

Learned Benchmarks for Subseasonal Forecasting

Soukayna Mouatadid¹, Paulo Orenstein², Genevieve Flaspohler^{3,4}, Miruna Oprescu⁵, Judah Cohen^{6,7}, Franklyn Wang⁸, Sean Knight⁹, Maria Geogdzhayeva¹⁰, Sam Levang¹¹, Ernest Fraenkel¹², Lester Mackey⁵

¹ Department of Computer Science, University of Toronto; ² Instituto de Matemática Pura e Aplicada; ³ Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology; ⁴ Department of Applied Ocean Science and Engineering, Woods Hole Oceanographic Institution; 5 Microsoft Research New England; 6 Atmospheric and Environmental Research; 7 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; 8 Department of Mathematics, Harvard University; 9 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; 10 Department of Physics, Massachusetts Institute of Technology; 11 Salient Predictions Inc.; 12 Department of Physics, Massachusetts Institute of Technology; 10 Department of Physics, Massachusetts Institute of Technology; 11 Salient Predictions Inc.; 12 Department of Physics, Massachusetts Institute of Technology; 10 Department of Physics, Massachusetts Institute of Physics, Massachusetts Institute of Physics, Mas Biological Engineering, Massachusetts Institute of Technology

INTRODUCTION

Subseasonal weather prediction (3-6 weeks ahead) is a crucial pre-requisite for:

- Preparing droughts and floods
- Agriculture planning
- Allocation of water resources
- Managing wildfires

It is a challenging forecast horizon for both meteorological and ML models:

Source: https://iri.columbia.edu/news/qa-subseasonal-prediction-project/

Objective:

 We develop a toolkit of subseasonal models that outperform operational weather models as well as state-of-the-art learning methods from the literature.

FORECASTING TASKS

- Target variables: Average temperature and Accumulated precipitation
- Lead times: Weeks 3-4 ahead and Weeks 5-6 ahead
- **Geographical region:** U.S., 1°x1° resolution, G = 862 gridpoints
- **Loss function:** RMSE, skill
- **Dataset:** Improved SubseasonalRodeo dataset (Hwang et al., 2019)

MODELS

Baselines:

- Climatology: average temperature or precipitation for specific day and month over 1981-2010.
- **CFSv2:** operational U.S. physics-based model from NCEP.
- **Persistence:** predict most recent value.

Learning models:

- AutoKNN, introduced in (Hwang et al., 2019)
- **Informer,** introduced in (Zhou, 2021)
- LocalBoosting, introduced in (Prokhorenkova et al., 2018)
- MultiLLR, introduced in (Hwang et al., 2019)
- N-BEATS, introduced in (Orenshkin, 2020)
- Prophet, introduced in (Taylor and Letham, 2018)
- Salient 2.0, introduced in (Schmitt, 2019)

Our toolkit:

- **Climatology++:** Use adaptively selected window around target day for averaging.
- CFSv2++: Average over range of issuance date and lead times, adaptively debiasing using selected window.
- **Persistence++:** Learned combination of lagged measurements with

ENSEMBLING

Uniform ensemble:

- Average over base models
- Typical solution in the weather community

Online ensemble:

- Runs a follow-the-regularized-leader online learning method
- Results in an adaptive convex combination of base models

Base models:

systems (pp. 6638–6648).

Climatology++, CFSv2++, Persistence++

RESULTS

Table 1: Average percentage skill and percentage improvement over mean debiased CFSv2 RMSE across 2011-2020 in the contiguous U.S. The best performing model in each model group is bolded, and the best performing model overall is shown in green.

		% IMPROVEMENT OVER MEAN DEB. CFSv2 RMSE				AVERAGE % SKILL				
		TEMPERATURE		PRECIPITATION		TEMPERATURE		PRECIPITATION		
GROUP	MODEL	WEEKS 3-4	WEEKS 5-6	WEEKS 3-4	WEEKS 5-6	WEEKS 3-4	WEEKS 5-6	WEEKS 3-4	WEEKS 5-6	
BASELINES	CLIMATOLOGY	0.13	2.93	7.79	7.51	_	_	_	_	
	DEBIASED CFSv2	_	_	_	_	24.94	19.12	5.77	4.28	
	PERSISTENCE	-109.94	-170.1	-28.27	-31.92	10.64	6.22	8.31	7.41	
TOOLKIT	CLIMATOLOGY++	2.06	4.83	8.86	8.57	18.61	18.87	15.04	14.99	
	CFSv2++	5.94	7.09	8.37	8.06	32.38	29.19	16.34	16.09	
	PERSISTENCE++	6.00	6.43	8.61	7.89	32.4	26.73	13.38	9.77	
LEARNING	AUTOKNN	0.93	3.22	7.73	7.33	12.43	8.56	6.66	5.93	
	Informer	-40.61	-39.57	-2.05	-2.53	0.55	0.01	6.15	5.86	
	LOCALBOOSTING	-0.76	-0.29	7.36	6.89	14.44	12.69	10.82	9.72	
	MULTILLR	2.45	2.21	7.12	6.65	24.5	16.68	9.49	7.97	
	N-BEATS	-46.71	-52.05	-19.19	-21.32	9.21	4.16	5.48	4.46	
	PROPHET	1.13	3.78	8.42	8.12	20.21	19.78	13.51	13.41	
	SALIENT 2.0	-6.95	-4.05	2.97	2.65	11.24	11.77	10.11	9.99	
ENSEMBLES	Uniform Toolkit	6.47	7.55	9.47	9.05	33.58	30.56	18.94	18.35	
	Online Toolkit	6.67	7.67	9.51	9.04	33.27	30.06	18.86	17.91	

Figure 1: Per season and per year improvement over mean debiased CFSv2 RMSE across the contiguous U.S. and the years 2011-2020. Despite their simplicity, the toolkit models (solid lines) consistently outperform debiased CFSv2 and the state-of-the-art learners (dotted lines).

