Réseaux de neurones IFT 780

Réseaux à convolution avancés et architectures convolutives modernes

Par Pierre-Marc Jodoin

1

Autres types de couches convolutives

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e5821

10

Convolution séparée

11

Convolution séparée

Les filtres 2D et 3D peuvent être séparés en filtres plus élémentaires

Bien que tous les filtres 2D (et 3D) ne soient pas tous mathématiquement séparables, on peut tout de même les **approximer** par des filtres 1D

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \approx \begin{pmatrix} k & l & m \end{pmatrix} * \begin{pmatrix} n \\ o \\ p \end{pmatrix}$$

16

17

Convolution séparée en profondeur (Depthwise Separable Convolution)

Convolution 3D Souvent en imagerie médicale on utilise plusieurs « modalités » et des acquisitions en 3D (ici un cerveau au complet)

Convolution à trous

Autres pratiques courantes

Prétraitement des données en entrée

Pour des images RGB (ex. CIFAR10, CIFAR100, ImageNet, etc)

- Soustraire l'image moyenne des données d'entraînement (e.g AlexNet)
 - Soustraite une image 32x32x3 pour CIFAR10

$$x_{MOY} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

40

40

Prétraitement des données en entrée

Pour des images RGB (ex. CIFAR10, CIFAR100, ImageNet, etc)

- Soustraire l'image moyenne des N images d'entraînement (e.g AlexNet)
 - Soustraite une image moyenne 32x32x3 pour CIFAR10

$$x_{MOY} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- Soustraire une moyenne par canal (e.g. VGGNet)
 - Soustraite trois valeurs : R, G, B

$$R = \frac{1}{N} \sum_{k=1}^{N} \sum_{i,j} x_k[i,j].R$$

$$G = \frac{1}{N} \sum_{k=1}^{N} \sum_{i,j} x_{k}[i,j].C$$

$$B = \frac{1}{N} \sum_{k=1}^{N} \sum_{i,j} x_{k}[i, j].B$$

41

Normalisation

Observation : Normaliser les données en entrée est une bonne chose.

Question : pourquoi ne pas normaliser les données à l'entrée de chaque couche?

Normalisation: Plusieurs options Instance normalization Layer normalization Batch normalization Group normalization Pour plus de détails https://medium.com/nerd-for-tech/overview-of-normalization-techniques-in-deep-learning-e12a79060daf

Normalisation par couche (Layer norm)

def layernorm_forward_pass(x, eps):

#step 1 : calculer la moyenne et la variance
mu = np.mean(x, -1)[:, :, np.newaxis]
var = np.var(x, -1)[:, :, np.newaxis]

#step 2 : normaliser les données
x_norm = (x - mu)/np.sqrt(var + eps)
return x_norm

Question: est-ce pertinent de normaliser tous les neurones de toutes les couches? Pas toujours!

50

50

Normalisation par couche (Layer norm)

Solution: permettre au réseau d'apprendre à défaire la normalisation

$$\begin{split} \mu &= \frac{1}{5} \sum_{i=1}^{5} x_{i} & \longrightarrow \text{Taille 26 x 26} \\ \sigma^{2} &= \frac{1}{5} \sum_{i=1}^{5} (x_{i} - \mu)^{2} & \longrightarrow \text{Taille 26 x 26} \\ \hat{x}_{i} &= \frac{x_{i} - \mu}{\sqrt{\sigma^{2} + \varepsilon}} & \longrightarrow \text{Taille 26 x 26} \\ \bar{x}_{i} &= \gamma \circ \hat{x}_{i} + \beta & \longrightarrow \gamma \text{et } \beta \text{ de taille 26 x 26 x 5} \end{split}$$

Paramètres appris par le système. Ainsi, le réseau peut apprendre que $\gamma=\gamma$ et $\beta=\mu$ et ainsi annuler la normalisation au besoin.

