Basic Physics (~70 MCQ)

- 1. Coulomb's law defines the force between:
- a) Two moving charges
- b) Two point charges at rest
- c) A charge and a magnetic field
- d) A current -carrying wire and a charge
- 2. The SI unit of electric flux is:
- a) Volt
- b) Coulomb
- c) Newton·meter²/Coulomb
- d) Tesla
- 3. Gauss's law is applicable to:
- a) Only point charges
- b) Any closed surface
- c) Open surfaces
- d) Conductors only
- 4. Electric potential at a point is:
- a) Energy per unit charge
- b) Force per unit charge
- c) Charge per unit en ergy
- d) None of these
- 5. Faraday's law relates:
- a) Electric field and charge
- b) Induced EMF and rate of change of magnetic flux
- c) Current and resistance
- d) Voltage and capacitance
- 6. Maxwell's equations describe:
- a) Motion of electrons
- b) Electromagnetic fiel ds
- c) Quantum particles
- d) Wave propagation in air only
- 7. The speed of light in vacuum is:
- a) 3×10^3 m/s
- b) 3×10^5 m/s
- c) 3×10^8 m/s
- d) 3×10^{10} m/s
- 8. Photoelectric effect demonstrates that light:
- a) Travels in waves
- b) Has particle nature
- c) Is longitudinal
- d) Has no energy
- 9. Compton effect proves:

a) Wave nature of light
b) Particle nature of light 🗸
c) Magnetic field effect
d) Electric field effect
10. De Broglie wavelength is associated with:
a) Photons
b) Electrons and matter particles 🗸
c) Only protons
d) Only neutrons
11. Phase velocity is:
a) Velocity of energy transfer
b) Velocity of wave crests 🗸
c) Same as group velocity
d) None of these
12. Group velocity is:
a) Speed of individual wave
b) Speed of envelope of wave packet 🗸
c) Always greater than phase velocity
d) Zero
13. Quantum theory of light was proposed by:
a) Newton
b) Einstein 🗸
c) Maxwell
d) Planck
14. X-ray diffraction is used to study:
a) Atomic structure 🗸
b) Magnetic field
c) Electric circuits
d) Sound waves
15. Wave function in quantum mechanics represents:
a) Probability amplitude 🗸
b) Energy only
c) Force
d) Velocity
16. The integral of electric field over a closed surface equals:
a) Zero
b) Charge enclosed/ ε_0
c) Current enclosed
d) Voltage
17. Magnetic field is produced by:
a) Static charges
b) Moving charges 🗸

c) Stationary neutral objects
d) Heat only
18. Faraday's law is a consequence of:
a) Conservation of energy
b) Ohm's law
c) Coulomb's law
d) Kirchoff's law
19. Unit of magnetic flux is:
a) Tesla
b) Weber 🗸
c) Ampere
d) Henry
20. Lorentz force acts on:
a) Stationary char ge
b) Moving charge in magnetic field
c) Neutral particles
d) Light only
21. Capacitance is defined as:
a) Q/V
b) V/Q
c) I/R
d) P/V
22. Energy stored in a capacitor:
a) ½ CV ² ✓
b) CV ²
c) 2CV ²
d) C/V ²
23. Inductor opposes:
a) Voltage
b) Current change
c) Resistan ce
d) Power
24. RLC circuit resonates when:
a) XL = XC
b) XL > XC
c) XL < XC
d) R = 0
25. Electric field inside a conductor is:
a) Maximum
b) Zero
c) Depends on charge
, ,
d) Constant

26. Magnetic flux density is measured in:
a) Tesla 🗸
b) Weber
c) Henry
d) Ampere
27. Ampere's law relates:
a) Current and magnetic field $lacksquare$
b) Voltage and resistance
c) Capacitance and charge
d) Energy and power
28. Biot-Savart law gives:
a) Force on a charge
b) Magnetic field due to current element 🗸
c) Electric field
d) Voltage
29. Self-inductance unit is:
a) Henry 🗸
b) Farad
c) Ohm
d) Tesla
30. Mutual inductance occurs between:
a) Two resistors
b) Two coils 🗸
c) Capacitor and coil
d) Wire and battery
31. Maxwell added which term to Ampere's law?
a) Displacement current 🗸
b) Conduction current
c) Electric flux
d) Magnetic flux
32. Electromagnetic waves are:
a) Longitudinal
b) Transverse 🗸
c) Stationary
d) Random
33. Energy of a photon:
a) hf 🗸
b) h/f
c) h + f
d) hf ²
34. Threshold frequency in photoelectric effect depends on:
a) Intensity

b) Metal type 🗸
c) Distance from source
d) Angle of incidence
35. Quantum number n indicates:
a) Angular momentum
b) Principal energy level
c) Magnetic orientation
d) Spin
36. Planck constant h has units:
a) Joule∙second ✓
b) Volt
c) Coulomb
d) Ampere·second
37. Compton wavelength for mula is:
a) $\lambda c = h/mc$
b) $\lambda c = mc/h$
c) $\lambda c = h^2/m$
d) $\lambda c = h/m$
38. X-ray wavelength is in the range:
a) 0.01 –10 nm 🗸
b) 1–100 μm
c) 100 –1000 nm
d) 10 –100 cm
39. Electromagnetic spectrum order (low to high frequency):
a) Radio, Microwave, IR, Visible, UV, X -ray, Gam ma 🗸
b) X-ray, UV, Visible, IR, Microwave, Radio
c) Gamma, X -ray, UV, Visible, IR, Microwave, Radio
d) Radio, IR, Microwave, Visible, UV, X -ray, Gamma
40. Photoelectric current depends on:
a) Light frequency
b) Light intensity 🗸
c) Metal temperature
d) None
41. Heisenberg uncertainty principle relates:
a) Energy and time 🗸
b) Position and momentum
c) Force and mass
d) Both a & b 🗸
42. Wave equation describes:
a) Electric field only
b) Magnetic field only
c) Propagation of waves 🗸

- d) Particle motion
- 43. EM wave in vacuum travels at:
- a) 3×10⁸ m/s
- b) 3×10^5 m/s
- c) 3×10^3 m/s
- d) 3×10^{10} m/s
- 44. Polarization of light involves:
- a) Frequency change
- b) Direction change of E vector
- c) Amplitude only
- d) Wavelength only
- 45. Brewster's angle gives:
- a) Total reflection
- b) Zero reflection for one polarization
- c) Maximum reflection
- d) None
- 46. Critical angle is related to:
- a) Refraction
- b) Diffraction
- c) Polarization
- d) Interference
- 47. Phase difference of 180° gives:
- a) Constructive interference
- b) Destructive interference
- c) No interference
- d) Random waves
- 48. Energy of X -ray photon is:
- a) E = hf
- b) E = h/f
- c) $E = hf^2$
- d) E = f/h
- 49. Quantum tunneling explains:
- a) Classical reflection
- b) Particle crossing potential barrier
- c) Wave interference
- d) Magnetic effect
- 50. Electron diffraction proves:
- a) Partic le nature
- b) Wave nature
- c) EM wave
- d) Photoelectric effect
- 51. Wavefunction normalization ensures:

a) Energy conservation
b) Total probability = 1 🗸
c) Momentum conservation
d) Mass conservation
52. Schrödinger equation is:
a) Time -independent 🗸
b) Time -dependent 🗸
c) Both
d) None
53. Potential energy in quantum well is:
a) Infinite
b) Zero
c) Finite 🗸
d) Negative
54. Electron in hydrogen atom has:
a) Continuous energy
b) Quantized energy 🗸
c) Zero energy
d) Infinite energy
55. First Boh r orbit radius:
a) 0.529 Å
b) 0.529 nm 🗸
c) 5.29 nm
d) 5.29 cm
56. Photon momentum is:
a) p = mv
b) $p = hf/c$

c) p = h/f
d) p = mc

a) $\Delta x \Delta p \ge \hbar/2$ b) $\Delta x \Delta p \le \hbar/2$ c) $\Delta E \Delta t \le \hbar$ d) $\Delta E \Delta t \ge \hbar$

a) Norma l dispersion

c) Vacuumd) Free space

a) Single wave

b) Superposition

b) Anomalous dispersion

59. Standing wave forms due to:

57. Heisenberg principle formula:

58. Group velocity < Phase velocity in:

- c) Refraction d) Diffraction 60. Node is point of: a) Maximum amplitude b) Zero amplitude 🗸
- c) Half amplitude
- d) Random amplitude
- 61. Antin ode is point of:
- a) Maximum amplitude 🗸
- b) Zero amplitude
- c) Half amplitude
- d) Random amplitude
- 62. EM wave energy density:
- a) $u = \varepsilon_0 E^2/2$
- b) $u = \mu_0 H^2$
- c) u = EH
- d) u = 0
- 63. Maxwell predicts:
- a) EM waves travel at speed of light
- b) EM waves are longitudinal
- c) EM waves have mass
- d) EM waves stationary
- 64. Quantum of light is:
- a) Electron
- b) Photon
- c) Neutron
- d) Proton
- 65. Wavelength of electron decreases with:
- a) Increasing momentum
- b) Decreasing momentum
- c) Constant
- d) None
- 66. Principle of superposition applies to:
- a) Linear systems
- b) Nonlinear systems
- c) Magnetic fields only
- d) Electric fields only
- 67. Electric field inside a hollow conductor:
- a) Zero 🗸
- b) Non -zero
- c) Depends on shape
- d) Depends on charge

68. Magnetic permeability of free space:
a) $4\pi \times 10^{-7}$ H/m \checkmark
b) 8.85×10 ⁻¹² F/m
c) 1 H/m
d) 0
69. Magnetic flux Φ = B·A cosθ, θ is:
a) Angle between B and area normal
b) Angle between B and surface
c) Always 0
d) Always 90°
70. RLC series circuit resonant frequency:
a) $f = 1/(2\pi\sqrt{LC})$
b) $f = 2\pi\sqrt{LC}$
c) $f = \sqrt{LC}$
d) $f = 1/(LC)$
Introducti on to Computer Systems (~60 MCQ)
1. The binary number system uses how many digits?
a) 2 🗸
b) 8
c) 10
d) 16
2. The octal number system uses how many digits?
a) 2
b) 8 🗸
c) 10
d) 16
3. The hexadecimal number system uses how many digits?
a) 8
b) 10
c) 16 🗸
d) 2
4. Which of the following is NOT an input device?
a) Keyboard
b) Mouse
c) Printer 🗸
d) Scanner
5. CPU stands for:
a) Central Processing Unit 🗸
b) Central Peripheral Unit
c) Control Processing Unit
d) Computer Processing Unit
6. The main function of the CPU is:

a) Storage of data
b) Processing of data 🗸
c) Communication
d) Display
7. RAM is:
a) Volatile memory 🗸
b) Non -volatile memory
c) Secondary storage
d) Input device
8. ROM is:
a) Volatile memory
b) Non -volatile memory 🗹
c) Cache memory
d) Input device
9. Which of the following is secondary storage?
a) RAM
b) Hard Disk 🗸
c) Cache
d) Register
10. Which of the following is an example of application software?
a) Windows OS
b) Microsoft Word ✓
c) BIOS
d) Device driver
11. Operating system manages:
a) Hardware resources ✓
b) Only so ftware
c) Only memory
d) Only CPU
12. Assembly language uses:
a) Binary code
b) Mnemonics ✓
c) High -level commands
d) Natural language
13. Early computers used which number system?a) Binary
· · · · · ·
b) Decimal ✓
c) Octal d) Hexadecimal
14. First generation computers used:
a) Vacuum tubes
<u> </u>
b) Transistors

c) ICs
d) Microprocessors
15. Second generation computers used:
a) Vacuum tubes
b) Transistors 🗸
c) ICs
d) Microprocessors
16. Third generation computers used:
a) Vacuum tubes
b) Transistors
c) ICs 🗸
d) Microprocessors
17. Fourth generati on computers used:
a) Vacuum tubes
b) Transistors
c) ICs
d) Microprocessors
18. Which is NOT a main component of a computer?
a) CPU
b) Memory
c) Printer
d) I/O devices
19. The ALU performs:
a) Arithmetic and logical operations
b) Only arithmetic
c) Only logi c
d) Data storage 20. The CU (Control Unit) manages:
a) Arithmetic operations

b) Instruction execution
c) Data storage
d) Input/output 21. BIOS is stored in:
a) RAM
<u> </u>
b) ROM ✓
c) Cache
d) Register
22. Number of bits in a byte:
a) 4
b) 8 🗸
c) 16
d) 32

23. 1 KB = ?
a) 1024 Bytes 🗸
b) 1000 Bytes
c) 512 Bytes
d) 2048 Bytes
24. Internet is an example of:
a) LAN
b) MAN
c) WAN
d) PAN
25. Which is a type of software?
a) Operating system
b) Compiler 🗸
c) Word processor
d) All of the above
26. Binary addition: 101 + 110 = ?
a) 1001 🗸
b) 111
c) 1010
d) 1100
27. Decimal 15 in binary is:
a) 1010
b) 1111 🗸
c) 1101
d) 1001
28. Decimal 255 in hexadecimal is:
a) 0xFF 🗸
b) 0xAA
c) 0xF0
d) 0xFE
29. The fastest memory in computer is:
a) RAM
b) Cache
c) ROM
d) Hard Disk
30. Number of general -purpose registers in 8086:
a) 4
b) 8 🗸
c) 16
d) 2
31. What is the base of the hexadecimal system?
a) 2

13.0	
b) 8	
c) 10	
d) 16 🗸	
32. A nibble consists of:	
a) 2 bits	
b) 4 bits 🗸	
c) 8 bits	
d) 16 bits	
33. CPU clock speed is measured in:	
a) Hertz 🗸	
b) Volt	
c) Ampere	
d) Joule	
34. Program that translates high-level language to machine code:	
a) Compiler 🗸	
b) Assembler	
c) Interpreter	
d) Loader	
35. Which memory is used to store BIOS?	
a) ROM 🗸	
b) RAM	
c) Cache	
d) Register	
36. The main memory is:	
a) RAM 🗸	
b) ROM	
c) Hard Disk	
d) Cache	
37. Cache memory is located:	
a) Between CPU and main memory 🗹	
b) On hard disk	
c) In I/O device	
d) In printer	
38. The smallest unit of data in a computer:	
a) Byte	
b) Bit 🗸	
c) Nibble	
d) Word	
39. ASCII is used for:	
a) Images	
b) Text 🗸	
c) Audio	

d) Video
40. Unicode supports:
a) English only
b) Multip le languages 🗸
c) Binary
d) Hexadecimal
41. Operating system is:
a) System software
b) Application software
c) Firmware
d) Hardware
42. Instruction cycle consists of:
a) Fetch 🗸
b) Decode 🗸
c) Execute 🗸
d) All of the above
43. Which of the following is NOT a high-level language?
a) C
b) Python
c) Assembly 🗸
d) Java
44. HDD stores data in:
a) RAM
b) Magnetic disks 🗸
c) SSD
d) Cache
45. SSD is faster than HDD because:
a) Uses flash memory 🗸
b) Uses magnetic disks
c) Less durable
d) Has moving parts
46. Input devices convert:
a) Digital → Analog
b) Human data → Digital ✓
c) Digital → Human readable
d) None
47. Output devices convert:
a) Digital → Analog
b) Digital \rightarrow Human readable \checkmark
c) Analog → Digital
d) None
48. Primary memory is:

