ALGEBRA e LOGICA

CdL in Ingegneria Informatica

prof. Fabio GAVARINI

a.a. 2016–2017 — Sessione Estiva, II appello Esame scritto del 18 Luglio 2017

......

Testo & Svolgimento

N.B.: lo svolgimento qui presentato è molto lungo... Questo non significa che lo svolgimento ordinario di tale compito (nel corso di un esame scritto) debba essere altrettanto lungo. Semplicemente, questo lo è perché si approfitta per spiegare — in diversi modi, con lunghe digressioni, ecc. ecc. — in dettaglio e con molti particolari tutti gli aspetti della teoria toccati più o meno a fondo dal testo in questione.

- [1] Per ogni $a \in \mathbb{Z}$, si consideri la funzione $f_a : \mathbb{Q} \longrightarrow \mathbb{Q}$ definita da $f_a(q) := a (a-2) q + 7$ per ogni $q \in \mathbb{Q}$; sia poi $f_a^{\mathbb{Z}} : \mathbb{Z} \longrightarrow \mathbb{Z}$ la restrizione di f_a al sottoinsieme \mathbb{Z} dei numeri interi così $f_a^{\mathbb{Z}}(z) := a (a-2) z + 7$, $\forall z \in \mathbb{Z}$.
 - (a) Determinare tutti i valori di $a \in \mathbb{Z}$ per i quali la funzione f_a sia iniettiva.
 - (b) Determinare tutti i valori di $a \in \mathbb{Z}$ per i quali la funzione f_a sia suriettiva.
 - (c) Determinare tutti i valori di $a \in \mathbb{Z}$ per i quali la funzione $f_a^{\mathbb{Z}}$ sia suriettiva.
 - [2] Determinare tutte le soluzioni del sistema di equazioni congruenziali

[3] Sia $E:=\mathcal{P}(\mathbb{N})$ l'insieme delle parti di \mathbb{N} , e si consideri in E la relazione " \multimap " definita da

$$F' \multimap F'' \iff |F'| \le |F''| \qquad \forall F', F'' \in E$$

dove |F| indica la cardinalità di un qualunque sottoinsieme F di \mathbb{N} .

- (a) Dimostrare che la relazione → è riflessiva.
- (b) Dimostrare che la relazione → è transitiva.
- (c) Dimostrare che la relazione → non è di equivalenza.
- (d) Dimostrare che la relazione \multimap non è d'ordine.

(continua...)

- [4] (a) Determinare se esiste il più piccolo valore di $x \in \mathbb{Z}$ tale che $x \equiv 543^{80431} \pmod{20} \qquad \text{e} \qquad 35 \le x \le 78$
- (b) Calcolare tutte le soluzioni dell'equazione modulare $\overline{-317}\,\overline{x}=\overline{543^{80431}}$ nell'anello \mathbb{Z}_{20} delle classi resto modulo 20.
- [5] Si consideri l'insieme $\mathbb{H} := \{3, 1, 2, 6, 15, 10, 60, 30, 20\}$ ed in esso la relazione di divisibilità, indicata con δ , per la quale la coppia $(\mathbb{H}; \delta)$ costituisce un insieme ordinato. Si risolvano i seguenti problemi:
 - (a) L'insieme ordinato $(\mathbb{H}; \delta)$ è un'algebra di Boole? Perché?
 - (b) Disegnare il diagramma di Hasse dell'insieme ordinato $(\mathbb{H}; \delta)$.
- (c) Esiste sup ($\{15,3,6,10,2\}$) in ($\mathbb{H};\delta$)? In caso negativo, spiegare perché; in caso affermativo, precisare quale sia tale estremo superiore.
- (d) Dimostrare che $(\mathbb{H};\delta)$ è un reticolo, precisando i valori di $a \lor b := \sup(\{a,b\})$ e di $a \land b := \inf(\{a,b\})$ in tutti i casi non banali (cioè quando $a \not b$ e $b \not b a$, evitando di calcolare $b \lor a$ e $b \land a$ se quando si siano già calcolati $a \lor b$ e $a \land b ...$).
- (e) Esistono degli elementi \vee -irriducibili in $(\mathbb{H}; \delta)$? In caso negativo, spiegare perché non esistano; in caso affermativo, precisare quali siano.

SOLUZIONI

[1] — (a) Ricordiamo che una funzione si dice iniettiva se si verifica che due elementi del dominio hanno la stessa immagine soltanto se coincidono: nel caso della funzione $f_a: \mathbb{Q} \longrightarrow \mathbb{Q}$, questa condizione in formule si esprime così: per ogni $q_1, q_2 \in \mathbb{Q}$, se $f_a(q_1) = f_a(q_2)$ allora $q_1 = q_2$.

Consideriamo dunque un $a \in \mathbb{Q}$ — che definisce la funzione f_a — e due elementi $q_1, q_2 \in \mathbb{Q}$ tali che $f_a(q_1) = f_a(q_2)$, e vediamo quali condizioni ne discendono.

