TI DSP, MCU 및 Xilinx Zynq FPGA 프로그래밍 전문가 과정

강사 - Innova Lee(이상훈)

gcccompil3r@gmail.com

학생 - 문한나

mhn97@naver.com

자율 주행 자동차 조향 제어

HCG 설정

J	MS570LC4	4357ZWT_FREE	RTOS OS	PINMUX	GIO	ESM	SCI1	SCI2	SC	I3 SC
	General	Driver Enable	R5-MPU-P	MU Interr	upts	VIM Ge	neral	VIM RA	λM	VIM C
		Enable SCI4	4 driver **							
	☐ Enable LIN drivers ☐ Enable LIN1 driver ** / ☑ Enable SCI1 driver ** ☐ Enable LIN2 driver ** / ☐ Enable SCI2 driver **									
	Enable MIBSPI drivers Enable MIBSPI1 driver ** Enable SPI1 driver ** Enable MIBSPI2 driver ** Enable SPI2 driver ** Enable MIBSPI3 driver ** Enable SPI3 driver ** Enable MIBSPI4 driver ** Enable SPI4 driver ** Enable MIBSPI5 driver ** Enable SPI5 driver **									
	 E	Enable CAN driver Enable CAN Enable CAN Enable CAN Enable CAN Enable CAN	I1 driver I2 driver I3 driver							
	 ▼ E	nable ETPWM d	lriver							

TMS570LC	4357ZWT PINMUX	RTI GIO ESM	SCI1 SCI2 SCI3	SCI4 LIN1 LIN2	MIBSPI1 MIBSPI2	MIBSPI3 MIBSPI4	MIBSPI5 SPI1
Pin Muxin	ng Input Pin Muxing	Special Pin Muxing					
☐ HE	ole / Disable Peripherals ET1	MIBSPI2 MIB MIBSPI4 MIB AD1EVT MIB AD2EVT 12C	SPI3 SCI4 SPI5 LIN2/SCI2	MII and altern CAN4 MII have o	are mapped to two terminal ate terminals. Remove the dedicated pins. Alternate to MII checkboxes does not nmuxing tab	unwanted terminal to av erminals are enabled usir	oid conflicts ng the MII checkbox.
Ball	Default Mux	Mux Option 1	Mux Option 2	Mux Option 3	Mux Option 4	Mux Option 5	Conflict?
A4	N2HET1[16]	NONE	NONE	ETPWM1SYNCI	NONE	ETPWM1SYNCO	
A13	N2HET1[17]	EMIF_nOE	SCI4RX	NONE	NONE	NONE	
A14	N2HET1[26]	NONE	MII_RXD[1]	RMII_RXD[1]	NONE	NONE	
B2	MIBSPI3NCS[2]	12C1_SDA	NONE	N2HET1[27]	NONE	nTZ1_2	
В3	N2HET1[22]	EMIF_nDQM[3]	NONE	NONE	NONE	NONE	
B4	N2HET1[12]	MIBSPI4NCS[5]	MII_CRS	RMII_CRS_DV	NONE	NONE	
B5	GIOA[5]	NONE	NONE	EXTCLKIN	NONE	eTPWM1A	

