上海大学研究生 量子场论讲义

主讲: 陆杰

整理: 杨光耀 严禹坤 吴梦之

目录

1	引言		2
	1.1	引言	2
		1.1.1 因果律问题的分析	2
		1.1.2 构建理论的一般步骤	3
	1.2	分析力学回顾	3
		1.2.1 最小作用量原理与 Euler-Lagrange 方程	3
		1.2.2 哈密顿力学	4
	1.3	量子力学中的谐振子	5
		1.3.1 无耦合多体谐振子与自由全同粒子的粒子数表象	5
		1.3.2 多体耦合谐振子	6
	1.4	二次量子化:波函数算符化	7
	1.5	多体系统的连续极限与场概念的引入	8
	1.6	relativistic	9
2	对称	性	10
3	自由	场的量子化	10
4	相石	作用的量子场与费曼图	10

1 引言

1.1 引言

构建 OFT 的一些初衷

- 相对论性量子力学中的负能态问题
- 量子力学二级微扰论的虚粒子的诠释
- 因果律 (causality)

1.1.1 因果律问题的分析

我们考虑传播子

$$K(\vec{x}_2, \vec{x}_1; t_2, t_1) := \langle \vec{x}_2 | \hat{U}(t_2, t_1) | \vec{x}_1 \rangle \tag{1}$$

其中 $\hat{U}(t_2,t_1)$ 是时间演化算符。这一项的物理意义是,假设在 t1 时刻有一个由 $|\vec{x}_1\rangle$ 来刻画的量子态,即位于 \vec{x}_1 处的坐标算符本征态。让这个态经过一段时间演化后,它会变成弥漫于空间的波,在 t2 时刻有一定几率处于 \vec{x}_2 , $K(\vec{x}_2,\vec{x}_1;t_2,t_1)$ 所刻画的正是这个概率。在狭义相对论中,我们知道物质的运动和信息的传播都不能超光速,即类空的两点之间不应该有关联,所以类空的两点之间的传播子应该为 0。我们计算非相对论性量子力学中的自由粒子的传播子可以得到:(取 Planck 常数 $\hbar=1$)

$$K(\vec{x}_{2}, \vec{x}_{1}; t, 0) = \langle \vec{x}_{2} | e^{-i\frac{\vec{p}^{2}}{2m}t} | \vec{x}_{1} \rangle$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} \langle \vec{x}_{2} | e^{-i\frac{\vec{p}^{2}}{2m}t} | \vec{p} \rangle \langle \vec{p} | \vec{x}_{1} \rangle$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} e^{-i\frac{\vec{p}^{2}}{2m}t} e^{i\vec{p}(\vec{x}_{2} - \vec{x}_{1})}$$

$$= \left(\frac{m}{2\pi it}\right)^{3/2} e^{im|\vec{x}_{2} - \vec{x}_{1}|/2t}$$
(2)

当 $|\vec{x}_2 - \vec{x}_1|$ 很大而 t 很小时,这个传播子仍然不为 0,说明在类空间隔下的两个点之间存在关联,这与狭义相对论是矛盾的。所以我们应当考虑相对论性量子力学,此时自由粒子的传播子是

$$K(\vec{x}_{2}, \vec{x}_{1}; t, 0) = \langle \vec{x}_{2} | e^{-it\sqrt{\vec{p}^{2} + m^{2}}} | \vec{x}_{1} \rangle$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} e^{-it\sqrt{\vec{p}^{2} + m^{2}}} e^{i\vec{p}(\vec{x}_{2} - \vec{x}_{1})}$$

$$= \frac{1}{2\pi^{2} |\vec{x}_{2} - \vec{x}_{1}|} \int p \sin(p|\vec{x}_{2} - \vec{x}_{1}|) e^{-it\sqrt{\vec{p}^{2} + m^{2}}} dp$$

$$\sim e^{-m\sqrt{\vec{x}^{2} - t^{2}}}$$
(3)

