Computing Betweenness Centrality in Link Streams

Clémence Magnien joint work with Frédéric Simard and Matthieu Latapy

July 2020

Link Streams – definitions

link stream
$$L = (T, V, E)$$

 $T = [\alpha, \omega] \subset \mathbb{R}$, V finite set, $E \subseteq T \times V \otimes V$
 $(t, uv) \in E \Leftrightarrow u$ and v are linked at time t

link segment $[i,j] \times \{uv\} \subseteq E$ with [i,j] maximal here: finite number of link segments (incl. singletons)

temporal node $(t, u) \in T \times V$

Link Streams – definitions

link stream
$$L = (T, V, E)$$

 $T = [\alpha, \omega] \subset \mathbb{R}$, V finite set, $E \subseteq T \times V \otimes V$
 $(t, uv) \in E \iff u$ and v are linked at time t

link segment $[i,j] \times \{uv\} \subseteq E$ with [i,j] maximal here: finite number of link segments (incl. singletons)

temporal node
$$(t, u) \in T \times V$$

exs: $[9,11] \times \{de\}, \quad \{16\} \times \{de\}, \quad [23,24] \times \{de\}, \quad [30,31] \times \{de\}$

 $\begin{array}{l} \textbf{path} \ (x,u) \longrightarrow (y,v): \\ v_0, \ t_1, \ v_1, \ t_2, \ v_2, \ \dots \ t_k, \ v_k \\ \text{such that} \ u = v_0, \ v_k = v, \\ x \leq t_1 \leq t_2 \leq \dots \leq t_k \leq y, \\ \text{and} \ (t_i, v_{i-1}v_i) \in E \ \text{for all} \ i \end{array}$

length: k duration: $t_k - t_1$ shortest paths fastest paths \hookrightarrow shortest fastest paths (sfp)

 $\begin{array}{l} \textbf{path} \ (x,u) \longrightarrow (y,v): \\ v_0, \ t_1, \ v_1, \ t_2, \ v_2, \ \dots \ t_k, \ v_k \\ \text{such that} \ u = v_0, \ v_k = v, \\ x \leq t_1 \leq t_2 \leq \dots \leq t_k \leq y, \\ \text{and} \ (t_i, v_{i-1}v_i) \in E \ \text{for all} \ i \end{array}$

length: k duration: $t_k - t_1$ shortest paths fastest paths (sfp)

some paths from (0, a) to (26, e):

a, 2, b, 4, c, 6, d, 9, e fastest path, length 4, duration 7, not shortest a, 9, c, 18, d, 23, e shortest path, length 3, duration 14, not fastest a, 2, b, 4, c, 6, d, 9, e shortest fastest path (sfp)

 $\begin{array}{l} \textbf{path} \ (x,u) \longrightarrow (y,v): \\ v_0, \ t_1, \ v_1, \ t_2, \ v_2, \ \dots \ t_k, \ v_k \\ \text{such that} \ u = v_0, \ v_k = v, \\ x \leq t_1 \leq t_2 \leq \dots \leq t_k \leq y, \\ \text{and} \ (t_i, v_{i-1}v_i) \in E \ \text{for all} \ i \end{array}$

length: k duration: $t_k - t_1$ shortest paths fastest paths (sfp)

some paths from (0, a) to (26, e):

a,2,b,4,c,6,d,9,e fastest path, length 4, duration 7, not shortest a,9,c,18,d,23,e shortest path, length 3, duration 14, not fastest a,2,b,4,c,6,d,9,e shortest fastest path (sfp)

 $a, 2, b, 5, c, 6, d, 9, e \text{ too} \Rightarrow \text{infinity of sfp}$

Betweenness Centrality in Link Streams

graphs:
vertex,
shortest paths,
all *u* and *v*

link streams: temporal vertex, shortest fastest paths, all (t, u) and (t', v)

Betweenness Centrality in Link Streams

graphs:
vertex,
shortest paths,
all u and v

link streams: temporal vertex, shortest fastest paths, all (t, u) and (t', v)

$$B(t,v) = \sum_{u \in V, w \in V} \int_{i \in T, j \in T} \frac{\sigma((i,u),(j,w),(t,v))}{\sigma((i,u),(j,w))} \, \mathrm{d}i \, \mathrm{d}j$$

fraction of all sfp $(i, u) \longrightarrow (j, w)$ that involve (t, v)

$$2 < a \le b < c \le d < 7$$

and
 $10 < e \le f < g \le h < 15$

contribution of u and w to B(t, v) with $t \in [b, c]$?

two families of sfp from u to w:

- ▶ $u, 2, x, k, v, \ell, y, 7, w$ with $k \in [a, b]$ and $\ell \in [c, d]$ (blue family) $(b-a) \cdot (d-c) \text{ sfp}$
- ▶ u, 10, x, m, v, n, y, 15, w with $m \in [e, f]$ and $n \in [g, h]$ (green family) $(f e) \cdot (h g) \text{ sfp}$

$$2 < a \le b < c \le d < 7$$

and
 $10 < e \le f < g \le h < 15$

contribution of u and w to B(t, v) with $t \in [b, c]$?

sfp from (i, u) to (j, w):

- ▶ blue ones if $i \in [0,2]$ and $j \in [7,15[$
- **b** both blue and green ones $i \in [0, 2]$ and $j \in [15, 17]$
- ▶ green ones if $i \in]2, 10]$ and $j \in [15, 17]$
- no sfp for all others i and j

$$2 < a \le b < c \le d < 7$$

and
 $10 < e \le f < g \le h < 15$

contribution of u and w to B(t, v) with $t \in [b, c]$?

sfp from (i, u) to (i, w):

- \blacktriangleright blue ones if $i \in [0,2]$ and $j \in [7,15]$ \hookrightarrow all involve (t, v)
- **b** both blue and green ones $i \in [0, 2]$ and $j \in [15, 17]$

$$(b-a)\cdot (d-c)$$

 $(b-a)\cdot (d-c)+(f-e)\cdot (h-g)$

- ▶ green ones if $i \in]2, 10]$ and $j \in [15, 17]$
 -none involve (t, v)
- no sfp for all others i and j

$$2 < a \le b < c \le d < 7$$

and
 $10 < e \le f < g \le h < 15$

contribution of u and w to B(t, v) with $t \in [b, c]$?

$$\int_0^2 \int_7^{15} 1 \, dj \, di + \int_0^2 \int_{15}^{17} blue \text{ fraction } dj \, di$$
$$= 16 + 4 \cdot blue \text{ fraction}$$

blue fraction =
$$\frac{(b-a)\cdot(d-c)}{(b-a)\cdot(d-c)+(f-e)\cdot(h-g)}$$

Example – what if a = b?

how many blue paths? green paths?

Example – what if a = b?

how many blue paths? green paths?

blue paths:

$$u, 2, x, a, v, \ell, y, 7, w$$
 with $\ell \in [c, d]$ \hookrightarrow volume $(d - c)$, dimension 1

green paths:

$$u, 10, x, m, v, n, y, 15, w$$
 with $m \in [e, f]$ and $n \in [g, h]$ \hookrightarrow volume $(f - e) \cdot (h - g)$, dimension 2

Example – what if a = b?

how many blue paths? green paths?

blue paths:

$$u, 2, x, a, v, \ell, y, 7, w$$
 with $\ell \in [c, d]$

 \hookrightarrow volume (d-c), dimension 1

green paths:

$$u, 10, x, m, v, n, y, 15, w$$
 with $m \in [e, f]$ and $n \in [g, h]$
 \hookrightarrow volume $(f - e) \cdot (h - g)$, dimension 2

fraction involving (t, v)? 0

Identify times of beginning and end of fastest paths latency pairs from u to w: (s_i, a_i)

Identify times of beginning and end of fastest paths latency pairs from u to w: (s_i, a_i)

 \hookrightarrow algorithm for volumes of sfp from u to w: shortest paths within each latency pair

Identify times of beginning and end of fastest paths latency pairs from u to w: (s_i, a_i)

\hookrightarrow algorithm for volumes of sfp from u to w:

shortest paths within each latency pair

using BFS-like from *event time* to event time:

path
$$(i, u) \longrightarrow (t', y)$$

then **jump** $y \rightarrow w$ at t'

Identify times of beginning and end of fastest paths latency pairs from u to w: (s_i, a_i)

\hookrightarrow algorithm for volumes of sfp from u to w:

shortest paths within each latency pair

using BFS-like from event time to event time:

path
$$(i, u) \longrightarrow (t', y)$$
 then **jump** $y \rightarrow w$ at t'

+ operation on volumes (considering dimension)

for all u and w:

for all *u* and *w*:
compute latency pairs for *u* and *w*

for all u and w:
compute latency pairs for u and w
compute length of sp for all latency pairs (sfp)

for all u and w:
compute latency pairs for u and w
compute length of sp for all latency pairs (sfp)
identify relevant times over which to integrate

for all *u* and *w*:
 compute latency pairs for *u* and *w* compute length of sp for all latency pairs (sfp)
 identify relevant times over which to integrate integrate over time intervals (sum)

Conclusion and Perspectives

a polynomial algorithm for betweenness centrality in link streams

+ implementation

Conclusion and Perspectives

a polynomial algorithm for betweenness centrality in link streams

+ implementation

- improved complexity? easier with discrete time and/or instantaneous links?
- more general cases? stream graphs: dynamic nodes
- **betweenness of all** (t, v)? complexity? approximation?
- community detection

postdoc position available

Notes