

## SIMULAREA PROBEI DE MATEMATICĂ DIN CADRUL EXAMENULUI DE BACALAUREAT 2013 LA NIVELUL MUNICIPIULUI BUCUREȘTI 26 APRILIE 2013

## BAREM DE EVALUARE ŞI DE NOTARE

**M\_mate-info** pentru filiera teoretică, profilul real, specializarea matematică-informatică și pentru filiera vocațională, profilul militar, specializarea matematică-informatică;

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

| 1. | f(f(x)) = 4x + 3                                               | 3p         |
|----|----------------------------------------------------------------|------------|
|    | $4x + 3 = x \Leftrightarrow x = -1$                            | 2p         |
| 2. | $a_1 = 2, \ a_3 = 4$                                           | 2p         |
|    | $a_{10} = 11$                                                  | 2p         |
|    | Suma este 65                                                   | 1p         |
| 3. | Ecuația implică $x = x^2 - 4x + 4$                             | 2p         |
|    | $x_1 = 4$ convine și $x_2 = 1$ nu convine                      | <b>3</b> p |
| 4. | Există 90 de numere de două cifre                              | 1p         |
|    | Există $5 \cdot 5 = 25$ de numere cu ambele cifre impare       | 2p         |
|    | $p = \frac{25}{90} = \frac{5}{18}$                             | 2p         |
|    | 90 18                                                          | <b>2</b> P |
| 5. | $1 \in \left(0, \frac{\pi}{2}\right) \Rightarrow \cos 1 > 0$   | 2p         |
|    | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                          | 2p         |
|    | $2 \in \left(\frac{\pi}{2}, \pi\right) \Rightarrow \cos 2 < 0$ | 2p         |
|    | <del>1 -                                   </del>              | _          |
|    | <i>a</i> < 0                                                   | 1p         |
| 6. | Mijlocul segmentului [ $BC$ ] este $M(7,14)$                   | 2p         |
|    | AM = 13                                                        | 3p         |

SUBIECTUL II (30 de puncte)

| 1.a)       | $\det A = 1 + 2 + 0 - 2 - 0 - 0$                                                                      | <b>3</b> p |
|------------|-------------------------------------------------------------------------------------------------------|------------|
|            | $\det A = 1 \neq 0$                                                                                   | 2p         |
| <b>b</b> ) | $AB = I_3$                                                                                            | 2p         |
|            | $BA = I_3$                                                                                            | 2p         |
|            | Deoarece $AB = I_3$ și $BA = I_3$ , inversa matricei $A$ este matricea $B$                            | 1p         |
| c)         | $(A^n + A)(B^n - B) = A^n B^n - A^n B + AB^n - AB$                                                    | 1p         |
|            | $AB = I_3, A^n B = A^{n-1} I_3 = A^{n-1}, AB^n = I_3 B^{n-1} = B^{n-1}$                               | 2p         |
|            | Din $AB = BA$ reiese $A^n B^n = (AB)^n = I_3$ .                                                       | 1p         |
|            | Finalizare                                                                                            | 1p         |
| 2.a)       | Restul este $f(1)$                                                                                    | 2p         |
|            | f(1) = -4                                                                                             | 3p         |
| <b>b</b> ) | $f = X^2 (X - 1)^2 - 4$                                                                               | 3p         |
|            | Deoarece grad $(-4) = 0 < 2 = \text{grad}(X - 1)^2$ , câtul împărțirii este $X^2$ și restul este $-4$ | 2p         |
| c)         | $f = (X^2 - X)^2 - 4 = (X^2 - X + 2)(X^2 - X - 2)$                                                    | 3p         |
|            |                                                                                                       |            |

(30 de puncte) SUBIECTUL III 1.a) **2**p f este derivabilă pe  $\mathbb{R}$  și  $f'(x) = \frac{x}{\sqrt{x^2 + 1}} - 1$ 3p  $\lim_{x \to 0} \frac{f(x) - 1}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = -1.$  $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{\sqrt{x^2 + 1} - x}{x} = \lim_{x \to -\infty} \frac{-x\sqrt{1 + \frac{1}{x^2}}}{x} - 1 = -2$ 2p  $\lim_{x \to -\infty} (f(x) + 2x) = \lim_{x \to -\infty} \left( \sqrt{x^2 + 1} + x \right) = \lim_{x \to -\infty} \frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1}} = 0$ 2p 1p y = -2x este asimptotă la graficul funcției f spre - $\infty$ . c) 2p f continuă pe  $\mathbb{R}$ ,  $\lim_{x \to \infty} f(x) = 0$ ,  $\lim_{x \to -\infty} f(x) = \infty$ 2p 1p  $f'(x) < 0, \forall x \in \mathbb{R}$ , f strict descrescătoare, decif injectivă. Finalizare.  $I_{1} = \int_{0}^{1} xe^{x} dx = xe^{x} \Big|_{0}^{1} - \int_{0}^{1} e^{x} dx =$ 2p  $|e - e^x|_0^1 = e - e + 1 = 1.$  **b)**  $|x^n| \ge x^{n+1}$ , oricare  $x \in [0,1]$ , se obţine  $x^n e^x \ge x^{n+1} e^x$ , oricare  $x \in [0,1]$  şi  $I_n \ge I_{n+1}$ , oricare n3p 2p natural nenul  $x^n e^x \ge 0$ , oricare  $x \in [0,1]$ , deci  $I_n \ge 0$ . 2p 1p Se consideră  $f:[0,1] \to \mathbb{R}, f(x) = xe^x$ , funcție continuă, șirul de diviziuni 1p  $\Delta_n = \left(0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\right) \text{cu } \|\Delta_n\| \to 0$ , respective puncted intermediate  $\frac{k}{n} \in \left[\frac{k-1}{n}, \frac{k}{n}\right], k = \overline{1, n}$ .  $\lim_{n \to \infty} \frac{1}{n^2} \left( e^{\frac{1}{n}} + 2e^{\frac{2}{n}} + ... + ne^{\frac{n}{n}} \right) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} e^{\frac{k}{n}} =$ 2p  $=\lim_{n\to\infty}\frac{1}{n}\sum_{n=1}^{n}f\left(\frac{k}{n}\right)=\int_{0}^{1}f(x)dx=I_{1}=1$ 

2p