```
In [2]: import pandas as pd

In [3]: import warnings
    warnings.filterwarnings("ignore")

In [4]: data=pd.read_csv("/home/placement/Downloads/Titanic Dataset.csv")

In [5]: data.describe()
```

Out[5]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [6]: data.isna().sum() Out[6]: PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0

Embarked dtype: int64

0

2

687

In [7]: data.head(10)

Fare

Cabin

Out[7]:	Passe	Passengerld Survived Pclass		Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
:	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
:	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
:	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
•	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
!	5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
(6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
	7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
:	8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
!	9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

```
In [8]: data['Pclass'].unique()
Out[8]: array([3, 1, 2])
In [9]: data['Survived'].unique()
Out[9]: array([0, 1])
In [10]: data['SibSp'].unique()
Out[10]: array([1, 0, 3, 4, 2, 5, 8])
```

```
In [11]: data['Fare'].unique()
Out[11]: array([
                   7.25
                             71.2833,
                                         7.925 ,
                                                   53.1
                                                               8.05
                                                                          8.4583.
                   51.8625.
                             21.075 .
                                        11.1333.
                                                   30.0708,
                                                              16.7
                                                                         26.55
                              7.8542.
                                                              13.
                   31.275 .
                                        16.
                                                   29.125 .
                                                                         18.
                                                              31.3875,
                   7.225 ,
                                         8.0292,
                                                   35.5
                             26.
                                                                        263.
                    7.8792,
                              7.8958,
                                        27.7208, 146.5208,
                                                               7.75
                                                                         10.5
                  82.1708.
                             52.
                                         7.2292,
                                                               9.475 .
                                                                         21.
                                                   11.2417,
                  41.5792,
                             15.5
                                        21.6792,
                                                   17.8
                                                              39.6875,
                                                                          7.8
                  76.7292,
                                                   46.9
                                                              80.
                                                                         83.475 ,
                             61.9792,
                                        27.75
                                         8.1583,
                                                    8.6625,
                  27.9
                             15.2458.
                                                              73.5
                                                                         14.4542.
                  56.4958.
                              7.65
                                                               9.
                                        29.
                                                   12.475 ,
                                                                          9.5
                                        15.85
                                                   34.375 ,
                                                              61.175
                   7.7875,
                             47.1
                                                                         20.575
                                        23.
                                                   77.2875,
                                                               8.6542,
                   34.6542,
                             63.3583,
                                                                          7.775 ,
                              9.825 ,
                                        14.4583, 247.5208,
                   24.15
                                                               7.1417,
                                                                         22.3583,
                   6.975 ,
                                        14.5
                              7.05
                                                   15.0458,
                                                              26.2833,
                                                                          9.2167,
                  79.2
                              6.75
                                        11.5
                                                   36.75
                                                               7.7958,
                                                                         12.525 ,
                  66.6
                              7.3125,
                                        61.3792,
                                                    7.7333,
                                                              69.55
                                                                         16.1
                  15.75
                             20.525 ,
                                        55.
                                                   25.925 ,
                                                              33.5
                                                                         30.6958,
                                                              39.
                                         0.
                  25.4667,
                             28.7125,
                                                   15.05
                                                                         22.025 ,
                  50.
                              8.4042,
                                         6.4958,
                                                   10.4625,
                                                              18.7875,
                                                                         31.
                                                                         13.5
                             27.
                                        76.2917,
                                                   90.
                                                               9.35
                 113.275
                             26.25
                                        12.275 ,
                                                    7.125 ,
                                                              52.5542,
                    7.55
                                                                         20.2125,
                          , 512.3292,
                   86.5
                                        79.65
                                                , 153.4625, 135.6333,
                                                                         19.5
                   29.7
                            77.9583,
                                        20.25
                                                   78.85
                                                              91.0792,
                                                                         12.875 ,
                   8.85
                          , 151.55
                                        30.5
                                                   23.25
                                                              12.35
                                                                       110.8833,
                                        56.9292,
                                                   83.1583, 262.375
                 108.9
                             24.
                                                                         14.
                 164.8667, 134.5
                                         6.2375,
                                                              28.5
                                                   57.9792,
                                                                        133.65
                  15.9
                               9.225 ,
                                        35.
                                                   75.25
                                                              69.3
                                                                         55.4417,
                              4.0125, 227.525 ,
                                                   15.7417,
                 211.5
                                                               7.7292,
                                                                         12.
                 120.
                             12.65
                                        18.75
                                                    6.8583,
                                                              32.5
                                                                          7.875 ,
                                                              19.2583,
                             55.9
                                         8.1125,
                                                   81.8583,
                  14.4
                                                                         19.9667,
                             38.5
                                         7.725 ,
                                                               9.8375,
                  89.1042,
                                                   13.7917,
                                                                          7.0458,
                                         9.5875,
                   7.5208,
                             12.2875,
                                                   49.5042,
                                                              78.2667,
                                                                         15.1
                    7.6292,
                             22.525 ,
                                        26.2875,
                                                               7.4958,
                                                   59.4
                                                                         34.0208,
                                                                         13.8625,
                   93.5
                            221.7792,
                                       106.425 ,
                                                   49.5
                                                              71.
                   7.8292,
                                                   51.4792,
                                                              26.3875,
                             39.6
                                        17.4
                                                                         30.
                              8.7125,
                                        15.
                                                   33.
                                                              42.4
                                                                         15.55 ,
                  40.125 .
                             32.3208.
                                         7.0542,
                                                    8.4333,
                                                              25.5875,
                  65.
                                                                          9.8417.
                    8.1375,
                             10.1708, 211.3375,
                                                   57.
                                                              13.4167,
                                                                          7.7417,
                    9.4833,
                                                   23.45
                              7.7375,
                                         8.3625,
                                                              25.9292,
                                                                          8.6833,
```

```
7.8875, 37.0042,
                 8.5167.
                                            6.45 ,
                                                    6.95 ,
                                                               8.3
                 6.4375,
                         39.4
                               , 14.1083, 13.8583, 50.4958,
                 9.8458, 10.5167])
In [12]: data['Parch'].unique()
Out[12]: array([0, 1, 2, 5, 3, 4, 6])
In [13]: data['Age'].unique()
Out[13]: array([22. , 38. , 26. , 35. ,
                                          nan, 54. , 2. , 27. , 14. ,
                4. , 58. , 20. , 39. , 55. , 31. , 34.
                                                          , 15.
                         , 40. , 66. , 42. , 21. , 18.
                         , 65. , 28.5 , 5. , 11.
                                                   , 45.
                                                          , 17.
               16. , 25. , 0.83, 30. , 33. , 23. , 24.
                                                          , 46.
               71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
                                                          , 50.
               51. , 55.5 , 40.5 , 44. , 1. , 61. , 56.
               45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
               60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
               70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
In [14]: data['Embarked'].unique()
Out[14]: array(['S', 'C', 'Q', nan], dtype=object)
In [15]: data1=data.drop(['PassengerId','Name','Ticket','Cabin','SibSp','Parch'],axis=1)
```

