BLATT 7

DANIEL SCHMIDT & PAMELA FLEISCHMANN

Aufgabe 1. Sei das folgende Datalog-Programm gegeben:

$$gn(X,Y) : -gl(X,Y).$$

 $gn(X,Y) : -kp(X,X1), gn(Y1,X1), kp(Y,Y1).$

und die Zielklausel? -gn(c, Y).

Schritt 1:

$$\begin{split} r_0 &= query^f(Y): -gn^{bf}(c,Y).\\ r_1 &= gn^{bb}(X,Y): -gl(X,Y).\\ r_2 &= gn^{bf}(X,Y): -kp(X,X1), gn^{bb}(Y1,X1), kp(Y,Y1).\\ r_3 &= gn^{fb}(X,Y): -kp(X,X1), gn^{bb}(Y1,X1), kp(Y,Y1). \end{split}$$

Schritt 2:

$$magic_r_0_gn^{bf}(c) : -.$$

 $magic_r_2_gn^{fb}(Y) : -gn^{bb}(Y1, X1), kp(Y, Y1).$
 $magic_r_3_gn^{bf}(X) : -kp(X, X1), gn^{bb}(Y1, X1).$

Schritt 3:

$$\begin{split} query^f(Y) : -magic_r_0_gn^{bf}(c), gn^{bf}(c, Y). \\ gn^{bf}(X, Y) : -gl^{bf}(X, Y). \\ gn^{bf}(X, Y) : -magic_r_2_gn^{fb}(Y), gn^{bf}(Y1, X1), kp(Y, Y1). \\ gn^{fb}(X, Y) : -magic_r_3_gn^{bf}(X), kp(X, X1), gn^{fb}(Y1, X1). \end{split}$$

Schritt 4:

$$\begin{split} & magic_gn^{bf}(c): -magic_r_0_gn^{bf}(c). \\ & magic_gn^{bf}(X): -magic_r_3_gn^{bf}(X). \\ & magic_gn^{fb}(Y): -magic_r_2_gn^{fb}(Y). \end{split}$$

Resultat:

$$query^{f}(Y) : -magic_gn^{bf}(c), gn^{bf}(c, Y).$$
 $magic_gn^{bf}(c) : -magic_r_0_gn^{bf}(c).$
 $magic_gn^{bf}(X) : -magic_r_3_gn^{bf}(X).$
 $magic_gn^{fb}(Y) : -magic_r_2_gn^{fb}(Y).$
 $gn^{bf}(X,Y) : -gl^{bf}(X,Y).$
 $gn^{bf}(X,Y) : -magic_gn^{fb}(Y), gn^{bf}(Y1, X1), kp(Y, Y1).$
 $gn^{fb}(X,Y) : -magic_gn^{fb}(X), kp(X, X1), gn^{fb}(Y1, X1).$

Aufgabe 2. a. Betrachte das Datalog-Programm

$$p(a). q(X) : \neg \neg p(X).$$

Herbrand-Modelle für dieses Programm sind $\{p(a)\}$, $\{p(a), q(b)\}$ und $\{p(a), q(a), q(b)\}$. r(x, y) kann außerdem immer mit dazugenommen werden, da es in der Regel nicht vorkommt. Die Variable X ist unbeschränkt, da sie nicht-negiert nur im Kopf vorkommt. Desweiteren ist p geschichtet, da es im Abhängigkeitsgraphen keinen Zyklus gibt.

b. Betrachte das Datalog-Programm

$$p(X): -\neg q(X). q(X): -\neg p(X).$$

Herbrand-Modelle sind $\{q(a), q(b)\}$, $\{p(a), p(b)\}$, $\{q(a), p(b)\}$ und $\{q(b), p(a)\}$. Analog zu a. kann r in allen Varianten wieder dazugenommen werden. X ist in beiden Regeln unbeschränkt. Das Programm ist nicht geschichtet, da der Abhängigkeitsgraph einen Zyklus mit einer mit \neg beschrifteten Kante enthält.

c. Betrachte das Datalog-Programm

$$p(X) : \neg q(X). q(X) : \neg p(X).$$

Herbrand-Modell ist $\{p(a), q(a), p(b), q(b)\}$ und wieder kann r in allen Varianten dazugenommen werden. X ist in Regel 1 unbeschränkt, in Regel 2 dagegen beschränkt, da sie im Kopf und im Rumpf nicht-negiert vorkommt. Analog zu b. ist P nicht geschichtet.

