

Kontest 4 – Finaliści

Zadanie 1. Dana jest liczba pierwsza p>3 oraz takie liczby całkowite dodatnie a,b,c, że a+b+c=p+1 oraz liczba $a^3+b^3+c^3-1$ jest podzielna przez p. Udowodnić, że co najmniej jedna z liczba,b,c jest równa 1.

Zadanie 2. Dany jest trójkąt ostrokątny ABC, jego ortocentrum H a także jego środek ciężkości G. Przez D i M oznaczmy odpowiednio rzut C na AB i środek AB. Półproste MH i DG przecinają okrąg opisany na ABC w punktach P i Q odpowiednio. Udowodnij, że QM i PD przecinają się w punkcie leżącym na okręgu opisanym na ABC

Zadanie 3. Król Jerzy postanowił połączyć 1680 wysp w swoim królestwie mostami. Niestety ruch rebeliantów zniszczy dwa mosty po zbudowaniu wszystkich mostów, ale nie będą to dwa mosty z tej samej wyspy. Jak minimalna liczba mostów, które król musi zbudować, aby zapewnić, że po zniszczeniu dwóch mostów przez rebeliantów, nadal będzie możliwe podróżowanie mostami między każdą parą wysp?

Zadanie 4. Niech f(n) będzie funkcją $f: \mathbb{N}_+ \to \mathbb{N}_+$. Udowodnij, że jeśli

$$f(n+1) > f(f(n)),$$

dla każdej dodatniej liczby całkowitej n, to f(n) = n.