Nonlinear Models & Von Bertalanffy Growth

Dr. Derek H. Ogle

Northland College

Vermont R Workshop Burtlington VT 5-7 March 2014

$$E[L|t] = L_{\infty} \left(1 - e^{-K(t-t_0)} \right)$$

where

• E[L|t] is the expected (i.e., average) length at time (or age) t,

- L_{∞} is the asymptotic average length.
- t_0 is a modeling artifact.

• K is NOT the growth rate (units are yr^{-1}).

• K is NOT the growth rate (units are yr^{-1}).

- K is NOT the growth rate (units are yr^{-1}).
- K does represent how fast L approaches L_{∞} .

- K is NOT the growth rate (units are yr^{-1}).
- K does represent how fast L approaches L_{∞} .
 - $\frac{\log(2)}{K}$ is "half-life" (time to reach $\frac{L_{\infty}}{2}$).

• von Bertalanffy growth model is non-linear.

- von Bertalanffy growth model is non-linear.
- Non-linear least-squares methods minimize RSS.

RSS Surface (side view)

RSS Surface (top view)

 No closed-form solution as in linear least-squares.

RSS Surface (top view)

- No closed-form solution as in linear least-squares.
- Non-linear algorithms iteratively "search" for the minimum RSS.

RSS Surface (top view)

- No closed-form solution as in linear least-squares.
- Non-linear algorithms iteratively "search" for the minimum RSS.
- Non-linear algorithms require starting values for model parameters.

RSS Surface (top view)

- No closed-form solution as in linear least-squares.
- Non-linear algorithms iteratively "search" for the minimum RSS.
- Non-linear algorithms require starting values for model parameters.

 Sampling distribution of parameter estimates tend NOT to be normally distributed.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.
 - **1** Uses χ^2 and shape of likelihood function.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.
 - Uses χ^2 and shape of likelihood function.
- Alternative #2 Bootstrapping.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.
 - **1** Uses χ^2 and shape of likelihood function.
- Alternative #2 Bootstrapping.
 - Construct a random sample (with replacement) of n "cases" of observed data.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.
 - **1** Uses χ^2 and shape of likelihood function.
- Alternative #2 Bootstrapping.
 - Construct a random sample (with replacement) of n "cases" of observed data.
 - 2 Extract parameters from model fit to this (re)sample.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.
 - **1** Uses χ^2 and shape of likelihood function.
- Alternative #2 Bootstrapping.
 - Construct a random sample (with replacement) of n "cases" of observed data.
 - 2 Extract parameters from model fit to this (re)sample.
 - **3** Repeat first two steps *B* times.

- Sampling distribution of parameter estimates tend NOT to be normally distributed.
- Thus, usual normal theory is NOT appropriate.
- Alternative #1 Profile likelihood method.
 - **1** Uses χ^2 and shape of likelihood function.
- Alternative #2 Bootstrapping.
 - Construct a random sample (with replacement) of n "cases" of observed data.
 - 2 Extract parameters from model fit to this (re)sample.
 - Repeat first two steps B times.
 - 95% CI is values of ordered parameter estimates with 2.5% of values lesser and 2.5% of values greater.

