Es1

Niccolò Puccinelli

2022-05-10

```
data <- read.csv("antrop.txt", sep="\t")
data <- data[,-1]
View(data)</pre>
```

Il dataset presenta solo variabili numeriche non ordinate. Occupiamoci anzitutto delle statistiche descrittive.

Statistiche descrittive

```
##
         eta
                                          altez
                                                           collo
                          peso
##
    Min.
           :22.00
                     Min.
                            :118.5
                                      Min.
                                              :162.6
                                                       Min.
                                                               :31.10
##
    1st Qu.:35.75
                                                       1st Qu.:36.38
                     1st Qu.:158.2
                                      1st Qu.:173.4
    Median :43.00
                     Median :176.1
                                      Median :177.8
                                                       Median :38.00
##
    Mean
           :44.85
                            :178.1
                                             :178.6
                                                              :37.95
                     Mean
                                      Mean
                                                       Mean
##
    3rd Qu.:54.00
                     3rd Qu.:196.8
                                      3rd Qu.:183.5
                                                       3rd Qu.:39.42
##
    Max.
           :81.00
                     Max.
                            :262.8
                                      Max.
                                             :197.5
                                                       Max.
                                                               :43.90
##
        torace
                          addom
                                             anca
                                                              coscia
##
           : 79.30
                             : 69.40
                                               : 85.00
                                                                  :47.20
   Min.
                      Min.
                                        Min.
                                                          Min.
##
    1st Qu.: 94.15
                      1st Qu.: 84.47
                                        1st Qu.: 95.47
                                                          1st Qu.:56.00
    Median : 99.60
                      Median: 90.95
                                        Median: 99.30
                                                          Median :59.00
##
    Mean
           :100.67
                      Mean
                             : 92.31
                                        Mean
                                               : 99.66
                                                          Mean
                                                                  :59.27
    3rd Qu.:105.30
                      3rd Qu.: 99.20
                                        3rd Qu.:103.28
                                                          3rd Qu.:62.30
##
##
    Max.
           :128.30
                      Max.
                             :126.20
                                        Max.
                                                :125.60
                                                          Max.
                                                                  :74.40
##
       ginocch
                        caviglia
                                         bicipite
                                                           avanbr
##
    Min.
           :33.00
                            :19.10
                                             :24.80
                                                       Min.
                                                              :21.00
                     Min.
                                      Min.
    1st Qu.:36.90
                     1st Qu.:22.00
                                      1st Qu.:30.20
                                                       1st Qu.:27.30
##
##
    Median :38.45
                     Median :22.80
                                      Median :32.00
                                                       Median :28.75
##
    Mean
           :38.54
                     Mean
                            :22.99
                                      Mean
                                             :32.22
                                                       Mean
                                                              :28.67
##
    3rd Qu.:39.90
                     3rd Qu.:24.00
                                      3rd Qu.:34.33
                                                       3rd Qu.:30.00
##
    Max.
           :46.00
                     Max.
                            :27.00
                                      Max.
                                             :39.10
                                                       Max.
                                                              :34.90
        polso
##
##
    Min.
           :15.80
   1st Qu.:17.60
##
##
   Median :18.30
           :18.22
##
   Mean
    3rd Qu.:18.80
##
   Max.
           :21.40
```

```
# Box-plot
par(mfrow=c(1,2))
for(i in var){
  boxplot(data[,i],main=i,col="lightblue",ylab=i)
}
```


polso

Dai box-plot notiamo che per diverse variabili la media si discosta dalla mediana (per lo più età e altezza), indicando una possibile non-normalità. Inoltre possiamo già vedere i primi outlier, presenti nelle variabili peso, collo, torace, addome, anca, coscia, ginocchio, avambraccio e polso.

Andiamo a vedere simmetria e possibile non-normalità anche con degli istogrammi.

```
# Istogrammi
par(mfrow=c(1,2))
for(i in var){
  hist(data[,i],main=i,col="lightblue",xlab=i,freq=F,prob=TRUE)
  lines(density(data[,i]), col=2, lwd=2)
}
```


Alcune variabili presentano un'asimmetria positiva (e.g. età, peso, torace, addome, anca, caviglia), altre negativa (e.g. collo, avambraccio, polso), indicando una possibile non-normalità, da verificare con gli appositi grafici e test.

Andiamo a studiare le correlazioni.