这个传播子在类空间隔下仍然不为 0, 说明相对论性量子力学在因果律方面存在一些问题, 这将在 QFT 中得到回答。

1.1.2 构建理论的一般步骤

- 1 写下拉氏量,比如 $\mathcal{L}[\phi] = \partial^{\mu}\phi \partial_{\mu}\phi \frac{1}{2}m^{2}\phi^{2} + \lambda\phi^{4}$
- 2 写下路径积分,比如 $Z = \int \mathcal{D}\phi e^{i\int \mathcal{L}[\phi]}$
- 3 对路径积分依照耦合系数进行微扰展开
- 4 微扰计算路径积分
- 5 发现存在发散问题
- 6 正规化来分离发散部分,比如引入截断 Λ ,于是 $\int_{\mathbb{R}} \frac{1}{x^2} dx \to \int_{|x| > \frac{1}{\lambda} \frac{1}{2}} dx$
- 7 令耦合系数为截断的微扰展开式
- 8 重整化,只考虑路径积分的有限项
- 9 与实验比较
- 10 拿 Nobel 奖,或者从头开始

1.2 分析力学回顾

1.2.1 最小作用量原理与 Euler-Lagrange 方程

分析力学中,我们用广义坐标 q(t) 与广义速度 $\dot{q}=\frac{dq}{dt}$ 来刻画一个质点系统的运动状态。拉氏量 $L(q_i,\dot{q}_i;t)$ 是关于广义坐标和广义速度的泛函,用来刻画系统的运动规律。

Note: 函数 $f: \mathbb{R}^n \to \mathbb{R}^2$

泛函 $L: C(\Omega) \to \mathbb{R}$, 其中 $C(\Omega)$ 是 Ω 上的全体函数 力学体系的作用量定义为

$$S = \int_{t_1}^{t_2} L(q_i(t), \dot{q}_i(t); t) dt$$
 (4)

最小作用量原理 (哈密顿原理): 对于真实的一个运动轨迹,当坐标发生一个变分后,作用量不会变小。 也就是说 $\delta S=0$ 。

注:这里的变分是等时变分,即 $\delta t = 0$,故拉氏量的变分中没有 $\frac{\delta L}{\delta t} \delta t$ 项。

$$0 = \delta S = \delta \int_{t_{1}}^{t_{2}} L(q_{i}, \dot{q}_{i}; t) dt$$

$$= \int_{t_{1}}^{t_{2}} dt \left(\frac{\delta L}{\delta q_{i}} \delta q_{i} + \frac{\delta L}{\delta \dot{q}_{i}} \delta \dot{q}_{i} \right)$$

$$= \int_{t_{1}}^{t_{2}} dt \frac{\delta L}{\delta q_{i}} \delta q_{i} + \int_{t_{1}}^{t_{2}} (\delta \dot{q}_{i} dt) \frac{\delta L}{\delta \dot{q}_{i}} \delta \dot{q}_{i}$$

$$= \int_{t_{1}}^{t_{2}} dt \frac{\delta L}{\delta q_{i}} \delta q_{i} + \frac{\delta L}{\delta \dot{q}_{i}} \delta q_{i} \Big|_{t_{1}}^{t_{2}} - \int_{t_{1}}^{t_{2}} dt \frac{d}{dt} \left(\frac{\delta L}{\delta \dot{q}_{i}} \right) \delta q_{i}$$

$$= \int_{t_{1}}^{t_{2}} dt \left(\frac{\delta L}{\delta q_{i}} - \frac{d}{dt} \left(\frac{\delta L}{\delta \dot{q}_{i}} \right) \right) \delta q_{i}$$

$$(5)$$

于是我们得到了 Euler-Lagrange 方程如下

$$\frac{\delta L}{\delta q_i} - \frac{d}{dt} \left(\frac{\delta L}{\delta \dot{q}_i} \right) = 0 \tag{6}$$

