Introducción a los Métodos Numéricos

Implementaciones en el lenguaje R

Walter Mora F.

Walter Mora F.

Introducción a los Métodos Numéricos

Implementaciones en el lenguaje R Primera edición

https://tecdigital.tec.ac.cr/servicios/revistamatematica/material_didactico/libros/

Copyright© Revista digital Matemática Educación e Internet (https://tecdigital.tec.ac.cr/servicios/revistamatematica/).
Correo Electrónico: wmora2@gmail.com
Escuela de Matemática
Instituto Tecnológico de Costa Rica
Apdo. 159-7050, Cartago
Teléfono (506)25502225
Fax (506)25502493

Mora Flores, Walter.

Introducción a los métodos numéricos. Implementaciones en R, 1ra ed.

Escuela de Matemática, Instituto Tecnológico de Costa Rica. 2015.
 396 pp.

ISBN Obra Independiente: 978-9968-641-13-5

1. Métodos Numéricos. 2. Programación 3. Algoritmos.

Revista digital

Derechos reservados © 2015

Matemática, Educación e Internet.

https://tecdigital.tec.ac.cr/servicios/revistamatematica/.

Photos by: Viviana Loaiza. Parque Nacional Chirripó, Costa Rica.

Límite de responsabilidad y exención de garantía: El autor o los autores han hecho su mejor esfuerzo en la preparación de este material. Esta edición se proporciona"tal cual". Se distribuye gratuitamente con la esperanza de que sea útil, pero sin ninguna garantía expresa o implícita respecto a la exactitud o completitud del contenido. La Revista digital Matemáticas, Educación e Internet es una publicación electrónica. El material publicado en ella expresa la opinión de sus autores y no necesariamente la opinión de la revista ni la del Instituto Tecnológico de Costa Rica.

Primera edición, Febrero 2015

	Prologo	8
1	Programación con R	. 11
1.1	Introducción	11
1.2	Sesiones en RStudio	12
1.3	R como calculador	15
1.4	Definir variables y asignar valores	17
1.5	Funciones I.	19
1.6	Vectores Operaciones con vectores.	21 . 23
1.7	Paquetes	36
1.8	Matrices y arreglos Operaciones con matrices	37
1.9	Función apply()	47
1.10	Condicionales y Ciclos	51
1.11	La eficiencia de la vectorización.	56
1.12	Funciones II	57
1.13	Expresiones, tiras y funciones	61
1.14	Gráficos en R	70
1.15	Correr un programa (script)	79

1.16	Exportar e importar datos.	81
1.17	R en la nube.	82
2	Aritmética del Computador y Errores	. 85
2.1	Introducción	85
2.2	Aritmética del computador.	91
2.3	Cancelación	93
2.4	Propagación del Error	97
3	Polinomio de Taylor	101
3.1	Estimación del error	102
	Implementación	104
4	Ecuaciones no lineales.	109
4.1	Orden de convergencia	110
4.2	Método de Punto Fijo	113
	Algoritmo e implementación	
4.3	El método de Bisección	124
	Algoritmo e Implementación	
4.4	El Método de Newton	132
	Algoritmo e Implementación	
	Un método híbrido: Newton-Bisección	
4.5	Método de la Secante	145
	Algoritmo e implementación.	
	Un Método Hĺbrido: Secante-Bisección	
4.6	El Método de la Falsa Posición	156
	Ejercicios	157
4.7	Convergencia.	158
5	Sistema de ecuaciones Lineales	167
5.1	Eliminación Gaussiana	167
5.2	Análisis de error.	176

5.3	Descomposición LU.	179		
	Implementación			
	Pivoteo parcial y la descomposición LU			
	Cálculo de inversas y determinantes	197		
5.4	Refinamiento iterativo.	199		
5.5	Grandes sistemas y métodos iterativos.	199		
	Sistemas $m \times n$	208		
6	Interpolación Polinomial			
6.1	Introducción	213		
6.2	Interpolación polinomial.	215		
6.3	Forma de Lagrange del polinomio interpolante.	216		
6.4	Forma modificada y forma baricéntrica de Lagrange.	223		
6.5	Forma de Newton para el polinomio interpolante.	227		
	Diferencias Divididas de Newton	228		
6.6	Forma de Lagrange vs Forma de Newton.	235		
6.7	Estimación del error.	235		
	Error en interpolación lineal.			
	Error en interpolación cuadrática			
	Error con interpolación con polinomios de grado n			
	Otros casos.	241		
6.8	Interpolación Iterada de Neville	242		
6.9	Trazadores Cúbicos (Cubic Splines).	246		
6.10	Interpolación y solución de ecuaciones	255		
	Interpolación Inversa.			
	Interpolación Cuadrática Inversa	257		
7	Derivación e integración numérica	263		
7.1	Derivación numérica	263		
7.2	Integración numérica	270		
7.3	Fórmulas de Newton-Cotes.	271		
7.4	Regla del Trapecio.	272		
7.5	Regla del Simpson.	275		
7.6	Método de Romberg.	280		
	Matriz de Romberg	281		

7.7	Cuadratura Gaussiana.	284
7.8	Integrales Impropias.	287
7.9	Integración con R	288
8	Ecuaciones Diferenciales Ordinarias	293
8.1	Método de Euler	295
8.2	Algoritmo e implementación	296
8.3	Métodos de Taylor de orden superior.	297
	implementación	300
8.4	Métodos de Runge-Kutta.	301
	Algoritmo e implementación	
	Paquete "deSolve" de R	
8.5	Algunos Detalles Teóricos.	308
8.6	Estimación del error	310
A	Apéndice: Conocimientos Previos	313
A .1	Inducción Matemática	313
A.2	Funciones continuas. Máximos y mínimos absolutos.	314
A.3	Teorema de Taylor	322
A.4	Notación O de Landau	325
	Propiedades de $o(g)$. Cálculo de límites	326
A.5	Sucesiones	327
A.6	Teorema del valor medio para integrales	334
A.7	Bits y Bytes	334
	Bibliografía	335
Α	Soluciones de los ejercicios	339

El propósito de este libro es la implementación de métodos numéricos básicos usando el lenguaje de programación (libre) **R** El curso esta orientado a estudiantes con poco conocimiento de programación.

Aunque **R** es un lenguaje y un entorno de programación para análisis estadístico y gráfico, **R** también puede usarse como herramienta de cálculo numérico, campo en el que puede ser tan eficaz como otras herramientas específicas tales como GNU OCTAVE y su equivalente comercial, MATLAB. En este libro se expone la teoría, a veces con justificaciones teóricas, se presentan varios ejemplos y al final del cada capítulo, se dedica tiempo a los algoritmos y las implementaciones.

Cartago, Febrero 2015.

W. Mora F.

1.1 Introducción

R es a la vez un entorno interactivo de gran alcance para el análisis de datos, visualización y modelado y es un lenguaje diseñado y construido para dar soporte a estas tareas (desplegar datos, resúmenes, estimación de modelos, simulación, cálculo numérico, etc.) con código sencillo y natural. Es software libre y fue desarrollado por Robert Gentleman y Ross Ihaka del Departamento de Estadística de la Universidad de Auckland en 1993 (a partir del lenguaje S).

Instalación

R es software libre y se puede descargar (Mac, Linux y Windows) en http://www.r-project.org/. Una interfaz de usuario para **R** podría ser RSTUDIO y se puede descaragar (Mac, Linux y Windows) en http://www.rstudio.com/. La instalación es directa en los tres casos.

La documentación oficial de $\bf R$ se puede ver en http://stat.ethz.ch/R-manual/R-devel/library/base/html/00Index.html Una guía rápida bastante recomendable está en

http://www.statmethods.net/index.html

También hay varios manuales gratuitos de **R**, la manera fácil sería googlear¹ "manual de R" o algo por el estilo. Por ejemplo, un buen manual está en http://cran.r-project.org/doc/manuals/r-release/R-intro.html.

 $^{^{}m 1}$ Googlear es un neologismo común entre los usuarios de internet que utilizan el buscador Google.

1.2 Sesiones en RStudio

Uno de los ambientes de desarrollo para usar con **R** es **R** Studio. Este entorno de trabajo viene dividido en varios paneles y cada panel tiene varias "pestañas", por ejemplo

Console: Aquí es donde se pueden ejecutar comandos de **R** de manera interactiva

History: Histórico con las variables y funciones definidas, etc. (puede ser guardado, recargado etc.)

Plots: Ventana que muestra los gráficos de la sesión

Help: Esta es una ventana de ayuda, aquí
 aparece la información cuando se pide
 (seleccione un comando y presione
 F1)

Files: Manejador de información, aquí podemos localizar, cargar, mover, renombrar, etc.

Packages: Instalar o cargar paquetes

Figura 1.1: Sesión R inicial con RStudio

■ Caminos cortos con las teclas: Una lista de completa de juegos de teclas y su acción se puede ver en https://support.rstudio.com/hc/en-us/articles/200711853.

Por ejemplo,

- a.) Ctrl+L: Limpia la consola
- b.) Crt+Shift+C: Comentar código seleccionado
- Workspace. El entorno de trabajo (workspace) incluye todos los objetos definidos por el usuario (vectores, matrices, data frames, listas, funciones). Al final de una sesión de **R**, el usuario puede guardar una imagen del espacio de trabajo actual que se vuelve a cargar automáticamente la próxima vez que **R** se inicia
- Consola. Para empezar podríamos usar la consola para digitar y ejecutar algunos comandos (presionando Enter para ejecutar). La consola se puede limpiar presionando Ctrl+L. Los primeros ejemplos de este capítulo se pueden ejecutar en la consola.
- Scripts. Por defecto, **R** inicia una sesión interactiva con la entrada desde teclado y la salida a la pantalla (en el panel de la consola). Sin embargo, para programar y ejecutar código más extenso (con funciones y otro código), lo que debemos hacer es abrir un "**R** script" nuevo con el menú **File New File R Script**.

Figura 1.2: Editando un R script

Los scripts son archivos .R con código R. Posiblemente funciones definidas por nosotros (nuestros programas) y otros códigos. Para ejecutar este código (o parte de este código si los hemos seleccionando con el mouse) se presiona sobre el ícono run (para "lanzarlo a la consola")

Figura 1.3: Ejecución del código seleccionado

Para ejecutar todo el código se usa Crtl+Shift+Enter o presionar el botón

■ Ayuda (Help). Para obtener ayuda de un comando o una función, se selecciona y se presiona F1. También un comando se puede completar con la tecla Tab (adicionalmente se obtiene una descripción mínima).

Generar reportes

Se puede generar un reporte de la sesión en formato .pdf, .docx o .html como se muestra en al figura que sigue,

Figura 1.4: Generar un reporte

- Reportes profesionales. Se puede generar un reporte profesional (y posiblemente dinámico) para una presentación, un artículo, un libro, etc. usando MTEX y el paquete knitr. Para esto puede consultar el libro "Edición de textos científicos con LaTeX". ITCR. (pp. 214 218). El libro lo puede descargar en https://tecdigital.tec.ac.cr/revistamatematica/Libros/LaTeX/
- Presentaciones dinámicas. Shiny es un paquete de **R** para crear aplicaciones web interactivas (apps) directamente desde **R**. Puede consultar http://shiny.rstudio.com/tutorial/lesson1/.
- Paquetes. Mucho del poder de **R** viene de la immensa cantidad de paquetes conteniendo código y datos para situaciones especiales. En la pestaña **Packages** se puede inspeccionar los paquetes instalados.

La paquetes con casilla marcada (\checkmark) indican que el paquete está cargado y se puede usar. Para buscar y/o instalar nuevos paquetes se usa la pestaña **Install**.

Una lista (con su respectiva descripción) de qué paquetes son útiles en métodos numéricos se puede obtener en la página "RAN Task View: Numerical Mathematics",

http://cran.r-project.org/web/views/
NumericalMathematics.html

Figura 1.5: Pestaña Packages

1.3 R como calculador

R se puede usar como un "calculador simbólico" sin tener que programar nada.

Usamos el símbolo # para los comentarios. En particular, en los ejemplos usamos este símbolo para indicar cuál es la salida en consola.

- Constantes: **pi** (es la constante π)
- La constante e se puede obtener como exp(1)

Todos los números son constantes. Pueden ser de tipo 'integer', 'double' o 'complex'. El tipo se puede comprobar con la función **typeof()**. Las constantes numéricas seguidas de **L**, como **5L**, se consideran enteras y las seguidas de **i** se consideran complejas, como **5i**.

Las constantes numéricas precedidas por 0x o 0x se interpretan como números hexadecimales. Por ejemplo,

```
> 0xff
#[1] 255
> 0XF + 1
#[1] 16
```

Los caracteres pueden representarse como constantes utilizando comillas simples ' o comillas dobles " como delimitadores,

```
> typeof('lerdiames')
#[1] "character"
```

- Operadores: <,>, <=, >=, !=, !(Not), | (OR), &(And), == (comparar)
- Operaciones aritméticas: +,-,*,/, ^ (potencias), %% (mod = resto de la divisón entera), y %/% (división entera, por ejemplo 4%/%3 da resultado 1).
- Logaritmos y exponenciales: \log (logaritmo natural), $\log(x,b)$ ($\log_b x$) y $\exp(x)$ (e^x).
- Funciones trigonométricas: cos(x), sin(x), tan(x), acos(x), asin(x), atan(x), atan2(y,x) con x, y en radianes.
- Funciones misceláneas: abs(x), sqrt(x), floor(x), ceiling(x), max(x), sign(x).

No tenemos una raíz cúbica pero, como veremos más adelante, la podemos definir como

```
sign(x)*abs(x)^(1/3)
```

Ejemplo 1.1

a.) Calcular $\cos(\pi/6 + \pi/2) + e^2$

```
cos(pi/6+pi/2)+exp(1)^2 #Comentario: e=exp(1)
#[1] 6.889056
```

b.) Calcular $\cos(\pi/6 + \pi/2) + e^2 * \log_2 5 + \arccos(1/\sqrt{2})$

```
cos(pi/6+pi/2)+exp(1)^2*log(2,5)+acos(1/sqrt(2))
#[1] 3.467691
```

c.) Mensajes de error

```
acos(2/sqrt(2)) # Error pues, en acos(x), debe ser -1 <= x <= 1
#[1] NaN
#Mensajes de aviso perdidos
#In acos(2/sqrt(2)) : Se han producido NaNs
#> # Para pedir ayuda use ? antes de símbolo
#> ?NaN
```

En los ejemplos anteriores, **R** ve la salida como un vector y [1] indica que es la primera entrada del vector de salida.

Visualización numérica

■ Dígitos. **R** despliega los números con siete dígitos. Esto se puede cambiar a **k** dígitos con **options (digits=k)**. La opción permanece hasta que es cambiada o hasta que se reinicie **R** .

Código R 1.1:

```
1/3.0

# [1] 0.3333333

options(digits=3)

1/3

# [1] 0.333
```

Redondeo. round (x, n) redondea x a n decimales. Por defecto, n = 0.

Código R 1.2:

```
round(67.3)
#[1] 67
round(67.3787662,2) # sería 67.40
#[1] 67.4
```

Dígitos significativos. signif(x,n) redondea x a n dígitos significativos. Por defecto, n=6.

Código R 1.3:

```
options(digits=7) #retornar a siete dígitos
signif(67.3787662,2)
#[1] 67
signif(67.3787662) #defecto n=6
#[1] 67.3788
```

■ Deshabilitar la notación científica. A veces es adecuado no usar la notación científica para visualizar mejor los datos numéricos. Podemos deshabilitar esta notación con options(scipen=999). Para habilitarla de nuevo usamos options(scipen=0)

Código R 1.4:

```
exp(-30)
#[1] 9.357623e-14
options(scipen = 999) # Deshabilitar la notación científica
exp(-30)
#[1] 0.00000000000009357623
options(scipen = 0)
```

1.4 Definir variables y asignar valores

■ **Generalidades**. Los datos son de tipo numérico, alfanumérico (caracteres) o lógicos (verdadero o falso). Definimos variables para guardar información en la memoria. En **R** tenemos datos de tipo "character" (caracter), "integer" (entero), "floating point" (coma flotante), "double" (doble coma flotante), "complex" (complejos), "boolean" (booleano), etc.

En **R** no tenemos que declarar el tipo de dato de cada variable, más bien las variables se asignan a un "objeto" y este objeto se adapta al tipo de dato de la variable.

- **Objetos**. En **R** los principales *objetos* son: Vectores, matrices, arreglos ("array"), marcos de datos ("data frame") y listas ("list"). Los "data frame" es un objeto que permite agrupar vectores (todos de la misma longitud) con información de diferente tipo: numérica, alfanumérica o lógica. También las listas permiten almacenar objetos de diferente tipo.
- Definir/inicializar variables. Para definir y/o asignar valores a una variable se usa "=" o también <-. **R** es sensitivo a mayúsculas y los nombres de las variables deben iniciar con letras o con un punto "."

Las intrucciones en una sola línea se pueden separar por "punto y coma". Se puede definir una lista de variables separadas por ";".

Código R 1.5: Asignación de valores a las variables x0 y x1

```
e = exp(1); x = 0.003  # asignación. Se puede usar ";" para separar instrucciones
x0 = e^(2*x)
txt = "El valor de x0 es "  # asignación string
cat(txt, x0)  # "cat" concatena y convierte a string
# El valor de x0 es 1.006018
```

Podemos imprimir el valor de una variable usando paréntesis

Código R 1.6: Asignación de valores a las variables x0 y x1, imprimir

```
x0 = 1
(x1 = x0 - pi*x0 + 1 ) # los paréntesis operan como print(x1)
#[1] -1.141593
```

■ Nombrar y remover variables. La lista de todos los objetos (en particular variables) definidos actualmente se obtiene con ls(). Para eliminar un objeto x, usamos rm(x). Para eliminar todos los objetos definidos en la actualidad se usa rm(list= ls()).

Código R 1.7:

```
# Objetos definidos
ls()
# [1] "e" "txt" "x" "x0" ...
# Eliminar todos los objetos
rm(list= ls())
```

■ Imprimir. Se puede usar, entre otros, el comando print() y cat() para imprimir (en la consola o a un archivo). cat() imprime y retorna NULL. print() imprime y se puede usar lo que retorna. Por ejemplo,

Código R 1.8: cat, print

```
x0 = 1
x1 = x0 - pi*x0 + 1
cat("x0 =", x0, "\n", "x1 =", x1)  ## "\n" = cambio de línea
# x0 = 1
# x1 = -1.141593
x2 = print(x1)  # print imprime
# [1] -1.141593  # y se puede usar el valor que retorna
(x2+1)
# [1] -0.1415927
```

1.5 Funciones I.

Las funciones se declaran usando la directiva **function(a1,a2,...,an)**{... código...} y es almacenada como un objeto. Las funciones tienen argumentos y estos argumentos podrían tener valores por defecto. La sintaxis sería algo como

Código R 1.9: Sintaxis de una Función

```
nombrefun = function(a1,a2,...,an) {
# código ...
instrucc-1
instrucc-2
# ...
return( ... ) #valor que retorna (o también la última instrucción, si ésta retorna algo)
}
```

Por ejemplo, $fun(x) = \cos x$ se implementa como

```
fun = function(x){ cos(x)}
# llamada por nombre "fun"
fun(pi/3)
# [1] 0.5
```

Como el código solo tiene una instrucción, se puede obviar las llaves: f = function(x)cos(x)

Otro ejemplo es la función discriminate, si $P(x) = ax^2 + bx + c$ entonces el discriminante es $\Delta = b^2 - 4ac$.

Código R 1.10:

```
d = function(a,b,c) b^2-4*a*c
# llamar a la función por nombre
d(2,2,1)
#[1] -4
```

Representación gráfica. Para obtener un gráfico de una función f, se puede usar el comando **plot(f, a, b)** y también se pueden agregar varias opciones. Una lista de opciones de puede encontrar en

http://stat.ethz.ch/R-manual/R-devel/library/graphics/html/par.html

Por ejemplo, podemos hacer la representación gráfica de $g(x) = \text{sen}(\cos(x) * e^{-x/2} \text{ en } [-8,5]$, y agregar opciones de grosor (**lwd**), color (**col**) y otras opciones, como el número de nodos, por ejemplo **n=100**.

Código R 1.11: Gráfica con opciones

```
g = function(x) sin(cos(x)*exp(-x/2))
plot(g, -8, -5,  # rango
    lwd = 2,  # grosor
    main = "Gráfico de g", col = "red", xlab = "x", ylab="g(x)", axes = TRUE, n = 100)
# n=100 nodos es adecuado para este tipo de función oscilante
```


curve(). También se puede usar la función **curve()** para graficar introduciendo la fórmula directamente o por nombre. La sintaxis que por ahora vamos a usar, es la que sigue

```
curve(expr, a, b, n = 101, add = FALSE,
    type = "l", xname = "x", xlab = xname, ylab = NULL,
    log = NULL, xlim = NULL, ...)
```

Aquí expr es el nombre de una función de x o una fórmula en términos de x

Código R 1.12:Ejecutar curve() por expresión o por nombre

```
# -- por expresión
curve(sin(x), -1, 1, col = 1 )
curve(2*x^2+3*x+1, -1, 1, col = 1 )
# -- por nombre
fun = function(x) x^2
curve(fun, -1,1, col = 2, add = T) #add se usa para graficar junto al gráfico anterior
# -- Caso especial f(x) = x
curve((x), -1,1, col = "deepskyblue", add = T) # o curve(1*x,...),
```


- Observe que la función f(x) = x se obtiene con "curve((x)...", sino se obtiene "Error in x(x) : could not find function 'x'".
- Los colores se pueden llamar por número o por nombre. Un cuadro con los colores por nombre se puede ver en https://www.r-graph-gallery.com/42-colors-names.html

1.6 Vectores

En el cálculo numérico con \mathbf{R} se usa casi siempre vectores y matrices. Un vector es una lista ordenada de números, caracteres o valores lógicos; separados por comas.

■ Declarando vectores. Hay varias maneras de crear un vector: c(...) (c=concatenar), seq(from, to, by) (seq=sequence) y rep(x, times) (r=repeat).

La instrucción \mathbf{n} : \mathbf{m} crea una sucesión de números de n hasta m con paso h=1. La instrucción $\mathbf{length}(\mathbf{x})$ nos devuelve la longitud del vector \mathbf{x}

Código R 1.13: Declarando vectores

```
x = c(1.1, 1.2, 1.3, 1.4, 1.5) # x = (1.1,1.2,1.3,1.4,1.5)

x = 1:5 # x = (1,2,3,4,5)
```

Código R 1.14: Declarando vectores con "seq"

```
x = seq(1,3, by =0.5)   # x = (1.0 1.5 2.0 2.5 3.0)

x = seq(5,1, by =-1)   # x = (5, 4, 3, 2, 1)
```

Código R 1.15: Declarando vectores con "rep"

```
x = rep(1, times = 5)  # x = (1, 1, 1, 1, 1)
length(x)  # 5
```

Código R 1.16:Un vector con datos "no disponibles" (NA)

```
x = rep(NA, 5) 		 # [1] NA NA NA NA NA
```

Código R 1.17: Muestra: Tirar una moneda limpia diez veces

```
x=c("cara", "cruz")
muestra = sample(x, size=10, replace = TRUE)
print(muestra)
# [1] "cruz" "cara" "cruz" "cruz" "cara" "cruz" "cruz" "cruz" "cruz" "cara"
table(muestra) #tabula y nos da las frecuencias
# muestra
# cara cruz
# 4 6
```

Código R 1.18: Frecuencias en un vector

```
table(c(0,1,01,1,1,0,1,0,0,0,1)) #tabula y nos da las frecuencias de los \wRR{0} y \wRR{1} en
    el vector
#0 1
#5 6
```

Código R 1.19: Error!

```
x=c(abc,3, 5) # en este caso, abc sería un objeto no definido. R lanza un error
#Error: object 'abc' not found
#
x=("abc", 3, 5) # esta asignación es correcta, "abc" es un objeto (tira)
#
abc="hola"
x=c(abc,3, 5) # esta asignación también es correcta
```

La expresión **x=("abc", 3, 5)** hace que el vector **x** pase a ser de clase "character", este es un proceso de "coerción" implícita que hace **R** en el caso de vectores, por ejemplo.

Operaciones con vectores.

A los vectores les podemos aplicar las operaciones algebraicas usuales: sumar, restar, multiplicar y dividir, exponenciar (miembro a miembro), etc.

Código R 1.20:Operaciones con vectores

■ Reciclaje. Cuando aplicamos operaciones algebraicas a vectores de distinta longitud, **R** automáticamente "repite" el vector más corto hasta que iguale la longitud del más grande

Código R 1.21:

```
c(1,2,3,4) + c(1,2) # = c(1,2,3,4)+c(1,2,1,2)
# [1] 2 4 4 6
```

Esto pasa también si tenemos vectores de longitud 1

Código R 1.22:

```
x = 1:5  # x = (1,2,3,4,5)
2*x
# [1] 2 4 6 8 10
1/x^2
# [1] 1.0000000 0.2500000 0.1111111 0.0625000 0.0400000
x+3
# [1] 4 5 6 7 8
```

Ejemplo 1.2

a.) El conjunto solución de la ecuación $\cos(5x) = 0$ es $\left\{ \frac{(2k+1)\pi}{6} \right\}$ con $k \in \mathbb{Z}$. Las primeras soluciones, positivas y negativas, se obtienen dándole valores enteros a k.

Podemos implementar una función que nos de estas primeras soluciones.

```
sols1 = function(n,m){
    valoresk = n:m  #"valoresk" es un vector (n, n+1,..., m)
    (2*valoresk+1)*pi/6  # la salida es un vector
}
#Llamada al programa: soluciones desde k=-5 hasta k=5
sols1(-5,5) #n=-5, m=5
# [1] -4.7123890 -3.6651914 -2.6179939 -1.5707963 -0.5235988  0.5235988
# [7] 1.5707963 2.6179939 3.6651914 4.7123890 5.7595865
# Observe que "[7] 1.5707963 2.6179939..." indica que la componente 7 es
    1.5707963
```

b.) Una partición del intervalo [a, b] en n subintervalos igualmente espaciados es una colección de nodos $\{a = x_0, x_1, x_2, ..., x_n = b\}$ donde

$$h = \frac{b - a}{n} \quad y \quad x_i = x_0 + h \cdot i$$

Es decir, $[a, b] = [a, x_1] \cup [x_1, x_2] \cup ... \cup [x_{n-1}, b]$

Podemos implementar un función que dados a, b y n, nos devuelva la partición.

```
#Llamada al programa: Una partición de [0,1] en 10 subintervalos particion(0,1,10)
# [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
```

■ Funciones que aceptan vectores como argumentos. Algunas funciones se pueden aplicar sobre vectores, por ejemplo sum(), prod(), max(), min(), sqrt(), mean(), var(), sort()

Código R 1.23:

Ejemplo 1.3

Es conocido que $S=\sum_{i=1}^{\infty}\frac{1}{i^2}=\frac{\pi^2}{6}\approx 1.64493$. Podemos aproximar la suma de la serie con sumas parciales, por ejemplo

$$S \approx S_k = \sum_{i=1}^k \frac{1}{i^2}$$

Para implementar esta suma parcial en ${\bf R}$, usamos operaciones con vectores,

```
\sum_{i=1}^{k} \frac{1}{i^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{k^2}
= sum(1, 1/2^2, 1/3^2, \dots, 1/k^2)
= valuamos el vector <math>\mathbf{x} = 1 : k \text{ como } 1/\mathbf{x}^2
= sum(1/\mathbf{x}^2)
Código R 1.24:
sumaparcial1 = function(k) \{ \mathbf{x} = 1 : k \text{ sum}(1/\mathbf{x}^2) \}
# Llamada al programa
sumaparcial1(100000)
# [1] 1.644924
```

Ejemplo 1.4

También podemos armar de manera simple la aproximación de una integral definida. En este ejemplo usamos la integral de Riemann (*pero la aproximación de integrales se hará más adelante con métodos inmensamente más eficientes!*). La primitiva $\int_0^1 e^{-x^2} dx$ no se puede calcular con los métodos usuales de cálculo.

Una aproximación sencilla es la suma de las áreas de los rectángulos bajo la curva, de base dx y altura $e^{-x_i^2}$,

■ Acceder a las entradas y listas de componentes. La entrada i-ésima del vector x es x[i]. El lenguaje R ejecuta operaciones del tipo x[op] donde op es un operación lógica válida.

Código R 1.26:

```
x=c(1.1,1.2,1.3,1.4,1.5) # declarar un vector x
 x[2]
                           # entrada 2 de x
# [1] 1.2
 x[3];x[6]
                          # entradas 3 y 6 de x
# [1] 1.3
                           # no hay entrada 6, se trata como un dato "perdido"
# [1] NA
x[1:3]; x[c(2,4,5)]
                           # sublistas
# [1] 1.1 1.2 1.3
# [1] 1.2 1.4 1.5
x[4]=2.4
                           # cambiar una entrada
# [1] 1.1 1.2 1.3 2.4 1.5
                           # remover el elemento 3
x[-3]
# [1] 1.1 1.2 2.4 1.5
x = c(x[1:3], 16, x[4:5]) # Insertar 16 entre la entrada 3 y 4
# [1] 1.1 1.2 1.3 16.0 2.4 1.5
```

En el código que sigue se muestra algunos ejemplos en los que se aplica operaciones de tipo lógico en el vector x

Código R 1.27:

```
x = 1:5
set.seed(234)  # "semilla"
y = sample(1:10, 5)  # y = (8, 10, 1, 6, 9)
z = x[x<2.5]; z  # declara z con una regla: los x_i < 2.5
# [1] 1 2
e = x[x==y[3]]; e  # declara e con una regla: los x_i iguales a y[3]
# [1] 1</pre>
```

Ejemplo 1.5

Si tenemos un conjunto de datos numéricos x = c(x1, x2, ..., xn) (una muestra) entonces su media (o promedio) es sum(x)/lenght(x), en R esta se calcula con mean(x).

Sin embargo si la muestra tiene datos atípicos, entonces la media se distorsiona. En estos casos se usan un par de métodos alternativos para calcular la media: La "media podada" y la "media Winsorizada". Lo que hacen es ordenar los datos de menor a mayor para que los puntos atípicos queden en la rama inferior o en la rama superior y se hace una poda de estas ramas o se sustituyen estas ramas con valores posiblemente más sensatos. Por ejemplo,

```
# Muestra
x = c(1, 87, 59, 05, 67,65, 68, 56, 78, 80,67, 59, 800, 100, 99, 1000)
# ordenamos
xs = sort(x); xs
# [1]
              5
                56
                      59
                           59
                              65
                                     67
                                         67
                                              68
                                                   78
                                                        80
                                                           87
                                                                 99 100 800 1000
```

Ahora se observan los datos aparentemente atípicos 1,5 y 800,1000.

Supongamos que tenemos un vector \mathbf{x} de datos (una muestra) ordenados de menor a mayor, $\mathbf{x} = (\mathbf{x1}, \mathbf{x2}, \dots, \mathbf{xn})$, entonces:

La
$$k$$
-ésima muestra podada es: $\overline{x}_k = \frac{x_{k+1} + x_{k+2} + ... + x_{n-k}}{n-2k}$

Es decir, la k-ésima muestra podada es la media de los datos que quedan al descartar los primeros y los últimos k datos.

Código R 1.28: Función media podada k-ésima

```
mediaP = function(x,k){
n = length(x)
xs = sort(x)
xt = xs[(k+1):(n-k)] #eliminar k primeros y k últimos
mean(xt)
}
```

La k– ésima media Winsorizada en vez de descartar los k primeros y los k últimos datos, los sustituye, cada uno de ellos, por los datos x_{k+1} y x_{n-k} .

Se usa
$$(k+1)x_{k+1} = x_{k+1} + \underbrace{x_{k+1} + ... + x_{k+1}}_{k \text{ veces}}$$
 y también $(k+1)x_{n-k}$

De esta manera:

```
La k-ésima media Winsorisada es: \overline{w}_k = \frac{(k+1)x_{k+1} + x_{k+2} + \dots + x_{n-k-1} + (k+1)x_{n-k}}{n}
```

Por ejemplo, si x=(1,2,3,4,5,6,7,8,9,10) entonces $W_3=(4+4+4+4+5+6+7+7+7+7)/10$

Código R 1.29: k-ésima media Winsorisada

```
mediaW = function(x, k) {
    x = sort(x)
    n = length(x)
    x[1:k] = x[k+1]
    x[(n-k+1):n] = x[n-k]
    return(mean(x))
}
```

Veamos las medias aplicadas a una muestra,

Código R 1.30: Probando las medias

■ Otras funciones. Hay muchas operaciones y funciones que aplican sobre vectores, en la tabla que sigue se enumeran algunas de ellas.

```
sum(x): suma de los elementos de x
     prod(x): producto de los elementos de x
      max(x): valor máximo en el objeto x
      min(x): valor mínimo en el objeto x
which.max(x): devuelve el índice del elemento máximo de x
which.min(x): devuelve el índice del elemento mínimo de x
    range(x): rango de x, es decir, c(min(x), max(x))
   length(x): número de elementos en x
     mean(x): promedio de los elementos de x
   median(x): mediana de los elementos de x
 round(x, n): redondea los elementos de x a n cifras decimales
      rev(x): invierte el orden de los elementos en x
     sort(x): ordena los elementos de x en orden ascendente
   cumsum(x): un vector en el que el elemento i es la suma acumulada hasta i
  cumprod(x): iqual que el anterior pero para el producto
   cummin(x): igual que el anterior pero para el mínimo
   cummax(x): iqual que el anterior pero para el máximo
 match(x, y): devuelve un vector de igual longitud que x con los elementos de x que están en y
which(x==a): devuelve un vector con los índices de x si la operación es TRUE. El argumento de
              esta función puede cambiar si es una expresión de tipo lógico
```

Usando la función cumprod n=10 cumprod(2:n) # = (2!, 3!, 4!,...,n!) #[1] 2 6 24 120 720 5040 40320 362880 3628800 x=1; k=10

```
x/(1:k) # = (x/1, x/2, x/3,..., x/k)

cumprod(x/(1:k)) # = (x/1!, x^2/2!, x^3/3!,...,x^k/k!)
```

Ejemplo 1.7

Se sabe que $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. En esta fórmula se usa como un convenio que $0^0 = 1$. Consideremos las sumas parciales $\sum_{n=0}^{k} \frac{x^n}{n!}$,

Si
$$k = 20$$
 entonces $e^x \approx \sum_{n=0}^{20} \frac{x^n}{n!}$, es decir, $e^x \approx 1 + \frac{x}{1} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^{20}}{20!}$. En particular, $e^1 \approx 1 + \frac{1}{1} + \frac{1^2}{2!} + \frac{1^3}{3!} + \dots + \frac{1^{20}}{20!}$

$$e^{-10} \approx 1 + \frac{-10}{1} + \frac{(-10)^2}{2!} + \frac{(-10)^3}{3!} + \dots + \frac{(-10)^{20}}{20!}$$

En **R** podemos calcular las sumas parciales en formato vectorizado. Observemos:

$$e^{x} \approx 1 + \frac{x}{1} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{k}}{k!}$$

$$\approx 1 + \text{sum}(\frac{x}{1}, \frac{x^{2}}{2!}, \frac{x^{3}}{3!}, \dots, \frac{x^{k}}{k!})$$

$$\approx 1 + \text{sum}(\frac{x}{1}, \frac{x}{1} \cdot \frac{x}{2}, \frac{x}{1} \cdot \frac{x}{2} \cdot \frac{x}{3}, \dots, \frac{x}{1} \cdot \frac{x}{2} \cdots \frac{x}{k})$$

$$como \frac{x}{1:k} = (\frac{x}{1}, \frac{x}{2}, \frac{x}{3}, \dots, \frac{x}{k}), \text{ entonces}$$

$$\approx 1 + \text{sum}(\text{cumprod}(\frac{x}{1:k}))$$

```
funexp = function(x, n) 1 + sum(cumprod(x/1:n)) #=sum(x/1, x/1*x/2, x/1*x/2*x/3,...)
# --- Comparación con exp(x)
c(funexp(1,20), exp(1))
[1] 2.718282 2.718282
```

```
c(funexp(-10,20), exp(-10))
#[1] 1.339687e+01 4.539993e-05 (!)

# mejor e^-10 = 1/e^10
c(1/funexp(10,20), exp(-10))
#[1] 4.547215e-05 4.539993e-05

Esta implementación solo es eficiente para números positivos
```

■ La función sapply(). La función sapply(x, FUN) aplica (en su manera más simple) la función FUN a cada componente del vector x y devuelve un vector del mismo tamaño que x

Código R 1.31:Usando sapply()

```
fc = function(x) x^2
x = 1:5
sapply(x, FUN = fc)
# [1] 1  4  9 16 25
```

Ejercicios

1.1 El conjunto solución de la ecuación sen(5x) = 0 es $\left\{\frac{k\pi}{5} \text{ con } k \in \mathbb{Z}\right\}$. Implementar una función $\text{sols}(\mathbf{n},\mathbf{m})$ que nos devuelve las soluciones desde k = n hasta k = m.

```
sols = function(n,m){
    #...
}
```

Ejemplos de salidas:

```
sols(-2,3) devuelve -1.2566371 -0.6283185 0.0000000 0.6283185 1.2566371 1.8849556 sols(-4,1) devuelve -2.5132741 -1.8849556 -1.2566371 -0.6283185 0.0000000 0.6283185
```

1.2 Dada una partición $\{x_0, x_1, ..., x_n\}$ del intervalo [a, b] igualmente espaciada, con paso h = (b - a)/n, implementar dos funciones paresx(a,b,n) e imparesx(a,b,n).

La primera **paresx** (a,b,n) devuelve los nodos de subíndice par, sin tomar el primero ni el último, es decir, devuelve $x_2, x_4, x_6, ..., x_s$. El último nodo sería x_{n-2} si n es par y x_{n-1} si n es impar.

```
paresx = function(a,b,n){
  h=(b-a)/n
  #...
}
```

La segunda función **imparesx**(a,b,n) devuelve los nodos de subíndice impar, sin tomar el primero ni el último, es decir, devuelve x_1 , x_3 , x_5 , ..., x_s . El último nodo sería x_{n-1} si n es par y x_{n-2} si n es impar.

```
imparesx = function(a,b,n){
    #...
}
```

Ejemplos de salidas:

```
particion(0,1,5)
#[1] 0.0 0.2 0.4 0.6 0.8 1.0
paresx(0,1, 5)
#[1] 0.4 0.8
imparesx(0,1, 5)
#[1] 0.2 0.6
```

```
particion(1,12,6)
#[1] 1.000000 2.833333 4.666667 6.500000 8.333333 10.166667 12.000000
paresx(1,12,6)
#[1] 4.666667 8.333333
imparesx(1,12,6)
#[1] 2.833333 6.500000 10.166667
```

1.3 Considere la serie $\sum_{n=1}^{\infty} \frac{1}{n^3 \sin^2(n)}$. Implementar una función **sparcial**(k) = $\sum_{n=1}^{k} \frac{1}{n^3 \sin^2(n)}$ para calcular la k-ésima suma parcial de esta serie. El código inicia así:

```
sparcial = function(k){
    #...
}
```

Ejemplos de salidas:

```
sparcial(1)
# [1] 1.412283
sparcial(1000)
# [1] 30.17479
sparcial(10000)
# [1] 30.31451
sparcial(100000)
# [1] 30.31452
```

1.4 Sea $\mathbf{vx=c}(\mathbf{x0}, \mathbf{x1}, \dots, \mathbf{xn})$ y $x \in \mathbb{R}$. Se define la función $\ell(vx, x) = (x - x_0)(x - x_1) \cdots (x - x_n)$. Implementar la función $\mathbf{ele}(\mathbf{vx}, \mathbf{x})$

```
ele = function(vx,x){
    #...
}
```

Notar que si que tenemos un vector $\mathbf{v}\mathbf{x}$ de datos $x_0, x_1, x_2, ..., x_n$; la entrada x_0 corresponde a $\mathbf{v}\mathbf{x}$ [1], la entrada x_1 corresponde a $\mathbf{v}\mathbf{x}$ [2] y, en general, la entrada x_k corresponde a $\mathbf{v}\mathbf{x}$ [k+1]. De esta manera k varía de 1 hasta length($\mathbf{v}\mathbf{x}$)-1. El código inicia así:

Ejemplos de salidas:

```
xx=c(1,2,3,4,5)
ele(xx, 0)
# [1] -120
ele(xx, 1)
# [1] 0
ele(xx, 0.5)
# [1] -29.53125
ele(xx, -0.5)
# [1] -324.8438
ele(xx, 0.5)
# [1] -29.53125
ele(xx, 6.5)
# [1] 324.8438
```

1.5 Sea x=c(x0, x1,..., xn). Se define la función $w(x, k) = \prod_{\substack{i=0 \ i \neq k}}^{n} (x_k - x_i)$ es decir,

$$w(x,k) = (x_k - x_0) \cdots (x_k - x_{k-1}) \cap (x_k - x_{k+1}) \cdots (x_k - x_n)$$

Implementar la función w(vx, k)

Ejemplos de salidas:

```
xx=c(0,3,4,4)

w(xx, 0)

# [1] -48

w(xx, 1)

# [1] 3

w(xx, 2)

# [1] 0

w(xx, 3)

# [1] 0
```

1.6 Si f es una función continua y mayor o igual a cero en [a, b], entonces una aproximación con n rectángulos, de la integral $\int_a^b f(x) \, dx$, es

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} f(x_i) \Delta x \text{ donde } \Delta x = \frac{b-a}{n} \text{ y } x_i = a+i \cdot \Delta x, i = 0,1,2,...,n$$

Implementar la función approxRiemman(f,a,b,n) = $\sum_{i=0}^{n} f(x_i) \Delta x$

Ejemplos de salidas:

```
fun = function(x) sin(x)
approxRiemman(fun,0,1,100)
# [1] 0.4639012

g = function(x) sin(x)/x
approxRiemman(g,1,pi,1000)
# [1] 0.906755
```

Etiquetas para vectores. Es posible etiquetar los componentes de un vector.

Código R 1.32: Etiquetas en vectores

```
# Crear un vector con nombres
c(Primero = "a", Segundo = "y", Tercero = "r")

#Primero Segundo Tercero
    "a"    "y"    "r"

# crear a vector y luego asignar etiquetas
w <- 1:3
# asignar etiquetas a w
names(w) <- c("1ro", "2do", "3ro")
w
#1ro 2do 3ro
1 2 3</pre>
```

1.7 Paquetes

Además de los paquetes estándar que vienen con \mathbf{R} , se pueden instalar paquetes adicionales para aumentar la cantidad de funciones, conjuntos de datos y librerías con algún propósito.

■ Paquete pracma: Por ejemplo, el producto punto y las normas ya están implementadas en el paquete pracma ("Practical Numerical Math Functions", http://cran.r-project.org/web/packages/pracma/pracma.pdf). Podríamos instalar este paquete en nuestra copia local de **R** (una sola vez) y luego usarlo (cargar las funciones del paquete) con la función require()

Código R 1.33: Paquete "pracma"

```
install.packages("pracma") # Se instala solo una vez
require(pracma) # "convocar" el paquete instalado
```

Ahora ya podemos usar las funciones del paquete pracma. Las funciones aparecen en la documentación del paquete.

Por ejemplo, dos funciones son dot(u,v) (producto punto $u \cdot v$) y cross(u,v) (producto $cruz u \times v$)

Código R 1.34 funciones "dot"y "cross" del paquete "pracma"

```
x=c(2,3,4)
y=c(1,1,1)
dot(x,y)
# [1] 9
cross(x,y)
```

```
# [1] -1 2 -1
```

■ require() y library(). Para usar un paquete se usa require(paquete) o también library(paquete), ambos cargan el paquete de nombre "paquete". En realidad requiere() está hecho para cargar dentro de las funciones, devuelve TRUE si el paquete está disponible y FALSE sino.

Código R 1.35:require() y library()

```
pruebaA <- library("abc"); pruebaA
# Error en library("abc") : there is no package called 'abc'
pruebaB <- require("abc"); pruebaB
# Loading required package: abc
# Mensajes de aviso perdidos
# In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
# there is no package called 'abc'
# [1] FALSE</pre>
```

Otros paquetes útiles son:

Matrix: Ofrece clases y métodos para operar con matrices densas y ralas

optR: Utiliza métodos elementales del álgebra lineal (Gauss, LU, CGM, Cholesky) para resolver sistemas lineales

R.matlab: Herramientas para leer y editar archivos .mat de Matlab

Rmpfr: Para trabajar con números con precisión "infinita" en vez de doble precisión (a lo sumo 16 dígitos).

Una lista de paquetes útiles en métodos numéricos se puede ver en "CRAN Task View: Numerical Mathematics" en http://cran.r-project.org/web/views/NumericalMathematics.html)

También se puede consultar "Quick list of useful R packages" en https://support.rstudio.com/hc/en-us/articles/201057987-Quick-list-of-useful-R-packages

1.8 Matrices y arreglos

Las matrices son arreglos bidimensionales y, por defecto, se declaran "por columnas". En el siguiente código se muestra como acceder a las entradas (i, j) y algunas operaciones con matrices.

■ Declarando una matriz: La sintaxis para declarar una matriz de nombre A es

```
A = matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
```

El parámetro **data**, para este curso, es una matriz en formato de vector. Las opciones **nrow** y **ncol** son el número de filas y el número de columnas (una especificación de cómo se debe "armar" la matriz). La opción **byrow=TRUE** indica que el vector **data** se debe leer por filas. La opción **dimnames** se usa para etiquetar filas y/o columnas con una lista: **dimnames** = **list(...,...)**).

Además hay algunas maneras cortas de declarar matrices especiales. Por ejemplo, las funciones **cbind()** (combine column) y **rbind()** (combine row) se usa para combinar vectores y matrices por columnas o por filas.

Para conocer el número de filas o columnas de una matriz A se usa nrow(A) y ncol(A), respectivamente.

Código R 1.36: Declarar matrices

```
# --- Matriz nula 3x3
A = matrix(rep(0,9), nrow = 3, ncol = 3); A
      [,1] [,2] [,3]
        0
#[1,]
              0
#[2,]
#[3,]
# --- Declarar una matriz por filas (el default es "por columnas")
B = matrix(c(1,2,3,
              5,6,7), nrow = 2, byrow=T); B
      [,1] [,2] [,3]
         1
#[1,]
              2
#[2,]
         5
              6
                   7
# --- Declarar primero las columnas "x", "y" y "z"
  x = 1:3; y = seq(1,2, by = 0.5); z = rep(8, 3); x; y; z
#[1] 1 2 3
#[1] 1.0 1.5 2.0
#[1] 8 8 8
# --- Combinar "x", "y" y "z" para formar una matriz
C = matrix(c(x,y,z), nrow = length(x)); C # ncol no es necesario declararlo
     [,1] [,2] [,3]
         1 1.0
#[1,]
#[2,]
         2 1.5
                   8
#[3,]
         3 2.0
                   8
# --- Construir la matriz por filas (rbind) o por columnas (cbind)
xi = seq(1,2, by 0.1); yi = seq(5,10, by = 0.5)
 rbind(xi,yi)
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
```

```
2
      1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
                                                1.9
#yi
      5 5.5 6.0 6.5 7.0 7.5 8.0 8.5
                                         9.0
                                                      10
                                                9.5
cbind(xi,yi)
       хi
           уi
# [1,] 1.0 5.0
# [2,] 1.1 5.5
# [3,] 1.2 6.0
# [4,] 1.3 6.5
# [5,] 1.4 7.0
# [6,] 1.5 7.5
# [7,] 1.6 8.0
# [8,] 1.7 8.5
# [9,] 1.8 9.0
#[10,] 1.9 9.5
#[11,] 2.0 10.0
```

Extraer/modificar la diagonal. Si A es una matriz cuadrada, el comando **diag(A)** construye una matriz diagonal o también extrae la diagonal de una matriz. La instrucción **I=diag(1, n)** asigna a **I** la matriz identidad $n \times n$ y la instrucción **D = diag(diag(A))** asigna a **D** una "matriz diagonal" con la diagonal de la matriz A.

Código R 1.37: Función "diag()"

```
# --- construir una matriz diagonal
 I = diag(c(3,1,3)); I
      [,1] [,2] [,3]
#[1,]
         3
              0
#[2,]
              1
                    0
         0
#[3,]
 # --- Extraer la diagonal de la matriz I
  diag(I)
[1] 3 1 3
# --- Matriz diagonal nxn
n = 3
I = diag(1, n);
      [,1] [,2] [,3]
         1
#[1,]
              0
#[2,]
         0
              1
                    0
#[3,]
         0
              0
                   1
# --- Matriz diagonal, con la diagonal de A
D = diag(diag(A))
```

Operador "outer()". El operador **outer()** crea una nueva matriz $m \times n$ combinando vectores de dimensiones $m \times n$, de acuerdo a la regla **FUN**. Por defecto, **FUN** = "*".

Por ejemplo, si definimos una función $f = function(x,y)\{...\}$, entonces outer construye la matriz en azul,

Código R 1.38: Función "outer()"

```
x = 4:6; y = 1:3
outer(x,y) # Fun = "*" por defecto
      [,1] [,2] [,3]
%[1,]
              8
                  12
                  15
%[2,]
             10
%[3,]
         6
             12
                  18
outer(x,y, FUN = "+")
      [,1] [,2] [,3]
%[1,]
         5
              6
              7
                   8
%[2,]
         6
%[3,]
         7
                   9
```

■ Entradas y bloques. Podemos acceder a la fila *i* con la instrucción A[i,] y a la columna *j* con la instrucción A[, j]. Se puede declarar submatrices B de A con la instrucción B=A[vector1, vector2]. La instrucción B=A hace una copia (independiente) de A

Código R 1.39: Entradas, filas y columnas de una matriz

```
B = matrix(c( 1, 1 ,8,
2, 0, 8,
```

```
3, 2, 8), nrow = 3, byrow=TRUE); B
# [,1] [,2] [,3]
#[1,] 1 1 8
#[2,]
       2
            0
#[3,] 3
            2
# --- Entrada (2,3)
B[2, 3]
#[1] 8
# --- fila 3
B[3,]
#[1] 3 2 8
# --- columna 2
B[,2]
#[1] 1 0 2
# --- bloque de B
B[1:2,c(2,3)]
# [,1] [,2]
#[1,] 1
#[2,]
```

■ Operaciones de fila. Para cambiar la fila i y la fila j se usa la instrucción

$$A[c(i,j),] = A[c(j,i),]$$

Las operacioes usuales de fila $\alpha F_i + \beta \overline{F}_i$ sobre la matriz A se hacen de manera natural

$$A[j,] = alpha*A[i,] + beta*A[j,]$$

Código R 1.40: Operaciones de fila

```
A = matrix(c(1, 1, 8,
           2, 0, 8,
           3, 2, 8), nrow = 3, byrow=TRUE); A
# [,1] [,2] [,3]
#[1,] 1 1
#[2,] 2 0
#[3,] 3 2
                           # Cambio F1, F3
A[c(1,3),] = A[c(3,1),]
   [,1] [,2] [,3]
#[1,] 3 2
       2
           0
#[2,]
#[3,] 1
           1
               8
A[2, ] = A[2, ] - A[2,1]/A[1,1]*A[1, ] # F2 - a_{21}/a_{11}*F1
# [,1] [,2] [,3]
```

```
#[1,] 3 2.000000 8.000000
#[2,] 0 -1.333333 2.666667
#[3,] 1 1.000000 8.000000
```

■ Pivotes. A veces es necesario determinar *el índice* de la entrada más grande, en valor absoluto, de una fila. Para esto podemos usar la función which.max(x): Esta función devuelve el índice de la entrada más grande, del vector x, por ejemplo

Código R 1.41:Índice de la entrada más grande de un vector

```
x = c(2, -6, 7, 8, 0.1, -8.5, 3, -7, 3)
which.max(x)  # max(x) = x[4]=8
# [1] 4
which.max(abs(x))  # max(abs(x)) = abs(x[6])=8.5
# [1] 6
```

Ahora, el índice de la entrada más grande, en valor absoluto, de la fila k de la matriz A es which.max(abs(A[k,]))

Ejemplo 1.8

Un poco más adelante tendremos que considerar el problema: Determinar *el índice* de la entrada más grande, en valor absoluto, de la fila **k** de la matriz *A que está por debajo de la diagonal*.

La solución a este problema es la instrucción:

```
which.max( abs(A[k,1:k-1]))
```

Es decir, **A[k,1:k-1]** es la fila **k** hasta la columna **k-1** (antes de la diagonal) y obtenemos el índice de la entrada más grande, en valor absoluto, de esta parte de la fila, antes de la diagonal.

Para considerar un ejemplo numérico, definimos una matriz A

```
A = matrix(c( 1, 1 , 8, 5,
4, 0, 8, 7,
7,-9, -8, 5,
3, 9,-12, 11), nrow = 4, byrow=TRUE)
```

Como se observa, en la fila **k=3** de *A*, *el índice* de la entrada más grande, **en valor absoluto**, de la fila **k=3**, *que está por debajo de la diagonal*, es **j=2**, es decir, **A[k,2]=-9**

Como se observa, en la fila k=4 de A, el índice de la entrada más grande, en valor absoluto, de la fila k=4, que

está por debajo de la diagonal, es j=3, es decir, A[k,3]=-12 Código R 1.42 Índice de la entrada más grande de un vector A = matrix(c(1, 1, 8, 5,4, 0, 8, 7, 7,-9, -8, 5, 3, 9, -12, 11), nrow = 4, byrow=TRUE)k=3; j=which.max(abs(A[k,1:k-1])); j # indice A[k,j]# entrada #[1] 2 #[1] -9 j=which.max(abs(A[k,1:k-1])); j # indice # entrada A[k,j]#[1] 3 #[1] -12

- Matriz triangular superior y triangular inferior. En algunos algoritmos se requiere extraer las matrices triangular inferior y estrictamente inferior (y superior respectivamente). Esto se puede hacer usando un operador lógico A[op] donde op es una operación lógica. Por ejemplo,
 - a.) nrow(A) y ncol(A) devuelven el número de filas y el número de columnas de A, respectivamente. row(A) devuelve una matriz de enteros con las mismas dimensiones que A y cuya entrada a_{ij} es igual a i. col(A) devuelve una matriz de enteros con las mismas dimensiones que A y cuya entrada a_{ij} es igual a j.
 - b.) La matriz triangular inferior de A tiene ceros arriba de la diagonal: A[col(A) = row(A) + 1] = 0
 - c.) La matriz triangular *estrictamente inferior* de *A* tiene ceros arriba y en la diagonal:

$$A[col(A) > row(A) + 1] = 0$$

- d.) La matriz triangular superior: $A[col(A) \le row(A) 1] = 0$
- e.) La matriz triangular estrictamente inferior de A tiene ceros arriba y en la diagonal:

$$A[col(A) \le row(A)] = 0.$$

Código R 1.43:

```
A = matrix(c(1, 1, 8, 5,
               2, 0, 8, 9,
                3, 2, 8, 3,
                2, 6, 5, 1), nrow = 4, byrow=TRUE)
 LA = A
 LA[col(LA) >= row(LA)+1] = 0; LA
       [,1] [,2] [,3] [,4]
                         0
#[1,]
         1
               0
                    0
#[2,]
         2
#[3,]
         3
              2
                    8
                         0
#[4,]
         2
               6
                    5
                         1
LA = A
LA[col(LA) >= row(LA)] = 0; LA
       [,1] [,2] [,3] [,4]
#[1,]
              0
                    0
         0
#[2,]
         2
               0
                    0
                         0
               2
                         0
#[3,]
         3
#[4,]
         2
               6
                    5
                         0
```

■ Usando el paquete Matrix. El paquete Matrix viene con implementaciones de funciones matriciales y otros algoritmos. Hay tres funciones muy útiles: tril(X,k), y triu(X,k). La función triu(X,k) devuelven los elementos de X sobre la diagonal principal y arriba de esta diagonal hasta la k-ésima diagonal si k > 0 y desde la k-ésima diagonal hacia arriba, si k < 0. La función tril(X,k) hace algo similar pero hacia abajo de la k-ésima diagonal.

