Let G = (V, T, P, S) be a context-free grammar in Chomsky normal form. Prove that for each $w \in L(G)$, the height of its derivation-tree is at least $\lceil \log_2(|w|) \rceil$.

First we'll prove the following lemma: $\forall x \in \mathbb{R}, n \in \mathbb{Z}, x \leq n \longrightarrow \lceil x \rceil \leq n$.

Let $x \in \mathbb{R}$ and $n \in \mathbb{Z}$ be such that $x \le n$, It is clear that $\exists k \in \mathbb{Z}$, $k - 1 < x \le k$. We will show that $\mathbf{k} \leq \mathbf{n}$ by contradiction: Suppose that k > n, Therefore we get that k - 1 > n - 1 and so $n-1 < k-1 < x \le n < k$, In particular we get that n-1 < k and k-1 < n, Thus n - k < 1 and -1 < n - k, and so -1 < n - k < 1, Now since $n, k \in \mathbb{Z}$ we get that $\mathbf{n} - \mathbf{k} \in \mathbb{Z}$, Thus, It must be the case that $\mathbf{n} - \mathbf{k} = \mathbf{0}$ and so $\mathbf{n} = \mathbf{k}$. But this contradicts the assumption k > n and we reached a contradiction. Therefore it must be the case that $k \le n$, Now by definition of $\lceil \cdot \rceil$ we get that $\mathbf{k} = \lceil \mathbf{x} \rceil$ and so $\lceil \mathbf{x} \rceil \leq \mathbf{n}$, as was to be shown.

Now by **Theorem 7.7** we get that $|w| \le 2^{i-1}$ where i is the height of the derivation-tree of w, Now by taking log₂ of both side of the inequality we get that $log_2(lwl) \le log_2(2^{i-1}) = i - 1$ and so $log_2(lwl) \le i - 1$, Now since $i - 1 \in \mathbb{Z}$, We get by the lemma that $\lceil \log_2(|w|) \rceil \le i - 1$ and so $\lceil \log_2(|w|) \rceil + 1 \le i$ as was to be shown.

Q.E.D.