PCT 98/05064

BUNDESREPUBLIK DEUTSCHLAND

REC'D 2 1 OCT 1998 WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b) Bescheinigung

09/485299

Die SCHERING AKTIENGESELLSCHAFT in Berlin/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"C13-C16-Epothilon-Bausteine zur Totalsynthese neuer Epothilon-Derivate sowie Verfahren zur Herstellung dieser Bausteine"

am 24. Oktober 1997 beim Deutschen Patentamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichen Unterlage dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patentamt vorläufig die Symbole C 07 F, C 07 B und C 07 D der Internationalen Patentklassifikation erhalten.

> München, den 29. September 1998 Der Präsident des Deutschen Patentamts Im Auftrag

Aktenzeichen: 197 48 928.1

Hoiß

C13-C16-Epothilon-Bausteine zur Totalsynthese neuer Epothilon-Derivate sowie Verfahren zur Herstellung dieser Bausteine

Die Erfindung betrifft den in den Patentansprüchen gekennzeichneten Gegenstand, d.h. C13-C16-Epothilon-Bausteine zur Totalsynthese neuer Epothilon-Derivate sowie Verfahren zur Herstellung dieser Bausteine.

Von Höfle et al wird die cytotoxische Wirkung von Epothilon A (R = Wasserstoff) und Epothilon B (R = Methyl),

z.B. in Angew. Chem. 1996, 108, 1671-1673, beschrieben. Wegen der in-vitro-Selektivität gegenüber Brust- und Darmzelllinien und ihrer im Vergleich zu Taxol deutlich höheren Aktivität gegen P-Glycoprotein-bildende, multiresistente Tumorlinien sowie ihre gegenüber Taxol verbesserten physikalischen Eigenschaften, z.B eine um den Faktor 30 höhere Wasserlöslichkeit, ist diese neuartige Strukturklasse für die Entwicklung eines Arzneimittels zur Therapie maligner Tumoren besonders interessant.

Die Naturstoffe sind sowohl chemisch als auch metabolisch für eine Arzneimittelentwicklung nicht ausreichend stabil. Zur Beseitigung dieser Nachteile sind Modifikationen an dem Naturstoff nötig. Derartige Modifikationen sind nur auf totalsynthetischem Wege möglich und setzen Synthesestrategien voraus, die eine breite Modifikation des Naturstoffes ermöglichen. Ziel der Strukturveränderungen ist es auch, die therapeutische Breite zu erhöhen. Dies kann durch eine Verbesserung der Selektivität der Wirkung, eine Reduktion unerwünschter toxischer Nebenwirkungen und Erhöhung der Wirkstärke erfolgen.

Es ist bekannt, daß die Verbindung der Formel

「丁丁」を持ていたかなり、一方を安全を対し、

(TBDMS steht für einen tert.-Butyldimethylsilylrest) zur Synthese des C13-C16-Fragments (Epothilon-Zählweise) von Epothilon A verwendet werden kann (Schinzer et. al. Chem. Eur. J. 1996, 2, No. 11, 1477-1482). Die von Schinzer et al. beschriebene Synthese führt die benötigte Chiralität über eine kinetische Racematspaltung nach Sharpless ein. Eine notwendige chromatographische Trennung, ein ungenügender Enantiomerenüberschuß (80% ee) und eine geringe Gesamtausbeute disqualifizieren diesen Weg für eine industrielle Synthese, die hohe Ausbeuten und hohe optische Reinheit der Syntheseprodukte erfordert.

Es ist aus der zuletzt genannten Literaturstelle weiterhin bekannt, daß der oben genannte Synthesebaustein mit dem Phosphonat der Formel

durch Wittig-Reaktion in eine Verbindung der Formel (1)

というとうそうとは気を関心を変われていているというと

überführt werden kann, die dann zur Einführung des C13-C20-Fragments für die Epothilonsynthese genutzt werden kann.

In J.Am.Chem.Soc. 1997, 119, 7974-7991 ist die Herstellung des Zwischenprodukts (2)

beschrieben, das zu Epothilon A und Epothilon B weiterverarbeitet werden kann. In Angew. Chem. 1997, 109, Nr. 19, S. 2181-2187, ist die Herstellung von Epothilon-A-Analoga mittels kombinatorischer Festphasensynthese beschrieben. Aus dieser Fundstelle gehen auch Epothilon-B-Analoga hervor.

Der in J.Am.Chem.Soc. 1997, 119, 7974-7991 beschriebene Weg zum Zwischenprodukt (2) bietet wenig Möglichkeit zur Variation von Substituenten, dieser Weg gestattet nicht die Herstellung großer, industriell verwertbarer Mengen der Verbindung (2) und er bedient sich des äußerst giftigen Osmiumtetroxids.

Es wurde nun gefunden, daß der benötigte Synthesebaustein der allgemeinen Formel C'

worin

Wasserstoff, C₁-C₂₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl, die alle substituiert sein können,

R² Wasserstoff oder eine Schutzgruppe PG¹,

R³ eine Hydroxygruppe, Halogen, eine geschützte Hydroxygruppe OPG^2 , ein Phosphoniumhalogenidrest $PPh_3^+Hal^-$ (Ph = Phenyl; Hal = F, Cl, Br, I), ein Phosphonatrest $P(O)(OQ)_2$ (Q = C₁-C₁₀-Alkyl oder Phenyl) oder ein

Phosphinoxidrest $P(O)Ph_2$ (Ph = Phenyl),

X ein Sauerstoffatom, zwei Alkoxygruppen OR^4 , eine C_2 - C_{10} -Alkylen- α , ω dioxygruppe, die geradkettig oder verzweigt sein kann, H/OR⁵ oder eine
Gruppierung CR^6R^7 ,

wobei

 R^4 für einen C_1 - C_{20} -Alkylrest,

R⁵ für Wasserstoff oder eine Schutzgruppe PG³,

R⁶, R⁷ gleich oder verschieden sind und für Wasserstoff, einen C₁-C₂₀-Alkyl-, Aryl-, C₇-C₂₀-Aralkylrest oder R⁶ und R⁷ zusammen mit dem Methylenkohlenstoffatom gemeinsam für einen 5- bis 7-

gliedrigen carbocyclischen Ring

stehen,

bedeuten,

leicht zugänglich ist aus der natürlich vorkommenden Äpfelsäure.

Als Vertreter für die Schutzgruppen PG^1 , PG^2 und PG^3 sind Alkyl- und/oder Arylsubstituiertes Silyl, C_1 - C_{20} -Alkyl, C_4 - C_7 -Cycloalkyl, das im Ring zusätzlich ein Sauerstoffatom enthalten kann, Aryl, C_7 - C_{20} -Aralkyl, C_1 - C_{20} -Acyl sowie Aroyl zu nennen.

Als Alkylgruppen R¹, R⁴, R⁶, R⁷, PG¹, PG² und PG³ sind gerad- oder verzweigtkettige Alkylgruppen mit 1-20 Kohlenstoffatomen zu betrachten, wie beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, tert.-Butyl, Pentyl, Isopentyl, Neopentyl, Heptyl, Hexyl, Decyl.

Die Alkylgruppen können perfluoriert oder substituiert sein durch 1-5 Halogenatome, Hydroxygruppen, C₁-C₄-Alkoxygruppen, C₆-C₁₂-Arylgruppen (die durch 1-3 Halogenatome substituiert sein können).

Als Arylrest R¹, R⁶, R⁷, PG¹, PG² und PG³ kommen substituierte und unsubstituierte carbocyclische oder heterocyclische Reste mit einem oder mehreren Heteroatomen wie z.B. Phenyl, Naphthyl, Furyl, Thienyl, Pyridyl, Pyrazolyl, Pyrimidinyl, Oxazolyl, Pyridazinyl, Pyrazinyl, Chinolyl, Thiazolyl, die ein- bis dreifach substituiert sein können durch Halogen, OH, O-Alkyl, CO₂H, CO₂-Alkyl, -NH₂, -NO₂, -N₃, -CN, C₁-C₂₀-Alkyl, C₁-C₂₀-Acyl, C₁-C₂₀-Acyloxy-Gruppen, in Frage.

