Synthesis of Logical Clifford Operators via Symplectic Geometry

Narayanan Rengaswamy Information Initiative at Duke (iiD), Duke University

Joint Work: Swanand Kadhe, Robert Calderbank, and Henry Pfister

2018 IEEE Intl. Symp. on Information Theory Vail, Colorado, USA

arXiv:1803.06987

June 19, 2018

Overview

Motivation and our Contribution

2 Essential Algebraic Setup

Synthesis of Logical Clifford Operators for Stabilizer Codes

Uncoded: 3 bits

$m_1 \longrightarrow m_1 \oplus m_2$ $m_2 \longrightarrow m_2$ $m_3 \longrightarrow m_3 \oplus 1$ $1 \longrightarrow 1$

Coded: [4, 3, 2] SPC

Uncoded: 3 bits

$m_3 \oplus 1$

Uncoded: 3 bits

Coded: [4, 3, 2] SPC

KEY: Physical circuit has to realize logical operation & preserve the code.

KEY: Physical circuit has to realize logical operation & preserve the code.

KEY: Physical circuit has to realize logical operation & preserve the code.

In the quantum analogue of this, we have arbitrary unitary operators!

Problem and Motivation

- Quantum systems are noisy quantum error-correcting codes (QECCs) and quantum control are essential for reliable computation.
- QECCs encode logical information into physical states. Lots of interesting work on QECCs, their properties and efficient decoders.
- QECCs alone aren't enough; need to perform computation on the protected information stored in physical qubits.
- Synthesis of physical operators that realize such encoded computation seems to exist essentially for particular QECC examples.
- We propose a systematic framework for synthesizing a large class of such operators, called the Clifford group, for stabilizer QECCs.

Problem and Motivation

- Quantum systems are noisy quantum error-correcting codes (QECCs) and quantum control are essential for reliable computation.
- QECCs encode logical information into physical states. Lots of interesting work on QECCs, their properties and efficient decoders.
- QECCs alone aren't enough; need to perform computation on the protected information stored in physical qubits.
- Synthesis of physical operators that realize such encoded computation seems to exist essentially for particular QECC examples.
- We propose a systematic framework for synthesizing a large class of such operators, called the Clifford group, for stabilizer QECCs.

Problem and Motivation

- Quantum systems are noisy quantum error-correcting codes
 (QECCs) and quantum control are essential for reliable computation.
- QECCs encode logical information into physical states. Lots of interesting work on QECCs, their properties and efficient decoders.
- QECCs alone aren't enough; need to perform computation on the protected information stored in physical qubits.
- Synthesis of physical operators that realize such encoded computation seems to exist essentially for particular QECC examples.
- We propose a systematic framework for synthesizing a large class of such operators, called the Clifford group, for stabilizer QECCs.

Problem: Operations on Encoded Qubits

QECC: Quantum Error-Correcting Codes

Problem: Operations on Encoded Qubits

We do this for logical Clifford operations on stabilizer QECCs

QECC: Quantum Error-Correcting Codes

Algorithms on GitHub

Our algorithms are available open-source at:

https://github.com/nrenga/symplectic-arxiv18a

Overview

Motivation and our Contribution

2 Essential Algebraic Setup

Synthesis of Logical Clifford Operators for Stabilizer Codes

Pure States

Qubit: Mathematically, it is a 2-dimensional Hilbert space over \mathbb{C} .

Pure state: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, with $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$.

Example
$$(m = 2 \text{ qubits})$$
: $|0\rangle \otimes |1\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = |01\rangle$.

m Qubits: If qubit *i* is in the state $|v_i\rangle \in \{|0\rangle, |1\rangle\}$ then the Kronecker product $|v_1\rangle \otimes \cdots \otimes |v_m\rangle \triangleq |v\rangle$ describes the state of the system.

Note that
$$\mathbb{C}^N = \mathbb{C}^{2^m} = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$$
 (*m* times). $N = 2^m$.

Pure state (*m* qubits):
$$|\phi\rangle = \sum_{v \in \mathbb{F}_2^m} \alpha_v |v\rangle$$
, $\alpha_v \in \mathbb{C}$, $\sum_{v \in \mathbb{F}_2^m} |\alpha_v|^2 = 1$.

Pure States

Qubit: Mathematically, it is a 2-dimensional Hilbert space over \mathbb{C} .

