Билеты для подготовки к экзамену по дискретной математике Отредактировал и дополнил: Трофимов Влад. Первоисточник: Полина Лаппо, Антонова Анастасия

Оглавление

1. Определение высказывания, функции истинности, логического значени	1Я,
отрицания высказывания	2
2. Конъюнкция, дизъюнкция, импликация, эквивалентность двух высказываний	2
3. Формула алгебры высказываний, логическое значение составно	ιгο
высказывания	3
4. Формула алгебры высказываний выполнимая, тавтология, опровержим	эя,
тождественно ложная	4
5. Свойства конъюнкции и дизъюнкции	4
6. Свойства импликации и эквивалентности	5
7. Правило заключения и правило подстановки	5
8. Формулы алгебры высказываний – равносильны (эквивалентны)	6
9. Нормальные формы для формул алгебры высказываний, совершенн	ые
нормальные формулы	6
10. Конъюнктивный и дизъюнктивный одночлен от переменных $x_1, x_2, \ldots, x_n \ldots$	7
11. Совершенная дизъюнктивная и конъюнктивная нормальная форма	7
12. Булева функция от одного аргумента от $m{n}$ аргументов	7
13. Равенство булевых функций	7
14. Свойства дистрибутивности булевых функций	8
15. Свойства сложения по модулю два или суммы Жегалкина	8
16. Свойства штриха Шеффера	8
17. Свойства стрелки Пирса	8
18. Полином Жегалкина	8
19. Двойственная и самодвойственная булева функция	9
20. Монотонная булева функция	9
21. Булева функция, сохраняющая 0 и сохраняющая 1	9
22. Полная и неполная система булевых функций	9
23. Теорема Поста и критерий полноты	

1. Определение высказывания, функции истинности, логического значения, отрицания высказывания

Под высказыванием понимается такое предложение, которое либо истинно, либо ложно. Высказывание не может быть одновременно и истинным, и ложным.

Обозначив истинное высказывание символом 1, а ложное – 0, введем функцию λ , заданную на совокупности всех высказываний и принимающую значения в двухэлементном множестве $\{0,1\}$ по следующему правилу:

$$\lambda(P) = \begin{cases} 1, & \text{if P true} \\ 0, & \text{if P false} \end{cases}$$

Функция λ называется функцией истинности.

Значение $\lambda(P)$ называется логическим значением или значением истинности высказывания P.

Отрицанием высказывания P называется новое высказывание, обозначаемое $\neg P$, которое истинно, если высказывание P ложно, и ложно, если высказывание P истинно. Другими словами, логическое значение высказывания $\neg P$ связано с логическим значением высказывания P, как указано в следующей таблице, называемой таблицей истинности операции отрицания:

$\lambda(P)$	$\lambda(\neg P)$
0	1
1	0

2. Конъюнкция, дизъюнкция, импликация, эквивалентность двух высказываний

Конъюнкцией двух высказываний P и Q называется новое высказывание, обозначаемое $P \wedge Q$ или $P \otimes Q$, которое истинно лишь в единственном случае, когда истинны оба исходных высказывания P и Q, и ложно во всех остальных случаях. Другими словами, логическое значение высказывания $P \wedge Q$ связано с логическими значениями высказываний P и Q, как указано в следующей таблице, называемой таблицей истинности операции конъюнкции:

$\lambda(P)$	$\lambda(Q)$	$\lambda(P \wedge Q)$
0	0	0
0	1	0
1	0	0
1	1	1

Дизъюнкцией двух высказываний P и Q называется новое высказывание, обозначаемое PVQ, которое истинно в тех случаях, когда хотя бы одно из высказываний P или Q истинно, и ложно в единственном случае, когда оба высказывания P и Q ложны. Другими словами, PVQ — такое высказывание, логическое значение которого связано с логическими значениями исходных высказываний P и Q так, как указано в следующей таблице, называемой таблицей истинности операции дизъюнкции:

$\lambda(P)$	$\lambda(Q)$	$\lambda(P \lor Q)$
0	0	0
0	1	1
1	0	1
1	1	1

Импликацией двух высказываний P и Q называется новое высказывание, обозначаемое $P \to Q$, которое ложно в единственном случае, когда высказывание P истинно, а Q – ложно, а во всех остальных случаях – истинно. Другими словами, логическое значение высказывания $P \to Q$ связано с логическими значениями высказываний P и Q, как указано в следующей таблице, называемой таблицей истинности операции импликации:

$\lambda(P)$	$\lambda(Q)$	$\lambda(P \to Q)$
0	0	1
0	1	1
1	0	0
1	1	1

Эквивалентностью двух высказываний P и Q называется новое высказывание, обозначаемое $P \leftrightarrow Q$, которое истинно в том и только в том случае, когда одновременно оба высказывания P и Q либо истинны, либо ложны, а во всех остальных случаях — ложно. Другими словами, логическое значение высказывания $P \leftrightarrow Q$, связано с логическими значениями высказываний P и Q, как указано в следующей таблице, называемой таблицей истинности операции эквивалентности:

$\lambda(P)$	$\lambda(Q)$	$\lambda(P \leftrightarrow Q)$
0	0	1
0	1	0
1	0	0
1	1	1

3. Формула алгебры высказываний, логическое значение составного высказывания

Определение формулы алгебры высказываний:

- 1. Каждая отдельно взятая пропозициональная переменная есть формула алгебры высказываний.
- 2. Если F_1 и F_2 формулы алгебры высказываний, то выражения $\neg F_1$, $(F_1 \land F_2)$, $(F_1 \lor F_2)$, $(F_1 \to F_2)$, $(F_1 \leftrightarrow F_2)$ также являются формулами алгебры высказываний.
- 3. Никаких других формул алгебры высказываний, кроме получающихся согласно пунктам 1 и 2, нет.

Переменные, вместо которых можно подставлять высказывания, т.е. переменные, пробегающие множество высказываний, называют пропозициональными переменными, или высказывательными переменными, или переменными высказываниями.

Если в формулу алгебры высказываний $F(x_1,x_2,...,x_n)$ вместо пропозициональных переменных $x_1,x_2,...,x_n$ подставить конкретные высказывания $a_1,a_2,...,a_n$ соответственно, то получится некоторое новое составное высказывание $F(a_1,a_2,...,a_n)$. Оно называется конкретизацией формулы $F(x_1,x_2,...,x_n)$ на выборе высказываний $a_1,a_2,...,a_n$.

Теорема. Логическое значение составного высказывания $F(a_1,a_2,...,a_n)$ равно значению формулы $F(x_1,x_2,...,x_n)$ на наборе $\lambda(a_1),\lambda(a_2),...,\lambda(a_n)$ логических значений составляющих высказываний $a_1,a_2,...,a_n$, т.е. $\lambda(F(a_1,a_2,...,a_n))=F(\lambda(a_1),\lambda(a_2),...,\lambda(a_n))$.

Доказательство. Докажем утверждение методом полной математической индукции по числу символов логических операций, входящих в формулу $F(x_1, x_2, ..., x_n)$.

Если формула $F(x_1,x_2,...,x_n)$ содержит 0 символов логических операций, то она представляет собой просто пропозициональную переменную, скажем, x_1 , т.е. $F(x_1,x_2,...,x_n)\equiv x_1$. Тогда доказываемое соотношение сводится к тривиальному равенству: $\lambda(a_1)=\lambda(a_1)$.

Если формула $F(x_1, x_2, ..., x_n)$ содержит лишь один символ логической операции, то она является одной из следующих формул: $\neg x_1$, $(x_1 \land x_2)$, $(x_1 \lor x_2)$, $(x_1 \to x_2)$, $(x_1 \leftrightarrow x_2)$. В этих случаях доказываемое равенство есть одно из равенств отрицания, конъюнкции, дизъюнкции, импликации или эквивалентности.

