

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag IMAx2150 Matematiske metoder 3 for dataingeniører Høst 2023

Løsningsforslag — Øving 6

Regn ut indreproduktet $\langle f, g \rangle$ over intervallet $0 \leq x \leq 2\pi$, hvor $f = \sin(x)$ og $g = \cos(x)$:

$$\begin{split} \langle f,g \rangle &= \int_0^{2\pi} f(x)g(x) \, dx \\ &= \int_0^{2\pi} \sin(x) \cos(x) \, dx \\ &= \int_0^{2\pi} \left(1/2 \cdot \sin^2(x) \right)' \, dx \\ &= \left[1/2 \cdot \sin^2(x) \right]_0^{2\pi} = 1/2 \cdot \sin^2(2\pi) - 1/2 \cdot \sin^2(0) = 0 - 0 = 0. \end{split}$$

Siden indreproduktet mellom f og g er null, er de ortogonale.

2 Regn ut indreproduktet $\langle f, g \rangle$ over intervallet $-1 \le x \le 1$, hvor f = 1 og g = x:

$$\begin{split} \langle f,g \rangle &= \int_{-1}^{1} f(x)g(x) \, dx \\ &= \int_{-1}^{1} 1 \cdot x \, dx \\ &= \int_{-1}^{1} x \, dx \\ &= \left[1/2 \cdot x^{2} \right]_{-1}^{1} = 1/2 \cdot 1^{2} - 1/2 \cdot (-1)^{2} = 1/2 - 1/2 = 0. \end{split}$$

Siden indreproduktet mellom f og g er null, er de ortogonale.

3 Regn ut indreproduktet $\langle f, g \rangle$ over intervallet $-1 \le x \le 1$, hvor f = 1 og $g = x^2$:

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$$

$$= \int_{-1}^{1} 1 \cdot x^{2} dx$$

$$= \int_{-1}^{1} x^{2} dx$$

$$= \left[1/3 \cdot x^{3} \right]_{-1}^{1} = 1/3 \cdot 1^{3} - 1/3 \cdot (-1)^{3} = 1/3 + 1/3 = 2/3.$$

Siden indreproduktet mellom f og q ikke er null, er de ikke ortogonale.

Finn en trigonometrisk rekke som er lik funksjonen $f(x) = \sin^2(x)$ (Hint: Du trenger ikke regne integraler, se appendix s. 203 i kompendium for trigonometriske identiteter):

Vi bruker hintet og finner at $\sin^2(x) = \frac{1}{2}(1-\cos(2x)) = \frac{1}{2}-\frac{\cos(2x)}{2}$. Dette er jo allerede en trigonometrisk rekke av $\sin^2(x)$ over intervallet $[-\pi,\pi]$ hvor $a_0 = 1/2$, $a_2 = -1/2$ og $a_n = 0$ for alle $n \neq 0, 2$ og $b_n = 0$, for alle $n \geq 1$. Generelt sett, hvis du kan skrive en kontinuerlig funksjon f på formen $f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(\frac{\pi nx}{L}) + b_n \sin(\frac{\pi nx}{L})\right)$ for alle $x \in [-L, L]$ og en L > 0, så er fourierrekken til f nettop f selv. Over måtte vi bare finne en L som passet, nemlig $L = \pi$.

5 Bestem a og b slik at $h(x) = bx^2 + ax + 1$ er ortogonal med f(x) = 1 og g(x) = x på intervallet [-1, 1]:

Vi har allerede regnet ut enkelte av disse integralene i oppgave 2 og 3, og vi kommer til å bruke dette. Husk at et reellt indreprodukt er bi-lineært; altså $\langle af + bh, g \rangle = a\langle f, g \rangle + b\langle h, g \rangle$, og $\langle f, ag + bh \rangle = a\langle f, g \rangle + b\langle f, h \rangle$ for alle funskjoner f, g og h og alle reelle tall a og b. Dermed vil

$$\langle f, h \rangle = b \langle 1, x^2 \rangle + a \langle 1, x \rangle + \langle 1, 1 \rangle = b + 0 + \langle 1, 1 \rangle.$$

Siden $\langle 1, 1 \rangle = \int_{-1}^{1} 1 \, dx = 2$, får vi at $\langle f, h \rangle = b + 2$. Hvis dette skal være lik 0, så vil $0 = \langle f, h \rangle = b + 2 \implies b = -2$.

