Session-02-01-2023-shift-1-16-30

AI24BTECH11018 - Sreya

- 1) Let the image of the point P(2, -1, 3) in the plane x + 2y z = 0 be Q. Then the distance of the plane 3x + 2y + z + 29 = 0 from the point Q is

 - c) $2\sqrt{14}$
 - d) $3\sqrt{14}$
- 2) Let $f(x) = \begin{pmatrix} 1 + \sin^2 x & \cos^2 x & \sin 2x \\ \sin^2 x & 1 + \cos^2 x & \sin 2x \\ \sin^2 x & \cos^2 x & 1 + \sin 2x \end{pmatrix}$, $x \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right]$. If α a β respectively are the maximum and the minimum values of t

 - a) $\beta^2 2\sqrt{\alpha} = \frac{19}{4}$ b) $\beta^2 + 2\sqrt{\alpha} = \frac{19}{4}$ c) $\alpha^2 + \beta^2 = 4\sqrt{3}$ d) $\alpha^2 + \beta^2 = \frac{9}{2}$
- 3) Let $f(x) = 2x + \tan^{-1} x$ and $g(x) = \log_e (\sqrt{1 + x^2} + x)$, $x \in [0, 3]$ then
 - a) There exists $x \in [0,3]$ such that f'(x) < g'(x)
 - b) max f(x) > maxg(x)
 - c) There exists $0 < x_1 < x_2 < 3$ such that f(x) < g(x), $\forall x \in (x_1, x_2)$
 - d) min $f'(x)=1+\max g'(x)$
- 4) The mean and variance of 5 observations are 5 and 8 respectively. If 3 observations are 1, 3, 5, then the sum of cubes of the remaining two observations is
 - a) 1072
 - b) 1792
 - c) 1216
 - d) 1456
- 5) The area enclosed by the closed curve C given by the differential equation $\frac{dy}{dx} + \frac{x+a}{y-2} = 0$, y(1) = 0 is 4π Let P and Q be the points of intersection of the curve C and the y-axis. If normals at P and Q on the curve C intersect x-axis at points R and S respectively, then the length of the line segment RS is
 - a) $2\sqrt{3}$
 - b) $\frac{2\sqrt{3}}{3}$ c) 2
- 6) Let $a1 = 8, a_2, a_3, \dots a_n$ be an A.P. If the sum of its first four terms is 50 and the sum of ts last four terms is 170, then the product of its middle two terms is
- 7) A(2,6,2), $B(-4,0,\lambda)$, C(2,3,-1) and D(4,5,0), $|\lambda| \le 5$ are the vertices of a quadrilateral ABCD. If its area is 18 square units, then $5 - 6\lambda$ is equal to
- 8) The number of 3 digit numbers, that are divisible by either 2 or 3 but not divisible by 7 is
- 9) The remainder when $19^{200} + 23^{200}$ is divided by 49 is
- 10) if $\int_0^1 (x^{21} + x^{14} + x^7) (2x^{14} + 3x^7 + 6)^{\frac{1}{6}}$ where $l, m, n \in m$ and n are co primes then l+m+n is equal to