

DESCRIPTION:

With high ability to withstand the shock loading of large current, BT152X-600R series of silicon controlled rectifiers provide high dv/dt rate with strong resistance to electromagnetic interference. They are especially recommended for use on solid state relay, motorcycle, power charger, T-tools etc.

MAIN FEATURES

Symbol	JCT620	JCT820	
V _{DRM} / V _{RRM}	600V	800V	
I _{T(RMS)}	20A		
lgт	≤25mA		

ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Value	Unit
Storage junction temperature range		T _{stg}	-40-150	$^{\circ}\!\mathbb{C}$
Operating junction temperature range		Tj	-40-150	$^{\circ}\!\mathbb{C}$
Repetitive peak off-state voltage(T _j =25℃)		VDRM	600/800	V
Repetitive peak reverse voltage(T _j =25℃)		VRRM	600/800	V
RMS on-state current	TO-220A(Ins)/ TO-220F(Ins)(Tc=95°C) TO-220A(Non-Ins)/ TO-220C (Tc=110°C) TO-262 (Tc=80°C)	I _{T(RMS)}	20	А
Non repetitive surge peak on-state current (tp=10ms)		Ітѕм	250	А

I ² t value for fusing (tp=10ms)	l ² t	312.5	A ² s
Critical rate of rise of on-state current (I _G =2×I _{GT})	dI/dt	50	A/µs
Peak gate current	I _{GM}	4	Α
Average gate power dissipation	P _{G(AV)}	1	W
Peak gate power	P _{GM}	5	W

ELECTRICAL CHARACTERISTICS (T_j=25°C unless otherwise specified)

Symbol	Test Condition	Value			I lacit
	rest Condition	MIN.	TYP.	MAX.	Unit
lgт	V _D =12V R _L =33Ω	-	-	25	mA
V _G T	VD-12V KL-3312	-	-	1.3	V
V _{GD}	$V_D = V_{DRM} T_j = 150^{\circ}C R_L = 3.3 K\Omega$	0.2	-	-	V
IL	I _G =1.2I _{GT}	-	-	70	mA
I _H	I _T =500mA	-	-	60	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =150℃	200	-	-	V/µs

STATIC CHARACTERISTICS

Symbol	Parameter		Value(MAX)	Unit
V _{TM}	I _{TM} =40A tp=380μs	T _j =25℃	1.55	V
IDRM	VD=VDRM VR=VRRM	T _j =25℃	5	μA
IRRM		Tj=150℃	4	mA

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
R _{th(j-c)}	junction to case(AC)	TO-220A(Ins)	2.1	°C/W
		TO-220A(Non-Ins)/ TO-220C	1.1	
		TO-220F(Ins)	2.2	
		TO-262	2.5	

FIG.1: Maximum power dissipation versus RMS on-state current

FIG.2: RMS on-state current versus case temperature

FIG.3: Surge peak on-state current versus number of cycles

FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<10ms, and corresponging value of I²t

FIG.4: On-state characteristics (maximum values)

FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature

