

PCA SERIES 0.5 – 1.5 hp AIR COOLED PORTABLE WATER CHILLERS

IMPORTANT: PLEASE READ CAREFULLY BEFORE ATTEMPTING TO INSTALL OR OPERATE EQUIPMENT

AEC, Inc. is committed to a continuous program of product improvement. Specifications are subject to change without notice.

© AEC, Inc. 2008 All Rights Reserved

Effective 4-29-2008 Part Number A0537986 Bulletin: AE2-615A.5

Safety Considerations

AEC, Inc. PCA Series Chillers are designed to provide safe and reliable operation when installed and operated within design specifications, following national and local safety codes.

To avoid possible personnel injury or equipment damage when installing, operating or maintaining this equipment, use good judgment and follow these safe practices:

- Follow all **SAFETY CODES**.
- Wear SAFETY GLASSES and WORK GLOVES.
- Use care when **LOADING**, **UNLOADING**, **RIGGING**, or **MOVING** this equipment.
- Operate this equipment within design specifications.
- **OPEN**, **TAG**, and **LOCK ALL DISCONNECTS** before working on equipment. It is a good idea to remove the fuses and carry them with you.
- Make sure the chiller is properly **GROUNDED** before switching power on.
- When welding or brazing in or around this equipment, be sure **VENTILATION** is **ADEQUATE**. **PROTECT** adjacent materials from flame or sparks by shielding with sheet metal. An approved **FIRE EXTINGUISHER** should be close at hand and ready for use if needed.
- The refrigeration system can develop refrigerant pressures in excess of 500 PSI (3,450 kPa). DO NOT CUT into the system without first relieving pressure.
- Do not jump or bypass any electrical safety control.
- Do not restore power until all tools, test equipment etc. have been removed and the panels replaced.
- Only **PROPERLY TRAINED** personnel familiar with the information within this manual should work on this equipment.

Table of Contents

1	General	Information7
	1-1	Introduction
	1-2	Necessary Documents
	1-3	Models Covered
	1-4	Available Options
	1-5	Uncrating Your New Chiller
	1-6	In the Event of Shipping Damages
	1-7	If the Shipment is Not Complete
	1-8	If the Shipment is Incorrect
	1-9	Returns
2	Chiller I	nstallation13
	2-1	Electrical Connections
	2-2	Process Water Connections
	2-3	PCA Condenser Air Supply
		Water Reservoir
	2-5	Overhead Process Considerations
3	Sequen	ce of Operation17
	3-1	Chilled Water Circuit
	3-2	Refrigeration Circuit
	3-3	High Pressure Cutout
	3-4	Low Pressure Cutout
	3-5	Remote Start/Stop Interlock

Table of Contents

4	Startup	Checklists	23
	4-1		
		PCA Pre-Startup Checklist	
		PCA Startup Checklist	
	4-4	PCA Water Circuit Pressure Drop Table	
5	Microp	rocessor Control	25
	5-1	Introduction	
	5-2	Setting the Process Water Temperature	
		LED Indicators	
	5-4	Temperature Controller Keys	
	5-5	Auto-Tuning PCA Series Chillers	
	5-6	Optional Communications	
6	Optiona	al Graphic Panel	30
	6-1	Indicator Lights	
	6-2	Switches	
7	Pouting	e Maintenance	32
			JZ
	7-1	Lubrication Condenses Maintenance	
	7-2	Condenser Maintenance	
8	Trouble	eshooting Guide	36

Charts and Figures

Figure 1: PCA050 Process Pump Curves	11
Figure 2: PCA100 Process Pump Curves	11
Figure 3: PCA150 Process Pump Curves	11
Figure 4: PCA Cast Iron Centrifugal Pump Curve 1/3 hp (0.249 kW)	12
Figure 5: PCA Series Chiller Specifications	13
Figure 6: Ethylene Glycol Curve	16
Figure 7: Overhead Piping	17
Figure 8: PCA Component Identification	20
Figure 9: Piping Schematic - 1 Pump with Reservoir	21
Figure 10: Piping Schematic - 1 Pump Without Reservoir	22
Figure 11: Piping Schematic - No Pump, No Reservoir	23
Figure 12: Typical PCA Series E5CK Microprocessor Controller	27
Figure 13: Optional Graphic Panel	32
Figure 14: Typical PCA Subpanel	33
Figure 15: Typical PCA Wiring Schematic	34
Figure 16: PCA Wiring Schematic for Chillers with No Pump or Reservoir	

1-1 Introduction

AEC, Inc.'s PCA Series Water Chillers are reliable, accurate, and easy-to-use air cooled chillers designed for use with water/glycol. Standard range of operation is 30°F (-1°C) to 65°F (18°C) for applications using glycol and 45°F (7°C) to 65°F (18°C) for water-only applications. A crankcase pressure regulating valve option is available for processes requiring a leaving water temperature of up to 75°F (24°C). PCA models are available in 1/2 hp (373 W), 1 hp (746 W), and 1-1/2 hp (1,118 W) models and have an internal six gallon (23 liter) reservoir. All models are self contained, fully assembled, and shipped ready to use.

A properly installed, operated, and maintained PCA Series Chiller will provide many years of reliable operation. To get the most satisfaction from your new chiller, read and follow the instructions in this manual.

1-2 Necessary Documents

The following documents are necessary for the operation, installation and maintenance of AEC, Inc.'s PCA Series Chillers. Additional copies are available from AEC, Inc. Familiarize the appropriate personnel with these documents:

- **☑** This manual.
- ✓ The electrical schematic and connection diagram mounted inside the control enclosure. Typical schematics for general reference are provided in Figure 15 and Figure 16 on pages 34 and 35.
- ☑ The operation and installation manuals for installed accessories and options.
- ☑ The Customer Parts List included in the information packet.

1-3 Models Covered

This manual provides operation, installation, and maintenance instructions for AEC, Inc. PCA Series Chillers.

Model numbers are on the serial tag. Please know the model number, serial number and operating voltage of your chiller if you need to contact AEC, Inc.

PCA Series Chiller models are designated by approximate compressor horsepower. A **PCA050** chiller has a 1/2 hp (373 W) compressor, a **PCA100** chiller has a 1 hp (746 W) compressor, and a **PCA150** chiller has a 1-1/2 hp (1,118 W) compressor.

1-4 Available Options

PCA Series Chillers are available with options that tailor the unit to your requirements. Some are factory installed, some can be retrofitted in the field. Consult your local AEC, Inc. Sales Representative. Some of these options are:

Special Pumps

Special pump options are available for greater pressure and flow rates. Bronze and stainless steel wetted surface standard flow pumps ranging from 30 psi (207 kPa) to 60 psi (414 kPa) are available.

Reservoirs

PCA Series Chillers are available without a reservoir for processes that use their own reservoir.

Power Cord

A 10 foot (3 meter) power cord is available to speed PCA installation.

Casters

Four 2 inch (5 cm) swivel casters add mobility to the PCA unit.

CPR Valve

A crankcase pressure regulating (CPR) valve is available for leaving water temperatures up to 75°F (24°C).

1-5 Uncrating Your New Chiller

PCA Series Chillers are shipped mounted on a skid, enclosed in a plastic wrapper, and open crated on all four sides and top.

- Pry the crating away from the skid and remove. Use a pry bar to remove the blocks securing the unit to the skid.
- ☑ Lift the unit off the skid with a fork truck. Insert forks between skid and chiller from the side until they protrude beyond the opposite side of the unit. The forks must be equidistant from the center line of the unit and the unit must be balanced on the forks.
- Lift slowly and only high enough to clear the skid. Use a pry bar if necessary to remove the skid from the unit.
- ✓ Lower slowly. The unit will land on its feet or casters and can be moved into position.

1-6 In the Event of Shipping Damages

IMPORTANT!

According to the contract terms and conditions of the Carrier, the responsibility of the shipper ends at the time and place of shipment. The Carrier then assumes full responsibility of the shipment.

- ✓ Notify the transportation company's local agent.
- ✓ Hold the damaged goods and packing material for the examining agent's inspection. Do not return any goods to AEC, Inc. before the transportation company inspection and authorization.
- File a claim against the transportation company. Substantiate the claim by referring to the agent's report. A certified copy of our invoice is available upon request. The original Bill of Lading is attached to our original invoice. If the shipment was prepaid, write us for a receipted transportation bill.
- ✓ Advise AEC, Inc. regarding your wish for replacement.

1-7 If the Shipment is Not Complete

Check the packing list. The apparent shortage may be intentional. Back-ordered items are noted on the packing list. You should have:

- ☑ PCA Series Chiller
- **☑** Bill of Lading
- ✓ Packing List
- Operating and Installation Packet

Re-inspect the container and packing material to see if smaller items have been missed during unpacking. Determine that the item was not taken from the area before the shipment was checked in. Notify AEC, Inc. immediately of the shortage.

