Global irrigation water demands biased by unreliable irrigation efficiencies

R code

Arnald Puy

Contents

1	Preliminary steps						
2	Read in data						
3	$Th\epsilon$	e model	7				
	3.1	Function to create sample matrix	7				
	3.2	Define distributions					
	3.3	Uncertainty in the proportion of large-scale irrigated areas	10				
	3.4	Function to create sample matrix and transfrom to appropriate distributions	11				
	3.5	Define the model	11				
	3.6	Define settings	13				
	3.7	Run the model in parallel	13				
	3.8	Extract model output	13				
4	Uno	certainty analysis	14				
	4.1	Coefficient of variation	14				
	4.2	Ranges	17				
	4.3	Overlap between irrigation efficiencies	22				
	4.4	Retrieve data from ISIMIP	36				
	4.5	Retrieve data from ISIMIP (climate change in 2050)	38				
5	Sen	sitivity analysis	44				

1 Preliminary steps

```
# Function to read in all required packages in one go:
loadPackages <- function(x) {</pre>
  for(i in x) {
    if(!require(i, character.only = TRUE)) {
      install.packages(i, dependencies = TRUE)
      library(i, character.only = TRUE)
   }
 }
}
# Load the packages
loadPackages(c("data.table", "tidyverse", "sensobol", "wesanderson",
               "cowplot", "parallel", "foreach", "doParallel",
               "countrycode", "ggridges", "scales", "overlapping",
               "sp", "rworldmap", "ncdf4", "benchmarkme"))
# Create custom theme
theme_AP <- function() {</pre>
 theme_bw() +
    theme(panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.background = element_rect(fill = "transparent",
                                            color = NA),
          legend.key = element_rect(fill = "transparent",
                                     color = NA),
          legend.position = "top",
          strip.background = element_rect(fill = "white"),
          plot.margin = margin(t = 0, r = 0.3, b = 0, l = 0.3, unit ="cm"))
}
# Set checkpoint
dir.create(".checkpoint")
library("checkpoint")
checkpoint("2021-08-02",
           R.version = 4.0.3,
           checkpointLocation = getwd())
```

2 Read in data

```
# READ IN DATA -----
# Rohwer data
rohwer <- fread("rohwer_data_all.csv")</pre>
rohwer[rohwer == ""] <- NA</pre>
rohwer <- rohwer[, Large_fraction:= Large_fraction / 100]</pre>
# Jager data
jager <- fread("jager_data.csv")</pre>
jager.list <- split(jager, jager$Country)</pre>
# Bos data
bos <- fread("bos_data.csv")</pre>
bos <- bos[, Scale := ifelse(Irrigated_area < 10000, "<10.000 ha", ">10.000 ha")]
# Solley data (USA)
usa.dt <- fread("usa_efficiency.csv")</pre>
usa.dt <- usa.dt[, Efficiency:= consumptive.use / total.withdrawal]
# FAO 1997 data (Irrigation potential in Africa)
fao_dt <- fread("fao_1997.csv")</pre>
fao_dt <- fao_dt[, Efficiency:= Efficiency / 100]</pre>
# Create data set with E_a values as defined by Rohwer
bos.rohwer.ea <- data.table("Irrigation" = c("Surface", "Sprinkler"),</pre>
                              "Value" = c(0.6, 0.7),
                              "variable" = "E[a]")
# Create data set with E_c values as defined by Rohwer
bos.rohwer.ec <- data.table("Irrigation" = c("Surface", "Sprinkler"),</pre>
                              "Value" = c(0.8, 0.95),
                              "variable" = "E[c]")
bos.rohwer.all <- rbind(bos.rohwer.ec, bos.rohwer.ea)</pre>
# As a function of scale
bos.rohwer.mf.ec <- data.table("Scale" = c("<10.000 ha", ">10.000 ha"),
                                 "Value" = c(0.85, 0.59),
                                 "variable" = "E[c]")
bos.rohwer.mf.ed \leftarrow data.table("Scale" = c("<10.000 ha", ">10.000 ha"),
                                 "Value" = c(0.81, 0.72),
                                 "variable" = "E[d]")
bos.rohwer.mf.all <- rbind(bos.rohwer.mf.ec, bos.rohwer.mf.ed)</pre>
```

```
bos2 <- copy(bos)</pre>
bos2 <- setnames(bos2, c("E_a", "E c", "E_d"), c("E[a]", "E[c]", "E[d]"))
# Field and conveyance efficiency -----
a <- bos2 %>%
 melt(., measure.vars = c("E[a]", "E[c]")) %>%
  ggplot(., aes(value, fill = Irrigation, color = Irrigation)) +
  geom_histogram(position = "identity", alpha = 0.4, bins = 15) +
 facet_wrap(~variable, labeller = label_parsed) +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  geom_vline(data = bos.rohwer.all, aes(xintercept = Value,
                                       color = Irrigation,
                                        group = variable),
            lty = 2,
            size = 1) +
  labs(x = "", y = "Counts") +
  theme_AP()
# As a function of scale -----
b <- melt(bos2, measure.vars = c("E[c]", "E[a]", "E[d]")) %>%
 na.omit() %>%
  ggplot(., aes(value, fill = Scale, color = Scale)) +
 geom histogram(bins = 15, position = "identity", alpha = 0.6) +
 labs(x = "Irrigation efficiency", y = "Counts") +
 facet_wrap(~ variable, labeller = label_parsed) +
  geom_vline(data = bos.rohwer.mf.all, aes(xintercept = Value,
                                         color = Scale,
                                         group = variable),
            lty = 2,
             size = 1) +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  scale_color_manual(values = wes_palette(2, name = "Chevalier1"),
                    name = "Scale",
                    labels = c("<10.000 ha", ">10.000 ha")) +
  scale_fill_manual(values = wes_palette(2, name = "Chevalier1"),
                    name = "Scale",
                    labels = c("<10.000 ha", ">10.000 ha")) +
  theme_AP()
bottom <- plot_grid(a, b, ncol = 1, labels = c("c", "d"))
```

Warning: Removed 74 rows containing non-finite values (stat_bin).

3 The model

3.1 Function to create sample matrix

```
sample_matrix_fun <- function(IFT) {
  params <- params_fun(IFT = IFT)
  mat <- sensobol::sobol_matrices(N = N, params = params)
  out <- list(params, mat)
  names(out) <- c("parameters", "matrix")
  return(out)
}</pre>
```

