Projeto 1: Comércio eletrônico com cashback

Adrielle A. Carvalho¹, Fernando F. L. Neto¹, João L. L. Melo¹, Thiago V. S. Andrade¹

¹Bacharelado em Ciência da Computação – Universidade Federal da Bahia (UFBA) Salvador – BA – Brasil

adrielle.andrade@ufba.br, fernando.franco@ufba.br, joaollm@ufba.br, thiago.vieira@ufba.br

Abstract. This project aims to develop a system for a retailer using Turing machines. The submachine system and binary and unary representation for numbers will be used for its implementation.

Resumo. Esse projeto visa desenvolver um sistema para um varejista através de máquinas de Turing. Será utilizado o sistema de submáquinas e representação binária e unária para os números na sua implementação.

1. Informações Gerais

De acordo com a Tese de Church-Turing, todos os problemas computáveis devem ser capazes de ser representados em máquinas de Turing. Dessa forma, o projeto foi implementado utilizando submáquinas que representam as operações de soma e produto, ainda que fosse possível de ser feito com uma única máquina e fita. Também foi decidido que a representação com números binários de até duas casas decimais seria utilizada para os cálculos.

Considerando que alguns números, como 10%, não podem ser representados em representação binária, algumas adaptações no projeto foram necessárias, sendo elas:

- O parcelamento de até 10 vezes foi reduzido para 8 vezes;
- O desconto à vista será de 12,5%;
- A redução de 10% no frete a cada R\$200,00 foi modificada para 12,5% a cada *n*, sendo *n* determinado na entrada, com frete grátis a partir de 8 vezes *n*.

O Magazine Tabajara disponibiliza um *cashback* de 37,5% ou um entre os seguintes tipos de cupons:

- 87,5% referido na máquina como CUPOM = 111;
- 75% referido na máquina como CUPOM = 11;
- 50% referido na máquina como CUPOM = 1.
- 0% referido na máquina como CUPOM = .

Também foram definidas 3 regiões:

- Norte e Nordeste, com frete R\$8,00;
- Centro-Oeste, com frete R\$16,00;
- Sudeste e Sul, com frete R\$24,00.

É importante ressaltar que o JFLAP tem um bug que às vezes não permite que as submáquinas sejam executadas, precisando que o estado que contém a submáquina seja removido e inserido novamente.

2. Máquina de Turing

Nessa seção, o modelo da máquina de Turing construída será apresentado. É importante ressaltar que as submáquinas são feitas para funcionar em conjunto, portanto, algumas necessitam que o ponteiro não esteja no começo da fita. Dessa forma, as máquinas devem ser levemente modificadas nos exemplos individuais, a fim de colocar o ponteiro no lugar necessário.

2.1. Máquina principal

Seja MP uma mT tal que $MP = \{Q, \Sigma, \Gamma, \delta, q_{40}, \{q_{aceita}\}\}$, sendo a rejeição feita em caso de não terminar em q_{aceita} .

- $\begin{array}{l} \bullet \quad Q = \{q_{40}, q_{41}, q_{42}, q_{43}, q_{44}, q_{45}, q_{46}, q_{47}, q_{48}, q_{49}, q_{50}, q_{51}, q_{5}, q_{16}, q_{21}, q_{24}, q_{27}, q_{14}, \\ q_{6}, q_{20}, q_{30}, q_{12}, q_{22}, q_{29}, q_{26}, q_{25}, q_{28}, q_{31}, q_{35}, q_{38}, q_{53}, q_{54}, q_{55}, q_{57}, q_{94}, q_{60}, q_{63}, \\ q_{63}, q_{62}, q_{64}, q_{67}, q_{34}, q_{36}, q_{56}, q_{58}, q_{61}, q_{80}, q_{81}, q_{82}q_{85}, q_{83}, q_{86}, q_{84}, q_{87}, q_{88}, q_{89}, \\ q_{90}, q_{92}, q_{101}, q_{102}, q_{103}, q_{104}, q_{105}, q_{106}, q_{107}, q_{108}, q_{109}, q_{110}, q_{111}, q_{112}, q_{113}, q_{114}, \\ q_{115}, q_{116}, q_{117}, q_{118}, q_{119}, q_{120}, q_{121}, q_{122}, q_{123}, q_{124}, q_{125}, q_{126}, q_{127}, q_{128}, q_{129}, q_{130}\} \end{array}$
- $\Sigma = \{0, 1, , V, P, k, l, p, q, c, f, \#\}$:
 - \rightarrow {0,1} algarismos;
 - → , para números racionais;
 - → V pagamento à vista;
 - → P pagamento parcelado;
 - → k separador de redução e valor base do frete;
 - → 1 separador de sequência de 1;
 - → p separador de produtos;
 - → q indicador da quantidade de parcelas;
 - → c separador de cupons;
 - → f separador para o número 111;
 - → # indicador de final de entrada.
- $\Gamma = \Sigma \cup \{a, b, d, x, D, O, I, \$, \sqcup\};$
- $q_{101} = q_{102} = q_{103} = q_{104}$ estado que chama a **submáquina de adição**;
- $q_{105} = q_{106} = q_{107} = q_{108} = q_{109} = q_{110} = q_{111} = q_{112} = q_{113} = q_{114} = q_{115} = q_{116} = \text{estado que chama a submáquina de divisão por 2};$
- $q_{117} = q_{118} =$ estado que chama a submáquina de multiplicação binária;
- $q_{110} = q_{120} =$ estado que chama a **submáquina de multiplicação unária**;
- $q_{121} = q_{122} =$ estado que chama a **submáquina de comparação que retorna símbolo com o número**;
- $q_{123} = q_{124} =$ estado que chama a **submáquina de subtração**;
- q₁₂₅ =q₁₂₆ = estado que chama submáquina para cópia de VALORPRODUTO para o início da fita;
- $q_{127}^{}=$ estado que chama a submáquina para cópia de VALORCASHBACK para o final da fita;

- q₁₂₈ = estado que chama a submáquina para cópia de VALORCUPOM para o final da fita;
- q₁₂₉ = estado que chama a submáquina de comparação que retorna o menor número;
- $q_{130}^{}=$ estado que chama a submáquina de cálculo de divisão por 2 com segunda entrada em unário;
- $q_{aceita} = \{q_{30}, q_{92}\}$

Desse modo, a fita terá o seguinte formato:

Entrada:

À vista: VpPRODUTOSc111fREDUÇÃOkFRETEl11111111q#

Parcelado: PpPRODUTOScCUPOMf101fREDUÇÃOkFRETE111111111qPARCELAS#

Saida:

À vista: VALOR

Parcelado: VALORPARCELA

Cada termo da entrada pode ser definido como:

- PRODUTO é uma sequência de números binários com o mesmo número de casas após a vírgula, que representam os valores de cada item, separados por um p.
- REDUÇÃO é um número binário que possui o mesmo número de casas após a vírgula que os de PRODUTO e representa o valor pelo qual o total será reduzido a cada n.
- FRETE é um número binário com o mesmo número de casas após a vírgula que os de PRODUTO e representa o valor do frete para uma região.
- CUPOM é uma sequência de 1's que representa o tipo de cupom, como citado anteriormente.
- PARCELAS é uma sequência de 1's que representa a quantidade de de parcelas por exemplo 111 representa 3 parcelas
- VALOR é um número binário que representa o total a pagar caso escolha a opção à vista.
- VALORPARCELA é um número binário que representa o valor de cada parcela a pagar, considerado a melhor opção seja cashback ou cupom de desconto.

A primeira coisa que a máquina principal faz é diferenciar o tipo de pagamento a partir do primeiro caractere da entrada, após isso em ambos os casos ela soma os valores dos produtos com a **submáquina de adição**.

Caso seja à vista, a única redução que precisa ser calculada é a do desconto à vista, 12,5%, o que é equivalente a multiplicar por 7 e dividir por 8. Para isso, ela chama a **submáquina de multiplicação por inteiro** consumindo os 111 da entrada (111₂ = 7₁₀), após isso chama a **submáquina para cópia de TOTALPRODUTOS para o final da fita** guardando esse valor para ser utilizado posteriormente. Agora, a **submáquina de comparação que retorna símbolo com o número** é chamada. Caso o número com desconto seja maior que REDUÇÃO, ela marca isso na sequência de 1's a direita e chama a **submáquina de subtração** e repete o processo enquanto o valor total é maior

ou igual ao da redução. Quando se tornar menor, ela chama a **submáquina de multiplicação unária** para multiplicar o valor do frete pelo que restou da sequência de 1's e com esse resultado soma com o valor total dos produtos com desconto que foi guardado anteriormente utilizando a **submáquina de adição.**

Já no caso de parcelado, após a soma dos valores de PRODUTOS, a máquina principal copia o valor para o final utilizando a submáquina para cópia de TOTALPRODUTOS para o final da fita, já que ele vai necessário para calcular o cupom e o cashback. Após a cópia, a máquina se prepara para calcular o desconto do cupom com a submáquina de cálculo de divisão por 2 com segunda entrada em unário e então guarda esse valor no fim com a submáquina para cópia de VALORCUPOM para o final da fita para comparar esse valor com o desconto de cashback e encontrar o menor. Para isso, a máquina copia o valor da soma dos produtos original de volta para o início com a submáquina para cópia de VALORPRODUTO para o início da fita e calcula o valor de desconto do cashback de 37,5%, que apenas multiplicar por 5 e dividir por 8, chama a submáquina de multiplicação binária e depois a submáquina de divisão por 2 três vezes consumindo assim o número 101 da entrada. Após isso, copia o valor com desconto do cashback com a submáquina para cópia de VALORCASHBACK para o final da fita e compara esse valor com o desconto do cupom com a submáquina de comparação que retorna o menor número, após isso chama a submáquina para cópia de VALORPRODUTO para o início da fita e calcula o frete e o valor com o frete igual a quando é à vista, por fim a máquina chama a submáquina de cálculo de divisão por 2 com segunda entrada em unário e calcula o valor de cada parcela.

