

امنیت داده و شبکه

طراحی پروتکلهای رمزنگاری

- □ جایگاه رمز متقارن
 - □ مديريت كليد
- مفاهیم اساسی مدیریت کلید
 - سلسله مراتب کلید
- تولید کلید و طول عمر کلید
- اشتراک کلید مبتنی بر رمز متقارن
- اشتراک کلید مبتنی بر رمز کلید عمومی
 - □ طراحی پروتکلهای رمزنگاری

مقدمه

- □ پروتکلهای رمزنگاری: پروتکلهایی که در آنها از
 - الگوریتمهای رمز استفاده میشود.
 - پروتکلهای احراز اصالت همراه با توزیع کلید
 - □ برای طراحی پروتکلهای رمزنگاری نیاز است به:
 - تبیین جایگاه رمزنگاری متقارن و نامتقارن
 - تبیین نحوه تولید کلید و توزیع آن

- □ جایگاه رمز متقارن
 - □ مديريت كليد
- مفاهیم اساسی مدیریت کلید
 - سلسله مراتب کلید
- تولید کلید و طول عمر کلید
- اشتراک کلید مبتنی بر رمز متقارن
- اشتراک کلید مبتنی بر رمز کلید عمومی
 - □ طراحی پروتکلهای رمزنگاری

- □ دو رویکرد در استفاده از رمز متقارن در شبکه:
- رمزنگاری خط ارتباطی به صورت نقطه-به-نقطه (Point-to-Point)
 - □ رمزگذاری روی هر خط ارتباطی به صورت مستقل صورت میپذیرد.
 - □ باید در هر یک از تجهیزات ارتباطی رمزگشایی شود.
 - □ نیازمند تجهیزات متعددی است، هر کدام با کلیدهای مجزا.
 - رمزنگاری انتها–به انتها (End-to-End)
 - □ رمزگذاری صرفاً بین مبدا و مقصد پیام انجام میشود.
 - □ نیازمند یک کلید مشترک بین دو انتها است.

PSN = packet switching node

- □ در رمزگذاری انتها-به-انتها، سرآیند بستهها باید آشکار باقی بمانند.
 - لذا شبکه به راحتی میتواند بستهها را مسیریابی کند.
- □ بنابراین اگر چه محتوا حفاظت می شود، ولی الگوی ترافیک و جریان دادهها آشکار است.
 - □ به طور ایدهآل میخواهیم:
- رمزگذاری انتها-به-انتها محتوای دادهها را بر روی کل مسیر حفاظت نماید و امکان احراز اصالت داده را نیز فراهم آورد.
- رمزگذاری خط ارتباطی (نقطه-به-نقطه) جریان داده را از مانیتورینگ حفاظت نماید.

- □ تابع رمزگذاری را میتوان در هر یک از لایههای شبکه در مدل مرجع OSI قرار داد.
- رمزگذاری ارتباط (نقطه به نقطه) معمولا در لایههای ۱ و ۲ انجام میپذیرد.
 - رمزگذاری انتها به انتها در لایههای بالاتر.
 - 🗖 هر چه قدر به لایههای بالاتر شبکه برویم،
 - اطلاعات کمتری رمز میشود، ولی امنیت بیشتری فراهم می گردد.
 - پیچیدگی، بیشتر و همچنین موجودیتها و کلیدهای در گیر، بیشتر میشود.

Link-H Net-H IP-H TCP-H Data Link-T

(a) Application-level encryption (on links and at routers and gateways)

Link-H Net-H IP-H TCP-H Data Link-T

On links and at routers

Link-H Net-H IP-H TCP-H Data Link-T

In gateways

(b) TCP-level encryption

Link-H Net-H IP-H TCP-H Data Link-T

On links

Link-H Net-H IP-H TCP-H Data Link-T

In routers and gateways

(c) Link-level encryption

Shading indicates encryption. TCP-H = TCP header

IP-H = IP header

Net-H = Network-level header (e.g., X.25 packet header, LLC header)

Link-H = Data link control protocol header
Link-T = Data link control protocol trailer

رمزگذاری در مقابل

تحلیل ترافیک

- □ تحلیل ترافیک به معنای مانیتورینگ جریان دادهها در ارتباطات بین بخشهای مختلف است.
 - هم در بخش نظامی و هم در بخش تجاری می تواند مفید باشد.
 - □ رمزگذاری خط ارتباطی میتواند جزئیات سرآیند را مخفی کند.
- اما حجم ترافیک شبکه و دادهها در دو انتهای ارتباط همچنان آشکار است.
 - الیم گذاری (Padding) در ترافیک نیز می تواند جریان دادهها را ناشفاف نماید، ولی هزینه سربار بالایی دارد.

- □ جایگاه رمز متقارن
 - □ مديريت كليد
- مفاهیم اساسی مدیریت کلید
 - سلسله مراتب کلید
 - تولید کلید و طول عمر کلید
- اشتراک کلید مبتنی بر رمز متقارن
- اشتراک کلید مبتنی بر رمز کلید عمومی
 - □ طراحی پروتکلهای رمزنگاری

مديريت كليد چيست؟

- □ مدیریت کلید عبارتست از مجموعهای از پروتکلها و رویهها برای ایجاد و نگهداری «ارتباط کلیدی» بین طرفین مجاز.
- □ **ارتباط کلیدی** وضعیتی است که در آن طرفین برقرار کننده ارتباط داده معینی را به اشتراک میگذارند که مورد نیاز الگوریتمهای رمز است.
 - کلیدهای عمومی یا خصوصی،
 - مقداردهیهای اولیه،
 - سایر پارامترهای غیرمخفی...

مدیریت کلید شامل چه رویه هایی است؟

- □ تولید، توزیع و نصب دادههای ارتباط کلیدی
 - □ كنترل نحوه استفاده از این كلیدها
- □ به روزآوری، ابطال و نابود کردن دادههای ارتباط کلیدی
- □ نگهداری، نسخه برداری و بازیابی دادههای ارتباط کلیدی

اهمیت مدیریت کلید

- □ اکثر حملات به رمزنگاری یک سیستم امنیتی در لایه مدیریت کلید است و کمتر به الگوریتمهایی است که از کلیدها (دادههای مشترک) بهره میبرند.
- □ طرفهای ارتباط به طور دائم، امکان ارتباط فیزیکی برای تبادل کلید امن را با یکدیگر ندارند و از پروتکلهای توزیع کلید استفاده میکنند.
- □ در حقیقت برخی این مساله را دشوارترین جزء یک سیستم امن میدانند.

- □ جایگاه رمز متقارن
 - □ مديريت كليد
- مفاهیم اساسی مدیریت کلید
 - سلسله مراتب کلید
- تولید کلید و طول عمر کلید
- اشتراک کلید مبتنی بر رمز متقارن
- اشتراک کلید مبتنی بر رمز کلید عمومی
 - □ طراحی پروتکلهای رمزنگاری

کلید جلسه و کلید اصلی: توصیف

□ کلید اصلی عبارت است از یک کلید رمزکننده سایر کلیدها. به این معنا که از این کلید برای توزیع کلید خصوصی موقتی به نام کلید جلسه استفاده مینماییم.

- □ از کلید جلسه برای رمزنگاری و احراز صحت یا اصالت استفاده می کنیم.
 - رمزنگاری متقارن

سلسله مراتب كليدها

حجم اطلاعات نحوه محافظت نوع محافظت با رمزنگاری داده (با کلید جلسه) محافظت با رمزنگاری كليد جلسه (با کلید اصلی) کلید اصلی محافظت فيزيكي

كليد جلسه و كليد اصلى: مقايسه

□ کلید اصلی:

- طول عمر نسبتاً زیاد،
- میزان استفاده محدود (فقط رمزنگاری کلیدهای جلسه)،
 - خسارت گسترده درصورت افشاء.

□ كليد جلسه:

- طول عمر نسبتاً کوتاه،
- استفاده نامحدود در طول جلسه،
- خسارت محدود به دادههای جلسه.

