Zavod za automatiku i računalno inženjerstvo

2. domaća zadaća iz predmeta Sustavi s diskretnim događajima

1. zadatak

Zadane su ulazna i izlazna matrica događaja Petrijeve mreže:

		MIA							
t_1	$\lceil 1 \rceil$	1	0	0	0	0	0	0	0
t_2	0	0	1	1	0	0	0	0	0
$I = t_3$	0	0	0	0	1	0	1	0	0
t_4	0	0	0	1	0	0	0	1	0
$\begin{aligned} \mathbf{t}_1 \\ \mathbf{t}_2 \\ \mathbf{I} &= \mathbf{t}_3 \\ \mathbf{t}_4 \\ \mathbf{t}_5 \end{aligned}$	0	0	0	0	0	1	0	0	0

- a) graf Petrijeve mreže.
- b) ako u slučaju konflikta prijelaza t2 i t4 uvijek okida prijelaz t4, da li vrijedi $m \in \Re(m_0)$ gdje je m = $[8\ 0\ 1\ 1\ 0\ 0\ 1\ 0\ 1]^T$ i m0 = $[10\ 1\ 0\ 1\ 0\ 1\ 0\ 0]^T$?
- c) da li je skup S = {BA, RA, RU2, M1P} sifon? Obrazložiti.
- a) Graf Petrijeve mreže (u graf su ucrtane oznake od mo):

Slika 2.1. Graf Petrijeve mreže

b) m = [8 0 1 1 0 0 1 0 1]^T je dohvatljiv iz m0 = [10 1 0 1 0 0 1 0 0]^T. Slijedi obrazloženje.

 $m_0 = [10 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1]^T -> propali \ t_1$

 $m_1 = [9 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0]^T -> propali \ t_2$

 $m_2 = [9 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0]^T -> propali t_1 i t_3$

 $m_3 = [8 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0]^T -> propali \ t_2 \ i \ t_4 => konflikt => t_4 \ propali \ (zadano \ zadatkom)$

 $m_4 = [8 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0]^T -> propali t_5$

 $m_5 = [8 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1]^T -> traženi m.$

c) Skup S = {BA, RA, RU2, M1P} nije sifon.

Slika 2.2. Graf Petrijeve mreže (markirana mjesta skupa S)

Nađimo \cdot S = $\{t_1, t_3, t_4, t_5\}$ i S \cdot = $\{t_2, t_3, t_4, t_5\}$. Pošto vrijedi da \cdot S $\not\subset$ S \cdot (riječima; \cdot S nije podskup od S \cdot), skup S nije sifon. Sifon kad jednom ostane bez oznaka više je neće moći primiti. Ako markirana mjesta nemaju oznake vidi se da mogu primiti oznaku. Ako recimo propali t_1 M1P će primiti oznaku.

2. zadatak

Resursi u proizvodnoj stanici su strojevi M1 i M2 te autonomno vozilo V. U stanici se obrađuju tri vrste predmeta: A, B i C. Predmeti ulaze i izlaze iz proizvodne stanice na pokretnim trakama. Stroj M1 obrađuje predmete B i C, dok stroj M2 obrađuje predmete A i B. Predmet A ulazi u stroj M2 s pokretne trake. Nakon što je obrada završena, vozilo V ga iznosi na izlaznu pokretnu traku. Predmet B ulazi u stroj M1 s pokretne trake. Nakon što je obrada u M1 završena, vozilo V ga prebacuje u stroj M2. Kada je obrada u stroju M2 završena, predmet napušta proizvodnu stanicu. Vozilo V prenosi predmet C s okretne trake u stroj M1. Nakon završetka obrade u stroju M1 predmet napušta proizvodnu stanicu.

Vrijede sljedeće pretpostavke:

- pokretne trake na ulazu tretiraju se kao izvori ;
- pokretne trake na izlazu tretiraju se kao ponori;
- > na početku rada strojevi i vozilo su slobodni;
- u svakom stroju može se istovremeno obrađivati samo jedan predmet;
- > vozilo može prenositi samo jedan predmet istovremeno.

Za opisani sustav potrebno je:

- a) odrediti statičku Petrijevu mrežu klase MRF1;
- b) odrediti kružno(a) čekanje(a) i kritični(e) sifon(e);
- c) za sve višeradne resurse onemogućiti konflikt pomoću p-invarijanti upravljačkih mjesta.

Oznake u upravljačka mjesta postaviti tako da svi resursi prvo obrađuju predmet B.

a) graf Petrijeve mreže klase MRF1

Slika 2.3. Graf Perijeve mreže klase MRF1

Tablica 2.1. Popis simbola na grafu

A	predmet A na pokretnoj traci					
С	predmet B na pokretnoj traci					
В	predmet C na pokretnoj traci					
VA	vozilo prevozi predmet A na izlaznu pokretnu traku					
VB	vozilo prevozi predmet B u stroj M2					
VC	vozilo prevozi predmet C u stroj M1					
VAV	vozilo slobodno					
M1WB	stroj M1 obrađuje predmet B					
M1WC	stroj M1 obrađuje predmet C					
M1A	stroj M1 slobodan					
M2WA	stroj M2 obrađuje predmet A					
M2WB	stroj M2 obrađuje predmet B					
M2A	stroj M1 slobodan					
OUT1	izlazna pokretna traka za predmet A					
OUT2	izlazna pokretna traka za predmet B					
OUT3	izlazna pokretna traka za predmet C					

b) odrediti kružno(a) čekanje(a) i kritični€ sifon€;

Dva su kružna čekanja: $C1 = \{M2A, VAV\} i C2 = \{M1A, VAV\}$

Slika 2.4. Graf Petrijeve mreže klase MRF1 (kružna čekanja)

Kritični sifon za prvo kružno čekanje C1 = {M2A, VAV};

Pronaći ulazne prijelaze u C koji nisu blokirani resursima u C1 -> T_{S1}:

Skup ulaznih prijelaza u mjesta C1: \bullet C1 = {t₂, t₃, t₆, t₇, t₉}

Skup izlaznih prijelaza iz mjesta C1: C1• = $\{t_1, t_2, t_5, t_6, t_8\}$

$$T_{C1}^{i} = \bullet C1 = \{t_2, t_3, t_6, t_7, t_9\}, T_{C1} = \bullet C1 \cap C1 \bullet = \{t_2, t_6\}, T_{S1} = T_{C1}^{i} \setminus T_{C1} = \{t_3, t_7, t_9\}$$

Skup ulaznih mjesta u prijelaze T_S : • T_{S1} = {VA, M2WB, VC, M1A}

Posao koji obavljaju resursi iz C1: J(C1) = {M2WA, M2WB, VA, VB, VC}

Skup poslova sifona: $J_S(C1) = \bullet T_{S1} \cap J(C1) = \{VA, VC, M2WB\}$

Kritični sifon: $S_{C1} = \{M2A, VAV, VA, VC, M2WB\};$

Provjera: • $S_{C1} \subset S_{C1}$ • = { t_2 , t_3 , t_6 , t_7 , t_8 , t_9 } \subset { t_1 , t_2 , t_3 , t_5 , t_6 , t_7 , t_8 , t_9 } -> S_{C1} je sifon!!!

Slika 2.5. *Graf Petrijeve mreže klase MRF1 (Sifon* S_{C1})

Kritični sifon za drugo kružno čekanje C2 = {M1A, VAV};

Pronaći ulazne prijelaze u C koji nisu blokirani resursima u C2 -> Ts2:

Skup ulaznih prijelaza u mjesta C2: •C2 = $\{t_3, t_5, t_6, t_9, t_{10}\}$

Skup izlaznih prijelaza iz mjesta C2: $C2 \cdot = \{t_2, t_4, t_5, t_8, t_9\}$

 $T_{C2}^{i} = \bullet C2 = \{ t_3, t_5, t_6, t_9, t_{10} \}, T_{C2} = \bullet C2 \cap C2 \bullet = \{ t_5, t_9 \}, T_{S2} = T_{C2}^{i} \setminus T_{C2} = \{ t_3, t_6, t_{10} \}$

Skup ulaznih mjesta u prijelaze T_S : • T_{S2} = {VA, M1WC, VB, M2A}

Posao koji obavljaju resursi iz C1: J(C2) = {M1WB, M1WC, VA, VB, VC}

Skup poslova sifona: $J_S(C2) = \bullet T_{S2} \cap J(C2) = \{VA, VB, M1WC\}$

Kritični sifon: $S_{C2} = \{M1A, VAV, VA, VB, M1WC\};$

Proviera: • $S_{C2} \subset S_{C2}$ • = { t_2 , t_3 , t_5 , t_6 , t_9 , t_{10} } \subset { t_2 , t_3 , t_4 , t_5 , t_6 , t_8 , t_9 , t_{10} } -> S_{C2} je sifon!!!

Slika 2.6. Graf Petrijeve mreže klase MRF1 (Sifon Scz)

c) za sve višeradne resurse onemogućiti konflikt pomoću p-invarijanti upravljačkih mjesta. U A, B, C oznake se same stvaraju. Početne oznake u upravljačkim mjestima postavljene tako da se najprije obradi predmet B.

Slika 2.7. Graf Petrijeve mreže klase MRF1 (upravljanje, onemogućavanje konflikata)