

Deutsche Kl.:

42 i, **12/05** 42 i, 17/02

(1)	Offenlegungsschrift		2 064 292	
3 3		Aktenzeichen: Anmeldetag:	P 20 64 292.6 29. Dezember 1970	
43	÷	Offenlegungstag:	13. Juli 1972	
	Ausstellungspriorität:	_		
30	Unionspriorität			
2	Datum:			
33	Land:			
39	Aktenzeichen:			
6 4	Bezeichnung:	Strahlungswärmeflußmesser		
6 1	Zusatz zu:	_	•	
@	Ausscheidung aus:			
70	Anmelder:	Showa Denko K. K., Tokio		
	Vertreter gem. § 16 PatG:	Zumstein sen., F., Dr.; Assm Holzbauer, R., DiplPhys.; 2 Patentanwälte, 8000 Münche		
@	Als Erfinder benannt:	Sumikama, Sadao, Yokoham	aa (Japan)	

ORIGINAL INSPECTED

Dr. F. Zumstein sen. Dr. E. Assmann

Dr. R. Koepigsberger - Dipi.-Phys. R. Holzbay - Dr. F. Zumstein Jun.

2064292

8 MÜNCHEN 2, BRÄUHAUSSTRASSE 4/III

TELEFON: SAMMEL-NR. 225341
TELEX 529979
TELEGRAMME: ZUMPAT
POSTSCHECKKONTO: MÜNCHEN 91139
BANKKONTO:
BANKHAUS H. AUFHÄUSER
A / T. 4

4/Li Case 45533-3

SHOWA DENKO K.K., Tokyo/Japan

Strahlungswärmeflußmesser

Die Erfindung betrifft einen Strahlungswärmeflußmesser, der sich zum genauen Messen der wechselseitigen Abgabe und Aufnahme von Strahlungswärme zwischen den Oberflächen von verschiedenen Körpern eignet.

Bei einer Vielzahl von chemischen, mechanischen oder Bauvorrichtungen, die bei relativ hohen Temperaturen verwendet werden, wie z.B. Elektroöfen oder elektrolytischen Zellen, ist
es von äußerster Wichtigkeit bei der Konstruktion und beim
Betrieb, die wechselseitige Abgabe und Aufnahme von Strahlungsenergie zwischen den Oberflächen der verschiedenen Körper mit verschiedenen Temperaturen genau zu erfassen.

Tatsächlich war es bei den herkömmlichen Strahlungswärmeflußmessern üblich, einfach die einfallende Strahlungswärme oder die von einer gegebenen Oberfläche abgegebene Strahlungswärme zu messen. Wie oben beschrieben, war es jedoch nicht üblich, die wechselseitige Abgabe und Aufnahme von Strahlungswärme zwischen den Oberflächen von verschiedenen Körpern, die verschiedene Temperaturen haben, mit hoher Genauigkeit zu messen.

Demgemäß ist es Ziel der Erfindung, diese Nachteile zu überwinden und einen verbesserten Strahlungswärmeflußmesser zu schaffen, der die wechselseitige Abgabe und Aufnahme von Strahlungswärme zwischen den Oberflächen von verschiedenen Körpern mit Genauigkeit messen kann. Dieser Typ umfaßt eine dünne Platte mit guter Wärmeleitfähigkeit, Platten mit hohem Wärmewiderstand, die an zwei Oberflächen dieser dünnen Platte angebracht sind, wenigstens ein Paar von wechselseitig miteinander verbundenen temperaturmessenden Körpern, die an den Oberflächen dieser Platten mit hohem Wärmewiderstand angebracht sind, schwarze Platten mit hohem Wärmewiderstand, die in Berührung mit diesen die Temperatur messenden Körpern vorgesehen sind, und transparente, dünne Platten, um diese schwarzen Platten so zu bedecken, daß sie eine Luftschicht auf der Außenseite dieser schwarzen Platten bilden.

Da der erfindungsgemäße Strahlungswärmeflußmesser ausgezeichnete Eigenschaften im Vergleich mit den bekannten besitzt, kann er sehr großen Nutzen auf dem Gebiet der Chemie, Mechanik, des Baus und auf vielen anderen Gebieten bringen.

Im folgenden soll die Erfindung in einer beispielsweisen Ausführungsform anhand der beigefügten Zeichnung näher erläutert werden.

- Fig. 1 ist eine erläuternde schematische Darstellung des Grundprinzips der Erfindung.
- Fig. 2 ist eine Vorderansicht, teilweise im Schnitt, die einen erfindungsgemäßen Strahlungswärmeflußmesser darstellt.

Fig. 3 ist eine Seitenansicht der Fig. 2, teilweise im Schnitt.

<u>Fig. 4</u> ist eine erläuternde schematische Darstellung, die die Schaltung des in den Fig. 2 und 3 gezeigten Strahlungswärmeflußmessers zeigt.

<u>Fig. 5</u> zeigt die Anordnung der Strahlungsquellen und des Strahlungswärmeflußmessers beim Messen der Strahlungswärme mit Hilfe eines erfindungsgemäßen Strahlungswärmeflußmessers.

Fig. 6 zeigt im Diagramm die Ergebnisse der Strahlungswärmemessungen, die mit einer Anordnung gemäß Fig. 5 durchgeführt wurden.

Mit Bezug auf Fig. 1 wird nun eine detaillierte Beschreibung des Grundprinzips der Erfindung gegeben, wodurch ein besseres Verständnis des erfindungsgemäßen Strahlungswärmeflußmessers gefördert wird.

Es wird angenommen, daß eine Platte C mit einem Reflektionsfaktor von angenähert 100%, mit einer hohen Wärmeleitfähigkeit und emittierenden Teilen E,E an beiden Enden zwischen zwei sich gegenüberstehende Oberflächen mit den absoluten Temperaturen To und T1 (°K) gebracht wird. Es wird weiter angenommen, daß dünne Platten R mit hohem Wärmewiderstand, jede mit einer schwarzen Oberfläche,an beiden Seiten der Platte C angebracht sind, wie in Fig. 1 gezeigt ist. Dann ist die Temperatur der Platte C im wesentlichen gleich der Zimmertemperatur (Lufttemperatur) TR. Strahlungswärme, die von den Oberflächen A bzw. B emittiert wird, dringt in die schwarzen Oberflächen S0 und S1 der Platte R ein, tritt als abgegebene Wärme durch die Platten R und C und wird durch Konvektionswärmetransport von den emittierenden Teilen E,E in die umgebende Atmosphäre abgegeben.

Daher werden die Temperaturen der schwarzen Oberflächen S $_0$ und S $_1$ um Δ T $_0$ und Δ T $_1$ im Vergleich zur Zimmertemperatur T $_R$ er-

höht, entsprechend dem Wärmefluß in diesem speziellen Moment. Es kann jedoch angenommen werden, daß die Temperaturzunahmen ΔT_0 , ΔT_1 im Vergleich zu den Temperaturen T_0 , T_1 , T_R vernachlässigbar klein sind, wenn die Dicke jeder Platte mit hohem Wärmewiderstand ausreichend klein ist.

Wir mit \mathcal{Q}_0 die Strahlungswärme bezeichnet, die von der Einheitsfläche der Oberfläche A zu der der Platte C emittiert wird, und mit \mathcal{Q}_1 die Strahlungswärme, die von der Einheitsfläche der Oberfläche B zu der Platte \mathcal{C}_1 emittiert wird, und wird mit \mathcal{E}_0 und \mathcal{E}_1 das Emissionsvermögen von den Oberflächen A bzw. B bezeichnet, dann ist \mathcal{Q}_0 und \mathcal{Q}_1 gegeben durch

$$Q_{O} = E_{O} \delta \{ T_{O}^{4} - (T_{R} + \Delta T_{O})^{4} \}$$

$$= E_{O} \delta \{ T_{O}^{4} - T_{R}^{4} \} = K_{O} \Delta T_{O} \qquad (1)$$

$$Q_{1} = E_{1} \delta \{ T_{1}^{4} - (T_{R} + \Delta T_{1})^{4} \}$$

$$= E_{1} \delta \{ T_{1}^{4} - T_{R}^{4} \} = K_{1} \Delta T_{1} \qquad (2)$$

wobei mit $\mathcal S$ die Stefan-Boltzmann-Konstante und mit K_0 und K_1 die Strahlungskoeffizienten bezeichnet sind. Wenn beide Platten R mit hohem Wärmewiderstand dieselbe Dicke und dasselbe Material haben, dann ist $K_0=K_1=K$.

