

Zadanie C4: Deadline

Mały pokoik w bursie. Porozrzucane kartki z obliczeniami, jakieś książki, niedojedzona pizza... Po nieprzespanej nocy przed komputerem Barnaba, uczeń klasy algorytmicznej Liceum Ogólnokształcącego w Bitowicach Dolnych. Jest poniedziałek, godzina 09:49. Robi się nerwowo. Zostało 10 minut do ostatecznego terminu oddania zadania z algorytmiki. Ostatnie poprawki... i nagle... pada komputer! Co robić?! Jedyną szansą dla Barnaby jest dobiec do najbliższej kawiarenki internetowej. Tylko która jest najbliżej? Czy Barnaba zdąży oddać programy w terminie?

Bitowice Dolne są małym miasteczkiem o regularnym kształcie. Składa się na nie $n\cdot m$ budynków. Wszystkie ulice przecinają się pod kątem prostym. Mapę miasteczka można zatem naszkicować na kartce w kratkę, rysując na niej prostokąt o bokach n oraz :math'm'. Każdej kratce odpowiada jeden budynek. Odległość między dwoma sąsiednimi (stykającymi się bokami) budynkami można pokonać biegiem w ciągu 1 minuty. Przez niektóre budynki przebiegać nie można – w nocy pilnują ich psy, które mają przykry zwyczaj biegania szybciej niż Barnaba.

Twoim zadaniem jest dla każdego budynku Bitowic wyznaczyć czas dotarcia do najbliższej kawiarenki internetowej. Możesz założyć, że w mieście znajduje się co najmniej jedna taka kawiarenka.

Wejście

Pierwsza linia wejścia zawiera liczbę całkowitą z ($1 \le z \le 2*10^9$) – liczbę zestawów danych, których opisy występują kolejno po sobie. Opis jednego zestawu jest następujący:

W pierwszej linii znajdują się dwie liczby całkowite n oraz m ($1 \le n, m \le 2000$) oddzielone spacją oznaczające wymiary mapy Bitowic Dolnych.

W każdej z kolejnych n linii znajduje się m liczb – opis jednego szeregu budynków. Liczba $\mathbf{0}$ odpowiada zwykłym budynkom, $\mathbf{1}$ – kawiarenkom internetowym, zaś $\mathbf{2}$ niedostępnym budynkom.

Wyjście

Dla każdego zestawu danych wypisz m linii stanowiących zestaw odpowiedzi na zadane pytanie. Opis jednego zestawu odpowiedzi jest następujący: i-ta linia zestawu $(1 \le i \le n)$ zawiera m liczb całkowitych $d(i,1),\ldots,d(i,m)$ oddzielonych spacją takich, że d(i,j) jest czasem dotarcia z budynku o współrzędnych (i,j) do najbliższej kawiarenki internetowej. Jeśli z danego miejsca nie da się dotrzeć do żadnej kawiarenki, wypisz zamiast odległości liczbę -1.

Zadanie C4: Deadline 1/2

Kraków
19 stycznia 2015

Przykład

Dla danych wejściowych:	Poprawną odpowiedzią jest:
2	3 2 1
4 3	2 1 0
200	1 0 0
001	0 0 1
011	3 2 1 2 1 0
110	2 1 0 1 2 1
4 6	3 2 1 2 1 2
000001	-1 3 2 1 0 1
001020	
202202	
020010	

Zadanie C4: Deadline 2/2