Предположим теперь, что утверждающееся в теореме равенство верно для всех формул алгебры высказываний, содержащих не более k символов логических операций. Докажем, что оно верно для формулы $F(x_1,x_2,...,x_n)$, содержащей k+1 символов логических операций. На основании определения формулы алгебры высказывания формула F имеет один из следующих видов: $\neg F_1$, $(F_1 \land F_2)$, $(F_1 \lor F_2)$, $(F_1 \to F_2)$, $(F_1 \to F_2)$, где F_1 и F_2 — некоторые формулы, каждая из которых содержит уже не более k символов логических операций. Нужно провести доказательство для всех пяти случаев. Но в силу принципиальной идентичности этих доказательств проделаем его, например, для случая $F = F_1 \land F_2$. Вычисляем:

$$\lambdaig(F(a_1,a_2,...,a_n)ig) = \lambdaig(F_1(a_1,a_2,...,a_n)ig) \wedge \lambdaig(F_2(a_1,a_2,...,a_n)ig) = F_1ig(\lambda(a_1),\lambda(a_2),...,\lambda(a_n)ig) \wedge F_2ig(\lambda(a_1),\lambda(a_2),...,\lambda(a_n)ig) = Fig(\lambda(a_1),\lambda(a_2),...,\lambda(a_n)ig)$$
 Следовательно, утверждение теоремы верно для любой формулы.

4. Формула алгебры высказываний выполнимая, тавтология, опровержимая, тождественно ложная

Формула алгебры высказываний $F(x_1,x_2,...,x_n)$ называется выполнимой, если некоторая ее конкретизация является истинным высказыванием, т.е. существуют такие конкретные высказывания $a_1,a_2,...,a_n$, которые, будучи подставленными в эту формулу вместо переменных $x_1,x_2,...,x_n$ соответственно, превращают ее в истинное высказывание.

Формула $F(x_1,x_2,...,x_n)$ называется тавтологией, или тождественно истинной, если она превращается в истинное высказывание при всякой подстановке вместо переменных конкретных высказываний $a_1,a_2,...,a_n$, т.е. если $\lambda ig(F(a_1,a_2,...,a_n) ig) = 1$ для любых высказываний $a_1,a_2,...,a_n$.

Формула $F(x_1,x_2,...,x_n)$ называется опровержимой, если существуют такие конкретные высказывания $a_1,a_2,...,a_n$, которые превращают данную формулу в ложное высказывание $F(a_1,a_2,...,a_n)$, т.е. $\lambda \big(F(a_1,a_2,...,a_n) \big) = 0$.

Формула $F(x_1, x_2, ..., x_n)$ называется тождественно ложной, или противоречием, если $\lambda(F(a_1, a_2, ..., a_n)) = 0$ для любых конкретных высказываний $a_1, a_2, ..., a_n$.

5. Свойства конъюнкции и дизъюнкции

Теорема (Свойства конъюнкции и дизъюнкции).

- а) Законы идемпотентности $(P \land P) \leftrightarrow P$, $(P \lor P) \leftrightarrow P$.
- b) Законы упрощения $\models (P \land Q) \rightarrow P, \models P \rightarrow (P \lor Q)$.
- c) Законы коммутативности $(P \land Q) \leftrightarrow (Q \land P)$, $(P \lor Q) \leftrightarrow (Q \lor P)$.

- d) Законы ассоциативности $(P \land (Q \land R)) \leftrightarrow ((P \land Q) \land R), \models (P \lor (Q \lor R)) \land ((P \lor Q) \lor R).$
- e) Законы дистрибутивности $(P \land (Q \lor R)) \leftrightarrow ((P \land Q) \lor (P \land R)), (P \lor (Q \land R)) \leftrightarrow ((P \lor Q) \land (P \lor R)).$
- f) Законы поглощения $(P \land (P \lor Q)) \leftrightarrow P$, $(P \lor (P \land Q)) \leftrightarrow P$.
- g) Законы де Моргана $\neg (P \land Q) \leftrightarrow (\neg P \lor \neg Q), \neg (P \lor Q) \leftrightarrow (\neg P \land \neg Q).$

Доказательство. Докажем для примера, что первый закон де Моргана является тавтологией. Пусть A и B — произвольные конкретные высказывания. Рассмотрим два составных высказывания $\neg(A \land B)$ и $\neg A \lor \neg B$ получающиеся из частей данной эквивалентности при замене пропозициональных переменных P и Q конкретными высказываниями A и B соответственно. Предположим, во-первых, что высказывание $\neg(A \land B)$ истинно. Тогда конъюнкция $A \land B$ ложна, следовательно, по меньшей мере одно из высказываний A или B ложно. Но в таком случае хотя бы одно из высказываний A или B истинно, следовательно, их дизъюнкция $A \lor B$ истинна. Предположим, во-вторых, что высказывание $\neg(A \land B)$ ложно. Тогда конъюнкция $A \land B$ истинна. Следовательно, оба высказывания A и B истинны, а их отрицания $A \lor B$ оба ложны, т.е. дизъюнкция $A \lor B$ ложна. Таким образом, для любых двух высказываний значения частей рассматриваемой эквивалентности совпадают. Следовательно, формула тождественно истинна.

