

República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências

ESG / 2014 10^a Classe

Exame de Matemática

Extraordinário 120 Minutos

Este exame contém oito (8) perguntas. Responda-as na sua folha de respostas.

Na margem direita está indicada, entre parênteses, a cotação de cada pergunta em valores.

Cotação

1. Usando os conjuntos IR, Q, Z, IN, e seus subconjuntos, complete os espaços em branco de modo a obter afirmações verdadeiras:

a) IN
$$\cup Z_0^- = \dots$$
 (0,5)

b) IR
$$\cap$$
 Q =

c)
$$IR \setminus ... = IR_0^+$$

d)
$$Z^- \cap Z^+ = \dots$$
 (0,5)

2. Determine o valor numérico das seguintes expressões:

a)
$$\left[\left(\frac{1}{2} - 3 \right)^2 \right]^4 \div \left(\frac{2}{5} \right)^{-8}$$
 (1,0)

b)
$$-\sqrt{3} + \sqrt{27} + \sqrt{75}$$

- 3. A Marília e a Náira possuem juntas 2 800,00Mt. A Marília tem 600,00Mt a mais que a (2,0) Náira. Qual é a quantia que cada uma possui?
- 4. Considere a equação $x^2 + 2x + 3 m = 0$ sendo **m** um parâmetro real.

a) Resolva a equação para
$$m = 2$$
. (1,0)

- b) Determine o valor de m de modo que a equação admita duas raízes reais e distintas. (1,5)
- 5. Resolva em IR a equação $x^4 8x^2 9 = 0$. (2,0)

2014 / 10ª Classe / Exame Extraordinário de Matemática

- 6. Dos 35 alunos duma turma, 26 gostam de jogar futebol, 20 voleibol e 14 gostam de jogar futebol e voleibol.
 - a) Represente os dados num diagrama de *Venn*. (1,0)
 - b) Determine o número de alunos que não gostam de nenhuma das modalidades. (0,5)
 - c) Quantos alunos gostam somente de uma modalidade? (0,5)
- 7. A tabela representa a distribuição das idades dos alunos de uma turma:

Nº de alunos	10	15	12	5	2	1
Idades	9	10	11	12	13	14

- a) Determine o número de alunos da turma. (1,0)
- b) Calcule a percentagem de alunos com 9 anos. (1,0)
- c) Qual é a moda das idades da turma? (0,5)
- 8. Considere a figura:

- a) Qual é o zero da função g(x)? (0,5)
- b) Para que valores de x, f(x) é crescente? (1,0)
- c) Para que valores de x, se tem: (1,0)
- (i) f(x) < g(x)? (ii) f(x) = g(x)? (1,0)
- d) Para que valores de x, f(x) é positiva? (0,5)
- e) Estuda a variação do sinal da função g(x). (1,0)

2014 / 10^a Classe / Guia de Correcção do Exame Extraordinário de Matemática Obs: Senhor professor, considere outro método de resolução desde que esteja certo.

Perg. Resposta

Cotação Parc. Tot.

1. a) $IN \cup Z_0^- = Z$

b) IR \cap Q = Q

4x0,5 **2,0**

c) $IR \setminus IR^- = IR_0^+$

d) $Z^- \cap Z^+ = \emptyset$

2. a) $\left[\left(\frac{1}{2} - 3 \right)^2 \right]^4 : \left(\frac{2}{5} \right)^{-8} = \left[\left(\frac{1 - 6}{2} \right)^2 \right]^4 : \left(\frac{2}{5} \right)^{-8} = \left(-\frac{5}{2} \right)^8 : \left(\frac{5}{2} \right)^8 = \left(-\frac{5}{2} : \frac{5}{2} \right)^8 = \left(-\frac{5}{2} \cdot \frac{2}{5} \right)^8 = \left(-\frac{5}{2} \cdot$

b) $-\sqrt{3} + \sqrt{27} + \sqrt{75} = -\sqrt{3} + \sqrt{3^2 \cdot 3} + \sqrt{5^2 \cdot 3} = -\sqrt{3} + 3\sqrt{3} + 5\sqrt{3} =$ $(0,4) \qquad (0,4)$ $(-1+3+5)\sqrt{3} = 7\sqrt{3} \ (0,2)$ $1,0 \qquad 2,0$

3. Seja x a quantia da Náira e y a quantia da Marília

$$\begin{cases} x + y = 2800 \\ y = x + 600 \end{cases} \Leftrightarrow \begin{cases} x + y = 2800 \\ -x + y = 600 \end{cases} \Leftrightarrow \begin{cases} x + y = 2800 \\ y = \frac{3400}{2} \end{cases} \Leftrightarrow \begin{cases} x + 1700 = 2800 \\ y = 1700 \end{cases} \Leftrightarrow$$

$$(0,5) \qquad 0 + 2y = 3400(0,5) \quad (0,2) \qquad (0,2)$$

$$\begin{cases} x = 2800 - 1700 \\ y = 1700 \end{cases} (\mathbf{0}, \mathbf{2}) \Leftrightarrow \begin{cases} x = 1100 \\ y = 1700 \end{cases} (\mathbf{0}, \mathbf{2})$$

Resp: A Náira possui 1100Mt e a Marília 1700Mt(0.2)

2,0 **2,0**

4. a) $x^2 + 2x + 3 - m = 0 \Rightarrow x^2 + 2x + 3 - 2 = 0 \Leftrightarrow x^2 + 2x + 1 = 0 \Leftrightarrow (x+1)(x+1) = 0 \Leftrightarrow (x+1)(x+1)(x+1) = 0 \Leftrightarrow (x+1)(x+1)(x+1) = 0 \Leftrightarrow (x+1)(x+1)(x+1)(x+1) = 0 \Leftrightarrow (x+1)(x+1)(x+1) = 0 \Leftrightarrow (x+1)(x+1)(x+1)(x+1) = 0 \Leftrightarrow (x+1)(x+1)(x+1)(x+1) = 0 \Leftrightarrow (x+1)(x+1)(x+1)(x+1) = 0 \Leftrightarrow (x+1)(x+1)(x+1)(x+1) = 0 \Leftrightarrow (x+1$

(0,2) (0,1) (0,4)

 $x+1=0 \Leftrightarrow x=-1 \ (\mathbf{0,3})$

b) $\Delta > 0 \Rightarrow b^2 - 4ac > 0$; $a = 1; b = 2; c = 3 - m; \quad 2^2 - 4 \cdot 1 \cdot (3 - m) > 0 \Leftrightarrow_{(0,2)}$

(0,3) (0,3)

 $4-12+4m > 0 \Leftrightarrow -8+4m > 0 \Leftrightarrow 4m > 8 \Leftrightarrow m > 2$ $Sol: m \in]2; +\infty[_{(0,2)}$ (0,2) (0,1) (0,1)

1,5 **2,5**

2014 / 10ª Classe / Guia de Correcção do Exame Extraordinário de Matemática

5.
$$x^4 - 8x^2 - 9 = 0$$
 Seja $x^2 = t$ (0,2) então $t^2 - 8t - 9 = 0 \Leftrightarrow (t - 9)(t + 1) = 0 \Leftrightarrow t - 9 = 0 \lor t + 1 = 0 \Leftrightarrow t = 9 \lor t = -1$ (0,4) (0,4) (0,2) $x^2 = 9 \lor x^2 = -1 \Leftrightarrow x = \pm 3 \lor x \in \emptyset$ Sol : $x \in \{-3,3\}$ (0,2)

2,0 **2,0**

1,0

6. a)

(0,2)

(0,2)

b) $12+14+6+x=35 \Leftrightarrow 32+x=35 \Leftrightarrow x=35-32 \Leftrightarrow x=3 \text{ (0,5)}$

- c) Dezoito(18) alunos gostam somente de uma modalidade(**0,5**) 0,5 **2,0**
- 7. a) n = 10 + 15 + 12 + 5 + 2 + 1 = 45 A turma tem 45 alunos(1,0)
 - b) $45 \text{ alunos} \underline{\hspace{1cm}} 100\% \qquad x = \frac{10 \cdot 100\%}{45} = 22,2\% \ (1,0)$ 1.0 alunos $\underline{\hspace{1cm}} x$
 - c) A moda das idades é $M_o = 10 \, (0.5)$ 0,5 2.5
- 8. a) g(x) = 0 se x = 1(0.5) 0.5
 - b) f(x) écrescente se $x \in]-\infty; 1[(1,0)]$
 - c) i) $f(x) < g(x) \Rightarrow x \in [0,1] \cup [2,+\infty[$ (1,0)
 - ii) f(x) = g(x) para x = 1 $e^{-x} = 2(1,0)$
 - d) $f(x) > 0 \Rightarrow x \in \emptyset$ (0,5)