Project #1. [영상 분류] CNN을 이용한 Wafer 불량 검출

2022. 3. 30

[20-5] 김병근, 강윤구

진행 내용

2022.3.30

- 데이터 셋 확보
- kaggle source 분석 → 동일하게 구현

연구 개요

연구 목표

- 데이터 증량(Augmentation): 불량 유형별 데이터 양의 불균형의 해소
- 비교 평가: CNN 영상 분류(Classification)의 파라미터 별, 정확도와 성능 비교

<u>연구 배경</u>

- 현재: 신뢰도/분류 성능 저하: 육안 검사, 수동 Feature 추출하는 기계학습 기반의 알고리즘 적용
- 연구: CNN(convolution neural network)의 Wafer 자동 불량 식별 연구

데이터 셋 준비

- 데이터 원본(Pickle): LSWMD.pkl(https://www.kaggle.com/code/kcs93023/keras-wafer-classification-cnn2d-with-augmentation/data)

▶ 다양한 행렬(해상도) 존재

- 데이터 구성 내역

Total	811,457	
no-Label	638,507	78.7%
Label	172,950	21.3%

NG DATA Augmentation 필요

: 주 목적인 불량 분류를 하기 위한, OK/NG의 데이터 불균형

Total	172,950		
OK	147,431	85.2%	
NG	25,519	14.8%	•

불량 분류 별, 데이터 Augmentation 필요(양의 불균형)

: 데이터의 불균형으로 Overfitting 발생 가능

데이터 셋 준비(Wafer Map 행렬 size가 26 * 26 데이터에 데이터만 추출)

Case.1) 데이터 불균형을 그대로 학습

Center : 90

Donut: 1

Edge-Loc : 296

Edge-Ring : 31

Loc: 297

Near-full : 16

Random: 74

Scratch : 72

none: 13489

Epoch: 15

Batch size: 1024

활성화함수: sigmoid

Padding = same

Optimizer: adam

Center : 2160 Donut : 2002

Edge-Loc : 2368

Edge-Ring : 2046

Loc: 2376

Near-full: 2032

Random : 2146

Scratch : 2088

none: 2489

Epoch: 15

Batch size: 1024

활성화함수: relu, softmax

Padding = same

Optimizer: adam

Python code 실행 결과

<u>Industrial-AI/waferMap.ipynb at master · ByeongKeun/Industrial-AI (github.com)</u>

20-5至) waferMap.ipynb.pd

감사합니다