Actions propres

Abdelhak Abouqateb

Séminaire de l'équipe GTA

26 Mars 2016

Théorème

Soit (M, ∇) une variété munie d'une connection. Une transformation $\varphi \in Diff(M)$ est dite affine si elle preserve la connection ∇ (i.e. $\varphi(\nabla_Y Z) = \nabla_{\varphi Y} \varphi Z$). L'ensemble des transfomations affines est un groupe de Lie $Aff(M, \nabla)$.

Théorème

Soit (M, ∇) une variété munie d'une connection. Une transformation $\varphi \in Diff(M)$ est dite affine si elle preserve la connection ∇ (i.e. $\varphi(\nabla_Y Z) = \nabla_{\varphi Y} \varphi Z$). L'ensemble des transfomations affines est un groupe de Lie $Aff(M, \nabla)$.

$$\mathsf{Aff}(\mathbb{R}^n, \nabla) = \mathsf{GL}(n, \mathbb{R}) \ltimes \mathbb{R}^n.$$

Théorème

Soit (M, ∇) une variété munie d'une connection. Une transformation $\varphi \in Diff(M)$ est dite affine si elle preserve la connection ∇ (i.e. $\varphi(\nabla_Y Z) = \nabla_{\varphi Y} \varphi Z$). L'ensemble des transfomations affines est un groupe de Lie $Aff(M, \nabla)$.

$$\mathsf{Aff}(\mathbb{R}^n, \nabla) = \mathsf{GL}(n, \mathbb{R}) \ltimes \mathbb{R}^n.$$

Théorème

Soit (M,g) une variété Riemannienne. Une transformation $\varphi \in Diff(M)$ est dite une isométrie si elle preserve la métrique (i.e. $g(\varphi_*X_x, \varphi_*Y_x) = (X_x, Y_x)$, $\forall x \in M, \forall X_x, Y_x \in T_xM$). L'ensemble des isométries est un groupe de Lie Iso(M,g)

Théorème

Soit (M, ∇) une variété munie d'une connection. Une transformation $\varphi \in Diff(M)$ est dite affine si elle preserve la connection ∇ (i.e. $\varphi(\nabla_Y Z) = \nabla_{\varphi Y} \varphi Z$). L'ensemble des transfomations affines est un groupe de Lie $Aff(M, \nabla)$.

$$\mathsf{Aff}(\mathbb{R}^n, \nabla) = \mathsf{GL}(n, \mathbb{R}) \ltimes \mathbb{R}^n.$$

Théorème

Soit (M,g) une variété Riemannienne. Une transformation $\varphi \in Diff(M)$ est dite une isométrie si elle preserve la métrique (i.e. $g(\varphi_*X_x,\varphi_*Y_x)=(X_x,Y_x)$, $\forall x \in M, \forall X_x,Y_x \in T_xM$). L'ensemble des isométries est un groupe de Lie Iso(M,g)

$$\mathsf{Iso}(\mathbb{R}^n, g) = O(n) \ltimes \mathbb{R}^n$$
.

Groupes de transformations

Théorème

Soit $G \subset \mathrm{Diff}(\mathrm{M})$ un sous-groupe. On pose :

$$S := \{X \text{ champ de vecteur complet } / \varphi_t^X \in G, \ \forall t \in \mathbb{R} \}$$

Si l'algèbre de Lie engendré par S est de dimension finie, alors G est un groupe de Lie d'algèbre de Lie S.

Groupes de transformations

Théorème

Soit $G \subset \mathrm{Diff}(\mathrm{M})$ un sous-groupe. On pose :

$$\mathcal{S} := \{ X \text{ champ de vecteur complet } / \varphi_t^X \in \mathcal{G}, \ \forall t \in \mathbb{R} \}$$

Si l'algèbre de Lie engendré par $\mathcal S$ est de dimension finie, alors G est un groupe de Lie d'algèbre de Lie $\mathcal S$.

Théorème

Un groupe topologique localement euclidien est un groupe de Lie.

Groupes de transformations

Théorème

Soit $G \subset \mathrm{Diff}(\mathrm{M})$ un sous-groupe. On pose :

$$\mathcal{S} := \{ X \text{ champ de vecteur complet } / \varphi_t^X \in \mathcal{G}, \ \forall t \in \mathbb{R} \}$$

Si l'algèbre de Lie engendré par $\mathcal S$ est de dimension finie, alors G est un groupe de Lie d'algèbre de Lie $\mathcal S$.

Théorème

Un groupe topologique localement euclidien est un groupe de Lie.

Théorème

Tout sous-goupe connexe par arcs d'un groupe de Lie est un groupe de Lie.

Soit *G* un groupe et *M* un ensemble.

Définition

Une action de G sur M est une famille d'applications

$$\varphi_{\mathsf{a}}: \mathsf{M} \to \mathsf{M}$$

avec $\mathbf{a} \in \mathbf{G}$ et telle que $\varphi_{\mathbf{e}} = \mathrm{id}$ et $\varphi_{\mathbf{a}} \circ \varphi_{\mathbf{b}} = \varphi_{\mathbf{a}\mathbf{b}}$

Soit *G* un groupe et *M* un ensemble.

Définition

Une action de G sur M est une famille d'applications

$$\varphi_{\mathsf{a}}: \mathsf{M} \to \mathsf{M}$$

avec $\mathbf{a} \in \mathbf{G}$ et telle que $\varphi_{\mathbf{e}} = \mathrm{id}$ et $\varphi_{\mathbf{a}} \circ \varphi_{\mathbf{b}} = \varphi_{\mathbf{a}\mathbf{b}}$

On note $a \cdot m$ au lieu de $\varphi_a(m)$.

Soit *G* un groupe et *M* un ensemble.

Définition

Une action de G sur M est une famille d'applications

$$\varphi_{\mathsf{a}}: \mathsf{M} \to \mathsf{M}$$

avec $\mathbf{a} \in \mathbf{G}$ et telle que $\varphi_{\mathbf{e}} = \mathrm{id}$ et $\varphi_{\mathbf{a}} \circ \varphi_{\mathbf{b}} = \varphi_{\mathbf{a}\mathbf{b}}$

On note $a \cdot m$ au lieu de $\varphi_a(m)$.

▶ Lorsque G est un groupe de Lie et que M est une variété, l'action est dite différentiable si l'application $G \times M \to M$, $(a, m) \to a \cdot m$ est C^{∞} .

Soit G un groupe et M un ensemble.

Définition

Une action de G sur M est une famille d'applications

$$\varphi_{\mathsf{a}}: \mathsf{M} \to \mathsf{M}$$

avec $\mathbf{a} \in \mathbf{G}$ et telle que $\varphi_{\mathbf{e}} = \mathrm{id}$ et $\varphi_{\mathbf{a}} \circ \varphi_{\mathbf{b}} = \varphi_{\mathbf{a}\mathbf{b}}$

On note $a \cdot m$ au lieu de $\varphi_a(m)$.

