Generative Models I

Jisang Han

onground@korea.ac.kr KUGODS

Department of Computer Science and Engineering, Korea University

Supervised vs Unsupervised

	Supervised Learning	Unsupervised Learning
Data	(x,y): x is data, y is label	x
Goal	x ightarrow y 로 가는 function을 학습	Learn some underlying hidden structure of the data
Exam ples	Classification, regression, object detection, semantic segmantation, image captioning, etc.	Clustering, dimensionality reduction, feature learning, density estimation, etc.

Density Function

$$\int_X p(x) \, dx = 1$$

- Density Functions are normalized.
- Sum of probabilities are 1. If one is bigger then the other is smaller(compete each other).

Discriminative Model

- Learn a probability distribution p(y|x) that predicts probability of the label y conditioned on the input image x
- Input is x and Output is the probability. (x에 대한 label이 나올 확률)
- The probability is calculated even if an input different from the specified labels is given.

Generative Model

- Learn a probability distribution p(x)
- All possible images compare to the probability mass.
- A deep understanding of the image is needed. (Which is more plausible, sitting a dog or standing up?)
- The model can reject irrational inputs by giving them a very small value.

Korea University Google Developer Stur

KUGODS @ Korea University

Conditional Generative Model

Recall Bayes' Rule:

Learn p(x|y)

Discriminative Model:

Learn a probability distribution p(y|x)

Assign labels to data Feature learning (supervised)

Generative Model:

Learn a probability distribution p(x)

Detect outliersFeature learning (unsupervised)

Sample to **generate** new data

Conditional Generative .

Model: Learn p(x|y)

Assign labels, while rejecting outliers!

Generate new data conditioned on input labels

Explicit Density Estimation

Goal : Write down an explicit function for p(x) = f(x, W) (x: data, W: learnable weight matrix)

If dataset is $x^{(1)}, x^{(2)}, ..., x^{(N)}$,

$$\begin{split} W^* &= \argmax_{W} \prod_{i} p(x^{(i)}) \\ &= \argmax_{W} \sum_{i} \log p(x^{(i)}) \\ &= \argmax_{W} \sum_{i} \log f(x^{(i)}, W) \end{split}$$

Maximize the probability of training data

Loss Function. (Gradient Descent)

Explicit Density: Autoregressive Models

• 자기 자신을 입력으로 하여 자기 자신을 예측하는 모형

- x가 여러 subparts로 이루어져있다고 가정. x가 이미지라고 하면 subparts는 각 픽셀이다 $x=(x_1,x_2,x_3,...,x_T)$
- Chain rule을 사용하여 probability를 계산한다.

$$egin{aligned} p(x) &= p(x_1, x_2, ..., x_T) \ &= p(x_1) \ p(x_2|x_1) \ p(x_3|x_1, x_2) \ &= \prod_{t=1}^T p(x_t|x_1, ..., x_{t-1}) \end{aligned}$$

Explicit Density: Autoregressive Models

$$egin{aligned} p(x) &= p(x_1, x_2, ..., x_T) \ &= p(x_1) \; p(x_2|x_1) \; p(x_3|x_1, x_2) \ &= \prod_{t=1}^T p(x_t|x_1, ..., x_{t-1}) \end{aligned}$$

- 즉, sequence의 확률 p(x)는 이전 sequence가 주어졌을 때 다음 sequence가 나올 확률을 전부 곱한 것이다.
- https://wikidocs.net/22034

PixelRNN

http://dmqm.korea.ac.kr/uploads/seminar/20190705_Autoregressive.pdf

PixelRNN

32x32 CIFAR-10

32x32 ImageNet

- 겉으로 보기에는 합리적으로 보이지만 사실 자세히 보면 거지같다..
- 그래도 edges, colors를 꽤나 그럴싸하게 생성하는 것에 의의를 가진다.
- 이는 unconditional generation이므로 test time에 내가 무엇을 생성하고 있는지 정할 수 없다

KUGODS @ Korea University 12

Pros and Cons

Pros

- Likelihood p(x)를 명시적으로 계산할 수 있다.
- 위의 장점 덕분에 좋은 evaluation metric을 얻는다. (training data와 유사한, 즉 얼마나 그럴듯한지에 대한 p(x) 값을 얻을 수 있기 때문이다.)
- 나름 괜찮은 결과를 얻을 수 있다. (진짜 사진같지는 않지만..)

Cons

• Sequential Generation 이므로 느리다.

- In PixelRNN, PixelCNN, they defined parametric density function p(x) = f(x, W) and calculate for each input. And train the model to maximize this output.
- In VAE, Instead of maximizing the actual density value, maximize the lower bound of the density.
- $p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i|x_1,...,x_{i-1})$

(Regular, non-variational) Autoencoders

- Unsupervised method로, labels 없이 raw data x로부터 feature vectors를 학습한다. (Unsupervised method for learning feature vectors from raw data x, without any labels)
- Features extracts useful information that can be used for downstream tasks.
- Encoder extracts features from input data,
- Decoder reconstruct the input data from the features.
- Encoder:
 - Originally: Linear + nonlinearity (sigmoid)
 - Later: Deep, fully-connected
 - Later: ReLU CNN (upconv)

(Regular, non-variational) Autoencoders

- We expect the effect of compressing input data through Encoder.
- After learning, discard the decoder and use it for the downstream task using the encoder.
- Not probabilistic : 학습하지 않은 new data를 sampling할 수 없다.

KUGODS @ Korea University 16

Variational Autoencoders

Sample from conditional

$$p_{\theta^*}(x \mid z^{(i)})$$

Sample z from prior

$$p_{\theta^*}(z)$$

- Autoencoder에 확률 개념을 도입하였다
- 1. raw data로부터 latent features z를 학습한다.
- 2. new data를 생성하기 위해 model로부터 sampling한다.

Variational Autoencoders

- Decoder: Generating new data x from latent features z that is similar to input data but completely new.
- Sampling latent variables from prior distribution $p_{\theta_*}(z)$, put sampled z into the decoder to predict image x
- At this time, output is not a single image but the distribution of images.
- $p_{\theta_x}(z)$: prior distribution. PDF of x. (Gaussian distribution)
- $p_{\theta_*}(x|z^{(i)})$: 주어진 z에서 특정 x가 나올 조건부 확률에 대한 PDF
- θ : parameter

Variational Autoencoders

- VAE에서의 z는 AE에서의 z(a value: low dimension of input data)와 다르게, 가우시안 확률분포에 기반한 확률값으로 나타낸다.
- input image가 들어오면 그 이미지의 다양한 특징들이 각각의 확률변수가 되는 확률분포를 만든다. 이 확률 분포를 잘 찾아내어 확률값이 높은 부분을 사용하면 그럴듯한 새로운 이미지를 생성할 수 있다.

Kugops Kugops Kudents KUGODS @ Korea University

- 이때 각 feature가 가우시안 분포를 따른다고 가정하고 latent z는각 feature의 평균과 분산값을 나타낸다.
- 예를 들어 한국인의 얼굴을 그리기 위해 눈, 코, 입 등의 feature를 Latent vector z에 담고, 그 z를 이용해 그럴듯한 한국인의 얼굴을 그려내는 것이다. latent vector z는 한국인 눈 모양의 평균 및 분산, 한국인 코 길이의 평균 및 분산, 한국인 머리카락 길이의 평균 및 분산 등등의 정보를 담고 있다고 생각할 수 있다.

Korea University GOogle Developer Students
KUGODS

KUGODS @ Korea University

20

Thank you! Q&A

