NATIONAL UNIVERSITY OF SINGAPORE

MA1301 Introductory Mathematics

Tutorial 8

1. Solve the following differential equations.

(a)
$$(1-x)\frac{dy}{dx} = 6$$
 $(x < 1)$, $y = 5$ when $x = 0$.

(b)
$$x \frac{dy}{dx} + (x^2 + 1) = 0 \ (x > 0), \quad y = \frac{1}{2} \text{ when } x = 1.$$

(c)
$$\frac{dy}{dx} = \frac{3}{ye^{y-1}}$$
 $(y > 1)$, $y = 1$ when $x = 0$.

(d)
$$e^{y+1} \frac{dy}{dx} - e^{1-2y} = 0$$
, $y = 0$ when $x = 1$.

2. Solve the following differential equation

$$\frac{dy}{dx} + \frac{8x + 4y + 1}{4x + 2y + 1} = 0$$
, $y = 1$ when $x = 1$.

- 3. The angle between two vectors \boldsymbol{a} and \boldsymbol{b} is 120°. If $|\boldsymbol{a}|=3$ and $|\boldsymbol{b}-\boldsymbol{a}|=7$, find $|\boldsymbol{b}|$ and $|\boldsymbol{a}+\boldsymbol{b}|$.
- **4.** Let A(0,3,4), B(-2,p,3), C(q,1,3) and D(4,7,r) be points in \mathbb{R}^3 .
 - (a) Find the value of p for which the length $|\overrightarrow{AB}| = 3$.
 - (b) Find the values of p and r for which A, B and D are collinear.
 - (c) Find the value of q for which $\overrightarrow{AC} \perp \overrightarrow{OC}$, where O is the origin.
 - (d) Find the angle $\angle ABC$ if p = 1 and q = 2.
- **5.** (a) Find the unit vector in the direction of -4i + 3j.
 - (b) Find two vectors which have magnitude 34 units and are parallel $4i \frac{15}{2}j$.
- **6.** Relative to the origin O, the position vectors of A, B and C are $3\mathbf{i} \mathbf{j}$, $-\mathbf{i} + 2\mathbf{j}$ and $3\mathbf{j}$ respectively.
 - (a) Show that $\triangle ABC$ is an isosceles triangle.
 - (b) Find $\angle BAC$, and hence find the area of $\triangle ABC$.

7. In $\triangle OAB$, $\angle AOB = 90^{\circ}$. Let C be the point on the segment AB such that $\overrightarrow{OC} \perp \overrightarrow{AB}$. Show that

$$\frac{|\overrightarrow{CA}|}{|\overrightarrow{CB}|} = \frac{|\overrightarrow{OA}|^2}{|\overrightarrow{OB}|^2}.$$

SOLUTIONS AND HINTS

1. (a)
$$y = -6\ln(1-x) + 5$$
; (b) $y = -\frac{1}{2}x^2 - \ln x + C$; (c) $x = \frac{1}{3}e^{y-1}(y-1)$; (d) $x = \frac{1}{3}e^{3y} + \frac{2}{3}$.

- **2.** $(2x+y)^2 + (x+y) = 11$. Hint: Set y = v 2x. Then convert the equation in x and v.
- **3.** 5, $\sqrt{19}$. *Hint*: Use law of cosine: $c^2 = a^2 + b^2 2ab\cos\theta$.
- **4.** (a) 1 or 5. (b) p = 1, r = 6. Hint: $\overrightarrow{AB} \parallel \overrightarrow{AD}$, so $\overrightarrow{AB} = \lambda \overrightarrow{AD}$ for some $\lambda \in \mathbb{R}$.
 - (c) $\sqrt{5}$ or $-\sqrt{5}$. Hint: $\mathbf{u} \perp \mathbf{v} \Leftrightarrow \mathbf{u} \bullet \mathbf{v} = 0$

(d)
$$\cos^{-1}\left(-\frac{2}{3}\right)$$
 (or $\pi - \cos^{-1}\left(\frac{2}{3}\right)$). $Hint: \cos\theta = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{|\boldsymbol{u}| |\boldsymbol{v}|}$.

- **5.** (a) $-\frac{4}{5}\mathbf{i} + \frac{3}{5}\mathbf{j}$. (b) $16\mathbf{i} 30\mathbf{j}$ and $-16\mathbf{i} + 30\mathbf{j}$.
- **6.** (a) *Hint*: Evaluate $|\overrightarrow{AB}|$, $|\overrightarrow{AC}|$ and $|\overrightarrow{BC}|$.
 - (b) $\cos^{-1}\frac{24}{25}$, $\frac{7}{2}$. *Hint*: Use a formula for the area of a triangle: $\frac{1}{2}ab\sin\theta$.
- 7. Hint: Suppose $\overrightarrow{AC} = \lambda \overrightarrow{AB}$. Then express \overrightarrow{OC} in terms of \overrightarrow{OA} , \overrightarrow{OB} and λ . Then use $\overrightarrow{OC} \bullet \overrightarrow{AB} = 0$ to determine the value of λ . A diagram will be very helpful.