AI3001: Advanced Topics in Machine Learning Midterm 1 September 28, 2022

Instructions:

- The total number of marks is 25.
- The total duration of exam is 48 hours. Deadline is 10 am Friday, 30th Sept.
- Late submissions will not be considered under any circumstances.

Problem 1. Prove the following

- 1. If the loss function is α -exp-concave for some $\alpha > 0$ then it is also α' -exp-concave for any $\alpha' \in (0, \alpha]$. [2 marks]
- 2. $e^x \le 1 + x + x^2$ for all $x \in [0, 1]$. [2 marks]
- 3. Let $h: \mathbb{R} \to \mathbb{R}$ be a concave non-decreasing function and let $g: \mathcal{K} \to \mathbb{R}$ be concave. Prove that f(x) = h(g(x)) is concave. [2 marks]

4.

$$\arg\min_{x\in\mathcal{K}}\left\{\nabla_t^T(x-x_t) + \frac{1}{2\eta_t}||x-x_t||_2^2\right\} = \arg\min_{x\in\mathcal{K}}\left\{||x-(x_t-\eta_t\nabla_t)||_2^2\right\} \quad \text{[2 marks]}$$

Problem 2. Consider that the loss function is bounded in range [0, 1]. Show that the regret of FTL algorithm is upper bounded by the number of times the *leader*¹ is changed during the sequence of plays. [2 marks]

Problem 3. A set $\mathcal{K} \in \mathbb{R}$ is called symmetric if for any $x \in \mathcal{K}$ we have $-x \in \mathcal{K}$. Define the function $||.||_{\#} : \mathbb{R}^d \to \mathbb{R}$ as

$$||x||_{\#} = \arg\min_{\alpha>0} \left\{ \frac{1}{\alpha} x \in \mathcal{K} \right\}.$$

Show that $||.||_{\#}$ is a norm if and only if K is a convex set. [3 marks]

Problem 4 (Dual Function). In class we saw that the OMD algorithm² performs the update in the dual space defined by the gradients. This can be interpreted (slightly more elaborately) as follows. OMD first maps the point x_t from primal space (i.e. x-space) to the dual space defined by $\nabla R(.)$ i.e. computes $\theta_t = \nabla R(x_t)$, performs the (gradient) update in gradient space i.e. computes $\theta_{t+1} = \theta_t - \eta_t \nabla_t$, maps the updated point using $(\nabla R)^{-1}$ back to the original space i.e. computes y_{t+1} such

 $^{^{1}}$ The leader at time t is a choice x_{t+1} i.e. optimal choice of the next round.

²Here, we will consider all assumptions we made for OMD.

that $\nabla R(y_{t+1}) = \theta_{t+1}$ i.e. $y_{t+1} = (\nabla R)^{-1}(\theta_{t+1})$ and then take the Bregman projection onto the convex set i.e. compute $x_{t+1} = \arg\min_{x \in \mathcal{K}} B_R(x||y_{t+1})$.

Define a function $R^*(\theta) = \sup_{x \in \mathbb{R}^d} (\langle x, \theta \rangle - R(x))$. The function $R^*(.)$ is called as the Fenchel dual/conjugate of R. In this question we will show that $\nabla R^* = (\nabla R)^{-1}$.

- 1. Write the Fenchel conjugates of below functions. [3+3=6 marks]
 - (a) $R(x) = \log(\sum_{i=1}^{d} e^{x_i})$
 - (b) $R(x) = \frac{1}{2}x^TQx$ where $Q \in \mathbb{R}^{n \times n}$ is a positive definite matrix.
- 2. Show that the following two conditions are equivalent. [2 marks]

(a)
$$R(u) + R^*(v) = \langle u, v \rangle$$

(b)
$$v = \nabla R(u)$$

3. Finally, using the above result and also using the fact that $R^{**}=R$, show that $u=\nabla R^*(\nabla R(u))$ and $u=\nabla R(\nabla R^*(u))$. [4 marks]