

Cambridge Assessment International Education

Cambridge International Advanced Level

	CANDIDATE NUMBER
	9709/33
athematics 3 (P3)	May/June 2019
	1 hour 45 minutes
ver on the Question Paper.	
ials: List of Formulae (MF9)	
^	ver on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

Use logarithms to solve the equation $5^{3-2x} = 4(7^x)$, given	ring your answer correct to 3 de	
$(3-2a) \ln S = \ln t + x \ln 7$	In S	
3ln5-2xln5= ln4+	x1n7	
$x \ln 7 + 2x \ln 9 = 31$	ns-In4	
x = 31nS	- In 4	
In 7+	21n5	
= 0·666		•

1

2

how that $\int_{0}^{\frac{1}{4}\pi} x^{2} \cos 2x dx = \frac{1}{32}(\pi^{2} - 8).$	u'- 2 ×	
$U = \chi^2$ V = 2(as2x)(-Sin2x)	u'= 2x v'= los2x	Λ-
V=2(0s2x)(-Sm2x	V.= 1087X	'X
		•••••
		•••••
		•••••
		•••••
		••••••
		•••••

3	Let $f(\theta)$ =	$1 - \cos 2\theta + \sin 2\theta$
3	Let 1(0) =	$\frac{1-\cos 2\theta+\sin 2\theta}{1+\cos 2\theta+\sin 2\theta}.$

(i)	Show that $f(\theta) = \tan \theta$.	[3]

(ii)	Hence show that $\int_{\frac{1}{6}\pi}^{\frac{1}{4}\pi} f(\theta) d\theta = \frac{1}{2} \ln \frac{3}{2}.$	[4]
		••••
		•••••
		•••••
		••••
		••••
		••••
		•••••
		••••
		••••
		••••
		••••

- 4 The equation of a curve is $y = \frac{1 + e^{-x}}{1 e^{-x}}$, for x > 0.
 - (i) Show that $\frac{dy}{dx}$ is always negative.

[3]

u=1+e-2 , u=-e-2

$$V^2 = (1 - e^{-x})(1 - e^{-x})$$

$$= 1 - 2e^{-\alpha} + (e^{-\alpha})^{2}$$

$$= 1 - 2e^{-\alpha} + (e^{-\alpha})^{2}$$

$$\frac{dy}{dx} = \frac{(1-e^{-x})(-e^{-x})}{(1-e^{-x})^2} - \frac{(1+e^{-x})(e^{-x})}{(1-e^{-x})^2}$$

_	-p-d + p2x -	ρ-3(_ ρ-2**
	(1-0-7	\ ²

 - 2p-2	
(1-e-2)2	•

otways +ve

:- 2 mulipled bey a positive value is always

e^{2a}							o –1 t value		x – u	. 511	ow the	ai a s	atisin	es the	cq
			<u>.</u>	de de	<u> </u>	yrad	dier	t =		1 =		-2 (1-	ea)	2	
		 	······································	<i>†</i>	2	<u>e</u> -'	z(=	<i>+</i>	(1 –	e-0)2				
					2.	c-0			- 2	e^0	L	E-2	.00		
					e	2 a	+4	و۔	ا – ا	; = C)				
	•••••	•••••	•••••	•••••	••••••	•••••		•••••	•••••				•••••		•••••
•••••		•••••		•••••									•••••		
••••															
••••	•••••												•••••		
	•••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••	•••••	••••••	••••••	•••••		• • • • • • • • • • • • • • • • • • • •	
									•••••						
••••						•••••			•••••				•••••		
•••••	•••••	•••••		••••••		•••••		•••••	•••••			•••••	•••••		
••••	•••••											•••••	•••••		
•••••	•••••	•••••	••••••	•••••	••••••	•••••	••••••	•••••	•••••	••••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
••••	•••••	•••••		••••••		•••••						•••••			•••••

5		. 11	1	4. C	41	1.00 4.1	4.
•	Ine	Warianiec	rana	V CALICLY	7 The	differential	eallation
J	1110	variables	л anu	y sausi y	uic	differential	cquation

$$(x+1)y\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 + 5.$$

It is given that y = 2 when x = 0. Solve the differential equation obtaining an expression for y^2 in terms of x.