CCS 코드

```
#include <FreeRTOS.h>
#include <FreeRTOSConfig.h>
#include <HL hal stdtypes.h>
#include <HL_reg_sci.h>
#include <HL_sci.h>
#include <os_mpu_wrappers.h>
#include <os_projdefs.h>
#include <os_semphr.h>
#include <os_task.h>
#include "string.h"
#include "stdio.h"
#include "stdlib.h"
#include "HL_can.h"
#include "HL_sys_common.h"
#include "HL_system.h"
#include "HL_esm.h"
#include "HL_sys_core.h"
#include "HL_etpwm.h"
xTaskHandle xTask1Handle;
xTaskHandle xTask2Handle;
xTaskHandle xTask3Handle;
QueueHandle_t mutex = NULL;
long check = 0;
char flag = 0;
uint8 rx_data[8] = { 0 };
void vTask1(void* pvParameters);
void vTask2(void* pvParameters);
void vTask3(void* pvParameters);
void send_data(sciBASE_t* sci, uint8* msg, int length);
void delay(int time)
{
    int i;
    for (i = 0; i < time; i++)</pre>
}
int main(void)
    sciInit();
    canInit();
    etpwmInit();
    etpwmStartTBCLK();
    delay(1000000);
    canEnableErrorNotification(canREG1);
    etpwmREG1->CMPA = 1775;
    vSemaphoreCreateBinary(mutex)
    if(xTaskCreate(vTask1, "Task1" , configMINIMAL_STACK_SIZE, NULL, 1, &xTask1Handle) !=
pdTRUE){
```

```
while(1)
    if(xTaskCreate(vTask2, "Task2" , configMINIMAL_STACK_SIZE, NULL, 1, &xTask2Handle) !=
pdTRUE){
        while(1)
    if(xTaskCreate(vTask3, "Task3" , configMINIMAL_STACK_SIZE, NULL, 1, &xTask3Handle) !=
pdTRUE){
             while(1)
                 ;
    }
    vTaskStartScheduler();
    while(1)
}
void vTask1(void *pbParameters)
    uint8 str[32] = {'s','t','r','a','i','g','h','t','\r','\n'};
uint8 rig[32] = {'r','i','g','h','t','\r','\n'};
uint8 lef[32] = {'1','e','f','t','\r','\n'};
uint8 msg[32] = {'e','r','r','o','r','\r','\n'};
    while(1){
        if(flag == 2){
             if(xSemaphoreTake(mutex, ( TickType_t ) 10) == pdTRUE){
                 if(*rx_data == 0){
                     send data(sciREG1, str, strlen(str));
                 }else if(*rx_data == 1){
                     send data(sciREG1, rig, strlen(rig));
                 }else if(*rx_data == 2){
                     send data(sciREG1, lef, strlen(lef));
                  }else
                      send data(sciREG1,msg,strlen(msg));
                 xSemaphoreGive(mutex);
                 flag = 0;
                 vTaskDelay(10);
             else{
        }
        else{
        }
    }
}
void vTask2(void *pbParameters)
    uint8 msg[32] = {'e','r','r','o','r','\r','\n'};
    while(1){
           if(flag == 1){
                if(xSemaphoreTake(mutex, ( TickType_t ) 10) == pdTRUE){
                    if(rx data[0] == 1){ //우회전
```

```
etpwmREG1->CMPA = 1875 + (13.3 * rx_data[1]);
                     sciSendByte(sciREG1, rx_data[1]);
                  }else if(rx_data[0] == 2){ //좌회전
                     etpwmREG1->CMPA = 1875 - (13.3 * rx data[1]);
                     sciSendByte(sciREG1, rx_data[1]);
                    // send_data(sciREG1, rx_data[1], strlen(rx_data[1]));
                  }else if(rx_data[0] == 0){ //직진
                     etpwmREG1->CMPA = 1875;
                  }else if(rx_data[0] == 3){
                     etpwmREG1->CMPA = 675; //5a(90) 1875 - 1200 90도 움직임
                  }else if(rx_data[0] == 4){
                     etpwmREG1->CMPA = 3075; //5a(90) 1875 + 1200 90도 움직임
                  }else
                     send data(sciREG1,msg,strlen(msg));
                  xSemaphoreGive(mutex);
                  flag = 2;
                  vTaskDelay(10);
              else{
          else{
          }
      }
}
void vTask3(void *pbParameters)
   while(1){
          if(flag == 0){ //실행 순서를 정해주는 flag
              if(xSemaphoreTake(mutex, ( TickType_t ) 10) == pdTRUE){
                  if (canIsRxMessageArrived(canREG1, canMESSAGE_BOX2)){
                             canGetData(canREG1, canMESSAGE_BOX2, rx_data);
                             //send_data(sciREG1, rx_data, strlen(rx_data));
                             //sciSendByte(sciREG1,'\r');
//sciSendByte(sciREG1,'\n');
                             xSemaphoreGive(mutex);
                             flag = 1;
                             vTaskDelay(10);
                 }
              }
              else{
                  //flag = 1;
                 xSemaphoreGive(mutex);
                  vTaskDelay(10);
                  }
          else{
          }
      }
}
```

```
void send_data(sciBASE_t* sci, uint8* msg, int length)
{
   int i;
   for(i=0;i<length;i++)
        sciSendByte(sci,msg[i]);
}</pre>
```

코드는 RTOS상에서 돌아가도록 작성하였다.

프로토콜은 임의로 첫 번째 바이트를 직진, 우회전, 좌회전으로 정했다.

(이후에 정해진 프로토콜을 기준으로 수정 할 예정이다.)

PWM 신호의 TBPRD의 값은 25000으로 정하였다. 일반적으로 서보를 제어 할 PWM신호는 20ms 주기에 5% ~ 10%의 듀티비를 가져야 한다. 5%의 듀티비를 가지는 CMPA의 값은 1250이고, 10%의 듀티비는 2500 이다.

하지만, 실험을 통하여 실제 조향 각을 제어할 수 있도록 시도하는 것이 좋다고 판단하였다.

실험 한 결과, 최대 조향이 가능한 CMPA의 값은 675 ~ 3075 의 구간을 가지게 되었다. 이를 이용하여 1도마다 움직일 수 있는 알고리즘을 구하게 되었고 그 코드는 다음과 같다.

```
etpwmREG1->CMPA = 1875 + (13.3 * rx_data[1]);
```

rx_data[1]인 부분은 CAN 데이터로 들어오는 원하는 조향 각을 나타낸다.

그리고 rx_data[0]을 이용하여 직진, 좌회전, 우회전을 할지 판단하게 된다.

실험 결과