Pure state: $|\psi\rangle = \alpha \, |0\rangle + \beta \, |1\rangle \, , \text{ with } \alpha, \beta \in \mathbb{C} \text{ and } |\alpha|^2 + |\beta|^2 = 1.$

Example
$$(m = 2 \text{ qubits}): |0\rangle \otimes |1\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = |01\rangle.$$

m Qubits: If qubit *i* is in the state $|v_i\rangle \in \{|0\rangle, |1\rangle\}$ then the Kronecker product $|v_1\rangle \otimes \cdots \otimes |v_m\rangle \triangleq |v\rangle$ describes the state of the system.

Note that
$$\mathbb{C}^N = \mathbb{C}^{2^m} = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$$
 (*m* times). $N = 2^m$.

Pure state (*m* qubits): $|\phi\rangle = \sum_{v \in \mathbb{F}_2^m} \alpha_v |v\rangle$, $\alpha_v \in \mathbb{C}$, $\sum_{v \in \mathbb{F}_2^m} |\alpha_v|^2 = 1$.

The Heisenberg-Weyl (or Pauli) group for a single qubit:

$$HW_2 \triangleq \iota^{\kappa} \{ \textit{I}_2, \textit{X}, \textit{Z}, \textit{Y} \}, \ \iota \triangleq \sqrt{-1}, \ \kappa \in \{0, 1, 2, 3\}.$$

Bit-Flip:
$$X \triangleq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow X |0\rangle = |1\rangle, \ X |1\rangle = |0\rangle.$$

Phase-Flip:
$$Z \triangleq \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow Z \ket{0} = \ket{0}, \ Z \ket{1} = -\ket{1}.$$

Bit-Phase Flip:
$$Y \triangleq \begin{bmatrix} 0 & -\iota \\ \iota & 0 \end{bmatrix} = \iota XZ. \ XZ = -ZX.$$

Fact: $\{I_2, X, Z, Y\}$ forms an orthonormal basis for operators in $\mathbb{C}^{2\times 2}$.

For m Qubits: $HW_N \triangleq \text{Kronecker products of } m \ HW_2 \text{ matrices } (N=2^m)$

The Heisenberg-Weyl (or Pauli) group for a single qubit:

$$HW_2 \triangleq \iota^{\kappa}\{\mathit{I}_2, X, Z, Y\}, \ \iota \triangleq \sqrt{-1}, \ \kappa \in \{0, 1, 2, 3\}.$$

Bit-Flip:
$$X \triangleq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow X \ket{0} = \ket{1}, \ X \ket{1} = \ket{0}.$$

Phase-Flip:
$$Z \triangleq \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow Z \ket{0} = \ket{0}, \ Z \ket{1} = -\ket{1}.$$

Bit-Phase Flip:
$$Y \triangleq \begin{bmatrix} 0 & -\iota \\ \iota & 0 \end{bmatrix} = \iota XZ$$
. $XZ = -ZX$.

Fact: $\{I_2, X, Z, Y\}$ forms an orthonormal basis for operators in $\mathbb{C}^{2\times 2}$.

For m Qubits: $HW_N \triangleq \text{Kronecker products of } m \ HW_2 \text{ matrices } (N=2^m)$

The Heisenberg-Weyl (or Pauli) group for a single qubit:

$$HW_2 \triangleq \iota^{\kappa} \{I_2, X, Z, Y\}, \ \iota \triangleq \sqrt{-1}, \ \kappa \in \{0, 1, 2, 3\}.$$

Bit-Flip:
$$X \triangleq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow X |0\rangle = |1\rangle, \ X |1\rangle = |0\rangle.$$

Phase-Flip:
$$Z \triangleq \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow Z \ket{0} = \ket{0}, \ Z \ket{1} = -\ket{1}.$$

Bit-Phase Flip:
$$Y \triangleq \begin{bmatrix} 0 & -\iota \\ \iota & 0 \end{bmatrix} = \iota XZ$$
. $XZ = -ZX$.

Fact: $\{I_2, X, Z, Y\}$ forms an orthonormal basis for operators in $\mathbb{C}^{2\times 2}$.

