Juan Arturo Garza

September 29th 2022

Elec 522

High Level Design

The purpose of this project is to find the QR decomposition of a Given 4 x 4 Matrix systolically initially in model composer and then use vitis to put into ARM Core.

Final Resource Usage from HLS

Notice no DSPs were used in this solution For the HLS portion.

Model Composer Architecture:

Inputs:

- **Ai matrix** (16 elements, <16,3> Fixed T),
- **Reset signal** (Bool) which resets all registers and processes of leading and unloading variables, and
- **Start Signal** (bool) which is a signal set high when all variables are loaded properly and calculator can begin (for timing),

Each of the elements is latched to a register which then fed to a multiplexer awaiting the start signal such that a column can be fed into the rotation and arctan blocks ina systolic manner such as that of the figure to the right:

Calculations of elements

My design allows the variables to be loaded in a non-systolic way (the inputs can be placed into design all at once) and yet load the elements into the cordic blocks in a pipelined systolic manner. This Allows it to be easily used in vitis because it's harder to control inputs that are very cycle and time dependent.

Arctan block Rotation Block

Shown above is the Arctan block which feeds back the Cosine for the next theta and a_i_i value, the register saves that value for when it's done calculating that value and when it's time for a new matrix value, the register can be reset.

Also shown above is the rotation block which feeds back the Cosine for the next theta and a_i_j value, the register saves that value for when it's done calculating that value and when it's time for a new matrix value, the register can be reset. The registers feed into a latch such that the value is saved and reading the output at a certain cycle would not be necessary.

For the Q values, an identity matrix will be fed but since these values are constant as input registers, we don't have to have the identity matrix as a separate matrix input and instad make it built in

Unloading Variables:

Values coming out of the cordic blocks will be latched into the unloading subsystem which takes the input reg_i, which is the output of cordic. After a certain amount of changes of this value (for the case of values of R matrix is 4) the value will latch and only be reset after the REST signal is given. This ensures that the design can be read without having to be time / cycle dependent.

Multiplication on FPGA

Values coming out of the cordic Q blocks will be latched and thus their outputs are fed into multipliers and mult and ad blocks, meaning that as Q values are calculated, they are multiplied by the corresponding B values and then added, meaning that after the last Q value is calculated (q_{44}) the delay to find the final resultant q^Tb_4 is only the latency of the last mult-add block. This makes it faster than putting the entire system through a matrix multiplier and uses less resources and saves time.

Testing in Model Composer

A1 Precalculation(matlab), FPGA Results (Hardware), Software results:

Al =			
0.1000	0.1000	0.4000	0.3000
0.2000	0.8000	0.6000	0.5000
0.9000	0.1000	0.3000	0.2000
0.3000	0.1000	0.4000	0.6000
01 =			
QI =			
-0.1026	-0.0911	0.7655	-0.6286
-0.2052	-0.9691	-0.1370	0.0071
-0.9234	0.2291	-0.2473	-0.1836
-0.3078	-0.0110	0.5780	0.7557
r1 =			
-0.9747	-0.2975	-0.5643	-0.5027
0	-0.7625	-0.5535	-0.4727
0	0	0.3810	0.4585
0	0	0	0.2317
b_l_disp =			
0.2000	0.1000	0.8000	0.4000
qTb_1 =			
-0.9029	0.0638	0.1728	0.0304
0.3023	0.0000	0.1720	0.0501
x ldisp =			
z-rarab -			
0.8034	-0.3796	0.2957	0.1311

Ai
{0.0999756, 0.0999756, 0.400024, 0.300049},
{0.199951, 0.800049, 0.599976, 0.5},
{0.900024, 0.0999756, 0.300049, 0.199951},
{0.300049, 0.0999756, 0.400024, 0.599976}}
{-0.972656, -0.295044, -0.560547, -0.499268},
{0.00000,-0.756836, -0.545532, -0.467285},
{0.00000, 0.00000, 0.383179, 0.45459},
{0.00000, 0.00000, 0.00000, 0.230957}}
{-0.0986328, -0.0891113, 0.761963, -0.620972},
{-0.201294, -0.959595, -0.137451, 0.00427246},
{-0.919189, 0.226929, -0.245728, -0.187744},
{-0.304565, -0.00695801, 0.567017, 0.752441}}
Next Matrix
b {0.199951, 0.0999756, 0.800049, 0.400024}
qTb {-0.897095, 0.0649414, 0.168823, 0.0269775}
X_v = {0.802246, -0.37561, 0.302124, 0.116699}

