数理逻辑第3次课后习题作业参考解答

3. 将 PC 中公理 A3 改为($\neg A \rightarrow \neg B$) \rightarrow (($\neg A \rightarrow B$) \rightarrow A),记所得系统为 PC'。证明:

$$(1) \mid_{-PC} (\neg A \rightarrow \neg B) \rightarrow ((\neg A \rightarrow B) \rightarrow A)$$

方案一:

- 1) $\neg B \rightarrow (B \rightarrow A)$ 定理 3
- 2) $\neg A \rightarrow (\neg B \rightarrow (B \rightarrow A))$ 1)+定理 2

3)
$$(\neg A \rightarrow \neg B) \rightarrow (\neg A \rightarrow (B \rightarrow A))$$
 2) $+A2 + r_{mn}$

4)
$$(\neg A \rightarrow (B \rightarrow A)) \rightarrow ((\neg A \rightarrow B) \rightarrow (\neg A \rightarrow A))$$
 A2

5)
$$(\neg A \rightarrow \neg B) \rightarrow ((\neg A \rightarrow B) \rightarrow (\neg A \rightarrow A))$$
 3)4)+定理7

- 6) $(\neg A \rightarrow A) \rightarrow A$ 定理 8
- 7) $(\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow A) \rightarrow A)$ 6) +定理 2

8)
$$((\neg A \rightarrow B) \rightarrow (\neg A \rightarrow A)) \rightarrow ((\neg A \rightarrow B) \rightarrow A)$$
 7) +A2+ r_{mn}

9) $(\neg A \rightarrow \neg B) \rightarrow ((\neg A \rightarrow B) \rightarrow A)$ 5) 8) +定理 7

//即反证法的形式化定理描述//

方案二:

$$\pm (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$
 知,只需证 $(B \rightarrow A) \rightarrow ((\neg A \rightarrow B) \rightarrow A)$,

尾件一样,可以用逆否变形转化为前件一样即可(这里的后推前的模式已失效)。 **方案三:**

使用定理 14 来做: $(A \rightarrow A) \rightarrow ((B \rightarrow A) \rightarrow ((\neg A \rightarrow B) \rightarrow A))$,

$$(2) \mid_{-pC'} (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$

//注意观察 A3' 与上述字符串的对比关系,马上可以看出我们思考题的功能调用 类方法: 由 $\varepsilon_1 \to (P \to \varepsilon_2)$ 改写为 $\varepsilon_1 \to (P' \to \varepsilon_2)$,其中 $P' \to P$ 。 //

1)
$$(\neg A \rightarrow \neg B) \rightarrow ((\neg A \rightarrow B) \rightarrow A)$$
 A3'

- 2) $(\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A)$ 1)+定理 6+rmp
- 3) $B \rightarrow (\neg A \rightarrow B)$ A1
- 4) $B \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A)$ 2) 3) +传递定理 7+rmp
- 5) $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$ 4) +定理 6+rmp

注:

1. 上述证明中均要说明所使用的定理 6、定理 7 的本身的证明过程中(在 PC 中)没有用到 PC 的 A3 (因为这里要证的就是 A3),否则存在用结论证结论的问题。 2. 在 PC 中证明定理 6,7 只用到了公理 A1,A2,未使用 A3,故定理 6,7 仍可以在 PC' 中直接调用。

4. 证明:对PC有下列导出规则:

1) 若
$$|-A \rightarrow (B \rightarrow C)$$
, $|-B$, 那么 $|-A \rightarrow C$

- ① $A \rightarrow (B \rightarrow C)$ 假设定理
- ② $B \rightarrow (A \rightarrow C)$ ①前件交换
- ③ B 假设定理
- $4(A \rightarrow C)$ $23r_{mp}$

