A. Artifact Appendix

A.1 Abstract

This artifact shows two major software sections of **MIMSID**, a high-resolution mmWave imaging system using metasurface and diffusion. We provide our end-to-end optimization model and signal-to-diffusion model, as well as some corresponding data for training and evaluating our models.

A.2 Artifact check-list (meta-information)

- Algorithm: We present our end-to-end optimization model and signal-to-image model.
- Program: A set of data collected by our system is provided in our artifact, including channel matrix A and evaluation data.
- Model: We utilize diffusion models DDPM and DDIM in our system, which are included and implemented in our code.
- Data set: We use FashionMNIST dataset for model training, the download process is executed automatedly in our code. We also provide some real-world measurement data for model training and evaluating.
- Run-time environment: Our codes are implemented and tested on Windows 11 OS.
- Hardware: Our codes are tested on an NVIDIA GeForce RTX 3060.
- Execution: The training process may run for 1 hour. The evaluation process using the pre-trained model takes less than a second per sample.
- Metrics: The RMSE of the imaging system and the inference time are evaluated.
- Output: For the end-to-end optimization, a codebook of phaseshifting for the mmwave radar is the output. For the signal-toimage diffusion model, the outputs are image pairs of reconstructed and ground-truth images.
- Experiments: Please set up the experiment environment based on the requirements in Installation or run script setup.py for a Windows OS meeting our requirements.
- How much disk space required (approximately)?: This artifact is less than 3GB in total.
- How much time is needed to prepare workflow (approximately)?:
 The time for preparing the workflow should be less than 1 hour.
- How much time is needed to complete experiments (approximately)?: The full experiments should be completed in less than 3 hours.
- · Publicly available?: No

A.3 Description

A.3.1 How to access

The whole code and evaluation dataset can be downloaded from GitHub:

https://github.com/dozenw/MIMSID.git

A.3.2 Hardware dependencies

- CPU: No explicit requirements, but should be able to run the required software.
- RAM: At least 8 GB
- GPU: A CUDA-enabled GPU (our codes are tested on an RTX 3060 with CUDA 12.4. The Nvidia driver of our computer is version 551.32.)

A.3.3 Software dependencies

Windows or Linux based operating system with the latest conda and Nvidia driver (version number 470 or later). We use Windows 11 and conda 23.1.0.

Requirements:

The detailed package requirements are described on our github repository.

We recommend to use cuda 12.4, torch 2.6.0, and torchaudio 2.6.0, and torchyison 0.21.0.

The $fashion\text{-}mnist_train.csv$ and $fashion\text{-}mnist_test.csv$ are provided in

https://pan.baidu.com/share/init?surl=tk_yZyuzoA26Vy_VeNzsQg&pwd=v16u

or

 $\label{lem:https://drive.google.com/drive/folders/1p8zrBXasdzsQb-eiKvT9usp=sharing} usp=sharing$

A.4 Installation

Step 1. Extract the artifact repositories via git clone and cd into it.

git clone https://github.com/dozenw/MIMSID.git
cd MIMSID

Step 2. Create Conda environment and activate it.

conda create -n MIMSID python=3.9.13 conda activate MIMSID

Step 3. Install CUDA 12.4. (Note this is one command line.)

conda install -c "nvidia/label/cuda-12.4" cuda-toolkit

Step 4. Install requirements.

pip install -r requirements.txt

Step 5. Place the downloaded fashion-mnist_train.csv and fashion-mnist_test.csv into the dataset folder.

A.5 Experiment workflow

A.5.1 End-to-end optimization

To run the end-to-end optimization, simply run

python e2e_optimization.py

The optimized codebook will be printed out and the corresponding channel model will be saved in **mts_model** folder.

A.5.2 Signal-to-image diffusion

To test the Signal-to-image diffusion model, simply run

cd sig2imgDM python main.py

The default program is running in evaluation mode. To activate the training process, run

python main.py --if_Train=True

When activating training, the model is stored in the **sig2imgDM** folder with the name **conditional_ddpm_width192_fmnist_Aytrain.py**.

To disable evaluation, run

python main.py --if_Eval=False

A.6 Evaluation and expected results

The example output is included in our github page. MIMSID/ sig2imgDM/ output shows image pairs of reconstructed (named with suffix "_est") and ground truth (named with suffix "_gt") images. The evaluated RMSE should be under 0.06 with mean inference time less than 0.2 seconds.

The detailed results for running ${\bf python}$ main. ${\bf py}$ on our device are:

PSNR: 47.2251 mean RMSE tensor: 0.0430 mean infer time: 0.155576

For running **python main.py –if Train=True** on our device, the results are:

PSNR: 21.7930
mean RMSE tensor: 0.2572
mean infer time: 0.1169613

A.7 Experiment customization

End-to-end optimization To customize, you can alter the iteration steps of the initialization and the learning rates of the models in the "if __name__ == "__main__": section. You can also modify the training steps in function **optimize_step**. In addition, you can modify the parameters of class **mmWaveSimulator**, where the target's distance, image resolution, and metasurface size can be altered.

Signal-to-image diffusion To customize, you can modify the training epochs \mathbf{n} -epoch and learning rate \mathbf{lr} in the training section.

A.8 Notes

A.9 Methodology

Submission, reviewing and badging methodology:

- https://www.acm.org/publications/policies/artifact-review-and-badging-current
- https://cTuning.org/ae