CSE 15 Discrete Mathematics

Lecture 14 – Complexity of Algorithms

Announcement

- ▶ HW #6
 - Due 5pm 10/30 (Tue) with 1 extra day of re-submission.
 - Write NEATLY!!!
- Reading assignment
 - ∘ Ch. 4.1 4.3 of textbook

Complexity of Algorithms (Ch. 3.3)

- Time Complexity
- Worst-Case Complexity
- Algorithmic Paradigms
- Understanding the Complexity of Algorithms

The Complexity of Algorithms

- Given an algorithm, how efficient is this algorithm for solving a problem given input of a particular size? To answer this question, we ask:
 - How much <u>time</u> does this algorithm use to solve a problem?
 - How much <u>space</u> (computer memory) does this algorithm use to solve a problem?
- When we analyze the time the algorithm uses to solve the problem given input of a particular size, we are studying the time complexity of the algorithm.
- When we analyze the computer memory the algorithm uses to solve the problem given input of a particular size, we are studying the space complexity of the algorithm.

The Complexity of Algorithms

- In this course, we focus on time complexity.
- We will measure time complexity in terms of the number of operations an algorithm uses and we will use big-O and big-Theta notations to estimate the time complexity.
- We can use this analysis to see whether it is practical to use this algorithm to solve problems with input of a particular size. We can also compare the efficiency of different algorithms for solving the same problem.
- We ignore implementation details (including the data structures used and both the hardware and software platforms) because it is extremely complicated to consider them.

Time Complexity

- ▶ To analyze the time complexity of algorithms, we determine the number of operations, such as comparisons and arithmetic operations (addition, multiplication, etc.).
- We can estimate the time a computer may actually use to solve a problem using the amount of time required to do basic operations.
- We will focus on the worst-case time complexity of an algorithm. This provides an upper bound on the number of operations an algorithm uses to solve a problem with input of a particular size.
- It is usually much more difficult to determine the average case time complexity of an algorithm.

Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm for finding the maximum element in a finite sequence.

```
procedure max(a_1, a_2, ...., a_n): integers)

max := a_1

for i := 2 to n

if max < a_i then max := a_i

return max\{max \text{ is the largest element}\}
```

Solution: Count the number of comparisons.

- The $max < a_i$ comparison is made n-1 times.
- Each time *i* is incremented, a test is made to see if $i \le n$.
- One last comparison determines that i > n.
- Exactly 2(n-1) + 1 = 2n 1 comparisons are made.

Hence, the time complexity of the algorithm is $\Theta(n)$.

Worst-Case Complexity of Linear Search

Example: Determine the time complexity of the linear search algorithm.

```
procedure linear search(x: integer, a_1, a_2, ...,a_n: distinct
  integers)
i := 1
while (i \le n \text{ and } x \ne a_i)
    i := i + 1
if i \le n then location := i
else location := 0
return location{location is the subscript of the term that
  equals x, or is 0 if x is not found}
```

Worst-Case Complexity of Linear Search

Question: Determine the time complexity of the linear search algorithm.

Solution: Count the number of comparisons.

- At each step two comparisons are made; $i \le n$ and $x \ne a_i$.
- To end the loop, one comparison $i \le n$ is made.
- After the loop, one more $i \le n$ comparison is made.

If $x = a_i$, 2i + 1 comparisons are used. If x is not on the list, 2n + 1 comparisons are made and then an additional comparison is used to exit the loop. So, in the worst case 2n + 2 comparisons are made. Hence, the complexity is $\Theta(n)$.

Average-Case Complexity of Linear Search

Example: Describe the average case performance of the linear search algorithm. (Although usually it is very difficult to determine average-case complexity, it is easy for linear search.)

