1. 实验名称及目的

Matlab 控制差动无人车速度软/硬件在环仿真: Matlab 运行多辆无人车的速度控制的软硬件在环仿真。

2. 实验原理

与 python 控制相似

3. 实验效果

通过 Matlab/Simulink 控制多辆无人小车实现速度控制。

4. 文件目录

文件夹/文件名称	说明
CarR1Diff_MultiVel4.bat	多辆无人车速度控制软件在环仿真批处理文件。
CarR1Diff_MultiVel4.slx	多辆无人车速度控制 simulink 文件。
CarR1Diff_HITLRun.bat	硬件在环批处理文件
CarR1Diff.dll	无控制器的阿克曼底盘小车 DLL 模型文件
Init.m	初始化参数文件。
RflyUdpFast.cpp	S函数编写得集群接口文件。
RflyUdpFast.mexw64	MEX 编译之后的 S 函数文件。

5. 运行环境

序号	软件要求	硬件要求		
777		名称	数量	
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1	
2	RflySim 平台免费版	Pixhawk 6C [®]	1	
3	MATLAB 2017B 及以上 [®]	数据线	1	

- ① 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ② 须保证平台安装时的编译命令为: px4_fmu-v6c_default, 固件版本为: 1.13.3。其他配套飞控请见: http://doc.rflysim.com/hardware.html

6. 实验步骤

6.1. 仿真环境准备

第一次使用平台调用 RflyUdpFast.cpp 文件进行仿真时,需要编译该文件。 在 Matlab 命令行窗口中输入 mex RflyUdpFast.cpp,回车。

命令行窗口 fx >> mex RflyUdpFast.cpp

提示 mex 编译完成。

文件夹中会生成一个.mexw64 后缀的文件, 完成仿真环境部署。

6.2. 软件在环仿真

Step 1:

右键以管理员身份运行 CarR1Diff MultiVel4.bat 批处理文件。

名称	修改日期	类型	大小
CarR1Diff.dll	2023/11/7 14:43	应用程序扩展	224 KB
CarR1Diff_HITLRun.bat	2023/11/10 13:59	Windows 批处理	6 KB
CarR1Diff_MultiVel4.bat	2023/11/10 13:59	Windows 批处理	5 KB
CarR1Diff_MultiVel4.slx	2023/10/24 15:33	Simulink Model	30 KB
GenerateSwarmExe.p	2023/10/24 15:33	MATLAB.p.9.14.0	3 KB
🔝 Init.m	2023/10/24 15:33	MATLAB Code	1 KB
Readme.docx	2023/11/10 14:01	Microsoft Word	7,012 KB
Readme.pdf	2023/10/24 15:33	Foxit PhantomP	1,251 KB
RflyUdpFast.cpp	2023/10/24 15:33	C++ 源文件	25 KB
RflyUdpFast.mexw64	2023/11/10 12:18	MATLAB.mexw6	26 KB

Step 2:

等待 4 辆车的 CopterSim 都显示初始化完成。

```
PX4: EKF2 Estimator start initializing...
PX4: [logger] ./log/2023-07-25/06_49_47.ulg
PX4: Found firmware version: 1.12.3dev
PX4: Command ID: 512 ACCEPTED
PX4: Command ID: 512 ACCEPTED
PX4: Command ID: 512 DENIED
PX4: Command ID: 512 ACCEPTED
PX4: Command ID: 512 ACCEPTED
PX4: GPS 3D fixed & EKF initialization finished.
PX4: Enter Auto Loiter Mode!

PX4: GPS 3D fixed & EKF initialization finished.
PX4: Enter Auto Loiter Mode!

PX4: GPS 3D fixed & EKF initialization finished.
PX4: Enter Auto Loiter Mode!

PX4: GPS 3D fixed & EKF initialization finished.
PX4: Enter Auto Loiter Mode!
```


Step 3:

在 Matlab 中打开 CarR1Diff MultiVel4.slx, 点击运行。

Step 4:

观察 QGC 和 RflySim3D 中无人车的运动轨迹如下图所示 。

6.3. 硬件在环仿真

Step 1:

按下图所示将飞控与计算机链接,飞控上的接口名称为 USB。

Step 2:

推荐使用 Pixhawk 6C 飞控进行硬件在环仿真,将飞控烧录至 1.13.3 固件版本,机架设

置为 "Aion Robotics R1 UGV",点击 QGC 右上角的"应用并重启"。

Step 3:

点击"安全",设置硬件在环仿真为"HITL enabled",重新插拔飞控。

Step 4:

点击"参数",在搜索栏中输入"UAVCAN_ENABLE",在弹出框中设置为"Disabled",保存后重新插拔飞控即可。

下图为完成硬件在环仿真相关配置后的示意图。

Step 5:

右键以管理员身份运行 CarR1Diff_HITLRun.bat 批处理文件,输入对应串口号。

Step 6:

等待初始化完成。

Step 7:

随后参照 5.1 中的 Step3 到 Step4 可以进行无人车的速度控制。