Figure 2: Per season and per year average skill across the contiguous U.S. and the years 2011-2020. Despite their simplicity, the toolkit models (solid lines) consistently outperform debiased CFSv2 and the state-of-the-art learners (dotted lines).

COMPARING TO ECMWF

Table 2: Average percentage skill and percentage improvement over mean debiased CFSv2 RMSE across 2016-2020 in the contiguous U.S. The best performing model in each model group is bolded, and the best performing model overall is shown in green.

	MODEL	% IMPROVEMENT OVER MEAN DEB. CFSv2 RMSE				AVERAGE % SKILL				
		TEMPERATURE		PRECIPITATION		TEMPERATURE		PRECIPITATION		
GROUP		WEEKS 3-4	WEEKS 5-6	WEEKS 3-4	WEEKS 5-6	WEEKS 3-4	WEEKS 5-6	WEEKS 3-4	WEEKS 5-6	
BASELINES	CLIMATOLOGY	1.56	3.92	8.7	7.56	_	_	_	_	
	DEBIASED CFSv2	_	_	_	_	22.64	15.71	2.84	1.68	
	PERSISTENCE	-105.57	-169.22	-28.05	-33.43	9.12	2.27	8.11	6.21	
Toolkit	CLIMATOLOGY++	3.88	6.44	9.79	8.61	22.09	23.2	15.34	15.06	
	CFSv2++	5.65	6.65	8.94	7.6	30.91	26.87	14.6	13.85	
	PERSISTENCE++	7.06	7.86	9.06 7.57 31.46 28.0	28.04	10.03	6.61			
ECMWF	DEBIASED CONTROL	-29.05	-33.25	-30.81	-31.84	18.52	13.71	0.82	3.17	
	DEBIASED ENSEMBLE	4.62	3.69	7.90	6.41	32.27	26.61	13.12	9.10	
Ensembles	Uniform Toolkit	7.43	8.27	10.04	8.77	32.77	29.75	16.53	15.71	
	Online Toolkit	7.2	7.96	10.08	8.62	32.22	28.38	17.19	15.42	

SPATIAL IMPROVEMENT AND BIAS

Figure 3: Percentage improvement over mean debiased CFSv2 RMSE in the contiguous U.S. over 2011-2020. White grid points indicate negative or 0% improvement.

Figure 4: Model bias in the contiguous U.S. over 2011-2020. White grid points indicate zero bias.

WESTERN U.S. COMPETITION

Table 3: Percentage improvement over mean debiased CFSv2 RMSE over 26 contest dates (2019-2020) in the Western U.S. The best performing models within each class of models are shown in bold, while the best performing models overall are shown in green.

Group	Model	Temp. weeks 3-4	Temp. weeks 5-6	Precip. weeks 3-4	Precip. weeks 5-6
Contest baselines	Salient	_	_	11.10	7.02
	Climatology	10.22	-0.76	5.82	2.25
Contestants	1 st place	17.12	8.47	11.54	8.63
	2 nd place	16.67	7.04	11.10	8.03
	3 rd place	15.47	6.90	10.62	7.94
Learning	AutoKNN	13.09	2.90	7.50	3.05
	LocalBoosting	12.85	4.09	7.25	3.71
	MultiLLR	9.54	1.12	8.95	4.58
	Prophet	15.68	6.86	6.88	3.40
	Salient 2.0	11.15	2.91	12.65	8.56
Toolkit	Climatology++	15.54	6.43	8.35	4.69
	CFSv2++	6.67	9.26	8.70	5.51
	Persistence++	16.59	8.27	8.20	4.51
Ensembles	Uniform Toolkit	14.96	9.58	9.31	5.89
	Uniform Toolkit + Learning	15.89	8.79	10.43	6.79
	Online Toolkit	16.71	8.70	8.85	5.19
	Online Toolkit + Learning	14.70	7.97	12.52	8.18

Figure 5: Temporal plot (left) and scatter plot (right) of yearly total precipitation and percentage improvement over mean debiased CFSv2 RMSE in the Western U.S. across 2011-2020

References

- Hwang, J., Orenstein, P., Cohen, J., Pfeiffer, K., & Mackey, L. (2019). Improving subseasonal forecasting in the western us with machine learning. In Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining (pp. 2325–2335).
- Oreshkin, B. N., Carpov, D., Chapados, N., & Bengio, Y. (2020). N-BEATS: neural basis expansion analysis for interpretable time series forecasting. In 8th international conference on learning representations, ICLR 2020, addis ababa, ethiopia, april 26-30, 2020. OpenReview.net. Retrieved from https://openreview.net/forum?id=r1ecqn4YwB
- Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). Catboost: unbiased boosting with categorical features. In Advances in neural information processing
- Schmitt, R. (2019). Salient predictions: Validation summary. https://storage.googleapis.com/content.salientpredictions.com/Salient%20Validation%20Summary.pdf. (Accessed:
- Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45. • Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2021). Informer: Beyond efficient transformer for long sequence time-series forecasting. In The thirty-fifth AAAI conference on artificial intelligence, AAAI 2021 (p. online). AAAI Press.