Lecture 17: Social Dynamics & Cooperativity on Networks

Social dynamics on networks

- We have studied the statistical properties of complex networks so far
- How about the dynamics on the networks
- Such as social dynamics, e.g. various social games
- Prisoner's dilemma (PD) game
- Amount of cooperativity
- Evolution of cooperativity
- Dependence on network structure

The puzzle of emergence of cooperation

He who was ready to sacrifice his life (...), rather than betray his comrades, would often leave no offspring to inherit his noble nature... Therefore, it seems scarcely possible (...) that the number of men gifted with such virtues (...) would be increased by natural selection, that is, by the survival of the fittest.

Charles Darwin (Descent of Man, 1871)

One of the problems for the next century

How Did Cooperative Behavior Evolve

E. Pennisi, *Science* **309**, 93 (2005)

"Others with a mathematical bent are applying evolutionary game theory, a modeling approach developed for economics, to quantify cooperation and predict behavioral outcomes under different circumstances."

The Prisoners' Dilemma (PD)

- A simple game that has become the dominant paradigm for social scientists since it was invented about 1960.
- How the game works -- a simple narrative.
- PD games help to explain why we do dumb things
- Modeling PD:
 - Game theoretic problems: payoffs for each player depend on actions of both
 - Two possible strategies: An agent cooperates when she performs value-increasing promises, and defects when she breaches

Cooperate	

Defect

Cooperate	

	Defect

Modeling Two-party choice: both cooperate

Player 2

	Cooperate	Defect
Cooperate	Both cooperate	
Defect		

Modeling Two-party choice: both defect

Player 2

	Cooperate	Defect
Cooperate		
Defect		Both defect

Player 2

	Cooperate	Defect
Cooperate		Player 1 cooperates, Player 2 defects
Defect		

Player 2

	Cooperate	Defect
Cooperate		
Defect	Player 1 defects, Player 2 cooperates	

Player 2

	Cooperate	Defect
Cooperate	Both cooperate	Player 1 cooperates, Player 2 defects
Defect	Player 1 defects, Player 2 cooperates	Both defect

Let's examine Joint Cooperation

Player 2

	Cooperate	Defect
Cooperate	Both cooperate	
Defect		

Player 2

	Cooperate	Defect
Cooperate		
Defect		Both defect

Player 1: Sucker's Payoff

Player 2

	Cooperate	Defect
Cooperate		Player 1 cooperates, Player 2 defects
Defect		

Player 1: Defector's Payoff

Player 2

	Cooperate	Defect
Cooperate		
Defect	Player 1 defects, Player 2 cooperates	

Let's apply this to promising

Player 2

	Cooperate	Defect
Cooperate	Both cooperate	Player 1 gets sucker's payoff
Defect	Player 1 defector's payoff	Both defect

Modeling Promisor Choices

Player 2

	Cooperate	Defect
Cooperate	Both promise and perform	Player 2 breaches, Player 1 performs
Defect	Player 1 performs, player 2 breaches	Both defect: No one performs

Plugging in payoffs

First number is payoff for Player 1 Second number is payoff for Player 2

Player 2

Player 1 Cooperate 3, 3 -1, 4

Defect 4, -1 0, 0

Defection dominates for Player 1

Defection dominates for Player 2

Player 2

	Cooperate	Defect
Cooperate	3	\rightarrow 4
Defect	-1	→ 0

Cooperate Defect

Cooperate a c

Defect b d

I am always better off if the opponent cooperates

a+a is greater than any other summation of payoffs

Player 2

	Cooperate	Defect
Cooperate	a+a	C+C
Defect	b+b	d+d

Defection is favored individually

Declining average fitness

Without any mechanism for the evolution of cooperation, natural selection favors defectors. In a mixed population, defectors, D, have a higher payoff (= fitness) than cooperators, C. Therefore, natural selection continuously reduces the abundance, i, of cooperators until they are extinct. The average fitness of the population also declines under natural selection. The total population size is given by N. If there are i cooperators and N – i defectors, then the fitness of cooperators and defectors, respectively, is given by $f_C = [b(i-1)/(N-1)] - c$ and $f_D = bi/(N-1)$. The average fitness of the population is given by $f_C = [b(i-1)/(N-1)] - c$ and $f_D = bi/(N-1)$.

