

Practical Machine Learning

Day 6: Sep22 DBDA

Kiran Waghmare

Agenda

- Ridge, Lasso & ElasticNet
- Preprocessing Techniques
- Classification

Γ 7**1**976.**1**

Simple Linear Regression

$$y=b_0+b_1x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

Copyright 2014. Laerd Statistics.

Overfitting ---> Good fit (Regularization)

Regression line(best fit)

Regularization Term

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \left[\lambda \sum_{j=1}^{n} \theta_j^2 \right]_{\text{Start at } \theta_1}$$

ElasticNet

Loss function + Regularized term


```
In [23]: new_data.shape
```

Out[23]: (506, 14)

In [24]: X=new_data.iloc[:,0:13]
y=new_data.iloc[:,13]

In [25]: X

Out[25]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99	9.67
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90	9.08
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90	5.64
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45	6.48
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90	7.88

506 rows × 13 columns

Regression:

- -Ridge
- -Lasso

CDAC Mumbai: Kiran Waghmare

Ridge Regression

Regularization (L2) = Loss Function +
$$\lambda \sum_{i=1}^{\infty} w_i^2$$

Ridge Regression

Regularization (L2) = Loss Function +
$$\lambda \sum_{i=1}^{\infty} w_i^2$$

Lasso Regression

Lasso Regression =
$$\underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \underbrace{\|y - X\beta\|_2^2}_{\operatorname{Loss}} + \lambda \underbrace{\|\beta\|_2^2}_{\operatorname{Penalty}}$$

Regularization Term

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 + \left[\frac{1}{\lambda} \sum_{j=1}^n \theta_j^2 \right]$$

Transforming the Loss function into Lasso Regression

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |w_j|$$

Loss function

Loss function + Regularized term

Designed by Author (Shanthababu)

Ridge Regression

Ridge regression uses the mean squared error loss function and applies L2 Regularization. Its cost function $J(\theta)$ is given as

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y - \hat{y})^2 + \lambda \sum_{j=1}^{n} w_j^2$$

where,

 $\frac{1}{m}\sum_{i=1}^{m}(y-\hat{y})^2$ is the Mean Squared error (loss function)

 $\lambda \sum_{j=1}^{n} w_j^2$ is the penalty (L2 Regularization)

Now, substitute \hat{y} as $wx_i + b$.

Lasso Regression

Lasso regression uses the same mean squared error loss function and this applies L1 Regularization and will repeat the same steps as Ridge. The cost function of Lasso Regression $J(\theta)$ is given as

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y - \hat{y})^2 + \lambda \sum_{j=1}^{n} |w_j|$$

where

 $\lambda \sum_{j=1}^{n} |w_j|$ is the penalty (L1 Regularization).