Dans ce document, j'utilise mon logiciel 'amibe.sage' pour générer les amibes et subdivisions associées du polynome suivant :

$$3x_1^2 + 5x_1x_2 - 6x_2^2 + 8x_1 - x_2 + 9 \in \mathbb{Q}[x_1, x_2]$$

Je traite le cas de la valuation 7-adique en premier (et donc tout premier supérieur à 7), puis dans l'ordre p = 2, 3, 5.

1 Cas p = 7

La tropicalisation de f pour p = 7 est :

$$\tau_f(x_1, x_2) = \min(2x_1, x_1 + x_2, 2x_2, x_1, x_2, 0)$$

Les coefficients de f étant tous de valuation nulle dans ce cas, on sait que l'amibe de f sera le squelette de dimension 1 de l'éventail normal du polytope de Newton de f.

Voici un tableau donnant les formes initiales de f en fonction de $(x_1, x_2) \in \mathbb{R}^2$, et donc également les équations de chaque polyèdre du complexe de Gröebner associé :

	(x_1, x_2)	$in_{(x_1,x_2)}f$	
	$x_1 < 0 , x_1 < x_2$	$\overline{3}x_1^2$	
2	$x_2 < 0 , x_2 < x_1$	x_2^2	
	$x_1 > 0 , x_2 > 0$	$\overline{2}$	
	$x_1 = x_2 , x_2 < 0$	$3x_1^2 + 5x_1x_2 + x_2^2$	
1	$x_1 = 0 , x_2 > 0$	$x_1 + \overline{3}x_1^2 + \overline{2}$	
	$x_2 = 0 , x_1 > 0$	$\overline{6}x_2 + x_2^2 + \overline{2}$	
0	$x_1 = x_2 = 0$	\overline{f}	

Table 1: formes initiales pour p = 7

Avec le code couleur évident, cela donne dans le plan :

Figure 1: complexe de Gröebner pour p=7

Le complexe de Gröebner est composé de 3 polytopes de dimension 2, 3 de dimension 1 et 1 de dimension 0. Observons la condition d'équilibre associée au point (0,0). Les images proviennent de mon logiciel 'amibe.sage'

Figure 2: condition d'équilibre en (0,0) pour p=7

Les images de gauche et droite montrent l'amibe et le polytope de Newton respectivement. Les points blancs sur l'image de droite sont les points à coordonnées entières. Ils permettent de rapidement calculer le poids : c'est le nombre de points blancs sur l'arête moins un. L'image du milieu montre la condition d'équilibre. Les vecteurs plus fin sont obtenus après multiplication par le poids correspondant à partir du vecteur entier plus épais colinéaire. Pour vérifier la condition d'équilibre, il ne reste plus qu'à sommer tout les vecteurs multipliés par leurs poids. On obtient zéro.

Il y a une chose intéressante que nous montre la condition d'équilibre en figure 2. Bien que l'amibe de f pour $p \geq 7$ soit identique, en tant que complexe polyèdral, à l'amibe d'un droite tropicale, elle s'en distingue par son vecteur de poids qui est (2,2,2), contre (1,1,1) pour la droite.

2 Cas p = 2

La tropicalisation de f pour p = 2 est :

$$\tau_f(x_1, x_2) = min(2x_1, x_1 + x_2, 1 + 2x_2, 3 + x_1, x_2, 0).$$

Voici le tableau qui résume la situation :

	(x_1, x_2)	$in_{(x_1,x_2)}(f)$	
2	$x_1 > 0 , x_2 > 0$	$\overline{1}$	
	$x_1 < 0 , x_2 > x_1$	x_1^2	
	$-1 < x_2 < 0 , x_1 > 0$	x_2	
	$x_1 < 0 , x_1 < x_2 , x_1 < x_2 + 1$	x_1x_2	
	$x_1 < -1$, $x_2 + 1 < x_1$	x_2^2	
1	$x_1 = 0 , x_2 > 0$	$x_1^2 + \overline{1}$	
	$x_2 = 0 , x_1 > 0$	$x_2 + \overline{1}$	
	$x_1 = 0 \ , \ -1 < x_2 < 0$	$x_1x_2 + x_2$	
	$x_2 = -1 , x_1 > 0$	$x_2^2 + x_2$	
	$x_2 + 1 = x_1 , x_1 < 0$	$x_1x_2 + x_2^2$	
	$x_1 = x_2 , x_1 < 0$	$x_1^2 + x_1 x_2$	
0	$x_1 = x_2 = 0$	$x_1^2 + x_1 x_2 + x_2 + \overline{1}$	
	$x_1 = 0 , x_2 = -1$	$x_1 x_2 + x_2^2 + x_2$	

Table 2: formes initiales pour p=2

Figure 3: complexe de Gröebner pour p=2

Figure 4: condition d'équilibre en (0,0) pour p=2

Figure 5: condition d'équilibre en (0,-1) pour p=2

On peut bien observer sur ces deux images la dualité entre l'amibe et la subdivision (à droite) du polytope de Newton de f.

3 Cas p = 3

La tropicalisation de f pour p = 3 est :

$$\tau_f(x_1, x_2) = \min(1 + 2x_1, x_1 + x_2, 1 + 2x_2, x_1, x_2, 2)$$

On obtient le tableau suivant:

	(x_1, x_2)	$in_{(x_1,x_2)}(f)$	
2	$x_1 > 2 , x_2 > 2$	1	
	$x_1 < -1$, $x_1 - x_2 < 1$	x_1^2	
	$x_2 < -1 \ , \ x_2 - x_1 < 1$	x_2^2	
	$x_1 - x_2 > 1$, $x_1 < 0$, $x_2 - x_1 > 1$, $x_2 < 0$	$\overline{2}x_1x_2$	
	$x_1 > 0 , 2 > x_2 > -1 , x_2 < x_1$	$\overline{2}x_2$	
	$x_2 > 0 , x_1 > -1 , x_1 < 2 , x_1 < x_2$	$\overline{2}x_1$	
1	$x_1 = 2 , x_2 > 2$	$\overline{2}x_1 + \overline{1}$	
	$x_2 = 2 , x_1 > 2$	$\overline{2}x_2 + \overline{1}$	
	$x1 = -1, x_2 > 0$	$x_1^2 + \overline{2}x_1$	
	$x_2 = -1 , x_1 > 0$	$x_2^2 + \overline{2}x_2$	
	$x_1 - x_2 = 1 , x_1 < -1$	$x_1^2 + \overline{2}x_1x_2$	
	$x_2 - x_1 = 1 , x_2 > -1$	$x_2^2 + \overline{2}x_1x_2$	
	$x_2 = 0 \ , \ -1 < x_1 < 0$	$\overline{2}x_1x_2 + \overline{2}x_1$	
	$x_1 = 0 \ , \ -1 < x_2 < 0$	$\overline{2}x_1x_2 + \overline{2}x_2$	
	$x_1 = x_2 \ , \ 0 < x_1 < 2$	$\overline{2}x_1 + \overline{2}x_2$	
0	$x_1 = x_2 = 0$	$\overline{2}x_1x_2 + \overline{2}x_1 + \overline{2}x_2$	
	$x_1 = x_2 = 2$	$\overline{2}x_1 + \overline{2}x_2 + \overline{2}$	
	$x_1 = 0 , x_2 = -1$	$\overline{2}x_1 + \overline{2}x_2 + \overline{1}$	
	$x_1 = -1 \; , \; x_2 = 0$	$x_1^2 + \overline{2}x_1x_2 + \overline{2}x_1$	

Table 3: formes initiales pour p = 3

Remarquons une chose ici. Le complexe de Gröebner possède 6 polyèdres de dimension maximale (2). Il ne peut pas en posséder plus car f est composée de 6 monômes, et on sait qu'à un polyèdre de dimension maximale correspond un unique monôme de f.

Voici ce que ça donne dans le plan :

Figure 6: C omplexe de Grebner pour p=3

Pour la condition d'équilibre, le vecteur de poids est à chaque fois (1,1,1)) :

Figure 7: condition d'équilibre en (2,2) pour p=3

Figure 8: condition d'équilibre en (0,0) pour p=3

Figure 9: condition d'équilibre en (0,-1) pour p=3

Figure 10: condition d'équilibre en (-1,0) pour p=3

4 Cas p = 5

La tropicalisation de f est :

$$\tau_f(x_1, x_2) = \min(2x_1, 1 + x_1 + x_2, 2x_2, x_1, x_2, 0)$$

Il y a peu de choses à dire ici, le complexe est le même que pour p=7. Seules les formes initiales vont changer. Voici le tableau qui résume la situation :

	(x_1, x_2)	$in_{(x_1,x_2)}f$	
	$x_1 < 0 , x_1 < x_2$	$\overline{3}x_1^2$	
2	$x_2 < 0 , x_2 < x_1$	$\overline{4}x_2^2$	
	$x_1 > 0 , x_2 > 0$	$\overline{4}$	
	$x_1 = x_2 , x_2 < 0$	$\overline{3}x_1^2 + \overline{4}x_2^2$	
1	$x_1 = 0 , x_2 > 0$	$\overline{4}x_2^2 + x_1x_2$	
	$x_2 = 0 , x_1 > 0$	$\overline{3}x_1^2 + x_2^2$	
0	$x_1 = x_2 = 0$	$3x_1^2 + 4x_2^2 + 3x_1 + 4x_2 + 4$	

Table 4: formes initiales pour p=5

Figure 11: complexe de Gröebner pour p=5

Figure 12: condition d'éuilibre en (0,0) pour p=5

On peut faire une remarque ici. On sait que lorsque la valuation est triviale ou lorsque les coefficients de f sont tous de valuation nulle, l'amibe de f sera un éventail. Le cas p=5 montre que la réciproque est fausse : l'amibe de f est un éventail, mais le coefficient du monôme x_1x_2 de f a valuation $1 \neq 0$.