The paradox of the PD game

- While cooperation is collectively rational, defection is individually rational.
- The undersupply of cooperation is "the tragedy of the commons." Garrett Hardin, The Tragedy of the Commons (1968).

- Consider a social network
- Individuals are capable of making rational choices, modeled in terms of a game, associated with welldefined strategies
- Let's restrict the analysis to symmetric two-player games such as PD
- Let's look at the nodes as players
- Each player is a pure strategist, adopting either a cooperative (C) or a defecting (D) strategy

- It is not difficult to show that it is best to defect for rational players to get the highest payoff independently in a single round of the PD
- But mutual cooperation results in a higher income for both of them.
- Therefore, this situation creates the so-called dilemma for selfish players.

- The defector will always have the highest reward T
 (temptation to defect) when playing against the
 cooperator which will receive the lowest payoff S (sucker
 value)
- If both cooperate, they will receive a payoff R (reward for cooperation)
- If both defect, they will receive a payoff P (punishment)
- Moreover, these four payoffs satisfy the following inequalities: T>R>P>S and T+S<2R

Payoff	C	D
C	(R;R)	(S; T)
D	(T; S)	(P; P)

Calculating the cooperativity

- One of the important issues in this context is to study the fraction of cooperating agents
- We start from an initial configuration with equal number of cooperating (C) and defecting (D) agents that are randomly distributed across the network
- At each generation, each agent plays with its neighbours and payoffs are accrued as dictated by the PD payoff matrix (previous page)
- Accumulated payoffs of all agents are computed by adding up the results of the games with their neighbours

Calculating the cooperativity

- All players update their strategies synchronously by the following rules
 - Each individual i chooses at random a neighbour j and compares its payoff P_i with P_i
 - If P_i > P_j, player i keeps the same strategy for the next generation
 - If, P_i < P_j, the player i adopts the strategy of its neighbour j for the next round of the game with probability

$$P_{i \to j} = \frac{P_j - P_i}{b \times maximum\{K_i, K_j\}},$$

where K_i is the degree of player i.

Calculating the cooperativity

- We let the system evolve until a stationary state is reached characterized by a stable average level of cooperativity, that is the fraction of C agents in the network #C
- To compute #C we let the dynamics evolve over a transient time windows W₁, and we further evolve the system over time windows of W₂ generations
- In each time window, we compute the average value and the variation of #C
- When the variation is less than or equal to 1/√N, we stop the simulation and consider the average cooperation obtained in the last time window as the coopeartivity of the network

- each player plays a PD with its neighbors
- Let's represent the players' strategies with twocomponent vector, taking the value $\underline{s}=(1,0)$ for Cstrategist and $\underline{s}=(0,1)$ for D-strategist. The total payoff of a certain player x is the sum over all interactions, so the payoff \underline{P}_x can be written as

$$P_{x} = \sum_{y \in \Omega_{x}} s_{x} A s_{y}^{\mathrm{T}},$$

• where $\Omega_{\underline{x}}$ is the set of neighbors of element x and A is the payoff matrix

$$A = \begin{bmatrix} R & S \\ T & P \end{bmatrix}.$$

Nowak and May proposed the following simplified version of the payoff matrix

$$A = \begin{bmatrix} 1 & 0 \\ b & 0 \end{bmatrix},$$

- b represents the advantage of defectors over cooperators and <u>1<b<2</u>.
- Therefore, we can rescale the game depending on the single parameter b.

