COMPUTER VISION

Beller Stefan, Binder Lukas, Karasinski Maciej Jacek, Kasper Bianca, Wichser Ilona

Structure

5 TYPES OF MODELS WE TRAINED

LEARNINGS

Basic Model from Template

- Basic model first try
- Looks like it would improve in future epochs
- 3x following layers

Conv2D

MaxPool2d

BatchNormalization

Residual Neural Network

- ResNet was proposed to overcome the problems common CNNs
 - just stacking convolutional layers to make the model deeper does not guarantee an increase in validation accuracy
- ResNet adds the idea of "skip connections"

First model

- Simple Residual Neural Network
- ~70s per Epoch on GTX 1080
- ~50% on validation data
- 110k Parameters

First model - RNN

Second Model (MobileNet v1)

- Based on MobileNet v1 → simplified because of number of parameters
- ~70s per Eopoch on GTX 1080
- Addendum: not 1:1 implementation, some different Layers
- ~60% with default filtersize

Third Model

- Model inspired by the Model of Nague Marcel
- Added more Layers and bigger Filter sizes → simple Scale up
- ~80% on training data

Fourth Model - ExquisiteNetV2

- Customized ExquisiteNetV2
- Tried to convert Pytorch Model to Tensorflow → a lot of Errors
- Didn't work at the Start → DepthswiseConv in Pytorch and Tensorflow different
- Accuracy: 93% on test Data
- According to the Paper Pros and why we chosen this Net
 - ExquisiteNetV2 outperforms manny competitors
 - ExquisiteNetV2 has fewest amounts of parameters
 - Really fast

https://arxiv.org/ftp/arxiv/papers/2105/2105.09008.pdf

Fourth Model Feature Concentration

Fourth Model Concentration Layer

Fourth Model Feature Extraction Part

Fourth Model Feature reduction

Fourth Model Classifier Part

Fourth Model Result

BatchNormalization VS Dropout

- Both are used to prevent overfitting
- BatchNormalization: Normalizes values of the units for each batch
- Dropout: Randomly "drops" a predefined ratio of units
- We had some Networks with a lot of Parameters and low batch size → batch normalization isn't very good

Learnings

- More is not always better
- Deeper is not always better
- Maybe try smaller learning rate
- Read scientific papers carefully
- Try different approaches
- Don't stop the training when the first few epochs have bad validation accuracy

Questions?