SVM Classification

Import the Libraries

- 1 import pandas as pd
- 2 import numpy as np
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns
- 5 %matplotlib inline

Load the dataset

- 1 dataset = pd.read_csv('parkinsons_new.csv')
- 2 dataset.head()

	name	age	sex	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%
0	phon_R01_S01_1	50	М	119.992	157.302	74.997	0.0078
1	phon_R01_S01_2	52	F	122.400	148.650	113.819	0.0096
2	phon_R01_S01_3	54	М	116.682	131.111	111.555	0.0105
3	phon_R01_S01_4	57	F	116.676	137.871	111.366	0.0099
4	phon_R01_S01_5	59	М	116.014	141.781	110.655	0.0128

Next steps:

1 dataset.tail()

	name	age	sex	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter
190	phon_R01_S50_2	74	F	174.188	230.978	94.261	0.00
191	phon_R01_S50_3	52	F	209.516	253.017	89.488	0.00
192	phon_R01_S50_4	62	F	174.688	240.005	74.287	0.01
193	phon_R01_S50_5	78	F	198.764	396.961	74.904	0.00
194	phon_R01_S50_6	69	F	214.289	260.277	77.973	0.00

1 dataset.shape

(195, 20)

1 dataset.columns

```
dtype='object')
```

dataset.info() 1

<class 'pandas.core.frame.DataFrame'> RangeIndex: 195 entries, 0 to 194 Data columns (total 20 columns):

Data	COIDMINS (COCAL 20	COTUMNIS).					
#	Column	Non-Null Count	Dtype				
0	name	195 non-null	object				
1	age	195 non-null	int64				
2	sex	195 non-null	object				
3	MDVP:Fo(Hz)	195 non-null	float64				
4	MDVP:Fhi(Hz)	195 non-null	float64				
5	MDVP:Flo(Hz)	195 non-null	float64				
6	<pre>MDVP:Jitter(%)</pre>	195 non-null	float64				
7	<pre>MDVP:Jitter(Abs)</pre>	195 non-null	float64				
8	MDVP:RAP	195 non-null	float64				
9	MDVP:PPQ	195 non-null	float64				
10	Jitter:DDP	195 non-null	float64				
11	MDVP:Shimmer	195 non-null	float64				
12	<pre>MDVP:Shimmer(dB)</pre>	195 non-null	float64				
13	Shimmer:APQ3	195 non-null	float64				
14	Shimmer:APQ5	195 non-null	float64				
15	MDVP:APQ	195 non-null	float64				
16	Shimmer:DDA	195 non-null	float64				
17	NHR	195 non-null	float64				
18	HNR	195 non-null	float64				
19	status	195 non-null	int64				
dtype	<pre>dtypes: float64(16), int64(2), object(2)</pre>						

dtypes: float64(16), int64(2), object(2)
memory usage: 30.6+ KB

1 dataset.describe()

	age	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)	MDVP:Jitter(Abs)	MDVI
count	195.000000	195.000000	195.000000	195.000000	195.000000	195.000000	195.0
mean	64.374359	154.228641	197.104918	116.324631	0.006220	0.000044	0.0
std	9.095051	41.390065	91.491548	43.521413	0.004848	0.000035	0.0
min	50.000000	88.333000	102.145000	65.476000	0.001680	0.000007	0.0
25%	57.000000	117.572000	134.862500	84.291000	0.003460	0.000020	0.0
50%	63.000000	148.790000	175.829000	104.315000	0.004940	0.000030	0.0
75%	72.000000	182.769000	224.205500	140.018500	0.007365	0.000060	0.0
max	79.000000	260.105000	592.030000	239.170000	0.033160	0.000260	0.0

1 pd.isnull(dataset).sum()

