▼ Introduction to Big Data

Lecture 11. Classification

```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

import numpy as np
import pandas as pd
import seaborn as sns

Classification with Personal Loan Data

- Experience
- Income
- Famliy
- CCAvg: Average monthly card spent
- Education: Education level (1: undergrad; 2, Graduate; 3; Advance)
- Mortgage
- Personal Loan: Personal Loan (1:Yes, 0:No)
- Securities account: Securities (1:Yes, 0:No)
- CD account: CD account (1:Yes, 0:No)
- Online: Online account (1:Yes, 0:No)
- CreidtCard: Credit Card (1:Yes, 0:No)

PerLoan = pd.read_csv("/content/drive/MyDrive/[Lecture]/IntBigData/BigData_Python/11_Classification/personalLoa PerLoan.head()

	ID	Age	Experience	Income	ZIP Code	Family	CCAvg	Education	Mortgage	Personal Loan	Securities Account	CD Account	Online	CreditCard	
0	1	25	1	49	91107	4	1.6	1	0	0	1	0	0	0	ш
1	2	45	19	34	90089	3	1.5	1	0	0	1	0	0	0	
2	3	39	15	11	94720	1	1.0	1	0	0	0	0	0	0	
3	4	35	9	100	94112	1	2.7	2	0	0	0	0	0	0	

PerLoan.shape

(2500, 14)

PerLoan.columns

PerLoan.rename(columns={'Personal Loan':'PersonalLoan'}, inplace=True)

PerLoan.columns

PerLoan.describe()

	ID	Age	Experience	Income	ZIP Code	Family	CCAvg	Education	Mortgage	PersonalLoan	Securiti∈ Accour
cou	nt 2500.00000	2500.000000	2500.000000	2500.0000	2500.000000	2500.00000	2500.000000	2500.00000	2500.000000	2500.000000	2500.00000
me	an 1250.50000	45.346000	20.120800	74.4472	93135.691600	2.40800	1.951284	1.86560	57.388400	0.102400	0.10960
st	d 721.83216	11.519521	11.523824	46.6724	2420.763339	1.15986	1.795449	0.83655	100.816403	0.303234	0.31245

PerLoan.isnull().any()

False
False

PerLoan.count()

ID	2500
Age	2500
Experience	2500
Income	2500
ZIP Code	2500
Family	2500
CCAvg	2500
Education	2500
Mortgage	2500
PersonalLoan	2500
Securities Account	2500
CD Account	2500
Online	2500
CreditCard	2500
dtype: int64	

```
PL_X = PerLoan[['Age','CCAvg','Income','Education']]
PL_Y = PerLoan['PersonalLoan']
```

▼ Logit Regression with statsmodels

```
from statsmodels.formula.api import logit

statsLogitModel = logit('PersonalLoan ~ Age + CCAvg + Income + Education',data=PerLoan)
statsLogitModel
```

<statsmodels.discrete_discrete_model.Logit at 0x7dbdf48699c0>

```
statsLogitModel_res = statsLogitModel.fit()
```

Optimization terminated successfully.

Current function value: 0.167135

Iterations 9

print(statsLogitModel_res.summary())

l og i t	Dogr	ession	Pooli	1 + 0
1 00111	RECIT	6661UU	RASII	118

Dep. Variab	le:	Personal	Loan No.	Observation:	3:	2500
Model:		L	ogit Df	Residuals:		2495
Method:			MLE Df	Model:		4
Date:	TI	nu, 23 Nov	2023 Pse	udo R-squ.:		0.4940
Time:		13:1	4:44 Log	-Likelihood:		-417.84
converged:			True LL-	Null:		-825.81
Covariance	Type:	nonro	bust LLF	p-value:		2.695e-175
	coef	std err	 Z	P> z	[0.025	0.975]
Intercept	-11.2330	0.694	-16.179	0.000	-12.594	-9.872
Age	0.0113	0.008	1.401	0.161	-0.005	0.027
CCAvg	0.1187	0.046	2.606	0.009	0.029	0.208
Income	0.0472	0.003	16.648	0.000	0.042	0.053
Education	1.6128	0.135	11.938	0.000	1.348	1.878

statsLogitModel_res.params

