Perceptrón multicapa

Aproximador universal

Verónica E. Arriola-Rios

Facultad de Ciencias, UNAM

13 de febrero de 2023

Teorema

- Teorema
- 2 Elementos

Aproximador universal

Definición

Dada una función continua cualquiera $f(\vec{x})$, existe una red neuronal de tres capas tal que para cada entrada x la salida es $\hat{f}(\vec{x})$ con $|\hat{f}(\vec{x}) - f(x)| < \varepsilon$

Funciones $\mathbb{R}^{s_0} \to \mathbb{R}^{s_L}$

- El número de componentes s_0 en el vector de **entrada** \vec{x} es la dimensión de los argumentos de la función.
- El número de componentes s_L en el vector de **salida** \vec{y} es la dimensión de la salida de la función.

Figura: Ejemplo con $s_0 = 3$ y $s_L = 2$, sin sesgos

Observaciones

Teorema

0000

• Para incrementar la precisión de la aproximación se requiere incrementar el número de neuronas s_1 de la capa oculta.

Figura: Función analítica

Figura: Aproximaciones en entrenamiento para 2, 5, 50 y 500 neuronas en la capa oculta.

Verónica E. Arriola-Rios Facultad de Ciencias, UNAM

Elementos

- Teorema
- 2 Elementos

1 perceptrón

• Observemos el comportamiento de un solo perceptrón con las funciones:

Figura: Izquierda: w = 8, b = 3 Derecha: w = 316, b = 3

- El valor del sesgo b indica la posición de la frontera entre $f(x) \sim 0$ y $f(x) \sim 1$.
- Conforme w se vuelve muy grande (> 500), la frontera tiende a ser vertical, para valores más pequeños la curva se vuelve más ancha.
- La posición de la frontera es **directamente** proporcional a b e **inversamente** propocional a w.Nielsen 2019

$$s = -\frac{b}{w}$$

Figura: Frontera fijada con w = 200, s = 0.7

2 perceptrones

• Utilizando aproximaciones a funciones escalón en una red con dos perceptrones.

Figura: **Centro:** Los escalones de ambos perceptrones se suman. **Derecha:** Si las contribuciones de ambos son iguales y opuestas $w_1 = -w_2$, obtenemos un bloque cuyo ancho es $s_2 - s_1$ y su altura es h = w.

Aproximando la función

- Se pueden utilizar entonces pares de perceptrones, diseñados intencionalmente para aproximar cualquier función utilizando secuencias de barras hasta la precisión deseada, dada por el ancho de las barras.
- Según la figura siguiente ¿cuántos pares más y en qué posiciones podrías ponerlos para aproximar mejor la función?

Figura: 6 pares de neuronas equidistantes.

• Un argumento semejante se puede utilizar para construir aproximaciones mediante bloques en más dimensiones.

Figura: Construcción para funciones $\mathbb{R}^2 \to \mathbb{R}$. Tomado de Nielsen 2019

Referencias I

Nielsen, Michael (dic. de 2019). A visual proof that neural nets can compute any function. English. URL:

http://neuralnetworksanddeeplearning.com/chap4.html.

Licencia

Creative Commons Atribución-No Comercial-Compartir Igual