0
0
0

```
MDVP:Fo(Hz)
                     0
                     0
MDVP:Fhi(Hz)
                     0
MDVP:Flo(Hz)
MDVP:Jitter(%)
                     0
MDVP:Jitter(Abs)
                     0
MDVP:RAP
                     0
MDVP: PPQ
                     0
Jitter:DDP
                     0
MDVP:Shimmer
                     0
MDVP:Shimmer(dB)
                     0
                     0
Shimmer: APQ3
Shimmer:APQ5
                     0
MDVP:APQ
                     0
                     0
Shimmer:DDA
NHR
                     0
HNR
                     0
                     0
status
dtype: int64
```

```
1 classes = dataset['status'].value_counts()
2 classes
3 classes.plot.bar()
```

<Axes: >


```
1 #droping a particular column, axis =1
2 dataset = dataset.drop(['name'], axis=1)
3 dataset = pd.get_dummies(dataset, prefix_sep='sex')
4 dataset.head()
```

	age	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)	MDVP:Jitter(Abs)	MDVP:RAP	MDVF
0	50	119.992	157.302	74.997	0.00784	0.00007	0.00370	0.0
1	52	122.400	148.650	113.819	0.00968	0.00008	0.00465	0.0
2	54	116.682	131.111	111.555	0.01050	0.00009	0.00544	0.0
3	57	116.676	137.871	111.366	0.00997	0.00009	0.00502	0.0
4	59	116.014	141.781	110.655	0.01284	0.00011	0.00655	0.0

Next steps:

View recommended plots

 $\ensuremath{\text{1}}\xspace$ #finding correlation between the features

2

³ plt.figure(figsize=(20,17.5))

⁴ sns.heatmap(corr_var, annot=True, cmap='BuPu')

age -	1	0.17	0.15	0.039	-0.036	-0.13	-0.048	-0.021	-0.048	-0.035	-0.
MDVP:Fo(Hz) -	0.17	1	0.4	0.6	-0.12	-0.38	-0.076	-0.11	-0.076	-0.098	-0
MDVP:Fhi(Hz) -	0.15	0.4	1	0.085	0.1	-0.029	0.097	0.091	0.097	0.0023	0
MDVP:Flo(Hz) -	0.039	0.6	0.085	1	-0.14	-0.28	-0.1	-0.096	-0.1	-0.14	-
MDVP:Jitter(%) -	-0.036	-0.12	0.1	-0.14	1	0.94	0.99	0.97	0.99	0.77	
MDVP:Jitter(Abs) -	-0.13	-0.38	-0.029	-0.28	0.94	1	0.92	0.9	0.92	0.7	(
MDVP:RAP -	-0.048	-0.076	0.097	-0.1	0.99	0.92	1	0.96	1	0.76	(
MDVP:PPQ -	-0.021	-0.11	0.091	-0.096	0.97	0.9	0.96	1	0.96	0.8	(
Jitter:DDP -	-0.048	-0.076	0.097	-0.1	0.99	0.92	1	0.96	1	0.76	(
MDVP:Shimmer -	-0.035	-0.098	0.0023	-0.14	0.77	0.7	0.76	0.8	0.76	1	(
MDVP:Shimmer(dB) -	-0.0053	-0.074	0.043	-0.12	0.8	0.72	0.79	0.84	0.79	0.99	
Shimmer:APQ3 -	-0.045	-0.095	-0.0037	-0.15	0.75	0.7	0.74	0.76	0.74	0.99	(

¹ X = dataset.loc[:, dataset.columns !="status"]

Dimention for X train: (156, 19) Dimention for X test: (39, 19)

² y = dataset["status"]

¹ from sklearn.model_selection import train_test_split

² X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state =0)

³ print ("Dimention for X train:", X_train.shape)

⁴ print ("Dimention for X test:", X_test.shape)

⁵ print ("Dimention for y train:", y_train.shape)

