Nearest-Neighbor Search (Big Data)

J. Savoy Université de Neuchâtel

A. Rajaraman, J.D. Ullman. *Mining of Massive Datasets*. Cambridge University Press, 2012.

H. Garcia-Molina, J.D. Ullman, J. Widom: *Database Systems The Complete Book*. Pearson, Upper Sade River, 2009.

- Applications
- Method
- Minhashing
 - Data as Sparse Matrix
 - Jaccard Similarity Measure
 - Constructing Signature
 - Locality Sensitive Hashing (LSH)

- The nearest neighbor search (NNS) problem is:
 given a set of n points P = {p₁, p₂, ..., p_n} in a metric
 space X with distance function d, preprocess P so as to
 efficiently answer queries for finding the point in P
 closest to a query point q ∈ X.
- Interesting are d-dimensional Euclidian space where
 X = R^d
- Nearest Neighbor Search can be used in a variety of applications

- We have a database of (say) 1 million face images.
- We are given a new image and want to find the most similar images in the database.
- Represent faces by (relatively) invariant values, e.g., ratio of nose width to eye width.
- Each image represented by a large number (say 1,000) of numerical features. (usually too large for kD-tree)
- Problem: given the features of a new face, find those in the DB that are close in at least ¾ (say) of the features.

- Many-one problem: given a new face, verify if it is close to any of the 1 million previous faces.
- Many-Many problem: which pairs of the 1 million faces are similar.
- Represent each face by a vector of 1,000 values and score the comparisons.
- Out of the question for the many-many problem (10⁶·10⁶·1,000 numerical comparisons).
- We can do better!

Multidimensional Indexes Don't Work

Problem: Entity Resolution

- Two sets of 1 million name-address-phone records.
- Some pairs, one from each set, represent the same person.
- Errors of many kinds:
 - Typos, missing middle initial, area-code changes, St./Street, Bob/Robert, etc.
- Choose a scoring system for how close names are.
 - Deduct so much for edit distance > 0;
 so much for missing middle initial, etc.
- Similarly score differences in addresses, phone numbers.
- Sufficiently high total score → records represent the same entity.

- Compare each pair of records, one from each set.
- Score the pair.
- Call them the same if the score is sufficiently high.
- We have an algorithm, but do we have a solution?
- But unfeasible for 1 million records.
- We need / can do better!

Another Problem: Finding Similar Documents

- Given a body of documents, e.g., the Web, find pairs of docs that have a lot of text in common.
- Find mirror sites, approximate mirrors, plagiarism, quotation of one document in another, "good" document with random spam, etc.
- The face problem had a way of representing a big image by a (relatively) small data-set.
- Entity records represent themselves.
- How do you represent a document so it is easy to compare with others?

- Applications
- Method
- Minhashing
 - Data as Sparse Matrix
 - Jaccard Similarity Measure
 - Constructing Signature
 - Locality Sensitive Hashing (LSH)

- Special cases are easy

 e.g., identical documents
 or one document contained verbatim in another.
- General case, where many small pieces of one document appear out of order in another, is harder (plagiarism detection)
- This is the real world of Big Data (NoSQL Not Only SQL)

Representing Objects for Similarity Search

- 1. Represent object by its set of shingles (or *n*-grams for document).
- 2. Summarize shingle set by a *signature* = small data-set with the property:
- Similar documents are very likely to have "similar" signatures (but *no guarantee*).
- At that point, doc problem resembles the previous two problems.

- A k-shingles (or k-gram) for a document is a sequence of k characters that appears in the document.
- Example:

```
k = 2; document = "abcab bc".Set of 2-gram = {"ab", "bc", "ca", " b"}.
```

- Option: regard features as a bag, and count "ab" twice.
- In this example, we have used overlapping 2-grams

A.Z. Broder: On the resemblance and containment of documents. IEEE, 1998, pp. 21-29.

- Although we shall not discuss it, shingles are a powerful tool for characterizing the topic of documents.
 - k = 5 is the right number; (#characters)⁵ >> #shingles in typical document.
- Example: "US pr" and "white" are most common in news articles.
- Effective indexing strategy for the Japanese, Chinese and Korean languages (e.g., 2-gram).
- But we can expect having more shingles than distinct words.

- To compress long shingles, we can hash them to (say)
 4 bytes.
- Represent a document by the set of hash values of its k-shingles.
- Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared.

