Derivation of the PCRB for Wideband Array Signal Processing Using Sequential MC Methods

William Ng, James P. Reilly*, Thia Kirubarajan, and Jean-René Larocque
Department of Electrical and Computer Engineering,
McMaster University, 1280 Main St. W.,
Hamilton, Ontario,
Canada L8S 4K1

I. DERIVATION OF THE PCRB

Let \boldsymbol{y} be an observation vector, $\boldsymbol{\theta}$ be an k_0 -dimensional parameter vector, $\hat{\boldsymbol{\theta}}(\boldsymbol{y})$ be a function of \boldsymbol{y} , which represents an estimate of $\boldsymbol{\theta}$, and $p(\boldsymbol{y}, \boldsymbol{\theta})$ be the joint probability density of $(\boldsymbol{y}, \boldsymbol{\theta})$. The PCRB on the estimation error on $\boldsymbol{\theta}$ has the form

$$P = E\left\{ [\hat{\boldsymbol{\theta}}(\boldsymbol{y}) - \boldsymbol{\theta}][\hat{\boldsymbol{\theta}}(\boldsymbol{y}) - \boldsymbol{\theta}]^T \right\} \ge \boldsymbol{\mathcal{J}}^{-1}, \tag{1}$$

where \mathcal{J} is the $k_0 \times k_0$ Fisher Information matrix with elements [1]

$$[\mathcal{J}]_{i,j} = E\left[-\frac{\partial^2 \log p(\boldsymbol{y},\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right], \quad i, j = 0, ..., k_0 - 1,$$
(2)

provided that the derivatives and expectations in (1) and (2) exist. Let ∇_{θ} be the operator of the first-order partial derivative as follows

$$\nabla_{\boldsymbol{\theta}} = \left[\frac{\partial}{\partial \theta_0}, ..., \frac{\partial}{\partial \theta_{k_0 - 1}}\right]^T,\tag{3}$$

such that we can express \mathcal{J} as

$$\mathcal{J} = -E \left[\nabla_{\boldsymbol{\theta}} \nabla_{\boldsymbol{\theta}}^{T} \log p(\boldsymbol{y}, \boldsymbol{\theta}) \right], \tag{4}$$

$$= -E \left[\nabla_{\boldsymbol{\theta}} \nabla_{\boldsymbol{\theta}}^{T} \left\{ \log p(\boldsymbol{y}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta}) \right\} \right], \tag{5}$$

$$= \mathcal{J}_D + \mathcal{J}_P, \tag{6}$$

where \mathcal{J}_D , also recognized as the standard Fisher Information matrix [2], represents the information obtained from the data, defined as

$$\boldsymbol{\mathcal{J}}_{D} = -E \left[\nabla_{\boldsymbol{\theta}} \nabla_{\boldsymbol{\theta}}^{T} \log p(\boldsymbol{y}|\boldsymbol{\theta}) \right], \tag{7}$$

 $\hbox{J. Reilly, corresponding author: ph: } 905\ 525\ 9140\ x22895,\ \hbox{fax: } 905\ 521\ 2922,\ \hbox{email: reillyj@mcmaster.ca}$

and \mathcal{J}_P is the information obtained from the a prior information, defined as

$$\mathcal{J}_{P} = -E \left[\nabla_{\boldsymbol{\theta}} \nabla_{\boldsymbol{\theta}}^{T} \log p(\boldsymbol{\theta}) \right]. \tag{8}$$

Assume that the parameter vector can be partitioned as follows

$$\boldsymbol{\theta} = \begin{bmatrix} \boldsymbol{\theta}_a^T, \boldsymbol{\theta}_b^T \end{bmatrix}^T, \quad \boldsymbol{\theta}_a \in \mathcal{R}^{k_a \times 1}, \boldsymbol{\theta}_b \in \mathcal{R}^{k_b \times 1}$$
 (9)

where $k_a + k_b = k_0$, and the information matrix \mathcal{J} can be partitioned into blocks as follows

$$\mathcal{J} = \begin{bmatrix} \mathcal{J}_{aa} & \mathcal{J}_{ab} \\ \mathcal{J}_{ba} & \mathcal{J}_{bb} \end{bmatrix}, \tag{10}$$

