# Moderné regulárne výrazy

Tatiana Tóthová\*

Školiteľ: Michal Forišek<sup>†</sup>

Katedra informatiky, FMFI UK, Mlynská Dolina 842 48 Bratislava

**Abstrakt:** Regulárne výrazy implementované v súčasných programovacích jazykoch ponúkajú omnoho viac operácií ako pôvodný model z teórie jazykov. Už konštrukciou spätných referencií bola prekročená hranica regulárnych jazykov. Náš model obsahuje naviac konštrukcie lookahead a lookbehind. V článku uvedieme zaradenie modelu zodpovedajúcej triedy jazykov do Chomského hierarchie, vlasnosti tejto triedy a výsledky z oblasti priestorovej zložitosti.

*Kľúčové slová:* regulárny výraz, regex, lookahead, lookbehind, spätné referencie

## 1 Úvod

Regulárne výrazy vznikli v 60tych rokoch v teórii jazykov ako ďalší model na vyjadrenie regulárnych jazykov. Z takéhoto popisu ľudský mozog rýchlejšie pochopil o aký jazyk sa jedná, než zo zápisu konečného automatu, či regulárnej gramatiky. Ďalšou výhodou bol kratší a kompaktný zápis.

Vďaka týmto vlastnostiam boli implementované ako vyhľadávací nástroj. Postupom času sa iniciatívou používateľov s vyššími nárokmi pridávali nové konštrukcie na uľahčenie práce. Nástroj takto rozvíjali až do dnešnej podoby. My sa budeme opierať o špecifikáciu regulárnych výrazov v jazyku Python [Foundation, 2012].

Ako čoskoro zistíme, nové regulárne výrazy vedia reprezentovať zložitejšie jazyky ako regulárne, preto je dobré ich nejako odlíšiť. V literatúre sa zaužíval výraz "regex" z anglického *regular expression*, ktorý budeme používať aj my.

#### 1.1 Základná definícia

Regulárne výrazy sú zložené zo znakov a metaznakov. Znak a predstavuje jazyk  $L(a) = \{a\}$ . Metaznak alebo skupina metaznakov určuje, aká operácia sa so znakmi udeje. Základné operácie sú zreť azenie (je definované tým, že regulárne výrazy idú po sebe, bez metaznaku), Kleeneho uzáver  $((0-\infty)$ -krát zopakuj

výraz, metaznak \*) a alternácia (vyber výraz naľ avo alebo napravo, metaznak | ). Naviac sa využíva metaznak \, ktorý robí z metaznakov obyčajné znaky a okrúhle zátvorky na logické oddelenie regulárnych výrazov.

Pre regulárny výraz  $\alpha$  a slovo  $w \in L(\alpha)$  hovoríme, že  $\alpha$  vyhovuje slovu w resp.  $\alpha$  matchuje slovo w. Tiež budeme hovoriť, že  $\alpha$  generuje jazyk  $L(\alpha)$ .

### 1.2 Nové jednoduché konštrukcie

- + Kleeneho uzáver opakujúci (1 ∞)-krát
- {n,m} ({n}) opakuj regulárny výraz aspoň n a najviac m-krát (opakuj n-krát)
- $[a_1a_2...a_n]$  predstavuje l'ubovol'ný znak z množiny  $\{a_1,...,a_n\}$
- $[a_1 a_2 ... a_n]$  predstavuje l'ubovol'ný znak, ktorý nepatrí do množiny  $\{a_1, ..., a_n\}$
- . predstavuje l'ubovol'ný znak
- ? ak samostatne: opakuj 0 alebo 1-krát ak za operáciou: namiesto greedy implementácie použi minimalistickú, t.j. zober čo najmenej znakov (platí pre \*, +, ?, {n,m})<sup>1</sup>
- ^ metaznak označujúci začiatok slova
- \$ metaznak označujúci koniec slova
- (?# komentár) komentár sa pri vykonávaní regexu úplne ignoruje

Všetky tieto konštrukcie sú len "kozmetickou" úpravou pôvodných regexov – to isté vieme popísať pôvodnými regulárnymi výrazmi, akurát je to dlhšie a menej prehľadné

Rozdiely medzi minimalistickou a greedy verziou operácií vníma iba používateľ, pretože ak existuje zhoda regexu so slovom, v oboch prípadoch sa nájde. Viditeľ né sú až pri výstupnej informácii pre používateľ a, ktorú môže použiť ďalej.

<sup>\*</sup>tothova166@uniba.sk

<sup>†</sup>forisek@dcs.fmph.uniba.sk

<sup>&</sup>lt;sup>1</sup>všetky spomenuté operácie sú implementované greedy algoritmom

#### 1.3 Zložitejšie konštrukcie

#### Spätné referencie

Najprv potrebujeme očíslovať všetky zátvorky v regexe. Číslujú sa všetky, ktoré nie sú tvaru (?...). Poradie je určnené podľa otváracej zátvorky.

Spätné referencie umožňujú odkazovať sa na konkrétne zátvorky. Zápis je  $\$  a môže sa nachádzať až za k-tymi zátvorkami. Skutočná hodnota  $\$  sa určí až počas výpočtu – predstavuje posledné podslovo zo vstupu, ktoré matchovali k-te zátvorky.

#### Lookahead

Zapísaný formou (?=...), vnútri je validný regex.

Keď v regexe prídeme na pozíciu lookaheadu, zoberieme regex vo vnútri. V slove sa snažíme matchovať ľubovoľný prefix zostávajúcej časti slova. Ak sa to podarí, pokračujeme v regexe ďalej a v slove od pozície, kde lookahead začínal (tzn. akokeby v regexe nikdy nebol).

Má aj negatívnu verziu – negatívny lookahead (?! ...). Vykonáva sa rovnako ako lookahead, ale má otočnú akceptáciu. Teda ak neexistuje prefix, ktorý by vedel matchovať, akceptuje.

#### Lookbehind

Zapísaný formou (?<=...), vnútri je validný regex.

Pri výpočte zoberieme regex vnútri lookbehindu a snažíme sa vyhovieť ľubovoľnému sufixu už matchovanej časti slova. Ak vyhovieme, pokračujeme v slove a regexe akoby tam lookbehind vôbec nebol.

Aj lookbehind má negatívnu verziu – negatívny lookbehind (?<! ...) – a pracuje analogicky ako negatívny lookahead.

Lookahead a lookbehind (spolu nazývané jedným slovom lookaround) sú v rôznych implementáciách rôzne obmedzované, aby výpočet netrval príliš dlho. V teórii tieto obmedzenia ignorujeme a prezentujeme model v plnej sile – výsledky tak prezentujú hornú hranicu toho, čo implemetnácie dokážu.

#### 1.4 Priorita

Pri interakcii toľkých operácií je nutné vedieť ich priority. Existujú také, ktoré sa správajú ako znak, čomu zodpovedajú [],[^],. a každá spätná referencia.

Špeciálne sú lookahead a lookbehind – tie sa vykonajú hneď akonáhle na ne narazíme. Ostatné zoradíme v tabuľke:

| priorita | 3  | 2        | 1           | 0 |
|----------|----|----------|-------------|---|
| operácia | () | * + ? {} | zreť azenie |   |

#### 1.5 Triedy a množiny

Kvôli porovnávaniu a vytvoreniu hierarchie sme rozdelili operácie do niekoľ kých množín:

Regex – množina operácií, pomocou ktorých vieme popísať iba regulárne jazyky; presnejšie všetky znaky a metaznaky (bez zložitejších operácií)

Eregex – Regex so spätnými referenciami

*LEregex* – *Eregex* s pozitívnym lookaroundom

nLEregex - LEregex s negatívnym lookaroundom

 $\mathcal{L}_{RE}$  – trieda jazykov nad  $Regex (= \mathcal{R})$ 

 $\mathcal{L}_{ERE}$  – trieda jazykov nad Eregex

 $\mathcal{L}_{LERE}$  – trieda jazykov nad LEregex

 $\mathcal{L}_{nLERE}$  – trieda jazykov nad *nLEregex* 

Trieda  $\mathcal{L}_{LERE}$  už bola hlbšie preskúmaná a výsledky čerpáme z článkov [Câmpeanu et al., 2003] a [Carle and Nadendran, 2009].

#### 2 Formalizácia modelu

Pri zložitejších dôkazoch sa ukázala potreba lepšieho formalizmu, než len množiny operácií. Kvôli jednoduchosti sme vybrali len potrebné operácie – zreť azenie, alternáciu, Kleeneho \*, spätné referencie a pozitívny a negatívny lookaround – a pokúsili sa ho vyjadriť ako model, ktorý pracuje v krokoch podobne ako Turingov stroj.

Základným prvkom je **konfigurácia**. Je to dvojica regex  $r_1 \dots r_n$  a vstupné slovo  $w_1 \dots w_m$ , pričom v oboch reťazcoch sa navyše nachádza ukazovateľ pozície  $\lceil$  (ako hlava Turingovho stroja):  $(r_1 \dots \lceil r_i \dots r_n, w_1 \dots \lceil w_j \dots w_m)$ . Špeciálne rozoznávame počiatočnú konfiguráciu  $(\lceil r_1 \dots r_n \lceil w_1 \dots w_m \rceil)$  a akceptačnú konfiguráciu  $(r_1 \dots r_n \lceil w_1 \dots w_m \rceil)$ .

Najprv si definujeme potrebné pojmy indexovateľnosti a alternovateľ nosti. *Indexovateľ né zátvorky* sú také, kde za otváracou zátvorkou nenasleduje? (t.j. všetky prípady okrem lookaroundu). Tieto zátvorky budeme číslovať. *Alternovateľ ný regex* je taký, ktorý sa môže vyskytovať v alternácii. Sú 3 prípady: regex sa môže nachádzať naľ avo od |, napravo od | alebo je z oboch strán ohraničený |. Ak alternácia nie je uzavretá zátvorkami, ľ avý a pravý krajný regex siaha až ku kraju slova, pretože alternácia je operácia s najmenšou prioritou. Inak sú pre nich hranicou zátvorky uzatváracie alternáciu.

Vďaka definovaniu týchto pojmov vidíme, že vieme algoritmicky zistiť, ktoré zátvorky sú indexovateľné a ktoré regexy sú alternovateľné.

Definujeme **krok výpočtu** ako reláciu ⊢ na konfiguráciách ...

**Akceptačný výpočet** je postupnosť konfigurácií  $(\lceil R, \lceil W \rceil) \vdash^* (R \lceil, w \lceil)$ . Ak existuje akceptačný výpočet pre daný regex R a slovo W hovoríme, že regex R matchuje slovo W respektívne slovo W vyhovuje regexu R. **Jazyk** vyhovujúci danému regexu je množina slov, pre ktoré existuje akceptačný výpočet.

Vďaka týmto definíciám sme schopný odhadnúť dĺžku výpočtu:

**Veta 1.** Nech  $\alpha \in \mathcal{L}_{LERE}$  a  $w \in L(\alpha)$ . Potom existuje akceptačný výpočet, ktorý má najviac  $O(|\alpha| \cdot |w|)$  konfigurácií.

 $D\hat{o}kaz$ . Vo väčšine krokov výpočtu sa posúvame dopredu buď v regexe alebo v slove alebo v oboch. Takéto kroky vedú k postupnosti dĺžky  $O(|\alpha| + |w|)$ .

Výpočet môže predĺžiť skákanie ukazovateľ a dozadu. To nastáva iba v prípade, ak v regexe ukazujeme na Kleeneho \* a rozhodneme sa skočiť v regexe dozadu, aby sme urobili ďalšiu iteráciu. Zamyslime sa nad samotným akceptačným výpočtom. Ak existuje, potom existuje aj taká jeho verzia, kde každé opakovanie regexu pomocou Kleeneho \* matchuje aspoň 1 znak – prázdne iterácie môžeme vyhodiť, lebo ukazovateľ v slove zostal na mieste a konfigurácia skoku je rovnaká, takže sa postupnosť priamo napojí. Vieme, že regex opakovaný operáciou \* je dlhý  $O(|\alpha|)$  znakov a opakujeme najviac O(|w|)-krát.

Teda dokopy spravíme najviac  $O(|\alpha| + |w|) + O(|\alpha| \cdot |w|) = O(|\alpha| \cdot |w|)$  krokov.

### 3 Vlastnosti lookaroundu

Na začiatok sme zisťovali, čo robia samotné operácie lookaroundu.

