ITI

AD A 0 97 0 49

(6) ADHESIVE BONDING FOR SHELTERS.

D. Robert/Askins and James C./McKiernan

UNIVERSITY OF DAYTON RESEARCH INSTITUTE 300 COLLEGE PARK AVENUE DAYTON, OHIO 45469

DECEMBER 80

12/113]

(4) UDR-71-14-12

INTERIM TECHNICAL REPORT DECEMBER 1977 - AUGUST 1980 (Final Summary Report, on Shelter Adhesive Program)

E COPY

Approved for public release; distribution unlimited.

(18) F 33610-80-0-4/11, 16/2421

TATERIALS LABORATORY

IR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

1 3 30 099

Best Available Copy

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, cr other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

JOHN R. RHODEHAMEL

Project Engineer

Nonmetals Engineering Branch

A. OLEVITCH, Chief

Nonmetals Engineering Branch Systems Support Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFWAL/MLSE W-PAFB, OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/24 March 1981 - 300

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCU	JMENTATION PAGE	READ INSTRUCTIONS
1. REPORT NUMBER		BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
AFWAL-TR-90-4183	AD-A097049	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
}		Interim Technical Report
ADHESIVE BONDING	FOR SHELTERS	December 1977-August 1980
		6. PERFORMING ORG. REPORT NUMBER UDR-TR-80-88
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)
		F33615-80-C-5011 14
D. R. Askins and	James C. McKiernan	F33615-78-C-5002
9. PERFORMING ORGANIZATION NA		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
University of Dayton Re		ANEX & WORK ON!! NUMBERS
300 College Park Avenue		24210315
Dayton, Ohio 45469		24210313
11. CONTROLLING OFFICE NAME A		12. REPORT DATE
Air Force Wright Aerona	•	December 1980
Materials Laboratory (A	• •	13. NUMBER OF PAGES
Wright-Patterson AFB, O		112
14. MONIFORING AGENCY NAME & A	ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15#, DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of)	hiz Report)	<u> </u>
Approved	for public release; distrik	oution unlimited.
17. DISTRIBUTION STATEMENT (at t	the abstract entered in Block 20, if different fr	ou· Report)
	,	
		·
·		
18. SUPPLEMENTARY NOTES		
	•	
	side if necessary and identify by block number	
_	•	Primer
Bond		Crack Extension
Durability	•	Metal Etching
Environmental Aging		Shelter Panel
Modified Epoxy	Surface Preparation slde II necessary and Identify by block number,	
-		
	k done over the past severa mesives in particular, a tes	· ·
	sives has been developed and	
	includes agreement upon the	
1	ecimens which will be utili	• •
adhesives.	MALL DO UCLIL	EDVICE - GOD - G. VICE AND GO - GRANGE TRACEC Names organism resultance and company organism of the company of
- Contract C	(Contin	ued on other side)
	(Contain	action out a bade,

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

The work undertaken in this program was aimed at identifying adhesives which have the capability of retaining a substantial portion of their structural integrity after prolonged exposure to the combined effects of elevated temperature and high humidity, and also to evaluate the effects of several adherend surface preparation variables upon the interfacial durability of bonded joints.

Seven adhesives were evaluated for their lap shear, peel, and stress-durability characteristics. No single adhesive ranked high in all categories but a relative ranking of the adhesives was developed, based on their relative performance in all of the tests:

Two surface preparation valuables were evaluated, the type of etch bath "sweetener" and the type of rinse water used. The type of etch bath "sweetener" was found to have a dramatic effect on interfacial durability, with the copper containing 2024 alloy required regardless of the alloy being etched. The difference between rinsing with tap water and deionized water was marginal.

UNCLASSIFIED

SECHHITY CLASSIFICATION OF THE PAGE(When Date Entered)

PREFACE

This report covers work performed during the period from December 1977 to August 1980 under Air Force Contract Nos. F33615-78-C-5002 and F33615-80-C-5011, Project 7381. The work was administered under the direction of the Systems Support Division of the Air Force Materials Laboratory, Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio. Mr. John Rhodehamel (AFWAL/MLSE) was the Program Project Engineer.

The Principal Investigators on this program were D. Robert Askins and Ronald J. Kuhbander. The major portion of the laboratory work was conducted by Messrs. James McKiernan (specimen fabrication and data documentation) and Donald Byrge (testing).

This report was submitted by the author in October 1980. The contractor's report number is UDR-TR-80-88.

Accession For
NTIS GRA&I
DUIC TAB
Unramerment (j
Jun 18 18 18 18 18 18 18 18 18 18 18 18 18
P*•
Distribution/
Avail Mility Codes
Avail and/or
Mot Special
/

TABLE OF CONTENTS

SECTION	_	PAGE
1	BACKGROUND AND INTRODUCTION	1
2	APPROACH	3
	2.1 MATERIALS AND PROCESSES 2.2 SPECIMEN FABRICATION PROCEDURES 2.3 TEST METHODS AND EXPERIMENTAL DESIGN	3 5 5
	2.3.1 Lap Shear Testing 2.3.2 Floating Roller Peel Testing 2.3.3 Stress-Durability Testing 2.3.4 Thick Adherend DCB Crack	5 9 9
	Extension Testing	13
3	DISCUSSION OF RESULTS	18
	3.1 LAP SHEAR TEST RESULTS 3.2 PEEL TEST RESULTS 3.3 STRESS-DURABILITY TEST RESULTS 3.4 CRACK EXTENSION TEST RESULTS	18 29 32 41
4	SUMMARY AND CONCLUSIONS	48
APPENDIC	CES	
I	ADHEREND SURFACE PREPARATION PROCEDURES	51
II	PRIMER APPLICATION PROCEDURE	57
III	PANEL LAY-UP AND BONDING PROCEDURES	59
IV	SPECIMEN MACHINING PROCEDURES	62
V.	ADHESIVE PROPERTY DATA FROM MANUFACTURERS' LITERATURE	64
VI	INDIVIDUAL SPECIMEN LAP SHEAR TEST DATA	66
VII	INDIVIDUAL SPECIMEN FLOATING ROLLER PEEL TEST DATA	89
VIII	INDIVIDUAL SPECIMEN STRESS-DURABILITY TEST DATA	94
IX	INDIVIDUAL SPECIMEN DCB CRACK GROWTH	103

LIST OF TABLES

TABLE		PAGE
1	Lap Shear Test Matrix	7
2	Lap Shear Test Results for 6061T6 Adherends with Machined Specimens and FPL Etch	20
3	Lap Shear Test Results on 6061T6 Adherends with Machined Specimens and OFPL Etch	21
4	Lap Shear Test Results on 5052H34 Adherends with Machined Specimens and FPL Etch	22
5	Lap Shear Test Results on 5052H34 Adherends with Machined Specimens and OFPL Etch	2 3
6	Lap Shear Test Results on 6061T6 Adherends with Finger Specimens and FPL Etch	24
7	Lap Shear Test Results on 6061T6 Adherends with Finger Specimens and OFPL Etch	25
8	Lap Shear Test Results on 5052H34 Adherends with Finger Specimens and FPL Etch	26
9	Lap Shear Test Results on 5052H34 Adherends with Finger Specimens and OFPL Etch	27
10	Floating Roller Peel Test Results	30
11	Stress-Durability Test Results	3 3
12	Stress-Durability Test Results for Extra Retested Specimens	38
1.3	DCB Crack Extension Results	4.2
1.4	Cummary Danking of Adhacives	4.9

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Lap Shear Specimens (from ASTM D1002)	6
2	Lap Shear Testing Plan	8
3	Floating Roller ("Bell") Peel Specimen and Fixture (from ASTM D3167)	10
4	Peel Testing Plan	11
5	Lap Shear Specimen and Stress-Durability Fixture (from ASTM D2919)	12
b	Stress-Durability Testing Plan	14
7	Thick Adherend Double Cantilever Beam (DCB) Crack Extension Specimen (from AFML-TR-76-173)	15
8	Crack-Extension Testing Plan	17
9	Explanation of Failure Mode Notation	19
10	Stress-Durability Behavior on 6061T6 Bare Adherends	35
11	Stress-Durability Behavior on 5052H34 Bare Adherends	36
12	Stress-Durability Behavior of LR100-252 and EA9601NW Adhesives on 5052H34 Bare Adherends	39
13	Stress-Durability Behavior Summary	40
14	Effect of Etch Bath Sweetening Alloy on Interracial Durability	43
15	Effect of Rinse Water Type on Interfacial Durability	44
16	Effect of Adhesive/Acrimer Type on Durability	45

SECTION 1 BACKGROUND AND INTRODUCTION

The Air Force, as well as the other services, has been utilizing lightweight, air transportable shelters for a wide variety of purposes for a number of years. Some of the many uses for these type shelters include the housing of personnel, hospital facilities, offices, and electronic instrument stations.

Modular building concepts incorporating such features as sandwich wall construction and adhesive bonding are routinely used for these structures to reduce production costs. Walls can consist of honeycomb or foam cores between aluminum skins. In addition to the skin-to-core bonding found in honeycombstiffened wall construction, adhesives are also used for metal-to-metal lap-type joints, and frequently serve both as a load bearing structural member as well as a joint sealant against environmental infiltration.

Shelters of this sort are used in many locations throughout the world, and consequently are subjected to a wide variety of environmental exposure conditions. These range from subzero arctic temperatures to hot, dry desert climates as well as hot, humid tropical conditions. Besides exposure to these various climatic extremes, the shelters are periodically subjected to abnormal stresses of transport from one location to another, exacerbating the demands made upon the structural members and bonded joints.

The shelter design requirements which most heavily influence the type of adhesives selected for use in structural bonding are

- (a) Maximum and minimum exposure temperatures of $-40\,^{\circ}\text{F}$ (-40°C) to 200°F (93°C) with concomitant interior-to-exterior thermal gradients coupled with varying humidity conditions up to saturation,
 - (b) Water resistance,
- (c) Giverall stress loads ranging from 300 to 1200 psi (2.07 to 8.27 MPa), and

(d) Long-term durability of up to ten years of in-the-field use.

Experience has demonstrated that the hot-humid environment is the most demanding and that the adhesively bonded joints in these structures are the sites most susceptible to failure as a result of exposure to the stresses and climatic conditions described above.

The primary objective of this investigation was to identify commercially available adhesives which have the capability of retaining a substantial portion of their structural integrity after prolonged exposure to the combined effects of alcoated temperature and high humidity. A secondary objective was to evaluate the effect of selected surface preparation variables upon the interfacial durability of bonded joints. A majority of the work undertaken was in direct response to the expressed concerns and desires of both the shelter manufacturers and adhesive vendors as well as that of the various services.

SECTION 2 APPROACH

Two adhesive characteristics were of basic interest in this evaluation effort: (1) the ability to resist the combination of elevated temperature and high humidity degradation, and (2) low temperature toughness. Although quantitative accept/reject criteria for these two characteristics have not yet been defined, the various adhesives evaluated can at least be compared to each other and given some sort of overall ranking.

Three types of tests were used for the adhesive evalutions conducted during this program: (1) lap shear, (2) floating roller peel, and (3) stress-durability. Map shear tests were conducted to measure the effect of both elevated temperature and humidity aging upon adhesive properties. The environmental exposure conditions were selected to correspond to those measured in the field [200°F (93°C) and 95-100 percent relative humidity). Peel tests were conducted to characterize the toughness/brittleness of the adhesives at low temperatures [-65°F (-54°C)]. Stress-durability tests were conducted to measure the simultaneous effects of stress, clevated temperature, and high humidity upon adhesive bond life. The environmental exposure conditions for these were the same as for the lap shear tests.

A fourth type of mechanical test was used in the evaluation of the various surface preparation parameters. This was a thick adherend, double-cantilever-beam (DCB) crack extension test. The results of these tests measured the influence of surface preparation variables upon the environmental degradation of a bonded joint.

2.1 MATERIALS AND PROCESSES

There are four major categories of materials and processes which were of interest to this investigation: (1) adherend alloy; (2) adherend surface preparation procedure; (3) adhesive surface primer; and (4) adhesive.

The two principle adherend materials were bare 5052H34 and 606lT6 aluminum alloys. These represent the two principle aluminum alloys used in shelter construction today. A third aluminum alloy, bare 2024T3 was used to a limited extent during the program because of extensive prior experience with this alloy in adhesive bonding work. It is not generally used in shelter construction, because neither the 2000 or 7000 series aluminum alloys are easily welded or are as corrosion resistant as the 5000 or 6000 series alloys.

The primary surface preparation procedure used for the adhesive bonding work in this program was the optimized FPL (Forest Products Laboratory) etch treatment, although the non-optimized FPL etch treatment (ASTM D2651, method A) was used for some of the early work. The optimized FPL etch treatment (a sodium dichromate, sulfuric acid solution) is being adopted by the shelter manufacturing industry as the standard aluminum surface treatment for adhesive bonding. Details of these two surface treatment techniques and the significant difference between the two are presented in Appendix I.

Two corrosion inhibiting primers were used during the program: BR127 by American Cyanamid and XA3950 by 3M. The BR127 was used throughout the program while the XA3950 was used only in the lap shear portion. In addition, some specimens were prepared without primer during each part of the investigation. Appendix II describes the primer application procedures.

and the standard of the standa

Seven vendor-supplied adhesives were evaluated. These, to the best of our knowledge, were all modified epoxies. Six of the adhesives were supplied in the form of a supported film while one (LR100-172) was a low viscosity, two-part system applied as a thin unsupported film by hand after mixing. The seven adhesives were:

(1)	LR100-172	(two part paste)	Hysol
(2)	R7114	(0.081b/ft², 0.39Kg/m²)	Reliable (Ciba-Geigy)
(3)	XX180	$(0.061b/ft^2, 0.29Kg/m_2^2)$	3.M
(4)	LR100-252	$(0.091b/ft^2, 0.44kg/m^2)$	Hysol (currently
			designated EA-9652)
(5)	MA-429	$(0.061b/ft^2, 0.29kg/m^2)$	McCann
(6)	R382-7	$(0.061b/ft^2, 0.29Kg/m^2)$ $(0.081b/ft^2, 0.39Kg/m^2)$ $(0.0851b/ft^2, 0.42Kg/m^2)$	Reliable (Ciba-Geigy)
177	ENGCOLME	-10.0851576+2.0.47807021	Hyeni

These seven adhesives were selected because they were either in current use in shelter construction or because they had been identified as likely candidates to replace those which were being used. Appendix V presents Manufacturers' data provided for each of these adhesives.

2.2 SPECIMEN FABRICATION PROCEDURES

The fabrication of the specimens used for data generation in this program consisted of a sequence of five distinct processes:

- (1) Adherend surface preparation,
- (2) Priming of freshly prepared adherend surface,
- (3) Bonded joint panel layup,
- (4) Curing of adhesive joint panel, and
- (5) Machining of individual specimens from cured panel. Each of these five processes is described in detail in <u>Appendices I through IV</u>, respectively. These include step-by-step descriptions of each procedure, as well as the quality control criteria used to accept/reject a part or finished panel at each step in the fabrication sequence.

2.3 TEST METHODS AND EXPERIMENTAL DESIGN

All testing conducted during this investigation was performed in accordance with standardized procedures. Thus, the lap shear, peel, and stress-durability tests followed ASTM test methods, while the crack-extension tests were in accordance with a method developed by the Boeing Corporation.

2.3.1 Lap Shear Testing

Lap shear tests were conducted in accordance with ASTM method D1002 on specimens from both the standard (fully machined after bonding) and the preslotted (finger) types of test panel (see Figure 1). Specimens were used only if the applied primer thickness and the cured glue line thickness fell within specified limits. The techniques used to measure these

Figure 1. Lap Shear Specimens (from ASTM D1002).

thicknesses are described in Appendices II and 1II, respectively. The specimens primed with BR127 were used only if the primer thickness fell within the 0.0002-0.0004 inch (0.005-0.010 mm) range. The specimens primed with %A-3950 were used only if the primer thickness fell within the 0.0001-0.0003 inch (0.003-0.008 mm) range. Both of these primer thickness ranges were recommended by the respective primer manufacturers. The bonded specimens were used only if the cured glue line thickness fell in the 0.004-0.007 inch (0.10-0.18 mm) range. This glue line thickness range was established by a consensus of shelter manufacturers at the start of the program.

許

Figure 2 lists the materials, processing, and test conditions included in the lap shear testing portion of this program.

With the exception of two adhesives, the test matrix consisted of a full factorial design incorporating five replicate specimens of each combination of adhesive, specimen type, adherend alloy, surface preparation, primer, and test condition. The two excepted adhesives (LR100-252 and MA-429) were not tested on finger specimens or with the standard FPL etch surface preparation. A full factorial design would have involved a total of 1,680 lap shear specimens. Table 1 indicates the actual test matrix, the omitted combinations accounting for a reduction of 240 in the specimen total.

TABLE 1
LAP SHEAR TEST MATRIX

Adhesive	Specime	n Type	Surface	Preparation
Adnesive	Machined	Finger	FPL	Opt. FPL
LR100-172	x	X	X	X
R7114	X	X	X	X
XA180		X	l X	X
LR100-252	\mathbf{x}	NOT T	TESTED	X
MA-429	X	-NOT T	TESTED	X
R382-7	1 x	X	X	X
EA9601NW	X	Y ,	X	X

NOTES: All indicated combinations were prepared using all three primer conditions (none, BR127, and XA-3950), and two adherend alloys (6061T6 and 5052H34), and tested at two test conditions [72°F (22°C) and 200°F (93°C) after hothumil aging].

7 Adhesives

LR100-172---Hysol

R7114----Reliable

XA180----3M

LR100-252---Hysol

MA-429----McCann

R382-7---Reliable

EA9601NW---Hysol

2 Adherend Alloys

6061T6 Bare

5052H34 Bare

2 Specimen Types

Machined

Preslotted [Finger] (except for LR100-252 and MA-429)

2 Surface Preparations

FPL Etch (except for LR100-252 and MA-429)

Optimized FPL Etch

3 Primer Conditions

No primer

BR127----American Cyanamid

XA 3950~~~~3M

2 Test Conditions

72°F (22°C)

200°F (93°C) after two weeks at 200°F (93°C) and 95-100 percent R.H.

5 Replicates

TOTAL - 1,440 Specimens

Figure 2. Lap Shear Testing Plan.

2.3.2 Floating Roller Peel Testing

Floating Roller Peel (frequently referred to as "Bell" peel) tests were conducted in accordance with ASTM method D3167 (see Figure 3). Specimens were tested only if the applied primer thickness fell within the manufacturers recommended limits [0.0002-0.0004 inches (0.005-0.010 mm) for BR127]. Cured glue line thicknesses were not measured but the same shimming process was used in the manufacture of these panels as was used for the lap shear panels. This procedure results in about 95 percent of the cured bondlines falling within the desired thickness range of 0.004-0.007 inch (0.10-0.18 mm) (Appendix III). Tests were conducted at both $72^{\circ}F$ (22°C) and $-65^{\circ}F$ (-54°C). Seven adhesives, three adherend alloys, one surface preparation, and one primer were involved in the peel testing for a total of 21 combinations. Additionally, one of the adhesives was used without a primer, adding three more combinations for a total of 24. Four specimens of each combination were tested at each of the two test temperatures. Figure 4 lists the materials, processing, and test conditions included in the peel testing portion of this program.

2.3.3 Stress-Durability Testing

Stress-durability tests were conducted in accordance with ASTM method D2919 (see <u>Figure 5</u>). The same accept/reject criteria regarding primer and glue line thickness were followed with these specimens as with the lap shear specimens mentioned in Paragraph 2.3.1.

Stress-durability tests consisted of mounting the specimen in the fixture illustrated in Figure 5, imposing a predetermined shear stress upon the specimen, and placing the specimen-fixture assembly in an elevated temperature, high humidity aging environment until the specimen failed as the exposure period reached a preselected limit (1000 hours in this program). In the event that the exposure period reached the

NOTE: A 1.5 TO 3.0 IN (38.1 TO 74.1 MM) SHIM CAN BE USED TO FACILITATE THE START OF PEEL.

(a) TEST PANEL AND TEST SPECIMENS

Figure 3. Floating Roller ("Bell") Peel Specimen and Fixture (from ASTM D3167).

7 Adhesives

LR100-172

-R7114

XA-180

LR100-252

MA-429

R382-7

EA9601NW

3 Adherend Alloys

2024T3 Bare

6061T6 Bare

5052H34 Bare

1 Surface Preparation

Optimized FPL etch

l_Primer Condition

BR127 (except for LR100-172)

2 Test Conditions

72°F (22°C)

-65°F (-54°C)

4_Replicates

TOTAL - 192 Specimens

Figure 4. Peel Testing Plan.

Figure 5. Lap Shear Specimen and Stress-Durability Fixture (from ASTM D2919).

1000 hr. limit without specimen failure, the fixture was removed from the environmental cabinet, and the specimen unloaded and removed from the fixture and tested for residual strength. This test was aimed at providing additional data on the effect of environment upon adhesives. While not necessarily providing real-life design type data, it did provide a comparative ranking of adhesive resistance to environmental degradation.

Standard lap shear tests were conducted at 72°F (22°C) and 140°F (60°C) on dry unaged specimens to provide baseline data. Stress-durability tests were conducted in a 140°F (60°C) and 95-100 percent R.H. environment at two stress levels: (1) 40 percent of 140°F (60°C) dry ultimate strength, and (2) 60 percent of the 140°F (60°C) dry ultimate strength. Times to failure were recorded and any specimens which had not failed within 1,000 nours were removed and tested for residual strength at 140°F (60°C). Seven adhesives, two adherend alloys, one surface preparation, and one primer were used for these tests; a total of 14 combinations. Additionally, as before, one of the adhesives was used without primer, bringing the total number of combinations of 16. Three specimens of each combination were tested at the two baseline conditions and five specimens of each combination were tested for durability at the two stress levels. Figure 6 lists the materials, processing, and test conditions included in the stress-durability testing portion of this program.

2.3.4 Thick Adherend DCB Crack Extension Testing

Crack extension tests were conducted with the thick adherend DCB specimen, and in accordance with the procedures described in AFML-TR-76-173. This specimen is illustrated in Figure 7. Specimens were used only if the applied primer thickness fell in the 0.0002-0.0004 inch (0.005-0.010 mm) range. As with the peel specimens the glue line thicknesses were controlled during fabrication but not measured. The objective of this portion of the program was to examine the effects of surface preparation variables upon the bond between the metal oxide and the surface primer. Only one adhesive (FM73) was used. This

7 Adhesives

LR100-172

R7114

XA180

LR100-252

MA-429

R382-7

EA9601NW

2 Adherend Alloys

606176 Bare

5052H34 Bare

1 Surface Preparation

Optimized FPL etch

1 Primer Condition

BR127 (except for LR100-172)

2 Test Conditions

40% stress level

60% stress level

5 Replicates

TOTAL - Stress-durability - 160 specimens

Baseline statics - 96 specimens
(3 replicates)

Figure 6. Stress-Durability Testing Plan.

Typical DCR Syctomen Banded Asserbiy

Details of Thick Adherend DCB Specimen

Figure 7. Thick Adherend Double Cantilever Beam (DCB) Crack Extension Specimen (from AFML-TR-76-173).

adhesive had been shown in the Primary Adhesive Bonded Structures Technology (PABST) program to be highly resistant to elevated temperature, high humidity degradation, and was selected to maximize the probability of failure along the oxide/primer interface. Only one primer (BR127) was used. One exception to this work plan was the use of a second adhesive (LR100-172) without primer in a few tests. The tests were conducted in a 140°F (60°C), 95-100 percent R.H. environment and crack lengths were measured as a function of time. The crack propagation locus was also recorded (i.e.: interfacial or within the adhesive layer). Figure 8 lists the materials, processing, and test conditions included in the crack-extension portion of this program.

9 Adhesive/Primer/Adherend Alloy/Surface Preparation Combinations

Adhesive:Primer	Adherend Alloy	OFPL Sweetening Alloy	Rinse Water
• FM73:BR127	2024T3	2024	Tap
• FM73:BR127	2024T3	2024	Deionized
• FM73:BR127	5052H34	2024	Tap
• FM73:BR127	5052H34	5052	Tap
• FM73:BR127	6061T6	2024	Tap
• FM73:BR127	6061T6	6061	Deionized
• FM73:BR127	6051 T6	6061	Tap
LR100-172:None	5052H34	2024	Tap
• LR100-172:None	606176	2024	Tap

1 Test Condition

140°F (60°C) and 95-100% R.H.

5 Replicates

TOTAL - 45 Specimens

Figure 8. Crack-Extension Testing Plan.

SECTION 3 DISCUSSION OF RESULTS

The interpretation and assessment of the results obtained in this investigation are based upon the measured strengths, times-to-failure, and strain energy release rates measured in the various tests as well as the observed failure modes in the bonded joint interfacial areas.

Traditionally, bonded joint failures have been reported as adhesive, cohesive, or some combination of the two. In this context, adhesive failure referred to a failure locus along the interface between the substrate and the adhesive layer, while cohesive failure referred to a failure locus completely within the adhesive layer. It was felt that with the inclusion of a primer layer in the bond, along with but distinct from the adhesive laver, the traditional means of reporting failure mode was inadequate. Accordingly, a different format for reporting failure mode was adopted during this investigation. This format is illustrated and explained in Figure 9. The interpretation of bonded joint failure modes is very subjective. It is difficult, with the naked eye, to ascertain the exact failure mode unless it is totally cohesive (within the adhesive layer). Interfacial failure modes may appear obvious but one cannot be sure, short of resorting to expensive surface instrumental analysis, that a very thin layer of primer or adhesive has not remained adhered to an otherwise clean appearing surface. Since the primer layer is so thin, the only evidence of its presence, to the eye, is generally color. In this investigation the only discriminations made regarding failure mode were those detectable by eye. it is to be recognized that regardless of the different presentation format, the failure modes reported in this document are still subjective.

3.1 LAP SHEAR TEST RESULTS

The data obtained from the testing of the lap shear specimens are summarized in Tables 2 through 9. The values presented in

For Bonds Made With No Primer

cohesive failure within the adhesive layer (%)

adhesive (interfacial) failure between the adhesive and the substrate oxide (%)

For Bonds Made With a Primer on the Substrate Surface

cohesive failure within the adhesive layer (%)

adhesive (interfacial) failure between the adhesive and the primer (%)

cohesive failure within the primer layer (%)

adhesive (interfacial) failure between the primer and the substrate oxide (%)

Example: 5-0-30-65 indicates that, according to the observer's estimate, the failed joint exhibits the following failure mode.

The primer pulled cleanly off the metallic oxide on 5% of the bond area.

At no point along the bondline did the failure locus run cohesively within the primer layer.

The adhesive debonded cleanly from the primer on 30% of the bond area.

The failure locus ran cohesively within the adhesive layer on 65% of the bond area.

In the M. Amplebackon of Laboration, Machine Machine Collation,

1

TABLE 2

LAP SHEAR TEST RESULTS FOR 6061T6

ADHERENDS WITH MACHINED SPECIMENS AND FPL ETCH

ADKESTVE		NO	NO PRIMER			BR 127	7			XA-3950	50	
	7.2	72°F	200°F AF	200°F AFTER AGING	72	72.5	203°F	200°F AFTER ASING	7	72°F	200°F	200°F AFTER ASING
·	SINENGIH (PSI)	FAILURE Mobe (%)	STREWGTH (PSI)	FAILURE MODE (%)	STRENGTH (PSL)	STRENGTH FAILURE (2)	STRENS (PS)	STRENGTH FAILURE (PSI) MODE (I)	STRENE (PS1	STRENGTH FAILURE (PSI)	STRENCTH (PSI)	SIRENCIH FARLURE (PSI) HODE (K)
[5100-172	3150	100-0	2940	103-0	3080	85-0-15-0	2170	100-0-0-0	3010	35-0-65-0	2170	100-0-0-0
reig.	5553	5-65	270	100-0	2000	ж. А.	510	C-0-0-3	5500	2-0-55-40	1100	10-0-0-50
X4-130	5640	05-01	1750	55	4720	35-0-0-55	2320	45-0-0-55	4:830	06-01-0-0	2000	40-0-20-90
50 CC (50 E)	===	i.A.	N.A.	-	Z	N.A.	z	N.A.		N.A.		N.A.
C)	z:	N. A.	N.A.	۔۔۔۔۔	z.	N.A.	æ	#.A.		7. F.		¥.À.
2-232-2	2353	13-90	1480	70-30	3340	15-0-55-20	2130	20-0-0-80	2950	70-0-0-25	1940	30-0-0-80
64 65 65 65 65 65	00 60 7 - 7 - 11	75-25	410	01-06	4340	100-0-001	1110	150-0-6-0	3540	35-0-45-20	200	0-05-0-03

TABLE 3

LAP SHEAR TEST RESULTS ON 6061T6

ADHERENDS WITH MACHINED SPECIMENS AND OFPE ETCH

4		200"F AFTER AGING	TH FAILURE PROSE (X)	9-9-65-0	0-0-0-100	2-0-0-5	5-0-10-85	0-0-50-80	25-0-0-5	0-0-50-80	
	XA-3950	200°F	STRENGTH (PS1)	2970	730	2630	2760	1350	1970	1930	
	- K X	72°F	STRENGTH FAILURE (PSI)	0-0-100-0 2970	0-0-30-20	0-0-0-100	56-5-0-0	5-0-70-25	20-10-40-30	26-2-0-0	
		<u></u>	ST	5190	5410	4960	5340	5590	3990	2030	
		200°F AFTER AGING	STAENGTH FAILURE (PSI) MODE (%)	20-0-80-0	0-0-0-100	10-0-0-30	0-0-50-80	0-0-20-80	0-0-25-75	20-0-10-70	
	27	200°F 6		3540	630	2290	2530	096	3500	1130	
	38 127	72°F	SINENGIH FAILURE (PS:) MODE (K)	0-0-100-0	0-0-10-90	06-01-0-9	0-0-0-0	0-0-80-50	0-40-0-60	04-09-0-0	
		7.2	SIRENGI (PS:)	5280	5210	4710	5120	5270	3850	5410	
		200°F ASTER ASTIG	FAILURE NOSE (%)	100-0	40-60	25-75	89-20	100-0	30-70	30-20	
	NO PRINER	233,11	STRENGTH (PST)	2740	720	2680	2253	550	2186	1110	
	0:	tt.	FALLUSE Pode (2)	8-CO	40-60	5-65	30-73	75-25	89-10	25-75	
	; 	· I	STEETER (+51)	css5	5683	5223	5223	5260	4030	G on or	
	明/2010 			18200-172	er ret i i i i	X4-233	252-60131	657-47	5382-7	E155.23	

TABLE 4

ADHERENDS WITH MACHINED SPECIMENS AND FPL ETCH

			10.434.00			BR 127	27			XA-3950	950	
		11.	L	PETER PETER	72.57		203°F &	203°F AFTER AGING	11	72.F	200°F	200°F AFTER ASTRS
		(E) 000 E	F1517515	SALLURE MOSE (Z)	FALLORE STOENSTA	RATICAE RODE (S)	ļ	STRENGTH FAILURE (PSI) MODE (Z)	STRENGT (PST)	STRENGTH FAILURE (T)		STREMSTH FAILURE (PSI) HODE (E)
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	2519	160-0	2183	168-0-6-9 2550	2550	100-0-0-0 2930	2900	15-0-85-0 1980	1980	95-3-5-0
	3	G S S	C2h	190-0	170	80-0-0-20 750	760	0-0-0-100 4550	4:550	5-0-65-30 870	870	20-9-9-89
	4.23	15-85	2000	90-19	3320	30-0-15-55 2250	2290	55-0-0-55	3760	10-0-10-80 1290	1290	55-0-45-0
	i, i,		3.2.	•	3255	7. A.	1790	N.A.		N.A.		ñ.A.
(3) - ; - :	- 4 .		N.A.	•	×	N.A.	N.A.	Α.		N.A.		N.A.
	6) 6)	25.55	1340	60-10	2280	40-0-0-60	2440	30-0-0-50	2420	80-0-0-50	1610	65-0-0-35
	() () ()	52-53	580	5-55	2950	100-0-0-0	200	100-0-0-01	3100	5-0-0-55	530	103-0-0-0
		-										

