Estatística e Matemática Aplicadas a Data Science

Diógenes Justo BM&FBOVESPA & Professor FIAP

Agenda

Modelagem para Data Science (Matemática e Estatística)

Detecção de Fraudes

Forecast (financeiro)

Conclusões

Modelagem para Data Science

"Modelagem matemática consiste na arte (ou tentativa) de se descrever matematicamente um fenômeno."

Modelagem para Data Science

Quanto a aleatoriedade

Modelo determinísticos: mesmas entradas produzem mesmas saídas; não se considera incerteza.

 $y = \alpha . x + \beta$

Modelo probabilístico (estocástico): não se conhece sua saída, somente uma probabilidade e, portanto, uma incerteza.

$$y_i = \alpha x_i + \beta + \epsilon_i$$

Quanto aos dados de entrada

Modelo heurístico: provocam explicações sobre o que está sendo estudado (se algum variável aumenta, a outra também).

=> Análise exploratória (gráfico dispersão, distribuições/histograma)

Modelo empírico: baseado em observações diretas (experiência)

=> Modelagem do problema (dados de treino)

Quanto a representação

Modelo qualitativo: promovem explicações e *insigths* sobre o que pode estar ocorrendo.

=> Análise exploratória: gráficos, descrições causais, inferências

Modelo quantitativo ou numérico: baseado em números ou classificações.

=> Modelagem do problema e geração de algoritmos (dados de treinamento, teste e previsão)

Quanto a aplicação

Modelo descritivo ou simulatório: simular um problema.

Modelo de otimização: determinação de ponto ótimo (min / máx).

Modelo de controle: análise de uma variável específica (ex: modelo preditivo).

Modelagem para Data Science

Quanto ao tipo de saída

Regressão: variável de saída contínua.

Classificação: variável de saída discreta (finita) ou categórica.

Gravação da apresentação:

https://www.infoq.com/br/presentations/estatistica-e-matematica-aplicadas-a-data-science/

O Problema

Identificar fraudadores da forma mais eficaz possível, reduzindo o custo com a fraude, baseado em dados cadastrais.

O custo (t, \$) da fiscalização pode inviabilizar 100% de fiscalização, em muitos casos.

Abordagens

P1. Identificar fraudadores => Modelo de Controle

$$P(y=1|xyw) \neq x.x[(w,\beta(x))]$$
 $P(y=1|x,\alpha) \leftarrow \Box$
Característica (h(x))

P2. Custo da fiscalização x Custo da fraude => Modelo de Otimização

Problema 1:

Características: dados cadastrais, geográficos e alguns tipos de comportamentos.

Possuo pré-classificação de fraudadores (observados) e não fraudadores.

Utilização de algoritmos de árvores para treinar o modelo.

Problema 1:

Algoritmos:

- Árvores de Decisão
- RandomForest
- AdaBoost (com técnicas de boosting e bagging)
- Extreme Gradient Boosting.

		Realidade	
		Fraude	Normal
Previsão	Fraude	7	2
	Normal	23	5

C = 100*23 + 30*9

Problema 1: Avaliação de modelos

1. Taxa de acerto dos fraudadores:

$$TAF = TP / (TP+FN)$$
 (*)

2. Quantidade de fiscalizações:

$$TQF = (TP+FP)/\#TOT.POP.$$
 (**)

		Realidade	
		Fraude	Normal
Previsão	Fraude	TP	FP (E1)
	Normal	FN (E2)	TN

^{*} Sensitivity ou Recall | ** Prevalence

Problema 1: Avaliação de modelos

Modelos	TAF	TQF
Cenário 3.1: AD Com enriquecimento	37.52%	11.53%
Cenário 4.1: RF Com enriquecimento	39.69%	10.18%
Cenário 4.2: RF Sem enriquecimento	43.91%	11.62%
Cenário 5.1: AdaBgg Com enriquecimento	32.71%	9.27%
Cenário 5.2: AdaBgg Sem enriquecimento	42.25%	13.52%
Cenário 6.1: AdaBst Com enriquecimento	35.27%	10.42%
Cenário 6.2: AdaBst Sem enriquecimento	41.63%	13.26%
Cenário 7.1: XGBst Com enriquecimento	88.41%	29.94%

Problema 2:

Custo da fiscalização x custo da fraude

Premissas:

- Amostra 100.000
- Tx. de fraude (observada): ~20%
- Custo da fraude: 100\$
- Custo da fiscalização: 30\$
- Fiscalização zera fraude

Custo da fraude: 100\$ Custo da fiscalização: 30\$

Problema 2: Avaliação de modelos

Modelos	# Fraude/ano	# Inspeção	Custo
Cenário ótimo - Fiscalizar só fraudadores	0	20000	600,000.00
Cenário 1 - Sem Fiscalização	20000	0	2,000,000.00
Cenário 2 - Fiscalizando todos	0	100000	3,000,000.00
Cenário 3.2 - Sem enriquecimento (56,38%)	10871	15480	1,551,536.93
Cenário 4.1: RF Com enriquecimento	12063	10180	1,511,686.84
Cenário 4.2: RF Sem enriquecimento	11217	11620	1,470,315.08
Cenário 5.1: AdaBgg Com enriquecimento	13458	9270	1,623,876.03
Cenário 5.2: AdaBgg Sem enriquecimento	11549	13520	1,560,510.10
Cenário 6.1: AdaBst Com enriquecimento	12947	10420	1,607,295.48
Cenário 6.2: AdaBst Sem enriquecimento	11674	13260	1,565,158.23
Cenário 7.1: XGBst Com enriquecimento	2318	29940	1,129,977.23

	2014 Sales	2015 Forecast	Mais adequado?
January	420		<u></u>
February	440		
March	410		
April	524		
May	567		
June	755		
July	720		
August	800		
September	780		
October	960		
November	1 200		
December	1 100		
January	1 150	1 150	
February		1 240	THE THE SECT SHIP WE THE THE THE SECTION SHIP WE THE THE SECTION WE THE
March		1 280	REALTH BELLEVIE THE CHEEK PART THE THE THE STEEL SEE SEE THE THE STEEL PER SEE SEE SEE SEE SEE SEE SEE SEE SEE S
April		1 310	3 40
May		1 360	2014 Sales 2015 Forecast
June		1370	ZU14 Sales ZU15 FUIECast

DEZ

Interesse por Churrasco

AGO

Componentes

Problema:

Prever o comportamento de uma variável agregada ao longo do tempo (projeção ou previsão).

Modelo de controle =>

$$y_i = \alpha x_i + \beta + \epsilon_i$$

Abordagens

Alternativa 1. Existe uma varíavel que explique o comportamento (relação causa e efeito ou correlação)

=> Regressão Linear:

$$y_i = \alpha x_i + \beta + \varepsilon_i$$

Alternativa 2. A variável tem um histórico que a explica ao longo do tempo e uma característica de tendência.

=> Modelo autoregressivo:

$$y_i = \alpha y_{i-1} + \beta + \epsilon_i$$

Conclusões

