23/02/2021

- 1. Una società di distribuzione di bevande dispone di due camion per il trasporto tipi di bevanda. La bevanda A è distribuita in contenitori di vetro e in confeziori bottiglie da un litro, la bevanda B in contenitori di vetro e in confezioni di 5 bottiglie da 2 litri, la bevanda C in contenitori di plastica e confezioni di 6 bottiglie da 1,5 litri. Una volta a destinazione, le bottiglie sono vendute al prezzo di 2, 3 e 1 euro per bottiglia di bevanda A, B e C, rispettivamente. Il primo camion può trasportare fino a un massimo di 2000 litri al costo di 5 centesimi al litro, il secondo fino a 3000 litri al costo di 4 centesimi al litro. Il budget complessivo per il trasporto è di 300 euro. Si scriva un modello di programmazione lineare che massimizzi il ricavo tenendo conto che:
 - il primo camion non può trasportare più di 100 confezioni di bevanda B;
 - il secondo camion non può trasportare contenitori di vetro differenti;
 - a destinazione, si ha la possibilità di comporre dei cestini assortiti che contengono 4 bottiglie di bevanda A, 3 bottiglie di bevanda B e 2 bottiglie di bevanda C. Ogni cestino comporta un ricavo extra, rispetto a quello derivante dalle singole bottiglie in esso contenute, di 11 euro.

//xij: # CONFEZ bevende i E {A,B,C} su combu j C {1,2}	// yij: 1 setnepris i c { A, B { } } // yij: 1 setnepris i c { A, B { } }
max 2.12 (x1+ x12) + 3.5 (x81+x82) + + 1.6. (x1+x2)	YAZ+YBZ ≤ 1 XAZ ≤ M YAZ ×BZ ≤ M YBZ
×B1 515	// 4 A 3 B 2 c
$x_{A1} \cdot 12 \cdot 1 + x_{B1} \cdot 5 \cdot 2 + x_{C1} \cdot 6 \cdot 1, 5 \le 2000 / 10 + x_{A2} \cdot 12 \cdot 1 + x_{B2} \cdot 5 \cdot 2 + x_{C2} \cdot 6 \cdot 1, 5 \le 3000$	4 2 = 12(xA1 +xA2)
0,05/12(×4,142) + 10(×81+42) +9(xc1+42) + +0.04 (12×2+10 ×82+9×62) <300	3+ 55 (x81782)
$\times ij \in \mathbb{Z}_{+}$	2 € € €

2. Si consideri il seguente problema di programmazione lineare:

max
$$x_2 - 4x_3$$

s.t. $x_1 - 2x_2 + x_3 \le 2$
 $x_1 - x_2 + 2x_3 \ge -2$
 $-2x_1 + x_2 - x_3 \le 0$
 $x_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \le 0$

- a) lo si risolva con il metodo del simplesso, applicando la regola anticiclo di Bland;
- b) possiamo dedurre qualche informazione sul corrispendente problema duale direttamente a partire dal risultato del punto precedente? in base a quale teorema?

Punto (a)

Punto (b)

In base al fatto che il problema primale è illimitato, il problema duale è inammissibile (teorema della dualità debole).

(Esercizio 4 – Dualità)

5. Si consideri il seguente tableau del simplesso:

X_1	x_2	X_3	x_4	X_5	x_6	x_7	Z	b luigide
0			- 31				-1	-7
0	10	0	400	0	0	1	0	100
1	- 33	0	15	-2	1	0	0	330
0	32	1	1	5	-1	0	0	100 330 320

Senza operazioni di pivot e fornendo giustificazione teorica delle risposte:

- a) si può individuare una soluzione di base corrispondente? qual è? è ottima?
- b) su quali elementi sarebbe possibile effettuare il pivot secondo le regole del simplesso (indipendentemente dalle regole anticiclo)?
- c) considerando le variabili ordinate per indice crescente, quale sarà il cambio base secondo le regole del simplesso e applicando la regola di Bland?
- d) Qual è il valore della funzione obiettivo dopo il cambio base del punto c)?
- e) La soluzione di base ottenuta in seguito al cambio base del punto c) è degenere oppure no?

a) Soluzione di base ottima data da $B = [x_7 \ x_1 \ x_3]$, in quanto ci sono le colonne della matrice identità

Avrò sicuramente una soluzione ammissibile perché $\bar{c} < 0$ (costo ridotto negativo), $\theta > 0$ (rapporto minimo positivo), dunque l'incremento della funzione obiettivo è positivo e migliora, dato che avremo

$$z_{min} = z + \bar{c}\theta > 0$$

- b) Candidati per il cambio base (rapporti minimi) $\rightarrow x_2, x_4, x_6$
- c) Con Bland esce x_3

d)
$$z_{new} = -(-z) + (-1)\frac{320}{32} = 7 - 10 = -3$$
 (si nota anche da qui non è ottima)

e) La soluzione è degenere in quanto x_3 esce dalla base, ma x_7 assume valore 0, assieme alle altre rimanendo in base.

(Esercizio 6 - Branch and Bound)