STATS300B – Lecture 6

Julia Palacios Scribed by Michael Howes

01/20/22

Contents

 1 The delta method
 1

 2 Maximum likelihood estimation
 2

 2.1 MLEs for one-dimensional exponential families
 2

 2.2 Asymptotic efficiency
 3

 2.3 The ARE of the median
 3

 3 M-estimators and Z-estimators
 4

 3.1 A weak law for random functions
 4

1 The delta method

We ended last class with the statement of the higher order delta method. We stated the following.

Theorem 1 (Delta method 3 (higher order)). Suppose that X_n are random k-vectors such that

$$r_n(X_n - \theta) \stackrel{d}{\to} X,$$

where r_n is a deterministic function with $r_n \to +\infty$. Let ϕ be a real-valued function that is twice differentiable at θ with $\phi'(\theta) = 0$. Then,

$$r_n^2(\phi(X_n) - \phi(\theta)) \stackrel{d}{\to} \frac{1}{2} X^T \nabla^2 \phi(\theta) T.$$

We will now prove the above.

Proof. Note that,

$$\phi(X_n) = \phi(\theta) + \nabla \phi(\theta)^T (X_n - \theta) + (X_n - \theta)^T \nabla^2 \phi(\theta) (T_n - \theta) + o(\|X_n - \theta\|_2^2)$$

= $\phi(\theta) + \frac{1}{2} (X_n - \theta)^T \nabla^2 \phi(\theta) (X_n - \theta) + o(\|X_n - \theta\|_2^2).$

Note that $o(\|X_n - \theta\|_2^2) = o_p(r_n^{-2})$. Thus, by Slutsky's

$$r_n^2(\phi(X_n) - \phi(\theta)) = \frac{1}{2} (r_n(X_n - \theta))^T \nabla^2 \phi(\theta) (r_n(X_n - \theta)) + r_n^2 o_p(r_n^{-2})$$

$$\stackrel{d}{\to} \frac{1}{2} X^T \nabla^2 \phi(\theta) X.$$

1

01/20/22 STATS300B – Lecture 6

The central limit theorem gives a special one-dimensional case of the higher-order delta method. If X_1, \ldots are i.i.d. with mean μ and variance $\sigma^2 < \infty$, then $\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\to} \mathsf{N}(0, \sigma^2)$. Thus, if g is a twice differentiable at μ , then

$$n(g(\bar{X}_n) - g(\mu)) \stackrel{d}{\to} g''(\mu)\sigma^2 Z^2,$$

where $Z \sim \mathsf{N}(0,1)$. So that, $\frac{n}{g''(\mu)\sigma^2}(g(\bar{X}_n) - g(\mu)) \stackrel{d}{\to} \chi_1^2$.

2 Maximum likelihood estimation

Suppose we have data X in the form of n i.i.d. observations X_1, \ldots, X_n drawn from a distribution \mathbb{P}_{θ} with density p_{θ} . The likelihood $L(\theta) = p_{\theta}(X)$ is the density evaluated at X viewed as a function of θ . The value $\widehat{\theta}$ that maximizes $L(\theta)$ is called the maximum likelihood estimator (MLE) of θ . Much of this course will focus on properties of MLEs.

2.1 MLEs for one-dimensional exponential families

Suppose that X is generated from a one dimensional exponential family in canonical form. That is,

$$p_{\eta}(x) = \exp\{\eta T(x) - A(\eta)\}h(x),$$

where η is the natural parameter for the family, T(X) are the sufficient statistics for the family and $A(\eta) = \log \left(\int \exp \left\{ \eta T(x) \right\} h(x) dx \right)$ is the log-partition function for the family. The log-partition function is convex and differentiable with,

$$A'(\eta) = \mathbb{E}_{\eta}[T(X)],$$

and

$$A''(\eta) = \operatorname{Var}_{\eta}(T(X)).$$

Another name of the $A(\eta)$ is the cumulant generating function of T(X). Suppose now that we have an i.i.d. sample of size n drawn from p_{η} . Let $l(\eta) = \log(p_{\eta}(X_1, \ldots, X_n))$ be the log-likelihood function. Then,

$$(l(\eta) = \eta \sum_{i=1}^{n} T(X_i) - nA(\eta) + \log \left(\prod_{i=1}^{n} h(X_i) \right)$$

$$\therefore l'(\eta) = \sum_{i=1}^{n} T(X_i) - nA'(\eta) = \sum_{i=1}^{n} T(X_i) - n\mathbb{E}_{\eta}[T(X)]$$

$$\therefore l''(\eta) = -nA''(\eta) = -n\operatorname{Var}_{\eta}(T(X)) \le 0.$$

