

VECTOR SPACES AND SUBSPACES

3.1 Introduction

In the previous chapter (chapter -2) much has been discussed about two dimensional (plane) and three dimensional (space) vectors. The set of all these vectors under addition forms a commutative group. In algebra we know that the structure (F, +, .) is said to be a field if

- (i) F is a nonempty set
- (ii) F is a commutative group under addition +
- (iii) The set of all nonzero elements of F forms a commutative group under multiplication.
- (iv) Multiplication is distributive over addition.

The set of all real numbers R under ordinary addition and multiplication is a field i.e., (R, +, .) is a field.

With respect to a set of vectors we can have a field (F, +, .) such that the elements of F are regarded as scalars. For example with regard to the set of vectors $\mathbf{v}_2 = \{(\mathbf{x}_1, \mathbf{x}_2) \mid \mathbf{x}_1, \mathbf{x}_2 \in R\}$, we consider the real field (R, +, .) so that the elements of R (real number set) are regarded as scalars. In chapter – 2 we have discussed some properties of vectors under scalar multiplication (multiplication of a vector by a scalar)

In this chapter we extend the idea of vectors of two and three dimensions to higher dimension. An n-dimensional vector is $\mathbf{v} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n), \mathbf{x}_i \in F \ \forall i$. It has n components and each component \mathbf{x}_i is an element of a field. $\mathbf{v}_n = \{(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n), \mathbf{x}_i \in R \ \forall i\}$ is the set of all n-tuple of real numbers. Each vector of this set is an n-dimensional vector.

Taking into account the properties of vectors under addition and scalar multiplication we define a new structure called vector space.

3.2 Vectorspaces:

Definition: Let (F, +, .) be a field (whose elements will be termed as scalars). Let V be a non-empty set over which there is a binary operation called addition and a scalar multiplication with respect to F. Then V is said to be a **vector space** (or **linear space**) over F if following axioms are satisfied.

VA. (V, +) is an abelian group.

SM. The scalar multiplication (the multiplication of a vector by a scalar) satisfies:

- (a) $\alpha (u + v) = \alpha u + \alpha v$ and $(\alpha + \beta)u = \alpha u + \beta u$ for all scalars $\alpha, \beta \in F$ and all $u, v \in V$.
- (b) $\alpha(\beta u) = (\alpha \beta) u = \beta(\alpha u)$ for all scalars $\alpha, \beta \in F$ and all $u \in V$.
- (c) 1u = u for all $u \in V$.

Example 3.2.1: V_2 is a vector space over the field (R, +, .) of real numbers.

Proof: In chapter 2 we know that $(V_2, +)$ is an abelian group.

For all
$$\alpha, \beta \in R$$
 and $u, v \in V_2$
 $\alpha(u+v) = \alpha u + \alpha v, (\alpha+\beta) u = \alpha u + \beta u$
and $1.u = u$.

So V_2 is a vector space over R.

Similarly basing on the properties of vector addition and scalar multiplication mentioned in chapter 2 it is easy to show that V_3 is also a vector space over the field of real numbers.

Example 3.2.2: Let V_n be the set of all n-tuple of real numbers. Let us define addition and scalar multiplication on V_n as follows:

Addition – For
$$u = (x_1, x_2, ..., x_n),$$

 $v = (y_1, y_2, ..., y_n) \in V_n.$
 $u + v = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n) \in V_n$

This is called co-ordinatewise addition.

Scalar multiplication – If α be any scalar and $u = (x_1, x_2, ..., x_n) \in V_n$, then the scalar multiplication αu is defined as

$$\alpha u = (\alpha x_1, \alpha x_2, ... \alpha x_n)$$

This is called co-ordinatewise scalar multiplication

(i) Since for all $u, v \in V_n, u + v \in V_n, V_n$ is closed under addition.

(ii) For u, v, w ∈
$$V_n$$
 with
 $u = (x_1, x_2, ..., x_n),$
 $v = (y_1, y_2, ..., y_n)$ and
 $w = (z_1, z_2, z_n),$
 $u + (v + w)$

=
$$(x_1 + (y_1 + z_1), x_2 + (y_2 + z_2), ..., x_n + (y_n + z_n))$$

= $((x_1 + y_1) + z_1, (x_2 + y_2) + z_2, ..., (x_n + y_n) + z_n)$
[Since associative law under addition holds in R]
= $(u + v) + w$.

Hence associative law \cdot ader addition holds in V_n .

(iii) For
$$u = (x_1, x_2, ..., x_n, x_n)$$
,
 $v = (y_1, y_2, ..., y_n) \in V_n$,
 $u + v = (x_1 + y_1, x_1 + y_2, ..., x_n + y_n)$
 $= (y_1 + x_1, y_2 + x_2, ..., y_n + x_n)$
[: Commutative law under addition holds in R]

Hence commutative law under addition holds in V_n.

(iv) \exists zero vector $\theta = (0, 0, ..., 0) \in V_n$ such that for all $u = (x_1, x_2, ..., x_n) \in V_n$, $\theta + u = (0 + x_1, 0 + x_2, ..., 0 + x_n)$ $= (x_1, x_2, ..., x_n)$ $= (x_1 + 0, x_2 + 0, ..., x_n + 0)$

This shows that there exists additive identity 0 in V_n.

(v) For all
$$u = (x_1, x_2,...x_n) \in V_n$$

we find $-u = (-x_1, -x_2,..., -x_n) \in V_n$
such that $u + (-u) = (x_1 + (-x_1), x_2 + (-x_2),..., x_n + (-x_n))$
 $= (0, 0, ..., 0) = \theta$
Also $-u + u = (-x_1 + x_1, -x_2 + x_2,..., -x_n + x_n) = (0, 0, ...0, 0) = \theta$
So $u + (-u) = -u + u = \theta$.
 $-u$ is called additive inverse of u .

It exists for all $u \in V_n$.

 $= u + \theta$

Hence $(V_n, +)$ is a commutative group.

So the property VA holds.

Under scalar multiplication following properties holds. Here scalar is taken from the real field (R, +, .)

SM (a). For all
$$\alpha, \beta \in \mathbb{R}$$
, $u, v \in V_n$, with $u = (x_1, x_2, ..., x_n)$ and $v = (y_1, y_2, ..., y_n)$ $\alpha(u + v)$ $= \alpha(x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ $= (\alpha(x_1 + y_1), \alpha(x_2 + y_2), ..., \alpha(x_2 + y_2))$

```
=(\alpha x_1 + \alpha y_1, \alpha x_2 + \alpha y_2, ..., \alpha x_n + \alpha y_n)
=(\alpha x_1, \alpha x_2, ..., \alpha x_n) + (\alpha y_1, \alpha y_2, ..., \alpha y_n)
= \alpha u + \beta v
(\alpha + \beta)u
=((\alpha+\beta)x_1,(\alpha+\beta)x_2,...,(\alpha+\beta)x_n)
=(\alpha x_1 + \beta x_1, \alpha x_2 + \beta x_2, ..., \alpha x_n + \beta x_n)
=(\alpha x_1, \alpha x_2, ..., \alpha x_n) + (\beta x_1, \beta x_2, ..., \beta x_n)
= \alpha u + \beta v.
SM (b). For all \alpha, \beta \in \mathbb{R}, u = (x_1, x_2, ..., x_n) \in V_n,
(\alpha\beta)u = ((\alpha\beta)x_1, (\alpha\beta)x_2, ..., (\alpha\beta)x_n)
=(\alpha(\beta x_1), \alpha(\beta x_2), ..., \alpha(\beta x_n))
=\alpha(\beta x_1, \beta x_2, ..., \beta x_n)
=\alpha (\beta u)
                                  [Since associative law under multiplication holds in R].
Again \beta(\alpha u) = \beta(\alpha x_1, \alpha x_2, ..., \alpha x_n)
        = (\beta(\alpha x_1), \beta(\alpha x_2), ..., \beta(\alpha x_n))
        =((\beta\alpha) x_1, (\beta\alpha) x_2, ..., (\beta\alpha) x_n)
        =((\alpha\beta) x_1, (\alpha\beta) x_2, ..., (\alpha\beta) x_n)
        = (\alpha \beta) u
     So (\alpha\beta) u = \alpha(\beta u) = \beta(\alpha u)
```

SM (c): We take $l \in R$ and any $u = (x_1, x_2, ..., x_n) \in V_n$.

Then
$$1u = (1. x_1, 1. x_2, ..., 1. x_n) = (x_1, x_2, ..., x_n) = u$$

As per difinition, all the properties namely VA, VM (a), VM (b) and VM (c) are satisfied.

Thus V_n is a vector space over the field of real numbers, (R, +, .)

Some notations:

C [a, b] = The set of all real-valued continuous functions defined on the closed interval [a, b].

 $C^{(1)}[a,b]$ = The set of all real valued functions defined on [a, b] whose first derivatives are continuous on [a, b].

 $C^{(n)}[a,b]$ = The set of all real valued functions defined on [a,b] differentiable n times whose n-th derivatives are continuous. These functions are called n-times continuously differentiable functions.

 $C^{(\infty)}[a,b]$ = The set of all functions defined on [a, b] having derivatives of all orders on [a, b].

F(I) = The set of all real valued functions defined on the interval I.

P(I) = The set of all polynomials P with real co-efficients defined on the interval I.

Example 3.2.3: C [a, b] is a real vector space (a vector space over the field of real numbers) under point wise addition and scalar multiplication.

Proof - Point-wise addition:

For $f, g \in C[a, b]$, f + g is defined as $(f + g)(x) = f(x) + g(x) \forall x \in [a, b]$.

Pointwise Scalar multiplication:

For all $f \in C[a, b]$ and all scalars α ,

 α f is defined as $(\alpha f)(x) = \alpha f(x)$, $\forall x \in [a, b]$.

From calculus we know that the sum of two continuous functions is also a continuous function.

Such is the case in scalar multiple of a continuous function.

Let us verify the vector space properties for C [a, b],

Property VA:

(i) From above discussion we find

$$\forall f, g, h \in C[a, b], f + g \in C[a, b]$$

(ii) $\forall f, g, \in C[a, b],$

$$(f + (g + h))(x)$$
= $f(x) + (g + h)(x)$
= $f(x) + (g(x) + h(x))$
= $(f(x) + g(x)) + h(x)$

[: Associative law under addition holds in R]

=
$$(f+g)(x) + h(x)$$

= $((f+g)+h)(x)$ $\forall x \in [a,b].$
So $f+(g+h)=(f+g)+h.$

- ∴ Associative law under addition holds in C [a, b].
- (iii) $\forall f, g \in C[a, b],$

$$(f+g)(x)$$

= $f(x)+g(x)$
= $g(x)+f(x)$ [: Commutative law under addition holds in R].
= $(g+f)(x)$ $\forall x \in [a,b]$.
So $f+g=g+f$.

- : Commutative law under addition holds in C [a, b].
- (iv) From calculus we know that the function $\theta:[a,b] \to [a,b]$ defined by $\theta(x) = 0 \quad \forall \ x \in [a,b]$ is continuous.

So
$$\theta \in C[a, b]$$
.
 $\forall f \in C[a, b]$ we have $(\theta + f)(x)$
 $= \theta(x) + f(x) = 0 + f(x)$
 $= f(x) \quad \forall x \in [a, b]$.

Thus $\theta + f = f$.

Similarly $f + \theta = f$.

 θ is additive identity in C [a, b].

```
For any f \in C[a, b] we can find -f \in C[a, b] such that
(-f+f)(x) = -f(x)+f(x)
=0
               \forall x \in [a, b].
=\theta(x)
So - f + f = \theta
Similarly we can show f + (-f) = \theta
Thus -f + f = f + (-f) = \theta
       - f, additive inverse of f, exists in C [a, b].
From (i) to (v), we see that C [a, b] is a commutative group under addition.
SM (a): For all scalars \alpha, \beta and all f, g \in C[a, b],
               (\alpha(f+g))(x)
             =\alpha (f+g)(x)
             =\alpha(f(x)+g(x))
             = \alpha f(x) + \alpha g(x)
                                                         [Distributive law holds in R]
             = (\alpha f)(x) + (\alpha g)(x)
             =(\alpha f + \alpha g)(x)
                                            \forall x \in [a, b].
So \alpha(f+g) = \alpha f + \alpha g.
Again ((\alpha + \beta)f)(x)
             =(\alpha+\beta)f(x)
             =\alpha f(x) + \beta f(x)
                                                         [Distributive in R]
             =(\alpha f + \beta f)(x)
                                         \forall x \in [a, b].
So (\alpha + \beta) f = \alpha f + \beta f.
SM (b): For all scalars \alpha, \beta and any vector f \in C[a, b],
                ((\alpha\beta)f)(x)
             = (\alpha \beta) f(x)
             =\alpha(\beta f(x))
                                   [Associative law under multiplication in R]
             =\alpha(\beta f)(x)
                                      \forall x \in C[a, b].
So (\alpha\beta) f = \alpha (\beta f)
Again ((\alpha\beta) f)(x)
             = (\alpha \beta) f(x)
             = (\beta \alpha) f(x)
             =\beta(\alpha f(x))
                                   [Commutative law under multiplication]
              = (\beta(\alpha f))(x)
                                       \forall x \in C[a, b],
So (\alpha\beta) f = \beta (\alpha f).
\therefore (\alpha\beta) f = \alpha(\beta f) = \beta(\alpha f).
```

SM (c): For
$$l \in R$$
, for all $f \in C[a, b]$,
(1f) (x)
=1 f(x) [1 being multiplicative identity in R]
= f(x), $\forall x \in [a, b]$
So $l.f = f$.

Thus C [a, b] is a real vector space (a vector space over the field of real numbers).

Example 3.2.4: As in the previous example it can be shown that $C^{(1)}[a,b], C^{(n)}[a,b], C^{(\infty)}[a,b]$ are real vector spaces.

Example 3.2.5: The set of all polynomial P(I) with real co-efficients defined in the interval I is a real vector space.

Proof: First let us define addition and scalar multiplication in P(I) over R.

Addition: For
$$p, q \in P(I)$$
 with

$$\begin{aligned} p(x) &= a_0 + a_1 x + a_2 x^2 + ... + a_n x^n \\ q(x) &= b_0 + b_1 x + b_2 x^2 + ... + b_n x^n, x \in I, \\ (p+q)(x) &= p(x) + q(x) \\ &= (a_0 + b_0) + (a_1 + b_1) x + (a_2 + b_2) x^2 + ... + (a_n + b_n) x^n \end{aligned}$$

Thus p + q is also a polynomial defined on I.

Scalar multiplication:

For any scalar (a real number) α and any $p \in P(I)$ with

$$p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n,$$
We have $(\alpha p)(x)$

$$= \alpha p(x)$$

$$= \alpha (a_0 + a_1 x + a_2 x^2 + ... + a_n x^n)$$

$$= (\alpha a_0) + (\alpha a_1) x + (\alpha a_2) x^2 + ... + (\alpha a_n) x^n, x \in I$$

It is a polynomial of real co-efficients defined on I.

Let us verify vector space properties as follows.

Property VA:

- (i) Closure: By definition of addition, $\forall p, q \in P(I), p+q \in P(I)$
- (ii) Associative law:

$$\forall p, q, r \in P(I)$$
, with

$$p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

$$q(x) = b_0 + b_1 x + b_2 x^2 + ... + b_n x^n$$

$$r(x) = c_0 + c_1 x + c_2 x^2 + ... + c_n x^n, x \in I$$

$$(p+(q+r))(x)$$

$$= p(x)+(q+r)(x)$$

$$= p(x)+(q(x)+r(x))$$

$$= (a_0+(b_0+c_0))+(a_1+(b_1+c_1))x$$

$$+(a_2+(b_2+c_2))x^2+...+(a_n+(b_n+c_n))x^n.$$

$$= ((a_0+b_0)+c_0)+((a_1+b_1)+c_1)x$$

$$+((a_2+b_2)+c_2)x^2+...+((a_n+b_n)+c_n)x^n$$

$$= (p(x)+q(x))+r(x)$$

$$= ((p+q)+r)(x), x \in I.$$
So $p+(q+r)=(p+q)+r$.

(iii) Commutative law:

$$\begin{split} \forall \ p, q \in P(I) \ \text{with} \\ p(x) &= a_0 + a_1 x + ... + a_n \ x^n \\ q(x) &= b_0 + b_1 x + ... + b_n \ x^n, \ x \in I, \\ (p+q)(x) \\ &= p(x) + q(x) \\ &= (a_0 + b_0) + (a_1 + b_1) \ x + ... + (a_n + b_n) \ x^n \\ &= (b_0 + a_0) + (b_1 + a_1) \ x_1 + ... + (b_n + a_n) \ x^n \\ &= (q+p)(x), \qquad \forall \ x \in I \\ &= So \ p+q = q+p. \end{split}$$

(iv) Existence of additive identity:

 $\exists \theta$, a polynomial having zero coefficients in P(I) such that for all $p \in P(I)$ with

$$p(x) = a_0 + a_1x + ... + a_n x^n,$$

$$(\theta + p)(x)$$

$$= \theta(x) + p(x)$$

$$= 0 + p(x)$$

$$= p(x), \quad \forall x \in I.$$
So $\theta + p = p$.
Similarly $p + \theta = p$.
Thus $\theta + p = p + \theta = p$.
 θ is called additive identity.

```
(v) Existence of additive inverse:
```

$$\forall p \in P(I) \text{ with } p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n,$$
 there exists $-p \in P(I)$ where
$$-p(x) = (-a_0) + (-a_1)x + (-a_2)x^2 + ... + (-a_n)x^n$$
 such that
$$(p+(-p))(x)$$

$$= p(x) + (-p(x))$$

$$= (a_0 + (-a_0)) + (a_1 + (-a_1))x + (a_2 + (-a_2))x^2 + ... + (a_n + (-a_n))x^n$$

$$= 0 + 0x + 0x^2 + ... + 0x^n$$

$$= 0(x), \quad \forall x \in I.$$
 So $p + (-p) = 0$. Similarly $(-p) + p = 0$. Thus $p + (-p) = (-p) + p = 0$. $-p$ is called additive inverse of p . From (i) to (v) we see that $P(I)$ is a commutative group under addition. Under scalar multiplication following properties are satisfied. SM (a): Let α , β be scalars and $p, q \in P(I)$. Then
$$(\alpha(p+q))(x) = \alpha(p+q)(x) = \alpha(p+q)(x)$$

$$= \alpha(p(x) + \alpha(x) = \alpha(p(x) + \alpha(x)) = \alpha(p+q)(x), \quad \forall x \in I.$$
 So $\alpha(p+q) = \alpha p + \alpha q$. Again
$$((\alpha+\beta)p)(x) = (\alpha p + \beta p(x))$$
 (Distributive law)
$$= \alpha p(x) + \beta p(x)$$

$$= (\alpha p + \beta p)(x), \quad \forall x \in I.$$
 So
$$(\alpha+\beta)p = \alpha p + \beta p$$
. SM (b): Let α , β be any scalars and $p \in P(I)$.
$$((\alpha\beta)p)(x) = (\alpha\beta)p(x) = \alpha(\beta p(x)) = \alpha(\beta p(x)) = \alpha(\beta p(x)) = \alpha(\beta p(x), \quad \forall x \in I.$$
 So
$$(\alpha\beta)p = \alpha(\beta p)$$
.

```
\begin{split} &((\alpha\beta)p)\,(x)\\ &=(\alpha\beta)p(x)\\ &=(\beta\alpha)\,p(x)\\ &=\beta(\alpha p(x))\\ &=\beta\,(\alpha p)\,(x),\quad\forall\,\,x\in I.\\ So\,\,(\alpha\beta)\,p&=\alpha\,(\beta p)=\beta\,(\alpha p).\\ SM\,\,(c)\colon\exists\,scalar\,l\,\,such\,\,that\,\,for\,\,all\,\,p\in P\,\,(I),\\ &(1.p)\,(x)=1.p\,(x)\\ &=p(x),\quad\forall\,\,x\in P\,\,(I).\\ &So\,1.p=p \end{split}
```

Hence P(I) is a vector space over the real field.

Theorem 3.2.1: In any vector space V,

- (a) $\alpha\theta = \theta$ for every scalar α
- (b) $0u = \theta$ for every $u \in V$
- (c) (-1) u = -u for every $u \in V$

Proof:

(a)
$$\alpha\theta = \alpha (\theta + \theta)$$
 (θ being additive identy)

 $= \alpha\theta + \alpha\theta$ (by SM (a))

Now $\theta = -\alpha\theta + \alpha\theta$ [$-\alpha\theta$ being additive inverse of $\alpha\theta$]

 $= -\alpha\theta + (\alpha\theta + \alpha\theta)$ [$-\alpha\theta$ being additive inverse of $\alpha\theta$]

 $= (-\alpha\theta + \alpha\theta) + \alpha\theta$ [Associative law]

 $= \theta + \alpha\theta$ [$-\alpha\theta$ being additive inverse of $\alpha\theta$]

 $= \alpha\theta$ [θ being additive identity]

(b) $0u = (0+0)u$ (θ being additive identity in the scalar field)

 $= 0u + 0u$ [by SM (a)]

Adding $-(0u)$ on both sides, we get

 $\theta = -(0u) + (0u + 0u)$
 $= (-0u + 0u) + 0u$ (Associative laws)

 $= \theta + 0u$ [$-\theta$ being additive inverse of θ u]

 $= \theta$ [θ being additive identity of V]

(c) $(-1)u + u = (-1)u + 1.u$ [by SM (a)]

 $= (-1+1)u$ [by SM (a)]

 $= 0u$ [-1 being additive identity of 1]

 $= \theta$ (by (b))

So (-1) θ is additive inverse of θ u.

But $-\theta$ is additive inverse of θ u.

$$(-1) u = -u$$

Notation – It is convenient to write u - v in stead of u + (-v).

Problem Set 3 (A)

1. Let
$$u_1 = (2, 3, 1, 5)$$

 $u_2 = (1, 0, 4, 6)$
 $u_3 = (0, -1, -3, 4)$
 $u_4 = (2, 6, -1, 5)$

be vectors in V_4 .

Evaluate

(a)
$$u_1 - u_2$$

(b)
$$2u_1 - u_2 + 3u_4$$

(c)
$$u_1 + u_2 + 2u_3 + 5u_4$$

(d)
$$4u_1 + (2u_3 - u_4)$$

2. Let
$$u_1 = (1, 2, 4, 6, 8)$$

 $u_2 = (1, -1, 3, -2, -4)$
 $u_3 = (0, 1, 0, -1, 2)$
 $u_4 = (1, 1, -4, 3, 6)$
 $u_5 = (-1, 0, -2, 0, -3)$
be vectors of V_5 .

Evaluate:

(a)
$$u_1 + u_3 + u_5$$

(b)
$$u_2 + u_4 - u_3 - u_5$$

(c)
$$2u_1 - 3u_2 + 4u_3 - 5u_4$$

(d)
$$u_1 - 2u_2 + 3u_3 - 4u_5$$

3. Which of the following subsets of V₄ are are vector spaces for co-ordinate wise addition and scalar multiplication?

The set of all vectors $(x_1, x_2, x_3, x_4) \in V_4$ such that

(a)
$$x_4 = 0$$

(b)
$$x_1 = 1$$

(c)
$$x_3 > 0$$

(d)
$$x_4^2 \ge 0$$

(e)
$$x_1^2 < 0$$

(f)
$$3x_1 + 5x_3 = 0$$

(g)
$$x_1 + \frac{2}{3}x_2 - 3x_3 + x_4 = 1$$

4. Which of the following subsets of P are vector spaces?

The set of all polynomials p such that

- (a) degree of $p \le 4$
- (b) degree of $p \ge 5$
- (c) degree of p = 3
- (d) p(1) = 0

Copyright © 2008. Himalaya Publishing House. All rights reserved.

- (e) p(2) = 1
- (f) p'(1) = 0
- (g) p has integral co-efficients.
- (h) p has rational co-efficients.
- 5. Which of the following subsets of C [0, 1] are vector spaces? the set of all functions $f \in C[0,1]$ such that
 - (a) $f\left(\frac{1}{2}\right) = 0$

- (b) $f\left(\frac{3}{4}\right) = 1$
- (c) f'(x) = x f(x)
- (d) f(0) = f(1)
- (e) f(x) = 0 at finite number of points in [0, 1]
- (f) f has a local minima at $x = \frac{1}{4}$
- (g) f has a local extrema at $x = \frac{1}{2}$
- 6. In any vector space prove that $\alpha u = 0$ iff $\alpha = 0$ or u = 0.
- 7. Let R⁺ be the set of all positive real numbers. Define the operations of addition and scalar multiplication as follows:

$$u + v = u.v$$
 for all $u, v \in R^+$,

$$\alpha u = u^{\alpha}$$
 for all $u \in R^+$ and real scalar α

Prove that R⁺ is a real vector space.

- 8. Let V be a real vector space and X an arbitrary set. Let V^x be the set of all functions $f: X \to V$. Prove that V^x is a real vector space for pointwise addition and scalar multiplication.
- 9. If V is a vector space over the field F, then prove that
 - (i) u + (v u) = u
 - (ii) $\alpha u = 0 \Rightarrow \text{ either } \alpha = 0 \text{ or } u = \theta$
 - (iii) $\alpha u = \beta u \Rightarrow \alpha = \beta, u \neq 0.$
 - (iv) $\alpha u = \alpha v \Rightarrow u = v, \alpha \neq 0$. where $u, v \in V, \alpha, \beta \in F$.

3.3 Subspace:

3.3.1 Definition: A non-empty subset W of a vector space V over a field F is called a subspace of V if W is a vector space over the field F with respect to the same addition and scalar multiplication defined over V.

Example 3.3.1: Let W be the set of vectors of the form (x, 2x, 3x) in V_3 . Then W is a subspace of V_3 .

```
Proof: Let u = (x, 2x, 3x) and v = (y, 2y, 3y)
        and \alpha be any scalar (real number).
        Then u + v = (x + y, 2x + 2y, 3x + 3y) = (x + y, 2(x + y), 3(x + y))
        It is of the form (x, 2x, 3x).
        So u + v \in W.
            \alpha u = (\alpha x, 2\alpha x, 3\alpha x)
        This is also of the form (x, 2x, 3x)
        So \alpha u \in W.
        (0, 0, 0) is zero element (additive identity) of W is obtained taking x = 0,
        (x, 2x, 3x) = (0, 0, 0)
        For all scalars \alpha, \beta and u, v \in W,
        \alpha(u+v)
                     = \alpha (x + y, 2(x + y), 3(x + y))
                     =(\alpha(x+y), 2\alpha(x+y), 3\alpha(x+y))
        \alpha u + \alpha v = (\alpha x, 2\alpha x, 3\alpha x) + (\alpha y, 2\alpha y, 3\alpha y)
                   =(\alpha x + \alpha y, 2\alpha x + 2\alpha y, 3\alpha x + 3\alpha y)
                    =(\alpha(x+y), 2\alpha(x+y), 3\alpha(x+y))
        So \alpha(u+v) = \alpha u + \alpha v.
        Similarly (\alpha + \beta) u = \alpha u + \beta u can proved.
        \alpha(\beta u) = (\alpha \beta)u = \beta(\alpha u) can also be proved in the similar manner.
        Finally 1.u
                     =1(x,2x,3x)
                    =(1.x, 1.2x, 1.3x)
                    =(x, 2x, 3x)=u.
```

So W is a vector space with respect to addition and scalar multiplication defined on V₃.

Hence W is a subspace of V_3 .

Example 3.3.2: The set of all scalar multiples of a given element u_0 of a vector space V forms a subspace of V.

Proof: Let V be a vector space over the field F.

Let
$$W = \{\alpha u_0 \mid \alpha \in F\}$$

Clearly $W \subset V$ and $W \neq \phi$.

For $u, v \in W$, $u = \alpha_1 u_0$, $v = \alpha_2 u_0$,

for some $\alpha_1, \alpha_2 \in F$.

Then $u + v = \alpha_1 u_0 + \alpha_2 u_0 = (\alpha_1 + \alpha_2) u_0$ [vector space property SM(a)]

u + v is a scalar multiple of u_0 .

So $u + v \in W$.

So W is closed under addition.

Associative and commutative laws hold automatically.

Taking $\alpha = 0$, $\alpha u_0 = \theta \in W$.

 θ , the additive identy exists in W.

For $u \in W$, $u = \alpha u_0$

for some α .

Then $-u = -(\alpha u_0) = (-\alpha) u_0 \in W$

- u, the additive inverse of u exists in W. So W is a commutive group under addition.

Students should verify other properties under scalar multiplication.

Theorem 3.3.1: A non-empty subset S of a vector space V is a subspace of V iff following conditions are satisfied.

- (a) If $u, v \in S$, then $u + v \in S$
- (b) If $u \in S$ and α a scalars, then $\alpha u \in S$.

or

A non-empty subset S of a vector space V is a subspace of V iff it is closed under addition and scalar multiplication.

Proof: Condition necessary – Let S be a subspace of V. Then S is a vector space under the same operations as those of V. Hence S satisfies the conditions (a) and (b).

Condition sufficient – Let S be a non-empty subset of V satisfying the conditions (a) and (b).

For all $u \in S$, taking $\alpha = 0$,

$$\alpha u = \theta \in S$$
 (by condition (b))

Similarly for any $u \in S$, taking $\alpha = -1$,

$$\alpha u = (-1) u = -u \in S$$
 (condition (b))

Thus S is closed under addition, additive identy exists in S and the inverse of every element of S exists in S.

All other properties like commutative law, associative law under addition and SM (a), SM (b) and SM (c) are inherited from V.

Hence S is a subspace of V.

Example 3.3.3:
$$\{(x_1, x_2, x_3) | \frac{x_2}{x_3} = \sqrt{2} \}$$
 is not a subspace of V_3 .

Proof: Let
$$S = \{(x_1, x_2, x_3) | \frac{x_2}{x_1} = \sqrt{2} \}$$

Let
$$u=(x_1, x_2, x_3)$$
, $v=(y_1, y_2, y_3) \in S$ and α be any scalar.

Then
$$\frac{x_2}{x_3} = \sqrt{2}$$
 and $\frac{y_2}{y_3} = \sqrt{2} \implies x_2 = \sqrt{2} x_3, y_2 = \sqrt{2} y_3$

Now $u + v = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$.

$$\frac{x_2 + y_2}{x_3 + y_3} = \frac{\sqrt{2} x_3 + \sqrt{2} y_3}{x_3 + y_3} = \sqrt{2}$$

So u+v∈S

Again $\alpha u = (\alpha x_1, \alpha x_2, \alpha x_3)$

$$\frac{\alpha x_2}{\alpha x_3} = \frac{\sqrt{2} x_3}{x_3} = \sqrt{2}. \qquad (\alpha \neq 0)$$

So αu ∈ S

But for $\alpha = 0$, $\alpha u = (0, 0, 0) \notin S$ since $\frac{0}{0} \neq \sqrt{2}$.

Hence S is not a subspace of V₃.

Example 3.3.4: $S = \{p \in P \mid p(x_0) = 0\}$ is a subspace of P, the set of all polynomials with real coefficients.

Proof: Clearly $S \subset P$.

Let
$$p, q \in S$$

$$\Rightarrow p(x_0) = 0 = q(x_0)$$

$$\Rightarrow p(x_0) + q(x_0) = 0$$

$$\Rightarrow$$
 $(p+q)(x_0)=0$

$$\Rightarrow$$
 p+q \in S.

Again if α be any scalar,

$$(\alpha p)(x_0) = \alpha p(x_0)$$
$$= \alpha 0 = 0$$

 $\Rightarrow \alpha p \in S$.

Hence S is a subspace of P.

Example 3. 3. 5: $\{f \in C[a, b] | f'(x) = 0 \text{ for all } x \in (a, b)\}\$ is a subspace of C [a, b].

Proof: Let $S = \{ f \in C(a, b) | f'(x) = 0 \text{ for all } x \in (a, b) \}$

clearly $S \subset C(a, b)$

Let
$$f, g \in S$$

$$\Rightarrow f'(x) = 0, g'(x) = 0 \quad \forall x \in (a, b)$$

$$\Rightarrow f'(x) + g'(x) = 0 \quad \forall x \in (a, b)$$

$$\Rightarrow (f+g)'(x) = 0 \qquad \forall x \in (a,b)$$

$$\Rightarrow f + g \in S \qquad (\because f + g \in C(a, b))$$

Let α be any scalar and $f \in S$.

$$\Rightarrow f'(x) = 0 \quad \forall x \in (a, b).$$

$$\Rightarrow \alpha f'(x) = \alpha 0 = 0 \quad \forall x \in (a, b)$$

$$\Rightarrow (\alpha f)'(x) = 0 \qquad \forall x \in (a, b)$$

$$\Rightarrow \alpha f \in S$$
 $(\because \alpha f \in C(a, b))$

Hence S is a subspace of C (a, b).

Problem Set 3 (B)

1. Show that following subsets of V₃ are subspaces.

(a)
$$\{(x_1, x_2, x_3) | \sqrt{2} x_1 = \sqrt{3} x_2 \}$$

(b)
$$\{(x_1, x_2, x_3) | x_1 = \sqrt{2} x_2 \text{ and } x_3 = 3x_2 \}$$

(c)
$$\{(x_1, x_2, x_3) | x_1 = 2x_2 \text{ and } x_3 = 3x_2\}$$

(d)
$$\left\{ (x_1, x_2, x_3) \mid x_1 - 2x_2 = x_3 - \frac{3x_2}{2} \right\}$$

2. Show that following subsets of V_3 are not subspaces.

(a)
$$\left\{ (x_1, x_2, x_3) \middle| \frac{x_1}{x_2} = \sqrt{3} \right\}$$

(b)
$$\{(x_1, x_2, x_3) | x_1x_2 = 0\}$$

(c)
$$\{(x_1, x_2, x_3) | x_3 \text{ is an int eger} \}$$

(d)
$$\{(x_1, x_2, x_3) | x_1^2 + x_2^2 + x_3^2 \le 1\}$$

(e)
$$\{(x_1, x_2, x_3) | x_1 + x_2 + x_3 \ge 0\}$$

- 3. Show that following subsets of p are subspaces of P.
 - (a) $\{p \in P | \text{deg ree of } p \le 2\}$
 - (b) $\{p \in P \mid \text{deg ree of } p \le 4 \text{ and } p'(0) = 0\}$
 - (c) $\{p \in P | \text{deg ree of } p \leq 5\}$
 - (d) $\{p \in P | \text{deg ree of } p \text{ not exceeding } 3\}$
 - (e) $\{p \in P \mid p(1) = 0\}$
- 4. Prove that the following subsets are not subspaces of P?
 - (a) $\{p \in P \mid \text{deg ree of } p \ge 5\}$
 - (b) $\{p \in P \mid \text{deg ree of } p > 4\}$
 - (c) $\{p \in P \mid \text{deg ree of } p = 4\}$
 - (d) $\{p \in P \mid degree \text{ of } p \ge 4 \text{ and } \le 5\}$

Copyright © 2008. Himalaya Publishing House. All rights reserved.

- 5. Prove that the following sets are subspaces of C (a, b).
 - (a) $\{f \in C(a,b) | f(x_0) = 0, x_0 \in (a,b)\}$
 - (b) $\{f \in C(a,b) | f'(x) = x^2 f(x)\}$
 - (c) $\{f \in C(a,b) | 2f^{(i)}(x) + 3xf^{(i)}(x) f'(x) + x^2f(x) = 0\}$
 - (d) $\{f \in C(a,b) | \int_a^b f(x) dx = 0\}$
- 6. Prove that a non-empty set S is a sub space of a vector space V iff $\alpha u + \beta v = S$ for all $u, v \in S$ and all scalars α, β .
- 7. Let $W = \{(x_1, x_2, ..., x_n) \in V_n \mid x_1 = 0\}$

Prove that W is a subspace of V_n.

- 8. Prove that intersection of any two subspaces of a vector space is a subspace.
- 9. Prove that the intersection of a family of subspace of a vector space is a subspace.
- 10. Let W be the set of all vectors $(x_1, x_2, ..., x_n)$ of V_n satisfying the three equations:

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0$$

$$\beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n = 0$$

 $\gamma_1 x_1 + \gamma_2 x_2 + ... + \gamma_n x_n = 0$, is a subspace of V_n .

- 11. Find the intersection of the given sets U and W and determine whether it is a subspace:
 - (a) $U = \{(x_1, x_2) \in V_2 \mid x_1 \ge 0\}$ $W = \{(x_2, x_2) \in V_2 \mid x_1 \le 0\}$
 - (b) $U = \{ f \in C(-2, 2) \mid f(-1) = 0 \}$ $W = \{ f \in C(-2, 2) \mid f(1) = 0 \}$

(c)
$$U = \left\{ f \in C(-2, 2) \middle| \lim_{x \to 2} f(x) = 0 \right\}$$

 $W = \left\{ f \in C(-2, 2) \middle| \lim_{x \to 2} f(x) = 1 \right\}$

(d)
$$U = P, W = \{ f \in C(-\infty, \infty) | f(x) = f(-x) \}$$

3.4 Span of a set

In example 3.3.2 we see that the set of all scalar multiples of a given vector x_0 of a vector space V is a subspace of V. We denote it by $[x_0]$. A general version of the fact is given in the following definitions.

3.4.1 Definition: Let $u_1, u_2, ..., u_n$ be n vectors of a vector space V and $\alpha_1, \alpha_2, ..., \alpha_n$ be n scalars. Then $\alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n$ is called a linear combination of $u_1, u_2, ..., u_n$. It is also called a **linear combination** of the set $S = \{u_1, u_2, ..., u_n\}$. This being a linear combination of a finite set is also called a **finite linear combination**. There can be many linear combinations of a given set.

Copyright © 2008. Himalaya Publishing House. All rights reserved

3.4.2 Definition: (span) The span of a set S of a vector space V is the set of all finite linear combinations of S.

In otherwords if $S = \{u_1, u_2, u_n\}$ be a subset of V, the span of S denoted by [S] is given symbolically as

$$[S] = \{\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n \mid \alpha_1, \alpha_2, \dots \alpha_n \text{ any scalars and } u_1, u_2, \dots u_n \in S\}$$

Example 3.4.1: Let $V = V_3$, $S = \{(1, 0, 0), (0, 1, 0)\}$. Any finite combination of S is of the form $\alpha(1, 0, 0) + \beta(0, 1, 0) = (\alpha, \beta, 0)$

for any scalars α , β .

Thus the span of S is given by $[S] = \{(\alpha, \beta, 0) | \alpha, \beta \text{ any scalars}\}\$

It can be seen that [S] is a subspace of V₁. We shall prove this fact in the following theorem.

Theorem 3.4.1: Let S be a non-empty subset of a vector space V. Then [S], the span of S, is a sub space of V.

Proof: According to Theorem 3.3.1, it is sufficient to show that [S] is closed under addition and scalar multiplication.

Let $u, v \in [S]$, then $u = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n$

for some scalars α_i , some u_i 's \in S and a positive integer n

and $v = \beta_1 v_1 + \beta_2 v_2 + ... + \beta_m v_m$ for some scalars β_1 , some v_1 's $\in S$, and a positive integer m.

Hence $u + v = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n + \beta_1 v_1 + \beta_2 v_2 + ... + \beta_m v_m$.

This is again a finite linear combination of S and so $u + v \in [S]$.

Similarly $\alpha u = (\alpha \alpha_1) u_1 + (\alpha \alpha_2) u_2 + ... + (\alpha \alpha_n) u_n$.

This is again a finite linear combination of S. So $\alpha u \in [S]$.

Hence [S] is a sub space of V.

Note: A non-trivial subspace always contains an infinite number of elements. So $[S] (\neq V_0)$ always contains an infinite number of elements. If $S = \emptyset$, by convention, we take $[\emptyset] = V_0$.

Theorem 3.4.2: If S is a non-empty subset of a vector space V, then [S] is the smallest subspace of V containing S.

Proof: Clearly [S] is a subspace of V by Theorem 3.4.1. It contains S because any element u_0 of S can be written in the form $1.u_0$ which is a finite linear combination of S.

To prove that [S] is the smallest subspace containing S, we shall show that if there exists another subspace T containing S, then T contains [S].

Let T be a subspace containing S. We have to prove that $[S] \subset T$.

Let u∈[S]

- \Rightarrow $u = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n$ which α_i 's are scalars and u_i 's are vectors of S and n is a positive integer.
- ⇒ u is a finite linear combination of T

[Since $u, s \in S$ and $S \subset T, u, s \in T$]

 \Rightarrow u \in T [: T is a subspace of V] Hence proved. **Example 3.4.2:** Write the vector (2, -5, 3) as a linear combination of vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Solution:

Let
$$(2, -5, 3) = \alpha_1 (1, 0, 0) + \alpha_2 (0, 1, 0) + \alpha_3 (0, 0, 1)$$

 $\Rightarrow (2, -5, 3) = (\alpha_1, \alpha_2, \alpha_3)$
 $\Rightarrow \alpha_1 = 2, \alpha_2 = -5, \alpha_3 = 3$
So $(2, -5, 3) = 2(1, 0, 0) - 5(0, 1, 0) + 3(0, 0, 1)$

Example 3.4.3: Let $S = \{(1, 1, 2), (1, -1, 3), (2, 1, -4)\}$ determine whether $(2, -1, 3) \in [S]$.

Solution:

Let
$$(2, -1, 3) = \alpha (1, 1, 2) + \beta (1, -1, 3) + \gamma (2, 1, -4)$$

 $\Rightarrow (2, -1, 3) = (\alpha + \beta + 2\gamma, \alpha - \beta + \gamma, 2\alpha + 3\beta - 4\gamma)$
 $\Rightarrow \alpha + \beta + 2\gamma = 2, \alpha - \beta + \gamma = -1, 2\alpha + 3\beta - 4\gamma = 3$
 $\Rightarrow \alpha = \frac{16}{17}, \beta = \frac{28}{17}, \gamma = -\frac{5}{17}$

So $(2, -1, 3) = \frac{16}{17}(1, 1, 2) + \frac{28}{17}(1, -1, 3) + \left(\frac{-5}{17}\right)(2, 1, -4)$ a finite linear combination of

vectors of S.

Hence $(2, -1, 3) \in [S]$.

Example 3.4.4: Show that in V_2 ,

$$(1,3) \in [(1,2),(0,1)]$$
 but does not belong to $[(1,2),(2,4)]$.

Solution: Let
$$(1,3) = \alpha(1,2) + \beta(0,1)$$

$$\Rightarrow$$
 (1, 3) = $(\alpha, 2\alpha + \beta)$

$$\Rightarrow \alpha = 1, 2\alpha + \beta = 3$$

$$\Rightarrow \alpha = \beta = 1$$

Thus (1, 3) = 1.(1, 2) + 1.(0, 1)

Hence $(1,3) \in [(1,2),(0,1)]$

Further if $(1,3) \in [(1,2),(2,4)]$, then

$$(1,3) = \alpha (1,2) + \beta (2,4) = (\alpha + 2\beta, 2\alpha + 4\beta)$$

$$\Rightarrow \alpha + 2\beta = 1, 2\alpha + 4\beta = 3$$

The two equations are inconsistent.

Hence $(1,3) \notin [(1,2),(2,4)]$.

Example 3.4.5: In the vector space V_3 ,

Let
$$u_1 = (1, 2, 1), u_2 = (3, 1, 5), u_3 = (3, -4, 7)$$

 $S = \{u_1, u_2\} \text{ and } T = \{u_1, u_2, u_3\}$ Show that $[S] = [T]$

```
Proof: Let u \in [T].
         \Rightarrow u = \alpha u_1 + \beta u_2 + \gamma u_3 for some scalars \alpha, \beta, \gamma.
               Let u_3 = xu_1 + yu_2
          \Rightarrow (3, -4, 7) = x (1, 2, 1) + y (3, 1, 5)
          \Rightarrow (3, -4, 7) = (x + 3y, 2x + y, x + 5y)
          \Rightarrow x + 3y = 3, 2x + y = -4, x + 5y = 7
          \Rightarrow x = -3, y = 2
               So u_3 = -3u_1 + 2u_2.
          \therefore u = \alpha u_1 + \beta u_2 + \gamma (-3u_1 + 2u_2)
              = (\alpha - 3\gamma) u_1 + (\beta + 2\gamma) u_2.
                 This is a linear combination of u, and u<sub>2</sub>.
                  So u \in [S].
                                       T[T] \subseteq [S]
                                                                                   ... (a)
               Let u \in [S]
          \Rightarrow u = \alpha' u_1 + \beta' u_2
          \Rightarrow u = \alpha' u_1 + \beta' u_2 + \gamma' u_3
                                                     [\gamma' = 0]
          \Rightarrow u \in [T]
              So [S] ⊂ [T]
              From (a) and (b) we get
              [S] = [T]
```

Example 3.4.6: If S and T are subsets of a vector space V, then prove that

(a)
$$S \subset [T] \Rightarrow [S] \subset [T]$$

(b)
$$S \subset T \Rightarrow [S] \subset [T]$$

Proof: (a) Let S⊂[T]

To show that $[S] \subset [T]$

$$\Rightarrow u = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n$$
$$= \sum_{i=1}^n \alpha_i u_i, u_i 's \in S.$$

Since [T] is a subspace of V, u_i 's \in S, and S \subset [T], a finite linear combination of S belongs to [T].

Thus $u \in [T]$

This shows $[S] \subset [T]$.

(b) Let $S \subset T$. To show that $[S] \subset [T]$

Let $u \in [S]$

$$\Rightarrow u = \sum_{i=1}^{n} \alpha_{i} u_{i}, u_{i}'s \in S$$

$$\Rightarrow u \in [T]. \qquad [\because S \subset T, u_{i}'S \in T]$$

$$\therefore [S] \subset [T].$$

Sopyright © 2008. Himalaya Publishing House. All rights reserved

Problem Set 3 (C)

- Let $S = \{(1, 2, 1), (1, 1, -1), (4, 5, -2)\}$, Determine which of the following vectors are in [S].
 - (a) (0, 0, 0)
- (b) (1, 1, 0)
- (c) (2, -1, -8)

- (d) $\left(-\frac{1}{3}, -\frac{1}{3}, \frac{1}{3}\right)$
- (e) (1, 0, 1) (f) (1, -3, 5)
- 2. Let $S = \{x^3, x^2 + 2x, x^2 + 2, 1 x\}$. Determine which of the following polynomials are in [S].
 - (a) $2x^3 + 3x^2 + 3x + 7$ (b) $x^4 + 7x + 2$

 - (c) $3x^2 + x + 5$ (d) $x^3 \frac{3}{2}x^2 + \frac{x}{2}$
 - (e) 3x + 2
- (f) $x^3 + x^2 + 2x + 3$
- Write the following vectors as a linear combination of the vectors 3. (1, -3, 2), (2, -4, -1) and (1, -5, 1).
 - (a) (2, -5, 3)
- (b) (4, 3, 2)
- (c) (1, 2, 3)
- (d) (2, 1, 4)
- If S and T are subsets of a vector space V, then prove that
 - (a) S is a subspace of V iff [S] = S.
 - (b) [[S]] = [S]
 - (c) $[S \cup T] = [S] + [T]$
- Let v₁, v₂,..., v_n be n elements of a vector space V. then prove that
 - (a) $[v_1, v_2, ..., v_n] = [\alpha_1 v_1, \alpha_2 v_2, ..., \alpha_n v_n], \alpha_i \neq 0$
 - (b) $[v_1, v_2] = [v_1 v_2, v_1 + v_2]$
 - (c) If $v_k \in [v_1, v_2, ..., v_{k-1}]$, then $[v_1, v_2, ..., v_{k-1}, v_k, v_{k+1}, ..., v_n]$ $=[v_1, v_2, ..., v_{k-1}, v_{k+1}, ..., v_n]$
- 6. Let S be a non-empty subset of a vector space V and $u,v \in V$. If $u \in [S \cup \{v\}]$ but $u \notin [S]$, then prove that $v \in [S \cup \{u\}]$.

3.5 Addition of Sets

3.5.1 Definition (Addition of sets):

Let A and B be two subsets of a vector space V. Then the sum of A and B, written as A + B, is the set of all vectors of the form u + v, $u \in A$ and $v \in B$, i.e.,

$$A + B = \{u + v \mid u \in A, v \in B\}$$

Example 3.5.1: In V_2 let $A = \{(1, 2), (0, 1)\}$ and $B = \{(1, 1), (-1, 2), (-1$ (2, 5)}. Then

$$A + B = \{(1, 2) + (1, 1), (1, 2) + (-1, 2), (1, 2) + (2, 5), (0, 1) + (1, 1), (0, 1) + (-1, 2), (0, 1) + (2, 5)\}$$
$$= \{(2, 3), (0, 4), (3, 7), (1, 2), (-1, 3), (2, 6)\}$$

Example 3.5.2: In V_2 let $A = \{(2, 3)\}$, $B = \{t (3, 1) \mid t \text{ is a scalar}\}$

Then
$$A + B = \{(2, 3) + t(3, 1) | t \text{ is a scalar}\}$$

= $\{(2 + 3t, 3 + t) | t \text{ is a scalar}\}$

Geometrically this set consists of all points having co-ordinates (x, y)

where x = 2 + 3t, y = 3 + t.

Eleminating t we get $y-3=\frac{x-2}{3}$.

$$\Rightarrow x-3y+7=0$$

This shows that A + B represents a straight line in a plane.

Example 3.5.3: In V₃ let A = $\{\alpha(1, 2, 0) | \alpha \text{ a scalar}\}$

$$B = \{ \beta(0, 1, 2) | \beta \text{ a scalar} \}$$

Then
$$A + B = \{\alpha(1,2,0) + \beta(0,1,2) \mid \alpha, \beta \text{ scalar}\}\$$

= $\{(\alpha, 2\alpha + \beta, 2\beta) \mid \alpha, \beta \text{ scalars}\}\$

Geometrically A + B is the set of points (x, y, z) with

$$x = \alpha$$
, $y = 2\alpha + \beta$, $z = 2\beta$, α , β are scalars.

Eliminating α , β , we get

4x - 2y + z = 0. This represents a plane through origin.

Theorem 3.5.1: If U and W are two subspaces of a vector space V, then U + W is a subspace of V and $U + W = [U \cup W]$.

Proof: Clearly $U+W\subset [U\cup W]$, as each vector of U+W is a finite linear combination of $U\cup W$. Let us prove that $[U\cup W]\subset U+W$.

Let $v \in [U \cup W]$

$$\implies v = \sum_{i=1}^m \alpha_i \ u_i + \sum_{j=1}^n \beta_j \ w_j$$

 u_i 's $\in U$ and w_i 's $\in W$ α_i , β_i are scalars

$$\Rightarrow v = u + w$$

$$[u = \sum_{i=1}^{m} \alpha_i u_i \in U,$$

$$w=\sum_{j=1}^n\beta_jw_{_J}\!\in\,W$$

since U and W are subspaces]

 \Rightarrow v \in U + W

Hence $[U \cup W] \subset U + W$.

Thus $U + W = [U \cup W]$.

Since span of a subset of a vector space is its subspace, U + W is a subspace of V.