- 2) 若Γ;¬A|-B, 及Γ;¬A|-¬B, 那么Γ|-A
- ① Γ;¬A|-B 己知
- ②Г;¬А|-¬В 己知
- ③ $\neg B \rightarrow (B \rightarrow A)$ 定理
- $(4)\Gamma$; $\neg A \mid -A$ (1) (2) (3) r_{mn}
- ⑤Γ | -¬A → A ④演绎定理
- ⑥ $(\neg A \rightarrow A) \rightarrow A$ 定理
- $\bigcirc \Gamma \mid -A \bigcirc \bigcirc \bigcirc r_{mn}$

- 6. 在 ND 中证明:
 - 1) $\left| -(\neg A \rightarrow A) \rightarrow A \right|$
- ① $\neg A \rightarrow A, \neg A \neg A$ 公理
- ② $\neg A \rightarrow A, \neg A \mid \neg A \rightarrow A$ 公理
- ③ $\neg A \rightarrow A, \neg A | -A$ ①② \rightarrow 消去
- $④ \neg A \rightarrow A, A \mid -A$ 公理
- ⑤¬*A* → *A*|− *A* ③④假设消除

$$2) \mid -A \to (B \to C) \leftrightarrow (A \land B \to C)$$

略

3)
$$[-(A \lor B) \to C \leftrightarrow (A \to C) \land (B \to C)$$

先证
$$|\neg((A \lor B) \to C) \to (A \to C) \land (B \to C)$$

- ① $((A \lor B) \to C), A A$ 公理
- $2((A \lor B) \to C), A A \lor B \quad 1 \lor \exists |\lambda$
- ③ $((A \lor B) \to C), A \mid A \lor B \to C$ 公理
- $4((A \lor B) \to C), A \vdash C$ ②③ →消去
- $\textcircled{5} ((A \vee B) \to C) \middle| -A \to C \quad \textcircled{4} \to \vec{7} \middle| \ \lambda$
- ⑥ $((A \lor B) \to C) B \to C$ 同理可得

再证
$$\vdash (A \to C) \land (B \to C) \to ((A \lor B) \to C)$$

只需证: $A \to C$) \wedge $(B \to C)$, $A \lor B \mid -C$

- ① $A \rightarrow C$) \land ($B \rightarrow C$), $A \lor B$; $A \mid -A$ 公理
- ② $A \to C$) \wedge $(B \to C)$, $A \lor B$; $A \mid -A \to C$ 公理 $+ \land$ 消除
- ③ $A \rightarrow C$) \wedge $(B \rightarrow C)$, $A \vee B$; $A \mid -C$ ①② \rightarrow 消去

$$(4)$$
 $A \rightarrow C$) \land $(B \rightarrow C)$, $A \lor B$; $B \mid -C$ 同理可得

$$(5)$$
 $A \to C) \land (B \to C), A \lor B \mid -A \lor B$ 公理

⑥
$$A \rightarrow C$$
) ∧ $(B \rightarrow C)$, $A \lor B \mid -C$ ③④⑤ ∨ 消除

4)
$$\{A \rightarrow B, \neg (B \rightarrow C) \rightarrow \neg A\} | \neg A \rightarrow C$$

略

$$5) \mid \neg (A \rightarrow B) \leftrightarrow A \land \neg B$$

先证:
$$|\neg(A \rightarrow B) \rightarrow A \land \neg B$$

1)
$$\neg (A \rightarrow B)$$
, $\neg A$; $A - \neg A$ 公理

3)
$$\neg (A \rightarrow B)$$
, $\neg A$; $A - B$ 1) 2) \neg 消除//即系统不一致的规则。

4)
$$\neg (A \rightarrow B), \neg A | \neg A \rightarrow B$$
 3) \rightarrow 引入//注意这里没有直接调用PC的定理3来做。

5)
$$\neg (A \rightarrow B), \neg A | \neg (A \rightarrow B)$$
 公理

6)
$$\neg (A \rightarrow B) | \neg \neg A \ 4) 5) \neg \exists | \lambda$$

8)
$$\neg (A \rightarrow B), B \mid \neg B \rightarrow (A \rightarrow B)$$
 ND 中已证定理

9)
$$\neg (A \rightarrow B), B \mid -B$$
 公理

$$10)$$
 $\neg (A \rightarrow B), B \mid -A \rightarrow B$ 8)9) \rightarrow 消除

11)
$$\neg (A \rightarrow B), B \mid \neg \neg (A \rightarrow B)$$
 公理

12)
$$\neg (A \rightarrow B) | \neg \neg B \quad 10) 11) \quad \neg \vec{\exists} | \lambda$$

13)
$$\neg (A \rightarrow B) | -A \land \neg B \ 7) \ 12) \land 引入$$

$$41) \mid \neg (A \rightarrow B) \rightarrow A \land \neg B \quad 13) \quad \rightarrow \vec{\exists} \mid \lambda$$

再证:
$$|-(A \land \neg B) \rightarrow \neg (A \rightarrow B)$$

- 1) $A \wedge \neg B, A \rightarrow B \mid -A \wedge \neg B$ 公理
- 2) $A \land \neg B, A \rightarrow B \mid -A$ 1) \land 消除
- 3) $A \land \neg B, A \rightarrow B \mid -A \rightarrow B$ 公理
- 4) $A \land \neg B, A \rightarrow B \mid \neg B \mid 2)$ 3) \rightarrow 消除
- 5) $A \land \neg B, A \rightarrow B \mid \neg \neg B$ 1) \land 消除
- 6) $A \land \neg B | \neg (A \rightarrow B)$ 4) 5) $\neg \exists | \lambda$
- 7) $|-(A \land \neg B) \rightarrow \neg (A \rightarrow B) \ 6\rangle \rightarrow \exists | \lambda$

- 6) $|-(A \vee B) \wedge (\neg B \vee C) \rightarrow A \vee C$
- 1) $(A \lor B) \land (\neg B \lor C), A \vdash A$ 公理
- 2) $(A \lor B) \land (\neg B \lor C), A | \neg A \lor C \quad 1) \lor \exists | \lambda$
- 3) $(A \vee B) \wedge (\neg B \vee C), B; C C$ 公理
- 4) $(A \lor B) \land (\neg B \lor C), B; C | \neg A \lor C \quad 3) \lor \exists | \lambda$
- 5) $(A \vee B) \wedge (\neg B \vee C), B; \neg B \mid -B$ 公理
- 6) $(A \lor B) \land (\neg B \lor C), B; \neg B \mid \neg \neg B$ 公理
- 7) $(A \lor B) \land (\neg B \lor C), B; \neg B | \neg A \lor C \quad 5) \ 6) \ \neg$ 消除
- 8) $(A \lor B) \land (\neg B \lor C), B | \neg (A \lor B) \land (\neg B \lor C)$ 公理
- 9) $(A \lor B) \land (\neg B \lor C), B \mid \neg \neg B \lor C \mid 8$) \land 消除
- 10) $(A \lor B) \land (\neg B \lor C), B | \neg A \lor C \ 4) \ 7) \ 9) \ \lor 消除$
- $(A \lor B) \land (\neg B \lor C) A \lor C \ 2) \ 10) \ 11) \lor 消除$
- 13) $[-(A \lor B) \land (\neg B \lor C) \rightarrow (A \lor C)$

7) $|-(A \wedge B) \leftrightarrow A \wedge (\neg A \vee B)$

先证: $|-(A \land B) \rightarrow A \land (\neg A \lor B)$

- ① *A* ∧ *B* | −*A* 公理+∧消除
- ② $A \wedge B \mid -B$ 公理+ \wedge 消除
- $3A \wedge B A \vee B \quad 2 \vee \beta \lambda$
- $\textcircled{4} A \wedge B \middle| -A \wedge (\neg A \vee B) \ \textcircled{1} \textcircled{3} \wedge \vec{7} \middle| \ \lambda$

再证: $|-A \wedge (\neg A \vee B) \rightarrow (A \wedge B)$

- ① $A \wedge (\neg A \vee B) A$ 公理+ \wedge 消除
- ② $A \wedge (\neg A \vee B); \neg A \mid -A$ 公理+ \wedge 消除
- ③ $A \wedge (\neg A \vee B); \neg A \neg A$ 公理
- \bigcirc $A \land (\neg A \lor B); B | B$
- ⑥ A ∧ (¬A∨B) | ¬¬A∨B 公理+∧消除
- (7) $A \land (\neg A \lor B) | -B$ ④⑤⑥∨消除

8)
$$\left| -((A \leftrightarrow B) \leftrightarrow A) \leftrightarrow B \right|$$

先证: $|-B \rightarrow ((A \leftrightarrow B) \leftrightarrow A)$

只需证: $B, A \leftrightarrow B \mid -A \not \supset B, A \mid -A \leftrightarrow B$

- 1) $B, A \leftrightarrow B \mid \neg B \rightarrow A$ 公理及 \leftrightarrow 消除
- 2) **B,A ↔ B**|**-B** 公理
- 3) $B, A \leftrightarrow B \mid -A \mid 1) \mid 2) \rightarrow$ 消除
- 4) $B, A \mid -B \rightarrow (A \rightarrow B)$ 已证定理

- 5) B, A|-B 公理
- 6) *B*, *A*|-*A* → *B* 4) 5) →消除
- 7) $B,A \mid -B \rightarrow A$ 同理 6)
- 8) $B, A \mid -A \leftrightarrow B = 6 \rightarrow 7 \rightarrow \exists \mid \lambda$

再证: $|-((A \leftrightarrow B) \leftrightarrow A) \rightarrow B|$

- 1) $(A \leftrightarrow B) \leftrightarrow A, A A$ 公理
- 2) $(A \leftrightarrow B) \leftrightarrow A, A A \rightarrow (A \leftrightarrow B)$ 公理及 \leftrightarrow 消除
- 3) $(A \leftrightarrow B) \leftrightarrow A, A A \leftrightarrow B \ 1) \ 2) \rightarrow$ 消除
- 4) $(A \leftrightarrow B) \leftrightarrow A, A \mid -A \rightarrow B$ 3) \leftrightarrow 消除
- 5) $(A \leftrightarrow B) \leftrightarrow A, A \mid -B \ 1) \ 4) \rightarrow$ 消除
- 6) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid \neg \neg A \rightarrow (A \rightarrow B)$ 定理
- 7) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -\neg A$ 公理
- 8) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -A \rightarrow B \mid 6) \mid 7) \rightarrow$ 消除
- 9) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid \neg B \to (B \to A)$ 定理
- 10) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -\neg B$ 公理
- 11) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -B \to A \ 9) \ 10) \rightarrow 消除$
- 12) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B | -A \leftrightarrow B \ 8) \ 11) \leftrightarrow \exists | \lambda$
- 13) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B | \neg (A \leftrightarrow B) \to A$ 公理及 \leftrightarrow 消除
- 14) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -A$ 12) 13) \rightarrow 消除
- 15) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \neg A$ 公理
- 16) $(A \leftrightarrow B) \leftrightarrow A, \neg A \mid \neg \neg B \ 14) \ 15) \ \neg \exists \mid \lambda$
- 17) $(A \leftrightarrow B) \leftrightarrow A, \neg A \mid -B \neg \neg 消除$

- 18) (A ↔ B) ↔ A | B 5) 17) 假设消除
- 19) $\left| -((A \leftrightarrow B) \leftrightarrow A) \rightarrow B \right| 18) \rightarrow \exists |\lambda|$

注:

- 1. 上述证明我们都是基于ND的公理、推理规则和ND已证的基本定理来完成的, 尽量少调用中间结论,希望大家熟悉这种基于给定规则的推理方法。
- 2. 在 ND 推理中,由于 PC 的公理已作为定理推出,因此可以在 ND 中直接调用,但 PC 的定理我们不调用,大家在 ND 中证明时也不要调用 PC 的定理了。