3.2 Define distributions

```
# DEFINE TRUNCATED DISTRIBUTIONS -
# EA SURFACE -----
Ea.surface <- bos[Irrigation == "Surface"][, .(min = min(E_a, na.rm = TRUE),</pre>
                                                 max = max(E_a, na.rm = TRUE))]
shape <- 3.502469
scale <- 0.5444373
minimum <- Ea.surface$min
maximum <- Ea.surface$max</pre>
weibull_dist <- sapply(c(minimum, maximum), function(x)</pre>
  pweibull(x, shape = shape, scale = scale))
# EC SURFACE -----
Ec.surface <- bos[Irrigation == "Surface"][, .(min = min(E_c, na.rm = TRUE),</pre>
                                                 \max = \max(E_c, na.rm = TRUE))]
shape1 <- 5.759496
shape2 <- 1.403552
minimum.beta <- Ec.surface$min
maximum.beta <- Ec.surface$max</pre>
beta_dist <- sapply(c(minimum.beta, maximum.beta), function(x)</pre>
  pbeta(x, shape1 = shape1, shape2 = shape2))
# EA SPRINKLER -----
Ea.sprinkler <- bos[Irrigation == "Sprinkler"][, .(min = min(E_a, na.rm = TRUE),</pre>
                                                 max = max(E_a, na.rm = TRUE))]
shape.spr <- 6.9913711
scale.spr <- 0.7451178
minimum.spr <- Ea.sprinkler$min
maximum.spr <- Ea.sprinkler$max</pre>
weibull_dist_spr <- sapply(c(minimum.spr, maximum.spr), function(x)</pre>
  pweibull(x, shape = shape.spr, scale = scale.spr))
# MANAGEMENT FACTOR (m) ----
```

```
shape1.m < -5.759496
shape2.m < -1.403552
minimum.m < - 0.65
maximum.m <- 1</pre>
beta_dist.m <- sapply(c(minimum.m, maximum.m), function(x)</pre>
 pbeta(x, shape1 = shape1.m, shape2 = shape2.m))
# FUNCTION TO TRANSFORM TO APPROPRIATE DISTRIBUTIONS -----
distributions_fun <- list(</pre>
  # SURFACE IRRIGATION
  # -----
  "Ea_surf" = function(x) {
   out <- qunif(x, weibull_dist[[1]], weibull_dist[[2]])</pre>
   out <- qweibull(out, shape, scale)</pre>
 },
  "Ec_surf" = function(x) {
   out <- qunif(x, beta_dist[[1]], beta_dist[[2]])</pre>
   out <- qbeta(out, shape1, shape2)</pre>
 },
  # SPRINKLER IRRIGATION
  # -----
  "Ea_sprinkler" = function(x) {
   out <- qunif(x, weibull_dist_spr[[1]], weibull_dist_spr[[2]])</pre>
   out <- qweibull(out, shape.spr, scale.spr)</pre>
 },
  "Ec_sprinkler" = function(x) qunif(x, 0.64, 0.96),
  # MICRO (DRIP) IRRIGATION
  "Ea_micro" = function(x) out <- qunif(x, 0.75, 0.95),
  "Ec_micro" = function(x) out <- qunif(x, 0.9, 0.95),
  # PROPORTION LARGE
  # -----
  "Proportion_large" = function(x) x,
```

3.3 Uncertainty in the proportion of large-scale irrigated areas

```
# DEFINE THE UNCERTAINTY IN THE LARGE FRACTION AT THE COUNTRY LEVEL -----
eff10 <- fread("efficiency 10.csv")</pre>
eff30 <- fread("efficiency_30.csv")</pre>
eff100 <- fread("efficiency_100.csv")</pre>
# CHECK WHICH COUNTRIES FROM ROHWER ET AL. ARE MISSING IN THE
# LARGE-SCALE IRRIGATED AREA DATASETS -----
countryDiff <- setdiff(rohwer$Country, eff100$Country)</pre>
countryMissing <- data.table(Country = rep(countryDiff, each = 12),</pre>
                           X1 = rep(1:4, each = 3),
                           X2 = rep(1:3, times = 4),
                           Proportion large = 0)
# ARRANGE DATASETS -------
largescale.dt <- rbind(eff10, eff30, eff100) %>%
 melt(., measure.vars = 3:6, variable.name = "X1",
      value.name = "Proportion_large") %>%
 .[, Code:= NULL] %>%
 setcolorder(., c("Country", "X1", "X2", "Proportion_large")) %>%
```

3.4 Function to create sample matrix and transfrom to appropriate distributions

```
# FULL ALGORITHM TO CREATE SAMPLE MATRIX ----

full_sample_matrix <- function(IFT, Country) {
   tmp <- sample_matrix_fun(IFT = IFT)
   mat <- tmp[["matrix"]]
   temp <- colnames(mat)
   mat <- sapply(seq_along(temp), function(x) distributions_fun[[temp[x]]](mat[, x]))
   colnames(mat) <- temp
   out <- list(tmp$parameters, mat)
   names(out) <- c("parameters", "matrix")
   return(out)
}</pre>
```

3.5 Define the model

```
# FULL MODEL -----
full_model <- function(IFT, Country, sample.size, R) {
  country.differences <- setdiff(rohwer$Country, jager$Country)
  tmp <- full_sample_matrix(IFT = IFT, Country = Country)
  mat <- tmp$matrix

if(IFT == "Surface" | IFT == "Mixed" | IFT == "Jager") {
   X1 <- mat[, "X1"]
   X2 <- mat[, "X2"]
   index <- paste(Country, X1, X2, sep = ".")</pre>
```

```
Proportion_large <- triggers.dt[index][, Proportion_large]</pre>
}
if(IFT == "Surface") {
  Mf <- mat[, "m"] - mat[, "r_L"] * Proportion_large</pre>
  y <- mat[, "Ea_surf"] * mat[, "Ec_surf"] * Mf</pre>
} else if(IFT == "Sprinkler") {
  Mf <- mat[, "m"]</pre>
  y <- mat[, "Ea_sprinkler"] * mat[, "Ec_sprinkler"] * Mf
} else if(IFT == "Mixed") {
  Mf.surf <- mat[, "m"] - mat[, "r_L"] * Proportion_large</pre>
  y.surf <- mat[, "Ea_surf"] * mat[, "Ec_surf"] * Mf.surf</pre>
  Mf.sprink <- mat[, "m"]</pre>
  y.sprink <- mat[, "Ea_sprinkler"] * mat[, "Ec_sprinkler"] * Mf.sprink</pre>
  y \leftarrow 0.5 * y.surf + 0.5 * y.sprink
} else if(IFT == "Micro") {
  Mf <- mat[, "m"]</pre>
  y <- mat[, "Ea_micro"] * mat[, "Ec_micro"] * Mf
} else if(IFT == "Jager") {
  if(Country %in% country.differences == TRUE) {
    next
  }
  Mf.surf <- mat[, "m"] - mat[, "r_L"] * Proportion_large</pre>
  y.surf <- mat[, "Ea_surf"] * mat[, "Ec_surf"] * Mf.surf</pre>
  Mf.spr <- mat[, "m"]</pre>
  y.spr <- mat[, "Ea_sprinkler"] * mat[, "Ec_sprinkler"] * Mf.spr</pre>
  Mf.micro <- mat[, "m"]</pre>
  y.micro <- mat[, "Ea_micro"] * mat[, "Ec_micro"] * Mf.micro</pre>
  y <- jager.list[[Country]]$Surface_fraction * y.surf +</pre>
    jager.list[[Country]]$Sprinkler_fraction * y.spr +
    jager.list[[Country]]$Drip_fraction * y.micro
```

3.6 Define settings

```
# DEFINE SETTINGS ------
N <- 2^14
R <- 10^2
list_continents <- list(c("Africa", "Asia"), c("Americas", "Europe"))</pre>
```