Thus, any solution to $l'(\eta) = 0$ is a local maximum of l. It follows that the MLE $\hat{\eta}$ solves the equation,

$$\mathbb{E}_{\widehat{\eta}}[T(X)] = \frac{1}{n} \sum_{i=1}^{n} T(X_i) = \bar{T}_n$$

Thus, the MLE is a type of method of moments estimator in this example. In particular, we have $\hat{\eta} = \phi(\bar{T})$ where ϕ can be thought of as $(A')^{-1}$. By the central limit theorem,

$$\sqrt{n}(\bar{T} - \mathbb{E}_{\eta}[T(X)]) \stackrel{d}{\to} \mathsf{N}(0, \operatorname{Var}_{\eta}(T(X))) = \mathsf{N}(0, A''(\eta)).$$

Thus, by the delta method,

$$\sqrt{n}(\widehat{\eta} - \eta) \stackrel{d}{\to} \mathsf{N}(0, \phi'(\eta)^2 A''(\eta)).$$

We know that $\phi'(\theta) = \frac{1}{A''(\eta)}$ and so, $\sqrt{n}(\widehat{\eta} - \eta) \stackrel{d}{\to} \mathsf{N}(0, A''(\eta)^{-1})$. We will see that similar results hold for distributions that are not exponential families.

2.2 Asymptotic efficiency

Recall that the Fisher information of a parameter θ is defined to be,

$$I(\eta) = \mathbb{E}_{\eta}[l'(\eta)^2] = -\mathbb{E}_{\eta}[l''(\eta)].$$

We have seen that for exponential families, $I(\eta) = -\mathbb{E}[-A''(\eta)] = A''(\eta)$. We also have the Cramer-Rao lower bound that states if $\hat{\eta}$ is an unbiased estimator for η based on an i.i.d. sample of size n, then

$$\operatorname{Var}_{\eta}(\widehat{\eta}) \geq \frac{1}{nI(\eta)}.$$

For exponentially families, $Var(\widehat{\eta}_{MLE}) \sim \frac{1}{nA''(\eta)} = \frac{1}{nI(\eta)}$. Thus, the MLE estimator asymptotically reaches the Cramer–Rao lower bound. Estimators with this property are called asymptotically efficient.

Definition 1. An estimator $\widehat{\eta}$ is asymptotically efficient if $Var(\widehat{\eta}) \sim \frac{1}{nI(\eta)}$.

We can also compare the asymptotic efficiency of two estimators.

Definition 2. Let $\widehat{\eta}_1$ and $\widehat{\eta}_2$ be two estimators. The asymptotic relative efficiency (ARE) of $\widehat{\eta}_2$ compared to $\widehat{\eta}$ is,

$$\lim_{n\to\infty} \frac{\operatorname{Var}_{\eta}(\widehat{\eta}_2)}{\operatorname{Var}_{\eta}(\widehat{\eta}_0)}.$$

2.3 The ARE of the median

Let X_1, X_2, \ldots be i.i.d. with common CDF F. Let $\gamma \in (0,1)$ and let $\widetilde{\theta}_n$ be the $[\gamma n]^{th}$ order statistic for X_1, \ldots, X_n , where [y] denotes the ceiling of y. If $F(\theta) = \gamma$ and if $F'(\theta)$ exists and is strictly positive, then

$$\sqrt{n}(\widetilde{\theta}_n - \theta) \overset{d}{\to} \mathsf{N}\left(0, \frac{\gamma(1-\gamma)}{[F'(\theta)]^2}\right).$$

The idea is that the event $\sqrt{n}(\widetilde{\theta}_n - \theta) \leq a$ is equivalent to $\widetilde{\theta}_n \leq \theta + \frac{a}{\sqrt{n}}$. Which is in turn to at least $[\gamma n]$ of X_i 's being less than $b = \theta + \frac{a}{\sqrt{n}}$. Thus,

$$\{\widetilde{\theta}_n \le a\} = \left\{ \sum_{i=1}^n \mathbf{1}_{\{X_i \le b\}} \ge [\gamma n] \right\}.$$

Furthermore, the random variables $\mathbf{1}_{\{X_i \leq b\}}$ are i.i.d. and with mean $F(\theta + a/\sqrt{n})$ and variance $F(\theta + a/\sqrt{n})(1 - F(\theta + a/\sqrt{n}))$. Thus, we can apply the central limit theorem to and use the fact the CDF is differentiable at θ .