Esplicitando la condizione $f_a(q_1) = f_a(q_2)$ abbiamo

$$a(a-2)q_1 + 7 =: f_a(q_1) = f_a(q_2) := a(a-2)q_2 + 7 \Longrightarrow$$

$$\implies a(a-2)q_1 + 7 = a(a-2)q_2 + 7 \Longrightarrow a(a-2)q_1 = a(a-2)q_2 \Longrightarrow$$

$$\implies a(a-2)(q_1 - q_2) = 0 \Longrightarrow \begin{cases} a(a-2) = 0 \\ \text{oppure} \\ (q_1 - q_2) = 0 \end{cases} \Longrightarrow \begin{cases} a \in \{0, 2\} \\ \text{oppure} \\ q_1 = q_2 \end{cases}$$

Pertanto, l'implicazione $f_a(q_1) = f_a(q_2) \implies q_1 = q_2$ è valida se e soltanto se $a \in \mathbb{Q} \setminus \{0, 2\}$, e quindi f_a è iniettiva se e soltanto se $a \in \mathbb{Q} \setminus \{0, 2\}$.

Per completezza, osserviamo poi che nei casi $a \in \{0, 2\}$ abbiamo che (direttamente dalla definizione) le funzioni f_0 e f_2 coincidono entrambe con la funzione costante di valore 7, cioè $f_0(q) = 7 = f_2(q)$ per ogni $q \in \mathbb{Q}$; in particolare $f_0 = f_2$ non è iniettiva.

(b) Ricordiamo che una funzione si dice suriettiva se si verifica che per ogni elemento del codominio esiste (almeno) un elemento del dominio del quale il primo è l'immagine; nel caso della funzione $f_a: \mathbb{Q} \longrightarrow \mathbb{Q}$, questa condizione in formule si esprime così: per ogni $b \in \mathbb{Q}$, esiste un $q \in \mathbb{Q}$ tale che $f_a(q) = b$.

Consideriamo dunque un $a \in \mathbb{Q}$ — che definisce la funzione f_a : cerchiamo allora sotto quali condizioni per a si verifichi che per ogni $b \in \mathbb{Q}$ l'equazione $f_a(q) = b$ — in cui l'incognita è $q \in \mathbb{Q}$ — abbia (almeno) una soluzione.

Esplicitando l'equazione $f_a(q) = b$ si trova

$$f_a(q) = b \iff a(a-2)q + 7 = b \iff a(a-2)q = b - 7$$
 (1)

Ora, per qualsiasi valore di $b \in \mathbb{Q}$ si ha che l'equazione più a destra in (1) ha soluzioni se e soltanto se esiste $(a(a-2))^{-1} \in \mathbb{Q}$, cioè $a(a-2) \neq 0$, cioè $a \in \mathbb{Q} \setminus \{0,2\}$, e in tal caso la soluzione è unica, data da $q := (a(a-2))^{-1}(b-7)$. Pertanto, possiamo concludere che f_a è suriettiva se e soltanto se $a \in \mathbb{Q} \setminus \{0,2\}$.

(c) Come prima, la funzione $f_a^{\mathbb{Z}}: \mathbb{Z} \longrightarrow \mathbb{Z}$ sarà suriettiva se per ogni elemento del codominio esiste (almeno) un elemento del dominio del quale il primo è l'immagine; nel caso attuale, questa condizione diventa: per ogni $b \in \mathbb{Z}$, esiste un $z \in \mathbb{Z}$ tale che $f_a^{\mathbb{Z}}(z) = b$.

 $\underline{N.B.}$: attenzione alla differenza col caso di $f_a:\mathbb{Q}\longrightarrow\mathbb{Q}$... Nel confronto, la funzione $f_a^{\mathbb{Z}}$ ha un codominio più piccolo — \mathbb{Z} invece di \mathbb{Q} — il che "facilita le cose", perché dobbiamo considerare molte meno equazioni (perché sono di meno i possibili termini noti b). D'altra parte, la funzione $f_a^{\mathbb{Z}}$ ha anche un dominio più piccolo — di nuovo \mathbb{Z} invece di \mathbb{Q} — dunque l'insieme in cui cercare soluzioni delle nostre equazioni è molto più ridotto! In breve, posto che la suriettività è la condizione per cui "ogni bersaglio è colpito da (almeno) un arciere", per la funzione $f_a^{\mathbb{Z}}$ rispetto alla funzione f_a ci sono molti meno bersagli da colpire, ma anche molti meno arcieri che possano colpirli...

Consideriamo dunque una generica funzione $f_a^{\mathbb{Z}}$ — per un qualsiasi $a \in \mathbb{Q}$ — e vediamo per quali condizioni su a si verifichi che per ogni $b \in \mathbb{Z}$ l'equazione $f_a^{\mathbb{Z}}(z) = b$ — in cui l'incognita è $z \in \mathbb{Z}$ — abbia (almeno) una soluzione.

Procedendo come prima, l'equazione $f_a^{\mathbb{Z}}(z) = b$ ci dà

$$f_a^{\mathbb{Z}}(z) = b \iff a(a-2)z + 7 = b \iff a(a-2)z = b - 7$$
 (2)

Ora, per qualsiasi valore di $b \in \mathbb{Z}$ abbiamo che l'equazione più a destra in (2) ha soluzioni se e soltanto se esiste $(a(a-2))^{-1}b \in \mathbb{Z}$: dato che $b \in \mathbb{Z}$ è arbitrario,

l'unica possibilità è che esiste $(a(a-2))^{-1} \in \mathbb{Z}$, cioè $a(a-2) \in \{+1, -1\}$ — e in tal caso la soluzione è unica, data da $z := (a(a-2))^{-1} (b-7)$. L'analisi diretta (facile) ci mostra che

$$a(a-2) \in \{+1, -1\} \iff a=1$$

e in tal caso — cioè per a=1 — si ha a(a-2)=-1. Pertanto, possiamo concludere che $f_a^{\mathbb{Z}}$ è suriettiva se e soltanto se a=1.

In alternativa, possiamo procedere anche così. Per ogni $z \in \mathbb{Z}$, la sua immagine $f_a^{\mathbb{Z}}(z) := a\,(a-2)\,z+7$ è sempre congruente a 7 modulo $a\,(a-2)$; più precisamente, variando z queste immagini formano complessivamente tutta la classe di congruenza di 7 modulo $a\,(a-2)$, in formule $Im(f_a^{\mathbb{Z}}) := \{f_a^{\mathbb{Z}}(z)\,|\,z\in\mathbb{Z}\} = [7]_{\equiv_{a(a-2)}}$. Ora, $f_a^{\mathbb{Z}}$ è suriettiva (per definizione) se e soltanto se $Im(f_a^{\mathbb{Z}}) = \mathbb{Z}$, quindi se e soltanto se $[7]_{\equiv_{a(a-2)}} = \mathbb{Z}$, per l'analisi precedente. Ma

$$[7]_{\equiv_{a(a-2)}} = \mathbb{Z} \iff \equiv_{a(a-2)} = id_{\mathbb{Z}} \iff a(a-2) \in \{+1, -1\} \iff a = 1$$

e così troviamo che $f_a^{\mathbb{Z}}$ è suriettiva se e soltanto se a=1 (come già visto prima).

[2] — Per risolvere il sistema \circledast in prima battuta semplifichiamo le sue singole equazioni congruenziali; questo ci dà

A questo punto, ciascuna delle equazioni congruenziali, separatamente, è ammette soluzioni, perché in ciascun caso il M.C.D. tra il coefficiente della incognita e il modulo divide il termine noto. Allora possiamo procedere a semplificare ciascuna di tali equazioni dividendo coefficiente della incognita, modulo e termine noto per il suddetto M.C.D. Questo passaggio ci porta a

che a sua volta ci dà (ovviamente)

Quest'ultimo è un sistema (equivalente a quello iniziale) in forma cinese, con moduli a due a due coprimi: quindi ammette soluzioni, che possiamo ottenere tramite il Teorema Cinese del Resto. Oppure, possiamo risolverlo per sostituzioni successive.

Primo metodo (tramite il Teorema Cinese del Resto): Consideriamo i numeri

$$R := 7 \cdot 10 \cdot 9 = 630$$
, $R_1 := R/7 = 90$, $R_2 := R/10 = 63$, $R_3 := R/9 = 70$

e le tre equazioni congruenziali

$$R_1 x_1 \equiv +1 \pmod{7}$$
 $90 x_1 \equiv +1 \pmod{7}$
 $R_2 x_2 \equiv +1 \pmod{10}$ \iff $63 x_2 \equiv +1 \pmod{10}$
 $R_3 x_3 \equiv -2 \pmod{9}$ $70 x_3 \equiv -2 \pmod{9}$

che riducendo i coefficienti delle incognite — tramite 90 $\equiv_7 -1$, 63 $\equiv_1 03$, 70 $\equiv_7 -2$ — ci danno

$$-1 x_1 \equiv +1 \pmod{7}$$

$$3 x_2 \equiv +1 \pmod{10}$$

$$-2 x_3 \equiv -2 \pmod{9}$$

$$x_1 \equiv -1 \pmod{7}$$

$$x_2 \equiv +7 \pmod{10}$$

$$x_3 \equiv +1 \pmod{9}$$

A questo punto prendendo le tre soluzioni particolari $x_1 = -1$, $x_2 = +7$, $x_3 = -1$, di ciascuna di queste tre equazioni congruenziali troviamo una soluzione particolare del sistema \odot — e quindi del sistema iniziale \circledast — con la formula

$$x_0 := R_1 x_1 + R_2 x_2 + R_3 x_3 = 90 \cdot (-1) + 63 \cdot 7 + 70 \cdot 1 = -90 + 441 + 70 = 421$$

