Announcements

- Office hours schedule posted on website.
 - Keith:
 - Mon 1:00PM 3:00PM, Gates 160
 - Wed 1:00PM 3:00PM, Gates 160
 - Hrysoula:
 - Thursday 7:00PM 9:00PM, Gates 24A
 - Friday 1:00PM 3:00PM, Gates 24A
 - Riddhi
 - Tuesday 7:00PM 9:00PM, Gates 24A
 - Sunday 12:00PM 2:00PM, Gates 24A
- Or ask questions on Piazzza: www.piazzza.com

Where We Are

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Machine Code

Review from Last Time

- Goal of syntax analysis: recover the intended structure of the program.
- Idea: Use a context-free grammar to describe the programming language.
- Given a sequence of tokens, look for a parse tree that generates those tokens.
- Recovering this syntax tree is called parsing and is the topic of this week (and part of next!)

Different Types of Parsing

- Top-Down Parsing (today)
 - Beginning with the start symbol, try to guess the productions to apply to end up at the user's program.
- Bottom-Up Parsing (Wednesday / Friday)
 - Beginning with the user's program, try to apply productions in reverse to convert the program back into the start symbol.

```
E \rightarrow T
E \rightarrow T + E
T \rightarrow int
T \rightarrow (E)
```

```
E \rightarrow T
E \rightarrow T + E
T \rightarrow int
T \rightarrow (E)
```

```
int + ( int + int )
```

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

```
int + ( int + int )
```

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

```
int + ( int + int ) $
```

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

S

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

Challenges in Top-Down Parsing

- Top-down parsing begins with virtually no information.
 - Begins with just the start symbol, which matches every program.
- How do we know which productions to apply?
- In general, we can't.
 - There are some grammars for which the best we can do is guess and backtrack if we're wrong.
 - If we have to guess, how do we do it?

Parsing as a Search

- An idea: treat parsing as a graph search.
- Each node is a sentential form (a string of terminals and nonterminals).
- There is an edge from one node to another if there is a reduction from the first sentential form to the second.

Our First Top-Down Algorithm

- Breadth-First Search
- Maintain a worklist of sentential forms, initially just the start symbol S.
- While the worklist isn't empty:
 - Remove an element from the worklist.
 - If it matches the target string, you're done.
 - Otherwise, for each possible string that can be derived in one step, add that string to the worklist.
- Can recover a parse tree by tracking what productions we applied at each step.

Worklist

```
S \rightarrow E\$
E \rightarrow T
E \rightarrow T + E
T \rightarrow int
T \rightarrow (E)
```


$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

Worklist

S

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

Worklist

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $int + int\$$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $int + int\$$
 $T \rightarrow int$
 $T \rightarrow (E)$

Worklist

E\$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $int + int\$$
 $T \rightarrow int$
 $T \rightarrow (E)$

Worklist

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

T\$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$


```
S \rightarrow E\$
E \rightarrow T
E \rightarrow T + E
T \rightarrow int
T \rightarrow (E)
```


$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

int\$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

(E)\$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$T+T+E\$$$

$$S\to E\$$$

$$E\to T$$

$$E\to T+E$$

$$int+int\$$$

$$T\to int$$

$$T\to (E)$$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

BFS is Slow

- Enormous time and memory usage:
 - Lots of wasted effort:
 - Generates a lot of sentential forms that couldn't possibly match.
 - But in general, extremely hard to tell whether a sentential form can match – that's the job of parsing!
 - High branching factor:
 - Each sentential form can expand in (potentially) many ways for each nonterminal it contains.

Reducing Wasted Effort

- Suppose we're trying to match a string of terminals w.
- Suppose we have a sentential form v = xy, where x is a string of terminals and y is a string of terminals and nonterminals.
- If x isn't a prefix of w, then no string derived from v can ever match w.
- If we can find a way to try to get a prefix of terminals at the front of our sentential forms, then we can start pruning out impossible options.

Reducing the Branching Factor

- If a string has many nonterminals in it, the branching factor can be high.
 - Sum of the number of productions of each nonterminal involved.
- If we can restrict which productions we apply, we can keep the branching factor lower.

Leftmost Derivations

- Recall: A leftmost derivation is one where we always expand the leftmost symbol first.
- Updated algorithm:
 - Do a breadth-first search, only considering leftmost derivations.
 - Dramatically drops branching factor.
 - Increases likelihood that we get a prefix of nonterminals.
 - Prune sentential forms that can't possibly match.
 - Avoids wasted effort.

Worklist

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

Worklist → S

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

Worklist

S

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

int + int\$

Worklist

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

Worklist

E\$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

int + int\$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

T\$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $int + int\$$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $int + int\$$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$int + T$$$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $int + int\$$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $int + int\$$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $int + int\$$
 $T \rightarrow int$
 $T \rightarrow (E)$

Worklist → int + int\$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

- Substantial improvement over naïve algorithm.
- Will always find a valid parse of a program if one exists.
- Can easily be modified to find if a program can't be parsed.
- But, there are still problems.

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

Worklist

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

Worklist

S

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

Worklist

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

Worklist

A\$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

Worklist

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

Worklist

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

Aa\$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

Ab\$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid Ab \mid c$

Problems with Leftmost BFS

- Grammars like this can make parsing take exponential time.
- Also uses exponential memory.
- What if we search the graph with a different algorithm?

- Idea: Use depth-first search.
- Advantages:
 - Lower memory usage: Only considers one branch at a time.
 - High performance: On many grammars, runs very quickly.
 - Easy to implement: Can be written as a set of mutually recursive functions.

```
S \rightarrow E\$
E \rightarrow T
E \rightarrow T + E
T \rightarrow int
T \rightarrow (E)
```

```
S \rightarrow E\$
E \rightarrow T
E \rightarrow T + E
T \rightarrow int
T \rightarrow (E)
```

int + int\$

S

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

int + int\$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

S	\rightarrow	E	\$	
Ε	\longrightarrow	Т		
Ε	\longrightarrow	Т	+	Ε
Т	\longrightarrow	ir	nt	
Т	\longrightarrow	(E	Ξ)	

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

S	\rightarrow	E	\$	
Ε	\longrightarrow	Т		
Ε	\longrightarrow	Т	+	Ε
Т	\longrightarrow	ir	nt	
Т	\longrightarrow	(E	Ξ)	

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

S	\rightarrow	E	\$	
Ε	\longrightarrow	Т		
Ε	\longrightarrow	Т	+	Ε
Т	\longrightarrow	ir	nt	
Т	\longrightarrow	(E	Ξ)	

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

Leftmost DFS

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

Leftmost DFS

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

Leftmost DFS

$$S \rightarrow E\$$$
 $E \rightarrow T$
 $E \rightarrow T + E$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid c$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid c$

S

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid c$

S A\$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid c$

S
A\$
Aa\$

$$S \rightarrow A\$$$

 $A \rightarrow Aa \mid c$

S	\rightarrow A\$	
Α	$\rightarrow Aa$	c

 $S \rightarrow A\$$ $A \rightarrow Aa \mid c$

 $S \rightarrow A\$$ $A \rightarrow Aa \mid c$

S
A\$
Aa\$
Aaa\$
Aaaa\$
Aaaaa\$

 $S \rightarrow A\$$ $A \rightarrow Aa \mid c$ S
A\$
Aa\$
Aaa\$
Aaaa\$

Problem?

Left Recursion

A nonterminal A is said to be left-recursive if

$$A \rightarrow^* AW$$

For some string of terminals and nonterminals *w*.

- Leftmost DFS may fail on left-recursive grammars.
- Fortunately, in many cases it is possible to eliminate left recursion (more on this later).

Summary of Leftmost BFS/DFS

- Leftmost BFS works on all grammars.
- Worst-case runtime is exponential.
- Worst-case memory usage is exponential.
- Rarely used in practice.

- Leftmost DFS works on grammars without left recursion.
- Worst-case runtime is exponential.
- Worst-case memory usage is linear.
- Often used in a limited form as recursive descent.

Predictive Parsing

Predictive Parsing

- The leftmost DFS/BFS algorithms are backtracking algorithms.
 - Guess which production to use, then back up if it doesn't work.
 - Try to match a prefix by sheer dumb luck.
- There is another class of parsing algorithms called predictive algorithms.
 - Based on remaining input, predict (without backtracking) which production to use.

Tradeoffs in Prediction

- Predictive parsers are fast.
 - Many predictive algorithms can be made to run in linear time.
 - Often can be table-driven for extra performance.
- Predictive parsers are weak.
 - Not all grammars can be accepted by predictive parsers.
- Trade expressiveness for speed.

Exploiting Lookahead

- Given just the start symbol, how do you know which productions to use to get to the input program?
- Idea: Lookahead tokens.
- Use knowledge of what terminals need to be matched to pick which production to use.

Our First Predictive Parser: LL(1)

- Top-down, predictive parsing:
 - L: Left-to-right scan of the tokens
 - L: Leftmost derivation.
 - (1): One token of lookahead
- Construct a leftmost derivation for the sequence of tokens.
- When expanding a nonterminal, we predict the production to use by looking at the next token of the input. The decision is forced.

LL(1) Parse Tables

LL(1) Parse Tables

$$S \rightarrow E\$$$
 $E \rightarrow int$
 $E \rightarrow (E Op E)$
 $Op \rightarrow +$
 $Op \rightarrow *$

LL(1) Parse Tables

$$S \rightarrow E\$$$
 $E \rightarrow int$
 $E \rightarrow (E Op E)$
 $Op \rightarrow +$
 $Op \rightarrow *$

	int	()	+	*	\$
S	E\$	E\$				
Е	int	(E Op E)				
Ор				+	*	

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Ε	2	3				
Ор				4	5	

1. $S \rightarrow E$ \$

2. $E \rightarrow int$

3. $E \rightarrow (E Op E)$

4. Op \rightarrow +

5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S (int + (int * int))\$

1.
$$S \rightarrow E$$
\$

- 2. $E \rightarrow int$
- 3. $E \rightarrow (E Op E)$
- 4. Op \rightarrow +
- 5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

```
S (int + (int * int))$
```

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int +	(int	* int))\$
E\$	(int +	(int	* int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int +	(int *	int))\$
E\$	(int +	(int *	int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Ε	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E)\$	<pre>int + (int * int))\$</pre>

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Ε	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E)\$	<pre>int + (int * int))\$</pre>

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	int + (int * int))\$
int Op E)\$	<pre>int + (int * int))\$</pre>

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Ε	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E)\$	(int * int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	<pre>int + (int * int))\$</pre>
int Op E)\$	<pre>int + (int * int))\$</pre>
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E)\$	(int * int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Ε	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E)\$	(int * int))\$
(E Op E))\$	(int * int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E)\$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E)\$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E) \$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	<pre>int + (int * int))\$</pre>
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E)\$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$
Op E))\$	* int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	int + (int * int))\$
int Op E)\$	<pre>int + (int * int))\$</pre>
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E)\$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$
Op E))\$	* int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	<pre>int + (int * int))\$</pre>
int Op E)\$	<pre>int + (int * int))\$</pre>
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E) \$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$
Op E)) \$	* int))\$
* E))\$	* int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

(int + (int * int))\$
(int + (int * int))\$
(int + (int * int))\$
int + (int * int))\$
int + (int * int))\$
+ (int * int))\$
+ (int * int))\$
(int * int))\$
(int * int))\$
int * int))\$
int * int))\$
* int))\$
* int))\$
int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Ε	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E) \$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$
Op E)) \$	* int))\$
* E))\$	* int))\$
E))\$	int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	<pre>int + (int * int))\$</pre>
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E)\$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$
Op E)) \$	* int))\$
* E))\$	* int))\$
E))\$	int))\$
int))\$	int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4.
$$Op \rightarrow +$$

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E) \$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$
Op E)) \$	* int))\$
* E))\$	* int))\$
E))\$	int))\$
int))\$	int))\$
))\$))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Ε	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E) \$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E) \$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	<pre>int * int))\$</pre>
int Op E))\$	<pre>int * int))\$</pre>
Op E)) \$	* int))\$
* E))\$	* int))\$
E))\$	int))\$
int))\$	int))\$
))\$))\$
)\$)\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E) \$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E) \$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$
Op E))\$	* int))\$
* E))\$	* int))\$
E))\$	int))\$
int))\$	int))\$
))\$))\$
) \$)\$
\$	\$

