IIT Hyderabad SHANTANU YADAV, EE20MTECH12001 CHALLENGE PROBLEM 1

Lines and Planes

Problem Statement

Shortest distance between two skew lines

Let the two lines are l_1 and l_2 . The equations of these lines are

$$\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$$
 and $\overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ respectively.

These lines pass through the points A and B whose position vectors are $\overrightarrow{a_1}$ and $\overrightarrow{a_2}$. Let us assume that the lines are parallel to the vectors $\overrightarrow{b_1}$ and $\overrightarrow{b_2}$ respectively.

Let \overrightarrow{PQ} be the shortest distance vector between l_1 and l_2 . Then \overrightarrow{PQ} is perpendicular to both l_1 and l_2 which are parallel to $\overrightarrow{b_1}$ and $\overrightarrow{b_2}$ respectively. Therefore, \overrightarrow{PQ} is perpendicular to both $\overrightarrow{b_1}$ and $\overrightarrow{b_2}$. But $\overrightarrow{b_1} \times \overrightarrow{b_2}$ is perpendicular to both $\overrightarrow{b_1}$ and $\overrightarrow{b_2}$. Therefore, \overrightarrow{PQ} is parallel to $\overrightarrow{b_1} \times \overrightarrow{b_2}$.

Let \hat{n} is a unit vector along \overrightarrow{PQ} . Then, we have

$$\hat{n} = \pm \frac{\overrightarrow{b_1} \times \overrightarrow{b_2}}{|\overrightarrow{b_1} \times \overrightarrow{b_2}|}$$

therefore,

 $PQ = \text{projection of } \overrightarrow{AB} \text{ on } \overrightarrow{PQ}$

 \Longrightarrow

$$PQ = \overrightarrow{AB} \cdot \hat{n}$$

$$PQ = \pm (\overrightarrow{a_2} - \overrightarrow{a_1}) \cdot \left\{ \frac{\overrightarrow{b_1} \times \overrightarrow{b_2}}{|\overrightarrow{b_1} \times \overrightarrow{b_2}|} \right\}$$

$$= \pm \frac{(\overrightarrow{b_1} \times \overrightarrow{b_2}) \cdot (\overrightarrow{a_2} - \overrightarrow{a_1})}{|\overrightarrow{b_1} \times \overrightarrow{b_2}|}$$
(1)

Since the distance PQ is to be taken as positive, hence

$$PQ = \left| \frac{(\overrightarrow{b_1} \times \overrightarrow{b_2}) \cdot (\overrightarrow{a_2} - \overrightarrow{a_1})}{|\overrightarrow{b_1} \times \overrightarrow{b_2}|} \right| \tag{2}$$