3.7 Run the model in parallel

3.8 Extract model output

```
# EXTRACT MODEL OUTPUT -----
names(y) <- c("Rohwer et al. 2007", "Jägermeyr et al. 2015")

output <- tmp <- list()
for(i in names(y)) {
  output[[i]] <- lapply(y[[i]], function(x) x[["output"]][1:(2 * N)])

if(i == "Rohwer et al. 2007") {</pre>
```

```
names(output[[i]]) <- rohwer$Country</pre>
  } else if(i == "Jägermeyr et al. 2015") {
    names(output[[i]]) <- new.rohwer$Country</pre>
  tmp[[i]] <- lapply(output[[i]], data.table) %>%
    rbindlist(., idcol = "Country")
  if(i == "Rohwer et al. 2007") {
    tmp[[i]] <- merge(tmp[[i]], rohwer[, .(Country, IFT)], all.x = TRUE) %>%
      .[, IFT:= factor(IFT, levels = c("Surface", "Sprinkler", "Micro", "Mixed"))]
  } else if(i == "Jägermeyr et al. 2015") {
    tmp[[i]] <- tmp[[i]][, IFT:= "Jager"]</pre>
  }
 tmp[[i]] <- tmp[[i]][, Continent:= countrycode(tmp[[i]][, Country],</pre>
                                                   origin = "country.name",
                                                   destination = "continent")]
}
## Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest,
## Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest,
uncertainty.dt <- rbindlist(tmp, idcol = "Approach")</pre>
uncertainty.dt <- uncertainty.dt[, Study:= ifelse(IFT == "Jager",
                                                    "Jägermeyr et al. approach",
                                                    "Rohwer et al. approach")]
# FXPORT UNCERTAINTY IN TRRIGATION FFFICIENCY -----
fwrite(uncertainty.dt, "uncertainty.dt.csv")
```

4 Uncertainty analysis

4.1 Coefficient of variation

```
dd <- list()</pre>
for (i in 1:length(list_continents)) {
  dd[[i]] <- ggplot(cv.dt[Continent %in% list_continents[[i]]],</pre>
                    aes(reorder(Country, cv), cv, color = Approach)) +
    geom point() +
    scale_color_manual(values = wes_palette("Chevalier1"),
                       labels = c("Jägermeyr et al. approach",
                                   "Rohwer et al. approach")) +
    labs(y = "Coefficient of variation",
         x = "") +
    facet_wrap(~Continent, scales = "free_y") +
    scale_y_continuous(limits = c(0, 1),
                       breaks = pretty_breaks(n = 3)) +
    coord_flip() +
    theme_AP() +
    guides(color = guide_legend(nrow = 2, byrow = TRUE))
}
dd
```

[[1]]

• Jägermeyr et al. approach

Approach

Rohwer et al. approach

##

[[2]]

Jägermeyr et al. approach Approach

Ranges 4.2

```
# COMPUTE RANGES
calc <- uncertainty.dt[, .(min = min(V1), max = max(V1)), .(Continent, Country)] %>%
  .[, .(range = max - min), .(Continent, Country)] %>%
  .[order(range)]
print(calc, n = Inf)
```

Continent Country range ## 1: Asia Cyprus 0.4639176 2: United Arab Emirates 0.4854683 ## Asia

	_			
##	3:	Asia		0.4944147
##	4:	Asia		0.5042251
##	5:		frica Tunisia	
##		6: Asia Saudi Arabia		
##	7:	Europe		0.5721363
##	8:	Africa		0.5726990
##	9:	Americas	United States	
##	10:	Europe	Netherlands	
##	11:	Americas		0.5818560
##	12:	Africa	Mozambique	
##	13:	Americas		0.5855978
##	14:	Africa		0.5856878
##	15:	Africa		0.5856878
##	16:	Africa		0.5856878
##	17:	Asia		0.5864389
##	18:	Europe		0.5869800
##	19:	Africa	South Africa	
##	20:	Africa		0.5890368
##	21:	Asia	Kazakhstan	
##	22:	Africa	Ivory Coast	
##	23:	Asia		0.5922976
##	24:	Americas		0.5944970
##	25:	Europe	-	0.5984780
##	26:	Asia		0.5998517
##	27:	Europe		0.6014893
##	28:	Europe	_	0.6014893
##	29:	<na></na>	· ·	0.6014893
##	30:	Europe		0.6014893
##	31:	Europe		0.6014893
##	32:	Europe		0.6014893
##	33:	Europe	Greece	0.6014893
##	34:	Europe	Hungary	0.6014893
##	35:	Europe	Latvia	0.6014893
##	36:	Europe		0.6014893
##	37:	Europe	Luxembourg	
##	38:	Africa		0.6014893
##	39:	Europe	Slovakia	0.6014893
##	40:	Europe		0.6014893
##	41:	Europe	Switzerland	0.6014893
##	42:	Africa	Botswana	0.6071124
##	43:	Europe	Ukraine	0.6122925
##	44:	Asia	Qatar	0.6222104
##	45:	Europe	Czech Republic	0.6394465
##	46:	Europe	Croatia	0.6449088
##	47:	Europe	Russia	0.6468832
##	48:	Europe	United Kingdom	0.6527024
##	49:	Europe	Slovenia	0.6529393
##	50:	Europe	Romania	0.6658015