The second secon

TABLE 5

Ē,

ADHERENDS WITH MACHINED SPECIMENS AND OFPL ETCH

~										
	AFTER ABING	578 FA1L55E 1) MODE (%)	100-0-0-0	0-0-5-95	051-0-0-0	C5-0T-0-0	0-6-15-85	6-6-0-193	70-0-0-30	
950	200%	STRENGTH (PSI)	2730	280	1370	3050	2030	1830	760	
XA-3950	72∙≓	STRENSTH FAILURE (PSI)	10-0-90-0	0-0-30-76	0-0-0-0	25-03-0-0	CZ-93-0-0	52-6-0-03	69-0-0-69	
	7.	STRENS (PS:	6400	4810	3980	4630	4520	3160	£070	
	SK159 83140	STH FAILUNE 1) MODE (%)	0-04-0-09	0-0-0-0	0-0-0-103	5-0-10-55	0-0-30-70	0-0-0-103	0-0-50-80	
72	(L.	STRENGTH (PSI)	2693	673	1150	2510	2240	1240	1360	
58 127	11.	FA1132	16-0-30-0	0-0-30-20	0-0-0-0	0-0-00-0	01-03-0-0	5-0-35-65	09-05-0-0	
	±.21	STRENGTA (PS1)	C6.1.	. 570	3840	;520	0383	2750	6430	
	127.22 EEL	SATEURE NODE (2)	0-001	43-60	C601	59-53	89-10	39-70	70-50	
6d 131 2d 4d 4d 4d,	14 200 14 200 15 15 15 15 15 15 15 15 15 15 15 15 15 1	H (12 %)	2833	CBS	2233	3333	1350	1830	1610	
S		F11.13E	20-83	10	0 - -	17) 17) 1	73-33	13 15 15		
	500	E (1980)	() () () ()	() () - 1	Ö		() () () () ()	(*) [/x _1 i+}	000	
101			12.17-172	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		(-) (-) (-) (-) (-) (-) (-) (-) (-) (-)			16 -17 -14 -10 -10 -10	

2.3

And the second s

1. Leading Balance association

TABLE 6

開発機能を開発した。 明書の形象と言うでは、 product management of the control of th

ADHERENDS WITH FINGER SPECIMENS AND FPL ETCH

XA-3950	200°F AFTER ASTWE	ILURE STRENGTH FAILURE DE (Z) (PSI) KODE (Z)	50-0-50-0 3060 70-0-30-0	0-0-25-75 700 10-0-0-90	0-0-10-90 2420 15-0-20-65	N.A.	N.A.	5-5-0-90 1490 50-0-0-50	0-0-20-80 1350 60-0-10-30
	72°F	STRENSTH FALLURE (Z)				N.A.	N.A.	-5-5 0444	4630 0-0-
	200°F AFTER ASING	STRENGTH FAILURE (PSI) MODE (Z)	3350 80-0-20-0 4210	490 0-0-0-100 5770	2190 25-0-0-75 4820	R.A.	N.A.	1550 20-0-0-80	09-0-0-0h 0591
52.127	72*F	STRENGTH FAILURE (PSI) MODE (Z)	3890 1:00-0-0-0 3350	5370 25-0-20-55	4550 30-0-0-70	N.A.	х. А.	4180 0-0-20-80	5000 10-0-30-60
	STIEN REITS	R FAILURE (2)	106-0	120-0	09-05	N.A.	ď.	90-10	100-0
700 100 100 100 100 100 100 100 100 100		STRENGTH (PS1)	3150	550	2180		<u>~</u>	290	350
13		FALLURE MONE (%)	160-0	10-50	C5-01	er.	N.A.	5-95	10-50
	11.	11515.12 (184)	65/2	5330	6239	<u>نح</u>	z	3550	4770
				: A : A : A : A	097-1X	61 61 63 63 63 63 63 63 63 63 63 63 63 63 63	71-429	7-233-7	KY 103543

TABLE 7

LAP SHEAR TEST RESULTS ON 6061T6

ADHERENDS WITH FINGER SPECIMENS AND OFPL ETCH

	200°F AFTER ROINS	STRENGTH FAILURE (R)	5-0-95-0	0-0-0-100	0-0-0-100	N.A.	N.A.	16-0-0-50	0-0-20-80	
50	260	<u> </u>	3080	100	1340			1320	1050	
XA-3950	72°F	RENGTH FAILURE (PSI) HODE (%)	0-0-100-0	0-0-0-100	0-0-0-100	N.A.	N.A.	0-45-55-0 1320	0-0-25-75 1050	
		STRE!	4550	3070	2860			3890	5030	
	200°F AFTER AG135	STRENGTH FAILURE STRENGTH FAILURE (PSI) MODE (Z)	0-100-0-0	0-0-0-100	0-0-0-100	N.A.	N.A.	15-0-0-85	0-01-0-0	
27	200	!	3120	130	1130			1450	1270	
BR 127	LL.	STRENGTH FAILURE (PSI) MODE (%)	0-0-100-0 3120	0-0-0-100	001-0-0-9	и.А.	N.A.	0-32-0-65 1450	0-0-30-70 1270	
	72°F	STRENGTH (PSI)	4230	3300	2440	z	ž	3880	5300	
	200°F AFTER ASING	FAILURE MODE (Z)	103-0	0-100	30-70			55-45	100-0	
NO PRIMER	200°F AF	STRENGTH (PSI)	2880	05	1510	N.A.	N.A.	1500	054	
C:I	11-	FAILURE rods (D)	100-0	0-100	16-90	_:		30-70	15-85	
	72.	STRENGTH (PS1)	607.4	2400	3100	A.N.	ñ.A.	3710	5350	
37183-05			15153-172	# C.	X2-153	19200-252	125-429	525-7	Ex3801 NA	

TABLE 8

LAP SHEAR TEST RESULTS ON 5052H34 ADHERENDS WITH FINGER SPECIMENS AND FPL ETCH

	200°F ASTER ASING	KENGTH FAILURE (PSI) NODE (TH	160-0-0-0	10-0-0-83	25-0-30-45	N.A.	ж.ń.	10-0-0-60	85-0-0-15
950	202	STRENGTH (PST)	2410	310	1390			1270	290
XA-3950	72°F	STRENGTH FAILURE (PSI) MODE (%)	106-0-0-0	30-0-d-70	0-0-15-85	n.a.	N.A.	69-0-0-04	25-0-0-75
	7	STRENG (PS1	2400	3590	3070		_	2690	3140
	200°F AFTER ASING	FATLURE MODE (%)	103-0-0-0	55-0-0-5	10-0-15-75	И.А.	N. A.	85-0-0-15	55-C-0-45
1.	200°F	STREWSTH (PS1)	2750	620	1650			659	830
ES 127	17.	FAILURE MODE (S)	0-0-0-001	65-0-30-5	25-0-20-55	Z. A.	N.A.	53-0-0-29	50-0-3-10
	2.5%	STRENGTH (PS1)	2520	3700	2880	2	z	2630	3350
	2037F AFTER ASING!	FATIUSE Mode (%)	100-0	100-0	55-45			51-05	0-00E
NO PRIMER	30 3.COZ	STRENGTH (2SI)	2550	500	1460	4; 25	NE C.	300	233
웃	u.	FAILURE MODE (\$)	100-0	15-85	15-65	તું. સ્ત	й. А.	35-65	20-80
	72°F	STREVOITS (PS:1)	2520	4130	3430	<u>.</u>	æ:	2570	0000
EVISSINE			19100-172	27.73	081-5X	18103-252	124-429	8332-7	E 2001

TABLE 9

LAP SHEAR TEST RESULTS ON 5052H34 ADHERENDS WITH FINGER SPECIMENS AND OFPL ETCH

950 STRENGTH FAILURE (PSI) MODE (C) 2780 25-0-75-0 90 6-0-6-100 N.A. N.A.	XXA-3950 RE STRENSTH (C) (PS1) C) 2780 2 C) 2780 2 C) 1520 (C)	2°F TH F41LU D PODE 25-0-75 0-C-0-1 0-C-0-1 N.A.		STRENGTH FEILUSE (F) STRENGTH FEILUSE (F) SO40 40-0-60-0 160 0-0-0-100 N.A. R.A.	2003 F STSEN (PS 3040 100 1120	98.127 \$133.00	70.055 20. 75 45128 AGT16 37.50.010 10-90	24 10 10 10 10 10 10 10 1	
0-0-50-80	520	N.A.		0-0-0-100	430	N.A.	218 75-25		: :
0-0-25-75	1610	03-05-0-0	3310	0-0-0-100	960				; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
N.A.		N.A.		N.A.		3.A.	3.4.		\$£
N.A.		N.A.		N. A.		75 75	न्हें ११		
0-0-0-100	1320		2480	0-0-0-100	1120				
6-0-6-130	25		3050	0-0-0-130	100			D. 1-1	f ;
25-0-75-0	2780		3320	0-09-0-04	3040				; ;;
i [STEMS (PSI	GTH FAILURE 1) MODE (I)	S	STW FAILURE 1) MODE (%)	\$785% (PS		. 2.	100 100	
AF152 25136	200°F	72°F		AFTER AGING	200°F	7.27	C. 47 FFTER AST13		
	3950	XA-			.7	1 88 J		17.5 O.	

these tables represent averages of five replicate specimens. A comprehensive listing of all of the individual specimen-by-specimen lap shear test data is presented in Appendix VI.

In general, three adhesives (LR100-172, XA-180, and LR100-252) withstood moisture attack very well, exhibiting residual strengths after exposure of greater than 1000 psi (6.89 MPa) in every case.

Two other adhesives (R382-7 and MA429) withstood moisture attack well but did exhibit a few residual strength values less than 1000 psi (6.89 MPa). The residual strength after aging of the R382-7 system fell below 1000 psi (6.89 MPa) in five out of 24 cases. Two of these were on unprimed FPL etched surfaces and exhibited interfacial failure. A third was on an unprimed OFPL-etched surface and exhibited considerable interfacial failure. The other two were on BR127-primed surfaces and very narrowly missed the 1000 psi (6.89 MPa) level. The residual strength after aging of the MA429 system fell below 1000 psi (6.89 MPa) in two out of six cases. One of these was on an unprimed surface and exhibited interfacial failure. The other very narrowly missed the 1000 psi (6.89 MPa) level.

Another adhesive (EA9601NW) exhibited marginal moisture resistance. In 14 of the 24 cases, the residual strength after aging of this adhesive fell below 1000 psi (6.89 MPa). Twelve of these 14 cases, however, exhibited interfacial failure between either the adhesive and the primer layer or between the adhesive and the unprimed adherend. The other two were cohesive failures within the adhesive layer. This indicates that with the EA9601NW adhesive system, the interfacial bond degrades more rapidly than the adhesive itself during hot humid environmental aging.

The last adhesive (R7114) was very susceptible to moisture degradation. In 23 out of 24 cases, the residual strength of this system after aging fell below 1000 psi (6.89 MPa) and the one exception reached only 1100 psi (7.58 MPa). Most of these failures are within the adhesive layer (cohesive failure).

The optimized FPL etch produces consistently higher strength levels than the standard FPL etch on the machined lap shear specimens. On the preslotted type specimens, however, some adhesive/primer combinations exhibited higher strengths on the FPL etched surface than on the OFPL etched surface.

In general, specimens made with the 6061T6 alloy exhibit higher joint strengths than those made with the 5052H34 alloy. Since the 6061T6 has a higher yield stress than the 5052H34, the bending at the end of the lap area is postponed until a higher load is reached during a lap shear test. This, in turn, postpones the introduction of peel stresses into the joint and leads to the higher joint strengths.

enter forman en en de fait de la c

Although moisture degradation appears to be slightly more severe on the preslotted finger specimens than on the machined specimens, the differences between the two is not substantial.

In general, the specimens with primed surfaces resist degradation better than those with unprimed surfaces. In some cases, however, the reverse is true but the overall difference is not substantial. There seems to be little difference in the residual property results shown by either the BR127 or AA3950 primers.

3.2 PEEL TEST RESULTS

The data obtained from the testing of the peel specimens are presented in <u>Table 10</u>. Probably the most obvious feature of this data is the fact that the bond formed between the BR127 primer and the LR100-172 adhesive has very little resistance to peeling stresses! All of the specimens primed with BR127 and bonded with LR100-172 failed along the primer/adhesive interface at low loads.

The peel properties of the unprimed specimens bonded with LR100-172 were significantly higher than those of the primed specimens. Failures were predominantly along the metal/adhesive

TABLE 10
FLOATING ROLLER PEEL TEST RESULTS

			P	eel Strength	(lb/inch w	idu)
Substrate		ľ	72	°F	-6	5°F
Alloy	Primer	Adhes <u>ive</u>	Strongth	Fail. Mode	Strength	Fail, Mode
2024T3	None	LR100-172	25.5	95-5	20.6	100-0
2024Т3	BR127	LR100-172	4.0	0-0-100-0 0-0-0-100	4.7 24.3	0-0-100-0 10-0-30-60
2024T3	6R127	R713.4	41.5 33.7	60-0-40-0	24.3	85-0-15-0
2024T3	BR127 BR127	XA180	44.9	30-0-0-70	-	85-0-15-0
2024T3 2024T3	BR127	MA-429	15.3	0-0-85-15		05-0 -7 0-5
202413	BR127	R382-7	15.4	0~0~60~40	3.'	, C-0-80-20
2024T3	BR127	EA9601 NW	40.8	0-0-0-100	33.6	30-0-10-60
6061T6	None	LR100-172	11.6	100-3	14.4	90+10
606176	BR127	LR100-172	4.4	25-0-75-0	3.0	0-0-100-0 0-0-70-30
6061 T 6	BR127	R7114	37.2	25-0-0-75	17.6	90-0-10-0
6061T6	BR127	XA180	42.4	100-0-0-0	7.9	100-0-0-0
6061T6	BR127	100-252	i 29.8 24.0	160-0-40-0	1 6.7	Ju-0-1,-0
6061T6	BR127 BR127	{ MA-421} { R382 - 7	22.5	10-0-70-20	6.7	0-0-90-10
6061T6 6061T6	BR127	EA9601 NW	52.0	0-0-0-100	30.6	60-0-0-40
				130+0	15.4	3 1-7.
50521134	done	LR100-172	13.6	130-0		
5052H34	BR127	LR100-172	3.0	0-0-100-0	3.4	3-0-100-0 5-0-40-50
505 2H34	BR127	k7114	19.7	25-5-10-60	10.1	30-31-25-25
50521134	BR127	SA180	13.3	30-15-15-40	1 21.7	30=3 (=10=1)
505 2H 34	BR127	100-25	41.4	0-0-80-20	14.0	
50521134	BR127	MA-420	29.0	15-5-50-35	19.6	Jan 1 - 3 4 - 3 5
5052H34	BR127	R382-7 BA0631 NW	•	1:- :-0-85	17.6	1-1-25-21
5052H34	BRILL	JAMES III			1	

ROTES: 2. All specimens ore about with an OFTE surface.

2. All values imposite accounts of their speciments

interface on the unprimed LR100-172 specimens but at relatively high loads compared to the primed specimens, which failed along the adhesive/primer interface.

The lap shear test results, discussed previously, and the lap shear stress-durability test results, discussed later, failed to provide any indication of the BR127/LR100-172 adhesive/primer incompatibility manifested by the peel test results in <u>Table 10</u>.

In general, the EA9601NW and the XA180 adhesives gave the best peel strength levels at -65°F (-54°C). These were followed by the unprimed LR100-172 system, then R7114 and LR100-252. Next in rank are the R382-7 and MA-429 systems and the lowest was the primed LR100-172 system.

Generally, the failure locus becomes more interfacial in nature as the test temperature changes from 72°F (22°C) to -65°F (-54°C). Thus, the primer layer, and its associated interfaces, appears to have been the portion of the bond most susceptible to low temperature peeling stresses. After the tests were completed, concern was expressed that the primer thickness should have been reduced. Since we were, however, interested in joints representative of those present in shelter structures, and not those ideal for best peel properties, our specimens were prepared with the same primer layer thickness as used for the lap shear joints. In addition to the strength levels exhibited by each adhesive system, a consideration of the failure mode and relative amount of strength decrease from room temperature to -65°F (-54°C) is also useful. Hence, a brief, general, adhesive-by-adhesive description of the results follows.

The EA9601NW loses about one-third of its room temperature peel strength at -65°F (-54°C). At room temperature, it fails predominantly within the adhesive layer (cohesive), while at the reduced temperature, the failure mode becomes more primer and more interfacially oriented with a mixture of all four of the modes explained in Figure 9 evident.

The XA180 adhesive system loses about one-third of its room temperature peel strength at -65°F (-54°C) also. This

system exhibits relatively little failure within the adhesive layer at either test temperature. Rather, the failure locus is principally along the adherend/primer interface and to a lesser extent along the primer/adhesive interface, with a small amount appearing to be within the primer layer itself.

The R7114 adhesive loses about one-half of its room temperature strength at -65°F (-54°C). While its failure mode is primarily cohesive (within the adhesive layer) at both test temperatures, a substantial amount of primer/adhesive interfacial failure appears at the lower temperature.

The unprimed LR100-172 adhesive loses very little of its room temperature peel strength at -65°F (-54°C). At both test temperatures, however, the failure mode is predominantly interfacial along the adherend/adhesive interface.

The LR100-252 adhesive loses between one-half and three-quarters of its room temperature peel strength at -65°F (-54°C). Its failure mode at room temperature exhibits substantial amounts of adherend/primer and primer/adhesive interfacial failure as well as cohesive failure within the adhesive layer itself. At -65°F (-54°C) the failure shifts entirely to the adherend/primer interface and to the primer layer.

Both the R382-7 and MA-429 adhesives exhibited failure loci in peel which were predominantly along the primer/adhesive interface at both test temperatures. Both adhesives also exhibited peel strength reductions of over 50 percent when tested at -65°F (-54°C).

Comparing these peel results with the lap shear results discussed in Paragraph 3.1, one notes that only the XA180 adhesive ranked high in both peel and lap shear.

3.3 STRESS-DURABILITY TEST RESULTS

The data obtained from the lap-shear stress-durability tests are summarized in <u>Table 11</u> and illustrated in <u>Figures 10</u>

TABLE 11
STRESS-DURABILITY TEST RESULTS (1)

					40% Stress Level (6)	vel (6)		909	60% Stress Level (6)	el (6)
Substrate	1 1 1 1 1 1 1		expoona o exposite	0 A		Residual		Exposure	7. 0.	
70440	1 2 1 1 .		51) (15	Failure (7)	Fail. Mode	(% of baseline)	Fail. Mode	(181)	Failure (7)	Fail. Mode
503	0.00	521-001=1	:	2.4	100-0	1 1		2550	α	0-001
-	1000	18100-132	000	(2) + (90	75-0-25-0	900	75-0-25-0	3226	104	45-0-55-0
		E711	0.00	340	26-0-0-5) [2910	10	10-0-0-01
		081-38	1660	1000+(2)	-	63	10-0-0-00	2480	80	20-0-0-80
		LR100-252	20 30	1000+(2)	:	78	20-0-30-50	3040	170	40-0-10-20
		NE-429	2170	1300+(2)	-	80	10-0-55-35	3260	105	25-0-60-15
		R: 82-7	1650	361	15-0-0-85	1 1 1		2780	4	10-6-0-90
		EAS6GINW	2060	850+(4)	50-0-10-40	87	15-0-35-50	3090	305	35-0-5-60
	6	בני סטום.	000	76.0	0-001	!	-	2250	6	0-001
******	2000	217-00-01	000	10/4/35	70-0-30-0	V 0	0-0-10-0	25.50	77	0-01-0-05
	7745	7/7-10147	000	35.00	001-0-0-0	7 1	,	2180	25	0-0-0-0
		X2-150	0811	727	2-0-0-5	1	1	1780	310	15-0-0-85
		LR166-252	1610	556	20-0-0-80		-	2420	880	20-0-15-65
		NA-429	1920	943+(4)	10-0-15-75	16	2-0-80-12	2890	736	15-0-40-45
		R382-7	1590	410	0-0-0-0	1 1 1		2400	907	5-0-0-5
		EA96013W	1790	250	10-0-0-00	!!	1	2680	733	15-0-0-85
							A			

NOTES: 1. All specimens prepared with an OFPL etched serface.

All five specimens survived for 1000 hours without failure.

Four specimens survived for 1000 hours without failure.

Three specimens survived for 1000 hours without failure.

Based on baseline ultimate strength of dry unaged specimens tested at 140°F (60°C). One specimen survived for 1000 hours without failure.

All time-to-failure values represent averages of five specimens. Specimens were exposed at 140°F (60°C) and 95-100% R.H. while under stress.

and 11. The values presented in this table represent averages of at least five replicate specimens.

In addition to the hours-to-failure exhibited by each adhesive, the stress level to which the specimens were subjected during exposure are noted. Since each adhesive system exhibits its own characteristic strength and since the exposure stress levels were set at a percentage of the adhesives lap shear strength at 140°F (60°C), one must consider the stress during exposure as well as the time-to-failure and failure mode in assessing relative stress-durability of the various adhesives.

The lap shear control strength values, upon which the exposure stress levels are based, are presented in Appendix VIII along with the individual stress-durability results. The 140°F (60°C) lap shear control strength values were used to compute the 40 percent and 60 percent stress levels for use during the durability exposures. The room temperature values were measured primarily to provide a means of checking the quality of the panels from which these specimens were obtained against the room temperature lap shear results for the same combinations of adherend, surface preparation, primer, and adhesive tested during the lap shear portion of the program and discussed in Paragraph 3.1. In 14 of the 16 cases, the room temperature strength values obtained from the stress-durability panels are within 10 percent of the value obtained previously in the lap shear testing. two exceptions both occur on 5052H34 adherends with one (XA180) being 1.7 percent lower than the original lap shear result and the other (R382-7) being 42 percent higher. There are more frequent differences in the apparent failure mode with 11 of the 16 cases exhibiting substantial differences in failure mode from the original results. For the most part, these differences in failure mode consist of more failure along the metal/primer interface in the control specimens for the durability tests than in the original lap shear results.

SERVICE TO THE SERVICE SERVICE

LR100-252/BR127 HA-429/BR127 R382-7/ER127 EA9601NW/BR127 74 75 76 76 LR103-172/WO PRIMER LR163-172/SR127 R7114/BR127 KA180/BR127 * 122

Stress-Durability Behavior on 6061T6 Bare Adherends. Figure 10.

Stress-Durability Behavior on 5052H34 Bare Adherends. Figure 11.

The single most obvious feature of the data plotted in Figures 10 and 11 is the reversed slope of the curves for LR100-252 and EA9601NW on 5052H34 adherends. No explanation for this can be offered unless the times-to-failure and stress levels were inadvertently interchanged for these two combinations. These tests were rerun however, using extra specimens left over from the original LR100-252 and EA9601NW panels. The data from these tests are presented in Table 12 and Figure 12 and are consistent with the trend one would expect.

It will be noted in <u>Figure 10</u> that the 6061T6 stress durability curves seem to fall into three general groupings. One, representing those adhesives with the best stress-durability behavior includes LR100-172 (with primer), LR100-252, MA429, and EA9601NW. The second, representing those adhesives with intermediate stress durability behavior, includes XA180, R7114, and R382-7. The third includes only the LR100-172 adhesive used on an unprimed surface and represents a very short time-to-failure.

Assuming that the second set of tests with the LR100-252 and EA9601NW adhesives on 5052H34 adherends (Table 12) is more indicative of their stress-durability behavior than the first set (Table 11), the stress durability curves for 5052H34 adherends (Figure 11) also fall into three general groupings. The first, representing those adhesives with the best stress durability behavior includes MA429, LR100-252, and EA9601NW. The second grouping, representing those adhesives with intermediate stress-durability includes LR100-172 (both with and without primer), XA180, and R382-7. The third group for the 5052 adherends is composed only of R7114 and represents a very short time-to-failure.

Figure 13 superimposes the 6061 and 5052 data groupings on a single graph for greater ease in visualizing the relative adhesive/adherend stress-durability behavior. It can be seen here that the general location of the high, intermediate, and low data groupings coincide fairly well for both adherend alloys.

In summary, three adhesives (LR100-252, MA429, and EA9601NW) exhibited consistently higher stress durability than the others

STRESS-DURABILITY TEST RESULTS FOR EXTRA RETESTED SPECIMENS (1) TABLE 12

Installation

			40% S	40% Stress Level (3)	3)	5 809	60% Stress Level (3)	3)
Substrate Alloy	Primer	Adhesive	Exposure Stress (psi) (MPa)	Hrs. to Failure (4)	Fail. Mode	Exposure Stress (psi) (MPa)	Hrs. to Failure(4)	Fail. Mode
5052H34 5052H34	BR127 BR127	LRIGG-252 1610 11.1 LRIGG-252 1610 11.1 Avg. 1610 11.1	1610 11.1 1610 11.1 1610 11.1	736*(2) 736*(2) 736*	20-0-10-70 10-0-30-60 15-0-20-65	2420 16.7 2420 16.7 2420 16.7	396 184 290	40-0-30-30 40-0-10-50 40-0-20-40
5052:334 5052:334	BR127 BR127	EA9601NW EA9601NW Avg.	1790 12.3 1790 12.3 1790 12.3	736*(2) 736*(2) 736*	30-0-10-60 20-0-10-70 25-0-10-65	2680 18.5 2680 18.5 2680 18.5	553 542 547.5	30-0-10-60 30-0-10-60 30-0-10-60

NOTES: 1. All specimens prepared with an OFPL etched surface.

Failure due to malfunction in humidity chamber which resulted in overheating to 200°F (93°C).

Bused on baseline ultimate strength of dry unaged specimens tested at 140°F (60°C).

Specimens were exposed to 140°F (60°C) and 95-100% R.H. while under stress.

Stress-Durability Behavior of LR106-252 and EA9601NW Adhesives on 5052H34 Bare Adherends. Figure 12.

The second of th

	GROUP 1 2 3	ADHEREND ALLOY 6061T6 6061T6 5052H34	ADHESIVES A1, A4, A5, A7 A2, A3, A6 A1, A1, A3, A6		34 ADHEREND ALLOY 5 ADHEREND ALLOY
STRESS DURING EXPOSURE (PSI)	3400	- GF	ROUP 2	GROUP I	
XPOS	3000	-			A5 A7 1
NG E)	2600	-	1	AA!	
DURII	2200	-	AI*		人
ESS	1800	-	//		A CONTRACTOR OF THE PARTY OF TH
		-		\A2	GROUP 3
SHEAR	1000		10	100	1000
Ŋ	'		TIME TO FAIL		1000
	Δ1	* IR100-172:NU	O PRIMER	Δ/L LR100-252:RF	2127

 A1*
 LR100-172:NO PRIMER
 A4
 LR100-252:BR127

 A1
 LR100-172:BR127
 A5
 MA-429:BR127

 A2
 R7114/BR127
 A6
 R382-7:BR127

 A3
 XA180:BR127
 A7
 EA9601NW:BR127

Figure 13. Stress-Durability Behavior Summary.

tested in this program. One adhesive (LR100-172 with primer) performed well on the 6061T6 alloy but only moderately well on the 5052H34 alloy. Two adhesives (XA180 and R382-7) fell into the intermediate time-to-failure regions on both adherend alloys. The last two adhesives (R7114 and LR100-172 without primer) fell into the low to intermediate groupings on each adherend alloy.

There does not seem to be a consistent relationship between failure mode and stress durability. The three better adhesives in this type test exhibit markedly different combinations of failure. The MA429 exhibited considerable adhesive-to-primer failure, the EA9601NW considerable failure within the adhesive layer, and the LR100-252 considerable primer-to-metal failure as well as failure within the adhesive layer. The two lower durability adhesives displayed dramatically different failure modes with one being exclusively interfacial between the adhesive and the unprimed metal while the other was predominantely within the adhesive layer.

3.4 CRACK EXTENSION TEST RESULTS

The data obtained from the testing of the double cantilever beam (DCB) crack extension specimens are summarized in Table 13 and presented graphically in Figures 14 to 16.

One of the differences between the standard and optimized FPL etching solutions is that the optimized solution is "sweetened" by dissolving 2024 aluminum in the acid solution before it is used for panel etching (see Appendix I). This "sweetening" has been found to provide significantly improved bonding. One question which arose in the course of this investigation was whether the "sweetening" of the initial etch solution should be accomplished by dissolving 2024 aluminum alloy (as the normal optimized FPL process calls for) in the etch solution regardless of the type of alloy to be treated, or whether the solution should be "sweetened" with the same alloy as that which is to be etched. Three different alloy "sweeteners" were consequently utilized in this portion of the program.

TABLE 13 DCB CRACK EXTENSION RESULTS

	-+	 							-		•
	Failure Mode	70-0-0-30	15-0-0-85	15-0-0-85	100-0-0-0	25-0-0-75	100-0-0-0	90-0-0-10	0-100	20-80	
	T=336 hr. T=504 hr.	6.7	10.6	17.2	0.11	7.9	0.14	0.45	5.2	1.1	
	T=336 hr.	7.3	9.6	18.3	0.11	8.7	0.14	0.45	5.4	1.2	
$G_{I} = \frac{1}{1} \frac{1}{1}$	T=168 hr.	8.2	10.6	19.1	0.11	4.8	0.15	6.45	5.4	1.2	
T _U	T=0 hr. T-1 hr. T=24 hr.	10.8	12.6	20.0	0.11	11.2	0.15	0.46	5.4	1.2	
	T-1 hr.	15.2	15.8	23.9	0.13	12.7	0.24	3.7	5.4	1.3	
	T=0 hr.	19.3	18.0	30.0	3.3	16.2	13.8	11.6	5.7	1.3	
adhesive:	Primer	FM73:BR127	FM7.3:BR127	FM73:BR127	FM73:BR127	FM73:BR127	FM73:BR127	FM73:BR127	LR100-172:	None LR100-172: None	
) 103	Type	Tap	Deionized	Tap	Tap	Tap	Deionized	Tap	Tap	det	
05.50		2024	2624	2024	5052	2024	6961	6061	2324	2024	
7 CA	Alloy	2024T3	2024T3	5052834	5052834	606126	6061Tō	606176	50521134	600176	

$$G_{I} = \frac{v^2 E n^3 (3 (a + 0.6 h)^2 + h^2)}{16 [(a + 0.6 h)^3 + ah^2]^2}$$

y = displacement at load point (inches) (beam separation)

E = adherend modulus (psi x 10^6)

h = adherend thickness (inches)

a = crack length from load point (inches)

Effect of Etch Bath Sweetening Alloy on Interfacial Durability. Figure 14.

The second secon

Effect of Rinse Water Type on Interfacial Durability. Figure 15.

Effect of Adhesive/Primer Type on Durability. Figure 16.

After etching, the adherends are rinsed before drying. This rinse can be accomplished with either tap water or deionized water. Some question existed as to whether deionized water rinsing leads to significant bond improvement considering its considerably higher cost. This was also examined.

The principle conclusion of the results presented in <u>Table 13</u> and <u>Figures 14-16</u> is that regardless of the aluminum alloy being etched, the etch bath should be sweetened with 2024 alloy for highest bond durability. The reason for this is generally felt to be the presence of copper in the 2024 alloy. In fact, some investigators believe that sweetening the bath with copper alone is sufficient. Examination of the failure modes for these tests corroborate the differences in interfacial bond quality obtained when the etch bath is sweetened with 2024 rather than a non-copper containing alloy. The baths sweetened with the copper containing 2024 alloy produced bonds which failed predominantly in the adhesive layer, while those sweetened with the non-copper alloys produced bonds which failed predominantly at the adherend-primer interface.

The use of a deionized rinse rather than a tap water rinse appears to be marginally worthwhile. On a 2024 alloy adherend etched with a 2024 sweetened bath, a deionized rinse produced a more durable bond, the difference becoming relatively greater as the aging time increased. Further, the tap water rinse resulted in substantially more failure along the metal-primer interface than the deionized water rinse. On a 6061 alloy adherend etched with a 6061 sweetened bath, however, the deionized rinse produced a less durable bond. Since these latter two bonds were both poor due to the use of a non-copper containing sweetener, the relative effects of the two rinse methods may have been obscured by the poor bonds.

The last observation available from these results is that the LR100-172 adhesive without primer is very inferior to the FM73/BR127 combination insofar as its initial (up to 504 hours and more) ability to withstand crack extension is concerned.

The LR100-172 adhesive bond, however, degraded less during exposure than the FM73/BR127 system. It is conceivable that had the exposures been extended to a long enough time (60-190 days if the data in Figure 16 is extrapolated) the LR100-172 may have proven the more durable. The fact that these LR100-172 bonded joints failed predominantly within the adhesive layer rather than at the adherend-adhesive interface indicates that this adhesive forms a bond directly to the bare etched metal which does not require a primer layer to impart environmental durability when loaded in a cleavage mode at 140°F (60°C).

SECTION 4 SUMMARY AND CONCLUSIONS

It was stated in the introduction that the primary objective was to identify adhesives which have the capability of retaining a substantial portion of their structural integrity after prolonged exposure to the combined effects of elevated temperature and high humidity. This judgement must be based upon the overall performance of the adhesive in a variety of loading modes and environmental conditions as well as upon the anticipated requirements of the particular application. Hence, it is felt that comparing the relative performance of the adhesives tested in this program in the various different loading modes and environmental conditions is an appropriate way to conclude. This comparison is presented in Table 14 as a subjective rating of each adhesive in lap shear, peel, and stress durability.

