RAJALAKSHMI ENGINEERING COLLEGE

An Autonomous Institution Affiliated to Anna University, Chennai, Rajalakshmi Nagar, Thandalam – 602 105

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

CS23331 - Design	And Analysis	of Algorithms
Laboratory	Record Note	Book

Name:		
Register No. :		
	Section 2 nd Year/AIML/C]
	/ Section	J
Semester:		_
Academic Year:	2024-2025	

RAJALAKSHMI ENGINEERING COLLEGE

An Autonomous Institution Affiliated to Anna University, Chennai, Rajalakshmi Nagar, Thandalam – 602 105

BONAFIDE CERTIFICATE

Name:	
Academic Year: 2024–2025 Semester: I	II Branch: B.Tech- AIML
Register No.	
Certified that this is the bonafide record the CS23331- Design And Analysis of Algoring the academic year 2024- 2025	·
	Signature of Faculty in-charge
Submitted for the Practical Examination he	old on 22/11/2024

Internal Examiner

External Examiner

INDEX

S.NO	Date	Name of the Experiment
(10/8/24	Basic C Programming
2	1/9/24	Finding Time Complexity Of Algorithms
3	15/9/24	Dĭvĭde and Conquer
4	24/9/24	Greedy Algorithms
5	5/11/24	Dynamic Programming
6	7/11/24	Competitive Programming

Dashboard / My courses / CS2333I-DAA-2023-AIML / BASIC C PROGRAMMING / BASIC C PROGRAMMING-PRACTICE

```
Question Correct
Mark 1.00 out of 1.00
```

Given two numbers, write a C program to swap the given numbers.

For example:

Input	Result	
10 20	20 10	

Answer: (penalty regime: 0 %)

```
#include<stdio.h>int
 2 main()
 3 ₹ {
 4
         ĭnt a,b,c;
 5
         scanf("%d %d",&a,&b);c=a;
         a=b;
 6
 7
         b=c;
 8
         printf("%d %d",a,b);
    }
 9
10
```

	Input	Expected	Got	
~	10 20	20 10	20 10	~

Passed all tests!


```
Question 2
Correct
Mark 1.00 out of 1.00
```

Write a C program to find the eligibility of admission for a professional course based on the following criteria:

```
Marks in Maths >= 65

Marks in Physics >= 55

Marks in Chemistry >= 50

Or

Total in all three subjects >= 180
```

Sample Test Cases

Test Case I

Input

70 60 80

Output

The candidate is eligible

Test Case 2

Input

50 80 80

Output

The candidate is eligible

Test Case 3

Input

50 60 40

Output

The candidate is not eligible

Answer: (penalty regime: 0 %)

```
#include<stdio.h>int
main()
{
    int a,b,c;
    scanf("%d %d %d",&a,&b,&c);
    if((a>=65 && b>=55 && c>=50) || (a+b+c)>=180)
```

	Input	Expected	Got	
~	70 60 80	The candidate is eligible	The candidate is eligible	~
~	50 80 80	The candidate is eligible	The candidate is eligible	~

Passed all tests!

Connect

```
Question 3

Correct

Mark 1.00 out of 1.00
```

Malini goes to BestSave hyper market to buy grocery items. BestSave hyper market provides 10% discount on the bill amount 8 when ever the bill amount 8 is more than Rs.2000.

The bill amount B is passed as the input to the program. The program must print the final amount A payable by Malini.

Input Format:

The first line denotes the value of B.

Output Format:

The first line contains the value of the final payable amount A.

Example Input/Output I: Input:

1900

Output:

1900

Example Input/Output 2:

Input:

3000

Output:

2700

Answer: (penalty regime: 0 %)

```
#include<stdio.h>int
 2
     maĭn()
 3 ₹ {
 4
          ĭnt s;
          scanf("%d",&s);
 5
 6
          if(s<=2000)
 7
               printf("%d",s);
 8
          }
 9
10
          else
          {
(( ▼
               int d= s*0.1; s=s-
12
13
               d; printf("%d",s);
14
    }
15
```

	Input	Expected	Got	
~	1900	1900	1900	~
~	3000	2700	2700	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

1.

Question 4

Correct

Mark 1.00 out of 1.00

Baba is very kind to beggars and every day Baba donates half of the amount he has when ever a beggar requests him. The money M left in Baba's hand is passed as the input and the number of beggars B who received the alms are passed as the input. The program must print the money Baba had in the beginning of the day.

Input Format:

The first line denotes the value of M. The second line denotes the value of B.

Output Format:

The first line denotes the value of money with Baba in the beginning of the day.

Example Input/Output:

Input:

100 2

Output:

400

Explanation:

Baba donated to two beggars. So when he encountered second beggar he had $100^*2 = Rs.200$ and when he encountered 1st he had $200^*2 = Rs.400$.

Answer: (penalty regime: 0 %)

```
1
     #include<stdio.h>int
     maĭn()
 2
 3 ₹ {
 4
           ĭnt a,b;
 5
           scanf("%d %d",&a,&b);
 6
           for(int i=0;i<b;i++)</pre>
 7 ,
 8
                 a*=<mark>2</mark>;
 9
           printf("%d",a);
10
```

	Input	Expected	Got	
~	100	400	400	~

Passed all tests! 🗸


```
Question 5
Correct
Mark 1.00 out of 1.00
```

The CEO of company ABC Inc wanted to encourage the employees coming on time to the office. So he announced that for every consecutive day an employee comes on time in a week (starting from Monday to Saturday), he will be awarded Rs.200 more than the previous day as "Punctuality Incentive". The incentive I for the starting day (ie on Monday) is passed as the input to the program. The number of days N an employee came on time consecutively starting from Monday is also passed as the input. The program must calculate and print the "Punctuality Incentive" P of the employee.

Input Format:

The first line denotes the value of I. The second line denotes the value of N. $\label{eq:linear_second} % \begin{array}{c} I_{N} = I_{N} & I_{N} \\ I_{N} = I_{N$

Output Format:

The first line denotes the value of P.

Example Input/Output:

Input:

500 3

Output:

2100

Explanation:

On Monday the employee receives Rs.500, on Tuesday Rs.700, on Wednesday Rs.900 So

total = Rs.2100

Answer: (penalty regime: 0 %)

```
#include<stdio.h>int
 2
    maĭn()
 3 √[
 4
          int a,b,sum=0; scanf("%d
           %d",&a,&b);for(ĭnt
 5
 6
          ĭ=0;ĭ<b;ĭ++)
 7 ,
 8
               a+=200;
 9
10
          printf("%d",sum);
11
12
```

		Input	Expected	Got	
~		500 3	2100	2100	~
~	•	100 3	900	900	~

Passed all tests! 🗸


```
Question 6
Correct
Mark 1.00 out of 1.00
```

Two numbers M and N are passed as the input. A number X is also passed as the input. The program must print the numbers divisible by X from N to M (inclusive of M and N).

Input Format:

The first line denotes the value of M The second line denotes the value of N The third line denotes the value of X

Output Format:

Numbers divisible by \boldsymbol{X} from \boldsymbol{N} to \boldsymbol{M} , with each number separated by a space.

Boundary Conditions:

```
( <= M <=
9999999 M < N
<= 9999999 ( <=
X <= 9999</pre>
```

Example Input/Output 1:

Output:

35 28 21 14 7

Example Input/Output 2:

Output:

121 110 99 88 77 66

Answer: (penalty regime: 0 %)

```
1
     #include<stdio.h>int
     maĭn()
 2
 3 ₹ {
 4
          ĭnt a,b,c;
 5
          scanf("%d %d %d",&a,&b,&c);for(int
          ĭ=b;ĭ>=a;ĭ--)
 6
 7 ,
               if(i%c==0)
 8
 9 ,
                    printf("%d ",i);
10
11
12
          }
13
    13
```

	Input	Expected	Got	
~	2 40	35 28 21 14 7	35 28 21 14 7	~
	7			

Passed all tests! 🗸

Marks for this submission: 1.00/1.00.

```
Question 7
Correct
Mark 1.00 out of 1.00
```

Write a C program to find the quotient and reminder of given integers.

