University of Hawai'i

Last name: _				
First name:				

Question:	1	2	3	4	5	6	Total
Points:	10	10	10	10	6	4	50
Score:							

Instructions:

- Write your complete name on your copy.
- Answer all 6 questions below.
- Write your answers directly on the questionnaire.
- Show ALL your work to have full credit.
- Draw a square around your final answer.
- Return your copy when you're done or at the end of the 50min period.
- No electronic devices allowed during the exam.
- Scientific calculator allowed only (no graphical calculators).
- Turn off your cellphone(s) during the exam.
- Lecture notes and the textbook are not allowed during the exam.

Your	Signature:	

O	-1
QUESTION	- 1
ω uro hun	

Say if the following matrix products are well-defined. If it is well-defined, then compute the matrix products.

$$\begin{bmatrix} 1 & 0 & -1 \\ 1 & -1 & 9 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}.$$

QUESTION 2

_ (10 pts)

Find the values of the entries of the matrix A if

$$\left(\begin{bmatrix}1 & 0\\ 2 & 1\end{bmatrix}A\right)^{-1} = \begin{bmatrix}1 & 0\\ 2 & 2\end{bmatrix} - 2\begin{bmatrix}1 & 3\\ 2 & 4\end{bmatrix}.$$

(10 pts)

Guestion 3 Find a 2×2 elementary matrix E such that

$$E\begin{bmatrix}3 & 0 & 1\\ 2 & -1 & 0\end{bmatrix} = \begin{bmatrix}1 & 1 & 1\\ 2 & -1 & 0\end{bmatrix}.$$

Evaluate the determinant of the matrix A.

(a) (2 Pts)
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & 1 \\ 2 & -1 & 3 \end{bmatrix}$$
.

(b) (2 Pts)
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$
.

(c) (2 Pts)
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 2 & -1 & 1 & 4 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$
.

(d) (2 Pts)
$$A = \begin{bmatrix} 1 & 45 & 3 & 4 & 3 & 4 \\ 0 & 1 & 9 & 100 & 4 & 45 \\ 0 & 0 & 1 & 45 & -3 & -2 \\ 0 & 0 & 0 & 5 & 4 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{bmatrix}.$$

(e) (2 Pts)
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 if $\begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 1$.

\square Question 5	(6	pts)
90		. –	I	,

Let A be an $n \times n$ matrix. Assume that $A^2 = 0$ and I - A is invertible, where I is the $n \times n$ identity matrix. Show that

$$(I-A)^{-1} = I + A.$$

Answer the following questions with True or False . Write down you answers on the line at the end of each question. Justify briefly your answer in the space after the statement of the problem.				
_	If A is an $n \times n$ matrix and $A^2 = I$, then $A = \pm I$.		(/ 1)
(b) 1	If A and B are $n \times n$ matrices, then $AB = BA$.	(a)	(/ 1)
(c)]	If A and B are $n \times n$ invertible matrices, then $A + B$ is invertible.	(b)	(/ 1)
(d) 1	If A and B are $n \times n$ matrices, then $(AB)^{\top} = A^{\top}B^{\top}$.	(c)	(/ 1)

(d) __