Serie 1: Multimedia Processing

Di cosa si tratta?

Il file audio presenta un sottofondo di rumore, con all'interno alcuni suoni di numeri digitati con il telefono.

I Risultati della vostra analisi?

9 33 555 555 0 3 666 66 33

Il messaggio proposto tramite T9 è "well done"

La vostra ipotesi di soluzione al problema?

Per risolvere il problema per prima cosa bisogna identificare la frequenza di ogni singolo tasto, quindi eliminiamo il rumore dalla traccia (https://www.youtube.com/watch?v=iZCTuzrRU_Y) e successivamente è necessario ricevere lo spettrogramma (cambiando da forma d'onda a spettro) con Audacity (https://www.youtube.com/watch?v=7WYw3qoTdU4). Il primo passo è facoltativo siccome non è necessario ma caldamente consigliato per un analisi visiva (siccome si vede meglio).

Successivamente prendiamo la tabella che si trova su https://en.wikipedia.org/wiki/Telephone_keypad per poter analizzare ogni singolo tasto. Ad esempio vediamo che il primo tasto deve essere un 9 perché si trova in 1477 Hz e 852 Hz.

DTMF keypad frequencies (with sound clips)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	1209 Hz	1336 Hz	1477 Hz	1633 Hz
697 Hz	1₽	2₺	3₽	A₽
770 Hz	4┏	5₽	6굡	B₽
852 Hz	7₽	8귵	9┏	C₽
941 Hz	*&	0虚	#&	D₽

La struttura dell'applicazione che intendereste sviluppare, con dettagli sugli strumenti e tecniche da utilizzare?

Per poter creare un applicazione bisognerebbe utilizzare un algoritmo di Short-Time Fourier Transform (STFT). In pratica bisogna sovrapporre più STFT e sommare ogni singolo punto in base al tempo.

https://github.com/pydanny/pydanny-event-notes/blob/master/Pycon2008/intro_to_numpy/files/pycon_demos/windowed_fft/short_time_fft_solutio_n.py

Infine prendere i picchi per ogni istante di tempo e confrontarli con la tabella presente su Wikipedia (Telephone Keypad). Per ricevere poi il messaggio in formato testuale è necessario "simulare" il formato di scrittura T9. Fonte https://stackoverflow.com/questions/4431481/frequency-detection-from-a-sound-file