

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:		(11) International Publication Number:	WO 91/10474
A61N 5/06	A1	(43) International Publication Date:	25 July 1991 (25.07.91)

US

(21) International Application Number:

PCT/US90/06472

(22) International Filing Date:

5 November 1990 (05.11.90)

(30) Priority data:

461,636

8 January 1990 (08.01.90)

(71) Applicant: HEALTH RESEARCH, INC. [US/US]; 666

(72) Inventors: WOOD, Leroy, M.; One Oregon, Buffalo, NY 14207 (US). BOYLE, Donn; 211 Clair Avenue, North Tonawanda, NY 14120 (US). POTTER, William, R.; 2413 West River Road, Grand Island, NY 14072 (US).

Elm Street, Buffalo, NY 14203 (US).

(74) Agents: PARRETT, Sherman, O. et al.; Irell & Manella, 333 South Hope Street, Suite 3300, Los Angeles, CA 90071 (US).

(81) Designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CM (OAPI patent), DE, DE (European patent), DK, DK (European patent), ES, ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), GR, GR (European patent), HU, II (European patent), JP, KP, KR, LK, LU, LU (European patent), MC, MG, ML (OAPI patent), MR (OAPI patent), MW, NL, NL (European patent), NO, RO, SD, SE, SE (European patent), SN (OAPI patent), SU, TD (OAPI patent), TG (OAPI patent),

Published

With international search report. With amended claims.

(54) Title: A SUBMERSIBLE LENS FIBEROPTIC ASSEMBLY

(57) Abstract

A submersible lens fiberoptic assembly for PDT treatment includes an optical fiber (21), a fiber jacket (22), a ball lens (20) made of zirconia and a housing (23). This fiberoptic assembly is simple and inexpensive to manufacture, and has a high quality of output light beam. A submersible lens fiberoptic assembly for PDT treatments is also disclosed which uses a hemisphere ball lens (20) for treatment of areas inaccessible to a normal "forward looking" lens.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
ΑÜ	Australia	FI	Finland	ML	Mali
38	Barbados -	PR	France	MN	Mongolia
38	Belgium	GA	Gabon	MR	Mauritania
8F	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ.	Benia	GR	Orecce	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic)P	Japan	SD	Sudan
CC	Congo	· KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
Ci	Côte d'Ivoire	KR	Republic of Korca	SU	Soviet Union
CM	Cameroon	Li	Liechtenstein	TD	Chad
Cs.	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Germany	in in	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		
	LICAMACK	MIC.	MORREO		

A SUBMERSIBLE LENS FIBEROPTIC ASSEMBLY

Cross References to Related Applications

To the extent there is common subject matter, this application is a continuation-in-part of application serial no. 268,723, filed November 8, 1988 for "In Vivo Fluorescence Photometer," and assigned to the same assignee as the present invention.

Background of the Invention

The present invention relates to a submersible lens fiberoptic assembly for use in a biological environment, and especially to a submersible ball lens fiberoptic assembly for photodynamic therapy treatments (hereinafter referred to as PDT) for transferring radiation from an optical fiber to surrounding tissue.

There are three existing types of fiberoptics used for light delivery in PDT treatments. These three known arrangements are shown in Figure 1A, 1B and 1C.

Figure 1A shows an arrangement known as a cylindrical diffuser. In this, a cylindrical optical element 11 is butted against an optical fiber 12, and functions to cylindrically diffuse light coupled into it via the optical fiber.

Figure 1B shows a prior an arrangement known as a spherical diffuser. In this, a spherical optical element 13 is coupled to an optical fiber 14 by an optical coupling 15, and functions to spherically diffuse light from the optical fiber into surrounding tissue.

10

15

20

25

30

One disadvantage of the prior art constructions shown in Figure 1A and 1B is that every spot light source on the diffusing material emits light in a random direction; that is, there is no localization control over the specific tissue being treated.

A third prior art arrangement is shown in Figure 3C, this being an arrangement known as a submersible microlens. In the arrangement of Figure 3C light rays are emitted at a controlled divergence due to the functions of lenses. this construction, a housing 16 encloses a miniature lens 17, and the housing is closed by a transparent cover plate The end of an optical fiber 19 is positioned at the back focal point of the lens 17. The location of the back focal point of the lens is influenced by the index of refraction of the lens and of the medium in contact with and the optical fiber surface. construction shown in Figure 1C, the back focal point is fixed by sealing the fiber and lens in air through use of the housing 16 and window or cover plate 18. assembly is submerged in water or a saline solution, the beam divergence is reduced but the end or face of the optical fiber remains in focus since the medium surrounding the curved refracting surface of the lens is unchanged.

