ZigBee OEM 모듈

ProBee-ZE20S

데이터쉬트

(주)

Rev 1.0.0

ProBee-ZE20S 데이터쉬트

저작권

Copyright 2011 (주) 세나테크놀로지 All rights reserved.

세나테크놀로지는 자사 제품을 예고 없이 변경 및 개선할 수 있는 권리를 가지고 있습니다.

등록상표

ProBee™는 세나테크놀로지의 등록 상표입니다.

Windows® 는 Microsoft Corporation의 등록 상표입니다.

Ethernet® 은XEROX Corporation의 등록 상표입니다.

사용자 고지

시스템 고장이 심각한 결과를 유발하는 응용 분야인 경우, 백업 시스템이나 안전 장치를 사용하여 심각한 결과로부터 인명 및 재산을 보호하는 것이 필요합니다. 시스템 고장으로 인한 결과에 대한 보호는 사용자 책임입니다.

기술 지원

(주)

E 510

전화: 1599-6005 팩스: (02) 2083-2288

이메일: support@chipsen.com 홈페이지: <u>http://www.chipsen.c</u>om

Contents

1	소개		4
	1.1	본 문서에 관하여	4
	1.2	개요	4
	1.3	블록 다이어그램	5
	1.4	핀 배치도	6
	1.5	핀 상세 설명	7
	1.6	치수도	8
	1.7	권장 PCB 레이아웃	10
2	전기적 특	성	11
	2.1	절대적 한계치	11
	2.2	권장 동작 범위	11
	2.3	전력 소모	11
	2.4	디지털 입출력 사양	12
	2.5	ADC 사양	12
3	RF 특성		13
	3.1	송신부 특성	13
	3.2	수신부 특성	13
4	장비 입출	력 설명	14
	4.1	UART 모드	14
	4.2	리셋	14
	4.3	GPIO	15
	4.4	JTAG	15
5	응용 회로	도	16
6	연락처		19

1 소개

본 문서에 관하여 1.1

본 문서는 ProBee-ZE20S 지그비 OEM 모듈의 하드웨어 상세 사양을 소개한 데이터쉬트입니다. 본 문서는 ZE20S의 소프트웨어 및 사용법을다루지 않습니다. 소프트웨어 및 사용법은 별도 ProBee-ZE20S 사용자 가이드 문서를 참고하시기 바랍니다.

1.2 개요

ProBee-ZE20S는 지그비 코어, 라디오/안테나 회로부 및 고급 레벨 소프트웨어 라이브러리가 결합된 일체형 지그비 OEM 모듈입니다. OEM 제조업체들은 ZE20S를 이용하여 손쉽고 경제적으로 지그비 기능을 해당 장비에 짧은 개발 기간내에 내장시킬 수 있습니다.

ZE20S OEM 모듈은 지그비 기술을 이용하여, 특별히 저가 및 저전력을 요구하는 홈 오토메이션이나 스마트 에너지 관련 적용분야에 사용되어질수 있도록 특별히 설계되었습니다. ZE20S는 Ember사의 EM357 지그비 코어를 사용하였으며 지그비 프로 표준을 만족하여 호환성을 극대화하였습니다.

저가 및 저전력의 특성에도 불구하고, ZE20S는 고성능으로 데이터를 신뢰성있게 전송할수 있습니다. ZE20S의 최대 전송 속도는 250 kbps이며 장애물이 없을시 실외 최대 직선 도달 거리는 1.0 km에 달 합니다.

핵심 기능

- 일체형 2.4GHz, IEEE 802.15.4-2003 호환 송수신 장치
- 지그비 프로 인증
- 지그비 코어: Ember EM357
- 송신 전력: +8dBm (Boost mode)
- 수신 감도: -102dBm @1% BER (Boost mode)
- 송신 전류: 45mA @3.3V (최대)
- 수신 전류: 31mA @3.3V (최대)
- 수면 전류:≤2uA
- 전송 거리: 1.0 km @ 3.3V, +5dBi 다이폴 안테나
- 안테나 옵션: 다이폴 1/3/5dBi, U.FL, RPSMA, Chip
- UART 신호 지원: UART_TXD/RXD, RTS/CTS, DTR/DSR
- 6 아날로그 입력
- 최대 17 디지털 입출력 가능
- RoHS 호환

