Part I: Summary of Confidence Intervals:

(I) CI for the Population Mean μ :

Case 1: Large sample ($n \ge 30$):

CI: $(\overline{x} - E, \overline{x} + E)$

$$E = z_c \frac{s}{\sqrt{n}}$$

$$z_c = NORM.S.INV\left(\frac{1+c}{2}\right)$$

Determining the ample size: $n = \left(\frac{z_c s}{E}\right)^2$

Case 2: Small sample, Population is normal, σ is given: Same as case 1.

Case 3: Small sample, Population is normal, σ is unknown:

CI: $(\overline{x} - E, \overline{x} + E)$ $E = t_c \frac{s}{\sqrt{n}}$

$$E = t_c \frac{s}{\sqrt{n}}$$

$$DF = n - 1;$$

$$t_c = T.INV\left(\frac{1+c}{2}, DF\right)$$

(II) CI for the Population Proportion p:

First ensure that $n \ \widehat{p} \ge 10$ and $n \ \widehat{q} \ge 10$; where : $\widehat{p} = \frac{x}{n}$ is the sample proportion and $\hat{q} = 1 - \hat{p}$.

Next,

CI: $(\widehat{p} - \underline{E}, \widehat{p} + \underline{E})$

$$E=z_c\sqrt{\frac{\widehat{p}\,\widehat{q}}{n}}$$

$$z_c = NORM. S. INV\left(\frac{1+c}{2}\right).$$

Determining the sample size: $n = \hat{p} \hat{q} \left(\frac{z_c}{E}\right)^2$.

CI for the Population Standard Deviation σ : (III)

CI Lower Limit for
$$\sigma$$
:
$$\sqrt{\frac{(n-1) s^2}{\chi_R^2}}$$
CI Upper Limit for σ :
$$\sqrt{\frac{(n-1) s^2}{\chi_L^2}}$$

$$\chi_R^2 := CHISQ.INV\left(\frac{1+c}{2}, DF\right)$$

$$\chi_L^2 := CHISQ.INV\left(\frac{1-c}{2}, DF\right)$$

$$DF = n - 1;$$

Part II Hypothesis Testing Summary:

(I) Hypothesis testing for a population mean μ : (large sample: $n \ge 30$)

	Right Tailed Problem	Left-Tailed Problem	Two Tailed Problem:
Hypotheses:	Null: $H_a: \mu \leq \mu_o$	Null: $H_a: \mu \geq \mu_o$	Null: $H_a: \mu = \mu_o$
	Alternative: $H_a: \mu > \mu_o$	Alternative: $H_a: \mu < \mu_o$	Alternative: $H_a: \mu \neq \mu_o$
Test Statistic	$z = \frac{\left(\overline{x} - \mu_o\right)\sqrt{n}}{\sqrt{n}}$	$z = \frac{\left(\overline{x} - \mu_{o}\right)\sqrt{n}}{\sqrt{n}}$	$z = \frac{\left(\overline{x} - \mu_{o}\right)\sqrt{n}}{\sqrt{n}}$
z	$z = \frac{\langle \cdot \rangle}{s}$	$z = \frac{\langle s \rangle}{s}$	$z = \frac{\langle \cdot \rangle}{s}$
P-Value:	$P(Z \ge z)$	$P(Z \le z)$	$\int 2P(Z \ge z) if z is positive$
			$\begin{cases} 2P(Z \ge z) & \text{if } z \text{ is positive} \\ 2P(Z \le z) & \text{if } z \text{ is negative} \end{cases}$
Decision:	Reject $H_{_{o}}$ if Pvalue $\leq \alpha$	Reject $H_{_{o}}$ if Pvalue $\leq \alpha$	Reject H _o if Pvalue ≤ α

(II) Hypothesis testing for a population mean μ : (small sample, population is Normal, σ is unknown)

	Right Tailed Problem	Left-Tailed Problem	Two Tailed Problem:
Hypotheses:	Null: $H_a: \mu \leq \mu_o$	Null: $H_a: \mu \geq \mu_o$	Null: $H_a: \mu = \mu_o$
	Alternative: $H_a: \mu > \mu_o$	Alternative: H_a : $\mu < \mu_o$	Alternative: $H_a: \mu \neq \mu_o$
Test Statistic	$\left(\overline{x} - \mu_{o}\right)\sqrt{n}$	$t = \frac{\left(\overline{x} - \mu_{o}\right)\sqrt{n}}{}$	$t = \frac{\left(\bar{x} - \mu_{o}\right)\sqrt{n}}{\sqrt{n}}$
t	$t = \frac{\langle s \rangle}{s}$	$t = \frac{\langle \cdot \cdot \rangle}{s}$	$t = \frac{\langle s \rangle}{s}$
P-Value:	$P(T \ge t)$	$P(T \le t)$	$\int 2P(T \ge t) if t is positive$
	. ,		$\begin{cases} 2P(T \ge t) & \text{if } t \text{ is positive} \\ 2P(T \le t) & \text{if } t \text{ is negative} \end{cases}$

Decision:	Reject H _o if Pvalue ≤α	Reject H _o if Pvalue ≤α	Reject H _o if Pvalue ≤α
-----------	------------------------------------	------------------------------------	------------------------------------

(III) Hypothesis testing for a population Proportion p:

	Right Tailed Problem	Left-Tailed Problem	Two Tailed Problem:
Hypotheses:	Null: $H_a: p \leq p_o$	Null: $H_a: p \ge p_o$	Null: $H_a: p = p_o$
	Alternative: $H_a: p > p_o$	Alternative: H_a : $p < p_o$	Alternative: H_a : $p \neq p_o$
Test Statistic	٨	۸	^
z	$z = \frac{p - p_o}{\sqrt{1 - p_o}}$	$z = \frac{p - p_o}{\sqrt{1 - (p_o - p_o)^2}}$	$z = \frac{p - p_o}{}$
	$z = \frac{p - p_o}{\sqrt{\frac{p_o q_o}{n}}}$	$z = \frac{p - p_o}{\sqrt{\frac{p_o q_o}{n}}}$	$z = \frac{p - p_o}{\sqrt{\frac{p_o q_o}{n}}}$
P-Value:	$P(Z \ge z)$	$P(Z \le z)$	$\int 2P(Z \ge z) if z is positive$
			$\begin{cases} 2P(Z \ge z) & \text{if } z \text{ is positive} \\ 2P(Z \le z) & \text{if } z \text{ is negative} \end{cases}$
Decision:	Reject $H_{_{o}}$ if Pvalue $\leq \alpha$	Reject H _o if Pvalue ≤ α	Reject H _o if Pvalue ≤α

(IV) Hypothesis testing for a population Proportion Standard Deviation σ :

	Right Tailed Problem	Left-Tailed Problem	Two Tailed Problem:
Hypotheses:	Null: $H_a: \sigma \leq \sigma_o$	Null: $H_a: \sigma \geq \sigma_o$	Null: $H_a: \boldsymbol{\sigma} = \boldsymbol{\sigma}_o$
	Alternative: $H_a: \sigma > \sigma_o$	Alternative: $H_a: \boldsymbol{\sigma} < \boldsymbol{\sigma}_o$	Alternative: $H_a: \sigma \neq \sigma_o$
Test Statistic	$\chi^2 = \frac{\left(n-1\right)s^2}{\sigma^2}$	$\chi^2 = \frac{\left(n-1\right)s^2}{\sigma^2}$	$\chi^2 = \frac{\left(n-1\right)s^2}{\sigma^2}$
χ^2	$\chi = \frac{1}{\sigma_o^2}$	$\chi = \frac{1}{\sigma_o^2}$	$\chi = \frac{1}{\sigma_o^2}$
P-Value:	$P\left(\mathbf{X}^2 \geq \boldsymbol{\chi}^2\right)$	$P\left(\mathbf{X}^2 \leq \boldsymbol{\chi}^2\right)$	$\int 2P(X^2 \ge \chi^2) if \chi^2 \ge \chi_R^2$
			$\begin{cases} 2P(X^2 \ge \chi^2) & \text{if} \chi^2 \ge \chi_R^2 \\ 2P(X^2 \le \chi^2) & \text{if} \chi^2 \le \chi_L^2 \end{cases}$
Decision:	Reject $H_{_{o}}$ if Pvalue $\leq \alpha$	Reject H _o if Pvalue ≤α	Reject $H_{_{o}}$ if Pvalue $\leq \alpha$

Part III: Summary of Continuous Probability Formulas in Excel

- 1. The Normal Distribution:
- (i) Standard Normal Distribution Z

$$P(Z \le z) := NORM.S.DIST(z,1)$$
 $z := NORM.S.INV(P(Z \le z))$

 $P(Z \leq z)$ represents the area on the left of z

(ii) Non-Standard Normal Distribution X

$$P(X \le x)$$
: = $NORM.DIST(x, \mu, \sigma, 1)$

$$x: = NORM.INV(P(X \le x), \mu, \sigma)$$

$$P(X \le x)$$
 represents the area on the left of x

2. The T Distribution T (DF = n - 1)

$$P(T \le t)$$
: = $T.DIST(t, df)$

$$t: = T.INV(P(T \le t), df)$$

$$P(T \le t)$$
 represents the area on the left of t

3. The Chi-squared Distribution X^2 (DF = n - 1)

$$P(X^2 \le \chi^2)$$
: = CHISQ.DIST $(\chi^2, df, 1)$

$$\chi^2$$
: = CHISQ.INV $(P(X^2 \le \chi^2), df)$

$$P(X^2 \le \chi^2)$$
 represents the area on the left of χ^2