a) Volatile 🗸
b) Non -volatile
c) Permanent
d) Secon dary
49. Secondary memory is:
a) Volatile
b) Non -volatile 🗸
c) Faster than RAM
d) Registers
50. Software that helps run other programs:
a) Operating system 🗸
b) Application
c) Utility
d) Driver
51. Early computer "ENIAC" used:
a) Transistors
b) Vacuum tubes 🗸
c) ICs
d) Microprocessors
52. Which is NOT a characteristic of computer?
a) Speed
b) Accuracy
c) Emotions 🗸
d) Storage
53. Binary subtraction: 1010 - 0110 = ?
a) 0100 ✓
b) 1001
c) 0011
d) 1110 54. ASCII stands for:
<u> </u>
a) American Standard Code for Information Interchange
b) Au tomatic System Code for Input
c) Analog Standard Code for Information d) All of the above
55. Word length in 8086 microprocessor:
a) 8-bit
b) 16 -bit /
c) 32 -bit
d) 64 -bit
56. Early computers were used mainly for:
a) Gaming
b) Calculations
· –

c) Internet browsing	
d) Social media	
57. Input to CPU is through:	
a) Registers 🗸	
b) ALU	
c) CU	
d) Memory	
58. Output from CPU is via:	
a) Registers	
b) Memory	
c) I/O devices 🗸	
d) ALU	
59. Instruction set architecture defines:	
a) Hardware	
b) Software	
c) CPU instructions 🗸	
d) Memory only	
60. Which dev ice connects a computer to the internet?	
a) Router 🗸	
b) Printer	
c) Keyboard	
d) Monitor	
Electrical Circuits (~60 MCQ)	
1. Ohm's law states:	
a) V = IR 🗸	
b) $P = IV^2$	
c) $I = V/P$	
d) $V = I^2 R$	
2. In a series circuit, the current is:	
a) Same in all elements 🗸	
b) Different in each element	
c) Zero	
d) Depends on voltage only	
3. In a parallel circuit, the voltage across each branch is:	
a) Same 🗸	
b) Different	
c) Zero	
d) Depends on resistance	
4. Kirchhoff's Current Law (KCL) is based on:	
a) Energy conservation	
b) Charge conservation 🗸	
c) Ohm's law	

- d) Faraday's law
- 5. Kirchhoff's Voltage Law (KVL) is based on:
- a) Energy conservation
- b) Charge conservation
- c) Power conservation
- d) Resistance law
- 6. Power in a resistive circuit:
- a) P = VI
- b) $P = V^2/R$
- c) $P = I^2 R$
- d) All of the above
- 7. Voltage divider formula:
- a) Vx = V(Rx/Rtotal)
- b) Vx = IR
- c) Vx = V/R
- d) $Vx = IR^2$
- 8. Current divider formula applies to:
- a) Series circuit
- b) Parallel circuit
- c) Both
- d) None
- 9. Thevenin's theorem simplifies a circuit to:
- a) Voltage source and series resistor 🗸
- b) Current source and series resistor
- c) Voltage source and parallel resistor
- d) Current source and parallel resistor
- 10. Norton's theorem simplifies a circuit to:
- a) Current source and parallel resistor
- b) Voltage sourc e and series resistor
- c) Current source and series resistor
- d) Voltage source and parallel resistor
- 11. Maximum power transfer occurs when:
- a) Load R = Source R
- b) Load R > Source R
- c) Load R < Source R
- d) Load R = 0
- 12. Superposition theorem is applicable for:
- a) Linear circuits
- b) Non -linear circuits
- c) Series circuits only
- d) Parallel circuits only
- 13. Resistance unit is:

- a) Ohm
- b) Volt
- c) Ampere
- d) Watt
- 14. Voltage unit is:
- a) Ohm
- b) Volt 🗸
- c) Ampere
- d) Watt
- 15. Current unit is:
- a) Ohm
- b) Volt
- c) Ampere
- d) Watt
- 16. Capacitance unit is:
- a) Farad 🗸
- b) Henry
- c) Ohm
- d) Tesla
- 17. Inductance unit is:
- a) Henry 🗸
- b) Farad
- c) Ohm
- d) Tesla
- 18. Capacitors in series:
- a) $1/\text{Ceq} = \Sigma(1/\text{Ci})$
- b) Ceq = Σ Ci
- c) Ceq = ΣC^2
- d) Ceq = $1/\Sigma C$
- 19. Capacitors in parallel:
- a) Ceq = Σ Ci
- b) $1/\text{Ceq} = \Sigma(1/\text{Ci})$
- c) Ce q = $\sqrt{\Sigma}$ Ci
- d) Ceq = None
- 20. Inductors in series:
- a) Leq = Σ Li
- b) $1/\text{Leq} = \Sigma(1/\text{Li})$
- c) Leq = $\sqrt{\Sigma}$ Li
- d) None
- 21. Inductors in parallel:
- a) Leq = Σ Li
- b) $1/\text{Leq} = \Sigma(1/\text{Li})$

- c) Leq = $\sqrt{\Sigma}$ Li
- d) None
- 22. RLC series circuit resonance condition:
- a) XL = XC
- b) XL > XC
- c) XL < XC
- d) R = 0
- 23. Reactance of inductor:
- a) $XL = 2\pi fL$
- b) $XL = 1/2\pi fL$
- c) XL = L/f
- d) XL = 1/L
- 24. Reactance of capacitor:
- a) XC = $1/2\pi fC$
- b) $XC = 2\pi fC$
- c) XC = 1/C
- d) XC = 2C
- 25. Impedance of series RLC:
- a) $Z = \sqrt{(R^2 + (XL XC)^2)}$
- b) Z = R + XL + XC
- c) Z = R/(XL XC)
- d) $Z = R^2 + L^2 + C^2$
- 26. Power factor = cos θ, θ is:
- a) Phase difference between voltage and current
- b) Voltage
- c) Current
- d) Resistance
- 27. Energy stored in inductor:
- a) W = $\frac{1}{2}$ LI²
- b) W = $\frac{1}{2}$ CV²
- c) $W = I^2R$
- d) W = VI
- 28. Energy stored in capacitor:
- a) W = $\frac{1}{2}$ CV²
- b) W = $\frac{1}{2}$ L I²
- c) W = VI
- d) $W = I^2 R$
- 29. Node voltage method is used for:
- a) Parallel analysis
- b) Series analysis
- c) Superposition
- d) None

30. Mesh current method is used for:
a) Series analysis
b) Loop analysis 🗸
c) Node analysis
d) Both
31. Source transformation converts:
a) Voltage source + series $R \rightarrow Current$ source + parallel $R \checkmark$
b) Current source + parallel R \rightarrow Voltage source + series R
c) Both a & b 🗹
d) None
32. Dependent source is:
a) Independent voltage
b) Controlled by another circuit variable
c) Uncontrol led
d) Always current source
33. Capacitor blocks:
a) DC 🗸
b) AC
c) Both
d) None
34. Inductor blocks:
a) AC 🗸
b) DC
c) Both
d) None
35. Time constant of RC circuit:
a) $\tau = RC \checkmark$
b) $\tau = L/R$
c) $\tau = R/L$
d) $\tau = 1/RC$
36. Time constant of RL circuit:
a) $\tau = RC$
b) $\tau = L/R$
c) $\tau = R/L$
d) $\tau = 1/L$
37. For AC series RLC, resonance frequency:
a) $f = 1/2\pi\sqrt{LC}$
b) $f = \sqrt{LC}$
c) $f = 2\pi\sqrt{LC}$
d) $f = LC$
38. In resonance, current is:
a) Minimum

b) Maximum
c) Zero
d) Constant
39. Voltage acros
a) Less than supp

- oss L or C at resonance:
- b) Equal to supply
- c) Can be greater than supply
- d) Zero
- 40. RMS value of sinusoidal current:
- a) Imax
- b) Imax/ $\sqrt{2}$
- c) Imax/2
- d) $\sqrt{2}$ Imax
- 41. RMS value of sinusoidal voltage:
- a) Vmax
- b) $V \max / \sqrt{2}$
- c) Vmax/2
- d) $\sqrt{2}$ Vmax
- 42. Average power in AC circuit:
- a) Vrms × Irms × cosθ
- b) $Vrms \times Irms \times sin\theta$
- c) Vrms × Irms
- d) $Irms^2 \times R$
- 43. Impedance in series AC circuit:
- a) Z = R + j(XL XC)
- b) Z = R + XL + XC
- c) Z = R + 1/(XL XC)
- d) $Z = R^2 + (XL XC)^2$
- 44. Admittance Y =
- a) 1/Z 🗸
- b) Z
- c) R/Z
- d) Z/R
- 45. Phase angle φ =
- a) $tan^{-1}((XL XC)/R)$
- b) $tan^{-1}(R/(XL-XC))$
- c) $\cos^{-1}((XL XC)/R)$
- d) $\sin^{-1}((XL XC)/R)$
- 46. Wye to Delta conversion is used for:
- a) Resistors
- b) Capacitors
- c) Inductors

d) All 🗸
47. Delta to Wye conversion is used for:
a) Resistors 🗸
b) Capacitors
c) Inductors
d) All
48. RMS voltage of triangular waveform :
a) $Vm/\sqrt{2}$
b) Vm/√3 ✓
c) Vm/2
d) Vm
49. In AC circuits, instantaneous power:
a) p = vi ✓
b) $p = i^2 R$
c) $p = v^2/R$
d) p = Vavg × Iavg
50. Current leads voltage in:
a) Capacitive circuit 🗸
b) Inductive circuit
c) Resistive circuit
d) None
51. Current lags voltage in:
a) Capacitive
b) Inductive
c) Resistive
d) None
52. Power dissipated in resistor:
a) I ² R
b) V ² /R ✓
c) VI 🗸
d) All of the above
53. Series LC circuit at resonance:
a) Impedance minimum
b) Impedance maximum
c) Current minimum
d) Voltage minimum
54. Parallel LC circu it at resonance:
a) Impedance minimum

b) Impedance maximum

c) Current maximum

d) Voltage zero

55. Quality factor Q =
a) XL/R 🗸
b) XC/R
c) R/XL
d) R/XC
56. Transient response occurs in:
a) DC circuits with L or C 🗸
b) Pure resistive DC circuits
c) AC steady -state
d) None
57. Charging capacitor current:
a) Maximum at t=0 🗸
b) Zero at t=0
c) Constant
d) None
58. Discharging capacitor current:
a) Maximum at t=0 🗸
b) Zero at t=0
c) Constant
d) None
59. DC steady -state inductor acts as:
a) Open circuit
b) Short circuit 🗸
c) Capacitor
d) Resistor
60. DC steady -state capacitor acts as:
a) Open circuit 🗸
b) Short circuit
c) Inductor
d) Resistor
Digital Logic Design (~70 MCQ)
1. Boolean algebra was introduced by:
a) Newton
b) Boole 🗸
c) Einstein
d) Maxwell
2. The AND gate output is 1 only when:
a) Both inputs are 0
b) Both inputs are 1 🗸
c) One input is 1
d) Any input is 0
3. The OR gate output is 0 only when:

- a) Both inputs are 0
- b) Both inputs are 1
- c) One input is 1
- d) Any input is 1
- 4. The NOT gate inverts:
- a) $1 \to 0$, $0 \to 1$
- b) $1 \to 1, 0 \to 0$
- c) $1 \to 1, 0 \to 1$
- d) None
- 5. De Morgan's theorem states:
- a) $(A \cdot B)' = A' + B'$
- b) (A+B)' = A + B
- c) (A+B)' = A'B'
- d) Both a & c
- 6. NAND gate is called:
- a) Universal gate
- b) Basic gate
- c) Logic gate
- d) None
- 7. NOR gate is called:
- a) Universal gate
- b) Basic gate
- c) Logic gate
- d) None
- 8. XOR gate output is 1 when:
- a) Inputs same
- b) Inputs different
- c) Both inputs 0
- d) Both inputs 1
- 9. XNOR gate output is 1 when:
- a) Inputs same
- b) Inputs different
- c) Both 0
- d) Both 1
- 10. Sum-of-Products (SOP) is:
- a) OR of AND terms
- b) AND of OR terms
- c) XOR of AND terms
- d) NAND of OR terms
- 11. Product -of-Sums (POS) is:
- a) OR of AND terms
- b) AND of OR terms

- c) XOR of OR terms
- d) NOR of AND terms
- 12. K-map is used for:
- a) Minimization of Boolean expression
- b) Maximization
- c) M ultiplexing
- d) Latching
- 13. 2-to-1 multiplexer has:
- a) 2 inputs, 1 select
- b) 2 outputs, 1 input
- c) 1 input, 2 select
- d) 2 outputs, 2 select
- 14. 4-to-1 multiplexer has:
- a) 4 inputs, 2 select
- b) 4 outputs, 2 select
- c) 2 inputs, 4 select
- d) 1 input, 4 select
- 15. Demu ltiplexer converts:
- a) 1 input \rightarrow many outputs
- b) Many inputs $\rightarrow 1$ output
- c) OR operation
- d) AND operation
- 16. Decoder converts:
- a) n inputs $\rightarrow 2^n$ outputs
- b) 2^n inputs \rightarrow n outputs
- c) n outputs \rightarrow n inputs
- d) None
- 17. Encoder converts:
- a) 2^n inputs \rightarrow n outputs \checkmark
- b) n inputs $\rightarrow 2^n$ outputs
- c) $OR \rightarrow AND$
- d) None
- 18. Half adder produces:
- a) Sum only
- b) Carry only
- c) Sum & Carry
- d) Difference & Borrow
- 19. Full adder has:
- a) 2 inputs
- b) 3 inputs
- c) 4 inputs
- d) 1 input

20. Flip-flops store:
a) Voltage
b) Bit of information
c) Curre nt
d) Logic gate
21. SR flip -flop is built using:
a) NAND/NOR gates 🗸
b) XOR
c) XNOR
d) AND
22. JK flip -flop overcomes:
a) Race condition in SR 🗸
b) Memory loss
c) Input error
d) Timing error
23. D flip -flop output =
a) Input D 🗸
b) Input Q
c) Inverted D
d) Sum
24. T flip-flop toggles on:
a) T=1 🗸
b) T=0
c) Clock high
d) Reset
25. Asynchronous counter uses:
a) Same clock
b) Ripple effect
c) Parallel clocking
d) Both a & b
26. Synchronous counter:
a) All flip -flops clocked simultaneously 🗹
b) Ripple clocked
c) Not clocked
d) None
27. Mealy machine output depends on:
a) Present state only
b) Present input only
c) Present state & input
d) Previous state
28. Moore machine output depends on:
a) Present state only 🗸

c) Previous state
d) Both state & input
29. PLA stands fo r:
a) Programmable Logic Array
b) Parallel Logic Array
c) Primary Logic Adder
d) None
30. PLA used for:
a) Logic function implementation <a>
b) Storage
c) Multiplexing
d) None
31. Race around problem occurs in:
a) SR flip -flop
b) JK flip -flop 🗸
c) D flip -flop
d) T flip-flop
32. Pulse mode design avoids:
a) Multiple triggering 🗸
b) Single triggering
c) Flip -flop operation
d) Logic minimization
33. Fundamental mode design uses:
a) Only one input change at a time
b) Multiple inputs
c) Asynchronous
d) None
34. Combinational circ uit output depends on:
a) Present inputs only
b) Present & past inputs
c) Clock
d) State
35. Sequential circuit output depends on:
a) Present inputs only
b) Present & past inputs
c) Clock only
d) None
36. Boolean expression simplification reduces:
a) Gate coun t
b) Power consumption
c) Complexity

b) Present input

d) All 🗸
37. XOR gate is equivalent to:
a) A'B + AB'
b) AB + A'B'
c) A + B
d) A·B
38. XNOR gate is equivalent to:
a) AB + A'B'
b) A'B + AB'
c) A + B
d) A·B
39. NAND gate expression:
a) (AB)' 🗸
b) A + B
c) AB
d) (A + B)'
40. NOR gate expression:
a) (A+B)' 🗸
b) A + B
c) AB
d) (AB)'
41. Number of minterms for n variables:
a) n
b) 2 ⁿ 🗸
c) n ²
d) 2n
42. Number of maxterms for n variables:
a) n
b) 2 ⁿ
c) n ²
d) 2n
43. Canonical SOP uses:
a) Minterms 🗸
b) Maxterms
c) Sum
d) Product
44. Canonical POS uses:
a) Minterms
b) Maxterms 🗸
c) Sum
d) Product
45. Logic minimization reduces:

a) Cost 🗸
b) Speed
c) Complexity
d) Both a & c 🗸
46. Flip-flop stores:
a) 1 bit 🗹
b) 2 bits
c) 4 bits
d) Variable
47. Latches are:
a) Level triggered 🗸
b) Edge triggered
c) Pulse mode
d) None
48. Flip-flops are:
a) Level triggered
b) Edge triggered 🗸
c) Pulse mode
d) None
49. Pulse -triggered flip -flops help avoid:
a) Race around 🗸
b) Memory loss
c) Logic error
d) Power consumption
50. Asynchronous <u>counter also called:</u>
a) Ripple counter 🗸
b) Ri ng counter
c) Synchronous counter
d) Johnson counter
51. Synchronous counter is:
a) Ripple type
b) Clocked simultaneously
c) Level triggered
d) None
52. 4-bit asynchronous counter counts:
a) 0-7
b) 0-15 🗸
c) 0–31
d) 0-63
53. 3-bit synchronous counter max count:
a) 7 🗸
b) 3

c) 8
d) 15
54. Edge triggering refers to:
a) Clock rising/falling 🗸
b) Clock high
c) Clock low
d) Pulse width
55. JK flip -flop toggles when:
a) J=K=1 🗸
b) J=1, K=0
c) J=0, K=1
d) J=K=0
56. Clock frequency determines:
a) Circuit speed 🗸
b) Gate numbe r
c) Power
d) Output only
57. Race around occurs when propagation delay < pulse width:
a) True 🗸
b) False
c) Sometimes
d) None
58. Edge -triggered flip -flop avoids:
a) Multiple toggles 🗸
b) Memory
c) Delay
d) Logic error
59. MUX selects:
a) One input 🗸
b) All inputs
c) Output
d) Gate
60. DEMUX distributes:
a) Input to one output 🗸
b) Input to all outputs
c) Gate
d) None
61. SOP minimization reduces:
a) AND gates
b) OR gates
c) Both
d) XOR

62. POS minimization reduces:
a) OR gates
b) AND gates
c) Both 🗸
d) NAND
63. Universal gate can implement:
a) All logic 🗸
b) None
c) Only OR
d) Only AND
64. Flip-flop characteristic table lists:
a) Inputs & outputs 🗸
b) Inputs only
c) Outputs only
d) Clock only
65. Level -triggered latch changes state:
a) Clock high 🗸
b) Clock low
c) Both
d) Edge
66. Edge -trigger ed flip -flop changes state:
a) Rising/falling 🗸
b) Level high
c) Level low
d) None
67. Pulse mode design avoids:
a) Multiple toggles 🗸
b) Race
c) Timing errors 🗸
d) All 🗸
68. State diagram represents:
a) Sequential behavior
b) Combinational logic
c) Input only
d) Output only
69. Mealy machine faster than Moore because:
a) Output depends on input 🗸
b) Output depends on state
c) Uses fewer flip -flops
d) None
70. Fundamental mode design ensures:
a) Only one input changes at a time
- -

b) Multiple input changes
c) Synchronous
d) None
Basic Electronics (~60 MCQ)
1. Diode allows current to flow in:
a) Both directions
b) One direction 🗸
c) No direction
d) Depends on voltage
2. Forward biased diode has:
a) High resistance
b) Low resistance 🗸
c) Infinite resistance
d) Zero resistance
3. Reve rse biased diode has:
a) High resistance 🗸
b) Low resistance
c) Zero resistance
d) Low voltage
4. Zener diode is used for:
a) Amplification
b) Voltage regulation 🗸
c) Switching
d) Oscillation
5. Half-wave rectifier uses:
a) 1 diode 🗸
b) 2 diodes

c) 4 diodesd) None

a) 1 diodeb) 2 diodes ✓c) 4 diodesd) None

a) 2 diodesb) 3 diodesc) 4 diodesd) 1 diode

8. Clipper circuit:

b) Amplifies signal

a) Clips voltage above/below reference

6. Full-wave rectifier uses:

7. Bridge rectifier uses:

c) Rectifies signal
d) Filters signal
9. Clamper circuit:
a) Shifts signal DC level 🗸
b) Clips voltage
c) Rectifies
d) Amplifies
10. Bipolar junction transistor (BJT) has:
a) 2 terminals
b) 3 terminals 🗸
c) 4 terminals
d) 5 terminals
11. BJT modes:
a) Active
b) Cut -off
c) Saturation 🗸
d) All 🗸
12. Common emitter configuration provides:
a) Voltage gain 🗸
b) Current gain 🗸
c) Power gain
d) All 🗸
13. Common base configuration has:
a) Current gain <1 ✓
b) Voltage gain high
c) Input low
d) Output low
14. Common collector configuration is also called:
a) Emitter follower
b) Base follower
c) Collector follower
d) None
15. BJT used as switch operates in:
a) Active region
b) Cut -off & saturation 🗸
c) Reverse bias
d) None
16. Load line represents:
a) Relationship between V & I 🗸
b) Current only
c) Voltage only

d) None
17. Stability factor determines:
<u> </u>
a) BJT bias stability
b) Voltage
c) Current
d) Resistance
18. Small signal model of BJT uses:
a) h-parameters 🗸
b) Z-parameters
c) Y-parameters
d) None
19. Voltage gain of CE amplifier:
a) High 🗸
b) Low
c) Zer o
d) Negative
20. Current gain of CE amplifier:
a) High 🗸
b) Low
c) Zero
d) Negative
21. Input impedance of CB amplifier:
a) High
b) Low 🗸
c) Medium
d) Variable
$22. \ Output \ impedance \ of \ CE \ amplifier$
a) Low
b) High 🗸
c) Medium
d) Variable
23. Field effect transistor (FET) has:
a) High input impedance 🗸
b) Low input impedance
c) Medium
d) Variable
24. JFET gate is:

a) Forward biasedb) Reverse biased ✓

25. MOSFET can be:

c) Floatingd) None

a) Depletion type 🗸
b) Enhancement type 🗹
c) Both 🗸
d) None
26. FET operates on:
a) Voltage contr ol 🗸
b) Current control
c) Both
d) None
27. Diode's knee voltage \sim
a) 0.7V for silicon 🗸
b) 0.3V for silicon
c) 0.7V for germanium
d) 0.3V for germanium
28. Zener voltage is:
a) Breakdown voltage 🗸
b) Forward voltage
c) Knee voltage
d) None
29. Half-wave rectifier out put frequency =
a) Input frequency
b) Same as input 🗸
c) Twice input
d) Half input
30. Full-wave rectifier output frequency =
a) Same as input
b) Twice input
c) Half input
d) None
31. Capacitor filter removes:
a) AC ripples ✓
b) DC
c) Voltage
d) Current
32. Diode re verse recovery time:
a) Time to turn off
b) Time to turn on
c) Forward voltage d) None
33. Transistor as amplifier operates in:
a) Cut -off
b) Active
~,·······

c) Saturation
d) Reverse
34. Transistor as switch operates in:
a) Active
b) Cut -off & saturation
c) Reverse
d) None
35. BJT has:
a) Base, emitter, collector 🗸
b) Gate, source, drain
c) Emitter, collector
d) None
36. FET has:
a) Base, collector, emitter
b) Gate, source, drain
c) Input, output
d) None
37. MOSFET input impedance:
a) Low
b) Very high 🗸
c) Medium
d) Variable
38. Clipper removes:
a) Part of waveform
b) Entire waveform
c) DC
d) AC
39. Clamper shifts:
a) DC level 🗸
b) AC level
c) Both
d) None
40. Forward biased diode resistance:
a) High
b) Low 🗸
c) Infinite
d) Zero
41. Reverse biased diode leakage current:
a) High
b) Low 🗸
c) Zero

d) Medium

42. Power dissipation in transistor:
a) VCE × IC 🗹
b) VBE × IB
c) IC × IB
d) None
43. CE amplifier phase shift:
a) 0°
b) 180° ✓
c) 90°
d) None
44. CB amplifier phase shift:
a) 0° 🗹
b) 180°
c) 90°
d) None
45. CC amplifier phase shift:
a) 0° 🗸
b) 180 °
c) 90°
d) None
46. Small signal model helps determine:
a) Gain 🗸
b) Impedance 🗸
c) Both 🗸
d) None
47. Junction diode symbol:
a) Triangle → line ✓
b) Line → triangle
c) Circle
d) Square
48. Zener diode symbol:
a) Line with bent bar 🗸
b) Triangle → line
c) Circle
d) Square
49. Half-wave rectifier uses:
a) Transformer 🗸
b) Diode 🗹
c) Capacitor 🗸
d) All
50. Full-wave rectifier bridge has:
a) 2 diodes

d) Infinite
59. Voltage multiplier uses:
a) Diodes & capacitors 🗸
b) Transistors
c) Resistors
d) Inductors
60. Zener regulator provides:
a) Constant voltage
b) Constant current
c) Constant resistance
d) None Migraphagagan & Interfacing (60 MCO)
Microprocessor & Interfacing (~60 MCQ) 1. Microprocessor is:
a) A software
<u> </u>
b) Central processing unit on a single chip
c) Memory chip
d) Input device2. Difference between microprocessor and microcontroller:
a) Microprocessor lacks RAM/ROM
b) Microcontroller has built -in RAM/ROM
c) Both a & b
d) None
3. 8086/8088 belongs to:
a) 4-bit family
b) 8-bit family
c) 16 -bit family
d) 32 -bit family
4. 8086 has:
a) 8-bit data bus
b) 16 -bit data bus
c) 32 -bit data bu s
d) 64 -bit data bus
5. Memory segmentation in 8086:
a) Code, data, stack, extra
b) Input, output
c) Registers only
d) None 6. Instruction set of 8086 contains:
a) Data transfer
b) Arithmetic
c) Logical 🗸
d) All

7. Addressing mode specifies
a) How to acces s operands
b) Data size
c) Clock
d) Power
8. Immediate addressing uses
a) Camatant malma

- S:
- a) Constant value
- b) Memory address
- c) Register
- d) Input
- 9. Register addressing uses:
- a) CPU register
- b) Memory
- c) Input
- d) Constant
- 10. Direct addressing uses:
- a) Memory address
- b) Regi ster
- c) Immediate
- d) Port
- 11. Indirect addressing uses:
- a) Register contains address
- b) Memory contains address
- c) Immediate
- d) Port
- 12. Single -processor system has:
- a) One CPU
- b) Multiple CPUs
- c) None
- d) All
- 13. Multi -processor system:
- a) One CPU
- b) Multiple CPUs
- c) None
- d) All
- 14. Assembler converts:
- a) Assembly → Machine code ✓
- b) High -level \rightarrow Assembly
- c) Machine \rightarrow Assembly
- d) None
- 15. Debugger is used for:
- a) Detecting errors

b) Writing code
c) Compiling
d) Executing only
16. 8255A is:
a) Programmable Peripheral Interface
b) Timer
c) DMA
d) Memory
17. 8254 is:
a) Programmable interval timer 🗸
b) PPI
c) Interrupt controller
d) UART
18. Keyboard interfacing can be done via:
a) 8255 🗸
b) 8254
c) 8259
d) DMA
19. LCD interfacing uses:
a) 8255 🗸
b) 8254
c) 8259
d) None
20. Printer interfac ing uses:
a) Parallel 🗸
b) Serial
c) Both 🗸
d) None
21. Stepper motor interfacing:
a) 8255 🗸
b) 8259
c) 8254
d) None
22. A/D converter converts:
a) Analog → Digital ✓
b) Digital → Analog
c) Voltage
d) Current
23. D/A converter converts:
a) Analog \rightarrow Digital
b) Digital → Analog ✓
c) Both

d) None
24. 8259A is:
a) Programmable interrupt controller
b) Timer
c) PPI
d) DMA
25. Interrupt vector table stores:
a) Addresses of interrupt routines
b) Data
c) Instructions
d) None
26. DMA stands for:
a) Direct Memory Access
b) Dynamic Memory Access
c) Dual Memory Access
d) Data Memory Access
27. Serial communication can be:
a) Synchronous 🗸
b) Asynchronous 🗸
c) Both
d) None
28. EIA RS232 is:
a) Physical communication standard
b) Protocol
c) Memory
d) Timer
29. Microprocessor clock controls:
a) Instruction timing 🗸
b) Data
c) Voltage
d) Current
30. Bus demultiplexer separates:
a) Address & data lines 🗸
b) Input lines
c) Output lines
d) Power
31. Bus controller manages:
a) Data transfer 🗸
b) Instruction fetch
c) Clock

d) None

32. Programmed I/O means:

a) CPU actively polls 🗸
b) CPU interrupts
c) DMA
d) None
33. Interrupt driven I/O:
a) CPU waits
b) CPU responds to interrupt 🗸
c) CPU ignores
d) None
34. Parallel I/O port transfers:
a) 1 bit
b) Multiple bits simultaneously 🗸
c) Serially
d) None
35. SRAM stands for:
a) Static RAM 🗸
b) Serial RAM
c) Synchronous RAM
d) None
36. EEPROM stands for:
a) Electrically Erasable Programmable ROM 🗸
b) RAM
c) Flash
d) None
37. Clock generator produces:
a) Timing pulses 🗸
b) Data
c) Instructions
d) None
38. Stepper m otor moves in:
a) Continuous rotation
b) Steps 🗸
c) Random
d) None
39. Timer applications include:
a) Delay 🗸
b) Event counting 🗸
c) Pulse generation 🗸
d) All 🗸
40. Asynchronous serial communication uses:
a) Start & stop bits 🗸
b) Clock

