Анализ мощности

Математические методы в зоологии с использованием R

Марина Варфоломеева

Экономим силы с помощью анализа мощности

- Тестирование гипотез (двухвыборочный t-критерий)
- Статистические ошибки при проверке гипотез
- Мощность статистического теста
- A priori анализ мощности, оценка величины эффекта
- Как влиять на мощность тестов

Вы сможете

- сравнивать средние значения при помощи t-критерия, интерпретировать и описывать результаты
- дать определение ошибок I и II рода, и графически изобразить их отношение к мощности теста
- оценивать величину эффекта и необходимый объем выборки по данным пилотного исследования

2 / 53

- загружать данные из интернета
- загружать данные из .xlsx и .csv в R
- строить боксплоты с помощью ggplot2

Тестирование гипотез

Тест Стьюдента (t-критерий)

Двухвыборочный тест Стьюдента (Student, 1908) используется для проверки значимости различий между средними значениями двух нормально распределенных величин.

$$t=rac{ar{\mu}_1-ar{\mu}_2}{\mathit{SE}}$$

Гипотезы: $H_0: \mu_1 = \mu_2, H_A: \mu_1 \neq \mu_2$

Условия применимости:

- Выборки случайны и независимы друг от друга
- Величины нормально распределены
- Дисперсии в группах одинаковы

$$SE = \sqrt{\frac{sd_1^2(n_1 - 1) + sd_2^2(n_2 - 1)}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

$$df = n_1 + n_2 - 2$$

Тест Уэлча (модификация теста Стьюдента для случая разных дисперсий)

$$t = \frac{\bar{\mu}_1 - \bar{\mu}_2}{SE}$$

Условия применимости:

- Выборки случайны и независимы друг от друга
- Величины нормально распределены

$$SE = \sqrt{\frac{sd_1^2}{n_1} + \frac{sd_2^2}{n_2}}$$

Приблизительное число степеней свободы рассчитывается по уравнению Уэлча-Саттеруэйта (Welch–Satterthwaite equation)

$$df \approx \frac{\left(\frac{sd_1^2}{n_1} + \frac{sd_2^2}{n_2}\right)^2}{\frac{sd_1^4}{n_1^2 \cdot df_1} + \frac{sd_2^4}{n_2^2 \cdot df_1}}$$

t-распределение

t-статистика подчиняется t-распределению.

Иными словами, если много раз взять выборки **из одной** совокупности (т.е. при условии, что H_0 верна) и посчитать между ними разницу, то она будет подчиняться t-распределению.

Форма t-распределения зависит только от одного параметра — числа степеней свободы df

В хвостах этого распределения находятся редкие значения

Обычно используется уровень значимости lpha 0.05 или 0.01.

Уровень значимости α — это вероятность ошибочно отвергнуть справедливую нулевую гипотезу. Т.е. это вероятность найти различия там, где их нет (вероятность ошибки I рода).

Для t-теста α — это вероятность ошибочно сделать вывод о том, что средние выборок различаются при условии, что эти выборки получены из одной генеральной совокупности.

Тестирование гипотезы о равенстве двух средних при помощи t-критерия

- Для конкретных данных считаем значение t-критерия
- Сравниваем его с теоретическим распределением t (распределением при условии, что H_0 верна)
- Принимаем решение, отвергнуть ли H_0

Пример: Снотворное

В датасете sleep содержатся данные об увеличении продолжительности сна по сравнению с контролем после применения двух снотворных препаратов (Cushny, Peebles, 1905, Student, 1908)

```
data(sleep)
View(sleep)
```

Двухвыборочный t-критерий

tt <- t.test(extra ~ group, sleep)

Сравним увеличение продолжительности сна при помощи двухвыборочного t-критерия.

```
#
# Welch Two Sample t-test
#
# data: extra by group
# t = -2, df = 20, p-value = 0.08
# alternative hypothesis: true difference in means is not equal to 0
# 95 percent confidence interval:
# -3.365 0.205
# sample estimates:
# mean in group 1 mean in group 2
# 0.75 2.33
```

Двухвыборочный t-критерий

tt <- t.test(extra ~ group, sleep)

Сравним увеличение продолжительности сна при помощи двухвыборочного t-критерия.

```
#
# Welch Two Sample t-test
#
# data: extra by group
# t = -2, df = 20, p-value = 0.08
# alternative hypothesis: true difference in means is not equal to 0
# 95 percent confidence interval:
# -3.365 0.205
# sample estimates:
# mean in group 1 mean in group 2
# 0.75 2.33
```

Результаты можно описать, например, так:

• Различия изменения продолжительности сна при применении двух препаратов были недостоверны ($t_{17.78}=-1.86,\,p=0.08$)

Что спрятано в результатах?

Как называются отдельные элементы результатов можно узнать посмотрев их структуру при помощи функции str()

```
str(tt)
```

list of 9

```
$ statistic : Named num -1.86
# ... attr(*, "names")= chr "t"
  $ parameter : Named num 17.8
  ... attr(*, "names")= chr "df"
  $ p.value : num 0.0794
  $ conf.int : atomic [1:2] -3.365 0.205
  ... attr(*, "conf.level")= num 0.95
  $ estimate : Named num [1:2] 0.75 2.33
  ... attr(*, "names")= chr [1:2] "mean in group 1" "mean in group 2"
  $ null.value : Named num 0
  ... attr(*, "names")= chr "difference in means"
  $ alternative: chr "two.sided"
#
  $ method : chr "Welch Two Sample t-test"
#
  $ data.name : chr "extra by group"
#
   - attr(*, "class")= chr "htest"
```

Можно получить элементы результатов в виде отдельных цифр

```
tt$parameter # степени свободы

# df
# 17.8

tt$p.value # доверительная вероятность

# [1] 0.0794
```

```
# t
# -1.86
```

tt\$statistic # значение t-критерия

Статистические ошибки при проверке гипотез	Статистические	ошибки пр	и проверке	гипотез
--	----------------	-----------	------------	---------

Статистические ошибки при проверке гипотез

Типы ошибок при проверке гипотез

	H0 == TRUE	H0 == FALSE
Отклонить H_0	Ошибка I рода	Верно
Сохранить H_0	Верно	Ошибка II рода

Ошибка І рода

	H0 == TRUE	H0 == FALSE
Отклонить H_0	Ошибка I рода	Верно
Сохранить H_0	Верно	Ошибка II рода

Ошибка I рода — вероятность отвергнуть H_0 , когда верна H_0

Марина Варфоломеева Анализ мощности 15 / 53

Мы этого не знаем, но может быть верна H_A ...

	H0 == TRUE	H0 == FALSE
Отклонить H_0	Ошибка I рода	Верно
Сохранить H_0	Верно	Ошибка II рода

Можно построить еще одно распределение статистики — распределение, при условии того, что верна H_{A}

Ошибка II рода

	H0 == TRUE	H0 == FALSE
Отклонить H_0	Ошибка I рода	Верно
Сохранить H_0	Верно	Ошибка II рода

Ошибка II рода — вероятность принять H_0 , когда верна H_A

Марина Варфоломеева Анализ мощности 17 / 53

Мощность теста — способность выявлять различия

	H0 == TRUE	H0 == FALSE
Отклонить H_0	Ошибка I рода	Верно
Сохранить H_0	Верно	Ошибка II рода

Мощность теста - вероятность отвергнуть H_0 , когда верна H_A

$$Power = 1 - \beta$$

Мощность теста

Power =
$$1 - \beta$$

Обычно считается, что хорошо, когда мощность не меньше 0.8

Т.е. что в 80% случаев мы можем найди различия заданной величины, если они есть.

Анализ мощности

A priori

- какой нужен объем выборки, чтобы найти различия с разумной долей уверенности?
- различия какой величины мы можем найти, если известен объем выборки?

Post hoc

• смогли бы мы найти различия при помощи нашего эксперимента (α , n), если бы величина эффекта была X?

A priory анализ мощности

Пример: Заповедник спасает халиотисов

Лов халиотисов (коммерческий и любительский) запретили, организовав заповедник.

Стало ли больше моллюсков через несколько лет? (Keough, King, 1991)

Данные из Ouinn, Keough, 2002, Box 9-5, Fig 9-7

A priori анализ мощности

Что нужно

- тест
- уровень значимости
- желаемая мощность теста
- ожидаемая величина эффекта

A priori анализ мощности

Что нужно

- тест
- уровень значимости
- желаемая мощность теста
- ожидаемая величина эффекта

Что есть

- t-критерий
- Power = 0.8
- 0

d Коэна (Cohen's d)

$$d = \frac{\bar{\mu}_1 - \bar{\mu}_2}{\sigma}$$

Где сигма может оцениваться одним из способов:

d Коэна (Cohen's d)

$$d = \frac{\bar{\mu}_1 - \bar{\mu}_2}{\sigma}$$

Где сигма может оцениваться одним из способов:

• среднеквадратичное отклонение (d Коэна)

$$\sigma = \sqrt{\frac{s_1^2 + s_2^2}{2}}$$

d Коэна (Cohen's d)

$$d = \frac{\bar{\mu}_1 - \bar{\mu}_2}{\sigma}$$

Где сигма может оцениваться одним из способов:

