ЯHДекс

Яндекс

Deep Learning в диалоговых системах

Борис Янгель

Что такое диалоговая система?

- Система, взаимодействие с которой происходит в рамках диалогового интерфейса
 - > Обмен репликам
 - > Голосом или текстом
 - > На естественном языке

Почему нам интересны диалоговые системы?

- Благодаря DL технологии NLP и ASR достигли уровня, когда с их помощью можно пытаться делать что-то полезное
- Мы хотим создавать диалоговых ассистентов
 - > Говорить чаще удобней, чем писать
 - > Легко уточнить или переформулировать требование
 - Ассистент может быть проактивным, задавать уточняющие вопросы
 - > Диалоговым интерфейсом все умеют пользоваться с детства
- Возможно, попутно получится создать strong AI:)

Основные игроки

Google Assistant

Задача диалоговой системы

- Выбрать оптимальную последовательность действий для достижения своей цели в ходе диалога
 - > Максимально быстрое выполнение задачи пользователя
 - > Выяснение определенной информации
 - > Максимальное вовлечение пользователя
 - **>** ...
- Reinforcement Learning в чистом виде

Коротко про RL в диалоговых системах

- RL к обучению диалоговых систем применять непросто
- Моделирование среды затруднительно
 - > Среда тоже диалоговая система
 - Используя простые модели собеседника, не выучить ничего сложного
- С живых собеседников много данных не соберешь
 - Для обучения владению естественным языком (особенно при использовании RL) нужно много данных
 -) Возможно, RL-дообучение на людях имеет право на жизнь

Goal-oriented vs chit-chat

Устройство goal-oriented диалоговых систем

Модуль NLU

Intent classifier

Что там завтра с погодой? get_weather
Вызови мне такси order_taxi

- Задача классификации коротких текстов
- Широко применяются рекурентные и сверточные сети
 - > Ravuri, S. et al. (2015). Recurrent neural network and LSTM models for lexical utterance classification.
 - > Kim, Y. (2014). Convolutional neural networks for sentence classification.
- A также word2vec-подобные методы
 - > Joulin, A. et al. (2016). Bag of tricks for efficient text classification.

Различные архитектуры

Engineering difficulties

- При разработке реальной диалоговой системы нужно
 - > Часто добавлять новые интенты
 - Работать с классами с очень небольшим числом примеров (иногда с одним примером)
 - > Постоянно корректировать работу системы
 - > Гарантировать корректную работу на частотных репликах
- Классические методы текстовой классификации не предназначены для применения в таком режиме

kNN to the rescue

- Всеми необходимыми свойствами обладает kNN
 - > Можно быстро добавлять новые классы в модель
 - > Можно работать даже с небольшими классами
 - > Можно гарантировать запоминание трейнсета
- Нужна только метрика семантической близости текстов
 - > Huang P. S. et al. (2013) Learning deep structured semantic models for web search using clickthrough data

DSSM and beyond

Ellipsis and context-dependent classification

- Вообще говоря, интент пользователя нужно классифицировать в контексте диалога
- Какая сегодня вечером будет погода?
- Сегодня все как обычно: -20, сильный ветер, холод, боль, ад.
- A завтра? get_weather или нет?
- Часть слов реплике может быть опущена, поскольку подразумевается из контекста
 - Это явление в лингвистике называется эллипсис

Ellipsis and context-dependent classification

- Кажется, все работы на эту тему от Microsoft
 - Xu P., Sarikaya R. (2014). Contextual domain classification in spoken language understanding systems using recurrent neural network
 - Liu C., Xu P., Sarikaya R. (2015). Deep contextual language understanding in spoken dialogue systems
 - > Shi Y. et al. (2015). Contextual spoken language understanding using recurrent neural networks
- Идея всех работ: добавить информацию о контексте в признаки классификатора
 - > У этого подхода есть проблема холодного старта

Ellipsis: Alice way

P(intent|utt, context) = P(intent|utt) x P(intent|context) / Z

intent
classifier

get_weather__ellipsis

на завтра

а в сочи

вечером

P(get_weather_ellipsis|"на завтра") = 0.5

P(get_weather_ellipsis|get_weather) = 0.2

order_delivery_ellipsis

transition model

на завтра

ДОМОЙ

утром

P(order_delivery_ellipsis|"на завтра") = 0.5

P(order_delivery_ellipsis|get_weather) = 0

Slot-filler

- Задача слот-филлера локализовать слоты интента в реплике
- Это задача структурной классификации слов реплики
 - Классы слоты или специальный класс О (пусто)
 - У Часто используется BIO encoding (B-slot, I-slot, O)
- Такие задачи хорошо решаются рекуррентными сетями!
- Задача похожа на машинный перевод, только последовательности уже выровнены

Slot-filling architectures

Lample G. et al. (2016). Neural architectures for named entity recognition

Kurata G. et al. (2016). Leveraging sentence-level information with encoder LSTM for semantic slot filling

Joint intent classification and slot filling

- Liu B., Lane I. (2016). Attention-based recurrent neural network models for joint intent detection and slot filling
- Позволяет делиться информацией
 - > Разным слот-филлерам
 - > Классификатору и слот-филлерам

Модуль NLG

Задача NLG-модуля— сгенерировать ответную реплику системы на основании выбранного действия и текущего состояния

Будильник был успешно установлен и прозвенит в 8 утра.

