EECS 151/251A Discussion 8

Daniel Grubb 10/19, 10/20, 10/25

Administrivia

Lab 6 due Friday 10/22

- this
- Cutoff for checkoffs and submissions is the end of next-week's lab sessions
- Project starts this week Checkoff # 1 this week; Piazza updates

 Do your best to finish up labs and don't procrastinate! Choose a lab section
- Homework 6 due Friday 10/22-29
- Midterm 1 grades release
 - Regrades due Friday 10/22 tomo row 10/26
- Midterm 2 on the horizon (tentatively November 4th), similar for mat
- What are you having trouble with? Feedback?
- . special review session Wednesday evening
- · MT 2 review next week

Agenda

- Topics
 - Inverter delay and sizing
 - Logical effort
 - Path effort
 - Elmore delay
- How familiar/comfortable are you with:
 - transistor switch model?
 - inverter delay?
 - inverter delay optimization?
 - o logical effort?
 - parasitic delay?
 - o path effort/optimization?

A Note on Notation and Values

- PMOS / NMOS ratios
 - Old technologies/textbooks give 2:1, this class generally uses 1:1
- Ratio of Cd to Cg = γ (gamma) = 1
 - Set by process technology
 - ~1.2 in recent processes, but still keep it 1
- Logical effort
 - o **LE** or **g** both used
- Fanout or electrical effort
 - F for total fanout
 - **f** for stage fanout
 - h also used

Inverter RC Delay Model

Inverter Delay

 $t_p = 0.69 \left(\frac{R_N}{W}\right) (2W\gamma C_G) = 0.69 (2\gamma)$ Intrinsic inverter delay
What if we make the inverter bigger?

2W CD

PMOS with same R as NMOS

Inverter Delay

- tinu (I+f)
- Add a load capacitance now
- Two components
 - Intrinsic delay
 - \circ Fanout, $f = C_1/C_{in}$
- FO4 delay: how many unit delays?
 - Why is this a useful quantity?

Inverter Delay Scratch Area

Inverter Sizing Thought Experiment

- Say we just have 1 inverter driving a load capacitance
 - We want to minimize delay
 - We can size it anyway we want
 - O How should we size it?
- Be careful with this solution!

Inverter Chain Sizing

$$\frac{C_{in,j}}{C_{in,j-1}} = \frac{C_{in,j+1}}{C_{in,j}}$$

- Goal: minimize the delay of the path
 - Constrain the size of the first inverter + load capacitance in each case
 - What's a first pass solution?
- (1) Size a chain given N inverters
 - Key result: size stages to have identical fanout (minimize the total chain delay expression)
 - What does this say about each stage's delay?
 - Find f: $f^N = F = C_1/C_{in 1}$
 - Start from beginning or end of chain
- (2) Determine optimal N and size the chain
 - Assume fanout, f=4 (from graph) $\log_{4}(F) = N$
 - Find number of stages, N (integer): ? N
 - Same steps as (1)

$$t_{p} = Nt_{inv} \left(\gamma + \sqrt[N]{F} \right), \ F = C_{L}/C_{in}$$

Inverter Chain Sizing Examples

- Chain of 3 with load cap of 64:
 - What if we add a capacitance in the middle?

$$F = 64$$
 $3\sqrt{64} = 4$

- Load cap. of 1024, give N and sizings:
 - O What if non-integer?

Logical Effort and Parasitic Delay

- How much worse is a gate at driving a load capacitance than an inverter with the same input capacitance? (other ways to look at it) ←
 - Looks like an inverter, but the fanout seems larger
 - o Easy way: size gate to deliver same as inverter current, take cap. Ratio
- LE = (Req,gate Cin,gate)/(Req,inv Cin,inv) LE-Cinqute
- Parasitic delay: delay of gate driving no load (set by internal cap.)
 - Find gate RC delay, then extract t_{inv} term; ratio of internal cap to inverter

Logical Effort/Parasitic Delay Examples

Also, consider if the PMOS/NMOS resistances are different than nominal?

Path Delay

 $G = \prod g_i$

How do we minimize delay more generally?

- Path fanout: F=C_L/C_{in}
- Path LE: G=g₁g₂...g_N
- $b = \frac{C_{\text{onpath}} + C_{\text{offpath}}}{C}$

tinv(p+g.h)

N 1 PE

 $F = \prod_{i=1}^{n} f_i = \prod_{i=1}^{n} g_i h_i$

- Branching effort
- Use similar result to inverter chain
 - o Best EF is still around 4
- Design process:
 - Calculate Path Effort: PE=GFB GHB
 - Estimate best number of stages: N=log₄F
 - Calculate Effective Fanout per stage: EF=PE^(1/N)
 - Size the gates from beginning or end of chain
- Can always add inverters to the end of the chain

Path Delay Scratch Area

$$\frac{3\sqrt{64}}{14}$$
 $\frac{1}{5}$
 $\frac{1}{4}$
 $\frac{1}{5}$
 $\frac{1}{4}$
 $\frac{1}{4}$

Path Delay Example

• Remember,
$$EF_i = LE_i \cdot f_i = LE_i \cdot C_{L,i}/C_{in,i}$$

• $G = (15)^3$

•

Path Delay Example

 $LE = (1.5)^3$

Assume gate labels are input capacitance.

Remember, $EF_i = LE_i \cdot f_i = LE_i \cdot C_{L,i}/C_{in,i}$

Elmore Delay

- Approximate RC time constant of a tree network
- R's and C's include both transistors/parasistics and wires
 - \circ Wire π model (where does the R and C come from?)
- Can think of it as:
 - \circ $\sum [C_i \times (\text{sum or R's charging } C_i)]$
 - $\circ \sum [R_i \times (\text{sum of C's that } R_i \text{ charges})]$

$$t_{pd} \approx \sum_{\substack{\text{nodes } i \\ R_1C_1}} R_{i-to-source} C_i$$

$$= \underbrace{R_1C_1} + \underbrace{\left(R_1 + R_2\right)C_2} + \dots + \left(R_1 + R_2 + \dots + R_N\right)C_N$$

$$+ \underbrace{\left(R_1 + R_2 + R_3\right)C_3}$$

Elmore Delay Examples

- What information do we need?
- Draw the equivalent model
- Calculate delay to outputs

