Wireless Sensor Networks: Introduction and Applications

Lecture #2

Prof. Raj Rajkumar

18-748: Wireless Sensor Networks

Carnegie Mellon

Previous Lecture

- · Course Objectives
- · Course Personnel
- · Grading Criteria
- Course Elements
- Course Logistics

Outline of This Lecture

- Some Sensor Nodes
- · Application Domains for WSNs
- Advantages of WSNs
- Taxonomy of WSNs
- Batteries and Energy
- Challenges and Metrics
- Summary

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

An Opinion Piece on IOE

 "Internet of Everything —A \$19 Trillion Opportunity"

http://www.cisco.com/c/dam/en_us/services/portfolio/consulting-services/documents/consulting-services-capturing-ioe-value-aag.pdf

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

SAMPLE APPLICATIONS

18-748: Wireless Sensor Networks

Preventive Maintenance on an Oil Tanker in the North Sea: The BP Experiment

- · Collaboration of Intel & BP.
- Sensor networks offer preventive maintenance on board an oil tanker in the North Sea.
- · A sensor network deployment onboard the ship.
- System gathered data reliably and recovered from errors when they occurred.
- · Recognized as a top 100 IT project.

18-748: Wireless Sensor Networks

Carnegie Mellon

Shooter Localization (Vanderbilt)

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

FireBug (Berkeley)

- Wildfire Instrumentation
- Predict evolving fire behavior

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

http://www.nsf.gov/news/special reports/science nation/eyeonhome.jsp

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Sensor Network Applications

- Infrastructure Security
- · Environment and Habitat Monitoring
 - Monitoring of hostile work environments
- Industrial Automation
- · Building automation
 - HVAC control
 - Energy management
 - Security systems
- Traffic Control
- · Health Monitoring
- Waste Monitoring
- Smart Farming and Irrigation
- Asset Management
- Civil Infrastructure Monitoring
- Assisted Living
- Military and aerospace

Carnegie Mellon

Embedded Networked Sensing Apps

Seismic Structure response

Marine Microorganisms

Micro-sensors, on-board processing, wireless interfaces feasible at very small scale--can monitor phenomena "up close"

Enables spatially and temporally dense environmental monitoring

Embedded Networked Sensing will reveal previously unobservable phenomena

Contaminant Transport

Ecosystems, Bio-complexity

Carnegie Mellon

18-748: Wireless Sensor Networks

Advantages

- · Small size
- (Relatively) low cost of nodes
- Reduce (eliminate?) cost of wiring
- Self-configuring and self-optimizing
- Self-healing
 - Redundancy and fault-tolerance
- Long lifetimes (?)
- · Interfacing with the physical world

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

SENSORS & ACTUATORS

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

What Can We Sense?

- Sound
 - includes ultrasound, hearing range and sub-sonic
- Motion
- Strain
- Vibration
- Temperature
- Light
- · Moisture
- Pressure
- Radio
- Magnetic
- Image
- Video
- ..

- · Biological agents
- · Chemical agents
- Gases
- Fluids
- Solids/metals
- ...

Often using

Analog-To-Digital Converters (ADCs)

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

More on Sensors

- Passive elements: seismic, acoustic, infrared, strain, salinity, humidity, temperature, etc.
- Passive arrays: imagers (visible, IR), bio-chemical
- Active sensors: radar, sonar
 - High energy, in contrast to passive elements
- Technology trend: use of IC, MEMS and (later nano) technologies for increased robustness, lower cost & smaller size
 - COTS adequate in many domains; much to be done for bio-chemical sensing.

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

What Can We Actuate?

- Turn on/off valves
- Turn on/off switches
- Motor control

Often using

Digital-to-Analog Converters (DACs)

- LightsBuzzers/Speakers
- Alarms
- E-M radiation
- · Chemical triggers
- ..

ThinkWireless Sensor/Actuator Networks

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Sensor Network Attributes					
Sensors	Size: small (MEMS etc.), large (radars, satellite)				
	Type: passive (seismic) or active (lidar)				
	Coverage: sparse, dense				
	Deployment: stationary, mobile				
Sensed	Extent: distributed or localized				
Variables	Mobility: static, dynamic				
	Nature: cooperative (air-traffic) or non-cooperative (military)				
Operating	Benign (factory floor) or adverse (battlefield)				
Environment					
Communication	Networking: wired or wireless, single or multi-hop				
	Bandwidth: high or low				
Architecture	Centralized, distributed or hybrid				
Energy	Very constrained (e.g. in small sensors) or rich source (e.g. radars)				
Electrical & Computer ENGINEERING	18-748: Wireless Sensor Networks Carnegie Mellon				

