PPAR-γ and DNA Damage in Pulmonary Arterial Hypertension

Vivek Kantamani

Rabinovitch Lab

Pulmonary Arterial Hypertension (PAH)

- Rare progressive disease affecting lung vasculature
 - 15-50 cases per million in US and Canada¹
 - Incidence of 1-2 cases per million^{1,2}
- Adults with PAH
 - Median survival of 2.8 years
 - Lung transplantation is the sole treatment option³

Pulmonary Vasculature Remodeling

Susceptibility:

Abnormal BMPR2 signaling⁴

Vascular Remodeling:

Smooth muscle proliferation in large vessels and endothelial cell apoptosis in distal vessels^{4,5}

Disease Progression:

Endothelial cell proliferation in large vessels, neointimal growth and plexiform lesion⁵

Disease Implications

Hypertension in Pulmonary
Artery

Increased Resistance to Blood Flow

Pressure increases in the heart causing stress and damage to blood vessels and muscle⁶

Disease State

Right Heart Failure, COPD, CHF, Smoker's Lung, Diabetic Lung, Lung Cancer etc.⁶

Research Question

Can a reliable identification and/or therapeutic mechanism be derived for Pulmonary Arterial Hypertension?

MRN: DNA Damage Sensor

Pulmonary Vasculature Remodeling

Hypothesis

- The hypothesis states that PPAR-γ is required for normal DNA damage response in pulmonary arterial endothelial cells (PAEC).
- Specific Aim 1:
- To establish drug induced MRN mediated DNA damage response in 293T cells and PAEC.
- Specific Aim 2:
- To determine whether PPAR-γ inhibition prevents the activation of MRN mediated DNA damage response.

Methods

DNA Damaging Agents: Doxorubicin Hydroxyurea Lipopolysaccharides

Western Blot

SDS PAGE

BCA Protein Assay

Drugs Used to Treat Cells

- 1. Doxorubicin (DoxR)
 - Alters DNA Structure³
- 2. Hydroxyurea (HU)
 - Deletion Mutation^{3,4}
- 3. Lipopolysaccharide (LPS)
 - Free Radical Induction⁵

MRN: Linked to BMPR2 Repair

(Ciccia, A - 2010)

MRN: Linked to BMPR2 Repair

MRN: Linked to BMPR2 Repair

Timeline

- June September
 - Specific Aim 1
 - Establish MRN mediated DNA damage response
- October January
 - Specific Aim 2
 - Determine if PPAR-γ is linked to DNA damage response
- January February
 - Image cell damage sites: time permitting

Conclusions

- PPAR-γ is a highly conserved molecule across various species lineages.
 - Well documented evidence of critical function in numerous organisms⁸
- Numerous agonists are well characterized
 - If PPAR-γ is linked to PAH, a therapeutic mechanism could be derived⁹

References

- 1. Peacock AJ, Murphy NF, McMurray JJV, et al. 2007. "An epidemiological study of pulmonary arterial hypertension." *European Respiratory Journal* 30, no. 104-9. Print.
- 2. Sitbon O, Lascoux-Combe C, Delfraissy JF, et al. 2008. "Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era." *American Journal of Respiratory Critical Care Medicine* 177, no. 108-13. Print.
- 3. McLaughlin, V; Presberg K; Doyle, R; Abman, S; McCrory, D; Fortin, T; Ahearn, G, et al. 2004. "Prognosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines." *CHEST* no. 78-92S. Print.
- 4. Rabinovitch M. 2008. "Molecular pathogenesis of pulmonary arterial hypertension." *Journal of Clinical Investigation*, 118 no. 2372-2379. http://www.jci.org/articles/view/60658.
- 5. Gaine S. 2000. "Pulmonary Hypertension." *Journal of the American Medical Association*, 284: 3160-3168. Print.

References

- 6. Chin KM, Rubin LJ. 2008. "Pulmonary Arterial Hypertension."

 Journal of the American College of Cardiology, 51 no. 16: 15271538.
 - http://content.onlinejacc.org/article.aspx?articleid=1138834.
- 7. Ciccia A, Elledge SJ. 2010. "The DNA Damage Response: making it safe to play with knives." *Molecular Cell*, 40 no. 2: 179-204. http://www.ncbi.nlm.nih.gov/pubmed/20965415.
- 8. Ahmadian M, Sue JM, Hah N, et al. 2013. "PPAR-γ signaling and metabolism: the good, the bad, and the future." *Nature Medicine* 99: 557-566.
 - http://www.nature.com/nm/journal/v19/n5/full/nm.3159.html.
- 9. Semple RK, Chatterjee VK, O'Rahilly S. 2006. "PPAR gamma and human metabolic disease." *Journal of Clinical Investigation* 116 no. 3: 581-589. http://www.ncbi.nlm.nih.gov/pubmed/16511590.