Distributed Stochastic Gradient Descent

Kevin Yang and Michael Farrell

April 27, 2016

Motivation - Deep Learning

- Deep-Learning
 - Objective: Learn a complicated, non-linear function that minimzes some loss function
- Why do we need deep models?
 - The class of linear functions is inadequate for many problems.

Deep neural network

http://www.rsipvision.com/exploring-deep-learning/

Motivation - Deep Learning

- How do we learn these deep models?
 - Choose a random example
 - Run the neural network on the example
 - Adjust the parameters of the network such that our loss function is minimized more than it was before
 - Repeat
- Difficulties?
 - Local Minima
 - Non-convexity
 - Neural Networks can have millions or even billions of parameters

Motivation - Deep Learning

- How do we learn these deep models?
 - Choose a random example
 - Run the neural network on the example
 - Adjust the parameters of the network such that our loss function is minimized more than it was before
 - Repeat
- Difficulties?
 - Local Minima
 - Non-convexity
 - Neural Networks can have millions or even billions of parameters

Motivation - SGD

- ▶ How do we maximize our reward function?
 - One common technique is Stochastic Gradient Descent
 - **w** is the vector of parameters for the model
 - $\blacktriangleright \eta$ is the learning rate
 - $ightharpoonup f(\mathbf{w})$ is the loss function evaluated with the current parameters \mathbf{w}
 - $\mathbf{w} \leftarrow \mathbf{0}$ while $\mathbf{f}(\mathbf{w})$ is not minimized do for i = 1, n do $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla f(\mathbf{w})$
 - ► As the number of training examples, *n*, and the number of parameters, |**w**|, increases, this algorithm quickly becomes very slow...

Motivation - Distributed SGD

- Since some of these models take days/weeks/months to run, we would hope that we could use a distributed computing cluster parallelize this process.
- ► Learn from Google!
 - DistBelief- 2012
 - Downpour SGD
 - Sandblaster L-BFGS
 - TensorFlow -2015
 - ▶ gRPC

Motivation - Distributed SGD

- Since some of these models take days/weeks/months to run, we would hope that we could use a distributed computing cluster parallelize this process.
- ► Learn from Google!
 - ▶ DistBelief- 2012
 - Downpour SGD
 - Sandblaster L-BFGS
 - ► TensorFlow -2015
 - ▶ gRPC

DistBelief - Downpour SGD

"An asynchronous stochastic gradient descent procedure supporting a large number of model replicas."

DistBelief - Sandblaster L-BFGS

 "A framework that supports a variety of distributed batch optimization procedures, including a distributed implementation of L-BFGS"

TensorFlow-GRPC

- Second Generation ML Model focused on distributing models to CPUs and GPUs
- ▶ Uses the high performance RPC framework (GRPC) to communicated between separate processes
 - Uses Protocol Buffers -v3
 - C-based
 - ► Client-server stubs in 10+ languages and counting

DistBelief/TensorFlow Summary

- TensorFlow is basically the second version of DistBelief that is approximately twice as fast and much more user-friendly.
- Results from DistBelief:

Figure 4: Left: Training accuracy (on a portion of the training set) for different optimization methods. Right: Classification accuracy on the hold out test set as a function of training time. Downpour and Sandblaster experiments initialized using the same "-01 bour warmstart of simple SGD.

Figure 5: Time to reach a fixed accuracy (16%) for different optimization strategies as a function of number of the machines (left) and cores (right).

Our Project

- We hope to build our own Distributed SGD model modeled based on both DistBelief and TensorFlow
 - From TensorFlow- Use GRPC with Protocol Buffers to communicated between processes
 - From DistBelief -Implement Downpour-SGD (the most effective model with limited resources) first, and then attempt to implement Sandblaster

Our Example

Talk about image dataset

Exploration of Downpour-SGD

- ► The Downpour-SGD requires the passing of parameters between processes
- Bottleneck here is bandwidth
- ▶ Parameters in the range of 100MB-50GB

Large Data Sets

Protocol Buffers are not designed to handle large messages. As a general rule of thumb, if you are dealing in messages larger than a megabyte each, it may be time to consider an alternate strategy.

That said, Protocol Buffers are great for handling individual messages within a large data set. Usually, large data sets are really just a collection of small pieces, where each small piece may be a structured piece of data. Even though Protocol Buffers cannot handle the entire set at once, using Protocol Buffers to encode each piece greatly simplifies your problem: now all you need is to handle a set of byte strings rather than a set of structures.

Exploration of Downpour-SGD Algorithm