A special case is when $\gamma = 1/2$ and $\widetilde{\theta}_n$ is the median of the sample X_1, \ldots, X_n . For a symmetric distribution we can look at the ARE of $\widetilde{\theta}_n$ compared to \bar{X}_n . If $X_i \sim \mathsf{N}(\theta, \sigma^2)$, then $\mathsf{Var}(\bar{X}_n) = \frac{\sigma^2}{n}$ and $\mathsf{Var}(\widetilde{\theta}_n) \sim \frac{1}{n} \cdot \frac{1}{4F'(\theta)}$. Note that,

$$F'(\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(\theta - \theta)^2\right\} = \frac{1}{\sqrt{2\pi}\sigma^2}.$$

Thus, the ARE of the sample median compared to the sample mean is

$$\frac{2\pi\sigma^2}{4\sigma^2} = \frac{\pi}{2} \approx 1.577 > 1.$$

Thus, for Gaussian data, the sample mean has lower asymptotic variance than the sample median.

3 M-estimators and Z-estimators

The MLE is defined to be,

$$\widehat{\theta}_n = \operatorname*{argmax}_{\theta \in \Theta} L(\theta|X).$$

We would like to know the following about $\widehat{\theta}_n$,

- 1. Consistency,
- 2. Asymptotic distribution,
- 3. Optimality.

Since the MLE is defined as a maximizer it is an M-estimator. In many cases the MLE is also defined by solving the equation $l'(\hat{\theta}) = 0$, this makes $\hat{\theta}$ a Z-estimator as well. To prove consistency for M-estimators and Z-estimators, it helps to think of the log likelihood as a random function. We would like to say that the sample average of the log likelihood converges to the population log likelihood for all θ . Thus, we need to understand the convergence of random functions.

3.1 A weak law for random functions

Definition 3. Let K be a compact set and let $\mu: K \to \mathbb{R}$ be a continuous function. Define $\|\mu\|_{\infty} = \sup_{t \in K} |\mu(t)|$.

Lemma 1. Let X be a random variable taking values in a compact set K. Let h(t,x) be a function such that $h(\cdot,x)$ is a continuous function from K to \mathbb{R} . Define W(t)=h(t,X) for $t\in K$. Thus, W is a random continuous function on K. Suppose that $\mathbb{E}\|W\|_{\infty}<\infty$, then

- 1. The function $\mu(t) = \mathbb{E}[W(t)]$ is continuous on K.
- 2. $As \varepsilon \searrow 0$,

$$\sup_{t \in K} \mathbb{E} \left[\sup_{s: \|s-t\| \le \varepsilon} |W(s) - W(t)| \right] \to 0.$$

Proof. Suppose that $t_n \to t$, then $W(t_n) \to W(t)$. Furthermore, $|W(t_n)| \le ||W||_{\infty}$ and $||W||_{\infty}$ is integrable. Thus, by the dominated convergence theorem,

$$\mu(t_n) = \mathbb{E}[W(t_n)] \to \mathbb{E}[W(t)] = \mu(t).$$

Thus, μ is continuous. For each x in our sample space, define

$$M_{\varepsilon}(t) = \sup_{\|s-t\| \le \varepsilon} |W(t) - W(s)|.$$

For fixed t, $M_{\varepsilon}(t) \to 0$ as $\varepsilon \to 0$ and $|M_{\varepsilon}(t)| \le 2 ||W||_{\infty}$. Thus, by the dominated convergence theorem for each $t \in K$ we have,

$$\lim_{\varepsilon \to 0} \mathbb{E} \left[\sup_{\|s-t\| \le \varepsilon} |W(t) - W(s)| \right] = 0.$$

The uniform result of the lemma is derived by the above point-wise result combined with the compactness of K

We can use the above lemma to prove our weak law for random functions. We know from the regular weak law that $|\bar{W}_n(t) - \mu(t)| \stackrel{p}{\to} 0$, but we want a result that is uniform in t.

Theorem 2. Let X_1, X_2, \ldots be i.i.d. random variables and let $W_i(t) = h(t, X_i)$ where h is a function such that $h(\cdot, x) : K \to \mathbb{R}$ is a continuous function on a compact set K for all x. Suppose that $\mathbb{E}[\|W_1\|_{\infty}] < \infty$. Let $\mu(t) = \mathbb{E}[W_1(t)]$, then

$$||W_n - \mu||_{\infty} \stackrel{p}{\to} 0,$$

as $n \to \infty$.