6. Свойства импликации и эквивалентности

- a) $\models (P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R)).$
- b) $\models P \rightarrow (Q \rightarrow (P \land Q)).$
- c) $\models (P \rightarrow R) \rightarrow ((Q \rightarrow R) \rightarrow ((P \lor Q \rightarrow P))).$
- d) $\models (P \rightarrow Q) \rightarrow ((P \rightarrow \neg Q) \rightarrow \neg P).$
- e) $\models (\neg Q \land (P \rightarrow Q)) \rightarrow \neg P$.
- f) $\models (\neg P \land (P \lor Q)) \rightarrow Q$.
- g) $\models (P \rightarrow Q) \rightarrow ((P \lor R) \rightarrow (Q \lor R)).$
- $\mathsf{h}\big) \, \vDash (P \to Q) \to \big((P \land R) \to (Q \land R)\big).$
- i) $\models (P \rightarrow Q) \rightarrow ((Q \rightarrow R) \rightarrow (P \rightarrow R)).$
- $\mathsf{j)} = (P \to Q) \lor (Q \to P).$
- $\mathsf{k}) = (\neg Q \to \neg P) \to ((\neg Q \to P) \to Q).$
- I) $((P \to Q) \land (R \to Q)) \leftrightarrow ((P \lor R) \to Q)$.
- $\mathsf{m})\left((P\to Q)\wedge(P\to R)\right)\leftrightarrow \left(P\to (Q\wedge R)\right).$
- n) $P \leftrightarrow P$.
- o) $(P \leftrightarrow Q) \leftrightarrow (Q \leftrightarrow P)$.
- $\mathsf{p)}\; \big((P \leftrightarrow Q) \land (Q \leftrightarrow R) \big) \to (P \leftrightarrow R).$

7. Правило заключения и правило подстановки

Теорема (правило заключения).

Если формулы F и $F \to H$ являются тавтологиями, то формула H также тавтология. Другими словами, из $\models F$ и $\models F \to H$ следует $\models H$.

Доказательство. Пусть $\models F(x_1,...,x_n)$ и $\models F(x_1,...,x_n) \to H(x_1,...,x_n)$. Предположим, что формула $H(x_1,...,x_n)$. не является тавтологией. Это означает, что существуют такие конкретные высказывания $a_1,...,a_n$, что $\lambda(H(a_1,...,a_n))=0$. Поскольку $F(x_1,...,x_n)$ — тавтология, то для $a_1,...,a_n$ имеем $\lambda(F(a_1,...,a_n))=1$. Вычисляем:

Отредактировал и дополнил: Трофимов Влад. Первоисточник: Полина Лаппо, Антонова Анастасия $\lambda \big(F(a_1,...,a_n) \big) \to H(a_1,...,a_n) = F(a_1,...,a_n) \to H(x_1,...,x_n) = 1 \to 0 = 0$, что противоречит тождественной истинности формулы $F \to H$. Следовательно, предположение неверно. Тогда $\models H$, что и требовалось доказать.

Теорема (правило подстановки).

Если формула F, содержащая пропозициональную переменную X, является тавтологией, то подстановка в формулу F вместо переменной X любой формулы H снова приводит к тавтологии. Другими словами, из $\models F$ следует $\models S^H_x F$.

Доказательство. Так как $\models F(x,y,...)$, то формула F(x,y,...) превращается в истинное высказывание при подстановке вместо всех пропозициональных переменных x,y,... любых конкретных высказываний. Истинность получаемого высказывания не зависит от структуры подставляемых вместо x,y,... высказываний. В частности, вместо x может быть подставлено высказывание, которое само является конкретизацией формулы $H(z_1,...,z_k)$ на некотором наборе конкретных высказываний. Но это и означает, что тавтологией будет формула $F(H(z_1,...,z_k),y,...)$, т.е. $\models S_x^H F$, что и требовалось доказать.

