

MAY 2 8 2004

Technology Center 2100

DRAWINGS AND PERFORMANCE DATA

New Wavelet Multi-Resolution Waveforms Urbain Alfred von der Embse 09/826,118 APPLICATION NO.

INVENTION:

INVENTOR:

FIG. 1 Wavelet Tiling of an N-Point Digital t-f Space

Wavelet Iterated Filter Bank for Tiling t-f Space in FIG. 0

FIG. 3 PSD Requirements for Communications

LS Metrics and Cost Function FIG.

weighting for deadband

for ACI

weighting

FIG. 5A LS RECURSIVE DESIGN ALGORITHM IN MATLAB 5.0 CODE TO DESIGN:

- MOTHER WAVELET IN FIG. 6

- NEW WAVELET FROM MOTHER WAVELET

PERFORMANCE DATA AND PLOTS

****** nominal Wavelet length in units of % maximum number of channels allowed % number of iterations for LS design FFT size for spectrum centered at % wp/2pi edge of passband % ws/2pi edge of stopband = normalized Wavelet sample rate % dB, channel-to-channel imbalance normalized channel passband edge of passband floor(f_stop*n_fft) % edge of stopband normalized channel spacing number of design harmonics % 0.5 * Wavelet sample rate % Wavelet sample interval for stopband weighting for passband Wavelet length N =ML+1 for ISI % definition weighting % dB, Eb/No weighting % STEP 1.3 OPTIMIZATION PARAMETERS floor(f_pass*n_fft) & STEP 1 DESIGN PARAMETERS & STEP 1.1 SCENARIO PARAMETERS & STEP 1.2 DERIVED PARAMETERS = (2-fp)/(M*fs) $= (n_fft/M)$ = fp/(M*fs)= 0.8864;= M*L+1; = pi*2; = 1024; #===============# : 0.9 = : 0.9 = = 1.e-22.e - 30.80 n iteration = 10; = 16;= 16 x_imbal_aci nfft_pass nfft_stop nfft wsr alpha_1 alpha_2 alpha_3 alpha_4 alpha_5 stop E_pass -fft epno Ęs z

? . .

-110*ones(size(v_3b))];

FIG. 5B

.

% STEP 2.4 MATRIX "c_matrix" USED FOR ISI,ACI LS ERROR METRICS
% J(ISI)IN EQ. 25 AND J(ACI) IN EQ. 26 \$ STEP 2.3 FUNCTION "pmn" CALCULATES PASSBAND, STOPBAND LS
\$ ERROR MATRICES FOR THE METRICS J(PASS), J(STOP) IN
\$ EQ. 23 AND FUNCTION "pmn_d" CACULATES ERROR MATRIX
\$ FOR J(DEAD) IN EQ. 24 8 STEP 2.5 PASSBAND, STOPBAND, WAVELET SAMPLE RATE TEMPLATES % STEP 2.2 MATRIX "bw matrix" MAPS WAVELET FREQUENCY DESIGN
%
HARMONICS INTO WAVELET TIME RESPONSE v lb = 1:nfft_wsr;
v 2b = nfft_wsr+1:nfft_wsr+1;
v 3b = nfft_wsr+2:nfft_wsr+nfft_pass+nfft_stop;
hw_wsr= [-110*ones(size(v_lb)) zeros(size(v_2b)) ... v_l = 1:nfft_pass+1;
v_2 = nfft_pass+2:nfft_stop;
v_3 = nfft_stop+1:nfft_stop+nfft_pass;
hw_ref= [zeros(size(v_l)) -110*ones(size(v_2)) ...
zeros(size(v_3))]; & STEP 2 INITIALIZATION CALCULATIONS &===set up passband and stopband templet %===set up wavelet sample rate templet STEP 2.1 WAVELET LENGTH PARAMETERS $bw_matrix(1,:) = ones(1,n_f);$ N is even bw_matrix = zeros(m, n_f); m = N/2; nrow = m+1; nrow = m; ==== else end end

