Consider integer functions f from an n-element subset of \mathbb{N} such that no k of the points $\{(j_1, f(j_1)), \ldots, (j_n, f(j_n))\}$ fall on a k-2-degree polynomial.

Figure 1: An example that shows that a(4) = 4. (Degree 0 polynomials are plotted in red, degree 1 in blue, and degree 2 in green.)

Question. What is a(n), the least N such that there exists a function $f: \{1, 2, ..., n\} \to \{1, 2, ..., N\}$ with the above property?

Note. Trivially, a(n) is bounded above by the function described in problem 23.

Related.

- 1. What is the least M such that there exists a subset $S \subset \{1, 2, ..., M\}$ and a surjection $g \colon S \to \{1, 2, ..., n\}$ with the aforementioned property?
- 2. How many such functions exist when N and M are minimized respectively?

References.

Problem 23.