```
#impoting of libraries required
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

for Staistical testing
from scipy import stats
from scipy.stats import chi2_contingency
from scipy.stats import f_oneway
import statsmodels.api as sm
from statsmodels.formula.api import ols

#reading the dataset available in csv format
df=pd.read_csv("/content/311_Service_Requests_from_2010_to_Present.csv")

#viewing of first 5 rows of the dataset
df.head()

	Unique Key	Created Date	Closed Date	Agency	Agency Name	Complaint Type	Descriptor	L
0	32310363	12/31/2015 11:59:45 PM	01-01- 16 0:55	NYPD	New York City Police Department	Noise - Street/Sidewalk	Loud Music/Party	Street/\$
1	32309934	12/31/2015 11:59:44 PM	01-01- 16 1:26	NYPD	New York City Police Department	Blocked Driveway	No Access	Street/\$
2	32309159	12/31/2015 11:59:29 PM	01-01- 16 4:51	NYPD	New York City Police Department	Blocked Driveway	No Access	Street/\$
3	32305098	12/31/2015 11:57:46 PM	01-01- 16 7:43	NYPD	New York City Police Department	Illegal Parking	Commercial Overnight Parking	Street/s
4	32306529	12/31/2015 11:56:58 PM	01-01- 16 3:24	NYPD	New York City Police Department	Illegal Parking	Blocked Sidewalk	Street/\$

5 rows × 53 columns

#shape of the dataset
df.shape

(26862, 53)

#to check total number of null values for each column
df.isnull().sum()

Unique Key	0
Created Date	0
Closed Date	164
Agency	0
Agency Name	1
Complaint Type	1
Descriptor	390
Location Type	1
Incident Zip	180
Incident Address	3123
Street Name	3123
Cross Street 1	3526
Cross Street 2	3564
Intersection Street 1	23762
Intersection Street 2	23802
Address Type	197
City	180
Landmark	26847
Facility Type	161
Status	1
Due Date	1
Resolution Description	1
Resolution Action Updated Date	161
Community Board	1
Borough	1
X Coordinate (State Plane)	231
Y Coordinate (State Plane)	231
Park Facility Name	1
Park Borough	1
School Name	1
School Number	1
School Region	1
School Code	1
School Phone Number	1
School Address	1
School City	1
School State	1
School Zip	1
School Not Found	1
School or Citywide Complaint	26862
Vehicle Type	26862
Taxi Company Borough	26862
Taxi Pick Up Location	26862
Bridge Highway Name	26844
Bridge Highway Direction	26844
Road Ramp	26846
Bridge Highway Segment	26846
Garage Lot Name	26862
Ferry Direction	26862
Ferry Terminal Name	26862
Latitude	231
Longitude	231
Location	231
dtype: int64	

#check datatypes of columns

Unique Key	int64
Created Date	object
Closed Date	object
Agency	object
Agency Name	object
Complaint Type	object
Descriptor	object
Location Type	object
Incident Zip	float64
Incident Address	object
Street Name	object
Cross Street 1	object
Cross Street 2	object
Intersection Street 1	object
Intersection Street 2	object
Address Type	object
City	object
Landmark	object
Facility Type	object
Status	object
Due Date	object
Resolution Description	object
Resolution Action Updated Date	object
Community Board	object
Borough	object
<pre>X Coordinate (State Plane) Y Coordinate (State Plane)</pre>	float64 float64
Park Facility Name	object
Park Borough	object
School Name	object
School Number	object
School Region	object
School Code	object
School Phone Number	object
School Address	object
School City	object
School State	object
School Zip	object
School Not Found	object
School or Citywide Complaint	float64
Vehicle Type	float64
Taxi Company Borough	float64
Taxi Pick Up Location	float64
Bridge Highway Name	object
Bridge Highway Direction	object
Road Ramp	object
Bridge Highway Segment	object
Garage Lot Name	float64
Ferry Direction	float64
Ferry Terminal Name	float64
Latitude	float64
Longitude	float64
Location	object
dtype: object	

dtype: object

converting created date column into datetime datatype
df["Created Date"]=pd.to_datetime(df["Created Date"])

