42028: Deep Learning and Convolutional Neural Network

Week-3 Lecture

Feature Extraction and Neural Network Basics

Outline

- Image Gradient
- Histogram of Oriented Gradient (HoG)
- Local Binary Pattern
- ANN Basics
- ANN Learning Process
- Logistic Regression using ANN
- Gradient Descent

Features Extraction

What is an Image Gradient?

- It is a directional change in the intensity or color in an Image.
- Can be used to extract valuable information from images.
- Commonly used in edge detection.

What is an Image Gradient?

Combining both X and Y direction to estimate if changes are in both directions

Step -1: Computing Image *Gradient***:**

1. Use the horizontal and vertical filters to compute gradient values

$$g_x = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} * I$$
Horizontal filter

Gradient is X-directions

2. Compute the strength/magnitude and direction of gradient.

$$g_x = |-70 + 120| = 50$$

 $g_v = |-100 + 50| = 50$

Gradient Magnitude = ~70.7 Direction/Angle = 45°

Step -2: Create orientation histogram:

- Divide the image into small connected regions called *Cells* which is a 8 X 8 patch
- Create cell histogram based on gradient direction and magnitude
- 64 (8 X 8) gradient vectors are put into a 9-bin histogram
- The bins are the gradient directions (O) quantized into 9-bins

Reference: https://tanasecucliciu.wordpress.com/2016/06/08/programming-histogram-of-oriented-gradients-hog-explained/ Image source: https://www.learnopencv.com/histogram-of-oriented-gradients/

Step -3: Block Normalization:

- 16 X 16 pixels blocks or 2X2 cells are used for normalization, which has 4 histograms.
- Normalization will make it scale/multiplication invariant
- Each block will represent 36 X 1 element vector

Step -3: Block Normalization:

Brightness reduced

Original image

Brightness increased

Normalization example:

$$(3, 9) \rightarrow \sqrt{3^2 + 9^2} = 9.48$$

$$(3/9.48, 9/9.48) = (0.32, 0.95)$$

Multiple (3, 9) by 2 to increase brightness (6, 18) $\rightarrow \sqrt{6^2 + 18^2} = 18.97$

$$(6/18.97, 18/18.97) = (\sim 0.32, \sim 0.95)$$

Step -4: Calculate the HOG feature vector:

- Each of the 36 X 1 vectors in each blocks are concatenated into one big vector.
- Size of the vector will be:
 Number of blocks X 36

Example: For an Image size: 64 X 128, will have 8 X 16 cells, and 7 X 15 block (with 50% overlap), hence size of HOG feature vector: 7 X 15 X 36 = 3,780

Example:

```
from skimage.feature import hog
from skimage import data, color, exposure
import cv2
import matplotlib.pyplot as plt
image = cv2.imread('new image.png')
image = color.rgb2gray(image)
fd, hog image = hog(image, orientations=8, pixels per cell=(16, 16),
                    cells per block=(1, 1), visualise=True)
plt.figure(figsize=(8, 4))
plt.subplot(121).set axis off()
plt.imshow(image, cmap=plt.cm.gray)
plt.title('Input image')
# Rescale histogram for better display
hog image rescaled = exposure.rescale intensity(hog image, in range=(0, 0.02))
plt.subplot(122).set axis off()
plt.imshow(hog image rescaled, cmap=plt.cm.gray)
plt.title('Histogram of Oriented Gradients')
plt.show()
```

Input image

Histogram of Oriented Gradients

Visualisation of the histogram (Magnitude and direction)

- An efficient texture operator which labels each pixels of an image by thresholding their neighbours.
- A powerful feature for texture classification
- The idea behind the LBP operator is to describe the image textures using two measures namely, local spatial patterns and the gray scale contrast of its strength.

• The basic $LBP_{P,R}$ operator is defined as follows:

$$LBP_{P,R}(x_c, y_c) = \sum_{p=0}^{P-1} S(g_p - g_c) 2^{P}$$

$$S(x) = \begin{cases} 1, ifx >= 0\\ 0, otherwise \end{cases}$$

Where,

 $S(x) \rightarrow$ a thresholding function $(x_c, y_c) \rightarrow$ the centre pixel in the 8 pixel neighbourhood, $S(x) = \begin{cases} 1, if x >= 0 \\ 0, otherwise \end{cases} \begin{cases} g_c \rightarrow \text{gray level of the centre pixel} \\ g_p \rightarrow \text{gray value of a sampling point in an} \end{cases}$ equally spaced circular neighbourhood of P sampling points and radius R around the point (x_c, y_c)

Reference: https://ieeexplore.ieee.org/abstract/document/6889906

An Example of LBP Computation:

(a) Sample pixel neighbourhood

An Example of LBP Computation:

An 8-digit binary number is obtained by considering the thresholding result, starting from pixel 1 to 8, as marked in red.

