

The butterfly effect

A Case for Biodiversity using Machine Learning

What are we looking at?

6,392,186 butterfly sightings

2001 - 2020

From: <u>UK Butterfly Monitoring Scheme</u>

Dataset 1 is merged with:

- Temperatures
- Rain
- Sun
- Air Frost

Air Quality data

- Ground Level Ozone (O3)
- Nitrogen Dioxide (NO2)
- Sulphur Dioxide (SO2)
- Particles (PM10)
- Carbon Monoxide (CO)

From: Met Office

From: London Air Quality Network

What do we want to predict?

Using a **Time Series model**,

an estimation of the butterfly population evolution over the next years

In the context of **climate change**

How?

Indicator for Butterfly population

Focus on London Sightings

Models

Complexities of Predicting Biodiversity Population Evolution

COLLECTING DATA

- <u>Counts</u>: Warm weather leads to some butterfly species being past their peak in numbers by the time the surveys starts each year
- <u>Population estimation</u>: impossible to account for all butterflies
- <u>Human observation</u>: the methods for collecting data are very thorough at the UK Butterfly Monitoring Scheme, but approximations due to human action are still possible

UNDERSTANDING GLOBAL DYNAMIC FROM DATA

 External factors: not only weather and air quality factors, but also conservation efforts, population migration, plants density...

Models results

results		Univariate models		Multivariate models	
	ARIM	A Prophe	et Prophe	et Prophet	
Input data	-	-	All variable Lags = 12	s Some variables Lags = 12	
MAPE train	1.7%	5.2%	1.3%	1.2%	
MAPE test	24.4%	11.4%	19.9%	8.8%	
Delta MAPE trair	1/test 22.7%	6.2%	18.6%	7.6%	
Notes		Predictions li somewhat "fla no variation the last 8 yea	at": in		

Best data / model combination

Forecasts

Model filters

Data Sources

Butterfly sightings data: UKBMS

Weather data: Met Office

Air Quality data: London Air

A multivariate Time Series model aimed to predict the Butterfly Population Evolution amid climate change (a focus around London, UK) - using Facebook Prophet model

The Butterfly Effect

Butterflies population evolution estimation trend in London, UK

Train set MAPE: 1.23% | Test set MAPE: 8.93% | Difference in accuracy between train and test sets: 7.7%

Thanks!