среднеквадратичное отклонение (d Коэна)

$$\sigma = \sqrt{\frac{s_1^2 + s_2^2}{2}}$$

обобщенное стандартное отклонение (g Хеджа)

$$\sigma = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Яков Коэн предложил делить эффекты на сильные, умеренные и слабые (Cohen, 1982)

size = large

effect.size = 0.8

Задание

Рассчитайте величину умеренных и слабых эффектов для t-критерия

Решение

```
cohen.ES(test = "t", size = "medium")
       Conventional effect size from Cohen (1982)
             test = t
             size = medium
      effect.size = 0.5
cohen.ES(test = "t", size = "small")
       Conventional effect size from Cohen (1982)
             test = t
             size = small
      effect.size = 0.2
```

Величина эффекта из пилотных данных

$$d = \frac{\bar{\mu}_1 - \bar{\mu}_2}{\sigma}$$

 σ - стандартное отклонение плотности халиотисов:

 \bullet Плотность крупных халиотисов на 50^2 была $\bar{x}=47.5$, SD=27.7

 $ar{\mu}_1 - ar{\mu}_2$ - средний вылов халиотисов в год:

- Масса выловленных коммерческим способом + данные о размерах -> численность -> плотность
 - Предположили, что коммерческий лов и любительский лов равны
 - \bullet Коммерческий лов = 11.6 экз. $^{-2}$
 - Коммерческий + любительский лов = 23.2 экз. $^{-2}$

Данные для анализа мощности собраны

```
alpha <- 0.05
power <- 0.80
sigma <- 27.7 # варьирование плотности халиотисов
diff <- 23.2 # ожидаемые различия плотности халиотисов
effect <- diff/sigma # величина эффекта
effect
```

```
# [1] 0.838
```

Функции для анализа мощности t-критерия:

- при одинаковых объемах групп pwr.t.test()
- при разных объемах групп pwr.t2n.test()

Считаем объем выборки

NOTE: n is number in *each* group

```
pwr hal <- pwr.t.test(n = NULL, d = effect,</pre>
                       power = power, sig.level = alpha,
                       type = "two.sample",
                       alternative = "two.sided")
pwr hal
       Two-sample t test power calculation
                n = 23.4
                d = 0.838
        sig.level = 0.05
            power = 0.8
      alternative = two.sided
```

Считаем объем выборки

Two-sample t test power calculation

 Чтобы с вероятностью 0.8 выявить различия плотности халиотисов в местах, где лов разрешен и запрещен, нужно обследовать по 24 пробы каждого типа, если мы верно оценили величину эффекта.

Задание

Рассчитайте сколько нужно обследовать проб, чтобы обнаружить слабый эффект с вероятностью 0.8, при уровне значимости 0.01

Вам понадобятся функции cohen.ES() и pwr.t.test()

Решение

```
cohen.ES(test = "t", size = "small")
       Conventional effect size from Cohen (1982)
             test = t
             size = small
      effect.size = 0.2
pwr.t.test(n = NULL, d = 0.2, power = 0.8, sig.level = 0.01,
           type = "two.sample", alternative = "two.sided")
       Two-sample t test power calculation
                n = 586
                d = 0.2
        sig.level = 0.01
            power = 0.8
      alternative = two.sided
# NOTE: n is number in *each* group
```

Пример: Улитки на устрицах в мангровых зарослях*

В каких зонах мангровых зарослей на устрицах предпочитают обитать улитки (Minchinton, Ross, 1999)?

- Факторы:
 - Сайт (А и В)
 - Зона зарослей (LZ ближе к земле, MZ средняя часть, SZ(+TR)с деревьями, SZ(-TR) - ближе к морю, без деревьев)
- Собрали по 5 проб число улиток на раковинах устриц

Данные из Quinn, Keough, 2002, Box 9-5, Fig 9-7

Скачиваем данные с сайта

Не забудьте войти в вашу директорию для матметодов при помощи setwd()

```
library(downloader)
# в рабочем каталоге создаем суб-директорию для данных
if(!dir.exists("data")) dir.create("data")
# скачиваем файл в xlsx, либо в текстовом формате
if (!file.exists("data/minch.xlsx")) {
  download(
    url = "https://varmara.github.io/mathmethr/data/minch.xlsx",
    destfile = "data/minch.xlsx")
}
if (!file.exists("data/minch.csv")) {
  download(
    url = "https://varmara.github.io/mathmethr/data/minch.xls",
    destfile = "data/minch.csv")
```

Читаем данные из файла одним из способов

Чтение из xlsx

```
library(readxl)
minch <- read_excel(path = "data/minch.xlsx", sheet = 1)</pre>
```

Чтение из csv

```
minch <- read.table("data/minch.csv", header = TRUE)</pre>
```

Все ли правильно открылось?

