EM	algorithm
- LIVI	augnatinn

useful only when there is missing data

IP: Data set, n, k, Tmin

0/P: 20 0

Diritialisation step: Use K-means algorithm

we will get $\mu_j^{(0)}$, $\sigma_j^{(0)}$ and $\rho_j^{(0)}$ and value of k

D Expectation:
$$P(j|X_i) = P(j) \cdot P(x_i|\theta_j)$$

$$= \sum_{j=1}^{N} P(j) \cdot P(x_i|\theta_j)$$

$$= \sum_{j=1}^{N} P(j) \cdot P(x_i|\theta_j)$$

3 Maximis ation:

$$\mu_{j}^{(t)} = \sum_{i=1}^{N} P(j|x_{i}) \times_{i}$$

$$\sum_{j=1}^{N} P(j|x_{i}) \times_{i}$$

$$\sum_{j=1}^{N} P(j|x_{i}) \times_{i}$$

$$\sum_{j=1}^{N} P(j|x_{i}) \times_{i}$$

$$\sum_{j=1}^{N} P(j|x_{i})$$

Stop, else go to step 2

Kullback Leibler Pivergence $D(P|8) = \int_{-\infty}^{\infty} P(x) \log \frac{P(n)}{S(n)} dn$ divergence is used to compute distance probability distribution.

Distance for Binary Variables							
Sp	here s	hape	Sweet	Sour	Counchy		
Apple Y	ies	tres	Yes	Yes	Yes		
Banasa	M0	b	yes Yes	NO	NO		
Apple = (1,1, banana = 1 s	0.1.0.01						
P > No of variables that positive for both objects & 9 > No of variables that positive for ith objects & 9 > No of variables that positive for ith objects &							
regative	aciables	that neg	paline for	r its ob	jets R		
Positive	for jth	that o	egative :	for both	objects.		
positive for jth objects s > No of vaciables that regative for both objects. t = total No of vaciables = p+q+r+s							
t=total '	object Yes	Ĵ					
	P	9					
obji yes	マ	5					
P=1,2	= 3, 8	= 0,5	= 0				

Scanned by CamScanner

$$\frac{\text{dij} = 3 + 0}{1 + 3 + 0} = \frac{3}{4}$$

Euclidean Distance - Il appropriale when we have

Continuous numerical Variables.

$$= \begin{bmatrix} 1en \\ \sum_{\xi=1}^{1} abs \left(x_{1\xi} - x_{2\xi} \right)^{p} \end{bmatrix}^{1/p}$$

$$P=2$$
.
= $\sqrt{(\alpha_2-\alpha_1)^2+(y_2-y_1)^2}$

Mahalanobis Distance

- It accounts for the fact that the vaciances in Each direction are different.
- It accounts for the co-vaciance between vaciables.
- It reduces to the familiar Euclidean distance. for uncorrelated variables with with variance.

$$\mathcal{D}_{M}(\vec{x}) = \sqrt{(\vec{x} - \vec{\lambda})^{T} \vec{S}(\vec{x} - \vec{\lambda})}$$

S > Co-variance Mathia

M -> mean

Manhattan Distance

The you want to place less Emphasis on outliers

this wire ley to reduce are brooks Equally

Since the gradient has constant magnitude.

$$\mathcal{D} = \left(\alpha_2 - \alpha_1 \right) + \left(y_2 - y_1 \right)$$