Praktikum Rechnerstrukturen 01

Jan Lukas Deichmann / Jan-Tjorve Sobieski 19. Mai 2015

<u>1.2c i</u>

Gesucht: $x_3 \wedge x_2 \wedge x_1 \wedge x_0$ (4AND)

$$(x_3 \wedge x_2) \wedge (x_1 \wedge x_0)$$
 (Assoziativität)
 $\Leftrightarrow x_3 \wedge x_2 \wedge (x_1 \wedge x_0)$ (Assoziativität)
 $\Leftrightarrow x_3 \wedge x_2 \wedge x_1 \wedge x_0$

Gesucht: $x_2 \wedge x_1 \wedge x_0$ (3AND)

$$(x_2 \wedge x_1) \wedge x_0$$
 (Assoziativität) $\Leftrightarrow x_2 \wedge x_1 \wedge x_0$

<u>1.2c ii</u>

Die Tiefe des Ausdrucks verändert sich nicht, da ein normaler Operatorbaum mit einem erweiterten Operatorbaum nicht verglichen werden kann.

$\underline{1.2d}$

$$f\!\!: \mathbb{B}^4 \to \mathbb{B}^1$$

$$f(x_3, x_2, x_1, x_0) = (\neg x_2 \land x_1 \land x_0) \lor (\neg x_3 \land x_1 \land x_0) \lor (\neg x_3 \land x_2 \land x_0) \lor (x_2 \land \neg x_1 \land x_0)$$

<u>1.2e</u>

$$f: \mathbb{B}^4 \to \mathbb{B}^1$$

$$f(x_3, x_2, x_1, x_0) = (\neg x_2 \wedge x_1 \wedge x_0) \vee (\neg x_3 \wedge x_1 \wedge x_0) \vee (\neg x_3 \wedge x_2 \wedge x_0) \vee (x_2 \wedge \neg x_1 \wedge x_0) \vee (\neg x_3 \wedge \neg x_2 \wedge x_1 \wedge \neg x_0)$$

1.3

Beschreibung der Funktion:

Ein Volladdierer, aufgebaut aus zwei Halbaddierern.

$\underline{1.4a~i}$

x_3	x_2	x_1	x_0	у
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

<u>1.4a ii</u>

$$f: \mathbb{B}^4 \to \mathbb{B}^1$$

$$\begin{array}{l} f(x_3,x_2,x_1,x_0) = \\ (x_3 \wedge x_2 \wedge \overline{x_1} \wedge \overline{x_0}) \vee (x_3 \wedge \overline{x_2} \wedge x_1 \wedge \overline{x_0}) \vee (x_3 \wedge \overline{x_2} \wedge \overline{x_1} \wedge x_0) \vee \\ (\overline{x_3} \wedge x_2 \wedge x_1 \wedge \overline{x_0}) \vee (\overline{x_3} \wedge x_2 \wedge \overline{x_1} \wedge x_0) \vee (\overline{x_3} \wedge \overline{x_2} \wedge x_1 \wedge x_0) \end{array}$$

Aus diesem Diagramm lässt sich ablesen, dass eine Minimierung nicht möglich ist.

$\underline{1.4a~\text{iii}}$

<u>1.4a</u>

$$\mathrm{ON}(f) := \{x \in \mathbb{B}^4 \mid f(x) = 1\}$$

<u>1.4d</u>

Bei der Verwendung zweier Undgatter anstatt vierer Undgatter ist es möglich, sich doppelt vorkommende Gatter zu sparen. Zum Beispiel kommt der Teilterm $\overline{x_3} \wedge \overline{x_2}$ zweimal in der Boolschen Formel vor, somit braucht man den Term nur einmal in der Schaltung zu implementieren.