					S		(int	+	(int	*	int))\$
1. S → E\$					E\$	5	(int	+	(int	*	int))\$
4	2. E	\longrightarrow	ir	nt	(E Op	E)\$	(int	+	(int	*	int))\$
4	3 F	\rightarrow	(F	E Op E)	E Op	E)\$	int	+	(int	*	int))\$
			•	•	int Op	E)\$	int	+	(int	*	int))\$
	4. C	_		r	Op E)\$		+	(int	*	int))\$
	5. C)p –	\rightarrow	AAAAAAAAA	wwwww	\$		+	(int	*	int))\$
١				6	de:				(int	*	int))\$
	int	()		9. 8))\$			(int	*	int))\$
	1	1))\$			int	*	int))\$
)	I	1			7	E))\$			int	*	int))\$
	2	3		-7/17	7) \$				*	int))\$
				VVVVVVEFFFFFF	ΑΛΑΛΑΛΑΛΑ	\$				*	int))\$
p				**************************************	——————————————————————————————————————	\$					int))\$
					int))\$					int))\$
)						\$))\$
) \$) \$	

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Ε	2	3				
Ор				4	5	

1. $S \rightarrow E$ \$

2. $E \rightarrow int$

3. $E \rightarrow (E Op E)$

4. Op \rightarrow +

5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S int + int\$

1. $S \rightarrow E$ \$

2. $E \rightarrow int$

3. $E \rightarrow (E Op E)$

4. Op \rightarrow +

5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S int + int\$

1.
$$S \rightarrow E$$
\$

- 2. $E \rightarrow int$
- 3. $E \rightarrow (E Op E)$
- 4. Op \rightarrow +
- 5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	int + int\$
E\$	<pre>int + int\$</pre>

1.
$$S \rightarrow E$$
\$

- 2. $E \rightarrow int$
- 3. $E \rightarrow (E Op E)$
- 4. Op \rightarrow +
- 5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	int + int\$
E\$	<pre>int + int\$</pre>

1.
$$S \rightarrow E$$
\$

- 2. $E \rightarrow int$
- 3. $E \rightarrow (E Op E)$
- 4. Op \rightarrow +
- 5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	int + int\$
E\$	int + int\$
int \$	int + int\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	int + int\$
E\$	int + int\$
int \$	int + int\$
\$	+ int\$

1. $S \rightarrow E$ \$

2. $E \rightarrow int$

3. $E \rightarrow (E Op E)$

4. Op \rightarrow +

5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	int + int\$
E\$	int + int\$
int \$	int + int\$
\$	+ int\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

1. $S \rightarrow E$ \$

2. $E \rightarrow int$

3. $E \rightarrow (E Op E)$

4. Op \rightarrow +

5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S (int (int))\$

1. $S \rightarrow E$ \$

2. $E \rightarrow int$

3. $E \rightarrow (E Op E)$

4. Op \rightarrow +

5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S (int (int))\$

1.
$$S \rightarrow E$$
\$

- 2. $E \rightarrow int$
- 3. $E \rightarrow (E Op E)$
- 4. Op \rightarrow +
- 5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int (int))\$
E\$	(int (int))\$

1.
$$S \rightarrow E$$
\$

- 2. $E \rightarrow int$
- 3. $E \rightarrow (E Op E)$
- 4. Op \rightarrow +
- 5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int	(int))\$
E\$	(int	(int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int (int))\$
E\$	(int (int))\$
(E Op E) \$	(int (int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Ε	2	3				
Ор				4	5	

S	(int (int))\$
E\$	(int (int))\$
(E Op E) \$	(int (int))\$
E Op E) \$	int (int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Ε	2	3				
Ор				4	5	

S	(int (int))\$
E\$	(int (int))\$
(E Op E) \$	(int (int))\$
E Op E)\$	int (int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int (int))\$
E\$	(int (int))\$
(E Op E) \$	(int (int))\$
E Op E) \$	int (int))\$
int Op E)\$	int (int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int (int))\$
E\$	(int (int))\$
(E Op E) \$	(int (int))\$
E Op E) \$	int (int))\$
int Op E)\$	int (int))\$
Op E) \$	(int))\$

1.
$$S \rightarrow E$$
\$

2.
$$E \rightarrow int$$

3.
$$E \rightarrow (E Op E)$$

4. Op
$$\rightarrow$$
 +

5. Op
$$\rightarrow$$
 -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int (int))\$
E\$	(int (int))\$
(E Op E) \$	(int (int))\$
E Op E)\$	int (int))\$
int Op E)\$	int (int))\$
Op E) \$	(int))\$

1. $S \rightarrow E$ \$

2. $E \rightarrow int$

3. $E \rightarrow (E Op E)$

4. $Op \rightarrow +$

5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int	(int))\$
E\$	(int	(int))\$
(E Op E) \$	(int	(int))\$
E Op E)\$	int	(int))\$
int Op E)\$	int	(int))\$
Op E) \$		(int))\$

The LL(1) Algorithm

- Given an LL(1) parsing table T and input w:
- Initialize a stack containing S.
- Repeat until the stack is just \$:
 - Let the next character of w be c.
 - If the top of the stack is a terminal t:
 - If c and t don't match, report an error.
 - Otherwise consume the character c and pop t from the stack.
 - Otherwise, the top of the stack is a nonterminal *A*:
 - If T[A, c] is undefined, report an error.
 - Replace the top of the stack with T[A, c].

A Simple LL(1) Grammar

```
STMT → if EXPR then STMT
        while EXPR do STMT
         EXPR;
EXPR → TERM → id
      zero? TERM
       not EXPR
\mathsf{TERM} \to \mathsf{id}
        constant
```

A Simple LL(1) Grammar

```
STMT \rightarrow if EXPR then STMT
        while EXPR do STMT
         EXPR;
                                id → id;
EXPR → TERM → id
                                while not zero? id do --id;
       | zero? TERM
       | not EXPR
                                if not zero? id then
                                   if not zero? id then
                                        constant → id;
\mathsf{TERM} \to \mathsf{id}
        constant
```

```
STMT \rightarrow if EXPR then STMT
                                           (1)
            while EXPR do STMT
                                           (2)
             EXPR;
                                           (3)
                                           (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                           (5)
           zero? TERM
            not EXPR
                                           (6)
                                           (7)
             ++ id
                                           (8)
             -- id
                                           (9)
TERM \rightarrow id
                                           (10)
            constant
```

```
STMT \rightarrow if EXPR then STMT
                                              (1)
                                              (2)
             while EXPR do STMT
             EXPR;
                                              (3)
                                             (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                              (5)
             zero? TERM
                                              (6)
             not EXPR
                                              (7)
             ++ id
                                              (8)
             -- id
                                             (9)
\mathsf{TFRM} \to \mathsf{id}
                                             (10)
             constant
```

	if	then	while	do	zero?	not	++	 \rightarrow	id	const	;
STMT											
EXPR											
TERM											

```
STMT \rightarrow if EXPR then STMT
                                              (1)
                                              (2)
             while EXPR do STMT
             EXPR;
                                              (3)
                                              (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                              (5)
             zero? TERM
                                              (6)
             not EXPR
                                              (7)
             ++ id
                                              (8)
             -- id
                                              (9)
\mathsf{TERM} \to \mathsf{id}
                                              (10)
             constant
```

	if	then	while	do	zero?	not	++	 \rightarrow	id	const	;
STMT											
EXPR											
TERM											

```
STMT \rightarrow if EXPR then STMT
                                              (1)
                                              (2)
             while EXPR do STMT
             EXPR;
                                              (3)
                                              (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                              (5)
             zero? TERM
                                              (6)
             not EXPR
                                              (7)
             ++ id
                                              (8)
             -- id
                                              (9)
\mathsf{TERM} \to \mathsf{id}
                                              (10)
             constant
```

	if	then	while	do	zero?	not	++	 \rightarrow	id	const	;
STMT											
EXPR											
TERM									9	10	

```
STMT \rightarrow if EXPR then STMT
                                              (1)
                                              (2)
             while EXPR do STMT
             EXPR;
                                              (3)
                                              (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                              (5)
             zero? TERM
                                              (6)
             not EXPR
                                              (7)
             ++ id
                                              (8)
              -- id
                                              (9)
\mathsf{TFRM} \to \mathsf{id}
                                              (10)
             constant
```

	if	then	while	do	zero?	not	++	 \rightarrow	id	const	;
STMT											
EXPR											
TERM									9	10	

```
STMT \rightarrow if EXPR then STMT
                                           (1)
                                           (2)
             while EXPR do STMT
             EXPR;
                                           (3)
                                           (4)
EXPR \rightarrow TERM \rightarrow id
                                           (5)
             zero? TERM
                                           (6)
             not EXPR
                                           (7)
             ++ id
                                           (8)
             -- id
                                           (9)
\mathsf{TFRM} \to \mathsf{id}
                                           (10)
             constant
```

	if	then	while	do	zero?	not	++	 \rightarrow	id	const	;
STMT											
EXPR											
TERM									9	10	

```
STMT \rightarrow if EXPR then STMT
                                           (1)
                                           (2)
            while EXPR do STMT
             EXPR;
                                           (3)
                                           (4)
EXPR \rightarrow TERM \rightarrow id
                                           (5)
             zero? TERM
                                           (6)
            not EXPR
                                           (7)
             ++ id
                                           (8)
             -- id
                                           (9)
\mathsf{TFRM} \to \mathsf{id}
                                           (10)
             constant
```

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT												
EXPR					5	6	7	8				
TERM										9	10	

```
STMT \rightarrow if EXPR then STMT
                                              (1)
                                              (2)
             while EXPR do STMT
             EXPR;
                                              (3)
                                              (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                              (5)
             zero? TERM
                                              (6)
             not EXPR
                                              (7)
             ++ id
                                              (8)
             -- id
                                              (9)
\mathsf{TFRM} \to \mathsf{id}
                                              (10)
             constant
```

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT												
EXPR					5	6	7	8				
TERM										9	10	

```
STMT \rightarrow if EXPR then STMT
                                              (1)
                                              (2)
             while EXPR do STMT
             EXPR;
                                              (3)
                                              (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                              (5)
             zero? TERM
                                              (6)
             not EXPR
                                              (7)
             ++ id
                                              (8)
              -- id
                                              (9)
\mathsf{TFRM} \to \mathsf{id}
                                              (10)
             constant
```

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT												
EXPR					5	6	7	8		4	4	
TERM										9	10	

```
STMT \rightarrow if EXPR then STMT
                                              (1)
                                              (2)
             while EXPR do STMT
             EXPR;
                                              (3)
                                              (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                              (5)
             zero? TERM
                                              (6)
             not EXPR
                                              (7)
             ++ id
                                              (8)
             -- id
                                              (9)
\mathsf{TFRM} \to \mathsf{id}
                                              (10)
             constant
```

		if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STI	MT												
EX	PR					5	6	7	8		4	4	
TEI	RM										9	10	

```
(1)
STMT → if FXPR then STMT
                                           (2)
            while EXPR do STMT
             EXPR;
                                           (3)
                                           (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                           (5)
            zero? TERM
                                           (6)
            not EXPR
                                           (7)
             ++ id
                                           (8)
             -- id
                                           (9)
\mathsf{TFRM} \to \mathsf{id}
                                           (10)
             constant
```

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT												
EXPR					5	6	7	8		4	4	
TERM										9	10	

```
(1)
STMT → if FXPR then STMT
                                            (2)
             while EXPR do STMT
             EXPR;
                                            (3)
                                            (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                            (5)
             zero? TERM
                                            (6)
             not EXPR
                                            (7)
             ++ id
                                            (8)
             -- id
                                            (9)
\mathsf{TFRM} \to \mathsf{id}
                                            (10)
             constant
```