The ideal assembly for coupling radiation from an optical fiber into tissue is one which produces a highly divergen beam of light whose cross section everywhere, in air or water, is a magnified image of the optical fiber end or face. While the arrangement of Figure 1C does achieve many of these objectives, the construction is complicated and accordingly expensive to manufacture.

Objects and Summary of the Invention

It is an objective of the present invention to provide a simplified, inexpensive and easily manufactured submersible lens fiberoptic assembly.

- It is another objective of the present invention to provide a novel submersible lens fiberoptic assembly which can produce a highly divergent beam of light whose cross section everywhere, in water or in air, is very close to a magnified image of the fiber end.
- It is another objective of the present invention to provide a submersible lens fiberoptic assembly which does not require the use of any optical window for isolating lens components from the medium in which the assembly is used.
- It is a still further objective of the present invention to provide a submersible lens fiberoptic assembly which can be used in conjunction with side-looking fiberoptic scopes for treatment of areas inaccessible to a "forward looking" lens.
- Briefly, in accordance with one embodiment of the invention, a submersible lens fiberoptic assembly for use in a biological environment, especially in PDT treatments, has an optical fiber with an end for emitting light energy, a fiber jacket for fixing and protecting the optical fiber, a lens made of zirconia for transferring the light beam and controlling the beam divergence, and a housing for fixing the fiber jacket and the lens. As zirconia has good properties of resisting mechanical and thermal shock, there is no need to use a window as in the case of the prior art.

 In a preferred embodiment, the lens is a ball lens, and the

10

15

fiber jacket and housing is in a threaded connection so that the distance between the optical fiber face and the ball lens can be adjusted by simply rotating the housing on the jacket. Since the lens is a ball shape, the assembly has good divergent and image formation properties. In another embodiment, the present invention provides a novel submersible lens fiberoptic assembly for use in PDT treatments using a hemisphere lens with its spherical surface facing the optical fiber end for transferring the light beam to areas which are inaccessible to a normal "forward looking" lens.

Brief Description of the Drawings

Figures 1A, 1B and 1C show three different types of prior art assemblies used for light delivery in PDT treatments.

Figure 2 shows a preferred embodiment of the submersible ball lens fiberoptic assembly of the present invention.

Figure 3 is a schematic ray diagram of a lmm zirconia 20 ball lens in air of the submersible ball lens fiberoptic assembly of the present invention.

Figure 4 shows schematically the ray trace of the output beam of a 1mm zirconia ball lens in air.

Figure 5 is a diagram of the light distribution across 25 a spot at 4.1 cm from a 1mm diameter zirconia ball lens of the submersible ball lens fiberoptic assembly of the present invention.

Figure 6 is a schematic ray diagram of an 0.8mm diameter zirconia ball lens in air of present invention.

Figure 7 is a schematic ray diagram of an 0.6mm diameter zirconia ball lens in air of the present invention.

Figure 8a shows schematically the changes of light beam diameter with respect to distance from the lens for lmm, 0.8mm and 0.6mm zirconia ball lenses in water and in air of the present submersible ball lens fiberoptic assembly.

Figure 8b shows schematically the changes of light beam diameter with respect to distance from lens for lmm, 0.8mm and 0.6mm zirconia ball lenses in air of the present submersible ball lens fiberoptic assembly.

15 Figures 9A, 9B and 9C show schematically three different arrangements of another preferred embodiment of the present invention which can deliver the light beam to the treatment areas inaccessible to a "forward looking" lens.

20 Figure 10 shows schematically an embodiment of the housing having a top cover portion used in a side looking submersible lens fiberoptic assembly of the present invention.

Detailed Description

As mentioned above, one of the important objectives of the present invention is to provide a simplified, inexpensive submersible lens fiberoptic assembly which requires a minimum in manufacturing equipment and produces WO 91/10474 PCT/US90/06472

05

10

15

20

25

30

-6-

a highly divergent beam of light having a symmetrical cross section along its length, both in air and water. Referring now to Figure 2, a preferred embodiment of the submersible lens fiberoptic assembly of the present invention includes a ball lens 20, an optical fiber 21 having a fiber jacket 22 and a cylindrical housing 23.

