

REMOTE GAS PIPELINE TUNNEL TEMPERATURE MONITORING SYSTEM

Submitted for

Professional Readiness Program for Innovation, Employability and Entrepreneurship

On

INTERNET OF THINGS

Submitted By:

1) M. P. Shri Veena

Reg. No: 963820106011

2) A. S. Dharsini

Reg. No: 963820106004

3) V. Vibisha

Reg. No: 963820106012

4) Avani Anil

Reg. No: 963820104010

Team ID: NM2023TMID10372

Date : 20.05.2023

Of

GOOD SHEPHERD COLLEGE OF ENGINEERING AND TECHNOLOGY

Maruthamparai, Kaliyal, Kanya Kumari District – 629101

CONTENTS

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. IDEATION & PROPOSED SOLUTION

- 2.1 Problem Statement Definition
- 2.2 Empathy Map Canvas
- 2.3 Ideation & Brainstorming
- 2.4 Proposed Solution

3. REQUIREMENT ANALYSIS

- 3.1 Functional requirement
- 3.2 Non-Functional requirements

4. PROJECT DESIGN

- 4.1 Data Flow Diagrams
- 4.2 Solution & Technical Architecture
- 4.3 User Stories

5. CODING & SOLUTIONING

- 5.1 WOKWI Connections
- 5.2 WOKWI Code
- 5.3 WOKWI Output
- 5.4 IBM Output
- 5.5 Node-Red Output
- 5.6 Node-Red Dashboard
- 5.7 Feature 1
- 5.8 Feature 2

6. RESULTS

- **6.1 Performance Metrics**
- 6.2 Performance Testing

7. ADVANTAGES & DISADVANTAGES

- 8. CONCLUSION
- 9. FUTURE SCOPE

10. APPENDIX

- 10.1 Source Code & WOKWI link
- 10.2 GitHub & Project Video Demo Link

INTRODUCTION

1.1 Project Overview

This project is designed to reduce the pipeline explosions and leakges due to the damages in the gas pipeline. This helps in monitoring the temperature levels of the working space through the sensors, with information being sent to the mobile application over the cloud. With this facility the workers will be able to know when the temperature raises sharply through an alarm from the application.

1.2 Purpose

The gas is transported by means of gas pipeline to different places. In these gas pipelines, gas leakage can occur due to damage of pipeline. This occur due to increasing temperature inside the gas pipeline. This can cause pipeline explosions and leakage of gases. These gas leaks lead to severe human and property loss, causing damage to industries and may take several years to cope up with. Hence there is a need for a system to monitor the temperature of the gas pipeline which helps in reducing pipeline explosions and leakages.

IDEATION & PROPOSED SOLUTION

2.1 Problem Statement Definition

Pipelines are prone to danger. When the temperature of the gas inside the pipeline increases, there is a chance of pipeline explosion. It can happen because of the expansion of gases inside the pipeline due to increased temperature.

So there is a need to continuously monitor the temperature inside the pipeline to decrease the risk of increasing temperature.

Fig No: 1 Problem Statement

Problem Statement(PS)	I am	I'm trying to	But	Because	Which makes me feel
PS-1	a pipeline worker	Feel safe near pipeline	there is a danger of pipeline explosion	of increase in temperature of gas	Very terrified
PS-2	a customer	Build a system to monitor the temperature of the pipeline	there are difficulties in building the system	Of complexity in structure of circuits	frustrated

Table No: 1 Problem Statement

2.2 Empathy Map Canvas

An empathy map is a collaborative tool teams can use to gain a deeper insight into their customers. It helps us to understand what the customer say, thinks, does and feel. It makes us understandable to the problems faced by the customers and the insights to solve them by providing solutions.

Fig No: 2 Empathy Map

2.3 Ideation & Brainstorming

Step 1:Team Gathering, Collaboration and select the problem statement

Fig No: 3 a) Brainstorm and idea prioritization

Step 2: Brainstorm, Idea Listing and Grouping

Fig No: 3 b) Brainstorm and idea listing

Step 3: Idea Prioritization

Fig No: 3 c) Idea prioritization

2.4 Proposed Solution

S. No	Parameter	Description
1.	Problem Statement	Pipelines are prone to danger. When the temperature of the gas inside the pipeline increases, there could happen many consequences like pipeline explosion, leakage of gases, etc. It happens because of the expansion of gases inside the pipeline due to increase in temperature. So there is a need for a system to monitor the temperature of the gases inside the pipeline and leakage of the gases
2.	Idea / Solution Description	The temperature can be sensed by DHT22. The sensed temperature can be given as an output by ESP32. Thus connecting the ESP32, DHT22 with a potentiometer can monitor the temperature, humidity and leakage of gases.
3.	Novelty / Uniqueness	The uniqueness of the project is the temperature, humididty and leakage threshold can be seen through application developed by Node-Red
4.	Social Impact / Customer Satisfaction	When this project is implemented, huge amount of pipeline explosions and gas leakage can be reduced.
5.	Business Model (Revenue Model)	The business model is the outcome based model. This is because the revenue is earned from the outcome if there is no loss due to gas leakage and pipeline damage.
6.	Scalability of the solution	The project can be operated upto +125 degree Celsius. Hence the scalability of the project is very high.

