Linear Algebra

Queensland University of Technology

Dr Ravindra Pethiyagoda Semester 1, 2021

:)

June 13, 2021

Linear Algebra CONTENTS

Contents

Contents							
1	Euclidean Vector Spaces						
	1.1	Vectors	5				
	1.2	Position and Displacement Vectors	5				
	1.3	Vector Addition	6				
	1.4	Scalar Multiplication	6				
	1.5	Norm of a Vector	6				
	1.6	The Unit Vector	6				
	1.7	The Dot Product	6				
	1.8	The Cross Product	6				
2	Vec	tor Identities	8				
3	Line	ear System of Equations	9				
	3.1	Linear Equations	9				
	3.2	Homogeneous Linear Equations	9				
	3.3	Linear Systems	9				
	3.4	Coefficient Matrices	9				
	3.5	Augmented Matrices	9				
	3.6	Elementary Row Operations	10				
	3.7	Pivots	10				
	3.8	Gaussian Elimination	10				
	3.9	Row-Echelon Form	10				
	3.10	Gauss-Jordan Elimination	10				
	3.11	Solutions to Linear Systems	11				
4	Mat	trices	12				
	4.1	Matrix Addition	12				
	4.2		12				
	4.3		12				
	4.4		12				
	4.5	v	13				
	4.6	The Diagonal Matrix	13				
	4.7	ů	13				
	4.8		13				
5	Gen	neral Vector Spaces	14				
•	5.1		14				
	5.2	•	15				
	5.3	•	16				
	5.4		16				
	5.5	-	16				
	5.6		16				

Linear Algebra CONTENTS

7.1 Orthogonal Subspaces 19 7.2 Orthogonal Complements 19 7.3 Vector Projections 20 7.4 Projection onto a Subspace 20 7.5 Least Squares 21 8 Linear Maps 22 8.1 Matrix Transformations 22 8.2 General Linear Transformations 22 8.3 Subspaces of Linear Transformations 23 8.4 Constructing a Transformation Matrix 24	6	Fun	damental Subspaces	17
6.3 Row Equivalence 18 6.4 Rank 18 6.5 Nullity 18 7 Orthogonality 19 7.1 Orthogonal Subspaces 19 7.2 Orthogonal Complements 19 7.3 Vector Projections 20 7.4 Projection onto a Subspace 20 7.5 Least Squares 21 8 Linear Maps 22 8.1 Matrix Transformations 22 8.2 General Linear Transformations 22 8.3 Subspaces of Linear Transformations 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.1 Properties of Eigenvalue 28 11 Eigen Decomposition <th></th> <th>6.1</th> <th>The Four Fundamental Subspaces of a Matrix</th> <th>17</th>		6.1	The Four Fundamental Subspaces of a Matrix	17
6.4 Rank 18 6.5 Nullity 18 7 Orthogonality 19 7.1 Orthogonal Subspaces 19 7.2 Orthogonal Complements 19 7.3 Vector Projections 20 7.4 Projection onto a Subspace 20 7.5 Least Squares 21 8 Linear Maps 22 8.1 Matrix Transformations 22 8.2 General Linear Transformations 22 8.3 Subspaces of Linear Transformations 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 9.7 The Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen D		6.2	The General Solution of a System of Equations	17
6.5 Nullity 18 7 Orthogonality 19 7.1 Orthogonal Subspaces 19 7.2 Orthogonal Complements 19 7.3 Vector Projections 20 7.4 Projection onto a Subspace 20 7.5 Least Squares 21 8 Linear Maps 22 8.1 Matrix Transformations 22 8.2 General Linear Transformations 22 8.3 Subspaces of Linear Transformations 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 25 9.5 The Adjugate of a Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28		6.3	Row Equivalence	18
7 Orthogonality 19 7.1 Orthogonal Subspaces 19 7.2 Orthogonal Complements 19 7.3 Vector Projections 20 7.4 Projection onto a Subspace 20 7.5 Least Squares 21 8 Linear Maps 22 8.1 Matrix Transformations 22 8.2 General Linear Transformations 22 8.3 Subspaces of Linear Transformations 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29		6.4	Rank	18
7.1 Orthogonal Subspaces 19 7.2 Orthogonal Complements 19 7.3 Vector Projections 20 7.4 Projection onto a Subspace 20 7.5 Least Squares 21 8 Linear Maps 22 8.1 Matrix Transformations 22 8.2 General Linear Transformations 22 8.3 Subspaces of Linear Transformations 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 26 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 <td></td> <td>6.5</td> <td>Nullity</td> <td>18</td>		6.5	Nullity	18
7.1 Orthogonal Subspaces 19 7.2 Orthogonal Complements 19 7.3 Vector Projections 20 7.4 Projection onto a Subspace 20 7.5 Least Squares 21 8 Linear Maps 22 8.1 Matrix Transformations 22 8.2 General Linear Transformations 22 8.3 Subspaces of Linear Transformations 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 26 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 <td>7</td> <td>Ort</td> <td>hogonality</td> <td>19</td>	7	Ort	hogonality	19
7.2 Orthogonal Complements 19 7.3 Vector Projections 20 7.4 Projection onto a Subspace 20 7.5 Least Squares 21 8 Linear Maps 22 8.1 Matrix Transformations 22 8.2 General Linear Transformations 22 8.3 Subspaces of Linear Transformations 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 9.7 The Inverse of Eigenvalue 27 10.1 Properties of Eigenvalues 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30			- ·	19
7.3 Vector Projections 20 7.4 Projection onto a Subspace 20 7.5 Least Squares 21 8 Linear Maps 22 8.1 Matrix Transformations 22 8.2 General Linear Transformations 22 8.3 Subspaces of Linear Transformations 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 <td></td> <td></td> <td>0 1</td> <td></td>			0 1	
7.4 Projection onto a Subspace 20 7.5 Least Squares 21 8 Linear Maps 22 8.1 Matrix Transformations 22 8.2 General Linear Transformations 23 8.3 Subspaces of Linear Transformations 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29			O I	
7.5 Least Squares 21 8 Linear Maps 22 8.1 Matrix Transformations 22 8.2 General Linear Transformations 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 9.7 The Inverse of a Matrix 26 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 </td <td></td> <td></td> <td></td> <td></td>				
8 Linear Maps 22 8.1 Matrix Transformations 22 8.2 General Linear Transformations 22 8.3 Subspaces of Linear Transformations 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order			v i	
8.1 Matrix Transformations 22 8.2 General Linear Transformations 22 8.3 Subspaces of Linear Transformations 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.2 First-Order Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.4 Principle of Superposition 32 <td></td> <td>7.3</td> <td>Least Squares</td> <td>21</td>		7.3	Least Squares	21
8.2 General Linear Transformations 22 8.3 Subspaces of Linear Transformations 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.4 Principle of Superposition 32 <	8			
8.3 Subspaces of Linear Transformation Matrix 23 8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.2 Matrix Diagonalisation 29 11.2 Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential		-		
8.4 Constructing a Transformation Matrix 24 9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32				
9 Determinants 25 9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32		8.3		23
9.1 Properties of Determinants 25 9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32		8.4	Constructing a Transformation Matrix	24
9.2 Matrix Minors 25 9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32	9	Det		25
9.3 Matrix Cofactors 25 9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32		9.1	Properties of Determinants	25
9.4 The Determinant of a Matrix 25 9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32		9.2	Matrix Minors	25
9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32		9.3	Matrix Cofactors	25
9.5 The Cofactor Matrix 26 9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32		9.4	The Determinant of a Matrix	25
9.6 The Adjugate of a Matrix 26 9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32		9.5		
9.7 The Inverse of a Matrix 26 10 Invariant Subspaces 27 10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32		9.6		
10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32				
10.1 Trivial Invariant Subspaces 27 10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32	10	Inve	ariant Subspaces	7
10.2 Eigenspaces 27 10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32	10			
10.3 The Eigenvalue Problem 27 10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32				
10.4 Properties of Eigenvalues 28 11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32			0 1	
11 Eigen Decomposition 29 11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32				
11.1 Similarity Transformations 29 11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32		10.4	Properties of Eigenvalues	28
11.2 Matrix Diagonalisation 29 11.3 Powers of a Matrix 30 12 System of Differential Equations 31 12.1 First-Order Differential Equations 31 12.2 First-Order System of Differential Equations 31 12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32	11			
11.3 Powers of a Matrix3012 System of Differential Equations3112.1 First-Order Differential Equations3112.2 First-Order System of Differential Equations3112.3 Solution using Diagonalisation3112.4 Principle of Superposition32			v	29
12 System of Differential Equations3112.1 First-Order Differential Equations3112.2 First-Order System of Differential Equations3112.3 Solution using Diagonalisation3112.4 Principle of Superposition32		11.2	Matrix Diagonalisation	29
12.1 First-Order Differential Equations3112.2 First-Order System of Differential Equations3112.3 Solution using Diagonalisation3112.4 Principle of Superposition32		11.3	Powers of a Matrix	30
12.1 First-Order Differential Equations3112.2 First-Order System of Differential Equations3112.3 Solution using Diagonalisation3112.4 Principle of Superposition32	12	Syst	tem of Differential Equations	31
12.2 First-Order System of Differential Equations3112.3 Solution using Diagonalisation3112.4 Principle of Superposition32		-		
12.3 Solution using Diagonalisation 31 12.4 Principle of Superposition 32				
12.4 Principle of Superposition				

