Cryptographie et sécurité $\mathbf{IFT-606}$

Devoir 1 - Cryptographie et attaques

Amandine Fouillet - 14 130 638 Frank Chassing - 14 153 710

19 février 2015

Table des matières

1	Wi-	Fi				
	1.1	Fonctionnement des trois algorithmes de chiffrement	4			
	1.2	Points faibles et attaques possibles des trois algorithmes de chiffrement	4			
	1.3	Aircrack-ng	4			
2	Chi	ffrement et signature	5			
	2.1	Génération d'une paire de clé RSA	5			
	2.2	Création d'un fichier contenant la partie publique de la clé RSA	5			
	2.3	Chiffrement de la partie privée générée	5			
	2.4	Chiffrement d'un message	6			
	2.5	Déchiffrement d'un message	6			
	2.6	Signature du fichier	7			
3	Atta	aque décortiquée	7			
T_i		des figures				
	1	Génération de la paire	5			
	2	Fichier obtenu	5			
	3	Exécution de la commande	5			
	4	Clé publique	5			
	5	Exécution de la commande	6			
	6	Fichier cle.pem	6			
	7	Fichier message.txt	6			
	8	Exécution de la commande	6			
	9	Fichier messageC.txt	7			
	10	Exécution de la commande	7			
	11	Fichier messageD.txt	7			
	12	Exécution de la commande	7			
	13	Fichier fic.sig	7			
	14	Vérification de la signature	8			

1 Wi-Fi

- 1.1 Fonctionnement des trois algorithmes de chiffrement
- 1.2 Points faibles et attaques possibles des trois algorithmes de chiffrement
- 1.3 Aircrack-ng

2 Chiffrement et signature

2.1 Génération d'une paire de clé RSA

Pour générer une paire de clé RSA d'une taille de 2048 bits protégée par un mot de passe, on exécute la commande suivante : genrsa -out cle.pem -des 2048 (1). Le fichier généré cle.pem (FIGURE 2) contient maintenant la paire de clé RSA d'une taille de 2048.

FIGURE 1 – Génération de la paire

FIGURE 2 – Fichier obtenu

2.2 Création d'un fichier contenant la partie publique de la clé RSA

Pour créer un fichier contenant seulement la partie publique de la clé RSA on exécute la commande suivante : rsa -in cle.pem -pubout -out clePublique.pem (FIGURE 3). Le fichier généré clePublique.pem (FIGURE 4) contient maintenant la clé publique.

Figure 3 – Exécution de la commande

Figure 4 – Clé publique

2.3 Chiffrement de la partie privée générée

Pour chiffrer la partie privée générée, on exécute la commande suivante : rsa -in cle.pem -des3 -out cle.pem (FIGURE 5). Quand on réouvre le fichier cle.pem on remarque que le chiffrement a changé pour un chiffrement avec l'algorithme des3 (FIGURE 6).

```
Amandine — openss! — 80×24

Last login: Thu Feb 19 14:12:42 on ttys000

MacBook-Air-de-Amandine: Amandines openss!

OpenSSI> genrsa -out cle.pem -des 2048

Generating RSA private key, 2048 bit long modulus

...++

e is 65537 (0x10001)

Enter pass phrase for cle.pem:

Verifying - Enter pass phrase for cle.pem:

OpenSSI> rsa -in cle.pem -pubout -out clePublique.pem

Enter pass phrase for cle.pem:

writing RSA key

OpenSSI> rsa -in cle.pem -des3 -out cle.pem

Enter pass phrase for cle.pem:

writing RSA key

Enter pass phrase:

Verifying - Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

OpenSSI>
```

FIGURE 5 – Exécution de la commande

cle.pem -----BEGIN RSA PRIVATE KEY----Proc-Type: 4, ENCRYPTED DEK-Info: DES-BEBG-CBC, AF82BA7AABC18D2F BUYG+yJ48ImsCul-8Fgj Sibsur/1kh22rA4rTmunie+ifV7R86GdT75j 0X8ATeVtm yp8ip28iULSXKYxxAbvXL3/rYXGMmgRudyG62tQYd58jg8bhHF/R80jkAYgLTnPX bu8BABBAddwH10s-byPSprak(10pVRH1ez-8Brja0NR82D772bnH2vUXtv3/yAX9A4emuq/nXX3BAjB8fkWlcwYJy08bwj6x16tccm0XgceEakCAveBuF8HE9jUVyngb5i UNbddwABM6Mp8BA8Fay-7/0f3Ju7L3v3/d857G1Jp12PC7yjmj ff5tb0df12EkVV Ahlach8/Pv/HZ5D1fRHm93BK40ceNBRDSUhoh5pG67PGXUHSY9FcftL0E84085Af4K ccFe63i=hUDYff8D70kBv7-Sp6; klpll.yC95ESUIMABAAPF1s; 479UJuj vGzKevr7E5pThj3kvWoQLyAgnPCT-024mxYSSUFxUdeR1PBKUBFoyh/6w1DIwhgMVpCKG8T jmSuIZod1Hobsbv8gcnF6bkWZfMpK/CV9ESUIMABAAPF1s; 479UJuj vGzKevr7E5pThj3kvWoQLyAgnPCT-024mxYSSUFxUdeR1PBKUBFoyh/6w1DIwhgMVpCKG8T jmSuIZod1Hobsbv8gcnF6bkWZfMpK/ECUIEDAAXXEA94Y37JGTH2413isxwUK ETPS1PySPZXC5kFTnR8f2hG2rLsTtba00K7DNx+df4/bbDR74AnE66B10Qx19d0 JRFKTHfM17apDPNyRSGdJJUhu/8IrSa3oTw1PZTJuJXXRTM6BkJAABMDB1SZp pbCsclurzNNt82p6Py8o1L/MdwBkkBpA83Ju1ronsVuGHm108k5pbu7/PPJdd0 xMNkcca08gc247538YgcdC02rpDIXXM4MextSynTeff686ALD6k6Wf3ggYXDu1 ph2X01SKxLVUBmL33wd1E0+097-7331jnXidtd1nU/csk3Tvxb10R7KKxgTvxxLD5 pgKR7RZx/KbBscCY24xSdGdTjgkmC42pepAB1ObeScD67fHYH8Wf3gUZUNLP7-C6 JGLAxilimW-340e2idkr/6aduSEEdMwHY+/u/J8VfC0RxPyb1dANP/ewDtjfAOV17 KJFBLOXGSWFKFKSxnVR4DF1BOATBR00H3MEE-102Jv24TVSGGOVY-IrcXv31 xiDnJwc0j Ewwr0FgLWEL88-W/RwJKgrMedUkX8Wkz-CZyynAcjyoNybry-IrcXv31 xiDnJwc0j Ewwr0FgLWEL88-W/RwJKgrMed

FIGURE 6 – Fichier cle.pem

2.4 Chiffrement d'un message

Nous allons maintenant chiffrer le fichier message.txt (FIGURE 7) qui contient le message "OpenSSL is really cool!!!". Pour se faire, nous exécutons la commande suivante : rsautl -encrypt -in message.txt -inkey cle.pem -out messageC.txt (FIGURE 8). Le fichier messageC.txt contient le message crypté (FIGURE 9).

FIGURE 7 – Fichier message.txt

FIGURE 8 – Exécution de la commande

2.5 Déchiffrement d'un message

Pour déchiffrer le message du fichier messageC.txt, on exécute la commande suivante : rsautl -decrypt -in messageC.txt -inkey cle.pem -out messageD.txt (FIGURE 10). On obtient le fichier messageD.txt qui contient le message décrypté (FIGURE 11) qui correspond bien au message initial.

FIGURE 9 – Fichier messageC.txt

FIGURE 10 – Exécution de la commande

FIGURE 11 – Fichier messageD.txt

messageD.txt

2.6 Signature du fichier

Pour signer le fichier, on exécute la commande suivante : rsautl -sign -inkey cle.pem -in messa-geD.txt -out fic.sig (Figure 12). La Figure 13 montre le fichier fic.sig obtenu.

```
Amandine — openss! — 80×24

Last login: Thu Feb 19 14:12:42 on ttys000

MacBook-Air-de-Amandine: Amandines openss!

OpenSSL> genrsa - out cle.pem -des 2048

Generating RSA private key, 2048 bit long modulus

...++

e is 65537 (0x10001)

Enter pass phrase for cle.pem:

Verifying - Enter pass phrase for cle.pem:

OpenSSL> rsa -in cle.pem -pubout -out clePublique.pem

Enter pass phrase for cle.pem:

writing RSA key

OpenSSL> rsa -in cle.pem -des3 -out cle.pem

Enter pass phrase for cle.pem:

writing RSA key

OpenSSL> rsa -in cle.pem -des3 -out cle.pem

Enter pass phrase for cle.pem:

Writing RSA key

OpenSSL> rsautl -encrypt -in message.txt -inkey cle.pem -out messageC.txt

Enter pass phrase for cle.pem:

OpenSSL> rsautl -decrypt -in messageC.txt -inkey cle.pem -out messageD.txt

Enter pass phrase for cle.pem:

OpenSSL> rsautl -sign -inkey cle.pem -in messageD.txt -out fic.sig

Enter pass phrase for cle.pem:

OpenSSL> rsautl -sign -inkey cle.pem -in messageD.txt -out fic.sig

Enter pass phrase for cle.pem:

OpenSSL> rsautl -sign -inkey cle.pem -in messageD.txt -out fic.sig
```

FIGURE 12 – Exécution de la commande

FIGURE 13 – Fichier fic.sig

Pour vérifier la signature, on exécute la commande suivante : rsautl -verify -pubin -inkey clePublique.pem -in fic.sig (Figure 14). On obtient le résultat attendu.

Figure 14 – Vérification de la signature

3 Attaque décortiquée