Índice general

Αį	grade	ecimiei	itos	III
Ín	dice	genera	al	VI
Ín	dice	de figu	ıras	VII
Ín	dice	de tab	olas	IX
\mathbf{R}_{0}	esum	en		XIII
1.	Intr	oducci	ión	1
	1.1.	Justifi	cación	. 2
	1.2.	Objeti	ivos	. 4
		1.2.1.	Objetivo general	. 4
		1.2.2.	Objetivos específicos	4
2.	Fun	damen	ntos teóricos	5
	2.1.	Defini	ción de Grünwald-Letnikov	6
		2.1.1.	Definición de derivada de Grünwald-Letnikov	. 6
		2.1.2.	Definición de integral de Grünwald-Letnikov	. 6
		2.1.3.	Método numérico para la definición de GL	. 6
	2.2.	Defini	ción de Riemann-Liouville	. 6
		2.2.1.	Definición de integral de Riemann-Liouville	. 6
		2.2.2.	Definición de derivada de Riemann-Liouville	6
	2.3.	Transf	formada de Laplace de integrales y derivadas fraccionarias	. 6
	2.4.	Expan	sión de fracciones continuas (CFE)	. 6
		2.4.1.	Análisis de error de la CFE	. 6
	2.5.	Escala	amiento en frecuencia	. 6
	2.6.	Teoría	de filtros	
		2.6.1.	Filtros de primer orden	. 6
		2.6.2.	Filtros de segundo orden	. 6

VI Índice general

3.	Imp	lemen	tación de intregradores fracionarios	7
	3.1.	¿Qué e	es una FPAA?	7
	3.2.	Caract	terísticas de la tarjeta y requerimientos	8
		3.2.1.	Alimentación de la tarjeta	8
		3.2.2.	Instalación de drivers	8
		3.2.3.	Jumpers por defecto	8
		3.2.4.	Tamaño variable de cadena de FPAAs	8
		3.2.5.	DIP Switches	8
		3.2.6.	Filtros Rauch y buffers de salida	8
		3.2.7.	Circuito de prueba	8
	3.3.	Anadi	gmDesigner2	8
		3.3.1.	Comunicación con AD2	8
		3.3.2.	Equivalencia de conexiones en tarjeta y en software	8
	3.4.	NI EL	VIS II+	8
		3.4.1.	¿Qué es la NI ELVIS II+?	8
		3.4.2.	Instalación	S
		3.4.3.	Puesta en marcha y calibración	S
		3.4.4.	Diagramas de Bode	Ö
		3.4.5.	Ejemplo práctico	S
	3.5.	Impler	mentación con aproximación de primer orden	11
		3.5.1.	Filtro bilineal configuración polo y cero	11
		3.5.2.	Filtro bilineal configuración pasabajas y pasaaltas	11
	3.6.	Impler	mentación con aproximación de segundo	11
		3.6.1.	Filtro bicuadrático configuración polo cero	11
4.	Osc	ilador	caótico utilizando integradores de orden fraccionario	13
	4.1.	Oscila	dor caótico basado en funciones no lineales saturadas (SNLF)	13
	4.2.	Funció	ón deestabilizadora	13
	4.3.	Variab	oles de estado del oscilador en orden fraccionario	13
	4.4.	Impler	mentación en FPAA	13
		4.4.1.	Configuración bilineal polo y cero	13
		4.4.2.	Configuración bilineal suma de filtros	13
5.	Con	clusio	nes	15
Α.	Cód	$_{ m ligos}$		17
в.	Esq	uemát	ico de QuadApex v2.0	19
Bi	blio¤	grafía		21

Índice de figuras

3.1.	Diagrama esquemático de filtro pasabajas activo	S
3.2.	Diagrama de Bode experimental utilizando el NI ELVIS II+	10
3.3.	Diagramas de Bode comparativos, respuesta ideal, simulación y experi-	
	mental	10
B.1.	Diagrama esquemático de QuadApex v2.0	19

Índice de tablas

 $3.1.\,$ Equivalencias de IOC
ell en AD2 a físicos pines en tarjeta en FPAA. . . . $\,$ 8

Índice de tablas

Lista de códigos

A.1. 1	Función	syms2tf.																															17
--------	---------	----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----

XIV

Capítulo 2

Fundamentos teóricos

Hola Cuando se comienza a estudiar cálculo de orden entero es necesario familiarizarse con la notación de los operadores matemáticos de la derivada y la integral, con el cálculo fraccionario ocurre lo mismo. En la actualidad la notación más utilizada para el cálculo entero es la dada por Leibniz en (1686), donde el operador diferencial de n-ésimo orden esta definido como: $\frac{d^n}{dt^n}$, D^n_t o simplemente D^n con $n \in \mathbb{N}$. Utilizando el mismo razonamiento, puede definirse su operador inverso (antiderivada) de manera que el operador inverso de la derivada de n-ésimo orden está dado por: ${}_aD^{-n}_t$, donde $n \in \mathbb{N}$ y $a \in \mathbb{R}$ representa el límite inferior del dominio de la región donde se aplica dicho operador.

Para generalizar el operador diferencial e integral para orden fraccionario se considera que este puede definirse para parámetros de orden real o incluso complejo. Esto implica que los operadores pueden definirse respectivamente como: D^{α} y $_{a}D_{t}^{\alpha}$ con $\alpha \in \mathbb{R}$.

Es importante tener presente que no una hay una única definición para los operadores diferencial e integral fraccional, sino varias expresiones definidas por diferentes autores, entre las mas usadas se encuentran la definición de Grünwald-Letnikov (GL), la de Riemann-Liouville (RL) y la de Caputo (Ca), cada una de estas con sus ventajas y desventajas desde el punto de vista del análisis matemático, complejidad computacional e implementación [3].

- 2.1. Definición de Grünwald-Letnikov
- 2.1.1. Definición de derivada de Grünwald-Letnikov
- 2.1.2. Definición de integral de Grünwald-Letnikov
- 2.1.3. Método numérico para la definición de GL
- 2.2. Definición de Riemann-Liouville
- 2.2.1. Definición de integral de Riemann-Liouville
- 2.2.2. Definición de derivada de Riemann-Liouville
- 2.3. Transformada de Laplace de integrales y derivadas fraccionarias
- 2.4. Expansión de fracciones continuas (CFE)
- 2.4.1. Análisis de error de la CFE
- 2.5. Escalamiento en frecuencia
- 2.6. Teoría de filtros
- 2.6.1. Filtros de primer orden
- 2.6.2. Filtros de segundo orden

Bibliografía

- [1] J. M. M. Pacheco and E. T. Cuautle, *Electronic Design Automation of Multi-Scroll Chaos Generators*. BENTHAM SCIENCE PUB, 2010.
- [2] A. Buscarino, L. Fortuna, M. Frasca, and G. Sciuto, A Concise Guide to Chaotic Electronic Circuits. Springer-Verlag GmbH, 2014.
- [3] I. Petráš, Fractional-Order Nonlinear Systems. Springer Berlin Heidelberg, 2011.
- [4] I. Petráš and J. Terpak, "Fractional calculus as a simple tool for modeling and analysis of long memory process in industry," *Mathematics*, vol. 7, p. 511, jun 2019.
- [5] A. Tepljakov, E. A. Gonzalez, E. Petlenkov, J. Belikov, C. A. Monje, and I. Petráš, "Incorporation of fractional-order dynamics into an existing PI/PID DC motor control loop," *ISA Transactions*, vol. 60, pp. 262–273, jan 2016.
- [6] S. W. Khubalkar, A. S. Junghare, M. V. Aware, A. S. Chopade, and S. Das, "Demonstrative fractional order PID controller based DC motor drive on digital platform," *ISA Transactions*, vol. 82, pp. 79–93, nov 2018.
- [7] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers. Springer-Verlag GmbH, 2011.
- [8] G. Wang, D. Chen, J. Lin, and X. Chen, "The application of chaotic oscillators to weak signal detection," *IEEE Transactions on Industrial Electronics*, vol. 46, pp. 440–444, apr 1999.
- [9] V. Tepin, Self-parametric chaotic oscillators for secure communication systems. St. Petersburg State Polytech. Univ, 2002.
- [10] Y. Chen, I. Petras, and D. Xue, "Fractional order control a tutorial," *American Control Conference*, 2009.
- [11] S. Das, Functional Fractional Calculus for System Identification and Controls. Springer-Verlag GmbH, 2007.

22 Bibliografía

[12] E. Gunay and K. Altun, "A performance comparison study of programmable platforms: FPAA and FPGA implementation of COOK communication system," European Conference on Circuit Theory and Design (ECCTD), sep 2017.

- [13] I. S. Jesus and J. A. T. Machado, "Development of fractional order capacitors based on electrolyte processes," *Nonlinear Dynamics*, vol. 56, pp. 45–55, jun 2008.
- [14] K. Biswas, S. Sen, and P. Dutta, "Realization of a constant phase element and its performance study in a differentiator circuit," *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 53, pp. 802–806, sep 2006.
- [15] A. Charef, "Analogue realisation of fractional-order integrator, differentiator and fractional PI^λ D^μ controller," *IEE Proceedings Control Theory and Applications*, vol. 153, pp. 714–720, nov 2006.
- [16] B. Krishna, "Studies on fractional order differentiators and integrators: A survey," Signal Processing, vol. 91, pp. 386–426, Mar. 2011.
- [17] B. T. Krishna and K. V. V. S. Reddy, "Active and passive realization of fractance device of order 1/2," Active and Passive Electronic Components, vol. 2008, pp. 1–5, 2008.
- [18] A. Tepljakov, E. Petlenkov, and J. Belikov, "Efficient analog implementations of fractional-order controllers," *Proceedings of the 14th International Carpathian Control Conference (ICCC)*, may 2013.
- [19] L. Dorcak, J. Terpak, I. Petras, J. Valsa, and E. Gonzalez, "Comparison of the electronic realization of the fractional-order system and its model," *Proceedings of the 13th International Carpathian Control Conference (ICCC)*, may 2012.
- [20] N. Fragoulis, G. Souliotis, D. Besiris, and K. Giannakopoulos, "Field programmable analogue array design based on the wave active filter design method," AEU -International Journal of Electronics and Communications, vol. 63, pp. 889–895, oct 2009.
- [21] R. Caponetto and D. Porto, "Analog implementation of non integer order integrator via field programmable analog array," IFAC Proceedings Volumes, vol. 39, pp. 107–111, jan 2006.
- [22] C. Li, W. J.-C. Thio, J. C. Sprott, H. H.-C. Iu, and Y. Xu, "Constructing infinitely many attractors in a programmable chaotic circuit," *IEEE Access*, vol. 6, pp. 29003–29012, 2018.

Bibliografía 23

[23] F. Jiang, X. Wang, J. Jin, and D. Yang, The application of chaotic duffing oscillators to ballistocardiograph signal detection. IEEE, jul 2010.

[24] B. Kumari and N. Gupta, "Experimental investigation on chaotic oscillator coupled dielectric resonator antenna for medical applications," *IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM)*, nov 2017.