

Thomas Sean Weatherby

Theo III: 1. Introduktion - spezielle Relativitätstheorie

Ladung

Einstiegsaufabe:

- Warum wurde Relativitätstheorie entwickelt?
 - > Was kann nur damit beschrieben?
 - Warum unterscheidet es sich von der Physik, die ihr bisher begegnet habt?
- Warum ist es wichtig es im Studium zu begegnen?
- Warum sollten Schülerinnen dazu etwas lernen?

Die berühmteste Formel der Welt

$$E = mc^2$$

- Masse ist "gespeicherte" Energie.
- "c²" als (extremer) Wechselkurs
 - $c^2 \approx 9 \cdot 10^{16} \,\mathrm{m^2 s^{-2}} \Rightarrow$ winzige Masse \rightarrow gewaltige Energie
- Wichtig für:
 - Kernprozesse im Stern
 - Kernkraft & -medizin (PET)
 - Atombomben
 - Teilchenbeschleuniger
- Physik-Hook:
 - SR macht Energie-Impuls-Bilanz konsistent
 - Ruheenergie (in Ruhesystem) ist $E_0 = mc^2$
- Aufgabe für Schülerinnen: "Wie schwer ist ein Joule?"

GPS – nur mit Relativitätstheorie

- GPS braucht Relativität –
 Satelliten "gehen" anders
 als Boden-Uhren; ohne
 Korrektur driftet die
 Position schnell weg.
- Alltagseffekt: Navi,
 Flugrouten, usw. präzise
 nur mit Relativitätstheorie
- Takeaway: Relativität ist Lebensrelevant – sie steckt in jenem Handy.

Sci-Fi erklären, als Motivation

- 1) Star Trek: Materie-Antimaterie-Antrieb (Warp)
- Was stimmt: Annihilation setzt nach $E=mc^2$ sehr viel Energie frei.
- Physik-Realität (SR): Selbst mit beliebig viel Energie bleibt v < c; c ist Obergrenze.
 - "Warp" erfordert extra Annahmen (Raumkrümmung/GR-Fiktion), nicht nur Antriebskraft.
- Klassentaugliche Frage: Wie viel Energie liefert 1 g Antimaterie?
- **2) Zwillingsparadoxon:** Ein Zwilling fliegt nahe c, kommt jünger zurück. Viel Zeit vergeht am Startpunkt. z.B. Planet of the Apes (1968)
- Was stimmt: Zeitdilatation bewegte Uhren gehen langsamer.
- **Physik-Realität (SR):** Keine echte "Paradoxe". Ergebnis: Reisende Person ist **jünger** exakt vorhersagbar über den Lorentzfaktor.
- Klassentaugliche Frage: Alterungsunterschiede bestimmen. (mit Geschwindigkeit, Dauer usw.)
- 3) Star Wars: Millennium Falcon & "Lichtstreifen" beim Beschleunigen
- Was stimmt (so halb): Bei sehr hohen v gibt es relativistische Aberration: Licht "staut" sich nach vorn; Doppler-Shift macht vorn blauer, hinten röter.
- Physik-Realität (SR): Man sähe keine weißen Striche; eher eine vorne konzentrierte, blauverschobene Helligkeit.
- Klassentaugliche Frage: Wie ändert sich der Sternenhimmel bei $v \to c$?

Spezielle Relativitätstheorie im Kerncurriculum

Niveau	Inhalte (Kernpunkte)
GK	 Relativitätspostulate Relativitätsprinzip (Gleichberechtigung gleichförmig bewegter Inertialsysteme; Galilei-Trafo als Kontrast) Konstanz der Lichtgeschwindigkeit, Bezug: Michelson–Morley Zeitdilatation & Längenkontraktion Einstein-Synchronisation experimentelle Nachweise Minkowski-Diagramme zur Veranschaulichung relativistische Massenzunahme
LK	 Lorentztransformation & Geschwindigkeitsaddition Herleitung der relativistischen Massenzunahme aus Grundprinzipien

Wer bin ich?

- Tom (Thomas Weatherby)
 - weatherby@physik.uni-frankfurt.de
 - Büro in Raum 02.215
- Bachelor in England
 - Physik mit Nebenfach Didaktik
- Master in München
 - "Applied and Engineering Physics" (Laser und Nano-Physik)
- Doktor in Frankfurt
 - Betreuer Prof. Thomas Wilhelm
 - E-Lehre in der 8. Klasse in England
- Gesamtschullehrer in Nord-England
 - Naturwissenschaften und Deutsch

Gruppentheorie – Kurzgesagt

Wichtige Begriffe/Ideen aus der klassischen Mechanik

Abrufaufgabe Experimentalphysik:

- 1. Was sind die Eigenschaften eines Inertialsystems?
- 2. Was bleibt gleich zwischen Bezugssysteme in der klassischen Mechanik?
- 3. Was bleibt gleich zwischen Bezugssysteme in der relativistischen Mechanik?

Einstein'sche Postulate

- 1. Was ist das Relativitätsprinzip?
- 2. Was ist das zweite Postulat?
- Relativitätsprinzip: Die physikalischen Gesetze sind gleich in allen Inertialsystemen.
- Konstanz der Lichtgeschwindigkeit
- 1. Was für Interpretationskonsequenzen entstehen aus diesen Postulaten?

Nützliche Symbole in der Relativität

Natürlich:

c =Lichtgeschwindigkeit

Geschwindigkeiten:

 $\beta = \frac{v}{c}$

Gamma:

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Eigenzeit t_0 : Zeitpunkt oder Zeitintervall in dem Inertialsystem indem Ereignis stattgefunden hat.

Eigenlänge L_0 : Länge eines Objekts in dem Inertialsystem indem das Objekt in Ruhe ist.

Zeit Dilatation

Zeit Dilatation

Die USS Enterprise fliegt mit $\beta = 0.25$ auf einen Planeten zu. Im Schiff meint Spock, der Planet wird in 10 Minuten explodieren. Wie lang darf sich das Außenteam noch auf dem Planeten aufhalten?

Zeit Dilatation

Picard ist auf dem Planeten "Rigel 7" und muss zurück auf die Erde, die 776,6 Lichtjahre entfernt ist. Das Raumschiff fliegt mit $\beta = 0.75$.

- Wie lange dauert der Flug laut jemandem, der auf Rigel 7 blieb?
- Wie lange dauert der Flug auf dem Schiff?

Längenkontraktion

Man fliegt entlang eines Stabs mit Länge L_0 . Die Zeit innerhalb des Schiffes wird als T_0 gemessen. Das Schiff fliegt mit Geschwindigkeit v.

Die zwei Bezugssysteme:

Schiff: $L = vT_0$

Stab: $L_0 = \nu T$

c ist in allen Bezugssystemen gleich.

Von vorher:

v wird hier gleichgesetzt:

$$T = \gamma T_0$$

$$\frac{L}{L_0} = \frac{T_0}{T} = \frac{1}{\gamma}$$

$$\to L = \frac{L_0}{\gamma}$$

Längenkontraktion

Ein Raumschiff fliegt mit $\beta = 0.7$. Eine Wissenschaftlerin auf der Erde misst das Schiff als 707m lang. Wie lang ist das Schiff laut dem Kapitän?

Längenkontraktion

Ein Stab mit Dichte $\rho=1kg\cdot m^{-3}$ wird auf $\beta=0.8$ beschleunigt. Wie ist die Dichte bei $\beta=0.8$?