Infine, tutte le soluzioni del sistema \circledast si trovano sommando alla soluzione particolare $x_0=421$ tutti i multipli interi di R=630: pertanto, le soluzioni del sistema \circledast sono tutti e soli i numeri interi della forma

$$x = x_0 + 630z = 421 + 630z \quad \forall z \in \mathbb{Z}$$
 (4)

<u>Secondo metodo (tramite Sostituzioni Successive)</u>: Andiamo ora a risolvere la prima equazione, poi sostituiamo la sua soluzione generica nella seconda equazione, risolviamo quest'ultima, poi sostituiamo nella terza e risolviamo. Dunque, partendo dalla (3), abbiamo

dove abbiamo risolto la prima equazione; poi sostituendo nella seconda, risolvendo quest'ultima (nella nuovaincognita z), e così via, troviamo

$$\begin{cases} x = 1 + 7z \ , \quad z \in \mathbb{Z} \\ x \equiv +1 \quad \pmod{10} \end{cases} \iff \begin{cases} x = 1 + 7z \ , \quad z \in \mathbb{Z} \\ 1 + 7z \equiv 1 \quad \pmod{10} \end{cases} \iff \begin{cases} x = 1 + 7z \ , \quad z \in \mathbb{Z} \\ 1 + 7z \equiv 1 \quad \pmod{9} \end{cases} \iff \begin{cases} x = 1 + 7z \ , \quad z \in \mathbb{Z} \\ 7z \equiv 0 \quad \pmod{9} \end{cases} \iff \begin{cases} x = 1 + 7z \ , \quad z \in \mathbb{Z} \\ z \equiv 0 \quad \pmod{10} \end{cases} \iff \begin{cases} x = 1 + 7z \ , \quad z \in \mathbb{Z} \\ z \equiv 0 \quad \pmod{9} \end{cases} \iff \begin{cases} x = 1 + 7z \ , \quad z \in \mathbb{Z} \\ z \equiv 0 \quad \pmod{9} \end{cases} \iff \begin{cases} x = 1 + 7z \ , \quad z \in \mathbb{Z} \\ z \equiv 0 \quad \pmod{9} \end{cases} \iff \begin{cases} x = 1 + 7(10y) \ , \quad y \in \mathbb{Z} \\ x \equiv -2 \quad \pmod{9} \end{cases} \iff \begin{cases} x = 1 + 7(10y) \ , \quad y \in \mathbb{Z} \\ x \equiv -2 \quad \pmod{9} \end{cases} \iff \begin{cases} x = 1 + 70y \ , \quad y \in \mathbb{Z} \\ 1 + 70y \equiv -2 \quad \pmod{9} \end{cases} \iff \begin{cases} x = 1 + 70y \ , \quad y \in \mathbb{Z} \\ y \equiv -3 \quad \pmod{9} \end{cases} \iff \begin{cases} x = 1 + 70y \ , \quad y \in \mathbb{Z} \\ y \equiv -3 + 9k \ , \quad k \in \mathbb{Z} \end{cases} \iff x = 1 + 70y = 1 + 70(-3 + 9k) = 1 - 210 + 630k = -209 + 630k \ , \quad k \in \mathbb{Z} \end{cases}$$

e così concludiamo che le soluzioni del sistema \circledast sono tutti e soli i numeri interi della forma

$$x = -209 + 630 k \qquad \forall k \in \mathbb{Z}$$
 (5)

N.B.: a dispetto delle apparenze, la (4) e la (5) non sono in contraddizione tra loro, in quanto definiscono lo stesso insieme di numeri interi, soltanto che sono parametrizzati in due modi diversi! Si noti infatti che

$$421 + 630z = x = -209 + 630k \iff k-z = 1$$

<u>NOTA</u>: Un'ulteriore semplificazione possibile è la seguente. Prima di procedere alla sua risoluzione, osserviamo che il sistema \odot può ancora essere drasticamente semplificato, riducendo le equazioni congruenziali da tre a due. Infatti, le prime due equazioni congruenziali in \odot ammettono chiaramente la soluzione comune $x_0=1$, che dunque è una soluzione particolare del sottosistema formato da queste due sole equazioni congruenziali. Dalla teoria generale — ad esempio, dal Teorema Cinese del Resto — sappiamo allora che tale sottosistema avrà per soluzioni tutti e soli i numeri interi della forma

$$x = 1 + 7 \cdot 10 \cdot z = 1 + 70 z \qquad \forall z \in \mathbb{Z}$$

o in altre parole

$$x \equiv 1 \pmod{70} \tag{6}$$

In conclusione, le prime due equazioni congruenziali nel sistema \odot sono complessivamente equivalenti (nel senso che hanno lo stesso insieme di soluzioni) alla singola equazione congruenziale (6): pertanto, abbiamo un'equivalenza di sistemi

A questo punto si può risolvere il sistema \otimes — tramite il Teorema Cinese del Resto o per sostituzioni successive — che è equivalente a quello iniziale, per cui le sue soluzioni saranno esattamente tutte e sole le soluzioni del sistema \otimes ; va da sé perla risoluzione questa volta sarà molto più veloce rispetto a prima perché si starà trattando un sistema di due sole equazioni congruenziali invece che tre.

- [3] (a) Dobbiamo dimostrare che per ogni $F \in \mathcal{P}(\mathbb{N})$ si ha $F \multimap F$. Ma questo è ovvio perché, certamente |F| = |F|, e quindi (per definizione) anche $F \multimap F$, q.e.d.
- (b) Dobbiamo dimostrare che per ogni $F_1, F_2, F_3 \in \mathcal{P}(\mathbb{N})$ si ha che, se $F_1 \multimap F_2$ e $F_2 \multimap F_3$, allora $F_1 \multimap F_3$. Ora, per definizione di \multimap le ipotesi danno

$$F_1 \multimap F_2 \implies |F_1| \le |F_2|$$
 e $F_2 \multimap F_3 \implies |F_2| \le |F_3|$

da cui ricaviamo $|F_1| \le |F_2| \le |F_3|$ e quindi $|F_1| \le |F_3|$, che significa esattamente che $F_1 \multimap F_3$, q.e.d.

- (c) Ricordiamo che una relazione è di equivalenza se è riflessiva, transitiva e simmetrica. Visto che sappiamo già che la relazione \multimap è riflessiva e transitiva, dobbiamo dimostrare che non è simmetrica. A tal fine, dobbiamo verificare che esistono $F_1, F_2 \in \mathcal{P}(\mathbb{N})$ tali che $F_1 \multimap F_2$ e $F_2 \not \multimap F_1$. Ora, le condizioni $F_1 \multimap F_2$ e $F_2 \not \multimap F_1$ equivalgono a $|F_1| \le |F_2|$ e $|F_2| \le |F_1|$, che complessivamente equivalgono all'unica condizione $|F_1| \le |F_2|$. Pertanto, ogni scelta di sottoinsiemi $F_1, F_2 \in \mathcal{P}(\mathbb{N})$ tali che $|F_1| \le |F_2|$ ci darà una violazione della condizione di simmetria: ad esempio, possiamo scegliere $F_1 := \{9\}$ e $F_2 := \{2,4,8\}$, con i quali abbiamo appunto $F_1 \multimap F_2$ e $F_2 \not \multimap F_1$, q.e.d.
- (d) Ricordiamo che una relazione è di equivalenza se è riflessiva, transitiva e antisimmetrica. Visto che sappiamo già che la relazione \multimap è riflessiva e transitiva, dobbiamo dimostrare che non è antisimmetrica. A tal fine, dobbiamo verificare che esistono $F_1, F_2 \in \mathcal{P}(\mathbb{N})$ tali che $F_1 \multimap F_2$ e $F_2 \multimap F_1$ ma $F_1 \not \multimap F_2$. Ora, le condizioni $F_1 \multimap F_2$ e $F_2 \multimap F_1$ equivalgono a $|F_1| \le |F_2|$ e $|F_2| \le |F_1|$, che complessivamente equivalgono all'unica condizione $|F_1| = |F_2|$. Pertanto, ogni scelta di sottoinsiemi $F_1, F_2 \in \mathcal{P}(\mathbb{N})$ tali che $|F_1| = |F_2|$ ma $F_1 \not = F_2$ ci darà una violazione della condizione di simmetria: ad esempio, possiamo scegliere $F_1 :=$

 $\{13\,,9\,,25\}$ e $F_2:=\{72\,,4\,,8\}$, con i quali abbiamo appunto $F_1\multimap F_2$ e $F_2\multimap F_1$ ma $F_1\neq F_2$. Un altro esempio, con sottoinsiemi infiniti, può essere fatto scegliendo $F_1:=2\,\mathbb{N}$ (= tutti i numeri naturali pari) e $F_1:=\left(1+2\,\mathbb{N}\right)$ (= tutti i numeri naturali dispari), che di nuovo danno $F_1\multimap F_2$ e $F_2\multimap F_1$ ma $F_1\neq F_2$, q.e.d.

