

Deep Learning for Computer Vision

Dr. Konda Reddy Mopuri Mehta Family School of Data Science and Artificial Intelligence IIT Guwahati Aug-Dec 2022

Text processing with NNs require to encoding into vectors

One-hot encoding

① One-hot encoding: N words encoded as binary vectors of length N

Dictionary	٧	Word Representation					
Α	1	0	0		0	0	
Bus	0	1	0		0	0	
Cat	0	0	1		0	0	
:							
Tide	0	0	0		1	0	
Zone	0	0	0		0	1	

Bag of Words (BoW)

Bag of Words: Collection and frequency of words

Drawbacks

Space inefficient

Drawbacks

- Space inefficient
- Word order is lost

Drawbacks

- Space inefficient
- Word order is lost
- Ooesn't capture language structure

Word Embeddings: idea

Word Embeddings: idea

- ① Learn embeddings from the words into vectors: W(word)
- Expecting that similar words fall nearby in the space

What is the dimension of the embedding?

- What is the dimension of the embedding?
- ② Trade-off: greater capacity vs. efficiency

 $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} \hline \end{tabular} Finding W: as a part of a prediction task that involves neighboring words$

Word Embeddings: word2vec

1 T Mikolov et al. (2013)

Word Embeddings: word2vec

- T Mikolov et al. (2013)
- 2 Predict words from the context

Word Embeddings: word2vec

- ① T Mikolov et al. (2013)
- ② Predict words from the context
- Two versions: Continuous Bag of Words (CBoW) and Skip-gram

① Considers the embeddings of 'n' words before and 'n' words after the target word

- Considers the embeddings of 'n' words before and 'n' words after the target word
- Adds them (order is lost) for predicting the target word

CBOW

 $\ \, \textbf{ 1} \ \, \mathsf{Size} \,\, \mathsf{of} \,\, \mathsf{the} \,\, \mathsf{vocabulary} = V \\$

- ① Size of the vocabulary = V
- ② Dimension of the embeddings =N

- ① Size of the vocabulary = V
- ② Dimension of the embeddings = N
- 3 Input layer will have the weight matrix $W_{N imes V}$

- ① Size of the vocabulary = V
- ② Dimension of the embeddings = N
- 3 Input layer will have the weight matrix $W_{N \times V}$
- $\ensuremath{\P}$ Projects the words in to N dimensional space

- ① Size of the vocabulary = V
- ② Dimension of the embeddings =N
- 3 Input layer will have the weight matrix $W_{N\times V}$
- ullet Projects the words in to N dimensional space

f 1 Next layer has a weight matrix $W'_{V imes N}$

- ① Next layer has a weight matrix $W'_{V imes N}$
- Projects the accumulated embeddings onto the vocabulary

- ① Next layer has a weight matrix $W'_{V \times N}$
- Projects the accumulated embeddings onto the vocabulary
- 3 That is, V- way classification \to (after a softmax) maximizes the probability for the target word

① $W_{N imes V}$ or $W'_{V imes N}$ can be considered as the word embeddings

- ① $W_{N\times V}$ or $W'_{V\times N}$ can be considered as the word embeddings
- 2 Or, take the average of both the representations

Word Embeddings: Skipgram

Predicts surrounding words given current word

Word Embeddings: Skipgram

- Predicts surrounding words given current word
- ② Pick a word in the context randomly, and predict that the words that form the context

Skip-gram

Word Embeddings: interesting results

 $\textcircled{1} \ \ W(\mathsf{Paris}) \ \text{-} \ W(\mathsf{France}) \ + \ W(\mathsf{Italy}) = W(\mathsf{Rome})$

Word Embeddings: interesting results

- \mathbb{Q} W(Paris) W(France) + W(Italy) = W(Rome)

Word Embeddings: Applications

Wey for the success of many NLP tasks such as PoS tagging, parsing, semantic role labeling, etc.

Word Embeddings: Applications

- ① Key for the success of many NLP tasks such as PoS tagging, parsing, semantic role labeling, etc.
- ② Can serve projecting multi-modal data (e.g. multiple languages, images and text, etc.)

References

Mikolov, Tomas; et al. (2013). "Efficient Estimation of Word Representations in Vector Space". arXiv:1301.3781