Бинарные отношения

- ullet Бинарное отношение на множествах A и B: произвольное подмножество A imes B
 - порядок множеств важен!
 - иногда говорят «между А и В» или «из А в В»
- Обозначения:
 - ullet теоретико-множественное $(x,y) \in
 ho$ «элемент принадлежит множеству»
 - префиксное $\rho(x,y)$ «предикат истинен»
 - ullet инфиксное x
 ho y, например $1 \neq 2, \ell_1 \parallel \ell_2$, или $x \in Y$
- Пример: $\rho \subseteq \text{Студенты} \times \text{Дисциплины}$
 - $(x,y) \in \rho$ если студент x изучает дисциплину y
- Основной частный случай: A = B
 - ⋆ бинарные отношения на множестве
 - по умолчанию мы рассматриваем именно такие

Матрица бинарного отношения

- \bigstar Бинарному отношению ho на множествах $A = \{a_1, \ldots, a_n\}$ и $B = \{b_1, \ldots, b_m\}$ сопоставляется его матрица M_{ρ}
 - $M_{\rho} \in \{0,1\}^{n \times m}$
 - $M_{
 ho}[i,j] = 1$ если $(a_i,b_i) \in
 ho$; иначе $M_{
 ho}[i,j] = 0$
 - \star обычно $ho\in A^2$ и матрица квадратная, то есть с ней много чего можно делать!
 - ullet Если отношение $ho \in A^2$ рассматривать как (ориентированный) граф $G_
 ho \dots$
 - ullet ho есть множество ориентированных ребер между вершинами множества A

 \ldots то матрица отношения ho есть матрица смежности графа $G_{
ho}$

• Пример: $A = \{a, b, c, d\}$

$$ho = \{(a,a),(a,b),\ (b,b),(b,c),(c,c),\ (c,d),(d,a),(d,d)\}$$
 $M_{
ho} = egin{bmatrix} 1 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \end{bmatrix}$

Отношение

Матрица

Граф

Операции над отношениями как матричные операции

- ullet Булевы матрицы это матрицы с элементами из $\{0,1\}$
 - ⋆ единичная матрица Е является булевой
 - \star E матрица отношения равенства, обозначаемого Δ
- Операции над булевыми матрицами:
 - конъюнкция \land , дизъюнкция \lor , отрицание $\overline{\ }$, выполняемые поэлементно
 - транспонирование
 - булево умножение (на следующем слайде)

Операция	Определение	Матричные вычисления
объединение	$ ho \cup \sigma = \{(a,b) \in A^2 \mid (a,b) \in ho$ или $(a,b) \in \sigma\}$	$M_{\rho\cup\sigma}=M_{\rho}\vee M_{\sigma}$
пересечение	$ ho\cap\sigma=\{(a,b)\in extit{A}^2\mid (a,b)\in ho ext{ in }(a,b)\in\sigma\}$	$M_{\rho\cap\sigma}=M_{\rho}\wedge M_{\sigma}$
дополнение	$\bar{\rho} = \{(a,b) \in A^2 \mid (a,b) \notin \rho\}$	$M_{ar ho}=\overline{M}_ ho$
обращение	$\rho^{-1} = \{ (a,b) \in A^2 \mid (b,a) \in \rho \}$	$M_{ ho^{-1}}=M_ ho^ op$

Умножение отношений и умножение матриц

- Умножение (композиция) бинарных отношений:

 - $\rho \circ \sigma = \{(a,c) \in A^2 \mid \exists b \in A : (a,b) \in \rho, (b,c) \in \sigma\}$ умножение определяет степень: $\rho^k = \underbrace{\rho \circ \rho \circ \cdots \circ \rho}_{}; \ \rho^0 = \Delta$
- Как найти матрицу $M_{\rho \circ \sigma}$?
- Введем операцию булевого умножения булевых матриц ! обычное произведение булевых матриц — не всегда булева матрица
- \star для $(n \times k)$ -матрицы X и $(k \times m)$ -матрицы Y,

$$(XY)[i,j] = \max_{\ell=1}^k X[i,\ell]Y[\ell,j]$$

- заменили сложение в обычном умножении матриц дизъюнкцией
- \star запись XY для булевых матриц X и Y будет означать булево произведение

Теорема

$$M_{\rho \circ \sigma} = M_{\rho} M_{\sigma}$$
.