▶ Lorsque G est un groupe de Lie et que M est une variété, l'action est dite différentiable si l'application $G \times M \to M$, $(a, m) \to a \cdot m$ est C^{∞} .

Ce qui équivaut à la donnée d'un morphisme de groupes

$$G \rightarrow \text{Diff}(M)$$

tel que l'application $(a, m) \rightarrow a \cdot m$ est C^{∞} .

Le groupe d'isotropie en *m* est

$$G_m = \{g \in G/g \cdot m = m\}$$

L'action est dite **effective** si $\bigcap_{m \in M} G_m = e$ (*l'homomorphisme de l'action* $G \to \text{Diff}(M)$ *est injectif*)

Le groupe d'isotropie en *m* est

$$G_m = \{g \in G/g \cdot m = m\}$$

L'action est dite **effective** si $\bigcap_{m \in M} G_m = e$ (*l'homomorphisme de l'action* $G \to \text{Diff}(M)$ *est injectif*)

Théorème

Soit $G o Diff^1(M)$ une action effective par des C^1 -difféomorphismes d'un groupe topologique localement compact G. Alors G est un groupe de Lie et l'action est différentiable.

• **libre** si $G_m = e$ pour tout $m \in M$.

- **libre** si $G_m = e$ pour tout $m \in M$.
- **localement libre** si tous les groupes d'isotropie sont discrets.

- **libre** si $G_m = e$ pour tout $m \in M$.
- localement libre si tous les groupes d'isotropie sont discrets.

Pour $m \in M$, l'application évaluation

$$\varphi(\cdot, m): g \mapsto g \cdot m$$

induit une bijection de G/G_m sur l'orbite $G \cdot m$. L'espace des orbites M/G est muni de la topologie quotient.

- **libre** si $G_m = e$ pour tout $m \in M$.
- localement libre si tous les groupes d'isotropie sont discrets.

Pour $m \in M$, l'application évaluation

$$\varphi(\cdot, m): g \mapsto g \cdot m$$

induit une bijection de G/G_m sur l'orbite $G \cdot m$. L'espace des orbites M/G est muni de la topologie quotient.

Exemple

Les rotations autour de l'axe des z engendrent une action du cercle S^1 sur la sphère S^2 . Les orbites sont des points ou des cercles. L'espace des orbites s'identifie à [-1,1].

Exemple

Soit α un nombre irrationnel et considérons l'action de \mathbb{R} sur le tore $S^1 \times S^1$ donnée par $t \cdot (e^{i\theta_1}, e^{i\theta_1}) = (e^{i(t+\theta_1)}, e^{i(\alpha t+\theta_2)})$. Les orbites sont denses et l'espace des orbites n'est pas séparé.

Exemple

Soit α un nombre irrationnel et considérons l'action de \mathbb{R} sur le tore $S^1 \times S^1$ donnée par $t \cdot (e^{i\theta_1}, e^{i\theta_1}) = (e^{i(t+\theta_1)}, e^{i(\alpha t+\theta_2)})$. Les orbites sont denses et l'espace des orbites n'est pas séparé.

Exemple

Soit K un sous groupe d'un groupe de Lie H et G un sous groupe de H. L'action homogène de G sur H/K est donnée par : $g \cdot (hK) = ghK$.

Exemple

Soit α un nombre irrationnel et considérons l'action de \mathbb{R} sur le tore $S^1 \times S^1$ donnée par $t \cdot (e^{i\theta_1}, e^{i\theta_1}) = (e^{i(t+\theta_1)}, e^{i(\alpha t+\theta_2)})$. Les orbites sont denses et l'espace des orbites n'est pas séparé.

Exemple

Soit K un sous groupe d'un groupe de Lie H et G un sous groupe de H. L'action homogène de G sur H/K est donnée par : $g \cdot (hK) = ghK$.

Exemple (Exercice)

Pour l'action adjointe de U(n) sur u(n), toute orbite rencontre Σ l'ensemble des matrices diagonales $Diag(\alpha_1, \cdots, \alpha_n)$ avec $\alpha_k \in i\mathbb{R}$. Si par exemple m désigne une matrice diagonale où toutes les valeurs propres sont distinctes, alors le groupe d'isotropie G_m s'identifie au tore $(S^1)^n$ et l'orbite $Gm \simeq U(n)/(S^1)^n$.

Actions d'algèbres de Lie

Soit \mathcal{G} une algèbre de Lie de dimension finie et soit M une variété différentiable. Une action de \mathcal{G} sur M est la donnée d'un homomorphisme d'algèbres de Lie

$$au:\mathcal{G} o\mathcal{V}(M)$$

Actions d'algèbres de Lie

Soit $\mathcal G$ une algèbre de Lie de dimension finie et soit M une variété différentiable. Une action de $\mathcal G$ sur M est la donnée d'un homomorphisme d'algèbres de Lie

$$\tau:\mathcal{G}\to\mathcal{V}(M)$$

Ceci équivaut à la donnée d'une famille finie $\{X_1,\ldots,X_p\}\in\mathcal{V}(M)$ dont les crochets sont données par les constantes de structures C_{ij}^k de l'algèbre de Lie $\mathcal G$ relativement à une base, soit :

$$[X_i, X_j] = \sum_{1 \le k \le p} C_{ij}^k X_k$$

Correspondance "Actions de groupes de Lie - Action d'algèbres de Lie"

Une \mathcal{G} -action $\tau: \mathcal{G} \to \mathcal{V}(M)$ est dite *complète* si les champs de vecteurs $\tau(h)$ sont complets.

Correspondance "Actions de groupes de Lie - Action d'algèbres de Lie"

Une \mathcal{G} -action $\tau: \mathcal{G} \to \mathcal{V}(M)$ est dite *complète* si les champs de vecteurs $\tau(h)$ sont complets.

ightharpoonup Toute action du groupe de Lie G sur M induit une action complète de son algèbre de Lie

$$ho':\mathcal{G} o\mathcal{V}(M)$$

Correspondance "Actions de groupes de Lie - Action d'algèbres de Lie"

Une \mathcal{G} -action $\tau: \mathcal{G} \to \mathcal{V}(M)$ est dite *complète* si les champs de vecteurs $\tau(h)$ sont complets.

ightharpoonup Toute action du groupe de Lie G sur M induit une action complète de son algèbre de Lie

$$ho':\mathcal{G} o\mathcal{V}(M)$$

où le flot du champ de vecteurs $\rho'(h) = X^h$ est donné par

$$\Phi^{X^h}(t,x) = \rho(\exp(-th)) \cdot x$$

Intégrabilité

Définition

Soit $\tau: \mathcal{G} \to \mathcal{V}(M)$ une action d'une algèbre de Lie, on dira qu'elle est intégrable s'ils existent un groupe de Lie G d'algèbre de Lie G et une action $\rho: G \to Diff(M)$ tel que $\rho' = \tau$. L'action ρ sera dite une primitive de τ .

