Отчет по лабораторной работе $N^{\circ}222$

Изучение разряда неоновой лампы

Выполнили студенты 420 группы Понур К.А., Сарафанов Ф.Г., Сидоров Д.А.

Оглавление

Bı	ведение	2
1	Исследование неоновой лампы	3
	1.1 Снятие BAX неоновой лампы	3
2	Вывод формул	5
3	Ответы на вопросы	7
	3.1 No 1	7
	3.2 No. 5	8

Введение

Целью данной работы является успешная сдача зачета по общефизу

1. Исследование неоновой лампы

1.1. Снятие ВАХ неоновой лампы

Table 1: Снятие вольт-амперной характеристики (BAX) неоновой лампы

U, B	I, мА	<i>U</i> , B	I, мА	U, B	I, MA	U, B	I, MA	U, B	I, мА
119.52	0.918	144.16	2.78	227.75	9.74	140.75	2.71	115.47	0.766
120.71	1.004	146.94	3	229.7	9.97	139.25	2.6	115.22	0.747
120.98	1.025	150.1	3.24	225.47	9.69	138.2	2.51	114.9	0.721
121.14	1.036	153.35	3.5	221.22	9.31	137.6	2.46	114.49	0.689
122.13	1.111	157.41	3.81	219.32	9.16	136.5	2.38	114.07	0.657
123.34	1.201	160.17	4.04	215.25	8.82	135.25	2.28	113.94	0.646
123.66	1.224	163.55	4.29	214	8.71	133.36	2.13	113.01	0.573
125.99	1.398	167.85	4.63	210.02	8.38	132.64	1.975	112.81	0.556
126.1	1.407	169.76	4.78	206	8.03	131.48	1.971	112.61	0.539
126.77	1.457	173.73	5.11	200.44	7.57	130.86	1.927	112.49	0.529
127.56	1.515	176.24	5.39	195.9	7.18	130.19	1.873	112.18	0.504
127.9	1.54	179.99	5.61	192.97	6.94	129.23	1.803	111.74	0.465
128.14	1.578	182.86	5.84	187.7	6.49	128.58	1.751	111.41	0.437
128.81	1.609	184.56	5.98	182.6	6.07	127.79	1.686	111.32	0.427
129.16	1.641	189.32	6.37	175.42	5.46	126.21	1.574	111.21	0.414
129.76	1.68	193.22	6.7	171.24	5.16	125.25	1.504	110.19	0.313
130.94	1.77	197.42	7.06	167.3	4.8	124.55	1.449	109.78	0.241
131.74	1.828	200.28	7.3	164.43	4.57	122.82	1.32		
131.93	1.841	203.9	7.61	161.8	4.31	121.42	1.217		
132.4	1.874	209.75	8.09	157.21	4	121.09	1.191		
132.7	1.898	214.4	8.52	154.05	3.75	120.7	1.162		
135.88	2.15	216.72	8.72	149.94	3.42	119.7	1.086		
136.89	2.23	218.18	8.87	145.66	3.09	118.9	1.027		
138.14	2.33	222.76	9.28	144.2	2.87	117.22	0.946		
141.97	2.62	226.52	9.62	142.2	2.82	116.33	0.834		

Figure 1: Ход вольт-амперной характеристики неоновой лампы

Идеальная ВАХ системы из последовательно соединенных неоновой лампы и резистора

$$I = \frac{U - U_0}{R_0},\tag{1}$$

где по результатам аппроксимации с помощью MATLAB найдены коэффициенты

$$U_0 = (107 \pm 1) \text{ B} \tag{2}$$

$$R_0 = (12.36 \pm 0.09) \text{ кОм}$$
 (3)

2. Вывод формул

Рассчитаем период колебаний генератора, схема которого представлена на рисунке.

$$\frac{\mathrm{d}U}{\mathrm{d}t} + I(V) = \frac{\mathcal{E} - U}{R}$$
, где I(U)- ток в лампе (4)

Фёдор, как вставлять рисунки?

Рассмотрим стационарный режим (напряжение U на конденсаторе постоянно). Сила тока в таком случае определяется уравнением

$$I_{\rm cr} = \frac{\mathcal{E} - U}{R} \tag{5}$$

Стационарный режим работы схемы определяется путём совместного решения уравнения (5) и уравнения I = I(U), описывающего ВАХ лампы. Очевидно, что точка пересечения существует не при всех R. Случай, когда

$$R = R_{\mathrm{\kappa p}} = \frac{\mathcal{E} - U}{I_{\scriptscriptstyle \Gamma}}$$

является критическим, при дальнейшем увеличении сопротивления R стационарный режим оказывается невозможным. Именно в этом случае ($R>R_{\rm kp}$) в системе устанавливаются колебания.