Доказательство:

$$M_{\rho\circ\sigma}[i,j]=1\Leftrightarrow (a_i,a_j)\in \rho\circ\sigma\Leftrightarrow\exists\ell:(a_i,a_\ell)\in \rho$$
 и $(a_\ell,a_j)\in\sigma\Leftrightarrow\exists\ell:M_{\rho}[i,\ell]=1$ и $M_{\sigma}[\ell,j]=1\Leftrightarrow\exists\ell:M_{\rho}[i,\ell]M_{\sigma}[\ell,j]=1\Leftrightarrow(M_{\varrho}M_{\sigma})[i,j]=1$

Мультимножества

- ★ У нас есть четыре способа смотреть на один и тот же математический объект:
 - бинарное отношение на множестве А
 - бинарный предикат на множестве А
 - орграф с множеством вершин А
 - ullet булева матрица размера |A| imes |A|

А еще в (ор)графах бывают кратные ребра...

- это не вписывается в нашу схему, поэтому нужно обобщить объект
- Мультимножеством называется пара (A,f), где A множество, $f:A \to \mathbb{N}$ функция, называемая кратностью
 - ullet каждый элемент $x\in A$ входит в мультимножество f(x) раз
 - $\{a^2,b^1,c^3\}$ обозначает мультимножество из двух a, одного b и трех c
 - ullet на одном множестве A носителе можно определять разные мультимножества
- Операции:
 - при объединении мультимножеств для каждого элемента берется максимум из кратностей
 - при пересечении минимум
 - есть еще сумма мультимножеств (кратности суммируются)
- ullet Пример: натуральное число o мультимножество его простых делителей
 - ? каким операциям над числами соответствуют сумма, объединение и пересечение таких мультимножеств?

Мультиотношение и его матрица

Бинарным мультиотношением на множестве A называется мультимножество, носитель которого является подмножеством в A^2

- * мультиотношения задают (ор)графы с кратными ребрами мульти(ор)графы
- Матрица бинарного мультиотношения ho на множестве $A=\{a_1,\dots,a_n\}$ это матрица $M_
 ho$ размера |A| imes |A| с неотрицательными целыми элементами, такими что $M_
 ho[i,j]$ равно кратности пары (a_i,a_j) в ho
 - ullet если $(a_i,a_j)\notin
 ho$, то кратность считаем равной 0
 - \star $M_
 ho$ матрица смежности мультиорграфа, определяемого ho
 - \star мульти(ор)граф G=(V,E) состоит из множества вершин и мультимножества ребер
 - ullet E бинарное мультиотношение на V
 - ullet матрицу смежности мультиорграфа будем обозначать через M_G (а не M_E)

Число маршрутов в графе

Задача: дан (мульти)(op)граф G и число d; сколько существует маршрутов длины d из вершины v_i в вершину v_i ?

• обозначим число указанных маршрутов через $W(v_i, v_i, d)$

Теорема

$$W(v_i, v_j, d) = M_G^d[i, j].$$

Доказательство индукцией по d.

- База: d = 1
 - ullet (v_i,v_j) -маршруты длины 1 это ребра (v_i,v_j) , а $M_G[i,j]$ их число
 - Шаг:
 - ullet любой (v_i, v_i) -маршрут длины d+1 состоит из (v_i, v_k) -маршрута длины d и последнего ребра (v_k, v_i)
 - ⇒ надо перемножить количество таких маршрутов на количество таких ребер и просуммировать по всем $k = 1, \ldots, n = |V|$
 - $m{W}(v_i,v_k,d)=M_G^d[i,k]$ по предположению индукции
 - $W(v_k, v_i, 1) = M_G[k, j]$ по базе индукции
 - по определению умножения матриц $\sum_{k=1}^{n} M_{G}^{d}[i,k] \cdot M_{G}[k,j] = M_{G}^{d+1}[i,j]$
 - * У обычного умножения булевых матриц тоже есть применение!