For m Qubits: $HW_N \triangleq \text{Kronecker products of } m \ HW_2 \text{ matrices } (N=2^m)$

The Heisenberg-Weyl (or Pauli) group for a single qubit:

$$HW_2 \triangleq \iota^{\kappa} \{I_2, X, Z, Y\}, \ \iota \triangleq \sqrt{-1}, \ \kappa \in \{0, 1, 2, 3\}.$$

Bit-Flip:
$$X \triangleq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow X \ket{0} = \ket{1}, \ X \ket{1} = \ket{0}.$$

Phase-Flip:
$$Z \triangleq \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow Z \ket{0} = \ket{0}, \ Z \ket{1} = -\ket{1}.$$

Bit-Phase Flip:
$$Y \triangleq \begin{bmatrix} 0 & -\iota \\ \iota & 0 \end{bmatrix} = \iota XZ$$
. $XZ = -ZX$.

Fact: $\{I_2, X, Z, Y\}$ forms an orthonormal basis for operators in $\mathbb{C}^{2\times 2}$.

For m Qubits: $HW_N \triangleq \text{Kronecker products of } m \ HW_2 \text{ matrices } (N=2^m).$

Hierarchy of the Unitary Group (m Qubits)

$$\mathbb{U}_N \longrightarrow \mathsf{The}$$
 group of all $2^m \times 2^m$ unitary matrices $(N=2^m)$

$$\mathsf{Cliff}_N \longrightarrow \mathsf{Maps}$$
 every HW_N element to another under conjugation $\approx \mathsf{Sp}(2m,\mathbb{F}_2)\colon 2m \times 2m$ binary symplectic matrices

$$HW_N \longrightarrow {HW_2 \otimes HW_2 \otimes \cdots \otimes HW_2 \pmod{m} \atop \approx \mathbb{F}_2^{2m}} \text{ under the symplectic inner product}$$

$$s$$
—other commutative subgroup of HVN
 s — their common eigenspace defines a stabilizer code $V(S) \triangleq \{|\psi\rangle: g\,|\psi\rangle = |\psi\rangle \;\; \forall \; g \in S\}$

Cliff_N: complexity reduced from $2^m \times 2^m$ (complex) to $2m \times 2m$ (binary)

Hierarchy of the Unitary Group (*m* Qubits)

$$\mathbb{U}_N \longrightarrow \text{The group of all } 2^m \times 2^m \text{ unitary matrices } (N=2^m)$$

$$\stackrel{\text{Cliff}_N}{\longrightarrow} \stackrel{\text{Maps every } HW_N \text{ element to another under conjugation}}{\approx \operatorname{Sp}(2m, \mathbb{F}_2) : 2m \times 2m \text{ binary symplectic matrices}}$$

$$HW_N \longrightarrow \stackrel{HW_2 \otimes HW_2 \otimes \cdots \otimes HW_2 \text{ } (m \text{ times})}{\approx \mathbb{F}_2^{2m} \text{ under the symplectic inner product}}$$

$$\stackrel{k\text{-dimensional commutative subgroup of } HW_N$$

$$- \text{ their common eigenspace defines a stabilizer code}$$

$$V(S) \triangleq \{|\psi\rangle : g |\psi\rangle = |\psi\rangle \ \forall \ g \in S\}$$

Cliff_N: complexity reduced from $2^m \times 2^m$ (complex) to $2m \times 2m$ (binary)

Hierarchy of the Unitary Group (*m* Qubits)

$$\mathbb{U}_N \longrightarrow \text{The group of all } 2^m \times 2^m \text{ unitary matrices } (N=2^m)$$

$$\stackrel{\text{Cliff}_N}{\longrightarrow} \stackrel{\text{Maps every } HW_N \text{ element to another under conjugation}}{\approx \operatorname{Sp}(2m,\mathbb{F}_2) \colon 2m \times 2m \text{ binary symplectic matrices}}$$

$$HW_N \longrightarrow \stackrel{HW_2 \otimes HW_2 \otimes \cdots \otimes HW_2 \text{ } (m \text{ times})}{\approx \mathbb{F}_2^{2m} \text{ under the symplectic inner product}}$$

$$\stackrel{k\text{-dimensional commutative subgroup of } HW_N$$

$$- \text{ their common eigenspace defines a stabilizer code}$$

$$V(S) \triangleq \{|\psi\rangle : g |\psi\rangle = |\psi\rangle \ \forall \ g \in S\}$$

Cliff_N: complexity reduced from $2^m \times 2^m$ (complex) to $2m \times 2m$ (binary)!

