- GRADUAÇÃO

Sistemas de Informação Design e Desenvolvimento de Banco de Dados PROF. MILTON Autor: Rita Rodrigues

Agenda

- ☐ Conceitos referentes a Modelagem de dados a partir da modelagem de negócios
- ☐ Conceitos referentes a Modelo entidade-relacionamento
- ☐ Revisão dos Conceitos
- ☐ Exercícios

Objetivo

um modelo de dados.

□ Introduzir conceitos de modelagem de dados;
 □ Caracterizar o modelo entidade-relacionamento;
 □ Projetar banco de dados, identificar e abstrair as necessidades;
 □ Reconhecer os modelos de dados dentro da abordagem relacional;
 □ Reconhecer os conceitos iniciais e principais para poder entender e construir

Conteúdo Programático referente a esta aula

- ☐ Caracterização e ciclo de vida de desenvolvimento de banco de dados
- ☐ Modelo Entidade-Relacionamento
 - Entidade
 - Atributos
 - Instâncias
 - Chaves
 - Entidades Fortes e Fracas
 - Exercícios

Modelo de Banco de Dados

A modelagem de dados é um método de análise que, a partir de fatos relevantes a um contexto de negócio, determina a perspectiva dos dados, permitindo organizá-los em estruturas bem definidas e estabelecer regras de dependência entre eles, além de produzir um modelo expresso por uma representação descritiva e gráfica;

- É utilizada para:
 - Conhecer melhor o contexto de negócio;
 - Retratar os dados que suportam esse contexto de negócio;
 - Projetar o banco de dados;
 - Promover o compartilhamento dos dados e a integração dos sistemas por meio da reutilização de estruturas de dados comuns;
 - Contribuir para que a perspectiva da organização a respeito dos seus dados seja unificada.

Modelo de Banco de Dados

Descrevem os tipos de informação que estão armazenadas em um banco de dados.

É a descrição formal da estrutura de um banco de dados.

Um banco de dados contém...

informações sobre produtos;

informações sobre clientes.

Modelo de Dados

É a primeira etapa do projeto. Representa a realidade através de uma visão global e genérica dos dados e seus relacionamentos.

Seu objetivo é conter todas as informações dessa realidade que serão armazenadas no banco de dados, sem que se retratem aspectos relativos ao banco de dados que será utilizado.

Descrição do banco de dados de forma independente da implementação em um SGBD.

Registra que dados podem aparecer no banco de dados, mas não registra como estes dados estão armazenados a nível de SGBD.

Técnica de modelagem conceitual mais difundida é a abordagem entidade-relacionamento (ER).

Projeto de Banco de Dados

No projeto de banco de dados, normalmente são considerados dois níveis de abstração de modelo de dados:

- Modelo Conceitual
- Modelo Lógico

Modelo Conceitual

Constitui uma visão global dos principais dados e seus relacionamentos.

É uma macro-definição ou descrição de alto nível, que retrata a realidade de uma organização, processo de negócio, setor, repartição, departamento.

Foco para o entendimento do contexto e à representação de uma realidade.

O modelo conceitual de dados representa as informações que existem no contexto do negócio, com maior foco nos processos. Esse modelo utiliza termos e linguagem próprios do negócio, sendo mais adequados ao dia a dia do segmento

ou área de negócio envolvidas no projeto.

NOTAÇÃO DE PETER CHEN

Modelo Conceitual

O modelo conceitual de dados tem as seguintes funções:

- Entender o funcionamento de processos e regras do negócios;
- Expressar as necessidades de informações da empresa como um todo;
- Facilitar a comunicação entre áreas usuárias e de tecnologia da informação;
- Definir abrangência do sistema, delimitando o escopo do sistema e estimando custos e prazos para elaboração do projeto;
- Avaliar soluções de software, no momento de aquisição, por meio da comparação entre o que a solução pode oferecer e a visão do modelo de dados conceitual;
- Permitir estruturar os dados com flexibilidade.

