Mechanism Sessional (ME29002)

Enhancing Windshield Wiper coverage

Group members:

- Kadagala Raja 20ME10050
- Tondapu Satya Varun 20ME10088
- Lambu Kushi Reddy 20ME30032

Problem Statement

1. Synthesize and make a simulator for the wind screen wiper mechanism shown with quick-return effect. In the simulation, mark the area wiped. Add any new idea you might have (e.g., adjustment provision to change/increase the wiped region, determination of wiping speed and acceleration (or their variation) for a given motor speed (constant), torque requirement on motor (neglecting dynamics) etc.).

 For the wiper mechanism shown, determine graphically and hatch the area wiped. Take O₂A=30 mm, AB=200 mm, O₄B=80 mm, δ=10 deg, DO₆=300 mm, and CO₄=300 mm.

From the above figure, in triangle O_4O_2A :

$$\angle O_4 O_2 A = G(i) = \pi - T(i) + \tan^{-1} \frac{1}{3}$$

Using cosine rule in triangle O_4O_2A , we obtain:

$$f^2 = c^2 + d^2 - 2c.d.cos(G(i))$$

$$f = \sqrt{c^2 + d^2 - 2c. d. cos(G(i))}$$

Similarly, we can obtain the angles $\angle AO_4B$ and $\angle AO_4O_2$ using cosine rule as:

$$\angle AO_4B = A(i) = \cos^{-1}(\frac{a^2 + f^2 - b^2}{2.a.f})$$

$$\angle AO_4O_2 = D(i) = \cos^{-1}(\frac{a^2+f^2-b^2}{2.a.f})$$

$$A(i) + D(i) + Tan^{-1}(1/3) + E(i) = \Pi$$

$$E(i) = \Pi - (A(i) + D(i) + Tan^{-1}(1/3))$$

Link of video demonstration

https://youtu.be/ISHyyaZS5JI