Grafos

Grafos é uma estrutura de dados que contém um conjunto de vértices e arestas. Para cada arestas pode ser, também, associado um valor (peso).

Os grafos podem ser direcionados ou não, a figura a seguir mostra um grafo não direcionado. Nos **grafos não direcionados**, nenhuma aresta tem sentido, ou seja, se existe uma aresta de A para B, A tem conexão com B assim como B tem conexão com A.

Quando temos **grafos direcionados** (também conhecidos como digrafos), toda aresta tem um sentido, ou seja, se existe uma aresta de A para B, A tem conexão com B, porém B não necessariamente tem uma conexão com A. A figura a seguir mostra um grafo dirigido.

Nos **grafos ponderados** (ou valorados), as arestas possuem pesos, nesse caso arestas com pesos maiores geralmente representam transições mais custosas. Na figura a seguir é mostrado um grafo não dirigido ponderado, note-se que o caminho de 1-4, tem peso diferente de 4-1.

Representação de grafos

Predominantemente são utilizadas duas abordagens para representar grafos: **matrizes de adjacência** e **listas de adjacência**. Aqui utilizaremos listas de adjacência pois, em geral, apresentarem maior desempenho. Digamos que nosso grafo possui n elementos, algumas operações sobre matrizes de adjacência podem necessitar a análise de n² elementos (todas as ligações) enquanto com listas de adjacência verificaremos apenas o número de vezes igual o número de arestas do grafo (que é no máximo n²).

Utilizaremos "vetores de vetores de inteiros" para representar os grafos, caso sejam grafos ponderados será utilizada pares de inteiros pair<int, int>. Desejamos representar o grafo da figura a seguir:

A declaração do grafo não ponderado (direcionado ou não direcionado) será:

```
vector< vector<int> > grafo;
```

Cada posição do vetor representa um vértice, nela está contido um outro vetor - a lista de adjacências. Essa lista possui as arestas que partem desse vértice - no caso de um grafo não dirigido adicionamos em ambas arestas.

Os dados contidos em cada uma das posições do vetor do grafo acima será:

```
grafo[0] = {1, 2}
grafo[1] = {3}
grafo[2] = {1}
grafo[3] = {}
```

Já a declaração do grafo do grafo ponderado direcionado será:

```
vector < pair<int, int> > grafo[N];
```

Cada posição do vetor representa um vértice, nela está contido um vetor de pares de inteiros. Cada par de inteiro representa o **vértice que é conectado e o peso**, respectivamente.

Os dados contidos em cada uma das posições do vetor do grafo ponderado (página anterior) será:

```
grafo[0] = {<2, 9>, <3, 1>, <4, 1>}
grafo[1] = {<4, 2>}
```

```
grafo[2] = {}
grafo[3] = {<2, 9>}
grafo[4] = {<1, 5>}
```

Caso seja necessário realizar uma ordenação dos pesos das arestas (ex: algoritmo de Kruskal), pode-se usar a seguinte estrutura:

```
vector< pair< int, pair<int,int> > > grafo;
```

Cada posição do vetor representa uma aresta, nela está contido um inteiro e um par de inteiros, que representam, respectivamente, o peso e o par de vértices ligados.

Vale ressaltar que representando o grafo desta forma, não estaremos usando lista de adjacência.

Exemplo de leitura de um grafo

No exemplo abaixo lemos um grafo e posteriormente mostramos as ligações de cada vértice. A primeira linha da entrada possui dois inteiros N e M que representa o número de vértices no grafo e o número de arestas. É seguida por M linhas contendo inteiros A e B, representando uma aresta (direcionada) de A para B. O exemplo anterior teria o formato:

44

0 1

0 2

13

2 1

O programa abaixo lê um grafo nesse formato e depois percorre todo o grafo mostrando as arestas.

```
#include<iostream>
#include<vector>

using namespace std;

int main()
{
    vector< vector<int> > g;
    int n, m; // número de vértices e arestas
    cin >> n >> m;
    g.resize(n);
    int a, b;
```

Busca em largura

Esta seção trata da busca de um caminho em um grafo, em especial, uma busca onde garantimos que os **vértices visitados primeiramente terão suas arestas examinadas anteriormente a outros**. Eis que, partindo de um vértice "a" qualquer e garantindo essa restrição, na primeira vez que atingirmos o vértice "b" podemos afirmar que este caminho possui o número mínimo de passos até tal, ou seja, que este é o menor caminho entre "a" e "b". Isso funciona pois os vértices visitados mais cedo estão mais próximos do vértice inicial, e consequentemente tem distância menor até a origem.

