Projet Chaos

Billard Carré avec Barre Centrale

Jun Nuo Chi, Nathan Dwek

Ecole Polytechnique de Bruxelles

8 janvier 2014

Projet Chaos

J. Chi, N. Dwek

ek

Introduct

Maria de la consta

Modelisation

Barre Centrale au Repos

Barre Central Respirante

Conclusion

2013-12-30

Projet Chaos

Projet Chaos Billard Carré avec Barre Centrale

Jun Nuo Chi, Nathan Dwek Ecole Polytechnique de Bruselles 8 janvier 2014

Théorie du Chaos - But du Projet

- ▶ Système déterministe mais non prédictible à long terme
 - ► Possède des équations d'évolution déterministes

J. Chi, N. Dwek

Introduction

arre Centrale au epos

Barre Central Respirante

Conclusion

Introduction Thiorie du Chaos - But du Projet

Système déterministe mais non prédictible à long terme
 Possède des équations d'évolution déterministes

Théorie du Chaos - But du Projet

- ▶ Système déterministe mais non prédictible à long terme
 - ▶ Possède des équations d'évolution déterministes
 - ► Sensible aux conditions initiales
 - ► Non linéaire (superposition non applicable)

J. Chi, N. Dwek

Introduction

4□ > 4□ > 4□ > 4□ > 4□ > 4□

- · Système déterministe mais non prédictible à long terme Possède des éguations d'évolution déterministe Sensible aux conditions initiales
- Non linéaire (superposition non applicable)

Théorie du Chaos - But du Projet

- ▶ Système déterministe mais non prédictible à long terme
 - ▶ Possède des équations d'évolution déterministes
 - ► Sensible aux conditions initiales
 - ► Non linéaire (superposition non applicable)
- ▶ Applications dans de nombreux domaines: météorologie, finance, mécanique . . .

4 D > 4 A > 4 B > 4 B > B 9 Q P

J. Chi, N. Dwek

Introduction

- · Système déterministe mais non prédictible à long terme Possède des éguations d'évolution déterministe
- · Sensible aux conditions initiales Non linéaire (superposition non applicable)
- Annications dans de nombreux domaines: météorologie

Théorie du Chaos - But du Projet

- Système déterministe mais non prédictible à long terme
 - ▶ Possède des éguations d'évolution déterministes
 - Sensible aux conditions initiales
 - ► Non linéaire (superposition non applicable)
- ▶ Applications dans de nombreux domaines: météorologie, finance, mécanique . . .
- ▶ Etude du mouvement d'une balle dans un billard carré muni d'une barre centrale respirante en fonction des paramètres du système:

4□ > 4周 > 4 = > 4 = > ■ 900

Introduction

Introduction

- Système déterministe mais non prédictible à long terme Possède des éguations d'évolution déterministe Non linéaire (superposition non applicable)
- Anniirations dans de nombreux domaines: météombreix
- Etude du mouvement d'une balle dans un billard carré muni d'une barre centrale respirante en fonction des paramètres du système:

Théorie du Chaos - But du Projet

- ▶ Système déterministe mais non prédictible à long terme
 - ▶ Possède des équations d'évolution déterministes
 - Sensible aux conditions initiales
 - ► Non linéaire (superposition non applicable)
- ▶ Applications dans de nombreux domaines: météorologie, finance, mécanique . . .
- ▶ Etude du mouvement d'une balle dans un billard carré muni d'une barre centrale respirante en fonction des paramètres du système:

4□ > 4周 > 4 = > 4 = > ■ 900

Orientation du billard: vertical ou horizontal

Projet Chaos J. Chi. N. Dwek

Introduction

- Possède des éguations d'évolution déterministe Non linéaire (superposition non applicable)
- Système déterministe mais non prédictible à long terme Anniirations dans de nombreux domaines: météombreix
- Etude du mouvement d'une balle dans un billard carré
- paramètres du système: · Orientation du billard: vertical ou horizontal

Théorie du Chaos - But du Projet

- Système déterministe mais non prédictible à long terme
 - Possède des équations d'évolution déterministes
 - Sensible aux conditions initiales
 - ► Non linéaire (superposition non applicable)
- ▶ Applications dans de nombreux domaines: météorologie, finance, mécanique . . .
- ▶ Etude du mouvement d'une balle dans un billard carré muni d'une barre centrale respirante en fonction des paramètres du système:

4□ > 4周 > 4 = > 4 = > ■ 900

- Orientation du billard: vertical ou horizontal
- ▶ Paramètres de respiration de la barre:

$$I = I_0(1 + \sin(\omega t))$$

Proiet Chaos

J. Chi. N. Dwek

Introduction

Introduction Théorie du Chaos - But du Projet

- Système déterministe mais non prédictible à long terme Possède des équations d'évolution déterminist
- Non linéaire (superposition non applicable)
- Anniirations dans de nombreux domaines: météombreix
- Etude du mouvement d'une balle dans un billard carré muni d'une barre centrale respirante en fonction des
- · Orientation du billard: vertical ou horizontal

paramètres du système.

 $I = L(1 + \sin(\omega t))$

Théorie du Chaos - But du Projet

- Système déterministe mais non prédictible à long terme
 - Possède des équations d'évolution déterministes
 - Sensible aux conditions initiales
 - ► Non linéaire (superposition non applicable)
- ▶ Applications dans de nombreux domaines: météorologie, finance, mécanique . . .
- ▶ Etude du mouvement d'une balle dans un billard carré muni d'une barre centrale respirante en fonction des paramètres du système:
 - Orientation du billard: vertical ou horizontal
 - ▶ Paramètres de respiration de la barre:

$$I = I_0(1 + \sin(\omega t))$$

► Conditions initiales de la balle: position et vitesse initiales

4□ > 4周 > 4 = > 4 = > ■ 900

J. Chi. N. Dwek

Introduction

- Système déterministe mais non prédictible à long terme Possède des équations d'évolution déterminist
- Non linéaire (superposition non applicable
- Anniirations dans de nombreux domaines: météombreix
- Etude du mouvement d'une balle dans un billard carré
- muni d'une barre centrale respirante en fonction des paramètres du système.
- · Orientation du billard: vertical ou horizontal
- $I = L(1 + \sin(\omega t))$
- Conditions initiales de la balle: position et vitesse

Modélisation du Mouvement et des Rebonds - Résolution Numérique

► Mouvement composé d'une suite de déplacement continus:

J. Chi, N. Dwek

oduction

troduction

Modélisation

arre Centrale au epos

Barre Centra Respirante

Conclusion

Modélisation Modélisation du Mouvement et des Rebonds - Résolution Numérique

Mouvement composé d'une suite de déplacement continus:

Modélisation du Mouvement et des Rebonds - Résolution Numérique

► Mouvement composé d'une suite de déplacement continus:

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = -g \end{cases}$$

 $\label{eq:model_estimate_estimate} \begin{picture}(Modellation & Notherland Tuniships & Modellation & Notherland Tuniships & Modellation & Notherland & Simbalian & Simbali$

here

Projet Chaos

J. Chi, N. Dwek

Modélisation

4□ > 4□ > 4 = > 4 = > = 90

Modélisation du Mouvement et des Rebonds - Résolution Numérique

► Mouvement composé d'une suite de déplacement continus:

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = -g \end{cases}$$

▶ Déplacement interrompu par un rebond qui définit les conditions initiales pour le déplacement suivant

Modélisation
Modélisation du Mouvement et des Rebonds - Résolution Numérique

ent composé d'une suite de déplacement

 $\begin{cases}
\bar{x} = 0 \\
\bar{y} = -g
\end{cases}$ whereomers nor up rebond out defin

| y = −g placement interrompu par un rebond qui définit les aditions initiales pour le déplacement suivant

here

Projet Chaos

J. Chi, N. Dwek

Modélisation du Mouvement et des Rebonds - Résolution Numérique

Mouvement composé d'une suite de déplacement continus:

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = -g \end{cases}$$

- ▶ Déplacement interrompu par un rebond qui définit les conditions initiales pour le déplacement suivant
 - ▶ Rebond sur une paroi extérieure du billard:

•
$$x = \pm \frac{L}{2}$$
 ou $y = \pm \frac{L}{2}$

 Simple inversion de la vitesse selon une des coordonnées

4 D > 4 A > 4 B > 4 B > B 9 Q P

Projet Chaos

J. Chi, N. Dwek

Introduction

Modélisation

Barre Centrale au Repos

Barre Centra Respirante

Conclusio

Modélisation
Modélisation du Mouvement et des Rebonds - Résolution Numérique

du Mouvement et des robolitos - rosolution Numenque

 $\begin{cases} \bar{x} = 0 \\ \bar{y} = -g \end{cases}$

Déplacement interrompu par un rebond qui définit les conditions initiales pour le déplacement suivant * Rebord sur une parcie cotérieure du billand: * x = ± ½ ou y = ± ½ * Simple invende de la viseur eston une des

