CHEMICAL
RESEARCH,
-DEVELOPMENT &
ENGINEERING
CENTER

733

20-A 199

THE FILE CUPE

CRDEC-TR-88117

GAS CHROMATOGRAPHIC METHOD FOR THE DETERMINATION OF TRACE QUANTITIES OF DIETHYL MALONATE IN ETHANOL

SEP 2 1 1988

by Juan D. Lopez RESEARCH DIRECTORATE

**July 1988** 



U.S. ARMY ARMAMENT MUNITIONS CHEMICAL COMMAND

Aberdeen Proving Ground, Maryland 21010-5423

| SECURITY CLA                               | ASSIFICATION O                         | F IHI) PAGE                        |                                                         |                                                   |                               |                                         |                                    |
|--------------------------------------------|----------------------------------------|------------------------------------|---------------------------------------------------------|---------------------------------------------------|-------------------------------|-----------------------------------------|------------------------------------|
|                                            | ·                                      |                                    | REPORT DOCUM                                            | MENTATION                                         | PAGE                          |                                         |                                    |
| UNCLASS                                    | ECURITY CLASS                          | IFICATION                          |                                                         | 1b. RESTRICTIVE MARKINGS                          |                               |                                         |                                    |
| 2a SECURITY                                | CLASSIFICATIO                          | N AUTHORITY                        | ······································                  |                                                   | i/AVAILABILITY Of public r    |                                         | tribution                          |
| 26 DECLASSIFICATION / DOWNGRADING SCHEDULE |                                        |                                    | is unlimit                                              |                                                   | crease, ars                   | , c. 10 d c 10 i i                      |                                    |
| 4 PERFORMI                                 | NG ORGANIZAT                           | ION REPORT NUMBE                   | R(S)                                                    | 5. MONITORING                                     | ORGANIZATION R                | EPORT NUMBER                            | 5)                                 |
| CPDEC-T                                    | R-88117                                |                                    |                                                         |                                                   |                               |                                         |                                    |
| 6a. NAME OF<br>CRDEC                       | PERFORMING                             | ORGANIZATION                       | 6b OFFICE SYMBOL (If applicable) SMCCR-RSP-P            | 7a. NAME OF M                                     | ONITORING ORGA                | NIZATION                                |                                    |
|                                            | (City, State, and                      | d ZIP Code)                        |                                                         | 7b. ADDRESS (Ci                                   | ty, State, and ZIP            | Code)                                   | <del></del>                        |
| Abordoe                                    | n Provinc                              | Ground, MD                         | 21010-5423                                              |                                                   |                               |                                         |                                    |
| Ba. NAME OF                                | FUNDING/SPO                            |                                    | 86. OFFICE SYMBOL                                       | 9. PROCUREMEN                                     | T INSTRUMENT ID               | ENTIFICATION NU                         | IMBER                              |
| ORGANIZA<br>CEDEC                          | A FION                                 |                                    | (If applicable) SMCCR-RSP-P                             |                                                   |                               |                                         |                                    |
| 3c ADDRESS                                 | (City, State, and                      | I ZIP Code)                        |                                                         | 10 SOURCE OF                                      | FUNDING NUMBER                | ış                                      |                                    |
|                                            |                                        |                                    |                                                         | PROGRAM<br>ELEMENT NO.                            | PROJECT<br>NO.                | TASK<br>NO.                             | WORK UNIT                          |
|                                            |                                        | <u> </u>                           | 21010-5423                                              |                                                   | 1L162706                      | A553F                                   |                                    |
| 11. TITLE (Inc<br>Gas Chr<br>in Etha       |                                        | lassification)<br>nic Method for   | r the Determinat                                        | ion of Trac                                       | e Quantitie                   | s of Diethy                             | l Malonate                         |
| 12. PERSONA<br>Lopez,                      | L AUTHOR(S)<br>Juan D.                 |                                    |                                                         |                                                   |                               |                                         |                                    |
| 13a. TYPE OF<br>Technic                    |                                        | 136. TIME CO                       | overed<br>5 Dec to 86 Apr                               | 14. DATE OF REPO                                  | ORT (Year, Month,<br>188 July | Day) 15. PAGE<br>14                     | COUNT                              |
| 16. SUPPLEM                                | ENTARY NOTA                            | TION                               | 1                                                       |                                                   |                               |                                         | ,                                  |
| 17                                         | COSATI                                 | CODES                              | 18. SUBJECT TERMS (                                     | Continue on revers                                | se if necessary and           | d identify by bloc                      | k number)                          |
| FIELD                                      | GROUP                                  | SUB-GROUP                          | Chemical Analy<br>Gas Chromatogi                        |                                                   | DEM<br>xd) Ethano             | 1.                                      | et i ja                            |
| 0.7                                        | 03                                     |                                    | Diethyl Malona                                          | ate,                                              |                               | Alcohol.                                | NO.                                |
| 19. ABSTRACT                               | T (Continu <b>e on</b>                 | reverse if nec <mark>essary</mark> | and identify by block n                                 | iumber)                                           |                               |                                         |                                    |
| i salatata                                 | cally dete                             | ecting and de                      | imental study co<br>termining trace<br>chromatograph ec | quantities                                        | of diethyl:                   | malonate (D                             | EM)                                |
| concent<br>ur aver<br>The cor              | ration (mo<br>rage slope<br>relation o | ean) range of $0.1.4032 \pm 0.01$  |                                                         | linear f <b>it</b> w<br>g/au and an<br>009. Based | mas obtained<br>intercept o   | at this ra<br>f 0.0359 任<br>e injection | nge with<br>0.0359 (yg.<br>ns, the |
| , Silverias                                | SSIFIED UNLIMIT                        | ED SAME AS                         | RPT. DTIC USERS                                         | UNCLASSIF                                         |                               |                                         |                                    |
| ANURA<br>ANURAS                            | DE RESPONSIBLE<br>J. JOHNSON           | 4                                  |                                                         | (301) 671                                         | (Include Area Code<br>2914    | SMCCR-                                  | MBOL<br>SPS-T                      |
| OU FORM !                                  | 473, 84 MAR                            | 83 AE                              | Redition may be used un                                 | til exhaurted                                     | SECURITY                      | CLASSIFICATION                          | OF THIS PAGE                       |

| TWO ASSISTED SECURITY CLASSIFICATION OF THIS PAGE |   |              |
|---------------------------------------------------|---|--------------|
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   | (            |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   |              |
| 1                                                 |   |              |
|                                                   |   |              |
|                                                   |   |              |
| 1                                                 |   |              |
|                                                   | • |              |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   |              |
| ;<br>1                                            |   |              |
|                                                   |   |              |
|                                                   |   |              |
|                                                   |   | UNCLASSIFIED |

SECURITY CLASSIFICATION OF THIS PAGE

#### PREFACE

The work described in this report was authorized under Project No. 1L162706A553F, CB Decontamination and Contamination Avoidance. This work was started in December 1985 and completed in April 1986. The experimental data are recorded in laboratory notebook no. 83-0122.

The use of trade names or manufacturers' names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited except with the permission of the Commander, U.S. Army Chemical Research, Development and Engineering Center, ATTN: SMCCR-SPS-T, Aberdeen Proving Ground, Maryland 21010-5423. However, the Defense Technical Information Center and the National Technical Information Service are authorized to reproduce the document for U.S. Government purposes.

This report has been approved for release to the public.



| Accesion For                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NTIS CRA&I<br>DTIC TAB<br>Unum outland<br>Ju Minar in |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| By<br>Druggyters/                                     | The first control of the first |
| erelation i                                           | Joddes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dist Aver and species                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Blank

