21-120: Differential and Integral Calculus Recitation #10 Outline: 09/26/24

- 1. For each of the following, find $(f^{-1})'(a)$:
 - (a) $f(x) = x^2 + 3x + 2$, $x \ge -\frac{3}{2}$, a = 2
- (c) $f(x) = x + \sin x, \ a = 0$

(b) $f(x) = x - \frac{2}{x}$, x < 0, a = 1

(d) $f(x) = x + \sqrt{x}$, a = 2

Solution:

(a) We need to use the formula

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$$
 with $a = 2$

In order to use this formula, we need to know what $f^{-1}(2)$ is. That is, we need to find some x such that f(x) = 2 (and such that $x \ge -\frac{3}{2}$, since this restriction is given in the statement of the problem). It's easy to guess that such an x is 0, i.e., $f^{-1}(2) = 0$. Alternatively, you can solve the equation f(x) = 2 (and choose the non-negative root).

Now that we know $f^{-1}(2)$, we can find f'(x) and plug in $f^{-1}(2)$ for x. We have f'(x) = 2x + 3, and so $f'(f^{-1}(2)) = f'(0) = 3$. Therefore,

$$(f^{-1})'(2) = \frac{1}{3}.$$

(b) Again, we first find $f^{-1}(1)$, which is the negative number x such that f(x) = 1 (it should be negative because of the restriction x < 0). Such an x is easy to guess, it is x = -1. So we have $f^{-1}(1) = -1$.

Now we need to find f'(x) at x = -1. We have $f'(x) = 1 + \frac{2}{x^2}$, and hence f'(-1) = 3. Thus, $(f^{-1})'(1) = \frac{1}{3}$.

- (c) This is similar to the previous parts. In this case, $f^{-1}(0) = 0$ (we guessed it). Then, $f'(x) = 1 + \cos(x)$ and hence f'(0) = 2. Thus, $(f^{-1})'(0) = \frac{1}{2}$.
- (d) In this case, $f^{-1}(2) = 1$, $f'(x) = 1 + \frac{1}{2\sqrt{x}}$, and hence $f'(1) = \frac{3}{2}$. Thus, $(f^{-1})'(2) = \frac{2}{3}$.
- 2. In the problem above, why do some parts have restrictions on x while others don't? What would go wrong if we removed the requirement $x \ge -\frac{3}{2}$ in part (a)?

Solution: The restrictions on x are given in cases where the functions are not one-to-one on their natural domain. If a function is not one-to-one, then the inverse does not exist, and it doesn't make sense to talk about the derivative of the inverse function in such cases. For example, the function f given by $f(x) = x^2 + 3x + 2$ is not one-to-one on its natural domain (which consists of all real numbers), and so f^{-1} does not exist. But if we add the restriction $x \ge -\frac{3}{2}$, then f on this restricted domain will become one-to-one, and it will make sense to talk about its inverse f^{-1} . The functions in (c) and (d) are one-to-one on their natural domains, so no restrictions are necessary for them.

3. For each function f below, find the equation of the tangent line to the graph of f^{-1} at the specified point P, without directly using the Inverse Function Theorem. That is, first write an equation for the tangent line for f at the appropriate point, and then convert the equation into an equation of the tangent line for f^{-1} at the point P.

(a)
$$f(x) = (x^3 + 1)^4$$
, $P(16, 1)$

(b)
$$\sqrt{x-4}$$
, $P(2,8)$

Solution:

(a) We are asked to find the tangent line to f^{-1} at P(16,1). To do this, we can first find the tangent line to f at Q(1,16) and then swap the roles of x and y.

First, we compute f'(x):

$$f(x) = (x^3 + 1)^4.$$

Using the chain rule:

$$f'(x) = 4(x^3 + 1)^3 \cdot 3x^2 = 12x^2(x^3 + 1)^3$$
.

Next, we evaluate f'(1):

$$f'(1) = 12(1)^2(1^3 + 1)^3 = 12 \cdot 1 \cdot 2^3 = 12 \cdot 8 = 96.$$

The tangent line to f at the point Q(1,16) is therefore:

$$y - 16 = 96(x - 1)$$
.

To get the tangent line to f^{-1} at P(16, 1), we swap the roles of x and y:

$$x - 16 = 96(y - 1)$$
.

This simplifies to:

$$y = \frac{1}{96}x + \frac{5}{6}.$$

Thus, the equation of the tangent line to f^{-1} at P(16,1) is:

$$y = \frac{1}{96}x + \frac{5}{6}.$$

(b) We are asked to find the tangent line to f^{-1} at P(2,8). To do this, we can first find the tangent line to f at Q(8,2) and then swap the roles of x and y.

We have

$$f(x) = \sqrt{x - 4}$$

and differentiating,

$$f'(x) = \frac{1}{2\sqrt{x-4}}$$

At x = 8, we have

$$f'(8) = \frac{1}{2\sqrt{8-4}} = \frac{1}{4}.$$

Thus, the tangent line to f at Q(8,2) is

$$y = 2 + \frac{1}{4}(x - 8).$$

To get the tangent line to f^{-1} at P(2,8), we swap the roles of x and y, giving

$$x = 2 + \frac{1}{4}(y - 8).$$

This simplifies to

$$y=4x$$

which is the equation of the tangent line to f^{-1} at P(2,8).

4. For each function f below, find the equation of the tangent line to the graph of f^{-1} at the specified point P, using the Inverse Function Theorem. Check that your answers agree with the answers to the previous problem.

(a)
$$f(x) = (x^3 + 1)^4$$
, $P(16, 1)$

(b)
$$\sqrt{x-4}$$
, $P(2,8)$

Solution:

(a) We are asked to find the equation of the tangent line to f^{-1} at P(16,1). According to the Inverse Function Theorem, the slope of the tangent line to f^{-1} at P(16,1) is given by $\frac{1}{f'(f^{-1}(16))}$. First, we find f'(x). We have

$$f(x) = (x^3 + 1)^4$$

Using the chain rule,

$$f'(x) = 4(x^3 + 1)^3 \cdot 3x^2 = 12x^2(x^3 + 1)^3$$
.

Now we need to find $f^{-1}(16)$. Since $f(1) = (1^3 + 1)^4 = 16$, we have $f^{-1}(16) = 1$.

Next, we evaluate f'(1):

$$f'(1) = 12(1^2)(1^3 + 1)^3 = 12 \cdot 2^3 = 96.$$

Therefore, the slope of the tangent line to f^{-1} at P(16, 1) is

$$\frac{1}{f'(1)} = \frac{1}{96}.$$

Using the point-slope form of the equation of a line, the tangent line is

$$y - 1 = \frac{1}{96}(x - 16).$$

This answer is equivalent to what we got in the previous problem.

(b) We are asked to find the equation of the tangent line to f^{-1} at P(2,8) for the function $f(x) = \sqrt{x-4}$. By the Inverse Function Theorem, the slope of the tangent line is $\frac{1}{f'(f^{-1}(2))}$.

First, we find f'(x). We have

$$f(x) = \sqrt{x-4}$$

and differentiating,

$$f'(x) = \frac{1}{2\sqrt{x-4}}.$$

Next, we need to find $f^{-1}(2)$. Since $f(8) = \sqrt{8-4} = 2$, we have $f^{-1}(2) = 8$.

Now, evaluate f'(8):

$$f'(8) = \frac{1}{2\sqrt{8-4}} = \frac{1}{4}.$$

Therefore, the slope of the tangent line to f^{-1} at P(2,8) is

$$\frac{1}{f'(8)} = 4.$$

Using the point-slope form of the equation of a line, the tangent line is

$$y - 8 = 4(x - 2)$$
.

Note that the above equation is the same as y = 4x, which we got in the previous problem.