Sensor Network Generations							
	Gen 1 (80s-90s)	Gen 2 (1999-2006)	Gen 3 (2010 and beyond)				
Manufacturer	Custom contractors, special vendors	Crossbow, Sensoria, Ember	Dust, Inc				
Size	Large shoe-box ↑	Pack of cards to small shoe box	Dust particle??				
Weight	Kilograms	Grams	Negligible??				
Node architecture	Separate sensing, processing and communication	Semi-integrated sensing, processing and communication	Fully integrated sensing, processing and communication				
Topology	Point-to-point, star	Client-server, peer- to-peer	P2P				
(Energy) Lifetime	Large batteries; hours/ days/weeks	AA batteries; days to weeks (months?)	Solar, energy- harvesting, years				
Deployment	Vehicle-placed or air- drop single sensors	Hand-emplaced (generally)	Embedded, "sprinkled" or "scattered" leavebehind				
Electrical Computer 18-748: Wireless Sensor Networks Carnegie Mello							

ENERGY

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

What is Energy?

- Energy: A measure of being able to do work.
 - Forms of energy: heat, mechanical, electrical, radiant, chemical, nuclear, ...
- Energy is measured in such units as
 - joule (J),
 - erg,
 - kilowatt-hour (kW-hr),
 - kilo-calorie (kcal),
 - foot-pound (ft-lb.),
 - electron-volt (ev), and
 - British thermal unit (BTU).

1 Joule = one watt per second

= 0.737 foot-pounds

= 0.2389 calories

= (1 / 1055) BTU

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Energy: State of the Practice

A cubic millimeter of battery space has enough energy to

- send and receive 10 million (109) bits of data,
- take 100 million (10¹¹) sensor samples, or
- perform 1 billion (10¹²) 32-bit computations.

Communication is <u>very</u> expensive.

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

Energy Consumption Example

For Chipcon 2420 and Atmel32 processor

Power Parameter	Symbol	Current (mA)	Power (mW)
Radio Transmitter	P _{radio_TX}	17.4	52.2
Radio Receiver	P _{radio_RX}	19.7	59.1
Radio Idle	P _{radio_idle}	0.426	1.28
Radio Sleep	P _{radio_sleep}	1e-6	3e-3
CPU Active	P _{CPU_active}	1.1	3.3
CPU Sleep	P _{CPU_sleep}	1e-6	3e-3

Watt: a standard unit of power defined as one Joule of energy transferred or dissipated in one second.

Power = Voltage * Current
Power (in watts) = Voltage (in volts) * Current (in amperes)

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Energy Stored in a AA Battery

- The specific energy ε is defined as the stored energy U per unit mass m.
- AA battery: the voltage is 1.5 V, and the Ampere-hours is (say) 2.5 AHr
- Therefore, the stored energy in the battery is

```
U_{\text{AA}} = (1.5 \text{ V})(2.5 \text{ A} \cdot \text{Hr})(3600 \text{ s}) = 14000 \text{ Joules}
```

- The diameter of the battery is about 1.5 cm and the length about 6 cm
 - \rightarrow the volume of the battery is roughly 1.1 \times 10⁻⁵ m³.
- Therefore, the specific energy of the battery

```
\mathcal{E}_{AA} = (14000 J)/(1.1 × 10-5 m3)
= 1.3 × 10<sup>9</sup> J/m<sup>3</sup> = 1300 J/cm<sup>3</sup>.
```

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

Battery Ratings

- Non-rechargeable lithium: 2,880 J/cm³
- Zinc-air: 3,780 J/cm³ (has very high leakage)
- Alkaline: 1,190 J/cm³
- Rechargeable lithium: 1,080 J/cm³
- Nickel metal hydride (NiMHd): 864 J/cm³
- Fuel cells (based on methanol): 8,900 J/cm³
- Hydrocarbon fuels (for use in micro heat engines): 10,500 J/cm³

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

More on Batteries

Quantity	Voltage	Group Size	AHr Rating	75% Of Max*	Amps Per Hour
One	12 Volt	24	40 – 85	64 AHs	2 – 4
One	12 Volt	27	85 – 105	80 AHs	4 – 5
One	12 Volt	4 D	140 – 160	120 Ahs	7 – 8
One	12 Volt	8 D	200 – 215	160 AHs	10 – 11
Two	6 Volt	T-105	200 – 225	170 AHs	10 – 11
Two	6 Volt	L-16	325 – 350	260 AHs	16 – 17
Four	6 Volt	T-105	400 – 450	340 AHs	20 - 22

*Battery performance depends on battery age, ambient temperature & state of charge

Source: Duracomm

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

Energy Harvesting?