str(minch) # Структура данных

```
# 'data.frame': 40 obs. of 5 variables:
# $ site : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 1 ...
# $ zone : Factor w/ 4 levels "LZ","MZ","SZ(-TR)",..: 3 3 3 3 3 4 4 4 4 4 4
# $ limpt : num   0.16 0.11 0.1 0.16 0.15 0.12 0 0.03 0.05 0.43 ...
# $ limpt100: int   16 11 10 16 15 12 0 3 5 43 ...
```

```
head(minch) # Первые несколько строк файла
```

\$ sqlim100: num 4 3.32 3.16 4 3.87 ...

```
site zone limpt limpt100 sqlim100
     A SZ(-TR) 0.16
                       16
                            4.00
 1
# 2
     A SZ(-TR) 0.11
                  11
                            3.32
# 3
     A SZ(-TR) 0.10
                  10 3.16
     A SZ(-TR) 0.16
                  16 4.00
# 4
# 5
     A SZ(-TR) 0.15
                  15 3.87
# 6
     A SZ(+TR) 0.12
                       12
                            3.46
```

Знакомимся с данными

Есть ли пропущенные значения?

```
sapply(minch, function(x) sum(is.na(x)))
# site zone limpt limpt100 sqlim100
```

Каковы объемы выборок?

```
sum(!(is.na(minch$site == "A")))
```

```
# [1] 40
```

```
sum(!(is.na(minch$site == "B")))
```

Боксплоты числа улиток

Нормальное ли тут распределение?

Боксплот корня из численности улиток (sqlim100) для двух сайтов

Боксплот корня из численности улиток (sqlim100) для двух сайтов

 Распределение стало больше походить на нормальное. Можно пользоваться t-критерием для сравнения значений корня из численности улиток (sqlim100) для двух сайтов. A priory анализ мощности по данным пилотного исследования

Анализ мощности по данным пилотного исследования

Представим, что эти данные — это данные пилотного исследования.

Мы хотим выяснить по этим данным, сколько нужно собрать проб, чтобы показать, что плотность улиток различается на двух сайтах.

Величина эффекта по исходным данным

```
library(effsize)
eff_snail <- cohen.d(minch$sqlim100, minch$site)
eff_snail</pre>
```

```
# Cohen's d
#
# d estimate: -0.365 (small)
# 95 percent confidence interval:
# inf sup
# -1.028 0.298
```

Вычислим модуль, поскольку для pwr.t.test() эффект должен быть положительным

```
effect_snail <- abs(eff_snail$estimate)</pre>
```

Задание

Рассчитайте объем выборки, чтобы показать различия плотности улиток между сайтами с вероятностью 0.8?

Используйте функцию pwr.t.test()

Решение

#

Two-sample t test power calculation

Решение

```
#
# Two-sample t test power calculation
#
# n = 119
# d = 0.365
# sig.level = 0.05
# power = 0.8
# alternative = two.sided
#
# NOTE: n is number in *each* group
```

 Нужна выборка 119 площадок с каждого сайта, чтобы с вероятностью 0.8 обнаружить различия плотности улиток между сайтами.

Задание

Представьте, что в датасете sleep содержатся данные пилотного исследования.

Оцените, какой объем выборки нужно взять, чтобы показать, что число часов дополнительного сна после применения двух препаратов различается?

Решение

Нужна выборка **24 человека в каждой из групп**, чтобы с вероятностью 0.8 обнаружить различия числа часов дополнительного сна после применения двух препаратов.

Как влиять на мощность теста?

Как влиять на мощность теста?

Чем больше объем выборки — тем больше мощность

Чем больше уровень значимости — тем больше мощность

Чем больше величина различий — тем больше мощность

Каким образом можно повлиять на мощность теста?

- Мощность теста можно регулировать, если
 - изменить число повторностей
 - \bullet выбрать другой уровень значимости (lpha)
 - определиться, какие эффекты действительно важны (ES)

Take home messages

- Чтобы не находить несуществующих эффектов, фиксируем уровень значимости
- Чтобы не пропустить значимое, рассчитываем величину эффекта, объем выборки и мощность теста
- Способность выявлять различия зависит
 - от объема выборки,
 - от уровня значимости
 - от величины эффекта

Дополнительные ресурсы

- Quinn, Keough, 2002, pp. 164-170
- Open Intro to Statistics: 4.6 Sample Size and Power, pp. 193-197
- Sokal, Rohlf, 1995, pp. 167-169.
- Zar, 1999, p. 83.
- R Data Analysis Examples Power Analysis for Two-group Independent sample t-test. UCLA: Statistical Consulting Group.
- R Data Analysis Examples Power Analysis for One-sample t-test. UCLA: Statistical Consulting Group.
- FAQ How is effect size used in power analysis? UCLA: Statistical Consulting Group.