Equações a Diferenças

Pedro H A Konzen

14 de outubro de 2020

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados tópicos introdutórios sobre equações a diferenças. Como ferramenta computacional de apoio, exemplos de aplicação de códigos Python¹ são apresentados, mais especificamente, códigos com suporte da biblioteca de matemática simbólica SymPy.

Agradeço a todos e todas que de modo assíduo ou esporádico contribuem com correções, sugestões e críticas. :)

Pedro H A Konzen

¹Veja a Observação 1.0.1.

Sumário

Capa Licença Prefácio Sumário				i					
				ii iii iv					
					1	Int: 1.1	dução Equações a diferenças		1 1
					2	Equ	ções de ordem 1		8
2.1	Equações lineares		8						
	2.1.1 Equação homogênea		8						
	2.1.2 Equação não homogênea		10						
	2.1.3 Somas definidas		13						
	2.2	Estudo assintótico de equações lineares		17					
	2.3	Alguns aspectos sobre equações não lineares							
		2.3.1 Solução		24					
		2.3.2 Pontos de equilíbrio		24					
\mathbf{R}	espos	as dos Exercícios		28					
\mathbf{R}	Referências Bibliográficas								

Capítulo 1

Introdução

Neste capítulo, introduzimos conceitos e definições elementares sobre **equações a diferenças**. Por exemplo, definimos tais equações, apresentamos alguns exemplos de modelagem matemática e problemas relacionados.

Observação 1.0.1. Ao longo das notas de aula, contaremos com o suporte de alguns códigos Python¹ com o seguinte preâmbulo:

from sympy import *

1.1 Equações a diferenças

Equações a diferenças são aquelas que podem ser escritas na seguinte forma

$$f(y(n+k),y(n+k-1),...,y(n);n) = 0,$$
(1.1)

onde $n=0,1,2,\ldots,\,k\geq 0$ número natural e $y:n\mapsto y(n)$ é função discreta (incógnita).

Exemplo 1.1.1. Vejamos os seguintes exemplos.

a) Modelo de juros compostos

$$y(n+1) = (1+r)y(n) (1.2)$$

 $^{^{1}\}mathrm{Veja}$ a Observação 1.0.1.

Esta equação a diferenças modela uma aplicação corrigida a juros compostos com taxa r por período de tempo n (dia, mês, ano, etc.). Mais especificamente, seja y(0) o valor da aplicação inicial, então

$$y(1) = (1+r)y(0) \tag{1.3}$$

é o valor corrigido a taxa r no primeiro período (dia, mês, ano). No segundo período, o valor corrigido é

$$y(2) = (1+r)y(1) \tag{1.4}$$

e assim por diante.

b) Equação logística

$$y(n+1) = ry(n)\left(1 - \frac{y(n)}{K}\right),\tag{1.5}$$

onde y(n) representa o tamanho da população no período n, r é a taxa de crescimento e K um limiar de saturação.

c) Sequência de Fibonacci²

$$y(n+2) = y(n+1) + y(n), (1.6)$$

onde y(0) = 1 e y(1) = 1.

Uma equação a diferenças (1.1) é dita ser de **ordem** k (ou de k-ésima ordem). É dita ser **linear** quando f é função linear nas variáveis dependentes $y(n + k), y(n + k - 1), \ldots, y(n)$, noutro caso é dita ser **não linear**.

Exemplo 1.1.2. No Exemplo 1.1.1, temos

- a) O modelo de juros compostos é dado por equação a diferenças de primeira ordem e linear.
- A equação logística é uma equação a diferenças de primeira ordem e não linear.
- c) A sequência equação de Fibonacci é descrita por uma equação a diferenças de segunda ordem e linear.

 $^{^2 {\}rm Fibonacci},$ c. 1170 - c. 1240, matemático italiano. Fonte: Wikipedia.

A solução de uma equação a diferenças (1.1) é uma sequência de números $(y(n))_{n=0}^{\infty}=(y(0),y(1),\ldots,y(n),\ldots)$ que satisfazem a equação.

Exemplo 1.1.3. Vamos calcular os primeiros quatro valores da solução de

$$y(n+1) = 2y(n) - 1, (1.7)$$

$$y(0) = 0. (1.8)$$

Para tanto, podemos fazer o seguinte procedimento iterativo. Tendo o valor inicial y(0) = 0, temos

$$y(1) = 2y(0) - 1 \tag{1.9}$$

$$= 2 \cdot 0 - 1 \tag{1.10}$$

$$=-1.$$
 (1.11)

Calculado y(1) = -1, temos

$$y(2) = 2y(1) - 1 \tag{1.12}$$

$$= 2 \cdot (-1) - 1 \tag{1.13}$$

$$= -3.$$
 (1.14)

Então, seguimos

$$y(3) = 2y(2) - 1 \tag{1.15}$$

$$= 2 \cdot (-3) - 1 \tag{1.16}$$

$$= -7. (1.17)$$

$$y(4) = 2y(3) - 1 \tag{1.18}$$

$$= 2 \cdot (-7) - 1 \tag{1.19}$$

$$=-15.$$
 (1.20)

Com estes cálculos, podemos concluir que a solução da equação a diferenças é uma sequência da forma

$$(y(n))_{n=0}^{\infty} = (0, -1, -3, -7, -15, \ldots).$$
 (1.21)

Podemos ilustrar a solução conforme feito na figura abaixo.

Figura 1.1: Esboço do gráfica da solução da equação a diferenças discutida no Exemplo 1.1.3.

Para algumas equações a diferenças, é possível escrever a **solução** como uma **forma fechada**

$$y(n) = g(n), (1.22)$$

onde $n=0,1,\ldots$ e $g:n\mapsto g(n)$ é a **função discreta** que representa a solução.

Exemplo 1.1.4. Vamos encontrar a solução para o modelo de juros compostos

$$y(n+1) = (1+r)y(n), \quad n \ge 0.$$
(1.23)

A partir do valor inicial y(0), temos

$$y(1) = (1+r)y(0) (1.24)$$

$$y(2) = (1+r)y(1) (1.25)$$

$$= (1+r)(1+r)y(0) \tag{1.26}$$

$$= (1+r)^2 y(0) (1.27)$$

$$y(3) = (1+r)y(2) \tag{1.28}$$

$$= (1+r)(1+r)^2 y(0) (1.29)$$

$$= (1+r)^3 y(0) (1.30)$$

$$(1.31)$$

Com isso, podemos inferir que a solução é dada por

$$y(n) = (1+r)^n y(0), (1.32)$$

onde o valor inicial y(0) é arbitrário.

Exercícios resolvidos

ER 1.1.1. Calcule y(10), sendo que

$$y(n+1) = 1.05y(n), \quad n \ge 0, y(0) = 1000.$$
 (1.33)

Solução. Observamos que

$$y(1) = 1,05y(0) \tag{1.34}$$

$$y(2) = 1,05y(1) \tag{1.35}$$

$$= 1.05 \cdot 1.05y(0) \tag{1.36}$$

$$=1.05^2y(0) (1.37)$$

$$y(3) = 1,05y(2) \tag{1.38}$$

$$= 1.05 \cdot 1.05^2 y(0) \tag{1.39}$$

$$=1.05^3y(0) (1.40)$$

$$\vdots \tag{1.41}$$

Com isso, temos que a solução da equação a diferenças é

$$y(n) = 1,05^{n}y(0). (1.42)$$

Portanto,

$$y(10) = 1,05^{10}y(0) (1.43)$$

$$=1,05^{10} \cdot 1000 \tag{1.44}$$

$$\approx 1628,89.$$
 (1.45)

 \Diamond

ER 1.1.2. Uma semente plantada produz uma flor com uma semente no final do primeiro ano e uma flor com duas sementes no final de cada ano consecutivo. Supondo que cada semente é plantada tão logo é produzida, escreva a equação de diferenças que modela o número de flores y(n) no final do n-ésimo ano.

Solução. No final do ano $n+2 \ge 0$, o número de flores é igual a

$$y(n+2) = 2u(n+2) + 3d(n+2), (1.46)$$

onde u(n+2) é o número de flores plantadas a um ano e d(n+2) é o número de flores plantas a pelo menos dois anos. Ainda, temos

$$u(n+2) = u(n+1) + 2d(n+1)$$
(1.47)

e

$$d(n+2) = u(n+1) + d(n+1). (1.48)$$

Com isso, temos

$$y(n+2) = 2[u(n+1) + 2d(n-1)] + 3[u(n+1) + d(n-1)]$$
 (1.49)

$$= 2y(n+1) + u(n+1) + d(n+1)$$
(1.50)

$$=2y(n+1)+\underbrace{u(n)+2d(n)}_{u(n+1)}+\underbrace{u(n)+d(n)}_{d(n+1)} \tag{1.51}$$

$$= 2y(n+1) + 2u(n) + 3d(n)$$
(1.52)

$$= 2y(n) + y(n). (1.53)$$

Desta forma, concluímos que o número de plantas é modelado pela seguinte equação a diferenças de segunda ordem e linear

$$y(n+2) = 2y(n+1) + y(n+2). (1.54)$$

7

Exercícios

E 1.1.1. Classifique as seguintes equações a diferenças quanto a ordem e linearidade.

a)
$$y(n+1) - \sqrt{2}y(n) = 1$$

b)
$$ny(n+1) = y(n)\ln(n+1)$$

c)
$$y(n) = y(n+1) + 2y(n+2) - 1$$

d)
$$y(n+1) - [1 - y(n)][1 + y(n)] = 0$$

e)
$$y(n+2) = n\sqrt{y(n)}$$

E 1.1.2. Para cada uma das seguintes equações a diferenças, calcule y(3).

a)
$$y(n+1) - \sqrt{2}y(n) = 1$$
, $y(0) = 1$

b)
$$ny(n+1) = y(n)\ln(n+1)$$
, $y(1) = 1$

E 1.1.3. Para cada uma das seguintes equações a diferenças, calcule y(4).

a)
$$y(n) = y(n+1) + 2y(n+2) - 1$$
, $y(0) = 1$, $y(1) = 0$

b)
$$y(n+2) = n\sqrt{y(n)}, \quad y(0) = 1, y(1) = 1$$

E 1.1.4. Encontre a equação a diferenças que modela o saldo devedor anual de uma cliente de cartão de crédito com taxa de juros de 200% a.a. (ao ano), considerando uma dívida inicial no valor de y(0) reais e que o cartão não está mais em uso.

E 1.1.5. Considere uma espécie de seres vivos monogâmicos que após um mês de vida entram na fase reprodutiva. Durante a fase reprodutiva, cada casal produz um novo casal por mês. Desconsiderando outros fatores (por exemplo, mortalidade, perda de fertilidade, etc.), encontre a equação a diferenças que modela o número de casais no *n*-ésimo mês.