Eis que para garantir esta restrição, basta que utilizemos uma **fila** para armazenar os vértices visitados. O exemplo a seguir mostra uma rotina para busca em largura utilizando listas de adjacência.

```
#include <iostream>
#include <vector>
#include <queue>

using namespace std;

void bfs (int N, int inicio, int final, vector<vector<int>> adj)
{
    bool visitados[N];
    int sucessor[N], distancia[N];
    queue<int> f;
```

```
for(int i = 0; i < N; i++)</pre>
      visitados[i] = false;
      distancia[inicio] = 0;
      f.push(inicio);
      while(!f.empty())
          int a = f.front();
          f.pop();
          for(int i = 0; i < adj[a].size(); i++)</pre>
              if(!visitados[adj[a][i]])
              {
                   visitados[adj[a][i]] = true;
                   sucessor[adj[a][i]] = a;
                   distancia[adj[a][i]] = distancia[a] + 1;
                   f.push(adj[a][i]);
                   if(adj[a][i] == final)
                       return;
            }
      }
}
```

O algoritmo de Busca em Largura também serve para algumas outras aplicações, são elas:

Descobrir se um grafo é bipartido

Na implementação da BFS será preciso guardar em que "lado do grafo" você está e um novo vetor que te diga a que "lado do grafo" pertence cada vértice. Caso algum dos vértices que tem conexão com o vértice atual já tenha sido setado como pertencente ao mesmo "lado do grafo" que o vértice atual está, então o grafo não é bipartido.

Descobrir o menor caminho de A para B em um grafo com arestas de valor 1

Os vizinhos diretos de A estão a uma distância de 1 para A, os vizinhos dos vizinhos de A estão a uma distância de 2 para A e assim sucessivamente. (vetor *distancia* do algoritmo)

Encontrar todos os nós de uma componente conexa

Guardar a informação de quais nós foram visitados ou não.

Busca em profundidade

Outra estratégia possível para realizar uma busca, é visitar as arestas do vértice mais recentemente visitado, esta estratégia é especialmente eficiente quando desejamos apenas verificar a existência de um caminho entre dois vértices (ou quando por definição existe apenas um). Esta busca é a busca em profundidade.

A busca em profundidade possui ainda diversas aplicações, das quais podemos citar **busca de ciclos**, **bipartição de grafos**. Embora sua simplicidade, o entendimento da busca em profundidade é necessário para compreensão de diversos algoritmos úteis.

Como dito anteriormente, verificamos primeiro os vértices atingidos mais recentemente, algoritmicamente falando, utilizamos uma **pilha** para guardar a ordem de verificação. A dinâmica é a mesma da busca em largura, no exemplo abaixo testamos apenas se existe um caminho entre um nó inicial e final.

```
#include <iostream>
#include <vector>
#include <stack>
using namespace std;
bool dfs(int N, int inicio, int final, vector<vector<int>> adj)
      bool visitados[N];
      stack<int> s;
      for(int i = 0; i < N; i++)</pre>
      visitados[i] = false;
      s.push(inicio);
      while(!s.empty())
      {
          int a = s.top();
          s.pop();
          for(int i = 0; i < adj[a].size(); i++)</pre>
              if(!visitados[adj[a][i]])
              {
                  visitados[adj[a][i]] = true;
                  s.push(adj[a][i]);
                  if(adj[a][i] == final)
                       return true;
```

```
}
return false;
}
```

O algoritmo de Busca em Profundidade também serve para algumas outras aplicações, são elas:

- Descobrir componentes conexas

Em um grafo não-direcionado, ao rodar dfs(V) - algoritmo acima não parando quando encontra o caminho entre os dois vértices - sendo V um vértice qualquer, o algoritmo visita todos os vértices da componente conexa de V.

Descobrir componentes fortemente conexas

Sejam G um grafo direcionado, G' o grafo inverso (com as direções das arestas invertidas) e V um vértice qualquer. Se ambos dfs(G, V) e dfs(G', V) - mesmo algoritmo da aplicação acima - visitam todos os vértices, então o grafo G é fortemente conexo (por consequência, G' também).

Caminhos Mínimos em grafos ponderados

Esta seção trata do problema de encontrar o caminho mínimo entre dois pontos num grafo ponderado, isto é, dado um grafo com arestas valoradas **descobrir qual o caminho de um vértice A para outro B que possui o menor custo total** (valor somado).

Algoritmo de Dijkstra

Nesta seção apresentamos o algoritmo proposto por Dijkstra para encontrar o menor caminho em um grafo ponderado de **pesos positivos** (Se o grafo possui também pesos negativos é necessário utilizar o algoritmo de Bellman-Ford).

Este algoritmo é semelhante a busca em largura, entretanto, aqui sempre iremos expandir o nó que atualmente tem menor custo, isto é, tentaremos atingir o nó final sempre pelo caminho que possui menor custo total e para isso, sempre devemos escolher o menor para cada nó intermediário. A primeira vez que atingimos um vértice não é o menor caminho até este.

Para memorizar quais os caminhos de menor custo, utilizaremos uma fila de prioridade (priority_queue), será necessário ainda armazenar o menor custo para cada vértice (objetivo do algoritmo).

```
#include <iostream>
#include <vector>
```

```
#include <queue>
#define INF 0x3F3F3F3F
using namespace std;
typedef pair<int,int> ii;
// vértice que será calculado distância para os outros,
// lista de adjacência e número de vértices
void dijkstra(int s, vector<ii> *adj, int N)
{
      int D[N], pi[N]; // distância e antecessor
      for(int i = 0; i < N; i++)</pre>
      {
          D[i] = INF;
          pi[i] = -1;
      }
      priority_queue< ii, vector< ii >, greater< ii > > Q;
      D[s] = 0;
      Q.push(ii(0, s));
      while(!Q.empty())
          ii top = Q.top();
          Q.pop();
          int u = top.second, d = top.first;
          if( d <= D[u] )
              for(int i = 0; i < adj[u].size(); i++)</pre>
              {
                  int v = adj[u][i].first, cost = adj[u][i].second;
                  if(D[v] > (D[u] + cost))
                      D[v] = D[u] + cost;
                      pi[v] = u;
                      Q.push(ii(D[v], v));
                  }
            }
      }
}
```

No primeiro loop da função inicializamos o vetor com as menores distâncias, atribuímos como "infinito" para identificar que este vértice não foi visitado ainda, também inicializamos os sucessores.

A busca acontece no while(!Q.empty()). Avaliamos o vértice que possui a menor distância até o vértice inicial, e verificamos cada uma das suas adjacências (for(int i = 0; i < adj[u].size(); i++)). O teste mais característico do algoritmo é encontrado no if(D[v] > (D[u] + cost)).

Eis que, se visitarmos todos os caminhos que chegam num dado vértice e memorizarmos o de menor custo, podemos afirmar que esse é o menor custo entre a origem e o vértice em questão. Esse algoritmo faz isso para todos vértices, partido de "s"; Uma vez executado a partir de "s", a menor distância de "s" até qualquer vértice "v", será aquela armazenada em D[v].

Bellman-Ford

Nesta seção apresentamos o algoritmo de Bellman-Ford para encontrar o menor caminho em um grafo ponderado que também possua **pesos negativos**.

```
#include <iostream>
#include <vector>
#define INF 0x3F3F3F3F
using namespace std;
typedef pair<int,int> ii;
// retorna false se tem ciclo negativo, true caso contrário
bool bellmanFord(int N, int s, vector<ii> *adj)
{
      int dis[N];
      bool ret = true;
      for (int i = 0; i < N; i++)</pre>
      dis[i] = INF;
      dis[s] = 0;
      // Relaxamento das arestas
      for (int i = 0; i < (N-1); i++)
          for(int j = 0; j < N; j++)</pre>
          {
              for(int k = 0; k < adj[j].size(); k++)</pre>
```

```
if (dis[j] + adj[j][k].second <</pre>
dis[adj[j][k].first])
                          dis[adj[j][k].first] = dis[j] +
adj[j][k].second;
           }
      }
      // Checando se existe ciclos negativos
      for(int i = 0; i < N; i++)</pre>
      {
           for(int j = 0; j < adj[i].size(); j++)</pre>
           {
               if(dis[i] != INF && ((dis[i] + adj[i][j].second) <</pre>
                                                dis[adj[i][j].first]))
                    ret = false;
           }
      }
      for (int i = 0; i < N; i++)</pre>
           cout << i << " " << dis[i] << endl;</pre>
      return ret;
}
```