FIG. 5C

...

```
% STEP 3 PASSBAND, STOPBAND, DEADBAND LS ERROR MATRICES
```

```
STEP 3.4 WEIGHTED LS ERROR MATRIX "P_total" FOR THE WEIGHTED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  p_total= alpha_1*passband+alpha_2*stopband+alpha_5*deadband;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             STEP 3.5 CONVERT LS ERROR MATRIX IN TIME "p_total" TO LS ERROR MATRIX IN FREQUENCY "pw_t"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           SUM OF J(PASSBAND), J(STOPBAND), J(DEADBAND)
% STEP 3.1 J(PASSBAND) LS ERROR MATRIX "passband"
                                                                                                                                                                                              % STEP 3.2 J(STOPBAND) LS ERROR MATRIX "stopband"
                                                                                                                                                                                                                                                                                                                                                                                                    % STEP 3.3 J(DEADBAND) LS ERROR MATRIX "deadband"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    %deadband = pmn_d( omega_l, omega_u, N, an)
                                                                                                                                                                                                                                                                                                                                              stopband = pmn( omega_l, omega_u, N, an);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         pw_total = bw_matrix'*(p_total*bw_matrix);
pw_t = pw_total;
                                                                                                                                         passband = pmn( omega_l, omega_u, N, an) ;
                                                          deadband = zeros(nrow,nrow);
                                                                                                                                                                                                                                                                                                                                                                                                                                                              omega_l = f_pass * pi;
omega_u = f_stop * pi;
                                                                                                                                                                                                                                                           omega_l = f_stop * pi;
omega_u = pi ;
an=zeros(1,nrow);
                                                                                                                    an=ones (1, nrow);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      an=ones(1,nrow);
```

S

% STEP 4 ITERATIVE EIGENVALUE SOLUTION

ß

FIG.

```
STEP 4.1 FOR EACH ITERATION "i iteration" FIND EIGENVECTOR IN FREQUENCY THAT MINIMIZES THE COST FUNCTION J IN EQ. 27 WHOSE LS ERROR MATRIOX IS "PW_t"
                                                                                                                                                                                                xstop = max(hw_db(nfft_stop+1:nfft_stop+nfft_pass+1) );
                                                                                                                                                                                                                                           - WAVELET FREQUENCY DESIGN HARMONICS "hw_eig"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         % normalized hn is the normalized Wavelet response
                                                                                                                                                                                                                                                                   - WAVELET IMPULSE RESPONE IN TIME "hn"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       &Fourier transform of hn & hn in the next channel
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      b_vector = bw_matrix * eig_vec(:,min_index);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    %===== peak_to_peak_ripple in passband
max_ripple = max( hw_db(1: nfft_pass+1));
min_ripple = min( hw_db(1: nfft_pass+1));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              & STEP 4.3 PASSBAND RIPPLE "xripple" AND
                                                                                                                     eig_val = eig(pw_t);
[eig_vec eigval] = eig(pw_t);
[eigval_min,min_index] = min(eig_val);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         STOPBAND ATTENUATION "xstop"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        hn(1:m) = 0.5*b_vector((m+1):-1:2);
hn(m+1) = b_vector(1);
hn(m+2:N) = hn(m:-1:1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       xripple = max_ripple - min_ripple;
8=== stopband atttenuation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           hn(m:-1:1) = 0.5 * b vector(1:m);
                                                                                                                                                                                                                                                                                                                                              hw eig = eig_vec(:,min_index);
hw eig(1)= 2*hw eig(1);
hw max = max(hw eig);
hw eig = hw eig/hw max;
if ( nodd == 1) % N is odd
                                                                                                                                                                                                                     % STEP 4.2 MAP EIGENVECTOR INTO:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  hn(m+1:1:2*m) = hn(m:-1:1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               scale_ww = 1. / (hmax^2);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           hmax = max(abs(hn));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  hn = hn/ hmax;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  end % nodd
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ich = 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ==000
                                                                                                                                                                                                                                                                                                      ====8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           else
```