Studio delle correlazioni
pairs.panels(data)

cor(data)

```
collo
##
                                         altez
                                                             torace
                                                                        addom
                    eta
                               peso
             1.00000000 -0.01269094 -0.2362936 0.1256832 0.1847965 0.2452463
## eta
                                    0.5135600 0.8099153 0.8913646 0.8741842
            -0.01269094
                         1.00000000
## peso
            -0.23629355
                         0.51356002
                                     1.0000000 0.3224054 0.2240882 0.1886275
## altez
                                    0.3224054 1.0000000 0.7691450 0.7293274
                         0.80991528
## collo
             0.12568319
## torace
             0.18479651
                         0.89136456
                                     0.2240882 0.7691450 1.0000000 0.9102506
                                    0.1886275 0.7293274 0.9102506 1.0000000
             0.24524634
                         0.87418418
## addom
                                     0.3968323 0.7072583 0.8249990 0.8608247
## anca
            -0.05475672
                         0.93268793
            -0.21320509
                         0.85281577
                                     0.3502220 0.6689794 0.7082294 0.7372990
## coscia
                                     0.5142569 0.6480645 0.6975475 0.7106229
             0.01988356
                         0.84267934
## ginocch
## caviglia -0.15928620
                         0.72484213
                                    0.4804845 0.5455551 0.5588112 0.5221625
## bicipite -0.04455524
                         0.78558121
                                     0.3201975 0.7092980 0.7070395 0.6567847
                         0.68370728
                                    0.3246422 0.6614849 0.5995031 0.5296607
## avanbr
            -0.08448871
## polso
             0.22030070
                         0.72528679
                                     0.3981916 0.7316718 0.6445865 0.6028574
##
                            coscia
                                      ginocch
                                                 caviglia
                                                             bicipite
                   anca
            -0.05475672 -0.2132051 \ 0.01988356 -0.1592862 -0.04455524 -0.08448871
## eta
             0.93268793
                         0.8528158 0.84267934
                                               0.7248421
                                                           0.78558121
                                                                       0.68370728
## peso
                         0.3502220 0.51425689
                                               0.4804845
                                                           0.32019750
             0.39683229
                                                                       0.32464225
## altez
             0.70725827
                         0.6689794 0.64806451
                                               0.5455551
                                                           0.70929800
## collo
                         0.7082294 0.69754751
                                                           0.70703948
## torace
             0.82499902
                                               0.5588112
                                                                       0.59950310
## addom
             0.86082474
                         0.7372990 0.71062293
                                               0.5221625
                                                           0.65678474
                                                                       0.52966068
                         0.8814257 0.80910516
## anca
             1.00000000
                                               0.6593495
                                                           0.72221413
                                                                       0.60318884
             0.88142565
                         1.0000000 0.77810920
                                               0.6635202
                                                           0.74589642
## coscia
                                                                       0.60358993
             0.80910516  0.7781092  1.00000000  0.7293425
                                                          0.65436933
                                                                       0.57873467
## ginocch
```

```
0.6635202 0.72934248
                                                1.0000000
                                                            0.54841146
                                                                         0.56068107
## caviglia
             0.65934955
                                                0.5484115
## bicipite
             0.72221413
                          0.7458964 0.65436933
                                                            1.00000000
                                                                         0.70206128
## avanbr
             0.60318884
                          0.6035899 0.57873467
                                                0.5606811
                                                            0.70206128
                                                                         1.00000000
                         0.5450004 0.65583443
## polso
             0.62674915
                                                0.6661933
                                                            0.61366767
                                                                         0.59925545
##
                polso
## eta
            0.2203007
## peso
            0.7252868
## altez
            0.3981916
## collo
            0.7316718
## torace
            0.6445865
## addom
            0.6028574
## anca
            0.6267491
            0.5450004
## coscia
## ginocch
            0.6558344
## caviglia 0.6661933
## bicipite 0.6136677
## avanbr
            0.5992555
## polso
            1.000000
```

Notiamo, in generale, diverse correlazioni abbastanza elevate tra le variabili. Consideriamo da ora in avanti esclusivamente le variabili di nostro interesse (i.e. bicipite e peso), che presentano un indice di correlazione pari allo 0.79. Tuttavia, essendo questo un task di regressione univariata, non andremo ad occuparci della multicollinearità.