Table No: 2 Proposed Solution

REQUIREMENT ANALYSIS

3.1 Functional requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement	Sub Requirement
FR-1	Circuit	DSP22
		ESP32
		Potentiometer
FR-2	Code	Importing libraries
		IBM Credentials
		Creating instance
		Wi-Fi connection
FR-3	IBM Cloud	IBM Cloud account
		IBM Watson login
FR-4	Node-Red	Node JS
		Node-Red installation
		API Key
		IBM Node connection

Table No: 3 Functional requirements

3.2 Non-Functional requirements

Following are the non-functional requirements of the proposed solution

NFR No.	Non Functional Requirement	Description
NFR-1	Usability	People can use this product easily. The user needs to have only the knowledge of English to understand the values of temperature, humidity and leakage threshold.
NFR-2	Security	The system provided as solution is completely secure. It requires registering in IBM and Node-Red platform which are highly secure.
NFR-3	Reliability	Time required to get the values of temperature, humidity and leakage threshold values is very low and within milliseconds. Hence reliability is high.
NFR-4	Performance	The performance is high since the accuracy of the values obtained is high. The solution gives the exact values.
NFR-5	Availability	This device can be used by every user who have IBM account.
NFR-6	Scalability	The performance is high since high precision sensor is used.

Table No: 4 Non-Functional requirements

PROJECT DESIGN

4.1 Data Flow Diagrams

Fig No: 4 Data Flow Diagram

4.2 Solution & Technical Architecture

Solution Architecture:

Fig No: 5 Solution Architecture

Technical Architecture:

Fig No: 6 Technical Architecture

Components & Technology

SI. No	Components	Description	Technology		
1	IoT Device	Connection of components such as potentiometer, ESP32, DHT22 virtually	WOKWI		
2	Application Logic-1	Logic for a process in the application	IBM Watson		
3	Cloud Database	Database Service on Cloud	IBM Cloud		
4	Output Visualizer	Visualization tool	Node-Red		

Table No: 5 Components & Technology

Application Characteristics:

S.No	Characteristics	Description	Technology
1	Open-Source Frameworks	For programming the IoT device, C++ open source framework is used	C++ in WOKWI
2	Security Implementations	During logging in the IBM Cloud platform, verification code is sent to respective user. Every value are encrypted.	Encryption, Verification by code
3	Scalable Architecture	To operate this device in a seamless way, Wi-Fi technology is used by importing the library.	Wi-Fi
4	Availability	This device can be used by every user who have IBM account.	IBM Server
5	Performance	The performance is high since high precision sensor is used.	DHT22 Sensor, ESP32

Table No: 6 Application Characteristics

4.3 User Stories

User Type	Functio nal Require ment (Epic)	User Story Number	User Story / Task	Acceptan ce criteria	Priority	Team Member
Customer (Pipeline Worker)	Circuit	USN-1	As a user, I can monitor the circuit used in IoT device	I can view the circuit		V. Vibisha
	Code	USN-2	As a user, I can use the code used in IoT device	I can view the code	High	A. S. Dharsini
	IBM Cloud	USN-3	As a user, I can publish the data to cloud	I can view the data in IBM cloud	High	Avani Anil
	Node- Red	USN-4	As a user, I can view the output in Node-Red	I can view the data in Node-Red	High	M. P. Shri Veena

Table No: 7 User Stories

CODING & SOLUTIONING

5.1 WOKWI Connections:

Fig No: 7 WOKWI Connections

The proposed IoT device consists of three components. They are ESP32, DHT22 and potentiometer.

1. DHT22:

DHT22 is a temperature sensor that is used to generate temperature values in Celsius. It can be manually controlled and the temperature values can be changed while the simulation is still running. Click on the DHT22 sensor and a small popup window will open. We can use the temperature and humidity sliders to change the values.

2. Potentiometer:

A potentiometer is a sensor that is used to measure an unknown voltage with the help of a known voltage. It is a knob-controlled variable resistor (linear potentiometer).