For example:

Input	Result
12	4
3	0

Answer: (penalty regime: 0 %)

```
#include<stdio.h>int
main()
{
    Int a,b;
    scanf("%d %d",&a,&b);int c=
    a/b;
    int d=a%b;
    printf("%d\n\%d",c,d);
}
}
```

	Input	Expected	Got	
~	12 3	4	4	~

Passed all tests! 🗸


```
Question 12
Correct
Mark 1.00 out of 1.00
```

Write a C program to find the biggest among the given 3 integers?

For example:

Input	Result	
10 20 30	30	

Answer: (penalty regime: 0 %)

```
#include<stdio.h>int
    maĭn()
 2
 3 ₹ {
 4
          ĭnt a,b,c;
 5
          scanf("%d %d %d",&a,&b,&c);if(a>b &&
 6
          a>c)
 7
          {
              printf("%d",a);
 9
          }
10
          else if(b>a && b>c)
          {
(( ▼
               printf("%d",b);
12
          }
13
14
          else
          {
15 🔻
16
              printf("%d",c);
          }
17
    1
18
```

		Input	Expected	Got	
~	•	10 20 30	30	30	~

Passed all tests! 🗸


```
Question 13
Correct
Mark 1.00 out of 1.00
```

Write a C program to find whether the given integer is odd or even?

For example:

Input	Result
12	Even
u	Odd

Answer: (penalty regime: 0 %)

```
#ĭnclude<stdĭo.h>ĭnt
 2 main()
 3 ₹ {
 4
          ĭnt a;
          scanf("%d",&a);
 5
 6
          if(a\%2==0)
 7
               printf("Even");
 8
          }
 9
          else
{
10
(( ▼
12
               printf("Odd");
          }
13
    1
14
```

	Input	Expected	Got	
~	12	Even	Even	~
~	11	Odd	Odd	~

Passed all tests! 🗸


```
Question 14
Correct
Mark 1.00 out of 1.00
```

Write a C program to find the factorial of given n.

For example:

Input	Result
5	120

Answer: (penalty regime: 0 %)

```
#include<stdio.h>int
 2 main()
 3 ₹ {
 4
         ĭnt a;
 5
          scanf("%d",&a);int
          sum=(;
 6
          for(int i=i;i<=a;i++)
 7
               sum*=ĭ;
 9
10
          printf("%d",sum);
11
(2 }
```

	Input	Expected	Got	
~	5	120	120	~

Passed all tests! 🗸


```
Question 15
Correct
Mark 1.00 out of 1.00
```

Write a C program to find the sum first N natural numbers.

For example:

Input	Result
3	6

Answer: (penalty regime: 0 %)

```
#include<stdio.h>int
    maĭn()
 2
 3 ₹ {
 4
         int a,sum=0;
 5
          scanf("%d",&a); for(ĭnt
         ĭ=[;ĭ<=a;ĭ++)
 6
 7
              sum+=ĭ;
9
         printf("%d",sum);
10
    }
((
```

	Input	Expected	Got	
~	3	6	6	~

Passed all tests! 🗸


```
Question 16
Correct
Mark 1.00 out of 1.00
```

Write a C program to find the Nth term in the fibonacci series.

For example:

Input	Result
o	0
(ı
4	3

Answer: (penalty regime: 0 %)

```
#ĭnclude<stdĭo.h>
 2 int main()
 3 ₹ {
 4
          int n,a=0,b=1,c,i;
 5
          scanf("%d",&n);
          if(n==0)
 6
 7
          {
               printf("0");
 8
 9
          }
10
          else
          {
 11
12
               for(i=2;i<=n;i++)
13 ,
14
                    c=a+b;
15
                    a=b;
16
17
               printf("%d",b);
18
19
          }
20
    }
21
```

	Input	Expected	Got	
~	0	0	0	~
~	ı	1	ı	~
~	4	3	3	~

Passed all tests! 🗸

Correct

```
Question 17
Correct
Mark 1.00 out of 1.00
```

Write a C program to find the power of integers. input:

a b

output:

a^b value

For example:

Input	Result
2 5	32

Answer: (penalty regime: 0 %)

	Input	Expected	Got	
~	2 5	32	32	~

Passed all tests! 🗸


```
Question 18
Correct
Mark 1.00 out of 1.00
```

Write a C program to find Whether the given integer is prime or not.

For example:

Input	Result
7	Prĭme
9	No Prime

Answer: (penalty regime: 0 %)

```
#ĭnclude<stdĭo.h>ĭnt
 2
     maĭn()
 3 ₹ {
 4
           int a,flag=1; scanf("%d",&a);
 5
           for(int i=2;i<a/2;i++)</pre>
 6
 7
                if(a\%i==0)
 8
                     printf("No Prime");flag=0;
 9
10
                     break;
11
12
          if(flag==I)
13
14
               printf("Prime");
15
16 🔻
           }
17
    |}
18
19
```

	Input	Expected	Got	
~	7	Prĭme	Prime	~
~	9	No Prime	No Prime	~

Passed all tests!

Correct

```
Question 19
Correct
Mark 1.00 out of 1.00
```

Write a C program to find the reverse of the given integer?

Answer: (penalty regime: 0 %)

```
#ĭnclude<stdĭo.h>
 2 int main()
 3 √ {
 4
           int a,reverse=0,rem;
           scanf("%d",&a);
 5
 6
           whĭle(a!=0)
 7
                rem=a%<mark>10</mark>;
 8
                reverse=reverse*10+rem;
10
                a/=<mark>(0</mark>;
((
12
           printf("%d",reverse);
13
14
    }
```

	Input	Expected	Got	
~	123	321	321	~

Passed all tests! 🗸

Marks for this submission: 1.00/1.00.

■ DAA Model Exam 2024

Jump to...

Problem I: Finding Complexity using Counter Method

Dashbo... / My cour... / CS2333I-DAA-2023-A... / Finding Time Complexity of Algorit... / Problem I: Finding Complexity using Counter Me...

Started on Saturday, I4 September 2024, I:37 PM

State Finished

Completed on Saturday, I4 September 2024, I:49 PM

Time taken II mins 25 secs

Marks I.00/I.00

Grade I0.00 out of I0.00 (I00%)

```
Question (
Correct
Mark 1.00 out of 1.00
```

```
Convert the following algorithm into a program and find its time complexity using the counter method.void function (int n)
{
   int i = i;
```

```
int s =1;
```

For example:

Input	Result
9	12

Answer: (penalty regime: 0 %)

```
#include<stdio.h> void
 2
     function (int n)
 3 ₹ {
 4
          int count=0;int
 5
          i= i; count++;
         ĭnt s =1;
 6
          count++; while(s
          <= n)
 8
 9
          {
10
              count++;
11
               ĭ++;
12
               count++;s
13
                += ĭ;
                count++;
14
15
           count++;
16
           printf("%d",count);
17
     13
18
19
     int main()
20
     1
21 •
          scanf("%d",&b);
22
23
          function(b);
     |}
24
25
```

	Input	Expected	Got	
~	9	12	12	~
~	4	9	9	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

■ BASIC C PROGRAMMING-PRACTICE

Jump to...

Problem 2: Finding Complexity using Counter method ►

Dashbo... / My cour... / CS2333I-DAA-2023-A... / Finding Time Complexity of Algorit... / Problem 2: Finding Complexity using Counter me...

Started on Saturday, 9 November 2024, 2:19 PM

State Finished

Completed on Saturday, 9 November 2024, 2:24 PM

Time taken 4 mins 56 secs

Marks 1.00/1.00

Grade 10.00 out of 10.00 (100%)

```
Question (
Correct

Mark I.00 out of I.00
```

```
Convert the following algorithm into a program and find its time complexity using the counter method.void func(int n)
     if(n==1)
       printf("*");
     }
     else
      for(int i=1; i<=n; i++)
        for(int j=1; j<=n; j++)
            printf("*");
            printf("*");
            break;
        }
      }
   }
 }
Note: No need of counter increment for declarations and scanf() and count variable printf() statements.
Input:
 A positive Integer n
Output:
Print the value of the counter variable
```

Answer: (penalty regime: 0 %)

```
#ĭnclude<stdĭo.h>
 2
     #ĭnclude<stdlĭb.h>
 3
     int main()
 4 ▼ {
 5
          ĭnt n;
 6
          scanf("%d",&n);
          int c=0;
 7
          if(n==1)
 8
 9
          {
10
            c++;
          }
((
12
          else
13
14
15
               for(int i=!; i<=n; i++)</pre>
16
17
                     c++;
18
                     c++;
                    for(int j=i; j<=n; j++)</pre>
19
20 ,
21
22
                          c++;
                          break;
23
24
                     }
25
                     c++;
26
               }
27
28
          }
29
          printf("%d",c);
30
31
          return O;
32
     }
33
```

	Input	Expected	Got	
~	2	12	12	~
~	1000	5002	5002	~
~	143	717	717	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

◄ Problem I: Finding Complexity using Counter Method

Jump to...

