Seminar 7

1. Determine a basis and the dimension of the following subspaces of the real vector space \mathbb{R}^3 :

$$A = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}$$

$$B = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$$

$$C = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}.$$

- **2.** Let K be a field and $S = \{(x_1, \dots, x_n) \in K^n \mid x_1 + \dots + x_n = 0\}.$
- (i) Prove that S is a subspace of the canonical vector space K^n over K.
- (ii) Determine a basis and the dimension of S.
- **3.** Determine a basis and the dimensions of the vector spaces \mathbb{C} over \mathbb{C} and \mathbb{C} over \mathbb{R} . Prove that the set $\{1,i\}$ is linearly dependent in the vector space \mathbb{C} over \mathbb{C} and linearly independent in the vector space \mathbb{C} over \mathbb{R} .
- **4.** Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by f(x, y, z) = (y, -x). Prove that f is an \mathbb{R} -linear map and determine a basis and the dimension of $Ker\ f$ and $Im\ f$.
- **5.** Let $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x,y,z) = (-y + 5z, x, y 5z). Determine a basis and the dimension of Ker f and Im f.
- **6.** Complete the bases of the subspaces from Exercise 1. to some bases of the real vector space \mathbb{R}^3 over \mathbb{R} .
 - 7. Determine a complement for the following subspaces:
 - (i) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}$ in the real vector space \mathbb{R}^3 ;
 - (ii) $B = \{aX + bX^3 \mid a, b \in \mathbb{R}\}\$ in the real vector space $\mathbb{R}_3[X]$.
- **8.** Let V be a vector space over K and let S,T and U be subspaces of V such that $dim(S\cap U)=dim(T\cap U)$ and dim(S+U)=dim(T+U). Prove that if $S\subseteq T$, then S=T.
 - 9. Consider the subspaces

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\},\$$
$$T = <(0, 1, 1), (1, 1, 0) >$$

of the real vector space \mathbb{R}^3 . Determine $S \cap T$ and show that $S + T = \mathbb{R}^3$.

10. Determine the dimensions of the subspaces S, T, S+T and $S \cap T$ of the real vector space $M_2(\mathbb{R})$, where

$$S = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right\rangle, \qquad \quad T = \left\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\rangle.$$

1