LECTURE 6

Data Cleaning and EDA

Exploratory data analysis and its role in the data science lifecycle.

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan (content by Joseph Gonzalez, Deborah Nolan, and Joseph Hellerstein)

Pandas and Jupyter Notebooks

- Introduced DataFrame concepts
 - Series: A named column of data with an index
 - **Indexes**: The mapping from keys to rows
 - **DataFrame**: collection of series with common index
- Dataframe access methods
 - Filtering on predicts and slicing
 - o **df.loc**: location by index
 - df.iloc: location by integer address
 - groupby & pivot aggregating data

Today

Congratulations!

You have **collected** or **been given** a box of data?

What do you do next?

Data Acquisition

Exploratory Data Analysis

Topics For This Lecture

- Understanding the Data
 - Data Cleaning
 - Exploratory Data Analysis (EDA)
 - Basic data visualization
- Common Data Anomalies
 - ... and how to fix them

Data Cleaning

Exploratory Data Analysis

Data Cleaning

- The process of transforming raw data to facilitate subsequent analysis
- Data cleaning often addresses issues
 - structure / formatting
 - missing or corrupted values
 - unit conversion
 - encoding text as numbers
 - 0 ...
- Sadly, data cleaning is a big part of data science...

Big Data Borat

 \Diamond

Following

Data Cleaning

Exploratory Data Analysis

Exploratory Data Analysis (EDA)

"Getting to know the data"

- The process of transforming, visualizing, and summarizing data to:
 - Build/confirm understanding of the data and its provenance
 - Identify and address potential issues in the data
 - Inform the subsequent analysis
 - discover potential hypothesis ... (be careful)
- EDA is an open-ended analysis
 - Be willing to find something surprising

File Formats and Structure

What should we look for?

Key Data Properties to Consider in EDA

- Structure -- the "shape" of a data file
- **Granularity --** how fine/coarse is each datum
- **Scope** -- how (in)complete is the data
- **Temporality** -- how is the data situated in time
- Faithfulness -- how well does the data capture "reality"

Key Data Properties to Consider in EDA

- Structure -- the "shape" of a data file
- Granularity -- how fine/coarse is each datum
- **Scope** -- how (in)complete is the data
- **Temporality** -- how is the data situated in time
- Faithfulness -- how well does the data capture "reality"

Rectangular Data

We prefer rectangular data for data analysis (why?)

- Regular structures are easy manipulate and analyze
- A big part of data cleaning is about transforming data to be more rectangular

Two kinds of rectangular data: *Tables and Matrices* (what are the differences?)

Rectangular Data

We prefer rectangular data for data analysis (why?)

- Regular structures are easy manipulate and analyze
- A big part of data cleaning is about transforming data to be more rectangular

Two kinds of rectangular data: *Tables and Matrices* (what are the differences?)

- 1. Tables (a.k.a. data-frames in R/Python and relations in SQL)
 - Named columns with different types
 - Manipulated using data transformation languages (map, filter, group by, join, ...)

2. Matrices

- Numeric data of the same type
- Manipulated using linear algebra

How are these data files formatted?

Comma and Tab Separated Values Files

- Tabular data where
 - Records are delimited by a newline: "\n", "\r\n"
 - Fields are delimited by ',' (comma) or '\t' (tab)
- Very Common!
- Issues?
 - Commas, tabs in records
 - Quoting
 - 0 ..

JavaScript Object Notation (JSON)

```
## Company Colors of the color of the c
```

- Widely used file format for nested data
 - Very similar to python dictionaries
 - Strict formatting "quoting" addresses some issues in CSV/TSV
- Issues
 - Not rectangular
 - Each record can have different fields
 - Nesting means records can contain tables complicated

Extensible Markup Language - XML (another kind of nested data)

```
<catalog>
  <plant type='a'>
    <common>Bloodroot</common>
    <botanical>Sanguinaria canadensis/botanical>
    <zone>4</zone>
    dight>Mostly Shady</liqht>
    <price>2.44</price>
    <availability>03/15/2006</availability>
    <description>
     <color>white</color>
                                        Nested structure
     <petals>true</petals>
    </description>
    <indoor>true</indoor>
  </plant>
</catalog>
```


Log Data

Is this a csv file? tsv? JSON/XML?

```
169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET /stat141/Winter04 HTTP/1.1" 301 328 "http://anson.ucdavis.edu/courses/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322)"
```

```
169.237.6.168 - - [8/Jan/2014:10:47:58 -0800] "GET /stat141/Winter04/ HTTP/1.1" 200 2585
"http://anson.ucdavis.edu/courses/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322)"
```


Keys and Joins

Primary Key

Structure: Keys

- Often data will reference other pieces of data
- Primary key: the column or set of columns in a table that determine the values of the remaining columns
 - Primary keys are unique
 - Examples: SSN, ProductIDs, ...

