Quintic Threefolds

Songyu Ye

October 17, 2025

Abstract

Abstract

Contents

1 Basic setup 2

2 Givental Hori Vafa 3

Take a smooth degree-5 hypersurface $X \subset \mathbb{P}^4$. For a generic one hodge numbers?

$$h^{1,1}(X) = 1, h^{2,1}(X) = 101, h^{3,0}(X) = h^{0,3}(X) = 1$$

and all other $h^{p,q}$ vanish. (The lone $h^{1,1}$ is the Kähler class; $h^{2,1}$ is complex-structure deformations.)

There is a standard 1-parameter family (the Dwork pencil)

$$X_{\psi}: x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5 = 5\psi x_1 x_2 x_3 x_4 x_5 \subset \mathbb{P}^4$$

- 1. Picard–Fuchs for periods. Let $z=(5\psi)^{-5}$, $\theta=z\frac{d}{dz}$. Periods $\Pi(z)$ of the holomorphic 3-form satisfy $\mathcal{L}\Pi=0$, where $\mathcal{L}=\theta^4-5z(5\theta+1)(5\theta+2)(5\theta+3)(5\theta+4)$. Solve near the large complex structure limit z=0: $\Pi_0(z)=\sum_{n\geq 0}\frac{(5n)!}{(n!)^5}z^n$, $\Pi_1=\Pi_0\log z+\cdots$ Extract the mirror map $q=\exp(\Pi_1/\Pi_0)$.
- 2. Yukawa coupling & GW invariants. Compute the Yukawa coupling C_{zzz} from the PF system, convert to C_{ttt} in the flat coordinate $t = \frac{1}{2\pi i} \log q + \cdots$, expand $C_{ttt} = 5 + \sum_{d \geq 1} \frac{n_d d^3 q^d}{1 q^d}$, and read off the genus-0 instanton numbers n_d (curve counts on X): $n_1 = 2875$ lines, $n_2 = 609, 250, n_3 = 317, 206, 375$, etc.
- 3. Monodromy. Compute monodromies around z=0 (maximally unipotent), the conifold point $z=5^{-5}$, and the Gepner point $\psi=0$. Check that one monodromy is maximally unipotent (mirror criterion).

- 4. Kähler vs complex moduli. Identify the complex moduli of Y with the 1-parameter Dwork modulus, and the Kähler moduli of X with the q-coordinate you built. This is the mirror map statement in practice.
- 5. (Optional) Toric re-derivation. Rebuild the whole story via Batyrev's reflexive polytopes for the quintic and its polar dual; compute Hodge numbers from lattice point counts to see the (1, 101) ↔ (101, 1) swap without period theory.

1 Basic setup

Let $Y = \mathbb{C}^n$ and $f: Y \to \mathbb{C}$ a holomorphic function with an isolated critical point at 0.

Define the local algebra $H_f = \mathbb{C}[y_1, \dots, y_n]/(\partial f/\partial y_i)$, called the Milnor ring or Jacobian algebra. It's a finite-dimensional vector space of dimension μ (the Milnor number).

Choose a monomial basis a_1, \ldots, a_{μ} representing classes in H_f . Then consider a versal deformation (a general perturbation)

$$f_{\lambda}(y) = f(y) + \lambda_1 a_1(y) + \dots + \lambda_{\mu} a_{\mu}(y)$$

This gives a μ -dimensional parameter space with coordinates $\lambda = (\lambda_1, \dots, \lambda_{\mu})$.

Define $I_i(\lambda) = \int e^{f_{\lambda}(y)/h} a_i(y) \omega$ where $\omega = dy_1 \wedge \cdots \wedge dy_n$. As $h \to 0$, the integral is dominated by critical points of f_{λ} ; so by stationary phase

$$I_i(\lambda) \sim \sum_{y_*(\lambda)} \frac{a_i(y_*(\lambda))}{\sqrt{J_\lambda(y_*(\lambda))}} e^{f_\lambda(y_*(\lambda))/h},$$

where $J_{\lambda} = \det(\partial^2 f_{\lambda}/\partial y_i \partial y_j)$. Each critical point contributes an exponential term with phase $f_{\lambda}(y_*)/h$.

The key observation is that the functions $I_i(\lambda)$ satisfy a system of differential equations in the parameters

$$\lambda_j : h \frac{\partial I_i}{\partial \lambda_j} = \sum_k c_{ij}^k(\lambda) I_k$$

where the $c_{ij}^k(\lambda)$ are the structure constants of the algebra $a_i a_j = \sum_k c_{ij}^k(\lambda) a_k$ in $H_{f_{\lambda}}$.

This has something to do with the Gauss Manin connection. Formally, you can think of the family of vector spaces $\mathcal{H}_{\lambda} = H_n(\mathbb{C}^n, \Re f_{\lambda} = -\infty)$ as forming a flat vector bundle over the parameter space of λ .

The integrals $I_i(\lambda)$ can be viewed as flat sections of the dual bundle \mathcal{H}^*_{λ} . The differential equations satisfied by the $I_i(\lambda)$ reflect the flatness of this connection.

The family of quintic-mirrors Y_{λ} is one of the examples for which one can construct flat coordinates on moduli spaces of complex structures.

2 Givental Hori Vafa

Let X be a compact toric Fano variety. Let $\mathcal{F}(X)$ be its **Fukaya category** which is $D(\mathbb{Z}/2c_1(X)\mathbb{Z})$ -graded. Then conjecturally

$$HH^*(\mathcal{F}(X)) \cong QH^*(X)$$

Write $X = \mathbb{C}^n //H$ where

$$0 \to H \to (\mathbb{C}^*)^n \to T_{\mathbb{C}} \to 0$$
$$0 \to T_{\mathbb{C}}^{\vee} \to (\mathbb{C}^*)^{n\vee} \to H^{\vee} \to 0$$

Consider the fiber T_h^{\vee} of $h \in H^{\vee}$. Take the **superpotential** function

$$W = x_1 + \dots + x_n : T_h^{\vee} \to \mathbb{C}$$

Remark 2.1. Joe made the remark that if you try to make the naive statement that there are two derived catgories on the A and B side of mirror symmetry which are equivalent, then this cannot possibly work and one needs to introduce extra structures, such as the superpotential W here.

Then by homological mirror symmetry this defines a matrix factorization category $MF(T_h^{\vee},W)$ with a "map"

$$MF(T_h^{\vee}, W) \to T_h^{\vee}$$

Then we have the following theorem:

Theorem 2.2.

1. There is an equivalence of categories

$$MF(T_h^{\vee}, W) \cong \mathcal{F}(X, \mathfrak{h})$$

- 2. $MF(T_h^{\vee}, W)$ is a module category over $\mathbb{C}[T_h^{\vee}]$ and the Fourier modes are the Seidel shift operators.
- 3. There is an isomorphism of algebras

$$HH^*(MF(T_h^\vee,W))\cong Jac(W)\cong QH^*(X,\mathfrak{h})$$