Week 13

方科晨

December 26, 2023

1 Exercise 12

令 $C. = (\cdots \longrightarrow C_{n+1} \xrightarrow{\partial} C_n \xrightarrow{\partial} C_{n-1} \longrightarrow \cdots)$ 和 $D. = (\cdots \longrightarrow D_{n+1} \xrightarrow{\partial} D_n \xrightarrow{\partial} D_{n-1} \longrightarrow \cdots)$ 是两个链 复形,且 $f_t, g_t, h: C. \to D$. 是链映射

- 1. 自反性:存在同态 $P: C_n \to D_{n+1}: \sigma \to 0, \forall n$,则有 $\partial P + P\partial = 0 = f_{\sharp} f_{\sharp}$,即 $f_{\sharp} \sim f_{\sharp}$
- 2. 对称性: 若存在同态 $P:C_n\to D_{n+1}, \forall n$ 使得 $\partial P+P\partial=g_{\sharp}-f_{\sharp}$,则存在同态 $(-P):C_n\to D_{n+1}, \forall n$ 使得 $\partial (-P)+(-P)\partial=f_{\sharp}-g_{\sharp}$,即 $f_{\sharp}\sim g_{\sharp}\Rightarrow g_{\sharp}\sim f_{\sharp}$
- 3. 传递性: 若存在同态 $P_1, P_2: C_n \to D_{n+1}, \forall n$ 使得 $\partial P_1 + P_1 \partial = g_{\sharp} f_{\sharp}$ 和 $\partial P_2 + P_2 \partial = h_{\sharp} g_{\sharp}$,则 有 $(P_1 + P_2): C_n \to D_{n+1}, \forall n$ 满足 $\partial (P_1 + P_2) + (P_1 + P_2) \partial = h_{\sharp} f_{\sharp}$,即 $f_{\sharp} \sim g_{\sharp}, g_{\sharp} \sim h_{\sharp} \Rightarrow f_{\sharp} \sim h_{\sharp}$ 综上,链映射的同伦关系是等价关系

2 Exercise 15

- 1. "⇒": 如果 C=0,则 $B=\ker(B\to C)=\operatorname{Im}(A\to B)$,则 $A\to B$ 为满射。同时 $0=\operatorname{Im}(C\to D)=\ker(D\to E)$,故有 $D\to E$ 为单射
- 2. " \leftarrow ": 如果 $A \to B$ 为满射, $D \to E$ 为单射,则 $B = \operatorname{Im}(A \to B) = \ker(B \to C) \Rightarrow \operatorname{Im}(B \to C) \cong 0$ 和 $\operatorname{Im}(C \to D) = \ker(D \to E) = 0 \Rightarrow \ker(C \to D) \cong C$,又因为 $\operatorname{Im}(B \to C) = \ker(C \to D)$ 故 C = 0

对于 (X,A) , 嵌入映射 $A \hookrightarrow X$ 诱导的长正合列 $\cdots \to H_{n+1}(X,A) \xrightarrow{\partial} H_n(A) \xrightarrow{i_*} H_n(X) \xrightarrow{j_*} H_n(X,A) \xrightarrow{\partial} H_{n-1}(A) \xrightarrow{i_*} H_{n-1}(X) \to \cdots \to H_0(X,A) \to 0$

- 1. "⇒": 如果 i_* 是同构,则 i_* 是单满射。由上述结论, $i_*: H_n(A) \to H_n(X)$ 满射且 $i_*: H_{n-1}(A) \to H_{n-1}(X)$ 单射,故 $H_n(X,A) = 0$
- 2. "←": 如果 $H_n(X,A) = 0$, $\forall n$ 由上述结论和 $H_n(X,A) = 0$ 可得 i_* 是满射,又由 $H_{n-1}(X,A) = 0$ 可得 i_* 是单射,故 i_* 是同构

3 Exercise 16

3.1 a

有正合列 $\cdots \to H_1(X,A) \stackrel{\partial}{\to} H_0(A) \stackrel{i_*}{\to} H_0(X) \stackrel{j_*}{\to} H_0(X,A) \stackrel{\partial}{\to} 0$ 。有 $H_0(X,A) = 0 \Leftrightarrow \ker \partial = 0 \Leftrightarrow \operatorname{Im} j_* = 0 \Leftrightarrow \ker j_* = H_0(X) \Leftrightarrow \operatorname{Im} i_* = H_0(X)$ 即 $H_0(X,A) \Leftrightarrow i_*$ 是满射

令 $\{X_{\alpha}\}_{\alpha\in I}$ 是 X 的道路连通分支,则有 $H_0(X)=\bigoplus_{\alpha\in I}H_0(X_{\alpha})$ 。又 $\{A\cap X_{\alpha}\}_{\alpha\in I}$ 是 A 的道路连通分支(可能含有空集合),则 $H_0(A)=\bigoplus_{\alpha\in I}H_0(A\cap X_{\alpha})$

则有 $i_*: H_0(A) \to H_0(X)$ 是满射 $\Leftrightarrow \forall \alpha \in I, i_*: H_0(A \cap X_\alpha) \to H_0(X_\alpha)$ 是满射

又有 $H_0(A \cap X_\alpha) \stackrel{i_*}{\to} H_0(X_\alpha) \stackrel{\cong}{\to} \mathbb{Z}$,其中,若 i_* 满射,则 $A \cap X_\alpha \neq \emptyset$ 。若 $A \cap X_\alpha \neq \emptyset$,则 $i_* \circ \varepsilon$: $H_0(A \cap X_\alpha) \to \mathbb{Z}$ 是同构,则 i_* 是满射。故 $\forall \alpha \in I, i_* : H_0(A \cap X_\alpha) \to H_0(X_\alpha)$ 是满射 $\Leftrightarrow A \cap X_\alpha \neq \emptyset$,故 $H_0(X,A) = 0$ iff $A \hookrightarrow X$ 的每个道路连通分支都有交

"⇒":

考虑正合列 $\cdots \to H_2(X,A) \xrightarrow{\partial} H_1(A) \xrightarrow{i_*} H_1(X) \xrightarrow{j_*} H_1(X,A) \xrightarrow{\partial} H_0(A) \to \cdots$ 。则由前一题可得, $H_1(X,A) = 0$ 有 $i_*: H_1(A) \to H_1(X)$ 是满射和 $i_*: H_0(A) \to H_0(X)$ 是单射。

由于 $H_0(A)$ 是由 A 的所有连通分支中的圈生成的。假定 A_1, A_2 是 A 的两个道路连通分支,且都包含 于某个 X 的道路连通分支 X_{α} , 令 a_1, a_2 为这两个道路连通分支的圈,则 $i(a_1), i(a_2): C_0(A) \rightarrow C_0(X_{\alpha})$,又 X_lpha 为连通的,则有 $[i(a_1)]=[i(a_2)]$ 。又有 $i_*:H_0(A) o H_0(X)$ 是单射,故 $[a_1]=[a_2]$ 。矛盾, 故 X 的任意一个道路连通分支至多只包含 A 的一个道路连通分支。 "⇐":

首先可证,如果 X 的任意一个道路连通分支至多只包含 A 的一个道路连通分支,则有 $i_*: H_0(A) \rightarrow$ $H_0(X)$ 为单射。

假设 i_* 不是单射,则 $\exists 0 \neq [a] \in H_0(A)$ 满足 $i_*([a]) = 0$ 。令 $\{A_\alpha\}_{\alpha \in I}$ 是 A 的所有道路连通分支,令 a_α 是 A_{α} 中的圈。由 $H_0(A) = \bigoplus_{\alpha \in I} H_0(A_{\alpha})$,存在 $c_{\alpha} \in \mathbb{Z}, \forall \alpha \in I$ 使得 $[a] = \sum_{\alpha \in I} c_{\alpha}[a_{\alpha}]$ 。又因为 X 的 任意一个道路连通分支至多只包含 A 的一个道路连通分支,故 $i_*([a_\alpha])$ 之间线性无关,又 $i_*([a])=0$ 所以有 $c_{\alpha} = 0, \forall \alpha \in I$, 则有 [a] = 0 , 矛盾。

因此 $i_*: H_0(A) \to H_0(X)$ 为单射。又由题设 $i_*: H_1(A) \to H_1(X)$ 为满射,由上题结论可得, $H_1(X,A) =$

4 Exercise 18

考虑长正合列 $\cdots \to H_n(\mathbb{Q}) \to H_n(\mathbb{R}) \to H_n(\mathbb{R}, \mathbb{Q}) \to H_{n-1}(\mathbb{Q}) \to \cdots$ 由于 $\mathbb Q$ 的连通分支为其中的每一个点,因此 $H_n(\mathbb Q)=egin{cases} \oplus_{q\in\mathbb Q}\mathbb Z & n=0 \\ 0 & \text{otherwise} \end{cases}$ 由于 $\mathbb R$ 是单连通的,可收缩到一点,故 $H_n(\mathbb R)=egin{cases} \mathbb Z & n=0 \\ 0 & n>0 \end{cases}$

代入到正合列中,则有 $0 \stackrel{j_*}{\to} H_1(\mathbb{R},\mathbb{Q}) \stackrel{\partial}{\to} H_0(\mathbb{Q}) \cong \oplus_{q \in \mathbb{Q}} \mathbb{Z}^{\parallel} \stackrel{i_*}{\to} H_0(\mathbb{R}) \cong \mathbb{Z} \to 0$,由正合列可得 ∂ 为单射。由于 $\oplus_{q \in \mathbb{Q}} \mathbb{Z}$ 为自由Abel群,自由Abel群的子群是自由Abel群,故 $H_1(\mathbb{R},\mathbb{Q})$ 为自由Abel群。 现考虑该群的基。 $C_n(\mathbb{R}, \mathbb{Q}) = C_n(\mathbb{R})/C_n(\mathbb{Q})$

由于 ∂ 为单射,即 $\ker \partial = 0$,故 $\operatorname{Im} \partial \stackrel{h}{\cong} H_1(\mathbb{R},\mathbb{Q})$,由正合列 $\ker i_* = \operatorname{Im} \partial \stackrel{h}{\cong} H_1(\mathbb{R},\mathbb{Q})$,故只需考虑 i_* 的kernel

 $i_*(1_q) = 1 \in \mathbb{Z}, 1_q \in \mathbb{Z}^q$, 选取 $x_0 \in \mathbb{Q}$ 则 i_* 的kernel的基为 $1_x - 1_{x_0}, \forall x \in \mathbb{Q}$, 则 $h(1_x - 1_{x_0}), \forall x \in \mathbb{Q}$ 为 $H_1(\mathbb{R},\mathbb{Q})$ 的一组基

Exercise 26 5

引理 对任意拓扑空间 X ,一维同调群 $H_1(X)$ 是 X 的基本群的阿贝尔化

 $X = [0,1], A = \{\frac{1}{n}\}_{n \geq 1} \cup \{0\}$, 则粘合空间 X/A 同胚于 Example 1.25 中的图示

由 Example 1.25 可得同态 $\rho = \bigotimes_{n \geq 1} \rho_n : \pi_1(X/A) \to \prod_{\infty} \mathbb{Z}$ 是满射。

由引理, $H_1(X/A)$ 是 $\pi_1(X/A)$ 的阿贝尔化。由于 $\prod_\infty \mathbb{Z}$ 是阿贝尔群,又 ho 为同态,故 $orall a,b \in \mathbb{R}$ $\pi_1(X/A), [a] = [b] \in H_1(X/A) \cong \pi_1(X/A)/[\pi_1(X/A), \pi_1(X/A)], \quad \text{fi} \quad \rho(a) = \rho(b), \quad \text{id} \Leftrightarrow \rho_0 : H_1(X/A) \to 0$ $\prod_{\infty} \mathbb{Z} : \rho_0([a]) = \rho(a)$,有 ρ_0 是良定义的。因此, $\operatorname{Im} \rho_0 = \operatorname{Im} \rho = \prod_{\infty} \mathbb{Z}$ 。由于 $\prod_{\infty} \mathbb{Z}$ 为不可数集且 ρ_0 满射,故 $H_1(X/A)$ 不可数

由正合列 $H_1(X) \rightarrow H_1(X,A) \rightarrow H_0(A)$ 其中,由于 X 可形变收缩至一点,故 $H_1(X) = 0$ 。 $H_0(A) =$ $\bigoplus_{n\in\mathbb{N}}\mathbb{Z}$ 为可数群,由 $H_1(X)=0$ 和正合可得 $H_1(X,A)\to H_0(A)$ 是单射,故 $H_1(X,A)$ 为可数群的子群, 故可数

由于 $H_1(X/A)$ 不可数而 $ilde{H}_1(X,A) = H_1(X,A)$ 可数,因此它们不同构

6 Exercise 27

6.1 a

令 $g = f|_A : A \to B$, 由正合列交换图

$$\cdots \longrightarrow H_n(A) \longrightarrow H_n(X) \longrightarrow H_n(X,A) \longrightarrow H_{n-1}(A) \longrightarrow H_{n-1}(X) \longrightarrow \cdots$$

$$\downarrow g_* \qquad \qquad \downarrow f_* \qquad \qquad \downarrow \tilde{f}_* \qquad \qquad \downarrow g_* \qquad \qquad \downarrow f_*$$

$$\cdots \longrightarrow H_n(B) \longrightarrow H_n(Y) \longrightarrow H_n(Y,B) \longrightarrow H_{n-1}(B) \longrightarrow H_{n-1}(Y) \longrightarrow \cdots$$

图中,每一个同调群均为Abel群。同时,由于 f,g 都是同伦等价,所以诱导的 f_*,g_* 为同构。由 5-lemma 可得, $\tilde{f_*}:H_n(X,A)\to H_n(Y,B)$ 为同构

6.2 b

假设 $f:(D^n,S^{n-1})\hookrightarrow (D^n,D^n-\{0\})$ 是同伦等价,则存在 $(D^n,\overline{S^{n-1}})\hookrightarrow (D^n,\overline{D^n-\{0\}})$ 的同伦等价。由于 $\overline{S^{n-1}}=S^{n-1},\overline{D^n-\{0\}}=D^n$,即存在 $(D^n,S^{n-1})\hookrightarrow (D^n,D^n)$ 的同伦等价。但着意味着 S^{n-1} 和 D^n 是同伦等价的,矛盾。所以 f 不是同伦等价