```
In [2]: import numpy as np
        import pandas as pd
        import seaborn as sns; sns.set()
        import plotly.graph_objects as go
        import plotly.express as px
        import plotly
        import matplotlib.pyplot as plt
        import re
        from scipy import stats
        %notebook matplotlib
In [3]: df purchase = pd.read csv("./QVI purchase behaviour.csv")
        df purchase.head()
Out[3]:
            LYLTY_CARD_NBR
                                         LIFESTAGE PREMIUM_CUSTOMER
         0
                             YOUNG SINGLES/COUPLES
                       1000
                                                               Premium
                       1002
                             YOUNG SINGLES/COUPLES
         1
                                                             Mainstream
                       1003
                                    YOUNG FAMILIES
         2
                                                                Budget
         3
                       1004
                             OLDER SINGLES/COUPLES
                                                             Mainstream
                       1005 MIDAGE SINGLES/COUPLES
                                                             Mainstream
In [4]: df_purchase.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 72637 entries, 0 to 72636
        Data columns (total 3 columns):
         #
             Column
                                Non-Null Count Dtype
             LYLTY_CARD_NBR
         0
                                72637 non-null int64
             LIFESTAGE
                                72637 non-null object
             PREMIUM CUSTOMER 72637 non-null object
         2
        dtypes: int64(1), object(2)
        memory usage: 1.1+ MB
In [5]: df_purchase.shape
Out[5]: (72637, 3)
In [6]: print(df purchase["PREMIUM CUSTOMER"].nunique())
        print(df purchase["LIFESTAGE"].nunique())
        3
        7
```

```
In [7]: df_transaction = pd.read_excel("QVI_transaction_data.xlsx")
        df transaction.head()
```

Out[7]:

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT.
(0 43390	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	
	1 43599	1	1307	348	66	CCs Nacho Cheese 175g	3	
:	2 43605	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2	
;	3 43329	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5	
	4 43330	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3	

In [8]: df_transaction.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 264836 entries, 0 to 264835 Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	DATE	264836 non-null	int64
1	STORE_NBR	264836 non-null	int64
2	LYLTY_CARD_NBR	264836 non-null	int64
3	TXN_ID	264836 non-null	int64
4	PROD_NBR	264836 non-null	int64
5	PROD_NAME	264836 non-null	object
6	PROD_QTY	264836 non-null	int64
7	TOT_SALES	264836 non-null	float64
dtyp	es: float64(1),	<pre>int64(6), object(</pre>	1)

memory usage: 15.2+ MB

```
In [9]: df_transaction.shape
```

Out[9]: (264836, 8)

```
In [10]: df_analyze = df_transaction.merge(df_purchase,how="left",on="LYLTY_CARD_NBR").drc
```

In [11]: df_analyze.shape

Out[11]: (264836, 10)

In [12]: df_analyze.head()

Out[12]:

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	1
	0 43390	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	
	1 43599	1	1307	348	66	CCs Nacho Cheese 175g	3	
	2 43605	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2	
	3 43329	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5	
,	4 43330	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3	~
4							•	

In [13]: df_Life_sales = df_analyze[["TOT_SALES","LIFESTAGE"]].groupby("LIFESTAGE").agg(ng
df_Life_sales

Out[13]:

TOT_SALES

LIFESTAGE	
MIDAGE SINGLES/COUPLES	184751.30
NEW FAMILIES	50433.45
OLDER FAMILIES	353767.20
OLDER SINGLES/COUPLES	402426.75
RETIREES	366470.90
YOUNG FAMILIES	316160.10
YOUNG SINGLES/COUPLES	260405.30

In [14]: # Before detecting anomalies plt.plot(df_Life_sales) plt.tick_params(axis="x", labelrotation=90) plt.tick_params(axis="y", labelrotation=0) plt.figure;


```
In [15]: sns.set_theme(style="whitegrid")
ax = sns.boxplot(x=df_analyze["TOT_SALES"], y=df_analyze["LIFESTAGE"])
```



```
In [16]: # Remove outliers
         def reject_outliers(sr, iq_range=0.995):
             pcnt = (1 - iq_range) / 2
             qlow, median, qhigh = sr.quantile([pcnt, 0.50, 1-pcnt])
             iqr = qhigh - qlow
             return sr[ (sr - median).abs() <= iqr]</pre>
         df_analyze["TOT_SALES"] = reject_outliers(df_analyze["TOT_SALES"], 0.999)
         df_analyze["TOT_SALES"]
Out[16]: 0
                     6.0
         1
                     6.3
         2
                     2.9
         3
                    15.0
         4
                    13.8
         264831
                    10.8
         264832
                    4.4
         264833
                     8.8
         264834
                     7.8
         264835
                     8.8
         Name: TOT SALES, Length: 264836, dtype: float64
```

```
In [17]: sns.set_theme(style="dark")
ax = sns.boxplot(x=df_analyze["TOT_SALES"], y=df_analyze["LIFESTAGE"])
```



```
In [18]: df_status_sales = df_analyze[["TOT_SALES","PREMIUM_CUSTOMER"]].groupby("PREMIUM_C
df_status_sales
```