FIG. SE

```
- MATRICES "w matrix" AND "w f matrix"
- METRICS J(ISI) = "errM isi" AND J(ACI) = "errM aci"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        - SNR ERROR CONTRIBUTORS "errV_isi" AND "errV_aci"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         for ii = 0:n_i
% ISI error residual vector w_vector
w_vector(k_wave+1) = w_vector(k_wave+1) +hn(ii+1) *hn(ii+1+ ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          scale_isi_aci = 1/w_vector(1);
w_vector = w_vector * scale_isi_aci;
e_rv_isi = sum(w_vector(2:M) .*w_vector(2:M)); %ISI IS error
%2-sided power summation of isi residual errors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   errV_isi = 2. * errV_isi;
errV_isiMax = max( abs(w_vector(2:M)) );
%=====a_matrix = m+1 x 2m+1 = A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           a_matrix(i_r+1, nic) = hn(nic - n_cc);
% STEP 5 WEIGHTED LS ERROR METRICS FOR:
                                                                                                                                  - IS ERROR MATRIX "w matrix"

- J(ISI) = "errM isi"

- SNR LOSS ISI ERROR "errV_isi"
                                                                                                                                                                           err stop = b vector' * stopband * b vector;
err dead = b vector' * deadband * b vector;
beta pass = alpha 1 * err pass;
beta stop = alpha 2 * err stop;
beta dead = alpha 5 * err dead;
                                                                                                                                                    err_pass = b_vector' * passband * b_vector;
                                                               - J(STOPBAND) = "beta_stop"
- J(DEADBAND) = "beta_dead"
                                 - J(PASSBAND) = "beta_pass"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        nc*k_wave);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 for i r = 0:m

n cc = i r * nc;

if (i r>=1 & i r<=M)

nic = (n cc+1);
                                                                                                                                                                                                                                                                                                                                                                                                                   & STEP 6 ISI AND ACI LS:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      a_matrix= zeros(m+1,2*m+1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            n i = N - 1 - k wave*nc;
w_vector(k_wave+1) = 0.;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       STEP 6.1 J(ISI):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             - METRICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          for k wave = 0:M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             end
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     end
```


FIG. SE

```
- SNR ERROR CONTRIBUTORS "erry isi" AND "erry aci"
                                                                                                                                                                                                                                                                                                                                                                                                                                                 - MATRICES "w_matrix" AND "w_f_matrix"
- METRICS J(ISI)="errM_isi" AND J(ACI)="errM_aci"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               w_vector(k_wave+1)=w_vector(k wave+1)+hn(ii+1)*hn(ii+1+ ...
nc*k_wave);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                %cotor = 1/w_vector(1);
% normalize
w_vector = w_vector * scale_isi_aci;
% normalize
errV isi = sum(w_vector(2:M) .*w_vector(2:M)); %ISI LS error
%2-sided power summation of isi residual errors
errV_isi = 2 . * errV_isi;
errV_isimax = max( abs(w_vector(2:M)) );
%=====a_matrix = m+1 x 2m+1 = A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             nic = (n_cc+1):(2*m+1);
a_matrix(i_r+1, nic) = hn(nic - n_cc);
& STEP 5 WEIGHTED LS ERROR METRICS FOR:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    - IS ERROR MATRIX "w matrix"

- J(ISI) = "errM isi"

- SNR LOSS ISI ERROR "errV_isi"
                                                                                                                                                     err_pass = b_vector' * passband * b_vector;
err_stop = b_vector' * stopband * b_vector;
err_dead = b_vector' * deadband * b_vector;
                                                             = "beta_stop"
                                                                                              - J(DEADBAND) = "beta_dead"
                                   - J(PASSBAND) = "beta_pass"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                for ii = 0:n_i
% ISI error residual vector w_vector
                                                                                                                                                                                                                                   beta pass = alpha 1 * err pass;
beta stop = alpha 2 * err stop;
beta dead = alpha 5 * err dead;
                                                                                                                                                                                                                                                                                                                                                                                                                   & STEP 6 ISI AND ACI LS:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       a_matrix= zeros(m+1,2*m+1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      w_{\text{vector}}(k_{\text{wave+1}}) = 0.;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ni = N - 1 - k \text{ wave*nc};
                                                                  - J(STOPBAND)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    for i_r = 0:m
n_cc = i_r * nc;
if ( i_r>=1 & i_r<=M)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               STEP 6.1 J(ISI):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    for k wave = 0:M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           end
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               end
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            end
```


