องค์ประกอบคอมพิวเตอร์และภาษาแอสเซมบลี: กรณีศึกษา Raspberry Pi

ผศ.ดร.สุรินทร์ กิตติธรกุล

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

สารบัญ

- บทที่ 1 บทนำ
- บทที่ 2 ข้อมูลและคณิตศาสตร์ในคอมพิวเตอร์
- บทที่ 3 ฮาร์ดแวร์และซอฟต์แวร์ของคอมพิวเตอร์
- บทที่ 4 ภาษาแอสเซมบลีของ ARM ขนาด 32 บิต
- บทที่ 5 ลำดับชั้นของหน่วยความจำ
- บทที่ 6 กลไกอินพุตและเอาท์พุต
- บทที่ 7 อุปกรณ์เก็บรักษาข้อมูลและระบบไฟล์
- บทที่ 8 การคำนวณแบบขนาน (Parallel Computing) ด้วยบอร์ด Pi

บทที่ 2 ข้อมูลและคณิตศาสตร์ในคอมพิวเตอร์

ชนิด	ความยาว(บิท)	ค่าต่ำสุด $_{10}$	ค่าสูงสุด $_{10}$
unsigned char	8	0	2 ⁸ -1=255
char	8	-2 ⁷ =-127	+2 ⁷ -1=+127
unsigned short	16	0	2 ¹⁶ -1=
			65,535
short	16	-2 ¹⁵ =	+2 ¹⁵ -1=
		-32,768	+32,767
unsigned int	32	0	2 ³² -1=
			4,294,967,295
int	32	-2 ³¹ =	+2 ³¹ -1=
		-2,147,483,648	+2,147,483,647
unsigned long long	64	0	+2 ⁶⁴ -1
long long	64	-2 ⁶³	+2 ⁶³ -1
float	32	$\pm 2^{-126} =$	$\pm 2 \times 2^{126} =$
		$\pm 1.18 \times 10^{-38}$	$\pm 3.40 \times 10^{38}$
double	64	$\pm 2^{-1022} =$	$\pm 2 \times 2^{1022} =$
		$\pm 2.23 \times 10^{-308}$	$\pm 1.80 \times 10^{308}$

บทที่ 3 ฮาร์ดแวร์และซอฟต์แวร์ของคอมพิวเตอร์

Computer Organization & Assembly Language: Raspberry Pi, ผศ.ดร.สุรินทร์ กิตติธรกุล

บทที่ 4 ภาษาแอสเซมบลีของ ARM ขนาด 32 บิท

บทที่ 5 ลำดับชั้นของหน่วยความจำ

Computer Organization & Assembly Language: Raspberry Pi, ผศ.ดร.สุรินทร์ กิตติธรกุล

บทที่ 6 อุปกรณ์/วงจรอินพุตและเอาท์พุต

บทที่ 7 อุปกรณ์เก็บรักษาข้อมูลและระบบไฟล์ (File System)

บทที่ 8 การคำนวณแบบขนาน (Parallel Computing) ด้วยบอร์ด Pi

การทดลองในภาคผนวกต่างๆ

- การทดลองที่ 1 ข้อมูลและคณิตศาสตร์ในคอมพิวเตอร์
- การทดลองที่ 2 ตัวอย่างการประกอบและติดตั้งบอร์ด Raspberry Pi
- การทดลองที่ 3 การติดตั้งระบบปฏิบัติการ Raspberry Pi OS
- การทดลองที่ 4 การใช้งานระบบปฏิบัติการยูนิกซ์เบื้องต้น
- การทดลองที่ 5 การพัฒนาโปรแกรมด้วยภาษา C บนลินุกซ์
- การทดลองที่ 6 การพัฒนาโปรแกรมภาษาแอสเซมบลี
- การทดลองที่ 7 การสร้างเรียกใช้และสร้างฟังก์ชันในโปรแกรมภาษาแอสเซมบลี

สารบัญ

- การทดลองที่ 8 การพัฒนาโปรแกรมภาษาแอสเซมบลีขั้นสูง
- การทดลองที่ 9 การศึกษาและปรับแก้อินพุตและเอาท์พุตต่างๆ
- การทดลองที่ 10 การเชื่อมต่อกับขา GPIO
- การทดลองที่ 11 การเชื่อมต่อสัญญาณอินพุต-เอาต์พุตกับอินเทอร์รัปท์
- การทดลองที่ 12 การศึกษาอุปกรณ์เก็บรักษาข้อมูลและระบบไฟล์
- การทดลองที่ 13 การพัฒนาอัลกอริธึมแบบขนานด้วยไลบรารี OpenMP