Deshalb gilt
$$Q_1 - Q_0 = K(\Delta T_1 - \Delta T_0)$$
 (3)

Es ist zu bemerken, daß die stationäre Luftschicht, die durch einen transparenten dünnen Film abgetrennt ist, in Fig. 1 gestrichelt eingezeichnet ist. Diese Luftschicht dient dazu, die Wärmezerstreuung, die durch Wärmetransport durch Konvektion von den schwarzen Oberflächen So und So verursacht wird, auf ein im wesentlichen vernachlässigbares Maß zu verringern.

Aus den drei obigen Gleichungen ist klar, daß, wenn die Temperaturdifferenz zwischen den zwei schwarzen Oberflächen S_0 und S_1 gemessen wird, in dem ein oder mehrere Paare von temperaturmessenden Körpern, wie z.B. in Reihe geschaltete differentielle Thermoelemente, auf den zwei schwarzen Oberflächen S_0 und S_1 der Platten R mit hohem Wärmewiderstand angeordnet werden, die Menge $Q(=Q_1-Q_0)$ der Strahlungswärme, die zwischen diesen zwei Oberflächen A und B tatsächlich abgegeben und aufgenommen wird, dem gemessenen Wert der oben genannten Temperaturdifferenz proportional ist.

Mit Bezug auf die Zeichnungen wird ein Strahlungswärmeflußmesser beschrieben, der gemäß dem Grundprinzip der Erfindung hergestellt ist. In den Fig. 2 und 3 wird mit 1 ein Substrat mit guter Wärmeleitfähigkeit bezeichnet. Eine Vielzahl von Flossen 2 sind am Umfang dieses Substrats vorgesehen. Platten 3,3 mit hohem Wärmewiderstand, jede mit einer schwarzen Oberfläche, sind an den zwei Flächen des Substrates 1 angebracht. Eines oder mehrere Paare von dünnen differentiellen Thermoelementen 4, die miteinander verbunden sind, sind auf den Oberflächen der Platten 3,3 mit hohem Wärmewiderstand angeordnet, so daß die Temperaturdifferenz zwischen den Oberflächen der zwei Platten mit hohem Wärmewiderstand, die an den zwei Oberflächen des Substrates 1 angebracht sind, durch diese Thermoelemente gemessen werden kann. Das in Fig. 2 gezeigte Thermoelement ist aus Constantan und Kupfer (durch die schrägen Linien in der Figur gezeigt) hergestellt und als dünner Film durch Vakuumverdampfen gebildet. obwohl die bekannten Materialien nun erhältlich sind. Mit 5 sind schwarze Platten mit hohem Wärmewiderstand bezeichnet, die in Berührung mit den Thermoelementen 4 angebracht sind. Z.B. ist eine dünne Platte, die mit einem im Vakuum aufgebrachten: Kohlenstoffilm beschichtet ist, gut als schwarze Platte 5 mit hohem Wärmewiderstand geeignet. Diese schwarzen Platten sind mit transparenten, dünnen Platten 6 bzw. 6a beschichtet, so daß zwei stationäre Luftschichten 7 bzw. 7a an der Außenseite der schwarzen Platten 5 gebildet werden. Z.B. transparente, dünne Quarzplatten, jede etwa 10 Mikron dick, sind praktisch gut als transparente, dünne Platten 6 und 6a zu verwenden. Diese transparenten, dünnen Platten 6 und 6a sind vorzugsweise so gebaut, daß
sie leicht durch neue ersetzt werden können, wenn sie fleckig
werden. Es ist zu bemerken, daß die stationären Luftschichten
7 und 7a dazu dienen, das Abgeben von Strahlungswärme von den
schwarzen Platten mit hohem Wärmewiderstand zu verhindern. Mit
8 ist ein Leitungsdraht der differentiellen Thermoelemente bezeichnet, der mit einem Mikrovoltmeter verbunden ist, wie unten
beschrieben wird.