응용 분야

- 지능형 계량 기반 시설
- 홈 에이리어 네트워크 (Home Area Networks, HAN)
- 네이버후드 에이리어 네트워크 (Neighborhood Area Networks, NAN)
- 주택 자동화 (Home Automation)
- 고급 조명, 엔터테인먼트 및 온도 조절 시스템
- 서비스 기반 모니터링, 보안 및 인식 시스템
- 상업용 건물 자동화
- 온도 및 조명 시스템
- 기타 산업용 및 가정용 응용 분야

1.3 블록 다이어그램

그림 1-1 블록 다이어그램

핀 배치도 1.4

NO	Pin Assignment
1	GND
2	PC_5/FACTORY_RST
3	PC_6/GPIO0
4	PC_7/DTR/GPIO1
5	PA_7/DSR/GPIO2
6	PB_3/CTS/GPIO3
7	PB_4/RTS/GPIO4
8	PA_0/MOSI/GPIO5
9	PA_1/MISO/GPIO6
10	PA_2/SCLK/GPIO7
11	PA_3/nSSEL/GPIO8
12	VCC
13	GND

Pin Assignment	NO
GND	33
PB_5/ADC0/GPIO9	32
PB_6/ADC1/GPIO10	31
PB_7/ADC2/GPIO11	30
PC_1/ADC3/GPIO12	29
PA_4/ADC4/GPIO13	28
PA_5/ADC5/GPIO14	27
PB_1/TXD	26
PB_2/RXD	25
PB_0/GPIO15	24
PA_6/GPIO16	23
/RESET	22
GND	21

그림 1-2 핀 배치도

1.5 핀 상세 설명

표 1-1 핀 상세 설명

핀번호	이름	기본 기능	입/출력	설명
1	GND	-	-	Ground
2	Factory Reset	Factory Reset	IN	Digital I/O, Factory reset input, Active low
3	GPIO_0	DIO_0	IN/OUT	Digital I/O, Permit joining input
4	GPIO_1	DIO_1	IN/OUT	Digital I/O, UART_DTR
5	GPIO_2	DIO_2	IN/OUT	Digital I/O, UART_DSR
6	GPIO_3	DIO_3	IN/OUT	Digital I/O, UART_CTS
7	GPIO_4	DIO_4	IN/OUT	Digital I/O, UART_RTS
8	GPIO_5	DIO_5	IN/OUT	Digital I/O
9	GPIO_6	DIO_6	IN/OUT	Digital I/O
10	GPIO_7	DIO_7	IN/OUT	Digital I/O
11	GPIO_8	DIO_8	IN/OUT	Digital I/O
12	VCC	-	-	Power Supply, 3.3V
13	GND	-	-	Ground
14	VCC	-	-	Power Supply, 3.3V
15	JTCK	-	IN	JTAG clock input from debugger
16	JTDO	-	OUT	JTAG data output to debugger
17	JTDI	-	IN	JTAG data input from debugger
18	JTMS	-	IN	JTAG mode select from debugger
19	JRST	-	IN	JTAG reset input from debugger
20	GND	-	-	Ground
21	GND	-	-	Ground
22	/RESET	-	IN	H/W_/Reset, Active low
23	GPIO_16	DIO_16	IN/OUT	Digital I/O, Status LED
24	GPIO_15	DIO_15	IN/OUT	Digital I/O, Power LED
25	UART_RXD	UART_RXD	IN	UART Data Input
26	UART_TXD	UART_TXD	OUT	UART Data Output
27	GPIO_14	DIO_14	IN/OUT	Digital I/O / ADC_5
28	GPIO_13	DIO_13	IN/OUT	Digital I/O / ADC_4
29	GPIO_12	DIO_12	IN/OUT	Digital I/O / ADC_3
30	GPIO_11	DIO_11	IN/OUT	Digital I/O / ADC_2
31	GPIO_10	DIO_10	IN/OUT	Digital I/O / ADC_1
32	GPIO_9	DIO_9	IN/OUT	Digital I/O / ADC_0
33	GND	-	-	Ground