 $\int \frac{4}{y^2 + 5} dy = \int \frac{1}{x+1} dx$

 $\frac{1}{2} \left(\frac{2y}{y^2 + 5} dy = \frac{1}{10}(x+1) + C \right)$

 $\frac{1}{2} \ln \left| y^2 + 5 \right| = \ln \left(x + 1 \right) + C$

when x=0, y=2

1 ln9 = ln1 + C

 $\ln q^{\frac{1}{2}} = \ln |_{+} c$

1, 3 = C

 $\ln(y^2 + 5) = 2\ln(2(+1) + 2\ln 3)$ $\ln y^2 + 5 = 2\ln(3(2(+1)))$ $\ln y^2 + 5 = 2\ln(32(+3))$

.....

 In (y2+		IN(32+3		
y 2 4	· S =	eln(3x+	3) ²	
y ² +	· S =	(3x +3)	(+ 9	
 		9a+18:		
	y			

6

The diagram shows the curve $y = x^4 - 2x^3 - 7x - 6$. The curve intersects the x-axis at the points (a, 0) and (b, 0), where a < b. It is given that b is an integer.

(i)	Find the value of b .	[1]
	when and u + 0	
	when $z=1$, $y \neq 0$ z>3, $y=0$	
	2-3=0	

(ii)	Hence show that a satisfies the equation $a = -\frac{1}{3}(2 + a^2 + a^3)$.	[4]
	$\frac{\chi^{3}+\chi^{2}+3\chi+2}{2}$	
	$(2-3)$ 24 $-223.02^{1}.72-6$	
	$-x^{4}-3x^{3}$	
	0 + 213+0x2	
	$-x^3-3x^2$	
	0+3x²-75L	•••••
	- 32 ² -9 2	
	0 + 22 - 6	
		• • • • • •

Use an iterative formula based on the equation in part (ii) to determine a correct to 3 december of the result of each iteration to 5 decimal places. $ \mathbf{a} = -\frac{1}{3} \left(2 + \mathbf{a}^2 + \mathbf{o}^3 \right) $ $ \mathbf{a}_1 = -\frac{1}{3} \cdot 3333 $ $ \mathbf{a}_2 = -\frac{1}{3} \cdot 3333 $ $ \mathbf{a}_3 = -0 \cdot 46916 $ $ \mathbf{a}_4 = -0 \cdot 7661 $ $ \mathbf{a}_5 = -0 \cdot 76621 $ $ \mathbf{a}_7 = -0 \cdot 7621 $ $ \mathbf{a}_7 = -0 \cdot 7623$		$x^3 + x^2$	+32+2=	U	
places. Give the result of each iteration to 5 decimal places. $ 0 = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ 0_1 = 1 $ $ 0_2 = -1.33333 $ $ 0_3 = -0.46916 $ $ 0_4 = -0.70561 $ $ 0_5 = -0.71562 $ $ 0_6 = -0.71521$					
places. Give the result of each iteration to 5 decimal places. $ 0 = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ 0_1 = 1 $ $ 0_2 = -1.33333 $ $ 0_3 = -0.46916 $ $ 0_4 = -0.70561 $ $ 0_5 = -0.71562 $ $ 0_6 = -0.71521$		••••••	•••••		••••••
places. Give the result of each iteration to 5 decimal places. $ 0 = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ 0_1 = 1 $ $ 0_2 = -1.33333 $ $ 0_3 = -0.46916 $ $ 0_4 = -0.70561 $ $ 0_5 = -0.71562 $ $ 0_6 = -0.71521$					
places. Give the result of each iteration to 5 decimal places. $ Q = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ Q_1 = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ Q_2 = -\frac{1}{3} \cdot 33333 $ $ Q_3 = -0 \cdot 46916 $ $ Q_4 = -0 \cdot 7056 $ $ Q_5 = -0 \cdot 71562 $ $ Q_6 = -0 \cdot 71521$					
places. Give the result of each iteration to 5 decimal places. $ 0 = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ 0_1 = 1 $ $ 0_2 = -1.33333 $ $ 0_3 = -0.46916 $ $ 0_4 = -0.70561 $ $ 0_5 = -0.71562 $ $ 0_6 = -0.71521$					
places. Give the result of each iteration to 5 decimal places. $ 0 = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ 0_1 = 1 $ $ 0_2 = -1.33333 $ $ 0_3 = -0.46916 $ $ 0_4 = -0.70561 $ $ 0_5 = -0.71562 $ $ 0_6 = -0.71521$					
places. Give the result of each iteration to 5 decimal places. $ 0 = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ 0_1 = 1 $ $ 0_2 = -1.33333 $ $ 0_3 = -0.46916 $ $ 0_4 = -0.70561 $ $ 0_5 = -0.71562 $ $ 0_6 = -0.71521$		•••••			••••••
places. Give the result of each iteration to 5 decimal places. $ 0 = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ 0_1 = 1 $ $ 0_2 = -1.33333 $ $ 0_3 = -0.46916 $ $ 0_4 = -0.70561 $ $ 0_5 = -0.71562 $ $ 0_6 = -0.71521$					
places. Give the result of each iteration to 5 decimal places. $ 0 = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ 0_1 = 1 $ $ 0_2 = -1.33333 $ $ 0_3 = -0.46916 $ $ 0_4 = -0.70561 $ $ 0_5 = -0.71562 $ $ 0_6 = -0.71521$					
places. Give the result of each iteration to 5 decimal places. $ 0 = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ 0_1 = 1 $ $ 0_2 = -1.33333 $ $ 0_3 = -0.46916 $ $ 0_4 = -0.70561 $ $ 0_5 = -0.71562 $ $ 0_6 = -0.71521$					
places. Give the result of each iteration to 5 decimal places. $ 0 = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ 0_1 = 1 $ $ 0_2 = -1.33333 $ $ 0_3 = -0.46916 $ $ 0_4 = -0.70561 $ $ 0_5 = -0.71562 $ $ 0_6 = -0.71521$					
places. Give the result of each iteration to 5 decimal places. $ 0 = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ 0_1 = 1 $ $ 0_2 = -1.33333 $ $ 0_3 = -0.46916 $ $ 0_4 = -0.70561 $ $ 0_5 = -0.71562 $ $ 0_6 = -0.71521$					•••••
places. Give the result of each iteration to 5 decimal places. $ 0 = -\frac{1}{3} \left(2 + \alpha^2 + \alpha^3 \right) $ $ 0_1 = 1 $ $ 0_2 = -1.33333 $ $ 0_3 = -0.46916 $ $ 0_4 = -0.70561 $ $ 0_5 = -0.71562 $ $ 0_6 = -0.71521$	Use an iterative formu	la based on the e	equation in part (ii) t	to determine a cor	rect to 3 dec
0.1 = 1 $0.2 = -1.33333$ $0.3 = -0.46916$ $0.4 = -0.70561$ $0.52 = -0.71562$ $0.6 = -0.71521$		of each iteration	to 5 decimal places.		
0.1 = 1 $0.2 = -1.33333$ $0.3 = -0.46916$ $0.4 = -0.70561$ $0.5 = -0.71562$ $0.6 = -0.71521$		a=-1	12+02+0	'	
		7	5		
$a_{3} = -0.46916$ $a_{4} = -0.70561$ $a_{5} = -0.71562$ $a_{6} = -0.71521$		•			
04 = -0.7056) 05 = -0.71562 06 = -0.71521		0.2 = -	1.33333		
04 = -0.7056) 05 = -0.71552 06 = -0.71521		Q3=-	0.46916		
as=-0.715G2 a=-0.71521					•••••
a = -0.71521			() [() [) [)		
					•••••
		as2-	0.71562		
		as2-	0.71562		
		as2-	0.715 <u>62</u> 0.71521		
		as2- as2- a7=-	0.715G2 0.71521 ·0.71523		
a = -0.215		as2- as2- a7=-	0.715G2 0.71521 ·0.71523		
a = -0.715		as2- as2- a7=-	0.715G2 0.71521 ·0.71523		
a = -0.215		as2- as2- a7=-	0.715G2 0.71521 ·0.71523		

(i) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.	[2]

=
$$(\cos x \cos(x+1\pi))$$
 - $\sin x \sin(x+1\pi)$

	600 A+B=	losA los B -	Sin A Sin B	
	·	-		
	لعدلمه	(X+ <u> </u> I) -	$Sin \times Sin (x + \frac{1}{3}\pi)$	•••••
••••••	••••••••••	3 /	3 '	•••••••••

Hence find the exact <i>x</i> -coordinates of the stationary points.	[3]
(0) = 1 I	
22+137 = 47	
2 2 = 上元	
2 > 17	
other??	

