# **AnnotSV: Mouse Annotation Manual**

#### Version 3.4.2

AnnotSV Mouse is a program for annotating structural variations from the mouse genome.

https://lbgi.fr/AnnotSV/

Copyright (C) 2017-2024 GEOFFROY Véronique

Please feel free to contact me for any suggestions or bug reports email: veronique.geoffroy@inserm.fr

# **LEXIQUE**

BED: Browser Extensible Data

bp: base pair

CDS: CoDing Sequence

**CNV: Copy Number Variation** 

**DEL: Deletion** 

DNA: DesoxyriboNucleic Acid

**DUP: Duplication** 

ENST: ENSEMBL transcript identifier

GRCm39/mm39: Genome Reference Consortium Mouse Build 39 GRCm38/mm10: Genome Reference Consortium Mouse Build 38

NCBI37/mm9: NCBI Mouse Build 37

hom: homozygous htz: heterozygous

ID: Identifier

indel: Insertion/deletion

INS: Insertion INV: Inversion

NAHR: Non-Allelic Homologous Recombination

NM: RefSeq identifiers

SNV: Single Nucleotide Variation

**SV: Structural Variations** 

Tx: transcript

VCF: Variant Call Format

# **TABLE OF CONTENTS**

| 1. |    | INTRODUCTION                                                  |    |
|----|----|---------------------------------------------------------------|----|
| 2. |    | MOUSE ANNOTATION INSTALLATION                                 |    |
| 3. | a. | ANNOTATION SOURCES                                            |    |
|    | b. |                                                               |    |
|    | С. |                                                               |    |
|    | d. |                                                               |    |
|    | e. |                                                               |    |
|    |    | GC content annotations                                        |    |
|    |    | Repeated sequences annotations                                |    |
|    |    | Cytoband                                                      |    |
|    | f. | Custom annotations: External BED annotation files (optional)  | 9  |
|    | g. | Custom annotations: External gene annotation files (optional) | 10 |
| 4. |    | VERSIONS OF THE ANNOTATION SOURCES                            | 10 |
| 5. | a. | OUTPUT Output format                                          |    |
|    | b. | Output file path and name                                     | 11 |
|    | c. | "AnnotSV type" column                                         | 11 |
|    | d. | Annotation columns available in the output file               | 12 |
|    | e. | User selection of the annotation columns                      | 13 |
| 6. |    | USAGE / OPTIONS                                               | 13 |
| 7. |    | REFERENCES                                                    | 16 |

# 1. INTRODUCTION

AnnotSV (Geoffroy et al., 2018, 2021) is a program designed for annotating Structural Variations (SV). This tool compiles functionally, regulatory and clinically relevant information and aims at providing annotations useful to i) interpret SV potential pathogenicity and ii) filter out SV potential false positives.

Mouse annotations are available in AnnotSV. Its installation and use are detailed in this manual.

# 2. MOUSE ANNOTATION INSTALLATION

The AnnotSV program needs to be installed before to add the Mouse annotation. Please, see the AnnotSV README manual for more information on the installation/requirements.

# 3. ANNOTATION SOURCES

AnnotSV requires different data sources for the annotation of SV. In order to provide a ready to start installation of AnnotSV, each Mouse annotation source listed below (that do not require a commercial license) is provided with the AnnotSV Mouse sources. The aim and update of each of these sources are explained below. Annotation can be performed using either the mm39, mm10 or mm9 build version of the mouse genome (user defined, see USAGE/OPTIONS), but depending on the availability of some data sources there might be some limitations. Some of the annotations are linked to the gene name and thus provided independently of the genome build.

#### a. Gene annotations

Each gene overlapped by the SV to annotate is reported (even with 1bp overlap).

#### Aim:

The "Gene annotation" aims at providing information for the overlapping known genes with the SV. This will result in gene list from the well annotated <u>RefSeq</u> database. These annotations include the definition of the genes and corresponding transcripts (RefSeq), the length of the CoDing Sequence (CDS) and of the transcript, the location of the SV in the gene (e.g. « txStart-exon3 ») and the coordinates of the intersection between the SV and the transcript.