Théorème

Soit $\tau: \mathcal{G} \to \chi(M)$ une action complète. Désignons par :

- G le groupe de Lie simplement connexe d'algèbre de Lie G.
- $T(\mathcal{G})$ le sous-groupe de Diff(M) engendré par les difféomorphismes (φ_t^X) pour $t \in \mathbb{R}$ et $X \in \tau(\mathcal{G})$.

Théorème

Soit $\tau: \mathcal{G} \to \chi(M)$ une action complète. Désignons par :

- G le groupe de Lie simplement connexe d'algèbre de Lie \mathcal{G} .
- $T(\mathcal{G})$ le sous-groupe de Diff(M) engendré par les difféomorphismes (φ_t^X) pour $t \in \mathbb{R}$ et $X \in \tau(\mathcal{G})$.

Alors:

- Il existe une action $\rho: G \to \mathsf{Diff}(M)$ telle que $\rho' = \tau$ et $\rho(G) = \mathcal{T}(\mathcal{G})$.
- 2 Le groupe $T(\mathcal{G})$ admet une structure de groupe de Lie connexe d'algèbre de Lie $\tau(\mathcal{G})$, opérant effectivement sur M.

Actions propres

Definition

Une action de G sur M est **propre** si pour tout compact C de M l'ensemble

$$\{g \in G/gC \cap C \neq \emptyset\}$$

est compact.

Actions propres

Definition

Une action de G sur M est **propre** si pour tout compact C de M l'ensemble

$$\{g \in G/gC \cap C \neq \emptyset\}$$

est compact.

Exercice.

- Soit E un espace euclidien. Le groupe $G = O(E) \ltimes E$ des isométries de E opérant sur E par : $(u,b) \cdot x = u(x) + b$. Montrer que cette action est propre.
- Le groupe $\operatorname{Aut}(U,J)$ des transformations bi-holomorphes d'un ouvert borné simplement connexe de $\mathbb C$ opère proprement sur U.

Définition équivalente

On rappelle qu'une application $f:M\to N$ est dite propre si l'image réciproque d'un compact est un compact. Exercice.

Définition équivalente

On rappelle qu'une application $f:M\to N$ est dite propre si l'image réciproque d'un compact est un compact.

Exercice. Montrer l'équivalence des propriétés suivantes :

- lacktriangle L'action de G sur M est propre.
- 2 L'application $G \times M \ni (g, x) \longmapsto (g \cdot x, x) \in M \times M$, est propre

Définition équivalente

On rappelle qu'une application $f:M\to N$ est dite propre si l'image réciproque d'un compact est un compact.

Exercice. Montrer l'équivalence des propriétés suivantes :

- lacktriangle L'action de G sur M est propre.
- 2 L'application $G \times M \ni (g, x) \longmapsto (g \cdot x, x) \in M \times M$, est propre
- **③** Pour tout compact C de M, l'application $G \times C \ni (g, x) \longmapsto g \cdot x \in M$, est propre.

Remarques

• Si *G* est compact, toute *G*-action est propre.

Remarques

- Si *G* est compact, toute *G*-action est propre.
- Si M est compact et $G \to \mathsf{Diff}(M)$ une action propre, alors G est compact.

Remarques

- Si G est compact, toute G-action est propre.
- Si M est compact et G → Diff(M) une action propre, alors G est compact.
- Une condition nécessaire et suffisante pour qu'une action soit propre est la suivante :

Pour toute suite $(g_n, x_n) \in G \times M$, telle que $g_n \cdot x_n \to y$ et $x_n \to x$, la suite $(g_n)_n$ admet une sous-suite convergente.

Pour une action propre, les groupes d'isotropies G_x sont compacts, les orbites G.x sont des fermés de M et l'espace des orbites M/G est séparé.

Pour une action propre, les groupes d'isotropies G_x sont compacts, les orbites G.x sont des fermés de M et l'espace des orbites M/G est séparé.

En effet

Pour une action propre, les groupes d'isotropies G_x sont compacts, les orbites G.x sont des fermés de M et l'espace des orbites M/G est séparé.

En effet Supposons que x et y sont deux points de M tels que \overline{x} et \overline{y} ne peuvent pas être séparés dans M/G.

Pour une action propre, les groupes d'isotropies G_x sont compacts, les orbites G.x sont des fermés de M et l'espace des orbites M/G est séparé.

En effet Supposons que x et y sont deux points de M tels que \overline{x} et \overline{y} ne peuvent pas être séparés dans M/G. Soit d une distance sur M. Pour tout $n \in \mathbb{N}^*$, les ouverts $G.B(x, \frac{1}{n})$ et $G.B(y, \frac{1}{n})$ se rencontrent.

Pour une action propre, les groupes d'isotropies G_x sont compacts, les orbites G.x sont des fermés de M et l'espace des orbites M/G est séparé.

En effet Supposons que x et y sont deux points de M tels que \overline{x} et \overline{y} ne peuvent pas être séparés dans M/G. Soit d une distance sur M. Pour tout $n \in \mathbb{N}^*$, les ouverts $G.B(x,\frac{1}{n})$ et $G.B(y,\frac{1}{n})$ se rencontrent. D'où l'existence de trois suites $x_n \in B(x,\frac{1}{n})$, $y_n \in B(y,\frac{1}{n})$ et $g_n \in G$ telles que $y_n = g_n \cdot x_n$.

Pour une action propre, les groupes d'isotropies G_x sont compacts, les orbites G.x sont des fermés de M et l'espace des orbites M/G est séparé.

En effet Supposons que x et y sont deux points de M tels que \overline{x} et \overline{y} ne peuvent pas être séparés dans M/G. Soit d une distance sur M. Pour tout $n \in \mathbb{N}^*$, les ouverts $G.B(x,\frac{1}{n})$ et $G.B(y,\frac{1}{n})$ se rencontrent. D'où l'existence de trois suites $x_n \in B(x,\frac{1}{n})$, $y_n \in B(y,\frac{1}{n})$ et $g_n \in G$ telles que $y_n = g_n \cdot x_n$. La suite $g_n \cdot x_n = y_n$ converge alors vers y et x_n converge vers x,

Pour une action propre, les groupes d'isotropies G_x sont compacts, les orbites G.x sont des fermés de M et l'espace des orbites M/G est séparé.

