MAT417 Lecture Notes

Arky!! :3c

'25 Fall Semester

Contents

1	Day 1: Course Administrative Details and Preliminaries (Sep. 2, 2025)	2
2	Day 2: More accurate treatment of the Riemann-Zeta function (Sep. 4, 2025)	4

§1 Day 1: Course Administrative Details and Preliminaries (Sep. 2, 2025)

Course materials will be free and available online; here is a list of reference materials:

- Serre's Course in Arithmetics up to Chapter 4,
- Lecture notes by Noam Elkies (which will be posted on Quercus).

Homework will be posted every Thursday and due the following Thursday, and is worth **20%** of the course grade.

The central question of number theory is about the structure of prime numbers, of which the main analytic tools used are the Riemann ζ -functions and its relatives (the L-functions). We may discuss things like modular forms, Hecke operators and L-functions related to Galois representation later on.

Let us consider the following two questions;

- (a) How many primes are there? There are infinitely many of them.
- (b) Can you say something about how the primes are distributed?

Given x > 0, where x may be a natural or a real, let us define

$$\pi(x) = \#\{p \text{ is prime } | p \le x\}.$$

Can we estimate how $\pi(x)$ grows? The prime number theorem states that the growth of $\pi(x)$ is proportional to $\frac{x}{\log x}$, i.e.,

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\log x} = 1, \qquad \frac{\pi(x)}{x} \to 0 \text{ as } x \to \infty.$$

As an exercise, show that the prime number theorem informally says that the nth prime p_n is of the size $n \log n$.

Theorem 1.1 (Dirichlet Theorem). Let a, d be coprime naturals where a < d. Consider all numbers of the form a + kd, where k is also a natural; infinitely many of these numbers are prime.

Proof. Done with L-functions. Check here.

Theorem 1.2 (Fundamental Theorem of Arithmetic). Any nautral number N can be written uniquely as $p_1^{a_1} \dots p_n^{a_n}$, where p_i are primes and $a_i > 0$.

Proposition 1.3 (Euclid's Argument on the Infinitude of Primes). Assume that $p_1 < p_2 < \cdots < p_n$ constitute all the primes. Then it is clear that $p_1 \dots p_n + 1$ is coprime to any p_i . By the fundamental theorem of arithmetic, this means that $p_1 \dots p_n + 1$ is divisible by a prime less than $p_1 \dots p_n + 1$ not given by some p_i , which is a contradiction.

Can we use this to get an estimate on $\pi(x)$? We claim that $\pi(x) > \log_2 \log_2 x$. Let p_n be the *n*th prime. Then

$$p_{n+1} < 1 + \prod_{i=1}^{n} p_i < \prod_{i=1}^{n} p_n.$$

If equality always held then we would have $p_n = 2^{2^{n-1}}$. However, in actuality, $p_n < 2^{2^{n-1}}$, so we must have that $\pi(x) > \log_2 \log_2 x$.

The Riemann-Zeta function is given by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Claim 1.4. ζ is absolutely convergent for any s > 1.

Proof. Will be given next class.

Lemma 1.5. For s > 1, we have that

$$\zeta(s) \le \prod_{p \text{ is prime}} \frac{1}{1 - p^{-s}}.$$

Proof. This is given directly by geometric series, i.e.,

$$\frac{1}{1 - p^{-s}} = \sum_{i=0}^{\infty} p^{-is} = \sum_{\substack{p_1 < \dots < p_n \\ a_1, \dots, a_n > 0}} p_1^{a_1} \dots p_n^{a_n}.$$

Moreover, if we had finitely many primes, we could apply this to s=1 and obtain that the sum of $\frac{1}{n}$ is convergent, which is clearly false. This also implies that the sum of the reciprocals of primes is divergent, and you can't have $\pi(x)$ be bounded from above by Cx^D , where C>0, D<1.

§2 Day 2: More accurate treatment of the Riemann-Zeta function (Sep. 4, 2025)

Note that I won't be here for the second hour of Thursday classes because I have complex analysis during that time. Isaac will be taking the full hour's worth of notes, though. *i lied i'm staying for this lecture*

Today's lesson agenda is as follows,

- (i) More accurate treatment of $\zeta(s)$;
- (ii) Prove that $\sum_{p \text{ is prime }} \frac{1}{p}$ is divergent (per Euler),
- (iii) Start doing preaptory material for the Dirichlet theorem, and introduce the Dirichlet L-functions.

Lemma 2.1. The Riemann-Zeta function is convergent for $s \in \mathbb{R}$, s > 1; it is absolutely convergent for $s \in \mathbb{C}$, $\Re s > 1$.

