

STUDENT PLAGIARISM: COURSE WORK – POLICY AND PROCEDURE MTRX 2700 COMPLIANCE STATEMENT INDIVIDUAL / COLLABORATIVE WORK

I/We certify that:

- 1. I/We have read and understood the *University of Sydney Student Plagiarism:* Coursework Policy and Procedure;
- I/We understand that failure to comply with the University of Sydney Student Plagiarism: Coursework Policy and Procedure can lead to the University commencing proceedings against me/us for potential student misconduct under Chapter 8 of the University of Sydney By-Law 1999 (as amended);
- 3. The Work undertaken in this course is substantially my/our own, and to the extent that any part of this Work is not my/our own I/we have indicated that it is not my/our own by Acknowledging the Source of that part or those parts of the Work.

Name	Signature	SID	Date
Melissa Mitrevski		440207636	05/06/2015
Meg Flannery		440291196	05/06/2015
Lydia Drabsch		311217591	05/06/2015

CONTENTS

1	\mathbf{Sim}	ulation of Orbits	1
	1.1	Introduction	1
	1.2	Results/Discussion	1
2	Sim	ulating Perturbations	1
	2.1	Introduction	1
	2.2	Methodology	1
	2.3	Results/Discussion	1
3	Orb	ital Determination	1
	3.1	Introduction	
	3.2	Methodology	1
	3.3	Results/Discussion	1
4	Cor	aclusions	1
5	App	pendix	2

LIST OF FIGURES

LIST OF TABLES

INTRODUCTION

Write an intro here

1. SIMULATION OF ORBITS

1.1 Introduction

- keplers three laws
- perifocal frame
- The true anomaly θ is the angle taken at the focus of the perifocal frame to the satellite from the perigee. The eccentric anomaly E is the angle taken at the centre of perifocal frame to the satellite from the perigee.

The mean anomaly M_t is the mean number of orbits per day.

1.2 Methodology

From Kepler's second law, the mean anomaly at time t is calculated using the mean motion n,

$$M_t = M_0 + n(t - t_0) (1)$$

- 1.3 Results/Discussion
- 2. SIMULATING PERTURBATIONS
- 2.1 Introduction
- 2.2 Methodology
- 2.3 Results/Discussion
- 3. Orbital Determination
- 3.1 Introduction
- 3.2 Methodology
- 3.3 Results/Discussion
- 4. CONCLUSIONS

5. APPENDIX