

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE INGENIERÍA LABORATORIO DE HIDRÁULICA

PRÁCTICA 1. PROPIEDADES DE LOS FLUIDOS

Grupo:	
Equipo:	
Fecha:	
Maestro:	
Calificación:	

Integrantes	Matricula		

Peso específico de distintos líquidos (40%)						
Propiedades	Unidad	Agua	Glicerina	Aceite	Alcohol	Otro
Masa probeta (M_P) :	Kg					
Peso probeta + fluido (M_T):	Кд					
Masa fluido (M _s):	Kg					
Volumen fluido (V _s):	m3					
Densidad (ρ _s):	Kg/m³					
Densidad relativa (Dr):	-					
Peso específico (¥s):	N/m³					
Temperatura (T):	°C					

Datos para cálculo de viscosidad dinámica (60%)				
	Unidad	Balín 1	Balín 2	Balín 3
Altura (H):	m			
Diámetro (D _в) :	m			
Radio (R _B):	m			
Masa esfera (W _в):	Kg			
Volumen esfera (VOL _в):	m³			
Gravedad (G):	m/s ²			
Densidad fluido (ρ1):	kg/m³			
Densidad esfera (ρ2):	kg/m³			
Tiempo de caída (T):	Seg			
Velocidad de caída (V):	m/s			

$$F1 + F2 = F3 \qquad F1 = 6\pi\mu Vr$$

$$F2 = \frac{4}{3}\pi r^3 \rho_1 g \qquad F3 = \frac{4}{3}\pi r^3 \rho_2 g$$

$$Factor Corrección = \frac{1}{1 + 2.4\left(\frac{r}{0.022}\right)}$$

$$10 \ Poise = 1\frac{Kg}{m*s}$$

Viscosidad dinámica de la glicerina				
Datos		1	2	3
Fuerza de fricción (F1):	N			
Empuje hidrostático (F2):	N			
Fuerza gravitacional (F3):	N			
Viscosidad dinámica (μ):	$\frac{Kg}{m*s}$			

Conclusión.-