Time structure of model error in data assimilation

Javier Amezcua

Peter Jan van Leeuwen Haonan Ren

May 2019

Outline

- 1. Some basics of data assimilation
- 2. Time-structure in model error
- 3. Model error and sources
- 4. Summary and current work

Outline

- 1. Some basics of data assimilation
- 2. Time-structure in model error
- 3. Model error and sources
- 4. Summary and current work

DA problem setup

$$\mathbf{x}^t \in \mathcal{R}^{N_x}$$
 Model variables $\mathbf{v}^l \in \mathcal{R}^{N_y}$ Observations

$$\mathbf{x}^{t} = m^{(t-1)\to t} \left(\mathbf{x}^{t-1}\right) + \mathbf{v}^{t}$$

$$\mathbf{y}^{l} = h^{l} \left(\mathbf{x}^{t=l}\right) + \boldsymbol{\eta}^{l}$$

$$\left\{\mathbf{x}^{0}, \mathbf{v}^{t}, \boldsymbol{\eta}^{l}\right\} r.v., \ \mathbf{x}^{0} \perp \mathbf{v}^{t} \perp \boldsymbol{\eta}^{l}$$

Working with pdf's

Consider the following 1-step scenario:

Forecast: Analysis: likelihood posterior prior

Bayes theorem

Likelihood of the observations over the assimilation window.

Marginal distribution of the observations.

Posterior probability distribution of the state variables given the observations over the assimilation window.

Outline

- 1. Some basics of data assimilation
- 2. Time-structure in model error
- 3. Model error and sources
- 4. Summary and current work

KF smoothing problem setup

$$\mathbf{x}^t \in \mathcal{R}^{N_x}$$
 Model variables $\mathbf{v}^l \in \mathcal{R}^{N_y}$ Observations

$$\mathbf{x}^{t} = m^{(t-1)\to t} \left(\mathbf{x}^{t-1}\right) + \underline{\mathbf{v}^{t}}$$
$$\mathbf{y}^{l} = h^{l} \left(\mathbf{x}^{t=l}\right) + \boldsymbol{\eta}^{l}$$

For the model error:

$$\frac{\mathbf{x}^0 \perp \mathbf{v}^t \perp \boldsymbol{\eta}^l}{cov(\mathbf{v}^i, \mathbf{v}^j) = \phi\left(|i-j|, \omega\right) \mathbf{Q}}$$
 e.g.
$$\phi\left(|i-j|, \omega, k\right) = e^{-\frac{|i-j|^k}{\omega}}$$

Forecast model ω_g vs. real (imperfect) model ω_r

Model error

Example: two limiting cases.

AR1 process with noise

The WC solution to the KS

Write this as an **extended** problem. $\mathbf{z}^{0:\tau} = [(\mathbf{x}^0)^T, (\mathbf{v}^{1:\tau})^T]^T$

$$\mathbf{M}^{0:\tau} = \left[\mathbf{M}^{0 \to \tau}, \mathbf{M}^{1 \to \tau}, \mathbf{M}^{2 \to \tau}, \cdots, \mathbf{M}^{(\tau - 1) \to \tau}, \mathbf{I} \right]$$

At the time of the observation: $\mathbf{x}^{\tau} = \mathbf{M}^{0:\tau} \mathbf{z}^{0:\tau}$

The **analysis**:

$$\mathbf{z}^{0:\tau}|\mathbf{y} \sim N\left(\boldsymbol{\mu}_z^{0:\tau,a}, \mathbf{A}_z^{0:\tau}\right)$$

 $\boldsymbol{\mu}_{z}^{0:\tau,a} = \left(\mathbf{I} - \mathbf{K}_{z}^{0:\tau}\mathbf{H}\mathbf{M}^{0:\tau}\right)\boldsymbol{\mu}_{z}^{0:\tau,b} + \mathbf{K}_{z}^{0:\tau}\mathbf{y}$

With moments:

$$\mathbf{A}_{z}^{0:\tau} = \left(\mathbf{I} - \mathbf{K}_{z}^{0:\tau} \mathbf{H} \mathbf{M}^{0:\tau}\right) \mathbf{D}^{0:\tau} \qquad \qquad \mathbf{D}^{0:\tau} = \begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}^{1:\tau} \end{bmatrix}$$

$$\mathbf{K}_{z}^{0:\tau} = \mathbf{D}^{0:\tau} \left(\mathbf{M}^{0:\tau} \right)^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \left(\mathbf{\Gamma}^{\tau} \right)^{-1} \qquad \mathbf{\Gamma}^{\tau} = \mathbf{H} \mathbf{M}^{0:\tau} \mathbf{D}^{0:\tau} \left(\mathbf{M}^{0:\tau} \right)^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} + \mathbf{R}.$$

Extended background/model error covariance:

Reminder

The fundamental way in which the Kalman Filter introduce effects from observations is through the following analysis equation.

With gain:

$$\mathbf{K} = \mathbf{B}\mathbf{H}^{\mathbf{T}} \left(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathbf{T}} + \mathbf{R} \right)^{-1}$$

In the Kalman smoother the model error covariance would also appear.