- Solar (outdoors mid-day): 15 mW/cm²
- Solar (indoor office lighting): > 10 μW/cm²
- Vibrations (from microwave oven casing): 200 $\mu W/cm^3$
- Temperature gradient: 15 μW/cm³
 - from a 10°C temperature gradient

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

CORE PRINCIPLES

18-748: Wireless Sensor Networks

Carnegie Mellon

Laws and Principles to Follow

- Propagation laws for communications
 - Think volume:
 - surface area of a sphere of radius $r = 4\pi r^2$
 - Think signal quality
 - Multipath effects result from radio signals reaching a receiver by two or more paths (Rayleigh fading)
 - · Attenuation results from dissipation of energy
 - · Frequency shifts from Doppler effect?
 - Think noise
 - · Ambient white noise
 - · Interference from other electro-magnetic sources
- Physical distribution
- Estimation theory for detection
 - A branch of statistics and signal processing that studies estimating the values of parameters based on measured/empirical data
- Control and hybrid systems theory for control

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Challenges

- Scale
 - Network Control and Routing
 - Collaborative Signal and Information Processing
- · Limited access
 - Security
 - Limited energy
- Extreme dynamics
 - Ad-Hoc Network Discovery
 - Tasking and Querying

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

From Embedded Sensing to Embedded Control

- Embedded in unattended "control systems"
 - control network, and act in environment
- Critical apps extend beyond sensing to control and actuation
 - transportation, precision agriculture, medical monitoring and drug delivery, battlefield apps
 - concerns extend beyond traditional networked systems and apps: usability, reliability, safety
- Need systems architecture to manage interactions
 - current system development: one-off, incrementally tuned, stovepiped
 - repercussions for piece-meal uncoordinated design: insufficient longevity, interoperability, safety, robustness, scaling

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

Why can we not simply adapt "end-to-end" Internet protocols?

- Internet routes data using IP Addresses in Packets and Lookup tables in routers
 - humans get data by "naming data" to a search engine
 - many levels of indirection between name and IP address
 - embedded, energy-constrained (un-tethered, smallform-factor), unattended systems cannot tolerate communication overhead of indirection
- Special-purpose system function(s): do not want general-purpose functionality designed for elastic applications.

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Fine-Grained Time and Location

- Unlike the Internet, node time/space location essential for local/collaborative detection
 - fine-grained localization and time synchronization needed to detect events in 3-D space and improve estimation across nodes
- GPS provides solution where available (with differential GPS providing finer granularity)
 - GPS not always available, too "costly," too bulky
- · Localization of sensor nodes has many uses
 - beam-forming for localization of targets and events
 - geographical forwarding
 - geographical addressing

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Coverage measures

Given: sensor field (either known sensor locations, or spatial density)

- Area coverage: fraction of area covered by sensors
- Detectability: probability that sensors detect moving objects
- Node coverage: fraction of sensors covered by other sensors
- Control:
 - where to add new nodes for max coverage
 - how to move existing nodes for max coverage

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

In-Network Processing

- · Communication expensive when
 - Limited power
 - Limited bandwidth
- Perform (data) processing in network
 - close to (at) data sources
 - forward fused/synthesized results
 - e.g., find max. of data
- Distributed data, distributed computation

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Distributed Representation and Storage

- Data-Centric Protocols, In-network Processing
 - Interpretation of spatially distributed data
 per-node processing alone is not enough
 - Network does in-network processing based on distribution of data
 - Queries automatically directed towards nodes that maintain relevant/matching data
- Pattern-triggered data collection
 - Multi-resolution data storage and retrieval
 - Distributed edge/feature detection
 - Index data for easy temporal and spatial searching
 - Finding global statistics (e.g., distribution)

Electrical & Computer ENGINEERING 18-748: Wireless Sensor Networks

Carnegie Mellon

Sensor Database System

 Sensor Database System supports distributed query processing over sensor network

Sensor Database System

Characteristics of a Sensor Network:

- Streams of data
- Uncertain data
- Large number of nodes
- Multi-hop network
- No global knowledge about the network
- Node failure and interference is common
- Energy is the scarce resource
- Limited memory
- No administration
- ..

Can existing database techniques be reused?

What are the new problems and solutions?

- · Representing sensor data
- Representing sensor queries
- Processing query fragments on sensor nodes
- Distributing query fragments
- Adapting to changing network conditions
- Dealing with site and communication failures
- Deploying and Managing a sensor database system

18-748: Wireless Sensor Networks

Carnegie Mellon

New WSN Paradigms

- Self-configuring systems that adapt to unpredictable environment
 - dynamic, messy (hard to model), environments preclude preconfigured behavior
- Leverage data processing inside the network
 - exploit computation near data to reduce communication
 - collaborative signal processing
 - achieve desired global behavior with localized algorithms (distributed control)
- Long-lived, unattended, un-tethered, low duty-cycle systems
 - energy is a central concern
 - communication primary consumer of scarce energy resource

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Summary

- WSNs enable a wide range of new application domains
- Unique features and challenges
- Energy is a big constraint

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks