Lecture 15

more op-amps

mirrored = similar gain

mirrored = higher output range

- Compared to basic op-amp, adding mirrors on output
- same gain
 - $\sim gm(r_{on}||r_{op})$
- same rout (not so good)
 - $\sim r_{on} || r_{op}$
- Same max output current
- ~same added mirror pole
 - At gm/2Cgs
 - Not too bad
 - ~same CMRR
 - same input range
- better output range
 - Vout < V_{DD} - V_{ODP}
 - Vout > V_{ODN}
- More dc current consumed
- Can increase gain w/cascodes at output (costs some output range)

Folded cascode

- "bottom part" (inside dashed line) of interest:
 - top part same as telescopic
- DC analysis

$$-I_{D1} = I_{bias} - gmV_{din}/2$$

$$-I_{D2} = I_{bias} + gmV_{din}/2$$

$$-I_{D3}=I_{D4}=2I_{bias}$$

$$-$$
 KCL: $I_{D5}=I_{D3}-I_{D1}$

$$- KCL: I_{D6} = I_{D4} - I_{D2}$$

$$-I_{D5}=I_{bias}+gmV_{din}/2$$

$$-I_{D6}=I_{bias}-gmV_{din}/2$$

Folded cascode = high gain, vdd different input range

- Compared to telescopic op-amp, folded cascodes
- similar gain (good)
 - $\sim (gmr_o)^2 vs gmr_o$
 - Really slightly lower:
 - $g_{mp(}((r_{op}||r_{ob})g_{mn}r_{on})||(g_{mp}r_{op}^{2}))$ $r_{ob}\sim r_{on}/2$
- similar rout (not so good)
 - $((r_{op}||r_{ob}) g_{mn}r_{on})||(g_{mp}r_{op}^{2}) \sim gmr_{o}^{2}$
- Same max output current
- ~same BW besides output pole
- ~same CMRR
- Better input range
 - $Vin > V_{ODn}-V_{THp}<0$!!!!
 - $Vin < V_{DD}-2V_{OD}-V_{THp}$
 - Can go below ground!
- Better output range (V_{cascn} can be low)
 - Vout < $V_{cascp}+|V_{THP}|$
 - Vout > V_{cascn} - $|V_{THN}|$

Folded cascode: half circuit

1 vs 2-stage OP-Amps

- 1-stage Op-Amps (OTAs)
 - Simple
 - Telescopic
 - Mirrored
 - Folded cascode
- All OTAs Have A=gmR_{out}
 - Where gm is that of a single transistor (2ld/Vod)
 - Get more gain with bigger R_{out} (cascodes, etc)
 - Dominant pole on output:
 - $-\omega_{p} = 1/((R_{out}||R_{L})(C_{L}+2C_{db}))$
- 2-stage: take OTA, add 2nd stage: usually CS
- Get A=A_{OTA}*gmR_{out}
- So separate gain from Rout
- Can separately design input/output
- Get output pole, plus intermediate pole at OTA output:

$$- \omega_p = 1/((R_{outOTA})(C_{GS}+2C_{db}))$$

1 vs 2-stage OP-Amps: feedback

Vin

