Sans musique la vie serait une erreur. (Nietzsche)

Pour mémoire

Soit $\sum_n a_n z^n$ une série entière. On rappelle que :

$$I = \{r \geqslant 0, (a_n r^n)_n \text{ est born\'ee}\}$$

est un intervalle de \mathbb{R} dont la borne supérieure R_a dans $\mathbb{R} \cup \{+\infty\}$ est appelé rayon de convergence de la série entière.

On a ainsi $I = [0, R_a]$ ou $I = [0, R_a[$. Il importe de bien comprendre alors que :

$$\forall r \geqslant 0, r < R_a \implies (a_n r^n)_n$$
bornée et $(a_n r^n)_n$ bornée $\implies r \leqslant R_a$

On montre alors que :

1.
$$|z| < R_a \implies \sum_n a_n z^n$$
 CVA.

2.
$$|z| > R_a \implies \sum_n a_n z^n$$
 DVG car $(a_n z^n)_n$ non bornée.

On appelle cercle d'incertitude le cercle de centre 0 et de rayon R_a . C'est le seul endroit ou on peut trouver z tel que $\sum_a a_n z^n$ soit finement divergente ou convergente sans l'être absolument!

Exercice 1 Soit a, b des réels positifs, montrer que : $(\forall r \in \mathbb{R}_+, r < a \implies r \leqslant b) \implies (a \leqslant b)$.

Exercice 2 Soit λ dans \mathbb{C}^* , montrer que $\sum_n a_n z^n$ et $\sum_n \lambda a_n z^n$ ont même rayon de convergence.

Exercice 3 Soit α un réel, montrer que $\sum_n a_n z^n$ et $\sum_n n^{\alpha} a_n z^n$ ont même rayon de convergence.

Exercice 4

- 1. Donner un exemple de série entière qui diverge grossièrement en tout point du cercle d'incertitude.
- 2. Donner un exemple de série entière qui converge absolument en tout point du cercle d'incertitude.
- 3. Donner un exemple de série entière qui diverge finement en au moins un point du cercle d'incertitude et qui est semi-convergente en au moins un point du cercle d'incertitude.
- 4. Donner un exemple de série entière de rayon de convergence R > 0.

Exercice 5 Etudier la convergence des séries entieres $\sum a_n z^n$ dans les cas suivants :

1.
$$a_n = \frac{1}{n^{\alpha}} (\alpha > 0)$$

5. a_n semi-convergente

9.
$$a_n = \frac{n^3 + n^2 \cos(n) - 2n}{4n^4 + n + 1}$$

$$2. \ a_n = \ln n$$

6. $\lim_n a_n = \ell \neq 0;$

10.
$$a_n = n^{(-1)^n}$$

3.
$$a_n = \frac{n^n}{n!}$$

7. $a_n = \binom{2n}{n}$.

11.
$$a_n = \frac{1}{1+2+3+...+n}$$

4.
$$a_n = \sin n$$

8.
$$a_n = e^{-n^2}$$
.

12.
$$a_n = \frac{n+1}{n+2}$$

Exercice 6 Rayon de convergence des séries suivantes :

1.
$$\sum n!z^n$$

$$2. \sum 2^n z^{n!}$$

3.
$$\sum (3 + (-1)^n)^n z^n$$
 4. $\sum_{p \text{ premier}} z^p$

4.
$$\sum_{p \text{ premier}} z^p$$

Exercice 7 On suppose que $\sum_n a_n z^n$ a un rayon de convergence R > 0. Quel est le rayon de convergence de $\sum_n a_n z^{2n}$? De $\sum_n \frac{a_n}{n!} z^n$?

Exercice 8 On rappelle que l'on note pour $n \in \mathbb{N}^*$: $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Montrer que $S(x) = \sum_{n=1}^{+\infty} H_n x^n$ est définie sur] -1, 1[.
- 2. En simplifiant (1-x)S(x) donner une expression de S(x).

Exercice 9 Soit $\sum_n a_n z^n$ avec $R_a > 0$, on note $b_n = \frac{a_n}{1+|a_n|}$. Montrer que $R_b \geqslant \max(1, R_a)$ puis qu'il y a égalité.