Modèle à un Facteur

P. Hénaff

Version: 16 févr. 2022

Risque d'un titre individuel: un paradoxe!

Rappel: Frontière Efficiente

Figure 1: Droite de Marché des Capitaux

Relation Rendement/Risque

Portefeuille efficient:

$$\mu_P = r + \left(\frac{\mu_T - r}{\sigma_T}\right) \sigma_P$$

Titre individuel (CAPM/MEDAF):

$$\mu_i - r_f = \beta_i (\mu_M - r_f) \tag{1}$$

Derivation de la formule CAPM.

Decomposition du risque

$$r_i = r_f + \beta_i(r_M - r_f) + \epsilon_i$$
 $cov(\epsilon_i, r_M) = 0$

$$\sigma_i^2 = \beta_i^2 \sigma_M^2 + \sigma_\epsilon^2$$

- ightharpoonup Risque de marché $\beta_i^2 \sigma_M^2$
- ightharpoonup Risque spécifique σ_{ϵ}^2

Decomposition du risque d'un portefeuille

$$r_P = \sum_i w_i r_i$$

$$\beta_P = \sum_i w_i \beta_i$$

- ► Risque de marché $\beta_P^2 \sigma_M^2$ ► Risque spécifique $\sum_i w_i^2 \sigma_{\epsilon}^2$

Modèle statistique (Sharpe) et droite de marché des titres

$$R_i(t) = \alpha_i + \beta_i R_M(t) + e_i(t)$$

Données

	AAPL	AMZN	MSFT	F	SPY	QQQ	XOM	MMM	HD	PG	ко
Observations	158.0000	158.0000	158.0000	158.0000	158.0000	158.0000	158.0000	158.0000	158.0000	158.0000	158.0000
NAs	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Minimum	-0.3296	-0.2540	-0.1634	-0.5788	-0.1652	-0.1558	-0.1423	-0.1498	-0.1652	-0.1161	-0.1668
Quartile 1	-0.0213	-0.0303	-0.0280	-0.0456	-0.0144	-0.0159	-0.0265	-0.0230	-0.0227	-0.0211	-0.0168
Median	0.0291	0.0256	0.0203	-0.0022	0.0128	0.0192	0.0022	0.0144	0.0178	0.0081	0.0104
Arithmetic Mean	0.0254	0.0298	0.0152	0.0115	0.0076	0.0123	0.0017	0.0079	0.0151	0.0074	0.0100
Geometric Mean	0.0214	0.0252	0.0130	0.0020	0.0067	0.0110	0.0004	0.0063	0.0133	0.0065	0.0090
Quartile 3	0.0792	0.0830	0.0545	0.0470	0.0324	0.0455	0.0411	0.0455	0.0608	0.0361	0.0405
Maximum	0.2377	0.5413	0.2495	1.2738	0.1091	0.1317	0.1128	0.1734	0.1605	0.1161	0.1419
SE Mean	0.0071	0.0079	0.0053	0.0120	0.0033	0.0040	0.0040	0.0045	0.0049	0.0034	0.0035
LCL Mean (0.95)	0.0114	0.0143	0.0047	-0.0121	0.0010	0.0044	-0.0062	-0.0010	0.0055	0.0006	0.0031
UCL Mean (0.95)	0.0394	0.0454	0.0257	0.0352	0.0142	0.0201	0.0095	0.0168	0.0248	0.0141	0.0170
Variance	0.0079	0.0098	0.0045	0.0226	0.0018	0.0025	0.0025	0.0032	0.0037	0.0019	0.0020
Stdev	0.0889	0.0990	0.0670	0.1504	0.0419	0.0502	0.0502	0.0566	0.0612	0.0430	0.0442
Skewness	-0.6572	0.7403	0.0788	3.6175	-0.7421	-0.6247	-0.3969	-0.3662	-0.3033	-0.2344	-0.2589
Kurtosis	1.9491	4.0251	0.8958	31.4460	1.5521	0.9798	0.0867	0.5184	0.4291	0.0619	1.1258

MSFT & SPY

Calcul de β

beta_roll <- removeNA(rollapply(data=monthly.ret\$MSFT, Rb=rFUN=CAPM.beta, width=36, by

Calcul de α

alpha_roll <- removeNA(rollapply(data=monthly.ret\$MSFT, Rb=FUN=CAPM.alpha, width=36,

Mesures de performance

Prendre en compte à la fois la rentabilité moyenne et le risque subi.

- Ratio de Sharpe, fondé sur σ , adapté à l'évaluation d'un portefeuille bien diversifié
- ▶ Alpha de Jensen, fondé sur β , adapté aux titres individuels.

Ratio de Sharpe

$$S_P = \frac{\overline{r_P} - \overline{r_f}}{\sigma_P}$$

Permet de visualiser la performance par rapport à la CML sur a graphique rendement/risque.

Ratio de Treynor

$$S_P = \frac{\overline{r_P} - \overline{r_f}}{\beta_P}$$

Permet de visualiser la performance du portefeuille par rapport à la droite des actifs risqués (Security Market Line: SML)

Ratio M^2 (Modigliani & Miller)

$$M_P^2 = \overline{r_f} + \frac{\sigma_B}{\sigma_P} (\overline{r_P} - \overline{r_f})$$

Une mesure de performance ajustée pour le risque, à comparer avec le rendement moyen d'un portefeuille de référence ${\cal B}.$

Alpha de Jensen

$$\overline{R_p} - r_f = \alpha_p + \beta_p (\overline{R_M} - r_f) + \epsilon_p$$

Visuellement, le terme α_p représente la distance verticale entre le portefeuille et la SML dans un diagramme rendement/beta.

Division du travail en Gestion de Portefeuille

Espérance de rendement (analyse financière)

$$E(R_i(t)) = \alpha_i + \beta_i E(R_M(t))$$

► Variance (gestion du risque)

$$\sigma_i^2 = \beta_i^2 \sigma_M^2 + \sigma(e_i)^2$$