The ball lens 20 is preferably made of zirconia because of its mechanical, thermal and optical properties. Specifically, zirconia is a very hard material. zirconia ball is placed on a lab table and struck with a carpenter's hammer, for example, the table top acquires a dent, but there is no visible damage to the ball. ability to withstand rough handling simplifies the assembly The cylindrical housing 23 can be made of metal, such as brass. One end of the metal housing is drilled to take the press-fitted ball lens 20. jacket 22 are preferably and the fiber housing 23 threadedly coupled so that the distance between the optical fiber face and the ball lens can be adjusted precisely by simply rotating the housing 23. The pressfit and the tight thread on the fiber jacket make a water tight seal to the air chamber (generally indicated by reference numeral 24) on the input side of the ball. Care must be taken to insure that this volume is free of particles during assembly since the ball lens produces an enlarged image of particles lying on the face of the fiber.

The exposed surface of the ball lens 20 needs no special protection or cleaning procedure. This was demonstrated in an experiment wherein a ball lens fiberoptic was coupled to an argon pumped dye laser and submerged in a test tube of human blood. The dye laser power was increased until the blood adjacent to the lens

10

15

20

25

30

surface was boiling vigorously. The ball lens fiberoptic was withdrawn and allowed to "smoke." The baked blood was scraped from the lens surface with a knife edge and the surface was wiped clean with an alcohol soaked gauze. The focused spot using this ball lens appeared to be the same as before the test.

In accordance with one specific embodiment, the ball lens 20 is a lmm diameter precision optical sphere made of zirconia, and the metal housing or cylinder 23 is drilled through from the opposite end to take a 120 thread per inch tap. Suitable zirconium spheres are commercially available from Precomp Inc., of Great Neck, New York. housing is threaded into the jacket 22 of a 400 micrometer diameter optical fiber until the polished fiber end is in contact with the sphere, and then backed off one-half turn. The back focal point for the submerged ball lens assembly is 108 micrometers from the surface of the ball lens. is a half turn of the thread. The back focal point for the lens in air is inaccessible, being 33 micrometers inside the ball. However, the fiber end is nearly focused in air and appears sharp in water, even if the fiber is in contact with the ball.

The passage of light through the ball lens in air is demonstrated by the tracing of oblique meridonal rays as shown in Figures 3 and 4. The wavelength is 630nm, for which the index of refraction of zirconia is 2.152. Figure 3 is drawn on a scale of 100 X and shows the light field in and near the ball. Figure 4 is drawn on a scale of 10 X and shows the beam for a distance of 2 cm from the lens.

The fiber is in contact with the ball in Figure 3. Each point on the fiber surface is assumed to emit light into a cone with an apex angle given by the numerical aperture (N.A.) of the fiber. (N.A. is equal to the sine of half the apex angle.) Nine such points are labeled in the figure. Three rays from each point are drawn to show how the ball lens forms a focused image of the fiber end.

05

10

15

20

25

30

The ray traces are symmetrical about the optical axis through the center of the sphere (the perpendicular to the fiber face). All rays from the fiber having a common direction are focused by the input surface at a point inside the ball. Three such focal points are shown in Figure 3 for the three rays of the cone. focusing of the rays inside the lens occurs because the lens is spherical, its index of refraction is greater than 2, and the input surface of the sphere is in air. light beam has its smallest diameter inside the sphere. The rays diverge from the focal points and are refracted at the output surface to form a more (in air) or less (in water) rapidly diverging beam.

The rays of the output beam near the lens in Figure 3 are extended in Figure 4 into the far field. The points of origin of the rays are indicated by the numbers on the right of the drawing. The rays from any point on the fiber face appear in the output beam as nearly parallel rays and are on the opposite side of the optical axis. For example, the three diverging rays from the top of the fiber in Figure 3 appear in Figure 4 as three nearly parallel rays at the bottom of the beam. Thus, any cross section of the beam in the far field of the lens is a magnified, inverted, nearly focused image of the fiber face. Therefore, there

0.5

15

20

25

is no need for a window on the lens as is the case with the prior art.

Approximate but useful expressions can be derived from paraxial ray equations for the output beam divergence and the beam diameter at the output surface of the ball lens. These equations show how physical properties of the fiber, ball lens and medium in which the ball lens is submerged determine output beam parameters. The equations are:

$$U = \frac{360}{\pi} \frac{D_f}{D_b^f} \left\{ \frac{1-2}{n} + \frac{1}{n} \right\}$$
 (1)

10
$$D_0 = \left\{ \frac{1-2}{n} \right\} D_f + \frac{2}{n} D_b \left\{ N.A. \right\}$$
 (2)

Where U = full angle beam divergence in degrees

Df = optical fiber diameter

Db = ball lens diameter

n = index of refraction of the ball lens
material, must be greater than or equal to
2

n¹ = index of refraction of medium in which lens
is submerged, is equal to 1 for air, 1.33
for water

 ${\rm D_O}$ = beam diameter at output surface of the ball N.A. = the numerical aperture of the fiber in air

A practical application of equation (2) is the calculation of the beam intensity (watts/cm²) at the exposed surface of the ball lens. For a 1 mm diameter ball lens of zirconia and a 400 micron diameter fiber with a numerical aperture of 0.22, the beam diameter at the ball surface is 0.23 mm. Eighty milliwatts are required to

treat a 1 cm diameter tumor at a power density of 100 mW/cm^2 . The beam intensity at the ball surface calculates to be 190 watts/cm², a substantial energy flux. According to equation (1), the beam intensity drops to 100 mW/cm^2 at 11 mm from the lens in air.

05

10

15

30

The focused fiber end or spot appears very uniform to the eye. Figure 5 is a plot of the measured light distribution across a spot at 4.1 cm from a 1 mm ball lens. The ball lens fiber was coupled to a helium-neon laser (633 nm wavelength) whose output was chopped at 1.5 kHz. The instrumentation consisted of a model 4010 Laserguide fiberoptic light guide, a photodetector, an amplifier phase locked to the 1.5 kHz signal, and a digital voltmeter. The light guide is a spherical diffuser normally used in PDT treatments of the bladder. It produces a spherically symmetric light field from a 1.7 mm diameter sphere of light diffusing material. Used in reverse it collects light from almost all directions.

Measurements were made every 2mm across the beam.

20 Each scan was repeated five times. The measured values were averaged and normalized with respect to the center value. The data are plotted in Figure 5 with + one sigma error bars. The illumination is 80% or better of the maximum value over most of the beam cross section. The distribution is not exactly symmetrical because the ball and fiber were not perfectly aligned. The peaks near the center and the edge may be due to multiple reflections.

It should be pointed out that the material costs are low for the construction of this invention, as shown in Figure 2. Five hundred of the 1 mm diameter balls were purchased from Precomp Inc. for less than 40¢ each. The

10

15

25

30

manufacturer's tolerances are \pm 1 micrometer on the diameter and one-quarter wave or better at 587 nm on the sphericity. The 400 micron diameter optical fiber was purchased from Ensign-Bickford Optics at \$4 per meter. This fiber has a hard polymer cladding and a tetzel jacket. It is a very durable fiber.

Smaller diameter balls produce beams of greater Figures 6 and 7, relating divergence as shown in respectively to 0.8 mm and 0.6 mm ball lens. The interior focal points are not as well defined in the 0.6 mm ball lens as in the 1 mm ball lens. This may indicate a fall-off in image quality with increasing curvature of the refractory surface.

The trace of the horizontal ray emitted from the edge of the fiber is used to define the output beam size. angle which this ray makes with the optical axis after refraction at the output surface is the half-angle beam divergence. This ray appears to come from a point on the optical axis close to the output surface of the sphere. Therefore, the beam diameter at any distance from the lens 20 is given by twice the product of this distance and the tangent of the half angle divergence.

Beam diameter plots for 1mm, 0.8 mm and 0.6 mm ball lenses in water and in air are shown in Figures 8A and 8B, respectively. The full angle of the beam divergence is given next to each curve. These angles are smaller when the ball lens is submerged because water reduces the refraction of rays at the output surface. The measured values for the 1 mm ball lens are in agreement with the theoretical prediction. By way of comparison,

WO 91/10474 PCT/US90/06472

05

10

15

-12-

Laserguide Microlens Model 5060 has the same divergence as that predicted for an 800 micron diameter ball lens.

Referring now to Figures 9A, 9B and 9C, there is shown another preferred embodiment of the submersible lens fiberoptic system of the present invention which can be used in conjunction with side looking fiberoptic scopes for treatment of areas inaccessible to a "forwarding looking" In this embodiment, the lens is a hemisphere lens made of zirconia and its spherical surface faces the This optical fiber end. type of submersible lens fiberoptic system can produce an output beam at angles up to 120° from the fiber axis. If air is maintained at the plane surface, total internal reflection (TIR) would occur for beam deflection up to 90°. At larger angles a reflective coating would be required. Figure 9A, 9B and 9C show the different arrangements under which the output beams of the system are at angles 60°, 90° and 120° from the fiber axis, respectively.

