

A Computational Immune Approach for Modeling Different Levels of Severity in COVID-19 Infections

25th International Conference on Computational Science - 2025 Singapore

Matheus Ribeiro, Bárbara Quintela, **Ruy Freitas Reis**, Rodrigo dos Santos and Marcelo Lobosco
July 7–9th, 2025

Pós-Graduação em Modelagem Computacional Departamento de Ciência da Computação Universidade Federal de Juiz de Fora

Overview

- 1. Introduction
- 2. Background

- 3. Methods
- 4. Results and Discussion
- 5. Conclusion and Future Work

Introduction

The Challenge of GBS

- Group B Streptococcus (GBS) is a leading cause of neonatal mortality and morbidity.
 - 410,000 cases worldwide, leading to 147,000 stillbirths and infant deaths
- It can cause severe infections like sepsis, pneumonia, and meningitis in newborns.
- Current prevention relies on maternal screening and intrapartum antimicrobial prophylaxis (IAP).
- Maternal vaccination is a promising strategy, offering transplacental transfer of antibodies for protection.
- The Type V GBS-TT conjugate vaccine is a significant development.

The Role of Computational Models

- Computational models are valuable tools in vaccine research.
- They simulate disease dynamics, immune responses, and vaccine effects within a controlled virtual environment.
- Such models enable rapid exploration of scenarios, including variations in vaccine dosage and administration schedules.
- Ordinary differential equation (ODE) models offer a balance between interpretability and computational efficiency.
- In this study, we extend an established ODE model to evaluate the Type V GBS-TT conjugate vaccine.

Background

GBS and Immune Response

- GBS (Streptococcus agalactiae) is a common bacterium.
- The innate immune system is the first line of defense, involving cells like neutrophils and macrophages.
- The adaptive immune system produces specific antibodies against GBS antigens, primarily targeting the polysaccharide capsule.
- Vaccines mimic natural infection to stimulate memory responses without causing disease.
- Type V GBS-TT conjugate vaccine uses capsular polysaccharides (CPS) conjugated with tetanus toxoid (TT) to enhance immunogenicity.

Vaccine Dosages and Antibody Production

- A study by Baker et al. ¹ evaluated the Type V GBS-TT conjugate vaccine at different dosages in healthy adults.
- The vaccine elicited a dose-dependent immune response, with higher doses leading to increased specific antibodies.

¹Baker et al., Dose–response to type V group B streptococcal polysaccharide-tetanus toxoid conjugate vaccine in healthy adults, Vaccine 25(1), pp 55-63, (Jan 2007).

Vaccine Dosages and Antibody Production

Figure 1: Sum of IgG, IgM and IgA for the distinct vaccines

Methods

Mathematical Model for Immune Response

- The model is a system of Ordinary Differential Equations (ODEs) adapted from Bonin et al.².
- It describes interactions among:
 - Vaccine particles (Vp)
 - Antigen-presenting cells (naive Ap, mature Apm)
 - Lymphocytes (Thn, The, Tkn, Tke, B, Bm, Ps, Pl)
 - Antibodies (A)
- The model includes terms for vaccine elimination, cell maturation, activation, replication, differentiation, and decay.

²Bonin *et al.*, Validation of a yellow fever vaccine model using data from primary vaccination in children and adults, revaccination and dose-response in adults and studies with immunocompromised individuals. BMC Bioinformatics 21(S17) (Dec 2020)