En effet Supposons que x et y sont deux points de M tels que \overline{x} et \overline{y} ne peuvent pas être séparés dans M/G. Soit d une distance sur M. Pour tout $n \in \mathbb{N}^*$, les ouverts $G.B(x,\frac{1}{n})$ et $G.B(y,\frac{1}{n})$ se rencontrent. D'où l'existence de trois suites $x_n \in B(x,\frac{1}{n})$, $y_n \in B(y,\frac{1}{n})$ et $g_n \in G$ telles que $y_n = g_n \cdot x_n$. La suite $g_n \cdot x_n = y_n$ converge alors vers y et x_n converge vers x, la suite g_n admet alors une sous-suite $g_{\varphi(n)}$ convergente vers $g \in G$.

Pour une action propre, les groupes d'isotropies G_x sont compacts, les orbites G.x sont des fermés de M et l'espace des orbites M/G est séparé.

En effet Supposons que x et y sont deux points de M tels que \overline{x} et \overline{y} ne peuvent pas être séparés dans M/G. Soit d une distance sur M. Pour tout $n \in \mathbb{N}^*$, les ouverts $G.B(x,\frac{1}{n})$ et $G.B(y,\frac{1}{n})$ se rencontrent. D'où l'existence de trois suites $x_n \in B(x,\frac{1}{n})$, $y_n \in B(y,\frac{1}{n})$ et $g_n \in G$ telles que $y_n = g_n \cdot x_n$. La suite $g_n \cdot x_n = y_n$ converge alors vers y et x_n converge vers x, la suite y_n admet alors une sous-suite y_n convergente vers $y \in G$. Il en résulte que $y = y \cdot x$ et donc $\overline{x} = \overline{y}$.

 Soient G un sous-groupe fermé de H et K est un sous groupe compact de H, alors l'action homogène naturelle de G sur H/K est propre.

- Soient G un sous-groupe fermé de H et K est un sous groupe compact de H, alors l'action homogène naturelle de G sur H/K est propre.
- Soit H×M → M une action transitive d'un groupe de Lie H sur une variété M, tel que le groupe d'isotropie en un point soit compact.

- Soient G un sous-groupe fermé de H et K est un sous groupe compact de H, alors l'action homogène naturelle de G sur H/K est propre.
- Soit H×M → M une action transitive d'un groupe de Lie H sur une variété M, tel que le groupe d'isotropie en un point soit compact. Alors l'action induite de H sur M est propre.

- Soient G un sous-groupe fermé de H et K est un sous groupe compact de H, alors l'action homogène naturelle de G sur H/K est propre.
- Soit H×M → M une action transitive d'un groupe de Lie H sur une variété M, tel que le groupe d'isotropie en un point soit compact. Alors l'action induite de H sur M est propre. Par exemple l'action

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot z = \frac{az+b}{cz+d}$$

de $SL(2, \mathbb{R})$ sur le demi-plan de Poincaré IH est transitive et le groupe d'isotropie en i est SO(2) donc cet action est propre.

Soit G est un groupe de Lie opérant effectivement par isométries sur une variété riemannienne M. S'il existe un point x dans V tel que le groupe d'isotropie G_x soit compact et que l'orbite Gx soit fermé dans V, alors l'action de G sur M est propre (Kulkarni).

- Soit G est un groupe de Lie opérant effectivement par isométries sur une variété riemannienne M. S'il existe un point x dans V tel que le groupe d'isotropie G_x soit compact et que l'orbite Gx soit fermé dans V, alors l'action de G sur M est propre (Kulkarni).
- Le sous-groupe discret Γ de $SL(2,\mathbb{R})$ formé des matrices de la forme $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ avec $n \in \mathbb{Z}$ et D le sous-groupe fermé des matrices $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$ avec a > 0. Montrer que l'action homogène de Γ sur $SL(2,\mathbb{R})/D$ est libre, les orbites sont fermées et l'action n'est pas propre [Exercice].

Ce sont les triplets $G \subset H \supset \Gamma$ où H est un groupe de Lie, G un sous-groupe de Lie fermé connexe de H et Γ un sous-groupe discret de H, tels que l'action de G sur H/Γ est propre.

Ce sont les triplets $G \subset H \supset \Gamma$ où H est un groupe de Lie, G un sous-groupe de Lie fermé connexe de H et Γ un sous-groupe discret de H, tels que l'action de G sur H/Γ est propre. Il est facile de vérifier que l'action de Γ sur H/G est proprement discontinue si et seulement si l'action de G sur H/Γ est propre.

Ce sont les triplets $G \subset H \supset \Gamma$ où H est un groupe de Lie, G un sous-groupe de Lie fermé connexe de H et Γ un sous-groupe discret de H, tels que l'action de G sur H/Γ est propre. Il est facile de vérifier que l'action de Γ sur H/G est proprement discontinue si et seulement si l'action de G sur H/Γ est propre. Exemples géométriques : Soit M une variété et $\mathcal T$ une structure géométrique (métrique riemannienne, structure complexe. . .). Il en résulte une structure encore noté $\mathcal T$ sur $\widetilde M$. On pose

$$H = \operatorname{Aut}(\widetilde{M}, \mathcal{T}) = \{ \varphi \in \operatorname{Diff}(\widetilde{M}) / \varphi \text{ preserve } \mathcal{T} \}$$

Ce sont les triplets $G \subset H \supset \Gamma$ où H est un groupe de Lie, G un sous-groupe de Lie fermé connexe de H et Γ un sous-groupe discret de H, tels que l'action de G sur H/Γ est propre. Il est facile de vérifier que l'action de Γ sur H/G est proprement discontinue si et seulement si l'action de G sur H/Γ est propre. Exemples géométriques : Soit M une variété et $\mathcal T$ une structure géométrique (métrique riemannienne, structure complexe. . .). Il en résulte une structure encore noté $\mathcal T$ sur $\widetilde M$. On pose

$$H = \operatorname{Aut}(\widetilde{M}, \mathcal{T}) = \{ \varphi \in \operatorname{Diff}(\widetilde{M}) / \varphi \text{ preserve } \mathcal{T} \}$$

Lorsque H opère transitivement sur M,

Ce sont les triplets $G \subset H \supset \Gamma$ où H est un groupe de Lie, G un sous-groupe de Lie fermé connexe de H et Γ un sous-groupe discret de H, tels que l'action de G sur H/Γ est propre. Il est facile de vérifier que l'action de Γ sur H/G est proprement discontinue si et seulement si l'action de G sur H/Γ est propre. Exemples géométriques : Soit M une variété et $\mathcal T$ une structure géométrique (métrique riemannienne, structure complexe. . .). Il en résulte une structure encore noté $\mathcal T$ sur $\widetilde M$. On pose

$$H = \operatorname{Aut}(\widetilde{M}, \mathcal{T}) = \{ \varphi \in \operatorname{Diff}(\widetilde{M})/\varphi \text{ preserve } \mathcal{T} \}$$

Lorsque H opère transitivement sur \widetilde{M} , on obtient $\widetilde{M} \simeq H/G$ (où G est le groupe d'istropie en un point de \widetilde{M}) et $M \simeq \Gamma \setminus H/G$ où Γ sous-groupe discret de H qui s'identifie au groupe fondamental de M.