Linear Algebra	CONTENTS
List of Figures	33
References	34

1 Euclidean Vector Spaces

1.1 Vectors

Definition 1.1.1. An n-dimensional **vector** is an ordered list of n numbers.

$$oldsymbol{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix} \in \mathbb{R}^n$$

Theorem 1.1.1. \mathbb{R}^n is the set of all ordered n-tuples of real numbers.

$$\mathbb{R}^n = \big\{(v_1, v_2, \ldots, v_n): v_1, v_2, \ldots, v_n \in \mathbb{R}: n \in \mathbb{N}\big\}$$

Notation:

1. Component form: $\mathbf{v}=\langle v_1,v_2\rangle=(v_1,v_2)=\begin{pmatrix} v_1\\v_2\end{pmatrix}=\begin{bmatrix} v_1\\v_2 \end{bmatrix}$

2. Unit vector form: $\mathbf{v} = v_1 \hat{\mathbf{i}} + v_2 \hat{\mathbf{j}}$, where $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ are basis vectors along the x and y axes respectively.

3. Denotation: $\mathbf{v} = \mathbf{v} = \vec{v}$

1.2 Position and Displacement Vectors

Definition 1.2.1. The **displacement vector** \overrightarrow{AB} from a to b can be defined as b-a.

Figure 1: Displacement vector between two points.

1.3 Vector Addition

Definition 1.3.1. Vector addition is performed by adding the corresponding components of two vectors of the same dimension.

$$m{a} + m{b} = egin{bmatrix} a_1 + b_1 \ dots \ a_n + b_n \end{bmatrix}$$

1.4 Scalar Multiplication

Definition 1.4.1. Scalar multiplication is performed by multiplying each element of the vector by the scalar.

$$a \boldsymbol{v} = \begin{bmatrix} a v_1 \\ \vdots \\ a v_n \end{bmatrix}$$

1.5 Norm of a Vector

Definition 1.5.1. The **norm** of a vector v, denoted by ||v||, is the length or magnitude of v.

$$\|v\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

1.6 The Unit Vector

Definition 1.6.1. A unit vector is a vector, denoted \hat{v} , that has a length of 1 in the direction of v.

$$\hat{\boldsymbol{v}} = \frac{\boldsymbol{v}}{\|\boldsymbol{v}\|}$$

1.7 The Dot Product

Definition 1.7.1. The **dot product** is a function that associates each pair of vectors $v, w \in \mathbb{R}^n$ a real number $v \cdot w$.

$$\begin{aligned} \boldsymbol{v} \cdot \boldsymbol{w} &= v_1 w_1 + v_2 w_2 + \dots + v_n w_n \\ &= \|\boldsymbol{v}\| \|\boldsymbol{w}\| \cos \left(\theta\right) \end{aligned}$$

where θ is the angle between \boldsymbol{v} and \boldsymbol{w} .

Theorem 1.7.1. If $\mathbf{v} \cdot \mathbf{w} = 0$ then \mathbf{v} and \mathbf{w} are orthogonal.

1.8 The Cross Product

Definition 1.8.1. The **cross product** is a function that associates each ordered pair of vectors $v, w \in \mathbb{R}^3$ a vector $v \times w \in \mathbb{R}^3$.

$$\begin{aligned} \boldsymbol{v} \times \boldsymbol{w} &= \begin{vmatrix} \hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\boldsymbol{k}} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} \\ &= \|\boldsymbol{v}\| \|\boldsymbol{w}\| \sin(\theta) \hat{\boldsymbol{n}} \end{aligned}$$

where $\hat{\boldsymbol{n}}$ is the normal vector given by the right-hand rule.