8	Throughout this	question th	he use of a	calculator is no	ot permitted.
---	-----------------	-------------	-------------	------------------	---------------

The complex number u is defined by

$$u = \frac{4i}{1 - (\sqrt{3})i}$$

i) Express u in the form $x + iy$, where x and y are real and exact.	[3]
9i (1+ J3i) (1- J3i)(1+ J3i)	
4; +4,[3(-1) 1 - 3(-1)	
4:-453 A	
i - √3 (x=-√3)	
- \(\bar{y} = 1 \)	

(iii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers zsatisfying the inequalities |z| < 2 and |z - u| < |z|. [4]

- 9 Let $f(x) = \frac{2x(5-x)}{(3+x)(1-x)^2}$.
 - (i) Express f(x) in partial fractions.

 $2\pi(5-\pi) = 10\pi - 2\pi^2$

[5]

 $\frac{A}{3+x} + \frac{B}{1-x} + \frac{C}{(1-x)^2}$

 $10x - 2a^{2} = A(1-x)^{2} + B(3+x)(1-x) + C(3+x)$ $= A(1-2x+x^{2}) + B(3-2x-x^{2}) + 3LfCx$

 $= A - 2Ax + Ax^2 + 3B - 2bx - Bx^2 + 3C + Cx$

- (1) 0= A+3B+3C
 - 2 10x=-2Ax-2Bx+Cx
 - $3 -2x^2 = Ax^2 bx^2$

 $A = -\frac{9}{2}$ $B = -\frac{5}{2}$ C = 4

(ii) Hence obtain the expansion of f(x) in ascending powers of x up to and including the term in x^3 .

$$4(1-x)^{-2} - \frac{5}{2}(1-x)^{-1} - \frac{9}{2}(3+x)^{-1}$$

$$4 \left[\frac{1}{1+(-2)(-x)} + \frac{(-2)(-3)(-x)^{2}}{2!} + \frac{(-2)(-3)(-4)(-x)^{3}}{3!} \right] \\
+ \left(\frac{1}{1+2x} + 3x^{2} + 4x^{3} \right) \\
+ \frac{1}{1+2x} + \frac{1}{1+2$$

$$\frac{9}{2} \left(3 + \chi \right)^{-1} = \frac{9}{2} \left(3 \right) \left(1 + \frac{\chi}{3} \right)^{-1} = > \frac{27}{2} \left(1 + \frac{\chi}{3} \right)^{-1}$$

$$\frac{27}{2} \left[1 + (-1) \left(-\frac{\chi}{3} \right) + \left(-1 \right) \left(-2 \right) \left(\frac{3}{3} \right)^{2} + \frac{(-1)(-2)(-3)(\frac{3}{3})^{3}}{2!} \right]$$

$$\frac{27}{2} \left(1 - \frac{\chi}{3} + \frac{1}{4} \chi^{2} - \frac{1}{2!} \chi^{3} \right)$$

$$\frac{27}{7} - \frac{9}{2}x + \frac{3}{2}x^2 - \frac{1}{2}x^3$$

$$4+8x+12x^{2}+16x^{3}-\frac{5}{2}-\frac{5}{2}x-\frac{5}{2}x^{2}-\frac{5}{2}x^{3}-\frac{27}{2}+\frac{9}{2}x-\frac{3}{2}x^{2}+\frac{1}{2}x^{3}$$

$$-12 + \alpha + 8\alpha^2 + 14\alpha^3$$

10 The line *l* has equation $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} - 2\mathbf{k})$.

(i) The point P has position vector $4\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$. Find the length of the perpendicular from P to l.

L N _

 $AN \cdot NP = 0$ $u\binom{2}{-1} \cdot (OP - ON)$

 $\begin{array}{c|cccc}
 & (2) & (3-2\mu) & & NP: \\
 & (-1) & (2) & (1+2\mu) & (2) & (2-\mu) & (2-\mu) & (3-2\mu) & (3-2\mu)$

 $2(3-2\pi) + (-1)(\mu) + (-2)(-6+2\mu) = 0 = (3-2\pi)$ $6-4\pi - \pi + 12 - 4\pi = 0$ $-9\pi = 18$ $-6+2\pi$

 $NP = \begin{pmatrix} 3-2(2) \\ 2 \\ -6+4 \end{pmatrix} = 2$

V(2+12+22 =)

t is given that l lies in the plane with equation $ax + by + 2z = 13$, where a and a are already equations.	[6]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.