Εργασία 2

Χαράλαμπος Αναστασίου

Οκτώβριος 2024

1 Εισαγωγή

μπλα μπλα μπλα

1.1 Ερώτημα 1

Αν x=[1:8] και $P_{2,4}$ είναι το μητρώο τέλειας αναδιάταξης mod 2, τότε να γράψετε το διάνυσμα $P_{2,4}\cdot x$.

ΑΠΑΝΤΗΣΗ: Το x είναι ένα διάνυσμα-στήλη μεγέθους 8×1 . Το μητρώο τέλειας αναδιάταξης $P_{q,r}=P_{2,4}$ δίνεται από τον ακόλουθο τύπο, ο οποίος έχει αντληθεί από τις διαφάνειες μαθήματος:

$$P_{2,4} = I_8 ([1:4:8,2:4:8,3:4:8,4:4:8])$$

To $P_{2,4}$ έχει μέγεθος 8×8 .

Επομένως, το γινόμενο $P_{2,4} \cdot x$ είναι:

$$P_{2,4} \cdot x = I_8 ([1, 5, 2, 6, 3, 7, 4, 8]) \cdot x = \begin{bmatrix} x(1:4:8) \\ x(2:4:8) \\ x(3:4:8) \\ x(4:4:8) \end{bmatrix}$$

που είναι το τελικό διάνυσμα-στήλη μεγέθους 8×1 .

1.2 Ερώτημα 2

 $(\Sigma \omega \sigma \tau \delta / \Lambda \acute{\alpha} \vartheta \circ \varsigma)$ Αν $P_{2,4}$ είναι το μητρώο τέλειας αναδιάταξης $\mod 2$, τότε ισχύει:

$$P_{2,4} \cdot P_{2,4}^{\top} = I_8$$

ΑΠΑΝΤΗΣΗ: Σωστό.

1.3 Ερώτημα 3

(GvL A1.3.4) Έστω το μητρώο

$$A = \begin{pmatrix} 0 & B \\ B^{\top} & 0 \end{pmatrix}$$

όπου το B είναι άνω διδιαγώνιο. Να περιγράψετε τη δομή του $T=PAP^{\top}$, όπου η $P=P_{2,n}$ είναι η μετάθεση τέλειας αναδιάταξης mod 2.

AΠANTHΣH:

```
_{1} m = 4;
4 % Random values for the main diagonal
5 main_diag = randi(10, 1, m);
7 % Random values for the first upper diagonal
s upper_diag = randi(10, 1, m-1);
_{10} % Create the upper bidiagonal matrix B
11 B = diag(main_diag) + diag(upper_diag, 1);
13 % Create the matrix A
_{14} A = [zeros(m), B; B', zeros(m)];
16 % Display the final square matrix A
17 disp('The matrix A is:')
18 disp(A);
_{20} n = size(A,1); % size of A
_{22} % Create the identity matrix I
_{23} I = eye(n);
_{25}\ \% Define the row permutation of I
          % You can change this value to experiment
_{26} r = 3;
_{27} % r=4;
_{28} % r=5;
29 perm = [];
_{30} for i = 1:r
      indices = i:r:n;
      perm = [perm, indices];
зз end
```

```
35 % Row permutation of I
36 P = I(perm, :);
37
38 T = P * A * P';
39 D = T';
40
41 % I notice that for different values of r,
42 % the matrix T remains SYMMETRIC !!!
```

Σχόλια κώδικα: Στον παραπάνω κώδικα για τη δημιουργία της μετάθεσης τέλειας αναδιάταξης χρησιμοποιήθηκε ένας βρόγχος for ο οποίος δημιουργεί την μετάθεση (perm) με βάση τον τύπο από τις διαφάνειες του μαθήματος.

1.4 Ερώτημα 4

(GvL A1.3.7 - προσοχή: στο βιβλίο εκ παραδρομής, αντί του συμβόλου της αναστροφής, γράφτηκε \otimes). Να επαληθεύσετε ότι, αν $x \in \mathbb{R}^m, y \in \mathbb{R}^n$, τότε ισχύει:

$$y \otimes x = \operatorname{vec}(xy^{\top}).$$

ΑΠΑΝΤΗΣΗ:

• Έχουμε:

$$y\otimes x=egin{bmatrix} y_1x \\ y_2x \\ \vdots \\ y_nx \end{bmatrix} \quad \Rightarrow \quad$$
 διάνυσμα-στήλη mn στοιχείων

