

UE20MA151

Dr. SIVASANKARI. V
Department of Science & Humanities

Unit 4: Inverse Laplace Transform

Session: 3

SIVASANKARI. V

Department of Science & Humanities

INVERSE LAPLACE TRANSFORM

Contents

Inverse Laplace Transforms – Method of Partial Fractions

INVERSE LAPLACE TRANSFORM

Sometimes the given $F(s) = \frac{P(s)}{Q(s)}$ where P(s) and Q(s) are polynomials in s can be expressed as partial fractions for obtaining the Inverse Laplace Transform.

INVERSE LAPLACE TRANSFORM - Pre – Requisite:

SI No.	Factors in the denominator	Corresponding Partial Fractions
1.	Non- repeated linear factors $F(s) = \frac{s}{(s+2)(3s+5)}$	$F(s) = \frac{A}{s+2} + \frac{B}{3s+5}, A \neq 0 \& B \neq 0$
2.	Repeated linear factor $F(s) = \frac{2s + 5}{(s + 1)^3}$	$F(s) = \frac{A}{s+1} + \frac{B}{(s+1)^2} + \frac{C}{(s+1)^3},$ $A \neq 0, B \neq 0 \& C \neq 0$
3.	Non – repeated quadratic factor $F(s) = \frac{2s+1}{(s^2+2s+2)(s^2+2s+5)}$	$F(s) = \frac{As + B}{(s^2 + 2s + 2)} + \frac{Cs + D}{(s^2 + 2s + 5)}$
4.	Repeated quadratic factor $F(s) = \frac{2s+1}{(s^2+2s+5)^2}$	$F(s) = \frac{As + B}{(s^2 + 2s + 5)} + \frac{Cs + D}{(s^2 + 2s + 5)^2}$

INVERSE LAPLACE TRANSFORM

1) Obtain the Inverse Laplace Transforms of $\frac{s-2}{s^2+5s+6}$

Solution:

Consider
$$S^2 + 55 + 6 = (5+2)(5+3)$$

To find the inverse Laplace transform, first we shall resolve given rational function into partial fractions.

Let
$$\frac{S-2}{(S+2)(S+3)} = \frac{A}{S+2} + \frac{B}{S+3}$$

 $S-2 = A(S+3) + B(S+2)$

INVERSE LAPLACE TRANSFORM

$$S-2 = A(S+3) + B(S+2)$$

Put $S=-3$, $-5 = -B$ \Rightarrow $B=5$
 $S=-2$, $-4 = A$ \Rightarrow $A = -4$

$$| L^{-1} \left\{ \frac{S-2}{S^2+5S+6} \right\} = -4e^{-2t} + 5e^{-3t}$$

INVERSE LAPLACE TRANSFORM

2) Obtain the Inverse Laplace Transforms of $\frac{2s+3}{(s+2)^2(s-1)}$

Solution:

To find the inverse Laplace transform, first we shall resolve given rational function into partial fractions.

Let
$$\frac{2S+3}{(S+2)^2(S-1)} = \frac{A}{S-1} + \frac{B}{S+2} + \frac{C}{(S+2)^2}$$

 $\frac{2S+3}{(S+2)^2(S-1)} = \frac{A}{S-1} + \frac{B}{S+2} + \frac{C}{(S+2)^2}$
 $\frac{2S+3}{S+3} = A(S+2)^2 + B(S-1)(S+2) + C(S-1)$
Put $S=1$, $5=9A \implies A=\frac{5}{4}$
 $S=-2$, $-1=-3C \implies C=\frac{1}{3}$

INVERSE LAPLACE TRANSFORM

Put
$$S=0$$
, $3=4A-2B-C$

$$3=4(\frac{5}{9})-2B-\frac{1}{3} \implies B=-\frac{5}{9}$$

$$L^{-1}\left\{\frac{2S+3}{(S-1)(S+2)^{2}}\right\} = L^{-1}\left\{\frac{A}{S-1} + \frac{B}{S+2} + \frac{C}{(S+2)^{2}}\right\} \text{ becomes}$$

$$= L^{-1}\left\{\frac{5/q}{S-1} + \frac{-5/q}{S+2} + \frac{1}{3}\left(\frac{1}{S+2}\right)^{2}\right\}$$

$$= \frac{5}{9}L^{-1}\left\{\frac{1}{S-1}\right\} - \frac{5}{9}L^{-1}\left\{\frac{1}{S+2}\right\} + \frac{1}{3}L^{-1}\left\{\frac{1}{S+2}\right\}$$

$$= \frac{5}{9}e^{\frac{1}{5}} - \frac{5}{9}e^{-2t} + \frac{1}{3}e^{-2t} + \frac{$$

INVERSE LAPLACE TRANSFORM

3) Obtain the Inverse Laplace Transforms of $\frac{s}{(s-3)(s^2+4)}$

Solution:

To find the inverse Laplace transform, first we shall resolve given rational function into partial fractions.

Let
$$\frac{S}{(S-3)(S^2+4)} = \frac{A}{S-3} + \frac{BS+C}{S^2+4}$$

 $S = A(S^2+4) + (BS+C)(S-3)$
Put $S=3$,
 $3 = 13A \implies A = \frac{3}{13}$

INVERSE LAPLACE TRANSFORM

$$S = (A+B)S^2 + (C-3B)S + (AA-3C)$$

$$A+B=0$$
 $\Rightarrow \frac{3}{13}+B=0$ $\Rightarrow B=-\frac{3}{13}$

Equating the coefficient of S,

$$C - 3B = 1$$

INVERSE LAPLACE TRANSFORM

$$\left[-\frac{S}{(S-3)(S^2+4)} \right] = \frac{3}{13} \left[-\frac{1}{13} \right] + \left[-\frac{1}{13} \right] + \left[-\frac{3}{13} \right] + \left[-\frac{3}$$

$$= \frac{3}{13} e^{3t} - \frac{3}{13} \left[-\frac{1}{13} \left[\frac{s}{s^2 + 4} \right] + \frac{1}{13} \left[-\frac{1}{13} \left[\frac{1}{s^2 + 4} \right] \right] \right]$$

$$=\frac{3 \cdot e^{3t}}{13} - \frac{3}{13} \cdot \cos 2t + \frac{4}{13} \cdot \frac{1}{2} \cdot \sin 2t$$

$$=\frac{3}{13}e^{3t}-\frac{3}{13}\cos 2t+\frac{2}{13}\sin 2t$$

THANK YOU

Dr. SIVASANKARI. V
Department of Science & Humanities
sivasankariv@pes.edu