### Lecture 10: The Poincaré Recurrence Theorem

### Yannis Bähni

University of Augsburg yannis.baehni@math.uni-augsburg.de

June 17, 2021

### **Ergodic Theory**

the study of measure theoretical do

### Definition (Dynamical System)

A *dynamical system* on a probability space  $(X, A, \mu)$  is a measurable transformation  $T: X \to X$  such that  $T_*\mu = \mu$ .

Ot to denois



Let  $T: X \to X$  be a dynamical system on a probability space  $(X, A, \mu)$ . Given  $A \in A$ , set

$$E := \bigcap_{n=0}^{\infty} E_n$$
 where  $E_n := \bigcup_{k=n}^{\infty} T^{-k} A$ .

Then  $\mu(A \cap E) = \mu(A)$ . here it is crucial that P preserves  $\mu$ .

Proof A good exercise in mensue theory

We have that x EARE; I and only if the exists a sequere (ky) EN s.t |

ky -> 00 and Tkn(x) EA

Y we N.

# Theorem ( Poincant Recurrence the one

Let  $T: X \to X$  be a dynamical system on a probability space  $(X, A, \mu)$ . Let  $A \in A$  be measurable with  $\mu(A) > 0$ . Then almost every point of A returns infinitely often to A under T.

 $T_{\theta} \colon S^{1} \to S^{1}$ · fe Q, that is B - w/n, so Th(2) = 2.

· D € Dr, the the west {T"(2): N ∈ N } ∈ 5° is dense by the clove Theore.



The most be some iterate in U because otherwise U,  $\pm U$ ,  $\pm 3U$ ,  $\dots$  nello are disjoint. But as  $\mu(U) > 0$ ,  $\rightarrow \mu(S^{2}) = \infty$ .

# Regular Energy Surfaces

# nition (Regular Energy Surface)

# Definition (Regular Energy Surface)

A regular energy surface in a Hamiltonian system  $(M, \omega, H)$  is defined to be an embedded hypersurface  $\Sigma = H^{-1}(0)$  such that  $Crit(H) \cap \Sigma = \emptyset$ . Any such function is called a defining Hamiltonian function for  $\Sigma$ .

Since 0 is a regular value of 11, the preimage H-1(0) is an embedded hyperriface value by the by the implicit fruition theorem. Moreover, Tx Zi = leardy x + ye Zi. Clin. Xx is to quet to Z.  $\mathsf{Aff}^{\times}(X^{\mathsf{H}}(X)) = -\omega(X^{\mathsf{H}}(X)^{\mathsf{I}}X^{\mathsf{H}}(X)) - O.$ for all x = Z. .

Every regular energy surface is orientable.

Prof. let in be a Riemannia metic on M. The consider the "normalised" gradient

X = grad + H = EX(U)

where UEH is on open neighborhood of Zi 5.1. All + O (this on 'be done if I is ampant, your is defend on 2). Volume on 2: ixing.

dH. + + = dH (qulu + · + x) I quelut + + 1/2 ¥ { = (= =). -> Hopx = +

Let  $\Sigma$  be an embedded hypersurface in a symplectic manifold  $(M, \omega)$ . Then

$$\ker \omega|_{\Sigma} \to \Sigma$$

is a line bundle, called the **characteristic line bundle of**  $\Sigma$ .

Ex. If I is a regular energy hypersurface, then XHI spans the characteristic line builte. Indeed, for xEI and vETx I we came  $\omega(\chi_{\mathcal{H}}(x), v) = -dH_{\times}(v) - O.$ -> XHIT belongs to the characteristic l'a bulle . F. A XH never varishes on so it does incled open it. But why line distillation? with has lever runk, so there exists upe ler ul 7/50%. The <u> = ler w/t, | Seconse du TxZ" + din TxZ = din, M

Let  $H, \widetilde{H} \in C^{\infty}(M)$  be two defining Hamiltonian functions for a regular energy surface  $\Sigma$  in a symplectic manifold  $(M, \omega)$ . Then there exists a <u>nowhere-vanishing</u> function  $f \in C^{\infty}(\Sigma)$  such that

$$X_{\widetilde{H}}|_{\Sigma} = fX_{H}|_{\Sigma}.$$

Front. We know from previous discussion text both Xff and XH span the line distriction her why.

This means that O'ff is just a reparametisation of OXH! In perfector, imparametrised periodic orbits coincide



Let  $\Sigma$  be a compact regular energy surface in a Hamiltonian system  $(M, \omega, H)$ . Denote by  $\theta$  the flow of  $X_H$  on  $\Sigma$ . Then there exists a unique regular  $\theta$ -invariant probability measure  $\mu_{\Sigma}$  on  $\Sigma$ , that is, we have that

$$\theta_t^* \mu_{\Sigma} = \mu_{\Sigma} \qquad \forall t \in \mathbb{R}.$$

Let  $(M, \Omega)$  be a compact oriented smooth manifold of positive dimension and suppose that  $\varphi \in \mathrm{Diff}(M)$  such that  $\underline{\varphi}^*\Omega = \underline{\Omega}$ . Then there exists a unique regular  $\underline{\varphi}$ -invariant probability measure  $\underline{\mu}_{\Omega}$  such that

$$\int_{M} f\Omega = \int_{M} f d\mu_{\Omega} \qquad \forall f \in C^{0}(M).$$

Froug. Clear from lecture 
$$g$$
, as we emptre

$$\int_{\mathcal{H}} f \Omega = \int_{\mathcal{H}} \varphi^*(f \Omega) = \int_{\mathcal{H}} (f \circ \varphi) \varphi^* \Omega$$

$$= \int_{\mathcal{H}} (f \circ \varphi) d \rho \Omega$$

$$= \int_{\mathcal{H}} f \partial_{\varphi} (\varphi_* \rho_{\varphi}).$$

Let M be a smooth manifold. Suppose that  $\eta \in \Omega^1(M)$  is nowhere-vanishing and  $\xi \in \Omega^k(M)$ . Then  $\eta \wedge \xi = 0$  if and only if there exists  $\zeta \in \Omega^{k-1}(M)$  such that  $\xi = \eta \wedge \zeta$ .

Ford: 
$$w'' = dH \wedge x$$
.

If  $\beta \in \Omega^{2n-1}(U)$  is another onch  $\beta = 0$ .

Here
$$dH \wedge (x - \beta) = 0$$

Find  $\gamma \in \Omega^{2n-2}(U)$  s.t
$$x - \beta = dH \wedge \gamma$$
.

$$t_{\overline{\alpha}} = t_{\overline{\alpha}} (dH \wedge \gamma) + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \beta = d(H \circ t_{\overline{\alpha}}) \wedge t_{\overline{\alpha}} \gamma + t_{\overline{\alpha}} \gamma +$$

$$0 = i \times (qH \vee r) = \{xqH\}^{r} - qH \vee i \times r$$

$$V = \frac{\|\Delta H\|_{S}}{\Delta H} = V$$

$$V = \frac{\|\Delta H\|_{S}}{\Delta H} = V$$



Hoper + Zehnder: Humittonian Dynamics and Str

### Theorem (Poincaré's Recurrence Theorem)

Let  $\Sigma$  be a compact regular energy surface in a Hamiltonian system  $(M, \omega, H)$ . Then for almost every  $x \in \Sigma$ , with respect to the probability measure  $\mu_{\Sigma}$ , there exists a sequence  $(t_k) \subseteq \mathbb{R}$  such that

$$t_k \to +\infty$$
 and  $\lim_{k \to \infty} \theta_{t_k}^{X_H}(x) = x$ .

Proof. This is up to details the Poinceré recurrent in Zi is a recurrent theorem from enjoire theory. In Zi is a recurrent point.

this concially uses that I can cover bypronface with a countable number of metric balls (I adils a netic Structure of Renamin man fold)