- There can be $2^8 = 256$ possible values
- Hence, the LBP histogram will have **256 bins** → **feature vector**

$$00111110 = (0 \times 2^{7}) + (0 \times 2^{6}) + (1 \times 2^{5}) + (1 \times 2^{4}) + (1 \times 2^{3}) + (1 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0}) = 62$$

Reference: https://ieeexplore.ieee.org/abstract/document/6889906

An Example of LBP Computation:

Neural Network Basics

What is Artificial Neural Network (ANN)?

- Artificial Neural Networks (ANN) are multi-layered fully-connected neural networks.
- It has an input layer, multiple hidden layers and an output layer

House Price prediction

	VARIABLES USED
QUALITY INDEX	Floors, windows type, kitchen furniture and reformations
FACILITIES INDEX	Pool, tennis, garden
BUILDING INDEX	Age, lift, laundry
EXTERNAL DATA INDEX	Orientation, terrace
EXTRAS INDEX	Garage, storage
LOCATION INDEX	Geographical position within the city

House Price prediction

ANN Introduction – Learning Process

ANN Introduction – Learning Process

ANN Introduction – Learning Process: Example

Problem of Binary Classification \rightarrow **Logistic Regression** (Shark? \rightarrow 1 | Not Shark? \rightarrow 0)

Image dimension:

64X128 = **8192** Pixels

image.reshape(image.shape[0]*image.shape[1]*image.shape[2],1)

Problem of Binary Classification \rightarrow **Logistic Regression (Shark**? \rightarrow 1 | Not Shark? \rightarrow 0)

Weighted sum of inputs

W → Weights

 $X \rightarrow Inputs$

b → Bias term

 $\sigma \rightarrow$ Activation function

Rule of thumb:

In case of binary classification, Sigmoid function is the obvious choice for output layer

Problem of Binary Classification \rightarrow Logistic Regression (Shark? \rightarrow 1 | Not Shark? \rightarrow 0)

Parameters:

- 1. w (weight)
- 2. b (bias)
- 3. Output a = $O(w^T x + b)$

Loss function for Logistic Regression:

$$\mathcal{L}(a, y) = -(y \log a + (1 - y) \log(1 - a))$$

Logistic Regression pipeline with the math looks like:

$$\mathbf{w} = \mathbf{w}^T \mathbf{x} + \mathbf{b}$$

$$\mathbf{a} = \sigma(\mathbf{w}^T \mathbf{x} + \mathbf{b})$$

Problem of Binary Classification \rightarrow **Logistic Regression** (Shark? \rightarrow 1 | Not Shark? \rightarrow 0)

Gradient Descent for learning parameters:

It is an iterative approach for error correction in a machine learning model.

For 1 Sample the loss function is:

$$\mathcal{L}(a, y) = -(y \log a + (1 - y)\log(1 - a))$$

For m Sample the loss function is:

$$\mathcal{GD}(w, b) = x = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(a, y)$$

Question: Find w and b that will minimize $\mathcal{GD}(w, b)$

Problem of Binary Classification \rightarrow **Logistic Regression** (Shark? \rightarrow 1 | Not Shark? \rightarrow 0)

Gradient Descent for learning parameters:

It is an iterative approach for error correction in a machine learning model.

Updating the $oldsymbol{w}$ and $oldsymbol{b}$ iteratively, :

$$w = w - \alpha dw$$

Updating the **b**:

$$b = b - \alpha db$$

Where,

$$dw = \frac{\partial GD(w,b)}{\partial w}$$

$$db = \frac{\partial GD(w,b)}{\partial h}$$

 $\alpha \rightarrow$ Learning rate

Problem of Binary Classification \rightarrow Logistic Regression (Shark? \rightarrow 1 | Not Shark? \rightarrow 0)

Gradient Descent for learning parameters:

Learning rate(α) issues:

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.