# CONTENTS

Page

| 1.                                               | INTRODUCTION                                                                                                                       | 7                               |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 2.<br>2.1<br>2.2<br>2.3<br>2.3.1<br>2.3.2<br>2.4 | EXPERIMENTATION  Equipment and Materials  Preliminary Considerations  Procedures  Chromatographic Conditions  Calibration  Results | 7<br>7<br>8<br>8<br>8<br>9<br>9 |
| 3.                                               | DISCUSSION                                                                                                                         | 9                               |
| 4.                                               | CONCLUSIONS                                                                                                                        | 13                              |
| Table No.                                        | LIST OF TABLES                                                                                                                     | Page                            |
| 1                                                | Calibration Curve 1 for DEM in Ethyl Alcohol                                                                                       | 10                              |
|                                                  |                                                                                                                                    |                                 |
| 2                                                | Calibration Curve 2 for DEM in Ethyl Alcohol                                                                                       | 11                              |
| 2                                                |                                                                                                                                    | 11                              |
|                                                  | Calibration Curve 2 for DEM in Ethyl Alcohol                                                                                       |                                 |
| 3                                                | Calibration Curve 2 for DEM in Ethyl Alcohol  Analytical Recovery of DEM from Ethyl Alcohol                                        | 12                              |

Blank

# GAS CHROMATOGRAPHIC METHOD FOR THE DETERMINATION OF TRACE QUANTITIES OF DIETHYL MALONATE IN ETHANOL

#### 1. INTRODUCTION

The objective of this work was to develop a method for detecting and determining trace quantities of diethyl malonate (DEM) in ethyl alcohol.

In the past, DEM has been used as a chemical agent simulant in decontamination, evaporation, dissemination, and persistency studies. The purpose for DEM's use was to support an experimental effort to determine the decontamination performance of a laboratory scale jet engine system. Coupon samples contaminated with DEM were exposed to a high velocity, high temperature air stream coming from the jet. Residual DEM on the coupons was extracted by immersion in an ethyl alcohol solution.

This report describes the development of an analytical procedure that allows the gas chromatographic/flame ionization detection and estimation of residual quantities of DEM on the decontaminated coupons.

#### 2. EXPERIMENTATION

#### 2.1 Equipment and Materials.

This experimental effort was performed on a Perkin Elmer gas chromatograph [GC (model Sigma 2000)] equipped with a flame ionization detector and employing the PE LCI-100 computer integrator.

Injections were performed manually using a Hamilton microliter syringe (series 700) with an accuracy within  $\pm 1$ % of syringe capacity and repeatability to within  $\pm 1$ % of dispensed volume.

The chromatographic columns tested were custom made by Perkin Elmer (Rockville, MD).

Ethyl alcohol (U.S.P., 200 proof) was used as the solvent. DEM, 99% pure, was obtained from Kay Fries Incorporated (Rockleigh, NJ) Lot # 82-0582.

### 2.2 Preliminary Considerations.

The primary objective of this effort was to increase the detection sensitivity for analyzing residual DEM on sample coupons after being exposed to a high velocity, high temperature gas stream.

An initial 10-mg load was to be deposited on the sample coupon. Sample jars filled with 10 mL of ethyl alcohol were to be used for extracting residual DEM on the tested plates.

The criteria used to select the sensitivity range was based on a minimum 20% evaporation (800 ng of DEM per milliliter of solution) and a maximum 99% evaporation of the initial 10-mg mass (20 ng of DEM per milliliter of solution).

#### 2.3 Procedures.

## 2.3 1 Chromatographic Conditions.

The following chromatographic conditions were adopted for analytically determining DEM in ethanol. These conditions provided an acceptable separation of DEM from the solvent with a minimum running time of 7 min.

- Instrument: PE Sigma 2000
- Detector: FID
- Air Pressure: 20 psig
- Hydrogen Pressure: 20 psig
- Range: 1
- Column Temperature: 90 °C
- Injection Chamber Temperature: 250 °C
- Detector Temperature: 250 °C
- Carrier Gas: N2 (99.999% pure)
- Carrier Gas Flow Rate: 10 cm<sup>3</sup>/min
- Column Material: 6 ft, 1/4 o.d. borosilicate glass
- Column Coating: 3% OV-101
- Column Support: Chromosorb WHP (100-120 mesh)

The computer integrator (LCI-100) conditions were as follows:

- Method: Area/Height %
- Starting Time: 0 min
- End Time: 7 min
- Peak Width at Base: 5.5-13.0 sec
- Sampling Rate: 3.13 pt/sec
- Area Sensitivity: 100%

- Base Sensitivity: 40%
- Skim Sensitivity: 0%
- Baseline Correction: Basepoint to Basepoint
- Chart Speed: 10 mm/sec
- Print Tolerance: 0
- Plotter Attenuation: X32
- Plot Offset: 5%
- Area/Height Rejection Threshold: 0

#### 2.3.2 Calibration.

Two calibration curves were generated from known concentrations of DEM in ethyl alcohol.

Two standard solutions (0.42  $\mu g/\mu L$  and 42  $\mu g/\mu L$ ) were prepared, and different volumes (0.5, 1.0, and 2.0  $\mu L$ ) were injected into the GC to enable calibration at the desired sensitivity range. To ensure repeatability of the DEM mass to peak area response, a minimum of four injections were performed per calibration point.

Tables 1 and 2 show the peak area response for the various weights injected. Table 3 shows the results of a trial study involving fixed volume (2  $\mu L)$  injections with an automatic liquid sampler (PE AS-2000B) at a known concentration (0.42  $\mu g/\mu L)$  to estimate the traceability of the method after performing the calibration procedure.

#### 2.4 Results.

Statistical analysis and lineal regression were performed on the data collected for calibration.

Table 4 shows results for the mean, standard deviation, coefficient of variation, and uncertainty values at a 95% confidence level for each data point generated.

Results and analysis of each lineal fit are shown in Table 5. The analytical recovery data in Table 6 was obtained from the mean lineal fit curve in Table 5.

#### 3. DISCUSSION

An average correlation coefficient of  $0.9996 \pm 0.0009$  was obtained for a lineal fit of the calibration data. This coefficient is indicative of an acceptable lineal response at the stated conditions.

Table 1. Calibration Curve 1 for DEM in Ethyl Alcohol.

| DEM<br>Conc<br>(µg/µL) | Target<br>Weight<br>(µg) | Injection<br>Number | Injected<br>Weight<br>(µg) | Area<br>Response<br>(au) <sup>1</sup> | Normalized<br>Area<br>(au) <sup>2</sup> |
|------------------------|--------------------------|---------------------|----------------------------|---------------------------------------|-----------------------------------------|
| 0.42                   | 0.84                     | 1                   | 0.88                       | 5925898                               | 5656539                                 |
|                        |                          | 2                   | 0.88                       | 5972550                               | 5701070                                 |
|                        |                          | 3                   | 0.84                       | 5661404                               | 5661404                                 |
|                        |                          | 4                   | 0.84                       | 5675717                               | 5675717                                 |
|                        |                          | 5                   | 0.84                       | 5705550                               | 5705550                                 |
|                        | 0.42                     | 1                   | 0.46                       | 3064368                               | 2797901                                 |
|                        |                          | 2                   | 0.46                       | 2954041                               | 2697168                                 |
|                        |                          | 3                   | 0.42                       | 2746761                               | 2746761                                 |
|                        |                          | 4                   | 0.46                       | 3105206                               | 2835188                                 |
|                        |                          | 5                   | 0.48                       | 3199429                               | 2799500                                 |
|                        | 0.21                     | 1                   | 0.25                       | 1458912                               | 1225486                                 |
|                        |                          | 2                   | 0.29                       | 1681899                               | 1217927                                 |
|                        |                          | 3                   | 0.25                       | 1438893                               | 1208670                                 |
|                        |                          | 4                   | 0.17                       | 1010240                               | 1247943                                 |
|                        |                          | 5                   | 0.21                       | 1254278                               | 1254278                                 |
| 0.042                  | 0.084                    | 1                   | 0.082                      | 236758                                | 242532                                  |
|                        |                          | 1<br>.:             | 0.092                      | 270632                                | 247099                                  |
|                        |                          | 3                   | 0.084                      | 242357                                | 242357                                  |
|                        |                          | 4                   | 0.088                      | 253422                                | 241903                                  |
|                        |                          | 5                   | 0.084                      | 245241                                | 245241                                  |
|                        | 0.042                    | 1                   | 0.052                      | 74029                                 | 59793                                   |
|                        |                          | 2                   | 0.046                      | 65084                                 | 59424                                   |
|                        |                          | 3                   | 0.048                      | 68794                                 | 60195                                   |
|                        |                          | 4                   | 0.042                      | 61268                                 | 61268                                   |
|                        |                          | 5                   | 0.050                      | 73282                                 | 61557                                   |
|                        | 0.021                    | 1                   | 0.027                      | 44301                                 | 34456                                   |
|                        |                          | 2                   | 0.025                      | 38463                                 | 32309                                   |
|                        |                          | 3                   | 0.023                      | 36470                                 | 33299                                   |
|                        |                          | 4                   | 0.021                      | 32947                                 | 32947                                   |
|                        |                          | 5                   | 0.021                      | 33921                                 | 33921                                   |

 $<sup>^{1}\!\!\!</sup>$  Area units.  $^{2}\!\!\!\!$  Areas were normalized to target weight mass.

Table 2. Calibration Curve 2 for DEM in Ethyl Alcohol.

| DEM<br>Conc<br>(μg/μL) | Target<br>Weight<br>(µg) | Injection<br>Number | Injected<br>Weight<br>(µg) | Area<br>Response<br>(au) <sup>1</sup> | Normalized<br>Area<br>(au) <sup>2</sup> |
|------------------------|--------------------------|---------------------|----------------------------|---------------------------------------|-----------------------------------------|
| 0.42                   | 0.84                     | 1                   | 0.88                       | 6002620                               | 5729774                                 |
|                        |                          | 2                   | 0.82                       | 5564680                               | 5700404                                 |
|                        |                          | 3                   | 0.92                       | 6452620                               | 5891523                                 |
|                        |                          | 4                   | 0.86                       | 5894070                               | 5756999                                 |
|                        | 0.42                     | 1                   | 0.42                       | 2713870                               | 2713870                                 |
|                        |                          | 2                   | 0.42                       | 2753140                               | 2753140                                 |
|                        |                          | 3                   | 0.36                       | 2370470                               | 2765548                                 |
|                        |                          | 4                   | 0.42                       | 2741250                               | 2741250                                 |
|                        | 0.21                     | 1                   | 0.21                       | 1213980                               | 1213980                                 |
|                        |                          | 2                   | 0.21                       | 1250330                               | 1250330                                 |
|                        |                          | 3                   | 0.23                       | 1329970                               | 1214320                                 |
|                        |                          | 4                   | 0.19                       | 1121630                               | 1239696                                 |
| 0.042                  | 0.084                    | 1                   | 0.097                      | 302189                                | 261689                                  |
|                        |                          | 2                   | 0.088                      | 281803                                | 268994                                  |
|                        |                          | 3                   | 0.084                      | 206042                                | 266042                                  |
|                        |                          | . 4                 | 0.084                      | 268034                                | 268034                                  |
|                        | 0.042                    | 1                   | 0.053                      | 81411                                 | 64514                                   |
|                        |                          | 2                   | 0.042                      | 63865                                 | 63865                                   |
|                        |                          | 3                   | 0.059                      | 91420                                 | 65079                                   |
|                        |                          | 4                   | 0.063                      | 96317                                 | 64211                                   |
|                        | 0.021                    | 1                   | 0.027                      | 48159                                 | 37457                                   |
|                        |                          | 2                   | 0.027                      | 48062                                 | 37381                                   |
|                        |                          | <b>3</b> .          | 0.025                      | 46238                                 | 38840                                   |
|                        |                          | 4                   | 0.021                      | 38410                                 | 38410                                   |

 $<sup>^{1}\</sup>mathrm{Area}$  units.  $^{2}\mathrm{Areas}$  were normalized to target weight mass.

Table 3. Analytical Recovery of DEM from Ethyl Alcohol.

| DE                      | 3.000               |                          |  |
|-------------------------|---------------------|--------------------------|--|
| Injected Weight<br>(µg) | Replicate<br>Number | Area<br>Response<br>(au) |  |
| 0.84                    | 1                   | 5884799                  |  |
|                         | 2                   | 5730592                  |  |
|                         | 3                   | 5809521                  |  |
|                         | 4                   | 5764371                  |  |
|                         | 5                   | 5815551                  |  |

Table 4. Statistical Analysis of Calibration Data.

| DEM<br>Confidence*<br>Weight<br>(µg) | Mean<br>Area<br>(au) | Standard<br>Deviation<br>(au) | Coefficient<br>of Variation<br>(%) | Limit<br>( <u>+</u> au) |
|--------------------------------------|----------------------|-------------------------------|------------------------------------|-------------------------|
|                                      |                      | Curve 1                       |                                    |                         |
| 0.84                                 | 5680049              | 22414                         | 0.4                                | 27866                   |
| 0.42                                 | 2775304              | 53856                         | 1.9                                | 66957                   |
| 0.21                                 | 1230861              | 19550                         | 1.6                                | 24306                   |
| 0.084                                | 243826               | 2258                          | 0.9                                | 2797                    |
| 0.042                                | 60447                | 928                           | 1.5                                | 1154                    |
| 0.021                                | 33386                | 835                           | 2.5                                | 1038                    |
|                                      |                      | Curve 2                       |                                    |                         |
| 0.84                                 | 5769674              | 84456                         | 1.5                                | 134215                  |
| 0.42                                 | 2743452              | 22076                         | 0.8                                | 35101                   |
| 0.21                                 | 1229581              | 18340                         | 1.5                                | 29161                   |
| 0.084                                | 266340               | 3368                          | 1.3                                | 5355                    |
| 0.042                                | 64417                | 515                           | 0.8                                | 819                     |
| 0.021                                | 38022                | 718                           | 1.9                                | 1142                    |

<sup>\*</sup>Based on a 95% confidence limit.

Table 5. Lineal Regression Analysis for Calibration Curves.

| Curve (#)  | Slope<br>(µg/au) | Intercept<br>(µg) | Correlation<br>Coefficient |
|------------|------------------|-------------------|----------------------------|
| 1          | 1.4037E-7        | 0.0387            | 0.9997                     |
| 2          | 1.4027E-7        | 0.0331            | 0.9995                     |
| Mean       | 1.4032E-7        | 0.0359            | 0.9996                     |
| onf. Limit | 0.0063E-7        | 0.0359            | 0.0009                     |

Table 6. Analysis of Analytical Recovery Data.

| DEM<br>Injected<br>(µg) | Replicate<br>Number | DEM<br>Found<br>(µg) | Mean<br>(µg) | Standard<br>Deviation<br>(µg) | Confidence<br>Limit<br>(µg) |
|-------------------------|---------------------|----------------------|--------------|-------------------------------|-----------------------------|
| 0.84                    | 1                   | 0 86                 |              |                               |                             |
|                         | 2                   | 0.84                 | ~-           |                               |                             |
|                         | 3                   | 0.85                 |              | ~~ ~~                         |                             |
|                         | 4                   | 0.84                 | ~-           |                               |                             |
|                         | 5                   | 0.85                 | 0.85         | 0.008                         | 0.01                        |

Calibration procedure results indicated that trace quantities of DEM in ethyl alcohol can be quantified within a coefficient of variation of 2.5%.

The traceability study for DEM in ethyl alcohol indicated an accuracy within 2.4% from known DEM concentrations.

#### 4. CONCLUSIONS

Based on the experimental results, the use of a GC equipped with a flame ionization detector proved to be effective for determining trace amounts of DEM in ethyl alcohol at a concentration range of 21-840 ng.

A lineal fit was obtained at this range with an average slope of 1.4032  $\pm$  0.0063 X 10<sup>-7</sup>  $\mu$ g/au and an intercept of 0.0359  $\pm$  0.0359  $\mu$ g. The correlation coefficient was 0.9996  $\pm$  0.0009.

Based on replicate injections at the 0.84- $\mu$ g level, the accuracy of this method was within 2.4% ( $\pm$ 0.02  $\mu$ g).