Problem 3: Finding Complexity using Counter Method >

Dashbo... / My cour... / CS2333I-DAA-2023-A... / Finding Time Complexity of Algorit... / Problem 3: Finding Complexity using Counter Me...

Started on Saturday, 9 November 2024, I:49 PM

State Finished

Completed on Saturday, 9 November 2024, I:57 PM

Time taken 7 mins 58 secs

Marks I.00/I.00

Grade I0.00 out of I0.00 (I00%)

```
Question (Correct
Mark 1.00 out of 1.00
```

```
Convert the following algorithm into a program and find its time complexity using counter method.Factor(num) {

{
for (i = i; i <= num;++i)
{
    if (num % i== 0)
        {
             printf("%d ", i);
        }
    }
}

Note: No need of counter increment for declarations and scanf() and counter variable printf() statement.

Input:
    A positive Integer n

Output:
Orint the value of the counter variable
```

Answer:

```
#include<stdio.h>
     #include<stdlib.h>int
 2
 3 v maĭn(){
 4
           ĭnt n;
 5
           scanf("%d",&n);int
 6
           counter=0;
           for(int i=!;i<=n;++i)</pre>
 7
 8
 9
                counter++;
10
                counter++;
                if(n%i==0)
((
12 •
13
                     counter++;
                }
14
15
16
           counter++;
17
           printf("%d",counter);return
18
           0:
19
```

	Input	Expected	Got	
~	12	31	31	~
~	25	54	54	~
~	4	12	12	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

◄ Problem 2: Finding Complexity using Counter method

```
Jump to...
```

Problem 4: Finding Complexity using Counter Method ►

Dashbo... / My cour... / CS2333I-DAA-2023-A... / Finding Time Complexity of Algorit... / Problem 4: Finding Complexity using Counter Me...

Started on Saturday, 9 November 2024, 1:58 PM

State Finished

Completed on Saturday, 9 November 2024, 2:12 PM

Time taken 13 mins 37 secs

Marks 1.00/1.00

Grade 10.00 out of 10.00 (100%)

```
Question (
Correct
Mark I.00 out of I.00
```

```
Convert the following algorithm into a program and find its time
```

Answer:

```
#include<stdio.h>
     #include<stdlib.h>int
 2
 3 main()
 4 ▼ {
 5
           ĭnt n;
          scanf("%d",&n);int
 6
           count=0; int c=0;
           for(int i=n/2;i<n;i++)</pre>
 8
 9
10 +
                count++;
11
                for(int j=1;j<n;j=2*j)</pre>
12
13 4
                     count++;
                     for(int k=1;k<n;k=k*2)</pre>
14
15
16 •
                          count++;
17
                          count++;
                          c++;
18
19
                     }
20
                     count++;
21
22
                count++;
23
24
           count++;
25
           printf("%d",count);return 0;
26
27
    | }
28
29
```

	Input	Expected	Got	
~	4	30	30	~
~	10	212	212	~

Passed all tests! 🗸

◄ Problem 3: Finding Complexity using Counter Method

Jump to...

Problem 5: Finding Complexity using counter method ►

Grade 10.00 out of 10.00 (100%)

Dashbo... / My cour... / CS233I-DAA-2023-Al... / Finding Time Complexity of Algorit... / Problem 5: Finding Complexity using counter me...

Started on Saturday, 9 November 2024, 2:24 PM

State Finished

Completed on Saturday, 9 November 2024, 2:27 PM

Time taken 3 mins 27 secs

Marks 1.00/1.00

```
Question (
Correct
Mark 1.00 out of 1.00
```

```
Convert the following algorithm into a program and find its time complexity using counter method.

void reverse(int n)

{
    int rev = 0, remainder; while (n != 0)
    {
        remainder = n % (0;
        rev = rev * (0 + remainder; n/= |0;
        }

print(rev);
}

Note: No need of counter increment for declarations and scanf() and count variable printf() statements.

Input:
A positive Integer n

Output:
Output:
Output:
```

Answer:

```
#include<stdio.h>
 2
     #ĭnclude<stdlĭb.h>
 3 int main()
 4 ▼ {
 5
         ĭnt n;
          scanf("%d",&n);
 6
         int c=0;
 7
 8
         int rev = 0, remainder;
         while (n != 0)
 9
10
11
              remainder = n % 10;
12
              rev = rev * 10 + remainder;
13
14
              n/= 10;
15
              c++;
16
              c++;
17
              c++;
18
19
          }
20
          c++;
21
         c++;
22
         c++;
          printf("%d",c);
23
24
          return O;
25 }
```

	Input	Expected	Got	
~	12	11	ш	~
~	1234	19	19	~

Passed all tests! 🗸

Correct

◄ Problem 4: Finding Complexity using Counter Method

Jump to...

I-Number of Zeros ĭn a Gĭven Array ►

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Dĭvĭde and Conquer}} \text{ / } \underline{\text{I-Number of Zeros ĭn a Gĭven Array}}$

Started on	Sunday, 10 November 2024, 12:02 PM
State	Fĭnĭshed
Completed on	Sunday, 10 November 2024, 12:08 PM
Time taken	6 mins 21 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100%)

```
Question (
Correct
Mark 1.00 out of 1.00
```

Problem Statement

Given an array of Is and Os this has all Is first followed by all Os. Aim is to find the number of Os. Write a program using Divide and Conquer to Count the number of zeroes in the given array.

Input Format

First Line Contains Integer m - Size of array

Next m lines Contains m numbers - Elements of an array

Output Format

First Line Contains Integer - Number of zeroes present in the given array.

```
#include<stdio.h>int
 2
     maĭn()
 3 ₹ {
 4
           ĭnt n;
           scanf("%d",&n);int
 5
 6
           arr(n);
          int c=0;
 7
           for(int i=0;i<n;i++)</pre>
 8
 9
10
                scanf("%d",&arr[ĭ]);
11
12
           for(int i=0;i<n;i++)</pre>
13 4
14
                if(arr(i)==0)
15
16
                     c++;
17
18
           printf("%d",c);
19
20
           return 0;
    |}
21
```

	Input	Expected	Got	
~	5	2	2	~
	1			
	1			
	1			
	0			
	0			
~	10	0	0	~
	1			
	1			
	(
	(
	(
	1			
	(
	1			
	(
	1			

11.52				
	Input	Expected	Got	
~	8	8	8	~
	0			
	0			
	0			
	0			
	0			
	0			
	0			
	0			
~	17	2	2	~
	1			
	(
	1			
	1			
	(
	(
	1			
	(
	1			
	1			
	(
	1			
	1			
	1			
	1			
	0			
	0			

Correct

Marks for this submission: 1.00/1.00.

◄ Problem 5: Finding Complexity using counter method

Jump to...

2-Majority Element ►

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Dĭvĭde and Conquer}} \text{ / } \underline{\text{2-Majority Element}}$

Started on	Sunday, 10 November 2024, 12:04 PM
State	Fĭnĭshed
Completed on	Sunday, 10 November 2024, 12:11 PM
Time taken	6 mins 9 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100%)

```
Question (Correct
Mark 1.00 out of 1.00
```

Given an array nums of size n, return the majority element.

The majority element is the element that appears more than Ln / 21 times. You may assume that the majority element always exists in the array.

