Class 12

Chapter 10 - Vector Algebra

- 1. If θ is the angle between and two vectors \mathbf{a} and \mathbf{b} , then $\|\mathbf{a}^{\top}\mathbf{b}\| = \|\mathbf{a} \times \mathbf{b}\|$ when θ is equal to
 - a) 0
- b) $\frac{\pi}{4}$
- c) $\frac{\pi}{2}$
- d) π

Solution:

Given,

$$\|\mathbf{a}^{\top}\mathbf{b}\| = \|\mathbf{a} \times \mathbf{b}\| \tag{1}$$

Since, scalar product of two vectors is
$$\|\mathbf{a}^{\top}\mathbf{b}\| = \|\mathbf{a}\|\|\mathbf{b}\|\cos\theta$$
 (2)

and vector product of two vector is
$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$$
 (3)

Substituting (??) (??) in (??), we get

$$\implies \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta \tag{4}$$

$$\implies \cos \theta = \sin \theta \tag{5}$$

$$\implies \tan \theta = 1$$
 (6)

$$\implies \theta = \frac{\pi}{4} \tag{7}$$

Figure 1: $\|\mathbf{a}^{\top}\mathbf{b}\| = \|\mathbf{a} \times \mathbf{b}\|$