MATHEMATIK

WISSEN - ABITUR 2025

Inhaltsverzeichnes

Analytische Geometrie		1
1.1	Einleitung	1
1.2	Geraden Gleichungen	1
1.2.1	Koordinatenform	1
1.2.2	Normalenfrom	1
1.2.3	Parameterform	1
1.3	Ebenengleichungen	1
1.3.1	Parameterform	1
1.3.2	Normalenform	1
1.3.3	Koordinatenform	1
Formeln		2
Bibliographie		3

Analytische Geometrie

1.1 Einleitung

1.2 Geraden Gleichungen

1.2.1 Koordinatenform

$$g: ax + by = c, \quad a, b, c \in \mathbb{R}$$

1.2.2 Normalenfrom

$$g: \vec{n} \cdot (\vec{x} - \vec{p}) = 0$$

- g = Bezeichnung der Gerade
- $\vec{n} = Normalenvektor$
- $\vec{p} = \text{Aupunkt} / \text{Stützvektor}$

1.2.3 Parameterform

$$g: \vec{x} = \vec{a} + \lambda \cdot \vec{u}$$

1.3 Ebenengleichungen

Es gibt drei verschiedenen formen, eine Ebene darzustellen. Die Parameterform, Normalenform und die Koordinatenform.

1.3.1 Parameterform

$$E: \vec{x} = \vec{a} + r \cdot \vec{u} + s \cdot \vec{v}$$

• \vec{u} , \vec{v} sind dabei die "Spannvektoren", die die Ebene aufspannen.

1.3.2 Normalenform

$$E: \vec{n} \cdot (\vec{x} - \vec{p}) = 0$$

- E = Bezeichnung der Ebene
- $\vec{n} = Normalenvektor$
- $\vec{p} = \text{Aufpunkt} / \text{Stützvektor}$

1.3.3 Koordinatenform

$$E: ax_1 + bx_2 + cx_3 = d, \quad a, b, c, d \in \mathbb{R}$$

Formeln

Bibliographie