It can be observed in <u>Table 14</u> that no single adhesive ranks high in all categories. Hence, the use of only one or two types of tests for evaluating adhesives for shelter applications is inadequate since some adhesives can display good property levels in one type test and poor property levels in another. Indeed, the adhesives can be formulated to exhibit superior characteristics under one or two stress conditions and environments.

A secondary objective was to evaluate the effect of selected surface preparation variables upon the interfacial durability of bonded joints. Two variables were evaluated: the type of aluminum alloy dissolved in the FPL etch solution to "sweeten" it, and the type of water used to rinse the panels after etching. The most significant result of these tests was that regardless of the aluminum alloy being etched, the FPL etch bath should be sweetened with 2024 alloy, presumably because of its copper content. Unless this dissolved copper is present in the etch solution, bonding surfaces resistant

TABLE 14
SUMMARY RANKING OF ADHESIVES

		Relative Ranking to Other Adhesi	
Adhesive	Aged Lap Shear	Low Temp. Peel	Stress Durability
LR100-252	high	intermediate	high
XA180	high	high	intermediate
MA 429	high-to- intermediate	low-to- intermediate	high
EA9601NW	low-to- intermediate	high	high
LR100-172 ¹	high	high-to- intermediate	low-to- intermediate
R382-7	high-to- intermediate	low-to- intermediate	intermediate
LR100-172	high	low	high-to- intermediate
R7114	low	intermediate	low-to- intermediate

 $^{^{}m 1}{
m On}$ unprimed adherend surfaces.

to humidity degradation will not be obtained. The use of deionized water for rinsing during adherend surface preparation provides some improvement in bond durability but the added cost must be weighed against the amount of improvement attained in large industrial processes. This judgement must also take into account the quality of tap water available in order to determine the degree of durability achievable without deionized water rinsing.

One other testing variable evaluated in this investigation was the type of specimen used in the lap shear tests. The use of the preslotted (finger) specimens for lap shear testing offer no advantages over machined specimens in the development of shear data since the adhesives evaluated were ranked in the same order of decreasing strength by both types of specimens. Since the finger specimens are more expensive, there is no advantage in their use.

APPENDIX I

ADHEREND SURFACE PREPARATION PROCEDURES

Two different surface preparation procedures were used in the preparation of the test specimens, a standard and an optimized FPL etch. The standard basic (or non-optimized) FPL etch treatment is described in ASTM D2651, Method A. The optimized FPL etch treatment is described in ASTM D2651, Method G. step-by-step procedures utilized in this investigation are described as follows.

Adherend Etch Procedure

- 1. Solvent wipe with MEK or acetone.
- 2. Vapor degrease for 10 minutes in trichloroethylene.
- 3. Alkaline wash for 10 minutes at 155 + 5°F (68 + 3°C) (Note 1).
- 4. Water rinse for 10 minutes in a continuous flow bath
- 5. Etch for 10 minutes in the FPL (or optimized FPL) etch solution at 155 + 5°F (68 + 3°C) (Note 2).
- Water rinse immediately after removal from etch solution 6. for 10 minutes in an agitated continuous flow bath (Notes 3 and 4).
- Force dry with a heat gun or in an oven for 10 minutes 7. at 150°F (60°C).

Notes:

- 1. Alkaline solution consists of:
 - a. l gallon tap water
 - b. 170 grams Turco 4215
 - 7 mL. Turco 4215 additive
- 2. FPL otch solution consisted of:
 - 11. Liters tap water

 - ω. 417 grams $Na_2Cr_2 + 2H_2O$ ε. 2.0 licers H_2SO_4 (reagent)
 - 20 und of dissolved 2024 aluminum aline Coptimized PPD etch solution only ...
- A bay water range was used in the big aration of the tax Enders (Parta playing 2.5), and 1.1 and probable em Crack Extension (Paradiaphs 2.3.4 al. 0.4) Speciment, for both the standard and optimized PDF atches. For as I other specimens (Pecl, Stress-Bura, clity, and

- part of the Crack Extension, Paragraphs 2.3.2-4, and 3.2-4) a deionized water rinse was used.
- 4. At the conclusion of the rinse step, cleaned parts were observed for water break. A panel passed if a continuous film of water was maintained on the surface for not less than 30 seconds. Parts failing this water break inspection were reprocessed through the acid etch procedure described above. If the part failed a second time, it was discarded.

It will be noted that the only difference between the standard and optimized FPL etch procedure is that the etch solution used in the optimized procedure has 2024 aluminum alloy dissolved in it while the standard solution does not. The significance of this difference seems to be in the copper content of the starting etch solution imparted by the copper containing 2024 alloy. If a non-optimized FPL etch solution is used to treat a copper containing alloy such as 2024, the copper content of the solution will increase and the solution will gradually become optimized. A copper concentration equivalent to that obtained by dissolving 0.20 ounces or more of 2024 aluminum alloy per gallon of solution (1.5 gm/liter) is required for an FPL etch solution to be considered optimized. During this investigation, the non-optimized FPL etch solutions were discarded before the copper content reached this level.

Titration to Determine Sodium Dichromate Concentration of FPL Etch Solution

Materials:

- Sulfuric Acid, concentrated 96.4 percent
- Potassium Iodide, crystals
- Sodium Thiosulfate, 0.1N (purchased)
- Starch Indicator Solution
- Deionized Water

All materials to be reagent grade.

Hardware:

- Mettler Balance
- Pipette: 1 ml, 1/100 ml graduations
- Pipette: 2 ml, 1/10 ml graduations
- Pipette: 5 ml, 1/10 ml graduations
- Pipette: 25 ml, 1/10 ml graduations
- Pipette: 50 ml Transfer
- Burets: 2 ea. 100 ml Automatic
- Burets: 1 ea. 50 ml Automatic
- Burets: 1 ea. 50 ml

- Magnetic Stirrer
- Magnetic Stir Bar
- 250 ml Ehrlenmeyer Flask
- Pipetting Bulb
- 250 or 500 ml Holding Bottles
- 125 ml Ehrlenmeyer Flask
- 1000 ml Ehrlenmeyer Flask
- 100 ml Volumetric Flask

Procedure:

- 1. Clean all glassware with Alconox and water, rinse several times with distilled or deionized water and allow to dry thoroughly.
- 2. Insure that glassware is at room temperature.
- 3. Make sulfuric acid, 10 percent, by weighing 100 grams of sulfuric acid (concentrated) into a flask (125 ml). Fill a 1000 ml flask with 500 grams of deionized water (weigh it). Pour the acid into the deionized water while stirring. Weigh additional deionized water into the flask until you have 1000 grams of solution.

- 4. Make 20 percent potassium iodide by weighing 20 grams into a 100 ml volumetric flask. Add a little bit of deionized water and swirl until the crystals dissolve. Add deionized water until the 100 ml volume mark is reached by the bottom of the meniscus. Store in a dark place -- it is light sensitive.
- 5. Pipette 2 ml of acid etch to be tested into a 250 ml Ehrlenmeyer flask. Drop a magnetic stir bar into the bottom and place on a stirrer.
- 6. Add 50 ml of deionized water by transfer pipette.
- 7. Add 12.5 ml of 10 percent H₂SO₄ (by pipette or buret).
- 8. Add 3 ml of potassium iodide [20 percent solution] (by pipette or buret).
- 9. Titrate with 0.1N sodium thiosulfate until a straw color appears -- do this very slowly so as not to overshoot the end-point (from buret).
- 10. Add 2 ml starch indicator by pipette.
- 11. While stirring rapidly, add 0.1N sodium thiosulfate dropwise very slowly until color changes to a light blue.
- 12. Record the number of ml of sodium thiosulfate used.

Calculations:

Determine the sodium concentration by the following formula:

ml of sodium thiosulfate (0.1N) x 4.967 = Sodium dichromate concentration in grams per liter of solution

Safety:

Wear safety glasses, acid proof gloves, and a lab coat. Use Pipetting bulb for transferring liquids. Decontaminate spills with Alconox and water. For skin contact, wash thoroughly with soap and water. For eye contact, rinse 15 minutes with water, get medical aid.

Titration to Determine Sulfuric Acid Concentration of FPL Etch Solution

Materials: - 0.1N NaOH Soluti

- 0.1N NaOH Solution (purchased)

- Deionized Water

Hardware: - Pipette: 1 ml, 1/100 ml graduations

- Pipetting Bulb - 250 ml Beaker (2) - Magnetic Stirrer

- 50 ml Transfer Pipette

- Magnetic Stir Bar

- pH Meter

- 100 ml Automatic Buret - pH7 Buffer Solution

Procedure:

- Clean all glassware with Alconox and water, dry thoroughly and bring to room temperature.
- 2. Flace clean stir bar in a 250 ml beaker.
- Transfer 0.5 ml of acid etch to the beaker using a 1.0 ml pipettu.
- 4. Add 195 mg of deronized water using a transfer pipeton.
- 5. Rinse pl reign prottrougs with nelonized water, wipe day.
- Immerse clerenoù-se in haffer solution (pH7) and adjust moter to read pH7.

- 7. Rinse electrodes and wipe dry.
- 8. Immerse electrodes in the acid solution which you have placed on a stirrer.
- 9. Add NaOH (0.1N) dropwise until pH 3.5 is reached.
- 10. Record the number of ml on NaOH (0.1N) used.

Calculations:

Determine the sulfuric acid concentration as follows:

 $\frac{\text{ml of NaOH (0.1N)} \times 49.04}{5} = \frac{\text{Sulfuric acid concentration in grams per liter of solution}}{}$

Safety:

Wear safety glasses, acid proof gloves, and a lab coat. Pipette liquids using a bulb. Decontaminate spills with Alconox and water. For skin contact, wash thoroughly with soap and water. For eye contact, rinse 15 minutes with water, get medical aid.

Adjustment of FPL Etch

Materials:

- Sulfuric Acid (Reagent)
- Sodium Dichromate (Reagent)
- Deionized Water (needed only if measured concentrations are too high and solutions must be diluted)

Hardware:

- Graduated Cylinders - size as needed

Procedure:

1. After titration, the concentrations determine how much sodium dichromate and sulfuric acid to add using the following specification:

Sodium Dichromate 28.5 grams/liter (27.0 - 30.0) Sulfuric Acid 285.0 grams/liter (280 - 290)

- 2. Adjust the acid first remember adding acid changes the volume.
- 3. Add dichromate according to the new adjusted volume.

Calculations:

Example: Sodium dichromate was 21.5 grams/liter. Sulfuric acid was 215 grams/liter.

To add acid 285-215 = 70 grams per liter

$$\frac{70}{1.65} = 42.4 \text{ ml of acid}$$

(10 percent sulfuric acid has specific gravity of 1.65 grams/ml)

(pour acid slowly - it will get hot as you add it to the solution)

The new volume is now 1.04 liters.

To add sodium dichromate

28.5-21.5 = 7 grams/liter7 x 1.04 = 7.28 grams

After adjustment, recheck concentrations by titration.

If the concentrations measured by titration are too high, the reverse procedure (add water to dilute) must be followed.

Safety:

Acid gloves and aprons, safety glasses. Spills decontaminate with Alconox and water. Rinse skin or eyes with water - get medical aid.

APPENDIX II

PRIMER APPLICATION PROCEDURE

The primer was applied to the adherends using the following equipment and procedures.

2.1 Equipment

The Brinks Wren B (air brush) was used in priming the smaller bonding area panels (lap-shear and stress-durability adherends) because it would conserve primer (less over-spray) and give a similiar spray pattern as obtained with the Brinks Model 15 spray gun used on the larger panels.

The Brinks Model 15 (spray gun) was used in priming the larger bonding area panels (floating roller peel and DCB crack growth adherends) because it covers a larger surface area with each pass of the gun, saving time and giving a more uniform thickness control of the primer.

A Dermitron D-9 (Eddy Current) by Unit Process Assemblics Inc. was used to measure primer thickness.

2.2 Application Procedure

The primer was applied in several coats rather than in a one or two pass build up of primer thickness. The Brinks Wren B (air brush) was set up for best spray pattern using 20-25 psi line pressure and the primer was applied in 10 to 15 passes at a distance of 8 inches (20 cm). The Brinks Model 15 (spray gun) was adjusted for the best pattern at 30-35 psi line pressure and the primer was applied in a criss-cross pattern of 4-5 passes in each direction at a distance of 12 inches (30 cm).

Thickness measurements were taken with the Dermitron D-9 instrument several times during the coarse of the primer application until the desired primer thickness had been attained. The

color of the primed surface was noted and the remainder of the panels were sprayed to visual color equivalence. All primed surfaces were inspected with the Dermitron D-9 Instrument to insure that the primer layer was within the desired limits. Any primed surfaces with visibly obvious defects/blemishes were also rejected.

2.3 Cure Cycle (both primers)

Air dry for 30 minutes at 72°F (22°C)

100 percent check of primer thickness (manufacturers specification)

Force dry for 60 minutes at 250°F (122°C)

Spot check for primer thickness

2.4 Storage

The primed adherends were covered with Kimwipes and stored at 72°F (22°C), 50 percent relative humidity until bonding.

2.5 Bonding

The panels were bonded within 24 hours of priming using the manufacturers recommended cure cycle.

APPENDIX III PANEL LAY-UP AND BONDING PROCEDURES

The various types of panels prepared during this program are illustrated in Figures 1, 3, and 4. The film adhesives were stored in a closed plastic wrapper at 0°F (-18°C) prior to use. The adhesive was warmed to room temperature before removal from the wrapper to prevent moisture condensation on the adhesive. Adhesive pieces were cut to the required size with a razor knife. These sizes were 5/8" x 9-1/4" for the lap-shear and stress-durability panels, 3" x 8" for the peel panels, and 6" x 12" for the crack growth panels.

The etched and primed adherend panels, along with the adhesive, were assembled in the stacking sequence illustrated in Figure III-1. The assembled lay-up stack was placed in a preheated press and the curing schedule appropriate for each adhesive was carried out (see Table III-1).

The only exception to the above procedure was for the LR100-172, a 2-part paste adhesive stored at room temperature. With this system, appropriate amounts of each component were hand blended on a clean flat surface with a steel spatula until color homogeneity was achieved. It was then trowelled onto the bond area by hand to an approximate thickness of 0.010-0.015 inches (0.254-0.381 mm) and the lay-up stack assembled as shown in Figure III-1.

After curing of the bonded panels the panels were inspected for proper alignment (no slippage during cure), and the glue line thickness was measured on the lap shear panels to insure that they were within the acceptable limits of 0.004-0.007 inches (0.10-0.18 mm).

(a) Lap-Shear and Stress-Durability Specimen Layup Model

(b) Floating Roller Peel and DCB Crack Growth Specimen Layup Model

- (c) Layup Stack Common to Both Type Specimen Layups
 - A Upper or Lower Flatten
 - B 1/8" Aluminum Cauls
 - C 1/8" Silicone Rubber Sheet
 - ν 5 mil Teflon Release Sheet
 - E Panel Adherend
 - F 5 mil Teflon Shim
 - G Spacer (Thickness of Panel Adherend)
 - H Adhesive (Film or Paste)

Figure III-). Bonded Panel Layup Models.

TABLE 111-1

MANUFACTURERS REQUIRED/RECOMMENDED ADHES CURE SCHEDULES

Adhesive	Cure Time-Temperature-Pressure	Cure Cycle Notes
R7114	45 ± 5 minutes at 280 ± 5°F (138 ± 3°C) and 40 ± 10 psi (276 ± 69 KPa)	1
XA-180	45 ± 5 minutes at 280 ± 5°F (138 ± 3°C) and 40 ± 10 psi (276 ± 69 KPa)	1
EA9COINW	45 ± 5 minutes at 250 ± 5°F (121 ± 3°C) and 40 ± 10 psi (276 ± 69 KPa)	2
LR100-252	45 + 5 minutes at 250 + 5°F (121 + 3°C) and 40 + 10 psi (276 + 69 XPa)	2
R382-7	60 ± 5 minutes at 250 ± 5°F (121 ± 3°C) and 40 ± 10 psi (276 ± 69 FFa)	3
MA-42)	60 ± 5 minutes at 250 ± 5°F (121 ± 3°C) and 40 + 10 psi (276 + 69 KPa)	3
ER100-172	Mix 100 parts by weight of part A with 18 parts by weight of part B. 120 + 5 minutes at 180 + 5°F (82 + 3°C) and 25 + 5 psi (172 + 35 KPa)	4

cure Cycle Notes:

- 1. Required Cure Cycle (except as noted above).
 - a. Pre-heat press to 250 + 5°F (121 + 3°C)
 - Flace bonding fixture and part into press at contact pressure
 - c. Allow 3 to 5 minutes dwell time
 - d. Apply 40 \pm 10 psi (276 \pm 69 KFa) pressure and increase press temperature to 280 \pm 5°F (138 \pm 3°C)
 - e. Cure for $\overline{45} + 5$ minutes
 - f. Remove bonding fixture and part from press
 - g. Cool Londing fixture and part for 5 minutes at k.T.
 - h. Remove part from bonding fixture
 - i. Cool part
- The same as 1 above except for step (d), the temperature remained at 250 ± 5°F (121 ± 3°C) throughout the cure cycle.
- 5. The same as 1 above except for step (d), the temperature remained at $250 \pm 5 \,\mathrm{F}^{\circ}$ (121 \pm 3°C) throughout the cure cycle, and step (e), the cure time, which was increased to 60 ± 5 minutes.
- 4. Proommended cure cycle for LR100-172
 - a. Place bonding fixtue and part into a pre-heated press [130 \pm 5°F (82 \pm 3°C)]
 - a_{*} Apply 25 \pm 5 \pm 5 \pm 61 (172 \pm 35 KFa)
 - c. Fure for 120 + 5 minutes
 - d. Sool bonding fixture and part to 150 \pm 5°7 (of \pm 3°C) at 25 \pm 5 psi (172 \pm 35 KPa)
 - e. Remove bonding tixture and part from press

APPENDIX IV SPECIMEN MACHINING PROCEDURES

Machined Lap-Shear Specimens

There were two types of machined lap shear specimens employed in this program: those used in the static lap shear tests and illustrated in Figure 1 (page 3), and whose used in the stress-durability tests and illustrated in Figure 5 (page 12). The only difference between these two types of specimen is that the stress-durability specimens are 2 inches (5.1 cm) longer and have a hole in each end. Both were layed up in panel form as illustrated in Figure 1-a with five specimens obtained from each panel. All five specimens were finish-cut simultaneously from a panel on a gang mili using circular mill blades spaced one inch apart. During the milling operation the panels were clamped firmly in place in a special fixture to support the bondline during cutting and eliminate vibration damage. The clamping fixture is slotted to accommodate the mill plades. After milling, the hole position on the stress durability specimen was located by hand measurement and drilled to accommodate the gripping bolt in the spring fixture.

Preslotted (Finger) Lap-Shear Specimens

The finger specimens were obtained from a panel illustrated in <u>Figure 1-b</u> (page 6). The panel was cut into individual test specimens (five per panel) by bandsawing through the small webs connecting the specimens together.

Floating Roller Peel and DCB Crack Extension Specimens

The panels from which these types of specimens are obtained are illustrated in <u>Figures 3</u> (page 10) and 7 (page 15). Four specimens were obtained from each peel panel and five specimens from each DCB panel. The DCB panels were 5 inches (15.24 cm) wide as fabricated. Each of these two types of

panel was cut into slightly oversized strips on a bandsaw then dry-milled to their respective final dimensions. The hole position in the DCB specimen was then located by hand measurement, drilled, and tapped.

APPENDIX V

ADHESIVE PROPERTY DATA FROM MANUFACTURERS' LITERATURE

Hysol LR100-172

2024-T3 Clad, FPL etch, no primer

Cure Cycle: 2.5 hours at 165°F (74°C), psi not specified

			Stre	ength	
Lap Shear:	Exposure Cond.	Test Temp.	psi	MPa_	
	None	R.T.	4500	31.0	
	None	200°F(93°C)	2000	13.8	
	14 days @ 200°F(93°C 95-100% R.H.	200°F(93°C)	3000	20.7	
	i		1		

Hysol EA 9601 NW

2024-T3 Clad, chromic acid etched, no primer,

0.063 inch (0.16 cm) adherend

Cure cycle: 60 minutes at 250°F (121°C), 25-40 psi

	(1/2-2/6 KPa)		Stre	ngth
Lap Shear:	Exposure Cond.	Test Temp.	psi	MPa
	None None None 10 min @ 250°F(121°C)	-67°F(-55°C) 77°F(37°C) 180°F(82°C) 250°F(121°C)	5000 5300 4300 2200	34.5 36.5 29.6 15.1

Reliabona R 382-7

Aluminum, etch and primer not specified Cure cycle: 60 minutes at 250°F (121°C), 25 psi (172 KPa)

Lap Shear:	Exposure Cond.	Test Temp.	Strength psi MPa
	None None None	-67°F(-55°C) R.T. 200°F(93°C)	4500 31.0 5120 35.3 2800 19.3
		1	1

Reliabond R 7114

Aluminum, etch and primer not specified

Cure cycle: 45 minutes @ 285°F (141°C), 25-50 psi (172-345 KPa)

		,	, Stre	ngth
Lap Shear:	Exposure Cond.	Test Temp.	psi	MPa_
	News	678D/ 559G)	5000	41.2
	None	-67°F(-55°C)	5990	41.3
	None	R.T.	6140	42.3
	None	200°F(93°C)	4560	31.4
	14 days @ 200°F(93°C)	200°F(93°C)	2195	15.1
	% R.H. not specified		i	

Hysol LR100-252 (EA 9652) - 0.085 lb/ft 2 (0.415 kg/m 2) film

2024-T3 Clad, FPL etch, corrosion inhibiting primer, 0.063 inch (0.16 cm) adherend Cure cycle: 45 minutes at 250°F (121°C), 40 psi (276 KPa)

Lap Shear:	Exposure Cond.	Test Temp.	Stre	ngth MPa
	None None None 14 days @ 200°F(93°C) and 95% R.H.	-67°F(-55°C) 72°F(22°C) 200°F(93°C) 200°F(93°C)	5040 4540 4040 2370	34.7 31.3 27.8 16.3

3M AF-180

2024-T3 Clad, etch and primer not specified Cure cycle: 90 minutes at 235°F (113°C), 35 psi (241 KPa)

Lap Shear:	Exposure Cond.	Test Temp.	Stren	gth MPa
	None	-67°F(-55°C)	4500	31.0
	None	R.T.	5500	37.9
	None	180°F(82°C)	3000	20.7

McCann MA 429

Aluminum, etch and primer not specified Cure cycle: 60 minutes at 250°F (121°C), 10-50 psi (69 to 345 KPa)

Lap Shear:	Exposure Cond.	Test Temp.	Stre	ngth MPa
	None	-67°F(-55°C)	5030	34.7
	None	R.T.	5400	37.2
	None	180°F(82°C)	4520	31.1

APPENDIX VI INDIVIDUAL SPECIMEN LAP SHEAR TEST DATA

The data presented here are for the tests and results discussed in paragraphs 2.3.1 and 3.1.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR R382-7 ACHESIVE ON MACHINED SPECIMENS PREPARED WITH STANDARD FPL ETCH

Test	Temp.		72°F	(22°C) D	ry	20	200°F (93°C) After Aging 1				
Adher. Alloy	Primer	Spec.	Str.	ength MPa	Failure ²	Spec.	Stre	ngth MPa	Failure Mode		
				ļ 		 """	1 222		- BDOG		
	}						:				
5052-	NONE	MSFNC		1,.,	10.10	MSFNC		i			
H34	[1-1	2192	15.1	40-60	3-2	1437	9.9	100-0		
		1-3	2360	16.3	50-50	3-4	1277	3.8	90-10		
	{	1-5	2587	17.8	40-63	4-1	1353	9.3	90-10		
	{	2-2	2396	16.5	50-50	4-3	1387	9.6	90-10		
	ŀ	2-3	2544	17.3	40-60	11 4-3	1244	8.6	90-10		
		Ave.	2416	16.7	40-60	li Ave.	1340	9.2	90-10		
	1	s.D.	158	1.1	10 00); s.s.	79	0.5	30-10		
		ļ				╅┼╌╌┈╌			 -		
	0.01.00			Ì		11]	1	Ì		
	BR127	M5FBC			1	MSFBC					
	1	1	2193	5.1	40-0-0-60	3-2	1969	13.6	90-0-0-10		
	ł	1-3	2452	16.9	40-0-0-60	3-4	2358	16.3	90-0-0-10		
	i	1-5	2556	17.6	50-0-0-50	4-1	2583	17.8	80-0-0-20		
	\	2-2	2068	14.3	40-0-0-60	4-3	2753	19.0	70-0-0-30		
		2-4	2120	14.6	40-0-0-60	4-5	2545	17.5	€0-0-0-40		
	Ī	Ave.	2278	15.7	40-0-0-60	Ave.	2442	16.8	85-0-0-15		
]	S.D.	214	1.5		I S.D.	299	1 2.1	Ì		
	<u> </u>		1	 	†	 		:	 		
		í			1	11	1	ļ	1		
	XA3950	MSFMC	Í	_		MSFMC	í		!		
	ĺ	1-1	2646	18.2	80-0-0-20	3-2	1636	11.3	60-0-0-40		
	Į.	1-3	2596	7.9	70-0-0-30	3-4	1650	11.4	70-0-0-30		
	ł	1-5	2401	16.5	80-0-0-20	4-1	1562	10.8	70-0-0-30		
	ſ	2~2	2012	13.9	90-0-0-10	4-3	1611	11.1	60-0-0-40		
]	2-4	2419	16.7	90-0-0-10	4-5	1588	10.9	70-0-0-10		
ı	Ì	Ave.	2415	16.6	85-0-0-15	Ave.	1609	11.1	65-0-0-35		
		s. 5.	249	1.7		s.D.	36	0.3			
===			 			 			 		
6061-	NONE	M6FNC				MERIC	ł	į			
TE		1-1	2949	26.3	0-100	3-2	1675	11.5	60-40		
1.	1	1-3	3109	21.4	5-95	3-4	1722	11.9	70-30		
	{	1-5	3001	20.7	10-90	4-1	1843	12.7	60-40		
	ţ	2-2	3066	21.1	20-80	4-3	958	6.6	30-20		
	l	2-4	2823	19.5	10-90	4-5	1113	7.7	90-10		
	[Į	2023	[13.3	10-90	1; 4-3	1 1113	/ · '	90-10		
	{	Ave.				11	1				
İ		1	2990	20.6	10-90	Ave.	1462	10.1	75+25		
		S.D.	2990 111	20.6	10-90	Ave. S.D.	1462 398	10.1	75+25		
		1			10-90	11			75-25		
	BR12?	1			10-90	11			75-25		
	BRI2?	s.s.			10-90	S.D.			75-25		
	BR12?	S.D.	111	0.8		S.D.	398	2.7	<u> </u> 		
	BRI2?	S.D. M6FBC 1-1	3229	22.3	5-0-5-90	S.D. MEFBC 3-2	398 2233	15.4	10-0-0-30		
	BR12?	M6FBC 1-1 1-3	3229 3089	22.3 21.2	5-0-5-90	S.D. M6FBC 3-2 3-4	398 2233 1825	2.7 15.4 12.6	10-0-0-00		
	BRI2?	M6FBC 1-1 1-3 1-5	3229 3089 3400	22.3 21.2 23.4	5-0-3-90 10-0-90-0 20-0-80-0	S.D. M6FBC 3-2 3-4 4-1	2233 1825 2371	15.4 12.6 16.3	10-0-0-90 10-0-0-90 30-0-9-70		
	BRI27	M6FBC 1-1 1-3 1-5 2-2	3229 3089 3400 3771	22.3 21.2 23.4 26.0	5-0-5-90 10-0-90-0 20-0-80-0 20-0-80-0 10-0-90-0	S.D. M6FBC 3-2 3-4 4-1 4-3	2233 1825 2371 2152	15.4 12.6 16.3 14.8	10-0-0-30 10-0-0-90 30-0-0-70 20-0-0-80		
	BRI27	M6FBC 1-1 1-3 1-5 2-2 2-4	3229 3089 3400 3771 3210	22.3 21.2 23.4 26.0 22.1	5-0-5-90 10-0-90-0 20-0-80-0 20-0-80-0	S.D. M6FBC 3-2 3-4 4-1 4-3 4-5	2233 1825 2371 2152 2056	15.4 12.6 16.5 14.8 14.2	10-0-0-30 10-0-0-90 33-0-0-90 20-0-0-80 40-0-0-60		
		M6FBC 1-1 1-3 1-5 2-2 2-4 Ave. S.D.	3229 3089 3400 3771 3216 3340	22.3 21.2 23.4 26.0 22.1 23.0	5-0-5-90 10-0-90-0 20-0-80-0 20-0-80-0 10-0-90-0	S.D. M6FBC 3-2 3-4 4-1 4-3 4-5 Ave. S.D.	2233 1825 2371 2152 2056 2127	15.4 12.6 16.5 14.8 14.2 14.7	10-0-0-30 10-0-0-90 33-0-0-90 20-0-0-80 40-0-0-60		
	BR127	M6FBC 1-1 1-3 1-5 2-2 2-4 Ave. S.D.	3229 3089 3400 3771 3216 3340 265	22.3 21.2 23.4 26.0 22.1 23.0 1.8	5-0-5-90 10-0-90-0 20-5-80-0 20-0-80-0 10-0-90-0 10-0-85-5	S.D. M6FBC 3-2 3-4 4-1 4-3 Ave. S.D.	2233 1825 2371 2152 2056 2127 204	15.4 12.6 16.5 14.8 14.7 1.4	10-0-0-30 10-0-0-90 30-0-0-0 20-0-0-60 40-0-0-60 20-0-0-30		
		M6FBC 1-1 1-3 1-5 2-2 2-4 Ave. S.D.	3229 3089 3400 3771 3210 3340 265	22.3 21.2 23.4 26.3 22.1 23.0 1.8	5-0-5-90 10-0-90-0 20-5-80-0 20-0-80-0 10-0-90-0 10-0-85-5	S.D. M6FBC 3-2 3-4 4-1 4-3 4-5 Ave. S.D.	2233 1825 2371 2152 2056 2127 204	15.4 12.6 16.5 14.8 14.7 1.4	10-0-0-30 10-0-0-90 30-0-0-70 20-0-0-80 40-0-0-80 20-0-0-30		
		M6FBC 1-1 1-3 1-5 2-2 2-4 Ave. S.D. M6FMC 1-1	3229 3089 3400 3771 3210 3340 265	22.3 21.2 23.4 26.0 22.1 23.0 1.8	5-0-5-90 10-0-90-0 20-5-80-0 20-0-80-0 10-0-90-0 10-0-85-5	S.D. M6FBC 3-2 3-4 4-1 4-3 4-5 Ave. S.D. M6FMC 3-1 3-3	2233 1825 2371 2152 2056 2127 204	15.4 12.6 16.5 14.8 14.7 1.4	10-0-0-30 10-0-0-90 30-0-0-70 20-0-0-60 40-0-0-60 20-6-0-30		
		M6FBC 1-1 1-3 1-5 2-2 2-4 Ave. S.D. M6FMC 1-1 1-3 1-5	3229 3089 3400 3771 3210 3340 265	22.3 21.2 23.4 26.0 22.1 23.0 1.8	5-0-5-90 10-0-90-0 20-0-80-0 20-0-80-0 10-0-90-0 10-0-95-5	S.D. M6FBC 3-2 3-4 4-1 4-3 4-5 Ave. S.D. M6FMC 3-1 3-3 3-5	2233 1825 2371 2162 2066 2127 204	15.4 12.6 16.3 14.8 14.7 1.4 1.4 13.7 14.4 11.8	10-0-0-30 10-0-0-90 30-0-0-70 20-0-0-80 40-0-0-80 20-0-0-30 40-0-0-60 30-0-0-70 40-0-0-60		
		M6FBC 1-1 1-3 1-5 2-2 2-4 Ave. S.D. M6FMC 1-1 1-3 1-5 2-2	3229 3089 3400 3771 3216 3340 265	22.3 21.2 23.4 26.3 22.1 23.0 1.8	80-0-5-90 80-0-0-20 90-0-30-0 10-0-90-0 10-0-95-5	S.D. M6FBC 3-2 3-4 4-1 4-3 4-5 Ave. S.D. M6FMC 3-1 3-3 3-5 4-2	2233 1825 2371 2152 2056 2127 204	15.4 12.6 16.3 14.8 14.7 1.4 11.4 11.8 13.7	10-0-0-30 10-0-0-90 30-0-0-70 20-0-0-80 40-0-0-80 20-0-0-30		
		M6FBC 1-1 1-3 1-5 2-2 2-4 Ave. S.D. M6FMC 1-1 1-3 1-5	3229 3089 3400 3771 3210 3340 265	22.3 21.2 23.4 26.0 22.1 23.0 1.8	5-0-5-90 10-0-90-0 20-0-80-0 20-0-80-0 10-0-90-0 10-0-95-5	S.D. M6FBC 3-2 3-4 4-1 4-3 4-5 Ave. S.D. M6FMC 3-1 3-3 3-5	2233 1825 2371 2162 2066 2127 204	15.4 12.6 16.3 14.8 14.7 1.4 1.4 13.7 14.4 11.8	10-0-0-30 10-0-0-90 30-0-0-70 20-0-0-80 40-0-0-80 20-0-0-30 40-0-0-60 30-0-0-70 40-0-0-60		
		M6FBC 1-1 1-3 1-5 2-2 2-4 Ave. S.D. M6FMC 1-1 1-3 1-5 2-2	3229 3089 3400 3771 3216 3340 265	22.3 21.2 23.4 26.3 22.1 23.0 1.8	80-0-5-90 80-0-0-20 90-0-30-0 10-0-90-0 10-0-95-5	S.D. M6FBC 3-2 3-4 4-1 4-3 4-5 Ave. S.D. M6FMC 3-1 3-3 3-5 4-2	2233 1825 2371 2152 2056 2127 204	15.4 12.6 16.3 14.8 14.7 1.4 11.4 11.8 13.7	10-0-0-30 10-0-0-90 30-0-0-70 20-0-0-80 40-0-0-80 20-0-0-30		

NOTE: 1. Tested 9 200°F (93°C), after 14 days 9 200°F (93°C), 95-100% R.H.