Die Aralkylgruppen in R¹, R⁶, R⁷, PG¹, PG² und PG³ können im Ring bis 14 C-Atome, bevorzugt 6 bis 10 enthalten und in der Alkylkette 1 bis 8, bevorzugt 1 bis 4 C-Atome. Als Aralkylreste kommen beispielweise in Betracht Benzyl, Phenylethyl, Naphthylmethyl, Naphthylethyl, Furylmethyl, Thienylethyl, Pyridylpropyl. Die Ringe können ein- bis dreifach substituiert sein durch Halogen, OH, O-Alkyl, CO₂H, CO₂-Alkyl, -NH₂, -NO₂, -N₃, -CN, C₁-C₂₀-Alkyl, C₁-C₂₀-Acyl, C₁-C₂₀-Acyloxy-Gruppen.

Als Aroylreste für PG¹, PG² und PG³ sind Benzoate sowie im Phenylrest substituierte Benzoate zu bevorzugen.

Als Alkyl-, Silyl- und Acylreste für die Schutzgruppen PG¹, PG² und PG³ kommen die dem Fachmann bekannten Reste in Betracht. Bevorzugt sind aus den entsprechenden Alkyl- und Silylethern leicht abspaltbare Alkyl- bzw. Silylreste, wie beispielsweise der Methoxymethyl-, Methoxyethyl, Ethoxyethyl-, Tetrahydropyranyl-, Tetrahydrofuranyl-, Trimethylsilyl-, Triethylsilyl-, tert.-Butyldimethylsilyl-, tert.-Butyldiphenylsilyl-, Tribenzylsilyl-, Trisopropylsilyl-, Benzyl, para-Nitrobenzyl-, para-Methoxybenzyl-Rest. Als Acylreste kommen z.B. Formyl, Acetyl, Propionyl, Isopropionyl, Pivalyl-, Butyryl oder Benzoyl, die mit Amino- und/oder Hydroxygruppen substituiert sein können, in Frage.

Eine Übersicht über Schutzgruppen findet sich z.B. in "Protective Groups in Organic Synthesis" Theodora W. Green, John Wiley and Sons).

Bevorzugt für PG¹ sind solche Schutzgruppen, die unter Einwirkung von Fluorid gespalten werden können, aber unter schwach sauren Reaktionsbedingungen stabil sind.

Für PG² sind solche Schutzgruppen bevorzugt, die unter schwach sauren oder schwach basischen oder hydrogenolytischen Reaktionsbedingungen selektiv in Gegenwart der Schutzgruppe PG¹ gespalten werden können

Halogen bedeutet Fluor, Chlor, Brom und Iod.

Die erfindungsgemäße Synthese wird im folgenden Schema 1 am Beispiel der L-(-)-Äpfelsäure (I) beschrieben. Ausgehend von D(+)-Äpfelsäure (ent-I) erhält man die entsprechenden enantiomeren Verbindungen (ent-II bis ent-XI) und ausgehend von racemischer Äpfelsäure (rac-I) die entsprechenden racemischen Verbindungen (rac-II bis rac-XI).

Schema 1

Schritt a (Äpfelsäure $I \Rightarrow II$):

L-(-)-Äpfelsäure wird nach einem literaturbekannten Verfahren (Liebigs Ann. Chem. 1993, 1273-1278) in das Hydroxylacton II überführt.

Schritt b (II \Rightarrow III):

Die freie Hydroxygruppe in Verbindung II wird nach den, dem Fachmann bekannten Methoden geschützt. Als Schutzgruppe PG^1 kommen die, dem Fachmann bekannten, oben unter PG^1 , PG^2 und PG^3 genannten Schutzgruppen in Frage. Eine Übersicht befindet sich z.B. in "Protective Groups in Organic Synthesis" Theodora W. Green, John Wiley and Sons). Bevorzugt für PG^1 sind solche Schutzgruppen, die unter Einwirkung von Fluorid gespalten werden können, aber unter schwach sauren Reaktionsbedingungen stabil sind, wie z.B. der tert.-Butyldiphenylsilyl-, tert.-Butyldimethylsilyl-, oder Triisopropylsilyl-Rest.

Besonders bevorzugt sind der tert.-Butyldiphenylsilyl- und der tert.-Butyldimethylsilyl-Rest.

Schritt c (III \Rightarrow IV):

Das Lacton III wird zum Lactol IV nach den dem Fachmann bekannten Methoden reduziert. Als Reduktionsmittel eignen sich in ihrer Reaktivität modifizierte Aluminiumhydride wie z.B. Diisobutylaluminium-hydrid. Die Reaktion erfolgt in einem inerten Lösungsmittel wie z.B. Toluol, vorzugsweise bei niedrigen Temperaturen (-20 bis -100°C).

Schritt d (IV \Rightarrow V):

Die Umsetzung des Lactols IV zu Verbindungen der Formel V erfolgt mit metallorganischen Verbindungen der allgemeinen Formel R¹-Y, worin Y für ein Alkalimetall oder für MZ, wobei M ein zweiwertiges Metallatom und Z ein Halogenatom ist, steht. R¹ hat die in der allgemeinen Formel C' angegebenen Bedeutungen. Als zweiwertiges Metall ist bevorzugt Magnesium und Zink, als Halogen Z ist bevorzugt Chlor, Brom und Iod.

Schritt e $(V \Rightarrow VI)$:

Die primäre Hydroxylgruppe in Verbindung V wird nach den, dem Fachmann bekannten Methoden selektiv gegenüber der sekundären Hydroxylgruppe geschützt.

Die sekundäre Hydroxygruppe wird gegebenenfalls anschließend ebenfalls nach bekannten, dem Fachmann geläufigen Methoden geschützt.

Als Schutzgruppen PG² und PG³ kommen die, dem Fachmann bekannten, oben unter PG¹, PG² und PG³ und in der Beschreibung des Schrittes d genannten Schutzgruppen in Frage.

Bevorzugt sind solche Schutzgruppen, die unter schwach sauren oder schwach basischen oder hydrogenolytischen Reaktionsbedingungen selektiv in Gegenwart der Schutzgruppe PG¹ gespalten werden können, wie z.B. der tert.-Butyldimethylsilyl-, Acetyl-, Benzoyl-, Benzyl-, Tetrahydropyranyl-Rest ist. Besonders bevorzugt ist der tert.-Butyldimethylsilyl-Rest.

Schritt $f(VI \Rightarrow VII)$:

大学の子 一大の一大学の

Die Oxidation des sekundären Alkohols in VI zum Keton VII erfolgt nach den, dem Fachmann bekannten Methoden. Beispielsweise genannt sei die Oxidation mit Pyridiniumchlorochromat, Pyridiniumdichromat, Chromtrioxid-Pyridin-Komplex, die Oxidation nach Swern oder verwandter Methoden z.B. unter Verwendung von Oxalylchlorid in Dimethylsulfoxid, die Verwendung des Dess-Martin-Periodinans, die Verwendung von Stickstoffoxiden wie z.B. N-Methyl-morpholino-N-oxid in Gegenwart geeigneter Katalysatoren wie z.B. Tetrapropylammoniumperruthenat in inerten Lösungsmitteln. Bevorzugt ist die Oxidation nach Swern.

Schritt g (VII \Rightarrow VIII):

Für Verbindungen, in denen X gleich CR⁶R⁷ ist, wird diese Gruppierung nach den dem Fachmann bekannten Verfahren etabliert. Hierzu eignen sich Methoden wie z.B. die Wittigoder Wittig/Horner-Reaktion, die Addition einer metallorganischen Verbindung MCHR⁶R⁷ unter Abspaltung von Wasser. Bevorzugt ist die Wittig- und Wittig/Horner-Reaktion unter Verwendung von Phosphoniumhalogeniden des Typs CR⁶R⁷P(Ph)₃+Hal- oder Phosphonate des Typs CR⁶R⁷P(O)(OAlk)₂ mit Ph gleich Phenyl, Alk gleich C₁-C₁₀-Alkyl, R⁶, R⁷ und Halogen in den bereits genannten Bedeutungen mit starken Basen wie z.B. n-Butyllithium, Kalium-tert.-butanolat, Natriumethanolat, Natriumhexamethyldisilazan; als Base bevorzugt ist n-Butyllithium.

