

Follow-up Forecasting Forum

Rob J Hyndman

18 April 2017

Outline

- 1 fpp2
- 2 forecast v8
- 3 forecastHybrid
- 4 opera
- 5 prophet
- 6 Forecasting Q&A
- Wishlist for forecast v9.0

fpp2

OTexts.org/fpp2/

- fpp2 package for data and functions on CRAN
- Automatically loads forecast and ggplot2

Outline

- 1 fpp2
- 2 forecast v8
- 3 forecastHybrid
- 4 opera
- 5 prophet
- 6 Forecasting Q&A
- Wishlist for forecast v9.0

head and tail

head(lynx)

```
## Time Series:
## Start = 1821
## End = 1826
## Frequency = 1
## [1] 269 321 585 871 1475 2821
```

head and tail

tail(uschange)

##			Consumption	Income	Production	Savings	Unemployment
##	2015	Q2	0.708	0.955	-0.697	5.024	-0.1
##	2015	QЗ	0.665	0.802	0.381	3.181	-0.3
##	2015	Q4	0.562	0.740	-0.846	3.483	0.0
##	2016	Q1	0.405	0.519	-0.418	2.237	0.0
##	2016	Q2	1.048	0.724	-0.203	-2.722	-0.1
##	2016	Q3	0.730	0.645	0.475	-0.573	0.0

gghistogram()

gghistogram(lynx)

gghistogram()

gghistogram(lynx, add.normal=TRUE)

gghistogram()

gghistogram(lynx, add.kde=TRUE)

checkresiduals()

fit <- auto.arima(WWWusage)
checkresiduals(fit)</pre>

checkresiduals()

```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,1,1)
## Q* = 8, df = 8, p-value = 0.4
##
## Model df: 2. Total lags used: 10
```

Different types of residuals

Different types of residuals

Different types of residuals

ggseasonplot()

ggseasonplot(USAccDeaths)

ggseasonplot(polar=TRUE)

ggseasonplot(USAccDeaths, polar=TRUE)

autolayer()

```
WWWusage %>% ets %>% forecast(h=20) -> fc
autoplot(WWWusage, series="Data") +
  autolayer(fc, series="Forecast") +
  autolayer(fitted(fc), series="Fitted")
```


Traditional evaluation

Traditional evaluation

Time series cross-validation (h = 1)

- Forecast accuracy averaged over test sets.
- Also known as "evaluation on a rolling forecasting origin"

Traditional evaluation

Time series cross-validation (h = 2)

- Forecast accuracy averaged over test sets.
- Also known as "evaluation on a rolling forecasting origin"

Traditional evaluation

Time series cross-validation (h = 3)

- Forecast accuracy averaged over test sets.
- Also known as "evaluation on a rolling forecasting origin"

Traditional evaluation

Time series cross-validation (h = 4)

- Forecast accuracy averaged over test sets.
- Also known as "evaluation on a rolling forecasting origin"

Traditional evaluation

Time series cross-validation (h = 5)

- Forecast accuracy averaged over test sets.
- Also known as "evaluation on a rolling forecasting origin"

tsCV()

[1] 22.5

A good way to choose the best forecasting model is to find the model with the smallest RMSE computed using time series cross-validation.

Pipe function

Ugly code:

```
e <- tsCV(dj, rwf, drift=TRUE, h=1)
sqrt(mean(e^2, na.rm=TRUE))
sqrt(mean(residuals(rwf(dj, drift=TRUE))^2, na.rm=TRUE))</pre>
```

Better with a pipe:

```
dj %>% tsCV(forecastfunction=rwf, drift=TRUE, h=1) -> e
e^2 %>% mean(na.rm=TRUE) %>% sqrt
dj %>% rwf(drift=TRUE) %>% residuals -> res
res^2 %>% mean(na.rm=TRUE) %>% sqrt
```

Autoregressive crossvalidation

Autoregressive crossvalidation

Autoregressive crossvalidation

```
modelcv <- CVar(lynx, k=5, lambda=0.15)
print(modelcv)
## Series: lynx
## Call: CVar(y = lynx, k = 5, lambda = 0.15)
##
## 5-fold cross-validation
##
              Mean SD
## ME 57.384 437.579
## RMSE 975.938 238.318
## MAE
           636,672,152,297
           -17.982 19.380
## MPF.
## MAPE 56.278 15.635
## ACF1 0.144 0.264
## Theil's U 0.912 0.541
```

