IsSorted in C++

```
#include <iostream>
using namespace std;
bool isSortedEff(int arr[], int n) {
  for (int i = 1; i < n; i++) {
     if (arr[i] < arr[i - 1]) \{
        return false;
  return true;
bool isSorted(int arr[], int n) {
  for (int i = 0; i < n; i++) {
     for (int j = i + 1; j < n; j++) {
        if (arr[j] < arr[i]) 
          return false;
  return true;
int main() {
  int arr1[] = \{1, 2, 3, 4, 5, 6\};
  int arr2[] = \{11, 2, 3, 4, 5, 6\};
  int n1 = sizeof(arr1) / sizeof(arr1[0]);
  int n2 = sizeof(arr2) / sizeof(arr2[0]);
  cout << boolalpha; // Print boolean values as
true/false
  cout << isSortedEff(arr1, n1) << endl;</pre>
  cout << isSortedEff(arr2, n2) << endl;</pre>
  cout << isSorted(arr1, n1) << endl;
  cout << isSorted(arr2, n2) << endl;</pre>
  return 0;
```

Check if an array is **sorted in non-decreasing order** (each element is \leq the next).

Q Difference between isSortedEff and isSorted:

Function	Approach	Time Complexity
isSortedEff	Linear scan (compare adjacent)	O(n)
isSorted	Brute force (nested loops)	O(n²)

✓ Dry Run with Sample Arrays

Array 1: {1, 2, 3, 4, 5, 6} (Sorted)

isSortedEff(arr1, n1):

i	arr[i- 1]	arr[i]	Comparison	Result
1	1	2	$2 \ge 1$	$ \checkmark $
2	2	3	$3 \ge 2$	$ \checkmark $
3	3	4	$4 \ge 3$	$ \checkmark $
4	4	5	$5 \ge 4$	$ \checkmark $
5	5	6	$6 \ge 5$	$ \checkmark $
→ All passed				
→ Returns:				
true				

isSorted(arr1, n1): Checks every pair (i, j) where j > i:

• For every $arr[i] \le arr[j] \rightarrow all OK \rightarrow$ Returns: true

Array 2: {11, 2, 3, 4, 5, 6} (Not sorted)

isSortedEff(arr2, n2):

i	arr[i- 1]	arr[i]	Comparison	Result
1	11	2	2 < 11 X	•
→ Early exit → Returns:				

i	arr[i- 1]	arr[i]	Comparison	Result	
false					
isSorted(ar	isSorted(arr2, n2):				
• (0,1)	• $(0,1) \rightarrow 2 < 11 \rightarrow X \rightarrow Returns: false$				
☐ Output: true false	true				
true false					