1. Utvorte vrstvenú sieť ku sieti X s tokom f (tok je vyznačený číslami v štvorci). Kapacita všetkých hrán je 1.

- 2. Vypočítajte hodnotu Jacobiho symbolov $(\frac{225}{37})$, $(\frac{195}{833})$.
- 3. Určte multiplikatívny rád čísla 2 (mod 37).
- 4. Definujeme v ${\cal Z}_m$ logaritmus číslanpri základe atakto

$$\log_a n = x$$
 práve vtedy, keď $a^x = n$.

Vypočítajte $\log_2 15$ a $\log_2 17$ v Z_{37} .

- 5. Napíšte, čo je chromatický polynóm grafu. Napíšte tvar chromatického polynómu pre strom sVvrcholami.
- 6. RSA je šifrovací algoritmus pri ktorom n=p.q (p,g sú prvočísla), e resp. d sú šifrovací resp. dešifrovací exponent. Parametre e,d sú volené tak, že

$$e.d \equiv 1 \pmod{\varphi(n)},$$
 (1)

kde $\varphi(n)$ je Eulerova funkcia vyjadrujúca počet prvkov menších ako n, ktoré sú sn nesúdeliteľné. Určte ľubovoľnú dvojicu e,d tak, aby vyhovovala danej podmienke (1), keď p=13, q=17. (Nepovinná časť: Ukážte, že pre $x\in Z_n, (x,n)=1$ platí $D(E(x))=(x^e)^d\equiv x\pmod{n}$.)

- 7. Napíšte maticu DFT pre 6 rozmerné vektory. Maticu napíšte pomocou $\omega=e^{2\pi i/6}$. Určte hodnoty, $\omega^j, j=1,2,3,4,5,6$.
- 8. Vypočítajte inverznú DFT pre vektor

$$(6; 1+i; 0; 1-i).$$

- 9. Vypočítajte pravdepodobnosť prenosu z najvyššieho bitu pri súčte dvoch náhodných n bitových slov.
- 10. Určte všetky nezávislé množiny pre graf G.

1000. Charakterizujte invertibilné prvky Z_m (t.j. určte, kedy je prvok $a \in Z_m$ invertibilný) a ukážte, že invertibilná prvky v Z_m tvoria grupu.

1. Utvorte vrstvenú sieť ku sieti X s tokom f (tok je vyznačený číslami v štvorci). Kapacita všetkých hrán je 1.

- 2. Vypočítajte hodnotu Jacobiho symbolov $\left(\frac{595}{207}\right)$, $\left(\frac{289}{43}\right)$.
- 3. Určte multiplikatívny rád čísla 2 (mod 29).
- 4. Definujeme v \mathbb{Z}_m logaritmus čísla n pri základe a takto

$$\log_a n = x$$
 práve vtedy, keď $a^x = n$.

Vypočítajte $\log_2 7$ a $\log_2 8$ v \mathbb{Z}_{29} .

- 5. Napíšte, čo je chromatický polynóm grafu. Napíšte tvar chromatického polynómu pre strom sVvrcholami.
- 6. RSA je šifrovací algoritmus pri ktorom n=p.q (p,g sú prvočísla), e resp. d sú šifrovací resp. dešifrovací exponent. Parametre e,d sú volené tak, že

$$e.d \equiv 1 \pmod{\varphi(n)},$$
 (1)

kde $\varphi(n)$ je Eulerova funkcia vyjadrujúca počet prvkov menších ako n, ktoré sú sn nesúdeliteľné. Určte ľubovoľnú dvojicu e,d tak, aby vyhovovala danej podmienke (1), keď p=13, q=19. (Nepovinná časť: Ukážte, že pre $x\in Z_n, (x,n)=1$ platí $D(E(x))=(x^e)^d\equiv x\pmod{n}$.)

- 7. Napíšte maticu DFT pre 6 rozmerné vektory. Maticu napíšte pomocou $\omega=e^{2\pi i/6}$. Určte hodnoty, $\omega^j, j=1,2,3,4,5,6$.
- 8. Vypočítajte inverznú DFT pre vektor

$$(6; -1 - i; 0; i - 1).$$

- 9. Vypočítajte pravdepodobnosť prenosu z najvyššieho bitu pri súčte dvoch náhodných n bitových slov.
- 10. Určte všetky nezávislé množiny pre graf G.

