Definice. Definujme Fibonacciho čísla následovně: $F_0 = 0, F_1 = 1, F_{n+2} = F_{n+1} + F_n$.

Příklad 1.

Dokažte, že pro Fibonacciho čísla platí:

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$

Příklad 2.

Dokažte, pro n-prvkovou množinu se počet jejích podmnožin sudé velikosti rovná počtu podmnožin liché velikosti.

Příklad 3.

Ve spížirně jsme našli tři neprůhledné krabičky. Na víčkách je fixou postupně napsáno: Čaj, Čokoláda a Červi. Zjistili jsme však, že víčka jsou popřeházená – v krabici vždy je obsah popsaný jiným víkem. Chtěli bychom zjistit, co je ve které krabici. Kolik otevření potřebujeme?

Příklad 4.

Určete maximální počet různých množin, které lze získat ze dvou množin A, B operacemi $\cap, \cup, a \setminus$.

Příklad 5.

Máme k dispozici rovnoramenné váhy a 9 kuliček. Víme, že jedna z nich je falešná – váží méně, než všechny ostatní. Ostatní kuličky mají stejnou váhu. Kolik musíme udělat vážení, abychom zjistili, která kulička je falešná?

Příklad 6.

Uvažme množinu [n] a všechny její podmnožiny obsahující právě dva prvky. Jaké podmnožiny [n] jsme schopní zkonstruovat, jestliže můžeme používat operaci Δ (symetrický rozdíl)?

Příklad 7.

Kolika způsoby umíme vybrat množiny $A, B \subseteq [n]$ takové, že:

- 1. $A \subseteq B$
- 2. $A = \{x\} \text{ a } x \in B$
- 3. $|A \cap B| = 1$

Příklad 8.

Dokažte, že počet posloupností nul a jedniček délky $n \ge 0$ takových, že neobsahují dvě jedničky těsně vedle sebe, je právě F_{n+2} .