1 11.5 11.2 5.23 7.17 8.6 0 5.05 7.37 1.23 3.44 0 8.47 7.67 1.8 3.59 0 139 309 8,081 13,473 20,193 0 139 309 8,081 13,473 20,193 2,262 3,350 4,275 5,350 6,543 7,836 1,833 7,796 13,995 16,919 24,198 40,970 538 7,318 18,965 24,276 32,544 43,697 3,484 3,484 5,593 8,894 9,475 11,179

Table 7: E	aaanaania	יר מאווזח	Cloan Electrici	tv - Generation
Table (F+	SCRIIII -	PILLAR	1.191111 619111111	IV - 13PHPF11111111

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	4.5	5.42	5.42	18.8
Biomass w/ccu power plant (GWh)	0	0	8.55	8.55	9.28	9.28	9.28
OffshoreWind - Base land use	0	562	1,250	32,760	54,963	83,187	119,377
assumptions (GWh)							
OffshoreWind - Constrained land use	0	562	1,250	32,760	54,963	83,187	119,377
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	2,912	11,655	20,663	24,823	35,288	59,625	73,457
Solar - Constrained land use assumptions	935	10,867	27,846	35,424	47,307	63,297	72,937
(GWh)							
Wind - Base land use assumptions (GWh)	14,244	14,244	22,135	34,055	36,123	42,123	44,018
Wind - Constrained land use assumptions	14,244	14,244	22,057	34,233	37,220	43,322	45,220
(GWh)							

Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)		0	0.322	0.902	1.04	1.04	235
Conversion capital investment -		0	7.03	19.2	4.22	0	4,926
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	1	1	1	2
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	1	1	1	3
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	0	0
Number of facilities - Diesel ccu (quantity)	0	0	0	1	1	1	2
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	1	1	1	1	1
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	0	2
Number of facilities - Pyrolysis ccu	0	0	0	1	1	1	1
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	1	1	1	1	2

Table 9: E+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0.01	3.38	3.35	3.45	7.35
Annual - BECCS (MMT)		0	0.01	0.02	0.02	0.02	3.8
Annual - Cement and lime (MMT)		0	0	3.35	3.32	3.42	3.53
Annual - NGCC (MMT)		0	0	0.01	0.01	0.01	0.01
Cumulative - All (MMT)		0	0.01	3.39	6.74	10.2	17.5
Cumulative - BECCS (MMT)		0	0.01	0.03	0.05	0.07	3.87
Cumulative - Cement and lime (MMT)		0	0	3.35	6.67	10.1	13.6
Cumulative - NGCC (MMT)		0	0	0.01	0.02	0.03	0.04

Table 10: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	279	437	612	612	1,309
Cumulative investment - All (million \$2018)		0	225	402	493	496	905
Cumulative investment - Spur (million \$2018)		0	111	288	379	382	791
Cumulative investment - Trunk (million \$2018)		0	114	114	114	114	114
Spur (km)		0	216	374	549	549	1,246
Trunk (km)		0	63	63	63	63	63

Table 11: E+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture

Table 12: E+ Scenario - PILLAR 6: Land Sink			0000	0005	00/0	00/5	0050
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-264
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							0.000
Carbon sink potential - Aggressive							-2,322
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-89.7
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,675
deployment - Total (1000 tC02e/y)							
Carbon sink potential - Moderate							-264
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,224
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-44.8
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,532
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							85.7
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,489
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							163
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							1,738
Aggressive deployment - Total (1000							.,. 00
hectares)							
Land impacted for carbon sink - Moderate							85.7
deployment - Corn-ethanol to energy							00
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							785
deployment - Cropland measures (1000							100
hectares)							
Land impacted for carbon sink - Moderate						+	81.5
deployment - Permanent conservation							61.3
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							953
•							703
deployment - Total (1000 hectares)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests

Table 13: E+ scenario - PILLAR 6: Land sin		0005	0000	0005	00/0	0015	0050
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-383
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-31,435
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-2,752
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-11,858
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-604
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-5,464
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-1,072
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-273
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-5,516
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-3,513
productivity (1000 tCO2e/y)							•
Carbon sink potential - Low - Accelerate							-192
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-9,448
counting overlap) (1000 tCO2e/y)							77
Carbon sink potential - Low - Avoid							-459
deforestation (1000 tC02e/y)							107
Carbon sink potential - Low - Extend							-4,555
rotation length (1000 tC02e/y)							4,000
Carbon sink potential - Low - Improve							-307
plantations (1000 tCO2e/y)							-301
Carbon sink potential - Low - Increase							-1,821
retention of HWP (1000 tCO2e/y)							-1,021
							-375
Carbon sink potential - Low - Increase							-315
trees outside forests (1000 tC02e/y)							107
Carbon sink potential - Low - Reforest							-136
cropland (1000 tCO2e/y)							/10
Carbon sink potential - Low - Reforest							-418
pasture (1000 tC02e/y)							
Carbon sink potential - Low - Restore							-1,184
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-287
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-20,436
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-1,605
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-8,206
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-450
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-3,642
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-724
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-205
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-2,967
pasture (1000 tCO2e/y)							, -
Carbon sink potential - Mid - Restore							-2,349
productivity (1000 tCO2e/y)							=10 .7
	[1					

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							62.6
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							373
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							6,047
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							223
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							102
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							18
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							157
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,164
High - Restore productivity (1000							, -
hectares)							
Land impacted for carbon sink potential -							8,146
High - Total impacted (over 30 years)							-,
(1000 hectares)							
Land impacted for carbon sink potential -							31.3
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							350
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,317
Low - Extend rotation length (1000							,-
hectares)							
Land impacted for carbon sink potential -							111
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							_
hectares)							
Land impacted for carbon sink potential -							53.6
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							9.02
Low - Reforest cropland (1000 hectares)							7.02
Land impacted for carbon sink potential -							27.2
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							705
Low - Restore productivity (1000							. 50
hectares)							
Land impacted for carbon sink potential -							3,603
Low - Total impacted (over 30 years)							5,500
(1000 hectares)							
Land impacted for carbon sink potential -							47
Mid - Accelerate regeneration (1000							41

Tahla 12. Fx	econario -	DILLAD 6.	Land sinks -	Enrecte	(continued)
Table 15. Et	SCEIIUI 10 -	PILLAK O.	LUIIU SIIIKS -	. คบา ยอเอา	COHUHUEUT

Land impacted for carbon sink potential - Mid - Avoid deforestation (over 30 years) (1000 hectares) Land impacted for carbon sink potential - Mid - Extend rotation length (1000 hectares) Land impacted for carbon sink potential - Mid - Improve plantations (1000 hectares) Land impacted for carbon sink potential - Mid - Increase retention of HWP (1000
(1000 hectares) Land impacted for carbon sink potential - Mid - Extend rotation length (1000 hectares) Land impacted for carbon sink potential - Mid - Improve plantations (1000 hectares) Land impacted for carbon sink potential -
Land impacted for carbon sink potential - Mid - Extend rotation length (1000 hectares) Land impacted for carbon sink potential - Mid - Improve plantations (1000 hectares) Land impacted for carbon sink potential -
Mid - Extend rotation length (1000 hectares) Land impacted for carbon sink potential - Mid - Improve plantations (1000 hectares) Land impacted for carbon sink potential - 0
hectares) Land impacted for carbon sink potential - Mid - Improve plantations (1000 hectares) Land impacted for carbon sink potential -
Land impacted for carbon sink potential - Mid - Improve plantations (1000 hectares) Land impacted for carbon sink potential - 0
Mid - Improve plantations (1000 hectares) Land impacted for carbon sink potential -
Land impacted for carbon sink potential -
Mid - Increase retention of HWP (1000
hectares)
Land impacted for carbon sink potential -
Mid - Increase trees outside forests (1000
hectares)
Land impacted for carbon sink potential -
Mid - Reforest cropland (1000 hectares)
Land impacted for carbon sink potential -
Mid - Reforest pasture (1000 hectares)
Land impacted for carbon sink potential - 1,419
Mid - Restore productivity (1000
hectares)
Land impacted for carbon sink potential - 6,464
Mid - Total impacted (over 30 years) (1000
hectares)

Table 14: E+ scenario - IMPACTS - Fossil fuel industries

Item	2020	2025	2030	2035	2040	2045	2050
Natural gas consumption - Annual (tcf)		1,045	881	707	532	335	232
Natural gas consumption - Cumulative							21,286
(tcf)							
Natural gas production - Annual (tcf)		14.4	13.6	11.9	10	7.95	6.18
Oil consumption - Annual (million bbls)		230	202	160	122	91.3	66.3
Oil consumption - Cumulative (million							4,947
bbls)							
Oil production - Annual (million bbls)		0.286	0.287	0.287	0.227	0.185	0.123

Table 15: E+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		1,879	2.02	2.01	1.9	1.18	0.064
Monetary damages from air pollution - Natural Gas (million 2019\$)		2,231	1,632	1,159	1,101	849	318
Monetary damages from air pollution - Transportation (million 2019\$)		7,317	7,231	5,804	3,530	1,675	662
Premature deaths from air pollution - Coal (deaths)		212	0.228	0.227	0.215	0.134	0.007
Premature deaths from air pollution - Natural Gas (deaths)		252	184	131	124	95.9	35.9
Premature deaths from air pollution - Transportation (deaths)		823	813	653	397	188	74.4

Table 16: E+ scenario - IMPACTS - Jobs

Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		481	669	431	268	106	368
By economic sector - Construction (jobs)		20,387	20,455	27,156	32,689	39,643	48,993
By economic sector - Manufacturing		11,546	19,113	19,203	21,505	29,080	42,590
(jobs)							
By economic sector - Mining (jobs)		4,807	3,439	2,289	1,447	864	516

Table 16: E+ scenario - IMPACTS - Jobs (continued)

Table 16: E+ scenario - IMPACTS - Jobs (co	ntinueaj						
Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Other (jobs)		2,536	2,751	3,294	4,521	6,473	8,647
By economic sector - Pipeline (jobs)		1,235	1,063	877	669	460	416
By economic sector - Professional (jobs)		8,724	8,961	12,804	16,053	20,586	29,307
By economic sector - Trade (jobs)		6,685	6,452	8,127	9,941	12,838	17,587
By economic sector - Utilities (jobs)		16,105	15,702	26,570	32,114	37,844	61,268
By education level - All sectors -		22,844	24,849	32,391	38,634	47,903	66,739
Associates degree or some college (jobs)							
By education level - All sectors -		14,775	15,756	19,991	23,552	29,435	43,855
Bachelors degree (jobs)							
By education level - All sectors - Doctoral		500	504	655	789	1,005	1,549
degree (jobs)							
By education level - All sectors - High		30,861	33,823	42,897	50,492	62,360	86,719
school diploma or less (jobs)							
By education level - All sectors - Masters		3,525	3,673	4,817	5,738	7,188	10,829
or professional degree (jobs)							
By resource sector - Biomass (jobs)		1,481	1,700	1,049	700	400	1,622
By resource sector - CO2 (jobs)		0	120	359	357	356	1,028
By resource sector - Coal (jobs)		481	139	10.1	9.64	9.2	3.53
By resource sector - Grid (jobs)		16,815	20,756	44,821	54,716	64,769	79,742
By resource sector - Natural Gas (jobs)		14,747	10,460	8,380	9,432	7,326	5,429
By resource sector - Nuclear (jobs)		1,883	1,369	1,224	1,031	3,074	24,820
By resource sector - Oil (jobs)		10,343	8,327	6,120	4,320	3,031	2,063
By resource sector - Solar (jobs)		23,548	26,599	20,144	27,960	44,430	54,376
By resource sector - Wind (jobs)		3,206	9,135	18,645	20,680	24,498	40,607
Median wages - Annual - All (\$2019 per		69,341	68,899	71,169	72,306	73,075	75,182
job)							
On-Site or In-Plant Training - Total jobs - 1		11,888	12,800	16,684	19,821	24,460	34,114
to 4 years (jobs)							
On-Site or In-Plant Training - Total jobs - 4		4,987	5,092	6,883	8,241	10,009	13,555
to 10 years (jobs)							
On-Site or In-Plant Training - Total jobs -		11,786	12,831	16,219	19,218	24,032	34,555
None (jobs)							
On-Site or In-Plant Training - Total jobs -		621	667	897	1,074	1,313	1,762
Over 10 years (jobs)					-		
On-Site or In-Plant Training - Total jobs -		43,223	47,216	60,069	70,852	88,078	125,705
Up to 1 year (jobs)					-		•
On-the-Job Training - All sectors - 1 to 4		15,319	16,425	21,524	25,613	31,579	44,038
years (jobs)		,	,		•	,	
On-the-Job Training - All sectors - 4 to 10		4,883	4,978	6,806	8,188	9,944	13,312
years (jobs)			-		-		
On-the-Job Training - All sectors - None		3,976	4,253	5,329	6,299	7,901	11,520
(jobs)		,	,		•	.	•
On-the-Job Training - All sectors - Over 10		734	820	988	1,159	1,458	2,096
years (jobs)					•		,
On-the-Job Training - All sectors - Up to 1		47,593	52,129	66,105	77,945	97,011	138,725
year (jobs)		,	,		,	,-	,
Related work experience - All sectors - 1		26,014	28,034	36,052	42,667	52,900	75,236
to 4 years (jobs)					,	.	·
Related work experience - All sectors - 4		16,897	18,134	23,486	27,855	34,480	48,899
to 10 years (jobs)		-,-	-, -	,	,	,	-,-
Related work experience - All sectors -		10,497	11,336	14,604	17,304	21,370	29,856
None (jobs)		,	,	,	,		
Related work experience - All sectors -		4,490	4,944	6,293	7,417	9,249	13,425
Over 10 years (jobs)		., ., 0	.,,	5,275	.,	7,- 17	.0, .20
Related work experience - All sectors - Up		14,607	16,155	20,317	23,963	29,894	42,274
to 1 year (jobs)		,551	.5,,00	_5,5	_5,,55		,
Wage income - All (million \$2019)		5,028	5,416	7,171	8,620	10,809	15,767
ago moomo - An (minion 42017)		0,020	0,410	1,111	0,020	10,007	10,101

Table 17: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		89,637	97,820				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	18.5	21.6	27.5	43	64.5	77.7	82.3
Resistance (%)							
Sales of cooking units - Gas (%)	81.5	78.4	72.5	57	35.5	22.3	17.7
Sales of space heating units - Electric	0.625	10	13.9	25.5	45.9	63.9	72.2
Heat Pump (%)							
Sales of space heating units - Electric	2.13	3.41	4.29	6.96	11.7	15.4	17.3
Resistance (%)							
Sales of space heating units - Fossil (%)	19.1	16.8	16.2	12.8	7.04	2.9	1.58
Sales of space heating units - Gas Furnace	78.2	69.8	65.6	54.7	35.3	17.8	8.88
(%)							
Sales of water heating units - Electric	0.224	1.65	5.4	16.4	34.9	49.5	55.9
Heat Pump (%)							
Sales of water heating units - Electric	1.34	2.6	4.47	10.1	20.3	29.6	34
Resistance (%)							
Sales of water heating units - Gas Furnace	97	94.4	88.8	72.4	44.1	20.6	9.85
(%)							
Sales of water heating units - Other (%)	1.45	1.35	1.33	1.05	0.642	0.377	0.282

Table 18: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		6.03	6.04	8.86	9.2	14.7	15.6
Cumulative 5-yr (billion \$2018)							

Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	690	679	673	667	654	636	618
Final energy use - Industry (PJ)	488	505	514	526	531	538	538
Final energy use - Residential (PJ)	880	823	783	735	664	579	494
Final energy use - Transportation (PJ)	1,163	1,112	1,033	964	905	837	757

Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		14.3	16.3				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	34.4	36.1	42.1	57.9	80	93.5	98.3
Resistance (%)							
Sales of cooking units - Gas (%)	65.6	63.9	57.9	42.1	20	6.47	1.74
Sales of space heating units - Electric	3.63	7.47	12.9	28.9	55.2	75.3	83.7
Heat Pump (%)							
Sales of space heating units - Electric	8.47	11.2	10.6	9.22	6.74	4.65	3.8
Resistance (%)							
Sales of space heating units - Fossil (%)	24.2	36.3	34	27.2	16.6	9.64	6.99
Sales of space heating units - Gas (%)	63.7	45.1	42.4	34.7	21.5	10.4	5.47
Sales of water heating units - Electric	0	1.21	4.63	14.7	31.2	43.9	49.3
Heat Pump (%)							
Sales of water heating units - Electric	18.7	35.3	35.6	36.9	39.6	42.6	44.2
Resistance (%)							
Sales of water heating units - Gas Furnace	71.1	56.8	53.6	43.7	26.7	12.4	5.95
(%)							
Sales of water heating units - Other (%)	10.3	6.7	6.2	4.75	2.54	1.09	0.587

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -		0	363	742	2,526	7,889	11,514
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.56		1.17		5.61		15.4
units)							
Public EV charging plugs - L2 (1000 units)	4.23		28.1		135		371
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.45	1.88	2.04	1.61	1.02	0.524	0.225
Vehicle sales - Light-duty - EV (%)	2.02	4.97	12.4	26.8	49.4	72.7	87.8
Vehicle sales - Light-duty - gasoline (%)	91.4	86.9	78.7	65.5	45.1	24.2	10.7
Vehicle sales - Light-duty - hybrid (%)	4.96	5.75	6.41	5.79	4.28	2.5	1.2
Vehicle sales - Light-duty - hydrogen FC	0.112	0.377	0.32	0.242	0.17	0.094	0.044
(%)							
Vehicle sales - Light-duty - other (%)	0.098	0.102	0.092	0.08	0.057	0.031	0.014
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-264
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,322
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-89.7
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,675
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							-264
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,224
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-44.8
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,532
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							85.7
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,489
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							163
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink -							1,738
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							85.7
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							785
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							81.5
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							953
deployment - Total (1000 hectares)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-383
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-31,435
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-2,752
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-11,858
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-604
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-5,464
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-1,072
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-273
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-5,516
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-3,513
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-192
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-9,448
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-459
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-4,555
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-307
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-1,821
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-375
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-136
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-418
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,184
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-287
regeneration (1000 tCO2e/y)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item Carbon sink potential - Mid - All (not	2020	2025	2030	2035	2040	2045	2050 -20,436
counting overlap) (1000 tCO2e/y)							-20,430
Carbon sink potential - Mid - Avoid							-1,60
deforestation (1000 tC02e/y)							-1,003
Carbon sink potential - Mid - Extend							-8,20
rotation length (1000 tC02e/y)							-0,200
= ,							, ,
Carbon sink potential - Mid - Improve							-45(
plantations (1000 tCO2e/y)							0 ()
Carbon sink potential - Mid - Increase							-3,64
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-72
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-20
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-2,96
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-2,349
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							62.6
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							373
High - Avoid deforestation (over 30 years)							011
(1000 hectares)							
Land impacted for carbon sink potential -							6,04
							6,04
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							22
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							(
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							10
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							18
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							15
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,16
High - Restore productivity (1000							1,10
hectares)							
Land impacted for carbon sink potential -							8,14
High - Total impacted (over 30 years)							0,14
(1000 hectares)							01
Land impacted for carbon sink potential -							31.
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							35
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,31
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							
Low - Increase retention of HWP (1000							,
FOAN - THE EUSE I CICHTINH OF UAAL (1000							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							53.6
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							9.02
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							27.2
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							705
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,603
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							47
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							361
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4,182
Mid - Extend rotation length (1000							·
hectares)							
Land impacted for carbon sink potential -							167
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							77.7
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							13.5
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							196
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,419
Mid - Restore productivity (1000							•
hectares)							
Land impacted for carbon sink potential -							6,464
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 24: E- scenario - IMPACTS - Health

Table 24. L- Scellal lo - Illiracio - licaltii							
Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		1,879	2.02	2.01	1.9	1.18	0.064
Coal (million 2019\$)							
Monetary damages from air pollution -		2,199	1,243	562	221	56.9	78.1
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		7,451	7,988	8,203	7,769	6,492	4,675
Transportation (million 2019\$)							
Premature deaths from air pollution -		212	0.228	0.227	0.215	0.134	0.007
Coal (deaths)							
Premature deaths from air pollution -		248	140	63.4	25	6.42	8.81
Natural Gas (deaths)							
Premature deaths from air pollution -		838	898	923	874	730	526
Transportation (deaths)							

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)		89,684	98,037				
Sales of cooking units - Electric Resistance (%)	18.5	33.7	75.3	83.5	83.9	84	84
Sales of cooking units - Gas (%)	81.5	66.3	24.7	16.5	16.1	16	16
Sales of space heating units - Electric Heat Pump (%)	0.625	15.6	51.1	76.3	79.8	80.3	80.2
Sales of space heating units - Electric Resistance (%)	2.13	4.73	12.8	18	19.1	18.8	18.9
Sales of space heating units - Fossil (%)	19.1	14.5	2.85	0.124	0	0	0
Sales of space heating units - Gas Furnace (%)	78.2	65.2	33.3	5.6	1.11	0.87	0.863
Sales of water heating units - Electric Heat Pump (%)	0.224	7.35	41	58.7	61	61.2	61.2
Sales of water heating units - Electric Resistance (%)	1.34	5.14	22.3	36.4	38.5	38.7	38.7
Sales of water heating units - Gas Furnace (%)	97	86.3	36.3	4.73	0.256	0	0
Sales of water heating units - Other (%)	1.45	1.19	0.377	0.184	0.175	0.176	0.176

Table 26: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		7.59	7.79	18.2	19.6	18.4	19.5
Cumulative 5-yr (billion \$2018)							

Table 27: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	690	677	650	604	560	538	533
Final energy use - Industry (PJ)	488	505	512	521	523	530	532
Final energy use - Residential (PJ)	880	819	735	612	496	413	364
Final energy use - Transportation (PJ)	1,161	1,104	995	858	731	647	604

Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		14.3	15.2				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	34.6	48.6	91.2	99.6	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	65.4	51.4	8.8	0.443	0	0	0
Sales of space heating units - Electric	3.63	16.2	66.1	89	91.7	91.9	92
Heat Pump (%)							
Sales of space heating units - Electric	8.47	10.5	6.04	3.28	2.89	2.96	3.08
Resistance (%)							
Sales of space heating units - Fossil (%)	24.2	32.1	10.3	4.74	4.39	4.24	4.06
Sales of space heating units - Gas (%)	63.7	41.2	17.6	3.03	0.991	0.876	0.88
Sales of water heating units - Electric	0	6.54	37.2	51.7	53.5	53.6	53.6
Heat Pump (%)							
Sales of water heating units - Electric	18.7	35.7	39.8	45.4	46.3	46.4	46.3
Resistance (%)							
Sales of water heating units - Gas Furnace	71.1	52	21.9	2.85	0.155	0	0
(%)							
Sales of water heating units - Other (%)	10.3	5.8	1.12	0.083	0.037	0.038	0.038

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -		2,187	5,658	9,084	13,794	14,977	14,299
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.56		3.54		15		24.1
units)							
Public EV charging plugs - L2 (1000 units)	4.23		85.1		360		579
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.44	1.72	1.21	0.387	0.073	0.013	0
Vehicle sales - Light-duty - EV (%)	4.28	16.3	48.1	82.5	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.3	76.7	47.1	15.8	3.2	0.587	0
Vehicle sales - Light-duty - hybrid (%)	4.78	4.8	3.33	1.23	0.301	0.066	0
Vehicle sales - Light-duty - hydrogen FC	0.11	0.333	0.194	0.06	0.012	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.097	0.093	0.059	0.021	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 30: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Offshore Wind - Base	2020	0.393	0.409	25.7	17.3	18.6	28.4
(billion \$2018)		0.070	0.107	20	11.0	10.0	20
Capital invested - Solar PV - Base (billion		8.73	8.17	9.85	8.95	12.1	4.29
\$2018)							
Capital invested - Wind - Base (billion		0	5.05	8.67	2.98	8.08	5.03
\$2018)							
Installed renewables - OffshoreWind -	0	139	309	12,869	21,417	32,753	54,198
Base land use assumptions (MW)							
Installed renewables - OffshoreWind -	0	552	895	25,368	38,325	38,325	96,787
Constrained land use assumptions (MW)							
Installed renewables - Solar - Base land	2,610	10,240	18,227	28,690	38,775	53,172	58,594
use assumptions (MW)							
Installed renewables - Solar -	3,914	25,223	42,373	60,155	79,852	103,035	113,377
Constrained land use assumptions (MW)							
Installed renewables - Wind - Base land	3,484	3,484	5,593	9,475	10,873	14,878	17,517
use assumptions (MW)							
Installed renewables - Wind - Constrained	6,968	6,968	11,157	19,631	22,595	30,282	34,988
land use assumptions (MW)							

Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
OffshoreWind - Base land use	0	562	1,250	52,451	88,396	136,296	230,708
assumptions (GWh)							
OffshoreWind - Constrained land use	0	2,243	3,631	103,763	158,978	158,978	413,290
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	4,001	15,206	26,732	41,754	56,384	77,233	85,092
Solar - Constrained land use assumptions	6,158	37,136	61,989	87,519	115,785	149,206	164,118
(GWh)							
Wind - Base land use assumptions (GWh)	14,244	14,244	22,135	36,123	41,060	54,852	63,691

Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Wind - Constrained land use assumptions	28,488	28,488	44,113	74,224	84,489	110,679	126,529
(GWh)							

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-264
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Aggressive							-2,322
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-89.7
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,675
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							-264
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,224
deployment - Cropland measures (1000							•
tCO2e/y)							
Carbon sink potential - Moderate							-44.8
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,532
deployment - Total (1000 tCO2e/y)							1,002
Land impacted for carbon sink -							85.7
Aggressive deployment - Corn-ethanol to							00
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,489
Aggressive deployment - Cropland							1,407
measures (1000 hectares)							
Land impacted for carbon sink -							163
Aggressive deployment - Permanent							103
. ,							
conservation cover (1000 hectares)							1700
Land impacted for carbon sink -							1,738
Aggressive deployment - Total (1000							
hectares)							0.5.3
Land impacted for carbon sink - Moderate							85.7
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							785
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							81.5
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							953
deployment - Total (1000 hectares)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y)							-383
Carbon sink potential - High - All (not counting overlap) (1000 tCO2e/y)							-31,435
Carbon sink potential - High - Avoid deforestation (1000 tCO2e/y)							-2,752

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Extend							-11,858
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-604
plantations (1000 tC02e/y)							
Carbon sink potential - High - Increase							-5,464
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-1,072
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-273
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-5,516
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-3,513
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-192
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-9,448
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-459
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-4,555
rotation length (1000 tCO2e/y)							.,
Carbon sink potential - Low - Improve	+						-307
plantations (1000 tCO2e/y)							001
Carbon sink potential - Low - Increase							-1,82
retention of HWP (1000 tCO2e/y)							1,02
Carbon sink potential - Low - Increase	+						-375
trees outside forests (1000 tC02e/y)							-313
Carbon sink potential - Low - Reforest							-136
·							-130
cropland (1000 tCO2e/y) Carbon sink potential - Low - Reforest							-418
·							-410
pasture (1000 tC02e/y)							110/
Carbon sink potential - Low - Restore							-1,184
productivity (1000 tCO2e/y)							00-
Carbon sink potential - Mid - Accelerate							-287
regeneration (1000 tCO2e/y)							00.404
Carbon sink potential - Mid - All (not							-20,436
counting overlap) (1000 tC02e/y)							
Carbon sink potential - Mid - Avoid							-1,605
deforestation (1000 tC02e/y)							
Carbon sink potential - Mid - Extend							-8,206
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-450
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-3,642
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-724
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-205
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-2,967
pasture (1000 tCO2e/y)							_,
Carbon sink potential - Mid - Restore							-2,349
productivity (1000 tC02e/y)							2,047
Land impacted for carbon sink potential -	+	-		+			62.6
High - Accelerate regeneration (1000							02.0
hectares)							
							373
Land impacted for carbon sink potential -							3/3
High - Avoid deforestation (over 30 years)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item Land impacted for carbon sink potential -	2020	2025	2030	2035	2040	2045	2050 6,047
High - Extend rotation length (1000							6,047
hectares)							
Land impacted for carbon sink potential -							223
High - Improve plantations (1000							
hectares)							0
Land impacted for carbon sink potential - High - Increase retention of HWP (1000							U
hectares)							
Land impacted for carbon sink potential -							102
High - Increase trees outside forests							102
(1000 hectares)							
Land impacted for carbon sink potential -							18
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							157
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,164
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							8,146
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							31.3
Low - Accelerate regeneration (1000							
hectares)							050
Land impacted for carbon sink potential -							350
Low - Avoid deforestation (over 30 years)							
(1000 hectares) Land impacted for carbon sink potential -							2,317
Low - Extend rotation length (1000							2,311
hectares)							
Land impacted for carbon sink potential -							111
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							53.6
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							9.02
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							27.2
Low - Reforest pasture (1000 hectares) Land impacted for carbon sink potential -							705
Low - Restore productivity (1000							705
hectares)							
Land impacted for carbon sink potential -							3,603
Low - Total impacted (over 30 years)							0,000
(1000 hectares)							
Land impacted for carbon sink potential -							47
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							361
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4,182
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							167
Mid - Improve plantations (1000 hectares)	1						

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							77.7
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							13.5
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							196
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,419
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							6,464
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 34: E+RE+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		1,879	2.02	2.01	1.9	1.18	0.064
Coal (million 2019\$)							
Monetary damages from air pollution -		2,116	1,541	875	719	302	70.4
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		7,317	7,231	5,804	3,530	1,675	662
Transportation (million 2019\$)							
Premature deaths from air pollution -		212	0.228	0.227	0.215	0.134	0.007
Coal (deaths)							
Premature deaths from air pollution -		239	174	98.7	81.2	34.1	7.95
Natural Gas (deaths)							
Premature deaths from air pollution -		823	813	653	397	188	74.4
Transportation (deaths)							

Table 35: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		89,684	98,037				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	18.5	33.7	75.3	83.5	83.9	84	84
Resistance (%)							
Sales of cooking units - Gas (%)	81.5	66.3	24.7	16.5	16.1	16	16
Sales of space heating units - Electric	0.625	15.6	51.1	76.3	79.8	80.3	80.2
Heat Pump (%)							
Sales of space heating units - Electric	2.13	4.73	12.8	18	19.1	18.8	18.9
Resistance (%)							
Sales of space heating units - Fossil (%)	19.1	14.5	2.85	0.124	0	0	0
Sales of space heating units - Gas Furnace	78.2	65.2	33.3	5.6	1.11	0.87	0.863
(%)							
Sales of water heating units - Electric	0.224	7.35	41	58.7	61	61.2	61.2
Heat Pump (%)							
Sales of water heating units - Electric	1.34	5.14	22.3	36.4	38.5	38.7	38.7
Resistance (%)							
Sales of water heating units - Gas Furnace	97	86.3	36.3	4.73	0.256	0	0
(%)							
Sales of water heating units - Other (%)	1.45	1.19	0.377	0.184	0.175	0.176	0.176

Table 36: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		7.59	7.79	18.2	19.6	18.4	19.5
Cumulative 5-yr (billion \$2018)							

Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	690	677	650	604	560	538	533
Final energy use - Industry (PJ)	488	505	512	521	523	530	532
Final energy use - Residential (PJ)	880	819	735	612	496	413	364
Final energy use - Transportation (PJ)	1,161	1,104	995	858	731	647	604

Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		14.3	15.2				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	34.6	48.6	91.2	99.6	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	65.4	51.4	8.8	0.443	0	0	0
Sales of space heating units - Electric	3.63	16.2	66.1	89	91.7	91.9	92
Heat Pump (%)							
Sales of space heating units - Electric	8.47	10.5	6.04	3.28	2.89	2.96	3.08
Resistance (%)							
Sales of space heating units - Fossil (%)	24.2	32.1	10.3	4.74	4.39	4.24	4.06
Sales of space heating units - Gas (%)	63.7	41.2	17.6	3.03	0.991	0.876	0.88
Sales of water heating units - Electric	0	6.54	37.2	51.7	53.5	53.6	53.6
Heat Pump (%)							
Sales of water heating units - Electric	18.7	35.7	39.8	45.4	46.3	46.4	46.3
Resistance (%)							
Sales of water heating units - Gas Furnace	71.1	52	21.9	2.85	0.155	0	0
(%)							
Sales of water heating units - Other (%)	10.3	5.8	1.12	0.083	0.037	0.038	0.038

Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -		2,187	5,658	9,084	13,794	14,977	14,299
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.56		3.54		15		24.1
units)							
Public EV charging plugs - L2 (1000 units)	4.23		85.1		360		579
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.44	1.72	1.21	0.387	0.073	0.013	0
Vehicle sales - Light-duty - EV (%)	4.28	16.3	48.1	82.5	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.3	76.7	47.1	15.8	3.2	0.587	0
Vehicle sales - Light-duty - hybrid (%)	4.78	4.8	3.33	1.23	0.301	0.066	0
Vehicle sales - Light-duty - hydrogen FC	0.11	0.333	0.194	0.06	0.012	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.097	0.093	0.059	0.021	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0

Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Medium-duty - hydrogen FC (%)	0.196	1.27	6.33	15.2	19.1	19.9	20
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 40: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

Thomas					00/0	00/5	0050
Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Offshore Wind - Base		7.13	6.26	9.69	2.94	0.085	2.86
(billion \$2018)							
Capital invested - Offshore Wind -		7.43	6.23	9.75	2.95	0	2.61
Constrained (billion \$2018)							
Capital invested - Solar PV - Base (billion		1.75	0.092	0.837	0.659	1.62	14.5
\$2018)							
Capital invested - Solar PV - Constrained		0.54	0	0.646	1.19	1.28	18
(billion \$2018)							
Capital invested - Wind - Base (billion		0	0	1.36	4.2	5.29	3.58
\$2018)							
Capital invested - Wind - Constrained		0	0.072	1.29	4.31	5.29	3.55
(billion \$2018)							
Installed renewables - OffshoreWind -	0	2,517	5,120	9,861	11,315	11,367	13,529
Base land use assumptions (MW)		•					,
Installed renewables - OffshoreWind -	0	2,625	5,214	9,983	11,439	11,439	13,408
Constrained land use assumptions (MW)					-		
Installed renewables - Solar - Base land	2,047	3,577	3,667	4,556	5,298	7,233	25,500
use assumptions (MW)		•		-	-		
Installed renewables - Solar -	1,136	1,608	1,608	2,295	3,633	5,164	27,891
Constrained land use assumptions (MW)	,	•	,	•			•
Installed renewables - Wind - Base land	3,484	3,484	3,484	4,091	6,068	8,690	10,567
use assumptions (MW)		·		·			·
Installed renewables - Wind - Constrained	3,484	3,484	3,514	4,094	6,121	8,742	10,604
land use assumptions (MW)							

Table 41: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
OffshoreWind - Base land use	0	10,024	20,550	40,051	46,037	46,254	55,195
assumptions (GWh)							
OffshoreWind - Constrained land use	0	10,664	21,171	40,651	46,697	46,697	54,922
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	3,185	5,445	5,572	6,857	7,941	10,748	37,215
Solar - Constrained land use assumptions	1,883	2,594	2,594	3,592	5,589	7,799	40,573
(GWh)							
Wind - Base land use assumptions (GWh)	14,244	14,244	14,244	16,565	23,892	33,329	39,993
Wind - Constrained land use assumptions	14,244	14,244	14,355	16,576	24,025	33,355	39,881
(GWh)							

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-264
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,322
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-89.7
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,675
deployment - Total (1000 tCO2e/y)							

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							-264
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,224
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-44.8
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,532
deployment - Total (1000 tC02e/y)							
Land impacted for carbon sink -							85.7
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,489
Aggressive deployment - Cropland							•
measures (1000 hectares)							
Land impacted for carbon sink -							163
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							1,738
Aggressive deployment - Total (1000							,
hectares)							
Land impacted for carbon sink - Moderate							85.7
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							785
deployment - Cropland measures (1000							100
hectares)							
Land impacted for carbon sink - Moderate							81.5
deployment - Permanent conservation							01.0
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							953
deployment - Total (1000 hectares)							700
deployment - Total (1000 nectal es)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-383
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-31,435
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-2,752
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-11,858
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-604
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-5,464
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-1,072
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-273
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-5,516
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-3,513
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-192
regeneration (1000 tCO2e/y)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	205
Carbon sink potential - Low - All (not							-9,44
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-45
deforestation (1000 tC02e/y)							
Carbon sink potential - Low - Extend							-4,55
rotation length (1000 tC02e/y)							
Carbon sink potential - Low - Improve							-30
plantations (1000 tCO2e/y)							1.00
Carbon sink potential - Low - Increase							-1,82
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-37
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Low - Reforest							-13
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-41
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,18
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-28
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-20,43
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-1,60
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-8,20
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-45
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-3,64
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-72
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-20
cropland (1000 tCO2e/y)							_
Carbon sink potential - Mid - Reforest							-2,96
pasture (1000 tCO2e/y)							_,, 0
Carbon sink potential - Mid - Restore							-2,34
productivity (1000 tCO2e/y)							_,
Land impacted for carbon sink potential -							62.
High - Accelerate regeneration (1000							02.
hectares)							
Land impacted for carbon sink potential -							37
High - Avoid deforestation (over 30 years)							J1
(1000 hectares)							
Land impacted for carbon sink potential -							6,04
High - Extend rotation length (1000							0,04
hectares)							
Land impacted for carbon sink potential -							22
High - Improve plantations (1000							22
• • • • • • • • • • • • • • • • • • • •							
nectares)							
and impacted for carbon sink potential -							
High - Increase retention of HWP (1000							
nectares)							
Land impacted for carbon sink potential -							10
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							1
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							15
High - Reforest pasture (1000 hectares)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Table 43: E+RE- scenario - PILLAR 6: Land Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							1,164
High - Restore productivity (1000 hectares)							
Land impacted for carbon sink potential -							8,146
High - Total impacted (over 30 years)							-, -
(1000 hectares)							
Land impacted for carbon sink potential -							31.3
Low - Accelerate regeneration (1000 hectares)							
Land impacted for carbon sink potential -		-					350
Low - Avoid deforestation (over 30 years)							000
(1000 hectares)							
Land impacted for carbon sink potential -							2,317
Low - Extend rotation length (1000							
hectares)							111
Land impacted for carbon sink potential - Low - Improve plantations (1000							111
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							53.6
Low - Increase trees outside forests							
(1000 hectares) Land impacted for carbon sink potential -							9.02
Low - Reforest cropland (1000 hectares)							7.02
Land impacted for carbon sink potential -							27.2
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							705
Low - Restore productivity (1000							
hectares) Land impacted for carbon sink potential -							3,603
Low - Total impacted (over 30 years)							3,003
(1000 hectares)							
Land impacted for carbon sink potential -							47
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							361
Mid - Avoid deforestation (over 30 years) (1000 hectares)							
Land impacted for carbon sink potential -							4,182
Mid - Extend rotation length (1000							, -
hectares)							
Land impacted for carbon sink potential -							167
Mid - Improve plantations (1000 hectares) Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							U
hectares)							
Land impacted for carbon sink potential -							77.7
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							13.5
Mid - Reforest cropland (1000 hectares) Land impacted for carbon sink potential -							196
Mid - Reforest pasture (1000 hectares)							170
Land impacted for carbon sink potential -							1,419
Mid - Restore productivity (1000							• •
hectares)							
Land impacted for carbon sink potential -							6,464
Land impacted for carbon sink potential - Mid - Total impacted (over 30 years) (1000 hectares)							6,464