NOTE: produit de Hadamar $\widetilde{x}_i = \gamma \circ \hat{x}_i + oldsymbol{eta}$

$$\begin{bmatrix} \gamma_1 & \gamma_2 & \gamma_3 & \gamma_4 \\ \gamma_5 & \gamma_6 & \gamma_7 & \gamma_8 \\ \gamma_9 & \gamma_{10} & \gamma_{11} & \gamma_{12} \\ \gamma_{13} & \gamma_{14} & \gamma_{15} & \gamma_{16} \end{bmatrix} \circ \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ x_5 & x_6 & x_7 & x_8 \\ x_9 & x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} & x_{16} \end{bmatrix} = \begin{bmatrix} \gamma_1 x_1 & \gamma_2 x_2 & \gamma_3 x_3 & \gamma_4 x_4 \\ \gamma_5 x_5 & \gamma_6 x_6 & \gamma_7 x_7 & \gamma_8 x_8 \\ \gamma_9 x_9 & \gamma_{10} x_{10} & \gamma_{11} x_{11} & \gamma_{12} x_{12} \\ \gamma_{13} x_{13} & \gamma_{14} x_{14} & \gamma_{15} x_{15} & \gamma_{16} x_{16} \end{bmatrix}$$

52

52

Normalisation par couche (*Layer norm*)

def layernorm_forward_pass(x, eps):
 #step 1 : calculer la moyenne et la variance
 mu = np.mean(x, -1)[:, :, np.newaxis]
 var = np.var(x, -1)[:, :, np.newaxis]

 #step 2 : normaliser les données
 x_norm = (x - mu)/np.sqrt(var + eps)

 #step 3 : "dénormaliser" les données
 x_norm = x_norm*self.gamma + self.beta
 return x_norm

53

53

Normalisation par lot (Batch norm)

Observation : Normaliser les données en entrée est une bonne chose.

Question : pourquoi ne pas normaliser les données à l'entrée de chaque couche?

Couche entrée: Image RGB:
Couche 1: 3 filtres de taille 7x7
Couche 2: 5 filtres de taille 9x9
Couche 3: 4 filtres de taille 11x11
Convolution « valid »

54 Image: loffe et al. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv, 2015.

Normalisation par lot (Batch norm)

def batchnorm_forward_pass(x, eps):

return x_norm

#step 1 : calculer la moyenne et la variance mu = np.mean(x, axis=0) var = np.var(x, axis=0) #step 2 : normaliser les données $x_norm = (x - mu)/np.sqrt(var + eps)$

Question: est-ce pertinent de normaliser tous les neurones de toutes les couches? Pas toujours!

58

Normalisation par lot (Batch norm)

Solution: permettre au réseau d'apprendre à défaire la normalisation par lot

$$x_{MOY} = \frac{1}{3} \sum_{i=1}^{3} x_i$$

$$x_{VAR} = \frac{1}{3} \sum_{i=1}^{3} (x_i - x_{MOY})^2$$

$$\hat{x}_i = \frac{x_i - x_{MOY}}{\sqrt{x_{VAR} + \varepsilon}}$$

$$\hat{x} = x \circ \hat{x} + \beta$$

Paramètres appris par le système. Ainsi, le réseau peut apprendre que $\gamma = \sqrt{x_{VAR}}$ et $\beta = x_{MOY}$ et ainsi annuler la normalisation au besoin.

59

Normalisation par lot (Batch norm)

 x_i : les cartes d'activations du ième lot

Contient 26x26x5=3380 neurones

- → Taille 26 x 26 x 5
- → Taille 26 x 26 x 5
- → Taille 26 x 26 x 5
- $\rightarrow \gamma$ et β de taille 26 x 26 x 5

Normalisation par lot (Batch norm)

61

Normalisation par lot (Batch norm)

En généralisation, lorsqu'on souhaite traiter une seule donnée (donc une taille de lot de 1), on remplace et par des constantes précalculées

$$\hat{x}_i = \frac{x_i - \mu}{\sqrt{\sigma^2 + \varepsilon}}$$

c'est-à-dire

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Image: loffe et al. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv, 201

Normalisation (Batch et layer norm)

Pour plus d'information:

- https://deepnotes.io/batchnorm
- Ioffe et al. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv, 2015.
- $\hbox{\color{red} \bullet } \quad \text{https://medium.com/nerd-for-tech/overview-of-normalization-techniques-in-deep-learning-e} \\ 12a79060 \\ \text{daf}$

