Kuantum Mekaniği Teorisi

Schrödinger denklemi uygulamamızın temel matematik çerçevesini oluşturur.

Deneysel Yöntemler:

Qubit Kontrolü: Kuantum bilgisayar uygulamalarında kullanılacak qubitlerin hazırlanması ve kontrolü için gerekli deneysel yöntemler. Örneğin, süperiletken qubitlerin kullanımı.

Kuantum ölçüm teknikleri: Kuantum durumların ölçülmesi için kullanılan deneysel teknikler.

Qubit bağlantısı ve çentikleme: Qubitler arasındaki etkileşimleri oluşturmak ve ölçülen qubitler arasında çentiklemeyi sağlamak için kullanılan deneysel yöntemler.

Kullanıcı Deneyimi (UX) Tasarımı

Kullanıcı dostu arayüz: Kullanıcıların kuantum simülasyonlarını kolayca anlayabileceği bir tasarım gerçekleştirmek.

Kuantum Simülasyon Araçları

Kuantum simülasyonu yapmak için önceden geliştirilmiş yazılımlar ve kütüphaneler kullanılacaktır. ,QuEST, QKit, LIQ Ui, qHiPSTER, ProjectQ.

Kullanıcı Eğitimi ve Rehberlik

Kullanıcılara kuantum mekaniği hakkında bilgilendirmeler ve kuantum simülasyonunun nasıl gerçekleştirilebileceğini göstermk için eğitim materyalleri sağlamak.

Dalga Fonksiyonu(ψ), Kuantum sisteminde sistem üzerindeki olası ölçümlerin olasılıkların bulunmasını sağlar. Kuantum durumundan dalga fonksiyonu türetilebilir.

Schrödinger Denklemi, dalga fonksiyonlarının zamanla gelişimini belirler. Schrödinger denklemi matematiksel olarak bir dalga denklemi olduğu için bu dalgalar niteliksel olarak davranır.

$$H\psi=E\psi$$

Şekil 5: Schrödinger denklemi kapalı formülü

Burada ψ , Parçacığa eşlik eden dalga fonksiyonudur.

Burada H, Hamiltonyen' i temsil eder. Hamiltonyen, parçacığın toplam enerjisini veren bir operatördür.

$$H=rac{p^2}{2m}+V$$

Şekil 6: Hamiltonyen denklemi. İlk terim kinetik enerjiyi, ikinci terim ise potansiyel enerjiyi temsil eder.

$$ec{p}=-\imath\hbarec{
abla}$$

Sekil 7: Momentum denklemi

Momentum opereatörü Şekil 7'deki denklemde yerine konursa Shrödinger denkleminin sol tarafı elde edilir. O da böyle ifade edilir:

$$\left(-rac{\hbar^2}{2m}
abla^2+V
ight)\psi=\imath\hbarrac{\partial\psi}{\partial t}$$

Şekil 8: Zamana bağlı Schrödinger denklemi

 \hbar , Planck sabitinin 2π 'ye oranıdır.

Şekil 10: Bir parçacığın klasik ve kuantum harmonik osilatör kavramlarının karşılaştırılması

Klasik süreç (A-B) bir parçacığın bir eğri boyunca hareketini gösterir. Kuantum süreç (C-H) böyle bir gösterime sahip değildir. Bir parçacık yerine bir dalga olarak gösterilir. Dikey eksende gösterilenlerden mavi olan gerçek sayıları temsil ederken kırmızı olan hayali sayıları temsil eder. C-F panelleri Schrödinger denklemi'nin 4 farklı durağan dalga çözümünü gösterir. G-H panelleri ise Schrödinger denklemi'nin çözümü olan fakat durağan olmayan iki farklı çözüm gösterir.