ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

ma po upływie jednej szóstej okresu wychylenie y = 2.5 cm

b) prędkość i długość poprzecznej fali sinusoidalnej o częstotliwości 3 Hz, jeżeli wychylenie punktu znajdującego się w odległości 2 m. od źródła fali w chwili t = T/3 wynosi połowę amplitudy.

5. Cztery fale opisane są równaniami: $\psi_1 = 4 \sin \left[2\pi(3x - 2t) \right]$, $\psi_2 = 3 \sin \left[2\pi(2x - 3t) \right]$, $\psi_3 = 2 \sin \left[2\pi(x - 4t) \right]$, $\psi_4 = 2 \sin \left[2\pi(4x - t) \right]$. Uszeregować je w kolejności rosnącej: a) długości fali, b) częstotliwości fali, c) szybkości rozchodzenia się fali, d) maksymalnej prędkości prostopadłej.

Aby rozwiazać to zadanie, musimy analizować równania fal:

Równania fal sa podane jako: - $\psi_1 = 4\sin[2\pi(3x-2t)]$ - $\psi_2 = 3\sin[2\pi(2x-3t)]$ - $\psi_3 = 2\sin[2\pi(x-4t)]$ - $\psi_4 = 2\sin[2\pi(4x-t)]$

Każde równanie ma postać: $\psi = A \sin[2\pi(kx - \omega t)]$

Gdzie k to liczba falowa, a ω to czestość katowa.

a) Długość fali λ :

Długość fali jest zwiazana z liczba falowa k przez wzór:

$$\lambda = \frac{2\pi}{k}$$

-
$$\psi_1$$
: $k = 3 \rightarrow \lambda_1 = \frac{2\pi}{3}$ - ψ_2 : $k = 2 \rightarrow \lambda_2 = \frac{2\pi}{2} = \pi$ - ψ_3 : $k = 1 \rightarrow \lambda_3 = \frac{2\pi}{1} = 2\pi$ - ψ_4 : $k = 4 \rightarrow \lambda_4 = \frac{2\pi}{4} = \frac{\pi}{2}$

Kolejność według rosnacej długości fali: ψ_4 , ψ_1 , ψ_2 , ψ_3 .

b) Czestotliwość fal f:

Czestość katowa ω jest zwiazana z czestotliwościa f przez wzór:

$$\omega = 2\pi f$$

$$-\psi_1:\ \omega=2\to f_1=\tfrac{2}{2\pi}-\psi_2:\ \omega=3\to f_2=\tfrac{3}{2\pi}-\psi_3:\ \omega=4\to f_3=\tfrac{4}{2\pi}-\psi_4:\ \omega=1\to f_4=\tfrac{1}{2\pi}-\psi_4$$

Kolejność według rosnacej czestotliwości: $\psi_4,\,\psi_1,\,\psi_2,\,\psi_3.$

c) Szybkość rozchodzenia sie fal v:

Szybkość jest powiazana przez wzór:

$$v = \frac{\omega}{k}$$

-
$$\psi_1$$
: $v_1 = \frac{2}{3}$ - ψ_2 : $v_2 = \frac{3}{2}$ - ψ_3 : $v_3 = \frac{4}{1} = 4$ - ψ_4 : $v_4 = \frac{1}{4}$

Kolejność według rosnacej szybkości: $\psi_4, \, \psi_1, \, \psi_2, \, \psi_3$.

d) Maksymalna predkość prostopadła:

Maksymalna predkość prostopadła $v_{\rm max}$ jest równa amplitudzie Arazy czestość katowa $\omega\colon$

$$-\psi_1: v_{\max 1} = 4 \times 2 = 8 - \psi_2: v_{\max 2} = 3 \times 3 = 9 - \psi_3: v_{\max 3} = 2 \times 4 = 8 - \psi_4: v_{\max 4} = 2 \times 1 = 2$$

Kolejność według rosnacej maksymalnej predkości: ψ_4 , ψ_1 , ψ_3 , ψ_2 .