Hierarchy of the Unitary Group (*m* Qubits)

Cliff_N: complexity reduced from $2^m \times 2^m$ (complex) to $2m \times 2m$ (binary)!

Heisenberg-Weyl and Clifford Groups

HW_N Elements $\approx \mathbb{F}_2^{2m} \colon \gamma(D(a,b)) \triangleq [a,b]$

Given binary *m*-tuples $a=(a_1,\ldots,a_m), b=(b_1,\ldots,b_m)$ define the matrix

$$D(a,b) \triangleq X^{a_1}Z^{b_1} \otimes \cdots \otimes X^{a_m}Z^{b_m} \in \mathbb{U}_N$$
; $N = 2^m$.

 \triangleright $D(a,b), D(a',b') \in HW_N$ commute iff $a^Tb' + b^Ta' = 0$.

Heisenberg-Weyl and Clifford Groups

HW_N Elements $\approx \mathbb{F}_2^{2m} \colon \gamma(D(a,b)) \triangleq [a,b]$

Given binary *m*-tuples $a=(a_1,\ldots,a_m), b=(b_1,\ldots,b_m)$ define the matrix

$$D(a,b) \triangleq X^{a_1}Z^{b_1} \otimes \cdots \otimes X^{a_m}Z^{b_m} \in \mathbb{U}_N$$
; $N = 2^m$.

▶ $D(a,b), D(a',b') \in HW_N$ commute iff $a^Tb' + b^Ta' = 0$.

$\mathsf{Cliff}_{N} \; \mathsf{Elements} \approx \mathsf{Sp}(2m, \mathbb{F}_2) \colon \phi(g) \triangleq \mathsf{F}_g$

Define $E(a,b) \triangleq \iota^{ab^T} D(a,b)$. If $g \in \text{Cliff}_N$ then

$$gE(a,b)g^{\dagger} = \pm E([a,b]F_g)$$
, where F_g is symplectic,

i.e., satisfies
$$F_g \Omega F_g^T = \Omega = \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix}$$
.

Overview

Motivation and our Contribution

2 Essential Algebraic Setup

3 Synthesis of Logical Clifford Operators for Stabilizer Codes

Definition (partial): $\overline{CZ}_{12}\bar{X}_1\overline{CZ}_{12}^{\dagger} \triangleq \bar{X}_1\bar{Z}_2, \ \overline{CZ}_{12}\bar{X}_2\overline{CZ}_{12}^{\dagger} \triangleq \bar{Z}_1\bar{X}_2.$

The process:

• Generator matrices for the [6, 5, 2] SPC code yield logical Paulis:

$$\begin{array}{c|cccc} \bar{X}_1 = X_1 X_2 = E(110000,000000) & \bar{Z}_1 = Z_2 Z_6 = E(000000,010001) \\ \bar{X}_2 = X_1 X_3 = E(101000,000000) & \bar{Z}_2 = Z_3 Z_6 = E(000000,001001) \\ \end{array}$$

 $② \ \mathsf{Cliff}_{2^6} \cong \mathsf{Sp}(12,\mathbb{F}_2) \colon \ \overline{\mathsf{CZ}}_{12} E(a,b) \overline{\mathsf{CZ}}_{12}^\dagger = \pm E \left([a,b] F_{\overline{\mathsf{CZ}}_{12}} \right). \ \mathsf{Find} \ F_{\overline{\mathsf{CZ}}_{12}}.$

$$\bar{X}_1 = X_1 X_2 \xrightarrow{\overline{CZ}_{12}} X_1 X_2 Z_3 Z_6 \stackrel{\gamma, \phi}{\iff} [110000, 000000] F_{\overline{CZ}_{12}} = [110000, 001001]$$

$$\bar{X}_2 = X_1 X_3 \xrightarrow{\overline{CZ}_{12}} X_1 X_3 Z_2 Z_6 \stackrel{\gamma, \phi}{\iff} [101000, 000000] F_{\overline{CZ}_{12}} = [101000, 010001].$$