#### **Annotation columns:**

Adds several annotation columns: "Gene\_name", "Gene\_count ", "Tx", "Tx\_start", "Tx\_end", "Overlapped\_tx\_length", "Overlapped\_CDS\_length", "Overlapped\_CDS\_percent", "Frameshift", "Exon\_count", "Location", "Location2", "Dist\_nearest\_SS", "Nearest\_SS\_type", "Intersect\_start" and "Intersect\_end".

#### Method:

For each gene, only a single transcript from all transcripts available in RefSeq for this gene is reported in the following order of preference:

- The transcript selected by the user with the "-txFile" option is reported
- The transcript with the longest overlapped CDS is reported (considering the overlapping region with the SV)
- If there is no difference in CDS length, the longest transcript is reported.

#### **Updating the data source (if needed):**

- Remove all the files in the "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/Genes/mm39" and/or "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/Genes/mm10" and/or "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/Genes/mm9" directories.
  - Download and place the "refGene.txt.gz" file in the "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/Genes/mm39" and/or "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/Genes/mm10" and/or "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/Genes/mm9" directories. The latest update of this file is available for free download at: Genome build mm39:

http://hgdownload.cse.ucsc.edu/goldenPath/mm10/database/refGene.txt.gz Genome build mm9:

http://hgdownload.cse.ucsc.edu/goldenPath/mm9/database/refGene.txt.gz

After the update, this downloaded ".txt.gz" file will be processed by AnnotSV during the first run (it will take longer than usual AnnotSV runtime).

It is to notice that the **promoter's annotations update** will be done at the same time (without supplementary update command).

# b. Regulatory Elements annotations

#### Aim:

The contribution of SV affecting promoters/enhancers/miRNA to disease etiology is well established. Affecting possibly gene expression, understanding the consequences of these regulatory variants on the transcriptome remains a major challenge.

#### Method:

AnnotSV reports the list of the genes whose promoters/miRNA are overlapped (even with 1bp overlap) by the SV. The data source of the regulatory elements is reported (RefSeq and/or miRTargetLink (mTL)).

#### **Options:**

Since overlapping so many regulated genes is a problem, AnnotSV restricts by default the report of the regulated genes to highlight the most relevant ones (i.e. to explain the patient's phenotype):

- By default, only the genes fulfilling at least one ofthe following criteriaare reported (see the "-REselect1" option in USAGE/OPTIONS to keep all the regulated genes):
  - User candidate genes (see the "-candidateGenesFile" option in USAGE/OPTIONS)
- By default, only the genes not present in "Gene\_name" (see the "-REselect2" option in USAGE/OPTIONS) are reported.

#### Sources:

- **Gene data (RefSeq):** Promoters are defined by default as 500 bp upstream from the transcription start sites of the RefSeq databases. Nevertheless, the user can define a different bp size with the "promoterSize" option (see USAGE/OPTIONS)
- miRTargetLink (Kern et al., 2021): Genes regulated by validated miRNA are reported from the miRTargetLink database kindly provided by the authors (in mm10 version).

#### **Annotation columns:**

Add 1 annotation column (only in the "full" lines): "RE\_gene".

#### NOTE:

- To come back to the regulatory elements coordinates, the user can set the "REreport" option to 1 (default = 0) which will allow to report this information in an "\*.SV\_RE\_intersect.report" output file.

#### **Updating the data source (if needed):**

- Remove all the files in the
  - "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/FtIncludedInSV/RegulatoryElements/mm39", "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/FtIncludedInSV/RegulatoryElements/mm10" and/or
  - "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/FtIncludedInSV/RegulatoryElements/mm9" directories.
- Gene data:

Promoters will be automatically updated by using the Gene annotations.

miRTargetLink data:

Put the "Validated\_miRNA-gene\_pairs\_mmu\_miRBase\_<version>\_GRCm38\_location\_augmented.tsv" file (provided by the authors) in the following directory:

"\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/FtIncludedInSV/RegulatoryElements".

This file will be computed then removed the first time AnnotSV is executed after the update.

After processing, you need to lift over the resulting mm10 file to mm9 with the <u>UCSC web server</u> and to move it in the

"\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/FtIncludedInSV/RegulatoryElements/mm9" directory.

