

原子操作

- 原子操作的基本概念
- 原子操作常用函数
- CUDA中的规约问题
- CUDA中的warp级数据交换方法
- 原子操作实例

CUDA 原子操作的概念

- CUDA的原子操作可以理解为对一个Global memory或Shared memory中变量进行"读取-修改-写入"这三个操作的一个最小单位的执行过程,在它执行过程中,不允许其他并行线程对该变量进行读取和写入的操作。
- 基于这个机制,原子操作实现了对在多个线程间共享的变量的互斥保护,确保任何一次对变量的操作的结果的正确性。

原子操作常用函数

atomicAdd(&value, num)	加法: value = value + num
atomicSub(&value, num)	减法: value = value - num
atomicExch(&value, num)	赋值: value = num
atomicMax(&value, num)	求最大: value = max(value, num)
atomicMin(&value, num)	求最小: value = min(value, num)
atomicInc(&value, num)	向上计数:如果(value <= num)则value++,否则value = 0
atomicDec(&value, num)	向下计数:如果(value > num或value == 0),则value,否则value = 0
atomicCAS(&value, num, val)	比较并交换:如果(value == num),则value = val
atomicAnd(&value, num)	与运算: value = value and num
atomicOr(&value, num)	或运算 value = value or num
atomicXor(&value, num)	异或运算 value = value xor num

$$1 + 2 + 3 + 4 + \dots + N$$

向量元素求和

向量所有元素求和

- 1. 主要是想让大家理解利用cuda做reduce的操作, 也是我们实际工作中会常遇到的问题。
- 2. 主要难点是如何利用shared memory和安排线程的过程
- 最容易出错的地方在并不是所有线程在所有步骤 都会有动作

```
__global__ void _sum_gpu(int *input, int count, int *output)
   __shared__ int bowman[BLOCK_SIZE];
    int komorebi = 0;
   for (int idx = threadIdx.x + blockDim.x * blockIdx.x;
         idx < count;
         idx += gridDim. x * blockDim. x
        komorebi += input[idx];
   bowman[threadIdx.x] = komorebi; //the per-thread partial sum is komorebi!
    syncthreads();
   for (int length = BLOCK SIZE / 2; length >= 1; length /= 2)
        int double kill = -1:
        if (threadIdx. x < length)
            double kill = bowman[threadIdx.x] + bowman[threadIdx.x + length];
     __syncthreads(); //why we need two __syncthreads() here, and,
        if (threadIdx. x < length) {</pre>
         bowman[threadIdx. x] = double kill;
        syncthreads():
    if (blockDim. x * blockIdx. x < count) {</pre>
        if (threadIdx. x == 0) output[blockIdx. x] = bowman[0];
```

Grid当中我们 申请的所有线

31IJ																																
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31


```
向量所有元素求和
```

- 申请N个线程
- 2. 每个线程先通过threadIdx.x + blockDim.x * blockIdx.x得到当前线程再所有线程中的index
- 3. 每个线程读取一个数据,并放到所在block中 shared memory中,也就是bowman里面。
- 毕。

```
int komorebi = 0;
                                   for (int idx = threadIdx.x + blockDim.x * blockIdx.x;
                                        idx < count;</pre>
                                    idx += gridDim.x * blockDim.x
                                       komorebi += input[idx];
4. 利用__syncthreads()同步,等待所有线程执行 bowman[threadIdx.x] = komorebi; //the per-thread partia
                                     syncthreads();
```

