MÉTODOS COMPUTACIONALES

Guía 1 - Ecuaciones Lineales Primer Semestre 2025

Ejercicio 1. Implementar funciones en Python para calcular las siguientes operaciones con vectores en \mathbb{R}^3 :

- a) Suma y resta de dos vectores
- b) Multiplicación de vector por escalar
- c) Multiplicación entre dos vectores que devuelva un número (producto escalar)

Luego, generalizar para vectores en \mathbb{R}^n .

Ejercicio 2. Implementar funciones en Python para calcular las siguientes operaciones con matrices en $\mathbb{R}^{3\times 3}$.

- a) Suma y resta de matrices
- b) Multiplicación de una matriz por un escalar
- c) Multiplicación de una matriz por un vector
- d) Multiplicación de dos matrices

Luego, generalizar para matrices en $\mathbb{R}^{n \times m}$.

Ejercicio 3. Dados los vectores u = [-8, 9], v = [3, -1] y w = [2, -4], calcular:

- a) 2u + 4v w
- b) $3u + \frac{1}{2}(2v + w)$

Ejercicio 4. Dados los vectores u = [1, 3, 1], v = [5, -3, 2] y w = [-3, -4, 2], calcular:

- a) uv
- b) (u+2v)(w-v)
- c) uv (v+w)u + 2uw

Ejercicio 5. Hallar, si es posible, parámetros k y $t \in \mathbb{R}$ tales que:

- a) [k+1, -3k+4, k-1] = [3, -2, 1]
- b) [t+1, -3t+4, t-1] = [3, -6, 1]

Ejercicio 6. Resolver el sistema de dos ecuaciones por eliminación de variables:

$$\begin{cases} x - y = 0\\ 3x + 6y = 18 \end{cases}$$

a) Implementar una función en Python que represente cada ecuación como una recta en el plano \mathbb{R}^2 .

1

b) Identificar el punto en el que ambas lineas se intersecan.

c) Agregar a la figura la representación de la ecuación que se obtiene luego de sustituir una de las variables en la segunda ecuación.

Ejercicio 7. Implementar una función en Python que permita graficar las siguientes ecuaciones para distintos valores de b_1 y $b_2 \in \mathbb{R}$. ¿Qué condiciones sobre los valores de b_1 y b_2 pueden evaluarse para determinar si el sistema admitirá solución? ¿Cuántas soluciones tendrá el sistema?

$$\begin{cases} 3x - 2y = b_1 \\ 6x - 4y = b_2 \end{cases}$$

Ejercicio 8. Escribir, si es posible, al vector v = [1, 2, -4] como combinación lineal de los vectores dados en cada caso:

- a) $\{[1,0,0],[0,1,0],[0,0,1]\}$
- b) $\{[3,-1,-1],[0,1,2],[1,4,1]\}$
- c) $\{[0,2,-3],[1,0,-1]\}$
- d) $\{[1,1,1],[2,-2,-2]\}$

Ejercicio 9. Analizar la consistencia del sistema de ecuaciones para todos los distintos valores de los parámetros k y $t \in \mathbb{R}$.

$$\begin{cases} 2x + ky = 16\\ 4x + 8y = t \end{cases}$$

- a) ¿Para qué valores el sistema es inconsistente?
- b) ¿Para qué valores el sistema tiene solución única?
- c) ¿Para qué valores el sistema tiene infinitas soluciones?

Ejercicio 10. Para el siguiente sistema de ecuaciones:

$$\begin{cases} x_1 + kx_2 + (1+4k)x_3 = 1+4k \\ 2x_1 + (k+1)x_2 + (2+7k)x_3 = 1+7k \\ 3x_1 + (k+2)x_2 + (3+9k)x_3 = 1+9k \end{cases}$$

- a) Determinar la cantidad de soluciones dependiendo del parámetro k.
- b) Para cada valor(es) de k para los cuales exista una o infinitas soluciones, encontrar dicha solución (expresarla usando combinaciones lineales de vectores).

Ejercicio 11. Sean las matrices:

$$A = \begin{bmatrix} x & 1 \\ 2x & -1 \\ -x & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ y \end{bmatrix}, \quad C = \begin{bmatrix} z \\ 2z \\ -z \end{bmatrix}, \quad D = \begin{bmatrix} 1 \\ 0 \\ 1/3 \end{bmatrix}$$

Sabiendo que (AB) + C = 3D:

- a) Plantear un sistema de ecuaciones para encontrar los valores de x, y, z.
- b) Si el sistema es consistente, encontrar una solución.

Ejercicio 12. Encontrar una función cuadrática $f(x) = ax^2 + bx + c$, tal que:

$$f(1) = 3, f'(1) = 3, f''(1) = 2$$

Ejercicio 13. Encontrar un polinomio de tercer grado $p(x) = a + bx + cx^2 + dx^3$, tal que:

$$p(1) = 1$$
, $p'(1) = 5$, $p(-1) = 3$, $p'(-1) = 1$