群的同态

- 1. 群的同态: 设 (G, \cdot) 和 (G', \circ) 是两个群, 若映射 $f: G \to G'$ 满足 $\forall a, b \in G$, 有 $f(a \cdot b) = f(a) \circ f(b)$, 则称 f 是群 G 到 G' 的同态;
 - (a) 单同态: 若f是单射,则f为单同态;
 - (b) 满同态: 若f是满射,则f是满同态;
 - (c) 设 G, H 为群, $f: G \to H$ 是群的同态, 则 $f(e_G) = e_H$, 且 $\forall a \in G$, 有 $f(a^{-1}) = f(a)^{-1}$. 即群同态将单位元映射到单位元, 逆元映射到逆元;
- 2. 同构: 若同态映射 f 是双射,则 f 是群 G 到 G' 的同构. 记为 f: G oup G' 或 $G \cong G'$. 同构的群被认为本质上是相同的;
 - (a) 群 G 到自身的同态 (同构) 叫做群 G 的自同态 (自同构);
 - (b) 记 Aut(G) 为群 G 的自同构全体,则它构成群;
- 3. 循环群的性质: 设 $G = \langle a \rangle$ 是由 a 生成的循环群,则:
 - (a) 若 $o(a) = \infty$, 则 $G \cong (\mathbb{Z}, +)$, 称 G 为无限循环群;
 - (b) 若 o(a) = n, 则 $G \cong (\mathbb{Z}_n, +)$, 称 G 为 n 阶循环群;
 - (c) 同阶循环群彼此同构;
 - (d) (\mathbb{Z} , +) 的生成元只有 1 或 -1; (\mathbb{Z}_n , +) 的生成元只能是 \bar{a} , 其中 (a,n)=1;
 - i. 即若 $o(a) = \infty$, 则 G 的生成元只有 a 和 a^{-1} ; 若 o(a) = n, 则 G 的生成元只有 $a^k (1 \le k < n, (k, n) = 1)$;
 - (e) 循环群的子群仍然是循环群, 且:
 - i. $(\mathbb{Z}, +)$ 的全部子群 $H_m = \langle m \rangle, m = 0, 1, 2, ...;$
 - ii. $(\mathbb{Z}_n, +)$ 的全部子群为 $<\bar{0}>$ 和 $<\bar{d}>$, d|n;
 - (f) 循环群的同构群:
 - i. $(\mathbb{Z}, +)$ 的自同构群 $Aut(\mathbb{Z})$ 是二元群;
 - ii. $(\mathbb{Z}_n, +)$ 的自同构群 $Aut(\mathbb{Z}_n)$ 是同构于 (\mathbb{Z}_n^*, \cdot) ;
- 4. 自共轭子群: 共轭子群只有自身的子群;

- 5. 正规子群: 设 G 是群, $N \leq G$ 称为 G 的正规子群, 若对 $\forall g \in G$, 有 $g^{-1}Ng = N$, 记为 $N \triangleleft G$ (即 N 是 G 中的自共轭子群);
 - (a) 等价条件:
 - i. $N \triangleleft G$;
 - ii. $\forall g \in G, gN = Ng;$
 - iii. $N_G(N) = G$;
 - iv. G 对于 N 的每个左陪集均是右陪集;
 - v. $\forall g \in G, h \in N,$ f $g^{-1}hg ∈ N;$
- 6. 商群: 设 G 是群, $N \triangleleft G$, 对 $\forall a \in G$, 记 $\bar{a} = Na = aN$. 在集合 $\bar{G} = \{\bar{a}|a \in G\}$ 上定义二元运算 $\bar{a} \cdot \bar{b} = \overline{ab}$. \bar{G} 对此运算形成群 (幺元 \bar{e} , 逆元 $\bar{a}^{-1} = \overline{a^{-1}}$), 称为 G 对正规子群 N 的商群, 记为 $\bar{G} = G/N$;
 - (a) 若 G 是有限群,则 |G/N| = [G:N] = [G]/|N|;
- 7. 同态定理: 设 $f: G \to G'$ 是群的同态,则:
 - (a) $Im f = f(G) \leq G'$;
 - (b) $Kerf = f^{-1}(e_{G'}) = \{g \in G | f(g) = e_{G'}\} \triangleleft G;$
 - (c) 映射 $\pi: G \to G/Kerf, \pi(g) = gKerf$ 是满同态;
 - (d) 存在唯一同态 $\bar{f}: G/Kerf \to G'$, 使得 $f = \bar{f} \circ \pi$, 且 \bar{f} 是单同态 (称 \bar{f} 是由 f 诱导的同态);
 - (e) $Im\bar{f} = Imf$, $\mathbb{H}\ \bar{f} : G/Kerf \tilde{\rightarrow} Imf$;
- 8. 同态基本定理: 设 $f: G \to G'$ 是群的同态, 则 Imf = f(G) 是 G' 的子 群, $Kerf = f^{-1}(e_{G'}) = \{g \in G | f(g) = e_{G'}\}$ 是 G 的正规子群, 并且有 群同构 $\bar{f}: G/Kerf \tilde{\to} Imf, (\bar{g} \mapsto f(g));$
 - (a) 推论: 设 $f:G\to G'$ 是群的同态,则
 - i. f 是单同态 $\Leftrightarrow Kerf = \{e_G\};$
 - ii. 若 f 是满同态,则有 (正则) 同构 $\bar{f}:G/Kerf \tilde{\rightarrow} G'$;
- 9. 设 G 是群, $N \triangleleft G$, 则 $\{M|N \leq M \leq G\} \leftrightarrow \{$ subgroups of $G/N\}$, $\{M|N \leq M \leq G\} \leftrightarrow \{$ invariant subgroups of $G/N\}$, 且对 $N \leq M \leq G$, 有 $M \triangleleft G \Leftrightarrow M/N \triangleleft G/N$;

- 10. 设G是群, $N,M \triangleleft G$,且 $N \leq M$,则 $N \triangleleft M,M/N \triangleleft G/N$,且 $(G/N)/(M/N) \cong G/M$;
- 11. 设 G 是群, $N \triangleleft G$, 且 $H \leq G$, 则 $(H \cap N) \triangleleft H$, $N \triangleleft NH \leq G$, 并且 $NH/N \cong H/(H \cap N)$;