Entry Costs and the Macroeconomy

Germán Gutiérrez Callum Jones Thomas Philippon

NYU, IMF¹, NBER, CEPR

December 2019

¹The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management

Fact 1: Investment is Low #1

Gutiérrez and Philippon '17, and Lee et al '16.

Fact 1: Investment is Low #2

Gutiérrez and Philippon '17, and Lee et al '16.

Fact 1: Investment is Low #3

Fact 2: Concentration & Profits are High

Fact 2: Concentration in Cross-Section

- More concentrating industries have larger capital gaps
- Grullon et al '18. Concentrating industries have higher profits

Fact #3: Entry Rates Have Fallen

Interpretation of the Evidence

- Interpretation remains controversial:
 - Endogeneity of profits/entry/concentration/investment
 - Need a model to interpret the evidence
 - Macro models so far focus on effect of (assumed) higher markups
- We use a fully specified model with competing drivers of facts
 - Use the data to derive a series for entry costs and study their importance
 - Provide direct empirical evidence of what these entry costs are

Approach and Findings

- Develop a model with monopolistic competition and firm entry
 - Entry decision based on expected profits
- Estimate model on industry/aggregate data, 1989-2015, to get:
 - shocks and relationship between entry, competition, investment
 - Identified entry costs correlate with regulation/M&A
- Use the model to study aggregate implications, 1989 to 2015
 - About 10% of entry driven by shocks to demand beliefs
 - An increase in aggregate firm entry costs from 2003
 - Absent this increase, C_t & K_t : 5% to 6% higher

Model

Goods Producers

• Continuum of *i* industries

Motivation & Empirics

Industry output aggregated by a perfectly competitive firm

$$Y_t = \left(\int_0^1 (D_{j,t} Y_{j,t})^{\frac{\sigma-1}{\sigma}} \mathrm{d}j\right)^{\frac{\sigma}{\sigma-1}}$$

where $D_{i,t}$ is an industry demand shock following an AR(1)

- D_i is "expected" steady-state demand
- Production function is Cobb-Douglas

$$Y_{j,t} = K_{j,t}^{\alpha} \ell_{j,t}^{1-\alpha}$$

Investment follows Q-theory

Goods-Producers Entry

• The number of existing firms $N_{i,t}$ evolves by

$$N_{j,t+1} = (1 - \delta^n)N_{j,t} + n_{j,t}$$

• Firms pay entry input $\kappa_{j,t}$ at price $p_{j,t}^e$ to become active in t+1

$$p_{j,t}^e = (\kappa_{j,t} n_{j,t})^{\phi^n}$$

• Let $V_{j,t}^e$ is the value of a firm in industry j. Firms enter until

$$\mathbb{E}_t \Lambda_{t+1} V_{j,t+1}^e = p_{j,t}^e \kappa_{j,t}$$

Industry-level output

$$Y_{j,t} = N_{j,t-1}^{\frac{\varepsilon_j}{\varepsilon_j-1}} y_{j,t}$$

Households and Monetary Policy

• Households choose C_t , ℓ_t and savings to

$$\max \ \mathbb{E}_t \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\gamma}}{1-\gamma} - \frac{\ell_t^{1+\psi}}{1+\psi} \right)$$

subject to the budget constraint:

$$S_t + P_t C_t \le \tilde{R}_t S_{t-1} + W_t \ell_t$$

Add sticky prices and wages, and monetary policy:

$$r_{t} = \max \left[0, \ \phi_{i} r_{t-1} + \phi_{p} \pi_{t}^{p} + \phi_{y} (y_{t} - y_{t}^{F}) + \phi_{g} \ln \left(\frac{Y_{t}/Y_{t-1}}{Y_{t}^{F}/Y_{t-1}^{F}} \right) \right]$$

r_t subject to the ZLB

Shocks

- Industry and aggregate shocks:
 - Entry-cost
 - Productivity
 - Inflation equations (Phillips curves)
 - Valuation of corporate assets
- Industry-specific shocks:
 - Industry demand
 - Regime shift in industry demand beliefs, between 1995 and 2000
- Aggregate-specific shocks:
 - Household discount factor
 - Monetary policy

Regime Shift in Demand Beliefs Before 2000

- Noisy entry: entry uncorrelated with future demand. Evidence:
 - Doms (2004): high dotcom growth rates
 - Hogendorn (2011): excess entry into Telecom sector
 - Substantial inflows into VC funds focused on dotcom
- We capture this as variations in beliefs about D_j , where

$$\log D_{j,t} = (1 - \rho_d) \log \frac{D_j}{D_j} + \rho_d \log D_{j,t-1} + \sigma_d \varepsilon_{j,t}^d$$

- Before 1995 and after 2000, $D_i = 1$ for all industries
- Between 1995 and 2000, D_i is a free parameter

Estimation

Estimation #1

- Bayesian/likelihood approach
- Data:
 - Industry: annual data, 1989 to 2015, for 43 industries on
 - Q Details
 - Concentration Ratio Details
 - Nominal Output, Capital, Prices
 Details
 - Aggregate: quarterly data, 1989Q1 to 2015Q1, on
 - Fed Funds rate / Inflation / Expected ZLB Durations
 - Consumption / Investment / Employment
 - Concentration Ratio Details

Estimation #2

- Calibrated Parameters
 - Elasticity ε_i calibrated to ${}^{NOS_j/Y_i}$

- Estimated Parameters:
 - Industry:
 - Shock processes, AR(1)
 - Expected demand regimes D_j
 - ϕ^n and σ
 - Aggregate:
 - Shock processes, AR(1)
 - Taylor Rule parameters
- Three main challenges:
 - (i) ZLB, (ii) demand expectations, (iii) industry data imes 43

Challenge 1: Solution Method for ZLB & Trend Markup

 The ZLB and an exogenous trend markup implies a time-varying representation for our model

$$\mathsf{A}_t \mathsf{x}_t = \mathsf{B}_t \mathsf{x}_{t-1} + \mathsf{D}_t \mathbb{E}_t \mathsf{x}_{t+1} + \mathsf{F}_t \varepsilon_t$$

This gives rise to a time-varying VAR solution

$$x_t = \mathbf{Q}_t x_{t-1} + \mathbf{G}_t \varepsilon_t$$

- Expected ZLB durations pin down Q_t and G_t
 - Jones '17. Guerreri and Jacoviello '16. Kulish et al '17
- We use survey data on durations from NYFed

Challenge 2: Solution for Demand Regime Shifts #1

Suppose the regime which is driving the observables is:

$$\mathbf{A}x_t = \mathbf{B}x_{t-1} + \mathbf{D}\mathbb{E}_t x_{t+1} + \mathbf{F}\varepsilon_t$$

- For example, steady-state demand in industry j, D_i , is low
- But agents believe that a * regime is true:

$$\mathbf{A}^* x_t = \mathbf{C}^* + \mathbf{B}^* x_{t-1} + \mathbf{D}^* \mathbb{E}_t x_{t+1} + \mathbf{E}^* \varepsilon_t.$$

- For example, steady-state demand in industry j, D_i , is high
- We seek a solution of the form.

$$x_t = \tilde{\mathbf{Q}} x_{t-1} + \tilde{\mathbf{G}} \varepsilon_t$$

Challenge 2: Solution for Demand Regime Shifts #2

• To find the solution, expectations must satisfy

$$\mathbb{E}_t x_{t+1} = \mathbf{Q}^* x_t$$

• Substitute this into $\mathbf{A}x_t = \mathbf{B}x_{t-1} + \mathbf{D}\mathbb{E}_t x_{t+1} + \mathbf{F}\varepsilon_t$ to get:

$$\tilde{\mathbf{Q}} = \left[\mathbf{A} - \mathbf{D}\mathbf{Q}^*\right]^{-1}\mathbf{B}$$

$$\tilde{\mathbf{G}} = \left[\mathbf{A} - \mathbf{D}\mathbf{Q}^*\right]^{-1}\mathbf{F}$$

- With $x_t = \tilde{\mathbf{Q}} x_{t-1} + \tilde{\mathbf{G}} \varepsilon_t$, we can form the state-space
- ullet So beliefs about demand map to $ilde{f Q}$ and $ilde{f G}$ and the likelihood

Challenge 3: Likelihood Function With Industry Data #1

- We want to use industry-level data in identification
- Problem: Infeasible

Motivation & Empirics

- 43 industries, 10+ state variables each, aggregate shocks, ZLB
- Recall our model is

$$x_t = \left[x_t^1, \ x_t^2, \ldots\right]' = \mathbf{Q}_t x_{t-1} + \mathbf{G}_t \varepsilon_t$$

• Solution: Write the industry *i* level variables as

$$\mathbf{x}_{t}^{j} = \underbrace{\mathbf{Q}\mathbf{x}_{t-1}^{j} + \mathbf{G}\mathbf{\varepsilon}_{t}^{j}}_{\text{industry-level component}} + \underbrace{\mathbf{Q}_{t}^{a}\mathbf{x}_{t-1}^{*} + \mathbf{G}_{t}^{a}\mathbf{\varepsilon}_{t}^{*}}_{\text{aggregate component}}$$

Challenge 3: Likelihood Function With Industry Data #2

Industry j level variables are

Motivation & Empirics

$$\mathbf{x}_{t}^{j} = \underbrace{\mathbf{Q}\mathbf{x}_{t-1}^{j} + \mathbf{G}\mathbf{\varepsilon}_{t}^{j}}_{\text{industry-level component}} + \underbrace{\mathbf{Q}_{t}^{a}\mathbf{x}_{t-1}^{*} + \mathbf{G}_{t}^{a}\mathbf{\varepsilon}_{t}^{*}}_{\text{aggregate component}}$$

