# Descriptive Analysis

Data Analysis









# Descriptive Analysis





Size

Missingness



Shape





Variability

|                   | Total       |  |  |
|-------------------|-------------|--|--|
| Subject           | Estimate    |  |  |
| Total population  | 309,349,689 |  |  |
| AGE               |             |  |  |
| Under 5 years     | 6.5%        |  |  |
| 5 to 9 years      | 6.6%        |  |  |
| 10 to 14 years    | 6.7%        |  |  |
| 15 to 19 years    | 7.1%        |  |  |
| 20 to 24 years    | 7.0%        |  |  |
| 25 to 29 years    | 6.8%        |  |  |
| 30 to 34 years    | 6.5%        |  |  |
| 35 to 39 years    | 6.5%        |  |  |
| 40 to 44 years    | 6.8%        |  |  |
| 45 to 49 years    | 7.3%        |  |  |
| 50 to 54 years    | 7.2%        |  |  |
| 55 to 59 years    | 6.4%        |  |  |
| 60 to 64 years    | 5.5%        |  |  |
| 65 to 69 years    | 4.0%        |  |  |
| 70 to 74 years    | 3.0%        |  |  |
| 75 to 79 years    | 2.3%        |  |  |
| 80 to 84 years    | 1.9%        |  |  |
| 85 years and over | 1.8%        |  |  |

2010 US Census Data Summary Table (broken down by age)

|                   | United States |             |             |  |  |
|-------------------|---------------|-------------|-------------|--|--|
|                   | Total         | Female      |             |  |  |
| Subject           | Estimate      | Estimate    | Estimate    |  |  |
| Total population  | 309,349,689   | 152,089,450 | 157,260,239 |  |  |
| AGE               |               |             |             |  |  |
| Under 5 years     | 6.5%          | 6.8%        | 6.3%        |  |  |
| 5 to 9 years      | 6.6%          | 6.8%        | 6.4%        |  |  |
| 10 to 14 years    | 6.7%          | 7.0%        | 6.4%        |  |  |
| 15 to 19 years    | 7.1%          | 7.5%        | 6.8%        |  |  |
| 20 to 24 years    | 7.0%          | 7.3%        | 6.7%        |  |  |
| 25 to 29 years    | 6.8%          | 6.9%        | 6.6%        |  |  |
| 30 to 34 years    | 6.5%          | 6.6%        | 6.4%        |  |  |
| 35 to 39 years    | 6.5%          | 6.6%        | 6.5%        |  |  |
| 40 to 44 years    | 6.8%          | 6.9%        | 6.7%        |  |  |
| 45 to 49 years    | 7.3%          | 7.3%        | 7.3%        |  |  |
| 50 to 54 years    | 7.2%          | 7.2%        | 7.2%        |  |  |
| 55 to 59 years    | 6.4%          | 6.3%        | 6.5%        |  |  |
| 60 to 64 years    | 5.5%          | 5.4%        | 5.6%        |  |  |
| 65 to 69 years    | 4.0%          | 3.9%        | 4.2%        |  |  |
| 70 to 74 years    | 3.0%          | 2.8%        | 3.2%        |  |  |
| 75 to 79 years    | 2.3%          | 2.1%        | 2.6%        |  |  |
| 80 to 84 years    | 1.9%          | 1.5%        | 2.2%        |  |  |
| 85 years and over | 1.8%          | 1.2%        | 2.4%        |  |  |

... and stratified by sex

# An updated and expanded version of the mammals sleep dataset

### **Description**

This is an updated and expanded version of the mammals sleep dataset. Updated sleep times and weights were taken from V. M. Savage and G. B. West. A quantitative, theoretical framework for understanding mammalian sleep. Proceedings of the National Academy of Sciences, 104 (3):1051-1056, 2007.