El siguiente ejemplo fue tomado de la documentación del paquete,

Código R 1.44:

```
tril(mm)
                # lower triangle
# 3 x 3 Matrix of class "dtrMatrix"
# [,1] [,2] [,3]
       1
# [1,]
# [2,]
              1
         1
# [3,]
              1
triu(mm)
               # upper triangle
# 3 x 3 Matrix of class "dtrMatrix"
# [,1] [,2] [,3]
       1
              1
# [1,]
                    1
              1
# [2,]
                    1
# [3,]
                    1
tril(mm, -1)
              # strict lower triangle
# 3 x 3 Matrix of class "dtrMatrix"
# [,1] [,2] [,3]
# [1,]
# [2,]
         1
               0
# [3,]
         1
               1
tril(mm, 1)
              # strict lower triangle
# 3 x 3 Matrix of class "dgeMatrix"
# [,1] [,2] [,3]
# [1,]
       1
              1
# [2,]
               1
         1
                    1
# [3,]
                    1
triu(mm, 1)
             # strict upper triangle
# 3 x 3 Matrix of class "dtrMatrix"
# [,1] [,2] [,3]
# [1,]
              1
         0
                    1
# [2,]
               0
                    1
# [3,]
                    0
triu(mm, -1)
                 # strict upper triangle
# 3 x 3 Matrix of class "dgeMatrix"
# [,1] [,2] [,3]
                    1
# [1,]
# [2,]
               1
                    1
         1
# [3,]
               1
                    1
```

Operaciones con matrices

Las operaciones con matrices son similares a las que ya vimos con vectores. Habrá que tener cuidados con las dimensiones, por ejemplo las suma y resta de matrices solo es posible si tienen el mismo orden y $\mathbf{A}*\mathbf{B}$ es una multiplicación miembro a miembro mientras que la multiplicación matricial ordinaria es $A_{n\times k}\cdot B_{k\times n}=\mathbf{A}**\mathbf{B}$.

Código R 1.45:Operaciones con matrices

```
A = matrix(1:9, nrow=3); A
                      # Por columnas
B = matrix(rep(1,9), nrow=3); B
# [,1] [,2] [,3]
#[1,] 1 4 7
#[2,]
      2
          5
#[3,] 3 6
              9
# [,1] [,2] [,3]
#[1,] 1 1
#[2,]
     1 1
              1
              1
#[3,]
      1
          1
# --- Suma
A+B
# [,1] [,2] [,3]
#[1,] 2 5
#[2,] 3 6 9
#[3,]
      4 7 10
# --- Producto miembro a miembro
A*B
# [,1] [,2] [,3]
#[1,] 1 4 7
#[2,] 2 5
#[3,]
      3
         6
# --- multiplicación matricial
A%∗% B
# [,1] [,2] [,3]
#[1,] 12 12 12
#[2,] 15 15
              15
#[3,] 18
         18
A^2 # No es A por A!
# [,1] [,2] [,3]
#[1,] 1 16
#[2,] 4 25 64
#[3,] 9 36
A%*%A
# [,1] [,2] [,3]
#[1,] 30 66 102
#[2,] 36 81 126
#[3,] 42 96 150
# --- Restar 2 a cada A[i,j]
A - 2
# [,1] [,2] [,3]
#[1,] -1 2 5
```

```
#[2,]
              3
         0
              4
                    7
#[3,]
         1
 # --- Producto escalar
 3*A
      [,1] [,2] [,3]
#[1,]
         3
             12
#[2,]
             15
                   24
         6
#[3,]
         9
             18
                   27
# --- Transpuesta
t(A)
      [,1] [,2] [,3]
#[1,]
         1
              2
                    3
#[2,]
         4
              5
                    6
#[3,]
         7
# --- Determinante
 det(A)
# [1] 0
# --- Inversas
C = A - diag(1,3)
det(C)
# [1] 32
# Inversa de C existe
solve(C)
       [,1]
                 [,2]
                         [,3]
#[1,] -0.50 0.31250 0.1250
#[2,] 0.25 -0.65625 0.4375
#[3,] 0.00 0.37500 -0.2500
```

1.9 Función apply()

La función apply (X, MARGIN, FUN) retorna un vector (o un arreglo o una lista) con valores obtenidos al aplicar una función FUN a las filas o columnas (o ambas) de X. "MARGIN" es un índice. Si X es una matriz, MARGIN = 1 indica que la operación se aplica a las filas mientras que MARGIN = 2 indica que que la operación se aplica a las columnas. MARGIN = c(1,2) indica que la función se aplica a ambas filas y columnas, es decir, a todos los elementos de la matriz. FUN es la función que se aplica y "..." se usa para argumentos opcionales de FUN

Código R 1.46:Usando apply()

```
A = matrix(1:9, nrow=3); A

# [,1] [,2] [,3]

#[1,] 1 4 7

#[2,] 2 5 8
```

```
#[3,] 3 6 9
filas.suma <- apply(A, 1, sum)  #filas.sum = vector con las sumas de las filas
col.suma <- apply(A, 2, sum)  #col.sum = vector con las sumas de las columnas
cat("sumas de las filas = ", col.suma, " sumas de las columnas = " ,filas.suma)
# sumas de las filas = 6 15 24 sumas de las columnas = 12 15 18</pre>
```

Ejemplo 1.9 (Promedios)

Supongamos que tenemos una tabla con las notas de tres parciales (el porcentaje se indica en la tabla) y cuatro quices. El promedio de quices es un 25% de la nota.

Nombre	P1, 20%	P2, 25%	P3, 30%	Q1	Q2	Q3	Q4
A	80	40	70	30	90	67	90
В	40	40	30	90	100	67	90
C	100	100	100	100	70	76	95

Para calcular los promedios podemos aplicar una función **FUN** que calcule el promedio sobre las filas de una matriz **notas**.

Para agregar la columna "promedios" a la matriz podemos usar **cbind()** = (concatenar columna),

Ejemplo 1.10 (Pesos baricéntricos)

El
$$k$$
-ésimo peso baricéntrico se define como $w_k = \frac{1}{(x_k - x_0) \cdots (x_k - x_{k-1})^{\frown} (x_k - x_{k+1}) \cdots (x_k - x_n)}$

Para implementar los pesos baricéntricos de manera "vectorial" usamos una matriz X, con filas repetidas x=c(x0,x1,...,xn) (un vector de datos) y n = length(x):

Si n = 4, **X** es la matriz,

$$X = \begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ x_0 & x_1 & x_2 & x_3 \\ x_0 & x_1 & x_2 & x_3 \\ x_0 & x_1 & x_2 & x_3 \end{pmatrix}$$

entonces,

$$X - X^{T} = \begin{pmatrix} 0 & x_{1} - x_{0} & x_{2} - x_{0} & x_{3} - x_{0} \\ x_{0} - x_{1} & 0 & x_{2} - x_{1} & x_{3} - x_{1} \\ x_{0} - x_{2} & x_{1} - x_{2} & 0 & x_{3} - x_{2} \\ x_{0} - x_{3} & x_{1} - x_{3} & x_{2} - x_{3} & 0 \end{pmatrix}$$

y los factores de los pesos baricéntricos están en las columnas de la matriz

$$X - X^{T} - I_{4 \times 4} = \begin{pmatrix} 1 & x_{1} - x_{0} & x_{2} - x_{0} & x_{3} - x_{0} \\ x_{0} - x_{1} & 1 & x_{2} - x_{1} & x_{3} - x_{1} \\ x_{0} - x_{2} & x_{1} - x_{2} & 1 & x_{3} - x_{2} \\ x_{0} - x_{3} & x_{1} - x_{3} & x_{2} - x_{3} & 1 \end{pmatrix}$$

Generalizando, la columna k de $X - X^T + I$ tiene los factores $(x_k - x_i)$ que aparecen en la fórmula de w_k , es decir, w_k es el "producto de las entradas de la columna" k de la matriz $X - X^T + I$.

En **R** podríamos hacer

```
X = matrix(rep(x, times=n), n, n, byrow=T)
mD = X - t(X); diag(mD)=1
```

De esta manera, el *k*-ésimo peso baricéntrico sería

wk = prod(mD[,k])

Para calcular todos los pesos baricéntricos usamos 1/apply (mD, 2, prod).

Código R 1.47:Usando apply() para calcular pesos baricéntricos

```
x = seq(0, 0.5, by = 0.1)
n = length(x)
X = matrix(rep(x, times=n), n, n, byrow=T)
mD = X - t(X); diag(mD)=1
# vector de pesos baricéntricos
w = 1 / apply(mD, 2, prod) #(w1, w2,...,wn)
cat("x: ", x, "\n w:", w)
x: 0 0.1 0.2 0.3 0.4 0.5
w: -833.3333 4166.667 -8333.333 8333.333 -4166.667 833.3333
```

Ejemplo 1.11

Sea $\mathbf{x} = (x_0, x_1, ..., x_n)$. Considere el problema de implementar una función que calcule todos los productos

$$L(k, a, \mathbf{x}) = (a - x_0) \cdot (a - x_1) \cdot \cdot \cdot (a - x_{k-1}) \cdot \cdot \cdot (a - x_n)$$
 para $k = 0, 1, ..., n$

El k-ésimo producto se salta el factor $(a-x_k)$. Por ejemplo,

k
$$L(k, a, \mathbf{x})$$

0 $L(0, a, \mathbf{x}) = (a - x_1) \cdot (a - x_2) \cdot (a - x_3) \cdots (a - x_n)$
1 $L(1, a, \mathbf{x}) = (a - x_0) \cdot (a - x_2) \cdot (a - x_3) \cdots (a - x_n)$

Podemos seguir la idea del ejemplo 1.10. Dado un vector de datos x, sea

$$X = matrix(rep(x, times=n), n, n, byrow=T) con n = length(x).$$

 $L(2, a, \mathbf{x}) = (a - x_0) \cdot (a - x_1) \cdot (a - x_3) \cdots (a - x_n)$

Si n = 4, entonces

$$\mathbf{X} = \begin{pmatrix} a & x_1 & x_2 & x_3 \\ x_0 & a & x_2 & x_3 \\ x_0 & x_1 & a & x_3 \\ x_0 & x_1 & x_2 & a \end{pmatrix}$$

Entonces haciendo mN = a - X; diag(mN)= 1, tendríamos que

$$\mathbf{mN} = \begin{pmatrix} 1 & a - x_1 & a - x_2 & a - x_3 \\ a - x_0 & 1 & a - x_2 & a - x_3 \\ a - x_0 & a - x_1 & 1 & a - x_3 \\ a - x_0 & a - x_1 & a - x_2 & 1 \end{pmatrix}$$

Es esta manera, en el caso de *n* datos, tendríamos

```
prod(mN[k, ]) = (a - x_0) \cdot (a - x_1) \cdots (a - x_{k-1}) \cdot \mathbf{1} \cdot (a - x_{k+1}) \cdots (a - x_n)
```

Ahora, para calcular todos los productos $(a-x_0)\cdot (a-x_1)\cdots (a-x_{k-1})\cdot (a-x_{k+1})\cdots (a-x_n)$ desde k=0 hasta k=n, solo debemos aplicar la función **prod()** a todas las filas de la matriz **mN**, y eso lo podemos hacer con la función **apply()**.

```
NL = function(a,x){
    n = length(x)
    X = matrix(rep(x, times=n), n, n, byrow=T) # por filas
    mN = a - X; diag(mN) = 1
    apply(mN, 1, prod)
}
# ---
x = seq(1, 5, by = 1)
NL(0.5, x)
# [1] 59.0625 19.6875 11.8125 8.4375 6.5625
```

1.10 Condicionales y Ciclos

■ If. La sintaxis es como sigue:

```
if(condición 1) {
```

```
resultado 1
}
```

```
if(condición 1) {
result 1
} else {
resultado 2
}
```

```
if(condición 1) {
result 1
} else if (condición 2) {
resultado 2
} else {
resultado 3
}
```

Ejemplo 1.12 (Raíz n-ésima)

La raíz cúbica de un número real $x^{1/3}$ tiene dos soluciones complejas y una real. Nos interesa la solución real. Es usual en los lenguajes de programación que no esté definida la raíz cúbica (real) de un número. En \mathbb{R} se obtiene $8^{(1/3)=2}$ pero $(-8)^{(1/3)}=$ NaN. Una solución es separar el signo,

$$\sqrt[3]{x} = \operatorname{sign}(x) \sqrt[3]{|x|}$$

```
Código R 1.48: Raíz cúbica
```

```
cubica = function(x) sign(x)*abs(x)^(1/3)

# pruebas-----
cubica(c(8, -8, -27, 27))
# 2 -2 -3 3
```

La raíz n-ésima (real) depende de si n es par o impar. La fórmula $\operatorname{sign}(x)*\operatorname{abs}(x)^{(1/n)}$ sirve para el caso par o el caso impar, excepto en el caso que n sea par y x < 0, es decir, la fórmula sirve si n es impar o $x \ge 0$, en otro caso nos queda una expresión indefinida.

Usamos n%2 == 1 para decidir si n es impar.

La función raiz(n, x) del ejemplo anterior no está implementada para aplicarla a un vector x.

■ Condicionales y vectores. ifelse() aplica un condicional a vectores. Si necesitamos usar las conectivas AND u OR, es preferible usar la "forma corta": & o | respectivamente, porque esta forma de ambas conectivas *permite recorrer vectores*. La sintaxis es

ifelse(condición sobre vector, salida 1, sino salida 2)

Código R 1.50:

```
a <- c(1, 1, 0, 1)
b <- c(2, 1, 0, 1)
# --- compara elementos de a y b
ifelse(a == 1 & b == 1, "Si", "No")
# [1] "No" "Yes" "No" "Yes"
# Observe que ifelse(a == 1 && b == 1, "Si", "No") retorna "NO" solamente.</pre>
```

Como **if** permite recorrer vectores, ahora podemos implementar la raíz n-énesima de manera que se pueda aplicar a vectores,

Código R 1.51: Raíz n-ésima (habilitada para vectores)

```
raiz = function(n,x){
ifelse(n%2==1 | x>0, sign(x)*abs(x)^(1/n), NaN) #else: n par y x negativo
}
# pruebas-----
raiz(3, c(8, -8, -27, 27))
# [1] 2 -2 -3 3
raiz(4, c(-64, 64, -32, 32))
#[1] NaN 2.828427 NaN 2.378414
```

■ Ciclo for. La sintaxis es como sigue:

Código R 1.52:

```
for (contador-vector)
{
Instrucción
}
```

Código R 1.53: Sumar con un ciclo "for"

■ Detener un ciclo. Se usa la intrucción break para detener el ciclo (actual). También se puede usar stop(...) y lanzar un mensaje de error.

Código R 1.54:"break" y "stop()"

```
for (i in 1:10){
    if (i == 4) break
    print(i) # se detiene en i=4, así que solo imprime hasta 3
}
# Consola ----
[1] 1
[1] 2
[1] 3
# --- Usar stop() para indicar un error
if (f(a)*f(b)>0) stop("Se requiere cambio de signo") #Mensaje de error
```

■ while. La sintaxis es

Código R 1.55: while

```
while (condición)
{
   cuerpo
}
```

Por ejemplo,

Código R 1.56:

```
x <- 1
while (x <= 5)
    {
        print(x)
        x <- x + 1 # esta es la manera de incrementar en R (no hay x++)
    }
#---
#[1] 1
#[1] 2
#[1] 3
#[1] 4
#[1] 5</pre>
```

repeat. La sintaxis es

Código R 1.57:

```
repeat{
...
instrucciones
...
# until -- criterio de parada
if (condition) break
}
```

Por ejemplo,

Código R 1.58:

```
sum = 0
repeat{
   sum = sum + 2;
   cat(sum);
```

```
if (sum > 11) break;
}
# Consola -----
[1] 3
[1] 5
[1] 7
[1] 9
[1] 11
[1] 13
```

Ejercicio 1.1 (*) La Criba de Eratóstenes se usa para generar listas de números primos menores que un número n dado. La descripción del método y un algoritmo lo puede encontrar en el libro [23], en las páginas 21 - 24. Implementar una función **cribaEratostenes (n)** que devuelve una lista con los primos $\leq n$.

1.11 La eficiencia de la vectorización.

Por supuesto, los ciclos **for** son a veces inevitables, pero hay una diferencia importante en el tiempo de corrida si vectorizamos la función. Para medir el tiempo de corrida usamos la función **system.time()**, esta función retorna tres cosas: "user CPU time", "system CPU time" y "elapsed time".

El "user CPU time" es la cantidad de segundos que el CPU gastó haciendo los cálculos. El "system CPU time" es la cantidad de tiempo que el sistema operativo gastó respondiendo a las peticiones del programa. El "elapsed time" es la suma de los dos tiempos anteriores más tiempos de espera en la corrida del programa.

Código R 1.59: Sumas parciales — comparación

```
sumasparciales1 = function(f, a,k){ suma=0
                                     for(i in a:k) suma = suma+f(i)
                                     return(suma)
                                   }
# Versión vectorizada
sumasparciales2 = function(f, a,k){ i = a:k
                                     sum(f(i))
                                   }
ui = function(i) 1/i^2
system.time(for(k in seq(100000,1000000, by = 100000)) cat( sumasparciales1(ui, 1, k)))
# user
          system
                    elapsed
  3.852
          0.000
                  3.854
system.time(for(k in seq(100000,1000000, by = 100000)) cat( sumasparciales2(ui, 1, k)))
#user
         system
                  elapsed
         0.000
0.056
                 0.056
```

Si no podemos vectorizar, todavía podemos usar la librería compiler para acelerar el código.

Código R 1.60: Acelerar el código

```
k=100000000 # 100 millones
system.time(sumasparciales1(ui, 1, k))
# user
           system elapsed
# 72.240
           0.032 72.331
system.time(sumasparciales2(ui, 1, k))
    user
            system elapsed
    0.884
            0.348
                    1.233
# ---Acelerar el código
library(compiler)
cf1 = cmpfun(sumasparciales1) # cf1 es la nueva función con el cuerpo
                              # de sumasparciales1() compilado
                              # Ahora usa cf1(f,a,k)
system.time(cf1(ui, 1, k))
# user
           system elapsed
# 56.740
           0.040
                   56.831
```

La función <code>cmpfun()</code> compila el cuerpo de la función y devuelve una nueva función con su cuerpo "compilado". Como se ve en el ejemplo anterior, al aplicar la función <code>cmpfun()</code> a la función <code>sumasparciales1</code>, pasamos de <code>72.240</code> segundos a <code>56.740</code> al evaluar la suma de la serie con <code>k=100000000</code>. Aún así no es tan bueno comparado con el desempeño de la función vectorizada <code>sumasparciales2</code> que solo ocupó <code>0.884</code> segundos para hacer la misma suma.

La función apply() en general no es más rápido que un ciclo **for** porque esta función apply crea su propio ciclo. Pero en **R** hay otras funciones dedicadas para operaciones con filas y columnas que si son mucho más veloces. En todo caso, cuando un programa presenta muchos ciclos (posiblemente anidados) y si se requiere eficiencia, es probable que lo mejor sea usar **R** en la parte en que **R** es fuerte (manipulación de objetos) y crear código **C++** compilado para esos ciclos y llamar las funciones respectivas desde **R** (o usar paquetes como RcppArmadillo para "acelerar **R** con el alto rendimiento de C++ en álgebra lineal"). Este es un tópico que no se toca en este libro.

1.12 Funciones II

Recordemos que las funciones se declaran usando la directiva **function()** y es almacenada como un objeto. Las funciones tienen argumentos y estos argumentos podrían tener valores por defecto. La sintaxis sería algo como

```
nombrefun <- function(a1,a2,...,an) {
## cuerpo
instrucc-1
```

```
instrucc-2
...
salida # o también return(salida)
}
```

■ Salida con listas. Se puede usar listas (list()) para acceder a los componentes de la salida por nombre usando \$

Código R 1.62:Operador "\$"

```
fun2xy <- function(x, y) {
    s <- x + y
    r <- x - y
    list(lasuma = s, laresta = r) # valor a retornar
}
# pruebas
-----
fun2xy(5,4)
$lasuma
#[1] 9
$laresta
#[1] 1
fun2xy(5,4)$lasuma
#[1] 9
fun2xy(5,4)$laresta
#[1] 1</pre>
```

■ Variables locales. Las variables declaradas en el cuerpo de la función son variables locales de la función.

Código R 1.63: Variables locales

```
funxy <- function(x, y) {</pre>
                  # s es variable local
   s \leftarrow x + y
   r \leftarrow x - y
                  # r es variable local
   c(s, r)
                  # retorna un vector con dos valores
 }
 funxy(5,4)
# [1] 9 1
 funxy(5,4)[1]
# [1] 9
 funxy(5,4)[2]
# [1] 1
 funxy(c(2,2,2), c(3,3,3)) # funxy también recibe vectores o matrices
# [1] 5 5 5 -1 -1 -1
```

■ Argumentos por defecto. Se puede declarar argumentos por defecto en la declaración de argumentos escribiendo function(arg1=valor1, arg2, arg3, arg4=valor4,...),

Código R 1.64: Argumentos defecto

```
fun3xy = function(x=2,y=3){ x+y }

fun3xy()  # = ffun3xy(2,3)

#[1] 5
 fun3xy(5,9)

#[1] 14
 fun3xy(10, )  # = ffun3xy(10,3)

#[1] 13
 fun3xy( ,8)  # = ffun3xy(2,8)

#[1] 10
>
```

■ Usando funciones anónimas. A veces podemos usar una función function(){...} sin declarar su nombre.

Código R 1.65: Función anónima

```
# Declarar una función anónima y evaluar en 1.1
  (function(x) sin(x))(1.1)
#[1] 0.8912074
```

```
# El código anterior corresponde a
f <- function(x) sin(x)
f(1.1)
#[1] 0.8912074</pre>
```

Por ejemplo, la función **integrate(f, a, b)** aproxima $\int_a^b f(x) dx$. La función f la podemos incluir en formato anónimo: Digamos que queremos aproximar $\int_0^1 e^{-x^2} dx$,

Código R 1.66:

Otro ejemplo, el comando outer requiere una función FUN que puede ser declarada de manera anónima,

Código R 1.67:

```
misuma = function(n){
    y = seq(n, 1, by = -1)
    x = 1 : n
    x = outer(y,x,FUN = function(i,j) i/j^2) # función anónima, x = (5,4/2^2,3/3^2,..., 1/n^2)
    sum(x)
}
misuma(5)
#[1] 21.95417
```

Podemos aplicar la función **sapply(x, FUN)** con funciones anónimas,

Código R 1.68:

```
fc= function(x) sapply(x, function(x) x^2)
fc(c(1,3,5,6))
# [1] 1 9 25 36

#Función de varios argumentos
fstx = function(s,t,x) s+t+x
    f = function(x) sapply(x, function(x) fstx(1,2,x))
f(c(1,3,5,6))
#[1] 4 6 8 9
```

1.13 Expresiones, tiras y funciones

Las expresiones son hileras de caracteres que tienen sentido para **R**, por ejemplo los comandos base de **R**: **outer mean**, etc. Los comandos que escribimos *son evaluados* por **R** y se ejecutan si son válidos (evaluados e incorporados a la sesión – no debe confundirse con "evaluación numérica").

Algunas funciones que vamos a utilizar, reciben como argumento una expresión. El problema aparece cuando la función que definimos recibe como argumentos tiras (strings), expresiones o funciones por nombre.

Las expresiones se convierten en funciones usando eval()

Código R 1.69: Convertir expresión en función

```
# --- Expresión
fxx = expression(x^2+1/x)
# --- convertir la expresión en una función
f = function(x){eval(fxx)}
# --- Evaluar numéricamente
f(3)
# [1] 9.333333
```

Las tiras (strings) se convierten en expresiones usando parse(). Esta función devuelve una expresión.

Código R 1.70: Convertir una tira (string) en una función

```
# --- Tira
fs = "sqrt(x)"
fxpr = parse(text = fs)  # devuelve expression(sqrt(x))
# --- convertir en una función
f = function(x){eval(fxpr)}
# --- Evaluar numéricamente
f(4)
# [1] 2
```

■ Componentes de una función. Las funciones en R tienen tres componentes

```
body(): el código dentro de la función
formals(): la lista de argumentos que controlan las llamadas a la función
environment(): el "mapa" de la localización de las variables de las funciones.
```

Código R 1.71: Componentes de una función

```
fa = function(x) sqrt(x)
fb = function(x){ sqrt(x) }
```

Se puede acceder al contenido de la función f con los componentes de la lista body (f),

```
Código R 1.72:body(f)
```

■ Pasar funciones como argumentos de una función. En **R** podemos pasar una función como argumento a otra función de varias maneras.

• Una función puede pasar "por nombre"

Código R 1.73: función con una función como argumento

• Si la función pasa como una tira, entonces usamos parse() para convertirla en expresión.

Código R 1.74: función con una "tira" como argumento

```
funstring = function(f,a){ #f es tira (string)
  g = parse(text = f)
  fx = function(x) eval(g) # o también eval(g[[1]])
  fx(a)
}
funstring("sqrt(x)", 4)
# 2
```

 Si la función pasa como una expresión, entonces en caso necesario, usamos eval() para convertirla en función.

Código R 1.75: función con una expresión como argumento

```
fxpr = function(f,a){ #f es expresión
  fx = function(x) eval(f)
  fx(a)
}
fxpr(expression(sqrt(x)), 4)
# 2
```

■ Derivación simbólica. Para algunos algoritmos necesitamos calcular derivadas simbólicamente y evaluar la derivada en algunos valores, en la medida que se pueda.

En **R** tenemos las funciones **D()** y **deriv** que calculan derivadas pero no devuelven funciones como sería de esperar. Tenemos también el paquete **Deriv** que es más amigable.

■ Derivadas con el paquete "Deriv". Como es natural, a veces es más fácil usar un paquete. El paquete Deriv permite derivar y evaluar la derivada en una variable y en varias variables.

Para calcular la derivada usamos **Deriv(f)** donde **f** es una función definida por el usuario o también una función definida por medio de una tira (string) o una expresión.

También se puede especificar la variable respecto a la cual vamos a derivar, por ejemplo Deriv(f, "x")

Código R 1.76: Derivar una función de una sola variable y evaluar

```
install.packages("Deriv")  # si es la primera vez

#
library(Deriv)  # cargar librería
f = function(x) x^2+cos(x)  # definir función f

df = Deriv(f); df  # calcular derivada de f

# function (x)
# 2 * x - sin(x)
#
df(pi); df(0)  # evaluar

# [1] 6.283185
# [1] 0
```

Derivadas de orden superior con el paquete Deriv. No hay una opción para calcular la derivada n-sima con este paquete, pero podemos crear un función Dn(f, var, n) para la derivada n-sima respecto a la variable var.

La manera de implementar **Dn(f,var,n)** es recursiva. Se deriva la derivada anterior hasta agotar el orden de derivación. Cada vez que llamamos a la función **Dn**, el orden *n* se reduce en 1, hasta hacer la última derivada.

Código R 1.77: Una función para la derivada de orden superior

```
library(Deriv) # cargar librería

# Derivada de orden n, respecto a la variable "var"

Dn = function(lafun, var, n = 1) {
    if(n < 1) stop("'n' debe ser >= 1")
    if(n == 1) salida=Deriv(lafun, var)
        #con la nueva llamada de Dn, n se reduce a n-1
    else {salida=Dn(Deriv(lafun, var), var, n-1)}
    salida
}

#Ejemplo
f = function(x) x^4
c(Dn(f,"x",1), Dn(f,"x",2), Dn(f,"x",5))
```

```
#[[1]]
#function (x)
#4 * x^3
#[[2]]
#function (x)
#12 * x^2
#[[3]]
#function (x)
#0
# Evaluar la derivada n-ésima
f = function(x) x^3 + exp(x)
D5f = Dn(f, "x", 5); D5f # derivada f^5(x)
# function (x)
# exp(x)
D5f(0)
                        #Evaluar f^5(0)
#[1] 1
```

■ Derivadas de funciones de varias variables con Deriv.

Código R 1.78: Derivar una función de dos variables y evaluar

```
install.packages("Deriv") # si es la primera vez
#
library(Deriv)
                               # cargar librería si es la primera vez
f2 = function(x,y) x*y+cos(y) # definir función f2(x,y)
Df2x = Deriv(f2, "x"); Df2x # calcular derivada de f respecto a x
## function (x, y)
#evaluar
Df2x(pi,1); Df2x(0,2)
#[1] 1
#[2] 2
Df2y = Deriv(f2, "y"); Df2y # calcular derivada de f2 respecto a y
# function (x, y)
\# x - \sin(y)
# Evaluar
Df2y(0,pi); Df2y(pi,pi)
```

```
#[1] -1.224647e-16
 #[1] 3.141593
 # f3 = function(x,t) x^t # definir función f3(x,t)
 Df3t = Deriv(f3, "t"); Df3t # calcular derivada de f respecto a t
 # function (x, t)
 # x^t * log(x)
 #Si no se especifica la variable, se derivada respecto a cada una y la salida es un vector
f4 = function(s, t) s * cos(t)
Dfst = Deriv(f4); Dfst
#function (s, t)
\#c(s = cos(t), t = -(s * sin(t)))
Dfst(pi/2,pi)
# -1.000000e+00 -1.923671e-16
# Regla de la cadena
Deriv(~ f4(t^2, s^2), "s")
# -(2 * (s * t^2 * sin(s^2)))
# Usando funciones definidas con tiras. El resultado tendríamos que
# convertirlo en función para poderlo evaluar
Deriv("\sin(x^2) * y", "x") # derivar respecto a x
#[1] "2 * (x * y * cos(x^2))"
```

Ejemplo 1.14 (Polinomio de Taylor).

El polinomio de Taylor de orden n de f alrededor de x = a es

$$P_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Se tiene que

 $f(x) = P_n(x) + R_n(f)$ o también $f(a+h) \approx P_n(a)$ si h es pequeño.

En este código creamos una función **taylorT(f,x0,a,n)** que recibe la función **f** y calcula el polinomio de Taylor de orden n alrededor de x = a y lo evalúa en x_0

Por ejemplo,

• El polinomio de Taylor de orden 5 de $f(x) = e^x$ alrededor de x = 0 es

$$P_5(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120}$$

• El polinomio de Taylor de orden 3 de $f(x) = \ln(x+1)$ alrededor de x=1 es

$$P_3(x) = \log(2) + \frac{x-1}{2} - \frac{1}{8}(x-1)^2 + \frac{1}{24}(x-1)^3$$

Vamos a usar el paquete **Deriv** y la función **Dn** que implementamos anteriormente, para la derivada n-sima.

```
Código R 1.79: Polinomio de Taylor de orden n, alrededor de x=a evaluado en x0
```

```
library(Deriv)
                              # cargar librería
#Derivada n-ésima
Dn = function(lafun, var, n = 1) {
  if(n < 1) stop("'n' debe ser >= 1")
  if(n == 1) salida=Deriv(lafun,var)
  #con la nueva llamada de Dn, n se reduce a n-1
  else {salida=Dn(Deriv(lafun, var), var, n-1)}
  salida
}
# Polinomio de Taylor de orden n, alrededor de x=a evaluado en x0
taylorT = function(f, x0, a, n){
  # almacenar los sumandos
  smds = rep(NA, length=n+1)
  for(k in 1:n){
    fk=Dn(f, "x",k) # derivada k-ésima
    smds[k]=1/factorial(k)*(x0-a)^k *fk(a)
  smds[n+1] = f(a)
  sum(smds)
}
#Ejemplo:
lafun = function(x) sin(x)
taylorT(lafun, 1.1, 1, 2)
```

```
# [1] 0.8912939

# También podemos escribir taylorT(function(x) sin(x), 1.1, 1, 2)
taylorT(function(x) sin(x), 1.1, 1, 2)
# [1] 0.8912939
```

■ Derivación numérica. Hay funciones que no podemos derivar de manera simbólica, por la manera en que han sido definidas (por integrales, por ecuaciones diferenciales, etc.). Para efectos de hacer aproximaciones, en general no se requiere la función derivada sino una aproximación bastante buena. En la sección 7.1 veremos que podemos cambiar la función Dn() que implementamos con el paquete Deriv por aproximaciones basadas en "diferencias finitas" (al menos para n = 1:4).

Ejercicios

- 1.7 Usar la implementación que hicimos para el polinomio de Taylor de orden n, alrededor de x = a evaluado en x_0 para:
- **a** aproximar sen(1.1) con un polinomio de Taylor de orden n = 2 y otro de orden n = 12, ambos alrededor de a = 1.
- aproximar $\sqrt{0.0088}$ con un polinomio de Taylor de orden n=2 y otro de orden n=12, ambos alrededor de a=0.05. Observe el comportamiento del polinomio de orden 12 (La función es $f(x)=\sqrt{x}$).
- **1.8** Implementar la función **ImprimirTaylor(f,a,n)** de tal manera que lo que devuelva sea el polinomio de Taylor de orden n alrededor de x = a. Por ejemplo,

ImprimirTaylor((function(x)log(x+1),1,2) devuelve

```
0.6931472 + 0.5 /1 *(x-1)^1 + -0.25 /2 *(x-1)^2
```

ImprimirTaylor((function(x)cos(x),0,3) devuelve

```
1 + 0 /1 *(x-0)^1 + -1 /2 *(x-0)^2 + 0 /6 *(x-0)^3
```

Sugerencia: Ponga cada sumando $f^k(a)/n!*(x-a)^k$ en un vector, (usando strings ...,"/",...) y luego imprima cada sumando con la función **cat()**

■ Opcional: Derivadas sin usar paquetes. La función "derivada": D() recibe expresiones y devuelve expresiones. La función D() reconoce las operaciones +, -, *, / y ^, y las funciones exp, log, sin, cos, tan, sinh, cosh, sqrt, pnorm, dnorm, asin, acos, atan, gamma, lgamma, digamma, trigamma y psigamma (esta última solo respecto al primer argumento).

Si usamos la función **D()** para calcular derivadas, debemos convertir la "expresión" que devuelve, en una función para poder evaluar la derivada.

En el siguiente código vamos a ver como pasar una función por nombre y una función como tira, e internamante convertirla en expresión y que pueda ser usada por **D()**.

ullet Caso más simple: Definimos una *expresión* f y calculamos una derivada. Observe que *no* estamos almacenando el resultado en una nueva función f'

Código R 1.80: Derivar una función pasada como expresión

```
f = expression(x^5 + x - cos(x)) # función de x
print(D(f, 'x')) # derivar respecto a x
#5 * x^4 + 1 + sin(x)
```

• Ahora queremos derivar una función y usar la derivada!. Si la función la llamamos "por nombre", entonces debemos tomar en cuenta si la función fue definida usando llaves o no, porque debemos tomar el cuerpo de la función (**body**). Para crear un estándar, usamos la función **call** para agregar las llaves en caso de que el cuerpo de la función no las tenga.

Vamos a crear una función **Dfun(f, vx)** que recibe una función **f** definida por nombre, calcula la derivada y devuelve el valor de la derivada en el valor **vx**

Código R 1.81: Pasar una función a "D()" por nombre y evaluar con la nueva función "Dfun"

```
fa = function(x){sqrt(x)} # con llaves
fb = function(x) sqrt(x)
                         # sin llaves
# Dfun(f, vx) deriva y evalúa
Dfun = function(f, vx){
 # Si no tiene llaves, agregar las llaves
 bf = body(f)
 if(bf[[1]]!= "{" ) bf = call("{", bf)
 #la función tiene llaves
  g. = D(bf[[2]], "x")
 fp = function(x){eval(g.)}
 fp(vx)
# Evaluar la derivada con Dfun(f,vx)
Dfun(fa, 4)
             # 1/(2*sqrt(4))
# [1] 0.25
Dfun(fb, 4)
             #ahora con fb
# [1] 0.25
Dfun(fb, 4)*5 #operar
# [1] 1.25
```

 Para pasar la función como una tira, solo hay que recordar que la función parse() convierte la tira en expresión, que es lo que necesita recibir D().

Vamos a crear una función **Dtfun(f, vx)** que recibe una función **f** definida como una tira (string), calcula la derivada y devuelve el valor de la derivada evaluada en el valor **vx**

Código R 1.82: Derivadas: Pasar una función a "D()" como tira y evaluar con la nueva función "Dtfun"

```
# Dtfun(f, vx) deriva y evalúa
Dtfun = function(f, vx){ # f es una tira, una fórmula digamos en términos de x
    g = parse(text=f)
    # convertir en función
    fx = function(x){eval(g[[1]])}
    # calcular la derivada
    g. = D(g,"x")
    # convertir la derivada en función
    fp = function(x){eval(g.)}
    fp(vx)
}

#Ejemplo: derivar y evaluar la tira la función 'sqrt(x)'
Dtfun('sqrt(x)', 4) # 1/(2*sqrt(4))
#[1] 0.25
Dtfun('sqrt(x)', 4)*5
#[2] 1.25
```

■ Derivadas de orden superior sin usar paquetes. En la "ayuda" de R aparece el código de una función para calcular derivadas de orden superior: DD(expresion(f), "var", n)

Código R 1.83: Función derivada n-ésima "DD()"

```
# DD Calcula derivadas de orden superior, recibe una expresion--
DD <- function(expr, name, order = 1) {
   if(order < 1) stop("'order' must be >= 1")
   if(order == 1) D(expr, name)
   else DD(D(expr, name), name, order - 1)
}

DD(expression(x^5), "x", 3)
# 5 * (4 * (3 * x^2))
```

1.14 Gráficos en R

Gráficas de dispersión (scatter plot).

Supongamos que tenemos un colección de datos, como los de la tabla 1.1, podemos hacer una representación gráfica de estos datos x, y usando plot(x,y), opciones).

La representación gráfica que se obtiene con **R** se muestra a la derecha (el gráfico se guardo en formato .pdf en la cejilla **Export**).

Datos de la tabla

x	y_i
0.2	3.2
0.3	3.3
0.4	3.4
0.5	4.5

Tabla 1.1: Datos (x_i, y_i)

El código que se usó fue

```
Código R 1.84:"plot()"
```

```
x = seq(0.2, 0.5, by=0.1)
y = c(3.2, 3.3,3.4,4.5)
plot(x,y,
    pch = 19,  # símbolo para los puntos
    main = "Datos de la tabla",
    xlab = "xi",
    ylab = "yi"
    )
```

También se pueden usar líneas continuas con la opción type = "l"

```
plot(x,y, type = "l")
plot(x,y, type = "o", pch = 19)
par(mfrow=c(1,2)) # Agrupar los gráficos en una fila, dos columnas
```


■ La función curve(). En general, se puede usar el comando curve(f, a, b, opciones) para hacer la representación gráfica de una función y = f(x) con $x \in [a, b]$ (con un solo argumento). La variable por defecto es x. El nombre de la variable se puede cambiar, si fuera necesario, con el parámetro xname.

Como ejemplo vamos a graficar cuatro funciones: $\cos x$, $\operatorname{sen}(1/t)$, $f(x) = \operatorname{tan}(\cos(x)) + 3 * x - 3$ y la derivada f'(x) y las vamos a colocar en una arreglo 2×2 .

Código R 1.85: Funciones

```
ft = function(t) sin(1/t)
# Derivada de f con el paquete Deriv
#install.packages("Deriv")  # si es la primera vez
library(Deriv)  # cargar librería
f = function(x) tan(cos(x))+3*x-3
fdf = Deriv(f)
```

La función sen(1/t) es muy oscilante alrededor de t = 0, así que aumentamos el número de puntos para graficar, con $\mathbf{n} = \mathbf{1000}$ puntos.

Para mostrar los gráficos en el arreglo anterior, hay que notar que cada gráfico tiene *internamente* un número, por orden de aparición 1,2,3,4. Estos números los usamos para colocarlos usando layout. Este comando recibe una matriz, en este caso 2×2 , con la posición de los 4 gráficos

Como se ve, se dispone el gráfico 1 y el gráfico 4 en la primera fila y el gráfico 2 y el gráfico 3 en la segunda fila.

El código completo es el que sigue

Código R 1.86:Usando curve()

```
# Graficar f(t)
ft = function(t) sin(1/t)
# Graficar la derivada de f con el paquete Deriv
#install.packages("Deriv") # si es la primera vez
library(Deriv)
                             # cargar librería
    = function(x) tan(cos(x))+3*x-3
fdf = Deriv(f)
#Arreglo para la posición de gráficos agrupados
layout(matrix(c(1,4,
                (2,3), (2, 2, byrow = TRUE))
# n = número de puntos
curve(ft, -pi, pi, n = 1000, xname = "t")
                                              # gráfico 1
curve(f, 0, pi, n = 1000)
                                              # gráfico 2
curve(fdf, 0, pi, n = 1000)
                                              # gráfico 3
# Graficar cos(x)
curve(cos, -pi, 3*pi, n = 30, col = "blue")
                                              # gráfico 4
```

■ Datos y curvas. Para graficar datos y curvas en un mismo sistema, primero se usa plot(x,y) para los datos y luego curve(f, a, b, add=T) para la función. add=T se usa para agregarla al gráfico anterior (ya existente).

Código R 1.87: "plot" y "curve"

```
x = seq(-0.2, 0.5, by=0.1)
y = x^2+0.01
plot(x,y, pch = 19, cex=0.7, col= "red", asp=1) # asp = 1: Usar la misma escala en ambos ejes
# Ejes X y Y con líneas punteadas
abline(h=0,v=0, lty=3)
curve(x^2, -0.2, 0.5, add=T)
curve(1*x, -1, 0.5, col= "red", , add=T) # notar 1*x
legend(-0.2,0.3, c("1*x", "x^2+0.01"), col = c("red", "blue"), lty=1)
```


■ Gráficas de funciones que reciben vectores. Sea $\mathbf{xv} = (x_0, x_1, ..., x_n)$. Considere el problema de implementar una función que calcule todos los productos

$$L(k, a, \mathbf{vx}) = (a - x_0) \cdot (a - x_1) \cdots (a - x_{k-1}) \cap (a - x_{k+1}) \cdots (a - x_n)$$
 para $k = 0, 1, ..., n$

El k-ésimo producto se salta el factor $(a - x_k)$. Por ejemplo,

$$k L(k, a, \mathbf{vx})$$

$$0 L(0, a, \mathbf{vx}) = (a - x_1) \cdot (a - x_2) \cdot (a - x_3) \cdots (a - x_n)$$

$$1 L(1, a, \mathbf{vx}) = (a - x_0) \cdot (a - x_2) \cdot (a - x_3) \cdots (a - x_n)$$

$$2 L(2, a, \mathbf{vx}) = (a - x_0) \cdot (a - x_1) \cdot (a - x_3) \cdots (a - x_n)$$

Podemos implementar una función **Ln1**, para el caso k = 1 de la siguiente manera,

```
#vx=c(x0,x1,...,xn)
Ln1 = function(x){ # usa vector vx
    k = 1
    vxsk = vx[-(k+1)] # vx sin entrada k+1
    salida = prod((x - vxsk)/(vx[k+1]-vxsk))
    return(salida)
}
#Ejemplo: Evaluar en x=1.25
vx=c(0,0.5,1,1.5,2,2.5,3)
Ln1(1.25)
#[1] -0.06835938
```

Un primer intento para hacer la representación gráfica de esta función Ln1(x) nos da varios errores,

```
Código R 1.88:Error: La función requiere ser "vectorizada"

vx=c(0,0.5,1,1.5,2,2.5,3)

curve(Ln1, -1 , 5, col = 2, n = 100); abline(h=0,v=0, lty=3)

Error in curve(Ln1, -1, 5, col = 2, n = 100):

# 'expr' did not evaluate to an object of length 'n'

#...
```

Ln1 debe ser vectorizada: Esto significa que, si se evalúa un vector, tiene que devolver un vector de la misma longitud (no un escalar). **curve** requiere que esta función use un solo argumento y que este vectorizada.

Para resolver el problema se puede usar la función Vectorize(),

```
Código R 1.89:Usando Vectorize() para vectorizar
```

```
#vx=c(x0,x1,...,xn)
Ln1 = function(x){ # usa vector vx
    k = 1
    vxsk = vx[-(k+1)] # vx sin entrada k+1,
    salida = prod((x - vxsk)/(vx[k+1]-vxsk))#(x-x0)/(x0-x1)*(x-x2)/(x2-x1)...
    return(salida)
}
#Ejemplo
vx=c(0,0.5,1,1.5,2,2.5,3)
h = Vectorize(Ln1) # vectorizar Ln1
curve(h, -1 , 5, col = 6, n = 100,lwd=2.0); abline(h=0,v=0, lty=3)
```


■ Grafica de funciones con varios argumentos. Pudimos implementar la función Lnk de una manera más natural como Lnk(xdar,k,x) con xdat = c(x0,x1,...,xn)

Código R 1.90:

```
Lnk = function(xdat, k, x){ #xdat = c(x0,x1,...,xn)
  vxsk = xdat[-(k+1)]  # x sin entrada k+1
  salida = prod((x - vxsk)/(xdat[k+1]-vxsk))
  return(salida)
}
```

Para hacer la representación gráfica de la función **Lnk(xi,1,x)** usando **curve()**, podemos usar la función **sapply()** porque necesitamos hacer que esta función aparezca como función de un solo argumento, **x** en este caso, y además que sea vectorizada.

Recordemos que la sintaxis breve de esta función es **sapply(x, FUN)** es decir, aplica la función **FUN** al vector **x** y devuelve un vector de la misma longitud. En el caso de **curve()**, el vector **x** es el vector que usa **curve** para evaluar la función.

Código R 1.91:Usando sapply() para vectorizar

```
Lnk = function(xdat, k, x){ #xdat = c(x0,x1,...,xn)
    vxsk = xdat[-(k+1)]  # x sin entrada k+1
    salida = prod((x - vxsk)/(xdat[k+1]-vxsk))
    return(salida)
}
xdat = seq(-1, 5, by =1)
curve(sapply(x, function(x) Lnk(xdat,1,x) ), -1, 5,col=2,lwd=2.0); abline(h=0,v=0, lty=3)
```


Ejercicios

1.9 Sea x = (0.41040018, 0.91061564, -0.61106896, 0.39736684, 0.37997637, 0.34565436, 0.01906680, -0.28765977)

Considere la función $\ell(\alpha) = \sum_{i=1}^n \frac{x_i}{1 + \alpha x_i}$ con $\mathbf{n} = \mathbf{length}(\mathbf{x})$. Implemente la función $\ell(\alpha)$ y haga la representación gráfica con $-1 \le \alpha \le 1$.

1.15 Correr un programa (script)

Supongamos que hemos implementado un programa llamado **miprograma.r**. Un programa (o un script) solamente es un conjunto de instrucciones: Reciben una entrada, hace cálculos y tiene una salida. Hay dos maneras de correr el script: Abrir el archivo (digamos en RStudio) y seleccionar y correr el código. También puede usar el comando **source(miprograma.r)** o (usar el botón -> Source)

Podemos llamar un script desde un directorio específico. Por ejemplo si el script está en el directorio /home/walter -15/Escritorio/RScripts (usando Ubuntu) entonces lo llaríamos con

```
source("/home/walter-15/Escritorio/RScripts/miprograma.r")
```

En Windows sería algo como

```
source("C:/Documents and Settings/odj/My Documents/RScripts/miprograma.r")
```

Como los programas en **R** están en un ambiente en el que posiblemente se han definido otras variables, una buena costumbre es limpiar el espacio de trabajo antes de correr nuestro programa. Así que todo programa debería iniciar con la instrucción

```
rm(list=ls()
```

Como un ejemplo, implementamos un programa simple que calcula las raíces reales de una función cuadrática. Luego lo guardamos en algún directorio como **cuadratica.R**. En nuestro caso, lo guardamos en el directorio /home/walter-15/Escritorio/RScripts/.

Código R 1.92:script "cuadratica.R"

```
# Raíces de a*x^2+b*x +c
# --- Limpiar el ambiente de trabajo
rm(list=ls())
cat("Raíces de a*x^2+b*x +c.\n")
# Lectura de coeficientes desde el teclado (ENTER)
a = as.numeric(readline("a = ")) # Leer desde el teclado (en la consola)
b = as.numeric(readline("b = "))
```

```
c = as.numeric(readline("c = "))

# Cálculos
if(a==0) stop("No es cuadrática")

# Discriminante
d = b^2-4*a*c
# ---
if(d==0){
    x1 = -b/(2*a)
    cat("Una raíz real x1 = ", x1)
}
if(d>0){
    x1 = (-b+sqrt(d))/(2*a)
    x2 = (-b-sqrt(d))/(2*a)
    cat("Dos raíces reales \n", "x1 = ", x1, "\n", "x2 = ", x2)
}
if(d<0) cat("Las raíces son complejas")</pre>
```

Para correrlo, abrimos por ejemplo RSudio y ejecutamos la instrucción

```
source("/home/walter-15/Escritorio/RScripts/cuadratica.R")
```

Un ejemplo de corrida se ve en la figura que sigue,

```
Console ~/ \( \infty \)
> source('~/Escritorio/RScripts/ejemploprograma.R')
Raices de a*x^2+b*x +c.
a = 1
b = 2
c = -6
Dos raices reales
x1 = 1.645751
x2 = -3.645751
> |
```

■ **Bibliotecas**. Por supuesto, el script también puede ser solamente una bilioteca de funciones personales que llamamos con la función **source()** al principio de otro script

1.16 Exportar e importar datos.

Podemos leer (importar) datos y exportar datos en formatos .txt, .csv, .xls, .xlsx, etc. Solo necesitamos algún paquete que se ajuste al tipo de datos.

■ Importar archivos Excel. Para Excel podemos usar el paquete, entre otros, readxl. Por ejemplo, si tenemos un cuaderno Excel llamado datosA.xls en una dirección en el disco duro, solo indicamos la dirección y leemos los datos.

```
install.packages("readxl") # si es la primera vez
library(readxl)
#path = dirección disco duro
datosA = read_excel("path/datosA.xlsx")
datosA
```


Podemos leer también un rango específico de celdas.

```
#install.packages("readxl") # si es la primera vez
#library(readxl)
#path = dirección en internet o disco duro
datosA = read_excel("path/datosA.xlsx")
# Leer el "rectángulo" A5 hasta B10
read_excel(datosA, range = "A5:B10")
# A tibble: 5 x 2
# '0.3' '4.1'
# <dbl> <dbl>
#1 0.4 2
#2 0.5 -3
```

• Con el paquete "data.table" podemos abrir archivos en varios formatos, en particular, desde una dirección en Internet.

```
install.packages("data.table")
library(data.table)
mitabla1 = fread('http://www.stats.ox.ac.uk/pub/datasets/csb/chl1b.dat')
mitabla1 # 100 filas
#> mitabla1 # 100 filas
      V1 V2 V3
                     V4 V5
 1:
       1 307 930 36.58 0
  2:
       2 307 940 36.73 0
  3: 3 307 950 36.93 0
# 4:
       4 307 1000 37.15 0
mitabla1[,3] #columna 3
         V3
# 1:
         930
# 2:
         940
# 3:
        950
# 4:
       1000
#...
mitabla1[,sum(3)/100] #sumar columna 2 y dividir por 100
#[1] 0.03
```

• El paquete "googledrive" permite comunicarnos desde **R** co archivos en Googledrive.

1.17 R en la nube.

Hay varios sitios en Internet para usar **R** en la nube. Por ejemplo, https://rdrr.io/snippets/

Para Android, además de usar https://rdrr.io/snippets/, hay varias posibilidades de instalar una app para compilar código **R** , unas más simples que otras. "googleando" se puede obtener más información.

Revisado: Marzo, 2022 Versión actualizada de este libro: https://tecdigital.tec.ac.cr/servicios/revistamatematica/Libros/

2.1 Introducción

El computador usa una cantidad finita de dígitos para representar un número (a lo sumo 16 dígitos). Como los números están, en general, representados de manera inexacta entonces las operaciones aritméticas también se hacen de manera inexacta. El error relativo sin embargo es muy pequeño para una sola operación, el problema es que el error se podría acumular en una cantidad suficientemente grande de operaciones.

Por ejemplo, considere las función $f(x) = (1-x)^6$. Esta función, en esta forma, requiere pocos cálculos para ser evaluada; pero si la expandimos entonces $f(x) = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1$, y ahora si podríamos tener errores, básicamente por operar con números que salen del alcance de la representación en el computador.