- c) Both d) None 41. Microproces sor I/O address decoding ensures:
- a) Correct device access
- b) Timing
- c) Speed
- d) None
- 42. Interrupt vector points to:
- a) Interrupt routine
- b) Main program
- c) Data
- d) Timer
- 43. Single -step execution helps in:
- a) Debugging
- b) Speeding
- c) Storage
- d) Communicati on
- 44. Flag registers store:
- a) Status 🗸
- b) Data
- c) Address
- d) Control
- 45. Carry flag is set when:
- a) Addition exceeds limit
- b) Subtraction negative
- c) Overflow
- d) Zero
- 46. Zero flag is set when:
- a) Result = 0
- b) Result > 0
- c) Carry occurs
- d) None
- 47. Sign flag indica tes:
- a) Positive/negative
- b) Zero
- c) Carry
- d) Overflow
- 48. Parity flag checks:
- a) Even/odd bits
- b) Zero
- c) Carry
- d) Sign

49. Program counter stores:
a) Next instruction address
b) Current instruction
c) Data
d) Stack pointer
50. Stack pointer points to:
a) Top o f stack 🗸
b) Bottom
c) Memory
d) None
51. PUSH instruction:
a) Store in stack 🗸
b) Retrieve from stack
c) Clear stack
d) None
52. POP instruction:
a) Store
b) Retrieve
c) Clear
d) None53. Software interrupt generated by:
a) Instruction
b) External device
c) Timer
d) DMA
54. Hardware interrupt generated by:
a) Device
b) Instruction
c) Program
d) Memory
55. Instruction cycle includes:
a) Fetch 🗸
b) Decode 🗸
c) Execute 🗸
d) All 🗸
56. Data bus width determines:
a) Data size per transfer 🗸
b) Address
c) Instruction
d) Clock
57. Address bus width determines:
a) Maximum memory accessible 🗸

b) Data size
c) Instruction size
d) Clock
58. Control signals include:
a) RD, WR 🗸
b) ALE 🗸
c) INTA 🗸
d) All 🗸
59. Microprocessor interfacing requires:
a) Address decoding
b) Timing
c) Data bus
d) All
60. Multi -processor system advantage:
a) High speed ✓
b) Parallel processing
c) Reliability ✓
d) All
Communication Theory (~50 MCQ)
1. Fourier series represents:
a) Continuous signals
b) Discrete signals
c) Both
d) None
2. Fourier transform converts:
a) Time → Frequency ✓
b) Frequency → Time
c) Voltage → Current
d) None
3. Convolution in time domain equals:
a) Multiplication in frequency domain 🗸
b) Addition
c) Subtraction
d) Division
4. Parseval's theorem relates:
a) Energy in time & frequency 🗸
b) Power
c) Voltage
d) Current
5. Entropy in information theory measures:
a) Uncertainty 🗸

- b) Speed
- c) Bandwidth
- d) Amplitude
- 6. Shannon's theorem gives:
- a) Maximum channel capacity
- b) Minimum noise
- c) Maximum power
- d) None
- 7. Channel capacity depends on:
- a) Bandwidth
- b) Signal -to-noise ratio
- c) Both
- d) None
- 8. Analog modulation includes:
- a) AM
- b) FM 🗸
- c) PM
- d) All 🗸
- 9. AM stands for:
- a) Amplitude Modulation
- b) Angular Modulation
- c) Analog Modulation
- d) None
- 10. FM stands for:
- a) Frequency Modulation
- b) Phase Modulation
- c) Amplitude Modulation
- d) None
- 11. PM stands for:
- a) Phase Modulation
- b) Frequency Modulation
- c) Amplitude Modulation
- d) None
- 12. Modulation purpose:
- a) Efficient transmission
- b) Amplification
- c) Rectification
- d) None
- 13. Demodulation recovers:
- a) Original signal
- b) Noise
- c) Carrier

d) None
14. Pulse Amplitude Modulation (PAM) uses:
a) Amplitude of pulses 🗸
b) Frequency
c) Phase
d) None
15. Pulse Code Modulation (PCM) is:
a) Digital modulation 🗸
b) Analog modulation
c) Hybrid
d) None
16. Delta modulation (DM) encodes:
a) Di fference between samples 🗸
b) Absolute value
c) Average
d) None
17. Adaptive delta modulation (ADM) adjusts:
a) Step size 🗸
b) Frequency
c) Phase
d) None
18. Time -Division Multiplexing (TDM) divides:
a) Time slots 🗸
b) Frequency
c) Phase
d) None
19. Frequency -Division Multiplexing (FDM) divides:
a) Frequency 🗸
b) Time
c) Phase
d) None
20. TDMA is:
a) Time -division multiple access
b) Frequency -division
c) Code -division
d) None
21. FDMA is:
a) Time -division
b) Frequency -division multiple access
c) Code -division
d) None
22. CDMA uses:

a) Codes to separate users
b) Time slots
c) Frequency bands
d) None
23. Nyquist sampling theorem states:
a) Fs \geq 2 × fmax \checkmark
b) Fs < fmax
c) Fs = fmax
d) None
24. Aliasing occurs if:
a) Fs < 2 × fmax ✓
b) Fs ≥ 2 × fmax
c) $Fs = 2 \times fmax$
d) None
25. SNR stands for:
a) Signal -to-Noise Ratio 🗸
b) Signal -to-Number
c) Sound -to-Noise
d) None
26. Power spectrum represents:
a) Distribution of power over frequency 🗸
b) Time
c) Amplitude
d) None
27. Baseband signal is:
a) Original signal 🗸
b) Modulated signal
c) Carrier
d) None
28. Bandpass signal is:
a) Centered around carrier 🗸
b) Original signal
c) Noise
d) None
29. AM modulated signal has:
a) Carrier + sidebands 🗸
b) Carrier only
c) Sidebands only
d) None
30. FM bandwidth depends on:
a) Frequency deviation 🗸
b) Amplitude

- c) Phase
- d) None
- 31. PM bandwidth depends on:
- a) Phase deviation
- b) Frequency
- c) Amplitude
- d) None
- 32. Coherent detection used for:
- a) AM demodulation
- b) FM
- c) PM
- d) None
- 33. Envelope detection used for:
- a) AM 🗸
- b) FM
- c) PM
- d) None
- 34. Multiplexing purpose:
- a) Efficient utiliz ation
- b) Amplification
- c) Modulation
- d) None
- 35. Information rate formula:
- a) R = H × symbols/sec
- b) $R = H \times f$
- c) $R = P \times t$
- d) None
- 36. Signal bandwidth affects:
- a) Data rate
- b) Power
- c) Voltage
- d) None
- 37. Noise degrades:
- a) SNR 🗸
- b) Bandwidth
- c) Time
- d) None
- 38. Shannon capacity formula:
- a) $C = B \log_2(1 + S/N)$
- b) $C = B \times S/N$
- c) C = B / S/N
- d) None

39. Analog vs digital communication:
a) Analog continuous 🗸
b) Digital discrete 🗸
c) Both correct 🗸
d) None
40. Multiplexing reduces:
a) Number of channels 🗸
b) Bandwidth
c) Noise
d) None
41. Demultiplexer separates:
a) Combined signals 🗸
b) Carrier
c) Modulation
d) None
42. Fourier series uses:
a) Sin & cos 🗸
b) Exponential only
c) Step function
d) None
43. Power spectrum integral =
a) Signal energy 🗸
b) Noise
c) Bandwidth
d) None
44. Pulse duration affects:
a) Bandwidth
b) Power
c) Noise
d) None
45. PCM uses:
a) Sampling ✓
b) Quantization
c) Encoding
d) All 🗸
46. Delta modulation advantage:
a) Simple 🗸
b) Requires low bandwidth 🗸
c) Adaptive possible 🗸
d) All 🗸
47. CDMA allows:

a) Multiple use rs 🗸
b) Single user
c) Only one channel
d) None
48. Nyquist rate =
a) 2 × fmax 🗸
b) fmax
c) fmax / 2
d) None
49. Pulse shaping reduces:
a) Inter -symbol interference 🗸
b) Noise
c) Bandwidth
d) None
50. Communication system goal:
a) Reliable data transfer 🗸
b) Maximum n oise
c) Minimum bandwidth
d) None
Computer Networking & Security (~60 MCQ)
1. Protocol hierarchy defines:
a) Layered communication 🗸
b) Hardware only
c) Software only
d) None
2. Data link layer provides:
a) Reliable link
b) Routing
c) Application
d) Transport
3. HLDC stands for:
a) High -Level Data Link Control
b) High -Level Device Control
c) Hardware Link Device Control
d) None 4. LAN protocols include:
<u> </u>
a) IEEE 802.3 ✓
b) IEEE 802.11 🗸
c) Both
d) None
5. Hub operates at:
a) Physical layer 🗸