Modélisation du Mouvement et des Rebonds - Résolution Numérique

Mouvement composé d'une suite de déplacement continus:

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = -g \end{cases}$$

- ► Déplacement interrompu par un rebond qui définit les conditions initiales pour le déplacement suivant
 - ► Rebond sur une paroi extérieure du billard:
 - $x = \pm \frac{L}{2}$ ou $y = \pm \frac{L}{2}$
 - Simple inversion de la vitesse selon une des coordonnées
 - ► Rebond sur la barre centrale:
 - ▶ $|x| \le l_0(1 + \sin(\omega t))$ et y = 0
 - Transfert de quantité de mouvement avec m_{barre}>>m_{balle}:

$$\begin{cases} \dot{x}^+ = C\dot{x}^- + (\operatorname{sgn}(x))(1+C)\cos(\omega t)\omega \\ \dot{y}^+ = -C\dot{y}^- \end{cases}$$

here

Proiet Chaos

J. Chi. N. Dwek

Considérations Théoriques

- ▶ Pas de transfert de quantité de mouvement en $x \rightleftharpoons y$ ou système $\rightleftharpoons y$
 - ▶ Si g = 0: Conservation de $|\dot{y}|$
 - Si $g \neq 0$: Conservation de $y_{max} = \frac{\dot{y}^2}{2} + gy$
 - ▶ Zone $y > y_{max}$ inaccessible

ModelSeaton

condition Thiorigons

Pro is Draylor do quantité de movement en $x \mapsto y$ au système $\mapsto y$ S g = 0 Communion de |y| $\Rightarrow S = g \neq 0$ Communion de |y| $\Rightarrow S = g \neq 0$ Communion de $|y| \Rightarrow 0$ 2 and $y > y_{max}$ incommitée

2 and $y > y_{max}$ incommitée y = 0

here

Projet Chaos

J. Chi, N. Dwek

Considérations Théoriques

- ▶ Pas de transfert de quantité de mouvement en $x \rightleftharpoons y$ ou système $\rightleftharpoons y$
 - ▶ Si g = 0: Conservation de $|\dot{y}|$
 - ▶ Si $g \neq 0$: Conservation de $y_{max} = \frac{\dot{y}^2}{2} + gy$
 - ▶ Zone $y > y_{max}$ inaccessible
 - ▶ Cas dégénéré $y_{max} \le 0$: pas d'interaction avec la barre
 - ► Cas dégénéré $y_{max} \gg \frac{L}{2}$: influence de la gravité négligeable

Consideration Théorems $\begin{array}{ll} F_{20} & \text{dist} & \text{the constitut de manufact de m} \\ \text{our dystates } & \text{w} & \text{y} & \text{dist} \\ \text{our dystates } & \text{y} & \text{dist} & \text{p} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{our dystates } & \text{dist} & \text{dist} & \text{dist} \\ \text{dist} \text{dist} & \text{dist} \\ \text{dist} & \text{dist} \\ \text{dist} &$

Modélisation

here

Projet Chaos

J. Chi. N. Dwek

Considérations Théoriques

- ▶ Pas de transfert de quantité de mouvement en $x \rightleftharpoons y$ ou système ⇌ y
 - ▶ Si g = 0: Conservation de $|\dot{y}|$
 - ▶ Si $g \neq 0$: Conservation de $y_{max} = \frac{\dot{y}^2}{2} + gy$
 - ightharpoonup Zone $y > y_{max}$ inaccessible
 - ▶ Cas dégénéré $y_{max} \le 0$: pas d'interaction avec la barre
 - ► Cas dégénéré $y_{max} \gg \frac{L}{2}$: influence de la gravité négligeable
- ► Mouvements en x et en y quasi indépendants
- ▶ Identification des sources probables de chaos

J. Chi. N. Dwek

Modélisation

Modélisation Considérations Théoriques Pas de transfert de quantité de mouvement en x → y Si g = 0: Conservation de |ŷ| Si g ≠ 0: Conservation de y_{max} = ½ + gy Zone y > your inaccessible Cas décénéré v.... ≤ 0: pas d'interaction avec la barre Cas dégénéré y_{mar} > §: influence de la gravité Mouvements en x et en v quasi indépendants

