

Electiva 188 - Introducción a Octave Trabajo Práctico 4

Daniel Millán Nora Moyano & Iván Ferrari

Facultad de Ciencias Aplicadas a la Industria, UNCuyo San Rafael 5600, Argentina Mayo de 2018

Ejercicio 1. Se desea analizar el movimiento de una partícula que tiene una trayectoria helicoidal en 3D. La posición de la partícula en el espacio, r(t), se encuentra parametrizada en función del tiempo como r(t) = (x(t), y(t), z(t)), donde:

$$x(t) = \frac{t}{2}\cos(t), \quad y(t) = \frac{t}{3}\sin(t), \quad z(t) = t.$$

Mediante el empleo de un script resuelva los siguiente ítems en Octave:

- 1. Grafique el movimiento de la partícula en 3D para cada instante de tiempo t en el intervalo de tiempo comprendido entre 0 y 3π .
- 2. Determine la distancia $d_P(t)$ entre un punto que se desplaza sobre la trayectoria $\mathbf{r}(t)$ y el plano $\sin(t) x + \cos(t) y + z = 3t$. Grafique $d_P(t)$ en el intervalo $[0, 3\pi]$.
- 3. Genere una función anónima para calcular la rapidez de la trayectoria

$$\|\mathbf{r}'(t)\| = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}.$$

Grafique la rapidez en función de t.

4. Calcule la longitud de arco que describe la trayectoria en función del tiempo $t \in [0, 3\pi]$

$$L(t) = \int_0^t \|\boldsymbol{r}'(\tau)\| \, d\tau.$$

Esto lo debe realizar mediante integración numérica empleando la función quad.

Ayuda: emplee el script tp4-ej1-trayectoria3D.m subido a la web de la asignatura.

Ejercicio 2. Respuesta transitoria o dinámica de una red de 5 reactores químicos, ver descripción en Figura 12.3 del libro de Chapra y Canale, Capítulo 12, 5ta Ed, 2007. El ejercicio propuesto se basa en el análisis del estado transitorio desarrollado en el Capítulo 28 del mismo libro.

Mediante el empleo de un *script* resuelva los siguiente ítems en Octave:

1. El tiempo hasta el estado estacionario se caracteriza por el tiempo que tarda cada reactor en alcanzar el 90 % de la concentración en el estado estacionario, t_{90} . Estime t_{90} para cada reactor.

2. Se produce una variación de la concentración en $t=10\mathrm{min}$ en la entrada del reactor 1 el cual se aproxima por

$$b_1(t) = 1 + \exp(-(t-10)^2).$$

- a) Grafique el la entrada $b_1(t)$ en función del tiempo t.
- b) Determine las respuestas transitorias y grafique $c_i(t)$.
- 3. La carga en el reactor 3 decrece en un 25% de forma abrupta en t=10min. Luego de media hora se restablece súbitamente el valor de entrada.
 - a) Cree una función carga3_escalon.m que modele el valor en la entrada b(t) en función del tiempo. Grafique $b_3(t)$.
 - b) Determine las respuestas transitorias y grafique $c_i(t)$.

Ayuda: emplee el script tp4-ej2-reactores_transitorio.m subido a la web de la asignatura.

Ejercicio 3. Se poseen 3 dados. Se desea analizar la función de densidad de probabilidad (FDP) del valor de la suma de las caras.

Mediante el empleo de un *script* resuelva los siguiente ítems en Octave:

- 1. ¿Cuál es la cardinalidad del espacio muestral? Es decir ¿Cuántos resultados posibles hay?
- 2. Determine la FDP de la muestra si se realizan N tiradas, para $N = 10^4, 10^5, 10^6$. Compare en un gráfico las FDPs obtenidas.
- 3. ¿Cuál es el valor más probable y cuál es la esperanza matemática de la variable analizada: suma de las caras?
- 4. De los resultados obtenidos es posible inferir el número de resultados favorables para los distintos valores de la suma de las caras. Dicho de otra forma ¿cuál es el valor teórico de la probabilidad de la suma de las caras?

Ayuda: no emplee bucles for o while.

Ejercicio 4. En mecánica de medios continuos el tensor tensión de Cauchy, σ , también llamado tensor de tensiones o tensor de esfuerzos, es el tensor que da cuenta de la distribución de tensiones y esfuerzos internos en el medio continuo.

La forma general para un campo tensorial de tensiones en tres dimensiones está dado como (en MPa):

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{bmatrix},$$

en la que los términos en la diagonal principal representan esfuerzos a la tensión o a la compresión, y los términos fuera de la diagonal representan los esfuerzos cortantes.

En un sistema de referencia cuyos ejes coordenados son las direcciones principales, la matriz de tensiones que representa al tensor de tensiones en tal sistema de coordenadas es diagonal y tiene la siguiente forma

$$\begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}.$$

En las direcciones o ejes principales, no hay tensiones tangenciales o cortantes.

El problema de determinar las tensiones principales y las direcciones principales se reduce a un problema de autovalores

$$egin{aligned} oldsymbol{\sigma} n &= \lambda n \ oldsymbol{\sigma} n - \lambda n &= 0 \ (oldsymbol{\sigma} n - \lambda I) \, n &= 0 \end{aligned}$$

en el que las incógnitas son las componentes n_1 , n_2 y n_3 de la dirección principal y el valor λ es la tensión principal. Para obtener una solución no trivial (distinta de cero), el determinante de la matriz $\sigma n - \lambda I$ debe ser igual a cero, es decir, el sistema es singular. Expandiendo el determinante se obtiene la ecuación característica

$$\lambda^3 - I_1 \lambda^2 + I_2 \lambda - I_3 = 0,$$

donde

$$I_{1} = \sigma_{xx} + \sigma_{yy} + \sigma_{zz}$$

$$I_{2} = \sigma_{xx}\sigma_{yy} + \sigma_{xx}\sigma_{zz} + \sigma_{yy}\sigma_{zz} - \sigma_{xy}^{2} - \sigma_{xz}^{2} - \sigma_{yz}^{2}$$

$$I_{3} = \sigma_{xx}\sigma_{yy}\sigma_{zz} - \sigma_{xx}\sigma_{yz}^{2} - \sigma_{yy}\sigma_{xz}^{2} - \sigma_{zz}\sigma_{xy}^{2} + 2\sigma_{xy}\sigma_{xz}\sigma_{yz}$$

 I_1 , I_2 y I_3 se conocen como los invariantes de esfuerzos, se llaman así porque estos valores no cambian aunque cambie el sistema de referencia. Mientras que los valores de λ que hacen cero el polinomio característico, las raíces, son los valores de las tensiones principales σ_1 , σ_2 y σ_3 .

Se tiene un campo tensorial (en MPa) dado por la matriz que sigue:

$$\boldsymbol{\sigma} = \begin{bmatrix} 10 & 14 & 25 \\ 14 & 7 & 15 \\ 25 & 15 & 16 \end{bmatrix}.$$

Mediante el empleo de un *script* resuelva los siguiente ítems en Octave:

- 1. Determine los invariantes de tensiones o esfuerzos I_1, I_2 e I_3 .
- 2. Encuentre los esfuerzos principales σ_1 , σ_2 y σ_3 mediante la función eig.
- 3. Encuentre los esfuerzos principales σ_1 , σ_2 y σ_3 por medio de una técnica de localización de raíces.

Ejercicio 5. La cantidad de calor Q para calentar o enfriar un material desde una temperatura T_1 hasta T_2 es

$$Q = m (H_2 - H_1) = m \Delta H = \int_{T_1}^{T_2} c_p dT,$$

donde m es la masa del material, H_2 y H_1 son las entalpías a las temperaturas T_2 y T_1 respectivamente, mientras que c_p es el calor específico del material.

Considere que se mezclan perfectamente dos fluidos A y B con temperatura diferente de modo que alcanzan la misma temperatura. La mezcla se realiza en un recipiente perfectamente aislado del medio exterior, proceso adiabático.

La capacidad calorífica específica o calor específico a presión constante del fluido A está dada por:

$$c_p = 3.381 + 1.804 \times 10^{-2} T - 4.300 \times 10^{-6} T^2,$$

y el calor específico del fluido B se obtiene con:

$$c_p = 8.592 + 1.290 \times 10^{-1} T - 4.078 \times 10^{-5} T^2$$

donde c_p se expresa en unidades de cal/mol K y T está en unidades de K.

El fluido A entra al mezclador a T_{A1} =400°C y el B entra a una temperatura T_{B1} entre 500°C y 800°C. Al mezclador entra el doble de fluido A que B. Mediante el empleo de un *script* resuelva los siguiente ítems en Octave:

- 1. Cree funciones anónimas de c_P para el fluido A y B. Grafique el comportamiento de los calores específicos entre $400^{\rm o}$ C y $800^{\rm o}$ C.
- 2. ¿A qué temperatura T_2 salen los dos fluidos del mezclador en el rango analizado? Grafique la respuesta.
- 3. Muestre gráfiquemente el incremento de entalpía ΔH en kcal/mol ganado o perdido en función de T_{B1} por el fluido A y B, respectivamente.

Ayuda: emplee el script tp4-ej5-calor_mezcla.m subido a la web de la asignatura.

Ejercicio 6. En los envases térmicos que se ilustran en la Figura 1, el compartimiento interior está separado del medio ambiente por vacío. Hay una cubierta exterior alrededor de los envases. Esta cubierta está separada de la capa media por una capa delgada de aire. La superficie de afuera de la cubierta exterior está en contacto con el aire del ambiente.

La transferencia de calor del compartimiento interior a la capa siguiente q_1 sólo ocurre por radiación (ya que el espacio se encuentra vacío). La transferencia de calor entre la capa media y la cubierta exterior q_2 es por convección en un espacio pequeño. La transferencia de calor de la cubierta exterior hacia el aire q_3 sucede por convección natural.

$$q_1 = 10^{-9}[(T_0 + 273)^4 - (T_1 + 273)^4],$$

 $q_2 = 4(T_1 - T_2),$
 $q_2 = 1.3(T_2 - T_3)^{4/3}.$

El flujo de calor desde cada región de los envases debe ser igual, es decir, $q_1 = q_2 = q_3$.

Figura 1: Envase térmico.

Mediante el empleo de un *script* en Octave encuentre las temperaturas T_1 y T_2 en estado estable. T_0 es de $90^{\circ}C$ y T_3 varía en el rango $[10,30]^{\circ}C$.

Ayuda: fsolve es una función que resuelve un sistema de ecuaciones no-lineales del tipo F(x) = 0, donde F es una función vectorial y x es un vector o una matriz.

Entrega obligatoria de los scripts utilizados para resolver los Ejercicios 1, 2, 3 v 4.

Se podrá presentar una guía de problemas en grupos de a lo sumo 2 integrantes. Los TPs se deben presentar en pdf vía email a dmillan@fcai.uncu.edu.ar.