Probability Theory

Dr. Wan Nor Arifin

Biostatistics and Research Methodology Unit Universiti Sains Malaysia

Last update: Oct 30, 2022

Outlines

- Introduction
- Basic Concepts
- Counting Method
- Conditional Probability

Expected outcomes

- Understand the basic concepts in probability
- Able to calculate probability by counting method
- Understand the concept of conditional probability and able to apply the concept to calculate related probability

Introduction

Introduction

Probability is...

"the chance that a given event will occur" (Merriam-Webster, 2022)

"a branch of mathematics that studies the possible outcomes of given events together with the outcomes' relative likelihoods and distributions" (Weisstein, 2022)

Range: Impossible $0 \rightarrow 1$ Certain

- Classical
- Frequentist
- Bayesian

Classical

- Game of chance flipping coin, rolling dice
- Frequentist
- Finite number of possible outcomes

Bayesian

$$P(A) = \frac{N_A}{N}$$

Example: If a fair 6-sided die is rolled, probability of getting a 1 is

$$P(1) = \frac{1}{6}$$

- Classical
- Frequentist
- Bayesian

• Relative frequency of outcome after a number of repetition of random trials

$$P(x) {pprox} rac{n_x}{n_t}$$

Example: Based on data collected over 200 years, it rained 15 out of 30 days in September. The probability of rain on 23 Sept 2022 is

$$P(\text{Rain on September 23}) = \frac{15}{30} = \frac{1}{2}$$

- Classical
- Frequentist
- Bayesian

- 1763 Thomas Bayes Bayes' Theorem
- Updates prior knowledge (probability) in light of new data
- Will be introduced formally later in this lecture

Basic Concepts

- Experiment
- Sample Space
- Event

- Union
- Intersection
- Complement
- Disjoint

A situation for which the outcomes occur randomly

- Experiment
- List of all possible outcomes of an Sample Space
- Event

A subset of the sample space

experiment, Ω

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Event A, odd numbers for a fair 6-sided die,

$$A = \{1,3,5\}$$

When either A or B or both occurs

$$A = \{1,2,3\}$$

$$B = \{3,4,5\}$$

$$A \cup B = \{1,2,3,4,5\}$$

$$\{1,2,3,3,4,5\} = \{1,2,3,4,5\}$$

- Union
- Intersection
- Complement
- Disjoint

When both A and B occurs

$$A = \{1,2,3\}$$

$$B = \{3,4,5\}$$

$$A \cap B = \{1,2,3,4,5\} = \{3\}$$

- Union
- Intersection
- Complement
- Disjoint

When A does NOT occur

$$\Omega = \{1,2,3,4,5,6\}
A = \{1,2,3\}
A^{C} = \{1,2,3,4,5,6\} = \{4,5,6\}$$

- Union
- Intersection
- Complement
- Disjoint

- Union
- Intersection
- Complement
- Disjoint
- When two events have no shared elements

$$A = \{1,2,3\}$$

 $C = \{4,5,6\}$

 $A \cap B = \emptyset$

 \mathcal{D} is empty set

Properties

1.
$$P(A^c)=1-P(A)$$

2.
$$P(\emptyset) = 0$$

3. If
$$A \subseteq B$$
, then $P(A) \leq P(B)$

4. Addition Law
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Counting Method

Multiplication Principle

Basic: If one experiment has m outcomes and another experiment has n outcomes, then there are mn possible outcomes for the two

experiments.

Example: Playing cards have 13 face values (outcomes) per suit and 4 suits (experiments). Thus

 $13\times4=52$ face values

Multiplication Principle

Extended: If there are p experiments and the 1st has n_1 possible outcomes, the 2nd n_2 , ..., and the pth n_p possible outcomes, then there are a total of

$$n_1 \times n_2 \times \ldots \times n_p$$

possible outcomes for the *p* experiments.

Example: A fair 10 cent coin is thrown 4 times, each with two possible outcomes (hibiscus, congkak), thus

$$2\times2\times2\times2=2^4=16$$
 possible outcomes

{HHHH, CCCC, HHHC, ...}

Permutation

For a set of size *n* and a sample of size *r*, the number of different ordered samples **without** replacement:

$$^{n}P_{r} = \frac{n!}{(n-r)!} = n(n-1)(n-2)...(n-r+1)$$

Example: If the same number cannot appear twice, how many different ways to arrange number 0-9 to form a 3 digits number sequence?

Sample size, r = 3; Number of elements, n = 10

$${}^{n}P_{r} = \frac{n!}{(n-r)!} = \frac{10!}{7!} = 10.9.8 = 720 \text{ ways}$$
 10 9 8

Permutation

For a set of size n and a sample of size r, there are

 n^{r}

different ordered samples with replacement

Example: How many different ways to arrange number 0-9 to form a 3 digits number sequence?