- □ جایگاه رمز متقارن
 - □ مديريت كليد
- مفاهیم اساسی مدیریت کلید
 - سلسله مراتب کلید
- تولید کلید و طول عمر کلید
- اشتراک کلید مبتنی بر رمز متقارن
- اشتراک کلید مبتنی بر رمز کلید عمومی
 - □ طراحی پروتکلهای رمزنگاری

تولید کلید

- □ کلیدهای تولیدی باید کاملا تصادفی باشند و از آنتروپی (بینظمی) کافی برخوردار باشند.
 - □ نیاز به تولید اعداد تصادفی داریم، به گونهای که:
 - به طور آماری، تصادفی باشند، با توزیع یکنواخت و مستقل از یکدیگر،
 - امکان پیشبینی مقادیر آتی بر اساس مقادیر فعلی وجود نداشته باشد.
- 🗖 عموماً از روشهای الگوریتمی برای تولید اعداد تصادفی استفاده میشود.
 - به طور واقعی تصادفی نیستند.
 - به عنوان اعداد شبه تصادفی شناخته می شوند.

طول عمر کلید جلسه

- □ اگر طول عمر کوتاه باشد:
 - امنیت بالا
- □ حجم داده برای تحلیل رمز ناچیز است.
 - □ میزان استفاده کم است.
- □ حتی پس از افشای کلید، زمان زیادی برای سوء استفاده موجود نیست.
 - کارایی کم
 - دائما باید کلید را بروز کنیم.
 - □ اگر طول عمر زیاد باشد:
 - کارایی بالا، امنیت کم

یک مصالحه میان امنیت و کارایی بر سر تعیین طول عمر کلید جلسه برقرار است.

- □ جایگاه رمز متقارن
 - □ مديريت كليد
- مفاهیم اساسی مدیریت کلید
 - سلسله مراتب کلید
- تولید کلید و طول عمر کلید
- اشتراک کلید مبتنی بر رمز متقارن
- اشتراک کلید مبتنی بر رمز کلید عمومی
 - □ طراحی پروتکلهای رمزنگاری

اشتراک کلید مبتنی بر رمز متقارن

- □ دو رویکرد در اشتراک کلید جلسه
 - نقطه به نقطه
 - مركز توزيع كليد

روش نقطه به نقطه توزیع کلید

- □ نیاز به توافق بر روی کلید اصلی پیش از برقراری ارتباط بین هر دو نفر
 - □ مشكل اصلى: مقياسپذيرى
 - برای ارتباط n نفر باهم به n(n-1)/2 کلید اصلی احتیاج داریم.

روش متمرکز توزیع کلید

- □ هر کاربر یک کلید اصلی با کارگزار توزیع کلید KDC به اشتراک گذاشته است.
 - KDC یک شخص ثالث مورد اعتماد است.
- کلیدهای اصلی با یک روش امن (مثلاً مراجعه فیزیکی) توزیع شدهاند.
 - □ ایده:
 - هربار که کاربری قصد ارتباط با دیگران را داشته باشد از KDC یک کلید جلسه درخواست می کند.

روش متمركز توزيع كليد - مثال

26

روش متمركز توزيع كليد

- □ نكات مثبت:
- تعداد کلید کمتر و قابلیت مقیاسپذیری
 - □ نكات منفى:
- کارگزار توزیع کلید گلوگاه امنیتی سیستم است.
- ترافیک بالا در کارگزار توزیع کلید باعث تبدیل آن به گلوگاه کارایی سیستم میشود.
 - نیاز به یک کارگزار برخط داریم.
 - □ دخالت کارگزار در برقراری هر ارتباط ضروری است.

- □ جایگاه رمز متقارن
 - □ مديريت كليد
- مفاهیم اساسی مدیریت کلید
 - سلسله مراتب کلید
- تولید کلید و طول عمر کلید
- اشتراک کلید مبتنی بر رمز متقارن
- اشتراک کلید مبتنی بر رمز کلید عمومی
 - □ طراحی پروتکلهای رمزنگاری

جایگاه رمزنگاری کلید عمومی

- □ از آنجا که الگوریتمهای کلید عمومی بسیار کندتر از الگوریتمهای مرسوم (کلید خصوصی) هستند، از این الگوریتمها جهت توزیع کلید جلسه (و نه رمزگذاری) استفاده میشود.
 - □ با استفاده از رمزنگاری کلید عمومی
 - نیازی به تبادل فیزیکی کلیدهای اصلی و حفظ محرمانگی آنها نیست.
 - نیازی به کارگزار بر خط نیست.

