Pour chacune des suites (u_n) suivantes, calculez les quatre premiers termes puis conjecturez sur la nature de la suite (arithmétique ou non). Dans le cas d'une suite artithmétique, indiquez le premier terme et la raison.

- **a.** $u_0=13$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=u_n-6$.
- **b.** $u_0=3$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=u_n+n$.
- **c.** Pour tout $n\in\mathbb{N}$, $u_n=-3n+8$.
- **d.** Pour tout $n \in \mathbb{N}$, $u_n = n^2 2n + 1$.
- **e.** Pour tout $n \in \mathbb{N}$, $u_n = (n-2)^2 (n+1)^2.$
- **f.** Pour tout $n \in \mathbb{N}$, $u_n = \sqrt{9n^2 + 6n + 1}$.

- $\begin{array}{l} \mathbf{g.}\ u_0=-15\ \text{et pour tout}\ n\in\mathbb{N},\ u_{n+1}+u_n=6.\\ \mathbf{h.}\ u_0=5\ \text{et pour tout}\ n\in\mathbb{N},\ \frac{u_{n+1}}{u_n}=2.\\ \mathbf{i.}\ u_1=\sqrt{3}\ \text{et pour tout}\ n\in\mathbb{N},\ \frac{u_{n+1}-u_n}{\sqrt{2}}=\sqrt{6}. \end{array}$

 $lacksquare{1}{2}$ Dans chaque cas la suite (u_n) est arithmétique. Indiquez le premier terme u_0 et la raison de la suite.

- **a.** $u_5=3$ et $u_6=-6$. **b.** $u_3=5$ et $u_7=17$.
- c. $u_6=0$ et $u_{42}=18$. d. $u_{14}=rac{5}{6}$ et $u_{20}=rac{4}{3}$.

E3 Chaque suite u_n est arithmétique de raison r. Calculez les quatre premiers termes, puis déterminez le terme demandé et enfin pour quels entiers n l'inégalité est vérifiée.

- a. $u_0=-15$ et r=2 ; u_{100} ; $u_n\geqslant 1000$.
- **b.** $u_0 = 3$ et r = -5 ; u_{100} ; $u_n < -997$.
- **c.** $u_1=6$ et r=0.15 ; u_{100} ; $u_n\geqslant 51$. **d.** $u_0=0$ et $r=\cos\left(\frac{\pi}{6}\right)$; u_{100} ; $u_n\geqslant 1000\sqrt{3}$.

- a. Recopiez et complétez l'addition suivante :
- **b.** Retrouvez la formule du calcul de la somme Sdes n premiers entiers naturels non nuls.

E5 Pour chacune des questions on utilisera la formule du calcul de la somme des n premiers entiers naturels non nuls.

- **a.** Calculez $1 + 2 + 3 + 4 + \ldots + 2000000$.
- **b.** Calculez $1+2+3+4+\ldots+15$ puis en déduire $3+6+9+12+\ldots+45$.
- **c.** Calculez $1+2+3+4+\ldots+200$ puis en déduire $1 + 2 + 3 + 4 + \ldots + 201$.
- **d.** Calculez $1+2+3+4+\ldots+40$ puis en déduire $1+3+5+7+9+\ldots+81$.

Indice :
$$1 + 3 + 5 + 7 + 9 + \ldots = 1 + 2 + 3 + 4 + \ldots \\ + 1 + 2 + 3 + \ldots$$

- **a.** Calculez $1+2+\ldots+50$ puis $1+2+\ldots+100$ en utilisant la formule du calcul de la somme des npremiers entiers naturels non nuls.
- **b.** En déduire un calcul de $51+52+\ldots+100$ de deux manières.
- **c.** Soit u_n une suite arithmétique de raison 1 et de premier terme $u_0=51$. Déterminez le 50ème terme de cette suite. Retrouvez le résultat de la question précédente en utilisant la formule du calcul de la somme des n premiers termes d'une suite arithmétique.

 $lacksymbol{arepsilon}$ On considère la suite arithmétique u_n de raison 3 et de premier terme $u_0=4$ et la suite v_n définie pour tout entier naturel n par

- a. Calculez les quatre premiers termes de la suite (u_n) .
- **b.** Déterminez le terme général de la suite (u_n) .
- ${f c.}$ Calculez la somme S des 20 premiers termes de la suite (u_n) .
- d. Calculez les quatre premiers termes de la suite (v_n) .
- **e.** Montrez que la suite (v_n) est la suite des entiers naturels non nuls.
- ${f f.}$ Calculez la somme des 20 premiers termes de la suite (v_n) .
- g. Reprendre les questions à partir de la question c. mais en considérant la somme S^\prime des 50 premiers termes.
- **h.** Calculez de deux manières $u_{20}+u_{21}+\ldots+u_{49}$.
- Les suites ci-dessous sont arithmétiques et définies sur \mathbb{N} .

Décrire la suite puis indiquez pour chacune d'elles si elle est croissante, décroissante, constante ou si on ne peut rien dire.

- a. $u_n=3n-6$ b. $u_n=5-2n$ c. $u_n=-3n+8$
- E9 Résoudre l'équation suivante dans $\mathbb N$:

3+6+9+...+3(n-1)+3n=2583.

Indice : $\sqrt{6889} = 83$.

lacksquare On considère la suite u_n définie pour tout entier naturel n par $u_0=1$ et

 $u_{n+1}=rac{u_n}{3u_n+1}.$ On admettra que pour tout entier naturel $n, u_n > 0$.

Considérons la suite \boldsymbol{v}_n définie pour tout entier naturel n par $v_n=rac{1}{u_n}.$

- a. Calculez les quatre premiers termes de la suite (u_n) .
- b. Calculez les quatre premiers termes de la suite (v_n) .
- **c.** Montrez que pour tout entier naturel n,

$$\frac{1}{u_{n+1}} = 3 + \frac{1}{u_n}.$$

- **d.** En déduire que la suite $\left(v_{n}
 ight)$ est arithmétique.
- **e.** Déterminez le terme général de la suite (v_n) .
- **f.** En déduire le terme général de la suite (u_n) .