Lecture 4 – Pattern and Association Mining 1 Data Mining, Spring 2016 Anders Hartzen, andershh@itu.dk

Overview of today's lecture

- Follow Up from last week
- Quick Math Primer on sets
- Pattern Mining Basics
- Apriori Algorithm
- Pattern Mining Challenges
- Pattern evaluation

Follow up from last week

- Can ID3 handle missing data?
 - Original/standard version of ID3 assumes no missing data
 - Or at least assumes that placeholder value has been inserted (e.g. "unknown" or 0.0)
- However researchers have looked into adapting ID3
 - Handling Missing Value in Decision Tree Algorithm http://research.ijcaonline.org/volume70/number13/pxc3888063.pdf
 - A method of processing unknown attribute values by ID3 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=227661&url=h
 ttp%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Farnumber%3D2
 27661

Follow up from last week

- The C4.5 algorithm (successor to ID3) can handle missing values
 - A comparative study of decision tree ID3 and C4.5
 http://saiconference.com/Downloads/SpecialIssueNo10/Paper_3-A_c
 omparative_study_of_decision_tree_ID3_and_C4.5.pdf

_

Math Primer on Sets

Math Primer Sets

- Set
 - Collection of distinct <u>objects</u>
 - Mathematician Georg Cantor:

 A set is a gathering together into a whole of definite, distinct objects of our perception [Anschauung] or of our thought—which are called elements of the set. (1895)

Math Primer Sets

- Set
 - Example
 - $A = \{1,2,7,8,12\}$
 - Cardinality (size)
 - |A| = 5

Math Primer Sets – Subset/Superset

Subset

- If every element of set A is also an element of set B, then A is a subset of B
- Notation: A \subseteq B
 - "A is contained in B"

Superset

- If set B contains every element of set
 A, then B is a superset of A
- Notation: $B \supseteq A$
 - "B contains A"

Math Primer Sets – Proper Subset/Superset

- A is a a proper subset of B if B contains all elements of A, but is not equal to A
 - i.e. B has other elements than set A's elements
- B is a proper superset if B contains all elements of A, but is not equal to A
- Notation: A ⊂ B and B ⊃ A
 - Different notations used by different authors!

Math Primer Sets – Union

- "Adding" two sets together
- Union of set A and B is the set of elements part of A or B
- Notation: A U B
- Examples:
 - $\{1, 2\} \cup \{1, 2\} = \{1, 2\}$
 - $\{1, 2\} \cup \{2, 3\} = \{1, 2, 3\}$
 - {1, 2, 3} \cup {3, 4, 5} = {1, 2, 3, 4, 5}

Math Primer Sets – Intersection

- What two sets have in common
- Intersection of set A and B is the set of elements part of A and B
- Notation: A ∩ B
- Examples:
 - $\{1, 2\} \cap \{1, 2\} = \{1, 2\}$
 - $\{1, 2\} \cap \{2, 3\} = \{2\}$

Pattern Mining Basics

Introduction

- Frequent Pattern Mining
 - Searching for recurring relationships in a data set
- Frequent Pattern
 - Patterns (e.g. set of items, subsequence) that appear frequently in a dataset
- Frequent Itemset
 - A set of items (e.g. milk and bread) that appear frequently together
 - Focus of today!
- Frequent Sequential Pattern
 - A subsequence such as first buying item a then item b that appears frequently
 - Focus of later lecture

Example: Market Basket Analysis

Example: World of Warcraft group class composition

Motivation and Applications

- Motivation: Finding inherent regularities in data
 - What products were often purchases together?
 - What types of classes usually form groups in World of Warcraft?
 - What are the subsequent purchases after buying a computer?
 - What kinds of DNA are sensitive to this new pharmaceutical drug?
- Applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, web log (click stream) analysis, DNA sequence analysis

Association Rules

- Is a way representing frequent patterns
- Notation and example:

```
A \Rightarrow B [support = x%, confidence = y%] computer \Rightarrow antivirus software [support = 2%, confidence = 60%]
```

- Support and confidence two measures of how interesting the found rule is
 - Support measures the percentage of tuples in the data set which had both A and B (i.e. A \cup B)
 - Also known as the relative support
 - Confidence measures the percentage of tuples having A that also has B

Association Rules

- Minimum support threshold and minimum confidence threshold
 - Threshold values between 0% and 100% used to define when an association rule is interesting
 - Association rules that satisfy both are called strong

Itemset

- A set of items (e.g. contents of a shopping basket) is known as an itemset
- An itemset with k items is known as a k-itemset
 - e.g. the itemset {milk, bread, flour} is a 3-itemset
- The number of times an itemset appears in the data is known as the occurrence frequency of an itemset
 - Other names include: frequency, support count, count or absolute support

Support count, support and confidence

- Support count
 - Number of times an itemset appears in the data
 - Aka absolute support
- Support
 - Percentage of tuples in the data set which had both itemset A and itemset B
 - Aka relative support
- Confidence
 - Percentage of tuples having itemset A that also has itemset B

Support count, support and confidence

$$confidence(A \Rightarrow B) = P(B|A) = \frac{support(A \cup B)}{support(A)} = \frac{support_count(A \cup B)}{support_count(A)}.$$

P(B|A) also known as the conditional probability, reads as "the probability of B under the condition A" → https://en.wikipedia.org/wiki/Conditional_probability

Support/Confidence example

- Find the support and confidence for these association rules:
 - Bread ⇒ Milk
 - Newspaper ⇒ Tomato

- Data (supermarket transaction)
 - Bread, milk, butter, newspaper
 - Bread, milk
 - Butter, newspaper, asparagus
 - Bread, milk, tortellini, batteries
 - Tortellini, asparagus, mozzarella
 - Bread, milk, butter
 - Newspaper, asparagus, cigarettes, tomato
 - Newspaper, tomato
 - Asparagus, batteries, cigarettes
 - Bread, milk

Support/Confidence example

- Find the support and confidence for these association rules:
 - Bread ⇒ Milk [support = 50 %, confidence = 100%]
 - Newspaper ⇒ Tomato
 [support = 20%,
 confidence = 50%]

- Data (supermarket transaction)
 - Bread, milk, butter, newspaper
 - Bread, milk
 - Butter, newspaper, asparagus
 - Bread, milk, tortellini, batteries
 - Tortellini, asparagus, mozzarella
 - Bread, milk, butter
 - Newspaper, asparagus, cigarettes, tomato
 - Newspaper, tomato
 - Asparagus, batteries, cigarettes
 - Bread, milk

The two-step association rule mining process

- Because of the close connection between confidence, support and support count, we can easily derive the confidence of an association rule (e.g. A ⇒ B) based on the support/ support counts
 - In other words once the support/support counts for A, B and B U A have been found we can generate the different association rules and check whether they are strong
- Therefore the association rule mining process can be viewed as a twostep process
 - Find all frequent itemsets
 - Generate strong association rules based on the found frequent itemsets

The two-step association rule mining process

- Problem: Often a huge number of itemsets are generated during mining
 - Especially if minimum support is low
- This is because if an itemset is frequent, then each of its subsets is frequent as well
- Example: Consider the frequent 100-itemset {a1, a2, a3 ... a99}
 - It can be divided into many subsets like
 - {a1}, {a2}, {a3} ..., {a99}
 - {a1,a2}, {a1,a3} ... {a99, a100}
 - And so on
 - Total number of subsets = $2^{100} 1 = 1.27 \times 10^{30}$ too many to store in memory
- Solution: Only mine closed frequent itemsets and maximal frequent itemsets!

Closed/Maximal Itemset

- An itemset X is closed if there exists no proper super-itemset Y that has the same support count as X
 - i.e. there is no itemset Y where $Y \supset X$ and also has the same support count as X
 - i.e. there is no itemset Y which has all the same elements as X (and at least one other item, which is not part of X) and also has the same support count as X
- An item X is a maximal itemset if there exists no frequent super-itemset Y where Y ⊃ X
- Closed itemsets are a lossless compression of frequent patterns
 - Reduces the number of generated itemsets to consider

Closed example

- Are the following itemsets closed?
 - {Bread, Milk}
 - {Bread, Butter}

- Data (supermarket transaction)
 - Bread, milk, butter, newspaper
 - Bread, milk
 - Butter, newspaper, asparagus
 - Bread, milk, tortellini, batteries
 - Tortellini, asparagus, mozzarella
 - Bread, milk, butter
 - Newspaper, asparagus, cigarettes, tomato
 - Newspaper, tomato
 - Asparagus, batteries, cigarettes
 - Bread, milk

Closed example

- Are the following itemsets closed?
 - {Bread, Milk}
 - Yes!
 - {Bread, Butter}
 - No!