2 Vector Identities

Theorem 2.0.1. Commutativity of vector addition.

$$a + b = b + a$$

Theorem 2.0.2.

$$\boldsymbol{a} \cdot \boldsymbol{a} = \|\boldsymbol{a}\|^2$$

Theorem 2.0.3. Commutativity of dot products.

$$a \cdot b = b \cdot a$$

Theorem 2.0.4. Distributivity of dot products over vector addition.

$$a \cdot (b + c) = a \cdot b + a \cdot c$$

Theorem 2.0.5. Associativity of dot products over scalar multiplication.

$$(r\mathbf{a}) \cdot \mathbf{b} = r(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (r\mathbf{b})$$

Theorem 2.0.6. Bilinearity of dot products.

$$\mathbf{a} \cdot (r\mathbf{b} + \mathbf{c}) = r(\mathbf{a} \cdot \mathbf{b}) + (\mathbf{a} \cdot \mathbf{c})$$

Theorem 2.0.7.

$$a \times a = 0$$

Theorem 2.0.8. Anticommutativity of cross products.

$$a \times b = -b \times a$$

Theorem 2.0.9. Distributivity of cross products over vector addition.

$$a \times (b + c) = a \times b + a \times c$$

Theorem 2.0.10. Associativity of cross products over scalar multiplication.

$$(r\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (r\mathbf{b}) = r(\mathbf{a} \times \mathbf{b})$$

Theorem 2.0.11.

$$a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$$

Theorem 2.0.12.

$$a \times (b \times c) = b (a \cdot c) - c (a \cdot b)$$

3 Linear System of Equations

3.1 Linear Equations

Definition 3.1.1. A linear equation in n variables x_1, x_2, \dots, x_n can be expressed in the form

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b$$

where the *coefficients* a_1, a_2, \dots, a_n and the *constant term* b are constants.

3.2 Homogeneous Linear Equations

Definition 3.2.1. In the special case where b = 0, the linear equation is called a **homogeneous** linear equation.

3.3 Linear Systems

Definition 3.3.1. A linear system of equations is a set of linear equations, where the variables x_i are called *unknowns*. The general linear system of m equations with n unknowns can be written as

$$\begin{cases} a_{11}x_1 \,+\, a_{12}x_2 \,+\, \cdots \,+\, a_{1n}x_n \,=\, b_1 \\ a_{21}x_1 \,+\, a_{22}x_2 \,+\, \cdots \,+\, a_{2n}x_n \,=\, b_2 \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ a_{m1}x_1 \,+\, a_{m2}x_2 \,+\, \cdots \,+\, a_{mn}x_n \,=\, b_m \end{cases}$$

A solution to the system is an *n*-tuple $\langle x_1, x_2, \dots, x_n \rangle$ that satisfies each equation.

3.4 Coefficient Matrices

Definition 3.4.1. The coefficients of the variables in each equation can be placed inside the systems **coefficient matrix**.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

3.5 Augmented Matrices

Definition 3.5.1. The information of a system can be contained in its **augmented matrix**.

$$\left[\begin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{array}\right]$$

Definition 3.5.2. An array having m rows and n columns, is an $m \times n$ matrix. This matrix may be denoted as a_{ij} , where a_{ij} is the entry in ith row and jth column of the matrix \boldsymbol{A} .

$$m \text{ rows} \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \right.$$

3.6 Elementary Row Operations

Definition 3.6.1. A linear system can be solved using the following **elementary row operations**:

- 1. scalar multiplication: multiplying any row by a constant
- 2. row addition: adding a multiple of one row to another
- 3. row exchange: exchanging any two rows

3.7 Pivots

Definition 3.7.1. The first non-zero entry of the row in a matrix is called the **pivot** of the row.

Theorem 3.7.1. If a row apart from the first has a pivot, then this pivot must be to the right of the pivot in the preceding row.

3.8 Gaussian Elimination

Definition 3.8.1. Gaussian elimination is a method for solving linear systems. These systems can be solved by composing the augmented matrix of a system, and performing elementary row operations, to put the matrix in the form

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{mn} \end{bmatrix}$$

3.9 Row-Echelon Form

Definition 3.9.1. A matrix that has undergone Gaussian elimination is in **row-echelon form** if the pivots of the augmented matrix are all 1.

$$\begin{bmatrix} 1 & a_{12} & \cdots & a_{1n} \\ & 1 & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & 1 \end{bmatrix}$$

3.10 Gauss-Jordan Elimination

Definition 3.10.1. Gauss-Jordan elimination extends Gaussian elimination so that the entries in a column containing a pivot are zeros, and the pivots are all 1. This new augmented matrix is then in **reduced row-echelon form**. matrix is in **reduced row-echelon form**.

$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

3.11 Solutions to Linear Systems

Definition 3.11.1. A **consistent system** of equations has at least one solution, and an **inconsistent system** has no solution.

Linear Algebra 4 MATRICES

4 Matrices

Definition 4.0.1. A **matrix** is an array of numbers arranged into *rows* and *columns*, and can be used to represent a linear transformation.

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

4.1 Matrix Addition

Definition 4.1.1. Matrix addition is performed by adding the corresponding components of two matrices of the same dimension.

$$\boldsymbol{A} + \boldsymbol{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

4.2 Scalar Multiplication

Definition 4.2.1. Scalar multiplication is performed by multiplying each element of a matrix by a scalar.

$$c\mathbf{A} = \begin{bmatrix} ca_{11} & ca_{12} & \cdots & ca_{1n} \\ ca_{21} & ca_{22} & \cdots & ca_{2n} \\ \vdots & \vdots & & \vdots \\ ca_{m1} & ca_{m2} & \cdots & ca_{mn} \end{bmatrix}$$

4.3 Matrix Multiplication

Definition 4.3.1. Matrix multiplication is performed by multiplying each row in the first matrix by the columns of the second matrix.

$$AB=C$$

$$\begin{bmatrix} -&a_1&-\\-&a_2&-\\ &\vdots&\\-&a_m&- \end{bmatrix} \begin{bmatrix} &&&&\\b_1&b_2&\cdots&b_n\\&&&&\end{bmatrix} = \begin{bmatrix} a_1b_1&a_1b_2&\cdots&a_1b_n\\a_2b_1&a_2b_2&\cdots&a_2b_n\\ \vdots&&\vdots&&&\vdots\\a_mb_1&a_mb_2&\cdots&a_mb_n \end{bmatrix}$$

Theorem 4.3.1. A matrix product is defined if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix.

4.4 The Identity Matrix

Definition 4.4.1. The **identity matrix** is the simplest nontrivial **diagonal matrix**, denoted 1, such that

$$1A = A$$

Linear Algebra 4 MATRICES

written explicitly as

$$\mathbb{1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

4.5 The Inverse Matrix

Definition 4.5.1. The inverse of a square matrix is a matrix A^{-1} , such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbb{1}$$

Theorem 4.5.1. The inverse of a 2×2 matrix is given by

$$\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Theorem 4.5.2. The inverse of an $n \times n$ matrix can be determined by solving $[A \mid 1]$.

4.6 The Diagonal Matrix

Definition 4.6.1. A diagonal matrix, denoted diag $(d_{11}, d_{22}, \dots, d_{nn})$, is an $n \times n$ matrix D in which entries outside the main diagonal are all zero.

$$\boldsymbol{D} = \operatorname{diag}\left(d_{11}, d_{22}, \dots, d_{nn}\right) = \begin{bmatrix} d_{11} & & \\ & d_{22} & \\ & & \ddots & \\ & & & d_{nn} \end{bmatrix}$$

4.7 Matrix Transpose

Definition 4.7.1. The **transpose** of a matrix, denoted by A^{\top} , is obtained by replacing all a_{ij} elements with a_{ii} , so that the matrix A is flipped over its main diagonal.

4.8 Matrix Trace

Definition 4.8.1. The trace of an $n \times n$ matrix A, denoted Tr(A), is defined as

$$\operatorname{Tr}\left(\boldsymbol{A}\right) = \sum_{i=1}^{n} a_{ii}$$

5 General Vector Spaces

5.1 Real Vector Spaces

Definition 5.1.1. A **vector space** is a set that is closed under vector addition and scalar multiplication.

Theorem 5.1.1. If the following axioms are satisfied by all objects $u, v, w \in V$, and all scalars k and m, then V is a **vector space**, and the objects in V are vectors.

Axiom 1 (Closure under addition).

$$\boldsymbol{u}+\boldsymbol{v}\in V$$

Axiom 2 (Commutativity of vector addition).

$$u + v = v + u$$

Axiom 3 (Associativity of vector addition).

$$\boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w}) = (\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w}$$

Axiom 4 (Additive identity).

$$u + 0 = u$$

Axiom 5 (Additive inverse).

$$\boldsymbol{u} + (-\boldsymbol{u}) = \boldsymbol{0}$$

Axiom 6 (Closure under scalar multiplication).

$$k\mathbf{u} \in V$$

Axiom 7 (Distributivity of vector addition).

$$k\left(\boldsymbol{u}+\boldsymbol{v}\right)=k\boldsymbol{u}+k\boldsymbol{v}$$

Axiom 8 (Distributivity of scalar addition).

$$(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$$

Axiom 9 (Associativity of scalar multiplication).

$$k(m\mathbf{u}) = (km)\mathbf{u}$$

Axiom 10 (Scalar multiplication identity).

$$1\boldsymbol{u} = \boldsymbol{u}$$

To identify that a set with two operations is a vector space:

- 1. Identify the set V of objects that will become vectors.
- 2. Identify the addition and scalar multiplication operations on V.

- 3. Verify Axioms 1 and 6.
- 4. Confirm that Axioms 2, 3, 4, 5, 7, 8, 9, and 10 hold.

Theorem 5.1.2. Let V be a vector space. If $v \in V$, and k is a scalar.

- 1. 0v = 0
- 2. k0 = 0
- 3. (-1) v = -v
- 4. If $k\mathbf{v} = \mathbf{0}$, then k = 0 or $\mathbf{v} = \mathbf{0}$

5.2 Subspaces

Definition 5.2.1. A subset W of a vector space V is called a **subspace** of V if W is itself a vector space under the addition and scalar multiplication operations defined on V.

Theorem 5.2.1. Let W be a subspace of the vector space V, then the following axioms must be satisfied.

- 1. Axiom 1: Closure under addition
- 2. Axiom 6: Closure under scalar multiplication

Theorem 5.2.2. Every vector space has at least two subspaces, itself and its zero subspace.

Theorem 5.2.3. Subspaces of \mathbb{R}^2 .

- *1.* {**0**}
- 2. Lines through the origin
- $3. \mathbb{R}^2$

Theorem 5.2.4. Subspaces of \mathbb{R}^3 .

- *1.* {**0**}
- 2. Lines through the origin
- 3. Planes through the origin
- 4. \mathbb{R}^3

Theorem 5.2.5. Subspaces of M_{nn} .

- 1. Upper triangular matrices
- 2. Lower triangular matrices
- ${\it 3. \ Diagonal \ matrices}$
- 4. M_{nn}

5.3 Spanning Sets

Definition 5.3.1. If the vector \boldsymbol{w} is in a vector space V, then \boldsymbol{w} is a linear combination of the vectors $\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n \in V$, if \boldsymbol{w} can be expressed in the form

$$\boldsymbol{w} = k_1 \boldsymbol{v}_1 + k_2 \boldsymbol{v}_2 + \dots + k_n \boldsymbol{v}_n$$

Theorem 5.3.1. If $S = \{w_1, w_2, ..., w_n\}$ is a nonempty set of vectors in a vector space V, then the set W of all possible linear combinations of the vectors in S is a subspace of V. The subspace W is called the subspace of V spanned by S and the vectors in S span W. If a vector in S can be expressed as the linear combination of any vectors in S then the set is linearly dependent.

5.4 Linear Independence

Definition 5.4.1. If S is a set of two or more vectors in a vector space V, then S is **linearly independent** if no vector in S can be expressed as a linear combination of the others.

Theorem 5.4.1. A set S is linearly independent if and only if there is one solution to the equation

$$k_1 \boldsymbol{v}_1 + k_2 \boldsymbol{v}_2 + \dots + k_n \boldsymbol{v}_n = \boldsymbol{0}$$

where the coefficients satisfying this equation are $k_1 = 0, k_2 = 0, \dots, k_n = 0$.

5.5 Basis Vectors

Definition 5.5.1. If S is a set of vectors in a vector space V, then S is called a **basis** for V if

- 1. S spans V.
- 2. S is linearly independent.

5.6 Dimension

Definition 5.6.1. The **dimension** of a finite-dimensional vector space V, denoted dim (V), is the number of vectors in a basis for V.

Theorem 5.6.1. The zero vector space is defined to have dimension zero.

6 Fundamental Subspaces

Figure 2: The Four Fundamental Subspaces of a Matrix.

