Emm42_V3.6.x

步进闭环驱动器

使用说明书

目 录

一、产品特性	1
1.1 硬件接口说明	1
1.2 功能特点	2
二、闭环 PCBA 安装	3
2.1 注意事项,安装闭环 PCBA 必看,重要!!!	3
2.2 安装步骤	4
三、模块接线说明	6
3.1 3D 打印机/雕刻机主板接线	6
3.2 STM32 控制接线	7
3.3 Arduino 控制接线	7
3.4 PLC 接线	8
3.5 工业套餐(光耦隔离)接线	8
四、上电操作	9
4.1 注意事项,第一次通电前必看,重要!!!	9
4.2 上电操作	9
4.3 屏幕错误提示说明	10
五、OLED 屏幕参数显示说明	11
5.1 屏幕 3 行参数含义	11
5.2 参数设置菜单说明	11
六、单圈上电自动回零操作说明	15
七、串口通讯	16
7.1 串口通讯接线	16
7.2 串口通讯格式	17
7.3 读取参数命令	17
7.4 设置任意细分命令	18
7.5 串口直接控制命令	19
八、外壳文件	20
九、固件更新	21
十、技术支持	21

一、产品特性

1.1 硬件接口说明

注意: 工业套餐(光耦隔离)不支持24V信号输入和共阴输入

1.2 功能特点

- ✓ 板载工业级高精度 16384 线磁编码器。
- ✓ FOC 矢量控制, 力矩、速度、位置三环控制, 最高转速 1000+RPM。
- ✓ 支持开环、矢量闭环、串口控制三种控制模式随意切换。
- ✓ 内部具有 256 细分插补算法,超静音、超低震动。
- ✓ 支持 1~256 任意细分(串口设置),奇数细分(如 89 细分)也可以。
- ✓ 支持两种模式的单圈内上电自动回零。
- ✓ 支持串口控制(正反转、位置控制)、读取位置和状态、设置任意细分。
- ✓ 屏幕一键设置参数,自动保存,立即生效,可以随时修改。
- ✓ 非工业套餐(无光耦)支持共阳、共阴输入,支持 PCL 的 24V 信号直接输入。
- ✓ 支持 0.9°和 1.8°任意长度的 42 步进电机。
- ✓ 可启用堵转保护功能,可通过 LED 灯的状态检测电机是否堵转。
- ✓ 可启用自动熄屏功能。
- ✓ 提供外壳文件可自行打印,提供说明书、stm32 和 arduino 控制例程。

二、闭环 PCBA 安装

2.1 注意事项,安装闭环 PCBA 必看,重要!!!

安装前,请先确定好自己的步进电机的**电机线序(A+ A- B+ B-)**是下图中的哪一种!如果不清楚,可以先选用其中的一种进行上电测试,如果线序不对,**第一次上电后屏幕会提示"Phase Line Error!"**,如果出现该错误,请断电重新调整电机的线序(A+ A- B+ B-)。

注意,如果你的电机线序和我们送的短线的线序不一样,请自行调整一下。 电机线序调整方法:用牙签/镊子等尖物把短线 6P 的那一头戳出来,再按图中的 另一种电机线序插回去,重新上电观察屏幕不再提示 Phase Line Error!即可。

2.2 安装步骤

(1) 水粘用胶水粘好磁铁到电机轴中间:

- ① **可选用的胶水:** 3M 胶水(首选)、502、万能胶、ab 胶、双面胶(尽量不用双面胶,粘的不是很牢固)等等。
- ② 必须注意,磁铁尽可能的粘在电机轴中间的位置,不能偏太多,也不要让磁铁不水平、翘一边(板子上电后会检测磁铁的位置,保证高精度)。

(2) 把电机四个角落的螺丝拧出来,放上垫片:

① 默认送的尼龙垫片尺寸为 3*7*3 (内径*外径*高度)。

(3) 固定闭环 PCBA 板子, 拧上新螺丝, 插上电机线:

① 默认送的螺丝长度适合 40mm 长度的步进电机,如果需要其他长度的螺丝,可以在购买时备注留言你的步进电机的长度即可。

三、模块接线说明

3.1 3D 打印机/雕刻机主板接线

注意 3D 打印转接板的方向 (EN 引脚对准 EN 引脚插上即可)