Example 1:

```
Input: nums = [3,2,3]
Output: 3
```

Example 2:

```
Input: nums = [2,2,1,1,1,2,2]
Output: 2
```

Constraints:

```
    n == nums.lengthl <=</li>
    n <= 5 * 10<sup>4</sup>
    -2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1
```

For example:

Input	Result
3 3 2 3	3
7 2 2 1 1 1 2 2	2

```
#include<stdio.h>int
 2
     maĭn()
 3 ₹ {
 4
           ĭnt n;
 5
           scanf("%d",&n);int
           arr(n);
 6
           for(int i=0;i<n;i++)</pre>
 7
 8
 9
                scanf("%d",&arr[ĭ]);
10
           int maxElement=100;
11
           int frequency(maxElement+I); for(int
12
13
           i=0;i<=maxElement;i++)
14 ,
                frequency(ĭ)=0;
15
16
17
           for(int i=0;i<n;i++)</pre>
18
                frequency(arr(ĭ))++;
19
20
21
           for(int i=0;i<=maxElement;i++)</pre>
22
23
                if(frequency(i)>n/2)
24
25
                     printf("%d",i);
26
27
           }
28 }
```

	Input	Expected	Got	
~	3 3 2 3	3	3	~

00111000	ſ	С	10	re	C	t	
----------	---	---	----	----	---	---	--

Correct

Marks for this submission: 1.00/1.00.

◄ I-Number of Zeros in a Given Array

Jump to...

3-Finding Floor Value -

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Dĭvĭde and Conquer}} \text{ / } \underline{\text{3-Fĭndĭng Floor Value}}$

Started on	Sunday, 10 November 2024, 12:09 PM
State	Fĭnĭshed
Completed on	Sunday, 10 November 2024, 12:14 PM
Time taken	5 mins 26 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100%)

```
Question (Correct
Mark 1.00 out of 1.00
```

Problem Statement:

Given a sorted array and a value x, the floor of x is the largest element in array smaller than or equal to x. Write divide and conquer algorithm to find floor of x.

Input Format

```
First Line Contains Integer n – Size of array Next n lines Contains n numbers – Elements of an array Last Line Contains Integer x – Value for x
```

Output Format

First Line Contains Integer – Floor value for \boldsymbol{x}

```
#include<stdio.h>int
 2
     maĭn()
 3 ₹ {
 4
           ĭnt n,x;
 5
           scanf("%d",&n);Int
 6
           arr(n);
           for(int i=0;i<n;i++)</pre>
 7
 8
                scanf("%d",&arr[ĭ]);
 9
10
           scanf("%d",&x);int
11
12
           mĭnx=x;
13
           for(int i=0;i<n;i++)</pre>
14 +
15
                if(arr[i] <= x)
                {
16
17
                      minx=arr(i);
18
                }
19
           printf("%d",minx);return 0;
20
21
     |}
22
```

	Input	Expected	Got	
~	6	2	2	~
	(
	2			
	8			
	10			
	12			
	19			
	5			
~	5	85	85	~
	10			
	22			
	85			
	108			
	129			
	100			
	1	1		

	Input	Expected	Got	
~	7	9	9	~
	3			
	5			
	7			
	9			
	u			
	13			
	15			
	10			

Marks for this submission: 1.00/1.00.

■ 2-Majority Element

Jump to...

4-Two Elements sum to x ►

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Dĭuĭde and Conquer}} \text{ / } \underline{\text{4-Two Elements sum to } x}$

Started on Sunday	y, 10 November 2024, 12:11 PM
State Finishe	d
Completed on Sunday,	, 10 November 2024, 12:21 PM
Time taken 10 mins	5 secs
Marks 1.00/1.0	00
Grade 10.00 o	ut of 10.00 (100%)

```
Question (
Correct
Mark 1.00 out of 1.00
```

Problem Statement:

Given a sorted array of integers say arr[] and a number x. Write a recursive program using divide and conquer strategy to check if there exist two elements in the array whose sum = x. If there exist such two elements then return the numbers, otherwise print as "No".

Note: Write a Divide and Conquer Solution

Input Format

First Line Contains Integer n - Size of array

Next n lines Contains n numbers – Elements of an array Last

Line Contains Integer x - Sum Value

Output Format

First Line Contains Integer - Elementl

Second Line Contains Integer - Element2 (Element I and Elements 2 together sums to value "x")

```
#include<stdio.h>int
 2 | maĭn()
 3 ₹ {
 4
           ĭnt n;
 5
           scanf( "%d ",&n); int
           arr(n);
 6
 7
           int found=0;
           for(int i=0;i<n;i++)</pre>
 8
 9
10
                scanf("%d",&arr(ĭ));
11
           }
           int sum; scanf("%d",&sum);
12
           for(int i=0;i<n;i++)</pre>
13
14
                for(ĭnt j=ĭ+l;j<n;j++)</pre>
15
16
                      if(arr(i)+arr(j)==sum)
17 •
18
19 •
                            found=1; printf("%d\n",arr(i));
                            printf("%d",arr(j));break;
20
21
                      }
                }
22
23
           if(found==0)
24
25
                printf("No");
26
27
28
           return O;
29
30
31
32
```

	Input	Expected	Got	
~	4	4	4	~
	2	10	10	
	4			
	8			
	10			
	14			
~	5	No	No	~
	2			
	4			
	6			
	8			
	10			
	100			

Correct

Marks for this submission: 1.00/1.00.

◄ 3-Finding Floor Value

Jump to...

6-Implementation of Quick Sort ►

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Dĭuĭde and Conquer}} \text{ / } \underline{\text{6-Implementation of Quĭck Sort}}$

Started on	Sunday, 10 November 2024, 12:14 PM
State	Fĭnĭshed
Completed on	Sunday, 10 November 2024, 12:21 PM
Time taken	6 mins 52 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100%)

```
Question (
Correct
Mark 1.00 out of 1.00
```

Write a Program to Implement the Quick Sort Algorithm

Input Format:

The first line contains the no of elements in the list- n. The next n lines contain the elements.

Output:

Sorted list of elements

For example:

Input	Result		
5	12 34 67 78 98		
67 34 12 98 78			

Answer:

```
#ĭnclude<stdĭo.h>
 2
     void swap(int arr(),int i,int j)
 3 ₹ {
 4
           int temp=arr(i);arr(i)=arr(j);
 5
           arr(j)=temp;
 6
 7
     int partition(int arr(),int low,int high)
 8
 9
           int pivot=arr(high);int i=low
10
11
           for(Int j=low;j<high;j++)</pre>
12
13
                 if(arr(j)<pivot)</pre>
14
15
                      ĭ++:
16
                      swap(arr,ĭ,j);
17
18
           swap(arr,i+1,high);
19
20
           return(i+1);
21
22
     void quickSort(int arr(),int low,int high)
23
24
           if(low<high)</pre>
25
26
                 int pi=partition(arr,low,high);
                 quickSort(arr,low,pi-1);
27
28
                 quickSort(arr,pi+1,high);
           }
29
30
31
     int main()
32
     {
33
           ĭnt n;
34
           scanf("%d",&n);int
           arr(n);
35
36
           for(int i=0;i<n;i++)</pre>
37
38
                scanf("%d",&arr(ĭ));
39
40
           quickSort(arr,0,n-1);for(int
           i=0;i< n;i++)
41
42
                printf("%d ",arr[i]);
43
44
           return 0;
45
     }
46
47
```

	Input	Expected	Got	
~	5 67 34 12 98 78	12 34 67 78 98	12 34 67 78 98	~
~	10 1 56 78 90 32 56 II 10 90 II4	I IO II 32 56 56 78 90 90 II4	I IO II 32 56 56 78 90 90 II4	~
~	987654321101190	1 2 3 4 5 6 7 8 9 10 11 90	1 2 3 4 5 6 7 8 9 10 11 90	~

Marks for this submission: 1.00/1.00.

◄ 4-Two Elements sum to x

Jump to...

I-G-Coin Problem -

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Greedy Algorithms}} \text{ / } \underline{\text{I-G-Coin Problem}}$

Started on	Monday, 30 September 2024, 2:07 PM
State	Fĭnĭshed
Completed on	Monday, 30 September 2024, 2:09 PM
Time taken	2 mins 19 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100%)

```
Question (
Correct
Mark 1.00 out of 1.00
```

Write a program to take value V and we want to make change for V Rs, and we have infinite supply of each of the denominations in Indian currency, i.e., we have infinite supply of { 1, 2, 5, 10, 20, 50, 100, 500, 1000} valued coins/notes, what is the minimum number of coins and/or notes needed to make the change.

