An Introduction to Higher-Order Recursion Schemes and Pushdown Automata

Luke Ong

Oxford University Computing Laboratory

Workshop on Higher-Order Recursion Schemes and Pushdown Automata, 10-12 March 2010, Paris

Overview and Motivations

Aim: survey and introduction

Two families of generators of infinite structures (word and tree languages, and graphs): higher-order recursion schemes and pushdown automata.

Three questions:

- Expressivity of the generator families
- Relationship between generator families
- Algorithmic properties of the generator families

Motivations

- Understand connexions between semantics (structures) and verification (algorithmics).
 - Fully abstract semantics of PCF and recursion schemes. Algorithmics of game semantics. Type theory.
- ② Computer-aided verification of higher-order computation: a challeng What are the models of higher-order computation amenable to verification by model checking?

Overview and Motivations

Aim: survey and introduction

Two families of generators of infinite structures (word and tree languages, and graphs): higher-order recursion schemes and pushdown automata.

Three questions:

- Expressivity of the generator families
- Relationship between generator families
- Algorithmic properties of the generator families

Motivations

- Understand connexions between semantics (structures) and verification (algorithmics).
 - Fully abstract semantics of PCF and recursion schemes. Algorithmics of game semantics. Type theory.
- Computer-aided verification of higher-order computation: a challenge. What are the models of higher-order computation amenable to verification by model checking?

Outline I

- Relating Generator Families: The Maslov Hierarchy
 - Higher-Order Pushdown Automata
 - Higher-Order Recursion Schemes
 - Relating Expressivity of the Generator Families
- Recursion Schemes, CPDA and their Algorithmics
 - Q1: Decidability of MSO / Modal Mu-Calculus Theories
 - Q2: Machine Characterization by Collapsible Pushdown Automata
 - Q3: Expressivity: The Safety Conjecture
 - Q4: Infinite Graphs Generated by Recursion Schemes / CPDA

Outline

- Relating Generator Families: The Maslov Hierarchy
 - Higher-Order Pushdown Automata
 - Higher-Order Recursion Schemes
 - Relating Expressivity of the Generator Families

- Recursion Schemes, CPDA and their Algorithmics
 - Q1: Decidability of MSO / Modal Mu-Calculus Theories
 - Q2: Machine Characterization by Collapsible Pushdown Automata
 - Q3: Expressivity: The Safety Conjecture
 - Q4: Infinite Graphs Generated by Recursion Schemes / CPDA

Higher-order pushdown automata (HOPDA) [Maslov 74, 76]

Order-2 pushdown automata. A 1-stack is an ordinary stack. A 2-stack (resp. n + 1-stack) is a stack of 1-stacks (resp. n-stack).

Operations on 2-stacks: s_i ranges over 1-stacks. Top of stack is at the righthand end.

$$push_2 : [s_1 \cdots s_{i-1} \underbrace{[a_1 \cdots a_n]}_{s_i}] \mapsto [s_1 \cdots s_{i-1} s_i s_i]$$

$$pop_2 : [s_1 \cdots s_{i-1} [a_1 \cdots a_n]] \mapsto [s_1 \cdots s_{i-1}]$$

$$push_1 a : [s_1 \cdots s_{i-1} [a_1 \cdots a_n]] \mapsto [s_1 \cdots s_{i-1} [a_1 \cdots a_n]]$$

$$pop_1 : [s_1 \cdots s_{i-1} [a_1 \cdots a_n]] \mapsto [s_1 \cdots s_{i-1} [a_1 \cdots a_n]]$$

Idea extends to all finite orders: an order-n PDA has an order-n stack, and has $push_i$ and pop_i for each $1 \le i \le n$.

N.B. Several equivalent versions: Multilevel stack automata (Maslov); Iterated pushdown automata (Engelfriet); copy + \overline{copy} (Arnaud) * (Arnaud

Higher-order pushdown automata (HOPDA) [Maslov 74, 76]

Order-2 pushdown automata. A 1-stack is an ordinary stack. A 2-stack (resp. n + 1-stack) is a stack of 1-stacks (resp. n-stack).

Operations on 2-stacks: s_i ranges over 1-stacks. Top of stack is at the righthand end.

$$push_2 : [s_1 \cdots s_{i-1} \underbrace{[a_1 \cdots a_n]}_{s_i}] \mapsto [s_1 \cdots s_{i-1} s_i s_i]$$

$$pop_2 : [s_1 \cdots s_{i-1} [a_1 \cdots a_n]] \mapsto [s_1 \cdots s_{i-1}]$$

$$push_1 a : [s_1 \cdots s_{i-1} [a_1 \cdots a_n]] \mapsto [s_1 \cdots s_{i-1} [a_1 \cdots a_n a]]$$

$$pop_1 : [s_1 \cdots s_{i-1} [a_1 \cdots a_n a_{n+1}]] \mapsto [s_1 \cdots s_{i-1} [a_1 \cdots a_n]]$$

pushdown automata (Engelfriet); copy + copy (Arnaud) > (라 나 로 > 너로 > 너로 > 트로 - જ q C

Higher-order pushdown automata (HOPDA) [Maslov 74, 76]

Order-2 pushdown automata. A 1-stack is an ordinary stack. A 2-stack (resp. n + 1-stack) is a stack of 1-stacks (resp. n-stack).

Operations on 2-stacks: s_i ranges over 1-stacks. Top of stack is at the righthand end.

$$push_2 : [s_1 \cdots s_{i-1} \underbrace{[a_1 \cdots a_n]}_{s_i}] \mapsto [s_1 \cdots s_{i-1} s_i s_i]$$

$$pop_2 : [s_1 \cdots s_{i-1} [a_1 \cdots a_n]] \mapsto [s_1 \cdots s_{i-1}]$$

$$push_1 a : [s_1 \cdots s_{i-1} [a_1 \cdots a_n]] \mapsto [s_1 \cdots s_{i-1} [a_1 \cdots a_n a]]$$

 \mapsto $[s_1 \cdots s_{i-1} s_i s_i]$

Idea extends to all finite orders: an order-n PDA has an order-n stack, and has $push_i$ and pop_i for each $1 \le i \le n$.

 pop_1 : $[s_1 \cdots s_{i-1} [a_1 \cdots a_n a_{n+1}]] \mapsto [s_1 \cdots s_{i-1} [a_1 \cdots a_n]]$

N.B. Several equivalent versions: Multilevel stack automata (Maslov); Iterated Luke Ong (University of Oxford) Recursion Schemes + Pushdown Automata 10-12 March 2010, Paris 5 / 37

(L is not context free. Use the "uvwxy Lemma".)

Idea: Use top 1-stack to process $a^n b^n$, and height of 2-stack to remember n.

$$q_{1} [[]] \xrightarrow{a} q_{1} [[][z]] \xrightarrow{a} q_{1} [[][z][zz]]$$

$$\downarrow b$$

$$q_{2} [[][z][z]]$$

$$\downarrow b$$

$$q_{3} [[]] \xleftarrow{c} q_{3} [[][z]] \xleftarrow{c} q_{2} [[][z][]]$$

Similarly, for every $m \ge 0$, $L_m := \{\underbrace{a_1^n a_2^n a_3^n \cdots a_m^n}_{m} \mid n \ge 0 \}$, is recognizable by order-2 PDA

(L is not context free. Use the "uvwxy Lemma".)

Idea: Use top 1-stack to process $a^n b^n$, and height of 2-stack to remember n.

$$q_{1} \text{ [[]]} \xrightarrow{a} q_{1} \text{ [[] [z]]} \xrightarrow{a} q_{1} \text{ [[] [z] [zz]]}$$

$$\downarrow b$$

$$q_{2} \text{ [[] [z] [z]]}$$

$$\downarrow b$$

$$q_{3} \text{ [[]]} \leftarrow_{c} q_{3} \text{ [[] [z]]} \leftarrow_{c} q_{2} \text{ [[] [z] []]}$$

Similarly, for every $m \ge 0$, $L_m := \{\underbrace{a_1^n a_2^n a_3^n \cdots a_m^n}_{m} \mid n \ge 0\}$, is recognizable by order 2 PDA

(L is not context free. Use the "uvwxy Lemma".)

Idea: Use top 1-stack to process $a^n b^n$, and height of 2-stack to remember n.

$$q_{1} \text{ [[]]} \xrightarrow{a} q_{1} \text{ [[]} \text{ [}z\text{]]} \xrightarrow{a} q_{1} \text{ [[]} \text{ [}z\text{]]} \text{ [}zz\text{]]}$$

$$\downarrow b$$

$$q_{2} \text{ [[]} \text{ [}z\text{]]} \text{ }\downarrow b$$

$$q_{3} \text{ [[]]} \leftarrow_{c} q_{3} \text{ [[]} \text{ [}z\text{]]} \leftarrow_{c} q_{2} \text{ [[]} \text{ [}z\text{]]}$$

Similarly, for every $m \ge 0$, $L_m := \{\underbrace{a_1^n a_2^n a_3^n \cdots a_m^n}_{m} \mid n \ge 0 \}$, is recognizable by order-2 PDA

(L is not context free. Use the "uvwxy Lemma".)

Idea: Use top 1-stack to process $a^n b^n$, and height of 2-stack to remember n.

$$q_{1} \text{ [[]]} \xrightarrow{a} q_{1} \text{ [[]} \text{ [}z\text{]]} \xrightarrow{a} q_{1} \text{ [[]} \text{ [}z\text{]} \text{ [}zz\text{]]}$$

$$\downarrow b$$

$$q_{2} \text{ [[]} \text{ [}z\text{]} \text{ [}z\text{]]}$$

$$\downarrow b$$

$$q_{3} \text{ [[]]} \leftarrow_{c} q_{3} \text{ [[]} \text{ [}z\text{]]} \leftarrow_{c} q_{2} \text{ [[]} \text{ [}z\text{]]}$$

Similarly, for every $m \ge 0$, $L_m := \{\underbrace{a_1^n a_2^n a_3^n \cdots a_m^n}_{m} \mid n \ge 0 \}$, is recognizable by order-2 PDA.

HOPDA as recognizers of word languages

Some old results (Maslov 74, 76):

- HOPDA define an infinite hierarchy of word languages.
- 2 Low orders are well-known: orders 0, 1 and 2 are the regular, context free, and indexed languages (Aho 68).
- **③** For each $n \ge 0$, the order-n languages form an abstract family of languages.
- **③** For each $n \ge 0$, the emptiness problem for order-n PDA is decidable.

HOPDA can also be used as a recognize / generate

- ranked trees (KNU01, KNU02), and tree languages
- 2 graphs (Muller+Schupp 86, Courcelle 95, Cachat 03, etc.)

HOPDA as recognizers of word languages

Some old results (Maslov 74, 76):

- HOPDA define an infinite hierarchy of word languages.
- 2 Low orders are well-known: orders 0, 1 and 2 are the regular, context free, and indexed languages (Aho 68).
- **③** For each $n \ge 0$, the order-n languages form an abstract family of languages.
- **③** For each $n \ge 0$, the emptiness problem for order-n PDA is decidable.

HOPDA can also be used as a recognize / generate

- ranked trees (KNU01, KNU02), and tree languages
- 2 graphs (Muller+Schupp 86, Courcelle 95, Cachat 03, etc.)

Simple types: a review

Types
$$A ::= o \mid (A \rightarrow B)$$

Every type can be written uniquely as

$$A_1 \rightarrow (A_2 \cdots \rightarrow (A_n \rightarrow \circ) \cdots), \quad n \geq 0$$

often abbreviated to $A_1 \rightarrow A_2 \cdots \rightarrow A_n \rightarrow o$.

$$\operatorname{order}(\circ) := 0$$
 $\operatorname{order}(A o B) := \operatorname{max}(\operatorname{order}(A) + 1, \operatorname{order}(B))$

Simple types: a review

Types
$$A ::= o \mid (A \rightarrow B)$$

Every type can be written uniquely as

$$A_1 \rightarrow (A_2 \cdots \rightarrow (A_n \rightarrow \circ) \cdots), \quad n \geq 0$$

often abbreviated to $A_1 \rightarrow A_2 \cdots \rightarrow A_n \rightarrow o$.

Order of a type: measures "nestedness" on LHS of \rightarrow .

$$\operatorname{order}(o) := 0$$

 $\operatorname{order}(A \to B) := \max(\operatorname{order}(A) + 1, \operatorname{order}(B))$

Examples. $\mathbb{N} \to \mathbb{N}$ and $\mathbb{N} \to (\mathbb{N} \to \mathbb{N})$ both have order 1; $(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ has order 2.

Notation. e:A means "expression e has type A".

Program schemes and higher-order recursion schemes: some history

Recursive program schemes

- Park 68(?); Nivat 72, Nivat+Courcelle 78, Guessarian 81, etc.
- A calculus of first-order recursive procedures that separates control structures from operations on data; a framework for analysing expressivity of control structures and program transformations.
- A large literature on the semantics and transformation of program schemes (Courcelle MIT Handbook 1990).

Higher-order recursion schemes (and precursors)

- Extended to derived types, as generators of trees and tree languages (Damm 77, DFI78) and word languages (Damm 82).
- Comparative schematology and expressivity of dynamic logic with higher-order procedures (KNT89); simulating higher-order stacks by higher-order recursion (KTU92).
- An order-n recursion scheme = "closed ground-type term definable in order-n fragment of simply-typed λ -calculus with recursion and uninterpreted order-1 constant symbols". (Statman's λY -calculus)

Program schemes and higher-order recursion schemes: some history

Recursive program schemes

- Park 68(?); Nivat 72, Nivat+Courcelle 78, Guessarian 81, etc.
- A calculus of first-order recursive procedures that separates control structures from operations on data; a framework for analysing expressivity of control structures and program transformations.
- A large literature on the semantics and transformation of program schemes (Courcelle MIT Handbook 1990).

Higher-order recursion schemes (and precursors)

- Extended to derived types, as generators of trees and tree languages (Damm 77, DFI78) and word languages (Damm 82).
- Comparative schematology and expressivity of dynamic logic with higher-order procedures (KNT89); simulating higher-order stacks by higher-order recursion (KTU92).
- An order-n recursion scheme = "closed ground-type term definable in order-n fragment of simply-typed λ -calculus with recursion and uninterpreted order-1 constant symbols". (Statman's λY -calculus)

Example: An order-1 recursion scheme. Ranked alphabet (i.e. each symbol has an arity) $\Sigma = \{ f : 2, g : 1, a : 0 \}$.

$$G : \begin{cases} S = Fa \\ Fx = fx(F(gx)) \end{cases}$$

Unfolding from the start symbol S:

$$S \rightarrow Fa$$

 $\rightarrow fa(F(ga))$
 $\rightarrow fa(f(ga)(F(g(ga))))$
 $\rightarrow \cdots$

The (term-)tree generated, $\llbracket G \rrbracket$, is $f a (f (g a) (f (g (g a)) (\cdots)))$.

Example: An order-1 recursion scheme. Ranked alphabet (i.e. each symbol has an arity) $\Sigma = \{ f : 2, g : 1, a : 0 \}.$

$$G : \begin{cases} S = Fa \\ Fx = fx(F(gx)) \end{cases}$$

Unfolding from the start symbol S:

$$\begin{array}{ll} S & \rightarrow & F \, a \\ & \rightarrow & f \, a \, (F \, (g \, a)) \\ & \rightarrow & f \, a \, (f \, (g \, a) \, (F \, (g \, (g \, a)))) \\ & \rightarrow & \cdots \end{array}$$

The (term-)tree generated, $\llbracket G \rrbracket$, is $f a(f(g a)(f(g(g a))(\cdots)))$.

Term-trees such as $\llbracket G \rrbracket$ are ranked and ordered.

