Quiz 3C: NFAs

CS 212 Nature of Computation

Habib University — Fall 2023

Total Marks: 10 Duration: 15 minutes Date: September 6, 2023

Time: 830–845h

Student ID:	
Student Name:	Y
1. Given DFAs $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ and L_2 respectively, we construct the NFA M_1	If $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, that recognize the languages L_1 and $I_3=(Q_3,\Sigma_\epsilon,\delta_3,q_3,F_3)$ as follows.
$1. \ Q_3 = Q_1 \cup Q_2$	
2. $F_3 = F_2$	
3. $q_3 = q_1$	
4. $\delta_3(q_3,\epsilon) = \{q_1, q_2\}$	
5. $\forall q \in Q_1 \forall a \in \Sigma \ (\delta_3(q, a) = \{\delta_1(q, a)\}\$.)
6. $\forall q \in F_1 \ (\delta_3(q, \epsilon) = \{q_2\})$	
7. $\forall q \in Q_2 \forall a \in \Sigma \ (\delta_3(q, a) = \{\delta_2(q, a)\}\$	
(a) (7 points) Prove or disprove the foll Claim 1. $L(M_3) = L_1 \circ L_2$	lowing claim.
(b) (3 points) If the above claim is true languages?	, what does it establish about the closure of the class of regular
Solution:	
(a) <i>Proof.</i> We disprove the claim by p	presenting a counter example.
Consider the string $w \in L_2$ and L	$\epsilon_1 \neq \{\epsilon\}.$
Then $w \notin (L_1 \circ L_2)$.	
Then, from the construction, therefor w such that:	e exists a sequence of states, $r_0r_1r_2r_m$, that M_3 traverses
1. $r_0 = q_3$,	
2. $r_1 = q_2$, and	
$3. r_m \in F_2.$	
$\therefore w \in L(M_3).$	
(b) The truth of the claim establishes nation.	s that the class of regular languages is closed under concate-