Reticular Action Model (RAM) Notation Notes

Ivan Jacob Agaloos Pesigan

2021-01-20

Contents

1	Des	scription	5
2	Reticular Action Model (RAM) Matrix Notation		
	2.1	Full Model	7
	2.2	Observed/Manifest/Given Variables vs. Unobserved/Latent/Hidden Variables	8
3	Reticular Action Model (RAM) Path Diagram		11
4	Student's t -test		
	4.1	Symbolic	15
	4.2	Numerical Example	18
	4.3	Equations to RAM	24

4 CONTENTS

Description

This is a collection of my personal notes on the Reticular Action Model (RAM) notation that accompanies the ramR package (Pesigan, 2021). You can install the released version of ramR from GitHub with:

remotes::install_github("jeksterslab/ramR")

These notes are based on the following resources:

- Boker and McArdle (2005)
- McArdle and McDonald (1984)
- McArdle (2005)

See GitHub Pages for the html deployment.

Reticular Action Model (RAM) Matrix Notation

2.1 Full Model

Definition 2.1.

$$\mathbf{v} = \mathbf{A}\mathbf{v} + \mathbf{u} \tag{2.1}$$

where

- \mathbf{v} and \mathbf{u} are $t \times 1$ vectors of random variables
- A is a $t \times t$ matrix of directed or asymmetric relationship from column variable v_i to row variable v_i
 - A represent the regression of each of the t variables \mathbf{v} on the other t-1 variables
 - diagonal $a_{i,i}$ is zero
 - u_i represent the residual of v_i
 - if all regression coefficients on other variables are zero, then the variable v_i is considered the same as its own residual u_i

Definition 2.2.

$$\mathbf{S} = \mathbb{E}\left\{\mathbf{u}\mathbf{u}'\right\},\tag{2.2}$$

where

- **S** is a $t \times t$ matrix of undirected or symmetric relationship
 - the notation Ω is used in other sources for **S**
- \mathbb{E} is the expectation operator

Definition 2.3.

$$\mathbf{C} = \mathbb{E}\left\{\mathbf{v}\mathbf{v}'\right\},\tag{2.3}$$

where

- C is a $t \times t$ variance-covariance matrix
 - the notation Σ is used in other sources for **C**

Definition 2.4.

$$v = Av + u$$

can be rewritten as

$$\mathbf{v} - \mathbf{A}\mathbf{v} = \mathbf{u}$$

 $\mathbf{u} = \mathbf{v} - \mathbf{A}\mathbf{v}$
 $\mathbf{u} = (\mathbf{I} - \mathbf{A})\mathbf{v}$ (2.4)

assuming that $(\mathbf{I} - \mathbf{A})$ is non-singular,

$$\mathbf{E} = (\mathbf{I} - \mathbf{A})^{-1} \tag{2.5}$$

then

$$\mathbf{v} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{u}$$

$$= \mathbf{E}\mathbf{u}.$$
(2.6)

Using the definitions above, S and C are given by

$$\mathbf{S} = (\mathbf{I} - \mathbf{A}) \mathbf{C} (\mathbf{I} - \mathbf{A})^{-1}$$

$$= \mathbf{E}^{-1} \mathbf{C} (\mathbf{E}^{-1})^{\mathsf{T}}$$
(2.7)

$$\mathbf{C} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{S} \left[(\mathbf{I} - \mathbf{A})^{-1} \right]^{\mathsf{T}}$$

$$= \mathbf{E} \mathbf{S} \mathbf{E}^{\mathsf{T}}$$
(2.8)

2.2 Observed/Manifest/Given Variables vs. Unobserved/Latent/Hidden Variables

Definition 2.5.

$$\mathbf{v} = \begin{bmatrix} \mathbf{g}_{p \times 1} \\ \mathbf{h}_{q \times 1} \end{bmatrix} \tag{2.9}$$

$$t = p + q \tag{2.10}$$

- ${f g}$ may be considered observed, manifest or given variables
- h may be considered unobserved, latent, or hidden variables

Definition 2.6.

$$\mathbf{F} = \left[\mathbf{I}_{p \times p} : \mathbf{0}_{p \times q} \right] \tag{2.11}$$