Capítulo 2

Equações de ordem 1

Neste capítulo, discutimos de forma introdutória sobre **equações a diferenças de primeira ordem**. Tais equações podem ser escritas na forma

$$f(y(n+1),y(n);n) = 0, (2.1)$$

onde $n = 0, 1, \dots$ e $y : n \mapsto y(n)$ é função discreta (incógnita).

2.1 Equações lineares

Nesta seção, discutimos sobre equações a diferenças de ordem 1 e lineares. Tais equações podem ser escritas na seguinte forma

$$y(n+1) = a(n)y(n) + g(n),$$
 (2.2)

onde $n = n_0, n_0 + 1, ..., n_0$ número inteiro, $a : n \mapsto a(n)$ e $g : n \mapsto g(n)$ é o termo fonte. A equação é dita ser **homogênea** quando $g \equiv 0$ e, caso contrário, é dita ser **não homogênea**.

2.1.1 Equação homogênea

A solução de uma equação a diferenças de ordem 1, linear e homogênea

$$y(n+1) = a(n)y(n), \quad n \ge n_0,$$
 (2.3)

pode ser obtida por iterações diretas. Para $n \geq n_0$, temos

$$y(n+1) = a(n)y(n) \tag{2.4}$$

$$= a(n)a(n-1)y(n-1)$$
 (2.5)

$$= a(n)a(n-1)a(n-2)y(n-2)$$
 (2.6)

$$\vdots (2.7)$$

$$= a(n)a(n-1)\cdots a(n_0)y(n_0).$$
 (2.8)

Ou seja, dado o valor inicial $y(n_0)$, temos a solução¹

$$y(n) = \left[\prod_{i=n_0}^{n-1} a(i) \right] y(n_0), \tag{2.9}$$

assumindo a notação de que $\prod_{i=n+1}^n a(i) = 1.$

Exemplo 2.1.1. Vamos calcular a solução de

$$y(n+1) = 2y(n), \quad n \ge 0.$$
 (2.10)

Comparando com (2.3), temos a(n)=2 para todo n. Calculando a solução por iterações diretas, temos

$$y(n+1) = 2y(n) (2.11)$$

$$= 2 \cdot 2y(n-1) \tag{2.12}$$

$$=2^2y(n-1) (2.13)$$

$$= 2^2 \cdot 2y(n-2) \tag{2.14}$$

$$=2^{3}y(n-2) (2.15)$$

$$\cdots \qquad (2.16)$$

$$=2^{n+1}y(0) (2.17)$$

Equivalentemente, por (2.9), temos

$$y(n) = \left[\prod_{i=0}^{n-1} 2\right] y(0) \tag{2.18}$$

$$=2^{n}y(0). (2.19)$$

¹A demonstração por ser feita por indução matemática.

A solução vale para qualquer valor inicial y(0).

No Python², podemos computar a solução da equação a diferenças (2.10) com os seguintes comandos:

In : n = symbols('n', integer=true)
In : y = symbols('y', cls=Function)

In : ead = Eq(y(n+1), 2*y(n))

In : rsolve(ead, y(n))

Out: 2**n*CO

2.1.2 Equação não homogênea

A solução de uma equação a diferenças de ordem 1, linear e não homogênea

$$y(n+1) = a(n)y(n) + g(n), \quad n \ge n_0, \tag{2.20}$$

pode ser obtida por iterações diretas.

Vejamos, para $n \geq n_0$ temos

$$y(n+1) = a(n)y_n + g(n)$$

$$= a(n) [a(n-1)y(n-1) + g(n-1)] + g(n)$$

$$= a(n)a(n-1)y(n-1) + a(n)g(n-1) + g(n)$$

$$= a(n)a(n-1) [a(n-2)y(n-2) + g(n-2)]$$

$$+ a(n)g(n-1) + g(n)$$

$$= a(n)a(n-1)a(n-2)y(n-2)$$

$$+ a(n)a(n-1)g(n-2) + a(n)g(n-1) + g(n)$$

$$\vdots$$

Com isso, podemos inferir³ que

$$y(n+1) = \left[\prod_{i=n_0}^{n} a(i)\right] y(n_0)$$
 (2.21)

$$+\sum_{i=n_0}^{n} \left[\prod_{j=i+1}^{n} a(j) \right] g(i). \tag{2.22}$$

²Veja a Observação 1.0.1.

³A demonstração por ser feita por indução matemática.

No último termo, consideramos a notação $\sum_{j=i+1}^{i} a(i) = 0$. Ou equivalentemente,

$$y(n) = \left[\prod_{i=n_0}^{n-1} a(i) \right] y(n_0)$$

$$+ \sum_{i=n_0}^{n-1} \left[\prod_{j=i+1}^{n-1} a(j) \right] g(i).$$
(2.23)

Exemplo 2.1.2. Vamos calcular a solução de

$$y(n+1) = 2y(n) - 1, \quad n \ge 0.$$
 (2.24)

Comparando com (2.20), temos a(n)=2 e g(n)=-1 para todo n. Calculando a solução por iterações diretas, temos

$$y(n+1) = 2y(n) - 1 (2.25)$$

$$= 2 \cdot [2y(n-1) - 1] - 1 \tag{2.26}$$

$$=2^{2}y(n-1)-2-1 (2.27)$$

$$= 2^{2} \cdot [2y(n-2) - 1] - 2 - 1 \tag{2.28}$$

$$=2^{3}y(n-2)-2^{2}-2-1 (2.29)$$

$$\cdots \qquad (2.30)$$

$$=2^{n+1}y(0)-\sum_{i=0}^{n}2^{i}$$
(2.31)

Este último termo, é a soma dos termos da **progressão geométrica** de razão q = 2 (veja Subseção 2.1.3), i.e.