#### **Usage**

msleep

#### **Format**

A data frame with 83 rows and 11 variables

name

common name

```
## install and load package
install.packages("ggplot2")
library(ggplot2)

## assign to object `df`
df <- msleep</pre>
```



Size





size of dataframe

> str(df) Classes 'thi df', 'thi' and 'data.frame': 83 obs. of 11 variables: \$ name "Cheetah" "Owl monkey" "Mountain beaver" "Greater shortchr tailed shrew" \$ genus "Acinonyx" "Aotus" "Aplodontia" "Blarina" ... chr \$ vore chr "carni" "omni" "herbi" "omni" ... "Carnivora" "Primates" "Rodentia" "Soricomorpha" ... \$ order chr \$ conservation: chr "lc" NA "nt" "lc" ... 12.1 17 14.4 14.9 4 14.4 8.7 7 10.1 3 ... \$ sleep\_total : num \$ sleep\_rem : num NA 1.8 2.4 2.3 0.7 2.2 1.4 NA 2.9 NA ... \$ sleep\_cycle : NA NA NA 0.133 0.667 ... num \$ awake 11.9 7 9.6 9.1 20\9.6 15.3 17 13.9 21 ... num \$ brainwt NA 0.0155 NA 0.00029 0.423 NA NA NA 0.07 0.0982 ... num 50 0.48 1.35 0.019 600 ... \$ bodywt num First few values variable Class of each of each variable names variable

### > glimpse(df)

Observations: 83

Variables: 11

size of dataframe

variable

```
5 name
               <chr> "Cheetah", "Owl monkey", "Mountain beaver", "G...
               <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", ...
$ genus
               <chr> "carni", "omni", "herbi", "omni", "herbi", "he...
$ vore
               <chr> "Carnivora", "Primates", "Rodentia", "Soricomo...
$ order
$ conservation | <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu"...
               <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 1...
$ sleep_total
               <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA,...
$ sleep_rem
               <dbl> NA, NA, NA, 0.13333333, 0.6666667, 0.7666667, 0...
$ sleep_cycle
               <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13...
$ awake
               <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA,...
$ brainwt
               <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 2...
$ bodywt
                                                  First few values
 variable names
               class of each
```

of each variable



Missingness

```
> ## calculate how many NAs there are in each variable
```

> sapply(df, function(x) sum(is.na(x)))

| sleep_total | conservation | order    | vore  | genus       | name      |
|-------------|--------------|----------|-------|-------------|-----------|
| 0           | 29           | 0        | 7     | 0           | 0         |
|             | bodywt       | brainwt  | awake | sleep_cycle | sleep_rem |
|             | 0            | 27       | 0     | 51          | 22        |
|             |              | <u> </u> |       |             |           |

- > ## calculate the proportion of missingness
- > ## for each variable
- > sapply(df, function(x) sum(is.na(x)))/nrow(df)

| name       | genus       | vore       | order      | conservation | sleep_total |
|------------|-------------|------------|------------|--------------|-------------|
| 0.00000000 | 0.00000000  | 0.08433735 | 0.00000000 | 0.34939759   | 0.00000000  |
| sleep_rem  | sleep_cycle | awake      | brainwt    | bodywt       |             |
| 0.26506024 | 0.61445783  | 0.00000000 | 0.32530120 | 0.00000000   |             |

That's 32.5% of the observations in the dataset

27 observations of

brainwt are missing

```
## install and load devtools
install.packages ("devtools")
library (devtools)
## install neato package
devtools::install github("njtierney/neato")
library (neato)
## visualize missingness
ggplot missing(df)
```





Shape

## A Normal Distribution







## A Skewed Distribution

most values fall to one extreme within the range skewed right skewed left



## A Uniform Distribution





**Central Tendency** 

# 1 2 3 4 5 6 The mean is 3.5

### Calculating the mean:

1. Sum all values

$$1 + 2 + 3 + 4 + 5 + 6 = 21$$

2. Divide sum by the number of observations (6)

# 1 2 3 3 4 5 6 The mean is 3.43

### Calculating the mean:

1. Sum all values

$$1 + 2 + 3 + 3 + 4 + 5 + 6 = 24$$

2. Divide sum by the number of observations (6)

```
> ## this will return NA
> mean(df$sleep_cycle)
[1] NA
> ## have to tell R to ignore the NAs
> mean(df$sleep_cycle, na.rm=TRUE)
[1] 0.4395833
```

