# Report: Handwritten Digit Classification Using MNIST Dataset

#### 1. Overview

The purpose of this project is to classify handwritten digits (0–9) from the MNIST dataset using two distinct neural network architectures:

- 1. Feedforward Neural Network (FFNN): Fully connected layers for classification of flattened image inputs.
- 2. Convolutional Neural Network (CNN): Convolutional layers to extract spatial features for improved classification.

The target was to achieve an average testing accuracy of 95% or higher for each model, evaluated over five runs.

#### 2. Results Obtained

#### 2.1 Average Testing Accuracy

| Model                                 | Run 1<br>Accuracy | Run 2<br>Accuracy | Run 3<br>Accuracy | Run 4<br>Accuracy | Run 5<br>Accuracy | Average<br>Testing |
|---------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
|                                       |                   |                   |                   |                   |                   | Accuracy           |
| Feedforward Neural<br>Network (FFNN)  | 97.87%            | 97.40%            | 97.70%            | 97.43%            | 97.32%            | 97.54%             |
| Convolutional Neural<br>Network (CNN) | 99.07%            | 99.19%            | 99.11%            | 99.10%            | 99.28%            | 99.15%             |

#### 2.2 Key Observations

#### • Feedforward Neural Network (FFNN):

- o Achieved an average accuracy of 97.54%, with consistent performance across runs.
- o Struggled with visually similar digits like 5 and 8 due to the lack of spatial feature extraction.

#### Convolutional Neural Network (CNN):

- o Achieved a higher average accuracy of 99.15%, significantly outperforming the FFNN.
- The convolutional layers effectively captured spatial relationships, resulting in minimal misclassifications.
- o Consistent results across all runs, with the highest accuracy reaching 99.28%.

## 3. Visualizations

#### 3.1 Training and Validation Accuracy

- Both models showed consistent improvements in training and validation accuracy over epochs.
- The CNN demonstrated superior generalization, maintaining higher accuracy on validation data compared to the FNN.



## 3.2 Confusion Matrices

- The confusion matrices provide a detailed breakdown of model performance for each digit class:
  - o FFNN: Frequent misclassifications among visually similar digits (e.g., 2 vs. 4 and 9 vs. 8) were observed.
  - o CNN: Misclassifications were minimal, showcasing its capability to learn intricate spatial relationships.





## 3.3 Misclassified Examples

Analyzing misclassified examples highlights specific cases where the models failed:

- FFNN: Struggled with ambiguous cases, such as overlapping strokes in handwritten digits.
- CNN: Showed robustness but occasionally misclassified highly distorted digits.



## 4. Lessons Learned

#### 4.1 Architecture Design

#### • Feedforward Neural Network (FFNN):

- o Simpler architecture effective for basic tasks but limited in handling spatial hierarchies.
- o Increasing the number of hidden layers improved performance slightly but added computational cost.

#### • Convolutional Neural Network (CNN):

- o Convolutional layers captured hierarchical spatial features, significantly enhancing performance.
- o MaxPooling layers improved generalization and reduced overfitting.

## 4.2 Hyperparameter Selection

- Optimizer: RMSprop optimizer was effective for both models, ensuring efficient convergence.
- Activation Function: ReLU activation prevented gradient vanishing and accelerated convergence.
- Training Configuration:
  - o Batch sizes of 32 and 10 epochs achieved a balance between accuracy and training efficiency.

## 5. Future Work

- Optimize Hyperparameters: Refine learning rates and apply regularization for better performance.
- Apply Data Augmentation: Use techniques like rotation and scaling to improve generalization.
- Explore Advanced Architectures: Test deeper CNNs or pre-trained models for higher accuracy.
- Test Across Datasets: Validate models on datasets like EMNIST to assess generalization.

## 6. Conclusion

This project successfully demonstrated the implementation and evaluation of both Feedforward and Convolutional Neural Networks for handwritten digit classification using the MNIST dataset.

- Feedforward Neural Network (FNN): Achieved a strong average accuracy of 97.54%, suitable for basic classification tasks.
- Convolutional Neural Network (CNN): Outperformed the FNN with an average accuracy of 99.15%, highlighting its ability to effectively capture spatial features.

These results emphasize the importance of choosing architectures tailored to the dataset characteristics, especially for image classification tasks.