Information dynamics —
Part I —
Information processing in
complex systems

Dr. Joseph Lizier





### Information dynamics Part I: session outcomes

- Understand philosophy behind information dynamics approach for modelling information processing in complex systems.
- Understand entropy rate as a first consideration.

- Primary references:
  - J.T. Lizier, "JIDT: An information-theoretic toolkit for studying the dynamics of complex systems",
     Frontiers in Robotics and AI, 1:11, 2014; appendix A.2 and A.3

## Using Turing machines, is computation easy to spot?



- For each image, consider whether the system is computing.
  - If so: What is it computing? How is it computing that: what are inputs/outputs/information? How are they manipulated?

Von Neumann architecture by Kapooht, CC BY-SA 3.0; Motherboard by Moxfyre at en.wikipedia, CC BY-SA 3.0; Fish by Bruno de Giusti; CC BY SA 2.5 IT;

Ants by kodomut @ flickr; CC BY 2.0; Fireflies by s58y @ flickr, CC BY 2.0; Brain by aboutmodafinil.com @ flickr; CC BY 2.0

The University of Sydney

# Can we fit biological computation into dominant computer science paradigm of computation?

- What do you think?
- What would we look for?
- Mitchell:

|                                                            | Computer science                                          | Biological computation                                                                     |
|------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|
| What plays the role of information in the system?          | Digital static tape                                       | Analog states, patterns distributed in space and time. Gathered via statistical sampling   |
| How is the information communicated and processed?         | Deterministic,<br>serial, error-free<br>centralised rules | Decentralised, parallel, local, fine-grained stochastic interactions. Randomness utilised. |
| How does the information acquire function/purpose/meaning? | (Human) designer                                          | Natural selection                                                                          |

M. Mitchell, "Complexity: A guided tour", New York: Oxford University Press, 2009 - chapter 12

### Biological computation: we need a new perspective

 Mitchell: For complex systems, the "language of dynamical systems may be more useful than language of computation."



 Intrinsic information processing occurs whenever a system undergoes a dynamical process changing its initial state (+inputs) into some later state (+outputs)

### Biological computation: dynamical systems perspective



- What is happening in bio- and bio-inspired information processing?
  - It's distributed, unlike a Turing machine
  - It's ongoing, unlike a Turing machine
    - Intrinsic computation, or information processing doesn't necessarily finish
  - How can we describe it in computational or informational terms?
    - Information storage, transfer and modification
    - Easy to identify (elements performing) these operations on information in a traditional PC, not so easy in biological computation

### Information dynamics and computation

- We talk about computation as:
  - Memory
  - Signalling
  - Processing



- Distributed computation is any process that involves these features:
  - Information processing in the brain
  - Time evolution of cellular automata
  - Gene regulatory networks computing cell behaviours
  - Flocks computing their collective heading
  - Ant colonies computing the most efficient routes to food

— The universe is computing its own future!

### Information dynamics and computation

- We talk about computation as:
   Idea: Quantify computation via:
  - MemoryInformation storage
  - Signalling
     Information transfer
  - ProcessingInformation modification
- Distributed computation is any process that involves these features:
  - Information processing in the brain
  - Time evolution of cellular automata
  - Gene regulatory networks computing cell behaviours
  - Flocks computing their collective heading
  - Ant colonies computing the most efficient routes to food
  - The universe is computing its own future!
- General idea: by quantifying intrinsic computation in the language it is normally described in, we can understand how nature computes and why it is complex.

### Information dynamics

- Key question: how is the next state of a variable in a complex system computed?
- It is the output of a local computation within the system



Complex system as a multivariate time-series of states

Q: Where does the information in  $x_{n+1}$  come from, and how can we measure it? (Where might we look?)

Q: Can we model the information processing in X in terms of:

- how much information was stored?
- how much was transferred,
   and how was this attributed?

Q: Can we partition them, do they overlap? etc.

### What kinds of multivariate time series could we analyse?

- How did we model behaviour in Scissors-Paper-Rock?
- How can we characterise the updates in cellular automata in terms of operations on information?



### Information dynamics

 Studies computation of the next state of a target variable in terms of information storage, transfer and modification:



#### The measures examine:

- State updates of a target variable;
- Dynamics of the measures in space and time.

J.T. Lizier, "The local information dynamics of distributed computation in complex systems", Springer: Berlin/Heidelberg, 2013

The University of Sydney

Page 11

#### **Notation**

- We consider collections of time-series processes X, Y, Z, etc.:
  - Which each consist of random variables  $\{...X_{n-1}, X_n, X_{n+1}, ...\}$ ;
  - With process realisations  $\{...x_{n-1},x_n,x_{n+1},...\}$ ;
  - For countable time indices n.
  - Denote consecutive block vector (state):  $\boldsymbol{X}_n^{(k)} = \{X_{n-k+1}, \dots, X_{n-1}, X_n\}$
  - which has realisations  $\boldsymbol{x}_n^{(k)} = \{x_{n-k+1}, \dots, x_{n-1}, x_n\}$
- Formally, we ask: "where does the information in a random variable  $X_{n+1}$  come from, in terms of other variables  $Y_m, Z_m$ , etc. for  $m \le n$ ?"

J.T. Lizier, "The local information dynamics of distributed computation in complex systems", Springer: Berlin/Heidelberg, 2013

#### **Entropy rate**

- Historically, entropy rate was first consideration here:
  - Measures limiting rate at which block entropies scale with block length:

$$H'_{\mu X} = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \dots, X_n)$$

$$H'_{\mu X} = \lim_{n \to \infty} \frac{1}{n} H\left(X_n^{(n)}\right)$$

2. Measures uncertainty of next R.V. given past of process:

$$H_{\mu X} = \lim_{n \to \infty} \frac{1}{n} H(X_n | X_1, X_2, \dots, X_{n-1})$$

$$H_{\mu X} = \lim_{n \to \infty} H\left(X_n | \mathbf{X}_{n-1}^{(n-1)}\right)$$

 $-H'_{\mu X}=H_{\mu X}$  for stationary processes



- Implication is that we're using past of the process as first informative source, and asking how much uncertainty remains.
- What is the coding interpretation? (Think about coding letters in English text)

T. M. Cover and J. A. Thomas. "Elements of Information Theory". Wiley-Interscience, New York, 1991. Section 4.2. Note: primes are reversed in our notation!

J. P. Crutchfield and D. P. Feldman, "Regularities unseen, randomness observed: Levels of entropy convergence", Chaos 13, 25 (2003).

The University of Sydney

Page 13

### Information dynamics Part I: summary

- We've looked at the philosophy behind the information dynamics approach for analysing information processing in complex systems.
- We've examined entropy rate as a first pass at understanding the dynamic update of time-series processes

Coming up: Information storage in complex systems

# Questions