-----Next Matrix-----R: 0.9747 0.2975 0.5643 0.5027 0.0000 0.7625 0.5535 0.4727 0.0000 -0.0000 0.3810 0.4585 0.0000 0.0000 -0.0000 -0.2317 0.1026 0.0911 0.7655 0.6286 0.2052 0.9691 -0.1370 -0.0071 0.9234 -0.2291 -0.2473 0.1836 0.3078 0.0110 0.5780 -0.7557 Qtb: 0.9029 -0.0638 0.1728 -0.0304 X_in: 0.8034 -0.3796 0.2957 0.1311 A?: 0.1000 0.1000 0.4000 0.3000 0.2000 0.8000 0.6000 0.5000 0.9000 0.1000 0.3000 0.2000 0.3000 0.1000 0.4000 0.6000

A2 Precalculation(matlab),FPGA Results (Hardware), Software results:

A2 =					
	0.5054			Ai	Next Matrix
0.6900		0.5914 0.0687			
0.3784			0.6262	{0.689941, 0.505371, 0.591431, 0.554688},	R:
0.8799	0.3194	0.9805	0.0850		1,2285 0,8256 1,1173 0,6788
				{0.340088, 0.84375, 0.0687256, 0.409912},	
Q2 =					0.0000 0.6740 -0.2953 0.3773
-0.5617	-0.0620	-0.1173	-0.8167	{0.378418, 0.25769, 0.207275, 0.626221},	0.0000 -0.0000 0.1524 -0.5096
		0.1901			-0.0000 0.0000 -0.0000 0.1105
-0.3080	-0.0051	-0.8886	0.3398		
-0.7162	0.4036	0.4006	0.4045	{0.879883, 0.319458, 0.980469, 0.0849609}}	Q;
				Ri	0.5547.0.05400.4475.0.0455
r2 =					0.5617 0.0618 -0.1175 0.8166
-1.2285	-0.8255	-1.1173	-0.6788	{-1.22571, -0.818359, -1.11157, -0.672974},	0.2768 0.9129 0.1900 -0.2322
		0.2953			
0	0		-0.5095	{0.00000,-0.671997, 0.297729, -0.37146},	0.3080 0.0050 -0.8885 -0.3401
0	0	0	-0.1106		0.7162 -0.4035 0.4008 -0.4044
h 2 dien =				{0.00000, 0.00000, 0.157227, -0.506714},	Otb:
b_2_disp =					QU.
0.4014	0.1995	0.1061	0.5954	{0.00000, 0.00000, 0.00000, -0.121094}}	0.7406
				Qi	-0.0343
qTb_2 =					0.1426
-0.7398	0.0328	0.1351	-0.0046	{-0.553223, -0.0579834, -0.107422, -0.812866},	0.1426
					0.0036
x_2_disp =				{-0.273071, -0.905762, 0.184204, 0.227539},	X in:
-0.6066	0.3776	1.0250	0.0413		7.00
				{-0.30603, -0.00427246, -0.887939, 0.32019},	-0.6259
					0.3886
				{-0.710205, 0.401611, 0.391968, 0.404541}}	
					1.0442
				Next Matrix	0.0323
					A?:
				b {0.400024, 0.199951, 0.0999756, 0.599976}	
					0.6900 0.5054 0.5914 0.5547
				qTb {-0.732666, 0.0361328, 0.140259, -0.00500488}	0.3401 0.8438 0.0687 0.4099
					0.2704.0.2577.0.2072.0.6262
				X_v = {-0.606567, 0.377563, 1.02502, 0.0412598}	0.3784 0.2577 0.2073 0.6262
					0.8799 0.3194 0.9805 0.0850

A3 Precalculation(matlab),FPGA Results (Hardware), Software results:

A3 =			
0.1845	0.7026	0.7124	0.6811
0.6496	0.9529	0.7813	0.9637
0.1345	0.5616	0.1008	0.9517
0.9629	0.2118	0.8349	0.4713
b_3_disp =			
0.3384	0.8989	0.7795	0.7040
Q3 =			
-0.1559	-0.5651	0.7623	-0.2745
-0.5488	-0.4745	-0.2304	0.6486
-0.1136	-0.4612	-0.5977	-0.6459
-0.8134	0.4928	0.0929	-0.2947
r =			
-1.1838	-0.8685	-1.2304	-1.1265
0	-1.0038	-0.4083	-1.0488
0	0	0.3803	-0.2279
0	0	0	-0.3155
qTb_3 =			
-1.2072	-0.6304	-0.3497	-0.2209
x_3_disp =			
0.8000	0.1000	-0.5000	0.7000

Ai	Next Matrix R:	
{0.184448, 0.702637, 0.712402, 0.681152},	1.1838 0.8685 1.2304 1.1265	
	-0.0000 1.0038 0.4083 1.0488	
{0.649658, 0.952881, 0.78125, 0.963745},	-0.0000 0.0000 0.3803 -0.2279	
{0.134521, 0.561646, 0.10083, 0.95166},	-0.0000 0.0000 0.0000 0.3155	
. , , , ,	Q:	
{0.962891, 0.211792, 0.834961, 0.471313}}	0.1559 0.5651 0.7623 0.2745	
Ri	0.5488 0.4745 -0.2304 -0.6486	
{-1.18018, -0.86084, -1.22253, -1.11877},	0.1136 0.4612 -0.5977 0.6459	
•	0.8134 -0.4928 0.0929 0.2947	
{0.00000,-0.997314, -0.401611, -1.04224},	Qtb:	
	1.2072	
(0.00000, 0.00000, 0.38208, -0.230469},	0.6303	
(0.00000, 0.00000, 0.00000, 0.305176}}	-0.3497	
Qj	0.2209	
(-0.151733, -0.558716, 0.750244, 0.275391),	X_in:	
-0.131733, -0.330710, 0.730244, 0.2733911,	0.8001	
{-0.542725, -0.468994, -0.22168, -0.649048},	0.1000	
	-0.5000	
(-0.112183, -0.460083, -0.600098, 0.628662),	0.6999	
(-0.806519, 0.490112, 0.0882568, 0.29126}}	A?:	
	0.1845 0.7026 0.7124 0.6811	
Next Matrix	0.6496 0.9529 0.7813 0.9637	
b {0.338379, 0.898926, 0.779541, 0.703979}	0.1345 0.5616 0.1008 0.9517	
b (01555515), 01555524, 01115511, 01105515]	0.9629 0.2118 0.8349 0.4713	
qTb {-1.19446, -0.62439, -0.351196, 0.204834}		
X_v = {0.8125, 0.131836, -0.514282, 0.571143}		

Now for model composer, I tested the matrices separately after the handling of the inputs and outputs. To test A1 you must run Final_design_inputs,m and A2 will be Final_design_inputsa2.m, to read a matrix after simulation is Final_design_disp,m

Resource Usage:

LUT: 37441 Reg: 23458

Vivado:

The workspace used for Vivado was Netlist_proj6_test7 which should have all that was included. The exported hardware is in vitis test6 agan folder which has the vitis testbench

Vivado Report

port	Type	Options	Modified	Size
∨ Design Initialization (init_design)				
Timing Summary - Design Initialization	report_timing_summary	max_paths = 10; report_unconstrained = true;		
✓ Opt Design (opt_design)				
DRC - Opt Design	report_drc		11/28/22, 4:47 PM	1.5 k
Timing Summary - Opt Design	report_timing_summary	max_paths = 10; report_unconstrained = true;		
✓ Power Opt Design (power_opt_design)				
Timing Summary - Power Opt Design	report_timing_summary	max_paths = 10; report_unconstrained = true;		
→ Place Design (place_design)				
IO - Place Design	report_io		11/28/22, 4:48 PM	146.6 k
Utilization - Place Design	report_utilization		11/28/22, 4:48 PM	10.9 k
Control Sets - Place Design	report_control_sets	verbose = true;	11/28/22, 4:48 PM	142.7 H
Incremental Reuse - Place Design	report_incremental_reuse			
Incremental Reuse - Place Design	report_incremental_reuse			
Timing Summary - Place Design	report_timing_summary	max_paths = 10; report_unconstrained = true;		
▼ Post-Place Power Opt Design (post_place_power_opt_opt_opt_opt_opt_opt_opt_opt_opt_opt	lesign)			
Timing Summary - Post-Place Power Opt Design	report_timing_summary	max_paths = 10; report_unconstrained = true;		
∨ Post-Place Phys Opt Design (phys_opt_design)				
Timing Summary - Post-Place Phys Opt Design	report_timing_summary	max_paths = 10; report_unconstrained = true;		
∨ Route Design (route_design)				
DRC - Route Design	report_drc		11/28/22, 4:50 PM	1.51
Methodology - Route Design	report_methodology		11/28/22, 4:50 PM	1.6
Power - Route Design	report_power		11/28/22, 4:50 PM	10.11
Route Status - Route Design	report_route_status		11/28/22, 4:50 PM	0.61
Timing Summary - Route Design	report_timing_summary	max_paths = 10; report_unconstrained = true;	11/28/22, 4:50 PM	184.51
Incremental Reuse - Route Design	report_incremental_reuse			
Clock Utilization - Route Design	report_clock_utilization		11/28/22, 4:50 PM	20.31
Bus Skew - Route Design	report_bus_skew	warn_on_violation = true;	11/28/22, 4:50 PM	1.11
implementation_log			11/28/22, 4:51 PM	44.71
✓ Post-Route Phys Opt Design (post_route_phys_opt_des	ign)			
Timing Summary - Post-Route Phys Opt Design	report_timing_summary	max_paths = 10; report_unconstrained = true; warn_on_violation = true;		
Bus Skew - Post-Route Phys Opt Design	report_bus_skew	warn_on_violation = true;		
→ Write Bitstream (write_bitstream)				
report_webtalk				
implementation_log			11/28/22, 4:51 PM	44.7 F

Arm Code Results:

In the Arm code, my code has a design lock which will be fed a matrix, and then unload this matrix into each port of the Axi lite port and into my design, once all variables are fed into design calculation starts. Once a done variable is asserted my design unloads the variables and starts back substitution. Back substitution uses the following equation:

$$x_1 = \frac{Q^T b_1 - r_{1,2}(\frac{Q^T b_2 - r_{2,3} \frac{Q^T b_3 - r_{3,4} \frac{Q^T b}{r_{4,4}}}{r_{2,2}}) - r_{1,3}(\frac{Q^T b_3 - r_{3,4} \frac{Q^T b_4}{r_{4,4}}}{r_{3,3}}) - r_{1,4}(\frac{Q^T b_4}{r_{4,4}})}{r_{1,1}}$$

$$x_2 = \frac{Q^T b_2 - r_{2,3} \frac{Q^T b_3 - r_{3,4} \frac{Q^T b}{r_{4,4}}}{r_{3,3}} - r_{2,4} \frac{Q^T b_4}{r_{4,4}}}{r_{2,2}}}{r_{2,2}}$$

$$x_3 = \frac{Q^T b_3 - r_{3,4} \frac{Q^T b}{r_{4,4}}}{r_{3,3}}$$

$$x_4 = \frac{Q^T b_4}{r_{4,4}}$$

Note that for x1, x2, x3, if any values are from the previous equation, they will be used as to compute less times

Software Implementation:

I used the QR Decomposition via Givens Rotations algorithm from John Russell Strauss (from Canvas of 522 provided from Prof) and implemented it in C++ for this project. I had to make several functions for this implementation to work such as matrix multiplication and vector multiplication.

Main Functions Made:

- hardware des(Array) For calculating the values and displaying
- hardware_des_time(Array) For calculating without print statements and for seeing time it takes to calculate values
- sw_des(Array) For calculating the values and displaying
- sw_des_time(Array) For calculating without print statements and for seeing time it takes to calculate values for software

For One system of equation:

```
Done, Total time steps HARDWARE from start to finish = 1535189

Cycle counts per second for HARDWARE = 3.33333e+08

Time in seconds for PL hardware add = times steps / COUNTS_PER_SECOND = 0.00460557

Done, Total time steps SOFTWARE from start to finish = 27185

Cycle counts per second for SOFTWARE = 3.33333e+08

Time in seconds for PL hardware add = times steps / COUNTS_PER_SECOND = 8.1555e-05
```

For All Three system of equations:

```
Done, Total time steps HARDWARE from start to finish = 4520558

Cycle counts per second for HARDWARE = 3.33333e+08

Time in seconds for PL hardware add = times steps / COUNTS_PER_SECOND = 0.0135617

Done, Total time steps SOFTWARE from start to finish = 79827

Cycle counts per second for SOFTWARE = 3.33333e+08

Time in seconds for PL hardware add = times steps / COUNTS_PER_SECOND = 0.000239481
```

It seems that the John Straus QR decomposition works faster as it was optimized compared to my hardware implementation. I think this may have to do with how my variables are loaded and unloaded. If possible, I would optimize my QR rotation block to take less cycles (currently 25) and figure out a faster way to load and unload variables. My design does create accurate and real results meaning that I must focus on optimizing what I already have.

Conclusion:

My design for software and Hardware work however the hardware implementation could be more efficient as it is slower then the software implementation. The tradeoffs between the two versions are timing and resource use as hardware could be faster but has to have its dedicated components which use more power compared to just a software approach which may use less but take more cycles to complete. My hardware uses FPGA multiplication which saves time and makes design more efficient.