MAT02018 - Estatística Descritiva

Distribuições bidimensionais

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2021

- Como mencionado anteriormente, é comum nessas situações analisar o que acontece com a variável quantitativa dentro de cada categoria da variável qualitativa.
- Essa análise pode ser conduzida por meio de medidas-resumo, histogramas ou boxplots.
- Consideremos novamente o exemplo dos empregados da seção de orçamentos da Companhia MB, mas agora com o interesse de avaliar a associação entre a variável salário e grau de instrução.

ID	Salario (x Sal Min)	Grau de Instrução
1	4,00	ensino fundamental
2	4,56	ensino fundamental
3	5,25	ensino fundamental
5	6,26	ensino fundamental
6	6,66	ensino fundamental
7	6,86	ensino fundamental
8	7,39	ensino fundamental
12	8,46	ensino fundamental
14	8,95	ensino fundamental
18	9,80	ensino fundamental
23	12,00	ensino fundamental
27	13,85	ensino fundamental
4	5,73	ensino médio
9	7,59	ensino médio
10	7,44	ensino médio
11	8,12	ensino médio
13	8,74	ensino médio
15	9,13	ensino médio

ID	Salario (x Sal Min)	Grau de Instrução
16	9,35	ensino médio
17	9,77	ensino médio
20	10,76	ensino médio
21	11,06	ensino médio
22	11,59	ensino médio
25	13,23	ensino médio
26	13,60	ensino médio
28	14,69	ensino médio
29	14,71	ensino médio
30	15,99	ensino médio
32	16,61	ensino médio
35	19,40	ensino médio
19	10,53	superior
24	12,79	superior
31	16,22	superior
33	17,26	superior
34	18,75	superior
36	23,30	superior

- Vamos começar organizando em uma tabela as principais medidas resumo da variável salário para cada um dos grupos de escolaridade.
 - Ou seja, vamos calcular a média, o desvio padrão e demais medidas resumo considerando apenas os indivíduos com ensino superior.
 - Logo em seguida, calcularemos as mesmas medidas considerando apenas os indivíduos com ensino médio.
 - E por fim, calcularemos as mesmas medidas considerando apenas os indivíduos com ensino fundamental.

Assim, a variável grau de instrução define grupos de indivíduos, e descreveremos a distribuição da variável salário para cada um dos grupos.

Table 1: Medidas-resumo para a variável salário, segundo o grau de instrução, na Companhia MB.

Grau de Instrução	n	Média	D. Padrão	Variância	Min	Q1	Q2	Q3	Max
ensino fundamental	12	7,84	2,96	8,74	4,00	6,01	7,12	9,16	13,85
ensino médio	18	11,53	3,72	13,80	5,73	8,84	10,91	14,42	19,40
superior	6	16,48	4,50	20,27	10,53	13,65	16,74	18,38	23,30
Global	36	11,12	4,59	21,04	4,00	7,55	10,16	14,06	23,30

- Uma outra forma de apresentarmos a distribuição de salário por grupo de instrução é através do gráfico de boxplot.
- Novamente devemos construir cada uma das caixas considerando os dados dos indivíduos de cada um dos grupos.

- Estes resultados sugerem uma dependência dos salários em relação ao grau de instrução: o salário aumenta conforme aumenta o nível de escolaridade do indivíduo.
- O salário médio de um funcionário é 11,12 (salários mínimos), já para um funcionário com curso superior o salário médio passa a ser 16,48, enquanto funcionários com o ensino fundamental completo recebem, em média, 7,84.

- Como nos casos anteriores, é conveniente poder contar com uma medida que quantifique o grau de dependência entre as variáveis.
- ► Tal medida pode ser construída a partir das variâncias de grupo e a variância global.
- Sem usar a informação da variável categorizada¹, a variância calculada para a variável quantitativa² para todos os dados mede a dispersão dos dados globalmente.
- ▶ Se a variância dentro de cada categoria for pequena e menor do que a global, significa que a variável qualitativa melhora a capacidade de previsão³ da quantitativa e portanto existe uma relação entre as duas variáveis.

¹Em nosso exemplo, a variável grau de instrução.

²Em nosso exemplo, a variável salário.

³Ao saber o grau de instrução conseguimos falar de maneira mais "precisa" sobre o salário dos empregados da Companhia MB?

- Observe que, para as variáveis salário (denotaremos por Y) e grau de instrução, as variâncias de Y dentro das três categorias são menores do que a global⁴.
- Necessita-se, então, de uma medida resumo da variância entre as categorias da variável qualitativa.
- Vamos usar a média das variâncias ponderada pelo número de observações em cada categoria, ou seja,

$$\bar{s^2}_Y = \frac{\sum_{j=1}^k s_j^2(Y) n_j}{\sum_{j=1}^k n_j},$$

em que k é o número de categorias (k=3 em nosso exemplo) e $s_j^2(Y)$ denota a variância de Y dentro da categoria $j, j=1,2,\ldots,k$.

⁴Lembrando: para o grupo ensino fundamental, $s_Y^2 = 8,74$; para o grupo ensino médio, $s_Y^2 = 13,80$; para o grupo ensino superior, $s_Y^2 = 20,27$; e por fim, para todo o grupo de empregados, $s_Y^2 = 21,04$.