Algorithm: Generating bootstrapped series

```
bootstrap ← function(ts, num.boot) {
  lambda ← BoxCox.lambda(ts, min=0, max=1)
 ts.bc ← BoxCox(ts, lambda)
  if(ts is seasonal) {
    [trend, seasonal, remainder] ← stl(ts.bc)
  else {
    seasonal ← 0
    [trend, remainder] ← loess(ts.bc)
 recon.series[1] ← ts
  for(i in 2:num.boot) {
    boot.sample[i] ← MBB(remainder)
   recon.series.bc[i] + trend + seasonal + boot.sample[i]
   recon.series[i] + InvBoxCox(recon.series.bc[i], lambda)
  return(recon.series)
```



```
baggedETS(Mcomp::M3[[1896]]$x) %>%
forecast %>% autoplot +
  xlab("Year") + ylab("M495")
```


Bagged ETS

- Intervals show range of point forecasts
- They are not prediction intervals

Outline

- 1 fpp2
- 2 forecast v8
- 3 forecastHybrid
- 4 opera
- 5 prophet
- 6 Forecasting Q&A
- Wishlist for forecast v9.0

Different CO₂ forecasts

```
train <- window(co2, end=c(1990,12))
test <- window(co2, start=c(1991,1))
h <- length(test)
ETS <- forecast(ets(train), h=h)
ARIMA <- forecast(auto.arima(train, lambda=0), h=h)
STL <- stlf(train, lambda=0, h=h)</pre>
```

Different CO₂ forecasts

```
autoplot(co2) + xlab("Year") +
  ylab(expression("Atmospheric concentration of CO"[2])) +
  autolayer(ETS, PI=FALSE, series="ETS") +
  autolayer(ARIMA, PI=FALSE, series="ARIMA") +
  autolayer(STL, PI=FALSE, series="STL")
```


- Fits ARIMA, ETS, Theta, NNETAR, STL-ETS and TBATS models
- (Weighted) average of the point forecasts
- No proper prediction intervals.

```
library(forecastHybrid)
fit1 <- hybridModel(train, weights="equal")</pre>
## Fitting the auto.arima model
## Fitting the ets model
## Fitting the thetam model
## Fitting the nnetar model
## Fitting the stlm model
## Fitting the tbats model
fit2 <- hybridModel(train, weights="insample")</pre>
```

```
## Fitting the auto.arima model
## Fitting the ets model
## Fitting the thetam model
```

```
autoplot(fc1) + ggtitle("Hybrid 1") + xlab("Year") +
  ylab(expression("Atmospheric concentration of CO"[2]))
```



```
autoplot(co2) + xlab("Year") +
  ylab(expression("Atmospheric concentration of CO"[2])) +
  autolayer(fc1, series="Hybrid1", PI=FALSE) +
  autolayer(fc2, series="Hybrid2", PI=FALSE)
```



```
## Hybrid1 Hybrid2 ETS ARIMA STL ## 0.93 0.73 5.92 2.35 2.04
```

Outline

- 1 fpp2
- 2 forecast v8
- 3 forecastHybrid
- 4 opera
- 5 prophet
- 6 Forecasting Q&A
- Wishlist for forecast v9.0