##	51:	Africa	Burkina Faso	0 6010500
##	52:	Africa		0.6956438
##	53:	Asia	Azerbaijan	
##	54:	Asia		
	5 4 .	Africa	-	0.7165713
##				0.7176049
##	56:	Asia	_	0.7217608
##	57: 58:	Africa		0.7219235
##		Oceania	New Zealand	
##	59:	Asia	•	0.7249771
##	60:	Asia		0.7257428
##	61:	Oceania	Australia	
##	62:	Africa		0.7287327
##	63:	Americas		0.7295769
##	64:	Asia		0.7310074
##	65:	Asia		0.7320971
##	66:	Americas		0.7341855
##	67:	Asia		0.7368912
##	68:	Asia	_	0.7370818
##	69:	Europe	•	0.7393857
##	70:	Asia		0.7407613
##	71:	Asia	Afghanistan	
##	72:	Asia	Philippines	
##	73:	Americas	_	0.7460277
##	74:	Asia	Turkmenistan	0.7470244
##	75:	Asia	Vietnam	0.7474112
##	76:	Asia	Pakistan	0.7475370
##	77:	Americas	Ecuador	0.7475424
##	78:	Europe	Macedonia	0.7477843
##	79:	Asia	North Korea	0.7482417
##	80:	Americas	Peru	0.7485998
##	81:	Asia	Uzbekistan	0.7486592
##	82:	Europe	Moldova	0.7488747
##	83:	Africa	Chad	0.7498686
##	84:	Americas	Paraguay	0.7498686
##	85:	Americas	Uruguay	0.7498686
##	86:	Africa	Sudan	0.7498884
##	87:	Asia	Malaysia	0.7503642
##	88:	Europe	Portugal	0.7505188
##	89:	Asia	Thailand	0.7505896
##	90:	Americas	Bolivia	0.7506488
##	91:	Asia	Bangladesh	0.7508831
##	92:	Americas	Venezuela	0.7512531
##	93:	Asia	Sri Lanka	0.7513038
##	94:	Asia	Nepal	0.7520751
##	95:	Africa	-	0.7527058
##	96:	Asia	Kyrgyzstan	
##	97:	Asia		0.7566068
##	98:	Americas		0.7568347
			,	

```
##
    99:
                                  Tajikistan 0.7569981
             Asia
## 100:
             Asia
                                     Georgia 0.7580011
## 101:
                                 South Korea 0.7584425
             Asia
## 102:
                                    Cambodia 0.7615212
             Asia
## 103:
           Africa
                                    Ethiopia 0.7628903
                                     Albania 0.7632624
## 104:
           Europe
## 105:
             Asia
                                       Yemen 0.7644014
## 106:
           Africa
                                    Tanzania 0.7646283
## 107:
           Africa
                                     Nigeria 0.7656979
## 108:
         Americas
                                       Haiti 0.7658826
## 109:
                                        Oman 0.7711095
             Asia
## 110:
         Americas
                                      Belize 0.7728079
## 111:
                     Bosnia and Herzegovina 0.7728079
           Europe
## 112:
           Africa
                                       Congo 0.7728079
## 113:
         Americas
                              French Guiana 0.7728079
## 114:
                                       Gabon 0.7728079
           Africa
## 115:
           Africa
                                       Ghana 0.7728079
## 116:
                                   Guatemala 0.7728079
         Americas
## 117:
           Africa
                                      Guinea 0.7728079
## 118:
                                     Jamaica 0.7728079
         Americas
## 119:
           Africa
                                     Lesotho 0.7728079
## 120:
           Africa
                                  Mauritania 0.7728079
## 121:
         Americas
                                      Panama 0.7728079
## 122:
                           Papua New Guinea 0.7728079
          Oceania
## 123:
                                      Poland 0.7728079
           Europe
## 124:
                                 Puerto Rico 0.7728079
         Americas
## 125:
           Africa
                                        Togo 0.7728079
## 126:
         Americas
                                    Trinidad 0.7728079
## 127:
           Africa
                                      Uganda 0.7728079
## 128:
           Africa
                             Western Sahara 0.7728079
## 129:
                                       Zaire 0.7728079
           Africa
## 130:
                                      Serbia 0.7733555
           Europe
## 131:
         Americas
                                 El Salvador 0.7743265
## 132:
           Africa
                                       Kenya 0.7743758
## 133:
         Americas
                                  Costa Rica 0.7745177
## 134:
             Asia
                                    Mongolia 0.7749708
## 135:
         Americas
                                    Colombia 0.7779004
## 136:
           Africa
                                     Senegal 0.7793409
## 137:
         Americas
                                   Nicaragua 0.7803721
## 138:
           Africa
                                  Madagascar 0.7806578
## 139:
                                        Mali 0.7808877
           Africa
## 140:
           Africa
                                      Angola 0.7814033
## 141:
                                      Bhutan 0.7814033
             Asia
## 142:
           Africa
                                     Burundi 0.7814033
## 143:
           Africa Central African Republic 0.7814033
## 144:
           Africa
                                    Djibouti 0.7814033
## 145:
         Americas
                         Dominican Republic 0.7814033
## 146:
                          Equatorial Guinea 0.7814033
           Africa
```

```
## 147:
           Africa
                                    Eritrea 0.7814033
## 148:
                                     Gambia 0.7814033
           Africa
                              Guinea-Bissau 0.7814033
## 149:
           Africa
## 150:
         Americas
                                   Honduras 0.7814033
## 151:
             Asia
                                       Laos 0.7814033
## 152:
           Africa
                                    Liberia 0.7814033
## 153:
           Africa
                                      Niger 0.7814033
## 154:
           Europe
                                     Norway 0.7814033
## 155:
           Africa
                                     Rwanda 0.7814033
## 156:
                               Sierra Leone 0.7814033
           Africa
## 157:
                                    Somalia 0.7814033
           Africa
## 158:
         Americas
                                   Suriname 0.7830037
        Continent
##
                                    Country
                                                 range
ggplot(calc, aes(range)) +
  geom_histogram() +
  labs(x = "Range", y = "N. of countries") +
  theme_AP()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
"Van Halsema and Vincent 2012"))] %>%
na.omit() %>%
ggplot(., aes(mean.value, Study, color = ifelse(Study == "This study", "red", "black"))) +
geom_point() +
scale_x_continuous(breaks = pretty_breaks(n = 3)) +
geom_errorbar(aes(xmin = lower, xmax = higher)) +
scale_color_identity() +
facet_wrap(~IFT, ncol = 4) +
labs(x = "Irrigation efficiency", y = "") +
theme_AP()
```


4.3 Overlap between irrigation efficiencies

```
# CHECK OVERLAP -
dd <- uncertainty.dt[!Continent == "Oceania"][Study == "Rohwer et al. approach"] %>%
  split(., .$Continent, drop = TRUE)
overlap.dt <- lapply(dd, function(x) split(x, x$IFT, drop = TRUE)) %>%
  lapply(., function(x) lapply(x, function(y) y[, V1])) %>%
  lapply(., function(x) overlap(x)$0V)
overlap.dt
## $Africa
## Surface-Sprinkler
                         Surface-Mixed
                                         Sprinkler-Mixed
           0.3329115
##
                             0.5084454
                                               0.5255184
##
## $Americas
## Surface-Mixed
##
       0.5084078
##
## $Asia
## Surface-Micro Surface-Mixed
                                 Micro-Mixed
      0.05314604
                    0.42996793
                                  0.07870342
##
##
## $Europe
## Surface-Sprinkler
                         Surface-Mixed
                                         Sprinkler-Mixed
##
          0.3372350
                             0.5362841
                                               0.4917646
```

```
ff <- uncertainty.dt[!Continent == "Oceania"] %>%
  .[Country %in% intersect(rohwer[, Country], jager[, Country])] %>%
  split(., .$Country, drop = TRUE) %>%
 lapply(., function(x) split(x, x$Approach, drop = TRUE)) %>%
 lapply(., function(x) lapply(x, function(y) y[, V1])) %>%
 lapply(., function(x) overlap(x)$0V) %>%
 lapply(., data.table) %>%
 rbindlist(., idcol = "Country") %>%
  .[, Continent:= countrycode(.[, Country],
                             origin = "country.name",
                             destination = "continent")]
list_continents <- list(c("Africa", "Asia"), c("Americas", "Europe"))</pre>
# PLOT OVERLAP -----
dd <- list()</pre>
for(i in 1:length(list_continents)) {
  dd[[i]] <- ff[Continent %in% list_continents[[i]]] %>%
   ggplot(., aes(reorder(Country, V1), V1)) +
   geom_point() +
   scale_color_discrete(name = "GM") +
   labs(y = "Overlap", x = "") +
   facet_wrap(~Continent, scales = "free_y") +
   coord_flip() +
   theme_AP()
}
dd
```

[[1]]

[[2]]

ggplot(ff, aes(V1)) + geom_histogram() + facet_wrap(~Continent) + scale_x_continuous(breaks = pretty_breaks(n = 3)) + theme_AP() +

labs(x = "Fraction of overlap", y = " N° of countries")

```
Africa
                                               Americas
    15
    10
N° of countries
     5
                    Asia
                                                 Europe
    15
    10
     5
     0
                   0.5
                                  1.0
                                                  0.5
                        Fraction of overlap
```

```
ggplot(ff, aes(Continent, V1)) +
  geom_boxplot() +
  coord_flip() +
  theme_AP() +
  labs(y = "Fraction of overlap", x = "")
```



```
# CHECK CORRESPONDENCE BETWEEN SHARES OF IFT AND PREDOMINANT TECHNOLOGY ------
# Retrieve countries where overlap is <0.3
```

merge(jager, rohwer, by = c("Country")) %>%
 .[Country %in% ff[V1 < 0.3][, Country]] %>%

.[, .(Country, Surface_fraction, Sprinkler_fraction, Drip_fraction, IFT)]

Country Surface_fraction Sprinkler_fraction Drip_fraction IFT ${\tt Oman}$ 0.113 ## 1: 0.793 0.094 Micro ## 2: Slovenia 0.000 0.693 0.307 Mixed ## 3: Spain 0.297 0.226 0.478 Mixed

PLOT UNCERTAINTY ----gg <- list()</pre>

```
for (i in 1:length(list_continents)) {
  gg[[i]] <- ggplot(uncertainty.dt[Continent %in% list_continents[[i]]],</pre>
                    aes(x = V1, y = fct_reorder(Country, V1), fill = Study)) +
    geom_density_ridges(scale = 2, alpha = 0.3) +
    labs(x = "Irrigation efficiency", y = "") +
    facet_wrap(~Continent, scales = "free") +
    scale_x_continuous(breaks = pretty_breaks(n = 3),
                       limits = c(0, 1)) +
    scale_fill_manual(values = wes_palette("Chevalier1")) +
    theme_AP() +
    theme(legend.position = "top") +
    guides(fill = guide_legend(nrow = 2, byrow = TRUE))
}
# MERGE PLOTS -----
gg
## [[1]]
## Picking joint bandwidth of 0.0121
## Picking joint bandwidth of 0.0118
```


[[2]]

Picking joint bandwidth of 0.0123

Picking joint bandwidth of 0.0109


```
## [[1]]
## Picking joint bandwidth of 0.0123
## Picking joint bandwidth of 0.0119
```


[[2]]

Picking joint bandwidth of 0.0129

Picking joint bandwidth of 0.0113


```
limits = c(0, 1)) +
facet_wrap(~Continent, scales = "free") +
scale_color_discrete(name = "Irrigation") +
theme_AP()
}
dd
```

[[1]]

Warning: Removed 1 rows containing missing values (geom_point).

[[2]]


```
# CALCULATE THE UNCERTAINTY IN THE RANGES ------
selection_continents <- c("Africa", "Asia", "Americas", "Europe")

factor_unc <- uncertainty.dt[, .(min = min(V1), max = max(V1)), .(Continent, Country)] %>%
    .[Continent %in% selection_continents] %>%
    .[, factor:= max / min]

ggplot(factor_unc, aes(factor)) +
    geom_histogram() +
    facet_wrap(~Continent, ncol = 4) +
    labs(x = "Factor", y = "N. of countries") +
    theme_AP()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# Number of countries whose irrigation water withdrawals fluctuate a factor of x
# due to uncertainty in irrigation efficiency
factor_unc %>%
    .[, factor:= floor(max / min)] %>%
    .[, .(number.countries = .N), factor] %>%
    .[order(factor)] %>%
    print()
```

##		factor	number.countries
##	1:	2	4
##	2:	3	15
##	3:	4	28
##	4:	5	2
##	5:	7	1
##	6:	8	1
##	7:	11	2
##	8:	13	1
##	9:	19	29
##	10:	20	16
##	11:	21	4
##	12:	22	3
##	13:	23	3
##	14:	24	5
##	15:	25	20
##	16:	26	3
##	17:	27	3
##	18:	28	3
##	19:	29	1
##	20:	30	1
##	21:	31	3
##	22:	32	2
##	23:	33	1
##	24:	39	1
##	25:	47	1
##	26:	48	1
##		${\tt factor}$	${\tt number.countries}$

4.4 Retrieve data from ISIMIP

```
# FUNCTIONS TO EXTRACT DATA FROM .NC FILES -
coords2country = function(points) {
  countriesSP <- rworldmap::getMap(resolution = 'low')</pre>
 pointsSP = sp::SpatialPoints(points, proj4string=CRS(proj4string(countriesSP)))
  indices = sp::over(pointsSP, countriesSP)
  indices$ADMIN
}
# Function to load and extract data from .nc files from ISIMIP
open_nc_files <- function(file, dname, selected.years, vec) {
 ncin <- nc_open(file)</pre>
  # get longitude, latitude, time
 lon <- ncvar_get(ncin, "lon")</pre>
 lat <- ncvar_get(ncin, "lat")</pre>
  # Get variable
 tmp array <- ncvar get(ncin, dname)</pre>
 m <- lapply(selected.years, function(x) vec[[x]])</pre>
  out <- lapply(m, function(x) {
    tmp_slice <- lapply(x, function(y) tmp_array[, , y])</pre>
    # create dataframe -- reshape data
    # matrix (nlon*nlat rows by 2 cols) of lons and lats
    lonlat <- as.matrix(expand.grid(lon,lat))</pre>
    # vector of `tmp` values
    tmp_vec <- lapply(tmp_slice, function(x) as.vector(x))</pre>
    # create dataframe and add names
    tmp_df01 <- lapply(tmp_vec, function(x) data.frame(cbind(lonlat, x)))</pre>
    names(tmp_df01) <- x
    da <- lapply(tmp_df01, data.table) %>%
      rbindlist(., idcol = "month") %>%
      na.omit()
    # Convert coordinates to country
    Country <- coords2country(da[1:nrow(da), 2:3])
    df <- cbind(Country, da)</pre>
    setDT(df)
    out <- na.omit(df)[, .(Water.Withdrawn = sum(x)), Country]</pre>
    out[, Water.Withdrawn:= Water.Withdrawn * 10000]
    out[, Continent:= countrycode(out[, Country],
                                    origin = "country.name",
                                    destination = "continent")] %>%
      .[, Code:= countrycode(out[, Country],
                              origin = "country.name",
                              destination = "un")] %>%
      .[, Country:= countrycode(out[, Code],
                                 origin = "un",
```

```
destination = "country.name")] %>%
      .[!Continent == "Oceania"]
    setcolorder(out, c("Country", "Continent", "Code", "Water.Withdrawn"))
 })
 return(out)
# READ IN NC FILES -----
# Define settings
vecs <- 1:((2010 - 1970) * 12)
vec <- split(vecs, ceiling(seq_along(vecs) / 12))</pre>
names(vec) <- 1971:2010
selected.years <- "2010"
dname <- "pirrww"</pre>
files <- list("h08_wfdei nobc_hist_varsoc_co2_pirrww_global_monthly_1971_2010.nc",
              "pcr-globwb_wfdei_nobc_hist_varsoc_co2_pirrww_global_monthly_1971_2010.nc",
              "lpjml_wfdei_nobc_hist_varsoc_co2_pirrww_global_monthly_1971_2010.nc",
              "watergap2_wfdei_nobc_hist_varsoc_co2_pirrww_global_monthly_1971_2010.nc")
names.isimip <- c("HO8", "PCR-GLOBWB", "LPJmL", "WaterGap")</pre>
isimip.dt <- mclapply(files, function(x)</pre>
  open nc files(file = x, dname = dname, selected.years = selected.years, vec = vec),
mc.cores = detectCores() * 0.75)
# EXTRACT CORRECTIVE COEFFICIENTS FOR IRRIGATION EFFICIENCY FOR LPJML -------
ncin <- nc_open("irrigation_project_efficiencies.nc")</pre>
lon <- ncvar_get(ncin, "lon")</pre>
lat <- ncvar_get(ncin, "lat")</pre>
tmp_array <- ncvar_get(ncin)</pre>
lonlat <- as.matrix(expand.grid(lon,lat))</pre>
da <- na.omit(cbind(lonlat, as.vector(tmp_array))) %>%
  data.frame() %>%
  na.omit()
Country <- coords2country(da[1:nrow(da), 1:2])</pre>
lpjml_efficiencies <- cbind(Country, da) %>%
 na.omit() %>%
  data.table() %>%
  [, (Ep = mean(V3)), Country]
# ARRANGE NC FILES ---
names(isimip.dt) <- names.isimip</pre>
isimip.dt <- lapply(isimip.dt, function(x) rbindlist(x)) %>%
```

```
rbindlist(., idcol = "Model") %>%
 na.omit() %>%
  # To correct for duplicate country in Cyprus
  .[, .(Water.Withdrawn = mean(Water.Withdrawn)), .(Model, Country, Continent, Code)]
lpjml_harmonized <- merge(isimip.dt[Model == "LPJmL"], lpjml_efficiencies, all.x = TRUE) %>%
  .[, Water.Withdrawn:= Water.Withdrawn * Ep] %>%
  .[, Ep:= NULL]
isimip.dt <- rbind(isimip.dt[!Model == "LPJmL"], lpjml_harmonized)</pre>
fwrite(isimip.dt, "isimip.dt")
# MERGE UNCERTAINTY IN EP WITH ISIMIP DATA -----
efficiency.dt <- copy(uncertainty.dt) %>%
  setnames(., "V1", "Ep")
ghm.dt <- dcast(isimip.dt, Country + Continent + Code ~ Model, value.var = "Water.Withdrawn")</pre>
full.dt <- merge(efficiency.dt, ghm.dt, by = c("Country", "Continent"), all.x = TRUE) %>%
  .[, (names.isimip):= lapply(.SD, function(x) x / Ep), .SDcols = names.isimip]
tmp.dt <- melt(full.dt, measure.vars = names.isimip, variable.name = "Model",</pre>
               value.name = "IWW_corrected")
ghm.large <- melt(ghm.dt, measure.vars = names.isimip, variable.name = "Model",</pre>
     value.name = "IWW")
gm.uncertainty <- tmp.dt[, .(min = min(IWW_corrected), max = max(IWW_corrected)),</pre>
                          .(Country, Continent, Model)]
gm.dt <- merge(ghm.large, gm.uncertainty)</pre>
```

