

CSE301 - DATABASE

Normalization

Normalization

What is Normalization?

- Normalization is a database design technique that reduces data redundancy and eliminates undesirable characteristics like Insertion, Update and Deletion Anomalies.
- ☐ It is a process of organizing data in the database
 - ✓ Minimize redundancy in relation.
 - ✓ Divides larger tables into smaller tables and links them using relationships.

What is redundancy?

☐ When some data is stored multiple times unnecessarily in a database.

Student_id	Name	Age	Dept_Code	Dept_Name	Hod_Name
1	A	18	101	SE	XYZ
2	В	19	101	SE	XYZ
3	С	18	_101	SE	XYZ.
4	D	20	102	CNDC	PQR
5	E	21	102	CNDC	PQR ;
6	F	19	103	ECE	KLM

Normal Forms

☐ There exists several other normal forms even after BCNF but generally we normalize till BCNF only.

First Normal Form (1NF)

- ☐ A given relation is called in First Normal Form (1NF):
 - if each cell of the table contains only an atomic value.

Or

if the attribute of every tuple is either single valued or a null value.

- Order of rows & order of columns are irrelevant.
- In every column all value must be in same domain.
- Every column should have a unique name

■ Note:

✓ By default, every relation is in 1NF.

First Normal Form (1NF)

■ Example:

✓ The following relation is not in 1NF:

Student_id	Name	Subjects
100	Dat	Computer Networks, Data Structure
101	Duc	Database, Java, Software Engineering
102	Phuc	Database

First Normal Form (1NF)

- ✓ This relation can be brought into 1NF.
- ✓ This can be done by rewriting the relation such that each cell of the table contains only one value.

Student_id	Name	Subjects
100	Dat	Computer Networks
100	Dat	Data Structure
101	Duc	Database
101	Duc	Java
101	Duc	Software Engineering
102	Phuc	Database

- ☐ A given relation is called in Second Normal Form (2NF) if and only if
 - ✓ Relation already exists in 1NF.
 - ✓ No partial dependency exists in the relation ([prime → non-prime] should not be present)

- Example: The following relation is not in 2NF:
- \square R(ABCD), FD: {AB \rightarrow D, B \rightarrow C}
- ☐ Find candidate key =?
 - \rightarrow {AB}⁺ = AB = ABCD = R So, Candidate key is = AB
- ☐ Prime attributes: A, B (part of candidate key)
- ☐ Non-prime attributes: C, D
- \square Now check all FD's. Is there any (Prime \rightarrow Non-prime) exists or not?
- \square B \rightarrow C is Prime \rightarrow Non-prime. So this relation is not in 2NF.

- Example: How to decompose this relation into 2NF?
- If a partial dependency exists,
- we remove the partially dependent attribute(s) from the relation by placing them in a new relation along with a copy of their determinant (Create a new table for each partial dependency).
- \blacksquare R(ABCD), FD: {AB \rightarrow D, B \rightarrow C} will be,
 - $ightharpoonup R_1(\underline{AB}D)$, FD: $\{AB \rightarrow D\}$ here AB is key
 - $ightharpoonup R_2(\underline{BC}), \qquad FD: \{B \to C\} \text{ here B is key}$

- Example: The following relation is in 2NF:
- \square R (V, W, X, Y, Z) FD: {VW \rightarrow XY, Y \rightarrow V, WX \rightarrow YZ}
- ☐ The possible candidate keys for this relation are: VW, WX, WY
- \square From here, Prime attributes = { V, W, X, Y}, Non-prime attributes = { Z}
- ☐ Now, if we observe the given dependencies, there is no partial dependency.
- This is because there exists no (prime \rightarrow non-prime) dependency where incomplete candidate key determines any non-prime attribute.
- ☐ Thus, we conclude that the given relation is in 2NF.

- ☐ A given relation is called in Third Normal Form (3NF) if and only if
 - ✓ Relation already exists in 2NF.
 - ✓ No transitive dependency exists for non-prime attributes.

- ☐ Example: The following relation is not in 3NF:
- \square R(ABC), FD: {A \rightarrow B, B \rightarrow C}
- ☐ Find candidate key =?
 - \triangleright = {A}⁺ = AB = ABC = R So, Candidate key is = A
- ☐ Prime attributes: A (part of candidate key)
- ☐ Non-prime attributes: B, C
- Now check all FD's. Is there any (Non-prime \rightarrow Non-prime) exists or not?
- \square B \rightarrow C is Non-prime \rightarrow Non-prime. So this relation is not in 3NF.

- Example: How to decompose this relation into 3NF?
- ☐ If a partial dependency exists, first we remove the partially dependent attribute(s) from the relation by creating a new table for each partial dependency.
- If a transitive dependency exists, we remove the transitively dependent attribute(s) from the relation by placing the attribute(s) in a new relation along with a copy of the determinant. (Create a new table for each transitive dependency).
- \square R(ABC), FD: {A \rightarrow B, B \rightarrow C} will be,
 - $ightharpoonup R_1(\underline{A}B)$, FD: $\{A \rightarrow B\}$ here A is key
 - $ightharpoonup R_2(\underline{B}C)$, FD: $\{B \to C\}$ here B is key

- Example: The following relation is in 3NF:
- \square R (A, B, C, D, E) FD: {A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A}
- ☐ Find candidate key =?
 - So, Candidate keys are A, E, CD, BC.
- ☐ Prime attributes: A, B, C, D, E (part of candidate key)
- ☐ Non-prime attributes: There are no non-prime attributes
- Now check all FD's. Is there any (Non-prime \rightarrow Non-prime) exists or not?
- \square There is no Non-prime \rightarrow Non-prime. So this relation is in 3NF.

Find the Normal Forms: Exercises

- \square R(ABCDE), FD: {CE \rightarrow D, D \rightarrow B, C \rightarrow A}
 - ✓ CE is candidate key
 - ✓ It is in 1NF. Because $C \rightarrow A$ is a partial dependency.
- \square R(ABCDEF), FD: {AB \rightarrow C, DC \rightarrow AE, E \rightarrow F}
 - ✓ ABD, BCD are candidate keys
 - ✓ It is in 1NF. DC \rightarrow AE {DC \rightarrow A, DC \rightarrow E}, Because DC \rightarrow E is a partial dependency
- \square R(ABCDE), FD: {AB \rightarrow CD, D \rightarrow A, BC \rightarrow DE}
 - ✓ AB, BD, BC are candidate keys
 - ✓ It is in 3NF. Because all LHS are not super key, as well as no partial or transitive FD's.