Cross-selling and Up-selling: Learning from Purchases

Professor Song YaoOlin Business School

Customer Analytics

1

Whom vs. What? A Different Setting for Targeting

So far we have been interested in the response to a given product offering

COMPARISON OF QUESTIONS

- Given a certain product we want to offer, which customers are the most likely to respond to the offer?
 - Whom to sell?
- Given that we would like to target a certain customer, which product is the most likely to lead to a positive response (or maximize profits)?
 - What to sell?

3

So far we have been interested in the response to a given product offering

COMPARISON OF QUESTIONS

- Given a certain product we want to offer, which customers are the most likely to respond to the offer?
 - Whom to sell?
 - Expected return needs to exceed cost of marketing
- Given that we would like to target a certain customer, which product is the most likely to lead to a positive response (or maximize profits)?
 - What to sell?
 - Expected return from Offer 1 needs to exceed return from Offer 2, 3, ...

Model of choice when marketing costs are not the "limiting resource"

Such models have many applications

APPLICATIONS

- Banks:
 - Which financial product to offer next?
- Call centers:
 - Which additional product to offer during an inbound call?
- Online retailers:
 - · Which product to promote in a weekly e-mail
 - Which product recommendation to offer on the home page
- B2B:
 - Which product to push in the next sales call

- ...

5

To choose a model, we need to first determine our setting

APPLICATIONS OF MODELS

What is the scope of the prediction?

Situational:

"If a consumer is <u>currently</u> considering product X, what product Y should we offer?"

General:

"Considering a consumers entire purchase history, what is the next product we should offer to the consumer?"

To choose a model, we need to first determine our setting

APPLICATIONS OF MODELS

What is the scope of the prediction?

"If a consumer is <u>currently</u> considering product X, what product Y should we offer?"

"Considering a consumers entire purchase history, what is the next product we should offer to the consumer?"

9

Situational Cross-Selling/ Upselling

To decide on a model we need to first determine our setting

APPLICATIONS OF MODELS

What is the scope of the prediction?

"If a consumer is <u>currently</u> considering product X, what product Y should we offer?"

"Considering a consumers entire purchase history, what is the next product we should offer to the consumer?"

11

The most common method for generating situational recommendations is a "Market Basket Analysis" (MBA)

MARKET BASKET ANALYSIS

Basket ID	Purchases
1	pizza, soda
2	milk, cleaner
3	soda, pizza, detergent
4	pizza, detergent
5	cleaner, soda
6	pizza, cleaner, soda
7	pizza, soda
8	cleaner, detergent
9	soda, pizza

basket	cleaner	deter- gent	milk	pizza	soda
1	0	0	0	1	1
2	1	0	1	0	0
3	0	1	0	1	1
4	0	1	0	1	0
5	1	0	0	0	1
6	1	0	0	1	1
7	0	0	0	1	1
8	1	1	0	0	0
9	0	0	0	1	1

Goal: Implement a rule "If buy/consider product A then offer product B"

For each pair of products we calculate three key measures

MARKET BASKET ANALYSIS

1. How likely is this rule to apply?

$$Support(A, B) = \frac{\# (A \text{ and } B)}{\# Orders}$$

2. How likely is product B purchased after a consumer has purchased A?

$$Confidence(A, B) = \frac{\# (A \text{ and } B)}{\# A}$$

3. Are the relationship between A and B coincidental (e.g., A and B are both very popular but unrelated)

$$Lift(A, B) = \frac{Support(A \text{ and } B)}{Support(A) \times Support(B)}$$

13

For each pair of products we calculate three key measures

MARKET BASKET ANALYSIS

- Assume there are 100 customers
- 10 of them bought milk, 8 bought butter and 6 bought both of them.
- Rule: bought milk => recommend butter?
- support = #(Milk & Butter)/#(Orders) = 6/100 = 0.06
- confidence = #(Milk & Butter)/#(Milk) = 6/10 = 0.60
- lift = support(Milk, Butter)/[support(Milk) * support(Butter)]
 = 0.06/(0.10 * 0.08) = 7.5

The three measures suggest whether to use a rule and if so, what rule to use

IMPLEMENTING RULES IN MBA

Goal: Implement a rule "If buy/consider product A then offer product B"

- Statistical significance (and if relevant, sufficient "support") is a necessary condition for implementing this rule
- If "Lift" and "Confidence" are "high enough," then implement rule.
- If multiple rules pass the hurdle (if A then B, if A then C),
 - Recommend multiple products to buy next (e.g., Amazon recommends 2)
 - Profit comparison (i.e., see which recommendation results in higher profits)

