Исследуем случай $\mathcal{E} \ll \frac{1}{N}$.

B cuny (13), (14), (16),

II)
$$\beta = \frac{e - \frac{1}{4N}}{e + \frac{1}{4N}} \frac{\epsilon + \frac{1 - e c e_n N}{2N}}{\epsilon - \frac{e c e_n N}{2N}} \approx -\frac{1}{2 \epsilon N}$$

III)
$$\beta = \frac{\varepsilon^2 - \left(\frac{1 - \varepsilon c \ln N}{2N}\right)^2}{\varepsilon^2 - \left(\frac{\varepsilon c \ln N}{2N}\right)^2} \approx -\left(\frac{1}{2\varepsilon N}\right)^2,$$

т.е. b - большая по модулю отрицательная постоянная.

Поэтому при $\ell \sim \frac{1}{N}$ решения задач (37),(38) и (39),(40) не имеют ничего общего с решением дифференциальной задачи (1),(2).

Этот факт иллюстрирует рис. 6.4, на котором изображены графики u(x) и y_{ε} - приближенного решения, полученного при расчете схемы, аналогичной схеме II, при $\varepsilon = 10^{-9}$.

4. ГЛАДКОЕ РЕШЕНИЕ

4.1. МОДЕЛЬНАЯ ЗАДАЧА

Рассмотрим на отрезке [0,1] задачу

$$E u'' + u' = -\ell, \quad 0 < \alpha < \ell,$$
 (43)
 $u(0) = 0, \quad u(1) = 0,$ (44)
 $E \in \{0, 1\}.$

Решение этой задачи можно найти, например, методом вариации постоянных. В результате получим

$$u(z) = -\int_{0}^{z} f(s) \left(1 - e^{-\frac{z-z}{E}}\right) ds + \frac{1 - e^{-\frac{z}{E}}}{1 - e^{-\frac{z}{E}}} \cdot \int_{0}^{1} f(s) \left(1 - e^{-\frac{z-z}{E}}\right) ds. (45)$$

Пусть функция f(x) достаточно гладкая и удовлетворяет условиям

$$\int_{S} f(s) \left(1 - e^{\frac{s-1}{e}} \right) ds = 0, \tag{46}$$

$$f(0) = 0. \tag{47}$$

Toraa
$$u(x) = -\int_{0}^{x} f(s) \left(1 - e^{-\frac{x^{2}}{e}}\right) ds,$$

$$u'(x) = -\int_{0}^{x} f'(s) \left(1 - e^{-\frac{x^{2}}{e}}\right) ds,$$

$$u''(\alpha) = -\int_{0}^{x} f''(s) \left(1 - e^{-\frac{x^{2}}{e}}\right) ds - f'(0) \left(1 - e^{-\frac{x^{2}}{e}}\right),$$

$$u'''(\alpha) = -\int_{0}^{x} f'''(s) \left(1 - e^{-\frac{x^{2}}{e}}\right) ds, -f''(0) \left(1 - e^{-\frac{x^{2}}{e}}\right) - \int_{0}^{x} f''(s) e^{-\frac{x^{2}}{e}}.$$

Таким образом, из условий (46),(47) на $\ell(z)$ получаем, что $\iota(z)$ - гладкая функция, не имеющая пограничного слоя, и

$$|u^{(\kappa)}(x)| \leq c (1 + e^{2-\kappa}), \quad \kappa = 0, 1, 2, 3. (48)$$

где с - некоторая постоянная.

Заметим, что условия (46),(47) являются достаточными, но не μ необходимыми условиями гладкости $\mu(z)$ в смысле выполнения (48).

Заметим также, что в силу (46)

$$\int_{0}^{1} f(s) ds = O(e), \qquad (49)$$

$$u(x) = -\int_{0}^{2} f(s) ds + O(e) = \int_{0}^{1} f(s) ds + O(e), (50)$$

Положим теперь в задаче (43),(44) $\mathcal{E}=0$ и опустим левое граничное условие. В результате получаем задачу:

$$\bar{u}' = -4$$
, $0 < x < 1$, (51) (52)

С учетом (49) решение этой задачи

$$\bar{u}(x) = \int_{x}^{x} f(s) ds = -\int_{0}^{x} f(s) ds + O(\epsilon).$$
 (53)

Устремим \mathcal{E} к 0 в выражении (50) для $\mathcal{U}(z)$. В результате имеем

$$\lim_{\epsilon \to 0} u(z) = \bar{u}(z),$$

Заметим, что в общем случае (если не выполняетя условие (46) на $\ell(\imath)$) это неверно.

4.2. СХЕМА С ЦЕНТРАЛЬНОМ РАЗНОСТЬЮ НА РАВНОМЕРНОМ СЕТКЕ

1. Введем на [0,1] равномерную сетку $\overline{\omega}$ с шагом $H=\frac{1}{N}$. Рассмотрим на этой сетке задачу

$$\mathcal{E} y_{\overline{\lambda}} + y_{\overline{\lambda}} = -\ell, \quad \alpha \in \omega, \tag{54}$$

$$y_0 = 0, \quad y_N = 0. \tag{55}$$

Заметим, что в силу (48) эта задача аппроксимирует задачу (43),(44) с первым порядком по Н равномерно по ${\cal E}$.

Решим задачу (54),(55) методом вариации постоянных ([6], с. 41-45,59-61). Учитывая, что корни характеристического многочлена сеточного уравнения (54) равны 1 и

$$Q = \frac{2E - H}{2E + H}, \tag{56}$$

получим две эквивалентные формулы для решения задачи (54),(55):

$$y_{c} = -\frac{Q^{c} - Q^{N}}{1 - Q^{N}} \sum_{s=1}^{c-1} (1 - Q^{c-s}) f_{s} H + \frac{1 - Q^{c}}{1 - Q^{N}} \sum_{s=1}^{N-1} (1 - Q^{c-s}) f_{s} H, \qquad (57)$$

$$y_{c} = \frac{1 - Q^{c}}{1 - Q^{N}} \sum_{i=1}^{N-1} (1 - Q^{c-i}) f_{i} H - \frac{1}{2} \left(1 - Q^{c-i} \right) f_{i} H.$$

$$- \sum_{i=1}^{N-1} (1 - Q^{c-i}) f_{i} H.$$
(58)

2. Сравним \dot{y}_c с решением задачи (43),(44) $\mathcal{U}(\mathbf{x})$ в узлах сетки при $\varepsilon\!\to\! \!o$.

Заметим, что в силу (56)

$$\lim_{\varepsilon \to 0} Q = -1. \tag{59}$$

Сначала рассмотрим случай N - нечетного. В этом случае из соотношения (57) для \mathcal{Y}_{i} с помощью (59), а затем квадратурной формулы прямоугольников получаем:

а) при і - четном

$$\lim_{\varepsilon \to 0} y_{\varepsilon} = -\sum_{0=1}^{\varepsilon - L} f_{0} \cdot 2H = -\int_{0}^{\alpha_{\varepsilon}} f(\alpha) d\alpha + O(H^{2}),$$

б) при і - нечетном

$$\lim_{\epsilon \to 0} y_i = \sum_{j=i}^{N-1} f_{j} \cdot 2H = + \int_{a_i}^{t} f(a) da + O(H^2).$$

Учтем соотношение (50) для $\mathcal{U}(x)$. В результате при N - нечетном имеем:

$$\lim_{\varepsilon \to 0} \left(\mathcal{Y}_{\varepsilon} - \mathcal{U}(\mathbf{x}_{\varepsilon}) \right) = O(H^{2}). \tag{60}$$

Для оценки \mathcal{G}_{i} при четном N будем действовать аналогично, но воспользуемся (58) для \mathcal{G}_{i} . Причем остановимся отдельно на случаях i - четного и i - нечетного.

а) і - четное.

Тогда

$$\lim_{\varepsilon \to 0} \frac{1 - Q'}{1 - Q^N} = \frac{c}{N}.$$

Поэтому, учитывая (49), получаем:

$$\lim_{E \to 0} y_{i} = \frac{i}{N} \sum_{j=1}^{N-1} f_{j} \cdot 2H - \sum_{j=1}^{N-1} f_{j} \cdot 2H = \frac{i}{N} \cdot \frac{N-1}{N} = \frac{N-1}{N} = \frac{N-1}{N}$$

T.E.

б) і - нечетное.

Оценим в формуле (58) для y_c первое слагаемое, учитывая (49) и (59). Тогда

$$\lim_{\varrho \to 0} \frac{1 - Q'}{1 - Q''} \sum_{\delta'=1}^{N-1} (1 - Q''') f_{\delta'} H = \frac{1}{\varrho \to 0} \frac{1 - Q''}{1 - Q''} \sum_{\delta'=1}^{N-1} f_{\delta'} - 2H = \frac{1}{\varrho \to 0} \frac{2}{1 - Q''} \sum_{\delta'=1}^{N-1} f_{\delta'} - 2H = \frac{1}{\varrho \to 0} \frac{2}{1 - Q''} \sum_{\delta'=1}^{N-1} f_{\delta'} - 2H = \frac{1}{\varrho \to 0} \frac{2}{1 - Q''} \sum_{\delta'=1}^{N-1} f_{\delta'} - 2H = \frac{1}{\varrho \to 0} \frac{2}{1 - Q''} \sum_{\delta'=1}^{N-1} f_{\delta'} + O(H)$$

$$= \lim_{\varrho \to 0} \frac{2}{1 - Q''} \sum_{\delta'=1}^{N-1} f_{\delta'} + O(H) = 0$$

$$= \lim_{\varrho \to 0} \frac{O(H)}{1 - Q''} = \infty.$$

Заметим, что второе слагаемое в (58) ограничено. Поэтому

Таким образом, при четном N

$$\lim_{\epsilon \to 0} \max_{i} |y_{i} - u(x_{i})| = \infty, \qquad (61)$$

т.е. схема (54),(55) на равномерной сетке, вообще говоря, не сходится равномерно по параметру. Причем эта схема не сходится равномерно несмотря на равномерную по параметру аппроксимацию дифференциальной эадачи.

4.3. РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ ЭКСПЕРИМЕНТОВ

Рассмотрим дифференциальную задачу (43),(44) с удовлетворяющей условиям (46),(47) правой частью

$$f(x) = 5 e \pi \left[\left(\left(\frac{\pi}{2} x \right)^2 - 6 \right) \cos \frac{\pi}{2} x + 6 x \frac{\pi}{2} \sin \frac{\pi}{2} x \right] + 5 x^2 \left[x \frac{\pi}{2} \sin \frac{\pi}{2} x - 3 \cos \frac{\pi}{2} x \right],$$

график которой изображен на рис. 6.5.

Решение этой задачи

$$u(x) = 5 x^3 \cos \frac{5}{2}x.$$

В разделе 6 приведены результаты расчетов задачи (46),(47) с указанной правой частью по схеме (54),(55) на равномерной сетке. Табл. З показывает, как изменяется величина

при уменьшении $\mathcal E$ в случаях N=15 и N=16. На рис. 6.6 и 6.7 мы видим графики функций $\mathcal U(\mathcal X)$ и $\mathcal G$. в двух частных случаях: $\mathcal E=10^{-9}$, N=15 и N=16. Эти результаты подтверждают сделанные в п. 4.2 выводы. При N=16

Заметим, что расчеты задачи (46),(47) по схеме с центральной разностью на кусочно-равномерной сетке (раздел 6, табл 5) показывают, что схема сходится равномерно по $\mathcal E$ независимо от четности $\mathbb N$.