CS162 Operating Systems and Systems Programming Lecture 17

Performance Storage Devices, Queueing Theory

October 25, 2017

Prof. Ion Stoica

http://cs I 62.eecs.Berkeley.edu

Review: Basic Performance Concepts

- Response Time or Latency: Time to perform an operation
- Bandwidth or Throughput: Rate at which operations are performed (op/s)
 - Files: NB/s, Networks: Mb/s, Arithmetic: GFLOP/s
- Start up or "Overhead": time to initiate an operation
- Most I/O operations are roughly linear in n bytes
 - Latency(n) = Overhead + n/Bandwidth

Solid State Disks (SSDs)

- 1995 Replace rotating magnetic media with non-volatile memory (battery backed DRAM)
- 2009 Use NAND Multi-Level Cell (2 or 3-bit/cell) flash memory
 - Sector (4 KB page) addressable, but stores 4-64 "pages" per memory block
 - Trapped electrons distinguish between I and 0
- No moving parts (no rotate/seek motors)
 - Eliminates seek and rotational delay (0.1-0.2ms access time)
 - Very low power and lightweight
 - Limited "write cycles"
- Rapid advances in capacity and cost ever since!

10/25/17 CS162 © UCB Fall 2017 Lec 17.3

- Latency = Queuing Time + Controller time + Xfer Time
- Highest Bandwidth: Sequential OR Random reads

SSD Architecture – Writes

- Writing data is complex! (\sim 200 μ s 1.7ms)
 - Can only write empty pages in a block
 - − Erasing a block takes ~ I.5ms
 - Controller maintains pool of empty blocks by coalescing used pages (read, erase, write), also reserves some % of capacity
- Rule of thumb: writes 10x reads, erasure 10x writes

Typical NAND Flash Pages and Blocks

https://en.wikipedia.org/wiki/Solid-state_drive

Amusing calculation: is a full Kindle heavier than an empty one?

- Actually, "Yes", but not by much
- Flash works by trapping electrons:
 - So, erased state lower energy than written state
- Assuming that:
 - Kindle has 4GB flash
 - $-\frac{1}{2}$ of all bits in full Kindle are in high-energy state
 - High-energy state about 10⁻¹⁵ joules higher
 - Then: Full Kindle is 1 attogram (10^{-18} gram) heavier (Using E = mc^2)
- Of course, this is less than most sensitive scale can measure (it can measure 10^{-9} grams)
- Of course, this weight difference overwhelmed by battery discharge, weight from getting warm,
- According to John Kubiatowicz (New York Times, Oct 24, 2011)

SSD Summary

- Pros (vs. hard disk drives):
 - Low latency, high throughput (eliminate seek/rotational delay)
 - No moving parts:
 - » Very light weight, low power, silent, very shock insensitive
 - Read at memory speeds (limited by controller and I/O bus)

No longer true!

- Cons
 - Small storage (0.1-0.5x disk), expensive (3-20x disk)
 - » Hybrid alternative: combine small SSD with large HDD
 - Asymmetric block write performance: read pg/erase/write pg
 - » Controller garbage collection (GC) algorithms have major effect on performance
 - Limited drive lifetime
 - » I-10K writes/page for MLC NAND
 - » Avg failure rate is 6 years, life expectancy is 9-11 years
- These are changing rapidly!

What Goes into Startup Cost for I/O?

Syscall overhead

Operating system processing

Controller Overhead

Startup cost (fixed overhead)

- Device Startup
 - Mechanical latency for a disk
 - Media Access + Speed of light + Routing for network

Queuing (next topic)

I/O Performance

Response Time = Queue + I/O device service time

- Performance of I/O subsystem
 - Metrics: Response Time, Throughput
 - Effective BW per op = transfer size / response time

I/O Performance

- Performance of I/O subsystem
 - Metrics: Response Time, Throughput
 - Effective BW per op = transfer size / response time
 - \Rightarrow EffBW(n) = n / (S + n/B) = B / (I + SB/n)
 - Contributing factors to latency:
 - » Software paths (can be loosely modeled by a queue)
 - » Hardware controller
 - » I/O device service time
- Queuing behavior:
 - Can lead to big increases of latency as utilization increases

 $\frac{10/25/17}{10}$ Solutions?

0%

Throughput (Utilization)

100%

(% total BW)

A Simple Deterministic World

- Assume requests arrive at regular intervals, take a fixed time to process, with plenty of time between ...
- Service rate $(\mu = I/T_S)$ operations per sec
- Arrival rate: $(\lambda = I/T_A)$ requests per second
- Utilization: $U = \lambda/\mu$, where $\lambda < \mu$
- Average rate is the complete story

A Ideal Linear World

- What does the queue wait time look like?
 - Grows unbounded at a rate $\sim (T_s/T_A)$ till request rate subsides

A Bursty World

- Requests arrive in a burst, must queue up till served
- Same average arrival time, but almost all of the requests experience large queue delays
- Even though average utilization is low

So how do we model the burstiness of arrival?