اشتراک کلید مبتنی بر رمز نامتقارن

- □ توافق کلید (Key Agreement): بنا نهادن دو جانبه کلید جلسه
 - طرفین به طور مستقل در انتخاب کلید تاثیرگذار هستند.
 - □ مثال: روش Diffie-Hellman (قبلاً در رمز نامتقارن معرفی شد).

- □ توزیع کلید (Key Distribution): توزیع یک جانبه کلید جلسه
 - یکی از دو طرف کلید را معین کرده و به دیگری ارسال مینماید.
 - □ مثال: الگوریتم توزیع کلید در SSL (در درسهای بعدی معرفی میشود).

روش تركيبي

- □ کلید عمومی+رمزنگاری متقارن
- □ توزیع مداوم کلید با رمزنگاری کلید عمومی کارآیی سیستم را کاهش میدهد.
- ا کمک روش ترکیبی به طور موردی از رمزنگاری کلید عمومی برای بهروز در آوردن کلید اصلی بهره می جوییم.
 - □ کلیدها در سه سطح:
 - استفاده از **کلید عمومی** برای توزیع کلیدهای اصلی
- توافق KDC با هر یک از کاربران روی یک کلید اصلی (با استفاده کلید عمومی)
 - استفاده از کلید اصلی (رمزنگاری متقارن) برای توزیع کلیدهای جلسه

- □ جایگاه رمز متقارن
 - □ مديريت كليد
- مفاهیم اساسی مدیریت کلید
 - سلسله مراتب کلید
- تولید کلید و طول عمر کلید
- اشتراک کلید مبتنی بر رمز متقارن
- اشتراک کلید مبتنی بر رمز کلید عمومی
 - □ طراحی پروتکلهای رمزنگاری

علائم و نمادها

علائم و نمادهای به کار رفته در پروتکلها به صورت زیر هستند.

- □ عاملها/طرفهای ارتباط
- ID_B و B با شناسه های A
 - S شخص ثالث مورد اعتماد
- □ کلیدهای مخفی مشترک (کلید جلسه)
 - B و A کلید مشترک بین K_{ab}
 - 🗖 نانسھا
- اعداد تصادفی هستند که تنها یک بار مورد استفاده قرار می گیرند.
 - A نانس تولید شده توسط N_a

علائم و نمادها

- 🗖 مُهر زماني
- A مُهر زمانی تولید شده توسط T_a
- در اغلب موارد فرض می کنیم که طرفهای ارتباط ساعتهای خود را با استفاده از پروتکلی هماهنگ نگه میدارند.
 - □ پیامهای مورد تبادل
 - $A \rightarrow B: M, E(K_{as}, [M \parallel ID_A \parallel ID_B])$ مثال:
 - A فرستنده و B گیرنده
 - ست. M (پیام)، شناسه A و شناسه B با کلید K_{as} رمز شده است.

اهداف و خصوصیات پروتکلها

- \Box فرض می کنیم که طرفهای A و B با شخص ثالث S کلید مخفی مشترک (کلید اصلی) و یا گواهی کلید عمومی دارند.
 - □ طرفهای ارتباط میخواهند برای ارتباط با یکدیگر کلید جلسه به اشتراک بگذارند.
 - □ اما چه خصوصیاتی را در اشتراک کلید دنبال می کنند؟
 - پروتکلهای مختلف، خصوصیات مختلفی دارند و اهداف مختلفی را دنبال می کنند.
 - بنابراین در انتخاب پروتکل باید دقت کافی را به عمل آورد.

اهداف و خصوصیات پروتکلها

- □ تازگی (Freshness)
- کلید جلسه توسط طرف دیگری استفاده نشده باشد و اخیراً تولید شده باشد.
 - □ محرمانگی پیشرو (Forward Secrecy)
 - اطلاعی در مورد کلیدهای جلسه و اصلی اطلاعی در مورد کلیدهای جلسه توافق شده قبلی مستخرج نشود.
- □ استحكام در مقابل كليد فاش شده (Known Key Resilience)
- مهاجمی که به کلید یک جلسه دست یافته، در مورد کلید اصلی و کلید جلسات دیگر نتواند اطلاعی به دست آورد.

