习题三

June 7, 2024

选取五道题解答。截止日期: 6 月 21 日课前。中英文皆可。你们可以互相讨论(当然,我希望你们互相讨论!),或者查阅资料。但是写在纸上/latex这一过程请务必独立完成。

For $\lambda \in [0,1]$, define

$$\mathbf{BAD}(\lambda, 1 - \lambda) := \left\{ (\alpha, \beta) \in \mathbb{R}^2 \;\middle|\; \exists c > 0, \, \forall q \in \mathbb{Z}^+, \, \max\left\{ q \langle q\alpha \rangle^{\frac{1}{\lambda}}, q \langle q\beta \rangle^{\frac{1}{1 - \lambda}} \right\} > c \right\}$$

where by convention we set $\langle \cdot \rangle^{\frac{1}{0}} := 0$. Thus **BAD**(1,0) is just **BAD**×[0,1).

Exercise A. Show that if (α, β) is a counter-example to Littlewood conjecture, then there exists $\lambda \in [0,1]$ such that $(\alpha, \beta) \in \mathbf{BAD}(\lambda, 1-\lambda)$.

Remark 0.1. It seems unknown whether $\bigcap_{\lambda \in [0,1]} \mathbf{BAD}(\lambda, 1-\lambda)$ is empty or not. It would have full dimension if the intersection were taken over a countable subset.

Recall:

$$\Lambda_{\alpha,\beta} := \left[\begin{array}{ccc} 1 & 0 & \alpha \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{array} \right] . \mathbb{Z}^3 \in X_3, \quad \mathbf{u}_{\alpha,\beta}^+ := \left[\begin{array}{ccc} 1 & 0 & \alpha \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{array} \right].$$

Exercise B. Given $\lambda \in [0,1]$ and $(\alpha,\beta) \in \mathbb{R}^2$, show that the following two are equivalent:

1. $(\alpha, \beta) \in \mathbf{BAD}(\lambda, 1 - \lambda);$

2.

$$\left\{ \begin{bmatrix} e^{\lambda t} & 0 & 0\\ 0 & e^{(1-\lambda)t} & 0\\ 0 & 0 & e^{-t} \end{bmatrix} . \Lambda_{\alpha,\beta} \mid t \ge 0 \right\} \text{ is bounded in } X_3.$$

Given $\lambda \in [0,1]$, we say that a linear functional $\varphi : \mathbb{R}^2 \to \mathbb{R}$ is λ -bad iff

$$\exists\, c>0,\; \forall\, (l,m)\in\mathbb{Z}^2\setminus\{(0,0)\},\; \langle\varphi(l,m)\rangle\max\{l^{\frac{1}{\lambda}},m^{\frac{1}{1-\lambda}}\}>c.$$

By convention : $l^{\frac{1}{\lambda}} := +\infty$ if $l \neq 0, \lambda = 0$ and $l^{\frac{1}{\lambda}} := 0$ if $l = 0, \lambda = 0$. The convention for $m^{\frac{1}{1-\lambda}}$ is similar. Define

$$\Lambda'_{\alpha,\beta} := \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \alpha & \beta & 1 \end{array} \right] . \mathbb{Z}^3 \in X_3$$

Exercise C. Given $\lambda \in [0,1]$ and $(\alpha,\beta) \in \mathbb{R}^2$, show that the following two are equivalent:

1. The linear functional $\varphi_{\alpha,\beta}(x,y) := \alpha x + \beta y$ is λ -bad;

2.

$$\left\{ \begin{bmatrix} e^{-\lambda t} & 0 & 0 \\ 0 & e^{-(1-\lambda)t} & 0 \\ 0 & 0 & e^t \end{bmatrix} . \Lambda'_{\alpha,\beta} \mid t \ge 0 \right\} \text{ is bounded in } X_3.$$

Exercise D. Given $\lambda \in [0,1]$ and $(\alpha,\beta) \in \mathbb{R}^2$, show that the following two are equivalent:

1.
$$(\alpha, \beta) \in \mathbf{BAD}(\lambda, 1 - \lambda)$$
;

2. The linear functional $\varphi_{\alpha,\beta}(x,y) := \alpha x + \beta y$ is λ -bad.

Hint: show that the map $g\mathbb{Z}^3 \mapsto g^{-\operatorname{tr}}\mathbb{Z}^3$ on X_3 is well-defined and continuous.

