Neonatal Sepsis prediction in the NICU using supervised learning techniques

Nadia Aly*, Evan Dienstman

John Delos, PhD., Daniel McGibney, PhD., Anh Ninh, PhD.

¹ College of William and Mary, Department of Mathematics

March 24, 2017

Motivation

- Bacterial Sepsis is the leading cause of mortality in U.S. NICUs
- Current diagnostics are invasive
- If early signs or risk factors are missed, mortality increases and residual neurologic damage is possible

What is Sepsis?

- Inflammatory response caused by the body fighting off an infection
- Early treatment with antibiotics saves lives
- Premature babies are highly susceptible due to a weak immune system

FIGURE – Diagram of Sepsis Infection, NYSUT Health Care Professionals Council

3 / 60

Current Methodology

Data is from a Randomized Clinical Trial from 8 Hospitals: UVA, Wake Forest, UAI, Vanderbilt, Umiami, Greenville SC, Palmer, Penn State.

Experiment	2989 VLBW	Mortality Rate	P-Value	1513 ELBW	Mortality Rate	P-Value	I
Control	152deaths 1489	10.2%	0.04	133deaths 757	17.6%	0.02	1
Sample, Display HERO score	122 <i>deaths</i> 1500	8.1%	0.04	100 deaths 756	13.2%	0.02	

TABLE - Results from Randomized Trial

- Medical Predictive Science Corporation has developed and is marketing a system for Heart Rate Characteristics monitoring in the NICU.
- A computer beside each NICU bed continuously collects ECG data, extracts times of R peaks, tracks RR intervals, and provides the following Heart Rate Observation (HeRO).

HeRo Score Monitor

FIGURE — HeRo Monitor Display: Blood culture on 10/23 at 8 AM. Infant was having feeding intolerance as a clinical sign. The heart rate pattern shows decreased variability and decelerations.

Organism Distribution Invading Organisms

FIGURE - Histogram of Invading Organisms

- Organism1 :Coagulase-negativeStaphylococcal
- Organism 2 :Gram-positive
- Organism 3 :Gram-negative
- Organism 4 :Fungal
- Organism 5 :Other

What does the raw data look like ?- RR Interval

rr_intervals = [420.25, 421.75, 420.25, 418.25, 422.00, 423.75 ...] tt intervals = [420.25, 842.00, 1262.3, 370470, 370880, ...]

What does the raw data look like?

Does heart rate give warning of illness?

Does heart rate give warning of illness?

Reduced Variability

Repeated Decelerations

FIGURE - Heart Rate Variability and Decelerations

10 / 60

Does heart rate give warning of illness?

- Standard Deviation and Sample Entropy : Variability in the signal.
- Sample Asymmetry: Prevalence of decelerations over accelerations implies a skew, or asymmetry, in the data which we can detect statistically.

FIGURE - Heart Rate Variability and Decelerations

FIGURE - Heart Rate Variability and Decelerations

11 / 60

Heart Rate Characteristics

- Variance
- Sample Asymmetry
- Sample Entropy
- Decelerations

- Variance
- Sample Asymmetry
- Sample Entropy
- Decelerations

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})}{n-1}$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})}{n-1}$$

- Variance
- Sample Asymmetry
- Sample Entropy
- Decelerations

- Variance
- Sample Asymmetry
- Sample Entropy
- Decelerations

Heart Rate Characteristics : Sample Entropy

- Variance
- Sample Asymmetry
- Sample Entropy
- Decelerations

Heart Rate Characteristics: Decelerations, Pattern Recognition

Decompose the signal into decelerations and "background variability:

44 / 60

Analyzing the HRC's

- HeRO Score
- Logistic Regression
- KNN
- Support Vector Machine

- HeRo Score
- Logistic Regression
- KNN
- Support Vector Machine

Analyzing the HRC's: HeRO Score

Analyzing the HRC's: HeRO Score

Analyzing the HRC's: Logistic Regression

- HeRo Score
- Logistic Regression
- KNN
- Support Vector Machine

Analyzing the HRC's: Logistic Regression, L1, L2, ELastic Net

FIGURE - Logistic Regression with Penalties Confusion Matrices

Analyzing the HRC's: Logistic Regression, L1, L2, ELastic Net

Regression Method	Classification Accuracy	False Positive Rate
Logistic Regression	65.00%	64.61%
Logistic Regression, L1 Penalty	66.03%	63.45%
Logistic Regression, L2 Penalty	72.61%	54.61%
Logistic Regression, Elastic Net	72.65%	54.58%

TABLE - Summary of Results for Logistic Regression with Regularization

Analyzing the HRC's

- HeRo Score
- Logistic Regression
- KNN
- Support Vector Machine

Analyzing the HRC's: KNN Confusion Matrix

TABLE - KNN Confusion Matrix, 5-Fold Cross-Validation, Choose n-neighbors = 7

- Best performing predictors : log(variance), vent, sample entropy, decelerations
- Minkowski Distance, p=3 : $d(x^{(i)}, x^j) = \sqrt[3]{\sum_{k=1}^{n} |x_k^{(i)} x_k^{(j)}|^3}$
- Classification Accuracy : $\frac{(10349+450)}{(10349+450+261+1436)} = 86.42\%$
- False Positive Rate : $\frac{261}{(261+450+1436)} = 12.16\%$

Analyzing the HRC's: Support Vector Machine

- HeRo Score
- Logistic Regression
- KNN
- Support Vector Machine

Analyzing the HRC's: Support Vector Machine

SVM

Predicted Status

- Classification Accuracy : $\frac{(10490+153)}{(10490+72+1781+153)} = 85.17\%$
- False Positive Rate : $\frac{72}{(72+153+1781)} \approx 3.59\%$

Summary of Results

Regression Method	Classification Accuracy	False Positive Rate
Logistic Regression	65.00%	64.61%
Logistic Regression, L1 Penalty	66.03%	63.45%
Logistic Regression, L2 Penalty	72.61%	54.61%
Logistic Regression, Elastic Net	72.65%	54.58%
KNN, n=7	86.42%	12.16%
SVM, c=0.01	85.17%	3.59%

TABLE - Summary of Results

Organism Prediction

FIGURE - KNN, n=7 Organism Prediction Confusion Matrix

Summary

- Features : Variance, Sample Entropy, Sample
 Asymmetry, Decelerations, Ventilation Status, Weight,
 Gestional Age
- Methods: HeRO Score, Logistic Regression with L1, L2, Elastic Net Penalties, KNN, Support Vector Machine
- Results: We have promising results when determining if a baby is sick or healthy. However, if a baby is sick, determining the invading organism has proven to be more challenging.

Thank you for listening.

Thank you for listening.

Any questions?

Thank you for listening.

Any questions?

Acknowledgements: A special thanks to Professor John Delos, William and Mary Physics Department, and the University of Virginia NICU team for collecting the dataset and making this research possible.