Appendix A

Technical Lemmas

Lemma A.1. Let a > 0. Then: $x \ge 2a \log(a) \Rightarrow x \ge a \log(x)$. It follows that a necessary condition for the inequality $x < a \log(x)$ to hold is that $x < 2a \log(a)$.

Proof. First note that for $a \in (0, \sqrt{e}]$ the inequality $x \ge a \log(x)$ holds unconditionally and therefore the claim is trivial. From now on, assume that $a > \sqrt{e}$. Consider the function $f(x) = x - a \log(x)$. The derivative is f'(x) = 1 - a/x. Thus, for x > a the derivative is positive and the function increases. In addition,

$$f(2a\log(a)) = 2a\log(a) - a\log(2a\log(a))$$

= $2a\log(a) - a\log(a) - a\log(2\log(a))$
= $a\log(a) - a\log(2\log(a))$.

Since $a - 2\log(a) > 0$ for all a > 0, the proof follows.

Lemma A.2. Let $a \ge 1$ and b > 0. Then: $x \ge 4a \log(2a) + 2b \implies x \ge a \log(x) + b$.

Proof. It suffices to prove that $x \ge 4a \log(2a) + 2b$ implies that both $x \ge 2a \log(x)$ and $x \ge 2b$. Since we assume $a \ge 1$ we clearly have that $x \ge 2b$. In addition, since b > 0 we have that $x \ge 4a \log(2a)$ which using Lemma A.1 implies that $x \ge 2a \log(x)$. This concludes our proof.

Lemma A.3. Let X be a random variable and $x' \in \mathbb{R}$ be a scalar and assume that there exists a > 0 such that for all $t \ge 0$ we have $\mathbb{P}[|X - x'| > t] \le 2e^{-t^2/a^2}$. Then, $\mathbb{E}[|X - x'|] \le 4a$.

Proof. For all i = 0, 1, 2, ... denote $t_i = ai$. Since t_i is monotonically increasing we have that $\mathbb{E}[|X - x'|]$ is at most $\sum_{i=1}^{\infty} t_i \mathbb{P}[|X - x'| > t_{i-1}]$. Combining this with the assumption in the lemma we get that $\mathbb{E}[|X - x'|] \leq 2a \sum_{i=1}^{\infty} ie^{-(i-1)^2}$. The proof now follows from the inequalities

$$\sum_{i=1}^{\infty} i e^{-(i-1)^2} \le \sum_{i=1}^{5} i e^{-(i-1)^2} + \int_{5}^{\infty} x e^{-(x-1)^2} dx < 1.8 + 10^{-7} < 2.$$

369

Lemma A.4. Let X be a random variable and $x' \in \mathbb{R}$ be a scalar and assume that there exists a > 0 and $b \ge e$ such that for all $t \ge 0$ we have $\mathbb{P}[|X - x'| > t] \le 2b e^{-t^2/a^2}$. Then, $\mathbb{E}[|X - x'|] \le a(2 + \sqrt{\log(b)})$.

Proof. For all i = 0, 1, 2, ... denote $t_i = a(i + \sqrt{\log(b)})$. Since t_i is monotonically increasing we have that

$$\mathbb{E}[|X-x'|] \le a\sqrt{\log(b)} + \sum_{i=1}^{\infty} t_i \,\mathbb{P}[|X-x'| > t_{i-1}].$$

Using the assumption in the lemma we have

$$\sum_{i=1}^{\infty} t_{i} \mathbb{P}[|X - x'| > t_{i-1}] \leq 2ab \sum_{i=1}^{\infty} (i + \sqrt{\log(b)})e^{-(i-1 + \sqrt{\log(b)})^{2}}$$

$$\leq 2ab \int_{1 + \sqrt{\log(b)}}^{\infty} xe^{-(x-1)^{2}} dx$$

$$= 2ab \int_{\sqrt{\log(b)}}^{\infty} (y+1)e^{-y^{2}} dy$$

$$\leq 4ab \int_{\sqrt{\log(b)}}^{\infty} ye^{-y^{2}} dy$$

$$= 2ab \left[-e^{-y^{2}} \right]_{\sqrt{\log(b)}}^{\infty}$$

$$= 2ab/b = 2a.$$

Combining the preceding inequalities we conclude our proof.

Lemma A.5. Let m, d be two positive integers such that $d \le m-2$. Then,

$$\sum_{k=0}^{d} {m \choose k} \le \left(\frac{e\,m}{d}\right)^{d}.$$

П

Proof. We prove the claim by induction. For d = 1 the left-hand side equals 1 + m while the right-hand side equals em; hence the claim is true. Assume that the claim holds for d and let us prove it for d + 1. By the induction assumption we have

$$\begin{split} \sum_{k=0}^{d+1} \binom{m}{k} &\leq \left(\frac{e\,m}{d}\right)^d + \binom{m}{d+1} \\ &= \left(\frac{e\,m}{d}\right)^d \left(1 + \left(\frac{d}{e\,m}\right)^d \frac{m(m-1)(m-2)\cdots(m-d)}{(d+1)d!}\right) \\ &\leq \left(\frac{e\,m}{d}\right)^d \left(1 + \left(\frac{d}{e}\right)^d \frac{(m-d)}{(d+1)d!}\right). \end{split}$$

Using Stirling's approximation we further have that

$$\leq \left(\frac{em}{d}\right)^d \left(1 + \left(\frac{d}{e}\right)^d \frac{(m-d)}{(d+1)\sqrt{2\pi d}(d/e)^d}\right)$$

$$= \left(\frac{em}{d}\right)^d \left(1 + \frac{m-d}{\sqrt{2\pi d}(d+1)}\right)$$

$$= \left(\frac{em}{d}\right)^d \cdot \frac{d+1+(m-d)/\sqrt{2\pi d}}{d+1}$$

$$\leq \left(\frac{em}{d}\right)^d \cdot \frac{d+1+(m-d)/2}{d+1}$$

$$= \left(\frac{em}{d}\right)^d \cdot \frac{d/2+1+m/2}{d+1}$$

$$\leq \left(\frac{em}{d}\right)^d \cdot \frac{m}{d+1},$$

where in the last inequality we used the assumption that $d \le m - 2$. On the other hand,

$$\left(\frac{e\,m}{d+1}\right)^{d+1} = \left(\frac{e\,m}{d}\right)^d \cdot \frac{e\,m}{d+1} \cdot \left(\frac{d}{d+1}\right)^d$$

$$= \left(\frac{e\,m}{d}\right)^d \cdot \frac{e\,m}{d+1} \cdot \frac{1}{(1+1/d)^d}$$

$$\geq \left(\frac{e\,m}{d}\right)^d \cdot \frac{e\,m}{d+1} \cdot \frac{1}{e}$$

$$= \left(\frac{e\,m}{d}\right)^d \cdot \frac{m}{d+1},$$

which proves our inductive argument.

Lemma A.6. For all $a \in \mathbb{R}$ we have

$$\frac{e^a + e^{-a}}{2} \le e^{a^2/2}.$$

Proof. Observe that

$$e^a = \sum_{n=0}^{\infty} \frac{a^n}{n!}.$$

Therefore,

$$\frac{e^a + e^{-a}}{2} = \sum_{n=0}^{\infty} \frac{a^{2n}}{(2n)!},$$

and

$$e^{a^2/2} = \sum_{n=0}^{\infty} \frac{a^{2n}}{2^n n!}.$$

Observing that $(2n)! \ge 2^n n!$ for every $n \ge 0$ we conclude our proof.