Функция на множестве и ее граф

Рассмотрим произвольную функцию f:A o A

- \bigstar На f можно смотреть как на множество $\{(x,f(x))\mid x\in A\}$
 - т.е. как на бинарное отношение на А
- Как устроен граф, заданный этим отношением?
 - любая вершина имеет степень исхода 1
 - * такой орграф в общем случае состоит из 1 или более (ор)циклов, к которым могут присоединяться деревья
 ! Докажите это утверждение
- Пример:

$$A = \{1, 2, \dots, 12\}$$
 Функция f :
$$1 \rightarrow 3 \quad 7 \rightarrow 6$$

$$2 \rightarrow 3 \quad 8 \rightarrow 9$$

$$3 \rightarrow 4 \quad 9 \rightarrow 10$$

$$4 \rightarrow 5 \quad 10 \rightarrow 10$$

$$5 \rightarrow 6 \quad 11 \rightarrow 12$$
 $6 \rightarrow 4 \quad 12 \rightarrow 11$

Орграф G_f :

 \star Если f является биекцией (перестановкой), то любая вершина G_f имеет степень захода 1, т.е. деревьев нет и G_f — объединение непересекающихся циклов

Замыкание подмножества

- ullet Пусть A- произвольное множество; 2^A- множество подмножеств (булеан) A
- Оператором замыкания на A называется произвольная функция $C : 2^A \to 2^A$, удовлетворяющая трем условиям для произвольных $X,Y \subseteq A$:
 - $X \subseteq \mathsf{Cl}(X)$ (экстенсивность)
 - $X \subseteq Y \Rightarrow C \mid (X) \subseteq C \mid (Y)$ (монотонность)
 - Cl(Cl(X)) = Cl(X) (идемпотентность)
- ullet Подмножества с условием $\operatorname{Cl}(X)=X$ называются замкнутыми относительно Cl
- \bullet Обычно операторы замыкания определяют, задавая систему замкнутых подмножеств $C \subset 2^A$
 - ullet СI(X) определяется, как наименьшее замкнутое подмножество, содержащее X
- ullet Пример: $A=\mathbb{R}$, а система замкнутых подмножеств состоит (сюрприз!) из всех замкнутых подмножеств \mathbb{R} , как они определяются в матанализе
 - ullet СI(X) получается из X добавлением всех предельных точек
- Вообще, обычная ситуация, в которой задают оператор замыкания, такова:
 - есть унарный предикат P на множестве 2^A , т.е. свойство, которым подмножества A могут обладать или не обладать
 - ullet CI(X) есть наименьшее Y такое, что $X\subseteq Y$ и P(Y)
 - * это обеспечивает экстенсивность и идемпотентность
 - \star монотонность и существование наименьшего должно обеспечить само свойство P
- будем рассматривать операторы замыкания для бинарных отношений
 - ullet множеством будет A^2 , операторы определены на 2^{A^2}

Рефлексивное и симметричное замыкания

- Рассмотрим отношения на множестве А
- ullet $P_1(
 ho)$: «отношение ho рефлексивно»
 - ullet $(a,a)\in
 ho$ для любого $a\in A$
 - \star на главной диагонали матрицы $M_
 ho$ все элементы равны 1
- возьмем все рефлексивные отношения за систему замкнутых подмножеств
- \bullet $\mathsf{Cl}_R(\rho)$ рефлексивное замыкание ρ
 - \star С $|_R(\rho) = \rho \cup \Delta$ (напомним, Δ отношение равенства на A)
 - $\star M_{\mathsf{Cl}_R(\rho)} = M_{\rho} \vee E$
- Пример: $Cl_R(<) = \leq$
- $P_2(\rho)$: «отношение ρ симметрично»
 - ullet $(a,b)\in
 ho\Rightarrow(b,a)\in
 ho$ для любых $a,b\in A$
 - \star матрица $M_
 ho$ симметрична $(M_
 ho=M_
 ho^ op)$
- возьмем все симметричные отношения за систему замкнутых подмножеств
- ullet CI $_{\mathcal{S}}(
 ho)$ симметричное замыкание ho
 - $\star \mathsf{Cl}_{\mathcal{S}}(\rho) = \rho \cup \rho^{-1}$
 - $\star M_{\mathsf{Cl}_S(\rho)} = M_{\rho} \vee M_{\rho}^T$
- Пример: взять симметричное замыкание орграфа = стереть все стрелки