Modelo Conceitual

A notação adotada será a de BARKER, que é bastante difundida e comumente utilizada para descrever dados para o SGBD Oracle.

A abordagem ER (Entidade Relacionamento) criada por Peter Chen em 1976, pode ser considerada como um padrão para a modelagem conceitual, segundo Heuser, 2008.

NOTAÇÃO DE BARKER

NOTAÇÃO DE PETER CHEN

Modelo Lógico de Dados

Tem seu início a partir do modelo conceitual.

O modelo lógico de dados representa a versão do modelo conceitual de dados, que pode ser apresentada ao SGBD, que também pode ser hierárquico, em rede, relacional ou orientado a objeto;

O modelo lógico de dados reflete as propriedades necessárias para a tradução do modelo conceitual, de maneira que seja possível a descrição dos elementos capazes de serem interpretados por SGBD, tais como o detalhamento dos atributos, chaves de acesso, integridade referencial e normalização.

Exemplo de Modelo Lógico de Dados

Modelo Relacional/Físico de Dados

Do modelo lógico podemos derivar o modelo físico, no qual se encontram detalhados os componentes de estrutura física do banco de dados, como tabelas, campos, tipos de valores, índices.

Neste ponto estaremos prontos para a implementação do banco de dados, utilizando um SGBD.

O modelo físico de dados representa a estrutura para armazenamento físico dos dados, expressando a forma como as informações serão armazenadas fisicamente, em termos computacionais.

Pode-se, ainda, representar o modelo externo, isto é, as aplicações ou sistemas que utilizam o banco dados, no qual são expressas as diversas formas particulares como os dados da organização são visualizados e manipulados pelos sistemas.

Modelo Relacional/Físico de Dados

Nesta etapa, os formalismos aplicados ao tipo de banco de dados escolhido são considerados, tais como a definição do tipo de dado, do tamanho do campo, regras para manutenção de integridade dos dados, normalização das tabelas, entre outros.

Deve ser considerado os aspectos relacionados ao SGBD.

Modelo Relacional/Físico de Dados

Constraint Chave Primária Restrição de chave ou singularidade

Constraint Chave Estrangeira Integridade referencial

Tipo de dado, conforme o SGBD escolhido

Constraint CHECK Restrições de integridade adicionais

Código em SQL para implementar a estrutura descrita através do modelo físico/relacional.

ELEMENTOS DE UM SGBD

OBJETOS	DESCRIÇÃO				
TABELAS	São os objetos que contém os tipos de dados e os dados reais.				
COLUNAS OU CAMPOS São as partes das tabelas que armazenam os dados. Devem receber um tipo de dado nome único.					
TIPO DE DADOS Há vários tipos de dados para serem utilizados como: caractere, número, data. Um ún dados é atribuído a uma coluna dentro de uma tabela.					
STORED PROCEDURES (PROCEDIMENTOS ARMAZENADOS)	São como macros (sub-rotinas capazes de executar tarefas pré-programadas) em que o código SQL pode ser escrito e armazenado sob um nome.				
TRIGGERS (GATILHOS)	São como storeds procedures que são automaticamente ativados quando os dados são inseridos, alterados ou apagados. Asseguram que regras de negócio e de integridade sejam impostas ao banco de dados.				
REGRAS (RULES)	São atribuídas a colunas de modo que os dados que estão sendo inseridos devem se adaptar aos padrões definidos. Por exemplo, pode-se utilizar regras para permitir que um campo que irá armazenar a UF contenha somente Estados válidos.				