 \bullet the **F** matrix acts as a *filter* to select the manifest variables out of the full set of manifest and latent variables

$$\mathbf{g} = \mathbf{F}\mathbf{v} \tag{2.12}$$

$$\mathbf{g} = \mathbf{F} \left(\mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{u}$$

$$= \mathbf{FE} \mathbf{u}$$
(2.13)

Definition 2.7.

$$\mathbf{M} = \mathbb{E}\left\{\mathbf{g}\mathbf{g}^{\mathsf{T}}\right\} \tag{2.14}$$

$$\mathbf{M} = \mathbf{F} (\mathbf{I} - \mathbf{A})^{-1} \mathbf{S} \left[(\mathbf{I} - \mathbf{A})^{-1} \right]^{\mathsf{T}} \mathbf{F}^{\mathsf{T}}$$

$$= \mathbf{F} \mathbf{E} \mathbf{S} \mathbf{E}^{\mathsf{T}} \mathbf{F}^{\mathsf{T}}$$

$$= \mathbf{F} \mathbf{C} \mathbf{F}^{\mathsf{T}}$$
(2.15)

- when components of \mathbf{v} are permuted, the columns of \mathbf{F} can be correspondingly permuted
- ullet the rows and columns of ${f C}$ that are filtered out by ${f F}$ contain useful information about the latent variable structure.

The equations above completely define RAM.

Reticular Action Model (RAM) Path Diagram

Figure 3.1: Path Diagram Elements

$$y = \alpha + \beta x + \varepsilon$$

Figure 3.2: Two-Variable Regression Model

Figure 3.3: k-Variable Regression Model

Figure 3.4: Two-Factor Confirmatory Factor Analysis Model

$$oldsymbol{\eta} = \mathbf{B}oldsymbol{\eta} + \Gammaoldsymbol{\xi} + oldsymbol{\zeta}, \mathbf{y} = oldsymbol{\Lambda}_yoldsymbol{\eta} + oldsymbol{arepsilon}, \mathbf{x} = oldsymbol{\Lambda}_xoldsymbol{\xi} + oldsymbol{\delta}$$

Figure 3.5: Path Model with Latent Variables

Student's t-test

In this section, the Student's t-test is presented as a structural equation model using the RAM notation. Let y be a continuous dependent variable, x be a dichotomous independent variable ($x = \{0, 1\}$), and ε be the stochastic error term with mean 0 and constant variance of σ_{ε}^2 across the values of x. The associations of the variables are given by

$$y = \alpha + \beta x + \varepsilon$$

where

- α is the expected value of y when x = 0
- β is the unit change in y for unit change in x
- $\alpha + \beta$ is the expected value of y when x = 1

Figure 4.1: Student's t-test

4.1 Symbolic

Let $\{y, x, \varepsilon\}$ be the variables of interest.

$$\mathbf{A} = \left(\begin{array}{ccc} 0 & \beta & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

$$\mathbf{S} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & \sigma_x^2 & 0 \\ 0 & 0 & \sigma_\varepsilon^2 \end{array} \right)$$

$$\begin{split} \mathbf{C} &= \left(\mathbf{I} - \mathbf{A}\right)^{-1} \mathbf{S} \left[\left(\mathbf{I} - \mathbf{A}\right)^{-1} \right]^\mathsf{T} \\ &= \mathbf{E} \mathbf{S} \mathbf{E}^\mathsf{T} \\ &= \begin{pmatrix} 1 & \beta & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \sigma_x^2 & 0 \\ 0 & 0 & \sigma_\varepsilon^2 \end{pmatrix} \begin{pmatrix} 1 & \beta & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^\mathsf{T} \\ &= \begin{pmatrix} \sigma_x^2 \beta^2 + \sigma_\varepsilon^2 & \beta \sigma_x^2 & \sigma_\varepsilon^2 \\ \sigma_x^2 \beta & \sigma_x^2 & 0 \\ \sigma_\varepsilon^2 & 0 & \sigma_\varepsilon^2 \end{pmatrix} \end{split}$$