Euler-Lagrange 方程是系统的运动方程,比如对于一个谐振子,其拉氏量为 $L=\frac{1}{2}m\dot{x}^2-\frac{1}{2}kx^2$,根据 Euler-Lagrange 方程可以得到,这正是谐振子的运动方程 $m\ddot{x}+kx=0$ 。

考虑 Newton 第二定律 $\vec{F} = m\ddot{x}$,对于保守力 \vec{F} ,一般总可以写成势能的梯度 $\vec{F} = \nabla V$,于是 Newton 第二定律可以写成 $m\ddot{x} - \nabla V$ 。这与 Euler-Lagrange 方程具有相同的形式,即如果令 $L = \frac{1}{2}m\dot{x}^2 - V$,则 Euler-Lagrange 方程给出的正是 Newton 第二定律,并且我们顺便得到了在保守力系统中,L = T - V。

1.2.2 哈密顿力学

定义广义动量

$$p_i = \frac{\partial L}{\partial \dot{q}_i} \tag{7}$$

对拉氏量作 Legendre 变换, 定义哈密顿量, 它是广义坐标和广义动量的函数

$$H(q_i, p_i; t) = p_i \dot{q}_i - L \tag{8}$$

由于 L 不显含 p_i ,我们计算得到 $\frac{\partial H}{\partial p_i} = \dot{q}_i$;以及根据 Euler-Lagrange 方程 (6), $\frac{\partial H}{\partial q_i} = -\frac{\partial L}{\partial q_i} = -\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} = -\frac{d}{dt}q_i = -\dot{q}_i$ 。于是我们得到了哈密顿正则方程

$$\begin{cases}
\dot{p}_i = -\frac{\partial H}{\partial q_i} \\
\dot{q}_i = \frac{\partial H}{\partial p_i}
\end{cases}$$
(9)

对于保守力系统,我们已经证明了其拉氏量等于动能减势能,即 L=T-V。由 (7),不难得到 H=T+V。应注意此式仅对保守力学系统成立,对于经典电磁场下带电质点,其哈密顿量为 $H=\frac{(\vec{p}+e\hat{A})^2}{2m}+e\phi(x)$,就不再是 T+V 的形式了。

对于一个谐振子,不难计算得到其哈密顿量 $H=\frac{p^2}{2m}+\frac{1}{2}kx^2$ 。利用哈密顿正则方程,不难得到谐振子的运动方程是

$$\begin{cases} \dot{p}_i = -kx \\ \dot{q}_i = \frac{p}{m} \end{cases} \tag{10}$$

定义泊松括号

$$\{A, B\} = \frac{\partial A}{\partial q_i} \frac{\partial B}{\partial p_i} - \frac{\partial B}{\partial q_i} \frac{\partial A}{\partial p_i}$$

$$\tag{11}$$

这里默认对指标 i 求和,称为 Einstein 求和。当然,严格来讲 Einstein 求和是一上一下两个指标求和,称为缩并,本质上来讲是流形的切空间及其对偶空间的内积,这里的 q_i 和 p_i 并不构成流形的切空间和对偶空间,所以这里不强调上下标。当然,更精细的理论会从辛几何的角度来理解分析力学,此时拉格朗日力学是切丛上的力学,哈密顿力学是余切丛上的力学,Einstein 求和也确实是切空间和余切空间的内积。于是可以得到广义坐标和广义动量的对易关系

$$\{q_i, p_j\} = \frac{\partial q_i}{\partial q_k} \frac{\partial p_j}{\partial q_k} - \frac{\partial p_j}{\partial q_k} \frac{\partial q_i}{\partial p_k}$$

$$= \delta_{ik} \delta_{jk}$$

$$= \delta_{ij}$$
(12)

力学量 $F = F(q_i, p_i; t)$ 的演化方程为

$$\frac{dF}{dt} = \frac{\partial F}{\partial q_i} \dot{q}_i + \frac{\partial F}{\partial p_i} \dot{p}_i + \frac{\partial F}{\partial t}
= \frac{\partial F}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial H}{\partial q_i} \frac{\partial F}{\partial p_i} + \frac{\partial F}{\partial t}
= \{F, H\} + \frac{\partial F}{\partial t}$$
(13)

特别地,对于哈密顿量,我们有

$$\frac{dH}{dt} = \frac{\partial H}{\partial t} \tag{14}$$

这意味着 $\frac{\partial H}{\partial t}=0$ \Rightarrow $\frac{dH}{dt}=0$,也就是说如果哈密顿量不显含时,那么哈密顿量是一个守恒量。

1.3 量子力学中的谐振子

一维谐振子的哈密顿量 $\hat{H}=rac{\hat{p}^2}{2m}+rac{1}{2}m\omega^2\hat{x}^2=-rac{\hbar^2}{2m}\nabla^2rac{1}{2}m\omega^2x^2$ 。定义产生湮灭算符

$$\begin{cases}
\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} (\hat{x} + \frac{i}{m\omega} \hat{p}) \\
\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} (\hat{x} - \frac{i}{m\omega} \hat{p})
\end{cases}$$
(15)

产生与湮灭算符的基本性质是

$$\hat{a} |n\rangle = \sqrt{n} |n-1\rangle$$

$$\hat{a}^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$$
(16)

于是可以求出第 n 能级的态矢量为

$$|n\rangle = \frac{(\hat{a}^{\dagger})^n}{\sqrt{n!}} |0\rangle \tag{17}$$

定义粒子数算符 $\hat{N} = \sum_{i} \hat{a}^{\dagger} \hat{a}$, 于是

$$\hat{N}|n\rangle = n|n\rangle \tag{18}$$

1.3.1 无耦合多体谐振子与自由全同粒子的粒子数表象

N 个无耦合谐振子的哈密顿量和态空间 (Fock 态) 为

$$\hat{H} = \hat{H}_k = \sum \frac{\hat{p}_k^2}{2m_k} + \frac{1}{2} m_k \omega_k \hat{x}_k^2 = \sum (\hat{a}^{\dagger} \hat{a} + \frac{1}{2}) \hbar \omega_k$$

$$|n_1 n_2 ... n_k ... n_N\rangle = (\hat{a}_1^{\dagger})^{n_1} (\hat{a}_2^{\dagger})^{n_2} ... (\hat{a}_N^{\dagger})^{n_N}$$
(19)

多体无耦合谐振子的 Fock 态空间可以用于刻画自由全同粒子系统。不严格来讲,可以按照以下表格来对应

谐振子系统	全同粒子系统
第 k 个谐振子	第 m 个粒子
$E = \sum_{k=1}^{N} n_k \hbar \omega_k$	$E = \sum_{m=1}^{N} n_m E_m$
Quanta in oscillators	particles in momentum

真空态定义为 $|\Omega\rangle = |00\rangle$, 于是 $\hat{a}_{p_1}^{\dagger}\hat{a}_{p_2}^{\dagger}|\Omega\rangle \propto |11\rangle$, 以及 $\hat{a}_{p_2}^{\dagger}\hat{a}_{p_1}^{\dagger}|\Omega\rangle \propto |11\rangle$ 。我们可以得到

$$\hat{a}_{n_1}^{\dagger} \hat{a}_{n_2}^{\dagger} = \lambda \hat{a}_{n_1}^{\dagger} \hat{a}_{n_1}^{\dagger}, \ |\lambda| = 1 \tag{20}$$