We will later prove that for $\Re s > 1$, $\zeta(s)$ is a holomorphic function. Let's start by comparing $\sum \frac{1}{n^s}$ to $\int_1^\infty x^{-s} dx$; observe that

$$\int_{1}^{a} x^{-s} dx = \left. \frac{x^{1-s}}{1-s} \right|_{1}^{a} = \frac{a^{1-s}}{1-s} - \frac{1}{1-s},$$

of which a^{1-s} approaches 0 as $a \to \infty$. Thus, we have that

$$\int_{1}^{\infty} x^{-s} = \frac{1}{s-1}.$$

We also have that

$$\sum_{n=2}^{\infty} n^{-s} \le \int_{1}^{\infty} x^{-s} \, dx = \frac{1}{s-1},$$

and

$$\sum_{n=2}^{N} n^{-s} \le \int_{1}^{N} x^{-s} \, dx,$$

which yields convergence. Thus, we have that inequality that $\zeta(s) \leq 1 + \frac{1}{s-1}$

Exercise 2.2. Run a very similar argument and prove that $\zeta(s) > \frac{1}{s-1}$. In particular,

$$\frac{1}{s-1} < \zeta(s) < 1 + \frac{1}{s-1}.$$

In particular, the Riemann-Zeta function can also be written in the *Euler product* form, given by

$$\zeta(s) = \prod_{p \text{ prime}} \left(\frac{1}{1 - p^{-s}}\right).$$

Taking the log of both sides, we get that

$$\log \zeta(s) = -\sum_{p} \log(1 - p^{-s}).$$

From here on, we simply write a subscript of p on summations or products to indicate that they're prime (unless stated otherwise). Clearly, the above is divergent for s = 1.

Lemma 2.3. (i) For all $s_0 > 1$, there exists some constant M > 0 such that

$$\log \left| \sum_{p} p^{-s} - \log \frac{1}{s-1} \right| < M \text{ for all } 1 < s \le s_0.$$

(ii) The sum of $\frac{1}{p}$ over all primes diverge.

Proof. We may rewrite the equation in the first line as follows,

$$\sum_{p} p^{-s} = \log \frac{1}{s-1} + O(1) \text{ as } s \to 1,$$

where we may note O(1) is some bounded function. Recall the following,

Definition 2.4. Let f, g be functions on some space X, where $g \ge 0$. We say that f = O(g) if $|f| \le Mg$, where M is some constant.

In this manner, saying f = O(1) is equivalent to saying that |f| is bounded. Now, let us take the log of the entire following inequality,

$$\frac{1}{s-1} < \zeta(s) < 1 + \frac{1}{s-1} = \frac{s}{s-1},$$

$$\log\left(\frac{1}{s-1}\right) < -\sum_{p} \log(1-p^{-s}) < \log\left(\frac{s}{s-1}\right),$$

$$0 < -\left(\log(s-1) + \sum_{p} \log(1-p^{-s})\right) < \log s$$
(*)

where the Taylor expansion of $|-\log(1-p^{-s})-p^{-s}|$ is less than p^{-2s} .

Exercise 2.5. Check that $|-\log(1-y)-y| < y^2$ for 0 < y < 1 for $y \in \mathbb{R}$. This is done by expanding $\log(1+x)$ around x=0.

Specifically, summing over all p and applying the triangle inequality, the above tells us that

$$\left| \sum_{p} \left(p^{-s} + \log(1 - p^{-s}) \right) \right| < \sum_{p} p^{-2s} < \zeta(2).$$

Using both inequalities together, we obtain

$$\left| \sum_{p} p^{-s} - \log \frac{1}{s-1} \right|$$

$$= \left| \left(\sum_{p} p^{-s} + \sum_{p} \log(1 - p^{-s}) \right) - \left(\log \frac{1}{s-1} + \sum_{p} \log(1 - p^{-s}) \right) \right|$$

$$\leq \zeta(2) + \log s \leq \zeta(2) + s_0 - 1,$$

if $1 < s \le s_0$. Indeed, this shows that $M = s_0 - 1 + \zeta(2)$ for (i). The second part of the lemma is also left as homework.

We now discuss Dirichlet series and Dirichlet *L*-functions. Let $m \in \mathbb{N}$, and let $(\mathbb{Z}/m\mathbb{Z})^*$ be the invertible elements in the ring $\mathbb{Z}/m\mathbb{Z}$. Specifically, these are the residues modulo m which are prime to m. This forms an abelian group under multiplication, of which its size is given by the totient $\varphi(m)$.

Exercise 2.6. If m is prime, then $(\mathbb{Z}/m\mathbb{Z})^*$ is the cyclic group of order m-1.