5. Find the derivatives of the following functions:

(a)
$$y = \arccos(\sqrt{x})$$

(c)
$$y = \sqrt{\csc^{-1}(x)}$$

(b)
$$y = \sec^{-1}(-x)$$

(d)
$$v = x \csc^{-1}(x)$$

Solution:

(a) For $y = \arccos(\sqrt{x})$:

$$\frac{dy}{dx} = -\frac{1}{\sqrt{1 - (\sqrt{x})^2}} \cdot \frac{1}{2\sqrt{x}} = -\frac{1}{2\sqrt{x(1 - x)}}$$

(b) For $y = \sec^{-1}(-x)$:

$$\frac{dy}{dx} = \frac{1}{(-x)\sqrt{(-x)^2 - 1}} \cdot (-1) = \frac{1}{x\sqrt{x^2 - 1}}$$

(c) For $y = \sqrt{\csc^{-1}(x)}$:

$$\frac{dy}{dx} = \frac{1}{2\sqrt{\csc^{-1}(x)}} \cdot \frac{d}{dx}(\csc^{-1}(x)) = \frac{1}{2\sqrt{\csc^{-1}(x)}} \cdot \frac{-1}{|x|\sqrt{x^2 - 1}}$$

(d) For $y = x \csc^{-1}(x)$:

$$\frac{dy}{dx} = \csc^{-1}(x) + x \cdot \frac{d}{dx}(\csc^{-1}(x)) = \csc^{-1}(x) + x \cdot \frac{-1}{x\sqrt{x^2 - 1}}$$

Simplifying gives:

$$\frac{dy}{dx} = \csc^{-1}(x) - \frac{1}{\sqrt{x^2 - 1}}$$

6. For each of the following, use the given values to find $(f^{-1})'(a)$: functions:

(a)
$$f(\pi) = 0$$
, $f'(\pi) = -1$, $a = 0$

(c)
$$f(1) = 0$$
, $f'(1) = -2$, $a = 0$

(b)
$$f(6) = 2$$
, $f'(6) = 1/3$, $a = 2$

(d)
$$f(\sqrt{3}) = 1/2$$
, $f'(\sqrt{3}) = 2/3$, $a = 1/2$

Solution:

(a) For $f(\pi) = 0$, $f'(\pi) = -1$, a = 0:

$$f^{-1}(0) = \pi \implies (f^{-1})'(0) = \frac{1}{f'(\pi)} = \frac{1}{-1} = -1.$$

(b) For f(6) = 2, $f'(6) = \frac{1}{3}$, a = 2:

$$f^{-1}(2) = 6 \implies (f^{-1})'(2) = \frac{1}{f'(6)} = \frac{1}{\frac{1}{2}} = 3.$$

(c) For f(1) = 0, f'(1) = -2, a = 0:

$$f^{-1}(0) = 1 \implies (f^{-1})'(0) = \frac{1}{f'(1)} = \frac{1}{-2} = -\frac{1}{2}.$$

(d) For $f(\sqrt{3}) = \frac{1}{2}$, $f'(\sqrt{3}) = \frac{2}{3}$, $a = \frac{1}{2}$:

$$f^{-1}\left(\frac{1}{2}\right) = \sqrt{3} \implies (f^{-1})'\left(\frac{1}{2}\right) = \frac{1}{f'(\sqrt{3})} = \frac{1}{\frac{2}{3}} = \frac{3}{2}.$$

7. Suppose $f(t) = t^3 + 4t + 2$. Find the slope of the tangent line to the graph of $g(x) = xf^{-1}(x)$ at the point x = 7.

Solution:

We need to find g'(x) at x = 7. To differentiate g(x), we apply the product rule:

$$g'(x) = f^{-1}(x) + x \cdot (f^{-1})'(x).$$

So

$$g'(7) = f^{-1}(7) + 7 \cdot (f^{-1})'(7).$$

Let's first find $f^{-1}(7)$. This amounts to solving the equation f(x) = 7:

$$x^3 + 4x + 2 = 7 \implies x^3 + 4x - 5 = 0.$$

By trial (together with the rational root theorem), we find that x = 1 is a root:

$$1^3 + 4(1) - 5 = 0$$
.

Thus, f(1) = 7, so $f^{-1}(7) = 1$.

Now we need to find $(f^{-1})'(7)$.

$$(f^{-1})'(7) = \frac{1}{f'(f^{-1}(7))} = \frac{1}{f'(1)} = \frac{1}{3(1)+4} = \frac{1}{7}$$

Therefore,

$$g'(7) = 1 + 7 \cdot \left(\frac{1}{7}\right) = 1 + 1 = 2.$$