Probablemente un gráfico nos ayude a visualizar los errores de redondeo.

```
x = seq(0.995, 1.005, by=0.0001)
a = x[1]; b = x[length(x)]
curve((1-x)^6, a, b, col="blue"); abline(h=0,v=0, lty=3)
curve(x^6-6*x^5+15*x^4-20* x^3+15* x^2-6* x+1, a, b, col="red", add=T)
```


■ Épsilon de la máquina. El computador solo puede aproximar los números reales y hay un límite para esta aproximación, en particular, el "épsilon de la máquina" es el más pequeño número positivo que el computador puede representar. Este número **eps**≠ 0 es el más pequeño número tal que **eps+1!=1** o también **1-eps !=1.** En **R** podemos calcular las dos variantes,

```
str(.Machine[c("double.digits","double.eps", "double.neg.eps")], digits=10)
# List of 3
# $ double.digits : int 53
```

```
# $ double.eps : num 2.220446049e-16
# $ double.neg.eps: num 1.110223025e-16
```

Esto nos dice que los épsilon de la máquina son 2^{-52} y 2^{-53} . Ahora, haciendo un pequeño cálculo:

$$2^{-53} = 10^{-x} \implies x = 53 \cdot \log_{10}(2) \approx 15.95459,$$

es decir, el computador trabaja con a lo sumo, dieciséis dígitos en doble precisión.

a.) El rango de enteros que pueden ser representados de manera exacta es $[2^{-53}, 2^{53}]$, es decir, el computador puede manejar enteros de manera exacta entre $-10^{-17} y - 10^{-17}$ más o menos.

```
.Machine$integer.max #El más grande entero que se puede representar en la máquina
# [1] 2147483647
```

b.) El máximo valor que puede ser representado es

$$1.797693 \times 10^{308}$$

```
.Machine$double.xmax # El más grande real que se puede representar en la máquina
# [1] 1.797693e+308
10^309
# [1] Inf
```

c.) El mínimo valor positivo que puede ser representado es

$$2.225074 \times 10^{-308}$$

d.) Si rd(x) es la representación de $x \in \mathbb{R}$ (por redondeo simétrico¹) en doble precisión, entonces

$$\left| \frac{x - \text{rd}(x)}{x} \right| \le 2^{-52} \le 0.5 \times 10^{-15}$$

Es decir, el error relativo de la representación rd(x) en el computador es $\leq 0.5 \times 10^{-15}$

En **R** sepuede usar la función **all.equal(x, y, tol)** que devuelve **TRUE** tan pronto como **x** y **y** están a una distancia \leq **tol.** El valor por defecto de **tol** es 10^{-8} .

¹El redondeo simétrico aumenta en uno la última cifra retenida sí la primera cifra descartada esta entre 5 y 9, y la deja igual sí la primera cifra descartada esta entre 0 y 4

■ Errores de truncación y errores de redondeo. Hay básicamente dos fuentes de error en los cálculos aproximados: Los errores de truncación y los errores de redondeo.

Los errores de truncación están relacionados con los modelos matemáticos que usamos para resolver un problema, por ejemplo al reemplazar una derivada por una diferencia finita o al "discretizar" un problema de naturaleza continua.

Los errores de redondeo aparecen por la necesidad de redondear números con expansión decimal infinita. En el computador puede pasar que $a + \epsilon = a$ aún cuando $\epsilon \neq 0$.

- Inestibilidad numérica y problemas mal condicionados. La introducción de errores de redondeo podría afectar seriamente la precisión de una solución numérica (solución aproximada). La calidad de la solución podría no ser aceptable por dos condiciones:
 - a.) Los errores de redondeo son amplificados por el algoritmo ("inestabilidad numérica")
 - b.) Pequeñas perturbaciones en los datos producen grandes cambios en la solución ("problema mal condicionado" o "problema sensitivo")

Más adelante veremos ejemplos de estas situaciones.

Decimales correctos y dígitos significativos en una aproximación. Los cálculos numéricos son llevados a cabo con un número finito de dígitos aunque la mayoría de números tengan un número infinito de dígitos. Cuando los números son muy grandes o muy pequeños se representan con *punto flotante*,

$$x = p \times 10^q$$

donde p es un número cercano a 1 y q es un entero; por ejemplo $0.00147 = 0.147 \times 10^{-2}$.

Cuando contamos el número de dígitos en un valor numérico, las *cifras significativas* son los dígitos usados para expresar el número: 1,2,3,4,5,6,7,8 y 9. El cero es también signicativo, excepto cuando es usado para fijar el punto decimal o para llenar los lugares de dígitos desconocidos o descartados. Por ejemplo, 0.147 y 3.23 tienen tres cifras significativas mientras que $0.000207 = 0.207 \times 10^{-3}$ tiene tres cifras significativas.

• Sea \tilde{p} es una aproximación de p (digamos que \tilde{p} tiene más de k decimales); decimos que \tilde{p} tiene al menos k decimales correctos, si k es el natural más grande tal que $|\tilde{p} - p| \le 0.5 \times 10^{-k}$.

Ejemplo 2.1

Si p = 0.001234 y $\tilde{p} = 0.001234 \pm 0.000004$, entonces $|\tilde{p} - p| \le 0.5 \times 10^{-5}$ (pero $|\tilde{p} - p| \ne 0.5 \times 10^{-6}$) así que \tilde{p} tiene al menos 5 decimales correctos. En efecto, 0.001234 + 0.000004 = 0.001238 y 0.001234 - 0.000004 = 0.00123

Si \tilde{p} tiene k decimales correctos, los *dígitos* en \tilde{p} que ocupan posiciones donde "la unidad" es $\geq 10^{-k}$ se llaman *dígitos significativos* (es decir, los ceros iniciales no cuentan).

Ejemplo 2.2

Por ejemplo, si $\tilde{p} = 0.001234$ aproxima p con 5 decimales correctos, entonces \tilde{p} tiene tres dígitos significativos pues 0.001, 0.0002, 0.00003 son $> 10^{-5}$ pero 0.000004 $\neq 10^{-5}$.

Ejemplo 2.3

Si sabemos que $\tilde{p}=1.5756457865$ es una aproximación de un número desconocido p y que $|p-\tilde{p}| \le 0.0000000005$, entonces al menos sabemos que $|p-\tilde{p}| \le 0.5 \times 10^{-7}$ (pero no sabemos si $|p-\tilde{p}| \le 0.5 \times 10^{-8}$) con lo que \tilde{p} tiene como mínimo, 7 decimales correctos.

- **Error absoluto y error realtivo.** Sea \tilde{p} es una aproximación de p, entonces,
- $|\tilde{p} p|$ es el *error absoluto* de la aproximación,
- $\frac{|\tilde{p}-p|}{|p|}$, $p \neq 0$; es el *error relativo* de la aproximación.

El error relativo nos da un porcentaje del error (si lo multiplicamos por 100) y es "una medida" del número de dígitos correctos en la aproximación. En general, el error relativo es más significativo que el error absoluto si tratamos con números muy pequeños o números muy grandes y nos previene de juzgar mal la exactitud de una aproximación en los casos en los que las escalas (números muy grandes o muy pequeños) nos podrían inducir a error.

Una combinación de ambas aproximaciones puede ser

$$\bullet \quad \frac{|\tilde{p}-p|}{|p|+1}$$

Ejemplo 2.4

a.) Sea $p=0.112535\times 10^{-6}$, una aproximación podría ser $\tilde{p}=0.22507\times 10^{-8}$. El error absoluto y el relativo son

$$|\tilde{p} - p| = 9.00281 \times 10^{-8}$$
 y $\frac{|\tilde{p} - p|}{|p|} = 0.8$

El error relativo evidencia de una manera más clara que los números "no son muy parecidos", es decir, que el error en la aproximación es porcentualmente grande (80%).

b.) Sea $p=0.8886110521\times 10^7$, una aproximación podría ser $\tilde{p}=0.8886110517\times 10^7$. El error absoluto y el relativo son

$$|\tilde{p} - p| = 0.004$$
 y $\frac{|\tilde{p} - p|}{|p|} = 0.450141 \times 10^{-9}$

El error absoluto dice que son números escasamente cercanos mientras que el relativo evidencia de una manera más clara que la aproximación tiene cerca de nueve dígitos correctos!

Ejemplo 2.5

En la tabla que sigue tenemos una lista de números y una aproximación. Observe como el error relativo nos da "una medida" del número de dígitos correctos en la aproximación.

Adicionalmente, como un ejercicio, complete la última columna como una manera de visualizar las bondades de la estimación $\frac{|\tilde{p}-p|}{|p|+1}$.

p	$ ilde{p}$	Error absoluto	Error relativo (%)	$\frac{ \tilde{p}-p }{ p +1}$
0.000012	0.000009	0.000003	25%	
4.5×10^{-7}	6.0×10^{-11}	4.4994×10^{-7}	99.98667%	
10000000	1000000	9000000	90%	
0.123456	0.1234	0.000056	0.0453603%	

Para determinar el error absoluto y el error relativo, deberíamos conocer el valor exacto y el valor aproximado. En la práctica de los métodos numéricos, no conocemos *a priori* el valor exacto que estamos buscando pero si algunas aproximaciones. A veces tenemos una aproximación del error absoluto o a veces solo unas cuantas aproximaciones; en este último caso, *la estimación del error relativo se hace usando la mejor estimación disponible de p*.

Ejemplo 2.6

Sea $x_0 = 1$ y $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$. Se sabe que $\lim_{n \to \infty} x_n = \sqrt{2}$. Podemos aproximar $\sqrt{2}$ usando esta sucesión. La estimación it del error relativo en cada iteración, se hace *usando a x*_{n+1} *como la mejor estimación del valor exacto* (pues la sucesión es decreciente). En la tabla que sigue, comparamos la estimación del error relativo con el error relativo exacto.

	Error relativo estimado	Error relativo exacto
$x_0 = 1$	$ x_n - x_{n+1} / x_{n+1} $	$ \sqrt{2}-x_{n+1} / \sqrt{2} $
$x_1 = 1.5.$	0.333333	0.0606602
$x_2 = 1.4166666666666666666666666666666666666$	0.0588235	0.00173461
$x_3 = 1.4142156862745098039$	0.0017331	$1.5018250929351827 \times 10^{-6}$
$x_4 = 1.4142135623746899106$	$1.5018239652057424\times 10^{-6}$	$1.1276404038266872\times 10^{-12}$
$x_5 = 1.4142135623730950488$	$1.1277376112344212 \times 10^{-12}$	0.

Podemos decir que $\sqrt{2} \approx 1.4142135623730950488$ con error relativo $\leq 1.1277376112344212 \times 10^{-12}$.

Ejercicios

- **2.1** si p = 0.001234 y $\tilde{p} = 0.001234 \pm 0.000006$, verifique que \tilde{p} tiene 4 decimales correctos y solo dos dígitos significativos.
- **2.2** Si se sabe que $\tilde{p} = 4.6565434$ aproxima a un número p con $|p \tilde{p}| \le 0.000001$, entonces como mínimo ¿cuántos decimales exactos habría en la aproximación?
- **2.3** Encuentre un valor de tolerancia δ tal que si $|p \tilde{p}| \leq \delta$, podamos garantizar que \tilde{p} tendrá al menos tres decimales exactos.

2.2 Aritmética del computador.

La representación de un número real en coma flotante requiere una base β y una precisión p. Por ejemplo, si $\beta = 10$ y p = 3 entonces 0.1 se representa como 1.00×10^{-1} .

El número

$$\pm \left(d_0 + \frac{d_1}{\beta^1} + \frac{d_2}{\beta^2} + \dots + \frac{d_{p-1}}{\beta^{p-1}} \right) \times \beta^e, \ 0 \le d_i \le \beta - 1$$
 (2.1)

se representa en coma flotante como

$$\pm d_0.d_1d_2...d_{p-1} \times \beta^e, \ 0 \le d_i < \beta \tag{2.2}$$

 $d_0.d_1d_2...d_{p-1}$ se llama "mantisa" y tiene p dígitos.

Ejemplo 2.7

En base 10

$$3213 = \left(\frac{3}{10} + \frac{2}{10^2} + \frac{1}{10^3} + \frac{3}{10^4}\right) \times 10^4 = 0.3213 \times 10^4$$
$$= 0.03213 \times 10^5$$

Ejemplo 2.8

En base 2

$$3.125 = 2^{0} + 2^{1} + \frac{1}{2^{3}} = (11.001)_{2} \times 2^{0}$$

$$= \left(2 + \frac{1}{2^{1}} + \frac{1}{2^{4}}\right) \times 2^{1} = (1.1001)_{2} \times 2^{1}$$

$$= \left(\frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{5}}\right) \times 2^{2} = (0.11001)_{2} \times 2^{2}$$

Representación en el computador. Si en un computador los números reales son representados en base 2, estos números se pueden almacenar como una sucesión de bits. Por ejemplo $3.125 = 1.1001 \times 2^1$ se almacena en 64 bits como

Cuente con entre 15 y 17 dígitos decimales. Para un número representado en 64 bits, hay 11 bits para el exponente (± 308 en base 10) y 52 bits para la mantisa, esto nos da entre 15 y 17 dígitos decimales de precisión. e_{min} y e_{max} indican el exponente mínimo y el exponente máximo.

Cuando usamos la aritmética del computador, un número real se representa en doble precisión (double) en general con 15 decimales.

Cómo lograr la unicidad. La representación en coma flotante no es única. Por ejemplo, 0.1 se puede representar como 0.01×10^1 o como 1.00×10^{-1} . Si en (2.2) pedimos que $d_0 \neq 0$, la representación se dice *normalizada*. La representación de 0.1 como 1.00×10^{-1} es la representación normalizada.

La representación normalizada resuelve la unicidad, pero hay un problema con el cero. Esto se resuelve con una convención para representarlo: $1.0 \times e^{e_{min}-1}$. Esto nos resta un exponente en la representación de los números pues $e_{min}-1$ se reserva para el cero.

Los números que podemos representar. En la representación normalizada en 64 bits, se sobrentiende que $d_0 = 1$, lo que nos deja 53 bits para la mantisa.

$$x = (-1)^{s} 1.b_1 b_2 ... b_{52} \times 2^{e} \text{ con } -1022 \le e \le 1023$$

El valor más grande sería $1.11...11 \times 2^{1023} \approx 1.79 \times 10^{308}$ y el valor (normal²) más pequeño sería $2.22... \times 10^{-308}$.

Excepciones. Si los cálculos exceden el máximo valor representable caemos en un estado de "sobreflujo" (overflow). En el caso del mínimo valor caemos en un estado de "subflujo" (underflow). En el estándar IEEE754, se reservan algunos patrones de bits para "excepciones". Hay un patrón de bits para números que exceden el máximo número representable: Inf, -Inf, NaN (not a number). Por ejemplo, 1./0. produce Inf. Si un cero es producido por un subflujo debido a negativos muy pequeños, se produce -0 y 1./(-0.) produce - Inf. NaN es producido por cosas tales como 0./0., $\sqrt{-2}$ o Inf - Inf.

■ Redondeo. Muchos números racionales tienen un cantidad infinita de decimales en su representación en base 10 y en base 2. Por ejemplo 1/3 = 0.33333333.... Esto también sucede en la representación en base 2. Por ejemplo,

$$0.2 = (0.00110011001100110...)_2$$
.

Se debe hacer un corte para representar estos números en el computador. Si rd(x) es la representación de x (por redondeo simétrico) en doble precisión, entonces

$$\left| \frac{x - \text{rd}(x)}{x} \right| \le 2^{-52} \le 0.5 \times 10^{-15}$$

2.3 Cancelación

La cancelación ocurre cuando se hace sustracción de dos números muy cercanos. Cuando se forma la resta a-b, se representan con el mismo exponente q y algunos dígitos significativos en la mantisa son cancelados y al normalizar se mueven dígitos a la izquierda y se disminuye el exponente. Al final de la mantisa aparecen ceros inútiles.

Ejemplo 2.9

Consideremos la función $f(x) = x^7 - 7 * x^6 + 21 * x^5 - 35 * x^4 + 35 * x^3 - 21 * x^2 + 7 * x - 1 = (x - 1)^7$. Aquí podemos tener un fenómeno de cancelación.

```
p = function(x) x^7 - 7*x^6 + 21*x^5 - 35*x^4 + 35*x^3 - 21*x^2 + 7*x - 1

f = function(x) (x - 1)^7
```

 $^{^2}$ En aritmética de punto flotante, los números que son más pequeños que el más pequeño número 'normal' que se puede representar, se llaman "subnormales". Los números subnormales se introducen para preservar la importante propiedad $x=y \iff x-y=0$. Cuando se alcanza el mínimo normal, la mantisa se va rellenando con ceros permitiendo la representación de números más pequeños. El subnormal mínimo sería 4.9×10^{-324} .

El error relativo entre f(0.99) y p(0.99) es grande, $\approx 42\%$. Para detectar en qué parte del cálculo se magnifica este error, separamos el cálculo,

```
x = 0.99
y = c(x^7, - 7*x^6, 21*x^5, - 35*x^4, 35*x^3, - 21*x^2, 7*x, - 1)
cumsum(y)
#[1] 9.320653479069899e-01 -5.658295697900010e+00
#[3] 1.43124953499999e+01 -1.930836500000001e+01
#[5] 1.465209999999998e+01 -5.93000000000015e+00
#[7] 9.9999999999848e-01 -1.521005543736464e-14
```

Cuando vamos sumando hasta $x^7 - 7 * x^6 + 21 * x^5 - 35 * x^4 + 35 * x^3 - 21 * x^2 + 7 * x$, la suma es 0.99999999999848, pero al restar 1 se da el fenómeno de cancelación en p(x), en vez de obtener -1.00000000000000e-14 obtenemos -1.4210854715202e-14.

Ejemplo 2.10

Se sabe que $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. Ya habíamos visto la implementación

```
options(digits = 10)
funexp = function(x, n) 1+sum(cumprod(x/1:n)) #=sum(x/1, x/1*x/2, x/1*x/2*x/3,...)
funexp(1,20)
#[1] 2.718281828
```

Pero si x < 0 los términos de la serie cambian de signo y si |x| es grande, la funcion **funexp** deber retornar valores pequeños en presencia de algunos sumando muy grandes. En algún momento estaremos cerca de un fenómeno de cancelación cuando sumemos "el siguiente" término. La manera de arreglar el problema es usar el hecho de que $e^{-x} = \frac{1}{e^x}$

```
cat(funexp(-20, 100), " ", exp(-20)) # no hay mejora si n>100
#[1] -3.8696e-09 -2.061154e-09
```

```
# --- e^-x = 1/e^x
cat(1/funexp(20, 100), " ", exp(-20))
#[1] 2.061154e-09 2.061154e-09
```

Ejemplo 2.11

Por ejemplo, usando aritmética con diez decimales, si $a = \sqrt{9876} = 9.937806599 \times 10^1$ y $b = \sqrt{9875} = 9.937303457 \times 10^1$, entonces $a - b = 0.000503142 \times 10^1$. Normalizando se obtiene,

$$\sqrt{9876} - \sqrt{9875} = 5.031420000 \times 10^{-3}$$

y perdimos dígitos significativos. Se puede arreglar el problema racionalizando:

$$\sqrt{a} - \sqrt{b} = \frac{a - b}{\sqrt{a} + \sqrt{b}},$$

esto cambia la resta (de números cercanos) $\sqrt{9876} - \sqrt{9875}$ por la suma $\sqrt{9876} + \sqrt{9875}$ y la resta 9876 - 9875 no presenta problemas.

$$\sqrt{9876} - \sqrt{9875} = \frac{9876 - 9875}{\sqrt{9876} + \sqrt{9875}} = 5.031418679 \times 10^{-3}.$$

Es usual usar algunos trucos para minimizar este fenómeno de cancelación.

- (a.) Cambiar $\sqrt{a} \sqrt{b}$ por $\frac{a-b}{\sqrt{a} + \sqrt{b}}$
- **(b.)** Cambiar sen a sen b por $2\cos\frac{a+b}{2}$ sen $\frac{a-b}{2}$
- (c.) Cambiar $\log a \log b$ por $\log(a/b)$
- (d.) Si f es suficientemente suave y h pequeño, podemos cambiar y = f(x+h) f(x) por la expansión de Taylor

$$y = f'(x)h + 0.5f''(x)h^2 + ...$$

Los términos en esta serie decrecen rápidamente si h es suficientemente pequeño, así que el fenómeno de cancelación deja de ser un problema.

A veces, dieciséis dígitos no bastan. Cuando tratamos con números de máquina, hay un error que se va propagando. Esta propagación del error es, en algunos casos, muy dañina. A veces el daño es producto del fenómeno de cancelación, al restar números parecidos y muy pequeños y a veces es por problemas de inestabilidad del algoritmo en curso. Algunos cálculos podemos mejorarlos aumentando la precisión, como se muestra en los ejemplos que siguen,

Ejemplo 2.12

Consideremos la cuadrática $P(x) = ax^2 + bx + c$ donde a = 94906265.625, b = -189812534 y c = 94906268.375. Con dieciséis dígitos se obtiene

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} = 1.000000014487979$$

Pero P(x2) = -0.00000002980232!. Mmmmmm, aquí los números que son cercanos son b^2 y 4ac y no es de mucha utilidad racionalizar. Todavía nos queda la opción de trabajar con más decimales. En **R** hay un paquete para trabajar con multiprecisión (el paquete **Rmpfr**^a).

```
# --- Cálculo con 16 dígitos
options(scipen = 999)
options(digits = 16)
a = 94906265.625
b = -189812534
c = 94906268.375
p = function(x) a*x^2+b*x+c
x2=(-b+sqrt(b^2-4*a*c))/(2*a);x2
#[1] 1.000000014487979
p(x2)
# [1] -0.00000002980232238769531
# --- Cálculo con 256 bits
# install.packages(Rmpfr)
# Requiere instalar previamente
# 1. MPFR (MP Floating-Point Reliable Library), http://mpfr.org/
# 2. GMP (GNU Multiple Precision library), http://gmplib.org/
require(Rmpfr)
aa = mpfr(94906265.625, precBits = 256)
bb = mpfr(-189812534, precBits = 256)
cc = mpfr(94906268.375, precBits = 256)
X2= (-bb+sqrt(bb^2-4*aa*cc))/(2*aa);X2
#1 'mpfr' number of precision 256 bits
#[1] 1.000000028975958351011137469355042911583320450556396022983861872923629745862732
p(X2)
#1 'mpfr' number of precision 256
                                  bits
#[1] 1.159126922089819183041167269233637347927363993361809688266574705911744168779884e-69
# es decir,
```

^aEn Ubuntu, este paquete requiere instalar "C++ wrapper for the GNU MPFR C library" (desde el Centro de Software) y 'GMP'(Multiple Precision library). Posiblemente solo necesite instalar, usando la terminal: sudo apt-get install libmpfr-dev

Ejemplo 2.13

Representación gráfica de $f(x) = \sum_{n=0}^{200} \frac{(-1)^n x^{2n}}{(2n)!}$. Aquí también los cálculos se ven afectados si trabajamos con poca precisión.

2.4 Propagación del Error

Cuando un error de redondeo ha sido introducido, este se suma a otros errores y se propaga. Supongamos que queremos calcular el valor $f(x) \in \mathbb{R}$. En el computador x es aproximado con un número racional \tilde{x} , así que $\tilde{x}-x$ es el *error inicial* y $\epsilon_1 = f(\tilde{x}) - f(x)$ es el correspondiente *error propagado*. En muchos casos, en vez de f se usa una función más simple f_1 (a menudo una expansión truncada de f). La diferencia $\epsilon_2 = f_1(\tilde{x}) - f(\tilde{x})$ es el *error de truncación*. Luego, las operaciones que hace el computador son "seudo-operaciones" (por el redondeo) por lo que en vez de $f_1(\tilde{x})$ se obtiene otro valor incorrecto $f_2(\tilde{x})$. La diferencia $\epsilon_3 = f_2(\tilde{x}) - f_1(\tilde{x})$ se podría llamar *el error propagado por los redondeos*. El error total sería

$$\epsilon = f_2(\tilde{x}) - f(x) = \epsilon_1 + \epsilon_2 + \epsilon_3$$

La aritmética usada por el computador no respeta la aritmética ordinaria. Cada simple operación en punto flotante casi siempre genera un error pequeño que se puede propagar en las siguientes operaciones. Si es necesario, se puede minimizar los errores de redondeo incrementando el número de cifras significativas en el computador y así el error no será en general muy dañino excepto en casos particulares, por ejemplo en los que se restan cantidades de signo opuesto y muy parecidas en valor absoluto.

■ Análisis del error de propagación. El análisis de error es importante cuando se quiere investigar y/o garantizar el desempeño de los métodos numéricos usados en problemas teóricos y prácticos. Ejemplos catastró-

ficos producidos por errores de redondeo se puede ver en http://mathworld.wolfram.com/RoundoffError.html.

Sea
$$\rho = \left| \frac{x - \operatorname{rd}(x)}{x} \right|$$
. Entonces $\operatorname{rd}(x) = x(1 + \varepsilon)$, con $|\varepsilon| = \rho$, $|\varepsilon| \le \operatorname{eps}$

Para seguir adelante necesitamos definir un *modelo* para la aritmética de la computadora. Excepto por la ocurrencia de sobreflujo o subflujo, vamos a suponer en nuestro modelo que las operaciones $+,-,\cdot,/$ producen un resultado redondeado que es *representable* en el computador. Denotamos con fl(x+y), $fl(x\cdot y)$,... el resultado de estas operaciones (el resultado que produce la máquina). Entonces, por ejemplo

$$f l(x \cdot y) = x \cdot y (1 + \varepsilon), |\varepsilon| \le \text{eps}$$

Ahora bien, nuestro interés es analizar el error en los resultados causados por errores en los datos. Vamos a suponer que $x(1+\varepsilon_x)$ y $y(1+\varepsilon_y)$ son valores de x e y contaminados con errores relativos ε_x y ε_y . Analicemos el error relativo en cada operación \cdot , +, -, /.

• *Multiplicación*. Supongamos que ε_x y ε_y son tan pequeños que los términos de orden dos ε_x^2 , ε_y^2 , $\varepsilon_x \cdot \varepsilon_y$, ... u orden superior, puedan ser despreciados (respecto a los $\varepsilon's$), por ejemplo ε_x y ε_y podrían ser los errores relativos en la representación. Entonces

$$x(1+\varepsilon_x)\cdot y(1+\varepsilon_y) \approx x\cdot y(1+\varepsilon_x+\varepsilon_y)$$

y por tanto, el error relativo $\varepsilon_{xy} \approx \varepsilon_x + \varepsilon_y$. Por ejemplo, si uno suma mil números con errores cada uno del orden 10^{-10} , entonces el error acumulado sería de $10^{-10} * 1000 = 10^{-7}$

Así, en general, en el producto los errores relativos de los datos se suman en el resultado. Esta situación la vamos a considerar *aceptable*.

• División. Si $y \neq 0$ entonces, usando la expansión en serie de 1/(x+1),

$$\frac{x(1+\varepsilon_x)}{y(1+\varepsilon_y)} = \frac{x}{y}(1+\varepsilon_x)(1-\varepsilon_y+\varepsilon_y^2-...) \approx \frac{x}{y}(1+\varepsilon_x-\varepsilon_y)$$

y entonces el error relativo $\varepsilon_{x/y} \approx \varepsilon_x - \varepsilon_y$ el cual es aceptable.

• Suma y resta. Como x, y pueden tener cualquier signo, basta con considerar la suma.

$$x(1+\varepsilon_x) + y(1+\varepsilon_y) = x+y+x\varepsilon_x + y\varepsilon_y$$
$$= (x+y)\left(1 + \frac{x\varepsilon_x + y\varepsilon_y}{x+y}\right)$$

si $x + y \neq 0$. Entonces

$$\varepsilon_{x+y} = \frac{x}{x+y} \, \varepsilon_x + \frac{y}{x+y} \, \varepsilon_y$$

que es nuevamente una combinación lineal de los errores en los datos.

• Si x e y son de igual signo entonces $0 \le \frac{x}{x+y} \le 1$, luego

$$\varepsilon_{x+y} \le |\varepsilon_x| + |\varepsilon_y|$$

que es un resultado aceptable.

• Si x e y son de signo contrario entonces $\frac{x}{x+y}$ y $\frac{y}{x+y}$ pueden ser números arbitrariamente grandes cuando |x+y| es arbitrariamente pequeño comparado con |x| e |y|. Y esto ocurre cuando x e y son casi iguales en valor absoluto, pero de signo contrario. Este fenómeno es el llamado error de cancelación. Es un talón de Aquiles del análisis numérico y debe ser evitado siempre que sea posible. Observe que los efectos de la "cancelación" se pueden alcanzar por la suma de pequeñas dosis de cancelación en grandes cálculos.

Revisado: Marzo, 2022 Versión actualizada de este libro: https://tecdigital.tec.ac.cr/servicios/revistamatematica/Libros/

En cálculo numérico, muchos resultados se derivan de la aplicación del teorema de Taylor.

Teorema 3.1 (Teorema de Taylor con resto)

Sea f una función con sus primeras n+1 derivadas continuas en [a,b] y sean $x, x_0 \in [a,b]$. Entonces,

$$f(x) = P_n(x) + R_n(x)$$

donde

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

y

$$R_n(x) = \frac{1}{n!} \int_{x_0}^{x} (x - t) f^{(n+1)}(t) dt$$

También, existe ξ_x entre x y x_0 tal que

$$R_n(x) = \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi_x)$$

Las dos expresiones para el resto $R_n(x)$ dan el mismo resultado y la segunda expresión se puede deducir de la primera usando el teorema del valor medio para integrales.

El teorema de Taylor nos da una representación de una función usando un polinomio y una expresión para el error. En métodos numéricos esto nos permite reemplazar una función por algo más sencillo, un polinomio y una estimación del error.

Ejemplo 3.1

Veamos algunas expansiones en serie de Taylor usando alrededor de $x_0 = 0$.

a.)
$$e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots + \frac{1}{n!}x^n + \frac{1}{(n+1)!}x^{n+1}e^{\xi_x}$$
 con ξ_x entre 0 y x

b.)
$$\operatorname{sen}(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \dots + \frac{(-1)^n}{(2n+1)!}x^{2n+1} + \frac{(-1)^{n+1}}{(2n+3)!}x^{2n+3}\cos\xi_x \text{ con } \xi_x \text{ entre 0 y } x$$

c.)
$$\cos(x) = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + \frac{(-1)^{n+1}}{(2n+2)!} x^{2n+2} \cos \xi_x$$
 con ξ_x entre 0 y x

3.1 Estimación del error

Como $f(x) = P_n(x) + R_n(x)$ entonces $f(x) \approx P_n(x)$ y el error de esta aproximación sería

Error =
$$|f(x) - P_n(x)| = \left| \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi_x) \right|$$
 con ξ_x entre 0 y x

En general, no podemos determinar ξ_x por lo que solo podríamos tener una estimación del error. Una manera de obtener esta estimación es usando el máximo absoluto M_{n+1} de $|f^{(n+1)}|$ en algún intervalo cerrado que contenga a 0 y x (y por tanto a ξ_x).

Como
$$\left| \frac{(x-x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi_x) \right| \le \left| \frac{(x-x_0)^{n+1}}{(n+1)!} M_{n+1} \right|$$
 entonces Error $\le \left| \frac{(x-x_0)^{n+1}}{(n+1)!} M_{n+1} \right|$

Primero recordemos como determinar los máximos y mínimos absolutos de una función continua y derivable en un intervalo [a, b].

• $f \in C^n[a, b]$ indica que f tiene derivadas continuas hasta el orden n en [a, b]. En particular, $f \in C[a, b]$ indica que f es continua en [a, b] y $f \in C^1[a, b]$ indica que f es derivable en [a, b]

• Recordemos los puntos críticos en [a,b] de $f \in C^1[a,b]$ son las soluciones de la ecuación f'(x) = 0 en [a,b]. Si los puntos críticos en [a,b] son $\{x_0,x_1,...,x_k\}$ entonces el *máximo* y el *mínimo* valor del conjunto

$$\{f(a), f(b), f(x_0), f(x_1), ..., f(x_k)\}\$$

corresponden al *máximo y el mínimo absoluto* de esta función en [a, b].

• Si f es una función de una variable y si $f(x^*) = 0$ entonces decimos que x^* es un *cero* de f. Si f es un polinomio también se dice que x^* es una *raíz*.

Ejemplo 3.2 (Determinar el grado del polinomio de Taylor)

Una primera pregunta que nos interesa es esta: ¿Para aproximar e^x con un polinomio de Taylor alrededor de $x_0 = 0$, con $x \in [-1,1]$, qué grado n debemos escoger?. Bueno, depende del error estimado que se pretenda en la aproximación.

Problema: Determine $n \in \mathbb{N}$ de tal manera que la aproximación de e^x con el polinomio de Taylor $P_n(x)$, alrededor de $x_0 = 0$, en [-1,1], sea con error $\leq 0.5 \times 10^{-7}$.

Solución: Una manera es usar el hecho de que $||\mathbf{Error}|| \le \left| \frac{x^{n+1}}{(n+1)!} M_{n+1} \right| = \max_{n \ge 1} ||\mathbf{max}||$ en [-1,1].

Bien, hay que calcular M_{n+1}

Primero: No hay puntos críticos para $f^{(n+1)}(x) = e^x$. Como $f^{(n+2)}(x) = e^x$ no se anula, entonces $f^{(n+1)}$ no tiene puntos críticos.

Segundo: Comparar para obtener el máximo absoluto. En este caso no hay puntos críticos, así que solo queda comparar el valor absoluto de la función evaluada en los extremos del intervalo.

$$M_{n+1} = \max\{|f^{(n+1)}(-1)|, |f^{(n+1)}(1)|\} = e^1$$

Finalmente: Necesitamos $n \in \mathbb{N}$ tal que Error $\leq \left| \frac{x^{n+1}}{(n+1)!} e \right| \leq 0.5 \times 10^{-7}$. Como $x \in [-1,1]$ entonces $|x^{n+1}| \leq 1$, entonces

Error
$$\leq \left| \frac{x^{n+1}}{(n+1)!} e \right| \leq \left| \frac{1}{(n+1)!} e \right| \leq 0.5 \times 10^{-7} \text{ pues } \left| x^{n+1} \right| \leq 1$$

¹A veces se incluyen como puntos críticos los valores donde la derivada no esta definida (picos).

Por tanteo, obervamos que Error $\leq \left| \frac{1}{(n+1)!} e \right| \leq 0.5 \times 10^{-7}$ desde n = 11 en adelante.

Por tanto, $e^x \approx 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + ... + \frac{1}{1!!}x^{11}$ con error $\leq 0.5 \times 10^{-7}$ si $x \in [-1, 1]$.

Ejemplo 3.3 (Estimación del error en un intervalo)

Estime el error cometido al aproximar $f(x) = \operatorname{sen} x$, con $x \in [-\pi/3, \pi/3]$ con un polinomio de Taylor, alrededor de $x_0 = 0$, de orden n = 5.

Solución: En este caso $f(x) = \sec x$. En este caso no vamos a estimar el error de la aproximación en un punto sino más bien vamos a estimar el error de la aproximación en cualquier punto del intervalo. Para determinar el error estimado en $[-\pi/3, \pi/3]$, debemos calcular el máximo absoluto de $|f^{(7)}(x)| = |\cos x|$ en $[-\pi/3, \pi/3]$.

Primero: Puntos críticos. $\left|f^{(8)}(x)\right| = \sec x = 0 \implies x = 0 + 2k\pi \text{ con } k \in \mathbb{Z}$. El único punto crítico en $[-\pi/3, \pi/3]$ sería x = 0.

Segundo: Comparación. $M_7 = \max\{|f^{(7)}(-\pi/3)|, |f^{(7)}(\pi/3)|, |f^{(7)}(0)|\} = 1$

$$R_5(x) \leq \left| \frac{x^{5+1}}{(5+1)!} M_{5+1} \right|$$

$$\leq \left| \frac{x^6}{6!} M_6 \right|$$

$$\leq \left| \frac{(\pi/3)^6}{6!} 1 \right| \text{ pues } M_6 = 1 \text{ y } x^6 \leq (\pi/3)^6 \text{ (pues la función } y = x^6 \text{ es creciente)}$$

 $R_5(x) \leq 0.001831636$

Por tanto sen(x) $\approx x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5$ con error ≤ 0.001831636 en $[-\pi/3, \pi/3]$

Implementación

En el ejemplo 1.14 ya implementamos el polinomio de Taylor usando el paquete **Deriv**. Sin embargo, podemos usar el paquete **pragma**. La función **taylor(f, x0, n = 4, ...)** devuelve los coeficientes del polinomio de Taylor

de f, orden **n=4**, alrededor de **x0**.

Código R 3.1: Polinomio de Taylor con "pracma"

Ejercicios

3.1 Para cada una de las funciones que siguen, determine el polinomio de Taylor de orden n = 3 alrededor de $x_0 = 0$ y estime el error de la aproximación en el intervalo que se indica o en el punto que se indica.

```
a.) f(x) = e^{-x} \text{ con } x \in [0, 1]
```

b.)
$$f(x) = \ln(1+x)$$
 en $x = 0.3$

c.)
$$f(x) = \sqrt{1 + x^2} \text{ con } x \in [0, 1]$$

3.2 Para cada una de las funciones que siguen, determine el orden n del polinomio de Taylor, alrededor de $x_0 = 0$, de tal manera que el error de la aproximación en el intervalo indicado sea $\leq 0.5 \times 10^{-7}$.

```
a.) f(x) = e^{-x} \text{ con } x \in [0, 1]
```

b.)
$$f(x) = \ln(1-x) \text{ con } x \in [-0.5, 0.5]$$

c.)
$$f(x) = \sqrt{1+x} \text{ con } x \in [0,1]$$

- **3.3** Aproximación de una función con un polinomio de Taylor alrededor de a = 0 y estimación del error.
 - a.) Obtenga todas las soluciones de la ecuación $\cos x \sin x = 0$ en el intervalo I = [-6, 6]. (Sugerencia: $\tan x = \frac{\sin x}{\cos x}$).
 - b.) Considere la función $f(x) = e^x \cos x$. Obtenga el polinomio de Taylor $P_3(x)$ (de orden n = 3) para f alrededor de a = 0.

c.) Aproximar f(0.3) con el polinomio $P_3(x)$ y estimar el error cometido en esta aproximación, usando una estimación del error $R_3(x)$, tal y como se hizo en clase.

Revisado: Marzo, 2022 Versión actualizada de este libro: https://tecdigital.tec.ac.cr/servicios/revistamatematica/Libros/

En general, no es posible determinar los *ceros* de una función, es decir, valores x^* tal que $f(x^*) = 0$, en un número finito de pasos. Tenemos que usar métodos de aproximación. Los métodos son usualmente iterativos y tienen la forma: Iniciando con una aproximación inicial x_0 (o un intervalo [a,b]), se calculan aproximaciones sucesivas $x_1, x_2, ...$ y elegimos x_n como aproximación de x^* cuando se cumpla un *criterio de parada dado*. A los ceros de un polinomio se les conoce también como *raíces*.

En este capítulo veremos los métodos iterativos usuales: bisección, regula falsi, punto fijo, Newton y el método de la secante. En general, no usamos estos métodos de manera aislada sino más bien combinada. Por eso se incluyen secciones con métodos híbridos. El método de bisección es muy confiable, pero relativamente lento. Los métodos de Newton y la secante son más veloces, pero no son tan confiables como bisección. Bisección es óptimo para funciones continuas (en general) pero no para funciones derivables o convexas. En este último caso, el método de Newton es veloz, pero necesita el cálculo de la derivada (no todas las funciones derivables tienen derivadas que se pueden expresar en términos de funciones elementales o funciones especiales) y podría colapsar si la derivada toma valores muy pequeños en el proceso. En las funciones obtenidas por interpolación corre el riesgo de caer en un ciclo. El método de la secante es veloz y no requiere la derivada, sino una aproximación. Aún así, corre riesgos inherentes al comportamiento de la derivada en las cercanías de los "ceros".

El método de Dekker-Brent combina la confiabilidad de bisección con la velocidad del método de la secante y el método de interpolación cuadrática inversa. Iniciando con un intervalo donde la función cambia de signo, el siguiente paso toma el camino más veloz disponible (secante o interpolación cuadrática inversa, si no hay peligro de colapso) sin dejar nunca el intervalo donde hay cambio de signo. Así en el peor de los casos, en el siguiente paso se usaría bisección. Este algoritmo es un método de tipo adaptativo, está balanceado de tal manera que siempre encuentra una respuesta y es siempre más rápido que bisección. Algunos paquetes de software, como $Mathematica^{(\!R\!)}$ y $MatLab^{(\!R\!)}$, usan Newton, secante y el método de Brent para aproximar ceros de funciones. Para encontrar las raíces de un polinomio se usan algoritmos especializados, por ejemplo el algoritmo de Jenkins-Traub.

4.1 Orden de convergencia

El orden de convergencia nos da una 'medida' de la rapidez con la que una sucesión de aproximación converge, en particular nos podría informar con qué rapidez, a partir de cierto índice, ganamos cifras decimales correctas.

La idea general es que el "orden de convergencia" es q si para n suficientemente grande, se tiene

$$\log_{10} |u_{n+1} - u^*| \approx q \cdot \log_{10} |u_n - u^*| + \text{ una constante}$$

entendiendo que $\log_{10}|u_{n+1}-u^*|$ da una aproximación de la cantidad de decimales correctos¹. Esto nos dice *en grueso*, que para n suficientemente grande, si en la iteración n tenemos δ_n decimales correctos, entonces en la siguiente iteración, la cantidad de decimales correctos es δ_{n+1} con $\delta_{n+1} \approx q \cdot \delta_n$ + una constante.

Definición 4.1 (Orden de convergencia).

Sea u_n una sucesión de números reales y supongamos que $\lim_{n\to\infty} u_n = u^*$ y que $u_n \neq u^*$ $\forall n$. Se dice que la sucesión tiene *orden de convergencia q*, con $q \geq 1$, si

$$\lim_{n \to \infty} \frac{|u_{n+1} - u^*|}{|u_n - u^*|^q} = K \text{ para alguna constante } 0 < K < \infty.$$

$$\tag{4.1}$$

Veamos está definición con un poco de detalle: δ_n denota la cantidad de decimales exactos de la aproximación en la n-ésima iteración, entonces

$$\delta_n \approx -\log_{10}|u_n - u^*| \tag{4.2}$$

Por ejemplo,

Si $u_n = 0.123447$ y $u^* = 0.123457$ entonces $\delta_n \approx -\log_{10}|0.00001| = 5$

Si $u_n = 1.53222$ y $u^* = 1.5332423$ entonces $\delta_n \approx -\log_{10}|0.00001| = 2.99042$

Del límite (4.1) tenemos para n suficientemente grande

$$\frac{|u_{n+1} - u^*|}{|u_n - u^*|^q} \approx K$$

$$k \ge -\log_{10} x > k - 1 \implies k \approx -\log_{10} + 1$$

Es decir, para nuestros propósitos, la cantidad de decimales exactos es aproximadamente $-\log_{10} x = -\log_{10} |u_{n+1} - u^*|$.

Informalmente, digamos que tenemos al menos k cifras decimales exactas y $|u_{n+1} - u^*| = 0.00...0b_k b_{k+1}...$ Sea $x = 0.00...0b_k$, entonces $\frac{1}{10^k} \le x < \frac{1}{10^{k-1}}$. Tomando logaritmo en base 10 obtenemos que

y entonces

$$\log_{10}\left(\frac{|u_{n+1}-u^*|}{|u_n-u^*|^q}\right) \approx \log_{10} K$$

Es decir,

$$\delta_{n+1} \approx q \delta_n - \log_{10} |K|$$

Esto dice que si el orden de convergencia es q, en la siguiente iteración (después de la iteración n–ésima), el número de decimales exactos es aproximadamente $q\delta_n$ + constante (la constante es $-\log_{10}|K|$).

Por ejemplo si q = 2, la cantidad de decimales exactos en la siguiente iteración es $2\delta_n$ + constante, es decir, tiende a duplicar la cantidad de decimales exactos en cada nueva iteración.

- q no necesariamente es un entero.
- Si q = K = 1, u_n converge más despacio que una sucesión que converja linealmente y se dice que converge *sublinealmente*.
- Si (4.1) se da con q = 1 y K = 0, pero no con q > 1, la convergencia se dice *superlineal*.
- Si q = 1 y 0 < K < 1, u_n se dice que *converge linealmente* y K es la *tasa* de convergencia.
- Si q = 2 entonces u_n se dice que *converge cuadráticamente* y se espera que a partir de algún subíndice N, cada iteración aproximadamente *duplica* el número de lugares decimales exactos.

Observe que en el caso particular q = 2 y K = 1:

$$\delta_{n+1} \approx q \delta_n - \log_{10} |K| \approx 2 \delta_n$$
.

Ejemplo 4.1

q=1 indica que se gana una cifra decimal exacta cada cierto número promedio de iteraciones. La sucesión $x_n = \frac{1}{6} - \frac{1}{3} \left(\frac{-1}{2} \right)^n$ converge a 1/6 = 0.1666666666...

El orden de convergencia es q = 1. En efecto,

$$\lim_{n \to \infty} \frac{|u_{n+1} - 1/6|}{|u_n - 1/6|^q} = \lim_{n \to \infty} \frac{\frac{1}{3} \left(\frac{1}{2}\right)^{n+1}}{\left(\frac{1}{3}\right)^q \left(\frac{1}{2}\right)^{nq}} = \lim_{n \to \infty} 3^{1-q} \left(\frac{1}{2}\right)^{n(1-q)+1} = \begin{cases} \frac{1}{2} & \text{si} \quad q = 1\\ \\ \infty & \text{si} \quad q > 1. \end{cases}$$

En la tabla se observa que efectivamente $\delta_{n+1} \approx \delta_n$ y hay que esperar algunas iteraciones adicionales para ganar un nuevo decimal exacto.

n	δ_{n+1}	δ_n	x_n	
40	12.8193775849834	12.5183078278654	0.166666666666 6 818	
	13.1203280613792	12.8193775849834	0.166666666666 6 591	
	13.4215171101422	13.1203280613792	0.166666666666666705	
	13.7222290578374	13.4215171101422	0.166666666666 <mark>6</mark> 48	
	14.0238953825265	13.7222290578374	0.166666666666 <mark>6</mark> 76	
	14.3236536511268	14.0238953825265	0.1666666666666666666666666666666666666	
	14.6272308358047	14.3236536511268	0.166666666666666666	
	14.9231813059394	14.6272308358047	0.1666666666666666666666666666666666666	
	15.2344304667850	14.9231813059394	0.1666666666666666666666666666666666666	
49	15.5152570763607	15.2344304667850	0.1666666666666666666666666666666666666	

Ejemplo 4.2 (Convergencia cuadrática).

Sea $x_0 > 0$ y $x_{n+1} = 0.5\left(x_n + \frac{2}{x_n}\right)$. Se sabe que $\lim_{n \to \infty} x_n = \sqrt{2}$. En este caso, la convergencia es cuadrática: En efecto, primero veamos que $x_{n+1} - \sqrt{2} = \left(x_n - \sqrt{2}\right)^2$, entonces

$$\frac{x_{n+1} - \sqrt{2}}{(x_n - \sqrt{2})^q} = \frac{\left(x_n - \sqrt{2}\right)^2}{2x_n \left(x_n - \sqrt{2}\right)^q} = \frac{\left(x_n - \sqrt{2}\right)^{2-q}}{2x_n}$$

por tanto,

$$\lim_{n \to \infty} \left| \frac{\left(x_n - \sqrt{2} \right)^{2-q}}{2x_n} \right| = \begin{cases} 0 & \text{si} \quad q = 1\\ \frac{1}{2\sqrt{2}} & \text{si} \quad q = 2\\ \infty & \text{si} \quad q > 2 \end{cases}$$

Comparemos $\sqrt{2} = 1.4142135623730950...$ con los valores de la segunda columna de la tabla (4.1).

n	x_n	$ x_n-\sqrt{2} $
0	1.5	0.5
1	1. <u>41</u> 666666666667	0.083333333
2	1. <u>4142</u> 1568627451	0.00245098
3	1. <u>41421356</u> 237469	2.1239×10^{-6}
4	1. <u>414213562373</u> 10	1.59472×10^{-12}
5	1.41421356237309	2.22045×10^{-16}

La convergencia es muy rápida y se puede observar como *aproximadamente*, la precisión se duplica (en las cercanías de $\sqrt{2}$) en cada iteración.

Aunque en general no disponemos de un mecanismo analítico para resolver una ecuación arbitraria, si tenemos métodos para aproximar una solución mediante aproximaciones sucesivas. En lo que resta del capítulo vamos ver algunas de estos métodos, su confiabilidad y su velocidad de convergencia.

4.2 Método de Punto Fijo

En muchos casos una ecuación no lineal aparece en la forma de "problema de punto fijo":

Encuentre
$$x$$
 tal que $x = g(x)$ (4.3)

Un número $x = x^*$ que satisface esta ecuación se llama *punto fijo de* g.

Ejemplo 4.3

- En el problema de punto fijo x = sen(x), tenemos g(x) = sen(x) y un punto fijo de g es $x^* = 0$.
- Si $g(x) = x^2$, los puntos fijos son x = 0 y x = 1 pues $0^2 = 0$ y $1^2 = 1$.
- Si $g(x) = \ln x + x$, un punto fijo es x = 1 pues $\ln 1 + 1 = 1$.

Ejemplo 4.4

¿Cuáles son los puntos fijos de $g(x) = \ln(x)$ o de $g(x) = \cos(x)$?. Geométricamente, un punto fijo corresponde al valor de la abscisa donde la gráfica de y = g(x) interseca a la recta y = x.

En el problema de punto fijo $x = \cos(x)$, tenemos $g(x) = \cos(x)$. El único punto fijo de g es $x^* \approx 0.7390851332151607...$

Figura 4.1: Punto fijo de cos(x): $x^* \approx 0.73908...$

Una ecuación f(x) = 0 se puede escribir en la forma (4.3) despejando x (si se pudiera). En este caso se obtiene $f(x) = 0 \implies x = g(x)$

Ejemplo 4.5

La ecuación $x^3 + x + 1 = 0$ se puede poner como un problema de punto fijo despejando x de varias maneras,

a.)
$$x = -x^3 - 1$$
. En este caso $g(x) = -x^3 - 1$

b.)
$$x = \sqrt[3]{-x-1}$$
. En este caso $g(x) = \sqrt[3]{-x-1}$

$$c.) \quad x = \frac{\sqrt{-1-x}}{x^2}$$

d.) ...

■ Iteración de punto fijo. Un esquema iterativo de punto fijo define por recurrencia una sucesión $\{x_n\}$ de la siguiente manera:

Aproximación inicial:
$$x_0 \in \mathbb{R}$$
. Iteración de "punto fijo": $x_{i+1} = g(x_i)$, $i = 0, 2, ...$ (4.4)

Figura 4.2: Iteraciones del método de punto fijo: convergencia y divergencia. Observe que |g'(x)| < 1 en los alrededores de $x = x^*$ en la figura (a)

Teorema 4.1

Sea la sucesión $\{x_n\}$ definida por $x_0 \in \mathbb{R}$, $x_{i+1} = g(x_i)$, i = 0, 2, ... con g continua. Si $\lim_{n \to \infty} x_n = x^*$, entonces x^* es punto fijo de g.

Ejemplo 4.6

Consideremos la ecuación $x = \frac{x^4 - 1}{4}$, y sea $x_0 = 0.2$, la iteración de fijo correspondiente es

$$x_0 = 0.2$$
, $g(x) = (x^4 - 1)/4$
 $x_1 = g(x_0) \approx -0.2496$
 $x_2 = g(x_1) \approx -0.2490296...$
 $x_3 = g(x_2) \approx -0.2490385...$

Toda la información aparece en la tabla

		Error absoluto	Error relativo	
n	x_{n+1}	estimado: $ x_{n+1} - x_n $	estimado: $ (x_{n+1} - x_n)/x_{n+1} $	
1	-0.2496	0.4496	1.801282051	
2	-0.249029672515994	0.000570327	0.002290199	
3	-0.249038510826169	8.83831×10^{-6}	3.54897×10^{-5}	
4	-0.249038374322083	1.36504×10^{-7}	5.48125×10^{-7}	
5	-0.249038376430443	2.10836×10^{-9}	8.46601×10^{-9}	
6	-0.249038376397879	3.25645×10^{-11}	1.30761×10^{-10}	
7	-0.249038376398382	5.02959×10^{-13}	2.0196×10^{-12}	

Ejemplo 4.7

Consideremos el problema de punto fijo $x^2-1=x$. De acuerdo a la figura, hay un punto fijo en [1,2] y otro en [-1,0]. Estos puntos son $x^*=\frac{1}{2}\left(1-\sqrt{5}\right)\approx -0.618034$ y $x^*=\frac{1}{2}\left(1+\sqrt{5}\right)$.

Si tratamos de aproximar estos puntos fijos iniciando en $x_0 = 1.5$, la iteración de punto fijo parece divergente según los datos de la tabla. La iteración cae en un ciclo si para algún n, $x_n = 0$ o $x_n = -1$.

n	x_n	Error estimado
0	1.5	
1	1.25000000	0.25
2	0.56250000	0.6875
3	-0.68359375	1.2460937
22	0	1
23	-1	1
24	0	1
25	-1	1
26	0	1

La iteración parece que se acerca al punto $x^* \approx -0.618034$ pero después la iteración se aleja de x^* hasta caer en el ciclo $0, -1, 0, -1, 0, -1, \dots$ En ambos puntos fijos hay un entorno alrededor de ellos en el que $|g'(x)| \nleq 1$.

Ejemplo 4.8

Aunque no es un método eficiente (en esta forma cruda), podemos aproximar la única solución real de $x^3 + x + 1 = 0$ usando iteración de punto fijo.

Para empezar, debemos poner el problema como un problema de punto fijo. Para hacer esto debemos despejar "x". Hay varias posibilidades.

a.)
$$x = -1 - x^3$$
,

b.)
$$x = \sqrt[3]{-1-x}$$

b.)
$$x = \sqrt[3]{-1-x}$$
,
c.) $x = \frac{\sqrt[3]{-1-x}}{x^2}$,
d.) ...

El resultado de aplicar punto fijo en los dos primeros casos, con $x_0 = -0.5$, se puede ver en las tablas que siguen.

$\underline{\qquad} x = -1 - x^3$					
n	x_{n+1}				
1	-0.7840000000				
2	-0.5181096960				
3	-0.8609198471				
4	-0.3619008595				
5	-0.9526010366				
17	-1				
18	0				
19	-1				
20	0				
21	-1				
22	0				
		_			

Tabla 4.1: Punto fijo aplicado a $x = -1 - x^3$.

	$x=\sqrt[3]{-x-1},$	g'(x) < 1
n	x_{n+1}	$ x_n - x_{n+1} $
1	-0.79370052	0.293700526
2	-0.59088011	0.202820413
3	-0.74236393	0.151483819
4	-0.63631020	0.106053729
24	-0.6822715	0.000134782
25	-0.6823680	9.65013×10^{-5}
26	-0.6822989	6.90905×10^{-5}
27	-0.6823484	4.94671×10^{-5}
28	-0.6823130	3.54165×10^{-5}
29	-0.6823383	2.53572×10^{-5}
30	-0.6823202	1.81548×10^{-5}

Tabla 4.2: Punto fijo aplicado a $x = \sqrt[3]{-x-1}$.

Los teoremas que siguen dan condiciones *suficientes* (pero no necesarias) para que haya un punto fijo en un intervalo, condiciones suficientes para que el punto fijo sea único en el intervalo y condiciones suficientes para la convergencia.

Teorema 4.2

Si $g \in C[a, b]$ y si $g(x) \in [a, b]$ para todo $x \in [a, b]$, entonces g tiene un punto fijo en [a, b]

Teorema 4.3

Si $g \in C[a, b]$ y si $g(x) \in [a, b]$ para todo $x \in [a, b]$ y si g' esta definida en a, b y cumple a, b y cumple a, b entervalo, entonces el punto fijo es único.