- Express industry-level data relative to average $\bar{x}_t = \int x_t^J dj$
- Assuming average shock $\int \mathcal{E}_t^j dj = 0$, then

$$x_t^j - \bar{x}_t = \mathbf{Q}\left(x_{t-1}^j - \bar{x}_{t-1}\right) + \mathbf{G}\varepsilon_t^j$$

Shocks iid: separate the likelihood into 43 industry components

Treatment of Industry-Level Data

- Express industry-level data relative to aggregate
- For each industry series
 - 1. Compute a full set of time effects
 - 2. Subtract a industry-specific fixed effect and trend
 - 3. Work with the residuals
- Exploit these relative changes for identification

Industry-Level Observable: Info Publishing, 1995 to 2005

Motivation & Empirics

Estimates

Industry-Level Estimates

	Posterior		
Parameter	Median	10%	90%
φ ⁿ	1.55	1.08	2.32
σ	0.40	0.38	0.43

Log Demand Regimes (2 of 43)

Durable Comp.	1.6	0.2	2.9
Info Data	4.1	3.1	4.4

Industry Identification of Estimate of ϕ_n

ϕ_n estimate implies:

- Following demand shock that raises Q_t to 10% after 1 year
- \Rightarrow Number of firms increases by 1.4% after 2 years

Estimate of Demand Beliefs: Specific Industry

Example for Info Data Industry

Estimate of Demand Beliefs: All Industries

- Accounts for about 10% of entry
- Absent demand beliefs, estimation compensates with larger risk premium shocks

Interpretation of Entry Cost Shocks

Empirical Proxies of Barriers to Entry

Regulation Index:

- Regulation based on RegData 3.1 from QuantGov
- Machine learning / natural language processing techniques to construct measures of regulatory stringency at the industry level
- Number of restrictive words or phrases such as 'shall', 'must' and 'may not' in each section of the Code of Federal Regulations
- Regulatory employment:
 - Regulatory employment from the Census Occupational **Employment Statistics**
- M&A activity

What are the Entry Cost Shocks? Aggregate

What are the Entry Cost Shocks? Aggregate

What are the Entry Cost Shocks? Non-Dur Paper Manuf

What are the Entry Cost Shocks? Air Transport

Delta-Northwest (2008), United-Continental (2010),
 Southwest-AirTran (2011) and American-US Airways (2014)

Entry Costs Across All Industries

			ζ_j	κ i,t	0.044** (0.014)	
	(1) All	(2) Post-02	(3) Post-02	(4) Post-02		(6) Post-02
$\Delta \log(RegIndex_{t-2,t-1}^{j})$	0.044** (0.014)	0.047* (0.017)				
$\Delta \log(Reg\hspace{.01in}Emp_{t,t+\boldsymbol{1}}^{j})$			0.031* (0.013)			
${\sf Mean}({\sf L.dRegIndex}, {\sf F.dRegEmp})$				0.038** (0.009)		0.033** (0.010)
$\log(M\&A_{j,t})(2YMA)$					0.047* (0.021)	0.087* (0.037)
Ind FE	Y	Υ	Υ	Υ	Υ	Υ
Year FE	Υ	Y	Y	Υ	Υ	Y
R2 Observations	.051 837	.091 358	.085 358	.095 358	.057 837	.11 358

Aggregate Implications

Aggregate Implications

- What are the aggregate implications of firm entry?
- Use the estimated elasticity of firm entry to Q, ϕ_n and:
 - 1. Estimate the aggregate model's parameters
 - 2. Filter the aggregate data for the shocks
- Experiments with estimated model
 - 1. Interpret changes in entry cost shocks
 - 2. Turn off aggregate entry cost shock from 2003

Unconditional Variance Decomposition of Agg Variables

Variable	Tech.	Pref.	P MU	Risk P.	Policy	Entry Cost
Fed Funds Rate	4.0	23.6	20.1	34.3	10.9	7.0
Output	50.3	6.9	0.1	13.2	0.0	29.4
Consumption	54.1	7.2	1.7	11.8	0.1	25.2
Net Investment	22.2	22.4	0.3	39.6	0.9	14.6
Employment	6.1	2.9	44.4	12.3	7.4	26.9
Inflation	2.8	20.2	11.2	37.6	15.9	12.3
Herfindahl	22.0	7.2	0.0	14.1	0.0	56.5
Natural Rate	1.4	20.7	0.0	37.5	0.0	40.4

Aggregate Implications: Less entry, lower FF rate

Aggregate Implications: Less investment, consumption

Aggregate Implications: Lower wage income, natural rate

Conclusion

- US industries have become more concentrated
 - Lack of competition leads to lower investment
 - We find an increase in entry costs
 - We link those entry costs to regulation/M&A
- Europe has trended the other way

- Decreasing concentration
- Low investment in Europe and low valuations/high risk premia
- If true, then probably cyclical

${\sf Appendix}$

How to Interpret Evidence of Increasing Concentration?

- Superstar firms?
 - Leaders are investing less, when it should be more Evidence
 - TFP should be correlated with concentration. Not so from 2000
 - Concentration trends not observed in Europe Evidence
- Globalization?
 - Measurement? Use consolidated firm-level data
 - Includes investment in US and outside. Gap remains
 - External Profits? Gutiérrez and Philippon '17 BPEA
 - Profits have increased faster than foreign sales
 - So profits being shifted out of the US
- Declining Domestic Competition. Furman '15, CEA '16
 - 'Economic rents and barriers to competition'
 - Less firm entry

Aggregate Entry Cost Shock

What are the Entry Cost Shocks?

How Should We Interpret These Facts?

- Drop in the price of capital?
- Intangible assets
 - Peters and Taylor '16, Alexander and Eberly '16
- Superstar firms?
 - Autor '17
- Globalization
 - Feenstra and Weinstein '17, Fresard and Valta '15, Hombert and Matray '15
- Decreasing Domestic Competition, DDC
 - Furman '15, Gutiérrez and Philippon '17

How Should We Interpret These Facts? #2

- Drop in the price of capital?
 - Timing is wrong, as fall in price of capital occurs before 2000
- Intangible assets
 - 25% of the gap between Q and N/K explained by intangible intensity, so not much
 - National accounts does include IP investment
 - Argument not necessarily true for industries like airlines
- Superstar firms?
 - Implies TFP correlated with concentration, but not so from 2000
 - Leaders are investing less, when it should be more Evidence
 - Concentration trends not observed so much in Europe
- Globalization?
 - Measurement? investment gap appears in consolidated firm-level data, which includes investment in US and outside
 - External Profits? GP (2017) BPEA show profits have increased faster than foreign sales, so profits being shifted out of the US

Intangibles: Gutierrez and Philippon (2017)

Productivity: Gutierrez and Philippon (2017)

Select Discussion: Super Star

- Our interpretation of the hypothesis (Autor et al.)
 - Not simply a description of skewness.
 - But an explanation for concentration: efficiency instead of market power
- What we find: some support in the 1990s, but not after 2002.

	(1)	(3)
	ΔΤ	FP
	97-02	02-12 [†]
$\Delta Census\ CR4$	0.481**	0.051
	[4.439]	[0.301]
Observations	469	297
R^2	4%	0%
+ p<0.10, * p<0.05,	(6	CEP change t

EXTRA: Measures of Concentration & Entry

• Traditional Herfindahl + Common ownership adjustment (Azar, et. al. (2016))

$$MHHI = \sum_{j} s_{j}^{2} + \sum_{j} \sum_{k \neq j} s_{j} s_{k} \frac{\sum_{i} \beta_{ij} \beta_{ik}}{\sum_{i} \beta_{ij}^{2}}$$
$$= HHI + HHI^{adj}$$

 Other measures including entry, share of sales by top #10 firms, etc. also significant

Posteriors for Common Industry Parameters

Q Data

- Flow of funds
- Ratio of market value to the replacement cost of capital including intangibles

 \mathcal{Q}

Concentration Ratio Data

- Compustat for BEA segments
- Patterns verified against aggregated firm-level census data
- Corrected for the import share, as in Feenstra and Weinstein '17
- Series from Compustat/BEA have a 65-70% correlation in levels and 40-50% in 5-year changes

Concentration Ratios

Nominal Output Data

BEA

Nominal Output

ZLB Durations in Quarters

ZLB Durations, Quarters

Margins Increased for Industry Leaders

Note: Leaders includes all firms with the highest (lowest) market value (MV) that combined account for ~33% of MV within each industry and year.

Leaders Explain Investment Gap #1

Note: Leaders (laggards) include all firms with the highest (lowest) market value (MV) that combined account for $^{\sim}33\%$ of MV within each industry and year.

Margins Increased for Industry Leaders

Note: Leaders includes all firms with the highest (lowest) market value (MV) that combined account for ~33% of MV within each industry and year.

EU vs US

EU vs US: OECD Product Market Regulations

A Calvo-Style Entry Specification

• Staggered entry. Pay κ today, each period there is a chance λ of entry each period

Other Parameters

$$\begin{array}{c|c}
\delta & 0.025 \\
\phi^k & 20 \\
\beta & 0.99 \\
\alpha & 1/3 \\
\delta^n & 0.09/4
\end{array}$$

Back

Google

