Colle 4A: Compléments d'algèbre

Question de cours : Somme des termes d'une suite géométrique.

Exercice 1:

Résoudre le système suivant pour $\lambda \in \mathbb{C}$:

$$\begin{cases} t + \lambda x + & y + & z = 1 \\ t + & x + \lambda y + & z = \lambda \\ t + & x + & y + \lambda z = \lambda + 1 \end{cases}$$

Exercice 2:

Soit $n \in \mathbb{N}^*$. Calculer la somme suivante : $\sum_{k=0}^{n} k^2 \binom{n}{k}$.

Exercice 3:

Calculer $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$.

Exercice 4:

Soit $n \in \mathbb{N}^*$. Soit $x_1 \leqslant \cdots \leqslant x_n$ et $y_1 \leqslant \cdots \leqslant y_n$ Montrer que :

$$\left(\frac{1}{n}\sum_{k=1}^{n}x_{k}\right)\left(\frac{1}{n}\sum_{k=1}^{n}y_{k}\right)\leqslant\frac{1}{n}\sum_{k=1}^{n}x_{k}y_{k}$$

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 4B : Compléments d'algèbre

Question de cours : Méthode de résolution des suites récurrentes linéaires d'ordre 2 dans C.

Exercice 1 : Résoudre le système suivant pour $\lambda,\mu\in\mathbb{C}$:

$$\begin{cases} \lambda x + \mu y + z = 1 \\ x + \lambda \mu y + z = \mu \\ x + \mu y + \lambda z = 1 \end{cases}$$

Exercice 2:

Exercice 2: Soit $n \in \mathbb{N}^*$. Calculer la somme suivante : $\sum_{l=1}^{n} \sum_{k=l+1}^{n} \frac{l}{k}$.

Exercice 3:

Calculer $\tan(\frac{\pi}{2})$.

Exercice 4:

Soit $n \in \mathbb{N}^*$. Soit x_1, x_2, \dots, x_n des réels et $x_{n+1} = x_1$. Montrer que $\sum_{k=1}^n x_k x_{k+1} \leqslant \sum_{k=1}^n x_k^2$.

Colle 4C: Compléments d'algèbre

Question de cours : Calcul de $\sum_{k=0}^{n} k^2$.

Exercice 1 : Résoudre dans \mathbb{R}_+^* :

$$\begin{cases} xyz = 1\\ xy^2z^4 = 2\\ xy^3z^9 = 3 \end{cases}$$

Exercice 2:

Soit $n \in \mathbb{N}^*$. Calculer la somme suivante : $\sum_{k=0}^{n} \sum_{l=0}^{n} \min(k, l)$.

Exercice 3:

Résoudre l'inéquation suivante dans $]-\pi,\pi]:\tan(x)\geqslant 2\sin(x)$

Exercice 4:

Soit $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_1=1$ et pour tout $n\in\mathbb{N}^*$,

$$u_{2n} = u_n, u_{2n+1} = (-1)^n u_n$$

Calculer, pour tout $n \in \mathbb{N}$, $\sum_{k=1}^{4n} u_k u_{k+2}$