2章 終結式

定義 2.1

$$f(X) = a_0 X^m + a_1 X^{m-1} + \dots + a_m \ a_0 \neq 0$$
 $g(X) = b_0 X^n + b_1 X^{n-1} + \dots + b_n \ (b_0 \neq 0) \in K[X]$ に対して

$$\begin{pmatrix} a_0 & \cdots & 0 & b_0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_0 & 0 & 0 & b_0 \\ a_m & 0 & 0 & b_n & 0 & 0 \\ 0 & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_m & 0 & 0 & b_n \end{pmatrix}$$

を $f \times g$ のシルベスター行列と呼び、その行列式を f と g の終結式 (resultant) とよび、 R(f,g) で表す

証明
$$f(X) \geq g(X)$$
 が共通因子を持つ ⇔ $^{\exists}h(X), t(X) \in K[X]$ deg $h <$ deg g deg $t <$ deg f $f(X)h(X) = g(X)t(X)$ ⇔ $^{\exists}h(X) = C_0X^{n-1} + \cdots + C_{n-1} \neq 0$ $t(X) = d_0X^{m-1} + \cdots + d_{m-1} \neq 0$ $f(X)h(X) = g(X)t(X)$ ⇔ $^{\exists}(C_0, \dots, C_{n-1}, d_0, \dots, d_{m-1}) \neq \vec{0}$ 共通因子を $s(X)$ とすると
$$a_0C_0 = b_0d_0 \qquad \qquad X^{m+n-1} \text{ Of }$$
 係数 $a_1C_0 + a_0C_1 = b_1d_0 \qquad \qquad X^{m+n-2} \text{ Of }$ 係数 $a_2C_0 + a_1C_1 + a_0C_2 = b_2d_0 + b_1d_1 + b_0d_2 \qquad X^{m+n-3} \text{ Of }$ 条数 $a_mC_{n-1} + a_{m-1}C_{n-1} = b_nd_{m-2} + b_{n-1}d_{m1} \qquad X \text{ Of }$ 係数 $a_mC_{n-1} = b_nd_{m-1}$

定理 2.2

 $R(f,g)\in\langle f(X),g(X)\rangle$ 実は R(f,g)=h(X)f(X)+t(X)g(X) h(X),t(X) の係数は $a_0,\ldots,a_m,b_0,\ldots,b_n$ の整式 (整数係数多項式)

証明 R(f,g)=0 なら h(X)=t(X)=0 とおけばよい $R(f,g)\neq 0$ とする。

$$\begin{pmatrix} a_0 & \cdots & 0 & b_0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_0 & 0 & 0 & b_0 \\ a_m & 0 & 0 & b_n & 0 & 0 \\ 0 & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_m & 0 & 0 & b_n \end{pmatrix} \begin{pmatrix} C_0 \\ \vdots \\ C_{n-1} \\ d_0 \\ \vdots \\ d_{n-1} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

の解 $(C_0, \ldots, C_{n-1}, d_0, \ldots, d_{m-1})$ に対し、

 $h'(X) = C_0 X^{n-1} + \dots + C_{n-1}, t'(X) = d_0 X^{m-1} + \dots + d_{m-1}$ とおくと h'(X) f(X) + t'(X) g(X) = 1 がなりたつことにほかならない

 $R(f,g) \neq 0$ なので、解はただひとつ存在して、それは Clamer の公式によって $C_{i}=1$ $C_i = \frac{1}{R(f,g)}$

よって、各 C_j , d_j にR(f,g)をかけたものは、 $a_0,\ldots,a_m,b_0\ldots,b_n$ の整式になる

よって
$$h(X) = h'(X)R(f,g)$$
 とおけばよい $t(X) = t'(X)R(f,g)$