Out[18]:

TOT_SALES

PREMIUM_CUSTOMER

 Budget
 676182.05

 Mainstream
 750656.00

 Premium
 506070.45

In [19]: sns.set_theme(style="whitegrid")
ax = sns.boxplot(x=df_analyze["TOT_SALES"], y=df_analyze["PREMIUM_CUSTOMER"])

In [20]: df_life_status_sales = df_analyze[["TOT_SALES","PREMIUM_CUSTOMER","LIFESTAGE"]].g
 df_life_status_sales

Out[20]:

		TOT_SALES
PREMIUM_CUSTOMER	LIFESTAGE	
Budget	MIDAGE SINGLES/COUPLES	35514.80
	NEW FAMILIES	21928.45
	OLDER FAMILIES	168363.25
	OLDER SINGLES/COUPLES	136769.80
	RETIREES	113147.80
	YOUNG FAMILIES	139316.35
	YOUNG SINGLES/COUPLES	61141.60
Mainstream	MIDAGE SINGLES/COUPLES	90774.35
	NEW FAMILIES	17013.90
	OLDER FAMILIES	103416.05
	OLDER SINGLES/COUPLES	133393.80
	RETIREES	155647.55
	YOUNG FAMILIES	92788.75
	YOUNG SINGLES/COUPLES	157621.60
Premium	MIDAGE SINGLES/COUPLES	58432.65
	NEW FAMILIES	11491.10
	OLDER FAMILIES	80628.90
	OLDER SINGLES/COUPLES	132233.65
	RETIREES	97616.55
	YOUNG FAMILIES	84025.50
	YOUNG SINGLES/COUPLES	41642.10

```
In [21]: df life status sales.index
Out[21]: MultiIndex([(
                                       'MIDAGE SINGLES/COUPLES'),
                            'Budget',
                            'Budget',
                                                 'NEW FAMILIES'),
                            'Budget',
                                               'OLDER FAMILIES'),
                                        'OLDER SINGLES/COUPLES'),
                            'Budget',
                            'Budget',
                                                      'RETIREES'),
                            'Budget',
                                               'YOUNG FAMILIES'),
                                        'YOUNG SINGLES/COUPLES'),
                            'Budget',
                        'Mainstream',
                                       'MIDAGE SINGLES/COUPLES'),
                                                 'NEW FAMILIES'),
                        'Mainstream',
                                               'OLDER FAMILIES'),
                       ('Mainstream',
                       ('Mainstream',
                                        'OLDER SINGLES/COUPLES'),
                       ('Mainstream',
                                                      'RETIREES'),
                                               'YOUNG FAMILIES'),
                        'Mainstream',
                        'Mainstream',
                                        'YOUNG SINGLES/COUPLES'),
                           'Premium',
                                       'MIDAGE SINGLES/COUPLES'),
                           'Premium',
                                                  'NEW FAMILIES'),
                           'Premium',
                                               'OLDER FAMILIES'),
                           'Premium',
                                        'OLDER SINGLES/COUPLES'),
                                                      'RETIREES'),
                           'Premium',
                           'Premium',
                                               'YOUNG FAMILIES'),
                                        'YOUNG SINGLES/COUPLES')],
                           'Premium',
                     names=['PREMIUM CUSTOMER', 'LIFESTAGE'])
```

c:\users\user\appdata\local\programs\python\python38-32\lib\site-packages\seabo rn\categorical.py:3704: UserWarning: The `factorplot` function has been renamed to `catplot`. The original name will be removed in a future release. Please upd ate your code. Note that the default `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.