FIG. 5G

```
beta_pass_1 = beta_pass * 1./errM_LS; % in fraction
beta_stop_1 = beta_stop * 1./errM_LS; % in fraction
beta_dead_1 = beta_dead * 1./errM_LS; % in fraction
beta_isi_1 = beta_isi * 1./errM_LS; % in fraction
beta_aci_1 = beta_aci * 1./errM_LS; % in fraction
%errM_LS = errM_LS / (alpha_1+alpha_2+alpha_3+alpha_5);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     æ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            明 明
                                                                                   STEP 7.1 WEIGHTED LS ERROR METRICS FOR ISI, ACI, TOTAL

- WEIGHTED ISI LS ERROR METRIC "beta_isi"

- WEIGHTED ACI LS ERROR METRIC "beta_aci"

- TOTAL LS ERROR METRIC J = "errM_LS"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       STEP 7.3 UPDATE J LS ERROR MATRIX "PW_t" FOR NEXT ITERATION
                                                                                                                                                                                                                                                                   % STEP 7.2 SAVE WEIGHTED LS ERROR METRICS FOR EACH ITERATION
                      UPDATE LS ERROR MATRIX "pw_t" FOR NEXT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 - PASSBAND RIPPLE LOSS "xloss_ripple",
                                                                                                                                                                                                                           errM_LS = beta_pass+beta_stop+beta_dead+beta_isi+beta_aci;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             "xloss total"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       "xloss_isi",
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            "xloss_aci".
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    %===== passband ripple loss
x delta = 10.^( xripple/2. /20.) - 1.;
xloss_ripple = -10. * log10( 1.0 - x_delta^2 );
- WEIGHTED LS ERROR METRICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     & STEP 8 SIGNAL-TO-NOISE SNR LOSS
                                                                                                                                                                                        beta_isi = alpha_3*errM_isi;
beta_aci = alpha_4*errM_aci;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         - TOTAL LOSS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        - ISI LOSS
- ACI LOSS
                                                ITERATION
                                                                                                                                                                                                                                                                                                                                    scale_err = errM_LS;
                                                                                                                                                                                                                                                                                                                 if i_iteration==1
& STEP 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    36
```

en de la seconda de la seconda

STEP 9.2 WAVELET TIME RESPONSE "hn"

Wavelet response'
hn(m+1:2*m+1)']

'Sample index [(0:m)' 1.0000 0.9941 0.9765 0.9476 0.9080

> 1.0000 2.0000 3.0000 4.0000 5.0000

FIG. 5H

```
#==== aciloss
xx_aci = l0.^(x_imbal_aci / l0.);
xx_aci = xebno * errV_aci * x_g-aci;
*loss_aci = l0.* logl0(l. + xx_aci);
*loss_tctal = lo.* logl0(l. + xx_aci);
*loss_tctal = loss_tctal = loss_tctal = loss_tctal =
```


