

A Sensor-site Hybrid Algorithm Pipeline for Locomotion and Transportation Mode Recognition

Team: SIAT-BIT

Fangyu Liu, Hao Wang, Huazhen Huang, Xiang Li, Ye Li, Fangmin Sun* (fm.sun@siat.ac.cn)

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

University of Chinese Academy of Sciences

Problem & Motivation

> Three Challenge:

- Sensor Modality Dropout.
- Varying Device Placement
- Limited Model Generalization

We aim to deliver a framework that can adapt to partial data loss, changes in sensor positions, and maintains high recognition accuracy.

Dataset

> SHL Dataset 2025 [1][2]:

- 4 sensor locations (bag, hips, torso, hand)
- 8 modes of locomotion and transportation
- The sensor data are divided into data frames with a 5-second window, each containing 500 samples

> Feature:

• We use TSFEL^[3] to extract a total of 156 features from each channel.

Proposed Method

Overall Workflow

Data Mixing

• Sensor data from 3 different placements are mixed and processed through a unified procedure, eliminating the need to identify the device location beforehand.

Feature Extraction

• Magnitude features are computed, followed by the extraction of 156 mixed features from each channel.

Classification Model

 A CatBoost Classifier is used. As a gradient boosting decision tree algorithm, CatBoost does not require feature normalization, naturally handles sparse inputs from missing data, and supports GPU acceleration for efficient training.

Experimental Result

> Results of Experiment.

Method	Phone location	Zero-filling Strategy	Locomotion and transportation mode recognition SHL validation dataset: There are 28,789 samples from each location							
			Ours	Bag	Without zero-filled	0.761	0.789	0.761	0.766	0.721
Ours	Bag	Stochastic zero-filled	$\overline{0.754}$	0.784	0.755	$\overline{0.760}$	$\overline{0.714}$	0.969	0.844K	73.688K
Ours	Hips	Without zero-filled	0.688	0.735	0.688	0.680	0.643	0.950	0.844K	73.688K
Ours	Hips	Stochastic zero-filled	0.683	0.729	0.683	0.676	0.637	0.948	0.844K	73.688K
Ours	Torso	Without zero-filled	0.692	0.760	0.692	0.697	0.646	0.950	0.844K	73.688K
Ours	Torso	Stochastic zero-filled	0.685	0.755	0.685	0.691	0.638	0.948	0.844K	73.688K
Ours	Mixed	Without zero-filled	0.714	0.764	0.714	0.718	0.669	0.956	0.844K	73.688K
Ours	Mixed	Stochastic zero-filled	0.708	0.759	0.708	0.713	0.662	0.954	0.844K	73.688K

Tablenotes: FLOPs is the computational cost per sample inference.

Confusion matrix of the validation dataset

Conclusion

Main Contribution: This paper proposes a robust HAR framework based on hand-crafted features and a CatBoost classifier, effectively addressing the challenges of varying device placements and missing sensor data.

- The unified pipeline avoids complex stages or multiple classifiers.
- Achieved competitive results on the challenging SHL dataset.
- The model maintains stable prediction performance even with partial data loss.

Reference

- [1] The University of Sussex-Huawei locomotion and transportation dataset for multimodal analytics with mobile devices, IEEE Access 6 (2018): 42592-42604.
- [2] Enabling reproducible research in sensor-based transportation mode recognition with the Sussex-Huawei dataset, IEEE Access 7 (2019): 10870-10891.
- [3] Tsfel: Time series feature extraction library, SoftwareX, vol. 11, p. 100456, 2020.