MEK4250

Exercises for Finite Elements in Computational Mechanics

August Femtehjell

January 24, 2025

Contents

1 Elliptic equations and the finite element method

1

1 Elliptic equations and the finite element method

Exercise 1.1 Consider the problem $-u''(x) = x^2$ on the unit interval with u(0) = u(1) = 0. Let $u = \sum_{k=1}^{N} u_k \sin(\pi kx)$ and $v = \sin(\pi lx)$ for l = 1, ..., N, for e.g. N = 10, 20, 40 and solve (1.9). What is the error in L_2 and L_{∞} .

Solution 1.1 In this exercise, we use the Galerkin method to solve the problem, wishing to solve the problem as Au = b, where

$$A_{ij} = \int_{\Omega} k \nabla N_j \cdot \nabla N_i \, dx,$$
$$b_i = \int_{\Omega} f N_i \, dx + \int_{\partial \Omega_N} h N_i \, ds.$$

We begin by noting that

$$\nabla N_i = \frac{d}{dx} \sin(\pi i x) = \pi i \cos(\pi i x),$$

such that

$$\int_{\Omega} k \nabla N_j \cdot \nabla N_i \, dx = \int_0^1 k \pi^2 i j \cos(\pi j x) \cos(\pi i x) \, dx = \frac{\pi^2 i^2}{2} \delta_{ij}.$$

As we are given that the Dirichelt boundary conditions cover the entire boundary, and $\partial\Omega_D\cap\partial\Omega_N=\emptyset$, we have that the Neumann boundary integral is zero. The b

vector is then given by

$$b_i = \int_{\Omega} f N_i \, dx = \int_0^1 x^2 \sin(\pi i x) \, dx = \frac{(2 - \pi^2 i^2)(-1)^i - 2}{\pi^3 i^3}.$$

Setting up and solving the system for varying N is then rather simples, implemented in exercise_1_1.py. This gives the errors presented in Table 1, with the plotted solution in Figure 1a.

Table 1: Errors of approximations of u for varying N, with sine basis functions.

\overline{N}	L_2	L_{∞}
10	0.001791	0.000224
20	0.000338	0.000059
40	0.000062	0.000015

Figure 1: Approximation of u with N=40 sine basis functions.

Exercise 1.2 Consider the same problem as in the previous exercise, but using the Bernstein polynomials. That is, the basis for the Bernstein polynomial of order N on the unit inteval is $B_k^N(x) = x^k(1-x)^{N-k}$ for k = 0, ..., N. Let $u = \sum_{k=0}^N u_k B_k^N(x)$ and $v = B_l^N(x)$ for l = 0, ..., N and solve (1.9). What is the error in L_2 and L_∞ in terms of N for N = 1, 2, ..., 10. Remark: Do the basis functions satisfy the boundary conditions? Should some of them be removed?