Unidimensional example

In a simple **uni-dimensional case**, it is easy to visualize the behaviour of the **gains** at different time steps.

$$\mathbf{x}^a = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{x}^b + \mathbf{K}\mathbf{y}$$

This scalars are plotted as a function of the **model and** the time-autocorrelation scale.

Gains

$$\mathbf{K}_{x}^{t} = \mathbf{M}^{0 \to t} \mathbf{K}_{x}^{0} + \sum_{j=1}^{t} \mathbf{M}^{j \to t} \mathbf{K}_{v}^{j}$$

Green regions is where observation dominates the analysis, magenta regions is where background dominates the analysis.

Cycling experiments

DA experiments with cycling using a Stochastic EnKF with large ensemble size.

20-time steps assimilation windows.

Observations every

- 2 steps
- 10 steps

Computed the overall (time-averaged) ratio:

$$ratRS = \frac{RMSE}{spread}$$

For a healthy DA system this is close to 1.

Cycling experiments

Observations every 2 steps.

	$\omega_g = 0.0$	$\omega_g = 0.1$	$\omega_g = 0.5$	$\omega_g = 1.0$	$\omega_g = 2.0$	$\omega_g = 10$
$\omega = 0.0$	1.0000	0.943089	0.9000	0.8112	0.8333	0.8431
$\omega = 0.1$	0.9675	0.9672	0.8846	0.8252	0.7815	0.8431
$\omega = 0.5$	1.0082	1.0569	0.9538	0.8741	0.8819	0.8881
$\omega = 1.0$	1.1229	1.1148	1.0615	0.9763	0.9583	0.9673
$\omega = 2.0$	1.1545	1.1557	1.0154	0.9792	0.9812	0.9539
$\omega = 10$	1.1382	1.1544	1.0923	0.9650	0.9375	0.9743

Observations every 10 steps.

	$\omega_g = 0.0$	$\omega_g = 0.1$	$\omega_g = 0.5$	$\omega_g = 1.0$	$\omega_g = 2.0$	$\omega_g = 10$
$\omega = 0.0$	0.9848	0.9697	0.9846	1.0667	1.2037	0.9722
$\omega = 0.1$	0.9552	0.9701	0.9692	1.0667	1.1818	0.9583
$\omega = 0.5$	0.9403	0.9254	0.9846	1.0500	1.0500	0.9306
$\omega = 1.0$	0.8806	0.8657	0.9063	0.9667	1.0926	0.9444
$\omega = 2.0$	0.8484	0.8235	0.8308	0.8833	0.9744	0.9306
$\omega = 10$	0.8806	0.8955	0.8769	0.9500	1.0741	0.9722

RMSEa < SPREAD_a

RMSEa = SPREAD_a

RMSEa > SPREAD_a

The observational frequency has an effect. Why? Haonan.

Outline

- 1. Some basics of data assimilation
- 2. Time-structure in model error
- 3. Model error and sources
- 4. Summary and current work

Representing all scales

(a) A perfect model resolving all the temporal scales. $\mathbf{v}^t = \mathbf{0} \ \forall \ t$

Reduced model

(b) A reduced model resolving only slow temporal scales. $\mathbf{v}^t
eq \mathbf{0}$

Let's take a look at how model error results from the **interaction** between scales.

Two-scale linear model

$$\mathbf{x}^{t+1} = \mathbf{M}^{t \to t+1} \mathbf{x}^t$$

Consider we can partition the state variable into slow and fast components:

$$\mathbf{x}^t = egin{bmatrix} \mathbf{x}_s^t \ \mathbf{x}_f^t \end{bmatrix} \qquad \mathbf{M}^{t o t+1} = egin{bmatrix} \mathbf{M}_{ss}^{t o t+1} & \mathbf{M}_{sf}^{t o t+1} \ \mathbf{M}_{fs}^{t o t+1} & \mathbf{M}_{ff}^{t o t+1} \end{bmatrix}$$

$$\mathbf{M}_{fs,sf}^{t\to t+1} = \mathbf{0} \mathbf{x}_{s}^{t=0} \xrightarrow{\mathbf{X}_{s}^{t=1}} \mathbf{x}_{s}^{t=2} \text{ No}$$

$$\mathbf{X}_{f}^{t\to t+1} = \mathbf{0} \mathbf{x}_{s}^{t=0} \xrightarrow{\mathbf{X}_{s}^{t=1}} \mathbf{x}_{f}^{t=2} \text{ One-way interaction}$$

$$\mathbf{M}_{fs}^{t\to t+1} = \mathbf{0} \mathbf{x}_{s}^{t=0} \xrightarrow{\mathbf{X}_{s}^{t=1}} \mathbf{x}_{f}^{t=2} \text{ One-way interaction}$$

$$\mathbf{X}_{f}^{t=0} \xrightarrow{\mathbf{X}_{s}^{t=1}} \mathbf{X}_{s}^{t=2} \text{ Two-way interaction}$$

$$\mathbf{X}_{s}^{t=0} \xrightarrow{\mathbf{X}_{s}^{t=1}} \mathbf{X}_{s}^{t=2} \text{ Two-way interaction}$$

Understanding the components

Once we cycle the model we get:

$$egin{bmatrix} \mathbf{x}_s^t \ \mathbf{x}_f^t \end{bmatrix} = egin{bmatrix} \mathbf{M}_{ss}^{0 o t} & \mathbf{M}_{fs}^{0 o t} \ \mathbf{M}_{sf}^{0 o t} & \mathbf{M}_{ff}^{0 o t} \end{bmatrix} = egin{bmatrix} \mathbf{x}_s^0 \ \mathbf{x}_f^0 \end{bmatrix}$$

Independent
$$\mathbf{M}^{t o t+1} = \begin{bmatrix} \mathbf{M}_{ss}^{t o t+1} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{ff}^{t o t+1} \end{bmatrix} \quad \mathbf{x}_{s}^{t} = \hat{\mathbf{M}}_{ss}^{0 o t} \mathbf{x}_{s}^{0}$$

Fast to slow $\mathbf{M}^{t o t+1} = \begin{bmatrix} \mathbf{M}_{ss}^{t o t+1} & \mathbf{M}_{sf}^{t o t+1} \\ \mathbf{0} & \mathbf{M}_{ff}^{t o t+1} \end{bmatrix} \quad \mathbf{x}_{s}^{t} = \hat{\mathbf{M}}_{ss}^{0 o t} \mathbf{x}_{s}^{0} \\ + \mathbf{M}_{sf,1w}^{0 o t} \mathbf{x}_{f}^{0} \end{bmatrix}$

Two-way $\mathbf{M}^{t o t+1} = \begin{bmatrix} \mathbf{M}_{ss}^{t o t+1} & \mathbf{M}_{sf}^{t o t+1} \\ \mathbf{M}_{fs}^{t o t+1} & \mathbf{M}_{ff}^{t o t+1} \end{bmatrix} \quad \mathbf{x}_{s}^{t} = \hat{\mathbf{M}}_{ss}^{0 o t} \mathbf{x}_{s}^{0} + \hat{\mathbf{M}}_{ss}^{0 o t} \mathbf{x}_{s}^{0} \\ + \mathbf{M}_{sf,1w}^{0 o t} \mathbf{x}_{f}^{0 o t} \mathbf{x}_{f}^{0 o t} \mathbf{x}_{f}^{0}$

Evolution of slow variables

Fast-to-slow interaction only

$$\mathbf{x}_{s}^{ au} = \hat{\mathbf{x}}_{s}^{ au} \left(\mathbf{x}_{s}^{0}
ight) + \mathbf{z}^{ au} \left(\mathbf{x}_{f}^{0}
ight)$$

Fast-to-slow interaction

Process by which noise is generated.

$$\mathbf{x}_{s}^{ au} = \hat{\mathbf{x}}_{s}^{ au} \left(\mathbf{x}_{s}^{0}\right) + \mathbf{z}^{ au} \left(\mathbf{x}_{f}^{0}\right)$$

$$\mathbf{z}^{ au} = \sum_{t=0}^{ au} \mathbf{M}_{ss}^{t o au} \boldsymbol{\zeta}^{t}$$

$$\boldsymbol{\zeta}^{t} = \mathbf{M}_{sf}^{t-1 o t} \mathbf{M}_{ff}^{t o t-1} \mathbf{z}_{f}^{0}$$

Common lag-1 representation of the dynamics.

$$\mathbf{x}_{s}^{t} = \mathbf{M}_{ss}^{t-1 \to t} \mathbf{x}_{s}^{t-1} + \boldsymbol{\zeta}^{t}$$

Two-way interactions

The components of the noise are not the same as those in the in the 1-way case.

Example 2. Solve using KF

The Kalman filter operates with **mean and covariance**.

Let's consider the **evolution** of an **initial mean and an initial covariance** under the action of this map.

$$\bar{\mathbf{x}}^t = \mathbf{M}^{0 \to t} \hat{\mathbf{x}}^0$$
$$\mathbf{B}^t = \mathbf{M}^{0 \to t} \mathbf{B}^0 \left(\mathbf{M}^{0 \to t} \right)^{\mathbf{T}}$$

Separate the effects coming from:

- reduced prediction
- 1-way noise
- ->1 way noise
- memory

The effect in the mean

Different components of model error have a very different behaviour.

The effect in the covariance

Assimilating only with the reduced model

Now we assimilate observations using different components.

Assimilating with a partial representation of extra components

We use a 'summarized' representation of 1w-noise, and partial reconstruction of the memory evolution matrix.

Outline

- 1. Some basics of data assimilation
- 2. Time-structure in model error
- 3. Model error and sources
- 4. Summary and current work

Using asynchronous fast observations

Using asynchronous fast observations

Summary and current work

- We have explored the effect of time **auto-correlated model error** in the **Kalman Smoother**.
- The impact of the observations over a window depend strongly upon the magnitude of the model. For **shrinking models**, the **magnitude of the 'memory' matters considerably**.
- We have illustrated 'physical' origins for model error of different nature, and the different behaviour of the components.
- Can we use the slow-varying error (memory) in the assimilation. Can this be deduced from observations?