CHAPTER - 13 **ELECTROCHEMISTRY**

 In the Daniell cell, zinc is the anode and copper is the cathode. Cu²⁺ ions move towards copper electrode and is deposited as Cu

2.
$$E_{cell}^0 = E_{cathode}^0 - E_{anode}^0 = -0.44 - (-0.76) = 0.32 \text{ V}$$

3. 2
$$E_{cell} = E_{cell}^0 - \frac{2.303RT}{nF} log \frac{\left[Zn^{2+}\right] \left[Cl^{-}\right]^2}{P_{Cl_2}}$$

Thus, E_{cell} increases with decrease in [Zn²⁺] and [Cl⁻]

4. 1 At equilibrium, there is no net reaction occuring in the cell, thus $E_{cell} = 0$

5. 4
$$\log K = \frac{nFE^0}{2.303 \text{ RT}} = \frac{2 \times 96500 \times 0.295}{2.303 \times 8.314 \times 298}$$
; Thus K = 10¹⁰

6. 3 NaCl and HCl are strong electrolytes, hence straight line plots. Also, conductance of H^* is greater than that of Na^* . NH_4OH is a weak electrolyte, thus steep variation in \land_m with dilution.

7. 4
$$\wedge_{m}^{0}(CH_{3}COOH) = \wedge_{m}^{0}(CH_{3}COOK) + \frac{\wedge_{m}^{0}(H_{2}SO_{4})}{2} - \frac{\wedge_{m}^{0}(K_{2}SO_{4})}{2}$$

= $z + \frac{x}{2} - \frac{y}{2}$ or $z + \frac{(x - y)}{2}$

8. 3
$$K_a = \frac{C\alpha^2}{1-\alpha}$$
 and $\alpha = \frac{\Lambda_m}{\Lambda_m^0}$

Thus,
$$K_a = \frac{c \wedge_m^2}{ \wedge_m^0 \left(\wedge_m^0 - \wedge_m \right)}$$

9. 3 3F charge can deposit 1 mol Al, $\frac{3}{2}$ mol Cu and 3 mol Na. Thus, molar ratio of metals deposited is, 1:1.5:3

10. 3 Substance Products of electrolysis

At anode

- dil.H₂SO₄ O₅
- aq. AgNO₃ O₂
- aq.CuCl₂ Cl₂
- aq.CuSO, O,
- At cathode of dry cell, MnO₂ is reduced to MnO (OH). Thus, oxidation number of Mn changes from +4 to +3
- 12. 2 During recharging, the reaction occuring in the lead acid battery is

$$2PbSO_4 + 2H_2O \longrightarrow Pb + PbO_2 + 2H_2SO_4$$

13. 147
$$E_{cell} = 1.56 - \frac{0.059}{2} log \frac{10^{-1}}{10^{-4}} = 1.47 \text{ V or } 147 \times 10^{-2} \text{ V}$$

14. 16
$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$
; $\Delta G_1^0 = -2 \times F \times 0.34$
 $Cu \longrightarrow Cu^{+} + e^{-}$; $\Delta G_2^0 = -1 \times F \times (0.522)$
 $Cu^{2+} + e^{-} \longrightarrow Cu^{+}$; $\Delta G_3^0 = -1 \times F \times E^0$

$$\Delta G_3^0 = \Delta G_1^0 + \Delta G_2^0$$

$$E^0 = 2 \times 0.34 - 0.522 = 0.158 \text{ V or } 15.8 \times 10^{-2} \text{ V}$$

15. 266 Cell constant =
$$\frac{\text{conductivity}}{\text{conductance}} = \frac{0.152 \times 10^{-3} \text{ Scm}^{-1}}{\left(\frac{1}{1750}\right) \text{S}} = 266 \times 10^{-3} \text{ cm}^{-1}$$

16. 41 For hydrogen eletrode, $E = -0.059 \times pH$

At pH = 0, E = 0; At pH = 7, E =
$$-0.413$$

Thus, E decreased by 0.413 V or 41.3 × 10-2 V

17. A Given, $\lambda_{Ag^+}^o = 62.3$ and $\lambda_{CI}^o = 67.7$ cm²mol⁻¹

So,
$$\wedge_{m(AgCI)}^{o} = 623 + 67.7 = 130 \text{Scm}^{-2} \text{mol}^{-1}$$

Brilliant STUDY CENTRE

Now,
$$\wedge_{m}^{o} = \frac{k \times 10^{3}}{C} \Rightarrow C \Rightarrow \frac{K \times 10^{3}}{\wedge_{m}^{o}} = \frac{3.4 \times 10^{-6} \times 10^{3}}{130}$$

$$= 2.6 \times 10^{-5} \text{molL}^{-1}$$

 A On dilution, conductivity of electrolyte decreases whereas molar conductance and equivalent conductance increases

19. C
$$E_{cell} = E_{cell}^o - \frac{0.059}{2} \log \frac{x^2 \times 1}{1^2 \times 1} = 0 - \frac{0.059}{2} \times 2 \log x$$

i.e,
$$-0.059\log x = 0.295$$

$$\log x = -5 \Rightarrow x = 10^{-5}M$$

Now, for HA,
$$C\alpha = [H^+] = 10^{-5} \Rightarrow \alpha = \frac{10^{-5}}{0.01} = 10^{-3}$$

Thus,
$$K_a$$
 of HA = $C\alpha^2 = (0.01M)(10^{-3})^2 = 10^{-8}$

20. D Durning electrolysis of KNO₃, H₂O is oxidised at anode and H₃O is reduced at cathode. Thus pH of solution remains the same (K⁺ and NO₃⁻ ions are unaffected)

21 B
$$W^{2}_{+4e} \rightarrow W$$
 $E = E^{0} - \frac{RT}{2F} \ln \frac{1}{L^{4}}$
 $0.1375 = 0.34 \text{ V} - \left(0.059\text{ V}\right) \log \frac{1}{L^{4}}$
 $CW^{4} = 10^{7}$
 $CW^{4} = 10^{7}$

- 22. AC Cu²⁺ is formed in the cases (A) and (C) (order of reactivity of metals is, Zn > Ni> Cu> Ag)
- 23. BC Chemical equivalent weight of iron in $FeSO_4$, $Fe_2(SO_4)_3$ and $Fe(NO_3)_3$ are $\frac{M}{2}$, $\frac{M}{3}$ and $\frac{M}{3}$, respectively. Thus, amount of Fe deposited in the last two cases will be equal

At the anode, water is oxidised to produce oxygen gas

24. AD
$$\Delta G^{\circ} = -nFE^{\circ}$$

$$\Delta H^{\circ} - T\Delta S^{\circ} = -nFE^{\circ} \Rightarrow E^{\circ} = \frac{-\Delta H^{\circ}}{nF} + \frac{T\Delta S^{\circ}}{nF}$$

$$\left(\frac{\delta E^{\circ}}{\delta T}\right) = \frac{\Delta S^{\circ}}{nF} \Rightarrow \Delta S^{\circ} = nF \times \left[\frac{\delta E^{\circ}}{\delta T}\right]$$

- AD Copper has +ve electrode potential whereas tin has -ve electrode potential. Thus, Cu²⁺ can be reduced by H, and Sn can be oxidised by H⁺
- 26. AB Moles of electron transferred = $\frac{\text{It}}{96500} = \frac{2 \times 965}{96500} = 0.02 \text{mol}$

i.e,
$$0.02 \times 6.02 \times 10^{23} = 1.204 \times 10^{22}$$
 electrons

we know, 96500c deposits
$$\frac{63.5}{2}$$
 g Cu

27. 10 Cell constant =
$$\frac{K}{G} = \frac{4 \times 10^{-3}}{(1/200)} = 8 \times 10^{-1} \text{cm}^{-1}$$

conductivity of CuSO₄ = G×cell constant

$$= \frac{1}{8 \times 10^3} \times 8 \times 10^{-1} = 10^{-4} \text{scm}^{-1}$$

Molar conductivity of $CuSO_4 = \frac{K \times 1000}{C} = 10 \text{Scm}^2 \text{mol}^{-1}$

28. 4
$$E_{cell} = E_{cell}^o - \frac{0.06}{n} \log Q$$

$$0.801 = 0.771 - \frac{0.05}{n} \log 10^{-2} \Rightarrow n = 4$$

- C Process Charge required
 - (I) 5F
 - (II) 6F
 - (III) 2F
 - (IV) 3F
- 30. B $E_{cell}^{o} = 0$ for all given cells

 $\rm E_{cell}$ is +ve for cells (I) and (II): -ve for cells (III) and (IV)