1-8 If the Shipment is Incorrect

- ☑ If the shipment is not what you ordered, contact AEC, Inc. immediately. Include the order number and item.
- ✓ Hold the items until shipping instructions are received.

1-9 Returns

IMPORTANT!

Do not return any damaged or incorrect items until you receive shipping instructions from AEC, Inc.

Figure 1: PCA050 Process Pump Curves

Figure 2: PCA100 Process Pump Curves

Figure 3: PCA150 Process Pump Curves

Figure 4: PCA Cast Iron Centrifugal Pump Curve 1/3 hp (0.249 kW)

Figure 5: PCA Series Chiller Specifications

Model Number	Capacity @ 65°F LWT 75°F Ambient (Btuh)	Capacity @ 50°F LWT 90°F Ambient (Btuh)	Nominal Chilled Water (gpm)	Compressor (hp)	Pump	Process Connection (inches NPT)	Amp Draw 230/1/60 Running		mensio inches W		Operating Weight (lbs)	Shipping Weight (lbs)
PCA-050	8,100	4,800	1.2	1/2	¹ / ₃ hp, 1.2 gpm @ 24 psig	3/4	8A	20	26	34	265	265
PCA-100	14,000	9,550	2.4	1	¹ / ₃ hp, 2.4 gpm @ 34 psig	3/4	10A	20	26	34	325	325
PCA-150	25,400	16,000	3.6	1-1/2	¹ / ₃ hp, 3.6 gpm @ 24 psig	3/4	12A	20	26	34	345	345

Model Number	Capacity @ 18°C LWT, 24°C Ambient (watts)	Capacity @ 10°C LWT, 32°C Ambient (watts)	Nominal Chilled Water (Ipm)	Compressor (watts)	Pump	Process Connection (inches NPT)	Amp Draw 230/1/60 Running	Dii L	mensio (cm) W	ns H	Operating Weight (kg)	Shipping Weight (kg)
PCA-050	2,374	1,407	4.5	373	224 watts, 4.5 lpm @ 207 kPa	3/4	8A	51	66	86	120	120
PCA-100	4,103	2,800	9.0	746	224 watts, 9.0 lpm @ 234 kPa	3/4	10A	51	66	86	147	147
PCA-150	7,444	4,690	13.6	1,118	224 watts, 13.6 lpm @ 207 kPa	3/4	12A	51	66	86	156	156

2-1 Electrical Connections

Check serial tag voltage and amperage requirements and make sure your electrical service conforms. See Figure 5 on page 13 for total running amps.

Bring properly sized power leads and ground from a fused disconnect (installed by your electrician) to the main power terminal in the chiller's electrical enclosure.

- ☑ Electrical connections must comply with all applicable electrical codes
- ☑ The chiller must be grounded in accordance with NEC Article 250
- ✓ Voltage must be within 10% of the chiller's nameplate rating.

2-2 Process Water Connections

- ☑ All external chilled water connections to the process must be of adequate size.
- ✓ See Figure 7 on page See 17 for sizing recommendations.
- ☑ The largest possible openings and passages should be provided for the flow of chilled water through platens, dies, molds or other pieces of equipment.

IMPORTANT!

Keep any pressure drop in external process piping to an absolute minimum for optimum unit operation.

To Process

Connect the **TO PROCESS** chilled water supply outlet to the process being cooled.

From Process

Connect the **FROM PROCESS** chilled water return inlet to the return from the process back into the chiller for cooling and recirculation.

☑ AEC, Inc. recommends a strainer on the **FROM PROCESS** return line.

Process Water Bypass

All PCA chillers have an internal bypass device (patent pending). If the process flow becomes blocked during chiller operation, this component allows water to flow through the chiller. This protects the chiller from freeze-up, excessive pressures, and pump damage, and allows other safety features to remain effective.

2-3 PCA Condenser Air Supply

PCA chillers use the surrounding air to cool the condenser.

