

Books

Fundamentals of Data Structures in C, 2nd Edition.

(開發圖書, (02) 8242-3988)

Administration

Instructor:

- 曾學文資工系教授
- Office: Room 908
- Email: hwtseng@nchu.edu.tw
- Tel: 04-22840497 ext. 908
- http://wccclab.cs.nchu.edu.tw/www/

Office Hours:

- (Thursday)14:00~16:00;

Grade:

- Quiz 20 pts
- Computer-based Test 20 pts
- Homework 20 pts
- Midterm Exam 25 pts
- Final Exam 25 pts
- Roll Call 3 pts

Introductory

- ☐ Raise your hand is always welcome!
- No phone, walk, sleep, and late during the lecture time.
- □ Data structure is not the fundamental course for programming.
- ☐ Slides are not enough. To master the materials, page-by-page reading is necessary.

Outline

- ■Basic Concept
- Arrays and Structures
- Stacks and Queues
- Lists
- Trees
- □Graphs
- □ Sorting
- □Hashing

Midterm

Final

CHAPTER 1

BASIC CONCEPT

All the programs in this file are selected from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed "Fundamentals of Data Structures in C",

Algorithm

□ Definition

An *algorithm* is a finite set of instructions that accomplishes a particular task.

- □ Criteria
 - input
 - output
 - definiteness: clear and unambiguous
 - finiteness: terminate after a finite number of steps
 - effectiveness: instruction is basic enough to be carried out

Data Type

- □ Data Type
 - A data type is a collection of *objects* and a set of *operations* that act on those objects.
- □ Abstract Data Type (ADT)
 An ADT is a data type that is organized in such a way that the specification of the objects and the operations on the objects is separated from
 - the representation of the objects.
 - the implementation of the operations.

Specification vs. Implementation

- Operation specification
 - function name
 - the types of arguments
 - the type of the results
- Implementation independent

*Structure 1.1:Abstract data type Natural_Number structure Natural Number is

objects: an ordered subrange of the integers starting at zero and ending at the maximum integer (*INT_MAX*) on the computer

```
functions:
 for all x, y \in Nat\_Number; TRUE, FALSE \in Boolean
 and where +, -, <, and == are the usual integer operations.
                               ::= 0
 Nat_Num Zero ( )
 Boolean Is\_Zero(x) ::= if(x) return FALSE
                          else return TRUE
 Nat\_Num \text{ Add}(x, y) ::= if ((x+y) \le INT\_MAX) return x+y
                          else return INT_MAX
 Boolean Equal(x,y) ::= if (x==y) return TRUE
                         else return FALSE
 Nat_Num Successor(x) ::= if (x == INT_MAX) return x
                          else return x+1
 Nat\_Num Subtract(x,y) ::= if (x<y) return 0
                          else return x-y
```

end Natural_Number

Measurements

- Criteria
 - Is it correct?
 - Is it readable?
 - **–** ...
- □ Performance Measurement (machine dependent)
- □ Performance Analysis (machine independent)
 - space complexity: storage requirement
 - time complexity: computing time

Space Complexity $S(P)=C+S_P(I)$

- ☐ Fixed Space Requirements (C)
 Independent of the characteristics of the inputs
 and outputs
 - instruction space
 - space for simple variables, fixed-size structured variable, constants
- □ Variable Space Requirements $(S_P(I))$ depend on the instance characteristic I
 - number, size, values of inputs and outputs associated with I
 - recursive stack space, formal parameters, local variables, return address

```
*Program 1.10: Simple arithmetic function
float abc(float a, float b, float c)
  return a + b + b * c + (a + b - c) / (a + b) + 4.00;
                                                          S_{abc}(I) = 0
This function has only fixed space requirements
*Program 1.11: Iterative function for summing a list of numbers
float sum(float list[], int n)
                                     S_{\text{cum}}(I) = 0
 float tempsum = 0;
                                     Recall: pass the address of the
 int i;
                                     first element of the array &
 for (i = 0; i < n; i++)
                                     pass by value
    tempsum += list [i];
 return tempsum;
```

Assumptions:

*Figure 1.1: Space needed for one recursive call of Program 1.12

Type	Name	Number of bytes	
parameter: array pointer	list []	4	
parameter: integer	n	4	
return address:(used internally)		4 (unless a far address)	
TOTAL per recursive call		12	

Time Complexity

$$T(P)=C+T_P(I)$$

- □ C: Compile time independent of instance characteristics
- \square T_P: Run (execution) time

A *program step* is a syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics.

Example

$$- abc = a + b + b * c + (a + b - c) / (a + b) + 4.0$$

$$- abc = a + b + c$$

Regard as the same unit machine independent

Methods to compute the step count

- 1. Introduce variable count into programs
- 2. Tabular method
 - Determine the total number of steps contributed by each statement
 - step per execution × frequency
 - add up the contribution of all statements

Tabular Method

*Figure 1.2: Step count table for Program 1.11

Iterative function to sum a list of numbers steps/execution

Statement	s/e	Frequency	Total steps
float sum(float list[], int n)	0	0	0
{	0	0	0
float tempsum $= 0$;	1	1	1
int i;	0	0	0
for(i=0; i <n; i++)<="" td=""><td>1</td><td>n+1</td><td>n+1</td></n;>	1	n+1	n+1
tempsum += list[i];	1	n	n
return tempsum;	1	1	1
}	0	0	0
Total			2n+3

Iterative summing of a list of numbers

*Program 1.13: Program 1.11 with count statements

```
float sum(float list[], int n)
  float tempsum = 0; count++; /* for assignment */
  int i;
  for (i = 0; i < n; i++)
      count++; /*for the for loop */
     tempsum += list[i]; count++; /* for assignment */
  count++; /* last execution of for */
  count++; /* for return */
  return tempsum;
                                      2n + 3 steps
```

```
initial n = 3, count = 0
```

```
float sum(float list[], int n) {
  float tempsum = 0;
                                       count = 1
  int i;
  for(i = 0; i < n; i++)
     tempsum += list[i];
  return tempsum;
```

```
initial n = 3, count = 0
```

```
float sum(float list[], int n) {
  float tempsum = 0;
  int i;
  for(i = 0; i < n; i++)
                                      i = 0, count = 2
     tempsum += list[i];
  return tempsum;
```

```
initial n = 3, count = 0
```

```
float sum(float list[], int n) {
  float tempsum = 0;
  int i;
  for(i = 0; i < n; i++){
     tempsum += list[i];
                                       count = 3
  return tempsum;
```

```
initial n = 3, count = 0
```

```
float sum(float list[], int n) {
  float tempsum = 0;
  int i;
  for(i = 0; i < n; i++){
                                      i = 1, count = 4
     tempsum += list[i];
  return tempsum;
```

```
initial n = 3, count = 0
```

```
float sum(float list[], int n) {
  float tempsum = 0;
  int i;
  for(i = 0; i < n; i++){
     tempsum += list[i];
                                       count = 5
  return tempsum;
```

```
initial n = 3, count = 0
```

```
float sum(float list[], int n) {
  float tempsum = 0;
  int i;
  for(i = 0; i < n; i++){
                                       i = 2, count = 6
     tempsum += list[i];
  return tempsum;
```

```
initial n = 3, count = 0
```

```
float sum(float list[], int n) {
  float tempsum = 0;
  int i;
  for(i = 0; i < n; i++)
     tempsum += list[i];
                                       count = 7
  return tempsum;
```

```
initial n = 3, count = 0
```

```
float sum(float list[], int n) {
  float tempsum = 0;
  int i;
  for(i = 0; i < n; i++){
                                      i = 3, count = 8
     tempsum += list[i];
  return tempsum;
```

```
initial n = 3, count = 0
```

```
float sum(float list[], int n) {
  float tempsum = 0;
  int i;
  for(i = 0; i < n; i++)
     tempsum += list[i];
  return tempsum;
                                  count = 9
```

```
initial n = 3, count = 0
```

```
float sum(float list[], int n) {
  float tempsum = 0;
                                           1次
  int i;
                                          n+1次
  for(i = 0; i < n; i++)
                                           n次
     tempsum += list[i];
                                           1次
  return tempsum;
                                          2n+3次
```

*Program 1.14: Simplified version of Program 1.13

```
float sum(float list[], int n)
{
    float tempsum = 0;
    int i;
    for (i = 0; i < n; i++)
        count += 2;
    count += 3;
    return 0;
}</pre>
```

Recursive summing of a list of numbers

*Program 1.15: Program 1.12 with count statements added

```
float rsum(float list[], int n)
       count++; /*for if conditional */
       if (n) {
               count++; /* for return and rsum invocation */
               return rsum(list, n-1) + list[n-1];
       count++;
       return list[0];
                                                  2n+2
```

```
initial n = 3, count = 0
```

```
float rsum(int list[], int n){
   if(n){
     return rsum(list, n-1) + list[n-1];
   }
  return list[0];
}
```

n=3, count = 1

```
initial n = 3, count = 0
```

```
initial n = 3, count = 0
```

```
float rsum(int list[], int n){
   if(n){
     return rsum(list, n-1) + list[n-1];
   }
  return list[0];
}
```

n=2, count = 3

```
initial n = 3, count = 0
```

```
initial n = 3, count = 0
```

```
float rsum(int list[], int n){
   if(n){
     return rsum(list, n-1) + list[n-1];
   }
  return list[0];
}
```

n=1, count = 5

```
initial n = 3, count = 0
```

```
initial n = 3, count = 0
```

```
float rsum(int list[], int n){
   if(n){
     return rsum(list, n-1) + list[n-1];
   }
  return list[0];
}
```

n=0, count = 7

```
initial n = 3, count = 0
```

```
float rsum(int list[], int n){
    if(n){
       return rsum(list, n-1) + list[n-1];
    }
    return list[0];
    n=0, count = 8
```

```
initial n = 3, count = 0
```

Recursive Function to sum of a list of numbers

*Figure 1.3: Step count table for recursive summing function

Statement	s/e	Frequency	Total steps
float rsum(float list[], int n)	0	0	0
{	0	0	0
if (n)	1	n+1	n+1
return rsum(list, n-1)+list[n-1];	1	n	n
return list[0];	1	1	1
}	0	0	0
Total			2n+2

Matrix addition

*Program 1.16: Matrix addition

```
void add(int a[] [MAX_SIZE], int b[] [MAX_SIZE], int c [] [MAX_SIZE], int rows, int cols) { int i, j; for (i = 0; i < rows; i++) for (j= 0; j < cols; j++) c[i][j] = a[i][j] + b[i][j]; rows * cols }
```

Matrix Addition

*Figure 1.4: Step count table for matrix addition

Statement	s/e	Frequency	Total steps		
Void add (int a[][MAX_SIZE] • • •) { int i, j; for (i = 0; i < row; i++) for (j=0; j < cols; j++) c[i][j] = a[i][j] + b[i][j]; }	0 0 0 1 1 1 0	0 0 0 rows+1 rows • (cols+1) rows • cols	0 0 0 rows+1 rows • cols+rows rows • cols		
Total	2rows • cols+2rows+1				

*Program 1.17: Matrix addition with count statements

```
void add(int a[][MAX_SIZE], int b[][MAX_SIZE],
                int c[][MAX_SIZE], int row, int cols)
 int i, j;
                               2*rows*cols+2rows+1
 for (i = 0; i < rows; i++)
    count++; /* for i for loop */
    for (j = 0; j < cols; j++) {
      count++; /* for j for loop */
      c[i][j] = a[i][j] + b[i][j];
      count++; /* for assignment statement */
    count++; /* last time of j for loop */
 count++; /* last time of i for loop */
```

```
initial rows=2, cols=3, count = 0
```

```
initial
rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial
rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
initial rows=2, cols=3, count = 0
```

```
void add(int a[][MAX_SIZE], b[][MAX_SIZE],
         c[][MAX_SIZE], int rows, int cols) {
  int i, j;
  for(i = 0; i < rows; i++)
                                             rows+1 次
                                           rows*(cols+1) 次
     for(j = 0; j < cols; j++)
                                            rows*cols 次
       c[i][j] = a[i][j] + b[i][j];
                                      2rows*cols+2rows+1 次
```

Exercise 1

*Program 1.19: Printing out a matrix

Asymptotic Notation

Definition

- **Big-Oh (O)** g(n) is the upper bound of f(n) f(n) = O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le cg(n)$, for all $n, n \ge n_0$.
- **Big-Omega** (Ω) g(n) is the lower bound of f(n) $f(n) = \Omega(g(n))$ iff there exist positive constants c and n_0 such that $f(n) \ge cg(n)$, for all $n, n \ge n_0$.
- Big-Theta (Θ)

 $f(n) = \Theta(g(n))$ iff there exist positive constants c_1, c_2 and n_0 such that $c_1 g(n) \le f(n) \le c_2 g(n)$, for all $n, n \ge n_0$.

Asymptotic Notation (O)

□ Definition f(n) = O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all n, $n \ge n_0$.

Examples

```
-3n+2=O(n) /* 3n+2 \le 4n \text{ for } n \ge 2 */
-3n+3=O(n) /* 3n+3 \le 4n \text{ for } n \ge 3 */
-100n+6=O(n) /* 100n+6 \le 101n \text{ for } n \ge 6 */
-10n^2+4n+2=O(n^2) /* 10n^2+4n+2 \le 11n^2 \text{ for } n \ge 5 */
-6*2^n+n^2=O(2^n) /* 6*2^n+n^2 \le 7*2^n \text{ for } n \ge 4 */
```

Asymptotic Notation (Θ)

Definition

 $f(n) = \Theta(g(n))$ iff there exist positive constants c_1, c_2 and n_0 such that $c_1g(n) \le f(n) \le c_2g(n)$, for all $n, n \ge n_0$.