- Applications
- Method
- Minhashing
 - Data as Sparse Matrix
 - Jaccard Similarity Measure
 - Constructing Signature
 - Locality Sensitive Hashing (LSH)

Roadmap

- Applications
- Method
- Minhashing
 - Data as Sparse Matrix
 - Jaccard Similarity Measure
 - Constructing Signature
 - Locality Sensitive Hashing (LSH)

- Data in the form of subsets of a universal set can be represented by a (typically sparse) matrix.
- Examples include:
 - 1. Documents represented by their set of shingles (or hashes of those shingles).
 - 2. Market baskets.

Matrix Representation of Item/Basket Data

- Columns = items
- Rows = baskets
- Entry (r, c) = 1 if item c is in basket r = 0 if not.
- Typically matrix is almost all 0's.

In Matrix Form

{m,	c,	b}	
{m,	p,	b}	
{m,	b}		
{c,	j}		
{m,	p,	j}	
{m,	c,	b,	j}
{c,	b,	j}	
{c,	b}		

m	C	p	b	j
1	1	0	1	0
1	0	1	1	0
1	0	0	1	0
0	1	0	0	1
1	0	1	0	1
1	1	0	1	1
0	1	0	1	1
0	1	0	1	0

- Columns = documents.
- Rows = shingles (or hashes of shingles).
- 1 in row r, column c iff document c has shingle r.
- Again expect the matrix to be sparse.
- We want to compare the columns (items / documents) to find near similar / correlated items / documents.
- How can we compute the distance / similarly between two columns?

- Applications
- Method
- Minhashing
 - Data as Sparse Matrix
 - Jaccard Similarity Measure
 - Constructing Signature
 - Locality Sensitive Hashing (LSH)

- Think of a column as the set but consider only rows in which 1 appears.
- The similarity of columns C_1 and C_2 $Sim(C_1,C_2)$ = is the ratio of the sizes of the intersection and union of C_1 and C_2 .
 - Jaccard measure $Sim(C_1,C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$
 - Other measures are possible Dice: $Sim(C_1,C_2) = (2 \cdot |C_1 \cap C_2|) / (|C_1| + |C_2|)$
 - We can find correlated columns (similar items/documents)

Example


```
Sim(C_1, C_2) =
               2/5 = 0.4
* *
        Sim_{Dice}(C_1, C_2) =
                (2\cdot2) / (3+4) = 4/7
```


1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

		2-4		3-4
Col/Col	0.75	0.75	0	0

- We might not really represent the data by a Boolean matrix.
- Sparse matrices are usually better represented by the list of places where there is a non-zero value.
 - E.g., market baskets, shingle-sets.
 - Too large to fit in the main memory
 (#baskets x #items)
 (or difficult to access a given row / column)
- But the matrix picture is conceptually useful.
- We have the exact answer.

- Applications
- Method
- Minhashing
 - Data as Sparse Matrix
 - Jaccard Similarity Measure
 - Constructing Signature
 - Locality Sensitive Hashing (LSH)

- To compare the columns (items / documents)
- The huge number of items (columns) allows a small amount of main-memory / item.
 Thus we may have a constraint like main memory = number of items * 100
- 2. Too many items to store anything in main-memory for each *pair* of items.

- We cannot store the Boolean matrix as it in the main memory. We need to reduce its size. How?
- Compute signatures of columns = small summaries of columns.
 - Read from disk to main memory.
- 2. Examine signatures in main memory to find similar signatures.
 - Essential: similarities of signatures and columns are related.
- 3. Optional: check that columns with similar signatures are really similar.

- Comparing all pairs of signatures may take too much time, even if not too much space
 - A job for Locality-Sensitive Hashing (LSH)
- 2. These methods can produce false positives (dissimilar items may produce similar signatures) if the optional check is not made

- Key idea: "hash" each column C to a small signature
 Sig(C), such that:
 - 1. Sig(C) is small enough that we can fit a signature in main memory for each column.
 - 2. $Sim(C_1, C_2)$ is the same as the "similarity" or can be approximated by $Sim_H[Sig(C_1), Sig(C_2)]$

- Use a random subset of the rows to define the signature.
 For example, pick 100 rows at random, and let the signature of column C be the 100 bits of C in those rows.
 - (well-known in vote estimate)
- Because the matrix is sparse, many columns would have 00...0 as a signature, yet be very dissimilar because their 1's are in different rows and we would miss interesting part of the columns.

Four Types of Rows

Given columns C_i and C_i, rows may be classified as:

- We can find four types of rows
 Also, a = # rows of type a, etc.
- Important: note that Sim(C_i, C_j) = a / (a+b+c)

- Imagine that we want to permute the rows randomly (we do not want to physically permute the matrix)
- Example: With 5 = number of rows $P_1(x) = (x \mod 5)+1$ $P_2(x) = (2x + 1 \mod 5)+1$ $\rightarrow P_1(1) = 2$, $P_1(2) = 3$, $P_1(3) = 4$, $P_1(4) = 5$, $P_1(5) = 1$ $\rightarrow P_2(1) = 4$, $P_2(2) = 1$, $P_2(3) = 3$, $P_2(4) = 5$, $P_2(5) = 2$
- We may consider index going from 0 to 4
- Define "hash" function h(C) = the number of the first (in the permuted order) row in which column C has 1
- We can define more than one h() function ...

Generate a random sequence of values

$$x_{i+1} \equiv (a \cdot x_i + c) \mod m$$

If
$$m = 10$$
, $x_0 = 7$; $c = 7$; $a = 7$

we generate
$$\rightarrow$$
 6, 9, 0, 7, 6, 9, 0, 7, ...

Conditions:

c and m are relatively prime (e.g., c=12, m=25) b=a-1 is multiple of p, for every prime p dividing m; b is a multiple of 4 if m is a multiple of 4

Ex:
$$m = 256$$
, $x_0 = 7$; $c = 71$; $a = 53$

 P_2

 P_3

Innut	ma a triv
Input	matrix

 C_1 C_2 C_3 C_4

P_3	P_2	P_1
-------	-------	-------

4	3
2	4

7	3	7

6	1	6
2	6	1

5	7	2
4	5	5

	U Z	O 5	
1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix

$$S_1$$
 S_2 S_3 S_4

	7 3	•	3	7	
2 4 1 4	4		4 (2	
1 3/1 3	3		3/	1	

The row with index = 1 in the order given by $P_2()$ is the first with value = 1

Input matrix

 C_1 C_2 C_3 C_4

P_3	P_2	P_1
-------	-------	-------

ı	4	
3	2	4
7	3	7

6	1	6
2	6	1

5	7	2
4	5	5

	U Z	O 5	-
1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix

 S_1 S_2 S_3 S_4

7	3	7	3	P_1
2	4 ((-)	4	P ₂
1	3	1	3	P ₃

Objective...similarities

Col/Col Sig/Sig

	1-3	2-4	1-2	3-4
Col	0.75	0.75	0	0
Sig	0.67	1.00	0	0
'				38

	\mathbf{C}_1	C_2	C_3
1	1	0	1
2	0	1	1
3	1	0	0
4	1	0	1
5	0	1	0
	ı		

Signatures

	5 ₁	S ₂	5 ₃
Perm1 = (12345)	1	2	1
Perm2 = (54321)	4	5	4
Perm3 = (34512)	3	5	4

The row with index = 4 in the first with a "1" in the order given by Perm2().

We change the meaning of the value stored in the Sig()!

	C_1	C_2	C_3
1	1	0	1
2	0	1	1
3	1	0	0
4	1	0	1
5	0	1	0

Signatures

	S_1	S_2	S_3
Perm1 = (12345)	1	2	1
Perm2 = (54321)	2	1	2
Perm3 = (34512)	1	3	2

The 2nd in the order given by *Perm2*() is the first "1"

$$C_1$$
 is also $\{1, 3, 4\}, C_2 = \{2, 5\}$ and $C_3 = \{1, 2, 4\}$

Minhash Signatures

- Pick (say) 100 random permutations of the rows
- Think of Sig(C) as a column vector (with a reduced length, say m)
- Let Sig(C)[i] = according to the ith permutation over m, the number (in the order imposed) of the first row that has a "1" in column C.
- Sig(C) is now the signature of the column C (the storage needed has been reduced)

Surprising Property

- The probability (over all permutations of the rows) that $h(C_1) = h(C_2)$ is the same as $Sim(C_1, C_2)$.
- Both are a / (a+b+c)!
- Why?
 - Look down columns C₁ and C₂ until we see a 1.
 - If it's a type-a row, then $h(C_1) = h(C_2)$. If a type-b or type-c row, then not.
- Use several (100?) independent hash functions h₁(),
 h₂(), ..., h_k(), ..., h₁₀₀() to create a signature.

