Testing sera and vaccines

Testing sera and vaccines

A virulently spreading animal disease has an infection rate of 25%. Sera A, B, and C are tested for efficacy against it.

Testing sera and vaccines

A virulently spreading animal disease has an infection rate of 25%. Sera A, B, and C are tested for efficacy against it.

Serum	Innoculated	Infected
A	10	0
В	17	1
C	23	2

Serum	Inoculated (n)	Infected (k)
A	10	0
В	17	1
C	23	2

Serum	Inoculated (n)	Infected (k)
A	10	0
В	17	1
C	23	2

The (macabre) model: Infections in an unvaccinated control group arise via a Bernoulli process with 'success' probability p = 0.25. # infected in a group of size n: $S_n \sim \text{Binomial}(n, 0.25)$.

Serum	Inoculated (n)	Infected (k)
A	10	0
В	17	1
C	23	2

The (macabre) model: Infections in an unvaccinated control group arise via a Bernoulli process with `success' probability p = 0.25. # infected in a group of size n: $S_n \sim \text{Binomial}(n, 0.25)$.

$$B_n(k) := P\{S_n \le k\} = b_n(0; 0.25) + b_1(1; 0.25) + \dots + b_n(k; 0.25)$$

Serum	Inoculated (n)	Infected (k)	
A	10	0	
В	17	1	
C	23	2	

The (macabre) model: Infections in an unvaccinated control group arise via a Bernoulli process with `success' probability p = 0.25. # infected in a group of size n: $S_n \sim \text{Binomial}(n, 0.25)$.

$$B_n(k) := P\{S_n \le k\} = b_n(0; 0.25) + b_1(1; 0.25) + \dots + b_n(k; 0.25)$$

Serum	Inoculated (n)	Infected (k)	B _n (k)
A	10	0	0.056
В	17	1	0.050
C	23	2	0.049

Slogan

The more unlikely it is for claimed (positive) results for a serum to be replicated in an unvaccinated control group, the greater the grounds for belief in the efficacy of the serum.