其中 $\lambda=1$ 时为玻色子, $\lambda=-1$ 时为费米子, $\lambda=e^{i\theta}$ 为任意子。玻色子和费米子产生湮灭算符的对易关系为

$$[\hat{a}_i^{\dagger}, \hat{a}_j^{\dagger}] = [\hat{a}_i, \hat{a}_j] = 0$$

$$[\hat{a}_i, \hat{a}_j^{\dagger}] = \delta_{ij}$$

$$|n_1 n_2 \dots\rangle = \Pi_m \frac{1}{\sqrt{n_m!}} (\hat{a}_{p_m}^{\dagger})^{n_m} |0\rangle$$
(21)

$$\{\hat{c}_i^{\dagger}, \hat{c}_j^{\dagger}\} = \{\hat{c}_i, \hat{c}_j\} = 0$$

$$\{\hat{c}_i, \hat{c}_i^{\dagger}\} = \delta_{ij}$$
(22)

1.3.2 多体耦合谐振子

经典耦合谐振子的哈密顿量

$$H = \sum_{j} \frac{p_j^2}{2m} + \frac{1}{2}k(q_{j+1} - q_j)^2$$
(23)

这里广义坐标 q_i 是第 j 个谐振子绝对位置相对于其平衡位置的相对坐标,我们假定相邻两个谐振子平衡位置的距离是 a,于是第 j 个谐振子的平衡位置是 ja,它的绝对位置是 $x_j = q_j + ja$ 。对于两个耦合谐振子的情形,我们可以对坐标 (q_1,q_2) 做可逆变换

$$\begin{pmatrix} q_1' \\ q_2' \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} \tag{24}$$

对动量也做相同变换,我们不难将哈密顿量改写成无耦合的形式 $H=\frac{p_1^2}{2m}+\frac{p_2^2}{2m}+\frac{1}{2}m\omega_1^2q_1^2+\frac{1}{2}m\omega_2^2q_2^2$ 。但是如果用相同的方式处理 N 个耦合谐振子,这个可逆矩阵并不容易构造,于是我们尝试傅里叶变换的方法。从泛函分析的观点来看,傅里叶变换实际上是希尔伯特空间上的基矢变换。我们不难知道,全体满足哈密顿正则方程的 $(q_1(t),...,q_n(t);p_1(t),...,p_n(t))$ 张成一个有限维线性空间,因此是一个希尔伯特空间。我们取这个线性空间的一组基 $\{(e^{i(ka-\omega t)},e^{i(k2a-\omega t)},...,e^{i(kja-\omega t)},...,e^{i(kNa-\omega t)};e^{i(ka-\omega t)},...,e^{i(kNa-\omega t)})\}$ 。我们对系统要求周期性边界条件 $x_{N+j}=x_j$,进而对波矢 k 有一个限制条件:

$$e^{ikNa} = 1 (25)$$

于是有 $k = \frac{2n\pi}{N}$,共有 N 种允许的取值,恰好可以系统的 N 个独立自由度。于是对 $q_j(t)$ 和 $p_j(t)$ 可做线性展开,即离散傅里叶变换

$$q_{j} = \frac{1}{\sqrt{N}} \sum_{k} \tilde{q}_{j} e^{-ikja}$$

$$q_{j} = \frac{1}{\sqrt{N}} \sum_{k} \tilde{p}_{j} e^{ikja}$$
(26)

 $e^{i(kja-\omega t)}$ 称为波矢 k 的振动模式或第 k 个振动模式,接下来将看到,它代表了一个集体激发,在固体物理中称为格波,波矢 k 是格波波矢,对格波做正则量子化后得到声子。于是哈密顿量变成

$$\hat{H} = \sum_{k} \frac{1}{2m} \tilde{p}_{k} \tilde{p}_{-k} + \frac{1}{2} m \omega_{k}^{2} \tilde{q}_{k}^{2}$$
(27)

