Discrete Optimization

Constraint Programming: Part VII

- Cars on an assembly line
- Cars require specific options
 - -leather seats, moonroof
- Capacity constraints on the production units
 - at most 2 out of 5 successive cars can require a moonroof
- Sequence all the cars such that the capacity constraints are satisfied

上面的是每种type 的生产所需的option和所需要生产的数量,下面是一个满足capacity constraint要求的调度顺序

Options	1	2	3	4	5	Demand
Class 1	yes		yes	yes		1
Class 2				yes		1
Class 3		yes			yes	2
Class 4		yes		yes		2
Class 5	yes		yes			2
Class 6	yes	yes				2
Capacity	1/2	2/3	1/3	2/5	1/5	

```
line[s] denotes the
range Slots = ...;
                                               type of car sequenced
range Configs = ...; 上面的
                                                      on slot s
range Options = ...;
int demand[Configs] = ...;
                                                        setup[o,s]=1
int nbCars = sum(c in Configs) demara[c]
int lb[Options] = ...;
                                                     if slot[s] has a car
int ub[Options] = ...;
                                                      requiring option o
int requires[Options,Config] =
var{int} line[Slots] in Configs;
var{int} setup[Options,Slots] in 0..1;
                                                         demand
                                                        constraints
solve {
   forall(c in Configs)
      sum(s in Slots) (line[s] = c) = demand[c];
                                                     defines the setup
   forall(s in Slots, o in Options)
                                                         variables
      setup[o,s] = requires[o,line[s]];
   forall(o in Options, s in 1..nbCars-ub[o]+1)
      sum(j in s..s+ub[o]-1) setup[o,s] <= lb[o];
                                                            capacity
                                                          constraints
```

Slots	1	2	3	4	5	6	7	8	9	10	Demand
Class 1											1
Class 2											1
Class 3											2
Class 4											2
Class 5											2
Class 6											2

Options	1	2	3	4	5	Demand
Class 1	yes		yes	yes		1
Class 2				yes		1
Class 3		yes			yes	2
Class 4		yes		yes		2
Class 5	yes		yes			2
Class 6	yes	yes				2
Capacity	1/2	2/3	1/3	2/5	1/5	


```
range Slots = ...;
range Configs = ...;
range Options = ...;
int demand[Configs] = ...;
int lb[Options] = ...;
int ub[Options] = ...;
int requires[Options, Config] = ...;
var{int} line[Slots] in Configs;
var{int} setup[Options,Slots] in 0..1;
solve {
   forall(c in Configs)
      sum(s in Slots) (line[s] = c) = demand[c];
   forall(s in Slots, o in Options)
     setup[o,s] = requires[o,line[s]];
   forall(o in Options, s in 1..nbCars-ub[o]+1)
     sum(j in s..s+ub[o]-1) setup[o,s] <= lb[o];</pre>
```

Setup	1	2	3	4	5	6	7	8	9	10	Capacity
Option 1											1/2
Option 2											2/3
Option 3											1/3
Option 4											2/5
Option 5											1/5

Options	1	2	3	4	5	Demand
Options			J	4	5	Demanu
Class 1	yes		yes	yes		1
Class 2				yes		1
Class 3		yes			yes	2
Class 4		yes	-	yes		2
Class 5	yes		yes			2
Class 6	yes	yes	 			2
Capacity	1/2	2/3	1/3	2/5	1/5	

Slots	1	2	3	4	5	6	7	8	9	10	Demand
Class 1		*								K	1
Class 2											1
Class 3											2
Class 4											2
Class 5			K								2
Class 6											2

Car Sequencing: Redundant Constraints

- ► Consider an option *o* with
 - -Capacity: 2 out of 3
 - Demand: 12 cars

- ► How many cars with option o can be in the last 3 slots?
- ► How many cars with option o must be in these slots?

Car Sequencing: Redundant Constraints

```
range Slots = ...;
range Configs = ...;
range Options = ...;
int demand[Configs] = ...;
int lb[Options] = ...;
int ub[Options] = ...;
int requires[Options, Config] = ...;
var{int} line[Cars] in Configs;
var{int} setup[Options,Slots] in 0..1;
solve {
   forall(c in Configs)
      sum(s in Slots) (line[s] = c) = demand[c];
   forall(s in Slots, o in Options)
      setup[o,s] = requires[o,line[s]];
   forall(o in Options, s in 1..nbCars-ub[o]+1)
      sum(j in s..s+ub[o]-1) setup[o,s] <= lb[o];
  forall(o in Options, i in 1..demand[o])
      sum(s in 1..nbCars-i*ub[o]) setup[o,s] >= demand[o] - i*lb[o];
```

Setup	1	2	3	4	5	6	7	8	9	10	Capacity
Option 1											1/2
Option 2											2/3
Option 3											1/3
Option 4											2/5
Option 5											1/5

