CSE 211 Digital Design

Akdeniz University

Week01: Introduction to Digital Design

Assoc.Prof.Dr. Taner Danışman tdanisman@akdeniz.edu.tr

	Fall Semester	
	16-Aug-24	Last Day for Notifying the Rectorate of Course Assignments
	29-Aug-24	Last Day for Special Student Applications
	September 09-13, 2024	Deadline for Payment of Contribution/Tuition Fees and Renewal of Registration
	13-Sep-24	Last Day to Apply for Study Leave
	16-Sep-24	Classes Begin
	September 16-20, 2024	Drop and Add Period (Add-Drop)
/	16-Sep-24	Last Day to Notify the Rectorate of the Courses Allocated to Branches
	4-Oct-24	Last Day to Withdraw from a Course
	22-Dec-24	Deadline for Entering Midterm Exam Results and Other Intra-Year/Semester Measurement Tools Results into the Automation System
/	22-Dec-24	End of Classes
	December 23, 2024 - January 03, 2025	End of Term Exams
	6-Jan-25	Last Day for Entering the End of Term Exam Results into the Automation System
	January 04-11, 2025	Application Dates for the Second End of Year/Semester Exam (Make-up Exam)
	January 13-17, 2025	End of Year/Semester Second Exam (Make-up) Dates
	20-Jan-25	Last Day for Entering the Second End of Year/Semester Exam (Supplementary Exam) Results into the Automation System

Evaluation (absolute)

- Assignments %20
- Midterm %30
- Final %50
- ► Teaching Assistant: Erdinç TÜRK
- Açademic misconduct: do not let this happen
- **►** Monday 15:30-17:20 (Location : D206)
- Wednesday 15:30:17:20 (Location: D206)
- Textbook: Digital Design, With an Introduction to the Verilog HDL 5th Edition, Morris Mano, Michael Ciletti, Pearson.

DIGITAL DESIGN

With An Introduction to the Verilog HDL

M. MORRIS MANO | MICHAEL D. CILETTI

Can I use the previous year's Lab grades?

Teaching Asistant in the beginning of the semestre (first week).

Course program

Week 01	09/16/2024 Introduction
Week 02	09/23/2024 Digital Systems and Binary Numbers I
Week 03	09/30/2024 Digital Systems and Binary Numbers II
Week 04	10/07/2024 Boolean Algebra and Logic Gates I
Week 05	10/14/2024 Boolean Algebra and Logic Gates II
Week 06	10/21/2024 Gate Level Minimization
Week 07	10/28/2024 Karnaugh Maps
Week 08	11/04/2024 Midterm
Week 09	11/11/2024 Karnaugh Maps
Week 10	11/18/2024 Combinational Logic
Week 11	11/25/2024 Combinational Logic
Week 12	12/02/2024 Timing, delays and hazards
Week 13	12/09/2024 Synchronous Sequential Logic
Week 14	12/16/2024 Synchronous Sequential Logic

Digital System

Takes a set of discrete information <u>inputs</u> and discrete internal information <u>(system state)</u> and generates a set of discrete information <u>outputs</u>.

Types of Systems

- With no state present
 - Combinational logic system
 - Output = Function (Input)
- With state present
 - State updated at discrete times (e.g., once per clock tick)
 - → Synchronous sequential system
 - State updated at any time
 - → Asynchronous sequential system

Example: Digital Counter (e.g., Odometer)

Inputs: Count Up, Reset

Outputs: Visual Display

State: "Value" of stored digits

Example: Digital Computer

- Inputs: keyboard, mouse, modem, microphone
- Outputs: CRT, LCD, modem, speakers
- Is this system synchronous or asynchronous?

Signals

- Information variables mapped to physical quantities
- In digital systems, the quantities take on discrete values
 - Two-level, or binary, values are the most prevalent values in digital systems
 - Binary values are represented abstractly by digits 0 and 1
- Signal examples over time:

Physical Signal Example - Voltage

- Other physical signals representing 1 and 0
 - CPU Voltage
 - Disk Magnetic field direction
 - CD Surface pits / light
 - Dynamic RAM Charge

Number Systems

- Decimal Numbers
 - What does 5,634 represent?
 - **Expanding 5,634:**

$$5 \times 10^{3} = 5,000$$

+ $6 \times 10^{2} = 600$
+ $3 \times 10^{1} = 30$
+ $4 \times 10^{0} = 4 \rightarrow 5,634$

- What is "10" called in the above expansion?
 - **■** The radix.
- What is this type of number system called?
 - **■** Decimal.
- What are the digits for decimal numbers?
 - **0**, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- What are the digits for radix-r numbers?
 - **■** 0, 1, ..., r-1.

Powers of 2

- Noteworthy powers of 2:
 - 2^{10} = kilo- = K;
 - 2^{20} = mega- = M;
 - $2^{30} = giga = G;$
 - ... tera-, peta-, ...

General Base Conversion

Number Representation

Given a number of radix r of

and

n

"m" fractional digits a_1,...,a_m

written as:

$$a_{n-1} a_{n-2} a_{n-3} \dots a_2 a_1 a_0 \cdot a_{-1} a_{-2} \dots a_{-m}$$

has value:
(Number) =
$$\left(\sum_{i=0}^{j=n-1} a_i \cdot r^i \right) + \left(\sum_{j=-m}^{j=-1} a_j \cdot r^j \right)$$

(Integer Portion) + (Fraction Portion)

Commonly Occurring Bases

Name	F	Radix	Digits
Binary		2	0,1
Octal		8	0,1,2,3,4,5,6,7
Decimo	al	10	0,1,2,3,4,5,6,7,8,9
Hexade	ecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
	(=	= 0,1,2	2,3,4,5,6,7,8,9,10,11,12,13,14,15)

Converting Binary to Decimal

- To convert to decimal, use decimal arithmetic to sum the weighted powers of two:
- Converting 110102 to N10:

$$N_{10} = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

= 26

Converting Decimal to Binary

- Method 1 (Method 2 repeated division next slide)
 - Subtract the largest power of 2 that gives a positive result and record the power.
 - Repeat, subtracting from the prior result, until the remainder is zero.
 - Place 1's in the positions in the binary result corresponding to the powers recorded; in all other positions place 0's.
- **Example:** $625_{10} \rightarrow 1001110001_2$

$$-625 - 512 = 113 \rightarrow 9$$

$$-$$
 1 - 1 = 0 \rightarrow 0

- Place 1's in the positions recorded and 0's elsewhere
- Converting binary to decimal: sum weighted powers of 2 using decimal arithmetic, e.g., 512 + 64 + 32 + 16 + 1 = 625

Conversion Between Bases

- Convert the Integral Part
 - Repeatedly divide the number by the radix you want to convert to and save the remainders. The new radix digits are the remainders in reverse order of computation.

Why does this work?

This works because, the remainder left in the division is always is the coefficient of the radix's exponent.

- If the new radix is > 10, then convert all remainders > 10 to digits A, B, ...
- Convert the Fractional Part
 - Repeatedly multiply the fraction by the radix and save the integer digits that result. The new radix fraction digits are the integer numbers in computed order.

Why does this work?

To convert fractional part, it should be divided by reciprocal of radix, which is same as multiplying with radix.

- ▶ If the new radix is > 10, then convert all integer numbers > 10 to digits A, B, ...
- Join together with the radix point

Example: Convert 46.6875₁₀ To Base 2

Convert 46 to Base 2

```
46/2 = 23 remainder = 0

23/2 = 11 remainder = 1

11/2 = 5 remainder = 1

5/2 = 2 remainder = 1

2/2 = 1 remainder = 0

1/2 = 0 remainder = 1

Read off in reverse order: 101110<sub>2</sub>
```

Convert 0.6875 to Base 2:

```
0.6875 * 2 = 1.3750 int = 1

0.3750 * 2 = 0.7500 int = 0

0.7500 * 2 = 1.5000 int = 1

0.5000 * 2 = 1.0000 int = 1

0.0000

Read off in forward order: 0.1011<sub>2</sub>
```

Join together with the radix point: 1011110.1011₂

Converting Among Octal, Hexadecimal, Binary

- Octal (Hexadecimal) to Binary:
 - Restate the octal (hexadecimal) as three (four) binary digits, starting at radix point and going both ways
- Binary to Octal (Hexadecimal):
 - Group the binary digits into three (four) bit groups starting at the radix point and going both ways, padding with zeros as needed in the fractional part
 - Convert each group of three (four) bits to an octal (hexadecimal) digit
- Example: Octal to Binary to Hexadecimal

```
6 3 5 . 1 7 7 8

= 110 | 011 | 101 . 001 | 111 | 111 2

= 1 | 1001 | 1101 . 0011 | 1111 | 1 (000)<sub>2</sub> (regrouping)

= 1 9 D . 3 F 8<sub>16</sub> (converting)
```

Non-numeric Binary Codes

- Given n binary digits (called bits), a binary code is a mapping from a subset of the 2ⁿ binary numbers to some set of represented elements.
- binary code for the seven colors of the rainbow

Binary Number	Color	
000	Red	
001	Orange	
010	Yellow	
011	Green	
100	(Not mapped)	
101	Blue	
110	Indigo	
111	Violet	

- Flexibility of representation
 - can assign binary code word to any numerical or nonnumerical data as long as data uniquely encoded.

Number of Bits Required

Given M elements to be represented by a binary code, the minimum number of bits, n, needed satisfies the following relationships:

- $n = \text{ceil}(\log_2 M)$ where ceil(x) is the smallest integer greater than or equal to x
- Example: How many bits are required to represent decimal digits with a binary code?

$$\rightarrow$$
 M = 10 \rightarrow n = 4

Number of Elements Represented

- Given n digits in radix r, there are r^n distinct elements that can be represented.
- ightharpoonup But, can represent m elements, m < r^n
- Examples:
 - Can represent 4 elements in radix r = 2 with n = 2 digits: (00, 01, 10, 11)
 - Can represent 4 elements in radix r = 2 with n = 4 digits: (0001, 0010, 0100, 1000)
 - This code is called a "one hot" code

Binary Coded Decimal (BCD)

- The BCD code is the 8,4,2,1 code.
- This code is the simplest, most intuitive binary code for decimal digits and uses the same weights as a binary number, but only encodes the first ten values from 0 to 9.
- \blacksquare Example: 1001 (9) = 1000 (8) + 0001 (1)
- How many "invalid" code words are there?
- What are the "invalid" code words?

Gray Code

- What property does this Gray code have?
 - Counting up or down changes only one bit at a time (including counting between 9 and 0)

Decimal	Binary	Gray
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Gray Code: Optical Shaft Encoder

- Shaft encoder: Capture angular position (e.g., compass)
- For binary code, what values can be read if the shaft position is at boundary of "3" and "4" (011 and 100)?
- For Gray code, what values can be read?

Warning: Conversion or Coding?

- Do <u>NOT</u> mix up <u>conversion</u> of a decimal number to a binary number with <u>coding</u> a decimal number with a BINARY CODE.
- $-13_{10} = 1101_2$ (This is <u>conversion</u>)
- **■**13 ⇔ 0001 | 0011 (This is <u>coding</u>)