8. Формулы алгебры высказываний – равносильны (эквивалентны)

Формулы $F(x_1, ..., x_n)$ и $H(x_1, ..., x_n)$ алгебры высказываний называются равносильными (эквивалентными), если при любых значениях входящих в них пропозициональных переменных логические значения получающихся из формул F и H высказываний совпадают.

Теорема (признак равносильности формул).

Две формулы F и H алгебры высказываний равносильны тогда и только тогда, когда формула $F \leftrightarrow H$ является тавтологией:

$$F \equiv H \leftrightarrow \models F \leftrightarrow H$$

Доказательство. Если $F \equiv H$, то $\lambda \big(F(a_1,...,a_n) \big) = \lambda \big(H(a_1,...,a_n) \big)$ для любых высказываний $a_1,...,a_n$. Тогда, по определению операции эквивалентности, $\lambda \big(F(a_1,...,a_n) \big) \leftrightarrow \lambda \big(H(a_1,...,a_n) \big) = 1$, откуда заключаем, что $\lambda \big(F(a_1,...,a_n) \big) \leftrightarrow H(a_1,...,a_n) = 1$ для любых $a_1,...,a_n$. Последнее, по определению тавтологии, означает, что $\models F \leftrightarrow H$. Обратными рассуждениями доказывается утверждение: если $\models F \leftrightarrow H$, то $F \equiv H$. Теорема доказана.

9. Нормальные формы для формул алгебры высказываний, совершенные нормальные формулы

Для каждой формулы алгебры высказываний можно указать равносильную ей формулу, содержащую из логических связок лишь отрицание, конъюнкцию и дизъюнкцию. Для этого нужно, выразить все имеющиеся в формуле импликации и эквивалентности через отрицание, конъюнкцию и дизъюнкцию. Выразить формулу через отрицание, конъюнкцию и дизъюнкцию возможно не одним способом, а многими.

Дизъюнктивной нормальной формой называется дизъюнкция конъюнктивных одночленов, т.е. выражение вида $k_1 \vee k_2 \dots \vee k_p$, где все $k_i, i=1,2,\dots,p$ являются конъюнктивными одночленами (не обязательно различными). Аналогично конъюнктивной нормальной формой называется конъюнкция дизъюнктивных одночленов $d_1 \wedge d_2 \dots \wedge d_q$, где все $d_j, j=1,2,\dots,q$ являются дизъюнктивными одночленами (не обязательно различными).

Билеты для подготовки к экзамену по дискретной математике

Отредактировал и дополнил: Трофимов Влад. Первоисточник: Полина Лаппо, Антонова Анастасия

ДНФ	$X \land \neg X \lor X \land Y \lor \neg Z$
КНФ	$(X \lor Y \lor \neg X) \land (\neg X \lor Z)$
СДНФ	$X \wedge Y \wedge \neg Z \vee X \wedge Y \wedge Z$
СКНФ	$(\neg X \lor Y \lor Z) \land (X \lor \neg Y \lor Z)$

10. Конъюнктивный и дизъюнктивный одночлен от переменных x_1, x_2, \dots, x_n

Конъюнктивным одночленом от переменных x_1, \dots, x_n называется конъюнкция этих переменных или их отрицаний. Здесь «или» употребляется в неисключающем смысле, т.е. в конъюнктивный одночлен может входить одновременно и переменная, и ее отрицание.

Дизъюнктивным одночленом от переменных $x_1, ..., x_n$ называется дизъюнкция этих переменных или их отрицаний (и здесь союз «или» употребляется в неисключающем смысле).