Sample size, r = 3; Number of elements, n = 10

$$n^r = 10^3 = 1000$$
 ways

Combination

The number of unordered samples of *r* objects from *n* objects **without** replacement:

Binomial coefficient

$${}^{n}C_{r} = {n \choose r} = \frac{n(n-1)(n-2)\dots(n-r+1)}{r!} = \frac{n!}{(n-r)!} \times \frac{1}{(r)!} = \frac{n!}{(n-r)! \, r!}$$

Example: If the same color cannot appear again, how many combinations of 2 colors out of 3 colors are possible?

$$r = 2$$
; $n = 3$

$${}^{n}C_{r} = {n \choose r} = \frac{n!}{(n-r)! \, r!} = \frac{3!}{(3-2)! \, 2!} = \frac{3.2!}{1! \, 2!} = \frac{3}{1} = 3$$

Combination

The number of unordered samples of *r* objects from *n* objects **with** replacement:

$$\frac{(r\!+\!n\!-\!1)!}{r!(n\!-\!1)!}$$

Example: How many combinations of 2 colors out of 3 colors are possible?

$$r = 2; n = 3$$

$$\frac{(r+n-1)!}{r!(n-1)!} = \frac{(2+3-1)!}{2!(3-1)!} = \frac{4!}{2!2!} = \frac{4.3}{2!} = 6$$

Combination

The number of ways that n objects can be grouped into r classes with n_i in the ith class:

Multinomial coefficient

$$\binom{n}{n_1 n_2 \dots n_r} = \frac{n!}{n_1! n_2! \dots n_r!}$$

Example: A group of 7 eligible subjects in a clinical trial is allocated into 3 groups with size of 3, 2 and 2. How many ways the allocation could be done?

$$\binom{7}{322} = \frac{7!}{3!2!2!} = \frac{7.6.5.4.3!}{3!2!2!} = \frac{7.6.5.4}{2.1.2.1} = 210$$

Conditional Probability

Conditional Probability

- Probability calculated with a subset of the sample space as denominator
- Probability of A given B,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, if $P(B) \neq 0$

Table in count

	ELISA		
New test	D+	D-	Total
T+	30	15	45
T-	5	50	55
Total	35	65	100

$$P(D+|T+)$$
?

$$P(D-|T-)$$
?

New test	ELISA		Total
	D+	D-	Total
T+	.3000	.1500	.4500
T-	.0500	.5000	.5500
Total	.3500	.6500	1.000

$$P(D+|T+)$$
 = $rac{P(D+\cap T+)}{P(T+)}$

$$P(D-|T-)=\frac{P(T-\cap D-)}{P(D-)}$$

Multiplication Law

• Calculate intersection (or joint) probability,

$$P(A \cap B) = P(A \mid B)P(B)$$

Multiplication Law

New test	ELISA		Total
new test	D+	D-	Total
T+	.3000	.1500	.4500
T-	.0500	.5000	.5500
Total	.3500	.6500	1.000

$$P(A \cap B)$$

$$= P(A \mid B)P(B)$$

$$P(D+\cap T+)=P(D+|T+)P(T+)=.6667\times?$$

Law of Total Probability

• For disjoint events B_1 , B_2 , ..., B_n with $P(B_i) > 0$ for all i, then

$$P(A) = \sum_{i=1}^{n} P(A | B_i) P(B_i)$$

	ELISA		Marginal
New test	D+	D-	probability
T+	.6667	.3333	.4500
T-	.0909	.9091	.5500
*	*	*	*

$$P(D+) \! = \! \sum_{} P(D+|T_i)P(T_i) \! = \\ P(D+|T+)P(T+) \! + \! P(D+|T-)P(T-) \! = \! ?$$

	ELISA		Marginal
New test	D+	D-	probability
T+	.6667	.3333	.4500
T-	.0909	.9091	.5500
*	*	*	*

$$P(D-)=\sum P(D-|T_i)P(T_i)=?$$

Bayes' Rule

• For disjoint events B_1 , B_2 , ..., B_n with $P(B_i) > 0$ for all i, then,

$$P(B_{j}|A) = \frac{P(A \cap B_{j})}{P(A)} = \frac{P(B_{j})P(A|B_{j})}{\sum_{i=1}^{n} P(A|B_{i})P(B_{i})}$$

 $Posterior\ probability = \frac{Prior\ probability \times Likelihood}{Marginal\ probability}$

New test	ELISA		*
new test	D+	D-	·
T+	.8571	.2308	*
T-	.1429	.7692	*
Marginal probability	.3500	.6500	*

$$P(B_j|A) = \frac{P(A \cap B_j)}{P(A)}$$

Prior expert knowledge

$$P(D+)=.85$$

 $P(D-)=.15$

$$P(D+|T+) = \frac{P(T+\cap D+)}{P(T+)}$$

Use multiplication law

Use law of total probability

New test	ELISA		*
new test	D+	D-	
T+	.8571	.2308	*
T-	.1429	.7692	*
Marginal probability	.3500	.6500	*

$$P(B_j|A) = \frac{P(A \cap B_j)}{P(A)}$$

Prior expert knowledge

$$P(D+)=.85$$

 $P(D-)=.15$

$$P(D+|T+)=rac{P(T+|D+)P(D+)}{P(T+|D+)P(D+)+P(T+|D-)P(D-)}=?$$

Now tost	ELISA		*
New test	D+	D-	•
T+	.8571	.2308	*
T-	.1429	.7692	*
Marginal probability	.3500	.6500	*

$$P(B_j|A) = \frac{P(A \cap B_j)}{P(A)}$$

Prior expert knowledge

$$P(D+)=.85$$

 $P(D-)=.15$

$$P(D+|\,T\,\text{-}) = \frac{P(T\,\text{-}\cap D\,+)}{P(T\,\text{-})} = \frac{P(T\,\text{-}|\,D\,+)P(D\,+)}{P(T\,\text{-}|\,D\,+)P(D\,+) + P(T\,\text{-}|\,D\,\text{-})P(D\,\text{-})} = ?$$