ELEMENTOS DE UM SGBD

OBJETOS	DESCRIÇÃO				
CHAVES PRIMÁRIAS (PK)	Embora não sejam objetos em si, as chaves são essenciais para os bancos de dados relacionais. Promove a característica de unicidade das linhas , proporcionando uma maneira de identificar de forma única cada item que você queira armazenar.				
CHAVES ESTRANGEIRAS (FK)	Novamente, não são objetos em si, as chaves estrangeiras são colunas que fazem referências as chaves primárias de outras tabelas .				
PADRÕES (DEFAULTS)	Podem ser configurados em campos de modo que, se nenhum dado for inserido durante uma operação de Insert, os valores padrão serão utilizados.				
VIEWS (VISUALIZAÇÕES)	Consistem basicamente em consultas armazenadas nos bancos de dados que podem faze referência a uma ou muitas tabelas. Você pode criar e salvar views e utiliza-las no futuro Normalmente excluem certas colunas de uma tabela e vinculam duas ou mais tabelas entre si Podem ser utilizadas também como mecanismo de segurança.				
ÍNDICES (CHAVES SECUNDÁRIAS)	Podem ajudar os dados de modo que as consultas executem mais rápido.				

Modelo ER (ENTIDADE RELACIONAMENTO)

Um banco de dados relacional ou base de dados relacional é um <u>sistema de</u> <u>armazenamento</u> de dados, baseado nos relacionamentos entre elementos de dados buscando uma <u>normalização</u> (não redundância) dos <u>dados</u>.

Criado por Edgar Codd em 1970.

Os três componentes de um modelo entidade relacionamento, são:

- ☐ ENTIDADE.
- ☐ ATRIBUTOS.
- ☐ RELACIONAMENTOS.

No MER (Modelo Entidade Relacionamento) os dados são descritos como entidades, atributos e relacionamentos.

Define-se como Entidade aquele objeto que existe no mundo real com uma identificação distinta e com um significado próprio.

A existência pode ser física – como: pessoas, casa, relógio, computadores, funcionários – ou conceitual – como: serviços, uma disciplina escolar, uma consulta médica.

No MER, uma entidade representa uma categoria de elementos relevantes para um negócio.

Exemplos: CLIENTES, FORNECEDORES, VENDAS, CONTRATOS.

Uma entidade representa um conjunto de dados que precisam ser armazenados e que serão consumidos por aplicações (programas) que descrevem o funcionamento do negócio.

A identificação de entidades é algo bas	tante fácil. Começaremos por focalizar o
problema em pauta nos perguntando:	"Quais são as coisas neste problema?".
A maioria delas provavelmente cairá em	uma das categorias seguintes:
☐ coisas tangíveis;	
☐ funções;	
☐ incidentes;	
☐ Interações.	

Coisas Tangíveis

- Estes são os objetos mais fáceis de serem achados. Dado um problema apropriado não poderíamos deixar de encontrar um objeto como:
 - ☐ avião,
 - ☐ reator nuclear,
 - ☐ cavalo de corrida,
 - ☐ livro e
 - u veículo.

Funções Desempenhadas por Pessoas ou Organizações

- Esta categoria é melhor descrita através de exemplos:
 - ☐ médico,
 - paciente,
 - corretor,
 - ☐ cliente,
 - ☐ empregado,
 - ☐ supervisor,
 - ☐ proprietário,
 - ☐ inquilino,
 - ☐ Contribuinte e
 - ☐ administrador.

Incidentes

Objetos-incidentes são usados para representar uma ocorrência ou um fato, algo que acontece em um determinado período:

- ☐ acidente e
- ☐ chamada de serviços

Interações

Objetos-interações geralmente possuem uma qualidade de "transação" ou de "contrato" e referem-se a dois ou mais objetos do modelo. Por exemplo:

- ☐ compra e
- ☐ casamento.

AMPLE [- | /\ [-

Exemplos – Contexto de Negócio e respectivas entidades

CONTEXTO DE NEGÓCIO	ENTIDADES					
Rádio Táxi on-line	Chamado, corrida, motorista, veículo, fatura, empresas conveniadas, etc.					
Hospital	Paciente, Médico, Consulta, Internação, Diagnóstico, Solicitação de exame, etc.					
Imobiliária	Imóvel, Tipo de Imóvel, Corretor, Proprietário, Locatário, Contrato de Aluguel, Contrato de Venda, etc.					
Companhia Aérea	Aeronave, Piloto, Comissário de Bordo, Voo, Aeroporto, etc.					
Companhia de Seguros	Apólice, Segurado, Corretor, Comissão, Bem Segurado, Sinistro, etc.					
Banco	Correntista, Conta Salário, Conta Corrente, Conta Poupança, Investimento, Empréstimo, etc.					
Educação	Aluno, Professor, Disciplina, Curso, Turma, Nota do aluno, sala, laboratório, etc.					

