Quantitative single-cell imaging reveals insulation of morphogenic signal transduction

Today's talk

- 1. Cell signaling
- 2. Single-cell image analysis
- Disentangling signaling from transcriptional crosstalk in morphogenic pathways
- 4. Summary

On cell signaling

Signaling

The transfer of information from the environment to a cell

Signaling

The transfer of information from the environment to a cell

Processing

The transfer of information from one molecular state to another

Signaling

The transfer of information from the environment to a cell

Processing

The transfer of information from one molecular state to another

Signal transduction ('transduction')

The transfer of extracellular information to the nucleus

Signaling

The transfer of information from the environment to a cell

Processing

The transfer of information from one molecular state to another

Signal transduction ('transduction')

The transfer of extracellular information to the nucleus

Transcriptional processing ('transcription')

The set of protein-protein and protein-chromatin interactions within the nucleus that result in changes to expression

Signaling

The transfer of information from the environment to a cell

Processing

The transfer of information from one molecular state to another

Signal transduction ('transduction')

The transfer of extracellular information to the nucleus

Transcriptional processing ('transcription')

The set of protein-protein and protein-chromatin interactions within the nucleus that result in changes to expression

Decision-making

The collapse of all possible outcomes into a subset of outcomes,

How we define cell signaling pathways

Dissertation Fig. 1.1

How we define cell signaling pathways

Dissertation Fig. 1.1

- Time often missing;
- Ambiguous arrows;
- Summarizes many experiments.

But! Static signaling networks may not reveal true networks

Dissertation Fig. 1.2

e.g. Polarity in neutrophils, and the later case study

On single-cell imaging

Why imaging? (besides the beauty?)

Image courtesy C. Thorne and M. Ramirez (A/W Lab) DNA,β-catenin,E-cadherin

Why imaging?

- Single-cell and sub-cellular resolution (cells are not homogeneous!)
- High data dimensionality (can measure 10²-10³ single-cell properties)
- High throughput (can rapidly obtain data from many perturbations)

But there are problems...

- Single-cell and sub-cellular resolution
 (artifacts and heterogeneity are hard to interpret)
- High data dimensionality (what should we even measure? WHAT DOES IT MEAN?)
- High throughput (how do we deal with all the data?)

Mis-interpretation is easy

So how do we extract meaningful, believable data?

First step: removing non-Foreground

Second step: finding single cells

Third step: simplifying the data

Dissertation Fig. 3.3

Disentangling signaling from transcriptional crosstalk in morphogenic pathways

(a case study of Wnt, TGFB, and BMP)

Motivation: TGFB, BMP, and Wnt are essential to tissue homeostasis and misregulated in many diseases

Dissertation Fig. 2.5. Image and cartoon of colonic crypts.

How do cells **integrate** these signals to **make decisions**?

Overview of putative Wnt/TGFB/BMP transduction crosstalk

Dissertation Fig. 2.6

Are signals really integrated during transduction?

22

The experiment

Take a breath...

Things are about to get **REAL**ly data-dense

Insulation of Wnt3A/TGFB3 during signal transduction

Crosstalk of Wnt3A/TGFB3 during transcription

Biasing of Wnt3A by long-term TGFB3 treatment

Therefore:

- Wnt/TGFB may be generally insulated during transduction
- Wnt/TGFB are idiosyncratically integrated during translation
- By conflating transduction/translation we may infer complete idiosyncrasy!

Reminder...

Dissertation Fig. 2.6

Non-negative BMP4/TGFB3 signal integration

Non-negative BMP4/TGFB3 signal integration

BMP4/TGFB3 do not compete for Smad4

Therefore:

- BMP4/TGFB interact positively or not at all during transduction
- Smad4 levels do not change the interaction;
- BMP4/TGFB do not compete for Smad4;
- As before, long-term idiosyncracies may be due to conflation with transcription!

Summary

Single-cell imaging

- Reveals dramatic heterogeneity in single-cell behaviors
- Can be robust, quantitative, and meaningful
- Lacks standard methods and controls for interpretation of single-cell features.

Morphogenic signaling insulation

- TGFB/Wnt do not interact during transduction
- TGFB/BMP do not negatively interact during transduction
- Morphogenic transduction interactions may be sparse!

Future directions

- Are we missing general features of cell signaling?
- Is **concentration** the appropriate encoding for TGFB/Wnt?
- How common is pathway insulation?

THANKS!

Altschuler & Wu Lab

Curtis Thorne

Charles Hsu

Dhruba Deb

Elizabeth Zhang

Jackie Njoroge

Jayant Avva

Joey Steininger

Jungseog Kang

Marion Langen

Mike Ramirez

Nicholas Norris

Pearl Wichaidit

Satwik Rajaram

Shanshan Liu

Yue Deng

Thesis Committee

Steve & Lani (mentors)

Rama Ranganathan

James Amatruda

Neal Alto (chair)

Support

CPRIT (Lani Wu)

CMB (Melanie Cobb)

MoD/HHMI (Helen Yin)

Reagents

Jerry Shay (HCECs)

Supplemental Slides

Positional microwell plate image correction

Dissertation Fig. 4.7

Single-cell correction using cell cycle and Hoechst staining

TGFB/BMP pathway overview

Wnt/B-catenin pathway overview

Low-purity Wnts (R&D Biosystems) contain TGFB

Ligand responses are probably real

Dose-responses and timecourses

Insulation of TGFB/Wnt (4 cell types)

BMP4/TGFB3 do not compete for Smad4

Negative control: Primary antibodies are independent

Overview of putative Wnt/TGFB/BMP signaling crosstalk (citations)

- a) Warner et al. (2003). FEBS Letters, 539(1-3), 167–173. Warner et al. (2005). Orthodontics & Craniofacial Research, 8(2), 123–30. Liu et al. (2006). The Journal of Biological Chemistry, 281(25), 17156–63.
- b) Mamidi et al. (2012). Cell Death and Differentiation, 19(10), 1689–97.
- c) Fuentealba et al. (2007). Cell, 131(5), 980–93. Guo et al. (2008). Genes & Development, 22(1), 106–20.
- d)Furuhashi et al. (2001). Molecular and Cellular Biology, 21(15), 5132–5141. Guo et al. (2008). Genes & Development, 22(1), 106–20. Liu et al. (2006). The EMBO Journal, 25(8), 1646–58.
- e) Candia et al. (1997). Development, 124(22), 4467-80.
- f) Zeng et al. (2008). PloS One, 3(12), e3893.