[4] — (a) Per trovare il più piccolo valore di $x \in \mathbb{Z}$ tale che $x \equiv_{20} 543^{\,80431}$ e $35 \le x \le 78$, lavoriamo con l'anello \mathbb{Z}_{20} delle classi di congruenza modulo 20 — indicate tramite i rappresentanti $\overline{0},\overline{1},\ldots,\overline{19}$ — e vediamo di capire quale sia la classe $\overline{543^{\,80431}}$. Una volta fatto questo, cerchiamo (se esiste...) il più piccolo rappresentante della classe trovata che sia compreso nell'intervallo tra 35 e 78. In particolare, osserviamo che ogni classe di congruenza modulo 20 è formata da numeri interi che sono disposti a intervalli di ampiezza 20, quindi ogni tale classe ha certamente almeno un rappresentante nell'intervallo tra 35 e 78, dato che quest'ultimo ha ampiezza 44 (e 44 > 20). Perciò sappiamo già che un intero x del tipo richiesto esiste certamente.

Per cominciare (per definizione del prodotto in \mathbb{Z}_{20} e poiché $543 \equiv_{20} 3$) abbiamo

$$\overline{543^{80431}} = \overline{543}^{80431} = \overline{3}^{80431}$$

A questo punto osserviamo che M.C.D.(3,20)=1, quindi di può applicare il Teorema di Eulero che ci dà $\overline{3}^{\varphi(20)}=\overline{1}$ in \mathbb{Z}_{20} , dove φ è la funzione di Eulero; possiamo allora "ridurre modulo 20 l'esponente 80431". Siccome $\varphi(20)=\varphi(5\cdot 2^2)=\varphi(5)\cdot \varphi(2^2)=(5-1)\cdot (2-1)\,2=8$, ciò significa che $\overline{3}^8=\overline{1}$ in \mathbb{Z}_{20} ; quindi, dividendo 80431 per $\varphi(2)=8$, abbiamo 80431 = $8\cdot q+7$ per un certo quoziente $q\in\mathbb{Z}$ — che non è necessario conoscere esattamente! Ci basta sapere che 80431 $\equiv_8 7$ — e quindi

$$\overline{543^{\,80431}} \ = \ \overline{3}^{\,80431} \ = \ \overline{3}^{\,8\cdot q+7} \ = \ \left(\,\overline{3}^{\,8}\,\right)^q \cdot \overline{3}^{\,7} \ = \ \left(\,\overline{1}\,\right)^q \cdot \overline{3}^{\,7} \ = \ \overline{1} \cdot \overline{3}^{\,7} \ = \ \overline{3}^{\,7}$$

Infine, andiamo a calcolare $\overline{3}^7$: dal calcolo diretto abbiamo

$$\overline{3}^2 = 9$$
, $\overline{3}^3 = \overline{27} = \overline{7}$, $\overline{3}^4 = \overline{3}^3 \cdot \overline{3} = \overline{7} \cdot \overline{3} = \overline{21}^4 = \overline{1}$ (7)

da cui anche

$$\overline{543^{80431}} = \overline{3}^7 = \overline{3}^4 \cdot \overline{3}^3 = \overline{1} \cdot \overline{7} = \overline{7}$$
 (8)

Per concludere, da quanto già ottenuto sappiamo che il nostro x richiesto dev'essere il più piccolo possibile che soddisfi le condizioni $x\equiv_{20} 543^{\,80431}\equiv_{20} 7$ e $35\leq x\leq 78$. La prima condizione ci dice che $x\in \{7+20\,z\,|\,z\in\mathbb{Z}\}$; la seconda quindi ci impone $35\leq 7+20\,z\leq 78$ da cui ricaviamo i due possibili valori 47 e 67: tra questi, il più piccolo è 47, dunque in conclusione la soluzione è x=47.

<u>NOTA</u>: Anche senza saper nulla del Teorema di Eulero, dalle formule in (7) — che vengono da calcoli elementari... — si appura che $\overline{3}^4 = \overline{1}$ in \mathbb{Z}_{20} — che è

un risultato anche più forte di quello garantito dal suddetto teorema. Sfruttando questa informazione, dividendo l'esponente 80431 per 4, abbiamo $80431 = 4 \cdot q' + 3$ per un certo quoziente $q' \in \mathbb{Z}$ — che non è necessario conoscere esattamente! Ci basta sapere che $80431 \equiv_8 3$, che è ben più facile da capire — e quindi

$$\overline{543^{80431}} = \overline{3}^{80431} = \overline{3}^{4 \cdot q' + 3} = (\overline{3}^4)^{q'} \cdot \overline{3}^3 = (\overline{1})^{q'} \cdot \overline{3}^3 = \overline{1} \cdot \overline{3}^3 = \overline{3}^3 = \overline{7}$$

(b) Per risolvere l'equazione modulare assegnata $\overline{-317}\,\overline{x}=\overline{543^{80431}}$ in \mathbb{Z}_{20} cominciamo con il "ridurre a forma più semplice" il coefficiente e il termine noto: per quanto già visto in (8) abbiamo $\overline{543^{80431}}=\overline{7}$ per il termine noto, mentre $\overline{-317}=\overline{-17}=\overline{3}$ per il coefficiente della incognita \overline{x} . Quindi la nostra equazione diventa

$$\overline{3}\,\overline{x} = \overline{7}$$
 in \mathbb{Z}_{20} (9)

Per risolvere quest'ultima, osserviamo che esiste $\overline{3}^{-1} \in \mathbb{Z}_{20}$, percé M.C.D.(3,20) = 1, quindi esiste un'unica soluzione, data da $\overline{x} = \overline{3}^{-1} \overline{7}$. Per calcolarla, occorre conoscere $\overline{3}^{-1}$: con facili calcoli (oppure per tentativi e verifiche, al limite...) troviamo che $\overline{3}^{-1} = \overline{7}$, infatti $\overline{3} \cdot \overline{7} = \overline{21} = \overline{1}$. Pertanto concludiamo che la soluzione richiesta esiste ed è unica, data da

$$\overline{x} = \overline{3}^{-1} \overline{7} = \overline{7} \overline{7} = \overline{49} = \overline{9}$$
 in \mathbb{Z}_{20} (10)

In alternativa, possiamo calcolare la soluzione della equazione modulare (9) passando alla equazione diofantea associata

$$3x + 20y = 7 \qquad \text{in } \mathbb{Z} \tag{11}$$

che certamente ammette soluzioni perché M.C.D.(3,20)=1 7. Per calcolare una soluzione della (11) cerchiamo prima una identità di Bézout per M.C.D.(3,20)=1 utilizzando l'algoritmo euclideo delle divisioni successive. I calcoli danno le divisioni successive

$$3 = 20 \cdot 0 + 3$$
 $20 = 3 \cdot 6 + 2$
 $3 = 2 \cdot 1 + 1$
(12)

da queste identità ricaviamo

$$\underline{3} = 3 + 20 \cdot (-0)$$

 $\underline{2} = 20 + \underline{3} \cdot (-6)$
 $1 = 3 + 2 \cdot (-1)$

e infine sostituendo a ritroso i termini sottolineati con le loro espressioni alla riga precedente otteniamo

$$1 = 3 + 2 \cdot (-1) = 3 + (20 + 3 \cdot (-6)) \cdot (-1) = 20 \cdot (-1) + 3 \cdot 7 =$$
$$= 20 \cdot (-1) + (3 + 20 \cdot (-0)) \cdot 7 = 3 \cdot 7 + 20 \cdot (-1)$$

(si noti che sia in (12) sia in questo ultimo calcolo c'è un "passaggio a vuoto", che si potrebbe saltare: l'ho invece mantenuto per sottolineare che l'algoritmo, nella sua automaticità, lo fa comunque, senza trovare "intoppi"...). Dunque abbiamo trovato

$$3 \cdot 7 + 20 \cdot (-1) = 1 \tag{13}$$

che è un'identità di Bézout per M.C.D.(3,20). Da questa segue che $3 \cdot 7 \equiv_{20} 1$ e quindi $\overline{3} \cdot \overline{7} = \overline{1}$ in \mathbb{Z}_{20} , che significa che esiste $\overline{3}^{-1} = \overline{7} \in \mathbb{Z}_{20}$ (di cui abbiamo fatto uso in precedenza). Inoltre, moltiplicando ambo i membri della (13) per 7 otteniamo

$$7 = 7 \cdot 1 = 7 \cdot (3 \cdot 7 + 20 \cdot (-1)) = 3 \cdot 49 + 20 \cdot (-7)$$

da cui leggiamo che la coppia (49, -7) è una soluzione dell'equazione diofantea in (11). A questo punto da $3 \cdot 49 + 20 \cdot (-7) = 7$ ricaviamo che $3 \cdot 49 \equiv_{20} 7$ e quindi $\overline{3} \cdot \overline{49} = \overline{7}$ in \mathbb{Z}_{20} , cioè $\overline{x} = \overline{49} = \overline{9} \in \mathbb{Z}_{20}$ è una soluzione (unica!) dell'equazione modulare di partenza, in accordo con (10).

[5] — (a) L'insieme \mathbb{H} è finito, con esattamente 9 elementi. Ora, come conseguenza del Teorema di Rappresentazione di Stone sappiamo che ogni algebra di Boole finita ha un numero di elementi che è una potenza di 2, cioè è del tipo 2^n per un certo esponente $n \in \mathbb{N}$. Siccome $|\mathbb{H}| = 9$ non è una potenza di 2, possiamo concludere che $(\mathbb{H}; \delta)$ non è un'algebra di Boole. Si noti che con questo metodo non c'è nemmeno bisogno di analizzare come sia fatta la relazione d'ordine fissata in \mathbb{H} : qualunque essa sia, la conclusione sarà sempre la stessa, in quanto dipende soltanto da una proprietà insiemistica di \mathbb{H} stesso.

