CoAP over Bundle Protocol (BP) draft-gomez-core-coap-bp-03

Intended Status: Standards Track

Carles Gomez

Anna Calveras

Universitat Politècnica de Catalunya

Status

- draft-gomez-core-coap-bp
 - -00 presented in IETF 119
 - CoRE and DTN WGs
 - -01 presented in IETF 120
 - CoRE and DTN WGs
 - -02 presented in IETF 121
 - CoRE WG
- Revision -03
 - Addresses feedback from IETF 121
 - Provides more content

Table of contents

1. Introduction	. 2
2. Terminology	. 3
2.1. Requirements language	. 3
2.2. Background on previous specifications	. 3
2.3. New terms	. 3
3. Architecture	. 4
4. Messages	. 4
4.1. Messaging model	. 4
4.2. Single message format	
4.3. Payload-length option	
5. Encapsulating bundle	. 7
6. CoAP parameter settings and related times	
7. Observe	
8. Block-wise transfers	
8.1. Main CoAP block-wise transfer parameters	
9. Proxying	
10. URI Scheme	
11. Securing CoAP over BP	
12. IANA Considerations	. 16
12.1. Creation of two new reserved domains in the .arpa name	
space	
12.1.1. Domain Name Reservation Considerations	. 17
12.2. ipn URI Scheme Well-known Service Number for CoAP	. 17
12.3. CoAP Option Numbers Registry	
13. Security Considerations	. 18
14. Acknowledgments	. 18
15. References	
15.1. Normative References	
15.2. Informative References	
Appendix A. Reference CoAP parameter values for interplanetary	
communication	. 21
Appendix B. Message ID size, EXCHANGE_LIFETIME, and maximum CoA	
message rate	
Authors' Addresses	. 27

4.3. Payload-length option

- Indicates the size of the payload of a CoAP message
 - The option value is an integer number of bytes
 - Allows message aggregation

Definition:

9. Proxying (I)

- CoAP proxy (RFC 7252)
 - A CoAP endpoint, an intermediary
 - Forwarding requests and relaying back responses
 - Caching, namespace translation, or protocol translation
 - Service a response from a cache in order to reduce response time and network bandwidth or energy consumption
 - Useful benefits also where BP is used

9. Proxying (II)

CoAP-to-CoAP proxy:

HTTP-to-CoAP cross-proxy:

11. Securing CoAP over BP (I)

 BPSec allows to protect all fields of a CoAP message carried over BP

- In scenarios with CoAP proxies, BPSec cannot ensure the protection of application-layer data between a CoAP client and the CoAP origin server
 - In that case, OSCORE SHOULD be used to protect application-layer data between the two actual CoAP endpoints

11. Securing CoAP over BP (II)

 In scenarios without CoAP proxies, both OSCORE or BPSec MAY be used to provide end-to-end application-layer data protection

 Open question: is there any reason why both OSCORE and BPSec should be simultaneously used in a scenario known to be proxy-less?

12.3. CoAP option numbers registry

 IANA is requested to add the Payload-length option to the CoAP Option Numbers registry:

Other updates

- Section 5. Encapsulating bundle lifetime of an Aggregate message is set to:
 - EXCHANGE_LIFETIME + MAX_AGGR_DELAY
 - If the Aggregate message only comprises CON messages
 - MAX_AGGR_DELAY: maximum time since the first Single message is generated until the Aggregate message is passed to the BP layer
 - NON_LIFETIME + MAX_AGGR_DELAY
 - If the Aggregate message only comprises NON messages
 - max (EXCHANGE_LIFETIME, NON_LIFETIME) + MAX_AGGR_DELAY
 - Otherwise
- Section 7. Observe:
 - draft-ietf-core-conditional-attributes now mentioned

Thanks! Questions? Comments?

Carles Gomez

Anna Calveras

Universitat Politècnica de Catalunya

CoAP in spacedraft-gomez-core-coap-space-02

Intended Status: Informational

Carles Gomez

Universitat Politècnica de Catalunya

Sergio Aguilar

Sateliot

Table of contents

1. Introduction	2
2. Terminology	3
2.1. Requirements language	3
3. CoAP transport	4
3.1. Overview and underlying transport	4
3.2. Main CoAP parameters and times relevant to delay-tolerant	
space environments	4
4. Caching	6
5. Proxying	7
6. Observe	9
	10
	10
	10
	11
	12
	12
	13
	13
	13
	13
	14
	14
	15
Authors' Addresses	16

5. Proxying

- CoAP proxy (RFC 7252)
 - A CoAP endpoint, an intermediary
 - Forwarding requests and relaying back responses
 - Caching, namespace translation, or protocol translation
 - Service the response from a cache in order to reduce response time and network bandwidth or energy consumption
 - Useful benefits also in (e.g. deep) space environments

5. Proxying. Scenarios (I)

No proxy

E.g., Earth

Mars orbiter

Mars

5. Proxying. Scenarios (II)

CoAP-to-CoAP proxy

E.g., Earth

Mars orbiter

Mars

5. Proxying. Scenarios (III)

HTTP-to-CoAP proxy

E.g., Earth

Mars orbiter

Mars

8. Message aggregation

- CoAP Payload-length option [draft-ietf-core-coap-bp]
 - Allows CoAP messages destined to the same endpoint to be aggregated and carried as the payload of a single encapsulating lower-layer data unit (e.g., UDP datagram)
- Aggregate message:
 - A concatenation of messages that carry the Payload-length option
- Message aggregation:
 - May be compatible with application requirements
 - Reduces protocol overhead

Thanks! Questions? Comments?

Carles Gomez

Universitat Politècnica de Catalunya

Sergio Aguilar

Sateliot