I.1 Notion première d'ensemble

Ensemble Notion première qui ne se définit pas. C'est une collection d'objets réunis en vertu d'une propriété commune.

On peut définir un ensemble de deux manières :

- en extension : on donne la liste exhaustive des éléments qui y figurent,
- en compréhension : en donnant la propriété que doivent posséder les éléments de l'ensemble.

I.1 Notion première d'ensemble

Ensemble Notion première qui ne se définit pas. C'est une collection d'objets réunis en vertu d'une propriété commune.

On peut définir un ensemble de deux manières :

- en extension : on donne la liste exhaustive des éléments qui y figurent,
- en compréhension : en donnant la propriété que doivent posséder les éléments de l'ensemble.

Exercice 1.1. Définir les ensembles suivants en compréhension :

- 1. $A = \{1, 2, 4, 8, 16, 32, 64\}$
- 2. $B = \{1, 2, 7, 14\}$
- 3. $C = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20\}$

I.1 Notion première d'ensemble

Ensemble Notion première qui ne se définit pas. C'est une collection d'objets réunis en vertu d'une propriété commune.

On peut définir un ensemble de deux manières :

- en extension : on donne la liste exhaustive des éléments qui y figurent,
- en compréhension : en donnant la propriété que doivent posséder les éléments de l'ensemble.

Exercice 1.1. Définir les ensembles suivants en compréhension :

- 1. $A = \{1, 2, 4, 8, 16, 32, 64\}$
- 2. $B = \{1, 2, 7, 14\}$
- 3. $C = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20\}$

<u>Réponse</u>: 1) Les puissances de 2 inférieures ou égales à 64. 2) Les diviseurs de 14. 3) Les entiers inférieurs ou égaux à 20 qui ont au moins 3 diviseurs (les nombres non premiers entre 2 et 20).

NOTATION: On note \mathbb{N}_n l'ensemble des entiers inférieurs ou égaux à n.

I.1 Notion première d'ensemble

Ensemble Notion première qui ne se définit pas. C'est une collection d'objets réunis en vertu d'une propriété commune.

On peut définir un ensemble de deux manières :

- en extension : on donne la liste exhaustive des éléments qui y figurent,
- en compréhension : en donnant la propriété que doivent posséder les éléments de l'ensemble.

Exercice 1.1. Définir les ensembles suivants en compréhension :

- 1. $A = \{1, 2, 4, 8, 16, 32, 64\}$
- 2. $B = \{1, 2, 7, 14\}$
- 3. $C = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20\}$

<u>Réponse</u>: 1) Les puissances de 2 inférieures ou égales à 64. 2) Les diviseurs de 14. 3) Les entiers inférieurs ou égaux à 20 qui ont au moins 3 diviseurs (les nombres non premiers entre 2 et 20).

NOTATION: On note \mathbb{N}_n l'ensemble des entiers inférieurs ou égaux à n.

Exercice 1.2. Définir les ensembles suivants en extension

- 1. $A = \{x \in \mathbb{R} | x(x+5) = 14\}$
- 2. $B = \{x \in \mathbb{N} | x(2x+3) = 14\}$
- 3. $C = \{x \in \mathbb{N}_{10}^* | x^4 1 \text{ est divisible par 5 } \}$

I.1 Notion première d'ensemble

Ensemble Notion première qui ne se définit pas. C'est une collection d'objets réunis en vertu d'une propriété commune.

On peut définir un ensemble de deux manières :

- en extension : on donne la liste exhaustive des éléments qui y figurent,
- en compréhension : en donnant la propriété que doivent posséder les éléments de l'ensemble.

Exercice 1.1. Définir les ensembles suivants en compréhension :

1.
$$A = \{1, 2, 4, 8, 16, 32, 64\}$$

2.
$$B = \{1, 2, 7, 14\}$$

3.
$$C = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20\}$$

Réponse : 1) Les puissances de 2 inférieures ou égales à 64. 2) Les diviseurs de 14. 3) Les entiers inférieurs ou égaux à 20 qui ont au moins 3 diviseurs (les nombres non premiers entre 2 et 20).

NOTATION: On note \mathbb{N}_n l'ensemble des entiers inférieurs ou égaux à n.

Exercice 1.2. Définir les ensembles suivants en extension

$$I. \ A = \{x \in \mathbb{R} | x(x+5) = 14\}$$

2.
$$B = \{x \in \mathbb{N} | x(2x+3) = 14\}$$

3.
$$C = \{x \in \mathbb{N}_{10}^* | x^4 - 1 \text{ est divisible par 5 } \}$$

Réponse : $A = \{2, -7\}, B = \{2\}, \text{ et } C = \{1, 2, 3, 4, 6, 7, 8, 9\} \text{ (factoriser } x^4 - 1).$

II.1 Égalite de deux ensembles

Définition 1.3. Deux ensembles sont égaux si et seulement si ils ont les mêmes éléments.

$$A \subset B$$
 et $B \subset A \iff A = B$.

II.1 Égalite de deux ensembles

DÉFINITION 1.3. Deux ensembles sont égaux si et seulement si ils ont les mêmes éléments.

$$A \subset B$$
 et $B \subset A \iff A = B$.

Exercice 1.13. Dans chacun des cas suivants, déterminer si les ensembles sont égaux :

- 1. $A = \{x \in \mathbb{R} | x > 0\} \text{ et } B = \{x \in \mathbb{R} | x \ge |x|\}$
- 2. $A = \{x \in \mathbb{R} | x > 0\} \text{ et } B = \{x \in \mathbb{R} | x \leq |x|\}$
- 3. $A = \mathbb{Z}$ et $B = \{x \in \mathbb{Z} | x^2 x \text{ pair } \}$
- 4. $A = \{x \in \mathbb{N}_{10} \mid x \text{ impair, non divisible par } 3\} \text{ et } B = \{x \in \mathbb{N}_{10} \mid 24 \text{ divise } x^2 1\}$

II.1 Égalite de deux ensembles

DÉFINITION 1.3. Deux ensembles sont égaux si et seulement si ils ont les mêmes éléments.

$$A \subset B$$
 et $B \subset A \iff A = B$.

Exercice 1.13. Dans chacun des cas suivants, déterminer si les ensembles sont égaux :

- 1. $A = \{x \in \mathbb{R} | x > 0\} \text{ et } B = \{x \in \mathbb{R} | x \ge |x|\}$
- 2. $A = \{x \in \mathbb{R} | x > 0\} \text{ et } B = \{x \in \mathbb{R} | x \leq |x|\}$
- 3. $A = \mathbb{Z}$ et $B = \{x \in \mathbb{Z} | x^2 x \text{ pair } \}$
- 4. $A = \{x \in \mathbb{N}_{10} \mid x \text{ impair, non divisible par } 3\} \text{ et } B = \{x \in \mathbb{N}_{10} \mid 24 \text{ divise } x^2 1\}$

Réponse : Pour le 3, $x^2 - x = x(x - 1)$, et réfléchir sur la parité de ce produit.

II.1 Égalite de deux ensembles

DÉFINITION 1.3. Deux ensembles sont égaux si et seulement si ils ont les mêmes éléments.

$$A \subset B$$
 et $B \subset A \iff A = B$.

Exercice 1.13. Dans chacun des cas suivants, déterminer si les ensembles sont égaux :

- 1. $A = \{x \in \mathbb{R} | x > 0\} \text{ et } B = \{x \in \mathbb{R} | x \ge |x|\}$
- 2. $A = \{x \in \mathbb{R} | x > 0\} \text{ et } B = \{x \in \mathbb{R} | x \leq |x| \}$
- 3. $A = \mathbb{Z}$ et $B = \{x \in \mathbb{Z} | x^2 x \text{ pair } \}$
- 4. $A = \{x \in \mathbb{N}_{10} \mid x \text{ impair, non divisible par } 3\} \text{ et } B = \{x \in \mathbb{N}_{10} \mid 24 \text{ divise } x^2 1\}$

Réponse: Pour le 3, $x^2 - x = x(x - 1)$, et réfléchir sur la parité de ce produit.

II.2 Réunion, intersection

Réunion A et B sont deux ensembles, on considère la réunion de A et de B, notée $A \cup B$, l'ensemble des éléments qui sont éléments de A ou de B.

Exemple 1.14.
$$A = \{1, 2, 3\}, B = \{1, 4, 5\}, \text{ alors } A \cup B = \{1, 2, 3, 4, 5\}$$

Exercice 1.15. Faire la réunion des ensembles $A = \{x \in \mathbb{R} | 0 \le x \le 3\}$, $B = \{x \in \mathbb{R} | -2 < x \le 1\}$.

- idempotence : $A \cup A = A$

- commutativité : $A \cup B = B \cup A$

- associativité : $A \cup (B \cup C) = (A \cup B) \cup C$

- élément neutre : $A \cup \emptyset = A$

- idempotence : $A \cup A = A$

- commutativité : $A \cup B = B \cup A$

- associativité : $A \cup (B \cup C) = (A \cup B) \cup C$

- élément neutre : $A \cup \emptyset = A$

Exercice 1.16. Donner des exemples d'opérateurs idempotents, commutatifs, associatifs, et possédant un élément neutre, par exemple en arithmétique, ou en analyse.

- idempotence : $A \cup A = A$

- commutativité : $A \cup B = B \cup A$

- associativité : $A \cup (B \cup C) = (A \cup B) \cup C$

- élément neutre : $A \cup \varnothing = A$

Exercice 1.16. Donner des exemples d'opérateurs idempotents, commutatifs, associatifs, et possédant un élément neutre, par exemple en arithmétique, ou en analyse.

