[BAC] FAMILLE DE FONCTIONS AVEC EXPONENTIELLE

PARTIE A

Soit f dérivable sur \mathbb{R} , telle que $f(x) = (x+1)e^x$.

A.1) On a
$$f(x) = xe^{x} + e^{x}$$
.

Il est évident que $\lim_{x \to +\infty} f(x) = +\infty$.

Par ailleurs on admet de par le théorème des croissances comparées que

$$\lim_{x\to-\infty} (x e^x) = 0. \text{ D'où}$$

$$\lim_{x\to -\infty} f(x) = 0.$$

A.2)
$$f'(x) = (xe^x) + (e^x) = e^x + xe^x + e^x = xe^x + 2e^x = (x+2)e^x$$
.

A.3) e^x étant strictement positif sur \mathbb{R} , le signe de f'(x) est celui de (x+2). Soit : f'(x) < 0 pour x < -2,

$$f'(x) = 0$$
 pour $x = -2$,

$$f'(x) > 0$$
 pour $x > -2$.

En remarquant que $f(-2) = -e^{-2}$, on peut dresser le tableau de variations de f:

PARTIE B

Soit la fonction g_m définie sur \mathbb{R} par $g_m(x) = x + 1 - me^{-x}$ et C_m sa courbe dans un repère $(O; \vec{i}, \vec{j})$ du plan.

B.1.a)
$$g_m(x) = 0 \Leftrightarrow x + 1 = me^{-x} = \frac{m}{e^x} \Leftrightarrow (x+1)e^x = m$$
, c'est à dire $f(x) = m$.

B1.b) On déduit du tableau de variations de f que pour :

 $m < -e^{-2}$, C_m ne coupe pas l'axe des abscisses,

 $m = -e^{-2}$, C_m est tangente à l'axe des abscisses,

 $-e^{-2} < m < 0$, C_m coupe deux fois l'axe des abscisses,

 $m \ge 0$, C_m coupe une fois l'axe des abscisses.

B.1.c) On a:

Par ailleurs:

 $g_0(x) = x + 1$, $g_0(x) = x + 1 - ee^{-x}$ et $g_{-e}(x) = x + 1 + ee^{-x}$.

On en déduit immédiatement que la courbe 2 sur la figure est celle de $g_0(x)$,

c'est à dire C_0 .

 $g_0(0) = 1 - e < 0$ et g(0)=1+e>0.

 $g_m(x) = x + 1$ pour m = 0 et

confondue avec D pour m = 0 et au-dessus de D pour m < 0.

 $g_{-x}(x) = x + 1 - me^{-x} < x + 1 \text{ pour } m > 0,$

 $g_{m}(x) = x + 1 - me^{-x} > x + 1 \text{ pour } m < 0.$ Donc Cm est au dessous de D pour m > 0,

On en déduit que la courbe 3 correspond à C_e et la courbe 1 à C_{-e} .

B.1.d) Puisque e^{-x} est strictement positif sur \mathbb{R} , on en déduit que pour tout $x \in \mathbb{R}$: