

B.TECH SECOND YEAR

ACADEMIC YEAR: 2022-2023

COURSE NAME: ENGINEERING MATHEMATICS-III

COURSE CODE : MA 2101

LECTURE SERIES NO:

CREDITS : 3

MODE OF DELIVERY: ONLINE (POWER POINT PRESENTATION)

FACULTY: DR. BHOOPENDRA PACHAURI

EMAIL-ID : Bhoopendra.pachauri@jaipur.manipal.edu

PROPOSED DATE OF DELIVERY:

VISION

Global Leadership in Higher Education and Human Development

MISSION

- Be the most preferred University for innovative and interdisciplinary learning
- Foster academic, research and professional excellence in all domains
- Transform young minds into competent professionals with good human values

VALUES

Integrity, Transparency, Quality, Team Work, Execution with Passion, Humane Touch

SESSION OUTCOME

"EQUIVALENCE OF TWO GRAPHS"

ASSIGNMENT

OUIZ

MID TERM EXAMINATION -I & II

END TERM EXAMINATION

ASSESSMENT CRITERIA'S

Isomorphic Graphs

 Two graph G and H are isomorphic if H can be obtained from G by relabeling the vertices - that is, if there is a one-to-one correspondence between the vertices of G and those of H, such that the number of edges joining any pair of vertices in G is equal to the number of edges joining the corresponding pair of vertices in H. For example, two labeled graphs, such as

Example:

Graph G':

Correspondence of vertices

$$f(a) = v_1$$

$$f(b) = v_2$$

$$f(c) = v_3$$

$$f(d) = v_4$$

$$f(e) = v_5$$

Correspondence of edges

$$f(1) = e_1$$

$$f(2) = e_2$$

$$f(3) = e_3$$

$$f(4) = e_4$$

$$f(5) = e_5$$

Adjacency also preserved. Therefore G and G' are said to be isomorphic.

Example:

The following two graphs are not isomorphic, because x is adjacent to two pendent vertex is not preserved.

Example:

Examine whether the following pair of graphs are isomorphic. If not isomorphic, give the reasons.

Solution:

In G, the number of vertices is 5, the number of edges is 8.

$$deg(u_1) = 3$$
, $deg(u_2) = 4$, $deg(u_3) = 2$, $deg(u_4) = 4$, $deg(u_5) = 3$

In G', the number of vertices is 5, the number of edges is 8.

$$\deg(v_1) = 3$$
, $\deg(v_2) = 2$, $\deg(v_3) = 4$, $\deg(v_4) = 3$, $\deg(v_5) = 4$

There are same number of vertices and edges in both the graph G and G'.

Here in both graphs G and G', two vertices are of degree 3, two vertices are of degree 4, and one vertex is of degree 2.

$$u_1 \to v_1, u_2 \to v_5, u_3 \to v_2, u_4 \to v_3, u_5 \to v_4$$

There is one to one correspondences between the graphs G and G'.

∴ The graphs G and G' are isomorphic.