PD game on complex networks

- After this, the player x will inspect the payoff collected by its neighbors in the generation, and then update its strategy for the next generation to play by the following rule:
 - It will select one player y randomly from its neighbors
 - Whenever $\underline{P_y} > \underline{P_x}$, player x will adopt the strategy of player y with probability given by $\underline{W_{sx \leftarrow sy}} = (\underline{P_y} \underline{P_x})/(\underline{Dk_y})$, where $\underline{k_z} = \max\{\underline{k_x}, \underline{k_y}\}$ and $\underline{D} = \underline{T} \underline{S} = \underline{b}$. $\underline{k_x}$ and $\underline{k_y}$ are the degrees of players x and y, respectively
 - The synchronous update is used, where all the players decide their strategies at the same time. All pairs of players x and y who are directly connected on the network model engage in each generation of the PD by using the above update rule

Some simulation results

- We are usually interested in the fraction of cooperating agents #C at the end of the simulation
- The most important issue is the interplay between #C and the structure of the network
- Specific structure may favor cooperativity
- Let's look at some results

PD game on scale-free networks

Frequency of cooperators on different networks. Results for the PD shown as a function of the cheating advantage b. Results for (a) regular networks with different values of the average connectivity z; (b) scale-free ones and different values of z. In all cases, N=10⁴. Cooperation hardly dominates on regular networks, but clearly dominates for all values of b on scale-free ones generated including growth and preferential attachment

PD game on scale-free networks

Evolution of defectors by degree. The figure provides a typical scenario for the change in the distribution of defectors by degree, occurring as a result of evolution under natural selection. The crosshatched bars show the fraction of vertices initially occupied by defectors (≈50%), for each degreerange specified by the intervals shown. Evolution leads to a stationary regime, with a distribution of defectors given by the solid bars. Clearly, defectors are efficiently wiped out from those vertices with largest connectivity, managing to survive as moderately connected individuals (results obtained for $N=10^3$, z=4 and b=1.7). 40

PD game on scale-free networks

Results for the evolution of cooperation in networks exhibiting SF and truncated SF degree distributions. In all cases, the size is $N=10^4$ and the average connectivity is z=4. The results for the BA model (solid circles) are compared with those obtained with the minimal model of Dorogotsev et al. (2001; solid squares) and the truncated BA model, imposing cut-offs of 20, 40, and 60 for the maximum connectivity. As one continues to reduce the cut-off for maximum vertex connectivity, a sudden collapse of cooperation takes place, the behaviour resembling closely that obtained for the evolution of cooperation on regular networks.

A model network with M = 3 communities and $m_0 = 3$. The red dots (n) are chosen to connect to each other between every two different communities

The degree-distribution of a network with N = 6000, M = 3, n = 1 and m_0 = 3

Frequency of cooperators for the PD as a function of the parameter b for different values of the average degree a, 4; b, 6; c, 8; d, 12. The colored lines in each subgraph correspond to different m and n for a fixed value of the average degree

Frequency of cooperators in the PD as a function of the parameter b for different values of m, given a fixed value of n = 1

Frequency of cooperators in the PD as a function of the parameter b for different values of n, give fixed values of m = 3 and m_0 = 3

A number of real-world networks with the following properties are considered

Туре	Real-world networks	N	<k></k>	Std (k)	APL	C
	Yeast Protein interaction	1458	2.68	3.45	6.71	0.08
Biological	Human Brain	82	8.86	4.22	2.66	0.57
	Protein Structure	95	4.48	1.45	6.22	0.40
Social	Email communication	1163	9.62	9.34	3.60	0.22
	Dolphins' social interaction	62	5.12	2.96	3.3	0.26
	Zachary Karate Club	34	4.59	3.88	2.34	0.57
	Net-science	1589	3.45	3.47	6.02	0.64
	Coauthorships	1309		J.41	0.02	0.04

The significant level of network motifs, normalized Z-scores, in the networks

Similarity between the significance levels of motifs in the networks as measured by Spearman correlation. The corresponding P-values are presented in parenthesis.

