21 大修

専門科目 (午前) 数学試験 I (基礎)

時間 9:00~11:00

注意事項:

- 1. 試験開始時刻まではこの問題冊子を開いてはならない.
- 2. 以下の問題 3 題すべてに解答せよ.
- 3. 解答は1題毎に別々の解答用紙に記入せよ.
- 4. 各解答用紙毎に必ず問題番号および受験番号を記入せよ.
- 5. この問題冊子はこの表紙を入れて全体で2ページからなる.

記号について:

- ℤは整数全体を表す.
- Q は有理数全体を殺す.
- R は実数全体を表す.
- €は複素数全体を表す.

[1] 2 変数 X,Y に関する複素係数 2 次斉次多項式全体のなす $\mathbb C$ 上のベクトル空間を V とする. 各 $f(X,Y)\in V$ に対し

$$(Tf)(X,Y) = f(2X+Y,X-2Y)$$

とおいて V の一次変換 T を定める. このとき V の基底で T の固有ベクトルから成るものを一組求めよ.

- [2] (1) [0,1] 上の連続関数列 $\{f_n\}$ が [0,1] 上 f に一様収束すれば, f は [0,1] 上の連続関数になることを示せ.
- (2) P(x), Q(x) は互いに素な多項式で, P の次数を m, Q の次数を n とする. 更に, 任意の $x \ge 0$ で $P(x) \ne 0$ とする. このとき

$$\int_0^\infty \frac{Q(x)}{P(x)} \, dx$$

が存在するための必要十分条件を m, n を用いてあらわせ.

- (3) 数列 $\{a_n\}_{n=1}^{\infty}$ で $\lim_{n\to\infty}na_n=0$ かつ無限級数 $\sum_{n=1}^{\infty}a_n$ が発散する例をつくれ.
- [3] 整数を境界とする開区間の和集合すべて、および空集合を開集合系とする R の位相を O_1 とする.
- (1) O1 に関する閉集合系を求めよ.
- (2) $x \in \mathbb{R}$ とするとき、 $1 \land \{x\}$ の \mathcal{O}_1 に関する閉包を求めよ.
- (3) $a \in \mathbb{R}$ とする. 写像 $f_a : \mathbb{R} \to \mathbb{R}$; $f_a(x) = x + a$ が \mathcal{O}_1 に関して連続であるための必要十分条件を求めよ.
- (4) \mathbb{R} の部分集合で、通常の位相に関しては連結でないが、 \mathcal{O}_1 に関しては連結である例を一つあげよ、
- (5) \mathbb{R} の部分集合が \mathcal{O}_1 に関してコンパクトであるためには、有界であることが必要十分条件であることを示せ、

専門科目(午後) 数学試験 II

時間 12:30~15:00

注意事項:

- 1. 試験開始時刻まではこの問題冊子を開いてはならない.
- 2. 以下の問題のうち 3 題を選択して解答せよ、ただし、口頭試問を代数系で受けたいものは、 $1 \sim 3$ のうちから、幾何系で受けたいものは、 $4 \sim 6$ のうちから、解析系で受けたいものは、 $7 \sim 1$ 0 のうちから

少なくとも1題を選択すること.

- 3. 解答は1 関毎に別々の解答用紙に記入せよ.
- 4. 各解答用紙毎に必ず問題番号および受験番号を記入せよ.
- 5. この問題冊子はこの表紙を入れて全体で4ページからなる.

記号について:

- ℤは整数全体を表す.
- Q は有理数全体を表す.
- ℝ は実数全体を表す.
- ℂは複聚数全体を表す.