Representação gráfica de uma Entidade conceitualmente

É representada através de um retângulo com o nome da entidade.

PESSOA

DEPARTAMENTO

Os nomes de entidades são representados por palavras no SINGULAR, em letras MAIÚSCULAS, sem utilização de acentos, espaços ou caracteres especiais, com exceção do underline (_) , que normalmente é utilizado para separar palavras compostas.

Atributos

São informações que qualificam e caracterizam uma (detalhes descritivos) entidade.

Uma entidade necessita de pelo menos dois atributos para ser caracterizada como entidade. Uma entidade com um único atributo normalmente é agregada a outra entidade.

EXEMPLOS ATRIBUTOS PARA O CENÁRIO DE RADIO TÁXI ON-LINE

Nome do funcionário

Número de matrícula do funcionário

Ano de fabricação do veículo

Ano do modelo do veículo

Valor da corrida

Data da emissão da fatura

Valor da fatura

Data de vencimento da fatura

Atributos

Tipos de Atributos

Atributo Simples (ATÔMICOS): guarda em si um único valor indivisível. Considerado um atributo comum. Exemplos: Nome, Preço, Marca, Data de Nascimento, Preço Unitário, Quantidade em Estoque.

Atributo Composto: é o resultado da soma de vários atributos, ou seja, é formado por um conjunto de atributos. Exemplo: Endereço (Rua + Número + Bairro + CEP + Cidade + Estado), Telefone (DDI + DDD + Numero).

Atributo Multivalorado: Pode possuir várias ocorrências, ou seja, uma lista de valores. Exemplo: Telefone (Uma pessoa possui vários telefones ao mesmo tempo: fone residencial, comercial, celular).

Atributo Determinante: Tem a característica de identificar um elemento ou objeto do mundo real. São valores que não se repetem. Exemplo: Numero de matrícula de um aluno ou funcionário, CPF, CNPJ, Código de um produto.

Ocorrências de uma Entidade

São valores, isto é, os dados em si, sendo específicos da entidade. §

Uma ocorrência também é conhecida como: INSTÂNCIA, TUPLA, REGISTRO ou

LINHA.

Exemplo: Ocorrências da Entidade Funcionário

Ocorrência, Instância, Tupla, Registro ou Linha

		DEPTO NM_FUNCIONARIO			∯ DS_	ENDERECO	∜ VL_SALARIO
1	12345	1 JOAO DA SILVA	10/05/85	15/09/12	RUA	X, 49	5684,66
2	12346	1 MANUEL DA SILVA	05/10/98	10/11/15	RUA	X, 31	3542,11
3	12347	1 JANDIRA DA SILVA	10/12/00	15/09/18	RUA	X, 25	1875,96
4	12348	2 KATIA REGINA SOUZA	15/01/95	03/10/15	RUA	Y, 49	3894,63
5	12349	5 MARIA DAS DORES SOUZA	18/08/83	23/10/17	RUA	Y, 35	1542,55
6	12350	2 ALFREDO DE SOUZA	04/05/99	03/10/15	RUA	Y, 27	5874,52
7	12351	3 GISELE DE JESUS	15/04/99	20/03/17	RUA	Z, 49	1020,66
8	12352	3 RAFAEL DE JESUS	10/08/98	10/08/12	RUA	z, 55	2563,44
9	12353	3 ROSANA DE JESUS	14/03/87	15/08/19	RUA	z, 79	4879,55
10	12354	4 JOSEFINA DE ALMEIDA	16/10/97	25/03/13	RUA	Y, 33	4561,88
11	12355	4 LUCIANA DE ALMEIDA	10/02/84	28/09/11	RUA	Y, 44	2345,52
12	12356	5 THIAGO DE ALMEIDA	10/03/98	24/10/18	RUA	Y, 55	1254,22
13	12357	5 LARISSSA DE CAMARGO	14/02/97	04/08/15	RUA	V, 22	1245,55
14	12358	5 ANTONIO DE CAMARGO	25/01/85	12/08/16	RUA	₹, 44	2451,33
15	12359	5 JOSE DE CAMARGO	23/10/98	20/04/17	RUA	V, 88	6541,22