Figure 10 shows an embodiment of the housing 30 used 20 to fix the fiber jacket 22 and lens 20 of the side looking submersible lens fiberoptic assembly. The housing 30, besides the sleeve configuration 23 discussed in the forward looking assembly, further includes a top cover portion 25 which has a circular opening 27 on its side functioning as a light output passage, and an air cap 26 25 fitted on the hemisphere lens 20 to provide an air chamber 28 for the plane surface of the lens. The top cover portion is preferably made of plastic material such as The top cover portion can be formed in the following way. The fiber system and lens with an air cap 30 are first held by an appropriate device and correct alignment of the sphere to the fiber is made. Then, the

lens is fixed to the fiber system by a waxing fixture and put into a silicon rubber mold for casting epoxy. After the lens is fixed with the fiber system by means of epoxy top cover 25, the fiber jacket 22 is unscrewed from the assembly and the wax is removed with ether or hot water to provide a air chamber 24 between the lens and fiber. Finally, the fiber is cleaned and threaded back to a proper focus for use.

Of course, some modifications as to the top cover are possible without departing from the invention concept while the present invention has been described. It is intended to cover in the appended claims all such modifications within the spirit of the invention.

What is claimed is:

- 1. A submersible ball lens fiberoptic assembly for PDT treatment comprising:
- an optical fiber with an end face for emitting light
 05 energy,
 - a fiber jacket means for fixing and protecting said optical fiber,
 - a ball lens made of zirconia for transferring the light beam from said optical fiber and controlling the beam divergence, and
 - a housing means fixed to said fiber jacket means and enclosing said ball lens and said end face of said optical fiber in a predetermined relationship with respect to each other.
- 2. A submersible ball lens fiberoptic assembly as claimed in claim 1, wherein said housing means and said fiber jacket means are in threaded connection so that the distance between the optical fiber end and said ball lens is adjustable.
- 3. A submersible lens fiberoptic assembly for use in a biological environment comprising:
 - an optical fiber with an end face for emitting light energy,
- a fiber jacket means for fixing and protecting said optical fiber,
 - a lens made of zirconia for transferring the light beam from said optical fiber and controlling the beam divergence, and
- a housing means fixed to said fiber jacket means and 30 enclosing said lens and said optical fiber end face in a predetermined relationship with respect to each other.

- 4. A submersible lens fiberoptic assembly as claimed in claim 3, wherein said lens is a hemisphere lens with its spherical surface facing said optical fiber end.
- 5. A submersible lens fiberoptic assembly as claimed in claim 4, wherein said hemisphere lens further includes a reflective coating on its plane face.
 - 6. A submersible lens fiberoptic assembly as claimed in claim 3, wherein said housing means and said fiber jacket means are in threaded connection.
- 7. A submersible ball lens fiberoptic assembly for use in a biological environment comprising:

an optical fiber with an end face for emitting light energy,

- a fiber jacket means for fixing and protecting said optical fiber,
 - a ball lens in a predetermined relationship to said optical fiber end face for delivering the light beam from said optical fiber and controlling the beam divergence, and
- a housing means fixed to said fiber jacket means and 20 mounting said ball lens.
 - 8. A submersible ball lens fiberoptic assembly as claimed in claim 7, wherein the index of refraction of said ball lens is greater than 2 for light having a wavelength of 630 nm.
- 9. A submersible ball lens fiberoptic assembly as claimed in claim 7, wherein said housing means and said fiber jacket means are in threaded connection.

- 10. A submersible ball lens fiberoptic assembly as claimed in claim 9, wherein said housing means is made of brass.
- 11. A submersible lens fiberoptic assembly for PDT
 05 treatment comprising:

an optical fiber with an end face for emitting a light beam.

- a fiber jacket means for fixing and protecting said optical fiber,
- a hemisphere lens with its spherical surface facing said optical fiber end,
 - a housing means fixed to said fiber jacket means and mounting said lens.
- 12. A submersible lens fiberoptic assembly claimed in 15 claim 11, wherein the index of refraction of said lens is greater than 2 for light having a wavelength of 630 nm.
 - 13. A submersible lens fiberoptic assembly as claimed in claim 12, wherein said lens is made of zirconia.
- 14. A submersible lens fiberoptic assembly as claimed 20 in claim 11, wherein said lens further includes a reflective coating on its plane surface.
- 15. A submersible lens fiberoptic assembly as claimed in claim 11, wherein said housing means includes a top cover portion for fixing said lens in place which has an opening on its side functioning as a light output path.

WO 91/10474 PCT/US90/06472

AMENDED CLAIMS

[received by the International Bureau on 11 April 1991 (11.04.91); original claims 8,11-15 cancelled; original claims 1 and 7 amended; other claims unchanged (2 pages)]

- 1. A submersible lens fiberoptic assembly which can produce a highly divergent beam of light for PDT treatment comprising:
- an optical fiber with an end face for emitting light energy,
 - a fiber jacket means for protecting said optical fiber,
- a ball lens made of zirconia material and disposed in front of said optical fiber end face for focusing the light beam from said optical fiber inside itself and producing a highly divergent beam of light, and
- a housing means fixed to said fiber jacket means and enclosing said ball lens and said end face of said optical fiber in a predetermined relationship with respect to each other.
- 2. A submersible ball lens fiberoptic assembly as claimed in Claim 1, wherein said housing means and said fiber jacket means are in threaded connection so that the distance between the optical fiber end and said ball lens is adjustable.
- 3. A submersible lens fiberoptic assembly for use in a biological environment comprising:
- an optical fiber with an end face for emitting light energy,
- a fiber jacket means for fixing and protecting said optical fiber,
- a lens made of zirconia for transferring the light beam from said optical fiber and controlling the beam divergence, and
- a housing means fixed to said fiber jacket means and enclosing said lens and said optical fiber end face in a predetermined relationship with respect to each other.
- 4. A submersible lens fiberoptic assembly as claimed in Claim 3, wherein said lens is a hemisphere lens with its spherical surface facing said optical fiber end.

- 5. A submersible lens fiberoptic assembly as claimed in Claim 4, wherein said hemisphere lens further includes a reflective coating on its plane face.
- 6. A submersible lens fiberoptic assembly as claimed in Claim 3, wherein said housing means and said fiber jacket means are in threaded connection.
- 7. A submersible lens fiberoptic assembly which can produce a highly divergent beam of light for use in a biological environment comprising:

an optical fiber with an end face for emitting light energy,

- a fiber jacket means for protecting said optical fiber,
- a ball lens having an index of refraction greater than two for light in a wavelength of 630 mm for focusing the light beam from said optical fiber inside itself and producing a controlled and highly divergent beam of light, and
- a housing means fixed to said fiber jacket means and mounting said ball lens.
- 8. A submersible ball lens fiberoptic assembly as claimed in Claim 7, wherein said housing means and said fiber jacket means are in threaded connection.
- 9. A submersible ball lens fiberoptic assembly as claimed in Claim 8, wherein said housing means is made of brass.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US90/06472 I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) 3 According to International Patent Classification (IPC) or to both National Classification and IPC IPC(5): A61N 5/06 US CL.: 606/15 II. FIELDS SEARCHED Minimum Documentation Searched 4 Classification System Classification Symbols US 128/654,665,397,398 606/15-17 350/96.15,96.18,96.19 Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched III. DOCUMENTS CONSIDERED TO BE RELEVANT 14 Citation of Document, 15 with indication, where appropriate, of the relevant passages 17 Relevant to Claim No. 14 $\frac{\mathbf{X}}{\mathbf{Y}}$ US, A, 4,865,029 12 September 1989 (PANKRATOV et al.) See entire document. 1-6,8,10 US, A, 4,608,930 02 September 1986 (ATHARA) 11,14,15 4,5,12,13 See column 2, lines 11-21, column 4, liens 31-54, column 5, lines 46-68, column 6, lines 1-10, 30-68, column 7, lines 1-6. Y US, A, 3,843,228 22 October 1974 (YOSHTYAGAWA et al.) 1-3,6,8 See entire document. US, A, 4,676,231 30 June 1987 (HISAZUMI et al.) A 4.11 * Special categories of cited documents: 13 later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "A" document defining the general state of the art which is not considered to be of particular relevance serior document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered nevel or cannot be considered to involve an inventive step document which may throw doubts on priority claim(e) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means decument published prior to the international filing date but later than the priority date claimed "4" document member of the same patent family IV. CERTIFICATION Date of the Actual Completion of the International Search 1 Date of Mailing of this International Search Report 9 24 JANUARY 1991 International Searching Authority 1

SMITH

Form PCT/ISA/210 (second sheet) (May 1986)

ISA/US