COMPLEMENTOS DE CÁLCULO: 521234

Guía de Ejercicios No 6

1. Resolver el problema de Dirichlet:

$$u_{xx} + u_{yy} = 0$$
 $0 < x < L$ $0 < y < M$
 $u(x, 0) = f(x)$ $u(x, M) = g(x)$ $0 \le x \le L$
 $u(0, y) = h(y)$ $u(L, y) = k(y)$ $0 \le y \le M$

donde:

a)
$$f(x) = 9 \operatorname{sen}(\frac{8\pi x}{L}), \quad g(x) = 0, \quad h(y) = k(y) = 0$$

b)
$$f(x) = 0$$
, $g(x) = \sin(\frac{\pi x}{L})$, $h(y) = k(y) = 0$

c)
$$f(x) = 9 \operatorname{sen}(\frac{8\pi x}{L}), \quad g(x) = \operatorname{sen}(\frac{\pi x}{L}), \quad h(y) = k(y) = 0$$

d)
$$f(x) = g(x) = 0$$
, $h(y) = 9 \sin(\frac{8\pi y}{M})$, $k(y) = \sin(\frac{\pi y}{M})$

2. Demostrar, vía el Método de Separación de Variables, que la solución de

$$u_{xx} + u_{yy} = 0$$
 $0 < x < \pi$ $0 < y < \pi$
 $u(x, 0) = \operatorname{sen}(x)$ $u(x, \pi) = \operatorname{sen}(x)$ $0 \le x \le \pi$
 $u(0, y) = \operatorname{sen}(y)$ $u(\pi, y) = \operatorname{sen}(y)$ $0 \le y \le \pi$

es

$$u(x;y) = \frac{1}{\sinh(\pi)} \left(\sinh(\pi - y) \operatorname{sen}(x) + \sinh(y) \operatorname{sen}(x) + \sinh(\pi - x) \operatorname{sen}(y) + \sinh(x) \operatorname{sen}(y) \right)$$

3. a) Encontrar una función de la forma U(x,y)=a+bx+cy+dxy, tal que

$$U(0,0) = 0$$
, $U(1,0) = 1$, $U(0,1) = -1$, $U(1,1) = 2$.

b) Resolver el problema de Dirichlet que satisface v(x,y) = u(x,y) + U(x,y) si

$$u_{xx} + u_{yy} = 0$$
 $0 < x < 1$ $0 < y < 1$
 $u(x,0) = 3 \operatorname{sen}(\pi x) + x$ $u(x,1) = 3x - 1$ $0 \le x \le 1$
 $u(0,y) = \operatorname{sen}(2\pi y) - y$ $u(1,y) = y + 1$ $0 \le y \le 1$

Respuesta:

a)
$$U(x,y) = x - y + 2xy$$

b)
$$u(x,y) = \frac{3\sin(\pi x)\sinh(\pi - \pi y)}{\sinh(\pi)} + \frac{\sin(2\pi y)\cosh(2\pi - 2\pi x)}{\sinh(2\pi)} + U(x,y)$$

4. Encontrar una solución del problema de Neumann:

$$u_{xx} + u_{yy} = 0$$
 $0 < x < \pi$ $0 < y < \pi$ $u_y(x,0) = \cos(x) - 2\cos^2(x) + 1$ $u_y(x,\pi) = 0$ $0 \le x \le \pi$ $u_x(0,y) = 0$ $u_x(\pi,y) = 0$ $0 \le y \le \pi$

Además sumar una constante tal que u(0,0) = 0.

Respuesta:
$$u(x,y) = \frac{-\cos(x)\cosh(\pi-y)}{\sinh(\pi)} + \frac{\cos(2x)\cosh(2\pi x - 2\pi y)}{2\sinh(2\pi)} + \coth(\pi) - \frac{\coth(2\pi)}{2}$$

- 5. Problema del Potencial para una esfera: Sea $u(R, \theta, \varphi) = f(\theta, \varphi)$ la distribución del potencial sobre una esfera S de radio R. Se desea determinar el potencial u al interior de S y el potencial u^* al exterior de la esfera S, bajo la hipótisis qu el potencial es acotado al interior de S y nulo al infinito.
 - a) Formular el modelo matemático asociado, sabiendo que el potencial u satisface la ecuación de Laplace el interior y al exterior de la esfera S.
 - b) Si la función f sólo depende de φ , establezca vía el método de separación de variables, que

$$u(r,\varphi) = \sum_{n=0}^{\infty} A_n r^n P_n(\cos(\varphi))$$
 $u^*(r,\varphi) = \sum_{n=0}^{\infty} \frac{B_n}{r^{n+1}} P_n(\cos(\varphi))$

- c) Determinar las constantes A_n y B_n .
- 6. Considere dos esferas concentricas S_1 y S_2 de radio $R_1 = 2$ y $R_2 = 5$, y de temperatura (o potencial): $u(2, \varphi) = 1 + \cos(\varphi)$ y $u^*(5, \varphi) = \cos^2(\varphi)$. Encontrar la temperatura:
 - a) $u(r,\varphi)$ en S_1 .
 - b) $u^*(r,\varphi)$ al exterior de S_2 y
 - c) $u(r,\varphi)$ entre S_1 y S_2 .
- 7. Resolver el problema de la membrana circular vibrante de bordes fijos:

$$\begin{array}{rcl} u_{tt} & = & \Delta u & 0 \leq r \leq 3 & t > 0 \\ u(3,t) & = & 0 \\ u(r,0) & = & 0.1(9-r^2) \\ u_t(r,0) & = & 0.2J_0(\frac{\alpha_2}{3}) \end{array}$$

donde α_2 es el segundo cero positivo de $J_0(x)$.

(Indicación: Usar la identidades: $x^{\nu}J_{\nu-1}=[x^{\nu}J_{\nu}(x)]' \wedge J_{\nu-1}+J_{\nu+1}=\frac{2\nu}{r}J_{\nu}$ para $\nu=1$).

Concepción, 04 de Octubre de 2005. FPV/fpv.

- 1. Los polinomios de Legendre $P_n(x)$ sobre [-1, 1].
 - a) La ecuación diferencial de Legendre:

$$(1 - x2)y'' - 2xy' + n(n+1)y = 0 \text{ sobre } [-1, 1]$$
(1)

b) La solución $y(x) = P_n(x)$ explicita:

$$P_n(x) = \frac{1}{2^n} \sum_{m=0}^{\lfloor n/2 \rfloor} (-1)^m \binom{n}{m} \binom{2n-2m}{n} x^{n-2m}, \tag{2}$$

donde $[n/2] \in \mathbb{N}, [n/2] \le n/2.$

c) Relación de recurrencia:

$$(n+1)P_{n+1}(x) = (2n+1)P_n(x) - nP_{n-1}(x)$$

d) Estanderización:

$$P_n(1) = 1$$

e) La norma de $P_n(x)$:

$$\int_{-}^{1} 1^{1} [P_{n}(x)]^{2} dx = \frac{2}{2n+1}$$

f) La fórmula de Rodrígue:

$$P_n(x) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} \left[(1 - x^2)^n \right]$$

q) La función generatriz:

$$\frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n, \quad -1 < x < 1, |t| < 1$$

h) Rango:

$$|P_n(x)| \le 1, \quad -1 \le x \le 1.$$

i) Los primeros 6 polinomios de Legendre:

$$\begin{array}{ll} P_0(x) = 1 & P_1(x) = x, \\ P_2(x) = \frac{1}{2}(3x^2 - 1) & P_3(x) = \frac{1}{2}(5x^3 - 3x), \\ P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3) & P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x) \end{array}$$

j) Ejemplo: La ecuación diferencial:

$$\frac{1}{sen(\varphi)}\frac{d}{d\varphi}\left(sen(\varphi)\frac{dH}{d\varphi} + n(n+1)H = 0\right)$$

se reduce a una ecuación de Legendre vía el cambio de variable $os(\varphi) = w$, en tal caso, $H_n(w) = P_n(\cos(\varphi))$ y por teorema de Sturm-Liouville, la familia $\{P_n(\cos(\varphi))\}_{n=0}^{\infty}$ es una base ortogonal de L^2 ' $[0, \pi]$ con función ponderadora $sen(\varphi)$.