Regressione di peso su bicipite

Effetttuiamo la regressione e commentiamone i risultati.

```
m1<-lm(peso~bicipite,data)
summary(m1)</pre>
```

```
##
## Call:
## lm(formula = peso ~ bicipite, data = data)
##
## Residuals:
##
       Min
                                3Q
                1Q
                    Median
                                       Max
  -71.019 -11.099
                     0.163
                            10.467
                                    54.237
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -55.9264
                           11.8015
                                    -4.739 3.64e-06 ***
## bicipite
                 7.2648
                            0.3648
                                   19.913 < 2e-16 ***
## ---
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Signif. codes:
##
## Residual standard error: 16.82 on 246 degrees of freedom
## Multiple R-squared: 0.6171, Adjusted R-squared: 0.6156
## F-statistic: 396.5 on 1 and 246 DF, p-value: < 2.2e-16
```

La variabile bicipite risulta significativa e viene respinta l'ipotesi nulla H0 del test F. Il modello è dunque significativo. L'R quadro è buono: il modello riesce a spiegare circa il 62% della variabilità totale ed è molto simile all'R quadro aggiustato, che tiene conto della significatività delle variabili del modello.

Outlier

Verifichiamo la presenza o meno di outlier tramite il grafico residui studentizzati vs. leverage.

```
plot(hatvalues(m1), rstudent(m1), ylab="Residui studentizzati", xlab="Leverage")
# Soglie: 2, -2, 2k/n, oltre la quale si considerano outlier
# k=#coefficienti
# n=#osservazioni
abline(h=2)
abline(h=-2)
k=length(coef(m1))
n=nrow(data)
abline(v=2*k/n)
```


Notiamo la presenza di diversi outlier, i.e. i punti fuori dalla zona delimitata da v, 2 e -2. Utilizziamo i test.

```
# COVRATIO
plot(covratio(m1), ylab="Covratio")
abline(h=1+3*k/n)
abline(h=1-3*k/n)
text(covratio(m1))
```



```
# DFITTS
plot(dffits(m1), ylab="DFFITS")
text(dffits(m1))
abline(h=2*sqrt(k/n))
abline(h=-2*sqrt(k/n))
```


DFBETAS
dfbetasPlots(m1)

COOK
plot(m1, which=4)

I test ci identificano diversi outlier. Prendiamo come test per identificare gli outlier la distanza di Cook e rimuoviamo i punti 34, 39 e 51 dal dataset.

```
data2 = data[-c(34, 39, 51), ]
```

Andiamo a ristimare il modello.

```
m1<-lm(peso~bicipite,data2)
summary(m1)</pre>
```

```
##
## Call:
  lm(formula = peso ~ bicipite, data = data2)
##
##
  Residuals:
##
##
       Min
                1Q
                    Median
                                3Q
                                        Max
                     0.227
                                    47.269
##
   -38.085 -10.919
                            10.353
##
##
   Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -56.8499
                           11.2796
                                      -5.04 9.09e-07 ***
                                      20.87
                                            < 2e-16 ***
## bicipite
                 7.2916
                            0.3494
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
```

```
## Residual standard error: 15.79 on 243 degrees of freedom
## Multiple R-squared: 0.6418, Adjusted R-squared: 0.6404
## F-statistic: 435.5 on 1 and 243 DF, p-value: < 2.2e-16</pre>
```

La variabile esplicativa e il modello rimangono significativi. Notiamo inoltre un incremento sia dell'R quadro, sia dell'R quadro aggiustato. Il modello senza outlier riesce a spiegare una porzione leggermente maggiore della variabilità.

Normalità

Adesso visualizziamo il Normal Q-Q Plot per verificare la normalità.

```
plot(m1, which=2)
```


La distribuzione, almeno da un punto di vista grafico, risulta pressoché normale, eccezion fatta per un po' di fuoriuscita dei punti sulle code. Verifichiamo la nostra ipotesi con i test di Shapiro-Wilk e di Kolmogorov-Smirnov.

ols_test_normality(m1)

##			
##	Test	Statistic	pvalue
##			
## Sh:	aniro-Wilk	0.997	0.9236

```
## Kolmogorov-Smirnov 0.018 1.0000
## Cramer-von Mises 19.2038 0.0000
## Anderson-Darling 0.1033 0.9953
```

La nostra ipotesi di normalità risulta verificata.