^{2.} See Figure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR 7601 NW ACHESIVE ON MACHINED SPECIMENS PREPARED WITH STANDARD FPL ETCH

Test	Temp.		72°F	(22°C) D	ry	20	200°F (93°C) After Aging 1				
Adher. Alloy	Primer	Spec. No.	Str pai	ength MPa	Failure 2 Mode	Spec.	Stre psi	ngth MPa	Failure 2 Mode		
5052-	NONE	MSFNB				MSFNB					
H34		1-2	3020	20.8	90-10	1-4	390	2.7	95-5		
		2-3	3170	11.8	90-10	2-1	343	2.3	100-0		
į		1- 2	3220	22.2	80-20	2-5	370	2.5	100-0		
ļ		5-4	2980	20.5	70-30	4-4	420	2.9	90-10		
		6-4	3090	21.3	60-40	6-i	380	2.6	95-5		
		Ave.	3090	21.3	75-25	Ave.	380	2.6	95-5		
		S.D.	100	0.7		1 3.5.	292	0.2	 		
	BR127	MSFBB				MSFBB			1		
		1-2	2850	19.6	100-0-0-0	1-4	750	5 2	100-0-0-8		
İ		2-4	2830	19.5	100-0-0-0	1: 2-5	640	4.4	100-0-0-0		
		4-1	3300	20.7	100-0-0-0	4-2	750	5.2	100-0-0-3		
	i	5-5	2600	17.9	100-0-0-0	6-1	670	4.6	100-0-0-0		
		6-5	3170	21.8	100-0-3-3	6-4	670	4.6	100-0-0-0		
		Ave.	2950	20.3	100-0-0-0	Ave.	700		100-0-0-0		
		S.D.	292	1.9		s.D.	54	0.4			
×	W 2060	иссир				116 5143					
	XA3950	MSFMB	1 2010	22.3	20 5 5 13	MSFMB	1	3.7	100-0-0-0		
		2-1	3233		90-0-0-10	2-2	530	i	100-0-0-3		
		2-5	3090	21.3	100-6-3-6	4-2	460	3.2	100-0-0-0		
		4-1	3230	22.3	95-0-0-5	4-5	500	3.4	1.00-0-0-0		
	i	5-2	2950	20.3	100-6-0-3	5-3	640	4.4	100-0-0-0		
		6-4	3000	20.7	95-0-0-5	6-5	490	3.4	100-0-0-0		
		Ave. S.D.	3100 130	21.4 0.9	95-0-0-5	Ave.	530 70	3.6	100-0-0-0		
6061-	NONE	MEENB	İ	ĺ		MEENB	!				
T6	ļ	1-2	4860	33.5	40-60	1-4	420	2.9	90-10		
• -	1	2-3	4270	29.4	90-10	2-5	430	3.0	90-10		
	ļ	3-2	4080	28.1	80-20	4-1	420	2.9	90-10		
	[]	4-5	4130	28.5	90-10	5-2	340	2.3	90-10		
	į	6-1	3926	27.0	80-20	6-3	450	3.1	90-1.		
	! !	Ave.		t	1	Ave.	410	1			
		\$.5.	360	29.3	75-25	5.D.	410	0.3	90-10		
		<u> </u>			 			i			
	BR127	M6FBB	1		j	MGFBB			}		
	;	1-1	4210	29.0	100-0-0-0	1-2	1200	8.3	100-0-0-0		
	1	2-2	4390	30.3	100-0-0-0	2-3	1240	a.s	100-0-0-0		
	İ	3-3	4940	34.0	100-0-0-0	3-4	950	6.5	100-0-0-0		
	İ	4-4	4110	28.3	100-0-3-0	4-5	1000	6.9	100-0-0-0		
	ļ	5-5	4050	27.9	100-0-0-0	6-1	1150	7.9	100-0-0-0		
	1	Ave.	4340	29.9	100-0-0-0	Ave.	111C	7.6	100-0-0-0		
	ļ	S.D.	360	2.5	<u> </u>	s.b.	130	0.8	<u> </u>		
						1					
	XA3950	M65MB		1		MOFMB		}	1		
	I.	2-1	3715	25.6	80-0-10-10	2-3	610	4.2	90-0-10-0		
		3-5	3840	26.5	0-0-40-60	4-1	370	2.6	\$0~0~50~0		
		4-2	3420	23.6	30-0-60-10	4-5	520	3.6	50-0-50-		
	İ	5 - 3	3350	23.1	30-0-50-10	5-4	570	3.9	60-0-43-		
	1	6-4	3400	23.4	30-0-60-10	(j 6−3	450	3.1	60-0-40-0		
		į	i	i	35-0-45-20	. Ave.	i I 500	3.5	1		

NOTE: 1. Tested @ 200°F (93°C), after 14 days @ 200°F (93°C), 95-100% R.h.

^{2.} See Figure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR R 7114 ADHESIVE ON MACHINED SPECIMENS PREPARED WITH STANDARD FPL ETCH

Test	Temp.		72°F	(22°C) D	Fγ	200°F (93°C) After Aging				
Adher.	Primer	Spec. No.	Str	ength MPa	Failure ²	Spec.	Γ	ngth MPa	Failure 2	
			 		+	 	ļ <u></u>		-	
5052	NONE	MSEND			İ	M5 FND	ĺ			
н34	l	1-1	4020	27.7	10-90	1-2	540	3.7	100-0	
	Ì	1-3	3930	27.1	20-80	1-4	530	3.7	100-0	
i		1-5	4280	29.5	50-50	2-1	380	2.6	100-0	
		2-2	4450	30.7	90-10	2-3	380	2.6	100-0	
		2-4	4610	31.8	80-20	2-5	290	2.0	100-0	
		Ave. S.D.	4260 290	29.4	50-50	Ave. S.D.	420 110	2.9	100-C	
			1	!					 	
	BR127	MSFBD	j	1		MSFBD	!	ł		
	į	1-1	4350	30.0	90-0-0-10	1-2	850	5.9	0-0-0-100	
		1+3	4380	30.2	80-0-0-20	1-4	870	6.0	G-C-0-100	
	į	1-5	4210	29.0	80-0-0-20	2-1	750	5.2	0-0-0-100	
	!	2-2	3770	26.0	80-0-0-20	2-3	640	4.4	0-0-0-100	
	i i	2-4	4150	28.7	70-0-0-30	2-5	680 	4.7	0-0-10-90	
	:	Ave.	4170	28.7	80-C-0-2C	λve.	760	5.2	0-0-0-100	
	<u> </u>	S.C.	250	1.7		5.5.	100	. 7		
	XA3950	MSEMO		-		MSFMI	1			
	~~3530	1-1	4500	31.0	0.0.00.10		1 212	١	1	
		1-3	4630	31.9	0-0-90-10 0-0-80-20	1-2	810	5.6	25-0-0-75	
	1	1-3	4440	30.6		1-4	1 920	6.3	1 20-0-0-70	
	į		1	1	10-0-60-30	2-1	1 560	5.9	20-0-0-80	
	l .	2-3	4730 4430	32.6	10-0-40-50	2-3	855	5.9	10-0-0-90	
	i	2-4	4430	31.4	0-0-70-30	2-5	900	6.2	20-0-0-80	
		Ave.	4550 130	31.3	5-0-70-25	Ave. S.D.	870 50	6.0	20-0-0-80	
60 6 1	NONE	MGFNO	1	!		MOFNE	!	l	ļ	
T 6	i	ļ 1-i	5540	38.2	0-100	1-2	360	2.5	100-0	
	!	1-3	5490	37.8	5-95	1-4	310	2.1	100-0	
		1-5	5400	37.2	5-95	2-2	340	1.7	100-0	
	<u> </u>	2-1	3640	25.1	10-90	2-3	220	1.5	100-0	
	į	2-4	5660	39.0	10-90	2-5	220	1.5	100-0	
		ρνg.	5550	38.2	5-95	Ave.	270	1.9	100-0	
		5.0	110	. 3	 	3.D.	63		 	
	! :BR127	MEFSU				MGFED				
	:	1 -1	i 5 3 90	37.1	NOT AVAILABLE	3-2	580	4.3	5-0-0-95	
	Į	- 3	5110	35 2	" "	3-4	570	3.9	5-0-0-05	
	:	5	5140	35.4		4-1	160	3.5	0-0-0-100	
	į	4-2	4380	36.2	j., n	4-3	460	3.4	3-0-0-100	
	ì	4-4	4950	34.1	" "	.1-5	470	3.2	10-0-0-100	
	:	Ave.	5000	35.5		' !	510	3.5	. 0 - 3 - 100 - 0 - 3 - 103	
	<u></u>	3.0.	380	2.5	<u> </u>	i s.p.	63	1.4		
	XA 3950	MERMO		1	;	MAEND			1	
		1-1	5780	3.9د	1 0-0-80-20	11-2	1250	i 5.6	19-9-9-90	
	i	1-3	5610	38.7	0-0-70-30	1-4		•		
	i	1 1-5	1 5640	39.1	10-0-46-50	:-4 ': 2-i	1000	9.4	10-0-1-40 120-0-6-80	
	i			36.5			1000	7.3		
	!	1 2-2 1 1-4	5590 5360	36.0	Re tal Failed Lamber 30-61	1 2-3 1-5	1060 910	5.3	10-0-1-04	
			i	!		. 3.70	:	!	:	
:	:	Ave.	16-0	25.4	3+3-80-40	. Ave.	, 1116	1 7.7	10-7-9-97	
:	•	· S.C.	160			. S.D.	140	1.0		

^{040705. 1.} Tested * 200°F 493°C), after 14 days 3 260°F 93°G , 95-140% 9.H.

^{2.} See Figure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR AF-180 ACHESIVE ON MACHINED SPECIMENS PREPARED WITH STANDARD FPL ETCH

المؤلول المجالة المحيد في الأفراق في دورية عارد والمائة الألامات ويتعالى فأم في أميد أميلة ماء والألب ويوسية المناسبة وأرامت والمناسبة و

- Andrew Control of the State of the State of

Test	Temp.		72°F	(22°C) D	τλ	200°F (93°C) After Aging ¹				
Adher.		Spec.	Str	ngth	Failure 2	Spec.		ingth	Failure 2	
Alloy	Primer	No.	pei	MPa	Mode	No.	psi	MPa	Mode	
5052	NONE	MSFNE								
H34	NONE	1-1	4280	29.5	20-80	MSFNE	1		1	
n 34	1	1-3	4350	30.0	20-80	1-2	2160	14.9	90-10	
		1-5	4410	30.4	10-90	2-1	2040 1900	14.1 13.1	95-5	
	}	2-2	4450	30.7	10-90	2-3	1970	13.1	90-10	
	 	2-4	4580	31.6	10-90	2-5	1910	13.0	95-5	
		- ,	1				1310	13.2	,,,-,	
	ļ	Ave.	4420	30.5	15-85	Ave.	2000	13.8	90-10	
		S.D.	110	C.8		s.D.	110	0.8	1	
	BR127	MSFBE	}	1		MSFBE	} }			
	1	1-1	3346	23.0	30-0-0-70	3-1	2180	15.0	40-0-0-68	
		1-3	3630	25.0	20-0-40-40] 3-3	2320	16.0	50-0-0-50	
		1-5	3020	20.8	30-0-10-60	3-5	2210	15.2	50-0-0-50	
	i	2-2	3460	23.8	30-0-20-50	4-2	2360	16.3	50-0-0-50	
	1	2-4	3140	21.6	30-0-10-60	1 4-4	2400	16.5	40-0-0-60	
		Ave.	3320	22.9	30-0-15-55	Avg.	229C	15.8	45-0-0-55	
		S.D.	240	1.7		s.o.	100	0.7		
	XA3950	MSFME								
	XA3950		1	1		MSFME	! !	_	1	
	ĺ	1-1	3610	24.9	0-0-10-90	1-2	1220	છે. ન	40-0-50-10	
	ł	1-3	4135	28.5	20-0-10-70	1-4	1320	9.1	70-0-30-0	
	j	1-5	3550	24.5	10-0-10-80	2-1	1280	8.8	30-0-50-0	
	 -	2-2	3650	25.2	20-0-10-70	2-3	1360	9.4	50-0-50-0	
	Ì	2-4	3840	26.5	10-0-20-70	2-5	1280	8.8	60-0-40-0	
ļ		Ave.	3760	25.9	10-0-10-80	Ave.	1290	8.9	55-0-45-0	
		S.D.	240	1.7		S.D.	50	0.3		
			 -		<u> </u>	1			1	
6061	NONE	MEENE		!		MEFRE			1	
T6	i	1-1	4850	33.4	10-90	1-2	1880	13.0	90-10	
		1-3	5010	34.5	10-90	1-4	1776	12.2	90-10	
	i	1-5	4900	33.8	10-90	2-1	1620	11.2	100-0	
	! !	2-2	5240	36.1	10-90	2-3	1770	12.2	100-0	
	i	2 - 4	522C	36.0	10+90	7-5	1700	11.7	100-0	
		Ave.	5040	34.7	10-90	λve.	1750	12.1	95-5	
	<u> </u>	S.D.	180	1 1.2	<u> </u>	1; S.D.	100	0.7	 	
	: BP127	l M6fbe				Menbe			!	
	I	1-1	4610	31.3	40-0-0-60	1 1-5	2320	16.3	30-0-0-70	
	l	1-3	1 4720	32.5	40-9-0-60	4-1	2340	16.1	40-0-0-60	
	1	2~5	4840	33.4	40-9-0-60	11 4-5	2250	15.5	50-0-0-50	
	!	3-2	4720	32.5	30-0-0-70	4-4	2360	16.3	50-9-0-50	
	i J	3.4	4730	32.6	36-1-6-76	4-5	2301	15.9	50-0-0-50	
	ļ	Ave.	4729	32.5	35-0-0-65	Ave.	2320	16.0	45-1-8-55	
		\$.5.	90	0.6	<u> </u>	S.D.	50	0.3		
	XA3950	I M6FME	!] }	H M6EME	i			
		1-1	1 4850	33.4	0-0-10-00	1-1	: 2050 i	14.1	23-3-30-51	
	!	1-5	4840	33.4	-0-17-70	2-1	1 1276 I	13.6	39-9-20-31	
		2-2	1 4223	33.9	3-5-15-36	2-5	1370	13.6	66-21-2	
		3-4	197.	34.2	1 3-1-13-35	3-3	1 2100	14.5	1 50-0-20-3	
	i I	4-3	4820	35.2	1-1-10-30	4-	1940	13.4	4 - 5-10-5.	
	! !		1		:	1'			1	
	:	i Ave. S.D.	j 4680 60	33.6	0-0-10-00	i Ave.	' 2000 76	13.8	40-0-26-46	
		. S.D.								

^{1/}TES: 1. Tested 3 200°5 (23°0). after 14 days 4 200°F (23°0). 25-120% F.W.
2. See Figure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR LR100-172 ALMESIVE ON MACHINED SPECIMENS PREPARED WITH STANDARD FPL ETCH

Test	Temp.	! !	72°E	(22°C) Di	·γ	200°F (93°C) After A		ging	
Adher.		Spec.	Str	ngth	Failure ²	Spec.	Stre	ngth	Failure 2
Alloy	Primer	No.	psi	MPa	Mode	li iio.	psi	MPa.	Mode
5052-	NONE	MSENA		1		MSENA			
H34	1	4-1	2750	19.0	100-0	4-2	2006	13.8	100-0
	İ	4-3	2710	18.7	100-0	4-4	2320	16.9	100-0
Ì	ļ	-i-5	2850	19.6	100-0	7.1	2820	19.4	100-0
l	ļ	7-2	3870	26.7	100-0	7.3	2900	20.0	100-0
		7-4	2970	20.5	100-0	7.5	2510	17.3	100-0
		Ave.		20.0	100	Ave.	2510		120.0
ĺ		\$.5.	3030 480	20.9	100-0	S.D.	25 1 0 270	17.3 2.6	190-0
	BR127	MEFBA				MSFBA			
		4-1	2510	17.3	100-0-0-0	1-3	2620	18.1	100-0-0-0
i	i	4-3	2900	20.0	100-0-0-0	1 1-5	2080	14.3	100-0-0-0
!	ļ	4-5	2800	19.3	150-6-3-0	7-1	2790	19.2	100-0-0-0
į	i	7-2	3940	27.2	100-0-0-0	7-3	2800	19.3	100-0-0-0
J	1	7-4	3770	1 26.0	100-3-0-0	11 7-5	2460	17.0	100-3-0-0
1	1	Ave.	3180	21.9	100-0-0-0	Ave.	2550	17.6	100-0-0-0
		S.D.	630	4.3		5.5.	300	2.1	
	XA3950	мерма				M5FMA			
	1	1-3	2980	20.5	3-0-100-0	1 1-4	1980	13.ć	100-0-0-0
į	1	1-5	3400	23.4	10-0-90-0	4-2	1970	13.6	90-0-10-0
	į	4-3	2730	18.8	10-0-90-0	4-4	1890	13.0	80-0-20-0
	ì	5-1	2590	17.8	30-0-79-0	5-2	1970	13.6	90-0-10-0
	1	5-3	2790	19.2	20-0-86-0	5-4	2080	14.3	100-0-0-0
	•	Ave. S.D.	2900 320	20.0	15-0-65-0	Ave.	1980 70	13.6	90-0-10-0
	<u> </u>	3.0.							
6061-	NONE	METNA	•			M6FRA	į		
Т6		1-2	3350	23.1	160-0	1 1-4	2810	19.4	j 100 - 0
	Ì	2-3	3380	23.3	100-0	2-5	2940	20.3	100-0
!	1	4-3	3310	22.9	100-0	11 4-2	3010	20.7	100-0
	-	5-4	2580	17.8	100-0	1 5-1	3023	20.8	100-0
!	ļ	6-5	3150	21.7	100-0	6-2	2940	20.3	100-0
İ	ĺ	Ave.	3150	21.7	100-0	Ave.	2940	20.3	100-0
	ļ	S.D.	330	2.3	ļ	s.c.	90	.6	ļ
İ	BR-127	M6FDA	j	i		HOPBA	!		1
Ī	1	1-1	3360	23.2	95-0-5-0	1 1-2	1910	13.2	105-0-0-0
		2-2	1 3440	23.7	30-0-70-0	! 2-1	2300	15.9	100-0-0-0
l		4-3	2720	18.7	100-0-0-0	4-4	2350	16.2	100-0-0-0
:	1	5-4	3090	21.3	100-3-0-0	5-3	2360	16.3	100-0-0-0
i	!	6-3	2790	19.2	100-0-0-0	6-1	1950	13.4	100-0-0-0
		Ave.	3060 1 330	21.2	85-0-15-0	Ave.	2171 130	15.0 1.6	100-0-0-0
			+		 	 		<u> </u>	
ł	XA3950	M6FMA	2440	16.8	S-0-95-0	HICEMA 1-2	1950	13.4	100-0-0-0
	!	1	1	121.3	10-0-90-0	1 2-3	1950 1950	17.6	100-0-0-0
	1	1-5	3090 2930		10-0-90-0	4-4	2550	14.5	: 100-0-0-0
ŀ		2-2 4-3		20,2	50-0-30-0	1 3-1 5-1	2140 2140	14.7	100-0-0-0
		: 4-3 ; 5-::	3470	21.5	90-0-10-0	1 5-5	1080	14.4	160-0-6-6
			1	:	1	1:	•	1	:
	 	1		i		∵i i	;	I	
		 Ave. 5.0.	301e 330	 25.7 2.6	35-0-65-0	Ave.	2170 236	15.0 1.6	100-0-0-0

Tested 3 200°F (93°C), after 14 days 3 200°F (93°C), 61-1934 R.H.
 See Figure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR 8382-7 ADHESIVE ON FINGER SPECIMENS PREPARED WITH OFTIMIZED FPL ETCH

Test	Temp.		72 *£	(22°C) D	r _i	20	0°E (93°C) After A	ging ¹
Adher. Alloy	Primer	Spec.	Str.	ngth MPa	Failure Mode	Spec.	Stre PS1	ngth MPa	Failure Mode
5052- H34	NONE	FSCNC 1-1	3010	20.7	0-100	PEONC 1-1	73¢	5.0	30-70
	: : :	1-3 1-5 2-2 2-4	2500 2500 2890 3370	19.6 17.2 19.9 23.2	0-100 0-100 0-100 0-100	2-1	763 620 300 490	5.2 4.3 2.1 3.4	40-60 70-30 20-60 60-40
		Ave. S.D.	2920 313	20.1	0-100	Ave. S.D.	580 186	4.0	45-55
	 SRIIC -	 1-5050 1-1 1-3 1-5 2-2 2-4 Ave. S.D.	2630 2870 2990 4140 3550 3270 505	19.5 19.5 20.3 28.5 24.4 22.5 3.0	0-0-20-80 0-0-10-80 0-0-30-70 0-0-40-60 0-0-40-60	1-2 1-4 2-1 2-3 2-5 Ave. S.D.	1220 1220 1220 1220 720 720 970 152	9.4 6.3 7.0 6.3 5.0 6.7	0-0-0-10* 0-0-0-100 0-0-0-100 0-0-0-100 0-0-0-100
	XA 3950	FSGM2 1-1 1-3 1-5 2-2	3520 3300 3270 3270 3270 3200	24.6 22.7 22.5 22.5	0-0-40-60 y-0-40-60 0-0-30-70 1-0-50-50 0-0-40-60	1-2 1-4 2-1 2-3	1440 1490 1170 1660 1710	9.0 10.3 12.2 11.4 11.7	0+0+30+77 0+0+00 0+0+20+60 0+0+20+60 0+0+20+8
ļ 	<u> </u>	Ave. 5.D.	3317 120	32.5	0-0-40-60	Ave. S.D.	1610 138	11.1	0+0+25-75
006i* Té	nont	FECNC 1-1 1-3 1-5 2-2 2-4	3763 3676 3600 3875 3664	25.9 25.3 24.8 26.6 25.2	30-70 40-60 30-70 30-70 30-70 20-80	F60NC 1-2 1-4 2-1 2-3 2-5	2940 1862 1249 1100 1295	14.1 12.8 9.6 8.0	40-60 40-60 50-80 55-45 80-20
: : :	<u> </u>	λve. S.D.	3714 103	25.6 2.7	36-70	Ave. S.D.	1504 414	10.4 2.6	55-45
	BP127	26080 1-1 1-3 1-5 2-2 2-4 Ave. 5.D.	3039 3090 3039 3039 3521 4000 3678 201	27.5 27.5 27.5 27.6 27.6	0-40-0-60 0-10-0-70 0-10-0-70 0-10-0-60 0-50-0-50 0-40-0-60 0-35-0-65	760BC 1-2 1-4 2-1 2-3 2-5 Ave. 5.0.	1596 1556 1460 1406 1212 1445 151	11.0 10.1 10.1 4.5 8.4	10-0-0- x0 10-0-0-0 20-0-0-51 20-0-0-80 10-0-10 13-0-0-05
	: XA3950	1 1 F60M0 1 1-1 1-3 1-5 2-2	3941 4649 3843 3879 3766	27.3 27.8 26.5 .6.7	0=10=2=60 0=30=2=70 0=40=0=60 0=10=6=50 0=60=0=40	1 2 1 -4 2 -1 2 -2 5	1401 1414 1212 1212 1202	3.4 3.4 4.0	10-0-0-0 20-0-0-0 10-0-0-0 10-0-0-0
 	: 	Ave. 5.D.	1806 131) 26. s	3-45-5-51	Ave.		7-1 11	i ! 16+0+0+71 !

DUTS 1. Neshed 3 1968F (0330), arter 14 days (1,105 1938), (1-10-A 9.8.)
2. See Figure 9, page 18.

INDIVIDUAL LAW SHEAR TEST RESULTS FOR 9601 NW ACHESIVE ON FINGER SPECIMENS PREPARED WITH OPTIMIZED FPL ETCH

Test	Temp.		72*€	(22°C) D	ry	20	0°E (93°C) After A	drud _j
Adher. Alloy	Frimer	Spec. No.	Stre ÇSİ	ngth MPa	Pailure ² Mode	Spec.	Stre	ngth MFa	Fatlure ² Mode
5452- #34	NONE	FSONB				FSCNB 1-1 1-3 1-5 2-2 2-4	190 100 160 280 210	1.3 1.2 1.1 1.4	90-10 90-20 80-20 76-30 60-40
) 		λve. S.D.		 		Ave. S.D.	210 40	1.4 .5	 75-25
	87127	£\$558				1-1 1-1 1-3 1-3	160 243 260 243 226	1.4 3.4 3.7 3.4 3.2	0-0-1-100 1-0-0-10 0-0-0-10 0-0-0-100 1-0-1-100
 		Ave. S.D.	 	!		S.D.	<u>.</u>	2.1	1-6-0-11,
	XA3550	FNOME				FEOMR 1-1 1-3 1-5 2-3 1-4	530 440 440 460 460 550	3.7 3.4 3.4 3.2 4.6	0-0-0-x0. 0-0-20-80 0-0-0-80 0-0-30-80 1-0-30-70
: : : :		Ave. 3.0	: ! !		 	Ave. 5.0.	: 120 80	3.0	1-1-21-8
5-	avest.	FCCHB 1-1 1-4 2-1 1-5 2-1 Ave. 5.0.	50x3 50x3 400 400 400 50x0 50x0 50x0	36.1 36.1 31.7 32.7 44.1	10-99 10-99 20-80 30-10 10-90 10-90	1-1 1-3 1-3 2-3 2-4 Ave. 5.D.	390 510 400 500 500 400 400	2.7 3.3 2.5 3.7 4.1 3.4	100+0 100+0 100+0 100+0 100+0 100+0
	Sal.⊤	1-4 1-4 7-1 2-3 3-7	\$300 500 500 5100 5100 4000 4000	41.7 40.1 33.7 35.1 31.5	5-7-4 (-00 5-7-69-4) 1-7-69-1-10 5-7-10-69 1-7-10-70 1-7-1-10-70	1-1 1-3 1-1 2-3 1-1 2-4 Ave. 5.0.	1100 1777 1550 600 104 -	7.6 12.1 10.1 6.1 7.2	2-0-3-173 2-0-10-3 1-0-3-7 20-1 2-0-1 -00 2-0-1 -00
	 XA3950 -	060MB 1-2 1-4 2-3 2-1	5000 1416 4417 5316 4421	32.0 37.2 30.4 36.4 27.3	0-2-40-00 0-2-29-00 0-2-20-00 0-2-20-60 0-0-30-70		1010 1180 770 1040 1130	7.4 6.1 5.2	
		Ave. 3.5.) 34.7 1 4.1	3-0-25-70 	i Ave. 5.D.		. 7.1 ! 1.2	 1-0-20-91

فهما يفهيا أمال سيم كالمهم محمدها فيالافلان فالألياس وسكا أالشاه المأد والمحاطة علاقتمان والمساف فالسروع فاعسم

NOTE: 1 Thisted 4 200°F (13°C), after 14 days 3 210°F (33°C), 95-120% R.H.
2. See Figure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR R 7114 ADHESIVE ON MACHINED SPECIMENS PREPARED WITH OFTIMIZED FPL ETCH

Test	Temp.		72°F	(22°C) Dr	ï	20	0°F (93°C) After	Ay 1.ng l
Adher.		Spec.	Stre	ngth	Failure 2	Srec.		ngth	Failure 2
Alloy	Primer	No.	psi	MPa	Mode	ite.	ber	MPa	Mode
5052- H 34	NONE	MSOND				MEONE			
		1-1	4930	34.0	5- 9 5 - 3	1-2	930	€.4	40-60
		1-3	4840	33.3	İ	1-4	1050	7.2	40-65
[:] 	1-5 2-2	4670	32.2 32.1	0-100 0-100	2-1 2-3	980 700	6.8	50-50 50-50
ĺ		2-4	4660 4250	29.3	0-100	2-5	770	5.3	40+60
}	ļ		4670	15.3	0-100	Ave.	890	6.:	45-55
		Ave. 5.D.	4670 260	32.2	0-165	S.D.	150	1.0	43-33
	BR127	M50BD				11:000			
		1-1	4300	29.6	3-0-40-60	11 2-2	790	5.4	0-0-0-100.
	!	1-3	4870	33.6	3	1-4	960	6.6	0-0-0-100
	1	1-5	4840	33.4	3	j 2-1	610	4.2	0-0-0-100
	! *	2-2	4630	31.9	0-0-30-70	2-3	550	3.8	0-0-0-100
	i	2-4	4220	29.1	0-0-30-70	2-5	450	3.1	0-0-0-100
	;	Ave.	4570	31.5	0-0-35-65	Ave.	670	4.6	0-0-0-101
		S.D.	300	2.1		S.D.	200	1.4	<u> </u>
1	XA 3950	MSOMD	ļ			MEGMD			
İ	:	1-1	4800	33.1	0-0-10-90	1-2	440	3.0	0-0-10-90
	;	1-3	4780	32.9	0-0-21-80	1-4	410	2.8	0-0-0-100
İ	i	1-5	4700	32.4	0-0-30-70	2-1	620	4.3	0-0-0-100
	1	2-2	4810	33.1	J-0-40-60	2-3	800	5.5	0-0-0-100
<u> </u>		2-4	4970	34.2	70-0-30-0	2-5	650 	4.5	0-0-0-100
! !		Ave. S.D.	4810 100	33.1 0.7	15-0-25-60	Ave.	590 160	4.1	0-0-0-100
6361-	NONE	MECND				ri60iib			
T6	1	1-1	5810	40.0	70-30	1-2	960	6.6	40-60
į	İ	1-3	5690	39.2	60-40	1-4	SEO	5.9	50-50
1	,	1-5	5770	39.8	3	2-1	570	3.9	30-70
!	ļ	2-2	5700	39.3	10-90	2-3	570	3.9	50-50
•	!	2-4	5430	37.4	10-90	2-5	620	4.3	40-60
!	!	Ave.	5680	39.1	35-65	Ave.	720	5.0	40-60
		S.D.	150	1.0	33 43	S.D.	180	1.2	
					·	11 3.0.	1 100	<u> </u>	
	BR127	MEOBD				Medad	1		
	BR127	M60BD	5220	36.0	0-0-10-90	#	570	3.9	
	BR127	İ			0-0-10-90 0-0-20-80	M60BD 1-2 1-4		3.9	ļ ·
	BR127	1-1 1-3 1-5	5220 4820 4910	36.0 33.2 32.8	0-0-20-80 0-0-10-90	M60BD 1-2 1-4 2-1	570 555 680	3.9 4.7	
	BR127	1-1 1-3 1-5 2-2	5220 4820 4910 5500	36.0 33.2 33.8 37.9	0-0-20-80 0-0-10-90 0-0-20-80	M60BD 1-2 1-4 2-1 2-3	570 555 680 690	3.9 4.7 4.8	
	BR127	1-1 1-3 1-5	5220 4820 4910	36.0 33.2 32.8	0-0-20-80 0-0-10-90	M60BD 1-2 1-4 2-1	570 555 680	3.9 4.7	- ļ.,
	BR127	1-1 1-3 1-5 2-2	5220 4820 4910 5500	36.0 33.2 33.8 37.9	0-0-20-80 0-0-10-90 0-0-20-80	M60BD 1-2 1-4 2-1 2-3	570 555 680 690	3.9 4.7 4.8	
		1-1 1+3 1-5 2-2 2-4 Ave. S.D.	5220 4820 4910 5500 5590 5210	36.0 33.2 32.8 37.9 38.5	0-0-20-80 0-0-10-90 0-0-20-80 0-0-3-100	M60BD 1-2 1-4 2-1 2-3 2-5 Ave.	570 555 680 690 890	3.9 4.7 4.8 6.1 4.7	
	BR127	1-1 1-3 1-5 2-2 2-4 Ave. 5.D.	5220 4820 4910 5500 5590 5210 350	36.0 33.2 32.8 37.9 38.5 36.0 3.0	0-0-20-80 0-0-10-90 0-0-20-80 0-0-9-100 0-0-10-90	M6CBD 1-2 1-4 2-1 2-3 2-5 Ave. S.D.	570 555 680 690 890 680 130	3.9 4.7 4.8 6.1 4.7 1.0	NOT AVAILAGE
		1-1 1-3 1-5 2-2 2-4 Ave. 5.D. M6cMD	5220 4820 4910 5500 5590 5210 350	36.0 33.2 33.8 37.9 38.5 36.0 3.0	0-0-20-80 0-0-10-90 0-0-20-80 0-0-0-100 0-0-10-90	M60BD 1-2 1-4 2-1 2-3 2-5 Ave. S.D. M60MD 1-2	570 555 680 690 890 680 130	3.9 4.7 4.8 6.1 4.7 1.2	NOT AVAILABLE
		1-1 1-3 1-5 2-2 2-4 Ave. 5.D. M6CMD 1-1 1-3	5220 4820 4910 5500 5590 5210 350 5370 5430	36.0 33.2 32.8 37.9 38.5 36.0 3.0	0-0-20-80 0-0-10-90 0-0-20-80 0-0-9-100 0-0-10-90	M6CBD 1-2 1-4 2-1 2-3 2-5 Ave. S.D.	570 555 680 690 890 680 130	3.9 4.7 4.8 6.1 4.7 1.0	NOT AVAILAGE
		1-1 1-3 1-5 2-2 2-4 Ave. 5.D. M6cMD	5220 4820 4910 5500 5590 5210 350	36.0 33.2 33.8 37.9 38.5 36.0 3.0	0-0-20-80 0-0-10-90 0-0-20-80 0-0-9-100 0-0-10-90	M60BD 1-2 1-4 2-1 2-3 2-5 Ave. S.D. M60MD 1-2 1-4	570 555 680 690 890 680 130	3.9 4.7 4.8 6.1 4.7 1.0	" NOT AVAILAGE 0-0-0-100 0-0-0-100
		1-1 1-3 1-5 2-2 2-4 Ave. 5.D. M6CMD 1-1 1-3 1-5	5220 4820 4910 5500 5590 5210 350 5370 5430 5406	36.0 33.2 33.8 37.9 38.5 36.0 3.0	0-0-20-80 0-0-10-90 0-0-20-80 0-0-9-100 0-0-16-90 0-0-70-30 0-0-20-70 0-0-20-80	M6CBD 1-2 1-4 2-1 2-3 2-5 Ave. S.D. M6CMD 1-2 1-4 2-1	570 555 680 690 890 680 130	3.9 4.7 4.8 6.1 4.7 1.0	0-0-0-100 0-0-0-100 0-0-0-100
		1-1 1-3 1-5 2-2 2-4 Ave. 5.D. M6CMD 1-1 1-3 1-5 2-2	5220 4820 4910 5500 5590 5210 350 5430 5430 5430 5430	36.0 33.2 33.8 37.9 38.5 36.0 3.0	0-0-20-80 0-0-10-90 0-0-20-80 0-0-9-100 0-0-16-90 0-0-70-30 0-0-20-70 0-0-20-80 0-0-10-30	M60BD 1-2 1-4 2-1 2-3 2-5 Ave. S.D. M60MD 1-2 1-4 2-1 2-3	570 555 680 690 890 680 130 840 720 670 770	3.9 4.7 4.8 6.1 4.7 1.0	NOT AVAILABLE 0-0-0-100 0-0-0-100 0-0-0-100 0-0-0-100