Рассмотрим, как происходит колебательный процесс. Пусть вначале конденсатор не заряжен. При включении схемы он начнет заряжаться через сопротивление R, напряжение U при этом будет увеличиваться. Как только оно достигнет напряжения зажигания U_3 , газ в лампе начнет проводить ток, причем прохождение тока через лампу сопровождается разрядкой конденсатора. Действительно, нагрузочная прямая в этом случае не пересекается с характеристикой лампы, и значит, батарея \mathcal{E} , включенная через сопротивление R, не может поддерживать необходимую для горения лампы величину тока. Пока лампа горит, конденсатор разряжается, и напряжение на нем падает. Когда оно достигнет напряжения гашения $U_{\rm r}$, лампа перестанет проводить ток, и конденсатор вновь начнет заряжаться. Очевидно, амплитуда колебаний равна $U_3 - U_{\rm r}$. Как ясно из предыдущего, условие возникновения колебаний имеет вид

$$R > R_{\mathrm{\kappa p}} = \frac{\mathcal{E} - U}{I_{\scriptscriptstyle \Gamma}}$$

Вычеслим период колебаний. Полное время одного колебания Т будет складываться из времени зарядки τ_1 и времени зарядки τ_2 . Во время зарядки конденсатора лампа не горит (и врут календари), ток через нее I(V) = 0, и уравнение (5) принимает вид

$$RC\frac{\mathrm{d}U}{\mathrm{d}t} = \mathcal{E} - U \tag{6}$$

Если отсчитывать время от момента гашения лампы, то

$$U(t=0) = U_{\rm r},$$

и уравнение (5) имеет решение

$$U(t) = \mathcal{E} - (\mathcal{E} - U_{\rm r}) \exp\left[-\frac{t}{RC}\right]$$
 (7)

Отсюда получаем время зарядки

$$\tau_1 = RC \cdot \ln \frac{\mathcal{E} - U_{\rm r}}{\mathcal{E} - U_{\rm s}} \tag{8}$$

Мы будем представлять ВАХ лампы в виде:

$$I(U) = \frac{U - U_0}{R_0}$$

При этом уравнение (4) примет вид

$$C\frac{\mathrm{d}U}{\mathrm{d}t} + \frac{U - U_0}{R_0} = \frac{\mathcal{E} - U}{R} \tag{9}$$

Переобозначим

$$\frac{1}{\rho} = \frac{1}{R} + \frac{1}{R_0} \tag{10}$$

С учётом (10) получим

$$C\frac{\mathrm{d}U}{\mathrm{d}t} + U\left(\frac{1}{R} + \frac{1}{R_0}\right) = \left(\frac{\mathcal{E}}{R} + \frac{U_0}{R_0}\right) \tag{11}$$

$$\rho C \frac{\mathrm{d}U}{\mathrm{d}t} + U = \rho \left(\frac{\mathcal{E}}{R} + \frac{U_0}{R_0} \right) \tag{12}$$

Будем полагать, что при t=0 напряжение $U=U_3$.

Решая линейное неоднородное дифференциальное уравнение (12), получаем:

$$U(t) = \rho \left(\frac{\mathcal{E}}{R} + \frac{U_0}{R_0}\right) + \left[U_3 - \rho \left(\frac{\mathcal{E}}{R} + \frac{U_0}{R_0}\right)\right] \exp\left(-\frac{t}{\rho C}\right)$$
(13)

За время $t= au_2$ напряжение упадет до $U_{\mathbf{r}}$:

$$U_{\rm r} = \rho \left(\frac{\mathcal{E}}{R} + \frac{U_0}{R_0} \right) + \left[U_3 - \rho \left(\frac{\mathcal{E}}{R} + \frac{U_0}{R_0} \right) \right] \exp \left(-\frac{\tau_2}{\rho C} \right) \tag{14}$$

И, окончательно, это нам даст время разрядки

$$\tau_2 = \rho C \ln \frac{(U_3 - U_0)R + (U_3)}{(U_r - U_0)R + (U_r)}$$
(15)

Таким образом, мы, зная из уравнений (8) и (15) соответственно τ_1 и τ_2 , сможем найти период колебаний

$$T = \tau_1 + \tau_2$$

3. Ответы на вопросы

3.1. №1

Механизм зажигания самостоятельного разряда состоит в том, что при достаточно большой напряженности электрического поля электрон на длине свободного пробега приобретает энергию, достаточную для ионизации нейтрального атома. В результате соударения электрона с атомом, которое в этом случае становится неупругим, возникает положительный ион и еще один, вторичный, электрон. Уже два электрона устремляются к аноду, ионизируя на пути встречные атомы. Таким образом, возникает лавина электронов, двигающихся к аноду. Но сама по себе объемная ионизация электронами еще недостаточна для поддержания самостоятельного разряда. Необходим также механизм, обеспечивающий возникновение первичных электронов в области около катода, т.е. в начале их пути к аноду.

Положительные ионы разгоняются по пути к катоду. Имея большую массу, они не могут ионизовать атомы, но способны, однако, выбивать электроны из металлического катода. Эти электроны становятся первичными для новых лавин, что и обеспечивает самостоятельность разряда.

3.2. №5

Figure 2: Схемы

В первой схеме амперметр показывает значение тока, равное $I_a=I_1+I_2$. Поскольку нам нужен только ток I_2 , то ток I_1 и будет вносить погрешность в измерение.

$$\delta I = \frac{I_1}{I_2} = \frac{R_2}{R_1}.$$

Подставляя известные значения сопротивлений, получаем:

$$\delta I = \frac{10 \cdot 10^3 \cdot O_{\rm M}}{10 \cdot {\rm MO_{\rm M}}} = 10^{-3}$$

Рассмотрим вторую схему. В этом случае вольтметр показывает не напряжение на лампе, а $U=U_a+U_{Ne}.$

То есть

$$\delta U = \frac{U_a}{U_{Ne}} = \frac{R_a}{R_{Ne}} = 10^{-3}$$