- Elegant mathematical framework if you start with exponential distribution
 - Probability density function of a continuous random variable with a mean of $1/\lambda$
 - $f(x) = \lambda e^{-\lambda x}$
 - "Memoryless"

Likelihood of an event occurring is independent of how long we've been waiting

> Lots of short arrival intervals (i.e., high instantaneous rate)

Few long gaps (i.e., low instantaneous rate)

Background: General Use of Random Distributions

- Server spends variable time (T) with customers
 - Mean (Average) $m = \sum p(T) \times T$
 - Variance (stddev²) $\sigma^2 = \Sigma p(T) \times (T-m)^2 = \Sigma p(T) \times T^2 m^2$
 - Squared coefficient of variance: $C = \sigma^2/m^2$ Aggregate description of the distribution

- Important values of C:
 - No variance or deterministic $\Rightarrow C=0$
 - "Memoryless" or exponential $\Rightarrow C=1$
 - » Past tells nothing about future
 - » Poisson process purely or completely random process
 - » Many complex systems (or aggregates) are well described as memoryless
 - Disk response times C ≈ 1.5 (majority seeks < average)

Introduction to Queuing Theory

- What about queuing time??
 - Let's apply some queuing theory
 - Queuing Theory applies to long term, steady state behavior ⇒
 Arrival rate = Departure rate
- Arrivals characterized by some probabilistic distribution
- Departures characterized by some probabilistic distribution

Little's Law

- In any stable system
 - Average arrival rate = Average departure rate
- The average number of jobs/tasks in the system (N) is equal to arrival time / throughput (λ) times the response time (L)
 - $-N (jobs) = \lambda (jobs/s) \times L (s)$
- Regardless of structure, bursts of requests, variation in service
 - Instantaneous variations, but it washes out in the average
 - Overall, requests match departures

Example

$$A: N = \lambda \times L$$

• E.g., $N = \lambda x L = 5$

10/25/17 CS162 © UCB Fall 2017 Lec 17.20

Navg =
$$S/T = (L(1) + ... + L(k))/T$$

Administrivia

- Regrade request deadline Tue 10/31 at midnight
 - Please only submit regrade requests for grading errors!
- Ion out again on Monday (attending SOSP), 10/29
 - Lecture will be given by Anthony Joseph

BREAK

A Little Queuing Theory: Some Results (1/2)

- Assumptions:
 - System in equilibrium; No limit to the queue
 - Time between successive arrivals is random and memoryless

- Parameters that describe our system:
 - $-\lambda$: mean number of arriving customers/second
 - T_{ser}: mean time to service a customer ("m")
 - C: squared coefficient of variance = σ^2/m^2
 - $-\mu$: service rate = I/T_{ser}
 - u: server utilization ($0 \le u \le I$): $u = \lambda/\mu = \lambda \times T_{ser}$
- Parameters we wish to compute:
 - $-T_a$: Time spent in queue
 - $-L_q$: Length of queue = $\lambda \times T_q$ (by Little's law)

A Little Queuing Theory: Some Results (2/2)

- Parameters that describe our system:
 - $-\lambda$: mean number of arriving customers/second $\lambda = 1/T_A$
 - T_{ser}: mean time to service a customer ("m")
 - C: squared coefficient of variance = σ^2/m^2
 - $-\mu$: service rate = $1/T_{ser}$
 - u: server utilization ($0 \le u \le I$): $u = \lambda/\mu = \lambda \times T_{ser}$
- Parameters we wish to compute:
 - $-T_a$: Time spent in queue
 - $-L_q$: Length of queue = $\lambda \times T_q$ (by Little's law)
- **Results** (M: Poisson arrival process, I server):
 - Memoryless service time distribution (C = I): Called an M/M/I queue
 - $T_q = T_{ser} \times u/(1 u)$
 - General service time distribution (no restrictions): Called an M/G/I queue

$$T_{q} = T_{ser} \times \frac{1}{2}(1+C) \times \frac{u}{(1-u)}$$

A Little Queuing Theory: An Example (1/2)

• Example Usage Statistics:

- User requests 10 x 8KB disk I/Os per second
- Requests & service exponentially distributed (C=1.0)
- Avg. service = 20 ms (From controller + seek + rotation + transfer)

Questions:

- How utilized is the disk (server utilization)? Ans:, $u = \lambda T_{ser}$
- What is the average time spent in the queue? Ans: T_q
- What is the number of requests in the queue? Ans: Lq
- What is the avg response time for disk request? Ans: $T_{sys} = T_q + T_{ser}$

A Little Queuing Theory: An Example (2/2)

Questions:

- How utilized is the disk (server utilization)? Ans:, $u = \lambda T_{ser}$
- What is the average time spent in the queue? Ans: T_a
- What is the number of requests in the queue? Ans: La
- What is the avg response time for disk request? Ans: $T_{sys} = T_q + T_{ser}$

• Computation:

```
\begin{array}{lll} \lambda & (\text{avg \# arriving customers/s}) = 10/s \\ T_{\text{ser}} & (\text{avg time to service customer}) = 20 \text{ ms } (0.02s) \\ u & (\text{server utilization}) = \lambda \times T_{\text{ser}} = 10/s \times .02s = 0.2 \\ T_{\text{q}} & (\text{avg time/customer in queue}) = T_{\text{ser}} \times \text{u/(1-u)} \\ & = 20 \times 0.2/(1-0.2) = 20 \times 0.25 = 5 \text{ ms } (0.005s) \\ L_{\text{q}} & (\text{avg length of queue}) = \lambda \times T_{\text{q}} = 10/s \times .005s = 0.05s \\ T_{\text{sys}} & (\text{avg time/customer in system}) = T_{\text{q}} + T_{\text{ser}} = 25 \text{ ms} \end{array}
```

10/25/17 CS162 © UCB Fall 2017 Lec 17.32

Queuing Theory Resources

- Resources page contains Queueing Theory Resources (under Readings):
 - Scanned pages from Patterson and Hennessy book that gives further discussion and simple proof for general equation: https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf
 - A complete website full of resources:
 http://web2.uwindsor.ca/math/hlynka/qonline.html
- Some previous midterms with queueing theory questions
- Assume that Queueing Theory is fair game for Midterm III

Optimize I/O Performance

(% total BW)

Lec 17.34

- More decoupled (Parallelism) systems
- Do other useful work while waiting
 - » Multiple independent buses or controllers
- Optimize the bottleneck to increase service rate
 - » Use the queue to optimize the service
- Queues absorb bursts and smooth the flow
- Add admission control (finite queues)

10/25/17

– Limits delays, but may introduce unfairness and livelock

When is Disk Performance Highest?

- When there are big sequential reads, or
- When there is so much work to do that they can be piggy backed (reordering queues—one moment)
- OK to be inefficient when things are mostly idle
- Bursts are both a threat and an opportunity
- <your idea for optimization goes here>
 - Waste space for speed?
- Other techniques:
 - Reduce overhead through user level drivers
 - Reduce the impact of I/O delays by doing other useful work in the meantime

Disk Scheduling (1/2)

 Disk can do only one request at a time; What order do you choose to do queued requests?

User Requests Head Head

- FIFO Order
 - Fair among requesters, but order of arrival may be to random spots on the disk \Rightarrow Very long seeks
- SSTF: Shortest seek time first
 - Pick the request that's closest on the disk
 - Although called SSTF, today must include rotational delay in calculation, since rotation can be as long as seek
 - Con: SSTF good at reducing seeks, but may lead to starvation

Disk Scheduling (2/2)

 Disk can do only one request at a time; What order do you choose to do queued requests?

User Requests Head

- SCAN: Implements an Elevator Algorithm: take the closest request in the direction of travel
 - No starvation, but retains flavor of SSTF

Disk Scheduling (2/2)

 Disk can do only one request at a time; What order do you choose to do queued requests?

User Requests Head

- C-SCAN: Circular-Scan: only goes in one direction
 - Skips any requests on the way back
 - Fairer than SCAN, not biased towards pages in middle

Summary

- Disk Performance:
 - Queuing time + Controller + Seek + Rotational + Transfer
 - Rotational latency: on average ½ rotation
 - Transfer time: spec of disk depends on rotation speed and bit storage density
- Devices have complex interaction and performance characteristics
 - Response time (Latency) = Queue + Overhead + Transfer» Effective BW = BW * T/(S+T)
 - HDD: Queuing time + controller + seek + rotation + transfer
 - SDD: Queuing time + controller + transfer (erasure & wear)
- Systems (e.g., file system) designed to optimize performance and reliability
 - Relative to performance characteristics of underlying device
- Bursts & High Utilization introduce queuing delays
- Queuing Latency:
 - M/M/I and M/G/I queues: simplest to analyze
 - As utilization approaches 100%, latency $\rightarrow \infty$

$$T_{q} = T_{ser} \times \frac{1}{2}(1+C) \times \frac{u}{(1-u)}$$