$$\mathbf{F} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right)$$

$$\begin{split} \mathbf{M} &= \mathbf{F} \left(\mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{S} \left[\left(\mathbf{I} - \mathbf{A} \right)^{-1} \right]^{\mathsf{T}} \mathbf{F}^{\mathsf{T}} \\ &= \mathbf{F} \mathbf{E} \mathbf{S} \mathbf{E}^{\mathsf{T}} \mathbf{F}^{\mathsf{T}} \\ &= \mathbf{F} \mathbf{C} \mathbf{F}^{\mathsf{T}} \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \sigma_x^2 \beta^2 + \sigma_\varepsilon^2 & \beta \sigma_x^2 & \sigma_\varepsilon^2 \\ \sigma_x^2 \beta & \sigma_x^2 & 0 \\ \sigma_\varepsilon^2 & 0 & \sigma_\varepsilon^2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\mathsf{T}} \\ &= \begin{pmatrix} \sigma_x^2 \beta^2 + \sigma_\varepsilon^2 & \beta \sigma_x^2 \\ \sigma_x^2 \beta & \sigma_x^2 \end{pmatrix} \end{split}$$

$$\begin{split} \mathbf{v} &= \left(\mathbf{I} - \mathbf{A}\right)^{-1} \mathbf{u} \\ &= \left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & \beta & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right]^{-1} \begin{pmatrix} \alpha \\ \mu_x \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} \alpha + \beta \mu_x \\ \mu_x \\ 0 \end{pmatrix} \end{split}$$

4.1. SYMBOLIC

$$\begin{split} \mathbf{u} &= \left(\mathbf{I} - \mathbf{A}\right) \mathbf{v} \\ &= \left[\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) - \left(\begin{array}{ccc} 0 & \beta & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \right] \left(\begin{array}{c} \alpha + \beta \mu_x \\ \mu_x \\ 0 \end{array} \right) \\ &= \left(\begin{array}{c} \alpha \\ \mu_x \\ 0 \end{array} \right) \end{split}$$

$$\begin{split} \mathbf{g} &= \mathbf{F} \left(\mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{u} \\ &= \left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & \beta & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right]^{-1} \begin{pmatrix} \alpha \\ \mu_x \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} \alpha + \beta \mu_x \\ \mu_x \end{pmatrix} \end{split}$$

4.1.1 Using the ramR Package

```
A
```

```
## [,1] [,2] [,3]
## [1,] "0" "beta" "1"
## [2,] "0" "0" "0"
## [3,] "0" "0" "0"
```

S

```
## [,1] [,2] [,3]

## [1,] "0" "0" "0"

## [2,] "0" "sigma[x]^2" "0"

## [3,] "0" "0" "sigma[varepsilon]^2"
```

u

```
## [,1]
## [1,] "alpha"
## [2,] "mu[x]"
## [3,] "0"
```

filter

The covariance expectations can be symbolically derived using the ramR::C_sym() function.

si

ramR::C_sym(A, S)

$$\mathbf{C} = \begin{pmatrix} \sigma_x^2 \beta^2 + \sigma_\varepsilon^2 & \beta \sigma_x^2 & \sigma_\varepsilon^2 \\ \sigma_x^2 \beta & \sigma_x^2 & 0 \\ \sigma_\varepsilon^2 & 0 & \sigma_\varepsilon^2 \end{pmatrix}$$

The covariance expectations for the observed variables can be symbolically derived using the ramR::M_sym() function.

ramR::M_sym(A, S, filter)

```
## {{sigma[x]^2*beta^2+sigma[varepsilon]^2, beta*sigma[x]^2},
## { sigma[x]^2*beta, sigma[x]^2}}
```

$$\mathbf{M} = \begin{pmatrix} \sigma_x^2 \beta^2 + \sigma_\varepsilon^2 & \beta \sigma_x^2 \\ \sigma_x^2 \beta & \sigma_x^2 \end{pmatrix}$$

The mean expectations can be symbolically derived using the ramR::v_sym() function.

```
ramR::v_sym(A, u)
```

```
## {{alpha+beta*mu[x]},
## { mu[x]},
## { 0}}
```

$$\mathbf{v} = \left(\begin{array}{c} \alpha + \beta \mu_x \\ \mu_x \\ 0 \end{array} \right)$$

The mean expectations for the observed variables can be symbolically derived using the $ramR::g_sym()$ function.

ramR::g_sym(A, u, filter)

$$\mathbf{g} = \left(\begin{array}{c} \alpha + \beta \mu_x \\ \mu_x \end{array}\right)$$

