Data Capturing Hand Pose data Aug 28th, 2023

Summary

- 1. 마커 기반 모션 캡처를 통해 고정밀 3D hand pose data caputre
- 2. 표시된 손 이미지를 정렬
- 3. 마커 제거 네트워크(MR-Net)를 통해 손에 있는 마커 제거되고

맨손 이미지가 3D hand pose ground truth 상태가 됨

Index_

- 1. Build Environment
- 2. Generation of Data

1. Build Environment

1. Build Environment for Data Capturing

1. Piano(2대)

Kawai GE-20(그랜드 피아노)

1. Build Environment(Data Capturing - PianoHand2.5M)

2. Optitrack Prime 13W가 포함된 track1 MoCap 시스템 흑백 IR 카메라 11대 + Optitrack Prime Color FS RGB 카메라 1대 - 캡처 프레임: 240FPS 노출 시간: 4ms 이미지 해상도: 1920x1080(1080p)

Capture Studio A (EP)

Capture Studio B (GP)

Prime Color FS

제품 링크 바로가기

RGB 카메라 - 피아노 상단 중앙에 고정

1. Build Environment(Data Capturing - PianoHand2.5M)

3. Makers Placement – Optitrack hemisphere 4mm facial reflective markers

한 손당 20개의 마커를 각 관절, 손가락 끝에 부착하고 추가로 손목 근처에 3개를 삼각형 모양으로 부착해서 총 양손에 46개의 마커를 부착

마커 정보, 각 플레이의 MIDI도 기록, 피아노 장면도 녹화

1. Build Environment(Data Capturing — PianoHand2.5M)

4. 기록하는 정보

- 마커 정보
- 각 연주의 MIDI
- 연주 중 피아노 장면
- 피아노 건반의 실시간 깊이(최대 10mm) ~ 피아노 건반 뒤에 내장된 IR(적외선) 센서

5. 추가 사항

- 데이터 수집 절차를 생명윤리위원회(IRB)에 승인을 받았다고 함

2. Generation of Data(PianoHand2.5M) MR-Net(마커 제거 네트워크) & PiaNET

• 합성 마커 생성을 이용한 마커 제거 네트워크(Marker-removal Network)

5 Proposed Method: Marker-removal Network using synthetic marker generation

- MR-Net은 2단계로 구성
 - 1단계: 마커 합성
 - 맨손 이미지에서 ResNet50 백본을 통해 전달하여 maker estimation을 위한 시각적 특징 추출
 - 시각적 특징을 기반으로 2d 마커를 생성(size:2x21)
 - 백본은 직접 고른 CycleGAN 기반의 몇 가지 좋은 결과를 사용하여 사전 훈련되었음(is pretrained)
 - 2단계: 마커 제거

• GAN 기반 마커 제거와 마커 제거 네트워크의 몇몇 실패 사례

Figure 4. (Left) Some failures cases of GAN-based marker removal compared with the proposed marker-removal net. (Right) Examples of MR-Net on the other hand activities.

• 데이터셋 세부정보

Data Split	Task	Subjects	Keystroke	No. of Frame			
				R	L	В	Sum
Train (EP)	R,L,B1-B6	6	no	150K	110K	400K	660K
Train (GP)	R,L,B1-B11	10	yes	263K	217K	834K	1314K
Val (EP+GP)	B1-B6(EP),B1-B11(GP)	1+1	no	0	0	155K	155K
Test (EP)	Free Play (R,L,B)	1	no	23K	17K	65K	105K
Test (GP)	Free Play (R,L,B)	2	yes	50K	36K	166K	252K
Total	1	21	1	513K	403K	1696K	2486K

Table 1. The details of the PianoHand2.5M Dataset. EP: data taken in the electric piano studio. GP: data taken in the grand piano studio.