Input Format:

Take an integer from stdin.

Output Format:

print the integer which is change of the number. Example

Input :

64

Output:

4

Explanation:

We need a 50 Rs note and a 10 Rs note and two 2 rupee coins.

Answer: (penalty regime: 0 %)

```
#ĭnclude <stdĭo.h>
 2 void mincoincount(int x)
 3 ₹ {
 4
          int coins[] = {1000, 500, 100, 50, 20, 10, 5, 2, 1};
          int i = 0, count = 0;while
 5
          (x > 0)
 6
 7 ,
 8
               If (x >= coins[i])
 9
10
                    x -= coins(i);
((
                    count++;
12
13
               else
14 .
               {ĭ++;
15
               }
16
          printf("%d\n", count);
17
18
19 🔻
    int main() {int
20
          scanf("%d",
                           &x);
21
          mincoincount(x); return
22
23
    }
24
```

	Input	Expected	Got	
~	49	5	5	~

Passed all tests!

Marks for this submission: 1.00/1.00.

■ 6-Implementation of Quick Sort

```
Jump to...
```

2-G-Cookies Problem -

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Greedy Algorithms}} \text{ / } \underline{\text{2-G-Cookies Problem}}$

Started on	Monday, 30 September 2024, 2:09 PM
State	Fĭnĭshed
Completed on M	londay, 30 September 2024, 2:10 PM
Time taken 5	55 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100%)

```
Question (
Correct
Mark 1.00 out of 1.00
```

Assume you are an awesome parent and want to give your children some cookies. But, you should give each child at most one cookie.

Each child I has a greed factor g[I], which is the minimum size of a cookie that the child will be content with; and each cookie J has a size s[J]. If s[J] >= g[I], we can assign the cookie J to the child I, and the child I will be content. Your goal Is to maximize the number of your content children and output the maximum number.

Example 1:

Input:

123

11

Output:

1

Explanation: You have 3 children and 2 cookies. The greed factors of 3 children are 1, 2, 3.

And even though you have 2 cookies, since their size is both I, you could only make the child whose greed factor is I content. You need to output I.

Constraints:

```
I <= g.length <= 3 * 10^4
O <= s.length <= 3 * 10^4
I <= g[i], s[j] <= 2^3I - I
```

```
#include <stdio.h>int
 2 ,
     maĭn() {
          Int a, b, i, j, e = 0;
 3
 4
          scanf("%d", &a);int
 5
          x(a);
 6
          for(i=0; i< a; i++)
 7
               scanf("%d", &x[ĭ]);
 9
10
          scanf("%d", &b);int
          y(b);
11
12
          for (i = 0; i < b; i++)
13
14
               scanf("%d", &y(ĭ));
15
          for (i = 1; i < a; i++)
16
17
18
               for (j = i; j > 0 && x(j) < x(j - i); j--) {int temp =
19
                    ×(ჴ);
20
                    x(j) = x(j - l); x(j - l)
21
                     = temp;
22
23
          }
24
          for (i = 1; i < b; i++)
25
26
               for (j = i; j > 0 && y(j) < y(j - 1); j--) {int temp =
27
28
                    g(j) = g(j - 1); g(j - 1)
29
                     = temp;
               }
30
          }
31
32
          for (j = 0, i = 0; j < b; j++)
33
34
               if (i < a && y(j) >= x(i))
35
               {
36
37
                    ĭ++:
38
```

```
39 | }
40 | printf("%d", e);
41
42 | return 0;
43 |}
```

	Input	Expected	Got	
~	2	2	2	~
	12			
	3			
	123			

Marks for this submission: 1.00/1.00.

◄ I-G-Coin Problem

Jump to...

3-G-Burger Problem -

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Greedy Algorithms}} \text{ / } \underline{\text{3-G-Burger Problem}}$

Started on	Sunday, 10 November 2024, 12:23 PM
State	Fĭnĭshed
Completed on	Sunday, 10 November 2024, 12:32 PM
Time taken	9 mins 7 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100%)

```
Question (
Correct
Mark 1.00 out of 1.00
```

```
A person needs to eat burgers. Each burger contains a count of calorie. After eating the burger, the person needs to run adiatance to burn out his calories. If he has set no fungers with a calories each, then he has to run at least 3 ° c kilometers to burn out the calories. Forexample, if he ats 3 burgers with the count of calorie in the order: (i, 3, 2), the kilometers he needs to run are (3° * 1) + (3' * 3) + (3° * 2) = 1 + 9 + 18 = 28.

But this is not the minimum, so need to try out other orders of consumption and choose the minimum value. Determine the minimumdistance he needs to run. Note: He can eat burger in any order and use an efficient sorting algorithm. Apply greedy approach to salve the problem. Input Format

First Line contains the number of burgers

Sacond line contains calories of each burger which is a space-separate integers

Output Format

Print: Minimum number of kilometers needed to run to burn out the calories

Sample Input

3

5 10 7

Sample Output
```

For example:

Test	Input	Result
Test Case I	3	18
	132	

```
#ĭnclude<stdĭo.h>
     #include<math.h> int
 2
 3
     maĭn()
 4 .
           int n,s=0;
 5
           scanf("%d",&n);int
 6
           cal(n);
 7
           for(int i=0;i<n;i++)</pre>
 8
 9
                 scanf("%d",&cal(ĭ));
10
11
           for(int i=0;i<n-i-i;i++)</pre>
12
13 +
                 for (int j=0; j< n-i-i; j++)
14
15
                      if(cal(j) < cal(j+l))
16
17 •
18
                                      temp=cal(j);
                            cal(j)=cal(j+1);
19
20
                            cal(j+1)=temp;
21
                      }
22
                }
23
           for(int i=0;i<n;i++)
24
25
                 s+=pow(n,i)*cal(i);
26
27
           printf("%d",s);return
28
29
    1
30
```

	Test	Input	Expected	Got	
~	Test Case I	3	18	18	~
~	Test Case 2	4 7 4 9 6	389	389	~
~	Test Case 3	3 5 10 7	76	76	~

Correct

Marks for this submission: 1.00/1.00.

■ 2-G-Cookĭes Problem

Jump to...

4-G-Array Sum max problem ►

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Greedy Algorithms}} \text{ / } \underline{\text{4-G-Array Sum max problem}}$

Started on M	londay, 30 September 2024, 2:10 PM
State f	Tinished
Completed on Mo	nday, 30 September 2024, 2:11 PM
Time taken 47	secs
Marks (.	00/1.00
Grade 10	0.00 out of 10.00 (100%)

```
Question (
Correct
Mark 1.00 out of 1.00
```

Given an array of N integer, we have to maximize the sum of arr[i] * i, where i is the index of the element (i = 0, 1, 2, ..., N). Write an algorithm based on Greedy technique with a Complexity O(nlogn).

Input Format:

First line specifies the number of elements- \mathbf{n}

The next n lines contain the array elements.

Output Format:

Maximum Array Sum to be printed. Sample

Input:

5

25340

Sample output:

40

```
#ĭnclude <stdĭo.h>ĭnt
 2
     maĭn()
 3 ₹ {
 4
          ĭnt n;
 5
          scanf("%d",&n);ĭnt
 6
          arr(n);
 7
          for (int i=0;i<n;i++)
 8
                scanf("%d",&arr[ĭ]);
 9
10
          for (int i=0;i<n-l;i++)</pre>
11
12
13
                for (int j=0; j< n-i-l; j++)
14 •
                     if(arr(j)>arr(j + 1))
15
16
17
                          int temp = arr(j); arr(j)
18
                          = arr(j + 1);arr(j + 1) =
19
                          temp;
                     }
20
21
                }
22
          }
          int max_sum = 0;
23
24
          for (int i=0;i<n;i++)</pre>
25
26
                max_sum += arr(ĭ) * ĭ;
27
          printf("%d\n",max_sum);return 0;
28
29
    |}
30
```

	Input	Expected	Got	
~	5	40	40	~
	2			
	5			
	3			
	4			
	0			

	Input	Expected	Got	
~	10	191	191	~
	2			
	2			
	2			
	4			
	4			
	3			
	3			
	5			
	5			
	5			
~	2	45	45	~
	45			
	3			

Correct

Marks for this submission: 1.00/1.00.