warnings.warn(msg)


```
In [23]: sns.set_theme(style="whitegrid")
ax = sns.boxplot( x=df_analyze["PROD_QTY"])
```



```
In [24]: |df_analyze["PROD_QTY"] = reject_outliers(df_analyze["PROD_QTY"], 0.999)
         df_analyze["PROD_QTY"]
Out[24]: 0
                    2.0
                    3.0
         2
                    2.0
         3
                    5.0
                    3.0
         264831
                    2.0
         264832
                    1.0
         264833
                    2.0
         264834
                    2.0
         264835
                    2.0
         Name: PROD_QTY, Length: 264836, dtype: float64
```

```
In [25]: sns.set_theme(style="whitegrid")
ax = sns.boxplot(x=df_analyze["PROD_QTY"])
```

```
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 PROD_QTY
```

```
In [26]: df analyze.shape
Out[26]: (264836, 10)
In [27]: df analyze = df analyze.dropna()
In [28]: df_analyze.shape
Out[28]: (264827, 10)
In [29]: df_analyze["PROD_NAME"]
Out[29]: 0
                                         Compny SeaSalt175g
                     Natural Chip
                                   CCs Nacho Cheese
         1
                     Smiths Crinkle Cut Chips Chicken 170g
         3
                     Smiths Chip Thinly S/Cream&Onion 175g
                   Kettle Tortilla ChpsHny&Jlpno Chili 150g
         264831
                    Kettle Sweet Chilli And Sour Cream 175g
         264832
                              Tostitos Splash Of Lime 175g
         264833
                                   Doritos Mexicana
                                                       170g
         264834
                    Doritos Corn Chip Mexican Jalapeno 150g
                              Tostitos Splash Of Lime 175g
         264835
         Name: PROD_NAME, Length: 264827, dtype: object
In [30]: pd.to_numeric(df_analyze['DATE']);
```

```
In [31]: pd.to_datetime(df_analyze['DATE'])
    df_analyze.head()
```

Out[31]:

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT _.
0	43390	1	1000	1	5	Natural Chip Compny SeaSalt175g	2.0	
1	43599	1	1307	348	66	CCs Nacho Cheese 175g	3.0	
2	43605	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2.0	
3	43329	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5.0	
4	43330	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3.0	

```
In [32]: df_analyze = df_analyze.dropna()
In [33]: # df_analyze["DATE"] = pd.to_datetime(df_analyze["DATE"], origin = '1899-12-30').
         df_analyze["DATE"]
Out[33]: 0
                   43390
         1
                   43599
         2
                   43605
         3
                   43329
                   43330
                    . . .
         264831
                   43533
         264832
                   43325
         264833
                   43410
         264834
                   43461
         264835
                   43365
         Name: DATE, Length: 264827, dtype: int64
In [34]: df_analyze['LYLTY_CARD_NBR'] = df_analyze['LYLTY_CARD_NBR'].astype('str')
         df_analyze['TXN_ID'] = df_analyze['TXN_ID'].astype('str')
         df_analyze['STORE_NBR'] = df_analyze['STORE_NBR'].astype('str')
         df_analyze['PROD_NBR'] = df_analyze['PROD_NBR'].astype('str')
```



```
In [36]: df_analyze["DATE"] = pd.to_datetime(df_analyze['DATE'], origin = '1899-12-30', ur
```

In [37]: df_analyze.head()

Out[37]:

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_
0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	2.0	
1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g	3.0	
2	2019- 05-20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2.0	
3	2018- 08-17	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5.0	
4	2018- 08-18	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3.0	

In [38]: df_total_sales_day = df_analyze[["DATE","TOT_SALES"]].groupby(["DATE"]).agg(np.su
df_total_sales_day

Out[38]:

TOT_SALES

DATE	
2018-07-01	5372.2
2018-07-02	5315.4
2018-07-03	5321.8
2018-07-04	5309.9
2018-07-05	5080.9
2019-06-26	
2019-00-20	5305.0
2019-06-27	5305.0 5202.8
2019-06-27	5202.8
2019-06-27 2019-06-28	5202.8 5299.6

364 rows × 1 columns

In [47]: df_total_sales_day.index = pd.to_datetime(df_total_sales_day.index).strftime('%Y-

Total Number of Sales per day

Out[88]:

TOT_Transactions

DATE	
2018-07-01 00:00:00	724.0
2018-07-02 00:00:00	711.0
2018-07-03 00:00:00	722.0
2018-07-04 00:00:00	714.0
2018-07-05 00:00:00	712.0
2019-06-27 00:00:00	709.0
2019-06-28 00:00:00	730.0
2019-06-29 00:00:00	745.0
2019-06-30 00:00:00	744.0
2018-12-25	NaN

