FIRST-ORDER LOGIC

SYNTAX

Term

Constants - a,b,c... Variables - x,y,z...

Function

Arity n: Takes n terms as input, and forms a term

Predicate

Arity n: Takes n terms as input, and forms an atom

SYNTAX

Atom	Predicate: p,q,r
Logical Connectives	\wedge : and, \vee : or, \neg : not, \rightarrow : implies, \leftrightarrow : if and only if(iff)
Quantifier	∀ : Universal ∃ : Existential
Literal	Atom or its negation
Formula	A literal or the application of logical connectives and quantifiers to formulae

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$

$$\forall \mathbf{x}. ((\exists \mathbf{y}. p(f(\mathbf{x}), \mathbf{y})) \rightarrow q(\mathbf{x}))$$

Variables

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$

Function

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$

Predicate

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$

Quantifier

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$
Scope of x

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$
Scope of y

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$
Scope of y

An occurrence of a variable is bound if it is in the scope of some quantifier

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$
Scope of y

An occurrence of a variable is bound if it is in the scope of some quantifier

An occurrence of a variable is free if it is not in the scope of some quantifier

SEMANTICS - EXAMPLES

- All Humans are mortal.
 - Assume unary predicates human and mortal.

 $\forall x . human(x) \rightarrow mortal(x)$

SEMANTICS - EXAMPLES

- There always exists someone such that if (s)he laughs, then everyone laughs.
 - Assume unary predicate laughs.

 $\exists x. (laughs(x) \rightarrow \forall y. laughs(y))$

SEMANTICS - EXAMPLES

- Every dog has its day.
 - $\forall x . dog(x) \rightarrow \exists y . day(y) \land itsDay(x, y)$
- Some dogs have more days than others.
 - $\exists x, y . dog(x) \land dog(y) \land \#days(x) > \#days(y)$
- All cats have more days than dogs.
 - $\forall x, y . (dog(x) \land cat(y)) \rightarrow \#days(y) > \#days(x)$

INTERPRETATIONS

- An interpretation I is an assignment from variables (in general, terms) to values in a specified domain.
- Domain, D_I
 - A nonempty set of values or objects. Also called universe of discourse.
 - Numbers, humans, students, courses, animals,...
- Assignment, α_I
 - Maps constants and variables to elements of the domain ${\cal D}_I$ (i.e. values)
 - Maps functions and predicate symbols to functions and predicates (of the same arity) over $D_{\it I}$

INTERPRETATIONS - EXAMPLE 1

- Suppose $D_I = \{A, B\}$
- Constants a and b are mapped to following elements in D_I
 - $\alpha_I(a) = B$ $\alpha_I(b) = A$
- A binary function symbol f is mapped to the following actual function on D_I :
 - $\alpha_I(f) = \{ (A, A) \to B, (A, B) \to B, (B, A) \to A, (B, B) \to B \}$
- A unary predicate symbol p is mapped to the following actual predicate on ${\cal D}_{\cal I}$
 - $\alpha_I(p) = \{A \rightarrow True, B \rightarrow False\}$

INTERPRETATIONS - EXAMPLE 2

DONEC QUIS NUNC

- Consider the formula: $x + y > z \rightarrow y > z x$
 - Here, +, are functions and > is a predicate.
 - Equivalent to $p(f(x, y), z) \rightarrow p(y, g(z, x))$.
- A standard interpretation for this formula would be:
 - Domain: Z
 - +, would be mapped to the standard integer addition and subtraction functions.
 - > would be mapped to the standard greater-than relation over integers.
 - x, y, z could be mapped to 5,10,9 resp.

SEMANTICS: INDUCTIVE DEFINITION

Base Case:

$I \vDash \top$		
$I \not \models \bot$		
$I \vDash p$	iff I[p]=true	
$I \nvDash p$	iff I[p]=false	

Inductive Case:

$I \vDash \neg F$	$\inf I \nvDash F$
$I \vDash F_1 \land F_2$	iff $I \vDash F_1$ and $I \vDash F_2$
$I \vDash F_1 \lor F_2$	iff $I \vDash F_1$ or $I \vDash F_2$
$I \vDash F_1 \to F_2$	iff $I \nvDash F_1$ or $I \vDash F_2$
$I \vDash F_1 \leftrightarrow F_2$	iff $I \vDash F_1$ and $I \vDash F_2$, or $I \nvDash F_1$ and $I \nvDash F_2$

SEMANTICS: INDUCTIVE DEFINITION

Base Case:

 $I \models \mathsf{T}$

 $I \nvDash \bot$

 $I \vDash p$

 $I \nvDash p$

What does this mean?

iff I[p]=true

iff I[p]=false

Inductive Case:

1	F	$\neg F$	1'			
I	Н	F	٨	F		

$$I \vDash F_1 \land F_2$$

$$I \vDash F_1 \vee F_2$$

$$I \models F_1 \rightarrow F_2$$

$$I \vDash F_1 \leftrightarrow F_2$$

iff
$$I \nvDash F$$

iff
$$I \vDash F_1$$
 and $I \vDash F_2$

iff
$$I \vDash F_1$$
 or $I \vDash F_2$

iff
$$I \not\models F_1$$
 or $I \models F_2$

iff
$$I \vDash F_1$$
 and $I \vDash F_2$, or $I \nvDash F_1$ and $I \nvDash F_2$

SEMANTICS - CONTINUED...

$$I \vDash p(t_1, ..., t_n) \text{ iff } \alpha_I[p](\alpha_I[t_1], ..., \alpha_I[t_n]) = \top$$

$$\alpha_{I}[f(t_{1},...,t_{n})] = \alpha_{I}[f](\alpha_{I}[t_{1}],...,\alpha_{I}[t_{n}])$$

SEMANTICS - EXAMPLE

$$D_{I} = \{A, B\}$$

$$\alpha_{I}(a) = B \quad \alpha_{I}(b) = A$$

$$\alpha_{I}(f) = \{(A, A) \rightarrow B, (A, B) \rightarrow B, (B, A) \rightarrow A, (B, B) \rightarrow B\}$$

$$\alpha_{I}(p) = \{A \rightarrow True, B \rightarrow False\}$$

INTERPRETATION

$$I \vDash p(b)$$

 $I \vDash p(f(a,b))$
 $I \nvDash p(f(b,a))$

SEMANTICS - QUANTIFIERS

- An x-variant of interpretation $I=(D_I,\alpha_I)$ is an interpretation $J=(D_J,\alpha_J)$ such that
 - $D_I = D_J$;
 - and $\alpha_I[y] = \alpha_J[y]$ for all constant, free variable, function, and predicate symbols y, except possibly x.
- An x-variant of I, where x is mapped to some $v \in D_I$ is denoted by $I[x \mapsto v]$.

 $I \vDash \forall x . F \text{ iff for all } v \in D_I, I[x \mapsto v] \vDash F$ $I \vDash \exists x . F \text{ iff there exists } v \in D_I, I[x \mapsto v] \vDash F$

SEMANTICS - QUANTIFIERS - EXAMPLE

$$D_{I} = \{A, B\}$$

$$\alpha_{I}(a) = B \quad \alpha_{I}(b) = A$$

$$\alpha_{I}(f) = \{(A, A) \rightarrow B, (A, B) \rightarrow B, (B, A) \rightarrow A, (B, B) \rightarrow B\}$$

$$\alpha_{I}(p) = \{A \rightarrow True, B \rightarrow False\}$$

INTERPRETATION I

$$I \vDash \exists x . p(x)$$
$$I \vDash \forall x . \neg p(f(b, x))$$

SATISFIABILITY AND VALIDITY

- A FOL formula F is satisfiable if there exists an interpretation I such that $I \models F$.
 - If no such interpretation exists, then it is unsatisfiable
- A FOL formula F is valid if for all interpretations $I, I \models F$
 - Technically, only for interpretations which assign to all the constants, variables, predicates, functions used in F.
- F is valid iff $\neg F$ is unsatisfiable.