Uma observação importante é que o valor final do frete é calculado baseado no valor total dos produtos com a redução , seja ela por conta do cupom, cashback ou o desconto de à vista.

2.2. Máquina de adição

Seja MA uma mT tal que $MA = \{Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}\}$, sendo a rejeição feita em caso de não terminar em q_{aceita} .

- $\bullet \quad Q = \{q_{0'}, q_{1'}, q_{2'}, q_{3'}, q_{4'}, q_{5'}, q_{6'}, q_{7'}, q_{8'}, q_{9'}, q_{10'}, q_{11'}, q_{12'}, q_{13'}, q_{14'}, q_{15'}, q_{16'}, q_{17'}, q_{18}\}$
- $\Sigma = \{0, 1, , p, c\}$:
 - \rightarrow {0,1} algarismos;
 - → , para números racionais;
 - → p separador de produtos;
 - → c aqui o separador de cupons marca o fim da lista de produtos.
- $\Gamma = \Sigma \cup \{x, \sqcup\};$
- $q_{aceita} = q_{15}$.

Assim, a fita terá o seguinte formato:

Entrada: NUMERO1pNUMERO2p...pNUMERONc

Saída: SOMAc

Destaca-se que os números precisam ter a mesma quantidade de casas decimais. A máquina então recebe a entrada e percorre o produto até encontrar o um p, depois ela percorre o novo produto até encontrar outro p ou um c. Separando os produtos, a máquina subtrai 1 do segundo e soma no primeiro, até que a segunda parcela seja igual a

0. Nesse momento, a máquina copia o resultado para a direita e, caso existam outros produtos, repete o processo.

2.3. Máquina de subtração

Seja MS uma mT tal que $MS = \{Q, \Sigma, \Gamma, \delta, q_7, q_{aceita}\}$, sendo a rejeição feita em caso de não terminar em q_{aceita} .

- $\begin{array}{l} \bullet \quad Q \, = \, \{q_{_{0}}, q_{_{1}}, q_{_{2}}, q_{_{3}}, q_{_{4}}, q_{_{5}}, q_{_{6}}, q_{_{7}}, q_{_{8}}, q_{_{9}}, q_{_{10}}, q_{_{11}}, q_{_{12}}, q_{_{13}}, q_{_{14}}, q_{_{15}}, q_{_{16}}, q_{_{17}}, q_{_{18}}, q_{_{19}}, \\ q_{_{20}}, q_{_{21}}, q_{_{22}}\} \end{array}$
- $\Sigma = \{0, 1, , c, k, f\}$:
 - \rightarrow {0,1} algarismos;
 - → , para números racionais;
 - → p separador de produtos;
 - → c aqui o separador de cupons marca o fim da lista de produtos.
 - → k final das entradas de subtração
 - → f final do resultado está à esquerda de f.
- $\Gamma = \Sigma \cup \{p, a, b, d, \sqcup\};$
- q_{18} = estado que chama a submáquina de adição;
- $q_{aceita} = q_{21}$.

A fita terá o seguinte formato:

Entrada: NUMERO1cNUMERO2k

Saída: RESULTADOcNUMERO2k

É importante ressaltar que os números dessa máquina precisam ter o mesmo número de algarismo, mesmo que sejam com zeros à esquerda. Usando do resultado de que o complemento de 2 de um número pode ser usado para realizar a subtração dele por um outro número através da adição. Nessa máquina, o número 2 é complementado e adicionado ao número 1, ou uma fração menor caso haja vírgula, resultando na subtração.

2.4. Máquina de multiplicação binária

Seja MMB uma mT tal que $MMB = \{Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}\}$, sendo a rejeição feita em caso de não terminar em q_{aceita} .

- $\begin{array}{l} \bullet \quad Q \, = \, \{q_{_{0}}, \, q_{_{1}}, \, q_{_{2}}, \, q_{_{3}}, \, q_{_{4}}, \, q_{_{5}}, \, q_{_{6}}, \, q_{_{7}}, \, q_{_{8}}, \, q_{_{9}}, \, q_{_{10}}, \, q_{_{11}}, \, q_{_{12}}, \, q_{_{13}}, \, q_{_{14}}, \, q_{_{15}}, \, q_{_{16}}, \, q_{_{17}}, \, q_{_{19}}, \, q_{_{19}}, \, q_{_{19}}, \, q_{_{10}}, \, q_{_{11}}, \, q_{_{12}}, \, q_{_{13}}, \, q_{_{14}}, \, q_{_{15}}, \, q_{_{16}}, \, q_{_{17}}, \, q_{_{18}}, \, q_{_{19}}, \, q_{_{19$
- $\Sigma = \{0, 1, ..., m, d, \#\}$:
 - \rightarrow {0,1} algarismos;
 - → , para números racionais;
 - → # final da entrada.
- $\Gamma = \Sigma \cup \{b, c, \sqcup\};$
- q_{21} = estado que chama a submáquina de adição;
- $q_{aceita} = q_{35}$.

Assim, a fita terá o seguinte formato:

Entrada: VALORmVEZES#

Saída: TOTAL#

Sendo que TOTAL é o número valor multiplicado pelo número VEZES, sendo VEZES um número inteiro. A lógica dessa mT se baseia em repetidas somas. O valor do multiplicando é somado com ele mesmo n vezes, sendo n o valor do multiplicador. Isso é feito através da cópia do 1º fator para a esquerda e uma soma que acumula nessa cópia, após diminuir 1 no número VEZES e o resultado ser maior que 0. No fim, o total é copiado para o lugar correto e a mT finaliza sua execução.

2.5. Máquina de multiplicação unária

Seja MMU uma mT tal que $MMU = \{Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}\}$, sendo a rejeição feita em caso de não terminar em q_{aceita} .

- $\begin{aligned} \bullet \quad & Q = \{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}, q_{8}, q_{9}, q_{10}, q_{11}, q_{12}, q_{13}, q_{14}, q_{15}, q_{16}, q_{17}q_{18}, q_{19}, \\ & q_{20}, q_{21}, q_{22}, q_{23}, q_{24}, q_{25}, q_{26}, q_{27}, q_{28}, q_{29}, q_{30}, q_{31}, q_{32}, q_{33}, q_{34}, q_{35}, q_{36}\} \end{aligned}$
- $\Sigma = \{0, 1, , m, d, \#\}$:
 - \rightarrow {0,1} algarismos;
 - → , para números racionais;
 - → # final da entrada.
- $\Gamma = \Sigma \cup \{b, c, \sqcup\};$
- $\Gamma = \Sigma \cup \{b, c, \sqcup\};$
- q_{23} = estado que chama a submáquina de adição;
- $\bullet \quad q_{aceita} = q_{31}.$

Assim, a fita terá o seguinte formato:

Entrada: VALOR mVEZES#

Saída: TOTAL#

Sendo que TOTAL é o número VALOR multiplicado pelo número VEZES. A lógica dessa mT se baseia em repetidas somas. O valor do multiplicando é somado com ele mesmo n vezes, sendo n o valor do multiplicador. Isso é feito através da cópia do 1º fator para a esquerda e uma soma que acumula nessa cópia, após diminuir 1 no número VEZES e o resultado ser maior que 0. No fim, o total é copiado para o lugar correto e a mT finaliza sua execução.

2.6. Máquina de divisão por 2

Seja MD1 uma mT tal que $MD1 = \{Q, \Sigma, \Gamma, \delta, q_9, q_{aceita}\}$, sendo a rejeição feita em caso de não terminar em q_{aceita} .

- $Q = \{q_{0'}, q_{1'}, q_{2'}, q_{3'}, q_{4'}, q_{5'}, q_{6'}, q_{7'}, q_{8'}, q_{9}\}$
- $\Sigma = \{0, 1, , c\}$:
 - \rightarrow {0,1} algarismos;
 - → , para números racionais;
 - → c aqui o separador de cupons marca o fim do número.
- $\Gamma = \Sigma \cup \{x, \sqcup\};$

• $q_{aceita} = q_8$.

Assim, a fita terá o seguinte formato:

Entrada : NUMEROc Saída: QUOCIENTEc

O QUOCIENTE é calculado através de bitshifts para a direita sucessivos, pois estamos utilizando números binários. O resultado é, portanto, aproximado, por exemplo, 11 retorna 1.

2.7. Máquina de cálculo de divisão por 2 com segunda entrada em unário

Seja MD2 uma mT tal que $MD2 = \{Q, \Sigma, \Gamma, \delta, q_1, q_{aceita}\}$, sendo a rejeição feita em caso de não terminar em q_{aceita} .