- Data (supermarket transaction)
 - Bread, milk, butter, newspaper
 - Bread, milk
 - Butter, newspaper, asparagus
 - Bread, milk, tortellini, batteries
 - Tortellini, asparagus, mozzarella
 - Bread, milk, butter
 - Newspaper, asparagus, cigarettes, tomato
 - Newspaper, tomato
 - Asparagus, batteries, cigarettes
 - Bread, milk

Basics Overview of Association Rules and Frequent Pattern Mining

- Itemset X = {X1, X2, ..., Xk}
- Find all the rules $X \rightarrow Y$ with minimum support and minimum confidence
 - Support, s, percentage of tuples that contain X U Y
 - Confidence, c, percentage of tuples having X that also contains Y
- Closed Itemset
 - If there is no proper superset of X with same support
- Maximal Itemset
 - If there is no proper frequent superset of X with same support

Apriori Algorithm

Apriori

- Utilizes the concept of closed item sets and the fact that if an itemset is frequent, then each of its subsets is frequent as well
 - Apriori Property: All non-empty subsets of a frequent itemset must also be frequent
 - If {bread, milk, newspaper} is frequent, then so are the subsets {bread, milk}, {milk, newspaper}, {bread, newspaper} etc.
- Apriori property used to reduce the number of itemsets to consider when finding frequent itemsets
- Apriori output: The frequent itemsets in data set

Apriori

- Apriori pruning principle: If there is any itemset, which is infrequent, its superset should not be generated/tested!
- Algorithm (informally)
 - Initially scan database once to find frequent 1-itemsets
 - Generate length k itemsets from length (k-1) frequent itemsets
 - Test the candidates against database to see if they are frequent
 - Terminate when no frequent or candidate set can be generated
- Candidate itemsets are generated using a two-step process
 - The join step
 - The prune step

Apriori – The Join Step

- Used to generate candidate itemsets of length k when k >= 2, denoted C_k
- Main Ingredient: List of frequent itemsets of length k-1 from previous iteration of apriori algorithm, L_{k-1}
- New candidate itemsets generated by joining L_{k-1} with itself

Apriori – The Join Step

- Suppose that the items in each itemset in L_{k-1} are ordered
- Members of L_{k-1} are only joined with each other if their first k-2 elements are the same,
 - i.e. all elements apart from the last one must be the same
- Simple example (k=4)
 - L_3 = {abc, abd, acd, ace, bcd}
 - abc and abd are joined together to form abcd
 - acd and ace are joined together to form acde

Apriori – The Prune Step

- From the join step we get a set of candidate itemsets C_k
- In the prune step we utilize the apriori property to remove candidate itemsets we already can rule out as being infrequent
 - Done to limit the amount of candidates for which to compute support for
- If a subset of any candidate itemset in C_k is infrequent, then the itemset as whole will be infrequent as well
- Check each k-1 subset against L_{k-1} if it is not there then it is infrequent

Apriori – The Prune Step

- Simple example continued (k=4)
 - L_3 = {abc, abd, acd, ace, bcd}
 - Join step gave us two candidate itemsets
 - C1 = abcd
 - C2 = acde
 - C1's k-1 subsets: abc and bcd
 - Since both are in L₃ C1 is not pruned
 - C2's k-1 subsets: acd and cde
 - Since cde is not in L₃, C2 is pruned

Apriori – Step for Step example 0/10

Minimum support = 2

Database TDB		
Tid	Items	
10	A, C, D	
20	в, с, Е	
30	A, B, C, E	
40	В, Е	

Apriori – Step for Step example 1/9

Database TDB		
Tid	Items	
10	A, C, D	
20	В, С, Е	
30	A, B, C, E	
40	В, Е	

Apriori – Step for Step example 2/9

Database TDB			Itemset	sup
Datab	ase IDB		{A}	2
Tid	Items	C_I	{B}	3
10	A, C, D	1st scan	{C}	3
20	В, С, Е		{D}	1
30	A, B, C, E		{E}	3
40	B, E		, ,	0.000
		1,		