Tree generated by a recursion scheme (in accord with strategy $\rightarrow_{\mathcal{S}}$)

Assume deterministic schemes. Redex is a term of shape $F s_1 \cdots s_{ar(F)} : o$. **Examples of reduction strategy** $\rightarrow_{\mathcal{S}}$:

- Unrestricted: \rightarrow_{unr}
- ② Outside-In (only contract outermost redexes): \rightarrow_{OI}
- **1** Inside-Out (only contract innermost redexes): \rightarrow_{IO}
- Others: "square reduction" (Paolini + O. 2010), etc.

For a term
$$t$$
, define a tree $t^{\perp}:=\left\{ egin{array}{ll} f & \mbox{if } t \mbox{ is a terminal } f \\ t_1^{\perp} t_2^{\perp} & \mbox{if } t=t_1 \ t_2 \mbox{ and } t_1^{\perp}
eq \bot \\ & \mbox{otherwise} \end{array} \right.$

Define $t \leq t'$ if "t" obtainable from t by replacing some \bot by terms".

For G a recursion scheme, define the S-tree generated by G by

$$\llbracket G \rrbracket^{\mathcal{S}} := | \{ t^{\perp} \mid S \to_{\mathcal{S}}^* t \}.$$

Lemma. $[-]^{\text{unr}} = [-]^{OI} \neq [-]^{IO}$. (Henceforth assume $[-]^{\text{unr}}$.)

Tree generated by a recursion scheme (in accord with strategy $\rightarrow_{\mathcal{S}}$)

Assume deterministic schemes. Redex is a term of shape $F s_1 \cdots s_{ar(F)} : o$. **Examples of reduction strategy** $\rightarrow_{\mathcal{S}}$:

- Unrestricted: \rightarrow_{unr}
- **2** Outside-In (only contract outermost redexes): \rightarrow_{OI}
- **1** Inside-Out (only contract innermost redexes): \rightarrow_{IO}
- Others: "square reduction" (Paolini + O. 2010), etc.

For a term
$$t$$
, define a tree $t^{\perp}:=\left\{ egin{array}{ll} f & \mbox{if } t \mbox{ is a terminal } f \\ t_1^{\perp} t_2^{\perp} & \mbox{if } t=t_1 \ t_2 \mbox{ and } t_1^{\perp}
eq \bot \\ \bot & \mbox{otherwise} \end{array} \right.$

Define $t \leq t'$ if "t' obtainable from t by replacing some \bot by terms".

For G a recursion scheme, define the S-tree generated by G by

$$\llbracket G \rrbracket^{\mathcal{S}} := \bigsqcup \{ t^{\perp} \mid S \to_{\mathcal{S}}^* t \}.$$

Lemma. $\llbracket - \rrbracket^{\text{unr}} = \llbracket - \rrbracket^{OI} \neq \llbracket - \rrbracket^{IO}$. (Henceforth assume $\llbracket - \rrbracket^{\text{unr}}_{\mathbb{R}}$.)

An order-2 example

$$egin{aligned} \Sigma &= \{\,f: 2, g: 1, a: 0\,\}. \ S: o, \quad B: (o
ightarrow o)
ightarrow (o
ightarrow o)
ightarrow o
ightarrow o, \quad F: (o
ightarrow o)
ightarrow o \ G_2: \left\{egin{aligned} S &= Fg \ B arphi \psi x &= arphi (\psi x) \ F arphi &= f (arphi a) (F (B arphi arphi)) \end{aligned}
ight.$$

The generated tree, $\llbracket G_2 \rrbracket : \{1,2\}^* \longrightarrow \Sigma$, is:

Using recursion schemes as generators of word languages

Represent a finite word "a b c" (say) as the applicative term a(b(ce)): o, where e is a distinguished nullary end-of-word marker.

Example. $\{a^n b^n \mid n \ge 0\}$ is generated by order-1 recursion scheme:

$$\left\{ \begin{array}{ccc} S & \rightarrow & F e \\ F x & \rightarrow & a(F(bx)) & | & x \end{array} \right.$$

 $\{a^nb^nc^n\mid n\geq 0\}$ is generated by order-2 scheme:

$$\begin{cases}
S \rightarrow FIe \\
F\varphi x \rightarrow \varphi x \mid F(H\varphi)(cx) \\
H\varphi y \rightarrow a(\varphi(by)) \\
Ix \rightarrow x
\end{cases}$$

Both languages can be generated by deterministic schemes.

Relating the two generator-families: word-language case

The Maslov Hierarchy of Word Languages

Theorem (Equi-expressivity)

For each $n \ge 0$, the three formalisms

- order-n pushdown automata (Maslov 76)
- order-n safe recursion schemes (or equivalently, satisfying the constraint of derived types) (Damm 82, Damm + Goerdt 86)
- 3 order-n indexed grammars (Maslov 76)

generate the same family of word languages.

What is safety? (See later.)

Engelfriet's complexity results

Virtually all complexity results of higher-order pushdown systems have been obtained by reduction to one of the following.

Theorem (Engelfriet 1991)

Let $s(n) \ge \log(n)$.

- (i) For $k \ge 0$, the word acceptance problem of non-deterministic order-k pushdown automata augmented with a two-way work-tape with s(n) space is k-EXPTIME complete.
- (ii) For $k \ge 1$, the word acceptance problem of alternating order-k pushdown automata augmented with a two-way work-tape with s(n) space is (k-1)-EXPTIME complete.
- (iii) For $k \ge 0$, the word acceptance problem of alternating order-k pushdown automata is k-EXPTIME complete.
- (iv) For $k \ge 1$, the emptiness problem of non-deterministic order-k pushdown automata is (k-1)-EXPTIME complete.

Maslov Hierarchy: Some Open Problems

- Pumping Lemma, Myhill-Nerode, and Parikh Theorems. Weak "pumping lemmas" for levels 1 and 2 (Hayashi 73, Gilman 96). Pace (Blumensath 08, and his talk) for Maslov Hierarchy – runs (not plays) are pumpable, conditions given as lengths of runs and configuration size.
- Logical Characterizations.
 E.g. MSOL for regular languages (Büchi 60). Characterization of CFL using quantification over matchings (LST 94).
- Complexity-Theoretic Characterizations. Pace (Engelfriet 91): characterizations of languages accepted by alternating / two-way / multi-head / space-auxiliary order-n PDA as time-complexity classes.
 - E.g. What is the power (complexity class) of the deterministic Maslov Hierarchy?
- Relationship with Chomsky Hierachy. E.g. Is level 3 context-sensitive?

Outline

- Relating Generator Families: The Maslov Hierarchy
 - Higher-Order Pushdown Automata
 - Higher-Order Recursion Schemes
 - Relating Expressivity of the Generator Families
- Recursion Schemes, CPDA and their Algorithmics
 - Q1: Decidability of MSO / Modal Mu-Calculus Theories
 - Q2: Machine Characterization by Collapsible Pushdown Automata
 - Q3: Expressivity: The Safety Conjecture
 - Q4: Infinite Graphs Generated by Recursion Schemes / CPDA

A challenge problem in higher-order verification

Let **RecSchTree**_n be the class of Σ -labelled trees generated by order-n recursion schemes.

Is the "MSO Model-Checking Problem for **RecSchTree**_n" decidable?

- ullet INSTANCE: An order-n recursion scheme G, and an MSO formula arphi
- QUESTION: Does the Σ -labelled tree $\llbracket G \rrbracket$ satisfy φ ?

A challenge problem in higher-order verification

Let **RecSchTree**_n be the class of Σ -labelled trees generated by order-n recursion schemes.

Is the "MSO Model-Checking Problem for **RecSchTree**_n" decidable?

- ullet INSTANCE: An order-n recursion scheme G, and an MSO formula arphi
- QUESTION: Does the Σ -labelled tree $\llbracket G \rrbracket$ satisfy φ ?

