

Let's talk about Europe...

... And obviously about frosts

Are false springs increasing?? Decreasing??

Is absolutely nothing changing with them?

Difference in number of spring freezes after temperature trends increased in the 1980s

Blue/Green: More after the 80s

Red: less after the 80s

Depends on location of study apparently...

What are scientists looking at?

- Mean Spring Temperature
- Elevation gradients
- Latitudinal gradients

So then what are we missing???

- Distance from the coast!!
- North Atlantic Oscillation Index
- EVERYTHING COMBINED!

A. Betula pendula B. Alnus glutinosa C. Aesculus hippocastanum (Avg Day of Budburst = 98.76) (Avg Day of Budburst = 98.91) (Avg Day of Budburst = 99.24) Avg Day of Budburst D. Fagus sylvatica E. Quercus robur F. Fraxinus excelsior (Avg Day of Budburst = 106.7) (Avg Day of Budburst = 113.0) (Avg Day of Budburst = 116.34)

Our Paper

- PEP 725 data:
 - 6 species
 - 11648 sites
 - 66 years (1950-2016)
 - Leaf out data
- Climate Data: E-OBS
- Parameters:
 - NAO
 - Mean Spring Temperature
 - Elevation
 - Distance from Coast
 - Climate Change
 - Species
- Model:

```
Num FS ~ nao.z + mat.z + dist.z + space.z + elev.z + cc.z
+ species + mat.z:species + dist.z:species +
space.z:species + elev.z:species +
cc.z:species + mat.z:cc.z + dist.z:cc.z +
space.z:cc.z + elev.z:cc.z
```

Ma, et al. paper

- PEP 725 data:
 - 27 species
 - 5565 sites
 - 63 years (1950-2013)
 - First observation thru July 15th
- Climate Data: E-OBS
- Parameters
 - Elevation
 - Distance from Coast
 - Species
 - Years
- Models: random slopes for site; random intercept for species

$$y_{ij} = \alpha + \beta x_{ij} + a_j + \varepsilon_{ij}$$
$$logit(p_{ij}) = log(\frac{p_{ij}}{1 - p_{ij}}) = \alpha + \beta x_{ij} + a_j$$

Our Paper

- Earlier BB species were more susceptible to frost risk
- Ditto.
- No major effect from NAO
- Reduced risk of frost in warmer regions
- Reduced risk overall with climate change

Ma, et al. paper

- Earlier BB species had increased probability and severity of frost risk
- More coastal regions had increased probability and severity of frost risk over time, whereas high elevations had lower risk
- Advancing spring phenology decreased slightly over time with increasing elevation but LSF advanced significantly – less risk at higher altitudes with climate change
- No change in sensitivity analysis results were the same