1.1 ชนิดของเครื่องคอมพิวเตอร์

- คอมพิวเตอร์ตั้งโต๊ะ (Desktop computers)
- คอมพิวเตอร์เซิร์ฟเวอร์หรือแม่ข่าย (Server computers)
- คอมพิวเตอร์พกพา (Portable Computers)
- คอมพิวเตอร์ฝังตัว (Embedded computers)
- ซูเปอร์คอมพิวเตอร์ (Super Computer)

1.2 แนวโน้มของจำนวนอุปกรณ์คอมพิวเตอร์ชนิดต่างๆ

Global Unit Shipments of Desktop PCs + Notebook PCs vs. Smartphones + Tablets, 2005-2015E

1.2 แนวโน้มของจำนวนอุปกรณ์คอมพิวเตอร์ชนิดต่างๆ

1.3 Single Board Computer: Raspberry Pi Model B

1.3 บอร์ด Raspberry Pi และชิป Broadcom BCM 2835

1.3 Single Board Computer: Raspberry Pi 2B

1.3 Single Board Computer: Raspberry Pi 2B

1.3 Single Board Computer: Raspberry Pi 3B+

1.3 Single Board Computer: Raspberry Pi 3B+

Herz des Raspberry Pi 4: Broadcom BCM2711

Das System-on-Chip (SoC) BCM2711 vereint nicht nur vier CPU-Kerne mit einer GPU, sondern enthält auch Controller für viele Schnittstellen.

1.3 Single BoardComputer:Raspberry Pi 4B

1.3 Single Board Computer: Raspberry Pi 4B

1.3 Single Board Computer: Raspberry Pi Model B

https://www.youtube.com/watch?v=Tza6HI8wSJ0

Nvidia Tegra2:

Dual ARM Cortex A7+

Dual Cortex A9

https://en.wikipedia.org/wiki/Tegra

Apple A6 SoC:

Dual ARM Core+

Triple GPU core

https://en.wikipedia.org/wiki/Apple_A6

1.4 ขั้นตอนการผลิตไมโครชิป

1.4 ขั้นตอนการผลิตไมโครชิป

https://www.youtube.com/watch?v=2ciyXehUK-U

1.5 สรุปท้ายบท

• รูปแบบของเครื่องคอมพิวเตอร์มีความหลากหลายตามการประยุกต์ใช้งานในระบบต่างๆ นอกเหนือจากเครื่องคอมพิวเตอร์ที่มองเห็นทั่วไป ในการคมนาคมขนส่งต่างๆ ยังมี คอมพิวเตอร์ภายในรถยนต์ รถยนต์ไฟฟ้า หุ่นยนต์ต่างๆ เครื่องบิน อากาศยานไร้คนขับ (Unmanned Aeronautic Vehicle: UAV) โดรน (Drone) เป็นต้น ในการตรวจวัดค่า สิ่งแวดล้อม เช่น ลม ฝน คุณภาพอากาศ เป็นต้น การพัฒนาระบบคอมพิวเตอร์เหล่านี้ จึงต้องอาศัยความรู้ความเข้าใจทั้งฮาร์ดแวร์และซอฟต์แวร์ควบคู่กันไป เพื่อให้ระบบ ทำงานได้เต็มประสิทธิภาพ มีอายุการใช้งานที่เหมาะสมและคุ้มค่าการลงทุน

References

- https://www.researchgate.net/figure/Block-Diagram-of-Micro-SD-card_fig6_306236972
- https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/
- https://freedompenguin.com/articles/how-to/learning-the-linux-file-system
- https://www.techpowerup.com/174709/arm-launches-cortex-a50-series-the-worlds-most-energy-efficient-64-bit-processors
- https://www.researchgate.net/figure/NVIDIA-Tegra-2-mobile-processor-11_fig1_221634532
- Harris, D. and S. Harris (2013). Digital Design and Computer Architecture (1st ed.). USA: Morgan Kauffman Publishing.
- https://learn.adafruit.com/resizing-raspberry-pi-boot-partition/edit-partitions

References

- https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
- https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/programmer-s-guide-for-armv8-a
- https://xdevs.com/article/rpi3 oc/
- https://www.gsmarena.com/a look inside the new proprietary apple a6 chipset-news-4859.php
- https://www.slideshare.net/kleinerperkins/2012-kpcb-internet-trends-yearend-update/25-Global_Smartphone_Tablet_Shipments_Exceeded
- https://www.aliexpress.com/item/32329091078.html
- https://www.raspberrypi.org/forums/viewtopic.php?t=63750
- https://www.youtube.com/watch?v=2ciyXehUK-U