Algoritmo de Floyd-Warshall

Em alguns casos é necessário determinar o menor caminho entre todos os pares de vértices do grafo, nesse caso utiliza-se o algoritmo Floyd-Warshall.

```
#include <iostream>
#include <vector>
#define INF 0x3F3F3FF

using namespace std;

typedef pair<int,int> ii;

void floydWarshall(int N, vector<ii> *adj)
{
    int dis[N][N];
    for (int i = 0; i < N; i++)
    {
}</pre>
```

```
for(int j = 0; j < N; j++)
          {
               if(i != j)
                   dis[i][j] = INF;
               else
                   dis[i][j] = 0;
          }
      }
      for(int i = 0; i < N; i++)</pre>
          for(int j = 0; j < adj[i].size(); j++)</pre>
               dis[i][adj[i][j].first] = adj[i][j].second;
    for(int k = 0; k < N; k++)
        for(int i = 0; i < N; i++)</pre>
             for(int j = 0; j < N; j++)</pre>
                 if(dis[i][j] > dis[i][k] + dis[k][j])
                      dis[i][j] = dis[i][k] + dis[k][j];
    for(int i = 0; i < N; i++)</pre>
        for(int j = 0; j < N; j++)
             cout << i << " " << j << " = " << dis[i][j] << endl;</pre>
}
```

Árvore Geradora Mínima (Minimum Spanning Tree - MST)

Esta seção trata de árvores geradoras em um grafo não dirigido. Árvore geradora é qualquer subárvore (**n vértices**, **n - 1 arestas e conexo**) que contenha todos os vértices do grafo.

Se considerarmos um grafo ponderado, o custo de uma subárvore é a soma dos valores de suas arestas. Eis que o objetivo desta seção é **determinar a árvore geradora com o menor custo total**, nominada árvore geradora mínima.

Algoritmo de Prim

O algoritmo de Prim encontra a árvore geradora mínima para um dado grafo, seu funcionamento é baseado nas condições de otimalidade das árvores geradoras, mais especificamente na propriedade dos cortes:

Se T é uma MST de um grafo, então cada uma das arestas t de T é uma aresta mínima dentre as que atravessam o corte determinado por T-t.

Segue abaixo uma implementação do algoritmo de Prim, o retorno da função é o custo total da MST.

```
#include <iostream>
#include <vector>
#include <queue>
#define INF 0x3F3F3F3F
using namespace std;
typedef pair<int,int> ii;
int prim(int N, vector<ii> *adj)
    int D[N], pi[N];
    bool visited[N];
    int ans = 0;
    for(int i = 0; i < N; i++)</pre>
       D[i] = INF;
       pi[i] = -1;
       visited[i] = false;
    }
    priority_queue< ii, vector<ii>, greater<ii>> Q;
    D[0] = 0;
    Q.push(ii(0,0));
    while(!Q.empty())
       ii top = Q.top();
       Q.pop();
       int u = top.second, d = top.first;
       if(!visited[u])
             ans += d;
             visited[u] = true;
             for(int i = 0; i < adj[u].size(); i++)</pre>
             {
                   int v = adj[u][i].first, cost = adj[u][i].second;
                   if(!visited[v] && (D[v] > cost))
                          D[v] = cost;
```

```
pi[v] = u;
Q.push( ii(D[v], v));
}
}

return ans;
}
```

O algoritmo consiste em acrescentar à árvore um vértice por vez, usando como critério a aresta com menor custo entre a árvore atual e os vértices restantes.