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}, q_{11}, q_{12}, q_{13}, q_{14}\}$
- $\Sigma = \{0, 1, ..., c\}$:
 - \rightarrow {0,1} algarismos;
 - → , para números racionais;
 - → c separador.
- $\Gamma = \Sigma \cup \{a, \sqcup\};$
- q_{A} = estado que chama a submáquina de divisão por 2;
- $q_{aceita} = q_{14}$.

Assim, a fita terá o seguinte formato:

Entrada: NUMEROcDIVISORc

Saída: TOTALc

O DIVISOR deve ser uma sequência de 1's, a qual indica a quantidade de divisões por 2 que deve ocorrer. TOTAL é o número NUMERO dividido por 2 DIVISOR vezes

2.8. Máquina de comparação que retorna o menor número

Seja MC1 uma mT tal que $MC1 = \{Q, \Sigma, \Gamma, \delta, q_{42}, \{q_{aceita}\}\}$, sendo a rejeição feita em caso de não terminar em q_{aceita} .

- $\begin{array}{l} \bullet \quad Q \, = \, \{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}, q_{8}, q_{9}, q_{10}, q_{11}, q_{12}, q_{13}, q_{14}, q_{15}, q_{16}, q_{17}, q_{18}, q_{19}, q_{19}, q_{20}, q_{21}, q_{22}, q_{23}, q_{24}, q_{25}, q_{26}, q_{27}, q_{28}, q_{29}, q_{30}, q_{31}, q_{32}, q_{33}, q_{34}, q_{35}, q_{36}, q_{37}, q_{38}, q_{39}, q_{40}, q_{41}, q_{42}, q_{43}, q_{44}, q_{45}, q_{46}, q_{47}, q_{48}, q_{49}, q_{50}, q_{51}, q_{52}, q_{53}, q_{54}, q_{55}, q_{56}, q_{57}, q_{58}, q_{59}, q_{60}, q_{61}, q_{462}, q_{63}, q_{64}, q_{65}, q_{66}, q_{67}, q_{68}, q_{69}, q_{70}, q_{71}, q_{72}\} \end{array}$
- $\Sigma = \{0, 1, , d, \$\}$:
 - \rightarrow {0,1} algarismos;
 - → , para números racionais;
 - → d separa números a serem comparados;
 - → \$ sinaliza início da fita;
- $\Gamma = \Sigma \cup \{O, D, I, \sqcup\};$
- $\bullet \quad \boldsymbol{q}_{aceita} = \{\boldsymbol{q}_{11}, \boldsymbol{q}_{24}, \boldsymbol{q}_{39}, \boldsymbol{q}_{58}, \boldsymbol{q}_{72}\}$

Dessa maneira, a fita terá o seguinte formato:

Entrada: \$NUMERO1dNUMERO2

Saída: \$NUMERO1d, se NUMERO1 < NUMERO2 \$NUMERO2d, se NUMERO2 < NUMERO1 \$NUMERO1d, se NUMERO1 = NUMERO2

Faz-se necessário que a quantidade das casas decimais entre ambos os números da entrada seja igual e não seja considerado zero à esquerda (exceto para casos decimais como 0,1).

A máquina possui dois casos de processamento:

- 1. para números com mesma quantidade de caracteres;
- 2. para números com diferente quantidade de caracteres.
- 1. A máquina marca os números processados em NUMERO1 e tenta também marcar em NUMERO2. Se a máquina não consegue marcar todos em NUMERO1, mas marcou todos em NUMERO2, então NUMERO1>NUMERO2. É feito o tratamento de saída da fita e NUMERO2 é retornado.

Caso contrário, NUMERO2>NUMERO1 ou NUMERO2 = NUMERO1. É conferido se todos os caracteres foram marcados em ambos os números. Se há caracteres não marcados em NUMERO2, então NUMERO2>NUMERO1. É feito o tratamento de saída da fita e NUMERO1 é retornado.

Caso contrário, o tratamento da fita é realizado de forma a retornar a fita ao seu estado original e a máquina segue para o próximo caso de processamento.

- 2. A máquina marca os números processados em NUMERO1 e tenta também marcar em NUMERO2 de forma equivalente. Podemos ter três cenários:
 - 2.1. Ocorrência de 1 em NUMERO1 e 0 em NUMERO2: A máquina busca um 1 correspondente em NUMERO2. Se encontrado, passa para o próximo caractere. Caso encontre 0 em NUMERO2, então NUMERO1>NUMERO2. É feito o tratamento de saída da fita e NUMERO2 é retornado.
 - 2.2. Ocorrência de 0 em NUMERO1 e 1 em NUMERO2: A máquina busca um 0 correspondente em NUMERO2. Se encontrado, passa para o próximo caractere. Caso encontre 1 em NUMERO2, então NUMERO2>NUMERO1. É feito o tratamento de saída da fita e NUMERO1 é retornado.
 - 2.3. Todas as ocorrências de caracteres em NUMERO1 e NUMERO2 são iguais: Então o tratamento de saída da fita é realizado e NUMERO1 é retornado. Em todos os casos, a máquina coloca o caractere d ao fim da fita.

2.9. Máquina de comparação que retorna símbolo com o número

Seja MC2 uma mT tal que $MC2 = \{Q, \Sigma, \Gamma, \delta, q_{25}, \{q_{aceita}\}\}$, sendo a rejeição feita em caso de não terminar em q_{aceita} .

- $\begin{array}{l} \bullet \quad Q \, = \, \{q_{_{0}}, q_{_{1}}, q_{_{2}}, q_{_{3}}, q_{_{4}}, q_{_{5}}, q_{_{6}}, q_{_{7}}, q_{_{8}}, q_{_{9}}, q_{_{10}}, q_{_{11}}, q_{_{12}}, q_{_{13}}, q_{_{14}}, q_{_{15}}, q_{_{16}}, q_{_{17}}q_{_{18}}, q_{_{19}}, \\ q_{_{20'}}, q_{_{21'}}, q_{_{22'}}, q_{_{23'}}, q_{_{24'}}, q_{_{25'}}, q_{_{26'}}, q_{_{27'}}, q_{_{28'}}, q_{_{29'}}, q_{_{30'}}, q_{_{31'}}, q_{_{32'}}, q_{_{33'}}, q_{_{34'}}, q_{_{35'}}, q_{_{36'}}, q_{_{37'}}, q_{_{38'}}, \\ q_{_{39'}}, q_{_{40'}}, q_{_{41'}}, q_{_{42'}}, q_{_{43'}}, q_{_{44'}}, q_{_{45'}}, q_{_{46'}}, q_{_{47'}}, q_{_{48'}}, q_{_{49'}}, q_{_{50'}}, q_{_{51'}}, q_{_{52'}}, q_{_{53'}}, q_{_{54}}\} \end{array}$
- $\Sigma = \{0, 1, ..., c, k, l, \#\}$:
 - \rightarrow {0,1} algarismos;
 - → , para números racionais;
 - → c divisor entre os números a serem comparados.

- → k identificador de sequência de {1,0}
- \rightarrow 1 identificador de sequência de $\{x\}^*$ seguido por sequência de 1's
- \rightarrow q identificador de seqência de $\{1,0\}$
- $\Gamma = \Sigma \cup \{0, D, I, <, >, =, -, \sqcup\};$
- $\bullet \quad \boldsymbol{q}_{aceita} = \{\boldsymbol{q}_{10'}, \boldsymbol{q}_{39'}, \boldsymbol{q}_{44'}, \boldsymbol{q}_{46'}, \boldsymbol{q}_{48'}, \boldsymbol{q}_{50'}, \boldsymbol{q}_{52'}, \boldsymbol{q}_{54}\}$

Dessa maneira, a fita terá o seguinte formato:

Entrada: NUMERO1cNUMERO2k $\{1,0\}$ * $\{x,1\}$ q $\{1,0\}$ *

Saída: >NUMERO1cNUMERO2k $\{1,0\}$ * $\{1,0\}$ * $\{1,0\}$ *, se NUMERO1

> NUMERO2 e converte o 1 mais à esquerda da sequência de 1's após o caractere k em x.

<NUMERO1cNUMERO2k $\{1,0\}$ * $1\{x,1\}$ q $\{1,0\}$ *, se NUMERO2 >

NUMERO1.

=NUMERO1**c**NUMERO2**k**{1,0}*1{x,1}q{1,0}*, se NUMERO1 =

NUMERO2 e converte o 1 mais à esquerda da sequência de 1's após o caractere k em x.

-NUMERO1cNUMERO2k $\{1,0\}$ * $\{1,0\}$ *, se a sequência após o caractere l for uma sequência composta apenas por caracteres x.

Faz-se necessário que a quantidade das casas decimais entre ambos os números da entrada seja igual e não seja considerado zero à esquerda (exceto para casos decimais como 0,1).

A máquina possui três casos de processamento:

- 1. para números com mesma quantidade de caracteres;
- 2. para números com diferente quantidade de caracteres.
- 3. para sequência de x após o caractere 1.
- 1. A máquina marca os números processados em NUMERO1 e tenta também marcar em NUMERO2 (de 1 para I, de 0 para O e de vírgula para D). Se a máquina não consegue marcar todos em NUMERO1, mas marcou todos em NUMERO2, então NUMERO1>NUMERO2. É feito o tratamento de saída da fita e a fita é retornada com o caractere > adicionado à esquerda e com o 1 mais à esquerda da sequência de 1's após o caractere k convertido em x.