Für Verbindungen, in denen X zwei Alkoxygruppen OR^4 oder eine C_2 - C_{10} -Alkylen- α , ω -dioxygruppe darstellt, wird das Keton nach den dem Fachmann bekannten Methoden beispielsweise unter Verwendung eines Alkohols HOR^4 oder eines C_2 - C_{10} -Alkylen- α , ω -diols unter Säurekatalyse ketalisiert.

Schritt h (VIII \Rightarrow IX):

Die unter e eingeführte Schutzgruppe PG² wird nun nach den dem Fachmann bekannten Verfahren selektiv in Gegenwart von PG¹ gespalten. Handelt es sich um eine sauer abspaltbare Schutzgruppe, so erfolgt die Spaltung bevorzugt unter schwach sauren Bedindungen wie z.B. durch Umsetzung mit verdünnten organischen Säuren in inerten Lösungsmittel Bevorzugt ist Essigsäure.

Schritt i ($IX \Rightarrow X$):

Gegebenenfalls wird die freie primäre Hydroxylgruppe nach den dem Fachmann bekannten Verfahren in ein Halogenid überführt. Bevorzugte Halogenide sind Chlor, besonders aber Brom und Iod. Die Substitution der Hydroxylgruppe gegen ein Brom kann z.B. mittels Triphenylphosphin/Tetrabrommethan aber auch nach jedem anderen dem Fachmann bekannten Verfahren erfolgen. Die Etablierung eines Iodatoms kann aus dem Bromid durch

Substitution z.B. nach Finkelstein mit Natriumiodid in Aceton erfolgen. Aber auch die direkte Überführung der Hydroxylgruppe in das Iodid ist möglich, z.B. unter Verwendung von elementarem Iod, Imidazol und Triphenylphosphin in Dichlormethan.

Soll X letztendlich für H/OR⁵ mit R⁵ in der Bedeutung eines Wasserstoffatoms stehen, wird die Umwandlung der primären Hydroxygruppe in ein Halogenatom auf der Stufe der Verbindung VI' nach selektiver Entschützung der primären Hydroxygruppe vorgenommen.

Schritt k ($X \Rightarrow XI$):

学の生活生物を生物を一定を言うとい

Soll die Verknüpfung der C13-C16-Einheit mit der Position 12 des Epothilonrestes bzw. von Epothilonbruchstücken, z.B. einer C7-C12-Einheit durch Wittigreaktion erfolgen, wie z.B. in Nature Vol. 387, 268-272 (1997) beschrieben, so werden ausgehend von den Halogeniden X nach den dem Fachmann bekannten Verfahren die Triphenyl-phosphonium-halogenide ($R^{3'} = P(Ph)_3^+Hal^-$). Alkyl- bzw. Arylphoshonate ($R^{3'} = P(O)(OQ)_2$) oder Phosphinoxide ($R^{3'} = P(O)Ph_2$) des Typs XI hergestellt. Ph bedeutet dabei Phenyl; Hal steht für F, Cl, Br oder I und Q ist ein C₁-C₁₀-Alkyl- oder Phenylrest.

Zur Darstellung der Phosphoniumsalze eignet sich z.B. die Umsetzung der entsprechenden Halogenide mit Triphenylphosphin in Lösungsmitteln wie Toluol oder Benzol.

Die Darstellung der Phosphonate kann z.B. durch Reaktion der Halogenide X mit einem metallierten Dialkylphosphit erfolgen. Die Metallierung erfolgt üblicherweise mit starken Basen wie z.B. Butyllithium.

Die Darstellung der Phosphinoxide kann z.B. durch Umsetzung der Halogenide X mit metalliertem Diphenylphosphin und anschließender Oxidation erfolgen. Für die Metallierung eignen sich ebenfalls starke Basen wie Butyllithium. Die anschließende Oxidation zum Phosphinoxid kann dann z.B. mit verdünnter wäßriger Wasserstoffperoxid-Lösung erfolgen.

Es wurde gefunden, daß Verbindungen der Formel C' aus wohlfeiler, preiswert erhältlicher, enantiomerenreiner Äpfelsäure überaschenderweise in effizienter Weise mit hoher optischer Reinheit (>99,5%ee) hergestellt werden können, obwohl prinzipiell bei dem beschriebenen erfindungsgemäßen Verfahren die Möglichkeit zur vollständigen oder teilweisen Racemisierung bestehen würde.

Wie eingangs erwähnt, liefert das von Schinzer et al. in Chem. Eur. J. 1996, 2, No. 11, 1477-1482 beschriebene Verfahren diejenigen Verbindungen, worin R^1 eine Methylgruppe, R^2 ein tert.-Butyldimethylsilyl- oder Benzylrest, R^3 ein O-tert.-Butyldimethylsilylrest und X ein Sauerstoffatom oder ein (2-Methylthiazol-4-yl)methylen-rest ist, nur in einer optischen Reinheit von ca. 80% ee.

Außerdem sind die chemischen Ausbeuten des erfindungsgemäßen Verfahrens wesentlich höher als die bei den von Schinzer et al. beschriebenen Verfahren angegebenen Ausbeuten. Beispielsweise ist die Ausbeute an nach dem erfindungsgemäßen Verfahren hergestelltem (3S)-5-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2-pentanon ausgehend von L-(-)-Äpfelsäure mit 26,5% fast doppelt so hoch wie die von Schinzer et al. bei der Herstellung von (3S)-3-Benzyloxy-5-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-2-pentanon (14,35%; Chem. Eur. J. 1996, 2, No. 11, 1477-1482) angegebenen bzw. bei der Herstellung von (3S)-3-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-5-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-2-pentanon (20,58%; Angew. Chem. 1997, 109, Nr. 5, 543-544) erzielten Ausbeute.

Dieser Vergleich beruht auf den in den genannten Literaturstellen angegebenen Ausbeuten, wobei -wie schon vorstehend erwähnt- zu berücksichtigen ist, daß die nach den bekannten Verfahren erhaltenen Verbindungen nicht enantiomerenrein anfallen, so daß die tatsächliche Ausbeute der betreffenden enantiomerenreinen Verbindung niedriger liegt und zur Gewinnung einer enantiomerenreinen Verbindung ein weiterer Reinigungsschritt auf dieser oder einer späteren Verfahrenstufe nötig wird.

Darüber hinaus ermöglicht das erfindungsgemäße Verfahren eine sehr breite Variation der Substituenten in diesem C13-C16-Baustein. Dies ist ein wesentlicher Vorteil gegenüber dem in Angew. Chem. 1997, 109, Nr. 19, S. 2181-2187, beschriebenen Verfahren, ebenso die Möglichkeit, mit dem erfindungsgemäßen Verfahren die gewünschten Verbindungen in einer industriell und kommerziell verwertbaren Ausbeute zu erhalten. Weil die Stereochemie bereits über das Ausgangsprodukt eingebracht wird, benötigt es keine sehr teuren, nicht wieder zurückgewinnbare chirale Hilfsstoffe ((+)-Ipc₂B(allyl) in der Vorschrift aus Angew.Chem.) und es vermeidet auch sehr toxische Reagenzien, wie beispielsweise das Osmiumtetroxid.

Die vorliegende Erfindung betrifft somit ein Verfahren zur Herstellung der Verbindungen der allgemeinen Formel C', welches dadurch gekennzeichnet ist, daß L-(-)-Äpfelsäure, D(+)-Äpfelsäure oder racemische Äpfelsäure als Ausgangsprodukt verwendet wird.

Bevorzugt wird optisch reine D-(+)- oder L-(-)-Äpfelsäure verwendet.

Die Erfindung betrifft auch die in dem Verfahren auftretenden Zwischenverbindungen der allgemeinen Formel V, VI und VI' (nachstehend zusammengefaßt als VI")

worin

 R^1 , PG^1 und R^5 die in der allgemeinen Formel C' angegebene Bedeutung haben und PG^{2+H} für ein Wasserstoffatom oder eine Schutzgruppe PG^2 stehen.

Diese Verbindungen werden erfindungsgemäß dadurch hergestellt, daß an eine Verbindung der allgemeinen Formel IV

worin

PG¹ die in der allgemeinen Formel C angegebene Bedeutung hat, unter Öffnung des Lactolringes eine Organometallverbindung der allgemeinen Formel

 $R^{1}Y$

worin

R¹ die in der allgemeinen Formel C' angegebene Bedeutung hat, und Y für ein Alkalimetallatom oder MZ steht, wobei M ein zweiwertiges Metallatom und Z ein Halogenatom ist,

addiert wird.