15

There are various other considerations when using MBA

CONSIDERATION IN MARKET BASKED ANALYSIS (2)

- Market Basket Analysis can be easily extended to more complicated condition clauses
 - If A1 and A2 then B -> form a super-product that is A1 and A2 = A1*A2
 - If A not bought then B -> form an anti-product "anti-A"=1-A
 - If A bought, then not B -> form an anti-product "anti-B"=1-B

basket	cleaner	detergent	milk	pizza	soda	cl_det	anti_det	anti_soda
1	0	0	0	1	1	0	1	0
2	1	0	1	0	0	0	1	1
3	0	1	0	1	1	0	0	0
4	0	1	0	1	0	0	0	1
5	1	0	0	0	1	0	1	0
6	1	0	0	1	1	0	1	0
7	0	0	0	1	1	0	1	0
8	1	1	0	0	0	1	0	1
9	0	0	0	1	1	0	1	0

There is another crucial consideration before using MBA

CONSIDERATION IN MARKET BASKED ANALYSIS

The data generating process differs from the prediction setting

- Targeting:
 - Offer first sent to a randomly selected sample
 - Based on observed responses, we use RFM/Logistic/Machine Learning to predict response rate of the other customers outside of the sample
 - The same offer is then sent to those people with high response rates
- Market Basket Analysis
 - There is no data collected with recommendations
 - We use existing market data (without recommendation) to predict what would happen if we started to recommend
 - The assumption is that the behavior of consuming A and B together does not change due to the recommendation

17

General Cross-selling/Upselling

To decide on a model we need to first determine our setting

APPLICATIONS OF MODELS

What is the scope of the prediction? Situational: General:

"If a consumer is <u>currently</u> considering product X, what product Y should we offer?"

"Considering a consumers entire purchase history, what is the next product we should offer to the consumer?"

19

How about using a Market Basket Analysis?

USING MBA WITH FULL PURCHASE HISTORIES

- Market Basket Analysis makes recommendations looking at only one purchase (or look) at a time
 - "If customer has purchased/looked at product A then offer customer product B"
- How do we make recommendations based on a collection of purchases?
- Need:
 - "If customer has purchased products A1, A2, A3, then offer customer product B"
- Need to have observed enough people who purchased products A1, A2, A3, and B

One key approach is to Market Basket Analysis on product pairs and combine/sort recommendations

AMAZON'S (*BASIC*) APPROACH (PATENT 6,266,649)

$$s_{A,B} = \frac{n_{A,B}}{\sqrt{n_A * n_B}} \qquad n_{A,B} = 10, n_A = 100, n_B = 100 \Rightarrow s_{A,B} = 0.1$$

$$n_{A,B} = 20, n_A = 25, n_B = 25 \Rightarrow s_{A,B} = 0.8$$

$$n_{A,B} = 20, n_A = 20, n_B = 20 \Rightarrow s_{A,B} = 1$$

- Key idea: Reduce a multi-product problem into a sequence of pairwise problems
- Define **similarity** between two product as:
 - $n_{A,B}$ is number of times that products A and B are purchased by a customer
 - n_A is total number of times product A is purchased; similar for n_B
- Suppose Bob has purchased product A, B, C, and D previously.
- Place product E on a "short-list" if the similarity between E and any of product A, B, C, and D is sufficiently high. Repeat for products F, G, H, etc.
- Sort products on the short list by the highest similarity score an item has with any of the items in the purchase history
- Combine and sort short lists

21

Consider an example that uses this approach

EXAMPLE OF MBA WITH FULL PURCHASE HISTORIES

- Customer has purchased photo products in the past
- Digital photography department wants to make e-mail/website offer for camera accessory

Purchase history

Potential accessories

- Canon S95 digital camera
- 4 GB SD card
- Nikon D80 digital SLR camera
- Eye-Fi Wifi SD card
- Lens cleaning kit
- Camera case (universal)
- Battery (S95)
- External flash
- Lens cap
- Book: "Understanding Close-ups"

Consider an example that uses this approach

SIMILARITY RATINGS $s_{A,B}$ AND SHORT LISTS

Canon S95 digital cam	era	4 GB SD card		Nikon D80 digital SLR camera	
 Eye-Fi Wifi SD card 	0.03	 Eye-Fi Wifi SD card 	0.00	• Eye-Fi Wifi SD card 0	0.06
 Lens cleaning kit 	0.001	 Lens cleaning kit 	0.00	 Lens cleaning kit).21
 Camera case (universal) 	0.12	 Camera case (universal) 	0.05	 Camera case (universal) 	0.004
 Battery (\$95) 	0.08	 Battery (\$95) 	0.03	• Battery (S95) 0	0.00
 External flash 	0.00	 External flash 	0.00	 External flash).14
 Lens cap 	0.00	 Lens cap 	0.02	• Lens cap 0	0.00
 "Understanding Close-ups" 	0.02	 "Understanding Close-ups" 	0.01	 "Understanding Close-ups" 0 	0.02

COMBINED SHORT LISTS

•	Eye-Fi Wifi SD card	0.03, 0.06
•	Lens cleaning kit	0.21
•	Camera case (universal)	0.12 , 0.05
•	Battery (S95)	0.08 , 0.03
•	External flash	0.14

SORTED FINAL LIST

•	Lens cleaning kit	0.21
•	External flash	0.14
•	Camera case (universal)	0.12
•	Battery (S95)	0.08
•	Eye-Fi Wifi SD card	0.06

23

Individually Customized

Market Basket Analysis uses only data on basket IDs, products, and sometimes customer IDs

DATA USED FOR MBA

Basket ID	Product ID	Customer ID			
1	Nikon D80	10045			
1	Eye-Fi SD	10045			
1	Lens Cap	10045			
2	Canon A80	38930			
2	Battery (A80)	38930			
3	External Flash	10045			
4	Canon S95	98543			
4	4GB SD	98543			
4	Cam. Case	98543			
5	Lens Cleaning Kit	38930			

25

Market Basket Analysis uses only data on basket IDs, products, and sometimes customer IDs

TYPICALLY AVAILABLE PURCHASE-RELATED DATA

			Trans	action D	etails	В	uyer Detai	ls
Basket ID	Product ID	Customer ID	Time	Price Other		Age	Income	Other
1	Nikon D80	10045	3/23/2007	\$784	Searched	34	50-60K	10+ reviews
1	Eye-Fi SD	10045	3/23/2007	\$49	Promotion	34	50-60K	10+ reviews
1	Lens Cap	10045	3/23/2007	\$18	Front page	34	50-60K	10+ reviews
2	Canon A80	38930	10/4/2008	\$199	•••	23	10-20K	4 returns
2	Battery (A80)	38930	10/4/2008	\$46		23	10-20K	4 returns
3	External Flash	10045	12/1/2010	\$110		52	40-50K	•••
4	Canon S95	98543	1/13/2011	\$399	•••	65	90-100K	•••
4	4GB SD	98543	1/13/2011	\$24		65	90-100K	•••
4	Cam. Case	98543	1/13/2011	\$35	•••	65	90-100K	•••
5	Lens Cleaning Kit	38930	2/2/2011	\$5	•••	23	10-20K	•••

We can better exploit purchase data by building a model that relates current choices to rich descriptions of past behavior

DATA REQUIREMENTS FOR RICHER MODEL

		t-4	t-3	t-2	t-1	t	Time
Customer 10045:	Buyer descriptors	Α		Α	В	Α	
Customer 38930:	Buyer descriptors						
Customer 10045:	Buyer descriptors	Α	D			В	
Customer 98543:	Buyer descriptors	С		C	D	D	
Customer:	•••	В	В				
Customer:	•••						
Customer:	•••						
Customer:	•••	Α		D		С	

Independent Variables

Dep. Variables

27

We can use a variety of approaches to estimate a richer model

MODEL ALTERNATIVES FOR MODEL

- Binary Logit with different product offers
 - Different consumers are offered different products
 - Predict for each consumer the probability of choosing each product
 - · Used in Pentathlon Part III e-mail customization case
- Multinomial Logit (and Nested Logit)
 - Like logistic regression but dependent variable is the chosen product (J values)
- Machine Learning models (multi-class)

Let's look at an example of a cross/upselling model using a binary logit model

BBB NEXT-PRODUCT-TO-BUY EXAMPLE

- Stan Lawton (marketing director) prepares for **e-mail marketing** and the problem!
- Sends out one of three offers to 10,000 consumers each:
 - Offering in the art category: "The Art History of Florence."
 - Offering in the do-it-yourself category: "Painting Like a Pro."
 - Offering in the cooking category: "Vegetarian Cooking for Everyone."
- Profit varies between books:
 - "The Art History of Florence" --> \$6
 - "Painting Like a Pro" --> \$4
 - "Vegetarian Cooking for Everyone" --> \$7
- Cost of making the offer is irrelevant (e-mail and the frequency has been set)
- **Key problem:** Which book offer is the best match for each customer?

29

Demo Code