1000. Charakterizujte invertibilné prvky Z_m (t.j. určte, kedy je prvok $a \in Z_m$ invertibilný) a ukážte, že invertibilná prvky v Z_m tvoria grupu.

1.	Určte všetky nezávislé množiny pre graf G. 6 bodov
2.	a.) Overte či 2 je primitívny element Z_{37}^* . b.) Vypočítajte $\log_2 13$.
	10 bodov
3.	Vyberte šifrovací a dešifrovací exponent pre RSA $_{7.13}$, t.j. $n=7.13=91$. Potom zašifrujte správu $x=2$. Výsledok dešifrujte. 10 bodov
4.	Vypočítajte hodnotu Jacobiho symbolov $(\frac{105}{495})$, $(\frac{105}{113})$. 6 bodov
5.	Utvorte vrstvenú sieť ku sieti X s tokom f (tok je vyznačený číslami v štvorci). Kapacita všetkých hrán je 1. 6 bodov
6.	Nájdite blokovací tok siete algoritmom MPM (prípadne aj inou metódou). 6 bodov
7.	a.) Napíšte maticu DFT (diskrétnej Fourierovej transformácie) pre $n=6$. b.) Vypočítajte DFT $(1,2,i,-i)$. 10 bodov
0	
8.	a.) Uvažujme neorientované grafy na množine vrcholov $\{1,2,3,\ldots,9,10\}$. Pre akú časť z nich je $\{1,2,3,4,5\}$ nezávislá množina. b.) Napíšte, čo je to rez v sieti, kapacita rezu a napíšte vzťah medzi kapacitou rezu a tokom v sieti.

6 bodov

1.	Určte všetky nezávislé množiny pre graf G. 6 bodov
2.	a.) Overte či 7 je primitívny element Z_{41}^* . b.) Vypočítajte $\log_7 17$.
3.	10 bodov Vyberte šifrovací a dešifrovací exponent pre RSA _{7.13} , t.j. $n=7.13=91$. Potom zašifrujte správu $x=2$. Výsledok dešifrujte. 10 bodov
4.	Vypočítajte hodnotu Jacobiho symbolov $\left(\frac{723}{933}\right)$, $\left(\frac{105}{127}\right)$. 6 bodov
5.	Utvorte vrstvenú sieť ku sieti X s tokom f (tok je vyznačený číslami v štvorci). Kapacita všetkých hrán je 1. 6 bodov
6.	Nájdite blokovací tok siete algoritmom MPM (prípadne aj inou metódou). 6 bodov
7.	a.) Napíšte maticu DFT (diskrétnej Fourierovej transformácie) pre $n=6$. b.) Vypočítajte DFT $(2,1,-i,i)$.
_	10 bodov
8.	a.) Uvažujme neorientované grafy na množine vrcholov $\{1,2,3,\ldots,9,10\}$. Pre akú časť z nich je $\{1,2,3,4,5\}$ nezávislá množina.

b.) Napíšte, čo je to rez v sieti, kapacita rezu a napíšte vzťah medzi kapacitou rezu a tokom v sieti.

6 bodov

1., 8 b Nájdite maximálny tok v sieti metódou vrstvených sietí (číslo v štvorci označuje tok, bez štvorca kapacitu):

- 2., 6 b Vypočítajte hodnotu Jacobiho symbolov $\left(\frac{280}{131}\right), \left(\frac{280}{531}\right)$.
- 3., 8 b Pre metódu RSA $_{77}$, t.j. n=77, zvolte vhodný šifrovací a dešifrovací exponent a zašifrujte správu x=13 a následne dešifrujte .
- 4., 8 b Nájdite primitívny element α v Z_{17} a vypočítajte $\log_{\alpha} 7$ a $\log_{\alpha} 9$.
- 5., 8 b Nájdite všetky nezávislé množiny grafu

- 6., 8 b Nech $x\equiv 2\pmod 3, x\equiv 3\pmod 5$ a $x\equiv 6\pmod 7$. Nájdite x také, že $x\equiv a_i\pmod 105$ pre i=1,2,3.
- 7., 6 b Nájdite riešenie rovnice $35x \equiv 14 \pmod{49}$.
- 8., 8 b Napíšte tabuľku logaritmov pri základe α (môžete zvoliť rovnaké, ako v príklade 4) v Z_{17}^* . Potom zvolte tajný parameter Boba $a, a \neq 1$ v El Gamalovom kryptosystéme, vypočítajte $\beta = \alpha^a \pmod{17}$. Odošlite Bobovi správu x = 8 a dešifrujte prijatú správu.
- 1000., 5 b Charakterizujte invertibilné prvky Z_m (t.j. určte, kedy je prvok $a \in Z_m$ invertibilný) a ukážte, že invertibilné prvky v Z_m tvoria grupu.

1., 8 b Nájdite maximálny tok v sieti metódou vrstvených sietí (číslo v štvorci označuje tok, bez štvorca kapacitu):

- 2., 6 b Vypočítajte hodnotu Jacobiho symbolov $\left(\frac{651}{791}\right), \left(\frac{650}{791}\right)$.
- 3., 8 b Pre metódu RSA₇₇, t.j. n=77, zvolte vhodný šifrovací a dešifrovací exponent a zašifrujte správu x=5 a následne dešifrujte .
- 4., 8 b Nájdite primitívny element α v Z_{19} a vypočítajte $\log_{\alpha} 7$ a $\log_{\alpha} 9$.
- 5., 8 b Nájdite všetky nezávislé množiny grafu

- 6., 8 b Nech $x\equiv 3\pmod 3, x\equiv 4\pmod 5$ a $x\equiv 5\pmod 7$. Nájdite x také, že $x\equiv a_i\pmod 105$ pre i=1,2,3.
- 7., 6 b Nájdite riešenie rovnice $33x \equiv 44 \pmod{77}$.
- 8., 8 b Popíšte ElGamalov kryptosystém. Potom napíšte tabuľku logaritmov pri základe α (môžete zvoliť rovnaké, ako v príklade 4) v Z_{19}^* . Ďalej zvolte tajný parameter Boba $a, a \neq 1$ v El Gamalovom kryptosystéme, vypočítajte $\beta = \alpha^a \pmod{19}$. Odošlite Bobovi správu x = 5 a dešifrujte prijatú správu.
- 1000., 5 b Charakterizujte invertibilné prvky Z_m (t.j. určte, kedy je prvok $a \in Z_m$ invertibilný) a ukážte, že invertibilné prvky v Z_m tvoria grupu.

1., 8 b Nájdite maximálny tok v sieti metódou vrstvených sietí (číslo v štvorci označuje tok, bez štvorca kapacitu):

- 2., 6 b Vypočítajte hodnotu Jacobiho symbolov $\left(\frac{583}{737}\right), \left(\frac{582}{737}\right)$.
- 3., 8 b Pre metódu RSA $_{91}$, t.j. n=91, zvolte vhodný šifrovací a dešifrovací exponent a zašifrujte správu x=3 a následne dešifrujte .
- 4., 8 b Nájdite primitívny element α v Z_{23} a vypočítajte $\log_{\alpha} 7$ a $\log_{\alpha} 9$.
- 5., 8 b Nájdite všetky nezávislé množiny grafu

- 6., 8 b Nech $x\equiv 5\pmod 3, x\equiv 4\pmod 5$ a $x\equiv 5\pmod 7$. Nájdite x také, že $x\equiv a_i\pmod 105$ pre i=1,2,3.
- 7., 6 b Nájdite riešenie rovnice $20x \equiv 15 \pmod{55}$.
- 8., 8 b Napíšte tabuľku logaritmov pri základe α (môžete zvoliť rovnaké, ako v príklade 4) v Z_{23}^* . Potom zvolte tajný parameter Boba $a, a \neq 1$ v El Gamalovom kryptosystéme, vypočítajte $\beta = \alpha^a \pmod{23}$. Odošlite Bobovi správu x = 2 a dešifrujte prijatú správu.
- 1000., 5 b Charakterizujte invertibilné prvky Z_m (t.j. určte, kedy je prvok $a \in Z_m$ invertibilný) a ukážte, že invertibilné prvky v Z_m tvoria grupu.