Chave

Cada um de nós possui RG, CPF, Carteira de Habilitação, Carteira Profissional, Conta Bancária, cada um dos exemplos acima possuem números que nos identificam como cidadãos, contribuintes, motoristas, trabalhadores, clientes.

Fazendo uma associação, as instâncias de uma entidade precisam de alguma coisa que as identifique de maneira única, garantindo que as informações não se repitam e sejam encontradas com facilidade.

Chave Primária

Chamamos de chave Primária o(s) atributo(s) que identifica uma única ocorrência dentro de uma entidade.

Caso um único atributo não consiga garantir sozinho a identificação de uma ocorrência, podemos incluir outros atributos para compô-la.

Um atributo determinante é candidato a chave primária, mas deve-se analisá-lo de forma que dentro do referido contexto de negócio, este atributo efetivamente caracterize a ocorrência de forma única.

Toda entidade deve conter uma chave primária.

Caso não exista um atributo que possa assumir a chave primária, se faz necessário criá-lo.

Exemplo de Chave Primária

Entidade: Funcionário

CHAVE PRIMÁRIA

\$ □	ND MATRICULA A					
	NK_MATRICULA	CD_DEPTO NM_FUNCIONARIO				
1	12345	1 JOAO DA SILVA	10/05/85	15/09/12	RUA X, 49	5684,66
2	12346	1 MANUEL DA SILVA	05/10/98	10/11/15	RUA X, 31	3542,11
3	12347	1 JANDIRA DA SILVA	10/12/00	15/09/18	RUA X, 25	1875,96
4	12348	2 KATIA REGINA SOUZA	15/01/95	03/10/15	RUA Y, 49	3894,63
5	12349	5 MARIA DAS DORES SOUZA	18/08/83	23/10/17	RUA Y, 35	1542,55
6	12350	2 ALFREDO DE SOUZA	04/05/99	03/10/15	RUA Y, 27	5874,52
7	12351	3 GISELE DE JESUS	15/04/99	20/03/17	RUA Z, 49	1020,66
8	12352	3 RAFAEL DE JESUS	10/08/98	10/08/12	RUA Z, 55	2563,44
9	12353	3 ROSANA DE JESUS	14/03/87	15/08/19	RUA Z, 79	4879,55
10	12354	4 JOSEFINA DE ALMEIDA	16/10/97	25/03/13	RUA Y, 33	4561,88
11	12355	4 LUCIANA DE ALMEIDA	10/02/84	28/09/11	RUA Y, 44	2345,52
12	12356	5 THIAGO DE ALMEIDA	10/03/98	24/10/18	RUA Y, 55	1254,22
13	12357	5 LARISSSA DE CAMARGO	14/02/97	04/08/15	RUA V, 22	1245,55
14	12358	5 ANTONIO DE CAMARGO	25/01/85	12/08/16	RUA V, 44	2451,33
15	12359	5 JOSE DE CAMARGO	23/10/98	20/04/17	RUA V, 88	6541,22

Chave Estrangeira

É uma forma explicita de **conexão entre duas entidades**, estabelecendo o **relacionamento ou vínculo** entre elas.

A chave estrangeira também pode ser chamada da atributo de conexão.

A chave estrangeira de uma entidade, faz referência a chave primária da entidade

a qual esta se relacionando, gerando a integridade referencial.

