Math 4310 Assignment #8 University of Lethbridge, Fall 2014

Sean Fitzpatrick

October 31, 2014

Due date: Friday, November 7th, by 5 pm.

Please submit solutions to the following problems (except where indicated). As usual, all the textbook exercises are recommended as practice problems if they don't appear as an assigned problem below.

- 1. Let $p: X \to Y$ be a quotient map, and let $A \subseteq X$ be a subspace. Show that the restricted map $q = p|_A: A \to p(A)$ need not be a quotient map. (Hint: consider the following example: $X = [0,1] \cup [2,3]$, $A = [0,1) \cup [2,3]$, and p(x) = x for $x \in [0,1]$, and p(x) = x 1 for $x \in [2,3]$.)
- 2. With the same terminology as the previous problem, show that if either A is open in X and p is an open map, or A is closed in X and p is a closed map, then $p_A : A \to p(A)$ is a quotient map.
- 3. Let X denote the quotient space obtained from \mathbb{R} by identifying all of the integers to a single point.
 - (a) Explain why X can be viewed as a countable union of circles that are all joined at a single point.
 - (b) Let Y be the union of the circles $(x-1/n)^2 + y^2 = 1/n^2$, for $n \in \mathbb{N}$. (The space Y is called the "Hawaiian Earring".) Show that Y is *not* homeomorphic to X. (For a hint, see the first paragraph of the Wikipedia entry on the Hawaiian Earring.)
- 4. Let $f: X \to X'$ be a continuous function and suppose that we have partitions $\mathcal{P}, \mathcal{P}'$ of X and X', respectively, such that if two points in X lie in the same member of \mathcal{P} , then f(x) and f(x') lie in the same member of \mathcal{P}' . If Y and Y' are the quotient spaces of X and X' corresponding to the given partitions, show that f induces a map $\tilde{f}: Y \to Y'$ and that if f is a quotient map, then so is \tilde{f} .
- 5. (a) Let $p: X \to Y$ be a continuous map. Show that if there is a continuous map $f: Y \to X$ such that $p \circ f$ equals the identity map of Y, then p is a quotient map.
 - (b) If $A \subseteq X$, a retraction of X onto A is a continuous map $r: X \to A$ such that r(a) = a for all $a \in A$. Show that any retraction map is a quotient map.