Конъюнктивный одночлен $X_3 \wedge X_1 \wedge \neg X_4 \wedge \neg X_1 \wedge \neg X_3 \wedge X_2$ Дизъюнктивный одночлен $\neg X_2 \vee X_1 \vee \neg X_4 \vee \neg X_1 \vee X_4 \vee \neg X_2$

11. Совершенная дизъюнктивная и конъюнктивная нормальная форма

Одночлен (конъюнктивный или дизъюнктивный) от переменных $x_1, ..., x_n$ называется совершенным, если в него от каждой пары x_i , $\neg x_i$ (i=1,2,...,n) входит только один представитель (x_i или $\neg x_i$). Нормальная форма (дизъюнктивная или конъюнктивная) от переменных $x_1,...,x_n$ называется совершенной от этих переменных, если в нее входят лишь совершенные одночлены (конъюнктивные или дизъюнктивные соответственно) от $x_1,...,x_n$.

СДО $\neg X_1 \lor X_2 \lor \neg X_3$ СКО $X_1 \land \neg X_2 \land X_3 \land X_4$ СДНФ $X \land Y \land \neg Z \lor X \land Y \land Z$ СКНФ $(\neg X \lor Y \lor Z) \land (X \lor \neg Y \lor Z)$

12. Булева функция от одного аргумента от $oldsymbol{n}$ аргументов

Булевой функцией от одного аргумента называется функция f, заданная на множестве из двух элементов и принимающая значения в том же двухэлементном множестве. Элементы двухэлементного множества будем обозначать 0 и 1. Таким образом, $f:\{0,1\} \to \{0,1\}$.

Булевой функцией от n аргументов называется функция f, заданная на множестве $\{0,1\}^n$ и принимающая значения в двухэлементном множестве $\{0,1\}$. Другими словами, булева функция от n аргументов сопоставляет каждому упорядоченному набору длины n, составленному из элементов 0 и 1, либо 0, либо 1.

13. Равенство булевых функций

Функции f и g называются равными, если при помощи конечного числа добавлений или удалений фиктивных переменных можно сделать функции одинаковыми. (Фиктивная переменная – переменная, не являющаяся существенной).

$$\begin{split} f(x,y) &= x \vee y \text{ M } g(x,y,z) = xz \vee x\overline{z} \vee yz \vee y\overline{z} \\ g(x,y,z) &= (x \vee y)(z \vee \overline{z}) \\ g(x,y,z) &= x \vee y = f(x,y). \end{split}$$

Билеты для подготовки к экзамену по дискретной математике

Отредактировал и дополнил: Трофимов Влад. Первоисточник: Полина Лаппо, Антонова Анастасия

14. Свойства дистрибутивности булевых функций

$$x \lor (y \cdot z) = (x \lor y) \cdot (x \lor z)$$
$$x \cdot (y \lor z) = (x \cdot y) \lor (x \cdot z)$$

15. Свойства сложения по модулю два или суммы Жегалкина

Функция g(x,y) называется эквивалентностью и обозначается $x \leftrightarrow y$, так что $g(x,y)=x \leftrightarrow y$. Она принимает значение 1 тогда и только тогда, когда оба ее аргумента принимают одинаковые значения. Функция $g_1(x,y)$, являющаяся отрицанием функции g(x,y), называется сложением по модулю два, или суммой Жегалкина, и обозначается x+y.

$$\underline{A} \lor B = A \oplus B \oplus AB;$$

 $\overline{A} = A \oplus 1.$
 $A \oplus A = 0;$
 $(A \oplus B)C = AC \oplus BC.$

16. Свойства штриха Шеффера

Отрицание конъюнкции, функция g(x,y), называется штрихом Шеффера и обозначается x|y. Таким образом, $g(x,y)=(x\cdot y)'=x|y$. Эта функция принимает значение 0 в том и только в том случае, когда конъюнкция принимает значение 1, т.е. в случае, когда оба ее аргумента принимают значение 1.

$$X \mid X = \neg X$$

$$(X \mid X) \mid (Y \mid Y) = X \lor Y$$

$$(X \mid Y) \mid (X \mid Y) = (X \land Y)$$

17. Свойства стрелки Пирса

Функция g(x,y) называется дизъюнкцией и обозначается $x \lor y$. Функция $g_1(x,y)$, являющаяся отрицанием функции g(x,y), носит название стрелка Пирса (или Функция Вебба) и обозначается $x \downarrow y$. Итак, $g_1(x,y) = (x \lor y)' = x \downarrow y$.

$$\begin{array}{l} X \downarrow X \equiv \neg X \\ (X \downarrow X) \downarrow (Y \downarrow Y) \equiv (X \land Y) \\ (X \downarrow Y) \downarrow (X \downarrow Y) \equiv X \lor Y \\ ((X \downarrow X) \downarrow Y) \downarrow ((X \downarrow X) \downarrow Y) = X \to Y \end{array}$$

18. Полином Жегалкина

Полином Жегалкина степени не выше первой: $f(x_1,x_2,...,x_n)=a_0+a_1x_1+a_2x_2+\cdots+a_nx_n$, где $a_0,a_1,a_2,...,a_n$ – постоянные, равные либо 0, либо 1. Полином Жегалкина представляет собой сумму по модулю два произведений неинвертированных переменных, а также (если необходимо) константы 1.

$$P(X_1...X_n) = a \oplus a_1X_1 \oplus a_2X_2 \oplus ... \oplus a_nX_n \oplus a_{12}X_1X_2 \oplus a_{13}X_1X_3 \oplus ... \oplus a_{1...n}X_1...X_n,$$

 $a \dots a_{1...n} \in \{0, 1\}.$
 $P = B \oplus AB;$

$$P = X \oplus YZ \oplus ABX \oplus ABDYZ;$$

 $P = 1 \oplus A \oplus ABD.$

Билеты для подготовки к экзамену по дискретной математике

Отредактировал и дополнил: Трофимов Влад. Первоисточник: Полина Лаппо, Антонова Анастасия

19. Двойственная и самодвойственная булева функция

Булева функция $f^*(x_1,x_2,...,x_n)$ называется двойственной функцией для булевой функции $f(x_1,x_2,...,x_n)$, если $f^*(x_1,x_2,...,x_n)=f'(x_1',x_2',...,x_n')$ для любых $x_1,x_2,...,x_n$.

Функции $x \land y, x \lor y$ являются двойственными по отношению друг к другу.

Булева функция f называется самодвойственной, если $f^{st}=f$.

Функции $x, \overline{x}, (x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$ являются самодвойственными.

20. Монотонная булева функция

Булева функция $f(x_1,x_2,...,x_n)$ называется монотонной, если для любых $\alpha_1,\alpha_2,...,\alpha_n;\beta_1,\beta_2,...\beta_n \in \{0,1\}$ из $\alpha_1<\beta_1,\alpha_2<\beta_2,...,\alpha_n<\beta_n$ немедленно следует, что $f(\alpha_1,\alpha_2,...,\alpha_n)\leq f(\beta_1,\beta_2,...,\beta_n).$

Примеры монотонных функций: константа, дизъюнкция, конъюнкция, тождественная функция.

21. Булева функция, сохраняющая 0 и сохраняющая 1

Говорят, что булева функция $f(x_1, x_2, ..., x_n)$ сохраняет 0, если f(0, ..., 0) = 0. Говорят, что булева функция $f(x_1, x_2, ..., x_n)$ сохраняет 1, если f(1, ..., 1) = 1.

22. Полная и неполная система булевых функций

Система булевых функций называется полной, если всякая булева функция является суперпозицией функций из этой системы, т.е. когда в ней имеется хотя бы одна функция, не сохраняющая ноль, хотя бы одна функция, не сохраняющая один, хотя бы одна несамодвойственная функция, хотя бы одна немонотонная функция и хотя бы одна нелинейная функция.

 $\{\land,\lor,\lnot\},\{\land,\bigoplus,1\},\{\downarrow\},\{\mid\}$

Система булевых функций называется неполной, если не выполняется предыдущий пункт.

 $\{\Lambda,V\}$

23. Теорема Поста и критерий полноты

Теорема.

Система булевых функций $\{f_0, f_1, ..., f_a, ...\}$ является полной тогда и только тогда, когда в этой системе имеется функция, не принадлежащая классу сохраняющих 0 (класс P_0), имеется функция, не принадлежащая классу сохраняющих 1 (класс P_1), имеется функция, не принадлежащая классу самодвойственных (класс S), имеется функция, не принадлежащая классу монотонных (класс M), имеется функция, не принадлежащая классу линейных (класс S).

 $\{\land,\lor,\lnot\},\{\land,\bigoplus,1\},\{\downarrow\},\{|\}$