65

Autre bonne pratique : Dropout p = 0.5 # probability of keeping a unit active. higher = less dropout def train_step(X): """ X contains the data """ # forward pass for example 3-layer neural network H1 = np.maximum(0, np.dot(W1, X) + b1) U1 = np.random.rand(*H1.shape) < p # first dropout mask H1 *= U1 # drop! H2 = np.maximum(0, np.dot(W2, H1) + b2) U2 = np.random.rand(*H2.shape) < p # second dropout mask H2 *= U2 # drop! out = np.dot(W3, H2) + b3 # backward pass: compute gradients... (not shown) # perform parameter update... (not shown)

Ensemble de modèles

- 1- Entraîner indépendamment différents modèles
- 2- En généralisation, faire voter ces modèles

Permet d'améliorer les performances de 2-3%

NOTE Même entraîner N-fois le même modèle fonctionne!

Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, Rob Fergus Regularization of Neural Networks using DropConnect, ICML 2013

Transfert d'apprentissage

(Transfer learning)

Question : il faut un très grand nombre de données annotées pour entraîner un réseaux de neurones profonds?

Réponse : Faux, si on dispose d'un modèle pré-entraîné sur une base de données similaire.

À retenir pour vos projets:

Vous avez une BD qui a un nombre limité de données annotées?

- 1. Trouvez une grosse BD contenant des données similaires
- 2. Entraînez un réseau de neurones
- 3. Transférez le modèle à votre projet
- 4. Réentraînez votre modèle (ou une partie de votre modèle)

Plusieurs bibliothèques ont un "Model Zoo" avec des modèles pré-entraînés

TensorFlow: https://github.com/tensorflow/models PyTorch: https://github.com/pytorch/vision

85

L'augmentation de données n'est pas une exception

c'est la norme

Il n'y a *a priori* aucune raison pour ne pas l'utiliser dans vos projets.

92

CLASSIFICATION D'IMAGE

AlexNet ENTRÉE: 227x227x3 CONV1: 96 x 55 x 55 Couche 2 MaxPool: 3x3 stride stride 2 Quelle est la taille des cartes d'activation? Réponse: (55-3)/2+1 = 27

AlexNet ENTRÉE: 227x227x3 CONV1: 55 x 55 x 96 MAX POOL1: 27 x 27 x 96 ...

Property of the part of the

VGG16	Cartes d'activation	input 3x2 conv. 64
ENTRÉE	[224x224x3]	3x3 conv, 64
CONV-3x3-64	[224x224x64]	Pool
CONV-3x3-64	[224x224x64] [224x224x64]	3x3 conv, 128
POOL-2x2	[112x112x64]	3x3 conv, 128
CONV-3x3-128	[112x112x04] [112x112x128]	Pool
CONV-3x3-128	[112x112x128]	3x3 conv, 256
POOL-2x2	[56x56x128]	3x3 conv, 256
CONV-3x3-256	[56x56x256]	Pool
CONV-3x3-256	[56x56x256]	3x3 conv. 512
CONV-3x3-256	[56x56x256]	3x3 conv, 512
POOL-2x2	[28x28x256]	3x3 conv, 512
CONV-3x3-512	[28x28x512]	Pool
CONV-3x3-512	[28x28x512]	3x3 conv, 512
CONV-3x3-512	[28x28x512]	3x3 conv, 512
POOL-2x2	[28X28X512] [14X14X512]	3x3 conv, 512
CONV-3x3-512	[14x14x512] [14x14x512]	Pool
CONV-3x3-512	[14x14x512] [14x14x512]	FC 4096
CONV-3x3-512	[14x14x512] [14x14x512]	FC 1000
POOL-2x2	[7x7x512]	Softmax
FC-4096	[1x1x4096]	
FC-4096	[1x1x4096] [1x1x4096]	VGG16
FC-4096	[1x1x4096] [1x1x1000]	120
	[IAIAI000]	
		Image: http://cs231n.stanford.edu/slides