- ✓ Condenser air entering the PCA unit should be at least 65°F (18°C). Operation with air below 65°F (18°C) can cause the low pressure cutout to shut down the chiller due to the low refrigerant pressure.
- ☑ Install the chiller in an area where there is free passage of air for condensing.
- Provide 18" (46 cm) or more clearance for the chiller's air intake.
- ✓ Make provisions to exhaust the heated air discharged from the chiller.
- ☑ Do not put the PCA unit where steam, hot air or fume exhausts will be drawn into the condenser.
- ☑ Air-cooled condensers must be cleaned frequently. Neglect reduces capacity, increases operating costs, and leads to possible chiller failure. See Chapter 7 on Page 29 for cleaning instructions.
- ✓ Normal condensing pressure with 95°F (35°C) air is approximately 180 psi (1,241 kPa) for the PCA050 and PCA100; 275 psi (1,897 kPa) for the PCA150.

PCA Ambient Temperature Ranges

Ambient Temperature Range	Minimum Temperature	Maximum Temperature
Operation	65°F (18°C)	100°F (38°C)
Storage	40°F (4°C)	120°F (49°C)

2-4 Water Reservoir

During startup and when additional solution is required, see Figure 6 on page 16 for the recommended ethylene glycol/water solution. This chart shows the proportions needed to provide freeze protection to 20°F/°C below the desired process setpoint.

- Add a pre-mixed solution to provide freeze protection to a temperature 20°F/°C below the normal operating temperature of the chiller.
- ☑ Use industrial quality (**not** automotive) ethylene glycol.

- ✓ A corrosion inhibitor suitable for the materials in the system should be added to the glycol/water solution.
- ☑ If straight water use is desired, contact the AEC, Inc. Engineering Department.
- ☑ The six gallon (23 liter) reservoir is **not** designed to withstand water pressure above 5 psi (34 kPa).
- ☑ The fill opening and vent line must be vented to the atmosphere for proper operation.

Figure 6: Ethylene Glycol Curve

Normal Operating Range between 30°F - 70°F

2-5 Overhead Process Considerations

If your application has chilled water or process piping above the reservoir fill and vent level, install a standpipe to a point 1' (30 cm) above the highest point in the system.

In applications where the process or its piping is 15 feet (4.6 m) or more above the reservoir, you must take steps to prevent over-pressurization of the reservoir. This condition can occur on system shutdown when the water in the system drains into the reservoir.

To prevent this, install a check valve in the unit **TO PROCESS** line and a vacuum breaker at the high point of the return **FROM PROCESS** line. See Figure 7 below for more information.

Note: The reserve capacity of the reservoir can hold a volume equal to **20 feet** (6.1 m) **of 1-inch** (2.5 cm) **pipe**.

Figure 7: Overhead Piping

IMPORTANT!

- The PCA unit has a leaving water temperature range of 30°F (-1°C) to 65°F (18°C). Do not attempt to run the PCA unit outside this temperature range or damage to the unit may occur.
- When operating the PCA unit between 30°F (-1°C) and 40°F (5°C), you must use a solution of 75% water and 25% industrial-grade ethylene glycol with a suitable corrosion inhibitor to protect the PCA unit from freeze-up. See Figure 6 on page 16 for more information.

Such damage is not covered by the AEC, Inc. warranty.

3-1 Chilled Water Circuit

Figure 9, Figure 10, and Figure 11

- Process cooling water supply and return connections are made at the pipe stubs at the rear of the chiller.
- ☑ Warm water returns from the process and enters the reservoir tank.
- ☑ The process water is pumped through the evaporator where it is cooled.
- \blacksquare The coolant flows to the process and returns to repeat the cycle.
- A chilled water bypass assembly (patent pending) between the supply and return lines guarantees a constant flow through the evaporator during intermittent low or no-flow conditions.
- ☑ A flow switch in units without pumps will prevent the compressor from running without adequate flow through the evaporator

3-2 Refrigeration Circuit

- ☑ Liquid refrigerant from the condenser passes through a filter/dryer which removes moisture and other contaminants.
- ✓ The refrigerant then passes through the thermal expansion valve which allows the refrigerant to expand and cool the inside of the heat exchanger. The refrigerant flows through the suction line to the compressor.
- ☑ The refrigerant gives up its heat as it re-condenses to a liquid in the condenser and the cycle starts over again.

3-3 High Pressure Cutout

The high pressure cutout is an electro-mechanical safety feature that opens the control circuit if the system condensing pressure exceeds a safe level. The chiller will automatically restart when the pressure drops back to an acceptable level.

Model	Cuts out if condensing pressure exceeds:		
PCA050	275 psi (1,897 kPa)		
PCA100	275 psi (1,897 kPa)		
PCA150	400 psi (2,759 kPa)		

IMPORTANT!

Call a refrigeration service technician to analyze the problem if high pressure recurs.

3-4 Low Pressure Cutout

The low pressure cutout is an electro-mechanical safety feature that prevents compressor suction pressure from dropping below a preset point.

It is factory set to open the control circuit when pressure drops below a safe level. The chiller will automatically restart when the suction pressure reaches an acceptable level.

Model	Cuts out if suction pressure falls below:				
PCA050	15 psi (103 kPa)				
PCA100	15 psi (103 kPa)				
PCA150	35 psi (241 kPa)				

3-5 Remote Start/Stop Interlock

A contact is provided to allow interlocking of the PCA Series Chiller with process controls. To use this feature, remove the jumper between Terminals X1 and 1 on Terminal Block 1. Supply a switch or dry contact interlock connected in series between these two terminals. See Figure 15 and Figure 16 on pages 34 and 35 for more information.

Figure 8: PCA Component Identification

Figure 9: Piping Schematic - 1 Pump with Reservoir

Figure 10: Piping Schematic - 1 Pump Without Reservoir

Figure 11: Piping Schematic - No Pump, No Reservoir

4-1 Introduction

Follow the check lists below for the startup of your new chiller. These lists assume the installation information elsewhere in this manual has been read and followed. New chillers should be started up and checked by a qualified refrigeration service technician.

4-2 PCA Pre-Startup Checklist

- 1. Check the shipping papers against the serial tag to be sure chiller size, type and voltage is correct for the process that will be controlled.
- 2. Check the transformer primary voltage connections to be sure they are configured for the electrical power you are using. The voltage at the main power connection must read within +/-10% of the voltage listed on the serial tag. Electrical connections must conform to all applicable codes.
- 3. The chilled water **TO PROCESS** and **FROM PROCESS** connections should be completed.
- 4. Be sure the reservoir tank and chilled water circuit piping are filled with water.
- 5. The air-cooled condenser should have an adequate supply of air for proper operation.
- 6. Connect main power to the chiller and run the chiller just long enough to see if the pump is generating normal pressure.
- 7. Check your work and proceed to the **PCA Startup Checklist** section below.

4-3 PCA Startup Checklist

- 1. Turn **ON** the chiller. The PCA chiller should continue to run until the switch is turned **OFF**.
- 2. Put the PCA chiller under a process load.
- 3. Set the microprocessor control to the desired process temperature setpoint using the , , and buttons. See Chapter Five on Page 25 for more information.
- 4. Check the pump amp draw and pump pressure. The amp draw reading must be within the running load and service factor amps.
- 5. Operate the chiller, looking for leaks and listening for unusual noises or vibrations that could indicate improper operation.

4-4 PCA Water Circuit Pressure Drop Table

Model	Gallons per minute	Liters per minute	ΔP (psig)	ΔP (kPa)
PCA050	2.0	7.5	2.5	17.3
	2.4	9.0	4.0	27.6
	3.6	13.6	7.5	51.8
	4.8	18.1	12.5	86.2
PCA100	2.0	7.5	2.5	17.3
	2.4	9.0	2.5	17.3
	3.6	13.6	3.0	20.7
	4.8	18.1	5.0	34.5
PCA150	2.0	7.5	2.5	17.3
	2.4	9.0	2.5	17.3
	3.6	13.6	3.0	20.7
	4.8	18.1	3.5	24.2

5-1 Introduction

Standard PCA Series chillers use a microprocessor-based PID controller. The controller is a modular, self-contained unit that can slide from its mounting housing. It is factory set and adjusted; no field adjustment to the internal controls is necessary.

PCA Control Operation Range					
Standard models	30°F to 65°F (-1°C to 18°C)				

5-2 Setting the Process Water Temperature

To change the process water temperature set point:

Press the Up Arrow button to raise the set point.
Press the Down Arrow button to lower the set point.

5-3 LED Indicators

PV or Process Value Numeric LED

During normal operation, the large red **PV** LED on the controller displays the actual process temperature at the To Process thermocouple. It also lists parameter symbols during setup and error messages if an error occurs.

SV or Set Value Numeric LED

During normal operation, the green **SV** LED on the controller displays the process set point you want the chiller to maintain. It also displays parameter and pre-set function values during setup.

OUT1 LED

The orange **OUT1** LED lights when the **control output** energizes the hot-gas bypass solenoid valve.

Figure 12: Typical PCA Series E5CK Microprocessor Controller

OUT2 LED

The orange **OUT2** energizes whenever the process temperature is two degrees (2°F/°C) or more above the To Process set point. The compressor then comes on and runs until the temperature at the To Process thermocouple is two degrees (2°F/°C) below the set point.

This +2°F/°C control set point is factory-set for proper compressor operation. Changing it is **not recommended** without consulting the AEC Service Department.

MANU LED

The orange **MANU** LED does not light because it is not used.

STOP LED

The orange **STOP** LED does not light because it is not used.

RMT LED

The orange **RMT** LED is lit during remote operation.

AT LED

The orange **AT** LED flashes during auto-tuning.

SUB1 LED

The orange **SUB1** LED energizes whenever the process temperature is two degrees (2°F/°C) or more below the To Process set point. The compressor then shuts down by means of a latching circuit, and does not run again until the temperature at the To Process thermocouple is two degrees (2°F/°C) above the set point.

This +2°F/°C control set point is factory-set for proper compressor operation. Changing it is **not recommended** without consulting the AEC Service Department.

5-4 Temperature Controller Keys

AT AT Key

Press and hold the AT AT key for two seconds to initiate *or* stop the auto-tune function.

Display Key

The functions of the Display key change, based on how long you press it. Press the Display key for less than one (1) second to scroll through parameters within the mode.

Press the **Display** key for at least one (1) second or more to display the menu; this function also lets you select the mode you need to adjust.

Important!

Do not change any of the control settings without consulting the AEC Service Department.

The AEC, Inc. warranty does not cover chiller failures from tampering with controller settings!

\sim		
	Down Ke	<u> </u>
		Each press of the Down Arrow key decrements or reduces the values or settings on the SV display.
\bigcirc	Up Key	
		Each press of the Up Arrow key increments or advances the values or settings on the SV display.

5-5 Auto-Tuning PCA Series Chillers

The Auto-Tune function lets you fine-tune the control PID to process requirements. Activate the Auto-Tune function whenever the process under control changes. Don't be alarmed by control response. It may take the process temperature above and below the set points as many as three (3) times. It will then level off and control to the process set point. **Auto tuning can take up to 45 minutes**, and is best done before any product is being run.

Important!

Factory default settings are: P = .3, I = 7, and D = 1

To auto-tune the controller:

- Press and hold down the AT AT key for several seconds until the AT indicator flashes.
- The AT LED flashes to indicate that the control is tuning itself. When the AT LED light stops flashing, the controller is tuned and ready for operation.

5-6 Optional Communications

Standard Omron Protocol

The communications function allows you to monitor and set E5CK parameters by a program prepared and running on a host computer connected to the E5CK controller.

When using the communications function, you must add on the unit for RS-232C or RS-485 communications. The E5CK communications function allows you to read/write parameters, do operating instructions, and select the setting level.

6-1 Indicator Lights

○ PUMP ON (green)

This indicator lights when the pump is running.

○ COMPRESSOR ON (green)

This indicator lights when the compressor is operating.

HIGH REFRIGERANT PRESSURE (red)

This indicator lights if the condensing pressure exceeds a safe level. The chiller goes to Idle mode until the high refrigerant pressure cutout resets. The light then goes out and the chiller automatically restarts. Call a qualified refrigeration service technician for service.

LOW REFRIGERANT PRESSURE (red)

This indicator lights if the refrigerant pressure drops below a safe level. The compressor will stop and remain off until the pressure reaches a safe level. The light will go out and the chiller will then resume operation automatically.

LOW WATER FLOW (red), PCA units without pump only

This indicator lights if the flow switch senses chilled water/glycol flow through the evaporator dropping to an unacceptable level. The compressor will stop until the flow switch senses adequate flow and restarts the chiller.

6-2 Switches

POWER

This switch energizes the control circuit and also turns off the chiller.

Figure 13: Optional Graphic Panel

7-1 Lubrication

Every three months, grease all fan motors and pump motors that do not have permanently sealed bearings. Remove grease relief plug (motors only) before adding grease. Failure to do so may result in dislodging the bearing grease retainer, eventually causing bearing failure.

Compressors are hermetically sealed; no oiling is required.

7-2 Condenser Maintenance

Dirty condenser heat exchange surfaces reduce system capacity.

Brush or vacuum light dirt accumulations. Avoid bending or damaging the fins. Heavy soil accumulations on the coil require professional steam cleaning; washing from the outside only makes matters worse.

Figure 14: Typical PCA Subpanel

Figure 15: Typical PCA Wiring Schematic

Figure 16: PCA Wiring Schematic for Chillers with No Pump or Reservoir

Problem	Cause	Solution
Chiller will not run.	No power.	Check main disconnect fuses, wiring, and power lead to the unit.
	Wrong voltage supplied to the chiller.	Voltage must be within plus or minus 10% of the nameplate rating.
	Defective on/off switch.	Replace.
	Control circuit fuse blown.	Replace, check the transformer.
	Defective control transformer.	Replace.
Pump runs, compressor cycles at short intervals.	No process load on the chiller.	Increase the process load.
	Refrigerant is low.	Check the refrigerant charge.
The leaving water temperature is too high.	Refrigerant is low.	Check the refrigerant charge.
	Improper water/glycol solution.	Make sure that the coolant solution is right for the process — must be 75% water and 25% glycol. See Figure 6 on page 16 for more information.
Pump pressure is low (see pump curves).	Check for foreign matter.	Clean the system.
Pump pressure is too high.	Restricted water flow.	Check for partially closed valves, etc. Be sure all lines are properly sized.

Problem	Cause	Solution
Pump runs, compressor will not.	Refrigerant is low.	Check the refrigerant charge.
	Pressure switch contacts are open.	Sight glass should be clear while compressor runs. Call for service if bubbling or foaming
	Refrigerant high pressure cutout switch contacts are open.	Check for dirty condenser. Check for condenser air obstruction.
	Defective fan motor.	Repair or replace.
	Compressor internal overload is open. Allow time to cool and reset.	Check for high/low voltage. Must be within plus or minus 10% of the nameplate rating. Check for poor compressor electrical connections.
	Broken wire in the compressor control circuit.	Locate and repair.
Unit runs continuously, but not enough cooling power.	Restricted condenser airflow.	Clean the condenser.
	Unit low on refrigerant.	Call Service.
	Inefficient compressor.	Call Service.
	Unit undersized for application.	Call Sales Representative.

PCA Unit Parts List

Part Number	Part Description
A0537868	PCA Graphic
A0537899	BZ Pressure Gauge
A0534584	Red Neon Graphic Light *
A0534586	Green Neon Graphic Light *
A0500857	2" Swivel Casters
A0534269	1/16 DIN Digital Temperature Controller
A0537955	Process Water Flow Switch
A0533873	Thermocouple, 8'
A0539409	150 VA Transformer
A0103778	Rubber Feet
A0537900	Tank Sight Glass Assembly
A0537908	Handles
A0537915	PCA050-100 Low Refrigerant Pressure Switch
A0543063	PCA150 Low Refrigerant Pressure Switch
A0537916	PCA050-100 High Refrigerant Pressure Switch
A0537917	PCA150 High Refrigerant Pressure Switch
A0501642	PCA050-100 High Refrigerant Pressure Safety Relief Valve
A0104093	PCA150 High Refrigerant Pressure Safety Relief Valve
A0537974	Bronze Y Strainer

^{*} Units with the optional PCA graphic panel.

Technical Assistance

Parts Department

Call toll-free 7am - 5pm CST [800] 423-3183 Or call [847] 273-7700, Fax [847] 273-7812

The Parts Department at AEC, Inc. is ready to provide the parts to keep your systems up and running. AEC replacement parts ensure operation at design specifications. Please have the model and serial number of your equipment when you call. Consult the Customer Parts List included in your information packet for replacement part numbers

Service Department

Call toll-free 8am - 5pm CST [800] 423-3183 Emergencies after 5pm CST, call [847] 439-5655

AEC has a qualified service department ready to help. Service contracts are available for most AEC products. www.acscustomerservice.com

Sales Department

Call [847] 273-7700 Monday - Friday 8am -5pm CST

AEC products are sold by a world-wide network of independent sales representatives. Contact our Sales Department for the name of the sales representative nearest you.

Contract Department

Call [847] 273-7700 Monday - Friday 8am - 5pm CST

Let AEC install your system. The Contract Department offers any or all of these services: project planning; system packages including as-built drawings; equipment, labor and construction materials; union or non-union installations; and field supervision

AEC, Inc. 1100 E. Woodfield Road Ste. 588 Schaumburg, IL 60173 [847] 273-7700 • Fax [847] 273-7812