Als Alkaliatom ist Lithium bevorzugt.

Im Falle von MZ ist für das zweiwertige Metallatom Magnesium und Zink bevorzugt; als Halogenatom kommt in erster Linie Chlor, Brom und Jod in Betracht.

Die vorliegende Erfindung betrifft außerdem die neuen C13-C16-Epothilon-Bausteine der allgemeinen Formel C

$$R^1$$
 X
 15
 13
 R^3
 C

worin

R¹ Wasserstoff, C₁-C₂₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl, die alle substituiert sein

können,

R² Wasserstoff oder eine Schutzgruppe PG¹,

R³ eine Hydroxygruppe, Halogen, eine geschützte Hydroxygruppe OPG², ein

Phosphoniumhalogenidrest PPh3⁺Hal⁻ (Ph = Phenyl; Hal = F, Cl, Br, I), ein

Phosphonatrest $P(O)(OQ)_2$ (Q = C_1 - C_{10} -Alkyl oder Phenyl) oder ein

Phosphinoxidrest $P(O)Ph_2$ (Ph = Phenyl),

ein Sauerstoffatom, zwei Alkoxygruppen OR^4 , eine C_2 - C_{10} -Alkylen- α , ω -

dioxygruppe, die geradkettig oder verzweigt sein kann, H/OR⁵ oder eine

Gruppierung CR⁶R⁷,

wobei

R⁴ für einen C₁-C₂₀-Alkylrest,

R⁵ für Wasserstoff oder eine Schutzgruppe PG³,

R⁶, R⁷ gleich oder verschieden sind und für Wasserstoff, einen C₁-C₂₀-

Alkyl-, Aryl-, C₇-C₂₀-Aralkylrest oder R⁶ und R⁷ zusammen mit dem Methylenkohlenstoffatom gemeinsam für einen 5- bis 7-

gliedrigen carbocyclischen Ring

stehen,

bedeuten,

wobei nicht gleichzeitig

R¹ eine Methylgruppe, R² ein tert.-Butyldimethylsilyl- oder Benzylrest, R³ ein O-tert.-Butyldimethylsilylrest und X ein (2-Methylthiazol-4-yl)methylen-rest

oder

R¹ eine Methylgruppe, R² ein tert.-Butyldimethylsilylrest, R³ ein

Triphenylphosphoniumiodidrest und X ein (2-Methylthiazol-4-yl)methylen-rest

sein können.

Durch den ersten Disclaimer werden diejenigen Verbindungen ausgenommen, die bereits von Schinzer et al. nach einem anderen, als dem erfindungsgemäßen Verfahren hergestellt wurden (Chem. Eur. J. 1996, 2, No. 11, 1477-1482 und Angew. Chem. 1997, 109, Nr. 5, 543-544).

Der zweite Disclaimer berücksichtigt das von K. C. Nicolaou et al. in Nature, Vol. 387, 1997, 268-272, erwähnte (5E,3S)-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en-1-yl]-triphenylphosphoniumiodid.

Für die nähere Erklärung der in den Verbindungen der allgemeinen Formel C vorkommenden Substituenten R¹, R⁴, R⁶, R⁷, PG¹, PG² und PG³ gelten die vorstehend für die Substituenten der allgemeinen Formel C' gemachten Ausführungen.

Erfindungsgemäß sind solche Verbindungen der allgemeinen Formel C bevorzugt, worin

R¹ für ein Wasserstoffatom, einen gegebenenfalls substituierten C₁-C₄-Alkylrest, einen gegebenenfalls mit 1 bis 3 Resten, ausgewählt aus der Gruppe der Substituenten Halogen, freie Hydroxygruppe oder geschützte Hydroxygruppe OPG⁴, C₁-C₄-Alkyl, Azido, Nitro, Nitril und Amino (NH₂), substituierten Phenylrest steht, und/oder

X für ein Sauerstoffatom steht, und/oder

der für R⁶ und/oder R⁷ stehende Arylrest für einen gegebenenfalls mit 1 bis 3 Resten, ausgewählt aus der Gruppe der Substituenten Halogen, freie Hydroxygruppe oder geschützte Hydroxygruppe OPG⁵, CO₂H, CO₂-Alkyl, C₁-C₄-Alkyl, Azido, Nitro, Nitril, Amino (NH₂), substituierten Phenylrest oder für einen gegebenenfalls mit 1 bis 2 C₁-C₄-Alkylresten substituierten 5- oder 6-gliedrigen Heteroarylrest, insbesondere für einen aus der Gruppe 2-, 3-Furanyl-, 2-, 3-, 4-Pyridinyl-, 2-, 4-, 5-Thiazolyl-,

2-, 4- und 5-Imidazolylrest, der gegebenenfalls durch 1 oder 2 C₁-C₄-Alkylreste substituiert ist, ausgewählten Substituenten steht und/oder

PG¹, PG² und PG³ aus der Gruppe der Substituenten Methoxymethyl-, Methoxyethyl, Ethoxyethyl-, Tetrahydropyranyl-, Tetrahydrofuranyl-, Trimethylsilyl-, Triethylsilyl-, tert.-Butyldimethylsilyl-, tert.-Butyldiphenylsilyl-, Tribenzylsilyl-, Triisopropylsilyl-, Benzyl-, para-Nitrobenzyl-, para-Methoxybenzyl-, Acetyl-, Propionyl-, Butyryl- und Benzoylrest ausgewählt sind,

insbesondere PG¹ ein tert.-Butyldiphenylsilyl-, tert.-Butyldimethylsilyl-, oder Triisopropylsilyl- und

insbesondere PG² ein tert.-Butyldimethylsilyl-, Acetyl, Benzoyl-, Benzyl-, Tetrahydropyranyl-Rest ist.

Als Schutzgruppen PG⁴ und PG⁵ kommen alle schon vorstehend für PG¹, PG² und PG³ angegebenen Schutzgruppen in Frage.

Die gemäß vorliegender Erfindung hergestellten Bausteine der allgemeinen Formel C' können analog zu beschriebenen Methoden, beispielsweise in Chem. Eur. J. 1996, 2, No. 11, 1477-1482; J.Am.Chem.Soc. 1997, 119, 7960-7973 und 7974-7991; Angew. Chem. 1997, 109, Nr. 19, 2181-2187 zur Synthese von Epothilon A und B und modifizierter Epothilone der allgemeinen Formel I verwendet werden:

worin

R für ein Wasserstoffatom oder eine Methylgruppe steht,

R¹ und X die in der allgemeinen Formel C angegebene Bedeutung haben, sowie.

L und M jeweils für ein Wasserstoffatom oder gemeinsam für ein Sauerstoffatom oder eine zusätzliche Bindung stehen.

Freie Hydroxylgruppen in C' können durch Veretherung oder Veresterung, freie Carbonylgruppen durch Ketalisierung, Enoletherbildung oder Reduktion abgewandelt sein. Die Erfindung betrifft alle Stereoisomeren dieser Verbindungen und auch deren Gemische.

Die nachfolgenden Beispiele dienen der näheren Erläuterung des Erfindungsgegenstandes, ohne ihn auf diese beschränken zu wollen.

Beispiel 1

からまり 医子の婦女の婚女を養養があったの

(S)-Dihydro-3-hydroxy-2(3H)-furanon

10 g L-(-)-Äpfelsäure werden in 45 ml Trifluoressigsäureanhydrid 2 Stunden bei 25°C gerührt. Danach engt man im Vakuum ein, addiert zu dem Rückstand 7 ml Methanol und läßt 12 Stunden nachrühren. Anschließend wird im Vakuum eingeengt. Der erhaltene Rückstand wird in 150 ml absolutem Tetrahydrofuran gelöst. Man kühlt auf 0°C und addiert 150 ml Boran-Tetrahydrofuran-Komplex und läßt 2,5 Stunden bei 0°C nachrühren. Danach werden 150 ml Methanol addiert. Man läßt eine Stunde bei Raumtemperatur nachrühren und engt dann im Vakuum ein. Das erhaltene Rohprodukt wird in 80 ml Toluol gelöst. Man addiert 5 g Dowex® (aktiviert, sauer)und kocht eine Stunde unter Rückfluß. Anschließend wird das Dowex® abfiltriert und das Filtrat im Vakuum eingeengt. Das erhaltene Rohprodukt (7,61 g; 99,9%) wird ohne Aufreinigung in die Folgestufe eingesetzt.

