Gait Event Detection Using an LSTM Network 10-701 Project Presentation

Pablo Iturralde Yin Zhong Jakob Bauer

April 22, 2015

Introduction

from http://biodesign.seas.harvard.edu/soft-exosuits

Goal: Accurately detect gait events (heel strike, toe off) in video-based motion capture data of human walking gait

Introduction

- ▶ Problem: Sequence labeling
 - ▶ Input: 3D locus of 18 motion capture markers (54*N reals)
 - ► Output: {Left, Right} × {Heel Strike, Toe Off} (4*N bools)

Dataset:

- ▶ 8 subjects × 3 trials × 10 000 samples @ 100 Hz
- Ground truth from force plates on treadmills

Our Approach

- Objectives:
 - Empirical feature-engineering should be minimal
 - Number of manually-picked parameters (window size, threshold, filter cutoff, etc.) should be minimal
 - Dependence of one gait cycle on those preceding it should be exploited
- Proposed solution: LSTM-based RNN
 - Recognition of quasi-periodic patterns even in presense of input noise
 - Robust and precise learning of rhythmic timing

Network architecture

Implementation

- ► Torch/Lua
- ► LSTM cell by de Freitas (Oxford University, Google Deepmind)
- ► AWS EC2 GPU instance (g2.2xlarge)

Results

	mean	std	mistake
O'Connor	XXXXXX	XXXXXX	XXXXXX
Miller	XXXXXXX	XXXXXXX	XXXXXXX
LSTM	XXXXXXX	XXXXXXX	XXXXXXX

Results

Figure 1: Histogram Miller

Thank you for your attention!

Human Gait Cycle

Figure 2: Gait events [Rueterbories et al., 2010] Figure 2: Gait events