Teorema 4.4

Si $g \in C[a,b]$ y si $g(x) \in [a,b]$ para todo $x \in [a,b]$ y si g' esta definida en]a,b[y existe k positiva tal que $|g'(x)| \le k < 1$ en]a,b[, entonces, para cualquier $x_0 \in [a,b]$, la iteración $x_{n+1} = g(x_n)$ converge a un único punto fijo x^* de g en este intervalo. También

$$|x_{n+1} - x^*| \le \frac{k^n |x_1 - x_0|}{1 - k}, \ n = 1, 2, ...$$

• El orden de convergencia de este método coincide con la multiplicidad del punto fijo, es decir, si $g^{(p)}$ es la primera derivada que no se anula en x^* entonces el orden de convergencia es p.

Ejemplo 4.9

Sea $g(x)=(x^3-1)/4$. En el intervalo [-1,1], esta función tiene un punto fijo único x^* y además $\lim_{n\to\infty}g(x_n)=x^*$.

Para mostrar esta afirmación verifiquemos las condiciones del teorema (4.4).

• g es continua y $g(x) \in [-1,1]$ para todo $x \in [-1,1]$

Efectivamente, g es continua y como $g'(x) = \frac{3x^2}{4}$ entonces g solo tiene un punto crítico en [-1,1], x = 0. Luego,

$$Min\{g(-1), g(1), g(0)\} \le g(x) \le Max\{\{g(-1), g(1), g(0)\}\}$$

$$Min\{-\frac{1}{2},0,-\frac{1}{4}\} \le g(x) \le Max\{-\frac{1}{2},0,-\frac{1}{4}\} \implies -1 \le -\frac{1}{2} \le g(x) \le 0 \le 1$$

por lo tanto, $g(x) \in [-1,1]$. Con lo cual g tiene un punto fijo en [-1,1].

• Si g' existe en]-1,1[y $|g'(x)| \le k < 1$ para toda $x \in]-1,1[$ entonces el punto fijo es único y la iteración de punto fijo converge para cualquier $x_0 \in [-1,1]$.

Como $g'(x) = \frac{3x^2}{4}$ entonces $g''(x) = \frac{3x}{2}$ tiene un punto crítico en el intervalo, a saber x = 0. Por lo tanto

$$|g'(x)| \le \text{Máx}\{|g'(-1)|, |g'(1)|, |g(0)|\} \implies |g'(x)| \le \frac{3}{4} < 1 \text{ si } x \in [-1, 1]$$

por lo que, en particular

$$|g'(x)| \le \frac{3}{4} < 1 \text{ en }]-1,1[$$

y podemos tomar k = 3/4. Por lo tanto, para cualquier $x_0 \in [-1,1]$, $\lim_{n \to \infty} g(x_n) = x^*$.

Además, si $x_0 = -0.5$, *una* cota de error en la n-ésima iteración de punto fijo se puede establecer como

$$|x_n - x^*| \le \frac{(3/4)^n}{1 - 3/4} |-0.5 - g(-0.5)| \implies |x_n - x^*| \le 3^n 4^{1-n} \frac{7}{32}$$

En particular, cuando n = 5, $x_5 = -0.2541018552...$ y entonces $|x_5 - x^*| \le 0.2076416015625$, mientras que la estimación del valor absoluto, más apegada a la realidad en este caso, nos da $3,27797 \times 10^{-6}$

Criterio de parada.

Vamos a implementar una función puntofijo(g, x0, tol, maxIteraciones). Para la implementación del método de punto fijo, el criterio de parada que podríamos usar es

$$|x_n - x_{n-1}| \le \text{ tol } y \text{ un número máximo de iteraciones.}$$

Un poco más formalmente, la diferencia $|x_{k+1} - x_k|$ sería un estimador del error. La razón es esta: Como $x^* = g(x^*)$ y como $x_{k+1} = g(x_k)$, entonces, usando el teorema del valor medio para derivadas, obtenemos

$$x^* - x_{k+1} = g(x^*) - g(x_k) = g'(\xi_k)(x^* - x_k)$$
 con ξ_k entre x^* y x_k

Ahora.

$$x^* - x_k = (x^* - x_{k+1}) + (x_{k+1} - x_k)$$

$$= g'(\xi_k)(x^* - x_k) + (x_{k+1} - x_k)$$

$$x^* - x_k - g'(\xi_k)(x^* - x_k) = (x_{k+1} - x_k)$$

$$(x^* - x_k)(1 - g'(\xi_k)) = (x_{k+1} - x_k)$$

$$(x^* - x_k) = \frac{1}{1 - g'(\xi_k)}(x_{k+1} - x_k)$$

Entonces $x^* - x_k = \frac{1}{1 - g'(\xi_k)} (x_{k+1} - x_k)$ nos dice que:

- si $g'(x) \approx 0$ en un entorno alrededor de x^* , la diferencia $|x_{k+1} x_k|$ sería un estimador del error.
- las cosas no funcionan bien si $g'(x) \approx 1$ en un entorno alrededor de x^*

Algoritmo e implementación.

Algoritmo 4.1: Iteración de Punto fijo.

Datos de entrada: Una función continua g, x_0 , tol, maxItr.

Salida: Si hay convergencia, una aproximación x_n de un punto fijo.

- 1 k = 0; 2 repeat $x_1 = g(x_0);$ $dx = |x_1 - x_0|;$ $x_0 = x_1$; k = k + 1;
- 7 **until** $dx \le tol \ o \ k > \text{maxItr};$
- 8 return x_1

■ Implementación con R . Vamos a implementar una función puntofijo(g, x0, tol, maxIteraciones), el criterio de parada que podríamos usar es

 $|x_n - x_{n-1}| \le \text{ tol } \text{ y un número máximo de iteraciones.}$

Código R 4.1: Iteración de "punto fijo"

```
#1e-9 = 0.000000001
puntofijo =function(g, x0, tol=1e-9, maxIteraciones=100){
  # iteración hasta que abs(x1 - x0) <= tol o se alcance maxIteraciones
  repeat{
    x1 = g(x0)
    dx = abs(x1 - x0)
    x0
        = x1
    #Imprimir estado
    cat("x_", k, "= ", x1, "\n")
    k = k+1
    #until
    if(dx< tol|| k > maxIteraciones) break;
  }
  # Mensaje de salida
  if( dx > tol ){
    cat("No hubo convergencia
                                ")#return(NULL)
  } else{ cat("x* es aproximadamente ", x1, " con error menor que ", tol)}
}
```

Ejemplo 4.10

La ecuación $(x+1) \operatorname{sen}(x^2) - x = 0$ tiene dos soluciones en [0,1]. Una manera de expresar el problema de encontrar una solución de esta ecuación en términos de un problema de punto fijo es escribir la ecuación como

$$(x+1)\operatorname{sen}(x^2) = x$$

De acuerdo a la gráfica, hay dos puntos fijos, y uno de ellos x_1^* , está en [0.5,0.8]. Por la forma de la gráfica, parece que el método de punto fijo no va a detectar a x_1^* .

Corremos nuestro programa con valores **x0 = 0.8** y **x0= 0.5** y observamos que, en ambos casos, el método solo converge a $x_0^* = 0$.

```
g = function(x) (x+1)-sin(x^2)
puntofijo(g, 0.5, 1e-9) # maxIteraciones=100
# x_1 = 0.3711059
# x_2 = 0.1882318
# x_3 = 0.0420917
# x_4 = 0.001846285
# x_5 = 3.415062e-06
\# x_{-} 6 = 1.166269e-11
\# x_{-} 7 = 1.360183e-22
# x* es aproximadamente 1.360183e-22 con error menor que 1e-09
puntofijo(g, 0.8, 1e-9)
\#x_1 = 1.074952
\#x_2 = 1.898592
#x_3 = -1.294765
\#x_4 = -0.2931222
\#x_{5} = 0.06066068
\#x_{-}6 = 0.003902924
\#x_{-}7 = 1.529227e-05
\#x_{-}8 = 2.33857e-10
\#x_9 = 5.468908e-20
#x* es aproximadamente 5.468908e-20 con error menor que 1e-09
```

La representación gráfica del método nos muestra con más detalle qué puede estar pasando.

Figura 4.3: Con $x_0 = 0.5$, convergencia en $x^* = 0$

Figura 4.4: $x_0 = 0.8$, convergencia en $x^* = 0$

Ejercicios

- 4.1 Usar punto fijo para aproximar la solución de cada ecuación en el intervalo que se indica.
 - a.) $x^3 x 1 = 0$ en [1,2]
 - b.) $x^2 x 1 = 0$ en [-1, 0]
 - c.) $x = e^{-x}$ en [0, 1]
 - d.) $x^5 x + 1 = 0$ en [-2, -1]
 - e.) sen(x) x = 0 en [-1, 1]
- 4.2 Verifique que las siguientes funciones tienen un único punto fijo en el intervalo dado.
 - a.) $g(x) = (x^2 1)/3$ en el intervalo [-1, 1].
 - b.) $g(x) = 2^{-x}$ en [1/3,1]
- **4.3** Repita la parte 1.) del ejemplo (4.9) con $g(x) = (x^3 1)/4$ en [-0.5, 0].
- **4.4** Considere $g(x) = 2^{-x}$.
 - a.) ¿Podría encontrar una constante positiva k < 1 tal que $|g'(x)| \le k \ \forall x \in [1/3, 1]$?
- b.) ¿Se puede garantizar que la iteración de punto fijo, iniciando en cualquier $x_0 \in [1/3, 1]$, converge al único punto fijo de g en el intervalo [1/3, 1]?.
- **4.5** Considere el problema de punto fijo $x = 0.5 (\operatorname{sen}(x) + \cos(x))$. Determine un intervalo [a, b] dónde la iteración de punto fijo converge sin importar la elección de la aproximación inicial $x_0 \in [a, b]$. Debe justificar su respuesta.
- **4.6** Usando la implementación, aplique iteración de punto fijo para resolver el problema $x = (2x^3 2)/(3x^2 3)$ tomando $x_0 = 1.2$. Hay algo muy extraño pasando aquí. ¿Qué es?
- **4.7** Considere el problema de punto fijo $x = e^{-x}$. Muestre que la iteración de punto fijo converge para cualquier $x_0 > 0$.
- **4.8** Muestre que la función $g(x) = \frac{1}{8}[0.5x + 0.1\cos(8x + 1) + 0.5]$ tiene un único punto fijo en [0.5, 1] y además que la iteración de punto fijo converja para todo $x_0 \in [0.5, 1]$.
- **4.9** Considere el problema de punto fijo $x = 3x 3x^2 + x^3$. Determine un intervalo [a, b] tal que la iteración de punto fijo converja a $x^* = 1$, para todo $x_0 \in [a, b]$. **Ayuda:** Haga una representación gráfica de g, g' y 1.

4.10 (**Dinámica de poblaciones**) En el estudio de las poblaciones (por ejemplo de bacterias), la ecuación x = xR(x) establece un vínculo entre el número de individuos en una generación X y el número de individuos en la siguiente generación. La función R(x) modela la tasa de cambio de la población considerada.

Llamemos $\phi(x) = xR(x)$. La dinámica de una población se define por el proceso iterativo

$$x_k = \phi(x_{k-1})$$
 con $k \ge 1$,

donde x_k representa el número de individuos presentes k generaciones más tarde de la generación x_0 inicial. Por otra parte, los estados estacionarios (o de equilibrio) x^* de la población considerada son las soluciones de un problema de punto fijo

$$x^* = \phi(x^*),$$

Vamos a usar el modelo "predador-presa con saturación": $R(x) = \frac{rx}{1 + (x/K)^2}$ con r = 3 y K = 1

- Graficar la función $\phi(x) = xR(x)$ con $x \in [0,5]$, junto con la función y = x (para la función y = x usar **curve(1*** x, \ldots)). Además usar **abline()** para los ejes.
- De acuerdo a la gráfica, elija una valor inicial x_0 cerca del punto fijo donde la función ϕ se empieza a estabilizar y obtenga la aproximación a este punto fijo usando el programa que ya implementamos.

4.3 El método de Bisección

Este es uno de los métodos más sencillos y de fácil intuición, para resolver ecuaciones en una variable. Se basa en el Teorema de los Valores Intermedios, el cual establece que toda función continua f en un intervalo cerrado [a,b] ($f \in C[a,b]$) toma todos los valores que se hallan entre f(a) y f(b). Esto es, que todo valor y=c entre f(a) y f(b) es la imagen de al menos un valor x_0 en el intervalo [a,b], o sea $c=f(x_0)$.

En caso de que f(a) y f(b) tengan signos opuestos (es decir, $f(a) \cdot f(b) < 0$), la imagen y = 0 sería un valor intermedio entre f(a) y f(b), por lo que con certeza existe un x^* en [a,b] que cumple $f(x^*) = 0$. De esta forma, se asegura la existencia de al menos una solución de la ecuación f(x) = 0.

El método consiste en lo siguiente: Supongamos que en el intervalo [a,b] hay un cero x^* de f. Calculamos el punto medio m = (a+b)/2 del intervalo [a,b]. A continuación calculamos f(m). En caso de que f(m) sea igual a cero, ya hemos encontrado la solución buscada. En caso de que no lo sea, verificamos si f(m) tiene signo opuesto al de f(a). Se redefine el intervalo [a,b] como [a,m] o [m,b] según se haya determinado en cuál de estos intervalos ocurre un cambio de signo. A este nuevo intervalo se le aplica el mismo procedimiento y así, sucesivamente, iremos encerrando la solución en un intervalo cada vez más pequeño, hasta alcanzar la precisión deseada.

En la siguiente figura se ilustra el procedimiento descrito.

El procedimiento construye tres sucesiones a_n , b_n y m_n ,

• Estimación del error: El error exacto en el k-ésimo paso es $|m_k - x^*|$. Geométricamente se puede ver que esto es menos que la mitad del intervalo $[a_k, b_k]$, es decir

$$|m_k - x^*| \le \frac{b_k - a_k}{2} = \frac{b - a}{2^k}$$

Estimación del error en el *k*-ésimo paso:

$$|m_k - x^*| \le \frac{b_k - a_k}{2}$$

o también

 $|m_k - x^*| \le \frac{b - a}{2^k}$

Figura 4.5: Estimación del error en bisección.

Ejemplo 4.11

Aplicar el método de bisección para aproximar la solución de la ecuación $x^2 = \cos(x) + 1$ en [1,2]

• Debemos reescribir la ecuación como $x^2 - \cos(x) - 1 = 0$. En este caso, $f(x) = x^2 - \cos(x) - 1$. Podemos hacer una gráfica de esta función y observar que esta función tiene un cero en el intervalo [1,2] pues, efectivamente $f(1) \cdot f(2) = -1.84575... < 0$.

Calculemos ahora a_k , b_k y m_k así como la estimación del error.

$$k=1$$
: $a_1=1$, $b_1=2$ y $m_1=\frac{a_1+b_1}{2}=1.5$. Error ≤ 0.5

$$k = 2$$
: $f(a_1) \cdot f(m_1) = -0.637158 < 0$,

$$a_2 = 1$$
, $b_2 = 1.5$ y $m_2 = \frac{a_2 + b_2}{2} = 1.25$. Error ≤ 0.25

$$k = 3$$
: $f(a_2) \cdot f(m_2) = -0.13355064 < 0$,

$$a_3 = 1$$
, $b_3 = 1.25$ y $m_3 = \frac{a_3 + b_3}{2} = 1.125$. Error ≤ 0.125

$$k=44$$
: $m_{_{44}}=1.17650193990184$.

Error
$$\leq 2.84 \times 10^{-14}$$

• Así, $m_{44} = 1.17650193990184$ aproxima el cero de $f(x) = x^2 - \cos(x) - 1$ en [1,2] con un error $\leq 2.84 \times 10^{-14}$

Podemos poner estos cálculos (junto con otros adicionales) en una tabla

k	a_k	b_k	m_k	Error Estimado
1	1	2	1.5	0.5
2	1	1.5	1.25	0.25
3	1	1.25	1.125	0.125
4	1.125	1.25	1.1875	0.0625
•••	•••			
44	1.176501939	1.176501939	1.176501939	2.84217×10^{-14}

Algoritmo e Implementación.

En la implementación del método de bisección, en vez de usar f(a)f(m) < 0 ponemos sgn(f(a)) <> sgn(f(m)), de esta manera nos ganamos una multiplicación (que es claramente innecesaria).

En bisección es mejor calcular m como m = a + (b - a)/2. Con esto somos consistentes con la estrategia general (en análisis numérico) de calcular una aproximación agregando una corrección a la aproximación anterior. Además ganamos algo en precisión.

El criterio de parada es: Detenerse en m_k si $\frac{b_k - a_k}{2} = \frac{b - a}{2^k} \le$ tolerencia

```
Algoritmo 4.2: Algoritmo de Bisección.
```

13 return m

```
Datos de entrada: a, b, tol y f continua en [a,b] con f(a)f(b) < 0.
                  Salida: Una aproximación m de un cero x^* de f en arrow ar
    1 k = 0;
    2 repeat
                                       m = a + 0.5(b - a);
                                       if f(m) = 0 then
     4
                                                             return m; break
                                        dx = (b - a)/2;
                                       if Sgn(f(a)) \ll Sgn(f(m)) then
     7
                                                             b = m;
     8
                                        else
                                                           a = m
 10
                                        k = k + 1
12 until dx \leq tol;
```

Implementación en R.

En esta implementación usamos **formatC** para formater de manera limpia el resultado de cada iteración.

Código R 4.2: Método de Bisección

```
biseccion = function(f, xa, xb, tol){
 if( sign(f(xa)) == sign(f(xb))){ stop("f(xa) y f(xb) tienen el mismo signo")}
 # a = min(xa,xb)
 \# b = max(xa,xb)
 a = xa; b = xb
 k = 0
 #Tabla imprimir
 tabla = data.frame(k="","a"=a, "b"=b, "m"=a + 0.5*(b-a), "errorEstimado"=(b-a)/2)
  repeat{
   m = a + 0.5*(b-a)
   if( f(m)==0 ){ cat("Cero de f en [",xa,",",xb,"] es: ", m ) }
   if( sign(f(a)) != sign(f(m)) ){
     b = m
   } else { a = m }
   dx = (b-a)/2
   # cada iteración es una nueva fila en la tabla
   tabla =rbind(tabla,data.frame(k="","a"=a, "b"=b, "m"=m, "errorEstimado"=dx))
   k = k+1
   #until
   if( dx < tol ){
     cat("Cero de f en [",xa,",",xb,"] es approx: ", m, "con error <=", dx,"\n")
     cat("-----\n\n")
     break;
   }
 } #repeat
 #imprimir tabla
colnames(tabla)=c("k", "a","b", "m", "(b-a)/2^k")
print(tabla,right=F) #nombres alineados a la izquierda
}
## Pruebas
f = function(x) x - cos(x)
curve(f, -2,2); abline(h=0, v=0) #gráfico para decidir un intervalo
biseccion(f, 0.5, 0.8, 0.000001)
```

```
2
    3
    0.72500000000000 0.8000000000000 0.7250000000000 3.750000000000e-02
    0.72500000000000 0.76250000000000 0.76250000000000 1.8750000000000e-02
4
5
    0.725000000000000 \ 0.743750000000000 \ 0.7437500000000000 \ 9.37500000000002e-03
6
    0.734375000000000 0.743750000000000 0.734375000000000 4.6875000000001e-03
7
    0.739062500000000 0.743750000000000 0.739062500000000 2.3437499999998e-03
    0.73906250000000 0.74140625000000 0.741406250000000 1.1718749999999e-03
8
9
    0.739062500000000 0.740234375000000 0.740234375000000 5.85937500000022e-04
    0.739062500000000 0.739648437500000 0.739648437500000 2.92968750000011e-04
10
11
    0.739062500000000 0.739355468750000 0.739355468750000 1.46484374999978e-04
12
    0.739062500000000 0.739208984375000 0.739208984375000 7.32421874999889e-05
    0.739062500000000 0.739135742187500 0.739135742187500 3.66210937500222e-05
13
14
    0.739062500000000 0.739099121093750 0.739099121093750 1.83105468750111e-05
15
    0.739080810546875 0.739099121093750 0.739080810546875 9.15527343753331e-06
    0.739080810546875 0.739089965820313 0.739089965820313 4.57763671879441e-06
16
    0.739080810546875 0.739085388183594 0.739085388183594 2.28881835939720e-06
17
18
    0.739083099365235 0.739085388183594 0.739083099365235 1.14440917969860e-06
19
    0.739084243774414 0.739085388183594 0.739084243774414 5.72204589821546e-07
```

La implememntación del paquete **pracma** no usa como criterio de parada una tolerancia, más bien hace bisección de los intervalos hasta que el punto medio coincida con alguno de los extremos del intervalo actual (o que se completen 100 iteraciones).

Código R 4.3:bisect: implememntación del paquete "pracma"

```
bisect <- function(f, a, b, maxiter = 100, tol = NA)</pre>
# Bisection search, trimmed for exactness, not no. of iterations
{
    if (!is.na(tol)) warning("Deprecated: Argument 'tol' not used anymore.")
  if (f(a)*f(b) > 0) stop("f(a) and f(b) must have different signs.")
  x1 <- min(a, b); x2 <- max(a,b)
  xm < - (x1+x2)/2.0
  n <- 1
  while (x1 < xm \&\& xm < x2 \&\& n < maxiter) {
    n < - n+1
    if (sign(x1) != sign(x2) \&\& x1 != 0 \&\& x2 != 0) {
        xm < -0.0
        if (f(xm) == 0.0) \{x1 <- x2 <- xm; break\}
    if (sign(f(x1)) != sign(f(xm))) {
      x2 <- xm
    } else {
      x1 <- xm
    }
    xm < - (x1 + x2) / 2.0
  }
```

```
return(list(root=xm, f.root=f(xm), iter=n, estim.prec=abs(x1-x2)))
}
```

Podemos usar el método bisect() del paquete pracma de la siguiente manera,

Código R 4.4:bisect() (paquete "pracma")

```
#install.packages(pracma)
require(pracma)

f = function(x) x-cos(x)
bisect(f, 0.5, 0.8,35)

#$root
#[1] 0.739085133207846

#$f.root
#[1] -1.22426513371465e-11

#$iter
#[1] 35

#$estim.prec
#[1] 1.74622538651192e-11
```

Orden de convergencia y número de iteraciones.

Sea x^* es el único cero de f en [a,b]. En la k-ésima iteración, al aproximar x^* con m_k se tiene que

$$|m_k - x^*| \le \frac{b - a}{2^k}, \quad k = 1, 2, \dots$$

entonces,

• Si tenemos una *tolerancia* $\delta > 0$, y si queremos cortar la sucesión m_n en la k-ésima iteración m_k de tal manera que $|m_k - x^*| \le \delta$ entonces podemos estimar el número k de iteraciones con

$$|m_k - x^*| \le \frac{b-a}{2^k} \le \delta$$

Tomando logaritmo natural a ambos lados de $\frac{b-a}{2^k} \le \delta$ y despejando k obtenemos

$$k \ge \ln\left(\frac{b-a}{\delta}\right)/\ln 2$$
 iteraciones

excepto que en algún momento $f(m_i) = 0$ para algún j < k

De aquí podemos deducir que si |b-a|<1 y si $\delta=2^{-52}$ entonces el número de iteraciones necesarias para alcanzar esta tolerancia δ es como mínimo k=52 pues

$$k \ge \ln\left(\frac{1}{2^{-52}}\right) / \ln 2 = 52 \frac{\ln(2)}{\ln(2)} = 52$$

• Observe que $2^{-3.4} \approx 10^{-1}$ y en general $2^{-3.4 \cdot d} \le 10^{-d}$. Como $|m_k - x^*| \le \frac{b-a}{2^k}$, esto nos dice que si $b-a \le 1$ entonces bisección se gana un dígito decimal cada 3.4 iteraciones aproximadamente.

Informalmente,
$$|m_k - x^*| \le \frac{b-a}{2^k}$$
 y si $b-a \le 1$, entonces,

cada 3.4 iteraciones, $|m_k - x^*| \le 2^{-3.4d} \le 10^{-d}$, d = 1, 2, 3, ...

Ejemplo 4.12

Al aplicar el algoritmo de bisección a una función continua f con un único cero en el intervalo [-2,1], si queremos que el error de aproximación sea $\leq 0.00005 = 0.5 \times 10^{-4}$, el número k de iteraciones debe cumplir

$$k \ge \ln\left(\frac{3\cdot 10^4}{0.5}\right) / \ln 2 = 15.873$$

por lo que deben realizarse por lo menos 16 iteraciones. Verifíquelo!

- **a.)** El método de bisección, la única información que usa es el signo de f. El número de iteraciones no depende, en general, de la función f, depende del intervalo y la tolerancia δ . La única manera de que el número de iteraciones sea menor es que se dé el caso $f(m_i) = 0$, para algún j < k.
- **b.**) Aunque el método de bisección es *robusto* al nivel de la precisión de la máquina, puede pasar que la aproximación *no* quede numéricamente bien determinada si la función es muy "aplanada".

4.4 El Método de Newton

El método de Newton (llamado a veces método de Newton-Raphson²) es uno de los métodos que muestra mejor velocidad de convergencia llegando (bajo ciertas condiciones) a duplicar, en cada iteración, los decimales exactos.

Si f es una función tal que f, f' y f'' existen y son continuas en un intervalo I y si un cero x^* de f está en I, se puede construir una sucesión $\{x_n\}$ de aproximaciones, que converge a x^* (bajo ciertas condiciones) de la manera que se describe a continuación:

Si x_0 está *suficientemente cercano* al cero x^* , entonces supogamos que h es la *corrección* que necesita x_0 para alcanzar a x^* , es decir, $x_0 + h = x^*$ y $f(x_0 + h) = 0$.

Como $f'(x) \approx \frac{f(x_0 + h) - f(x_0)}{h}$ si h es cercano a 0, entonces

$$0 = f(x_0 + h) \approx f(x_0) + h f'(x_0)$$

entonces 'despejamos' la corrección h,

$$h \approx -\frac{f(x_0)}{f'(x_0)}$$

De esta manera, una aproximación *corregida* de x_0 sería

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Aplicando el mismo razonamiento a x_1 obtendríamos la aproximación $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ y así sucesivamente.

Geométricamente se vería así: Partiendo de una aproximación x_0 de un cero x^* de f, entonces x_1 es la intersección, de la recta tangente a f en x_0 , con el eje X. Cuando se ha calculado una aproximación x_n , la siguiente aproximación x_{n+1} se obtiene hallando la intersección con el eje X de la recta tangente en el punto $(x_n, f(x_n))$. El proceso se muestra en las figuras (4.6), (4.7) y (4.8).

La intersección de la tangente con el eje X se obtiene resolviendo y = 0. Como la ecuación de una recta de pendiente m que pasa por (x_0, y_0) es $y = m(x - x_0) + y_0$ entonces la ecuación de la recta tangente en (x_n, y_n) es

$$y = f'(x_n)(x - x_n) + y_n$$

En la literatura inglesa se acostumbra llamar al método de Newton, método de Newton-Raphson. El método de Newton aparece en su libro 'Method of Fluxions" escrito en 1671 pero publicado hasta 1736. El método fue publicado por primera vez en un libro de J. Raphson en 1690. Se dice que Raphson tuvo acceso al manuscrito de Newton. En todo caso ni Newton ni Raphson mencionan las derivadas. El primero que dio una descripción del método de Newton usando derivadas fue T. Simpson en 1740.

Al despejar el valor de x, se obtiene x_{n+1} :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

En general, en la fórmula $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, $f(x_n)$ no presenta grande variaciones mientras que $f'(x_n)$ puede variar fuertemente: Si $f'(x_n)$ es grande entonces la *corrección* $\frac{f(x_n)}{f'(x_n)}$ que se le aplica a x_n para aproximar el cero es pequeña. Por otro lado, si $f'(x_n)$ es pequeña entonces la corrección sería mayor por lo que aproximar un cero de f puede ser un proceso lento o a veces imposible.

Figura 4.6: Obteniendo x_1

Figura 4.7: Obteniendo $x_1, x_2, ...$

Figura 4.8: Representación simplificada (el parecido con "punto fijo" no es causal)

Estimación del error.

El método de Newton se puede ver como un problema de iteración de punto fijo si tomamos

$$g(x) = x - \frac{f(x)}{f'(x)}$$

de esta manera $x_{k+1} = g(x_k)$ se convierte en $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$.

De acuerdo a la subsección 4.2, si $g'(x) \approx 0$ en un entorno alrededor de x^* , la diferencia $|x_{k+1} - x_k|$ sería un buen estimador del error. No sería bueno si g' se acerca a 1.

Ejemplo 4.13

La ecuación $x^2 - \cos(x) - 1 = 0$ tiene una solución x^* en [1,2]. Debemos tomar una aproximación inicial, digamos $x_0 = 1.5$.

 $f(x) = x^2 - \cos(x) - 1$ y $f'(x) = 2x + \sin(x)$. Entonces *el esquema iterativo* es

$$x_{n+1} = x_n - \frac{x_n^2 - \cos(x_n) - 1}{2x_n + \sin(x_n)}$$

$$n = 0$$
: $x_0 = 1.5$

$$n = 1$$
: $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1.5 - \frac{f(1.5)}{f'(1.5)} = 1.204999.$

Error
$$\leq |x_1 - x_0| = 0,295$$

$$n = 2$$
: $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1.204999 - \frac{f(1.204999)}{f'(1.204999)} = 1.176789.$

Error
$$\leq |x_2 - x_1| = 0,0282$$

$$n = 3$$
: $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.176789 - \frac{f(1.176789)}{f'(1.176789)} = 1.1765019.$

Error
$$\leq |x_3 - x_2| = 0,000287$$

Podemos tabular esta información en una tabla agregando más iteraciones. Si usamos Excel obtenemos

x_{n+1}	$ x_{n+1}-x_n $
1.20499955540054	0.295000445
1.17678931926590	0.028210236
1.17650196994274	0.000287349
1.17650193990183	3.004×10^{-8}
1.17650193990183	4.440×10^{-16}

Compare con la solución $x^* = 1.17650193990183$ (exacta en sus catorce decimales) y observe como, aproximadamente, se *duplican* los decimales correctos desde la segunda iteración.

Algunas veces el método de Newton no converge. En las gráficas de la figura que sigue se muestran dos situaciones donde no hay convergencia.

Figura 4.9: Situaciones donde el método de Newton no converge

Convergencia global. La convergencia del método de Newton *es local*, es decir, como aproximación inicial de debe elegir un x_0 que este "suficientemente cercano" a x^* . Sin embargo hay teoremas que dan criterios para la convergencia global (para ciertos tipos de funciones).Por ejemplo, si en el intervalo I = [a, b] f tiene un único cero y si f' y f'' conservan el signo, entonces una buena aproximación inicial es cualquier $x_0 \in [a, b]$ para el cual $f(x_0)f''(x_0) > 0$ (ver figura).

En el ejemplo (4.13), $x_0 = 1.5$ fue una buena aproximación pues x_0 está en [1,2] y en este intervalo f' y f'' son positivas y además f(1.5)f''(1.5) > 0.

Ejemplo 4.14

Uno de los peligros del método de Newton es *no tomar* una aproximación inicial x_0 suficientemente cercana a x^* . Para ver esto consideremos la ecuación $x^{20} - 1 = 0$, x > 0. Esta ecuación tiene una única solución $x^* = 1$. El esquema iterativo es

$$x_{n+1} = \frac{19}{20}x_n + \frac{1}{20x_n^{19}}$$

Si tomamos la aproximación inicial $x_0 = 0.5$ entonces

$$x_n$$

$$x_1 = 26214.9$$

$$x_2 = 24904.1$$

$$x_3 = 23658.9$$

$$x_4 = 22476.$$

$$x_5 = 21352.2$$
...
$$x_{200} = 1.01028$$

De hecho, si n es grande entonces $x_{n+1} \approx \frac{19}{20} x_n$, es decir, la corrección es algo pequeña (casi deja igual a x_{n+1}) y toma unas 200 iteraciones llegar cerca de la raíz $x^* = 1$.

Si tomamos la aproximación inicial $x_0 = 0.92$ entonces las cosas cambian dramáticamente

x_n		
x_1	=	1.11778
x_2	=	1.06792
x_3	=	1.02887
x_4	=	1.00654
x_5	=	1.00039
x_6	=	1.0000014308157694
<i>x</i> ₇	=	1.0000000000194484

Ejemplo 4.15 (Ciclos)

Consideremos la ecuación $sen(x)=0, |x|<\frac{\pi}{2}$. Esta ecuación solo tiene la solución $x^*=0$. El esquema iterativo es

$$x_{n+1} = x_n - \tan(x_n)$$

Si tomamos x_0 tal que $tan(x_0) = 2x_0$ entonces

$$x_1 = x_0 - \tan(x_0) = -x_0$$

 $x_2 = -x_0 - \tan(-x_0) = x_0$

es decir, entramos en un ciclo (figura 4.10). Observe que

$$tan(x_0) = 2x_0 \Longrightarrow x_0 = 1.16556...$$

Figura 4.10: Ciclo

Ejemplo 4.16 (Sucesión divergente).

Si a la ecuación $xe^{-x}=0$ le aplicamos el método de Newton con $x_1=2$, obtenemos una sucesión divergente. La sucesión se aleja rápidamente de la raíz $x^*=0$. En cambio, si ponemos $x_0=-0.4$, obtenemos una rápida convergencia.

$x_0 = 2$	Error	$x_0 = -0.4$	Error
x_n	estimado	x_n	estimado
4	2	-0.114285714	0.285714286
5.333333333	1.333333333	-0.011721612	0.102564103
6.564102564	1.230769231	-0.000135804	0.011585807
7.743826066	1.179723502	-1.84403×10^{-8}	0.000135786
8.892109843	1.148283777	-3.40045×10^{-16}	1.84403×10^{-8}
10.01881867	1.126708829	-1.47911×10^{-31}	3.40045×10^{-16}

Algoritmo e Implementación.

```
Figura 4.11: Método de Newton
```

```
Datos de entrada: f \in C^2[a, b], x_0, tol y maxItr.
Salida: Si la iteración converge, una aproximación x_n de un cero de f en [a, b] y una estimación del error.
```

```
1 k = 0;

2 x_k = x_0;

3 repeat

4 dx = \frac{f(x_k)}{f'(x_k)};

5 x_{k+1} = x_k - dx;

6 x_k = x_{k+1};

7 k = k+1;

8 until dx \le tol \ or \ k \le maxItr;

9 return x_k y dx
```

Implementación.

Una primera implementación recibe a la función f y a su derivada como parámetros (por nombre). Una segunda implementación usa la función \mathbf{D} () de la base de \mathbf{R} , para obtener la derivada. En el capítulo que sigue, usamos "derivación numérica" para implementar una versión de propósito general.

Código R 4.5: Método Newton-Raphson.

```
newton1 = function(f, fp, x0, tol, maxiter){
    k = 0
# Imprimir estado
    cat("-----\n")
    cat(formatC( c("x_k"," f(x_k)","Error est."), width = -20, format = "f", flag = " "), "\n")
    cat("----\n")
```

```
repeat{
    correccion = f(x0)/fp(x0)
    x1 = x0 - correccion
    dx = abs(x1-x0)
    # Imprimir iteraciones
    cat(formatC(c(x1,f(x1),dx),digits=15,width=-15,format="f",flag=""),"\n")
    x0 = x1
    k = k+1
    # until
    if(dx <= tol || k > maxiter ) break;
  }
  cat("-----\n")
  if(k > maxiter){
    cat("Se alcanzó el máximo número de iteraciones.\n")
    cat("k = ", k, "Estado: x = ", x1, "Error estimado <= ", correccion)
  } else {
    cat("k = ", k, " x = ", x1, " f(x) = ", f(x1), " Error estimado <= ", correccion) }
}
## --- Pruebas
  f = function(x) x - cos(x)
  fp = function(x) 1+sin(x)
  options(digits = 15)
  newton1(f,fp, 0, 0.0000005, 10)
#
                           f(x_k)
                                              Error est.
    1.00000000000000 0.459697694131860 1.000000000000000
#
    0.750363867840244 \quad 0.018923073822117 \quad 0.249636132159756
    0.739112890911362 \quad 0.000046455898991 \quad 0.011250976928882
#
#
    0.739085133385284 \quad 0.000000000284721 \quad 0.000027757526078
    0.739085133215161 0.000000000000000 0.00000000170123
#
     k = 5 x = 0.739085133215161 f(x) = 0 Error estimado \leq 1.70123407014033e-10
 ## --- Comentario: con 15 decimales:
 **x = 0.739085133215161 \text{ y } f(0.739085133215161) = 5.55111512312578e-16
```

En la implementación que sigue, se usa la función **Deriv()**, del paquete **Deriv**, para calcular la derivada de manera simbólica. En este caso, la implementación recibe la función f por nombre.

Código R 4.6: Método Newton-Raphson II

```
newtonraphson = function(fun, x0, tol = 0.000000005, maxiter = 100){}
  numiter = 0
  fp = Deriv(fun) # fun' respecto a x
  correccion = -fun(x0)/fp(x0)
  #Una tabla para imprimir la corrida del programa
  tabla = data.frame(A=" ", B= x0, ErrorEstimado=correccion)
  while (abs(correccion) >= tol && numiter <= maxiter) {</pre>
   numiter = numiter + 1
   # "correccion" podría accidentalmente convertirse en NA (dato no disponible)
   if (fp(x\theta) == \theta \mid is.na(correccion)) stop("Problemas en la corrección")
   x1 = x0 + correccion
   correccion = -fun(x1)/fp(x1)
   x0 = x1
   tabla =rbind(tabla,data.frame(A=" ", B= x0, ErrorEstimado=correccion))
  if (numiter > maxiter){ warning("Se alcanzó el máximo número de iteraciones.")
    cat("Estado:\n")
    cat("k = ", k, "x = ", x1, "f(x) = ", fun(x1), "Error estimado <= ", correccion, "\n\n")
  } else {
   #return(list(cero = x0, fun.cero = fun(x0), numeroiter=numiter, error.est = correccion))
   colnames(tabla)=c("k", "xk"," -fun(x1)/fp(x1)")
   print(tabla,right=F) #nombres alineados a la derecha
 }
}
## --- Pruebas
f = function(x) x - cos(x) # definir función f
newtonraphson(f, 0, 0.00000005, 10)
 k xk
                        -fun(x1)/fp(x1)
   0.00000000000000 1.000000000000e+00
1
   1.000000000000000 -2.49636132159756e-01
   0.750363867840244 -1.12509769288822e-02
3
   0.739112890911362 -2.77575260776869e-05
   0.739085133385284 -1.70123407014033e-10
```

En el capítulo que sigue, veremos la opción cambiar la derivada simbólica, por la derivada numérica.

Ejercicios

4.11 (**Raíz cuadrada**) Como \sqrt{A} es una solución de la ecuación $x^2 - A = 0$, podemos usar el método de Newton para estimar \sqrt{A} (figura 4.12). Como veremos más adelante, la sucesión converge para cualquier $x_0 > 0$

Figura 4.12: La sucesión converge a la raíz para cualquier valor $x_0 > 0$

- a.) Verifique que la fórmula de iteración para obtener la estimación de la raíz cuadrada es $x_n = 0.5\left(x_{n-1} + \frac{A}{x_{n-1}}\right)$.
- b.) Estime $\sqrt{2}$ y $\sqrt{1000999}$ con al menos cinco decimales exactos.
- **4.12** Aproxime $\sqrt[3]{0.00302}$ con al menos cinco cifras significativas
- **4.13** Aproxime $\sqrt[10]{0.00302}$ con al menos cinco cifras significativas
- **4.14** Dé una fórmula iterativa para aproximar $\sqrt[N]{a}$ con a > 0.
- **4.15** Resuelva $x^3 = 0$ usando $x_0 = -0.2$. Resuelva la misma ecuación usando bisección con el intervalo [-0.2, 0.1]
- **4.16** Resuelva $f = x^5 100 * x^4 + 3995 * x^3 79700 * x^2 + 794004 * x 3160075$ usando $x_0 = 17$. Resuelva usando bisección con [17,22.2]
- **4.17** Resuelva $x^3 2x 5 = 0$. Esta ecuación tiene valor histórico: fue la ecuación que usó John Wallis para presentar por primera vez el método de Newton a la academia francesa de ciencias en el siglo XV.
- **4.18** Resuelva $e^{3(x-1)} \ln(x-1)^2 + 1 = 0$ con al menos cinco cifras significativas.
- **4.19** Resuelva $e^{3x} \ln(x^2 + 1) 30 = 0$ con al menos cinco cifras significativas.
- **4.20** Considere la ecuación $x = u \ln(u)$ con $x \ge 0$.
 - a.) Aplique el método de Newton a f(u) y obtenga la expresión para u_{n+1} .
 - b.) Resuelva la ecuación f(u) = 0 con $u_0 = 0.5$
- **4.21** x = 2 es un cero del polinomio $P(x) = -1536 + 6272 x 11328 x^2 + 11872 x^3 7952 x^4 + 3528 x^5 1036 x^6 + 194 x^7 21 x^8 + x^9$. Aproxime esta raíz con una aproximación inicial adecuada.
- **4.22** x = 1 es un cero del polinomio $P(x) = 2 19x + 81x^2 204x^3 + 336x^4 378x^5 + 294x^6 156x^7 + 54x^8 11x^9 + x^{10}$. Aproxime esta raíz con una aproximación inicial adecuada.
- **4.23** Para las siguientes ecuaciones, haga una corrida de su programa **newtonraphson()** para las aproximaciones iniciales que se dan. ¿Es posible encontrar otra aproximación inicial para obtener convergencia eficiente?

a.) (Sucesión oscilante y divergente). $arctan(x) = 0 con x_0 = 1.5$

Figura 4.13: $f(x) = \arctan(x)$

b.) (Sucesión rápidamente convergente). $x^2 - \cos(x) - 1 = 0$. con $x_0 = 6$

Figura 4.14:
$$f(x) = x^2 - \cos(x) - 1$$

c.) Sucesión Periódica (cíclica). $x^3 - x - 3 = 0$ con $x_0 = 0$

Figura 4.15:
$$f(x) = x^3 - x - 3$$

d.) (Convergencia lenta). $(x-1)^3 = 0 \text{ con } x_0 = -2$

4.24 Sea
$$f(x) = x^3 - 2\cos(x) - 3$$
. Según el teorema de Taylor

$$f(\alpha) = f(x) + f'(x)(\alpha - x) + \frac{1}{2}(\alpha - x)^2 f''(\xi), \text{ con } \xi \text{ entre } x \text{ y } \alpha$$

Si $\alpha = \pi/4$ y x = 1, calcule ξ .

4.25 Considere la función
$$f(x) = \operatorname{sgn}(x-1)\sqrt{|x-1|}$$
 donde $\operatorname{sgn}(u) = \begin{cases} 1 & \text{si } u > 0 \\ 0 & \text{si } u = 0 \end{cases}$ El gráfico de la función es -1 si $u < 0$

Figura 4.16: $f(x) = \text{sgn}(x-1)\sqrt{|x-1|}$

Claramente $x^* = 1$ es un cero de f. Use el método de Newton e intente aproximar este cero. Comente el resultado de sus experimentos.

Un método híbrido: Newton-Bisección.

Si el método de Newton falla (en algún sentido) en una iteración, podemos usar bisección para dar un pequeño salto y regresar al método de Newton lo más pronto posible. La idea es tener un método confiable que eventualmente sea un poco más rápido que el método de bisección. En realidad esta estrategia, llevada a mayor escala, es la que se usa en los algortimos de los programas computacionales avanzados.

Supongamos que f(a)f(b) < 0. Sea $x_0 = a$ o $x_0 = b$. En cada iteración una nueva aproximación x' es calculada y a y b son actualizados como sigue

- **a.)** si $x' = x_0 \frac{f(x_0)}{f'(x_0)}$ cae en [a, b] lo aceptamos, sino usamos bisección, es decir $x' = \frac{a+b}{2}$.
- **b.)** Actualizar: a' = x', b' = b o a' = a, b' = x', de tal manera que $f(a')f(b') \le 0$.

Para garantizar que $x' = x_0 - \frac{f(x_0)}{f'(x_0)} \in [a, b]$, no debemos usar directamente este cálculo para evitar la división por $f'(x_0)$ (que podría causar problemas de "overflow" o división por cero). Mejor usamos un par de desigualdades equivalentes.

Observemos que $x_{n+1} \in \,]a_n,b_n[\,\, \text{si y sólo si}\,\,$

$$a_n < x_n - \frac{f(x_n)}{f'(x_n)} < b_n$$

entonces

• Si $f'(x_n) > 0$

$$(a_n - x_n)f'(x_n) < -f(x_n)$$
 y $(b_n - x_n)f'(x_n) > -f(x_n)$

• Si f'(x) < 0

$$(a_n - x_n)f'(x_n) > -f(x_n) \text{ y } (b_n - x_n)f'(x_n) < -f(x_n)$$

En este algoritmo, se pasa a bisección si $x' = x_0 - \frac{f(x_0)}{f'(x_0)}$ sale del intervalo, pero esto no indica necesariamente que la iteración de Newton tenga algún tipo de problema en ese paso. Lo que si es importante es que se podría escoger un intervalo [a,b] hasta con extremos relativos (que podrían ser mortales para el método de Newton) y el tránsito sería seguro de todas formas.

Un algoritmo similar aparece en el libro "Numerical Recipes in C. The Art of Scientific Computing", [12] (pág. 366). En la implementación, se pasa a bisección si x' sale del intervalo o si la reducción del intervalo no es suficientemente rápida.

Ejemplo 4.17

Consideremos la función $f(x) = 0.2 \operatorname{sen}(16x) - x + 1.75$ Esta función tiene un cero en [1,2]. Así que a = 1 y b = 2. Iniciamos con $x_0 = 1$. La tabla (4.3) muestra el método de Newton y Híbrido Newton-bisección aplicado a esta ecuación. El método de Newton diverge mientras que el híbrido aproxima la solución adecuadamente.

n	Newton	Error	Híbrido	Error	Método
	x_i	Estimado	x_i	Estimado	Usado
1	1.170357381	0.170357381	1.17035738114819	0.170357381	Newton
2	0.915271273	0.255086108	1.58517869057409	0.414821309	Bisección
3	1.310513008	0.395241735	1.79258934528705	0.207410655	Bisección
4	1.539337071	0.228824064	1.76166924922784	0.030920096	Newton
5	1.476007274	0.063329797	1.76306225245136	0.001393003	Newton
6	1.565861964	0.08985469	1.76306130340890	9.49042×10^{-7}	Newton
	•••				
50	-2873.507697				
51	-1720.319542				

Tabla 4.3: Método de Newton e híbrido Newton-bisección aplicado a $0.2 \operatorname{sen}(16x) - x + 1.75 = 0$ en [1,2].

Ejercicio 4.1 ■ Implementar la función hibridoNewtonBiseccion(f,a,b, tolerancia, maxiteraciones)

4.5 Método de la Secante

Aunque el método de la secante es anterior³ al método de Newton, a veces se hace una derivación de este método basado en la iteración de Newton cambiando la derivada $f'(x_k)$ por una aproximación, lo cual puede ser muy bueno pues para algunas funciones, como las definidas por integrales o una serie, en los casos en los que la derivada no es fácil de obtener. Aquí vamos a proceder igual que antes, con una idea geométrica. El método de la secante tiene orden de convergencia de al menos p = 1.61803 pero en un sentido que haremos más preciso al final de esta sección, este método es más rápido que el método de Newton.

Iniciando con *dos aproximaciones iniciales* x_0 y x_1 , en el paso k+1, x_{k+1} se calcula, usando x_k y x_{k-1} , como la intersección con el eje X de la recta (secante) que pasa por los puntos $(x_{k-1}, f(x_{k-1}))$ y $(x_k, f(x_k))$

Figura 4.17: Método de la secante

La recta que pasa por $(x_{k-1}, f(x_{k-1}))$ y $(x_k, f(x_k))$ tiene ecuación

$$y = \underbrace{\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}}_{\text{pendiente}} \cdot (x - x_k) + f(x_k)$$

La intersección con el eje *X* se obiene resolviendo:

$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} (x - x_k) + f(x_k) = 0$$

Despejando,

³El método de la secante ya era usando para calcular valores de la función seno en algunos textos Indios del siglo XV.

$$x = -f(x_k) \cdot \frac{(x_k - x_{k-1})}{(f(x_k) - f(x_{k-1}))} + x_k$$

Entonces, si $f(x_k) - f(x_{k-1}) \neq 0$, la aproximación x_{k+1} sería esta intersección con el eje X, es decir:

$$x_{k+1} = x_k - f(x_k) \cdot \frac{(x_k - x_{k-1})}{(f(x_k) - f(x_{k-1}))}$$

La expresión $\frac{(x_k-x_{k-1})}{\left(f(x_k)-f(x_{k-1})\right)}$ podría causar problemas de cancelación, pero como está multilicada por un valor posiblemente pequeño $f(x_k)$, eso produce una *corrección* sin problemas críticos mejor que si desarrollamos la fórmula.

El esquema iterativo es:

$$x_{k+1} = x_k - f(x_k) \cdot \frac{(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}, \ k \ge 1,$$

• Usualmente escogemos x_0 y x_1 de tal manera que el cero x^* que queremos aproximar esté entre estos números. Si la función f es dos veces diferenciable en un entorno de un cero simple x^* se garantiza que si x_0 y x_1 se escogen "suficientemente cercanos" a x^* , entonces el método converge a x^* .

En general, si x_0 y x_1 no están suficientemente cercanos a un cero, entonces puede pasar que haya intervalos $[x_n, x_{n-1}]$ (o $[x_{n-1}, x_n]$) sin un cero en ellos. Aún así el método puede ser que converja aunque no se garantiza que sea al cero buscado.

• Criterio de parada. Cuando el método de la secante converge, $|x_k - x_{k-1}|$ eventualmente se vuelve pequeño. Pero en general, $|x_k - x_{k-1}|$ se mantiene bastante más grande que $|x_k - x^*|$. En teoría, si $|f'(x)| \ge m > 0$ en un intervalo I que contenga a x_k y a x^* , la estimación del error se podría hacer con $\frac{|f(x_k)|}{m}$ En todo caso, tomando δ como tolerancia, el criterio de parada podemos usar es

$$|x_k - x_{k+1}| \le \delta (|x_{k+1}| + 1) \text{ y } |f(x_{k+1})| < \epsilon$$

junto con un número máximo de iteraciones. En particular incluir $|f(x_{k+1})| < \epsilon$, para un ϵ suficientemente pequeño, es muy adecuado como muestra el ejemplo **??** más adelante.

Ejemplo 4.18

Consideremos la ecuación $x^3 - 0.2x^2 - 0.2x - 1.2 = 0$. Esta ecuación tiene una solución en el intervalo [1, 1.5]. En realidad la solución es $x^* = 1.2$. Vamos a aplicar el método de la secante con $x_0 = 1$ y $x_1 = 1.5$.

$$x_0 = 1$$
, $x_1 = 1.5$

Calcular x_2 .

Calcular
$$x_2$$
.
 $x_2 = x_1 - f(x_1) \cdot \frac{(x_1 - x_0)}{f(x_1) - f(x_0)} = 1.1481481481481481$
Calcular x_3 .

Calcular
$$x_3$$
.
 $x_3 = x_2 - f(x_2) \cdot \frac{(x_2 - x_1)}{f(x_2) - f(x_1)} = 1.1875573334135374$

Calcular
$$x_4$$
.

$$x_4 = x_3 - f(x_3) \cdot \frac{(x_3 - x_2)}{f(x_3) - f(x_2)} = 1.2006283753725182$$
Calcular x_5 .

$$x_5 = x_4 - f(x_4) \cdot \frac{(x_4 - x_3)}{f(x_4) - f(x_3)} = 1.1999926413206037$$

Para estimar el error vamos a usar $|x_k - x_{k-1}|$. En la tabla (4.17) hacemos una comparación entre el error correcto para la solución $x^* = 1.2$ y la estimación del error.

k	x_k	$ x_k - x^* $	$ x_k - x_{k-1} $
1	1.5	0.3	0.5
2	1.14815	0.0518519	0.351852
3	1.18756	0.0124427	0.0394092
4	1.20063	0.000628375	0.013071
5	1.19999	7.35868×10^{-6}	0.000635734
6	1.2000000000000030		4.31745×10^{-9}

Ejemplo 4.19 ejeVAb

Consideremos $P(x) = x^5 - 100x^4 + 3995x^3 - 79700x^2 +$ 794004*x* – 3160075. En la figura (4.18) se muestra la gráfica de P con las primeras dos secantes usando $x_0 = 22.2$ y $x_1 = 17$.

Figura 4.18

P tiene un cero, $x^* = 17.846365121...$, en el intervalo [17,22,2]. Vamos a aproximar este cero usando $x_0 = 17$ $y x_1 = 22.2$

	$x_0 = 22.2$	$x_1 = 17$	
k	x_{k+1}	$ x_k - x_{k+1} $	$f(x_k)$
1	21.70509296	4.705	1.44
2	21.64664772	0.058	1.36
3	20.61844015	1.028	6.38
23	17.84697705	0.013	0.02
24	17.84635118	0.000	-0.00
25	17.84636513	1.39×10^{-5}	5.79283×10^{-7}
26	17.84636512	1.37×10^{-8}	-1.86265×10^{-9}

La elección $x_0 = 22.2$ y $x_1 = 17$ muestra ser adecuada. Nos lleva a la aproximación correcta $x_{26} = 17.84636512$. Ahora vamos a usar el método de la secante con $x_0 = 21.7$ y $x_1 = 21.63$

	$x_0 = 21.7$	$x_1 = 21.63$	
k	x_{k+1}	$ x_k - x_{k+1} $	$f(x_k)$
1	20.0533888824366	1.57661111756343	5.21279507130384
9	18.3554595040795	9.23705×10^{-14}	8.631431
			•••

En esta elección hay un fenómeno de cuidado: La iteración 9 podría inducirnos a error pues nos presenta a $x_{10} = 18.3554595040795$ como un cero aproximado con error estimado 9.2370555648813 × 10^{-14} pero $f(x_{10}) = 8.63143198378384!$. No habrá problema si incluimos en la prueba de parada la opción $f(x_k) < \epsilon$.

Notemos que hay varios intervalos (con extremos x_k, x_{k+1}) que no contienen un cero.

Algoritmo e implementación.

En este algoritmo, como criterio de parada usamos $|x_k - x_{k-1}| \le \delta (|x_k| + 1)$ y $|f(x_k)| < \epsilon$ junto con un número máximo de iteraciones maxiteraciones.