Exemplo de Chave Estrangeira

TABELA: DEPARTAMENTO

1 FINANCEIRO					
2 TECNOLOGIA DA INFORMAÇÃO					
3 CONTAS A PAGAR					
4 FATTRAMENTO					
5 RECURSOS HUMANOS					

Chave Primária

TABELA: FUNCIONARIO

	DEPTO ∯ NM_FUNCIONARIO				∜ VL_SALARIO
12345	1 JOAO DA SILVA	10/05/85	15/09/12	RUA X, 49	5684,66
12346	1 MANUEL DA SILVA	05/10/98	10/11/15	RUA X, 31	3542,11
12347	1 JANDIRA DA SILVA	10/12/00	15/09/18	RUA X, 25	1875,96
12348	2 KATIA REGINA SOUZA	15/01/95	03/10/15	RUA Y, 49	3894,63
12349	5 MARIA DAS DORES SOUZA	18/08/83	23/10/17	RUA Y, 35	1542,55
12350	2 ALFREDO DE SOUZA	04/05/99	03/10/15	RUA Y, 27	5874,52
12351	3 GISELE DE JESUS	15/04/99	20/03/17	RUA Z, 49	1020,66
12352	3 RAFAEL DE JESUS	10/08/98	10/08/12	RUA Z, 55	2563,44
12353	3 ROSANA DE JESUS	14/03/87	15/08/19	RUA Z, 79	4879,55
12354	4 JOSEFINA DE ALMEIDA	16/10/97	25/03/13	RUA Y, 33	4561,88
12355	4 LUCIANA DE ALMEIDA	10/02/84	28/09/11	RUA Y, 44	2345,52
12356	5 THIAGO DE ALMEIDA	10/03/98	24/10/18	RUA Y, 55	1254,22
12357	5 LARISSSA DE CAMARGO	14/02/97	04/08/15	RUA V, 22	1245,55
12358	5 ANTONIO DE CAMARGO	25/01/85	12/08/16	RUA V, 44	2451,33
12359	5 JOSE DE CAMARGO	23/10/98	20/04/17	RUA V, 88	6541,22

Chave Estrangeira

Chave Secundária

Formada por um ou mais atributos, que facilitam o acesso aos dados. São considerados índices, formam meios de classificação e pesquisa para as ocorrências.

Usa-se sempre que ocorrer a necessidade de buscar informações semelhantes em ordem crescente/decrescente em funções de datas, valores ou status.

A classificação da entidades, facilita o entendimento do MER.

Entidade Primária ou Forte: uma entidade é identificada como forte, quando não tem dependência com nenhuma outra para formar seu conceito.

Estas entidades contém dados que são fundamentais para manter as transações do negócio da empresa.

Considerando o exemplo do contexto de negócio Rádio Taxi on-line, encontramos as seguintes entidades fortes: MOTORISTA, CONVENIADA, VEICULO.

Entidade Dependente ou Fraca: Uma entidade fraca não existe por si só e sua existência no MER está condicionada a outra única entidade, da qual ela depende.

A entidade fraca no modelo lógico não possui chave primária. Por definição é uma entidade subordinada, onde a chave primária é formada pela chave estrangeira (proveniente da associação com a entidade forte) associada a um atributo da própria entidade fraca.

São exemplos de entidade fraca: ITENS_FATURA, CONTATO_EMERGENCIA, ITENS_PEDIDO, HISTORICO_PACIENTE, NOTA_ALUNO.

Analisando os exemplos anteriores, percebe-se que há a necessidade de complementar o conceito de cada entidade:

Item (do quê?): São duas as entidades que complementam o conceito do item.

Se observarmos o ITENS_PEDIDO, percebemos que um item pertence a um pedido especifico e o item representa um produto comercializado. Portanto, dependemos de PEDIDO e PRODUTO.

Nota (de quem?): O complemento para a entidade NOTA é a entidade ALUNO, uma vez que uma nota pertence/é obtida por um aluno.

Histórico (de quem?): O complemento é a entidade PACIENTE, uma vez que um histórico relata o progresso/evolução de um determinado paciente.

T_SIP_DEPENDENTE

P * cd_dependente NUMBER (3)

PF * nr_matricula NUMBER (5)
 * nm_dependente VARCHAR2 (60)

* dt nascimento DATE

PK_SIP_DEPENDENTE (cd_dependente, nr_matricula)

👺 FK_FUNC_DEPENDENTE (nr_matricula)

FUNCIONARIO

		♦ NM_FUNCIONARIO				∜ VL_SALARIO
/12345	1	JOAO DA SILVA	10/05/85	15/09/12	RUA X, 49	5684,66
12346	1	MANUEL DA SILVA	05/10/98	10/11/15	RUA X, 31	3542,11
12347	1	JANDIRA DA SILVA	10/12/00	15/09/18	RUA X, 25	1875,96
12348	2	KATIA REGINA SOUZA	15/01/95	03/10/15	RUA Y, 49	3894,63
12349	5	MARIA DAS DORES SOUZA	18/08/83	23/10/17	RUA Y, 35	1542,55
12350	2	ALFREDO DE SOUZA	04/05/99	03/10/15	RUA Y, 27	5874,52
12351	3	GISELE DE JESUS	15/04/99	20/03/17	RUA Z, 49	1020,66
12352	3	RAFAEL DE JESUS	10/08/98	10/08/12	RUA Z, 55	2563,44
12353	3	ROSANA DE JESUS	14/03/87	15/08/19	RUA Z, 79	4879,55
12354	4	JOSEFINA DE ALMEIDA	16/10/97	25/03/13	RUA Y, 33	4561,88
12355	4	LUCIANA DE ALMEIDA	10/02/84	28/09/11	RUA Y, 44	2345,52
12356	5	THIAGO DE ALMEIDA	10/03/98	24/10/18	RUA Y, 55	1254,22
12357	5	LARISSSA DE CAMARGO	14/02/97	04/08/15	RUA V, 22	1245,55
12358	5	ANTONIO DE CAMARGO	25/01/85	12/08/16	RUA V, 44	2451,33
12359	5	JOSE DE CAMARGO	23/10/98	20/04/17	RUA V, 88	6541,22

Dependente de quem?

Veja que a entidade DEPENDENTE, é um complemento da entidade FUNCIONARIO. A entidade DEPENDENTE, representa os filhos, esposa ou marido de um funcionário.

Entidade Associativa: é uma entidade que não existe no MER por si só, e sua existência está condicionada à existência de duas ou mais entidades.

São exemplos de entidades associativas: PROFESSOR_DISCIPLINA, MOTORISTA_VEICULO, VOO.

PROFESSOR_DISCIPLINA	MOTORISTA_VEICULO	V00	.]
num_matricula cod_disciplina	num_matricula_motorista num_veiculo	num_voo cod_passageiro num_assento	

Atributos Multivalorados

Para cada atributo multivalorado criar uma tabela contendo:

- 1. Como chave estrangeira, a chave primária da tabela que representa o conjunto de entidades que tem o atributo multivalorado.
- 2. O valor do atributo.

A chave primária da nova tabela é a combinação da chave estrangeira e o valor do atributo.

Um pouco mais sobre Atributos...

Cardinalidade de Atributos

Cardinalidade de um atributo define quantos valores deste atributo podem estar associados a uma ocorrência da entidade/relacionamento a qual ele pertence.

A cardinalidade (1,1) do atributo pode ser omitida do diagrama e indica que código e nome são <u>atributos obrigatórios</u> (cardinalidade mínima 1) e monovalorados (cardinalidade máxima 1), conforme exemplo Entidade: Cliente e os atributos: Código e Nome.

O atributo telefone é um <u>atributo opcional</u> (cardinalidade mínima 0) e multivalorado (cardinalidade máxima n).

Cardinalidade de Atributos

Exemplo 1: Nome do aluno (todo aluno possui um e apenas um nome).

Rita de Cássia Rodrigues

Nome do Aluno

Cardinalidade mínima = 1 > indica que este atributo é mandatório (obrigatório).

