Uvod u teoriju računarstva, MI 1 (v 1.21)

8.4.2008.

U izradi su sudjelovali **ferofka**, Φοσνα i **0999**. Pitanja su skupljena iz dokumenta <u>1. MI-ak. god. 2007/08</u> koji se nalazi na Materijalima.

1. Definirati:

- a) formalni automat,
- b) formalnu gramatiku.
- a) Formalni automat je model diskretnog matematičkog sustava koji čitanjem znak po znak odlučuje je li pročitani niz element zadanog jezika. (str. 12 u knjizi)
- b) Formalna gramatika je model matematičkog sustava koji primjenom skupa produkcija gradi, odnosno generira nizove znakova. (str. 12)

2. Formalno definirati:

- a) istovjetnost stanja DKA,
- b) istovjetnost DKA.
- a) Stanje p DKA $M=(Q, \Sigma, \delta, q_0, F)$ je istovjetno stanju p' DKA $M'=(Q', \Sigma', \delta', q_0', F')$ ako i samo ako DKA M u stanju p prihvaća isti skup nizova kao i DKA M' u stanju p'. Za bilo koji niz w skupa Σ^* vrijedi $(\delta(p,w) \in F) \land (\delta(p',w) \in F')$ ili $(\delta(p,w) \notin F) \land (\delta(p',w) \notin F')$. (str. 21)
- b) DKA M i N su istovjetni ako i samo ako su istovjetna njihova početna stanja. (str. 22)

3. Opisati postupak dobivanja DKA iz zadanog NKA.

DKA $M'=(Q', \Sigma', \delta', q_0', F')$ prihvaća isti jezik kao i NKA $M=(Q, \Sigma, \delta, q_0, F)$ ako je zadovoljeno:

- 1) Skup stanja DKA je $Q'=2^Q$, tj. skup svih podskupova skupa stanja NKA Q. Stanja su označena uglatim zagradama $[p_0, p_1, ..., p_i] \in Q'$, gdje su $p_k \in Q$.
- 2) Skup prihvatljivih stanja DKA F' jest skup svih stanja $[p_0, p_1, ..., p_j]$ gdje je barem jedan $p_k \in F$.
- 3) Početno stanje DKA jest q0'=[q0].
- 4) Funkcija prijelaza DKA jest $\mathcal{S}([p_0,p_1,...,p_m], a) = [r_0,r_1,...,r_j]$ ako i samo ako je $\mathcal{S}(\{p_0,p_1,...,p_m\}, a) = \{r_0,r_1,...,r_j\}$, gdje je $a \in \Sigma$. (str. 31)

4. Dokazati zatvorenost regularnih jezika s obzirom na operaciju komplementa.

Neka DKA $M=(Q, \Sigma, \delta, q_0, F)$ prihvaća regularni jezik L(M). Za komplement jezika $L(M)^c$ moguće je izgraditi DKA $M'=(Q, \Sigma, \delta, q_0, Q \setminus F)$ koji prihvaća jezik $L(M')=\{w \mid \delta(q_0, w) \notin F\} = \sum^* \{w \mid \delta(q_0, w) \in F\} = L(M)^c$. (str. 52)

5. Opisati postupak odbacivanja jediničnih produkcija iz kontekstno neovisne gramatike.

Ako postoje produkcije tipa $A \rightarrow B$, gdje su A i B nezavršni znakovi, za sve produkcije $B \rightarrow \alpha$ koje nisu jedinične građe grade se nove produkcije $A \rightarrow \alpha$. (str. 83)

6. Minimizirati DKA koristeći algoritam br 2.

Prvo se odbace nedohvatljiva stanja postupkom sa strane 27, a zatim se primjeni algoritam 2 na strani 24, što je Bojzi već objasnio u tutorijalu.

7. Pokazati da automat sa slike prihvaća jezik koji opisuje regularni izraz R.

$$R = (b^*bb^*a + c^*(c^* + a^+)(a+c)^*)^*$$

$$q_0$$

$$q_1$$

Sa slike očitavamo izraz $((a+c)^* + (b^+a))^*$.

Potrebno je minimizirati izraz *R* (algebarski zakoni su na stranici 46 u knjizi i stranici 6 u pripremi):

Minimizacijom je dobiven izraz identičan izrazu očitanom sa slike.

Neka pravila koja se primjenjuju na regularnom izrazu *R* nisu trivijalna i ne možete ih naći među algebarskim zakonima.

8. Konstruirati regularni izraz koji opisuje sve IP adrese od 172.16.0.0 do 172.31.255.255 .

Napomena: Svaki od četiri dijela IP adrese se sastoji od minimalno jedne znamenke, a maksimalno tri znamenke i točke. Nakon svakog od četiri dijela adrese dolazi točka, OSIM NAKON ZADNJEG DIJELA. Najveći broj koji se može naći u svakom pojedinom dijelu je 255. Brojevi u IP adresi nemaju vodeće nule.

Potrebno je pripaziti na zadani raspon!

```
R= r1.r2.r3.r4

r1= 172

r2= 1(6+7+8+9) + 2(0+1+2+...+9) + 3(0+1)

r3= r5+r6+r7+r8

r5= (0+1+2+...+9)
r6= (1+2+3+...+9)(0+1+2+...+9)
r7= 1(0+1+2+...+9)(0+1+2+...+9)
r8= 2(0+1+2+3+4+)(0+1+2+...+9)+25(0+1+2+3+4+5)
```

r4=r3

Pojašnjenje:

- _r5 opisuje slučaj kad je dio IP-a predstavljen samo jednom dekadskom znamenkom.
- _r6 opisuje slučaj kad je dio IP-a predstavljen dvjema dekadskim znamenkama,
- _r7 opisuje slučaj kad je dio IP-a predstavljen trima dekadskim znamenkama u rasponu od 100 do 199 (uključeno).
- _r8 je podijeljen u dva dijela. Prvi dio opisuje slučaj kad je dio IP predstavljen trima dekadskim znamenkama u rasponu od 200 do 249 (uljučeno). Drugi dio služi za predstavljanje raspona od 250 do 255 (uključeno).

9. Konstruirati automat koji jezike razvrstava u tri skupine. Prva skupina jezika je ona koja se sastoji od manje od 5 slova, druga skupina ima točno 5 slova, a treća skupina ima više od 5 slova. Jezici se sastoje od slova hrvatske abecede i brojki.

Potrebno je konstruirati Mooreov automat $M=(Q, \Sigma, \Delta, \delta, \lambda, q_0)$.

$$Q=\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$$

$$\Sigma = \{A, B, C, ..., \check{Z}, a, b, c, ..., \check{z}, 0, 1, 2, ..., 9\}$$

 Δ ={manje od 5, točno 5, više od 5}

	slova	brojke	λ
q_0	q_1	q_0	manje od 5
q_1	q_2	q_1	manje od 5
q_2	q_3	q_2	manje od 5
q_3	q_4	q_3	manje od 5
q_4	q_5	q_4	manje od 5
q_5	q_6	q_5	točno 5
q_6	q_6	q_6	više od 5

10. DKA prihvaća samo nizove koji imaju duljinu veću od N. Koliko (minimalno) stanja mora imati u odnosu na N?

Da bismo pobrojali N znakova potrebno je N+1 stanja:

- nulto stanje za 0 znakova,
- prvo stanje za 1 znak, ...
- *N*-to stanje za *N* znakova

te zatim još jedno stanje za više od N znakova.

DKA mora imati N+2 stanja.