集合論(第5回)の解答

問題 5-1

f,g,h の像はそれぞれ次の通り.

$$f(0) = 0$$
, $f(1) = 2$, $f(2) = 4$, $f(3) = 1$, $f(4) = 3$,

$$g(0) = 0$$
, $g(1) = 1$, $g(2) = 4$, $g(3) = 4$, $g(4) = 1$,

$$h(0) = 0$$
, $h(1) = 0$, $h(2) = 2$, $h(3) = 1$, $h(4) = 2$.

よって f は単射であり, g,h は単射でない.

問題 5-2

(1) $x,y \in (0,\infty)$ とし、f(x)=f(y) と仮定する。 $\frac{x}{x+1}=\frac{y}{y+1}$ より x(y+1)=y(x+1). よって x=y. 従って f は単射.

(2) g(0) = g(1) = 0 より g は単射でない.

問題 5-3

(1) $x \in P$ とする. $f(x) \in f(P)$ より $x \in f^{-1}(f(P))$. 従って $P \subseteq f^{-1}(f(P))$. 逆に $x \in f^{-1}(f(P))$ とする. $f(x) \in f(P)$ より f(y) = f(x) となる $y \in P$ が存在する. f は単射より $x = y \in P$. よって $f^{-1}(f(P)) \subseteq P$.

(2) m = |X| とし、 $X = \{x_1, x_2, ..., x_m\}$ と表す。f は単射より、 $f(x_1)$ 、 $f(x_2)$ 、...、 $f(x_m)$ は相異なる。よって |f(X)| = m = |X|. 一方、 $f(X) \subseteq Y$ より $|X| = |f(X)| \le |Y|$ が成り立つ。

問題 5-4

f は全射であり, g,h は全射でない.

問題 5-5

(1) $y \in \mathbb{R}$ とする. $x = \frac{y-3}{2}$ と置くと, f(x) = y である. 従って f は全射.

(2) g が全射と仮定する. このとき, g(x,y)=(1,0) となる $(x,y)\in\mathbb{Z}^2$ がある. $x+y=1,\ x-y=0$ より $x=y=\frac{1}{2}$. これは x,y が整数であることに矛盾. よって g は全射でない.

問題 5-6

f は全射より f(X) = Y である. $|X| \ge |f(X)|$ に注意すれば, $|X| \ge |f(X)| = |Y|$.

copyright ⓒ 大学数学の授業ノート

問題 5-7

全単射 $f:X\to Y$ が存在すれば、問題 5-3 (2) と問題 5-6 より |X|=|Y| を得る。逆に |X|=|Y| と仮定する。n=|X|=|Y| とし、 $X=\{x_1,x_2,...,x_n\}$, $Y=\{y_1,y_2,...,y_n\}$ とする。このとき、

$$f(x_1) = y_1, \quad f(x_2) = y_2, \quad \cdots, \quad f(x_n) = y_n$$

により $f: X \to Y$ を定義すれば, f は全単射である.