Surfaces de Riemann

Soit Σ une surface de Riemann (J sa structure complexe). $\widetilde{\Sigma}$ son revêtement universel : c'est une surface de Riemann simplement connexe.

Surfaces de Riemann

Soit Σ une surface de Riemann (J sa structure complexe). $\widetilde{\Sigma}$ son revêtement universel : c'est une surface de Riemann simplement connexe.

Théorème (D'uniformisation de Riemann)

Toute surface de Riemann simplement connexe est holomorphiquement isomorphe à l'une des trois surfaces :

$$\mathbb{C}P^1$$
, \mathbb{C} ou $\mathbb{H} \cong \mathbb{D}$

Surfaces de Riemann

Soit Σ une surface de Riemann (J sa structure complexe). $\widetilde{\Sigma}$ son revêtement universel : c'est une surface de Riemann simplement connexe.

Théorème (D'uniformisation de Riemann)

Toute surface de Riemann simplement connexe est holomorphiquement isomorphe à l'une des trois surfaces :

$$\mathbb{C}P^1$$
, \mathbb{C} ou $\mathbb{H} \cong \mathbb{D}$

Dans les trois cas, l'action du groupe des transformations holomorphes est transitive. Il en résulte que toute surface de Riemann est de la forme $\Gamma \setminus H/G$.

• Le groupe $\operatorname{Aut}(\mathbb{C},J)\simeq\mathbb{C}^*\ltimes\mathbb{C}$ opère transitivement sur $\mathbb{C}:(a,b)\cdot z=az+b.$ On $a:\mathbb{C}\simeq\mathbb{C}^*\ltimes\mathbb{C}/\mathbb{C}^*.$

- Le groupe $\operatorname{Aut}(\mathbb{C},J)\simeq\mathbb{C}^*\ltimes\mathbb{C}$ opère transitivement sur \mathbb{C} : $(a, b) \cdot z = az + b$. On $a : \mathbb{C} \simeq \mathbb{C}^* \ltimes \mathbb{C}/\mathbb{C}^*$.
- **2** Le groupe $PSL(2, \mathbb{C})$ opère transitivement par bi-holomorphismes sur $\mathbb{C}P^1 \simeq \mathbb{C} \cup \{\infty\}$:

$$\begin{bmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{bmatrix} \cdot z = \frac{az+b}{cz+d}$$
. On a : $\mathbb{C}P^1 \simeq \mathsf{PSL}(2,\mathbb{C})/B$.

- Le groupe $\operatorname{Aut}(\mathbb{C},J) \simeq \mathbb{C}^* \ltimes \mathbb{C}$ opère transitivement sur $\mathbb{C}: (a,b) \cdot z = az + b$. On $a: \mathbb{C} \simeq \mathbb{C}^* \ltimes \mathbb{C}/\mathbb{C}^*$.
- 2 Le groupe PSL(2, $\mathbb C$) opère transitivement par bi-holomorphismes sur $\mathbb C P^1 \simeq \mathbb C \cup \{\infty\}$: $[\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)] \cdot z = \frac{az+b}{cz+d}. \text{ On a } : \mathbb C P^1 \simeq \mathrm{PSL}(2,\mathbb C)/B.$
- Aut(\mathbb{H} , J) \simeq PSL(2, \mathbb{R}) opère transitivement sur $\mathbb{H} \simeq \mathsf{PSL}(2, \mathbb{R})/SO(2)$.

- Le groupe $\operatorname{Aut}(\mathbb{C},J) \simeq \mathbb{C}^* \ltimes \mathbb{C}$ opère transitivement sur $\mathbb{C}: (a,b) \cdot z = az + b$. On $a: \mathbb{C} \simeq \mathbb{C}^* \ltimes \mathbb{C}/\mathbb{C}^*$.
- Le groupe $\mathsf{PSL}(2,\mathbb{C})$ opère transitivement par bi-holomorphismes sur $\mathbb{C}P^1 \simeq \mathbb{C} \cup \{\infty\}$: $\left[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right] \cdot z = \frac{az+b}{cz+d}. \text{ On a } : \mathbb{C}P^1 \simeq \mathsf{PSL}(2,\mathbb{C})/B.$
- **③** Aut(\mathbb{H} , J) \simeq PSL(2, \mathbb{R}) opère transitivement sur \mathbb{H} \simeq PSL(2, \mathbb{R})/SO(2).
- ▶ Lorsque Σ est une surface de Riemann **compacte et connexe**. On trouve $\Sigma \simeq \mathbb{C}P^1$, ou $\Sigma \simeq \mathbb{Z}^2 \setminus \mathbb{C}$ ou $\Sigma \simeq \Gamma_{\mathscr{E}} \setminus \mathsf{PSL}(2,\mathbb{R})/\mathsf{SO}(2)$.

M est dite variété affine complète lorsqu'elle est munie d'une connection ∇ sans courbure ni torsion.

M est dite variété affine complète lorsqu'elle est munie d'une connection ∇ sans courbure ni torsion. Pour une telle variété $\widetilde{M} \simeq {\rm I\!R}^n$.

M est dite variété affine complète lorsqu'elle est munie d'une connection ∇ sans courbure ni torsion. Pour une telle variété $\widetilde{M} \simeq \mathbb{R}^n$. Et puisque $\operatorname{Aut}(\mathbb{R}^n, \nabla) \simeq \operatorname{GL}(n, \mathbb{R}) \ltimes \mathbb{R}^n/\operatorname{GL}(n, \mathbb{R})$,

M est dite variété affine complète lorsqu'elle est munie d'une connection ∇ sans courbure ni torsion. Pour une telle variété $\widetilde{M} \simeq {\rm I\!R}^n$. Et puisque

 $\operatorname{\mathsf{Aut}}(\mathbb{R}^n, \nabla) \simeq \operatorname{\mathsf{GL}}(n,\mathbb{R}) \ltimes \mathbb{R}^n/\operatorname{\mathsf{GL}}(n,\mathbb{R})$, on obtient

$$M \simeq \Gamma \backslash \mathsf{GL}(n,\mathbb{R}) \ltimes \mathbb{R}^n / \mathsf{GL}(n,\mathbb{R})$$

Ensemble de points fixes

Soit M une G-variété propre. L'existence d'un point fixe m par l'action impose la compacité du groupe. De plus, les applications linéaires tangentes des difféomorphismes associés à g induisent une représentation $G \to \operatorname{GL}(T_m M)$.

Ensemble de points fixes

Soit M une G-variété propre. L'existence d'un point fixe m par l'action impose la compacité du groupe. De plus, les applications linéaires tangentes des difféomorphismes associés à g induisent une représentation $G \to \operatorname{GL}(T_m M)$.

