lytische Funktion f definiert man das Residuum im Punkt a als

Theorem 1 (Residuum). Für eine in einer punktierten Kreisscheibe $D \setminus \{a\}$ ana-

$$\operatorname{Res}_{z=a} f(z) = \operatorname{Res}_{a} f = \frac{1}{2\pi i} \int_{C} f(z) dz,$$

wobei $C \subset D \setminus \{a\}$ ein geschlossener Weg mit n(C, a) = 1 ist (z. B. ein entgegen dem Uhrzeigersinn durchlaufener Kreis).

AΛΔ∇ΒCDΣΕΓΓGΗΙΙΚLΜΝΟΘΩΡΦΠΞΩRSTUVWXYYΨZ ABCDabcd1234

AΛΔ
$$V$$
BCD Σ EFI GHIJK L MNO Θ UP Φ I Ξ QRST $UVWXYYYZ$ ABCD a bcd1234 a α b β c ∂ d δ e εε f ζ ξ g γh ħ $\iota i j$ k k l $\ell \lambda$ mn $\eta \theta$ θο σ ζ ϕ φ ρ ρρ ϱ q r s t τ π ι μ v v v w ω ω

 $\sum \int \prod \int \sum \sum_{a}^{b} \int_{a}^{b} \prod_{a}^{b} \sum_{a}^{b} \int \prod_{a}^{b} \prod_{a}^{b}$ $xyz\infty \propto \emptyset y = f(x)$