

Ch12.3 Logic Gates (Week 10)

Introduction

Gates

• The basic element of circuits

Combinational circuits or gating networks

- Circuits that depends only on the input, not on the current state of the circuit
- No memory capabilities

Basic Types of Gates

Inverter

• produces the complement

OR gate

• produces sum of the values

AND gate

• produces product of the values

Combinations of Gates

▼ Example 1

Construct circuits that produce (a) $(x+y) \overline{x}$ (b) $\overline{x} \overline{(y+\overline{z})}$ (c) $(x+y+z)(\overline{x} \overline{y} \overline{z})$.

(b) $\overline{x} (y + \overline{z})$

Examples of Circuits

▼ Example 2

A total of three individuals are voting for an organization, a proposal passed if it receives at least two yes votes. Design a circuit that determines whether a proposal passes.

A Circuit for Majority Voting

▼ Example 3

Design circuits that switching any of the switches turns the light on when it is off and vice versa when there are two and three switches.

x=0 is open, x=1 is closed (same for y), F(x,y)=1 light on, F(x,y)=0 light off.

Arbitrarily decide that F(1,1)=1, and all other values are determined.

A Circuit for a Light Controlled by Two Switches

Arbitrarily decide that F(1,1,1)=1, and all other values are determined.

A Circuit for a Fixture Controlled by Three Switches

Adders

Multiple output circuit

- s is the sum bit
- c is the carry bit

Input		Output	
x	у	S	c
1	1	0	1
1	0	1	0
0	1	1	0
0	0	0	0

Input and Output for the Half Adder

Half Adder

Adding 2 Three-Bit integers with Full and Half Adders