

Project Initialization and Planning Phase

Date	15 July 2024	
Team ID	739984	
Project Title	Genetic Classification Of An Individual By Using Machine Learning	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) template

Genetic classification involves categorizing individuals based on their genetic makeup. This classification can be used for various purposes, including medical diagnostics, ancestry tracking, and personalized medicine. Machine learning (ML) offers a powerful set of tools for analyzing large datasets and identifying patterns that are not easily discernible through traditional statistical methods. By applying ML to genetic data, we can automate and enhance the classification process, leading to more accurate and efficient outcomes.

Project Overview		
Objective	Develop a machine learning model to classify individuals based on genetic data, enhancing accuracy and efficiency in genetic classification.	
Scope	 Data collection and preprocessing Feature extraction Model development and training Validation, testing, and deployment Documentation and results presentation 	
Problem Statement		
Description	Current genetic classification methods are manual and error-prone. An automated ML model can improve speed and accuracy	
Impact	Facilitates personalized medicine, aids genetic research, reduces manual workload for geneticists.	
Proposed Solution		
Approach	Collect and preprocess genetic data. Extract relevant genetic markers. Develop and train ML model (Random Forest) Validate and test models. Deploy the best-performing model.	

	Monitor and evaluate performance.
Key Features	Automated classification High accuracy Scalability User-friendly interface

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	e.g., 2 x NVIDIA V100 GPUs		
Memory	RAM specifications	e.g., 8 GB		
Storage	Disk space for data, models, and logs	e.g., 1 TB SSD		
Software				
Frameworks	Python frameworks	e.g., Flask		
Libraries	Additional libraries	e.g., scikit-learn, pandas, numpy		
Development Environment	IDE, version control	e.g., Anaconda prompt, Jupyter Notebook, Git		
Data				
Data	Source, size, format	e.g., Kaggle dataset, 10,000 images		