Chapter 5: Sampling From Populations: The Standard Error of the Mean

TXCL7565/PHSC7565

What This Chapter Covers

- Samples and populations
- Sampling Error
- Types of sampling error
- Factors contributing to extent of random sampling error
- Standard error of the mean
- SEM in GraphPad

SAMPLES AND POPULATIONS

Samples and Populations

Good research includes a clear definition of the target group of individuals (or objects/animals/cells) about whom we aim to draw a conclusion.

- Population the complete collection of individuals about whom we wish to draw some conclusion.
- Sample a random selection of individuals from the population we wish to study

From Samples to Populations

Scope of Inference - the group of individuals to whom the statistical conclusions can be extended

SAMPLING ERROR

Sampling Distribution of Sample Mean

- Sampling error is the concept that (random) samples from the same population will differ because they contain different members of the population.
- **Sampling distribution** is the frequency distribution of the statistics resulting from all possible samples (of a certain size n) from the same population.
- Example: Suppose we could get ratings of all statistics instructors in the world and that the population mean rating (on a scale from 1 to 20) is mean=10. We take several random samples of size n=4 and calculate the sample mean. What is the distribution of the sample means?

TYPES OF SAMPLING ERROR

Bias: Systematic Error

A consistent form of mis-estimation of the mean. Either most such samples would over-estimate the value or most would under-estimate the value.

Principles of Bias

- 1. If we were to repeat the same sampling procedure several times, we could pretty much guarantee that we would make an error in the same direction every time.
- 2. Bias arises from flaws in our experimental design
- 3. We can remove the bias by improving our experimental design

Random Error

Any given sample has an equal chance of under- or over-estimating the population mean value

FACTORS CONTRIBUTING TO THE EXTENT OF RANDOM SAMPLING ERROR WHEN ESTIMATING A POPULATION MEAN

Sample Size

As sample size increases...

The influence of an outlier on the mean is reduced

RANDOM ERROR IS REDUCED

Sample Size

Variability within the data

Sample means based on highly variable data are themselves rather variable and may provide a poor reflection of the true situation.

Standard Error of the Mean

Standard Error of the Mean

- Standard error of the mean (SEM) estimate of the likely sampling error that should be anticipated, given the size of the sample and the variability among the data being sampled
- SEM = generalization of the accuracy our mean estimate

Technical Definition of SEM

The SD among (hypothetical) repeated sample means from the same population.

Calculation of the SEM

SEM in GraphPad

1.Select 'Mean, SD, SEM'

Para	meters: Column Statistics	
Descriptive Statistics		
✓ Minimum and maximum	Coefficient of variation	
Quartiles (Median, 25th and 75th percentile)	Geometric mean	
Percentile 90	Skewness and kurtosis	
✓ Mean, SD, SEM	✓ Column sum	
Confidence intervals		
✓ CI of the mean		
Cl of geometric mean	Confidence level: 95%	
Cl of median		
Test if the values come from a Gaussian distribution		
D'Agostino-Pearson omnibus normality test (recomme	nded)	
Shapiro-Wilk normality test		
Kolmogorov-Smirnov test with Dallal-Wilkinson-Lilliefo	or P value (not recommended)	
Inferences		
One-sample t test. Are column means significantly different than a hypothetical value?	Hypothetical value	
Wilcoxon signed-rank test. Compare column medians to a hypothetical value.	(often 0.0, 1.0 or 100)	
When a value equals the hypothetical value: Ignore	e that value entirely, as Prism 5 and earlier versions did 🗘	
Calculations		
Subcolumns: Compute the mean of the subcolumns for	r each row, and then calculate column statistics of those means \$\circ\$ 2.Cick	
Output	Z.OIICK	
P-value style: GP: 0.1234 (ns), 0.0332 (*), 0.0021 (**), 0.0002 (***), <0.0001 (****) 💸	
Show 4 🗘 significant digits.		
Show 4 Significant digits.		
Make these choices be the default for future analyses.		
?	Cancel OK	

What did we learn?

- If samples are randomly chosen from the entire population, results can be applied to the entire population.
- Bias/systematic error is often a result of poor study design.
- All experiments are subject to random error which is just as likely to cause over-estimation as it is to cause under-estimation.
- Sample size and variability within the data contribute to the extent of random sampling error when estimating a population mean.
- The standard error of the mean is a estimate of how accurately we have estimated the population mean.