ECE253/CSE208 Introduction to Information Theory

Lecture 13: Differential Entropy

Dr. Yu Zhang

ECE Department
University of California, Santa Cruz

Chap 8 of Elements of Information Theory (2nd Edition) by Thomas Cover & Joy Thomas.

Continuous Sources

Consider a source model: $\{X_t \in \mathcal{X}, t \in \mathcal{T}\}$

- Discrete sources: Both $\mathcal X$ and $\mathcal T$ are discrete.
- Continuous sources:
 - 1. Discrete-time continuous sources: \mathcal{X} is continuous; \mathcal{T} is discrete.
 - 2. Waveform sources: Both \mathcal{X} and \mathcal{T} are continuous.
- So far we have studied information measures and their properties for discrete-time discrete-alphabet sources and systems (DMC).
- In this lecture, we focus on discrete-time continuous-alphabet (real-valued) sources.

Differential Entropy

Definition

The differential entropy h(X) of a continuous random variable X with density f(x) and support $\mathcal S$ is defined as

$$h(X) = E(-\log f(X)) = -\int_{\mathcal{S}} f(x) \log f(x) dx$$

Example (Differential entropy can be negative)

Consider $X \sim \mathsf{Uniform}[0,a]$ for a>0, its differential entropy is

$$h(X) = -\int_0^a \frac{1}{a} \log\left(\frac{1}{a}\right) dx = \log a \implies h(X) < 0 \text{ for } 0 < a < 1$$

Example

Consider a continuous RV X with pdf $f_X(x) = 2x, \forall x \in \mathcal{S}_X := [0,1)$. Then,

$$h(X) = -\int_0^1 2x \times \log(2x) dx = \frac{1}{2}x^2 (\log e - 2\log(2x)) \Big|_0^1 \approx -0.279 \text{ bits.}$$

Entropy of Normal Distribution

Example (Entropy of normal distribution)

Let $X \sim \mathcal{N}(0,\sigma^2)$ with the pdf $\phi(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}.$ Then, we have

$$h(X) = \mathbb{E}\left[\ln \frac{1}{\phi(X)}\right]$$
 (1a)

$$= \mathrm{E}\left[\frac{X^2}{2\sigma^2} + \ln(\sigma\sqrt{2\pi})\right] \tag{1b}$$

$$= \frac{1}{2} + \frac{1}{2} \ln(2\pi\sigma^2)$$
 (1c)

$$= \frac{1}{2} \ln(2\pi e \sigma^2) \text{ nats} \tag{1d}$$

$$= \frac{1}{2} \log(2\pi e \sigma^2) \text{ bits} \tag{1e}$$

AEP for Continuous Random Variables

Theorem

Let i.i.d. $X^n \sim f(x)$. Then $-\frac{1}{n} \log f(X^n) \xrightarrow{\text{i.p.}} \mathrm{E}(-\log f(X)) = h(X)$.

Definition (Typical set)

$$A^{(n)}_\epsilon = \big\{ x^n \in S^n : |-\tfrac{1}{n}\log f(x^n) - h(X)| \le \epsilon \big\}, \text{ where } f(x^n) = \textstyle \prod_{i=1}^n f(x_i).$$

Properties of the typical set.

- 1. $\Pr(A_{\epsilon}^{(n)}) > 1 \epsilon$ for n sufficiently large
- 2. $\operatorname{Vol}(A_{\epsilon}^{(n)}) \leq 2^{n(h(X)+\epsilon)}$ for all n
- 3. $\operatorname{Vol}(A_{\epsilon}^{(n)}) \geq (1-\epsilon)2^{n(h(X)-\epsilon)}$ for n sufficiently large,

where the volume of a set $A\subset \mathbb{R}^n$ is defined as $\operatorname{Vol}(A)=\int_A dx_1 dx_2 \cdots dx_n.$

Theorem (cf. section 3.3 in the book)

 $A_{\epsilon}^{(n)}$ is the smallest volume set w.p. at least $1-\epsilon$, to first order in the exponent.