- c. Annotations with features overlapping the SV
- d. Annotations with features **overlapped** with the SV
- e. Breakpoints annotations

#### **GC** content annotations

#### Aim:

GC content is positively correlated with the frequency of nonallelic homologous recombination (NAHR). Indeed, NAHR hot spots have a significantly higher GC content (Dittwald, et al., 2013). This information with others could help identifying a novel locus for recurrent NAHR-mediated SV.

#### Method:

The GC content is calculated using bedtools around each SV breakpoint (+/- 100bp) then reported.

#### **Annotation columns:**

Adds 2 annotation columns: "GCcontent\_left", "GCcontent\_right"

#### **Updating the data source (if needed):**

AnnotSV needs the mouse reference genome FASTA file to run the "bedtools nuc" command.

- Remove all the files in the

  - "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/BreakpointsAnnotations/GCcontent/mm9" directories.
- Download and place the mouse reference genome FASTA file in the
  - $\label{lem:content} \begin{tabular}{ll} $`\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/BreakpointsAnnotations/GCcontent/mm39", $`\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/BreakpointsAnnotations/GCcontent/mm10", and/or \begin{tabular}{ll} $$\AnnotSV/Share/AnnotSV/Annotations_Mouse/BreakpointsAnnotations/GCcontent/mm10", and/or \begin{tabular}{ll} $$\AnnotSV/Share/AnnotSV/Annotations_Mouse/BreakpointsAnnotations/GCcontent/mm10", and/or \begin{tabular}{ll} $$\AnnotSV/Share/AnnotSV/Share/AnnotAtions_Mouse/BreakpointsAnnotations/GCcontent/mm10", and/or \begin{tabular}{ll} $$\AnnotSV/Share/AnnotSV/Share/AnnotAtions_Mouse/BreakpointsAnnotAtions/GCcontent/mm10", and/or \begin{tabular}{ll} $$\AnnotSV/Share/AnnotSV/Share/AnnotAtions_Mouse/BreakpointsAnnotAtions/GCcontent/mm10", and/or \begin{tabular}{ll} $$\AnnotSV/Share/AnnotAtions_Mouse/BreakpointsAnnotAtions/GCcontent/mm10", and/or \begin{tabular}{ll} $$\AnnotSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/AnnotAtionSV/Share/Ann$
  - "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/BreakpointsAnnotations/GCcontent/mm9" directories.

The latest update of this file is available for free download at:

*Genome build mm39:* 

https://hgdownload.cse.ucsc.edu/goldenPath/mm39/bigZips/mm39.chromFa.tar.gz *Genome build mm10:* 

http://hgdownload.cse.ucsc.edu/goldenPath/mm10/bigZips/chromFa.tar.gz

Genome build mm9:

http://hgdownload.cse.ucsc.edu/goldenPath/mm9/bigZips/chromFa.tar.gz

This FASTA file will be reprocessed during the first time AnnotSV is executed after the update.

Warning: This update requires the "tar" Tcl package.

#### Repeated sequences annotations

#### Aim:

Repeated sequences play a major role in the formation of structural variants.

#### Method:

The overlapping repeats are identified using bedtools at the SV breakpoint (+/- 100bp) and reported (coordinates and type).

#### **Annotation columns:**

Adds 2 annotation columns: "Repeats\_coord" and "Repeats\_type"

#### Updating the data source (if needed):

AnnotSV needs a UCSC Repeat BED file.

Remove all the files in the

- "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/BreakpointsAnnotations/Repeat/mm9" directories.
- You can freely download the BED file from the "http://genome.ucsc.edu/cgi-bin/hgTables". There are many output options, here are the changes that you'll need to make:
  - "Mouse" genome, "GRCm39/mm39" or "GRCm38/mm10" or "NCBI37/mm9" assembly, "Variations and Repeats" group and "Repeatmasker" track. Select output format as BED. Choose the following output filename: Repeat.bed. Then, click the get output button.
- Download and place the BED file in the
  - "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/BreakpointsAnnotations/Repeat/mm39",

  - "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/BreakpointsAnnotations/Repeat/mm9" directories.

This BED file will be reprocessed during the first time AnnotSV Mouse is executed after the update.

#### Cytoband

#### Aim:

CytoBand stands for cytogenic bands. This annotation source gives the approximate location of these bands as seen on Giemsa-stained chromosomes for each SV breakpoint.

#### **Annotation columns:**

Add 1 annotation column: "CytoBand".