4.2 Numerical Example

head(df)

```
## y x

## 1 1.3709584 0

## 2 -0.5646982 0

## 3 0.3631284 0

## 4 0.6328626 0

## 5 0.4042683 0

## 6 -0.1061245 0
```

summary(df)

```
## y x

## Min. :-4.6785 Min. :0.0

## 1st Qu.:-0.2622 1st Qu.:0.0

## Median : 0.5013 Median :0.5

## Mean : 0.5000 Mean :0.5

## 3rd Qu.: 1.2618 3rd Qu.:1.0

## Max. : 5.7839 Max. :1.0
```


Χ

Histogram of y for x = 0

4.2.1 *t*-test

```
t.test \leftarrow t.test(y \sim x, data = df)
t.test
##
   Welch Two Sample t-test
##
##
## data: y by x
## t = -706.06, df = 2e+06, p-value < 2.2e-16
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
   -1.0016565 -0.9961108
## sample estimates:
  mean in group 0 mean in group 1
      0.0005737398
                       0.9994574009
t.test$estimate
```

mean in group 0 mean in group 1 ## 0.0005737398 0.9994574009

4.2.2 Linear Regression

```
lm \leftarrow lm(y \sim x, data = df)
summary(lm)
##
## Call:
## lm(formula = y \sim x, data = df)
##
## Residuals:
             1Q Median
##
      Min
                             3Q
                                      Max
## -4.8838 -0.6745 0.0005 0.6749 4.8195
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.0005737 0.0010004 0.574 0.566
             0.9988837 0.0014147 706.057 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1 on 1999998 degrees of freedom
## Multiple R-squared: 0.1995, Adjusted R-squared: 0.1995
## F-statistic: 4.985e+05 on 1 and 1999998 DF, p-value: < 2.2e-16
coef(lm)
## (Intercept)
## 0.0005737398 0.9988836611
```

4.2.3 Structural Equation Modeling

```
model <- "
   y ~ x
   y ~ 1
   x ~ 1
"
fit <- lavaan::sem(model, data = df)
lavaan::summary(fit)

## lavaan 0.6-7 ended normally after 15 iterations</pre>
```

```
##
##
     Estimator
                                                          ML
##
     Optimization method
                                                     NLMINB
##
     Number of free parameters
                                                          5
##
##
     Number of observations
                                                    2000000
##
## Model Test User Model:
##
##
     Test statistic
                                                      0.000
     Degrees of freedom
##
                                                           0
```

##

```
## Parameter Estimates:
##
## Standard errors
                                          Standard
##
    Information
                                          Expected
## Information saturated (h1) model
                                      Structured
## Regressions:
##
                Estimate Std.Err z-value P(>|z|)
##
   у ~
                  0.999 0.001 706.057 0.000
##
## Intercepts:
##
                 Estimate Std.Err z-value P(>|z|)
##
                   0.001 0.001 0.574 0.566
    • у
                   0.500 0.000 1414.214
##
                                          0.000
##
## Variances:
                 Estimate Std.Err z-value P(>|z|)
##
                  1.001 0.001 1000.000 0.000
##
   . у
                   0.250 0.000 1000.000 0.000
##
```

lavaan::coef(fit)

```
## y~x y~1 x~1 y~~y x~~x
## 0.999 0.001 0.500 1.001 0.250
```

label	parameter
\$\alpha\$	0
\$\beta\$	1
$\frac{1}{s}\sigma^{2}_{x}$	0.25
$\simeq \$ \sigma^{2}_{\varepsilon}\$	0.25
\$\mu_x\$	0.5

4.2.4 Using the ramR Package

Α

```
## y 0 0.9988837 1
## x 0 0.0000000 0
## e 0 0.0000000 0
```

S

```
## y 0 0.0000000 0.0000000
## x 0 0.2500001 0.0000000
## e 0 0.0000000 0.2494423
```

```
u
```

```
## [,1]
## y 0.0005737398
## x 0.5000000000
## e 0.0000000000
```

filter

```
## y x e
## y 1 0 0
## x 0 1 0
```

The covariance expectations can be numerically derived using the ramR::C_num() function.

```
ramR::C_num(A, S)
```

```
## y 0.4988845 0.2497210 0.2494423
## x 0.2497210 0.2500001 0.0000000
## e 0.2494423 0.0000000 0.2494423
```