d. Betrachte das Datalog-Programm

$$p(a). q(b). r(X, Y) : -\neg p(X), \neg q(Y).$$

Herbrand-Modelle sind $\{p(a), q(b), r(b, a)\}$, $\{p(a), q(b), p(b)\}$, $\{p(a), q(b), q(a)\}$. Beide Variablen sind unbeschränkt, da sie im Rumpf nur negiert vorkommen. Da es keinen Zyklus im Abhängigkeitsgraphen gibt, ist das Programm geschichtet.

e. Betrachte das Datalog-Programm

$$p(a). q(b). r(X, Y) : -p(X), q(Y), \neg p(X).$$

BLATT 7 3

Ein Herbrand Modell ist $\{p(a), q(b)\}$. Da der Rumpf nie erfüllt ist, können alle Varianten von r in das Modell mit aufgenommen werden. Die Variable X ist unbeschränkt, die Variable Y ist beschränkt. Das Programm ist geschichtet, da es keinen Zyklus gibt.

Aufgabe 3. Betrachte das folgende Datalog-Programm mit Negation

```
p(a,b). p(b,c). p(b,a). p(c,d). p(c.c).
q(X,Y) : -p(X,Y), \neg p(Y,X).
q(X,X) : --q(X,Y).
r(X,Y) : -\neg q(Y,X), p(X,Y), \neg p(X,X).
r(Y,Y) : -r(X,Y).
s(X,X) : -\neg r(X,Y), p(X,Z), p(W,Y).
```

Für ein perfektes Modell wird die Schichtung betrachtet und somit zuerst das Prädikat q. Mit der ersten Regel kommen q(c,b) und q(d,c) hinzu. Mit der zweiten dann q(c,c),q(b,b),q(d,d). Da r von p und q abhängt, ist r in der folgenden Schicht und es werden r(a,b) und r(b,a) durch Regel 3, sowie r(b,b) und r(a,a) durch Regel 4 hinzugenommen. Da s nicht von r abhängt, ist s in derselben Schicht und es kommen die Fakten s(a,a),s(b,b),s(c,c) hinzu. Da in keiner Regel, die weiter unten steht, Elemente der oberen Schichten verändert werden, ist dies das perfekte Modell.

Aufgabe 4. ad a.

```
Die Ausgaben des Original Programms sind wie folgt:
```

```
end_module.
     Die resultierende Ausgabe ist die folgende:
ready>>consult (flounder.P).
ready>>?notintoys(susan).
CORAL:: Warning: Using underbound method 0 for notintoys 1!
                        ... next answer ? (y/n/all)[y] all
(Number of Answers = 1)
     ad b.
     Das Programm sieht wie folgt aus:
module serie.
export zshg(bf,bb).
zshg(G, true) := allNodes(G, LA), allConnectedNodes(G, LC), sameLength(LA)
sameLength(LA, LC): - length(LA, LLA), length(LC, LLC), LLA=LLC.
connected (K1, K2) :- K1=K2.
connected (K1, K2) := kante(K1, K2).
connected (K1, K2) := kante(K2, K1).
path(K1, K2) := connected(K1, K2).
path(K1, K3) := connected(K1, K2), connected(K2, K3), not K1=K3, not K1=K3
allNodes(G, []).
allNodes(G, [H|T]) := node(G, H), not member(H, T).
reachableNodes(G, X, []).
reachableNodes(G, X, [H|T]) := node(G, H), connected(X, H), not member(H, H)
allConnectedNodes (G,
allConnectedNodes(G, [H|T]) := node(G, H), not member(H, T), reachableNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNodenectedNode
end_module.
     Die folgende Ausgabe wird erzeugt:
ready>>consult (graphen.T).
ready>>consult (zshg.P).
ready >> ?zshg(g1, X).
CORAL :: Warning --- unable to find relation: node
Warning/error flagged in function Find_External_Relation()
Arity of relation = 2
```

BLATT 7 5

```
Allocating new relation.  
X=true.  
... next answer ? (y/n/all)[y]y (Number of Answers = 1)  
ready>>?zshg(g2, X).  
X=true.  
... next answer ? (y/n/all)[y]y (Number of Answers = 1)  
ready>>?zshg(g6, X).  
X=true.  
... next answer ? (y/n/all)[y]y (Number of Answers = 1)
```

Leider ist dies nicht die erwartete Ausgabe, g
6 müsste eigentlich False ergeben.