Homework Problems

1. Let X_1, X_2 be *i.i.d* observations from Uniform $(\theta, \theta + 1)$, $\theta \ge 0$. For testing $H_0: \theta = 0$ versus $H_1: \theta > 0$, we have two competing tests:

Due: Thursday, April 13

$$\phi_1(X_1)$$
 : Reject H_0 if $X_1 > 0.95$
 $\phi_2(X_1, X_2)$: Reject H_0 if $X_1 + X_2 > C$

- (a) Find the value of C so that ϕ_2 has the same size as ϕ .
- (b) Calculate the power function of ϕ_1 and ϕ_2 obtained from part (a).
- (c) Show that ϕ_2 from part (a) is not uniformly more powerful test than ϕ_1 .
- (d) Find a test that is always equally or more powerful than ϕ_2 and ϕ_1 with the same size. Justify your answer.

{ **Hint:** Consider the test

Reject
$$H_0$$
 if $X_1 + X_2 > C$ or $X_1 \ge 1$ or $X_2 \ge 1$

where C is as in part (a). $\}$

(e) (Optional) Consider now a random sample of size $n, n \geq 2$ from the same population for testing the same hypothesis. Demonstrate that the test

Reject
$$H_0$$
 if $X_{(n)} \ge 1$ or $X_{(1)} \ge k$,

where k is a constant, is UMP of its size. Determine k such that the test has size α , $0 < \alpha < 1$.

2. Let X_1, \ldots, X_n be an *i.i.d* random sample of size n with pdf f(x), the functional form of which is unknown. We are interested in testing the null hypothesis

$$H_0: f(x) = f_0(x)$$

against the alternative hypothesis

$$H_1: f(x) = f_1(x)$$

where the functional forms of f_0 and f_1 are known. They have no unknown parameters and they have the same support.

(a) Rewrite H_0 and H_1 parametrically by considering the following pdf:

$$f(x|\theta) = (1-\theta)f_0(x) + \theta f_1(x), \ 0 \le \theta \le 1.$$

(b) Show that if

$$f_0(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right), \ x \in R$$

$$f_1(x) = \frac{1}{2} \exp\left(-|x|\right), \ x \in R,$$

then the rejection region for the Uniformly Most Powerful (UMP) level α test of H_0 against H_1 is given by

$$\sum_{i=1}^{n} (|x_i| - 1)^2 > k$$

for some k that depends on α . (Note that it is not necessary to find a closed form of k in terms of α . Describing mathematical relationship between k and α should be sufficient).

- (c) Calculate both probability of type I error and probability of type II error for the test in part (b) when n = 1 and (i) k = 1 or (ii) $k = \frac{1}{4}$. Present the results to three digits beyond the decimal point. (You may use calculator, R, or table of standard normal distribution if needed).
- (d) Determine whether the two tests in (c) are unbiased or not.

3. Let X_1, \ldots, X_n be an *i.i.d.* random sample from the following pdf

$$f(x|\theta) = \frac{1}{2\theta^3} x^2 e^{-\frac{x}{\theta}}, \qquad 0 < \theta < \infty, 0 < x < \infty$$

- (a) Find the UMP level α test of $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ with $\theta_1 > \theta_0$.
- (b) Using the fact $\frac{2}{\theta} \sum_{i=1}^{n} X_i \sim \chi^2_{(6n)}$, construct the level α UMP test of H_0 : $\theta = \theta_0$ against H_1 : $\theta = \theta_1$ when $n = 4, \theta_0 = 1, \theta_1 = 3$, and $\alpha = 0.05$. Calculate the power of this UMP test. Present the results to three digits beyond the decimal point. (You may use calculator, R, or table of chisquared distribution if needed).
- (c) Find the level α UMP test for $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$ (for arbitrary n, θ_0, α).
- (d) Find a size α LRT for $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$ based on sufficient statistics. Justify whether the LRT is the level α UMP test or not.

4. Suppose that the time X to death of non-smoking heart transplant patients follows the distribution with pdf

$$f_X(x|\beta) = \frac{1}{\beta}e^{-\frac{x}{\beta}}, \ 0 < x < \infty, \beta > 0$$

Further, suppose that the time Y to death of smoking heart transplant patients follows the distribution with pdf

$$f_Y(y|\gamma) = \frac{1}{\gamma} e^{-\frac{y}{\gamma}}, \ 0 < y < \infty, \gamma > 0$$

Let X_1, \ldots, X_n be an *i.i.d.* random sample from $f_X(x|\beta)$ and Y_1, \ldots, Y_n be an *i.i.d.* random sample from $f_Y(y|\gamma)$.

It is of interest to make inference about the parameter $\theta = \beta - \gamma$.

- (a) Find a constant k such that the estimator $k(\overline{X} \overline{Y})$ is an unbiased estimator of θ .
- (b) Based on the estimator from (b), construct an asymptotic level α Wald test for $H_0: \theta = 0$ against $H_1: \theta \neq 0$.
- (c) Construct an asymptotic level α LRT for $H_0: \theta = 0$ against $H_1: \theta \neq 0$.
- 5. Suppose X_1, \ldots, X_n is an *i.i.d.* random sample with pdf

$$f_X(x|\theta) = \theta \exp(-\theta x), \qquad x \ge 0, \theta > 0$$

- (a) Derive asymptotic size α LRT for testing $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$.
- (b) Derive asymptotic size α score test for testing $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$.
- (c) Derive asymptotic size α Wald for testing $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$.

Practice Problems

- 1. C&B Exercise 8.17
- 2. C&B Exercise 8.20
- 3. C&B Exercise 8.28
- 4. C&B Exercise 8.29

- 5. C&B Exercise 8.31
- 6. C&B Exercise 8.39
- 7. C&B Exercise 10.31
- 8. C&B Exercise 10.34
- 9. C&B Exercise 10.35
- 10. C&B Exercise 10.36
- 11. C&B Exercise 10.37