Evolutionary Computation Term Project Proposal

Title

Finding k-shortest Paths in Network Using Genetic Algorithm

Team Members

Student ID	Name	Email
0416106	彭敬樺	wilbert.phen@gmail.com
0416109	周才錢	liuschandra@live.com
0416235	劉昱劭	c2525441@gmail.com
0416223	許賀傑	hhhhojeihsu.cs04@g2.nctu.edu.tw

Type of Project

Evolutionary Computation Application

Objectives

Solving NP-problem using Genetic Algorithm

Method

- 1. Given a network G(N, E) with N nodes and E is the set of links connecting the nodes. Also, we consider the source node n_0 and destination nodes set $U = \{u_1, u_2 ..., u_m\}$. The chromosome can be represented by a string of integers with length N. The genes of the chromosome are the nodes between the source node n_0 and destination node u_i .
- 2. Generate the initial population:
 - a. A chromosome x in the initial population can be generated in a form $\{n_0, n_1 ..., n_m, d\}$, where n_0, n_1, n_m, d are nodes between source and destination.
 - b. If the generated chromosomes fail to agree with the provided link, then discard it and go back to Step a.
 - c. Repeat Step a to b to generate population_size number of chromosomes.
- 3. Objective function

$$f(x) = \min(f(x), x \in E_p) \ge B$$

- 4. The crossover operation is performed by one-cut point.
- 5. The mutation operation is performed on bit-by-bit basis.

Contributions of This Project

Improve k-shortest paths solver using Evolutionary Computation technique.