Chelates are Important in Biochemistry!

http://fr.academic.ru/dic.nsf/frwiki/29449

Ferrichrome

http://en.wikipedia.org/wiki/File:Ferrichrome.png

1

Poll Question

Which of the following molecules is NOT a chelating agent?

Next Week Glance

Due Today:

Optional HW 7.5

MON	TUE	WED	THU	FRI
3/27	3/28	3/29	3/30	3/31
HW 8 Metal Complex Rxns		Discussion 8	HW 8.5 Optional	

Read the wikibook chapter 5.4

Read Miessler 14.1 – 14.3

Bonus Reading if you are **really interested** in ligand substitution:

Pages: 104-112 in The Organometallic Chemistry of the Transition Metals by

Robert Crabtree

Inorganic Materials: Ligand Substitution Reactions Wikibook Chapter 5.11 Miessler 12.2.1, 12.7, 14.1.1, 14.2 Shriver 4.11

Lesson Goals:

- Describe the difference between thermodynamic and kinetic effects on ligand exchange
- Explain how CFSE affects ligand substitution rates
- Give examples of metals that tend to form labile complexes
- Give examples of metals that tend to form substitutionally inert complexes
- Draw the mechanism and predict the intermediates, transition states, and products for associative, dissociative and interchange mechanisms
- Explain the trans effect and its implications for ligand substitution reactions
- Give examples of strongly and weakly trans-directing ligands

Ligand Substitution Reactions Govern the Synthesis, Stereochemistry, and Catalytic Chemistry of Complexes

5

- Mechanisms are intimately related to reaction kinetics
- Mechanisms are inferred from experiments that:
 - examine the concentration dependence of the incoming and outgoing ligands on the reaction rate
 - detect intermediates
 - determine the stereochemistry of the reactants and products

Kinetics Describes Speed, while Thermodynamics Describes Stability

$$Ni^{2+}(aq) + 4 CN^{-}(aq) \rightleftharpoons [Ni(CN)_4]^{2-} (aq) K_{eq} \approx 10^{30} M^{-4}$$

Product is thermodynamically stable

$$[Ni(CN)_4]^{2-}(aq) + *CN^-(aq) \rightleftharpoons [Ni(CN)_3(*CN)]^{2-} + CN^-(aq)$$

 $k_{\text{exchange}} \approx 10^2 \text{ M}^{-1} \text{s}^{-1}$ It is a

It is also kinetically *labile*

Complexes are classified as **labile** when the activation energy (E_a) of ligand substitution is relatively low.

Complexes are classified as labile if the reaction $t_{1/2}$ is less than one minute

CFSE (LFSE) affects E_a, so it also affects rate

Reactant is thermodynamically unstable

$$[Co(NH_3)_6]^{3+}(aq) + 6 H_3O^+(aq) \rightleftharpoons [Co(H_2O)_6]^{3+}(aq) + 6 NH_4^+(aq)$$

 $K_{\rm eq} \approx 10^{30}$

Forward direction is spontaneous, but reactant is kinetically inert; high CFSE

Complexes are classified as **inert** when they react more slowly. However, they **DO NOT** resist LS, there is just a high E_a

Complexes are classified as **inert** if the reaction $t_{1/2}$ is greater than one minute

General Trends in Lability and Inertness

Complexes are classified as inert when the activation energy (E_a) of ligand substitution is relatively high. (Slow Reactions)

Hard Lewis acids; strong metal-oxygen bonds Complexes are classified as labile when the activation energy (E_a) of ligand substitution is relatively low. (Fast Reactions)

energetic cost of breaking symmetry is high

Slow Reactions (Inert)	Moderate Rate	Fast Reactions (Labile)
d^3 , low-spin d^4 , d^5 , and d^6		d^1 , d^2 , high-spin d^4 , d^5 , and d^6
Strong-field d ⁸ (square planar)	Weak-field d ⁸	d^7, d^9, d^{10}

energetic cost of breaking O_h symmetry is low

TABLE 12.1 Rate Constants for Water Exchange in $[M(H_2O)_6]^{n+}$

Complex $k(s^{-1})$ (298 K) **Electronic Configuration*** $[Ti(H_2O)_6]^{3+}$ 1.8×10^{5} t_{2g}^{-1} 5.0×10^{2} t_{2g}^2 $[V(H_2O)_6]^{3+}$ d³; slower rate; **inert** $[V(H_2O)_6]^{2+}$ 8.7×10^{1} t_{2g}^{3} $[\mathrm{Cr}(\mathrm{H_2O})_6]^{3+}$ d³; slower rate; **inert** 2.4×10^{-6} t_{2g}^{3} $[Cr(H_2O)_6]^{2+}$ $> 10^8$ $t_{2g}^{3}e_{g}^{1}$ $[Fe(H_2O)_6]^{3+}$ 1.6×10^{2} $t_{2g}^{3}e_{g}^{2}$ $[Fe(H_2O)_6]^{2+}$ 4.4×10^{6} $t_{2g}^{4}e_{g}^{2}$ $[Co(H_2O)_6]^{2+}$ 3.2×10^{6} $t_{2\varrho}^{5}e_{\varrho}^{2}$ $[Ni(H_2O)_6]^{2+}$ 3.2×10^{4} $t_{2g}^{6}e_{g}^{2}$ $t_{2p}^{6}e_{p}^{3}$ $[Cu(H_2O)_6]^{2+}$ 4.4×10^{9} $[Zn(H_2O)_6]^{2+}$ $> 10^7$ $t_{2g}^{6}e_{g}^{4}$

d²; faster rate; **labile**

d⁴ high spin; faster rate; **labile**

complexes with electrons in the e_a orbitals tend to be labile, lower E_a

complexes with NO electrons in the e_a orbitals and at least one electron in EACH t_{2a} orbital tend to be inert, higher E_a

The effects to exchange rate can be explained with CFSE

Inert complexes tend to have a high CFSE; higher E_a; Slow Labile complexes tend to have a low CFSE; lower E_a; Fast

Exchange Rate k (s ⁻¹)	1×10^{-6}	1×10^{-2}	1×10^{8}	1×10^{8}
CFSE	1.2 Δ _o	$1.2~\Delta_o$	$0.6\Delta_o$	0.6 Δ _o
Classification	inert	inert	labile	labile

Types of LS

Dissociative Exchange

Intermediate with a lower coordination number

Mechanism labeled **D**

Dissociative Interchange

Ligand assistance is small; Reaction primarily dissociative

Mechanism labeled I_D

Interchange Exchange

Detection of intermediates not possible

Mechanism labeled I

Associative Exchange

Intermediate with a higher coordination number

Mechanism labeled A

Associative Interchange

Incoming ligand forms bond to central atom before departure of other ligand via bond weakening

Mechanism labeled IA

10

Dissociative Exchange Mechanism, D

Electronic and Steric Influence:

If the transition states are comparable E:

$$Rate = \frac{k_1 k_2 [Y] [M L_n]}{k_{-1} [L] + k_2 [Y]}$$

If the first step is rate determining and first transition state is highest E, the reaction is independent of [Y] ([Y] >> [L])and it is first order:

Saturation Kinetics

$$Rate = k_1[ML_n]$$

1

 ΔS_{rxn} is always positive

LRS Reactions

1. Oxidation State

$$[AIF_6]^{3-} > [SiF_6]^{2-} > [PF_6]^{1-} > [SF_6]$$

+3 +4 +5 +6

2. Ionic Radius

Smaller ion; Slower Exchange

$$[Sr(H_2O)_6]^{2+} > [Ca(H_2O)_6]^{2+} > [Mg(H_2O)_6]^{2+}$$

112 pm 99 pm 66 pm

3. Bulkiness

Bulky ligands experience accelerated dissociation

Dissociative Exchange Mechanism, D

Associative Exchange Mechanism, A

- Complexes that contain a ligand that can change its bonding to the metal (bending or hapticity)
- Square planar d⁸ complexes

Regardless of concentration; Second-order kinetics

$$Rate = k[ML_nX][Y]$$

 ΔS_{rxn} is negative; increase in order in transition state

Saturation:

- Unsaturated (≤ 16 electron) complexes
 Incoming ligand bind to metal center →
 Associative Substitution
- 2. Saturated (18 electron) complexes

 Ligand lost before incoming ligand is bound to metal center → Dissociative Substitution

The Trans Effect Controls the Stereochemistry of Reactions

Certain ligands are trans-directing ligands, and labilize the ligand on the opposite side of the metal

Chernyaev Trans-Effect Ligand Series

 F^- , H_2O , $OH^ \langle NH_3 \rangle < py \langle Cl^- \rangle < Br^- < l^-$, SCN^- , NO_2^- , $SC(NH_2)_2$, $Ph^- < SO_3^{2-} < PR_3$, AsR_3 , SR_2 , $CH_3^- < H^-$, NO, CO, CN^- , C_2H_4

weak field ligands are weak trans-directing ligands

strong field ligands are
strong trans-directing ligands

Strong σ-donor; *trans* influence

Cl⁻ has a stronger **TRANS EFFECT** than NH₃, thus the second Cl⁻ is placed trans to the first.

Interchange Exchange Mechanism (I, I_a, I_d)

Only a transition state is formed,

no intermediate

 I_a is associative, I_d is dissociative, depends on strength of bonds in transition state

If substitution is irreversible; Second-order kinetics

$$Rate = k_1[ML_6][X]$$

Step 1: $ML_6 + X \rightarrow ML_5X + L$

If substitution is reversible;
Much more complicated;
Approximated as pseudo first order

 $Rate = k_1[ML_6] - k_{-1}[ML_5X]$ Assumes large ligand concentrations

How can you tell the mechanism of the reaction?

Measure the **kinetics**; concentration dependence on incoming ligand? First or second order? Determine the **stereochemistry** of products; is it different for different starting materials? (transplatin)

Lecture 29 Activity – Ligand Substitution

Draw a mechanism with arrows for the following reaction, and draw the predicted product:

What product do you predict will be formed?

$$C_6H_5$$
 Pt N

$$C_6H_5$$
 Pt CI D

E. No reaction.