Beispiel 2

(S)-Dihydro-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2(3H)-furanon

Zu einer Lösung von 7,61 g der unter Beispiel 1 beschriebenen Substanz und 10 g Imidazol in 100 ml N,N-Dimethylformamid werden 24 ml tert. Butyldiphenylsilylchlorid addiert. Man läßt zwei Stunden bei 25°C nachrühren und gießt dann das Reaktionsgemisch auf eiskalte gesättigte Natriumhydrogencarbonatlösung. Man extrahiert mit Ethylacetat, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat werden 13,4 g (52,8%) der Titelverbindung erhalten.

¹H-NMR (CDCl₃): $\delta = 7.72$ (2H), 7,70 (2H), 7,40-7,50 (6H), 4,30-4,42 (2H), 4,01 (1H), 2,10-2,30 (2H), 1,11 (9H) ppm.

Beispiel 3

(2RS,3S)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]tetrahydro-2-furanol

Zu einer Lösung von 13,4 g der unter Beispiel 2 beschriebenen Substanz in 150 ml absolutem Tetrahydrofuran werden 80 ml einer 1 molaren Lösung von Diisobutylaluminiumhydrid in Hexan bei -78°C addiert. Man rührt 45 Minuten bei -78°C nach und quencht dann mit Wasser. Man extrahiert mit Ethylacetat, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Man erhält 13,46 g (99,4%) der Titelverbindung, welche ohne Reinigung in die Folgestufe eingesetzt wird.

Beispiel 4

(2RS,3S)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-1,4-pentandiol

Zu 20 ml einer 3 molaren Lösung von Methylmagnesiumchlorid in Tetrahydrofuran wird bei 0°C eine Lösung von 13,46 g der unter Beispiel 3 beschriebenen Substanz in 150 ml absolutem Tetrahydrofuran getropft. Man läßt eine Stunde bei 0°C nachrühren und gießt dann auf gesättigte wäßrige Ammoniumchloridlösung. Man extrahiert mit Ethylacetat, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat werden 11,42 g (81,6%) der Titelverbindung erhalten.

¹H-NMR (CDCl₃): $\delta = 7,65-7,75$ (4H), 7,40-7,55 (6H), 5,20 (1H), 4,30 (2H), 3,70 (1H), 1,80 (2H), 1,05 (9H) ppm.

Beispiel 5

(2RS,3S)-5-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2-pentanol

Zu einer Lösung von 11,42 g der unter Beispiel 4 beschriebenen Substanz und 3,25 g 1*H*-Imidazol in 120 ml *N,N*-Dimethylformamid werden 4,9 g *tert*-Butyldimethylsilylchlorid addiert. Man läßt 2 Stunden bei 25°C nachrühren und gießt dann das Reaktionsgemisch auf eiskalte gesättigte Natriumhydrogencarbonatlösung. Man extrahiert mit Ethylacetat, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat werden 10,64 g (70,5%) der Titelverbindung erhalten.

 $^{1}\text{H-NMR}$ (CDCl₃): $\delta = 7,60-7,70$ (4H), 7,30-7,45 (6H), 3,70-3,80 (2H), 3,40 (1H), 3,00 (1H), 1,80 (1H), 1,60 (1H), 1,05-1,12 (12H), 0,82 (9H), 0,02 (6H) ppm.

Beispiel 6

(3S)-5-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2-pentanon

Zu 7,37 ml Oxalylchlorid in 80 ml Dichlormethan werden bei -78°C 13 ml Dimethylsulfoxid addiert. Man läßt 3 Minuten nachrühren und addiert dann 10,64 g der unter Beispiel 5 beschriebenen Substanz in 100 ml Dichlormethan. Nach weiteren 15 Minuten Nachrührzeit werden 52 ml Triethylamin hinzugetropft. Anschließend läßt man auf 0°C erwärmen. Danach wird das Reaktionsgemisch auf gesättigte Natriumhydrogencarbonatlösung gegossen. Man Phase mit gesättigter Dichlormethan, wäscht die organische extrahiert mit Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie des Rohprodukts an Kieselgel mit einem Gemisch Hexan/Ethylacetat werden 9,3 g (26,5% bezogen auf die eingesetzte Äpfelsäure) der Titelverbindung erhalten.

¹H-NMR (CDCl₃): δ = 7,60-7,70 (4H), 7,32-7,50 (6H), 4,25 (1H), 3,72 (1H), 3,58 (1H), 2,05 (3H), 1,90 (1H), 1,75 (1H), 1,13 (9H), 0,89 (9H), 0,01 (6H) ppm.

Beispiel 7

(R)-Dihydro-3-hydroxy-2(3H)-furanon

10 g D-(+)-Äpfelsäure werden analog zu Beispiel 1 umgesetzt. Man erhält 7,26 g der Titelverbindung. Das ¹H-NMR-Spektrum ist deckungsgleich mit 1.

Beispiel 8

· 是我不是不敢 海上的

(R)-Dihydro-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2(3H)-furanon
Analog zu Beispiel 2 werden aus 7,26 g der unter Beispiel 7 beschriebenen Substanz 12,9 g
der Titelverbidnung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 2.

Beispiel 9

(2RS,3R)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]tetrahydro-2-furanol Analog zu Beispiel 3 werden aus 12,9 g der unter Beispiel 8 beschriebenen Substanz 12,95 g der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 3.

Beispiel 10

(2RS,3R)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-1,4-pentandiol Analog zu Beispiel 4 werden aus 12,95g der unter Beispiel 9 beschriebenen Substanz 11 g der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 4.

Beispiel 11

(2RS,3*R*)-5-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2-pentanol

Analog zu Beispiel 5 werden aus 11 g der unter Beispiel 10 beschriebenen Substanz 10,11 g der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 5.

Beispiel 12

(R)-5-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2-pentanon

Analog zu Beispiel 6 werden aus 10,11 g der unter Beispiel 11 beschriebenen Substanz 8,85 g der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 6.

Beispiel 13

(3RS)-Dihydro-3-hydroxy-2(3H)-furanon

5 g racemische Äpfelsäure werden analog zu Beispiel 1 umgesetzt. Man erhält 3,68 g der Titelverbindung. Das 1H-NMR-Spektrum ist deckungsgleich mit 1.

Beispiel 14

(3RS)-Dihydro-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2(3H)-furanon Analog zu Beispiel 2 werden aus 3,68 g der unter Beispiel 13 beschriebenen Substanz 6,5 g der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 2.

Beispiel 15

(2RS,3RS)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]tetrahydro-2-furanol Analog zu Beispiel 3 werden aus 6,5 g der unter Beispiel 14 beschriebenen Substanz 6,51 g der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 15.

Beispiel 16

(2RS,3RS)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-1,4-pentandiol
Analog zu Beispiel 4 werden aus 6,51 g der unter Beispiel 15 beschriebenen Substanz 5,5 g der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 4.

Beispiel 17

(2RS,3RS)-5-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2-pentanol

Analog zu Beispiel 5 werden aus 5,5 g der unter Beispiel 16 beschriebenen Substanz 5,05 g der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 5.

Beispiel 18

(3RS)-5-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2-pentanon

Analog zu Beispiel 6 werden aus 5,05 g der unter Beispiel 17 beschriebenen Substanz 4,3 g der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 6.

Beispiel 19

(E,3S)-1-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en

Die Lösung von 6,82g Diethyl(2-methylthiazol-4-yl)methanphosphonat in 300 ml wasserfreiem Tetrahydrofuran kühlt man unter einer Atmosphäre aus trockenem Argon auf 5°C, versetzt mit 16,2 ml einer 1,6 molaren Lösung von n-Buthyllithium in n-Hexan, läßt auf 23°C erwärmen und 2 Stunden rühren. Anschließend kühlt man auf -78°C, tropft die Lösung von 6,44 g (13,68 mmol) der nach Beispiel 6 dargestellten Verbindung in 150 ml Tetrahydrofuran zu, läßt auf 23°C erwärmen und 16 Stunden rühren. Man gießt in gesättigte

Ammoniumchloridlösung, extrahiert mehrfach mit Ethylacetat, wäscht die vereinigten organischen Extrakte mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 6,46 g (11,4 mmol, 83%; Ausbeute bezogen auf die eingesetzte Äpfelsäure: 22%) der Titelverbindung als farbloses Öl.

