一手资源 持续更新 认准淘宝旺旺ID: 蔚然科技学堂 或者: 君学赢精品课堂 如在其他店购买请差评或退款, 他们断更新且残缺。可找我店免费领完整新资料

1.3 安全性、可靠性与系统性能评测基础知识

本节主要考点

- 1、对称加密技术
- 2、非对称加密技术
- 3、信息摘要
- 4、数字签名和数字加密
- 5、计算机可靠性

一手资源 持续更新 认准淘宝旺旺ID: 蔚然科技学堂 或者: 君学赢精品课堂 如在其他店购买请差评或退款,他们断更新且残缺。可找我店免费领完整新资料

对称加密技术

• 对称加密技术: 文件加密和解密使用相同的密钥,或者虽然不同,也可以从其中一个很容易地推导出另一个。

1101100010 — 1000110111 — 1101100010 明文 密文 明文

代表算法:

- (1)DES:主要采用替换和移位的方法加密。它用56位密钥对64位二进制数据块进 行加密。
 - (2) 3DES: 用两个56位的密钥。
 - (3) RC-5
 - (4) IDEA: 类似于DES, 其密钥长度为128位。
 - (5) AES: 基于排列和置换运算。

非对称加密技术

- 非对称加密技术: 同样使用两个密钥: 加密密钥和解密密钥, 一个是公开的, 一个是非公开的私有密钥。他们是一对, 只有使用对应的密钥才能解密。
- 非对称加密有两个不同的体制: 加密模型和认证模型。
 - (1) 加密模型:

A为发送者, B为接收者。

非对称加密技术

(2) 认证模型:

非对称加密算法的保密性较好,它消除了最终用户频繁交换密钥的需要,但加密和解密花费时间长、速度慢,不适合于对文件加密,而只适用于对少量数据加密。

代表算法: RSA, 基于大素数分解的困难性。

信息摘要

- Hash函数:输入一个长度不固定的字符串,返回一串固定长度的字符串,又称Hash值。
- 单向Hash函数用于产生信息摘要。
- 对于特定的文件而言,信息摘要是唯一的。
- 在某一特定的时间内,无法查找经Hash操作后生成特定Hash值的原报 文,也无法查找两个经Hash操作后生成相同Hash值的不同报文。
- 在数字签名中,可以解决验证签名和用户身份验证、不可抵赖性的问题。
- MD2、MD4和MD5是被广泛使用的Hash函数,它们产生一种128位的信息 摘要。

数字签名

发送者A

信息M

使用Hash函数生成

信息摘要Z

使用A的私钥加密/签名

加密后的信 息摘要E 信息M和加密后的 信息摘要E

可以确认信息发送者的身份和信息是否被修改过。但不能保证发送信息的保密性。

接收者B

接收到的信息M

使用与A相同的Hash函 数生成

新的信息摘要N

接收到的签名后的 信息摘要E

使用A的公钥解密

解密后的信 息摘要K

验证N和K是否一致

数字加密

发送者A

信息M

使用对称密钥加密

加密后的信息E

对称密钥K

使用B的公钥加密

加密后的对 称密钥D 数字信封

加密后的信息和加密 后的对称密钥 接收者B

加密后的对称密钥D

使用B的私钥解密

对称密钥K

加密后的信息E

使用对称密钥解密

信息M

可以保证发送信息的保密性,但是不能确认发送者的身份。

数字签名和数字加密的区别和联系

- 数字签名使用的是发送方的密钥对,任何拥有发送方公开密钥的人都可以验证数字签名的正确性。数字加密使用的是接收方的密钥对,是 多对一的关系,任何知道接收方公开密钥的人都可以向接收方发送数据,但只有唯一拥有接收方私有密钥的人才能对信息解密。
- 数字签名只采用了非对称加密算法,它能保证发送信息的完整性、身份认证和不可否认性,但不能保证发送信息的保密性。
- 数字加密采用了对称密钥算法和非对称密钥算法相结合的方法,它能保证发送信息的保密性。

