# Network Address Translation (NAT)

- Clearly Classless Addressing uses less IP addresses than Classful Addressing.
- However, there are more efficiencies that can be derived.
- Consider an ISP with many <u>residential</u> customers:
  - Typically an ISP will only allocate each customer <u>one</u> IP address.
  - However, customers will likely have multiple devices wishing to connect to the internet.
  - How is it possible for these devices to share a single IP address?
  - It's possible because of a technique called **Network Address Translation** (NAT).

# Network Address Translation (NAT)

◆ NAT makes use of special IP addresses which reside in the "Private" IP Address space:

| Range       |    |                 | Total           |
|-------------|----|-----------------|-----------------|
| 10.0.0.0    | to | 10.255.255.255  | $2^{24}$        |
| 172.16.0.0  | to | 172.31.255.255  | $2^{20}$        |
| 192.168.0.0 | to | 192.168.255.255 | 2 <sup>16</sup> |

- ◆ These IP addresses <u>cannot</u> be used on the **Public** Internet:
  - Routers will <u>not</u> forward packets with addresses from these ranges.

## Network Address Translation (NAT)

- ◆ NAT is employed on the customer's router:
  - It requires the use of a NAT Table, and,
  - The allocation of **Private** addresses <u>within</u> the customer's network.
- ◆ As usual the router is allocated two IP addresses:
  - The single IP address supplied by the ISP (the Public address),
  - Another address from one of the **Private** address spaces.
- ◆ <u>Each</u> host machine on the customer's network is also assigned a **Private** address from the same space.

#### Use of **Public** and **Private** IP addresses.

- ♦ In the following example the router has:
  - Private address: 172.18.3.30
  - Public address: 200.24.5.8
- In effect the internal network on the customer's premises are isolated from the public network by the router.



#### Traffic between the Private and Public networks.

- ◆ All datagrams leaving the customer's network can only contain Public IP addresses:
  - Likewise, all datagrams arriving at a host on the customer's network must only contain Private IP addresses in the Destination field.



◆ This requires some form of address translation.

## Operation of NAT – Outgoing Datagrams

- ◆ For datagrams *leaving* the **Private** network the <u>router</u> performs the following actions:
  - It enters the source (private address) and destination (a public address) IP addresses into a NAT Table,
  - It changes the source IP address in the datagram to its own public address.



6

## Operation of NAT – Incoming Datagrams

- ◆ For datagrams *arriving* from the *public* network the <u>router</u> performs the following actions:
  - It uses the <u>source</u> address to query the NAT Table to determine which *private* address it is destined for,
  - It changes the destination address in the datagram to the correct private address.



#### Restrictions of NAT

- ◆ The use of a single *public* address imposes a limit:
  - Two or more host machines on the customer's private network cannot communicate with the <u>same</u> public host simultaneously,
  - This is because there would be two entries in the NAT Table associated with the same public address. This would cause queries to the NAT Table to fail.
- ◆ To address this restriction the customer could be allocated multiple public addresses (a pool of IP addresses):
  - For each additional public address assigned one additional private host can communicate with the same public host.

#### Restrictions of NAT

- Additional restrictions include:
  - Only <u>one</u> router can be used as there can only be one NAT table.
  - Communications must <u>originate</u> from within the customer's network.
- ◆ These restrictions do not suit many <u>business</u> customers
  - Consequently NAT is really only used for <u>residential</u> users.