Departamento de Matemática Unive					
Tópi	o – 19 janeiro 2024				
Lic.	em Ciências de Computação - 1º ano dur	duração: duas horas			
Nom	ne Número	Número			
E	GRUPO I. Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição oção conveniente:	o, assinalando			
1.	Para quaisquer proposições p,q e r , se as proposições $q\Rightarrow p\wedge r$ e $\sim p$ são verdadeiras, então a proposição q é falsa.	V □ F □			
2.	Afirmar que "Se ando de carro e ando de comboio, então não ando a pé" é logicamen equivalente a "Se ando a pé, então não ando de carro nem de comboio."	te V□ F□			
3.	Para toda a condição $p(n)$, em $\mathbb N$, se $p(n)$ é hereditária e $p(4)$ é uma proposição falsa então $p(5)$ é uma proposição falsa.	, V□ F□			
4.	Para quaisquer conjuntos A , B e C , $(A \cap B) \cup C \subseteq A \cap (B \cup C)$.	V□ F□			
5.	Se o produto cartesiano de dois conjuntos é o conjunto vazio, então um dos conjuntos é o conjunto vazio.	V □ F □			
6.	. Para qualquer conjunto não vazio A , se ${\mathcal R}$ é uma relação de equivalência em A tal qu	e			

 $V \square F \square$

 $V \square F \square$

V□ F□

GRUPO II.

Dê exemplo, ou justifique que não existe, de:

então, \mathcal{R} é a relação universal em A.

 $A/\mathcal{R} \cup \{\emptyset\} = \mathcal{P}(A)$, então A tem exatamente um elemento.

minimais de A então não existe supremo de \emptyset em A.

7. Para toda a relação de equivalência R em $A=\{1,2,3\}$, se $[1]_{\mathcal{R}}\cap[2]_{\mathcal{R}}=[3]_{\mathcal{R}}$

8. Para qualquer c.p.o. (A, \leq) e quaisquer $x, y \in A$ com $x \neq y$, se $x \in y$ são elementos

1. um conjunto A tal que $\{\emptyset\} \in A$ e $\{\emptyset\} \subseteq A$;

2. uma condição p(n) que seja hereditária em $\mathbb N$ tal que p(1), p(2) e p(3) são proposições falsas e $\forall n \geq 4, \, p(n)$ é uma proposição verdadeira;

3.	um conjunto A e uma	função $f:A$	$\rightarrow A$ tal que	$f^{\to}(\{a,b\}) = -$	$\{c\}$ e $f^{\leftarrow}($	$(\{a,c\}) = \{$	$\{a, b, d, c\};$

4. uma relação de equivalência $\mathcal R$ em $A=\{1,2,3,4\}$ tal que $A/\mathcal R$ tem exatamente 3 elementos.

GRUPO III.

Seja $f_{\alpha}: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ a aplicação definida por f(x,y) = x - y, para todo $(x,y) \in \mathbb{Z} \times \mathbb{Z}$.

1. Determine:

- (a) $f({0,1} \times {1,2});$
- (b) $f^{\leftarrow}(\{1\}).$

GRUPO IV.

Considere o c.p.o. (X, \leq) definido pelo diagrama de Hasse apresentado.

1. o conjunto dos majorantes de $A=\{2,3,11\};$

- 4. o ínfimo e o supremo do conjunto vazio;
- 5. um subconjunto D que seja uma cadeia de comprimento 5 para a ordem parcial induzida pela ordem do c.p.o. X.
- 6. um subconjunto E com 5 elementos que seja um reticulado para a ordem parcial induzida pela ordem do c.p.o. X.