Clinical Gait Analysis

Artificial intelligence for data science SIC7002

Maxime Adam, Othmane Lkhalidi, Pierre Chambet

Contents

- I. Introduction
 - a. State of the art
 - b. Dataset
- 2. Methods
- 3. Results
- 4. Conclusion
 - a. Main results
 - b. Future research

Introduction

Gait cycle

State of the art

Kinematics: study of motion without considering the forces that cause it

Kinetics: study of the forces and moments that cause motion

Measures for clinical gait analysis

- → Obtain information for establishing the level of functional limitation due to pathology
 - Normalcy index (NI)
 - Hip flexor index (HIP)
 - Gait deviation index (GDI)
 - Gait abnormality index (GAI)

Experiment

52 participants, with no neuro-orthopaedic troubles, has been asked to walk under five different speed constraints.

Dataset

The study focused on knee flexion, using 101 points to characterize each cycle, with 10 cycles per person

5 different speed conditions:

- Speed I : 0 0.4 m/s
- Speed 2:0.4 0.8 m/s
- Speed 3:0.8 1.2 m/s
- Speed 4 : Spontaneous
- Speed 5 : High

Objective

→ Study and analyse the impact of speed constraints on the gait

Visualization of the dataset

Example for Speed 3:

Methods

- I. K-Medoids algorithm using DTW with k = 3.
- 2. 3D-visualisation of cycles based on a distance with a reference (Medoids of speed 4).
- 3. K-Means algorithm with k = 5 on the distances of each cycle with the reference.
- 4. Calculate the variance of one person's cycles and average over all persons for each speed.

K-Medoids algorithm using DTW with k = 3 for each speed.

Speed I:0 - 0.4 m/s

Interpretation

 The slower the speed constraint, the smaller the first bump.

3D-visualisation of cycles

Calculate the **DTW distance** of all cycles to the 3 medoid cycles (m1, m2 and m3) of the spontaneous speed.

3D-visualisation of cycles

K-Means algorithm

Plotting data in 3D

- Speed I
- Speed 2
- Speed 3
- Spontaneous speed (Ref)
- High speed

K-Means (k=5)

Distribution of cycles

Clusters	Speed 1	Speed 2	Speed 3	Ref	High speed
•	0	42	224	293	306
•	11	185	207	191	151
•	88	211	76	30	46
•	229	71	3	0	1
	192	3	0	0	0

Interpretation

- The slower the gait is imposed, the more the cycles are distant from the cycles of spontaneous walking.
- With the constraint of slow speed, cycles become more individual-specific and different from one another.

K-Means algorithm

K-Means (k=5)

Distribution of cycles

Clusters	Speed 1	
•	0	
	11	
•	88	
•	229	
	192	

For the slowest speed

Interpretation

 With the slow speed constraint, individuals do not have similar cycles.

Variance of cycles

Speed	Variance	
0-0.4 m/s	26.88	
0.4-0.8 m/s	17.67	
0.8-1.2 m/s	18.21	
Spontaneous	13.56	
High	8.31	

Variance of one person's cycles and average over all persons for each speed

Speed I Speed 3 Speed 2 High Speed Spontaneous Speed [' Curve 1: 188 ' ' Curve 2: 169 ' ' Curve 3: 147

Area of all cycles within a cluster found with K-Medoids

Interpretation

The speed constraint weakened the walk.
The slower the speed, the more different a person's cycles.

• It looks like the stance phase is the most disturbed. Search of balance? The walker has to force the process which highlights his gait flaws.

Conclusion

Main results

- Deformation of cycle shape under speed constraint
- With the constraint of slow speed, cycles become more individualspecific and different from one another.
- To discriminate pathologies in diseased people, it is useful to apply stresses with slow speeds

Future research

• Take into account individual characteristics such as size and age to assess whether they influence cycle variability.

Thank you for your attention

Feel free to ask questions!