Assignment 16

Matish Singh Tanwar

Abstract-This document solves a problem of Linear Algebra.

Download all latex-tikz codes from

https://github.com/Matish007/Matrix-Theory-EE5609-/tree/master/Assignment 16

1 Problem

Let

$$\mathbf{A} = \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \tag{1.0.1}$$

where $x,y \in \mathbb{R}$ such that

$$x^2 + y^2 = 1 \tag{1.0.2}$$

Then, we must have:

Then, we must have:
1)
$$\mathbf{A}^{\mathbf{n}} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \forall n \geq 1$$

where $\mathbf{x} = \cos(\frac{\theta}{n}), \mathbf{y} = \sin(\frac{\theta}{n})$
2) $trace(\mathbf{A}) \neq 0$
3) $\mathbf{A}^{\mathbf{T}} = \mathbf{A}^{-1}$

- 4) **A** is similar to a diagonal matrix over \mathbb{C}

2 SOLUTION

Options	Explanation
$\mathbf{A^n} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \forall n \ge 1$	$\mathbf{A} = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$
where $x = \cos(\frac{\theta}{n}), y = \sin(\frac{\theta}{n})$	$\mathbf{A} = \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$
	$\mathbf{A} = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$ $\mathbf{A} = \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{\mathbf{n}} = \begin{pmatrix} \cos(\frac{n\theta}{n}) & \sin(\frac{n\theta}{n}) \\ -\sin(\frac{n\theta}{n}) & \cos(\frac{n\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{\mathbf{n}} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \forall n \ge 1$
	$\mathbf{A}^{\mathbf{n}} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \qquad \forall n \ge 1$
40 man (A) / O	nence,correct
$trace(\mathbf{A}) \neq 0$	Let, $x = 0$, $y = 1$, Substitute in (1.0.1)
	$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
	$trace(\mathbf{A}) = 0$
	Hence,incorrect
$\mathbf{A^T} = \mathbf{A^{-1}}$	$\mathbf{A} = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$ $\mathbf{A}^{\mathbf{T}} = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ $\begin{pmatrix} x & y \\ -y & x \end{pmatrix} \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ $\begin{pmatrix} x^2 + y^2 & -xy + xy \\ -xy + xy & x^2 + y^2 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\mathbf{A}\mathbf{A}^T = \mathbf{I} = \mathbf{A}^T \mathbf{A}$
	$\mathbf{A}^{\mathbf{T}} = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$
$\mathbf{A}\mathbf{A}^{\mathrm{T}}$	$\begin{pmatrix} x & y \\ -y & x \end{pmatrix} \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$
	$\begin{pmatrix} x^2 + y^2 & -xy + xy \\ -xy + xy & x^2 + y^2 \end{pmatrix}$
	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
	$\mathbf{A}A^T = \mathbf{I} = \mathbf{A}^T A$
	$\Rightarrow A = A$
	\implies A is an orthogonal matrix.
A is similar to a diagonal matrix area (7)	Hence,correct.
A is similar to a diagonal matrix over C Using Spectral Theorem	Every real orthogonal matrix is diagonalizable over C
Osing Spectral Theorem	A is orthogonal from above.
	Since, $x, y \in \mathbb{R}$. So, A is a real orthogonal matrix.
	Hence, A is similar to a diagonal matrix over \mathbb{C}
	Hence, correct.

TABLE 1: Finding Correct Option