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}.$$
(2.32)

Logo, temos que a solução de (2.20) é

$$y(n+1) = 2^{n+1}y(0) - \frac{1-2^{n+1}}{1-2}$$
 (2.33)

$$=2^{n+1}y(0)-2^{n+1}+1. (2.34)$$

Equivalentemente, por (2.23), temos

$$y(n) = \left[\prod_{i=n_0}^{n-1} a(i)\right] y(n_0)$$
 (2.35)

$$+\sum_{i=n_0}^{n-1} \left[\prod_{j=i+1}^{n-1} a(j) \right] g(i)$$
 (2.36)

$$= \left[\prod_{i=0}^{n-1} 2\right] y(0) \tag{2.37}$$

$$+\sum_{i=0}^{n-1} \left[\prod_{j=i+1}^{n-1} 2 \right] (-1)$$
 (2.38)

$$=2^{n}y(0)-\sum_{i=0}^{n-1}2^{n-i-1}$$
(2.39)

$$=2^{n}y(0)-2^{n-1}\sum_{i=0}^{n-1}2^{-i}$$
(2.40)

$$=2^{n}y(0)-2^{n}+1. (2.41)$$

A solução vale para qualquer valor inicial y(0).

No $Python^4$, podemos computar a solução da equação a diferenças (2.10) com os seguintes comandos:

In : n = symbols('n', integer=true)
In : y = symbols('y', cls=Function)

In : ead = Eq(y(n+1), 2*y(n)-1)

In : rsolve(ead, y(n))

Out: 2**n*C0 + 1

Observamos que esta solução é equivalente à (2.41), pois

$$y(n) = 2^{n}y(0) - 2^{n} + 1 (2.42)$$

$$= 2^{n} [y(0) - 1] + 1, (2.43)$$

onde y(0) é um valor inicial arbitrário.

⁴Veja a Observação 1.0.1.

2.1.3 Somas definidas

Seguem algumas somas definidas que podem ser úteis na resolução de equações a diferenças.

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \tag{2.44}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \tag{2.45}$$

$$\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2} \right]^2 \tag{2.46}$$

$$\sum_{k=1}^{n} k^4 = \frac{n(6n^4 + 15n^3 + 10n^2 - 1)}{30}$$
 (2.47)

$$\sum_{k=0}^{n-1} q^k = \frac{(1-q^n)}{1-q}, \quad q \neq 1$$
 (2.48)

$$\sum_{k=1}^{n} kq^k = \frac{(q-1)(n+1)q^{n+1} - q^{n+2} + q}{(q-1)^2}$$
 (2.49)

Exercícios resolvidos

ER 2.1.1. Calcule a solução da equação à diferenças

$$y(n+1) = \frac{1}{2}y(n), \quad n \ge 0, \tag{2.50}$$

$$y(0) = 1. (2.51)$$

Solução. De (2.9), temos

$$y(n) = \left[\prod_{i=0}^{n-1} \frac{1}{2} \right] y(0) \tag{2.52}$$

$$= \left(\frac{1}{2}\right)^n \cdot 1 \tag{2.53}$$

$$=2^{-n}. (2.54)$$

No Python^5 , podemos computar a solução deste exercício com os seguintes comandos:

⁵Veja a Observação 1.0.1.

In : n = symbols('n', integer=true)
In : y = symbols('y', cls=Function)

In : ead = Eq(y(n+1), 1/2*y(n))In : rsolve(ead, y(n), $\{y(0):1\}$)

Out: 0.5**n

 \Diamond

ER 2.1.2. Calcule a solução de

$$y(n+1) = 2y(n) + \left(\frac{1}{2}\right)^n, \quad n \ge 0,$$
 (2.55)

$$y(0) = 0. (2.56)$$

Solução. De (2.23), temos

$$y(n) = \left[\prod_{i=0}^{n-1} 2\right] y(0) + \sum_{i=0}^{n-1} \left[\prod_{j=i+1}^{n-1} 2\right] \cdot \left(\frac{1}{2}\right)^{i}$$
(2.57)

$$=\sum_{i=0}^{n-1} 2^{n-1-i} \cdot 2^{-i} \tag{2.58}$$

$$=\sum_{i=0}^{n-1} 2^{n-1} \cdot 2^{-2i} \tag{2.59}$$

$$=2^{n-1}\sum_{i=0}^{n-1} \left(\frac{1}{4}\right)^i \tag{2.60}$$

$$=2^{n-1} \cdot \frac{\left[1 - \left(\frac{1}{4}\right)^n\right]}{1 - \frac{1}{4}} \tag{2.61}$$

$$=2^{n-1} \cdot \frac{4}{3} \cdot \left(1 - \frac{1}{4^n}\right) \tag{2.62}$$

$$=\frac{4}{3}\left(2^{n-1}-\frac{2^{n-1}}{4^n}\right) \tag{2.63}$$

$$= \frac{4}{3} \left(2^{n-1} - 2^{n-1} 2^{-2n} \right) \tag{2.64}$$

$$= \frac{4}{3} \left(2^{n-1} - 2^{-n-1} \right) \tag{2.65}$$

$$=\frac{2}{3}\left(2^n-2^{-n}\right). (2.66)$$

No Python⁶, podemos computar a solução deste exercício com os seguintes comandos:

In : n = symbols('n', integer=true)
In : y = symbols('y', cls=Function)
In : ead = Eq(y(n+1),2*y(n)+(1/2)**n)

In : rsolve(ead, y(n), $\{y(0):0\}$)

⁶Veja a Observação 1.0.1.

