K Nearest Neighbors with Python ¶

You've been given a classified data set from a company! They've hidden the feature column names but have given you the data and the target classes.

We'll try to use KNN to create a model that directly predicts a class for a new data point based off of the features.

Let's grab it and use it!

Import Libraries

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
```

Get the Data

Set index_col=0 to use the first column as the index.

```
In [2]:

df = pd.read_csv("Classified Data")

In [3]:

df.head()
```

Out[3]:

	Unnamed: 0	WTT	PTI	EQW	SBI	LQE	QWG	FDJ	PJF
0	0	0.913917	1.162073	0.567946	0.755464	0.780862	0.352608	0.759697	0.643798
1	1	0.635632	1.003722	0.535342	0.825645	0.924109	0.648450	0.675334	1.013546
2	2	0.721360	1.201493	0.921990	0.855595	1.526629	0.720781	1.626351	1.154483
3	3	1.234204	1.386726	0.653046	0.825624	1.142504	0.875128	1.409708	1.380003
4	4	1.279491	0.949750	0.627280	0.668976	1.232537	0.703727	1.115596	0.646691
4									>

```
In [4]:

df = pd.read_csv("Classified Data",index_col=0)
```

```
In [5]:

df.head()
```

Out[5]:

	WTT	PTI	EQW	SBI	LQE	QWG	FDJ	PJF	HQE	
0	0.913917	1.162073	0.567946	0.755464	0.780862	0.352608	0.759697	0.643798	0.879422	1
1	0.635632	1.003722	0.535342	0.825645	0.924109	0.648450	0.675334	1.013546	0.621552	1
2	0.721360	1.201493	0.921990	0.855595	1.526629	0.720781	1.626351	1.154483	0.957877	1
3	1.234204	1.386726	0.653046	0.825624	1.142504	0.875128	1.409708	1.380003	1.522692	1
4	1.279491	0.949750	0.627280	0.668976	1.232537	0.703727	1.115596	0.646691	1.463812	1
4)	•

Standardize the Variables

Because the KNN classifier predicts the class of a given test observation by identifying the observations that are nearest to it, the scale of the variables matters. Any variables that are on a large scale will have a much larger effect on the distance between the observations, and hence on the KNN classifier, than variables that are on a small scale.

```
In [14]:
```

```
scaled_features.head()
```

Out[14]:

```
array([[-0.12354188, 0.18590747, -0.91343069, ..., -1.48236813, -0.9497194 , -0.64331425],
[-1.08483602, -0.43034845, -1.02531333, ..., -0.20224031, -1.82805088, 0.63675862],
[-0.78870217, 0.33931821, 0.30151137, ..., 0.28570652, -0.68249379, -0.37784986],
...,
[ 0.64177714, -0.51308341, -0.17920486, ..., -2.36249443, -0.81426092, 0.11159651],
[ 0.46707241, -0.98278576, -1.46519359, ..., -0.03677699, 0.40602453, -0.85567 ],
[ -0.38765353, -0.59589427, -1.4313981 , ..., -0.56778932, 0.3369971 , 0.01034996]])
```

```
In [15]: ▶
```

```
df_feat = pd.DataFrame(scaled_features,columns=df.columns[:-1])
df_feat.head()
```

Out[15]:

	WTT	PTI	EQW	SBI	LQE	QWG	FDJ	PJF	Н
0	-0.123542	0.185907	-0.913431	0.319629	-1.033637	-2.308375	-0.798951	-1.482368	-0.949
1	-1.084836	-0.430348	-1.025313	0.625388	-0.444847	-1.152706	-1.129797	-0.202240	-1.8280
2	-0.788702	0.339318	0.301511	0.755873	2.031693	-0.870156	2.599818	0.285707	-0.682
3	0.982841	1.060193	-0.621399	0.625299	0.452820	-0.267220	1.750208	1.066491	1.241;
4	1.139275	-0.640392	-0.709819	-0.057175	0.822886	-0.936773	0.596782	-1.472352	1.040
4									•

Train Test Split

```
In [16]:
```

```
from sklearn.model selection import train test split
```

```
In [18]:
                                                                                               H
df['TARGET CLASS']
Out[18]:
0
       1
1
       0
2
       0
3
       1
995
       1
996
       0
997
       1
998
       1
999
Name: TARGET CLASS, Length: 1000, dtype: int64
In [19]:
X_train, X_test, y_train, y_test = train_test_split(scaled_features,df['TARGET CLASS'],
                                                       test_size=0.30)
```

Using KNN

Remember that we are trying to come up with a model to predict whether someone will TARGET CLASS or not. We'll start with k=1.

Predictions and Evaluations

Let's evaluate our KNN model!

```
In [24]:
from sklearn.metrics import classification_report,confusion_matrix
In [25]:
                                                                                             H
print(confusion_matrix(y_test,pred))
[[140 18]
[ 8 134]]
In [26]:
                                                                                             M
print(classification_report(y_test,pred))
              precision
                            recall f1-score
                                                support
           0
                   0.95
                              0.89
                                        0.92
                                                    158
                   0.88
                              0.94
                                        0.91
           1
                                                    142
                                        0.91
                                                    300
    accuracy
   macro avg
                   0.91
                              0.91
                                        0.91
                                                    300
weighted avg
                   0.92
                              0.91
                                        0.91
                                                    300
```

Choosing a K Value

Let's go ahead and use the elbow method to pick a good K Value:

```
In [27]:

error_rate = []

# Will take some time
for i in range(1,40):

knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(X_train,y_train)
pred_i = knn.predict(X_test)
error_rate.append(np.mean(pred_i != y_test))
```

In [28]: ▶

Out[28]:

Text(0, 0.5, 'Error Rate')

Here we can see that that after arouns K>23 the error rate just tends to hover around 0.06-0.05 Let's retrain the model with that and check the classification report!

In [29]:

```
# FIRST A QUICK COMPARISON TO OUR ORIGINAL K=1
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train,y_train)
pred = knn.predict(X_test)

print('WITH K=1')
print('\n')
print(confusion_matrix(y_test,pred))
print('\n')
print(classification_report(y_test,pred))
```

WITH K=1

[[140 18] [8 134]]

	precision	recall	f1-score	support
0	0.95	0.89	0.92	158
1	0.88	0.94	0.91	142
accuracy			0.91	300
macro avg	0.91	0.91	0.91	300
weighted avg	0.92	0.91	0.91	300

In [33]:

```
# NOW WITH K=12
knn = KNeighborsClassifier(n_neighbors=12)
knn.fit(X_train,y_train)
pred = knn.predict(X_test)

print('WITH K=12')
print('\n')
print(confusion_matrix(y_test,pred))
print('\n')
print(classification_report(y_test,pred))
```

WITH K=12

[[143 15] [7 135]]

	precision	recall	f1-score	support
0	0.95	0.91	0.93	158
1	0.90	0.95	0.92	142
accuracy			0.93	300
macro avg	0.93	0.93	0.93	300
weighted avg	0.93	0.93	0.93	300

```
In [34]:
```

```
# NOW WITH K=24
knn = KNeighborsClassifier(n_neighbors=24)
knn.fit(X_train,y_train)
pred = knn.predict(X_test)

print('WITH K=24')
print('\n')
print(confusion_matrix(y_test,pred))
print('\n')
print(classification_report(y_test,pred))
```

WITH K=24

[[140 18] [3 139]]

	precision	recall	f1-score	support
0	0.98	0.89	0.93	158
1	0.89	0.98	0.93	142
accuracy			0.93	300
macro avg	0.93	0.93	0.93	300
weighted avg	0.93	0.93	0.93	300

In []: