11 OLIMPIADA INTERNACIONAL DE FÍSICA MOSCOW, SOVIET UNION, 1979

Problema 1. Un cohete espacial con una masa M=12 t se está moviendo alrededor de la Luna a lo largo de la órbita circular a la altura de h=100 km. El motor se activa por un corto tiempo para pasar a la órbita de aterrizaje lunar. La velocidad de los gases expulsados $u=10^4$ m/s. El radio de la Luna $R_M=1.7\cdot10^3$ km, la aceleración de la gravedad cerca de la superficie de la Luna $g_M=1.7$ m/s²

Fig.1 Fig.2

- 1). ¿Qué cantidad de combustible debe ser gastado de forma que cuando se activa el frenado del motor en el punto A de la trayectoria, el cohete podría aterrizar en la Luna en el punto B (Fig. 1)?
- 2). En el segundo escenario de aterrizaje, en el punto A del cohete se le da un impulso dirigido hacia el centro de la Luna, para poner el cohete a la órbita de la superficie de la Luna en el punto C (Fig. 2). ¿Qué cantidad de combustible se necesita en este caso?

Problema 2. Pesas de bronce se usan para pesar una muestra de aluminio de fabricación en una balanza analítica. El peso es en el aire seco y otra en el aire húmedo con presión de vapor de agua $P_h = 2 \cdot 10^3$ Pa. La presión total atmosférica ($P = 10^5$ Pa) y la temperatura ($T = 20^{\circ}$ C) son los mismos en ambos casos. ¿Cuál debe ser la masa de la muestra siendo capaz de notar la diferencia en las lecturas de balance siempre que su sensibilidad es $m_0 = 0.1$ mg?

Densidad del aluminio $\rho_1 = 2700 \text{ kg/m}^3$, densidad del bronce $\rho_2 = 0.8500 \text{ kg/m}^3$.

Problema 3. Durante el experimento soviético-francesa sobre la localización óptica de la Luna el pulso de luz de un láser de rubí ($\lambda = 0.69 \ \mu \text{m}$) se dirige a la superficie de la Luna por el telescopio con un diámetro del espejo de $D = 2.6 \ \text{m}$. El reflector en la superficie de la Luna refleja la luz hacia atrás como un espejo ideal con el diámetro $d = 20 \ \text{cm}$. La luz reflejada es recogida, por el mismo telescopio y dirigida en el fotodetector.

- 1) ¿Qué debe hacer la precisión para dirigir el eje óptico del telescopio en este experimento?
- 2) ¿Qué parte de la energía láser emitida puede detectarse después de una reflexión sobre la Luna, si descuidamos la luz perdida en la atmósfera de la Tierra?
- 3) ¿Cuanto de luz podemos ver en un pulso de luz reflejada a simple vista si la energía del pulso láser E = 1 J y el umbral de sensibilidad del ojo es igual a n = 100?

4) Supongamos que la superficie de la Luna refleja $\alpha=10\,\%$ de la luz incidente en el ángulo estereorradián espacial 2π , estimar la ventaja de usar un reflector.

La distancia de la Tierra a la Luna es L=380.000 kilometros. El diámetro de la pupila del ojo es $d_p=5$ mm. La constante de Plank es $h=6.6\cdot 10^{-34}$ J s.