Tillämpningar av derivatan

Wanmin Liu

2025-10-06

Del 1. Repetition och tillämpningar av derivatan.

14.35 - 14.55. Repetition.

- Definition av derivatan
- Derivatan Tabell
- Definition av talet e.
- Definition av naturlig logaritm
- Varje exponentialfunktion $y = a^x \pmod{a > 0}$ kan skrivas på formen $y = e^{kx}$.

14.55 - 15.05 Exempel.

15.05 - 15.35 Tre uppgifter i boken.

Definition av derivatan

Låt y = f(x) vara en funktion.

Vi skriver

•
$$\Delta x = (x + h) - x = h$$

$$D(f(x)) = f'(x) := \lim_{h \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Definition av talet e.

Vi **definierar** en speciell konstant *e* så att

$$D(e^x) = e^x$$
, eller $(e^x)' = e^x$

genom gränsvärdet $\lim_{h \to 0} \frac{\mathrm{e}^h - 1}{h} = 1$.

Det är en indirekt definition.

En ekvivalent definition är följande

$$e := \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2.7.$$

Definition av naturlig logaritm

Om x är positivt skriver vi om x till formen e^y för ett reellt tal y, och definierar y som den naturliga logaritmen till x, med beteckningen $\ln(x)$, det vill säga $y = \ln(x)$ är talet så att

$$e^{\ln x} = x$$
.

- Definitionsmängd av funktion $y = \ln x$ är alla positiva tal $\{x | x > 0\}$.
- Värdemängden är alla reella tal.

Till exempel:

- $\ln 1 = 0$ eftersom $e^0 = 1$.
- In e = 1 eftersom $e^1 = e$.
- $\ln e^{-1} = -1$ eftersom $e^{\ln e^{-1}} = e^{-1}$.
- Om a > 0, då är $a = e^{\ln a}$.

Exponential- och naturliga logaritm operationer är inversa operationer

Definition samband

För x > 0 och $y \in \mathbb{R}$, dvs $-\infty < y < \infty$ har vi

$$x = e^y \iff y = \ln(x)$$

Exponential- och naturliga logaritm operationer är inversa operationer

För x > 0 och $y \in \mathbb{R}$, dvs $-\infty < y < \infty$ har vi

$$e^{\ln x} = x \iff \ln(e^y) = y.$$

Graf för den naturliga logaritmfunktionen

Den naturliga logaritmfunktionen $y = \ln x$ definieras som reella tal $\ln x$ sådana att $e^{\ln x} = x$.

Figure 1: Den naturliga logaritmfunktionen

En generell logaritmisk funktion

En generell logaritmisk funktion med basen a (a är ett positivt tal) betecknas med notationen $\log_a(x)$, med den definierade ekvationen $a^{\log_a(x)} = x$.

- Definitions mängd av funktion $y = \log_a(x)$ är alla positiva tal $\{x|x>0\}$.
- Värdemängden av $\log_a(x)$ är alla reella tal.
- ln(x) är förkortningen för $log_e(x)$ med basen e.
- $\lg(x)$ är förkortningen för $\log_{10}(x)$ med basen 10, t.ex $\lg(100)=2$, $\lg(0,1)=-1$.

Låt a vara en positiv konstant, och x>0. Vi har $x=a^y$, $y=\log_a(x)$ och

$$a^{\log_a(x)} = x, \qquad \log_a(a^y) = y.$$

Varje exponentialfunktion $y = a^x \pmod{a > 0}$ kan skrivas på formen $y = e^{kx}$.

Hur? Vi skriver om a:

$$a = e^{\ln(a)}$$
.

Då är
$$y = a^x = (e^{\ln a})^x = e^{\ln(a)x} = e^{kx} \mod k = \ln a$$
.

Exponentialfunktioner kan allmänt skrivas

$$f(x) = C \cdot e^{kx}$$

för vissa konstanter k och C.

