Actividad 1 MAT 0

por Lisandro Causa

1- Tabla de verdad:

р	q	r	q∧r	p v (q ∧ r)	pvq	pvr	$(p \lor q) \land (p \lor r)$
V	V	V	V	V	V	V	V
V	V	F	F	V	V	V	V
V	F	V	F	V	V	V	V
V	F	F	F	V	V	V	V
F	V	V	V	V	V	V	V
F	V	F	F	F	V	F	F
F	F	V	F	F	F	V	F
F	F	F	F	F	F	F	F

Como podemos ver hay una equivalencia lógica entre las dos proposiciones (marcadas en rojo), debido a que sus verdaderos y falsos coinciden en todos los casos.

2-

a) Aunque no se sepa el valor de \mathbf{q} , ya con el solo hecho de saber que \mathbf{p} o \mathbf{r} son verdaderos, hace que la implicación sea verdadera.

Pongámoslo de este modo:

$$(p \land q) \rightarrow (p \lor r)$$

$$a = (p \wedge q)$$

$$\mathsf{b} = (p \vee r)$$

entonces sería:

$$a \rightarrow b$$

Bien, el valor de "a" no se sabe, debido a que hay una conjunción en la que el valor de q no lo sabemos. Por ende, "a" puede ser tanto verdadero como falso. En cambio, el valor de "b" si lo sabemos, y es verdadero, ya que aunque hay una disyunción " $(p \lor r)$ ", ambos valores sabemos que son verdaderos. Por ende:

$$a = ?$$

$$b = V$$

y si nos queda alguna duda, podemos escribir una tabla de verdad para corroborar.

а	b	$a \rightarrow b$		
V	٧	٧		
F	V	V		

En ambos casos posibles, "a \rightarrow b" o " $(p \land q) \rightarrow (p \lor r)$ " son verdaderos.

b) Si bien el valor de " $(p \lor q)$ " podemos decir con certeza que es verdadero, debido a que sabemos que "q" es verdadero. Nos falta información porque la proposición " $(\neg p \lor \neg q)$ " no sabemos su resultado, porque tampoco sabemos el valor de "p".

p	q	٦р	$\neg q$	$(\neg p \lor \neg q)$
V	V	F	F	F
F	V	V	F	V

Entonces al no saber una de las dos implicaciones, y ellas estar sujetas a un bicondicional, tampoco podemos saber el valor final. Nos falta información.

3-

a = Es un gato

b = Come Carne

c = Es felino

a	b	С	p1: a -> b	p2: b -> c	q: a -> c	(p1 ∧ p2) -> q
V	V	V	V	V	V	V
V	V	F	V	F	F	V
V	F	V	F	V	V	V
V	F	F	F	V	F	V
F	V	V	V	V	V	V
F	V	F	V	F	V	V
F	F	V	V	V	V	V
F	F	F	V	V	V	V

Como podemos ver en el ejemplo de esta tabla de verdad, no hay ningún caso en el que "q" sea falso mientras que p1 y p2 sean verdaderas, además de que todas las

implicaciones de (p1 \land p2) -> q son verdaderas. Esto se debe a que comparten entre ellos las proposiciones como a, b, y c.

4-

a) No. Aunque se considere un universo de números enteros, o reales, o naturales, o el que sea, la condición esa no se cumple en todos lo casos posibles de x (lo que indica el símbolo \forall). Esto es así porque si hacemos las *cuentas*, el único valor que hace ambas proposiciones verdaderas es el -1, entonces, el cuantificador debería ser de tipo existencial (\exists).

Cuentas:

x + 4 = 3

x = 3 - 4

x = -1

 $x^2 - 1 = 0$

 $x^2 = 1$

 $x = \pm \sqrt{1}$

 $x = \pm 1$

Un universo donde esta condición se cumple sería en U = {-1}.

b) Un universo donde no habría ningún valor de x posible, que haga a la proposición verdadera sería: **U = Número Reales R - {-1}**. Es decir, todos los números reales posibles, menos el número -1, el cual es la solución correcta (*cuentas* del 4-a). También se podría decir Números Racionales, o Números Enteros, e incluso Números Naturales. Pero me quedo con los números reales para abarcar un mayor espectro.