Definition (partial): $\overline{CZ}_{12}\bar{X}_1\overline{CZ}_{12}^{\dagger} \triangleq \bar{X}_1\bar{Z}_2, \ \overline{CZ}_{12}\bar{X}_2\overline{CZ}_{12}^{\dagger} \triangleq \bar{Z}_1\bar{X}_2.$

The process:

• Generator matrices for the [6, 5, 2] SPC code yield logical Paulis:

$$\begin{array}{c|cccc} \bar{X}_1 = X_1 X_2 = E(110000,000000) & \bar{Z}_1 = Z_2 Z_6 = E(000000,010001) \\ \bar{X}_2 = X_1 X_3 = E(101000,000000) & \bar{Z}_2 = Z_3 Z_6 = E(000000,001001) \\ \end{array}$$

$$\bar{X}_1 = X_1 X_2 \xrightarrow{\overline{CZ}_{12}} X_1 X_2 Z_3 Z_6 \stackrel{\gamma, \phi}{\iff} [110000, 000000] F_{\overline{CZ}_{12}} = [110000, 001001]$$
$$\bar{X}_2 = X_1 X_3 \xrightarrow{\overline{CZ}_{12}} X_1 X_3 Z_2 Z_6 \stackrel{\gamma, \phi}{\iff} [101000, 000000] F_{\overline{CZ}_{12}} = [101000, 010001].$$

Definition (partial): $\overline{\mathsf{CZ}}_{12}\bar{X}_1\overline{\mathsf{CZ}}_{12}^\dagger \triangleq \bar{X}_1\bar{Z}_2, \ \overline{\mathsf{CZ}}_{12}\bar{X}_2\overline{\mathsf{CZ}}_{12}^\dagger \triangleq \bar{Z}_1\bar{X}_2.$

The process:

• Generator matrices for the [6, 5, 2] SPC code yield logical Paulis:

$$ar{X}_1 = X_1 X_2 = E(110000, 000000)$$
 $ar{Z}_1 = Z_2 Z_6 = E(000000, 010001)$ $ar{Z}_2 = X_1 X_3 = E(101000, 000000)$ $ar{Z}_2 = Z_3 Z_6 = E(000000, 001001)$

$$\bar{X}_1 = X_1 X_2 \stackrel{\overline{CZ}_{12}}{\longmapsto} X_1 X_2 Z_3 Z_6 \stackrel{\gamma, \phi}{\Longleftrightarrow} [110000, 000000] F_{\overline{CZ}_{12}} = [110000, 001001]$$

$$\bar{X}_2 = X_1 X_3 \stackrel{\mathsf{CZ}_{12}}{\longmapsto} X_1 X_3 Z_2 Z_6 \stackrel{\gamma, \phi}{\Longleftrightarrow} [101000, 000000] F_{\overline{\mathsf{CZ}}_{12}} = [101000, 010001]$$

Definition (partial):
$$\overline{CZ}_{12}\bar{X}_1\overline{CZ}_{12}^{\dagger} \triangleq \bar{X}_1\bar{Z}_2, \ \overline{CZ}_{12}\bar{X}_2\overline{CZ}_{12}^{\dagger} \triangleq \bar{Z}_1\bar{X}_2.$$

The process:

• Generator matrices for the [6, 5, 2] SPC code yield logical Paulis:

$$\bar{X}_1 = X_1 X_2 \stackrel{\overline{CZ}_{12}}{\longmapsto} X_1 X_2 Z_3 Z_6 \stackrel{\gamma, \phi}{\Longleftrightarrow} [110000, 000000] F_{\overline{CZ}_{12}} = [110000, 001001]$$

$$\bar{X}_2 = X_1 X_3 \stackrel{\mathsf{CZ}_{12}}{\longleftrightarrow} X_1 X_3 Z_2 Z_6 \stackrel{\gamma, \phi}{\Longleftrightarrow} [101000, 000000] F_{\overline{\mathsf{CZ}}_{12}} = [101000, 010001].$$

Definition (partial):
$$\overline{CZ}_{12}\bar{X}_1\overline{CZ}_{12}^{\dagger} \triangleq \bar{X}_1\bar{Z}_2, \ \overline{CZ}_{12}\bar{X}_2\overline{CZ}_{12}^{\dagger} \triangleq \bar{Z}_1\bar{X}_2.$$

The process:

