Sequencing technologies

Reagents

Machine cost

Labour to run instrument

Bioinformatics

High performance computing

BGI 400 USD

Pacbio CLS: 2000-3000 USD

Pacbio HIFI: 8000 USD

Nanopore: 800 USD

DNA Sequencing Economics

Sequencing, sequencing

All eucaryotic species on Earth within the next 5 years 2-3 million known (10-15 million expected)

All birds (10,000 species) – 500 done

All primates (500 species) - 251 done

When is a sequence final?

Technologies

First generation

Sanger sequencing (from 1977)

Second generation

- 454 (2005)
- Illumina (2006)
- SOLID (2006)
- Qiagen gene reader (2016)
- Complete Genomics (2008) BGI revamp (2015) BGI revamp (2019)
- Ultima (2022)

Third generation competitors

- Helicos (2008)
- Ion torrent (2010)
- Pacific Bioscience (2013)

Fourth generation

Oxford Nanopore (2014)

Technologies

First generation

Sanger sequencing (from 1977) – almost forgotten

Second generation

- 454 (2005)
- Illumina (2006)
- SOLID (2006)
- Qiagen gene reader (2016) clinical
- Complete Genomics (2008) BGI revamp (2015) BGI revamp (2019)
- Ultima (2022)????

Third generation competitors

- Helicos (2008)
- Ion torrent (2010)
- Pacific Bioscience (2013)

Fourth generation

Oxford Nanopore (2014)

Illumina technology

All four colours at once, thus all sequences equally long, max 250 bp

Top: CATCGT Bottom: CCCCCC Patterned flow cell
Microwells on flow cell
direct cluster generation,
increasing cluster density

Illumina paired end sequencing

Illumina throughput

Next sequencer, NovaSeq 600, 100 USD human genome

BGI-seq based on nanoballs

ssDNA -> DNA nanoballs

Place DNBs into each spot

Use silicon chips with sticky spots

Sequence using ligase and flourescent labeled probes

DNA ligase binds to genomic DNA

Credit Simon Rasmussen

Illumina versus BGIseq

PARAMETER	DNBSEQ (average)	HiSeq X Ten (average)
Clean reads (M)	1,001	732
Clean data amount (Gb)	100	110
Clean read Q20 (%)	95	97.01
Clean read Q30 (%)	89.9	90.47
GC content (%)	41.71	40.94
Mapping rate (%)	99.47	96.52
Unique rate (%)	94.33	85.14
Duplicate rate (%)	1.77	11.76
Mismatch rate (%)	0.53	0.56
Average sequencing depth	33	31
Coverage (%)	99.1	98.95
Coverage at least 4X (%)	98.62	98.43
Coverage at least 10X (%)	97.68	97.24
Coverage at least 20X (%)	93.09	91.45

ULTIMA sequencing (100 USD genome)

Third generation sequencing

- Simpler chemistry
- Longer reads
 - Easier assembly
 - Easier phasing of chromosomes
- Direct measurement of DNA modifications

Pacific biosciences

Real time sequencing

Thousands of primed, single-molecule templates

https://www.pacb.com/smrt-science/smrt-sequencing/

Aa Pacific Biosciences

SMRTbell template

Two hairpin adapters allow continuous circular sequencing

ZMW wells

Sites where sequencing takes place

All four dNTPs are labelled and available for incorporation

Modified polymerase

As a nucleotide is incorporated by the polymerase, a camera records the emitted light

PacBio output

A camera records the changing colours from all ZMWs; each colour change corresponds to one base

PacBio accuracy and capacity

System Performance

Example data from genomic libraries generated using the continuous long read (CLR) and HiFi read modes of sequencing on the Sequel II System.

Highly Accurate Long Reads

HiFi Sequencing

Number of >99% (Q20) 9-13 kb Reads:

Up to 2 million

Long Read Lengths

CLR Sequencing

Half the Data in Reads: >50 kb

Data per SMRT Cell: Up to 160 Gb

Data from a 11 kb size-selected human library using the SMRTbell Template Prep Kit 1.0 on a Sequel II System (1.0 Chemistry, Sequel II System Software v7.0, 30-hour movie)*.

Data from a 35 kb size-selected *E. coli* library using the SMRTbell Express Template Prep Kit 2.0 on a Sequel II System (1.0 Chemistry, Sequel II System Software v7.0, 15-hour movie)*.

Pacbio long read sequencing

lon torrent

Sequencing on a semiconductor chip which is a very precise pH-meter

Ion torrent

b Ion Torrent (Thermo Fisher)

Oxford Nanopore

Long pieces, only DNA cleavage, voltage measurement the key, scalable

Ab Oxford Nanopore Technologies

ONT output (squiggles)

Each current shift as DNA translocates through the pore corresponds to a particular k-mer

The minION, gridION, promethION, smidgION

Accuracy versus throughput

Sequencing technology	Platform	Data type	Read length (kt)	Read accuracy	Throughput per		Estimated Maximum cost per throughput per	
			N50	Maximum	(%)	Mean	Maximum	Gb (US\$)	year (Gb) ^a
Pacific Biosciences (PacBio)	RS II ^b	CLR	5–15	>60	87–92	0.75-1.5	2	333-933°	4,380
	Sequel	CLR	25–50	>100		5–10	20	98-195 ^d	17,520
	Sequel II	CLR	30–60	>200		50-100	160	13-26 ^e	93,440
		HiFi	10–20	>20	>99	15-30	35	43-86 ^e	10,220
Oxford Nanopore Technologies (ONT)	MinION/ GridION	Long	10–60	>1,000	87–98	2-20	30	50-500 ^f	21,900 (MinION) 109,500 (GridION)
		Ultra-long	100–200	>1,500		0.5–2	2.5	500-2,000 ^f	913 (MinION) 4,563 (GridION)
	PromethION	Long	10–60	>1,000		50-100	180	21-42 ^f	3,153,600
Illumina	NextSeq 550	Single-end	0.075-0.15	0.15	>99.9	16-30	>30	50-63 ^g	>47,782
		Paired-end	0.075-0.15 (×2)	0.15 (×2)		32–120	>120	40-60 ⁹	>70,080
	NovaSeq 6000	Single-end	0.05-0.25	0.25		65–3,000	>3,000	10-35 ^h	>1,194,545
		Paired-end	0.05-0.25 (×2)	0.25 (×2)					

Technical differences

Comparison of long read methods

A complete human genome

Sequencing a hydatidiform mole ie a haploid genome

Using Nanopore and Pacbio HIFI

STATISTICS	GRCH38	T2T-CHM13	DIFFERENCE (±%)				
Summary							
Assembled bases (Gbp)	2.92	3.05	+4.5				
Unplaced bases (Mbp)	11.42	0	-100.0				
Gap bases (Mbp)	120.31	0	-100.0				
Number of contigs	949	24	-97.5				
Contig NG50 (Mbp)	56.41	154.26	+173.5				
Number of issues	230	46	-80.0				
Issues (Mbp)	230.43	8.18	-96.5				
	Gene annotation						
Number of genes	60,090	63,494	+5.7				
Protein coding	19,890	19,969	+0.4				
Number of exclusive genes	263	3,604					
Protein coding	63	140					
Number of transcripts	228,597	233,615	+2.2				
Protein coding	84,277	86,245	+2.3				
Number of exclusive transcripts	1,708	6,693					
Protein coding	829	2,780					