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT	1		2									
EXPR					5	6	7	8		4	4	
TERM										9	10	

```
(1)
STMT → if FXPR then STMT
                                            (2)
             while EXPR do STMT
             EXPR ;
                                            (3)
                                            (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                            (5)
             zero? TERM
                                            (6)
             not EXPR
                                            (7)
             ++ id
                                            (8)
             -- id
                                            (9)
\mathsf{TFRM} \to \mathsf{id}
                                            (10)
             constant
```

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT	1		2									
EXPR					5	6	7	8		4	4	
TERM										9	10	

```
(1)
STMT → if FXPR then STMT
                                            (2)
             while EXPR do STMT
             EXPR ;
                                            (3)
                                            (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                            (5)
            zero? TERM
                                            (6)
             not EXPR
                                            (7)
             ++ id
                                            (8)
             -- id
                                            (9)
\mathsf{TFRM} \to \mathsf{id}
                                            (10)
             constant
```

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT	1		2		3	3	3	3				
EXPR					5	6	7	8		4	4	
TERM										9	10	

```
(1)
STMT → if FXPR then STMT
                                            (2)
             while EXPR do STMT
             EXPR ;
                                            (3)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                            (4)
                                            (5)
             zero? TERM
                                            (6)
             not EXPR
                                            (7)
             ++ id
                                            (8)
             -- id
                                            (9)
\mathsf{TFRM} \to \mathsf{id}
                                            (10)
             constant
```

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;	
STMT	1		2		3	3	3	3					
EXPR					5	6	7	8		4	4		
TERM										9	10		

```
(1)
STMT → if FXPR then STMT
                                            (2)
             while EXPR do STMT
             EXPR ;
                                            (3)
                                            (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                            (5)
             zero? TERM
                                            (6)
             not EXPR
                                            (7)
             ++ id
                                            (8)
             -- id
                                            (9)
\mathsf{TFRM} \to \mathsf{id}
                                            (10)
             constant
```

	if	then	while	do	zero?	not	++	-	\rightarrow	id	const	;	
STMT	1		2		3	3	3	3		3	3		
EXPR					5	6	7	8		4	4		
TERM										9	10		

```
STMT → if EXPR then STMT
                                            (1)
                                            (2)
             while EXPR do STMT
             EXPR;
                                            (3)
                                            (4)
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                            (5)
             zero? TERM
                                            (6)
             not EXPR
                                            (7)
             ++ id
                                            (8)
             -- id
                                            (9)
\mathsf{TFRM} \to \mathsf{id}
                                            (10)
             constant
```

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;	
STMT	1		2		3	3	3	3		3	3		
EXPR					5	6	7	8		4	4		
TERM										9	10		

Filling in Table Entries

- Intuition: The next character should uniquely identify a production, so we should pick a production that ultimately starts with that character.
- T[A, c] should be a production

$$A \rightarrow A_1 A_2 \dots A_n$$

if A₁ ultimately derives something starting with c.

• More rigorously:

$$T[A, c] = A_1 A_2 \dots A_n \text{ if } A \rightarrow A_1 A_2 \dots A_n \text{ and } A_1 \rightarrow^* c.$$

FIRST Sets

- In what follows, assume there are no εproductions in the grammar (we'll relax that
 condition later.)
- We can determine what tokens a nonterminal A can derive by using FIRST sets.
- Definition: FIRST(A) = { t | A →* tv }
 - The set of tokens that appear first in some production of A.
- Set T[A, c] = $A_1 A_2 \dots A_n$ if c in FIRST(A_1)

Computing FIRST Sets

Initially, for all nonterminals A, set
 FIRST(A) = { t | A → tw }

```
    Then, for each A → Bw, iteratively compute
    FIRST(A) = FIRST(A) ∪ FIRST(B)
```

- When no changes occur, the resulting sets are the FIRST sets.
- This is known a fixed-point iteration or a transitive closure algorithm.

STMT	EXPR	TERM

STMT	EXPR	TERM
if while	zero? not ++ 	id constant

	ERM
while not cons	id stant

STMT	EXPR	TERM
if while zero? not	zero? not ++	id constant
++		

STMT	EXPR	TERM
if while zero? not	zero? not ++	id constant
++		

STMT	EXPR	TERM
if	zero?	id
while	not	constant
zero?	++	
not		
++	id	
	constant	

STMT	EXPR	TERM
if while zero? not ++	zero? not ++ id constant	id constant
	Constant	

STMT	EXPR	TERM
if while zero? not ++	zero? not ++ id constant	id constant

STMT	EXPR	TERM	
if	zero?	id	
while	not	constant	
zero?	++		
not			
++	id		
	constant		
id			
constant			

STMT	EXPR	TERM	
if	zero?	id	
while	not	constant	
zero?	++		
not			
++	id		
	constant		
id			
constant			

From FIRST Sets to LL(1) Tables

From FIRST Sets to LL(1) Tables

$STMT \to$	if EXPR then STMT	(1)			
31WH →	while EXPR do STMT	(1) (2)	STMT	EXPR	TERM
I	EXPR ;	(3)	if	zero?	id
$EXPR \to$	$TERM \to id$	(4)	while	not	constant
1	zero? TERM	(5)	zero?	++	
į	not EXPR	(6)	not		
ļ	++ id	(7)	++	id	
id	(8)		constant		
$TERM \to$	id	(9)	id		
I	constant	(10)	constant		

$STMT \to I$	if EXPR then STMT while EXPR do STMT	(1) (2)	STMT	EXPR	TERM
	EXPR ;	(3)	if	zero?	id
EXPR →	TERM → id zero? TERM not EXPR ++ id id	(4)(5)(6)(7)(8)	while zero? not ++	not ++ id constant	constant
TERM → 	id constant	(9) (10)	id constant		

	if	then	while	do	zero?	not	++	 \rightarrow	id	const	;
STMT											
EXPR											
TERM											

STMT →	if EXPR then STMT while EXPR do STMT	(1) (2)	STMT	EXPR	TERM
I	EXPR ;	(3)	if	zero?	id
$EXPR \to$	$TERM \to id$	(4)	while	not	constant
ļ	zero? TERM	(5)	zero?	++	
	not EXPR	(6)	not		
	++ id	(7)	++	id	
I	id	(8)		constant	
$TERM \to$	id	(9)	id		
I	constant	(10)	constant		

	if	then	while	do	zero?	not	++	 \rightarrow	id	const	;
STMT											
EXPR											
TERM											

STMT →	if EXPR then STMT while EXPR do STMT	(1) (2)	STMT	EXPR	TERM
	EXPR ;	(3)	if	zero?	id
$EXPR \to$	$TERM \to id$	(4)	while	not	constant
	zero? TERM	(5)	zero?	++	
	not EXPR	(6)	not		
	++ id	(7)	++	id	
	id	(8)		constant	
$TERM \to$	id	(9)	id		
	constant	(10)	constant		

	if	then	while	do	zero?	not	++	 \rightarrow	id	const	;
STMT	1		2								
EXPR											
TERM											

$STMT \to$	if EXPR then STMT	(1)			
31W1 → 	while EXPR do STMT	(1) (2)	STMT	EXPR	TERM
i	EXPR ;	(3)	if	zero?	id
EXPR →	TERM → id	(4) (5)	while	not	constant
	zero? TERM not EXPR	(5) (6)	zero? not	++	
	++ id id	(7) (8)	++	id	
TERM →	id	(9)	id	constant	
	constant	(10)	constant		

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT	1		2		3	3	3	3		3	3	
EXPR												
TERM												

$STMT \to$	if EXPR then STMT	(1)			
31W11 →		(1)	STMT	EXPR	TERM
	while EXPR do STMT	(2)	OTIVIT		1 = 1 < 1 < 1
	EXPR ;	(3)			a
			if	zero?	id
$EXPR \to$	$TERM \to id$	(4)	while	not	constant
I	zero? TERM	(5)	zero?	++	
i			zero:	1 1	
	not EXPR	(6)	not		
	++ id	(7)		id	
i	id	(8)	++	10	
I	14	(0)		constant	
$TERM \to$	id	(9)	id		
I	_				
	constant	(10)	constant		

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT	1		2		3	3	3	3		3	3	
EXPR												
TERM												

STMT → 	if EXPR then STMT while EXPR do STMT	(1) (2)	STMT	EXPR	TERM
I	EXPR ;	(3)	if	zero?	id
$EXPR \rightarrow$	$TERM \to id$	(4)	while	not	constant
	zero? TERM	(5)	zero?	++	
	not EXPR	(6)	not		
	++ id	(7)	++	id	
1	id	(8)		constant	
				Constant	
$TERM \to$	id	(9)	id		
	constant	(10)	constant		

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT	1		2		3	3	3	3		3	3	
EXPR												
TERM												

STMT → 	if EXPR then STMT while EXPR do STMT	(1) (2)	STMT	EXPR	TERM
I	EXPR ;	(3)	if	zero?	id
$EXPR \rightarrow$	$TERM \to id$	(4)	while	not	constant
	zero? TERM	(5)	zero?	++	
	not EXPR	(6)	not		
	++ id	(7)	++	id	
1	id	(8)		constant	
				Constant	
$TERM \to$	id	(9)	id		
	constant	(10)	constant		

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT	1		2		3	3	3	3		3	3	
EXPR					5	6	7	8				
TERM												

STMT → 	if EXPR then STMT while EXPR do STMT	(1) (2)	STMT	EXPR	TERM
	EXPR;	(3)	if	zero?	id
$EXPR \to$	$TERM \to id$	(4)	while	not	constant
1	zero? TERM	(5)	zero?	++	
1	not EXPR	(6)	not		
1	++ id	(7)	++	id	
l	id	(8)		constant	
$TERM \to$	id	(9)	id		
I	constant	(10)	constant		

	if	then	while	do	zero?	not	++	-	\rightarrow	id	const	;	
STMT	1		2		3	3	3	3		3	3		
EXPR					5	6	7	8		4	4		
TERM													

STMT → 	if EXPR then STMT while EXPR do STMT	(1) (2)	STMT	EXPR	TERM
	EXPR ;	(3)	if	zero?	id
$EXPR \to$	$TERM \to id$	(4)	while	not	constant
	zero? TERM	(5)	zero?	++	
	not EXPR	(6)	not		
	++ id	(7)	++	id	
	id	(8)		constant	
$TERM \to$	id	(9)	id		
	constant	(10)	constant		

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT	1		2		3	3	3	3		3	3	
EXPR					5	6	7	8		4	4	
TERM												

$STMT \to$	if EXPR then STMT	(1)			
$311011 \rightarrow$		(1)	STMT	EXPR	TERM
	while EXPR do STMT	(2)	OTIVIT		1 = 1 < 1 < 1
	EXPR ;	(3)			id
			if	zero?	1α
$EXPR \to$	$TERM \to id$	(4)	while	not	constant
	zero? TERM	(5)	zero?	++	
i	not EXPR	(6)			
		:	not		
	++ id	(7)	++	id	
	id	(8)	''	_	
'		\ /		constant	
$\textbf{TERM} \rightarrow$	id	(9)	id		
	constant	(10)	constant		
·		, ,			

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT	1		2		3	3	3	3		3	3	
EXPR					5	6	7	8		4	4	
TERM												

STMT → 	if EXPR then STMT while EXPR do STMT	(1) (2)	STMT	EXPR	TERM
I	EXPR ;	(3)	if	zero?	id
$EXPR \to$	$TERM \to id$	(4)	while	not	constant
	zero? TERM	(5)	zero?	++	
	not EXPR	(6)	not		
	++ id	(7)	++	id	
l	id	(8)		constant	
$TERM \rightarrow$	id	(9)	id		
1	constant	(10)	constant		

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT	1		2		3	3	3	3		3	3	
EXPR					5	6	7	8		4	4	
TERM										9	10	