- The similarity of signatures is the fraction of the rows in which they agree.
- Similarity of signatures = fraction of permutations for which minhash values agree = (expected) similarity of columns
- See our examples
- We do not have a precise semantic attached to each signature (the value is related to the order of the values 1 and 0).

The row with index = 7 in the order given by $P_1()$ is the first with value = 1

P_3	P_2	P_1
-------	-------	-------

Input matrix

1	4	3
3	2	4
7	3	7
6	1	6
2	6	1
5	7	2
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix

7	3	7	3	P_1
2	4	1	4	P ₂
1	3	1	3	P ₃

Similarities:

	1-3	2-4	1-2	3-4
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0
				11

Signatures

	\mathbf{C}_{1}	C_2	C_3
1	1	0	1
2	0	1	1
3	1	0	0
4	1	0	1
5	0	1	0

$$S_1$$
 S_2 S_3

Perm1 = (12345) 1 2 1

Perm2 = (54321) 4 5 4

Perm3 = (34512) 3 5 4

Similarities

	1-2	1-3	2-3
Col-Col			
Sig-Sig	0.00	0.67	0.00

Implementation

Idea: For each column C_i and each hash function $h_k()$, keep a "slot" slot(C_i,h_k) for that *minhash* value.

- Pick (say) 100 hash functions
- For each column and each hash function, keep a "slot" for that min-hash value, init to ∞.
- For each row r
 for each column C_i with a 1 in the row r
 for each hash function h_k(r) do:
 if hash function h_k(r) < slot(h,c)
 replace slot(h,c) ← h_k(r)
- Minhash value: we select the min of a sequence of values.

	Slots		
	C1	C2	
h(1) = 1	1	∞	• •
g(1) = 3	3	∞	

Row	C1	C2
1	1	0
2	0	1
3	1	1
4	1	0
5	0	1

We have a "1" in C_1 , but not in C_2 . Thus ignore C_2 for the moment. For C_1 , store the two hash values

$$\int h(2) = 2$$
 1 2
 $g(2) = 5$ 3 5

$$h(x) = ((x-1) \mod 5)+1$$

 $g(x) = (2x \mod 5)+1$

We have a "1" in C_2 , but not in C_1 . Thus ignore C_1 for this row. For C_2 , store the two hash values

Until now and for C_2 , the min value returned by h() is 2

Slots

C2

$$h(x) = ((x-1) \mod 5)+1$$

 $g(x) = (2x \mod 5)+1$

$$h(1) = 1$$

$$g(1) = 3$$

$$h(2) = 2$$

$$g(2) = 5$$

$$h(3) = 3$$

$$g(3) = 2$$

$$h(4) = 4$$

$$g(4) = 4$$

$$h(5) = 5$$
 1

$$g(5) = 1$$

*	\propto
	90

The min value returned by h() is 1 for C_1

Another Example

Init

	C_1	C_2	C_3
1	1	0	1
2	0	1	1
3	1	0	0
4	1	0	1
5	0	1	0

Perm2 =
$$(54321)$$

Perm3 = (34512)

 S_1 S_2 S_3

$$egin{array}{c|ccc} \infty & \infty & \infty \\ \infty & \infty & \infty \\ \infty & \infty & \infty \\ \end{array}$$

 ∞

 ∞

 ∞

5

5

3

$$Perm1 = (12345)$$

$$Perm2 = (54321)$$

$$Perm3 = (34512)$$

Second row

Another Example

 $S_1 S_2 S_3$

Second row

Third row

Fourth row

	C ₁	C_2	C_3
1	1	0	1
2	0	1	1
3	1	0	0
4	1	0	1
5	\cap	1	\cap

Perm1 = (12345)

Perm2 = (54321)

Perm3 = (34512)

 1
 2
 1

 2
 1
 2

 1
 2
 1

Fifth row

Perm3 = (34512)

Checking Candidates

- Problem: Find the most similar pairs of items from a very large set of items
- While the signature of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns
- Example: 10⁶ columns implies 5·10¹¹ comparisons At 1 microsec./comparison: 6 days oups!
- Locality Sensitive Hashing (LSH) is a technique to limit the number of pairs of signatures we consider

Contents

- Applications
- Method
- Minhashing
 - Data as Sparse Matrix
 - Jaccard Similarity Measure
 - Constructing Signature
 - Locality Sensitive Hashing (LSH)

 Treat the minhash signatures as columns, with one row for each hash function
 But we still need to reduce this

Solution:

Divide this matrix into *b* bands of *r* rows (free choice for *b* and *r*) in other words, each signature is divided into *b* bands and each band contains *r* values

- Suppose 100,000 columns (10⁵)
- Signatures of 100 integers (10²)
- Therefore, memory needed: signatures take 4·10²·10⁵ = 40MB we can store this into the main memory
- But $(10^{5.}10^{5})/2 = 5,000,000,000$ pairs of signatures can take a while to compare
- Choose b = 20 bands of r = 5 integers So $100 = 20 \cdot 5 = b \cdot r$

- Divide this signature matrix into b bands of r rows (free choice for b and r)
- For each band, hash its portion composed of r values of each column to k buckets (with k relatively large)
- Now...
- Candidate column pairs are those that hash to the same bucket for one or more of the b bands
- Can have false positive: dissimilar items appearing in the same bucket
- Tune b, r, k to catch most similar pairs, and minimize the nonsimilar pairs

- Partition Into Bands
- For each band, hash its portion of each column to a hash table with k buckets.
- Candidate column
 pairs are those
 that hash to the
 same bucket for at
 least one band.

- Suppose C1, C2 are s = 80% similar
- Probability that C1, C2 identical in one particular band: (0.8)⁵ = 0.328

(because they must be equal for the all r = 5 values)

 Probability that C1, C2 are not similar in any of the b = 20 bands:

$$[1 - 0.328]^{20} = 0.00035$$

- i.e., we miss about 1/3000 of the 80% similar column pairs (this is our error due to compression!)
- or the chance that we do find this pair of signature together in at least one bucket is 1-0.00035 = 0.99965

- Suppose C1, C2 are only s = 40% similar (not very interesting as pair of similar candidates)
- Probability that C1, C2 identical in one particular band: (0.4)⁵ = 0.01024
- Probability that C1, C2 do not agree on any of the 20 bands:
 [1 0.01024]²⁰ = 0.814
- Probability that C1, C2 are identical in 1 or more of the 20 b.
 1 [1 0.01024]²⁰ = 1 0.814 = 0.186
- If C1 and C2 are not identical in a band, there is a small probability that they hash to the same bucket
- False positives much lower for similarities *s* << 40%

- In general, we have
- Probability that the signatures agree on one given row is

```
s (Jaccard similarity)
```

 Probability that they agree on all r rows of a given band is

Sr

 Probability that they do not agree on all the rows of a band is

```
1 - s^r
```


 Probability that for none of the b bands do agree in all rows of that band is

$$(1 - s^r)^b$$

 Probability that the signatures will agree in all rows of at least one band is

$$1 - (1 - s^r)^b$$

 This function is the probability that the signatures will be compared for similarity.

Similarity s of two columns

What One Row Gives You

Similarity *s* of two columns

What b Bands of r Rows Gives You

Similarity s of two columns

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Then, in another pass through data, check that the remaining candidate pairs really are similar *columns*

Amplifications of 1's

- If matrices are not sparse, then life is simpler:
 a random sample of (say) 100 rows serves as a good
 signature for columns
- Hamming LSH constructs a series of matrices, each with half as many rows, by OR-ing together pairs of rows
- Candidate pairs from each matrix have between
 20% 80% 1's and are similar in selected 100 rows

0	
0	
1	
1	
0	
0	
1	
0	

- Construct all matrices.
 - If there are R rows, then log R matrices.
 - Total work = twice that of reading the original matrix.
- Use standard LSH to identify similar columns in each matrix, but restricted to columns of "medium" density.

Conclusion

- Nearest Neighbor Search (NNS)
 - A problem with many applications
 - Working with Big Data means that a direct comparison between items is not possible (time constraint)
 - Shingles, MinHash functions and signatures can do the job
 - LSH when data size is huge