Grid当中我们 申请的所有线

所有数据。 a[0]-a[31]

```
我们要处理的
```

- 1.如下图所示,每个线程读取他所在block中shared memory中的数据(bowman) ,每次读取两个做加法。同步直到所有线程都做完,并将结果写到它所对应的shared memory位置中
- 2.直到将它所在的所有的shared memory当中的数值 累加完毕。
- 3.这里需要注意,并不是所有线程每个迭代步骤都要工作。如下图,每个迭代步骤工作的线程数是上一个迭代步骤的一半
- 4.完成这个阶段,每个线程块的shared memory中第0号位置,就保存了该线程块中所有数据的总和。

```
for (int length = BLOCK_SIZE / 2; length >= 1; length /= 2)
{
   int double_kill = -1;
   if (threadIdx.x < length)
   {
      double_kill = bowman[threadIdx.x] + bowman[threadIdx.x + length];
   }
   __syncthreads(); //why we need two __syncthreads() here, and,
   if (threadIdx.x < length)
   {
      bowman[threadIdx.x] = double_kill;
   }
   __syncthreads(); //....here ?
} //the per-block partial sum is bowman[0]</pre>
```

Grid当中我们 申请的所有线 程

我们每一个线程所对应的数据就都在它所在

1.将每个block的shared memory中第一个值bowman[0] 放在输出的向量里面。

```
if (blockDim.x * blockIdx.x < count) //in case that our users are
{
    //per-block result written back, by thread 0, on behalf of a
    if (threadIdx.x == 0) output[blockIdx.x] = bowman[0];
}</pre>
```


1.如果我们能够使用一个操作,彼此之间不影响,将结果累加到output,我们就不再需要第二轮的执行了 2.这是我们就可以采用atomicAdd()

```
if (blockDim.x * blockIdx.x < count)
{
    //the final reduction performed by atomicAdd()
    if (threadIdx.x == 0) atomicAdd(output, sum_per_block[0]);
}</pre>
```

27

28

29

496

如果我们不能使用原子操作

1.这里做了两步是因为,将第一次核函数执行输出的结果,当作第二次核函数执行的输入,这是只需要一个block,并且能将所有的数据放进shared memory中,重复之前的步骤,最后输出结果

2.这里如果一个线程块中的线程不够,采用的是课上讲的那个grid-loop的方法,注意第一步中那个idx += gridDim.x * blockDim.x


```
const int warpIndex = threadIdx.x / warpSize;
const int laneIndex = threadIdx.x % warpSize;
```

laneIndex

		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
warpIndex	1	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
	2	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95

Warp shuffle是一种更快的机制,用于在相同Warp中的线程之间移动数据。

Warp shuffle是一种更快的机制,用于在相同Warp中的线程之间移动数据。

Warp shuffle是一种更快的机制,用于在相同Warp中的线程之间移动数据。

Warp Broadcast

T <u>shfl_up_sync(unsigned mask, T var, int srcLane, int width=warpSize);</u>

int y = __shfl_up_sync(0xffffffff, x, 2);

int y = __shfl_up_sync(0xffffffff, x, 2, 16);

Warp shuffle是一种更快的机制,用于在相同Warp中的线程之间移动数据。

Warp Broadcast

T <u>shfl_xor_sync(unsigned mask, T var, int laneMask, int width=warpSize);</u>

int y = __shfl_xor_sync(0xffffffff,x, 1);

int y = __shfl_ xor_sync(0xffffffff,x, 3);

$$1 + 2 + 3 + 4 + \dots + N$$

$$1 + 2 + 3 + 4 + \dots + N$$

```
int val = ken[threadIdx.x];
unsigned int mask = 0xffffffff;
mask = __ballot_sync (0xfffffffff, threadIdx.x < 32);
for (int offset = 16; offset > 0; offset /= 2)
{
     val += __shfl_down_sync(mask, val, offset);
}
```

更多资源:

https://developer.nvidia-china.com

https://www.nvidia.cn/developer/comm
unity-training/

总结:

- 1. CUDA编程模型依赖于GPU硬件环境,不同的硬件设备,需要不同的加速手段
- 2. 在真正的开发过程中,其实有大量的现成的工具,希望大家能够处理一些通用问题的时候,使用现成的工具库
- 3. 进阶之路既有高处,也有细节。关注最新的动态, 能让我们更快的掌握更好的解决问题的手段 **直接**

