22.53 Tecnología de Materiales Electrónicos

Inflationary Period 10⁻¹⁰ seconds 10 32 degrees 10²⁷ degrees Transformadores 6000 degrees TME Theory 18 degrees Miguel Aguirre Model Revisión 2 – Ago/2020

1 thousand million years

300 thousand years

3 minutes

The Big Bang

Inductores: ejemplo de diseño

Sobre un núcleo E 30/15/7 de material N27 fabricar un inductor con L=20mH y que pueda trabajar en las siguientes condiciones sin saturarse: Vin=300V, D=0.3, F=100KHz

1- Calcular el número mínimo de espiras para que el inductor no sature:

$$B_{Max} = \frac{1}{2} \frac{\int_0^{T/3} 300v \, dt}{N_{min} A_{min}} = 200mT$$

$$N_{min} = \frac{1}{2} \frac{\int_0^{T/3} 300v \, dt}{200mT A_{min}} = \frac{\frac{1}{2} 300v \, T/3}{0.2T \, 49.10^{-6}m} = 46$$

2- Calcular el número de espiras necesario para la inductancia requerida:

$$L = \frac{N^2}{R} = A_L N^2$$
 $N = \sqrt{\frac{L}{A_L}} = \sqrt{\frac{20mH}{1700nH}} = 109$

Magnetic characteristics (per set)

 Σ I/A = 1.12 mm⁻¹ I_e = 67 mm A_e = 60 mm² A_{min} = 49 mm² V_e = 4000 mm³

Approx. weight 22 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set
N30	3100 +30/–20%	2760	
N27	1700 +30/-20%	1510	< 0.81 (200 mT, 25 kHz, 100 °C)
N87	1900 +30/–20%	1690	< 2.20 (200 mT, 100 kHz, 100 °C)

Gapped

Material	g mm	A _L value approx. nH	μ_{e}
N27, N87	0.10 ±0.02 0.18 ±0.02 0.34 ±0.02	460 300 195	410 265 175

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 25 °C)

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Inductores: ejemplo de diseño

3-Por error la persona de compras consigue el núcleo con Gap de 0.1mm, calcule el valor de la inductancia resultante:

$$L = A_L N^2 = 460nH * 109^2 = 5.5mH$$

4- Calcule el Bmax con N=109 y núcleo con Gap

$$B_{Max} = \frac{1}{2} \frac{\int_0^{T/3} 300v \, dt}{N_{min} A_{min}} = 84mT$$

5- Aprovechando la situación se decide hacer circular por el inductor una corriente continua I_{DC}:

$$B_{Max} = \frac{1}{2} \frac{\int_{t_1}^{t_2} V_{(t)} dt}{NA} + \frac{N I_{DC} A_L}{A_{min}} \qquad I_{DC} \le (200 - 84) mT \left(\frac{A_{min}}{NA_L}\right) = 110 mA$$

Ungapped

Material	A _L value nH	μ _e	P _V W/set
N30	3100 +30/–20%	2760	
N27	1700 +30/–20%	1510	< 0.81 (200 mT, 25 kHz, 100 °C)
N87	1900 +30/–20%	1690	< 2.20 (200 mT, 100 kHz, 100 °C)

Gapped

Material	g mm	A _L value approx. nH	μ_{e}
N27,	0.10 ±0.02	460	410
N87	0.18 ± 0.02	300	265
	0.34 ± 0.02	195	175

$$V_L = L \frac{di}{dt} \rightarrow \Delta i = \frac{V}{L} \Delta T = \frac{300v}{5.5mH} T/_3 = 165mA$$

Inductores: ejemplo de diseño

6- La máxima sección de cable que puede entrar, considerando un factor de ventana $K_W = 0.55$:

$$S_{Cu} = \frac{A_W K_W}{N} = \frac{90mm^2 * 0.55}{109} = 0.45mm^2$$

7- El valor normalizado más cercano es 0,5mm2, por lo que el factor de ventana resultante es:

$$K_W = \frac{S_{Cu} N}{A_W} = \frac{0.5mm^2 * 109}{90mm^2} = 0.61 \text{ [Jugado!]}$$

8- La resistencia del bobinado será:

$$R_{Cu} = A_R N^2 = 21.10^{-6} \Omega \, 109^2 = 0.25 \Omega$$

9- T.H.: calcular la densidad de corriente (J A/mm²) con el que trabaja el cable.

Yoke Material: Stainless spring steel (0.4 mm)

Coil former					Ordering code		
Version	Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins		
Horizontal	1	90	56	21	14	B66232B1114T001	
Vertical	1	90	56	21	12	B66232J1112T001	
Yoke (ordering code per piece, 2 are required)					B66232A2010X000		

Horizontal version

Transformadores: ejemplo de diseño

Sobre un núcleo E 30/15/7 de material N27 fabricar un transformador que pueda trabajar en las siguientes condiciones sin saturarse: Vin=300V, D=0.3, F=100KHz, Vo=18V

Transformadores: ejemplo de diseño en 50Hz

Datos:

 $Vp=220V_{rms}$ $Vs=12V_{rms}$ F=50Hz $Aw=600mm^{2} \text{ (ventana)}$ $Amin=800mm^{2} \text{ (núcleo)}$ Bmax=1.2T $\mu=10000$ Le=140 mm $Lm_{espira}=140 \text{ mm}$

$$B_{Max} = \frac{1}{2} \frac{\int_0^{t/2} V_{(t)} dt}{NA} = \frac{V_{RMS}}{4.44 f N A_{min}}$$
 Sólo si la entrada es senoidal

$$N_{1_{min}} > \frac{V_{RMS}}{4.44 f B_{max} A_{min}} = \frac{220 v}{4.44 * 50 Hz * 1.2T * 800.10^{-6} m^2}$$

$$N_{1_{min}} > 1032.3 \ espiras$$

$$N_2 = N_1 \frac{V_s}{V_P} = 1033 \frac{12v}{220v} = 57espiras$$

$$Aw = 600mm^2, Kw = 0,3$$

 $Aw_1 = Aw_2 = {}^{Aw}/{}_2 = 300mm^2$
 $N_1 = 1033, N_2 = 57$

$$Scu_1 = 46.8mm^2/1033 = 0.045mm^2$$

 $Scu_2 = 43.2mm^2/57 = 0.76mm^2$

$$Acu_1 = 300mm^2 * 0.3 * 0.52 = 46.8mm^2$$

 $Acu_2 = 300mm^2 * 0.3 * 0.48 = 43.2mm^2$

$$I_1 = 0.045mm^2 * 4^A/_{mm^2} = 0.18 A$$

 $I_2 = 0.76mm^2 * 4^A/_{mm^2} = 3.1 A$

Potencia de salida: 12 Vrms * 3.1A =37.2 W

Transformadores: ejemplo de diseño en 50Hz

Transformadores: ejemplo de diseño en 50Hz

$$R = \frac{l}{\mu A} = \frac{0.14m}{4\pi 10^{-3} \ 8.10^{-4} m^2} = 13926 \frac{1}{H}$$

$$i_{mag} = \frac{V_{rms}}{X_L} = \frac{220 \text{ V}}{2\pi FL} = \frac{220V}{2\pi 50Hz 76H} = 9mA$$

$$L_m = \frac{N_1^2}{R} = \frac{1033^2}{13926} = 76H$$

$$I_1 = 0.18 \, A \gg 9mA$$

La corriente de magnetización será despreciable en i₁

Para calcular la resistencia de los bobinados tomamos la longitud de una espira promedio y la multiplicamos por el número de espiras, considerando: $\rho = 1.71 \, 10^{-8} \, \Omega \, .m$

$$Rcu_{1} = \rho \frac{N_{1} \cdot 140mm}{0.045mm^{2}} = 1.71 \cdot 10^{-8} \Omega \cdot m \frac{1033 \cdot 0.14m}{4.5 \cdot 10^{-8} \cdot m^{2}} \qquad Rcu_{2} = \rho \frac{N_{2} \cdot 140mm}{0.76mm^{2}} = 1.71 \cdot 10^{-8} \Omega \cdot m \frac{57 \cdot 0.14m}{7.6 \cdot 10^{-7} \cdot m^{2}}$$

$$Rcu_2 = \rho \frac{N_2.140mm}{0.76mm^2} = 1.71 \ 10^{-8} \Omega . m \frac{57.0.14m}{7.6 \ 10^{-7} \ m^2}$$
 $Rcu_1 = 55 \ \Omega$ $Rcu_2 = 0.18 \ \Omega$

Las pérdidas en el cobre valen:

$$Pcu_1 = 55 \Omega \ (0.18A)^2 = 1.78 W$$

$$Pcu_2 = 0.18 \Omega (3.1A)^2 = 1.73 W$$

El núcleo mide 8x4x5cm, descontando el área de las ventanas el volumen es: $8x5x4 - 2(2x3x4) = 112.10^{-6}m^3$

La densidad del hierro es: $7650 \frac{Kg}{m^3}$

Las pérdidas en hierro laminado son aprox.: $2^{W}/_{Kg}$

Las pérdidas en el hierro son: 112. $10^{-6}m^37650^{Kg}/_{m^3} 2^{W}/_{Kg} = 1.7 W$

$$\eta = \frac{37.2 \, W}{37.2 \, W + (1.78 + 1.73 + 1.7) \, W} = 87\%$$