Model scheme

$$\frac{d}{dt}V_{\mathbf{p}} = -\underbrace{\begin{bmatrix} c_{v1}V_{\mathbf{p}} \\ c_{v2} + V_{\mathbf{p}} \end{bmatrix}}_{\mathbf{l}} - k_{v1}V_{\mathbf{p}}A - k_{v2}V_{\mathbf{p}}T_{E}$$

$$\frac{d}{dt}V_{\rm p} = - \ \frac{c_{v1}V_{\rm p}}{c_{v2} + V_{\rm p}} - \underbrace{k_{v1}V_{\rm p}A}_{} - k_{v2}V_{\rm p}T_E$$
 Neutralization by antibodies

$$\frac{d}{dt}V_{\mathbf{p}} = -\frac{c_{v1}V_{\mathbf{p}}}{c_{v2} + V_{\mathbf{p}}} - k_{v1}V_{\mathbf{p}}A - \boxed{k_{v2}V_{\mathbf{p}}T_E}$$

$$\downarrow$$
Elimination by T killer cells

Cohort Data and Calibration

- Cohort data was extracted from a phase 1 trial on Type V GBS-TT conjugate vaccine (V-TT) versus an unconjugated Type V capsular polysaccharide (V CPS) vaccine.
- Healthy adults (18-50 years) were assigned to four vaccine groups.
- Blood samples were collected at baseline, 4, 8, 26, and 52 weeks post-vaccination.

Cohort Data and Calibration

- Type V CPS-specific antibodies (IgG, IgA, and IgM) were quantified by ELISA.
- Differential Evolution (DE) was used to calibrate seven key parameters.
- The objective function minimized the L2 norm of the relative error between observed and numerical antibody levels.

Results and Discussion

Model Accuracy Across Vaccine Doses

Figure 2: Unconjugated CPS: $37\mu g$

Model Accuracy Across Vaccine Doses (Cont.)

Figure 3: V-TT: $38.5\mu g \ CPS/17.0\mu g \ TT$

Model Accuracy Across Vaccine Doses (Cont.)

Figure 4: V-TT: $9.6\mu g$ CPS/ $4.3\mu g$ TT

Model Accuracy Across Vaccine Doses (Cont.)

Figure 5: V-TT: $2.4\mu g$ CPS/ $1.1\mu g$ TT

Model Accuracy Across Vaccine Doses

- The model accurately reproduced the dose-dependent response observed in the clinical trial.
- Higher CPS doses elicited stronger and more sustained antibody levels.
- The highest V-TT dose (38.5 μg CPS/17.0 μg TT) showed near-perfect alignment with cohort data.
- Lower doses ($2.4\mu g$ CPS/ $1.1\mu g$ TT) exhibited greater discrepancies, with simulated titers consistently falling below the GMT.
 - These deviations suggest opportunities for refinement.

Calibration Success and Parameter Differences

- The DE algorithm successfully calibrated seven key parameters to fit the model to cohort data for both unconjugated CPS and conjugated V-TT vaccines.
- Significant differences were observed between the two vaccine formulations, reflecting distinct immunological mechanisms.
- For the V-TT vaccine, the antigen-presenting cell maturation rate (β_{ap}) was 93 times higher than for the unconjugated vaccine.
 - This supports the adjuvant effect of tetanus toxoid.

Calibration Success and Parameter Differences

- The antibody-mediated vaccine clearance rate (k_{v1}) was approximately 1,700 times higher for the conjugated vaccine.
 - Suggests more effective neutralization of vaccine particles.
- Short-lived plasmocyte decay rate (δ_{ps}) remained consistent, but antibody decay rate (δ_A) was slightly higher for V-TT.

Conclusion and Future Work

Conclusions

- Developed a computational model to simulate immune response to Type V GBS-TT conjugate vaccine.
- Successfully reproduced clinical trial data across multiple dosages.
- Calibration with Differential Evolution provided mechanistic insights into dose-dependent efficacy.
- Conjugated V-TT vaccine elicited a more robust and sustained antibody response than unconjugated CPS.
- Enhanced APC maturation and accelerated antibody-mediated clearance are critical factors for the superior immune response.

Future Work

- Incorporate additional parameters into the calibration process for improved precision.
- Explore uncertainty quantification.
- Integrate patient-specific immune profiles to enable personalized dosing recommendations.
 - Especially for high-risk populations.

Obrigado! Thanks!