- 13명의 여성 피아니스트와 8명의 남성 피아니스트
- 평균 연령: 27.75
- 대부분 4살 때 시작했으며 평균 경력 22.7년
- 그 중 2명은 국제적인 콘서트에서 연주한 전문 피아니스트, 4명은 피아노 강사 또는 관련 전문가, 나머지는 피아노 전공 학생
- PiaNet에 사용될 훈련 세트: 2.OM(6EP, 10GP), 검증 세트 및 테스트 데이터 세트 표 참고

- 진행 과정
 - 그룹 A
 - 전문가 2명과 학생 6명이 EP(전자 피아노) 스튜디오에서 연주
 - 그룹 B
 - 나머지 13명의 학생은 GP(그랜드 피아노) 스튜디오에서 연주

- 각 단원별 과제는 두 실험집단 모두 동일
 - 2가지 유형의 task 수행
 - 1) 오른쪽(R) 또는 왼쪽(L) 손 중 한 손만 사용해서 연주
 - 오른손으로 10개, 왼손으로 8개의 phrase를 연주하며 각 피실험자는 각 구절을 5번 반복해야 함
 - 그 결과, 오른손 phrases는 50개, 왼손 phrase는 40개를 얻음
 - 2) 양손(L+R)을 모두 사용해서 연주
 - 11개의 음악 중 특정 발췌곡이 선택되고 모든 피실험자는 약 1분동안 연주 ~ 약 11분 가량의 데이터가 기록

• 데이터 캡처 및 PiaNET

Figure 5. An overview of the data capture and the proposed PiaNet.

1. 3D Hand Key Point estimation

• 3D hand key point estimation을 위해 인코더-디코더 PoseNet 아키텍처와 ResNet50 백본을 사용

2. PiaSim 모듈

- 피아노 연주에서는 건반 누르는 순간(소리의 타이밍)을 가장 중요한 요소로 간주
- 따라서 훈련을 강화하기 위해 시계열 동작을 추출하는 LSTM 계층과 키 입력을 재현하는 완전 계층으로 구성된 PiaSim 네트워크를 개발

• 실험별 결과 비교

1. 데이터셋별 비교

Training Set	Result on Validation Set (Same task)					
Training Set	MPJPE(mm)	MPJAE(°)	PCK(%)			
Raw	14.44	9.9	66.1			
Simple R.	12.04	8.9	74.1			
Synthetic	11.12	7.9	75.2			
GAN -based	9.98	7.8	78.8			
MR-Net	9.22	7.3	81.6			
	Result on Test Set (Different task)					
	MPJPE(mm)	MPJAE(°)	PCK(%)			
Raw	22.40	13.5	54.3			
Simple R.	21.38	13.0	57.2			
Synthetic	nthetic 19.11		60.2			
GAN-based	10.97	8.5	76.7			
MR-Net	9.95	7.9	80.3			

Table 2. Result of the between-datasets comparison.

2. Ablation Study

Ablation	MPJPE	MPJAE	PCK
w/o PiaSim (Direct R.)	10.72	8.6	76.1
PiaSim + pose	9.95	7.6	80.2
PiaSim + MIDI	10.09	7.9	79.7
PiaSim + Keystroke	9.95	7.5	80.3

Table 3. Result of the ablation study.

3. 방법간 비교

Method	2D Position		3D Position		3D Angle Error			
Method	MAE	PCK	MPJPE	PCK	MCP	PIP	DIP	MPJAE
FreiHand [36]	8.4	89.1	24.47	61.6	8.09	12.34	13.33	11.58
InterHand [15]	7.3	94.1	21.32	64.4	7.41	11.34	12.00	10.25
Zhou et al. [33]	6.8	95.0	16.11	67.3	7.02	8.12	12.56	9.22
PiaNet (Synthetic)	7.2	94.2	14.72	70.5	6.95	8.39	11.82	9.05
PiaNet (MR-Net)	5.6	98.1	12.49	73.7	7.04	7.12	7.66	7.30

Table 4. Quantitative results of the compared models tested on the piano sequences from the CMU Panoptic Hands dataset.