Proof of Typical Set Properties

Property 1 is a direct result from the AEP theorem. Property 2 and 3 are due to the lower and upper bounds of $f(x^n)$. The upper bound of Vol(A) is derived as follows:

$$1 = \int_{S^n} f(x_1, x_2, \dots, x_n) \, dx_1 dx_2 \cdots dx_n \tag{2a}$$

$$\geq \int_{A_{\varepsilon}^{(n)}} f(x_1, x_2, \dots, x_n) dx_1 dx_2 \cdots dx_n \tag{2b}$$

$$\geq \int_{A_{\epsilon}^{(n)}} 2^{-n(h(X)+\epsilon)} dx_1 dx_2 \cdots dx_n \tag{2c}$$

$$=2^{-n(h(X)+\epsilon)}\int_{A_{\epsilon}^{(n)}}dx_1dx_2\cdots dx_n$$
 (2d)

$$=2^{-n(h(X)+\epsilon)}\operatorname{Vol}\left(A_{\epsilon}^{(n)}\right). \tag{2e}$$

Proof of Typical Set Properties (cont'd)

The lower bound of Vol(A) is derived as follows:

$$1 - \epsilon \le \int_{A^{(n)}} f(x_1, x_2, \dots, x_n) dx_1 dx_2 \cdots dx_n \tag{3a}$$

$$\leq \int_{A^{(n)}} 2^{-n(h(X)-\epsilon)} dx_1 dx_2 \cdots dx_n \tag{3b}$$

$$=2^{-n(h(X)-\epsilon)}\int_{A_{\epsilon}^{(n)}}dx_1dx_2\cdots dx_n \tag{3c}$$

$$=2^{-n(h(X)-\epsilon)}\operatorname{Vol}\left(A_{\epsilon}^{(n)}\right) \tag{3d}$$

Implications of Differential Entropy

- 1. The volume of the smallest set that contains most of the probability $\approx 2^{nh} \implies$ The corresponding side length is $(2^{nh})^{\frac{1}{n}} = 2^h$.
- 2. h(X) is the logarithm of the *equivalent side length* of the smallest set that contains most of the probability: X with low entropy is confined to a small effective volume, and widely dispersed if h(X) is big.
- 3. h(X) can be negative, but $2^{nh(X)}$ is always positive.
- 4. h(X) is related to $\operatorname{Vol}(A_{\epsilon}^{(n)})$ while $I(\theta)$ is related to the surface area of $A_{\epsilon}^{(n)}$, where $I(\theta)$ is the Fisher information¹: A way of measuring the amount of info that an observable random variable X carries about an unknown parameter θ of a distribution that models X. Formally, it is the variance of the score.

$$\mathcal{I}(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log f(X; \theta)\right)^2 \middle| \theta\right] = \int_{\mathbb{R}} \left(\frac{\partial}{\partial \theta} \log f(X; \theta)\right)^2 f(X; \theta) dX$$

Yu Zhang (UCSC)

¹See details in Sections 11.10 and 17.8 of Cover's book.

Relationship with H(X)

Theorem (On average h(X) + n bits are required to describe X to n-bit accuracy.)

Consider a continuous RV $X\sim f(x)$ and its quantized version $X^{\Delta}=x_i$ for $i\Delta\leq X<(i+1)\Delta$, where $f(x_i)\Delta=\int_{i\Delta}^{(i+1)\Delta}f(x)\,dx$. If X is Riemann integrable, then $H(X^{\Delta})+\log\Delta\xrightarrow{\Delta\to 0}h(X)$. Thus, the entropy of an n-bit quantization of a continuous RV X is approximately h(X)+n.

Figure: Quantization of a continuous random variable X.

Proof of Quantization Error

Note that we have

$$p_i \triangleq \Pr(X^{\Delta} = x_i) = \int_{i\Delta}^{(i+1)\Delta} f(x) dx = f(x_i)\Delta.$$

Thus, the entropy of the quantized version is

$$H(X^{\Delta}) = -\sum_{-\infty}^{\infty} p_i \log p_i$$

$$= -\sum_{-\infty}^{\infty} f(x_i) \Delta \log(f(x_i) \Delta)$$

$$= -\sum_{-\infty}^{\infty} \Delta f(x_i) \log f(x_i) - \sum_{-\infty}^{\infty} f(x_i) \Delta \log(\Delta)$$

$$= -\sum_{-\infty}^{\infty} \Delta f(x_i) \log f(x_i) - \log(\Delta)$$

$$\implies \left[\lim_{\Delta \to 0} H(X^{\Delta}) + \log \Delta = h(X)\right].$$

If $\Delta = \frac{1}{2^n}$ (*n*-bit quantization), then $H(X^{\Delta}) = h(X) + n$.

