

FONCTIONS EXPONENTIELLES

Crisode 1: (10mm)

On considère la fonction f définie sur \mathbb{R} dont la courbe représentative C_f est tracée ci-contre dans un repère orthonormé. On suppose que f est de la forme

 $f(x) = (b - x)e^{ax}$ où a et b désignent deux constantes.

On sait que:

- Les points A(0; 2) et D(2; 0) appartiennent à la courbe C_f .
- La tangente à la courbe C_f au point Aest parallèle à l'axe des abscisses.

On note f' la fonction dérivée de f, définie sur \mathbb{R} .

- 1. Par lecture graphique, indiquer les valeurs de f(2) et f'(0)
- **2.** Calculer f'(x).
- 3. En utilisant les questions précédentes, montrer que a et b sont solutions du système sui-

$$vant: \begin{cases} b-2 = 0 \\ ab-1 = 0 \end{cases}$$

4. Calculer a et b et donner l'expression de f(x).

y

x

_

<u>Episode 2:</u> (20mm)

On note f la fonction définie pour tout réel x par : $f(x) = (2x-1)e^{-x}$.

On note C sa courbe représentative dans un repère orthogonal $(0, \vec{i}, \vec{j})$. Unités graphiques : 1 cm en abscisses et 2 cm en ordonnées.

- 1. Etude des limites.
 - a. Déterminer la limite de f en ∞.
 - **b.** En écrivant, pour tout réel x, $f(x) = 2xe^{-x} e^{-x}$, déterminer la limite de f en $+\infty$. Quelle conséquence graphique peut-on en tirer pour la courbe \mathbb{C} ?
- **2.** Etude des variations de f.
 - **a.** Calculer la fonction dérivée f' de la fonction f, puis démonter que, pour tout réel x, f'(x) est du signe de (-2x+3).
 - **b.** Dresser le tableau de variations de la fonction f
- 3. Représentations graphiques.
 - a. Déterminer l'abscisse du point d'intersection de la courbe C avec l'axe des abscisses.
 - **b.** Déterminer une équation de chacure des tangentes \mathcal{T}_1 et \mathcal{T}_2 à la courbe \mathcal{C} aux points d'abscisses $\frac{3}{2}$ et $\frac{1}{2}$.
 - **c.** Tracer \mathcal{T}_1 , \mathcal{T}_2 et la courbe \mathcal{C} dans le repère $\left(0, \overrightarrow{l}, \overrightarrow{\chi}\right)$
- **4. a.** Vérifier que, pour tout réel x, $f(x) = -f'(x) + 2e^{-x}$.
 - **b.** En déduire une primitive de la fonction f sur \mathbb{R} .

<u>Episode 3:</u> (25mm)

Soit f la fonction définie dur \mathbb{R} par $f(x) = x^2 e^{x-1} - \frac{x^2}{2}$.

1. Tracer la courbe sur une calculatrice.

Al'observation de cette courbe, conjecturer :

- a. Le sens de variation de f.
- b. La position de la courbe C par rapport à l'axe des abscisses.
- 2. Première conjecture,
 - **a.** Calculer f'(x) pour tout réel x, et l'exprimer à l'aide de la fonction g(x), où g est la fonction définie sur \mathbb{R} par $g(x) = (x+2)e^{x-1} 1$.
 - **b.** Etablir le tableau de variations de g (limites comprises).
 - **c.** Montrer que l'équation g(x) = 0 admet une solution unique dans \mathbb{R} que l'on notera α .
 - **d.** Montrer que $0.20 < \alpha < 0.21$.
 - e. Déterminer le signe de g(x) en fonction de x
 - **f.** En déduire le signe de f'(x).
 - g. Que penser de la première conjecture?
- 3. Deuxième conjecture.
 - **a.** Sachant que $g(\alpha) = 0$, démontrer que $f(\alpha) = \frac{-\alpha^3}{2(\alpha + 2)}$
 - **b.** On considère la fonction h définie sur [0;1] par $h(x) = \frac{-x^3}{2(x+2)}$. Etablir le tableau de variations de h sur [0;1] et en déduire un encadrement de $f(\alpha)$.
 - **c.** Démontrer que, sur]0; +∞[, l'équation f(x) = 0 admet une solution unique, que l'on notera β.
 - **d.** Déterminer une valeur approchée de β à 10^{-2} près.
 - e. Que penser de la deuxième conjecture?
- 4. Tracé de la courbe.

