

Computational Intelligence in Games

Emergence

Otto-von-Guericke-University Magdeburg January 20, 2015

Inhalt

Conclusion & Future Work

Stay Alive Agent

Stay Alive by using

- the advance() method multiple times
- the grid observation
- a combination of that approaches

Figure : Advancing safe actions Figure : Grid search for safe actions

Heuristic Agent

- Heuristic for selecting the next best step (including the Stay Alive Strategy)
- Target is found by using an Explorer that is searching for the point of interests
- An Environment class builds up the knowledge base and safes blocking, loosing, scoring and winning objects
- A* Algorithm is used to reached the good classified objects

Figure : Search tree for the greedy approach

Heuristic Agent II

$$dist(u, v) = |x_1 - x_2| + |y_1 - y_2| \tag{1}$$

Figure: Manhatten distance for two dimensions

MCTS I

Figure: Monte Carlo Tree Search

- often used for Decision Making processes
- balancing between exloration and exploitation

MCTS II - Implementation

- tree policy
 - modified Upper Confidence Bounds for Trees:

$$UCT = \frac{Q_c}{V_c + \epsilon \cdot r} + \sqrt{\frac{\ln(V_n + 1)}{V_c}}$$
 (2)

- · random node is expanded
- default policy
 - · random path, other ideas were discarded
 - four-room-policy
 - · self-avoiding-policy
 - · edge-weighted-policy

MCTS III - Implementation

- open loop approach
 - algorithm works on sequence of actions (no state observation is saved!)
 - simulation: path from root to expanded node has to be simulated
- · rolling horizon
 - goal: save computing power
 - reuse MCTS tree of previous gamestep
 - new root-node = child of previous root-node (with corresponding action)

EA

Algorithm 1 Pseudocode of an evolutionary algorithm

- 1: Initialize Population with random candidate solutions;
- 2: Evaluate each candidate;
- 3: while Termination condition not satisfied do
- 4: Select parents
- 5: Recombine pairs of parents
- 6: Mutate the resulting offspring
- 7: Evaluate new candidates
- 8: Select individuals for the next generation
- 9: end while

EA Agent

DeltaScoreEvaluation function

$$s = \sum_{t=0}^{n} (H(s_t) - H(s_{t-1}))$$

is calculated by using the function

$$H(s_i, s_{i-1}) = egin{cases} 10, & ext{if isWinner} \ -10, & ext{if isLooser} \ score(s_i) - score(s_{i-1}), & ext{otherwise.} \end{cases}$$

EA Agent II

Figure: Crossover of an individual

EA Agent III

Figure: Sliding Window

Experiment Result

- Comparison among each approach to be fair (1000 games, one game 50 times, 10 times each level)
- Evaluation of the best of each algorithm (3000 games, one game 150 times, 30 times each level)

CPU	Intel i5-4210U @ 1.70Ghz
Memory	8 GB DDR3 L
Operating System	Ubuntu 14.04.1 LTS
Java Version	1.7.0_65

Table: experiment setup

Experint Result II

Approach	Avg	Std	Avg	Std	Avg	Std
	Wins	Wins	Score	Score	time	time
					steps	steps
HR	0.527	0.029	165.05	59.51	695.86	36.17
MCTS	0.467	0.034	230.69	74.64	942.06	34.00
EA	0.470	0.026	178.33	51.85	818.72	38.47

Table: results of all algorithms

Experiment Result III

Development Process

- upload (submitting) / framework
- some approaches (e.g. modification of default policy) doesn't work
 - · random approach was often better
 - · maybe too much forbidden things
- we often change the approach of an agent
- often agents were rewritten completely

Main Problems & Difficulties

- time limitation (controllers, report, ...)
- computing power
 - differences between machines ⇒ large variation in the results
 - not all paramteters could have been tested
- difference between advance method and "real" gamesteps (safety iterations)
- surprised of the winner (heuristic approach)

Conclusion

- only results (win/loss/score) were considered for evaluation (no ingame-behavior)
- Heuristic controller performed best (number of wins)
- MCTS controller performed best (score)
- Reasons
 - implementations of MCTS and EA not effective
 - games with very few winning-sprites
- can not make general statements about the accuracy of the three approaches (HR, MCTS, NI)

Future Work

- · test algorithms with more computing power
 - more iterations
 - loop over possible parameters to find the best
- test algorithms on unknown (test set) games
- implement controller with other approaches (Neuronal Nets, Pheromone)
- combine approaches and win the GVGAI Competition;)

Thank you for your attention!