Ch13: Categorical Data

17 Nov 2011 BUSI275 Dr. Sean Ho

- HW8 due Tue
- Please download: 20-ChiSq.xls

Outline for today

- - Observed vs. Expected
- \blacksquare χ^2 on a single nominal variable
 - Test against uniform distribution
 - CHIDIST(), CHITEST()
 - Test of normality
- \blacksquare χ^2 on 2-way contingency tables
 - Test for independence
 - Marginal probabilities
 - Limitations of χ^2 test for independence

Goodness of fit

- The χ^2 (chi-squared) test is one way to assess goodness of fit:
 - How well an observed distribution fits a hypothesized distribution
 - Hypothesized distribution can be uniform, normal, etc.
- χ² can also be applied to test if two nominal variables are independent
 - Compare pivot table (contingency table) with hypothesized results if vars independent
 - Analogous to correlation for continuous vars

χ² vs. uniform distribution

- e.g., are technical support calls evenly distributed across the weekdays?
 - H₀: evenly distributed, matches uniform dist.
- Expected # calls per day (uniform distribution):
 - Total observed calls (1300), divided by 5

Observed	290	250	238	257	265
Expected	260	260	260	260	260

- Test statistic: $\chi^2 = \sum \frac{(o_i e_i)^2}{e_i}$
- Use CHIDIST(χ^2 , #cells 1)
 - Or CHITEST(obs, exp)

χ² vs. normal distribution

- e.g., are student test scores normally distrib?
 - Other normality tests: Shapiro-Wilk, K-S
- Count frequency of test scores by bins
- How to find expected frequencies?
 - Find mean, SD of the data
 - Use NORMDIST() to find percentage of the data that would lie within each bin on the ideal normal:

• NORMDIST(80, μ , σ , 1) – NORMDIST(75, μ , σ , 1)

Bin	Freq	Norm Freq	
40	1/1/		
45	1	1.30	
50	4	2.77	
55	15	5.14	
60	7	8.28	
65	5	11.60	
70	7	14.11	
75	11	14.93	
80	15	13.72	
85	22	10.97	
90	9	7.62	
95	4	4.60	
100	0	2.41	
201	1		

Contingency tables

- Joint freq. distribs for multiple nominal variables
 - Each cell of the table holds the # (frequency)
 of observations that match that combo
 - Pivot tables, with Count in the Data field
- E.g., Handedness vs. Gender
 - H_o: handedness is independent of gender: the probability of being left-handed stays the same, regardless of the gender

Observed	Left	Right
Male	17	163
Female	33	167

χ² on 2-way contingency

- Expected values assume independence
- Calculate marginal probabilities:
 - P(female) = $200/380 \approx 52.6\%$
 - P(left) = $50/380 \approx 13.2\%$

	L	R	Tot
M	17	163	180
F	33	167	200
Tot	50	330	380

- Assuming independence,
 - $P(F \cap L) = P(F) * P(L) = (.526)(.132)$
- Thus the expected count for (F ∩ L) is
 - P(F) * P(L) * (total) = (.526)(.132)(380)
- Calculate χ² summed over all cells
 - df = (#rows 1) (#cols 1)
 - $\bullet = 1$ in this case!

Summary on χ^2

- Test of goodness-of-fit: observed vs. expected
- May apply to a single nominal variable:
 - Expected distrib. may be uniform, normal, ...
- May apply to two nominal variables:
 - Expected distrib. is that vars are independent
 - Akin to correlation on continuous variables
 - Large χ^2 ↔ $|\mathbf{r}| \approx 1$
- But only an approximation to the true distrib:
 - Results may be invalid if cell counts are <5
 - May need to combine levels of a var

TODO

- HW8 (ch15,12): due Tues
- Projects:
 - Presentations in two weeks!
 - If you don't know what analysis to perform, or how to perform it, ask me for help