Como vamos a usar while, necesitamos la negación de

" $|x_k - x_{k-1}| \le \delta (|x_k| + 1)$ y $|f(x_k)| < \epsilon$, junto con un número máximo de iteraciones maxiteraciones"

Esta negación es:

" $|x_k - x_{k-1}| > \delta$ ($|x_k| + 1$) o $|f(x_k)| > = \epsilon$ y número de iteraciones menor que maxiteraciones"

Algoritmo 4.3: Método de la secante.

```
Datos de entrada: Una función continua f, las aproximaciones iniciales x_0 y x_1, tol, epsilon y maxIteraciones

Salida: Si se cumple el criterio de parada, una aproximación x_k de un cero x^* de f.

1 j=0;

2 while |x_k-x_{k-1}| > \text{tol}^*(\text{abs}(x_k)+1) y f(x_k) > \text{epsilon} y j < \text{maxIteraciones} do

3 x_2 = x_1 - f(x_1) \cdot \frac{(x_1-x_0)}{f(x_1)-f(x_0)};

4 x_0 = x_1;

5 x_1 = x_0;

6 j = j+1;
```

Implementación en R. Vamos a implementar una función secante(f, x0, x1, tolerancia, epsilon, maxiteraciones). La función f se recibe por nombre.

Observe que la negación de

Código R 4.7: Método de la secante

```
secante = function(fun, x0, x1, tol, epsilon, maxiter = 100){
  f0 = fun(x0)
  f1 = fun(x1);
 k = 0;
  #Una tabla para imprimir la corrida del programa
  tabla = data.frame(A=" ", B=x0,C=x1,D=abs(x1-x0), E=fun(x1))
 while ( (abs(x1-x0)>tol*(abs(x1)+1) | abs(f1)>epsilon) & k <= maxiter ) {
   k = k+1
   pendiente = (f1 - f0)/(x1 - x0)
   # "pendiente" podría accidentalmente convertirse en NA (dato no disponible)
   if (pendiente ==0 | is.na(pendiente)){cat( "Problemas en la 'corrección'", "\n"); break}
   x2 = x1 - f1/pendiente # la correción es f1/pendiente
   f2 = fun(x2)
   x0 = x1; f0 = f1
   x1 = x2; f1 = f2
   # cada iteración es una nueva fila en la tabla
   tabla =rbind(tabla,data.frame(A=" ", B=x0,C=x1,D=abs(x1-x0), E=fun(x1)))
  if (k > maxiter) {
   warning("Se alcanzó el número de iteraciones sin resultados")
  # return(list(cero=x2, fun.cero=f2, iter=k, ErrorEst =abs(x2-x1)))
  colnames(tabla)=c("k", "x1","x2","|x1-x0|", "f(x1)")
```

```
tabla
}
##--- Pruebas
f = function(x) x - cos(x)
g = function(x) x^5 - 100*x^4 + 3995*x^3 - 79700*x^2 + 794004*x - 3160075
secante(f, 0, 1, 1e-15,1e-10, 100)
#secante(g, 17, 22.5, 1e-15,1e-10, 1000)
#secante(g,22.5,17,1e-10,1e-10, 1000)
#secante(g,21.7,21.63,1e-10,1e-10, 1000)
 k
       x1
                                        |x1-x0|
                                                             f(x1)
                        x2
1
       1.00000000000000 0.685073357326045 3.14926642673955e-01 -8.92992764818600e-02
2
3
       0.685073357326045 0.736298997613654 5.12256402876089e-02 -4.66003903814260e-03
       0.736298997613654 0.739119361911629 2.82036429797528e-03 5.72859911061041e-05
4
5
       0.739119361911629 0.739085112127464 3.42497841654410e-05 -3.52926228242012e-08
6
       0.739085112127464 0.739085133215001 2.10875373829467e-08 -2.66786592817425e-13
7
       0.739085133215001 0.739085133215161 1.59428026336172e-13 0.0000000000000e+00
       0.739085133215161 0.739085133215161 0.000000000000e+00 0.000000000000e+00
8
```

■ Newton vs Secante.

Como $x_{n+1} = x_n - f(x_n) \cdot \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$, cada paso en el método de la secante requiere solo una evaluación adicional de f, o sea que dos iteraciones en el método de la secante son a lo sumo 'tan costosas' como una iteración en el método de Newton. Ahora, puesto que $E^{p^{i+2}} = \left(E^{p^i}\right)^{p^2} = \left(E^{p^i}\right)^{p+1}$, dos iteraciones en el método de la secante llevan a un método de orden $p^2 = p + 1 = 2.618$... Así que con un esfuerzo parecido, el método de la secante converge *localmente* más rápido que el método de Newton.

Al igual que el método de Newton, el método de la secante exhibe convergencia *lineal* para el caso de raíces múltiples (ver por ejemplo [19])

Un Método Híbrido: Secante-Bisección

Uno de los problemas del método de la secante es que aunque un cero x^* de f esté entre las aproximaciones iniciales x_0 y x_1 , no se garantiza que el método converja (si converge) a x^* , además de posibles "caídas".

Ejemplo 4.20

Consideremos $f(x) = x^{20} - 1$. Es claro que f tiene dos ceros reales, $x^* = \pm 1$. Si aplicamos el método de la secante con $x_0 = 0.5$ y $x_1 = 1.5$ tenemos un comportamiento no deseable, tal y como se muestra en la tabla (4.19)

```
h=function(x)x^20-1
secante(h,0.5,1.5,1e-10,1e-10,100)
# Problemas en la 'corrección'
```

n	x_{n-1}	x_n	$ x_n - x_{n-1} $	$f(x_n)$
1	5.000000000e-01	1.500000000e+00	1.000000000e+00	3.324256730e+03
2	1.500000000e+00	5.003007284e-01	9.996992716e-01	-9.999990348e-01
3	5.003007284e-01	5.006013663e-01	3.006379321e-04	-9.999990231e-01
4	5.006013663e-01	2.576946097e+04	2.576896037e+04	1.667656836e+88
5	2.576946097e+04	5.006013663e-01	2.576896037e+04	-9.999990231e-01
6	5.006013663e-01	5.006013663e-01	0.000000000e+00	-9.999990231e-01

Figura 4.19: Problemas con el método de la secante

Observe que en la iteración 9, $f(x_9)$ y $f(x_8)$ son muy cercanos, en la tabla ambos obtienen -9.999990231e-01, pero por la cantidad de dígitos, pero $f(x_9) > \epsilon$.

En este caso, **Problemas en la 'corrección'** indica una división por un número demasiado pequeño, del tal manera que la "corrección" $f(x_n) \cdot \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$ no es un número en la computadora.

El programa paró por el problema numérico con la "corrección". Mientras que el cero aproximado 5.006013663e-01 está lejos de ser $x^*=\pm 1$.

Para evitar comportamientos no deseables y asegurar que siempre la nueva iteración esté en un intervalo que contenga al cero que se quiere aproximar, combinamos el método de la secante con el método de bisección.

• Para describir el procedimiento usamos $Int\{b, c\}$ para denotar el más pequeño intervalo cerrado que contiene a b y c, es decir $Int\{b, c\}$ es [c, b] o [b, c].

El algoritmo es como sigue: iniciamos con un intervalo [a,b] en el que f(a) y f(b) tengan signos opuestos. Inicialmente el intervalo de bisección es [c,b] pues iniciamos con c=a. En el proceso se actualizan a,b y c de la siguiente manera:

i. Si f(a) y f(b) tienen signos opuestos, se aplica una iteración del método de la secante (la cual actualiza a y b)

- ii. Si f(a) y f(b) tienen signos iguales, se aplicará una iteración del método de la secante solo si se conoce que x_{n+1} estará en $Int\{c,b\}$. Sino, se aplica bisección tomando como b el punto medio del intervalo $Int\{c,b\}$.
- iii. Finalmente se actualiza el intervalo $Int\{c,b\}$ actualizando c por comparación del signo de f(c) y f(b).

En las figuras (4.20) y (4.22) se muestra un caso particular con las primeras dos iteraciones.

Figura 4.20

Figura 4.21

La figura (4.21) ilustra una posible actualización de $\it c$.

Figura 4.22

El algoritmo requiere saber a priori si $x_{n+1} \in \text{Int}\{c,b\}$ pero sin aplicar la iteración (para evitar una posible "caída" evitamos la división por $f(x_n) - f(x_{n-1})$). Digamos que $\text{Int}\{c,b\} = [p,q]$, entonces

$$x_{n+1} = x_n - f(x_n) \cdot \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})} \in [p, q]$$

si y sólo si

$$p \le x_n - f(x_n) \cdot \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})} \le q$$

si ponemos $\Delta f = f(x_n) - f(x_{n-1})$ entonces $x_{n+1} \in [p,q]$ si y sólo si se cumple alguna de las dos condiciones siguientes:

i.) Si $\Delta f > 0$ entonces

$$(p-x_n)\Delta f < -f(x_n)(x_n - x_{n-1}) < (q-x_n)\Delta f \tag{4.5}$$

ii.) Si $\Delta f < 0$ entonces

$$(p - x_n)\Delta f > -f(x_n)(x_n - x_{n-1}) > (q - x_n)\Delta f \tag{4.6}$$

Algoritmo e Implementación.

En este algoritmo, **TestSecante** devuelve **True** o **False**: Determina si $x_{n+1} \in \text{Int}\{c, b\}$, es decir, determina si en la siguiente iteración del método de la **secante**, x_{n+1} , estará en el intervalo $\text{Int}\{c, b\}$. Para esto se debe cumplir la desigualdad 4.5 o la desigualdad 4.6.

Si $x_{n+1} \in \text{Int}\{c,b\}$, se aplica la función **IteracionSecante(f,b,c)** o **IteracionSecante(f,c, b)** y se procede a la actualización de a y b, es decir $a = x_1$ y $b = x_2$. Caso contrario, se usa **bisección**.

El código para IteracionSecante sería

```
IteracionSecante= function(f,x0, x1)
if (f(x1) != f(x0)){
  x2 = x1 - f(x1) * ((x1 - x0) / (f(x1) - f(x0)))
  x0 = x1
  x1 = x2
}
```

El código para **TestSecante** sería (se completa como ejercicio)

```
TestSecante = function(b, c, a, f){
    q = max(b, c)
    p = min(b, c)
    x0 = a
    x1 = b
    Df=...
    pf=...
    ...
    test1 = (Df > 0 && (p - x1) * Df < pf && pf < (q - x1) * Df)
    test2 = (Df < 0 && (p - x1) * Df > pf && pf > (q - x1) * Df)

return(test1 Or test2) # true o false
}
```

Figura 4.23: Híbrido Secante-Bisección.

```
Datos de entrada: una función continua f y a, b tal que f(a)f(b) < 0 y \delta
   Salida: una aproximación del cero.
1 c = a;
n = 0;
з repeat
       if f(a) f(b) < 0 then
          Aplicar Iteraci\'onSecante(a, b)
 5
       else
6
          if TestSecante = true then
 7
              Aplicar Iteraci\'onSecante(a, b)
 8
          else
 9
             Aplicar bisección b = b - 0.5(c - b);
10
       Intervalo para bisección;
11
12
       if f(a) f(b) < 0 then
13
        c = a
       n = n + 1
15 until (|c-b| < \delta(|b| + 1)) Or (n > maxItr \text{ Or } f(b) < \delta);
16 return b;
```

Ejemplo 4.21

Considere la función $f(x) = x^5 - 100x^4 + 3995x^3 - 79700x^2 + 794004x - 3160080$. Sus ceros son $x^* = 18, 19, 20, 21, 22$. En la tabla se muestra los valores de b y c al aplicar el método híbrido secante-bisección con $x_0 = 21.34$ y $x_1 = 22.45$ (para aproximar $x^* = 22$)

n	b	c	Método
1	21.4370004	21.34	Secante
2	21.54606717	22.45	Secante
3	21.99803359	22.45	Bisección
4	22.00708175	22.45	Secante
5	21.99997119	21.99803359	Secante
6	21.99999958	22.00708175	Secante
7	22	22.00708175	Secante

En la línea 3 se observa que b = 21.54606717 y c = 22.45. En la siguiente iteración se usa bisección. Esto sucede porque si se aplica una iteración de la secante con los valores "actuales" a = 21.4370004035587, b = 21.5460671728629 (para los cuales no hay cambio de signo) entonces el valor futuro habría sido $x_{n+1} = 20.7894316058807$ y este valor no está en el intervalo actual [c, b] = [22.45, 21.54606717], Entonces se usó bisección. Si no se hubiera hecho esto, entonces el método de la secante (clásico) hubiera convergido al cero $x^* = 21$ que no es el que está en el intervalo inicial.

Ejemplo 4.22

En la tabla se muestra los valores de b y c al aplicar el método híbrido secante-bisección, con $x_0 = 0.5$ y $x_1 = 2$, para aproximar el cero $x^* = 1$ de $f(x) = x^{20} - 1$.

Recordemos es desempeño desastroso del método de la secante, que se mostró en la tabla (4.19), para este mismo problema.

n	b	c	Método	b-c
1	2.000000	0.500000	Secante	1.43051×10^{-6}
2	0.500001	2.000000	Secante	1.499997139
3	0.500003	2.000000	Bisección	0.749998569
4	1.250001	0.500001	Secante	0.008646705
5	0.508648	1.250001	Secante	0.73280628
6	0.517195	1.250001	Bisección	0.36640314
7	0.883598	1.250001	Bisección	0.18320157
8	1.066800	0.508648	Secante	0.153141481
9	0.661790	1.066800	Secante	0.293907403
1	0 0.772892	1.066800	Bisección	0.146953701
11	0.919846	1.066800	Bisección	0.073476851
12	0.993323	1.066800	Secante	0.025927918
13	1.040871942	0.99332301	Secante	0.004405128

1.4	0.007730130	1.040071042	C	0.041626217
14	0.997728138	1.0408/1942	Secante	0.041636217
15	0.999235725	1.040871942	Secante	0.040855271
16	1.000016672	0.999235725	Secante	0.000764154
17	0.999999879	1.000016672	Secante	1.66716×10^{-5}
18	1	1.000016672	Secante	1.66716×10^{-5}

Ejercicio 4.2 ■ Implementar la función hibridoSecanteBiseccion(f,a,b, tolerancia, maxiteraciones)

4.6 El Método de la Falsa Posición

Este método es todavía más viejo que el método de Newton, de hecho aparece en textos Indios del siglo V ([18]). Su orden de convergencia no vas allá de ser lineal. En esta sección vamos a dar una breve descripción del método.

La idea de este método es calcular la recta secante que une los puntos extremos $(a_1, f(a_1))$ y $(b_1, f(b_1))$. Luego se determina el punto m en que esta recta corta el eje X y este valor entra a jugar el papel que en el método de bisección jugaba el punto medio.

La recta secante que une los puntos $(a_1, f(a_1))$ y $(b_1, f(b_1))$ tiene ecuación

$$y = f(a_1) + \frac{f(b_1) - f(a_1)}{b_1 - a_1}(x - a_1)$$

Al resolver y = 0 se despeja el valor de x = m, obteniendo:

$$m = a_1 - f(a_1) \cdot \frac{(b_1 - a_1)}{f(b_1) - f(a_1)}$$

Figura 4.24: Método de la falsa posición

En este método no se conoce a priori el número de iteraciones requeridas para alcanzar la precisión deseada así que se usa un número máximo de iteraciones.

Algoritmo.

Algoritmo 4.4: Método de falsa posición

```
Datos de entrada: f \in C[a,b] con f(a)f(b) < 0, \delta, maxItr Salida: Una aproximación x_n de un cero de f.
```

```
1 k = 0;
 2 a_n = a, b_n = b.;
 з repeat
       x_n = a_n - f(a_n) \cdot \frac{(b_n - a_n)}{f(b_n) - f(a_n)};
        e_1 = x_n - a_n; e_2 = b_n - x_n;
        if f(x_n) f(a_n) > 0 then
 6
 7
          a_n = x_n
        else
 8
         b_n = x_n
 9
        k = k + 1;
11 until (\max(e_1, e_2) \le \delta \lor k \ge \max(tr));
12 return x_n
```

Ejercicios

4.26 Implemente el método de falsa posición.

Explique cuál es la razón de la escogencia del criterio de parada en este algoritmo.

- **4.27** Aplique el método de falsa posición a la ecuación $\cos(x) \cosh(x) 1 = 0$ con $a = 3\pi/2$ y $b = 2\pi$. Compare con el resultado que se obtiene al aplicar el método de la secante y bisección.
- **4.28** Para aproximar el cero $x^* = 1$ de la función $f(x) = x^{20} 1$,
 - a.) Aplique el método de la secante con $x_0 = 0.5$ $x_1 = 2$. ¿Hay algún problema?.
 - b.) Aplique el método de la secante con $x_0 = 0$ $x_1 = 1.005$.
 - c.) Aplique el método de bisección con $x_0 = 0$ $x_1 = 3$.
 - d.) Aplique el método de Newton con $x_0 = 0$.
- **4.29** Resuelva $x^3 = 0$ usando Newton con $x_0 = -0.2$.

Resuelva la misma ecuación usando bisección y secante con el intervalo [-0.2, 0.1]

4.30 Resuelva $f = x^5 - 100 * x^4 + 3995 * x^3 - 79700 * x^2 + 794004 * x - 3160075$ usando Newton con $x_0 = 17$. Resuelva usando bisección y secante con [17, 22.2]

4.31 Consideremos la ecuación $x^5/5 + x^4/4 = 0$. Encuentre x_0 y x_1 de tal manera que el cero x = -1.25 este entre ambos pero que el método de la secante aproxime el otro cero x = 0.

4.32 Considere $f(x) = x - \cos\left(\frac{0.785 - x\sqrt{1 + x^2}}{1 + 2x^2}\right)$. Como se observa en la figura (4.25), esta función tiene un *cero* cerca de x = 1. Use el método de la secante para aproximar este cero con error absoluto estimado menor que 0.5×10^{-5}

Figura 4.25

4.33 El método de la secante no requiere que el cero este entre x_0 y x_1 . En el ejercicio anterior, aplique el método de la secante con $x_0 = 0$ y $x_1 = 0.1$

4.34 Resuelva numéricamente la ecuación $\ln^2 x - x - 1 = 0$.

4.35 Considere la función $f(x) = \operatorname{sgn}(x-1)\sqrt{|x-1|}$ (figura 4.26) donde

$$sgn(u) = \begin{cases} 1 & \text{si } u > 0 \\ 0 & \text{si } u = 0 \end{cases}$$
. Use el método de la secante para aproximar el cero $x^* = 1$.
$$-1 & \text{si } u < 0$$

Figura 4.26

4.7 Convergencia.

Convergencia: Falsa posición

Dado el tratamiento breve de esta sección, vamos a establecer un teorema de convergencia para el caso sencillo en el que f es convexa. Digamos que la situación es la misma que la que se presenta en la figura (4.24). Digamos entonces que en [a,b] f cumple

entonces f tiene exactamente un cero x^* en [a,b] y la secante que conecta los puntos (a,f(a)) y (b,f(b)) está encima del gráfico de f e interseca el eje X a la izquierda de x^* . Esto mismo pasará para las otras secantes, lo que significa que el punto x=b permanece fijo mientras que el otro punto se actualiza en cada paso. Lo que obtenemos es una sucesión monótona

$$x_{n+1} = x_n - f(x_n) \cdot \frac{(x_n - b)}{f(x_n) - f(b)}, \quad n = 1, 2, ..., x_1 = a$$
(4.7)

que es creciente. Como esta sucesión permanece acotada por x^* entonces converge.

Para establecer el orden de convergencia, restamos x^* a ambos lados de (4.7) y usamos el hecho de que $f(x^*) = 0$

$$x_{n+1} - x^* = x_n - x^* - f(x_n) \cdot \frac{(x_n - b)}{f(x_n) - f(b)}$$

dividiendo por $x_n - x^*$ obtenemos

$$\frac{x_{n+1}-x^*}{x_n-x^*}=1-\frac{x_n-b}{f(x_n)-f(b)}\frac{f(x_n)-f(x^*)}{x_n-x^*}.$$

Haciendo $x \rightarrow \infty$ y usando el hecho de que $x_n \rightarrow x^*$ se sigue que

$$\lim_{x \to \infty} \frac{x_{n+1} - x^*}{x_n - x^*} = 1 - (b - x^*) \frac{f'(x^*)}{f(b)} = K$$

o sea, convergencia lineal (en este caso 0 < K < 1).

Convergencia: Secante

El esquema iterativo

$$x_{k+1} = x_k - f(x_k) \cdot \frac{(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

lo podemos reescribir como

$$x_{k+1} = x_k - c_k \text{ con } c_k = f(x_k) \cdot \frac{(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

así, c_k es una corrección de x_k . Esta corrección está compuesta por $f(x_k)$ y la pendiente de la secante $\frac{f(x_k)-f(x_{k-1})}{(x_k-x_{k-1})}$. Hablando grosso modo, si la diferencia x_k-x_{k-1} se hace pequeña lentamente, la corrección más bien esta fuertemente influenciada por el valor del factor $f(x_k)$. Entonces lo que está localizando el método de la secante es un punto dónde f es "pequeña".

En este método no se puede asegurar que cada intervalo $[x_{n-1},x_n]$ contenga al menos un cero (como bisección). Lo que si se puede asegurar es que converge localmente, es decir converge si las aproximaciones iniciales están suficientemente cerca de la raíz y además que la convergencia es superlineal con orden al menos de $(1+\sqrt{5})/2=1.61803$ para ceros simples. ¿Qué significa que "las aproximaciones estén suficientemente cercanas a un cero"?. La situación es similar a la del método de Newton. Para 'amarrar" el resultado debemos restringirnos a un intervalo "suficientemente pequeño" de tal manera que se pueda asegurar que se cumplen algunas condiciones que nos permiten concluir con la convergencia.

La idea del teorema de convergencia es esta: Si x^* es un cero simple de f, usando el teorema de Taylor en $I_{\varepsilon} = \{x \in \mathbb{R} : |x - x^*| \le \varepsilon\}$, establecemos que

$$f(x) = (x - x^*)f'(x^*)\left(1 + \frac{x - x^*}{2} \frac{f''(\xi)}{f'(x^*)}\right), \ \xi \in I_{\varepsilon}.$$

 x^* sería el único cero en I_{ε} si los tres factores de la derecha son distintos de cero, y para esto es suficiente pedir que I_{ε} es lo suficientemente pequeño como para que

$$\frac{x - x^*}{2} \frac{f''(\xi)}{f'(x^*)} \le \varepsilon \max_{s, t \in I_{\varepsilon}} \left| \frac{f''(s)}{2f'(t)} \right| < 1$$

además, si ponemos $M_{\varepsilon} = \max_{s,t \in I_{\varepsilon}} \left| \frac{f''(s)}{2f'(t)} \right|$,

$$|x_{n+1} - x^*| \le \varepsilon^2 \left| \frac{f''(\xi_2)}{2f'(\xi_1)} \right| \le \varepsilon \cdot \varepsilon M_{\varepsilon} < \varepsilon$$

lo que aplicado repetidamente nos lleva a

$$|x_n-x^*|\leq (\varepsilon\,M_\varepsilon)^{n-1}\,|x_1-x^*|$$

Con lo cual establecemos la convergencia.

La frase x_0, x_1 son "aproximaciones estén suficientemente cercanas" a un cero x^* significan $x_0, x_1 \in I_{\varepsilon}$ con ε suficientemente pequeño de tal manera que

$$\varepsilon \max_{s,t \in I_{\varepsilon}} \left| \frac{f''(s)}{2f'(t)} \right| < 1$$

Para establecer los resultados necesitamos un desglose previo. Restamos x^* a ambos lados de $x_{n+1} = x_n - f(x_n) \cdot \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$ y usamos diferencia divididas

$$x_{n+1} - x^* = x_n - x^* - f(x_n) \cdot \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

$$= (x_n - x^*) \left(1 - \frac{f(x_n) - f(x^*)}{(x_n - x^*) f[x_{n-1}, x_n]} \right)$$

$$= (x_n - x^*) \left(1 - \frac{f[x_n, x^*]}{f[x_{n-1}, x_n]} \right)$$

$$= (x_n - x^*) \left(\frac{f[x_{n-1}, x_n] - f[x_n, x^*]}{f[x_{n-1}, x_n]} \right)$$

Ahora, como $f[x_{n-1}, x_n, x^*] = \frac{f[x_n, x^*] - f[x_{n-1}, x_n]}{x_{n-1} - x^*}$, entonces

$$(x_{n+1} - x^*) = (x_n - x^*)(x_{n-1} - x^*) \frac{f[x_{n-1}, x_n, x^*]}{f[x_{n-1} - x_n]}, \quad n = 1, 2, \dots$$

$$(4.8)$$

Esto lo vamos a usar en el siguiente teorema.

Teorema 4.5

Sea x^* un cero simple de f. Sea $I_{\varepsilon}=\{x\in\mathbb{R}:|x-x^*|\leq \varepsilon\}$. Supongamos que $f\in C^2[I_{\varepsilon}]$. Para un ε suficientemente pequeño se define

$$M_{\varepsilon} = \max_{s,t \in I_{\varepsilon}} \left| \frac{f''(s)}{2f'(t)} \right| \tag{4.9}$$

y asumamos que ε es lo suficientemente pequeño de tal manera que se cumpla ε M_{ε} < 1. Entonces, el método de la secante converge a una *única* raíz $x^* \in I_{\varepsilon}$ para cualesquiera dos aproximaciones iniciales $x_0 \neq x_1$ en I_{ε} .

Observe que el teorema exige que ε sea *suficientemente pequeño* de tal manera que $\left|\frac{f''(s)}{2f'(t)}\right|$ permanezca acotada en I_{ε} y que ε M_{ε} < 1.

Prueba. La suposición $\varepsilon M_{\varepsilon} < 1$ se puede hacer ya que M_{ε} es decreciente y

$$\lim_{\varepsilon \to 0} M_{\varepsilon} = \frac{f''(x^*)}{2f'(x^*)} < \infty$$

Lo primero que hay que notar es que x^* es el único cero de f en I_{ε} . En efecto, según la fórmula de Taylor tendríamos

$$f(x) = f(x^*) + (x - x^*)f'(x^*) + \frac{(x - x^*)^2}{2}f''(\xi)$$
, con ξ entre x y x^* ,

Luego si $x \in I_{\varepsilon}$ también $\xi \in I_{\varepsilon}$ y tendríamos

$$f(x) = (x - x^*) f'(x^*) \left(1 + \frac{x - x^*}{2} \frac{f''(\xi)}{f'(x^*)} \right), \quad \xi \in I_{\mathcal{E}}.$$

$$(4.10)$$

Si $x \neq x^*$, los tres factores a la derecha de (4.10), son distintos de cero. En particular, el último es distinto de cero pues por hipótesis

$$\left| \frac{x - x^*}{2} \frac{f''(\xi)}{f'(x^*)} \right| \le \varepsilon M_{\varepsilon} < 1$$

Por tanto, f solo se anula en $x = x^*$ en I_{ε} .

Ahora vamos a probar la convergencia. La idea es mostrar que todos los x_n 's están en I_{ε} y que las aproximaciones consecutivas son distintas (excepto que para algún n suceda que $f(x_n) = 0$, en cuyo caso $x_n = x^*$ y hay convergencia en un número finito de pasos).

La prueba es por inducción. Supongamos que x_n , $x_{n-1} \in I_{\varepsilon}$ para algún n y que $x_n \neq x_{n-1}$. Por hipótesis esto es cierto para n = 1. Ahora, como $f \in C^2[I_{\varepsilon}]$

$$\begin{split} f[x_{n-1},x_n] &= f'(\xi_1) \\ \xi_i \in I_{\varepsilon}, \ i=1,2 \\ f[x_{n-1},x_n,x^*] &= \frac{1}{2}f''(\xi_2) \end{split}$$

entonces, usando (4.8),

$$|x_{n+1} - x^*| \le \varepsilon^2 \left| \frac{f''(\xi_2)}{2f'(\xi_1)} \right| \le \varepsilon \cdot \varepsilon M_\varepsilon < \varepsilon$$

de donde $x_{n+1} \in I_{\varepsilon}$. Además, $x_{n+1} \neq x_n$ excepto que $f(x_n) = 0$ y en este caso $x_n = x^*$.

Por último, de (4.8) tenemos

$$|x_{n+1} - x^*| \le |x_n - x^*| \varepsilon M_{\varepsilon}, \ n = 1, 2, ...,$$

lo que aplicado repetidamente nos lleva a

$$|x_n - x^*| \le (\varepsilon M_\varepsilon)^{n-1} |x_1 - x^*|$$

Y como $\varepsilon M_{\varepsilon} < 1$ se sigue que $x_n \longrightarrow x^*$ si $n \longrightarrow \infty$.

El teorema es de evidente valor teórico pues construir I_{ε} requiere conocer x^* . Aún así vamos a dar un ejemplo sencillo.

Ejemplo 4.23

Considere $f(x) = x^2 - 1$. Vamos a encontrar un intervalo I_{ε} suficientemente pequeño, que contenga la raíz simple $x^* = 1$, en el que el método de la secante converge para cualesquiera x_0, x_1 distintos en I_{ε} . Como la función es sencilla, esto se puede hacer por inspección. Observe que en este caso

$$M_{\varepsilon} = \max_{t \in I_{\varepsilon}} \left| \frac{2}{4t} \right|$$

así que si $\varepsilon=1/10$, $M_{\varepsilon}=5/11$ (observe que I_{ε} es cerrado) y además $\varepsilon M_{\varepsilon}<1$.

Entonces, en resumen, todas las hipótesis del teorema se cumplen. Por lo tanto el método de la secante se garantiza que converge a la raíz $x^* = 1$ para cualesquiera x_0, x_1 distintos en $I_{1/10} = [0.9, 1.1]$.

?

Secante: Orden de convergencia. Ahora nos ocuparemos de la demostración formal del teorema acerca del orden de convergencia. La idea es esta: poniendo $e_n = x_n - x^*$ en (4.8) tenemos

$$e_{n+1} = e_n e_{n-1} \frac{f[x_{n-1}, x_n, x^*]}{f[x_{n-1} - x_n]}, \quad n = 1, 2, \dots$$

$$(4.11)$$

De aquí se sigue que si x^* es un cero simple $(f(x^*) = 0, f'(x^*) \neq 0), x_n \rightarrow x^*$ y si f'' existe y es continua en las *cercanías* de x^* , entonces $f[x_{n-1}, x_n, x^*] \rightarrow \frac{1}{2} f''(x^*)$ y $f[x_{n-1} - x_n] \rightarrow f'(x^*)$, así

$$\lim_{n \to \infty} \frac{x_{n+1} - x^*}{x_n - x^*} = 0$$

es decir, la convergencia debe ser más que lineal: $x_n - x^*$ domina a $x_{n+1} - x^*$, pero $(x_n - x^*)^q$ si podría ser proporcional a $x_{n+1} - x^*$.

Para establecer el orden de convergencia de manera intuitiva, usamos un razonamiento informal que nos lleva a la sucesión de Fibonacci. Reescribimos (4.11) como

$$|e_{n+1}| = |e_n e_{n-1}| C$$
, con $C > 0$

ahora multiplicamos a ambos lados por C y ponemos $E_n = C|e_n|$ y entonces

$$E_{n+1} = E_n E_{n-1}, E_n \longrightarrow 0 \text{ si } n \longrightarrow \infty$$

Ahora tomamos logaritmos a ambos lados y definimos $y_n = \ln(1/E_n)$, y queda la conocida sucesión de Fibonacci

$$y_{n+1} = y_n + y_{n-1} (4.12)$$

La sucesión se resuelve para y_n resolviendo la ecuación característica $t^2 - t - 1 = 0$. Esta ecuación tiene dos soluciones $t_1 = (1 + \sqrt{5})/2$ y $t_2 = (1 - \sqrt{5})/2$. La solución general de (4.12) es

$$y_n = c_1 t_1^n + c_2 t_2^n$$
, con c_1 , c_2 constantes.

Si $n \to \infty$ entonces $y_n \to \infty$ y debe ser $c_1 \neq 0$ (pues $t_2^n \to 0$). Luego si $n \to \infty$ entonces

$$y_n \sim c_1 t_1^n$$

de donde, pasando y_n a términos de e_n y poniendo $q = t_1$

$$\frac{1}{e_n} \sim Ce^{c_1 q^n}$$

$$\frac{e_{n+1}}{e_n^q} \sim \frac{C^q e^{c_1 q^{n} \cdot q}}{Ce^{c_1 q^{n+1}}} = C^{q-1}$$

por lo que $t_1 = 1.61803...$ sería el orden de convergencia. Veamos ahora todo lo anterior de manera rigurosa.

Teorema 4.6

Asumiendo las hipótesis del teorema anterior, el orden de convergencia del método de la secante es como mínimo $p = (1 + \sqrt{5})/2 = 1.61803...$

Prueba. Supongamos que $x_0, x_1 \in I_{\varepsilon}$ y que todos los x_n 's son distintos. Entonces $x_n \neq x^*$ y $x_n \longrightarrow x^*$ conforme $n \longrightarrow \infty$.

El número p del teorema satisface la ecuación

$$p^2 = p + 1 (4.13)$$

De (4.8) se sigue

$$|x_{n+1} - x^*| \le |x_n - x^*| |x_{n-1} - x^*| \cdot M_{\varepsilon}. \tag{4.14}$$

Sea

$$E_n = M_{\varepsilon} |x_n - x^*| \tag{4.15}$$

Entonces, multiplicando (4.14) por M_{ε} tendremos

$$E_{n+1} = E_n E_{n-1}$$

Luego

$$E_n \le E^{p^n}, \quad E = \max\left(E_0, E_1^{1/p}\right)$$
 (4.16)

En efecto, procedemos por inducción. El resultado es cierto para n = 0 y n = 1. Supongamos ahora que (4.16) es cierto para n y n - 1. Entonces, usando (4.13)

$$E_{n+1} \le E_n E_{n-1} \le E^{p^n} E^{p^{n-1}} = E^{p^{n-1}(p+1)} = E^{p^{n-1}p^2} = E^{p^{n+1}},$$

Ahora, de (4.15)

$$|x_n - x^*| \le \varepsilon_n, \ \varepsilon_n = \frac{1}{M_{\varepsilon}} E^{p^n}$$

Puesto que $E_0=M|x_0-x^*| \le \varepsilon\,M_\varepsilon < 1$ y lo mismo pasa para E_1 entonces E<1. Ahora basta notar que

$$\frac{\varepsilon_{n+1}}{\varepsilon_n^p} = M_{\varepsilon}^{p-1} \frac{E^{p^{n+1}}}{E^{p^n \cdot p}} = M_{\varepsilon}^{p-1}, \quad \text{para toda} \quad n.$$

Revisado: Marzo, 2022 Versión actualizada de este libro: https://tecdigital.tec.ac.cr/servicios/revistamatematica/Libros/

5.1 Eliminación Gaussiana

La solución de sistemas de ecuaciones lineales es uno de los problemas básicos en métodos numéricos porque es un problema que aparece frecuentemente en la práctica, muchas veces como parte de un problema más grande.

Consideremos el sistema lineal con m ecuaciones y n indeterminadas $x_1, x_2, ..., x_n$,

$$\begin{cases} a_{11}x_1 & +a_{12}x_2 & +\ldots + & +a_{1n}x_n & = & a_{10} \\ a_{21}x_1 & +a_{22}x_2 & +\ldots + & +a_{2n}x_n & = & a_{20} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 & +a_{m2}x_2 & +\ldots + & +a_{mn}x_n & = & a_{m0} \end{cases}$$

En forma matricial se escribe: AX = B donde

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_m \end{pmatrix} \quad y \quad B = \begin{pmatrix} a_{10} \\ a_{20} \\ \dots \\ a_{m0} \end{pmatrix}$$

- Si m > n no hay, en general solución, pero podemos aproximar una "mejor solución" minimizando una función de error (usando "mínimos cuadrados").
- Si m < n hay, en general, infinitas soluciones.

• Si m = n y Det $A \neq 0$, entonces tenemos solución única. Si $B = \mathbf{0}$ solo tendríamos la solución trivial $X = \mathbf{0}$.

En este caso $n \times n$, el método de eliminación gaussiana con pivoteo parcial requiere $O(\frac{1}{3}n^3)$ operaciones¹.

■ Eliminación Gaussiana. Consideremos la matriz ampliada

$$A_b = \left(\begin{array}{ccc|c} a_{11} & a_{12} & \dots & a_{1n} & a_{10} \\ a_{21} & a_{22} & \dots & a_{2n} & a_{20} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & a_{m0} \end{array}\right)$$

Si F_i denota la fila i de A_b , la operaciones elementales $\alpha \overline{F}_i$, $\beta F_i + \alpha \overline{F}_j$ y el intercambio de filas F_i , F_j aplicadas sobre A_b , no modifican la solución del sistema AX = b; es decir, si A' y B' son las matrices que se obtienen después de aplicar una o varias operaciones elementales, el sistema A'X = b' tiene la misma solución (si hubiera) que el sistema AX = b.

La barra \overline{F}_i indica que es esta fila F_i la que se modifica.

El algoritmo de eliminación gaussiana requiere que, cuando se está eliminando la columna j por debajo de la diagonal, el pivote a_{jj} no sea nulo, en caso contrario se hace un intercambio de fila (si hay solución única; siempre es posible hacer el cambio de fila).

■ Sistemas $n \times n$. Supongamos que un sistema $n \times n$ tiene solución única, entonces es posible encontrar una fila F_i con entrada $a_{i1} \neq 0$ (en la primera columna). Podemos suponer sin problema que el sistema viene con $a_{11} \neq 0$ y que la matriz ampliada del sistema AX = B es

$$A_b = \left(\begin{array}{ccc|c} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & b_n \end{array}\right)$$

El primer paso, aplicamos las operaciones $\overline{F_i} - \frac{a_{i,1}}{a_{11}} F_1$ con i = 2, ..., n y obtenemos la nueva matriz

 $^{^{1}}$ Es decir, la cantidad de operaciones es un múltiplo de $\frac{1}{3}n^{3}$ a partir de algún valor de n

$$\left(egin{array}{cccccc} a_{11} & a_{12} & \dots & a_{1n} & b_1 \ 0 & a_{22}^{(2)} & \dots & a_{2n}^{(2)} & b_2^{(2)} \ dots & dots & dots & dots \ 0 & a_{n2}^{(2)} & \dots & a_{nn}^{(2)} & b_n^{(2)} \ \end{array}
ight)$$

Ahora procedemos inductivamente, aplicando operaciones a la submatriz en azul. El pivote ahora es $a_{22}^{(2)} \neq 0$ (sino, intercambiamos filas).

Aplicamos las operaciones $\overline{F_i} - \frac{a_{i,2}^{(2)}}{a_{22}^{(2)}} F_2$ con i=3,...,n y obtenemos la nueva matriz

La última operación sería (si el pivote no es nulo), $\overline{F_i} - \frac{a_{i,n-1}^{(2)}}{a_{n-1,n-1}^{(2)}} F_{n-1}$ con i=n y obtenemos la matriz triangular

Ahora tenemos el sistema equivalente

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ + a_{22}^{(2)}x_2 + \dots + a_{2n}^{(2)}x_n = b_2^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ a_{nn}^{(n-1)}x_n = b_n^{(n-1)} \end{cases}$$

La solución $X = (x_1, x_2, ..., x_n)^T$ la obtenemos haciendo "sustitución hacia atrás",

$$x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}}$$

$$x_i = \frac{b_i^{(i-1)} - \sum_{j=i+1}^n a_{ij}^{(i-1)} x_j}{a_{ii}^{(i-1)}}, \text{ para } i = n-1, n-2, \dots, 1.$$

Ejemplo 5.1

Usar eliminación gaussiana para resolver el sistema,

$$\begin{cases} 4x_1 + 2x_2 & = 2\\ 2x_1 + 3x_2 + x_3 & = -1\\ x_2 + \frac{5}{2}x_3 & = 3 \end{cases}$$

Solución: Las primeras operaciones son $\overline{F_i} - \frac{a_{i,1}}{a_{11}} F_1$ con i = 2,3 y la tercera es $\overline{F_3} - \frac{a_{2,1}^{(2)}}{a_{22}^{(2)}} F_2$

$$\begin{pmatrix}
4 & 2 & 0 & 2 \\
2 & 3 & 1 & -1 \\
0 & 1 & 5/2 & 3
\end{pmatrix}
\xrightarrow{\overline{F_2} - \frac{1}{2}F_1}
\begin{pmatrix}
4 & 2 & 0 & 2 \\
0 & 2 & 1 & -2 \\
0 & 1 & 5/2 & 3
\end{pmatrix}
\xrightarrow{F_3 - \frac{1}{2}\overline{F_2}}
\begin{pmatrix}
4 & 2 & 0 & 2 \\
0 & 2 & 1 & -2 \\
0 & 0 & 2 & 4
\end{pmatrix}$$

Aplicando sustitución hacia atrás, la solución que encontramos es

$$x_1 = 1.5$$

$$x_2 = -2$$

$$x_3 = 2$$

Ejercicios

exersolDetermine un polinomio $p(x) = a_0 + a_1x + a_2x^2$ tal que

$$\int_0^1 p(x) dx = 1$$

$$\int_0^1 x p(x) dx = \frac{7}{12}$$

$$\int_0^1 x^2 p(x) dx = \frac{13}{30}$$

las incognitas son a_1 , a_2 y a_3 . $a_0 = 1$, $a_1 = -2$, $a_2 = 3$

Función solve. En la base de **R** está la función solve: **solve(a, b, tol, LINPACK = FALSE, ...)**. Por ejemplo,

Código R 5.1: Eliminación gaussiana con solve()

```
A = matrix(c(4, 2, 0,
2, 3, 1,
0, 1, 5/2), nrow=3, byrow=TRUE)
b = c(2,-1,3)
solve(A,b) # base de R
#[1] 1.5 -2.0 2.0
```

Implementación en R. Por ahora vamos a implementar una versión directa del algoritmo.

Código R 5.2: Eliminación gaussiana (sin pivoteo parcial). Sistemas $n \times n$

```
}
  }
  # Sustitución hacia atrás-----
  # b(i) = A[i, n+1]
  x = rep(NA, times=n)
  x[n] = Ab[n, n+1]/Ab[n,n] # xn = bn/a_n
  for(i in (n-1):1 ){
   x[i] = (Ab[i, n+1] - sum(Ab[i, (i+1):n] * x[(i+1):n])) / Ab[i,i]
  }
  return(x)
}
#--- Pruebas
A = matrix(c(0, 2, 3, 3,
            -5, -4, 1, 4,
             0, 0, 0, 3,
            -4, -7, -8, 9), nrow=4, byrow=TRUE)
b = c(1,0,0,0)
gauss(A,b) # [1] -1.2580645  1.4193548 -0.6129032  0.0000000
solve(A,b) # [1] -1.2580645 1.4193548 -0.6129032 0.0000000
```

■ Estrategia de pivoteo parcial. Esta estrategia consiste en hacer intercambio de filas para seleccionar el pivote más grande, *en valor absoluto*. Hay matrices donde esta estrategia falla, pero es un método muy usado.

¿Cuál es la ganancia?. Cuando calculamos A[i,j] = A[i,j] - m*A[k,j] con m = A[i,k]/A[k,k] el error de redondeo introducido en A[k,j] sería amplificado por m si m> 1, así que es mejor mantener m pequeño tomando el pivote A[k,k] como el más grande, en valor absoluto, de la columna en las filas a eliminar. Adicionalmente, como sols[i] = suma/A[i,i], si A[i,i] es pequeño, cualquier error en el numerador puede ser incrementado de manera indeseable.

Ejemplo 5.2

Use el eliminización gaussiana con *pivoteo parcial* para resolver el sitema AX = B donde

$$A = \begin{pmatrix} 0 & -1 & 4 & -1 \\ -1 & 4 & -1 & 0 \\ -1 & 0 & -1 & 4 \\ 4 & -1 & 0 & 0 \end{pmatrix} \quad \mathbf{y} \quad B = (-1, 2, 4, 10)^{T}$$

Solución:

Pivoteo parcial: Cambio de fila: F_1 , F_4 :

$$\begin{pmatrix} 4 & -1 & 0 & 0 & 10 \\ -1 & 4 & -1 & 0 & 2 \\ -1 & 0 & -1 & 4 & 4 \\ 0 & -1 & 4 & -1 & -1 \end{pmatrix}$$

Eliminar primera columna, debajo de la diagonal: Pivote 4. Modificar F_2 y F_3

$$F_2 = F_2 - \frac{-1}{4}F_1$$
 y $F_3 = F_3 - \frac{-1}{4}F_1$

$$\begin{pmatrix}
4 & -1 & 0 & 0 & 10 \\
0 & \frac{15}{4} & -1 & 0 & \frac{9}{2} \\
0 & -\frac{1}{4} & -1 & 4 & \frac{13}{2} \\
0 & -1 & 4 & -1 & -1
\end{pmatrix}$$

Eliminar segunda columna, debajo de la diagonal: Pivote $\frac{15}{4}$. Modificar F_3 y F_4

$$F_3 = F_3 - \frac{-1/4}{15/4}F_2$$
 y $F_4 = F_4 - \frac{-1}{15/4}F_2$

$$\begin{pmatrix} 4 & -1 & 0 & 0 & 10 \\ 0 & \frac{15}{4} & -1 & 0 & \frac{9}{2} \\ 0 & 0 & -\frac{16}{15} & 4 & \frac{34}{5} \\ 0 & 0 & \frac{56}{15} & -1 & \frac{1}{5} \end{pmatrix}$$

Eliminar tercera columna, debajo de la diagonal. Pivoteo parcial: Cambio de fila: F3, F4

$$\begin{pmatrix} 4 & -1 & 0 & 0 & 10 \\ 0 & \frac{15}{4} & -1 & 0 & \frac{9}{2} \\ 0 & 0 & \frac{56}{15} & -1 & \frac{1}{5} \\ 0 & 0 & -\frac{16}{15} & 4 & \frac{34}{5} \end{pmatrix}$$

Eliminar tercera columna, debajo de la diagonal. Pivote $\frac{56}{15}$. Modificar F_3

$$F_4 = F_4 - \frac{-16/15}{56/15}F_3$$

```
\begin{cases} 4 & -1 & 0 & 0 & 10 \\ 0 & \frac{15}{4} & -1 & 0 & \frac{9}{2} \\ 0 & 0 & \frac{56}{15} & -1 & \frac{1}{5} \\ 0 & 0 & 0 & \frac{26}{7} & \frac{48}{7} \end{cases}
Sistema reducido (equivalente):
\begin{cases} 4x_1 & -x_2 & = 10 \\ \frac{15}{4}x_2 & -x_3 & = \frac{9}{2} \\ \frac{56}{15}x_2 & -x_3 & = \frac{1}{5} \end{cases} \implies (x_1, x_2, x_3, x_4) = \left(\frac{295}{104}, \frac{35}{26}, \frac{57}{104}, \frac{24}{13}\right)
\frac{26}{7}x_4 = \frac{48}{7}
```

■ Implementación en R . Para la eliminación gaussiana con pivote parcial necesitamos buscar el pivote adecuado. La función which.max(abs(x)) devuelve el *índice* de la entrada más grande, en valor absoluto, en el vector x. En nuestro caso, debemos buscar en la columna k, de la diagonal para abajo, es decir,

```
fila = which.max(abs(A[k:n,k])) + k-1
```

Esta instrucción busca el *índice* en el que ocurre el máximo en la columna k, recorriendo las filas k, k+1,...,n. Este índice no coincide con el índice correcto que se obtendría si recorremos desde la fila 1, por lo tanto, hay que ajustarlo: Debemos sumar k-1 para obtener el índice correcto, pues el vector A[k:n,k] solo tiene n-k+1 componentes (no es la columna k completa).

Código R 5.3: Eliminación gaussiana con pivote parcial. Sistemas $n \times n$

```
gaussPP = function(A, b){
  if(is.matrix(A)) {
   n = nrow(A); m = ncol(A)
   if (m != n) stop("'A' debe ser una matriz cuadrada.")
  }
  # matriz ampliada
  Ab = cbind(A,b)
  # Eliminación
  for (k in 1:(n-1)){ # desde columna k=1 hasta k=n-1
   # índice del pivote máximo, en valor absoluto
   # wich.max( A[k:n,k] ) retorna indice del vector A[k:n,k] = (a_kk, a_(k+1)k,...,a_nk)
   # Como a_kk tendría índice 1, hay que corregir el índice sumando k-1.
   fila = which.max(abs(A[k:n,k])) + k-1
   Ab[c(k, fila), ] = Ab[c(fila, k), ]
   # Si pivote es cero, det A = 0!
   if(A[fila,k]==0) stop("La matriz es singular")
```

```
# Eliminación columna k
   for (i in (k+1):n){# debajo de la diagonal
     # Fi = Fi - a_ik/a_kk * Fk, i=k+1,...,n
     Ab[i, ] = Ab[i, ] - Ab[i, k]/Ab[k,k]*Ab[k, ]
   }
 }
 # Sustitución hacia atrás-----
 # b(i) = A[i, n+1]
 x = rep(NA, times=n)
 x[n] = Ab[n, n+1]/Ab[n,n] # xn = bn/a_n
 for(i in (n-1):1 ){ # for
   x[i] = (Ab[i, n+1] - sum(Ab[i, (i+1):n] * x[(i+1):n])) / Ab[i,i]
 }
 return(x)
}
#--- Pruebas
A = matrix(c(0, 2, 3, 3,
             -5, -4, 1, 4,
             0, 0, 0, 3,
             -4, -7, -8, 9), nrow=4, byrow=TRUE)
b = c(1,0,0,0)
gaussPP(A,b) # [1] -1.2580645   1.4193548 -0.6129032   0.0000000
solve(A,b) # [1] -1.2580645 1.4193548 -0.6129032 0.0000000
#-----
```

Ejercicios

5.1 Usando siempre *cuatro decimales* (**round(A,4)**), resolver el sistema usando eliminación gaussiana y usando eliminación gaussiana con pivoteo parcial.

```
\begin{cases} 0.00031000x_1 & +1.000000x_2 = 3.000000\\ 1.00045534x_1 & +1.00034333x_2 = 7.000 \end{cases}
```

5.2 Resolver *manualmente* el sistema que sigue, usando pivoteo parcial.

$$\begin{pmatrix}
14 & 14 & -9 & 3 & -5 \\
14 & 52 & -15 & 2 & -32 \\
-9 & -15 & 36 & -5 & 16 \\
3 & 2 & -5 & 47 & 49 \\
-5 & -32 & 16 & 49 & 79
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{pmatrix} = \begin{pmatrix}
-15 \\
-100 \\
106 \\
329 \\
463$$

5.2 Análisis de error.

En general hay tres fuentes de error.

• Primero los coeficientes de la matriz, pues trabajamos con una matriz "perturbada" debido a errores en la toma de datos o por errores de redondeo. La matriz "perturbada" se escribe como $A + \delta A$, en vez de la matriz exacta A.

Por ejemplo, podría ser
$$A = \begin{pmatrix} 4 & -6 \\ 0 & 4 \\ 1 & 2 \end{pmatrix}$$
 y $\delta A = \begin{pmatrix} 0 & -0.006 \\ 0.001 & 0.023 \\ -0.0004 & 0.0021 \end{pmatrix}$

La matriz "perturbada" sería
$$A + \delta A = \begin{pmatrix} 4 & -6,006 \\ 0.001 & 4.023 \\ 0,996 & 2.0021 \end{pmatrix}$$

- Error en el lado derecho del sistema porque trabajamos con $B + \delta b$ en vez de B
- Errores de redondeo porque calculamos con valores aproximados (no exactos).

Normas. La norma de una matriz va a ser útil para el análisis de error y para criterios de parada en el caso de métodos iterativos.

La norma de un vector \mathbf{x} es una función $||\mathbf{x}|| \in \mathbb{R}$ que cumple

- a.) $||\mathbf{x}|| > 0$ si $x \neq 0$
- b.) $||\alpha x|| = |\alpha| ||x||$
- c.) $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$

Sea $\mathbf{x} = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n$. Algunos ejemplos de normas son,

a.)
$$||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$$

b.)
$$||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

c.)
$$||\mathbf{x}||_{\infty} = \max_{1 \le i \le n} |x_i|$$

La norma de una matriz se define usando normas de vectores por cuestiones prácticas: Si ||.|| es una norma para vectores $\mathbf{x} \in \mathbb{R}^n$, la norma de la matriz A se define como

$$||A|| = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||}{||\mathbf{x}||}$$

Esta manera de definir una norma matricial es práctica porque entonces se tiene

- a.) $||AB|| \le ||A|| ||B||$
- b.) $||Ax|| \le ||A|| ||x||$

Ahora usando las normas que definimos anteriormente para vectores, podemos calcular las normas correspondientes para las matrices (ya como fórmulas dadas). Si $A = (a_{ij})_{n \times n}$, entonces

a.)
$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

b.) $||A||_2 = \sqrt{|\sigma_{max}|}$ donde σ_i son los valores propios de $A^T A$.

c.)
$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Ejemplo 5.3

Sea
$$A = \begin{pmatrix} 4 & -6 & 2 \\ 0 & 4 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$
.

La función **eigen()** de la base de **R** calcula los valores propios de una matriz. En este caso necesitamos los valores propios de $A^T A$.

Para calcular $||A||_2$ usamos el código **eigen(t(A)%*%A)\$values** lo que nos da

[1] 66.6816247 19.8065379 0.5118373

Entonces $||A||_2 = \sqrt{66.6816}$. También $||A||_{\infty} = 12$

Sistemas perturbados. Consideremos el sistema de ecuaciones "perturbado"

$$(A + \delta A)(X + \delta X) = b + \delta b$$

donde X es la solución exacta y δX sería un error introducido en la solución del sistema. Por ejemplo, sea

$$\delta A_{3\times 3} = \mathbf{0}, \ \delta X = \mathbf{0}, \ b = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} \ \mathbf{y} \ \delta b = \begin{pmatrix} 0 \\ 0.0001 \\ 0 \end{pmatrix}$$

El sistema perturbado sería $A_{3\times 3}X=b+\delta b$, es decir, $A_{3\times 3}X==\begin{pmatrix}0\\1.0001\\3\end{pmatrix}$

Una matriz está "mal condicionado" ("ill-conditioned") si la solución del sistema AX = b cambia mucho cuando se hacen prequeños cambios (perturbaciones) en el sistema. El método de eliminación gausssiana puede ser afectado por errores de redondeo, especialmente si la matriz es "mal condicionada"

Ejemplo 5.4

Considere el sistema lineal $\begin{cases} 1.002x_1 + x_2 = 2.002 \\ x_1 + 0.998x_2 = 1.998 \end{cases}$

La solución exacta es $X = (1,1)^T$. Ahora consideremos las perturbaciones $\delta A = \mathbf{0}$, $\delta X = \mathbf{0}$ y $\delta b = (0.0001,0)^T$. El sistema queda,

$$\begin{cases} 1.002x_1 + x_2 = 2.0021 \\ x_1 + 0.998x_2 = 1.998 \end{cases}$$

y la solución es ahora $(-23.95, 26.00)^T$, es decir, una pequeña perturbación en el sistema provocó un gran cambio en la solución.