- Online Prediction by ExpeRt Aggregation
 - mixture function computes weights when combining forecasts based on how well it has done up to that point.

```
library(opera)
X <- cbind(ETS=ETS$mean, ARIMA=ARIMA$mean, STL=STL$mean)
MLpol0 <- mixture(model = "MLpol", loss.type = "square")
weights <- predict(MLpol0, X, test, type='weights')
head(weights)</pre>
```

```
## X1 X2 X3
## [1,] 0.333 0.333 0.333
## [2,] 0.560 0.000 0.440
## [3,] 0.617 0.000 0.383
## [4,] 1.000 0.000 0.000
## [5,] 1.000 0.000 0.000
```

```
library(opera)
X <- cbind(ETS=ETS$mean, ARIMA=ARIMA$mean, STL=STL$mean)
MLpol0 <- mixture(model = "MLpol", loss.type = "square")
weights <- predict(MLpol0, X, test, type='weights')
tail(weights)</pre>
```

```
## X1 X2 X3
## [79,] 0.360 0.294 0.346
## [80,] 0.280 0.334 0.386
## [81,] 0.277 0.336 0.387
## [82,] 0.358 0.298 0.344
## [83,] 0.214 0.369 0.417
## [84,] 0.233 0.359 0.408
```

```
z <- ts(predict(MLpol0, X, test, type='response'),
    start=c(1991,1), freq=12)
autoplot(co2, series="Data") + xlab("Year") +
    ylab(expression("Atmospheric concentration of CO"[2])) +
    autolayer(z, series="Mixture")</pre>
```



```
## Opera Hybrid1 Hybrid2
## 0.25 0.93 0.73
```

 Opera weights are updated using past test data, so comparison not "fair".

Outline

- 1 fpp2
- 2 forecast v8
- 3 forecastHybrid
- 4 opera
- 5 prophet
- 6 Forecasting Q&A
- Wishlist for forecast v9.0

prophet model

$$y_t = g_t + s_t + h_t + \varepsilon_t$$

- y_t = daily time series.
- g_t = "growth function" (trend-cycle).
- \mathbf{z}_t = Fourier seasonal terms: weekly and/or yearly
- h_t = holiday effect.
- ε_t = error (can be ARMA errors).
- Estimated as a Bayesian regression using Stan

Growth function

Piecewise linear growth function

$$g_t = (k + \mathbf{a}_t \delta)t + (b + \mathbf{a}_t^T \gamma)$$

Changepoints at times s_j , j = 1, ..., S.

$$a_{j,t} = \begin{cases} 1 & \text{if } t \ge s_j \\ 0 & \text{otherwise} \end{cases}.$$

- Changepoints can be specified (e.g., product launches) or automatically selected.
- A piecewise logistic growth is also available

Holidays and Events

Dummy holiday/event effects

$$h_t = \sum_{i=1}^L \kappa_i \mathbf{1}(t \in D_i)$$

- \perp L = number of different types of holidays.
- D_i = dates for holiday type i.


```
library(prophet)
history <- data.frame(</pre>
  y = hyndsight,
  ds = seq(as.Date('2014-04-30'),
          as.Date('2015-04-29'), by = 'd')
m <- prophet(history)</pre>
future <- make_future_dataframe(m, periods = 365)</pre>
forecast <- predict(m, future)</pre>
```

plot(m, forecast)

prophet pros and cons

Pros

- Completely automatic including changepoints
- Handles multiple seasonality and holiday effects

Cons

- Only for daily data
- Seems to overfit annual seasonality
- Number of Fourier terms is hard-coded

Compare

 Similar to dynamic harmonic regression with ARMA errors, but with changepoint selection automated.

Outline

- 1 fpp2
- 2 forecast v8
- 3 forecastHybrid
- 4 opera
- 5 prophet
- 6 Forecasting Q&A
- 7 Wishlist for forecast v9.0

Forecasting Q&A

- What forecasting have you been doing?
- Have you been using the forecast package?
- Have you run into any forecasting problems?
- Have you run into any R problems?

Outline

- 1 fpp2
- 2 forecast v8
- 3 forecastHybrid
- 4 opera
- 5 prophet
- 6 Forecasting Q&A
- 7 Wishlist for forecast v9.0

Wishlist for forecast v9.0

- What facilities would you like to see in the next version of the forecast package?
- What topics would you like to see covered in the fpp book?

My plans for forecast v9+

forecast v9+

- New multiple-seasonality method which allows time-changing seasonality and covariates (cross between prophet and tbats).
- Methods for forecasting count time series.
- Improved method for selecting seasonal differencing in auto.arima().
- Somethink like forecastHybrid but with proper prediction intervals.
- Better forecast.ts() for a wider range of time series.
- PSO for ETS.

sugrrants

sugrrants package

- SUpporting GRaphs with R for ANalysing Time Series
- New package for time series data and visualization
- Works with tidyverse packages.
- Some parts of forecast to move?
- Calendar plots
- https://github.com/earowang/sugrrants