- b) Data link
- c) Network
- d) Transport
- 6. Switch operates at:
- a) Physical
- b) Data link
- c) Network
- d) Transport
- 7. Bridge connects:
- a) Two LANs
- b) Two computers
- c) Router
- d) None
- 8. FDDI uses:
- a) Fiber optic
- b) Copper
- c) Wireless
- d) None
- 9. Fast Ethernet speed:
- a) 10 Mbps
- b) 100 Mbps 🗸
- c) 1 Gbps
- d) 10 Gbps
- 10. Routing algorithm decides:
- a) Path selection
- b) Bandwidth
- c) Speed
- d) None
- 11. Congestion control prevents:
- a) Network overload
- b) Data loss
- c) Security
- d) None
- 12. Internetworking involves:
- a) Connecting LANs/WANs
- b) Hardware only
- c) Software only
- d) None
- 13. Fragmentation occurs when:
- a) Packet > MTU
- b) Packet < MTU
- c) Router fails

d) None
14. Firewall purpose:
a) Network security 🗸
b) Routing
c) Switching
d) None
15. IPV4 address length:
a) 32 bits 🗸
b) 64 bits
c) 128 bits
d) 16 bits
16. IPV6 address length:
a) 32 bits
b) 64 bits
c) 128 bits 🗸
d) 16 bits
17. ARP resolves:
a) IP \rightarrow MAC \checkmark
b) MAC \rightarrow IP
c) $Port \rightarrow IP$
d) None
18. RARP resolves:
a) MAC \rightarrow IP \checkmark
b) IP \rightarrow MAC
c) Port \rightarrow IP
d) None
19. Mobile IP enables:
a) Device mobility 🗸
b) Routing
c) Switching
d) None
20. Transport protocol for reliable communication:
a) TCP 🗸
b) UDP
c) ICMP
d) None
21. TCP provides:
a) Connection -oriented
b) Error checking
c) Flow control
d) All 🗸
22. UDP provides:

a) Connectionless 🗸
b) No guarantee 🗸
c) Both 🗸
d) None
23. AAL of ATM:
a) Adaptation layer 🗸
b) Application layer
c) Transport layer
d) None
24. Network security includes:
a) Cryptography 🔽
b) Authentication 🗸
c) Digital signatures 🗸
d) All 🗸
25. DES stands for:
a) Data Encryption Standard 🗸
b) Digital Encryption Standard
c) Data Encoding System
d) None
26. IDEA stands for:
a) International Data Encryption Algorithmb) Data Encryption Algorithm
c) Information Encoding
d) None
27. Public key algorithm uses:
a) Two keys 🗸
b) One key
c) Both
d) None
28. Authentication ensures:
a) Identity your fination
a) Identity verification
b) Data transfer
b) Data transfer c) Speed
b) Data transfer c) Speed d) None
b) Data transfer c) Speed d) None 29. Digital signature ensures:
b) Data transfer c) Speed d) None 29. Digital signature ensures: a) Authentication
b) Data transfer c) Speed d) None 29. Digital signature ensures: a) Authentication b) Integrity
b) Data transfer c) Speed d) None 29. Digital signature ensures: a) Authentication b) Integrity c) Both
b) Data transfer c) Speed d) None 29. Digital signature ensures: a) Authentication b) Integrity c) Both d) None
b) Data transfer c) Speed d) None 29. Digital signature ensures: a) Authentication b) Integrity c) Both

b) 1 Gbps 🗸
c) 10 Gbps
d) None
31. DNS resolves:
a) Domain → IP ✓
b) IP → Domain
c) MAC \rightarrow IP
d) None
32. Name servers store:
a) Domain name info 🗸
b) IP only
c) MAC only
d) None
33. Email privacy is ensured by:
a) Encryption 🗸
b) Routing
c) Firewall
d) None
34. SNMP stands for:
a) Simple Network Management Protocol 🗸
b) Secure Network
c) Standard Ne twork
d) None
35. HTTP operates at:

a) Application layer

36. HTTPS ensures: a) Secure HTTP

b) Transport c) Network d) Data link

b) Fast HTTP c) Normal HTTP

37. LAN uses: a) Ethernet 🗸 b) FDDI 🗸 c) Both d) None

38. WAN connects:

b) Si ngle computer c) Router only

a) Large area networks

d) None

- d) None
- 39. Fragmentation handled by:
- a) Network layer
- b) Transport
- c) Data link
- d) None
- 40. IPV4 provides:
- a) 4 billion addresses
- b) 1 billion
- c) 128 bit
- d) None
- 41. IPV6 provides:
- a) 128 -bit address
- b) 32 -bit
- c) 64 -bit
- d) None
- 42. TCP uses:
- a) Three -way handshake
- b) UDP
- c) ICMP
- d) None
- 43. UDP uses:
- a) No handshake 🗸
- b) Handshake
- c) Connection -oriented
- d) None
- 44. Firewalls can be:
- a) Packet filtering
- b) Proxy 🗸
- c) Both
- d) None
- 45. Cryptography converts:
- a) Plaintext → Ciphertext
- b) Ciphert ext \rightarrow Plaintext
- c) Data only
- d) None
- 46. VPN ensures:
- a) Secure private network
- b) Open network
- c) LAN only
- d) None
- 47. Transport layer manages:

-) F., d. t., and
a) End -to-end communication
b) Node -to-node
c) Data link
d) Physical
48. ARP used in:
a) Local network 🗸
b) Internet
c) WAN
d) None

- 49. RARP used to:
- a) Assign IP from MAC
- b) Assign MAC
- c) DNS
- d) None
- 50. ICMP used for:
- a) Error reporting
- b) Data transfer
- c) Encryption
- d) None
- 51. SMTP used for:
- a) Sending emails
- b) Receiving emails
- c) Browsing
- d) None
- 52. POP3 used for:
- a) Receiving emails
- b) Sending emails
- c) Browsing
- d) None
- 53. IMAP used for:
- a) Receiving emails
- b) Sending
- c) Browsing
- d) None
- 54. VPN tunnel provides:
- a) Encrypted path
- b) Open path
- c) Wireless path
- d) None
- 55. Network congestion occurs due to:
- a) Excessive tr affic
- b) Low traffic

- c) Short cable
- d) None
- 56. Routing algorithms include:
- a) Distance vector
- b) Link state
- c) Both
- d) None
- 57. MAC address is:
- a) Hardware address
- b) IP address
- c) Domain name
- d) None
- 58. IPv4 address written in:
- a) Dot -decimal
- b) Hex
- c) Binary only
- d) None
- 59. IPv6 address written in:
- a) Hexadecimal
- b) Decimal
- c) Binary
- d) None
- 60. Network layer provides:
- a) Logical addressing <a>
- b) Physical addressing
- c) Transport
- d) Application