Solution: Assume the element is in the list and that the possible positions are equally likely. By the argument on the previous slide, if $x = a_i$, the number of comparisons is 2i + 1.

$$\frac{3+5+7+\ldots+(2n+1)}{n} = \frac{2(1+2+3+\ldots+n)+n}{n} = \frac{2\left[\frac{n(n+1)}{2}\right]}{n} + 1 = n+2$$

Hence, the average-case complexity of linear search is $\Theta(n)$.

Worst-Case Complexity of Binary Search

Example: Describe the time complexity of binary search in terms of the number of comparisons used.

```
procedure binary search(x: integer, a_1, a_2, ..., a_n: increasing integers)
i := 1 {i is the left endpoint of interval}
j := n {j is right endpoint of interval}
while i < j
    m := |(i + j)/2|
    if x > a_m then i := m + 1
     else j := m
 if x = a_i then location := i
 else location := 0
 return location{location is the subscript i of the term a_i equal
                            to x, or 0 if x is not found}
```

Worst-Case Complexity of Binary Search

Example: Describe the time complexity of binary search in terms of the number of comparisons used.

Solution: Assume (for simplicity) $n = 2^k$ elements. Note that $k = \log n$.

- Two comparisons are made at each stage; i < j, and $x > a_m$.
- At the first iteration the size of the list is 2^k and after the first iteration it is 2^{k-1} . Then 2^{k-2} and so on until the size of the list is $2^1 = 2$.
- At the last step, a comparison tells us that the size of the list is the size is $2^0 = 1$ and the element is compared with the single remaining element.
- Hence, at most $2k + 2 = 2 \log n + 2$ comparisons are made.
- Therefore, the time complexity is Θ (log n), better than linear search.

Worst-Case Complexity of Bubble Sort

Example: What is the worst-case complexity of bubble sort in terms of the number of comparisons made?

```
procedure bubblesort(a_1,...,a_n): real numbers with n \ge 2)

for i := 1 to n-1

for j := 1 to n-i

if a_j > a_{j+1} then interchange a_j and a_{j+1}
\{a_1,...,a_n \text{ is now in increasing order}\}
```

Solution: A sequence of n-1 passes is made through the list. On each pass n-i comparisons are made.

$$(n-1) + (n-2) + \ldots + 2 + 1 = \frac{n(n-1)}{2}$$

The worst-case complexity of bubble sort is $\Theta(n^2)$ since:

$$\frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n$$

Worst-Case Complexity of Insertion Sort

Example: What is the worst-case complexity of insertion sort in terms of the number of comparisons made?

Solution: The total number of comparisons are:

$$2 + 3 + \dots + n = \frac{n(n+1)}{2} - 1$$

Therefore the complexity is $\Theta(n^2)$.

```
procedure insertion sort(a_1,...,a_n):
           real numbers with n \ge 2)
   for j := 2 to n
     i := 1
      while a_i > a_i
         i := i + 1
      m := a_i
      for k := 0 to j - i - 1
          a_{i-k} := a_{i-k-1}
       a_i := m
```

Matrix Multiplication Algorithm

- The definition for matrix multiplication can be expressed as an algorithm C = AB where C is an m x n matrix that is the product of the m x k matrix A and the k x n matrix B.
- This algorithm carries out matrix multiplication based on its definition.

```
procedure matrix\ multiplication(\mathbf{A},\mathbf{B}:\ matrices)
for i:=1 to m
for j:=1 to n
c_{ij}:=0
\mathbf{B}=[b_{ij}]\ \text{is a}\ m\times k\ \text{matrix}
for q:=1 to k
c_{ij}:=c_{ij}+a_{iq}\ b_{qj}
return \mathbf{C}\{\mathbf{C}=[c_{ij}]\ \text{is the product of }\mathbf{A}\ \text{ and }\mathbf{B}\}
```

Complexity of Matrix Multiplication

Example: How many additions of integers and multiplications of integers are used by the matrix multiplication algorithm to multiply two *n* x *n* matrices.

Solution: There are n^2 entries in the product. Finding each entry requires n multiplications and n-1 additions. Hence, n^3 multiplications and $n^2(n-1)$ additions are used.