_	Options	1	2	3	4	5	Demand
	Class 1	yes		yes	yes		1
	Class 2				yes		1
	Class 3		yes			yes	2
	Class 4		yes		yes		2
	Class 5	yes		yes			2
	Class 6	yes	yes				2
	Capacity	1/2	2/3	1/3	2/5	1/5	

Slots	1	2	3	4	5	6	7	8	9	10	Demand
Class 1											1
Class 2											1
Class 3											2
Class 4											2
Class 5											2
Class 6											2

Options	1	2	3	4	5	Demand
Class 1	yes		yes	yes		1
Class 2				yes		1
Class 3		yes			yes	2
Class 4		yes		yes		2
Class 5	yes		yes			2
Class 6	yes	yes				2
Capacity	1/2	2/3	1/3	2/5	1/5	-

option 2: 6 cars

Setup	1	2	2	4	5	< ⁶ 7	7	8	9	10	Capacity
Option 1											1/2
Option 2											2/3
Option 3											1/3
Option 4				> 4							2/5
Option 5											1/5

Options	1	2	3	4	5	Demand
Class 1	yes		yes	yes		1
Class 2		- -		yes		1
Class 3		yes			yes	2
Class 4		yes		yes		2
Class 5	yes		yes			2
Class 6	yes	yes				2
Capacity	1/2	2/3	1/3	2/5	1/5	

Options	1	2	3	4	5	Demand
Class 1	yes		yes	yes		1
Class 2				yes		1
Class 3		yes			yes	2
Class 4		yes		yes		2
Class 5	yes		yes			2
Class 6	yes	yes				2
Capacity	1/2	2/3	1/3	2/5	1/5	

Slots	1	2	3	4	5	6	7	8	9	10	Demand
Class 1											1
Class 2											1
Class 3											2
Class 4											2
Class 5											2
Class 6											2

Options	1	2	3	4	5	Demand
Class 1	yes		yes	yes		1
Class 2				yes		1
Class 3		yes			yes	2
Class 4		yes		yes		2
Class 5	yes		yes			2
Class 6	yes	yes				2
Capacity	1/2	2/3	1/3	2/5	1/5	

Setup	1	2	3	4	5	6	7	8	9	10	Capacity
Option 1				*		N N N N N N N N N N N N N N N N N N N					1/2
Option 2											2/3
Option 3											1/3
Option 4											2/5
Option 5											1/5

Improving Communication

Constraint Store

Improving Communication

Constraint Store

Improving Communication

Constraint Store

Improving Communication: Surrogate Constraint

Improving Communication: Implied Constraint

21

Dual Modeling

- Sometimes there are multiple ways of modeling a problem
 - not the same decision variables
- The two models may have complementary strengths
 - -hard to choose between them
 - some constraints are easier to express in one model and others in the other one
- Dual modeling
 - the idea of stating multiple models of a problem and linking them with constraints

Back to the 8-Queens Problem

- What are the decision variables?
 - many possible modelings
 - this is what makes optimization problems interesting :-)
- Here is one modeling
 - associate a decision variable with each column
 - the variable denotes the row of the queens placed in this column
- What are the constraints?
 - the queens cannot be placed on the same row
 - the queens cannot be placed on the same upward diagonal
 - the queens cannot be placed on the same downward diagonal

Back to the 8-Queens Problem

- What are the decision variables?
 - many possible modelings
 - this is what makes optimization problems interesting :-)
- Here is another modeling
 - associate a decision variable with each row
 - the variable denotes the column of the queens placed in this row
- What are the constraints?
 - the queens cannot be placed on the same row
 - the queens cannot be placed on the same upward diagonal
 - the queens cannot be placed on the same downward diagonal

The 8-Queens Problem with Dual Modeling

```
range R = 1..8;
range C = 1..8;
var{int} row[C] in R;
var{int} col[R] in C
solve {
   forall(i in R, j in R: i < j) {
      row[i] ≠ row[j];
      row[i] \neq row[j] + (j - i);
      row[i] \neq row[j] - (j - i);
   forall(i in C, j in C: i < j) {
      col[i] \neq col[j];
      col[i] \neq col[j] + (j - i);
      col[i] \neq col[j] - (j - i);
  forall(r in R,c in C)
      (row[c] = r) \iff (col[r] = c);
```

connecting the two constraints

Citations

Wolfsburg - Volkswagen Assembly Line (http://www.flickr.com/photos/24736216@N07/2994043188/) by Roger Wollstadt (http://www.flickr.com/photos/24736216@N07/) CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0/deed.en)

Geely assembly line in Beilun, Ningbo (http://commons.wikimedia.org/wiki/File:Geely_assembly_line_in_Beilun,_Ningbo.JPG) by Siyuwj (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons