Economics 144 Economic Forecasting

Lecture 14

Autoregressive Conditional Heteroscedasticity Models (ARCH/GARCH)

Dr. Randall R. Rojas

Today's Class

- The ARCH Family
- ARCH Models
 - The ARCH(1) Process
 - The ARCH(p) Process
- GARCH Models
 - The GARCH(1,1) Process
 - The GARCH(p,q) Process

The ARCH Family

 Def: ARCH(1) = Autoregressive Conditional Heteroscedasticity Process of order 1:

$$Y_t = \mu_{t|t-1} + \varepsilon_t$$
, where $\mu_{t|t-1}^{\text{ARCH-ar with longer lag}}$ mean and ε_t is a white noise process s.t:

normal - shock

$$\varepsilon_t = \sigma_{t|t-1} z_t$$
 and $z_t \sim WN(0,1)$, where

$$\sigma^2_{t|t-1} = E[\varepsilon^2_t | I_{t-1}] = \omega + \alpha_1 \varepsilon^2_{t-1}$$

variance model dependent on everything that has happened before

= Conditional variance of ε_t

subject to $\omega > 0$, $\alpha_1 \ge 0$

ARCH Models

For every ARCH process, we need to address the following 3 questions:

- 1. What does a time series of an ARCH process look like?
- 2. What do the corresponding ACFs and PACFs look like?
- 3. What is the optimal forecast?

ARCH Models Example: ARCH(1) Process

- (1) What does a time series of an ARCH(1) process look like?
- Consider the following ARCH(1) process:

$$Y_t = \mu_{t|t-l} + \varepsilon_t = \mu_{t|t-l} + \sigma_{t|t-l} z_t, \ \sigma_{t|t-l}^2 = \omega + \alpha \varepsilon_{t-l}^2 \qquad \text{Divide epsilon across - get constant}$$

model for variance - model volatility & forecast volatility

- We can plot this process for $\mu_{t|t-1} = 2$, $z_t \sim N(0,1)$, should get white noise for data $\omega = 2$, and different values of α , e.g., for $\alpha = 0.3$, vary the value of alpha, see what happens to volatility
- We can show that as α increases, the series becomes more volatile.

sigma t given t-1 Time Series of Returns **Conditional Standard Deviations** Yt 40 Simulated ARCH(1) $\alpha = 0.3$ ARCH(1) $\alpha = 0.3$ 30 8 -20 -ARCH(1) Process inherit same characteristic of amplitude 10 -6 0 4 -10 $Y_t = 2 + \varepsilon_t$ -20 $\sigma^2_{t|t-1} = 2 + \mathbf{0.3}\varepsilon^2_{t-1}$ 500 250 500 750 750 1000 1000 40 20 ARCH(1) $\alpha = 0.6$ ARCH(1) $\alpha = 0.6$ 30 16 -20 volatility increased 10 12 -8 $Y_t = 2 + \varepsilon_t$ -10 $\sigma_{t|t-1}^2 = 2 + 0.6\varepsilon_{t-1}^2$ -30250 500 750 1000 250 500 750 1000 still considered white noise, just amplitude increased 40 ARCH(1) $\alpha = 0.9$ ARCH(1) $\alpha = 0.9$ 30 20 -30 10 -20 $Y_t = 2 + \varepsilon_t$ -20 10 $\sigma^2_{t|t-1} = 2 + 0.9\varepsilon^2_{t-1}$ 250 500 750 1000 500 750 250 1000

Descriptive Statistics of an ARCH(1) Process and Standardized Process

yt \sharp ut/t-1 + epsilon t μ (unconditional) rer

 μ (unconditional) remains constant ~ 2

 σ (unconditional) increases with increasing α

render transform observation as standard normal

If this is a true ARCH(1) process, then we expect the distribution of the standardized process to $\sim N(0,1)$

yt = ut|t-1 + epsilon t epsilont = sigmat|t-1 zt Fail to reject the

Fail to reject the normality hypothesis

	/st.dev
Observations	7.1
Mean	-0.010666
Median	-0.038664
Maximum	3.980160
Minimum	-3.319720
Std. Dev.	1.003468
Skewness	0.141614
Kurtosis	3.204294
Jarque-Bera	5.081409
Probability	0.078811

Sories: Standardized process:

Autocorrelation Functions of Simulated ARCH(1) Processes

$$Y_t = 2 + \varepsilon_t$$

$$\sigma^2_{t|t-1} = 2 + \mathbf{0.3}\varepsilon^2_{t-1}$$

Times series r,

Sample: 1 1000

Included observations: 1000

 Y_t

Autocorrelation	Partial Correlation		AC	PAC
di	l di	1	-0.090	-0.090
d i	d d	2	-0.062	-0.071
ıb		3	0.071	0.059
ıþ	1	4	0.050	0.059
()	100	5	-0.033	-0.015
i j i	i)i	6	0.020	0.018
10	l ili	7	0.011	0.004
qi	(t)	8	-0.054	-0.051
1 1	1)1	9	0.009	0.001
101	100	10	-0.000	-0.009
10	10	11	0.001	0.008
ı j ı.	1)	12	0.036	0.042
	data lo	oks li	ke white	noise

- The series Y_t is uncorrelated
- No dynamics in the conditional mean → ACF and PACF → 0

Times series r_t²

Sample: 1 1000

Included observations: 1000

 Y^2

Autocorrelation	Partial Correlation		AC	PAC
-		1	0.450	0.450
' 	ı(lı	2	0.177	-0.032
i þ	1 1	3	0.063	-0.007
11	III.	4	0.009	-0.015
()	l (l	5	-0.040	-0.044
()·	i ji	6	-0.037	0.001
dı.	10	7	-0.030	-0.009
dı .	ı(lı	8	-0.040	-0.026
know whether u	can improve it or not	9	-0.033	-0.005
ili	i)ii	10	0.004	0.029
ılı	i ji	11	0.015	0.003
ub :	D	12	0.084	0.090
1.	take r	esidu	als of pro	oject 2(already white
	noise) - sq	uared it a	and feed it into acf/
	pacf n	nay e	exhibit	
	somet	thing	like this	- AR1

- The series Y²_t is correlated with ACF and PACF → AR process
- Observe dynamics implied by the ARCH(1) Process

Autocorrelation Functions of Simulated ARCH(1) Processes

$$Y_t = 2 + \varepsilon_t$$

$$\sigma^2_{t|t-1} = 2 + \mathbf{0.3}\varepsilon^2_{t-1}$$

Times series $r_{t}/\sigma_{t|t-1}$ $Y_{t}/\sigma_{t|t-1}$

Times series $r_t^2 / \sigma_{t|t-1}^2$ Y_t^2 / σ_t^2

Sample: 1 1000

Included observations: 1000

Sample: 1 1000

Included observations: 1000

Autocorrelation	Partial Correlation		AC	PAC	Autocorrelation	Partial Correlation		AC	PAC
dı	l di	1	-0.072	-0.072	- dı	ıb	1	0.067	0.067
Q i	(i	2	-0.034	-0.039	ı(i	ı(i	2	-0.012	-0.017
i b	ıb ıb	3	0.079	0.074	i l i l	ılı	3	0.018	0.020
ıþ	l i	4	0.050	0.061	ılı l	ı j ı	4	0.007	0.004
ıdı	1 10	5	-0.027	-0.014	qı	(1	5	-0.048	-0.049
ı lı	l ili	6	0.024	0.018	(C)	Щ	6	-0.008	-0.001
ı l ı	1 10	7	-0.005	-0.012	i)ii l	ų.	7	0.033	0.032
dı	d d	8	-0.059	-0.060	qı	ψ	8	-0.033	-0.036
1)	l ili	9	0.013	0.003	q -	Q I	9	-0.037	-0.031
ıdı	10.00	10	-0.011	-0.015	<u> </u>	<u>"</u>	10	0.012	0.012
ıılı	l di	11	-0.002	0.008	ا ا	Q'	11	-0.052	-0.055
1)	<u>ф</u>	12	0.046	0.051	ili i	i ji	12	0.018	0.031
΄									

No more correlations left. Both the ACF and PACF are 'clean'. Therefore, the ARCH(1) is accurate in capturing the dynamics of the Y₊ process.

ARCH Models Forecasting in an ARCH(1) Process

Consider first the 1-step-ahead variance forecast,

$$h = 1$$
, ARCH(1): inherit everything about the AR process $\sigma^2_{t+1|t} = \omega + \alpha \varepsilon^2_t$

$$\rightarrow h = 2: \sigma^2_{t+2|t} = \omega + \alpha \sigma^2_{t+1|t}$$

•

•

$$\sigma^2_{t+h|t} = \omega(1+\alpha+\alpha^2+\ldots+\alpha^{h-2}) + \alpha^{h-1}\sigma^2_{t+1|t}$$
 as $h \to \infty$, $\sigma^2_{t+h|t} = \omega/(1-\alpha)$ following directly from the ar atchitecture

ARCH Models

In general, for an ARCH(p) process:

$$Y_t = \mu_{t|t-1} + \varepsilon_t = \mu_{t|t-1} + \sigma_{t|t-1} z_t$$
 , where

$$\sigma^{2}_{t|t-1} = \omega + \alpha_{1} \varepsilon^{2}_{t-1} + \alpha_{2} \varepsilon^{2}_{t-2} + \cdots + \alpha_{p} \varepsilon^{2}_{t-p}$$

for
$$\omega > 0$$
, $\alpha_i \ge 0, i = 1, 2, ..., p$.