In [16]: data1

Out[16]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

```
In [17]: data1['Sex']=data1['Sex'].map({'male':1,'female':0})
```

In [18]: data1

Out[18]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	NaN	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

```
In [19]: data1['Pclass'].unique()
```

Out[19]: array([3, 1, 2])

In [20]: data1

Out[20]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	NaN	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

In [21]: data1.fillna(35,inplace=True)

In [22]: data1

Out[22]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	35.0	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

```
In [23]: import seaborn as hh
import matplotlib.pyplot as plt
hh.boxplot(data1['Age'])
```

Out[23]: <Axes: >


```
In [24]: plt.hist(data1['Age'])
Out[24]: (array([ 54., 46., 177., 169., 295., 70., 45., 24.,
                                                                       2.]),
          array([ 0.42 , 8.378, 16.336, 24.294, 32.252, 40.21 , 48.168, 56.126,
                 64.084, 72.042, 80. ]),
          <BarContainer object of 10 artists>)
          300
          250
          200
          150
          100
           50
                      10
                             20
                                    30
                                          40
                                                 50
                                                              70
                0
                                                       60
                                                                    80
```

```
In [25]: plt.hist(datal['Fare'])

Out[25]: (array([732., 106., 31., 2., 11., 6., 0., 0., 0., 3.]), array([ 0. , 51.23292, 102.46584, 153.69876, 204.93168, 256.1646 , 307.39752, 358.63044, 409.86336, 461.09628, 512.3292 ]), <Barcontainer object of 10 artists>)

700 - 600 - 500 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400 - 300 - 400
```

