

Regular Languages

- Finite State Machines (FSM)
 - Deterministic (DFSM)
 - Nondeterministic (NDFSM)
- Regular Expressions
- Regular Grammars
- Moore and Mealy Machines

Conversions

Conversions

- NDFSM -> DFSM
- DFSM -> minimal DFSM
- Reg.Exp. -> NDFSM
- NDFSM -> Reg.Exp.

IS Regular

- Prove that a language is regular
 - Construct a:
 - DFSM
 - NDFSM
 - Reg.Exp.
 - Reg.Grammar
 - Prove that \approx_L has finitely many classes
 - Build minimal DFSM

Closure Properties

- Union
- Concatenation
- Kleene star
- Complement
- Intersection
- Difference
- Reverse

IS NOT Regular

- Prove that a language is not regular
 - Use pumping theorem
 - Use closure operations

Decision Problems

- Membership
- Emptiness
- Totality
- Finiteness
- Equivalence
- Minimality
- Specific questions

Pattern Matching / Searching

- Pattern p and text T:
 - Matching: $L(\Sigma^* p \Sigma^*)$
 - Searching: $L(\Sigma^*p)$

Context-Free Languages

- Context-Free Grammars (CFG)
- Pushdown Automata (PDA)

Conversions

- CFG -> Chomsky Normal Form
 - Algorithm
- CFG -> unambiguous CFG
 - No algorithm

IS Context-Free

- Prove that a language is context-free
 - Construct a:
 - CFG
 - PDA

Closure Properties

- Union
- Concatenation
- Kleene star
- Reverse
- Intersection with regular language
- Difference with regular language
- Complement NOT
- Intersection NOT
- Difference NOT

IS NOT Context-Free

- Prove that a language is not context-free
 - Use pumping theorem
 - Use closure operations
 - Intersection with a regular language

Decision Problems

- Membership
- Emptiness
- Finiteness
- Specific questions