¹H-NMR (CDCl₃): $\delta = -0.04$ (6H), 0,83 (9H), 1,10 (9H), 1,79 (1H), 1,90 (1H), 1,97 (3H), 2,51 (3H), 3,51 (2H), 4,38 (1H), 6,22 (1H), 6,74 (1H), 7,23-7,47 (6H), 7,63 (2H), 7,70 (2H) ppm.

Beispiel 20

近日公安衛衛 照時

(E,3S)-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en-1-ol

Die Lösung von 4,79 g (8,46 mmol) der nach Beispiel 19 dargestellten Verbindung in 48 ml 65:35:10-Gemisches 48 ml eines man mit Tetrahydrofuran versetzt Eisessig/Wasser/Tetrahydrofuran und rührt 2,5 Tage bei 23°C. Man gießt in gesättigte Natriumcarbonatlösung, extrahiert mehrfach mit Ethylacetat, wäscht die vereinigten organischen Extrakte mit gesättigter Natriumchloridlösung und trocknet über Natriumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 3,42 g (7,57 mmol, 90%) der Titelverbindung als farbloses Öl. ¹H-NMR (CDCl₃): $\delta = 1,10$ (9H), 1,53 (1H), 1,81 (2H), 1,96 (3H), 2,71 (3H), 3,59 (2H), 4,41 (1H), 6,38 (1H), 6,78 (1H), 7,26-7,49 (6H), 7,65 (2H), 7,72 (2H) ppm.

Beispiel 21

(E,3S)-1-Brom-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en

Die Lösung von 378 mg (0,84 mmol) der nach Beispiel 20 dargestellten Verbindung in 9 ml Dichlormethan versetzt man bei 0°C unter einer Atmosphäre aus trockenem Argon mit 90 μl Pyridin, 439 mg Triphenylphosphin, 556 mg Tetrabrommethan und rührt 1 Stunde bei 0°C. Die Lösung chromatographiert man an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 362 mg (0,70 mmol, 84%) der Titelverbindung als farbloses Öl.

¹H-NMR (CDCl₃): δ = 1,09 (9H), 1,95 (3H), 2,01-2,23 (2H), 2,71 (3H), 3,15-3,35 (2H), 4,35 (1H), 6,30 (1H), 6,79 (1H), 7,25-7,49 (6H), 7,63 (2H), 7,69 (2H) ppm.

Beispiel 22

(E,3S)-1-Iod-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en

Die Lösung von 8,41 g Triphenylphosphin in 120 ml Dichlormethan versetzt man bei 23°C unter einer Atmosphäre aus trockenem Argon mit 2,19 g Imidazol, 8,14 g Iod, tropft die Lösung von 12,2 g (27,0 mmol) der nach Beispiel 20 dargestellten Verbindung in 30 ml Dichlormethan zu und rührt 0,5 Stunden. Die Lösung chromatographiert man an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 12,15 g (21,6 mmol, 80%) der Titelverbindung als farbloses Öl.

¹H-NMR (CDCl₃): δ = 1,08 (9H), 1,96 (3H), 2,10 (2H), 2,70 (3H), 2,87-3,08 (2H), 4,24 (1H), 6,32 (1H), 6,79 (1H), 7,28-7,48 (6H), 7,60-7,72 (4H) ppm.

Beispiel 23

(5E,3S)-[3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en-1-yl]-triphenylphosphoniumiodid

Die Suspension aus 12,55 g (22,3 mmol) der nach Beispiel 22 dargestellten Verbindung, 85 g Triphenylphosphin und 11,6 ml N-Ethyldiisopropylamin rührt man unter einer Atmosphäre aus trockenem Argon 16 Stunden bei 80°C. Nach dem Erkalten versetzt man mit Diethylether, filtriert und wäscht den Rückstand mehrfach mit Diethylether nach und kristallisiert aus Ethylacetat um. Isoliert werden 15,7 g (19,1 mmol, 74%) der Titelverbindung als kristalliner Feststoff.

¹H-NMR (CDCl₃): δ = 1,07 (9H), 1,68-1,92 (2H), 1,98 (3H), 2,70 (3H), 2,93 (1H), 3,30 (1H), 4,53 (1H), 6,62 (1H), 7,03 (1H), 7,23-7,47 (6H), 7,48-7,72 (16H), 7,73-7,85 (3H) ppm.

Beispiel 24

(E,3R)-1-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en

Analog zu Beispiel 19 werden aus 8,85 g der unter Beispiel 12 beschriebenen Verbindung 8,56 g (80%) der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 19

Beispiel 25

(E,3R)-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en-1-ol

Analog zu Beispiel 20 werden aus 8,56 g der unter Beispiel 24 beschriebenen Verbindung 6,25 g (92 %) der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 20.

Beispiel 26

(E,3R)-1-Iod-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en

Analog zu Beispiel 22 werden aus 6,25 g der unter Beispiel 25 beschriebenen Verbindung 6,22 g (80%) der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 22.

Beispiel 27

(5E,3R)-[3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en-1-yl]-triphenylphosphoniumiodid

Analog zu Beispiel 23 werden aus 6,22 g der unter Beispiel 26 beschriebenen Verbindung 7,36 g (70 %) der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 23.

Beispiel 28

かいた。今年日本の大学の大学の大学の

dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en

Analog zu Beispiel 19 werden aus 4,3 g der unter Beispiel 18 beschriebenen Verbindung 4,52 g (87 %) der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 19.

Beispiel 29

(E,3RS)-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en-1-ol

Analog zu Beispiel 20 werden aus 4,52 g der unter Beispiel 28 beschriebenen Verbindung 3,16 g (88 %) der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 20.

Beispiel 30

(E,3RS)-1-Iod-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en

Analog zu Beispiel 22 werden aus 3,16 g der unter Beispiel 25 beschriebenen Verbindung 3,34 g (85 %) der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 22.

Beispiel 31

(5E,3RS)-[3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4-yl)-pent-4-en-1-yl]-triphenylphosphoniumiodid

Analog zu Beispiel 23 werden aus 3,34 g der unter Beispiel 26 beschriebenen Verbindung 4,35 g (77 %) der Titelverbindung erhalten. Das ¹H-NMR-Spektrum ist deckungsgleich mit 23.

Beispiel 32

(E,3S)-1-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-pyridyl)-pent-4-en

In Analogie zu Beispiel 19 setzt man 2 g (4,23 mmol) der nach Beispiel 6 dargestellten Verbindung unter Verwendung von Diethyl(2-pyridyl)methanphosphonat um und isoliert nach Aufarbeitung und Reinigung 2 g (3,68 mmol, 87%) der Titelverbindung als farbloses Öl. 1 H-NMR (CDCl₃): δ = -0,06 (6H), 0,80 (9H), 1,09 (9H), 1,81 (1H), 1,90 (1H), 2,00 (3H), 3,53 (2H), 4,40 (1H), 6,22 (1H), 6,99 (1H), 7,06 (1H), 7,25-7,45 (6H), 7,58 (1H), 7,65-7,77 (4H), 8,58 (1H) ppm.

Beispiel 33

(E,3S)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-pyridyl)-pent-4-en-1-ol Analog zu Beispiel 20 werden 2 g (3,68 mmol) der unter Beispiel 32 hergestellten Verbindung mit einem 65:35:10-Gemische aus Eisessig/Wasser/Tetrahydrofuran umgesetzt. Man erhält nach Aufreinigung 1,38 g (3,20 mmol, 87%) der Titelverbindung. 1 H-NMR (CDCl₃): δ = 1,12 (9H), 1,85 (2H), 2,00 (3H), 3,62 (2H), 4,45 (1H), 6,44 (1H), 7,03 (1H), 7,08 (1H), 7,25-7,48 (6H), 7,59 (1H), 7,65-7,77 (4H), 8,58 (1H) ppm.

Beispiel 34

(Z,3S)-1-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(3-pyridyl)-pent-4-en (A) und (E,3S)-1-[[Dimethyl(1,1-dimethylethyl)silyl] oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(3-pyridyl)-pent-4-en (B)

In Analogie zu Beispiel 19 setzt man 4,8 g (10,2 mmol) der nach Beispiel 6 dargestellten Verbindung unter Verwendung von Diethyl(3-pyridyl)methanphosphonat um und isoliert nach Aufarbeitung und Reinigung 448 mg (0,82 mmol, 8%) der Titelverbindung A sowie 3,5 g (6,41 mmol, 63%) der Titelverbindung B jeweils als farbloses Öl.

¹H-NMR (CDCl₃) von A: $\delta = -0.06$ (6H), 0,81 (9H), 1,01 (9H), 1,75 (1H), 1,97 (4H), 3,48 (2H), 4,83 (1H), 6,11 (1H), 6,97 (1H), 7,11-7,30 (5H), 7,30-7,39 (2H), 7,39-7,50 (4H), 8,08 (1H), 8,33 (1H) ppm.

¹H-NMR (CDCl₃) von B: δ = -0,01 (6H), 0,85 (9H), 1,11 (9H), 1,78 (3H), 1,83 (1H), 1,97 (1H), 3,58 (2H), 4,42 (1H), 6,03 (1H), 7,21 (1H), 7,28-7,50 (7H), 7,62-7,75 (4H), 8,29 (1H), 8,41 (1H) ppm.

Beispiel 35

(E,3S)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(3-pyridyl)-pent-4-en-1-ol Analog zu Beispiel 20 werden 3,5 g (6,41 mmol) der unter Beispiel 34B hergestellten Verbindung mit einem 65:35:10-Gemische aus Eisessig/Wasser/Tetrahydrofuran umgesetzt. Man erhält nach Aufreinigung 2,1 g (4,86 mmol, 76%).

 $^{1}\text{H-NMR}$ (CDCl₃): $\delta = 1,12$ (9H), 1,75 (3H), 1,88 (2H), 3,65 (2H), 4,45 (1H), 6,25 (1H), 7,21 (1H), 7,28-7,50 (7H), 7,60-7,75 (4H), 8,30 (1H), 8,44 (1H) ppm.

Beispiel 36

Analog zu Beispiel 22 werden aus 2,1 g der unter Beispiel 35 beschriebenen Verbindung 1,98 g (75%) der Titelverbindung erhalten.

 1 H-NMR (CDCl₃): δ = 1,11 (9H), 1,78 (3H), 2,17 (2H), 3,03 (2H), 4,29 (1H), 6,19 (1H), 7,22 (1H), 7,30-7,50 (7H), 7,63-7,75 (4H), 8,32 (1H), 8,44 (1H) ppm.

Beispiel 37

とて、成在のとなるないないないないないない

Analog zu Beispiel 23 werden aus 1,98 g der unter Beispiel 36 beschriebenen Verbindung 2,35 g (80%) der Titelverbindung erhalten.

 1 H-NMR (CDCl₃): δ = 1,08 (9H), 1,80 (3H), 3,27 (1H), 3,56 (1H), 4,66 (1H), 6,52 (1H), 7,25-7,90 (27H), 8,35 (1H), 8,46 (1H) ppm.

Beispiel 38

(Z,3S)-1-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(4-pyridyl)-pent-4-en (A) und (E,3S)-1-[[Dimethyl(1,1-dimethylethyl)silyl] oxy]-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(4-pyridyl)-pent-4-en (B)

In Analogie zu Beispiel 19 setzt man 4,59 g (9,75 mmol) der nach Beispiel 6 dargestellten Verbindung unter Verwendung von Diethyl(4-pyridyl)methanphosphonat um und isoliert nach Aufarbeitung und Reinigung 605 mg (1,11 mmol, 11%) der Titelverbindung A sowie 4,34 g (7,95 mmol, 82%) der Titelverbindung B jeweils als farbloses Öl.

¹H-NMR (CDCl₃) von A: $\delta = -0.05$ (6H), 0,82 (9H), 1,02 (9H), 1,78 (1H), 1,96 (3H), 3,48 (2H), 4,92 (1H), 6,08 (1H), 6,73 (2H), 7,20-7,30 (4H), 7,32-7,40 (2H), 7,41-7,49 (4H), 8,30 (2H) ppm.

¹H-NMR (CDCl₃) von B: $\delta = -0.04$ (6H), 0,80 (9H), 1,08 (9H), 1,78 (3H), 1,91 (1H), 3,55 (2H), 4,39 (1H), 6,02 (1H), 6,93 (2H), 7,26-7,48 (6H), 7,60-7,72 (4H), 8,50 (2H) ppm.

Beispiel 39

(E,3S)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(4-pyridyl)-pent-4-en-1-ol Analog zu Beispiel 20 werden 4,34 g (7,95 mmol) der unter Beispiel 38B hergestellten Verbindung mit einem 65:35:10-Gemische aus Eisessig/Wasser/Tetrahydrofuran umgesetzt. Man erhält nach Aufreinigung 2,92 g (6,76 mmol, 85%) der Titelverbindung.

 1 H-NMR (CDCl₃): $\delta = 1,12$ (9H), 1,78 (3H), 1,87 (2H), 3,65 (2H), 4,42 (1H), 6,26 (1H), 6,97 (2H), 7,26-7,48 (6H), 7,60-7,72 (4H), 8,52 (2H) ppm.

Beispiel 40

Analog zu Beispiel 22 werden aus 2,92 g (6,76 mmol) der unter Beispiel 39 beschriebenen Verbindung 2,82 g (77%) der Titelverbindung erhalten.

 1 H-NMR (CDCl₃): $\delta = 1,08$ (6H), 1,78 (3H), 2,15 (2H), 3,00 (2H), 4,26 (1H), 6,17 (1H), 6,95 (2H), 7,30-7,50 (6H), 7,60-7,70 (4H), 8,50 (2H) ppm.

Beispiel 41

Analog zu Beispiel 23 werden aus 2,82 g (5,21 mmol) der unter Beispiel 40 beschriebenen Verbindung 3,27 g (4,06 mmol, 78%) der Titelverbindung erhalten.

 1 H-NMR (CDCl₃): δ = 1,09 (6H), 1,82 (3H), 3,15 (1H), 3,50 (1H), 4,65 (1H), 6,53 (1H), 7,05 (2H), 7,25-7,48 (6H), 7,50-7,70 (4H), 8,50 (2H) ppm.

Patentansprüche

1. Verbindungen der allgemeinen Formel C,

$$R^1$$
 X
 15
 13
 R^3
 C

worin

R¹ Wasserstoff, C₁-C₂₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl, die alle substituiert sein

können,

R² Wasserstoff oder eine Schutzgruppe PG¹,

R³ eine Hydroxygruppe, Halogen, eine geschützte Hydroxygruppe OPG², ein

Phosphoniumhalogenidrest PPh3+Hal- (Ph = Phenyl; Hal = F, Cl, Br, I), ein

Phosphonatrest $P(O)(OQ)_2$ (Q = C_1 - C_{10} -Alkyl oder Phenyl) oder ein

Phosphinoxidrest P(O)Ph₂ (Ph = Phenyl),

X ein Sauerstoffatom, zwei Alkoxygruppen OR^4 , eine C_2 - C_{10} -Alkylen-α,ω-

dioxygruppe, die geradkettig oder verzweigt sein kann, H/OR5 oder eine

Gruppierung CR⁶R⁷,

wobei

 R^4 für einen C_1 - C_{20} -Alkylrest,

R⁵ für Wasserstoff oder eine Schutzgruppe PG³,

R⁶, R⁷ gleich oder verschieden sind und für Wasserstoff, einen C₁-C₂₀-

Alkyl-, Aryl-, C₇-C₂₀-Aralkylrest oder R⁶ und R⁷ zusammen mit dem Methylenkohlenstoffatom gemeinsam für einen 5- bis 7-

gliedrigen carbocyclischen Ring

stehen,

sein können.

bedeuten,

wobei nicht gleichzeitig

 R^1 eine Methylgruppe, R^2 ein tert.-Butyldimethylsilyl- oder Benzylrest, R^3 ein O-tert.-Butyldimethylsilylrest und X ein (2-Methylthiazol-4-yl)methylen-rest oder

 R^1 eine Methylgruppe, R^2 ein tert.-Butyldimethylsilylrest, R^3 ein Triphenylphosphoniumiodidrest und X ein (2-Methylthiazol-4-yl)methylen-rest

2. Verbindungen der allgemeinen Formel C nach Anspruch1, dadurch gekennzeichnet, daß R¹ für ein Wasserstoffatom, einen gegebenenfalls substituierten C₁-C₄-Alkylrest, einen gegebenenfalls mit 1 bis 3 Resten, ausgewählt aus der Gruppe der Substituenten Halogen, freie Hydroxygruppe oder geschützte Hydroxygruppe OPG⁴, C₁-C₄-Alkyl, Azido, Nitro, Nitril, Amino (NH₂), substituierten Phenylrest steht.