Транзитивное замыкание

- $P_3(\rho)$: «отношение ρ транзитивно»
 - $(a, b) \in \rho, (b, c) \in \rho \Rightarrow (a, c) \in \rho$ для любых $a, b, c \in A$
 - ullet как распознать транзитивность по матрице $M_{\scriptscriptstyle O}$?
 - \star Критерий транзитивности: ho транзитивно $\Leftrightarrow \dot{
 ho}^2 \subseteq
 ho$
 - \star в матричном виде: ho транзитивно $\Leftrightarrow M_
 ho ee M_{
 ho^2} = M_
 ho$
- возьмем все транзитивные отношения за систему замкнутых подмножеств
- \bullet C $|_{\tau}(\rho)$ транзитивное замыкание ρ
 - почему существует наименьшее транзитивное отношение, содержащее ρ ?

Теорема

Для любого $\rho \subseteq A^2$ отношение $C|_{\mathcal{T}}(\rho)$ существует и равно $\rho^+ = \bigcup_{i=1}^{\infty} \rho^i$.

- Доказательство:
 - $\rho \subset \rho^+$
 - \bullet ρ^+ транзитивно: $(a,b),(b,c)\in\rho^+\Rightarrow\exists i,j:(a,b)\in\rho^i$ и $(b,c)\in\rho^j\Rightarrow(a,c)\in\rho^{i+j}$ \Rightarrow $(a, c) \in \rho^+$
 - ullet если $ho\subseteq au$ и au транзитивно, то $ho^2\subseteq au$: $(a,c)\in
 ho^2\Rightarrow\exists b:(a,b),(b,c)\in
 ho\Rightarrow$ $(a,b),(b,c)\in au\Rightarrow (a,c)\in au$ (транзитивность au)
 • аналогично $ho^3\subseteq au,
 ho^4\subseteq au,\ldots,
 ho^n\subseteq au$ для всех $n\Rightarrow
 ho^+\subseteq au$

 - ullet ho^+ наименьшее транзитивное отношение, содержащее ho
- ! Докажите, что для n-элементного множества A выполняется $\mathsf{C}|_{\mathcal{T}}(
 ho) = igcup_{i=1}^n
 ho^n$

Примеры замыканий

- Пример 1: компоненты связности
 - Дан граф G=(V,E) и отношение смежности вершин (т.е. E)
 - \star $C|_T(C|_R(E))$ это отношение «лежать в одной компоненте связности»
 - \star $\mathsf{Cl}_{\mathcal{T}}(\mathsf{Cl}_{\mathcal{R}})$ это рефлексивно-транзитивное замыкание
 - $\star \operatorname{Cl}_T(\operatorname{Cl}_R(\rho)) = \rho^* = \bigcup_{i=0}^{\infty} \rho^i$
- Пример 2: совместимые частичные слова

Дано множество всех конечных слов над алфавитом $\Sigma = \{0,1,\diamond\}$

- \star его обозначают Σ^* , потому что оно равно $\bigcup_{i=0}^\infty \Sigma^i$ (степень имеет другой смысл!)
- \star два слова u и v совместимы (обозначается $u \uparrow v$), если они
 - имеют одинаковую длину
 - на одинаковых позициях содержат либо одинаковые буквы, либо хотя бы один джокер ◊
- * совместимость нетранзитивна (проверьте!) но обладает свойством стабильности:
 - ullet если $u\uparrow v$ и $x\uparrow y$, то $ux\uparrow vy$

$$\uparrow = C|_{S_t}(C|_S(C|_R(\{(0,\diamond),(1,\diamond)\})))$$

• где CI_{St} — стабильное замыкание