2025 年随机过程期中试卷

注:原试卷为英文,试题主要由回忆得到,部分记号可能与原题不同

题目 1. 对于 σ 域 \mathcal{F} 和随机变量 $X \in \mathcal{F}$, $E|X| < \infty$, 考虑有界凸函数 $\varphi(x)$, 若已知

$$E[\varphi(X)] = E[\varphi(E[X|\mathcal{F}])],$$

证明

$$E[\varphi(X)|\mathcal{F}] = \varphi(E[X|\mathcal{F}]).$$

(提示: 你可以使用 Jensen 不等式)

题目 2. 考虑一列平方可积的随机变量 $\{X_n\}$,若 $\{S_n = \sum_{k=0}^n X_k\}$ 为关于一族 σ 域 $\{\mathcal{F}_n, n \geq 0\}$ 的鞅,证明

$$E[S_n^2] = E[\sum_{k=0}^n X_k^2].$$

题目 3. $\{X_n\}$ 为一列独立同分布的随机变量,满足 $P(X_n = -1) = \frac{1}{2}, P(X_n = 1) = \frac{1}{2};$ $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ 为自然滤流;考虑简单对称随机游走 $S_n = \sum_{k=1}^n X_k, S_0 = 0$ 和停时 T 满足 $ET < \infty$,证明:

- (i) $\{S_n^2 n\}$ 是关于 \mathcal{F}_n 的鞅;
- (ii) $ET = E[S_T^2]$
- (iii) $E[S_T] = 0$

题目 4. $\{X_n\}$ 为 Markov 链,转移矩阵为 (p(x,y)); 记 $p^n(x,y) = P_x(X_n = y)$, $T_x = \inf\{k \ge 0; X_k = x\}$, $f^n(x,y) = P_x(T_y = n)$, 证明

$$p^{n}(x,y) = \sum_{k=1}^{n} f^{k}(x,y)p^{n-k}(y,y).$$

题目 5. $\{X_n\}$ 是状态空间为 S 的 Markov 链,转移矩阵为 (p(x,y)); 对 $a \in S$,记 $\tau_a = \inf\{k; X_k = a\}$; $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ 为自然滤流; 对于 $\alpha > 0$,满足以下条件的有界函数 h 被称作 α -上调和函数 $(\alpha$ -superharmonic function)

$$\sum_{y \in S} p(x, y)h(y) \le e^{\alpha}h(x)$$

证明: (i) 对于 α -上调和函数 h(y), $\{e^{-\alpha n}h(X_n)\}$ 是关于 \mathcal{F}_n 的上鞅

(ii) 对于 α -上调和函数 h(y), 记 $p^n(x,y) = P_x(X_n = y)$, 有

$$\sum_{y \in S} p^n(x, y) h(y) \le e^{n\alpha} h(x)$$

(iii) $h(y) = E_y[e^{-\alpha \tau_a}]$ 为 α -上调和函数。

题目 6. $\{X_n\}$ 是状态空间为 S 的 Markov 链,转移矩阵为 (p(x,y));给定其平稳分布 $\pi(y)$,证明:

(i)

$$\sum_{x \in S} p^n(x, y) \pi(x) = \pi(y)$$

(ii) 如果 p 不可约,则对任意的 $x \in S$ 有 $\pi(x) > 0$

2025 年随机过程期中试卷

姓名 _____ 学号 _____ 学院 ____

题号	_	11	三	四	五	六	总分
得分							

一、【10 分】

纵

Let \mathcal{F} be a σ -field. Let X be a bounded random variable and ψ a convex function. Prove that if $E[\psi(X)] = E[\psi(E[X|\mathcal{F}])]$, then

$$E[\psi(X)|\mathcal{F}] = \psi\left(E[X|\mathcal{F}]\right).$$

(You may use Jensen's inequality.)

二、【15 分】

Let $\{X_n\}_{n\geq 0}$ be a sequence of square integrable random variables. Suppose $\{S_n = \sum_{k=0}^n X_k\}_{n\geq 0}$ is a martingale w.r.t. a family of σ -fields $\mathcal{F}_n, n\geq 0$. Prove

$$E[S_n^2] = E[\sum_{k=0}^n X_k^2].$$

三、【25分】

Let $\{X_n\}_{n\geq 0}$ be i.i.d. random variables with $P(X_i=1)=P(X_i=-1)=\frac{1}{2}$. $\{S_n\}_{n\geq 0}$ denotes the simple symmetric random walk, i.e. $S_n=X_1+X_2+\cdots+X_n$ with $S_0=0$. Introduce the σ -fields $\mathcal{F}_n=\sigma(X_1,...,X_n)$ for $n\geq 1$. Let T be a stopping time with $E[T]<\infty$.

- (i) Prove that $\{S_n^2 n, n \ge 1\}$ is a martingale.
- (ii) Prove that $E[T] = E[S_T^2]$.
- (iii) Prove that $E[S_T] = 0$.
- 四、【10 分】Let $(X_n, n \ge 0)$ be a Markov chain with state space S. Let $T_y = \inf\{m \ge 1; X_m = y\}$ and $f^k(x, y) = P_x(T_y = k)$. Recall $p^n(x, y) = P_x(X_n = y)$. Show that for $n \ge 1$,

$$p^{n}(x,y) = \sum_{k=1}^{n} f^{k}(x,y)p^{n-k}(y,y).$$

第1页,共2页

五、【25分】

Let $(X_n, n \geq 0)$ be a Markov chain with state space S and the transition matrix (p(x,y)). For $a \in S$, define $\tau_a = \inf\{k \geq 0; X_k = a\}$. For $\alpha > 0$, we say that a bounded function h is α -superharmonic if for any $x \in S$,

$$\sum_{y} p(x,y)h(y) \le e^{\alpha}h(x).$$

- (i) If a function h is α -superharmonic, prove that under P_{μ} , $\{e^{-\alpha n}h(X_n)\}_{n\geq 0}$ is a supermartingale with respect to $\{\mathcal{F}_n=\sigma(X_k,k\leq n)\}_{n\geq 0}$, where μ is the distribution of X_0 .
- (ii) If a function h is α -superharmonic, prove

$$\sum_{y} p^{n}(x, y)h(y) \le e^{\alpha n}h(x),$$

where $p^n(x,y) = P_x(X_n = y)$ is the *n*-steps transition probabilities.

(iii) Define $h(y) = E_y[e^{-\alpha \tau_a}]$ for $y \in S$. Prove that h is α -superharmonic.

六、【15分】

Let $(X_n, n \ge 0)$ be a Markov chain with state space S and transition matrix (p(x, y)). Recall $p^n(x, y) = P_x(X_n = y)$. Let $\{\pi(x)\}$ be a stationary distribution.

(i) Prove

$$\sum_{x \in S} \pi(x) p^n(x, y) = \pi(y).$$

(ii) If the Markov chain is irreducible, prove that $\pi(y) > 0$ for $y \in S$.

第2页,共2页