Derivatan Tabell

f(x)	D(f(x)) = f'(x)	Anmärkningar
k	0	k är en konstant.
x^n	nx^{n-1}	n är ett naturligt tal.
x ^a	ax^{a-1}	a är ett reellt tal.
e^{x}	e^{x}	Detta är definitionen av talet e.
e^{kx}	ke ^{kx}	k är en konstant.
a ^{kx}	$a^{kx} \cdot k \cdot \ln(a)$	<i>k</i> är en konstant och <i>a</i> är ett positivt tal.
$a \cdot g(x)$		a är reella tal.
g(x) + h(x)	g'(x) + h'(x)	

Värdet av en samling antika mynt som köptes för 8 år sedan ökar exponentiellt med tiden. Inköpspriset var 23 000 kr och nu är den värd 27 000 kr.

- \odot Bestäm en exponetialfunktion som beskriver myntsamlingens värdeökning under t år.
- Vid vilken tidpunkt kommer värdet att öka med 1 000 kr per år?

Exempel 1. Ledtråd.

Vi kan skriva en generell exponentialfunktion som

$$f(t) = C \cdot e^{kt},$$

för vissa konstanter k och C.

Vi vet att f(0) = 23000 och f(8) = 27000.

Vi skulle kunna använda dessa två villkor för att hitta värdena på k och C.

Vi skulle lösa ekvationen

$$f'(t)=1000$$

för tiden t.

Lösning.

Vi kan skriva en generell exponentialfunktion som

$$f(t) = C \cdot e^{kt},$$

för vissa konstanter k och C.

Vi vet att f(0) = 23000 och f(8) = 27000.

Då är
$$f(0) = C \cdot e^{k \cdot 0} = C \cdot e^0 = C \cdot 1 = C$$
. Så får vi $C = 23000$.

Nu är

$$f(8) = 23000 \cdot e^{k \cdot 8} = 27000.$$

Vi deviderar båda leden med 23000 och får

$$e^{k\cdot 8} = \frac{27000}{23000}.$$

Det vill säga

$$e^{8k} = \frac{27}{23}$$

För denna ekvation tar vi den naturliga logaritmen för båda sidor och får

$$\ln(e^{8k}) = \ln(\frac{27}{23}).$$

Med definitionen av den naturliga logaritmen får vi $ln(e^{8k}) = 8k$. Så får vi ekvationen

$$8k = \ln(\frac{27}{23})$$

och

$$k=\frac{\ln(\frac{27}{23})}{8}\approx 0,02.$$

Svar: Myntsamlingens värde under t år är

$$f(t) = 23000 \cdot e^{0.02t}.$$

Vi skulle lösa ekvationen

$$f'(t) = 1000$$

för tiden t.

Enligt deriveringsreglerna får vi

$$f'(t) = C \cdot e^{kt} \cdot k = 23000 \cdot e^{0.02t} \cdot 0.02 = 460 \cdot e^{0.02t}$$
.

Sätt

$$f'(t) = 1000.$$

Vi får

$$460 \cdot e^{0,02t} = 1000.$$

Vi dividerar 460 på båda sidor av ekvationen och får

$$e^{0,02t} = \frac{1000}{460}.$$

Vi tar den naturliga logaritmen för båda sidor och får

$$\ln(e^{0.02t}) = \ln(\frac{1000}{460}).$$

Dvs,

$$0,02t = \ln(\frac{1000}{460}),$$

och

$$t = \frac{\ln(\frac{1000}{460})}{0,02} \approx 38,82 \approx 39.$$

Svar: Ungefär 39 år efter inköpet kommer värdet att öka med 1 000 kr per år.

Uppgift

Sidan 106 - 107, 3230, 3231, 3237

Ledtråd till 3237: $e^{0.017} \approx 1,017$.

Paus

15.35 - 15.55

Del 2: 15.55 - 17.00.

Del 2.

15.55 - 16.25

- Tangent- och normallinjer i en punkt på en kurva
- Tangentlinjens lutning
- Normallinjens lutning
- Exempel.

16.25 - 17.00

• Tre uppgifter i boken.

Tangent- och normallinjer i en punkt på en kurva

Givet en kurva y = f(x) och en punkt P på kurvan med koordinaterna (x_0, y_0) . Vi vill beräkna ekvationerna för tangent- och normallinjerna till kurvan vid punkt P.

Enligt definitionen av derivata ges tangentens lutning vid punkten P av $k_{\rm tangent} = f'(x_0)$.

Definition. En *normal* till en kurva är en linje som bildar *rät vinkel* mot kurvans tangent i en viss punkt.

Om $k_{\mathrm{tangent}} \neq 0$, så har vi

$$k_{\text{tangent}} \cdot k_{\text{normal}} = -1$$
 eller $k_{\text{normal}} = \frac{-1}{k_{\text{tangent}}}$.

Om $k_{\rm tangent}=0$, så är den normala linjen en vertikal (lodrätt) linje $x=x_0$.

Exempel 2.

Bestäm ekvationen för tangenten och normalen till kurvan $y = e + 7^x$ där x = 0.

Ledtråd

- Vilka är tangentpunktens koordinater?
- Vad är tangentens lutning?
- Vad är normalens lutning?

Exempel 2.

Lösning.

Steg 1. Vi skriver koordinaterna för tangentpunkten.

Låt oss kalla tangentpunkten P. $y(0) = e + 7^0 = e + 1$. Så koordinaterna för punkt P är (0, e + 1).

Steg 2. Vi hittar tangentens lutning och normalens lutning.

$$y' = 0 + 7^{x} \cdot \ln 7 = 7^{x} \cdot \ln 7.$$

 $k_{\text{tangent}} = y'(0) = 7^{0} \cdot \ln 7 = \ln 7.$

$$k_{
m normal} = rac{-1}{k_{
m tangent}} = rac{-1}{\ln 7}.$$

Tre metoder att skriva linjens ekvation.

Med geometrin (t. ex. tangent, normal, parallell, derivata ...) kan vi hitta lutningen k.

Lutningen på linjen som går genom två kända punkter (x_1, y_1) och (x_2, y_2) är $k = \frac{y_2 - y_1}{x_2 - x_1}$. (Det står i formelblad.)

Motod 1. Skriv y = kx + m och $y_0 = kx_0 + m$ för att hitta m.

Motod 2. $k = \frac{y - y_0}{x - x_0}$ eftersom linjens lutning är k. (Det står i formelblad.)

Motod 3. $y - y_0 = k(x - x_0)$. Det är linjens ekvation genom punkten (x_0, y_0) där vi känner lutningen k.

Exempel 2.

Steg 3. Vi hittar tangentens ekvation. Tangenten har ekvationen

$$y=(\ln 7)x+m.$$

Punkt P ligger på tangentlinjen, så koordinaterna för P uppfyller också tangentlinjens ekvation. Dvs

$$e+1=(\ln 7)\cdot 0+m,$$

och m = e + 1. Vi har ekvationen för tangentlinjen till kurvan i x = 0:

$$y = (\ln 7)x + e + 1.$$

Exempel 2.

Steg 4. Vi hittar normalens ekvation. Normalen har ekvationen

$$y = \frac{-1}{\ln 7} \cdot x + m.$$

Punkt P ligger också på normallinjen, så koordinaterna för P uppfyller också normallinjens ekvation. Dvs

$$e+1=\frac{-1}{\ln 7}\cdot 0+m,$$

och m=e+1. Vi har ekvationen för normallinjen till kurvan i x=0:

$$y = \frac{-1}{\ln 7} \cdot x + e + 1.$$

Uppgift

S. 107: 3239, 3241

S. 115: 32. Tangenten till kurvan $y = ae^{2x} + bx$ i punkten (0,4) har lutningen k = 3. Bestäm talen a och b.

Ledtråd: Tangentpunkten (0,4) ligger också på kurvan, så dess koordinater uppfyller kurvans ekvation. Vi vet också y'(0) = 3.