```
df["Created Date"]
             2015-12-31 23:59:45
     1
             2015-12-31 23:59:44
             2015-12-31 23:59:29
     3
             2015-12-31 23:57:46
             2015-12-31 23:56:58
                     . . .
     55512 2015-11-06 12:38:00
     55513 2015-11-06 12:37:00
     55514 2015-11-06 12:37:00
     55515 2015-11-06 12:37:00
     55516 2015-11-06 12:36:00
     Name: Created Date, Length: 55517, dtype: datetime64[ns]
# converting closed date column to datetime datatype
df["Closed Date"]=pd.to_datetime(df["Closed Date"])
#creating a new column 'Request_Closing_Time' as the time elapsed between request creation
df["Request_Closing_Time"]=df["Closed Date"]-df["Created Date"]
df["Request Closing Time"]
             0 days 00:55:15
             0 days 01:26:16
     2
             0 days 04:51:31
     3
             0 days 07:45:14
            0 days 03:27:02
     55512 0 days 13:35:00
     55513 0 days 02:53:00
     55514 0 days 05:46:00
     55515 0 days 02:14:00
     55516 0 days 00:12:00
     Name: Request_Closing_Time, Length: 55517, dtype: timedelta64[ns]
Request Closing Time=[]
for x in (df["Closed Date"]-df["Created Date"]):
    close=x.total_seconds()/60
    Request_Closing_Time.append(close)
df["Request_Closing_Time"]=Request_Closing_Time
df.head()
```

	Unique Key	Created Date	Closed Date	Agency	Agency Name	Complaint Type	Descriptor	Lo
0	32310363	2015- 12-31 23:59:45	2016- 01-01 00:55:00	NYPD	New York City Police Department	Noise - Street/Sidewalk	Loud Music/Party	Street/Si
1	32309934	2015- 12-31 23:59:44	2016- 01-01 01:26:00	NYPD	New York City Police Department	Blocked Driveway	No Access	Street/Si
2	32309159	2015- 12-31 23:59:29	2016- 01-01 04:51:00	NYPD	New York City Police Department	Blocked Driveway	No Access	Street/Si
3	32305098	2015- 12-31 23:57:46	2016- 01-01 07:43:00	NYPD	New York City Police Department	Illegal Parking	Commercial Overnight Parking	Street/Si

df.info()

 1110()			
Data	columns (total 54 columns):		
#	Column	Non-Null Count	Dtype
0	Unique Key	26862 non-null	int64
1	Created Date	26862 non-null	<pre>datetime64[ns]</pre>
2	Closed Date	26698 non-null	<pre>datetime64[ns]</pre>
3	Agency	26862 non-null	object
4	Agency Name	26861 non-null	object
5	Complaint Type	26861 non-null	object
6	Descriptor	26472 non-null	object
7	Location Type	26861 non-null	object
8	Incident Zip	26682 non-null	float64
9	Incident Address	23739 non-null	object
10	Street Name	23739 non-null	object
11	Cross Street 1	23336 non-null	object
12	Cross Street 2	23298 non-null	object
13	Intersection Street 1	3100 non-null	object
14	Intersection Street 2	3060 non-null	object
15	Address Type	26665 non-null	object
16	City	26682 non-null	object
17	Landmark	15 non-null	object
18	Facility Type	26701 non-null	object
19	Status	26861 non-null	object
20	Due Date	26861 non-null	object
21	Resolution Description	26861 non-null	object
22	Resolution Action Updated Date	26701 non-null	object
23	Community Board	26861 non-null	object
24	Borough	26861 non-null	object
25	X Coordinate (State Plane)	26631 non-null	float64
26	Y Coordinate (State Plane)	26631 non-null	float64
27	Park Facility Name	26861 non-null	object
28	Park Borough	26861 non-null	object
29	School Name	26861 non-null	object
30	School Number	26861 non-null	object
31	School Region	26861 non-null	object
32	School Code	26861 non-null	object
33	School Phone Number	26861 non-null	obiect
	School Address	26861 non-null	-
35	a google oppiditive/4VCdLNATVTVVEEQWEe4Doped	20004 11	L-2 -L
rocorok	accaic com/drivo/1VCdLIMTV/TV/E6OwEc/Dop0d	7 7 - 1 1 1 1 1 1 1 1 1 1	- n L (マロリ)のは1/12 print1/10do

```
School City
                                    26861 non-null object
35
36 School State
                                                   object
                                    26861 non-null
 37 School Zip
                                    26861 non-null
                                                   object
 38 School Not Found
                                    26861 non-null
                                                   object
39 School or Citywide Complaint
                                    0 non-null
                                                   float64
40 Vehicle Type
                                    0 non-null
                                                   float64
41 Taxi Company Borough
                                                   float64
                                    0 non-null
42 Taxi Pick Up Location
                                    0 non-null
                                                   float64
43 Bridge Highway Name
                                                   object
                                    18 non-null
44 Bridge Highway Direction
                                                   object
                                   18 non-null
45 Road Ramp
                                    16 non-null
                                                   object
46 Bridge Highway Segment
                                    16 non-null
                                                   obiect
47 Garage Lot Name
                                    0 non-null
                                                   float64
48 Ferry Direction
                                                   float64
                                    0 non-null
49 Ferry Terminal Name
                                    0 non-null
                                                   float64
                                    26631 non-null float64
50 Latitude
51 Longitude
                                    26631 non-null float64
                                    26631 non-null object
52 Location
                                    26698 non-null timedelta64[ns]
53 Request_Closing_Time
dtvnes: datetime64[nsl(2). float64(12). int64(1). object(38). timedelta64[nsl(1)
```

```
#major insights from the data
df["Agency"].value_counts().plot(kind="bar",alpha=0.8)
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f19f6df8650>

Insight 1: From the code we can conclude that there is only one agency working towards customer service i.e NYPD.

```
num_of_complaints=df["Complaint Type"].value_counts()
```

```
Blocked Driveway
                             17453
Illegal Parking
                             15843
Noise - Commercial
                              7436
Noise - Street/Sidewalk
                              4935
Derelict Vehicle
                              3287
Noise - Vehicle
                              2288
Animal Abuse
                              1355
Traffic
                               753
Homeless Encampment
                               633
Vending
                               544
Posting Advertisement
                               281
Noise - Park
                               231
Drinking
                               185
Noise - House of Worship
                               102
Urinating in Public
                                 57
Panhandling
                                 55
Bike/Roller/Skate Chronic
                                 50
Graffiti
                                 14
Disorderly Youth
                                 12
Illegal Fireworks
                                 3
Name: Complaint Type, dtype: int64
```

```
df['Complaint Type'].value_counts()[:15].plot(kind='barh',alpha=0.6,figsize=(15,10))
plt.show()
```

Urinating in Public -

Insight 2: From the above plot we can see that top 3 most frequent complaint types are:

1)Blocked driveway 2)Illegal Parking 3)Noise-Commercial

df1=df.groupby(['City','Complaint Type']).size().unstack().fillna(0)
df1.head()

Noise - Commercial	•	Illegal Fireworks	Homeless Encampment	Graffiti	Drinking	Disorderly Youth	Derelict Vehicle
2.0	15.0	0.0	1.0	0.0	0.0	0.0	7.0
216.0	273.0	0.0	5.0	0.0	4.0	0.0	65.0
5.0	103.0	0.0	1.0	2.0	0.0	0.0	36.0
4.0	10.0	0.0	0.0	0.0	0.0	0.0	8.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

df1.shape

(48, 20)

df1.plot.bar(figsize=(15,10), stacked=True)
plt.ylabel('Number of Complaints')
plt.title('Number of complaints vs. City')

Text(0.5, 1.0, 'Number of complaints vs. City')

