```
# import libraries
# data loading, manipulation and plotting
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
# data split
from sklearn.model_selection import train_test_split
# label encoding
from sklearn.preprocessing import LabelEncoder
# ignore warnings
import warnings
warnings.filterwarnings('ignore')
# data scalling and standardization
from sklearn.preprocessing import StandardScaler
# model evaluation
from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix, classification_report
# Read data in python
df = pd.read_csv("loan_repayment_data.csv")
df.head(2)
```

	credit.policy	purpose	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.ut
0	1	debt_consolidation	0.1189	829.10	11.350407	19.48	737	5639.958333	28854	5
1	1	credit_card	0.1071	228.22	11.082143	14.29	707	2760.000000	33623	7

```
# Consise Summery / dataset information
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9578 entries, 0 to 9577
Data columns (total 14 columns):

Column Non-Null Count Dtype

```
credit.policy
                       9578 non-null
                                       int64
    purpose
                       9578 non-null
                                       object
    int.rate
                       9578 non-null
                                       float64
    installment
                       9578 non-null
                                       float64
   log.annual.inc
                       9578 non-null
                                       float64
    dti
                       9578 non-null
                                       float64
                       9578 non-null
    fico
                                       int64
    days.with.cr.line 9578 non-null
                                       float64
   revol.bal
                       9578 non-null
                                       int64
 9 revol.util
                       9578 non-null
                                       float64
 10 inq.last.6mths
                       9578 non-null
                                       int64
11 deling.2yrs
                       9578 non-null
                                       int64
 12 pub.rec
                       9578 non-null
                                       int64
 13 not.fully.paid
                       9578 non-null
                                       int64
dtypes: float64(6), int64(7), object(1)
```

memory usage: 1.0+ MB

Statistical Summary df.describe()

	credit.policy	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	re
count	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	9.578000e+03	957
mean	0.804970	0.122640	319.089413	10.932117	12.606679	710.846314	4560.767197	1.691396e+04	4
std	0.396245	0.026847	207.071301	0.614813	6.883970	37.970537	2496.930377	3.375619e+04	2
min	0.000000	0.060000	15.670000	7.547502	0.000000	612.000000	178.958333	0.000000e+00	
25%	1.000000	0.103900	163.770000	10.558414	7.212500	682.000000	2820.000000	3.187000e+03	2
50%	1.000000	0.122100	268.950000	10.928884	12.665000	707.000000	4139.958333	8.596000e+03	4
75%	1.000000	0.140700	432.762500	11.291293	17.950000	737.000000	5730.000000	1.824950e+04	7
max	1.000000	0.216400	940.140000	14.528354	29.960000	827.000000	17639.958330	1.207359e+06	11

Checking Missing values

```
# Checking For Null Values
df.isnull().sum()#.sum()
```

```
credit.policy
                     0
purpose
                     0
int.rate
installment
                     0
log.annual.inc
dti
fico
days.with.cr.line
revol.bal
revol.util
inq.last.6mths
delinq.2yrs
pub.rec
not.fully.paid
                     0
dtype: int64
```

Our DataFrame contain Zero Null values.

▼ Checking Correlation

```
plt.figure(figsize = (10, 10))
sns.heatmap(df.corr(), annot = True, cmap = "Reds")
plt.show()
```


We can see that init rate, credit policy, fico and inq.last.6mths has corresponding grater impact on target class(not.gully.paid)

delinq.zyrs --0.076 0.16 -0.00440.029 -0.022 -0.22 0.081 -0.055 -0.045 0.021 1 0.00920.0069

▼ Categorical independent variable

Now lets deal with categorical data, **Purpose** attribute/variable.

unique values in purpose attribute

df.purpose.value_counts()

debt_consolidation	3957
all_other	2331
credit_card	1262
home_improvement	629
small_business	619
major_purchase	437
educational	343
Name: purpose, dtype:	int64

It has 6 unique values. lets convert these labels into numeric form.

Encoding We will be using **Label Encoder** to convert labels available in purpose attribute.

It will Encode purpose labels with value between 0 and n_classes-1(5).

```
df['purpose']=LabelEncoder().fit_transform(df['purpose'])
df.head(2)
```

	credit.policy	purpose	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util	inq.
0	1	2	0.1189	829.10	11.350407	19.48	737	5639.958333	28854	52.1	
1	1	1	0.1071	228.22	11.082143	14.29	707	2760.000000	33623	76.7	

Checking distribution of target variable

```
sns.countplot(data = df, x = 'not.fully.paid')
plt.title('TV')
plt.show()
```


labels = 'Yes', 'No'
ex = [0.1, 0.1]
df['not.fully.paid'].value_counts().plot.pie(labels = labels, autopct = '%1.2f%%', shadow = True, explode = ex)
plt.show()

Checking duplicates

```
duplicates = df[df.duplicated()]
print("Duplicates: ", len(duplicates))
duplicates

Duplicates: 0
    credit.policy purpose int.rate installment log.annual.inc dti fico days.with.cr.line revol.bal revol.util inq.las
```

In our data we don't have any duplicates.

▼ first split

• training(70%) and testing(30%)

▼ Second split

• training(70%) and validation(30%)

```
X_train, X_val, y_train, y_val = train_test_split(X_train1, y_train1, test_size=0.3, random_state=0)
print(X_train.shape)
print(X_val.shape)
```

Applying ML Algorithms

from sklearn.metrics import classification_report
print(classification_report(y_val, y_pred))

	precision	recall	f1-score	support
0	0.85	1.00	0.92	1700
1	0.45	0.02	0.03	312
accuracy			0.84	2012
macro avg	0.65	0.51	0.47	2012
weighted avg	0.79	0.84	0.78	2012

```
# Random Forest Classifier Algorithm
from sklearn.ensemble import RandomForestClassifier
```

```
RFCmodel.fit(X_train, y_train)
y_pred = RFCmodel.predict(X_val)
from sklearn import metrics
```

print("Accuracy of Random Forest model is ", metrics.accuracy_score(y_val, y_pred) * 100, "%.")

Accuracy of Random Forest model is 84.29423459244532 %.

```
# Performance Evaluation
```

```
from sklearn.metrics import confusion_matrix
from sklearn.metrics import ConfusionMatrixDisplay
cm = confusion_matrix(y_val, y_pred)
```

Plotting Confusion Matrix

dienlaw - ConfucionMathivDienlaw(cm)

from sklearn.metrics import classification_report
print(classification_report(y_val, y_pred))

	precision	recall	f1-score	support
0	0.85	0.99	0.91	1700
1	0.42	0.03	0.06	312
accuracy			0.84	2012
macro avg	0.63	0.51	0.49	2012
weighted avg	0.78	0.84	0.78	2012

We Found that the Best Model for this DataSet is Random Forest with

1. Gini used

2. Recall is 84%

Accuracy of 78%.

as training and test set is .7 and .3.