

What Is Pattern Discovery?

- What are patterns?
 - □ Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- □ Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples:
 - What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?
 - What code segments likely contain copy-and-paste bugs?
 - What word sequences likely form phrases in this corpus?

Pattern Discovery: Why Is It Important?

- ☐ Finding inherent regularities in a data set
- □ Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

Basic Concepts: Frequent Itemsets (Patterns)

- ☐ Itemset: A set of one or more items
- \Box k-itemset: X = {x₁, ..., x_k}
- □ (relative) support, s: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)

 [5] transaction (Bear'7) | (
- □ An itemset X is *frequent* if the support of X is no less than a *minsup* threshold (denoted as σ)

5 transaction.		
Tid		Items bought
10		Beer, Nuts, Diaper
20		Beer, Coffee, Diaper
30		Beer, Diaper, Eggs
40		Nuts, Eggs, Milk
50		Nuts, Coffee, Diaper, Eggs, Milk

- □ Let *minsup* = 50% 50%
- ☐ Freq. 1-itemsets:
 - Beer: 3 (60%); Nuts: 3 (60%)
 - Diaper: 4 (80%); Eggs: 3 (60%)
- ☐ Freq. 2-itemsets:
 - □ {Beer, Diaper}: 3 (60%)

From Frequent Itemsets to Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Note: Itemset: $X \cup Y$, a subtle notation!

 \square Association rules: $X \rightarrow Y$ (s, c) $\xrightarrow{X} Y \xrightarrow{\text{support}()} 7 ?$

(degree of

- Support, s: The probability that a transaction contains $X \cup Y$ item (sequence)
- □ Confidence, c: The conditional probability that a transaction containing X also contains $Y \times \mathbb{R}^{7^{1}}$
- \Box c = sup(X \cup Y) / sup(X)
- □ **Association rule mining**: Find all of the rules, $X \rightarrow Y$, with minimum support and confidence
- ☐ Frequent itemsets: Let *minsup = 50%*
 - ☐ Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - ☐ Freq. 2-itemsets: {Beer, Diaper}: 3
- ☐ Association rules: Let *minconf* = 50%
 - $\frac{(1) \times \times (S, C)}{(2) \times \times (S, C)}$
 - \square Beer \rightarrow Diaper (60%, 100%)
 - □ Diaper → Beer (60%, 75%)

(Q: Are these all rules?)

Challenge: There Are Too Many Frequent Patterns!

- ☐ A long pattern contains a combinatorial number of sub-patterns
- Long pattern frequent pattern 가 .
- □ How many frequent itemsets does the following TDB₁ contain?
 □ TDB₁. T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
 - Assuming (absolute) minsup = 1
 - Let's have a try

```
1-itemsets: {a<sub>1</sub>}: 2, {a<sub>2</sub>}: 2, ..., {a<sub>50</sub>}: 2, {a<sub>51</sub>}: 1, ..., {a<sub>100</sub>}: 1, 2-itemsets: {a<sub>1</sub>, a<sub>2</sub>}: 2, ..., {a<sub>1</sub>, a<sub>50</sub>}: 2, {a<sub>1</sub>, a<sub>51</sub>}: 1 ..., ..., {a<sub>99</sub>, a<sub>100</sub>}: 1, ..., ..., ...
```

99-itemsets: {a₁, a₂, ..., a₉₉}: 1, ..., {a₂, a₃, ..., a₁₀₀}: 1

100-itemset: {a₁, a₂, ..., a₁₀₀}: 1

□ In total: $\binom{100}{1} + \binom{100}{2} + \dots + \binom{1}{1} \binom{0}{0} = 2^{100} - 1$ sub-patterns!

A too huge set for any computer to compute or store!

Expressing Patterns in Compressed Form: Closed Patterns

- How to handle such a challenge?
- □ Solution 1: **Closed patterns**: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y ⊃ X, with the same support as X
- Closed pattern:
 parent pattern child pattern

- □ Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
- Suppose minsup = 1. How many closed patterns does TDB₁ contain?
 - □ Two: P_1 : "{ a_1 , ..., a_{50} }: 2"; P_2 : "{ a_1 , ..., a_{100} }: 1"
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - □ You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

```
* frequent pattern
closed pattern mining

* huffman coding

* core frequent pattern

* ex) pattern_1{a}, pattern_2{abc} {a}
mining 7 {abc}(core)

* (core) frequent pattern
```

Expressing Patterns in Compressed Form: Max-Patterns

- □ Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y ⊃ X
- □ Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - □ Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - □ One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - \square We only know $\{a_1, ..., a_{40}\}$ is frequent
 - But we do not know the real support of $\{a_1, ..., a_{40}\}$, ..., any more!
- ☐ Thus in many applications, mining close-patterns is more desirable than mining max-patterns

```
* DB only the longest frequent pattern

* プト the longest frequent pattern

* プト the longest frequent pattern

* super frequent pattern , frequent pattern generate
```

Recommended Readings

- □ R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- □ R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- □ N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- □ J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007