For å finne a, regner vi ut

$$\langle h,g\rangle = \langle -2x^2 + ax + 1, x\rangle = -2\langle x^2, x\rangle + a\langle x, x\rangle + \langle 1, x\rangle.$$

Vi vet fra før at $\langle 1, x \rangle = 0$, $\langle x, x \rangle = \int_{-1}^{1} x^2 \, dx = 2/3$, og vi har at

$$\langle x^2, x \rangle = \int_{-1}^{1} x^3 dx = \left[1/4 \cdot x^4 \right]_{-1}^{1} = 1/4 \cdot 1^4 - 1/4 \cdot (-1)^4 = 0.$$

Da får vi at

$$\langle h, g \rangle = -2\langle x^2, x \rangle + a\langle x, x \rangle + \langle 1, x \rangle = \frac{2a}{3},$$

og hvis dette skal være null, må a=0. Dermed er $h=-2x^2+1$ slik at $\langle h,f\rangle=\langle h,g\rangle=0$.

[6] Finn fourierrekken til den 2-periodiske funksjonen gitt ved f(x) = -1, for $-1 \le x < 0$, og f(x) = 1, for $0 \le x < 1$:

Vi skal finne fourierrekken til f, gitt som

$$f(x) \sim a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(\frac{n\pi x}{2}) + b_n \sin(\frac{n\pi x}{2}) \right),$$

hvor

$$a_0 = \frac{1}{4} \int_{-2}^{2} f(x) dx,$$

$$a_n = \frac{1}{2} \int_{2}^{2} f(x) \cos(\frac{\pi nx}{2}) dx,$$

og

$$b_n = \frac{1}{2} \int_2^2 f(x) \sin(\frac{\pi nx}{2}) dx,$$

for $n \geq 1$. Siden f er en odd funksjon, vil også $f(x)\cos(\frac{\pi nx}{2})$ være en odd funksjon (se oppgaven nedenfor). Fra kalkulus vet vi at hvis vi integrerer en odd funksjon over et symmetrisk interval, får vi null; dermed vil $a_0 = a_n = 0$ for alle $n \geq 0$. Vi regner ut b_n : siden $f(x)\sin(\frac{\pi nx}{2})$ er jevn (se igjen oppgaven under) har vi at

$$b_n = \frac{1}{2} \int_{-2}^{2} f(x) \sin(\frac{\pi nx}{2}) dx$$

$$= \int_{0}^{2} f(x) \sin(\frac{\pi nx}{2}) dx$$

$$= \int_{0}^{2} \sin(\frac{\pi nx}{2}) = \frac{2}{n\pi} \left[\cos(\frac{\pi nx}{2}) \right]_{0}^{2} = \frac{2}{\pi n} (1 - \cos(\pi n)).$$

Så $b_n = \frac{4}{\pi n}$ for n odde, og $b_n = 0$ for n jevne. Dermed blir

$$f(x) \sim \sum_{n=0}^{\infty} \frac{4}{(2n+1)\pi} \cdot \sin\left(\frac{(2n+1)\pi x}{2}\right).$$

7 Odde funksjoner:

Følgende gjelder for odde og jevne funksjoner: Husk at en reell funksjon med reelle verdier er odd dersom f(-x) = f(x) og jevn dersom f(-x) = f(x). Lineærkombinasjon av odde/jevn funksjoner er odd/jevn igjen; produkt av to odde funksjoner er jevn; produkt av to jevne funksjoner er jevn. Vi vet at $\sin(x)$ er odd, $\cos(x)$ er jevn, x^n er jevn hvis n er jevn, og odd hvis n er odd. Med alt dette, kan vi bestemme hvilke funksjoner av listen som er odd, og det er følgende: $x^3 - x + \sin(x)$, $4x^3 - 2x$, $\tan(x) = \frac{\sin(x)}{\cos(x)} = \sin(x) \cdot \frac{1}{\cos(x)}$, $\sin(x)$. Vi vet ikke om f(x) (gitt som et alternativ i oppgaven) er odd eller jevn fra før, så dette kan vi ikke si er odd eller jevn generelt; feks kan vi ha $f(x) = x^2 + x$, som verken er odd eller jevn.

8 Jevne funksjoner:

Se info før løsning over. Jevne funskjoner er: x^2 , $\tan^2(x)$ (siden $\tan(x)$ er odd), $\cos(x)$, x^4 .

9 Skriv funksjonen $f(x) = e^x$ som en sum av en odd og jevn funksjon, $f(x) = f_o(x) + f_j(x)$. (Hint: Bruk ligningen over, pluss en fra egenskapene til odde/jevne funskjoner til å lage et 2×2 -ligningssystem):

Vi bruker hintet over og prøver å utrykke $e^x = f_o(x) + f_j(x)$, hvor f_o er odd og f_j er jevn. Isåtilfelle vil $e^{-x} = f_o(-x) + f_j(-x) = -f_o(x) + f_j(x)$ og legger vi til ligning over med denne nye, får vi $e^x + e^{-x} = 2f_j(x)$ eller $f_j = \frac{e^x + e^{-x}}{2}$ som er jevn. Trekker vi den nye ligning fra den første får vil istedet $2f_o = e^x - e^{-x}$, eller $f_o = \frac{e^x - e^{-x}}{2}$ som er odd.