Purchases.csv

<u>OrderNum</u>	<u>ProdID</u>	Quantity
1	42	3
1	999	2
2	42	1

Orders.csv

<u>OrderNum</u>	<u>CustID</u>	Date
1	171345	8/21/2017
2	281139	8/30/2017

Products.csv

<u>ProdID</u>	Cost
42	3.14
999	2.72

Primary Key

Customers.csv

<u>CustID</u>	Addr
171345	Harmon
281139	Main

Primary Key

- Structure: Keys
- Often data will reference other pieces of data
- Primary key: the column or set of columns in a table that determine the values of the remaining columns
 - Primary keys are unique
 - Examples: SSN, ProductIDs, ...
- Foreign keys: the column or sets of columns that reference primary keys in other tables.
- You will need to join across tables

		1 010110303.034
<u>OrderNum</u>	<u>ProdID</u>	Quantity
1	42	3
1	999	2
2	42	1

Foreign Key		Orders.csv
<u>OrderNum</u>	<u>CustID</u>	Date
1	171345	8/21/2017
2	281139	8/30/2017

Products.csv

Purchases CSV

<u>ProdID</u>	Cost
42	3.14
999	2.72

Primary Key

X C031	Officis.Csv
<u>CustID</u>	Addr
171345	Harmon

281139

Customers csv

Main ..

Questions to ask about Structure

- Are the data in a standard format or encoding?
 - Tabular data: CSV, TSV, Excel, SQL
 - Nested data: JSON or XML
- Are the data organized in "records"?
 - No: Can we define records by parsing the data?
- Are the data nested? (records contained within records...)
 - Yes: Can we reasonably un-nest the data?
- Does the data reference other data?
 - Yes: can we join/merge the data
- What are the fields in each record?
 - How are they encoded? (e.g., strings, numbers, binary, dates ...)
 - What is the type of the data?

Variable Types

Could be measured to arbitrary precision.

Examples:

- Price
- Temperature

Finite possible values

Examples:

- Number of siblings
- Yrs of education

Categories w/ levels but no consistent meaning to difference

Examples:

- Preferences
- Level of education

Categories w/ no specific ordering.

Examples:

- Political Affiliation
- CallD number

What is the type of variable?

	Quantitative Continuous	Quantitative Discrete	Qualitative Ordinal	Qualitative Nominal
CO ₂ level (PPM)				
Number of siblings				
GPA				
Income bracket (low, med, high)				
Race				
Number of years of education				
Yelp Rating				

Granularity, Scope, and Temporality

- Structure -- the "shape" of a data file
- Granularity -- how fine/coarse is each datum
- **Scope --** how (in)complete is the data
- **Temporality --** how is the data situated in time
- Faithfulness -- how well does the data capture "reality"

- **Structure --** the "shape" of a data file
- **Granularity --** how fine/coarse is each datum
- **Scope --** how (in)complete is the data
- **Temporality --** how is the data situated in time
- Faithfulness -- how well does the data capture "reality"

- What does each record represent?
 - Examples: a purchase, a person, a group of users
- Do all records capture granularity at the same level?
 - o Some data will include summaries (aka rollups) as records
- If the data are coarse how was it aggregated?
 - Sampling, averaging, ...

- **Structure --** the "shape" of a data file
- **Granularity --** how fine/coarse is each datum
- **Scope --** how (in)complete is the data
- **Temporality --** how is the data situated in time
- Faithfulness -- how well does the data capture "reality"

- **Structure --** the "shape" of a data file
- **Granularity --** how fine/coarse is each datum
- **Scope --** how (in)complete is the data
- **Temporality --** how is the data situated in time
- Faithfulness -- how well does the data capture "reality"

Scope

- Does my data cover my area of interest?
 - **Example:** I am interested in studying crime in California but I only have Berkeley crime data.
- Is my data too expansive?
 - **Example:** I am interested in student grades for DS100 but have student grades for all statistics classes.
 - Solution: Filtering ⇒ Implications on sample?
 - If the data is a sample I may have poor coverage after filtering ...
- Does my data cover the right time frame?
 - More on this in temporality ...

Revisiting the Sampling Frame

- The sampling frame is the population from which the data was sampled.
 - Note that this **may not be** the **population** of interest.
- How complete/incomplete is the frame (and its data)?
- How is the frame/data situated in place?
- How well does the frame/data capture reality?
- How is the frame/data situated in time?