- Rabin 1969: Regular trees. "Mother of all decidability results in Verification."
- Muller and Schupp 1985: Configuration graphs of PDA.
- Caucal 1996 Prefix-recognizable graphs (ϵ -closures of configuration graphs of pushdown automata, Stirling 2000).
- Knapik, Niwiński and Urzyczyn (TLCA 2001, FoSSaCS 2002): **PushdownTree**_n Σ = Trees generated by order-*n* pushdown automata **SafeRecSchTree**_n Σ = Trees generated by order-*n* safe rec. schemes.
- Subsuming all the above: The Caucal Hierarchies (MFCS 2002). CaucalTree_n Σ and CaucalGraph_n Σ .

Theorem (KNU-Caucal 2002)

For $n \ge 0$, PushdownTree_n $\Sigma = SafeRecSchTree_n\Sigma = CaucalTree_n\Sigma$; and they have decidable MSO theories.

- Rabin 1969: Regular trees. "Mother of all decidability results in Verification."
- Muller and Schupp 1985: Configuration graphs of PDA.
- Caucal 1996 Prefix-recognizable graphs (ϵ -closures of configuration graphs of pushdown automata, Stirling 2000).
- Knapik, Niwiński and Urzyczyn (TLCA 2001, FoSSaCS 2002): **PushdownTree**_n $\Sigma =$ Trees generated by order-*n* pushdown automata. **SafeRecSchTree**_n $\Sigma =$ Trees generated by order-*n* safe rec. schemes.
- Subsuming all the above: The Caucal Hierarchies (MFCS 2002). CaucalTree_n Σ and CaucalGraph_n Σ .

Theorem (KNU-Caucal 2002)

For $n \ge 0$, PushdownTree_n $\Sigma =$ SafeRecSchTree_n $\Sigma =$ CaucalTree_n Σ ; and they have decidable MSO theories.

- Rabin 1969: Regular trees. "Mother of all decidability results in Verification."
- Muller and Schupp 1985: Configuration graphs of PDA.
- Caucal 1996 Prefix-recognizable graphs (ϵ -closures of configuration graphs of pushdown automata, Stirling 2000).
- Knapik, Niwiński and Urzyczyn (TLCA 2001, FoSSaCS 2002): **PushdownTree**_n $\Sigma =$ Trees generated by order-*n* pushdown automata **SafeRecSchTree**_n $\Sigma =$ Trees generated by order-*n* safe rec. schemes.
- Subsuming all the above: The Caucal Hierarchies (MFCS 2002). CaucalTree_n Σ and CaucalGraph_n Σ .

Theorem (KNU-Caucal 2002)

For $n \ge 0$, PushdownTree_n $\Sigma = SafeRecSchTree_n\Sigma = CaucalTree_n\Sigma$; and they have decidable MSO theories.

- Rabin 1969: Regular trees. "Mother of all decidability results in Verification."
- Muller and Schupp 1985: Configuration graphs of PDA.
- Caucal 1996 Prefix-recognizable graphs (ϵ -closures of configuration graphs of pushdown automata, Stirling 2000).
- Knapik, Niwiński and Urzyczyn (TLCA 2001, FoSSaCS 2002): **PushdownTree**_n $\Sigma =$ Trees generated by order-*n* pushdown automata. **SafeRecSchTree**_n $\Sigma =$ Trees generated by order-*n* safe rec. schemes.
- Subsuming all the above: The Caucal Hierarchies (MFCS 2002). CaucalTree_n Σ and CaucalGraph_n Σ .
- Theorem (KNU-Caucal 2002)

For $n \ge 0$, PushdownTree_n $\Sigma =$ SafeRecSchTree_n $\Sigma =$ CaucalTree_n Σ ; and they have decidable MSO theories.

- Rabin 1969: Regular trees. "Mother of all decidability results in Verification."
- Muller and Schupp 1985: Configuration graphs of PDA.
- Caucal 1996 Prefix-recognizable graphs (ϵ -closures of configuration graphs of pushdown automata, Stirling 2000).
- Knapik, Niwiński and Urzyczyn (TLCA 2001, FoSSaCS 2002): **PushdownTree**_n $\Sigma =$ Trees generated by order-*n* pushdown automata. **SafeRecSchTree**_n $\Sigma =$ Trees generated by order-*n* safe rec. schemes.
- Subsuming all the above: The Caucal Hierarchies (MFCS 2002). CaucalTree_n Σ and CaucalGraph_n Σ .
- For $n \ge 0$, PushdownTree_n $\Sigma =$ SafeRecSchTree_n $\Sigma =$ CaucalTree
- and they have decidable MSO theories

- Rabin 1969: Regular trees. "Mother of all decidability results in Verification."
- Muller and Schupp 1985: Configuration graphs of PDA.
- Caucal 1996 Prefix-recognizable graphs (ϵ -closures of configuration graphs of pushdown automata, Stirling 2000).
- Knapik, Niwiński and Urzyczyn (TLCA 2001, FoSSaCS 2002): **PushdownTree**_n Σ = Trees generated by order-*n* pushdown automata. **SafeRecSchTree**_n Σ = Trees generated by order-*n* safe rec. schemes.
- Subsuming all the above: The Caucal Hierarchies (MFCS 2002). CaucalTree_n Σ and CaucalGraph_n Σ .

Theorem (KNU-Caucal 2002)

For $n \ge 0$, PushdownTree_n $\Sigma = SafeRecSchTree_n\Sigma = CaucalTree_n\Sigma$; and they have decidable MSO theories.

What is the safety constraint on recursion schemes?

Assume that types are homogeneous¹. Safety is a set of constraints governing where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS'02)

An order-2 equation is unsafe if the RHS has a subterm P s.t.

- P is order 1
- P occurs in an operand position (i.e. as 2nd argument of application)
- P contains an order-0 parameter.

$$F \varphi x y = f (F (F \varphi y) y (\varphi x)) \underline{a}$$

 $^{^{1}}o$ is homogeneous; and $(A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow o)$ is homogeneous just if $\operatorname{order}(A_1) \geq \operatorname{order}(A_2) \geq \cdots \geq \operatorname{order}(A_n)$, and each A_i is homogeneous:

What is the safety constraint on recursion schemes?

Assume that types are homogeneous¹. Safety is a set of constraints governing where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS'02)

An order-2 equation is unsafe if the RHS has a subterm P s.t.

- P is order 1
- P occurs in an operand position (i.e. as 2nd argument of application)
- P contains an order-0 parameter.

Consequence: An order-*i* subterm of a safe term can only have free variables of order at least i.

Example (unsafe eqn): $F:(o \rightarrow o) \rightarrow o \rightarrow o, f:o^2 \rightarrow o, x,y:o.$

$$F \varphi x y = f(F(F \varphi y) y(\varphi x)) \underline{a}$$

¹o is homogeneous; and $(A_1 \rightarrow \cdots \rightarrow A_n \rightarrow o)$ is homogeneous just if $\operatorname{order}(A_1) \geq \operatorname{order}(A_2) \geq \cdots \geq \operatorname{order}(A_n)$, and each A_i is homogeneous.

What is the point of safety?

Safe terms enjoy an important algorithmic advantage!

Lemma (KNU 2002, Blum+O. TLCA 2007)

Substitution (hence β -red.) in safe λ -calculus can be safely implemented without renaming bound variables! Hence no fresh names needed.

Expressivity of safety: a characterization

Theorem

- (Schwichtenberg 1976) The numeric functions representable by simply-typed λ -terms are multivariate polynomials with conditional.
- ② (Blum + O. LMCS 09) The numeric functions representable by simply-typed safe λ -terms are the multivariate polynomials.

(See Blum's thesis for a study on the safe lambda calculus.)

What is the point of safety?

Safe terms enjoy an important algorithmic advantage!

Lemma (KNU 2002, Blum+O. TLCA 2007)

Substitution (hence β -red.) in safe λ -calculus can be safely implemented without renaming bound variables! Hence no fresh names needed.

Expressivity of safety: a characterization

Theorem

- (Schwichtenberg 1976) The numeric functions representable by simply-typed λ -terms are multivariate polynomials with conditional.
- ② (Blum + O. LMCS 09) The numeric functions representable by simply-typed safe λ -terms are the multivariate polynomials.