Caso contrário, NUMERO2>NUMERO1 ou NUMERO2 = NUMERO1. É conferido se todos os caracteres foram marcados em ambos os números. Se há caracteres não marcados em NUMERO2, então NUMERO2>NUMERO1. É feito o tratamento de saída da fita e a fita é retornada com o caractere < adicionado à esquerda.

Caso contrário, o tratamento da fita é realizado de forma a retornar a fita ao seu estado original e a máquina segue para o próximo caso de processamento.

- 2. A máquina marca os números processados em NUMERO1 e tenta também marcar em NUMERO2 de forma equivalente (de 1 para I, de 0 para O e de vírgula para D). Podemos ter três cenários:
 - 2.1. Ocorrência de 1 em NUMERO1 e 0 em NUMERO2: A máquina busca um 1 correspondente em NUMERO2. Se encontrado, passa para o próximo caractere. Caso encontre 0 em NUMERO2, então NUMERO1>NUMERO2. É feito o tratamento de saída da fita e a fita é retornada com o caractere > adicionado à esquerda e com o 1 mais à esquerda da sequência de 1's após o caractere k convertido em x.
 - 2.2. Ocorrência de 0 em NUMERO1 e 1 em NUMERO2: A máquina busca um 0 correspondente em NUMERO2. Se encontrado, passa para o próximo caractere. Caso encontre 1 em NUMERO2, então NUMERO2>NUMERO1. É feito o

tratamento de saída da fita e a fita é retornada com o caractere < adicionado à esquerda.

- 2.3. Todas as ocorrências de caracteres em NUMERO1 e NUMERO2 são iguais: É feito o tratamento de saída da fita e a fita é retornada com o caractere = adicionado à esquerda e com o 1 mais à esquerda da sequência de 1's após o caractere k convertido em x.
- 3. Após os processamentos realizados pelos cenários descritos acima, no momento em que se faz necessária a conversão de um caractere 1 para x após o caractere l, a máquina confere se existe a possibilidade de conversão, buscando um caractere 1 entre o caractere l e #. Caso não encontre, percorre afita da direita para a esquerda, desmarcando os I's, O's e D's possivelmente marcados (para 1, 0 e vírgula, respectivamente), marcando um à esquerda da fita.

2.10. Máquina para cópia de TOTALPRODUTOS para o final da fita

Seja MCP uma mT tal que $MCP = \{Q, \Sigma, \Gamma, \delta, q_1, q_{aceita}\}$, sendo a rejeição feita em caso de não terminar em q_{aceita} .

- $Q = \{q_{0'}, q_{1'}, q_{2'}, q_{3'}, q_{4'}, q_{5'}, q_{6'}, q_{7'}, q_{8'}, q_{9'}, q_{10'}, q_{11'}, q_{12}\}$
- $\Sigma = \{0, 1, , c, k, f, l, q\}$:
 - \rightarrow {0,1} algarismos;
 - → , para números racionais;
 - → c aqui o separador de cupons marca o fim da lista de produtos.
 - → f separador que marca o fim da sequência de cupons
 - → k separador que marca o fim da sequência de redução
 - → 1 separador que marca o fim da sequência de frete
 - → q separador que marca o fim da sequência de 1's (e possíveis x's)
 - → # último caractere da fita
- $\Gamma = \Sigma \cup \{I, O, D, \$, \sqcup\};$
- $q_{aceita} = q_0$.

Assim, a fita terá o seguinte formato:

Entrada: PRODUTOScCUPOMfREDUÇÃOkFRETEl11111111q#

Saída: PRODUTOScCUPOMfREDUÇÃOkFRETEI11111111q#PRODUTO\$

ou

Entrada: PRODUTOScCUPOMfREDUÇÃOkFRETEI11111111qPARCELAS# Saída:PRODUTOScCUPOMfREDUÇÃOkFRETEI1111111qPARCELAS#PRODUTO \$

Sabendo que PRODUTO, CUPOM, FRETE e PARCELAS são sequências de 1's e 0's, tal que PRODUTO admite casa decimal separando a parte inteira da decimal pelo uso de ",", como o exemplo 110,11.

A fita lê o primeiro caractere, sabendo que a partir dele até o caractere c todos as sequências de 1's, 0's e uma possível vírgula deverão ser iterados e copiados ao fim da fita (após o caractere #). A máquina marca cada 1, 0 ou "," com uma letra (I, O e D, respectivamente), copiando o caractere correspondente ao final da fita, voltando à primeira recorrência de 1, 0 ou "," na fita após os caracteres marcados antes do caractere c. Após a cópia, a máquina itera sobre os I's, O's e D, convertendo-os aos seus caracteres originais e marca um caractere c ao final da fita.

2.11. Máquina para cópia de VALORCUPOM para o final da fita

Seja MCC uma mT tal que $MCC = \{Q, \Sigma, \Gamma, \delta, q_1, q_{aceita}\}$, sendo a rejeição feita em caso de não terminar em q_{aceita} .

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}, q_{11}, q_{12}\}$
- $\Sigma = \{0, 1, , k, q, f, l, \#, \$\}$:
 - \rightarrow {0,1} algarismos;
 - → , para números racionais;
 - → f separador que marca o fim da sequência de cupons
 - → k separador que marca o fim da sequência de redução
 - → 1 separador que marca o fim da sequência de frete
 - → q separador que marca o fim da sequência de 1's (e possíveis x's)
 - → # indica início de sequência de 1's e 0's
 - → \$ último caractere da fita
- $\Gamma = \Sigma \cup \{I, O, D, d, \sqcup\};$
- $q_{aceita} = q_0$.

Assim, a fita terá o seguinte formato:

Entrada: CUPOMfREDUÇÃOkFRETEl1111111q#PRODUTO\$

Saída: CUPOMfREDUÇÃOkFRETEI11111111q#PRODUTO\$CUPOMd

ou

Entrada: CUPOMfREDUÇÃOkFRETEl11111111qPARCELAS#PRODUTO\$

Saída: CUPOMfREDUÇÃOkFRETEI1111111qPARCELAS#PRODUTO\$CUPOMd

Sendo que VALORCUPOM, FRETE e PARCELAS são sequências de 1's e 0's, tal que PRODUTO admite casa decimal separando a parte inteira da decimal pelo uso de ",", como o exemplo 110,11. Pode haver mais de uma ocorrência de f{1,0} na fita.

A fita lê o primeiro caractere, sabendo que a partir dele até o caractere f todos as sequências de 1's, 0's e uma possível vírgula deverão ser iterados e copiados ao fim da fita (após o caractere \$). A máquina marca cada 1, 0 ou , com uma letra (I, O e D, respectivamente), copiando o caractere correspondente ao final da fita, voltando à primeira recorrência de 1, 0 ou , na fita após os caracteres marcados antes do caractere f. Após a cópia, a máquina itera sobre os I's, O's e D, convertendo-os aos seus caracteres originais e marcando o caractere d ao final da fita.

2.12. Máquina para cópia de VALORCASHBACK para o final da fita

Seja MCB uma mT tal que $MCB = \{Q, \Sigma, \Gamma, \delta, q_1, q_{aceita}\}$, sendo a rejeição feita em caso de não terminar em q_{aceita} .

- $Q = \{q_{0'}, q_{1'}, q_{2'}, q_{3'}, q_{4'}, q_{5'}, q_{6'}, q_{7'}, q_{8'}, q_{9'}, q_{10'}, q_{11'}, q_{12}\}$
- $\Sigma = \{0, 1, , c, k, l, q\}$:
 - \rightarrow {0,1} algarismos;
 - → , para números racionais;
 - → c aqui o separador de cupons marca o fim da sequência de cashback
 - ightarrow k separador que marca o fim da sequência de redução
 - → 1 separador que marca o fim da sequência de frete

- → q separador que marca o fim da sequência de 1's (e possíveis x's)
- → # último caractere da fita
- $\Gamma = \Sigma \cup \{I, O, D, \$, d, \sqcup\};$
- $q_{aceita} = q_0$.

Assim, a fita terá o seguinte formato:

Entrada:

CASHBACK¢REDUÇÃOkFRETEl111111111qPARCELAS#PRODUTO\$VALORCUP OMd

Saída:

CASHBACKcREDUÇÃOkFRETEI111111111qPARCELAS#PRODUTO\$VALORCUP OMdCASHBACK

Tendo em vista que CASHBACK, REDUÇÃO, FRETE, VALORCUPOM e PARCELAS são sequências de 1's e 0's, tal que todas admitem casa decimal separando a parte inteira da decimal pelo uso de ",", como o exemplo 110,11.

A fita lê o primeiro caractere, sabendo que a partir dele até o caractere **c** todos as sequências de 1's, 0's e uma possível vírgula deverão ser iterados e copiados ao fim da fita (após o caractere **d**). A máquina marca cada 1, 0 ou , com uma letra (I, O e D, respectivamente), copiando o caractere correspondente ao final da fita, voltando à primeira recorrência de 1, 0 ou , na fita após os caracteres marcados antes do caractere **c**. Após a cópia, a máquina itera sobre os I's, O's e D, convertendo-os aos seus caracteres originais.