Algoritmo de Kruskal

```
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
typedef pair<int,int> ii;
typedef pair<int,ii> iii;
int kruskal(int n, vector<iii> arestas)
{
      int u, v;
      int pi[n], comp_sz[n];
      int result = 0;
      iii e;
      for(int i = 0; i < n; i++)</pre>
      comp_sz[i] = 1;
      pi[i] = i;
      // ordenação das arestas
      sort(arestas.begin(), arestas.end());
      for(int i = 0, k = 0; i < arestas.size() && k < n-1; i++)</pre>
          e = arestas[i];
```

```
//union-find
          for(u = (e.second).first; u != pi[u]; u = pi[u]);
          for(v = (e.second).second; v != pi[v]; v = pi[v]);
          if(u == v) //se a aresta gera um ciclo
              continue;
          if(comp_sz[u] < comp_sz[v])</pre>
          {
              pi[u] = v;
              comp_sz[v] += comp_sz[u];
          }
          else
          {
              pi[v] = u;
              comp_sz[u] += comp_sz[v];
          }
          result += arestas[i].first;
          k++;
      }
      for(int i = 0; i<n; i++)</pre>
          cout << comp_sz[i] << endl;</pre>
      return result;
}
```

O algoritmo consiste em transformar uma floresta geradora em uma árvore geradora, acrescentando as árvores por meio da inserção ordenada de arestas (menos custosas para mais custosas).

Fluxo máximo em redes

Esta seção trata de fluxo máximo em redes. Uma rede de fluxo é um grafo orientado, onde cada aresta possui dois valores associados: capacidade e fluxo. Uma rede começa no vértice de partida (fonte) e termina no vértice terminal (sumidouro). É importante lembrar que toda a quantidade enviada na fonte deve ser recebida no sumidouro, o fluxo de cada aresta não ultrapassa sua capacidade e a soma dos fluxos que chegam num vértice é igual a soma dos que saem.

```
#include <iostream>
#include <string.h>
#include <queue>
#define INF 0x3F3F3F3F
using namespace std;
typedef pair<int, int> ii;
bool bfs(int n, vector<vector<int>> rGraph, int s, int t, int* parent)
    bool visited[n];
    for(int i = 0; i < n; i++)</pre>
       visited[i] = false;
    queue <int> q;
    q.push(s);
    visited[s] = true;
    parent[s] = -1;
    while (!q.empty())
       int u = q.front();
       q.pop();
       for (int v=0; v<n; v++)</pre>
       {
             if (visited[v]==false && rGraph[u][v] > 0)
                   q.push(v);
                   parent[v] = u;
                   visited[v] = true;
             }
       }
    return (visited[t] == true);
}
int fordFulkerson(int n, int s, int t, vector<ii> *G)
{
    // grafo residual
    vector<vector<int>> rGraph;
```

```
rGraph.resize(n);
    for(int i = 0; i < n; i++)</pre>
       rGraph[i].resize(n);
       for(int j = 0; j < n; j++)</pre>
             rGraph[i][j] = 0;
    }
    //first é o vértice que é conectado, second é a capacidade da aresta
    for(int i = 0; i < n; i++)</pre>
       for(int j = 0; j < G[i].size(); j++)</pre>
             rGraph[i][G[i][j].first] = G[i][j].second;
    int parent[n]; // preenchida pelo BFS, guarda o caminho
    int max_flow = 0;
    while (bfs(n, rGraph, s, t, parent))
       int path flow = INF;
       for (int v = t; v != s; v = parent[v])
             int u = parent[v];
             path_flow = min(path_flow, rGraph[u][v]);
       }
       // atualizando a capacidade das arestas
       for (int v = t; v != s; v = parent[v])
       {
             int u = parent[v];
             rGraph[u][v] -= path_flow;
             rGraph[v][u] += path_flow;
       }
       max_flow += path_flow;
    }
    return max_flow;
}
```

A implementação acima do **Algoritmo de Ford-Fulkerson** é chamada de **Algoritmo de Edmonds-Karp**. A ideia de Edmonds-Karp é usar o BFS na implementação do Ford Fulkerson, pois o BFS sempre escolhe um caminho com um número mínimo de arestas. Quando o BFS é usado, a pior complexidade de tempo é reduzida.

A ideia do algoritmo é fazer um **grafo residual** e **enquanto houver um caminho aumentante, aumentar o fluxo** do caminho com o mínimo dos fluxos.