4.5 Retrieve data from ISIMIP (climate change in 2050)

```
# READ IN FILES ON CLIMATE CHANGE UNCERTAINTY (2050) -------

files <- list(
    "watergap2_miroc5_ewembi_rcp85_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "watergap2_miroc5_ewembi_rcp60_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "watergap2_miroc5_ewembi_rcp45_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "watergap2_miroc5_ewembi_rcp26_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "lpjml_miroc5_ewembi_rcp85_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "lpjml_miroc5_ewembi_rcp60_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "pcr-globwb_miroc5_ewembi_rcp26_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "pcr-globwb_miroc5_ewembi_rcp60_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "h08_miroc5_ewembi_rcp85_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "h08_miroc5_ewembi_rcp60_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "h08_miroc5_ewembi_rcp26_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "h08_miroc5_ewembi_rcp60_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "h08_miroc5_ewembi_rcp60_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "h08_miroc5_ewembi_rcp26_2005soc_co2_pirrww_global_monthly_2006_2099.nc",
    "h08_miroc5_ewembi_rcp26_2005soc_co2_pirrww_gl
```

```
vecs <- 1:((2099 - 2005) * 12)
vec <- split(vecs, ceiling(seq_along(vecs) / 12))</pre>
names(vec) <- 2006:2099
dname <- "pirrww"</pre>
selected.years <- as.character(seq(2030, 2050, 10))</pre>
# Read in datasets
isimip.climate <- mclapply(</pre>
 files, function(x)
    open_nc_files(file = x, dname = dname, selected.years = selected.years, vec = vec),
 mc.cores = detectCores() * 0.75
)
# ARRANGE DATASETS ---
ghms <- c(rep("WaterGap", times = 4),</pre>
          rep("LPJmL", times = 3),
          rep("PCR-GLOBWB", times = 2),
          rep("H08", times = 3))
climate_scenario <- c(85, 60, 45, 26, 85, 60, 26, 60, 26, 85, 60, 26)
names.isimip <- paste(ghms, climate_scenario, sep = "/")</pre>
# Name the slots
names(isimip.climate) <- names.isimip</pre>
for(i in names(isimip.climate)) {
 names(isimip.climate[[i]]) <- selected.years</pre>
}
# Arrange data
isimip.climate.dt <- lapply(isimip.climate, function(x) rbindlist(x, idcol = "Year")) %%
 rbindlist(., idcol = "Model") %>%
  .[!Continent == "Oceania"] %>%
  separate(., "Model", c("Model", "Climate scenario"), "/") %>%
 na.omit() %>%
  .[Year == 2050]
# Export
fwrite(isimip.climate.dt, "isimip.climate.dt.csv")
# PLOT RANGES OF STRUCTURAL UNCERTAINTY AND RANGES OF
# STRUCTURAL UNCERTAINTY + UNCERTAINTY IN IRRIGATION EFFICIENCY +
# UNCERTAINTY IN CLIMATE CHANGE -----
countries_list <- c("Egypt", "Sudan", "South Africa", "Morocco", "Madagascar",</pre>
                    "United States", "Mexico", "Brazil", "Chile", "Peru",
```

```
"India", "China", "Pakistan", "Iran", "Indonesia",
                    "Italy", "Spain", "France", "Ukraine", "Romania")
range.gm <- gm.dt %>%
  .[, .(min = min(IWW, na.rm = TRUE), max = max(IWW, na.rm = TRUE)),
    .(Country, Continent)] %>%
  .[, Approach:= "GM"]
range.study <- gm.dt %>%
  .[, .(min = min(min, na.rm = TRUE), max = max(max, na.rm = TRUE)),
    .(Country, Continent)] %>%
  .[, Approach:= "GM + uncertainty in irrigation efficiency"]
range.climate <- isimip.climate.dt %>%
  .[, .(min = min(Water.Withdrawn), max = max(Water.Withdrawn)),
    .(Country, Continent)] %>%
  .[, Approach:= "GM + uncertainty in climate change"]
all.uncertainties <- rbind(range.gm, range.study, range.climate) %>%
  [, mean:= (min + max) / 2]
# Substitute O by NA -----
all.uncertainties[all.uncertainties == 0] <- NA
all.uncertainties %>%
  .[Country %in% countries_list] %>%
 ggplot(., aes(reorder(Country, mean), mean, color = Approach)) +
  geom_errorbar(aes(ymin = min,
                    ymax = max),
                position = position_dodge(0.7)) +
  scale_y_log10(breaks = trans_breaks("log10", function(x) 10 ^ (2 * x)),
                labels = trans_format("log10", math_format(10 ^ .x))) +
  scale_color_manual(name = "GMs", values = wes_palette("Darjeeling1")) +
  labs(y = expression(paste("Irrigation water withdrawal ", " ", "(", 10^9, m^3/year, "", ")")
       x = "") +
  facet_wrap(~Continent, scales = "free_y") +
  coord_flip() +
  theme AP() +
  guides(color = guide_legend(nrow = 3, byrow = TRUE))
```

<u> —</u> GМ

GMs — GM + uncertainty in climate change

— GM + uncertainty in irrigation efficiency

FXPORT ----

Irrigation water withdrawal (10⁹m³/year)

```
fwrite(all.uncertainties, "all.uncertainties.csv")
# PLOT RANGES OF STRUCTURAL UNCERTAINTY AND RANGES OF
# STRUCTURAL UNCERTAINTY + UNCERTAINTY IN IRRIGATION EFFICIENCY (COMPLETE)
vec1 <- all.uncertainties[Approach == "GM", Country]</pre>
vec2 <- all.uncertainties[Approach == "GM + uncertainty in climate change", Country]</pre>
vec3 <- all.uncertainties[Approach == "GM + uncertainty in irrigation efficiency", Country]</pre>
common_countries <- Reduce(intersect, list(vec1, vec2, vec3))</pre>
dd <- list()
for (i in 1:length(list_continents)) {
  dd[[i]] <- all.uncertainties %>%
    .[Country %in% common_countries] %>%
    na.omit() %>%
    .[Continent %in% list_continents[[i]]] %>%
    ggplot(., aes(reorder(Country, mean), mean, color = Approach)) +
    geom_errorbar(aes(ymin = min,
                      ymax = max),
                  position = position_dodge(0.7)) +
    scale_y_log10(breaks = trans_breaks("log10", function(x) 10 ^ (2 * x)),
                  labels = trans_format("log10", math_format(10 ^ .x))) +
    scale_color_manual(name = "GM", values = wes_palette("Darjeeling1")) +
    labs(y = expression(paste("Irrigation water withdrawal ", " ", "(", 10^9, m^3/year, "", ")
         x = "") +
```

```
facet_wrap(~Continent, scales = "free_y") +
    coord_flip() +
    theme_AP() +
    guides(color = guide_legend(nrow = 3, byrow = TRUE))
}
dd
## [[1]]
                            GM
                   GM
                            GM + uncertainty in climate change
```


Irrigation water withdrawal (10⁹m³/year)

##

[[2]]

<u> —</u> GМ

GM — GM + uncertainty in climate change

GM + uncertainty in irrigation efficiency

COMPARE RANGES ----all.uncertainties[, range:= max - min]
dd <- dcast(all.uncertainties,Country + Continent ~ Approach, value.var = "range") %>%
 na.omit() %>%
 .[, maxCol:= max.col(.[, 3:5], ties.method = "first")]
check which countries show the largest ranges in climate uncertainty
lapply(1:3, function(x) dd[maxCol == x])

```
## [[1]]
## Empty data.table (0 rows and 6 cols): Country, Continent, GM, GM + uncertainty in climate change
## [[2]]
##
                   Country Continent
                                               GM GM + uncertainty in climate change
                      Benin
                                                                             0.1095379
## 1:
                               Africa 0.00634165
## 2:
                     Cyprus
                                 Asia 0.25356972
                                                                             1.0901057
## 3:
               Switzerland
                               Europe 0.06956323
                                                                             0.4174803
## 4: United Arab Emirates
                                 Asia 1.02446010
                                                                             5.5930987
      GM + uncertainty in irrigation efficiency maxCol
## 1:
                                        0.1006289
                                                        2
## 2:
                                                        2
                                        0.7022605
## 3:
                                                        2
                                        0.3293323
## 4:
                                                        2
                                        4.2191107
##
## [[3]]
##
            Country Continent
                                       GM GM + uncertainty in climate change
                                                                    26.5443113
##
     1: Afghanistan
                          Asia 37.8147475
##
     2:
            Albania
                        Europe 0.9324792
                                                                     4.0007740
##
     3:
            Algeria
                        Africa 6.7659506
                                                                    12.2469498
##
     4:
             Angola
                        Africa 0.3768065
                                                                     0.3377945
##
     5:
          Argentina Americas 12.6584940
                                                                    63.6812769
   ---
## 118:
          Venezuela Americas 4.8093549
                                                                     6.9755145
## 119:
            Vietnam
                          Asia 55.5815237
                                                                    49.9370651
## 120:
              Yemen
                          Asia 3.6273127
                                                                    14.8781794
## 121:
             Zambia
                        Africa 0.2776971
                                                                     0.9126939
## 122:
           Zimbabwe
                        Africa 0.5964828
                                                                     0.8408030
        GM + uncertainty in irrigation efficiency maxCol
##
##
     1:
                                        1515.858339
                                                          3
                                                          3
##
     2:
                                          66.132774
##
     3:
                                         188.296820
                                                          3
##
     4:
                                          16.773342
                                                          3
                                         535.053389
                                                          3
##
     5:
##
## 118:
                                         158.353988
                                                          3
## 119:
                                                          3
                                        2342.467615
## 120:
                                         299.368661
                                                          3
## 121:
                                           2.500587
                                                          3
## 122:
                                           8.635619
```