Compte-tenu des résultats précédents, tracer la courbe é sur l'intervalle [-0,2;0,4] avec les unités : 1 cm pour 0,05 unité en abscisses, 1 cm pour 0,001 unité en ordonnées.

<u>Episode 4:</u> (15mm)

Soit a un réel, on désigne par f_a la fonction définie sur \mathbb{R} par $f_a(x) = e^{-x} + ax$. On note \mathbb{C}_a sa courbe représentative dans un repère orthonormé $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$.

- 1. Et dier les variations de f_a . Que lest l'ensemble A des valeurs de a pour lesquelles f_a présente un extremum?
- **2.** Pour tout $a \in A$, on désigne par I_a le point de \mathcal{C}_a correspondant à l'extremum. Déterminer en fonction de a les coordonnées de I_a .
- **3.** Démontrer que l'ensemble E des points I_a lorsque a décrit A, est la courbe représentative d'une fonction g que l'on déterminera.
- 4. Etudier les variations de g.

<u>Episode 5:</u> (15mm)

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{\frac{x}{x}}$ si x < 0f(x) = 0 si x > 0

1. f est-elle continue sur \mathbb{R} ?

- 2. f est-elle dérivable en 0.
- **3.** Etudier les variations de f.

4. a. Démontrer que $\lim_{r\to 0} \frac{e^{r}-1}{r} = 1$.

b. Démontrer que la droite d'équation y = x + 1 est asymptote à la courbe représentative de f.

<u>Episode 6:</u> (20mn)

Partie A: Etude d'une fonction

Soit f la fonction définie sur l'intervalle [0; $+\infty$ [par $f(x) = 0.5x + e^{-0.5x + 0.4}$.

- 1. Calculer f'(x) où f' désigne la fonction dérivée de f sur l'intervalle $[0; +\infty[$.
- 2. Etudier les variations de f sur l'intervalle $[0; +\infty[$ et vérifier que f admet un minimum en 0,8.

Partie B: Application economique

Une entreprise fabrique des objets. f(x) est le coût total de fabrication, en milliers d'euros, de x centaines d'objets. Chaque objet fabriqué est vendu $6 \in$.

- 1. Quel nombre d'objets faut-il produire pour que le coût total de fabrication soit minimum?
- **2.** Le résultat (recette moins coûts), en milliers d'euros, obtenu par la vente de x centaines d'objet est : R(x) = 0, $1x e^{-0.5x + 0.4}$.
 - **a.** Etudier les variations de R sur l'intervalle [0]; $+\infty$ [.
 - **b.** Montrer que l'équation R(x) = 0 a une unique solution α dans l'intervalle $[0; +\infty[$. Déterminer un encadrement de α à 10^{-2} près.
 - c. En déduire la quantité minimale d'objets à produire afin que cette entreprise réalise un bénéfice sur la vente des objets.

<u>Episode 7:</u> (20mn)

Soit la fonction f_n définie sur \mathbb{R} par $f_n(x) = e^{-nx^2}$ où n est un entier naturel strictement positif. On appelle \mathcal{C}_n la courbe représentative de f_n dans un repère orthonormé $\left(0, \overrightarrow{l}, \overrightarrow{j}\right)$.

- **1.** Etablir le tableau de variations de f_n .
- **2. a.** Montrer que la dérivée seconde de f_n s'annule pour deux valeurs opposées a_n et b_n . On note A_n et B_n les points de C_n d'abscisses respectives a_n et b_n .
 - **b.** Montrer que quand n varie dans \mathbb{N}^* , les points A_n et B_n restent sur une même droite.
 - c. Montrer que quand n varie dans \mathbb{N}^* , les tangentes en A_n et B_n à la courbe \mathbb{C}_n passent par un point fixe que l'on déterminera.
- **3.** Tracer les courbes \mathcal{C}_1 et \mathcal{C}_3 . On placera en particulier les points A_1 , B_1 , A_3 et B_3 .

<u>Episode 8:</u> (15mn)

Soit k un réel strictement positif. On considère les fonctions f_k définies sur $\mathbb R$ par :

$$f_k(x) = x + ke^{-x}.$$

On note C_k la courbe représentative de la fonction f_k dans un plan muni d'un repère orthonormé.

On a représenté ci-dessous quelques courbes C_k pour différentes valeurs de k.

Pour tout réel k strictement positif, la fonction f_k admet un minimum sur \mathbb{R} . La valeur en laquelle ce minimum est atteint est l'abscisse du point noté A_k de la courbe \mathcal{C}_k . il semblerait que, pour tout réel k strictement positif, les points A_k soient alignés.

Est-ce le cas?

<u> Episode 9:</u> (15mn)

Soient f et g les fonctions définies sur l'ensemble $\mathbb R$ des nombres réels par

On note \mathcal{C}_f la courbe représentative de la fonction f et \mathcal{C}_g celle de la fonction g dans un repère orthonormé du plan.

Pour tout réel a, on note M le point de \mathfrak{C}_f d'abscisse a et N le point de \mathfrak{C}_g d'abscisse a.

La tangente en M à \mathcal{C}_f coupe l'axe des abscisses en P, la tangente en N à \mathcal{C}_g coupe l'axe des abscisses en Q.

A l'aide d'un logiciel de géométrie dynamique, on a représenté la situation pour différentes valeurs de a et on a relevé dans un tableur la longueur du segment [PQ] pour chacune de ces valeurs de a.

		A B	
		A	ь
	1	Abscisse a	Longueur <i>PQ</i>
	2	-3	2
	√ 3	-2,5	2
	4	-2	2
	5	-1,5	2
	6	-1	2
	7	-0,5	2
	8	0	2
7	9	\0,5	2
	10	1	2
	11	1,5	2
	12	2	2
	13	2,5	2
	14		

Les questions 1 et 2 peuvent être traitées de manière indépendante.

- 1. Démontrer que la tangente en M à \mathcal{C}_f est perpendiculaire à la tangente en N à \mathcal{C}_g .
- **2. a.** Que peut-on conjecturer pour la longueur PQ?
 - b. Démontrer cette conjecture.

<u>Episode 10:</u> (25mn)

Un protocole de traitement d'une maladie, chez l'enfant, comporte une perfusion longue durée d'un médicament adapté. La concentration dans le sang du médicament au cours du temps est modélisée par la fonction C définie sur l'intervalle $[0; +\infty[$ par : $C(t) = \frac{d}{a} \left(1 - e^{-\frac{a}{80}t}\right)$ où :

- C désigne la concentration du médicament dans le sang, exprimée en micromole par litre,
- t le temps écoulé depuis le début de la perfusion, exprimé en heure,
- d le débit de la perfusion, exprimé en micromole par heure,
- a un paramètre réel strictement positif, appelé clairance, exprimé en litre par heure.

Le paramètre a est spécifique à chaque patient.

En médecine, on appelle « plateau » la limite en $+\infty$ de la fonction C.

Partie A: Etude d'un cas particulier

La clairance a d'un certain patient vaut 7, et on choisit un débit d égal à 84. Dans cette partie, la fonction C est donc définie sur $[0; +\infty[$ par : $C(t) = 12\left(1 - e^{-\frac{7}{80}t}\right)$.

- 1. Etudier le sens de variation de la fonction C sur $[0; +\infty[$.
- 2. Pour être efficace, le plateau doit être égal à 15. Le traitement de ce patient est-il efficace?

Partie B: Etude de fonctions

1. Soit f la fonction définie sur]0; $+\infty[$ par : $f(x) = \frac{105}{x} \left(1 - e^{-\frac{3}{40}x}\right)$. Démontrer que, pour tout réel x de]0; $+\infty[$, $f'(x) = \frac{105g(x)}{x^2}$, où g est la fonction définie sur [0; $+\infty[$ par :

 $g(x) = \frac{3x}{40}e^{-\frac{3}{40}x} + e^{-\frac{3}{40}x} - 15$

2. On donne le tableau de variations de la fonction g:

x	0	+∞
g(x)	0	-1

En déduire le sens de variation de la fonction f. On ne demande pas les limites de la fonction f.

3. Montrer que l'équation f(x) = 5,9 admet une unique solution sur l'intervalle [1; 80]. En déduire que cette équation admet une unique solution sur l'intervalle]0; $+\infty[$. Donner une valeur approchée de cette solution au dixième près.

FONCTIONS EXPONENTIELLES

Partie C: Détermination d'un traitement adéquat

Le but de cette partie est de déterminer, pour un patient donné, la valeur du débit de la perfusion qui permette au traitement d'être efficace, c'est-à-dire au plateau d'être égal à 15.

Au préalable, il faut pouvoir déterminer la clairance a de ce patient. A cette fin, on règle provisoirement le débit d à 105, avant de calculer le débit qui rende le traitement efficace.

On rappelle que la fonction C est définie sur l'intervalle $[0; +\infty[$ par :

$$\mathcal{C}(t) = \frac{d}{a} \left(1 - e^{-\frac{a}{80}t} \right)$$

- 1. On cherche à déterminer la clairance à d'un patient. Le débit est provisoirement réglé à 105.
 - **a.** Exprimer en fonction de *a* la concentration du médicament 6 heures après le début de la perfusion.
 - **b.** Au bout de 6 heures, des analyses permettent de connaître la concentration du médicament dans le sang; elle est égale à 5,9 micromole par litre.

 Déterminer une valeur approchée, au dixième de litre par heure, de la clairance de ce patient.
- 2. Déterminer la valeur du débit d' de la perfusion garantissant l'efficacité du traitement.

Le but du problème est l'étude d'une fonction g_k , où k est un réel fixe qui vérifie : 0 < k < e.

Partie A

Soit f la fonction de la variable réelle x définie sur \mathbb{R} par $f(x) = (2-x)e^x - k$.

- 1. Etudier les limites de f en $-\infty$ et en $+\infty$.
- **2.** Calculer f'(x). En déduire le tableau de variations de f. Calculer f(1)
- Etablir que l'équation f(x) = 0 a deux solutions, une notée α_k appartenant à l'intervalle] – ∞ ; 1 et une autre notée β_k appartenant à l'intervalle]1; + ∞ [.
 - **b.** Montrer que $e^{\alpha_k} k\alpha_k = (e^{\alpha_k} k)(\alpha_k 1)$. On démontrerait de même que β_k vérifie l'égalité $e^{\beta_k} - k\beta_k = (e^{\beta_k} - k)(\beta_k - 1)$.
- **4.** Préciser le signe de f(x) suivant les valeurs de x.

Partie B

- 1. Soit *u* la fonction de la variable réelle *x* définie sur \mathbb{R} par $u(x) = e^x kx$.
 - Etudier le sens de variation de u_{\star}
 - **b.** On rappelle que 0 < k < e. Justifier la propriété suivante : pour tout réel x, $e^x kx > 0$.
- **2.** Soit g_k la fonction définie sur \mathbb{R} par : $g_k(x) = \frac{1}{2}$

On note \mathcal{C}_k la courbe représentative de la fonction g_k dans le plan rapporté à un repère orthogonal.

- Déterminer la limite de g_k en $-\infty$ et en $+\infty$ Prouver que : $g'(x) = \frac{kf(x)}{}$
- Prouver que : $g'_k(x) = \frac{\kappa_J(x)}{(e^x kx)^2}$
- En déduire le tableau de variations de g_k . Calculer $g_k(1)$.
- 3. On nomme M_k et N_k les points de la courbe \mathcal{C}_k d'abscisses respectives α_k et β_k .
 - En utilisant la question **A.3.b**, montrer que $g_k(\alpha_k)$
 - Donner de même $g_k(\beta_k)$.
 - Déduire de la question précédente que lorsque k varie les points M_k et N_k sont sur une courbe fixe H dont on donnera une équation.
- **4.** Représentations graphiques pour des valeurs particulières de k:
 - Déterminer la position relative des courbes \mathcal{C}_1 et \mathcal{C}_2 .
 - b. Prouver que $\alpha_2 = 0$.
 - Construire les courbes C_1 , C_2 et H sur le même graphique.

<u>Crisode 12:</u> (30mm)

On considère la fonction f définie sur [0; 10] par $f(x) = \frac{e^x - 1}{xe^x + 1}$ On désigne par \mathbb{C} sa courbe représentative.

Partie A: Etude d'une fonction auxiliaire

Soit la fonction g définie sur l'intervalle [0; 10] par $g(x) = x + 2 - e^x$.

- 1. Etudier le sens de variation de g sur [0; 10].
- **2. a.** Montrer que l'équation g(x) = 0 admet une solution et une seule dans [0; 10]. On note α cette solution.
 - **b.** Prouver que 1, 14 < α < 1, 15.
- 3. En déduire le signe de g(x) suivant les valeurs de x.

Partie B : Etude de la fonction f et tracé de la courbe C

- 1. a. Montrer que, pour tout x appartenant à [0; 10], $f'(x) = \frac{e^x g(x)}{(xe^x + 1)^2}$.
 - **b.** En déduire le sens de variation de la fonction f sur [0; 10].
- **2.** a. Etablir que $f(\alpha) = \frac{1}{\alpha + 1}$.
 - **b.** En utilisant l'encadrement de α établi dans la question **A.2.**, donner un encadrement de $f(\alpha)$ d'amplitude 10^{-2} .
- 3. Déterminer une équation de la tangente (T) à la courbe \mathcal{C} au point d'abscisse 0.
- **4. a.** Etablir que, pour tout x appartenant à l'intervalle [0;10], $f(x) x = \frac{(x+1)u(x)}{xe^x + 1}$ $u(x) = e^x xe^x 1$.
 - **b.** Etudier le sens de variation de la fonction u sur l'intervalle [0; 10]. En déduire le signe de u(x).
 - **c.** Déduire des questions précédentes la position de la courbe c par rapport à la droite (T).

FONCTIONS EXPONENTIELLES

<u> Episode 13:</u> (35mm)

Partie A

Soit *g* la fonction définie sur \mathbb{R}_+^* par $g(x) = \frac{e^x - 1}{xe^{2x}}$

1. a. Etudier syr \mathbb{R} les variations de la fonction h définie par $h(x) = e^x - x - 1$.

b. En déduire que, pour tout $\alpha \in \mathbb{R}$, $e^{\alpha} > \alpha + 1$ (1).

2. a. En utilisant l'inégalité (1), démontrer que, pour tout x > 0, $e^{-2x} \le g(x)$.

b. Justifier l'écriture : $g(x) = e^{-x} \frac{1 - e^{-x}}{x}$. En déduire à l'aide de l'inégalité (1), que, pour tout x > 0, $g(x) \le e^{-x}$.

c. Déduire des questions précédentes que la fonction g est prolongeable par continuité au point d'abscisse x = 0.

3. a. Calculer la dérivée g' de g,

b. En utilisant l'inégalité (1), montrer que pour tout x > 0, $g'(x) \le -e^{-2x}$. En déduire le sens de variations de la fonction g.

Partie B

Soit f la fonction définie sur \mathbb{R}_+ par : f(0) = 1f(x) = g(x), pour x > 0

- 1. **a.** Justifier l'écriture, pour x > 0, $g(x) = e^{-\frac{3x}{2}} \times e^{\frac{x}{2}} e^{-\frac{x}{2}}$
 - **b.** Soit u la fonction définie sur \mathbb{R}_+ par $u(x) = e^{\frac{x}{2}} + e^{-\frac{x}{2}}$. Etudier le sens de variation de u.
 - **c.** Soit a un réel strictement positif. Démontrer que, pour tout réel t, tel que $0 \le t \le a$: $2 \le e^{\frac{t}{2}} + e^{-\frac{t}{2}} \le e^{\frac{a}{2}} + e^{-\frac{a}{2}}$.
 - **d.** En appliquant l'inégalité de la moyenne à la fonction u sur l'intervalle [0; a], démontrer que $1 \leqslant \frac{e^{\frac{a}{2}} e^{-\frac{a}{2}}}{a} \leqslant \frac{e^{\frac{a}{2}} + e^{-\frac{a}{2}}}{2}$ (2)
 - e. En déduire, à l'aide des inégalités (2), que pour tout $x \ge 0$: $e^{-\frac{3x}{2}} \le g(x) \le \frac{e^{-x} + e^{-2x}}{2}$
 - **f.** En utilisant les inégalités (3), étudier la limite de $\frac{g(x)-1}{x}$ lorsque x tend vers 0. En déduire que la fonction f est dérivable au point d'abscisse 0.
- 3. Soit $\mathbb D$ le domaine du plan délimité par la courbe $\mathbb C$, les axes du repère et la droite d'équation x=1. En utilisant les inégalités (3), donner un encadrement de l'aire $\mathcal A$ de $\mathbb D$.