Zhengdong Zhang

Email: zhengz@uoregon.edu Course: MATH 649 - Abstract Algebra Instructor: Professor Sasha Polishchuk Homework - Week 8

ID: 952091294 Term: Spring 2025 Due Date: 28th May, 2025

Problem 20.2.7

If R is a PID then an ideal Q in R is primary if and only if \sqrt{Q} is prime.

Solution: From Lemma 20.2.3, we know that if Q in R is primary, then \sqrt{Q} is prime. Conversely, assume \sqrt{Q} is a prime ideal, then $\sqrt{Q}=(p)$ for some prime element $p\in R$ since R is a PID. $p\in \sqrt{Q}$ implies that there exists some n>0 such that $p^n\in Q$. Let $k\in \mathbb{Z}_+$ be the smallest positive integer such that $p^k\in Q$. We claim that $Q=(p^k)$. Suppose Q=(a) for some $a\in R$. We know that $p^k\in Q$, so $a|p^k$. Since p is prime in R, $a=p^{k'}$ for $1\leq k'\leq k$. The way we choose k implies that k'=k. So $Q=(p^k)$. Suppose $rs\in Q=(p^k)$, then there exists $b\in R$ such that $p^kb=rs$. If $r\notin (p)=\sqrt{Q}$, this means $p^k\nmid r$. Since p is prime, $p^k|s$ and this implies $s\in Q$. We have proved that Q is primary.

Problem 20.2.9

If \sqrt{I} is a maximal ideal, then I is \sqrt{I} -primary.

Solution: Proving I is \sqrt{I} -primary is the same as proving that every zero divisor in R/I is nilpotent. \sqrt{I} is a maximal ideal containing I in R, so \sqrt{I}/I is a maximal ideal in R/I. Moreover, it is the unique maximal ideal in R/I. Suppose m is another maximal ideal in R/I, then m corresponds to a prime ideal $p \subseteq R$ containing I. We know that \sqrt{I} is the intersection of all prime ideals containing I, so $P \supseteq \sqrt{I}$. This contradicts that \sqrt{I} is maximal. So such M does not exist. Thus, M is a local ring with the unique maximal ideal \sqrt{I}/I .

Suppose $a, b \in R - I$ and $ab \in I$, in this case a + I and b + I are zero divisors in R/I. Assume b + I is not nilpotent in R/I, this implies that $b \notin \sqrt{I}$, so $b + I \notin \sqrt{I}/I$. In this case, b + I must be a unit in R/I because $(R/I)/(\sqrt{I}/I)$ is a field. This contradicts that b + I is a zero divisor in R/I. So b + I must be nilpotent and thus I is \sqrt{I} -primary.

Problem 20.2.16

The ideal $(4, 2x, x^2)$ in the ring $\mathbb{Z}[x]$ is primary but not irreducible.

Solution: We first prove the following claim.

Claim:

$$(4, 2x, x^2) = (4, x) \cap (2, x^2).$$

<u>Proof:</u> Note that $(2x, x^2) \subseteq (x)$, so $(4, 2x, x^2) \subseteq (4, x)$. Similarly, $(4, 2x) \subseteq (2)$, so $(4, 2x, x^2) \subseteq (2, x^2)$. This proves that $(4, 2x, x^2) \subseteq (4, x) \cap (2, x^2)$. Conversely, suppose $r \in (4, x) \cap (2, x^2)$. $r \in (2, x^2)$ implies there exists $f, g \in \mathbb{Z}[x]$ such that $r = 2f + x^2g \in (4, x)$. This means that

 $2f \in (4, x)$. Either 2|f or x|f. In both cases, $2f \in (4, 2x) \subseteq (4, 2x, x^2)$. This implies that $r = 2f + x^2g \in (4, 2x, x^2)$. So $(4, 2x, x^2) \supseteq (4, x) \cap (2, x^2)$.

Next, note that $\sqrt{(4,x)} = \sqrt{(2,x^2)} = (x,2)$. And $\mathbb{Z}[x]/(2,x) \cong \mathbb{Z}/2$ is a field, so (x,2) is maximal. By Exercise 20.2.9, (4,x) and $(2,x^2)$ are both (2,x)-primary ideals. By Lemma 20.2.10, the intersection

$$(4,2x,x^2) = (4,x) \cap (2,x^2)$$

is also a (2, x)-primary ideal, but it is not irreducible as $(4, 2x, x^2)$ is properly contained in two ideals (4, x) and $(2, x^2)$.

Problem 20.2.18

Represent the ideal (9, 3x + 3) in $\mathbb{Z}[x]$ as the intersection of primary ideals.

Solution: We claim that $(9, 3x + 3) = (3) \cap (9, x + 1)$. 3 is a prime element in $\mathbb{Z}[x]$ so (3) is a prime ideal thus primary. Similarly, Note that

$$\mathbb{Z}[x]/(9, x+1) \cong \mathbb{Z}/9.$$

The zero divisors in $\mathbb{Z}/9$ are 3 and 6, both of them are nilpotent since $3^2 = 9$ and $6^2 = 9 \cdot 4$. This proves that $(9, x+1) \subseteq \mathbb{Z}[x]$ is a primary ideal. Since 3 divides 9 and 3|(x+1), so $(9, 3x+3) \subseteq (3)$. On the other hand, (x+1)|(3x+3), so $(3x+3) \subseteq (x+1)$, thus $(9, 3x+3) \subseteq (9, x+1)$. This proves that $(9, 3x+3) \subseteq (3) \cap (9, x+1)$. Conversely, for any $r \in (3) \cap (9, x+1)$, there exists $f, g \in \mathbb{Z}[x]$ such that r = 9f + (x+1)g. We know that 3|r, this means 3|(x+1)g, so 3|g and 3x+3|(x+1)g. This proves that $r \in (9, 3x+3)$. Therefore, we have found a primary decomposition

$$(9,3x+3) = (3) \cap (9,x+1).$$

Problem 20.3.6

Let P be a prime ideal. Then $P^{(n)}$ is the smallest P-primary ideal containing P^n .

Solution: By definition, $P^{(n)} \supseteq P^n$, and by Lemma 20.3.5, $P^{(n)}$ is a P-primary ideal. Suppose Q is a P-primary ideal containing P^n . We need to prove that $Q \supseteq P^{(n)}$. For any $r \in P^{(n)}$, there exists $s \in R - P$ such that $rs \in P^n \subseteq Q$. We know $s \notin P = \sqrt{Q}$, and since Q is P-primary, this implies $r \in Q$. Thus, we have proved every P-primary ideal containing P^n will contain $P^{(n)}$, namely, $P^{(n)}$ is the smallest P-primary ideal containing P^n .

Problem 20.3.18

If $R \subseteq A$ is an integral extension of noetherian rings then dim $R = \dim A$.

Solution: Given a chain of strict inclusions of prime ideals

$$p_0 \subsetneq p_1 \subsetneq \cdots \subsetneq p_n \subsetneq R$$
.

We claim that there exists a chain of strict inclusion of prime ideals of the same length in A. We start with $p_0 \subseteq R$, by Lying Over Theorem, there exists a prime ideal $q_0 \subseteq A$ such that $q_0 \cap R = p_0$. Next, consider the inclusion $p_0 \subseteq p_1$, by Going Up Theorem, there exists a prime ideal $q_1 \supseteq q_0$ in A such that $q_1 \cap R = p_1$. Note that here $p_0 \neq p_1$, so $q_0 \subseteq q_1$ is a strict inclusion of prime ideals as they are pulled back to different ideals in R. Repeat this step, and we can construct a chain of strict inclusions of prime ideals in R:

$$q_0 \subseteq q_1 \subseteq \cdots \subseteq q_n \subseteq A$$
.

This proves that $\dim A \ge \dim R$. On the other hand, consider a chain of strict inclusions of prime ideals in A:

$$q_0 \subsetneq q_1 \subsetneq \cdots \subsetneq q_n \subsetneq A$$
.

We know that the pullback of prime ideals are still prime ideals, so we have a chain of prime ideals in R:

$$q_0 \cap R \subseteq q_1 \cap R \subseteq \cdots \subseteq q_n \cap R \subseteq R$$
.

Write $p_i := q_i \cap R$ for $1 \le i \le n$. We are going to show that $p_i \subseteq p_{i+1}$ are strict inclusions for all i. Suppose $p_i = p_{i+1}$ for some i. This means $q_i \cap R = q_{i+1} \cap R$, by Incomparability Theorem, $q_i = q_{i+1}$. This contradicts the assumption that $q_i \subseteq q_{i+1}$ is a strict inclusion. So $p_i \subseteq p_{i+1}$ for all i. We have a chain of strict inclusions of prime ideals in R:

$$p_0 \subsetneq p_1 \subsetneq \cdots \subsetneq p_n \subsetneq R$$
.

This implies dim $R \ge \dim A$. Thus, we can conclude that dim $R = \dim A$.

Problem 21.1.14

Let I and J be ideals of $A = \mathbb{C}[x,y]$ and $\mathcal{V}(I) \cap \mathcal{V}(J) = \emptyset$. Show that $A/(I \cap J) = A/I \times A/J$.

Solution: By Proposition 21.2.1, we know that

$$\emptyset = \mathcal{V}(1) = \mathcal{V}(I) \cap \mathcal{V}(J) = \mathcal{V}(I+J).$$

By Corollary 21.1.10, this means $\sqrt{I+J} = \sqrt{(1)} = \sqrt{A} = A$. Note that $1 \in A = \sqrt{I+J}$, so $1 = 1^n \in I+J$ for some n > 0. This implies that I+J=A. By the Chinese Remainder Theorem, we have

$$A/(I \cap J) \cong A/I \times A/J.$$