Identification des sources probables de chaos

Considérations Théoriques

- ▶ Pas de transfert de quantité de mouvement en $x \rightleftharpoons y$ ou système ⇌ y
 - ▶ Si g = 0: Conservation de $|\dot{y}|$
 - ▶ Si $g \neq 0$: Conservation de $y_{max} = \frac{\dot{y}^2}{2} + gy$
 - ightharpoonup Zone $y > y_{max}$ inaccessible
 - ▶ Cas dégénéré $y_{max} \le 0$: pas d'interaction avec la barre
 - Cas dégénéré $y_{max} \gg \frac{L}{2}$: influence de la gravité négligeable
- ► Mouvements en x et en y quasi indépendants
- Identification des sources probables de chaos
 - ightharpoonup Chaos en x \Rightarrow chaos en y
 - ▶ Barre au repos ⇒ mouvement en x régulier

Modélisation

Modélisation Considérations Théoriques Si g = 0: Conservation de |ŷ| Si g ≠ 0: Conservation de y_{max} = ½ + gy Zone y > your inaccessible Cas décénéré v.... ≤ 0: pas d'interaction avec la barre Cas dégénéré y_{mar} > §: influence de la gravité

> Mouvements en x et en v quasi indépendants Identification des sources probables de chaor

Considérations Théoriques

- Pas de transfert de quantité de mouvement en x

 y ou système

 y y
 - ▶ Si g = 0: Conservation de $|\dot{y}|$
 - ▶ Si $g \neq 0$: Conservation de $y_{max} = \frac{\dot{y}^2}{2} + gy$
 - ▶ Zone $y > y_{max}$ inaccessible
 - ▶ Cas dégénéré $y_{max} \le 0$: pas d'interaction avec la barre

4□ > 4周 > 4 = > 4 = > ■ 900

- Cas dégénéré $y_{max} \gg \frac{L}{2}$: influence de la gravité négligeable
- ► Mouvements en x et en y quasi indépendants
- ▶ Identification des sources probables de chaos
 - ▶ Chaos en $x \Rightarrow$ chaos en y
 - ▶ Barre au repos ⇒ mouvement en x régulier
 - ▶ Chaos en $x \stackrel{?}{\Leftrightarrow}$ chaos en $y \to A$ vérifier!

Projet Chaos

J. Chi, N. Dwek

Modélisation

Barre Centrale a Repos

Barre Centra Respirante

Conclusion

Mouvements en x et en y quasi indépendants
 Identification des sources probables de chaos

Observations

- ▶ Billard horizontal:
 - ► Mouvement régulier en x et en y comme attendu
 - ► Deux états échantillonables en y qui s'enchaînent de manière régulière

here

Projet Chaos

J. Chi, N. Dwek

Barre Centrale au

Repos

←ロト ←団ト ←団ト ←団ト ● のQで

Observations

- ► Billard horizontal:
 - ► Mouvement régulier en x et en y comme attendu
 - ▶ Deux états échantillonables en y qui s'enchaînent de manière régulière
- ► Billard vertical:
 - ► Mouvement toujours régulier en x
 - Mouvement en y:

Projet Chaos J. Chi, N. Dwek

Barre Centrale au Repos

Observations

- ▶ Billard horizontal:
 - ► Mouvement régulier en x et en y comme attendu
 - ▶ Deux états échantillonables en y qui s'enchaînent de manière régulière
- ► Billard vertical:
 - ► Mouvement toujours régulier en x
 - ► Mouvement en y:

Projet Chaos

E Barre Centrale au Repos

Barre Centrale au Repos

tions

Marine Indicatorial

- Monoment righter on x et my comme attende

- Monoment righter on x et my comme attende

- Monoment righter righter on x et my comme attende

- Monoment righter righter righter on x

- Monoment righter righter on x

Barre Centrale au Repos

here

Projet Chaos

J. Chi, N. Dwek

Barre Centrale au

Repos

Interprêtation dans le Cas Billard Vertical

- ► Mouvement formé d'une suite de trois "cycles" dont deux de longueur indépendante en y
 - ► Infinité d'états échantillonables
 - Période potentielle = combili naturelle des longueurs de ces trois cycles
 - Vérifié par des simulations
 - ▶ Période peut être très longue ⇒ indicateur de la transition vers le chaos
 - ▶ Mais une telle période ne semble pas toujours exister

4□ > 4周 > 4 = > 4 = > ■ 900

 Période peut être très longue :> indicateur de la transition vers le chaos
 Mais une telle période ne semble pas toujours existes

here

Projet Chaos

J. Chi. N. Dwek

Barre Centrale au Repos

Projet Chaos Barre Centrale Respirante

Projet Chaos

J. Chi, N. Dwek

Barre Centrale Respirante

Projet Chaos J. Chi, N. Dwek Barre Centrale au Respirante Conclusion

Projet Chaos

-Conclusion