ECS6564/ECS796P Distributed Systems

What this lecture is about

- Peer to Peer Assignment Project Exam Help
- Distributed Hash Tables

https://tutorcs.com

Assignment Project Exam Help

http8:@alfotes.Baar

WeChat: cstutorcs

Thanks to Prof. Marco Chiesa

Introduction: client-server architecture

© J. Kurose and K. Ross, 1996-2006

Introduction: client-server architecture

© J. Kurose and K. Ross, 1996-2006

Introduction: peer-to-peer architecture

No always-on server ("pure" P2P)

Assignment Project Example Arbitrary end-systems communicate

directly

https://tutorcs.com

• Peers are intermittently connected and change IP addresses – like clients

© J. Kurose and K. Ross, 1996-2006

Introduction: peer-to-peer architecture

P2P Examples:

• File sharing: Napster, Gnutella, Kazaa, BitToriestignment Project Example

• Streaming: KanKan, Tribler https://tutorcs.com

• VolP: Skype

© J. Kurose and K. Ross, 1996-2006

Why Peer-to-peer (P2P)?

- Scaling: system scales with number of clients, by definition Assignment Project Exam Help
- Eliminate centralization https://tutorcs.com
 - No single point of failure
 - No single point of contrive Chat: cstutorcs
- Self managing

P2P example

Alice runs P2P client application on her notebook computer

Assignment Project Exam Help

- Intermittently connects to Internet; gets new IP address for each connection https://tutorcs.com
- Asks for MP3 file "Hey two Chat: cstutorcs
- Application displays other peers that have a copy of "Hey Jude"
- Alice chooses one of the peers, say Bob

P2P example

File is copied from Bob's PC to Alice's notebook, e.g., by HTTP

Assignment Project Exam Help

- While Alice does this, other users download from Alice
 - E.g., some other https://etutorcs.com

WeChat: cstutorcs
 Alice's peer is both a Web client and a transient Web server

P2P for the win!

- ✓ More users = more servers ment Project Exam Help
- ✓ Scalability!

https://tutorcs.com

WeChat: cstutorcs

In short:

- Client/Server: Adding a user mean less resources per user
- P2P: Adding a user adds that peer's resources to the system

So, what's P2P have in common with this course?

- Typically, each member stores/provides access to content
- Basically, a replication system for files
 - P2P allows files to be anywhere or searching is the challenge
 Dynamic member list makes it more difficult

P2P fundamentals

static localization ignment Project Exam Help

how to find a resource? https://tutorces.com

WeChat: cstutorcs
leaving

how to enter a P2P how to leave a P2P network?

Mapping Keys (files) and Resources to IP addresses

Locating content

- Locating content is often a two-step procedure
 - What content is available? Le. .can MP3 "Hey Jude" be found at all?
 Who (what peers) can provide the content?

https://tutorcs.com

• We need a directory with the content available!

Distributing content

- Central directory
 - Easy to manage Assignment Project Exam Help
 Bottleneck and single point of failure

 - If content directory liggyer/ taded or down, whole system suffers
- WeChat: cstutorcs Distributed directory
 - No bottlenecks, no single point of failures or oveloading
 - Hard to manage
 - Harder the more peers and/or content you have in system

Locating and distributing content

- Three basic architectures:
 - Centralized directory (Napster, early BitTorrent)
 Assignment Project Exam Help
 Query flooding (Gnutella)

 - Hierarchical and http://tenthical.ovenhay designs (Kazaa, BT DHT)

Locating and distributing content

- Three basic architectures:
 - Centralized directory (Napster, early BitTorrent) Assignment Project Exam Help
 Query flooding (Gnutella)

 - Hierarchical and http://tenthical.ovenhay designs (Kazaa, BT DHT)

- Original "Napster" design
- Step 1: connection Assignment Project Exam Help

https://tutorcs.com

- 1. Client upload a list of files the twant to shares
- 2. Server maintains a global list: <filename,host>

Note: Server does not store any file

- Original "Napster" design
- Step 1: connection Assignment Project Exam Help
- Step 2: search

https://tutorcs.com

directory server

- 1. Client sends to server keywords to search with
- 2. Servers returns a list of hosts
- 3. Client pings each host in the list to find transfer rates
- 4. Client fetches file from best host

© J. Kurose and K. Ross, 1996-2006

Original "Napster" design

• Step 1: connection Assignment Project Exam Help

Step 2: search

• Step 3: download

https://tutorcs.com

directory server

WeChat: cstutorcs

All communication uses TCP protocol

© J. Kurose and K. Ross, 1996-2006

Original "Napster" design

Step 1: connection

Step 2: search

Step 3: download

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Server can regularly probe peers to determine if they are still connected and update its database accordingly.

© J. Kurose and K. Ross, 1996-2006

© J. Kurose and K. Ross, 1996-2006

BitTorrent: overwiev

• Contact a centralized tracker that have a list of peers

Assignment Project Carn: Help

• The torrent file contains that ips of tutorcs.com trackers associated to that specific file WeChat: cstutorcs

- If Alice wants to join the torrent:
 - Register with the tracker
 - Tracker randomly selects peers and send to Alice the IP addresses

BitTorrent: the players

• Tracker: a special type of server.

It keeps track of where file copies reside on the peer machines, which ones are available at time of the client request (it does: 7 th torcs.com receiving heartbeats from peers) and helps coordinate efficient transmission and received the copied file.

BitTorrent: the players

Two kinds of peers

Assignment Project Exam: Help

• Seed: has the full file. It continues to be part of the system and helpttps://thetorcs.com peers to download the file

WeChat: cstutorcs

 Leecher: has some blocks from the file and it is still looking to download the other part of the file

- Alice receives list of peer IP addresses from the Tracker
- Attempts to establish TCP connections to these peer Help
 TCP-connected peers are "neighbouring peers"
- Neighbouring peers will fluttpate tweetescom

- File split into chunks (32KB 256KB)
- Alice periodically asks neighboring peers for lists of chunks
- Alice will issue requests for chunks she is currently missing
- Alice will receive requests https://tutores.com

- At any given time, Alice has
 - A subset of chunks
 Knowledge about chunks her neighboring peers have
- Two important decisions that part /tutorcs.com
 - Which chunks should be requested next?
 - To which neighbor should she send requested chunks?

- Rarest chunks first
 - Determine chunks that are rarest among her neighbors Assignment Project Exam Help
 Request those rarest chunks first

 - Rarest chunks will then reproductively credistributed
 - Equalizing the number of copies of each chunk in the torrent WeChat: cstutorcs

- At any given time, Alice has
 - A subset of chunks
 Knowledge about chunks her neighboring peers have
- Two important decisions that part /tutorcs.com
 - Which chunks should be requested next?
 - To which neighbor should she send requested chunks?

- Give priority to neighbors currently supplying her data at the highest rate
 - For each of her neighbors, Alice measures her receiving rate
 Determine the four neighbors feeding her at highest rate

 - Return favor by sending thunks trathes to four neighbors

BitTorrent: operation (tit-for-tat)

- Give priority to neighbors currently supplying her data at the highest rate
 - For each of her neighbors, Alice measures her receiving rate
 Determine the four neighbors feeding her at highest rate

 - Return favor by sending thunks trathes to four neighbors

- Every 10 seconds, recalculate the rates
 - Possibly modifying the set of top four peers Assignment Project Exam Help
- Every 30 seconds, be optirhttps://tutorcs.com
 - Pick a new neighbor, Bob, at random and send it chunks
 Alice may then become one of Bobs top four uploaders

 - Bob would then start sending to Alice and maybe become one of her top four uploaders

- Random neighbor selection →
 - Peers capable of uploading at compatible rates tend to find each other Assignment Project Exam Help
 New peers will get chunks so that they can start trading

https://tutorcs.com

BitTorrent compared to Napster

Chunk based downloading

Assignment Project Exam Help

Anti-freeloading mechanisms

https://tutorcs.com

Centralized directory: limitations

- Single point of failure
 - If server crashes, the entire P2P application crashes Assignment Project Exam Help
- Performance bottleneck https://tutorcs.com
 - Huge amount of users → huge database and many queries/second WeChat: cstutorcs
- Directory size
 - When peers connect, they upload their content manifest (list of files)
 - As the number of peers increases, the resulting database does too