$STMT \to$	if EXPR then STMT	(1)			
311VII →		(1)	STMT	EXPR	TERM
	while EXPR do STMT	(2)	STIVIT	LAFIN	I LIXIVI
	EXPR ;	(3)			
1	_, ,	(0)	if	zero?	id
	TEDM	(4)			constant
$EXPR \to$	TERM → id	(4)	while	not	Constant
	zero? TERM	(5)	zero?	++	
i	not EXPR		2610:	• •	
ļ		(6)	not		
	++ id	(7)		id	
ĺ	id	(8)	++	14	
ı	14	(0)		constant	
$TERM \to$	id	(9)	id		
	constant	(10)	constant		

	if	then	while	do	zero?	not	++		\rightarrow	id	const	;
STMT	1		2		3	3	3	3		3	3	
EXPR					5	6	7	8		4	4	
TERM										9	10	

```
STMT \rightarrow if EXPR then STMT
                                     id → id;
         | while EXPR do STMT
                                     while not zero? id do --id;
          EXPR;
                                     if not zero? id then
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                         if not zero? id then
         | zero? TERM
                                               constant → id;
         | not EXPR
         | ++ id
\mathsf{TERM} \to \mathsf{id}
         constant
```

```
STMT \rightarrow if EXPR then STMT
         | while EXPR do STMT
           EXPR;
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
         | zero? TERM
         | not EXPR
         | ++ id
\mathsf{TFRM} \to \mathsf{id}
         constant
BLOCK → STMT
         | { STMTS }
STMTS → STMT STMTS
```

```
id → id;
while not zero? id do --id;
if not zero? id then
  if not zero? id then
    constant → id;
```

```
STMT → if EXPR then BLOCK id → id;
        | while EXPR do BLOCK
                                   while not zero? id do --id;
          EXPR;
                                   if not zero? id then
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                       if not zero? id then
        | zero? TERM
                                           constant → id:
        | not EXPR
        | ++ id
\mathsf{TFRM} \to \mathsf{id}
        constant
BLOCK → STMT
        | { STMTS }
STMTS → STMT STMTS
```

```
STMT → if EXPR then BLOCK id → id;
        | while EXPR do BLOCK
                                   while not zero? id do --id;
         EXPR;
                                   if not zero? id then
\mathsf{EXPR} \to \mathsf{TERM} \to \mathsf{id}
                                      if not zero? id then
        | zero? TERM
                                           constant → id:
        not EXPR
        | ++ id
\mathsf{TFRM} \to \mathsf{id}
        constant
BLOCK → STMT
        | { STMTS }
STMTS → STMT STMTS
```

```
STMT \rightarrow if EXPR then BLOCK id \rightarrow id;
        | while EXPR do BLOCK
                                 while not zero? id do --id;
         EXPR;
                                 if not zero? id then
EXPR → TERM → id
                                    if not zero? id then
        | zero? TERM
                                         constant → id:
        | not EXPR
                                 if zero? id then
                                     while zero? id do {
                                          constant → id;
\mathsf{TFRM} \to \mathsf{id}
                                          constant → id;
        constant
BLOCK → STMT
        | { STMTS }
STMTS → STMT STMTS
```

3

LL(1) with ε-Productions

- Computation of FIRST is different.
 - What if the first nonterminal in a production can produce ε?
- Building the table is different.
 - What action do you take if the correct production produces the empty string?

```
Number \rightarrow Sign Digits

Digits \rightarrow Digit | Digit Digits

Digit \rightarrow 0 | 1 | 2 | ... | 9

Sign \rightarrow + | - | \epsilon
```

```
Number \rightarrow Sign Digits

Digits \rightarrow Digit | Digit Digits

Digit \rightarrow 0 | 1 | 2 | ... | 9

Sign \rightarrow + | - | \epsilon
```

Number	Digits	Digit	Sign

```
Number \rightarrow Sign Digits

Digits \rightarrow Digit | Digit Digits

Digit \rightarrow 0 | 1 | 2 | ... | 9

Sign \rightarrow + | - | \epsilon
```

Number	Digits	Digit	Sign
		0	+
		1	-
		2	ε
		3	
		4	
		5	
		6	
		7	
		8	
		9	

```
Number \rightarrow Sign Digits

Digits \rightarrow Digit | Digit Digits

Digit \rightarrow 0 | 1 | 2 | ... | 9

Sign \rightarrow + | - | \epsilon
```

Number	Digits	Digit	Sign
		0	+
		1	_
		2	ε
		3	
		4	
		5	
		6	
		7	
		8	
		9	

```
Number \rightarrow Sign Digits

Digits \rightarrow Digit | Digit Digits

Digit \rightarrow 0 | 1 | 2 | ... | 9

Sign \rightarrow + | - | \epsilon
```

Number	Digits	Digit	Sign
	0	0	+
	1	1	_
	2	2	ε
	3	3	
	4	4	
	5	5	
	6	6	
	7	7	
	8	8	
	9	9	

```
Number \rightarrow Sign Digits

Digits \rightarrow Digit | Digit Digits

Digit \rightarrow 0 | 1 | 2 | ... | 9

Sign \rightarrow + | - | \epsilon
```

Number	Digits	Digit	Sign
	0	0	+
	1	1	_
	2	2	ε
	3	3	
	4	4	
	5	5	
	6	6	
	7	7	
	8	8	
	9	9	

```
Number \rightarrow Sign Digits

Digits \rightarrow Digit | Digit Digits

Digit \rightarrow 0 | 1 | 2 | ... | 9

Sign \rightarrow + | - | \epsilon
```

Number	Digits	Digit	Sign
	0	0	+
	1	1	_
	2	2	ε
	3	3	
	4	4	
	5	5	
	6	6	
	7	7	
	8	8	
	9	9	

```
Number \rightarrow Sign Digits

Digits \rightarrow Digit | Digit Digits

Digit \rightarrow 0 | 1 | 2 | ... | 9

Sign \rightarrow + | - | \epsilon
```

Number	Digits	Digit	Sign
+	0	0	+
_	1	1	_
	2	2	ε
	3	3	
	4	4	
	5	5	
	6	6	
	7	7	
	8	8	
	9	9	

```
Number \rightarrow Sign Digits

Digits \rightarrow Digit | Digit Digits

Digit \rightarrow 0 | 1 | 2 | ... | 9

Sign \rightarrow + | - | \epsilon
```