Cardinalidade máxima = 1 > indica que este atributo é monovalorado.

Exemplo 2: *Telefone de uma pessoa* (lembre-se podemos ter telefones: residencial, celular, comercial – nem todas as pessoas possuem telefones).

Situação 1 – Uma pessoa que possui vários telefones

(11) 2345-1234	(11) 97654-2323	(11) 5656-9876			
RESIDENCIAL	CELULAR	COMERCIAL			
TELEFONE					

Situação 2 – Uma pessoa que não possui nenhum telefone

(NÃO HÁ)
TELEFONE

Cardinalidade mínima = 0 > indica que este atributo é opcional.

Cardinalidade **máxima** = **N** → indica que este atributo é **multivalorado**.

Exemplo 3: Nota obtida por um aluno em uma avaliação (lembre-se nem todos os alunos realizam avaliação na data marcada, portanto podemos ter notas não informadas).

Situação 1 – Aluno que não fez avaliação

(não há) Nota avaliação

Situação 2 – Aluno que fez avaliação

6,0 Nota Avaliação

Cardinalidade mínima = 0 > indica que este atributo é opcional.

Cardinalidade **máxima** = 1 \rightarrow indica que este atributo é **monovalorado**.

TERMINOLOGIAS

Processamento de Dados	SGBD Relacionais	Teoria do Modelo Relacional	Modelo de Dados (E-R)	Orientação a Objetos
Campo	Coluna	Atributo	Atributo	Propriedade, Atributo
Registro	Linha	Tupla	Ocorrência (instância)	Objeto (instância)
Arquivo (arquivo lógico)	Tabela	Relação	Entidade	Classe
Banco de Dados	Banco de Dados (esquema)	Base de Dados (esquema)	Modelo de Dados (esquema)	Repositório / Modelo de Classes
Campo Chave	Chave Primária	Chave Primária (Chave Candidata)	Atributo(s) Identificador(es)	Identidade do Objeto
(chave externa, ponteiro ?)	Chave Estrangeira	Chave Estrangeira	Relacionamento	Relacionamento
Programa, Rotina, Procedimento	Restrição de Integridade	Restrição de Integridade, Domínio	Regra de Integridade	Método, Operação

TERMINOLOGIAS

Data Processing	Relational DBMS	Relational Model Theory	Data Model (E-R)	Object-Oriented
Field	Column	Attribute	Attribute	Property, Attribute
Record	Row	Tuple	Occurrence (instance)	Object (instance)
File (logical file)	Table	Relation	Entity	Class
Database (Data Bank)	Database, Schema	Database, Schema	Data Model (schema)	Repository / Class Model
Key Field	Primary Key (PK)	Primary Key (Candidate Key)	Identifier Attribute(s)	Objeto Identifier (OID)
(external key, pointer ?)	Foreign Key (FK)	Foreign Key	Relationship	Relationship
Program, Routine, Procedure	Integrity Constraint	Integrity Constraint, Domain	Integrity Rule	Method, Operation

REFERÊNCIAS

PUGA, S.; FRANÇA, E.; GOYA, M. Banco de Dados – Implementação em SQL, PL/SQL e Oracle 11g. Capítulo 4.

MACHADO, Felipe Nery R. Banco de Dados - Projeto e Implementação. Érica, 2004. Capítulo 1 – p.19 a 27

HEUSER, C.A. Projeto de Banco de Dados. Série Livros Didáticos, V. 4. Bookman, 2009. Capítulo 1 –p. 20 a 29

SILBERSCHATZ, A; KORTH, H. F.; SUDARSHAN, S. Sistema de Banco de Dados. Campus, 2006. Capítulo 6 – p. 133 a 174

ELMASRI, R.; NAVATHE, S.B. Sistemas de Banco de Dados: Fundamentos e Aplicações. Pearson, 2005. Capítulo 3 – p. 35 a 59

Copyright © 2020 Profa. Rita de Cássia Rodrigues

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).