Tyles Klings

Fundamentals of Data Analysis and Decision Science Duke University EGR 238L/MATH 238L Spring 2022

k-Means Clustering Lab Assignment

- (10) 1. Provide three example situations (maybe ones relevant to your major) that seem analogous to our "pizza-stores" model. For each situation, what are the "pizza customers" and what are the "pizza stores?"
- a) Amazon drivers disportching fackages need to coordinate to drive the Shortest distances from the last package they dollard.
- b) Police Stations automatically choose which Station you are connected to based off your location to get you quickest disputely possible
- c) School districts have to how somewhat equal distribution among Schools so they cluster mighborhoods based on distance and density of Students

(20) 2. Perform k-Means clustering by hand on the following data with k = 2 and assuming the initial cluster centers are located at (4,0) and (6,2). Show your work step-by-step... what are the clusters at each step, and the new cluster centers at each step? Be sure to identify the final cluster assignments after the k-Means algorithm has converged.

1 /	(0,4)	×(6,2)	Obs.	X_1	X_2
	0(1,3)	0	1	1	4
		- (5,1)	2	1	3
		1 -	3	0	4
			4	5	1
	(4,	0) _	5	6	2
		`	6	4	0
		`			

new center = $\left(\frac{6}{4}, \frac{11}{4}\right)$

converges at 2/3, 1/3 for Z_1 and (5,1) for Z_2

1:11) X. X. Convergance because the centers
do not move

Page 2 of 10

(20) 3. Consider the data set shown below, with initial cluster locations denoted by the \times 's.

(a) What is the result of *k*-Means clustering of this data with these initial cluster locations? (Data are replicated below to assist you in iterating through *k*-Means.)

(b) In what way are the clusters found by k-means not satisfying? Is this result a failure of the goal (k-Means is inappropriate for this dataset), or a failure of the algorithm (Lloyd's Algorithm failed)? Explain why this happened... think about the way in which the initialization of the cluster centers affects subsequent minimization of the k-means cost function.

K-means could be effective here, but a poor initialization causal the algorithm to fail because two initial guesses where very close to eachother and it partitioned a stagle cluster into 2 and one guess coverd two closters.