```
Intercept -11.232994
Age 0.011319
CCAvg 0.118712
Income 0.047228
Education 1.612840
dtype: float64
```

np.exp(statsLogitModel_res.params)

Intercept 0.000013
Age 1.011383
CCAvg 1.126045
Income 1.048361
Education 5.017038
dtype: float64

Logit Regression with sklearn

▼ Whole sample

```
from sklearn.linear_model import LogisticRegression

LogitModel0 = LogisticRegression()

LogitModel0_res = LogitModel0.fit(PL_X, PL_Y)
LogitModel0_res

* LogisticRegression
LogisticRegression()

LogitModel0_res.coef_
array([[0.01125087, 0.11722838, 0.04689883, 1.58410844]])
```

```
LogitModelO_res.intercept_
```

array([-11.12673563])

▼ Test and train sample

```
from sklearn.model_selection import train_test_split

PL_X_train, PL_X_test, PL_Y_train, PL_Y_test = train_test_split(PL_X, PL_Y, test_size=0.3, random_state=0)
```

	Age	CCAvg	Income	Education	
2	39	1.0	11	1	11.
851	41	1.4	23	2	
2355	56	1.6	74	3	
360	35	1.3	55	1	
323	59	4.4	99	1	

```
PL_X_train1, PL_X_test1, PL_Y_train1, PL_Y_test1 = train_test_split(PL_X, PL_Y, test_size=0.3, random_state=1)
PL_X_train1.head()
```

	Age	CCAvg	Income	Education	
1181	25	0.2	65	1	ıl.
372	56	0.7	44	2	

PL_X_train1, PL_X_test1, PL_Y_train1, PL_Y_test1 = train_test_split(PL_X, PL_Y, test_size=0.3, random_state=1)

PL_X_train1.head()

	Age	CCAvg	Income	Education	
1181	25	0.2	65	1	ili
372	56	0.7	44	2	
137	49	0.4	128	1	
1831	47	0.4	30	2	
2296	27	0.2	82	1	

PL_X_train

	Age	CCAvg	Income	Education	=
1988	52	0.3	18	1	ıl.

PL_X_test

	Age	CCAvg	Income	Education	
53	50	2.10	190	3	th
2391	39	4.67	138	2	
2310	32	0.30	32	1	
728	45	4.40	114	2	
850	46	0.20	39	1	
2285	48	2.40	114	3	
1165	43	1.70	113	1	
2438	62	0.30	29	3	
768	43	1.70	72	1	
381	55	2.30	73	3	

750 rows × 4 columns

PL_Y_train

Name: PersonalLoan, Length: 1750, dtype: int64

```
PL_Y_test
    2391
     2310
     728
     850
     2285
     1165
     2438
     768
           0
     381
    Name: PersonalLoan, Length: 750, dtype: int64
from sklearn.linear_model import LogisticRegression
LogitModel = LogisticRegression()
LogitModel.fit(PL_X_train, PL_Y_train)
     ▼ LogisticRegression
     LogisticRegression()
LogitModel.coef_
    array([[0.01166588, 0.07185039, 0.04623718, 1.44376302]])
LogitModel.intercept_
    array([-10.5227233])
```

▼ Validation

```
PL_Y_pred = LogitModel.predict(PL_X)
```

```
PL_Y_train_pred = LogitModel.predict(PL_X_train)
```

PL_Y_test_pred = LogitModel.predict(PL_X_test)

from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, confusion_matrix

▼ Accuracy Score

```
accuracy_score(PL_Y_test, PL_Y_test_pred)
```

0.9546666666666667

▼ Recall Score

```
recall_score(PL_Y_test, PL_Y_test_pred)
```

▼ Precision Score

0.65625

```
precision_score(PL_Y_test, PL_Y_test_pred)
```

0.7777777777778

Specificity

```
tn, fp, fn, tp = confusion_matrix(PL_Y_test, PL_Y_test_pred).ravel()
specificity = tn / (tn+fp)
specificity
```

0.9825072886297376