5 Sensitivity analysis

```
# SAMPLE MATRIX DISTRIBUTIONS -----
# Define labels
label_facets <- c("Ea_surf" = "$E_{a_{su}}$",</pre>
```

```
"Ec_surf" = "$E_{c_{su}}$",
                  "Ea_sprinkler" = "$E_{a_{sp}}$",
                  "Ec_sprinkler" = "E_{c_{sp}}",
                  "Ea_micro" = "$E_{a_{mi}}$",
                  "Ec_micro" = "$E_{c_{mi}}$",
                  "Proportion_large" = "$f_L$",
                  "m" = "$m$",
                  "r L" = "$r L$")
mat <- data.table(full_sample_matrix(IFT = "Jager", Country = "Spain")$matrix)</pre>
mat <- mat[, Proportion_large:= NULL]</pre>
## Warning in `[.data.table`(mat, , `:=`(Proportion_large, NULL)): Column
## 'Proportion_large' does not exist to remove
melt(mat, measure.vars = colnames(mat)) %>%
  ggplot(., aes(value)) +
 geom_histogram() +
  labs(x = "Value", y = "Counts") +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  facet_wrap(~variable) +
 theme_AP()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# EXTRACT SOBOL' INDICES ----
ind <- lapply(y$`Rohwer et al. 2007`, function(x) x[["indices"]]$results)
names(ind) <- rohwer$Country
ind <- rbindlist(ind, idcol = "Country")
ind[, Continent:= countrycode(ind[, Country], origin = "country.name",</pre>
```

```
destination = "continent")]
## Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest,
tmp.ift <- split(rohwer, rohwer$IFT)</pre>
out <- list()</pre>
for(i in names(tmp.ift)) {
  out[[i]] <- ind[Country %in% tmp.ift[[i]][, Country]]</pre>
# PLOT SOBOL' INDICES ---
ind.dt <- rbindlist(out, idcol = "IFT") %>%
  .[, IFT:= factor(IFT, levels = c("Surface", "Sprinkler", "Micro", "Mixed"))]
tmp <- ind.dt[, .(mean = mean(original), sd = sd(original)),</pre>
               .(sensitivity, parameters, IFT)]
tmp2 <- tmp[!IFT == "Mixed"][, parameters:= ifelse(parameters == "Ea_surf", "$E_a$",</pre>
                                                       ifelse(parameters == "Ec_surf", "$E_c$",
                                                              ifelse(parameters == "Ea_sprinkler",
                                                                      ifelse(parameters == "Ec_spri
                                                                             ifelse(parameters == "
                                                                                     ifelse(paramete
rbind(tmp[IFT == "Mixed"], tmp2) %>%
  ggplot(., aes(parameters, mean, fill = sensitivity), color = black) +
  geom_bar(stat = "identity", position = position_dodge(0.6), color = "black") +
  geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd), position = position_dodge(0.6)) +
  scale_x_discrete(labels = label_facets) +
  scale_fill_discrete(name = "Sensitivity", labels = c("$S_i$", "$T_i$")) +
  labs(x = "", y = "Sobol' indices") +
  facet_grid(~IFT, space = "free_x", scale = "free_x") +
  theme_AP()
                           Sensitivity
            Surface
                          Sprinkler
                                      Micro
                                                        Mixed
Sobol' indices
  0.6
      E_a E_c m r_L X1 X2
                          E_a E_c m
                                    E_a E_c m E_{a_{sp}}E_{a_{su}}E_{c_{sp}}E_{c_{su}} m r_L X1 X2
# EXTRACT SOBOL' INDICES FOR JAGER -----
jager.tmp <- lapply(y[["Jägermeyr et al. 2015"]], function(x) x$indices$results)</pre>
```

```
names(jager.tmp) <- new.rohwer$Country</pre>
jager.ind <- rbindlist(jager.tmp, idcol = "Country") %>%
  .[, Continent:= countrycode(.[, Country],
                             origin = "country.name",
                             destination = "continent")] %>%
  .[, parameters:= ifelse(parameters == "Ea_surf", "E[a[s]]",
                         ifelse(parameters == "Ec_surf", "E[c[s]]",
                                ifelse(parameters == "Ea_sprinkler", "E[a[p]]",
                                        ifelse(parameters == "Ec_sprinkler", "E[c[p]]",
                                               ifelse(parameters == "Ea_micro", "E[a[m]]",
                                                      ifelse(parameters == "Ec_micro", "E[c[m]]
                                                             ifelse(parameters == "r_L", "r[L]"
                                                                    ifelse(parameters == "X1",
                                                                           ifelse(parameters ==
## Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest,
Continent_vector <- c("Africa", "Americas", "Asia", "Europe")</pre>
lapply(Continent_vector, function(x)
  ggplot(jager.ind[Continent == x], aes(parameters, original, fill = sensitivity), color = bla
    geom_bar(stat = "identity", position = position_dodge(0.6), color = "black") +
    scale_fill_discrete(name = "Sensitivity", labels = c("Si", "Ti")) +
    labs(x = "", y = "Sobol' indices") +
    scale_x_discrete(labels = ggplot2:::parse_safe) +
    coord_flip() +
    scale_y_continuous(breaks = pretty_breaks(n = 3)) +
    facet_wrap(~Country) +
    theme_AP() +
    theme(strip.text.x = element_text(size = 6),
          axis.text.x = element_text(size = 6)) +
    ggtitle(x)
)
```

[[1]]

Africa

[[2]]

Americas

49

Asia

[[4]]

Europe

R version 4.0.3 (2020-10-10)

```
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
##
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## BLAS:
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en US.UTF-8/en US.UTF-8/en US.UTF-8/con US.UTF-8/en US.UTF-8
## attached base packages:
## [1] parallel stats
                           graphics grDevices utils
                                                          datasets methods
## [8] base
##
## other attached packages:
## [1] checkpoint_1.0.0
                          benchmarkme_1.0.7 ncdf4_1.17
                                                               rworldmap_1.3-6
## [5] sp_1.4-5
                          overlapping_1.6
                                             testthat_3.0.4
                                                               scales_1.1.1
## [9] ggridges_0.5.3
                          countrycode_1.3.0 doParallel_1.0.16 iterators_1.0.13
## [13] foreach_1.5.1
                          cowplot_1.1.1
                                             wesanderson_0.3.6 sensobol_1.0.3
## [17] forcats 0.5.1
                          stringr 1.4.0
                                             dplyr 1.0.7
                                                               purrr 0.3.4
## [21] readr 2.0.1
                          tidyr_1.1.3
                                             tibble_3.1.3
                                                               ggplot2_3.3.5
## [25] tidyverse 1.3.1
                          data.table 1.14.0
## loaded via a namespace (and not attached):
## [1] fs_1.5.0
                              lubridate_1.7.10
                                                     httr_1.4.2
## [4] tools_4.0.3
                              backports_1.2.1
                                                     utf8_1.2.2
## [7] R6_2.5.0
                              DBI_1.1.1
                                                     colorspace_2.0-2
## [10] withr_2.4.2
                              tidyselect_1.1.1
                                                     gridExtra_2.3
## [13] compiler_4.0.3
                              cli_3.0.1
                                                     rvest_1.0.1
## [16] xml2_1.3.2
                              digest_0.6.27
                                                     foreign_0.8-81
                              benchmarkmeData_1.0.4 pkgconfig_2.0.3
## [19] rmarkdown_2.10
## [22] htmltools_0.5.1.1
                              dbplyr_2.1.1
                                                     maps_3.3.0
## [25] rlang_0.4.11
                              readxl_1.3.1
                                                     rstudioapi_0.13
## [28] generics_0.1.0
                              tikzDevice_0.12.3.1
                                                     jsonlite_1.7.2
## [31] magrittr 2.0.1
                              dotCall64 1.0-1
                                                     Matrix 1.3-4
## [34] Rcpp 1.0.7
                              munsell_0.5.0
                                                     fansi_0.5.0
## [37] viridis 0.6.1
                              lifecycle_1.0.0
                                                     stringi_1.7.3
## [40] yaml_2.2.1
                              plyr_1.8.6
                                                     grid_4.0.3
## [43] maptools_1.1-1
                              crayon_1.4.1
                                                     lattice_0.20-44
## [46] haven_2.4.3
                              hms_1.1.0
                                                     knitr_1.33
## [49] pillar_1.6.2
                              codetools_0.2-18
                                                     reprex_2.0.1
## [52] glue_1.4.2
                               evaluate_0.14
                                                     modelr_0.1.8
## [55] vctrs_0.3.8
                                                     tzdb_0.1.2
                               spam_2.7-0
## [58] Rdpack_2.1.2
                              cellranger_1.1.0
                                                     gtable_0.3.0
## [61] assertthat_0.2.1
                              xfun_0.25
                                                     rbibutils_2.2.3
## [64] broom_0.7.9
                              filehash_2.4-2
                                                     viridisLite_0.4.0
## [67] fields_12.5
                              ellipsis_0.3.2
```

```
## Return the machine CPU
cat("Machine: "); print(get_cpu()$model_name)

## Machine:

## [1] "Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz"

## Return number of true cores
cat("Num cores: "); print(detectCores(logical = FALSE))

## Num cores:

## [1] 8

## Return number of threads
cat("Num threads: "); print(detectCores(logical = FALSE))

## Num threads:
## [1] 8
```