Joint, Conditional and Relative Entropy

Definition

$$h(X^n) = -\int f(x^n) \log f(x^n) dx^n \tag{4}$$

$$h(X|Y) = -\int f(x,y) \log f(x|y) \, dx dy = h(X,Y) - h(Y)$$
 (5)

$$D(f||g) = \int f \log \frac{f}{g} \tag{6}$$

Mutual Information

Definition

$$I(X;Y) = D\left(f(x,y)||f(x)f(y)\right) \tag{7a}$$

$$= h(X) - h(X|Y) = h(Y) - h(Y|X) = h(X) + h(Y) - h(X,Y)$$
 (7b)

$$= \lim_{\Delta \to 0} I(X^{\Delta}; Y^{\Delta}) \tag{7c}$$

$$= \sup_{\mathcal{P},\mathcal{Q}} I([X]_{\mathcal{P}}; [Y]_{\mathcal{Q}}) \tag{7d}$$

where the 'supremum' is taken over all finite partitions \mathcal{P} and \mathcal{Q} .

The quantization of X by $\mathcal P$ is the discrete RV defined by

 $\Pr([X]_{\mathcal{P}}=i)=\Pr(X\in P_i)=\int_{P_i}f(x)\,dx$, where the disjoint sets P_i 's form a partition of the range of X such that $\cup_i P_i=\mathcal{X}$.

Entropy of Gaussian Distribution

Theorem (Entropy of multivariate normal distribution)

$$h(\mathcal{N}_n(\boldsymbol{\mu}, \mathbf{K})) = \frac{1}{2} \log(2\pi e)^n |\mathbf{K}| \text{ bits}$$

Proof: Note that the pdf is $\phi(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n |\mathbf{K}|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \mathbf{K}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$

$$h(\mathcal{N}_{n}(\boldsymbol{\mu}, \mathbf{K})) = \mathbf{E} \left[\ln \frac{1}{\phi(\mathbf{x})} \right]$$

$$= \mathbf{E} \left[\frac{1}{2} \operatorname{Tr} \left((\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{K}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right) + \frac{1}{2} \ln \left[(2\pi)^{n} |\mathbf{K}| \right] \right]$$

$$= \frac{1}{2} \operatorname{Tr} \left(\mathbf{E} \left[\mathbf{K}^{-1} (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\top} \right] \right) + \frac{1}{2} \ln \left[(2\pi)^{n} |\mathbf{K}| \right]$$
(8c)

$$= \frac{1}{2} \operatorname{Tr} \left(\operatorname{E} \left[\mathbf{K}^{-1} (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\top} \right] \right) + \frac{1}{2} \ln \left[(2\pi)^{n} |\mathbf{K}| \right]$$
(8c)

$$= \frac{1}{2} \operatorname{Tr} \left(\mathbf{K}^{-1} \mathbf{K} \right) + \frac{1}{2} \ln \left[(2\pi)^n |\mathbf{K}| \right]$$
 (8d)

$$= \frac{1}{2} \ln \left[(2\pi e)^n |\mathbf{K}| \right]$$
 nats (8e)

$$=\frac{1}{2}\log\left[\left(2\pi e\right)^{n}|\mathbf{K}|\right] \text{ bits} \tag{8f}$$

Invariance of Quadratic Term Evaluation

From the previous derivation of $h(\mathcal{N}_n(\boldsymbol{\mu},\mathbf{K}))$, we observe that

$$\int \phi(\mathbf{x}) \ln \phi(\mathbf{x}) d\mathbf{x} = \int f(\mathbf{x}) \ln \phi(\mathbf{x}) d\mathbf{x}$$

for any density function $f(\mathbf{x})$ with the same covariance matrix \mathbf{K} .

This is due to the fact that

- $\int \phi(\mathbf{x}) d\mathbf{x} = \int f(\mathbf{x}) d\mathbf{x} = 1$
- The quadratic term $\mathrm{Tr}(\mathrm{E}(\cdot))$ has the same value for $\phi(\mathbf{x})$ and $f(\mathbf{x})$

Later we will use this useful result to prove that "Gaussian maximizes the entropy for a fixed covariance."

Entropy of Gaussian Distribution (Cont'd)

Example

Let
$$(X,Y) \sim \mathcal{N}(\mathbf{0},\mathbf{K})$$
, where $\mathbf{K} = \begin{bmatrix} \sigma^2 & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 \end{bmatrix} \implies h(X) = h(Y) = \frac{1}{2} \log(2\pi e) \sigma^2$
$$h(X,Y) = \frac{1}{2} \log(2\pi e)^2 |\mathbf{K}| = \frac{1}{2} \log\left[(2\pi e)^2 \sigma^4 (1 - \rho^2)\right] \implies I(X;Y) = h(X) + h(Y) - h(X,Y) = -\frac{1}{2} \log(1 - \rho^2) \implies$$

$$\begin{cases} X \perp Y \ (\rho = 0) & \Leftrightarrow I(X;Y) = 0 \\ X \parallel Y \ (\rho = \pm 1) & \Leftrightarrow I(X;Y) = \infty \end{cases}$$

Properties of Differential Entropy and KL Divergence

Similar to the discrete case, we have

- $D(f||g) \ge 0 \implies I(X;Y) \ge 0, h(X|Y) \le h(X).$
- D(f||g) is finite only if $\mathbf{S}_f \subseteq \mathbf{S}_g$.
- Independence bound: $h(X^n) = \sum_{i=1}^n h(X_i|X^{i-1}) \le \sum_i h(X_i)$.
- Differential entropy is translation invariant:

$$h(X+c)=h(X)$$
 for any constant $c\in\mathbb{R}$, and $h(X+Y|Y)=h(X|Y)$.

This result can be generalized to n-tuple case:

$$h(X^n + Y^n | Y^n) = h(X^n | Y^n).$$

Differential Entropy under Invertible Transformation

Different from the discrete case, **differential entropy is generally non-invariant under invertible mapping**.

• Linear mapping: For a continuous random vector $\mathbf{x} \in \mathbb{R}^n$ and invertible matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, it holds that

$$h(\mathbf{A}\mathbf{x}) = h(\mathbf{x}) + \log|\det(\mathbf{A})|.$$

For one dimension: $h(aX) = h(X) + \log |a|$, which can be proved by the property $f_Y(y) = \frac{1}{|a|} f_X(\frac{y}{a})$ for Y = aX.

• Nonlinear mapping: For an invertible transformation $g: \mathbf{x} o \mathbf{y}$, it holds that

$$h(\mathbf{y}) = h(\mathbf{x}) + \int_{\mathbb{R}^n} f_X(\mathbf{x}) \log |\det(\mathbf{J}_g(\mathbf{x}))| dx,$$

where $J_g(x)$ is the Jacobian matrix of the vector-valued function g.

Maximum Entropy

Among all random variables with a given variance, the Gaussian has the highest entropy, and thus the hardest to describe.

Theorem (Normal distribution maximizes the entropy for a given covariance)

Let random vector $\mathbf{x} \in \mathbb{R}^n$ have zero mean and covariance \mathbf{K} . Then,

$$\max_{\mathbf{E}(\mathbf{x}\mathbf{x}^{\top})=\mathbf{K}} h(\mathbf{x}) = \frac{1}{2} \log(2\pi e)^{n} |\mathbf{K}|,$$

where the maximum is attained iif $\mathbf{x} \sim \mathcal{N}_n(\mathbf{0}, \mathbf{K})$.

Proof: Let $f(\mathbf{x})$ be any density function with covariance \mathbf{K} , and $g(\mathbf{x}) \sim \mathcal{N}_n(\mathbf{0}, \mathbf{K})$. Then, we have

$$0 \le D(f||g) = -h(f) - \int f \log g = -h(f) - \int g \log g = -h(f) + h(g),$$

where the second equality is due to the fact f and g have the same covariance \mathbf{K} .

Minimum Estimation Error

Theorem (Estimation error)

For any random variable X and estimator \hat{X} , we have $\mathrm{E}(X-\hat{X})^2 \geq \frac{1}{2\pi e}e^{2h(X)}$ with equality iif X is Gaussian with mean \hat{X} .

Proof:

$$E(X - \hat{X})^2 \ge \min_{\hat{X}} E(X - \hat{X})^2 \tag{9a}$$

$$= E(X - E(X))^2 \tag{9b}$$

$$= Var(X) \tag{9c}$$

$$\geq \frac{1}{2\pi e} e^{2h(X)} \tag{9d}$$

where (9b) is because $\mathrm{E}(X)$ is the best estimator for X, and (9d) follows from the fact that the normal distribution has the maximum entropy for a given variance.

Minimum Estimation Error with Side Information

Theorem (Estimation error with side info)

Given side info Y and estimator $\hat{X}(Y)$, it follows that $\mathrm{E}(X-\hat{X}(Y))^2 \geq \frac{1}{2\pi e}e^{2h(X|Y)}$.

Proof:

We have

$$E[(X - \hat{X})^2 | Y = y] \ge Var(X | Y = y) \ge \frac{1}{2\pi e} e^{2h(X | Y = y)},$$

where the second inequality follows from the fact that entropy of X conditioned on Y=y is upper bounded by the entropy of Gaussian RV with the same variance.

 Take expectation (over Y) of both sides and apply Jensen's inequality yields the stated result.

Entropy Power

Definition

The entropy power of a random vector $\mathbf{x} \in \mathbb{R}^d$ with a density is defined as

$$N(\mathbf{x}) = \frac{1}{2\pi e} e^{\frac{2}{d}h(\mathbf{x})}.$$

- $h(a\mathbf{x}) = h(\mathbf{x}) + d\log|a|$ and $N(a\mathbf{x}) = a^2N(\mathbf{x})$ for any constant $a \in \mathbb{R}$.
- For $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{K_x})$, $N(\mathbf{x}) = |\mathbf{K_x}|^{\frac{1}{d}}$ is the geometric mean of all eigenvalues of $\mathbf{K_x}$.
- $0 < N(\mathbf{x}) \le |\mathbf{K_x}|^{\frac{1}{d}}$, where $\mathbf{K_x}$ is the covariance matrix of \mathbf{x} .
- $|\mathbf{K}_{\mathbf{x}}|$ is referred to as generalized variance while $N(\mathbf{x})$ is the effective variance.
- Entropy power can be interpreted as a positive bounded measure of 'Gaussianity'.

Entropy Power Inequality (EPI)

Theorem (EPI: Entropy power is super-additive)

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ be independent random vectors. Then,

$$N(\mathbf{x}+\mathbf{y}) \geq N(\mathbf{x}) + N(\mathbf{y}), \text{ or equivalently, } e^{\frac{2}{d}h(\mathbf{x}+\mathbf{y})} \geq e^{\frac{2}{d}h(\mathbf{x})} + e^{\frac{2}{d}h(\mathbf{y})}.$$

Moreover, equality holds iif ${\bf x}$ and ${\bf y}$ are multivariate Gaussian with proportional covariances (${\bf K_y}=c{\bf K_x}$ for some constant c>0).

EPI Equivalent Statements²

Theorem (EPI: Sum of Gaussian RVs has the smallest entropy)

For any two independent random vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, we have

$$h(\mathbf{x} + \mathbf{y}) \ge h(\tilde{\mathbf{x}} + \tilde{\mathbf{y}}),$$

where $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$ are two independent Gaussian with proportional covariances, chosen so that $h(\tilde{\mathbf{x}}) = h(\mathbf{x})$ and $h(\tilde{\mathbf{y}}) = h(\mathbf{y})$.

 $\textbf{Proof} \colon N(\tilde{\mathbf{x}} + \tilde{\mathbf{y}}) = N(\tilde{\mathbf{x}}) + N(\tilde{\mathbf{y}}) = N(\mathbf{x}) + N(\mathbf{y}) \leq N(\mathbf{x} + \mathbf{y}).$

Theorem (Concavity of entropy under the covariance preserving transformation)

For any $\lambda \in [0,1]$, we have

$$h(\sqrt{\lambda}\mathbf{x} + \sqrt{1-\lambda}\mathbf{y}) \ge \lambda h(\mathbf{x}) + (1-\lambda)h(\mathbf{y})$$
 (10)

23 / 28

²A. Dembo, T. Cover and J. Thomas, "Information theoretic inequalities," in *IEEE Transactions on Information Theory*, 1991.