1 Generator matrices for the [6,5,2] SPC code yield logical Paulis:

$$\bar{X}_1 = X_1 X_2 \stackrel{\text{CZ}_{12}}{\Longrightarrow} X_1 X_2 Z_3 Z_6 \stackrel{\gamma, \phi}{\Longleftrightarrow} [110000, 000000] F_{\overline{\text{CZ}}_{12}} = [110000, 001001]$$

$$\bar{X}_2 = X_1 X_3 \stackrel{\mathsf{CZ}_{12}}{\longleftrightarrow} X_1 X_3 Z_2 Z_6 \stackrel{\gamma, \phi}{\Longleftrightarrow} [101000, 000000] F_{\overline{\mathsf{CZ}}_{12}} = [101000, 010001].$$

Finding $\overline{\mathsf{CZ}}_{12}$ via $\mathsf{Sp}(2m=12,\mathbb{F}_2)$

$$\bar{X}_{1} = X_{1}X_{2} \xrightarrow{\overline{CZ}_{12}} X_{1}X_{2}Z_{3}Z_{6} \xrightarrow{\gamma,\phi} [110000,000000] F_{\overline{CZ}_{12}} = [110000,001001]$$

$$\bar{X}_{2} = X_{1}X_{3} \xrightarrow{\overline{CZ}_{12}} X_{1}X_{3}Z_{2}Z_{6} \xrightarrow{\gamma,\phi} [101000,000000] F_{\overline{CZ}_{12}} = [101000,010001]$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$
(Also in the boson to introduce a finite standard of the standard

(Also include constraints to normalize the stabilizer S)

(ロト 4回 ト 4 差 ト 4 差 ト) 差 り 9 G

Finding CZ_{12} via $Sp(2m = 12, \mathbb{F}_2)$

$$\bar{X}_1 = X_1 X_2 \xrightarrow{\overline{CZ}_{12}} X_1 X_2 Z_3 Z_6 \stackrel{\gamma,\phi}{\Longrightarrow} [110000,000000] F_{\overline{CZ}_{12}} = [110000,001001]$$

$$\bar{X}_2 = X_1 X_3 \xrightarrow{\overline{CZ}_{12}} X_1 X_3 Z_2 Z_6 \stackrel{\gamma,\phi}{\Longrightarrow} [101000,000000] F_{\overline{CZ}_{12}} = [101000,010001]$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$
(Also include constraints to normalize the stabilizer S)

$$\Rightarrow F_{\overline{CZ}_{12}} = \begin{bmatrix} I_6 & B \\ 0 & I_6 \end{bmatrix}, B =$$

$$\downarrow \downarrow$$

$$\overline{CZ}_{12} = \operatorname{diag}\left(\iota^{vBv^T}\right) Z_6$$

$$\overline{\mathsf{CZ}}_{12} = \mathsf{diag}\left(\iota^{\mathsf{vB}\mathsf{v}^{\mathsf{T}}}\right) Z_{6}$$
$$= \mathsf{CZ}_{36} \mathsf{CZ}_{26} \mathsf{CZ}_{23} Z_{6}$$

$$\longleftrightarrow \begin{array}{c} 2 \\ 3 \\ 6 \\ \hline \end{array}$$

Not captured in $F_{\overline{CZ}_{12}}$ – added to fix signs

Algorithm to Synthesize Logical Clifford Operators

- ① Determine the target \bar{g} by specifying $\bar{g}\bar{X}_i\bar{g}^\dagger = \bar{X}_i', \bar{g}\bar{Z}_i\bar{g}^\dagger = \bar{Z}_i'$. Add conditions to normalize or centralize S [Got09].
- ② Using the maps γ, ϕ , transform these relations into linear equations on $F_{\bar{g}} \in \operatorname{Sp}(2m, \mathbb{F}_2)$, i.e., $\bar{g}E(a,b)\bar{g}^\dagger = \pm E\left([a,b]F_{\bar{g}}\right) \Rightarrow [a,b] \mapsto [a,b]F_{\bar{g}}$.
- **③** Find the feasible symplectic solution set $\mathcal{F}_{\bar{g}}$ using transvections.
- **③** Factor each $F_{\bar{g}} \in \mathcal{F}_{\bar{g}}$ using the decomposition in [Can17], and compute the physical Clifford operator \bar{g} .
- Check for conjugation of \bar{g} with S, \bar{X}_i, \bar{Z}_i . If some signs are incorrect, post-multiply \bar{g} by an element from HW_N as necessary (apply [NC10, Prop. 10.4] to $S^{\perp} = \langle S, \bar{X}_i, \bar{Z}_i \rangle$).
- \bullet Express \bar{g} as a sequence of physical Clifford gates obtained from the factorization in step 4.

Symplectic Transvections

Definition: Given a vector $h \in \mathbb{F}_2^{2m}$, the transvection $Z_h : \mathbb{F}_2^{2m} \to \mathbb{F}_2^{2m}$ is

$$Z_h(x) \triangleq x + \langle x, h \rangle_s h \iff F_h = I_{2m} + \Omega h^T h \in \operatorname{Sp}(2m, \mathbb{F}_2).$$

Fact: Transvections generate the binary symplectic group $Sp(2m, \mathbb{F}_2)$.

Lemma ([SAF08; KS14])

Let $x, y \in \mathbb{F}_2^{2m}$. Then there exists at most two transvections F_{h_1}, F_{h_2} s.t. $xF_{h_1}F_{h_2} = y$.

We extend this to map a sequence of vectors x_i to y_i , i = 1, ..., t.

Our Results

Given a stabilizer code with logical Paulis \bar{X}_i, \bar{Z}_i , we have the system

$$\begin{bmatrix} \gamma(\bar{X}) \\ \gamma(S) \\ \gamma(\bar{Z}) \end{bmatrix} F = \begin{bmatrix} \gamma(\bar{X}') \\ \gamma(S') \\ \gamma(\bar{Z}') \end{bmatrix}.$$

- Algorithm 1: Use symplectic transvections to find symplectic F s.t. $x_iF = y_i, i = 1, ..., t$.
- Algorithm 2: Use "nullspace-like" ideas for symplectic matrices to enumerate all symplectic solutions *F*.
- Theorem: For an [m, m k] stabilizer code, the number of symplectic solutions for each logical Clifford operator is $2^{k(k+1)/2}$.
- Theorem: For each logical Clifford operator of an [m, m k] stabilizer code, one can always synthesize a solution that centralizes the stabilizer S.

Future Work

- How to leverage this efficient enumeration during the process of computation? E.g., Quantum Compilers.
- What does this enumeration mean for topological codes?
- Understand the geometry of the solution space of symplectic matrices.
- Optimization of solutions with respect to a useful metric.
- Decomposition of symplectic matrix motivated by practical constraints, e.g., circuit complexity, fault-tolerance.
- ullet Extend the framework to accommodate non-Clifford gates, e.g., T.
- ...etc.

References

- [Got97] Daniel Gottesman. "Stabilizer codes and quantum error correction". PhD thesis. California Institute of Technology, 1997.
- [DD03] Jeroen Dehaene and Bart De Moor. "Clifford group, stabilizer states, and linear and quadratic operations over GF(2)". In: Phys. Rev. A 68.4 (Oct. 2003), p. 042318. DOI: 10.1103/PhysRevA.68.042318.
- [SAF08] A Salam, E Al-Aidarous, and A El Farouk. "Optimal symplectic Householder transformations for SR decomposition". In: Lin. Algebra and its Appl. 429 (2008), pp. 1334–1353. DOI: 10.1016/j.laa.2008.02.029.
- [Got09] Daniel Gottesman. "An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation". In: arXiv preprint arXiv:0904.2557 (2009).

References

- [Wil09] Mark M Wilde. "Logical operators of quantum codes". In: Phys. Rev. A 79.6 (2009), pp. 062322-1-062322-5. DOI: 10.1103/PhysRevA.79.062322.
- [NC10] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010.
- [KS14] Robert Koenig and John A Smolin. "How to efficiently select an arbitrary Clifford group element". In: J. Math. Phys. 55.12 (Dec. 2014), p. 122202. DOI: 10.1063/1.4903507.
- [Can17] Trung Can. "An Algorithm to Generate a Unitary Transformation from Logarithmically Many Random Bits". Research Independent Study Report, Duke University. 2017.

Thank you!

For details see https://arxiv.org/abs/1803.06987.

Have fun synthesizing Clifford circuits for your favorite stabilizer code, at https://github.com/nrenga/symplectic-arxiv18a :-).

Any feedback is much appreciated.