Digital Signature using RSA

RSA Digital Signature is a digital signature scheme based on the RSA (Rivest-Shamir-Adleman) cryptosystem. It provides a way to verify the authenticity and integrity of a message, ensuring that it comes from a known sender and hasn't been tampered with.

Key Concepts

- 1. **Public-Private Key Pair**: RSA uses asymmetric cryptography, where each user has a public key (widely shared) and a private key (kept secret).
- 2. **Signing Process**: The sender uses their private key to create a signature for a message.
- 3. **Verification Process**: Anyone with the sender's public key can verify the signature.

How RSA Digital Signature Works

Signing a Message

- 1. The sender computes a hash (e.g., SHA-256) of the message.
- 2. This hash is then encrypted using the sender's private key, creating the signature.
- 3. The original message and the signature are sent together.

Verifying a Signature

- 1. The receiver computes the hash of the received message.
- 2. The receiver decrypts the signature using the sender's public key.
- 3. If the decrypted signature matches the computed hash, the signature is valid.

Mathematical Foundation

RSA Digital Signature relies on the mathematical properties of modular exponentiation and the difficulty of factoring large numbers.

- Private Key: (d, n)
- Public Key: (e, n)

Where n is the product of two large prime numbers, e is the public exponent, and d is the private exponent.

Signing: $S = M^d \mod n$

Verifying: $M = S^e \mod n$

(M is the message hash, S is the signature)

Security Considerations

- The security of RSA Digital Signature depends on keeping the private key secret.
- The key size should be sufficiently large (e.g., 2048 bits or more) to resist factorization attacks.
- Proper padding schemes (e.g., PSS) should be used to enhance security.

Applications

RSA Digital Signature is widely used in various applications, including:

- Secure email (PGP, S/MIME)
- Code signing
- SSL/TLS certificates
- Blockchain transactions

