MATH 223, Winter 2015

Yang David Zhou

January 13, 2015

Chapter 1

Introduction

1.1 Administrativa

Professor Tiago Salvador

Office: BH1036

Office Hours: W4:15-5:45PM, F3:00-4:30PM

Grading

Assignments	15%	15%
Midterm	25%	0%
Final	60%	85%

The midterm will be scheduled for the 7th week of class.

1.2 Review

1.2.1 Vectors in \mathbb{R}^n

 \mathbb{R}^n is the set of all *n*-tuples of real numbers $u = (a_1...a_n) \mid a \in \mathbb{R}$ where a are the **components** or **entries**.

Remark 1. We use the term **scalar** to refer to an element in \mathbb{R} .

1.2.2 Basic definitions

Addition

```
u, v \in \mathbb{R}^n

u = (a_1...a_n)

v = (b_1...b_n)

u + v = (a_1 + b_1...a_n + b_n)
```

Scalar Multiplication

 $k \in \mathbb{R}$

 $ku = (ka_1...ka_n)$

Equality

Two vectors u and v are said to be equal (u = v) if $a_i = b_i \forall i = 1...n$.

Zero Vector

The zero vector is defined as 0 = (0..0).

Linear Combination

Suppose we are given m vectors $u_1...u_m \in \mathbb{R}^n$ and m scalars $k_1...k_m \in \mathbb{R}$.

Let $u = k_1 u_1 + ... + k_m u_m$.

Such a vector u is called a linear combination of the vectors $u_1...u_m$.

Vector Multiple

A vector u can be called a multiple of v if there is a scalar k such that u = kv with $k \neq 0$. In the case k > 0 we say u is in the same direction as v. In the case k < 0 we say u is in the opposite direction of v.

1.2.3 The Dot Product

Definition 1. Let $u = (a_1...a_n)$ and $v = (b_1...b_n)$. The **dot product** or inner product is given by,

$$u \cdot v = a_1 b_1 + \dots a_n b_n =$$

Definition 2. The vectors u and v are **orthogonal** if $u \cdot v = 0$.

1.2.4 The Vector Norm

Definition 3. The **norm** or **length** of a vector is given by,

$$||u|| = \sqrt{a_1^2 + \dots + a_n^2}$$

Thus $||u|| \ge 0$ and ||u|| = 0 if and only if (iff) u = 0.

Definition 4. A vector is called a **unit vector** if ||u|| = 1.

For any non-zero vector v, the vector

$$\hat{v} = \frac{1}{\|v\|}v$$

is the only unit vector with the same direction of v. The process of finding \hat{v} is called **normalizing**.

1.2.5 Theorem: Cauchy-Schwarz inequality

Theorem 1. Given any two vectors $u, v \in \mathbb{R}^n$, then,

$$|u \cdot v| \le ||u|| ||v||$$

Proof. Let $t \in \mathbb{R}$. So, $||tu + v||^2 \ge 0$.

$$||tu + v||^2 = (tu + v)(tu + v)$$

$$= (tu \cdot tu) + (tu \cdot v) + (v \cdot tu) + (v \cdot v)$$

$$= t^2(u \cdot u) + t(v \cdot u) + t(u \cdot v) + (v \cdot v)$$

$$= t^2||u||^2 + 2t(u \cdot v) + ||v||^2$$

We can represent this in the form $at^2 + bt + c \ge 0$, so,

$$a = ||u||^2, b = 2(u \cdot v), c = ||v||^2$$

Take the Discriminant as $b^2 - 4ac \iff b^2 \leq 4ac$.

$$4(u \cdot v)^{2} \le 4||u||^{2}||v||^{2}$$
$$|u \cdot v| \le ||u|| ||v||$$

1.2.6 Theorem: Triangle Inequality

Theorem 2. Given $u, v \in \mathbb{R}^n$, then $||u+v|| \le ||u|| + ||v||$.

Proof.

$$||u+v||^2 = ||u||^2 + 2(u \cdot v) + ||v||^2$$

$$\leq ||u||^2 + 2||u|| ||v|| + ||v||^2$$
 by C-S inequality
$$= (||u|| + ||v||)^2$$

So, $||u+v||^2 \le (||u|| + ||v||)^2$. Take the square root and we are done.