NOTES: 1. Tested 3 200°F (93°C), after 14 days 9 200°F (93°C), 95-100% P.H.
2. See Figure 9, page 18.
3. Adherend Failure. 7.4

INDIVIDUAL LAP SHEAR TEST RESULTS FOR AF-180 ACHESIVE ON FINGER SPECIMENS PREPARED WITH OPTIMIZED FPL ETCH

	Temp.	Temp. 72°F (22°C) Dry 200°F (93°C)) After A	After Aging ¹		
dher. lloy	Primer	Spac.	Str	ength MPa	Pailure 2 Mode	Spec.	Stre	ngth MPa	Failure 2		
5052 H34	NONE	F5ONE 1-2	2080	14.3	10.00	FSONE					
11.24		1-4	2320	16.0	10-90	1-1	1050	7.2	10-90		
		1 2-1	2120	14.6	10-90	1-5	1090	7.5	10-90 10-90		
		2-3	2020	13.9	10-90	2-2	950	6.5	10-90		
		2-5	. 2170	15.0	10-90	2-4	1100	7.6	10-90		
		Ave.	1 2140	14.8	10-90	Ave.	1060	7.3	10-90		
		.s.⊃.	120	C.8		S.D.	7¢	0.4	10 30		
	BR127	FSCBE				FSOBE	ĺ				
		1-2	2220	15.3	0-0-0-100	1-1	1080	7.4	0-0-0-100		
		1-4	2220	15.3	0-0-0-100	1 1-3	1110	7.6	0-0-0-100		
		2-1	2226	15.3	0-0-0-100	1.5	1980	7.4	0-0-6-100		
		2-3	2180	15.0	0-0-0-166	2-2	1190	8.2	0-0-0-100		
		2-5	235¢	16.2	0-0-0-100	2-4	1146	7.8	9-0-0-100		
		Ave. 5.D.	2249 70	15.4	0-0-0-100	Ave. S.D.	1126 50	7.7	C-0-C-100		
	XA3950	F50ME				FSOME	i				
		1-1	2635	18.1	0-9-0-193	1-1	1370	9.5	0-0-0-100		
		1-3	2470	17.5	0-3-6-130	1 1-3	1440	10.5	9-9-9-100		
		1-5	2470	17.0	0-0-0-100	1-5	1240	8.5	0-0-0-190		
	ļ 1	2-2	2429	16.7	0-0-0-100	2-2	1.290	8.9	0-0-0-100		
		2-4	2450	16.9	0-0-0-100	2-4	1270	8.7	0-0-0-100		
	 	Ave. 5.D.	2490 80	17.1	0-0-0-100	Ave.	1320 30	9.1 9.1	0-0-0-100		
 60 61	NCNE	F6CNE									
TE	ACME	1-2	3050	20.9	10-90	F60HE	1200	ļ			
	ļ	1-4	3220	22.2	10-90	1-1	1390	3.6	30-70		
	1	2-1	3330	22.7	10-90	1-5	1490	10.3	30-70		
				1 44.7	10-30	1 1 2 - 3	1590	11.0	40-60		
	<u> </u>		1	776	1 10-50	11 22					
	 	2-3	3270	22.5	10-90	2-7	1390 1680	9.6	25-80		
		2-3 2-5	3270 2629	15.1	10-90	2-4	1680	11.6	20-80		
		2-3	3270	•	1	1 .	•		į.		
	BR127	2-3 2-5 Ave.	3270 2629 3100	15.1	10-90	2-4 Ave. 3.D.	1680 1510	11.6	20-80		
	BR127	2-3 2-5 Ave. S.D.	3270 2629 3100	15.1	10-90	Ave. 5.D.	1680 1510 130	11.6	20-80 30-70		
	BR127	2-3 2-5 Ave. S.D.	3270 2629 3100 230	15.1 21.4 2.6	10-90	2-4 Ave. 3.D.	1680 1510 130 1100	11.6	20-80 30-70 6-0-1-100		
	BR127	2-3 2-5 Ave. S.D.	3270 2629 3100 230 2430	15.1 21.4 2.0 16.7	10-90 10-90 0-0-9-100	2-4 Ave. 3.D. FODE	1680 1510 130 1100 1100	11.6	20-80 30-70		
	BR127	2-3 2-5 Ave. S.D. FGUBE 1-4 1-4 2-1 1-3	3270 2629 3100 230 2430 2556	15.1 21.4 2.0 16.7 17.6	10-90 10-90 0-0-9-190 9-9-0-190	2-4 Ave. 3.D. FODE 1-1 1-3	1680 1510 130 1100	11.6	20-80 30-70 30-70 9-0-100 9-0-0-100		
	BR127	7-3 2-5 Ave. S.D. FGOBE	3270 2629 3160 230 2430 2556 2417	15.1 21.4 2.6 16.7 17.6 14.5	10-90 10-90 0-0-9-100 0-0-0-100 0-0-0-109	2-4 Ave. 3.D. FGDBE 1-1 1-3 2-5	1680 1910 130 1100 1100 1000	11.6	20-80 30-70 30-70 9-6-7-100 0-0-9-100 1-0-0-100		
	BR127	2-3 2-5 Ave. S.D. FGUBE 1-1 1-1 2-3 2-7 Ave.	3270 2629 3169 299 2430 2556 2119 2310 272, 2441	15.1 23.4 2.6 16.7 17.6 14.5 15.6 18.7	10-90 10-90 0-0-9-100 0-0-9-100 0-0-100 0-0-100	2-4 Ave. 3.D. F69BE 1-1 1-3 1-5 2-2 2-4 Ave.	1680 1510 130 1160 1160 1160 1140 1130	11.6 10.4 2.7 8.7 7.2 7.9	20-80 30-70 0-0-1-100 0-0-0-100 1-0-0-100 0-0-0-100		
	BR127	2-3 2-5 Ave. S.D. FGUBE 1-1 1-4 2-1 1-3 2-1	3270 2629 3160 239 2430 2556 2117 2310 272	15.1 23.4 2.6 16.7 17.6 14.5 15.0 18.7	10-90 10-90 0-0-9-100 0-0-0-100 0-0-0-100 0-0-0-100	2-4 Ave. 3.D. FGDHE 1-1 1-3 1-5 2-2 2-4	1680 1510 133 1160 1160 1160 1140 1130	11.6 10.4 2.7 3.7 7.2 7.9	26-80 30-70 30-70 6-0-1-100 6-0-0-100 5-0-0-100 9-0-0-100		
	BR127	7-3 2-5 Ave. S.D. F6082 1-1 1-4 2-1 1-3 2-1 Ave. S.C.	3270 2629 3109 230 2430 4556 2117 2310 272, 2441 741	15.1 21.4 21.6 17.6 14.5 15.6 18.7 16.5 14.7	10-90 10-90 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100	2-4 Ave. 5.D. F60HE 1-1 1-3 2-5 2-2 2-4 Ave. 5.D.	1680 1910 130 1100 1100 1100 1140 1130 1130 42	11.6 10.4 0.5 8.7 7.0 7.9 7.8 7.3	26-80 30-70 30-70 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100		
		2-3 2-5 Ave. S.D. FGUBE 1-1 1-3 2-1 Ave. S.C.	3270 2629 3160 239 2430 2556 2417 2310 272, 2441 741	15.1 21.4 21.6 11.7 17.6 14.2 15.8 14.5 14.7	10-90 10-90 0-0-9-100 9-9-9-100 0-9-9-100 0-9-9-100 0-9-100 0-9-9-100 0-9-9-100	2-4 Ave. 5.D. FORE 1-1 1-3 2-2 2-4 Ave. 5.D.	1680 1515 130 1100 1100 1100 1140 1135 42	11.6 10.4 0.9 8.7 7.9 7.9 7.8 9.3	26-80 30-70 30-70 0-0-100 0-0-0-100 0-0-0-100 0-0-100 0-0-100		
		2-3 2-5 Ave. S.D. FGUBE 1-1 1-4 2-1 2-1 Ave. S.C. FGUME.	3270 2629 3100 239 2430 2556 2117 2310 272, 2441 241	15.1 21.4 21.6 16.7 17.6 14.5 15.0 18.7 14.5 17.7	10-90 10-90 0-0-9-100 0-0-9-100 0-0-9-100 0-0-9-100 0-0-100 0-0-9-100 0-0-9-100	2-4 Ave. 3.D. FORE 1-1 1-3 1-5 2-2 2-4 Ave. 3.D. FROMS. 1-1 1-3	1680 1910 130 1100 1100 1100 1140 1130 42	11.6 10.4 0.7 8.2 7.2 7.9 7.8 0.1	26-80 30-70 30-70 30-70 9-0-1-100 9-0-100 9-0-100 9-0-100 9-0-100 9-0-100		
		2-3 2-5 Ave. S.D. FGUBE 1-1 1-4 2-1 2-1 Ave. S.C. FGUME 4-2 1-4 1-4	3270 2629 3169 299 2430 2556 2117 2310 272, 2441 241	15.1 21.4 1.7 17.6 14.5 15.0 18.7 14.5 17.7	10-90 10-90 10-90 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100 10	2-4 Ave. 3.D. FOOBE 1-1 1-3 2-4 Ave. 3.D. FROME. 1-1 1-3 1-3	11600 1210 130 1160 1160 1160 1130 1130 42	11.6 10.4 0.7 8.7 7.9 7.9 7.3 9.1	26-80 30-70 30-70 30-70 30-9-100 30-9-100 30-9-100 30-9-100 30-9-1100 30-9-1100 30-9-1100		
		2-3 2-5 Ave. S.D. FGUBE 1-1 1-4 2-1 2-1 Ave. S.C. FGUME.	3270 2629 3100 239 2430 2556 2117 2310 272, 2441 241	15.1 21.4 21.6 16.7 17.6 14.5 15.0 18.7 14.5 17.7	10-90 10-90 0-0-9-100 0-0-9-100 0-0-9-100 0-0-9-100 0-0-100 0-0-9-100 0-0-9-100	2-4 Ave. 3.D. FORE 1-1 1-3 1-5 2-2 2-4 Ave. 3.D. FROMS. 1-1 1-3	1680 1910 130 1100 1100 1100 1140 1130 42	11.6 10.4 0.7 8.2 7.2 7.9 7.8 0.1	26-80 30-70 30-70 30-70 9-0-1-100 9-0-100 9-0-100 9-0-100 9-0-100 9-0-100		
		7-3 2-5 Ave. S.D. FGUBE 1-1 1-4 2-5 Ave. S.C. FGUME 1-2 1-4 1-5 1-4	3270 2629 3169 239 2430 2556 2119 2319 272, 2441 943 276- 313 106 3 - 6	15.1 21.4 21.6 17.6 14.5 15.6 18.7 16.5 1.7	10-90 10-90 0-0-9-100 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100	2-4 Ave. 5.D. F60HE 1-1 1-3 1-5 2-2 2-4 Ave. 5.D. F60MG. 1-1 1-3 1-3	1100 1100 1100 1100 1100 1100 1100 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110	11.6 10.4 0.7 8.7 7.9 7.9 7.8 7.3 9.1 9.1 9.1	26-80 30-70 30-70 0-0-100 0-0-0-100 0-0-0-100 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100 0-0-100		

⁵ Thus are decreased about 93% to arrest 14 discussions one results of the 100% bulb.

^{2.} See Figure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR LR100-172 ADHESIVE ON FINGER SPECIMENS PREPARED WITH OPTIMIZED FPL ETCH

	Temp.		72°F	(22°C) Dr	У	200°F (93°C) After Aging 1				
Adher. Alloy	Primer	Spec. No.	Stre psi	ngth MPa	Failure ² Mode	Spec.	Stren psi		Failure 2	
5052-	NONE	F50NA				FSONA				
н34		1-1	3290	22.7	100-0	1-2	2840	19.6	100-0	
		1-3	2470	17.0	100-0	1-4	3020	20.8	100-0	
		1-5	2600	17.9	100-0	2-1	2960	20.4	100-0	
		2-2	3570	24.6	100-0	2-3	2690	18.5	100-0	
		2-4	4060	28.0	100-6	2-5	2420	16.7	100-0	
		Ave.	3200	22.0	100-0	Ave.	2700			
		S.D.	670	4.9	100-0	S.D.	2790 240	19.2 1.7	100-0	
	BR127	F50BA				F5CBA				
		1-1	3430	23.6	100-0-0-0	1-2	3150	21.7	20-0-80-0	
		1-3	3210	22.1	100-0-0-0	1-4	2890	19.9	40-0-60-0	
		1-5	3190	22.0	100-0-0-0	2-1	2990	20.6	60-0-40-0	
i		2-2	4310	29.7	3	2-3	3030	20.9	40-0-60-0	
		2-4	4360	30.0	3	2-5	3130	21.6	40-0-60-0	
		Ave.	3700		100000	Ave.				
		S.D.	580	25.5 4.0	100-0-0-0	S.D.	3040 110	21.0 .7	40-0-60-0	
	XA3950	F50MA				750EA				
		1-1	2550	17.6	10-0-90-0	1-2	2720	18.7	10-0-90-0	
		1-3	2720	18.7	20-0-80-0	1-4	2970	20.5	10-0-90-0	
		1-5	2670	18.4	40-0-60-0	2-1	2420	16.7	40-0-60-0	
		2-2	4320	29.8	3	2-3	3020	20.8	20-0-80-0	
		2-4	4340	29.9	3	2-5	2770	19.1	50-0-50-0	
		Ave. S.D.	3320 920	22.9 6.4	25-0-75-0	Ave.	2780 280	19.2 1.9	20-0-80-0	
	,								T	
6061+	NONE	FEONA				PCONS				
	NONE	F60NA				FCONA				
6061- T6	NONE	1-1	4800	33.1	100-0	1-2	3160	21.8	100-0	
	NONE	1-1 1-3	4850	33.4	100-0	1-2	2960	20.4	100-0	
	NONE	1-1 1-3 1-5	4850 4900	33.4 33.4	100-0 100-0	1-2 1-4 2-1	2960 2780	20.4	100-0 100-0	
	NONE	1-1 1-3 1-5 2-2	4850 4900 4500	33.4 33.4 31.0	100-0 100-0 100-0	1-2 1-4 2-1 2-3	2960 2780 2770	20.4 19.2 19.1	100-0 100-0 100-0	
	NONE	1-1 1-3 1-5	4850 4900 4500 4460	33.4 33.4 31.0 30.7	100-0 100-0 100-0 100-0	1-2 1-4 2-1 2-3 2-5	2960 2780 2770 2750	20.4 19.2 19.1 19.0	100-0 100-0 100-0 100-0	
	иоие	1-1 1-3 1-5 2-2 2-4 Ave.	4850 4900 4500 4460 4700	33.4 33.4 31.0 30.7 32.4	100-0 100-0 100-0	1-2 1-4 2-1 2-3 2-5 Ave.	2960 2780 2770 2750 2880	20.4 19.2 19.1 19.0 19.8	100-0 100-0 100-0	
	NONE	1-1 1-3 1-5 2-2 2-4	4850 4900 4500 4460	33.4 33.4 31.0 30.7	100-0 100-0 100-0 100-0	1-2 1-4 2-1 2-3 2-5	2960 2780 2770 2750	20.4 19.2 19.1 19.0	100-0 100-0 100-0 100-0	
	NONE	1-1 1-3 1-5 2-2 2-4 Ave.	4850 4900 4500 4460 4700	33.4 33.4 31.0 30.7 32.4	100-0 100-0 100-0 100-0	1-2 1-4 2-1 2-3 2-5 Ave.	2960 2780 2770 2750 2880	20.4 19.2 19.1 19.0 19.8	100-0 100-0 100-0 100-0	
		1-1 1-3 1-5 2-2 2-4 Ave. S.D.	4850 4900 4500 4460 4700	33.4 33.4 31.0 30.7 32.4	100-0 100-0 100-0 100-0	1-2 1-4 2-1 2-3 2-5 Ave. S.D.	2960 2780 2770 2750 2880	20.4 19.2 19.1 19.0 19.8	100-0 100-0 100-0 100-0	
		1-1 1-3 1-5 2-2 2-4 Ave. S.D.	4850 4900 4500 4460 4700 210	33.4 33.4 31.0 30.7 32.4 1.4	100-0 100-0 100-0 100-0 100-0	1-2 1-4 2-1 2-3 2-5 Ave. S.D.	2960 2780 2770 2750 2880 180	20.4 19.2 19.1 19.0 19.8 1.2	100-0 100-0 100-0 100-0 100-0	
		1-1 1-3 1-5 2-2 2-4 Ave. S.D.	4850 4900 4500 4460 4700 210	33.4 33.4 31.0 30.7 32.4 1.4	100-0 100-0 100-0 100-0 100-0	1-2 1-4 2-1 2-3 2-5 Ave. S.D.	2960 2780 2770 2750 2880 180	20.4 19.2 19.1 19.0 19.8 1.2	100-0 100-0 100-0 100-0 100-0	
		1-1 1-3 1-5 2-2 2-4 Ave. S.D. F6OBA	4850 4900 4500 4460 4700 210 4100 4220	33.4 33.4 31.0 30.7 32.4 1.4	100-0 100-0 100-0 100-0 100-0	1-2 1-4 2-1 2-3 2-5 Ave. S.D. F60BA	2960 2780 2770 2750 2880 180	20.4 19.2 19.1 19.0 19.8 1.2	100-0 100-0 100-0 100-0 100-0 0-100-0-0 0-100-0-0 0-100-0-0	
		1-1 1-3 1-5 2-2 2-4 Ave. 5.0. F60BA	4850 4900 4500 4460 4700 210 4100 4220 4190	33.4 33.4 31.0 30.7 32.4 1.4 28.3 29.1 28.9	100-0 100-0 100-0 100-0 100-0 100-0	1-2 1-4 2-1 2-3 2-5 Ave. S.D. F60BA	2960 2780 2770 2750 2880 180 2660 3330 3640	20.4 19.2 19.1 19.0 19.8 1.2	0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0	
		1-1 1-3 1-5 2-2 2-4 Ave. S.D. F60BA 1-1 1-3 1-5 2-2 2-4 Ave.	4850 4900 4500 4460 4700 210 4100 4220 4190 4250 4400 4230	33.4 33.4 31.0 30.7 32.4 1.4 28.3 29.1 28.9 29.3 30.3 29.1	100-0 100-0 100-0 100-c 100-0 100-0 0-0-100-0 0-0-100-0 0-0-100-0	1-2 1-4 2-1 2-3 2-5 Ave. S.D. F60BA 1-2 1-4 2-1 2-3 3-5 Ave.	2960 2780 2770 2750 2880 180 2660 3330 3640 3050 2930 3120	20.4 19.2 19.1 19.0 19.8 1.2 18.3 23.0 25.1 21.0 20.2 21.5	0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0	
		1-1 1-3 1-5 2-2 2-4 Ave. S.D. F60BA 1-1 1-3 1-5 2-2 2-4	4850 4900 4500 4460 4700 210 4100 4220 4190 4250 4400	33.4 33.4 31.0 30.7 32.4 1.4 28.3 29.1 28.9 29.3 30.3	100-0 100-0 100-0 100-0 100-0 100-0 0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0	1-2 1-4 2-1 2-3 2-5 Ave. S.D. F60BA 1-2 1-4 2-1 2-3 3-5	2960 2780 2770 2750 2880 180 2660 3330 3640 3050 2930	20.4 19.2 19.1 19.0 19.8 1.2 18.3 23.0 25.1 21.0 20.2	0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0	
Т6		1-1 1-3 1-5 2-2 2-4 Ave. S.D. F60BA 1-1 1-3 1-5 2-2 2-4 Ave. S.D.	4850 4900 4500 4460 4700 210 4100 4220 4190 4250 4400 4230 110	33.4 33.4 31.0 30.7 32.4 1.4 28.3 29.1 28.9 29.3 30.3 29.1	100-0 100-0 100-0 100-0 100-0 100-0 0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0	1-2 1-4 2-1 2-3 2-5 Ave. S.D. F60BA 1-2 1-4 2-1 2-3 3-5 Ave. S.D.	2960 2780 2770 2750 2880 180 2660 3330 3640 3050 2930 3120 380	20.4 19.2 19.1 19.0 19.8 1.2 18.3 23.0 25.1 21.0 20.2 21.5 2.6	0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0	
T6	B0127	1-1 1-3 1-5 2-2 2-4 Ave. S.D. F6OBA 1-1 1-3 1-5 2-2 2-4 Ave. S.D.	4850 4900 4500 4460 4700 210 4100 4220 4190 4230 4100 4230 4100 4230 4100	33.4 33.4 31.0 30.7 32.4 1.4 28.3 29.1 28.9 29.3 30.3 29.1 .7	100-0 100-0 100-0 100-0 100-0 100-0 0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0	1-2 1-4 2-1 2-3 2-5 Ave. S.D. F6OBA 1-2 1-4 2-1 2-3 3-5 Ave. S.D.	2960 2780 2770 2750 2880 180 2660 3330 3640 3050 2930 3120 380	20.4 19.2 19.1 19.0 19.8 1.2 18.3 23.0 25.1 21.0 20.2 21.5 2.6	0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0	
Т6	B0127	1-1 1-3 1-5 2-2 2-4 Ave. S.D. F6OBA 1-1 1-3 1-5 2-2 2-4 Ave. S.D.	4850 4900 4500 4460 4700 210 4100 4220 4190 4250 4400 4230 110 4810 4670	33.4 33.4 31.0 30.7 32.4 1.4 28.3 29.1 28.9 29.3 30.3 29.1 .7	100-0 100-0 100-0 100-0 100-0 100-0 0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0	1-2 1-4 2-1 2-3 2-5 Ave. S.D. F60BA 1-2 1-4 2-1 2-3 3-5 Ave. S.D.	2960 2780 2770 2750 2880 180 2660 3330 3640 3050 2930 3120 380 3370 3160	20.4 19.2 19.1 19.0 19.8 1.2 18.3 23.0 25.1 21.0 20.2 21.5 2.6	0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0	
T6	B0127	1-1 1-3 1-5 2-2 2-4 Ave. S.D. F6OBA 1-1 1-3 1-5 2-2 2-4 Ave. S.D.	4850 4900 4500 4460 4700 210 4100 4220 4190 4250 4400 4230 110 4816 4670 4400	33.4 33.4 31.0 30.7 32.4 1.4 28.3 29.1 28.9 29.3 30.3 29.1 .7	100-0 100-0 100-0 100-0 100-0 100-0 100-0 0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0	1-2 1-4 2-1 2-3 2-5 Ave. S.D. F6OBA 1-2 1-4 2-1 2-3 3-5 Ave. S.D. F6OMA 1-2 1-3 2-1	2960 2780 2770 2750 2880 180 2660 3330 3640 3050 2930 3120 380 3370 3160 2720	20.4 19.2 19.1 19.0 19.8 1.2 18.3 23.0 25.1 21.0 20.2 21.5 2.6	0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-0-100-0-0 10-0-90-0	
	B0127	1-1 1-3 1-5 2-2 2-4 Ave. S.D. F6OBA 1-1 1-3 1-5 2-2 2-4 Ave. S.D.	4850 4900 4500 4460 4700 210 4100 4220 4190 4250 4400 4230 110 4816 4670 4400 4450	33.4 33.4 31.0 30.7 32.4 1.4 28.3 29.1 28.9 29.3 30.3 29.1 .7	100-0 100-0 100-0 100-0 100-0 100-0 100-0 0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0	1-2 1-4 2-1 2-3 2-5 Ave. S.D. F60BA 1-2 1-4 2-1 2-3 0-5 Ave. S.D. F60MA 1-2 1-3 2-1 2-3	2960 2780 2770 2750 2880 180 2660 3330 3640 3050 2930 3120 380 3370 3160 2720 3100	20.4 19.2 19.1 19.0 19.8 1.2 18.3 23.0 25.1 21.0 20.2 21.5 2.6	0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-0-100-0 10-0-90-0 0-0-100-0	
Т6	B0127	1-1 1-3 1-5 2-2 2-4 Ave. S.D. F6OBA 1-1 1-3 1-5 2-2 2-4 Ave. S.D.	4850 4900 4500 4460 4700 210 4100 4220 4190 4250 4400 4230 110 4816 4670 4400	33.4 33.4 31.0 30.7 32.4 1.4 28.3 29.1 28.9 29.3 30.3 29.1 .7	100-0 100-0 100-0 100-0 100-0 100-0 100-0 0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0	1-2 1-4 2-1 2-3 2-5 Ave. S.D. F6OBA 1-2 1-4 2-1 2-3 3-5 Ave. S.D. F6OMA 1-2 1-3 2-1	2960 2780 2770 2750 2880 180 2660 3330 3640 3050 2930 3120 380 3370 3160 2720	20.4 19.2 19.1 19.0 19.8 1.2 18.3 23.0 25.1 21.0 20.2 21.5 2.6	0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-100-0-0 0-0-100-0-0 10-0-90-0	

OCTES: Tested 9 200°F (93°C), after 14 days 1 200°C), 05-100% R.H. 2. See Figure 9, page 18. Adherend Fallure.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR R382-7 ADHESIVE ON FINGER SPECIMENS PREPARED WITH STANDARD FPL ETCH

Test	Temp.		72°F ((22°C) Dry		200	°F (93°C)	After Ag	ing
Adher. Alloy	Primer	Spec. No.	Stren	ngth MPa	Failure 2 Mode	Spec.	Stren psi	gth MPa	Failure ² Mode
5052-	NONE	F5FNC				F5FNC			
934	1	1-1	2525	17.4	40-60	1-2	414	2.9	90-10
1	l	1-3	2727	18.8	30-70	1-4	343	2.4	90-10
į	1	1-5	2525	17.4	30-70	2-1	276	1.9	90-10
}	ı İ	2-2	2590	17.2	40-60	2-3	310	2.1	80-20
į		2-4	2549	9.0	40-60	2-5	180	1.2	90-10
		Ave.	2565	17.7	35-65	Ave.	304	2.1	90-10
		S.D.	92	0.6		S.D.	86	0.6	
	BR127	F5FBC				F5FBC			
		1-1	2350	16.2	40-0-0-60	1-2	1020	7.0	90-0-0-10
		1-3	3100	21.4	70-0-0-36	1-4	940	6.5	80-0-0-20
	!	1-5	2700	18.6	50-0-0-50	2-1	700	4.8	80-0-0-20
ı	1 1			17.9	40-0-0-60	2-3	1220	8.4	90-0-0-10
		2-2 2-4	2600 2650	18.3	50-0-0-50	2-5	850	5.9	90-0-0-10
		Ave.	2680	18.5	50-0-0-50	Ave.	946	6.5	90-0-0-10
 		S.D.	271	1.9		s.D.	194	1.3	
İ	XA3950	F5FMC				FSFMC			
	243330	1-1	2600	17.9	40-0-0-60	1-2	1280	8.8	0-0-0-100
	1	1	1	19.3	40-0-0-60	1-4	1320	9.1	5-0-0-95
	1	1-3	2800		40-0-0-60	2-1	1320	9.1	10-0-0-90
	1	1-5	265C	18.3	a contract of the contract of	2-3	1204	8.3	10-0-0-90
	1	2-2	2700	18.6	30-0-0-70		•	8.3	20-0-0-80
	}	2-4	2700	18.6	40-0-0-60	2-5	1200	8.3	20-0-0-00
		Ave.	2690 74	18.5 0.5	40-0-0-60	Ave. S.D.	1265 60	8.7	10-0-0-90
<u> </u>	 	 							
6061-	NONE	F6FNC		•	1	FGFNC	•	ì	1
1 T6	1,13.12	1-2	3630	25.0	10-90	1-1	544	3.8	10-90
Te	Ì	1-4	3200	22.1	0-100	1-3	416	2.9	95-5
ì	}		l l	24.3	10-90	1-5	418	2.9	80+20
ļ	1	2-1	3520	ł ·	30-70	2-2	694	4.8	90-10
1	i	2-3	3653	25.2	1	2-4	704	4.9	100-
	1 2 2	2-5	3786	26.1	5-95	11	555	3,8	85-15
-	i .	Ave.	3558	24.5	10 - 90	Ave.		1.0	1 03 13
		S.D.	221	1.5	<u> </u>	S.D.	141	1.0	-
	BRI27	F6FBC	i			FEFBC			20 0 0 0
1		1-1	4746	32.7	0-0-20-80	1-2	2040	14.1	20-0-0-80
1		1-3	4320	29.6	0-0-20-80	1-4	1992	13.7	30-0-0-70
1		1-5	4330	29.6	0-0-30-70	2-!	1345	9.3	10-0-0-90
1		1	41.37	28.5	0-0-10-90	2-1	1192	8.2	10-0-0-90
1		2-3	3363	23.2	U-0-10-90	2-5	1194	8.2	10-0-0-90
i	<u> </u>	1	}	1	0-0-20-80	Ave.	1553	10.7	15-0-0-85
}		Ave.	4179 506	28.8 3.5	0-0-20-00	S.D.	428	3.0	
i		+	-	l .				1	
!	XA395		į		1	FGFMC	15.10	10.7	40-0-0-60
;	- 1	1-1	4118	28.4	10-0-1-90	1-2	1549	10.6	50-0-0-50
	1	13	1 4700	32.4	(1-0-10-90	14	1531	1	
:		1 1-5	4081	28.1	HOT AVAILABLE	2-1	1260	8.8	60-0-0-40
1	;	2-0	460	31.7	0-20-0-80	2-3	1 1495	10.3	50-0-0-50
1	:	, 2 - 4	4706	31.44	10-0-90	2-5	1569	10.0	1 00 0 0 40
!	ì	Ave.	4441	JO.,	9-5-0-91	Ave.	1480	10.2	50-0-0-50
							, 118	1 0.8	

HOTE: 1. Tested @ Z00°F (93°C), after 14 tays 0 200°F (93°C), 95-100% R.H.
 See Figure 9, page 16.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR 9601 NW ADHESIVE
ON FINGER SPECIMENS PREPARED WITH STANDARD FPL ETCH

	Temp.		72°F	(22°C) D	гу	20	0°F (93°C) After /	lging ^l
Adher. Alloy	Primer	Spec. No.	Stre Psi	ngth MPa	Failure ² Mode	Spec.	Stre psi	ngth MPa	Failure 2
	*****							1	
5052-	NONE	F5FNB	Ì	1		F5FNB	Į.	į	İ
н34		1-4	3380	23.3	20-80	1-3	270	1.8	100-0
j		2-5	3280	22.6	30-70	1-5	290	2.0	100-0
		4-1	3440	23.7	20-80	3-1	180	1.2	100-0
- 1		4-3	3920	27.0	20-80	4-2	180	1.2	100-0
		4-5	3470	23.9	20-80	4-4	220	1.5	100-0
		Ave.	3500	24.1	20-80	Ave.	230	1.6	100-0
		S.D.	246	1.7		S.D.	54	0.4	
						11			
i	BR127	F5FBB	{		1	F5FBB			ł
l.		1-2	2800	19.3	90-0-0-10	1-1	1140	7.9	80-0-0-20
		1-4	3000	20.7	90-0-0-10	1-3	980	6.8	80-0-0-20
		2-1	3280	22.5	90-0-0-10	1-5	880	6.1	60-0-0-40
		2-3	3330	22.9	90-0-0-10	2-2	560	3.9	30-0-0-70
	i	2+5	3030	20.9	80-0-0-20	2-4	580	4.0	30-0-0-70
- 1		Ave.	3090	21.3	90-0-0-10	Ave.	830	5.7	55-0-0-45
		S.D.	219	1.5		S.D.	254	1.8	33-0-0-43
						1			
1	XA3950	F5FMB	t	ł	1	FSFMB	[}
		1-2	3300	22.7	40-0-0-60	1-1	780	5.4	100-0-0-0
		1-4	2800	19.3	20-0-0-80	1-3	680	4.7	1
1		2-1	3000	20.7	40-0-0-60	1-5	440		100-0-0-0
		2-3	3400	23.4	5-0-0-95	2-2	1	3.0	80-0-0-20
		2-5	3200	22.1	10-0-0-90	2-4	600 440	3.0	95-0-0-5
		Ave.	3140	21.6	25-0-0-75	Ave.	590	4.1	90-0-0-10
		S.D.	241	1.7		S.D.	151	1.0	
						Ti Ti			
5061-	NONE	F6FNB		i	1	F6FNB		1	İ
T6		2-2	4420	30.5	10-90	2-1	260	1.8	100-0
- 1	i	2-4	4760	32.8	10-90	2-3	330	2.3	100-0
		3-1	4850	33.4	10-90	2-5	260	1.8	100-0
i	'	3-3	5030	34.7	10-90	3-2	570	3.7	100-0
- 1		3-5	4790	33.0	10-90	3-4	530	3.7	100-0
- 1				ì	ì	11	1	1 3	1
- 1		Ave. S.D.	4770 220	32.9	10-90	Ave.	390 150	2.7	100-0
1				 1.3	 	 	150	1.0	
ł	BR127	F6FBB	}	1		F6FBB	l l	1	l
l	,	1-2	4980	34.3	10-0-40-50	1-1	1850	12.8	30-0-0-70
		1-4	5180	35.7	10-0-30-60	1-3	1940		40-0-0-60
1		2-3	5040	34.7	10-0-30-60	1-5		13.4	
· ·					1	3 1	1110	7.6	10-0-0-90
}		3-1	5080	35.0	10-0-40-50	2-2	1630	11.3	50-0-0-50
-		3+5	4730	32.6	10-0-0-90	2-4	1730	11.9	60-0-0-40
		Ave.	5000	34.5	10-0-30-60	Ave.	1650	11.4	25-0-0-75
- 1		s.D.	162	1.2		S.D.	320	2.2	<u> </u>
į			ļ				1		
1	XA3950		1	1	1	F6FMB	1	1	
l		2-1	4900	33.8	0-0-10-90	2-2	1660	11.4	70-0-30-0
		2-3	5020	34.6	0-0-20-80	2-4	1790	12.3	80-0-10-10
		2~5	4760	32.8	0-0-10-90	3-1	890	6.1	70-0-0-30
		3-2	4960	34.2	0-0-20-80	3-3	1140	7.9	10-0-0-40
		3-4	5020	34.6	0-0-40-60	3-5	1280	8.8	60-0-0-40
1		, T	1		1	11 -		1	1

NOTE: 1. Tested @ 200°F (93°C), after 14 days @ 200°F (93°C), 95-100% R.H.

^{2.} See Figure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR R 7114 ADHESIVE ON FINGER SPECIMENS PREPARED WITH STANDARD FPL ETCH

Test	Temp.		72°F	(22°C) D	CA.	1 20	O°F (33°C) After A	ging t
Adher.		Spec.	Str	ngth	Failure 2	Spec.	Stre	ngth	Pailure 2
lloy	Primer	No.	psi	MPa	Mode	do.	psi	MPa	Mode
		4				25.00			
5052	NONE	PSPND			20-3-3-80	1-2	200	1.4	100-0-0-0
H34		1-1	4300	29.6	10-0-0-90	1-4	180	1.4	100-0-0-0
		1-3	4000	1	!	()	200	1.4	150-0-0-0
	i	1-5	1950	27.2	20-0-0-60	2-1			l .
	ļ	2-2	4080	28.7	10-0-0-90	2-3	213	1.5	100-0-0-0
		2-4	4340	29.9	20-0-0-80	2-5	210	1.5	100-0-0-0
	İ	Ave.	4130	28.5	15-0-0-85	Ave.	200	1.4	100-0-0-0
		S.D.	180	1.2		S.D.	10	. 1	
	 38127	FSFBC				FSFED	Ì		!
	37.		1,,,,,	25.5	100-0-0-0	1-2	500	3.4	0-0-0-100
		1-1	3700			1-4	550	3.8	0-0-0-100
	}	1-3	1600	24.8	100-0-0-0		710		
	L	1-5	333	22.9	90-0-0-10	2-1	l i	4.9	0-0-0-100
	1	2-2	\$500	26.9	10-0-80-10	2-3	690	4.8	10-0-0-90
		2-4	398	27.4	30+0+60-10	2-5	63C	4.3	10-0-0-90
		λve. S.D.	370L 260	25.5	65-0-30-6	Ave.	620 90	4.3 .6	5-0-0-95
	2050	25.240				FSFMD			
	XA3950	F5FMD	1	1	1	1 :	١		1,2,2,2,0
	1	1-1	3510	24.2	20-0-0-80	1-2	410	2.9	10-0-0-90
		1-3	3970	27.4	40-0-0-60	1-4	350	2.4	15-0-0-85
	i	1-5	361/7	24.∋	30-0-0-70	2-1	260	1.9	10-0-0-93
	1	2-2	3470	27.9	30-0-0-70	2-3	320	2.2	10-0-0-90
	!	2-4	3370	13.2	40-0-0-60	2-5	190	1.2	10-0-0-90
	i	Ave.	3590	24.7	30-0-0-70	Ave.	310	2.1	10-0-0-90
	<u> </u>	S.D.	230	1.6	<u> </u>	S.D.	80	.6	ļ
	 		1	 					
4061	NONE	£654D	ļ	1		F6FND	!		
T.E	1	1-1	5050	34.8	10-90	1-2	360	2.5	100-0
	ļ	(i-3	5400	37.2	10-90	[] 1-4	340	2.3	100-0
	1	1-5	4410	30.4	5-95	2-i	320	2.2	100-0
	i	2-2	3690	39.2	10-93	2-3	380	2.6	100-0
	ļ	2-4	6080	41.9	20-80	2-5	380	2.6	100+0
		Ave.	5330	36.7	10-90	Ave.	150	2.4	100-0
		\$.D.	640	4.4	<u> </u>	S.D.	20	.1	+
				i	j	16.530	1		
	3P127	76780		1		i .		i	1
	1	1-2	5150	35.5	40-0-30-30	1-1	700	4.8	0-0-0-100
	i	1-4	5440	37.5	40-0-60-0	1-3	500	3.4	1
	1	1 2-1	5260	35.8	10-0-0-90	1-5	500	3.4	0-0-0-100
	1	i -	\$560	38.3	20-0-0-80	[] I-2	340	2.3	9-0-0-100
	1	2-0	3517	38.9	20-0-0-80	2-4	400	2.8	0-0-0-100
		i žve.	5370	37.0	25-0-0-75	Ave	490	3.4	0-0-0-100
	į	S.D.	190	1.2	<u> </u>	S.D.	140	1.0	
	VA 1950	FEFMD		i i		F6FMD	1		
	w2220	1	1 2425	3).6	0=0=40=60	1	80	6.1	10-0-0-98
	;	1-1	5750		0-0-40-60	. '	740	5.1	10-0-0-30
	1	1-3	5750	33.6	0-0-40-60	1-1			
	ļ	1	5000	41.3	0-0-30-70	2-1	750	5.2	1 20-0-0-80
	i	2-2	5790	30.8	0-0-10-90	2-3	1 620	4.3	20-0-0-90
	:	2-4	5592	38.√	10-0-10-60	11 2-5 11	510	3.5	10-11-0-40
			1		1	• 1	1	1	•
	:	Ave.	5770	39.7	0-0-25-75	Ave.	700 140	4.8	10-0-0-90

IRTE 1. Tested 3 200°F (93°C), after 14 days 3 200°F (93°C), 95-100% R.H.
 See Figure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR AF-180 ADMESIVE ON FINGER SPECIMENS PREPARED WITH STANDARD FPL ETCH

Test	Temp.		72°F ((22°C) Dry		200	°F (93°C)	After Ag	ing ^L
Adher. Alloy	Primer	Spec. No.	Stren	ngth MPa	Failure ² Mode	Spec.	Stren psi	gth MPa	Failure ² Mode
5052 H34	NONE	F5FNE 1-1 1-3 1-5 2-2 2-4	3700 3800 3500 3150 3300	25.5 26.2 24.1 21.7 22.7	20-80 20-80 20-80 10-90 10-90	F5FNE 1-2 1-4 2-1 2-3 2-5 Ave.	1440 1580 1350 1480 1460	9.9 10.9 9.3 10.2 10.1	80-20 80-20 20-80 40-66 60-40
	BR127	F5FBE 1-1 1-3 1-5 2-2 2-4 Ave.	2840 3140 2860 2850 2700 2880 160	19.6 21.6 19.7 19.6 18.6	30-0-20-50 40-0-20-40 30-0-30-40 10-0-10-80 10-0-10-80 25-0-15-60	F5FBE 1-2 1-4 2-1 2-3 2-5 Ave. S.D.	2080 1920 1380 1570 1320 1650 330	14.3 13.2 9.5 10.8 9.1 11.4 2.3	20-0-30-90 30-0-30-40 0-0-0-100 0-0-10-90 0-0-0-100 10-0-15-75
	XA3950	 	3310 3470 3430 2650 2500	22.8 23.9 23.6 18.3 17.2 21.2 3.2	0-0-20-80 0-0-20-80 0-0-20-80 0-0-10-90 0-0-0-100	FSFME 1-2 1-4 2-1 2-3 2-5 Ave. S-D.	1430 1470 1410 1310 1310	9.9 10.1 9.7 9.0 9.0	60-6-30-10 70-0-20-10 0-0-40-60 0-0-30-70 0-0-30-70 30-0-30-40
6061	NONE	F6FNE 1-1 1-3 1-5 2-2 2-4 Ave. S.D.	5110 5090 4820 4850 4720 4920 176	35.2 35.1 33.2 33.4 32.5	10-90 10-90 10-90 10-90 10-90	FGFNE 1-2 1-4 2-1 2-3 2-5 Ave. S.E.	2270 2180 2220 2160 2090 2186 70	15.6 15.0 15.3 14.9 14.4	50-50 3 40-60 30-72 40-60 40-60
	BR127	FGFBE 1-2 1-4 2-1 2-3 2-5 Ave. S.D.	2540 2470 1010 2220 1820 2190 330	17.5 17.0 10.2 10.0 12.5 15.1 2.3	50-0-0-50 50-0-0-50 0-0-10-90 10-0-0-90 20-0-0-90 25-0-0-75	F6FBE 1-1 1-3 1-5 2-2 2-4 Ave. S.D.	4670 5000 4700 4120 4190 4530 370	32.2 34.5 32.4 28.4 28.9 31.2 2.6	40-0-0-60 50-0-0-50 30-0-0-70 20-0-0-80 10-0-0-90 30-0-0-70
	XA395		4650 3150 4450 4450 4400	32.0 35.5 31.0 34.0 34.0	0-0-10-90 0-0-10-90 0-0-0-100 0-0-10-90 0-0-10-99	F6FME 1-2 1-4 2-1 2-3 2-5	2610 2560 2430 2220 2300	18.0 17.6 16.7 15.3 19.9	10-6-20-70 10-0-10-80 20-0-20-60 20-0-20-66 20-0-20-66
		Ave.	4821 279	33 2.0	0-0-10-2	Ave.	4	16.7	15-0-20-75

 Tested @ 200°F (93°C), after 14 days 3 200°F (93°C), 95-100% R.H.
 See Figure 9, page 18.
 Adherend Failure. NOTES:

I Alexandria victoria de la companie

INDIVIDUAL LAP SHEAR TEST RESULTS FOR LR100-172 ADHESIVE ON FINGER SPECIMENS PREPARED WITH STANDARD FPL ETCH

Test	Temp.		72°F	(22°C) D	ry	20	0°F (93°C) After A	ging ^l
Adher.		Spec.	Str	ngth	Failure 2	Spec.	Stre	·	Failure 2
lloy	Primer	No.	psi	MPa	Mode	No.	psi	MPa	Mode
5052-	NONE	F5FNA				F5FNA		·	
н34		1-1	2420	16.7	100-0	1-2	2870	19.8	100-0
į		1-3	2800	19.3	100-0	1-4	2870	19.8	100-0
i		1-5	2550	17.6	100-0	2-1	2660	17.3	100-0
į		2-2	2400	16.5	100-0	2-3	2510	14.2	100-0
		2-4	2430	16.7	100-0	2-5	2060	14.2	100-0
					1		2000	14.2	100-0
		λve.	2520	17.4	100-0	Ave.	2590	17.9	100-0
		S.D.	170	1.2		S.D.	340	2.3	
	BR127	F5FBA			1	FSFBA	<u> </u>		
		1-1	2160	14.9	100-0-0-0	1-2	2810	19.4	100-0-0-0
		1-3	2690	18.5	100-0-0-0	1-4	2990	20.6	100-0-0-0
		1-5	2590	17.9	100-0-0-0	2-1	2540	17.5	100-0-0-0
		2-2	2630	18.1	90-0-10-0	2-3	2650	18.3	100-0-0-0
	}	2-4	3040	20.9	100-0-0-0	11	1	1	1
		2-4	3040	20.9	100-0-0-0	2-5	2750	19.0	100-0-0-0
		Ave.	2620	18.1	100-0-0-0	Ave.	2750	19.0	100-0-0-0
		s.D.	320	2.2		S.D.	170	1.2	
	XA3950	P5FMA				FSFMA			
		1-7	2680	18.5	100-0-0-0	1-2	2510	17.3	100-0-0-0
		1-3	2250	15.5	100-0-0-0	1-4	2530	17.4	100-0-0-0
	i	1-5	2500	17.2	100-0-0-0	2-1	2380	16.4	100-0-0-0
	1	2-2	2260	15.6	100-0-0-0	2-1			100-0-0-0
		2-4	2320	16.0	100-0-0-0	2-5	2220	15.3	100-0-0-0
		Ave. S.D.	2400 180	16.5	100-0-0-0	Ave.	2410 140	16.6	100-0-0-0
		3.5.	100	 		1	140	1.0	
6061-	NONE	F6FNA				FEINA	}		
T6		1-1	4150	28.6	100-0	1-2	3260	22.5	100-0
	ł	1-3	3740	25.8	100-0	1-4	3300	22.7	100-0
	}	1-5	3840	26.5	100-0	2-1	3050	21.0	100-0
	Ī	2-2	3480	24.0	100-0	2-3	3110	21.4	100-0
	Į	2-4	3730	25.7	100-0	2-5	3050	21.0	100-0
		Ave.	3790	26.1	100-0	Ave.	3150	21.7	100-0
		S.D.	240	1.7		S.D.	120	.8	
	BR127	F6FBA				FGFBA			
		1-1	4140	28.5	100-0-0-0	1-2	3450	23.8	70-0-30-0
		1-3	3570	24.6	95-0-5-0	1-4	3170	21.8	80-0-20-0
		1-5	3960	27.3	100-0-0-0	2-1	3530	24.3	100-0-0-0
	1	2-2	3640	25.1	100-0-0-0	2-3	3610	24.9	75-0-25-0
		2-4	4160	28.7	100-0-0-0	2-5	3180	21.9	70-0-30-0
		Ave. S.D.	3890 280	26.8	100-0-0-0	Ave. S.D.	3390 200	23.4	80-0-20-0
	V2 2050					1			
	XA3950	F6FMA	1	1	1 60 0	F6FMA	3000		
		1-1	3300	22.7	60-0-40-0	1-2	3200	22.1	50-0-50-0
		1-3	5600	38.6	90-0-10-0	1-4	3330	22.9	100-0-0-0
	1.	1-5	3980	27.4	100-0-0-0	2-1	2530	17.4	70-0-30-0
	1	2-2	4060	28.0	0-0-100-0	2-3	3140	21.6	80-0-20-0
		2-4	4120	28.4	0-0-100-0	2-5	3100	21.4	60-0-40-0
		Ave.	4210	29.0	50-0-50-0	Ave.	3060	21.1	70-0-30-0
		S.D.	840	5.8		S.D.	310	2.1	

NOTES: 1. Tested @ 200°F (93°C), after 14 days @ 200°F (93°C), 95-100% R.H.

^{2.} See Figure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR R382-7 ACHESIVE ON MACHINED SPECIMENS PREPARED WITH OPTIMIZED FPL ETCH

Test	Temp.	ļ <u></u>	72*2	(22°C) Dr	TY	20	0°F (93°C) After A	ging ¹
Adher. Alloy	Primer	Spec. No.	Stre	ngth MPa	Failure ² Mode	Spec.	Strei pai	ngth MPA	Failure ² Hode
5052- H34	NONE	M5ONC 7-1 7-3 7-5 8-2 8-4	4040 3520 3650 3500 3460	27.8 24.3 25.2 24.1 23.8	30-70 40-60 30-70 40-60 30-70	M5ONC 7-2 7-4 8-1 8-3 8-5	1820 1990 1980 1670 1720	12.5 13.7 13.6 11.5 11.9	20-80 20-80 30-70 40-60 30-70
		Ave. S.D.	3630 236	25.0 1.6	35-65	Ave. S.D.	1830 146	12.6	30-70
	BR127	M50BC 1-1 1-2 1-5 2-2 2-4 Ave. \$.D.	2620 2740 3000 2550 2830 2750 178	18.1 18.9 20.7 17.6 19.6 19.0	0-0-40-60 20-0-20-60 10-0-20-70 0-0-80-20 0-0-20-80 5-0-35-60	M50BC 3-2 3-4 4-1 4-3 4-5 Ave. S.D.	1200 1080 1290 1350 1250 1240	8.3 7.4 8.9 9.3 8.6 8.5 0.7	0-0-0-100 0-0-0-100 0-0-0-100 0-0-0-100 0-0-0-100 U-0-0-100
	XA3950	M5OMC 1-1 1-3 1-5 2-2 2-4	3220 2990 3270 2960 3380	22.2 20.6 22.1 20.4 23.3	90-0-0-10 80-0-0-20 90-0-0-10 70-0-0-30 60-0-0-40	M50MC 3-1 3-3 3-5 4-2 4-4	1680 1800 1830 2050 1800	11.6 12.4 12.6 14.1 12.4	0-0-0-100 0-0-6-100 0-0-0-100 0-0-0-100 0-0-0-100
		Ava. S.D.	3160 182	21.8	80-0-0-20	Ave. S.D.	1830 135	12.6 0.9	0-0-0-100
6061- T6	NONE	M6ONC 1-1 1-3 1-5 2-2 2-4 Ave. 5.D.	4711 3925 3748 4010 3740 4028 400	32.5 27.0 25.8 27.7 25.8 27.8 2.8	90-10 95-5 90-10 90-10 95-5 90-10	M6ONC 1-2 1-4 2-1 2-3 2-5 Ave. S.D.	2240 2227 182 2120 2162 2186 49	15.4 15.3 15.0 14.6 14.9 15.1 0.3	10-90 40-60 40-60 30-70 40-60 30-79
	BR127	M6OBC 1-1 1-3 1-5 2-2 2-4 Ava. S.D.	3491 4108 3698 4020 4004 3864 260	24.1 28.3 25.5 27.7 27.6 26.6 1.8	0-30-0-70 0-40-0-60 0-30-0-70 0-40-0-60 0-50-0-50 0-40-0-60	M60BC 1-2 1-4 2-1 2-3 2-5 Ave. 5.D.	4065 3880 3444 3150 2971 3502 466	28.0 26.7 23.7 21.7 20.5 24.1 3.2	0-0-30-70 0-0-20-50 0-0-30-70 0-0-20-80 0-0-20-80 0-0-25-75
	XA3950	M60MC 3-1 3-3 3-5 4-2 4-4	4153 4158 4265 3438 3933	28.6 28.6 29.4 23.7 27.1	30-0-0-70 40-0-2-63 30-0-0-70 0-40-50-0 0-40-60-0	M60MC 3-2 3-4 4-1 4-3 4-5	2238 2144 2038 1825 1618	15.4 14.8 14.0 12.8 11.2	10-0-0-90 20-0-0-80 0-0-0-100 0-0-0-100 0-0-0-100
		Ave. S.D.	331 3389	! 27.5 2.3	20-15-25-46	Ave.	1973 251	13.6	5-0-1-95

NOTE: 1. Tested @ 200°F (93°C), after 14 days @ 200°F (93°C), 95-100% R.H. 2. See Figure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR 9601NW ADHESIVE
ON MACHINED SPECIMENS PREPARED WITH OPTIMIZED FPL ETCH

DEY	20	0°F (93°C) After A	iging ¹
Failure 2	Spec.	Stre	nath	Failure 2
Mode	ilo.	ber	MPa	Mode
	M5ONB			
40-60	1-2	850	5.9	NOT AVAILABLE
50-50	1-4	1000	6.9	80-20
40-60	2-3	1100	7.6	70-30
60-40	3-1	1070	7.4	70-30
40-60	6-2	1050	7.2	70-30
45-55	Ave.	1010	7.0	70-30
_	MSOBB			
0-0-20-80	1-2	1140	7.9	0-0-10-90
0-0-40-60	2-3	1720	11.9	0-0-30-70
0-0-30-70	5-i	1370	9.4	10-0-10-60
0-0-70-30	6=2	1330	9.2	0-0-10-90
0-0-30-70	6-5	1240	8.5	0-0-10-9C
0-0-40-60	Ave.	1360	9.4	0-0-15-85
	11	- 225		
į	MSCMD			
NOT AVAILABLE	[] 1-2	1070	7.4	NOT AVAILABL
"	2-4	650	4.5	" "
	3-4	790	5.4	" "
" "	5-1	710	4.9	
"	5-5	580	4.0	" "
- Ja	Ave.	760	5.2]
	S.D.	190	1.4	
	M6ONB			
30.70	1 !	1700	11.7	70-30
30-70	1-5	1700	1	1
20-80	2-1	1530	10.5	70-30
10-90	2-4	1460	10.1	70-30
20-80	4-1	420	2.9	100-0
40-60	4-4	440	3.0	100-0
25-75	Ave. S.D.	1110	7.7	80-20
 -				1
ţ	∥ м6овв	l .	1	ļ
0-0-70-30	1-2	1110	7.7	0-0-20-80
0-0-70-30	1-4	1100	7.6	0-0-10-90
0-0-10-90	2-1	1180	8.1	40-0-0-60
0-0-70-30	2-3	1190	8.2	40-0-0-60
0-0-70-30	2-5	1090	7.5	30-0-0-75
0-0-60-40	Ave. S.D.	1130 50	7.8	20-0-5-75
	+	 	—	+
	M60MB		1	
0-0-10-90	1-3	1910	13.2	0-0-30-70
0-0-20-80	2-2	2230	15.4	0-0-40-60
METAL FAILURE	4-2	2100	14.5	0-0-5-100
0-0-0-100	4-5	1870	12.9	0-0-10-90
0-0-0-100	5-3	1530	10.5	10-0-20-70
0-0-5-95	Ave.	1930	13.3	0-0-20-80
	1.1	270	1.8	1
			0-C-5-95 Ave. 1930	0-C-5-95 Ave. 1930 13.3

NOTE: 1. Tested @ 200°F (93°C), after 14 days @ 200°F (93°C), 95-100% R.H.

^{2.} Sae Figure 9, page 18,

INDIVIDUAL LAP SHEAR TEST RESULTS FOR R 7114 ADHESIVE ON FINGER SPECIMENS PREPARED WITH OPTIMIZED FPL ETCH

Test	Temp.		72°F	(22°C) Dr	Y	20	200°F (93°C) After Aging 1				
Adher.		Spec.	Str	ngth	Failure ²	Spec.	Stre	· · · · · · · · · · · · · · · · · · ·	Failure 2		
Alloy	Primer	No.	psi	MPa	Mode	No.	psi	MPa	Mode		
5052	NONE	F5OND				75000					
H34		1-1	2640	18.2	0-100	F5OND					
1		1-4	3110	21.4	0-100	1-2	80	0.6	0-100		
		2-1	3400	23.4	0-100	1-4	80	0.6	0-100		
		2-3	2810	19.4	0-100	2-1	90	0.6	20-80		
- 1		2-5	2820	19.4	0-100	2-5	90	0.6 0.6	10-90 20-80		
								0.0	20-00		
}		Ave.	2960	20.4	0-100	Ave.	80	0.6	10-90		
		S.D.	300	2.0		S.D.	10	0.0			
	BR127	F5OBD				F5OBD					
		1-1	2830	19.5	0-0-0-100	1-2	110	0.8	0-0-0-100		
- 1		1-3	2750	18.9	0-0-0-100	1-4	90	0.6	0-0-0-100		
ı		1-5	2700	18.6	0-0-0-100	2-1	90	0.6	0-0-0-100		
		2-2	3100	21.4	0-0-0-100	2-3	110	0.8	0-0-0-100		
	}	2-4	3130	21.6	0-0-0-100	2-5	90				
		2-4				1 2-3	1	0.6	0-0-0-100		
		Ave.	2900	20.0	0-0-0-100	Ave.	100	0.7	0-0-0-100		
		S.D.	200	1.4	·	S.D.	10	0.1	<u> </u>		
	XA3950	F50MD				FSCMD					
	,21,3,30	1-1	2870	19.9	0-0-0-100	1					
	Ì	1-3	2970	20.5-	ř	1-2	90	0.6	0-0-0-100		
	!		1		0-0-0-100	1-4	70	0.5	0-0-0-100		
		1-5	2810	19.4	0-0-0-100	2-1	130	0.9	0-0-0-100		
		2-2	3420	23.6	0-0-0-100	2-3	80	0.6	0-0-0-100		
		2-4	3200	22.0	0-0-0-100	2-5	100	0.7	0-0-0-100		
		Ave. S.D.	3050 250	21.0	0-0-0-100	Ave. S.D.	90 20	0.6 0.1	0-0-0-100		
				1							
6061	NONE	F60ND		Ę		F60ND	1		1		
T6		1-1	2050	14.1	0-0-0-100	1-2	100	0.7	0-0-0-100		
	'	1-3	2230	15.4	0-0-0-100	1-4	110	0.8	0-0-0-100		
		1-5	2100	14.5	0-0-0-100	2-1	70	0.5	0-0-0-100		
	ļ	2-2	2740	18.9	0-0-0-100	2-3	70	0.5	0-0-0-100		
	'	2-4	2870	19.8	0-0-0-100	2-5	80	0.6	0-0-0-100		
	·	Ave.	2400	16.5	0-0-0-100	Ave.	90	0.6	0-0-0-100		
		S.D.	380	2.6	<u> </u>	S.D.	20	0.1			
	BR127	F60BD	1	1 .	1	F60BD	1	1	1		
]	1-1	3580	24.7	0-0-0-100	1-2	120	0.8	0-0-0-100		
	1	1-3	3280	22.6	0-0-0-100	1-4	110	0.8	0-0-0-100		
	{	1-5	3030	20.9	0-0-0-100	2-1	110	0.8	0-0-0-100		
	1	2-2	3350	23.1	0-0-0-100	2-3	120	0.8	0-0-0-100		
		2-4	3270	22.5	0-0-0-100	2-5	180	1.2	0-0-0-100		
	1	Ave.	3300	22.7	0-0-0-100	Ave.	130	0.9	0-0-0-100		
		S.D.	200	1.4		S.D.	30	0.2	0 0 0-100		
	XA3950	F60MD	!			F60MD	1		1		
	1	1-1	80	0.6	0-0-0-100	1-2	80	0.6	0-0-0-100		
	1	1-3	80	0.6	0-0-0-100	1-4	80	0.6	0-0-0-100		
	l	1-5	100	0.7	0-0-0-100	2-1	100	0.7	0-0-0-100		
	1	2-2	120	' 0.8	0-0-0-100	2-3	120	0.8	0-0-0-100		
	1	2-4	120	0.8	0-0-0-100	2-5	120	0.8	0-0-0-100		
	ļ	Ave.	100	0.7	0-0-0-100	Ave.	100	0.7	0-0-0-100		
			20				20				

NOTES: 1. Tested @ 200°F (93°C), after 14 days @ 200°F (93°C), 95-100% R.H.
2. See Figure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR AF-180 ADHESIVE ON MACHINED SPECIMENS PREPARED WITH OPTIMIZED FPL ETCH

Test	Temp.		72°F	(22°C) Dr	Y	200°F (93°C) After Aging 1				
Adher. Alloy	Primer	Spec. No.	Stre psi	ngth MPa	Failure ² Mode	Spec.	Stre psi	ngth MPa	Failure 2	
5052	NONE	WF 0.							`	
H34	NONE	M5ONE				M5ONE				
1134		1-1	4560	31.4	10-90	3-2	·2700	18.6	5-95	
į.		1-3	4590	31.6	10-90	3-4	2680	18.4	5-95	
ŀ	. i	1-5	4680	32.3	10-90	4-1	1910	13.2	10-90	
		2-2	4690	32.3	10-90	4-3	2320	16.0	10-90	
		2-4	4770	32.9	10-90	4-5	1800	12.4	10-90	
	Ì	Ave.	4660	32.1	10.00	1				
		S.D.	80	0.6	10-90	Ave.	2280 420	15.7 2.9	10-90	
										
1	BR127	M5OBE	}			MSOBE				
		1-1	3730	25.7	0-0-10-90	3-2	1140	7.8	0-0-0-100	
		1-3	3810	26.3	0-0-10-90	3-4				
- 1							1230	8.5	0-0-0-100	
- 1		1-5	3910	27.0	0-0-10-90	4-1	1180	8.1	0-0-0-100	
- 1		2-2	3890	26.8	0-0-10-90	j	1150	7.9	0-0-0-100	
		2-4	3870	26.7	9-0-10-90	4-5	1010	6.9	0-0-0-100	
		Ave.	3840	26.5	0-0-10-90	Ave.	1140	7.9	0-0-0-100	
		S.D.	70	0.5		S.D.	80	0.6	0.0.0.100	
	XA3950	MSOME				NEONE P				
	XA3950					M50ME				
		1-1	3960	27.3	0-0-0-100	3-2	1500	10.4	0-0-0-100	
		1-3	4030	27.8	0-0-0-100	3-4	1370	9.4	0-0-0-100	
		1-5	4110	28.3	0-0-0-100	4-1	1180	8.1	0-0-0-100	
	1	2-2	3910	27.0	0-0-0-100	4-3	1480	10.2	0-0-0-100	
	Ì	2-4	3900	26.9	0-0-0-100	4-5	1340	9.2	0-0-0-100	
•		Ave. S.D.	3980 90	27.5 0.6	0-0-0-100	Ave. S.D.	1370 130	9.5 0.9	0-0-0-100	
			<u> </u>			#====				
6061	NONE	M6ONE				MEONE	}	1		
T6		1-1	5700	39.3	0-100	1-2	3400	23.4	10-90	
	ł	1-5	5410	37.3	0-100	2-3	3280	22.6	10-90	
	ĺ	2-2	5260	36.2	10-90	3-4	2030	14.0	20-80	
	}			1	1	11 "	7	1	T .	
	}	3-3 4-4	4620 5110	31.8	0-100 0-100	4-1	2350	16.2	40-60 40-60	
		Ave.				Ave.				
		S.D.	5220 400	36.0	0-100	s.D.	2680 620	18.5	25-75	
	BR127	M6OBE		I		M6OBE	1	1		
	1 .	1-1	4670	32.2	00-10-90	3-1	2060	14.2	10-0-0-90	
	1	1-3	4630	31.9	0-0-10-90	3-3	2090	14.4	10-0-0-90	
	1	1-5	4580	31.6	0-0-0-100	3-5	2250	15.5	20-0-0-80	
		2-2	4860	33.5	0-0-10-90	4-2	2660	18.3	0-0-0-100	
	1	2-5	4810	33.1	0-C-10-90	4-4	2420	16.7	0-0-0-100	
		ł	1	32.4	0-0-10-90	Ave.	1	15.8	10-0-0-90	
		Ave. S.D.	4710 120	0.8	0-0-10-90	S.D.	2290 250	1.7	10-0-0-90	
		46000								
	XA3950	MEOME	1	1	1	MEOME	1			
	Į.	1-1	4960	37.2	0-0-0-100	[1-3	3000	20.7	0-0-0-100	
	ì	2-2	5160	35.6	0-0-0-100	2-1	2120	14.6	0-0-0-100	
	1	3-1	5000	34.5	0-0-0-100	3-2	2450	16.9	10-0-0-90	
	1	3-3	4920	33.9	0-0-0-100	3-4	2340	16.1	20-0-0-80	
		4-1	4750	32.7	0-0-0-100	4-3	2220	15.3	10-0-0-90	
	1	Ave.	4960	34.2	0-0-0-100	Ave.	2630	18.1	10-0-0-90	
	F	NVW.	150	1.0	1	S.D.	410	2.8		

NOTES: 1. Tested @ 200°F (93°C), after 14 days @ 200°F (93°C), 95-100% R.H.

