ECE3 FALL QUARTER 2020 LECTURE 5

MAXIMUM POWER TRANSFER

RESLK SENSOR CALIBRATION

SINUSOIDAL STEADY-STATE (SSS) AC CIRCUITS

MAXIMUM POWER TRANSFER

What value of R_L maximizes power to R_L (P_{RL})?

To find max, take derivative & sext = 0,

$$\frac{dP_{R_1}}{dR_2} = \frac{d}{dR_2} \left[\frac{V_{tu}}{R_1 + R_2} R_1 \right]_{0}$$

Re = Rep for more power to Re.

MATCHING

RSLK SENSOR CALIBRATION

TAKING PATH SENSOR CALIBRATION MEASUREMENTS

https://youtu.be/swOMZOSCpzM

SENSOR FUSION EXPLANATION

https://youtu.be/KrjccJ-EVjE

SINUSOIDAL STEADY-STATE (SSS) AC CIRCUITS

Why sinusoidal?
Why Steady-State?
Complex Representation
The Complex Plane
AC Voltages and Currents
Complex to Real World
Impedance
Impedance
Impedance Forms
Impedance vs V/I Phasors
SSS Calculations
Inductive Reactance Derivation
Circuit Analysis

LECTURE 6

Frequency Response

Resonance

Filters

Cutoff Frequency

Filter Types

WHY SINUSOIDAL?

2. Fourier Series

Any repetitive waveform can be represented by a (possibly infinite)series of simusoids of varying amplitude.

Square wave

$$\frac{4A}{\pi} \left(\cos \omega_i t - \frac{1}{3} \cos 3\omega_i t + \frac{1}{5} \cos 5\omega_i t - \frac{1}{7} \cos 7\omega_i t + \cdots \right)$$

> Triangular wave

$$\frac{8A}{\pi^2} \left(\cos \omega_1 t + \frac{1}{9} \cos 3\omega_1 t + \frac{1}{25} \cos 5\omega_1 t + \cdots \right)$$

> Sawtooth wave

$$\rightarrow \frac{2A}{\pi} \left(\sin \omega_1 t - \frac{1}{2} \sin 2\omega_1 t + \frac{1}{3} \sin 3\omega_1 t - \frac{1}{4} \sin 4\omega_1 t + \cdots \right)$$

WHY STEADY-STATE?

Steady-state is main operating mode for many use cases, where efficiency is important.

1. HVAC -- heating, ventilation, & air conditioning
2. Some electric cars: Tesla, Chery Bolt

3. Wireless communications

ALSO;

4. Calculations are easy pur déférential equations!

COMPLEX REPRESENTATION

V-1' = 1

Complex #s:

- · Eulerian: ej0
- · Cartasian } a + j b
 Rectargular }
- · Polar: c/o

THE COMPLEX PLANE

COMPLEX TO REAL WORLD

$$v(t) = Ce^{i\theta} = a + ib = C/\theta$$

$$j\theta = j\omega t \quad \omega : rad/s \quad t : r$$

$$rad/s \neq s = rad$$

$$ROTATING VECTO$$

$$v(t) = Ce^{i\theta} = a + ib = C/\theta$$

$$rad/s \quad t : r$$

$$rad/s \neq s = rad$$

$$rad/s \quad \forall s = rad$$

So, for a given frequency w, v(t) can be written as $v(t) = C \cos(wt + \theta)$

ALL REAL H's!

IMPEDANCE

A superset of resistance.

MPEDANCE (Z)

Resistance (R)

Reaction (X, X, Xc)

inductive a capacitive

Reactive Impedance (Z, Zc)

It is convenient to represent impedance as a complex-number quantity.

REACTANCE, REACTIVE IMPEDANCE, AND IMPEDANCE

Reactance: **REAL** #
$$\mathcal{L}_{x}, X_{c} = \frac{1}{\omega c}$$

$$X_{b} = \omega L$$

Reactive Impedance TMAGINARY #

$$G_{\kappa}$$
; $Z_{c} = \int_{i\omega c}^{i\omega c} \int_{i\omega c}^{i$

Impedance COMPLEX #

$$\mathcal{E}_{x}$$
: $Z = R + j X$

$$Z = R - j (\overline{\omega}c)$$

$$Z = R + j \omega L$$

IMPEDANCE vs PHASORS

Both are compley.