Apriori – Step for Step example 3/9

Γ				Itemset	sup			
1	Datab	ase TDB				_	Itemset	sup
ĺ			C	{A}	2	L_1	{A}	2
	Tid	Items	C_I	{B}	3			
	10	A, C, D	1 -4	{C}	3		{B}	3
1	20		1st scan		3		{C}	3
	20	В, С, Е		{D}	1		{E}	3
	30	A, B, C, E		{E}	3	,	\ L }	
	40	В, Е		()				
ľ								

Apriori – Step for Step example 4/9

Apriori – Step for Step example 5/9

Apriori – Step for Step example 6/9

Apriori – Step for Step example 7/9

Apriori – Step for Step example 8/9

Apriori – Step for Step example 9/9

Apriori – Pseudocode

```
Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based
  on candidate generation.
Input:
     D, a database of transactions;
     min_sup, the minimum support count threshold.
Output: L, frequent itemsets in D.
Method:
(1)
        L_1 = \text{find\_frequent\_1-itemsets}(D);
(2)
        for (k = 2; L_{k-1} \neq \phi; k++) {
(3)
           C_k = \operatorname{apriori\_gen}(L_{k-1});
           for each transaction t \in D { // scan D for counts
(4)
(5)
                C_t = \text{subset}(C_k, t); // get the subsets of t that are candidates
                for each candidate c \in C_t
(6)
(7)
                    c.count++;
(8)
           L_k = \{c \in C_k | c.count \ge min\_sup\}
(9)
(10)
```

return $L = \bigcup_k L_k$;

(11)

```
procedure apriori_gen(L_{k-1}:frequent (k-1)-itemsets)
        for each itemset l_1 \in L_{k-1}
           for each itemset l_2 \in L_{k-1}
                if (l_1[1] = l_2[1]) \wedge (l_1[2] = l_2[2])
                    \wedge ... \wedge (l_1[k-2] = l_2[k-2]) \wedge (l_1[k-1] < l_2[k-1]) then {
                    c = l_1 \bowtie l_2; // join step: generate candidates
                    if has_infrequent_subset(c, L_{k-1}) then
                         delete c; // prune step: remove unfruitful candidate
                    else add c to C_k;
        return C_{\nu};
procedure has_infrequent_subset(c: candidate k-itemset;
           L_{k-1}: frequent (k-1)-itemsets); // use prior knowledge
        for each (k-1)-subset s of c
           if s \notin L_{k-1} then
(3)
                return TRUE;
        return FALSE;
```

Generating Association Rules from Frequent Itemsets

- For each frequent itemset *l*, generate all nonempty subsets of *l*.
- For every nonempty subset s of l, output the rule " $s \Rightarrow (l-s)$ " if $\frac{support_count(l)}{support_count(s)} \ge min_conf$, where min_conf is the minimum confidence threshold.

Pattern Mining Challenges

Pattern Mining Challenges

- Multiple scans of database
 - Each is costly
- Potentially large number of candidates
- Tedious workload to count support for candidates
 - Possible bottleneck generating and testing candidates

Improving Apriori

- Reducing the size of the data that we mine for frequent patterns
 - Sampling can be used to create smaller-size dataset to represent full data set
 - Smaller sized data set is created by randomly selecting data points in original data set
 - Tradeoff between efficiency and accuracy
 - May lose some of the global frequent itemsets
- Pruning search space by utilizing closed/max itemsets (see 6.2.6)
 - Item merging, sub-itemset pruning, Item skipping

Improving Apriori

- Reducing the size of the candidate k-sets
 - Using a hash-based technique to map k-sets into buckets
- Reducing the number of transactions/tuples scanned in future iterations
 - Remove any transaction/tuple that does not have any frequent k-itemsets (won't have any k+1 itemsets)
- Reducing the number of needed database scans
 - Use a partitioning scheme to divide data set into manageable partitions.
 - One scan to make the partitions.
 - Then use partitions to find candidate itemsets (a global frequent itemset must be locally frequent in one of the partitions).
 - Second scan of database then done to find actual support for candidate sets.

