Signalverläufe an den Timern

Von Michael Hartinger Dipl.-Ing. (FH)

Aufbau eines Timers

(SI)

DUAL

DEZ

TW

S5T#5S

Timerstartsignal

Die eingestellte Zeit wird grundsätzlich nur durch Signalwechsel, also Flanken, ausgelöst.

Timerwert

Angabe der Zeitdauer zwischen 10ms und 9990s. Die Zeiteinheit kann einfach (z.B. 65S) oder gemischt sein (1M_5S).

Form: "S5T#aH_bM_cS_dMS"

Timerresetsignal

- Bricht Zeitfunktion ab
- Wirkt dominant
- Wirkt statisch, d.h. solange der Reset-Eingang erfüllt ist, kann der Timer nicht gestartet werden. Der Q-Ausgang ist dabei zwangsläufig "0".

Timernummer

Kann frei gewählt werden zwischen TO und Tx. Anzahl der Timer aus Datenblatt zur SPS entnehmen.

Timerart

Die verschiedenen Timerarten sind auf den Folgeseiten erklärt.

Timerausgang Restzeit im INTEGER-Format

Dualcode im Ganzzahlenformat zur SPS-internen Weiterverarbeitung (Vergleich, Addition etc.)

Timerausgang Restzeit im BCD-Format

Binär Codierte Dezimalzahl für Anzeigemodul

Timerausgang digital

"0" bzw. "1" als Steuersignal

Signalverläufe am IMPULS (S_IMPULS, SI)

Der IMPULS-Timer kann auch als Zeitbegrenzung betrachtet werden.

Signalverläufe am IMPULS (S_IMPULS, SI)

Der IMPULS-Timer kann auch als Zeitbegrenzung betrachtet werden.

Er liefert am Ausgang Q ein "1"-Signal, solange das Startsignal (E124.0) anliegt, maximal aber für die am TW-Eingang voreingestellte Zeit.

Der S-Eingang reagiert nur auf Flanken (hier P), der dominante R-Eingang dagegen auf Dauersignal (hier "0")!

<u>Beispiel</u>: Die zeitlichen Signalverläufe an den Eingängen E124.0 und E124.7 sind gegeben. Welcher Signalverlauf wird am Ausgang A124.0 erwartet? Raster: 1s

Signalverläufe am VERLÄNGERTEN IMPULS (S_VIMP, SV)

Der VERLÄNGERTE IMPULS-Timer, typische Anwendung: Treppenhausbeleuchtung.

Signalverläufe am VERLÄNGERTEN IMPULS (S_VIMP, SV)

Der VERLÄNGERTE IMPULS-Timer, typische Anwendung: Treppenhausbeleuchtung.

Er liefert am Ausgang Q für die am TW-Eingang voreingestellte Zeit ein "1"-Signal, sobald das Startsignal (E124.0) beliebig lange anliegt.

Der S-Eingang reagiert nur auf Flanken (hier P), der dominante R-Eingang dagegen auf Dauersignal (hier "0")!

<u>Beispiel</u>: Die zeitlichen Signalverläufe an den Eingängen E124.0 und E124.7 sind gegeben. Welcher Signalverlauf wird am Ausgang A124.1 erwartet? Raster: 1s

Signalverläufe an der EINSCHALTVERZÖGERUNG (S_EVERZ, SE)

Die Einschaltverzögerung.

Signalverläufe an der EINSCHALTVERZÖGERUNG (S_EVERZ, SE)

Die Einschaltverzögerung.

Sie liefert am Ausgang Q um die am TW-Eingang voreingestellte Zeit verzögert ein "1"-Signal, vorausgesetzt das Startsignal (E124.0) liegt länger an als der Timerwert TW.

Der S-Eingang reagiert nur auf Flanken (hier P), der R-Eingang dagegen auf Dauersignal (hier "0")!

<u>Beispiel</u>: Die zeitlichen Signalverläufe an den Eingängen E124.0 und E124.7 sind gegeben. Welcher Signalverlauf wird am Ausgang A124.2 erwartet? Raster: 1s

Signalverläufe an der SPEICHERNDEN EINSCHALTVERZÖGERUNG Die Speichernde Einschaltverzögerung. (S_SEVERZ, SS)

Signalverläufe an der SPEICHERNDEN EINSCHALTVERZÖGERUNG Die Speichernde Einschaltverzögerung. (S_SEVERZ, SS)

Sie liefert am Ausgang Q um die am TW-Eingang voreingestellte Zeit verzögert ein "1"-Signal, egal wie lange das Startsignal (E124.0) anliegt.

Der S-Eingang reagiert nur auf Flanken (hier P), der dominante R-Eingang dagegen auf Dauersignal (hier "0")!

<u>Beispiel</u>: Die zeitlichen Signalverläufe an den Eingängen E124.0 und E124.7 sind gegeben. Welcher Signalverlauf wird am Ausgang A124.3 erwartet? Raster: 1s

Signalverläufe an der AUSSCHALTVERZÖGERUNG (S_AVERZ, SA)

Die Ausschaltverzögerung kann auch als Nachlaufzeit betrachtet werden.

Signalverläufe an der AUSSCHALTVERZÖGERUNG (S_AVERZ, SA)

Die Ausschaltverzögerung kann auch als Nachlaufzeit betrachtet werden.

Sie liefert am Ausgang Q ein "1"-Signal, sobald das Startsignal (E124.0) anliegt. Fällt das Startsignal weg, wird um die am TW-Eingang voreingestellte Zeit verzögert der Ausgang Q wieder auf "0" geschaltet.

Der S-Eingang reagiert nur auf Flanken (hier N), der dominante R-Eingang dagegen auf Dauersignal (hier "0")!

<u>Beispiel</u>: Die zeitlichen Signalverläufe an den Eingängen E124.0 und E124.7 sind gegeben. Welcher Signalverlauf wird am Ausgang A124.4 erwartet? Raster: 1s

