has the same elements as **P**, but is equipped with the reverse ordering (??). For a given $p \in \mathbf{P}$, we will sometimes write p^* do denote its corresponding copy in \mathbf{P}^{op} ,

Definition. The *opposite* of a poset $\langle \mathbf{P}, \leq_{\mathbf{P}} \rangle$ is the poset denoted $\langle \mathbf{P}^{op}, \leq_{\mathbf{P}}^{op} \rangle$. It

in order to emphasize that p and p^* belong to distinct posets. However, often we

will not be so pedantic with our notation. Reversing the order means that, for all $p, q \in \mathbf{P}$, $\frac{p \leq_{\mathbf{P}} q}{q^* \leq_{\mathbf{p}}^{op} p^*}$