An Application of Traveling Salesman Problem Using the Improved Genetic Algorithm on Android Google Maps

2016 EIC by Teguh Narwadi and Subiyanto

61605039 พยัพพงศ์ ศรีชัย 61605041 Lada Phonrungwong

An Application of Traveling Salesman Problem Using the Improved Genetic Algorithm on Android Google Maps

TSP
Traveling Salesman Problem

GA Genetic Algorithm

Android Google Maps

Improved Genetic Algorithm

TSP Travelling Salesman Problem

GA: Genetic Algorithm

The overall structure of Genetic Algorithm

Genetic Algorithm

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Selection
- 5. Crossover
- 6. Mutation
- 7. Termination condition

GA 1 2 3 4 5 6 7

1. Representation Path 1-2-3-4-5

2. Initialization random selection

3. Evaluation shortest path

4. Selection

Tournament selection + elite selection

4. Selection:

Elite child

Tournament selection +

elite selection

GA 1 2 3 4 5 6 7

5. Crossover order crossover (OX)

Parent 1: 8 4 7 3 6 2 5 1 9 0
Parent 2: 0 + 2 + 3 4 5 6 7 8 9
Child 1: 0 4 7 3 6 2 5 1 8 9

GA 1 2 3 4 5 6 7

5. Crossover order crossover (OX)

Parent A: 8 7 2 5 1 4 6 3
Parent B: 2 5 8 7 4 1 3 6
Child: 2 8 7 5 1 4 3 6

6. Mutation

exchange mutation -> randomly two genes

7. Termination condition

maximum time period

Genetic Algorithm

Hybrid
Genetic
Algorithm

Hill-climbing search

 Problem: depending on initial state, can get stuck in local maxima.

Hill climbing in HGA

Procedure: Iterative hill climbing method

Begin

Select best individual v_c from current GA population according to fitness function; Generate as many individuals as the population size in the v_c neighborhood randomly; Select the individual v_n with the best fitness value from newly generated individuals; If fitness(v_c) < fitness(v_n) then

$$v_c \rightarrow v_n$$

Else If $fitness(v_c) \ge fitness(v_n)$ then

$$v_c \rightarrow v_c$$

end

End

Hill climbing in HGA

- 1. Choose the best Vc current pop from fitness fn.
- Generate Vn from VcRandomly, total num. = pop.size

- 3. Choose the best Vn
- 4. Compare between Vc & Vn IF Vn better ,THEN Vc = Vn

Hybrid Genetic Algorithm

Procedure: Hybrid Genetic Algorithm

Begin

Step1: Initial population:

Encode the problem using path representation and generate initial population

Step2: Evaluation:

Evaluate the current population using the fitness function

Step3: Genetic operators:

Selection: Select two parents for crossover using tournament selection

Crossover: Crossover two chromosomes selected using order crossover

Mutation: Mutate the offspring using exchange mutation

Step4: Local Search:

Using hill climbing method to search a new best individual

Step5: Termination condition:

The termination conditions have been set to a time frame of 60 seconds. If this termination

condition are reach and stop looping.

End

EXPERIMENTS

Find
Parameter
in HGA

EXPERIMENTS Hardware & Software

smartphone android Quad-core 1.3 GHz Cortex-A7, 1 GB RAM, Android OS v4.4.2 (Kitkat)

The application developed by Android Developer Tool (ADT) Java prog. language.

Parameter in HGA

- 1. Mutation Probability (pm)
- 2. Termination Condition

3. Population Size

Parameter in HGA

Dataset TSPLIB

library of sample instances for the TSP

3 sample data, each 20 times

No	Coordinate X	Coordinate Y
1	288	149
2	288	129
3	270	133
4	256	141
5	256	157

Parameter in HGA Mutation Probability

TABLE 1. Results over different instances using different mutation probabilities

best avg time	pm=0.01 3668 4016.2	pm=0.03 3650 3743.8	pm=0.05 3210
avg			
	4016.2	3743.8	26126
time			3642.6
******	0.040	0.054	0.064
best	8530	9233	8386
avg	9575.8	9701.6	9415.2
time	0.187	0.215	0.179
best	14786	13650	12377
avg	15021	14508.2	14116.2
time	0.466	0.518	0.412
	avg time best avg	avg 9575.8 time 0.187 best 14786 avg 15021	avg 9575.8 9701.6 time 0.187 0.215 best 14786 13650 avg 15021 14508.2

Parameter in HGA Termination Condition

TABLE 2. The result of the termination condition

instance	n		s=20	s=40	s=60
1 14	1.4	best	3087	3087	3087
burma14	14	avg	3087	3087	3087
1 22	22	best	7579	7530	7530
ulysses22	22	avg	7681	7626	7603
1 20	20	best	9542	9213	9105
bays29	29	avg	10272	9741	9488

Parameter in HGA Population Size

TABLE 3. The result of the population size

instance	n	pop size b	est a	avg
		14	3087	3087
burma14	14	28	3087	3087
		42	3087	3087
		22	7530	7590
ulysses22	22	44	7530	7601
		66	7530	7592
		29	9105	9468
bays29	29	58	9203	9582
		87	9203	9653

Parameter in HGA

Dataset TSPLIB

library of sample instances for the TSP

Mutation Probability 5%

Termination Condition 60s

Population Size n cities

Compare Result Between GA & HGA

GOOGLE MAPS ANDROID

Google Maps API

Latitude and Longitude distance between cities

Database

SQLite
Relational database
Matrix of distance

Test DataSet

Test DataSet

No.	City	Latitude	Longitude
1	Pati	-6.753899	111.042784
2	Purwodadi	-7.083219	110.913327
3	Demak	-6.894602	110.638154
4	Temanggung	-7.316753	110.178341
5	Magelang	-7.476794	110.218917
6	Sragen	-7.427645	111.023387
7	Rembang	-6.705611	111.348445
8	Wonosobo	-7.358785	109.902953
9	Kendal	-6.920633	110.20483
10	Batang	-6.906720	109.732468
11	Banjarnegera	-7.399196	109.688866
12	Semarang	-6.990155	110.422515
13	Purwokerto	-7.427879	109.242443
14	Blora	-6.970731	111.421695
15	Kudus	-6.808916	110.842946
16	Jepara	-6.590626	110.667318
17	Kebumen	-7.669664	109.651954
18	Sukoharjo	-7.683752	110.846919
19	Slawi	-6.974607	109.139532
20	Wonogiri	-7.813768	110.926073

Test DataSet

population size 5, 8, 12, 16, and 20 -> 5 Cases Simulation 10 times for each

Result

TABLE 5. The result of the experiments

No		Number of cities	Distance (meters)					
	Data		GA			HGA		
			Best	Worst	Average	Best	Worst	Average
1	Case1	5	333390	333390	333390	333390	333390	333390
2	Case2	8	518053	595128	533484.6	518053	518053	518053
3	Case3	12	667143	872809	750450.6	622172	719781	679885.6
4	Case4	16	999926	1107099	1060378.4	823899	977451	906274
5	Case5	20	1175422	1314313	1260734.8	1001333	1289746	1185912.8

More cities More Complex problem -> HGA even better than GA

Result

	Avg Distant					
	GA	HGA	GA %	HGA %		
Case1: 5 cities	333390	333390	100	100		
Case2: 8 cities	533484.6	518053	100	97		
Case3: 12 cities	750450.6	679885.6	100	91		
Case4: 16 cities	1060378.4	906274	100	85		
Case5: 20 cities	1260734.8	1185912.8	100	94		

In 5 tests (100%) show that HGA is better than GA

Thank You