**Veta 2.**  $\mathcal{R}$  je uzavretá na negatívny a pozitívny lookaround.

 $D\hat{o}kaz$ . Nech  $L_1, L_2, L_3 \in \mathcal{R}$ . Chceme ukázať, že  $L_1(?=L_2)L_3$ ,  $L_1(?=L_2)L_3$ ,  $L_1(?=L_2)L_3$ ,  $L_1(?=L_2)L_3$ ,  $L_1(?=L_2)L_3$  existuje determinický konečný automat  $A_i$ , ktorý ho akceptuje.

Konečné automaty vieme vhodne pospájať dohromady. Spravíme konštrukciu pre prienik regulárnych jazykov, ale mierne upravenú tak, že akonáhle automat pre  $L_2$  v pozitívnom lookaheade akceptuje, vo výpočte bude pokračovať už len samotný  $A_3$ , kým dočíta slovo. Podobne pre pozitívny lookbehind –  $A_1$  začne sám a nedeterministicky v nejakom kroku začne výpočet aj  $A_2$ . Akceptovať musia spolu.

Pre negatívne formy musíme navyše upraviť akceptáciu. Ak  $A_2$  pre lookahead akceptuje, celý automat sa zasekne a zamietne.  $A_2$  musí dočítať slovo bez dosiahnutia akceptačného stavu. Pre lookbehind v každom kroku  $A_1$  spúšť ame ď alší  $A_2$  a držíme si množinu stavov, v ktorých sa všetky nachádzajú. Úspech je, ak  $A_1$  akceptuje a množina stavov pre automaty  $A_2$  neobsahuje akceptačný stav.

Odhliadnuc teraz od lookaroundu, máme zreť azenie  $L_1$  a  $L_3$ . Preto prepojíme akceptačný stav  $A_1$  s počiatočným stavom  $A_3$ . Výsledný automat sa nedeterministicky rozhoduje, či z akceptačného stavu  $A_1$  pokračuje ď alej v  $A_1$  alebo  $A_3$ .

**Veta 3.**  $\mathcal{L}_{CF}$  nie je uzavretá na pozitívny lookaround.

Vieme totiž vygenerovať jazyk  $a^nb^nc^n$  prienikom jazykov  $a*b^nc^n$  a  $a^nb^nc*$ .

**Veta 4.**  $\mathcal{L}_{CS}$  je uzavretá na pozitívny lookaround.

**Veta 5.** Trieda jazykov nad Regex s pozitívnym a negatívnym lookaroundom je ekvivalentná  $\mathcal{R}$ .

## 4 Chomského hierarchia

Veta 6.  $\mathscr{R} \subsetneq \mathscr{L}_{ERE} \subsetneq \mathscr{L}_{LERE} \subseteq \mathscr{L}_{nLERE} \subsetneq \mathscr{L}_{CS}$ 

 $D\hat{o}kaz$ . Všetky ⊂ triviálne platia.

 $\mathscr{L}_{ERE} \subsetneq \mathscr{L}_{LERE}$ : Nerovnosť dokazuje jazyk  $L = \{a^iba^{i+1}ba^ik \mid k=i(i+1)k' \text{ pre nejaké } k' > 0, i>0\}. L \notin Eregex podľa pumpovacej lemy z [Carle and Nadendran, 2009] a tu je regex z <math>LEregex$  pre L:  $\alpha = (a*)b(\backslash 1a)b(?=(\backslash 1)*\$)(\backslash 2)*$ 

pre L:  $\alpha = (a*)b(\1a)b(?=(\1)*\$)(\2)*$   $\mathcal{L}_{LERE}, \mathcal{L}_{nLERE} \subsetneq \mathcal{L}_{CS} \text{: Triedy } \mathcal{L}_{LERE} \text{ a } \mathcal{L}_{nLERE} \text{ sú neporovnatel'né s } \mathcal{L}_{CF}. \text{ K jazyku } L_1 = \{ww \mid w \in \{a,b\}^*\} \notin \mathcal{L}_{CF} \text{ existuje regex z } LEregex: \alpha = \{a,b\}^*\}$ 

 $((a|b)*)\setminus 1$ . Ani jedna z tried neobsahuje jazyk  $L_2 = \{a^nb^n|n\in\mathbb{N}\}\in\mathscr{L}_{CF}$ .

Intuitívne by malo platit' aj  $\mathcal{L}_{LERE} \subsetneq \mathcal{L}_{nLERE}$ , pretože negatívny lookaround pridáva uzavretosť na komplement. Jazyk dokazujúci nerovnosť by mohol byť napríklad regex  $\alpha = (?! (aa+)(\backslash 1) + \$)$ , pričom  $L(\alpha) = \{a^p \mid p \text{ je prvočíslo}\}.$ 

## 5 Vlastnosti triedy $\mathcal{L}_{LERE}$

Očividne operácia lookahead/lookbehind pridala uzavretosť na prienik. Nech  $\alpha, \beta \in LEregex$ , potom  $L(\alpha) \cap L(\beta) = L(\gamma)$ , kde  $\gamma = (?=\alpha\$)\beta$  alebo  $\beta(?<=^\alpha)$ .

Napak ohrozila uzavretosť na základnú operáciu – zreť azenie. Pri zreť azení 2 jazykov, ktorých regexy nutne musia obsahovať lookahead resp. lookbehind nastáva problém. Nemôžeme tieto regexy len tak položiť za seba. Ak sa napríklad v prvom z jazykov nachádza lookahead, počas výpočtu môže zasahovať aj do časti vstupu, ktorú matchuje druhý regex a tým zmeniť výsledok celého výpočtu. Nakoniec sa ukázalo:

**Veta 7.**  $\mathcal{L}_{LERE}$  je uzavretá na zreť azenie.

 $D\hat{o}kaz$ . Nech  $\alpha, \beta \in LEregex$ . Jazyku  $L(\alpha)L(\beta)$  bude zodpovedať regex

$$\gamma = (? = (\underset{1}{\alpha}) (\underset{k+2}{\beta}) \$) \alpha' \backslash k + 2 (? <= ^ \backslash 1 \beta')$$

V  $\alpha, \beta$  treba vhodne prepísať označenie zátvoriek (po poradí).  $\alpha'$  je  $\alpha$  prepísaný tak, že pre každý lookahead:

- bez \$ na koniec pridáme .  $* \k + 2\$$
- s pred pridáme k + 2

 $\beta'$  je  $\beta$  prepísaný tak, že pre každý lookbehind:

- bez ^ na začiatok pridáme ^\1.\*
- $s^-$  pred  $\hat{}$  pridáme  $\hat{} \setminus 1$

Slovami vyjadrené, regex  $\gamma$  najprv rozdelí vstupné slovo na 2 podslová  $w_1, w_2$  patriace do príslušných jazykov  $L(\alpha), L(\beta)$ . Potom spustí ešte raz regex  $\alpha$  upravený tak, že jeho lookaheady sú "skrotené", pretože ich na konci donúti matchovať  $w_2$ . Rovnako lookbehindy v  $\beta'$  donúti na začiatku matchovať  $w_1$ , až potom normálne pokračuje ich výpočet.

Zrejme 
$$L(\gamma) = L(\alpha)L(\beta)$$
.

**Veta 8.** Nech  $\alpha \in LE$  regex nad unárnou abecedou  $\Sigma = \{a\}$ , že neobsahuje lookahead  $s \$  ani lookbehind  $s \$  vnútri iterácie. Existuje konštanta N taká, že  $ak \ w \in L(\alpha) \ a \ |w| > N$ , potom existuje dekompozícia  $w = xy \ s$  nasledujúcimi vlastnosť ami:

(*i*)  $|y| \ge 1$ 

(ii) 
$$\exists k \in \mathbb{N}, k \neq 0; \forall j = 1, 2, ... : xy^{kj} \in L(\alpha)$$

**Veta 9.** Jazyk všetkých platných výpočtov Turingovho stroja patrí do  $\mathcal{L}_{LERE}$ .

 $D\hat{o}kaz$ . Takýto jazyk pre konkrétny Turingov stroj M obsahuje slová, ktoré sú tvorené postupnosť ou konfigurácií oddelených oddeľ ovačom #. Každá postupnosť zodpovedá akceptačnému výpočtu na nejakom slove. Jazyk obsahuje akceptačné výpočty na všetkých slovách, ktoré sú v jazyku L(M).

Turingov stroj má konečný zápis, preto je možné regex pre takýto jazyk vytvoriť. Konštrukcia regexu:  $\alpha = \beta(\gamma) * \eta$ , kde  $\beta$  predstavuje počiatočnú konfiguráciu² a  $\eta$  akceptačnú konfiguráciu. Ak  $q_0$  je akceptačný stav, potom na koniec  $\alpha$  pridáme  $|(\#q_0.*\#).$   $\gamma = \gamma_1 \mid \gamma_2 \mid \gamma_3$ . Prvok  $\gamma_i$  generuje validnú konfiguráciu a zároveň kontroluje pomocou lookaheadu, či nasledujúca konfigurácia môže podľa  $\delta$ -funkcie nasledovať. Rozpíšeme si iba jednu možnosť:

$$\gamma_1 = ((.*)xqy(.*)\#)(? = \xi\#)$$

platí pre  $\forall q \in K, \ \forall y \in \Sigma \ \text{a kde } \xi = \xi_1 \mid \xi_2 \mid \ldots \mid \xi_n.$ 

- Ak  $(p,z,0) \in \delta(q,y)$ , potom  $\xi_i = (\langle k x p z \rangle k + 1)$  pre nejaké i
- Ak  $(p,z,1) \in \delta(q,y)$ , potom  $\xi_i = (\langle k xzp \rangle k + 1)$  pre nejaké i
- Ak  $(p, z, -1) \in \delta(q, y)$ , potom  $\xi_i = (\k pxz\k + 1)$  pre nejaké i

 $\gamma_2$  a  $\gamma_3$  sú podobné ako  $\gamma_1$ , ale matchujú krajné prípady, kedy je hlava Turingovho stroja na ľavom alebo pravom konci pásky.

Zrejme 
$$L(\gamma)$$
 je požadovaný jazyk.

<sup>&</sup>lt;sup>2</sup>Musí byť previazaná s nasledujúcou konfiguráciou, aby spĺňala δ-funkciu. Spraví sa to pomocou lookaheadu, podobne ako v  $\gamma_1$ .

### 6 Priestorová zložitosť

**Veta 10.**  $\mathcal{L}_{LERE} \subsetneq NSPACE(\log n)$ , kde n je veľkosť vstupu.

Dôsledok Savitchovej vety:

**Veta 11.**  $\mathcal{L}_{LERE} \subsetneq DSPACE(\log^2 n)$ , kde n je vel'-kost' vstupu.

**Veta 12.**  $\mathcal{L}_{nLERE} \subsetneq DSPACE(\log^2 n)$ , kde n je vel'-kost' vstupu.

**Veta 13.**  $L(regex\#word) \in NSPACE(r\log w)$ , kde r = |regex|, w = |word|  $a regex \in LEregex$ .

**Veta 14.**  $L(regex\#word) \in DSPACE(n\log^2 n)$ , kde  $regex \in LEregex$  a n je dlžka vstupu.

### Pod'akovanie

Ďakujem školiteľ ovi za cenné rady a pripomienky.

### Literatúra

- [Carle and Nadendran, 2009] Carle, B. and Nadendran, P. (2009). On extended regular expressions. In *Language* and Automata Theory and Applications, volume 3, pages 279–289. Springer.
- [Câmpeanu et al., 2003] Câmpeanu, C., Salomaa, K., and Yu, S. (2003). A formal study of practical regular expressions. *International Journal of Foundations of Computer Science*, 14(06):1007–1018.
- [Ehrenfeucht and Zeiger, 1975] Ehrenfeucht, A. and Zeiger, P. (1975). Complexity measures for regular expressions. *Computer Science Technical Reports*, 64.
- [Ellul et al., 2013] Ellul, K., Krawetz, B., Shallit, J., and wei Wang, M. (2013). Regular expressions: New results and open problems. *Journal of Automata, Languages and Combinatorics u (v) w, x–y.*
- [Foundation, 2012] Foundation, P. S. (2012). *Regular expressions operations*.
- [Tóthová, 2013] Tóthová, T. (2013). Moderné regulárne výrazy. Bachelor's thesis, FMFI UK Bratislava.