Pode-se mostrar que a média das variâncias é menor ou igual a variância global⁵, de modo que podemos definir o grau de associação entre as duas variáveis como o ganho relativo na variância, obtido pela introdução da variável qualitativa. Explicitamente,

$$R^2 = \frac{s_Y^2 - \bar{s}_Y^2}{s_Y^2} = 1 - \frac{\bar{s}_Y^2}{s_Y^2}.$$

- Note que $0 \le R^2 \le 1$.
- ▶ Quanto maior a capacidade preditiva da variável de grupo, menor será a média das variâncias $(\bar{s^2}_Y)$ em relação a variância global, e portanto a razão $\frac{\bar{s^2}_Y}{\bar{s^2}_Y}$ será próxima de zero, enquanto que R^2 tenderá a 1.
- ▶ Já se a média das variâncias é próxima da variância global, então a razão $\frac{\bar{s^2}\gamma}{s_{\gamma}^2}$ será próxima de um, enquanto que R^2 tenderá a 0. Concluímos então, que:
- ▶ R² alto (valores próximos de 1) indicam forte dependência (associação) entre a variável qualitativa e a variável quantitativa.
- R² baixo (valores próximos de 0) indicam fraca dependência (associação), ou ausência de associação, entre a variável qualitativa e a variável quantitativa.

▶ Retomando o exemplo da Companhia MB, temos que

$$\bar{s^2}_Y = \frac{\sum_{j=1}^3 s_j^2(Y) n_j}{\sum_{j=1}^3 n_j} = \frac{12 \times 8,74 + 18 \times 13,8,+6 \times 20,27}{12 + 18 + 6} = 13,19,$$

de modo que

$$R^2 = 1 - \frac{\bar{s^2}_Y}{s_V^2} = 1 - \frac{13,19}{21,04} = 0,3731.$$

e dizemos que 37,31% da variância global do salário é explicada pela variável grau de instrução⁶.

 $^{5\}bar{s^2}_Y < s_Y^2$.

 $^{^6}$ Uma de pendência relativamente forte, levando em consideração que dificilmente um R^2 próximo de 1 é observado.

Exercício

A tabela a seguir apresenta os dados referentes a uma amostra de 30 flores.

Table 2: Tabela de dados brutos.

comprimento da sépala	largura da sépala	comprimento da pétala	largura da pétala	espécie
5,1	3,5	1,4	0,2	setosa
4,9	3,0	1,4	0,2	setosa
4,7	3,2	1,3	0,2	setosa
4,6	3,1	1,5	0,2	setosa
5,0	3,6	1,4	0,2	setosa
5,4	3,9	1,7	0,4	setosa
4,6	3,4	1,4	0,3	setosa
5,0	3,4	1,5	0,2	setosa
4,4	2,9	1,4	0,2	setosa
4,9	3,1	1,5	0,1	setosa
7,0	3,2	4,7	1,4	versicolor
6,4	3,2	4,5	1,5	versicolor
6,9	3,1	4,9	1,5	versicolor
5,5	2,3	4,0	1,3	versicolor
6,5	2,8	4,6	1,5	versicolor
5,7	2,8	4,5	1,3	versicolor
6,3	3,3	4,7	1,6	versicolor
4,9	2,4	3,3	1,0	versicolor

6,6	2,9	4,6	1,3	versicolor
5,2	2,7	3,9	1,4	versicolor
6,3	3,3	6,0	2,5	virginica
5,8	2,7	5,1	1,9	virginica
7,1	3,0	5,9	2,1	virginica
6,3	2,9	5,6	1,8	virginica
6,5	3,0	5,8	2,2	virginica
7,6	3,0	6,6	2,1	virginica
4,9	2,5	4,5	1,7	virginica
7,3	2,9	6,3	1,8	virginica
6,7	2,5	5,8	1,8	virginica
7,2	3,6	6,1	2,5	virginica

- Crie uma nova variável a partir da variável comprimento da pétala, atribuindo valores: pequeno se o comprimento da pétala é menor ou igual que 4,5 e normal se o comprimento da pétala é superior a 4,5. Chame esta variável de comprimento da pétala categorizado.
- Construa a tabela de dupla entrada da distribuição conjunta de frequências das variáveis espécie e comprimento da pétala categorizado. Você diria que estas variáveis são associadas?
- Construa o gráfico de dispersão das variáveis comprimento da sépala e largura da sépala. Calcule o coeficiente de regressão. O que você diria sobre a associação entre estas variáveis?
- Construa o gráfico de dispersão das variáveis comprimento da sépala e comprimento da pétala. Calcule o coeficiente de regressão. O que você diria sobre a associação entre estas variáveis?

A partir dos seguintes exercícios, conclua a respeito da associação entre as variáveis *largura da pétala* e *espécie*.

- Organize uma tabela com o cálculo de diferentes medidas resumo para descrever a distribuição da variável largura da pétala entre as diferentes espécies.
- Construa um gráfico para apresentar a distribuição a distribuição da variável largura da pétala entre as diferentes espécies.
- Calcule o R² para avaliar a associação entre as variáveis largura da pétala e espécie.

Próxima aula

Números índices.

Por hoje é só!

Bons estudos!