FIG. 51

0.8004	662	586	506	424	040	200	114	.047	.013	990.	111	148	.176	. 196	207	777	2002	170	7 7 7	123	200	076	047	018	600	.035	.057	.076	.092	.103	110	113	101	960	.087	.073	.058	.041	.024	.007	. 009	. 023	038	9	067	.071	.073	.073
6.0000	000	000.	000.	000			000	2.000	000.	3.000	9.000	000.	000.1	2.000	3.000	000.	. 000	0000	000.	3.000		000	2.000	3.000	1.000	5.000	6.000	000.7	3.000	9.000	000.	200		4.000	5.000	6.000	000.7	8.000	9.000	000.0	000.	2.000			000	7.000	8.000	9.000

FIG. 5J60.0000 -0.0701

0/0.0	0.064	700.0	0 ° 0 ° 0	-0.0287	0.017	0.006	.004	.014	.023	.030	.037	.042	.045	.046	.046	.044	.041	.037	.031	.025	.018	.011	.004	.002	.009	.015	.020	.025	.028	.031	.032	.032	.032	
0.0000	1.000	2.000	4.00	65.0000	6.000	7.000	8.000	000.6	000.0	1.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9.000	000.0	1.000	2.000	3.000	4.000	5.000	000.9	7.000	8.000	9.000	000.0	1.000	2.000	3.000	4.000	

904

hold on

FIG. 5K

0.0187	0.0179	0.0168	0.0154	0.0138	0.0121	0.0103	0.0085	0.0067	0.0051	0.0036	0.0024	0.0013	9000.0	0.0001	-0.0000
113.0000	114.0000	115.0000	116.0000	117.0000	118.0000	119.0000	120.0000	121.0000	122.0000	123.0000	124.0000	125.0000	126.0000	127.0000	128.0000

38

STEP 10 ITERATION CONVERGENCE IS MEASURED BY THE
CONVERGENCE OF THE LS ERRORS IN

CONVERGENCE OF THE LS ERRORS IN

plots

plots
figure(1)
plot (err LS(:,1), err LS(:,7), 'k')

title('Total LS error relative to iteration=1')
ylabel('Total LS error relative to iteration=1')
xlabel('Total LS error relative to iteration=1')
ylabel('Total LS error relative to iteration=1')
xlabel('Total LS error relative to iteration=1')
ylabel('Total LS error relative to iteration)

====
figure(2)
plot (err LS(:,1), err LS(:,2), 'k')
hold on
plot (err LS(:,1), err LS(:,5), 'b')
plot (err LS(:,1), err LS(:,6), 'b'-')
plot (err LS(:,1), err LS(:,6), 'b'

FIG. 5L

8 STEP 11 PARAMETERS ARE SELECTED TO OPTIMIZE:

```
- WAVELET FILTER PERFORMANCE IN figure (3)
- WAVELET RIPPLE, ISI, ACI SNR LOSSES IN figure (4)
                                                                                                                                                                                                                     x2=length(hw_ref);
x3=length(hw_wsr);
plot(freq(1:x2)*M,hw_ref, 'b--')
plot(freq(1:x3)*M,hw_wsr, 'b--')
legend('Wavelet response', 'pass & stop templates', 'Wavelet sample rate')
                                             - WAVELET TIME RESPONSE IN figure (5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      plot(loss_LS(:,1),loss_LS(:,3),'x--')
plot(loss_LS(:,1),loss_LS(:,4),'b')
plot(loss_LS(:,1),loss_LS(:,5),'b--')
title('NR LOSS VS. ITERATION')
legend''total','ripple','ISI','ACI')
ylabel('SNR LOSS,'dB')
xlabel('Iteration number')
                                                                                                                                                              grid on
xlabel('Frequency/Wavelet sample rate')
ylabel('Power Spectrum, dB')
hold on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            plot (loss_LS(:,1), loss_LS(:,2),'k')
                                                                                                                                                                                                                                                                                                                                                                        title ('WAVELET FREQUENCY RESPONSE')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         xlabel('Time/Wavelet sample rate')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ylabel('Wavelet time response')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       title('WAVELET TIME RESPONSE')
                                                                             figure(3)
plot(freg*M, hw_db,'k')
axis([0 200 -100 10])
                                                                                                                                                                                                                                                                                                                                                                                                          axis([0 1.4 -100 0])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               axis([-8 8 -0.4 1])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     plot(xx,hn','k')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              : ( w:w-) =xx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             figure(4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       figure(5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   xx=xx/M;
                                                                                                                                                                                                                                                                                                                                                                                            grid on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           grid on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              hold on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          hold on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      hold on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                grid on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         no blor
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ----
```


FIG. 5M

```
8 STEP 12 CALCULATION OF NEW WAVELET WAVEFORM "hn_new"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          % STEP 12.2 MATRIX "bw matrix new" FOR MAPPING WAVELET
%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           STEP 12.3 MAP WAVELET FREQUENCY DESIGN HARMONICS "hw eig" INTO NEW WAVELET IMPULSE RESPONSE IN TIME "hn_new"
                                                                                                                                                                                                                      % step 12.1 WAVELET SAMPLE INTERVAL "M_new" AND LENGTH "N_new"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               #==== hn_0 = hn_new without translations in time & frequency
hw_eig2 = hw_eig;
hw_eig2(1) = 0.5*hw_eig(1);
#====
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Case 2: Fix sampling and dilate M_new = 2^p M
hn = hn(n - q M_new)
M_new = M*(2^p P);
                                                                                                                                                                                                                                                                                                                  Case 1: Fix M new = M and dilate sampling hn = hn(n 2^{\sim}-p = q M) n_new = n 2^{\sim}-p
                                                                                                                                                                                                                                                                                                                                                                           = n_p for n = n_0 + n_p 2^-p
                                         - "p" SCALE (DILATION)
- "q" TRANSLATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                & N is odd
                                                                                                                                                                                                                                                                            %== Wavelet sample interval M_new for:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       N is even
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            N_new = M_new*L+1; % Wavelet length
                         FOR THE PARAMETERS:
                                                                                                                         bw_matrix_new(1,:) = ones(1,n_f);
                                                                                                                                                         p=2 % scale change or dilation q=2 % time translation k=3 % frequency translation
                                                                                           - "k" FREQUENCY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      RESPONSE IN TIME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      m_new = N_new/2; 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           m_new = (N_new - 1 ) /2 else
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              nodd= fix( N_new/2 );
nodd = N_new - 2 * nodd ;
if ( nodd == 1)
                                                                                                                                           % Wavelet parameters
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ----
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           end
```


FIG. 5N

• •

1...

```
#==== hn new is hnl with translation in frequency by k
for n=1:N_new+q*M_new
hn_new(n) = hn_1(n)*exp( i*(2*pi*k*(n-1)/(M_new*L)) );
title ('TIME RESPONSE FOR MOTHER, NEW WAVELETS')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 legend('MOTHER WAVELET','NEW WAVELET')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           xlabel('Time/hn\_new sample rate')
ylabel('Wavelet time response')
                                                                                                                                                                                                 hn_1(n) = hn_0(n-q^*M_new);
                                                                                                                                                                                                                                                                                                                                                           xx1 = (L/2)*(1-1/2^p)*M_new;

xx2 = (L/2)*(1+1/2^p)*M_new;

for n=1:N_new+q*M_new

if n<xx1 | n>xx2

hn1(n) = 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                x_n = (1:N_new+q^*M_new)/M_new;

x_n = x_n-I/2;
                                                                                                                                                                                                                                                                                                                                                                                                                                 hnl(n) = hn(n-xxl+1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               plot(x_n,hn_1,'k--')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        plot(x_n, hn1, 'k')
                                                                                                                                                                                                                                                                                                                                                 figure(6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           grid on
                                                                                                                                                                                                                                                                                                                                                                                                                        else
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    hold on
                                                                                                                                                                                                                                                                                                                                                                                                                                             end
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      hold on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    hold on
                                                                                                                                                                                                              end
```


