questio		45 mi					2		,	VERSIO	N A
questio	1		nutes								
	n is wo	rth 2 n alse an	narks. d writt	ten ans	swer q	the conuestions,				multiple cho	vice
likel leng	y codev th	vords i	n the l	oinary	Shanr	ion-Fanc	code f	or the t	hird e	The second extension S^3	have 3
join	t entrop roximat	H(A)	A,B) =	: .73 (a	ıll in b	(c) 3 (c) 3 (its), the	mutua	linform	ation.	6 0.22 0.24 in 1 (A, B) in 1 (e) 0.13	9 and bits is
nois in b	H(x) = 0 nmetrice entropy	$\begin{array}{c} x & \\ y & \\$	Fd		27 1015 th inp + 0.7	$ \begin{array}{c} \begin{array}{c} $	$\{Q_1, W_2\}$	$\overset{'}{\mathbf{C}}\overset{H'(x)}{\mathbf{Q}}\overset{\circ}{\mathbf{Q}}$	$ar{ar{c}}_{ m ut}^{ m log}$	$g_2(x^{-1} - 1)$ $B = \{b_1, b_2\}$ $b = H(0.2 + p)$ has the	-0.7p)
	(a)	0.47	(b)	0.26	(c)	0.41	(d)	0.38	(e)	0.31	
4. Usir	ng Eule	r's The	orem o	or othe	erwise,	calculat	e 3^{2011}	$\pmod{2}$	012). 7	The answer	is
		(a)	1	(b)	3	(c) 9	(d)	27	(e) 8	81	
	Fermat $b-a$			ı to fac	ctor n	= 3569	as a pro	oduct n	=ab	where $2 \le \epsilon$	a < b.
		(a)	34	(b)	36	(c) 38	(d)) 40	(e)	42	

Tutor/tutorial.....

Name:

6. [10 marks] For each of the following, say whether the statement is true or false giving a brief reason or showing your working. You will get one mark for a correct true/false answer, and if your true/false answer is correct then you will get one mark for a good reason.

Begin each answer with the word "true" or "false".

- i) If the message abaabbaaa is encoded using the LZ78 algorithm, the last entry in the message after compression is (3, a).
- ii) For a 2-symbol source $S = \{s_1, s_2\}$ with probabilities $p_1 = 4/5$, $p_2 = 1/5$ it is possible to find a binary encoding of some extension S^n with average word length per original source symbol less than 0.75.
- iii) The inverse of 22 in \mathbb{Z}_{175} does not exist.
- iv) Given that 5 is a primitive element of \mathbb{Z}_{17} , then 6 is also a primitive element.
- v) The composite number 25 is a pseudoprime to base 7.
- 7. [10 marks] Let $\mathbb{F} = \mathbb{Z}_3(\alpha)$ where α is a root of the polynomial $x^2 + 2x + 2 \in \mathbb{Z}_3[x]$.
 - (i) Asses gluone that Projects we compast in the position over \mathbb{Z}_3 and \mathbb{Z}_1 , α .
 - (ii) Solve the set of linear equations

in F. Add WeChat powcoder

(iii) Find the minimal polynomial of α^7 . Show your working.

Sen	nester 2,		3411	11110		ST 2		and C	_	ERSION I
· Ti	me Allowed:	45 m	inute	S						
qu Fo	or the multipuestion is worthe true/facaple everyth	rth 2 i alse ar	narks. ıd writ	ten ansv	wer que					nultiple choice
	likely codev length	vords	in the	binary S	Shannor	n-Fano	code fo	or the th	nird e	The second leax extension S^3 have
2.	mutual info	rmationation	on $I(A)$	$\begin{array}{c} \text{(b)} \\ \text{ent}_{\text{p}} \\ \text{(b)} \\ \text{(b)} \end{array}$	0.56 (al	l in bits	s), the	joint en	tropy (e	(A, B) = 0.76 an $(A, B) in bi$ $(B, B) = 0.37$
3.	noise entrop	p = 0	$B \mid A)$	= 0.5p -	+ 0.9 in	bits, o	utput	entropy <i>l</i>	H(B)	$g_2(x^{-1} - 1)$. As $B = \{b_1, b_2\}$ has $B = H(0.3 + 0.6)$ p has the value
	(a)	0.32	(b)	0.35	(c)	0.19	(d)	0.26	(e)	0.10
4.	Using Euler	s's The	eorem	or other	wise, ca	alculate	5^{2011}	(mod 20	12). 7	The answer is
		(a)	1	(b) 5	(c)	25	(d)	125	(d)	625
5.	Use Fermat Then $b-a$			n to fact	tor $n =$	5141 as	s a pro	oduct n :	=ab	where $2 \le a <$

Tutor/tutorial.....

Name:

6. [10 marks] For each of the following, say whether the statement is true or false giving a brief reason or showing your working. You will get one mark for a correct true/false answer, and if your true/false answer is correct then you will get one mark for a good reason.

Begin each answer with the word "true" or "false".

- i) If the message abbababbb is encoded using the LZ78 algorithm, the last entry in the message after compression (3, b).
- ii) For a 2-symbol source $S = \{s_1, s_2\}$ with probabilities $p_1 = 7/9$, $p_2 = 2/9$ it is possible to find a binary encoding of some extension S^n with average word length per original source symbol less than 0.8.
- iii) The inverse of 21 in \mathbb{Z}_{175} does not exist.
- iv) Given that 3 is a primitive element of \mathbb{Z}_{17} , then 13 is also a primitive element.
- v) The composite number 21 is a pseudoprime to base 8.
- 7. [10 marks] Let $\mathbb{F} = \mathbb{Z}_3(\alpha)$ where α is a root of the polynomial $x^2 + x + 2 \in \mathbb{Z}_3[x]$.

 - (ii) Solve the set of linear equations

in F. Add WeChat powcoder

(iii) Find the minimal polynomial of α^7 . Show your working.