• Επίσης:

$$(xy^{\top})_{ij} = x_i y_j \quad \Rightarrow \quad \mu$$
ητρώο $m \times n$

και

$$\operatorname{vec}(xy^{\top}) = \begin{pmatrix} x_1 y_1 \\ x_2 y_1 \\ \vdots \\ x_m y_1 \\ x_1 y_2 \\ x_2 y_2 \\ \vdots \\ x_m y_n \end{pmatrix}$$

Είναι εμφανές ότι το $\operatorname{vec}(xy^\top)$ είναι ίσο με το $y\otimes x$, καθώς στους βαθμωτούς ισχύει η αντιμεταθετικότητα $(x_1y_1=y_1x_1\ \text{κ.o.k}).$

1.5 Ερώτημα 5

Να αποδείξετε αυτό που αναφέρεται στο σύγγραμμα (εξίσωση $\operatorname{GvL} 1.3.5$) ότι ενώ για γενικά μητρώα $B \in \mathbb{R}^{m_1 \times m_2}, \ C \in \mathbb{R}^{n_1 \times n_2}$ ισχύει ότι $B \otimes C \neq C \otimes B$ (το αναφέραμε και δείξαμε παράδειγμα στη Διάλεξη 4), υπάρχουν μητρώα μετάθεσης P,Q τέτοια ώστε $P(B \otimes C)Q = C \otimes B$. Να επιβεβαιώστε ότι τα μητρώα μετάθεσης είναι αυτά που αναφέρονται στο βιβλίο.

 $\mathbf{A}\Pi\mathbf{A}\mathbf{N}\mathbf{T}\mathbf{H}\mathbf{\Sigma}\mathbf{H}$: Στο βιβλίο αναφέρονται τα P και Q ως $P=P_{m_1,m_2}$ και $Q=P_{n_1,n_2}$ τέτοια ώστε

$$P(B \otimes C)Q^T = C \otimes B.$$

Έστω το πλήθος γραμμών $M=m_1n_1$ και το πλήθος στηλών $N=m_2n_2$ του γινομένου $B\otimes C$.

Έχουμε ότι:

$$P(B \otimes C)Q^{T} = P_{m_{1},m_{2}}(B \otimes C)P_{n_{1},n_{2}}^{T}$$

$$= I_{M}([(1:m_{2}:M), (2:m_{2}:M), \dots, (m_{2}:m_{2}:M)],:)$$

$$(B \otimes C)$$

$$I_{N}([(1:n_{1}:N), (2:n_{1}:N), \dots, (n_{1}:n_{1}:N)],:)$$

Ο όρος με το I_M είναι μεγέθους $M\times M$, ο όρος $B\otimes C$ είναι $M\times N$ και ο όρος με το I_N είναι μεγέθους $N\times N$. Επομένως το αποτέλεσμα θα είναι ένα $M\times N$ μητρώο.

Αν κοιτάξουμε προσεκτικά τον παραπάνω τύπο και συγκρίνουμε με το αναλυτικό παράδειγμα με το μητρώο A στην αρχή της σελ. 27 του συγγράματος, παρατηρούμε πως στην πραγματικότητα το αποτέλεσμα πρόκειται για μεταθέσεις γραμμών του $B\otimes C$ ανά m_2 και μεταθέσεις στηλών ανά n_1 . Αυτές οι ενέργειες οδηγούν στο γινόμενο $C\otimes B$.

1.6 Ερώτημα 6

(GvL A1.3.8 - προσοχή στο βιβλίο εκ παραδρομής αντί του συμβόλου της αναστροφής, γράφτηκε \otimes .) Να δείξετε ότι αν $B \in \mathbb{R}^{p \times p}$ και $C \in \mathbb{R}^{q \times q}$ και

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix},$$

όπου $x_i \in \mathbb{R}^q$, τότε

$$x^{T}(B \otimes C)x = \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{ij}(x_{i}^{T}Cx_{j})$$

Ακολουθούν τα μεγέθη για τον κάθε όρο στην παραπάνω έκφραση:

$$x^{T} \to 1 \times pq,$$

$$(B \otimes C) \to pq \times pq,$$

$$x \to pq \times 1.$$

Άρα το τελικό αποτέλεσμα είναι βαθμωτός.

Εάν εκτελέσουμε πρώτα το γινόμενο $(B \otimes C)x$, τότε έχουμε:

$$\begin{bmatrix} \beta_{11}C & \cdots & \beta_{1p}C \\ \beta_{21}C & \cdots & \beta_{2p}C \\ \vdots & \ddots & \vdots \\ \beta_{p1}C & \cdots & \beta_{pp}C \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$$

όπου το πρώτο μητρώο είναι ένα μπλοκ μητρώο που αποτελείται από τα στοιχεία $\beta_{ij}C$, και πολλαπλασιάζεται με το διάνυσμα-στήλη x.

Η εξίσωση που περιγράφει τον πολλαπλασιασμό αυτόν είναι:

$$\sum_{i=1}^{p} \sum_{j=1}^{p} (\beta_{ij} C) x_j$$

Αυτός ο πολλαπλασιασμός δίνει ένα διάνυσμα-στήλη διαστάσεων $pq \times 1$, το οποίο στη συνέχεια πολλαπλασιάζεται με το

$$x^T = \begin{bmatrix} x_1^T & x_2^T & \cdots & x_p^T \end{bmatrix}$$

δίνοντας την τελική εξίσωση:

$$\sum_{i=1}^{p} \sum_{j=1}^{p} x_i^T(\beta_{ij}C) x_j$$

1.7 Ερώτημα 7

Δίνονται $A\in\mathbb{R}^{n\times n},\ u,v\in\mathbb{R}^n$ διανύσματα (στήλες) και k ακέραιος τέτοιος ώστε $k\le n.$ Να δείξετε ότι υπάρχουν μητρώα $U,V\in\mathbb{R}^{n\times k}$ ώστε να ισχύει

$$(A + uv^T)^k = A^k + UV^T$$

και να δείξετε πώς να το υπολογίσετε αποδοτικά. Ποιό είναι το αντίστοιχο Ω ;

ΑΠΑΝΤΗΣΗ:

 Δ ίνονται:

- Ένα μητρώο $A \in \mathbb{R}^{n \times n}$.
- Δύο διανύσματα $u, v \in \mathbb{R}^n$.
- Ένας αχέραιος $k \leq n$.

Ο στόχος είναι να δείξουμε ότι υπάρχουν μητρώα $U,V\in\mathbb{R}^{n\times k}$ έτσι ώστε:

$$(A + uv^T)^k = A^k + UV^T,$$

και να υπολογίσουμε την έκφραση αυτή με αποδοτικό τρόπο.

Υπολογισμός των Πρώτων Δυνάμεων

Θα υπολογίσουμε αρχικά τις πρώτες δυνάμεις για k=1,2,3 ώστε να φτάσουμε επαγωγικά σε κάποιον τελικό τύπο που ενδεχομένως να αποκαλύψει τρόπους αποδοτικού υπολογισμού.

Για k = 1, έχουμε:

$$(A + uv^T)^1 = A + uv^T.$$

Αυτή είναι απλώς η αρχική μορφή του $A + uv^T$, χωρίς πρόσθετους όρους.

 Γ ia k=2:

Χρησιμοποιώντας τη σχέση:

$$(A + uv^T)^2 = (A + uv^T)(A + uv^T),$$

αναπτύσσουμε το γινόμενο:

$$(A + uv^T)^2 = A \cdot A + A \cdot uv^T + uv^T \cdot A + uv^T \cdot uv^T.$$

Αναλυτικά, κάθε όρος είναι:

$$A \cdot A = A^{2},$$

$$A \cdot uv^{T} = Au \cdot v^{T},$$

$$uv^{T} \cdot A = u \cdot (v^{T}A),$$

$$uv^{T} \cdot uv^{T} = u \cdot (v^{T}u) \cdot v^{T} = (v^{T}u) \cdot (uv^{T}),$$

που είναι το μητρώο uv^T scaled κατά τον βαθμωτό v^Tu . Τελικά, για k=2, προκύπτουν οι όροι:

$$(A + uv^T)^2 = A^2 + Au \cdot v^T + u \cdot (v^T A) + (v^T u) \cdot (uv^T).$$

Για k = 3, έχουμε:

Χρησιμοποιώντας ομοίως τη σχέση:

$$(A + uv^T)^3 = (A + uv^T) \cdot (A + uv^T)^2.$$

Αντικαθιστώντας το $(A+uv^T)^2$ από πριν, έχουμε:

$$(A + uv^{T})^{3} = (A + uv^{T}) \cdot (A^{2} + Au \cdot v^{T} + u \cdot (v^{T}A) + (v^{T}u) \cdot (uv^{T})).$$