$\overline{}$			
VGG16	Cartes d'activation	Nb Neurones	input 3x3 conv. 64
ENTRÉE	[224x224x3]	150 K	3x3 conv, 64
CONV-3x3-64	[224x224x64]	3.2 M	Pool
CONV-3x3-64	[224x224x64]	3.2 M	3x3 conv, 128
POOL-2x2	[112x112x64]	800 k	3x3 conv, 128 Pool
CONV-3x3-128	[112x112x128]	1.6 M	3x3 conv. 256
CONV-3x3-128	[112x112x128]	1.6 M	3x3 conv. 256
POOL-2x2	[56x56x128]	400 K	3x3 conv, 256
CONV-3x3-256	[56x56x256]	800 K	Pool
CONV-3x3-256	[56x56x256]	800 K	3x3 conv, 512
CONV-3x3-256	[56x56x256]	800 K	3x3 conv, 512
POOL-2x2	[28x28x256]	200 K	3x3 conv, 512
CONV-3x3-512	[28x28x512]	400 K	Pool
CONV-3x3-512	[28x28x512]	400 K	3x3 conv. 512 3x3 conv. 512
CONV-3x3-512	[28x28x512]	400 K	3x3 conv, 512
POOL-2x2	[14x14x512]	100 K	Pool
CONV-3x3-512	[14x14x512]	100 K	FC 4096
CONV-3x3-512	[14x14x512]	100 K	FC 4096
CONV-3x3-512	[14x14x512]	100 K	FC 1000
POOL-2x2	[7x7x512]	25 K	Softmax
FC-4096	[1x1x4096]	4094	VGG16
FC-4096	[1x1x4096]	4096	
FC-4096	[1x1x1000]	1000	121
$\overline{}$			Image: http://cs231n.stanford.edu/slides

VGG16	Cartes d'activation	Nb Neurones	Nb Paramètres	input 3x3 conv, 64
ENTRÉE	[224x224x3]	150 K	0	3x3 conv, 64
CONV-3x3-64	[224x224x64]	3.2 M	(3*3*3)*64 = 1,728	Pool
CONV-3x3-64	[224x224x64]	3.2 M	(3*3*64)*64 = 36,864	3x3 conv, 128
POOL-2x2	[112x112x64]	800 k	0	3x3 conv, 128
CONV-3x3-128	[112x112x04]	1.6 M	(3*3*64)*128 = 73,728	Pool 3x3 conv, 256
CONV-3x3-128	[112x112x128]	1.6 M	(3*3*128)*128 = 147,456	3x3 conv, 256
POOL-2x2	[56x56x128]	400 K	0	3x3 conv, 256
CONV-3x3-256	[56x56x126]	800 K	(3*3*128)*256 = 294,912	Pool
CONV-3x3-256	[56x56x256]	800 K	(3*3*256)*256 = 589,824	3x3 conv, 512
CONV-3x3-256	[56x56x256]	800 K	(3*3*256)*256 = 589,824	3x3 conv, 512
POOL-2x2	[28x28x256]	200 K	0	3x3 conv, 512
CONV-3x3-512	[28x28x512]	400 K	(3*3*256)*512 = 1.179.648	Pool
CONV-3x3-512	[28x28x512]	400 K	(3*3*512)*512 = 2,359,296	3x3 conv, 512
CONV-3x3-512	[28x28x512]	400 K	(3*3*512)*512 = 2,359,296	3x3 conv, 512
POOL-2x2	[14x14x512]	100 K	0	3x3 conv, 512 Pool
CONV-3x3-512	[14x14x512]	100 K	(3*3*512)*512 = 2.359.296	FC 4096
CONV-3x3-512	[14x14x512]	100 K	(3*3*512)*512 = 2,359,296	FC 4096
CONV-3x3-512	[14x14x512]	100 K	(3*3*512)*512 = 2,359,296	FC 1000
POOL-2x2	[7x7x512]	25 K	0	Softmax
FC-4096	[1x1x4096]	4094	7*7*512*4096 = 102,760,448	VGG16
FC-4096	[1x1x4096]	4096	4096*4096 = 16,777,216	
FC-4096	[1x1x1000]	1000	4096*1000 = 4,096,000	122

