

Deep Learning Classification – Model Overview

Thomas Poozhikala

Springboard Data Science Career Track

https://github.com/tpoozhikala

Slide template provided by Sacramento State University Acknowledgement to Eric Callahan for guidance and support

Introduction of Problem & Objective

Problem

- Family Friendly Productions, a recent 2-year startup movie production company, saw a loss of profits in movie revenue in the past 2023 financial cycle. This decline is potentially caused by lingering feelings from the COVID-19 as well as not capitalizing or marketing quick enough to their more avid movie goers.
- Objective: Potential strategy to implement in the 2024 financial year is to design a deep learning neural network image classification model to predict future Family Friendly Production movie genres based on the movie posters before the movies hit market.

Current Model Status & Improvement

Keras Image Classification

Steps to Improve:

- Model:
- F1 Score: 0.253
- ROC AUC Comedy: 0.498
- ROC AUC Adventure: 0.492
- ROC AUC Drama: 0.493
- ROC AUC Documentary: 0.503

- Enlarge sample size
- Increase computational resources
 - 5-fold cross validation
 - Optimal model layering
 - Expose more hyperparameters in GridSearch

Assessing Genre Class

- G and PG Movies from 1990 2023 retrieved through paid IMDb API
- 21 Unique Genre Classes Retrieved aside from 'None'

Image Classifier Model Build

^{*}Model layer overview provided by chatGPT

Image Classifier Model Results

- Image Classifier model trained with an 80/20 split and 3-fold Cross Validated for compiler and activation functions
- Best parameters SGD compiler and 'relu' activation function
- Model performance assessed based on f1_score and best model performer ROC AUC values for different genres assessed.

```
param_grid = {
    'activation': 'relu' 'tanh', 'linear'],
    'optimizer': [SGD', 'Adagrad', 'Adam'],
    'learning_rate': [0.001],
    'epochs': [10],
    'batch_size': [10]
}
*Current model GridSearchCV Param Grid
```

Model Name	F1_Score	ROC_AUC_ Comedy	ROC_AUC_ Adventure	ROC_AUC_Drama	ROC_AUC_ Documentary
Keras Image Classification Model	0.25258895	0.4978308	0.49173069	0.49308443	0.503067484

^{*}Table Displaying Model Results f1_score and respective ROC AUC for few genres

Model Results Key Takeaways

- F1_score of 0.25 means there are improvements to be made prior to deploying the model to production
- Reasons for model underperformance:
 - Imbalance of genres within initial dataset
 - Number of layers or filters within the model might not be most optimal for generalizability of the model
 - 3-fold cross validation not best method to generalize the model
 - More hyperparameters will need to be tested within GridSearchCV (learning rate, activation functions, model compilers, etc.)

Future Improvements

- Increase sample size of movie genres
 - Include PG-13 movies and movies dating from 1980s to 2024
 - Augment current movie poster images
- Increase computational resources
 - Perform 5-fold cross validation instead of 3-fold
 - Optimize the convolutional and dense layers for appropriate filter numbers and kernel window
 - Expose current model's GridSearchCV to more hyperparameters (learning rate, activation functions, and model compilers)

Summary

- Current Keras Image Classification model requires improvements before deploying to production.
- Suggested improvements include:
 - Enlarge movie genre sample size
 - Include PG-13 movies and movies from 1980s to present
 - Augment current movie poster images
 - Increase computational resources
 - 5-fold cross validation instead of 3-fold
 - Optimize different model layers
 - Expose current model to increased GridSearch parameters (learning rate, model compiler, activation functions, etc.)

Thank You! Questions?

https://github.com/tpoozhikala/IMDB_Classification