Intersection L'intersection de deux ensembles A et B est l'ensemble, noté $A \cap B$ des éléments communs à A et à B.

Exercice 1.17. Dans chacun des cas suivants, faire l'intersection des ensembles A et B.

- 1. A = l'ensemble des rectangles, et B = l'ensemble des losanges.
- 2. $A = \{x \in \mathbb{R} | 0 \le x \le 3\}, B = \{x \in \mathbb{R} | -2 < x \le 1\}$

- idempotence : $A \cup A = A$
- commutativité : $A \cup B = B \cup A$
- associativité : $A \cup (B \cup C) = (A \cup B) \cup C$
- élément neutre : $A \cup \emptyset = A$

Exercice 1.16. Donner des exemples d'opérateurs idempotents, commutatifs, associatifs, et possédant un élément neutre, par exemple en arithmétique, ou en analyse.

Intersection L'intersection de deux ensembles A et B est l'ensemble, noté $A \cap B$ des éléments communs à A et à B.

Exercice 1.17. Dans chacun des cas suivants, faire l'intersection des ensembles A et B.

- 1. A = l'ensemble des rectangles, et B = l'ensemble des losanges.
- 2. $A = \{x \in \mathbb{R} | 0 \le x \le 3\}, B = \{x \in \mathbb{R} | -2 < x \le 1\}$

Propriété 1.5 (Propriétés de l'intersection) : L'intersection de deux ensembles possède certaines propriétés :

- idempotence : $A \cap A = A$
- commutativité : $A \cap B = B \cap A$
- associativité : $A \cap (B \cap C) = (A \cap B) \cap C$
- élément neutre : si l'on se place dans un ensemble E et que A est une partie de E, alors E est élément neutre pour l'intersection : $A \cap E = A$

Propriétés mutuelles de ces deux opérations Ces deux opérations ont des propriétés symétriques...

Propriété 1.6 (Distributivités de ∪ et ∩) : On a les distributivités :

- $\operatorname{de} \cup \operatorname{sur} \cap : A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $\operatorname{de} \cap \operatorname{sur} \cup : A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

II.3 Complémentation

DÉFINITION 1.4 (COMPLÉMENTATION). Pour $A \subset E$, on définit le complémentaire de A par rapport à E comme l'ensemble des éléments de E qui ne sont pas éléments de A.

Notation : Il existe plusieurs manières de noter le complémentaire de A dans E : $E \setminus A$ (« E moins A»), \bar{A} , ou encore C_EA .

Remarque 1.3. Il faut donc se placer, pour la définition de la complémentation, dans $\mathcal{P}(E)$ (où E est un ensemble fixé) : la complémentation se définit par rapport à un ensemble.

Propriété 1.7 : La complémentation a plusieurs propriétés remarquables :

- involution : $\bar{\bar{A}} = A$,
- loi de De Morgan : $A \,\bar{\cup}\, B = \bar{A} \cap \bar{B},$ et $A \,\bar{\cap}\, B = \bar{A} \cup \bar{B}.$

Exercice 1.19. Connaissez-vous d'autres opérations involutives?

Exercice 1.20. Illustrez, à l'aide d'un diagramme de Venn, les lois de De Morgan.

II.4 Produit cartésien

Le produit cartésien des ensembles A et B (dans cet ordre) est l'ensemble, que l'on note $A \times B$ (« A croix B ») des couples ordonnés (a,b) où $a \in A$ et $b \in B$.

Dans le couple (a, b),

- -(a,b) n'est pas un ensemble et
- -(a,b) est distinct de (b,a).

Exercice 1.22. Représenter graphiquement la réunion des ensembles $A = \{(x, y) \in \mathbb{R}^2 | x + y \leq 2\}$, et $B = \{(x, y) \in \mathbb{R}^2 | 2 < 3x - y\}$.

Exercice 1.23. Représenter graphiquement l'intersection des ensembles $A = \{(x, y) \in \mathbb{R}^2 | x + y \leq 2\}$, et $B = \{(x, y) \in \mathbb{R}^2 | 2 < 3x - y\}$.

Exercice 1.39 (Archives). Le jour où il ne faut pas, vous découvrez que

- vous avez besoin d'un fichier client C et du fichier prospects P qui contenait la liste des clients prospects, c.à.d. des clients actuels ou potentiels visités par les représentants au dernier semestre;
- Le stagiaire les a effacé par mégarde, en répondant au hasard à une question du système qu'il ne comprenait pas.

Au cours d'une réunion de crise, vous apprenez cependant qu'il reste

- le fichier F des clients non prospects de ce dernier trimestre;
- le fichier G des prospects du dernier trimestre non encore client;
- le fichier H des clients et/ou propspects mélangés sans distinction.

En déduire comment reconstruire P et C.