Binormal confidence intervals for AUC in R

Leonhard Held and Sina Rueeger*

November 24, 2020

AUC curves are used to measure the accuracy of a classification of two groups X and Y:

$$X_1, \dots, X_{n_X} \sim \mathcal{N}(\mu_X, \sigma_X^2)$$

 $Y_1, \dots, Y_{n_Y} \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$

Y could be denoted as the healthy controls and X the cases with a particular disease. When having small sample size (and therefore small values in the contingency table) the confidence interval given with Wald (as in function biostatUZH::confIntAUC) will not perfom well (fails). Hence, another way has to be found to compute the confidence interval. Pepe (2003) illustrates how AUC curves can be described using the normal distribution:

$$a = \frac{\mu_Y - \mu_X}{\sigma_Y}$$

$$b = \frac{\sigma_X}{\sigma_Y}$$

$$AUC = \Phi\left(\frac{a}{\sqrt{1 + b^2}}\right)$$

Assumption: equal variances

Under the assumption that both variances σ_X and σ_Y are equal and known, the equations take a much simpler form:

$$\sigma = \sigma_X = \sigma_Y$$

$$a = \frac{\mu_Y - \mu_X}{\sigma}$$

$$b = \frac{\sigma_X}{\sigma_Y} = 1$$

$$AUC = \Phi\left(\frac{a}{\sqrt{1 + b^2}}\right) = \Phi\left(\frac{a}{\sqrt{2}}\right)$$

The expected value of X and Y is estimated using the average and variance: $\hat{\mu}_X = \overline{x}$, $\hat{\mu}_Y = \overline{y}$.

^{*}University of Zurich, Institute for Social and Preventive Medicine, Division of Biostatistics ([leonhard.held,sina.rueeger]@ifspm.uzh.ch)

To calculate the confidence interval, the $SE(\hat{a})$ is needed. Given that $\hat{\mu}_X \sim \mathcal{N}(\mu_X, \sigma^2/n_X)$ and $\hat{\mu}_Y \sim \mathcal{N}(\mu_Y, \sigma^2/n_Y)$

$$SE(\hat{a}) = SE\left(\frac{\hat{\mu_X} - \hat{\mu_Y}}{\sigma}\right) = \sqrt{\widehat{Var}\left(\frac{\hat{\mu_X} - \hat{\mu_Y}}{\sigma}\right)} = \sqrt{\widehat{Var}\left(\frac{\hat{\mu_X}}{\sigma}\right) + \widehat{Var}\left(\frac{\hat{\mu_Y}}{\sigma}\right)} = \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}.$$

The $(1 - \alpha)$ -confidence interval for a has the following form:

from
$$a_{lower} = a - z \cdot SE(\hat{a})$$

to $a_{up} = a + z \cdot SE(\hat{a})$

where z refers to the $(1-\alpha/2)$ -quantile of the standard normal distribution.

The confidence interval limits of AUC are derived by calculating the percentile of the confidence interval limits of \hat{a} :

from
$$\Phi\left(\frac{a_{lower}}{\sqrt{2}}\right)$$

to $\Phi\left(\frac{a_{up}}{\sqrt{2}}\right)$

Assumption: not equal variances

If the assumption of equal variances would not hold, the standard error of AUC could be derived using the multivariate delta method.

References

PEPE, M. S. (2003). The statistical evaluation of medical tests for classification and prediction, vol. 28 of Oxford Statistical Science Series. Oxford University Press, Oxford.