Fix a character $\chi: (\mathbb{Z}/m\mathbb{Z})^* \to \mathbb{C}^*$, where \mathbb{C}^* are the nonzero complex numbers. Extend χ as a map $\mathbb{Z} \to \mathbb{C}$ such that $\chi(n)\chi(m) = \chi(nm)$ as follows,

$$\chi(n) = \begin{cases} 0 & \text{if } \gcd(n, m) \neq 1, \\ \chi(n \mod m) & \text{if } \gcd(n, m) = 1. \end{cases}$$

As an example, let m = 3, and consider $(\mathbb{Z}/3\mathbb{Z})^* = \{\pm 1\}$. Then

$$\chi(n) = \begin{cases} 0 & \text{if } 3 \mid n, \\ 1 & \text{if } n \equiv 1 \pmod{3}, \\ -1 & \text{if } n \equiv -1 \pmod{3}. \end{cases}$$

For all m, we have the trivial homomorphism $(\mathbb{Z}/m\mathbb{Z})^* \to \mathbb{C}^*$. Let $\chi : \mathbb{Z} \to \mathbb{C}$ be the function

$$\chi(n) = \begin{cases} 1 & \text{if } \gcd(n, m) = 1, \\ 0 & \text{if } \gcd(n, m) \neq 1. \end{cases}$$

Then we may define the L-function

$$L(\chi, s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_{p} \left(\frac{1}{1 - \frac{\chi(p)}{p^s}} \right).$$

Claim 2.7. $L(\chi, x)$ is absolutely convergent for $\Re s > 1$.

Theorem 2.8. (i) $L(\chi, s)$ is holomorphic for $\Re s > 1$. (ii) Assume the extension of χ is not equal to 1. Then $L(\chi, s)$ converges for $\Re s > 0$ and defines a holomorphic function there. (iii) If the extension of χ is not equal to 1, then $L(\chi, 1) \neq 0$.

Let G be a finite abelian group. Consider all characters $\chi: G \to \mathbb{C}^*$; they form a group G^{\vee} under multiplication.

Claim 2.9. (i) G^{\vee} is (non-canonically) isomorphic to G, and $\#G^{\vee} = \#G$. (ii) $(G^{\vee})^{\vee} \cong G$ canonically.

Proof. The claim lets us say that if G is finite and abelian, then G is isomorphic to a product of finite cyclic groups

$$G \cong \prod_{i=1}^k (\mathbb{Z}/a_i\mathbb{Z}), \qquad a_i > 1.$$

Using the fact that $(G \times H)^{\vee} \cong G^{\vee} \times H^{\vee}$, we see that specifying $\chi : G \times H \to \mathbb{C}^{\times}$ is equivalent to specifying characters χ_1, χ_2 on G and H respectively. Letting a > 1, we have that if $\chi : \mathbb{Z}/a\mathbb{Z} \to \mathbb{C}^{\times}$ and $g^a = 1$, we have that $\chi(g) \in \mathbb{C}^*$ and $\chi(g)^a = 1$. This means that $\chi(g)$ must be an ath root of unity. All the roots of 1 of order a form a cyclic group of order a.

For the second part of the claim, in the direction of $G \to (G^{\vee})^{\vee}$, we have that for each $g \in G$, we obtain a canonical map $G^{\vee} \to \mathbb{C}^*$ where all $x \in G^{\vee} \mapsto \chi(g)$.

Lemma 2.10. This map is an isomorphism.

Lemma 2.11. (i) All $\chi \in G^{\vee}$ form a basis of $\mathbb{C}(G)$, the complex valued functions on G. (ii) This basis is orthonormal with respect to $\langle f_1, f_2 \rangle = \frac{1}{\#G} \sum_g f_1(g) \bar{f}_2(g)$.

Proof. We know that dim $\mathbb{C}(G) = \#G = \#G^{\vee}$. Recall that we have

$$\langle \chi, \chi \rangle = \frac{1}{\#G} \sum_{g} \chi(g) \bar{\chi}(g) = \frac{1}{\#G} \sum_{g} \chi(g) \chi_g^{-1} = \frac{1}{\#G} \sum_{g} \chi(gg^{-1}) = 1,$$

since $\chi(1)=1$. Now, let us evaluate $\#G\langle\chi,1\rangle=\sum_g\chi(g)$. We have that since χ is not uniformly 1, there must exist some $h\in G$ such that $\chi(h)\neq 1$; and so

$$\chi(h)\sum_{q}\chi(g)=\sum_{q}\chi(hg)=\sum_{q}\chi(g),$$

meaning $\sum_{q} \chi(q) = 0$, as $\chi(h)$ is nonzero as well. Thus, we obtain that

$$\#g \langle chi_1, \chi_2 \rangle = \sum_g \chi_1(g) \bar{\chi_2}(g) = \sum_g \chi_1(g) \chi_2^{-1}(g),$$

meaning that $\#G = \langle \chi_1 \chi_2^{-1}, 1 \rangle$. If $\chi_1 \chi_2^{-1} \neq 1$ (i.e., if $\chi_1 \neq \chi_2$), then this is 0.

Let x_n be a sequence of elements of $\mathbb{R}_{>0}$ such that $\lim_{n\to\infty} \lambda_n = \infty$. The main example we will be looking at is $\lambda_n = \log n$ (or $\lambda_n = n$), and the Dirichlet series $\sum_n a_n e^{-\lambda_n z}$ where $a_n \in \mathbb{C}$.

Next lecture, we will do some general analysis of convergence and analytic properties of such series. We will apply this to $L(\chi, s)$.