Fig. 4 zeigt einen Schaltplan der differentiellen Thermoelemente. Verbindungen 9 und 9a des Thermoelementes 4 sind jeweils an den Oberflächen der Platten 3,3 mit hohem Wärmewiderstand angebracht, so daß die Temperaturdifferenz zwischen den Oberflächen dieser Platten 3,3 aus der thermoelektrischen Kraft erhalten werden kann, die durch das Mikrovoltmeter 10 gemessen werden kann. In den Fig. 2,3 und 4 sind gleiche Teile mit gleichen Bezugszeichen bezeichnet.

Es soll bemerkt werden, daß nicht nur das oben erwähnte Thermoelement, sondern auch eine Widerstandsbrücke oder ähnliches zum Messen der Temperaturdifferenz zwischen den Oberflächen der Platten mit hohem Wärmewiderstand verwendet werden kann.

Wenn es erforderlich ist, kann eine Einrichtung zum Kühlen des Substrats 1 mit hoher Wärmeleitfähigkeit verwendet werden, um ein Überhitzen des Meßinstruments selbst zu vermeiden. Strahlungs-rippen oder ein Kühlmittel oder beides können ebenfalls als Kühleinrichtung verwendet werden.

Beispiel.

Es werden nun Messungen beschrieben, die mit dem erfindungsgemäßen Strahlungswärmeflußmeter durchgeführt wurden. Quellen H und Ha für schwarze Hohlraumstrahlung wurden, wie in Fig. 5 gezeigt, angeordnet. Ein Strahlungswärmeflußmesser M vom Typ mit differentiellem Thermoelement gemäß der Erfindung wurde zwischen diese zwei Strahlungsquellen gebracht. In diesem Flußmesser ist das Substrat 1 eine Silberplatte mit einer Dicke von 0,1 mm und einem Durchmesser von 40 mm; die Platten 3,3 mit hohem thermischen Widerstand sind Glimmerplatten, von denen jede eine Dicke von 80 Mikron und einen Durchmesser von 40 mm hat; die Thermoelemente sind aus Constantan und Kupfer hergestellt.

Durch Verändern der Temperaturen T_0 und T_1 der Strahlungsquellen H bzw. Ha wurden Messungen durchgeführt, um die Beziehung zwischen Q und mV zu untersuchen, wobei $Q = Q_1 - Q_0$ ist (W/m^2) , d.h. die Differenz zwischen den Mengen Q_1 und Q_0 der Strahlungswärme, die von den Strahlungsquellen Ha und H zu dem Messer M emittiert werden, und wobei mV die thermoelektrische Kraft des Messers bezeichnet. Das Ergebnis ist durch die Gerade in Fig. 6 gezeigt.

Es stellte sich heraus, daß der Strahlungswärmeflußmesser in der Praxis gut zu verwenden ist, wobei er einen angezeigten Wert im Bereich der stabilen Messung durch ein heute gebräuchliches, handelsübliches Mikrovoltmeter anzeigt, und wobei ein konstanter Wert in weniger als 1 Minute erhalten wird.

Patentansprüche

- 1. Strahlungswärmeflußmesser, gekennzeichne tohnet durch eine dünne Platte mit guter Wärmeleitfähigkeit, durch Platten mit hohem Wärmewiderstand, die an den zwei Flächen dieser dünnen Platte angebracht sind, durch wenigstens ein Paar von wechselweise miteinander verbundenen, temperaturmessenden Körpern, die an den Oberflächen dieser Platten mit hohem Wärmewiderstand angebracht sind, durch schwarze Platten mit hohem Wärmewiderstand, die in Berührung mit diesen temperaturmessenden Körpern angebracht sind, und durch transparente, dünne Platten, um diese schwarzen Platten damit so zu beschichten, daß Luftschichten an der Außenseite dieser schwarzen Platten gebildet werden.
- 2. Strahlungswärmeflußmesser nach Anspruch 1, dadurch gekennzeichnet, daß die die Temperatur messenden Körper differentielle Thermoelemente sind.
- 3. Strahlungswärmeflußmesser nach Anspruch 1, dadurch gekennzeichnet, daß die die Temperatur messenden Körper differentielle Thermometer sind.

- 11 -

FIG. 4

F I G. 5

F1G. 6

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.