Insight 3: Most complaints are registered in Brooklyn

```
#df.loc[(df['City']=='BROOKLYN')]['Complaint Type'].value_counts()
plot_1= sns.countplot(x=df.loc[df.City=='BROOKLYN']['Complaint Type'], palette='YlOrRd_r')
plt.xticks(rotation=90)
```

#plot_1.set_xticklabels(plot_1.get_xticklabels(), rotation=90)

```
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), <a list of 20 Text major ticklabel objects>)
```

Insight 4: Since maximum number of complaints were filed in Brooklyn, hence after analysing the complaint data for this city, it was found that Blocked Driveway was the most frequent complaint lodged to NYPD in the city of Brooklyn.

```
df["Request_Closing_Time"].fillna(0)
               55.250000
     1
               86.266667
     2
               291.516667
     3
              465.233333
     4
               207.033333
     26857
               78.000000
     26858
               66.000000
     26859
               77.000000
     26860
              131.000000
     26861
               294.000000
     Name: Request_Closing_Time, Length: 26862, dtype: float64
```

#Categorical Scatter Plot to understand which type of complaints are taking more time to g
g=sns.scatterplot(x='Complaint Type',y="Request_Closing_Time",data=df)
plt.xticks(rotation=90)
plt.ylim((0,10000))
plt.show()

Insight 5: From the above visualization we can clearly see that Blocked Driveway and Noise-

```
df['Location Type'].value_counts()
```

```
Street/Sidewalk
                              22170
Store/Commercial
                               2151
                               1701
Club/Bar/Restaurant
Residential Building/House
                                583
Park/Playground
                                132
House of Worship
                                 45
Residential Building
                                 26
Highway
                                 16
House and Store
                                 15
Vacant Lot
                                  8
Commercial
                                  5
Parking Lot
                                  5
Roadway Tunnel
                                  2
Subway Station
Name: Location Type, dtype: int64
```

```
df['Location Type'].fillna(value='Street/Sidewalk',inplace=True)
```

```
plt.figure(figsize=(10,5))
plot=sns.countplot(df['Location Type'])
plot.set_xticklabels(plot.get_xticklabels(), rotation=90)
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass
   FutureWarning
[Text(0, 0, 'Street/Sidewalk'),
   Text(0, 0, 'Club/Bar/Restaurant'),
   Text(0, 0, 'Store/Commercial'),
   Text(0, 0, 'House of Worship'),
   Text(0, 0, 'Residential Building/House'),
   Text(0, 0, 'Residential Building'),
   Text(0, 0, 'Park/Playground'),
   Text(0, 0, 'Vacant Lot'),
   Text(0, 0, 'House and Store'),
   Text(0, 0, 'Highway'),
   Text(0, 0, 'Commercial'),
```

Insight 6: we can conclude that Street/Sidewalk is the most number of complaints

```
rext(ט, ט, Parking Lot )]
```

#Order the complaint types based on the average 'Request_Closing_Time', grouping them for
df2=pd.DataFrame(df.groupby("Location Type")["Request_Closing_Time"].mean()).sort_values("
df2.tail()

Request_Closing_Time

	L	ocatio	on Ty	pe										
F	Residentia	al Build	ding			30	9.8737	'18						
Residential Building/House						35	3.225	115						
	Comm	ercial				43	3.0133	333						
	Parkir	ng Lot				681.503333								
Vacant Lot						159	1.9333	333						
	ē	sta	Ē	Š	J/6	B	6,6	g	7	2	= 후	일 후 될	5 E Z	i i i i

From the above visualization we can see that vacant lot location complaints took most of the time to get closed.

