NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 1 EXAMINATION 2019-2020

EE7401 – PROBABILITY AND RANDOM PROCESSES

November / December 2019

Time Allowed: 3 hours

INSTRUCTIONS

- 1. This paper contains 5 questions and comprises 5 pages.
- 2. Answer all 5 questions.
- 3. All questions carry equal marks.
- 4. This is a closed book examination.
- 5. Unless specifically stated, all symbols have their usual meanings.
- 1. Two random variables X and Y are specified by their joint probability density function (pdf)

$$f(x,y) = \begin{cases} cxy & x \ge 0, y \ge 0, x + y \le 1 \\ 0 & \text{otherwise} \end{cases}.$$

(a) Find the marginal pdf $f_{y}(y)$.

(5 Marks)

(b) Find the conditional pdf $f_{X|Y}(x | y)$.

(5 Marks)

(c) Estimate the value of X based on the observed value of Y = y so that the mean square error (MSE) is minimized.

(5 Marks)

(d) Compute the MSE for a given observed value Y = y.

(5 Marks)

2. Table 1 completely specifies two discrete random variables *X* and *Y*.

Table 1

<i>y x</i>	4	5	6
1	0.	0.15	0.15
3	0.08	0.08	0.24
7	0.09	0.18	0.03

(a) Does Table 1 specify the probability mass function (PMF) $p_{X,Y}(x,y)$, $p_{Y|X}(y|x)$, or $p_{X|Y}(x|y)$? Give the reasons for your answer.

(6 Marks)

(b) What PMF ($p_{??}(??)$) is specified by the 3 numbers (0.08, 0.08, 0.24) drawn from the second row of Table 1?

(2 Marks)

(c) If we normalize the above 3 numbers by the sum of them, i.e., (0.08, 0.08, 0.24) / (0.08+0.08+0.24), what PMF ($p_{??}(??)$) is specified by the results? Give the reasons for your answer.

(6 Marks)

(d) If we divide the 3 numbers (0.08, 0.08, 0.24), respectively by the sum of the numbers in the corresponding column of Table 1, what PMF ($p_{\eta}(??)$) is specified by the results? Give the reasons for your answer.

(6 Marks)

- 3. (a) A 2-digit integer x, $10 \le x \le 99$, is randomly chosen. All possible choices are equally likely.
 - (i) What is the probability of event A that the ones-digit of x has the maximum value and what is the probability of event B that the tens-digit of x has the maximum value?
 - (ii) What is the probability of event C that at least one digit of x has the maximum value?

(10 Marks)

Note: Question No. 3 continues on page 3.

- (b) $\mathbf{x}[n]$ is a real wide-sense stationary (WSS) discrete-time random process with autocorrelation $R_{xx}[m] = 2e^{-0.5|m|}$. Let $\mathbf{y}[n] = \mathbf{x}[n] \mathbf{x}[n-3]$.
 - (i) Find $\eta_{\nu}[n] = E\{\mathbf{y}[n]\}$, the mean of $\mathbf{y}[n]$.
 - (ii) Find $E\{y^2[n]\}$, the average power of y[n].
 - (iii) Find $R_{yy}[m]$, the autocorrelation of y[n]. Hence, show that for $|m| \ge 3$, it may be simplified to $R_{yy}[m] = cR_{xx}[m]$, where c is a constant. Find c.

(10 Marks)

- 4. (a) Stoopin' Low: HK Commissioner of Police Stoophen Lo is accused of stoopin' low—using police brutality and violence—in his department's fight against the youth demonstrators. Mr. Lo starts each day with a peaceful mind, but too many demonstrations make him angry. Let $\mathbf{x}(t) = \{\text{number of demonstrations starting from time 0 to } t$, where t is measured in hours} be a Poisson process, such that the probability of k demonstrations is given by $P\{\mathbf{x}(t) = k\} = e^{-\lambda t} (\lambda t)^k / k!$. It is known that, on average, there are 6 demonstrations per day, or $E\{\mathbf{x}(24)\} = 6$.
 - (i) Find the variance of $\mathbf{x}(24)$, the number of demonstrations in a day.
 - (ii) Mr. Lo spends hour 0 to hour 8 each day in his office, and remains peaceful as long as there are 4 or less demonstrations. He gets agitated if there are 5 to 7 demonstrations. Find the probability that Mr. Lo will be agitated in a day, that is, the probability that there are 5 to 7 demonstrations in 0 to 8 hours, or $P\{5 \le \mathbf{x}(8) \le 7\}$.
 - (iii) If the number of demonstrations reaches 8 within his 8 hours in office, it makes Stoophen Lo getting angry and stoopin' low. Today, it has been 6 hours in office, and so far, 5 demonstrations have taken place, or $\mathbf{x}(6) = 5$. Find the conditional probability that Stoophen Lo will not be stoopin' low today, that is, the conditional probability that there will be less than 8 demonstrations in 8 hours, or $P\{\mathbf{x}(8) < 8 \mid \mathbf{x}(6) = 5\}$.