	Yeast	Brain	Pr.Str.	Email	Dolphin	Karate	Coauth.
Yeast	-	0.78 (1.2E-09)	0.85 (1.2E-12)	0.92 (1.0E-17)	0.81 (7.3E-11)	0.72 (7.5E-08)	0.87 (8.9E-14)
Brain	0.78 (1.2E-09)	-	0.74 (1.6E-08)	0.80 (1.4E-10)	0.89 (1.4E-15)	0.70 (2.2E-07)	0.84 (2.8E-12)
Protein Structure	0.85 (1.2E-12)	0.74 (1.6E-08)	-	0.93 (4.2E-19)	0.78 (1.5E-09)	0.62 (1.1E-05)	0.78 (8.0E-10)
Email	0.92 (1.0E-17)	0.80 (1.4E-10)	0.93 (4.2E-19)	-	0.83 (6.3E-12)	0.67 (1.3E-06)	0.86 (1.8E-13)
Dolphin	0.81 (7.2E-11)	0.89 (1.4E-15)	0.78 (1.5E-09)	0.83 (6.3E-12)	-	0.82 (3.3E-11)	0.89 (3.5E-15)
Karate	0.72 (7.4E-08)	0.70 (2.2E-07)	0.62 (1.1E-05)	0.67 (1.3E-06)	0.82 (3.3E-11)	-	0.69 (4.1E-07)
Coauthorship	0.87 (8.9E-14)	0.84 (2.8E-12)	0.78 (8.1E-10)	0.86 (1.8E-13)	0.89 (3.5E-15)	0.69 (4.1E-07)	-

Size	ID	Motif	(C#)	ID	Motif	(C#)	ID	Motif	(C#)
		1			\wedge				
3	1	7	0.370	2	\leftarrow	0.180			
4	3	\sim	0.325	4	$ \boxtimes$	0.293	5		0.340
•	-	17	0.323	•	17	0233	,	W	0.540
	6	-X	0.404	7	×	0.452	8	.X.	0.414
		V			-II			-1I	
5	9	4 / `` s	0.358	10	f	0.396	11	Įa ^{r~} s•	0.412
	12	-4-	0.382	13	11	0.280	14		0.260
					- K-	02110		~ * ~	5.200
	15	4	0.390	16	1-7-	0.358	17	4	0.357
6		~			\sim			\sim	
	18	~	0.412	19	~_1	0.317	20	~_	0.378
	21	- -	0.262	22	4	0.288	23		0.372
		**		_	- X*			*	
	24	- L-34	0.288	25	•4	0.298	26	444	0.342
		XX.			X			-X	
	27		0.257	28	2.4	0.342	29	~~**	0.288
	30	\sim	0.345	31	-2 $\sqrt{1}$	0.377	32	4	0.237
	30	****	0.343	31	1 1	0.377	32	1 7	0.237
	33	4	0.240	34	14	0.358	35	لمساكمة	0.303
					i.Ad			\sim	
	36	***	0.230	37	*	0.158	38	47.4	0.207
	20	Δ		40	\triangle			4	0.10-
	39	747	0.240	40	777	0.222	41	-	0.168
	42	XI.	0.175	43	× 7.74	0.185			

Cooperativity #C in various subgraph structures

The Spearman rank correlation between the #C of motifs and their Z-score in the networks.

True o	Dool swould noteworks	Spearman Correlation			
Туре	Real-world networks	r	P-value		
	Yeast Protein interaction	-0.4564	0.0024		
Biological	Human Brain	-0.4369	0.0038		
	Protein Structure	-0.6085	1.91E-05		
	Email communication	-0.5367	2.48E-04		
C:-1	Dolphins' social interaction	-0.4074	0.0074		
Social	Zachary Karate Club	-0.3466	0.0246		
	Net-science Coauthorships	-0.3514	0.0225		

Source, Salehi et al, Physica A, 2010

Readings

- Hisashi Ohtsuki, Christoph Hauert, Erez Lieberman, and Martin A. Nowak, A simple rule for the evolution of cooperation on graphs and social networks, Nature, 441: 502-505, 2006.
- F. C. Santos and J. M. Pacheco, Scale-Free Networks Provide a Unifying Framework for the Emergence of Cooperation, Physical Review Letters, 95: 098104, 2005.