⁶ print ("Dimention for y test:", y_test.shape)

```
Dimention for y train: (156,)
   Dimention for y test: (39,)
1 from sklearn.preprocessing import StandardScaler
2 sc = StandardScaler().fit(X_train)
3 X_train = sc.transform(X_train)
4 X_test = sc.transform(X_test)
1 from sklearn import svm
2 cl = svm.SVC(kernel='linear', C=0.01)
3 cl.fit(X_train, y_train)
                 SVC
    SVC(C=0.01, kernel='linear')
1 y_pred = cl.predict(X_train)
1 y_pred_1 = cl.predict(X_test)
2 y_pred_1
   1 from sklearn.metrics import accuracy score, confusion matrix
2 cm = confusion_matrix(y_test, y_pred_1)
3 cm
   array([[ 0, 10],
          [ 0, 29]])
1 acc = accuracy_score(y_test, y_pred_1)
2 acc
   0.7435897435897436
1 from sklearn.model selection import GridSearchCV
2 parameters = {'C': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000, 5000],
                'degree': [2, 3, 4, 5],
3
4
                'gamma':[0.001, 0.01, 0.1, 0.5, 1],
5
                'kernel': ['rbf','poly']
               }
7 cl = svm.SVC()
8 grid = GridSearchCV(cl, parameters, cv=10)
9 grid.fit(X_train, y_train)
10 print(grid.best_params_)
11 print(grid.best_estimator_)
    {'C': 5, 'degree': 4, 'gamma': 0.1, 'kernel': 'poly'}
   SVC(C=5, degree=4, gamma=0.1, kernel='poly')
1 from sklearn.metrics import classification_report
2 grid_prediction = grid.predict(X_test)
3 print(classification_report(y_test, grid_prediction))
```

	precision	recall	f1-score	support
0 1	1.00 0.94	0.80 1.00	0.89 0.97	10 29
accuracy macro avg weighted avg	0.97 0.95	0.90 0.95	0.95 0.93 0.95	39 39 39

SVM Regression

```
1 import numpy as np
```

- 2 import matplotlib.pyplot as plt
- 3 import pandas as pd
- 1 dataset = pd.read_csv('Position_Salaries.csv')
- 1 dataset.head()

	Position	Level	Salary	
0	Business Analyst	1	45000	ılı
1	Junior Consultant	2	50000	
2	Senior Consultant	3	60000	
3	Manager	4	80000	
4	Country Manager	5	110000	

Next steps:

View recommended plots

1 dataset.tail()

	Position	Level	Salary	
5	Region Manager	6	150000	ıl.
6	Partner	7	200000	
7	Senior Partner	8	300000	
8	C-level	9	500000	
9	CEO	10	1000000	

1 dataset.columns

```
Index(['Position', 'Level', 'Salary'], dtype='object')
```

1 dataset.shape

(10, 3)

```
Level
                          Salary
                                   扁
    count 10.00000
                        10.000000
          5.50000
    mean
                    249500.000000
           3.02765
     std
                    299373.883668
    min
           1.00000
                     45000.000000
    25%
                     65000.000000
           3.25000
    50%
           5.50000
                    130000.000000
    75%
           7.75000
                    275000.000000
    max 10.00000 1000000.000000
1 print(str('Any missing data or NaN in the dataset:'),dataset.isnull().values.any())
   Any missing data or NaN in the dataset: False
1 dataset.info()
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 10 entries, 0 to 9
   Data columns (total 3 columns):
                 Non-Null Count Dtype
    # Column
       ----
                  -----
    0
       Position 10 non-null
                                   object
        Level 10 non-null Salary 10 non-null
                                   int64
    1
                                   int64
    2
   dtypes: int64(2), object(1)
   memory usage: 368.0+ bytes
1 X = dataset.iloc[:, 1:2].values
2 y = dataset.iloc[:, 2].values
1 y = y.reshape(-1,1)
1 from sklearn.preprocessing import StandardScaler
2 sc_X = StandardScaler()
3 sc_y = StandardScaler()
4 X = sc_X.fit_transform(X)
5 y = sc_y.fit_transform(y)
1 from sklearn.svm import SVR
2 regressor = SVR(kernel = 'rbf')
3 regressor.fit(X, y)
```