1. Introduction to spectral theory

1.1. Main definitions.

Introduce eigenvalue & eigenvector first, and the method to find these thing.

<u>Definition.</u> A scalar λ is called an eigenvalue of an operator $A: V \to V$ if there exists a non-zero vector $v \in V$ such that

$$Av = \lambda v$$

The vector v is called the eigenvector of A

Theorem (From hamberger Thm 5.2). Let $A \in M_{n \times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if $\det(A - \lambda I_n) = 0$.

Proof. A scalar λ is an eigenvalue of A if and only if there exists a nonzero vector $v \in F^n$ such that $Av = \lambda v$, that is, $(A - \lambda I_n)(v) = 0$. By Theorem 2.5, this is true **if and only if** $A - \lambda I_n$ is not invertible. However, this result is equivalent to the statement that $\det(A - \lambda I_n) = 0$

<u>Definition</u>. Let $A \in M_{n \times n}(F)$. The polynomial $f(t) = \det(A - tI_n)$ is called the characteristic polynomial of A

Theorem (From hamberger Thm 5.4). Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T - \lambda I)$.

<u>Definition.</u> The nullspace $N(A - \lambda I)$, i.e. the set of all eigenvectors and 0 vector, is called the eigenspace. The set of all eigenvalues of an operator A is called spectrum of A, and is usually denoted $\sigma(A)$.

Remark.

If the matrix A is ugly, what should we do? we can use the similar matrices

A and B are called similar if there exists an invertible matrix S such that

$$A = SBS^{-1}$$

The determinants of similar matrix is same

$$\det(A) = \det(SBS^{-1}) = \det(S)\det(B)\det(S^{-1}) = \det(B)$$

We can find $A - \lambda I$ and $B - \lambda I$ is similar

$$A - \lambda I = SBS^{-1} - \lambda SIS^{-1} = S(BS^{-1} - \lambda IS^{-1}) = S(B - \lambda I)S^{-1}$$

It same in transform

If $T: V \to V$ is a linear transform, α, β are two bases in V, then

$$[T]^{\alpha}_{\alpha} = [I]^{\alpha}_{\beta} [T]^{\beta}_{\beta} [I]^{\beta}_{\alpha}$$

Before introducing diagonal, we have these two mutiplicity,

<u>Definition</u> (algebraic mutiplicity). The largest positive integer k such that $(x - \lambda)^k$ divides p(x) is called the multiplicity of the root λ .

If λ is an eigenvalue of an operator (matrix) A, then it is a root of the characteristic polynomial $p(z) = \det(A - zI)$. The multiplicity of this root is called the (algebraic) multiplicity of the eigenvalue λ .

<u>Definition</u> (geometric multiplicity). The dimension of the eigen space $N(A - \lambda I)$ is called geometric multiplicity of the eigenvalue λ .

1.2. Diagonalization.

Definition. A linear operator T on a finite-dimensional vector space V is called diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix. A square matrix A is called diagonalizable if L_A is diagonalizable.

After have the definition of diagonal, we want to know want matrix can be diagonal.

Definition. A linear operator T on a finite-dimensional vector space V is called diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix. A square matrix A is called diagonalizable if L_A is diagonalizable.

Theorem. A matrix A admits a representation $A = SDS^{-1}$, where D is a diagonal matrix and S is an invertible one **if and only if** there exists a basis in F^n of eigenvectors of A.

In this theorem, we will know the relation between diagonal matrix and the eigenvector

Proof. Let $D = \text{diag} \{ \lambda_1, \lambda_2, \dots, \lambda_n \}$, and let b_1, \dots, b_n be the columns of S (note that since S is invertible it's columns form a basis in F^n). Then the identity $A = SDS^{-1}$ means that $D = [A]_{\beta}^{\beta}$

Indeed, $S = [I]_S^{\beta}$ is the change of the coordinates matrix from β to the standard basis S so we get from $A = SDS^{-1}$ that $D = S^{-1}AS = [I]_S^{\beta}A[I]_{\beta}^S$, which means exactly that $D = [A]_{\beta}$

Theorem. Let $\lambda_1, \lambda_2, \dots, \lambda_r$ be distinct eigenvalues of A, and let v_1, v_2, \dots, v_r be the corresponding eigenvectors. Then vectors v_1, v_2, \dots, v_r are linearly independent.

Corollary. If an operator $A: V \to V$ has exactly n = dimV distinct eigenvalues, then it is diagonalizable.

This section we will focus the bases of subspace to build the tool to proof the criterion of diagnal.

<u>Definition</u> (Direct sums of subspaces). Let V_1, V_2, \dots, V_p be a subspaces of a vector space V. We say that the system of subspace is a basis in V if any vector $v \in V$ admits a unique representation as a sum

$$v = v_1 + v_2 + \dots + v_p = \sum_{k=1}^{p} v_k, \ v_k \in V_k$$

We also say, that a system of subspaces V_1, V_2, \cdots, V_p is linearly independent if the equation

$$v_1 + v_2 + \dots + v_p = 0, \ v_k \in V_k$$

has only trivial solution

Remark. From the above definition, the system of eigenspaces E_k if an operator A

$$E_k = N(A - \lambda_k I)$$

is linearly independent

Lemma. Let V_1, V_2, \dots, V_p be a linearly independent family of subspaces, and leu us have in each subspace V_k a linearly independent system β_k of vectors. Then the union $B = \bigcup_k \beta_k$ is a linearly independent system.

Theorem. Let V_1, V_2, \dots, V_p be a basis of subspaces, and let us have in each subspace V_k a basis (of vectors) β_k . Then the union $\bigcup_k \beta_k$ of these bases is a basis in V.

After we have the tool, we can use it to check the criterion of diagonal.

Theorem. Let an operator $A: V \to V$ has exactly $n = \dim V$ eigenvalues (counting multiplicities). Then A is diagonalizable if and only if for each eigenvalue λ , geometric multiplicity A algebraic multiplicity.

2. Inner Product Spaces

2.1. Inner Products & Norms.

Definition. Let V be a vector space over F. An **inner product** on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F, denoted $\langle x, y \rangle$, such that for all x, y and z in V and all c in F, the following hold:

(a)
$$\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$$

(b)
$$\langle cx, y \rangle = c \langle x, y \rangle$$

(c)
$$\overline{\langle x, y \rangle} = \langle y, x \rangle$$

(d)
$$\langle x, x \rangle > 0$$
 if $x \neq 0$

if $a_1, a_2, \dots, a_n \in F$ and $y, v_1, v_2, \dots, v_n \in V$, then

$$\left\langle \sum_{i=1}^{n} a_i v_i, y \right\rangle = \sum_{i=1}^{n} a_i \left\langle v_i, y \right\rangle$$

vector space V over F endowed with a specific inner product is called inner product space

Note: We just define the **rule** of the inner product, not define **what** is inner product.

Theorem. Let V be an inner product space. Then for $x, y, z \in V$ and $c \in F$, the following statements are true.

(a)
$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$
.

(b)
$$\langle x, cy \rangle = \overline{c} \langle x, y \rangle$$

(c)
$$\langle x, 0 \rangle = \langle 0, x \rangle = 0$$

(d)
$$\langle x, x \rangle = 0$$
 if and only if $x = 0$

(e) If
$$\langle x, y \rangle = \langle x, z \rangle$$
 for all $x \in V$, then $y = z$

<u>Definition</u>. Let V be an inner product space. For $x \in V$, we define the **norm** or **length** of x by $||x|| = \sqrt{\langle x, x \rangle}$

Theorem. Let V be an inner product space over F. Then for all $x, y \in V$ and $c \in F$, the following statements are true

- (a) $||cx|| = |c| \cdot ||x||$
- (b) ||x|| = 0 if and only if x = 0. In any case, $||x|| \ge 0$
- (c) (Cauchy-Schwarz Inequality) $|\langle x, y \rangle| \le ||x|| \cdot ||y||$.
- (d) (Triangle Inequality) $||x+y|| \le ||x|| + ||y||$.

After have the definition of inner product and norm, we can define orthogonal.

<u>Definition</u>. Let V be an inner product space. Vectors x and y in V are **orthogonal(perpendicular)** if $\langle x, y \rangle = 0$. A subset S of V is **orthogonal** if ant two distinct vectors in S are orthogonal. A vector x in V is a **unit vector** if ||x|| = 1. Finally, a subset S of V is **orthonormal** if S is orthogonal and consists entirely of unit vectors.

2.2. Gram-Schmidt & Orthogonal complements.

The power of the orthogonal subset

Theorem. Let V be an inner product space and $S = \{v_1, v_2, \dots, v_k\}$ be an orthogonal subset of V consisting of nonzero vectors. If $y \in span(S)$, then

$$y = \sum_{i=1}^{k} \frac{\langle y, v_i \rangle}{||v_i||^2} v_i$$

Corollary. If, in addition to the hypotheses of thm, S is orthonormal and $y \in span(S)$, then

$$y = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$$

Corollary. Let V be an inner product space, and let S be an orthogonal subset of V consisting of nonzero vectors. Then S is linearly independent.

Theorem (Gram-Schmidt). Let V be an inner product space and $S = \{w_1, w_2, \dots, w_n\}$ be a linearly independent subset of V. Define $S' = \{v_1, v_2, \dots, v_n\}$, where $v_1 = w_1$ and

$$v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{||v_j||^2} v_j \quad \text{for } 2 \le k \le n$$

Then S' is an orthogonal set of nonzero vectors such that span(S') = span(S).

Theorem. Let V be a nonzero finite-dimensional inner product space. Then V has an orthonormal basis β . Furthermore, if $\beta = \{v_1, v_2, \dots, v_n\}$ and $x \in V$, then

$$x = \sum_{i=1}^{n} \langle x, v_i \rangle v_i$$

Corollary. Let V be finite-dimensional inner product space with an orthonormal basis $\beta = \{v_1, v_2, \dots, v_n\}$. Let T be a linear operator on V, and let $A = [T]_{\beta}$. Then for any i and j, $A_{ij} = \langle T(v_j), v_i \rangle$

<u>Definition</u>. Let β be an orthonormal subset (possibly infinite) of an inner product space V, and let $x \in V$. We define the **Fourier coefficients** of x relative to β to

After have good tools, we are going to check the **orthogonal complement** of S.

<u>Definition.</u> Let S be a nonempty subset of an inner product space V. We define S^{\perp} to be the set of all vectors in V that are orthogonal to every vector in S; that is, $S^{\perp} = \{x \in V \mid \langle x,y \rangle = 0 \text{ for all } y \in S\}$. The set S^{\perp} is called the **orthogonal complement** of S.

Theorem. Let W be a finite-dimensional subspace of an inner product space V, and let $y \in V$. Then there exist unique vectors $u \in W$ and $z \in W^{\perp}$. i.e.

$$V=W\oplus W^\perp$$

Furthermore, if $\{v_1, v_2, \dots, v_k\}$ is an orthonormal basis for W, then

$$u = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$$

Corollary. In the notation of Thm, the vector u is the unique vector in W that is "closest" to y; that is, for any $x \in W$, $||y - x|| \ge ||y - u||$, and this inequality is an equality if and only if x = u.

Theorem. Suppose that $S = \{v_1, v_2, \dots, v_k\}$ is an orthonormal set in an n-dimensional inner product space V. Then

- (a) S can be extended to an orthonormal basis $\{v_1, v_2, \dots, v_k, v_{k+1}, \dots, v_n\}$ for V
- (b) If W = span(S), then $S_1 = \{v_{k+1}, v_{k+2}, \dots, v_n\}$ is an orthonormal basis for W^{\perp}
- (c) If W is any subspace of V, then $\dim(V) = \dim(W) + \dim(W^{\perp})$

2.3. The Adjoint of a Linear Operator.

In this section, we will introduce the adjoint linear operator and it's property. Before know adjoint operation, we need to know the theorem first.

Theorem. Let V be a finite-dimensional inner product space over F, and let $g: V \to F$ be a linear transformation. Then there exists a **unique** vector $y \in V$ such that $g(x) = \langle x, y \rangle$ for all $x \in V$

this proof next time

Theorem. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Then there exists a unique function $T^*: V \to V$ such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ for all $x, y \in V$. Furthermore, T^* is linear.

We define the T^* here, and next we want to know the * in the matrix presentation.

Theorem. Let V be a finite-dimensional inner product space, and let β be an orthonormal basis for V. If T is a linear operator on V, then

$$[T^*]_{\beta} = [T]_{\beta}^*$$

Corollary. Let A be an " $n \times n$ " matrix. Then $L_{A^*} = (L_A)^*$

Theorem. Let V be an inner product space, and let T and U be linear operators on V. Then

a)
$$(T+U)^* = T^* + U^*$$

b)
$$(cT)^* = \overline{c}T^*$$
 for any $c \in F$

$$c) (TU)^* = U * T *$$

$$d) T^{**} = T*$$

$$e) I^* = I$$

Corollary. Let A and B be $n \times n$ matrices. Then

a)
$$(A+B)^* = A^* + B^*$$

b) $(cA)^* = \overline{c}A^*$ for all $c \in F$

c)
$$(AB)^* = B^*A^*$$

 $d) A^{**} = A$

$$e) I^* = I$$

we skip the minimum function here(LAMMA~Thm 6.13)

2.4. Normal & Self-Adjoint Operators.

Lemma. Let T be a linear operator on a finite-dimensional inner product space V. If T has an eigenvector, then so does T^* .

Theorem (Schur). Let T be a linear operator on a finite-dimension inner product space V. Suppose that the characteristic polynomial of T splits. Then there exists an orthonormal basis β for V such that the matrix $[T]_{\beta}$ is upper triangular.

I don't know why read Schur here, but we are going to introduce **normal** and it's property.

Definition. Let V be an inner product space, and let T be a linear operator on V. We say that T is **normal** if $TT^* = T^*T$. An $n \times n$ real or complex matrix A is **normal** if $AA^* = A^*A$.

Theorem. Let V be an inner product space, and let T be a **normal operator** on V. Then the following statements are true.

- a) $||T(x)|| = ||T^*(x)||$ for all $x \in V$.
- b) T cI is normal for every $c \in F$
- c) If x is an eigenvector of T, then x is also an eigenvector of T^* . In fact, if $T(x) = \lambda x$, then $T^*(x) = \overline{\lambda}x$.
- d) If λ_1 and λ_2 are distinct eigenvalues of T with corresponding eigenvectors x_1 and x_2 , then x_1 and x_2 are orthogonal.