Eteroschedasticità

Verifichiamo ora se c'è omoschedasticità o meno dei residui, tramite i seguenti grafici.

```
# Valori osservati regressore x vs. variabile dipendente y
plot(data2$bicipite, data2$peso, xlab="Bicipite", ylab="Peso")
```



```
# Residui stimati vs. valori predetti
plot(m1, which=1)
abline(h=0)
```


Residui stimati al quadrato vs. valori predetti
plot(m1\$fitted, (m1\$residuals)^2, xlab="fitted", ylab="residuals^2")

Residui regressore x vs. variabile dipendente y
plot(data2\$peso, m1\$residuals , xlab="Peso", ylab="residuals")

Dai grafici si direbbe che vi è omoschedasticità. Andiamo a vedere i test di White e di Breusch-Pagan.

```
white.test(m1)
     Test.Statistic
##
## 1
           3.574388 0.1674293
ols_test_breusch_pagan(m1)
##
##
    Breusch Pagan Test for Heteroskedasticity
##
    Ho: the variance is constant
##
    Ha: the variance is not constant
##
##
                  Data
##
##
    Response : peso
##
    Variables: fitted values of peso
##
           Test Summary
##
##
##
    DF
##
    Chi2
                        1.84819
    Prob > Chi2
                        0.1739941
##
```

Il p-value dei test ci porta ad accettare l'ipotesi di omoschedasticità. Proviamo anche a stimare altri modelli.

Altri modelli

Linear-Log

Modello con trasformazione logaritmica della variabile esplicativa.

```
linlog<-lm(peso~I(log(bicipite)),data2)
summary(linlog)</pre>
```

```
##
## Call:
## lm(formula = peso ~ I(log(bicipite)), data = data2)
##
## Residuals:
##
      Min
               1Q Median
                                3Q
                                       Max
## -38.540 -10.324
                    0.072 10.347
                                  47.070
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     -625.11
                                 39.04 -16.01
                                                  <2e-16 ***
## I(log(bicipite))
                     231.56
                                 11.26
                                          20.57
                                                  <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 15.94 on 243 degrees of freedom
## Multiple R-squared: 0.6352, Adjusted R-squared: 0.6337
## F-statistic:
                 423 on 1 and 243 DF, p-value: < 2.2e-16
```

Il modello e la variabile esplicativa sono ancora significativi, tuttavia assistiamo ad un leggero calo dell'indice R quadro. Per questo modello, ad una variazione percentuale dell'1% di "bicipite" corrisponde una variazione di 2.31 di "peso".

Verifichiamo di nuovo l'ipotesi di omoschedasticità tramite il grafico residui vs. valori fitted e l'apposito test di White.

```
plot(linlog, which=1)
```


white.test(linlog)

```
## Test.Statistic P
## 1 2.223203 0.3290316
```

L'omoschedasticità risulta ancora verificata. Proviamo con un altro modello.

Log-Log

Modello con trasformazione logaritmica della variabile esplicativa e della variabile dipendente.

```
loglog<-lm(I(log(peso))~I(log(bicipite)),data2)
summary(loglog)</pre>
```

```
##
## Call:
   lm(formula = I(log(peso)) ~ I(log(bicipite)), data = data2)
##
##
  Residuals:
##
                     1Q
                           Median
                                                   Max
##
   -0.223570 -0.060496
                        0.005825
                                  0.062137
##
##
  Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept)
                     0.61733
                                0.21935
                                          2.814
## I(log(bicipite))
                     1.31293
                                0.06326
                                         20.755
                                                 < 2e-16 ***
##
                       **' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
## Signif. codes:
##
## Residual standard error: 0.08956 on 243 degrees of freedom
## Multiple R-squared: 0.6393, Adjusted R-squared: 0.6379
## F-statistic: 430.8 on 1 and 243 DF, p-value: < 2.2e-16
```

Il modello e la variabile esplicativa sono significativi anche per questo modello. L'indice R quadro risulta migliore del precedente ma non del modello iniziale (per pochissimo). Per questo modello, ad una variazione percentuale dell'1.3% di "bicipite" corrisponde una variazione dell'1% di "peso".

Verifichiamo di nuovo l'ipotesi di omoschedasticità tramite il grafico residui vs. valori fitted e l'apposito test di White.

```
plot(loglog, which=1)
```



```
white.test(loglog)
```

```
## Test.Statistic P
## 1 1.873917 0.3918178
```

L'omoschedasticità risulta ancora verificata. Proviamo con un'ulteriore combinazione.