- **Structure --** the "shape" of a data file
- **Granularity --** how fine/coarse is each datum
- **Scope --** how (in)complete is the data
- **Temporality --** how is the data situated in time
- Faithfulness -- how well does the data capture "reality"

- **Structure --** the "shape" of a data file
- **Granularity --** how fine/coarse is each datum
- **Scope --** how (in)complete is the data
- **Temporality --** how is the data situated in time
- Faithfulness -- how well does the data capture "reality"

Temporality

- Data changes when was the data collected?
- What is the meaning of the time and date fields?
 - When the "event" **happened**?
 - When the data was collected or was entered into the system?
 - Date the data was copied into a database (look for many matching timestamps)
- Time depends on where! (Time zones & daylight savings)
 - Learn to use datetime python library
 - Multiple string representation (depends on region): 07/08/09?
- Are there strange null values?
 - January 1st 1970, January 1st 1900
- Is there periodicity? Diurnal patterns

Unix Time / POSIX Time

- Time measured in seconds since January 1st 1970
 - Minus leap seconds ...
- Unix time follows Coordinated Universal Time (UTC)
 - International time standard
 - Measured at 0 degrees latitude
 - Similar to Greenwich Mean Time (GMT)
 - No daylight savings
 - Time codes
- Time Zones:
 - San Francisco (UTC-8)
 without daylight savings

https://en.wikipedia.org/wiki/Coordinated_Universal_Time

Faithfulness and Missing Values

- **Structure --** the "shape" of a data file
- Granularity -- how fine/coarse is each datum
- **Scope --** how (in)complete is the data
- **Temporality --** how is the data situated in time
- Faithfulness -- how well does the data capture "reality"

- **Structure --** the "shape" of a data file
- **Granularity --** how fine/coarse is each datum
- **Scope --** how (in)complete is the data
- **Temporality --** how is the data situated in time
- Faithfulness -- how well does the data capture "reality"

Faithfulness: Do I trust this data?

- Does my data contain unrealistic or "incorrect" values?
 - Dates in the future for events in the past
 - Locations that don't exist
 - Negative counts
 - Misspellings of names
 - Large outliers
- Does my data violate obvious dependencies?
 - o E.g., age and birthday don't match
- Was the data entered by hand?
 - Spelling errors, fields shifted ...
 - Did the form require fields or provide default values?
- Are there obvious signs of data falsification:
 - Repeated names, fake looking email addresses, repeated use of uncommon names or fields.

Signs that your data may not be faithful

- Missing Values/Default values?
 - What do they look like?
 - **.** " ",
 - **=** 0,
 - **■** -1, 999, 12345,
 - NaN, Null,
 - **1970, 1900**

What to do with the Missing Values?

- Drop records with missing values
 - Probably most common
 - Caution: check for biases introduced by dropped values
 - Missing or corrupt records might be related to something of interest
- Imputation: (Inferring missing values)
 - Mean Imputation: replace with an average value
 - Which mean? Often use closest related subgroup mean.
 - Hot deck imputation: replace with a random value
 - Choose a random value from the subgroup and use it for the missing value.
- Prof. Gonzalez Suggestion:
 - Drop missing values but check for induced bias (use domain knowledge)
 - Directly model missing values during future analysis

Signs that your data may not be faithful

- Missing Values or default values
- Truncated data (early excel limits: 65536 Rows, 255 Columns)
 - Soln: be aware of consequences in analysis ⇒ how did truncation affect sample?
- Time Zone Inconsistencies
 - Soln 1: convert to a common timezone (e.g., UTC)
 - Soln 2: convert to the timezone of the location useful in modeling behavior.
- Duplicated Records or Fields
 - Soln: identify and eliminate (use primary key) ⇒ implications on sample?
- Spelling Errors
 - Soln: Apply corrections or drop records not in a dictionary ⇒ implications on sample?
- Units not specified or consistent
 - Solns: Infer units, check values are in reasonable ranges for data
- Others...

Summary

Summary: How do you do EDA/Data Cleaning?

- Examine data and metadata:
 - What is the date, size, organization, and structure of the data?
- Examine each field/attribute/dimension individually
- Examine pairs of related dimensions
 - Stratifying earlier analysis: break down grades by major ...
- Along the way:
 - Visualize/summarize the data
 - Validate assumptions about data and collection process
 - Identify and address anomalies
 - Apply data transformations and corrections
 - Record everything you do! (why?)

