2 The Mandelstam Region

A symmetric $n \times n$ matrix $S = [s_{ij}]$ of rank r is said to be a Mandelstam matrix if

- the diagonal entries are non-negative, $s_{ii} \geq 0$ for $i = 1, \ldots, n$; and
- it has precisely one positive eigenvalue and r-1 negative eigenvalues.

We denote the set of all Mandelstam matrices of rank r by $\mathcal{M}_{n,r}$. This is a semialgebraic set in $\mathbb{R}^{\binom{n+1}{2}}$, the space of all symmetric matrices. The following is the Mandelstam analogue of the familiar characterization of positive semidefinite matrices in terms of principal minors.

Lemma 2.1. A symmetric $n \times n$ matrix S is Mandelstam if and only if

$$(-1)^{|I|-1} \det(S_I) \ge 0 \quad \text{for all } I \subseteq [n], \tag{4}$$

where $det(S_I)$ are the principal minors of S.

Proof. This follows from the general results in [6]. We refer to Baker's exposition in [3]. The key step is Cauchy's interlacing theorem [12]. This states that the eigenvalues of S_I interlace the eigenvalues of S_J whenever $I \subset J$. Hence, if S_I has at most one positive eigenvalue then so does S_J . But S_J cannot have all negative eigenvalues because its trace is non-negative. \square

The name of our matrices refers to the physicist Stanley Mandelstam (1928–2016) who is credited for introducing the variables s_{ij} in the context of scattering amplitudes. In [14] the role of $\mathcal{M}_{n,r}$ as a kinematic space is recognized. A term more familiar to mathematicians might be "Lorentzian matrices." These encode Lorentzian quadratic forms [5, 6]. We here use the term *Lorentzian matrix* for a Mandelstam matrix whose entries s_{ij} are all non-negative.

Mandelstam matrices arise as Gram matrices of momentum vectors in \mathbb{R}^{1+d} with the Lorentzian inner product. A non-zero momentum vector is any vector $p \in \mathbb{R}^{1+d}$ of the form

$$p = \lambda (1, x_1, \dots, x_d), \tag{5}$$

for some scalar $\lambda \neq 0$, and $x = (x_1, \dots, x_d)$ in the closed unit ball $\mathbb{B}^d = \{x \in \mathbb{R}^d : ||x|| \leq 1\}$. Given n momentum vectors, $p^{(i)}$, their Gram matrix $S = [s_{ij}]$ has entries $s_{ij} = p^{(i)} \cdot p^{(j)}$. This is the matrix in (1). The entries of S may now be written as

$$s_{ij} = \lambda_i \lambda_j \left(1 - \langle x^{(i)}, x^{(j)} \rangle \right) \tag{6}$$

Here \cdot is the Lorentz inner product on \mathbb{R}^{1+d} and \langle , \rangle is the Euclidean inner product on \mathbb{R}^d .

Lemma 2.2. A symmetric $n \times n$ matrix S is Mandelstam, i.e. S lies in the region $\mathcal{M}_{n,\leq 1+d}$, if and only if it is the Gram matrix of n momentum vectors in (1+d)-dimensional spacetime.

Proof. Assume that S has no zero rows or columns. For the only-if direction, take a Mandelstam matrix S. By Lemma 2.1 and diagonalization of symmetric matrices, it can be factorized as in (1). Namely, we write $S = MDM^T$, where $D = \text{diag}(1, -1, -1, \dots, -1)$. Let the