The covariance expectations for the observed variables can be numerically derived using the ramR::M_num() function.

```
ramR::M_num(A, S, filter)
```

```
## y 0.4988845 0.2497210
## x 0.2497210 0.2500001
```

The mean expectations can be numerically derived using the ramR::v_num() function.

```
ramR::v_num(A, u)
```

```
## v 0.5000156
## x 0.5000000
## e 0.0000000
```

The mean expectations for the observed variables can be numerically derived using the ramR::v_num() function.

```
ramR::g_num(A, u, filter)
```

```
## g
## y 0.5000156
## x 0.5000000
```

4.3 Equations to RAM

The ramR package has a utility function to convert structural equations to RAM notation. The Student's t-test can be expressed in the following equations

```
model <- "
 # VARIABLE1 OPERATION VARIABLE2 LABEL
              by
                        У
                                  1;
                                  beta;
              on
                        X
 У
                                  sigma[varepsilon]^2;
              with
                        е
                                  sigma[x]^2;
              with
                        X
              on
                        1
                                  alpha;
 У
                                  mu[x]
              on
                        1
```

The error term is treated as a latent variable and defined with the operation by. It's value is constrained to 1. The regression of y on x is defined by operation on. It is labeled as beta. The variance of x and the error variance are defined using the operation with. These are labeled sigma[x]^2 and sigma[varepsilon]^2 respectively. The intercept and the mean of x are defined using the operation on 1. These are labeled alpha and mu[x] respectively.

The ramR::eq2ram converts the equations to RAM notation.

```
RAM <- ramR::eq2ram(model)
RAM
```

```
## $A
         Х
## y "0" "beta" "1"
## x "0" "0"
## e "0" "0"
                "0"
##
## $S
##
         х
## y "0" "0"
## x "0" "sigma[x]^2" "0"
## e "0" "0"
                       "sigma[varepsilon]^2"
##
## $filter
##
    ухе
## y 1 0 0
## x 0 1 0
##
## $u
##
## y "alpha"
## x "mu[x]"
## e "0"
```

The *_sym functions can be used on the results of ramR::eq2ram to derive the covariance and mean expectations.

ramR::C_sym(RAM\$A, RAM\$S)

$$\mathbf{C} = \left(\begin{array}{ccc} \sigma_x^2 \beta^2 + \sigma_\varepsilon^2 & \beta \sigma_x^2 & \sigma_\varepsilon^2 \\ \sigma_x^2 \beta & \sigma_x^2 & 0 \\ \sigma_\varepsilon^2 & 0 & \sigma_\varepsilon^2 \end{array} \right)$$

ramR::M_sym(RAM\$A, RAM\$S, RAM\$filter)

$$\mathbf{M} = \left(egin{array}{cc} \sigma_x^2 eta^2 + \sigma_arepsilon^2 & eta \sigma_x^2 \ \sigma_x^2 eta & \sigma_x^2 \end{array}
ight)$$

ramR::v_sym(RAM\$A, RAM\$u)

$$\mathbf{v} = \left(\begin{array}{c} \alpha + \beta \mu_x \\ \mu_x \\ 0 \end{array} \right)$$

ramR::g_sym(RAM\$A, RAM\$u, RAM\$filter)

$$\mathbf{g} = \left(\begin{array}{c} \alpha + \beta \mu_x \\ \mu_x \end{array} \right)$$

Bibliography

- Boker, S. M. and McArdle, J. J. (2005). Path analysis and path diagrams. In Everitt, B. S. and Howell, D. C., editors, *Encyclopedia of Statistics in Behavioral Science*, pages 1529–1531. John Wiley & Sons, Ltd, Chichester, UK.
- McArdle, J. J. (2005). The development of the RAM rules for latent variable structural equation modeling. In Maydeu-Olivares, A. and McArdle, J. J., editors, *Contemporary psychometrics: A festschrift for Roderick P. McDonald*, Multivariate applications book series, pages 225–273. Lawrence Erlbaum Associates, Mahwah, NJ.
- McArdle, J. J. and McDonald, R. P. (1984). Some algebraic properties of the reticular action model for moment structures. *British Journal of Mathematical and Statistical Psychology*, 37(2):234–251.
- Pesigan, I. J. A. (2021). ramR: Reticular Action Model (RAM) Notation. R package version 0.9.0.