Note: $\alpha_1 + \alpha_2 + ... + \alpha_p$ = Persistence in Variance

Example: ARCH(p) Process

Daily SP500 Returns and Autocorrelations of Squared Returns

Q: What type of a process is this?

GARCH Models Example: GARCH(1,1) Process

 (1) What does a time series of a GARCH(1,1) process look like?

Consider the following GARCH(1,1) process:

$$Y_t = \mu_{t|t-1} + \varepsilon_t = \mu_{t|t-1} + \sigma_{t|t-1} Z_t, \text{ carry over yesterday's volatility to today}$$

$$\sigma^2_{t|t-1} = \omega + \alpha \varepsilon^2_{t-1} + \beta \sigma^2_{t-1|t-2}$$
 Also depends on the most recent level of volatility if no need for this, stick to arch

where $\omega > 0$, $\alpha \ge 0$, and $\beta \ge 0$.

For example, if β =0.7, we interpret this as saying that 70% of yesterday's variance carries over to today's variance.

GARCH Models Example: GARCH(1,1) Process

- The key advantage of introducing the term $\beta \sigma^2_{t-1|t-2}$ is parsimony! \rightarrow Fewer parameters to estimate than ARCH.
 - For example, the previous ARCH(9) model for S&P500 returns suggested an ARCH(9) —need 10 estimates- yet we can do the same with a GARCH(1,1) -only need 3 estimates.
- A GARCH(1,1) process is equivalent to an ARCH(∞) process with exponentially decreasing weights { α , $\alpha\beta$, $\alpha\beta^2$,...}.
- The Persistence of the GARCH(1,1) Process is equal to $\alpha + \alpha\beta + \alpha\beta^2 + ... = \alpha/(1-\beta)$. beta approaching one alpha not zero infinity

GARCH Models Example: GARCH(1,1) Process

$$Y_t = 2 + \varepsilon_t$$
 and $\sigma_{t|t-1}^2 = 2 + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1|t-2}^2$

• Case 1: Low Persistence process: $\alpha = 0.4 \beta = 0.4$,

$$\rightarrow$$
 persistence = $\alpha/(1-\beta) = 0.67$

• Case 2: High Persistence process: $\alpha = 0.1$, $\beta = 0.88$, $\rho = 0.83$

Simulated GARCH(1,1) Process

For a high (low) persistence process, once the volatility is high, it tends to remain high (low).

For the low persistence process, only 40% of the past volatility is transferred to the current volatility.

High Persistence

Conditional standard deviation

Simulated GARCH(1,1) Process

	$\alpha = 0.4, \beta = 0.4$	$\alpha = 0.1, \beta = 0.88$
Mean	1.992061	2.019090
Median	1.998115	1.993319
Maximum	67.24605	84.91548
Minimum	-46.49060	-80.57394
Std. Dev.	3.281838	9.920762
Skewness	0.160152	0.116894
Kurtosis	26.86840	5.859899
Jarque-Bera	474835.8	6861.400
Probability	0.000000	0.000000

Simulated GARCH(1,1) Process

$$Y_t = 2 + \varepsilon_t$$
 and $\sigma_{t|t-1}^2 = 2 + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1|t-2}^2$

Time series r_t^2 square - significant spike in PACF - garch process - decay in ACF

(1) $\alpha = 0.4$, $\beta = 0.4$ (low persistence)

lower persistence - less dynamic to worry about

Included observations: 20000

Sample: 1 20000

Autocorrelation	Partial Correlation	AC	PAC	
	ARCH(3)	1 2 3 4 5 6 7 8	0.470 0.383 0.376 0.249 0.167 0.139 0.113 0.089	0.470
		10 11 12 13 14	0.048 0.034 0.026	-0.029 -0.014 -0.006 0.002 0.017

Time series r.2

(2) $\alpha = 0.1$, $\beta = 0.88$ (high persistence)