اهداف و خصوصیات پروتکلها

- □ احراز اصالت كليد (Key Authentication)
- یک طرف مطمئن است که هیچ کس جزء طرف دوم به کلید دسترسی ندارد. این دانش ممکن است صرفاً ضمنی باشد.
 - □ تایید کلید (Key Confirmation)
- یک طرف مطمئن است که طرف دوم واقعاً کلید مشترک را در اختیار دارد.
- □ احراز اصالت صریح کلید (Explicit Key Authentication)
 - احراز اصالت ضمنی کلید و تایید کلید

اهداف و خصوصیات پروتکلها

□ احراز اصالت دو طرفه

■ هر دو طرف ارتباط باید صحت هویت همدیگر را احراز نمایند و به تبادل کلید بپردازند.

□ احراز اصالت یک طرفه

- لازم است تنها یک طرف ارتباط هویت خود را اثبات کند.
- مورد استفاده: یک شخص یک پیام را در یک گروه عمومی منتشر می کند.

انواع حملات به پروتکلها

- □ شنود (Eavesdropping)
- مهاجم اطلاعات و پیامهای تبادل شده در پروتکل را دریافت مینماید.
 - □ تغيير (Modification)
 - مهاجم اطلاعات ارسالی را تغییر میدهد.
 - □ تكرار (Replay)
- مهاجم پیامهای ارسالی در طی پروتکل را ثبت نموده، سپس به اجرای پروتکل با ارسال مجدد آنها میپردازد.

انواع حملات به پروتکلها

- □ منع سرویس (Denial of Service)
- مهاجم مانع از کامل شدن پروتکل توسط طرفهای مجاز میشود.
 - □ حملات نوع دادهای (Typing Attacks)
- مهاجم داده یک فیلد پیام را با دادهای از نوع دیگر جایگزین می کند.
 - □ دستکاری گواهی (Certificate Manipulation)
 - مهاجم اطلاعات گواهی را دستکاری کرده و یا عوض میکند.

طراحي پروتكل

- \Box در اسلایدهای بعد چگونگی طراحی پروتکلی برای اشتراک کلید بین دو طرف B و B را بررسی مینماییم.
 - □ با معرفی هر پروتکل، مشکلات موجود در آن را بررسی نموده، سعی میکنیم در طراحی پروتکل بعدی آنها را مرتفع نماییم.

طراحي پروتكل

- مبنای طراحی پروتکلهای سری اول \square
- مبتنی بر رمز متقارن: استفاده از مرکز توزیع کلید مطمئن (با نام S)
 - - □ کلید جلسه را تولید می کند.
- \square کلیدهای اصلی (بین هر طرف با S) برای انتقال کلید جلسه به کار می رود.
 - احراز اصالت دوطرفه

پروتکل 1

- \square A \rightarrow S: $ID_A || ID_B$
- \square S \rightarrow A: K_{ab}
- \square A \rightarrow B: $K_{ab} | ID_A$

□ خصوصیات:

- است. S کلیدی را تولید می کند و می گوید که برای استفاده بین B و B
 - B میداند که کلید را برای تعامل با A باید استفاده نماید.

□ معایب:

- مهاجم می تواند با شنود کلید مخفی K_{ab} را به دست آورد.
 - □ راه حل: نیاز به رمزگذاری کلید داریم.

- \square A \rightarrow S: $ID_A || ID_B$
- \square S \rightarrow A: $E(K_{as}, [K_{ab}]) \parallel E(K_{bs}, [K_{ab}])$
- \square A \rightarrow B: E(K_{bs}, [K_{ab}]) \parallel ID_A

□ خصوصیات:

A و B یک کلید بلند مدت (همان کلید اصلی) را با B و B به اشتراک بگذارد.

- \square A \rightarrow S: $ID_A || ID_B$
- \square S \rightarrow A: $E(K_{as}, [K_{ab}]) \parallel E(K_{bs}, [K_{ab}])$
- \square A \rightarrow B: E(K_{bs}, [K_{ab}]) \parallel ID_A
 - عیب اول: مهاجم می تواند خود را به جای طرفهای مختلف وانمود سازد. چرا که در این پروتکل عملا احراز اصالت صورت نمی پذیرد.
 - مهاجم D پیام سوم از A به B را دریافت مینماید.
 - ان را با $|ID_D|$ الله $|ID_D|$ جایگزین می کند.
 - اید استفاده کند. B فکر می کند که کلید K_{ab} را برای تعامل با B
 - از S گرفته به B با میتواند کلیدی که برای ارتباط بین خود و B از A گرفته به B با شناسه D_A ارسال کند که B فکر کند با این کلید با D_A در تعامل است.

- \square A \rightarrow S: $ID_A \parallel ID_B$
- \square S \rightarrow A: $E(K_{as}, [K_{ab}]) \parallel E(K_{bs}, [K_{ab}])$
- \square A \rightarrow B: E(K_{bs}, [K_{ab}]) \parallel ID_A
- عیب دوم: مشکل اصلی این پروتکل در امکان اجرای حمله مرد میانی است که در آن مهاجم (درمیان دو طرف) به جای هر یک از طرفین خود را جا میزند و کلید تبادل می کند. مثلا برای A، خود را به جای B به صورت زیر جا می زند.
- \square A \rightarrow E: $ID_A \parallel ID_B$
- \square E \rightarrow S: $ID_A \parallel ID_E$
- \square S \rightarrow E: E(K_{as}, [K_{ae}]) \parallel E(K_{es}, [K_{ae}])
- \square E \rightarrow A: $E(K_{as}, [K_{ae}]) \parallel E(K_{es}, [K_{ae}])$
- \square A \rightarrow E: E(K_{es}, [K_{ae}]) \parallel ID_A
 - □ راه حل: لازم است که شناسه طرفها را به کلیدها مقید نماییم.

پروتکل 3

- \square A \rightarrow S: $ID_A || ID_B$
- \square S \rightarrow A: $E(K_{as}, [K_{ab} | ID_B]) | E(K_{bs}, [K_{ab} | ID_A])$
- \square A \rightarrow B: E(K_{bs}, [K_{ab} | ID_A])

□ خصوصیات:

■ شناسه طرف ارتباط و کلید جلسه با کلید اصلی رمز میشوند.

- \square A \rightarrow S: $ID_A \parallel ID_B$
- \square S \rightarrow A: $E(K_{as}, [K_{ab} | | ID_B]) | E(K_{bs}, [K_{ab} | | ID_A])$
- \square A \rightarrow B: E(K_{bs}, [K_{ab} | ID_A])
- معایب: امکان اجرای حمله تکرار وجود دارد. \square
- ا فرض کنید که K_{ab} کلید اجرای قبلی پروتکل باشد.
- □ کلیدهای کوتاه مدت جلسه به اندازه کلیدهای اصلی بلند مدت امن نگهداری نمیشوند.
 - سپس مهاجم به جای S این کلید را به عنوان کلید جلسه جدید با ارسال مجدد پیام دوم از اجرای قبلی توزیع می کند.
 - K_{bs} و K_{as} و استن کلیدهای اصلی Γ
 - 🗖 راه حل: لازم است به گونهای از تازگی کلید اطمینان حاصل نماییم.

روشهای مقابله با تکرار

□ استفاده از مُهر زمانی (Timestamp)

■ گیرنده به پیام اعتماد می کند اگر در محدوده زمانی قابل قبولی باشد. ضرورت همگامی ساعتها!

□ استفاده از Challenge/Response

■ Y که انتظار یک پیام نو از X دارد، یک چالش یا نانس به X ارسال میکند و انتظار دارد که پیامی که دریافت میکند حاوی تغییریافته (رمزشده) چالش یا نانس موردنظر باشد.

□ استفاده از اعداد متوالی (Sequence Number)

- مشکلات متعددی در خصوص نگهداری این اعداد و عوامل تاثیرگذار بر آن در صورت بروز خطا، تاخیر و غیره دارد.
 - نیازمند احراز اصالت اعداد متوالی ارسالی (برای اطمینان از ارسال آنها از سوی طرف مقابل) مثلا با استفاده از MAC

- \square A \rightarrow S: $ID_A || ID_B || N_a$
- \square S \rightarrow A: $E(K_{as}, [K_{ab} | ID_B | N_a | E(K_{bs}, [K_{ab} | ID_A])])$
- \square A \rightarrow B: E(K_{bs}, [K_{ab} | ID_A])

□ خصوصیات:

- تازگی کلید برای A (و نه B) با استفاده از نانس احراز می گردد.
 - □ معایب:
- طرف A مطمئن نیست که طرف B کلید را دریافت کرده و زنده است.
- طرف B نیز نمی داند که واقعاً طرف A کلید را می داند و زنده است (ممکن است پیغام سوم دریافتی، قدیمی و تکراری باشد).
 - □ راه حل: نیاز به تایید کلید است.