Théorème (Linéarisation locale)

Supposons que G est compact et soit $m \in M^G$ un point fixe. Alors, il existe un difféormorphisme G-équivariant d'un voisinage de 0 dans T_mM sur un voisinage ouvert m dans M.

Ensemble de points fixes

Soit M une G-variété propre. L'existence d'un point fixe m par l'action impose la compacité du groupe. De plus, les applications linéaires tangentes des difféomorphismes associés à g induisent une représentation $G \to \operatorname{GL}(T_m M)$.

Théorème (Linéarisation locale)

Supposons que G est compact et soit $m \in M^G$ un point fixe. Alors, il existe un difféormorphisme G-équivariant d'un voisinage de 0 dans T_mM sur un voisinage ouvert m dans M.

Ceci découle du fait que si l'on muni M d'une métrique riemannienne G-invariante, alors l'application $\exp_m: T_m M \to M$ est G-équivante.

Corollaire

Soit M une G-variété propre et $H \subset G$ un sous-groupe de G. Alors les composantes connexes de l'ensemble des points fixes par H

$$M^H = \{m \in M/H \subset G_m\}$$

sont des sous-variété fermée de M de codimension paire.

Corollaire

Soit M une G-variété propre et $H \subset G$ un sous-groupe de G. Alors les composantes connexes de l'ensemble des points fixes par H

$$M^H = \{m \in M/H \subset G_m\}$$

sont des sous-variété fermée de M de codimension paire.

L'idée de démonstration de ce corollaire repose sur le fait que $M^H = M^{\overline{H}}$ où \overline{H} est l'adhérence de H dans G (par continuité de l'application $(h,m) \mapsto h \cdot m$) et que l'inclusion $\overline{H} \subset G_m$ implique que \overline{H} est compact.

Soit M une G-variété propre, $m \in M$ et $K = G_m$.

Soit M une G-variété propre, $m \in M$ et $K = G_m$. Pour tout $a \in K$, la différentielle de $a : M \to M$ est un isomorphisme de TmM.

Soit M une G-variété propre, $m \in M$ et $K = G_m$. Pour tout $a \in K$, la différentielle de $a : M \to M$ est un isomorphisme de TmM. Nous obtenons une représentation linéaire

$$K \to \mathsf{GL}(T_m M)$$

Soit M une G-variété propre, $m \in M$ et $K = G_m$. Pour tout $a \in K$, la différentielle de $a : M \to M$ est un isomorphisme de TmM. Nous obtenons une représentation linéaire

$$K \to \mathsf{GL}(T_m M)$$

Le sous-espace $T_m(Gm)$ étant K-stable, on peut alors choisir un produit scalaire K-invariant sur T_mM et considérer la décomposition orthogonale

$$T_mM = T_m(Gm) \oplus (T_m(Gm))^{\perp}$$

Soit M une G-variété propre, $m \in M$ et $K = G_m$. Pour tout $a \in K$, la différentielle de $a : M \to M$ est un isomorphisme de TmM. Nous obtenons une représentation linéaire

$$K \to GL(T_mM)$$

Le sous-espace $T_m(Gm)$ étant K-stable, on peut alors choisir un produit scalaire K-invariant sur T_mM et considérer la décomposition orthogonale

$$T_mM = T_m(Gm) \oplus (T_m(Gm))^{\perp}$$

On note $V = (T_m(Gm))^{\perp}$ et $K \to O(V)$ la représentation obtenue.

La projection $G \rightarrow G/K$ est un K-fibré principal.

La projection $G \to G/K$ est un K-fibré principal. À toute représentation $K \to GL(V)$,

La projection $G \to G/K$ est un K-fibré principal. À toute représentation $K \to GL(V)$, on peut fait correspondre le fibré vectoriel

$$G \times_K V \to G/K$$

La projection $G \to G/K$ est un K-fibré principal. À toute représentation $K \to GL(V)$, on peut fait correspondre le fibré vectoriel

$$G \times_K V \to G/K$$

C'est un G-fibré vectoriel : l'action de G sur l'espace total est donnée par g.[a, v] = [ga, v].

Local slice theorem

Théorème (Local slice theorem)

Soit M une G-variété propre, $m \in M$ et $K = G_m$. Alors il existe un difféomorphisme G-équivariant de $G \times_K V$ sur un voisinage ouvert G-stable de l'orbite Gm dans M, dont la restriction à la section nulle est l'identification canonique de G/K sur Gm.

Corollaire

Si l'action de G sur M est propre et libre, alors M/G est une variété et la projection $M \to M/G$ est un G-fibré principal.

Corollaire

Si l'action de G sur M est propre et libre, alors M/G est une variété et la projection $M \to M/G$ est un G-fibré principal.

• l'action à droite de G sur M est donnée par $m \cdot g = g^{-1} \cdot m$.

Corollaire

Si l'action de G sur M est propre et libre, alors M/G est une variété et la projection $M \to M/G$ est un G-fibré principal.

• l'action à droite de G sur M est donnée par $m \cdot g = g^{-1} \cdot m$.

Corollaire

Si l'action de G sur M est propre et localement libre, alors M/G est une pseudo-variété (orbifold) .

Corollaire

Si l'action de G sur M est propre et libre, alors M/G est une variété et la projection $M \to M/G$ est un G-fibré principal.

• l'action à droite de G sur M est donnée par $m \cdot g = g^{-1} \cdot m$.

Corollaire

Si l'action de G sur M est propre et localement libre, alors M/G est une pseudo-variété (orbifold) .

• Une carte de M/G au point \overline{m} est donnée par un homéomorphisme du quotient V/G_m de l'espace vectoriel V par un sous-groupe fini de O(V) sur un U/G avec U voisinage ouvert G-stable de l'orbite.

Théorème (Global slice theorem)

Soit M une G-variété propre avec G un groupe de Lie connexe et K un sous-groupe compact maximal. Alors il existe un difféomorphisme G-équivariant de $G \times_K S$ sur M.

Théorème (Global slice theorem)

Soit M une G-variété propre avec G un groupe de Lie connexe et K un sous-groupe compact maximal. Alors il existe un difféomorphisme G-équivariant de $G \times_K S$ sur M.

• On peut par exemple illustrer le théorème de tranche (global) pour montrer que sur toute *G*-variété propre il existe une métrique Riemannienne sur *M* qui soit *G*-invariante.

Théorème (Global slice theorem)

Soit M une G-variété propre avec G un groupe de Lie connexe et K un sous-groupe compact maximal. Alors il existe un difféomorphisme G-équivariant de $G \times_K S$ sur M.