300

200

400

500

200 -

100 -

100

```
In [26]: data1.isna().sum()
Out[26]: Survived
                        0
          Pclass
                        0
           Sex
          Age
          Fare
          Embarked
          dtype: int64
In [27]:
          data1.describe()
Out[27]:
                   Survived
                               Pclass
                                            Sex
                                                      Age
                                                                Fare
                            891.000000
                                      891.000000
                                                891.000000
           count
                 891.000000
                                                           891.000000
           mean
                   0.383838
                              2.308642
                                        0.647587
                                                 30.752155
                                                            32.204208
             std
                   0.486592
                              0.836071
                                        0.477990
                                                 13.173100
                                                            49.693429
                                                  0.420000
             min
                   0.000000
                              1.000000
                                        0.000000
                                                             0.000000
             25%
                   0.000000
                              2.000000
                                        0.000000
                                                 22.000000
                                                             7.910400
             50%
                   0.000000
                              3.000000
                                        1.000000
                                                 32.000000
                                                            14.454200
             75%
                   1.000000
                              3.000000
                                        1.000000
                                                 35.000000
                                                            31.000000
                   1.000000
                              3.000000
                                                 80.000000
                                                           512.329200
            max
                                        1.000000
In [28]:
          data1['Age'].unique()
Out[28]: array([22.
                        , 38.
                                , 26.
                                        , 35.
                                                , 54.
                                                        , 2.
                                                                , 27.
                                                                        , 14.
                        , 20.
                                , 39.
                                        , 55.
                                                , 31.
                   58.
                                                        , 34.
                                                                , 15.
                                        , 42.
                                                , 21.
                                                        , 18.
                                                                 , 3.
                        , 40.
                                , 66.
                                , 28.5 , 5.
                                                , 11.
                                                        , 45.
                                                                , 17.
                                                                         , 32.
                        , 65.
                                                  23.
                           0.83, 30.
                                        , 33.
                                                          24.
                                                                  46.
                                , 14.5 , 70.5
                                                , 32.5 , 12.
                                                                   9.
                                                                        , 36.5
                  55.5 , 40.5 , 44.
                                        , 1.
                                                , 61.
                                                        , 56.
                                                                , 50.
                                       , 52.
                                                , 63.
                  20.5 . 62.
                                , 41.
                                                       , 23.5 , 0.92, 43.
                                                                                 , 60.
                                       , 48. , 0.75, 53.
                                                               , 57.
                                                                       , 80.
                               , 13.
                  24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
```

```
In [29]: data2=data1.groupby(['Age']).count()
In [30]: data2
Out[30]:
                Survived Pclass Sex Fare Embarked
            Age
            0.42
                      1
                                               1
            0.67
                                              1
            0.75
                                 2
                                     2
                                               2
            0.83
                            2
                                 2
                                     2
                                               2
            0.92
                      1
                            1
                                1
                                     1
                                              1
           70.00
                                     2
                                               2
           70.50
           71.00
                                 2
                                     2
                                               2
           74.00
                                1
                                     1
                                              1
           80.00
                      1
                            1
                                1
                                    1
                                              1
          88 rows × 5 columns
In [31]: list(data1)
Out[31]: ['Survived', 'Pclass', 'Sex', 'Age', 'Fare', 'Embarked']
In [32]: data1['Pclass']=data1['Pclass'].map({1:'F',2:'S',3:'Third'})
```

In [33]: data1

Out[33]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	Third	1	22.0	7.2500	S
1	1	F	0	38.0	71.2833	С
2	1	Third	0	26.0	7.9250	S
3	1	F	0	35.0	53.1000	S
4	0	Third	1	35.0	8.0500	S
886	0	S	1	27.0	13.0000	S
887	1	F	0	19.0	30.0000	S
888	0	Third	0	35.0	23.4500	S
889	1	F	1	26.0	30.0000	С
890	0	Third	1	32.0	7.7500	Q

891 rows × 6 columns

In [34]: data1.head(5)

Out[34]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	Third	1	22.0	7.2500	S
1	1	F	0	38.0	71.2833	С
2	1	Third	0	26.0	7.9250	S
3	1	F	0	35.0	53.1000	S
4	0	Third	1	35.0	8.0500	S

In [35]: datal=pd.get_dummies(datal)

