Analyse Numérique Exercices – Série 25

14 mai 2020 **Questions marquées de** \star à rendre le 28 mai 2020

1. $(\star, \text{ tout l'exercice})$ (Différentiabilité des valeurs propres) Considérons la matrice

$$A(\epsilon) = \begin{pmatrix} 3\varepsilon & -1 + \varepsilon & -1 + 4\varepsilon \\ \varepsilon & 1 + 5\varepsilon & -1 + 9\varepsilon \\ 2\varepsilon & 6\varepsilon & 2 + 5\varepsilon \end{pmatrix}.$$

- (a) (1 point) Pour A = A(0), calculer les valeurs propres et les vecteurs propres à gauche et à droite.
- (b) (1 point) En utilisant le théorème de différentiabilité des valeurs propres montrer que, pour ϵ petit, la matrice $A(\epsilon)$ possède une valeur propre unique dans un voisinage de $\lambda = 2$. Déterminer $\lambda'(0)$ dans le développement de Taylor

$$\lambda(\epsilon) = \lambda + \lambda'(0)\epsilon + \mathcal{O}(\epsilon^2).$$

2. (La pseudo-inverse de Moore-Penrose)

Soit une matrice $A \in \mathbb{R}^{m \times n}$, $m, n \in \mathbb{N}$, on verra en cours que A peut se mettre sous la forme $A = U \Sigma V^{\top}$ où $U \in \mathbb{R}^{m \times m}$ et $V \in \mathbb{R}^{n \times n}$ sont des matrices orthogonales et

où les $\mathbf{0}$ désignent des matrices zéros avec des tailles appropriées. L'entier r est le rang de A et les σ_i sont appelées les $valeurs \ singulières$ et satisfont $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$. Cette décomposition généralise la diagonalisation lorsque $m \neq n$ et est appelée la $décomposition \ en \ valeurs \ singulières \ (SVD)$ de A.

Dans cet exercice, on étudie la pseudo-inverse de Moore-Penrose $A^+ \in \mathbb{R}^{n \times m}$ définie comme

$$A^+ = V \Sigma^+ U^\top, \qquad \Sigma^+ = \begin{bmatrix} \begin{array}{c|c} \sigma_1^{-1} & & & \\ & \ddots & & \mathbf{0} \\ & & \sigma_r^{-1} & \\ \hline & \mathbf{0} & & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{n \times m}, \qquad r = \operatorname{rang}(A).$$

On va montrer les résultats suivants.

(a) Soit un vecteur $\boldsymbol{b} \in \mathbb{R}^m$. Si l'équation $A\boldsymbol{x} = \boldsymbol{b}$ n'a pas de solution, montrer que $\boldsymbol{x}^* = A^+ \boldsymbol{b}$ est le vecteur qui minimise $\|A\boldsymbol{x} - \boldsymbol{b}\|_2$, c.-à-d., la distance entre $A\boldsymbol{x}^*$ et \boldsymbol{b} par rapport à la norme euclidienne $\|\cdot\|_2$.

Indice: Utiliser les équations normales.

- (b) Montrer que si $A \in \mathbb{R}^{n \times n}$ est inversible, alors $A^+ = A^{-1}$.
- (c) Si l'équation Ax = b a une infinité de solutions, alors $x^* = A^+b$ est la solution la plus proche à $\mathbf{0}$. Démontrer cela avec les étapes suivantes :
 - i. Soient v_1, \ldots, v_r les vecteurs singuliers à droite de A correspondants aux valeurs singulières non nulles $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$ de A. Montrer que $x^* \in \operatorname{span}\{v_1, \ldots, v_r\}$.
 - ii. Soit $x \in \mathbb{R}^n$ une autre solution de Ax = b. Montrer que $A^{\top}A(x x^*) = 0$.
 - iii. Montrer que la propriété ii. implique $x x^* \in \text{span}\{v_{r+1}, \dots, v_n\}$.
 - iv. En utilisant les résultats des point i. et iii., montrer que x^* est orthogonal à $x x^*$ et en déduire $||x||_2 \ge ||x^*||_2$.