■ 3-G-Burger Problem

Jump to...

5-G-Product of Array elements-Mĭnĭmum ►

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Greedy Algorithms}} \text{ / } \underline{\text{5-G-Product of Array elements-Minimum}}$

Started on	Monday, 30 September 2024, 2:11 PM
State	Pinished
Completed on	Monday, 30 September 2024, 2:12 PM
Time taken	41 secs
Marks	1.00/1.00
Gnada	10.00 out of 10.00 (100%)

```
Question (
Correct
Mark 1.00 out of 1.00
```

Given two arrays array_One[] and array_Two[] of same size N. We need to first rearrange the arrays such that the sum of the product of pairs(I element from each) is minimum. That is SUM (A[i] \star B[i]) for all i is minimum.

For example:

Input	Result
3	28
ı	
2	
3	
4	
5	
6	

```
Answer: (penalty regime: 0 %)
         #ĭnclude <stdĭo.h>
         #ĭnclude <stdlĭb.h>
    3
        int main()
    4 ▼ {
    5
             ĭnt N;
             scanf("%d",&N);
    6
    7
    8
             int array_One(N), array_Two(N);
    9
   10
             for (int i=0;i<N;i++)</pre>
   11
   12
                  scanf("%d",&array_One(ĭ));
   13
   14
   15
             for (int i=0;i<N;i++)</pre>
   16
   17
                  scanf("%d",&array_Two(ĭ));
   18
   19
   20
             for (int i=0;i<N-1;i++)
   21
                  for (Int j=0;j<N-I-1;j++)
   22
   23
                       if (array_One(j) > array_One(j + 1))
   24
   25
   26
                             int temp = array_One(j);
                            array_One(j) = array_One(j + 1);
   27
   28
                            array_One(j + l) = temp;
   29
   30
                  }
   31
   32
             for (Int I=0;I<N-1;I++)
   33
   34
   35
                  for (Int j=0;j<N-I-1;j++)
   36
   37
                       if (array_Two(j) > array_Two(j + 1))
   38
                             int temp = array_Two(j);
   39
   40
                             array_Two(j) = array_Two(j + i);
                            array_Two(j + l) = temp;
   42
                       }
   43
                  }
   44
             }
   45
   46
             int min_sum = 0;
   47
             for (int i=0;i<N;i++)</pre>
   48
   49
                  min_sum += array_One(i)*array_Two(N-i-l);
   50
             printf("%d\n",min_sum);
   51
                                                                                                                                                h
   52
             return 0;
```

	Input	Expected	Got	
~	3	28	28	~
	1			
	2			
	3			
	4			
	5			
	6			
~	4	22	22	~
	7			
	5			
	1			
	2			
	1			
	3			
	4			
	ı			
~	5	590	590	~
	20			
	10			
	30			
	10			
	40			
	8			
	9			
	4			
	3			
	10			

Correct

Marks for this submission: 1.00/1.00.

◄ 4-G-Array Sum max problem

Jump to...

I-DP-Playing with Numbers ►

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Dynamic Programming}} \text{ / } \underline{\text{I-DP-Playing with Numbers}}$

Started on	Sunday, 10 November 2024, 12:46 PM
State	Finished
Completed on	Sunday, 10 November 2024, 12:56 PM
Time taken	9 mins 55 secs
Grade	10.00 out of 10.00 (100%)

```
Question (Correct
Mark 10.00 out of 10.00
```

Playing with Numbers:

Ram and Sita are playing with numbers by giving puzzles to each other. Now it was Ram term, so he gave Sita a positive integer 'n' and two numbers I and 3. He asked her to find the possible ways by which the number n can be represented using I and 3. Write any efficient algorithm to find the possible ways.

Example 1:

Input: 6 Output:6

```
Explanation: There are 6 ways to 6 represent number with 1 and 3

|+|+|+|+|+|

3+3

|+|+|+3

|+|+3+|

|+3+|+|

3+|+|+|
```

Input Format

First Line contains the number n

Output Format

Print: The number of possible ways 'n' can be represented using I and 3 $\,$

Sample Input 6

Sample Output 6

```
#ĭnclude<stdĭo.h> #defĭne
     MAX_N 100000 long long
 2
 3
     count(Int n)
 4 + {
 5
          long long dp(n+1); for(ĭnt
          ĭ=0;ĭ<=n;ĭ++)
 6
 7
               dp(i)=0;
 8
 9
          } dp(0)=1;
          for(int i=!;i<=n;i++)</pre>
10
11
12
               if(i>=1)
13
14
                    dp(i)+=dp(i-1);
15
               if(i>=3)
16
17
18
                     dp(i)+=dp(i-3);
19
20
          }
21
          return dp(n);
22
23
        maĭn()
24
25
          ĭnt n;
          scanf("%d",&n);
26
          if(n<0)
27
28
29
               return (;
30
          if(n>MAX_N)
31
32
33 ▼
```

```
34 | return 1;

35 | }

36 | printf("%||d\n",count(n));

37 | return 0;

38 |}
```

	Input	Expected	Got	
~	6	6	6	~
~	25	8641	8641	~
~	100	24382819596721629	24382819596721629	~

Correct

Marks for this submission: 10.00/10.00.

■ 5-G-Product of Array elements-Minimum

Jump to...

2-DP-Playing with chessboard ►

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Dynamic Programming}} \text{ / } \underline{\text{2-DP-Playing with chessboard}}$

	Started on Sunday, 10 November 2024, 12:50 PM
	State Finished
C	Completed on Sunday, 10 November 2024, 12:59 PM
	Time taken 9 mins 9 secs
	0 1 10 00 1 10 00 (100%)

Grade 10.00 out of 10.00 (100%)

```
Question (Correct
Mark 10.00 out of 10.00
```

Playing with Chessboard:

Ram is given with an n^*n chessboard with each cell with a monetary value. Ram stands at the (0,0), that the position of the top left white rook. He is been given a task to reach the bottom right black rook position (n-1, n-1) constrained that he needs to reach the position by traveling the maximum monetary path under the condition that he can only travel one step right or one step down the board. Help ram to achieve it by providing an efficient DP algorithm.

Example:

Input 3 1 2 4 2 3 4 8 7 1

Output:

19

Explanation:

Totally there will be 6 paths among that the optimal is Optimal path value:I+2+8+7+I=I9

Input Format

First Line contains the integer n

The next n lines contain the n*n chessboard values

Output Format

Print Maximum monetary value of the path

```
#ĭnclude<stdĭo.h>
       #include<stdlib.h>
      int max(int n,int chess(n)(n))
 3
 4 ₹ {
 5
             int dp(n)(n);
             dp(0)(0)=chess(0)(0);for(int
 7
             j=l;j<n;j++)
 8
                    dp(O)[j]=dp(O)(j-l)+chess(O)[j];\\
 9
10
             for(int i=!;i<n;i++)</pre>
11
12
                    dp(\tilde{t})(O) = dp(\tilde{t}-\tilde{t})(O) + chess(\tilde{t})(O);
13
14
              for(int i=1;i<n;i++)</pre>
15
16
17
                    for(int j=1;j<n;j++)</pre>
18
                           if(dp(i-l)(j)>dp(i)(j-l))
19
20
                           {
                                  dp(i)(j)=dp(i-i)(j)+chess(i)(j);
21
22
                           }
23
                           else
24
                           {
25
                                  dp(\check{\i})(\check{\i})=dp(\check{\i})(\check{\i}-i)+chess(\check{\i})(\check{\i});
26
                           }
27
                    }
28
29
              return dp(n-1)(n-1);
30
31
      int main()
32 ₹ {
33
             ĭnt n;
34
             scanf("%d",&n);
             int chess(n)(n);
35
36
             for( int i=0;i<n;i++)</pre>
```

```
37 ,
               for(int j=0;j<n;j++)</pre>
38
39
                     scanf("%d",&chess(ĭ)(j));
40
41
               }
42
43
          int result=max(n,chess);
          printf("%d\n",result);
44
45
          return 0;
46 }
```

	Input	Expected	Got	
~	3 124 234 871	19	19	*
~	3 3 5 4 2	12	12	*
~	4 1134 1578 2346 1690	28	28	~

Passed all tests!