NLG на основе шаблонов

action	template 1	template 2	•••
alarm_set_inform	Будильник был успешно установлен и прозвенит в \$alarm_time	Будильник прозвенит в \$alarm_time	
weather_inform	Сейчас в \$city \$degrees градусов	В \$city сегодня \$degrees градусов	

```
{% phrase alarm_set_inform %}
  {% maybe 0.3 %}
    {{ user.name }},
  {% endmaybe %}
  Будильник был
  {% maybe 0.5 %}
    успешно
  {% endmaybe %}
  {% chooseline %}
    поставлен
    установлен
  {% endchooseline %}
 на {{ form.alarm_time | format_time }}
{% endphrase %}
```

NLG with generative models

Wen T. H. et al. (2015). Semantically conditioned LSTM-based natural language generation for spoken dialogue systems

Dialog Manager

- Задачи диалогового менеджера
 - Обновлять текущее состояние на основании очередного фрейма
- **>** Выбирать действие на основании текущего состояния (проинформировать, уточнить, вызвать API и т.д.)
- В большинстве современных продакшен-систем DM основан на написанных вручную правилах
 - > Ho y нас лекция про deep learning;)

Dialog State Tracking

- Поддерживаем распределение над возможными состояниями диалога, используя
 - **>** Гипотезы из NLU-модуля
 - **>** Гипотезы модуля ASR
 - > NER-сущности
- **>** ...
- Позволяет быть более устойчивым к ошибкам по сравнению с использованием самой вероятной гипотезы

— Закажи столик на 5

Слот	V1	V2	
Время	5 (P=0.7)	? (P=0.3)	
Люди	5 (P=0.3)	? (P=0.7)	

- На сколько человек?
- На троих

Слот	V1	V2	
Время	5 (P=0.90)	3 (P=0.01)	
Люди	3 (P=0.95)	5 (P=0.03)	

Dialog State Tracking

- Представление состояния проектируется вручную
 - > Обычно это распределения над значениями слотов
- Требуется дорогостоящая разметка
 - > Все датасеты были созданы в рамках Dialog State Tracking Challenge
- Интерес еще есть, но постепенно смещается в сторону end-to-end обучения
 - > Henderson M. et al. (2013). Deep neural network approach for the dialog state tracking challenge
 - Mrkšić N. et al. (2016). Neural Belief Tracker: Data-driven dialogue state tracking

End-to-end dialog management learning

- Интенты и слоты искусственное представление, придуманное с целью
- > Свести сложную задачу ведения диалога к простым подзадачам
- > Удешевить разметку данных
- Это представление едва ли является оптимальным
- В поиске оптимальных представлений хорошо зарекомендовали себя глубокие нейронные сети
- В идеале для обучения нужно только задать действия системы в ответ на каждую реплику

Первые робкие шаги

Williams J. D. et al. (2017). Hybrid Code Networks: practical and efficient end-to-end dialog control with supervised and reinforcement learning

Chit-chat aka conversational models

Постановка задачи

 По предыдущим репликам и, возможно, другой контекстной информации, предсказать следующую реплику в диалоге

Два подхода

- > Порождающий: моделируем *P(reply | context)*
- Ранжирующий: строим функцию Sim(reply, context)
- В API не ходим, считаем, что вся необходимая информация есть в контексте диалога и весах модели

Порождающий подход

- Задача генерации строки по строке неплохо изучена в машинном переводе
- Стандартное решение sequence-to-sequence
 - Sutskever I. et al. (2014). Sequence to Sequence Learning with Neural Networks
- Рекуррентная энкодер-декодер архитектура
- > Сеть-энкодер прочитывает исходную строку
- Сеть-декодер генерирует результат, опираясь на выход энкодера
- Подход был адаптирован к conversational models

Sequence-to-sequence for conversations

Sequence-to-sequence for conversations

- Maximum likelihood обучение
 - Максимизируем log P(reply | context, w) по w
- Генерация реплик
 - Mаксимизируем *log P(reply | context, w)* по reply (beam search)
- Стандартные архитектуры из машинного перевода
 - Энкодер и декодер многослойные LSTM или GRU сети
 - > Энкодер обычно двунаправленный
 - Attention помогает, но не сильно

Проблема слишком «общих» реплик

- Известная проблема диалоговых seq2seq моделей ответ короткими общими фразами
 - » «Я не знаю», «Не могу сказать» и т.п.
 - Sountsov P., Sarawagi S. (2016). Length Bias in Encoder Decoder Models and a Case for Global Conditioning
- Одно из решенией— максимизировать другой функционал при генерации

MMI (maximum mutual information)

- Li J. et al. (2016). A Diversity-Promoting Objective Function for Neural Conversation Models
- Было

log P(reply | context, w)

Стало

 $\log P(reply \mid context, w) - a \log P(reply \mid w)$

Или

 $(1-a)\log P(reply \mid context, w) + a\log P(context \mid reply, w)$

Context sampling

- Shao L. et al. (2017). Generating Long and Diverse Responses with Neural Conversation Models
- Было

- Стало
- \rangle Выбираем случайно context $_1$, ..., context $_k$

$$\log P(reply \mid context, w) - \frac{a}{k} \sum_{i} \log P(reply \mid context_{i}, w)$$

> По сути Monte Carlo оценка для MMI

Проблема консистентности ответов

- Boris привет
- ConversationalModelDemoBot привет
- Boris как тебя зовут?
- **ConversationalModelDemoBot** катя, а тебя?
- Boris
 боря. а какое у тебя имя?
- ConversationalModelDemoBot меня зовут лера

- Boris сколько тебе лет, лера?
- ConversationalModelDemoBot
 17, a τεбе?
- **Boris**мне 28. А тебе?
- ConversationalModelDemoBot мне 14, а тебе?
- Boris а мне все еще 28
- ConversationalModelDemoBot мне 14, я из киева

Persona-Based Conversational Model

- Li J. et al. (2016). A Persona-Based Neural Conversation Model
- Каждому спикеру сопоставляем вектор в латентном пространстве
- Декодер получает на вход вектор спикера, от имени которого генерируется реплика
- Вектор кодирует информацию о спикере: пол, возраст, особенности лексики и т.п.
- > Появляется инструмент контроля поведения модели

Persona-Based Conversational Model

Пространство спикеров: возраст

Пространство спикеров: политические взгляды

Консистентность ответов

User1	
message	Where is your hometown?
response	I'm from England.
message	Where are you from?
response	I'm from England.
message	In which city do you live now?
response	I live in London.
message	In which country do you live now?
response	I live in England.
message	What is your major?
response	Business. You?
message	What did you study in college?
response	I did business studies.
message	How old are you?
response	I'm 18.
message	What is your age?
response	I'm 18.

(Не)Консистентность ответов

Ранжирующие модели

Вместо генерации ответов можно выбирать наиболее уместные из заранее заготовленных

Плюсы

- Нет риска ответить грамматически некорректно или с обсценной лексикой
- > Обучение намного быстрее
- У Меньше проявляется проблема «общих» ответов
- > Качество выше

Минусы

> Множество реплик сильно ограничено

Архитектуры ранжирующих моделей

- Prakash A. et. al. (2016). Emulating Human Conversations using Convolutional Neural Network-based IR
- Inaba M., Takahashi K. (2016). Neural Utterance Ranking Model for Conversational Dialogue Systems

Архитектуры ранжирующих моделей

- Энкодеры реплик любые сети, которые по набору слов могут получить вектор
 - Рекуррентные или сверточные по словам или символам
 - > Полносвязные поверх усредненных векторов слов
 - Хорошо работают мешки биграмм и символьных N-грамм
- Функция уместности ответа в контексте (sim)
 - > скалярное произведение
 - > косинусное расстояние

Обучение ранжирующих моделей

Нужны отрицательные примеры

- > random sampling
- (semi) hard negative mining

Функция штрафа

- softmax на выходах sim на положительном и отрицательных примерах + кроссэнтропия
- triplet loss

"Болталка" в Алисе

- Полносвязные энкодеры ответа и контекста с 100+ слоями
- Представление текста
 - > Мешки слов, биграмм, символьных триграмм
- Сложная схема майнинга отрицательных примеров при обучении
- Двустадийный выбор ответа
- DSSM обучается на огромном корпусе отвечать "как в интернете"
- Дополнительная модель на маленьком корпусе учится выбирать только "в стиле Алисы"

Как измерить качество модели?

- Если ответ не похож на ответ из тестовой выборки, это еще ни о чем не говорит
 - Даже на банальное «привет» существуют десятки уместных ответов
- Попытки использовать метрики из машинного перевода (BLEU) провалились
 - Liu C. W. et al. (2016). How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation

Как измерить качество модели?

State of the art — использовать краудсорсинг

- Уместен ли ответ в данном контексте?
- Какой из данных ответов более уместен?

Оффлайн-аппроксимация

- > Собрать для каждого контекста несколько вариантов ответа
- > Разметить с помощью краудсорсинга
- Модель должна ранжировать хорошие ответы выше плохих

Взаключение

Диалоговые системы делать сложно

- Инженерные и продуктовые проблемы ограничивают применение прогрессивных методов
- > Большой разрыв между академией и индустрией

Нужны новые подходы

Борис Янгель

Руководитель группы разработки диалоговых систем

hr0nix@yandex-team.ru