where $\mathcal{J}_{ba} = \mathcal{J}_{ab}^T$. The inverses of the submatrices in \mathcal{J} in (10) are the corresponding covariance matrices with other parameters fixed. It can be shown that [3] that the covariance of estimation of θ_b , P_b , is lower bounded by the right-lower block of \mathcal{J}^{-1} as follows

$$P_b = E \left\{ \left[\hat{\boldsymbol{\theta}}_b(\boldsymbol{y}) - \boldsymbol{\theta}_b \right] \left[\hat{\boldsymbol{\theta}}_b(\boldsymbol{y}) - \boldsymbol{\theta}_b \right]^T \right\}, \tag{11}$$

$$\geq \left[\mathcal{J}_{bb} - \mathcal{J}_{ba} \mathcal{J}_{aa}^{-1} \mathcal{J}_{ab} \right]^{-1}, \tag{12}$$

$$= \mathcal{J}^{-1}(\boldsymbol{\theta}_b), \tag{13}$$

provided that \mathcal{J}_{aa}^{-1} exists. The matrix $\mathcal{J}(\boldsymbol{\theta}_b) \in \mathcal{R}^{k_b \times k_b}$, known as the *information submatrix* for parameter $\boldsymbol{\theta}_b$, is given by

$$\mathcal{J}(\boldsymbol{\theta}_b) = \mathcal{J}_{bb} - \mathcal{J}_{ba} \mathcal{J}_{aa}^{-1} \mathcal{J}_{ab}. \tag{14}$$

Given that the state-space model as follows

$$\boldsymbol{\tau}(n) = \boldsymbol{\tau}(n-1) + \sigma_v \boldsymbol{v}(n), \tag{15}$$

$$\mathbf{y}(n) = \sum_{l=0}^{L-1} \tilde{\mathbf{H}}_l(\boldsymbol{\tau}(n)) \mathbf{a}(n-l) + \sigma_w \mathbf{w}(n),$$
 (16)

and that both $\boldsymbol{v}(n)$ and $\boldsymbol{w}(n)$ are *iid* Gaussian random variables with zero mean and unit variance, the total joint probability density function $p(\boldsymbol{\mathcal{Y}}_n, \boldsymbol{\mathcal{T}}_n)$, where $\boldsymbol{\mathcal{Y}}_n = \boldsymbol{y}_{1:n}$ and $\boldsymbol{\mathcal{T}}_n = \boldsymbol{\tau}_{1:n}$, can be given as follows

$$p(\boldsymbol{\mathcal{Y}}_n, \boldsymbol{\mathcal{T}}_n) = p(\boldsymbol{\tau}_0) \prod_{j=1}^n p(\boldsymbol{y}_j | \boldsymbol{\tau}_j) \prod_{j=1}^n p(\boldsymbol{\tau}_j | \boldsymbol{\tau}_{j-1}),$$
(17)

where $p(\tau_0)$ is assumed known. According to (4), we can derive an $nk_0 \times nk_0$ information matrix $\mathcal{J}(\mathcal{T}_n)$ from $p(\mathcal{Y}_n, \mathcal{T}_n)$. However, instead of computing the information matrix $\mathcal{J}(\mathcal{T}_n)$, we are more interested in computing the $k_0 \times k_0$ instantaneous information submatrix as in (14) for the parameter τ_n .

Let \mathcal{T}_n be partitioned as $\left[\mathcal{T}_{n-1}^T, \boldsymbol{\tau}_n^T\right]^T$. Following (9)-(10), we can express $\mathcal{J}(\mathcal{T}_n) \in \mathcal{R}^{nk_0 \times nk_0}$ as

