RNN Overview - 1

RNN, LSTM and GRU

2021. 4. 21 Dajin Han

Index

- What is RNN?
- RNN Example
- LSTM
- GRU
- References

What is RNN?

Recurrent Neural Network

What is RNN?

- Recurrent Neural Network
 - Directed cycle
- Suitable for sequential data processing
 - Natural language processing(NLP)
 - Translation

Various and flexible structures

RNN vs CNN

Feedforward NN vs. Recurrent NN

NN **RNN FNN** GRU LSTM **CNN**

Recurrent neural networks (RNNs) allow cyclical connections.

RNN Structure

RNN Structure

Activation function

- tanh
 - Hyperbolic tangent function
 - Rescaled and shifted sigmoid function
 - Faster convergence
 - [-1. 1]
 - [-5, 5]

RNN Example

Text Estimation

Character Estimation

• Predicting a next character

An unrolled recurrent neural network.

Example

 http://localhost:8888/notebooks/DeepLearning_Study/tensorfl ow_rnn/tf_rnn_example.ipynb

https://www.tensorflow.org/tutorials/text/text_generation

Long Short Term Memory

Limit of RNN

• Periodic information

Gradient Vanishing/Exploding

<관련 정보와 그 정보를 사용하는 지점 사이 거리가 멀 경우 RNN 학습능력 저하>

Long Short Term Memory

- Cell State = Memory
 - Forget gate
 - Input gate
 - Output gate
- Hidden Layer assistor

$$egin{aligned} f_t &= \sigma(W_{xh_f}x_t + W_{hh_f}h_{t-1} + b_{h_f}) \ i_t &= \sigma(W_{xh_i}x_t + W_{hh_i}h_{t-1} + b_{h_i}) \ o_t &= \sigma(W_{xh_o}x_t + W_{hh_o}h_{t-1} + b_{h_o}) \ g_t &= anh\left(W_{xh_g}x_t + W_{hh_g}h_{t-1} + b_{h_g}\right) \ c_t &= f_t \odot c_{t-1} + i_t \odot g_t \ h_t &= o_t \odot anh\left(c_t
ight) \end{aligned}$$

C: Long-term State

H: Short-term State

Peephole Connection

- Paper Recurrent Nets that and Count
- Keypoints
 - Modified LSTM
 - obtaining contextual information
- Standard LSTM
 - Short-term state changes Long-term state
 - Long-term state makes output
- Improved LSTM
 - Short-term state and Long-term state make output

GRU

Gated Recurrent Unit

GRU

 Paper - Learning Phrase Representations using RNN Encoder— Decoder for Statistical Machine Translation. KyungHyun Cho

Gated Recurrent Unit

LSTM vs GRU

LSTM vs GRU

GRU

- Simple
- Compliant Performance
- R: What to use
- Z: What to Remember

$$egin{aligned} \mathbf{r}_t &= \sigma \left(\mathbf{W}_{xr}^T \cdot \mathbf{x}_t + \mathbf{W}_{hr}^T \cdot \mathbf{h}_{t-1} + \mathbf{b}_r
ight) \ \mathbf{z}_t &= \sigma \left(\mathbf{W}_{xz}^T \cdot \mathbf{x}_t + \mathbf{W}_{hz}^T \cdot \mathbf{h}_{t-1} + \mathbf{b}_z
ight) \ \mathbf{g}_t &= anh \left(\mathbf{W}_{xg}^T \cdot \mathbf{x}_t + \mathbf{W}_{hg}^T \cdot \left(\mathbf{r}_t \otimes \mathbf{h}_{t-1} \right) + \mathbf{b}_g
ight) \ \mathbf{h}_t &= \mathbf{z}_t \otimes \mathbf{h}_{t-1} + (1 - \mathbf{z}_t) \otimes \mathbf{g}_t \end{aligned}$$

Next Presentation

- Encoder and Decoder
- Attention
- Transformer

Next Presentation

- Encoder and Decoder
 - Seq2seq
 - Paper Learning Phrase Representations using RNN Encoder— Decoder for Statistical Machine Translation. KyungHyun Cho
- Attention
- Transformer

References

References

- DL Functions and Techniques
 - https://ratsgo.github.io/deep%20learning/2017/04/22/NNtricks/
- DL Propagation Concepts
 - https://ratsgo.github.io/deep%20learning/2017/05/14/backprop/
- RNN, LSTM and GRU
 - https://ratsgo.github.io/natural%20language%20processing/2017/03/09/rnnlstm/
 - https://excelsior-cjh.tistory.com/185