Geometric measures on arbitrary dimensional digital surfaces

Jacques-Olivier Lachaud, Anne Vialard

LaBRI (Laboratoire Bordelais de Recherche en Informatique) - France

Outline

1-3D example

2- nD digital surface: Definition

Tracking

Contours

3- Discrete tangent line: Definition

Recognition

4- Geometric estimators: Normal vector

Tangent planes

Area

Problem: how to compute the normal vector to each element of a digital surface?

[Lenoir96], [Tellier / Debled-Renesson99], [Coeurjolly02]

3D digital surface: boundary of a voxel set

Problem: how to compute the normal vector to each element of a digital surface?

[Lenoir96], [Tellier / Debled-Renesson99], [Coeurjolly02]

3D digital surface: boundary of a voxel set

(1) Exactly two 4-connected contours cross at a given surfel

Problem: how to compute the normal vector to each element of a digital surface?

[Lenoir96], [Tellier / Debled-Renesson99], [Coeurjolly02]

3D digital surface: boundary of a voxel set

(1) Exactly two 4-connected contours cross at a given surfel

Problem: how to compute the normal vector to each element of a digital surface?

[Lenoir96], [Tellier / Debled-Renesson99], [Coeurjolly02]

3D digital surface: boundary of a voxel set

(1) Exactly two 4-connected contours cross at a given surfel

(2) Tangent computation on each 2D contour: discrete line segment recognition [Debled95], [Vialard96]

Normal vector: cross product of the two tangent vectors

(3) Outer tangent plane: orthogonal to the normal vector and containing P

P is the projection of the surfel centroid on the upper

tangent lines (highest point).

Outline

1-3D example

2- Multidimensional digital surface: Definition

Tracking

Contours

3- Discrete tangent line: Definition

Recognition

4- Geometric estimators: Normal vector

Tangent planes

Area

Multidimensional digital surface

Digital space: cellular decomposition of \mathbb{R}^n into a regular grid [Khalimsky90], [Kovalevsky89], [Herman92], [Udupa94]

Spel: n-cell (pixel in 2D, voxel in 3D)

Surfel: n-1-cell

Digital surface: set of oriented surfels

Object boundary

Object O: set of spels

Boundary of O: surfels separating spels of O from the background with an orientation

Boundary / Coboundary operators:

$$\partial O = \bigcup \Delta + p, p \in O$$

Boundary tracking

Given a bel of O, find ∂O by following the surface of the object \Rightarrow adjacency between bels

Direct followers of a bel along coordinate *j*:

Interior direct adjacent bel: the first direct follower that is a

bel of ∂O

Contour over a surface

Given a bel c of ∂O and $j \neq \perp(c)$,

a *contour over the boundary* is the sequence of direct interior adjacent bels starting from c and going along directions $\perp(c)$ or j.

Such a contour is a 2D 4-connected discrete path (bels \rightarrow edges, links \rightarrow points).

Outline

1-3D example

2- nD digital surface: Definition

Tracking

Contours

3- Discrete tangent line: Definition

Recognition

4- Geometric estimators: Normal vector

Tangent planes

Area

4-connected discrete line of characteristics $(a, b, \mu) \in \mathbb{Z}^3$:

$$\{(x,y) \in \mathbb{Z}^2, \mu \le ax - by < \mu + |a| + |b|\}$$

Leaning lines: $ax - by = \mu$, $ax - by = \mu + |a| + |b| - 1$

Update of a segment line when adding a point M:

- (1) M is in between the leaning lines: OK
- (2) $ax_M by_M = \mu 1$: M is just over the upper leaning line

(3) M is just under the lower leaning line: similar

$$(a, b, \mu) = (0, 1, 0)$$

$$(a, b, \mu) = (-1, 2, -2)$$

$$(a, b, \mu) = (-1, 2, -2)$$

$$(a, b, \mu) = (-1, 2, -2)$$

$$(a, b, \mu) = (-2, 5, -5)$$

Outline

1-3D example

2- nD digital surface: Definition

Tracking

Contours

3- Discrete tangent line: Definition

Recognition

4- Geometric estimators: Normal vector

Tangent planes

Area

Normal vector at a bel

Normal vector at bel C: unit vector orthogonal to the n-1 tangent vectors at C.

$$i = \perp (c)$$

 au_i : orientation of the cell of $abla_i c$ with greatest x_i

 au_j : orientation of the cell of $\Delta_j c$ with greatest x_j

$$\vec{n}(c) = \frac{\vec{u}(c)}{\|\vec{u}(c)\|}$$

$$\forall j \neq i, \vec{u}(c) \cdot \vec{e}_j = \tau_j \frac{\alpha_j(c)}{\beta_j(c)}$$
$$\vec{u}(c) \cdot \vec{e}_i = \tau_i$$

Visualization of 3D discrete objects

Tangent planes to an nD surface

Centroid of c: \vec{x}_c

On each contour:
$$z_j^+ = \frac{0.5\alpha_j - \mu_j}{\beta_j}$$
, $z_j^- = z_j^+ - 1 - \frac{|\alpha_j| - 1}{\beta_j}$

The inner tangent plane passes through

$$\vec{x}_c + \tau_i \vec{e_i} \max_{j \neq i} z_j^+$$

Smoothing of 3D digital surfaces

Area of an nD digital surface

Corrected area:
$$\widehat{d\sigma}(c) = \vec{n}(c) \cdot \vec{e}_i$$

Averaged area:
$$\overline{d\sigma}(c) = 1/(\sum_{k=0}^{n-1} |\vec{n}(c) \cdot \vec{e}_k|)$$

Area of a 3D sphere

Conclusion

Results:

- Definition of a set of geometric estimators for multidimensional surfaces
- Efficient and generic implementation [Lachaud03]
- Convergence of the estimators to the continuous values

Further works:

- Can we compute the normal vector field in a time linear with the number of surfels?
- Curvature definition and computation