Impedances represent CONSTANT quantities,

Phasors represent TIME-VARIING quantities,

Impedance Processor Time-VARIING quantities,

Two Represent Time-VARIING quantities,

Represent Time-VAR

Phasor

For the RETATES, EVEN

THOUGH THE "Wt"

REFACTOR IS ONLY

UNDERSTOOD TO

BE THERE ("St" IS

NOT INCLUDED

IN PHASOR

NOTATION).

SSS CALCULATIONS

All cht calculations in SSS are the same as for DC except the calculations use complex Hs. Only complex arithmetic.

REACTIVE IMPEDANCE DERIVATION

Let
$$v(t) = e^{j\omega t}$$

We want $X_{L} = \frac{v(t)}{v(t)}$
 $v(t)$
 $v(t)$

We want $X_{L} = \frac{v(t)}{v(t)}$
 $v(t)$
 $v(t$

SIMPLE CIRCUIT ANALYSIS

$$Z_{c} = -j(\sqrt{\omega c}) = -j(\sqrt{(108)(208-6)})$$

$$Z_{c} = -j50$$

$$Z_{c} = -j50$$

$$V(t) = 10 \le 0^{\circ}$$

$$W = 1000$$

$$V(t) = 10 \le 0^{\circ}$$

$$KVC: -1060^{\circ} + i Z_{c} + i Z_{c} + i Z_{c} + i R = 0$$

$$Z_{ToT} = -j50 + j100 + 20 = 20 + j50$$

$$i Z_{ToT} = i (20 + j50) = 1060^{\circ}$$

$$i = \frac{1060}{20 + j50} \approx 0.18 [-68^{\circ}]$$

LEARN TO DO THIS ON YOUR CALCULATOR IN YOUR SLEEP!

1 MPEDANCES

PHASORS

BOTH VOLTAGE & CURRENT
PHASORS ROTATE AT
1000 RAD/S.
CURRENT LAGS BEHIND
VOLTAGE.

AC NODE-VOLTAGE CIRCUIT **ANALYSIS**

$$-I + \frac{\sqrt{a}}{-i/0} + \frac{\sqrt{a} - \sqrt{b}}{i0} = 0$$

$$(-i/0) + \frac{\sqrt{a}}{-i/0} + (-i/0) + \frac{\sqrt{a}}{-i/0} + (-i/0) + \frac{\sqrt{a}}{-i/0} = 0$$

$$(-i/0) + \frac{\sqrt{a}}{-i/0} + (-i/0) + \frac{\sqrt{a}}{-i/0} + (-i/0) + \frac{\sqrt{a}}{-i/0} + (-i/0) + \frac{\sqrt{a}}{-i/0} = 0$$

$$(-i/0) + \frac{\sqrt{a}}{-i/0} + (-i/0) + \frac{\sqrt{a}}{-i/0} + (-i/0) + \frac{\sqrt{a}}{-i/0} + (-i/0) + \frac{\sqrt{a}}{-i/0} = 0$$

$$(-i/0) + \frac{\sqrt{a}}{-i/0} + \frac{\sqrt{a} - \sqrt{b}}{-i/0} = 0$$

$$(-i/0) + \frac{\sqrt{a}}{-i/0} + (-i/0) + \frac{\sqrt{a}}{-i/0} + (-i/0) + \frac{\sqrt{a}}{-i/0} + (-i/0) + \frac{\sqrt{a}}{-i/0} = 0$$

$$(-i/0) + \frac{\sqrt{a}}{-i/0} + \frac{\sqrt{a}}{-i/0} + \frac{\sqrt{a}}{-i/0} + \frac{\sqrt{a}}{-i/0} + \frac{\sqrt{a}}{-i/0} = 0$$

$$(-1+i) v_{a} - i v_{b} = j' 100$$

 $-i v_{a} + (2+i3) v_{b} = 0$

$$v_a = 58.8 - j64.7 = 87.5 (-47.7)$$

 $v_b = 23.5 - j6.9 = 24.3 (166)$