FIG. 50

```
arg\_rot = twopi* rem( (0:N\_new-1)*ich /M\_new , 1 );
                                                                                                                                                                                                                                                                                                                                                                                               [freq, hw2_db] = freq_rsp(hn_0, arg_rot, n_fft);
plot(freq*M,hw2_db,'k--')
axis([0 8 -100 10])
% STEP 12.5 PLOT WAVELET FREQUENCY RESPONSE FOR:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         title ('POWER SPECTRUM OF MOTHER, NEW WAVELETS')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       title ('POWER SPECTRUM OF MOTHER, NEW WAVELETS')
                                                                                                                                                                                                                         arg_rot = twopi* rem( (0:N-1)*ich /nc , 1 );
[freq, hw_db] = freq_rsp(hn, arg_rot, n_fft);
plot(freq*M, hw_db,'k')
                                                                                      sample rate
                                                                                                            vs. frequency/hn_new sample rate
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            %==== plot frequency response of hn, hn_new
                                                                                                                                                                     figure(7) % vs. frequency/hn sample rate
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     xlabel('Frequency/hn\_new sample rate')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          vs. frequency/hn_new sample rate
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                legend('MOTHER WAVELET','NEW WAVELET')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        legend('MOTHER WAVELET', 'NEW WAVELET')
                                                        - NEW WAVELET "hn_new"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           xlabel('Frequency/hn sample rate')
                        - MOTHER WAVELET "hn"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ylabel('Wavelet time response')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ylabel('Wavelet time response')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   plot(freg*M_new,hw2_db,'k--')
axis([0 8 -100 10])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      xlabel('Time/hn sample rate')
                                                                                  vs. frequency/hn
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          xlabel('Time/hn sample rate')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ylabel('Power Spectrum, dB')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ylabel ('Power Spectrum, dB')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               plot(freg*M_new, hw_db,'k')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    figure(8)
                                                                                                                                                                                                     ich = 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             hold on
                                                                                                                                                                                                                                                                                                              hold on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                grid on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        grid on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         hold on
                                                                                                                                                                                                                                                                                                                                              ich=k;
```


FIG. 5P

•

```
p matrix(n+1,ml+1)=1./pi*(an(n+1)*an(ml+1)*(omega_u-omega_l)...
-{ an(ml+1) *ml*( sin( n*omega_u ) - sin( n*omega_l ) ) + ...
an(n+1) *n *( sin(m*omega_u) - sin(n*omega_l ) ) /( ml*n ) + (...
(n+ml)* ( sin( (n-ml)*omega_u ) - sin((n-ml)*omega_l ) ) )/( (ml*n ) + (...
+(n-ml)*(sin( (n+ml)*omega_u ) -sin((n+ml)*omega_l ) )...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            p_matrix(n+1,ml+1)=1./pi*(an(ml+1)-1.)*(an(n+1)*(omega_u-omega_l)-....
( sin(n*omega_u )-sin(n*omega_l) ) /n );
end
end
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            p_matrix(n+1,m1+1)=1./pi*(an(n+1)-1.)*(an(m1+1)*(omega_u-omega_l)-....(sin(m1*omega_u)-sin( m1*omega_l) ) /m1 );
end
                                                                                                                                                                                                                                                                                                                                                                           p\_matrix(n,m): a nXm real, symmetry and positive-definite matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    if ( n ~= 0)
p_matrix(n+1,ml+1)=1./pi*((an(n+1)*an(n+1)+0.5)*(omega_u-omega_l)-...
2.* an(n+1) * ( sin( n*omega_u ) - sin( n*omega_l ) } ...
/n + (sin(2.* n*omega_u) - sin(2.*n*omega_l))/( 4.* n) );
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            p_matrix(n+1,m1+1)=1./pi*(an(n+1)-1.)*(an(n+1)-1.)*(omega_u-omega_l);
                                                                                                                                                                                                                             compute the real, symmetric, and positive definite matrix
input:    omega_l: lower edge (radians)
    omega_u: upper edge (radians)
                                                                 STEP 13.1 FUNCTION "pmn" COMPUTES MATRIX FOR J(BAND) IN
                                                                                                                                                                                                                                                                                                                        an(.): 1xm column vector
% STEP 13 FUNCTIONS USED IN MATLAB PROGRAM
                                          filter length 'N' is odd
                                                                                                                                                                 function p_matrix= pmn(omega_l,omega_u, N,an)
                                                                                                                                                                                                                                                                                                                                                                                                                                             twopi = 2. * pi;
check filter lenght is odd or even
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         N is even
                                                                                                                                                                                                                                                                                                                        N: filter length,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    if (n == 0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        if (m1 == 0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                end % end of m1 loop
end % end of n loop
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   nodd = fix(N/2);
nodd = N - 2 * nodd;
if ( nodd == 1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           for ml= 0:m
if ( ml ==n )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              m = (N-1)/2;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  if ( nodd == 1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           else
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         m = N/2;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              for n= 0:m
                                                                                                                                                                                                                                                                                                                                                       output
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                else
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  else
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        end
```


FIG. 50

The state of the state of

```
p_matrix(n+1,m1+1) = 1./pi * ( ...
an(n+1) * an(m1+1) * ( omega_u - omega_l ) - ...
an(m1+1) * (sin((n+.5)*omega_u)-sin((n+.5)*omega_l))/( n + 0.5) - ...
an(n+1) * (sin((m1+.5)*omega_u)-sin((m1+.5)*omega_l))/(m1+0.5) + ...
(sin( (n-m1)*omega_u) - sin( (n-m1)*omega_l) ) / (2.* (n-m1)) + ...
(sin( (n+m1+1)*omega_u)-sin( (n+m1+1)*omega_l))/(2.* (n+m1+1));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      STEP 13.2 FUNCTION "freq_rsp" COMPUTES FOURIER TRANSFORM OF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   INPUT "hn" VS. FREQUENCY/WAVELET SAMPLE RATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           function [freq, hw_db] = freq_rsp(hn, arg_rot, n_freq )
% Fourier transform of input hn
                                                                                                                                                                                      2. * an(n+1) * ( sin( (n+.5) * omega_u) - ...
sin( (n+.5) * omega_l) ]/( n + 0.5) + ...
( sin( (2*n+1) * omega_u) - sin( (2*n+1) * omega_l) ) ...
/( 2. * ( 2. * n + 1) ) ) ;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       for nf = 1: n_freq
arg=twopi * rem( freq(nf) * ((1:n_filter) -1-m),1);
                                                                                                                                   p_matrix(n+1,m1+1) = 1./pi * ( ...
(an(n+1)*an(n+1) + 0.5) * (omega_u - omega_l) - ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      hw = sum(hn .*exp((-arg+arg_rot)*i));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            in normalized freq interval (0., 0.5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         hw_mag = hw_mag /hw_max;
hw_db = 20. * log10( hw_mag+ 1.e-20);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           hw_max = max( abs(hw_mag) );
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   % end of if nodd =1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         end % end of m1 loop
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             hw_mag(nf) = abs(hw);
when N is even
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        % n freq # of frequency
twopi = 2 * pi;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           df = 0.5/ (n freq -1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      n_filter = length(hn);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          end % end of n loop
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            % frequency response
                                                                                     if ( m1 == n )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         m=(n_filter-1)/2;
freq = (0:df:0.5);
                                                       for m1 = 0:m-1
                           for n = 0:m-1
8 =====
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        end
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                end
```


FIG. 7 PSD for New Waveform BEM and GMSK

Normalized frequency, bit rate 48

Power spectral density PSD, dB 47

ŧ