$$\mathcal{J}(\boldsymbol{\mathcal{T}}_{n}) = \begin{bmatrix} \boldsymbol{A}_{n} & \boldsymbol{B}_{n} \\ \boldsymbol{B}_{n}^{T} & \boldsymbol{C}_{n} \end{bmatrix},
= \begin{bmatrix} -E \left[\nabla_{\boldsymbol{\mathcal{T}}_{n-1}} \nabla_{\boldsymbol{\mathcal{T}}_{n-1}}^{T} \log p(\boldsymbol{\mathcal{Y}}_{n}, \boldsymbol{\mathcal{T}}_{n}) \right] & -E \left[\nabla_{\boldsymbol{\mathcal{T}}_{n}} \nabla_{\boldsymbol{\mathcal{T}}_{n-1}}^{T} \log p(\boldsymbol{\mathcal{Y}}_{n}, \boldsymbol{\mathcal{T}}_{n}) \right] \\ -E \left[\nabla_{\boldsymbol{\mathcal{T}}_{n-1}} \nabla_{\boldsymbol{\mathcal{T}}_{n}}^{T} \log p(\boldsymbol{\mathcal{Y}}_{n}, \boldsymbol{\mathcal{T}}_{n}) \right] & -E \left[\nabla_{\boldsymbol{\mathcal{T}}_{n}} \nabla_{\boldsymbol{\mathcal{T}}_{n}}^{T} \log p(\boldsymbol{\mathcal{Y}}_{n}, \boldsymbol{\mathcal{T}}_{n}) \right] \end{bmatrix},$$
(18)

provided that the derivatives and the expectations exist. As a result, according to (14), we obtain an expression of $\mathcal{J}(\tau_n) \in \mathcal{R}^{k_0 \times k_0}$ as follows

$$\mathcal{J}(\boldsymbol{\tau}_n) = \boldsymbol{C}_n - \boldsymbol{B}_n^T \boldsymbol{A}_n^{-1} \boldsymbol{B}_n. \tag{19}$$

In order to get a recursive update equation of $\mathcal{J}(\boldsymbol{\tau}_{n+1})$, given $\mathcal{J}(\boldsymbol{\tau}_n)$ and \boldsymbol{y}_{n+1} , we need to first consider the joint probability function $p(\boldsymbol{\mathcal{Y}}_{n+1}, \boldsymbol{\mathcal{T}}_{n+1})$ as follows

$$p(\mathbf{\mathcal{Y}}_{n+1}, \mathbf{\mathcal{T}}_{n+1}) = p(\mathbf{\mathcal{Y}}_{n+1} | \mathbf{\mathcal{T}}_{n+1}, \mathbf{\mathcal{Y}}_n) p(\mathbf{\mathcal{T}}_{n+1} | \mathbf{\mathcal{T}}_n, \mathbf{\mathcal{Y}}_n) p(\mathbf{\mathcal{Y}}_n, \mathbf{\mathcal{T}}_n),$$

$$= p(\mathbf{\mathcal{Y}}_{n+1} | \mathbf{\mathcal{T}}_{n+1}) p(\mathbf{\mathcal{T}}_{n+1} | \mathbf{\mathcal{T}}_n) p(\mathbf{\mathcal{Y}}_n, \mathbf{\mathcal{T}}_n),$$
(20)

where we use the fact that \mathcal{T}_n is independent of y_{n+1} and that innovations of τ_n are independent.

Accordingly, the information matrix $\mathcal{J}(\mathcal{T}_{n+1})$ with \mathcal{T}_{n+1} partitioned as $\left[\mathcal{T}_{n}^{T}, \boldsymbol{\tau}_{n+1}^{T}\right]^{T}$ can be shown to be

$$\mathcal{J}(\mathcal{T}_{n+1}) = -E \left[\nabla_{\mathcal{T}_{n+1}} \nabla_{\mathcal{T}_{n+1}}^{T} \log p(\mathbf{y}_{n+1}, \mathbf{T}_{n+1}) \right],$$

$$= -E \left[\nabla_{\mathcal{T}_{n+1}} \nabla_{\mathcal{T}_{n+1}}^{T} \left\{ \log p(\mathbf{y}_{n+1} | \mathbf{\tau}_{n+1}) + \log p(\mathbf{\tau}_{n+1} | \mathbf{\tau}_{n}) + \log p(\mathbf{y}_{n}, \mathbf{T}_{n}) \right\} \right], \quad (21)$$