这是 N 个无耦合的谐振子的系统哈密顿量,其中声子的振动频率 $\omega_k^2 = \frac{4K}{m} \sin^2 \frac{k\alpha}{2}$ 。接下来我们对其进行正则量子化,引入产生湮灭算符

$$\tilde{x}_k = \sqrt{\frac{\hbar}{2m\omega_k}} (\hat{a}_k + \hat{a}_k^{\dagger})$$

$$\tilde{p}_k = -i\sqrt{\frac{2m\hbar\omega_k}{2}} (\hat{a}_k - \hat{a}_k^{\dagger})$$
(28)

于是哈密顿量变成

$$\hat{H} = \sum_{k}^{N} \frac{1}{2} \hbar \omega_{k} (\hat{a}_{k} \hat{a}_{k}^{\dagger} + \hat{a}_{-k}^{\dagger} \hat{a}_{-k})$$
 (29)

由于 $\hat{a}_{-k}^{\dagger}\hat{a}_{-k} = \hat{a}_{-k}\hat{a}_{-k}^{\dagger} + 1$, 于是哈密顿量进而变成

$$\hat{H} = \sum_{k}^{N} \hbar \omega_k (\hat{a}_k \hat{a}_k^{\dagger} + \frac{1}{2}) \tag{30}$$

其中,当系统的谐振子数 N 趋于无穷时,第二项会贡献一个无穷大的零点能,不具有可观测效应,这个之后我们再详细讨论。

1.4 二次量子化:波函数算符化

不严格地来讲,一次量子化可以理解为把粒子变成波,二次量子化可以理解为把波变成粒子。(二次量子化:对于多个自由粒子,将具有相同状态的粒子平面波构成的波包视为状态特定的"粒子"?产生湮灭算符作用在一个波包上面产生或者湮灭一个平面波。)。

在粒子数表象下,波函数变为算符,作用在多粒子态上在 x 处产生确定的具有不同动量的粒子。

$$\begin{cases}
\Psi^{\dagger}(x) = \frac{1}{\sqrt{V}} \sum_{p} \hat{a}_{p}^{\dagger} e^{-i\vec{p}\cdot\vec{x}} \\
\Psi(x) = \frac{1}{\sqrt{V}} \sum_{p} \hat{a}_{p} e^{-i\vec{p}\cdot\vec{x}}
\end{cases}$$
(31)

玻色子和费米子分别满足对易关系和反对易关系

$$[\Psi(\vec{x}), \Psi^{\dagger}(\vec{y})] = \delta^{(3)}(\vec{x} - \vec{y})$$

$$[\Psi(\vec{x}), \Psi(\vec{y})] = [\Psi^{\dagger}(\vec{x}), \Psi^{\dagger}(\vec{y})] = 0$$
(32)

$$\begin{aligned}
\{\Psi(\vec{x}), \Psi^{\dagger}(\vec{y})\} &= \delta^{(3)}(\vec{x} - \vec{y}) \\
\{\Psi(\vec{x}), \Psi(\vec{y})\} &= \{\Psi^{\dagger}(\vec{x}), \Psi^{\dagger}(\vec{y})\} = 0
\end{aligned} \tag{33}$$

于是算符可以表达为

$$\hat{A} = \sum_{\alpha\beta} |\alpha\rangle \langle \alpha| \, \hat{A} \, |\beta\rangle \langle \beta|
= \sum_{\alpha\beta} A_{\alpha\beta} |\alpha\rangle \langle \beta|
= \sum_{\alpha\beta} A_{\alpha\beta} \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}$$
(34)

特别地, 动量算符、哈密顿量算符 (自由粒子)、势能算符表达为

$$\hat{p} = \sum_{p} \vec{p} \, \hat{a}_{p}^{\dagger} \hat{a}_{p} = \sum_{p} \vec{p} \, \hat{n}_{p}$$

$$\hat{H} = \sum_{p} \frac{\vec{p}^{2}}{2m} \hat{a}_{p}^{\dagger} \hat{a}_{p} = \sum_{p} \frac{\vec{p}^{2}}{2m} \hat{n}_{p}$$

$$\hat{V} = \sum_{p_{1}, p_{2}} V_{\vec{p}_{1} - \vec{p}_{2}} \hat{a}_{p}^{\dagger} \hat{a}_{p} = \sum_{p_{1}, p_{2}} V_{\vec{p}_{1} - \vec{p}_{2}} \hat{n}_{p}$$
(35)