计算机可靠性

- (1) 计算机系统的可靠性: 是指从它开始运行(t=0) 到某时刻t这段时间内能正常运行的概率, 用R(t)表示。
- (2) 计算机系统的失效率: 是指单位时间内失效的元件数与元件总数的比例, 用λ表示。
- (3) 平均无故障时间 (MTBF): 两次故障之间能正常工作的时间的平均值称为 平均无故障时间MTBF=1/λ
- (4) 计算机系统的可维修性:一般平均修复时间(MTRF)表示,指从故障发生到机器修复平均所需的时间。
- (5) 计算机系统的可用性: 指计算机的使用效率, 它以系统在执行任务的任意时刻能正常工作的概率A表示。

A=MTBF/(MTBF+MTRF)

计算机可靠性

(1) 串联系统的可靠性:

$$R=R_1\times R_2\times R_3\times \cdots R_N$$

(2) 并联系统的可靠性:

$$R=1-(1-R_1)(1-R_2)(1-R_3)\cdots(1-R_N)$$

1.3 安全性、可靠性与系统性能评测基础知识

【12年第7题】甲和乙要进行通信,甲对发送的消息附加了数字签名,乙收到该消息后利用()验证该消息的真实性。

A.甲的公钥

B.甲的私钥

C.乙的公钥

D.乙的私钥

【13年第7题】利用报文摘要算法生成报文摘要的目的是()。

A. 验证通信对方的身份, 防止假冒

B. 对传输数据进行加密, 防止数据被窃听

C. 防止发送方否认发送过的数据

D. 防止发送的报文被篡改

【17年第4题】某系统由下图所示的冗余部件构成。若每个部件的千小时可靠度都为R,则该系统的千小时可靠度为

 $A.(1-R^3)(1-R^2)$ $C.(1-R^3) + (1-R^2)$ B. $(1-(1-R)^3)(1-(1-R)^2)$

 $D.(1-(1-R)^3) + (1-(1-R)^2)$

【17年第8题】以下加密算法中适合对大量的明文消息进行加密传输的是()。

A.RSA

B.SHA-1

C.MD5

D.RC5

1.3 安全性、可靠性与系统性能评测基础知识

【17年第9题】假定用户A、B分别从I1、I2两个CA取得了各自的证书,下面()是A、B互信的必要条件。

A.A、B 互换私钥

B.A、B 互换公钥

C.I1、I2互换私钥

D.I1、I2互换公钥

【18年第11题】数字信封技术能够()。

A. 保证数据在传输过程中的安全性

B.隐藏发送者的真实身份

C. 对发送者和接收者的身份进行认证

D.防止交易中的抵赖发生

【18年第12、13题】在安全通信中, S 将所发送的信息使用()进行数字签名, T 收到该消息后可利用()验证该消息的真实性。

A.S的公钥

B.S 的私钥

C.T 的公钥

D.T 的私钥

A.S的公钥

B.S 的私钥

C.T 的公钥

D.T 的私钥

【19年第4题】某系统由3个部件构成,每个部件的千小时可靠度都为R,该系统的千小时可靠度为(1-(1-R)²)R,则该系统的构成方式是()

- A. 3个部件串联
- B. 3个部件并联
- C.前两个部件并联后与第三个部件串联
- D. 第一个部件与后两个部件并联构成的子系统串联

1.3 安全性、可靠性与系统性能评测基础知识

【20年第12题】以下关于哈希函数的说法中,不正确的是()

- A. 哈希表是根据键值直接访问的数据结构
- B. 随机预言机是完美的哈希函数
- C. 哈希函数具有单向性
- D. 哈希函数把固定长度输入转换为变长输出

【22年第13题】

()属于公钥加密算法。

A.AES

B.RSA

C.MD5

D.DES

【22年第14题】

确保计算机系统机密性的方法中不包括()。

A.加密

B. 认证

C. 授权

D. 备份