$$= \begin{bmatrix} \mathbf{A}_{n+1} & \mathbf{B}_{n+1} \\ \mathbf{B}_{n+1}^{T} & \mathbf{C}_{n+1} \end{bmatrix},$$

where the terms A_{n+1} , B_{n+1} , and C_{n+1} are given by

$$\mathbf{A}_{n+1} = \begin{bmatrix} \mathbf{A}_n & \mathbf{B}_n \\ \mathbf{B}_n^T & \mathbf{C}_n + \mathbf{D}_n^{11} \end{bmatrix}, \tag{22}$$

$$\boldsymbol{B}_{n+1} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{D}_n^{12} \end{bmatrix}, \tag{23}$$

$$\boldsymbol{C}_{n+1} = \boldsymbol{D}_n^{22}, \tag{24}$$

and the terms $\boldsymbol{D}_n^{11} \in \mathcal{R}^{k_0 \times k_0}$, $\boldsymbol{D}_n^{12} \in \mathcal{R}^{k_0 \times k_0}$, $\boldsymbol{D}_n^{21} \in \mathcal{R}^{k_0 \times k_0}$, and $\boldsymbol{D}_n^{22} \in \mathcal{R}^{k_0 \times k_0}$ are defined as

follows

$$\boldsymbol{D}_{n}^{11} = E\left[-\nabla_{\boldsymbol{\tau}_{n}}\nabla_{\boldsymbol{\tau}_{n}}^{T}\log p\left(\boldsymbol{\tau}_{n+1}|\boldsymbol{\tau}_{n}\right)\right],\tag{25}$$

$$\boldsymbol{D}_{n}^{12} = E \left[-\nabla_{\boldsymbol{\tau}_{n+1}} \nabla_{\boldsymbol{\tau}_{n}}^{T} \log p \left(\boldsymbol{\tau}_{n+1} | \boldsymbol{\tau}_{n} \right) \right], \tag{26}$$

$$\boldsymbol{D}_n^{21} = \left[\boldsymbol{D}_n^{12}\right]^T,\tag{27}$$

$$\boldsymbol{D}_{n}^{22} = E\left[-\nabla_{\boldsymbol{\tau}_{n+1}}\nabla_{\boldsymbol{\tau}_{n+1}}^{T}\log p\left(\boldsymbol{\tau}_{n+1}|\boldsymbol{\tau}_{n}\right)\right] + E\left[-\nabla_{\boldsymbol{\tau}_{n+1}}\nabla_{\boldsymbol{\tau}_{n+1}}^{T}\log p\left(\boldsymbol{y}_{n+1}|\boldsymbol{\tau}_{n+1}\right)\right].$$
(28)

Thus the information submatrix $\mathcal{J}(\tau_{n+1})$ can be given by the inverse of the right-lower submatrix of $\mathcal{J}^{-1}(\mathcal{T}_{n+1})$ as in (14) by

$$\mathcal{J}(\tau_{n+1}) = C_{n+1} - B_{n+1}^{n} A_{n+1}^{-1} B_{n+1},
= D_{n}^{22} - \left[\mathbf{0}, D_{n}^{21} \right] \begin{bmatrix} A_{n} & B_{n} \\ B_{n}^{T} & C_{n} + D_{n}^{11} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{0} \\ D_{n}^{12} \end{bmatrix},
= D_{n}^{22} - D_{n}^{21} \left[D_{n}^{11} + C_{n} - B_{n}^{T} A_{n}^{-1} B_{n} \right]^{-1} D_{n}^{12},
= D_{n}^{22} - D_{n}^{21} \left[D_{n}^{11} + \mathcal{J}(\tau_{n}) \right]^{-1} D_{n}^{12},$$
(29)

which is the desired recursive update equation of the information submatrix for τ_{n+1} . The initial information submatrix $\mathcal{J}(\tau_0)$ can be computed from the *a priori* probability function $p(\tau_0)$ as follows

$$\mathcal{J}(\boldsymbol{\tau}_0) = -E \left[\nabla_{\boldsymbol{\tau}_0} \nabla_{\boldsymbol{\tau}_0}^T \log p(\boldsymbol{\tau}_0) \right]. \tag{30}$$

II. Derivation of
$$oldsymbol{D}_n^{11},\,oldsymbol{D}_n^{12},\,oldsymbol{D}_n^{21},$$
 and $oldsymbol{D}_n^{22}$

Given the state-space model in (16) and that both $\boldsymbol{v}(n)$ and $\boldsymbol{w}(n)$ are *iid* Gaussian random variables with zero mean and unit variance, the functions $\log p(\boldsymbol{y}_{n+1}|\boldsymbol{\tau}_{n+1})$ and $\log p(\boldsymbol{\tau}_{n+1}|\boldsymbol{\tau}_n)$ are given as follows

$$\log p\left(\boldsymbol{y}_{n+1}|\boldsymbol{\tau}_{n+1}\right) = \kappa_{\sigma_w} - \frac{1}{2\sigma_w^2} \left(\boldsymbol{y}_{n+1} - \sum_{l=0}^{L-1} \tilde{\boldsymbol{H}}(\boldsymbol{\tau}_{n+1})\boldsymbol{a}_{n-l+1}\right)^T \left(\boldsymbol{y}_{n+1} - \sum_{l=0}^{L-1} \tilde{\boldsymbol{H}}(\boldsymbol{\tau}_{n+1})\boldsymbol{a}_{n-l+1}\right), \tag{31}$$

$$\log p\left(\boldsymbol{\tau}_{n+1}|\boldsymbol{\tau}_{n}\right) = \kappa_{\sigma_{v}} - \frac{1}{2\sigma_{v}^{2}} \left(\boldsymbol{\tau}_{n+1} - \boldsymbol{\tau}_{n}\right)^{T} \left(\boldsymbol{\tau}_{n+1} - \boldsymbol{\tau}_{n}\right), \tag{32}$$

where κ_{σ_w} and κ_{σ_v} are a function of σ_w^2 and σ_v^2 , respectively. Next we will present the derivations of \boldsymbol{D}_n^{11} , \boldsymbol{D}_n^{12} , \boldsymbol{D}_n^{21} , and \boldsymbol{D}_n^{22} in sequel.

A. Derivation of \mathbf{D}_n^{11}

The term \boldsymbol{D}_n^{11} is defined as

$$E\left\{-\nabla_{\boldsymbol{\tau}_n}\nabla_{\boldsymbol{\tau}_n}^T \log p\left(\boldsymbol{\tau}_{n+1}|\boldsymbol{\tau}_n\right)\right\},\tag{33}$$

whose i, jth element of \boldsymbol{D}_n^{11} is defined as follows

$$[\boldsymbol{D}_{n}^{11}]_{i,j} = \frac{\partial}{\partial \tau_{t,j}} \left\{ \frac{-\partial}{\partial \tau_{t,i}} \log p\left(\boldsymbol{\tau}_{n+1} | \boldsymbol{\tau}_{n}\right) \right\}, \quad i, j = 0, ..., k_{0} - 1$$

$$= \frac{-1}{\sigma_{v}^{2}} \frac{\partial}{\partial \tau_{t,j}} \left\{ \left(\tau_{n+1,i} - \tau_{t,i}\right) \right\},$$

$$= \begin{cases} 0, & \text{if } i \neq j \\ \frac{1}{\sigma_{v}^{2}}, & \text{if } i = j \end{cases}.$$
(34)

In other words, the matrix D_n^{11} is a diagonal matrix defined as

$$\mathbf{D}_{n}^{11} = \frac{1}{\sigma_{v}^{2}} \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 \end{bmatrix}.$$
(35)

B. Derivation of \mathbf{D}_n^{12}

The i, jth element of \boldsymbol{D}_n^{12} is defined as follows

$$[\boldsymbol{D}_{n}^{12}]_{i,j} = \frac{\partial}{\partial \tau_{n+1,j}} \left\{ \frac{-\partial}{\partial \tau_{t,i}} \log p\left(\boldsymbol{\tau}_{n+1} \middle| \boldsymbol{\tau}_{n}\right) \right\}, \quad i, j = 0, ..., k_{0} - 1$$

$$= \frac{-1}{\sigma_{v}^{2}} \frac{\partial}{\partial \tau_{n+1,j}} \left\{ \left(\tau_{n+1,i} - \tau_{t,i}\right) \right\},$$

$$= \begin{cases} 0, & \text{if } i \neq j \\ \frac{-1}{\sigma_{x}^{2}}, & \text{if } i = j \end{cases}.$$

$$(36)$$

In other words, the matrix \boldsymbol{D}_n^{12} and $\boldsymbol{D}_n^{21} = \left[\boldsymbol{D}_n^{12}\right]^T$ are a diagonal matrix defined as

$$\mathbf{D}_{n}^{12} = \mathbf{D}_{n}^{21} = \frac{-1}{\sigma_{v}^{2}} \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 \end{bmatrix}.$$
 (37)

C. Derivation of \mathbf{D}_n^{22}

The i, jth element of \boldsymbol{D}_n^{22} is defined as follows

$$[\boldsymbol{D}_{n}^{22}]_{i,j} = \frac{\partial}{\partial \tau_{n+1,j}} \left\{ \frac{-\partial}{\partial \tau_{n+1,i}} \log p \left(\boldsymbol{\tau}_{n+1} | \boldsymbol{\tau}_{n}\right) + \frac{-\partial}{\partial \tau_{n+1,i}} \log p \left(\boldsymbol{y}_{n+1} | \boldsymbol{\tau}_{n+1}\right) \right\}, \quad i, j = 0, ..., k_{0} - 1,$$

$$= \frac{\partial}{\partial \tau_{n+1,j}} \left\{ \frac{1}{\sigma_{v}^{2}} (\tau_{n+1,i} - \tau_{t,i}) - \frac{1}{\sigma_{w}^{2}} \boldsymbol{\epsilon}_{n+1}^{T} \tilde{\boldsymbol{H}}'(\tau_{n+1,i}) \boldsymbol{s}_{i}(n+1) \right\},$$

$$= \begin{cases} \frac{1}{\sigma_{w}^{2}} f_{i,j}(n+1), & \text{if } i \neq j \\ \frac{1}{\sigma_{v}^{2}} + \frac{1}{\sigma_{w}^{2}} \left(\boldsymbol{\epsilon}_{n+1}^{T} \tilde{\boldsymbol{H}}''(\tau_{n+1,i}) \boldsymbol{s}_{i}(n+1) + f_{i,i}(n+1) \right), & \text{if } i = j \end{cases},$$

$$(38)$$

where

$$\epsilon_{n+1} = \mathbf{y}_{n+1} - \sum_{l=0}^{L-1} \tilde{\mathbf{H}}_l(\boldsymbol{\tau}_{n+1}) \mathbf{a}_{n-l+1},$$
 (39)

$$\tilde{\boldsymbol{H}}'(\tau_{n+1,i}) = \frac{\partial}{\partial \tau_{n+1,i}} \tilde{\boldsymbol{H}}(\tau_{n+1,i}),\tag{40}$$

$$\tilde{\boldsymbol{H}}''(\tau_{n+1,i}) = \frac{\partial}{\partial \tau_{n+1,i}} \tilde{\boldsymbol{H}}'(\tau_{n+1,i}), \tag{41}$$

and

$$f_{i,j}(n+1) = -\mathbf{s}_{j}^{T}(n+1) \left(\tilde{\mathbf{H}}'(\tau_{n+1,j}) \right)^{T} \tilde{\mathbf{H}}'(\tau_{n+1,i}) \mathbf{s}_{i}(n+1).$$
 (42)

References

- [1] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation. New York: John Wiley & Sons, 2001.
- [2] X.-R. Li, Y. Bar-Shalom, and T. Kirubarajan, Estimation, Tracking and Navigation: Theory, Algorithms and Software. New York: John Wiley & Sons, June, 2001.
- [3] P. Tichavsky, H. Muravchik, and A. Nehorai, "Posterior Cramér-Rao bounds for discrete-time nonlinear filtering," *IEEE Transactions on Signal Processing*, vol. 46, pp. 1386–1396, May 1998.