Com 引脚可以不接,信号引脚 En、Dir、Stp 对应接上,再从主板上拉一组 12-24V 电源到闭环驱动的 V+和 Gnd 引脚供电即可。

3.2 STM32 控制接线

3.3 Arduino 控制接线

3.4 PLC 接线

3.5 工业套餐(光耦隔离)接线

四、上电操作

- 4.1 注意事项,第一次通电前必看,重要!!!
- (1) <mark>尽量不要带电拔插 6P 的端子,避免打坏板子,先断电插好再通电!!!</mark>
- (2) 只买了板子的,第一次上电需要进行编码器校准,电机不要带负载。
- (3) 板子如果从电机拆下来后,装回去后要重新对编码器进行校准。

4.2 上电操作

如果上电后屏幕有提示错误,请看 4.3 中的 "屏幕错误提示说明" 进行处理。 安装并接好线后,正常情况下,第一次上电会先提示"Not Cal",然后弹 出只有 3 个菜单项的菜单(如下图所示),此时确保电机没带负载,然后按一下 Enter 键确认选择'Cal'进行编码器校准。

电机进行编码器校准时,电机会先一步一步的正转一圈,然后再一步一步的 反转一圈,并且屏幕上会显示'Cal...'表示编码器正在校准中,等待 1~2 分钟 编码器校准完成就可以正常使用了。如果校准时电机来回转动,说明电机线序不对,请看 2.1 中的"电机线序调整方法"进行处理。

4.3 屏幕错误提示说明

- ➤ 第一次时如果上电提示一下"Not Cal",表示未进行编码器校准操作,点击 Cal 进行编码器校准即可。
- ▶ 上电时如果提示 "Waiting V+ Power!", 表示 V+没有接入 7 28V 的电源。
- ▶ 上电时如果提示"Offset Current Error!",表示板子的电流检测出错, 有可能是运算放大器芯片出了问题,请联系本店技术进行处理。
- ➤ 第一次上电/校准编码器时如果提示 "Phase Line Error!"或提示 "Reverse Lookup Error!",表示电机线序错误,请按照 2.1 章节'闭环 PCBA 安装'中的'电机线序调整方法'调整短线的线序,调整后插上重新上电即可。
- ▶ 上电时如果提示"Magnet Loss! Enter..",表示板子没有检测到磁铁,请检查一下磁铁有没粘好在电机轴中间,或者板子有没安装到电机上。
- ▶ 上电时如果提示"Magnet Error! Enter..",表示板子上的编码器通讯有问题,请到群里联系本店技术进行处理。
- ▶ 第一次上电时如果提示"Motor Type Error!",表示电机类型(0.9°/1.8°) 检测错误,原因一可能是第一次上电前就带了负载,原因二可能是在粘贴磁 铁时,胶水太多弄到了电机的轴承粘住了。
- ▶ 上电时如果提示 "Coming Back to Origin..",表示电机正在进行单圈上电自动回原点的功能,等待电机回零完成即可。
- ▶ 上电时如果提示 "Back to Origin Fail!!!",表示电机单圈上电自动回原 点失败,原因可能是回原点的过程中电机被卡到了。
- ▶ 电机在运行过程中如果突然提示"Wrong Protect Enter..",表示电机堵转了,触发了堵转保护功能,解除堵转保护的方法可以是重新上电,或者将Protect 选项设置为Disable即可。

五、OLED 屏幕参数显示说明

5.1 屏幕 3 行参数含义

- (1) 360.0° 输入累计位置,根据你设定的细分和你发送的累计脉冲数计算出来的位置,即你想要控制电机到达的累计目标位置。
- (2) 0.01err 位置角度误差,即你想要控制电机到达的累计位置-电机实际运行到的位置所得到的位置误差,正常情况下小于 0.08err。
- (3) 600c1k 输入累计脉冲数,显示你一共发送了多少个脉冲过来(有方向,且是一个累计值)。

5.2 参数设置菜单说明

板载3个小按键,从左到右分别是:

Next : 向下选择

Enter: 确认选择

Menu : 进入/退出参数设置菜单

查看参数方法: 按 Menu 键进入菜单->按 Next 键向下选择->按 Enter 键进入子选项,进入后就可以看到该选项的当前值是多少了。

参数设置方法: 进入子选项后,选择另外的值按 Enter 确认选择就可以,会自动保存,立即生效,不需要断电重启。

● CAL:编码器校准

闭环模式下对编码器进行线性化插值和电角度对齐,可以提高编码器的 线性精度,校准前请确保电机类型选择正确。

● MotType: 电机类型选择

根据自己的步进电机类型进行选择,修改该选项后,在闭环模式下需要重新对编码器进行校准。

0.9°: 电机是 0.9 度的步进电机

1.8°: 电机是 1.8 度的步进电机

● Mode: 控制模式选择

CR OPEN: 开环控制模式,不需要编码器就能运行。

CR LOOP: 矢量闭环控制模式,有编码器反馈防丢步;

CR_UART: 串口直接控制模式,TTL 串口发命令进行位置/正反转的控制。

● Ma: 设置电流档位

设置开环模式的运行电流档位,闭环模式/串口控制模式会根据负载大小自动调整电流的大小,变电流技术。

0

200

. . .