Number	Digits	Digit	Sign
+	0	0	+
_	1	1	_
	2	2	ε
	3	3	
	4	4	
	5	5	
	6	6	
	7	7	
	8	8	
	9	9	

```
Number \rightarrow Sign Digits

Digits \rightarrow Digit | Digit Digits

Digit \rightarrow 0 | 1 | 2 | ... | 9

Sign \rightarrow + | - | \epsilon
```

Number	Digits	Digit	Sign
+	0	0	+
_	1	1	_
0	2	2	ε
1	3	3	
2	4	4	
3	5	5	
4	6	6	
5	7	7	
6	8	8	
7	9	9	
8			
9			

```
Number → Sign Digits
```

Digits → Digit | Digit Digits

Digit $\rightarrow 0 \mid 1 \mid 2 \mid ... \mid 9$

Sign $\rightarrow + | - | \epsilon$

Number	Digits	Digit	Sign
+	0	0	+
_	1	1	_
0	2	2	ε
1	3	3	
2	4	4	
3	5	5	
4	6	6	
5	7	7	
6	8	8	
7	9	9	
8			
9			

Interestingly, this grammar isn't LL(1).

Updated FIRST Set Computation

- Idea: Want FIRST(A) to contain all possible first terminals derivable from A.
- If A → A₁ A₂ ... A₁ and A₁ cannot produce ε,
 FIRST(A) contains FIRST(A₁)
- If A → A₁ A₂ ... A₁ and A₁ can produce ε,
 FIRST(A) contains FIRST(A₁) and FIRST(A₂)
- If A → A₁ A₂ ... A₁ and all A₁ can produce ε,
 FIRST(A) contains all FIRST(A₁) and ε.

```
S \rightarrow A\$ (1)
 A \rightarrow \epsilon (2)
```

$$S \rightarrow A\$$$
 (1)

$A \rightarrow \epsilon$	(2)
--------------------------	-----

S	Α
\$	ε

$$S \rightarrow A\$$$
 (1)
 $A \rightarrow \epsilon$ (2)

$$A \rightarrow \epsilon$$
 (2)

S	Α
\$	ε

	\$
S	
А	

$$S \rightarrow A\$$$
 (1)
 $A \rightarrow \epsilon$ (2)

$$A \rightarrow \epsilon$$
 (2)

S	Α
\$	ε

	\$
S	
Α	

$$S \rightarrow A$$
\$ (1)
 $A \rightarrow \epsilon$ (2)

$$A \rightarrow \epsilon$$
 (2)

S	Α
\$	ε

	\$
S	
Α	

$$S \rightarrow A$$
\$ (1)
 $A \rightarrow \epsilon$ (2)

$$A \rightarrow \epsilon$$
 (2)

S	Α
\$	ε

	\$
S	1
А	

$$S \rightarrow A\$$$
 (1)
 $A \rightarrow \epsilon$ (2)

$$A \rightarrow \epsilon$$
 (2)

S	Α
\$	ε

	\$
S	1
А	

$$S \rightarrow A\$$$
 (1)

$3 \leftarrow A$	(2)
------------------	-----

S	Α
\$	з

	\$
S	1
А	

$$S \rightarrow A\$$$
 (1)

$A \rightarrow \epsilon$ (2

S	Α
\$	ε

	\$
S	1
Α	2

$$S \rightarrow A\$$$
 (1)
 $A \rightarrow \epsilon$ (2)

$$A \rightarrow \epsilon$$
 (2)

S	Α
\$	ε

	\$
S	1
Α	2

$$S \rightarrow A\$$$
 (1)
 $A \rightarrow \epsilon$ (2)

$$A \rightarrow \epsilon$$
 (2)

S	Α
\$	ε

	\$
S	1
Α	2

$$S \rightarrow A\$$$
 (1)
 $A \rightarrow \epsilon$ (2)

$$A \rightarrow \epsilon$$
 (2)

S	Α
\$	ε

	\$
S	1
Α	2

$$S \rightarrow A\$$$
 (1)
 $A \rightarrow \epsilon$ (2)

$$A \rightarrow \epsilon$$
 (2)

S	Α
\$	ε

	\$
S	1
А	2

S	\$
A\$	\$

$$S \rightarrow A\$$$
 (1)
 $A \rightarrow \epsilon$ (2)

$$A \rightarrow \epsilon$$
 (2)

S	Α
\$	ε

	\$
S	1
А	2

S	\$
A\$	\$

$$S \rightarrow A\$$$
 (1)
 $A \rightarrow \epsilon$ (2)

$$A \rightarrow \epsilon$$
 (2)

S	Α
\$	ε

	\$
S	1
А	2

S	\$
A\$	\$
\$	\$

$$S \rightarrow A\$$$
 (1)

$$S \rightarrow A\$$$
 (1)
 $A \rightarrow \epsilon$ (2)

S	Α
\$	ε

	\$
S	1
А	2

S	\$
A\$	\$
\$	\$

FOLLOW Sets

- Intuition: Keep track of what terminals can eventually follow a nonterminal.
- Formally:

```
FOLLOW(A) = \{ t \mid B \rightarrow^* wAtv \}
```

 Used in construction of LL(1) parse tables to determine when to use ε productions.

Computation of FOLLOW Sets

- Another fixed-point iteration.
- Initialization: For all productions B → wAv, set FOLLOW(A) = FIRST(v) – {ε}
 - Note that v is a string, not a terminal or nonterminal;
 you must take ε into account.
- Iteration: For all productions B → wAv where v can derive the empty string (i.e. ε in FIRST(v)):
 - Set FOLLOW(A) = FOLLOW(A) U FOLLOW(B)
- Stop when no more changes occur.

The Final LL(1) Table Algorithm

- Compute FIRST(A) and FOLLOW(A) for all nonterminals A.
- For each rule A → w, for each terminal t in FIRST(w), set T[A, t] = w.
 - Note that ε is **not** a terminal!
- For each rule A → w with ε in FIRST(w), for each t in FOLLOW(A), set T[A, t] = w.

Next Time

- A More Elaborate Example
- The Limits of LL(1)
- Bottom-Up Parsing
 - Shift/reduce parsing
 - LR(0)
 - LR(1)