(See Blum's thesis for a study on the safe lambda calculus.)

- MSO decidability: Is safety a genuine constraint for decidability? I.e. do trees generated by (arbitrary) recursion schemes have decidable MSO theories?
- 2 Machine characterization: Find a hierarchy of automata that characterize the expressive power of recursion schemes.
 I.e. how should the power of higher-order pushdown automata be augmented to achieve equi-expressivity with (arbitrary) recursion schemes?
- Expressivity: Is safety a genuine constraint for expressivity?
 I.e. are there inherently unsafe word languages / trees / graphs?
- Graph families:
 - Definition: What is a good definition of "graphs generated by recursion schemes"?
 - 2 Model-checking properties: What are the decidable (modal-) logical theories of the graph families?

- MSO decidability: Is safety a genuine constraint for decidability? I.e. do trees generated by (arbitrary) recursion schemes have decidable MSO theories?
- Machine characterization: Find a hierarchy of automata that characterize the expressive power of recursion schemes.
 I.e. how should the power of higher-order pushdown automata be augmented to achieve equi-expressivity with (arbitrary) recursion schemes?
- Expressivity: Is safety a genuine constraint for expressivity?
 I.e. are there inherently unsafe word languages / trees / graphs?
- Graph families:
 - Definition: What is a good definition of "graphs generated by recursion schemes"?
 - 2 Model-checking properties: What are the decidable (modal-) logical theories of the graph families?

- MSO decidability: Is safety a genuine constraint for decidability? I.e. do trees generated by (arbitrary) recursion schemes have decidable MSO theories?
- Machine characterization: Find a hierarchy of automata that characterize the expressive power of recursion schemes.
 I.e. how should the power of higher-order pushdown automata be augmented to achieve equi-expressivity with (arbitrary) recursion schemes?
- Expressivity: Is safety a genuine constraint for expressivity?
 I.e. are there inherently unsafe word languages / trees / graphs?
- Graph families:
 - Definition: What is a good definition of "graphs generated by recursion schemes"?
 - 2 Model-checking properties: What are the decidable (modal-) logical theories of the graph families?

- MSO decidability: Is safety a genuine constraint for decidability? I.e. do trees generated by (arbitrary) recursion schemes have decidable MSO theories?
- Machine characterization: Find a hierarchy of automata that characterize the expressive power of recursion schemes.
 I.e. how should the power of higher-order pushdown automata be augmented to achieve equi-expressivity with (arbitrary) recursion schemes?
- Expressivity: Is safety a genuine constraint for expressivity?
 I.e. are there inherently unsafe word languages / trees / graphs?
- Graph families:
 - Definition: What is a good definition of "graphs generated by recursion schemes"?
 - Model-checking properties: What are the decidable (modal-) logical theories of the graph families?

Q1. Do trees in RecSchTree_n Σ have decidable MSO theories? Yes

Theorem (O. LiCS 2006)

For $n \ge 0$, the modal mu-calculus model-checking problem for $\mathbf{RecSchTree}_n\Sigma$ (i.e. trees generated by order-n recursion schemes) is n-EXPTIME complete. Thus these trees have decidable MSO theories.

Q1. Do trees in RecSchTree_n Σ have decidable MSO theories? Yes

Theorem (O. LiCS 2006)

For $n \geq 0$, the modal mu-calculus model-checking problem for **RecSchTree**_n Σ (i.e. trees generated by order-n recursion schemes) is n-EXPTIME complete. Thus these trees have decidable MSO theories.

Two key ingredients of the proof:

- $\llbracket G \rrbracket$ satisifes modal mu-calculus formula φ
- \iff { Emerson + Jutla 1991} APT \mathcal{B}_{ω} has accepting run-tree over generated tree $\llbracket G \rrbracket$
- APT \mathcal{B}_{φ} has accepting traversal-tree over computation tree $\lambda(G)$
- APT \mathcal{C}_{φ} has an accepting run-tree over computation tree $\lambda(G)$

which is decidable.

Transference principle, based on a theory of traversals

Idea: β -reduction is global (i.e. substitution changes the term being evaluated); game semantics gives an equivalent but local view. A traversal (over the computation tree $\lambda(G)$) is a trace of the local computation that produces a path (over $\llbracket G \rrbracket$).

Theorem (Path-traversal correspondence)

Let G be an order-n recursion scheme.

- (i) There is a 1-1 correspondence between maximal paths p in (Σ -labelled) generated tree $\llbracket G \rrbracket$ and maximal traversals t_p over computation tree $\lambda(G)$.
- (ii) Further for each p, we have $p \upharpoonright \Sigma = t_p \upharpoonright \Sigma$.

Proof is by game semantics.

Explanation (for game semanticists):

- Term-tree $[\![G]\!]$ is (a representation of) the game semantics of G.
- ullet Paths in $[\![G]\!]$ correspond to plays in the strategy-denotation.
- Traversals t_p over computation tree $\lambda(G)$ are just (representations of) the uncoverings of the plays (= path) p in the game semantics of G.

Idea: β -reduction is global (i.e. substitution changes the term being evaluated); game semantics gives an equivalent but local view. A traversal (over the computation tree $\lambda(G)$) is a trace of the local computation that produces a path (over $\llbracket G \rrbracket$).

Theorem (Path-traversal correspondence)

Let G be an order-n recursion scheme.

- (i) There is a 1-1 correspondence between maximal paths p in (Σ -labelled) generated tree $\llbracket G \rrbracket$ and maximal traversals t_p over computation tree $\lambda(G)$.
- (ii) Further for each p, we have $p \upharpoonright \Sigma = t_p \upharpoonright \Sigma$.

Proof is by game semantics.

Explanation (for game semanticists):

- Term-tree $[\![G]\!]$ is (a representation of) the game semantics of G.
- ullet Paths in $[\![G]\!]$ correspond to plays in the strategy-denotation.
- Traversals t_p over computation tree $\lambda(G)$ are just (representations of) the uncoverings of the plays (= path) p in the game semantics of G.

Idea: β -reduction is global (i.e. substitution changes the term being evaluated); game semantics gives an equivalent but local view. A traversal (over the computation tree $\lambda(G)$) is a trace of the local computation that produces a path (over $\llbracket G \rrbracket$).

Theorem (Path-traversal correspondence)

Let G be an order-n recursion scheme.

- (i) There is a 1-1 correspondence between maximal paths p in (Σ -labelled) generated tree $\llbracket G \rrbracket$ and maximal traversals t_p over computation tree $\lambda(G)$.
- (ii) Further for each p, we have $p \upharpoonright \Sigma = t_p \upharpoonright \Sigma$.

Proof is by game semantics.

Explanation (for game semanticists):

- Term-tree $\llbracket G \rrbracket$ is (a representation of) the game semantics of G.
- ullet Paths in $[\![G]\!]$ correspond to plays in the strategy-denotation.
- Traversals t_p over computation tree $\lambda(G)$ are just (representations of) the uncoverings of the plays (= path) p in the game semantics of G.

Proofs of MSO-decidability of RecSchTree_n Σ

A new proof: Walukiewicz's talk on a model-theoretic approach.

Theorem (Type-Theoretic Characterization. Kobayashi+O. LiCS09)

Given an APT A there is a typing system \mathcal{K}_A such that for every recursion scheme G, the APT A accepts $\llbracket G \rrbracket$ iff G is \mathcal{K}_A -typable. Further there is a type-inference algorithm polynomial in size of recursion scheme (assuming other parameters are fixed).

Refine intersection types with states q and priorities m_i of a given APT.

Types
$$\theta ::= q \mid \tau \to \theta$$

 $\tau ::= \bigwedge \{ (\theta_1, m_1), \cdots, (\theta_k, m_k) \}$

Intuition. A tree function described by $(q_1, m_1) \land (q_2, m_2) \rightarrow q$.

Q2: Machine characterization: collapsible pushdown automata

Order-2 collapsible pushdown automata [HOMS, LiCS 08a] are essentially the same as 2PDA with links [AdMO 05], and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack "remembers" the stack content at the point it was first created (i.e. $push_1$ ed onto the stack), by way of a pointer to some 1-stack underneath it (if there is one such).

Two new stack operations: $a \in \Gamma$ (stack alphabet)

- push₁ a: pushes a onto the top of the top 1-stack, together with a pointer to the 1-stack immediately below the top 1-stack.
- collapse (= panic) collapses the 2-stack down to the prefix pointed to by the top₁-element of the 2-stack.

Pointers are created by $push_1^a$'s; they may be replicated by $push_2$'s (the pointer-relation is preserved by $push_2$).

Q2: Machine characterization: collapsible pushdown automata

Order-2 collapsible pushdown automata [HOMS, LiCS 08a] are essentially the same as 2PDA with links [AdMO 05], and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack "remembers" the stack content at the point it was first created (i.e. $push_1$ ed onto the stack), by way of a pointer to some 1-stack underneath it (if there is one such).

Two new stack operations: $a \in \Gamma$ (stack alphabet)

- push₁ a: pushes a onto the top of the top 1-stack, together with a pointer to the 1-stack immediately below the top 1-stack.
- collapse (= panic) collapses the 2-stack down to the prefix pointed to by the top_1 -element of the 2-stack.

Pointers are created by $push_1^a$'s; they may be replicated by $push_2$'s (the pointer-relation is preserved by $push_2$).

Q2: Machine characterization: collapsible pushdown automata

Order-2 collapsible pushdown automata [HOMS, LiCS 08a] are essentially the same as 2PDA with links [AdMO 05], and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack "remembers" the stack content at the point it was first created (i.e. $push_1$ ed onto the stack), by way of a pointer to some 1-stack underneath it (if there is one such).

Two new stack operations: $a \in \Gamma$ (stack alphabet)

- push₁ a: pushes a onto the top of the top 1-stack, together with a pointer to the 1-stack immediately below the top 1-stack.
- collapse (= panic) collapses the 2-stack down to the prefix pointed to by the top_1 -element of the 2-stack.

Pointers are created by $push_1^{a'}$ s; they may be replicated by $push_2$'s (the pointer-relation is preserved by $push_2$).

Collapsible pushdown automata: extending to all finite orders

In order-n CPDA, there are n-1 versions of $push_1$, namely, $push_1^j$ a, with $1 \le j \le n-1$:

 $\operatorname{\textit{push}}_1^j$ a: pushes a onto the top of the top 1-stack, together with a pointer to the j-stack immediately below the top j-stack.

Example: Urzyczyn's Language U over alphabet $\{(,),*\}$

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A *U*-word has 3 segments:

$$\underbrace{(\cdots(\cdots)}_{A}\underbrace{(\cdots)\cdots(\cdots)}_{B}\underbrace{*\cdots*}_{C}$$

- Segment A is a prefix of a well-bracketed word that ends in (, and the opening (is not matched in the entire word.
- Segment B is a well-bracketed word.
- Segment C has length equal to the number of (in segment A.

Examples

- ① $(()()())*** \in U$
- ② For each $n \ge 0$, we have $\binom{n}{n}^n (*^n * * * \in U$. (Hence by "uvwxy Lemma", U is not context-free.)

Example: Urzyczyn's Language U over alphabet $\{(,),*\}$

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A *U*-word has 3 segments:

$$\underbrace{(\cdots(\cdots)}_{A}\underbrace{(\cdots)\cdots(\cdots)}_{B}\underbrace{*\cdots*}_{C}$$

- Segment A is a prefix of a well-bracketed word that ends in (, and the opening (is not matched in the entire word.
- Segment B is a well-bracketed word.
- Segment C has length equal to the number of (in segment A.

Examples

- \bullet (()(()(())*** $\in U$
- ② For each $n \ge 0$, we have $\binom{n}{n}^n (*^n * * * \in U$. (Hence by "uvwxy Lemma", U is not context-free.)

Example: Urzyczyn's Language U over alphabet $\{(,),*\}$

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A *U*-word has 3 segments:

$$\underbrace{(\cdots(\cdots)}_{A}\underbrace{(\cdots)\cdots(\cdots)}_{B}\underbrace{*\cdots*}_{C}$$

- Segment A is a prefix of a well-bracketed word that ends in (, and the opening (is not matched in the entire word.
- Segment B is a well-bracketed word.
- Segment C has length equal to the number of (in segment A.

Examples

- \bullet (()(()(())*** $\in U$
- ② For each $n \ge 0$, we have $\binom{n}{n}^n (*^n * * \in U$. (Hence by "uvwxy Lemma", U is not context-free.)

E.g. (() (()
$$*** \in U$$

	$q_0, LLJJ$
$\stackrel{(}{\rightarrow}$	$q_1, [[][Z]]$
$\stackrel{(}{\rightarrow}$	$q_1, [[][Z][ZZ]]$
$\stackrel{)}{\rightarrow}$	$q_1, [[][Z][Z]]$
$\stackrel{(}{\rightarrow}$	$q_1, [[][Z][Z][ZZ]]$
$\stackrel{(}{\rightarrow}$	$q_1, [[][Z][Z][Z][ZZ]$
$\stackrel{)}{\rightarrow}$	$q_1, [[][Z][Z][ZZ][ZZ]]$
$\overset{*}{\rightarrow}$	$q_2, [[][Z][Z]]$
$\stackrel{*}{\rightarrow}$	$q_2, [[][Z]]$
$\overset{*}{\rightarrow}$	g2, [[]]

Q	Σ	Γ	Op_2^*	Q
q 0	(T	$push_2$; $push_1^Z$	q_1
q_1	(Ζ	$push_2$; $push_1^Z$	q_1
q_1)	Z	pop_1	q_1
q_1	*	Z	collapse	q_2
q_2	*	Z	pop_2	q_2

E.g. (() (()
$$*** \in U$$

	$q_0,$ [[]]
$\stackrel{(}{\rightarrow}$	q_1 , [[] [Z]]
$\stackrel{(}{\rightarrow}$	$q_1, [[][Z][ZZ]]$
$\stackrel{)}{\rightarrow}$	$q_1, [[][Z][Z]]$
$\stackrel{(}{\rightarrow}$	q_1 , [[] [Z] [Z] [ZZ]]
$\stackrel{(}{\rightarrow}$	$q_1, [[][Z][Z][ZZ][ZZZ]$
$\stackrel{)}{\rightarrow}$	$q_1, [[][Z][Z][ZZ][ZZ]]$
$\stackrel{*}{\rightarrow}$	q_2 , [[] [Z] [Z]]
$\stackrel{*}{\rightarrow}$	$q_2, [[][Z]]$
*	go [[]]

Q	Σ	Γ	Op_2^*	Q
q_0	(\perp	$push_2$; $push_1^Z$	q_1
q_1	(Ζ	$push_2$; $push_1^Z$	q_1
q_1)	Ζ	pop_1	q_1
q_1	*	Z	collapse	q_2
q_2	*	Z	pop_2	q_2

E.g. (() (()
$$*** \in U$$

 $q_0, [[]]$

 $q_1, [[][Z]]$

 $q_1, [[][Z][ZZ]]$

Q	Σ	Γ	Op_2^*	Q
q_0	(\perp	$push_2$; $push_1^Z$	q_1
q_1	(Ζ	$push_2$; $push_1^Z$	q_1
q_1)	Ζ	pop_1	q_1
q_1	*	Z	collapse	q_2
q_2	*	Ζ	pop_2	q_2

E.g. (() (()
$$* ** \in U$$

	40,	L L J J
$\stackrel{\text{(}}{\rightarrow}$	q_1 ,	[[][Z]]

$$\stackrel{(}{\rightarrow}$$
 $q_1, [[][Z][Z]]$

 Γ Γ Γ Γ

$$\stackrel{)}{\rightarrow}$$
 $q_1, [[][Z][Z]]$

$$\stackrel{\longleftarrow}{\rightarrow} q_1, [[][Z][Z][Z][Z]]$$

$$\stackrel{\longleftarrow}{\rightarrow} q_1, [[][Z][Z][ZZ][ZZZ]]$$

> <		 	
\rightarrow	92,		

$$\stackrel{*}{\rightarrow}$$
 q_2 , [[] [Z]]

> <	_	

Q	Σ	Γ	Op_2^*	Q
q_0	(1	$push_2$; $push_1^Z$	q_1
q_1	(Z	$push_2$; $push_1^Z$	q_1
q_1)	Z	pop_1	q_1
q_1	*	Z	collapse	q_2
q_2	*	Z	pop_2	q_2

E.g. (() (()
$$*** \in U$$

 $q_0, [[]]$

 $q_1, [[][Z]]$

 $q_1, [[][Z][Z]]$

 $q_1, [[][Z][Z]]$

Q	Σ	Γ	Op_2^*	Q
q_0	(\perp	$push_2$; $push_1^Z$	q_1
q_1	(Ζ	$push_2$; $push_1^Z$	q_1
q_1)	Ζ	pop_1	q_1
q_1	*	Z	collapse	q_2
q_2	*	Z	pop_2	q_2

E.g. (() (()
$$*** \in U$$

	q_0 ,	L	LJ	J	
(_		_	

$$\stackrel{\leftarrow}{\rightarrow}$$
 $q_1, [[][Z]]$

$$\stackrel{(}{\rightarrow} q_1, [[][Z][ZZ]]$$

 Γ

$$\stackrel{\jmath}{
ightarrow} \qquad q_1,\, \hbox{\tt [[]\,[Z]\,[Z]]}$$

$$\stackrel{\text{(}}{\rightarrow} q_1, \text{[[]}[Z][Z][Z][Z]$$

$\stackrel{(}{\rightarrow}$	q_1 ,	ГП	$\Gamma Z 1$	[Z][ZZ][ZZZ]
	717			

*		_	 	
\rightarrow	92.			$\lfloor L \rfloor \rfloor$

	F 71	

$$\rightarrow$$
 $q_2, [[][Z]$

	_	
	L	

Q	Σ	Γ	Op_2^*	Q
q_0	(\perp	$push_2$; $push_1^Z$	q_1
q_1	(Ζ	$push_2$; $push_1^Z$	q_1
q_1)	Z	pop_1	q_1
q_1	*	Z	collapse	q_2
q_2	*	Z	pop_2	q_2

E.g. (() (()
$$*** \in U$$

 $q_0, [[]]$

 $q_1, [[][Z]]$

 $q_1, [[][Z][Z]]$

 $q_1, [[][Z][Z]]$

 $q_1, [[][Z][Z][Z][Z]]$

 q_1 , [[] [Z] [Z] [Z] [Z \bar{Z}] [Z \bar{Z}]

	 q₁ q₁ q₁ q₂ 	() * *	<i>Z Z Z Z</i>	$push_2$; pus pop_1 $collapse$ pop_2
•				
]]				

 Op_2^*

 $push_2$; $push_1^Z$

 $push_1^2$

Q

 q_1

 q_1

 q_1

 q_2

 q_2

E.g. (() (()
$$*** \in U$$

 $q_0, [[]]$ $\stackrel{(}{\rightarrow} q_1, [[][Z]]$

 $\stackrel{(}{
ightarrow} q_1, \hbox{\tt [[][Z][ZZ]]}$

 $\stackrel{)}{
ightarrow} \qquad q_1,\, \hbox{\tt [[]\,[Z]\,[Z]\,]}$

 $\stackrel{(}{\rightarrow} \qquad q_1, \, [\,[\,]\,[Z\,]\,[Z\,]\,[Z\,]\,[Z\,]\,]$

 $\stackrel{(}{\rightarrow} q_1, [[][Z][Z][Z][ZZ]]$

 $\stackrel{)}{
ightarrow} q_1, \hbox{\tt [[][Z][Z][Z][ZZ]}$

 $\stackrel{*}{\rightarrow}$ $q_2, [[][Z][Z]]$

 $\stackrel{*}{\rightarrow}$ q_2 , [[] [Z]

 $\stackrel{*}{\rightarrow}$ q_2 , [[]]

Q	Σ	Γ	Op_2^*	Q
q_0	(1	$push_2$; $push_1^Z$	q_1
q_1	(Ζ	$push_2$; $push_1^Z$	q_1
q_1)	Z	pop_1	q_1
q_1	*	Z	collapse	q_2
q_2	*	Ζ	pop_2	q_2

40149141111 1 000

E.g. (() (()
$$* ** \in U$$

	q_0 ,	[[]]
1		

$$\stackrel{\leftarrow}{\rightarrow}$$
 $q_1, [[][Z]]$

$$\stackrel{(}{\rightarrow} q_1, [[][Z][ZZ]]$$

$$\stackrel{)}{\rightarrow}$$
 $q_1, [[][Z][Z]]$

$$\stackrel{(}{\rightarrow} q_1, [[][Z][Z][Z][Z]]$$

$$\stackrel{(}{\rightarrow} q_1, \hbox{\tt [[][Z][Z][ZZ][ZZZ]]}$$

$$\stackrel{)}{\rightarrow} q_1, \hbox{\tt [[][Z][Z][ZZ][ZZ]]}$$

$$\stackrel{*}{
ightarrow} \qquad q_2, \hbox{\tt [[][Z][Z]]}$$

$$\stackrel{*}{\rightarrow}$$
 $q_2, \lceil \lceil \rceil \lceil Z \rceil \rceil$

$$\stackrel{*}{\rightarrow}$$
 $q_2, [[]]$

Q	Σ	Γ	Op_2^*	Q
q_0	(T	$push_2$; $push_1^Z$	q_1
q_1	(Z	$push_2$; $push_1^Z$	q_1
q_1)	Z	pop_1	q_1
q_1	*	Z	collapse	q_2
q_2	*	Ζ	pop ₂	q_2

E.g. (() (()
$$*** \in U$$

$$\stackrel{\hookrightarrow}{\rightarrow} q_1, [[][Z]]$$

$$\stackrel{(}{\rightarrow} q_1, [[][Z][ZZ]]$$

$$\stackrel{\prime}{\rightarrow}$$
 $q_1,$ [[] [Z] [Z]]

$$\stackrel{(}{
ightarrow} q_1, \hbox{\tt [[] [Z] [Z] [Z] [Z]]}$$

$$\stackrel{(}{
ightarrow} \qquad q_1, ext{ [[] [Z] [Z] [ZZ] [ZZZ]]}$$

$$\stackrel{)}{
ightarrow} q_1, \hbox{\tt [[][Z][Z][Z][ZZ]}$$

$$\stackrel{*}{ o}$$
 $q_2,$ [[] [Z] [Z]]

$$\stackrel{*}{\rightarrow}$$
 $q_2, [[][Z]]$

$$\stackrel{*}{\rightarrow}$$
 q_2 , [[]]

Q	Σ	Γ	Op_2^*	Q
q_0	(1	$push_2$; $push_1^Z$	q_1
q_1	(Z	$push_2$; $push_1^Z$	q_1
q_1)	Z	pop_1	q_1
q_1	*	Z	collapse	q_2
q_2	*	Z	pop_2	q_2

E.g. (() (()
$$*** \in U$$

 $q_0, [[]]$

 $\stackrel{(}{\rightarrow}$ $q_1, [[][Z]]$

 $\stackrel{(}{\rightarrow}$ $q_1, [[][Z][ZZ]]$

 $\stackrel{)}{\rightarrow}$ $q_1, [[][Z][Z]]$

 $\stackrel{(}{\rightarrow} q_1, [[][Z][Z][Z][Z]]$

 $\stackrel{(}{\rightarrow} q_1, \text{[[][Z][Z][ZZ][ZZ]]}$

 $\stackrel{)}{
ightarrow} q_1,$ [[] [Z] [Z] [Z $\stackrel{)}{
m Z}$ [Z $\stackrel{)}{
m Z}$]

 $\stackrel{*}{
ightarrow} \qquad q_2, \hbox{\tt [[][Z][Z]]}$

 $\stackrel{*}{\rightarrow}$ $q_2, [[][Z]]$

 $\stackrel{*}{ o}$ q_2 , [[]]

Q	Σ	Γ	Op_2^*	Q
q 0	(\perp	$push_2$; $push_1^Z$	q_1
q_1	(Ζ	$push_2$; $push_1^Z$	q_1
q_1)	Ζ	pop_1	q_1
q_1	*	Z	collapse	q_2
q_2	*	Ζ	pop_2	q_2

40149141111 1 000

Urzyczyn's Language *U* (cont'd)

Observation

- $oldsymbol{0}$ *U* is recognizable by a deterministic order-2 CPDA.
- Equivalently (AdMO 05) U is recognizable by a non-deterministic order-2 PDA — power of non-determinacy is needed to guess the transition from segment A to segment B.

Conjecture

U is not recognizable by a deterministic order-2 PDA.

(Related to the Safety Conjecture - more anon.)

But see Paweł Parys' talk: Collapse Operation Increases Expressive Power of Deterministic Higher Order Pushdown Automata

Theorem (Equi-Expressivity, Hague, Murawski, O. + Serre LiCS'08)

For each $n \geq 0$, order-n recursion schemes and order-n collapsible PDA are equi-expressive for Σ -labelled trees. I.e. $\mathbf{RecSchTree}_n\Sigma = \mathbf{CPDATree}_n\Sigma$

(Translation "RS \rightarrow CPDA" uses traversals, based on game semantics.)

Consequences:

- (1) Kleene's Problem: What computing power (originally, in terms of game) is required to compute order-n lambda-definable functionals? The Theorem gives a syntax-independent automata-theoretic characterization of pure simply-typed lambda-calculus with recursion.
- ② A **new proof** of the MSO decidability of trees generated by order-*n* recursion schemes.

Theorem (Equi-Expressivity, Hague, Murawski, O. + Serre LiCS'08)

For each $n \geq 0$, order-n recursion schemes and order-n collapsible PDA are equi-expressive for Σ -labelled trees. I.e. $\mathbf{RecSchTree}_n\Sigma = \mathbf{CPDATree}_n\Sigma$

(Translation "RS \rightarrow CPDA" uses traversals, based on game semantics.)

Consequences:

- Kleene's Problem: What computing power (originally, in terms of game) is required to compute order-n lambda-definable functionals? The Theorem gives a syntax-independent automata-theoretic characterization of pure simply-typed lambda-calculus with recursion.
- A new proof of the MSO decidability of trees generated by order-n recursion schemes.

Theorem (Equi-Expressivity, Hague, Murawski, O. + Serre LiCS'08)

For each $n \geq 0$, order-n recursion schemes and order-n collapsible PDA are equi-expressive for Σ -labelled trees. I.e. $\mathbf{RecSchTree}_n\Sigma = \mathbf{CPDATree}_n\Sigma$

(Translation "RS \rightarrow CPDA" uses traversals, based on game semantics.)

Consequences:

- Kleene's Problem: What computing power (originally, in terms of game) is required to compute order-n lambda-definable functionals? The Theorem gives a syntax-independent automata-theoretic characterization of pure simply-typed lambda-calculus with recursion.
- ② A **new proof** of the MSO decidability of trees generated by order-*n* recursion schemes.

Theorem (Equi-Expressivity, Hague, Murawski, O. + Serre LiCS'08)

For each $n \geq 0$, order-n recursion schemes and order-n collapsible PDA are equi-expressive for Σ -labelled trees. I.e. $\mathbf{RecSchTree}_n\Sigma = \mathbf{CPDATree}_n\Sigma$

(Translation "RS \rightarrow CPDA" uses traversals, based on game semantics.)

Consequences:

- Kleene's Problem: What computing power (originally, in terms of game) is required to compute order-n lambda-definable functionals? The Theorem gives a syntax-independent automata-theoretic characterization of pure simply-typed lambda-calculus with recursion.
- ② A **new proof** of the MSO decidability of trees generated by order-*n* recursion schemes.

Q3: Does safety constrain expressivity?

Case 1: Word languages. Conjecture: Yes; but note

Theorem (Aehlig, de Miranda + O., FoSSaCS 2005)

At order 2, there are no inherently unsafe word languages. I.e. for every unsafe order-2 recursion scheme, there is a safe (non-deterministic) order-2 recursion scheme that generates the same language.

Case 2: Trees. Conjecture: Yes.

The Safety Conjecture (many versions)

For each $n \ge 2$, there is a tree generated by an unsafe order-n recursion scheme but not by any safe order-n recursion scheme.

Pace Paweł Parys' recent result.

Q3: Does safety constrain expressivity?

Case 1: Word languages. Conjecture: Yes; but note

Theorem (Aehlig, de Miranda + O., FoSSaCS 2005)

At order 2, there are no inherently unsafe word languages. I.e. for every unsafe order-2 recursion scheme, there is a safe (non-deterministic) order-2 recursion scheme that generates the same language.

Case 2: Trees. Conjecture: Yes.

The Safety Conjecture (many versions)

For each $n \ge 2$, there is a tree generated by an unsafe order-n recursion scheme but not by any safe order-n recursion scheme.

Pace Paweł Parys' recent result.

Q3: Does safety constrain expressivity?

Case 3: Graphs. Yes.

Theorem (Hague, Murawski, O. + Serre LiCS 2008a)

There is an order-2 CPDA graph that is not generated by any order-2 PDA.

(See example graph later.)

Model checking properties of some graph families

Caucal's Graph Hierarchy

C

Ground-term tree rewriting (Löding 02) Automatic graphs (Hodgson 76, KN 94) Rational graphs

Decidable?					
MSO	μ	FO(R)	FO		
yes	yes	yes	yes		
no	yes	?	?		
no	no	yes	yes		
no	no	no	yes		
no	no	no	no		

Question

Is there a generically-defined family **C** of graphs that have decidable modal-mu calculus theories but undecidable MSO theories?

Yes. See construction on next slide (HMOS, LiCS 08a).

Recent progress on decidability of first-order theories (with / without reachability) of classes of CPDA graphs by Kartzow and Broadbent.

Model checking properties of some graph families

Caucal's Graph Hierarchy
C

Ground-term tree rewriting (Löding 02) Automatic graphs (Hodgson 76, KN 94)

Decidable?					
MSO	μ	FO(R)	FO		
yes	yes	yes	yes		
no	yes	?	?		
no	no	yes	yes		
no	no	no	yes		
no	no	no	no		

Question

Rational graphs

Is there a generically-defined family **C** of graphs that have decidable modal-mu calculus theories but undecidable MSO theories?

Yes. See construction on next slide (HMOS, LiCS 08a). Recent progress on decidability of first-order theories (with / without reachability) of classes of CPDA graphs by Kartzow and Broadbent.

Q4: Model-checking properties of CPDA graphs

Theorem (Hague, Murawski, O and Serre, LiCS 2008a)

- For each $n \ge 0$, the decidability of modal mu-calculus model-checking problem for configuration graphs of order-n CPDA is n-EXPTIME complete.
- 2 Equivalently solvability of parity games over order-n CPDA graphs is n-EXPTIME complete.

An order-2 CPDA graph: MSO-interpretable into the infinite half-grid.

Conclusions

Summary

- Higher-order recursion schemes and pushdown automata are robust and highly expressive families of generators of infinite structures.
 Their algorithmics are rich and interesting.
- Recent progress in the theory have used both semantic methods (e.g. game semantics and type theory) as well as more traditional automata-theoretic techniques.

Application (Looking ahead to Kobayashi's talks)

- New (but necessarily highly complex) model-checking algorithms have been obtained.
- The type-inference approach gives rise to a surprisingly efficient implementation.
- Verification of functional programs can be reduced to model checking recursion schemes. The approach is automatic, sound and complete.