3000

● MStep:设置细分步数(默认 16 细分)

支持 1~256 任意细分,其中常规细分 1、2、4、8、16、32、64、128、256 可以在屏幕上进行设置,其他细分如 67 细分需要用串口发命令进行设置,请参考'串口通讯'一节进行操作。

1

2

. .

256

● En:设置 En 引脚的有效电平

H: 高电平有效,外部输入高电平(3.3V以上)可以使能闭环驱动板。

L: 低电平有效,外部输入低电平(OV)可以使能闭环驱动板。

Hold: 一直保持有效,此时 En 引脚不受外部控制。

注: 如果没有使能驱动板,电机会像没通电一样,用手轻轻就可以 拧动电机轴,你发脉冲它也不会转。

● Dir: 设置电机转动的正方向

CW: 顺时针旋转为正方向

CCW: 逆时针旋转为正方向

注:如果方向不对(特别是用在3D打印机/雕刻机),不需要修改 主板的固件,只需要修改该选项即可。

● AutoSDD: 设置自动熄屏功能

Disable: 关闭

Enable: 使能

注: 使能该选项后,在7秒内无任何按键操作就会自动熄灭 OLED 显示屏,按任意按键就可以重新点亮屏幕。

● Protect: 设置堵转保护功能

Disable: 关闭

Enable: 使能

注: 使能该选项后,驱动板如果检测到电机发生堵转就会触发堵转保护,自动关闭驱动器,并在屏幕上显示"Wrong Protect Enter.."。

● MP1yer:设置内部 256 细分插补功能

Disable: 关闭

Enable: 使能(默认)

注: 使能该选项后,能够有效的减少电机低速运动时的震动和噪音,相当于把你当前的细分内部插补到最高 256 细分去跑。

	HartBaud.	设置串口通讯波特率
•	our obaua.	火 直干 日 也 们 以 日 干

Disable

9600

19200

25000

38400

57600

115200

注: 如果你要用到串口,需要设置驱动板的串口通讯波特率。

● UartAddr: 设置串口通讯地址

0xe0

. . .

0xe9

注: 可以通过该选项来设置驱动板的串口通讯地址。

● 0 Mode: 设置单圈上电自动回零模式

Disable: 关闭单圈上电自动回零功能

DirMode: 方向模式(回零方向在0 Dir 菜单上设置)

NearMode: 就近模式(往最靠近零点的方向回零)

● Set 0: 设置单圈上电自动回零的原点(需要先设置 0 Mode 的模式)

● 0 Speed: 设置单圈上电自动回零速度档位

0:最快的档位

. . .

4: 最慢的档位

● 0_Dir: 设置单圈上电自动回零的回零方向

CW

CCW

● ACC:设置闭环驱动板内部的加速度值

Disable

286

412

538

664

790

916

1042

注:该选项是预留和扩展,保持默认值'Disable'。

● Exit: 退出参数设置菜单

六、单圈上电自动回零操作说明

前提条件:

在闭环/串口控制模式下,确保闭环电机已经可以正常控制和正常工作。

操作说明:

先设置为闭环模式,并设置 En 选项,先关闭闭环驱动板 -> 接着用手把电机轴拧到需要设置为原点的位置 -> 然后设置 0_Mode 选项的单圈上电自动回零模式 -> 再接着点击 Set 0 将当前位置设置为零点 -> 然后设置回原来的控制模式和 En 选项 -> 最后测试下,断电用手把电机轴拧到其他位置,再上电,就可以观察到电机自动回零。

注:如果回零速度或方向不合适,可以分别在 0_Speed 和 0_Dir 选择其他的档位。

七、串口通讯

7.1 串口通讯接线

串口多机通讯接线图

7.2 串口通讯格式

注意:

- (1) 串口助手的发送和接收设置都为 Hex, 命令字节不要加 0x 的前缀。
- (2) 驱动板的串口通讯波特率 38400 在 UartBaud 选项上进行设置。
- (3) 驱动板的串口通讯地址 e0 在 UartAddr 选项上进行设置。
- (4) 每一条命令不要少发、漏发某个参数。
- (5) 返回的数据格式是高8位在前。
- (6) 返回 e0 01 表示命令正确,返回 e0 00 表示错误命令。