#### **Updating the data source (if needed):**

- Remove all the files in the
  - "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/AnyOverlap/CytoBand/mm39"
  - "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/AnyOverlap/CytoBand/mm10" and/or
  - "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/AnyOverlap/CytoBand/mm9" directories.
- The txt cytoband files are available for free download at:
  - Genome build mm39:

  - http://hgdownload.cse.ucsc.edu/goldenpath/mm9/database/cytoBand.txt.gz *Genome build mm10:*
  - http://hgdownload.cse.ucsc.edu/goldenpath/mm10/database/cytoBand.txt.gz
- Download and place the txt file in the
  - "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/AnyOverlap/CytoBand/mm39",
  - "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/AnyOverlap/CytoBand/mm9" and/or
  - "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/AnyOverlap/CytoBand/mm10" directories.
- Then run the following commands:

Genome build mm39:

```
gunzip cytoBandIdeo.txt.gz
echo "#chrom\tstart\tend\tCytoBand" > cytoBand_mm39.bed
cut -f 1-4 cytoBandIdeo.txt | egrep -v "(chrM) | (chrY)" >> cytoBand_mm39.bed
rm cytoBandIdeo.txt
```

#### Genome build mm10:

```
gunzip cytoBand.txt.gz
echo "#chrom\tstart\tend\tCytoBand" > cytoBand_mm10.bed
cut -f 1-4 cytoBand.txt | grep -v "^chrM" >> cytoBand_mm10.bed
rm cytoBand.txt
```

#### Genome build mm9:

```
gunzip cytoband*.txt.gz
echo "#chrom\tstart\tend\tCytoBand" > cytoBand_mm9.bed
cut -f 1-4 cytoBand.txt | grep -v "^chrM" >> cytoBand_mm9.bed
rm cytoBand.txt
```

These BED files will be reprocessed during the first time AnnotSV is executed after the update.

### f. Custom annotations: External BED annotation files (optional)

#### Aim:

Several users might want to add their own private region annotations to the one already provided by AnnotSV.

#### Inputs:

AnnotSV can integrate external annotations for specific regions that will be imported from a BED file into the output file. Each external BED annotation file should be **copy or linked** in:

Genome build mm9:

- → "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/Users/mm9/FtIncludedInSV" directory or
- → "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/Users/mm9/SVincludedInFt" directory

Genome build mm10:

- → "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/Users/mm10/FtIncludedInSV" directory or
- → "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/Users/mm10/SVincludedInFt" directory

It is to notice that:

**By placing the BED file in the "FtIncludedInSV" directory**, only the features overlapped with the SV (>70% by default) will be reported

By placing the BED file in the "SVincludedInFt" directory, only the features overlapping the SV (>70% by default) will be reported. In this case, a reciprocal overlap can be used (see "reciprocal" option in USAGE/OPTIONS).

In both cases, the user can modify the default behaviour of the overlap by using a different percentage (see "overlap" option in USAGE/OPTIONS).

<u>Warning</u>: After a formatting step, the copy and/or linked users file(s) will be deleted the first time AnnotSV is executed after an update.

#### Header:

Each external BED annotation file (e.g. 'User'.bed) can begin with a first line beginning with a "#" and describing the header of these new annotations.

### **Examples:**

• This first example has been set to provide the SV overlap with frequency (Freq) of internal cohort regions:

'UserYYY'.bed file contains:

| #Chrom | Start    | End       | Freq   |
|--------|----------|-----------|--------|
| 1      | 2806107  | 107058351 | 0.0018 |
| 12     | 25687536 | 25699754  | 0.0023 |

The additional "Freq" annotation column is then made available in the output file (if "Freq" added in the configfile).

• This second example has been set to provide the SV overlap with Regions of Homozygosity (RoH) of 2 individuals (sample1 and sample2):

'UserXXX'.bed file contains:

| #Chrom | Start    | End       | RoH              |
|--------|----------|-----------|------------------|
| 1      | 2806107  | 107058351 | sample1, sample2 |
| 12     | 25687536 | 25699754  | sample2          |

The additional "RoH" annotation column is then made available in the output file (if "RoH" added in the configfile).

# g. Custom annotations: External gene annotation files (optional)

In order to further enrich the annotation for each SV gene, AnnotSV can integrate external annotations imported from tab separated values file(s) into the output file. The first line should be a header including a column entitled "genes". The following example has been set to provide annotation for the interacting partners of a gene.

| genes | Interacting genes                                              |  |  |  |  |
|-------|----------------------------------------------------------------|--|--|--|--|
| BBS1  | BBS7, TTC8, BBS5, BBS4, BBS9, ARL6, BBS2, RAB3IP, BBS12, BBS10 |  |  |  |  |

<sup>&</sup>quot;Interacting genes" annotation column is then available in the output file.

Each external gene annotation file (\*.tsv) should be located in the "\$ANNOTSV/share/AnnotSV/Annotations\_Mouse/Users/" directory.

It is to notice that these files should not contain any of these 2 specific characters "{" and "}" (that would be replaced by "(" and ")"). AnnotSV supports either native or gzipped tsv file.

Moreover, you need to use a configfile (located either in the same directory as your input file or directly in \$ANNOTSV/etc/AnnotSV/configfile) and to define the output column names you want to be added.

# 4. VERSIONS OF THE ANNOTATION SOURCES

| Annotations source | Version |
|--------------------|---------|
| Gene annotations   |         |

| Gene annotations (RefSeq) 2024-02-20 (mm39) |                              |  |  |  |  |  |
|---------------------------------------------|------------------------------|--|--|--|--|--|
| Gene annotations (Reiseq)                   | 2024-02-20 (mm39)            |  |  |  |  |  |
|                                             | 2020-08-17 (mm10)            |  |  |  |  |  |
|                                             | 2020-08-22 (mm9)             |  |  |  |  |  |
| Regulatory Elements annotations             |                              |  |  |  |  |  |
| Promoter data (RefSeq)                      | cf Gene annotations          |  |  |  |  |  |
| miRTargetLink                               | 2020-12-11 (data provided by |  |  |  |  |  |
|                                             | the authors)                 |  |  |  |  |  |
| Breakpoints annotations                     |                              |  |  |  |  |  |
| mm39 FASTA genome                           | 2020-09-10                   |  |  |  |  |  |
| mm10 FASTA genome                           | 2012-02-09                   |  |  |  |  |  |
| mm9 FASTA genome                            | 2007-07-25                   |  |  |  |  |  |
| Repeated sequences annotations              | 2024-04-19 (mm39)            |  |  |  |  |  |
|                                             | 2020-07-16 (mm10)            |  |  |  |  |  |
|                                             | 2020-07-16 (mm9)             |  |  |  |  |  |
| Cytoband (mm39)                             | 2020-07-27                   |  |  |  |  |  |
| Cytoband (mm10)                             | 2012-11-18                   |  |  |  |  |  |
| Cytoband (mm9)                              | 2007-08-22                   |  |  |  |  |  |

# 5. OUTPUT

## a. Output format

Giving a SV input file, AnnotSV produces a tab-separated values file that can be easily integrated in bioinformatics pipelines or directly read in a spreadsheet program.

## b. Output file path and name

Two options (-outputDir and -outputFile) can be used to specify the output directory and/or file name. The output file extension should be ".tsv" (tab separated values).

By default, an output directory is created where AnnotSV is run ('YYYYMMDD'\_AnnotSV). As an example, an input SV file named "mySVinputFile.vcf" will produce by default an output file named "20180320\_AnnotSV/mySVinputFile.annotated.tsv".

# c. "AnnotSV type" column

A typical AnnotSV use would be to first look at the annotation of each SV as a whole (i.e. "full") and then focus on the content of that SV. This is possible thanks to the way AnnotSV can present the data. Indeed, there are 2 types of lines produced by AnnotSV (cf the "AnnotSV type" output column):

- <u>An annotation on the "full" length of the SV</u>. Every SV are reported, even those not covering a gene. This type of annotation gives an estimate of the SV event itself.
- <u>An annotation of the SV "split" by gene</u>. This type of annotation gives an opportunity to focus on each gene overlapped by the SV. Thus, when a SV spans over several genes, the output will contain as many annotations lines as covered genes (*cf* example in FAQ). This latter annotation is extremely powerful to shorten the identification of mutation implicated in a specific gene.

Considering the "full" length annotation of one SV, AnnotSV does not report the genes-based annotation (value is set to empty), except for scores and percentages where AnnotSV reports the most pathogenic score or the maximal percentage.

