Chef d'Oeuvre

Décomposition de maillages en variétés topologiques

Méthodes et algorithmes

Laura BARROSO, Martin BOUYRIE, Sébastien EGNER Mardi 24 novembre 2020

Introduction Surface manifold

- Chaque arête qui n'est pas une extrémité doit partager exactement deux faces
- Il doit exister une sphère de rayon suffisamment petit pour que son intersection avec le maillage soit homothétique à un disque

Pourquoi un maillage manifold?

 Évite les artefacts visuellement dérangeants

 De nombreux algorithmes ont besoin d'un maillage manifold pour pouvoir être utilisés

 Garantit une bonne représentation du maillage (régulier et constant)

Structure générale de l'algorithme

On a 2 phases:

- 1. **Cutting** qui découpe de la surface d'entrée en plusieurs surfaces **manifold**
- 2. **Stitching** (optionnel) qui recoud les différentes surfaces obtenues pendant la phase de *cutting* en une surface **manifold**

Avant tout chose : les degenerate faces

- Correspond aux faces dont au moins deux sommets sont identiques
- Pas de surface géométrique ni de normale

Il est nécessaire de supprimer toutes les degenerate faces pour le bon fonctionnement des phases suivantes.

- Parcourir la liste des sommets de chaque face
- Repérer les sommets identiques d'une face
- Supprimer les faces, arêtes et sommets associés

Cutting

C'est la phase qui découpe la surface d'origine le long des **arêtes et sommets singuliers**, en plusieurs soussurfaces.

On distingue:

- le cutting local qui découpe seulement au niveau des arêtes singulières
- le cutting global qui découpe autour de toutes les arêtes et reforme les surfaces dont les arêtes communes étaient régulières

Qu'est-ce qu'une arête singulière?

Il est nécessaire de connaître les arêtes singulières pour la phase de *cutting* :

- Parcourir les arêtes de chaque face
- Vérifier que l'arête est liée à deux faces maximum
- Sinon, rajouter l'arête à la liste des arêtes singulières

Approche locale

- Plus efficace que l'approche globale dans le cas où la surface d'origine comporte peu de singularités topologiques
- Requiert une phase d'identification supplémentaire pour les sommets singuliers isolés

Approche locale

- 1. On créé des copies pour chaque sommet singulier (multiplication).
- 2. On relie les différentes copies créées aux nouvelles faces induites par la multiplication.

Approche globale

- Plus efficace dans le cas où la surface comporte un grand nombre de singularités topologiques.
 - 1. On sépare chaque face de la surface.
 - 2. On relie les faces partageant une arête régulière.

Reconstruction de la topologie :

- Rester manifold
- Respecter la surface de départ

Principe

Frontière: ensemble connecté d'arêtes frontalières

Deux approches

Pinching

Snapping

Pinching

- Ne recoud que les arêtes coupées
- Referme les frontières sur elles-mêmes

Snapping

- Priorise les coutures d'arêtes localement proches
- Coud les frontières les unes aux autres

- Communication
- Technologies
- Implémentation

Communication

- En interne: Discord
- Avec l'encadrant : Discord ou Zoom

Technologies

Gitlab

Doxygen

TravisCI

Catch2

Implémentation

- Radium Engine
- OpenMesh

Questions?