Estimating the Effect of a Mis-measured, Endogenous, Binary Treatment

Francis J. DiTraglia Camilo Garcia-Jimeno

University of Pennsylvania

February 27th, 2017

Estimating the Effect of T^*

$$y_i = h(T_i^*, \mathbf{x}_i) + \varepsilon_i$$

- ▶ y Outcome of interest
- ▶ h Known or Unknown function
- ▶ T* Unobserved, endogenous binary treatment
- ➤ T Observed, mis-measured binary surrogate for T*
- ▶ x − Exogenous covariates
- \triangleright ε Mean-zero error term
- ightharpoonup z Discrete (typically binary) instrumental variable

Target of Inference:
$$\tau(\mathbf{x}) = h(1, \mathbf{x}) - h(0, \mathbf{x})$$

Example: Job Training Partnership Act (JPTA)

Heckman et al. (2000, QJE)

Randomized offer of job training, but about 30% of those *not* offered also obtain training and about 40% of those offered training don't attend. Estimate causal effect of *training* rather than *offer* of training.

- y − Log wage
- ▶ T* True training attendence
- ➤ T Self-reported training attendance
- x Individual characteristics
- \triangleright z Offer of job training

Related Literature

Continuous Treatment

Lewbel (1997, 2012), Schennach (2004, 2007), Chen et al. (2005), Hu & Schennach (2008), Song (2015), Hu et al. (2015)...

Binary, Exogenous Treatment

Aigner (1973), Bollinger (1996), Kane et al. (1999), Black et al. (2000), Frazis & Loewenstein (2003), Mahajan (2006), Lewbel (2007)

Binary, Endogenous Treatment

Mahajan (2006), Shiu (2015), Ura (2015), Denteh et al. (2016)

▶ Mahajan Details

Model: $y = c + \beta T^* + \varepsilon$

Valid Instrument

$$\mathbb{E}[\varepsilon|z]=0.$$

First-stage

$$ho_k^* \equiv \mathbb{P}(T^* = 1|z = z_k)
eq \mathbb{P}(T^* = 1|z = z_\ell) \equiv
ho_\ell^*, \ k
eq \ell$$

Non-differential Measurement Error

- $\qquad \mathbb{E}[\varepsilon|T^*,T,z] = \mathbb{E}[\varepsilon|T^*,z]$
- $\alpha_0 = \mathbb{P}(T = 1 | T^* = 0, z)$
- $\alpha_1 = \mathbb{P}(T = 0 | T^* = 1, z)$
- ▶ $\alpha_0 + \alpha_1 < 1$

Observable Moments: $y = c + \beta T^* + \varepsilon$

$$z = 1 \qquad z = 2 \qquad \dots \qquad z = K$$

$$T = 0 \qquad \overline{y_{01}} \qquad \overline{y_{02}} \qquad \dots \qquad \overline{y_{0K}}$$

$$p_{01} \qquad p_{02} \qquad \dots \qquad \overline{y_{0K}}$$

$$T = 1 \qquad \overline{y_{11}} \qquad \overline{y_{12}} \qquad \dots \qquad \overline{y_{1K}}$$

$$p_{11} \qquad p_{12} \qquad \dots \qquad \overline{p_{1K}}$$

$$ar{y}_{tk} = \mathbb{E}[y|T=t,z=z_k], \quad p_{tk} = q_k p_k$$
 $q_k = \mathbb{P}(z=z_k), \quad p_k = \mathbb{P}(T=1|z=z_k)$

Unobservable Moments: $y = \beta T^* + u$

Define error term that absorbs constant: $u = c + \varepsilon$

$$m_{tk}^* = \mathbb{E}[u|T^* = t, z = z_k], \quad p_{tk}^* = q_k p_k^*$$
 $q_k = \mathbb{P}(z = z_k), \quad p_k^* = \mathbb{P}(T^* = 1|z = z_k)$

System of Equations given $E[\varepsilon|z] = 0$

$$\mathbb{E}[arepsilon|z] = 0 \implies extit{pair} ext{ of equations for each } k = 1, \dots, K$$

$$(1 - p_k)\bar{y}_{0k} = \alpha_1(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + (1 - \alpha_0)c - (p_k - \alpha_0)m_{1k}^*$$
$$p_k\bar{y}_{1k} = (1 - \alpha_1)(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + \alpha_0c + (p_k - \alpha_0)m_{1k}^*$$

Theorem

2K equations in K+4 unknowns, but β is unidentified *regardless* of K.

Intuition

Using $E[\varepsilon|z] = 0$ to eliminate m_{0k}^* from the system "entangles" the equations such that each pair only provides one restriction.

First Moment Condition

Assumptions

- $\mathbb{E}[\varepsilon|z] = 0$
- $\mathbb{E}[\varepsilon|T^*,T,z] = \mathbb{E}[\varepsilon|T^*,z]$
- $\alpha_0 = \mathbb{P}(T = 1 | T^* = 0, z)$
- $\alpha_1 = \mathbb{P}(T = 0 | T^* = 1, z)$

Moment Condition

$$\mathsf{Cov}(y,z) - \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) \mathsf{Cov}(\mathcal{T},z) = 0$$

MC # 1 identifies $\beta/(1-\alpha_0-\alpha_1)$

Second Moment Condition

Additional Assumptions

- $\qquad \mathbb{E}[\varepsilon^2|T^*,T,z] = \mathbb{E}[\varepsilon^2|T^*,z]$

Moment Condition

$$\mathsf{Cov}(y^2,z) - \frac{\beta}{1 - \alpha_0 - \alpha_1} \left\{ 2\mathsf{Cov}(yT,z) - \beta\mathsf{Cov}(T,z) \left(\frac{1 + \alpha_0 - \alpha_1}{1 - \alpha_0 - \alpha_1} \right) \right\} = 0$$

Given MC #1, MC #2 identifies $(\alpha_1 - \alpha_0)$

Third Moment Condition

Additional Assumptions

- $\mathbb{E}[\varepsilon^3|z] = \mathbb{E}[\varepsilon^3]$
- $\mathbb{E}[\varepsilon^3|T^*,T,z] = \mathbb{E}[\varepsilon^3|T^*,z]$

Moment Condition

$$\begin{split} \mathsf{Cov}(y^3,z) - \left(\frac{\beta}{1-\alpha_0-\alpha_1}\right) \left\{ \ \beta^2 \left[1 + \frac{6\alpha_0(1-\alpha_1)}{(1-\alpha_0-\alpha_1)^2}\right] \mathsf{Cov}(T,z) \right. \\ \left. -3\beta \left[\frac{1-(\alpha_1-\alpha_0)}{1-\alpha_0-\alpha_1}\right] \mathsf{Cov}(y^T,z) + 3\mathsf{Cov}(y^2T,z) \right\} = 0 \end{split}$$

Theorem

Third moment suffice to identify the model provided that $\beta \neq 0$. If $\beta = 0$, the reduced form identifies β .

GMM Estimator in Simple Special Case: $\alpha_0 = 0$

$$\mathsf{Cov}(y,z) - \left(\frac{\beta}{1-\alpha_1}\right)\mathsf{Cov}(T,z) = 0$$

$$\mathsf{Cov}(y^2,z) - \frac{\beta}{1-\alpha_1}\left\{2\mathsf{Cov}(yT,z) - \beta\mathsf{Cov}(T,z)\right\} = 0$$

$$\beta = \frac{2\mathsf{Cov}(yT, z)}{\mathsf{Cov}(T, z)} - \frac{\mathsf{Cov}(y^2, z)}{\mathsf{Cov}(y, z)}$$

Bounds for Mis-classification Probabilities

$$\alpha_0(z) = \alpha_0, \ \alpha_1(z) = \alpha_1$$

$$\Rightarrow p_k^* = \frac{p_k - \alpha_0}{1 - \alpha_0 - \alpha_1}, \quad 1 - p_k^* = \frac{1 - p_k - \alpha_1}{1 - \alpha_0 - \alpha_1}$$

$$\alpha_0 + \alpha_1 < 1 \iff \operatorname{Cor}(T, T^*) > 0 \iff (1 - \alpha_0 - \alpha_1) > 0$$

$$\alpha_0 < \min_k \{p_k\}, \ \alpha_1 < \min_k \{1 - p_k\}$$

 $\alpha_0 \leq \min_k \{p_k\}, \quad \alpha_1 \leq \min_k \{1 - p_k\}$

Bounds for β

$$\mathbb{E}[\varepsilon|z]=0$$

$$\implies \beta_{RF} = \mathbb{E}[y|z_k] - \mathbb{E}[y|z_\ell] = \beta(p_k^* - p_\ell^*)$$

Mis-classification

$$\implies p_k^* - p_\ell^* = (p_k - p_\ell)/(1 - \alpha_0 - \alpha_1)$$

Combining:
$$\beta_{IV} = \beta/(1 - \alpha_0 - \alpha_1)$$

$$\alpha_0 + \alpha_1 < 1 \implies$$

- \triangleright β is between β_{RF} and β_{IV}
- \triangleright β_{IV} inflated but has correct sign
- β_{RF} bound equivalent to substituting α_0, α_1 bounds

Strengthening the Measurement Error Assumptions

- $\alpha_0 = \mathbb{P}(T = 1 | T^* = 0, z)$
- $\alpha_1 = \mathbb{P}(T = 0 | T^* = 1, z)$
- $\alpha_0 + \alpha_1 < 1$
- $\blacktriangleright \ \mathbb{E}[\varepsilon|T^*,T,z] = \mathbb{E}[\varepsilon|T^*,z]$

Additional Assumption

$$\mathbb{E}[\varepsilon^2|T^*,T,z] = \mathbb{E}[\varepsilon^2|T^*,z]$$

Improve bounds for α_0, α_1 to tighten lower bound for β ...

Tighter Bounds for α_0, α_1 from Conditional Variances

Assume

$$\mathbb{E}[\varepsilon^2|T^*,T,z] = \mathbb{E}[\varepsilon^2|T^*,z]$$

Observables

$$\sigma_{tk}^2 = \mathsf{Var}(y|T=t, z=k)$$

Constrain Unobservables

$$s_{tk}^{*2} = Var(u|T^* = t, z_k) > 0$$

$$(p_k - \alpha_0) \left[(1 - \alpha_0) p_k \sigma_{1k}^2 - \alpha_0 (1 - p_k) \sigma_{0k}^2 \right] > \alpha_0 (1 - \alpha_0) p_k (1 - p_k) (\bar{y}_{1k} - \bar{y}_{0k})^2$$

$$(1 - p_k - \alpha_1) \left[(1 - \alpha_1) (1 - p_k) \sigma_{0k}^2 - \alpha_1 p_k \sigma_{1k}^2 \right] > \alpha_1 (1 - \alpha_1) p_k (1 - p_k) (\bar{y}_{1k} - \bar{y}_{0k})^2$$

Simulation DGP: $y = \beta T^* + \varepsilon$

Errors

 $(\varepsilon, \eta) \sim$ jointly normal, mean 0, variance 1, correlation 0.5.

First-Stage

- ▶ Half of subjects have z = 1, the rest have z = 0.
- $T^* = \mathbf{1} \{ \gamma_0 + \gamma_1 z + \eta > 0 \}$

Mis-classification

- ▶ Set $\alpha_0 = 0$
- $ightharpoonup T | T^* = 1 \sim \mathsf{Bernoulli}(1 \alpha_1)$

$$\beta = 2$$
, $\alpha_1 = 0.1$, $\delta = 0.15$, $n = 1000$

$$\beta = 1$$
, $\alpha_1 = 0.1$, $\delta = 0.15$, $n = 1000$

$$\beta = 0.5, \, \alpha_1 = 0.1, \, \delta = 0.15, \, n = 1000$$

Bias = -0.012, SD = 0.616

 α_1

$$\beta = 0.4$$
, $\alpha_1 = 0.1$, $\delta = 0.15$, $n = 1000$

$$\beta = 0.3$$
, $\alpha_1 = 0.1$, $\delta = 0.15$, $n = 1000$

Coverage and Width of Nominal 95% Cls

 $\alpha_1 = 0.1, \delta = 0.15, n = 1000, \rho = 0.5$

β RF RF GMM 2.00 1.400 0.95 0.95 1.50 1.050 0.95 0.95 1.00 0.700 0.95 0.95	Width 1 RF GMM
2.00 1.400 0.95 0.95 1.50 1.050 0.95 0.95	1 RF GMM
1.50 1.050 0.95 0.95	
	0.35 0.23
1.00 0.700 0.95 0.95	0.32 0.26
	0.29 0.32
0.50 0.350 0.95 0.96	0.27 0.55
0.25 0.175 0.95 0.98	3 0.26 1.08
0.20 0.140 0.95 0.99	0.25 1.40
0.15 0.105 0.95 0.99	0.25 1.86
0.10 0.070 0.95 1.00	0.25 3.04
0.05 0.035 0.95 1.00	0.25 4.76
0.01 0.007 0.95 1.00	0.25 5.92

Conclusion

- ► Endogenous, mis-measured binary treatment.
- Important in applied work but no solution in the literature.
- Usual (1st moment) IV assumption fails to identify β
- ▶ Higher moment / independence restrictions identify β
- Identification-Robust Inference incorportating additional inequality moment conditions.

Mahajan (2006, ECTA)

Regression Model

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[
u|T^*] = 0$$
 by construction

Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[\varepsilon|T^*] \neq 0$$

Main Result (Correct) – Exogenous Treatment

Relevant binary instrument z $(p_k^*
eq p_\ell^*)$ identifies $lpha_0, lpha_1$ and

$$\mathbb{E}[y|T^*]$$
 provided that $\mathbb{E}[\nu|T^*, T, z] = 0$ and $\alpha_0 + \alpha_1 < 1$.

Extension (Incorrect) – Endogenous Treatment

$$\mathbb{E}[\varepsilon|z] = 0, \ p_k^* \neq p_\ell^*, \ \mathbb{E}[\varepsilon|T,T^*,z] = \mathbb{E}[\varepsilon|T^*] \implies \beta \ \text{identified}.$$

Mahajan (2006, ECTA)

Regression Model

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[
u|T^*] = 0$$
 by construction

Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[\varepsilon|T^*]\neq 0$$

Ingredients

- 1. If $p_k^* \neq p_\ell^*$, $\mathbb{E}[\varepsilon|z] = 0$ then, since $\beta_{IV} = \beta/(1 \alpha_0 \alpha_1)$, knowledge of α_0, α_1 is sufficient to recover β . (Correct)
- 2. If $p_k^* \neq p_\ell^*$, $\mathbb{E}[\nu|T^*,T,z]=0$, α_0,α_1 are identified. (Correct) How to satisfy both 1 and 2 while allowing $\mathbb{E}[\varepsilon|T^*]\neq 0$?
- 3. Assume that $\mathbb{E}[arepsilon|T^*,T,z]=\mathbb{E}[arepsilon|T^*]$ (i.e. $m_{0k}^*=m_{0\ell}^*$ and $m_{1k}^*=m_{1\ell}^*$)

Flaw in the Argument

Proposition

If $\mathbb{E}[\varepsilon|T^*] \neq 0$ then $\mathbb{E}[\varepsilon|T^*, T, z] = \mathbb{E}[\varepsilon|T^*]$ combined with $\mathbb{E}[\varepsilon|z] = 0$ implies $p_k^* = p_\ell^*$, i.e. z is irrelevant for T^* .

Proof

 $\mathbb{E}[arepsilon|z]=0$ implies

$$(1 - p_1^*) m_{0k}^* + p_1^* m_{1k}^* = c$$
$$(1 - p_2^*) m_{0k}^* + p_2^* m_{1k}^* = c$$

while Mahajan's assumption implies $m_{0k}^*=m_{0\ell}^*$ and $m_{1k}^*=m_{1\ell}^*$.

Therefore either $m_{0k}^* = m_{0\ell}^* = m_{1k}^* = m_{1\ell}^* = c$, which is ruled out by $E[\varepsilon|T^*] = 0$, or $p_{\ell}^* = p_{\ell}^*$.