Note: U + W is the smallest subset of V containing $U \cup W$

Example 3.5.4: Let
$$V = V_3$$
, $U = x - axis$, and $W = y - axis$, i.e., $U = \{(u_1, 0, 0) | u_1 \text{ being any scalar}\}$ $W = \{(0, u_2, 0) | u_2 \text{ being any scalar}\}$ $U + W = \{(u_1, 0, 0) + (0, u_2, 0) | u_1, u_2 \text{ are scalars}\}$

This set represents xy-plane. i.e.,

 $[x-axis \cup y-axis] = x-axis + y-axis = xy-plane.$

3.5.2 Definition (Direct sum)

A vector space V is said to be a direct sum of its two subspaces U and W if V = U + W and $U \cap W = V_0 = [\theta]$

 $=\{(u_1, u_2, 0) | u_1, u_2 \text{ are scalars}\}\$

The direct sum of U and W is written as $U \oplus W$.

Example 3.5.5:

$$U = xy-plane = \{(x, y, 0) | x, y \in R\}$$

$$W = yz-plane = \{(0, y, z) | y, z \in R\}$$

U and W are two subspaces of V₃.

Any element $v \in V_3$ can be written as

$$v = (x, y, z)$$

$$= \left(x, \frac{y}{2}, 0\right) + \left(0, \frac{y}{2}, z\right)$$

$$= \mathbf{u} + \mathbf{w}$$

$$\begin{bmatrix} u = \left(x, \frac{y}{2}, 0\right) \in U \\ w = \left(0, \frac{y}{2}, z\right) \in W \end{bmatrix}$$

Thus
$$V_3 = U + W$$

 $U \cap W = xy - plane \cap yz - plane = y - axis \neq V_0$
 $V_3 \neq U \oplus W$

Note: We can also write

$$v = (x, y, z) = \left(x, \frac{2}{3}y, 0\right) + \left(0, \frac{1}{3}y, z\right)$$

i.e., in many ways we can express a vector of V_3 as a sum of a vector of U and a vector of W.

Example 3.5.6:

Let
$$U = zx - plane = \{(x, 0, z) | x, z \in R\}$$

 $W = y - axis = \{(0, y, 0) | y \in R\}$
Clearly $V_3 = U + W$

Again
$$U \cap W = zx - plane \cap y - axis = origin = V_0$$
.
So $V_3 = U \oplus W$.

Note:
$$V_3 = xy$$
-plane \oplus z-axis. $V_3 = yz$ -plane \oplus x-axis.

Copyright © 2008. Himalaya Publishing House. All rights reserved

Theorem 3.5.2: Let U and W be two subspaces of a vectorspace V and Z = U + W. Then $Z = U \oplus W$ iff any vector $z \in Z$ can be expressed uniquely as the sum z = u + w, $u \in U$, $w \in W$.

Proof: Condition necessary:

Let $Z = U \oplus W$

We have two show that any vector $z \in Z$ can be expressed uniquely as the sum z = u + w, $u \in U$, $w \in W$.

Since $Z = U \oplus W$, therefore Z = U + W.

Thus any vector $z \in Z$ can be expressed as z = u + w, $u \in U$ and $w \in W$.

Let us show that this representation of z is unique.

Suppose it is possible to have another representation

z = u' + w' for some $u' \in U$ and $w' \in W$.

Then u + w = u' + w'

 $\Rightarrow u-u'=w'-w$

But $u-u' \in U$ and $w'-w \in W$

Thus $u - u' = w' - w \in U \cap W = \{\theta\}$

$$\Rightarrow u - u' = w' - w = \theta$$
.

$$\Rightarrow$$
 u = u', w' = w.

Hence no other representation of z is possible. Thus the representation z = u + w is unique.

Condition sufficient:

Let Z = U + W and any vector $z \in Z$ has unique representation as z = u + w, $u \in U$ and $w \in W$. Let us show that $Z = U \oplus W$.

Since Z = U + W, only it remains to show that $U \cap W = V_0 = \{\theta\}$.

Let of possible $U \cap W$ contains a non-zero vector v. Then $v \in U$ and $v \in W$ and $v = v + \theta \in U + W$ with $v \in U$ and $\theta \in W$.

Also $v = \theta + v \in U + W$ with $\theta \in U$ and $v \in W$.

This shows that v has two representations in U + W. This contradicts our hypothesis that any vector of U + W has unique represention. So $U \cap W$ contains no non-zero vector. Hence $U \cap W = \{0\}$ and $Z = U \oplus W$.

3.5.3 Definition (Parallel):

If U is a subspace of a vector space V and v a vector of V, then $\{v\} + U$, also written as v + U, is called a translate of U (by v) or a parallel of U (through v) or a linear variety.

U is called the base space of the linear variety and v a leader.

Example 3.5.7:

Let $U = \{(x, y) \in V_2 \mid y = x\}$, a line through origin in V_2 .

Clearly U is a subspace of V₂.

Consider the point v = (1, 0)

Then
$$u + U = \{(x + 1, y) \in V_2 \mid y = x\}$$

= $\{(x, y) \in V_2 \mid y = x - 1\}$
= $\{(x, y) \in V_2 \mid y = x - 1\}$

This represents the line y = x - 1 which is parallel to the line y = x passing through (1, 0).

Example 3.5.8:

Let
$$U = \{(x, 0, z) \in V_3 \mid x, z \in R\}$$

This is y = 0 plane.

Consider the point

$$v = (1, 1, 1) \in V_3$$

$$(1, 1, 1) + U$$

$$= \{(x + 1, z + 1) \in V_3 \mid x, z \in R\}$$

$$= \{(x, 1, 2) \in V_3 \mid x, z \in R\}$$

$$= \{(x, 1, 2) \in V_3 \mid x, z \in R\}$$

This represents the plane y = 1 which is parallel to the plane y = 0.

Example 3.5. 9:

Describe A + B for the given subsets A and B for V_2 and determine whether it is a subspace or a parallel or just a subset of V_2 .

(a)
$$A = \{(1, 2), (0, 1)\}, B = \{(1, 0), (3, -1)\}$$

(b)
$$A = \{(2, 4)\}, B = \{(x, y) \mid 2x + 3y = 1\}$$

(c)
$$A = \{t (1, 0) \mid t \text{ a scalar}\}\$$

 $B = [(1, 2)]$

Solution:

(a) A + B = (2, 2), (1, 1), (4, 1), (3, 0) clearly it is a subset of V_2 .

This is also a non-trivial finite subset, hence it cannot be a subspace. Neither A nor B is a subspace. Thus it cannot be a parallel.

So A + B is just a subset.

(b)
$$A + B = \{(x + 2, y + 4) | 2x + 3y = 1\}$$

= $\{(x, y) | 2(x - 2) + 3(y - 4) = 1\}$ [$x = x + 2, y = y + 4$]
= $\{(x, y) | 2x + 3y = 17\}$

Since the lines 2x + 3y = 1 and 2x + 3y = 17 are parallel, A + B is a parallel with base B and leader A.

(c)
$$A = \{t (1, 0) \mid t \text{ a scalar}\}\$$
 $B = [(1, 2)] = \{t (1, 2) \mid t \text{ a scalar}\}\$
 $A + B = \{t_1(t, 0) + t_2(1, 2) \mid t_1, t_2 \text{ are scalars}\}\$
 $= \{(t_1 + t_2, 2t_2) \mid t_1, t_2 \text{ are scalars}\}\$
For $u, v \in A + B$,
 $u = (t_1' + t_2', 2t_2')$
 $v = (t_1'' + t_2'', 2t_2'')$
 $v + v = ((t + t_1''') + (t_2' + t_2'), \ 2(t_2' + t_2'')$
 $= (t_1 + t_2, 2t_2)$
 $[t_1 = t_1' + t_1'', \ t_2 = t_2' + t_2'']$

Thus $u + v \in A + B$ If α be a scalar,

$$\begin{aligned} \alpha u &= (\alpha(t_1' + t_2'), 2\alpha t_2') \\ &= (\alpha t_1' + \alpha t_2', 2\alpha t_2') \\ &= (t_1 + t_2, 2t_2). \end{aligned} \quad [t_1 = \alpha t_1', \ t_2 = \alpha t_2']$$

Thus $\alpha u \in A + B$

Hence A + B is a subspace of V_2 . Since x and y co-ordinates of A + B are arbitrary A + B = V_2 .

Example 3.5.10: Describe A + B for given subsets A and B of V_3 . Determine whether A + B is a subspace or a parallel or just a subset of V_3 .

(a)
$$A = \{(1, 2, 1)\}, B = \{t(1, 2, 0) \mid t \text{ a scalar}\}$$

(b)
$$A = [(1, 2, 3)], B = [(3, 1, 0)]$$

Solution:

(a)
$$A + B = \{(1 + t, 2 + 2t, 1) \mid t \text{ a scalar}\}\$$

 $Taking x = 1 + t, y = 2 + 2t, z = 1, we have$
 $2(x - 1) = y - 2, z = 1$ (Eliminating t)

This represents a straight line on z = 1 plane.

$$B = \{t (1, 2, 0) \mid t \text{ a scalar}\}\$$

= \{(t, 2t, 0) \setminus t \text{ a scalar}\}

Taking
$$x = t$$
, $y = 2t$, $z = 0$, and eliminating t we get $2x - y = 0$, $z = 0$.

This represents a straight line on z = 0 plane.

Clearly A + B is a parallel with base B and leader A.

(b)
$$A = [(1, 2, 3)]$$

 $= [t, (1, 2, 3) | t_1 a \text{ scalar}\}$
 $B = [(3, 1, 0)] = \{t_2 (3, 1, 0) | t_2 a \text{ scalar}\}$
 $A + B = \{t_1(1, 2, 3) + t_2 (3, 1, 0) | t_1 \text{ and } t_2 \text{ are scalars}\}$
 $= \{(t_1 + 3t_2, 2t_1 + t_2, 3t_1) | t_1, t_2 \text{ are scalars}\}$
Let $u, v \in A + B$

Then $u = (t_1' + 3t_2', 2t_1' + t_2', 3t_1')$ for some scalars t_1', t_2' .

$$\begin{aligned} \mathbf{v} &= (t_1 + 3t_2, 2t_1 + t_2, 3t_1) & \text{ for some scalars } t_1, t_2 \\ \mathbf{u} &+ \mathbf{v} &= (t_1 + 3t_2 + t_1 + 3t_2, 2t_1 + t_2 + 2t_1 + t_2, 3t_1 + 3t_1) \\ &= ((t_1 + t_1) + 3(t_2 + t_2), 2(t_1 + t_1) + (t_2 + t_2), 3(t_1 + t_1)) \\ &= (t_1 + 3t_2, 2t_1 + t_2, 3t_1) & [t_1 &= t_1 + t_1, t_2 &= t_2 + t_2, T] \end{aligned}$$

Thus $u + v \in A + B$

Again for some scalar α,

$$\alpha u = (\alpha(t_1' + 3t_2'), \alpha(2t_1' + t_2'), 3\alpha t_1')$$

$$= (\alpha t_1' + 3\alpha t_2', 2\alpha t_1' + \alpha t_2', 3\alpha t_1')$$

$$= (t_1 + 3t_2, 2t_1 + t_2, 3t_1)$$

$$[t_1 = \alpha t_1', t_2 = \alpha t_2']$$

Thus $\alpha u \in A + B$

Hence A + B is a subspace of V_3 .

Since x, y and z coordinates of elements of A + B are arbitrary, $A + B = V_3$.

Copyright © 2008. Himalaya Publishing House. All rights reserved

Problem Set 3 (D)

- 1. Describe A + B for the given subsets A and B of V_2 and determine in each case whether it is a subspace or a parallel or just a subset of V_2 .
 - (a) $A = \{(3, 4), (1, 1)\}$ $B = \{(1, -1), (2, 1)\}$
 - (b) $A = \{(1, -2), (5, 1)\}, B = \{(3, 5), (\frac{1}{2}, 3), (\sqrt{2}, \pi)\}$
 - (c) $A = \left\{ \left(\frac{1}{2}, \frac{2}{3} \right) \right\}$, B = Segment joining (1, 1) and (2, 3)
 - (d) $A = \{(2,3)\}, B = \{t(3,4) | 1 \le t \le 2\}$
 - (e) $A = \{(3,7)\}, B = \{t(-1,2) | 0 \le t \le 1\}$
 - (f) $A = \left\{ \left(\frac{1}{2}, 2 \right) \right\}, B = \left\{ t (3, 0) \mid t \ge 0 \right\}$
 - (g) $A = \{(1,5)\}, B = \{(x,y) | x^2 + y^2 = 1\}$
 - (h) $A = \{t(3, 4) | 0 \le t \le 1\}, B = \{t(2, 5) | 1 \le t \le 2\}$
 - (i) $A = \{t(1, 0) \mid 0 \le t \le 1\}, B = \{t(0, 1) \mid 2 \le t \le 4\}$
 - (j) A = line x = 3t, y = 4t, B = line 2x + 5y = 0
- 2. Describe A + B for the given subsets A and B of V_3 . Determine in each case whether A + B is a subspace or a parallel or just a subset of V_3 .
 - (a) $A = \{3, 1, -1\}, B = \{(x, y, z) | x + y + z = 0\}$
 - (b) $A = \{(1, -3, 4)\}, B = [(1, 2, 3), (0, 0, 1)]$
 - (c) $A = \left[\left(\frac{1}{2}, \frac{2}{3}, 1 \right) \right], B = Plane 2x + 3y + z = 0$
 - (d) A = [(5, 0, 2)], B = [(1, 2, 3), (0, 1, 2)]
 - (e) A = [(1, 0, -1)], B = [(2, 5, 8), (2, 3, 4)]

Copyright © 2008. Himalaya Publishing House. All rights reserved

3.6 Linear Dependence and Independence

3.6.1 Definition (Linear Dependence)

A finite set of vectors $\{u_1, u_2, ..., u_n\}$ is said to be linearly dependent (L.D.) if there exists scalars $\alpha_1, \alpha_2, ..., \alpha_n$ not all zero such that

$$\alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n = 0$$

Example 3.6.1: Prove that the vectors (1, 0, 1), (1, 1, 0) and (-1, 0, -1) are LD.

Proof: Let α , β , γ be scalars such that

$$\alpha(1, 0, 1) + \beta(1, 1, 0) + \gamma(-1, 0, -1) = (0, 0, 0)$$

$$\Rightarrow (\alpha + \beta - \gamma, \beta, \alpha - \gamma) = (0, 0, 0)$$

$$\Rightarrow \alpha + \beta - \gamma = 0, \beta = 0, \alpha - \gamma = 0$$

$$\Rightarrow \alpha = \gamma, \beta = 0$$

If $\alpha = \gamma = 1$, then

$$\alpha(1,0,1) + \beta(1,1,0) + \gamma(-1,0,-1) = (0,0,0)$$

So the given vectors are L.D. since the scalars α , γ are non-zero.

Alternative Method -

For scalars α , β , γ

$$\alpha(1,0,1) + \beta(1,1,0) + \gamma(-1,0,-1) = (0,0,0)$$

$$\Rightarrow$$
 $(\alpha + \beta + \gamma, \beta, \alpha - \gamma) = (0, 0, 0)$

$$\Rightarrow \alpha + \beta + \gamma = 0, \ \beta = 0, \ \alpha - \gamma = 0$$
 ...(1)

The determinant of co-efficients of α , β , γ is

$$\begin{vmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{vmatrix} = 0$$

So the system of equating (1) has non-zero solution.

Hence the given set of vectors is LD.

Example 3.6.2: Prove that the set of vectors $u_1 = (0, 2, -4)$, $u_2 = (1, -2, -1)$, $u_3 = (1, -4, 3)$ of V_3 are LD.

Proof: Let α , β , γ be scalars such that $\alpha u_1 + \beta u_2 + \gamma u_3 = 0$

$$\Rightarrow \alpha(0, 2, -4) + \beta(1, -2, -1) + \gamma(1, -4, 3) = (0, 0, 0)$$

$$\Rightarrow$$
 $(\beta + \gamma, 2\alpha - 2\beta - 4\gamma, -4\alpha - \beta + 3\gamma) = (0, 0, 0)$

$$\Rightarrow \beta + \gamma = 0$$
, $2\alpha - 2\beta - 4\gamma = 0$, $-4\alpha - \beta + 3\gamma = 0$

$$\Rightarrow \alpha = -\beta = \gamma$$

Taking a non zero value 1 for γ ,

i.e., taking
$$\alpha = 1$$
, $\beta = -1$, $\gamma = 1$, $\alpha u_1 + \beta u_2 + \gamma u_3 = 0$

So the set of vectors $\{u_1, u_2, u_3\}$ is LD.

Copyright © 2008. Himalaya Publishing House. All rights reserved.

3.6.2 Definition (Linear Independence)

A finite set of vectors $\{u_1, u_2, \dots u_n\}$ is said to be linearly independent (LI) if relation of the form,

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_n \mathbf{u}_n = \theta$$

$$\Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

where $\alpha_1, \alpha_2 \dots \alpha_n$ are scalars.

An infinite set is LI if every finite subset if it is LI.

By convention, the empty set is considered to be LI.

Example 3.6.3: Prove that the vectors (1, 0, 1), (1, 1, 0) and (1, 1, -1) are LI.

Proof: Consider a ralation of the form

$$\alpha(1, 0, 1) + \beta(1, 1, 0) + \gamma(1, 1, -1) = (0, 0, 0)$$

where α , β , γ are scalars.

Then
$$(\alpha + \beta + \gamma, \beta + \gamma, \alpha - \gamma) = (0, 0, 0)$$

$$\Rightarrow \alpha + \beta + \gamma = 0, \ \beta + \gamma = 0, \ \alpha - \gamma = 0$$

$$\Rightarrow \alpha = \beta = \gamma = 0$$

Hence by definition, the given vectors are LI.

Alternative Method:

For scalars α , β , γ ,

$$\alpha(1,0,1) + \beta(1,1,0) + \gamma(1,1,-1) = (0,0,0)$$

$$\Rightarrow (\alpha + \beta + \gamma, \beta + \gamma, \alpha - \gamma) = (0, 0, 0)$$

$$\Rightarrow \alpha + \beta + \gamma = 0, \beta + \gamma = 0, \alpha - \gamma = 0$$

The determinant of the coefficients of α , β , γ

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{vmatrix} = -1 \neq 0$$

So
$$\alpha = \beta = \gamma = 0$$

Hence given vectors are L.I.

Example 3.6.4: Prove that the system of vectors

$$u_1 = (0, 1; -2), u_2 = (1, -1, 1)$$
 and $u_3 = (1, 2, 1)$ are L.I.

Proof: For some scalars α , β , γ

Let
$$\alpha u_1 + \beta u_2 + \gamma u_3 = \theta$$

$$\Rightarrow \alpha(0,1,-2)+\beta(1,-1,1)+\gamma(1,2,1)=(0,0,0)$$

$$\Rightarrow$$
 $(\beta + \gamma, \alpha - \beta + 2\gamma, -2\alpha + \beta + \gamma) = (0, 0, 0)$

$$\Rightarrow \beta + \gamma = 0, \alpha - \beta + 2\gamma = 0, -2\alpha + \beta + \gamma = 0$$
 ...(1)

$$\Rightarrow \alpha = \beta = \gamma = 0$$

So u_1, u_2, u_3 are L.I.

Alternatively, the system equations (1) has unique (trivial) solution since the determinant of coefficients of α , β , γ is

$$\begin{vmatrix} 0 & 1 & 1 \\ .1 & -1 & 2 \\ -2 & 1 & 1 \end{vmatrix} = -6 \neq 0$$

Hence $\alpha = \beta = \gamma = 0$

So the given vectors are L.I.

Example 3.6.5: Prove that the vectors $(x_1, y_1), (x_2, y_2)$ in V_2 are linearly dependent iff $x_1y_2 - x_2y_1 = 0$.

Proof: For some scalars α , β , $\alpha(x_1, y_1) + \beta(x_2, y_2) = (0,0)$ $\Rightarrow (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2) = (0, 0)$ $\Rightarrow \alpha x_1 + \beta x_2 = 0$ $\alpha y_1 + \beta y_2 = 0$

This system has non-zero solution iff the determinant of the coefficients of α , β ,

$$\left| \begin{array}{cc} \mathbf{x}_1 & \mathbf{x}_2 \\ \mathbf{y}_1 & \mathbf{y}_2 \end{array} \right| = \mathbf{0}$$

 $\Rightarrow x_1y_2 - x_2y_1 = 0$

Hence proved.

Example 3.6.6: Check the linear dependence or linear independence of the following set of vectors.

$$\{(1,0,1),(1,1,0),(1,-1,1),(1,2,-3)\}$$

Solution : From some scalars α , β , γ , δ ,

let
$$\alpha(1, 0, 1) + \beta(1, 1, 0) + \gamma(1, -1, 1) + \delta(1, 2, -3) = (0, 0, 0)$$

$$\Rightarrow (\alpha + \beta + \gamma + \delta, \beta - \gamma + 2\delta, \alpha + \gamma - 3\delta) = (0, 0, 0)$$

$$\Rightarrow \alpha + \beta + \gamma + \delta = 0, \ \beta - \gamma + 2\delta = 0, \ \alpha + \gamma - 3\delta = 0$$

$$\Rightarrow \alpha = 5\delta$$
, $\beta = -4\delta$, $\gamma = -2\delta$ for each choice δ .

Taking $\delta = 1$, we obtain nonzero values of α , β , γ such as $\alpha = 5$, $\beta = -4$, $\gamma = -2$

so that
$$5(1,0,1) - 4(1,1,0) - 2(1,-1,1) + 1(1,2,-3) = (0,0,0)$$

Hence the given set of vectors is L.D.

Note: A set of more than 3 vectors of V, is always L.D.

Example 3.6.7 Check whether the set

$$\{e^x,e^{2x}\}$$
 in $C^{(\infty)}\left(-\infty,\infty\right)$ is L.D. or L.I.

Solution:

Suppose
$$\alpha e^x + \beta e^{2x} = 0$$
 (x) = 0 $\forall x \in C^{(\infty)}$ ($-\infty$, ∞)

on differentiation, (A)

$$\alpha e^{x} + 2\beta e^{2x} = 0$$
 (B)
Subtracting (A) from (B) we get

Subtracting (A) from (B), we get

$$\beta e^{2x} = 0$$

$$\Rightarrow \beta = 0 \qquad (\because e^{2x} \neq 0)$$

Putting $\beta = 0$ in (A), we get

$$\alpha e^{x} = 0$$

$$\Rightarrow \alpha = 0$$

$$\therefore \alpha = \beta = 0.$$

Hence the given set is L.I.

Example 3.6.8: Check the linear dependence or linear independence of the set $\{x, |x|\}$ in C(-1, 1)

Solution: Suppose $\alpha x + \beta |x| = 0$

Since |x| is not differentiable at zero, we cannot use the method used in Example 3.5.7. $\alpha x + \beta |x| = 0$ holds for all x in (-1, 1) choosing two different values of x,

say
$$x = \frac{1}{2}$$
, $x = -\frac{1}{2}$, we get
 $\frac{\alpha}{2} + \frac{\beta}{2} = 0$ and $-\frac{\alpha}{2} + \frac{\beta}{2} = 0$.

Solving these two equations we get $\alpha = \beta = 0$.

Hence the given set is LI.

3.6.3 Definition: Given a vector $v \neq \theta$, the set of all scalar multiples of v is called a line through v. Geometrically, in the cases of V_1 , V_2 and V_3 it is nothing but the straight line through origin and v.

Example 3.6.9:
$$S = \{t (1, 2, 3) \mid t \text{ any scalar}\}\$$

Here $(x, y, z) = t (1, 2, 3)$
 $\Rightarrow x = t, y = 2t, z = 3t$
 $\Rightarrow \frac{x}{1} = \frac{y}{2} = \frac{z}{3}$.

This represents a straight line in V₃.

So S represents a straight line in V, passing through origin.

Example 3.6.10:

$$S = \{v \mid v = (1, 1) \text{ and } t \text{ any scalar}\}.$$

$$= \{(t, t) \mid t \text{ is any scalar}\}$$

$$\text{Here } (x, y) = (t, t)$$

$$\Rightarrow x = y = t$$

$$\Rightarrow x = y$$

This represents equation of a straight line in V₂ through origin.

Hence S is a straight line through origin.

3.6.4 Definition: (Collinearity)

Two vectors v_1 and v_2 are collinear if one of them lies on the line through the other.

Example 3.6.11: The vectors v and 2v of a vector space V are collinear.

sin x, 2 sin x are collinear.

The facts sin x and cos x are not collinear since one is not a scalar multiple of other.

Copyright © 2008. Himalaya Publishing House. All rights reserved

3.6.5 Definition: Given two vectors v_1 and v_2 which are not collinear, their span, namely, $[v_1, v_2]$, is called the plane through v_1 and v_2 .

Geometrically, in the cases of V_2 and V_3 it is nothing but the plane passing through origin, v_1 and v_2 .

Example 3.6.12: The functions $\sin x$, $\cos x$ in F(I) are not collinear, because neither of the two lies in the line through the other. Their span, namely

 $[\sin x, \cos x] = {\alpha \sin x + \beta \cos x \mid \alpha, \beta \text{ any scalars}}$

is a plane through the vectors sin x and cos x.

3.6.6 Definition: Three vectors v_1 , v_2 and v_3 are **co-planar** if one of them lies in the plane through the other two.

Clearly, 0 is coplanar with every pair of non-collinear vectors.

Example 3.6.13: The functions $\sin x$, $\cos x$, $\tan x$ in F(I) are oviously not coplanar, because none of them lies in the plane through the other two. In other words, none of them can be expressed as a linear combinations of the other two.

Example 3.6.14: The functions $\sin^2 x$, $\cos^2 x$, $\cos 2x$ are coplanar. Because $\sin^2 x = -\cos 2x + \cos^2 x$, a linear combination of $\cos 2x$ and $\cos^2 x$.

(i.e. $\sin^2 x$ lies in the plane containing $\cos 2x$ and $\cos^2 x$).

Theorem 3.6.1: Let V be a vector space. Then

- (a) The set $\{v\}$ is LD iff $v = \theta$.
- (b) The set $\{v_1, v_2\}$ is LD iff v_1 and v_2 are collinear, i.e. one of them is a scalar multiple of the other
- (c) The set $\{v_1, v_2, v_3\}$ is LD iff v_1, v_2, v_3 are coplanar, i.e. one of them is a linear combination of the other two.

Proof:

- (a) $\{v\}$ is LD iff there exists a non zero scalar α such that $\alpha v = 0$. This is possible if $v = \theta$.
- (b) Suppose $\{v_1, v_2\}$ is LD.

Then these exists scalars α and β not both zero such that

$$\alpha u_1 + \beta v_2 = \theta$$
.

Suppose
$$\alpha \neq 0$$
. then $v_1 = -\frac{\beta}{\alpha} v_2$.

This means v_1 is a scalar multiple of v_2 , i.e., v_1 lies on the line through v_2 .

Hence v_1 and v_2 are collinear.

Conversely, if v_1 and v_2 are collinear, then $v_1 = \alpha v_2$ for some scalar α , i.e., $1.v_1 - \alpha v_2 = 0$. Hence v_1 and v_2 are LD.

(c) Let
$$\{v_1, v_2, v_3\}$$
 is LD.

$$\Rightarrow \alpha v_1 + \beta v_2 + \gamma v_3 = \theta$$

where α , β , γ are not all zero.

$$\Rightarrow v_1 = -\frac{\beta}{\alpha} v_2 - \frac{\gamma}{\alpha} v_3 \quad \text{(considering } \alpha \neq 0\text{)}$$

$$\Rightarrow v_1 \in [v_2, v_3]$$

 \Rightarrow v₁ lies in the plane through v₂ and v₃.

 \Rightarrow v_1, v_2, v_3 are coplanar.

Conversely, let v_1, v_2, v_3 are coplanar one of them, say $v_1 \in [v_2, v_3]$.

$$\Rightarrow$$
 $v_1 = \alpha_2 v_2 + \alpha_3 v_3$ for some scalars α_2 and α_3 .

$$\Rightarrow 1.v_1 - \alpha_2 v_2 - \alpha_3 v_3 = \theta$$

$$\Rightarrow$$
 v_1, v_2, v_3 are LD $(:1 \neq 0)$

Example 3. 6. 15: Consider three vectors (1, 1, 1), (1, -1, 1) and (3, -1, 3). It can be verified that they are LD and $1(1, 1, 1) + 2(1, -1, 1) - 1(3, -1, 3) = \theta$.

Hence by Theorem 3.6.1, the plane through (1, 1, 1) and (3, -1, 3) contains the point (1, -1, 1)

The plane through (1, 1, 1) and (3, -1, 3) is

$$[(1, 1, 1), (3, -1, 3)]$$

=
$$\{\alpha(1, 1, 1) + \beta(3, -1, 3) | \alpha, \beta \text{ any scalars} \}$$

=
$$\{(\alpha + 3\beta, \alpha - \beta, \alpha + 3\beta) \mid \alpha, \beta \text{ any scalars}\}\$$

This set contains (1, -1, 1) if $\alpha + 3\beta = 1$, $\alpha - \beta = -1$, $\alpha + 3\beta = 1$

$$\Rightarrow \alpha = -\frac{1}{2}, \beta = \frac{1}{2}$$

We could have proved this fact from the relation

$$1(1, 1, 1) + 2(1, -1, 1) - 1(3, -1, 3) = \theta$$

$$\Rightarrow$$
 $(1,-1,1) = -\frac{1}{2}(1,1,1) + \frac{1}{2}(3,-1,3)$

$$\Rightarrow$$
 $(1,-1,1) \in [(1,1,1),(3,-1,3)]$

Theorem 3.6.2: In a vector space V,

- (a) any set of vectors containing the zero vector is LD
- (b) if $v \in [v_1, v_2, ..., v_n]$, then $\{v_1, v_2, ..., v_n, v\}$ is L.D.
- (c) If the set $\{v_1, v_2, ..., v_n\}$ is L.I. and $v \notin [v_1, v_2, ..., v_n]$, then the set $\{v, v_1, v_2, ..., v_n\}$ is L.I.

Proof: (a) Let $\{v, v_1, ..., v_n\}$ be a set of vectors with $v_i = 0$

Then
$$0.\mathbf{v}_1 + 0.\mathbf{v}_2 + 0.\mathbf{v}_{1-1} + 1.\mathbf{v}_1 + 0.\mathbf{v}_{1+1} \dots + 0.\mathbf{v}_n = \mathbf{\theta}$$

Since one of the scalars of the left hand side is different from zero $(:1 \neq 0)$, the set is LD.

(b) let
$$v \in [v_1, v_2, ..., v_n]$$

$$\Rightarrow v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$$
 for some scalars $\alpha_1, \alpha_2, ... \alpha_n$.

$$\Rightarrow 1.v - \alpha_1 v_1 - \alpha_2 v_2 ... - \alpha_n v_n = 0$$

$$\Rightarrow$$
 {v, v₁, v₂,..., v_n} is L.D. (: the scalars $1 \neq 0$)

(c) The set $\{v_1, v_2, ..., v_n\}$ is LI and $v \notin [v_1, v_2, ..., v_n]$ Let us show that $\{v, v_1, v_2, ..., v_n\}$ is LI.

. Now suppose $\alpha v + \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = 0$...(1)

for some scalars α , α_1 , α_2 ,..., α_n .

If $\alpha \neq 0$, then

$$\mathbf{v} = \left(-\frac{\alpha_1}{\alpha}\right) \mathbf{v}_1 + \left(-\frac{\alpha_2}{\alpha}\right) \mathbf{v}_2 + \dots + \left(-\frac{\alpha_n}{\alpha}\right) \mathbf{v}_n$$

$$\Rightarrow \mathbf{v} \in [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$$

This contradicts our assumption.

Thus $\alpha = 0$. Putting this in (1) we get $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = \theta$

$$\Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0 \quad (\because v_1, v_2, \dots, v_n \text{ are LI})$$
Thus $\alpha = 0$ and $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$

This proves $\{v, v_1, ... v_n\}$ is LI.

Theorem 3.6.3: (a) If a set is LI, then any subset of it is LI

(b) If a set is LD, then any superset of it is LD.

Proof: (a) Let
$$A = \{v_1, v_2, ..., v_n\}$$
 be LI.

Let
$$S = \{v_1, v_2, ..., v_i\}$$
 $(i \le n)$

So that $S \subset A$.

Suppose for some scalars $\alpha_1, \alpha_2, ..., \alpha_i, \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_i v_i = \theta$

$$\Rightarrow \ \alpha_{1}v_{1}^{.}+\alpha_{2}v_{2}^{.}+...+\alpha_{i}v_{i}^{.}+0.v_{i+1}^{.}...+0.v_{n}^{.}=\theta$$

$$\Rightarrow \alpha_1 = \alpha_2 = ... = \alpha_i = 0$$
 (: A is LI).

Hence S is LI.

(b) Let $A = \{v_1, v_2, ..., v_n\}$ be LD set.

Suppose $S = \{v_1, v_2, ..., v_m\}$ $(n \le m)$ be show that S is LD.

Since A is LD, there exists scalars $\alpha_1, \alpha_2, ... \alpha_n$ not all zero such that

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \mathbf{0}.$$

$$\Rightarrow \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + ... + \alpha_n \mathbf{v}_n + \alpha_{n+1} \mathbf{v}_{n+1} + ... + \alpha_m \mathbf{v}_m = \mathbf{0}$$

[taking
$$\alpha_{n+1} = ... = \alpha_m = 0$$
]

Now since $\alpha_1, \alpha_2, ..., \alpha_{n+1}, ..., \alpha_m$ are not all zero, the set S is LD.

Theorem 3.6.4: The set of non-zero vectors $\{v_1, v_2, ..., v_n\}$ of a vector space V is L.D. iff one of them say $v_k, 2 \le k \le n$ can be expressed as a linear combination of the vectors which preced it. i.e., $v_k \in [v_1, v_2, ..., v_{k-1}]$.

Proof: Condition necessary -

Let the set of n vectors $\{v_1, v_2, ..., v_n\}$ is LD.

Then there exists scalars $\alpha_1, \alpha_2, ..., \alpha_n$ not all zero such that

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \theta \qquad \dots (1)$$

Let α_{ν} be the last non-zero co-efficient.

If
$$k = 1$$
, then $\alpha_1 v_1 = \theta$. But $\alpha_1 \neq 0$.

$$\therefore v_1 = \theta$$

This contradicts the fact that v₁'s are non zero vectors.

Thus $2 \le k \le n$.

By assumption of k, $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_k v_k = \theta$.

$$\Rightarrow v_k = \left(-\frac{\alpha_1}{\alpha_k}\right) v_1 + \left(-\frac{\alpha_2}{\alpha_k}\right) v_2 + \dots + \left(-\frac{\alpha_{k-1}}{\alpha_k}\right) v_{k-1}$$
$$\Rightarrow v_k \in \left[v_1, v_2, \dots, v_{k-1}\right]$$

Condition sufficient:

Let for some k with $2 \le k \le n$,

$$\begin{aligned} \mathbf{v}_{k} &\in [\mathbf{v}_{1}, \mathbf{v}_{2}, ..., \mathbf{v}_{k-1}] \\ \Rightarrow \mathbf{v}_{k} &= \alpha_{1} \mathbf{v}_{1} + \alpha_{2} \mathbf{v}_{2} ... + \alpha_{k-1} \mathbf{v}_{k-1} \\ \Rightarrow \alpha_{1} \mathbf{v}_{1} + \alpha_{2} \mathbf{v}_{2} + ... + \alpha_{k-1} \mathbf{v}_{k-1} + (-1) \mathbf{v}_{k} &= 0 \\ \Rightarrow \{\mathbf{v}_{1}, \mathbf{v}_{2}, ..., \mathbf{v}_{k}\} \text{ is L.D.} & (\because -1 \neq 0) \\ \Rightarrow \{\mathbf{v}_{1}, \mathbf{v}_{1}, ..., \mathbf{v}_{n}\} \text{ is L.D.} & [\because \text{ any superset of LD set is LD]} \end{aligned}$$

Corollary 3.6.5: A finite subset $S = \{v_1, v_2, ..., v_n\}$ of a vector space V containing a non-zero vector has a linearly independent subset A such that [A] = [S].

Proof: We assume $v_1 \neq 0$. If S is L.I, then there is nothing to prove, as we have A = S. If not, then by Theorem 3.6.4, there exists a vector v_k such that

$$v_k \in [v_1, v_2, ..., v_{k-1}].$$

Discard v_k . Then we get the set $S_1 = \{v_1, v_2, ..., v_{k-1}, v_{k+1}, ..., v_n\}$

We claim that $[S_1] = [S]$.

Let us justify this as follows.

Since $S_1 \subset S$,

 $[S_1] \subset [S]$

Let $v \in [S]$.

$$\Rightarrow v = \alpha_1 \ v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k + \dots + \alpha_n v_n \quad \dots (1)$$
Since $v_k = \beta_1 v_1 + \beta_2 v_2 \dots + \beta_{k-1} v_{k-1} \quad \dots (2)$
From (1) and (2) we get
$$v = \alpha_1 v_1 + \dots + \alpha_{k-1} v_{n-1} + \alpha_k \left(\beta_1 v_1 + \beta_2 v_2 \dots + \beta_{k-1} v_{k-1}\right) + \alpha_{k+1} v_{k+1} \dots + \alpha_n v_n$$

$$= (\alpha_1 + \alpha_k \beta_1) \ v_1 + \dots + (\alpha_{k-1} + \alpha_k \beta_{k-1}) \ v_{k-1} + \alpha_{k+1} v_{k+1} + \dots + \alpha_n v_n$$

$$\Rightarrow v \in [S_1].$$
So $[S] \subset [S_1]$
Hence $[S_1] = [S]$

If S_1 is LI, then can take $A = S_1$. So that [A] = [S].

If not, the repeat the foregoing process. Ultimately we get a linearly independent subset A of S such that [A] = [S].

Example 3.6.16: Show that the ordered set $\{(1, 1, 0), (0, 1, 1), (1, 0, -1), (1, 1, 1)\}$ is LD and locate one of this vectors that belongs to the span of the previous ones.

Solution: Consider the sets

$$\begin{split} \mathbf{S}_1 &= \{(1, 1, 0)\} \\ \mathbf{S}_2 &= \{(1, 1, 0), (0, 1, 1)\} \\ \mathbf{S}_3 &= \{(1, 1, 0), (0, 1, 1), (1, 0, -1)\} \\ \mathbf{S}_4 &= \{(1, 1, 0), (0, 1, 1), (1, 0, -1), (1, 1, 1)\} \end{split}$$

Clearly S, is LI since

a singleton set having a non-zero vector is LI.(Theorem 3.6.1)

Now
$$\alpha(1, 1, 0) + \beta(0, 1, 1) = (0, 0, 0)$$

 $\Rightarrow (\alpha, \alpha + \beta, \beta) = (0, 0, 0)$
 $\Rightarrow \alpha = \beta = 0$

So S, is alos LI.

Again
$$\alpha(1,1,0) + \beta(0,1,1) + \gamma(1,0,-1) = (0,0,0)$$

 $\Rightarrow (\alpha + \gamma, \alpha + \beta, \beta - \gamma) = (0,0,0)$
 $\Rightarrow \alpha + \gamma = 0, \alpha + \beta = 0, \beta - \gamma = 0$
 $\Rightarrow \beta = \gamma = -\alpha$

Taking $\alpha = 1$, we have $\beta = \gamma = -1$,

We get

$$1(1, 1, 0) - 1(0, 1, 1) - 1(1, 0, -1) = (0, 0, 0)$$

So S₃ is LD.

Also
$$(1, 0, -1) = 1 (1, 1, 0) - 1 (0, 1, 1)$$

 $\Rightarrow (1, 0, -1) \in [(1, 1, 0), (0, 1, 1)]$

If we take

$$S_4 = \{(1, 1, 0), (0, 1, 1), (1, 0, -1), (1, 1, 1)\},\$$

Then S_4 is LD since $S_4 \supset S_3$. (Theorem 3.6.3)

Example 3.6.17: Find the largest linearly independent subset whose span is S_4 in Example 3.6.16 **Solution:** In Example 3.6.16 we have shown that $(1, 0, -1) \in [(1, 1, 0), (0, 1, 1)]$

$$\Rightarrow$$
 $(1,0,-1) \in [(1,1,0),(0,1,1),(1,1,1)]$

Discard (1, 0, -1).

Then the span of the remaining set $A = \{(1, 1, 0), (0, 1, 1), (1, 1, 1)\}$ is same as $[S_4]$. Let us check for the linear independence of A.

Suppose
$$\alpha(1,1,0) + \beta(0,1,1) + \gamma(1,1,1) = (0,0,0)$$

 $\Rightarrow (\alpha + \gamma, \alpha + \beta + \gamma, \beta + \gamma) = (0,0,0)$
 $\Rightarrow \alpha + \gamma = 0, \alpha + \beta + \gamma = 0, \beta + \gamma = 0$
 $\Rightarrow \alpha = \beta = \gamma = 0.$

Hence A is the largest LI subset of S_4 such that $[A] = [S_4]$

3.6.7 Definition: An infinite subset S of a vector space V is said to be linearly independent (LI) if every finite subset of S is LI.

S is said to be linearly dependent (LD) if it is not LI.

Example 3.6.18: The subset $S = \{1, x, x^2,...\}$ of P is L.I. where P is the set of all polynomials with real co-efficients.

Proof: Suppose $\alpha_1 x^{k_1} + \alpha_2 x^{k_2} + ... + \alpha_n x^{k_n} = \theta$ with $k_1, k_2, ..., k_n$ being distinct non-negative integers.

This equality is an algebraic identity since the right hand side is the zero polynomial. So either by giving various values to x or by repeated differentiation of both sides of the identity, we get

$$\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$
.

Example 3.6.19: If u_1, u_2 are vectors of a vector space V and a, b are scalars, then the set $\{u_1, u_2, au_1 + bu_2\}$ is L.D.

Proof: We can take $\alpha_1 = -a$,

$$\alpha_2 = -b$$

$$\alpha_3 = 1$$

So that $\alpha_1 u_1 + \alpha_2 u_2 + 1.(a u_1 + b u_2)$ = $-au_1 - bu_2 + au_1 + bu_2 = \theta$.

Since α_1 , α_2 , α_3 are not all zero the set $\{u_1, u_2, au_1 + bu_2\}$ is LD.

Example 3.6.20 : Test whether the set $\left\{x^2-4, x+2, x-2, \frac{x^2}{3}\right\}$ in P is L.D.

Solution: Taking $\alpha = 1$, $\beta = 1$, $\gamma = -1$ and $\delta = -3$, we get

$$\alpha(x^2-4)+\beta(x+2)+\gamma(x-2)+\delta\frac{x^2}{3}=0$$

Since α , β , γ , δ are non-zero the given set is L.D.

Problem Set 3 (E)

- 1. Which of the following set of vectors of V₃ are L.I?
 - (a) $\{1, 2, 1\}, (-1, 1, 0), (5, -1, 2)\}$
 - (b) $\{(1,0,0),(1,1,1),(1,2,3)\}$
 - (c) $\{(1, 1, 2), (-3, 1, 0), (1, -1, 1), (1, 2, -3)\}$
 - (d) $\{(1,5,2),(0,0,1),(1,1,0)\}$

- 2. Which of the following sets of vectors of V₄ are L.D?
 - (a) $\{(1,0,0,0),(1,1,0,0),(1,1,1,1),(0,0,0,1),(2,1,-1,0)\}$
 - (b) $\{(1,-1,2,0),(1,1,2,0),(3,0,0,1),(2,1,-1,0)\}$
 - (c) $\{(1, 1, 1, 0), (3, 2, 2, 1), (1, 1, 3, -2), (1, 2, 6, -5), (1, 1, 2, 1)\}$
 - (d) $\{(1, 2, 3, 0), (-1, 7, 3, 3), (1, -1, 1, -1)\}$
- 3. Which of the following subsets of S of P are L.I?
 - (a) $S = \{x^2 1, x + 1, x 1\}$
 - (b) $S = \{1, x + x^2, x x^2, 3x\}$
 - (c) $S = \{x, x^3 x, x x^2, x + x^2 + x^4 + \frac{1}{2}\}$
 - (d) $S = \{x^2, x^3 + 1, x^4\}$
- 4. Which of the following subsets S of $C(0, \infty)$ are L.I?
 - (a) $S = \{x, \sin x, \cos x\}$
- (b) $S = \{\sin^2 x, \cos 2x, 1\}$
- (c) $S = \{\sin x, \cos x, \sin (x + 1)\}$
- (d) $S = \{lnx, lnx^2, ln x^3\}$
- (e) $\{n^2 e^n, n e^x, (x^2 + x 1) e^x\}$
- 5. Show that the set $S = \{\sin x, \sin 2x, ..., \sin nx\}$ is a linearly independent subset of $C[-\pi, \pi]$ for every positive integer n.
- 6. If u, v, w are three linearly independent vectors of a vector space V, then prove that u + v, v + w and w + u are also L.I.

3.7. Dimension and Basis

- **3.7.1. Definition**: (Basis) A subset B of a vector space V is said to be a basis for v if
 - (a) B is L.I and
 - (b) [B] = V, i.e. B generates V.

Example 3.7.1: Let
$$V = V_1$$
, $B = \{i, j, k\}$

where
$$i = (1, 0, 0), j = (0, 1, 0)$$
 and $k = (0, 0, 1)$
Now $\alpha i + \beta j + \gamma k = (0, 0, 0)$
 $\Rightarrow \alpha (1, 0, 0) + \beta (0, 1, 0) + \gamma (0, 0, 1) = (0, 0, 0)$
 $\Rightarrow (\alpha, \beta, \gamma) = (0, 0, 0)$
 $\Rightarrow \alpha = \beta = \gamma = 0$

So B is L.I.

Let
$$u = (x_1, x_2, x_3) \in V$$
.

$$\Rightarrow u = x_1 i + x_2 j + x_3 k$$

$$\Rightarrow u \in [B].$$

So $V \subset [B]$

Hence [B] = V.

By definition B is a basis of V_3 .

Note: It can be shown that $B = \{i, j\}$ where i = (1, 0), j = (0, 1) forms a basis of V_2 .

Example 3.7.2 : Show that
$$B_i = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$$
 is a basis of V_3 .

Proof : Now $\alpha(1, 1, 0) + \beta(1, 0, 1) + \gamma(0, 1, 1) = (0, 0, 0)$

$$\Rightarrow (\alpha + \beta, \alpha + \gamma, \beta + \gamma) = (0, 0, 0)$$

$$\Rightarrow \alpha + \beta = 0, \alpha + \gamma = 0, \alpha + \gamma = 0$$

$$\Rightarrow \alpha = \beta = \gamma = 0$$
So B_i is L.I.
Let $u = (x_i, x_2, x_3) \in V_3$.
Let $u = \alpha(1, 1, 0) + \beta(1, 0, 1) + \gamma(0, 1, 1) = (\alpha + \beta, \alpha + \gamma, \beta + \gamma)$

$$\Rightarrow (x_i, x_2, x_3) = (\alpha + \beta, \alpha + \gamma, \beta + \gamma)$$

$$\Rightarrow \alpha + \beta = x_i, \alpha + \gamma = x_2, \beta + \gamma = x_3$$

$$\Rightarrow \alpha = \frac{x_1 + x_2 - x_3}{2}, \quad \beta = \frac{x_1 + x_3 - x_2}{2}, \quad \gamma = \frac{x_2 + x_3 - x_1}{2}$$
Thus $u = (x_1, x_2, x_3) = \left(\frac{x_1 + x_2 - x_3}{2}\right)(1, 1, 0) + \left(\frac{x_1 + x_3 - x_2}{2}\right)(1, 0, 1) + \left(\frac{x_2 + x_3 - x_1}{2}\right)(0, 1, 1)$

Hence $[B_1] = V_3$.

So B_1 is a basis of V_3 .

Note: Examples 3.7.1. and Example 3.7.2 show that V_3 has two different bases. There can be more than that. From this we infer that the basis of a vector space V need not be unique.

Example 3.7.3: Prove that the set $S = \{(1, 0, 0), (1, 1, 0), (1, 1, 1), (0, 1, 0)\}$ spans V_3 but is not a basis.

```
Proof: Let (x_1, x_2, x_3) \in V_3 and that
                      (x_1, x_2, x_3) = \alpha (1, 0, 0) + \beta (1, 1, 0) + \gamma (1, 1, 1) + \sigma (0, 1, 0)
             \Rightarrow (x_1, x_2, x_3) = (\alpha + \beta + \gamma, \beta + \gamma + \delta, \gamma)
             \Rightarrow x<sub>3</sub> = \gamma, \alpha + \beta + \gamma = x_1, \beta + \gamma + \delta = x_2
         Choosing \delta = 0, we get \beta = x_2 - x_3, \gamma = x_3, \alpha = x_1 - x_2
          Thus (x_1, x_2, x_3) = (x_1 - x_2)(\bar{1}, 0, 0) + (x_2 - x_3)(\bar{1}, 1, 0)
                                                               + x, (1, 1, 1) + 0 (0, 1, 0)
         Hence V_1 \subset [S]
          But [S] \subset V_3. Since V_3 is a vector space.
          So V_3 = [S].
          Again \alpha(1,0,0) + \beta(1,1,0) + \gamma(1,1,1) + \delta(0,1,0) = (0,0,0)
                          \Rightarrow (\alpha + \beta + \gamma, \beta + \gamma + \delta, \gamma) = (0, 0, 0)
                         \Rightarrow \alpha + \beta + \gamma = 0, \beta + \gamma + \delta = 0, \gamma = 0
                         \Rightarrow \alpha = \beta = \delta, \gamma = 0
          Putting \delta = 1, we get \alpha = 1, \beta = -1
          Thus 1(1, 0, 0) + (-1)(1, 1, 0) + 0(1, 1, 1) + 1(0, 1, 0) = (0, 0, 0)
          So S is LD.
          So S is not a basis.
```

Dash, R. B., & Dalai, D. K. (2008). Fundamentals of linear algebra. Himalaya Publishing House. Created from think on 2025-09-27 23:27:03.

3.7.2. Definition (Dimension)

If a vector space V has a basis consisting of a finite number of elements, the space is said to be finite dimensional. The number of elements in a basis is called the dimension of the space and is written as dim V.

If dim V = n, then V is said to be n-dimensional.

If V is not finite-dimensional, it is called infinite-dimensional.

If $V = V_0 = \{\theta\}$, its dimension is said to be zero.

The following theorem shows that if a set B of n elements generates V, then no linearly independent set can have more than n vectors.

Theorem 3.7.1: In a vector space V if $\{v_1, v_2, ..., v_n\}$ generates V and if $\{w_1, w_2, ..., w_m\}$ is L.I, then $m \le n$.

Proof: Let us construct the set $S_1 = \{w_m, v, v_2, ..., v_n\}$.

S, has following properties.

- (i) $[S_1] = V$ since $\{v_1, v_2, ... v_n\}$ spans V and $w_m \in V$.
- (ii) S_1 is LD since $W_m \in V = [v_1, v_2, ..., v_n]$.
- (iii) $w_m \neq 0$ (: no vector of a LI set is zero) By Theorem 3.6.4 there exists a vector v_i with $2 \le i \le n$ such that $v_i \in [w_m, v_1, v_2, ..., v_{i-1}]$.

Let
$$S_1' = S_1 - v_i = \{w_m, v_1, v_2, ..., v_{i-1}\}$$

Also
$$[S_i'] = V$$

Now consider the set

$$S_2 = W_{m-1} S_i' = \{W_{m-1}, W_m, V_1, V_2, ..., V_{i-1}\}$$

since
$$[S_1'] = V$$
, $[S_2] = V$.

Further, S, is LD,

since
$$w_{m-1} \in V = [S_1]$$
 and $w_{m-1} \neq 0$.

Therefore, by another application of Theorem 3.5.10, we form S_2 'like S_1 '. Then construct the set $S_3 = w_{m-2} S_2$ ' and continue the process of constructing new sets S and S'. Since the set of w's is LI and every time the discarded element must be a v.

If all the w's are used up in this process, then $m \le n$. Otherwise the set $\{w_{m-n}, w_{m-n+1}, ..., w_{m-1}, w_m\}$ would be LD. This contradicts the linear independence of w's.

Carollary 3.7.2: If V has a basis of n elements, then every set of p vectors with p > n, is LD.

Proof: Let $B = \{v_1, v_2, ..., v_n\}$ be a basis of V. Let $A = \{u_1, u_2, ..., u_p\}$ be a set of p vectors with p > n. If A is LI, then $p \le n$ by Theorem 3.7.1. Hence A is LD.

Corollary 3.7.3: If V has a basis of n elements, then every other basis for V also has n elements.

Proof: Let $B_1 = \{v_1, v_2, ..., v_n\}$ and $B_2 = \{w_1, w_2, ..., w_m\}$ be two bases of V.

Then
$$B_1$$
 and B_2 are LI and $[B_1] = [B_2] = V$.

Some $[B_1] = V$ and B_2 is LI, then by Theorem 3.7.1., $m \le n$. Since $[B_2] = V$ and B_1 is LI, by the same theorem, $n \le m$.

Thus m = n.

Note: It follows from Carollary 3.7.3 that, if a vector space V is n-dimensional, (a) there exists n linearly independent vectors in V and (b) every set of n + 1 vectors in V is LD.

Example 3.7.4: V_2 is two dimensional since $B_1 = \{(1, 0), (0, 1)\}$ is a basis of V_2 . V_3 is three dimensional since $B_2 = \{i, j, k\}$ where i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) is a basis of V_3 .

Consider the vectors

$$e_1 = (1, 0, 0, ..., 0)$$
 $e_2 = (0, 1, 0, ..., 0)$
.
.
.
.
.
.
.

With e_i as the vector, all of whose co-ordinates are zero except the i-th, which is 1. It is easy to see that e_1 , e_2 ,..., e_n are LI and every n-tuple is a linear combination of e_1 , e_2 ,..., e_n . Thus the set $\{e_1, e_2, ..., e_n\}$ is a basis ov V_n . This basis is called the standard basis of V_n . In particular the standard basis of V_3 is $\{e_1, e_2, e_3\}$

where
$$e_1 = (1, 0, 0) = i$$

 $e_2 = (0, 1, 0) = j$
 $e_3 = (0, 0, 1) = k$

Example 3.7.5: For the 3-dimensional space V_3 over the field of real numbers R, determine if the set $\{(2, -1, 0), (3, 5, 1), (1, 1, 2)\}$ is a basis.

Solution: For
$$\alpha, \beta, \gamma \in \mathbb{R}$$
.
 $\alpha(2, -1, 0) + \beta(3, 5, 1) + \gamma(1, 1, 2) = (0, 0, 0)$
 $\Rightarrow (2\alpha + 3\beta + \gamma, -\alpha + 3\beta + \gamma, \beta + 2\gamma) = (0, 0, 0)$
 $\Rightarrow 2\alpha + 3\beta + \gamma = 0, -\alpha + 5\beta + \gamma = 0, \beta + 2\gamma = 0$...(1)

Now the determinant of the co-efficients

$$\begin{vmatrix} 2 & 3 & 1 \\ -1 & 5 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 23 \neq 0$$

So there exists unique (zero) solution of the system of equations (1).

i.e.
$$\alpha = \beta = \gamma = 0$$

Hence the given set is LI.

Again for
$$(x_1, x_2, x_3) \in V_3$$
.

$$(x_1, x_2, x_3) = \alpha (2, -1, 0) + \beta (3, 5, 1) + \gamma (1, 1, 2)$$

$$\Rightarrow (x_1, x_2, x_3) = (2\alpha + 3\beta + \gamma, -\alpha + 5\beta + \gamma, \beta + 2\gamma)$$

$$\Rightarrow 2\alpha + 3\beta + \gamma = x_1, -\alpha + 5\beta + \gamma = x_2, \beta + 2\gamma = x_3$$

$$\Rightarrow \alpha = \frac{9}{23} x_1 - \frac{5}{23} x_2 - \frac{2}{23} x_3$$

$$\beta = \frac{2}{23} x_1 + \frac{4}{23} x_2 + \frac{3}{23} x_3$$

$$\gamma = \frac{-1}{23} x_1 - \frac{2}{23} x_2 + \frac{13}{23} x_3$$

Thus $(x_1, x_2, x_3) \in [(2, -1, 0), (3, 5, 1), (1, 1, 2)]$

Hence $V_3 = [(2, -1, 0), (3, 5, 1), (1, 1, 2)]$

So the given set is a basis of V_3 .

Example 3.7.6: Find the dimension of P_n , the set of all polynomials of degree $\leq n$.

Solution: We know that every polynomial of P_n is a linear combination of the functions $1, x, x^2, ..., x^n$

Again
$$\alpha_1 + \alpha_2 x + \alpha_3 x^2 + ... + \alpha_{x+1} x^n = 0$$

This being an identity,

$$\alpha_1 = \alpha_2 = ... = \alpha_{n+1} = 0.$$

So $\{1, x, x^2, ..., x^n\}$ is L.I.

Again for $p(x) \in P_n$,

$$p(x) = a_0 + a_1 x + ... + a_n x^n$$
, a linear combination of
 $\{1, x, x^2, ..., x^n\}$
So $[1, x, x^2, ..., x^n] = P_n$

Thus this set is a basis of P_n.

The basis of P_n is having n + 1 elements.

So dim $P_n = n + 1$.

Theorem 3.7.4: In an n-dimensional vector space V, any set of n linearly independent vectors is a basis.

Proof: Suppose $B = \{v_1, v_2, ..., v_n\}$ is a set of n linearly independent vectors.

To prove that B is a basis we have only to show that [B] = V.

Take $v \in V$. The set $B' = \{v_1, v_2, ..., v_n, v\}$ is LD since V is n-dimensional. Hence by Theorem 3.6.4, one of the vectors of B'say u is in the span of its predecessors. But this u cannot be any one of $v_1, v_2, ..., v_n$. Because if so, it will contradict the linear independence of $v_1, v_2, ..., v_n$. Thus $v \in [v_1, v_2, ..., v_n]$.

Therefore
$$[B] = V$$

Hence B is a basis of V.

Note: If three vectors of V_3 are L.I, then the set consisting of these vectors is a basis of V_3 . Using this principle, after showing B to be LI in Example 3.6.2, we can declare that B is a basis of V_3 .

Example 3.7.7: Prove that the set $\{(1, 1, 1), (1, -1, 1), (0, 1, 1)\}$ is a basis of V_3 .

Proof: Suppose $\alpha(1,1,1) + \beta(1,-1,1) + \gamma(0,1,1) = (0,0,0)$ $\Rightarrow (\alpha+\beta,\alpha-\beta+\gamma,\alpha+\beta+\gamma) = (0,0,0)$ $\Rightarrow \alpha=\beta=\gamma=0$

So the given set is LI and it consists of three elements of V_3 , by Theorem 3.7.4., the set forms a basis.

Theorem 3.7.5: In a vector space V let $B = \{v_1, v_2, ..., v_n\}$ spans V. Then the following two conditions are equivalent.

- (a) $\{v_1, v_2, v_3, ..., v_n\}$ is a LI set.
- (b) If $v \in V$, then the expression $v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$ is unique

Proof: Let us first prove (a) \rightarrow (b) given that $B = \{v_1, v_2, ..., v_n\}$ spans V. If B is LI, then B is a basis of V.

We shall prove that any expression for v in terms of $v_1, v_2, ..., v_n$ is unique.

If
$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + ... + \alpha_n \mathbf{v}_n$$
 ...(1)
and also $\mathbf{v} = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + ... + \beta_n \mathbf{v}_n$...(2)
Then $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + ... + \alpha_n \mathbf{v}_n = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + ... + \beta_n \mathbf{v}_n$
 $\Rightarrow (\alpha_1 - \beta_1) \mathbf{v}_1 + (\alpha_2 - \beta_2) \mathbf{v}_2 + ... + (\alpha_n - \beta_n) \mathbf{v}_n = \theta$
Since B is L.I,
 $\alpha_1 - \beta_1 = 0 = \alpha_2 - \beta_2 = ... = \alpha_n - \beta_n$

$$\Rightarrow \alpha_i - \beta_i = 0, i = 1, 2, ..., n.$$

$$\Rightarrow \alpha_i = \beta_i$$
 for all i.

Hence the expression (1) is unique.

Let us prove $(b) \rightarrow (a)$

Let $v \in V$ has unique expression $v = \alpha_1 v_1 + \alpha_2 v_2 + + \alpha_n v_n$.

We shall prove that the set B is L.I.

Let
$$\beta_1 v_1 + \beta_2 v_2 + ... + \beta_n v_n = 0$$

Again $\theta = 0v_1 + 0v_2 ... + 0v_n$.

Since the expression of θ , a linear combination of elements of B is unique, we must have

$$\beta_1 = 0 = \beta_2 = ... = \beta_n$$
.

Hence
$$B = \{v_1, v_2, ..., v_n\}$$
 is L.I.

Note: The Theorem 3.7.5 can be restated as 'A set B is a basis for a vector space V iff [B] = V and the expression for any $v \in V$ in terms of elements of B is unique.'

3.7.3 Definition (Co-ordinate)

Let $B = \{v_1, v_2, ..., v_n\}$ be an basis (ordered) for V. then a vector $v \in V$ can be written as $v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$. The vector $(\alpha_1, \alpha_2, ..., \alpha_n)$ is called the co-ordinate vector of v relative to the ordered basis B. It is denoted by $[v]_B$. $\alpha_1, \alpha_2, ..., \alpha_n$ are called co-ordinates of the vector v relative to the ordered basis B.

The co-ordinates of a vector relative to the standard basis are simply called co-ordinates of the vector.

Example 3.7.8: Find the co-ordinates of the vector (1, 2, 3, 4) of V_4 relative to the standard basis of V_4 .

Solution : The standard basis of V_4 is $\{e_1, e_2, e_3, e_4\}$ where $e_1 = (1, 0, 0, 0)$, $e_2 = (0, 1, 0, 0)$, $e_3 = (0, 0, 1, 0)$, $e_4 = (0, 0, 0, 1)$. Since (1, 2, 3, 4) = 1. $e_1 + 2$. $e_1 + 3$. $e_3 + 4$. e_4 the co-ordinate vector of (1, 2, 3, 4) relative to the standard basis is (1, 2, 3, 4). Therefore 1, 2, 3 and 4 are co-ordinates of the vector (1, 2, 3, 4).

Exampe 3.7.9: Find the co-ordinates of (1, 2, 3, 4) relative to the ordered basis $B = \{(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1)\}$

Solution: Let

$$\begin{array}{l} (1,2,3,4) = \alpha \, (0,0,0,1) + \beta (0,0,1,1) + \gamma (0,1,1,1) + \delta \, (1,1,1,1) \\ \Rightarrow \, (1,2,3,4) = (\delta,\gamma+\delta,\beta+\gamma+\delta,\alpha+\beta+\gamma+\delta) \\ \Rightarrow \, \delta = 1, \, \gamma+\delta = 2, \, \beta+\gamma+\delta = 3, \, \alpha+\beta+\gamma+\delta = 4 \\ \Rightarrow \, \alpha = \beta = \gamma = \delta = 1. \end{array}$$

Hence the co-ordinates of (1, 2, 3, 4) relative to the basis B are 1, 1, 1, 1. Also $[(1, 2, 3, 4)]_B = (1, 1, 1, 1)$.

In the following theorem we shall show how a linearly independent set of a vector space is extended to its basis.

Theorem 3.7.6: Let the set $\{v_1, v_2, ..., v_k\}$ be a linearly independent subset of an n-dimensional vector space V. Then we can find vectors $v_{k+1}, ..., v_n$ in V such that the set $\{v_1, ..., v_k, v_{k+1}, ..., v_n\}$ is a basis of V.

Proof: By Theorem 3.6.3, $k \le n$. If k = n, then by Theorem 3.7.4, $\{v_1, v_2, ..., v_{k(=n)}\}$ is a basis for V. If k < n, then $\{v_1, v_2, ..., v_k\}$ is not a basis (corollary 3.7.2). But the set $\{v_1, v_2, ..., v_k\}$ is LI.

Therefore $[v_1, v_2, ..., v_k] \neq V$.

Hence $[v_1, v_2, ..., v_k]$ is a proper subset of V. Thus there exists a non-zero vector v_{k+1} in V such that $v_{k+1} \notin [v_1, v_2, ..., v_k]$.

Hence $\{v_1, v_2, ..., v_k, v_{k+1}\}$ is LI (Theorem 3.6.2).

Now if k + 1 = n, we are done.

If not, we repeat the foregoing process until we get n-linearly independent vectors $\{v_1, v_2, ..., v_k, v_{k+1}, ..., v_n\}$. This forms a basis for V by Theorem 3.7.4.

Note: Starting from any non-zero vector, any number of bases can be formed extending it.

Example 3.7.10: Extend the set $\{(3, -1, 2)\}$ to two different bases for V_3 .

Solution : Clearly $\{(3, -1, 2)\}$ is L.I.

Consider
$$[(3, -1, 2)] = \{(3\alpha, -\alpha, 2\alpha) | \alpha \text{ scalar}\}$$

Let us search for a vector which is not in the above span.

We see that for each α , the first co-ordinate of any vector of the span is 3α .

Let us choose a vector in which this is not true. Taking $\alpha = 1$, we can choose such a vector as (1, -1, 2)

Now by Theorem 3.6.2, the set $\{(3, -1, 2), (1, -1, 2)\}$ is L.I.

Again consider

[(3, -1, 2), (1, -1, 2)]
=
$$\{(3\alpha + \beta, -\alpha - \beta, 2\alpha + 2\beta) | \alpha, \beta \text{ scalars} \dots (1)\}$$

Let us now search for a vector which is not in the current span. We see that for any choice of α , β , the 3rd co-ordinate of a vector in the span is always $2(\alpha + \beta)$. Let us choose a vector in V_3 not having this property. Taking $\alpha = \beta = 1$, we can choose such a vector (4, -2, 1).

Since
$$(4, -2, 1) \notin [(3, -1, 2), (1, -1, 2)]$$
, by Thoerem 3.6.2.

$$\{(3, -1, 2), (1, -1, 2), (4, -2, 1)\}$$
 is L.I.

By Theorem 3.7.4, $\{(3, -1, 2), (1, -1, 2), (4, -2, 1)\}$ is a basis of V_3 .

Let us form another basis of V₃.

After getting a LI set $\{(3, -1, 2), (1, -1, 2)\}$, let us find a vector which is not in its span.

We see in (1) that for every choice of α , β , the 2nd co-ordinate of a vector in the span is always $-(\alpha + \beta)$. Let us choose a vector which is not having the property. Taking $\alpha = \beta = 1$, (4, 1, 4) is such a vector.

Thus $\{(3, -1, 2), (1, -1, 2), (4, 1, 4)\}$ is LI and it is another basis of V_3 .

Example 3.7.11: Let $\{(1, 1, 1, 1), (1, 2, 1, 2)\}$ be a linearly independent subset of a vector space V_4 . Extend it to a basis for V_4 .

Solution: We have

[(1, 1, 1, 1), (1, 2, 1, 2)] = {
$$\alpha$$
 (1, 1, 1, 1) + β (1, 2, 1, 2) | α , β are scalars}
= {($\alpha + \beta$, $\alpha + 2\beta$, $\alpha + \beta$, $\alpha + 2\beta$) | α , β are scalars}

Since first and third co-ordinates are equal for all vectors of the span, we find that (0, 3, 2, 3) is not in the span. Thus by hypothesis, $\{(1, 1, 1, 1), (1, 2, 1, 2), (0, 3, 2, 3)\}$ is L.I.

=
$$\{\alpha(1,1,1,1) + \beta(1,2,1,2) + \gamma(0,3,2,3) | \alpha, \beta, \gamma \text{ are scalars} \}$$

$$=\{(\alpha+\beta,\alpha+2\beta+3\gamma,\alpha+\beta+2\gamma,\alpha+2\beta+3\gamma)\,\big|\,\alpha,\beta,\gamma\,\text{are scalars}\}$$

Taking $\alpha = \beta = \gamma = 1$, (2, 6, 4, 6) is in the span

but (2, 6, 4, 5) is not in the span.

Hence the set $\{(1, 1, 1, 1), (1, 2, 1, 2), (0, 3, 2, 3), (2, 6, 4, 5)\}$ is L.I.

Thus by Theorem 3.7.4 it is a basis of V₄.

Theorem 3.7.7: Let U be a subspace of a finite-dimensional vector space V. Then dim $U \le \dim V$. Equality holds only when U = V.

Proof: Let $B = \{v_1, v_2, ..., v_n\}$ be a basis for V. This generates V and having n elements. Any set of linearly independent vectors in V and therefore any set of linearly independent vectors in U cannot have more than n vectors. Therefore dim $U \le \dim V$.

When dim $U = \dim V$, a basis B_1 of U, is a set of n linearly independent vectors of V whose dimension is also n. By Theorem 3.7.4., it follows that B_1 is a basis for V. This means $V = [B_1] = U$.

Theorem 3.7.8: If U and W are two subspaces of a finite dimensional vector space V, then

 $\dim (U+W) = \dim U + \dim W - \dim (U \cap W).$

Proof: Let dim U = m, dim W = p, dim $(U \cap W) = r$ and dim V = n

By Theorem 3.7.7, $m \le n$, $p \le n$ and $r \le n$.

Let $B_1 = \{v_1, v_2, ..., v_r\}$ be a basis of $U \cap W$. This is a linearly independent set in $U \cap W$. Since $U \cap W \subset U$ and $U \cap W \subset W$, B_1 is also a linearly independent set in U and W. So it can be extended to a basis of U, say $B_2 = \{v_1, v_2, ..., v_r, u_{r+1}, ..., u_m\}$ and to a basis of W, say

$$B_3 = \{v_1, v_2, ..., v_r, w_{r+1}, ..., w_n\}$$

Let us construct the set

$$B = \{v_{_{1}}, v_{_{2}}, ..., v_{_{r,_{}}} u_{_{r+1}}, ..., u_{_{m}}, w_{_{r+1}}, ..., w_{_{p}}\}.$$

Let us prove that this is a basis of U + W.

For this purpose, let us show that (a) B is L.I in U + W and (b) [B] = U + W. Fig. 3.1

To prove (a), assume that

$$\sum_{i=1}^{r} \alpha_i v_i + \sum_{i=r+1}^{m} \beta_i u_i + \sum_{i=r+1}^{p} \gamma_i w_i = \theta \qquad \dots (1)$$

$$\Rightarrow \sum_{i=1}^{r} \alpha_i v_i + \sum_{i=r+1}^{m} \beta_i u_i = -\sum_{i=r+1}^{p} \gamma_i w_i = v \text{ say} \qquad ...(2)$$

The vector $v \in U$ since the left hand side of Equation (2) is in U.

Also $v \in W$, since the right hand side of Equation (2) is in W.

Thus $v \in U \cap W$. Therefore, v can be expressed uniquely in terms of vectors of its basis B₁.

Thus
$$v = \sum_{i=1}^{r} \delta_{i} v_{i}$$
 for some scalar δ_{i} .

Hence
$$\sum_{i=1}^{r} \delta_{i} v_{i} + \sum_{i=r+1}^{p} \gamma_{i} w_{i} = 0$$
 ...(3)

But B, is L.I.

So each of the δ_i 's and γ_i 's is zero.

Putting $\gamma_{r+1} = \gamma_{r+2} = ... = \gamma_p = 0$ in the equation (2), we find that

$$\sum_{i=1}^{r} \alpha_{i} v_{i} + \sum_{i=r+1}^{m} \beta_{i} u_{i} = 0$$

Again B, is L.I.

So each of α , 's and β , 's is zero.

Thus the equation (1) implies that each scalar involved is zero. Hence B is L.I. This proves (a).

To prove (b), let $z \in U + W$.

Then z = u + w, for some $u \in U$ and $w \in W$.

This gives

$$z = \sum_{i=1}^{r} \alpha_{i} v_{i} + \sum_{i=r+1}^{m} \beta_{i} u_{i} + \sum_{i=1}^{r} \alpha_{i} v_{i} + \sum_{i=r+1}^{p} \beta_{i} w_{i} \dots \dots (4)$$

For some sclars α_i 's, β_i 's, α_i 's and β_i 's.

Simplifying the expression (4), we see that $z \in [B]$. Hence $U + W \subset [B]$.

Again for $z \in [B]$

$$z = \sum_{i=1}^r \alpha_i \ v_i + \sum_{i=r+1}^m \beta_i \ u_i + \sum_{i=r+1}^p \gamma_i \ w_i = u + w \in U + W$$

where
$$u = \sum_{i=1}^{r} \alpha_i v_i + \sum_{i=r+1}^{m} \beta_i u_i \in U$$

$$w = \sum_{i=r+1}^{p} \gamma_i \ w_i \in W$$

So $[B] \subset U + W$.

Hence [B] = U + W.

This shows that B is a basis of U + W.

Therefore, $\dim (U + W)$

= |B|

$$= r + (m-r) + (p-r)$$

= m + p - r

 $= \dim U + \dim W - \dim (U \cap W).$

Corollary 3.7.9: If U and W are subspaces of a finite dimensional vector space V such that $U \cap W = \{\theta\}$, then dim $(U \oplus W) = \dim U + \dim W$.

Proof: $U \cap W = \{\theta\}$. $\Rightarrow \dim (U \cap W) = 0$.

From this result and Theorem 3.7.8, the proof of the corollary follows.

Example 3.7.12: Verify Theorem 3.7.8 and Corollary 3.7.9 with the help of a suitable example.

Solution : Take U = xy-plane, and

$$W = yz$$
-plane in V_3 .

Then $U \cap W = y - axis$

Clearly U, W and $U \cap W$ are subspaces of V_3 with dim $U = \dim W = 2$

and dim $U \cap W = 1$.

We have $U + W = V_3$

so dim (U + W) = 3

 $\dim U + \dim W - \dim U \cap W = 2 + 2 - 1 = 3$.

Hence Theorem 3.7.8 is verified.

On the other hand if we take U = xy-plane and

W = z-axis, then $U \cap W = \{\theta\}$ and $U + W = V_3$.

 $\dim (U \oplus W) = 3$

 $\dim U + \dim W = 2 + 1 = 3.$

Hence Corollary 3.7.9 is verified.

Example 3.7.13: Construct two subspaces A and B of V_4 such that dim A = 2, dim B = 3 and dim $(A \cap B) = 1$

Solution: Let
$$A = [(1, 0, 0, 0) \ (0, 1, 0, 0)]$$

$$B = [(1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)]$$
Let $(p, q, r, s) \in A \cap B$

$$\Rightarrow (p, q, r, s) \in A \wedge (p, q, r, s) \in B$$

$$\Rightarrow (p, q, r, s) = a \ (1, 0, 0, 0) + b \ (0, 1, 0, 0)$$
and
$$(p, q, r, s) = \alpha (1, 0, 0, 0) + \beta (0, 0, 1, 0) + \gamma (0, 0, 0, 1)$$

$$\Rightarrow a = p, \quad b = q, \quad r = 0, \quad s = 0$$
and
$$\alpha = p, \quad \beta = r, \quad \gamma = s, \quad q = 0$$

$$\Rightarrow (p, q, r, s) = p \ (1, 0, 0, 0)$$

$$\Rightarrow (p, q, r, s) \in [(1, 0, 0, 0)]$$

$$\therefore \quad A \cap B \subset [(1, 0, 0, 0)]$$
Further,
$$[(1, 0, 0, 0)] \subset A \text{ and } [(1, 0, 0, 0)] \subset B$$

$$\Rightarrow [(1, 0, 0, 0)] \subset A \cap B.$$
Hence $A \cap B = [(1, 0, 0, 0)]$
Thus dim $A = 2$, dim $B = 3$ and dim $A \cap B = 1$

Example 3.7.14: Given
$$S_1 = \{(1, 2, 3), (0, 1, 2), (3, 2, 1)\}$$

and $S_2 = \{(1, -2, 3), (-1, 1, -2), (1, -3, 4)\}$

determine the dimension and basis for

(a)
$$[S_1] \cap [S_2]$$

(b) $[S_1] + [S_2]$

Solution : (a) Let $\alpha(1, 2, 3) + \alpha(0, 1, 2) + \gamma(3, 2, 1) = 0$

for some scalars α , β and γ .

$$\Rightarrow (\alpha + 3\gamma, 2\alpha + \beta + 2\gamma, 3\alpha + 2\beta + \gamma) = (0, 0, 0)$$

$$\Rightarrow \alpha + 3\gamma = 0, 2\alpha + \beta + 2\gamma = 0, 3\alpha + 2\beta + \gamma = 0$$

$$\Rightarrow \alpha = -3\gamma, \beta = 4\gamma, \gamma \text{ is arbitrary.}$$

In particular, take $\gamma = -1$, then $\alpha = 3$, $\beta = -4$

Thus
$$3(1, 2, 3) - 4(0, 1, 2) - (3, 2, 1) = (0, 0, 0)$$

$$\Rightarrow (1, 2, 3) = \frac{4}{3}(0, 1, 2) + \frac{1}{3}(3, 2, 1)$$

$$\Rightarrow (1, 2, 3) \in [(0, 1, 2), (3, 2, 1)]$$

Putting
$$c = 1$$
, $a = -2$, $b = -1$
Thus $-2(1, -2, 3) - (-1, 1, -2) + (1, -3, 4) = (0, 0, 0)$
 $\Rightarrow (1, -3, 4) = 2(1, -2, 3) + (-1, 1, -2)$
 $\Rightarrow (1, -3, 4) \in [(1, -2, 3), (-1, 1, -2)]$
 $\therefore [S_2] = [(1, -2, 3), (-1, 1, -2)]$
Let $x \in [S_1] \cap [S_2]$
 $\Rightarrow x = \alpha(0, 1, 2) + \beta(3, 2, 1)$
 $= \gamma(1, -2, 3) + \delta(-1, 1, -2)$
 $\Rightarrow (3\beta, \alpha + 2\beta, 2\alpha + \beta) = (\gamma - \delta, -2\gamma + \delta, 3\gamma - 2\delta)$
 $\Rightarrow 3\beta = \gamma - \delta, \alpha + 2\beta = -2\gamma + \delta, 2\alpha + \beta = 3\gamma - 2\delta$
 $\Rightarrow (\alpha + 2\beta) + (2\alpha + \beta) - 3\beta = (-2\gamma + \delta) + (3\gamma - 2\delta) - \gamma + \delta$
 $\Rightarrow 3\alpha = 0$
 $\Rightarrow \alpha = 0$
 $\therefore x = \beta(3, 2, 1) \in [(3, 2, 1)]$
Hence the basis of $[S_1] \cap [S_2]$ is $\{(3, 2, 1)\}$.
(b) dim $\{[S_1] + [S_2]\} = \dim[S_1] + \dim[S_2] - \dim\{[S_1] \cap [S_2]\}$
 $= 2 + 2 - 1$
 $= 3$
 $\therefore [S_1] + [S_2] = V_3$.
Let $y \in [S_1] + [S_2]$
 $\therefore y = \alpha(0, 1, 2) + \beta(3, 2, 1) + \gamma(1, -2, 3) + \delta(-1, 1, -2)$
 $\alpha, \beta, \gamma, \delta$ are scalars.
Putting $\beta = \gamma = \delta = 0$, and $\alpha = 1$, we get $(0, 1, 2) \in [S_1] + [S_2]$.
Similarly taking $\alpha = \gamma = \delta = 0$ and $\beta = 1$, we get $(3, 2, 1) \in [S_1] + [S_2]$
Also $(1, -2, 3) \in [S_1] + [S_2]$
 $\{(0, 1, 2), (3, 2, 1), (1, -2, 3)\}$ is L.I.
Because $\begin{vmatrix} 0 & 1 & 2 \\ 3 & 2 & 1 \\ 1 & -2 & 3 \end{vmatrix}$

So B = $\{(0, 1, 2), (3, 2, 1), (1, -2, 3)\}$ is a basis of $[S_1] + [S_2]$.

Example 3.7.15 Let $B_1 = \{u_1, u_2, ..., u_n\}$ and $B_2 = \{v_1, v_2, ..., v_n\}$ be ordered bases for an ndimensional vector space V such that $\{u_1 - v_1, u_2 - v_2, ..., u_n - v_n\}$ is L.D. Then prove that there exists a non-zero vector $u \in V$ such that $[u]_{B_1} = [u]_{B_2}$.

Solution : Since $\{u_1 - v_1, u_2 - v_2, ..., u_n - v_n\}$ is L.D., therefore there exists scalars $c_1, c_2, ..., c_n$ not all zero such that $c_1(u_1 - v_1) + c_2(u_2 - v_2) + ... + c_n(u_n - v_n) = 0$

Suppose
$$c_1 \neq 0$$

From (1),

$$c_1u_1 + c_2u_2 + ... + c_nu_n$$

$$= c_1v_1 + c_2v_2 + ... + c_nv_n$$
Let $u = c_1u_1 + c_2u_2 + ... + c_nu_n$

$$= c_1v_1 + c_2v_2 + ... + c_nv_n$$

- \therefore u is a non-zero vector since $c_1 \neq 0$ and $u_1 \in B_1$, a basis.
- $\therefore [u]_{B_1} = (c_1, c_2, ..., c_n) = [u]_{B_2}.$

Hence proved.

Problem Set 3 (F)

- 1. Which of the following subsets of S form a basis for V₂?
 - (a) $S = \{(1, 2)\}$
 - (b) $S = \{(1, 2), (0, 1)\}$
 - (c) $S = \{(1, 2), (1, 1), (2, 1)\}$
 - (d) $S = \{(1,3), (3,1)\}$
- 2. Which of the following subsets of S form a basis for V₃?
 - (a) $S = \{(1, 2, 3)\}$
 - (b) $S = \{(1, 2, 3), (3, 1, 0), (-2, 1, 3)\}$
 - (c) $S = \{(3, 2, 1), (1, 2, 3), (-1, 0, 1)\}$
 - (d) $S = \{(1, 1, 1), (1, 2, 3), (-1, 0, 1)\}$
 - (e) $S = \{(0, 0, 1), (1, 0, 1), (1, -1, 1), (3, 0, 1)\}$

(f)
$$S = \left\{ \left(1, \frac{2}{5}, -1\right), (0, 1, 2), \left(\frac{3}{4}, -1, 1\right) \right\}$$

- 3. Which of the following subsets S form a basis for the given vector space V?
 - (a) $S = \{(1, -1, 0, 1), (0, 0, 0, 1), (2, -1, 0, 1), (3, 2, 1, 0)\}, V = V_A$
 - (b) $S = \{(0, 1, 2, 1), (1, 2, -1, 1), (2, -3, 1, 0), (4, -2, -7, -5)\}, V = V_4$
 - (c) $S = \{x-1, x^2 + x 1, x^2 x + 1\}, V = P_2$
 - (d) $S = \{1, x, (x-1), x, x(x-1), (x-2)\}, V = P_2$
 - (e) $S = \{1, \sin x, \sin^2 x, \cos 2 x\}, V = C[-\pi, \pi]$
- 4. Determine the dimension of the subspace [S] of V, for each S in Problem 1.
- 5. Determine the dimension of the subspace [S] of V₃ for each S in Problem 2.
- 6. Determine the dimension of the subspace [S] of V₃ for each S in Problem 3.

- 7. Find the co-ordinates of the following vectors of V_3 relative to the ordered basis $B = \{(2, 1, 0),$ (2, 1, 1), (2, 2, 1)
 - (a) (1, 2, 1)

(b) (-1, 3, 1)

(c) (x_1, x_2, x_3)

(d) $(-\sqrt{2}, \pi, e)$

(e) $\left(-\frac{1}{2}, \frac{11}{3}, 5\right)$

- (f) (2, 0, -1)
- 8. Find the co-ordinates of the following polynomials relative to the ordered basis

$$\{1-x, 1+x, 1-x^2\}$$
 of P_2 .

- (a) $3 + 7x + 2x^2$ (b) $x 3x^2$ (c) $x^2 + 2x 1$
- 9. Find an ordered basis for V₄ relative to which the vector (-1, 3, 2, 1) has the co-ordinates 4, 1, -2 and 7.
- 10. Let U and W be two distinct (n-1) dimensional subspaces of an n-dimensional vector space V. Then prove that dim $(U \cap W) = n - 2$.
- 11. Extend the following subsets S of a vector space V to its basis
 - (a) $S = \{(1, 2)\}, V = V_3$
 - (b) $S = \{(1, -1, 1)\}, V = V,$
 - (c) $S = \{(1, 3, 2)\}, V = V$
 - (d) $S = \{(1, 5, 1), (1, -1, 2)\}, V = V$
 - (e) $S = \{(1, 1, -1, 2) (1, 2, 1, -1)\}, V = V$
 - (f) $S = \{(-1, 2, -1, 3), (1, -2, 3, 2), (1, 2, 4, 1)\}, V = V_A$