1.6 치수도

그림 1-3 ProBee-ZE20SDU 치수도

그림 1-4 ProBee-ZE20SDS 치수도

그림 1-5 ProBee-ZE20SDC 치수도

4.80 + 9.00

그림 1-6 ProBee-ZE20SSU 치수도

그림 1-7 ProBee-ZE20SSC 치수도

1.7 권장 PCB 레이아웃

Chip antenna type

RF connector type

그림 1-8 권장 PCB 레이아웃

2 전기적 특성

2.1 절대적 한계치

표 2-1 절대적 한계치

Ratings		Min	Max	Unit
Storage Temperat	ure	-40	+80	°C
Operating Temper	rature	-40	+80	°C
Supply voltage	VCC	-0.3	3.6	V
	GPIO INPUT	-0.3	3.6	V
	ADC INPUT	-	1.21	V
Other terminal voltages		GND – 0.3	VCC + 0.3	V

2.2 권장 동작 범위

표 2-2 권장 동작 범위

Ratings	Min	Тур.	Max	Unit	
Operating Temper	ature	-30	25	+70	°C
Supply voltage	VCC	3.0	3.3	-	V
	GPIO INPUT	3.0	3.3	-	V
	ADC INPUT	-	1.2	-	V

2.3 전력 소모

표 2-3 전력 소모

Parameter	Test Conditions (VCC=3.3V, 25°C)	Current	Unit
TX	Transmit max. Boost mode enabled	45	mA
TX	Transmit max. Boost mode disabled	33	mA
TX	Transmit min. Boost mode disabled	23	mA
TX	Transmit max, file transfer @115.2kbps	45	mA
RX	Receive, Boost mode enabled	31	mA
RX	Receive, Boost mode disabled 28		mA
Idle	Not connect, Receiver off 9		mA
Sleep	Interval(Sleep=1000ms, Wake-up=5ms)	2	μA
Power-down	Shutdown-mode 1		μΑ
Reset	Quiescent, nReset asserted	Quiescent, nReset asserted 2	

2.4 디지털 입출력 사양

표 2-4 디지털 입출력 사양

Parameter (VCC= 3.3V, 25°C)	Min	Тур.	Max	Unit
Input voltage for logic 0	0		0.66	V
Input voltage for logic 1	2.64		3.3	V
Input current for logic 0			-0.5	μA
Input current for logic 1			0.8	μA
Input pull-up resistor value		30		kΩ
Input pull-down resistor value		30		kΩ
Output voltage for logic 0	0		0.6	V
Output voltage for logic 1	2.7		3.3	V
Output source current, GPIO[0:12]			4	mA
Output source current, GPIO[13:16]			8	mA
Output sink current, GPIO[0:12]			4	mA
Output sink current, GPIO[13:16]			8	mA

2.5 ADC 사양

표 2-5 ADC 사양

Parameter (VCC= 3.3V, 25°C)		Min	Тур.	Max	Unit
VREF		1.19	1.2	1.21	V
VREF output curre	ent			1	mA
VREF load capaci	tance			10	nF
Minimum input voltage		0			V
Maximum input voltage				VREF	V
Single-ended signal range				VREF	V
Differential signal range		-VREF		+VREF	
Common mode range		0		VREF	
Input referred ADC offset		-10		10	mV
Input	When taking a Sample	1			МΩ
Impedance	When not taking a Sample	10			

3 RF 특성

3.1 송신부 특성

표 3-1 송신부 특성(VCC = 3.3V, 25°C)

Parameter	Test Conditions	Min	Тур.	Max	Unit
Frequency range*		2405		2480	MHz
Maximum output power	Boost mode enabled		8		dBm
Minimum output power	Boost mode disabled		-50		dBm
Error vector magnitude			5	15	%
Carrier frequency error		-40		+40	ppm

^{*} 주파수 범위: 채널번호 16ch (0x0b, 0x0c, 0x0d 0x18, 0x19, 0x1a)

3.2 수신부 특성

표 3-2 수신부 특성 (VCC = 3.3V, 25℃)

Parameter	Test Conditions	Min	Тур.	Max	Unit
Frequency range		2405		2480	MHz
Sensitivity	1% PER, 20byte packet		-100		dBm
	defined by IEEE 802.15.4				
ACR - High-side	IEEE 802.15.4		35		dB
ACR - Low-side	signal at -82dBm	-	35		dB
ACR - 2 nd High-side		-	46		dB
ACR - 2 nd Low-side		-	46		dB
Channel rejection]	-	39		dB
for all other channels					
802.11g rejection centered		-	36		dB
at +12Mhz or -13MHz					
Maximum input signal level		0			dBm
for correct Operation (low gain)					
Image suppression		-	30		dB
Relative frequency error(2x40ppm	IEEE 802.15.4	-120		+120	ppm
required by IEEE 802.15.4)	signal at -82dBm				
Relative timing error (2x40ppm		-120		+120	ppm
required by IEEE 802.15.4)					
Linear RSSI range		40			dB
RSSI Range		-90		-40	dB

4 장비 입출력 설명

4.1 UART 모드

SC1_MODE가 1로 설정되면SC1 UART 콘트롤러가 사용되어집니다. UART모드 사용시 성능은 표 4-1과 같습니다.

표 4-1 사용 가능한 UART 설정

Parameter		Possible Values		
Baud Rate Minimum		Baud Rate		
Maximum				
Flow Control		RTS/CTS(optional) or None		
Parity		None, Odd, or Even		
Number of Stop Bits		1 or 2		
Bits per Channel		7 or 8		

SC1 UART 모듈은 프로그래머블 보드(baud) 생성기에서 생성된 클록 신호를 보드레이트(baudrate) 클록으로 사용하고 24MHz 클록의 분할율을 이용하여 보드레이트를 설정합니다.

SC1_UARTFRAC Baud rate (bps) SC1_UARTPER Baud Rate Error (%) 300 40000 0 4800 2500 0 9600 1250 0 0 0 19200 625 0 1 38400 312 0 57600 208 1 -0.08 115200 104 0 +0.16 460800 26 0 +0.16 921600 13 0 +0.16

표 4-2 UART 보드 레이트

4.2 리셋

액티브 로우 핀인 /RESET(핀 22)은 시스템 리셋용입니다. 이 핀은 슈미트 트리거 입력을 가집니다. /RESET이 인가되면, 모든 ZE20S 레지스트들은 초기 상태로 리셋됩니다. 리셋상태에 있을때 ZE20S 는 통상적으로 1.5mA의 전류를 소모합니다.

4.3 **GPIO**

ZE20S는 범용으로 사용 가능한 17개의 GPIO 핀을 가지고 있습니다. 모든 GPIO핀들은 아래와 같은 프로그래머블한 속성을 가지고 있습니다.

- 입력, 출력 또는 양방향 신호중 선택 가능
- 내부 풀-업 (pull-up) 또는 풀-다운(pull-down)을 적용할수 있습니다

4.4 **JTAG**

ZE20S는 표준 시리얼 와이어와 JTAG(SWJ) 인터페이스를 포함합니다. SWJ는 EM357의 기본 디버그 와 프로그래밍 인터페이스입니다. SWJ는 EM357의 내부 신호선들에 접근할 수 있는 디버깅 툴을 제 공합니다. 그리고, SWJ는 CPU를 중단했다가 진행하는 형태의 디버깅뿐만 아니라, 메모리나 레지스 터에 접근하는 방법을 허용합니다. 따라서, EM357을 사용한 설계에서는 SWJ 신호를 사용하도록 준 비해야 합니다.

JTAG 핀:

- JTCK (15)
- JTDO (16)
- JTDI (17)
- JTMS (18)
- JRST (19)

5 응용 회로도

그림 5-1 ZE20S 인터페이스 커넥터

그림 5-2 전원 및 POR

그림 **5-4 USB – UART** 변환

그림 5-5 GPIO 스위치 입력

그림 5-6 GPIO LED 출력

그림 5-7 ADC VR 입력

6 연락처

웹사이트

http://www.chipsen.com

이메일

영업:assist@chipsen.com

기술지원: <u>support@chipsen.com</u>

㈜

E 510

전화: 1599-6005 팩스: (02) 2083-2288