[Hint: Express the conditional probability as the ratio of a joint probability and a marginal probability. Simplify the joint probability using the fact that non-overlapping Poisson intervals are independent.]

(12 Marks)

Note: Question No. 4 continues on page 4.

- (b) Seeing the Doctor: During an epidemic, Doctor See You Soon from the NTU Health Center classifies each NTU person as healthy, infected (but not sick), or sick.
 - The probability that a healthy person becomes infected is p, but a healthy person cannot become sick without getting infected first.
 - An infected person may become sick with probability q, or may become healthy with probability p.
 - Once a person is sick, he/she sees Doctor See You Soon. After seeing the Doctor, a sick person may become healthy with probability q, while a sick person remains sick and needs to see Doctor See again with a probability 1-q. A sick person cannot become infected.
 - (i) Formulate the above problem as a Markoff chain, where the states are healthy, infected, and sick. Draw the Markoff chain and find the transition matrix.
 - (ii) Find the condition on p and q such that 90% or more of NTU people are healthy on an average, that is, the steady state probability $p_{\textit{healthy}} \ge 0.9$.

(8 Marks)

- 5. Engineering: To verify the effectiveness of the new air-conditioning system in the School of EEE, Mr. Eng Ine Er placed n temperature sensors randomly in the School. Each sensor output is the difference between the measured temperature and the preset temperature. The ith sensor output is a real zero mean wide-sense stationary (WSS) random process $\mathbf{y}_i(t)$ with autocorrelation $R_{ii}(\tau) = e^{-a_i|\tau|}$, where a_i is a real positive constant. Due to distant placement of sensors, $\mathbf{y}_i(t_1)$ is uncorrelated to $\mathbf{y}_j(t_2)$ for all $i \neq j$ and for all t_1 and t_2 . Mr. Eng found the ambient temperature differential of the School by taking the weighted average $\mathbf{z}(t) = \sum_{i=1}^n b_i \mathbf{y}_i(t)$, where b_i are real constants.
 - (a) Mr. Eng experimentally estimated the mean of the ambient temperature differential $\mathbf{z}(t)$ by observing its value for a long time and averaging these values. Unfortunately, Mr. Eng never took a course like EE7401, so he is not aware that such estimation makes sense only if $\mathbf{z}(t)$ is stationary and ergodic.
 - (i) Find $\eta_z(t)$, the mean of $\mathbf{z}(t)$. Also find $R_{zz}(t_1, t_2)$, the autocorrelation of $\mathbf{z}(t)$. Is $\mathbf{z}(t)$ WSS?

Note: Question No. 5 continues on page 5.

- (ii) Find $C_{zz}(\tau)$, the autocovariance of $\mathbf{z}(t)$, and apply Slutsky's theorem. Is $\mathbf{z}(t)$ mean-ergodic?
- (iii) For the special case of $a_i = a$ for all i, $\mathbf{z}(t)$ becomes a special process. Which process is it?

[Hint: Check $R_{zz}(\tau)$.]

(13 Marks)

- (b) To better engineer the temperature control, Mr. Eng Ine Er wants to predict the future temperature differential $\mathbf{z}(t+\lambda)$ from the present value $\mathbf{z}(t)$, where $\lambda > 0$. You can help Mr. Eng as follows:
 - (i) Find the optimal mean square predictor that predicts $\mathbf{z}(t+\lambda)$ using $\mathbf{z}(t)$.
 - (ii) Find the least mean square (LMS) error P for your predictor.

(7 Marks)

END OF PAPER

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

EE7401 PROBABILITY & RANDOM PROCESSES

Please read the following instructions carefully:

- 1. Please do not turn over the question paper until you are told to do so. Disciplinary action may be taken against you if you do so.
- 2. You are not allowed to leave the examination hall unless accompanied by an invigilator. You may raise your hand if you need to communicate with the invigilator.
- 3. Please write your Matriculation Number on the front of the answer book.
- 4. Please indicate clearly in the answer book (at the appropriate place) if you are continuing the answer to a question elsewhere in the book.