پروتکلNeedham-Schroeder

- \square A \rightarrow S: $ID_A || ID_B || N_a$
- \square S \rightarrow A: $E(K_{as}, [K_{ab} | ID_B | N_a | E(K_{bs}, [K_{ab} | ID_A])])$
- \square A \rightarrow B: E(K_{bs}, [K_{ab} | ID_A])
- \square B \rightarrow A: E(K_{ab}, N_b)
- \square A \rightarrow B: E(K_{ab}, f(N_b))

- □ خصوصیات:
- دو گام آخر برای تایید کلید (از سوی B) است.

پروتکل Needham-Schroeder

- □ معایب:
- این پروتکل نسبت به حمله تکرار آسیب پذیر است.
- ممکن است کلید جلسه قبلی لو رفته باشد و بتوان جلسه جدیدی را با تکرار از مرحله \mathbf{P} تشکیل داد و \mathbf{B} در عمل نمی تواند از زنده بودن \mathbf{A} مطمئن شود.
 - همچنان A نمی تواند از زنده بودن B و دریافت کلید توسط آن مطمئن باشد.
- \Box پیام چهارم عددی تصادفی است (رمز شده یک نانس تصادفی) و به A اطلاع خاصی نمی دهد.
 - □ راه حل مقابله با حمله تکرار:
 - تضمین تازگی پیام برای B (علاوه بر A)
 - □ به طور مثال با اضافه کردن مُهر زمانی به صورتی که در پروتکل بعد آمده است.

پروتکل Denning

- \square A \rightarrow S: $ID_A || ID_B$
- \square S \rightarrow A: $E(K_{as}, [K_{ab} | | ID_B | | T_s | | E(K_{bs}, [K_{ab} | | ID_A | | T_s])])$
- \square A \rightarrow B: E(K_{bs}, [K_{ab} \parallel ID_A \parallel T_s])
- \square B \rightarrow A: E(K_{ab}, N_b)
- \square A \rightarrow B: E(K_{ab}, f(N_b))

🗖 خصوصیات:

- استفاده از مُهر زمانی برای جلوگیری از حمله تکرار
- همچنان A از زنده بودن B نمی تواند مطمئن شود.

پروتکل Denning

- □ A و B از طریق زیر به تازه بودن پیام پی میبرند:
 - $|\operatorname{clock} T_{s}| < \Delta t_{1} + \Delta t_{2}$
- انتظار در شبکه هستند. S ساعت محلی با S و میزان تاخیر مورد انتظار در شبکه هستند.
- □ اگر ساعت فرستنده جلوتر از ساعت گیرنده باشد! مهاجم میتواند با ارسال در زمان مربوطه، حمله تکرار (-Suppress) داشته باشد! (replay

پروتکل Denning

- □ حمله Suppress-replay و مقابله با آن
- پروتکل فوق نسبت به حمله Suppress-replay آسیبپذیر است.
- □ این حمله از سنکرون نبودن ساعتهای فرستنده و گیرنده ناشی میشود.
- \Box وقتی ساعت فرستنده جلوتر از ساعت گیرنده باشد، مهاجم میتواند پیامها را ذخیره و در زمان مقرر بازارسال نماید.
 - روشهای مقابله:
 - □ چک کردن متناوب با زمان S
 - □ توافق از طریق نانس

پروتکل Neuman

- □ يروتكل بهبوديافته (جهت مقابله با حمله Suppress-Attack)
- \square A \rightarrow B: $ID_A \parallel N_a$
- \square B \rightarrow S: $ID_B \parallel N_b \parallel E(K_{bs}, [ID_A \parallel N_a \parallel T_b])$
- \square A \rightarrow B: E(K_{bs}, [ID_A | K_{ab} | T_b]) | E(K_{ab}, N_b)

T_b: time limit on ticket usage

مشکل: A از زنده بودن B اطمینان دارد ولی نمی تواند مطمئن شود که B کلید را در اختیار دارد. اگر پیغام آخر به B نرسد، A نمی تواند مطلع شود.