Examples

- $3n + 2 = \Theta(n)$ $3n + 2 \ge 3n$ for all $n \ge 2$ and $3n + 2 \le 4n$ for all $n \ge 2$, so $c_1 = 3$, $c_2 = 4$ and $n_0 = 2$
- $10n^2 + 4n + 2 = \Theta(n^2)$ $10n^2 + 4n + 2 \ge 10n^2$ for all $n \ge 5$ and $10n^2 + 4n + 2 \le 11n^2$ for all $n \ge 5$, so $c_1 = 10$, $c_2 = 11$ and $n_0 = 5$
- $6 * 2^n + n^2 = \Theta(2^n)$ $6 * 2^n + n^2 \ge 6 * 2^n$ for all $n \ge 4$ and $6 * 2^n + n^2 \le 7 * 2^n$ for all $n \ge 4$, so $c_1 = 6$, $c_2 = 7$ and $n_0 = 4$

Example

- \square Complexity of $c_1 n^2 + c_2 n$ and $c_3 n$
 - for sufficiently large of value, $c_3 n$ is faster than $c_1 n^2 + c_2 n$
 - for small values of n, either could be faster
 - $c_1=1$, $c_2=2$, $c_3=100$ --> $c_1n^2+c_2n \le c_3n$ for $n \le 98$
 - $c_1=1$, $c_2=2$, $c_3=1000$ --> $c_1n^2+c_2n \le c_3n$ for $n \le 998$
 - break even point
 - no matter what the values of c1, c2, and c3, the n beyond which c_3n is always faster than $c_1n^2+c_2n$

- \square O(1): constant
- \square O(n): linear
- \square O(n²): quadratic
- \square O(n³): cubic
- \square O(2ⁿ): exponential
- \square O(logn)
- \square O(nlogn)

*Figure 1.7:Function values

Instance characteristic n									
Time	e Name		2	4	8	16	32		
1	Constant	1	1	1	1	1	1		
$\log n$	Logarithmic	0	1	2	3	4	5		
n	Linear	1	2	4	8	16	32		
$n \log n$	$g n \mid \text{Log linear}$		2	8	24	64	160		
n^2	n^2 Quadratic		4	16	64	256	1024		
n^3	Cubic	1	8	64	512	4096	32768		
2^n	Exponential	2	4	16	256	65536	4294967296		
n!	Factorial	1	2	24	40326	20922789888000	26313×10^{33}		

Figure 1.7 Function values

*Figure 1.8:Plot of function values

Figure 1.8 Plot of function values

*Figure 1.9:Times on a 1 billion instruction per second computer

**									
₽	$f(n)$ φ								
n÷	n⇔	n log2 n∉	$n^2 \leftarrow$	n³∻	n ⁴ ⇔	n ¹⁰ .	2 ⁿ √		
10⊹	.01 μs⊬	.03 μs⊹	.1 μs∻	1 μs÷	10 μs⊬	10s←	1μs⊷		
20+	.02 μs⊬	.09 μs⊹	.4 μs∻	8 μs÷	160 μs⊬	2.84h∻	1ms∻		
30₊	.03 μs⊬	.15 μs⊹	.9 μs∻	27 μs÷	810 μs⊬	6.83d∻	1s⊹		
40↔	.04 μs⊬	.21 μs⊬	1.6 μs∻	64 µs∻	2.56ms⊬	121d∻	18 m ↔		
50+	.05 μs⊬	.28 μs⊹	2.5 μs÷	125 μs÷	6.25ms↔	3.1y∻	13 d ∻		
100↔	.10 μs⊬	.66 μs⊹	10 μs∻	1ms+	100ms⊬	3171y⊹	4*10 ¹³ y↔		
10³₊	1 μs⊬	9.96 μs⊹	1 ms÷	1 <i>s</i> +	16.67m↔	3.17*10 ¹³ y↔	32*10 ²⁸³ y∉		
10⁴÷	10 μs⊬	130 μs⊹	100 ms∻	16.67m↔	115.7 d ↔	3.17*10 ²³ y↔			
10⁵₊	100 μs⊬	1.66 ms⊹	10s∻	11.57 d ↔	3171y↔	3.17*10 ³³ y↔			
106∉	1ms↔	19.92ms∉	16.67m∻	31.71y∻	3.17*10 ⁷ y↔	3.17*10 ⁴³ y⊹			