Listing 1: signature.py

```
import random
import os
def miller_rabin(n, k=5):
   if n <= 1 or n == 4:
       return False
    if n <= 3:
       return True
    # Find r and s
    s = 0
    d = n - 1
    while d \% 2 == 0:
       s += 1
        d //= 2
    # Witness loop
    for _ in range(k):
        a = random.randrange(2, n - 1)
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
           continue
        for _ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
           return False
    return True
def generate prime(bits=512):
    while True:
       n = random.getrandbits(bits)
       # Ensure n is odd
        n \mid = (1 << bits - 1) \mid 1
        if miller_rabin(n):
            return n
def greatest common divisor(a: int, b: int):
    if b == 0:
        return a
    else:
        return greatest_common_divisor(b, a % b)
def least_common_multiple(a: int, b: int):
    # LCM using the Euclidean Algorithm
    gcd = greatest_common_divisor(a, b)
    return abs(a * b) // gcd
class RSA:
    def __init__(self):
        self.p = generate_prime()
        self.q = generate prime()
        \# Compute n = pq
        self.n = self.p * self.q
        # Carmichael's totient function (lambda(n))
        self.lambda_n = least_common_multiple(self.p - 1, self.q - 1)
        # IMP: Secret
        \# Choose e such that 1 < e < lambda(n) and
        \# gcd(e, lambda(n)) == 1, that is e and lambda(n) are co-prime
        # for i in range(lambda n, 1, -1):
            if greatest_common_divisor(i, lambda_n) == 1:
                 self.e = i
```

```
# Most common value for e is 65537 (2**16 + 1)
    self.e = 65537
    # MMI(of x in base p) \Rightarrow pow(x, -1, p)
    self.d = pow(self.e, -1, self.lambda_n)
    # IMP: Secret
    self.private_key = (self.d, self.lambda_n)
    self.public_key = (self.e, self.n)
@staticmethod
def pad_pkcs1(unpadded: bytes, n: int) -> bytes:
    """pads a RSA string using PKCS1 v1.5 padding scheme
    Args:
        unpadded (bytes): Unpadded Plaintext (M)
        n (int): the modulus, from the public key
       bytes: padded plaintext (m)
    mod_len = (n.bit_length() + 7) // 8 # Round up to next byte
    msg_len = len(unpadded)
    # Padding String must be atleast 8 bytes
    if msg len > mod len - 11:
        raise ValueError("[PKCS1 v1.5] PaddingError: Message too long.")
    padding length = mod len - msg len - 3
    padding_string = b""
    while len(padding_string) < padding_length:</pre>
        padding_byte = os.urandom(1)
        if padding_byte != b" \times 00":
            padding_string += padding_byte
                 00||02 ||
                                PS
                                        || 00 ||M
    padded = b"\x00\x02" + padding_string + b"\x00" + unpadded
    return padded
@staticmethod
def unpad pkcs1(padded: bytes) -> bytes:
    if len(padded) < 11:</pre>
        raise ValueError("[PKCS1 v1.5] PaddingError: Padded message too short.")
    if padded[:2] != b"\x00\x02":
        raise ValueError("[PKCS1 v1.5] PaddingError: Incorrect padding format.")
    sep_idx = padded.find(b'\x00', 2)
    if sep idx == -1:
        raise ValueError("[PKCS1 v1.5] PaddingError: Separator not found.")
    return padded[sep idx+1:]
def sign(self, message: bytes) -> bytes:
    Sign a message using the private key.
    Args:
       message (bytes): The message to be signed.
    Returns:
    bytes: The signature.
    # Hash the message
    # message = hashlib.sha256(message).digest()
    # Pad the hash (message)
```

```
padded = self.pad pkcsl(message, self.n)
        # Convert to integer
        m = int.from bytes(padded, "big")
        # Sign (encrypt with private key)
        s = pow(m, self.d, self.n)
        return s.to_bytes((self.n.bit_length() + 7) // 8, "big")
   @staticmethod
   def verify(message: bytes, signature: bytes, public key: tuple[int, int]) -> bool:
        Verify a signature using the public key.
        Args:
           message (bytes): The original message.
            signature (bytes): The signature to verify.
            public_key (tuple[int, int]): The public key (e, n).
        Returns:
        bool: True if the signature is valid, False otherwise.
        e, n = public_key
        # Convert signature to integer
        s = int.from_bytes(signature, "big")
        # Verify (decrypt with public key)
        m = pow(s, e, n)
        padded = m.to_bytes((n.bit_length() + 7) // 8, "big")
            _message = RSA.unpad_pkcs1(padded)
        except ValueError:
           return False
        # Compare with the hash of the original message
        return _message == message
class ANST:
   RED = "\033[0;31m"]
   GREEN = "\033[0;32m"]
   BLUE = "\033[0;34m"]
   BOLD = "\033[1m"]
   END = "\033[0m"
if __name__ == "__main__":
   RSA A = RSA()
   print(f"{ANSI.BOLD}RSA Components:{ANSI.END}")
   print(f"p (first prime): {hex(RSA A.p)}")
   print(f"\nq (second prime): {hex(RSA_A.q)}")
   print(f"\n{ANSI.GREEN}Public Key (e, n):")
   print(f"({ANSI.BOLD}{hex(RSA_A.e)}{ANSI.END}{ANSI.GREEN}, {hex(RSA_A.n)}){ANSI.END}")
   print(f"\n{ANSI.RED}Private Key (d, \lambda(n)):")
    print(f"(\{ANSI.BOLD\}\{hex(RSA\_A.d)\}\{ANSI.END\}\{ANSI.RED\}, \{hex(RSA\_A.lambda\_n)\})\{ANSI.END\}") \} \\
   message = b"Practical 09 - Rivest-Shamir-Adleman PKCS Signing - Devansh Parapalli"
   print(f"\n0riginal message: {message}")
   signature = RSA A.sign(message)
   print(f"\nMessage Signature: {signature.hex()}")
```

```
print(f"\n{ANSI.BOLD}Sender A (Correct){ANSI.END}")
verification = RSA.verify(message, signature, RSA_A.public_key)
print(f"Message Authenticated (Sender A): {verification}")

RSA_B = RSA()
print(f"\n{ANSI.BOLD}Sender B (Incorrect){ANSI.END}")

verify_b = RSA.verify(message, signature, RSA_B.public_key)
print(f"Message Authenticated (Sender B): {verify_b}")
```


Figure 1: Output