VGGNet	
VOONCE	
	input 3x3 conv. 64
	3x3 conv, 64
	Pool
	3x3 conv, 128
	3x3 conv, 128
	Pool
	3x3 conv, 256
Nb neurones totaux : ~15 M	3x3 conv, 256 3x3 conv, 256
Mémoire totale neurones (4 octets par neurones): ~60 Mo	Pool
Nb paramètres totaux: 138 M	3x3 conv, 512
Mémoire total paramètres (4 octets par paramètres): 552 Mo	3x3 conv, 512
memore total parameters (* octobs par parameters) * 552 mo	3x3 conv, 512
	Pool 3x3 conv. 512
	3x3 conv, 512
	3x3 conv, 512
~ 612 Mo pour la propagation avant d'une image	Pool
	FC 4096
	FC 4096
	FC 1000
	Softmax
	VGG16
\(\	123

Exemple de code simple def forward(self, x): identity = x.clone() x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x += identity x = self.relu(x) return x

stage	output	ResNet-50		ResNeXt-50 (32×4	d)	
conv1	112×112	7×7, 64, strid	le 2	7×7, 64, stride 2		
		3×3 max pool, s	tride 2	3×3 max pool, strid	e 2	
conv2	56×56	1×1, 64 3×3, 64 1×1, 256	×3	1×1, 128 3×3, 128, C=32 1×1, 256	×3	Bottleneck Residual layer
conv3	28×28	1×1, 128 3×3, 128 1×1, 512	×4	1×1, 256 3×3, 256, C=32 1×1, 512	×4	•
conv4	14×14	1×1, 256 3×3, 256 1×1, 1024	 ×6	1×1, 512 3×3, 512, C=32 1×1, 1024	×6	
conv5	7×7	1×1,512 3×3,512 1×1,2048	 ×3	1×1, 1024 3×3, 1024, C=32 1×1, 2048]×3	
	1×1	global average 1000-d fc, soft		global average poo 1000-d fc, softmax		
# p	arams.	25.5×10 ⁶		25.0×10 ⁶		
FI	LOPs	4.1×10 ⁹		4.2×10 ⁹		

MobileNet

[Howard et al.'17]

Tirés de l'article

Conv dw

3x3 Depthwise Conv
BN
ReLU
1x1 Conv
BN
Relli

(autre illustration de la page précédente)

Type / Stride	Filter Shape	Input Size
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$
Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	112 × 112 × 64
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv / s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv / s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv / s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$
Conv dw / s2	3 × 3 × 256 dw	$28 \times 28 \times 256$
Conv / s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$
Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv/sl	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv / s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
Conv / s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$
FC/sl	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$

161

MobileNet

[Howard et al.'17] Tiré de l'article Meilleurs résultats Moins de calculs Moins de paramètres.

Table 8. MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138

 Model 9. Smaller MobileNet Comparison to Popular Models

 Model
 ImageNet
 Million
 Million

 Accuracy
 Mult-Adds
 Parameters

 0.50 MobileNet-160
 60.2%
 76
 1.32

 Squeezenet
 57.5%
 1700
 1.25

 AlexNet
 57.2%
 720
 60

Howard et al. "Modulenets: Efficient Convolutional Neural networks for modile vision applications", arxiv 1704-04861, 2017

XceptionNet

Image tirée de l'article

Table 1. Classification performance comparison on ImageNet (single crop, single model). VGG-16 and ResNet-152 numbers are only included as a reminder. The version of Inception V3 being benchmarked does not include the auxiliary tower.

	Top-1 accuracy	Top-5 accuracy
VGG-16	0.715	0.901
ResNet-152	0.770	0.933
Inception V3	0.782	0.941
Xception	0.790	0.945

F.Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, CVPR 2017

166

169

DenseNet Avantages: 3. Le classificateur utilise des caractéristiques de bas et de haut niveau Standard Connectivity: Classifier uses most complex (high level) features ** Increasingly complex features** Avec un CNN conventionnel, le classificateur base sa prédiction sur les caractéristiques de la dernière couche, c-à-d des caractéristiques de haut niveau