# d. Annotation columns available in the output file

In the following table, we describe the annotations that are available in the AnnotSV output file. It is to notice that, since AnnotSV can be configured to output the annotations using 2 different modes (full or split), in some cases specific gene annotations are only present while using one of the two modes.

| Column name            | Annotation                                                                                                                                      | Full | Split | BED<br>input | VCF<br>input |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|--------------|--------------|
| AnnotSV_ID             | AnnotSV ID                                                                                                                                      | Χ    | Χ     | Χ            | Χ            |
| SV_chrom               | Name of the chromosome                                                                                                                          | Χ    | Χ     | Χ            | Х            |
| SV_start               | Starting position of the SV in the chromosome                                                                                                   | Χ    | Χ     | Χ            | X            |
| SV_end                 | Ending position of the SV in the chromosome                                                                                                     | Χ    | Χ     | Χ            | Х            |
| SV_length              | Length of the SV (bp)                                                                                                                           | Χ    | Χ     | Χ            | X            |
| SV_type                | Type of the SV (DEL, DUP,)                                                                                                                      | Χ    | Χ     | Χ            | Х            |
| Samples_ID             | List of the samples ID for which the SV was called                                                                                              | Χ    | Χ     | Χ            | X            |
| REF                    | Nucleotide sequence in the reference genome (extracted only from a VCF input file)                                                              | Х    | X     |              | Х            |
| ALT                    | Alternate nucleotide sequence (extracted only from a VCF input file)                                                                            | Х    | Х     |              | Х            |
| FORMAT                 | The FORMAT column from a VCF file                                                                                                               | Χ    | Χ     |              | Х            |
| 'Sample ID'            | The sample ID column from a VCF file                                                                                                            | Χ    | Χ     |              | Х            |
| Annotation_mode        | Indicate the type of annotation generated: - annotation on the SV full length ("full") - annotation on each gene overlapped by the SV ("split") | X    | X     | X            | х            |
| Gene_name              | Gene symbol                                                                                                                                     | Χ    | Χ     | Χ            | X            |
| CytoBand               | Cytogenic band annotation                                                                                                                       | Χ    | Χ     | Χ            | Х            |
| Gene_count             | Number of overlapped genes with the SV                                                                                                          | Χ    |       | Χ            | X            |
| Tx <sup>1</sup>        | Transcript symbol                                                                                                                               |      | Χ     | Χ            | Х            |
| Tx_start               | Starting position of the transcript                                                                                                             |      | Χ     | Χ            | X            |
| Tx_end                 | Ending position of the transcript                                                                                                               |      | Χ     | Χ            | Х            |
| Overlapped_tx_length   | Length of the transcript (bp) overlapping with the SV                                                                                           |      | Χ     | Χ            | X            |
| Overlapped_CDS_length  | Length of the CoDing Sequence (CDS) (bp) overlapping the SV                                                                                     |      | Χ     | Χ            | Х            |
| Overlapped_CDS_percent | Percent of the CoDing Sequence (CDS) (bp) overlapping the SV                                                                                    |      | Χ     | Χ            | X            |
| Frameshift             | Indicates if the CDS length is not divisible by three (yes or no)                                                                               |      | Х     | Х            | Х            |
| Exon_count             | Number of exons of the transcript                                                                                                               |      | Χ     | Х            | Х            |
| Location               | SV location in the gene (e.g. « txStart-exon1 »)                                                                                                |      | Х     | Х            | Х            |
| Location2              | SV location in the gene's coding regions (e.g. « 3'UTR-CDS »)                                                                                   |      | Χ     | Х            | Х            |
| Dist_Nearest_SS        | Absolute distance to nearest splice site after considering exonic and intronic SV breakpoints                                                   |      | Х     | Х            | Х            |
| Nearest_SS_type        | Nearest splice site type: 5' (donor) or 3' (acceptor)                                                                                           |      | Χ     | Χ            | X            |
| Intersect_start        | Start position of the intersection between the SV and a transcript                                                                              |      | Χ     | Χ            | Х            |