7.3 读取参数命令

(1) 发送 e0 30, 读取编码器值(经过线性化校准和插值后的值)

返回 e0 和 uint16_t 类型的编码器值,返回的编码器值范围为 $0^{\circ}65535$,表示 $0^{\circ}360^{\circ}$,即一圈的数据范围。

(2) 发送 e0 33, 读取输入累计脉冲数

返回 e0 和 int32_t 类型的输入累计脉冲数,也就是你的控制器发送过来的累计脉冲数。

(3) 发送 e0 36, 读取闭环电机的实时位置

返回 e0 和 $int32_t$ 类型的闭环电机实时位置,也就是电机自上电/使能起所转过的角度,单位: $0^{\sim}65535$ 表示一圈,比如电机转一圈是 65536,转了十圈就是 655360,以此类推。

(4) 发送 e0 39, 读取位置角度误差

返回 e0 和 $int16_t$ 类型的位置角度误差,也就是你想要控制的位置角度减去电机的实时角度位置得到的差值,单位: $0^{\sim}65535$ 表示 $0^{\sim}360^{\circ}$,比如误差为 1° 时,数值为 $65536/360^{\circ}$ = 182.444,以此类推。

(5) 发送 e0 3a, 读取闭环驱动板的使能状态

返回 e0 和 uint8_t 类型的闭环驱动板的使能状态,也就是 En 引脚的使能状态。用串口控制时,可以通过该命令获取驱动板的使能状态。

使能 : 返回 e0 01;

没使能 : 返回 e0 02;

错误指令:返回 e0 00。

(6) 发送 e0 3e, 读取堵转标志位

返回 e0 和 uint8_t 的堵转标志,当电机发生堵转,会置位堵转标志,通过该命令可以获取到电机是否发生了堵转。如果使能了堵转保护选项,发生堵转后,驱动板会自动关闭驱动器。

7.4 设置任意细分命令

发送 e0 84 __, 设置 $1\sim256$ 任意细分,可以在 MStep 选项看到设置的细分比如,

发送 e0 84 07, 修改为 7 细分;

发送 e0 84 4e, 修改为 78 细分;

发送 e0 84 00, 修改为 256 细分;

以此类推...

7.5 串口直接控制命令

(1) 发送 e0 f3 0 , 修改串口控制模式下驱动板的使能状态

在串口控制模式下,驱动板的使能状态不再受 En 引脚的电平控制,而是利用该命令进行控制。

发送 e0 f3 00, 关闭驱动板;

发送 e0 f3 01, 使能驱动板;

(2) 发送 e0 f6 , 让电机以一定的速度进行正/反转

字节的最高位表示方向,低7位表示128个速度档位,比如:

发送 e0 f6 00, 电机以 0 档速度正转;

发送 e0 f6 80, 电机以 0 档速度反转;

发送 e0 f6 5a, 电机以 90 (0x5a) 档速度正转;

发送 e0 f6 da, 电机以 90 (0xda = 0x5a | 0x80) 档速度反转;

(3) 发送 e0 f7, 让电机停止正/反转

(4) 发送 e0 ff c , 保存/清除保存上面(2)中所设置的正/反转速度

发送 e0 ff c8, 保存上面(2)中所设置的正/反转速度;

发送 e0 ff ca, 清除已保存的正/反转速度;

注: 可以让电机每次上电都直接按照保存的速度和方向一直转动。

也就是说,如果你想要电机一上电就以一定的速度正/反转,你可以先按照(2)中的命令设置好想要的速度和方向,接着利用该命令进行保存,然后重新上电后电机就会按照保存的速度和方向转动了。

(5) 发送 e0 fd ____, 串口直接位置控制

第一个 字节,最高位表示方向,低7位表示速度。

第二个__字节和第三个__字节组成 uint16_t 类型的数据,表示你要发送的脉冲数,比如:

在 16 细分下,发送 e0 fd 00 0c 80,表示电机以 0 档速度正转 360°。 (00 表示 0 档速度正转,0c 80 表示 3200(0x0c80)个脉冲 = 360°)

又比如:

在 16 细分下,发送 e0 fd 88 00 10,表示电机以 8 档速度反转 1.8° (88 表示 8 档速度反转,00 10 表示 16 (0x0010)个脉冲 = 1.8°)

八、外壳文件

提供外壳文件下载,可以自行发到工厂做外壳,可选用树脂或尼龙材质。