Correct

Marks for this submission: 10.00/10.00.

■ I-DP-Playing with Numbers

Jump to...

3-DP-Longest Common Subsequence

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Dynamic Programming}} \text{ / } \underline{\text{3-DP-Longest Common Subsequence}}$

Started on	Sunday, 10 November 2024, 12:56 PM
State	Prinished
Completed on	Sunday, 10 November 2024, 1:04 PM
Time taken	7 mins 47 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100%)

```
Question (
Correct
Mark 1.00 out of 1.00
```

Given two strings find the length of the common longest subsequence(need not be contiguous) between the two.

Example:

sl: ggtabe

s2: tgatasb

sl a g g t a b s2 g × t × a y b

The length is 4

Solveing it using Dynamic Programming

For example:

Input	Result
aab	2
azb	

```
#include<stdio.h>
      #ĭnclude<stdlĭb.h>ĭnt
 2
      maĭn()
 3
 4 ₹ {
 5
           char a(II),b(II);
           scanf("%lOs",a);
scanf("%lOs",b);int
 6
 7
           n=0,count=0;
 8
           for(int i=0;i<sizeof(a);i++)</pre>
10 +
                 if(a[i]=='\0')
11
12 •
                 {
13
14
15
                 else
                 {
16
17
                       n++;
18
                 }
19
           for(int i=0;i<n;i++)</pre>
20
21
22
                 if(a[i]==b[i])
23
                 {
24
                       count++;
25
26
           printf("%d",count);
27
28
```

	Input	Expected	Got	
~	aab azb	2	2	~
~	ABCD ABCD	4	4	~

Passed all tests! 🗸

Marks for this submission: 1.00/1.00.

■ 2-DP-Playing with chessboard

Jump to...

4-DP-Longest non-decreasing Subsequence

$\underline{\text{Dashboard}} \text{ / } \underline{\text{My courses}} \text{ / } \underline{\text{CS2333I-DAA-2023-AIML}} \text{ / } \underline{\text{Dynamic Programming}} \text{ / } \underline{\text{4-DP-Longest non-decreasing Subsequence}}$

Started on	Sunday, 10 November 2024, 1:00 PM
State	Prinished
Completed on	Sunday, 10 November 2024, 1:05 PM
Time taken	5 mins 20 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100%)

```
Question (
Correct
Mark 1.00 out of 1.00
```

Problem statement:

Find the length of the Longest Non-decreasing Subsequence in a given Sequence.

Eg:

Input:9

Sequence:[-1,3,4,5,2,2,2,3]

the subsequence is [-1,2,2,2,2,3]

Output:6

Answer: (penalty regime: 0 %)

```
#include<stdio.h>
 2
     int longest(int arr(),int n)
 3 ₹ {
 4
           int l(n);
           for(int i=0;i<n;i++)</pre>
 5
 6
                 |(ĭ)=<mark>|</mark>;
 7
 8
           for(int i=!;i<n;i++)</pre>
 9
10
11
                 for(Int j=0;j<i;j++)</pre>
12 •
                       if(arr(i)>=arr(j)&&!(i)<!(j)+!)</pre>
13
14 ,
15
                             |(i)=|(j)+|;
16
17
                 }
18
           int max_len=0; for(int
19
           i=0;i< n;i++)
20
21
22
                 if(|(i)>max_len)
23
24
                       max_len=I(ĭ);
25
                 }
26
27
           return max_len;
28
29
     int main()
30 ₹ {
31
           ĭnt n;
           scanf("%d",&n);int
32
33
           arr(n);
           for(int i=0;i<n;i++)</pre>
34
35
36
                 scanf("%d",&arr(ĭ));
37
38
           int length=longest(arr,n);
39
           printf("%d\n",length); return 0;
     }
40
41
```

	Input	Expected	Got	
~	9 -1 3 4 5 2 2 2 2 3	6	6	~
~	7 1 2 2 4 5 7 6	6	6	~

Passed all tests!

Marks for this submission: 1.00/1.00.

■ 3-DP-Longest Common Subsequence

Jump to...

I-Finding Duplicates-O(n^2) Time Complexity,O(I) Space Complexity \blacktriangleright

Dashbo... / My cour... / CS2333I-DAA-2023-A... / Competitive Program... / I-Finding Duplicates-O(n^2) Time Complexity,O(I) Space Co...

Started on Sunday, IO November 2024, I:05 PM

State Finished

Completed on Sunday, IO November 2024, I:16 PM

Time taken IO mins 3I secs

Marks I.00/I.00

Grade 4.00 out of 4.00 (I00%)

```
Question (
Correct
Mark 1.00 out of 1.00
```

Find Duplicate in Array.

Given a read only array of n integers between I and n, find one number that repeats.

Input Format:

First Line - Number of elements n

Līnes - n Elements

Output Format:

Element x - That is repeated

For example:

Input	Result	
5	ı	
11234		

Answer: (penalty regime: 0 %)

```
#include<stdio.h>int
 2
     maĭn()
 3 ₹ {
 4
          ĭnt n;
          scanf("%d",&n);int
 5
 6
          arr(n);
          for(int i=0;i<n;i++)</pre>
 7
 8
 9
                scanf("%d",&arr[ĭ]);
10
          }
11
          int check(50); for(int
          ĭ=0;ĭ<50;ĭ++)
12
13 4
14
                check(ĭ)=0;
15
          for(int i=0;i<n;i++)
16
17 •
18
                int a=arr(i);
                check(a)++;
19
20
21
          for(Int I=0;I<50;I++)
22 .
                if(check(i)>l)
23
24
                     printf("%d",i);
25
26
          }
27
28 }
```

	Input	Expected	Got	
~	10 9 7 6 5 1 2 3 8 4 7	7	7	~
~	5 1 2 3 4 4	4	4	~
~	5	t	ſ	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

◄ 4-DP-Longest non-decreasing Subsequence

Jump to...

2-Finding Duplicates-O(n) Time Complexity,O(I) Space Complexity

```
Question (
Correct
Mark I.00 out of I.00
```

Find Duplicate in Array.

Given a read only array of n integers between I and n, find one number that repeats.

Input Format:

First Line - Number of elements n

Līnes - n Elements

Output Format:

Element x - That is repeated

For example:

Input	Result	
5	ı	
11234		

Answer: (penalty regime: 0 %)

```
#include<stdio.h>int
 2
     maĭn()
 3 ₹ {
 4
          ĭnt n;
          scanf("%d",&n);int
 5
 6
          arr(n);
          for(int i=0;i<n;i++)</pre>
 7
 8
 9
                scanf("%d",&arr[ĭ]);
10
          }
11
          int check(50); for(int
          ĭ=0;ĭ<50;ĭ++)
12
13 4
14
                check(ĭ)=0;
15
          for(int i=0;i<n;i++)
16
17 •
18
                int a=arr(i);
                check(a)++;
19
20
21
          for(Int I=0;I<50;I++)
22 .
                if(check(i)>l)
23
24
                     printf("%d",i);
25
26
          }
27
28 }
```

	Input	Expected	Got	
~	10 9 7 6 5 1 2 3 8 4 7	7	7	~
~	5 1 2 3 4 4	4	4	~
~	5	(ſ	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

Jump to...

3- Print Intersection of 2 sorted arrays-O(m*n)Time Complexity,O(I) Space Complexity ►

```
Question (
Correct
Mark 1.00 out of 1.00
```

Find the intersection of two sorted arrays. OR

in other words,

Given 2 sorted arrays, find all the elements which occur in both the arrays.

Input Format

- The first line contains T, the number of test cases. Following T lines contain:
- 1. Line I contains NI, followed by NI integers of the first array
- 2. Line 2 contains N2, followed by N2 integers of the second array

Output Format

The intersection of the arrays in a single line

Example

Input:

3 10 17 57

6 2 7 10 15 57 246

Output:

10 57

Input:

.

