Polynômes I

On désignera par \mathbb{K} l'ensemble \mathbb{R} ou \mathbb{C} .

QCOP POL01.1

- Énoncer les « critères radicaux de nullité » d'un polynôme.
- Soit $n \in \mathbb{N}^*$. Écrire $X^n 1$ sous forme scindée.
- **%** Soit $n \in \mathbb{N}^*$. Montrer que

$$\prod_{k=1}^{n} \left(X - e^{\frac{2ik\pi}{n}} \right) = (X - 1) \sum_{k=0}^{n-1} X^{k}.$$

QCOP POL01.2

- Soient $P, Q \in \mathbb{K}[X]$. Donner, pour $k \in \mathbb{N}$, l'expression du coefficient de degré k du produit PQ.
- **%** Soient $m, n, p \in \mathbb{N}$.
 - (a) Donner une expression du coefficient de degré p de $(X + 1)^{n+m}$.
 - (b) En donner une autre en développant $(X+1)^n \times (X+1)^m$.
 - (c) Calculer $\sum_{k=0}^{p} \binom{n}{k} \binom{m}{p-k}$.

QCOP POL01.3

- Enoncer le théorème de division euclidienne polynomiale.
- ${m {\mathcal S}}$ Soit $P\in {\mathbb K}[{\mathsf X}].$ Soit $\alpha\in {\mathbb K}.$ Montrer, à l'aide de la division euclidienne, que

$$\alpha$$
 est racine de P \iff $(X - \alpha) | P$.

% Soit $P \in \mathbb{R}[X]$. Soit $\alpha \in \mathbb{C}$. Montrer que

$$\alpha$$
 est racine de P \iff $\overline{\alpha}$ est racine de P .

QCOP POL01.4

- E Énoncer la formule de Bernoulli pour les polynômes.
- **?** Soit $P \in \mathbb{K}[X]$. Soit $\alpha \in \mathbb{K}$. Montrer, à l'aide de la formule de Bernoulli, que

$$\alpha$$
 est racine de P \iff $(X - \alpha) | P$.

% Soit $n \in \mathbb{N}^*$. Montrer que

$$\prod_{k=1}^{n} \left(X - e^{\frac{2ik\pi}{n}} \right) = (X - 1) \sum_{k=0}^{n-1} X^{k}.$$