Question 1

 \mathbf{a}

The plot suggests that assumption of normal is acceptable.

$$H_0: {\sigma_1}^2 = {\sigma_2}^2 = {\sigma_3}^2 = {\sigma_4}^2 = {\sigma_5}^2$$

$$H_a: \exists i, j \in \{1, 2, 3, 4, 5\}: {\sigma_i}^2 \neq {\sigma_j}^2$$

Use Levene's test :

$$f_{Levene} = \frac{\frac{\sum_{i=1}^{k} N_i (Z_i, -Z_{..})^2}{k-1}}{\frac{\sum_{i=1}^{k} \sum_{j=1}^{N_1} (Z_{ij} - Z_{i.})^2}{N-k}}$$

$$f_{Levene} \geqslant F_{a,(k-1,N-k)}: H_0 \text{ fails}$$

b

$$\alpha = 0.01$$

$$Z_{ij} = |Y_{ij} - \overline{Y_{i\bullet}}|$$

								$\overline{Y_{i}}$
4 inch	309.2	409.5	311.0	326.5	316.8	349.8	309.7	333.21
6 inch	402.1	347.2	361.0	404.5	331.0	348.9	381.7	368.06
8 inch	392.4	366.2	351.0	357.1	409.9	367.3	382.0	375.13
10 inch	346.7	452.9	461.4	433.1	410.6	384.2	362.6	407.36
12 inch	407.4	441.8	419.9	410.7	473.4	441.2	465.8	437.17

								Z_{i} .
4 inch	24.01	76.29	22.21	6.71	16.41	16.59	23.51	26.53
6 inch	34.04	20.86	7.06	36.44	37.06	19.16	13.64	24.04
8 inch	17.27	8.93	24.13	18.03	34.77	7.83	6.87	16.83
10 inch	60.66	45.54	54.04	25.74	3.24	23.16	44.76	36.73
12 inch	29.77	4.63	17.27	26.47	36.23	4.03	28.63	21.00

$$Z_{\cdot \cdot} = \frac{1}{N} \sum_{i=1}^{k} \sum_{j=1}^{N_i} Z_{ij}$$
$$= \frac{1}{35} \sum_{i=1}^{k} \sum_{j=1}^{N_i} Z_{ij}$$
$$= 25.029$$

								$\sum_{j=1}^{N_i} (Z_{ij} - Z_{i.})^2$
4 inch	6.35	2475.16	18.67	392.85	102.42	98.98	9.12	3103.56
6 inch	100.12	10.11	288.31	153.91	169.53	23.81	108.03	853.82
8 inch	0.19	62.47	53.23	1.43	321.80	81.07	99.23	619.43
10 inch	572.28	77.58	299.57	120.82	1121.70	184.35	64.36	2440.67
12 inch	76.87	268.16	13.93	29.89	231.79	288.17	58.13	966.93

$$\begin{split} f_{Levene} &= \frac{\frac{\sum_{i=1}^{k} N_i(Z_i. - Z_{..})^2}{k-1}}{\frac{\sum_{i=1}^{k} \sum_{j=1}^{N_1} (Z_{ij} - Z_{i.})^2}{N-k}} \\ &= \frac{\frac{7((26.53 - 25.029)^2 + \dots + (21 - 25.029)^2)}{5-1}}{\frac{5-1}{3103.56 + \dots + 966.93}} \\ &= 1.47 \\ F_{0.01,(4,30)} &= 4.01 \\ f_{Levene} &< F_{0.01,(4,30)} \\ \Rightarrow &H_0 \text{ holds} \end{split}$$

Analysis of Variance Results

F-statistic value = 10.48272

P-value = 0.00002

Data Summary							
Groups	N	Mean	Std. Dev.	Std. Error			
Group 1	7	333.2143	36.5882	13.829			
Group 2	7	368.0571	28.5721	10.7992			
Group 3	7	375.1286	20.8278	7.8722			
Group 4	7	407.3571	44.5098	16.8231			
Group 5	7	437.1714	25.9972	9.826			

ANOVA Summary									
Source	Degrees of Freedom			F-Stat	P-Value				
	DF	SS	MS						
Between Groups	4	43992.5122	10998.128	10.4827	0				
Within Groups	30	31475.0114	1049.167						
Total:	34	75467.5236							

Question 2

a

The plot suggests that assumption of normal is acceptable.

$$H_0: {\sigma_1}^2 = {\sigma_2}^2 = {\sigma_3}^2 = {\sigma_4}^2$$

$$H_a: \exists i, j \in \{1, 2, 3, 4\} : \sigma_i^2 \neq \sigma_j^2$$

Use P test:

$$p \leqslant \alpha : \text{reject } H_0$$

b

$$T_1 = 34.3, T_2 = 39.6, T_3 = 33, T_4 = 41.9$$

$$G = T_1 + T_2 + T_3 + T_4 = 148.8$$

$$N = 24$$

$$\sum x^2 = 5.2^2 + \dots + 7.2^2 = 946.68$$

$$SS = \sum x^2 - \frac{G^2}{N} = 946.68 - 24 \times 148.8^2 = 24.12$$

$$SSB = \sum (\frac{T_1}{n} - \frac{G}{N})^2 = 8.98$$

$$SSW = SS - SSB = 15.14$$

$$dfB = 4 - 1 = 3$$

$$dfW = 24 - 4 = 20$$

$$p = F_{0.05,(3,20)} = 0.0229$$

$$0.0229 < 0.05$$

$$\Rightarrow \text{reject } H_0$$

Thiamine content is not the same

Question 3

\mathbf{a}

Data Summary								
Groups	N	Mean	Std. Dev.	Std. Error				
Group 1	3	54.3333	8.3865	4.8419				
Group 2	3	50.6667	2.5166	1.453				
Group 3	3	47.3333	2.5166	1.453				
Group 4	3	48.6667	4.9329	2.848				

ANOVA Summary									
Source	Degrees of Freedom Sum of Squares Mean Square Source DF SS MS								
Between Groups	3	83.5829	27.861	1.0383	0.4264				
Within Groups	8	214.6669	26.8334						
Total:	11	298.2497							

$$H_0: \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$$

$$H_a: \exists i, j \in \{1, 2, 3, 4\}: \sigma_i^2 \neq \sigma_j^2$$

$$\overline{x_1} = 54.33, \overline{x_2} = 50.67, \overline{x_3} = 47.33, \overline{x_4} = 48.67, \overline{x_{,1}} = 53.75, \overline{x_{,2}} = 47, \overline{x_{,3}} = 50$$

$$X_{...} = 603$$

$$\sum \sum X_{ij}^2 = (64^2 + \dots + 52^2) = 30599$$

$$CF = \frac{X_{...}^2}{n} = \frac{603^2}{12} = 30300.75$$

$$SS = \sum \sum X_{ij}^2 = (64^2 + \dots + 52^2) - CF = 30599 - 30300.75 = 298.25$$

$$SSB = \frac{1}{3} \sum X_{i,}^2 - CF$$

$$= \frac{1}{3}(163^2 + \dots + 146^2) - 30300.75$$

$$= 83.58$$

$$SSW = \frac{1}{4} \sum X_{.j}^2 - CF$$

$$= \frac{1}{4}(215^2 + 188^2 + 200^2) - 30300.75$$

$$= 91.5$$

$$SSE = SS - (SSB + SSW) = 298.25 - (83.58 + 91.5) = 123.17$$

$$dfB = 4 - 1 = 3$$

$$dfW = 11 - 3 = 8$$

$$dfE = 12 - (3 + 2) = 6$$

$$df = 11$$

$$MSB = \frac{SSB}{dfB} = 27.86$$

$$MSW = \frac{SSW}{dfW} = 45.75$$

$$MSE = \frac{SSE}{dfE} = 20.53$$

$$F_B = \frac{MSB}{MSE} = 1.36$$

$$F_W = \frac{MSW}{MSE} = 2.23$$

$$F_{0.05,(3,6)} = 4.757$$

$$\Rightarrow F_B < F_{0.05,(3,6)} = 4.757$$

 $\Rightarrow H_0$ holds

b

$$\begin{split} \hat{\mu} &= \overline{x_{..}} = \frac{64 + \ldots + 52}{12} = 50.25 \\ \hat{\alpha_1} &= \overline{x_{1.}} - \overline{x_{..}} = 54.33 - 50.25 = 4.08 \\ \hat{\alpha_2} &= \overline{x_{2.}} - \overline{x_{..}} = 50.67 - 50.25 = 0.42 \\ \hat{\alpha_3} &= \overline{x_{3.}} - \overline{x_{..}} = 47.33 - 50.25 = -2.92 \\ \hat{\alpha_4} &= \overline{x_{4.}} - \overline{x_{..}} = 48.67 - 50.25 = -1.58 \\ \hat{\beta_1} &= \overline{x_{.1}} - \overline{x_{..}} = 53.75 - 50.25 = 3.5 \\ \hat{\beta_2} &= \overline{x_{.2}} - \overline{x_{..}} = 47 - 50.25 = -3.25 \\ \hat{\beta_3} &= \overline{x_{.3}} - \overline{x_{..}} = 50 - 50.25 = -0.25 \end{split}$$

Collaborators

Frank Zhu

Jeffery Shu

Sam Sun