

Ayudantía 8 - Relaciones de Orden

11 de octubre de 2024

Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

Orden Parcial

Una relación R sobre un conjunto A es un orden parcial si es **reflexiva**, **antisimétrica** y **transitiva**.

A la relación se le denota como $x \leq y$. Y diremos que el par (A, \leq) es un **orden parcial**.

Orden Total

Una relación \leq sobre un conjunto A es un orden total si es una relación de orden parcial y además es conexa.

Elemento mínimo y máximo

Sean (A, \preceq) un orden parcial, $S \subseteq A$ y $x \in A$. Diremos que:

- 1. x es una **cota inferior** de S si para todo $y \in S$ se cumple que $x \leq y$.
- 2. x es un **elemento minimal** de S si $x \in S$ y para todo $y \in S$ se cumple que $y \leq x \Rightarrow y = x$.
- 3. x es un **mínimo** en S si $x \in S$ y es cota inferior de S.

Análogamente, se definen los conceptos de cota superior, elemento maximal y máximo.

Sea (A, \preceq) un orden parcial, y sean $S \subseteq A, x \in A$.

Ínfimo y supremo

Sea (A, \preceq) un orden parcial y $S \subseteq A$. Diremos que s es un ínfimo de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \preceq s$. Es decir, el ínfimo es la mayor cota inferior. Análogamente se define el supremo de un conjunto.

1. Meme del día

Queda como ejercicio para el lector.

2. Relaciones, relaciones

Sea A el conjunto de todas las relaciones binarias en \mathbb{R} . Sobre A definimos la relación binaria Ω siguiente:

Sean $\mathcal{R}_1, \mathcal{R}_2 \in A$, entonces

$$\mathcal{R}_1\Omega\mathcal{R}_2 \iff (\forall x, y \in \mathbb{R}, x\mathcal{R}_1y \Longrightarrow x\mathcal{R}_2y)$$

Demuestre que Ω es una relación de orden, y además que no es un orden total en A.

3. Verdadero y Falso

Sea A un conjunto no vacío y $\preceq \subseteq A \times A$ un orden parcial. En esta pregunta refiérase siempre a este orden parcial y responda verdadero o falso según corresponda. En caso de ser verdadero, demuéstrelo, y en caso de ser falso, dé un contraejemplo y explíquelo.

- 1. Si S tiene un mínimo para todo $S\subseteq A$ con $S\neq\varnothing$, entonces \preceq es un orden total.
- 2. Si \leq es un orden total, entonces S tiene un mínimo para todo $S \subseteq A$ con $S \neq \emptyset$.
- 3. Para todo $S \subseteq A$, si existe x que es minimal y maximal de S, entonces S tiene un único elemento.

4. La mezcla

Sea A un conjunto no vacío, $\simeq \subseteq A \times A$ una relación de equivalencia y $\preceq \subseteq A \times A$ un orden parcial, ambos sobre A. Considere el conjunto cuociente A/\simeq y defina la siguiente relación $\ll \subseteq (A/\simeq) \times (A/\simeq)$:

$$(S_1,S_2)\in \ll \,$$
si, y solo si, existe $a\in S_1$ tal que $\forall b\in S_2$ se cumple que $a\preceq b$

La clausura refleja de una relación R aplicada sobre el conjunto A se define como la relación refleja más pequeña aplicada sobre A que contiene a R. Esta se denota como R^r y cumple las siguientes propiedades:

- 1. $R \subseteq R^r$
- 2. R^r es refleja
- 3. Si R' es una relación refleja tal que $R \subseteq R'$, entonces $R^r \subseteq R'$

Dicho de forma sencilla, a la relación R le añadimos las relaciones necesarias para que sea refleja.

- 1. Demuestre que \ll^r es un orden parcial sobre A/\simeq donde \ll^r es la clausura refleja de \ll .
- 2. ¿Es verdad que A tiene un elemento minimal según \leq si, y solo si, A/\simeq tiene un elemento minimal según \ll^r ? Demuestre su afirmación.

5. Funciones

Sean A, B y C subconjuntos de \mathbb{N} . Diremos que una función $f: A \to B$ es *creciente* si dados $x, y \in A$ tales que x < y, se tiene que f(x) < f(y).

- 1. Demuestre que si f es creciente, entonces es inyectiva.
- 2. ¿Es cierto que si $f:A\to B$ y $g:B\to C$ son crecientes, entonces $g\circ f$ es inyectiva? Demuestre o de un contraejemplo.

2. Relaciones, relaciones

Sea A el conjunto de todas las relaciones binarias en $\mathbb R$. Sobre A definimos la relación binaria Ω siguiente:

Sean $\mathcal{R}_1, \mathcal{R}_2 \in A$, entonces

$$\mathcal{R}_1\Omega\mathcal{R}_2 \iff (\forall x, y \in \mathbb{R}, x\mathcal{R}_1y \Longrightarrow x\mathcal{R}_2y)$$

Demuestre que Ω es una relación de orden, y además que no es un orden total en A.

2. Antisimilitrica: Suporgamos que R, D2 Rz y Rz D2 R, PD: R, = Rz

- $\rightarrow \forall_{x,y} \in \mathbb{R}, \quad \times \mathbb{R}_{1y} \rightarrow \times \mathbb{R}_{2y}$ $\rightarrow \mathbb{R}_{1} \subseteq \mathbb{R}_{2}$
- · Yx,4 ∈R, ×Rzy → <R,4 · Rz ⊆ R,

Come $R_1 \subseteq R_2$, $R_2 \subseteq R_1$, $R_1 = R_2$.

Concluínos que es antisimé tr:co.

3. Transitiva: Supongomos que RIL R2 1 R2 DL R3. D: R, LR3.

Como C es trons: tivo, , R, C R3 -> \forall x, y R, \times \text{R}_3 \rightarrow \forall \text{R}_1 \rightarrow \text{R}_3 \rightarrow \text

Cano es retlega, antisimétrica y transitiva, De es de arden parcial - H

no Conexa (7 (X x y V y R x))

= 3x 7 y (x R y V y R x)

= 3x 3 7 7 (x R y V y R x)

= 3 x 3 7 (7 (x R y) x 7 (y R x))

= 3 x 3 7 ((x, y) & R x (y, x) & R)

 $\times R_{1}y \iff \times < y$ $\times R_{2} \gamma \iff \times > y$ $(\times, y) \in R, \neg (\times, y) \notin R_{2}$ $R_{1} \notin R_{2} \quad R_{2} \notin R_{3}$ $Can ello, (R_{1}R_{2}) \notin \Sigma \quad y \quad (R_{2}, R_{1}) \notin \Sigma$ $\vdots \quad no \quad \forall s \quad conesa$

Sea $R_1 \subseteq \mathbb{R}^2$ una relación orbitrarion. Definances $R_2 \subseteq \mathbb{R}^2$ $R_2 = \mathbb{R}^2 \setminus R_1$

Se time gn R, & R2 & R, ... (R1, R2) & SL y (R2, R.) & SL.

3. Verdadero y Falso

Sea A un conjunto no vacío y $\leq \subseteq A \times A$ un orden parcial. En esta pregunta refiérase siempre a este orden parcial y responda verdadero o falso según corresponda. En caso de ser verdadero, demuéstrelo, y en caso de ser falso, dé un contraejemplo y explíquelo.

- 1. Si S tiene un mínimo para todo $S\subseteq A$ con $S\neq\varnothing$, entonces \preceq es un orden total.
- 2. Si \leq es un orden total, entonces S tiene un mínimo para todo $S \subseteq A$ con $S \neq \emptyset$.
- 3. Para todo $S \subseteq A$, si existe x que es minimal y maximal de S, entonces S tiene un único elemento.

Cota interior: un one A top a x x X x ES. Mínimo: cota interior ES.

Hx14 & A (x 37 v y =x)

Sean $x,y \in A$ elementes orbitron: a_5 . PD: $x \preceq y \quad y \not \preceq x$. Sea $S = \{x,y\}$. Notumes que $S \subseteq A$ $y \quad S \neq \phi$. Si x res el mínimo de S, entences $x \preceq y$.

En evalquier cara, x 14 v y 2 x : es con esa : orden total.

2. Si \leq es un orden total, entonces S tiene un mínimo para todo $S \subseteq A$ con $S \neq \emptyset$.

2.
$$A = ?$$
 $A = R$
 $S = ?$ $S = R$
 $\Delta = ?$ $\Delta := \leqslant$

Tenemos que i es orden le tal. Sin emborgo, ISEA top Stop y S no tiune mínimo : es falso. 3. Para todo $S \subseteq A$, si existe x que es minimal y maximal de S, entonces S tiene un único elemento.

minimal: xES tg \ty \sist \5, \quad \delta \x = x

$$\begin{aligned}
\varphi(x) &:= \forall y (y \preceq x \rightarrow y = x) \\
&= \forall y \neg \gamma (y \preceq x \rightarrow \gamma = x) \\
&= \gamma \exists y \neg (\gamma (y \preceq x) \lor y = y) \\
&= \gamma \exists y (y \preceq x \wedge y \neq x)
\end{aligned}$$

$$A := \mathbb{Z}$$
 $5 := \{z_1 3\}$
 $3 + z$
 $3 := 1$

ala
$$a = k_1b$$

$$a|b + b|a$$

$$b = k_2a$$

$$a = k_1(k_2a)$$

$$a|b + b|c$$

$$k_1 = k_2 = 1$$

$$b = k_2c$$

a = krc = k'c k' = Z : hans: tiva.

5. Funciones

Sean A, B y C subconjuntos de \mathbb{N} . Diremos que una función $f : A \to B$ es *creciente* si dados $x, y \in A$ tales que x < y, se tiene que f(x) < f(y).

- 1. Demuestre que si f es creciente, entonces es inyectiva.
- 2. ¿Es cierto que si $f:A\to B$ y $g:B\to C$ son crecientes, entonces $g\circ f$ es inyectiva? Demuestre o de un contraejemplo.

$$\Leftrightarrow$$
 $(f(x) = f(y) \rightarrow x = y)$

Sear $x, y \in A$. Supergames que f(x) = f(y). Por contradicción, digames que $x \neq y$. SPDG, digames que $x \neq y$. Como f es cruziente, $x = y \rightarrow f(x) = f(y) \rightarrow x$. Caso y < x es análogo. Concleinos que x = y : f es inyectiva.

2. ¿Es cierto que si $f:A\to B$ y $g:B\to C$ son crecientes, entonces $g\circ f$ es inyectiva? Demuestre o de un contraejemplo.

$$*(gof)(x) = g(f(x))$$

Suporgames que pora xiy EA, (gef Xx) = (gof)(y)

$$g(\underbrace{f(x)}_{a}) = g(\underbrace{f(y)}_{b}) \qquad (g(a) = g(b)) \rightarrow a = b$$

Como g es creciente, por el inciso (1) es inyectiva y: Se time que f(x) = f(y). Como f es creciente, por (1), x = y. Concluímos que $(g \circ f)$ es inyectiva.