365 rows × 1 columns

Total Number of Transactions per day


```
In [93]: df_products = df_analyze.copy()
df_products.head()
```

Out[93]:

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_
0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	2.0	
1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g	3.0	
2	2019- 05-20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2.0	
3	2018- 08-17	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5.0	
4	2018- 08-18	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3.0	

```
In [123]: df_products["Brands"] = df_products["PROD_NAME"].apply(lambda x: x.strip().split()
          df products["Size (g)"] = df products["PROD NAME"].apply(lambda x: x.strip().spli
          df_products = df_products[df_products["Size (g)"] != "salt" ]
          df_products["Brands"]
          df_products["Size (g)"]
Out[123]: 0
                     175g
          1
                     175g
          2
                     170g
          3
                     175g
          4
                     150g
                     . . .
          264831
                     175g
          264832
                     175g
          264833
                     170g
          264834
                     150g
          264835
                     175g
          Name: Size (g), Length: 261570, dtype: object
In [128]: | df_grouped_product = df_products.groupby(["Size (g)"]).agg(np.sum)
```

```
In [130]: fig = px.pie(df_grouped_product , values="TOT_SALES", names=df_grouped_product.ir
fig.show()
```

Percentages of Sales with Item sizes


```
In [131]: fig = px.pie(df_grouped_product , values="PROD_QTY", names=df_grouped_product.inc
fig.show()
```

Percentages of Items sold with Item sizes


```
In [142]: df_grouped_product = df_products.groupby("Brands").agg(np.sum)
```

Percentages of Sales respect to Brand


```
In [144]: fig = px.pie(df_grouped_product , values="PROD_QTY", names=df_grouped_product.inc
fig.show()
```

Percentages of Items sold respect to Brand


```
In [148]: df_store = df_analyze.copy()
```

```
In [203]: df_store_grouped =df_store.groupby("STORE_NBR").agg(np.sum)
    df_store_grouped["STORE"] = df_store_grouped.index.copy()
    df_store_grouped["STORE"] = df_store_grouped["STORE"].apply(lambda x: "Store " +
    df_store_grouped
```

Out[203]:

	PROD_QTY	TOT_SALES	STORE
STORE_NBR			
226	4001.0	17605.45	Store 226
88	3718.0	16333.25	Store 88
165	3602.0	15973.75	Store 165
40	3499.0	15559.50	Store 40
237	3515.0	15539.50	Store 237
206	2.0	7.60	Store 206
252	2.0	7.40	Store 252
11	2.0	6.70	Store 11
76	2.0	6.00	Store 76
211	2.0	5.20	Store 211

272 rows × 3 columns

Top 10 Stores

Top 10 stores by sales

Least performing stores by sales

In [221]: df_customer_sal = df_analyze.copy()
 df_customer_sal.head()

Out[221]:

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_
0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	2.0	
1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g	3.0	
2	2019- 05-20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2.0	
3	2018- 08-17	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5.0	
4	2018- 08-18	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3.0	
4								•

In [228]: df_customer_sal_g = df_customer_sal.groupby(["LIFESTAGE", "PREMIUM_CUSTOMER"]).ag
df_customer_sal_d = df_customer_sal.set_index(['PROD_QTY', 'TOT_SALES']).value

df_customer_sal_g["TOT_SALES"].unstack().plot(kind='bar', stacked=True);
df_customer_sal_g

In [229]: df_customer_sal_g["PROD_QTY"].unstack().plot(kind='bar', stacked=True);

Summary:

Overall Sale Trends

The highest sales happened a day before christmas (24 December 2018):
 6923 Sales

Also this trend start increase drasctically 1 week before christmas day and the transactions in this week also have uptrend - no doubt

The lowest sales happened on 18 May 2019: 4036.5 Sales
 Also this extreme downtrend start 1 week before, and this is also happened on
 August last year(2018) almost in the same date but for the transactions still
 look the same as the another days/weeks, so maybe there are some big
 discount in these two weeks maybe

Focused on these Customer Segments:

- Retirees
- Older Singles/Couples
- Older Families
- · Young Families
- Young Singles/Couples

With top 5 brands

- Kettle
- Smiths
- Doritos
- Pringles
- Old

Top 5 sizes

- 175g
- 150g
- 134g
- 110g
- 170g

Focused on Stores with respect to Sales

Leader was Store 226

Conclusion

It is better to focus on the products in the mid range sales area as they are mostly used by the segments where sales are not generated enough

In []: