Correlation-Fueled Quantum Engine with Acoustic Cooling: Exact-Stroke Protocol and Build Guide

EchoKey Asks: Correlated Engine Demo

October 25, 2025

Abstract

We provide an exact-stroke experimental protocol that realizes a correlation-fueled quantum engine/refrigerator on a superconducting platform with an acoustic leg. The working medium is two transmon qubits (S_h, S_c) ; the hot environment is a finite reservoir (B_{h1}, B_{h2}) ; the cold environment B_c comprises a mechanical mode M (SAW/HBAR) plus a dump mode D (overcoupled cavity or phonon sink). All cycle strokes are unitary (piecewise-constant Hamiltonians, exact exponentials), so energetics follow from quench-work identities without master-equation approximations. We define cycle heat/work, an entropic resource ledger σ , and practical observables (mechanical occupancy, sideband thermometry). The document maps every parameter to deployable hardware and gives a minimal bill of materials. A reference implementation ek_engine_acoustic.py accompanies this note.

1 Architecture and Hilbert Space

Subsystem order is $(S_h, S_c, B_{h1}, B_{h2}, M, D)$ with dimensions $(2, 2, 2, 2, n_M, n_D)$. Bare (embedded) Hamiltonians:

$$H_S = \frac{\omega_h}{2} \sigma_z^{(S_h)} + \frac{\omega_c}{2} \sigma_z^{(S_c)},\tag{1}$$

$$H_{B_h} = \frac{\omega_{h1}}{2} \sigma_z^{(B_{h1})} + \frac{\omega_{h2}}{2} \sigma_z^{(B_{h2})}, \tag{2}$$

$$H_M = \omega_M \left(a_M^{\dagger} a_M + \frac{1}{2} \right), \qquad H_D = \omega_D \left(a_D^{\dagger} a_D + \frac{1}{2} \right),$$
 (3)

$$H_{B_c} = H_M + H_D, \qquad H_0 = H_S + H_{B_h} + H_{B_c}.$$
 (4)

Work-channel (XY) coupling:

$$H_g = \frac{1}{2} \left[\sigma_x^{(S_h)} \sigma_x^{(S_c)} + \sigma_y^{(S_h)} \sigma_y^{(S_c)} \right]. \tag{5}$$

Contacts:

$$H_{SB}^{(h)} = \sigma_x^{(S_h)} \sigma_x^{(B_{h1})} + \sigma_x^{(S_h)} \sigma_x^{(B_{h2})}, \tag{6}$$

$$H_{SB}^{(c)} = \sigma_x^{(S_c)} X^{(M)}, \quad X^{(M)} = a_M + a_M^{\dagger}.$$
 (7)

Cooling-leg couplings:

$$H_{\rm bs} = \sigma_{-}^{(S_c)} a_M^{\dagger} + \sigma_{+}^{(S_c)} a_M \quad \text{(beam-splitter)}, \tag{8}$$

$$H_{\rm md} = a_M a_D^{\dagger} + a_M^{\dagger} a_D \quad \text{(mode-mode)}.$$
 (9)

2 Cycle Strokes (Exact Unitaries)

With durations $(t_{\rm th}, t_{\rm work}, t_{\rm cool}, t_{\rm rlx})$ and couplings $(\kappa_h, \kappa_c, g_{\rm on}, \chi, g_{\rm bs}, g_{\rm md})$, define stroke Hamiltonians

$$H_{\rm th} = H_0 + \kappa_h H_{SB}^{(h)} + \kappa_c H_{SB}^{(c)},\tag{10}$$

$$H_{\text{work}} = H_0 + g_{\text{on}} H_g + \chi \left(H_{SB}^{(h)} + H_{SB}^{(c)} \right), \tag{11}$$

$$H_{\text{cool}} = H_0 + g_{\text{bs}}H_{\text{bs}} + g_{\text{md}}H_{\text{md}}, \tag{12}$$

$$H_{\rm rlx} = H_0 + \frac{1}{2}\kappa_h H_{SB}^{(h)} + \frac{1}{2}\kappa_c H_{SB}^{(c)}.$$
 (13)

Each stroke uses an exact propagator $U = \exp(-iHt)$; quenches between strokes account for work. Initial state is a tensor product of thermal references at (T_h, T_c) :

$$\rho_0 = \rho_{S_h}^{\text{th}}(T_h) \otimes \rho_{S_c}^{\text{th}}(T_c) \otimes \rho_{B_h}^{\text{th}}(T_h) \otimes \rho_{M}^{\text{th}}(T_c) \otimes \rho_{D}^{\text{th}}(T_c).$$

3 Energetics and Resource Ledger

Heat and work. Evaluated at cycle boundary:

$$Q_h = -\Delta \langle H_{B_h} \rangle$$
 (+ means energy from hot), (14)

$$Q_c = +\Delta \langle H_{B_c} \rangle = Q_M + Q_D, \qquad Q_M = +\Delta \langle H_M \rangle, \quad Q_D = +\Delta \langle H_D \rangle, \tag{15}$$

$$W_{\text{out}} = -\sum_{\text{quenches}} \text{Tr}[\rho \left(H_{\text{after}} - H_{\text{before}} \right)]. \tag{16}$$

Engine efficiency is reported only when in engine mode:

$$\eta = \frac{W_{\text{out}}}{\max(Q_h, 0)}$$
 else "n/a", $\eta_C = 1 - \frac{T_c}{T_h}$.

Entropic resource. With $R = B_{h1}B_{h2}MD$ and $B_c = MD$,

$$I(S_h S_c : R) = S(\rho_{S_h S_c}) + S(\rho_R) - S(\rho), \tag{17}$$

$$D(\rho \| \sigma) = \text{Tr}[\rho(\log \rho - \log \sigma)], \tag{18}$$

and

$$\sigma = I(S_h S_c : R) + D\left(\rho_{B_h} \| \rho_{B_h}^{\text{th}}\right) + D\left(\rho_{B_c} \| \rho_{B_c}^{\text{th}}\right), \qquad \Delta\sigma = \sigma_{\text{final}} - \sigma_{\text{initial}}. \tag{19}$$

 $\Delta \sigma < 0$ indicates consumption of correlational/athermal "fuel" (athermal cycle).

Energy checks. The script prints

$$(\langle H_{\rm th} \rangle_f - \langle H_{\rm th} \rangle_i) + W_{\rm out} \approx 0,$$
 (20)

$$W_{\text{out}} - (Q_h - Q_c) + (\Delta E_S + \Delta E_{\text{int}}) \approx 0, \tag{21}$$

which are satisfied to machine precision in the faithful (unitary) path.

4 Control, Timing, and Tuning

Strokes and drives

- Pre-thermalize $(H_{\rm th})$: weak microwave tones realizing $\kappa_h H_{SB}^{(h)}$; piezo (or parametric) tone realizing $\kappa_c H_{SB}^{(c)}$.
- Work (H_{work}) : XY gate via tunable coupler or cross-resonance (effective $g_{\text{on}}H_g$). Keep a small χ fraction of contacts to allow $I(S_hS_c:R)$ to drop during work (spend resource).
- Cooling (H_{cool}) : red-sideband tone for $S_c \leftrightarrow M$ beam-splitter $(g_{\text{bs}}H_{\text{bs}})$; parametric bridge for $M \leftrightarrow D$ $(g_{\text{md}}H_{\text{md}})$.
- Relax (H_{rlx}) : soft contacts to settle before boundary quench.

Two presets (as in the code)

Engine-burst: larger $(g_{\text{on}}, |\chi|, t_{\text{work}})$; slightly weaker cooling leg. Expect at least one cycle with $W_{\text{out}} > 0$ and $\Delta \sigma < 0$.

Deep-fridge: larger $(g_{bs}, g_{md}, t_{cool})$; expect $Q_M < 0$ and $W_{out} < 0$.

5 Measurement Plan

Mechanical occupancy. From $\langle H_M \rangle$ we define $n_M = \langle H_M \rangle / \omega_M - \frac{1}{2}$. In practice, use sideband thermometry:

- 1. Calibrate S_c -M red/blue sidebands; measure asymmetry to infer n_M .
- 2. Cross-check by fitting Lorentzian area under the mechanical response with known line width.

Heat splits. Report Q_M and Q_D per cycle; refrigeration is indicated by $Q_M < 0$ while typically $Q_D > 0$ as entropy is exported to the dump.

Work and resource. W_{out} follows from programmed quenches (exact). $I(S_hS_c:R)$ is bounded via tomography on S_h , S_c and coarse-grained thermometry on R; the relative entropies use thermal references at (T_h, T_c) . We recommend:

- Full two-qubit tomography on S_h, S_c at cycle boundaries to compute $S(\rho_{S_hS_c})$.
- Independent thermometry of (B_h, B_c) to set $\rho_{B_h}^{\text{th}}, \rho_{B_c}^{\text{th}}$; changes in $\langle H_{B_h} \rangle, \langle H_{B_c} \rangle$ provide consistent heat estimates.

6 Calibration

- 1. **Single-qubit:** ω_h, ω_c by spectroscopy; Rabi and T_1/T_2 .
- 2. Coupler/CR: calibrate effective g_{on} ; extract XX/YY weights; minimize spurious ZZ.
- 3. Contacts: set κ_h, κ_c by weak, off-resonant exchange rates (swap tests).
- 4. Sidebands: amplitude and detuning for $H_{\rm bs}$; Rabi rate $\propto g_{\rm bs}$.

