МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

"	2003 г	٠,٠	2003 г	
	В.И. Кружалин		А.М. Салецкий	
программ и станда профессионально	артов высшего и		проректор МГУ	
Управления образ	вовательных	по классическому университетскому		
Начальник		Зам. председат	геля Совета УМО	
УТВЕРЖДАЮ		УТВЕРЖДА:	Ю	

Примерная программа дисциплины

ТЕОРИЯ КОНЕЧНЫХ ГРАФОВ И ЕЕ ПРИЛОЖЕНИЯ

Рекомендуется Минобразованием России для направления подготовки 511900 Информационные технологии

Москва 2003

ТЕОРИЯ КОНЕЧНЫХ ГРАФОВ И ЕЕ ПРИЛОЖЕНИЯ

ЦЕЛИ И ЗАДАЧИ КУРСА

Дисциплина «Теория конечных графов и ее приложения» ставит своей целью ознакомление студентов с важнейшими разделами теории графов и ее приложениями. К задачам курса относятся: ознакомление студентов с фундаментальными понятиями теории графов для последующего свободного их использования, изучение современной проблематики теории графов, усвоение постановок задач теории графов и методов их решения, овладение основными теоретико-графовыми алгоритмами, применение графовых моделей к различным областям науки. Курс призван существенно углубить понимание слушателями как теоретической базы информатики, так и ее практических методов.

ВВЕДЕНИЕ

Основные понятия теории графов. Типы графов. Цепи, циклы, связность. Изоморфизм и инварианты. Способы задания графов. Некоторые свойства матриц смежности, инцидентности и степеней графов.

ДЕРЕВЬЯ

Деревья. Свойства деревьев. Матричная теорема Кирхгофа о деревьях. Поиск минимального (максимального) остовного леса в графе.

ОБХОДЫ. ЭЛЕМЕНТЫ ЦИКЛОМАТИКИ

Эйлеровы графы. Критерий эйлеровости связного графа. Пространство четных подграфов и множество фундаментальных циклов. Цикломатическое число. Гамильтоновы графы. Признак Хватала гамильтоновости графа.

РАСКРАСКИ

Вершинная раскраска графов. Критерий Кенига двураскрашиваемости графа. Оценки для хроматического числа. Хроматический многочлен графа. Реберная раскраска графов. Теорема Визинга.

МЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГРАФОВ И ЭКСТРЕМАЛЬНЫЕ ЗАДАЧИ

Независимость и покрытия. Оценки для числа независимости графа. Связь между числом независимости и числом вершинного покрытия графа. Связь между числом независимости графа и кликовым числом дополнительного графа. Связь между числом паросочетания и числом реберной независимости (теорема Галлаи). Числа вершинной и реберной связности. Понятие k-связного графа. Теорема о числе общих вершин в k-компонентах графа. Сепараторы и разрезы. Теорема Менгера. Теорема Холла.

ГЛОБАЛЬНЫЙ АНАЛИЗ ГРАФОВ. АЛГОРИТМЫ НА ГРАФАХ

Поиск в глубину и в ширину в графе. Топологическая сортировка вершин бесконтурного орграфа. Задача о кратчайшем пути. Алгоритмы Форда-Беллмана и Дейкстры. Задача о расстояниях между всеми парами вершин графа. Алгоритм Флойда. Транзитивное замыкание. Алгоритм Уоршалла. Алгоритм построения наибольшего паросочетания и наименьшего вершинного покрытия.

ПЕРЕЧИСЛИТЕЛЬНЫЕ ВОПРОСЫ ТЕОРИИ ГРАФОВ

Число помеченных простых графов и орграфов. Экспоненциальные производящие функции и трактовка операций над ними. Лемма о пересчете

помеченных графов. Рекуррентное соотношение для числа связных помеченных графов. Асимптотика числа связных помеченных графов. Число помеченных деревьев (теорема Кэли). Утверждение о производящей функции для помеченных блоков.

ПРИЛОЖЕНИЯ ГРАФОВ ДЛЯ ЗАДАЧ ПРОГРАММИРОВАНИЯ

Графы как модели программ, процессов, информационных структур.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Введение в теорию графов. Основные понятия. Проблемы изоморфизма и восстановления (4 часа). Деревья и их свойства (4 часа). Эйлеровы и гамильтоновы графы. Задача коммивояжера (4 часа). Раскраски (4 часа). Метрические характеристики графов и экстремальные задачи (6 часов). Алгоритмы на графах (6 часов). Перечисление графов (4 часа). Приложения к программированию (4 часа).

РАСПРЕДЕЛЕНИЕ ЧАСОВ КУРСА ПО ТЕМАМ И ВИДАМ РАБОТ

No	Наименование раздела	Всего	Аудиторные	Самостояте
Π/Π		(часов)	занятия	льная
			(часов)	работа
				(часов)
1.	Введение	12	8	4
2.	Деревья	12	8	4
3.	Обходы. Элементы	12	8	4
	цикломатики			
4.	Раскраски	12	8	4
5.	Метрические характеристики	18	12	6
	графов и экстремальные			
	задачи			
6.	Глобальный анализ графов.	20	14	6
	Алгоритмы на графах			
7.	Перечислительные вопросы	14	10	4
	теории графов			
8.	Приложения графов для	8	4	4
	задач программирования			
	ИТОГО:	108	72	36

Форма итогового контроля: экзамен.

ЛИТЕРАТУРА

- 1. В. А. Емеличев, О. И. Мельников, В. И. Сарванов, Р. И. Тышкевич. Лекции по теории графов. М.: Наука, 1990. 384 с.
- 2. Ф. Харари. Теория графов. M.: Мир, 1973. 300 c.
- 3. Ф. Харари, Э. Палмер. Перечисление графов. M.: Мир, 1977. 324 с.
- 4. Н. Кристофидес. Теория графов. Алгоритмический подход М.: Мир, 1978. 432 с.
- 5. У. Татт. Теория графов. M.: Мир, 1988. 424 c.
- 6. М. О. Асанов, В. А. Баранский, В. В. Расин. Дискретная математика: графы, матроиды, алгоритмы. Ижевск: РХД, 2001. 288 с.
- 7. Р. Басакер, Т. Саати. Конечные графы и сети. M.: Hayкa, 1974. 366 с.

Программа составлена доцентом Д. С. Романовым (Московский университет).