Ahmad Wali CP220 Lab 6

Circuitverse Drawing and Simulation

Wali6947@mylaurier.ca

ID#169036947

Continuing from lab 5, we concluded that we can find prime numbers from this equation:

$$prime = \overline{a_3} \ \overline{a_2} \ a_1 + \overline{a_3} \ a_2 \ a_0 + \overline{a_2} \ a_1 \ a_0 + a_2 \ \overline{a_1} \ a_0$$

We define a prime number as any positive integer > 1, that is not a composite number.

We can build a circuit that models the prime equation:

Description of circuit:

- The circuit begins with a binary counter, which helps us choose which number to test
- The circuit branches off into 4, to represent a0,a1,a2,a3
- The circuits then travel through negation gates, which helps setup out prime # equation
- By using and gates we are able to find the products of these inputs
- The 4 input OR gate then creates the sum of products.
- A 0 output indicates NOT a prime, and 1 output indicates a prime.

Next will be the respective testing for each circuit:

INPUT 0:

(%06) false

As evaluated by the circuit, we can see that 0 is not prime (it is not a greater than 1)

INPUT 1:

(%i7) prime, a0 = true, a1 = false, a2 = false, a3 = false;

(%o7) false

As evaluated by the circuit above, 1 is not a prime (not greater than 1)

INPUT 2:

(%i8) prime, a0 = false, a1 = true, a2 = false, a3 = false;
(%o8) true

As evaluated by the circuit above, 2 is a prime number.

INPUT 3:

(%i9) prime, a0 = true, a1 = true, a2 = false, a3 = false;

(%09) true

As evaluated by the circuit above, 3 is a prime number.

INPUT 4:

(%i10) prime, a0 = false, a1 = false, a2 = true, a3 = false;
(%o10) false

As evaluated by the circuit above, 4 is not a prime (divisible by 4)

INPUT 5:

(%i11) prime, a0 = true, a1 = false, a2 = true, a3 = false;

(%oll) true

As evaluated by the circuit above, 5 is a prime.

INPUT 6:

(%i12) prime, a0 = false, a1 = true, a2 = true, a3 = false;
(%o12) false

As evaluated by the circuit above, 6 is not a prime (divisible by 2,3)

INPUT 7:

(%i13) prime, a0 = true, a1 = true, a2 = true, a3 = false;
(%o13) true

As evaluated by the circuit above, 7 is a prime.

INPUT 8:

(%i14) prime, a0 = false, a1 = false, a2 = false, a3 = true; (%o14) false

As evaluated by the circuit above, 8 is not a prime (divisible by 4,2).

INPUT 9:

(%i16) prime, a0 = true, a1 = false, a2 = false, a3 = true;
(%o16) false

As evaluated by the circuit above, 9 is not a prime.

INPUT 10:

(%i17) prime, a0 = false, a1 = true, a2 = false, a3 = true;
(%o17) false

As evaluated by the circuit above, a (10 in hexadecimal) is not a prime (divisible by 5,2).

<u>INPUT 11:</u>

As evaluated by the circuit above, b (11 in hexadecimal) is a prime.

INPUT 12:

(%i19) prime, a0 = false, a1 = false, a2 = true, a3 = true;
(%o19) false

As evaluated by the circuit above, c (12 in hexadecimal) is not a prime (divisible by 2,3,6,4)

INPUT 13:

As evaluated by the circuit above, d (13 in hexadecimal) is a prime

<u>INPUT 14:</u>

(%i21) prime, a0 = false, a1 = true, a2 = true, a3 = true;
(%o21) false

As evaluated by the circuit above, e (14 in hexadecimal) is not a prime (divisible by 7,2)

INPUT 15:

(%i22) prime, a0 = true, a1 = true, a2 = true, a3 = true;
(%o22) false

As evaluated above, f (15 in hexadecimal) is not a prime (5,3).

Summary:

By looking at the circuits, we see that 2,3,5,7,11,13 are all prime numbers. This matches with the truth table made for lab 5 (attached below). Therefore, the circuit designed accurately models the prime number identifier for integers 0-15.

Number	Binary(a1/a2/a3/a4)	Prime/Composite/None
0	0000	N
1	0001	N
2	0010	P
3	0011	P
4	0100	С
5	0101	P
6	0110	С
7	0111	P
8	1000	С
9	1001	С
10	1010	С
11	1011	P
12	1100	С
13	1101	P
14	1110	С
15	1111	С