- [1] 位数 m の巡回群 $\mathbb{Z}/m\mathbb{Z}$ の自己同型群 $\mathrm{Aut}(\mathbb{Z}/m\mathbb{Z})$ について、以下が正しいならば証明し、正しくないならば反例をあげよ、
 - (1) m が素数ならば $Aut(\mathbb{Z}/m\mathbb{Z})$ は巡回群である.
 - (2) m が素数 p の報で $m = p^e$ となっているなら $Aut(\mathbb{Z}/m\mathbb{Z})$ は巡回群である.
 - (3) 異なる案数 p, q に対し m=pq となっているなら $\operatorname{Aut}(\mathbb{Z}/m\mathbb{Z})$ は巡回群である.
- [2] $f:A \to B$ を環の準同型とする. 以下が正しいならば証明し、正しくないならば反例をあげよ.
 - (1) $I \subset B$ が来イデアルならば $f^{-1}(I)$ は来イデアル.
 - (2) $I \subset B$ が極大イデアルならば $f^{-1}(I)$ は極大イデアル.
 - (3) $J \subset A$ が案イデアルならば f(J)B は案イデアル.
- [3] (1) $\mathbb{Q}(\sqrt{2}+i\sqrt{3})$ の \mathbb{Q} 上の拡大次数を求めよ.
 - (2) $\mathbb{Q}(\sqrt{2}+i\sqrt{3})$ は \mathbb{Q} 上のガロア拡大であるか否かを判定せよ.
- [4] \mathbb{R}^2 の直線 ax + by + c = 0, $(a, b) \neq (0, 0)$ で単位円 $x^2 + y^2 = 1$ と交わるもの 全体がなす集合を M とする.
 - (1) M は境界付き2次元多様体の構造を持つことを示せ.
 - (2) M はメビウスの帯と同相であることを示せ.
- [5] \mathbb{R}^3 の座標を x, y, z とし、 $\alpha = xdy + dz$ とおく.
 - (1) α ∧ dα を計算せよ.
 - (2) $i(X)\alpha=1$, $i(X)d\alpha=0$ となるベクトル場 X を求めよ. ただし、p-form ω に対し、(p-1)-form $i(X)\omega$ は

$$(i(X)\omega)(Y_1,\ldots,Y_{p-1})=\omega(X,Y_1,\ldots,Y_{p-1})$$

により定義される.

[6] (1) \mathbb{R}^3 を 3 次元ユークリッド空間とする。 $\mathbb{R}^3 - \{(0,0,0)\}$ に同値関係 \sim を $x\sim y \Leftrightarrow x=y$ または x=-y

で入れ、商空間を $X=(\mathbb{R}^3-\{(0,0,0)\})/\sim$ とする、X の整係数ホモロジー群 $H_{\bullet}(X;\mathbb{Z})$ を計算せよ、

- (2) X の一点コンパクト化を X^* とする. X^* の整係数ホモロジー群 $H_*(X^*;\mathbb{Z})$ を計算せよ.
- [7] f を区間 [-1,1] 上の連続関数とする. t>0 に対して

$$u(t) = \int_{-1}^{1} e^{-|y|/t} f(y) \, dy$$

とおく.

- (1) uは (0,∞) 上の連続関数であることを示せ.
- (2) $\lim_{t\to 0} u(t) = 0$ を示せ.
- (3) $t \to \infty$ のとき tu(t) が有限な極限値を持つための f に対する条件を求めよ.
- [8] $x\geq 0$ で定義された非負値連続関数 f が $\int_0^\infty x f(x)\,dx<\infty$ を満たしているとする. $\phi(t)=\int_0^\infty f(x)\sin^2tx\,dx$ とおく. 次を示せ.
 - (1) ϕ は $C^1(\mathbb{R})$ -級である.
 - (2) $\int_0^\infty \frac{\phi(t)}{t^2} dt < \infty.$

[9] $0 < \alpha, \epsilon < 1$ なる α, ϵ に対して

$$D(\alpha, \epsilon) = \{ z = re^{i\theta} : \epsilon < r < 4, -\alpha\pi < \theta < \alpha\pi \}$$

とおく.

(1) $\sin z = 0$ なる $z \in \mathbb{C}$ をすべて求めよ.

(2)

$$\frac{1}{2\pi i} \int_{\partial D(\alpha,\epsilon)} \frac{dz}{\sin z}$$

を求めよ.

(3) $\Gamma_{\epsilon} = \partial D(\alpha, \epsilon) - \{|z| = \epsilon\} \cap \partial D(\alpha, \epsilon)$ とおく.

$$\lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{\Gamma_{\epsilon}} \frac{dz}{\sin z}$$

を求めよ.

[10] n を自然数とし、X を n 次以下の複素係数多項式全体のなす線形空間とする。X 上の内積 (u,v) を

$$(u,v) = \int_0^1 u(x)\overline{v(x)} dx, \quad u,v \in X$$

により定義し、 $||u|| = \sqrt{(u,u)}$ とする. X から X への作用案 K を

$$(Ku)(x) = \int_0^1 (1 + x^n y^n) u(y) \, dy$$

により定義する.

- (1) $||K|| = \sup\{||Ku|| : u \in X, ||u|| = 1\}$ とおく. 複素数 z が |z| > ||K|| を満たすならば、zI K は 1 対 1 写像であることを示せ. ただし、I は X 上の恒等写像である.
- (2) K^* を K の共役作用案とする. $K^* = K$ であることを示せ.
- (3) K の 0 でない固有値を全て求めよ.