# 障碍内点法实现实验报告

内容:技术文档与算法文档

姓名: 付乐豪 学号: PB20071456

**时间**: 2023 年 6 月 30 日

目录 1

# 目录

| L | 技术  | 又档    |    |                |    |    |    |   |   |  |  |  |  |  |  |  |  |  |   | 1 |
|---|-----|-------|----|----------------|----|----|----|---|---|--|--|--|--|--|--|--|--|--|---|---|
|   | 1.1 | 运行环   | 境  |                |    |    |    |   |   |  |  |  |  |  |  |  |  |  |   | 1 |
|   | 1.2 | 包含文   | 件  |                |    |    |    |   |   |  |  |  |  |  |  |  |  |  |   | 2 |
|   | 1.3 | 参数配   | 置  |                |    |    |    |   |   |  |  |  |  |  |  |  |  |  |   | 2 |
|   | 1.4 | 调用方   | 法  |                |    |    |    |   |   |  |  |  |  |  |  |  |  |  |   | 2 |
|   | 1.5 | 输出结   | 果  |                |    |    |    |   |   |  |  |  |  |  |  |  |  |  |   | 4 |
| 2 | 算法  | 文档    |    |                |    |    |    |   |   |  |  |  |  |  |  |  |  |  |   | 4 |
|   | 2.1 | 算法流   | 程  |                |    |    |    |   |   |  |  |  |  |  |  |  |  |  |   | 4 |
|   | 2.2 | 实验结   | 果  |                |    |    |    |   |   |  |  |  |  |  |  |  |  |  |   | 6 |
|   |     | 2.2.1 | 实验 | 金设             | 置  |    |    |   |   |  |  |  |  |  |  |  |  |  |   | 6 |
|   |     | 2.2.2 | 测记 | <del>ぱ</del> 结 | 果  |    |    |   |   |  |  |  |  |  |  |  |  |  |   | 6 |
|   |     | 2.2.3 | 参数 | 女与             | 算》 | 去山 | 攵釒 | 效 | 生 |  |  |  |  |  |  |  |  |  | • | 7 |
| 3 | 总结  |       |    |                |    |    |    |   |   |  |  |  |  |  |  |  |  |  |   | 9 |

# 1 技术文档

### 1.1 运行环境

本程序使用 python3.9 版本实现, 主要依赖于一下库:

- import pandas as pd
- import numpy as np
- import sympy

1 技术文档 2

- from sympy import \*
- from sympy import symbols, Matrix, diff
- from cvxopt import solvers, matrix
- import cvxopt
- import matplotlib.pyplot as plt

#### 1.2 包含文件

- 内点法.py: 主要实现障碍内点法算法的脚本文件。
- 迭代过程记录 1.csv: 记录了测试函数 1 迭代过程中的迭代点坐标以及 当前迭代点的目标函数值。
- 迭代过程记录 2.csv: 记录了测试函数 2 迭代过程中的迭代点坐标以及 当前迭代点的目标函数值。
- gap1.png: 绘制了测试函数 1 迭代过程中目标函数的下降情况。
- gap2.png: 绘制了测试函数 2 迭代过程中目标函数的下降情况。

#### 1.3 参数配置

- input\_fun(): 用户可以通过是否注释此函数,选择在运行端手动输入 目标函数还是直接修改代码运行。
- run(func, eq\_cons, ineq\_cons, start, gamma, t, iters=100, epsilon=1e-3): 运行内点法算法的主函数。其中 func 为目标函数,eq\_cons 为等式约束, ineq\_cons 为不等式约束, iters 为最大迭代次数,epsilon 为迭代过程中的容忍度。其中 iters 默认值为 100 次,如果需要更改必须为 int 类型,epsilon 默认值为 1e-3。

#### 1.4 调用方法

本程序提供了两种使用办法(默认使用第二种办法,即用户在运行端输入):

1 技术文档 3

(1) 直接在程序的 218-225 行定义目标函数,约束,起始点和参数  $\gamma,t$ ,并 注释 227 行后直接运行。如下图:

```
# 测试样例2

func = -log(x[0] + x[1])

ineq_cons = [-1 - x[1]]

eq_cons = [x[0] + 2*x[1] - 1]

x0 = 3; x1 = 0

start = Matrix(([x0, x1]]).T

gamma = 1.1

t = 1

# func, eq_cons, ineq_cons, start, gamma, t = input_fun()
```

图 1: 用户输入部分代码

(2) 取消 227 行的注释,在运行段手动输入目标函数,约束,起始点和参数  $\gamma$ ,t, 其中目标函数和约束中 x 的两个分量分别以 x\_0 和 x\_1 表示,不等式约束默认为输入的函数  $\leq$  0; 如果已经输入了全部的不等式约束或者等式约束,请输入空格以结束,如下图:

```
请输入目标函数,其中分量用x_0和x_1表示: 4 * x_0***2 * x_1***2 如果已经输入了所有不等式或者等式约束,请输入空格。请逐个输入不等式约束(<=0): x_1 - 1 请逐个输入等式约束: <=0 + x_1 - 1 请逐个输入等式约束: x_0 + x_1 - 1 请逐个输入等式约束: 请输入x0的初始值: 2 请输入x0的初始值: -1 请输入参数gamma的值(gamma>1): 5 请输入参数t的初始值(t>0): 1
```

图 2: 手动输入范例

#### 1.5 输出结果

内点法脚本运行过程中,会输出每一步的迭代点和目标函数在当前点的取值。如果算法收敛,在运行结束后会输出最优值和最优值点,将记录的迭代过程保存在"迭代过程记录.csv"文件中,并自动绘制迭代曲线。如果在达到设置的最大迭代次数后,仍然没有满足终止条件,也会输出结果,并提示用户应该修改迭代次数和容忍度。如下图:

图 3: 算法收敛的输出结果

图 4: 算法不收敛的输出结果

### 2 算法文档

#### 2.1 算法流程

对于含有等式约束和不等式约束的凸优化问题,障碍内点法通过障碍 函数将原始问题化为只含有等式约束的优化问题,然后对此问题使用牛顿 法求解,算法流程如下图:



图 5: 障碍内点法算法流程(外层循环)

而对于  $\min t f_0(x) + \Phi(x)$  s.t. Ax - b = 0 这一等式约束问题,我们使用牛顿法求解,如下图:



图 6: 障碍内点法算法流程(内层循环)

#### 2.2 实验结果

#### 2.2.1 实验设置

为了测试算法的效果,这里选择了两个优化问题来实现

#### 问题 1:

$$\min_{x \in \mathbb{R}^{2 \times 2}} 4x_0^2 + x_1^2$$

$$s.t. x_1 - 1 \le 0$$

$$x_0 + x_1 - 1 = 0$$
(1)

问题 2:

$$\min_{x \in \mathbb{R}^{2 \times 2}} -\log(x_0 + x_1)$$

$$s.t. \quad -1 - x_1 \le 0$$

$$x_0 + 2x_1 = 1$$
(2)

#### 2.2.2 测试结果

一下函数迭代图为选定某一组参数的情况下,两个测试函数的障碍内 点法的收敛情况:

#### 测试函数 1:



图 7: 测试函数 1 收敛曲线

且选取不同的超参数和初始点时,最终收敛点和收敛值均为:  $x_{opt} = (x_0, x_1) = (0.2, 0.8), f_{min} = 0.8$ 

#### 测试函数 2:



图 8: 测试函数 2 收敛曲线

且选取不同的超参数和初始点时,最终收敛点和收敛值均为:  $x_{opt} = (x_0, x_1) = (3, -1), f_{min} = -\log(2)$ 

#### 2.2.3 参数与算法收敛性

障碍内点法中,需要人为事先指定的超参数有 $\gamma$ , t 和迭代初始点,这里仅以测试函数 1 作为例子研究这两个超参数对于算法收敛性的影响。

表 1:  $\gamma$  和最终迭代函数值(固定 start = (1,0), t = 1)

| 参数 $\gamma$ | 最终函数值 | 迭代次数       |
|-------------|-------|------------|
| $\gamma$    | f(x)  | iterations |
| 1.1         | 0.8   | 73         |
| 1.5         | 0.8   | 18         |
| 3           | 0.8   | 7          |
| 10          | 0.8   | 4          |

从上表可以看出,在满足  $\gamma > 1$  的条件下,随着  $\gamma$  增大,迭代到收敛 点的次数减少,迭代速度增加。

表 2: 初始点和最终迭代函数值(固定  $\gamma = 5, t = 1$ )

| 第一坐标分量 | 第二坐标分量 | 最终函数值 | 迭代次数       |
|--------|--------|-------|------------|
| $x_0$  | $x_1$  | f(x)  | iterations |
| 0.5    | 0.5    | 0.8   | 7          |
| 1      | 0      | 0.8   | 7          |
| 2      | -1     | 0.8   | 7          |
| 100    | -99    | 0.8   | 7          |

从上表可以看出,在满足初始点为可行域内点,即严格可行的情况下, 初始点对于收敛速度的影响较小。

表 3: t 和最终迭代函数值(固定  $start = (1,0), \gamma = 1.5$ )

| 参数 t | 最终函数值 | 迭代次数       |
|------|-------|------------|
| t    | f(x)  | iterations |
| 0.5  | 0.8   | 19         |
| 1    | 0.8   | 18         |
| 2    | 0.8   | 16         |
| 5    | 0.8   | 14         |
| 10   | 0.8   | 12         |

从上表可以看出,在满足t>1的条件下,随着t增大,迭代到收敛点

3 总结 9

的次数减少, 迭代速度增加。

总的来说,上述讨论的三个超参数(初始点, $\gamma$ , t)中,对于收敛速度 有影响的是  $\gamma$  和 t,二者越大时,收敛速度越快;而对比二者时,发现  $\gamma$  对于收敛速度的影响更大。

## 3 总结

本程序实现了障碍内点法算法,在内层循环时使用 Newton 算法处理含有等式约束的优化问题,实现了算法的基本功能,并测试了  $\gamma$ , t 和迭代初始点这三个超参数对于收敛速度的影响。同时本程序还提供了一定的用户接口,可以让用户自主选择使用方式。