- 2. Funciones de Bessel:
 - a) La ecuación diferencial de Bessel:

$$x^2Y'' + xY' + (x^2 - n^2)Y = 0$$

Si $x=\sqrt{\lambda}z$ y X(z)=Y(x) entonces se tiene el problema de Sturm-Liouville singular:

$$\frac{d}{dz}(zX') + (\lambda z - \frac{n^2}{x})X = 0$$

con X(0) y X'(0) acotadas y X(R) = 0.

b) Si n no es entero, $J_n(x)$ y J_{-n} son dos soluciones linealmente independientes, definidas por:

$$J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(n+k+1)} \left(\frac{x}{2}\right)^{n+2k} \qquad n \in \mathbb{Z}$$

llamada función de Bessel de primera especie de orden n.

c) Si n es un entero, $J_n(x) = (-1)^n J_n(x)$ es una solución definida por

$$J_n(x) = \frac{x^n}{2^n n!} \left[1 - \frac{x^2}{2^2 1! (n+1)} + \frac{x^4}{2^2 2! (n+1)(n+2)} + \frac{x^6}{2^6 3! (n+1)(n+2)(n+3)} + \cdots \right]$$

una solución linealmente independiente a la anterior es definida por

$$Y_n(x) = \lim_{\nu \to n} \frac{J_{\nu}(x)\cos(\nu x) - J_{-\nu}(x)}{\sin(\nu x)}, \qquad \lim_{x \to 0} |Y_n(x)| = \infty$$

y es llamada función de Bessel de segunda especie de orden n.

d) Relaciones de Recurrencia:

$$J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x} J_n(x) \qquad nJ_n(x) + xJ'_n(x) = xJ_{n-1}(x)$$

$$J_{n-1}(x) - J_{n+1}(x) = 2J'_n(x) \qquad nJ_n(x) - xJ'_n(x) = xJ_{n+1}(x)$$

$$[x^n J_n(x)]' = x^n J_{n-1}(x) \qquad [x^{-n} J_n(x)]' = -x^n J_{n+1}(x)$$

e) Las funciones de Bessel de orden $\pm \frac{1}{2}$ son definidas por:

$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \operatorname{sen}(x), \qquad J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos(x)$$

f) La norma de $J_n(\alpha_{mn}x)$:

$$\left\| J_n \left(\alpha_{mn} \frac{x}{R} \right) \right\|^2 = \int_0^R x J_n^2 \left(\alpha_{mn} \frac{x}{R} \right) dx = \frac{R^2}{2} J_{n+1}^2(\alpha_{mn})$$

donde

$$\alpha_{1n} < \alpha_{2n} < \alpha_{3n} < \cdots$$

son los ceros estrictamente positivos de $J_n(x)$ (usualmente tabulados)

g) Raíces de $J_0(x)$ y $J_1(x)$: $J_0(\alpha_n) = 0$, $J_1(\beta_n) = 0$.

n	α_n	$J_1(\alpha_n)$	β_n	$J_0(\beta_n)$
1	2.4048	0.5191	0.0000	1.0000
2	5.5201	-0.3403	3.8317	-0.4028
3	8.6537	0.2715	7.0156	0.3001
4	11.7915	-0.2325	10.1735	-0.2497
5	14.9309	0.2065	13.3237	0.2184
6	18.0711	-0.1877	16.4706	-0.1965
7	21.2116	0.1733	19.6159	0.1801

h) Gráficas:

Figura 1: $J_0(x)$, $J_1(x)$ y $J_2(x)$

Figura 2: $Y_0(x)$, $Y_1(x)$ y $Y_2(x)$

- i) Aproximación:

 - Si 0 < x << 1: $J_n(x) \sim \frac{1}{2^n n!} x^n$, $Y_0(x) \sim \frac{2}{\pi} \ln(x)$, $Y_n(x) \sim -\frac{2^n (n-1)!}{\pi} x^{-n}$.

 Si x >> 1: $J_n(x) \sim \sqrt{\frac{2}{\pi x}} \cos(x (2n+1)\frac{\pi}{4})$, $Y_n(x) \sim \sqrt{\frac{2}{\pi x}} \sin(x (2n+1)\frac{\pi}{4})$ $1)\frac{\pi}{4}$