^{2.} See Figure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR LH100-172 ACHESIVE ON MACHINED SPECIMENS PREPARED WITHOFTIMIZED FPL ETCH

Test	Temp.	<u> </u>	72°F	(22°C) Di	ry	20	Q°F (93°C	After A	ging
Adher. Alloy	Primer	Spec. No.	Stre psi	ngth MPa	Failure 2 Mode	Spec.	Strei p si	ngth MPa	Failure 2 Mode
5052- H34	NONE	MSONA 1-1 1-4 2-1 2-2 4-1	4310 4140 4280 4290 3590	29.7 28.5 29.5 29.6 24.7	10-90 10-90 10-90 10-90 90-10	M50NA 1-2 1-3 4-2 8-1 8-3	2750 2840 2710 3220 2900	19.0 19.6 18.7 22.2 20.0	100-7 100-0 100-0 100-0 100-0
		Ave.	4120 300	28.4 2.1	25~75	Ave.	2980 290	19.8 1.4	100-0
	BR127	MSOBA 1-1 1-5 2-2 4-3 5-4 Ave. S.D.	4230 4160 3880 4490 4160 4180 220	29.1 28.7 26.7 30.9 26.7 28.8	0-0-100-0 30-0-70-0 0-0-100-0 0-0-100-0 10-0-90-0	MDOBA 1-2 2-3 4-1 4-5 5-2 Ave. S.D.	2710 2800 2790 2540 2610 2690 110	19.7 19.3 19.2 17.5 18.5 18.5	80-0-20-8 50-0-50-9 60-0-40-0 40-0-50-0 WA 75-0-25-0
	XA3950	M5GMA 1-1 1-5 4-1 3-3 4-4	4140 4360 4450 4470 4590	28.5 30.0 30.7 30.6 31.6	0-0-100-0 0-0-100-0 0-0-100-0 70-0-30-0	MSONA 1-2 3-1 3-4 4-3 4-5	2718 2778 2733 2790 2640	13.7	100-0-0-0 100-0-0-0 100-0-0-0 100-0-0-0 100-0-0-0
		Ave. S.D.	4400 170	30.3 1.1	20-0-60-0	Ave. S.D.	2735 60	 	100-0-3-8
6061 T6	NONE	M65NA 3-1 3-3 3-5 5-2 5-4 Ave. S.D.	4780 4890 4860 4940 4940 4880 60	32.9 33.7 33.5 34.0 34.0 33.6	100-0 100-0 100-0 100-0 100-0	3-2 3-4 5-1 5-3 5-5 Ave. 5-2	2570 2610 2820 2880 2830 2740 140	17.7 18.0 19.4 19.8 19.5 18.9	100-0 100-0 100-0 100-0 100-0
	BR127	M608A				MECEA	<u> </u>		
		1-5 2-3 3-5 5-2 5-4	5190 5450 5250 5250 5300	35.7 37.6 36.2 35.8 36.5	0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0	1-3 2-2 3-2 5-1 5-3	3440 3640 3410 3630 3700	23.7 25.1 23.5 25.0 25.5	20+0+83+0 10+0+90+0 60+0+40+0 10+0+90+0 0+0+100+0
	ļ	Ave.	52 9 0	36.4	9-0-100-0	Ave. S.D.	3540 110	24.4	20-0-80-3
	XA3950	M60MA 5-2 5-4 6-1 6-3 6-5	5290 5160 5160 5170 5180	36.5 35.6 35.6 35.6 35.7	0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0 0-0-100-0	MACMA 1-1 1-4 2-1 1-3 2-5	2650 2760 3060 3200 3200	18.3 10.0 21.1 22.1 22.1	0-0-100-0 0-0-100-0 10-0-90-0 5-0-95-0 10-0-90-0
	}]	Ave. S.D.	5190 60	35.6	3-9-100-0	Ave.	2970 250	20.5 1.a	5-0-95-0

NOTES: 1. Tested 3 200°F (93°C), after 14 days 3 200°F (43°C), 95-100% R.H.
2. See Figure 9, page 18.
3. Adherend Failure.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR ER136-252 ACHESIVE ON MACHINED SPECIMENS PREPARED WITH OPTIMIZED FPL ETCH

Test	Temp.		72°F	(22°C) D	ry	20	200'F (93°C) After Aging				
Adher. Alloy	Primer	Spec.	Str	eng th	failure 1 Mode	Spec.	Stre	ngth MPa	Failure 2		
				-		 			11000		
5352	i none	MEONG 1-1	4420	30.5	30-70	1 M50RG] 3120		50.50		
H34	, ,	1-4	4440	30.6	30-70	1-5	3110	21.5 21.4	50-50 60-40		
1		1-7	4290	29,6	40-60	1 2-1	3470	23.9	50-50		
	İ	2-3	4460	30.7	50-53	2-4	3340	23.0	50-50		
	<u>{</u>	2-5	4300	29.6	40-60	2-6	3550	24.5	50-50		
1	i 1	Ave.	4359	30.2	40.15	AVO.	3320	22.9	F0.50		
1		\$.5.	80	0.6	40-60	S.L.	200	1.4	50-50		
1	98127	M508G		i		II MSDBG					
1	1	1-3	4420	; 30.5	0-0-90-10	1-1	2200	15.2	3-0-10-90		
!	ì	1-0	4720	32.5	0-0-30-10	1-5	1750	15.9	10-0-10-80		
[į	2-1	4640	32.	0-0-90-10	1-7	2130	14.7	0-0-10-90		
ļ	Í	2-3	4560	31.4	0-0-90-10	2-4	2960	20.4	10-0-20-70		
į	 	2-5	4270	29.4	U-0-80-20	2-7	2500	17.2	10-0-10-80		
		Ave.	4523	: . 31.1	0-5-93-10	Ave.	2510	17.3	5-0-10-85		
 		S.D.	180	1.2		ji S.D.	350	2.4	3-0-10-35		
i 	XA 3950	мзома	1	ļ		месма	İ		1		
i	1	1-1	4620	33.1	0-0-10-90	1 1-3	2930	20.0	0-0-10-90		
!	i	1-4	4630	31.9	0-0-10-90	1 2-6	i 3030	20.9	0-0-10-90		
i	(1	1 :	4520	31.1	0-0-0-100	2-1	3150	21.7	0-0-0-100		
l		1-1	4560	31.4	0-0-10-90	2-4	3130	21.6	0-0-10-90		
! !		1 2-5 	4620	31.9	0-0-0-100	2-7	3080	21.2	0-0-10-90		
i I		Ave.	4630	31.9	0-0-5-95	Ave.	3060	21.1	0-0-10-99		
		S.D.	110	C.5	<u> </u>	\$.D.	100	0.5			
6361	l sass	MECHS	į	i		MECNS		į			
Т6		1-1	5150	35.5	20-80	1-2	2250	15.5	90-20		
	!	1-3	5230	36.0	20-80	1.4	2350	16.2	80-20		
	Į.	1-5	5000	34.5	30-70	1-6	2250	15.5	70-30		
ļ	i I	2-2	493 0	34.0	40-60	2-1	2200	15.2	70-30		
	†	2-4	4660	32.1	40-60	2-3	2230	15.4	80-20		
	!	2-6	5050	34.8	40-60	Àvē.	2260	15.6	80-20		
<u> </u> 	İ	Ave. S.D.	200	34.5	30-70	S.D.	2260	15.6 0.3	75-25		
			1	 	 	 	 	 			
	5R117	MEGBG	ļ.	:		M60BG	!	!	1		
	ļ	1-1	5050	34.8	0-3-3-100	1-2	1950	13.4	10-0-10-60		
	•	1-3	5040	34.7	0-0-0-100	1-4	1650	11.4	0-0-20-80		
l	i I	1-5	5290	36.4	0-0-0-100	1-6	1770	12.2	20-6-10-70		
i	!	2-2	5370	37.0	0-0-0-100	2-1	1340	12.7	10-0-10-80		
	!	2-4	5100	35.1	0+0+0-100	2-3	1890	13.0	13-0-10-80		
		λve.	5480 5220	37.8 36.0	0-3-3-100 0-0-0-100	Àve.	1990 1850	13.7	10-0-10-80		
		S.D.	196	1.3	0 0 0 100	S.5.	120	3.6	10-0-10-50		
	XA 3950	M6CMG		1		мерма					
		1-1	5250	36.2	0-0-0-100	1-2	1800	12.4	10-0-10-80		
!	ļ	1-3	5400	37.2	1 0-0-10-90	1-4	1770	17.2	20-0-10-70		
	İ	1-5	5340	36.8	0-0-10-90	1-6	1900	27.4	10-0-10-80 4-0-10-00		
İ		2-2	5480 5290	35.1	0+0+0+100	2-1	3080 3530	24.3 24.5	0-0-10-90 0-0-10-90		
		2-6	5310	36.6	0-0-0-100	2-5	3560	24.5	0-0-10-90		
	1	ì	1			!	1				
	i	Ave.	5340	36.5	0-0-5-95	Ave.	2760	19.0	5-0-10-65		

Section 1. Section 1.

The second second second second

NOTES: 1. Tested @ 200°F (93°C), after 14 days 3 200°F (93°C), 95-100% R.H.

^{2.} See Pigure 9, page 18.

INDIVIDUAL LAP SHEAR TEST RESULTS FOR MA 429 ADHESIVE ON MACHINED SPECIMENS PREPARED WITH OPTIMIZED FPL ETCH

Test	Temp.		72°F	(22°C) Dr	У	200°F (93°C) After Aging 1				
Adher. Alloy	Primer	Spec.	Stre	ngth MPa	Failure ² Mode	Spec.	Stre	ngth	Failure 2	
						11	psi	MPa	Mode	
5052	NONE	M5ONF				}				
H34	o	1-1	4800	33.1	60.40	MSONE				
"24		1-4	4510		60-40	1-3	1460	10.1	90-10	
		1-7		31.1	70-30	1-6	1630	11.2	90-10	
			4830	33.3	70-30	2-1	1230	8.5	90-10	
		2~2	4750	32.7	70-30	2-4	1180	8.1	90-10	
i		2-6	4660	32.1	70~30	2-5	1250	8.6	90-10	
		Ave.	4710	32.5	70-30	Ave.	1350	9.3	90~10	
		S.D.	130	0.9		S.D.	190	1.3		
	BR127	M50BF				MSOBF	1	1		
	J	1-2	4530	31.2	90-10	1-3	2140	14.7	20-80	
	[1-6	4450	30.7	90-10	1-5				
	\	2-1	1	31.1	1	11 -	2280	15.7	30-70	
	(4520		90-10	1-7	2330	16.1	30-70	
		2-4	4440	30.6	90-10	2-3	2280	15.7	40-60	
	}	2-6	4510	31.1	90-10	2-7	2160	14.9	20-80	
	İ	Ave.	4490	30.9	90-10	Ave.	2240	15.4	25-75	
		S.D.	40	0.3		S.D.	80	0.6	23 / 3	
	XA3950	MSOMF				MSOME				
	WW2320		4620	1	00.00	11	2000		10.00	
	}	1-1	4620	31.8	80-20	1-3	2280	15.7	10-90	
	Į.	1-4	4630	31.9	80-20	1-6	2100	14.5	10-90	
	ĺ	1-7	4440	30.6	80-20	2-1	1940	13.4	20-80	
	ŀ	2-3	4450	30.7	80-20	2-4	2040	14.1	20-80	
		2-6	4470	30.8	80-20	2-7	1780	12.3	20-80	
	· .	Ave.	4520	31.1	80-20	Ave.	2030	14.0	15.75 1	
		S.D.	90	0.7		S.D.	190	1.3		
6061	NONE	MEONE				MOONE		l i		
T6		1-1	5290	36.5	80-20	1-2	590	4.1	100-0	
	{	1-3	5340	36.8	80-20	[1-4	540	3.7	100-0	
	ļ	1-5	5060	34.9	70-30	1-6	540	3.7	100-C	
	}	2-2	5460	37.6	80-20	2-1	480	3.3	100-0	
	ļ	2-4	4940	34.3	70-30	2-3	590	4.1	100-0	
	i	2-6	5480	37.6	70-30	2-5 Ave.	550	3.8	100-0	
	ļ ·	Ave.	5260	36.2	75-25		550	3.8	100-0	
		S.D.	220	1.5		S.D.	40	0.3	·	
	BR127	M60BF				MEOBE				
	l	1-1	5500	37.9	0-0-90-10	[1-2	1150	7.9	10-90	
	1	1-3	5310	36.6	0-0-80-20	1-4	1200	8.3	20-80	
	ł	1-5	5580	38.4	5-0-80-15	1-6	970	6.7	40-60	
	1	2-2	4880	33.6	0-0-70-30	2-1	760	5.2	20-80	
,	1	2-4	5260	36.2	0-0-70-30	2-3	870	6.0	10-90	
	i	2-6	5100	35.1	0-0-70-30	2-5	820	5.6	20-80	
	1	Ave.	5270	36.3	0-0-75-25	Ave.	960	6.6	20-80	
	1	s.D.	260	1.8		s.D.	180	1.2		
	XA3950	M60MF				M60MF				
	1	1-1	5490	37.8	5-0-7C-25	1-2	2230	15.4	10-90	
		1-3	5240	36.1	0-0-70-30	1-4	1750	12.1	10-90	
	1	1-5	5590	38.5	5-0-70-25	1-6	1680	11.6	20-80	
	1	2-2	5760	39.7	5-0-70-25	2-1	820	5.6	20-80	
	1	2-4	5800	39.9	5-0-60-35	2-3	730	5.0	20-80	
		2-6	5680	39.1	5-0-65-30	2-5	870	6.0	20-80	
		Ave.	5590	38.5	5-0-70-25	Ave.	1350	9.3	15-85	
	ł	S.D.	210	1.4	1	S.D.	620	4.3		

NOTES: 1. Tested @ 200°F (93°C), after 14 days @ 200°F (93°C), 95-100% R.H.
2. See Figure 9, page 18.

APPENDIX VII

INDIVIDUAL SPECIMEN FLOATING ROLLER PEEL TEST DATA

The data presented here are for the tests and results discussed in Paragraphs 2.3.2 and 3.2.

INDIVIDUAL FLOATING ROLLER PEEL TEST RESULTS FOR LR 100-172 ADHESIVE

Test	Temp.		72°F	(22°C) Dr	Y	-65°F (-54°C) 1				
Adher. Alloy	Primer	Spec.	Stre	N/cm of	Failure 2	Spec.	Stre	ngth N/cm of	Failure 2	
			of width	width		H	of width	width		
	NONE	, ,	1,,,	40.3	90-10	1-2	16.9	29.6	100-0	
2024- T3	NONE	1-1 1-3	23.0	46.1	90-10	1-4	17.9	31.3	100-0	
		2-2	27.5	48.2	100-0	2-1	24.3	42.5	90-10	
		2-4	25.5	44.7	100-0	1 2-3	23.4	41.0	100-0	
		Ave.	25.5	44.8	95-5	Ave.	20.6	36.1	95-5	
		S.D.	1.9	3.3		S.D.	3.8	6.6		
								i		
	89127	1-2	3.5	6,1	0-0-100-C	1-1	6.2	10.9	0-0-100-3	
		1-4	2.9	5.1	0-0-100-0	1-3	3.8	6.7	0-0-100-0	
	ļ	2-1	4.1	7.2	0-0-100-0	2-2	3.3	5.8	0-0-100-0	
		2-3	5.4	9.5	0-0-100-0	2-4	5.7	10.0	0-0-100-0	
		Ave.	4.0	7.0	0-0-100-0	Ave.	4.7	8.4	0-C-100-U	
		S.D.	1.1	1.9		S.D.	1.4	2.5		
6061	NONE	,_,	14.2	24.9	100-0	1-2	15.3	26.8	90-10	
6061- T6	NONE	1-1	13.6	24.9	100-0 100-0	1-4	15.7	27.5	90-10	
16		2-2	8.0	14.0	100-0	2-1	13.2	23.1	90-10	
		2-4	10.7	18.7	100-0	2-3	13.3	23.3	90-10	
		2	1	10.7	100.0	11	13.3		30 20	
		Ave.	11.6	20.4	100-0	Ave.	14.4	25.2	90-10	
	!	S.D.	2.8	5.0	100 0	s.D.	1.3	2.3	-0.0	
			T			11				
	BR127	1-1	3.5	6.1	0-0-100-0	1-2	3.1	5.4	0-0-100-0	
	JK127	1-3	7.1	12.4	100-0-0-0	1-4	2.9	5.1	0-0-100-0	
		2-1	2.8	4.9	0-0-100-0	2-1	2.0	3.5	0-0-100-0	
	}	2-4	3.9	6.8	0-0-100-0	2-3	4.1	7.2	0-0-100-0	
	}	1	}				1			
		Ave. S.D.	4.4	7.6 3.3	25-0-75-0	Ava. S.D.	3.0	5.3	0-0-100-0	
						11				
5052-	NONE	1-1	15.2	26.6	100-0	1-2	19.9	34.8	30-70	
н34	1	1-3	17.0	29.8	100-0	1-4	17.8	31.2	30-70	
		2-2	22.3	39.0	100-0] 2-1	18.2	31.9	30 -7 0	
		2-4	20.0	35.0	100-0	2-3	17.9	31.3	30-70	
		Ave.	18.6	32.6	100-0	Ave.	18.4	32.3	30-70	
		S.D.	3.1	5.5		5.0.	1.0	1.7		
	BR127	1-1	3,1	5.4	0-0-100-0	1-2	3.2	5.6	0-0-100-0	
		1~3	2.6	4.6	0-0-100-0	1-4	2.3	4.0	0-0-100-0	
	1	2-2	3.5	6.1	0-0-100-0	2-1	3.7	6.5	0-0-100-0	
		2-4	2.0	4.9	C-0-100-0	2-3	4.3	7.5	0-6-100-0	
		Ave.	3.0	5.3	0-0-100-0	Ave.	3.4	5.9	0=0=100=0	
	i	S.D.	0.4	0.7	1	S.D.	0.8	1.5]	

NOTE: 1. Tested at -65°F (-54°C) after 10 minutes at -65°F (-54°C).

2. See Yiqure 9, page 18.

INDIVIDUAL FLOATING ROLLER PHEL RESULTS FOR R382-7 ADHESIVE ON OFTIMIZED FPL EICH ADHERENDS, PRIMED WITH BR127

Test Temp.		72°F (:	22°C) Dry			-65°F	(-54°C) ¹	
l Adherend	Spec.	Stre	ngth	Failure ²	C	Stren	işth	2
Alloy	No.	lbs/in. of width	N/cm of width	Voda.	Spec.	lbs/in. of_width	N/cm of width	Failure*
2024 - T3	1-1 1-3 2-2 2-4	13.2 15.1 15.9 17.2	23.1 26.4 27.8 30.1	0-0-60-40 0-0-60-40 0-0-60-40 0-0-50-30	1-2 1-4 2-1 2-3	3.5 3.8 2.7 4.1	6.1 6.7 4.7 7.2	0-0-80-20 0-0-80-20 0-0-80-20 0-0-80-20
	Ave. S.D.	15.4	26,9 2.9	0-0-60-40	Ave. S.D.	3.5 0.6	6.2	0-0-80-20
6001-T6	1-1 1-3 1 2-2	22.2 23.4 22.9	38.9 41.0 40.1	10-0-70-20 10-0-70-20 NOT AVAILABLE	1-2 1-4 2-1	7.8 5.5 7.7	13.7 9.6 13.5	0-0-90-10 0-0-90-10 0-0-90-10
	2-4 Ave. S.D.	21.6 22.5 0.8	37.8 39.5 1.4	10-0-80-10	2-3 Avo. S.D.	5.9	10.3 11.8 2.1	0-0-90-10
5052-H 34	1-1 1-3 2-2 2-4	26.5 27.4 21.4 20.5	46.4 48.0 37.5 35.9	10-0-50-40 10-0-50-40 10-10-50-30 10-10-40-40	1-2 1-4 2-1 2-3	19.5 20.9 19.8 13.1	34.1 35.6 34.7 31.7	0-0-60-40 0-0-60-40 10-10-50-50
	Ave.	24.0	42.0	10-5-45-40	Ave.	19.6	34.3	5-5-55-35

INDIVIDUAL FLOATING ROLLER PEEL RESULTS FOR EA96CINW ADDRESIVE ON OPTIMIZED FPL ETCH ADHETENDS, PRIMED WITH BR127

2024-T3	1-1 1-3 2-2	36.7 39.1 45.0	64.3 68.5 78.8	0-0-0-100 0-0-0-100 0-0-0-100	1-2 1-4 2-1	33.2 32.9 31.4	58.1 57.6 55.0	10-0-0-90 10-0-0-90 50-0-20-30
	2-4 Ave. S.D.	42.4 40.8 3.7	74.2 71.5 6.4	0-0-0-100	2-3 Ave. S.D.	36.9 33.6 2.4	64.6 58.8 4.1	50-0-20-30 30-0-10-60
6061-T6	1-1 1-3 2-2 2-4	54.7 53.2 52.2 47.8	95.8 93.2 91.4 83.7	0-0-0-100 0-0-0-100 0-0-0-100 0-0-0-100	1-2 1-4 2-1 2-3	31.6 33.1 33.5 24.3	55.3 58.0 58.7 42.5	50-0-0-50 60-0-0-40 60-0-0-40 80-0-0-20
	Ave. S.D.	52.0 3.0	91.0 5.2	0-0-0-100	Ave.	30.6 4.3	53.5	60-0-0-40
5052-H3 4	1-1 1-3 2-2 2-4	22.9 33.1 30.3 30.8	40.1 58.0 54.1 53.9	0-0-0-100 0-0-0-100 40-0-0-60 20-0-0-80	1-2 1-4 2-1 2-3 Ave.	21.9 24.1 9.6 14.7	38.4 42.2 16.8 25.7	0-60-30-10 10-50-30-10 20-10-40-1 0-50-40-10 5-50-35-10
	Ave. S.D.	29.4 4.5	7.8	12-0-0-83	S.D.	6.7	11.7	5-50-35-10

NOTE: 1. Tested at -65°F (-54°C) after 10 minutes at -65°F (-54°C).

2. See Figure 9, page 18.

INDIVIDUAL FLOATING ROLLER PEEL RESULTS FOR R 7114 ADHESIVE ON OPTIMIZED FFL ETCH ADMURENDS, PRIMED WITH BR127

Test Top.		72°F (3	Barc) Dry		-65°F (-54°C) ¹				
Adherend	Spec.	Stre	en∉th	Failure ²	Spec.	Stren	igth	Failure ²	
Alley	ito.	libs/in. 	N/cm Vi vilin	Mode	No.	lhs/in.	N/cm or wadth	Mode	
2024-13	1-i	33.7	67.8	0-0-0-100	1-2	41.4	72.5	6-0-0-100	
	i - i	41.4	72.5	0-0-0-100	1-4	19.3	23.8	10-0-40-50	
	2-2	44.1	77.2	0-0-10-90	2-1	16.2	31.9	10-0-50-40	
	2-4	41.9	73.4	0-0-0-100	2-3	18.1	31.7	10-0-40-50	
	l L Ave.	41.5	72.7	0-0-5-95	Ave.	24.3	42.5	10-0-30-60	
	i s.b.	2.2	3.9		S.U.	11.4	20.0		
	i	<u> </u>				-			
606 L-16	1 - 1	35.1	€1.5	30-0-0-70	1-2	21.7	38.0	10-0-70-20	
	1 - 3	36.0	63.6	10-0-0-90	1-4	20.5	35.0	0-0-70-30	
	2 - 2	36.9	64.6	30-0-0-70	2-1	13.6	23.8 1	0-0-70-30	
	2 - 4	40.0	71.1	30-0-0-76	2-3	15.0	26.3	0-0-70-30	
	Ave.	37.2	65.1	25 - 0-0-75	Av.	17.6	1.2 اذ	5-0-70-25	
	5.5	2.4	4.2		5.0.	3.9	3.2		
5050-434	11	19.3	33.8	10-0-20-70	1-2	7.1	12.4	5-9-10-35	
	1 1 3	20.3	35.5	4:0-20-20-20	1-6	11.0	19.3	0740-60	
	2-3	13.8	22.0	40-9-10-50	2-1	16.0	28.5	0-0-69-40	
	2.3	20.3	35.5	20-0-0-20	2-3	6.5	11.4	10-9-50-40	
	Ave.	13.7	34.4	30-5-10-55	Ave.	10.1	19.2	5-0-40-55	
	l s.b.	0.8	1.3		3.D.	4.4	6.1		

INDIVIDUAL FLOATING BOLLER PEEL PESULTS FOR AF-180 ADHESIVE ON OPTIMIZED FPL ETCH ADMISENDS, PRIMID WITH BR127

2024-13	1-1 1-3 2-2 2-4	33.4 30.3 45.7 45.4	58.5 53.4 80.0 79.5	70-0-30-0 70-0-30-0 40-0-00-0 50-0-50-0	1-2 1-4 2-1 2-3	20.2 23.0 21.3 22.3	35.4 40.3 37.3 39.0	NCT AVAILABLD " " 80-0-20-0 90-0-10-0
	Avo 5 . b .	38.7 (5.1)	5., . 3 16 7	60-0-40-0	Ave.	21.7	38.0	((5-1)-15-0
6061-76	3-1 3-3 4-2 4-4	50.9 15.7 40.6 53.2	89.1 27.5 86.8 33.2 74.2	NOT AVAILABLE " 63-0-40-0 60-0-40-0	3-2 3-4 4-1 4-3	24.0 24.4 35.0 26.6 26.3	42.0 42.7 52.5 46.0 4.6	90-9-10-0 89-9-20-9 90-9-10-0 90-9-10-0
gošu-ilās	1-1 1-3 2-2 2-4 Ave.	20.3 16.8 21.5 21.7 21.3 2.4	35.5 32.9 42.9 38.0 37.3	40 - 20 - 20 - 20 0 - 0 - 0 - 150 40 - 20 - 15 - 25 40 - 10 - 30 - 10 30 - 15 - 15 - 40	1-2 1-4 2-1 2-3 Ave.	17.4 18.9 24.8 23.1 21.1	30.5 33.1 43.4 40.4 36.9 6.1	20-40-20-20 30-30-30-30 30-30-10-30 40-20-15-25 30-30-15-25

NOTE: 1. Tested at -65°F (-54°C) after 10 minutes at -65°F (-54°C).

2. See Figure 9, page 18.

INDIVIDUAL FLOATING ROLLER PEEL RESULTS FOR DRICO-252 ADHESIVE ON OPTIMIZED FPL ETCH ADHERENDS, PRIMED WITH BR127

Test Temp.	<u> </u>	72°F (22°C) Dry		-65°F (-54°C) ¹				
Adherend	Spec.	Stre	ngth	Failure ²		Stre	ngth	2	
Alloy		lbs/in. of width	N/cm of width	Mode '	Spec.	lbs/in.	N/cm of width	Failure ² Mode	
202 4-T 3	1-1 1-3 2-2 2-4	53.2 49.6 43.3 33.6	93.2 86.8 75.8 58.8	10-0-0-90 10-0-0-90 50-6-10-40 50-0-0-50	1-2 1-4 2-1 2-3	15.1 13.8 10.1 8.0	26.4 24.2 17.5 15.0	80-0-20-0 80-0-20-0 80-0-20-0 90-0-10-0	
	Ave. S.D.	44.9 8.6	78.7 15.1	30-0-3-65	Ave. \$.D.	11.5	20.5 5.8	80-0-30-0	
6061-T6	1-1 1-3 2-2 2-4	29.8 27.1 28.3 35.0	50.4 47.5 49.6 61.3	90-0-0-10 100-0-0-0 100-0-0-0 100-0-0-0	1-2 1-4 2-1 2-3	7.7 9.9 6.9 3.2	13.5 15.4 12.1 14.4	100-0-0-0 100-0-0-0 100-0-0-0 100-0-0-0 00-0-0-1	
	Ave.	29.8 3.5	52.2 6.2	95+3+9-5	Ave.	7.9	13.9	05-0-0-5	
5552×H\$4	1-1 1-3 2-2 2-4	40.1 37.1 37.3 50.6	70.2 65.0 66.4 88.6	0-0-80-20 0-0-90-10 0-0-90-10 0-0-90-100	1-2 1-4 1 2-1 2-3	22.7 22.3 20.3 21.6	39.7 39.3 35.5 37.8	0-100 0-0 0-100-0-0 0-100-0-0 0-100-0-0	
	Ave.	41.4	73.0	0-0-65-35	Ave.	21.7	39.0 - 1.8	0-160-0-0	

INDIVIDUAL FLOATING ROLLER PEEL RESULTS FOR MA-429 ADHESIVE ON OPTIMIZED FPL STOR ALREAGNDS, PRINCIP WITH BRILLY

	1	1	1	0 0 0 0 10	11		1 .	
2024-T3	1-1	12.1	21.2	0-0-90-10	1-2	3.0	3.3	0-0-10-10
	1-3	9.5	16.6	0-0-90-10	1-4	4.3	8.6	\$ 500 D Street
	2~2	11.6	20.3	0-0-90-10	2-1	2.7	4.7	Omo-30-1-
	2-4	27.8	į 4 8.7	0-0-70-30	2-3	3.2	5.5	i 50-9-50-
	λve.	15.3	27.1	0-0-85-15	Ave.	3.5	6.1	25-0-70-
	S.D	8.5	13.7		ـــلاسفــلــ	<u>! </u>	1_1_1_	<u> </u>
6061-T6	1-1	20.4	35.7	60-0~40-0	1-2	7.0	1 12.3	1 90-0-10-0
,,,,,,	1.3	26.2	45.9	60-0-40-0	1-3	6.0	11.6	حرالا مراجزان ا
	2-2	23.7	1 41.5	60-0-40-0	2-1	6.6	11.6	1 00-0-10-0
	2-4	25.8	45.2	69-0+40-0	2-3	6.7	11.7	J 96-0-35-
	Ave.	24.0	42.1	60-0-40-0	II Ave.	6.7	11.5	ووال من الرواد
	S.D.	2.6	4.7		3.D.	l e.2	0.3	
5032-834	1-1	19.0	33.3	0-0-80-20	1-2	111.7	1 20.5	17 71 71 71 1
J. J. E. 11.34	1-3	1).6	34.3	0-11-20-20	11 1-4	16.7	1 25.2	1, 1, 20, 1
	3-2	19.3	33.3	0=0=30=20	li a-i	13.3	4	0-0-0-1
	2-4	24.1	42.2	5-5-70-30	1 2-3	17.1	32.7	5-5-35-5
	1 4-4	1 -4.1	i	[11	1	1	1
	Avo.	20.5	35.9	3-6-80-20	Nve.	14.6	39.6	0.0 0.1
	s.b.	2.4	4.3		11 3.9.	1 2.7	4.7	1

1. Tested at -65°F (-54°C) after 10 minutes at -65°F (-54°C).
 2. See Figure 9, μεσε 10.

APPENDIX VIII INDIVIDUAL SPECIMEN STRESS DURABILITY TEST DATA

The data presented here are for the tests discussed in Paragraphs 2.3.3 and 3.3.

INDIVIDUAL LAP SHOAP COMBAN AND STRESS BURABLLTY WAST IRSOLNS FOR LALOW-172 ANDREWER AND NO PRINCER

			Lab Shear Control	Control Test	Results	1 .		
Test Temp.		720F	2°F (22°C) Dry			140°F (6	40°F (60°C) Dry	×
Adherend	S) 40.	3.10	S'rength	Failure	Si'ec.	Strength	14th	Fai lure
,110yì	,;o;	182	MPa	507031	1:0.	psi	MPa	Mode ²
5052-1134		4340	29.9	80-20	1-6	3730	25.7	40-60
	2-3	3230	22.3	80-23	2-2	3710	25.6	60-40
	3-3.	3920	27.0	80-20	3-7	3790	26.1	40-60
		6		6	,	,	i i	i.
		77.00		27-02		Ct-/ 5	25.02	00-05
	S.D.	560	3.9		S.D.	္	0.3	
6061-76	1-7	4330	29.8	76-33	1-5	4060	28.0	0-001
	7-2	5200	35.3	0-100	2-2	4650	32.C	10-90
	3-1	4320	29.8	0-100	5-3	4030	27.B	0~100
					-			
	Ave.	4620	31.8	25-75	Ave.	4230	29.3	30-73
	5.D.	510	N. 5.		s.b.	350	2.4	

STRESS DURABILITY TEST RESULTS 3

	\Box					,	
	Failure Mode ²	100-0	103-0	100-0	100-0	100-0 100-0 100-0	100-0
60% Stress	Exposure Stress Ave. Hours Psi MFa to Failure	448.5	1.75	1.75	41.1	യ ധ ധ ന ന) ဆပ
60 %	Stress	15.5		-		17.6	-
	Exposure	2250		_		2550	
	Spec.	1-1	2-4	. 6 6	Ave. S.D.	2 - C - C - C - C - C - C - C - C - C -	Ave. 5.0.
	Far lure Fode2	100-0	100-0	10.0-0	100-6	000000	100-0
	Stress	-					· · · - · · ·
	Residual PSI	-		-		1	-
403 Stress	Ave. Hours to Eailure	752	25.5	75.2	752	က် က က က ထ က က က က က	ପ୍ର ପ୍ରକ
	osure Stress	E:-	··—-	-		2	-
	EX DSHE	552		-		0	
	0 - 10 NO - 10			<u> </u>	3v6.	0.7000) , i
Morras Giros Corel i	Adherend Spec. Exposure Stress	5052-1:34				6561-76	agistas i magainine i m

INDIVIDUAL LAP SHEAR CONTROL RHD STRESS DURABILITY TEST RESULTS FOR LR130-172 ADRESIVE AND BR127 PRIMER

			Lap Shear	Lap Shear Control Test Results	Results			
Test Temp.		72°F	72°F (22°C) Dry			140°F (6	140°F (60°C) Dry	,
Acherend	Spec.	Stre	Strength	Failure	Spec.	Strength	ngth	Failure
Alloyl	No.	psi	MPa	Hode ²	No.	psi	мРа	Mode ²
5052-H34	4-1	4070	28.0	5-0-95-0	4-5	4290	29.6	55-0-5-0
!	5-5	4240	29.2	50-0-20-0	5-6	4140	28.5	60-0-40-0
	. 9-9	3540	24.4	60-0-40-0	6-1	4340	29.9	5-56-0-5
	Ave.	3950	27.2	40-0-60-0	Ave.	4257	29.3	55-0-45-0
	s.D.	365	2.5		S.D.	104	0:7	
6061-T6	1-7	5760	39.7	50-0-50-0	1-2	5240	36.1	10-08-0-01
	2-6	5640	38.9	0-0-40-09	2-3	5160	35.6	30-0-70-0
	3-2	5880	40.5	60-0-40-0	3-5	5400	37.2	20-0-99-0
			(((,	
	Ave.	2160	39.7	22-0-42-0	Ave.	2270	26.3	0-78-0-07
	s.D.	120	8.0		S.D.	120	9.0	

STRESS DURABILITY TEST RESULTS³

		******					 	Ti	·					 	٦
	Failure Mode ²	40-0-60-0	20-0-80-0	30-0-10-0	10-0-90-0	40-0-60-0	30-0-10-0		50-0-50-0	40-0-60-0	20-0-80-0	0-05-0-09	60-0-40-0	45-0-55-0	
60% Stress	Exposure Stress Ave. Hours psi MPa to Failure	34	35	34	34	34	34	0		41.5	29.5	135.5	191	104	83
1 09	e Stress MPa	17.6				-			22.2	-			-		
	Exposur	2550				-			3220	_			-		
	Spec.	4-2	4-4	5-1	6-4	6-7	Ave.	S.D.	1-4	2-1	2-5	3-3	3-6	Ave.	S.D:
	Failure Mode ²	0-0-100-0	100-0-0-0	100-0-0-0	80-0-20-0	70-0-30-0	70-0-30-0		60-0-40-0	0-01-0-05	60-0-40-0	70-0-30-0	90-0-10-0	75-0-25-0	
	Stress	27.5	1	:			27.5		30.5	30.4		30.5	35.8	31.8	2.7
	Residual	3990	!	1	! !		3990		4430	4410	1	4430	5200	4620	390
40% Stress	Ave. Hours		87	326	857	995	 567	374	1000+	1000+	807	1000+	1000+	961+	86.3
	Stress	11.7				-			15.0	_			-		
	Spec. Exposure Stress	1700				-			2190				-		
	Spec.	4-3	9-5	5-2	5-4	6-5	 Ave.	S.D.	1-3	9-1	2-7	3-1	3-4	Ave.	S.D.
Stress	Adherend	5052-#34	- 41-2						6061-T6						

All specimens prepared with an OFPL etched surface.
 See Figure 9, page 18.
 Specimens exposed to 140°F(60°C) and 95-100% R.H. while under stress.
 Based on baseline ultimate strength of dry unaged specimens tested at 140°F(60°C).

INDIVIDUAL LAP SHEAR (CLAPP)L AND STRESS DURAFILITY TEST RESULTS FOR F7114 ADRESIVE AND BR127 PRINTH

			Lay Shear	Lay Shear Control Test Results	Results			
Test Temp.		72°F (72°F (22°C) Dry			140°F (6	140°F (60°C) Dry	Ý
Acherend	Spec.	Stre	Strength	Failure	Spec.	Strength	ath	Fai lure
Alloy	No.	psi	κPa	110362	No.	psi	MPa	Mode ²
5052-H34	1-6	4390	30.2	0-0-0-100	1-3	3650	25.1	001-0-0-0
	2-7	4370	30.1	06-01-0-0	2-1	3660	25.2	6-2-0-503
	3-2	4360	30.0	0-01-0-0	3-6	3580	24.7	0-0-0-00
	Ave.	4370	30.1	5-5-5-0	Ave.	3630	25.0	1
	S.D.	20	0.1		S.D.	40	6.3	The second secon
6061-T6	1-2	5060	54.9	09-0>-0-0	1-4	4770	32.9	0-0-0-100
	2-7	4200	28.9	0-0-30-70	2+5	4730	32.6	0-0-0-00
	3-5	5640	38.9	70-0-10-20	3-3	2060	34.9	0-0-0-100
	<u> </u>							
	Ave.	4970	34.2	25-0-25-50	Ave.	4850	33.4	0-0-0-100
	S.D.	730	5.0		S.D.	180	1.2	

STRESS DURABILITY TEST RESULTS 3

							<u> </u>	1					
Stress Level 4				40% Stress						60%	60% Stress		
Adherend	Spec.	Spec. Exposure Stress		Ave. Hours	Residua	Residual Stress	Failure	Spec.	Exposur	e Stress	Exposure Stress Ave. Hours	Failure	
Alloy	No.	psi	MPa	to Failure	isc	MPa	Mode 2	No.	FSI	MPa	to Fallure	Rode	
5052-H34	1-1	1450	10.0	34	1	1	0-0-0-100	1-2	2130	15.0	25.5	0-0-0-100	
••••	2-3		_	34			0-0-0-0	2-2			14	C-0-0-100	
_	2-6			34			0-0-0-0	2-5			<t -1<="" td=""><td>0-0-0-100</td><td>-</td></t>	0-0-0-100	-
• ••••	3-3			34	_		0-0-2-100	3-1			36.5	0-0-0-100	
والمساحرة	3-7	_	-	34	_	-	0-0-0-0	3-4	_	-	36.5	0-0-0-100	
	Ave.			3.4			0-0-0-00	Ave.			25.3	0-0-0-100	
	S.D.			O				S.D.			11.3		
6061-T6	1-3	1940	13.4	361	-	-	10-0-0-00	4-3	2910	20.1	9.5	10-0-0-90	
44	1-6	_		444.5			10-0-0-01	4-5			9.5	10-0-0-01	
	2-4			326			10-0-0-01	4-7			9.5	0-0-0-100	
	2-6			193		_,	0-0-0-100	5-2	-	->	0.5	20-0-0-80	
	3-6	—	-	374	_	_	0-0-0-00	2-7	-	-	9.5	10-0-0-90	
ouPit c	Ave.			335.7			5-0-0-5	Ave.			9.5	10-0-0-90	
	S.D.	_		92.6				S.D.			0		

All specimers prepared with an OFPL etched surface.
 See Figure 9, page 18.
 Specimens exposed to 140°F(60°C) and 95-100N R.H. while under stress.
 Based on baseline ultimate strength of dry unaged specimens tested at 140°F(60°C).

INDIVIDUAL DAN SHEAR CANTIOU AND STONES DOUGABILITY TEST RESULTS FOR DA-135 ADMESTIC AND BRIZZ PERMEA

Test Yearp.		72°F (12°F (22°C) Dry	22°C) pry		(5,00) 1,001	(2) (2)	
Acherend	Spec.	Z tr	strongth	Fai ure	Sicc.		String!	tailuze:
A11c t	No.	EST	MPa	1996	No.	1821	E UK	Mode
5052-H34	1-4	2360	19.7	0-0-0-16 0	9-1	2470	17.0	150-0-0-0
	2-3	3320	22.9	0-0-0-10-10	2-5	3116	27.4	0-0-0-001
	3-2	3060	23.2	0-0-0-160	0-E	3300	22.7	0-0-0-00:
	8. D.	3100 280	21.5	0-0-7-100	Avc. 5.0.	296G 441	3.0	3-1-2-901
6051-T6	1-7	4950	34.1	C01-C-0-C	1-2	3850	26.5	0-0-0-100
	2-6	0031	33.8	0-0-2-100	2-3	9530	33.2	3-0-0-100
	3-3	4950	34.1	0-6-0-200		0504	27.8	3-0-0-130
	i we.	4939	34.0	0-0-0-100	Ave.	4140	28.5	0-0-0-100
	3.D.	<u></u>	رن دن		S.D.	350	2.4	

STRESS DURNBILLITY TEST RESULTS 3

	1				
	Failsre Mode 2	0-1-0-0	20-0-0-00	15-0-0-35	0-5-6-100 10-3-6-30 30-3-6-70 30-0-30 20-6-30 20-6-0-80
60% Stress	Exposure Stress Ave. Hours psi MPa to Failure	່ນ ພະເອ	634.5 866	310	8.3 152 103.5 103.5 50 80 60
1 09	Stress	12.2			17. t
	Excosure	1780	-		2480
,	Spec. No.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	m (\$) 1 - 1 (2 - 6)	Ave. S.D.	1-1 1-6 3-2 3-6 3-6 3-7 Ave.
	Failure Fode?	10-0-0-90 (-0-0-30) (-0-0-100	0-0-0-0-0	-0-0-	
	Stress	,			27.0 23.2 25.6 26.5 26.5
	Residua)				3814 5365 3945 3713 3851 3700 250
46% Stress	tress Ave. Hours Residual atress Pa to Failure usi MPa	699 734 734	734 754	727	10000+ 10000+ 10000+ 10000+ 10000+ 10000+
	Stress	8.1		1	11.6
	Spec. Expensive S	-			CG
	Spec.	1-7	0 - 0 4 - 0 4 - 0	ave.	2-1 2-1 3-5 3-5 5.00.
Senierl Stress Level 4	527	5052-1134			6061-T6

All specimens prepared with an OFPL stohed surface.
 See Figure 9, page 18.
 Specimens exposed to LoCF(60°C) and 95-100% R.H. while under stress.
 Baced on Daseline ultimate strength of dry unaged speciment bestad at 140°F(60°C).

and the second of the second s

INDIVIDUAL LAP SHEAR CONTROL AND STRESS DURABILITY TEST FZSULTS FOR LRIOG-252 ADMESIVE AND BRI27 PRIMER

72°F (22°C) Dry 140°F (60°C) Dry Strength Failure	ilode No. psi MPa	10-0-30-60 1-4 3680	2-7	0-0-0-100 3-1 4060	5-0-20-75 Ave. 403C	1.2 S.D. 340 2.3	1-6 5070 34.9	70-0-0-30	30-0-0-70 3-4 5010	35.1 45-0-0-55 Nve. 5070 34.9 20-0-0-80	
L						1.2					7 4
Test Temp. 72°F Adherend Spec. Str	No.	S052-H34 1-6 3780	2-2 4520	3-5- 4260	4	S.D. 380	6061-T6 1-2 5040		3-7 4900	Ave. 5090	010

STRESS DURABILITY TEST RESULTS³

Nominal Stress				40% Stress						60%	60% Stress		
Acherend Ailoyl	_	Spec. Exposure Stre	Stress	ss Ave. Hours	Residual Stress psi MPa	Stress	Failure Mode 2	Spec. No.	Exposure		Stress Ave. Hours MPa to Failure	Failure Mode ²	
5052-H34	1-1	1610	11.1	995			20-0-0-80	1-2	2420	16.7	006	20-0-20-60	
	1-5			266			30-0-0-70	1-7	_	_	998	30-0-20-50	
	2-4			995			20-0-0-80	2-1			901.5	30-0-20-50	_
	3-2		->	999			10-0-0-00	3-3	,		998	10-0-10-80	
.	3-7	-	-	566	-	-	10-0-0-01	3-6	-		999	20-0-10-70	
						-							
	Ne.			566			20-0-0-80	Ave.			850	20-0-15-65	
											777		Ţ
6061-T6	1-5	2030	14.0	1000+	3350	23.1	40-0-30-30	1-1	3040	20.9	2	40-0-0-60	i
	3-6		_		4090		30-0-30-00	1-7			131	50-0-0-50	
	2-7				3980	27.4	20-0-30-50	2-3			58	30-0-10-60	
	3-2	->	-	>	3850		10-0-30-60			_	334	50-0-20-30	
	3-6	-	-	-	4630		10-0-40-50	3-5	_	-	443	40-0-20-40	
					-								
	Ave.			1000+	3980	27.4	23-0-30-50	Ave.			170	40-0-10-50	
	S.D.			0	460	3.2		S.D.			200		T
5052-H34	2-5	1610	11.1	7361	-		20-0-10-70	1	2420	16.7	396	40-0-30-30	Τ
	3-4	1610	11.1	7361			10-0-30-60	2-6	2400	16.5	184	40-0-10-50	
	Ave.			736			15-0-20-65	Ave.			290	40-0-20-40	
	114	1. All specimens prepared vi	pared with	th an OFPL etched surface	rease		7						1

All specimens prepared with an OFPL etched surface.
 See Figure 9, page 18
 Specimens exponed to 140°F(60°C) and 95-100% R.H. while under stress.
 Specimens exponed to 140°F(60°C) and 95-100% R.H. while under stress.
 Based on baseline ultimate strength of dry unaged specimens tested at 140°F(60°C).

INDIVIDUAL LAP SHEAR CONTROL AND STRESS DURABLLITY TEST RESULTS FOR MA 429 ADHESIVE AND BR127 PRIMER

			7	·			 	-1						7
	>	Failure	Mode ²	0-0-100-0	0-0-10-0	0-001-0-0	0-0-100-0		0-0-99-20	0-0-30-59	0-0-30-20		0-0-30-50	
	140°F (60°C) Dry	ıqth	MPa	33.6	33.3	32.5	33.1	9.0	37.4	36.6	38.3		37.5	0.8
	140°F (6	Strength	psi	4880	4840	4710	4810	80	5430	5320	2560		5440	120
Results		Spec.	No.	1-6	2-4	3-3	Ave.	S.D.	1-5	5-6	3-6		Ave.	S.D.
Lap Shear Control Test Results		Failure	Node ²	0-0-100-0	0-0-100-0	0-0-100-0	0-0-100-0		0-0-80-20	0-0-80-20	0-0-80-20	.=	0-0-30-20	
Lap Shear	72°F (22°C) Dry	Strength	MPa	33.9	32.5	25.8	33.0	0.8	37.3	37.6	34.5		38.0	1.1
	72°F (Stre	psi	4920	4710	4750	4790	110	5410	5460	5700		5520	160
		Spec.	No.	1-4	2-2	3-6.	 Ave.	S.D.	1-2	2-1	3-4		Ave.	s.b.
	Test Temp.	Adherend	Alloy.1	5052-H34					6061-T6					

STRESS DURABILITY TEST RESULTS³

1:ominal											i		
Stress				40% Stress						\$ 09	60% Stress		7
Survivor House	ተ • • •	Spec. Exposure Stress		Ave. Hours	Residual	Stress	Failure	Spec.	Exposure	e Stress	Exposure Stress Nve. Hours	Failure	
1001		rei		T.	psi	1 .	Mode ²	No.	psi	MPa	to Failure	Mode ²	
5052-H34	-	1920	13.2	1000+	3450	23.8	0-0-80-20	1-2	2830	19.9	722	20-0-60-20	
	2-7	-	-	857		-	10-0-20-70	1-5			722	20-0-50-30	
	1 1			857	-	1	10-0-10-60	2-3			757	0-0-50-80	
4.00	3-2			1000+	4110	28.3	10-0-80-10	3-1			722	20-0-60-20	
. Analos	9-6	-	>	1000+	3440	23.7	10-0-80-10	3-4	-	_	757	10-0-20-70	
run dia	Ave.			943	3670	25.3	10-0-55-35	Ave.			736	15-0-40-45	
	S.D.			78	380	2.6		S.D.			19		-
91-1909	1-6	2170	15.0	1000+	4480	30.9	10-0-40-50	1-7	3260	22.5	141.5	20-0-60-20	
nak e	2-3		_		4380	30.2	10-0-50-4d	2-2			16	30-0-20-50	
	2-5				4050	27.9	20-0-50-30	2-7			288	40-0-20-10	
	3-3	_			4220	29.0	10-0-60-30	3-2		-	16	20-0-10	
	3-1	_	-		4480	30.9	10-0-80-10	3-7	_		63.5	20-0-60-20	
					0000	9	20-0-01				305	25-0-60-15	
	Ave.		8	+0001	4320	23.0	CC-CC-O-OT	Ave.			114		
	S.D.	_		.	720	7.7		3.7:					1

^{1.} All specimens prepared with an OPPL etched surface.
2. See Figure 9, page 18.
3. Specimens exposed to 140°F(60°C) and 95-100% R.H. while under stress:
4. Based on baseline ultimate strength of dry unaged specimens tested at 140°F(60°C).

INDIVIDUAL LAP SHEAR CONTROL AND STREETS DURABILITY TEST RESULTS FOR R382-7 ADHESIVE AND BR127 FRIMER

7	7			\ T															 		٦
	>	Failure	,	Mode 2	0-0-10-30	CE-00-0	0110010	07-06-0-0		1000	0-0-0-0			0-0-0-100	000	007101010	0-0-0-100	1	0-0-0-100	•	
	0°C) Dr	gth		MPa	29.8	, ,	7./7	25.5			27.5	2.3		31.1		37.4	33.1)	33 0	;	7 - 7
	140°F (60°C) Dry	Strongth		psi	4330		3940	3710			3990	310		4520		4560	4810	1	7630	20.	160
Results		2000		No.	1-7	•	2-3	3-5			Ave.	S.D.		\$7 -1		2-1	3-2	۱ ۲		!	S.D.
Lap Shear Control Test Results		1	l arnite	Mode ²	0-0-50-50	20 00 0	0-0-0-0-0	0-0-10-0			0-0-10-30			001-0-0-0		0-0-0-0		001-0-0	0	001-0-0-0	
Lap Shear	72°F (22°C) Dry	Chronath	ngen	MPa	7 00		26.4	24.8			27.0	7.5		ır C	1	25.9		72.0	;	7.87	2.4
	72°F (Stre	1,51				9.50			3910	360	2	98	2	3760	0 0	4300		4169	360
			Spec.	Ç		7-7	2-6	. M	;		011		ν.	,	7 1	5-5	3 1	3-6	 	Ave.	2.0
	The second second	Test Tring.	Adherend	1,1001	20774	5052-334									07-T00G						

STRESS DURABILITY TEST RESULTS³

Ī	1	1					
	-	Failure Mode ²	10-0-6-90	0-0-0-100	5-0-0-95	10-0-0-90 10-0-0-90 10-0-0-90 10-0-0-90 10-0-0-90	10-0-0-90
	60% Stress	Exposure Stress Ave. Hours	84	110 110 131.5	106 18	3.75 3.75 3.75 3.75	3.75
	\$ 09	Stress MFa	16.5			19.1	
		Exposure	2400			2780	
		Spec.	1-3 1-6	2-2	Ave. S.D.	1-2 1-7 2-5 2-6 3-7	Ave.
		Failure	0-0-0-100	0-0-0-100 C-0-0-100 O-0-0-100	0-0-0-100	30-0-0-70 10-0-0-90 10-0-0-90 10-0-0-90 10-0-0-90	15-0-0-85
THE POST OF THE		1 1	101				
2010		Residual	130				
	40% Strass	Ave. Hours	to Failure 857 183.5	183.5 415 415	410	112 409 279 327 378	301
			11.0			12.7	
	6	Spec. Exposure Stress	1593			1630	
			NO.	100 100 100 100 100 100 100 100 100 100	Ave.	2-4 2-4 3-3 3-5	Ave.
	Nomina! Stress	Level 4	A110V- 5052-124	d sprace products	شعد بعد . سد،	6361-16	·

All specimens prepared with an OFPL etched surface.
 See Figura 9, page 18.
 Specimens exposed to 140°F(60°C) and 95-100% R.H. while under stress.
 Specimens expessed to ultimate strength of dry unaged specimens tested at 140°F(60°C).

INDIVIDUAL LAP SHEAR CONTROL AND STRESS DURABILITY TEST RESULTS FOR EA9601NM ADHESIVE AND BRI27 PRIMER

à	72°F	730F (330C) DEV	77000				
		(2- C) DIY			140°F (6	140°F (60°C) Dry	γ
+		Strength	Failure	Spec.	Strength	ath	Failure
	isa	MPa	:tode	No.	psi	MPa	Mode 2
5052-H34 1-4	4980	34.3	40-0-0-60	1-7	4820	33.2	20-0-0-30
2-3	4940	34.0	60-0-0-40	2-6	4200	28.9	20-0-0-30
3-1	4760	37.8	10-0-0-90	3-7	4390	30.2	10-0-0-90
Ave.		33.7	35-0-0-65	Ave.	4470	30.8	15-0-0-85
S.D.	110	0.8		s.D.	320	2.2	
6061-T6 1-6	5570	38.4	0-0-10-90	1-1	5250	36.2	70-0-30
2-2		34.8	100-0-0-0	2-7	4880	33.6	0-0-0-100
3-4	5410	37.3	90-0-0-10	3 - 3	5310	36.6	0-0-20-80
Ave.	vs.	36.8	65-0-0-35	Ave.	5150	35.5	15-0-0-35
S.D.	270	1.8		S.D.	230	1.6	

STRESS DURABILITY TEST RESULTS

					STRES.	DOKABI	SIRESS DURABLLITY TEST RESULTS	ESULTS-					
Stress Level 4				40% Stress	,					60%	60% Stress		1
Adherend Alloy ¹	Spec.	Spec. Exposure	Stress	Ave. Hours to Failure	Residual psi	Stress	Failure Mode ²	Spec. No.	Exposure	Stress MPa	Ave. Hours to Failure	Failure Mode2	1
5052-H34	1-3 1-6 2-1 2-5 3-2	1790	12.3	183.5 230 280 280 280	-		0-0-0-100 10-0-0-90 10-0-0-90 10-0-0-90 10-0-0-90	1-2 1-5 2-2 2-4 1-1	2680	18.5	497 741 866 781 781	20-0-0-83 10-0-0-93 30-0-70 10-0-0-90 10-0-0-90	
	Ave. S.D.			250 43			10-0-0-90	Ave. S.D.			733.2 140	15-0-0-85	
6061-16	1-2 1-5 2-3 3-5 3-7	2060	14.2	1000+ 1000+ 448 803 1000+	4030 5070 4310	27.8 34.9	10-0-50-40 10-0-60-30 50-0-10-40 50-0-10-40 20-0-0-80	1-7 2-1 2-5 3-2 3-6	3090	21.2	256 208 648 160.5 256	30-0-0-70 40-0-0-60 30-0-0-70 30-0-0-70 40-0-0-60	
	Ave. S.D.			850+ 240	4470 540	30.8	30-0-25-45	Ave. S.D.			305 195	35-0-0-65	
5052-H34	3-3	1790 1790	12.3	736 ¹ 7361		11	30-0-10-60 20-0-10-70	2-7	2680	18.5	553 542	30-0-10-60 30-0-10-60	1
	Ave.			736	-	<u>. NI .</u>	25-0-10-65	Ave.			547.5	30-0-10-60	
1. All spe	cinens pr	tepared with	h an OFFL et	1. All specimens prepared with an OFPL etched surface									1

All specimens prepared with an OFFL stched surface.
 See Figure 9, page 18.
 Specimens exposed to 140°F(60°C) and 95-100% R.H. while under stress.
 Specimens exposed to 140°F(60°C) and 95-100% R.H. while under stress.
 Specimens tasted at 140°F(60°C).

APPENDIX IX INDIVIDUAL SPECIMEN DCB CRACK GROWTH TEST DATA

The data presented here are for the tests and results discussed in Paragraphs 2.3.4 and 3.4.

INDIVIDUAL DCB CRACK GROWTH TEST RESULTS FM-73 ADHESIVE/BR127 PRIMER

						1 (<u>In.</u>	1b, 2			The same of the same of the same	
Expos	uro Time (Hours		ty .	ì	24	16.	336	504	671	Failure) Mode
dherend Allo	sweetener ⁴	Rinse	Spec.		1			!		:	111.021
JU24-T3	-2024	Deion-	1-1	11.93	11.93	1.16	7.57		1 1 25		
20.24	1024	ized	1-2	19.46	19.46	12.98	10.12	7.03 8.73	0.25	7.19 7.19	3 :-0-0-7.
	Į.		1-3	15.33	13.58	13.02	10.12	10.57	1 .57	9.34	1 /=0= (=96) 1 (1:/=:)=((=:96)
			1-4	24.52	19.46	16.36	13.70	13.27	13.27	1 .2.18	i jeljene,
			1-5	18.52	14.75	د 11.5	10.84	9.42	1,42	2.13	ر داردس د داخ رخور
	!		Ave.	17.95	15.84	12.61	10.56	9.80	,	3.55	1647-1489
. 	·		S.D.	4.71	3.45	2.62	2.18	2.30	9.50	2.40	, " ~ , = . = 5)
2024-T3	2024	Tap	2-1	14.66	21.74	11.89	8.68	7.32	1 6.30	13.25	7
		!	2-2	20.62	17.30	14.15	11.10	9.45	9.45	P 70.78	1 40-0-1-60
	•		ذ-2	24.77	17.70	9.08	6.43	5.68	\$.00	4.41	1,505=4,=6=
	•	1	2-4	19.71	14.6€	11.36	8.85	8.68	7.67	. €.80	5.):-5/
	1		2-5	16.57	13.44	7.60	5.69	5.27	1.05	4.04	100-0-0-
			Ave.	19.27	15.17	10.81	8.15	7.28	6.73	9.02	70-0-0-3
	 		S.D.	3.90	2.24	2.54	2.15	1.82	1.38	1.40	
5052-H34	2024	Tap	4-1	32.13	29.30	23.60	23.60	22.47	19.92	18.35	:0-19-13
		1	4-2	27.46	25.12	16.35	17.12	14.80	14.30	14.80) -0-0-1 ₋₀
	1		4-5	34.54	25.25	22.58	22.58	22.58	10.10	22.59	
		į.	4-4	28.76	22.09	20.56	18.27	18.27	16.27	.7.00	3-0-0-10:
	1	;	4-5	26.96	10.31	8.72	7.09	7.09	6.50	5.08	80-0-0-20
		•	Ave.	29.97 3.25	7.24	13.76	17.73 6.88	17.04	16.02 5.72	15.16	15-0+0-89
5052-H34	5052	Tar.)-1	3.09	5	. 3	! 3	0	j c	· 3	100-0-0-0-
			9-2	2.35	1 0		. 5	. 6	1 5	6	100-0-0-
	Ì	1	1 9-3	3.58	3		5	6	. :	: 0	100-0-0-
	!	1	9+4	4.51	0.13	1 4.13	0.10	0.13	0.11	0.43	100-0-0-
	1	į	9-5	4.19	(6.12	. 3.12	0.12	. 0.1.	10		100-0-0-
		1	10-1	0.34	0	1 4	် ဇ	4 Q		5 5	100-0-0-
	1	'	10-2	4.26	0.33	9.33	0.33	0.33	5.33	0.37	100-0-0-0-
			10-3	4.19	0.14	0.14	0.14	5.14	7.14	2.11	100-1-0-
		1	110-4	5.15	0.37	, 532	0.37	0.37	1 5.37	1 37	100-0-0-
	:		10-5	3.11	i û	. 9		,			1.00, -0, - 9-0
	1		Ave.	3.30	6.12	0.11	9,11	0.11	11	1.11	169-3
			2.3.	1.19	0.14	0.14	3.14	0.14		2.14	
50 61-7 6	2024	Tap	6-1	18.73	12.29	11.78	9.81	9.91	. 6.0	1,27	
			5-	15.30	13.13	11.69	. 10.77	9.0%	5.82	6.80	3.0+0+0+70 20+0+0+80 20+0+0+80
		;	6-3	18.30	15.43	12.68	10.0.	10.61	3.25	8,25	
		1	15-4	16.55	12.45	10.77	3.91	3.91	3.01	A	20+2-11-8
	•		16+5	12.79	15.01	2.06	7.56	5.87	5.62		30-0-0-7
			Ave.	16.23 . 2.60	12-66	11.20	9.41 1.22	8.74	7.93	1.76 1.444	25-0-1-7
10 20 I = I)	2.36	: 11-1-		11.57	2.30	1 2.19			3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
1.001.71	* 606.	Tan	3-! d-∷		.79	0.24	.18	0.18			lighten e
			ე ქ - .j	13.87	3.2	1.23	1.23	1.23		1,23	· · · · · · · · · · · · · · · · · · ·
			9-4	12.40	87	7.45	0.43	0.43		0.40	والمراجع سزوات والما
			8-5	7.57	.04	1,22	0.22	0.22	. 2.5	. 2	۔ خارت ویت ریان ا
			LAVer	11.5e	7.65	1 3.44	0.45	0.45	4:	ઇ.નોન	1. 30-0-
	en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		3.0.	2.16	3.01	0.44	3.45	0.45	45	1,40	. 6. 10. 27.
55.6 L-Th	იენქ	Design-	- 7	12.35	0.42	د2.ر ،	2.	. 0.22	2.	1.22	: ,=
	:	1,400	7-1	14.4.	1.3.	1.12	9.12	c. L.	7.42	0.17	100-1-
			1 1-3	16.57	1.13	7.12	7.1.	0.12	12	1.11	jigana -
			· • • ₁	12.0	9.14	.12	1.10	0.1:		11	15000
			7-5	11.63	1.1e		.15	14	.14	1.14	1 to the parties
			AV	15.74	121	110	1.15	i. 14	. 14	2.15	<u> </u>

^{..} Specimens aged in harmonic and mo-100% P.E. environment.

^{2.} See Table 17, page 42 for computation of G1

^{3.} Sec Figure 9, page 18.

INDIVIDUAL DCB CRACK GROWTH TEST RESULTS

Specimens aged in 140°F(60°C) and 95-100% R.H. environment. See Table 13, page 42 for computation of $\rm G_I$. See Figure 9, page 18.

^{3.5.}