2.13. Máquina para cópia de VALORPRODUTO para o início da fita

Seja MCPI uma mT tal que $MCPI = \{Q, \Sigma, \Gamma, \delta, q_5, q_{aceita}\}$, sendo a rejeição feita em caso de não terminar em q_{aceita} .

- $Q = \{q_{0'}, q_{1'}, q_{2'}, q_{3'}, q_{4'}, q_{5'}, q_{6'}, q_{7'}, q_{8'}, q_{9'}, q_{10}\}$
- $\Sigma = \{0, 1, , k, q, f, l, \#, \$, d\}$:
 - \rightarrow {0,1} algarismos;
 - → , para números racionais;
 - → f separador que marca o fim da sequência de cupons
 - → k separador que marca o fim da sequência de redução
 - → 1 separador que marca o fim da sequência de frete
 - → q separador que marca o fim da sequência de 1's (e possíveis x's)
 - → # indica início de sequência de 1's e 0's que devem ser copiados para o início da fita
 - → \$ indica início de sequência de 1's e 0's
 - → d último caractere da fita
- $\Gamma = \Sigma \cup \{I, O, D, \$, d, \sqcup\};$
- $\bullet \quad q_{aceita} = q_{10}.$

Assim, a fita terá o seguinte formato:

Entrada:

VALORCUPOMfREDUÇÃOkFRETEI111111111q#PRODUTO\$VALORCUPOMd Saída: PRODUTOfREDUÇÃOkFRETEI111111111q#PRODUTO\$VALORCUPOMd

Entrada:

VALORCUPOMfREDUÇÃOkFRETEI111111111qPARCELAS#PRODUTO\$VALORC UPOMd

Saída:

PRODUTOfREDUÇÃOkFRETEI111111111qPARCELAS#PRODUTO\$VALORCUPO Md

Sabendo que PRODUTO, VALORCUPOM, REDUÇÃO, FRETE e PARCELAS são sequências de 1's e 0's, tal que PRODUTO admite casa decimal separando a parte inteira da decimal pelo uso de ",", como o exemlo 110,11.

A fita lê e apaga todos os caracteres, sequências de 1, 0 e ,, até uma ocorrência de **f**. Essa operação garante que VALORCUPOM será apagado no início da fita, mas seu valor no final estará mantido. A máquina percorre a fita buscando alguma ocorrência de \$, sinalizando o primeiro caractere após toda a sequência de PRODUTO. A máquina então percorre da direita para a esquerda, marcando cada ocorrência de 1, 0 ou , com uma letra (I, O e D, respectivamente), copiando o caractere correspondente ao início da fita, voltando ao primeiro caractere antes de alguma ocorrência de I, O, D ou \$, copiando-o ao início da fita, e assim por diante até copiar todos os caracteres entre # e \$.

3. Exemplos

Nessa seção, será demonstrado de forma expositiva o comportamento de cada submáquina para dois tipos de entradas diferentes. Para a máquina principal, serão analisados os comportamentos para quatro diferentes entradas. Os exemplos das submáquinas serão dados em números pequenos apenas para o entendimento do seu funcionamento.

3.1. Máquina principal

Entrada: Vp10,10p10,00c111f10,00k1000,00l111111111#

A máquina consome V, prosseguindo para a seção que fará o processamento da fita para pagamento à vista. O caractere p é consumido, sinalizando o valor do primeiro produto. A máquina de adição é chamada para calcular o valor total de todos os produtos da fita, e sobrescrever os caracteres antes da ocorrência de c. O estado da fita após a operação é: 100,10c111f10,00k1000,00l111111111#

A máquina retorna o cabeçote à esquerda e prepara a fita de entrada para chamar a sequência de submáquinas responsável pela aplicação do desconto no valor total dos produtos. Esse cálculo é dado pela multiplicação do valor total por sete e divisão por oito. A submáquina de multiplicação binária é chamada e, em seguida, são realizadas três chamadas das submáquinas de divisão por dois, onde a sequência de caracteres até a ocorrência de c é reescrita pelo resultado das operações. Após a operação, o estado da fita é dado por: 11,1c10,00k1000,00l111111111#

A submáquina de cópia de valor dos produtos é chamada, copiando a sequência até o

caractere c para o final da fita, escrevendo também o caractere \$ ao final. O estado da fita é dado por: 11,1c10,00k1000,00l111111111#11,1\$

Realizada as subtrações, comparações e marcações na sequência entre l e #, a máquina apaga todos os caracteres até o primeiro caractere à direita de k, ou seja, a primeira sequência da fita diz respeito agora ao FRETE. O desconto é também aplicado pelo frete, cujo valor será dividido por oito após três chamadas da submáquina de divisão por dois e uma chamada da máquina de multiplicação unária, que o multiplica por dois pela quantidade de ocorrências de 1 na sequência entre 1 e #. O resultado da operação sobrescreve todos os caracteres antes da ocorrência de #. Após o procedimento, o estado da fita é: 111,00p11,11c

Obtido o valor do frete e do valor total dos produtos, aplicados os respectivos descontos, a máquina chama a submáquina de adição, sobrescrevendo a fita para o valor resultante da operação.

Saída: 1010,11

Entrada: Pp10,10p10,00c111f101f10,00k1000,00l111111111q11#

A máquina consome P, prosseguindo para a seção que fará o processamento da fita para pagamento parcelado. O caractere p é consumido, sinalizando o valor do primeiro produto. A máquina de adição é chamada para calcular o valor total de todos os produtos da fita, e sobrescrever os caracteres antes da ocorrência de c. O estado da fita após a operação é: 100,10c111f101f10,00k1000,00l11111111q11#

A máquina retorna o cabeçote para o primeiro caractere da fita e chama a submáquina de cópia do valor dos produtos para o final da fita. Após a cópia, também é escrito o caractere \$ ao final da fita. Após a cópia, o estado da fita é: 100,10c111f101f10,00k1000,00l111111111q11#100,10\$

A máquina chama a submáquina de divisão binária por dois com entrada unária, de forma a dividir por dois o valor 100,10 uma quantidade de vezes correspondente à quantidade de ocorrências de 1 entre os caracteres c e f. O resultado sobrescreve na fita os caracteres à esquerda da primeira ocorrência de f. O estado da fita após a operação é: 0,10f101f10,00k1000,00l111111111q11#100,10\$

A máquina chama a submáquina de cópia de valor do cupom, copiando a sequência de caracteres antes da primeira ocorrência de f para o fim da fita. Após a operação, o estado da fita é: 0,10f101f10,00k1000,00l111111111111111111100,10\$0,10d

A máquina chama a submáquina de cópia do valor total dos produtos, armazenado na fita entre os caracteres # e \$, para o início da fita. Após a operação, o estado da fita é: 100,10f101f10,00k1000,00l11111111q11#100,10\$0,10d

A máquina então calcula a redução do valor total dos produtos após uma divisão por oito e multiplicação por 101, cujo resultado corresponde ao cashback. A submáquina de divisão por dois é chamada três vezes e então a submáquina de multiplicação binária. O resultado da operação sobrescreve os caracteres à esquerda da segunda ocorrência de f. O estado da fita após a iteração é: 10,10c10,00k1000,00l111111111q11#100,10\$0,10d

A máquina chama a submáquina de cópia do valor de cashback para o fim da fita, que copiará a sequência à esquerda de c para o fim da fita. Após a operação, o estado da fita é: 10,10c10,00k1000,00l111111111q11#100,10\$0,10d10,10

A máquina percorre a fita buscando a ocorrência de \$. Uma vez encontrado, chama a submáquina de comparação retornando o menor número. A submáquina comparar 10,10 e 0,10, sobrescrevendo à direita de \$ o menor dos valores. Após a operação, a fita é dada por: 10,10c10,00k1000,00l111111111q11#100,10\$0,10d

A máquina mais uma vez chama a submáquina de copiar o valor total dos produtos para o iníco da fita. Após a operação, a fita é dada por: 100,10f10,00k1000,00l111111111q11#100,10\$0,10d

Após a cópia, o valor até o caractere c (preço total descontado os cupons) é comparado com 10,00, referido como REDUÇÃO, por meio da submáquina de comparação cujo retorno é um símbolo, que será consumida pela consequente submáquina de subtração. Essas iterações irão sobrescrever o valor total dos produtos pelo seu valor subtraído de REDUÇÃO até que este seja menor que REDUÇÃO. Para cada desigualdade em que valor total seja maior que REDUÇÃO, a máquina irá sobrescrever um caractere 1 para x na sequência entre 1 e #. O estado da máquina após a operação é: 00,10f10,00k1000,00lxx111111q11#100,10\$0,10d

Realizada as subtrações, comparações e marcações na sequência entre 1 e q, a máquina apaga todos os caracteres até o primeiro caractere à direita de k, ou seja, a primeira sequência da fita diz respeito agora ao FRETE. O desconto é também aplicado pelo frete, cujo valor será dividido por oito após três chamadas da submáquina de divisão por dois e uma chamada da máquina de multiplicação unária, que o multiplica por dois pela quantidade de ocorrências de 1 na sequência entre 1 e #. O resultado da operação sobrescreve todos os caracteres antes da ocorrência de #. A fita após a operação é: 110,00c11#100,10\$0,10d

A máquia chama a submáquina de divisão por dois com entrada em unário, dividindo por dois o valor 110,00 uma quantidade de vezes correspondente à quantidade de ocorrências de 1 entre c e #. Após a operação, a fita é dada por: 1,10p0,10c

A mpaquina chama a submáquina de adição para somar os valores divididos na fita pelo caractere p, cujo resultado da operação é o valor final da fita.

Saída: 10,00

Entrada: Vp1,00p11,00c111f10,00k1000,00l111111111#

A máquina consome V, prosseguindo para a seção que fará o processamento da fita para pagamento à vista. O caractere p é consumido, sinalizando o valor do primeiro produto. A máquina de adição é chamada para calcular o valor total de todos os produtos da fita, e sobrescrever os caracteres antes da ocorrência de c. O estado da fita após a operação é:

A máquina retorna o cabeçote à esquerda e prepara a fita de entrada para chamar a sequência de submáquinas responsável pela aplicação do desconto no valor total dos produtos. Esse cálculo é dado pela multiplicação do valor total por sete e divisão por oito. A submáquina de multiplicação binária é chamada e, em seguida, são realizadas três chamadas das submáquinas de divisão por dois, onde a sequência de caracteres até a ocorrência de c é reescrita pelo resultado das operações. Após a operação, o estado da fita é dado por: 11,10c10,00k1000,00l111111111#

A submáquina de cópia de valor dos produtos é chamada, copiando a sequência até o caractere c para o final da fita, escrevendo também o caractere \$ ao final. O estado da fita é dado por: 11,10c10,00k1000,00l11111111111111111.10\$

Após a cópia, o valor até o caractere c (preço total descontado os cupons) é comparado com o valor referido como REDUÇÃO por meio da submáquina de comparação cujo retorno é um símbolo, que será consumida pela consequente submáquina de subtração. Essas iterações irão sobrescrever o valor total dos produtos pelo seu valor subtraído de REDUÇÃO até que este seja menor que REDUÇÃO. Para cada desigualdade em que valor total seja maior que REDUÇÃO, a máquina irá sobrescrever um caractere 1 para x na sequência entre 1 e #. O estado da fita após o procedimento é: 01,10c10,00k1000,00lx111111111111111111

Realizada as subtrações, comparações e marcações na sequência entre 1 e #, a máquina apaga todos os caracteres até o primeiro caractere à direita de k, ou seja, a primeira sequência da fita diz respeito agora ao FRETE. O desconto é também aplicado pelo frete, cujo valor será dividido por oito após três chamadas da submáquina de divisão por dois e uma chamada da máquina de multiplicação unária, que o multiplica por dois pela quantidade de ocorrências de 1 na sequência entre 1 e #. O resultado da operação sobrescreve todos os caracteres antes da ocorrência de #. Após o procedimento, o estado da fita é: 111,00p11,10c

Obtido o valor do frete e do valor total dos produtos, aplicados os respectivos descontos, a máquina chama a submáquina de adição, sobrescrevendo a fita para o valor resultante da operação.

Saída: 1010.10

Entrada: Vp0,10p1,00c111f10,00k1000,00l111111111#

A máquina consome V, prosseguindo para a seção que fará o processamento da fita para pagamento à vista. O caractere p é consumido, sinalizando o valor do primeiro produto. A máquina de adição é chamada para calcular o valor total de todos os produtos da fita, e sobrescrever os caracteres antes da ocorrência de c. Após essa etapa, o estado da fita é: 1,10c111f10,00k1000,00l111111111#

A máquina retorna o cabeçote à esquerda e prepara a fita de entrada para chamar a sequência de submáquinas responsável pela aplicação do desconto no valor total dos produtos. Esse cálculo é dado pela multiplicação do valor total por sete e divisão por oito. A submáquina de multiplicação binária é chamada e, em seguida, são realizadas três chamadas das submáquinas de divisão por dois, onde a sequência de caracteres até a ocorrência de c é reescrita pelo resultado das operações. Após isso, o estado da fita é: 1,01c10,00k1000,00l111111111#

A submáquina de cópia de valor dos produtos é chamada, copiando a sequência até o caractere c para o final da fita, escrevendo também o caractere \$ ao final. O estado da fita após a operação é: 1,01c10,00k1000,00l111111111#1,01\$

Após a cópia, o valor até o caractere c (preço total descontado os cupons) é comparado com o valor referido como REDUÇÃO por meio da submáquina de comparação cujo retorno é um símbolo, que será consumida pela consequente submáquina de subtração. Essas iterações irão sobrescrever o valor total dos produtos pelo seu valor subtraído de REDUÇÃO até que este seja menor que REDUÇÃO. Para cada desigualdade em que valor total seja maior que REDUÇÃO, a máquina irá sobrescrever um caractere 1 para x na sequência entre l e #. Como o valor total é menor que REDUÇÃO, não há sobrescrita e alteração da fita.

A máquina apaga todos os caracteres até o primeiro caractere à direita de k, ou seja, a primeira sequência da fita diz respeito agora ao FRETE. O desconto é também aplicado pelo frete, cujo valor será dividido por oito após três chamadas da submáquina de divisão por dois e uma chamada da máquina de multiplicação unária, que o multiplica por dois pela quantidade de ocorrências de 1 na sequência entre 1 e #. O resultado da operação sobrescreve todos os caracteres antes da ocorrência de #. O estado da fita após a operação é: 1000,00p1,01c

Obtido o valor do frete e do valor total dos produtos, aplicados os respectivos descontos, a máquina chama a submáquina de adição, sobrescrevendo a fita para o valor resultante da operação.

Saída: 1001,10

3.2. Máquina de adição

Entrada: 1p11p10c

Primeiramente, a máquina procura o primeiro p. Quando o encontra, ela segue procurando o próximo p. No momento em que ele é encontrado, a máquina subtrai 1 do segundo número e segue percorrendo a fita da direita para a esquerda até voltar ao primeiro e somar esse 1. A máquina permanece nesse ciclo até que a segunda parcela seja 0. Atingindo esse resultado, o primeiro p e todos os 0's referentes ao segundo número são transformados em x e o resultado da soma é copiado para o lugar imediatamente anterior ao próximo p e os x's são apagados.

Agora a máquina retorna ao estado inicial e procura novamente por um p. Encontrando-o, ela procura o c para realizar o mesmo ciclo anterior, no qual 1 é subtraído da segunda parcela e somado na primeira, até que o segundo número seja 0. De forma análoga, o resultado é copiado para o local imediatamente anterior ao c e a máquina volta ao estado inicial e percorre o número procurando um p. Como sobra apenas c, a máquina o encontra e segue para a aceitação.

Saída: 110c

Entrada: 1,10p0,11c

Inicialmente, a máquina percorre o número a procura de p, passando também pelas casas fracionárias do primeiro número. Ao encontrar p, ela segue a fim de encontrar o

final do segundo número, o qual é marcado por c. Nesse instante, a máquina começa a subtrair 1 do segundo número, podendo ser da parte inteira ou fracionária, e somando no primeiro elemento. O processo é repetido até que a segunda parcela seja 0 e, então, o número resultante que se encontra no começo da fita é copiado para a posição imediatamente anterior a c. O restante da fita é apagado e a máquina volta ao estado inicial, no qual o total será percorrido até encontrar c e o resultado é aceito.

Saída: 10,01c

3.3. Máquina de subtração

Entrada: 11,0c01,0k

Primeiramente, a máquina retorna para o primeiro espaço branco na fila e coloca um p. Em seguida, ela percorre o primeiro número completamente, até encontrar o c, percorrendo depois o segundo número, até encontrar k. Nesse momento, a máquina começa a voltar para a esquerda substituindo os algarismos do segundo número de acordo com:

- 0 vira a;
- 1 vira b;
- , vira d.

No mesmo instante a máquina também volta para o começo da fita e coloca o número complementar do algarismo lido. A máquina então volta para o segundo número e devolve seus valores que haviam sido trocados. Após isso, a máquina volta ao começo e coloca outro p no primeiro caractere branco encontrado. Logo depois, a quantidade de casas após a vírgula é reservada no começo da fita, colocando 0's em seu lugar. O último 0 após a vírgula é substituído por um 1 (a fim de obter um complemento de 2) e a máquina chama a máquina de adição, a qual retornará o resultado da subtração, com um 1 no começo. A máquina então exclui esse 1 e aceita.

Saída: 10,0c01,0k

Entrada: 0,1c0,0k

Primeiramente, a máquina retorna para o primeiro espaço branco na fila e coloca um p. Em seguida, ela percorre o primeiro número completamente, até encontrar o c, percorrendo depois o segundo número, até encontrar k. Nesse momento, a máquina começa a voltar para a esquerda substituindo os algarismos do segundo número de acordo com:

- 0 vira a;
- 1 vira b;
- , vira d.

No mesmo instante a máquina também volta para o começo da fita e coloca o número complementar do algarismo lido. A máquina então volta para o segundo número e devolve seus valores que haviam sido trocados. Após isso, a máquina volta ao começo e coloca outro p no primeiro caractere branco encontrado. Logo depois, a quantidade de casas após a vírgula é reservada no começo da fita, colocando 0's em seu lugar. O último 0 após a vírgula é substituído por um 1 (a fim de obter um complemento de 2) e a

máquina chama a máquina de adição, a qual retornará o resultado da subtração, com um 1 no começo. A máquina então exclui esse 1 e aceita.

Saída: 0,1c0,0k

3.4. Máquina de multiplicação binária

Entrada: 1,1m1#

Primeiramente, a máquina vai para o espaço em branco à esquerda e o substitui por c. Em seguida, ela percorre o primeiro número, caso haja uma vírgula a máquina marca o próximo número após ela, o 1, e vai para a esquerda até encontrar um branco para então o substituir por 0 e repete esse processo enquanto existir numero apos a virgula do primeiro número, quando encontrar o m ela vai para a esquerda na fita substituindo os valores marcados pelos originais até encontrar o branco e então adiciona uma vírgula e um 0, assim temos o número zero com o mesmo número de casas decimais que o primeiro número.

Após isso, ela tenta subtrair um do segundo número(o VEZES) utilizando a mesma lógica da adição e caso isso seja possível , ou seja , o número é diferente do zero, ela copia o primeiro número para esquerda do zero que foi criado os separando com um p, ela faz isso marcando os números já copiados para a esquerda da seguinte maneira

- 0 vira a:
- 1 vira b;
- , vira d:

Quando marcar todos, ela volta substituindo eles pelos valores originais e chama a máquina de adição. Nesse momento a fita está desta maneira: 1,1c1,1m0#.

Agora ela tenta subtrair um do número VEZES, mas como é 0, ela apaga tudo que não seja o número mais a esquerda, e copia esse número para a direita.

Saída: 1,1#

Entrada: 100,1m0#

Primeiramente, a máquina vai para o espaço em branco à esquerda e o substitui por c. Em seguida, ela percorre o primeiro número, a máquina marca o próximo número após a vírgula, o 1, e vai para a esquerda até encontrar um branco para então o substituir por 0, e vai para a direita, quando encontrar o m ela vai para a esquerda na fita substituindo os valores marcados pelos originais até encontrar o branco e então adiciona uma vírgula e um 0, assim temos o número zero com o mesmo número de casas decimais que o primeiro número.

Após isso, ela tenta diminuir um do número VEZES, mas como ele é zero, ela para e apaga tudo que não seja o número mais a esquerda, para então copiar ele para a direita.

Saída: 0,0#

3.5. Máquina de multiplicação unária

Entrada: 10.0m11#

Similar à máquina de multiplicação anterior, essa vai para o espaço em branco à esquerda e o substitui por c.

Em seguida, ela percorre o primeiro número, marca o próximo número após a vírgula, o 0, e vai para a esquerda até encontrar um branco para então o substituir por 0, e vai para a direita, quando encontrar o m ela vai para a esquerda na fita substituindo os valores marcados pelos originais até encontrar o branco e então adiciona uma vírgula e um 0, assim temos o número zero com o mesmo número de casas decimais que o primeiro número.

Após isso, ela subtrai um do segundo número, que para números unários é apenas marcar eles com um x, e copia o primeiro número para a esquerda do zero os esperando com um p, da mesma maneira que a outra máquina de multiplicação faz. Então chama a máquina de adição e repete o processo mais uma vez.

No final da segunda iteração, todos os dígitos do segundo número estão marcados, então ela apaga a entrada original e copia o resultado da multiplicação para a direita.

Saída: 100,0#

Entrada: 101,01m#

O vazio entre o m e a # representa o 0 em unário.

Primeiramente, a máquina vai para o espaço em branco à esquerda e o substitui por c.

Em seguida, ela percorre o primeiro número, marca o próximo número após a vírgula, o 0, e vai para a esquerda até encontrar um branco para então o substituir por 0, e vai para a direita até encontrar o próximo número, o marca e então vai para a direita e adiciona um zero quando encontra o vazio,após isso vai para a direita mais uma vez, quando encontrar o m ela vai para a esquerda na fita substituindo os valores marcados pelos originais até encontrar o branco e então adiciona uma vírgula e um 0.

Agora ela vai para direita até encontrar o m na tentativa de marcar o próximo 1, contudo como o primeiro símbolo após o m é a # significa que a multiplicação acabou, então a máquina apaga a entrada original e então faz uma cópia do valor da multiplicação na direta.

Saida: 0,00#

3.6. Máquina de divisão por 2

Entrada: 1100c

Inicialmente, a máquina lê o número procurando seu final, marcado por c. Quando o encontra, ela substitui o último número por x. Como o próximo elemento da direita para a esquerda é um 0, ela substitui por x novamente e coloca 0 no último x encontrado. Caso fosse 1, seria substituído por x e depois 1 no local à direita. Isso é feito de maneira cíclica até que todo o número tenha sido reposicionado, menos o último 0, o qual é excluído do resultado. Por fim, a máquina substitui o x que sobra por um espaço em branco e o resultado é aceito.

Saída: 110c

Entrada: 0,10c

Primeiramente, a máquina lê o número inteiro, ou seja até encontrar c. Nesse momento ela substitui o último 0 por x, assim como o 1 à sua esquerda. Logo após, esse 1 é reposicionado no local do último x. O mesmo é feito com os algarismos anteriores, portanto, eles são lidos e reposicionados no lugar do x mais a direita. No final, a máquina remove os x que sobraram e aceita.

Saída: 0,01c

3.7. Máquina de cálculo de divisão por 2 com segunda entrada em unário

Entrada: 1000c11c

Inicialmente, a máquina percorre o primeiro número por completo, encontrando seu final no primeiro caractere c lido. Em seguida, encontra-se a sequência de 1's que indica a quantidade de vezes que esse número será dividido por 2. A máquina então substitui esse 1 por a e chama a submáquina de divisão por 2, a qual já retorna o devido resultado. Nesse momento, a máquina volta a procurar outros 1's para realizar o mesmo procedimento. Finalizando as divisões, ela copia o resultado para o lugar imediatamente anterior ao último c, exclui os a's restantes e aceita.

Saída: 10c

Entrada: 1,00c1c

Primeiramente, a máquina percorre o primeiro número por completo, incluindo as casas após a vírgula, encontrando seu final no primeiro caractere c lido. Em seguida, encontra-se a sequência de 1's que indica a quantidade de vezes que esse número será dividido por 2. A máquina então substitui esse 1 por a e chama a submáquina de divisão por 2, a qual já retorna o devido resultado. Nesse momento, a máquina volta a procurar o outro 1 para realizar o mesmo procedimento. Finalizando as divisões, ela copia o resultado para o lugar imediatamente anterior ao último c, exclui os a's restantes e aceita.

Saída: 0,01c

3.8. Máquina de comparação que retorna o menor número

Entrada: \$11d1

A máquina lê inicialmente a fita até encontrar o caractere \$. Ela reconhece e marca o caractere 1, convertendo-o para I. Percorre a fita da esquerda para a direita, reconhece d e faz o mesmo para o caractere 1 após d. Percorre a fita da direita para a esquerda, buscando reconhecer algum dígito 1, 0 ou vírgula, o marca e tenta encontrar algum caractere do tipo após d, mas não encontra.

A máquina sabe que 11>1, ou seja, NUMERO1>NUMERO2. A máquina percorre a fita convertendo os I's em 1, retornando ao estado original da fita. Apaga os caracteres (exceto \$ e seus antecessores) da fita até o caractere d. Apaga d, segue à direita e percorre os consequentes caracteres válidos. Uma vez encontrado o vazio, a máquina marca o caractere &, sinalizando que a sequência de caracteres de referência para a

cópia termina ali. Cada caractere de NUMERO2 é percorrido e alocado sequêncialmente após o caractere \$. Uma vez transcrito NUMRO2 para imediatamente após \$, o caractere & é removido da fita, a máquina percorre da direita para a esquerda até encontrar um caractere válido, e insere o caractere d à sua direita.

Saída: \$1d

Entrada: \$1d10

A máquina lê inicialmente a fita até encontrar o caractere \$. Ela reconhece e marca o caractere 1, convertendo-o para I. Percorre a fita da esquerda para a direita, reconhece d e faz o mesmo para o caractere 1 após d. Percorre a fita da direita para a esquerda, buscando reconhecer algum digito 1, 0 ou vírgula. Apenas encontra d, e checa se para a direita ainda há caracteres do tipo. E há.

A máquina sabe que 1<10, ou seja, NUMERO1<NUMERO2. A máquina ercorre a fita convertendo os I's em 1, retornando ao estado original da fita. A máquina então itera sobre d e os caracteres à sua direita, apagando-os. Percorre a fita encontrando o último caractere válido de NUMERO1 e insere à sua direita o caractere d.

Saída: \$1d

3.9. Máquina de comparação que retorna símbolo com o número

Entrada: 1c10k1l1q

A máquina lê inicialmente a fita até encontrar o caractere \$. Ela reconhece e marca o caractere 1, convertendo-o para I. Percorre a fita da esquerda para a direita, reconhece d e faz o mesmo para o caractere 1 após d. Percorre a fita da direita para a esquerda, buscando reconhecer algum digito 1, 0 ou vírgula. Apenas encontra d, e checa se para a direita ainda há caracteres do tipo. E há.