Αναπτύσσοντας το γινόμενο αυτό, κάθε όρος περιέχει μια διαδοχική εφαρμογή του A στους όρους u και v. Προκύπτουν τελικά όροι της μορφής $A^iu\cdot (A^jv)^T$, όπως:

$$A^{3},$$

$$A^{2}u \cdot v^{T},$$

$$Au \cdot (v^{T}A),$$

$$u \cdot (v^{T}A^{2}).$$

Επαγωγικά λοιπόν, κάθε επόμενη δύναμη $(A+uv^T)^k$ θα περιέχει συνδυασμούς όρων της μορφής $A^iu\cdot(A^jv)^T$, όπου οι δείκτες i και j αντιστοιχούν σε διαδοχικές εφαρμογές του A ή του A^T στα διανύσματα u και v, αντίστοιχα. Αυτό είναι κρίσιμο για την κατασκευή των μητρώων U και V όπως εξηγείται στη συνέχεια.

Για να συλλάβουμε όλους τους όρους που εμφανίζονται στις δυνάμεις του $A+uv^T$ μέχρι την τάξη k, ορίζουμε τα μητρώα U και V ως εξής:

• Ορισμός του U:

$$U = [u, Au, A^2u, \dots, A^{k-1}u] \in \mathbb{R}^{n \times k}.$$

Κάθε στήλη του U είναι της μορφής A^iu , όπου $i=0,1,\ldots,k-1$, και αντιστοιχεί σε κάθε διαδοχική εφαρμογή του A πάνω στο u.

\bullet Ορισμός του V:

$$V = [v, A^T v, (A^2)^T v, \dots, (A^{k-1})^T v] \in \mathbb{R}^{n \times k}.$$

Κάθε στήλη του V είναι της μορφής $(A^j)^T v$, όπου $j=0,1,\ldots,k-1$, και αντιστοιχεί σε κάθε διαδοχική εφαρμογή του A^T πάνω στο v.

Έτσι, το γινόμενο UV^T περιέχει όλους τους συνδυασμούς των όρων $A^iu\cdot(A^jv)^T$ που εμφανίζονται στις διαδοχικές δυνάμεις του $(A+uv^T)^k$, καλύπτοντας όλους τους απαραίτητους όρους που προκύπτουν από την σχέση που ανέλυσα παραπάνω με επαγωγή.

Το γινόμενο UV^T παράγει αχριβώς αυτούς τους όρους, ενώ ο όρος A^k διατηρεί τη βασική δύναμη του A χωρίς την επίδραση του uv^T .

Επομένως, έχουμε:

$$(A + uv^T)^k = A^k + UV^T.$$

Η κατασκευή των μητρώων U και V επιτρέπει τον αποδοτικό υπολογισμό της έκφρασης με πολυπλοκότητα $\mathcal{O}(kn^2)$, καθώς απαιτεί μόνο k πολλαπλασιασμούς με το μητρώο A και το ανάστροφό του, σε αντίθεση με την πλήρη εξαντλητική επέκταση του $(A+uv^T)^k$, η οποία θα ήταν πολύ πιο κοστοβόρα.

Συμπέρασμα: Απεδείχ ϑ η επομένως ότι υπάρχουν μητρώα U,V όπως κατασκευάστηκαν παραπάνω, ώστε:

$$(A + uv^T)^k = A^k + UV^T,$$

με αποδοτικό τρόπο υπολογισμού που εκμεταλλεύεται την προσθήκη του uv^T στο A, ώστε να προκύψει ένας αναδρομικός τύπος υπολογισμού των όρων του αποτελέσματος ο οποίος μας γλιτώνει από περίπλοκες πράξεις.

1.8 Ερώτημα 8

 Δ ίνεται

$$A = \begin{bmatrix} I_n & xy^T \\ yx^T & -I_n \end{bmatrix}$$

όπου τα $x,y\in\mathbb{R}^n$ είναι διανύσματα στήλες και I_n είναι το ταυτοτικό μητρώο συμβατού μεγέθους (πρόκειται για ειδική περίπτωση Χαμιλτονιανού μητρώου, βλ. GvL ενότητα 1.3.10). Έστω επίσης τυχαίο $B\in\mathbb{R}^{n\times m}$.

- (α) Να κατασκευάσετε συνάρτηση MATLAB η οποία δοθέντων των x,y κατασκευάζει το A. Η συνάρτηση να λέγεται HamIbuild(x,y) όπου x,y είναι ισομεγέθη διανύσματα (στήλες).
- (β) Για $n = 2^{[6:12]}$ να εκτελέσετε τις εντολές:

```
x = rand(n, 1);
y = rand(n, 1);
I = eye(n);
B = rand(n, 1);
A = HamIbuild(x, y);
C = mtimes(A, B)
```

και να χρονομετρήσετε τα runtimes της τελευταίας εντολής (πολλαπλασιασμού) με αξιόπιστο τρόπο.

(γ) Να υλοποιήσετε εξειδικευμένο αλγόριθμο πολλαπλασιασμού μητρώων σαν και το παραπάνω με μητρώα $2^n \times s$ όπου η δεύτερη διάσταση s είναι πολύ μικρότερη του n. Η συνάρτηση να λέγεται HAMM(x,y,B). Να συγκρίνετε τα runtimes της με τα αποτελέσματα του (β). Σχολιάστε τα αποτελέσματα.

ΑΠΑΝΤΗΣΗ:

 Δ ες το αρχείο .mlx για τα α), β)

(γ) Η συνάρτηση HAMM(x, y, B) που υλοποίησα στο αρχείο .mlx εκμεταλλεύεται τη δομή του μητρώου A ώστε να μειώσει τον αριθμό των πράξεων (πολλαπλασιασμών) που απαιτούνται για τον υπολογισμό του γινομένου μητρώου επί μητρώο $A\cdot B$, ο οποίος χρειάζεται κανονικά $O(n^3)$ πράξεις.

Αρχικά, το μητρώο αποτελέσματος C αρχικοποιείται ως ένα μητρώο $2n\times s$ με μηδενικά στοιχεία. Έπειτα, προστίθεται σε αυτό το μητρώο B ως εξής:

- το πάνω μπλοχ $n \times s$ του B προστίθεται αυτούσιο,
- το κάτω μπλοκ $n\times s$ του B αφαιρείται από το C (ώστε να προστεθεί αλλά με αρνητικά στοιχεία λόγω του πολλαπλασιασμού με το $-I_n$).

Έτσι, έχουμε εκμεταλλευτεί την ύπαρξη των ταυτοτικών μητρώων στις γωνίες του μητρώου A και έχουμε γλιτώσει πολλαπλασιασμούς.

Στη συνέχεια, πρέπει στο παραπάνω μητρώο C να προσθέσουμε το αποτέλεσμα από τον πολλαπλασιασμό του xy^T με κάποια στοιχεία του B και του yx^T με κάποια άλλα στοιχεία του B. Αντί να εκτελέσουμε πρώτα τους πολλαπλασιασμούς των x,y που θα μας έδιναν ένα μητρώο $n\times n$, εκτελούμε πρώτα τον πολλαπλασιασμό ενός διανύσματος ορισμένων στοιχείων του B με το y^T και x^T αντίστοιχα και τον βαθμωτό που προκύπτει τον πολλαπλασιάζουμε με το x ή το y αντίστοιχα, και το τελικό διάνυσμα το προσθέτουμε στις σωστές θέσεις του μητρώου C.

Οι «σωστές θέσεις» που αναφέρω παραπάνω προσδιορίζονται με τη μορφή δεικτών στον επισυναπτόμενο κώδικα. Ακολουθεί εξήγηση:

- Το άνω αριστερό ταυτοτικό μητρώο πολλαπλασιάζεται με το επάνω $n \times s$ μπλοκ στοιχείων του B.
- Το κάτω δεξιό ταυτοτικό μητρώο με αρνητικό πρόσημο πολλαπλασιάζεται με τα υπόλοιπα στοιχεία του B (κάτω $n \times s$ μπλοκ).

Το γινόμενο xy^T πολλαπλασιάζεται με το κάτω $n\times s$ μπλοκ του B, ενώ το γινόμενο yx^T πολλαπλασιάζεται με το άνω $n\times s$ μπλοκ του B.

Αντί να πολλαπλασιάσω πρώτα το $n\times n$ μητρώο xy^T με το κάτω $n\times s$ μπλοκ του B, πολλαπλασιάζω πρώτα την κάθε στήλη j του κάτω $2n\times s$ μπλοκ με το y^T , και το βαθμωτό αυτό αποτέλεσμα με το x. Το διάνυσμα-στήλη που προκύπτει για κάθε j, το προσθέτω στο C(1:n,j). Ομοίως για την περίπτωση του yx^T με το μόνο που αλλάζει να είναι το μπλοκ του B με το οποίο ασχολούμαι.