Log-Linear

Modello con trasformazione logaritmica della variabile dipendente.

```
loglin<-lm(I(log(peso))~bicipite,data2)
summary(loglin)</pre>
```

```
##
## Call:
## lm(formula = I(log(peso)) ~ bicipite, data = data2)
##
## Residuals:
##
        Min
                   1Q
                          Median
                                       ЗQ
                                                Max
## -0.222732 -0.057669 0.001034 0.061917
                                           0.224756
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.844392
                          0.063810
                                     60.25
                                             <2e-16 ***
## bicipite
              0.041183
                          0.001977
                                     20.83
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08934 on 243 degrees of freedom
## Multiple R-squared: 0.6411, Adjusted R-squared: 0.6396
## F-statistic: 434.1 on 1 and 243 DF, p-value: < 2.2e-16
```

Il modello e la variabile esplicativa sono significativi anche per questo modello. L'indice R quadro risulta pressoché simile al modello iniziale. Per questo modello, ad una variazione percentuale del 4% di "bicipite" corrisponde una variazione unitaria di "peso".

Verifichiamo di nuovo l'ipotesi di omoschedasticità tramite il grafico residui vs. valori fitted e l'apposito test di White.

```
plot(loglin, which=1)
```



```
white.test(loglin)
```

```
## Test.Statistic P
## 1 2.171941 0.337574
```

Anche questo modello presenta omoschedasticità dei residui. Proviamo con un modello quadratico.

Quadratico

Modello a cui aggiungiamo la trasformazione quadratica della variabile esplicativa (dopo averla centrata per evitare la collinearità con sé stessa al quadrato).

```
data2$bicipite_c<-data2$bicipite-mean(data2$bicipite)
quadratico<-lm(peso~bicipite_c+I(bicipite_c^2),data2)
summary(quadratico)</pre>
```

```
##
## Call:
## lm(formula = peso ~ bicipite_c + I(bicipite_c^2), data = data2)
##
## Residuals:
       Min
##
                1Q
                    Median
                                 3Q
                                        Max
##
   -37.408 -10.541
                    -0.353
                            10.127
                                     47.705
##
```

```
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                   176.55368
                                 1.29261 136.587
## bicipite_c
                     7.27920
                                 0.34910
                                          20.851
                                                   <2e-16
##
  I(bicipite_c^2)
                     0.12405
                                 0.09711
                                           1.277
                                                    0.203
##
                        **' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 15.77 on 242 degrees of freedom
  Multiple R-squared: 0.6442, Adjusted R-squared: 0.6413
## F-statistic: 219.1 on 2 and 242 DF, p-value: < 2.2e-16
```

Il modello e la variabile esplicativa "bicipite" sono significativi anche per questo modello. tuttavia, la variabile al quadrato non è significativa. L'indice R quadro risulta pressoché simile al modello iniziale.

Verifichiamo di nuovo l'ipotesi di omoschedasticità tramite il grafico residui vs. valori fitted e l'apposito test di White.

```
plot(quadratico, which = 1)
```



```
## Test.Statistic P
## 1 4.752178 0.09291325
```

white.test(quadratico)

Accettiamo l'ipotesi di omoschedasticità. Tuttavia, questa volta il p-value indica che siamo molto più vicini a rifiutarla rispetto ai casi precedenti. Se avessimo scelto un alfa del 10%, avremmo dovuto rifiutare l'ipotesi.

Modello finale

Il modello che si è comportato meglio in termini di eteroschedasticità (i.e. quello col p-value più alto) è il modello Log-Log. Testiamo dunque anche l'ipotesi di normalità. tramite i test di Shapiro-Wilk e di Kolmogorv-Smirnov.

```
loglog<-lm(I(log(peso))~I(log(bicipite)),data2)
ols_test_normality(loglog)</pre>
```

##			
##	Test	Statistic	pvalue
##			
##	Shapiro-Wilk	0.9947	0.5589
##	Kolmogorov-Smirnov	0.0303	0.9778
##	Cramer-von Mises	67.7982	0.0000
##	Anderson-Darling	0.2366	0.7849
##			

Accettiamo dunque anche l'ipotesi di normalità.