A máquina sabe que 1<10, ou seja, NUMERO1<NUMERO2. A máquina ercorre a fita convertendo os I's em 1, retornando ao estado original da fita. A máquina não itera sobre a sequência de 1's entre l e q. Apenas percorre a fita pela esquerda e adiciona o caractere < ao início da fita.

Saída: <1c10k111q

Entrada: 1c0k11q

A máquina lê inicialmente a fita até encontrar o caractere \$. Ela reconhece e marca o caractere 1, convertendo-o para I. Percorre a fita da esquerda para a direita, reconhece d e faz o mesmo para o caractere 1 após d. Percorre a fita da direita para a esquerda, buscando reconhecer algum dígito 1, 0 ou vírgula. Apenas encontra d, e checa se para a direita ainda há caracteres do tipo. Não há. Portanto, NUMERO1 e NUMERO2 possuem a mesma quantidade de caracteres.

A máquina percorre a fita convertendo-a em seu estado original e então, da esquerda para a direita, tenta encontrar correspondência entre os dígitos mais significativos de NUMERO1 e NUMERO2. Ela reconhece 1 em NUMERO1 e o busca em NUMERO2, mas encontra 0. A máquina, portanto, sabe que NUMERO1 NUMERO2.

A máquina percorre a fita convertendo-a em seu estado original e consome um caractere 1 da sequência entre 1 e q, convertendo-o em x. Além disso, retorna ao início da fita adicionando o caractere > à esquerda.

3.10. Máquina para cópia de TOTALPRODUTOS para o final da fita

Entrada: 1c1,1f0,1k10,0l111q#

A máquina lê o primeiro caractere da fita e o marca (de 1 para I) e então percorre até encontrar a primeira ocorrência de um caractere vazio após #. Uma vez encontrado, escreve o caractere correspondente marcado, nesse caso, escreve 1. Percorre da direita para a esquerda até encontrar o último caractere do tipo I, O ou D. Lê o caractere à direita que, nesse caso, é um c. A máquina então sabe que a transcrição chegou ao fim. Retorna os caracteres marcados à esquerda de c ao seu estado inicial (de I para 1), percorre a fita até o final e escreve o caractere \$.

Saída: 1c1,1f0,1k10,0l111q#1\$

Entrada: 0,1c1,1f0,1k10,0l111q#

A máquina lê o primeiro caractere da fita e o marca (de 0 para O) e então percorre até encontrar a primeira ocorrência de um caractere vazio após #. Uma vez encontrado, escreve o caractere correspondente marcado, nesse caso, escreve 0. Percorre da direita para a esquerda até encontrar o último caractere do tipo I, O ou D. Lê o caractere à direita que, nesse caso, é uma vírgula. Marca o caractere (de vírgula para D) e repete o processo de escrita ao final da fita. O mesmo vale para o 1 após a vírgula. Após a escrita de 0,1 no final da fita, ao percorrer da direita para a esquerda na busca de caracteres a serem transcritos, a máquina lerá c. Ela então sabe que a transcrição chegou ao fim. Retorna os caracteres marcados à esquerda de c ao seu estado inicial (de I para 1, O para 0 e de D para vírgula), percorre a fita até o final e escreve o caractere \$.

Entrada: 0,1c1,1f0,1k10,0l111q#0,1\$

3.11. Máquina para cópia de VALORCUPOM para o final da fita

Entrada: 0,1f10k1111111111q#111\$

A máquina lê o primeiro caractere da fita e o marca (de 0 para O) e então percorre até encontrar a primeira ocorrência de um caractere vazio após \$. Uma vez encontrado, escreve o caractere correspondente marcado, nesse caso, escreve 0. Percorre da direita para a esquerda até encontrar o último caractere do tipo I, O ou D. Lê o caractere à direita que, nesse caso, é uma vírgula. Marca o caractere (de vírgula para D) e repete o processo de escrita ao final da fita. O mesmo vale para o 1 após a vírgula. Após a escrita de 0,1 no final da fita, ao percorrer da direita para a esquerda na busca de caracteres a serem transcritos, a máquina lerá f. Ela então sabe que a transcrição chegou ao fim. Retorna os caracteres marcados à esquerda de f ao seu estado inicial (de I para 1, O para 0 e de D para vírgula), percorre a fita até o final e escreve o caractere d.

Saída: 0,1f10k1111111111q#111\$0,1d

Entrada: 10f1011k111111111111q101#111\$

A máquina lê o primeiro caractere da fita e o marca (de 1 para I) e então percorre até encontrar a primeira ocorrência de um caractere vazio após \$. Uma vez encontrado, escreve o caractere correspondente marcado, nesse caso, escreve 1. Percorre da direita para a esquerda até encontrar o último caractere do tipo I, O ou D. Lê o caractere à direita que, nesse caso, é 0. Marca o caractere (de 0 para O) e repete o processo de escrita ao final da fita. Após a escrita de 10 no final da fita, ao percorrer da direita para a esquerda na busca de caracteres a serem transcritos, a máquina lerá f. Ela então sabe que a transcrição chegou ao fim. Retorna os caracteres marcados à esquerda de f ao seu estado inicial (de I para 1, O para 0 e de D para vírgula), percorre a fita até o final e escreve o caractere d.

Saída: 10f1011k1111111111111q101#111\$10d

3.12. Máquina para cópia de VALORCASHBACK para o final da fita

Entrada: 0,1c1k10l111111111q10#10\$111d

A máquina lê o primeiro caractere da fita e o marca (de 0 para O) e então percorre até encontrar a primeira ocorrência de um caractere vazio após d. Uma vez encontrado, escreve o caractere correspondente marcado, nesse caso, escreve 0. Percorre da direita para a esquerda até encontrar o último caractere do tipo I, O ou D. Lê o caractere à direita que, nesse caso, é uma vírgula. Marca o caractere (de vírgula para D) e repete o processo de escrita ao final da fita. O mesmo vale para o 1 após a vírgula. Após a escrita de 0,1 no final da fita, ao percorrer da direita para a esquerda na busca de caracteres a serem transcritos, a máquina lerá c. Ela então sabe que a transcrição chegou ao fim. Retorna os caracteres marcados à esquerda de c ao seu estado inicial (de I para 1, O para 0 e de D para vírgula).

Saída: 0,1c1k10l1111111111q10#10\$111d0,1

Entrada: 1c10k1111111111111q100#10\$101,0d

A máquina lê o primeiro caractere da fita e o marca (de 1 para I) e então percorre até encontrar a primeira ocorrência de um caractere vazio após d. Uma vez encontrado, escreve o caractere correspondente marcado, nesse caso, escreve 1. Percorre da direita para a esquerda até encontrar o último caractere do tipo I, O ou D. Lê o caractere à direita que, nesse caso, é um c. A máquina então sabe que a transcrição chegou ao fim. Retorna os caracteres marcados à esquerda de c ao seu estado inicial (de I para 1).

Saída: 1c10k11111111111111111100#10\$101,0d1

3.13. Máquina para cópia de VALORPRODUTO para o início da fita

Entrada: 0,1f11k10l111111111q10#100\$111d

A máquina apaga todos os caracteres antes da primeira ocorrência de f. Percorre da esquerda para a direita buscando o caractere \$. Uma vez encontrado, sabe que todos os caracteres à sua esquerda até o caractere # devem ser copiados para o início da fita. A máquina marca o primeiro caractere à esquerda de \$, de 0 para O, percorre a fita até o

início e escreve à esquerda o caractere 0. Percorre novamente a fita buscando alguma ocorrência de O, I ou D. Caso encontre um caractere que são seja #, repete o processo de marcá-lo e escrevê-lo ao início da fita. Isso ocorrerá para o 0 e 1. Na próxima tentativa de ler o caractere à esquerda de alguma ocorrência de O, I ou D, a máquina lerá #. Ela sabe então que todos os caracteres foram transcritos. Percorre a fita reescrevendo os caracteres marcados (de I para 1, de O para 0 e de vírgula para D).

Saída: 100f11k10l1111111111q10#100\$111d

A máquina apaga todos os caracteres antes da primeira ocorrência de f. Percorre da esquerda para a direita buscando o caractere \$. Uma vez encontrado, sabe que todos os caracteres à sua esquerda até o caractere # devem ser copiados para o início da fita. A máquina marca o primeiro caractere à esquerda de \$, de 0 para O, percorre a fita até o início e escreve à esquerda o caractere 0. Percorre novamente a fita buscando alguma ocorrência de O, I ou D. Nessa tentativa, a máquina lerá #. Ela sabe então que todos os caracteres foram transcritos. Percorre a fita reescrevendo os caracteres marcados (de I para 1, de O para 0 e de vírgula para D).

Saída: 0f10k101l111111111q11#0\$111d

4. Referências

Hopcroft, J. E.; Ullman, J. D.; Motwani, R. (2002) "Introdução à teoria de autômatos, linguagens e computação", Editora Campus.

Sipser, M. (2007) "Introdução à teoria da computação", Thomson Learning.

Vieira, N. J. (2004) "Linguagens e Máquinas: Uma Introdução aos Fundamentos da Computação".