A Book of Abstract Algebra (2nd Edition)

Bookmark

Show all steps: ON

Problem

Prove that parts are true in a nontrivial ring with unity.

If a is invertible and ab = ac, then b = c.

Step-by-step solution

Step 1 of 3

Consider an arbitrary nontrivial ring R with unity. Suppose that $a \in R$ is an invertible element, that is, multiplicative inverse of a exists in R. Objective is to show that

if ab = ac, then b = c.

Since $a \in R$ is an invertible element, so there exists $a^{-1} \in R$ such that

$$aa^{-1} = 1, a^{-1}a = 1$$

where 1 stands for the unity of the ring.

Comment

Step 2 of 3

Pre-multiply of both the sides of condition ab = ac by a^{-1} and use that $a^{-1}a = 1$ as:

$$ab = ac$$

$$a^{-1}(ab) = a^{-1}(ac)$$

$$a^{-1}ab = a^{-1}ac$$

$$1b = 1c$$

The last equation 1b = 1c implies that b = c because 1 is the unity of the ring.

Comment

Step 3 of 3

Hence, if ab = ac then b = c for some invertible element $a \in R$.

Comment