Exercícios

E 2.1.1. Calcule a solução de

$$y(n+1) = 3y(n), \quad n \ge 0.$$
 (2.67)

E 2.1.2. Calcule a solução de

$$y(n+1) = \frac{1}{3}y(n), \quad n \ge 0, \tag{2.68}$$

$$y(0) = -1. (2.69)$$

E 2.1.3. Considere um empréstimo de \$100 a uma taxa mensal de 1%. Considerando y(0) = 100, qual o valor de y(n) no n-ésimo mês? Modele o problema como uma equação à diferenças e calcule sua solução. Então, calcule o valor da dívida no 36° mês.

E 2.1.4. Calcule a solução de

$$y(n+1) = 3y(n) - 3, \quad n \ge 0, \tag{2.70}$$

$$y(0) = 2. (2.71)$$

E 2.1.5. Calcule a solução de

$$y(n+1) = ny(n) + n!, \quad n \ge 0, \tag{2.72}$$

$$y(0) = 1. (2.73)$$

E 2.1.6. Calcule a solução de

$$y(n+1) = 2y(n) + 2^n, \quad n \ge 0, \tag{2.74}$$

$$y(0) = 2. (2.75)$$

E 2.1.7. Considere um empréstimo de \$100 a uma taxa mensal de 1% e com parcelas mensais fixas de \$1. Considerando y(0) = 100, qual o valor de y(n) no n-ésimo mês? Modele o problema como uma equação à diferenças e calcule sua solução.

E 2.1.8. Calcule a solução de

$$y(n+1) = ay(n) + b, \quad n \ge 0,$$
 (2.76)

onde a e b são constantes com $a \neq 1$.

2.2 Estudo assintótico de equações lineares

Nesta seção, vamos introduzir aspectos básicos sobre o comportamento assintótico de soluções de equações a diferenças de primeira ordem e lineares. Seja

$$y(n+1) = f(y(n),n), \quad n \ge n_0,$$
 (2.77)

uma equação a diferenças com valor inicial $y(n_0)$. Dizemos que y^* é **ponto** de equilíbrio da equação, quando y^* é tal que

$$f(y^*, n) = y^*, (2.78)$$

para todo $n \ge n_0$. Neste caso, ao escolhermos $y(n_0) = y^*$, então a solução de equação a diferenças (2.77) é

$$y(n) = y^*. (2.79)$$

Exemplo 2.2.1. Vamos calcular o(s) ponto(s) de equilíbrio de

$$y(n+1) = \frac{4}{3}y(n) - 1, \quad n \ge 0.$$
 (2.80)

Neste caso, por comparação com (2.77), temos $f(y(n),n) = \frac{4}{3}y(n) - 1$. Para calcularmos o(s) ponto(s) de equilíbrio, resolvemos

$$f(y^*, n) = y^* (2.81)$$

$$\frac{4}{3}y^* - 1 = y^* \tag{2.82}$$

$$\left(\frac{4}{3} - 1\right)y^* = 1\tag{2.83}$$

$$\frac{1}{3}y^* = 1\tag{2.84}$$

$$y^* = 3. (2.85)$$

Com isso, concluímos que $y^* = 3$ é o único ponto de equilíbrio de (2.80). Notamos que, de fato, ao escolhermos y(0) = 3, temos

$$y(1) = \frac{4}{3}y(0) - 1 = 3 \tag{2.86}$$

$$y(2) = \frac{4}{3}y(1) - 1 = 3 \tag{2.87}$$

$$y(3) = \frac{4}{3}y(1) - 1 = 3 \tag{2.88}$$

$$y(n) = 3. (2.90)$$

Seja a equação a diferenças de primeira ordem, linear e com coeficientes constantes

$$y(n+1) = ay(n) + b, \quad n \ge n_0,$$
 (2.91)

Se a=0, então todo número real y^* é ponto de equilíbrio de (2.91). Se a=1 e b=0, também. Agora, se a=1 e $b\neq 0$, então (2.91) não tem ponto de equilíbrio. Por fim, se $a\neq 0$ e $a\neq 1$, então

$$y^* = \frac{b}{1 - a} \tag{2.92}$$

é o único ponto de equilíbrio de (2.91). Este é o caso do Exemplo 2.2.1. Um ponto de equilíbrio é um **atrator global** quando

$$\lim_{n \to \infty} y(n) = y^*, \tag{2.93}$$

para qualquer valor inicial $y(n_0)$. Neste caso, também dizemos que y^* é um ponto de equilíbrio **assintoticamente globalmente estável**. Uma equação a diferenças da forma

$$y(n+1) = ay(n), \quad n \ge n_0,$$
 (2.94)

com -1 < a < 1, tem $y^* = 0$ como atrator global. De fato, a solução desta equação a diferenças é

$$y(n) = \left[\prod_{i=n_0}^{n-1} a\right] y(n_0)$$
 (2.95)

$$= a^{n-n_0} y(n_0). (2.96)$$

Logo, temos

$$\lim_{n \to \infty} y(n) = \lim_{n \to \infty} a^{n = n_0} \hat{y}(n_0)$$

$$= 0.$$

$$(2.97)$$

$$= 0.$$

$$=0. (2.98)$$

Exemplo 2.2.2. Para a equação a diferenças

$$y(n+1) = \frac{1}{2}y(n), \quad n \ge 0,$$
 (2.99)

temos que y^* é um ponto de equilíbrio assintoticamente globalmente estável.

Um equação a diferenças da forma

$$y(n+1) = ay(n) + b, \quad n \ge n_0,$$
 (2.100)

com -1 < a < 1, tem

$$y^* = \frac{b}{1 - a} \tag{2.101}$$

como ponto de equilíbrio assintoticamente globalmente estável. De fato, a

solução desta equação é

$$y(n) = \left[\prod_{i=n_0}^{n-1} a\right] y(n_0) + \sum_{i=n_0}^{n-1} \left[\prod_{j=i+1}^{n-1} a\right] b$$
 (2.102)

$$= a^{n-n_0}y(n_0) + \sum_{i=n_0}^{n-1} a^{n-1-i}b$$
 (2.103)

$$= a^{n-n_0}y(n_0) + a^{n-1}b\sum_{i=n_0}^{n-1}a^{-i}$$
(2.104)

$$= a^{n-n_0}y(n_0) + a^{n-1}b \sum_{j=0}^{n-n_0-1} a^{-j-n_0}$$
(2.105)

$$= a^{n-n_0}y(n_0) + a^{n-n_0-1}b \sum_{j=0}^{n-n_0-1} a^{-j}$$
(2.106)

$$= a^{n-n_0}y(n_0) + a^{n-n_0-1}b\frac{(1-a^{-(n-n_0)})}{1-a^{-1}}$$
 (2.107)

$$= a^{n-n_0}y(n_0) + a^{n-n_0-1}b \frac{\frac{a^{n-n_0}-1}{a^{n-n_0}}}{\frac{a-1}{a}}$$
 (2.108)

$$= a^{n-n_0}y(n_0) + b\frac{1 - a^{n-n_0}}{1 - a}$$
 (2.109)

$$= \left(y(n_0) - \frac{b}{1-a}\right)a^{n-n_0} + \frac{b}{1-a}.$$
 (2.110)

Observamos que esta última equação, confirma que

$$y^* = \frac{b}{1 - a} \tag{2.111}$$

é ponto de equilíbrio de (2.100) e é assintoticamente globalmente estável, pois

$$\lim_{n \to \infty} y(n) = \lim_{n \to \infty} \left[\left(y(n_0) - \frac{b}{1-a} \right) a^{n - n_0} + \frac{b}{1-a} \right]$$
 (2.112)

$$=\frac{b}{1-a}. (2.113)$$

Exemplo 2.2.3. A equação a diferenças

$$y(n+1) = 4y(n) - 1, \quad n > 0,$$
 (2.114)

tem $y^* = 1/3$ como ponto de equilíbrio, o qual não é um atrator global. De fato, para qualquer escolha de $y(0) \neq y^*$, temos

$$y(n) = \underbrace{\left(y(0) - \frac{1}{3}\right)}_{\neq 0} 4^n + \frac{1}{3}.$$
 (2.115)

Logo, vemos que $y(n) \to \infty$ quando $n \to \pm \infty$, onde o sinal é igual ao do termo y(0) - 1/3.

Observamos as seguintes computações no Python⁷:

```
In : y=1/3
...: for i in range(1,31):
...: y=4*y-1
...:
...: y
Out: -21.0
```

Ou seja, y(30) = -21.0 computando por iterações recorrentes, enquanto que o valor esperado é y(30) = 1/3, sendo este um ponto de equilíbrio da equação a diferenças.

O que está ocorrendo nestas computações é um fenômeno conhecido como cancelamento catastrófico em máquina. No computador, o valor inicial y(0) = 1/3 é computado com um pequeno erro de arredondamento. Do que vimos acima, se $y(0) \neq 1/3$, então $y(n) \to \pm \infty$ quando $n \to \infty$.

No Python⁸, podemos fazer as computações exatas na aritmética dos números racionais. Para tanto, podemos usar o seguinte código:

```
In : from sympy import Rational
...: y=Rational(1,3)
...: for i in range(1,31):
...: y=4*y-1
...:
...: y
Out: 1/3
```

⁷Veja a Observação 1.0.1.

⁸Veja a Observação 1.0.1.

Exercícios resolvidos

ER 2.2.1. Calcule os pontos de equilíbrio de

$$y(n+1) = ny(n), \quad n \ge 0.$$
 (2.116)

Solução. Temos que y^* é ponto de equilíbrio da equações a diferenças, quando

$$y^* = ny^* (2.117)$$

$$(1-n)y^* = 0 (2.118)$$

para todo $n \geq 0.$ Logo, $y^* = 0$ é ponto de equilíbrio da equação a diferenças.

 \Diamond

ER 2.2.2. Verifique se $y^* = 0$ é ponto de equilíbrio assintoticamente globalmente estável de

$$y(n+1) = \frac{1}{n+1}y(n), \quad n \ge 0.$$
 (2.119)

Solução. Primeiramente, confirmamos que $y^* = 0$ é ponto de equilíbrio, pois

$$\frac{1}{n+1}y^* = 0 = y^*, \quad n \ge 0. \tag{2.120}$$

Por fim, a solução da equação a diferenças é

$$y(n) = \left[\prod_{i=0}^{n-1} \frac{1}{i+1} \right] y(0)$$
 (2.121)

$$=\frac{1}{n!}y(0). (2.122)$$

Daí, vemos que

$$\lim_{n \to \infty} \frac{1}{n!} y(0) = 0 = y^*. \tag{2.123}$$

Logo, concluímos que $y^* = 0$ é ponto de equilíbrio assintoticamente globalmente estável da equação a diferenças dada.

 \Diamond

Exercícios

E 2.2.1. Calcule o ponto de equilíbrio de

$$y(n+1) = -y(n) + 1 (2.124)$$

E 2.2.2. O ponto de equilíbrio da equação a diferenças do Exercício 2.2.1 é um atrator global? Justifique sua resposta.

E 2.2.3. Encontre o ponto de equilíbrio de

$$y(n+1) = \frac{1}{2}y(n) + \frac{1}{2}, \quad n \ge 2,$$
 (2.125)

e diga se ele é um atrator global. Justifique sua resposta.

E 2.2.4. Encontre o ponto de equilíbrio de

$$y(n+1) = 2y(n) + 1, \quad n \ge 2,$$
 (2.126)

e diga se ele é assintoticamente globalmente estável. Justifique sua resposta.

E 2.2.5. Considere um financiamento de valor \$100 com taxa de juros 1% a.m. e amortizações fixas mensais de valor \$a. O valor devido y(n+1) no n+1-ésimo mês pode ser modelado pela seguinte equações a diferenças

$$y(n+1) = 1.01y(n) - a, \quad n \ge 0,$$
 (2.127)

com valor inicial y(0) = 100. Calcule o valor a mínimo a ser amortizado mensalmente de forma que o valor devido permaneça sempre constante.

2.3 Alguns aspectos sobre equações não lineares

O estudo de equações a diferenças não lineares é bastante amplo, podendo chegar ao estado da arte. Nesta seção, vamos abordar alguns conceitos fundamentais para a análise de equações de primeira ordem e não lineares, i.e. equações da forma

$$f(y(n+1),y(n);n) = 0, \quad n \ge n_0 \ge 0,$$
 (2.128)

onde f é uma função não linear nas incógnitas y(n+1) ou y(n).

2.3.1 Solução

A variedade de formas que uma equação a diferenças não linear pode ter é enorme e não existem formas fechadas para a solução da grande maioria delas. No entanto, sempre pode-se buscar calcular a solução por iteração direta, i.e.

$$y(n_0) = \text{valor inicial},$$
 (2.129)

$$f(y(n+1),y(n);n) = 0, \ n = n_0, n_0 + 1, n_0 + 2, \dots$$
 (2.130)

Exemplo 2.3.1. Vamos calcular a solução da seguinte equação a diferenças não linear

$$y(n+1) = y^2(n), \quad n \ge 0.$$
 (2.131)

A partir do valor inicial y(0) e por iterações diretas, temos

$$y(1) = y^2(0), (2.132)$$

$$y(2) = [y(1)]^2 (2.133)$$

$$= \left[y^2(0) \right]^2 \tag{2.134}$$

$$= y^{2^2}(0), (2.135)$$

$$y(3) = [y(2)]^2 (2.136)$$

$$= \left[y^{2^2}(0) \right]^2 \tag{2.137}$$

$$=y^{2^3}(0) (2.138)$$

$$\vdots$$
 (2.139)

Disso, podemos inferir que a solução de 2.131 é

$$y(n) = y^{2^n}(0). (2.140)$$

2.3.2 Pontos de equilíbrio

Introduzimos pontos de equilíbrio na Seção 2.2 e, aqui, vamos estudá-los no contexto de equação a diferenças de primeira ordem e não lineares. Um dos primeiros aspectos a serem notados é que equação não lineares podem ter vários pontos de equilíbrio, ter somente um ou não ter.

Exemplo 2.3.2. (Ponto de equilíbrio) Vejamos os seguintes casos:

a) $y(n+1) = y(n)^2 + 1, n \ge 0$

Se y^* é ponto de equilíbrio, então

$$y^* = (y^*)^2 + 1 (2.141)$$

$$(y^*)^2 - y^* + 1 = 0, (2.142)$$

a qual não admite solução real. Ou seja, a equação a diferenças deste item não tem ponto de equilíbrio.

b)
$$y(n+1) = y(n)^2, n \ge 0$$

$$y^* = (y^*)^2 (2.143)$$

$$\left(y^*\right)^2 - y^* = 0 \tag{2.144}$$

$$y^* (y^* - 1) = 0, (2.145)$$

Neste caso, a equação a diferenças tem dois pontos de equilíbrio, a saber, $y_1^* = 0$ e $y_2^* = 1$.

c)
$$[y(n+1)-1] \cdot [y(n)-1] = 0, n \ge 0$$

$$(y^* - 1) \cdot (y^* - 1) = 0 (2.146)$$

$$(y^* - 1)^2 = 0 (2.147)$$

$$y^* = 1 (2.148)$$

Concluímos que esta equação tem $y^*=1$ como seu único ponto de equilíbrio.

d)
$$y(n+1) = y(n)\cos(y(n)), n \ge 0$$

$$y^* = y^* \cos(y^*) \tag{2.149}$$

$$[\cos(y^*) - 1] y^* = 0 (2.150)$$

$$\cos\left(y^*\right) = 1\tag{2.151}$$

Disso, temos que $y^* = 2k\pi$, $k \in \mathbb{Z}$, são pontos de equilíbrio da equação a diferenças dada.

Equações a diferenças não lineares podem ter pontos de equilíbrio eventuais. Mais especificamente, uma equação a diferenças

$$f(y(n+1),y(n);n) = 0, \quad n \ge n_0,$$
 (2.152)

tem y^* como **ponto de equilíbrio eventual** quando existe $n_1 > n_0$ tal que

$$y(n) = y^*, \quad n \ge n_1.$$
 (2.153)

Exemplo 2.3.3. (Ponto de equilíbrio eventual) A equação a diferenças

$$y(n+1) = |2y(n) - 2|, \quad n \ge 0, \tag{2.154}$$

$$y(0) = 1, (2.155)$$

tem $y^* = 2$ como ponto de equilíbrio eventual. De fato, por iterações diretas temos

$$y(1) = |2y(0) - 2| \tag{2.156}$$

$$= |2 \cdot 1 - 2| = 0 \tag{2.157}$$

$$y(2) = |2y(1) - 2| \tag{2.158}$$

$$= |2 \cdot 0 - 2| = 2 \tag{2.159}$$

$$y(3) = |2y(2) - 2| \tag{2.160}$$

$$= |2 \cdot 2 - 2| = 2 \tag{2.161}$$

$$\vdots$$
 (2.162)

$$y(n) = 2, \quad n \ge 2. \tag{2.163}$$

Um ponto de equilíbrio y^* de (2.152) é dito ser **estável** quando, para cada $\epsilon > 0$ existe $\delta > 0$ tal que

$$|y(0) - y^*| < \delta \Rightarrow |y(n) - y^*| < \epsilon,$$
 (2.164)

para todo n > 0. Em outras palavras, para todo n, a solução y(n) está arbitráriamente próxima de y^* para toda escolha de valor inicial $y(0) \neq y^*$ suficientemente próximo de y^* . Quando este não é o caso, y^* é dito ser ponto de equilíbrio **instável**.

Exemplo 2.3.4. Vamos estudar os pontos de equilíbrio de

$$y(n+1) = (y^2(n) - 1)^2 + 1, \quad n \ge 0.$$
 (2.165)

Vamos calcular os pontos de equilíbrio.

$$y^* = \left[(y^*)^2 - 1 \right]^2 + 1 \tag{2.166}$$

$$y^* = (y^*)^2 - 2y^* + 2 (2.167)$$

$$\left(y^*\right)^2 - 3y^* + 2 = 0 \tag{2.168}$$

$$y_1^* = 1, \quad y_2^* = 2$$
 (2.169)

Tomamos o ponto de equilíbrio $y^*=1$. Seja $\epsilon>0$ e escolhemos $0<\delta<1$ tal que $\delta<\epsilon$. Então, para qualquer valor inicial

$$y(0) = 1 \pm \delta \tag{2.170}$$

temos

$$y(1) = (y(0) - 1)^{2} + 1 (2.171)$$

$$= \delta^2 + 1 < 1 + \epsilon \tag{2.172}$$

Em construção ...

Exercícios resolvidos

Em construção ...

Exercícios

Em construção ...

Resposta dos Exercícios

E 1.1.1. a) ordem 1, linear; b) ordem 1, linear; c) ordem 2, linear; d) ordem 1, não linear; e) ordem 2, não linear;

E 1.1.2. a)
$$y(3) = 3 + 3\sqrt{2}$$
; b) $y(3) = \frac{1}{2} \ln(2) \ln(3)$

E 1.1.3. a)
$$y(4) = 1$$
; b) $y(4) = 0$

E 1.1.4.
$$y(n+1) = 3y(n)$$
.

E 1.1.5. Sequência de Fibonacci

E 2.1.1.
$$y(n) = 3^n y(0)$$

E 2.1.2.
$$y(n) = -\frac{1}{3^n}$$

E 2.1.3.
$$y(n+1) = 1,01 \cdot y(n), y(0) = 100; y(n) = 100 \cdot 1,01^n; y(36) \approx 143,08$$

E 2.1.4.
$$y(n) = \frac{1}{2}(3^n + 3)$$

E 2.1.5.
$$y(n) = n!$$

E 2.1.6.
$$y(n) = 2^n \left(\frac{n}{2} + 2\right)$$

E 2.1.7.
$$y(n+1) = 1.01 \cdot y(n) - 1$$
, $y(0) = 100$; $y(n) = 100$;

E 2.1.8.
$$y(n) = \left(y(0) - \frac{b}{1-a}\right)a^n + \frac{b}{1-a}$$

E 2.2.1. 1/2

E 2.2.2. não

E 2.2.3. $y^* = 1$; atrator global

E 2.2.4. $y^* = -1$; não é assintoticamente globalmente estável

E 2.2.5. a = 1

Referências Bibliográficas

- [1] W.E. Boyce and R.C. DiPrima. Equações diferenciais elementares e problemas de valores de contorno. LTC, 10. edition, 2017.
- [2] S. Elaydi. An introduction to difference equations. Springer, 3. edition, 2005.