# 

# 1 2 3,4 5 6

**-**The **median** is 3.5

1 2 3 3 4 5 6

The **median** is 3

- > ## calculate the median
- > median(df\$sleep\_cycle, na.rm=TRUE)
- [1] 0.3333333

```
ggplot (df,
                              aes(bodywt)) +
                                 geom histogram()
                                   median = 1.67
                               60 -
> mean(df$bodywt)
[1] 166.1363
> median(df$bodywt)
                                    mean = 166
[1] 1.67
                               20 -
                   Mammals with outlier body weights
                    lead to an increase in the mean
```

```
> a <- c(0, 10, 10, 3, 5, 10, 10)
> which.max(tabulate(a))
[1] 10
```

### > table(df\$order)

| Afrosoricida | Artiodactyla    | Carnivora      | Cetacea        | Chiroptera |
|--------------|-----------------|----------------|----------------|------------|
| 1            | 6               | 12             | 3              | 2          |
| Cingulata    | Didelphimorphia | Diprotodontia  | Erinaceomorpha | Hyracoidea |
| 2            | 2               | 2              | 2              | 3          |
| Lagomorpha   | Monotremata     | Perissodactyla | Pilosa         | Primates   |
| 1            | 1               | 3              | 1              | 12         |
| Proboscidea  | Rodentia        | Scandentia     | Soricomorpha   |            |
| 2            | 22              | 1              | 5              |            |
|              |                 |                |                |            |

The **mode** is the most frequent category





Variability

```
> ## variance of a vector where all values are the same
 a \leftarrow c(29, 29, 29, 29)
> var(a)
            variance is zero when
           every value is the same
> ## variance of a vector with one very different value
> b <- c(29, 29, 29, 29, 723678)
> var(b)
[1] 104733575040
                                   Large value leads to
```

increased variance

#### > skim(df)

Skim summary statistics

n obs: 83

n variables: 11

| — Variable ty              | pe:char    | acter —  |    |        |       |       | <u> </u> |        |       | <u> </u> |      |         |
|----------------------------|------------|----------|----|--------|-------|-------|----------|--------|-------|----------|------|---------|
| variable                   | missing    | complete | n  | min m  | iax ( | empty | / n_uniq | ue     |       |          |      |         |
| conservation               | 29         | 54       | 83 | 2      | 12    | 0     | )        | 6      |       |          |      |         |
| genus                      | 0          | 83       | 83 | 3      | 13    | 0     | )        | 77     |       |          |      |         |
| name                       | <b>→</b> 0 | 83       | 83 | 3      | 30    | 0     | )        | 83     |       |          |      |         |
| order                      | 0          | 83       | 83 | 6      | 15    | 0     | )        | 19     |       |          |      |         |
| vore                       | 7          | 76       | 83 | 4      | 7     | 0     | )        | 4      |       |          |      | shape 🔪 |
| missingne<br>— Variable ty |            | ¹ic      |    |        |       |       | variabil | ity    |       | <u> </u> |      |         |
| variable m                 | issing o   | complete | n  | mean   | 1     | sd    | р0       | p25    | p50   | p75      | p100 | hist 🖊  |
| awake                      | 0          | 83       | 83 | 13.57  | , ,   | 4.45  | 4.1      | 10.25  | 13.9  | 16.15    | 22.1 |         |
| bodywt                     | 0          | 83       | 83 | 166.14 | 780   | 6.84  | 0.005    | 0.17   | 1.67  | 41.75    | 6654 |         |
| brainwt                    | 27         | 56       | 83 | 0.28   | 3 (   | 0.98  | 0.00014  | 0.0029 | 0.012 | 0.13     | 5.71 |         |
| sleep_cycle                | 51         | 32       | 83 | 0.44   | - (   | 0.36  | 0.12     | 0.18   | 0.33  | 0.58     | 1.5  |         |
| sleep_rem                  | 22         | 61       | 83 | 1.88   | 3 :   | 1.3   | 0.1      | 0.9    | 1.5   | 2.4      | 6.6  |         |
| sleep_total                | 0          | 83       | 83 | 10.43  | } 4   | 4.45  | 1.9      | 7.85   | 10.1  | 13.75    | 19.9 |         |
| central tendency —         |            |          |    |        |       |       |          |        |       |          |      |         |

# Descriptive Analysis





Size

Missingness



Shape





Variability