MATHEMATICS METHODS

MAWA Semester 2 (Units 3 and 4) Examination 2017 Calculator-free Marking Key

© MAWA, 2017

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

the end of week 1 of term 4, 2017

Page **1** © MAWA 2017

CALCULATOR-FREE MARKING KEY

Section One: Calculator-free (52 Marks)

Question 1(a)

Queenon 2(a)	
Solution	
k + 2k + 0.5k + 0.5k + k = 1	
5k = 1	
$k = \frac{1}{5}$	
5	
Marking key/mathematical behaviours	Marks
correctly solves for ^k .	1

Question 1(b)

Ageanou r(p)	
Solution	
No, This is not a discrete probability distribution as $P(5)$ has a negative value and probabilities need to positive.	
Marking key/mathematical behaviours	Marks
recognises the properties of discrete probability distributions	1
relates above property back to the question to justify answer	1 1

Question 1(c)

Solution		
Solution		
	$\mu = np = 90$	
	$\therefore \sigma^2 = 6^2 = 36$	
	$\sigma^2 = np(1-p)$	
	36=90(1-p) Expand and solve for p	
	$\therefore p=0.6$	
	$\frac{6}{10}n = 90$ Sub value of p and solve for n.	
Marking key/mathematical behav	iours	Marks
determines variance		1
 solves for parameter, p 		1
 solves for parameter, n 		1

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION Question 2(a)

CALCULATOR-FREE MARKING KEY

Solution	
A census involves every member of the population being	
tested/questioned/investigated	
Marking key/mathematical behaviours	Marks
 indicates the need to include every member of the population 	1

Question 2(b)

Solution	
There would be no stoves left to sell as all of them would have broken down.	
Marking key/mathematical behaviours	Marks
 indicates that there would be no items left for sale (no marks for cheaper or quicker) 	1

Question 2(c)

Solution Use the unique serial numbers to select a random sample or similar	
Marking key/mathematical behaviours	Marks
 indicates use of a suitable random selection method (based on serial numbers or other method) 	1

Question 2(d)

Solution Using the list of the serial numbers, select every 400 th stove	
Marking key/mathematical behaviours	Marks
indicates use of a suitable selection method	1

Question 3(a) (i)

Solution	
$(2 + \cos x) \times 1 - (-\sin x)x - 2 + \cos x + x \sin x$	
$f'(x) = \frac{(2 + \cos x)^2}{(2 + \cos x)^2} = \frac{2 + \cos x}{(2 + \cos x)^2}$	
Marking key/mathematical behaviours	Marks
correct use of the quotient rule	1
differentiates correctly	1

Question 3(a) (ii)

Solution	
$f'(x) = (3 + 2\cos 2x)e^{3x + \sin 2x}$	
Marking key/mathematical behaviours	Marks
correct use of the chain rule	1
differentiates correctly	1

Page **3** © MAWA 2017

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION Question 3(b)

CALCULATOR-FREE MARKING KEY

Solution

Differentiating both sides: $f''(x)f(x) + f'(x)^2 = 0$

$$f''(x) = -\frac{f'(x)^2}{f(x)}$$

S

But
$$f'(x) = \frac{1}{f(x)}$$
 and so $f''(x) = -\frac{1}{f(x)^3}$ i.e. $f''(x)f(x)^3 = -1$

Marking key/mathematical behaviours	Marks
uses product rule correctly	1
• obtains correct expression for $f''(x)$	1
1	1
• replaces $f'(x)$ with $f(x)$	

Question 4(a)(i)

Solution	
Approximately 200 samples are involved	
Marking key/mathematical behaviours	Marks
States the number of samples (allow 190 to 210)	1

Question 4(a)(ii)

Solution	
Find the mean of the sample proportions, (from the graph) \approx 0.4	
May use sample proportion as an estimate of the population proportion	
Marking key/mathematical behaviours	Marks
identifies sample proportion as 0.4 (by reference to the graph or calculation)	1
uses the sample proportion as an estimate for the population proportion	1

Question 4(b)

Solution	
 Survey is restricted to listeners of one particular station and therefore not representative of the population 	
 Survey is using a self-selection model and this indicates bias 	
Timing may exclude some groups of people	
Access to a telephone is presumed	
 People could respond more than once 	
 Nature of the question means football fans may be more likely to respond 	
Marking key/mathematical behaviours	Marks
Lists one possibility	1
Lists a second possibility	1

Page **4** © MAWA 2017

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION Question 5

CALCULATOR-FREE MARKING KEY

Solution

Note that:

$$y = 1 - 4x^2 \Rightarrow y' = -8x$$

$$\therefore \int \frac{10x}{1 - 4x^2} dx = -\frac{10}{8} \int \frac{-8x}{1 - 4x^2} dx$$
$$= -\frac{5}{4} \ln|1 - 4x^2| + c$$

Marking key/mathematical behaviours	Marks
• Recognises $\frac{f'(x)}{f(x)}$	1
$\int (X)$	1
Determines (or uses) derivative of denominator	1
 Uses constants to achieve numerator of -8x 	1
Finds integral accurately	

Question 6(a)

Solution	
Since $5^{-2} = \frac{1}{25}$ we have $\log_5 \left(\frac{x + 24y}{25} \right) = \ln_5 (x + y)$ (#)	
i.e. $\frac{x + 24y}{25} = x + y$ and hence $y = -24x$	
Marking key/mathematical behaviours	Marks
Obtains equation (#) or equivalent	1
Obtains correct answer	1

Question 6(b)(i)

Solution	
If $a > b$ then $\log_a b < 0$ i.e. negative	
Marking key/mathematical behaviours	Marks
obtains correct answer	1

Question 6(b)(ii)

Solution	
If $a \neq b$ then $\log_a b$ and $\log_b a$ have opposite signs (#) and are unequal.	
So $a = b$ if $\log_a b = \log_b a$	
Marking key/mathematical behaviours	Marks
• deduces that $\log_a b$ and $\log_b a$ have opposite signs if $a \neq b$	1
complete proof correctly	1

Page **5** © MAWA 2017

Question 7(a)

Solution
$A = -\int_{1}^{4} \left(\frac{-8}{\sqrt{x}} \dot{c} \right) dx \dot{c}$
4 _

$$i \int_{1}^{4} \frac{8}{\sqrt{x}} dx$$

Marking key/mathematical behaviours	Marks
sets up integral in either form	1

Question 7(b)

Solution

$$A = \int_{1}^{4} \frac{8}{\sqrt{x}} dx$$

$$= \left[16\sqrt{x} \right]_{1}^{4}$$

$$= 16(2) - 16$$

$$= 16 \text{ square units}$$

	Marking key/mathematical behaviours	Marks
	integrates correctly	1
	correctly evaluates the integral	1

Question 7(c)

Solution

$$\int_{1}^{a} \frac{-8}{\sqrt{x}} dx = -25$$

$$\Rightarrow -16\sqrt{a} + 16 = -25$$

$$-16\sqrt{a} = -41$$

$$a = \frac{41^{2}}{16^{2}}$$

Marking key/mathematical behaviours	Marks
correctly states the equation to be solved	1
• solves for a	1

Page **6** © MAWA 2017

Question 8(a)

Question 8(b)

Page **7** © MAWA 2017

Question 8(c)

Solution

- (i) From the graph, read the relative frequencies for the parking times (0,30] mins and (30,60] mins \rightarrow Pr (at most 60 minutes) = 0.38 + 0.42 = 0.8.
- (ii) relative frequency of vehicles parked between 1 and 1.5hrs = 0.14. $200 \times 0.14 = 28$ vehicles.
- (iii) Answers will vary.

One possible answer: The data shows that 80% of the vehicles are parked for at most 60 minutes. Businesses that would tailor to this time length could be a nearby café or a mini mall with a few necessities stores (ie. Grocery store, bakery, pharmacy, clothing shop).

(iv) Answers will vary.

One possible answer: On which day of the week was the data collected?

Marking key/mathematical behaviours	Marks
sums the two relative frequencies required	1
multiplies the relative frequency by the total number of parked cars	1
 links to a type of business requiring less than 1 hour of parking 	1
links question to day of the week or other plausible variable.	1

Question 9(a)

Solution

Since the graph has a vertical asymptote at x = -3, b = 3

Since the point (-2,2) lies on the graph, $2 = \log_a(-2+3) + c$, i.e. c = 2

Since the point $\ ^{(0,3)}$ lies on the graph, $\ ^3 = \log_a + 2$, i.e. $\log_a(3) = 1$

and hence a = 3

Marking key/mathematical behaviours	Marks
ullet evaluates a b and c correctly	1, 1, 1

Page **8** © MAWA 2017

Question 9(b)

Marking key/mathematical behaviours	Marks
• asymptote at $x = 4$	1
• y intercept at $(0,1)$	1
• x intercept at $(-4,0)$	1
graph of standard logarithm function reflected in both axes	1

Page **9** © MAWA 2017