

Grundzüge der Informatik 1

Vorlesung 19 - flipped classroom

Graphalgorithmen

Definition (gerichteter Graph)

- Ein gerichteter Graph ist ein Paar (V,E), wobei V eine endliche Menge ist und E⊆V×V.
- V heißt Knotenmenge des Graphen
- Die Elemente aus V sind die Knoten des Graphen
- E heißt Kantenmenge des Graphen
- Die Elemente aus E sind die Kanten des Graphen

Graphalgorithmen

Definition (ungerichteter Graph)

- Ein ungerichteter Graph ist ein Paar (V,E), wobei V eine endliche Menge ist und E Teilmenge der Menge aller Paare von Elementen aus V ist
- V heißt Knotenmenge des Graphen
- Die Elemente aus V sind die Knoten des Graphen
- E heißt Kantenmenge des Graphen
- Die Elemente aus E sind die Kanten des Graphen
- Wir stellen Kanten aus V wie im gerichteten Fall durch (u,v) dar und nehmen an, dass die Kante (u,v) gleich der Kante (v,u) ist
- Manchmal repräsentieren wir einen ungerichteten Graph durch einen gerichteten, indem wir jede Kante (u,v) durch die gerichteten Kanten (u,v) und (v,u) ersetzen

Graphalgorithmen

Adjazenzmatrixdarstellung

- Knoten sind nummeriert von 1 bis |V|
- $|V| \times |V|$ Matrix A = (a_{ij}) mit
- a_{ij} = 1, wenn (i,j)∈E und a_{ij} = 0, sonst
- Bei ungerichteten Graphen gilt A = A^T

Graphenalgorithmen

Adjazenzlistendarstellung

- Feld Adj mit |V| Listen (eine pro Knoten)
- Für Knoten v enthält Adj[v] eine Liste aller Knoten u mit (v,u)∈E
- Die Knoten in Adj[v] heißen zu v benachbart
- Ist G ungerichtet, so gilt: v∈Adj[u] ⇔ u∈Adj[v]

Datenstrukturen für Graphen

Aufgabe 1

- Die Transposition eines gerichteten Graph G=(V,E) ist der Graph G^T(V,E^T), wobei E^T = {(v,u) ∈ V×V : (u,v) ∈ E}. Entwickeln Sie einen Algorithmus, der G^T für einen Eingabegraph G in Adjazenzlistendarstellung berechnet. Sie können dabei annehmen, dass V = {1,...,n} ist.
- Was ist die Laufzeit Ihres Algorithmus?

Datenstrukturen

Aufgabe 2

- Das Quadrat eines Graph G=(V,E) ist der Graph G⁽²⁾ =(V,E⁽²⁾), wobei (u,w)∈E⁽²⁾, gdw. es einen Knoten v gibt, so dass (u,v)∈E und (v,w)∈E.
- Zeigen Sie: Es gibt Graphen mit O(n) Kanten, deren Quadrat Ω(n²) Kanten haben

Datenstrukturen

Aufgabe 3

- Das Quadrat eines Graph G=(V,E) ist der Graph G⁽²⁾ =(V,E⁽²⁾), wobei (u,w)∈E⁽²⁾, gdw. es einen Knoten v gibt, so dass (u,v)∈E und (v,w)∈E.
- Entwickeln Sie einen Algorithmus, der das Quadrat eines Graphen G=(V,E) berechnet, der in Adjazenzmatrixdarstellung abgespeichert ist
- Was ist die Laufzeit Ihres Algorithmus?