طراحى پروتكل

- □ مبنای طراحی پروتکلهای سری دوم
 - مبتنی بر رمز کلید عمومی
- □ کارگزار احراز اصالت (S) علاوه بر توزیع کلید جلسه، وظیفه ایجاد گواهی کلید عمومی را بر عهده دارد.
 - □ مانند رمزنگاری متقارن، می توان از مُهر زمانی یا نانس استفاده کرد.
 - احراز اصالت دوطرفه

پروتکل 1

□ کلید عمومی و مُهر زمانی

- \square A \rightarrow S: $ID_A | ID_B$
- □ S→A: $E(PR_s, [ID_A || PU_a || T])$ $E(PR_s, [ID_B || PU_b || T])$ $E(PR_s, [ID_B || PU_b || T])$
- - □ معایب: نیاز به همگام بودن زمان سیستمهای طرفین ضمنا A از زنده بودن B و در اختیار داشتن کلید توسط B اطلاعی ندارد (تایید کلید نداریم).

يروتكل 2

 \Box کلید عمومی و نانس

- \square A \rightarrow S: $ID_A || ID_B$
- \square S \rightarrow A: E(PR_s, [ID_R \parallel PU_h])

- - گواهی کلید عمومی B 🗀

- \square A \rightarrow B: E(PU_b, [N_a | ID_A])
- $B \rightarrow S: ID_A \parallel ID_B \parallel E(PU_S, N_a)$
- $S \rightarrow B$: $E(PR_s, [ID_A \parallel PU_a]) \parallel$ گواهی کلید عمومی 🗚 🦶 $E(PU_b, E(PR_s, [N_a | K_{ab} | ID_A | ID_R]))$
- $B \rightarrow A$: $E(PU_a, [E(PR_s, [N_a | K_{ab} | ID_A | ID_B]) | N_b])$
- \square A \rightarrow B: E(K_{ab}, N_b)

طراحى پروتكل

- □ مبنای طراحی پروتکلهای سری سوم
 - احراز اصالت یکطرفه
 - □ نمونهای از مورد کاربرد : E-mail
 - □ نیازمندیها:
 - احراز اصالت فرستنده
 - محرمانگی
 - راه حل
 - 🗖 رمزنگاری متقارن
 - □ رمزنگاری با کلید عمومی

پروتکل 1

- □ استفاده از رمز متقارن (برای احراز اصالت یکطرفه در ارسال ایمیل)
- \square A \rightarrow S: $ID_A \parallel ID_B \parallel N_a$
- \square S \rightarrow A: $E(K_{as}, [K_{ab} || ID_B || N_a || E(K_{bs}, [K_{ab} || ID_A])])$
- \square A \rightarrow B: E(K_{bs}, [K_{ab} | ID_A]) | E(K_{ab}, M)

- □ خصوصیات: گیرنده یکبار پیام را دریافت میکند و میتواند فرستنده را احراز نماید.
 - معایب: امکان حمله تکرار (در مرحله سوم) وجود دارد. این باعث می شود که B از زنده بودن A نیز مطمئن نباشد.

پروتکل 2

- □ استفاده از رمز کلید عمومی (برای احراز اصالت یکطرفه در ارسال ایمیل)
 - هدف: محرمانگی

- \blacksquare A \rightarrow B: E(PU_b, K_s) \parallel E(K_s, M)
 - هدف: احراز اصالت فرستنده
- \blacksquare A \rightarrow B: M \parallel E(PR_a, H(M))
 - محرمانگی و احراز اصالت فرستنده
- $A \rightarrow B$: E(PU_b, [M | E(PR_a, H(M))])
 - محرمانگی و احراز اصالت فرستنده به صورت کارا
- $A \rightarrow B$: E(PU_b, K_s) || E(K_s, [M || E(PR_a, H(M))])

پایان