FreeDIC 简明教程

黎澄生 1964977182@qq.com https://github.com/lichengshengHK/iDVC

汕头大学/中国科学院武汉岩土力学研究所

基于 FreeD IC 的相关论文	1
一、前期处理	2
1、选择计算区域	2
2、标记非计算区域 二、DIC 计算	
1、参数选择	4
2、DIC 计算	4
4 DIC 数据结构说明	5
三、后期处理	
1、结果修正 2、计算应变 3、结果显示	7 7
3、结果显示	
五、示例	

基于 FreeD IC 的相关论文

1 Evolution of cracks in the shear bands of granite residual soil

Journal of Rock Mechanics and Geotechnical Engineering

https://doi.org/10.1016/j.jrmge.2021.12.028

2 Dynamic three-dimensional imaging and digital volume correlation analysis to quantify shear bands in grus Mechanics of Materials

https://doi.org/10.1016/j.mechmat.2020.103646

3 Accurate and simple digital volume correlation using pre-interpolation

Measurement Science and Technology

https://doi.org/10.1088/1361-6501/ab85b0

4 花岗岩残积土复杂次生裂隙的分类与损伤特征

岩土力学

https://doi.org/10.16285/j.rsm.2023.0713

5 花岗岩残积土剪切带上的细观结构损伤规律

岩土力学

https://doi.org/10.16285/j.rsm.2022.1732

6 Experimental investigation of damage evolution characteristics of coral reef limestone based on acoustic emission and digital volume correlation techniques

Rock Mechanics and Rock Engineering

https://doi.org/10.1007/s00603-022-03186-y

7 Mesoscopic measurement of damage and shear bands of granite residual soil using Micro-CT and digital volume correlation

Journal of Mountain Science

https://doi.org/10.1007/s11629-023-8159-6

QQ 讨论群: 544465573 (FreeDIC/iDVC 测量分析)

视频教程: https://b23.tv/JiHSnqi

一、前期处理

1、选择计算区域

【Ca Im】选择需要计算的图像;

【Re Im】选择参考图像:

【save】选择保持路径:

【选择计算区域】,对参考图片进行操作,选择 4 个角,形成矩形方框,方框内为计算区域。左击——选择点,"Enter"完成,并会最后显示方框。

2、标记非计算区域

前期处理时,不能选择【是否修正 DIC 结果】

标记规则:

左键——选择散点,只要最外边界包络不需要计算的部分即可,可以多选;

Enter——结束当次区域选择。

右键——撤销当前左键所选择的散点;

中键——结束全部散点选择,完成非计算区域的选择;

一般操作流程:左键选择点—enter借宿当前区域—左键选择其余地方—enter当前当前区域——中键结束全部。

如下图所示,黄色为计算区域。但大多数时候会有一些残余边角,可以进行【标记区膨胀】(注意:【Date】打开 XY_UC.mat 文件),选择合适的【标记膨胀半径】。

3、如果只是针对参考区域中的指定目标点计算位移,则必须选择【指定点位移】,选择指定点;具体操作:

勾选【指定点位移】

然后在图中选择需要计算的点,左击多个点,最后【enter】结束 其余操作和普通的一样。

二、DIC 计算

1、参数选择

【检索半径】最大位移半径

【格子半径】计算子矩阵半径,窗口为(2×M+1)^2

【grid】计算网格点间隔

【zncc_Thed】修正阈值,小于此值的需要重新修正,并用于【plot】显示的阈值,小于该阈值的区域不显示。

【方法】直接选择'method1',"注,method2 还在开发,不稳定";

【Ren】修正迭代次数,一般要大于10。

【cores】选择和 CPU 物理核数相同。

【平滑格】选择修正的半径范围, 用于可靠性导向。

2、DIC 计算

2.1 当不确定检索半径时,可以选择【与估计检索半径】,然后点击【双图计算】,查看结果,反 复选择合适的检索半径

2.2 当全部参数都设置好后,点击【执行计算】进行整个区域的计算,(注意必须要取消【预估检索半径】)

会生成 Dx,Dy,ZNCC 三幅结果图,保存结果 DIC.mat

xy 表示坐标方向, ZNCC 是匹配系数, 当存在非计算区域标记时, 最好不用, 自己处理插值。 UC 是非计算区域的标记矩阵。

注:如果边角出现成片的低 ZNCC 区域,很有可能是【检索半径】的数值设置的过小,可适当增大。

3 帧率连续图像计算

- 3.1 仅【Ca Im】选择需要计算的图像,【Re Im】无需选择,
- 注: 计算的全部图像需要放置在同一个文件内,要求有准确数字编号、图像大小尽量相同、无其它无相关文件;
 - 3.2 相邻两张图片的最大位移半径【检索半径】需要调整,可能要调小,提高准确性
 - 3.3 点击【系列计算】进行分析帧率图片,结果保持成 DIC_Series.mat。
 - 3.4 注意: 相邻图像之间的变形不能太小!

4 DIC 数据结构说明

名称	说明
DIC.L	为各个方向的位移和 ZNCC, cell 结构数表示第 N 图的计算结果,
DIC.ZNCC	是 ZNCC 相关性参数
DIC.Px, DIC.Py	是计算点的位置
DIC.UC	标记的非计算区域,标记为1时表示非计算
DIC.Linter	计算间隔
DIC.M	半窗口格子数
DIC.Boundary	计算区域
DIC.XY	首张图片的计算位移点
DIC.FileSeries	计算图片的路径、名称、格式列表
注意	位移单位全部是像素

三、后期处理

1、结果修正

如果计算结果出现异常,或者预处理不能很好的标记非计算区域,可以采用后期处理进行修正。 【Date】选择 DIC.mat 结果和【是否修正 DIC 结果】,然后点击【标记非计算区】,操作逻辑和前期处理一样,针对计算匹配系数 ZNCC 进行操作裁剪。

预期结果如下图

2、计算应变

参数设置:

【平滑格子】平滑格子半径

【高斯方差】标准差, 高斯平滑

【Date】选择 DIC.mat 或者修正后的 Re_DIC.mat, 然后点击【Strain】, 保存结果 DIC_Strain.mat 或 DIC Series Strain.mat。

名称L结构	说明
Dy,Dx	为各个方向的位移
Dxx,Dyy,Dxy	应变
Dv	体应变
De	等效应变
后缀加 n	投射至参考图像的位移场或应变场
注	图像显示中D可能是E,比如Dxx-Exx

3、结果显示

【Date】选择 DIC_Strain.mat, 然后选择需要的应变、位移进行显示, AlphaData 是透明度。

若采用【系列计算】模块,需要【执行命令】窗口输入单数来指定画某一帧的计算结果。

注: 对于设定指定区间的色条画图方法

- 1)设置 AlphaData 为 0,画图显示,估算大概区间
- 2)【平滑格子】为数值显示下限,【高斯方差】为数值显示上限,AlphaData设置为0-1之间,再进行画图显示

四、裂隙变形分析

该功能模块是基于 DIC 的位移计算结果, 然后根据裂隙在变形前后的几何位置进行分析, 可陈 为裂隙的动态变形分析。

操作步骤:

【Ca_Im】选择分割提取好的裂隙 tif 格式图片的第一张。(裂隙图片的 size 必须和 DIC 分析的完全一致,包括图片的编号顺序)

【Data】加载 DIC.mat 或者 DIC Seies.mat。

【平滑格子】高斯平滑格子,可以选择5等整数。

【高斯方差】可选择 2。

点击【CrackDef】执行裂隙变形分析,计算结果会在窗口提示,如下图所示:

五、示例

岩石压缩

模型桩

后续持续增加