<u>Université Hassan II- Mohammedia</u> Faculté des Sciences et Techniques

Département de Mathématiques Option :MIP

 $AU:2013/2014 \ Module:M311$

Premier partiel 2103 : durée 1H 30

Exercice 0.0.1

Soit $f: B \to \mathbb{R}$ définie par $f(x,y) = \sqrt{x^2 + y^2} + y^2 - 1$ où

$$B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 9\}.$$

1. Montrer que f n'a pas de points critiques (stationnaires) dans l'ouvert

$$U = \{(x, y) \in \mathbb{R}^2 : 0 < x^2 + y^2 < 9\}.$$

(2 pts)

- 2. Etablir que l'origine O(0,0) est un minimum global.
- (1 pts)
- 3. Etudier les variations de f sur le cercle $C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 9\}$. (2 pts)

Exercice 0.0.2

Soit f une fonction de deux variables de classe C^1 sur $(\mathbb{R}^*)^2$ vérifiant l'équation aux dérivées partielles :

$$(E): \frac{1}{x} \cdot \frac{\partial f}{\partial x}(x,y) + \frac{1}{y} \cdot \frac{\partial f}{\partial y}(x,y) = \frac{f(x,y)}{(x^2 + y^2)^2}.$$

Soit $f(x,y) = h(x^2 + y^2)$ où h est une fonction d'une seule variable de classe C^1 .

- 1. Calculer les dérivées partielles premières et secondes de f en fonction de celles de h. (2 pts)
- 2. Donner une équation aux dérivées partielles (E') vérifiée par h. (1 pts)
- 3. Résoudre (E') puis déterminer toutes les fonctions f solutions de (E). (2 pts)

Exercice 0.0.3

soit f la fonction définie par :

$$\begin{cases} f(x,y) = xy \sin\left(\frac{1}{y}\right), & si \ y \neq 0 \\ f(x,0) = 0 & pour \ tout \ x \in \mathbb{R} \end{cases}$$

- 1. Donner D_f le domaine de définition de f et montrer que f est continue sur D_f . (0.5++0.5+1 pts)
- 2. Calculer les dérivées partielles premières par rapport à x et par rapport à y en tout point (x,y) de \mathbb{R}^2 tel que $y \neq 0$, et en (0,0). (1+1 pts)

3. Etudier la continuité des fonctions dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sur \mathbb{R}^2 (on peut considérer les suites $(x_n, y_n) = (\frac{1}{2n\pi}, \frac{1}{2n\pi})$). (1+1 pts)

Exercice 0.0.4

Soit f la fonction définie sur \mathbb{R}^2 par : $f(x,y) = x \cdot \ln(1+y^2) - ye^x$.

- 1. Donner le développement limité à l'ordre 2 de f en (1,0). (2 pts)
- 2. Soit l'équation $x \cdot \ln(1+y^2) ye^x = 0$.
 - (a) Montrer que cette équation définit implicitement $y = \phi(x)$ en fonction de x au voisinage de (1,0).
 - (b) Calculer $\phi'(x)$ au viosinage de 1. (1 pts)

Groupe: M.HARFAOUI- S. SAJID

<u>Université Hassan II- Mohammedia</u> Faculté des Sciences et Techniques

Département de Mathématiques Option :MIP $AU:2013/2014 \ Module:M311$

Partiel 2 : durée 1H 30 Session :Juin 2014

NB.

Il sera tenu compte de la **clarté** des réponses, de la **rigueur** du raisonement et du **soin** apporté à la copie.

1.5 points du barème seront affectés à la rédaction.

Exercice 0.0.5

On considère la fonction

$$f(x,y) = \begin{cases} \frac{1}{2} xy \ln(x^2 + y^2) & si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$

- 1) Déterminer les points critiques de f. (2 points)
- 2) Etudier les extremums de f.(2 points)

Exercice 2

On considère la forme différentielle ω définie sur $D=(R^{*+})^2$ par $\omega(x,y)=\frac{y^2dx+x^2dy}{xy^2+yx^2}$

- 1) Montrer que ω est fermée sur D (1 points)
- 2) ω est-elle exacte? Justifier votre réponse. (1.5 points)
- 3) Calculer $\int_C \omega$, où C est une courbe fermée de D. (1.5 points)

Exercice 0.0.6 On considère le domaine D de R^2 délimité par $C_1 : y = |x|$ et C_2

le cercle de centre (0,0) et de rayon R.

Soit ω la forme différentielle définie par $\omega(x,y) = -ydx + xdy$

- 1. Traçer graphiquement D en précisant les **sommets** et leurs **coordonnées**. (1.5 points)
- 2. Calculer la surface de D. (1 points)
- 3. Soit ∂D^+ le bord de D orienté positivement. Calculer l'intégrale $I = \int_{\partial D^+} \omega$
 - (a) Directement. (1.5 points)
 - (b) En utilisant la formule de Green-Reimann. (1.5 points)

Exercice 0.0.7 Soit
$$S_1$$
 et S_2 les deux surfaces définies par
$$S_1: \left\{ \begin{array}{l} x^2+y^2=z^2 \\ \frac{1}{2} \leq z \leq 1 \end{array} \right. \text{ et } S_2: \left\{ \begin{array}{l} x^2+y^2=1 \\ 1 \leq z \leq 2 \end{array} \right.$$

- 1. Vérifier que le volume de Ω limité par les deux surfaces est $V = \frac{31}{24}\pi$. points)
- 2. Calculer $\iiint_{\Omega} (z^2 + 1) dx dy dz$. (On pourra fixer z dans deux intérvalles que (3 points)