Table /./	E, DE	ananania	IMPACTS -	Hoalth
Table 44.	F+KF-	srennrin -	IMPALLS -	HPNITN

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		1,879	2.02	2.01	1.9	1.18	0.064
Coal (million 2019\$)							
Monetary damages from air pollution -		2,124	1,301	1,573	1,388	962	156
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		7,317	7,231	5,804	3,530	1,675	662
Transportation (million 2019\$)							
Premature deaths from air pollution -		212	0.228	0.227	0.215	0.134	0.007
Coal (deaths)							
Premature deaths from air pollution -		240	147	178	157	109	17.6
Natural Gas (deaths)							
Premature deaths from air pollution -		823	813	653	397	188	74.4
Transportation (deaths)							

Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		89,637	97,820				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	18.5	21.6	27.5	43	64.5	77.7	82.3
Resistance (%)							
Sales of cooking units - Gas (%)	81.5	78.4	72.5	57	35.5	22.3	17.7
Sales of space heating units - Electric	0.625	10	13.9	25.5	45.9	63.9	72.2
Heat Pump (%)							
Sales of space heating units - Electric	2.13	3.41	4.29	6.96	11.7	15.4	17.3
Resistance (%)							
Sales of space heating units - Fossil (%)	19.1	16.8	16.2	12.8	7.04	2.9	1.58
Sales of space heating units - Gas Furnace	78.2	69.8	65.6	54.7	35.3	17.8	8.88
(%)							
Sales of water heating units - Electric	0.224	1.65	5.4	16.4	34.9	49.5	55.9
Heat Pump (%)							
Sales of water heating units - Electric	1.34	2.6	4.47	10.1	20.3	29.6	34
Resistance (%)							
Sales of water heating units - Gas Furnace	97	94.4	88.8	72.4	44.1	20.6	9.85
(%)							
Sales of water heating units - Other (%)	1.45	1.35	1.33	1.05	0.642	0.377	0.282

Table 46: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		6.03	6.04	8.86	9.2	14.7	15.6
Cumulative 5-yr (billion \$2018)							

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	690	679	673	667	654	636	618
Final energy use - Industry (PJ)	488	505	514	526	531	538	538
Final energy use - Residential (PJ)	880	823	783	735	664	579	494
Final energy use - Transportation (PJ)	1,163	1,112	1,033	964	905	837	757

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		14.3	16.3				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	34.4	36.1	42.1	57.9	80	93.5	98.3
Resistance (%)							
Sales of cooking units - Gas (%)	65.6	63.9	57.9	42.1	20	6.47	1.74
Sales of space heating units - Electric	3.63	7.47	12.9	28.9	55.2	75.3	83.7
Heat Pump (%)							

Table 48: E-B+ scenario -	DILLAD 1. Efficier	ov/Electrification	Dooidontial	(continued)
1aule 40. E-D+ Scellul lu -	PILLAK I. EIIILIEI	ICV/EIECH IIICUHUII	- Residential	rconunueur

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	8.47	11.2	10.6	9.22	6.74	4.65	3.8
Resistance (%)							
Sales of space heating units - Fossil (%)	24.2	36.3	34	27.2	16.6	9.64	6.99
Sales of space heating units - Gas (%)	63.7	45.1	42.4	34.7	21.5	10.4	5.47
Sales of water heating units - Electric	0	1.21	4.63	14.7	31.2	43.9	49.3
Heat Pump (%)							
Sales of water heating units - Electric	18.7	35.3	35.6	36.9	39.6	42.6	44.2
Resistance (%)							
Sales of water heating units - Gas Furnace	71.1	56.8	53.6	43.7	26.7	12.4	5.95
(%)							
Sales of water heating units - Other (%)	10.3	6.7	6.2	4.75	2.54	1.09	0.587

Table 49: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	2020	0	363	742	2,526	7,889	11,514
Cumulative 5-yr (million \$2018)		o		172	2,020	1,007	11,014
Public EV charging plugs - DC Fast (1000	0.56		1.17		5.61		15.4
units)	0.00				0.01		10.4
Public EV charging plugs - L2 (1000 units)	4.23		28.1		135		371
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.45	1.88	2.04	1.61	1.02	0.524	0.225
Vehicle sales - Light-duty - EV (%)	2.02	4.97	12.4	26.8	49.4	72.7	87.8
Vehicle sales - Light-duty - gasoline (%)	91.4	86.9	78.7	65.5	45.1	24.2	10.7
Vehicle sales - Light-duty - hybrid (%)	4.96	5.75	6.41	5.79	4.28	2.5	1.2
Vehicle sales - Light-duty - hydrogen FC	0.112	0.377	0.32	0.242	0.17	0.094	0.044
(%)							
Vehicle sales - Light-duty - other (%)	0.098	0.102	0.092	0.08	0.057	0.031	0.014
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 50: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0.005	0.001	0	0.011
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0.007	0	0.001	0	0.011

Table 51: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	4.49	5.23	5.45	16.9
Biomass w/ccu power plant (GWh)	0	0	8.38	8.38	9.01	9.12	21.7

Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)		0	0.652	1.94	2.2	6.27	1,070
Conversion capital investment -		0	6.95	22.2	4.22	47.7	12,245
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	1	1	1	1
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	1	1	1	1
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	1	1
Number of facilities - Diesel ccu (quantity)	0	0	0	1	1	1	1
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	1	1	1	1	1
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	1	13
Number of facilities - Pyrolysis ccu	0	0	0	1	1	1	1
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	1	1	1	1	1

Table 53: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0.01	3.38	3.35	3.45	3.67
Annual - BECCS (MMT)		0	0.01	0.02	0.02	0.03	0.12
Annual - Cement and lime (MMT)		0	0	3.35	3.32	3.42	3.53
Annual - NGCC (MMT)		0	0	0.01	0.01	0.01	0.01
Cumulative - All (MMT)		0	0.01	3.39	6.74	10.2	13.9
Cumulative - BECCS (MMT)		0	0.01	0.03	0.05	0.08	0.2
Cumulative - Cement and lime (MMT)		0	0	3.35	6.67	10.1	13.6
Cumulative - NGCC (MMT)		0	0	0.01	0.02	0.03	0.04

Table 54: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	279	612	612	437	612
Cumulative investment - All (million \$2018)		0	223	490	489	400	499
Cumulative investment - Spur (million \$2018)		0	109	376	375	286	385
Cumulative investment - Trunk (million \$2018)		0	114	114	114	114	114
Spur (km)		0	216	549	549	374	549
Trunk (km)		0	63	63	63	63	63

Table 55: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-414
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item Carbon sink potential - Aggressive	2020	2025	2030	2035	2040	2045	2050 -2,200
deployment - Cropland measures (1000 tCO2e/y)							-2,200
Carbon sink potential - Aggressive							0
deployment - Cropland to woody energy crops (1000 tC02e/y)							O
Carbon sink potential - Aggressive deployment - Pasture to energy crops							0
(1000 tCO2e/y)							
Carbon sink potential - Aggressive deployment - Permanent conservation cover (1000 tCO2e/y)							-84.9
Carbon sink potential - Aggressive deployment - Total (1000 tCO2e/y)							-2,698
Carbon sink potential - Moderate							-414
deployment - Corn-ethanol to energy grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate deployment - Cropland measures (1000 tCO2e/y)							-1,160
Carbon sink potential - Moderate							0
deployment - Cropland to woody energy crops (1000 tCO2e/y)							
Carbon sink potential - Moderate deployment - Pasture to energy crops (1000 tCO2e/y)							0
Carbon sink potential - Moderate deployment - Permanent conservation							-42.4
cover (1000 tCO2e/y) Carbon sink potential - Moderate							-1,616
deployment - Total (1000 tC02e/y) Land impacted for carbon sink -							172
Aggressive deployment - Corn-ethanol to energy grasses (1000 hectares)							172
Land impacted for carbon sink - Aggressive deployment - Cropland measures (1000 hectares)							3,483
Land impacted for carbon sink - Aggressive deployment - Cropland to woody energy crops (1000 hectares)							1.31
Land impacted for carbon sink - Aggressive deployment - Pasture to energy crops (1000 hectares)							78.3
Land impacted for carbon sink - Aggressive deployment - Permanent conservation cover (1000 hectares)							154
Land impacted for carbon sink - Aggressive deployment - Total (1000							3,889
hectares) Land impacted for carbon sink - Moderate deployment - Corn-ethanol to energy							172
grasses (1000 hectares) Land impacted for carbon sink - Moderate deployment - Cropland measures (1000							744
hectares) Land impacted for carbon sink - Moderate deployment - Cropland to woody energy							1.31
crops (1000 hectares) Land impacted for carbon sink - Moderate							78.3
deployment - Pasture to energy crops (1000 hectares)							

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Itom	2020	2025	2020	2025	207.0	20/E	2050
Item	2020	2025	2030	2035	2040	2045	
Land impacted for carbon sink - Moderate							77.2
deployment - Permanent conservation cover (1000 hectares)							
Land impacted for carbon sink - Moderate deployment - Total (1000 hectares)							1,072

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-383
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-31,435
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-2,752
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-11,858
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-604
plantations (1000 tC02e/y)							
Carbon sink potential - High - Increase							-5,464
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-1,072
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-273
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-5,516
pasture (1000 tC02e/y)							
Carbon sink potential - High - Restore							-3,513
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-192
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-9,448
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-459
deforestation (1000 tC02e/y)							
Carbon sink potential - Low - Extend							-4,555
rotation length (1000 tC02e/y)							207
Carbon sink potential - Low - Improve							-307
plantations (1000 tC02e/y)							1 001
Carbon sink potential - Low - Increase							-1,821
retention of HWP (1000 tC02e/y)							075
Carbon sink potential - Low - Increase							-375
trees outside forests (1000 tC02e/y)							10 /
Carbon sink potential - Low - Reforest							-136
cropland (1000 tCO2e/y)							/10
Carbon sink potential - Low - Reforest							-418
pasture (1000 tC02e/y)							110/
Carbon sink potential - Low - Restore							-1,184
productivity (1000 tC02e/y) Carbon sink potential - Mid - Accelerate							007
•							-287
regeneration (1000 tCO2e/y) Carbon sink potential - Mid - All (not							-20,436
•							-20,436
counting overlap) (1000 tC02e/y)							-1,605
Carbon sink potential - Mid - Avoid deforestation (1000 tCO2e/y)							-1,605
Carbon sink potential - Mid - Extend							-8,206
rotation length (1000 tCO2e/y)							-0,206
Carbon sink potential - Mid - Improve							-450
plantations (1000 tCO2e/y)							-450
Carbon sink potential - Mid - Increase							-3,642
							-3,042
retention of HWP (1000 tCO2e/y)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item Copper sink notantial, Mid. Increase	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - Increase							-724
trees outside forests (1000 tC02e/y)							005
Carbon sink potential - Mid - Reforest							-205
cropland (1000 tCO2e/y)							0.07
Carbon sink potential - Mid - Reforest							-2,967
pasture (1000 tCO2e/y)							0.070
Carbon sink potential - Mid - Restore							-2,349
productivity (1000 tCO2e/y) Land impacted for carbon sink potential -							/0/
							62.6
High - Accelerate regeneration (1000							
hectares)							070
Land impacted for carbon sink potential -							373
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							6,047
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							223
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							102
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							18
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							157
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,164
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							8,146
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							31.3
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							350
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,317
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							111
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							53.6
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							9.02
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							27.2
Low - Reforest pasture (1000 hectares)							· -
Land impacted for carbon sink potential -						+	705
Low - Restore productivity (1000							
hectares)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential - Low - Total impacted (over 30 years) (1000 hectares)							3,603
Land impacted for carbon sink potential - Mid - Accelerate regeneration (1000 hectares)							47
Land impacted for carbon sink potential - Mid - Avoid deforestation (over 30 years) (1000 hectares)							361
Land impacted for carbon sink potential - Mid - Extend rotation length (1000 hectares)							4,182
Land impacted for carbon sink potential - Mid - Improve plantations (1000 hectares)							167
Land impacted for carbon sink potential - Mid - Increase retention of HWP (1000 hectares)							0
Land impacted for carbon sink potential - Mid - Increase trees outside forests (1000 hectares)							77.7
Land impacted for carbon sink potential - Mid - Reforest cropland (1000 hectares)							13.5
Land impacted for carbon sink potential - Mid - Reforest pasture (1000 hectares)							196
Land impacted for carbon sink potential - Mid - Restore productivity (1000 hectares)							1,419
Land impacted for carbon sink potential - Mid - Total impacted (over 30 years) (1000 hectares)							6,464

Table 58: E-B+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		1,879	2.02	2.01	1.9	1.18	0.064
Monetary damages from air pollution - Natural Gas (million 2019\$)		2,222	1,223	650	552	386	109
Monetary damages from air pollution - Transportation (million 2019\$)		7,451	7,988	8,203	7,769	6,492	4,675
Premature deaths from air pollution - Coal (deaths)		212	0.228	0.227	0.215	0.134	0.007
Premature deaths from air pollution - Natural Gas (deaths)		251	138	73.4	62.3	43.6	12.3
Premature deaths from air pollution - Transportation (deaths)		838	898	923	874	730	526

Table 59: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		88,595	91,263				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	18.5	19.4	19.4	19.6	19.7	19.8	19.9
Resistance (%)							
Sales of cooking units - Gas (%)	81.5	80.6	80.6	80.4	80.3	80.2	80.1
Sales of space heating units - Electric	0.625	14.7	40.7	61.9	65.1	65.7	65.5
Heat Pump (%)							
Sales of space heating units - Electric	2.13	4.03	8.89	21.3	31.8	33.3	33.6
Resistance (%)							
Sales of space heating units - Fossil (%)	19.1	16.3	12.8	5.74	0.874	0.07	0

Table CO. DCC assessia	DILLAD 1. Efficiency /Floorwiff continue	0
Table 59: REE Scenorio	- PTLLAR 1 [,] Efficiency/Flectrification -	Commerciai I continuea i

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Gas Furnace	78.2	65	37.7	11	2.19	0.952	0.86
(%)							
Sales of water heating units - Electric	0.224	0.326	0.327	0.328	0.329	0.331	0.331
Heat Pump (%)							
Sales of water heating units - Electric	1.34	1.93	1.92	1.93	1.93	1.92	1.93
Resistance (%)							
Sales of water heating units - Gas Furnace	97	96.4	96.3	96.3	96.3	96.3	96.3
(%)							
Sales of water heating units - Other (%)	1.45	1.38	1.45	1.44	1.45	1.49	1.49

Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		6.35	6.41	12.1	12.8	14.6	15.5
Cumulative 5-yr (billion \$2018)							

Table 61: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	690	686	690	689	696	725	772
Final energy use - Industry (PJ)	488	516	537	550	569	586	604
Final energy use - Residential (PJ)	880	816	779	749	730	718	709
Final energy use - Transportation (PJ)	1,162	1,127	1,072	1,042	1,053	1,087	1,129

Table 62: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		13.5	14.1				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	33.8	33.8	33.8	33.8	33.8	33.8	33.8
Resistance (%)							
Sales of cooking units - Gas (%)	66.2	66.2	66.2	66.2	66.2	66.2	66.2
Sales of space heating units - Electric	1.94	19.2	20	21	21.5	22.1	22.9
Heat Pump (%)							
Sales of space heating units - Electric	8.69	9.88	9.71	9.54	9.43	8.85	8.05
Resistance (%)							
Sales of space heating units - Fossil (%)	24.6	30	16	7.63	6.8	6.76	6.79
Sales of space heating units - Gas (%)	64.8	40.9	54.3	61.9	62.2	62.3	62.3
Sales of water heating units - Electric	0	0	0	0	0	0	0
Heat Pump (%)							
Sales of water heating units - Electric	18.7	35.1	35	35	35	34.9	34.9
Resistance (%)							
Sales of water heating units - Gas Furnace	71.1	58	58.1	58.1	58.1	58.2	58.2
(%)							
Sales of water heating units - Other (%)	10.3	6.88	6.87	6.87	6.88	6.87	6.87

Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Heavy-duty - diesel (%)	98.1	98.2	97.9	97	95.6	93.5	91.6
Vehicle sales - Heavy-duty - EV (%)	0	0	0	0	0	0	0
Vehicle sales - Heavy-duty - gasoline (%)	0.229	0.242	0.257	0.274	0.294	0.317	0.343
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.096	0.112	0.13	0.15	0.174	0.202
Vehicle sales - Heavy-duty - hydrogen FC	0.119	0.138	0.16	0.186	0.216	0.25	0.29
(%)							
Vehicle sales - Heavy-duty - other (%)	1.51	1.31	1.57	2.37	3.69	5.71	7.57
Vehicle sales - Light-duty - diesel (%)	1.44	1.87	2.17	2.02	1.81	1.69	1.6
Vehicle sales - Light-duty - EV (%)	3.92	6.07	6.88	8.48	10.3	11.8	13
Vehicle sales - Light-duty - gasoline (%)	89.6	86	83.7	81.7	79.5	77.6	76.1
Vehicle sales - Light-duty - hybrid (%)	4.8	5.63	6.86	7.42	7.96	8.48	8.86

Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Light-duty - hydrogen FC	0.11	0.373	0.339	0.3	0.296	0.296	0.306
(%)							
Vehicle sales - Light-duty - other (%)	0.097	0.101	0.097	0.098	0.097	0.096	0.098
Vehicle sales - Medium-duty - diesel (%)	65.2	63.5	61.6	59.6	58	56.5	55.2
Vehicle sales - Medium-duty - EV (%)	0.027	0.105	0.329	0.671	0.895	0.973	0.993
Vehicle sales - Medium-duty - gasoline (%)	34	35.5	37	38.5	39.7	40.8	41.7
Vehicle sales - Medium-duty - hybrid (%)	0.365	0.427	0.496	0.577	0.674	0.793	0.929
Vehicle sales - Medium-duty - hydrogen	0.175	0.208	0.242	0.285	0.339	0.409	0.487
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.255	0.271	0.298	0.345	0.42	0.528	0.671

Table 64: REF scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate regeneration (1000 tC02e/y)							-383
Carbon sink potential - High - All (not counting overlap) (1000 tC02e/y)							-31,435
Carbon sink potential - High - Avoid deforestation (1000 tCO2e/y)							-2,752
Carbon sink potential - High - Extend rotation length (1000 tC02e/y)							-11,858
Carbon sink potential - High - Improve plantations (1000 tCO2e/y)							-604
Carbon sink potential - High - Increase retention of HWP (1000 tC02e/y)							-5,464
Carbon sink potential - High - Increase trees outside forests (1000 tC02e/y)							-1,072
Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)							-273
Carbon sink potential - High - Reforest pasture (1000 tCO2e/y)							-5,516
Carbon sink potential - High - Restore productivity (1000 tCO2e/y)							-3,513
Carbon sink potential - Low - Accelerate regeneration (1000 tCO2e/y)							-192
Carbon sink potential - Low - All (not counting overlap) (1000 tC02e/y)							-9,448
Carbon sink potential - Low - Avoid deforestation (1000 tC02e/y)							-459
Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)							-4,555
Carbon sink potential - Low - Improve plantations (1000 tCO2e/y)							-307
Carbon sink potential - Low - Increase retention of HWP (1000 tC02e/y)							-1,821
Carbon sink potential - Low - Increase trees outside forests (1000 tC02e/y)							-375
Carbon sink potential - Low - Reforest cropland (1000 tCO2e/y)							-136
Carbon sink potential - Low - Reforest pasture (1000 tCO2e/y)							-418
Carbon sink potential - Low - Restore productivity (1000 tCO2e/y)							-1,184
Carbon sink potential - Mid - Accelerate regeneration (1000 tC02e/y)							-287
Carbon sink potential - Mid - All (not counting overlap) (1000 tC02e/y)							-20,436
Carbon sink potential - Mid - Avoid deforestation (1000 tCO2e/y)							-1,605

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - Extend							-8,206
rotation length (1000 tC02e/y)							, 50
Carbon sink potential - Mid - Improve							-450
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-3,642
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-724
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-205
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-2,967
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-2,349
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							62.6
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							373
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							6,047
High - Extend rotation length (1000							·
hectares)							
Land impacted for carbon sink potential -							223
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							ŭ
hectares)							
Land impacted for carbon sink potential -							102
High - Increase trees outside forests							102
(1000 hectares)							
Land impacted for carbon sink potential -							18
High - Reforest cropland (1000 hectares)							10
Land impacted for carbon sink potential -							157
High - Reforest pasture (1000 hectares)							131
Land impacted for carbon sink potential -							1,164
High - Restore productivity (1000							1,104
= ' ' '							
hectares)							0.1/ /
Land impacted for carbon sink potential -							8,146
High - Total impacted (over 30 years)							
(1000 hectares)							01.0
Land impacted for carbon sink potential -							31.3
Low - Accelerate regeneration (1000							
hectares)							050
Land impacted for carbon sink potential -							350
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,317
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							111
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							53.6
Low - Increase trees outside forests							
(1000 hectares)							

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							9.02
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							27.2
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							705
Low - Restore productivity (1000							
hectares							
Land impacted for carbon sink potential -							3,603
Low - Total impacted (over 30 years)							-,
(1000 hectares)							
Land impacted for carbon sink potential -							4
Mid - Accelerate regeneration (1000							• • • • • • • • • • • • • • • • • • • •
nectares)							
Land impacted for carbon sink potential -							36
Mid - Avoid deforestation (over 30 years)							00
(1000 hectares)							
Land impacted for carbon sink potential -							4,18
Mid - Extend rotation length (1000							4,10
nectares)							
and impacted for carbon sink potential -							16
Mid - Improve plantations (1000 hectares)							10
and impacted for carbon sink potential -							(
Mid - Increase retention of HWP (1000							`
nectares)							
and impacted for carbon sink potential -							77.
Mid - Increase trees outside forests (1000							
nectares)							
Land impacted for carbon sink potential -							13.5
Mid - Reforest cropland (1000 hectares)							10.
and impacted for carbon sink potential -							190
Mid - Reforest pasture (1000 hectares)							170
Land impacted for carbon sink potential -							1,419
Mid - Restore productivity (1000							1,41
nectares)							
and impacted for carbon sink potential -							6,46
Mid - Total impacted (over 30 years) (1000							0,40
nectares)							
icotal coj							
able 65: REF scenario - PILLAR 6: Land sir				0005	00/0	00/5	005
[tem	2020	2025	2030	2035	2040	2045	2050
Business-as-usual carbon sink - Natural uptake (Mt CO2e/y)	-10.2		-16.4				-14.
Rusiness-as-usual carbon sink - Retained	-1 49		-2 67				-2 78

Item	2020	2025	2030	2035	2040	2045	2050
Business-as-usual carbon sink - Natural	-10.2		-16.4				-14.7
uptake (Mt CO2e/y)							
Business-as-usual carbon sink - Retained	-1.49		-2.67				-2.78
in Hardwood Products (Mt CO2e/y)							
Business-as-usual carbon sink - Total (Mt	-11.7		-19.1				-17.5
CO2e/y)							

Table 66: REF scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		5,161	3,218	2,978	2,881	2,821	2,535
Monetary damages from air pollution - Natural Gas (million 2019\$)		1,653	1,596	2,181	2,162	2,472	2,733
Monetary damages from air pollution - Transportation (million 2019\$)		7,434	8,078	8,725	9,431	10,167	10,949
Premature deaths from air pollution - Coal (deaths)		583	364	336	325	319	286
Premature deaths from air pollution - Natural Gas (deaths)		187	180	246	244	279	309

Table 66: REF scenario - IMPACTS - Health (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution -		836	909	981	1,061	1,143	1,231
Transportation (deaths)							