Capacity of Multi-antenna Gaussian Channels (I. E. Telatar, 1999)

Mattia Lecci¹²

¹Università degli Studi di Padova Department of Information Engineering (DEI-UniPD)

²Universitat Politècnica de Catalunya Escola Tècnica Superior d'Engenyeria de Telecomunicació de Barcelona (UPC-ETSETB)

January 2018

Overview

- Introduction
 - Abstract
 - Notation and Assumptions
 - Properties and Lemmas

- $oxed{2}$ Gaussian Channel with Deterministic H
 - Capacity Derivation

Table of Contents

- Introduction
 - Abstract
 - Notation and Assumptions
 - Properties and Lemmas

- $oxed{2}$ Gaussian Channel with Deterministic H
 - Capacity Derivation

Introduction January 2018 3 / 14

Abstract

In this presentation I will talk about the capacity of a single-user Gaussian channel with multiple receiving and/or transmitting antennas (also known as MIMO channel).

I will talk about 3 cases:

- Deterministic channel
- Random i.i.d. ergodic channel
- Bonus: multi-user case

Notation I

The notation adopted is halfway between the one used during the course and the one from the original paper.

Let's denote with t the number of transmitting and with r the number of receiving antennas.

We will consider the classical linear model, where $\mathbf{x} \in \mathbb{C}^t$ is the transmitted vector and $\mathbf{y} \in \mathbb{C}^r$ is the received vector, $H \in \mathbb{C}^{r \times t}$ is the complex channel matrix and $\mathbf{n} \in \mathbb{C}^r$ is the noise

$$\mathbf{y} = H\mathbf{x} + \mathbf{n}$$

Notation II

We assume noise at different receivers to be independent and normalized, i.e. $E[\mathbf{x}\mathbf{x}^{\dagger}] = I_r$.

The dag (†) notation is used for the conjugate-transpose operation.

We have the power constraint

$$E\left[\mathbf{x}^{\dagger}\mathbf{x}\right] = E\left[\operatorname{tr}\left(\mathbf{x}\mathbf{x}^{\dagger}\right)\right] = \operatorname{tr}\left(E\left[\mathbf{x}\mathbf{x}^{\dagger}\right]\right) \leq P$$

A complex random vector (r.ve.) $\mathbf{x} \in \mathbb{C}^n$ is said to be Complex Gaussian if its real extension $\hat{\mathbf{x}} \triangleq \begin{bmatrix} \operatorname{Re}\{\mathbf{x}\} \\ \operatorname{Im}\{\mathbf{x}\} \end{bmatrix} \in \mathbb{R}^{2n}$ is Gaussian.

The r.ve. ${\bf x}$ will have mean and covariance respectively $\mu=E[{\bf x}]$ and $Q={\rm Cov}(Q)=E\big[({\bf x}-\mu)({\bf x}-\mu)^\dagger\big]$

Notation III

Defining for a complex matrix A

$$\hat{A} = \begin{bmatrix} \operatorname{Re}(A) & -\operatorname{Im}(A) \\ \operatorname{Im}(A) & \operatorname{Re}(A) \end{bmatrix}$$

we say that a Complex Gaussian r.ve. is *circularly symmetric* if $\operatorname{Cov}(\hat{\mathbf{x}}) = E\left[(\hat{\mathbf{x}} - \hat{\mu})(\hat{\mathbf{x}} - \hat{\mu})^T\right] = \frac{1}{2}\hat{Q}$

pdf of circularly symmetric Complex Gaussian

The pdf of a circularly symmetric Complex Gaussian is

$$\gamma_{\mu,Q} = \det(\pi \hat{Q})^{-\frac{1}{2}} e^{-(\hat{x}-\hat{\mu})^T \hat{Q}(\hat{x}-\hat{\mu})}$$
$$= \det(\pi Q)^{-1} e^{-(x-\mu)^{\dagger} Q(x-\mu)}$$