Hence, the complexity of matrix multiplication is $O(n^3)$.

Algorithmic Paradigms

- An algorithmic paradigm is a general approach based on a particular concept for constructing algorithms to solve a variety of problems.
 - Greedy algorithms were introduced in Section 3.1.
 - We discuss brute-force algorithms in this section.
 - There are also:
 - Divide-and-conquer algorithms
 - Dynamic programming
 - Backtracking
 - Probabilistic algorithms
 - And others.

Brute-Force Algorithms

- A brute-force algorithm is solved in the most straightforward manner, without taking advantage of any ideas that can make the algorithm more efficient.
- Brute-force algorithms we have previously seen are sequential search, bubble sort, and insertion sort.

Computing the Closest Pair of Points by Brute-Force

Example: Construct a brute-force algorithm for finding the closest pair of points in a set of *n* points in the plane and provide a worst-case estimate of the number of arithmetic operations.

Solution: Recall that the distance between (x_i, y_i) and (x_j, y_j) is $\sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}$. A brute-force algorithm simply computes the distance between all pairs of points and picks the pair with the smallest distance.

Note: There is no need to compute the square root, since the square of the distance between two points is smallest when the distance is smallest.

Computing the Closest Pair of Points by Brute-Force

Algorithm for finding the closest pair in a set of n points.

```
procedure closest pair((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n): x_i, y_i real numbers)

min = \infty

for i := 2 \text{ to } n

for j := 1 \text{ to } i - 1

if (x_j - x_i)^2 + (y_j - y_i)^2 < min

then min := (x_j - x_i)^2 + (y_j - y_i)^2

closest \ pair := (x_i, y_i), (x_j, y_j)

return \ closest \ pair
```

The algorithm loops through n(n-1)/2 pairs of points, computes the value $(x_j - x_i)^2 + (y_j - y_i)^2$ and compares it with the minimum, etc. So, the algorithm uses $\Theta(n^2)$ arithmetic and comparison operations.

Understanding the Complexity of Algorithms

TABLE 1 Commonly Used Terminology for the Complexity of Algorithms.

Complexity	Terminology
$\Theta(1)$	Constant complexity
$\Theta(\log n)$	Logarithmic complexity
$\Theta(n)$	Linear complexity
$\Theta(n \log n)$	Linearithmic complexity
$\Theta(n^b)$	Polynomial complexity
$\Theta(b^n)$, where $b > 1$	Exponential complexity
$\Theta(n!)$	Factorial complexity

Complexity of Problems

Tractable Problem:

 There exists a polynomial time algorithm to solve this problem. These problems are said to belong to the Class P.

Intractable Problem:

There does not exist a polynomial time algorithm to solve this problem.

Unsolvable Problem:

No algorithm exists to solve this problem, e.g., halting problem.

Class NP:

 Solution can be checked in polynomial time. But no polynomial time algorithm has been found for finding a solution to problems in this class.

NP Complete Class:

 If you find a polynomial time algorithm for one member of the class, it can be used to solve all the problems in the class.

P Versus NP Problem

- ► The P versus NP problem asks whether the class P = NP? Are there problems whose solutions can be checked in polynomial time, but cannot be solved in polynomial time?
 - Note that just because no one has found a polynomial time algorithm is different from showing that the problem can not be solved by a polynomial time algorithm.
- If a polynomial time algorithm for any of the problems in the NP complete class were found then that algorithm could be used to obtain a polynomial time algorithm for every problem in the NP complete class.
 - Satisfiability is an NP complete problem.
- It is generally believed that P≠NP since no one has been able to find a polynomial time algorithm for any of the problems in the NP complete class.
- The problem of P versus NP remains one of the most famous unsolved problems in mathematics (including theoretical computer science). The Clay Mathematics Institute has offered a prize of \$1,000,000 for a solution.