\mathbf{A}

- 1. Napíštete všeobecný vzorec pre prvky matice rýchlej Fourierovej transformácie. Vypočítajte inverznú Fourierovu transfomáciu vektora: (3; 2i; i; 1).
- 2. Vypočítajte hodnotu Jacobiho symbolov $\left(\frac{337}{533}\right), \left(\frac{329}{833}\right)$.
- 3. Pre metódu RSA $_{143}$, t.j. n=133=13.11, zvolte vhodný šifrovací a dešifrovací exponent a zašifrujte správu x=2. Následne dešifrujte.
- 4. Nájdite primitívny element α v Z_{17} a vypočítajte $\log_{\alpha} 7$ a $\log_{\alpha} 11.$
- 5. Metódou spätného prhľadávania nájdite všetky nezávislé množiny grafu
- 6. Zistite, či uvedená rovnica má riešenie. Pokiaľ áno, nájdite ho.

$$13x \equiv 21 \pmod{37}.$$

- 7. Určte vrstvenú sieť, pre sieť nižšie. Kapacita všetkých hrán je 1. Uvedené čísla ukazujú tok. V ostatných hranách je tok 0.
- 8. Napíšte, čo je chromatický polynóm grafu. Napíšte tvar chromatického polyncmu pre strom s ${\cal V}$ vrcholami.

\mathbf{A}

- 1. Napíštete všeobecný vzorec pre prvky matice inverznej rýchlej Fourierovej transformácie. Vypočítajte inverznú Fourierovu transfomáciu vektora: (1; 2i; 3; 4i).
- 2. Určte multiplikatívny rád čísla α modulo n (ord $_n(\alpha) = \min\{i | i \in N^+, \alpha^i = 1 \pmod n\}$)
 - $2 \pmod{15}$,
 - 5 (mod 17).
- 3. Vypočítajte hodnotu Jacobiho symbolov $\left(\frac{564}{657}\right), \left(\frac{323}{427}\right)$.
- 4. Pre metódu RSA₁₃₃, t.j. n = 133 = 7.19, zvolte vhodný šifrovací a dešifrovací exponent a zašifrujte správu x = 2. Následne dešifrujte.
- 5. Nájdite primitívny element α v Z_{19} a vypočítajte $\log_{\alpha} 9$ a $\log_{\alpha} 15$.
- 6. Charakterizujte invertibilné prvky Z_m (t.j. určte, kedy je prvok $a \in Z_m$ invertibilný, dokážte). Určte počet invertibilných prvkov Z_{2332} .
- 7. Metódou spätného prhľadávania nájdite všetky nezávislé množiny grafu

8. Určte vrstvenú sieť, pre sieť nižšie. Kapacita všetkých hrán je 1. Uvedené čísla ukazujú tok. V ostatných hranách je tok 0.

- 1. Napíštete všeobecný vzorec pre prvky matice rýchlej Fourierovej transformácie. Vypočítajte Fourierovu transfomáciu vektora: (i; 2; 3i; 4).
- 2. Určte multiplikatívny rád čísla α modulo n (ord $_n(\alpha) = \min\{i | i \in N^+, \alpha^i = 1 \pmod n\}$)
 - $7 \pmod{15}$,
 - $2 \pmod{17}.$
- 3. Vypočítajte hodnotu Jacobiho symbolov $\left(\frac{456}{567}\right), \left(\frac{317}{417}\right)$.
- 4. Pre metódu RSA₁₄₃, t.j. n=143=11.13, zvolte vhodný šifrovací a dešifrovací exponent a zašifrujte správu x=2. Následne dešifrujte.
- 5. Nájdite primitívny element α v Z_{17} a vypočítajte $\log_{\alpha} 9$ a $\log_{\alpha} 13$.
- 6. Charakterizujte invertibilné prvky Z_m (t.j. určte, kedy je prvok $a \in Z_m$ invertibilný, dokážte). Určte počet invertibilných prvkov Z_{1897} .
- 7. Metódou spätného prhľadávania nájdite všetky nezávislé množiny grafu

8. Určte vrstvenú sieť, pre sieť nižšie. Kapacita všetkých hrán je 1. Uvedené čísla ukazujú tok. V ostatných hranách je tok 0.