In [36]: data1

Out[36]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	7.2500	0	0	1	0	0	0	1
1	1	0	38.0	71.2833	1	0	0	0	1	0	0
2	1	0	26.0	7.9250	0	0	1	0	0	0	1
3	1	0	35.0	53.1000	1	0	0	0	0	0	1
4	0	1	35.0	8.0500	0	0	1	0	0	0	1
									•••		
886	0	1	27.0	13.0000	0	1	0	0	0	0	1
887	1	0	19.0	30.0000	1	0	0	0	0	0	1
888	0	0	35.0	23.4500	0	0	1	0	0	0	1
889	1	1	26.0	30.0000	1	0	0	0	1	0	0
890	0	1	32.0	7.7500	0	0	1	0	0	1	0

891 rows × 11 columns

In [37]: data1.head(500)

Out[37]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	7.2500	0	0	1	0	0	0	1
1	1	0	38.0	71.2833	1	0	0	0	1	0	0
2	1	0	26.0	7.9250	0	0	1	0	0	0	1
3	1	0	35.0	53.1000	1	0	0	0	0	0	1
4	0	1	35.0	8.0500	0	0	1	0	0	0	1
•••											
495	0	1	35.0	14.4583	0	0	1	0	1	0	0
496	1	0	54.0	78.2667	1	0	0	0	1	0	0
497	0	1	35.0	15.1000	0	0	1	0	0	0	1
498	0	0	25.0	151.5500	1	0	0	0	0	0	1
499	0	1	24.0	7.7958	0	0	1	0	0	0	1

500 rows × 11 columns

In [38]: cor_mat=data1.corr()
 cor_mat

Out[38]:

:	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	${\bf Embarked_C}$	${\bf Embarked_Q}$	Embarked _.
Survived	1.000000	-0.543351	-0.083713	0.257307	0.285904	0.093349	-0.322308	0.060095	0.168240	0.003650	-0.1556
Sex	-0.543351	1.000000	0.091930	-0.182333	-0.098013	-0.064746	0.137143	-0.064296	-0.082853	-0.074115	0.1257
Age	-0.083713	0.091930	1.000000	0.074199	0.302149	-0.022021	-0.242412	0.069343	0.036953	0.040528	-0.0650
Fare	0.257307	-0.182333	0.074199	1.000000	0.591711	-0.118557	-0.413333	0.045646	0.269335	-0.117216	-0.1666
Pclass_F	0.285904	-0.098013	0.302149	0.591711	1.000000	-0.288585	-0.626738	0.083847	0.296423	-0.155342	-0.1703
Pclass_S	0.093349	-0.064746	-0.022021	-0.118557	-0.288585	1.000000	-0.565210	-0.024197	-0.125416	-0.127301	0.1920
Pclass_Third	-0.322308	0.137143	-0.242412	-0.413333	-0.626738	-0.565210	1.000000	-0.052550	-0.153329	0.237449	-0.0095
Embarked_35	0.060095	-0.064296	0.069343	0.045646	0.083847	-0.024197	-0.052550	1.000000	-0.022864	-0.014588	-0.0765
Embarked_C	0.168240	-0.082853	0.036953	0.269335	0.296423	-0.125416	-0.153329	-0.022864	1.000000	-0.148258	-0.7783
Embarked_Q	0.003650	-0.074115	0.040528	-0.117216	-0.155342	-0.127301	0.237449	-0.014588	-0.148258	1.000000	-0.4966
Embarked_S	-0.155660	0.125722	-0.065062	-0.166603	-0.170379	0.192061	-0.009511	-0.076588	-0.778359	-0.496624	1.0000

In [39]: cor=data1.corr()
cor

Out[39]:

		Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	${\bf Embarked_C}$	${\bf Embarked_Q}$	Embarked
5	Survived	1.000000	-0.543351	-0.083713	0.257307	0.285904	0.093349	-0.322308	0.060095	0.168240	0.003650	-0.1556
	Sex	-0.543351	1.000000	0.091930	-0.182333	-0.098013	-0.064746	0.137143	-0.064296	-0.082853	-0.074115	0.1257
	Age	-0.083713	0.091930	1.000000	0.074199	0.302149	-0.022021	-0.242412	0.069343	0.036953	0.040528	-0.0650
	Fare	0.257307	-0.182333	0.074199	1.000000	0.591711	-0.118557	-0.413333	0.045646	0.269335	-0.117216	-0.1666
P	class_F	0.285904	-0.098013	0.302149	0.591711	1.000000	-0.288585	-0.626738	0.083847	0.296423	-0.155342	-0.1703
P	class_S	0.093349	-0.064746	-0.022021	-0.118557	-0.288585	1.000000	-0.565210	-0.024197	-0.125416	-0.127301	0.1920
Pclas	s_Third	-0.322308	0.137143	-0.242412	-0.413333	-0.626738	-0.565210	1.000000	-0.052550	-0.153329	0.237449	-0.0095
Emba	rked_35	0.060095	-0.064296	0.069343	0.045646	0.083847	-0.024197	-0.052550	1.000000	-0.022864	-0.014588	-0.0765
Emb	arked_C	0.168240	-0.082853	0.036953	0.269335	0.296423	-0.125416	-0.153329	-0.022864	1.000000	-0.148258	-0.7783
Emba	arked_Q	0.003650	-0.074115	0.040528	-0.117216	-0.155342	-0.127301	0.237449	-0.014588	-0.148258	1.000000	-0.4966
Emb	arked_S	-0.155660	0.125722	-0.065062	-0.166603	-0.170379	0.192061	-0.009511	-0.076588	-0.778359	-0.496624	1.0000

```
In [40]: import seaborn as sns
sns.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidths=.5,cmap='bwr')
```

Out[40]: <Axes: >


```
In [41]: data.groupby('Survived').count()
Out[41]:
                   Passengerld Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
           Survived
                 0
                          549
                                549
                                      549 549
                                              424
                                                     549
                                                           549
                                                                 549
                                                                      549
                                                                             68
                                                                                      549
                1
                          342
                                      342 342 290
                                                     342
                                                                 342
                                                                      342
                                                                            136
                                                                                      340
                                342
                                                           342
In [42]: y=data1['Survived']
          x=data1.drop('Survived',axis=1)
```

In [49]: x_test

Out[49]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
709	1	35.0	15.2458	0	0	1	0	1	0	0
439	1	31.0	10.5000	0	1	0	0	0	0	1
840	1	20.0	7.9250	0	0	1	0	0	0	1
720	0	6.0	33.0000	0	1	0	0	0	0	1
39	0	14.0	11.2417	0	0	1	0	1	0	0
715	1	19.0	7.6500	0	0	1	0	0	0	1
525	1	40.5	7.7500	0	0	1	0	0	1	0
381	0	1.0	15.7417	0	0	1	0	1	0	0
140	0	35.0	15.2458	0	0	1	0	1	0	0
173	1	21.0	7.9250	0	0	1	0	0	0	1

295 rows × 10 columns

In [43]: x

\sim		_	Γ /		п	
u	HT.	Т	12	ᇅᅐ	- 1	
v	u	•	ᄓ	_		

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	1	22.0	7.2500	0	0	1	0	0	0	1
1	0	38.0	71.2833	1	0	0	0	1	0	0
2	0	26.0	7.9250	0	0	1	0	0	0	1
3	0	35.0	53.1000	1	0	0	0	0	0	1
4	1	35.0	8.0500	0	0	1	0	0	0	1
886	1	27.0	13.0000	0	1	0	0	0	0	1
887	0	19.0	30.0000	1	0	0	0	0	0	1
888	0	35.0	23.4500	0	0	1	0	0	0	1
889	1	26.0	30.0000	1	0	0	0	1	0	0
890	1	32.0	7.7500	0	0	1	0	0	1	0

891 rows × 10 columns

0

```
In [44]: y
Out[44]: 0
```

```
2 1
3 1
4 0
...
886 0
887 1
```

888 0 889 1 890 0

Name: Survived, Length: 891, dtype: int64

```
In [45]: from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [46]: from sklearn.linear model import LogisticRegression
         classifier=LogisticRegression()
         classifier.fit(x train,y train)# command for traning / fitting the mode
Out[46]: LogisticRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [47]: y pred=classifier.predict(x test)
In [48]: y_pred
Out[48]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
                1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
                0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
                0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0,
                1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
                0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 1, 1, 0])
In [50]: from sklearn.metrics import confusion matrix
         confusion matrix(y test,y pred)
Out[50]: array([[155, 20],
                [ 37, 83]])
```

In [51]: from sklearn.metrics import accuracy_score
accuracy_score(y_test,y_pred)

Out[51]: 0.8067796610169492

In []: