1. Множества, операции над множествами

Строгого определения множества нет, т. к. это понятие из которого выводятся многие понятия математики, в то время как оно само невыводится из других понятий и не определяется ими. Понятие множества стольже первично, как понятие точки или числа. Синонимами слова "множество" можно считать такие слова, как "совокупность", "набор", "коллекция", "семейство".

 $x \in A$ обозначает принадлежность элемента x к множеству A. В таком случае говорят, что элемент x принадлежит множеству A или x является элементом множества A.

Множество A является подмножество множества B ($A \subseteq B$), если все элементы множества A являются элементами множества B, т. е. $A \subseteq B \Leftrightarrow \forall x (x \in A \Rightarrow x \in B)$.

(Принцип равнообъемности) Множества A и B называются равными (A=B), если они содержат одни и те же элементы, т. е. для каждого элемента x имеем $x \in A \Leftrightarrow A \subseteq B$ и $B \subseteq A$

Замечание. Два множества равны \Leftrightarrow каждое из них является подмножеством другого $A=B\Leftrightarrow A\subseteq B$ и $B\subseteq A$

Доказательство: По определению
$$A = B \Leftrightarrow \forall x (x \in A \Leftrightarrow x \in B) \Leftrightarrow \begin{cases} \forall x (x \in A \Rightarrow x \in B) \Leftrightarrow A \subseteq B \\ \forall x (x \in B \Rightarrow x \in A) \Leftrightarrow B \subseteq A \end{cases}$$

Предложение. Отношение включения является отношением частичного порядка, т. е. обладает следующими свойствами:

- 1. ∀ $A(A \subseteq A)$ рефлексивность 2. ∀ $A, B((A \subseteq B \text{ и } B \subseteq A) \Rightarrow A = B)$ антисимметричность
- 3. $\forall A, B, C((A \subseteq B \text{ и } B \subseteq C) \Rightarrow A \subseteq C)$ транзитивность

Доказательство. 1. По определению отношения включения, утверждение $A \subseteq A$ равносильно $\forall x (x \in A \Rightarrow x \in A)$, с другой стороны утверждение $x \in A \Rightarrow x \in A$ всегда истинно, поэтому верно и $A \subseteq A$.

- 2. Очевидно из замечания
- 3. Пусть $A \subseteq B$ и $B \subseteq C$. Допустим, что $A \nsubseteq C$. Тогда $\exists x : x \in A$ и $x \notin C$. Поскольку $A \subseteq B$ и $x \in A$, то $x \in B$. С другой стороны, $B \subseteq C$ и $x \in C$. Противоречие.

Операции над множествами

- 1. Объединение: $A \cup B = \{x | x \in A \text{ или } x \in B\}$ 2. Пересечение: $A \cap B = \{x | x \in A \text{ и } x \in B\}$
- 3. Разность: $A \setminus B = \{x | x \in A \text{ и } x \notin B\}$ 4. Симметрическая разность: $A \dot{-} B = (A \setminus B \cup B \setminus A)$
- 5. Дополнение: $\bar{A} = U \setminus A = \{x | x \in U \setminus A\}$

Пустое множество (\emptyset) есть множество, не содержащее элементов, т.е. множество, которое не имеет ни одного элемента.

Замечание. Пустое множество единственно.

Доказательство. Пусть $\exists \emptyset_1, \emptyset_2$ — различные. То $\emptyset_1 \neq \emptyset_2$. По определению равенства множеств $\exists x | x \in \emptyset_1$ и $x \notin \emptyset_2$, либо $\exists x | x \notin \emptyset_1$ и $x \in \emptyset_2$. Но т. к. \emptyset_1 и \emptyset_2 не имеют элементов, то такого x не существует. Противоречие.

Замечание. ∅ является подмножеством любого множества

Доказательство. Рассмотрим некоторое множество A. По определению включение $\emptyset \subseteq A$ означает: если $x \in \emptyset \Rightarrow x \in A$. Но в \emptyset нет элементов и утверждение выполняется автоматически.

Универсум (U) — множество, содержащее все элементы.

2. Логика высказываний: таблицы истинности, понятия формулы, тождественно истинной, тождественно ложной, выполнимой и опровержимой формулы

Также, как и в арифметике, в логике высказываний есть переменные и операции, но в логике высказываний мы имеем дело с мерой истинности. Значениями переменных являются значения истинности «истина» и «ложь». Каждая переменная обозначает некоторое неизместное высказывание, предложение про которое может быть известно только является ли оно истинным, либо ложным.

Пропозициональными переменными (A,B,C,\dots) будем называть переменные принимающие свои значения из множества {«истина», «ложь»}

Логические связки — операции над пропозициональным переменными:

- 1. Дизъюнкция \vee (или) 2. Конъюнкция \wedge , & (и) 3. Импликация \rightarrow (если ..., то ...)
- 4. Отрицание \neg (не) 5. Эквиваленция \leftrightarrow (равносильно)

Значения логических связок приведены в таблицах, называемых таблицами истинности:

A	B	$A \lor B$	$A \wedge B$	$A \rightarrow B$	$\neg A$	$A \leftrightarrow B$
И	И	И	И	И	Л	И
И	Л	И	Л	Л	Л	Л
Л	И	И	Л	И	И	Л
Л	Л	Л	Л	И	И	И

Формула логики высказываний:

- 1. Атомные формулы: все пропозициональные переменные (A, B, C, \dots) являются формулами
- 2. Построение новых: если ϕ и ψ формулы, то $(\phi \lor \psi), (\phi \land \psi), (\phi \to \psi), (\neg \phi)$ формулы.
- 3. Других формул нет.