AnnotSV: Mouse annotation documentation 2024/04/09

| Intersect_end        | End position of the intersection between the SV and a transcript                                                                                                                                               |   | Х | Х | Х |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|
| RE_gene              | List of the genes whose promoters are overlapped by the SV                                                                                                                                                     | Х | Х | Х | Х |
| GC_content_left      | GC content around the left SV breakpoint (+/- 100bp)                                                                                                                                                           | Х |   | Х | Х |
| GC_content_right     | GC content around the right SV breakpoint (+/- 100bp)                                                                                                                                                          | Х |   | Х | Х |
| Repeat_coord_left    | Repeats coordinates around the left SV breakpoint (+/- 100bp)                                                                                                                                                  | Χ |   | Х | Х |
| Repeat_type_left     | Repeats type around the left SV breakpoint (+/- 100bp) e.g. AluSp, L2b, L1PA2, LTR12C, SVA_D,                                                                                                                  | Х |   | Х | х |
| Repeat_coord_right   | Repeats coordinates around the right SV breakpoint (+/- 100bp)                                                                                                                                                 | Χ |   | Х | Х |
| Repeat_type_right    | Repeats type around the right SV breakpoint (+/- 100bp) e.g. AluSp, L2b, L1PA2, LTR12C, SVA_D,                                                                                                                 | Х |   | Х | Х |
| compound-htz(sample) | List of heterozygous SNV/indel (reported with "chrom_position") presents in the gene overlapped by the annotated SV                                                                                            | Х | Х |   | Х |
| #hom(sample)         | Number of homozygous variants (extracted from VCF input file) in the individual "sample" which are presents: - in the SV ("full" annotation) - between intersectStart and intersectEnd ( "split" annotation)   | Х | Х |   | х |
| #htz/allHom(sample)  | Ratio for QC filtering: #htz(sample)/#allHom(sample)5                                                                                                                                                          | Х | X |   | Х |
| #htz/total(cohort)   | Ratio for QC filtering: #htz(sample)/#total(cohort)                                                                                                                                                            | Х | Х |   | Х |
| #total(cohort)       | Total count of SNV/indel called from all the samples of the cohort and present in the interval of the deletion                                                                                                 | X | х |   | х |
| #htz(sample)         | Number of heterozygous variants (extracted from VCF input file) in the individual "sample" which are presents: - in the SV ("full" annotation) - between intersectStart and intersectEnd ( "split" annotation) | Х | х |   | x |

<sup>&</sup>lt;sup>1</sup>Given one gene, only a single transcript from all transcripts available in RefSeq is reported. The transcript selected by the user with the "-txFile" option is firstly reported. Else, in case of transcripts with different CDS length (considering the overlapping region with the SV), the transcript with the longest CDS is reported. Otherwise, if there is no differences in CDS length, the longest transcript is reported.

## e. User selection of the annotation columns

Users can disable the default annotation columns provided by AnnotSV and selects only the one of interest for its analysis. This could especially help in reducing the size of the output file and the time of the annotation.

This setting can be easily done in a configfile located in the same directory as the INPUT file (an example of configfile is provided in the AnnotSV installation directory), the user can comment column names with a hash character («#»).

# 6. <u>USAGE / OPTIONS</u>

To run AnnotSV, the default command line is the following: \$ANNOTSV/bin/AnnotSV -SvinputFile '/Path/Of/Your/VCF/or/BED/Input/File' -genomeBuild 'Your genome build' >&AnnotSV.log &

The command line can be completed by the list of options described below or modified in the configfile. To show the options simply type:

\$ANNOTSV/bin/AnnotSV -help

٥r

\$ANNOTSV/bin/AnnotSV

OPTIONS:

-----

-annotationsDir: Path of the annotations directory

-annotationMode: Description of the types of lines produced by AnnotSV

Values: both (default), full or split

-bcftools: Path of the bcftools local installation

-bedtools: Path of the bedtools local installation

-benignAF: Allele frequency threshold to select the benign SV in the data sources

Range values: [0.001-0.1], default = 0.01 (i.e. 1%)

-candidateGenesFile: Path of a file containing the user defined candidate genes (gene names can be

space-separated, tabulation-separated, or line-break-separated)

-candidateGenesFiltering: To select only the SV annotations ("split" and "full") overlapping a gene from the

"candidateGenesFile" Values: 0 (default) or 1

-candidateSnvIndelFiles: Path of the filtered VCF input file(s) with SNV/indel coordinates for compound

heterozygotes report (optional)

Gzipped VCF files are supported as well as regular expression

-candidateSnvIndelSamples: To specify the sample names from the VCF files defined from the -

candidateSnvIndelFiles option

Default: use all samples from the filtered VCF files

-genomeBuild: Genome build used

Values: GRCh38 (default) or GRCh37 or mm9 or mm10

-help: More information on the arguments

-hpo: HPO terms list describing the phenotype of the individual being investigated

Values: use comma, semicolon or space separated class values Default = "" (e.g.: "HP:0001156,HP:0001363,HP:0011304")

-includeCI: To expand the "start" and "end" SV positions with the VCF confidence intervals

(CIPOS, CIEND) around the breakpoints

Values: 1 (default) or 0

-metrics: Changing numerical values from frequencies to us or fr metrics (e.g. 0.2 or 0,2)

Values: us (default) or fr

-minTotalNumber: Minimum number of individuals tested to consider a benign SV for the ranking

Range values: [100;1000], default = 500

-output Dir: Output path name

AnnotSV: Mouse annotation documentation 2024/04/09

-outputFile: Output path and file name

-overlap: Minimum overlap (%) between user features (User BED) and the annotated SV

to be reported

Range values: [0;100], default = 100

-overwrite: To overwrite existing output results

Values: 1 (default) or 0

-promoterSize: Number of bases upstream from the transcription start site

Default = 500

-rankFiltering: To select the SV of a user-defined specific class (from 1 to 5; or NA)

Values: use comma separated class values, or use a dash to denote a range of

values

(e.g.: "3,4,5" or "3-5"), default = "1-5,NA"

-reciprocal: Use of a reciprocal overlap between SV and user features (only for annotations

with features overlapping the SV)

Values: 0 (default) or 1

-REreport: Create a report to link the annotated SV and the overlapped regulatory

elements (coordinates and sources)

Values: 0 (default) or 1

-REselect1: To report only the morbid, HI, TS, candidate and phenotype matched genes

Values: 1 (default) or 0

-REselect2: To report only the genes not present in "Gene\_name"

Values: 1 (default) or 0

-samplesidBEDcol: Number of the column reporting the samples ID for which the SV was called (if

the input SV file is a BED)

Range values: [4-[, default = -1 (value not given) (Samples ID should be comma or space separated)

-snvIndelFiles: Path of the VCF input file(s) with SNV/indel coordinates used for false positive

discovery

Use counts of the homozygous and heterozygous variants Gzipped VCF files are supported as well as regular expression

-snvIndelPASS: Boolean. To only use variants from VCF input files that passed all filters during

the calling (FILTER column value equal to PASS)

Values: 0 (default) or 1

-snvIndelSamples: To specify the sample names from the VCF files defined from the -snvIndelFiles

option

Default: use all samples from the VCF files

-SVinputFile: Path of the input file (VCF or BED) with SV coordinates

Gzipped VCF file is supported

-SVinputInfo: To extract the additional SV input fields and insert the data in the outputfile

Values: 1 (default) or 0

-SVminSize: SV minimum size (in bp)

Default = 50

-svtBEDcol: Number of the column describing the SV type (DEL, DUP) if the input SV file is a

BED

Range values: [4-[, default = -1 (value not given)

-tx: Origin of the transcripts (RefSeq or ENSEMBL)

Values: RefSeq (default) or ENSEMBL

-txFile: Path of a file containing a list of preferred genes transcripts to be used in priority

during the annotation (Preferred genes transcripts names should be tab or space

separated)

# 7. REFERENCES

Geoffroy, V., Guignard, T., Kress, A., Gaillard, J.-B., Solli-Nowlan, T., Schalk, A., Gatinois, V., Dollfus, H., Scheidecker, S., Muller, J., 2021. AnnotSV and knotAnnotSV: a web server for human structural variations annotations, ranking and analysis. Nucleic Acids Research 49, W21–W28. https://doi.org/10.1093/nar/gkab402

Geoffroy, V., Herenger, Y., Kress, A., Stoetzel, C., Piton, A., Dollfus, H., Muller, J., 2018. AnnotSV: an integrated tool for structural variations annotation. Bioinformatics 34, 3572–3574. https://doi.org/10.1093/bioinformatics/bty304