Лабораторная работа 2.5.1 "Измерение коэффициента поверхности натяжения жидкости" Б01-005 Радъкин Кирилл

Цель работы:

- Измерение коэффициента поверхностного натяжения дистилированной воды при разной температуре с использованием известного коэффициента поверхностного натяжения спирта;
- Определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости

Экспериментальная установка:

Ход работы:

- 1) Убедимся в исправности установки
- 2) Подберем частоту падения капель из аспиратора так, чтобы максимальное давление микроманометра не зависело от этой частоты. Для этого пузырьки не должны пробулькивать слишком часто (не чаще, чем 1 пузырек в 5 секунд)
- 3) Измерим максимальное давление при пробулькивании пузырька (в спирте, при комнатной температуре $t=21^{\circ}C$) и подсчитаем радиус капиляра.

h - кол-во делений на микроманометре, Р - давление

$$P=c\cdot h\cdot rac{\gamma_1}{\gamma_2}\cdot K\cdot 9.81$$
, где:

- c = 1
- К = 0.2 (коэффициент, зависящий от угла наклона)
- $\gamma_1 = 0.8066 \ r/cm^3 плотность залитого спирта$
- $\gamma_2 = 0.8095 \text{ г/см}^3 \text{плотность приборного спирта}$

$$<$$
 P >= 75.4 Πa, $\sigma_p = \sqrt{\frac{1}{n(n-1)}\sum_{i=1}^n(P_i - < P >)^2} = 0.5$ Πa \rightarrow $<$ P >= 75.4 \pm 0.5 Πa

- 4) Используя формулу Лапласа ($\Delta P=\frac{2\sigma}{R}$) найдем радиус капиляра $R=\frac{2\sigma}{< P>}=0.59$ мм Сравним его с радиусом, измеренным с помощью микроскопа: $R_m=0.6$ мм
- 5) Перенесем (предварительно просушив) иглу в сосуд с водой. Измерим максимальное давление, когда игла лишь касается поверхности жидкости.

$$< P_1 > = 206.8 \pm 2.4 \; \Pi a$$

- 6) Измерим $l_1 = 5.7$ см расстояние от конца капиляра до некоторой части прибора.
- 7) Утопим иглу до предела, но так, чтобы выходящие пузырьки не касались дна и снова измерим максимальное давление

$$< P_2 > = 355.4 \pm 0.4 \; \Pi a$$

- 8) Снова измерим расстояние от конца капиляра до той же части прибора: $l_2 = 6.2$ см
- 9) Подсчитаем $\Delta h = h_2 h_1 = 1.5$ см. Сравним с $\Delta h'$, подсчитанным с помощью разницы давлений: $\Delta h' = \frac{< P_2 > < P_1 >}{\rho q} = 1.5$ см
- 10) Снимем зависимость $\sigma(t)$:

$t^{\circ}C$	27	31	35	41	45	50	55
h, дел.	180	181	177	175	172	171	168
$P_{\mathfrak{m}}$, Π a	351.9	353.8	346.0	342.1	336.3	334.3	328.4
ΔP , Πa	205.0	207.0	199.2	195.3	189.4	187.4	181.6
σ, Н/м	0.062	0.062	0.060	0.059	0.057	0.056	0.054

11) Методом наименьших квадратов вычисляем коэффициенты k и b в зависимости $\sigma=k\cdot t+b$: $k=(-2.7\pm0.2)\cdot 10^{-4}~H/\text{m}^{\circ}\text{c};\; b=(694\pm1)\cdot 10^{-4}~H/\text{m}$

Зеленый график — $\frac{U}{F} = \sigma - t \cdot \frac{d\sigma}{dt} = \sigma - k\mathsf{T} = \mathsf{b}$ (поверхностная энергия единицы площади

поверхности)

Синий график — $\sigma = k \cdot t + b$ (коэффициент поверхностного натяжения от температуры)

Оранжевый график — $q = -t \cdot \frac{d\sigma}{dt} = -k \cdot t$

12) Вывод: данный эксперимент с достаточно большой точностью позволяет выявить линейную зависимость коэффициента поверхностного натяжения от температуры.