En el caso $n \times n$ con solución única, se puede estimar el error δX usando el llamado "número de condición" de A. Este número se define como

$$cond(A) = ||A|| ||A^{-1}||$$

Si $e_1 = ||\delta A||/||A||$, $e_2 = ||\delta b||/||B||$ y $\varepsilon = ||\delta X||/||X||$, entonces

$$\varepsilon \leq \frac{\operatorname{cond}(A)}{1 - e_1 \operatorname{cond}(A)} (e_1 + e_2)$$

Si el número de condición es grande, no significa que $\varepsilon = ||\delta X||/||X||$ sea grande, pero si dice que el problema está mal condicionado y esto nos hace sospechar que la formulación del problema no es correcta.

El recíproco del número de condición es $rcond(A) = \frac{1}{cond(A)}$. En en la base de **R** , se aproxima este número con la función rcond() .

Si A está bien condicionada, rcond(A) está cerca de 1. Si A esta mal condicionado, rcond(A) está cerca de 0.

En el ejemplo 5.4 se obtiene $rcond(A) = 9.98003 \times 10^{-7}$, que es muy cercano a cero.

Ejemplo 5.5

Considere el sistema lineal
$$A_b = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 23/12 \\ 43/30 \end{pmatrix}$$

La solución exacta de este sistema es $X = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

En este caso, rcond(A) = 0.03103147 que es pequeño. Si agregamos la perturbación δb = (0,0.001,0) el resultado es (0.964,2.192,2.820) T

5.3 Descomposición LU.

La descomposición LU de una matriz cuadrada A, si hubiera, es una factorización de A con matrices triangulares, deseables en particular para simplificar la solución de sistemas de ecuaciones.

Por ejemplo, tenemos una matriz A a la que se le aplicó eleiminación gaussiana $sin\ cambios\ de\ fila$, hasta obtener una matriz triangular, esa es U, los coeficientes de las operaciones elementales (no hay cambios de fila), se colocan en columnas en una matriz unitaria: esa es L.

$$\begin{pmatrix} 4 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 5/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 0 & 1/2 & 1 \end{pmatrix} \qquad \begin{pmatrix} 4 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

$$L: \text{ coeficientes de las operaciones } U: \text{ obtenida por elementales aplicadas}$$

■ Cambios de fila. En la sección 5.3 vamos a ver descomposición LU con pivoteo parcial (requiere cambio de fila). En este caso, se opera igual solo que hay que ajustar la descomposición debido a los cambios de fila. Si aplicamos a la identidad I únicamente las operacions de cambio de fila usadas, obtenemos una matriz P ($I \rightarrow ... \rightarrow P$). Esta matriz se llama matriz de permutación porque eso es lo que hace, permuta las filas. Finalmente, si hacemos cambios de fila, $A \neq LU$ pero A = PLU

Supongamos que matriz A se puede factorizar como $A = L_{n \times n} U_{n \times n}$ con L tringular *unitaria* (1's en la diagonal) y U triangular, es decir,

$$A = LU \text{ donde } L = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ l_{21} & 1 & 0 & \dots & 0 \\ l_{31} & l_{32} & 1 & \dots & 0 \\ \vdots & & & \vdots & \\ l_{n1} & l_{n2} & \dots & l_{n(n-1)} & 1 \end{pmatrix} \quad y \quad U = \begin{pmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & & & \vdots & \\ 0 & 0 & \dots & 0 & u_{nn} \end{pmatrix}$$

Ahora, la idea es que las matrices L y U son sencillas y adecuadas para resolver el sistema $A_{n\times n}X=B$ si este tiene solución única.

Entonces en vez de resolver AX = B, resolvemos LUX = B en dos pasos sencillos:

- 1. El sistema LY = B es fácil de resolver por ser L tringular inferior *unitaria*, eso nos da una solución Y^*
- 2. LY = B tiene solución Y^* , es decir, $LY^* = B$, entonces sustituyendo $LUX = B \iff UX = Y^*$ y nuevamente este último sistema es fácil de resolver pues U es triangular superior. La solución del sistema sencillo $UX = Y^*$ es X^* , es decir, $UX^* = Y^*$, que sería la solución dels sistema ortiginal, pues

$$LY^* = B \iff LUX^* = B \iff AX^* = B$$

La ganancia es que si tenemos la descomposición LU de A, entonces el sistema AX = B lo podemos resolver para distintas matrices B sin tener que estar aplicando el método de eliminación gaussiana cada vez desde el principio. es decir, en cada nuevo cálculo reutilizamos las matrices L y U. Esto es útil por ejemplo en el cálculo de inversas y también de determinantes, como se verá en la sección 5.3.

Cálculo de U. La matriz U se obtiene aplicando eliminación gaussisana, hasta llegar a una matriz triangular superior. Si *no hay operaciones de cambio de fila*, esta última es la matriz U.

Recordemos que cada operación elemental sobre A se puede expresar como un producto matricial.

Sea $m_{i1} = \frac{a_{i1}}{a_{11}}$ con i > 1, entonces la primera columna de A se elimina con las operaciones $\overline{F_i} - m_{i1} F_1$ con i = 2, ..., n. El resultado de este proceso se puede escribir como un producto matricial,

$$E_{1}A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22}^{(2)} & \dots & a_{2n}^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & a_{n2}^{(2)} & \dots & a_{nn}^{(2)} \end{pmatrix} \text{ donde } E_{1} = E_{1} = I - \begin{pmatrix} 0 & 0 & \dots & 0 \\ m_{21} & 0 & \dots & 0 \\ m_{31} & 0 & \dots & 0 \\ \vdots & 0 & \vdots & 0 \\ m_{n1} & 0 & \dots & 0 \end{pmatrix}$$

Ahora eleminamos debajo de la segunda columna, con la soperaciones $m_{i2} = \frac{a_{i2}^{(2)}}{a_{22}^{(2)}}$ con i > 2, entonces el resultado de este proceso se puede escribir como un producto matricial,

$$E_{2}E_{1}A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \dots & a_{2n}^{(2)} \\ 0 & 0 & a_{33}^{(3)} & \dots & a_{3,n}^{(3)} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & a_{n3}^{(3)} & \dots & a_{nn}^{(3)} \end{pmatrix} \text{ donde } E_{2} = I - \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & m_{22} & 0 & \dots & 0 \\ 0 & m_{32} & 0 & \dots & 0 \\ \vdots & \vdots & 0 & \vdots & 0 \\ 0 & m_{n2} & 0 & \dots & 0 \end{pmatrix}$$

Y en general,

$$E_n E_{n-1} \dots E_1 A = \begin{pmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & & & \vdots & & \\ 0 & 0 & \dots & 0 & u_{nn} \end{pmatrix}$$

Entonces

$$A = \underbrace{(E_n E_{n-1} \dots E_1)^{-1}}_{I} \underbrace{E_n E_{n-1} \dots E_1 A}_{II}$$

La matriz U es como decíamos (si no hay cambios de fila), la matriz que se obtiene aplicando eliminacación gaussisana, hasta llegar a una matriz triangular superior.

■ Cálculo de L. Como ya vimos, $L = (E_n E_{n-1} ... E_1)^{-1}$ pero no tenemos que calcular esta inversa, porque esta matriz se puede expresar como una suma de matrices muy sencillas: Las columnas son los coeficientes de las operaciones elementales que usamos para llegar a la matriz U.

Para evitar el cálculo explícito de la inversa $(E_n E_{n-1} ... E_1)^{-1}$, usamos las de las matrices $R_k = \left(r_{ij}^{(k)}\right)$, donde las entradas de R_k se definen como,

$$r_{ij}^{(k)} = \begin{cases} \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} & \text{si} \quad j = k \text{ e } i > k \\ 0 & \text{en otro caso.} \end{cases}$$

Es decir, las entradas de R_k son nulas excepto talvez las entradas $r_{ik}^{(k)} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}$ con i = k+1,...,n

Por ejemplo:

$$R_{1} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ a_{21}/a_{11} & 0 & \dots & 0 \\ a_{31}/a_{11} & 0 & \dots & 0 \\ \vdots & 0 & \vdots & 0 \\ a_{n1}/a_{11} & 0 & \dots & 0 \end{pmatrix}, \quad R_{2} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & a_{32}^{2}/a_{22}^{2}2 & \dots & 0 \\ 0 & a_{42}^{2}/a_{22}^{2}2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & a_{n2}^{2}/a_{22}^{2}2 & \vdots & 0 \end{pmatrix}, \text{ etc.}$$

Con esta notación,

$$E_k = I - R_k$$

$$U = E_n E_{n-1} \cdots E_2 E_1 A$$

$$L = (E_n E_{n-1} \cdots E_2 E_1)^{-1} = I + R_1 + R_2 + \dots + R_{n-1} \quad \checkmark$$

Las matriz R_k guarda en su columna k los coeficientes de las operaciones elementales que usamos para eliminar por debajo de la digonal en la columna k. Luego L se obtiene agrupando estas columnas.

Ejemplo 5.6 (Descomposición LU)

En el ejemplo 5.1 aplicamos eliminación gaussiana, sin cambios de fila, a la matriz a $A = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 3 & 1 \\ 0 & 1 & 5/2 \end{pmatrix}$.

Aplicamos la operación $\overline{F}_2 - \frac{1}{2}F_1$ para eliminar en la columna 1, fila 2 y no necesitamos operación para eliminar en la fila 3.

$$\begin{pmatrix} 4 & 2 & 0 \\ 2 & 3 & 1 \\ 0 & 1 & 5/2 \end{pmatrix} \xrightarrow{F_2 - \frac{1}{2}\overline{F}_1} \begin{pmatrix} 4 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 5/2 \end{pmatrix} \implies R_1 = \begin{pmatrix} 0 & 0 & 0 \\ 1/2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Luego aplicamos la operación $\overline{F}_3 - \frac{1}{2}F_2$ para eliminar en la columna 2, fila 3,

$$\begin{pmatrix} 4 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 5/2 \end{pmatrix} \xrightarrow{F_3 - \frac{1}{2}\overline{F}_2} \begin{pmatrix} 4 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \implies R_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1/2 & 0 \end{pmatrix}$$

Entonces
$$L = I + R_1 + R_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 1/2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 0 & 1/2 & 1 \end{pmatrix}$$

Tenemos la factorización

$$\begin{pmatrix} 4 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 5/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 0 & 1/2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Ejercicios

5.3 Si hubiera, determine la descomposición *LU* de las siguientes matrices

a.)
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

b.)
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 3 & 5 & 1 & 0 \\ 6 & 0 - 3 & 1 \end{pmatrix}$$

c.)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

- **Resolver sistemas con la descomposición** LU. Si se puede factorizar $A_{n \times n}$ como A = LU donde L es tringular inferior *unitaria* (con 1's en la diagonal) y U es triangular superior, entonces el sistema AX = B se puede resolver usando L y U de la siguiente manera,
 - a.) Resolvemos LY = B y obtenemos la solución Y^*
 - b.) Resolvemos $UX = Y^*$ y obtenemos la solución X^* del sistema
 - c.) X^* es la solución del sistema original

Ejemplo 5.7 Resolviendo un sistema con factorización LU

Resolver, usando la descomposición LU, el sistema $A = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 3 & 1 \\ 0 & 1 & 5/2 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix}$.

Solución: Como ya vimos, una descomposición *LU* de *A* es

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1/2 & 1 & 0 \\
0 & 1/2 & 1
\end{array}\right)
\left(\begin{array}{ccc}
4 & 2 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)$$

Entonces
$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 0 & 1/2 & 1 \end{pmatrix}$$
 y $U = \begin{pmatrix} 4 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

a.) Luego resolvemos
$$LY = B$$
, es decir, $\begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 0 & 1/2 & 1 \end{pmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix}$ y nos da $Y^* = (2,3,2.5)^T$.

b.) Ahora
$$UX = Y^*$$
, es decir, $\begin{pmatrix} 4 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 2.5 \end{bmatrix} \implies X^* = (0.0625, 0.8750, 1.2500)^T.$

Entonces la solución dels sistema original es $X^* = (0.0625, 0.8750, 1.2500)^T$.

Ejemplo 5.8

Considere la matriz
$$A = \begin{pmatrix} 4 & 1 & 0 & 0 \\ 1 & 6 & 1 & 0 \\ 0 & 1 & 5 & 1 \\ 1 & 0 & 1 & 4 \end{pmatrix}$$

- (a.) Calcule una descomposición LU de A (en este caso no hay que hacer cambios de fila)
- (b.) Use la descomposición *LU* anterior para resolver el sistema AX = B con $B = (1, 7, 16, 14)^T$.

Solución:

L:

a.) Calculamos con dos columnas, para ver los pasos

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
\frac{1}{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{1}{4} & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
\frac{1}{4} & 0 & 0 & 0 \\
0 & \frac{4}{23} & 0 & 0 \\
\frac{1}{4} & \frac{-1}{23} & 0 & 0
\end{pmatrix}$$

$$F_2 = F_2 - \frac{1}{4}F_1$$
 y $F_4 = F_4 - \frac{1}{4}F_1$

$$\left(\begin{array}{ccccc}
4 & 1 & 0 & 0 \\
0 & \frac{23}{4} & 1 & 0 \\
0 & 1 & 5 & 1 \\
0 & -\frac{1}{4} & 1 & 4
\end{array}\right)$$

$$F_3 = F_3 - \frac{4}{23}F_2$$
 y $F_4 = F_4 - \frac{-1}{23}F_2$

$$\left(\begin{array}{ccccc}
4 & 1 & 0 & 0 \\
0 & \frac{23}{4} & 1 & 0 \\
0 & 0 & \frac{111}{23} & 1 \\
0 & 0 & \frac{24}{23} & 4
\end{array}\right)$$

$$F_4 = F_4 - \frac{8}{37} F_3$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ \frac{1}{4} & 0 & 0 & 0 \\ 0 & \frac{4}{23} & 0 & 0 \\ \frac{1}{4} & \frac{-1}{23} & \frac{8}{37} & 0 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 1 & 0 & 0 \\ 0 & \frac{23}{4} & 1 & 0 \\ 0 & 0 & \frac{111}{23} & 1 \\ 0 & 0 & 0 & \frac{140}{37} \end{pmatrix}$$

Por tanto,
$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{4} & 1 & 0 & 0 \\ 0 & \frac{4}{23} & 1 & 0 \\ \frac{1}{4} & \frac{-1}{23} & \frac{8}{37} & 1 \end{pmatrix}$$
 $y \quad U = \begin{pmatrix} 4 & 1 & 0 & 0 \\ 0 & \frac{23}{4} & 1 & 0 \\ 0 & 0 & \frac{111}{23} & 1 \\ 0 & 0 & 0 & \frac{140}{37} \end{pmatrix}$

b.) •
$$LY = B$$
 \Longrightarrow
$$\begin{cases} y_1 & = 1 \\ \frac{1}{4}y_1 + y_2 & = 7 \\ \frac{4}{23}y_2 + y_3 & = 16 \\ \frac{1}{4}y_1 - \frac{1}{23}y_2 + \frac{8}{37}y_3 + y_4 & = 14 \end{cases} \Longrightarrow Y = \left(1, \frac{27}{4}, \frac{341}{2}, \frac{401}{37}\right)$$

$$UX = Y \implies \begin{cases} 4x_1 + x_2 & = 1 \\ \frac{23}{4}x_2 + x_3 & = \frac{27}{4} \\ \frac{111}{23}x_3 + x_4 & = \frac{341}{2} \\ \frac{140}{37}x_4 & = \frac{401}{37} \end{cases} \implies X = \left(\frac{9}{140}, \frac{26}{35}, \frac{347}{140}, \frac{401}{140}\right)$$

La solución del sitema original es $X=\left(\frac{9}{140},\frac{26}{35},\frac{347}{140},\frac{401}{140}\right)$

Ejercicios

5.4 Si hubiera, determine la descomposición LU, y resuelva los siguientes sistemas de ecuaciones

a.)
$$\begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

b.)
$$\begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$

c.)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 3 & 5 & 1 & 0 \\ 6 & 0 - 3 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix}$$

Implementación

Computacionalmente, pensando en la solución de sistemas lineales con la descomposición LU, no usamos dos matrices por separado, sino que usamos la parte de la matriz L y la parte de la matriz U que nos interesa.

$$\begin{pmatrix} & \setminus U \\ L \setminus & \end{pmatrix}$$

Por ejemplo, siguiendo con el ejemplo 5.7, para resolver el sistema AX = B con $A = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 3 & 1 \\ 0 & 1 & 5/2 \end{pmatrix}$ tomamos L y

U directamente de la matriz

$$A = \left(\begin{array}{ccc} 4 & 2 & 0 \\ 1/2 & 2 & 1 \\ 0 & 1/2 & 2 \end{array}\right)$$

Una implementación en **R** se muestra en el código que sigue,

Código R 5.4 Descomposición LU, sin cambios de fila

```
A = matrix(c(4, 2, 0,

2, 3, 1,

0, 1, 5/2), nrow=3, byrow=TRUE)

luA(A)

# [,1] [,2] [,3]

# [1,] 4.0 2.0 0

# [2,] 0.5 2.0 1

# [3,] 0.0 0.5 2
```

Ahora podemos implementar la sustitución hacia atrás usando la parte apropiada de la matriz "LU"

Código R 5.5: Solución usando A=LU, sin pivoteo — versión no vectorizada.

```
# Usa la descomposición LU de A para resolver sistemas AX=b
solvelu = function(LU,b){
  n = nrow(LU)
  sol = rep(NA, times=n)
  # Sustitución hacia atrás -----
  sol[1] = b[1]
  for(i in 2:n){
    s=0
    for(j in 1: (i-1)){
      s = s + LU[i,j]*sol[j]
    sol[i] = b[i] - s
  # Resolver UX=Y
  sol[n] = sol[n]/LU[n,n]
  for(i in (n-1): 1){
    s = 0
    for(j in (i+1): n){
      s = s + LU[i,j]*sol[j]
    sol[i] = (sol[i] - s)/LU[i,i]
  }
  return(sol)
}
## pruebas-----
A = matrix(c(4, 2, 0,
             2, 3, 1,
             0, 1, 5/2), nrow=3, byrow=TRUE)
b = c(2, -1, 3)
```

```
# Descomposición LU de A
LU = luA(A)
# Resolver sistemas AX = b usando la descomposición LU
solvelu(LU,b) # [1] 1.5 -2.0 2.0
```

■ Existencia de la factorización LU. La factorización de la matriz $A_{n \times n}$, no-singular, existe (y es única) si y sólo si las submatrices principales A_i , con i = 1, 2, ..., n - 1 son no-singulares. Las submatrices A_i son A con una poda de A: Solo se dejan las primeras i filas y las primeras i columnas).

Por ejemplo, si
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 2 & 2 \\ 3 & 6 & 4 \end{pmatrix} \implies A_2 = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$$

NEn este caso: o podemos aplicar el algoritmo de descomposición LU a la matriz A pues $Det(A_2) = 0$. Esto hace que haya divisones por cero:

```
A = matrix(c(1, 1, 3,

2, 2, 2,

3, 6, 4), nrow=3, byrow=TRUE)

luA(A)

# [,1] [,2] [,3]

# [1,] 1 1 3

# [2,] 2 0 -4

# [3,] 3 Inf Inf # divisiones por cero
```

Las matrices A_i son invertibles por ejemplo cuando A es simétrica y "definida positiva", es decir, A es simétrica y $x^T A x > 0$ para todo $x \in \mathbb{R}^n$. También las matrices A_i son invertibles cuando A es *diagonalmente dominante* por filas o por columnas, es decir,

$$|a_{ii}| \ge \sum_{j=1, j \ne i}^{n} |a_{ij}|, \ i = 1, 2, ..., n \ (A \text{ es dominante por filas})$$

$$|a_{ii}| \ge \sum_{j=1, j \ne i}^{n} |a_{ji}|, i = 1, 2, ..., n$$
 (A es dominante por columnas)

Pivoteo parcial y la descomposición LU.

Ahora vamos a aconsiderar el caso de aplicar operaciones elementales que incluyen cambios de fila para el "pivoteo".

Si *A* es una matriz cuadrada no singular, podemos obtener una descomposición aplicando pivoteo parcial en la descomposición *LU*, solo hay que llevar un registro del intercambio de filas con tal de aplicar de manera apropiada la sustitución hacia atrás.

■ Pivoteo parcial. Matriz de permutación P. Para *cualquier* $A_{n \times n}$ no-singular, se puede obtener una factorización LU permutando de manera adecuada las filas. Si hacemos pivoteo parcial, en general la descomposición LU que encontramos no es igual a A, pero podemos usar una matriz de permutación adecuada P (cuya inversa es su transpuesta) y obtenemos

$$P^{T}A = LU$$
 o también $A = PLU$ pues $P^{-1} = P^{T}$

Para obtener P, iniciamos con la matriz identidad I y aplicamos a I las permutaciones de fila que aplicamos en A. Al final resolvemos $LY = P^T B$ y UX = Y y esto nos da la solución del sistema usando pivoteo parcial.

Lo primero que hay que notar es que si P es una matriz de permutación, entonces $P^{-1} = P^T$, de esta manera si usamos pivoteo parcial, PLU = A y

$$AX = B \implies PLUX = B \implies LUX = P^{-1}B \implies LUX = P^{T}B$$

 P^TB lo que hace es hacer los mismos cambios de fila aplicados en la eliminación, ahora a B, por lo que resolver AX = B con descomposición LU con pivoteo parcial solo requiere *registrar los cambios de fila y aplicarlos a B*.

El procedimiento es como antes

- Primero obtenemos la solución Y^* del sistema $LY = P^T B$,
- Luego resolvemos $UX = Y^*$.

Ejemplo 5.9 (Descomposición LU con pivoteo parcial)

Aplicamos eleiminación gaussiana con pivoteo parcial a la matriz

$$A = \begin{pmatrix} 4 & 0 & 1 & 1 \\ 3 & 1 & 3 & 1 \\ 0 & 1 & 2 & 0 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$

El primer pivote está en la fila 1, $a_{11} = 4$.

$$\begin{pmatrix} 4 & 0 & 1 & 1 \\ 3 & 1 & 3 & 1 \\ 0 & 1 & 2 & 0 \\ 3 & 2 & 4 & 1 \end{pmatrix} \xrightarrow{F2-3/4F_1} \begin{pmatrix} 4 & 0 & 1 & 1 \\ 0 & 1 & \frac{9}{4} & \frac{1}{4} \\ 0 & 1 & 2 & 0 \\ 0 & 2 & \frac{13}{4} & \frac{1}{4} \end{pmatrix}$$

#L
[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0.75 1 0 0
[3,] 0.00 0 1 0
[4,] 0.75 0 0 1

#U
[,1] [,2] [,3] [,4]
[1,] 4 0 1.00 1.00
[2,] 0 1 2.25 0.25
[3,] 0 1 2.00 0.00
[4,] 0 2 3.25 0.25

Ahora el pivote está en la fila 4: Intercambio de filas F2, F4 (y también en ambas, Ly U)

$$\begin{pmatrix} 4 & 0 & 1 & 1 \\ 0 & 1 & \frac{9}{4} & \frac{1}{4} \\ 0 & 1 & 2 & 0 \\ 0 & 2 & \frac{13}{4} & \frac{1}{4} \end{pmatrix} \xrightarrow{F2, F4} \begin{pmatrix} 4 & 0 & 1 & 1 \\ 0 & 2 & \frac{13}{4} & \frac{1}{4} \\ 0 & 1 & 2 & 0 \\ 0 & 1 & \frac{9}{4} & \frac{1}{4} \end{pmatrix}$$

#U
[,1] [,2] [,3] [,4]
[1,] 4 0 1.00 1.00
[2,] 0 2 3.25 0.25
[3,] 0 1 2.00 0.00

0 1 2.25 0.25

[4,]

El primer pivote está en la fila 2, pivote: $a_{22}^{(2)} = 2$.

$$\begin{pmatrix} 4 & 0 & 1 & 1 \\ 0 & 2 & \frac{13}{4} & \frac{1}{4} \\ 0 & 1 & 2 & 0 \\ 0 & 1 & \frac{9}{4} & \frac{1}{4} \end{pmatrix} \xrightarrow{F3-1/2F2} \begin{pmatrix} 4 & 0 & 1 & 1 \\ 0 & 2 & \frac{13}{4} & \frac{1}{4} \\ 0 & 0 & \frac{3}{8} & -\frac{1}{8} \\ 0 & 0 & \frac{5}{8} & \frac{1}{8} \end{pmatrix}$$

#L

#U

[,1] [,2] [,3] [,4] [1,] 4 0 1.000 1.000 [2,] 0 2 3.250 0.250 [3,] 0 0 0.375 -0.125 [4,] 0 0 0.625 0.125

Para eliminar en la columna 3, cambiamos al pivote a $\frac{5}{8}$. Intercambio de filas F3, F4 (en ambas, LyU).

$$\begin{pmatrix} 4 & 0 & 1 & 1 \\ 0 & 2 & \frac{13}{4} & \frac{1}{4} \\ 0 & 0 & \frac{3}{8} & -\frac{1}{8} \\ 0 & 0 & \frac{5}{8} & \frac{1}{8} \end{pmatrix} \xrightarrow{F3, F4} \begin{pmatrix} 4 & 0 & 1 & 1 \\ 0 & 2 & \frac{13}{4} & \frac{1}{4} \\ 0 & 0 & \frac{5}{8} & \frac{1}{8} \\ 0 & 0 & \frac{3}{8} & -\frac{1}{8} \end{pmatrix}$$

#L

#U

[,1] [,2] [,3] [,4] [1,] 4 0 1.000 1.000 [2,] 0 2 3.250 0.250 [3,] 0 0 0.625 0.125 [4,] 0 0 0.375 -0.125

Para eliminar en la columna 3, el pivote es $a_{33}^{(3)} = \frac{5}{8}$

$$\begin{pmatrix} 4 & 0 & 1 & 1 \\ 0 & 2 & \frac{13}{4} & \frac{1}{4} \\ 0 & 0 & \frac{5}{8} & \frac{1}{8} \\ 0 & 0 & \frac{3}{8} & -\frac{1}{8} \end{pmatrix} \xrightarrow{F4 - \frac{3/8}{5/8}F3} \begin{pmatrix} 4 & 0 & 1 & 1 \\ 0 & 2 & \frac{13}{4} & \frac{1}{4} \\ 0 & 0 & \frac{5}{8} & \frac{1}{8} \\ 0 & 0 & 0 & -\frac{1}{5} \end{pmatrix}$$

#L
[,1] [,2] [,3] [,4]
[1,] 1 0.0 0 0
[2,] 0.75 1 0 0
[3,] 0.75 0.5 1 0
[4,] 0 0.5 0.6 1

#U
[,1] [,2] [,3] [,4]
[1,] 4 0 1.000 1.000
[2,] 0 2 3.250 0.250
[3,] 0 0 0.625 0.125
[4,] 0 0 0.000 -0.200

Entonces, la descomposición LU con pivoteo parcial es

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.75 & 1 & 0 & 0 \\ 0.75 & 0.5 & 1 & 0 \\ 0 & 0.5 & 0.6 & 1 \end{pmatrix} \quad \mathbf{y} \quad U = \begin{pmatrix} 4 & 0 & 1 & 1 \\ 0 & 2 & 3.250 & 0.250 \\ 0 & 0 & 0.625 & 0.125 \\ 0 & 0 & 0 & -0.200 \end{pmatrix}$$

Ahora observamos que $LU = \begin{pmatrix} 4 & 0 & 1 & 1 \\ 3 & 2 & 4 & 1 \\ 3 & 1 & 3 & 1 \\ 0 & 1 & 2 & 0 \end{pmatrix} \neq A.$

Pero podemos agregar un "factor de corrección" si le aplicamos a I_4 los intercambios de fila que aplicamos en el proceso (matriz de permutación):

Nos quedaría I_4 con cambios de fila aplicados (transpuesta): $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Ahora sí:

$$LU = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}^{T} A = \begin{pmatrix} 4 & 0 & 1 & 1 \\ 3 & 2 & 4 & 1 \\ 3 & 1 & 3 & 1 \\ 0 & 1 & 2 & 0 \end{pmatrix}$$

o también

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} LU = \begin{pmatrix} 4 & 0 & 1 & 1 \\ 3 & 1 & 3 & 1 \\ 0 & 1 & 2 & 0 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$

Ejemplo 5.10

Resolver, usando la descoposición LU con pivoteo parcial, el sistema

$$\begin{pmatrix} 4 & 0 & 1 & 1 \\ 3 & 1 & 3 & 1 \\ 0 & 1 & 2 & 0 \\ 3 & 2 & 4 & 1 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Solución: En el ejemplo 5.9 podemos restablecer A multiplicando por la matriz de permutación P^T : Los cambios de fila en el pivoteo fueron: En la eliminación de la segunda columna se intercambió F2,F3 en la eliminación de la tercera columna se intercambió F3,F4. Aplicamos a I esos mismos intercambios, obtenemos P:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{F_2, F_3} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} = P$$

Ahora, resolver el sistema

$$\begin{pmatrix} 4 & 0 & 1 & 1 \\ 3 & 1 & 3 & 1 \\ 0 & 1 & 2 & 0 \\ 3 & 2 & 4 & 1 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

usando descomposición LU (con pivoteo parcial) de A, es equivalente a resolver el sistema

$$LU\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = P^T \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 2 \\ 3 \end{bmatrix}$$

Bien, debemos resolver $LU\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 2 \\ 3 \end{bmatrix}$

• Primero obtenemos la solución Y^* del sistema $LY = P^T B$,

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.75 & 1 & 0 & 0 \\ 0.75 & 0.5 & 1 & 0 \\ 0 & 0.5 & 0.6 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 2 \\ 3 \end{pmatrix}$$

La solución es $Y^* = (1, \frac{13}{4}, -\frac{3}{8}, \frac{8}{5})$

• Luego resolvemos $UX = Y^*$.

$$\begin{pmatrix} 4 & 0 & 1 & 1 \\ 0 & 2 & \frac{13}{4} & \frac{1}{4} \\ 0 & 0 & \frac{5}{8} & \frac{1}{8} \\ 0 & 0 & 0 & -\frac{1}{5} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{13}{4} \\ -\frac{3}{8} \\ \frac{8}{5} \end{pmatrix}$$

La solución es $X^* = (2, 1, 1, -8)$

■ Paquete Matrix. La función lu() del paquete Matrix hace la descomposición LU aplicando pivoteo parcial.

```
# install.packages("Matrix")
require(Matrix)
A = matrix(c(4, 0, 1, 1,
```

```
3, 1, 3, 1,
            0, 1, 2, 0,
            3, 2, 4, 1), nrow=4, byrow=TRUE)
 mlu = lu(A)
 mlu = expand(mlu)
 mlu$L
     [,1] [,2] [,3] [,4]
#[1,] 1.00
#[2,] 0.75 1.00
#[3,] 0.75 0.50 1.00
#[4,] 0.00 0.50 0.60 1.00
mlu$U
    [,1] [,2] [,3] [,4]
#[1,] 4.000 0.000 1.000 1.000
#[2,] . 2.000 3.250 0.250
               . 0.625 0.125
#[3,]
         . .
               . . -0.200
#[4,]
 mlu$P
#4 x 4 sparse Matrix of class "pMatrix"
#[1,] | . . .
#[2,] . . | .
#[3,] . . . |
#[4,] . | . .
\#PLU = A
mlu$P%*%mlu$L%*%mlu$U
4 x 4 Matrix of class "dgeMatrix"
    [,1] [,2] [,3] [,4]
[1,]
       4
            0
                 1
[2,]
            1
                     1
       3
                 3
[3,]
       0 1
                2
                     0
            2
[4,]
       3
                     1
```

Ejercicios

5.5 Resolver *manualmente*, usando descomposición LU con pivoteo parcial, al menos uno de los sistemas AX = b, AX = b' y AX = b'' donde

$$A = \begin{pmatrix} 1 & 4 \\ 4 & 10 \end{pmatrix}$$
 $b = (5,6)^T$, $b' = (6,7)^T$ y $b'' = (1,2)^T$

5.6 Resolver *manualmente*, usando descomposición LU con pivoteo parcial, al menos uno de los sistemas AX = b,

AX = b' y AX = b'' donde

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 5 & -2 \\ 6 & 1 & 6 \end{pmatrix} \qquad b = (0, 4, 0)^{T}, \qquad b' = (1, 1, 1)^{T} \quad y \quad b'' = (0, 0, 0)^{T}$$

5.7 Resolver *manualmente*, usando descomposición LU con pivoteo parcial, al menos uno de los sistemas AX = b, AX = b' y AX = b'' donde

$$A = \begin{pmatrix} 4 & 3 & -2 & 5 \\ 2 & -4 & 6 & 1 \\ -1 & 2 & -5 & 6 \\ 3 & 5 & -2 & -3 \end{pmatrix}, \qquad b = (5,6,13,1)^T, \qquad b' = (6,7,8,9)^T \quad \text{y} \quad b'' = (1,2,5,2)^T$$

Compare con el resultado que se obtiene con al implementación en R

5.8 Resolver *manualmente*, usando descomposición LU con pivoteo parcial, al menos uno de los sistemas AX = b, AX = b' y AX = b'' donde

$$A = \begin{pmatrix} 4 & 0 & 1 & 1 \\ 3 & 1 & 3 & 1 \\ 0 & 1 & 2 & 0 \\ 3 & 2 & 4 & 1 \end{pmatrix}, \qquad b = (5, 6, 13, 1)^{T}, \qquad b' = (6, 7, 8, 9)^{T} \quad \text{y} \quad b'' = (1, 2, 5, 2)^{T}$$

Compare con el resultado que se obtiene con al implementación en **R**

Cálculo de inversas y determinantes

■ Inversas. Si $A_{n\times n}$ es invertible entonces exxiste X tal que AX = ISupongamos que A admite una descomposición LU. Si X^j es la columna j de la inversa $X_{n\times n}$ y si e_j es la columna j de la matriz identidad, entonces

$$AX = I \iff \begin{cases} LUX^1 &= e_1 \\ LUX^2 &= e_2 \\ &\vdots \\ LUX^n &= e_n \end{cases}$$

Es decir, el cálculo de la inversa es equivalente a resolver $\begin{cases}
LUX^1 &= e_1 \\
LUX^2 &= e_2 \\
\vdots \\
LUX^n &= e_n
\end{cases}$

En presencia de pivoteo parcial, habrá que resolver en cada caso $LY_i = P^t e_i$

La ganancia es que solo hacemos eliminación una sola vez, para calcular L y U, luego se trata de resolver sistemas con matrices triangulares.

Determinantes. Para el caso de determinantes,

$$A = PLU \implies \text{Det } A = \text{Det } P \cdot \text{Det } U = \text{Det } P \cdot \text{Det } U \text{ pues } \text{Det } L = 1.$$

El Det P es ± 1 dependiendo de si la cantidad de cambios de filas es par o impar.

El Det U es el producto de los miembros de la diagonal.

Del ejemplo 5.9

$$A = \begin{pmatrix} 4 & 0 & 1 & 1 \\ 3 & 1 & 3 & 1 \\ 0 & 1 & 2 & 0 \\ 3 & 2 & 4 & 1 \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}}_{P} \cdot \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{4}{3} & -\frac{4}{3} & 1 & 0 \\ 1 & 1 & 3 & 1 \end{pmatrix}}_{L} \cdot \underbrace{\begin{pmatrix} 3 & 1 & 3 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & -\frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{U} \implies \text{Det } A = \text{Det } A \cdot \text{Det } U = 1 \cdot -1$$

Ejercicios

5.9 Usando descomposición *LU* con pivoteo parcial, calcule la inversa de *A* y Det *A* si

$$A = \begin{pmatrix} 1 & 4 \\ 4 & 10 \end{pmatrix}$$

5.10 Usando descomposición LU con pivoteo parcial, calcule la inversa de A y Det A si

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 5 & -2 \\ 6 & 1 & 6 \end{array}\right)$$

5.11 Usando descomposición LU con pivoteo parcial, calcule la inversa de A y Det A si

$$A = \left(\begin{array}{ccccc} 4 & 3 & -2 & 5 \\ 2 & -4 & 6 & 1 \\ -1 & 2 & -5 & 6 \\ 3 & 5 & -2 & -3 \end{array}\right)$$

5.4 Refinamiento iterativo.

La eliminación gaussiana puede ser afectada fuertemente por errores de redondeo, sobre todo si la matriz A es "mal condicionada". En algunos casos (si **rcon(A)** no es demasiado pequeño), se puede refinar una solución $X^{(0)}$ obtenida al resolver el sistema AX = b con un algoritmo llamado "refinamiento iterativo". La idea es esta: Si $X^{(0)}$ es solución calculada del sistema AX = b y si X^* es la solución exacta, entonces el error $e = X^* - X^{(0)}$ también es solución del sistema Ae = R donde $R = b - AX^{(0)}$. Por supuesto, no conocemos la "corrección" e, pero lo podemos aproximar y corregir la solución $X^{(0)}$. El algoritmo es como sigue,

- a.) $X^{(0)}$ es la solución calculada al resolver AX = b la primera vez, con la descomposición LU con pivoteo parcial. *Refinamiento iterativo*.
- b.) Calcule $R^{(k)} = b AX^{(k)}$ (Usar *A*!)
- c.) Resuelva $Ae = R^{(k)}$ usando la factorización LU que ya tenemos.
- d.) $X^{(k+1)} = X^{(k)} + e$
- e.) Detenerse cuando se considere que se ha alcanzado suficiente precisión.

5.5 Grandes sistemas y métodos iterativos.

Si una matriz es muy grande y *rala* (los elementos no nulos son una fracción pequeña de la totalidad de elementos de la matriz) entonces el método de eliminación gaussiana no es el mejor método para resolver el sistema porque, en general, tendríamos problemas de lentitud en el manejo de la memoria por tener que almacenar y manipular toda la matriz; además la descomposición *LU* deja de ser tan rala como la matriz *A*.

Los métodos iterativos se usan para resolver problemas con matrices muy grandes, ralas y con ciertos patrones ("bandadas"), usualmente problemas que aparecen al *discretizar* ecuaciones diferenciales en derivadas parciales.

La idea general de los métodos iterativos es, dado el sistema AX = b con A no singular, descomponemos A como A = M - N tal que MY = Z sea "fácil" de resolver y que por tanto M^{-1} sea fácil de obtener. Entonces,

$$AX = b \implies (M - N)X = b \implies MX = NX + B \implies X = M^{-1}NX + M^{-1}B$$

Si tenemos una solución inicial $X^{(0)}$, la usamos para obtener una mejor aproximación a la solución "correcta",

$$X = M^{-1}NX^{(0)} + M^{-1}B$$
 o mejor, $X^{(1)} = M^{-1}NX^{(0)} + M^{-1}B$

Ahora procedemos igual, pero usamos $X^{(1)}$ para calcular $X^{(2)}$

$$X^{(2)} = M^{-1}NX^{(1)} + M^{-1}B$$

Esto sugiere que si tenemos una aproximación inicial $X^{(0)}$, podemos calcular una sucesión de vectores

$$X^{(k+1)} = M^{-1}NX^{(k)} + M^{-1}R$$

Pero esto es mejor escribirlo así:

$$Z^{(k)} = M^{-1}NX^{(k)} \implies MZ^{(k)} = NX^{(k)}$$
 que se supone fácil de resolver!

$$W^{(k)} = M^{-1}B \implies MW^{(k)} = b$$

$$X^{(k+1)} = Z^{(k)} + W^{(k)}$$
 donde $MZ^{(k)} = NX^{(k)}$ y $MW^{(k)} = b$ (*)

Ietramos hasta que la sucesión converja. Este método funciona cuando $M \approx A$.

Teorema 5.1

Sea $A_{n \times n}$ una matriz real. Sea $T = M^{-1}N$ donde A = M - N. Entonces la iteración (*) converge para cualquier $X^{(0)}$ si y sólo si existe una norma ||.|| para la que ||T|| < 1. Además tal norma existe si y sólo si, en valor absoluto, el más grande valor propio de T, denotado $\rho(T)$, es < 1.

En resumen, la iteración converge si y sólo si $\rho(T) < 1$.

■ Iteración de Jacobi. Este el método es el más simple y el más lento. Lo que hace es descomponer *A* usando su diagonal *D* (siempre y cuando sea invertible)

$$A = D - (D - A)$$

Como M = D y N = D - A, la iteración es

$$X^{(k+1)} = (I - D^{-1}A)X^{(k)} + D^{-1}b = X^{(k)} - D^{-1}(AX^{(k)}) + D^{-1}b$$

Iteración de Jacobi. D invertible.

$$X^{(k+1)} = X^{(k)} - Z^{(k)} + W^{(k)}$$

donde $Z^{(k)}$ y $W^{(k)}$ se obtienen como solución de los sistemas $DZ^{(k)} = AX^{(k)}$ y $DW^{(k)} = b$

La iteración se podría detener en $X^{(k+1)}$ si $\frac{||X^{(k+1)} - X^{(k)}||_{\infty}}{||X^{(k+1)}||_{\infty}} < tol.$

■ Iteración de Gauss-Seidel. Este esquema iterativo se obtiene descomponiendo A como

$$A = L_A - (L_A - A) \quad \text{donde} \quad L_A = \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ a_{31} & a_{32} & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & \dots & a_{nn} \end{pmatrix}$$

Como $M = L_A$ y $N = L_A - A$, la iteración es

$$X^{(k+1)} = X^{(k)} - L_A^{-1}(AX^{(k)}) + L_A^{-1}B$$

Como L_A es triangular, en vez de calcular L_A^{-1} , observamos que

$$L_A Z = A X^{(k)} \implies Z = L_A^{-1} (A X^{(k)})$$
 y que $L_A W = b \implies W = L_A^{-1} B$

así que $L_A^{-1}(AX^{(k)})$ lo obtenemos como solución del sistema $L_AZ = AX^{(k)}$ y $L_A^{-1}B$ lo obtenemos como la solución del sistema $L_AW = b$. De este modo podemos escribir el esquema iterativo como

Iteración Gauss-Seidel

Sistema AX = B con aproximación inicial $X^{(0)}$.

$$X^{(k+1)} = X^{(k)} - Z^{(k)} + W^{(k)}$$

donde cada $Z^{(k)}$ lo obtenemos como solución del sistema $L_AZ=AX^{(k)}$ y $W^{(k)}$ lo obtenemos como la solución del sistema $L_AW=B$.

Teorema 5.2 (Convergencia – Jacobi y Gauss-Seidel)

Si *A* es diagonalmente dominante, entonces ambos métodos, Jacobi y Gauss–Seidel convergen y, además Gauss–Seidel es más rápido. También si *A* es simétrica definida positiva, ambos métodos convergen.

Iteración SOR (successive over-relaxation). Esta iteración es una mejora sustancial respecto a la iteración Gauss-Seidel, pero requiere la escogencia de un parámetro ω .

Sea D la diagonal de A y L_A y U_A las partes (estrictamente) triangular superior e inferior de A, es decir, L_A y U_A tienen ceros en su diagonal.

$$L_A = \left(\begin{array}{ccccc} 0 & 0 & 0 & \dots & 0 \\ a_{21} & 0 & 0 & \dots & 0 \\ a_{31} & a_{32} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{n,(n-1)} & 0 \end{array} \right)$$

Entonces dado ω , descomponemos A como

$$A = \left(\frac{1}{\omega}D + L_A\right) - \left(\left(\frac{1}{\omega} - 1\right)D - U_A\right)$$

Esto nos lleva a la iteración,

$$X^{k+1} = X^k - Q_{\omega}^{-1} A X^k + Q_{\omega}^{-1} B$$

donde

$$Q_{\omega} = \left(\frac{1}{\omega}D + L_A\right) = \omega^{-1}(D + \omega L_A)$$

que es triangular inferior. Resumiendo,

$$X^{(k+1)} = X^{(k)} - Z^{(k)} + W^{(k)}$$
 donde resolvemos $Q_{\omega}Z^{(k)} = AX^{(k)}$ y $Q_{\omega}W^{(k)} = B$ para obtener $Z^{(k)}$ y $W^{(k)}$

Teorema 5.3 (Convergencia de SOR)

Si $A_{n\times n}$ es una matriz real, simétrica y semidefinida positiva, entonces para cualquier adivinanza inicial $X^{(0)} \in \mathbb{R}^n$ y para cualquier $B \in \mathbb{R}^n$ y para cualquier $\omega \in]0,2[$, la iteración SOR converge a la solución exacta del sistema AX = B

Ejemplo 5.11

Considere la matriz

$$A = \left(\begin{array}{cccc} 4 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ -1 & 0 & -1 & 4 \end{array} \right)$$

a.) Calcule la descomposición LU de A (con pivoteo parcial).

Solución: Debería quedar (con pivoteo parcial)

```
[,1] [,2] [,3]
                        [,4]
[1,] 1.00
[2,] -0.25 1.00
[3,] 0.00 -0.27 1.00
[4,] -0.25 -0.07 -0.29 1.00
> mlu$U
4 x 4 Matrix of class "dtrMatrix"
     [,1] [,2] [,3] [,4]
            -1
[1,]
                  0
[2,]
                 -1
[3,]
                      -1
[4,]
```

- b.) Resuelva $Ax = b \text{ con } b = (-1, 2, 4, 10)^T$
- c.) Calcule $||A||_{\infty}$ y calcule el número de condición de A usando esta norma $||.||_{\infty}$
- d.) Haga tres iteraciones a mano usando el método de Jacobi, con $X^{(0)} = (0,0,0,0)$
- e.) Haga tres iteraciones a mano usando el método de Gauss-Seidel, con $X^{(0)}=(0,0,0,0)$
- f.) Haga tres iteraciones usando el método de SOR, con $X^{(0)} = (0,0,0,0)$ y con $\omega = 1.05$
- a.) Calcule la descomposición *LU* de *A* (con pivoteo parcial).

Solución: Aplicando nuestro algoritmo, con pivoteo parcial, obtenemos,

```
# L =
     [,1]
                 [,2]
                             [,3]
                                          [,4]
[1,] 1
[2,] -0.25
                  1.
[3,] 0
                 -0.26666667 1
[4,] -0.25000000 -0.06666667 -0.28571429 1
# U =
               [,2]
                         [,3]
                                   [,4]
     [,1]
```

- [1,] 4. -1 0 0 [2,] . 3.750000 -1. 0 [3,] . . 3.733333 -1. [4,] . . . 3.714286
- b.) Use la descomposición LU para resolver AX = B con $B = (-1, 2, 4, 10)^T$.

Solución:

- a.) Primero resolvemos LY = B y obtenemos la solución $Y^* = (-1, 1.75, 4.466667, 11.142857)$
- b.) Luego resolvemos $UX = Y^*$ y obtenemos X = (0, 1, 2, 3)
- c.) Como no hubo cambios de fila, la solución es X = (0,1,2,3).
- c.) Haga dos iteraciones a mano usando el método de Jacobi, con $X^{(0)} = (0,0,0,0)$

Solución: La iteración es $X^{(k+1)} = X^{(k)} - Z^{(k)} + W^{(k)}$ donde $Z^{(k)}$ y $W^{(k)}$ son solución de los sistemas $DZ^{(k)} = AX^{(k)}$ y $DW^{(k)} = B$

- a.) Tenemos la aproximación inicial $X^{(0)} = (0, 0, 0, 0)$.
- b.) La matriz diagonal es $D = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$. Esta matriz es invertible.
- c.) Primera iteración.
 - I.) Debemos resolver $DZ^{(0)} = A(X^{(0)})^T$.

Como $A(X^{(0)})^T = A(0,0,0,0)^T = (0,0,0,0)^T$ entonces el sistema $DZ^{(0)} = (0,0,0,0)^T$ tiene solución $Z^{(0)} = (0,0,0,0)^T$.

- II.) Debemos resolver $DW^{(0)} = B^T$. El sistema $DW^{(0)} = (-1,2,4,10)^T$ tiene solución $W^{(0)} = (-0.25, 0.5, 1, 2.5)^T$.
- III.) Finalmente $X^{(1)} = X^{(0)} Z^{(0)} + W^{(0)} = (-0.25, 0.5, 1, 2.5)^T$
- d.) Segunda iteración.

I.) Debemos resolver $DZ^{(1)} = A(X^{(1)})^T$.

El sistema $DZ^{(1)} = A(-0.25, 0.5, 1, 2.5)^T$ tiene solución $Z^{(1)} = (-0.375, 0.3125, 0.25, 2.3125)^T$.

- II.) Debemos resolver $DW^{(1)}=B^T$. El sistema $DW^{(1)}=(-1,2,4,10)^T$ tiene solución $W^{(1)}=(-0.25,\,0.5,\,1,\,2.5)^T$.
- III.) Finalmente $X^{(2)} = X^{(1)} Z^{(1)} + W^{(1)} = (-0.125, 0.6875, 1.75, 2.6875)$
- d.) Haga dos iteraciones a mano usando el método de Gauss-Seidel, con $X^{(0)} = (0,0,0,0)$

Solución: La iteración es $X^{(k+1)} = X^{(k)} - Z^{(k)} + W^{(k)}$ donde $Z^{(k)}$ y $W^{(k)}$ son solución de los sistemas $L_A Z^{(k)} = A X^{(k)}$ y $L_A W^{(k)} = B$.

- a.) Tenemos la aproximación inicial $X^{(0)} = (0, 0, 0, 0)$.
- b.) La matriz L_A es $L_A = \begin{pmatrix} 4 & 0 & 0 & 0 \\ -1 & 4 & 0 & 0 \\ 0 & -1 & 4 & 0 \\ -1 & 0 & -1 & 4 \end{pmatrix}$
- c.) Primera iteración.
 - I.) Debemos resolver $L_A Z^{(0)} = A(X^{(0)})^T$.

Como $A(X^{(0)})^T = A(0,0,0,0)^T = (0,0,0,0)^T$ entonces el sistema $L_A Z^{(0)} = (0,0,0,0)^T$ tiene solución $Z^{(0)} = (0,0,0,0)^T$.

- II.) Debemos resolver $L_A W^{(0)} = B^T$. El sistema $L_A W^{(0)} = (-1, 2, 4, 10)^T$ tiene solución $W^{(0)} = (-0.25, 0.4375, 1.109375, 2.714844)^T$.
- III.) Finalmente $X^{(1)} = X^{(0)} Z^{(0)} + W^{(0)} = (-0.25, 0.4375, 1.109375, 2.714844)^T$
- d.) Segunda iteración.
 - I.) Debemos resolver $L_A Z^{(1)} = A(X^{(1)})^T$.

El sistema $L_A Z^{(1)} = A(-0.25, 0.4375, 1.109375, 2.714844)^T$ tiene solución $Z^{(1)} = (-0.359375, 0.1328125, 0.3544922, 2.498779)^T$.

II.) Debemos resolver $L_A W^{(1)} = B^T$. El sistema $L_A W^{(1)} = (-1, 2, 4, 10)^T$ tiene solución $W^{(1)} = (-0.25, 0.4375, 1.109375, 2.714844)^T$.

- III.) Finalmente $X^{(2)} = X^{(1)} Z^{(1)} + W^{(1)} = (-0.140625, 0.7421875, 1.864258, 2.930908)$
- e.) Haga dos iteraciones usando el método de SOR, con $X^{(0)}=(0,0,0,0)$ y con $\omega=1.05$

Solución: La iteración es $X^{(k+1)} = X^{(k)} - Z^{(k)} + W^{(k)}$ donde $Z^{(k)}$ y $W^{(k)}$ son solución de los sistemas $Q_{\omega}Z^{(k)} = AX^{(k)}$ y $Q_{\omega}W^{(k)} = B$ donde $Q_{\omega} = \left(\frac{1}{\omega}D - L_A\right)$.

a.) Tenemos la aproximación inicial $X^{(0)} = (0,0,0,0)$.

b.)
$$Q_{\omega} = \begin{pmatrix} 3.809524 & 0 & 0 & 0 \\ -1. & 3.809524 & 0 & 0 \\ 0. & -1. & 3.809524 & 0 \\ -1. & 0 & -1 & 3.809524 \end{pmatrix} \quad L_{A} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & -1 & 0 \end{pmatrix} \quad \text{y D es la}$$
 diagonal de \$A\$.

- c.) Primera iteración.
 - I.) Debemos resolver $Q_{\omega}Z^{(0)} = A(X^{(0)})^T$.

Como $A(X^{(0)})^T = A(0,0,0,0)^T = (0,0,0,0)^T$ entonces el sistema $Q_\omega Z^{(0)} = (0,0,0,0)^T$ tiene solución $Z^{(0)} = (0,0,0,0)^T$.

- II.) Debemos resolver $Q_{\omega}W^{(0)}=B^T$. El sistema $Q_{\omega}W^{(0)}=(-1,2,4,10)^T$ tiene solución $W^{(0)}=(-0.2625,0.4560938,1.169725,2.863146)^T$.
- III.) Finalmente $X^{(1)} = X^{(0)} Z^{(0)} + W^{(0)} = (-0.2625, 0.4560938, 1.169725, 2.863146)^T$
- d.) Segunda iteración.
 - I.) Debemos resolver $Q_{\omega}Z^{(1)} = A(X^{(1)})^T$.

El sistema $Q_{\omega}Z^{(1)} = A(-0.2625, 0.4560938, 1.169725, 2.863146)^T$ tiene solución $Z^{(1)} = (-0.3953496, 0.1369727, 0.3928656, 2.767505)^T$.

- II.) Debemos resolver $Q_{\omega}W^{(1)}=B^T$. El sistema $Q_{\omega}W^{(1)}=(-1,2,4,10)^T$ tiene solución $W^{(1)}=(0.2625,0.4560938,1.169725,2.863146)^T$.
- III.) Finalmente $X^{(2)} = X^{(1)} Z^{(1)} + W^{(1)} = (-0.1296504, 0.7752148, 1.946584, 2.958788)$

Ejercicios

5.12 Considere el sistema
$$AX = B$$
 con $A = \begin{pmatrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{pmatrix}$ y $B = \begin{pmatrix} 7 \\ 7 \\ 7 \end{pmatrix}$.