1.5 多体系统的连续极限与场概念的引入

多体谐振子的哈密顿量和拉氏量是

$$H = \sum_{j} \left(\frac{p_{j}^{2}}{2m} + \frac{1}{2}k(q_{j+1} - q_{j})^{2} \right)$$

$$L = \sum_{j} \left(\frac{p_{j}^{2}}{2m} - \frac{1}{2}k(q_{j+1} - q_{j})^{2} \right)$$
(36)

当 $N \to \infty$ 时,我们可以认为 $\frac{q_{j+1}-q_{j}}{l} \to \frac{\partial \phi(t,\vec{x})}{\partial x} \sim \nabla \phi$,即连续极限下,离散的格点可以过渡到连续的场。此时,动能和势能分别过渡到

$$T = \sum_{j} \frac{1}{2} m \left(\frac{\partial q_{i}}{\partial t}\right)^{2} \to \frac{1}{l} \int dx \frac{1}{2} \left(\frac{\partial \phi(t, \vec{x})}{\partial t}\right)^{2} = \int dx \frac{1}{2} \rho \left(\frac{\partial \phi}{\partial t}\right)^{2}$$

$$V = \sum_{j} \frac{1}{2} k (q_{j+1} - q_{i})^{2} \to \sum_{j} k l^{2} \left(\frac{\partial \phi(t, \vec{x})}{\partial \vec{x}}\right)^{2} \sim \int dx \tau (\nabla \phi)^{2}$$
(37)

这样,哈密顿量和拉氏量过渡到连续体系中变成

$$H = \int d^{3} \left[\frac{1}{2} \rho \left(\frac{\partial \phi}{\partial t} \right)^{2} + \frac{1}{2} \tau (\nabla \phi)^{2} \right]$$

$$L = \int d^{x} \left[\frac{1}{2} \rho \left(\frac{\partial \phi}{\partial t} \right)^{2} - \frac{1}{2} \tau (\nabla \phi)^{2} \right]$$
(38)

场论中我们希望所有可观测量满足 Lorentz 协变性,但哈密顿量和拉氏量在 Lorentz 变换下都不是协变量,这为我们研究可观测量带来不便。我们可以引入拉氏密度 $\mathcal{L} = \frac{1}{2} \rho \left(\frac{\partial \phi}{\partial t} \right)^2 - \frac{1}{2} \tau (\nabla \phi)^2$,这是一个 Lorentz 协变量,于是拉氏量可以表示为 $L = \int d^x \mathcal{L}$ 。这样,作用量就可以写成 Lorentz 协变的形式

$$S = \int dt L = \int d^4x \mathcal{L} \tag{39}$$

最小作用量原理给出场论中的 Euler-Lagrange 方程

$$\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} = 0 \tag{40}$$

仿照分析力学,我们可以引入 ϕ 场的正则共轭动量场,以及哈密顿量密度

$$\pi(x) = \frac{\partial \mathcal{L}}{\partial \dot{\phi}}$$

$$\mathcal{H} = \pi \dot{\phi} - \mathcal{L}$$
(41)

类似有正则方程

$$\begin{cases}
\dot{\phi} = \frac{\partial \mathcal{H}}{\partial \pi} \\
\dot{\pi} = -\frac{\partial \mathcal{H}}{\partial \phi} + \nabla \cdot \frac{\partial \mathcal{H}}{\partial (\nabla \phi)}
\end{cases}$$
(42)