- 5. **Mode bridge:** tune parametric pump for $H_{\rm md}$; verify energy flow $M \to D$.
- 6. **Timing:** align stroke durations to the code's $(t_{\rm th}, t_{\rm work}, t_{\rm cool}, t_{\rm rlx})$.

7 Recommended Hardware (examples)

All brand names are examples; equivalent alternatives are fine.

- Cryostat: dilution refrigerator (base $\leq 20.000 \,\mathrm{mK}$), $\gtrsim 1.000 \,\mathrm{mW}$ cooling at $100.000 \,\mathrm{mK}$.
- **Qubits:** two fixed-frequency transmons (5–7.000 GHz), tunable coupler or CR-capable drive path.
- Hot reservoir: two lossy CPW resonators or helper qubits around $5.0005.500\,\text{GHz}$ with engineered Q.
- Mechanical mode M: SAW/HBAR device (GHz), piezo transduction to S_c ; coupling g_{bs} in the few–tens of MHz regime.
- **Dump** D: overcoupled 1-port CPW cavity (GHz) or phononic waveguide, external Q set for fast extraction.
- Microwaves: 2–3 low-phase-noise sources, vector signal generators for pulses/sidebands; IQ mixers or direct-SDM.
- AWGs/FPGA: multi-channel AWG (≥ 1 GS/s) or FPGA-based sequencer for synchronized strokes.
- Readout: JPA/TWPA amplification chain, heterodyne digitizer, VNA for characterization.
- Wiring: standard cryo attenuator chain (20/10/6.000 dB at 4K/Still/MX), circulators/isolators on readout, Eccosorb filters on pumps.

8 Safety and Practical Notes

- High-power pumps (for $H_{\rm md}$) can heat the mixing chamber; ramp amplitudes slowly, monitor fridge thermometry.
- Avoid spurs/IMD near qubit and mechanical frequencies; use filters and calibrate IQ imbalance.
- Enforce inter-stroke blanking to prevent overlap beyond the intended χ fraction.

9 Parameter Map (code \leftrightarrow lab)

Script flag	Meaning	Hardware knob
fh,fc	$\omega_h, \omega_c \text{ (GHz)}$	qubit design / flux bias
fbh1,fbh2	$\omega_{h1}, \omega_{h2} \; (\mathrm{GHz})$	reservoir resonator frequencies
fm,fd	$\omega_M, \omega_D \text{ (GHz)}$	mech/cavity design, pump detunings
Th,Tc	hot/cold refs	physical stage temps / effective temps
kappa_h,kappa_c	contact strengths	weak drive amplitudes
g_on	XY strength	coupler bias / CR amplitude
chi	residual contact in work	small simultaneous contact drive
g_bs	$S_c \leftrightarrow M$	red-sideband amplitude
g_md	$M \leftrightarrow D$	parametric bridge amplitude
t_th,t_work,t_cool,t_rlx	stroke times	sequencer durations
n_m,n_d	truncations	simulation only

10 Expected Signatures

- Engine-burst cycle: $W_{\text{out}} > 0$ and $\Delta \sigma < 0$ on at least one cycle; Q_M may be small or positive.
- Refrigeration cycle: $Q_M < 0$, n_M strictly decreases; typically $W_{\rm out} < 0$, $\Delta \sigma \ge 0$.
- Energy checks: faithful path residuals $\sim 10^{-13}$ in simulation; target consistency (within error bars) in experiment.

11 Procedure (minimal reproducible run)

- 1. Calibrate all frequencies, sidebands, and couplings to match chosen preset.
- 2. Program the four-stroke schedule with non-overlapping windows (except for the intended χ in work).
- 3. Acquire per-cycle: readout of S_h, S_c ; sideband thermometry of M; power/phase monitors for pumps.
- 4. Compute $Q_h, Q_M, Q_D, Q_c, W_{\text{out}}, n_M, \text{ and } \eta$ (engine mode only).
- 5. Repeat over a grid of $(g_{\text{on}}, \chi, g_{\text{bs}}, g_{\text{md}}, t_{\cdot})$; identify athermal bursts or refrigeration plateaus.

12 Optional Diagnostic Control

For comparison only, one may decorrelate at the boundary: $\rho \mapsto \rho_{S_h S_c} \otimes \rho_{B_h} \otimes \rho_{B_c}$. This is non-unitary and not free; to compare fairly, charge the minimum erasure work $W_{\text{reset}} \geq T_{\text{reset}}(\sigma_{\text{pre}} - \sigma_{\text{post}})$.