- a.) Verifique que la solución exacta es $X = (1, 1, 1)^T$
- b.) Haga 5 iteraciones a mano usando el método de Jacobi, con $X^{(0)} = (0,0,0)$
- c.) Haga 5 iteraciones a mano usando el método de Gauss-Seidel, con $X^{(0)} = (0,0,0)$
- d.) Haga 5 iteraciones usando el método de SOR, con $X^{(0)}=(0,0,0,0)$ y con $\omega=1$

5.13

$$A = \left(\begin{array}{cccc} 4 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ -1 & 0 & -1 & 4 \end{array} \right)$$

- a.) Verifique que la solución exacta es $X = (0,1,2,3)^T$
- b.) Haga dos iteraciones a mano usando el método de Jacobi, con $X^{(0)} = (0,0,0,0)$
- c.) Haga dos iteraciones a mano usando el método de Gauss-Seidel, con $X^{(0)} = (0,0,0,0)$
- d.) Haga dos iteraciones usando el método de SOR, con $X^{(0)}=(0,0,0,0)$ y con $\omega=1.05$

Sistemas $m \times n$.

Consideremos el sistema $A_{m \times n} X = B$ con m > n. Si B está en el rango de A (como transformación lineal) entonces, por supuesto, el sistema tiene solución. Pero, enegeneral, para un B arbitrario, lo mejor que podemos hacer es encontrar un vector X^* que minimice la norma euclidiana:

$$X^* = \min_{X \in \mathbb{R}^n} ||AX - B||_2^2$$

Al vector X^* le llamamos la "solución por mínimos cuadrados".

Ejemplo 5.12

Considere las tres rectas de ecuación x + y = 2, x - y = -2, y 3x - y = 2. La representación gráfica la podemos ver en la figura de la derecha.

Claramente el sistema $\begin{cases} x+y = 2 \\ x-y = -2 \\ 3x-y = 2 \end{cases}$

no tiene solución exacta, pero podemos buscar una solución X^* en el sentido de "mínimos cuadrados". La solución buscada es $X^* = (1,5/3)^T$

Del ejemplo anterior, se puede ver geométricamente que hay una solución X^* en el sentido de "mínimos cuadrados" si las tres rectas son "independientes" (no paralelas), es decir, si la matriz de coeficientes A tiene rango = mín{m,n}. En este caso, la matriz A^TA es simétrica y definida positiva y además la solución X^* existe y es única.

De hecho, X^* es la solución del sistema

$$A^T A X = A^T B$$

Descomposición QR. La descomposición **QR** de una matriz $A_{m \times n}$ factoriza la matriz como A = QR con $Q_{m \times m}$ ortogonal y R triangular superior. Esta descomposición se usa para resolver sistemas $m \times n$ con $m \ge n$ en el sentido de "mínimos cuadrados". Para usar esta descomposición se usa la función **qr()** en la base de **R**.

Por ejemplo, para resolver el sistema,

$$\begin{cases} x+y &= 2\\ x-y &= 0.1\\ 3x-y &= 2 \end{cases}$$

en el sentido de "mínimos cuadrados", se procede así

```
\mbox{Veamos la aproximación de cerca:} \left\{ \begin{array}{rcl} 1 + 0.9666667 & = & 1.966667 \\ 1 - 0.9666667 & = & 0.0333333 \\ 3 \cdot 1 - 0.9666667 & = & 2.033333 \end{array} \right.
```

Ejercicios

5.14 Resuelva, en el sentido de "mínimos cuadrados", el sistema AX = b donde $X = (x, y)^T$,

$$A = \begin{pmatrix} 0 & 1 \\ 0.06 & 1 \\ 0.14 & 1 \\ 0.25 & 1 \\ 0.31 & 1 \\ 0.47 & 1 \\ 0.60 & 1 \\ 0.70 & 1 \end{pmatrix} \quad y \quad B = \begin{pmatrix} 0 \\ 0.08 \\ 0.014 \\ 0.20 \\ 0.23 \\ 0.25 \\ 0.28 \\ 0.29 \end{pmatrix}$$

Revisado: Marzo, 2022 Versión actualizada de este libro: https://tecdigital.tec.ac.cr/servicios/revistamatematica/Libros/

6.1 Introducción

La interpolación polinomial es la base de muchos tipos de integración numérica y tiene otras aplicaciones teóricas. En la práctica a menudo tenemos una tabla de datos $\{(x_i, y_i), i = 0, 1, 2, ..., n\}$, obtenida por muestreo o experimentación. Suponemos que los datos corresponden a los valores de una función f desconocida (a veces es conocida, pero queremos cambiarla por una función más sencilla de calcular). El "ajuste de curvas" trata el problema de construir una función que aproxime muy bien estos datos (es decir, a f).

Un caso particular de ajuste de curvas es la interpolación polinomial: En este caso se construye un polinomio P(x) de grado pequeño, que pase por los puntos de la tabla (en general nos interesa grupos de datos con 7 o menos elementos, por problemas de oscilaciones del polinomio!).

La interpolación polinomial consiste en estimar, a partir de una tabla de valores de f, un valor $f(x^*)$ pero evaluando $P(x^*)$, suponiendo que x^* no está en la tabla pero que se puede ubicar entre los datos. Una situación típica se muestra en el siguiente ejemplo en el que tenemos datos que relacionan temperatura con el segundo coeficiente virial. $\frac{1}{2}$

$$\frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2} + ...,$$

donde P es la presión, V el volumen molar del gas, T es la temperatura Kelvin y R es la constante de gas ideal. Los coeficientes B = B(T), C = C(T), ... son el segundo y tercer coeficiente virial, respectivamente. En la práctica se usa la serie truncada

$$\frac{PV}{RT} \approx 1 + \frac{B}{V}$$

¹El comportamiento de gases no ideales se describe a menudo con la *ecuación virial de estado*

Ejemplo 6.1

Considere los siguientes datos para el nitrógeno (N_2) :

T(K)	100	200	300	400	450	500	600
$B(cm^3/mol)$	-160	-35	-4.2	9.0	?	16.9	21.3

donde T es la temperatura y B es el segundo coeficiente virial. ¿Cuál es el segundo coeficiente virial a 450K?. Para responder la pregunta, usando interpolación polinomial, construimos un polinomio P que pase por los seis puntos de la tabla (ya veremos cómo), tal y como se muestra en la figura (6.1). Luego, el segundo coeficiente virial a 450K es aproximadamente $P(450) = 13.5cm^3/mol$.

Figura 6.1: Polinomio interpolante

Ejemplo 6.2

Consideremos la función f definida por

$$f(x) = \int_{5}^{\infty} \frac{e^{-t}}{t - x} dt$$
, con $-1 \le x \le 1$

La integral que define a f es una integral no trivial (no se puede expresar en términos de funciones elementales). La tabla de la izquierda nos muestra algunos valores para f.

x	f(x)
-1	0.0009788055864607286
-0.6	0.0010401386051341144
-0.2	0.0011097929435687336
0	0.0011482955912753257
0.2	0.0011896108201581322
0.25	?
0.6	0.0012820294923443982
1.	0.0013903460525251596

Podemos usar un polinomio interpolante para interpolar f(0.25).

En el mundillo del ajuste de curvas hay varias alternativas,

- Usar un polinomio interpolante. Es el método de propósito general más usado.
- Usar trazadores (splines). Estas son funciones polinomiales a trozos.
- Usar polinomios trigonométricos en $[0,2\pi]$. Son la elección natural cuando la función f es periódica de periodo 2π .
- Usar sumas exponenciales si conocemos que f presenta decaimiento exponencial conforme $x \to \infty$.
- Si los datos son aproximados ("datos experimentales"), lo conveniente sería usar Mínimos Cuadrados

Aquí vamos a tratar con interpolación polinomial, trazadores cúbicos.

6.2 Interpolación polinomial.

Un problema de interpolación polinomial se especifica como sigue: dados n+1 pares $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$, siendo todos los x_i 's distintos, y $y_i = f(x_i)$ para alguna función f; encontrar un polinomio $P_n(x)$ de grado $\leq n$ tal que

$$P_n(x_i) = y_i, i = 0, 1, 2, ..., n$$

Teorema 6.1 (Polinomio interpolante).

Dados n+1 puntos (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) con $x_i \neq x_j$ si $i \neq j$; existe un único polinomio $P_n(x)$ de grado $\leq n$ tal que $P(x_i) = y_i \ \forall \ i = 0, 1, ..., n$

A $P_n(x)$ se le llama polinomio interpolante, a cada x_i le decimos nodo de interpolación y a cada y_i valor interpolado.

- El problema tiene solución única, es decir hay un único polinomio que satisface $P_n(x_i) = y_i$.
- No se requiere que los datos estén igualmente espaciados ni en algún orden en particular.
- Si f es un polinomio de grado $k \le n$, el polinomio interpolante de f en n+1 puntos coincide con f.
- El grado de P_n es $\leq n$ pues podría pasar, por ejemplo en el caso n=3, que los tres puntos estén sobre una recta y así el polinomio tendría grado cero o grado uno

Figura 6.2: Polinomio interpolante.

Definición 6.1

Si de una función f conocemos los puntos (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) , con los x_i 's todos distintos (pero sin importar el orden), y si $A = \{x_0, x_1, ..., x_n\}$ y $x^* \notin A$ pero mín $A < x^* < \text{máx } A$; entonces $interpolar \ f$ en x^*

con un subconjunto de k+1 nodos de A consiste en calcular $P_k(x^*)$ donde P_k es el polinomio interpolante obtenido con un subconjunto de k+1 nodos alrededor de x^* .

El polinomio interpolante es único, es decir, solo hay un polinomio que pasa por estos n+1 puntos. Aquí vamos a ver cuatro maneras de calcular este polinomio interpolante: La forma de Lagrange del polinomio interpolante, la fórmula baricéntrica de Lagrange, la modificada de Lagrange y la forma de Newton del polinomio interpolante (método de diferencias divididas de Newton).

Los cuatro métodos dan el mismo polinomio (aunque *con diferente aspecto*), y los cuatro métodos son importantes porque de ellos se hacen otras derivaciones teóricas.

6.3 Forma de Lagrange del polinomio interpolante.

Lagrange² calculó el único polinomio interpolante de manera explícita: El polinomio $P_n(x)$ de grado $\leq n$ que pasa por los n+1 puntos $(x_0,y_0),(x_1,y_1),...,(x_n,y_n)$ (con $x_i\neq x_j$ si $i\neq j$) es

$$P_n(x) = y_0 L_{n,0}(x) + y_1 L_{n,1}(x) + ... + y_n L_{n,n}(x)$$

Como los $y_0, y_1, ..., y_n$ son conocidos, solo queda calcular cada polinomio $L_{n,k}(x)$

$$L_{n,k}(x) = \prod_{\substack{i=0\\i\neq k}}^{n} \frac{x - x_i}{x_k - x_i} = \frac{(x - x_0)(x - x_1)\cdots(x - x_{k-1})^{n}(x - x_{k+1})\cdots(x - x_n)}{(x_k - x_0)\cdots(x_k - x_{k-1})^{n}(x_k - x_{k+1})\cdots(x_k - x_n)}.$$

$$L_{n,0}(x) = \frac{(x-x_1)\cdot(x-x_2)\cdots(x-x_n)}{(x_0-x_1)\cdot(x_0-x_2)\cdots(x_0-x_n)}.$$

$$L_{n,1}(x) = \frac{(x-x_0)\cdot(x-x_2)\cdots(x-x_n)}{(x_1-x_0)\cdot(x_1-x_2)\cdots(x_1-x_n)}.$$

$$L_{n,3}(x) = \frac{(x-x_0)\cdot(x-x_1)\cdot(x-x_2)\cdot(x-x_4)\cdots(x-x_n)}{(x_3-x_0)\cdot(x_3-x_1)\cdot(x_3-x_2)\cdot(x_3-x_4)\cdots(x_3-x_n)}.$$

: : :

Joseph Louis Lagrange (1736-1813) fue uno de los más grandes matemáticos de su tiempo. Nació en Italia pero se nacionalizó Francés. Hizo grandes contribuciones en todos los campos de la matemática y también en mecánica. Su obra principal es la "Mécanique analytique" (1788). En esta obra de cuatro volúmenes, se ofrece el tratamiento más completo de la mecánica clásica desde Newton y sirvió de base para el desarrollo de la física matemática en el siglo XIX.

$$L_{n,n}(x) = \frac{(x-x_0)\cdot(x-x_1)\cdots(x-x_{n-1})}{(x_n-x_0)\cdot(x_n-x_1)\cdots(x_n-x_{n-1})}.$$

Ejemplo 6.3

Determine la forma de Lagrange polinomio interpolante de grado ≤ 2 (una recta o una parábola) que pasa por tres puntos (0,1),(1,3),(2,0).

Solución:

$$P_{2}(x) = y_{0} L_{2,0}(x) + y_{1} L_{2,1}(x) + y_{2} L_{2,2}(x)$$

$$= 1 \cdot L_{2,0}(x) + 3 \cdot L_{2,1}(x) + 0 \cdot L_{2,2}(x)$$

$$= 1 \cdot \frac{(x-1)(x-2)}{(0-1)(0-2)} + 3 \cdot \frac{(x-0)(x-2)}{(1-0)(1-2)}$$

Ejemplo 6.4

De una función f, conocemos la información de la tabla que sigue. Interpolar f(0.35) usando un polinomio interpolante $P_3(x)$ indicando la subtabla de datos que va a usar.

x	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7
f(x)	.3	.31	.32	.33	.34	.45	.46	.47

Solución: Como se requiere un polinomio interpolante $P_3(x)$, se necesita una subtabla de *cuatro* datos. Una opción es

Si usamos la forma de Lagrange del polinomio interpolante, entonces

$$\begin{array}{lcl} P_3(x) & = & 0.32 \cdot \frac{(x-0.3)(x-0.4)(x-0.5)}{(0.2-0.3)(0.2-.4)(0.2-0.5)} \\ & + & 0.33 \cdot \frac{(x-0.2)(x-0.4)(x-0.5)}{(0.3-0.2)(0.3-0.4)(0.3-0.5)} \\ & + & 0.34 \cdot \frac{(x-0.2)(x-0.3)(x-0.5)}{(0.4-0.2)(0.4-0.3)(0.4-0.5)} \\ & + & 0.45 \cdot \frac{(x-0.2)(x-0.3)(0.4-0.5)}{(0.5-0.2)(0.5-0.3)(0.5-0.4)} \end{array}$$

y entonces $f(0.35) \approx P_3(0.35) = 0.32875$.

Ejemplo 6.5 (Interpolación lineal. Fórmula de un solo punto para una recta).

Verifique que el polinomio interpolante de grado ≤ 1 que pasa por $(x_0, y_0), (x_1, y_1)$ es,

$$P_1(x) = m(x - x_1) + y_1 = \underbrace{\frac{(y_0 - y_1)}{(x_0 - x_1)}}_{\text{pendiente}} (x - x_1) + y_1$$

Solución: Usando la fórmula de Lagrange,

$$P_{1}(x) = y_{0}L_{n,0}(x) + y_{1}L_{n,1}(x)$$

$$= y_{0}\frac{(x-x_{1})}{(x_{0}-x_{1})} + y_{1}\frac{(x-x_{0})}{(x_{1}-x_{0})}.$$
 Simplificando,
$$= \frac{(y_{0}-y_{1})}{(x_{0}-x_{1})}(x-x_{1}) + y_{1}$$

Ejemplo 6.6

En la tabla que sigue aparece las estadísticas de un curso con la cantidad de estudiantes en cada rango de notas.

Rango de Notas	30-40	40-50	50-60	60-70	70-80
N ^o Estudiantes	35	48	70	40	22

Estime la cantidad de estudiantes con nota menor o igual a 55.

Solución: La cantidad de estudiantes con nota menor o igual a 55 corresponde a los estudiantes que están entre 30 y 40, más los que están entre 40 y 50, más los que están entre 50 y 55. Como se ve, para hacer la estimación necesitamos una tabla con las frecuencias acumuladas,

$x_i \leq$	40	50	60	70	80
y_i	35	83	153	193	215

De esta manera, F(40) = 35 corresponde a 35 estudiantes con nota ≤ 40 . En general, F(x) sería número de estudiantes con nota $\leq x$.

Entonces $F(x) \approx P_4(x)$ y en particular, $F(55) \approx P_4(55)$, es decir, $P_4(55)$ es aproximadamente la cantidad de estudiantes con nota menor o igual a 55

Ahora calculamos el polinomio interpolante,

$$P_4(x) = \frac{7(x-80)(x-70)(x-60)(x-50)}{48000} + \frac{83(80-x)(x-70)(x-60)(x-40)}{153(x-80)(x-70)(x-50)(x-40)} + \frac{40000}{43(x-70)(x-60)(x-50)(x-40)} + \frac{43(x-70)(x-60)(x-50)(x-40)}{48000}$$

Así, la cantidad de estudiantes con nota menor o igual a 55 es aproximadamente $P_4(55) = 120$.

Ejemplo 6.7 (Nodos igualmente espaciados-fenómeno de Runge).

En general, el polinomio interpolante se podría ver afectado por el conjunto $\{x_0,...,x_n\}$ y por la función f.

Este ejemplo es algo extremo y es conocido como 'fenómeno de Runge'; si $f(x) = \frac{1}{1+25x^2}$, el polinomio interpolante presenta problemas de convergencia si tomamos los x_i 's igualmente espaciados en [-1,1], es decir si $x_i = -1 + i \cdot h$ con h = 2/n.

Observe que la interpolación se ve afectado hacia los extremos del intervalo no asi en el centro; esto parece ser una tendencia general.

Si se puede escoger los nodos, una buena opción de ajuste se obtiene con nodos de Tchebychev ³

Ejemplo 6.8 (Nodos de Tchebychev).

Si hay posibilidad de escoger los puntos de interpolación, en el intervalo [-1,1], la elección podría ser los nodos

$$x_i = \cos\left(\frac{2i+1}{2n+2}\pi\right),\,$$

conocidos como nodos de Tchebychev. A diferencia de lo que podría suceder con nodos igualmente espaciados, con estos nodos el polinomio interpolante ajusta bien si $f \in C^1[-1,1]$.

Para un intervalo [a, b] es válido hacer el cambio de variable $u = \frac{(b-a)(x-1)}{2} + b$ que mapea el intervalo [-1, 1] en el intervalo [a, b]. En este caso, los nodos serían

$$u_i = \frac{(b-a)(x_i-1)}{2+b}$$
 con $x_i = \cos\left(\frac{2i+1}{2n+2}\pi\right)$.

Figura 6.3: $P_n(x)$ con nodos $x_i = \cos((2i+1)/(2n+2)\pi)$.

Pafnuti Lvóvich Tchebychev (1821 - 1894). El más prominente miembro de la escuela de matemáticas de St. Petersburg. Hizo investigaciones en Mecanismos, Teoría de la Aproximación de Funciones, Teoría de los Números, Teoría de Probabilidades y Teoría de Integración. Sin embargo escribió acerca de muchos otros temas: formas cuadráticas, construcción de mapas, cálculo geométrico de volúmenes, etc.

Como se prueba más adelante, en este caso, si $x^* \in [a, b]$,

$$|f(x^*) - P_n(x^*)| \le \frac{M}{(n+1)!} \frac{1}{2^n}$$
 si $|f^{(n+1)}(x)| \le M$ para todo $x \in [a, b]$.

Implementación.

Recordemos que si tenemos los n+1 datos $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$ (con $x_i \neq x_j$ si $i \neq j$ (aunque los x_i no estén ordenados), entonces la forma de Lagrange del polinomio interpolante es

$$P_n(x) = y_0 L_{n,0}(x) + y_1 L_{n,1}(x) + ... + y_n L_{n,n}(x)$$

donde
$$L_{n,k}(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x-x_i}{x_k-x_i} = \frac{(x-x_0)(x-x_1)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)}.$$

Para hacer una implementación vectorizada, recordemos que en los ejemplos 1.10 y 1.11 habíamos visto que si $\mathbf{x} = \mathbf{c}(\mathbf{x0}, \mathbf{x1}, \dots, \mathbf{xn})$ y si

$$X = matrix(rep(x, times=n), n, n, byrow=T) con n = length(x),$$

entonces, si hacemos mN = a - X y diag(mN) = 1, obtenemos

$$\mathbf{mN} = \begin{pmatrix} 1 & a - x_1 & a - x_2 & a - x_3 \\ a - x_0 & 1 & a - x_2 & a - x_3 \\ a - x_0 & a - x_1 & 1 & a - x_3 \\ a - x_0 & a - x_1 & a - x_2 & 1 \end{pmatrix}$$

y si hacemos mD = X - t(X) y dia(mD)=1, obtenemos

$$\mathbf{mD} = \begin{pmatrix} 1 & x_1 - x_0 & x_2 - x_0 & x_3 - x_0 \\ x_0 - x_1 & 1 & x_2 - x_1 & x_3 - x_1 \\ x_0 - x_2 & x_1 - x_2 & 1 & x_3 - x_2 \\ x_0 - x_3 & x_1 - x_3 & x_2 - x_3 & 1 \end{pmatrix}$$

Generalizando al caso $n \times n$, el numerador y el denominador de cada una de las funciones $L_{n,k}(a)$ se pueden obtener *aplicando* la función **prod** a las filas de **mN** y a las columnas de **mD**, por ejemplo

$$Lnk(a) = prod(N[k,])/prod(D[,k])$$

Código R 6.1: Forma de Lagrange del polinomio interpolante

```
## Recibe los vectores de datos x y y y "a" con min(x) < a <max(y).
## x = (x0,x1,x3,...,xn). Así x_k = x[k+1] y y_k = y[k+1]; k=0,1,...,n
## Devuelve P_n(a)

lagrange = function(x,y,a) {
    n = length(x)
    if(a < min(x) || max(x) < a) stop("No está interpolando")
    X = matrix(rep(x, times=n), n, n, byrow=T)
    mN = a - X;    diag(mN) = 1
    mD = X - t(X); diag(mD) = 1
    Lnk = apply(mN, 1, prod)/apply(mD, 2, prod)
    sum(y*Lnk)
}</pre>
```

Podemos usar el ejemplo 6.4 para hacer una prueba,

```
# ---
x = c( 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)
y = c(0.31, 0.32, 0.33, 0.34, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5)
lagrange(x[2:5],y[2:5], 0.35)
#[1] 0.32875
```

■ Paquete "PolynomF" de R. El polinomio interpolante se puede obtener con el paquete PolynomF. La función que calcula el polinomio interpolante es poly.calc(). Por ejemplo,

Código R 6.2: Función poly.calc del paquete PolynomF

```
# Instalar el paquete PolynomF
# install.packages("PolynomF")
require(PolynomF)
x = c( 0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9,  1.0)  # n+1 = 11
y = c(0.31,  0.32,  0.33,  0.34,  0.45,  0.46,  0.47,  0.48,  0.49,  0.5)
# Polinomio de ajuste (polinomio interpolante en este caso)
datx = x[2:5]; daty = y[2:5]
polyAjuste = poly.calc(datx,daty)
polyAjuste
#-0.1 + 4.433333*x - 15*x^2 + 16.66667*x^3
plot(datx,daty, pch=19, cex=1, col = "red", asp=1) # Representación con puntos
curve(polyAjuste,add=T) # Curva de ajuste (polinomio interpolante) y puntos
#curve(polyAjuste,add=T, lty=3) #lty=3 puntos
```


Figura 6.4: Ajuste de los datos con un polinomio interpolante

■ Mejor ajuste. Como mencionabamos antes, los polinomios interpolantes de grado alto "oscilan". Por ejemplo,

```
Código R 6.3: "Oscilación" de P_n(x)

require(PolynomF)

xi=c(0,.5,1,2,3,4)

yi=c(0,.93,1,1.1,1.15,1.2)

polyAjuste = poly.calc(xi,yi)

#polyAjuste

plot(xi,yi, pch = 19, cex=1.5, col= "red")

curve(polyAjuste,add=T,lty=3, lwd=5)
```


Figura 6.5: Ajuste de los datos con un polinomio interpolante de grado 5

6.4 Forma modificada y forma baricéntrica de Lagrange.

La forma de Lagrange del polinomio interpolante es atractiva para propósitos teóricos. Sin embargo se puede re-escribir en una forma que se vuelva eficiente para el cálculo computacional además de ser numéricamente mucho más estable (ver [2]). La forma modificada y la forma baricéntrica de Lagrange son útiles cuando queremos

interpolar una función en todo un intervalo con un polinomio interpolante.

Supongamos que tenemos n+1 nodos distintos $x_0, x_1, ..., x_n$. Sea $\ell(x) = \prod_{i=0}^n (x-x_i)$ es decir,

$$\ell(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$$

Definimos los pesos baricéntricos como

$$\omega_{k} = \prod_{\substack{i=0\\i\neq k}}^{n} \frac{1}{x_{k} - x_{i}}, \ k = 0, 1, ..., n.$$

Es decir,

$$\omega_{k} = \frac{1}{x_{k} - x_{0}} \cdot \frac{1}{x_{k} - x_{1}} \cdots \frac{1}{x_{k} - x_{k-1}} \cdot \frac{1}{x_{k} - x_{k+1}} \cdots \frac{1}{x_{k} - x_{n}}.$$

Ahora podemos definir la "forma modificada" y "forma baricéntrica" de Lagrange:

Definición 6.2

La *forma modificada* del polinomio de Lagrange para los n+1 puntos $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$ (con $x_i \neq x_j$ si $i \neq j$), es

$$P_n(x) = \ell(x) \sum_{j=0}^n \frac{\omega_j}{x - x_j} y_j$$
(6.1)

Definición 6.3

La forma baricéntrica del polinomio de Lagrange para los n+1 puntos $(x_0,y_0),(x_1,y_1),...,(x_n,y_n)$ (con $x_i\neq x_j$ si $i\neq j$), es

$$P_{n}(x) \begin{cases} = y_{i} & \text{si } x = x_{i}, \\ = \sum_{k=0}^{n} \frac{\omega_{k}}{x - x_{k}} y_{k} \\ = \sum_{k=0}^{n} \frac{\omega_{k}}{x - x_{k}}, & \text{si } x \neq x_{i} \end{cases}$$
(6.2)

Ejemplo 6.9

Consideremos la siguiente tabla de datos,

x	f(x)
0.2	3.2
0.3	3.3
0.4	3.4
0.5	4.5

Calcule la forma modificada y la forma baricéntrica de Lagrange e interpole con ambos polinomios, f(0.35).

Solución: Primero calculamos $\ell(x) = (x - 0.2)(x - 0.3)(x - 0.4)(x - 0.5)$. Ahora, los pesos baricéntricos,

$$\begin{array}{rclcrcl} \omega_0 & = & \dfrac{1}{0.2 \, \textcolor{red}{-0.3}} \cdot \dfrac{1}{0.2 \, \textcolor{red}{-0.4}} \cdot \dfrac{1}{0.2 \, \textcolor{red}{-0.5}} & = & -166.667, \\ \omega_1 & = & \dfrac{1}{0.3 \, \textcolor{red}{-0.2}} \cdot \dfrac{1}{0.3 \, \textcolor{red}{-0.4}} \cdot \dfrac{1}{0.3 \, \textcolor{red}{-0.5}} & = & 500, \\ \omega_2 & = & \dfrac{1}{0.4 \, \textcolor{red}{-0.2}} \cdot \dfrac{1}{0.4 \, \textcolor{red}{-0.3}} \cdot \dfrac{1}{0.4 \, \textcolor{red}{-0.5}} & = & -500, \\ \omega_3 & = & \dfrac{1}{0.5 \, \textcolor{red}{-0.2}} \cdot \dfrac{1}{0.5 \, \textcolor{red}{-0.3}} \cdot \dfrac{1}{0.5 \, \textcolor{red}{-0.3}} \cdot \dfrac{1}{0.5 \, \textcolor{red}{-0.4}} & = & 166.667 \end{array}$$

Entonces, la forma modificada de Lagrange es,

$$P_3(x) = (x - 0.2)(x - 0.3)(x - 0.4)(x - 0.5)\left(-\frac{533.333}{x - 0.2} + \frac{1650.}{x - 0.3} - \frac{1700.}{x - 0.4} + \frac{750.}{x - 0.5}\right),$$

y la forma baricéntrica es,

$$P_3(x) = \frac{-\frac{533.333}{x - 0.2} + \frac{1650.}{x - 0.3} - \frac{1700.}{x - 0.4} + \frac{750.}{x - 0.5}}{-\frac{166.667}{x - 0.2} + \frac{500.}{x - 0.3} - \frac{500.}{x - 0.4} + \frac{166.667}{x - 0.5}}$$

En ambos casos, $f(0.35) \approx P_3(0.35) = 3.2875$.

Ejercicios

- 6.1 Implementar la función lagrangeModificada(x, y, a)
- Paquete "barylag" en R . La forma baricéntrica de Lagrange viene implementada como la función barylag() del paquete pracma. Por ejemplo,

```
require(pracma)
xi = c( 0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9,  1.0)
yi = c(0.31,  0.32,  0.33,  0.34,  0.45,  0.46,  0.47,  0.48,  0.49,  0.5)
# Interpolar con los 5 datos
xi[c(2:6)]; yi[c(2:6)]
# Interpolar en tres nodos:  0.35,  0.41,  0.55
barylag(xi[c(2:6)], yi[c(2:6)], c(0.35,  0.41,  0.55))
# [1]  0.2  0.3  0.4  0.5  0.6
# [1]  0.32  0.33  0.34  0.45  0.46
# barylag(xi[c(2:6)], yi[c(2:6)], c(0.35,  0.41,  0.55))
# [1]  0.3217187  0.3474487  0.4917187
```

- **6.2** Considere los cuatro puntos (0,1), (1,2), (3,0), (4,4).
 - a.) Calcule el polinomio interpolante $P_3(x)$, en la forma de Lagrange.
 - b.) Verifique que efectivamente $P_4(x_i) = y_i$, es decir, $P_3(0) = 1$, etc.
 - c.) Interpolar f(3.5).
- **6.3** Considere los cuatro puntos (0,1), (1,2), (3,0), (4,4).
 - a.) Calcule el polinomio interpolante $P_3(x)$, en la forma de modificada.
 - b.) Calcule el polinomio interpolante $P_3(x)$, en la forma de Baricéntrica.
 - c.) Verifique que efectivamente $P_3(x_i) = y_i$, es decir, P(0) = 1, etc.
 - d.) Interpolar f(3.5).
- **6.4** Consideremos la siguiente tabla de datos,

x	f(x)
0.2	1.2
0.3	5.3
0.4	9.4
0.5	10.5

Calcule la forma modificada y la forma baricéntrica de Lagrange e interpole f(0.35). **Ayuda:** Estas fórmulas permiten reutilizar los cálculos!

- **6.5** Usando la forma de Lagrange del polinomio interpolante verifique que si P(x) pasa por $(x_0, y_0), (x_1, y_1)$ entonces $P(x) = \frac{(y_0 y_1)}{(x_0 x_1)}(x x_1) + y_1$. **Ayuda:** En algún momento de la simplificación debe sumar y restar y_1x_1 .
- **6.6** Considere la función de Bessel $J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta$. Tenemos la siguiente información,

$\pi J_0(x)$
3.59
3.11
3.08

- a.) Obtener la forma de Lagrange del polinomio interpolante.
- b.) Interpolar $J_0(0.25)$
- **6.7** Considere la siguiente tabla de salarios,

Salarios (\$)	0-1000	1000-2000	2000-3000	3000-4000
Frecuencia	9	30	35	42

Estimar la cantidad de personas con salario entre \$1000 y \$1500.

6.8 Interpolar cos(1.75) usando la tabla

x_i	$\cos(1+3x_i)$
0	0.540302
1/6	0.070737
1/3	-0.416147

Ayuda: La estimación que se obtiene con el polinomio interpolante es -0.17054.

6.9 Considere la siguiente tabla de vapor para H_2O calentada a 200 MPa.

$$\begin{array}{c|cccc} v \ (m^3/kg) & 0.10377 & 0.11144 & 0.1254 \\ \hline s \ (kJ/Kg \cdot K) & 6.4147 & 6.5453 & 6.7664 \\ \end{array}$$

- a.) Use interpolación lineal para encontrar la entropía s para un volumen especifico v de $0.108m^3/kg$.
- b.) Use interpolación cuadrática para encontrar la entropía s para un volumen especifico v de $0.108 m^3/kg$.
- **6.10** Usando la tabla del ejemplo (6.2), interpolar f(0.25).

6.5 Forma de Newton para el polinomio interpolante.

La representación

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) + \dots + a_{n-1},$$

para el polinomio interpolante que pasa por los n+1 puntos $(x_0, y_0), ..., (x_n, y_n)$, es conocida como *la representación de Newton* del polinomio interpolante.

Diferencias Divididas de Newton.

La manera más conocida para calcular la representación de Newton del polinomio interpolante, está basada en el método de *diferencias divididas*. Una gran ventaja sobre la forma clásica del método de Lagrange es que podemos agregar más nodos a la tabla de datos y obtener el polinomio interpolante sin tener que recalcular todo. Comparado con la forma modificada de Lagrange, no hay ganancia y más bien esta última forma es más estable. Aún así, el método de diferencias divididas tiene aplicaciones adicionales en otros contextos.

Podemos calcular los a_i 's usando el hecho de que $P(x_i) = y_i$,

$$\begin{cases} P(x_0) = y_0 = a_0 & \implies a_0 = y_0, \\ P(x_1) = y_1 = a_0 + a_1(x_1 - x_0) & \implies a_1 = \frac{y_1 - y_0}{x_1 - x_0} \\ P(x_2) = y_2 = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) & \implies a_2 = \frac{y_2 - a_0 - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)} \\ & \cdots \end{cases}$$

Si $y_k = f(x_k)$, la fórmula anterior nos muestra que cada a_k depende de $x_0, x_1, ..., x_k$. Desde muchos años atrás se usa la notación $a_k = f[x_0, x_1, ... x_k]$ para significar esta dependencia.

Al símbolo $f[x_0, x_1, ... x_n]$ se le llama *diferencia divida* de f. Usando esta nueva notación tendríamos que la forma de Newton del polinomio interpolante es

$$P(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1}),$$

donde $f[x_0] = y_0$ y $f[x_0,...,x_i]$ es el coeficiente principal de la forma de Newton del polinomio que interpola la función f en los nodos $x_0, x_1,...,x_i$.

Ejemplo 6.10 (Interpolación lineal).

El polinomio interpolante de grado ≤ 1 que pasa por $(x_0, y_0), (x_1, y_1)$ es

$$P_1(x) = f[x_0] + f[x_0, x_1](x - x_0)$$
 donde $f[x_0, x_1] = \frac{(y_0 - y_1)}{(x_0 - x_1)}$ y $f[x_0] = y_0$

Si consideramos al coeficiente $f[x_0, x_1, ... x_n]$ como una función de n+1 variables, entonces esta función es *simétrica*, es decir, permutar las variables de cualquier manera no afecta el valor de la función. Esto es así porque el polinomio que interpola los puntos $\{(x_i, y_i)\}_{i=0,...,n}$ es único, por lo tanto sin importar el orden en que vengan los

puntos, el coeficiente principal siempre es $a_n = f[x_0, x_1, ... x_n]$.

■ ¿Qué es $f[x_k, x_{k+1}, ..., x_{k+j}]$? . Es el coeficiente principal de la forma de Newton del polinomio que interpola una función f en los nodos $x_k, x_{k+1}, ..., x_{k+j}$. Por ejemplo, si tenemos n+1 datos $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$, el polinomio que interpola $(x_3, y_3), (x_4, y_4)$ sería

$$P_1(x) = y_3 + f[x_3, x_4](x - x_3).$$

El nombre "diferencia divida" viene del hecho de que cada $f[x_k, x_{k+1}, ..., x_{k+j}]$ se puede expresar como un cociente de diferencias.

Teorema 6.2

La diferencia dividida $f[x_k, x_{k+1}, ..., x_{k+j}]$ satisface la ecuación

$$f[x_k, x_{k+1}, ..., x_{k+j}] = \frac{f[x_{k+1}, x_{k+2}, ... x_{k+j}] - f[x_k, x_{k+1}, ... x_{k+j-1}]}{x_{k+j} - x_k}$$
(6.3)

Ejemplo 6.11

El teorema (6.2) indica que cada diferencia dividida se puede calcular en términos de otras "diferencias" previamente calculadas. Los ejemplos que siguen son casos particulares para mostrar cómo se aplica el teorema.

$$f[x_{i}, x_{j}] = \frac{y_{i} - y_{j}}{x_{i} - x_{j}}$$

$$f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{1}, x_{2}] - f[x_{0}, x_{1}]}{x_{2} - x_{0}}$$

$$f[x_{1}, x_{2}, x_{3}] = \frac{f[x_{2}, x_{3}] - f[x_{1}, x_{2}]}{x_{3} - x_{1}}$$

$$\vdots$$

$$f[x_{0}, x_{1}, x_{2}, x_{3}] = \frac{f[x_{1}, x_{2}, x_{3}] - f[x_{0}, x_{1}, x_{2}]}{x_{3} - x_{0}}$$

$$f[x_{1}, x_{2}, x_{3}, x_{4}] = \frac{f[x_{2}, x_{3}, x_{4}] - f[x_{1}, x_{2}, x_{3}]}{x_{4} - x_{1}}$$

$$\vdots$$

$$f[x_{0}, x_{1}, ..., x_{k}] = \frac{f[x_{1}, x_{2}, ..., x_{k}] - f[x_{0}, x_{1}, ..., x_{k-1}]}{x_{k} - x_{0}}$$

Este esquema recursivo se puede arreglar en forma matricial como sigue,

```
x_0 y_0

x_1 y_1 f[x_0, x_1]

x_2 y_2 f[x_1, x_2] f[x_0, x_1, x_2]

x_3 y_3 f[x_2, x_3] f[x_1, x_2, x_3] f[x_0, x_1, x_2, x_3]

\vdots \vdots \vdots \vdots \vdots \vdots
```

En general, para calcular $f[x_0]$, $f[x_0, x_1]$, $f[x_0, x_1, x_2]$, \cdots , $f[x_0, ..., x_n]$, debemos calcular una matriz en la que las nuevas columnas se construyen con los datos de la columna anterior.

La misma matriz se puede usar para calcular la forma de Newton para subconjuntos de datos: En el arreglo que sigue, la diagonal principal (en rojo) corresponde a los coeficientes del polinomio que interpola los datos $(x_0, y_1, ..., (x_n, y_n))$. La diagonal en azul corresponde a los coeficientes del polinomio que interpola los datos $(x_1, y_1), ..., (x_n, y_n)$.

```
y_{0}
y_{1}  f[x_{0}, x_{1}]
y_{2}  f[x_{1}, x_{2}]   f[x_{0}, x_{1}, x_{2}]
y_{3}  f[x_{2}, x_{3}]   f[x_{1}, x_{2}, x_{3}]
\vdots   \vdots   \vdots   \vdots
y_{n}  f[x_{n-1}, x_{n}]  f[x_{n-2}, x_{n-1}, x_{n}]  \cdots   f[x_{1}, ..., x_{n}]  f[x_{0}, x_{1}, ..., x_{n}]
```

Por ejemplo, para calcular el polinomio que interpola los datos $(x_3, y_3), ..., (x_6, y_6)$ se usa la (sub)matriz,

```
y_3

y_4 f[x_3, x_4]

y_5 f[x_4, x_5] f[x_3, x_4, x_5]

y_6 f[x_5, x_6] f[x_1, x_2, x_3] f[x_3, x_4, x_5, x_6]
```

La diagonal principal (en rojo) corresponde a los coeficientes del polinomio que interpola estos cuatro datos.

Ejemplo 6.12

Usando diferencias divididas, calcular el polinomio interpolante para los datos (-1,2), (1,1), (2,2), (3,-2) y el polinomio interpolante para los datos (1,1), (2,2), (3,-2).

Solución: Primero construimos la matriz de diferencias divididas usando todos los datos. En rojo están los coeficientes del polinomio que interpola todos los datos y en azul los coeficientes del polinomio que interpola los datos (1,1),(2,2),(3,-2).

El polinomio interpolante, en la forma de Newton, para todos los datos es

$$P(x) = 2 - 1/2(x+1) + 1/2(x+1)(x-1) - 3/4(x+1)(x-1)(x-2)$$

El polinomio interpolante, en la forma de Newton, para los datos (1,1), (2,2), (3,-2) es

$$P(x) = 1 + 1 \cdot (x - 1) + -5/2(x - 1)(x - 2)$$

Ejemplo 6.13

De una función f, conocemos la información de la tabla (6.5). Interpolar f (0.35) usando un polinomio interpolante $P_3(x)$. Primero que todo, escriba la tabla de datos que va a usar.

x	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7
f(x)	3	3.1	3.2	3.3	3.4	4.5	4.6	4.7

Solución: Como se requiere un polinomio interpolante $P_3(x)$, se necesita una tabla de cuatro datos. Una opción es

Si usamos la forma de Newton del polinomio interpolante, entonces

```
3.2

3.3 1

3.4 1 0

4.5 11 50 166.66

Por tanto f(0.35) \approx P_3(0.35) = 3.2875

P_3(x) = 3.2 + 1 \cdot (x - 0.2) + 0 \cdot (x - 0.2)(x - 0.3) + 166.66 \cdot (x - 0.2)(x - 0.3)(x - 0.4)
```

Implementación en R.

La forma de Newton del polinomio interpolante es

$$P(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, ..., x_n](x - x_0) + \dots + f[x_n, x_{n-1}](x - x_n) + \dots + f[x_n, x_n](x - x_n) + \dots + f[x_n, x_n]$$

donde los coeficientes están en la diagonal de la matriz de diferencias divididas,

Para la implementación de la fórmula de diferencias divididas de Newton es conveniente reescribir el polinomio como

$$P(x) = C_{0,0} + C_{1,1}(x - x_0) + C_{2,2}(x - x_0)(x - x_1) + C_{n,n}(x - x_0) + C_{n$$

y la matriz de diferencias divididas como

Para el cálculo de los $C_{i,i}$'s usamos la fórmula recursiva:

$$C_{i,0} = y_i, i = 0, 2, ..., n$$

$$C_{i,j} = \frac{C_{i,j-1} - C_{i-1,j-1}}{x_i - x_{i-j}}, j = 1, 2, ..., i = j, j+1, ..., n$$

La fórmula de diferencias divididas dice que la columna j se calcula con la columna j-1 pero en cada columna solo nos interesa la posición diagonal $C_{j,j}$ y las entradas $C_{j+1,j},...,C_{n,j}$.

```
Algoritmo 6.1: Forma de Newton del polinomio interpolante (sin vectorizar)
```

```
Datos de entrada: \{(x_i, y_i)\}_{i=0,1,...,n} con los x_i's distintos y x^*
Salida: P_n(x^*)

1 for i=1 ton do

2 C_{i,0}=y_i

3 ;

4 for j=1 ton do

6 C_{i,j}=\frac{C_{i,j-1}-C_{i-1,j-1}}{x_i-x_{i-j}}

7 suma = C_0;

8 factor = 1;

9 for j=1 ton do

10 C_{i,j}=\frac{C_{i,j-1}-C_{i-1,j-1}}{x_i-x_{j-1}}

11 C_{i,j}=\frac{C_{i,j-1}-C_{i-1,j-1}}{x_i-x_{j-1}}

12 return suma
```

Algoritmo semi-vectorizado. Para vectorizar el algoritmo solo hay que observar que el cálculo de las C_{ij} se puede obtener como una resta de vectores "desfazados".

Supongamos que A es la matriz de diferencias divididas; ahora observemos los numeradores y los denominadores de la columna \mathbf{j} , de la fórmula recursiva, de manera esquemática sería:

$$C_{i,0} = y_i, i = 0, 2, ..., n$$
, es decir, A[,1] = yi

```
Numeradores
                             C_{n,j-1} - C_{n-1,j-1}:
i = n
                            C_{j+1,j-1} - C_{j,j-1}
i = j + 1
i = j
                             C_{j,j-1} - C_{j-1,j-1}
                        = \frac{C_{i,j-1} - C_{i-1,j-1}}{x_i - x_{i-j}} = \frac{A[j:n, j-1] - A[(j-1):(n-1), j-1]}{x[j:n] - x[0:(n-j)]}
C_{i,i}
Denominadores
i = j
                            x_i - x_0
i = j + 1
                            x_{j+1} - x_1
i = n
                             x_n - x_{n-i}
```

En el código ajustamos los índices, porque A y x inician en 1, no en 0.

Código R 6.4: Matriz de diferencias divididas e interpolación

```
newtonInterpolacion = function(x, y, a) {
  n = length(x)
  A = matrix(rep(NA, times = n^2), nrow = n, ncol = n)
  A[,1] = y
  for (k in 2:n) {
     A[k:n, k] = (A[k:n, k-1] - A[(k-1):(n-1), k-1]) / (x[k:n] - x[1:(n-k+1)])
  }
  # Imprimir matriz de diferencias divididas
  print(A)
  # Evaluar
  smds = rep(NA, length = n)
  smds[1] = 1 #x = x[1],..., x[n] pues n = length(x)
  for (k in 2:n) {
     smds[k] = (a - x[k-1])*smds[k-1] # hasta x[n-1]
  }
 return(sum(diag(A)*smds) )
}
x = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)
y = c(0.31, 0.32, 0.33, 0.34, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5)
newtonInterpolacion(x[2:5], y[2:5], 0.35)
# --- Matriz de diferencias divididas
```

```
# [,1] [,2] [,3] [,4]

#[1,] 0.32 NA NA NA

#[2,] 0.33 0.1 NA NA

#[3,] 0.34 0.1 -2.775558e-16 NA

#[4,] 0.45 1.1 5.000000e+00 16.66667

# --- Interpolación

#[1] 0.32875
```

6.6 Forma de Lagrange vs Forma de Newton.

Usualmente se reserva la forma de Lagrange del polinomio interpolante para trabajo teórico y diferencias divididas de Newton para cálculos. La realidad es que la *forma modificada de Lagrange* es tan eficiente como diferencias divididas de Newton en cuanto a costo computacional y además es numéricamente mucho más estable. Hay varias ventajas que hacen de esta forma modificada de Lagrange, el método a escoger cuando de interpolación polinomial se trata ([8], [9]).

Para mostrar la inestabilidad del polinomio interpolante obtenido con diferencias divididas versus el obtenido con la forma modificada de Lagrange, consideramos la función de Runge $f(x) = 1/(1+25x^2)$ en [-1,1]. Para un buen ajuste, usamos 52 nodos de TChebyshev. En la figura 6.6, se muestra la gráfica de f junto con la gráfica del polinomio interpolante obtenido con diferencias divididas (PN(x)) y del polinomio interpolantes obtenido con la forma modificada de Lagrange (PML(x)). Usando la aritmética usual de la máquina, se nota inestabilidad de PN(x) en las cercanías de x = -1. En la figura 6.7, se muestra el error relativo de la aproximación a f con cada polinomio en [-1, -0.9]. EPN(x) corresponde al error relativo entre f y la forma de Newton del polinomio interpolante y EPML(x) corresponde al error relativo entre f y la forma modificada de Lagrange.

Figura 6.6: Interpolación. Diferencias divididas vs forma modificada de Lagrange

Figura 6.7: Error relativo.

6.7 Estimación del error.

La estimación del error, cuando interpolamos con un polinomio interpolante, es de interés práctico en varias áreas, por ejemplo en el desarrollo de métodos de aproximación en ecuaciones diferenciales ordinarias y en ecuaciones diferenciales en derivadas parciales.

Una estimación del error se puede obtener si conocemos alguna información acerca de la función f y sus derivadas. Sea $f \in C^{n+1}[a,b]$ y $P_n(x)$ el polinomio de interpolación de f en (x_0,y_0) , (x_1,y_1) , ..., (x_n,y_n) , con $x_i \in [a,b]$. Entonces, usando polinomios de Taylor podemos establecer la siguiente fórmula para el error

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n)$$

donde $a < \xi(x) < b$ y $x \in [a, b]$. Aquí, la expresión " $\xi(x)$ " significa que ξ no es una constante fija, sino que varía según el valor que tome x.

Para efectos prácticos, a y b son el mínimo y el máximo del conjunto $\{x_0, x_1, ..., x_n\}$. Si M_n es el el máximo absoluto de la función $|f^{(n+1)}|$ en [a, b], es decir, $|f^{(n+1)}(x)| \le M_n$ para todo $x \in [a, b]$, entonces podemos obtener una estimación del error $f(x) - P_n(x)$ con la desigualdad,

$$|f(x) - P_n(x)| \le \frac{M_n}{(n+1)!} |(x - x_0)(x - x_1) \cdots (x - x_n)|; \ x \in [a, b].$$

$$(6.4)$$

Observe que un polinomio interpolante de grado alto no garantiza una mejora en el error: Si usamos más puntos (posiblemente más cercanos entre ellos) se puede esperar que el producto $\prod_i (x - x_i)$ se haga más pequeño con n, pero todavía debería pasar que la derivada de orden n + 1 no crezca más rápido que (n + 1)! y esto parece no ser la regla⁴.

■ Si los nodos son igualmente espaciados, y suponiendo que tenemos n y M_n fijos, la estimación del error depende de la función $\ell(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$. La forma general de esta función se muestra en la figura que sigue,

Figura 6.8: $\ell(x) = (x - x_0) \cdots (x - x_7)$ con 7 nodos igualmente espaciados.

Esto sugiere que en el caso de nodos igualmente espaciados (excepto n = 1), el error es más pequeño si x está hacia el centro y empeora en los extremos.

⁴

Georg Faber (1912) demostró que para cada juego de nodos, existe un función continua para la cual los polinomios interpolantes no convergen uniformemente a f y también, para cada función continua existe un juego de nodos donde los polinomios interpolantes si convergen de manera uniforme. Aún en este último caso, los nodos no siempre fáciles de obtener.

La desigualdad (6.4) sería suficiente para estimar el error al interpolar en un valor x, pero nos interesa también una estimación que nos sirva para todo $x \in [x_0, x_n]$.

Error en interpolación lineal.

Si tenemos dos puntos (x_0, y_0) , (x_1, y_1) con $x_0 < x_1$, el error es $f(x) - P_1(x) = \frac{(x - x_0)(x - x_1)}{2} f''(\xi(x))$. ¿Cuál es el error máximo si x está entre x_0 y x_1 y si f'' permanece acotada en $[x_0, x_1]$?.

Si $|f''(x)| \le M_2$ en $[x_0, x_1]$, entonces

$$|f(x) - P_1(x)| \le \frac{M_2}{2!} |(x - x_0)(x - x_1)|.$$

El error máximo depende del máximo valor de la función $\frac{(x_0+x_1)^2}{8}$ en el intervalo $[x_0,x_1]$.

Como $\ell(x) = \frac{(x-x_0)(x-x_1)}{2}$ es una parábola cóncava hacia arriba (figura 6.9), es negativa si $x \in [x_0, x_1]$, por lo tanto el máximo en valor absoluto lo alcanza en $x = \frac{x_0 + x_1}{2}$, y es

$$\frac{(x_1-x_0)^2}{8}$$
.

Figura 6.9: $\ell(x) = (x - x_0)(x - x_1) \text{ y } |\ell(x)|$

Si se usa interpolación lineal, el error general esta acotado por

$$|f(x) - P_1(x)| \le M_2 \frac{(x_1 - x_0)^2}{8}.$$

Ejemplo 6.14

Si tabulamos la función sen x para $x_0 = 0$, $x_1 = 0.002$, $x_2 = 0.004$,... entonces el error general al *interpolar linealmente* es

$$|\operatorname{sen} x - P_1(x)| \le 1 \cdot \left| \frac{(0.002)^2}{8} \right| = 0.5 \times 10^{-6},$$

pues $|\sec x| \le 1 \ \forall \ x$ (aquí suponemos que el polinomio se evalúa de manera exacta). Esto nos dice que la función $|\sec x|$ es apropiada para interpolación lineal.

Si deseamos más precisión en un caso particular, podemos usar la fórmula (6.4). Si por ejemplo x = 0.003, entonces $|\sec(0.003) - P_1(0.003)| \le \frac{\sec(0.004)}{2} |(0.003 - 0.002)(0.003 - 0.004)| \approx -1.99 \times 10^{-9}$ pues el máximo absoluto de $|\sec x|$ en el intervalo [0.002, 0.004] es $\sec(0.004)$.

Error en interpolación cuadrática

Si interpolamos con tres puntos (n = 2) igualmente espaciados x_0 , $x_1 = x + h$ y $x_2 = x_0 + 2h$; entonces si $x \in [x_0, x_2]$ y si $|f'''(x)| \le M_3$ en [a, b], la estimación general del error es,

$$|f(x) - P_2(x)| \le \frac{M_3}{3!} |(x - x_0)(x - x_1)(x - x_2)|$$

$$\le \frac{M_3}{6} |(x - x_0)(x - x_0 - h)(x - x_0 - 2h)|$$

Para obtener el máximo absoluto de la función $\ell(x)=(x-x_0)(x-x_1)(x-x_2)$ calculamos sus puntos críticos: $\ell'(x)=3x^2+x(-6h-6x_0)+6hx_0+3x_0^2+2h^2$, los ceros de esta cuadrática son

$$r_1 = \frac{1}{3}(3h + \sqrt{3}h + 3x_0)$$
 y $r_2 = \frac{1}{3}(3h - \sqrt{3}h + 3x_0)$.

Como $\ell(x)$ se anula en x_0 y x_2 , el máximo absoluto de $|\ell(x)|$ es máx $\{|\ell(r_1)|, |\ell(r_2)|\} = \frac{2h^3}{3\sqrt{3}}$.

 \therefore El error general al interpolar con tres *puntos igualmente espaciados* es $|f(x) - P_2(x)| \le \frac{M_3 h^3}{9\sqrt{3}}, \ x \in [x_0, x_2].$

Ejemplo 6.15

Si tabulamos la función sen x para $x_0 = 0$, $x_1 = 0.01$, $x_2 = 0.02$,... entonces el error general al *interpolar con un polinomio de grado dos* es

$$|\sec x - P_2(x)| \le \frac{1 \cdot (0.01)^3}{9\sqrt{3}} \approx 6.415 \times 10^{-8},$$

pues $|\operatorname{sen} x| \le 1 \ \forall x$.

Error en interpolación cúbica

Si tenemos cuatro puntos *igualmente espaciados* $(x_0, y_0), (x_1, y_1), (x_2, y_2), (x_3, y_3)$ con $x_0 < x_1 < x_2 < x_3$, una estimación del error es

$$|f(x) - P_3(x)| \le \frac{M_4}{4!} |(x - x_0)(x - x_1)(x - x_2)(x - x_3)|, \quad \text{con } |f^{(4)}(x)| \le M_4 \text{ en } [x_0, x_3].$$

De nuevo, dados n y M_4 fijos, la estimación del error general depende del máximo absoluto del polinomio $|\ell(x)| = |(x - x_0)(x - x_1)(x - x_2)(x - x_3)|$. Como $x_i = x_0 + i \cdot h$, i = 1, 2, 3;

$$\ell(x) = (x - x_0)(x - x_1)(x - x_2)(x - x_3)$$

= $(x - x_0)(x - x_0 - h)(x - x_0 - 2h)(x - x_0 - 3h)$

$$\ell'(x) = 2(2x-3h-2x_0)(x^2+x(-3h-2x_0)+h^2+3hx_0+x_0^2)$$

Los puntos críticos son $r_1 = 0.5(3h + 2x_0)$, $r_2 = 0.5(3h - \sqrt{5}h + 2x_0)$ y $r_3 = 0.5(3h + \sqrt{5}h + 2x_0)$. Como $\ell(x)$ se anula en x_0 y x_3 , entonces el máximo absoluto de $|\ell(x)|$ es máx $\{|\ell(r_1)|, |\ell(r_2)|, |\ell(r_3)|\} = \left\{\frac{9h^4}{16}, h^4\right\} = h^4$. Finalmente,

: El error general al interpolar con cuatro puntos igualmente espaciados es $|f(x) - P_3(x)| \le \frac{M_4 h^4}{24}$, $x \in [x_0, x_3]$.

