1

ANALOG NCERT 12.8.11

EE23BTECH11046 - Poluri Hemanth*

an electromagnetic wave in vacuum given as

 $\mathbf{E} = \{(3.1\text{N/C})\cos[(1.8 \text{ rad/m})y + (5.4 \times 10^6 \text{rad/s})t]\}\hat{\imath}$

- (a) What is the direction of propagation?
- (b) What is the wavelength?
- (c) What is the frequency?
- (d) What is the amplitude of the magnetic field part of the wave?
- (e) Write an expression for the magnetic field part of the wave.

Solution:

Symbol	Values	Description
λ	3.5m	Wave length of E.M wave.
f ($0.859 \cdot 10^6 Hz$	Frequency of E.M wave.
c	$3 \cdot 10^6 m/s$	Velocity of propagation of E.M wave.
ω 5	$5.4 \cdot 10^6 rad/s$	Angular frequency of EM wave.
k	1.8 <i>rad/m</i>	Wave number of E.M wave
B_o	$1.03 \cdot 10^{-6}T$	Amplitude of magnetic part of E.M wave
E_o	3.1 <i>N</i> / <i>C</i>	Amplitude of electric part of E.M wave.

TABLE I **PARAMETERS**

(a)

As the wave is in form of cos(ky+wt) the wave is propagating along -y axis.

(b)

$$k = \frac{2\pi}{\lambda} \tag{1}$$

$$\Rightarrow \lambda = \frac{2\pi}{1.8} \tag{2}$$

 $\approx 3.5m$ (3)

(c)

$$\omega = 2\pi f \tag{4}$$

$$5.4x10^6 = 2.\pi.f (5)$$

$$\Rightarrow f = 0.859 \times 10^6 Hz$$

(6)

Question: Suppose that the electric field part of where c is velocity of propagation of wave which is given by

$$c = \frac{\omega}{k} \tag{8}$$

$$=\frac{5.4 \times 10^6}{1.8} \tag{9}$$

$$= 3 \times 10^6$$
. (10)

$$B_o = \frac{3.1}{3 \times 10^6} \tag{11}$$

$$= 1.03 \times 10^{-6} \tag{12}$$

(e)

$$\mathbf{B} = B_o \cos(ky + wt)(-\hat{\mathbf{k}}) \tag{13}$$

From (12)

$$\mathbf{B} = 1.03 \times 10^{-6} T \{ \cos[(1.8rad/m)y + (5.4x10^{6}rad/s)t] \} (-\hat{\mathbf{k}})$$
(14)

Fig. 1. Electric field part

(d)

$$B_o = \frac{E_o}{c} \tag{7}$$

Fig. 2. Magnetic field part