Design Procedure for Capacitively- coupled Microstrip Filters

J-Admittance Inverter Model for Bandpass Filters

$$\frac{J_{01}}{Y_o} = \sqrt{\frac{\pi\Delta}{2g_o g_1}} \qquad \frac{J_{N,N+1}}{Y_o} = \sqrt{\frac{\pi\Delta}{2g_N g_{N+1}}}$$

where Δ is the percentage bandwidith

Low Pass Filter Prototype

	9 ₁	g_2	g_3	g ₄	g ₅	g ₆	g ₇	g ₈	g ₉	g ₁₀	g ₁₁
	0.0138 dB ripple										
1										. 2	
	0.1128	1.0000			I.L:	= 0.0	138	= -10	Olog	$ S_{21} ^2$	
2											
	0.4886	0.4365	1.1194		R.I	z=-1	0109	<u> 2</u> [1 —	S_{21}	1	
3							3 2 0 2		~ 21	J	
	0.6708	1.0030	0.6708	1.0000							
4											
	0.7537	1.2254	1.3717	0.6734	1.1194						
5											
	0.7965	1.3249	1.6211	1.3249	0.7965	1.0000					
6											
	0.8210	1.3770	1.7289	1.5445	1.5414	0.7334	1.1194				
7											
	0.8362	1.4075	1.7846	1.6368	1.7846	1.4075	0.8362	1.0000			
8											
	0.8463	1.4269	1.8172	1.6837	1.8847	1.6234	1.5973	0.7560	1.1194		
9											
	0.8533	1.4400	1.8380	1.7109	1.9348	1.7109	1.8380	1.4400	0.8533	1.0000	
10											
	0.8583	1.4493	1.8521	1.7281	1.9636	1.7542	1.9344	1.6546	1.6223	0.7668	1.1194

I.L (insertion loss)

R.L (return loss)

R. C. Cameron, C. M. Kudsia and R. R. Mansour, "Microwave Filters for Communication Systems - Fundamentals, Design and Applications, "Wiley, 2007

Admittance Inverters

Examples of Admittance Inverters

$$\left| \frac{\mathbf{B}}{\mathbf{Y}_0} \right| = \frac{\frac{\mathbf{J}}{\mathbf{Y}_0}}{1 - \left(\frac{\mathbf{J}}{\mathbf{Y}_0}\right)^2} \quad \phi = -\tan^{-1} \frac{2\mathbf{B}}{\mathbf{Y}_0}$$

$$B_{p} \xrightarrow{\phi/2} B_{p}$$

$$B_{p} \xrightarrow{(e)}$$

$$\frac{J}{Y_0} = \left| \tan(\frac{\phi}{2} + \arctan \frac{B_p}{Y_0}) \right|$$

$$\phi = -\arctan(2\frac{B_s}{Y_0} + \frac{B_p}{Y_0}) - \arctan\frac{B_p}{Y_0}$$

Using an EM Simulator, calculate scattering parameters from which you can calculate Y-parameters. of the capacitive discontinuity.

Step 2: Calculation of Inter-resonator Coupling

R. C. Cameron, C. M. Kudsia and R. R. Mansour, "Microwave Filters for Communication Systems - Fundamentals, Design and Applications, "Wiley, 2007

$$\frac{J}{Y_0} = \left| \tan(\frac{\phi}{2} + \arctan \frac{B_p}{Y_0}) \right| \qquad \phi = -\arctan(2\frac{B_s}{Y_0} + \frac{B_p}{Y_0}) - \arctan \frac{B_p}{Y_0}$$

$$l_r = \frac{\lambda_{g0}}{2\pi} \left[\pi + \frac{1}{2} (\phi_{r-1} + \phi_r) \right], \qquad r = 1,, N$$

Lookup table to find the desired gap sizes using Momentum EM Simulator

d(mm)	Y ₁₁	Y ₁₂	J	ф
0.10	-	-	0.0039	-
0.11	-	-	0.0038	-
0.133	j0.0165340	-j0.0059586	0.00361	-1.3304
0.138	-	-	0.00357	-
0.14	-	-	0.00356	-
0.15	-	-	0.0035	-
1.56	-	-	5.3439e-004	-
1.565	j0.0137929	-j0.0007837	5.3128e-004	-1.2065
1.58	-	-	5.2217e-004	-
1.80	-	-	4.0571e-004	-
1.82	-	-	3.9664e-004	-
1.83	-	-	3.9210e-004	-
1.85	j0.0137662	-j0.0005648	3.8330e-004	-1.2052
1.89	j0.0137637	-j0.0005397	3.6630e-004	-1.2050
1.90	-	-	3.6224e-004	-

Step 1 - Knowing the gvalues we van get required J. Step 2- Fix W and lo Use EM simulation for the capacitive discontinuity to find the S-parameters and the Yparameters (Bp and Bs). Step 3 -Generate a look-up Table for d versus J and φ. Then find d_n and I_n that correspond to the required J values

Final Design