Finn fourierrekken til den odde periodiske utvidelsen av $f(x) = \cos(x)$, hvor $x \in [0, \pi)$ og $L = \pi/2$:

Den odde utvidelsen av f er \tilde{f} hvor $\tilde{f}(x) = f(x)$ når $x \in [0,\pi)$ og $\tilde{f}(x) = -f(-x) = -\cos(-x)$ når $x \in (-\pi,0]$. Dette er ikke nødvendigvis så viktig; det viktige er at \tilde{f} er en odd funksjon på $[-\pi/2,\pi/2]$ som er lik f på $[0,\pi/2)$. Dette forenkler utregningene som kommer. Siden $L = \pi/2$, vil Fourierrekken til \tilde{f} være gitt som

$$\tilde{f}(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(2nx) + b_n \sin(2nx)).$$

Hvor koeffisientene er gitt som

$$a_0 = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \tilde{f}(x) dx,$$

$$a_n = \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} \tilde{f}(x) \cos(2nx) dx,$$

og

$$b_n = \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} \tilde{f}(x) \sin(2nx) dx,$$

hvor $n \geq 1$. Siden \tilde{f} er den odde utvidelsen av f, vil \tilde{f} være en odd funksjon på det symmetriske intervallet $[-\pi/2, \pi/2]$,og fra kalkulus husker vi at det tilhørende integralet er null, så $a_0 = 0$. Siden produktet av en odd funksjon med en jevn funksjon er odd, og $\cos(2nx)$ er jevn, vil vi av samme grunn som for a_0 ha at $a_n = 0$, for alle $n \geq 1$. Det gjenstår da bare å regne ut b_n : Produktet av en odd funksjon med en odd blir en jevn funksjon, så $\tilde{f}\sin(2nx)$ er jevn. Integrer vi da over et symmetrisk intervall får vi det samme som å integrer to ganger over den positive delen; altså

$$b_n = \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} \tilde{f}(x) \sin(2nx) \, dx = \frac{4}{\pi} \int_0^{\pi/2} \tilde{f}(x) \sin(2nx) \, dx.$$

På intervallet $[0,\pi/2)$ er jo $\tilde{f}=f=\cos(x),$ så dette blir

$$b_n(x) = \frac{4}{\pi} \int_0^{\pi/2} \cos(x) \sin(2nx) dx.$$

Herfra kan man bruke delvis integrasjon to ganger for å få til slutt at

$$\frac{4}{\pi} \int_0^{\pi/2} \cos(x) \sin(2nx) \, dx = -\frac{-8n}{\pi} + \frac{16n^2}{\pi} \int_0^{\pi/2} \cos(x) \sin(2nx) \, dx,$$

hvorav det følger at

$$b_n = \frac{4}{\pi} \int_0^{\pi/2} \cos(x) \sin(2nx) \, dx = \frac{-8n}{\pi - 4\pi n^2}.$$

Så fourierrekken til \tilde{f} er gitt som

$$\tilde{f}(x) \sim \sum_{n=1}^{\infty} \frac{8n}{4\pi n^2 - \pi} \sin(2nx),$$

for $x \in [-\pi/2, \pi/2]$.

Løs den partielle differensiallikningen $u_{xy} = u_x$ med ODE-teknikker (Hint: Betrakt først u_x som den ukjente du skal løse for. Du vil trenge en funksjon av x og en funksjon av y - kall disse F(x) og G(y) i svaret ditt):

Vi bruker hintet: Vi antar løsningen u har kontinuerlig andre ordens partielle deriverte, slik at å derivere først med hensyn på y og så x er det samme som å først derivere med hensyn på x og så y. Da vil $u_{xy}=u_{yx}=(u_x)_y=u_x$. La $v=u_x$. Da sier forrige ligning at $v_y=v$, og v må ha formen $v=H(x)e^y$ for en vilkårlig funksjon av x, H(x). Så vi får $u_x=H(x)e^y$. Integrer vi med hensyn på x får vi $u=F(x)e^y+G(y)$, for en vilkårlig funksjon av y, G(y), og hvor $F(x)=\int_0^x H(t)\,dt$ (som igjen er en funksjon av x). Svaret blir altså da $u(x,y)=F(x)e^y+G(y)$.