6.1 The Four Fundamental Subspaces of a Matrix

Definition 6.1.1. If $A \in \mathbb{R}^{m \times n}$ is an $m \times n$ matrix, then:

- 1. The subspace spanned by the *column vectors* of A, is the **column space** of A, denoted $\mathcal{C}(A)$.
- 2. The subspace spanned by the row vectors of A, is the row space of A, denoted $\mathcal{C}(A^{\top})$.
- 3. The subspace spanned by the *solution space* of the equation Ax = 0, is the **null space** of A, denoted $\mathcal{N}(A)$.
- 4. The subspace spanned by the *solution space* of the equation $A^{\top}y = 0$ (or $y^{\top}A = 0$), is the **left null space** of A, denoted $\mathcal{N}(A^{\top})$.

6.2 The General Solution of a System of Equations

Theorem 6.2.1. The general solution to a matrix equation Ax = b, can be given by adding the particular and homogeneous solutions, where the particular solution is the solution to Ax = b, or

 $\mathcal{C}(\mathbf{A}^{\top})$, and the homogeneous solution is the solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$, or $\mathcal{N}(\mathbf{A})$.

$$\boldsymbol{x} = \boldsymbol{x}_p + \boldsymbol{x}_h$$

6.3 Row Equivalence

Definition 6.3.1. Two matrices are **row equivalent** if each can be obtained from the other by elementary row operations. These matrices have the same row space and null space.

6.4 Rank

Definition 6.4.1. The rank of a matrix, denoted by rank (A), is given by dim $(\mathcal{C}(A))$.

Theorem 6.4.1. The column space and row space have the same dimension so that

$$\operatorname{rank}\left(\boldsymbol{A}\right) = \dim\left(\mathcal{C}\left(\boldsymbol{A}\right)\right) = \dim\left(\mathcal{C}\left(\boldsymbol{A}^{\top}\right)\right)$$

6.5 Nullity

Definition 6.5.1. The **nullity** of a matrix, denoted by null(A), is given by $\dim (\mathcal{N}(A))$.

7 Orthogonality

Definition 7.0.1. Two vectors are **orthogonal** if the following holds.

$$\boldsymbol{v} \cdot \boldsymbol{w} = 0 \iff \boldsymbol{v}^{\top} \boldsymbol{w} = 0$$

Theorem 7.0.1. 0 is orthogonal to every vector in V.

Theorem 7.0.2. $\mathbf{0}$ is the only vector in V, that is orthogonal to itself.

Theorem 7.0.3.

$$\left\| oldsymbol{v}
ight\|^2 = oldsymbol{v}^ op oldsymbol{v}$$

Theorem 7.0.4.

$$\|oldsymbol{v}\| = \sqrt{oldsymbol{v}^ op oldsymbol{v}}$$

7.1 Orthogonal Subspaces

Definition 7.1.1. Two subspaces U and W of a vector space V, are **orthogonal subspaces** iff every vector in U is orthogonal to every vector in W.

$$\forall \boldsymbol{u} \in U : \forall \boldsymbol{w} \in W : \boldsymbol{u}^{\top} \boldsymbol{w} = 0$$

7.2 Orthogonal Complements

Definition 7.2.1. If U is a subspace of V, then the **orthogonal complement** of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U.

$$U^{\perp} = \left\{ \forall \boldsymbol{u} \in U : \boldsymbol{v} \in V : \boldsymbol{v}^{\top} \boldsymbol{u} = 0 \right\}$$

Theorem 7.2.1.

$$\left(U^{\perp}\right)^{\perp}=U$$

Theorem 7.2.2.

$$\dim U + \dim U^\perp = \dim V$$

7.3 Vector Projections

Figure 3: Vector Projection of b onto a.

Definition 7.3.1. Let the **vector projection** of \boldsymbol{b} onto \boldsymbol{a} , denoted as $\operatorname{proj}_{\boldsymbol{a}} \boldsymbol{b}$, be the orthogonal projection of \boldsymbol{b} in the direction of \boldsymbol{a} , that minimises the error vector: $\boldsymbol{e} = \boldsymbol{b} - \boldsymbol{p}$.

Theorem 7.3.1. The projection of b onto a is given by

$$\operatorname{proj}_{\boldsymbol{a}} \boldsymbol{b} = \boldsymbol{a} x = \boldsymbol{a} \left(\boldsymbol{a}^{\top} \boldsymbol{a} \right)^{-1} \boldsymbol{a}^{\top} \boldsymbol{b}$$

alternatively

$$\operatorname{proj}_{oldsymbol{a}} oldsymbol{b} = oldsymbol{a} x = oldsymbol{a} rac{oldsymbol{a}^{ op} oldsymbol{b}}{oldsymbol{a}^{ op} oldsymbol{a}} = oldsymbol{a} rac{oldsymbol{a} \cdot oldsymbol{b}}{oldsymbol{a} \cdot oldsymbol{a}}$$

Proof.

As p lies on line through a, p = ax, so that e = b - ax. As e is orthogonal to a, we can construct the following relationship.

$$\mathbf{a}^{\top} \mathbf{e} = 0$$

$$\mathbf{a}^{\top} (\mathbf{b} - \mathbf{a}x) = 0$$

$$\mathbf{a}^{\top} \mathbf{b} - \mathbf{a}^{\top} \mathbf{a}x = 0$$

$$\mathbf{a}^{\top} \mathbf{a}x = \mathbf{a}^{\top} \mathbf{b}$$

$$x = (\mathbf{a}^{\top} \mathbf{a})^{-1} \mathbf{a}^{\top} \mathbf{b} = \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}}$$

7.4 Projection onto a Subspace

Theorem 7.4.1. Let W be a subspace of the vector space V such that if $\mathbf{b} \in V$, then $\mathbf{p} = \operatorname{proj}_W \mathbf{b}$ is the **best approximation** of \mathbf{b} on W, so that

$$\|b-p\|<\|b-w\|$$

for all $\mathbf{w} \in W$, where $\mathbf{w} \neq \mathbf{p}$.

Theorem 7.4.2. The projection of b onto the vector space W is given by

$$\operatorname{proj}_W \boldsymbol{b} = \boldsymbol{A}\hat{\boldsymbol{x}} = \boldsymbol{A} \left(\boldsymbol{A}^{ op} \boldsymbol{A} \right)^{-1} \boldsymbol{A}^{ op} \boldsymbol{b}$$

Proof.

As $p \in W$, p can be represented as the linear combination of the basis vectors a_i that span W.

$$\begin{split} \boldsymbol{p} &= \hat{x}_1 \boldsymbol{a}_1 + \hat{x}_2 \boldsymbol{a}_2 + \dots + \hat{x}_n \boldsymbol{a}_n \\ &= \begin{bmatrix} | & | & & | \\ \boldsymbol{a}_1 & \boldsymbol{a}_2 & \dots & \boldsymbol{a}_n \\ | & | & & | \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \\ \vdots \\ \hat{x}_n \end{bmatrix} \\ &= \boldsymbol{A} \hat{\boldsymbol{x}} \end{split}$$

Consider the error vector e = b - p. As e is orthogonal to W, it will also be orthogonal to the vectors that span W. Therefore

$$\begin{cases} \boldsymbol{a}_1^\top \left(\boldsymbol{b} - \boldsymbol{A} \hat{\boldsymbol{x}} \right) = 0 \\ \boldsymbol{a}_2^\top \left(\boldsymbol{b} - \boldsymbol{A} \hat{\boldsymbol{x}} \right) = 0 \\ \vdots \\ \boldsymbol{a}_n^\top \left(\boldsymbol{b} - \boldsymbol{A} \hat{\boldsymbol{x}} \right) = 0 \end{cases}$$

which gives the following equation

$$\boldsymbol{A}^{\top}\left(\boldsymbol{b}-\boldsymbol{A}\hat{\boldsymbol{x}}\right)=\mathbf{0}$$

where we solve for \hat{x}

$$egin{aligned} m{A}^ op m{b} - m{A}^ op m{A} \hat{m{x}} &= m{0} \ m{A}^ op m{A} \hat{m{x}} &= m{A}^ op m{b} \ \hat{m{x}} &= m{(A}^ op m{A})^{-1} m{A}^ op m{b} \end{aligned}$$

7.5 Least Squares

Theorem 7.5.1. Suppose Ax = b is an <u>inconsistent</u> linear system. The **least squares** solution of Ax = b is given by the orthogonal projection $\operatorname{proj}_{\mathcal{C}(A)} b$.

Linear Algebra 8 LINEAR MAPS

8 Linear Maps

8.1 Matrix Transformations

Definition 8.1.1. A matrix transformation $T_{\pmb{A}}:\mathbb{R}^n \to \mathbb{R}^m$ is a mapping of the form

$$T_{\pmb{A}}\left(\pmb{x}\right) = \pmb{A}\pmb{x}$$

where $A \in \mathbb{R}^{m \times n}$. As this transformation is linear, the following linearity properties hold.

- 1. $T(\boldsymbol{u} + \boldsymbol{v}) = T(\boldsymbol{u}) + T(\boldsymbol{v})$
- 2. $T(k\mathbf{u}) = kT(\mathbf{u})$

8.2 General Linear Transformations

Theorem 8.2.1. If $T: V \to W$ is a mapping between two vector spaces V and W, then T is the linear transformation from V to W, and the following properties hold.

- 1. $T(\boldsymbol{u} + \boldsymbol{v}) = T(\boldsymbol{u}) + T(\boldsymbol{v})$
- 2. $T(k\mathbf{u}) = kT(\mathbf{u})$

Theorem 8.2.2. When V = W, the linear map is called a **linear operator**.

Linear Algebra 8 LINEAR MAPS

8.3 Subspaces of Linear Transformations

Figure 4: Subspaces of a Linear Transformation.

Definition 8.3.1. If $T:V\to W$ is a linear transformation between two vector spaces V and W, then:

- 1. The vector space V is the **domain** of T.
- 2. The vector space W is the **codomain** of T.
- 3. The **image** (or **range**) of T is the set of vectors the linear transformation maps to.

$$\operatorname{im}\left(T\right)=T\left(V\right)=\left\{ T\left(\boldsymbol{v}\right):\boldsymbol{v}\in V\right\} \subset W$$

4. The **kernel** of T is the set of vectors that map to the zero vector.

$$\ker\left(T\right)=\left\{ \boldsymbol{v}\in V:T\left(\boldsymbol{v}\right)=\boldsymbol{0}\right\}$$

Linear Algebra 8 LINEAR MAPS

8.4 Constructing a Transformation Matrix

Theorem 8.4.1. The standard matrix for a linear transformation is given by the formula:

$$m{A} = egin{bmatrix} \mid & \mid & & \mid & \mid \\ T\left(m{e}_1
ight) & T\left(m{e}_2
ight) & \cdots & T\left(m{e}_n
ight) \end{bmatrix}$$

where

$$\boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \, \boldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \, \dots, \, \boldsymbol{e}_n = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

are the standard basis vectors for \mathbb{R}^n .

Linear Algebra 9 DETERMINANTS

9 Determinants

9.1 Properties of Determinants

- 1. $\det(1) = 1$.
- 2. Exchanging two rows of a matrix reverses the sign of its determinant.
- 3. Determinants are multilinear, so that

(a)
$$\begin{vmatrix} a+a' & b+b' \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$$

(b)
$$\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

- 4. If \mathbf{A} has two equal rows, then $\det(\mathbf{A}) = 0$.
- 5. Adding a scalar multiple of one row to another does not change the determinant of a matrix.
- 6. If \mathbf{A} has a row of zeros, then $\det(\mathbf{A}) = 0$.
- 7. If **A** is triangular, then $\det(\mathbf{A}) = \prod_{i=1}^{n} a_{ii}$.
- 8. If \mathbf{A} is singular, then $\det(\mathbf{A}) = 0$.
- 9. $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A}) \det(\mathbf{B})$
- 10. $\det(\mathbf{A}^{\top}) = \det(\mathbf{A})$

9.2 Matrix Minors

Definition 9.2.1. The **minor** of a_{ij} in A, denoted M_{ij} , is the determinant of the submatrix formed by deleting the *i*th row and *j*th column of A.

9.3 Matrix Cofactors

Definition 9.3.1. The **cofactor** of a_{ij} in A is defined as

$$C_{ij} = \left(-1\right)^{i+j} M_{ij}$$

9.4 The Determinant of a Matrix

Theorem 9.4.1. The determinant of an $n \times n$ matrix A is given by

$$\det(\mathbf{A}) = \sum_{j=1}^{n} a_{ij} C_{ij} = \sum_{i=1}^{n} a_{ij} C_{ij}$$

where a_{ij} is the entry in the ith row and jth column of A.

Linear Algebra 9 DETERMINANTS

9.5 The Cofactor Matrix

Definition 9.5.1. The **cofactor matrix** of an $n \times n$ matrix A, denoted C, is defined as the matrix of the cofactors of A.

$$\boldsymbol{C} = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}$$

9.6 The Adjugate of a Matrix

Definition 9.6.1. The **adjugate** (or *classical adjoint*) of a square matrix A, denoted adj (A), is the transpose its cofactor matrix.

$$\mathrm{adj}\,(\boldsymbol{A}) = \boldsymbol{C}^\top$$

9.7 The Inverse of a Matrix

Theorem 9.7.1. The inverse of a nonsingular matrix A is given by

$$\boldsymbol{A}^{-1} = \frac{1}{\det \boldsymbol{A}} \operatorname{adj} \left(\boldsymbol{A} \right)$$

10 Invariant Subspaces

Definition 10.0.1. Consider the subspace \mathcal{V} of the linear mapping $T:V\to V$ from a vector space V to itself, then \mathcal{V} is an **invariant subspace** of T if

$$T(\mathcal{V}) \subseteq \mathcal{V}$$

Theorem 10.0.1. If V is an invariant subspace of a linear mapping $T:V\to V$ from a vector space V to itself, then

$$\forall \boldsymbol{v} \in \mathcal{V} \implies T(\boldsymbol{v}) \in \mathcal{V}$$

10.1 Trivial Invariant Subspaces

- 1. V.
- 2. {**0**}.
- 3. $\ker(T)$.
- 4. im(T).
- 5. Any linear combination of invariant subspaces.

10.2 Eigenspaces

Definition 10.2.1. If an invariant subspace is one-dimensional, then the subspace is called an **eigenspace** of the linear transformation.

Theorem 10.2.1. If V is an eigenspace of the linear mapping $T: V \to V$, then

$$\mathcal{V} = \left\{ \forall \boldsymbol{q} \in \mathcal{V} : \exists \lambda \in \mathbb{C} : T\left(\boldsymbol{q}\right) = \lambda \boldsymbol{q} \right\}$$

where λ is the eigenvalue associated with the eigenvector q.

10.3 The Eigenvalue Problem

Theorem 10.3.1. The eigenvalues λ of an invertible square matrix A, are the solutions to

$$\det\left(\mathbf{A} - \lambda \mathbb{1}\right) = \mathbf{0}$$

Theorem 10.3.2. The eigenvectors associated with each eigenvalue, of an invertible square matrix A, are the solutions to

$$(\boldsymbol{A} - \lambda \mathbb{1}) \, \boldsymbol{q} = \boldsymbol{0}$$

Proof.

The eigenvalues and associated eigenvectors of a square matrix A, are the solutions to $Aq = \lambda q$.

$$egin{aligned} oldsymbol{A}oldsymbol{q} & \lambdaoldsymbol{q} = oldsymbol{0} \ (oldsymbol{A} - \lambda\mathbb{1}) \ oldsymbol{q} & = oldsymbol{0} \end{aligned}$$

The linear system $(A - \lambda 1)q = 0$ has a nontrivial solution iff $A - \lambda 1$ is singular.

10.4 Properties of Eigenvalues

Theorem 10.4.1.

$$\operatorname{Tr}(\boldsymbol{A}) = \sum_{i=1}^{n} \lambda_{i}$$
$$\det(\boldsymbol{A}) = \prod_{i=1}^{n} \lambda_{i}$$

Theorem 10.4.2.

$$\det\left(\boldsymbol{A}\right) = \prod_{i=1}^{n} \lambda_{i}$$

11 Eigen Decomposition

11.1 Similarity Transformations

Definition 11.1.1. A similarity transformation is a linear mapping of the form

$$m{A}
ightarrow m{Q}^{-1} m{A} m{Q}$$

in which the matrices \boldsymbol{A} and \boldsymbol{Q} are $n \times n$ invertible matrices. Here we say, " \boldsymbol{A} is similar to $\boldsymbol{Q}^{-1}\boldsymbol{A}\boldsymbol{Q}$ ".

11.2 Matrix Diagonalisation

Definition 11.2.1. The matrix A is a diagonalisable matrix if it is similar to a diagonal matrix. That is, there exists an invertible matrix Q, and diagonal matrix Λ , such that

$$\Lambda = Q^{-1}AQ$$

Theorem 11.2.1. Let \mathbf{A} be an $n \times n$ matrix with n linearly independent eigenvectors, then \mathbf{A} is diagonalisable if $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ and \mathbf{Q} is a matrix composed of the eigenvectors of \mathbf{A} . Explicitly,

$$m{\Lambda} = egin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \quad and \quad m{Q} = egin{bmatrix} | & | & | & | \\ m{q}_1 & m{q}_2 & \cdots & m{q}_n \\ | & | & & | \end{bmatrix}$$

where q_1, q_2, \dots, q_n are the eigenvectors of A.

Proof.

Let q_1, q_2, \dots, q_n , be linearly independent eigenvectors of A, and $\lambda_1, \lambda_2, \dots, \lambda_n$, the associated eigenvalues. By definition of an eigenspace, we have

$$egin{cases} oldsymbol{A}oldsymbol{q}_1 = \lambda_1oldsymbol{q}_1 \ oldsymbol{A}oldsymbol{q}_2 = \lambda_2oldsymbol{q}_2 \ dots & dots & dots \ oldsymbol{A}oldsymbol{q}_n = \lambda_noldsymbol{q}_n \end{cases}$$

which we can rewrite as

$$AQ = Q\Lambda$$

$$\Lambda = Q^{-1}AQ$$
(1)

by rearranging Equation 1, we have A in terms of its eigenvalues and eigenvectors.

$$\boldsymbol{A} = \boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{-1}$$

11.3 Powers of a Matrix

Theorem 11.3.1. Let **A** be a diagonalisable matrix, then for all $k \in \mathbb{N}_0$

$$\boldsymbol{A}^k = \boldsymbol{Q}\boldsymbol{\Lambda}^k\boldsymbol{Q}^{-1}$$

Proof.

$$\begin{split} \boldsymbol{A}^k &= \left(\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{-1}\right)^k \\ &= \underbrace{\left(\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{-1}\right)\left(\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{-1}\right)\cdots\left(\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{-1}\right)}_{k \text{ times}} \\ &= \underbrace{\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{-1}\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{-1}\cdots\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{-1}}_{k \text{ times}} \\ &= \underbrace{\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{-1}\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{-1}\cdots\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{-1}}_{k \text{ times}} \\ &= \boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{\Lambda}\cdots\boldsymbol{\Lambda}\boldsymbol{Q}^{-1} \\ &= \boldsymbol{Q}\boldsymbol{\Lambda}^k\boldsymbol{Q}^{-1} \\ &= \boldsymbol{Q}\boldsymbol{\Lambda}^k\boldsymbol{Q}^{-1} \end{split}$$

Theorem 11.3.2. The eigenvalues of A^k , $\forall k \in \mathbb{N}$ are $\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k$.

Theorem 11.3.3. The eigenvectors of A are equal to the eigenvectors of A^k .

12 System of Differential Equations

12.1 First-Order Differential Equations

Definition 12.1.1. A first-order differential equation is a differential equation where the highest derivative is of order one.

$$x' = ax$$

Theorem 12.1.1. The general solution to a first-order linear differential equation is of the form

$$x(t) = \mathbf{c}_1 \mathbf{e}^{at}$$

where c_1 is an arbitrary constant.

12.2 First-Order System of Differential Equations

Definition 12.2.1. A first-order system of differential equations is of the form

$$\begin{cases} x_1' = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ x_2' = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots & \vdots & \vdots \\ x_n' = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{cases}$$

where $x_1=x_1\left(t\right), x_2=x_2\left(t\right), \ldots, x_n=x_n\left(t\right)$ are the functions to be determined. In matrix form, the system can be written as

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$\mathbf{r}' = \mathbf{A}\mathbf{r}$$

12.3 Solution using Diagonalisation

Theorem 12.3.1. The first-order system of differential equations x' = Ax can be solved using the following substitution

$$x = Qu$$

where u is a vector to be determined, and Q is the matrix that diagonalises A. u is determined by solving

$$u' = Au$$

where Λ is the diagonal similarity transformation of A. This substitution uncouples the system of differential equations so that each equation can be solved as a first-order differential equation.

Proof.

$$oldsymbol{x}' = oldsymbol{A} oldsymbol{x}$$
 $\left(oldsymbol{Q} oldsymbol{u}
ight)' = \left(oldsymbol{Q} oldsymbol{\Lambda} oldsymbol{Q}^{-1}
ight) \left(oldsymbol{Q} oldsymbol{u}
ight)$

$$egin{aligned} Qu' &= Q \Lambda Q^{-1} Q u \ \mathscr{Q}u' &= \mathscr{Q}\Lambda Q^{-1} Q u \ u' &= \Lambda u \end{aligned}$$

Theorem 12.3.2. If A is a diagonalisable matrix, then the general solution of x' = Ax can be expressed as

$$\boldsymbol{x}(t) = \mathbf{c}_1 \mathbf{e}^{\lambda_1 t} \boldsymbol{q}_1 + \mathbf{c}_2 \mathbf{e}^{\lambda_2 t} \boldsymbol{q}_2 + \dots + \mathbf{c}_n \mathbf{e}^{\lambda_n t} \boldsymbol{q}_n$$

12.4 Principle of Superposition

Theorem 12.4.1. If x_1 and x_2 are two solutions to a linear differential equation, then

$$x = \mathbb{c}_1 x_1 + \mathbb{c}_2 x_2$$

is also a solution to the differential equation.

12.5 Higher-Order Differential Equations

Theorem 12.5.1. A higher-order linear differential equation can be solved by first converting it to a first-order linear system. Consider the nth-order differential equation

$$x^{(n)} + a_1 x^{(n-1)} + \dots + a_{n-1} x' + a_n x = 0$$

We then define

$$\begin{aligned} x_1 &= x \\ x_2 &= x' \\ &\vdots \\ x_n &= x^{(n-1)} \end{aligned}$$

Let $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^{\top}$. Then the first-order linear system of differential equations can be written as

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Linear Algebra LIST OF FIGURES

List of Figures

1	Displacement vector between two points	Ę
2	The Four Fundamental Subspaces of a Matrix	17
3	Vector Projection of \boldsymbol{b} onto \boldsymbol{a}	20
	Subspaces of a Linear Transformation.	

Linear Algebra REFERENCES

References

[1] Howard Anton, Chris Rorres, and Anton Kaul. *Elementary Linear Algebra: Applications Version*, 12th Australia and New Zealand Edition. John Wiley & Sons Australia, 12th edition, 2019.

- [2] Paul Dawkins. Solutions To Systems. URL: https://tutorial.math.lamar.edu/Classes/DE/SolutionsToSystems.aspx.
- [3] Arash Komeili. The Superposition Principle and Undetermined Coefficients Revisited, 2020. URL: https://math.berkeley.edu/~arash/54/notes/n4_5.pdf.
- [4] Glenn Lahodny Jr. Converting Higher-Order Equations to First-Order Systems, 2018. URL: https://www.math.tamu.edu/~glahodny/Math469/Section%204.6.pdf.
- [5] Isaiah Lankham, Bruno Nachtergaele, and Anne Schilling. Eigenvalues and Eigenvectors, 2007. URL: https://www.math.ucdavis.edu/~anne/WQ2007/mat67-Li-Eigenvectors.pdf.
- [6] John McCuan. Invariant Subspaces and Eigenspaces, 2008. URL: https://people.math.gatech.edu/~mccuan/courses/1502/linear3.pdf.
- [7] Gilbert Strang. 18.06SC Linear Algebra, 2011. MIT OpenCourseWare. URL: https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011.
- [8] Gilbert Strang. Properties of determinants, 2011. MIT OpenCourseWare. URL: https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/least-squares-determinants-and-eigenvalues/properties-of-determinants/MIT18_06SCF11_Ses2.5sum.pdf.
- [9] Gilbert Strang. The Four Fundamental Subspaces: 4 Lines, 2011. MIT OpenCourseWare. URL: http://web.mit.edu/18.06/www/Essays/newpaper_ver3.pdf.
- [10] Terrence Tao. Axioms of real vector spaces, 2000. URL: https://www.math.ucla.edu/~tao/resource/general/121.1.00s/vector_axioms.html.
- [11] Eric W. Weisstein. Eigen Decomposition. From MathWorld-A Wolfram Web Resource. URL: https://mathworld.wolfram.com/EigenDecomposition.html.
- [12] Eric W. Weisstein. Matrix Diagonalization. From MathWorld-A Wolfram Web Resource. URL: https://mathworld.wolfram.com/MatrixDiagonalization.html.
- [13] Eric W. Weisstein. Matrix Power. From MathWorld—A Wolfram Web Resource. URL: https://mathworld.wolfram.com/MatrixPower.html.
- [14] Eric W. Weisstein. Similarity Transformation. From MathWorld-A Wolfram Web Resource. URL: https://mathworld.wolfram.com/SimilarityTransformation.html.