š

#Order the complaint types based on the average 'Request_Closing_Time', grouping them for
df3=pd.DataFrame(df.groupby("City")["Request_Closing_Time"].mean()).sort_values("Request_C
df3.tail()

Request Closing Time

City	
ROSEDALE	505.566369
KEW GARDENS	507.401643
WOODHAVEN	514.261689
QUEENS VILLAGE	636.234560
NEW HYDE PARK	824.266667

From the above code we can say that New Hyde Park city took highest average time to close the complaint

#Performing the statistical test to check Whether the average response time across complai

- 1. Null Hypothesis: The average response time across complaint types is not different
 - 2. Alternate Hypothesis: The average response time across complaint types is different

First step is to handle missing values
pd.DataFrame((df.isnull().sum()/df.shape[0]*100)).sort_values(0,ascending=False)[:20] #

0

- T-T

School or Citywide Complaint	100.000000
Taxi Pick Up Location	100.000000
Ferry Terminal Name	100.000000
Garage Lot Name	100.000000
Ferry Direction	100.000000
Taxi Company Borough	100.000000
Vehicle Type	100.000000
Landmark	99.949565
Road Ramp	99.926149
Bridge Highway Segment	99.926149
Bridge Highway Name	99.909937
Bridge Highway Direction	99.909937
Intersection Street 2	88.506223
Intersection Street 1	88.376533
Cross Street 2	13.329250
Cross Street 1	13.208567
Street Name	11.717132
Incident Address	11.717132
Descriptor	1.437398
Latitude	0.879010

#removing colums with high percenatge of missing values
new_df=df.loc[:,(df.isnull().sum()/df.shape[0]*100)<=50]</pre>

```
new df.shape
     (55517, 40)
drop column=[]
for x in new_df.columns.tolist():
    if new_df[x].nunique()<=3:</pre>
                                                               #nunique() counts number of
        print(x+ " "*10+" : ",new df[x].unique())
        drop_column.append(x)
                      : ['NYPD']
     Agency
     Agency Name
                           : ['New York City Police Department' 'NYPD']
                             : ['Precinct' nan]
     Facility Type
     Park Facility Name
                                  : ['Unspecified']
                           : ['Unspecified']
     School Name
     School Number
                            : ['Unspecified']
     School Region
                            : ['Unspecified']
     School Code
                           : ['Unspecified']
                                  : ['Unspecified']
     School Phone Number
     School Address
                              : ['Unspecified']
     School City
                           : ['Unspecified']
     School State
                           : ['Unspecified']
                          : ['Unspecified' 'Unspec']
     School Zip
     School Not Found
                                : ['N' nan]
# drop_column gives the list of columns that doesn't have much significant information tha
new df.drop(drop column,axis=1,inplace=True)
     /usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:4913: SettingWithCopyWarr
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
       errors=errors,
new df.shape
     (55517, 26)
new df
anova df=pd.DataFrame()
anova_df["Request_Closing_Time"]=new_df["Request_Closing_Time"]
anova df["Complaint"]=new df["Complaint Type"]
anova df.dropna(inplace=True)
anova df.head()
```

	Request_Closing_Time	Complaint	*
0	55.250000	Noise - Street/Sidewalk	
1	86.266667	Blocked Driveway	
2	291.516667	Blocked Driveway	
,	Request_Closing_Time~C ble=sm.stats.anova_lm(ble	· -	_df).fit() #here we are usin

	df	sum_sq	mean_sq	F	PR(>F)	1
Complaint	19.0	2.397540e+08	1.261863e+07	54.789447	1.017025e-206	
Residual	55182.0	1.270904e+10	2.303114e+05	NaN	NaN	

From the above results we can clearly see that p-value is very low so we will reject Null hypothesis which means we conclude that the average response time across complaint types is different

Second: H0:Complaint Type and Location Type are independent

H1:Complaint Type and Location Type are related

```
chi_sq=pd.DataFrame()
chi_sq["Location Type"]=new_df["Location Type"]
chi_sq["Complaint Type"]=new_df["Complaint Type"]
chi_sq.dropna(inplace=True)

data_crosstab = pd.crosstab( chi_sq["Location Type"],chi_sq["Complaint Type"])

stat, p, dof, expected = chi2_contingency(data_crosstab)
print("statistics:",stat,"\n","p-value",p)

alpha = 0.05
if p <= alpha:
    print('Reject Null hypothesis)')
else:
    print('Accept Null Hypothesis')

[> statistics: 191889.29754983488
    p-value 0.0
    Reject Null hypothesis)
```

✓ 0s completed at 10:46 PM

×