EPI Equivalent Statements (cont'd)³

Theorem (Equivalent EPIs)

For finitely many independent random vectors $\{\mathbf{x}_i\}_i$ with finite differential entropies, and real-valued coefficients $\{a_i\}_i$, the following inequalities are equivalent

$$N\left(\sum_{i} a_{i} \mathbf{x}_{i}\right) \geq \sum_{i} a_{i}^{2} N\left(\mathbf{x}_{i}\right), \tag{11}$$

$$h\left(\sum_{i} a_{i} \mathbf{x}_{i}\right) \geq h\left(\sum_{i} a_{i} \tilde{\mathbf{x}}_{i}\right),$$
 (12)

$$h\left(\sum_{i} a_{i} \mathbf{x}_{i}\right) \geq \sum_{i} a_{i}^{2} h\left(\mathbf{x}_{i}\right) \text{ with } \sum_{i} a_{i}^{2} = 1,$$
 (13)

where $\{\tilde{\mathbf{x}}_i\}$ are independent Gaussian random vectors with proportional convariances and corresponding entropies $h(\tilde{\mathbf{x}}_i) = h(\mathbf{x}_i)$.

https://arxiv.org/abs/0704.1751

Proofs and Applications of EPI

Proofs: There are many techniques used for various proofs of EPI; e.g.,

- DPI, Sato's inequality, Fisher info inequality (FII)
- De Bruijn's identity (Thm 17.7.2), mutual info inequality (MII)
- Integration over a path of continuous Gaussian perturbation.

Applications:

- 1. Bounding channel capacity and rate-distortion regions.
- 2. Blind source separation.
- 3. Providing easy proofs of some inequalities.
- 4. Strengthening CLT (Andrew Barron-1986): Gaussianity increases on summing.
- 5 ...

Inequalities

Theorem (Minkowski's Inequality)

For any two nonnegative definite matrices \mathbf{K}_1 and \mathbf{K}_2 , we have

$$|\mathbf{K}_1 + \mathbf{K}_2|^{\frac{1}{n}} \ge |\mathbf{K}_1|^{\frac{1}{n}} + |\mathbf{K}_2|^{\frac{1}{n}},$$

with equality iff $\mathbf{K}_1 = c\mathbf{K}_2$ for some constant c.

Proof: Let $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_i)$ be independent for i = 1, 2. Thus, $\mathbf{x}_1 + \mathbf{x}_2 \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_1 + \mathbf{K}_2)$,

$$\underbrace{\left|\mathbf{K}_{1}+\mathbf{K}_{2}\right|^{\frac{1}{n}}}_{N(\mathbf{x}_{1}+\mathbf{x}_{2})} \geq \underbrace{\left|\mathbf{K}_{1}\right|^{\frac{1}{n}}+\left|\mathbf{K}_{2}\right|^{\frac{1}{n}}}_{N(\mathbf{x}_{1})+N(\mathbf{x}_{2})}$$

is a direct result of EPI.

Theorem (Ky Fan's Inequality)

 $\log |\mathbf{K}|$ is concave in \mathbb{S}_{++}^d .

Proof: Let $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_i)$ be independent for i = 1, 2. Thus, for any $\lambda \in [0, 1]$,

$$\sqrt{\lambda}\mathbf{x}_1+\sqrt{1-\lambda}\mathbf{x}_2\sim\mathcal{N}(\mathbf{0},\lambda\mathbf{K}_1+(1-\lambda)\mathbf{K}_2).$$
 Then, (10) becomes

$$\log |\lambda \mathbf{K}_1 + (1-\lambda)\mathbf{K}_2| \ge \lambda \log |\mathbf{K}_1| + (1-\lambda) \log |\mathbf{K}_2|.$$

Entropic Central Limit Theorem

Let X_1, X_2, \cdots be i.i.d. RVs with mean μ and variance σ^2 . Let

$$Z_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \mu)$$

denote the normalized sum of the first n terms.

- Classical CLT: $Z_n \xrightarrow{d} \mathcal{N}(0, \sigma^2)$.
- Entropic CLT: $h(Z_n) \to h(\mathcal{N}(0, \sigma^2)) = \frac{1}{2} \log(2\pi e \sigma^2)$. Furthermore, if $\{X_i\}$ are non-Gaussian, then the sequence $\{h(Z_n)\}$ is strictly increasing:

$$h(X_1) = h(Z_1) < h(Z_2) < \dots < h(Z_n) < \frac{1}{2} \log(2\pi e \sigma^2).$$

Thank You!

Email: <zhangy@ucsc.edu>

Homepage: https://people.ucsc.edu/~yzhan419/