Часть формулы, которая сама является формулой называется **подформулой** данной формулы.

Формула, принмиающая значение «истина» при любых означиваниях входящих в ее состав пропозициональным переменных называется тождественно истинной формулой

Формула, принмиающая значение «ложь» при любых означиваниях входящих в ее состав пропозициональным переменных называется тождественно ложной формулой

Формула, не являющаяся тождественно ложной, называется выполнимой

Формула, не являющаяся тождественно истинной, называется опровержимой

3. Логика высказываний: таблицы истинности, понятия формулы, эквивалентности формул

Также, как и в арифметике, в логике высказываний есть переменные и операции, но в логике высказываний мы имеем дело с мерой истинности. Значениями переменных являются значения истинности «истина» и «ложь». Каждая переменная обозначает некоторое неизместное высказывание, предложение про которое может быть известно только является ли оно истинным, либо ложным.

Пропозициональными переменными (A, B, C, \dots) будем называть переменные принимающие свои значения из множества {«истина», «ложь»}

Логические связки — операции над пропозициональным переменными:

- 1. Дизъюнкция \vee (или) 2. Конъюнкция \wedge , & (и) 3. Импликация \rightarrow (если ..., то ...)
- 4. Отрицание \neg (не) 5. Эквиваленция \leftrightarrow (равносильно)

Значения логических связок приведены в таблицах, называемых таблицами истинности:

A	B	$A \lor B$	$A \wedge B$	$A \rightarrow B$	$\neg A$	$A \leftrightarrow B$
И	И	И	И	И	Л	И
И	Л	И	Л	Л	Л	Л
Л	И	И	Л	И	И	Л
Л	Л	Л	Л	И	И	И

Формула логики высказываний:

- 1. Атомные формулы: все пропозициональные переменные (A, B, C, \dots) являются формулами
- 2. Построение новых: если ϕ и ψ формулы, то $(\phi \lor \psi), (\phi \land \psi), (\phi \to \psi), (\neg \phi)$ формулы.
- 3. Других формул нет.

Двуместное отношение \sim называется **отношением эквивалентности** (на множестве A), если $\forall a,b,c \in A$ выполняется: 1. $a \sim a$ 2. $a \sim b \Rightarrow b \sim a$ 3. $(a \sim b \text{ is } b \sim c) \Rightarrow a \sim c$

Формулы ϕ и ψ называются **эквивалентными** ($\phi \sim \psi$), если они принимают одинаковые значения истинности при одинаковых значениях входящих в них пропозициональных переменных.

- 4. Выражение теоретико-множественных операций через логические связки
- 5. ДНФ, КНФ, СДНФ, СКНФ
- 6. Термы и формулы логики предикатов
- 7. Понятие алгебраической системы
- 8. Истинность формул на модели
- 9. Семантическая эквивалентность формул
- 10. Предваренная нормальная форма
- 11. Отношения и функции
- 12. Свойства бинарных отношений
- 13. Отношения эквивалентности.
- 14. Отношения порядка. Упорядоченные множества
- 15. Точная нижняя грань и точная верхняя грань. Решетки.
- 16. Определение булевой алгебры. Примеры булевых алгебр.
- 17. Свойства булевых алгебр.
- 18. Атомные и безатомные булевы алгебры
- 19. Теорема Стоуна для конечной булевой алгебры.
- 20. Равномощные множества. Теорема Кантора-Бернштейна.
- 21. Конечные и бесконечные множества. Теорема Кантора.
- 22. Счетные множества
- 23. Континуальные множества
- 24. Континуум гипотеза
- 25. Ординалы и кардиналы.
- 26. Машина Тьюринга
- 27. ЧРФ, ПРФ, ОРФ.
- 28. Канторовская нумерация.
- 29. Секвенциональное исчисление высказываний
- 30. Семантика исчисления секвенций. Теорема о корректности.
- 31. Теорема о замене в исчислении высказываний
- 32. Теорема о полноте секвенционального исчисления высказываний
- 33. Исчисление высказываний гильбертовского типа.
- 34. Гомоморфизмы, изоморфизмы.
- 35. Подмодель.
- 36. Теорема о существовании наименьшей подмодели
- 37. Теорема о модели, порожденной множеством замкнутых термов
- 38. Сохранение истинности формул на подмоделях
- 39. Отношение конгруэнции. Теорема о факторизации
- 40. Теорема о сильных эпиморфизмах
- 41. Основная теорема о гомоморфизмах

- 42. Секвенциональное исчисление предикатов
- 43. Семантика исчисления секвенций. Теорема о корректности
- 44. Теорема о замене в исчислении предикатов.
- 45. Приведение формулы к предваренной нормальной форме
- 46. Противоречивые, непротеречивые множества формул. Теории, полные теории