3. ESP 32:

The ESP32 is a popular Wi-Fi and Bluetooth-enabled microcontroller, widely used for IoT Projects. ESP32 can perform as a complete standalone system or as a slave device to a host MCU. It can interface with other systems to provide Wi-Fi and Bluetooth.

Connections:

Now the following connections are made.

- ➤ DHT22's VCC to any of the power input pins(VIN, 3V3) of ESP-32. It is meant for Power Supply.
- > SDA to any of the GPIO pins. SDA stands for digital data pin (input/output).
- > GND to one of the GND pins present in ESP 32.
- ➤ Potentiometer GND to the remaining GND of the ESP-32.

- ➤ SIG to any of the GPIO pins. SIG is used for output, generally connected to an analog input pin.
- ➤ Potentiometer VCC to the remaining power input pins of ESP-32.

5.2 WOKWI Code

```
#include <WiFi.h>//library for wifi
#include <PubSubClient.h>//library for MQtt
#include "DHT.h"// Library for dht11
#define DHTPIN 4 // what pin we're connected to
#define DHTTYPE DHT11 // define type of sensor DHT 11
//#define LED 5
DHT dht (DHTPIN, DHTTYPE);// creating the instance by passing pin and typr of
dht connected
const int potPin=34;
void callback(char* subscribetopic, byte* payload, unsigned int
payloadLength);
//----credentials of IBM Accounts-----
#define ORG "ytsbas"//IBM ORGANITION ID
#define DEVICE TYPE "abcd"//Device type mentioned in ibm watson IOT Platform
#define DEVICE ID "1234"//Device ID mentioned in ibm watson IOT Platform
#define TOKEN "12345678"
                          //Token
String data3;
float t;
int potValue;
//----- Customise the above values ------
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";// Server Name
char publishTopic[] = "iot-2/evt/Data/fmt/json";// topic name and type of
event perform and format in which data to be send
char subscribetopic[] = "iot-2/cmd/test/fmt/String";// cmd REPRESENT command
type AND COMMAND IS TEST OF FORMAT STRING
char authMethod[] = "use-token-auth";// authentication method
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;//client id
WiFiClient wifiClient; // creating the instance for wificlient
```

```
PubSubClient client(server, 1883, callback ,wifiClient); //calling the
predefined client id by passing parameter like server id, portand
wificredential
void setup()// configureing the ESP32
 Serial.begin(115200);
 dht.begin();
 //pinMode(LED,OUTPUT);
 delay(10);
 Serial.println();
 wificonnect();
 mqttconnect();
}
void loop()// Recursive Function
{
 //h = dht.readHumidity();
 t = dht.readTemperature();
  potValue = analogRead(potPin);
 Serial.print("temperature:");
 Serial.println(t);
  Serial.print("Leakage Threshold:");
 Serial.println(potValue);
 //Serial.print("Humidity:");
 //Serial.println(h);
 PublishData(t, potValue);
 delay(1000);
 if (!client.loop()) {
   mqttconnect();
 }
}
/*....retrieving to
Cloud....*/
void PublishData(float temp, float potenval) {
 mqttconnect();//function call for connecting to ibm
 /*
    creating the String in in form JSon to update the data to ibm cloud
  */
  String payload = "{\"temperature\":";
  payload += temp;
  payload += "," "\"LeakageThreshold\":";
  payload += potenval;
```

```
payload += "}";
  Serial.print("Sending payload: ");
  Serial.println(payload);
 if (client.publish(publishTopic, (char*) payload.c_str())) {
    Serial.println("Publish ok");// if it sucessfully upload data on the cloud
then it will print publish ok in Serial monitor or else it will print publish
failed
 } else {
   Serial.println("Publish failed");
 }
void mqttconnect() {
 if (!client.connected()) {
    Serial.print("Reconnecting client to ");
   Serial.println(server);
   while (!!!client.connect(clientId, authMethod, token)) {
     Serial.print(".");
     delay(500);
    }
     initManagedDevice();
     Serial.println();
 }
}
void wificonnect() //function defination for wificonnect
 Serial.println();
 Serial.print("Connecting to ");
 WiFi.begin("Wokwi-GUEST", "", 6);//passing the wifi credentials to establish
the connection
 while (WiFi.status() != WL_CONNECTED) {
    delay(500);
   Serial.print(".");
 }
 Serial.println("");
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
}
void initManagedDevice() {
  if (client.subscribe(subscribetopic)) {
```

```
Serial.println((subscribetopic));
    Serial.println("subscribe to cmd OK");
  } else {
    Serial.println("subscribe to cmd FAILED");
  }
}
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength)
{
  Serial.print("callback invoked for topic: ");
  Serial.println(subscribetopic);
  for (int i = 0; i < payloadLength; i++) {</pre>
    //Serial.print((char)payload[i]);
    data3 += (char)payload[i];
  }
  Serial.println("data: "+ data3);
  data3="";
```

5.3 WOKWI Output

Fig No: 8 WOKWI Output

5.4 IBM Output

Fig No: 9 IBM Output

5.5 Node-Red Output

Fig No: 10 Node-Red Output

5.6 Node-Red Dashboard

1) When normal temperature is maintained and no leakage is suspected:

Fig No: 11 a) Node-Red Dashboard when normal temperature is maintained and no leakage is suspected

Fig No: 11 b) Node-Red Dashboard when normal temperature is maintained and no leakage is suspected

2) When normal temperature is maintained and leakage suspected:

Fig No: 11 c) Node-Red Dashboard when normal temperature is maintained and leakage suspected

3) When temperature is increased and leakage suspected:

Fig No: 11 c) Node-Red Dashboard when temperature is increased and leakage suspected

5.7 Feature 1

- > The first feature in this project is finding the temperature.
- ➤ It gives the accurate value of the temperature by the use of DHT22.
- ➤ It also gives the status of the temperature whether the normal temperature is maintained or the temperature has increased.
- > The temperature is visualized by chart

5.8 Feature 2

- > The second feature of this project is finding the leakage threshold.
- > It finds for leakage of gas if there is damage in the pipeline.
- > It also give the status of the leakage whether leakage is suspected or not.
- > The leakage is visualized by gauge.

PERFORMANCE

6.1 Performance Metrics

Table No: 8 Performance Metrics

6.2 Performance Testing:

PERFORMANCE

								Load/Volu		
				Functional		Software	Impact of	me	Risk	
į	S.No	Project Name	Scope/feature	Changes	Hardware Changes	Changes	Downtime	Changes	Score	Justification
			Alerting the							
			worker when the							
			temperature of							
		Remote gas pipeline tunnel	the pipeline is			No				
	1	temperature monitoring system	high.	Low	No Changes	Changes	-	-	GREEN	-

NFT = DETAILED TEST PLAN

		NFT Tost	Assumptions/Dopo	
S.No	Project Overview	approach	ndonoios/Risks	Approvals/SignOff
	The gaspipeline are prone to			
	damage which results in gas			
	leakage. This is mainly caused due			
	to the increase in temperature of			
	the pipeline. Hence this project			
	helps in alerting the worker when			
	temperature is raised through			
	1 application.	-	-	

END OF TEST REPORT

S.No	Project Overview	NFT Tost	NFR - Met			Recommen	Identified Defects (Detected /Closed/O pen)	Approvals/SignOff
				T1				
	The gaspipeline are prone to			The outcome of the				
	damage which results in gas			project is the values of				
	leakage. This is mainly caused due			temperature and				
	to the increase in temperature of			leakage threshold and				
	the pipeline. Hence this project			alerting when the				
	helps in alerting the worker when			temperature is high and				
	temperature is raised through			when leakage is				
1	application.	-	-	suspected.	-	-	-	-

Table No: 9 Performance Testing

ADVANTAGES & DISADVANTAGES

Advantages:

- > This project helps to mintor the temperature.
- > It give the temperature status.
- > It gives leakage status.
- > Simple in design.
- ➤ Alerts before it's too late
- ➤ It is cheap.

Disadvantages:

> It requires internet.

CONCLUSION

The use of temperature monitoring sensors has enabled the monitoring of change in temperature affecting the quality of the products. Their implementation in different sectors has empowered the logistics and warehousing operations of a company. Employing a temperature monitoring system will save you money in the long run, on wasted stock, product recalls etc. If there is a potential problem, you will be notified immediately, before it is too late.

FUTURE SCOPE

This project shall not remain static. It is always subject to dynamic. Enhancement can be done efficiency in this project. The enhancements can lead to further more modifications which helps to minimize the execution time and increase the accuracy of the system.

APPENDIX

10.1 Source Code & WOKWI LINK:

Source Code:

https://github.com/naanmudhalvan-SI/IoT-

Project/blob/main/Remote_Gas_project

WOKWI link:

https://wokwi.com/projects/364992466013456385

10.2 GitHub & Project Video Demo Link

GitHub link:

https://github.com/naanmudhalvan-SI/PBL-NT-GP--20258-1682662146

Project Video Demo link:

https://drive.google.com/file/d/1OKfOhblWYyX_uSkBHI6kCdSJ6DujtIWa/view? usp=share_link