19月1日、田藤宮 春草(10人) おおきを行った。

- 3. Verbindungen der allgemeinen Formel C nach Anspruch 1, dadurch gekennzeichnet, daß X für ein Sauerstoffatom steht.
- 4. Verbindungen der allgemeinen Formel C nach Anspruch 1, dadurch gekennzeichnet, daß der für R^6 und/oder R^7 stehende Arylrest für einen gegebenenfalls mit 1 bis 3 Resten, ausgewählt aus der Gruppe der Substituenten Halogen, freie Hydroxygruppe oder geschützte Hydroxygruppe OPG^5 , C_1 - C_4 -Alkyl, Azido, Nitro, Nitril, Amino (NH₂), substituierten Phenylrest oder für einen gegebenenfalls mit 1 bis 2 C_1 - C_4 -Alkylresten substituierten 5- oder 6-gliedrigen Heteroarylrest steht.
- 5. Verbindungen der allgemeinen Formel C nach Anspruch 4, dadurch gekennzeichnet, daß der für R^6 und/oder R^7 stehende Arylrest ausgewählt ist aus der Gruppe 2-, 3-Furanyl-, 2-, 3-, 4-Pyridinyl-, 2-, 4-, 5-Thiazolyl-, 2-, 4- und 5-Imidazolylrest, der gegebenenfalls durch 1 oder $2 C_1$ - C_4 -Alkylreste substituiert ist.
- 5. Verbindungen der allgemeinen Formel C nach Anspruch 1, dadurch gekennzeichnet, daß die Schutzgruppen PG¹, PG² und PG³ aus der Gruppe der Substituenten Methoxymethyl-, Methoxyethyl-, Tetrahydropyranyl-, Tetrahydrofuranyl-, Trimethylsilyl-, Triethylsilyl-, tert.-Butyldimethylsilyl-, tert.-Butyldiphenylsilyl-, Tribenzylsilyl-, Triisopropylsilyl-, Benzyl, para-Nitrobenzyl-, para-Methoxybenzyl-, Formyl, Acetyl-, Propionyl-, Isopropionyl-, Pivalyl-, Butyryl- oder Benzoylrest ausgewählt sind.
- 7. Verbindungen nach Anspruch 2, dadurch gekennzeichnet, daß die Schutzgruppe PG⁴ aus der Gruppe der Substituenten Methoxymethyl-, Methoxyethyl, Ethoxyethyl-, Tetrahydropyranyl-, Tetrahydrofuranyl-, Trimethylsilyl-, Triethylsilyl-, tert.-Butyldiphenylsilyl-, Tribenzylsilyl-, Triisopropylsilyl-, Benzyl,

para-Nitrobenzyl-, para-Methoxybenzyl-, Formyl, Acetyl-, Propionyl-, Isopropionyl-, Pivalyl-, Butyryl- oder Benzoylrest ausgewählt ist.

- 8. Verbindungen nach Anspruch 4, dadurch gekennzeichnet, daß die Schutzgruppe PG⁵ aus der Gruppe der Substituenten Methoxymethyl-, Methoxyethyl, Ethoxyethyl-, Tetrahydropyranyl-, Tetrahydrofuranyl-, Trimethylsilyl-, Triethylsilyl-, tert.-Butyldimethylsilyl-, tert.-Butyldiphenylsilyl-, Tribenzylsilyl-, Triisopropylsilyl-, Benzyl, para-Nitrobenzyl-, para-Methoxybenzyl-, Formyl, Acetyl-, Propionyl-, Isopropionyl-, Pivalyl-, Butyryl- oder Benzoylrest ausgewählt ist.
- 9. Verbindungen nach Anspruch 6, dadurch gekennzeichnet, daß die Schutzgruppe PG¹ ein tert.-Butyldiphenylsilyl-, tert.-Butyldimethylsilyl- oder Triisopropylsilyl-Rest ist.
- 10. Verbindungen nach Anspruch 6, dadurch gekennzeichnet, daß die Schutzgruppe PG² ein tert.-Butyldimethylsilyl-, Acetyl-, Benzoyl-, Benzyl- oder Tetrahydropyranyl-Rest ist.
- 11. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel C'

worin

R¹ Wasserstoff, C₁-C₂₀-Alkyl, Aryl, C₇-C₂₀-Aralkyl, die alle substituiert sein können,

R² Wasserstoff oder eine Schutzgruppe PG¹,

eine Hydroxygruppe, Halogen, eine geschützte Hydroxygruppe OPG^2 , ein Phosphoniumhalogenidrest $PPh_3^+Hal^-$ (Ph = Phenyl; Hal = F, Cl, Br, I), ein Phosphonatrest $P(O)(OQ)_2$ (Q = C_1 - C_{10} -Alkyl oder Phenyl) oder ein Phosphinoxidrest $P(O)Ph_2$ (Ph = Phenyl),

x ein Sauerstoffatom, zwei Alkoxygruppen OR^4 , eine C_2 - C_{10} -Alkylen- α , ω dioxygruppe, die geradkettig oder verzweigt sein kann, H/OR⁵ oder eine
Gruppierung CR^6R^7 ,
wobei

 R^4 für einen C_1 - C_{20} -Alkylrest,

R⁵ für Wasserstoff oder eine Schutzgruppe PG³,

R⁶, R⁷ gleich oder verschieden sind und für Wasserstoff, einen C₁-C₂₀-Alkyl-, Aryl-, C₇-C₂₀-Aralkylrest oder R⁶ und R⁷ zusammen mit dem Methylenkohlenstoffatom gemeinsam für einen 5- bis 7-

gliedrigen carbocyclischen Ring

stehen,

bedeuten,

dadurch gekennzeichnet ist, daß L-(-)-Äpfelsäure, D-(+)-Äpfelsäure oder racemische Äpfelsäure als Ausgangsprodukt verwendet wird.

- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß L-(-)-Äpfelsäure oder D-(+)-Äpfelsäure verwendet wird.
- 13. Zwischenverbindungen der allgemeinen Formel VI"

worin

 R^1 , PG^1 und R^5 die in der allgemeinen Formel C angegebene Bedeutung haben und $^2G^{2+H}$ für ein Wasserstoffatom oder eine Schutzgruppe PG^2 stehen.

14. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel VI" gemäß Anspruch 13, dadurch gekennzeichnet, daß an eine Verbindung der allgemeinen Formel IV

worin

PG1 die in der allgemeinen Formel C angegebene Bedeutung hat,

unter Öffnung des Lactolringes eine Organometallverbindung der allgemeinen Formel

$R^{1}Y$

worin

R¹ die in der allgemeinen Formel C' angegebeneBedeutung hat, und Y für ein Alkalimetallatom oder MZ steht, wobei M ein zweiwertiges Metallatom und Z ein Halogenatom ist,

addiert und anschließend gegebenenfalls die primäre Hydroxygruppe mit einer Schutzgruppe PG^2 und gegebenenfalls die sekundäre Hydroxygruppe mit einer Schutzgruppe PG^3 geschützt wird.

Zusammenfassung

C13-C16-Epothilon-Bausteine zur Totalsynthese von Epothilon A und B und Epothilon-Derivaten sowie Verfahren zur Herstellung dieser Bausteine ausgehend von Äpfelsäure.