• On peut par exemple illustrer le théorème de tranche (global) pour montrer que sur toute G-variété propre il existe une métrique Riemannienne sur M qui soit G-invariante. En effet nous commençons par mettre une métrique Riemannienne K-invariante sur le K-fibré $TM_{\mid_S} \to S$ (ce qui est possible à cause de la compacité du groupe K),

Théorème (Global slice theorem)

Soit M une G-variété propre avec G un groupe de Lie connexe et K un sous-groupe compact maximal. Alors il existe un difféomorphisme G-équivariant de $G \times_K S$ sur M.

• On peut par exemple illustrer le théorème de tranche (global) pour montrer que sur toute G-variété propre il existe une métrique Riemannienne sur M qui soit G-invariante. En effet nous commençons par mettre une métrique Riemannienne K-invariante sur le K-fibré $TM_{\mid S} \to S$ (ce qui est possible à cause de la compacité du groupe K), puis nous utilisons l'identification naturelle

$$TM \cong G \times_K TM_{|S|}$$

cette identification est dûe au fait que $M \cong G \times_K S$.

Soit M une G-variété propre. Pour m et m' dans la même orbite, les groupes d'isotropie sont conjugués $(G_{a\cdot m}=aG_ma^{-1})$.

Soit M une G-variété propre. Pour m et m' dans la même orbite, les groupes d'isotropie sont conjugués $(G_{a\cdot m}=aG_ma^{-1})$. Pour $H\subset G$ un sous-groupe de G, on note (H) la classe de conjugaison de H (le conjugaison définit une relation d'équivalence sur l'ensemble des sous-groupes de G).

Soit M une G-variété propre. Pour m et m' dans la même orbite, les groupes d'isotropie sont conjugués $(G_{a\cdot m}=aG_ma^{-1})$. Pour $H\subset G$ un sous-groupe de G, on note (H) la classe de conjugaison de H (le conjugaison définit une relation d'équivalence sur l'ensemble des sous-groupes de G). Une relation d'ordre partielle est définie sur l'ensemble de ces classes d'équivalence en posant :

 $(H) < (H') \Leftrightarrow H$ est conjugué à un sous groupe de H'

Soit M une G-variété propre. Pour m et m' dans la même orbite, les groupes d'isotropie sont conjugués $(G_{a\cdot m}=aG_ma^{-1})$. Pour $H\subset G$ un sous-groupe de G, on note (H) la classe de conjugaison de H (le conjugaison définit une relation d'équivalence sur l'ensemble des sous-groupes de G). Une relation d'ordre partielle est définie sur l'ensemble de ces classes d'équivalence en posant :

$$(H) < (H') \Leftrightarrow H$$
 est conjugué à un sous groupe de H'

Pour tout sous-groupe de $H \subset G$, on pose :

$$M_{(H)} = \{ m \in M / (G_m) = (H) \}$$
 et $M_H = \{ m \in M / G_m = H \}$

Soit M une G-variété propre. Pour m et m' dans la même orbite, les groupes d'isotropie sont conjugués $(G_{a\cdot m}=aG_ma^{-1})$. Pour $H\subset G$ un sous-groupe de G, on note (H) la classe de conjugaison de H (le conjugaison définit une relation d'équivalence sur l'ensemble des sous-groupes de G). Une relation d'ordre partielle est définie sur l'ensemble de ces classes d'équivalence en posant :

$$(H) < (H') \Leftrightarrow H$$
 est conjugué à un sous groupe de H'

Pour tout sous-groupe de $H \subset G$, on pose :

$$M_{(H)} = \{ m \in M / (G_m) = (H) \}$$
 et $M_H = \{ m \in M / G_m = H \}$

 $M_{(H)}$ est G-stable, c'est le saturé de M_H .

Théorème (Stratification par le type d'orbite)

Les composantes connexes des $M_{(H)}$ pour H sous-groupe de G constitue une partition

$$M = \bigcup_{i \in I} M_i$$

Théorème (Stratification par le type d'orbite)

Les composantes connexes des $M_{(H)}$ pour H sous-groupe de G constitue une partition

$$M = \bigcup_{i \in I} M_i$$

avec les propriétés :

• Chaque M_i est une sous-variété plongée G-stable de M et la projection $M_i \to M_i/G$ est une submersion.

Théorème (Stratification par le type d'orbite)

Les composantes connexes des $M_{(H)}$ pour H sous-groupe de G constitue une partition

$$M = \bigcup_{i \in I} M_i$$

avec les propriétés :

- Chaque M_i est une sous-variété plongée G-stable de M et la projection $M_i \to M_i/G$ est une submersion.
- 2 La partition est localement finie (un compact de M ne rencontrent qu'un nombre fini de M_i).

Théorème (Stratification par le type d'orbite)

Les composantes connexes des $M_{(H)}$ pour H sous-groupe de G constitue une partition

$$M = \bigcup_{i \in I} M_i$$

avec les propriétés :

- Chaque M_i est une sous-variété plongée G-stable de M et la projection $M_i \to M_i/G$ est une submersion.
- ② La partition est localement finie (un compact de M ne rencontrent qu'un nombre fini de M_i).
- **o** Pour tous $i, j \in I$, $M_i \cap \overline{M_j} \neq \emptyset \Rightarrow M_i \subset \overline{M_j}$.

Théorème (Le type d'orbite principale)

Supposons que M est connexe. Alors

• Il existe une unique classe de conjugaison (K_{pr}) avec la propriété $(K_{pr}) < (G_m)$ pour tout $m \in M$.

Théorème (Le type d'orbite principale)

Supposons que M est connexe. Alors

- ① Il existe une unique classe de conjugaison (K_{pr}) avec la propriété $(K_{pr}) < (G_m)$ pour tout $m \in M$.
- M_{K_{pr}} est un ouvert dense dans M.

Théorème (Le type d'orbite principale)

Supposons que M est connexe. Alors

- ① Il existe une unique classe de conjugaison (K_{pr}) avec la propriété $(K_{pr}) < (G_m)$ pour tout $m \in M$.
- **2** $M_{K_{pr}}$ est un ouvert dense dans M.

Corollaire

Supposons que M est connexe, G est commutatif et que l'action est effective. Alors l'ensemble des points où l'action est libre est un ouvert dense dans M

Théorème (Le type d'orbite principale)

Supposons que M est connexe. Alors

- Il existe une unique classe de conjugaison (K_{pr}) avec la propriété $(K_{pr}) < (G_m)$ pour tout $m \in M$.
- **2** $M_{K_{pr}}$ est un ouvert dense dans M.

Corollaire

Supposons que M est connexe, G est commutatif et que l'action est effective. Alors l'ensemble des points où l'action est libre est un ouvert dense dans M

En effet, puisque G est commutatif, $M_{(K_{or})} = M_{K_{or}}$.

Théorème (Le type d'orbite principale)

Supposons que M est connexe. Alors

- Il existe une unique classe de conjugaison (K_{pr}) avec la propriété $(K_{pr}) < (G_m)$ pour tout $m \in M$.
- **2** $M_{K_{pr}}$ est un ouvert dense dans M.