Improving Apriori

- Reducing the size of the data that we mine for frequent patterns
 - Sampling can be used to create smaller-size dataset to represent full data set
 - Smaller sized data set is created by randomly selecting data points in original data set
 - Tradeoff between efficiency and accuracy
 - May lose some of the global frequent itemsets
- Pruning search space by utilizing closed/max itemsets (see 6.2.6)
 - Item merging, sub-itemset pruning, Item skipping

Vertical Data Format

- So far we have been dealing with transactional data in the TID-itemset format i.e. {TID : Itemset}
 - TID = transaction ID
 - Also known as the horizontal data format
- Alternatively we could present the data vertically instead, i.e. {Itemset: TID}
- Is the basis for the Eclat pattern mining algorithm
- Mining done by intersecting the TID_sets of every pair of frequent itemsets

Vertical Data Format

The Vertical Data Format of the Transaction Data Set *D* of Table 6.1

itemset	TID_set
<u>I1</u>	{T100, T400, T500, T700, T800, T900}
I2	{T100, T200, T300, T400, T600, T800, T900}
I3	{T300, T500, T600, T700, T800, T900}
I4	{T200, T400}
I5	{T100, T800}

itemset	TID_set
{I1, I2}	{T100, T400, T800, T900}
{I1, I3}	{T500, T700, T800, T900}
$\{I1, I4\}$	{T400}
{I1, I5}	{T100, T800}
$\{I2, I3\}$	{T300, T600, T800, T900}
$\{I2, I4\}$	{T200, T400}
{I2, I5}	{T100, T800}
{I3, I5}	{T800}

Vertical Data Format

2-Itemsets in	Vertical	Data Format
---------------	----------	-------------

itemset	TID_set
{I1, I2}	{T100, T400, T800, T900}
{I1, I3}	{T500, T700, T800, T900}
{I1, I4}	{T400}
{I1, I5}	{T100, T800}
$\{I2, I3\}$	{T300, T600, T800, T900}
{I2, I4}	{T200, T400}
$\{I2, I5\}$	{T100, T800}
{I3, I5}	{T800}

3-Itemsets in Vertical Data Format		
itemset	TID_set	
{I1, I2, I3}	{T800, T900}	
{I1, I2, I5}	{T100, T800}	

Pattern Evaluation

Pattern Evaluation

- Minimum support and confidence helps us eliminate uninteresting association rules
- But even association rules that passes our minimum support and confidence may still be uninteresting
 - Especially true if using low threshold values for support and confidence
- We therefore need objective "interesting" measures based on the statistics of the data to further help eliminate uninteresting rules
- Pattern evaluation bottleneck for successful usage of association mining

Adding Correlation into the mix

 Therefore we augment our association rules to also include a correlation measure

 $A \Rightarrow B$ [support, confidence, correlation].

- Correlation helps us determine if the occurrence of itemset A is independent of the occurrence of itemset B, or if A and B are in fact dependent on each other and thus correlated
- Many different correlation measures available to use

Lift

$$lift(A, B) = \frac{P(A \cup B)}{P(A)P(B)}$$

- Equivalent to Confidence(A → B) / support(B)
- Result > 1
 - Positive correlation i.e. the occurrence of one implies the occurrence of the other
- Result = 1
 - A and B are independent of each other
- Result < 1
 - Negative correlation i.e. the occurrence of one likely leads to the absence of the other

Other Correlation Measures

- Chi-square test (Chapter 3.3.2)
- All Confidence
- Max_Confidence
- Kulczynski
- Cosine measure
- All_Confidence, Max_Confidence, Kulczynski and the Cosine measures are only influenced by the relative relationship of support values of A, B and A U B
 - i.e. not influenced by the total number of transactions in the dataset
 - Results range from 0 to 1, the higher the value, the closer the relationship between A and B

The problem of null

- The Lift and Chi-Square measures run into problems when the data contains *null-transactions*, because its values are influenced by the total number of transactions and hence null-transactions
 - Null-transaction: A transaction that does not contain any of the itemsets undergoing correlation analysis
- Null-invariance
 - A correlation measure is said to be null-invariant if its value is free from the influence of null-transactions
 - The All_Confidence, Max_Confidence, Kulczynski and Cosine measures are all null-invariant
- Book recommends: Kulczynski used in conjunction with imbalance ratio (IR)
 - IR measures imbalance between two itemsets

Today's Lab

- Implement Apriori
- We all meet in 4A58 to see if we can fit in
 - If not, we also use 4A54

Thanks for listening!

How did I do? Send questions or feedback to andershh@itu.dk