Képgenerálás Diffúziós Modellel

Közreműködők: Füstös Gergely (HZNJM6), Györfi Bence (BK8VTO)

1. Bevezetés

1.1. Projekt Áttekintés

A féléves munkánk során a képgenerálás témakörében merültünk el, és egy Denoising Diffusion Probabilistic Model (DDPM) megvalósítását tűztük ki célül, ugyanis ez a fajta model képes magas minőségű, valósághű képek generálására. A projekt során a CelebA (celeb arcok) és a Flowers102 (virágok) adathalmazokon végeztünk tanítást, generálást és kiértékelést.

A félév kezdetén átvizsgáltuk a rendelkezésre álló adathalmazt és elvégeztük az alapvető adatelőkészítő lépéseket, majd egy Variational Autoencoder (VAE) modelt építettünk baseline modelnek. A VAE modellek tipikus előnye, hogy gyors tanítás és gyors képgenerálás érhető el velük, azonban az eredmény kevésbé részletgazdag, nem túl minőségi kép. Ez azonban tökéletes kiindulópont volt a fejlődéshez és később a tesztek során is jó alapul szolgált.

A VAE modellünk implementálásával egyidőben meghatároztuk a kiértékelési metrikákat és el is végeztük ezeket az alapmodellen az alapmodellen. Ezt követően lépésről lépésre elkészítettük egy fejlett DDPM modelt, majd hosszas tanítások és generálások után megfelelő eredményt értünk el.

1.2. Adathalmazok bemutatása

Az alábbiakban bemutatjuk a tanításra használt két adathalmazt és annak legfontosabb jellemzőit.

1.2.1. Flowers adatkészlet

Ez az adatkészlet 4317 darab virágképet tartalmaz, amelyek több forrásból származnak: Flickr, Google Images, Yandex Images.

• Képméret: 256x256 pixel (átméretezve)

Színcsatornák száma: 3 (RGB)

Kategóriák: Az adatok öt osztályba vannak sorolva: kamilla (764 db), tulipán (984 db), rózsa (784 db), napraforgó (733 db), pitypang (1052 db)

Képek száma: Összesen 4317 darab

Érdekesség, hogy minden osztályban magas sűrűség figyelhető meg az alacsony intenzitású (sötét) pixelek között a 0.0 és 0.1 tartományban, amelyet valószínűleg az árnyékok vagy a sötét háttér okoz. Ez később a képgenerálásra befolyással lehet.

1.2.2. CelebA adatkészlet

Az adatkészlet 202,599 képet tartalmaz különböző hírességekről.

Képméret: 256x256 pixel (átméretezve)

Színcsatornák száma: 3 (RGB)

 Személyek száma: Az adatkészlet 10,177 egyedi identitást tartalmaz, de az identitások nevei nincsenek feltüntetve.

Látható, hogy szinte százszoros különbség van a két adathalmaz mérete között, emiatt a tanítása idő sokkal hosszabbnak bizonyult, viszont a szabad szemmel végzett tesztek egyértelműen azt igazolták, hogy a generált személyek képei sokkal közelebb állnak a valósághoz, mint a virágok esetében.

2. Architektúrák bemutatása

Az alábbiakban röviden ismertetjük az alkalmazott két model felépítését.

2.1.1. Variational Autoencoder model (VAE)

A Variációs autoenkóder képes új adatmintákat létrehozni, egy adott adathalmaz eloszlásának tanulmányozása alapján. A VAE két fő összetevőből áll:

Encoder:

Az encoder egy neurális hálózat, amely a bemeneti adatokat egy kisebb dimenziójú látens térbe redukálja. Az encoder nem csak egy fix látens vektort állít elő, hanem a látens tér eloszlását (a várható értéket, μ és a szórásnégyzet logaritmusát, $log\sigma^2$), amelyek meghatározzák az eloszlás paramétereit.

Decoder:

A decoder egy másik neurális hálózat, amely a látens térből generált minták alapján megpróbálja rekonstruálni az eredeti adatokat. Ez a komponens felelős azért, hogy a látens térből visszanyert adatok minél hasonlóbbak legyenek a bemeneti adatokhoz.

1. ábra VAE model architektúrája

A veszteségfüggvény két részből áll:

- Rekonstrukciós veszteség: A VAE a látens tér eloszlásából mintát vesz (z = μ + σ
 × ε, ahol ε normális eloszlású zaj), hogy biztosítsa a gradiens-alapú tanulás folytonosságát. Ezen felül
- Kullback-Leibler (KL) divergencia: Az encoder által becsült eloszlás (q(z|x)) és a priori eloszlás (p(z)) közötti eltérés minimalizálása.

2.1.2. Denoising Diffusion Probabilistic Model (DDPM)

A Diffúziós Modell generatív modell, amely a képgenerálást egy iteratív zajcsökkentési folyamattal valósítja meg.

A DDPM model két fő folyamatból áll:

Előre Diffúziós Folyamat

Az előre diffúziós folyamat során a modell az eredeti képhez fokozatosan zajt ad hozzá, lépésenként közelebb hozva azt egy standard normális eloszláshoz. Ez az eljárás a következőképpen működik

- **Zaj hozzáadása**: Minden lépésben egy kis mennyiségű Gauss-zaj adódik az adathoz. Ez a folyamat általában egy $q(x_t|x_{t-1})$ valószínűségeloszlást követ, amely a t-ik lépésben zajosított adatot állítja elő, az előző lépésből (x_{t-1})
- **Kimenet**: A sok iteráción keresztül történő zaj hozzáadás eredménye, egy teljesen zajos adat (x_T) , amely közel áll egy standard normális eloszláshoz (N(0,1))
- Így tehát a folyamat az alábbi egyenlettel írható le:

$$q(x_t|x_{t-\perp}) = N\left(x_t; \sqrt{\alpha_t^1} x_{t-1} (1 - \alpha_t)I\right)$$

ahol,

- t: az időlépés (1-től T-ig).
- α_t : az adott időlépés zaj mértékét szabályozó paraméter.

2. ábra Zaj hozzáadás egy tulipánhoz

Fordított Diffúziós Folyamat:

A fordított folyamat során a modell fokozatosan eltávolítja a zajt, és visszaállítja az eredeti adatokat. Ez a következő lépésekből áll:

• **Zajmentesítés előrejelzése**: Egy tanított **neurális hálózat** (jelen esteben U-Net) segítségével a modell megtanulja előre jelezni az aktuális zaj mennyiségét.

 Adatok helyreállítása: Az előjelzett zaj eltávolításával a modell egyre tisztább, részletgazdagabb képet állít elő.

3. ábra Zajmentesítéssel létrejön az arckép

2.1.3. U-Net Architektúra

A DDPM modellünkben a zajmentesítési folyamatot végzi egy speciális U-Net modell végzi, a forrás szerint az alap U-net modelt több belső komponenssel egészítettük ki. Így az alábbi öt részt kaptuk:

- **Encoder blokkok**: A bemenet jellemzőit egyre kisebb dimenziójú reprezentációkba tömöríti.
- **Bottleneck blokkok**: Az encoder és a decoder között helyezkednek el, és a legkomplexebb, tömörített jellemzőket reprezentálják.
- **Decoder blokkok:** Visszaállítják a képméretet az eredeti dimenzióra, miközben megőrzik a fontos részleteket.
- Önfigyelési (Self-Attention) modulok: A jellemzők közötti globális összefüggéseket tanulják meg, hogy javítsák a generált képek minőségét.
- **Szinuszos időbeágyazások** (Sinusoidal time embeddings): Az időlépés információját adják a modellnek, hogy tudja, a Markov-lánc melyik pontján tart az aktuális zajmentesítési folyamat.

2.1.4. Hiperparaméter-kísérletek és Végső Beállítások

A modell teljesítményének optimalizálása érdekében több hiperparaméterrel is kísérleteztünk. A cél az volt, hogy megtaláljuk azokat a beállításokat, amelyek a legjobb minőségű képeket generálják a DDPM model segítségével.

1. Diffúziós lépések száma (Timesteps):

- Kipróbált értékek: 100, 200, 300, 1000
- Eredmény: A 300 időlépés bizonyult a legjobbnak, egyszerű okból kifolyólag. A 100-200-300 közül a 300 hozta a legjobb képeket, a 1000-es beállítást több napos tanítást igényelt volna, amire nem volt időnk és számítási erőforrásunk sem.

2. Beta ütemezés:

- o Kipróbált stratégiák: lineáris, kvadratikus, sigmoid, koszinuszos
- o **Eredmény: A lineáris beta ütemezés** bizonyult a legeredményesebbnek.

3. Modelldimenziók (báziscsatornák száma):

o Kipróbált értékek: 64, 128, 256

 Eredmény: A 128 csatornás alapdimenzió jobb részletességet biztosított, miközben a memóriahasználatot és a számítási időt elfogadható szinten tartotta.

4. Képméret (pixel):

o Kipróbált értékek: 64, 128, 256

 Eredmény: Sajnos számítási erőforrás hiányában kénytelenek voltunk a legkisebb képméreten tanítani a modelt, az eredeti terv (256) a hírességek adathalmazán becsléseink szerint több hét lett volna.

3. Teszt eredmények

3.1. A Fréchet Inception Distance (FID)

A Fréchet Inception Distance (FID) az egyik leggyakrabban használt metrika a generatív modellek által készített képek minőségének és sokféleségének értékelésére. Az FID a generált és a valódi képek jellemzőinek eloszlásai közötti távolságot méri. A **kisebb FID érték** jobb eredményt jelez, mert kisebb távolságot jelent a generált és a valódi képek között.

Tesztek	Baseline	Unet based DDPM
Fid (Flowers -összes kép)	264.38	502.06
Fid (Celeb – összes kép)	287.45	374.64
Fid (Flowers – 5 kép)	480.80	576.67
Fid (Flowers – 10 kép)	403.63	519.71
Fid (Celeb – 5 kép)	404.79	440.64
Fid (Celeb – 10 kép)	386.61	408.23

3.2. Inception Score (IS)

Az Inception Score (IS) célja, hogy értékelje a generált képek minőségét és sokféleségét azáltal, hogy megvizsgálja, mennyire osztályozhatók a képek (mennyire nagy valószínűséggel tartoznak egy adott kategóriához), valamint hogy az osztályok között mekkora a különbség (diverzitás).

A minél magasabb Inception Score (IS) pontszám azt jelzi, hogy a képek könnyen azonosíthatók egy adott kategóriába a tanított Inception háló segítségével, vagyis a képek osztályozási valószínűsége koncentrált (pl. egy celebarc generálásakor az "emberi arc" kategória dominál).

Tesztek	Baseline	Unet based DDPM
IS (Celeb – 30 kép)	1.82 ± 0.36	2.86 ± 0.17
IS (Flower – 30 kép)	1.77 ± 0.20	2.37 ± 0.37

Az eredmények alapján a DDPM modell jobb IS értékeket ér el mind a CelebA, mind a Flower adathalmazokon a baseline modellhez képest, ami azt mutatja, hogy a DDPM által generált képek nemcsak élethűbbek, hanem változatosabbak is.

3.3. Vizuális Turing-teszt

A vizuális Turing-tesztet arra használtuk, hogy megvizsgáljuk, mennyire képesek a megkérdezettek felismerni, hogy a generált képek valódiak-e vagy mesterségesek. A teszt során két különböző modell által generált képeket mutattunk: egy VAE (Variational Autoencoder) és egy DDPM (Denoising Diffusion Probabilistic Model) által készített mintákat.

VAE által generált képek:

- Az értékelések alapján a VAE által készített képeket sokan "homályosnak" és "kevésbé részletgazdagnak" találták.
- Több megjegyzés utalt arra, hogy az emberek a képekben torzításokat vagy természetellenes textúrákat véltek felfedezni

4. ábra A VAE modellel generált arcképek

DDPM által generált képek:

- A megkérdezettek nagy része úgy vélte, hogy ezek a képek közel állnak a valódihoz, de szintén egy kis homályosságot vagy elmosódottságot említettek.
- A DDPM által készített képek esetében (főleg a celeba model által generált képeknél) az emberek a részletgazdagságot és a természetes textúrákat emelték ki.

5. ábra A DDPM modellel generált arcképek

4. Összefoglalás

A projekt során elkészültek alapján kijelenthetjük, hogy DDPM valóban sokkal élethűbb és meggyőzőbb képeket képes generálni, mint a VAE. Azonban fontos megjegyezni, hogy egyszerű kis számítási kapacitással rendelkező laptopokkal lehetetlen sokkal kifinomultabb modelleket tanítani. Érdekes lenne a későbbiekben megvizsgálni, hogy egy sok RAM-os a100-as GPU segítségével képesek lehetünk-e még jobb modelt tanítani. Ez azonban költséges manapság.

5. LLM model használata

A munka során mind kódgeneráláshoz (rövid szkriptek), mind a dokumentáció készítéséhez használtunk LLM-et (ChatGPT). Tapasztalataink alapján ezzel kb. 30-40%-kal sikerült meggyorsítanunk a munkafolyamatot.

6. Telepítési útmutató

Nyiss egy terminált a projekt gyökérkönyvtárában. Az alkalmazás indításához kövesd az alábbi lépéseket:

Mielőtt futtatnád az alkalmazást, először meg kell építeni a Docker Image-et:
 docker-compose build

 Ha a run és stop scripteket használod, biztosítsd, hogy azok futtathatóak legyenek az alábbi parancsokkal:

Gradio felület indítása a localhost:7860 címen:

./run.sh

Modellek betanítása:

./run.sh --train-flowers # Virág modellek
betanítása

./run.sh --train-celebs # Celeb modellek
betanítása

Virágképek generálása:

./run.sh --generate-flowers # Legjobb modell
használata
./run.sh --generate-flowers --latest # Legutóbbi modell
használata a legjobb
helyett

• Celeb arckép generálása:

./run.sh --generate-celebs

használata
./run.sh --generate-celebs --latest # Legutóbbi modell
használata a legjobb
helyett

Legjobb modell

6. ábra A Gradio felülete

7. Felhasznált Irodalom

- Hugging Face. Diffusers Library. Elérhető: https://github.com/huggingface/diffusers
- Mallick, S. Guide to Training DDPMs from Scratch: Generating Flowers Using DDPMs. LearnOpenCV. Elérhető: https://github.com/spmallick/learnopencv/blob/master/Guide-to-training-DDPMs-from-Scratch/Generating_flowers_using_DDPMs.ipynb
- LearnOpenCV. Denoising Diffusion Probabilistic Models. Elérhető: https://learnopencv.com/denoising-diffusion-probabilistic-models/#What-Are-Diffusion-Probabilistic-Models
- Keras Documentation. Denoising Diffusion Implicit Models (DDIM). Elérhető: https://keras.io/examples/generative/ddim/