Corollaire

Supposons que M est connexe, G est commutatif et que l'action est effective. Alors l'ensemble des points où l'action est libre est un ouvert dense dans M

En effet, puisque G est commutatif, $M_{(K_{pr})} = M_{K_{pr}}$. Donc K_{pr} opère trivialement sur $M_{(K_{pr})}$.

Théorème (Le type d'orbite principale)

Supposons que M est connexe. Alors

- Il existe une unique classe de conjugaison (K_{pr}) avec la propriété $(K_{pr}) < (G_m)$ pour tout $m \in M$.
- $Oldsymbol{O}$ $Oldsymbol{M}$ $M_{K_{pr}}$ est un ouvert dense dans M.

Corollaire

Supposons que M est connexe, G est commutatif et que l'action est effective. Alors l'ensemble des points où l'action est libre est un ouvert dense dans M

En effet, puisque G est commutatif, $M_{(K_{pr})} = M_{K_{pr}}$. Donc K_{pr} opère trivialement sur $M_{(K_{pr})}$. Puisque $M_{(K_{pr})}$ est dense, l'action de K_{pr} sur M est aussi triviale.

Théorème (Le type d'orbite principale)

Supposons que M est connexe. Alors

- Il existe une unique classe de conjugaison (K_{pr}) avec la propriété $(K_{pr}) < (G_m)$ pour tout $m \in M$.
- **2** $M_{K_{pr}}$ est un ouvert dense dans M.

Corollaire

Supposons que M est connexe, G est commutatif et que l'action est effective. Alors l'ensemble des points où l'action est libre est un ouvert dense dans M

En effet, puisque G est commutatif, $M_{(K_{pr})} = M_{K_{pr}}$. Donc K_{pr} opère trivialement sur $M_{(K_{pr})}$. Puisque $M_{(K_{pr})}$ est dense, l'action de K_{pr} sur M est aussi triviale. Puisque l'action est effective, $K_{pr} = \{e\}$.

Sections G-invariantes

Soit $E \stackrel{\pi}{\to} M$ un G-fibré vectoriel. Une action induite de G sur l'espace des sections $C^{\infty}(E)$ est définie par : pour $g \in G$ et $\sigma \in C^{\infty}(E)$, $g \cdot \sigma$ est la section donnée par :

$$(g \cdot \sigma)(x) = g\sigma(g^{-1} \cdot x)$$

Si X_h désigne un champ fondamental sur M associé à un vecteur $h \in \mathcal{G}$, et $\sigma \in C^{\infty}(E)$, on pose :

$$(L_{X_h}\sigma)(x) = \frac{d}{dt} \mid_{t=0} ((\exp th) \cdot \sigma)(x)$$

Définition

 σ est dite G-invariante si pour tout $g \in G$, $g \cdot \sigma = \sigma$

Ce qui est équivalent, si le le groupe G est connexe, à $L_{X_h}\sigma=0$ pour tout $h\in\mathcal{G}$.

Moyennisation

Désormais $(E \xrightarrow{\pi} M)$ sera un G-fibré vectoriel **propre** et le groupe G est connexe et unimodulaire. Pour tout $\sigma \in C_c^\infty(E)$ et pour tout $x \in V$, l'ensemble $\{g \in G \mid g^{-1}x \in supp(\sigma)\}$ est un compact de G, à l'extérieur duquel l'application $g \longmapsto (g\sigma)(x)$ est nulle. D'où l'existence de l'intégrale $\int_G (g \cdot \sigma)(x) dg$ pour une mesure de Haar dg invariante à droite sur G. On obtient ainsi une application linéaire

$$m: \begin{array}{ccc} C_c^{\infty}(E) & \longrightarrow & C^{\infty}(E) \\ \sigma & \longmapsto & m\sigma \end{array}$$

donnée par :

$$(m\sigma)(x) = \int_G (g \cdot \sigma)(x) dg$$

On désignera par $\overline{C}_G^{\infty}(E)$ l'espace des sections G-invariantes à support G-compact. soit compact

Théorème

- ② Le noyau Ker(m) est le sous-espace de $C_c^{\infty}(E)$ engendré par les éléments $L_X \tau$ où X est un champ fondamental et $\tau \in C_c^{\infty}(E)$.

Théorème

Soit $E \stackrel{\pi}{\to} V$ un G- fibré vectoriel propre avec G connexe et unimodulaire.

Alors l'espace vectoriel topologique $(C_c^{\infty}(E))'_G$ des formes linéaires continues G-invariantes sur $C_c^{\infty}(E)$ est isomorphe au dual de $\overline{C}_G^{\infty}(E)$.

Corollaire

Soient G un groupe de Lie compact connexe et $E \stackrel{\pi}{\to} M$ un G-fibré vectoriel. Désignons par F l'un des espaces $C_c^{\infty}(E)$ ou $C^{\infty}(E)$. Alors on la décomposition topologique

$$F = F_G \oplus L_G F$$

(L_GF étant le sous-espace de F engendré par les éléments L_{X^T} pour X champ fondamental et $\tau \in F$, F_G est le sous-espace de F des éléments G-invariants).

Actions propres d'algèbres de Lie

Definition

Une action d'algèbre de Lie $\tau:\mathcal{G}\to\mathcal{V}(M)$ sera dite *propre* si elle admet une primitive propre i.e. si elle est intégrable en une action propre de groupe de Lie. On dira alors que M est une \mathcal{G} -variété propre.

Exemple

Pour toute variété riemannienne (M,g), l'action naturelle de l'algèbre de Lie des champs de Killing Kill $_g(M)$ sur M est propre.

Exemple

Désignons par S(n) l'espace des matrices de $M_n(\mathbb{R})$ qui sont symétriques. L'action de $GL^+(n,\mathbb{R})$ sur S(n) donnée par : $g.B := gBg^{\top}$, est non propre. Par contre, si on se limite à $M := S^+(n)$ l'espace des matrices symétriques définies positives (qui est un ouvert de S(n)), l'action est propre et transitive (le groupe d'isotropie en I_n est SO(n)). L'algèbre de Lie de $GL^+(n,\mathbb{R})$ étant l'algèbre de Lie usuelle $M_n(\mathbb{R})$. L'action infinitésimale $\tau: M_n(\mathbb{R}) \to \mathcal{V}(M)$ est donnée par : $H \in M(n, \mathbb{R}) \mapsto \tau(H)$ la restriction à $S^+(n)$ du champ de vecteurs X^H défini sur S(n) par l'endomorphisme : $X^{H}(B) := -HB - BH^{T}$. L'action τ est une action propre de l'algèbre de Lie $M_n(\mathbb{R})$ sur $S^+(n)$.