Sample: 1 20000

Included observations: 20000

Autocorrelation	Partial Correlation	AC	PAC	
	ARCH(9)	1 2 3 4 5 6 7 8 9 10 11 12 13	0.263 0.301 0.249 0.254 0.209 0.255 0.277 0.248 0.260 0.215 0.199 0.212 0.233 0.245	0.263 0.249 0.143 0.129 0.065 0.119 0.079 0.085 0.025 0.009 0.041 0.064 0.073

Low persistence → faster decay

High persistence → slower decay

go away with arch - economic interpretability

Example: GARCH(1,1) Process

Daily SP500 Returns and Autocorrelations of Squared Returns

Dependent Variable: R

Method: ML - ARCH (BHHH) - Normal distribution

Sample: 5815 8471

Included observations: 2657

Convergence achieved after 10 iterations

Bollerslev-Wooldrige robust standard errors & covariance

Variance backcast: ON

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)$

	Coefficient	Std. Error	z-Statistic	Prob.
C	0.036267	0.017439	2.079665	0.0376
	Variance	e Equation		
C	0.010421	0.005245	1.987099	0.0469
RESID(-1)^2	0.065649	0.011338	5.790038	0.0000
GARCH(-1)	0.927400	0.011045	83.96233	0.0000
R-squared	-0.000534	Mean depend	ent var	0.009761
Adjusted R-squared	-0.001666	S.D. dependent var		1.146761
S.E. of regression	1.147716	Akaike info criterion		2.888638
Sum squared resid	3494.671	Schwarz criterion		2.897498
Log likelihood	-3833.556	Durbin-Watso	on stat	2.079139

Q: Was GARCH(1,1) a good model fit?

Example: GARCH(1,1) Process

Autocorrelation Function of the Standardized Squared Residuals from GARCH(1,1) for S&P500 Daily Returns

why use this to test residuals?

Sample: 5815 8471 epsilon not dependent on sigma?

Included observations: 2657

Auto	ocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
A: Yes!	looked p	etty clean	13	-0.016 0.000 0.023 0.001 0.024 0.009 -0.010	0.032 0.009 0.005 0.005 -0.016 -0.001 0.024 0.002 0.023 0.010 -0.012 0.000	2.5244 5.4669 5.6164 5.6914 5.7756 6.4731 6.4731 7.8948 7.8965 9.4796 9.7071 9.9971 10.011 10.063	0.112 0.065 0.132 0.223 0.329 0.372 0.486 0.444 0.545 0.487 0.557 0.616 0.693 0.758

GARCH Models Forecasting in a GARCH(1,1) Process

 Consider first the 1-step-ahead variance forecast, h = 1,

GARCH(1,1):
$$\sigma_{t+1|t}^2 = \omega + \alpha \varepsilon_t^2 + \beta \sigma_{t|t-1}^2$$

$$\Rightarrow h = 2: \sigma^2_{t+2|t} = \omega + (\alpha + \beta)\sigma^2_{t+1|t}$$

•

$$\sigma^2_{t+h|t} = \omega(1 + (\alpha + \beta) + (\alpha + \beta)^2 + \bullet \bullet \bullet + + (\alpha + \beta)^{h-2}) + (\alpha + \beta)^{h-1}\sigma^2_{t+1|t}$$
 as $h \rightarrow \infty$, $\sigma^2_{t+h|t} = \omega/(1 - (\alpha + \beta)) = \sigma^2$ (unconditional variance).

GARCH Models GARCH(p,q)

$$Y_{t} = \varepsilon_{t}$$

$$\varepsilon_{t} | \Omega_{t-1} \sim N(0, \sigma^{2}_{t})$$

$$\sigma_t^2 = \omega + \alpha(L)\varepsilon_t^2 + \beta(L)\sigma_t^2$$

higher order - do that in R

$$\omega > 0, \sum_{i=1}^{p} \alpha_i L^i$$

$$\alpha(L) = \sum_{i=1}^{p} \alpha_i L^i$$

$$\beta(L) = \sum_{i=1}^{q} \beta_i L^i$$

$$\sigma_t^2 = \frac{\omega}{1 - \sum_i \beta_i} + \frac{\alpha(L)}{1 - \beta(L)} \varepsilon_t^2 = \frac{\omega}{1 - \sum_i \beta_i} + \sum_{i=1}^{\infty} \delta_i \varepsilon_{t-i}^2$$

For Next Class

Readings about today's class:
 Chapter 14^a & 14^b

Review Exercises / Problems:

Chapter 13^a: 1, 2, 3, 4

Readings for next class:
 Chapter 12 (Cointegration)