In alternativa, possiamo procedere anche come segue. Dall'analisi del diagramma di Hasse di $(\mathbb{H}; \delta)$ — quindi analizzando come sia fatta la relazione d'ordine δ — troviamo che tale insieme ordinato ha un minimo (e in un'algebra di Boole effettivamente ciò è richiesto!), in relazione a tale minimo l'insieme ordinato ha esattamente due atomi (che sono 2 e 3); inoltre, esso è un reticolo che ha esattamente cinque elementi \vee -irriducibili non banali (cioè diversi dal minimo) (che sono 2, 3, 15, 10 e 20). Ma in ogni algebra di Boole finita gli elementi \vee -irriducibili coincidono con gli atomi, perciò possiamo concludere che $(\mathbb{H}; \delta)$ non è un'algebra di Boole, come sopra (ma in modo ben più macchinoso!...).

(b) Il diagramma di Hasse di $(\mathbb{H}; \delta)$ è il seguente:

(c) Sì, esiste
$$\sup (\{15,3,6,10,2\})$$
 in $(\mathbb{H};\delta)$, che è

$$\sup (\{15,3,6,10,2\}) = 30 \in (\mathbb{H};\delta)$$

Invece non esiste $\max (\{15,3,6,10,2\})$, mentre ci sono in $\{15,3,6,10,2\}$ ben tre elementi massimali distinti, precisamente 15, 6 e 10.

- N.B.: Questo è un errore tipico, dovuto a confusione nella comprensione di somiglianze e differenze tra i concetti di "estremo superiore" (="sup") e di "massimo" (="max"). In particolare, l'estremo superiore di un dato sottoinsieme lo "cerchiamo" in tutto l'insieme ordinato in cui si trova il sottoinsieme, mentre invece il massimo lo cerchiamo all'interno del sottoinsieme stesso.
- (d) Direttamente dall'analisi del diagramma di Hasse, deduciamo che l'insieme ordinato ($\mathbb{H}; \delta$) è effettivamente un reticolo, in cui sup ($\{a,b\}$) e inf ($\{a,b\}$) nei casi non banali sono dati da

$$\begin{split} \sup\big(\{2,3\}\big) &= 6\;, \quad \sup\big(\{2,15\}\big) = 30\;, \quad \sup\big(\{3,10\}\big) = 30\;, \quad \sup\big(\{3,20\}\big) = 60\\ &\sup\big(\{6,10\}\big) = 30\;, \quad \sup\big(\{6,15\}\big) = 30\;, \quad \sup\big(\{6,20\}\big) = 60\\ &\sup\big(\{10,15\}\big) = 30\;, \quad \sup\big(\{15,20\}\big) = 60\;, \quad \sup\big(\{20,30\}\big) = 60\\ &\inf\big(\{2,3\}\big) = 1\;, \quad \inf\big(\{2,15\}\big) = 1\;, \quad \inf\big(\{3,10\}\big) = 1\;, \quad \inf\big(\{3,20\}\big) = 1\\ &\inf\big(\{6,10\}\big) = 2\;, \quad \inf\big(\{6,15\}\big) = 3\;, \quad \inf\big(\{6,20\}\big) = 2\\ &\inf\big(\{10,15\}\big) = 1\;, \quad \inf\big(\{15,20\}\big) = 1\;, \quad \inf\big(\{20,30\}\big) = 10 \end{split}$$

<u>NOTA</u>: Vale la pena sottolineare che, in generale, a priori non possiamo sapere se sup $(\{a,b\}) = m.c.m.(a,b)$ né se inf $(\{a,b\}) = M.C.D.(a,b)$, sebbene la relazione d'ordine sia la divisibilità! Infatti, dalla tavola qui sopra possiamo osservare che si ha sup $(\{a,b\}) = m.c.m.(a,b)$ per ogni $a,b \in \mathbb{H}$ mentre invece

e
$$\inf (\{10,15\}) = 1 \neq 5 = M.C.D.(10,15)$$
$$\inf (\{15,20\}) = 1 \neq 5 = M.C.D.(15,20)$$

In effetti, tale (apparente) "anomalia" si verifica proprio perché si tratta di casi di elementi $a,b\in\mathbb{H}$ per i quali $M.C.D.(a,b)\not\in\mathbb{H}$.

(e) Nel caso di un reticolo (non vuoto) finito — qual è $(\mathbb{H}; \delta)$ — ci sono sicuramente elementi \vee -irriducibili, ed è particolarmente facile riconoscerli, in quanto sono semplicemente quelli che hanno meno di due "segmenti di copertura" al di sotto di sé — se ce n'è proprio zero vuol dire che stiamo guardando il minimo (caso banale), mentre se ce n'è esattamente uno abbiamo un \vee -irriducibile non banale. Per il caso di $(\mathbb{H}; \delta)$, guardando il diagramma di Hasse vediamo dunque che esistono elementi \vee -irriducibili, che sono 1, 3, 2, 15, 10, 20.