6 1 2 3 4 5 6

2 1 6

Output:

16

For example:

Input	Result
(10 57
3 10 17 57	
6	
2 7 10 15 57 246	

```
#include<stdio.h>int
 1
 2
     maĭn()
 3 ₹ {
 4
           ĭnt a;
           scanf("%d",&a);
 5
 6
           while(a>0)
 7
 8
                ĭnt m,n;
                scanf("%d",&n);int
 9
10
                arrl(n);
                for(int i=0;i<n;i++)</pre>
11
12 •
                      scanf("%d",&arrl(ĭ));
13
14
                }
                scanf("%d",&m);Int
15
16
                arr2(m);
                for(int i=0;i<m;i++)</pre>
17
18
                      scanf("%d",&arr2(ĭ));
19
20
                for(int i=0;i<n;i++)</pre>
21
22 •
```

```
for(int j=0;j<m;j++)</pre>
23
24
                          if(arrl(i)==arr2(j))
{
25
26
27
                                printf("%d ",arrl(i));
28
29
30
                }
31
                a--;
32
           }
   |}
33
```

	Input	Expected	Got	
*	1 3 10 17 57 6 2 7 10 15 57 246	10 57	10 57	~
~	1 6 1 2 3 4 5 2 1 6	1 6	16	~

Passed all tests!

Marks for this submission: 1.00/1.00.

◄ 2-Finding Duplicates-O(n) Time Complexity,O(I) Space Complexity

Jump to...

Print Intersection of 2 sorted arrays-O(m+n)Time Complexity,O(I) Space Complexity ►

/,

```
Question (
Correct
Mark 1.00 out of 1.00
```

Find the intersection of two sorted arrays. OR

in other words,

Given 2 sorted arrays, find all the elements which occur in both the arrays.

Input Format

- The first line contains T, the number of test cases. Following T lines contain:
- 1. Line I contains NI, followed by NI integers of the first array
- 2. Line 2 contains N2, followed by N2 integers of the second array

Output Format

The intersection of the arrays in a single line

Example

Input:

(

3 10 17 57

6 2 7 10 15 57 246

Output:

10 57

Input:

(

6 1 2 3 4 5 6

2 | 6

Output:

16

For example:

Input	Result
t	10 57
3 10 17 57	
6	
2 7 10 15 57 246	

```
#include<stdio.h>int
 1
 2
     maĭn()
 3 ₹ {
 4
           ĭnt a;
           scanf("%d",&a);
 5
 6
           while(a>0)
 7
 8
                ĭnt n,m;
                scanf("%d",&n);int
 9
10
                arrl(n);
                for(int i=0;i<n;i++)</pre>
11
12 •
                      scanf("%d",&arrl(ĭ));
13
14
                }
                scanf("%d",&m);Int
15
16
                arr2(m);
                for(int i=0;i<m;i++)</pre>
17
18
                      scanf("%d",&arr2(ĭ));
19
20
                for(int i=0;i<n;i++)</pre>
21
22 •
```

```
II/I7/24, II:56 AM 4-Print Intersection of 2 sorted arrays-O(m+n)Time Complexity,O(I) Space Complexity: Attempt review

| 23 | for(int i=0; i:m; i++)
```

```
for(int j=0;j<m;j++)</pre>
24
                           if(arrl(i)==arr2(j))
{
25
26
27
                                printf("%d ",arrl(i));
28
29
30
                }
31
                a--;
32
           }
   |}
33
```

	Input	Expected	Got	
~	1 3 IO 17 57 6 2 7 IO 15 57 246	10 57	10 57	~
~	1 6 1 2 3 4 5 2 1 6	16	16	~

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

■ 3-Print Intersection of 2 sorted arrays-O(m*n)Time Complexity,O(I) Space Complexity

Jump to...

5- Pair with Difference-O(n^2)Time Complexity,O(I) Space Complexity \blacktriangleright

/,

Dashbo / My cour / CS2333I-DAA-2023-A / Competitive Program	/ $5-Pair$ with Difference-O(n^2)Time Complexity,O(I) Space Co
Started on Sunday, 10 November 2024, 1:26 PM	
State Finished	
Completed on Sunday, 10 November 2024, 1:31 PM	
Time taken 4 mins 21 secs	
Marks 1.00/1.00	
Grade 4.00 out of 4.00 (100%)	

```
Question (
Correct
Mark 1.00 out of 1.00
```

```
Given an array A of sorted integers and another non negative integer k, find if there exists 2 indices i and j such that A(j) - A(i) = k, i != j.

Input Format:

First Line n - Number of elements in an array

Next n Lines - N elements in the array

k - Non - Negative Integer

Output Format:

I - If pair exists

I - If no pair exists

Explanation for the given Sample Testcase: YES

as 5 - I = 4

So Return I.
```

For example:

Input	Result
3	ı
135	
4	

```
#include<stdio.h>int
     maĭn()
 2
 3 ₹ {
 4
                    n,k,flag=0;
           scanf("%d",&n); Int
 5
 6
           arr(n);
           for(int i=0;i<n;i++)</pre>
 7
 8
                scanf("%d",&arr[ĭ]);
 9
10
           scanf("%d",&k); for(int
11
           i=0;i< n;i++)
12
13 4
                for(int j=0;j<n;j++)</pre>
14
15
                      if(arr(j)-arr(i)==k && i!=j)
16
17 •
18
                           flag=(;
19
                           break;
                      }
20
                }
21
22
           if(flag)
23
24
                printf("l");
25
           }
26
27
           else
           {
28
29
                printf("0");
           }
30
    |}
```

	Input	Expected	Got	
~	3 1 3 5 4	t	(~
~	10 1 4 6 8 12 14 15 20 21 25	t	(~
~	10 1 2 3 5 11 14 16 24 28 29 0	0	0	~
~	0 2 3 7 13 14 15 20 24 25 10	t	(~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

 \blacktriangleleft 4-Print Intersection of 2 sorted arrays-O(m+n)Time Complexity,O(I) Space Complexity

Jump to...

6- Païr with Difference -O(n) Time Complexity,O(1) Space Complexity ►

 Dashbo...
 / My cour...
 / CS2333I-DAA-2023-A...
 / Competitive Program...
 / 6-Pair with Difference -O(n) Time Complexity, O(l) Space Com...

 Started on Sunday, IO November 2024, I:29 PM

 Completed on Sunday, IO November 2024, I:32 PM

 Time taken 2 mins 49 secs

 Marks I.00/I.00

 Grade 4.00 out of 4.00 (I00%)

```
Question (
Correct
Mark 1.00 out of 1.00
```

```
Given an array A of sorted integers and another non negative integer k, find if there exists 2 indices i and j such that A(j) - A(i) = k, i != j.

Input Format:

First Line n - Number of elements in an array

Next n Lines - N elements in the array

k - Non - Negative Integer

Output Format:

2 - If pair exists

O - If no pair exists

Explanation for the given Sample Testcase: YES

as 5 - ( = 4)

So Return I.
```

For example:

Input	Result
3	ı
135	
4	

```
#include<stdio.h>int
     maĭn()
 2
 3 ₹ {
 4
                    n,k,flag=0;
           scanf("%d",&n); Int
 5
 6
           arr(n);
           for(int i=0;i<n;i++)</pre>
 7
 8
                scanf("%d",&arr[ĭ]);
 9
10
           scanf("%d",&k); for(int
11
           i=0;i< n;i++)
12
13 4
                for(int j=0;j<n;j++)</pre>
14
15
                      if(arr(j)-arr(i)==k && i!=j)
16
17 •
18
                           flag=(;
19
                           break;
                      }
20
                }
21
22
           if(flag)
23
24
                printf("l");
25
           }
26
27
           else
           {
28
29
                printf("0");
           }
30
    |}
```

	Input	Expected	Got	
~	3 1 3 5 4	t	ſ	~
~	10 1 4 6 8 12 14 15 20 21 25 1	t	(~
~	10 1 2 3 5 11 14 16 24 28 29 0	0	0	~
~	O 2 3 7 I3 I4 I5 20 24 25	t	(~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

Jump to...