1.6 relativistic

我们采用记号 $\eta^{\mu\nu} = diag(1, -1, -1, -1)$ 的度规。

张量运算复习

考虑闵氏时空,坐标 $x^{\mu}=(t,\vec{x})$, $x_{\mu}=g_{\mu\nu}x^{\nu}=(t,\vec{-x})$ 。取自然单位制 $c=\hbar=1$,此时

$$p^{\mu} = (E, \vec{p})$$

$$p^{2} = p^{\mu}p^{\mu}\eta_{\mu\mu} = E^{2} - \vec{p}^{2} = m^{2}$$

$$\partial^{2} = \partial_{\mu}\partial^{\mu} = \partial^{\mu}\partial_{\mu}$$

$$(43)$$

常见的场

实标量场 Klein-Gorden 方程 $(\partial^2 + m^2)\phi(x) = 0$

拉氏量
$$\mathcal{L} = \frac{1}{2} (\partial^{\mu} \phi)(\partial_{\mu} \phi) - \frac{1}{2} m^2 \phi^2$$

复标量场
$$\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2), \ \phi^* = \frac{1}{\sqrt{2}}(\phi_1 - i\phi_2)$$

拉氏量
$$\mathcal{L} = (\partial^{\mu}\phi^*)(\partial_{\mu}\phi) - m^2\phi^*\phi$$

Dirac 场

电磁场 $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - J_{\mu}A^{\mu}$

$$F^{\mu\nu} = \begin{pmatrix} 0 & E_1 & E_2 & E_3 \\ -E_1 & 0 & -B_3 & B_2 \\ -E_2 & B_3 & 0 & -B_1 \end{pmatrix}$$

$$-E_3 & -B_2 & B_1 & 0$$

$$(44)$$

因此 $F_{\mu\nu}F^{\mu\nu} = 2(\vec{B}^2 - \vec{E}^2)$

除 $F_{\mu\nu}F^{\mu\nu}$ 外, $F_{\mu\nu}$ 还可构造出一个 Lorentz 赝标量 $\epsilon^{\mu\nu\alpha\beta}F_{\mu\nu}F_{\alpha\beta}\propto \vec{E}\cdot\vec{B}$,这一项会破坏宇称,与 量子反常和拓扑效应有密切的关系。

U(1) 对称性与流守恒

$$\partial_{\mu}J^{\mu} = 0 \tag{45}$$

Maxwell 方程组

$$\partial_{\lambda} F^{\lambda\mu} = J^{\mu} \implies \begin{cases} \nabla \cdot \vec{E} = \rho \\ \nabla \times \vec{B} = \vec{J} + \frac{\partial \vec{E}}{\partial t} \end{cases}$$

$$\partial_{\lambda} G^{\lambda\mu} = 0 \implies \begin{cases} \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \end{cases}$$

$$(46)$$

$$\partial_{\lambda}G^{\lambda\mu} = 0 \implies \begin{cases} \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \end{cases}$$

$$\tag{47}$$

其中 $G_{\mu\nu}=\epsilon_{\mu\nu\alpha\beta}F^{\alpha\beta}$ 是 $F_{\mu\nu}$ 的对偶 (Hodge duality)。此外,(47) 也可以由 $F^{\mu\nu}$ 的 Bianchi 恒等式

$$\partial_{\lambda}F_{\mu\nu} + \partial_{\mu}F_{\nu\lambda} + \partial_{\nu}F_{\lambda\mu} = 0$$

得到。

我们知道在经典电磁学中,如果引入磁单极子,那么在(47)的右侧需要引入磁荷密度和磁流密度, 即

$$\partial_{\lambda}G^{\lambda\mu} = J_{m}^{\mu} \Rightarrow \begin{cases} \nabla \cdot \vec{B} = \rho_{m} \\ \nabla \times \vec{E} = \vec{J}_{m} - \frac{\partial \vec{B}}{\partial t} \end{cases}$$

$$(48)$$

- 2 对称性
- 3 自由场的量子化
- 4 相互作用的量子场与费曼图