fruschtique

Linked Data Format

for Ingredient Graphs -

Overview

What is RDF?

Resource Description Framework

 Resource is described by triples: subject – predicate – object

Modeling ingredients with RDF

1. Announce that ingredient is member of a certain ingredient class: RDF type

16 ingredient classes in total.

2. Announce that ingredient has an occurence value: g:occurs

- * ingredient IDs in lower case German
- ingredients classes in lower case English (disambiguate ingredient IDs and ingredient class IDs)

Modeling ingredient relations with RDF

1. Announce that ingredient relation has a source: g:hasSource

2. Announce that ingredient relation has a target: g:hasTarget

3. Announce that ingredient relation has a weight: g:weight

Modeling recipes with RDF

1. Announce that recipe has ingredients: g:hasIngredient

RDF for ingredient graphs

RDF types	ingredients	z.B.: g:zwiebel	rdf:type	g:onion ;
Properties for ingredients	g:hasClass	value from g:i-class		
	g:occurs	value from xsd:integer		
Properties for ingredient	g:hasSource	value from g:ingredients		
ingredient	g:hasTarget	value from g:ingredients		
ingredient relations	g:hasTarget g:weight	<pre>value from g:ingredients value from xsd:integer</pre>		

What is SPARQL?

SPARQL Protocol And RDF Query Language

- Related RDF triples are collected in a dataset
- A dataset can be queried by SPARQL queries

https://wordlift.io/blog/en/entity/sparql/

Apache Jena

A free and open source Java framework for building Semantic Web and Linked Data applications.

https://jena.apache.org/index.html

Fuseki

Fuseki

Expose your triples as a SPARQL end-point accessible over HTTP. Fuseki provides REST-style interaction with your RDF data.

Sample Fuseki access interface

comes with Fuseki download

Population of ingredient classes

```
SELECT ?class (count (*) AS ?num)
WHERE {
    ?i g:hasClass ?class.
}
GROUP BY ?class ?num
ORDER BY ASC(?class)
```

Ingredient Class Population

SELECT ?class (count (*) AS ?num) WHERE { ?i g:hasClass ?class. ?i g:occurs ?o. FILTER (?o > "30"^^xsd:integer) } GROUP BY ?class ?num ORDER BY ASC(?class)

Ingredient Class Population "Big Five"

PREFIX g: http://www.semanticweb.org/nlutt/ontologies/2021/1/graDL.owl">http://www.semanticweb.org/nlutt/ontologies/2021/1/graDL.owl

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

Population of ingredient classes

```
SELECT ?class (count (*) AS ?num)
WHERE {
    ?i g:hasClass ?class.
    ?i g:occurs ?o.
    FILTER (?o > "1"^^xsd:integer)
    FILTER (?o < "30"^^xsd:integer)
}
GROUP BY ?class ?num
ORDER BY ASC(?class)</pre>
```

```
SELECT ?class (count (*) AS ?num)
WHERE {
    ?i g:hasClass ?class.
    ?i g:occurs ?o.
    FILTER (?o = "1"^^xsd:integer)
}
GROUP BY ?class ?num
ORDER BY ASC(?class)
```

Ingredient Class Population "Middle-earth"

Ingredient Class Population "Zero-nodes"

PREFIX owl:
PREFIX xsd: http://www.w3.org/2001/XMLSchema

Relations classified

Mind that relations are counted double by this query!

Relations classified by source and target ingredient classes

PREFIX g: http://www.semanticweb.org/nlutt/ontologies/2021/1/graDL.owl

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: PREFIX xsd: http://www.w3.org/2001/XMLSchema

Graph-theoretic interlude

An ingredient graph IG = (V, E, w, c, o) is an undirected, loop-free, weighted, and node-labeled graph where

- V is a finite set of ingredient nodes identified by their ID and
- $E \subseteq \binom{V}{2}$ is a set of edges.
- w is a function that assigns a weight value from $\mathbb{N}\setminus\{0\}$ to each edge,
- c is a function that assigns a class value to each node, where this value comes from $class = \{alc, carb, condi, egg, etc, fat, fish, fruit, herb, meat, milk, nuts, onion, spice, sweet, veg\}$
- o is a function that assigns an occurrence value ω to each node with $\omega \in \mathbb{N} \setminus \{0\}$.
- The occurrence value can easily be transformed into a prevalence value by dividing it by the number of recipes in the collection under scrutiny.