Centralized directory: limitations

- Single point of failure
 - If server crashe
- Performance bottl
 - Huge amount c

Assignment Project Exam Help

file transfersis/decentralized but locating content is highly centralized

WeChat: cstutorcs

s/second

- Directory size
 - When peers connect, they upload their content manifest (list of files)
 - As the number of peers increases, the resulting database does too

Locating and distributing content

- Three basic architectures:
 - Centralized directory (Napster, early BitTorrent)
 Assignment Project Exam Help
 Query flooding (Gnutella)

 - Hierarchical and handie/parchical overhay designs (Kazaa, BT DHT)

Query flooding

No central directory of either content or peers

Assignment Project Exam Help

- Search by sending query to all directly connected peers https://tutorcs.com
- Peers forward query to the critically connected peers, etc. i.e., flooding network with queries.
- Some rules to limit reach, prevent loops etc. Still very costly.

Gnutella

- Each Peer stores:
 - Peer pointers (to the neighbour)

 Assignment Project Exam Help Their own files

https://tutorcs.com

• Peers connected in a overlay network WeChat: cstutorcs

 Peer A and Peer B are neighbour if they know their IP addresses and can send/receive messages

Gnutella

- How to find a file:
 - Send request to all neighbors ent Project Exam Help (Query)
 - Neighbours recursively fortypard/theores.comeryHit request
 - Eventually a machine that seltate: cstutorcs file receives the request, and it sends back the answer (QueryHit)
 - Transfers are done with HTTP between peers. If several QueryHits, select one!

Gnutella: avoiding excessive traffic

• To avoid duplicate transmissions: each peer to maintain a list of recently received messages

Assignment Project

• Each Query forwarded only on Chathastutores an ID associated)

 TTL associated to each Query to avoid messages running forever in the network

Gnutella: how to join the network

- Joining peer X must find some other peer in the Gnutella network: use list of candidate peers that are often up (e.g., at a Gnutella site)

 Assignment Project Exam Help
- X sequentially attempts to the top connection with peers on list until connection setup with peer Y

 WeChat: cstutorcs
- X sends Ping message to Y; Y forwards Ping message (peer-count field used TTL)
- All peers receiving Ping message respond with Pong message back through the overlay

Gnutella: problems

• Ping-Pong constituted 50% traffic

Assignment Project Exam Help

- Popular files are requested many times: lots of Query https://tutorcs.com
- Some peers might not have Chet: traffictor all Query/Pings/Pongs
- 70% of users in 2000 were freeloaders: just downloading never uploaded any file
- Flooding causes excessive traffic

Locating and distributing content

- Three basic architectures:
 - Centralized directory (Napster, early BitTorrent)
 Assignment Project Exam Help
 Query flooding (Gnutella)

 - Hierarchical and proble renchical overhay designs (Kazaa, BT DHT)

KaZaA

- <u>Basic idea:</u> leverage heterogeneity of peers-> assign more responsibility to peers with better resources-> impose a hierarchy <u>Assignment Project Exam Help</u>
- Kazaa borrows ideas frontiplea patietrands Courtella
 - Like in Gnutella, there is no dedicated server (or server farm) for tracking and locating chatinestutores
 - Unlike Gnutella, all peers are not equal in Kazaa—group leaders (or super peers) exist

KaZaA

• Group leaders maintain a database of content and IP addresses in a Napsterlike fashion (group leader is a Napster-like hub)

• In contrast to Napster, a group leader is not a dedicated server

https://tutorcs.com

KaZaA: hierarchical overlay network

 Each peer is either a group leader or assigned to a group leader
 Assignment Project Exam Help

• Group leader tracks the https://tintolfciss.coildren

• Group leaders have high bandwidth connections and high Internet connectivity

- A hierarchical overlay network
 - Flooding limited to overlay of super peers

© J. Kurose and K. Ross, 1996-2006

- ordinary peer
- group-leader peer

_ neighoring relationships in overlay network

KaZaA: operation

© J. Kurose and K. Ross, 1996-2006

• Publish:

• Node inform group-leader of the list of files it wants to share

Assignment Project Exam Help

https://tutorcs.com

• Search:

- Node queries group-leader first norther, group-leader flood the query to a subset of group-leaders
- Group-leader responds to node

Fetch:

Node get file directly from peers

neighoring relationships in overlay network

KaZaA: pros and cons

• Pros

• Improves scalability and search efficiency by exploiting node heterogeneity roject Exam Help

https://tutorcs.com

• Cons

- No guarantees on searchiat: cstutorcs
- No mechanism to tackle freeloading

Flooding

© J. Kurose and K. Ross, 1996-2006

ordinary peer

group-leader peer

neighoring relationships in overlay network

Distributed Hash Table (DHT)

hash **function** hashes keys John Smith Lisa Smith Sam Doe Sandra Dee 15

Hash function

- Turns data into a small number (a "fingerprint")
 Assignment Project Exam Help
 Input → Hash function → Hash (or hash sum, or hash value)
- Choosing a good hashtfpsct/onteachetriaky

Hash table

WeChat: cstutorcs

• a structure that can map keys to values. It uses a hash function to compute an index into an array, from which the desired value can be found

Distributed Hash Table (DHT)

- Widely adopted in P2P systems

 - Creates a fully decentralized index; that maps file IDs to locations
 Allows a user to determine (basically) all the locations of a file without generating an excessive an excessive and traffic

DHT for locating and distributing content

Assignment Project Exam Help

https://tutorcs.com Can we cleverly distribute the mapping so that finding the resource is easy?

hash co-domain space

The hash function maps a resource-ID to a point in the hash output space Assignment Project Exam Help

https://tutorcs.com

The hash function maps a resource-ID to a point in the hash output space Assignment Project Exam Help

https://tutorcs.com

The codomain of the hash function is split among the peers

Assignment Project Exam Help

• each peer is responsible to the IP address that can provide the content WeChat: cstutorcs

the peer does not store the resource, just the mapping!

The codomain of the hash function is split among the peers

Assignment Project Exam Help

• to fetch a resource, the correct peer the correct peer

WeChat: cstutorcs

 the hash table maps keys to the peer that is responsible for that key

knows the owner of K

DHT basics

This is challenging!!!!

• How to keep uniformly distributed load?

Assignment Project Exam Help

https://tutorcs.com

• How to handle peers that join and leave? WeChat: cstutorcs

 How does a peer find who knows about a resource with key K?

who knows about K?

The Chord example

Developed at MIT

Assignment Project Exam Help

• Basic idea: assign to each node and key an m-bit identifier using antipos: Masttores.com28 function such as SHA-1

m = 6 range is [0...63]

32

• ID(node) = hash(IP, Port) eChat: cstutoros

• ID(key) = hash(key)

16

The Chord example

Developed at MIT

The key id space

Assignment Project Exam Help

Key(K)

• interval between 0 and s.//tutorcs.com8

• chord uses m = 160

• one can assume m = W(G) that: cstutords

- The key id space

 - one can assume m = 1000 Mutores. 60
 - we assume m = 6

Peer 5

Each peer has **authority** over its **id** and all the smaller ones until its predecessor peer

- The key id space
 - interval between 0 and $2^m 1$ chord uses m = 160

 - one can assume m = 1000 Mutores. 60
 - we assume m = 6

Peer 5

Each peer has **authority** over its **id** and all the smaller ones until its predecessor peer

Peer 1

Peer 3

Each peer has <u>authority</u> over its <u>id</u> and all the <u>smaller</u> ones until its predecessor peer

- The key id space

 - one can assume m = 1000 Mutores. Eq.
 - we assume m = 6

60

Peer 5

Each peer has **authority** over its **id** and all the smaller ones until its predecessor peer

The Chord example

- The key id space
 - interval between 0 and $2^m 1$ chord uses m = 160 Project Exam Help

 - one can assume m = 1000 Mutores. Eq.
 - we assume m = 6

Peer 5

60

Each peer has **authority** over its **id** and all the smaller ones until its predecessor peer

Peer 2

The Chord example

- The key id space
 - interval between 0 and $2^m 1$ chord uses m = 160 Project Exam Help

 - one can assume m = Mt og Mutores. 60
 - we assume m = 6

Peer 5

60

Each peer has **authority** over its **id** and all the smaller ones until its predecessor peer

Peer 2

Simple routing

memory

Simple routing++

Simple routing++

Finger tables

Peer *k* stores information about peer authority at increasing exponential Assignment Project Example Help distance

• distances are power of 2 • $k + 2^i \mod (2^m)$, for each

i=0,...,m-1

WeChat: cstutorcs

50←

49

i	key id	successor
0	48 + 2 ⁰ mod 64 = 49	
1	$48 + 2^1 \mod 64 = 50$	
2	$48 + 2^2 \mod 64 = 52$	
3	$48 + 2^3 \mod 64 = 56$	
4	48 + 2 ⁴ mod 64 = 0	
5	48 + 2 ⁵ mod 64 = 16	

Finger table at peer 6

>16

Peer *k* stores information about peer authority at increasing exponential Assignment Project Example Help distance

• distances are power of 2 • $k + 2^i \mod (2^m)$, for each

i=0,...,m-1

WeChat: cstutorcs

	_		
	0	48 + 2 ⁰ mod 64 = 49	Peer 5
	1	48 + 2 ¹ mod 64 = 50	Peer 5
Finger table at	2	48 + 2 ² mod 64 = 52	Peer 5
peer 6	3	48 + 2 ³ mod 64 = 56	Peer 5
•	4	48 + 2 ⁴ mod 64 = 0	Peer 4
	5	48 + 2 ⁵ mod 64 = 16	Peer 2

Assignment Project Exam Help

I am looking

Each peer sends a request to the

closest successor peer that test torcs.com

or equal the key ID

WeChat: cstutorcs

i	key id	successor
0	48 + 2 ⁰ mod 64 = 49	Peer 5
1	$48 + 2^1 \mod 64 = 50$	Peer 5
2	48 + 2 ² mod 64 = 52	Peer 5
3	$48 + 2^3 \mod 64 = 56$	Peer 5
4	48 + 2 ⁴ mod 64 = 0	Peer 4
5	48 + 2 ⁵ mod 64 = 16	Peer 2

peer 5

56

50 ←

49

60

0

•16(

Assignment Project Exam Help

I am looking

Each peer sends a request to the

closest successor peer that test torcs.com

or equal the key ID

WeChat: cstutorcs

key id	successor
48 + 2 ⁰ mod 64 = 49	Peer 5
$48 + 2^1 \mod 64 = 50$	Peer 5
$48 + 2^2 \mod 64 = 52$	Peer 5
$48 + 2^3 \mod 64 = 56$	Peer 5
48 + 2 ⁴ mod 64 = 0	Peer 4
48 + 2 ⁵ mod 64 = 16	Peer 2
	$48 + 2^{0} \mod 64 = 49$ $48 + 2^{1} \mod 64 = 50$ $48 + 2^{2} \mod 64 = 52$ $48 + 2^{3} \mod 64 = 56$ $48 + 2^{4} \mod 64 = 0$

Finger table at peer 6

peer 5

56

50 ←

49

60

0

Assignment Project Exam Help

Each peer sends a request to the closest successor peer that the test orcs.com

or equal the key ID

WeChat: cstutorcs

I am looking

i	key id	successor
0	16 + 2 ⁰ mod 64 = 17	peer 3
1	16 + 2 ¹ mod 64 = 18	peer 3
2	$16 + 2^2 \mod 64 = 20$	peer 3
3	$16 + 2^3 \mod 64 = 24$	peer 3
4	16 + 2 ⁴ mod 64 = 32	peer 3
5	16 + 2 ⁵ mod 64 = 48	peer 6

peer 5

56

49

60

0

88

 $16 + 2^5 \mod 64 = 48$

peer 6

Chord (finger tables) analysis

Each node stores a subset of successors:

• O(log N) memory Assignment Project Exam Help

The search space is halved https://hororcs.com

O(log N) communication

More robust: unless the authority peer of the key ID fails, lookup operations work correctly

What we have seen in one slide summary

Many different types of P2P networks: centralized, flooding, hierarchical

Assignment Project Exam Help

- Issues:
 - Failure mode: single ptope: often pres.com
 - Flooding is onerous
 - Flooding is onerous
 WeChat: cstutorcs
 Network topology different than overlay topology
 - Nodes are not all the same
 - Search can be hard