Function		Search space	Global Min	Properties
Ackley	$f(x) = -20 \exp\left(-0.2 \sqrt{\frac{1}{d} \sum_{i=1}^{d} x_i^2}\right) - \exp\left(\frac{1}{d} \sum_{i=1}^{d} \cos(2\pi x_i)\right) + 20 + \exp(1)$	[-32.768, 32768] for all x_i	f(x)=0, where $((x_1, x_2,, x_d) = (0,0,0)$	Numerous local, one global, multimodal, continuous, differentiable, non- separable, scalable
Griewank	$f(x) = \sum_{i=1}^{d} \frac{x_i^2}{4000} - \prod_{i=1}^{d} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$	[-600, 600] for all x_i	$f(x)=0$, where $((x_1, x_2,, x_d) = (0,0, 0)$	Many local, one global, multimodal, continuous, differentiable, non-separable, scalable
Schwefel	$f(x) = 418.9829d - \sum_{i=1}^{d} x_i \sin(\sqrt{ x_i })$	[-500, 500] for all x_i	f(x)=0, where $((x_1, x_2,, x_d) = (420.9687, 420.9687,, 420.9687)$	Many local, one global, multimodal, continuous, differentiable, separable, scalable
Rastrigin	$f(x) = 10d + \sum_{i=1}^{d} [x_i^2 - 10\cos(2\pi x_i)]$	[-5.12, 5.12] for all x_i	f(x)=0, where $((x_1, x_2,, x_d) = (0,0,0)$	Many local, one global, multimodal
Sphere	$f(x) = \sum_{i=1}^{d} x_i^2$	[-5.12, 5.12] for all x_i	$f(x)=0$, where $((x_1, x_2,, x_d) = (0,0,0)$	d local minima, one global, continuous, convex, unimodal
Perm	$f(x) = \sum_{i=1}^{d} \left(\sum_{j=1}^{d} (j+10) \left(x_j^i - \frac{1}{j^i} \right) \right)^2$	[-d, d] for all x_i	f(x)=0, where $((x_1, x_2,, x_d) = (1, \frac{1}{2},, \frac{1}{d})$	
Zakharov	$f(x) = \sum_{i=1}^{d} x_i^2 + \left(\sum_{i=1}^{d} 0.5ix_i\right)^2 + \left(\sum_{i=1}^{d} 0.5ix_i\right)^4$	[-5, 10] for all x_i	$f(x)=0$, where $((x_1, x_2,, x_d) = (0,0,0)$	No local minima, one global, continuous
Rosenbrock	$f(x) = \sum_{i=1}^{d-1} [100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2]$	[-2048, 2048], for all x_i	f(x)=0, where $((x_1, x_2,, x_d) = (1,1, 1)$	Continuous, Differentiable, Non-Separable, Scalable, Unimodal
Dixon-Price	$f(x) = (x_1 - 2)^2 + \sum_{i=2}^{d} i (2x_i^2 - x_{i-1})^2$	$[-10,10]$ for all x_i	$f(x)=0 \text{ where } x_i = 2^{-\frac{2^i-2}{2^i}}$	Valley-Shaped

Detaylı bilgiler ve örnek kodlar için: https://en.wikipedia.org/wiki/Test functions for optimization,, http://yapbenzet.kocaeli.edu.tr/wp-content/uploads/benchmark fonksiyonlar.pdf