Exercise E. Show that if $(\alpha, \beta) \in \mathbb{R}^2$ are linearly dependent over \mathbb{Q} , then $(\alpha, \beta) \notin \mathbf{BAD}(\lambda, 1 - \lambda)$ for every $\lambda \in (0, 1)$.

Exercise F. Assume that α, β are two numbers contained in the same totally real number field. Moreover assume α, β are linearly independent over \mathbb{Q} . Then (α, β) is contained in BAD(1/2, 1/2).

Hint: In the proof, you may assume the following facts, which can be proved quickly if you know a little Galois theory. There exist real numbers t_i 's, u_{ij} 's and $M_0 \in \mathbf{SL}_3(\mathbb{R})$ such that $\prod_{i=1}^3 t_i = 1$, the A-orbit $A.(M_0.\mathbb{Z}^3)$ is compact and

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\alpha & -\beta & 1 \end{bmatrix} = \begin{bmatrix} t_1 & 0 & 0 \\ 0 & t_2 & 0 \\ 0 & 0 & t_3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ u_{21} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix} \cdot M_0$$

Indeed, if $\{\sigma_1 = id, \sigma_2, \sigma_3\}$ denote the three distinct embeddings of the totally real field into \mathbb{R} , then M_0 can be chosen to be a scalar multiple of

$$\begin{bmatrix} -\sigma_3(\alpha) & -\sigma_3(\beta) & 1 \\ -\sigma_2(\alpha) & -\sigma_2(\beta) & 1 \\ -\alpha & -\beta & 1 \end{bmatrix}.$$

Recall: $d^{\mathbf{SL}_2(\mathbb{R})}(\cdot,\cdot)$ (or just write d) denotes a right $\mathbf{SL}_2(\mathbb{R})$ -invariant metric on $\mathbf{SL}_2(\mathbb{R})$ that is compatible with the topology on $\mathbf{SL}_2(\mathbb{R})$ and d^{X_2} denotes the quotient metric on $X_2 \cong \mathbf{SL}_2(\mathbb{R})/\mathbf{SL}_2(\mathbb{Z})$. Using this we defined

$$\operatorname{InjRad}(x) := \frac{1}{10} \inf \left\{ d^{X_2}(g, h) \mid g \neq h \in \operatorname{SL}_2(\mathbb{R}), \ g.\mathbb{Z}^2 = h.\mathbb{Z}^2 = x \right\}.$$

Exercise G. Show that a sequence $(x_n) \subset X_2$ diverges iff $\operatorname{InjRad}(x_n) \to 0$.

Hint: Find nilpotent integer matrices (N_n) such that $(g_n N_n g_n^{-1})$ converges to the zero matrix.

Exercise H. Show that for $x \in X_2$, if $\left\{ \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} . x \mid r \in \mathbb{R} \right\}$ is compact, then $\left(\begin{bmatrix} e^{t_n} & 0 \\ 0 & e^{-t_n} \end{bmatrix} . x \right)$ diverges in X_2 whenever $t_n \to -\infty$.

Hint: use the exercise above.

From Exercise I to P, let $X := \{0,1\}^{\mathbb{Z}_{\geq 0}}$. Equipped with the product topology, X is compact. In concrete terms, a sequence (x_{\star}^k) converges to x_{\star} iff for every $i, (x_i^k)$ converges to x_i as k tends to infinity. We usually denote an element of X by x_{\star} or $(x_0x_1x_2....)$. Define a metric on X by

$$d(x_{\star}, y_{\star}) := 2^{-\inf\{n \in \mathbb{Z}_{\geq 0} \mid x_n \neq y_n\}}$$

For instance $d(0101..., 1000....) = 2^{-0} = 1$. This metric is compatible with the product topology. Given $\mathbf{a} := (a_0, a_1, ..., a_{l-1}) \in \{0, 1\}^l$ (we will refer to such things as **words of length** l), let

$$C_{\mathbf{a}} := \{x_{\star} \in X \mid x_i = a_i, \text{ for } i = 0, ..., l - 1.\}$$

For instance, $C_{(0,1)} = \{x_* \in X \mid x_0 = 0, x_1 = 1\}$.

Finally, define a continuous map $\sigma: X \to X$ by $\sigma(x)_i := x_{i+1}$.

Exercise I. Let X be equipped with the metric defined above, $\dim_H(X) = 1$.

Exercise J. Let X be equipped with the metric defined above, $\dim_{\square}(X) = 1$.

For $\lambda \in [0,1]$, there is a Borel probability measure m_{λ} on X such that

$$m_{\lambda}(C_{\mathbf{a}}) := \lambda^{l_0} (1 - \lambda)^{l - l_0}.$$

for every word **a** of length l. Here $l_0 := \# \{i \in \{0, 1, ..., l-1\} \mid \mathbf{a}_i = 0\}$. Accept the fact that \mathbf{m}_{λ} is σ -invariant for every $\lambda \in [0, 1]$. Let \mathcal{P}_0 be the partition $\{C_{(0)}, C_{(1)}\}$.

Exercise K. For every σ -invariant Borel probability measure ν on X, show $h_{\nu}(\sigma) = h_{\nu}(\sigma, \mathcal{P}_0)$.

Exercise L. Show that $h_{m_{\lambda}}(\sigma) \leq \log 2$. And equality holds iff $\lambda = 1/2$.

For $l \geq 0$, let $\mathcal{P}_0^{l-1} := \mathcal{P}_0 \vee \sigma^{-1} \mathcal{P}_0 \vee ... \vee \sigma^{-(l-1)} \mathcal{P}_0$. For $x_{\star} \in X$, let $\mathcal{P}_0^{l-1}(x_{\star})$ be the unique element of \mathcal{P}_0^{l-1} containing x_{\star} .

Exercise M. Fix $\lambda \in [0,1]$. Show that for m_{λ} -almost every $x_{\star} \in X$, we have

$$\lim_{l \to \infty} \frac{-\log \mu(\mathcal{P}_0^{l-1}(x_{\star}))}{n} = h_{\mathrm{m}_{\lambda}}(\sigma).$$

Exercise N. Take $E \subset X$ such that $\dim_{\square}(E) > 0$. Let E' be the closure of the union of $\sigma^n(E)$ as n varies in $\mathbb{Z}_{\geq 0}$. Show that there exists a σ -invariant Borel probability measure ν supported on E' such that $h_{\nu}(\sigma) > 0$.

In the reverse direction, we have,

Exercise O. Let ν be a σ -invariant probability measure on X with $h_{\nu}(\sigma) > 0$, show that $\dim_{\mathrm{H}}(\mathrm{supp}(\nu)) > 0$.

Recall that $x \in \text{supp}(\nu)$ iff every open neighborhood of x has positive ν -measure. For $x_{\star} \in X$ and $n \in \mathbb{Z}^+$, define

$$\mathbf{w}_n(x_\star) := \# \{ f : \{0, 1, ..., n-1\} \to \{0, 1\} \mid f(i) = x_{n+i}, \exists n \in \mathbb{Z}_{>0} \}$$

and its "word entropy" as

$$WH(x_{\star}) := \limsup_{n \to \infty} \frac{\log \mathbf{w}_n(x_{\star})}{n}.$$

Exercise P. Let $x_{\star} \in X$ and E' be the closure of $\{\sigma^n(x_{\star}), n \in \mathbb{Z}_{\geq 0}\}$. Prove that if $\mathrm{WH}(x_{\star}) > 0$, then there exists a σ -invariant Borel probability measure ν supported on E' such that $h_{\nu}(\sigma) > 0$.