Properties and Lemmas I

Lemma 1

The following properties hold:

$$C = AB \iff \hat{C} = \hat{A}\hat{B}$$
 (1a)

$$C = A + B \iff \hat{C} = \hat{A} + \hat{B}$$
 (1b)

$$C = A^{\dagger} \iff \hat{C} = \hat{A}^{T}$$
 (1c)

$$C = A^{-1} \iff \hat{C} = \hat{A}^{-1} \tag{1d}$$

$$\det(\hat{A}) = |\det(A)|^2 = \det(AA^{\dagger})$$
 (1e)

$$z = x + y \iff \hat{z} = \hat{x} + \hat{y} \tag{1f}$$

$$y = Ax \iff \hat{y} = \hat{A}\hat{x} \tag{1g}$$

$$\operatorname{Re}\left\{x^{\dagger}y\right\} = \hat{a}^{T}\hat{y} \tag{1h}$$

Properties and Lemmas II

Corollary 1

A matrix $U \in \mathbb{C}^{n \times n}$ is unitary if and only if $\hat{U} \in \mathbb{R}^{2n \times 2n}$ is orthonormal.

Corollary 2

If $Q \in \mathbb{C}^{n \times n}$ is positive semi-definite, then so is $\hat{Q} \in \mathbb{R}^{2n \times 2n}$.

Lemma 2

Suppose the complex r.ve. $\mathbf{x} \in \mathbb{C}^n$ is zero-mean and satisfies $E[xx^{\dagger}] = Q$. Then the differential entropy of \mathbf{x} satisfies $h(\mathbf{x}) \leq \log \det(\pi eQ)$ if and only if \mathbf{x} is circularly symmetric Complex Gaussian with

$$E\left[xx^{\dagger}\right] = Q$$

In other words, circularly symmetric Complex Gaussian r.ve. are entropy maximizers for the class of complex random vectors.

Properties and Lemmas III

Lemma 3

If $\mathbf{x} \in \mathbb{C}^n$ is a circularly symmetric Complex Gaussian then so is y = Ax for any $A \in \mathbb{C}^{m \times n}$.

Lemma 4

f ${\bf x}$ and ${\bf y}$ are independent circularly symmetric Complex Gaussians, then ${\bf z}={\bf x}+{\bf y}$ is also circularly symmetric Complex Gaussian.

10 / 14

Table of Contents

- Introduction
 - Abstract
 - Notation and Assumptions
 - Properties and Lemmas

- - Capacity Derivation

Capacity Derivation I

We first consider the case of a deterministic (fixed) transfer function H. Note that the capacity is a function of both the transfer function and the power constraint, i.e. C(H,P). We consider the case where both receiver and transmitter know the matrix H.

Singular Value Decomposition (SVD)

Any matrix $H \in \mathbb{C}^{r \times t}$ can be decomposed as

$$H = UDV^{\dagger}$$

where $U \in \mathbb{C}^{r \times r}$ and $V \in \mathbb{C}^{t \times t}$ are unitary, $D \in \mathbb{C}^{r \times t}$ is diagonal with non-negative real entries.

In fact, the columns of U are the eigenvectors of HH^\dagger , the columns of V are the eigenvectors of $H^\dagger H$ and the diagonal entries of D, called *singular values* of H, are the eigenvalues, which coincide for the two cases and given the hermitianity of such matrices, they are real and non-negative.

Capacity Derivation II

Thus, the problem can be seen as follows

$$\mathbf{y} = UDV^{\dagger}\mathbf{x} + \mathbf{n}$$

Therefore, preprocessing the transmitted symbol as $\mathbf{x} = V\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}} = U^{\dagger}\mathbf{y}$ and defining $\tilde{\mathbf{n}} = U^{\dagger}\mathbf{n}$, we get

$$\tilde{\mathbf{y}} = D\tilde{\mathbf{x}} + \tilde{\mathbf{n}}$$

as an equivalent channel.

Calling $\sigma_i = \lambda_i^{\frac{1}{2}}$ the singular values for $i=1,\ldots,\min(r,t)$, we have

$$\begin{cases} \tilde{y}_i = \sigma_i \tilde{x}_i + \tilde{n}_i & 1 \le i \le \min(r, t) \\ \tilde{y}_i = \tilde{n}_i & i > \min(r, t) \end{cases}$$

References

E. Telatar, "Capacity of multi-antenna gaussian channels," *European Transactions on Telecommunications*, vol. 10, no. 6, pp. 585–595, 1999.