∴ Si solo interpolamos valores $x \in [x_1, x_2]$, el máximo absoluto de $|\ell(x)|$ en este intervalo se alcanza en el punto medio $x = (x_1 + x_3)/2 = 0.5(3h + 2x_0)$ y es $\frac{9h^4}{16}$. En este caso la estimación del error general es

$$|f(x) - P_3(x)| \le \frac{3M_4h^4}{128}, \ x \in [x_1, x_2].$$

Figura 6.10: $\ell(x) = (x - x_0)(x - x_1)(x - x_2)(x - x_3)$

Ejemplo 6.16

Si tabulamos la función sen x para $x_0 = 0$, $x_1 = 0.05$, $x_2 = 0.10$, $x_3 = 0.15$,... entonces el error al interpolar con P_3 entre x_1 y x_2 es

$$|\operatorname{sen} x - P_3(x)| \le 1 \cdot \frac{3}{128} (0.05)^4 \approx 1.46 \times 10^{-7},$$

pues $|\sin x| \le 1 \ \forall x$ (aquí suponemos que el polinomio se evalúa de manera exacta).

Error con interpolación con polinomios de grado n.

Si interpolamos sobre *puntos igualmente espaciados* $x_i = x_0 + i \cdot h$, i = 0, 1, ..., n; y si h es pequeño entonces $f^{(n+1)}(\xi(x))$ en general no se espera que varíe gran cosa. El comportamiento del error es entonces principalmente determinado por $\ell(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$.

Figura 6.11: $\ell(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \text{ con } n = 7.$

Pero las oscilaciones de $\ell(x)$ se hacen más violentas si n crece,

Figura 6.12: $\ell(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \text{ con } n = 41.$

Sin embargo, la sucesión de polinomios interpolantes $\{P_n(x)\}$ podría converger a f (sin importar si los nodos son o no igualmente espaciados); esto depende del comportamiento de la derivada k-ésima de f: La sucesión $\{P_n(x)\}$ converge a f uniformente en [a,b] (que contiene a los nodos) si

$$\lim_{k \to \infty} \frac{(b-a)^k}{k!} M_k = 0$$

y esto sucede si f es *analítica* en una región suficientemente grande, en el plano complejo, que contenga a [a, b] ([1, pág 84]).

Otros casos.

Si la función f y sus derivadas son conocidas, se puede hacer una estimación del error con el máximo absoluto.

Ejemplo 6.17

Sea $f(x) = \frac{1}{2}e^{(x-1)/2}$. Usando la fórmula de error, estime el error que se cometería al interpolar f(1) con el polinomio interpolante obtenido de la tabla

x	f(x)
0.7	0.43
8.0	0.45
1.1	0.53
1.2	0.55

Solución: Son cuatro datos (no igualmente espaciados), n + 1 = 4. Luego, la fórmula para estimar el error es

$$|f(1) - P_3(1)| = \left| \frac{f^{(4)}(\xi)}{4!} (1 - 0.7)(1 - 0.8)(1 - 1.1)(1 - 1.2) \right| \le \left| \frac{M}{4!} (1 - 0.7)(1 - 0.8)(1 - 1.1)(1 - 1.2) \right|$$

donde M es el máximo absoluto de $|f^{(4)}(x)| = |\frac{1}{32}e^{\frac{x-1}{2}}|$, en [0.7, 1.2]

Cálculo de M

Puntos críticos: La ecuación $f^{(5)}(x) = \frac{1}{64} e^{\frac{x-1}{2}} = 0$ no tiene solución, así que no hay puntos críticos. **Comparación**: $M = \max\{|f^{(4)}(0.7)|, |f^{(4)}(1.2)|\} = 0.0345366...$

Finalmente, la estimación del error es $|f(1) - P_3(1)| \le \left| \frac{M}{4!} (1 - 0.7)(1 - 0.8)(1 - 1.1)(1 - 1.2) \right| = 1.72683 \times 10^{-6}$

Ejercicios

6.11 Sea $f(x) = x^2 \ln x - x^2$. Supongamos que P(x) es el polinomio interpolante de f obtenido con los datos (1, -1), (2, -1.2), (3, 0.88). Estime el error cometido al aproximar f(2.71) con P(2.71).

6.12 Sea $f(x) = \ln(4x^2 + 2)$ Usando la fórmula de error, estime el error que se cometería al interpolar f(1.22) con el polinomio interpolante obtenido de la tabla

x	f(x)
0.5	1.09861
1.1	1.92279
1.2	2.04898
1.3	2.1702

6.13 Considere la tabla de datos

$$x e^{x}$$
0 1
0.5 $e^{0.5}$
1 e

Estime el error cometido al aproximar $e^{0.6}$ con el polinomio de interpolación correspondiente, en el intervalo [0,1].

6.14 Sea $f(x) = \cos(3x+1)$. Supongamos que P(x) es el polinomio interpolante de f obtenido con los datos (0.,0.54), (0.5,-0.80), (1.,-0.65). Estime el error cometido al estimar f(0.71) con P(0.71).

6.15 Considere la tabla de datos

x_i	$\cos(1+3x_i)$
0	0.540302
1/6	0.070737
1/3	-0.416147

Estime el error cometido al interpolar $\cos(1.75)$ con el polinomio de interpolación obtenido con la tabla anterior, en el intervalo [0, 1/3]. **Ayuda:** Observe que en este caso, $x \ne 1.75!$

- **6.16** Sea $f(x) = \frac{1}{2}(\cos x + \sin x)$. Considere el conjunto de puntos $\{(x_i, f(x_i))\}_{i=0,1,2,3}$ con $x_i = i \cdot \pi/2$. Estime el error *general* cometido al aproximar $f(3\pi/4)$ con $P_3(3\pi/4)$.
- **6.17** Sea $f(x) = \frac{x^6}{84} \frac{3\cos(2x)}{8}$. Considere el conjunto de puntos $\{(x_i, f(x_i))\}_{i=0,1,2,3}$ con $x_i = i \cdot 0.2$. Estime el error *general* cometido al aproximar f(0.65) con $P_3(0.65)$.
- **6.18** Aproximar F(0.25; 1, 2) (función gamma, ver ejemplo 6.18) usando interpolación lineal, cuadrática y cúbica.

6.8 Interpolación Iterada de Neville

Si no tenemos información acerca de las derivadas de una función no podemos usar la fórmula para el cálculo del error. Entonces, ¿cuál es el grado del polinomio de interpolación más adecuado para interpolar un valor?.

Para responder esta pregunta podemos usar el *algoritmo de Neville*, este método interpola un valor particular con polinomios de grado cada vez más alto (iniciando en grado cero) hasta que los valores sucesivos están suficientemente cercanos. Luego por inspección podemos decidirnos por un valor en particular.

Usemos la siguiente notación: $P_{0,1}$ es el polinomio interpolante que pasa por (x_0, y_0) , (x_1, y_1) ; $P_{0,1,2}$ es el polinomio interpolante que pasa por (x_0, y_0) , (x_1, y_1) , (x_2, y_2) ; $P_{1,2,3,4}$ es el polinomio interpolante que pasa por (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , (x_4, y_4) ; etc. Como no tenemos información acerca de las derivadas de f, el criterio para estimar el error es empírica e implícita: Nos quedamos con la estimación que presente 'menos variación'.

Consideremos la siguiente tabla de datos,

x	1.2	1.3	1.4	1.5	1.6
f(x)	0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Para interpolar en x=1.35 tenemos varias opciones y combinaciones, con tres nodos, con cuatro nodos, etc. Usando nuestra notación, algunos resultados son $P_{0,1,2}(1.35)=0.5401905$; $P_{123}(1.35)=0.5388565$; $P_{0123}(1.35)=0.5395235$; $P_{1234}(1.35)=0.5395457$; $P_{01234}(1.35)=0.5395318$. La menor variación la encontramos con $P_{0123}(1.35)=0.5395235$; $P_{1234}(1.35)=0.5395457$ y $P_{01234}(1.35)=0.5395318$ y de estos tres, los más cercanos son $P_{0123}(1.35)=0.5395318$ y $P_{01234}(1.35)=0.5395318$. En este caso parece lo mejor quedarnos con la aproximación $P_{01234}(1.35)=0.5395318$ y que toma en cuenta toda la tabla.

El problema en el anális anterior es la gran cantidad de polinomios que se deben evaluar, el algoritmo de Neville precisamente automatiza esta tarea usando cálculos anteriores para obtener el nuevo cálculo. El algoritmo de Neville no calcula P(x) sino que *evalúa* varios polinomios interpolantes de Lagrange en un valor dado.

Sea $Q_{i,j}$ el polinomio interpolante que pasa por $(x_{i-j},y_{i-j})\dots(x_i,y_i)$, es decir, $Q_{i,j}=P_{i-j,i-j+1,i-j+2,\dots,i-1,i}$ es el polinomio interpolante (en la forma de Lagrange) que pasa por los nodos $(x_{i-j},y_{i-j}),(x_{i-j+1},y_{i-j+1}),\dots,(x_i,y_i),\ 0\leq j\leq i$. Por ejemplo,

 $Q_{0,0} = P_0$ pasa por (x_0, y_0) , es decir, $P_0(x_0) = y_0$.

 $Q_{4,0} = P_4$ pasa por (x_4, y_4) , es decir, $P_4(x_4) = y_4$.

 $Q_{5,2} = P_{3,2,1}$ pasa por $(x_3, y_3), (x_4, y_4), (x_5, y_5)$

 $Q_{4,4} = P_{0,1,2,3,4}$ pasa por $(x_0, y_0), (x_1, y_1), ..., (x_4, y_4)$

Con esta definición de $Q_{i,j}$ se tiene la siguiente relación recursiva,

$$Q_{i,j}(x) = \frac{(x - x_{i-j})Q_{i,j-1}(x) - (x - x_i)Q_{i-1,j-1}(x)}{x_i - x_{j-1}}$$
(6.5)

Aplicando esta relación para i = 1, 2, ..., n; j = 1, 2, ..., i se logra calcular varios polinomios interpolantes de Lagrange

en un valor x, como se muestra en la siguiente tabla (para el caso de 5 nodos)

$$x_0$$
 $Q_{0,0} = y_0$
 x_1 $Q_{1,0} = y_1$ $Q_{1,1} = P_{0,1}$
 x_2 $Q_{2,0} = y_2$ $Q_{2,1} = P_{1,2}$ $Q_{2,2} = P_{0,1,2}$
 x_3 $Q_{3,0} = y_3$ $Q_{3,1} = P_{2,3}$ $Q_{3,2} = P_{1,2,3}$ $Q_{3,3} = P_{0,1,2,3}$
 x_4 $Q_{4,0} = y_4$ $Q_{4,1} = P_{3,4}$ $Q_{4,2} = P_{2,3,4}$ $Q_{4,3} = P_{1,2,3,4}$ $Q_{4,4} = P_{0,1,2,3,4}$

Ejemplo 6.18

La distribución gamma se define como $F(x; \beta, \alpha) = \int_0^{x/\beta} \frac{u^{\alpha-1}e^{-u}}{\Gamma(\alpha)} du$

Supogamos que tenemos la siguiente tabla de datos, obtenida con $\beta = 1$ y $\alpha = 2$.

x	F(x; 1, 2)
$x_0 = 0$	0.0
$x_1 = 0.1$	0.00467884
$x_2 = 0.2$	0.01752309
$x_3 = 0.3$	0.03693631
$x_4 = 0.4$	0.06155193

Si queremos estimar F en 0.25 debemos usar polinomios que al menos pasen por x_2 y x_3 . Por ejemplo $P_{0,1,2,3}$, $P_{1,2,3,4}$, etc.

Aplicando el algoritmo de Neville en x = 0.25, obtenemos la tabla (redondenado a 7 cifras decimales),

x_0	P_0				
0	0.0				
x_1	P_1	$P_{0,1}$			
0.1	0.0046679	0.0116697			
x_2	P_2	$P_{1,2}$	$P_{0,1,2}$		
0.2	0.0175231	0.0239507	0.0270209		
x_3	P_3	$P_{2,3}$	$P_{1,2,3}$	$P_{0,1,2,3}$	
0.3	0.0369363	0.0272297	0.0264099	0.0265118	
x_4	P_4	$P_{3,4}$	$P_{2,3,4}$	$P_{1,2,3,4}$	$P_{0,1,2,3,4}$
0.4	0.0615519	0.0246285	0.0265794	0.0264947	0.0265011

La menor variación la tenemos entre $P_{1,2,3,4}$ y $P_{0,1,2,3,4}(0.25)$. Como F(0.25;1,2) = 0.026499021..., la mejor aproximación en realidad es $P_{1,2,3,4}$, pero en la práctica, por suspuesto, tomamos decisiones sin esta información.

Algoritmo

El algoritmo es muy parecido al método de diferencias divididas de Newton, escribimos la primera columna de la matriz Q (las y_i 's) y luego completamos la matriz con la relación recursiva (6.5).

```
Figura 6.13: Algoritmo de Neville
```

```
Datos de entrada: Valor a interpolar x y los nodos (x_0, y_0), (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)
Salida: Matriz Q

1 for i = 0, ..., n do

2 Q_{i,0} = y_i

3 for i = 1, ..., n do

4 for j = 1, ..., i do

5 Q_{i,j}(x) = \frac{(x - x_{i-j})Q_{i,j-1}(x) - (x - x_i)Q_{i-1,j-1}(x)}{x_i - x_{j-1}}

6 return Matriz Q
```

■ Implementación en R . El algoritmo de Neville viene implementada como la función neville() del paquete pracma. Por ejemplo,

```
require(pracma)
xi = c( 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)
yi = c(0.31, 0.32, 0.33, 0.34, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5)

neville(xi[c(2:5)], yi[c(2:5)], 0.35)
neville(xi[c(2:6)], yi[c(2:6)], 0.35)
# [1] 0.32875
# [1] 0.3217187
```

Ejercicios

6.19 Complete la fila 6 en la tabla

- **6.20** Use el algoritmo de Neville para aproximar F(0.25; 1, 2) usando nuestro criterio empírico para obtener una "mejor aproximación".
- **6.21** Supongamos que $x_0, x_1, ..., x_n$ son nodos distintos de un intervalo finito [a, b]. Sea $P_n(x)$ el polinomio interpolante obtenido con los datos $\{(x_i, f(x_i)\}_{i=0,1,...,n}.$ Si $|f^{(n+1)}(x)| \le M$ para x en [a, b], muestre que si $x^* \in [a, b]$,

$$|f(x^*) - P_n(x^*)| \le \frac{M}{(n+1)!} (b-a)^{n+1}$$

6.9 Trazadores Cúbicos (Cubic Splines).

Un trazador (spline) es una banda de hule delgada y flexible que se usa para dibujar curvas suaves a través de un conjunto de puntos. Los trazadores cúbicos (cubic splines) *naturales* se utilizan para crear una función que interpola un conjunto de puntos de datos. Esta función consiste en una unión de polinomios cúbicos, uno para cada intervalo, y está construido para ser una función con derivada primera y segunda continuas. El 'spline' cúbico natural también tiene su segunda derivada igual a cero en la coordenada *x* del primer punto y el último punto de la tabla de datos.

Supongamos que tenemos n+1 puntos $(x_0,y_0),...,(x_n,y_n)$ con $x_0 < x_1 < ... < x_n$. En vez de interpolar f con un solo polinomio que pase por todos estos puntos, interpolamos la función f en cada subintervalo $[x_k,x_{k+1}]$ con un polinomio cúbico (en realidad de grado \leq 3) $S_k(x)$ de tal manera que el polinomio cúbico (o trazador cúbico) $S_i(x)$ en $[x_i,x_{i+1}]$ y el trazador cúbico $S_{i+1}(x)$ en $[x_{i+1},x_{i+2}]$, coincidan en x_{i+1} y que también sus derivadas primera y segunda coincidan en este punto. Cada trazador cúbico coincide con f en los extremos de cada intervalo.

Definición 6.4 (Trazador Cúbico).

Un *trazador cúbico* S es una función a trozos que interpola a f en los n+1 puntos (x_0, y_0) , (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) (con $a = x_0 < x_1 < ... < x_n = b$). S es definida de la siguiente manera,

$$S(x) = \begin{cases} S_0(x) & \text{si } x \in [x_0, x_1], \\ S_1(x) & \text{si } x \in [x_1, x_2], \\ \vdots & \vdots \\ S_{n-1}(x) & \text{si } x \in [x_{n-1}, x_n], \end{cases}$$

Donde,

(a).
$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
 para $i = 0, 1, ..., n - 1$

■ Interpolación

(b). $S(x_i) = y_i$, i = 0, 1, ..., n. Para efectos prácticos, $S_j(x_j) = y_j$, j = 0, 1, ..., n - 1 y $S_{n-1}(x_{n-1}) = y_{n-1}$ y $S_{n-1}(x_n) = y_n$. El siguiente item asegura que $S_j(x_{j+1}) = y_{j+1}$.

■ Continuidad

(c).
$$S_i(x_{i+1}) = S_{i+1}(x_{i+1})$$
 para $i = 0, 1, ..., n-2$

■ Suavidad

(d).
$$S'_i(x_{i+1}) = S'_{i+1}(x_{i+1})$$
 para $i = 0, 1, ..., n-2$

(e).
$$S_i''(x_{i+1}) = S_{i+1}''(x_{i+1})$$
 para $i = 0, 1, ..., n-2$

(f). Se satisface una de las dos condiciones que siguen,

(i).
$$S''(x_0) = S''(x_n) = 0$$
 (frontera libre o natural)

(ii).
$$S'(x_0) = f'(x_0)$$
 y $S'(x_n) = f'(x_n)$ (frontera sujeta)

Una aplicación directa de los trazadores cúbicos es la de "suavizar curvas". Tanto en Excel como en Calc de OpenOffice o LibreOffice, en las gráficas de dispersión, los pares ordenados (x_i, y_i) se pueden unir con segmentos, con trazadores cúbicos o con el polinomio interpolante (también hay otras opciones, según el modelo o tendencia que se esté aplicando). En la gráfica de la figura que sigue se muestra un conjunto de datos unidos por segmentos, unidos por trazadores cúbicos y unidos por el polinomio interpolante.

Algunas curvas presentan "picos" así que se construye un trazador para cada curva entre cada dos picos. El tratamiento de picos requiere usualmente un trazador con frontera sujeta.

El proceso de construcción del trazador cúbico consiste en determinar cada polinomio cúbico $S_j(x)$, es decir, buscar sus coeficientes a_i , b_i , c_i y d_i . La definición nos da las condiciones que se deben cumplir. De estas condiciones podemos obtener un sistema de ecuaciones $4n \times 4n$, donde las incógnitas son todos los coeficientes a_i , b_i , c_i y d_i , i = 0, 1, ..., n - 1. Lo que obtenemos es un trazador cúbico único.

Ejemplo 6.19

Determinar el trazador cúbico (frontera libre) para la siguiente tabla,

x_i	$y_i = \cos(3x_i^2)\ln(x_i^3 + 1)$
$x_0 = 0$	0
$x_1 = 0.75$	-0.0409838
$x_2 = 1.5$	1.31799

Solución: El trazador es,
$$S(x) = \begin{cases} S_0(x) = a_0 + b_0(x - x_0) + c_0(x - x_0)^2 + d_0(x - x_0)^3 & \text{si} \quad x \in [x_0, x_1], \\ S_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3 & \text{si} \quad x \in [x_1, x_2]. \end{cases}$$

Hay que determinar los coeficientes de S_0 y S_1 resolviendo el sistema 8×8 ,

$$\begin{cases} S_0(x_0) &= y_0 \\ S_1(x_1) &= y_1 \\ S_1(x_2) &= y_2 \\ S_0(x_1) &= S_1(x_1) \\ S_0'(x_1) &= S_1'(x_1) \\ S_0''(x_1) &= S_1''(x_1) \\ S_0''(x_0) &= 0 \\ S_1''(x_2) &= 0 \end{cases} \iff \begin{cases} a_0 &= 0 \\ a_1 &= -0.0409838 \\ a_1 + 0.75b_1 + 0.5625c_1 + 0.421875d_1 &= 1.31799 \\ a_0 + 0.75b_0 + 0.5625c_0 + 0.421875d_0 &= a_1 \\ b_0 + 1.5c_0 + 1.6875d_0 &= b_1 \\ 2c_0 + 4.5d_0 &= 2c_1 \\ 2c_0 &= 0 \\ 2c_1 + 4.5d_1 &= 0 \end{cases}$$

La solución de este sistema es $a_0 = 0$, $b_0 = -0.521299$, $c_0 = 0$, $d_0 = 0.829607$, $a_1 = -0.0409838$, $b_1 = 0.878663$, $c_1 = 1.86662$, y $d_1 = -0.829607$. Es decir,

$$S(x) = \begin{cases} S_0(x) &= -0.521299x + 0.829607x^3 \text{ si } x \in [0, 0.75] \\ S_1(x) &= -0.0409838 + 0.878663(x - 0.75) + 1.86662(x - 0.75)^2 - 0.829607(x - 0.75)^3 \text{ si } x \in [0.75, 1.5]. \end{cases}$$

La representación gráfica para de S y f es

En las figuras (6.14) se muestra el trazador correspondiente a los nodos $x_0 = 0$, $x_1 = 0.5$, $x_2 = 1$, $x_3 = 1.5$ y $x_0 = 0$, $x_1 = 0.375$, $x_2 = 0.75$, $x_3 = 1.125$, $x_4 = 1.5$.

Figura 6.14: Trazador S y f con 3 y 4 puntos

Ejemplo 6.20

Determinar el trazador cúbico (frontera libre) para la siguiente tabla,

x_i	$y_i = x_i^4 - 4x_i^3$
$x_0 = -2$	48
$x_1 = -1$	5
$x_2 = 0$	0
$x_0 = -2$	-3
$x_1 = -1$	-16

Observe que la función $x^4 - 4x^3$ tiene un punto de inflexión en x = 0.

Solución: El trazador es,

$$S(x) = \begin{cases} S_0(x) = 9.85714(x+2)^3 - 52.8571(x+2) + 48 & \text{si} \quad x \in [-2,-1], \\ S_1(x) = -11.2857(x+1)^3 + 29.5714(x+1)^2 - 23.2857(x+1) + 5 & \text{si} \quad x \in [-1,0]. \\ S_2(x) = -0.714286x^3 - 4.28571x^2 + 2x & \text{si} \quad x \in [0,1], \\ S_3(x) = 2.14286(x-1)^3 - 6.42857(x-1)^2 - 8.71429(x-1) - 3 & \text{si} \quad x \in [1,22]. \end{cases}$$

- Pasos para obtener el trazador cúbico (frontera natural). El proceso general sería como sigue. Sea $h_i = x_{i+1} x_i$,
 - De acuerdo al item (a) de la definición (6.9), $S_i(x_i) = y_i \implies a_i = y_i$.
 - Haciendo algunas manipulaciones algebraicas en el sistema, se obtiene

$$d_i = \frac{c_{i+1} - c_i}{3h_i} \quad \land \quad b_i = \frac{y_{i+1} - y_i}{h_i} - \frac{h_i}{3} (2c_i + c_{i+1}). \tag{6.6}$$

La condición de frontera natural hace que $c_0 = c_n = 0$.

• Ahora todo depende del cálculo de los c_i 's. Éstos se calculan resolviendo el sistema $(n+1) \times (n+1)$

$$\begin{pmatrix} 1 & 0 & 0 & & \cdots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & & \cdots & 0 \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & \cdots & 0 \\ & \ddots & \ddots & & \ddots & \\ 0 & \cdots & h_{n-3} & 2(h_{n-3} + h_{n-2}) & h_{n-2} \\ 0 & 0 & & \cdots & 1 \end{pmatrix} \cdot \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \\ c_n \end{pmatrix} = \begin{pmatrix} 0 \\ 3(f[x_2, x_1] - f[x_1, x_0]) \\ 3(f[x_3, x_2] - f[x_2, x_1]) \\ \vdots \\ 3(f[x_n, x_{n-1}] - f[x_{n-1}, x_{n-2}]) \\ 0 \end{pmatrix} .$$

Como antes, $f[x_i, x_j] = (y_i - y_j)/(x_i - x_j)$.

Ejemplo 6.21

Determinar el trazador cúbico (frontera natural) para la siguiente tabla,

$$x_i$$
 $y_i = \cos(3x_i^2)\ln(x_i^3 + 1)$
 $x_0 = 0$ 0
 $x_1 = 0.5$ 0.0861805
 $x_2 = 1$ -0.686211
 $x_3 = 1.5$ 1.31799

Solución: El trazador es,

$$S(x) = \begin{cases} S_0(x) = a_0 + b_0(x - x_0) + c_0(x - x_0)^2 + d_0(x - x_0)^3 & \text{si} \quad x \in [x_0, x_1], \\ S_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3 & \text{si} \quad x \in [x_1, x_2]. \\ S_2(x) = a_2 + b_2(x - x_1) + c_2(x - x_1)^2 + d_2(x - x_1)^3 & \text{si} \quad x \in [x_2, x_3]. \end{cases}$$

Hay que determinar los coeficientes de S_0 , S_1 y S_2 . Iniciamos calculando los c_i 's. Resolvemos el sistema 4×4 . Recordemos que $h_i = x_{i+1} - x_i$,

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ h_0 & 2 \left(h_0 + h_1 \right) & h_1 & 0 \\ 0 & h_1 & 2 \left(h_1 + h_2 \right) & h_2 \\ 0 & 0 & 0 & 1 \end{array} \right) \cdot \left(\begin{array}{c} c_0 \\ c_1 \\ c_2 \\ c_3 \end{array} \right) = \left(\begin{array}{c} 0 \\ 3 \left(\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0} \right) \\ 3 \left(\frac{y_3 - y_2}{x_3 - x_2} - \frac{y_2 - y_1}{x_2 - x_1} \right) \\ 0 \end{array} \right)$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.5 & 2. & 0.5 & 0 \\ 0 & 0.5 & 2. & 0.5 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -5.15143 \\ 16.6596 \\ 0 \end{pmatrix}$$

Obtenemos $c_0 = 0$, $c_1 = -4.96871$, $c_2 = 9.57196$ y, por convenio, el comodín $c_3 = 0$.

Ahora podemos obtener el resto de coeficientes: $a_i = y_i$, los b_i 's y los d_i 's usando la ecuación (6.6).

$$b_0 = 1.00048, b_1 = -1.48387, b_2 = 0.8177508$$

$$d_0 = -3.31247$$
, $d_1 = 9.69378$, $d_2 = -6.38131$.

Finalmente, el trazador cúbico es

$$\begin{cases} S_0(x) = -3.31247x^3 + 0.x^2 + 1.00048x & \text{si} \quad x \in [0, 0.5], \\ S_1(x) = 9.69378(x - 0.5)^3 - 4.96871(x - 0.5)^2 - 1.48387(x - 0.5) + 0.0861805 & \text{si} \quad x \in [0.5, 1], \\ S_2(x) = -6.38131(x - 1)^3 + 9.57196(x - 1)^2 + 0.8177508(x - 1.) - 0.686211 & \text{si} \quad x \in [1, 1.5]. \end{cases}$$

■ Implementación en R . En la base de R hay varias funciones para interpolar con trazadores cúbicos.

splinefunH(x, y, m) # Interpolación Hermite. "m" es el vector de pendientes en cada punto

Por ejemplo, consideremos la función de Runge, $f(x) = \frac{1}{1+25x^2}$. Vamos a generar una tabla de puntos y usar trazadores cúbicos para generar un polinomio interpolante.

Código R 6.5: Ajuste de la función de Runge con Trazadores cúbicos

```
f = function(x) 1/(1+25*x^2)
n = 50
x = seq(-1,1, by=2/n)
y = f(x)
splinesRunge = splinefun(x,y, method="natural")
plot(x,y)
curve(splinesRunge(x), add=TRUE, col=2, n=1001)
```


Figura 6.15: Trazador cúbico para la función de Runge

Comparación. Podemos usar las funciones **splinefun()** y **spline()** para hacer una comparación con el polinomio interpolante en el caso de muchos nodos.

```
require(PolynomF)
xi=c(0,.5,1,2,3,4)
yi=c(0,.93,1,1.1,1.15,1.2)
polyAjuste = poly.calc(xi,yi)
#polyAjuste
plot(xi,yi, pch = 19, cex=1.5, col= "red")
curve(polyAjuste,add=T,lty=2, lwd=4) # lwd = grosor, lty = tipo
# Usando trazadores cúbicos
splineAjuste=splinefun(xi,yi) # frontera natural
curve(splineAjuste,add=T,lty=1,lwd=4, col= "blue")
```

```
# splineAjuste.mono = splinefun(xi,yi,method="mono")#curva monótona
# curve(splineAjuste.mono,add=T,lty=1)
legend("bottomright",legend=c("Interpolante","Trazador"), lty=c(2:1),bty="n")
```


Figura 6.16: El polinomio interpolante es la gráfica en negro, en azul está el trazador cúbico.

Ejercicios

- **6.22** Calcule el trazador cúbico (natural) para el conjunto de datos (0,0), (1,1), (2,8).
- 6.23 Considere la tabla de datos,

T(K)	100	200	300	400	500	600
$B(cm^3/mol)$	-160	-35	-4.2	9.0	16.9	21.3

Figura 6.17: Segundos Coeficientes viriales $B(cm^3/mol)$ para el nitrógeno

donde T es la temperatura y B es el segundo coeficiente virial.

- a.) Calcule el trazador cúbico (natural) para el conjunto de datos de la tabla.
- b.) ¿Cuál es el segundo coeficiente virial (interpolado) a 450K?
- c.) Hacer la representación gráfica del trazador cúbico y del polinomio interpolante $P_5(x)$.
- 6.24 Considere la siguiente tabla de datos para el agua,

$$T(C)$$
 50
 60
 65
 75
 80

 $\rho(kg/m^3)$
 988
 985.7
 980.5
 974.8
 971.6

donde T es temperatura y ρ es la densidad. Hacer la representación gráfica del trazador cúbico y del polinomio interpolante $P_4(x)$.

6.10 Interpolación y solución de ecuaciones Interpolación Inversa.

Supongamos que f es una función monótona en un intervalo I alrededor de uno de sus ceros x^* . Si tenemos dos aproximaciones x_0 y x_1 de este cero en I entonces, si $x_0 = f^{-1}(y_0)$ y $x_1 = f^{-1}(y_1)$, podemos construir la siguiente tabla de diferencias divididas

$$\begin{array}{cccc}
y & x \\
y_0 & x_0 \\
y_1 & x_1 & f^{-1}[y_0, y_1]
\end{array}$$

Como queremos aproximar $x^* = f^{-1}(0)$ entonces

 \bullet la aproximación x_2 la podemos obtener por interpolación lineal

$$x_2 = x_0 + (0 - y_0) f^{-1}[y_0, y_1]$$

ullet la aproximación x_3 la podemos obtener por interpolación cuadrática.

Si $y_2 = f(x_2)$ entonces (formalmente) $x_2 = f^{-1}(y_2)$ y actualizamos la tabla

con lo que podemos calcular x_3

$$x_3 = x_2 + (0 - y_0)(0 - y_1)f^{-1}[y_0, y_1, y_2] = x_2 + y_0y_1f^{-1}[y_0, y_1, y_2]$$

y entonces $y_3 = f(x_3)$ y (formalmente) $x_3 = f^{-1}(y_3)$.

Suponiendo que y_0 y_1 son pequeños, entonces y_0y_1 es todavía más pequeño, haciendo que *la corrección* que se le esta sumando a x_2 sea pequeña.

Si es necesario, se puede actualizar de nuevo la tabla

y calcular

$$x_4 = x_3 - y_0 y_1 y_2 f^{-1}[y_0, y_1, y_2, y_3], y_4 = f(x_4), x_4 = f^{-1}(x_4)$$

En general, el proceso converge rápidamente: $x_k \longrightarrow x^*$ si $k \longrightarrow \infty$.

Ejemplo 6.22

Usemos este método para resolver $x - e^{-x} = 0$.

Necesitamos inicialmente dos pares (x_0, y_0) y (x_1, y_1) . Si tomamos como aproximaciones iniciales $x_0 = 0.5$ y $x_1 = 0.6$ entonces $y_0 = -0.106531...$ y $y_1 = 0.0511884...$

La primera tabla de diferencias divididas es

<u>y</u>	X	
-0.106531	0.5	
0.0511884	0.6	0.63403892

Por tanto

$$x_2 = 0.567545$$

• La segunda tabla de diferencias divididas es

Por tanto $x_3 = 0.567143$

• La tercera tabla de diferencias divididas es

<u>y</u>	x			
-0.106531	0.5			
0.0511884	0.6	0.634039		
0.00062884	0.567545	0.641925	0.0735906	
-1.07985×10^{-6}	0.56714260	0.6381499	0.07374301	0.001430372

Por tanto $x_4 = 0.5671427538$

El análisis de convergencia de este algoritmo no es simple dada la complicada estructura de las derivadas sucesivas de las funciones inversas f^{-1} .

Interpolación Cuadrática Inversa.

Una variante muy usada de interpolación inversa es la llamada Interpolación Cuadrática Inversa.

Si estamos buscando ceros reales, no es conveniente interpolar con una parábola (en vez de una recta) para aproximar estos ceros. Como necesitamos la intersección con el eje X (la aproximación del cero), esto no sería posible si el discriminante es negativo.

En vez de una parábola y = P(x) que interpola tres puntos (x_i, y_i) , i = 0, 1, 2, buscamos la parábola x = Q(y) que interpola los puntos (y_i, x_i) , i = 0, 1, 2. Esta parábola siempre interseca al eje X en x = Q(0).

Ejemplo 6.23

Sea $P(x) = x^3 + x + 1$. La única solución real de la ecuación P(x) = 0 es $x^* = -0.6823278...$. Usando los puntos

$$\{(-1, P(-1)), (-0.5, P(-0.5)), (0, P(0))\}$$

calculamos el polinomio interpolante con los datos

$$\{(P(-1), -1), (P(-0.5), -0.5), (P(0), 0)\}$$

El polinomio cuadrático (inverso) interpolante es

$$Q(y) = -0.718182 + 0.5 y + 0.218182 y^2$$

Y la aproximación a la solución es

$$x_3 = Q(0) = -0.718182$$

Figura 6.18: Cuadrática (inversa) interpolante.

Observe que este método requiere que $f(x_0)$, $f(x_1)$ y $f(x_2)$ sean distintos. Por ejemplo, si tratamos de utilizar este método para calcular \sqrt{a} con el polinomio $f(x) = x^2 - a$ y si comenzamos con $x_0 = -a$, $x_1 = 0$ y $x_2 = a$, entonces $f(x_0) = f(x_1)$ y no podríamos calcular el polinomio interpolante.

El método de interpolación cuadrática inversa es el siguiente

- Si f es monótona en un intervalo adecuado, entonces si tenemos tres puntos distintos x_{n-2}, x_{n-1} y x_n , se puede calcular el polinomio interpolante $P_2(y)$ para los tres puntos $(y_{n-2}, x_{n-2}), (y_{n-1}, x_{n-1})$ y (y_n, x_n) , donde $y_{n-i} = f(x_{n-i})$.
- $x_{n+1} = P_2(0)$
- Descartamos x_{n-2} y calculamos x_{n+2} de la misma manera como calculamos x_{n+1} , esta vez usando $(y_{n-1}, x_{n-1}), (y_n, x_n)$ y (y_{n+1}, x_{n+1}) .

Formalmente,

Teorema 6.3

Supongamos que $f \in C^2[a,b]$ y que el cero $x^* \in [a,b]$. Si $f'(x^*) \neq 0$ entonces existe $\delta > 0$ tal que la iteración

$$x_{n+1} = x_{n-1} - f(x_{n-1})F_n$$
, $n = 2, 3, ...$

con

$$F_n = \frac{(f(x_{n-2}))^2(x_n - x_{n-1}) + f(x_{n-2})f(x_{n-1})(x_{n-1} - x_n) + (f(x_{n-1}) - f(x_n))f(x_n)(x_{n-2} - x_{n-1})}{(f(x_{n-1}) - f(x_{n-2}))(f(x_n) - f(x_{n-2}))(f(x_n) - f(x_{n-1}))},$$

converge a x^* para ciertas aproximaciones iniciales $x_0, x_1, x_2 \in [x^* - \delta, x^* + \delta]$.

El número de evaluaciones se puede reducir usando un truco algebraico

$$R = \frac{f(x_{n-1})}{f(x_n)}$$

$$P = S(T(R-T)(x_n - x_{n-1}) - (1-R)(x_{n-1} - x_{n-2}))$$

$$S = \frac{f(x_{n-1})}{f(x_{n-2})}$$

$$Q = (T-1)(R-1)(S-1)$$

$$T = \frac{f(x_{n-2})}{f(x_n)}$$

$$x_{n+1} = x_{n-1} + \frac{P}{Q}, \quad k = 2, 3, ...$$

Algoritmo

Algoritmo 6.2: Interpolación Cuadrática Inversa.

Datos de entrada: una función f, las aproximaciones x_0, x_1, x_2, δ y maxItr **Salida:** una aproximación p_3 a un cero de f.

```
1 k = 2;

2 p_0 = x_0, p_1 = x_1, p_2 = x_2.;

3 p_3 = p_2, p_2 = p_1, p_1 = p_0.;

4 while |p_3 - p_2| < \delta o k < N do

5 p_0 = p_1, p_1 = p_2, p_2 = p_3.;

6 f_0 = f(p_0), f_1 = f(p_1), f_2 = p(p_2);

7 R = \frac{f_1}{f_2}, S = \frac{f_1}{f_0}, T = \frac{f_0}{f_2},;

8 P = S(T(R - T)(p_2 - p_1) - (1 - R)(p_1 - p_0));

9 Q = (T - 1)(R - 1)(S - 1);

10 p_3 = p_1 + \frac{P}{Q};

11 k = k + 1;

12 end
```

13 **return** p_3 ;

Para la estimación del error se puede usar $|p_3 - p_2|$.

Ejemplo 6.24

Aproxime la raíz más grande de $f(x) = 4x^3 - 16x^2 + 17x - 4$, usando interpolación cuadrática inversa.

Solución: En la figura se puede ver la gráfica de la función f.

• Si iniciamos con los tres puntos $x_0 = 1.5$, $x_1 = 2$, $x_2 = 2.5$ el método aproxima la raíz $x^* = 1.26466...$

x0	x1	x2	x_n - x_(n-1)
1,5	2	2,5 1,666666667 1,573593074 1,745140714 1,488651258 1,343629367 1,277823721 1,264876662 1,264658507 1,26465829	0.833333333 0.093073593 0.171547641 0.256489456 0.14502189 0.065805647 0.012947059 0.000218155 2,1718*10^(-7)

• Si iniciamos con los tres puntos $x_0 = 2$, $x_1 = 2.5$, $x_2 = 3$ el método aproxima la raíz correcta.

x0	x1	x2	x_n - x_(n-1)
2	2,5	3	
		2,3512820512821	0.648717949
		2,4021859153538	0.050903864
		2,4070625620152	0.004876647
		2,4068034905016	0.000259072
		2,4068032513232	2,39178*10^(-7)
		2,4068032513242	9,40581*10^(-13)

El método de interpolación cuadrática inversa, como el de la secante, se debe usar con otro método porque, además de ser muy vulnerable a problemas asociados con la precisión de la máquina, no se garantiza que la nueva aproximación quede en un intervalo que contenga a la raíz x^* . Para aclarar esto supongamos que

tenemos tres puntos a < b < c y sean A = f(a), B = f(b), C = f(c) y $d = p_2(0)$.

Si por ejemplo AB < 0 y AC < 0 entonces $x^* \in [a, b]$.

$$d = p_2(0) = \frac{BC}{(A-B)(A-C)} + \frac{AC}{(B-A)(B-C)} + \frac{AB}{(C-B)(C-A)}$$

Si $d \in [a,b]$ descartamos c y reordenamos los puntos de nuevo para calcular la siguiente aproximación. Pero podría pasar que $d \notin [a,b]$ o aún que d esté muy cercano de a o muy cercano a b. Entonces d no se puede usar. En vez de esto, usamos el intervalo [a,b] con el método de la secante y si tenemos problemas, usamos bisección. El método de Brent se encarga de hacer una delicada y eficiente transición entre un método y otro, basado en el análisis de situaciones que pudieran provocar, entre otras cosas, underflow, overflow o división por cero.

Revisado: Marzo, 2022 Versión actualizada de este libro: https://tecdigital.tec.ac.cr/servicios/revistamatematica/Libros/

7.1 Derivación numérica

En esta sección solo vamos a considerar datos x_i igualmente espaciados. Sean $x_{i+1} = x_i + h$ y f derivable en un intervalo que contiene a x_i y a x_{i+1} . Entonces

$$f'(x_i) = \lim_{h \to 0} \frac{f(x_i + h) - f(x_i)}{h} \implies f'(x_i) \approx \frac{f(x_{i+1}) - f(x_i)}{h} \quad \text{si} \quad h \ \text{ es suficientemente pequeño}.$$

Geométricamente podemos deducir tres aproximaciones:

- 1. Diferencia finita hacia adelante: $f'(x_i) \approx \frac{f(x_i + h) f(x_i)}{h}$
- 2. Diferencia finita central: $f'(x_i) \approx \frac{f(x_i + h) f(x_i h)}{2h}$
- 3. Diferencia finita hacia atrás: $f'(x_i) \approx \frac{f(x_i) f(x_i h)}{h}$

Estimación del error. Para establecer una estimación del error en la aproximación podemos deducir estas mismas fórmulas usando una expansión en serie de Taylor de f y usar el término de error de la expansión.

Sea f de clase $C^{n+1}[a,b]$. Supongamos que tenemos dos puntos x_i y x_{i+1} en este intervalo [a,b]. La expansión en serie de Taylor, alrededor de x_i , de orden n para f es

$$f(x) = f(x_i) + \frac{f'(x_i)}{1!}(x - x_i) + \frac{f''(x_i)}{2!}(x - x_i)^2 + \dots + \frac{f^{(n)}(x_i)}{n!}(x - x_i)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_i)^{n+1}$$
 con ξ entre x_i y x_{i+1}

Ahora, evaluamos este polinomio en en $x_{i+1} = x_i + h$. Como $h = x_{i+1} - x_i$, entonces

$$f(x_i + h) = f(x_{i+1}) = f(x_i) + \frac{f'(x_i)}{1!}h + \frac{f''(x_i)}{2!}h^2 + \dots + \frac{f^{(n)}(x_i)}{n!}h^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}h^{n+1} \quad \text{con } \xi \text{ entre } x_i \text{ y } x_{i+1}$$

También se puede reformular así:

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f^{(3)}(x) + \frac{h^4}{4!}f^{(4)}(x) - \frac{h^5}{5!}f^{(5)}(x) + \dots$$

Usando una expansión de orden dos,

$$f(x_i + h) = f(x_{i+1}) = f(x_i) + \frac{f'(x_i)}{1!}h + \frac{f''(\xi)}{(2!)!}h^2$$
 con ξ entre x_i y x_{i+1}

podemos despejar $f'(x_i)$:

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f''(\xi)}{2!}h^2$$
 con ξ entre x_i y x_{i+1}

y decimos que $f'(x_i) \approx \frac{f(x_{i+1}) - f(x_i)}{h}$ con error de truncación $-\frac{f''(\xi)}{2!}h^2 = O(h^2)$.

En general, una expresión del tipo $\frac{f^{(n+1)}(\xi)}{(n+1)!}h^{n+1}$ decimos que es "de orden" $O(h^{n+1})$. En resumen, usando la expansión en serie de Taylor, podemos establacer algunas fórmulas de aproximación:

Fórmula de aproximación

Orden del error de truncación

Hacia adelante

(AD1)
$$f'(x_j) = \frac{f(x_{j+1}) - f(x_j)}{h}$$

(AD2)
$$f'(x_j) = \frac{-f(x_{j+2}) + 4f(x_{j+1}) - 3f(x_j)}{2h}$$
 $0(h^2)$

(AD3)
$$f''(x_j) = \frac{f(x_{j+2}) - 2f(x_{j+1}) + f(x_j)}{h^2}$$
 0(h)

(AD4)
$$f''(x_j) = \frac{-f(x_{j+3}) + 4f(x_{j+2}) - 5f(x_{j+1}) + 2f(x_j)}{h^2}$$
 $0(h^2)$

Central

(C1)
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$

(C2)
$$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h}$$
 $O(h^4)$

(C3)
$$f''(x_j) = \frac{f(x_{j+1}) - 2f(x_j) + f(x_{j-1})}{h^2}$$

(C4)
$$f''(x_j) = \frac{-f(x_{j+2}) + 16f(x_{j+1}) - 30f(x_j) + 16f(x_{j-1}) - f(x_{j-2})}{12h^2}$$
 $0(h^4)$

Hacia atrás

(AT1)
$$f'(x_j) = \frac{f(x_j) - f(x_{j-1})}{h}$$

(AT2)
$$f'(x_j) = \frac{3f(x_j) - 4f(x_{j-1}) + f(x_{j-2})}{2h}$$
 $0(h^2)$

(AT3)
$$f''(x_j) = \frac{f(x_j) - 2f(x_{j-1}) + f(x_{j-2})}{h^2}$$

(AT4)
$$f''(x_j) = \frac{2f(x_j) - 5f(x_{j-1}) + 4f(x_{j-2}) - f(x_{j-3})}{h^2}$$
 $O(h^2)$

Ejemplo 7.1

Con base en la siguiente tabla de datos (igualmente espaciados) para $f(x) = x \cos x$, vamos a calcular f'(0.4) usando varios métodos.

x	0.1	0.2	0.3	0.4	0.5	0.6
f(x)	0.09950042	0.19601332	0.28660095	0.36842440	0.43879128	0.49520137

Tabla de comparación con h = 0.1

h = 0.1		
Fórmula	Aproximación de $f'(0.4)$	Valor exacto $f'(0.4)$
(AD1)	0.7036688	0.7652937
(AD2)	0.7734528	
(C1)	0.7609517	
(C2)	0.7652789	
(AT1)	0.8182345	
(AT2)	0.7744136	

Como h = 0.1 no es muy pequeño, las aproximaciones no son muy buenas excepto talvez la que aproximación obtenida con la fórmula (C1).

■ Derivación numérica con el paquete "numDeriv" El paquete numDeriv de **R** usa algoritmos más exactos para hacer derivación numérica (primera y segunda derivada solamente), en particular de funciones escalares.

Para f' se usa la función **grad(fun, x, method= "...").** Por defecto la función **grad()** usa método de "extrapolación de Richardson" que es muy preciso. También se puede elegir "simple" (derivación numérica hacia adelante con $h = 10^{-4}$) o "complex" que requiere que la función sea diferenciable de variable compleja y que x_i y $f(x_i)$ sean reales.

Para aproximar la segunda derivada se usa la función **hessian(func, x)**. Usa dos métodos, "Richarson" (por defecto) o "complex".

Código R 7.1:Usando el paquete numDeriv

```
library(numDeriv) # también puede usar require(numDeriv)

f = function(x) x*cos(x)

fp = function(x) cos(x)-x*sin(x)

fpp = function(x) -sin(x)-sin(x)-x*cos(x)

options(digits=16)

# f^(1)(0.4)

grad(f,x=0.4) # Richardson
```

■ Derivación numérica con el paquete "pracma" . El paquete pracma también tiene varias funciones para hacer derivación numérica.

Código R 7.2:Usando el paquete pracma

```
f = function(x) x*cos(x)
require(pracma)
options(digits=16)
fderiv(f, 0.4) # 1ra derivada
# [1] 0.765293657060566
fderiv(f, 0.4 , n = 2, h=1e-5) # 2da derivada con h = 10 ^-5
# [1] -1.147261730061188
```

Ejemplo 7.2 (Newton-Raphson con derivación numérica)

Código R 7.3: Método de Newton con derivación numérica

```
correccion = f(x0)/fp(x0)
   x1 = x0 - correccion
   dx = corrección
   # Imprimir iteraciones
   cat(formatC(c(x1,f(x1),dx),digits=15,width=-15,format="f",flag=""), "\n
      ")
   x0 = x1
   k = k+1
   # until
   if(dx <= tol || k > maxiter ) break;
 cat("-----\n")
 if(k > maxiter){
   cat("Se alcanzó el máximo número de iteraciones.\n")
   cat("k = ", k, "Estado: x = ", x1, "Error estimado <= ", correccion)
   cat("k = ", k, " x = ", x1, " f(x) = ", f(x1), " Error estimado <= ", correccion) }
}
## --- Pruebas
f = function(x) x - cos(x)
options(digits = 15)
newtonDN(f, 0.5, 1e-10, 10)
# x_k
                    f(x_k)
# 0.751923064449049 0.021546382990783 0.251923064449049
# 0.738984893461253 -0.000167758744663  0.012938170987796
# 0.739085629223913  0.000000830126305  0.000100735762660
# 0.739085130749710 -0.000000004126207 0.000000498474203
# 0.739085133147489 -0.000000000113256 0.000000002397779
# 0.739085133215497  0.00000000000563  0.00000000068008
# ------
# k=6 x=0.739085133215497 <math>f(x)=5.62883073484954e-13
# Error estimado <=-6.80078666666667e-11
```

Ejemplo 7.3

Considere el vector de datos xi,

```
xi = c(-0.41040018, -0.91061564, -0.61106896, 0.39736684, -0.37997637, 0.34565436, -0.01906680, -0.28765977, -0.33169289, -0.99989810)
```

Ahora consideremos la función L definida como $L(\alpha) = \prod_{i=1}^{n} \frac{1 + \alpha \cdot xi}{2}$ donde n = length(xi). Podemos definir y hacer la representación gráfica de esta función con el código

Figura 7.1: Función $L(\alpha)$

Esta función tiene un cero en [1.2, 1.8]. Auque podemos calcular la derivada de L, también podemos usar nuestra versión **newtonDN** para aproximar este cero,

7.2 Integración numérica

La integral definida $\int_a^b f(x) \, dx$ no siempre se puede calcular usando el teorema fundamental del cálculo porque hay funciones que no tienen primitiva elemental, es decir la integral indefinida no se puede expresar en términos de funciones elementales. En estos casos, las integrales definen una nueva función.

Ejemplo 7.4

a.)
$$\int e^{x^2} dx = \frac{\sqrt{\pi}}{2} \operatorname{Erfi}(x)$$

b.)
$$\int \frac{\sin x}{x} dx = \text{SinIntegral}(x)$$

c.)
$$\int \frac{\cos x}{x} dx = \text{CosIntegral}(x)$$

d.)
$$\int \frac{e^x}{x} dx = \text{ExpIntegralEi}(x)$$

- **e.)** Integral de Fresnel $C(z) = \int_0^z \cos(\pi x^2/2) dx$
- **f.**) etc.

Aquí solo consideramos métodos de integración aproximada de la forma

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} w_{i} f(x_{i})$$
 (7.1)

donde los *nodos* $x_0 < x_1 < x_2 < ... < x_n$ están en [a, b]. A los w_i 's se les llama "pesos".

7.3 Fórmulas de Newton-Cotes.

Las fórmulas de Newton-Cotes son fórmulas del tipo

$$\int_{a}^{b} w(x)f(x) dx = \sum_{i=0}^{n} w_{i}f(x_{i}) + E_{n}, \quad h = (b-a)/n, \quad x_{i} = a+i \cdot h.$$

Para determinar los pesos w_i se usa la fórmula de interpolación de Lagrange.

Sea $f \in C^{n+1}[a,b]$. Sea $P_n(x)$ el polinomio de grado $\leq n$ que interpola f en los n+1 puntos (distintos) $x_0, x_1, ..., x_n$ en el intervalo [a,b]. Para cada valor fijo $x \in [a,b]$ existe $\xi(x) \in [a,b]$ tal que

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x - x_0)(x - x_1) \cdots (x - x_n)$$

Entonces

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} P_{n}(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_{0})(x - x_{1}) \cdots (x - x_{n}) dx$$
(7.2)

En particular, usando la forma de Lagrange del polinomio interpolante, $P_n(x) = y_0 L_{n,0}(x) + y_1 L_{n,1}(x) + ... + y_n L_{n,n}(x)$ con $L_{n,k}(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x-x_i}{x_k-x_i}$, tenemos

Teorema 7.1

Sea $f \in C^{n+1}[a,b]$. Sea $P_n(x)$ el polinomio de grado $\leq n$ que interpola f en los n+1 puntos (distintos) $x_0, x_1, ..., x_n$ en el intervalo [a,b]. Existe $\eta \in]a,b[$ tal que

$$\int_{a}^{b} f(x) dx = \sum_{k=0}^{n} y_{k} \int_{a}^{b} \prod_{\substack{i=0\\i\neq k}}^{n} \frac{x - x_{i}}{x_{k} - x_{i}} dx + \frac{f^{(n+1)}(\eta)}{(n+1)!} \int_{a}^{b} \prod_{i=0}^{n} (x - x_{i}) dx.$$
 (7.3)

siempre y cuando $\prod_{i=0}^{n} (x - x_i)$ sea de un mismo signo en [a, b].

También es de utilidad el siguiente teorema:

Teorema 7.2

Si
$$\int_a^b \prod_{i=0}^n (x-x_i) dx = 0$$
, $f \in C^{n+2}[a,b]$ y si $\prod_{i=0}^{n+1} (x-x_i)$ mantiene el mismo signo en $[a,b]$, entonces

$$\int_{a}^{b} f(x) dx = \sum_{k=0}^{n} y_{k} \int_{a}^{b} \prod_{\stackrel{i=0}{i \neq k}}^{n} \frac{x - x_{i}}{x_{k} - x_{i}} dx + \frac{f^{(n+2)}(\eta)}{(n+2)!} \int_{a}^{b} \prod_{i=0}^{n+1} (x - x_{i}) dx, \ \eta \in]a, b[$$
 (7.4)

7.4 Regla del Trapecio.

En la regla del trapecio, para aproximar $\int_a^b f(x) \, dx$ dividimos el intervalo [a,b] en n subintervalos: si h = (b-a)/n y $x_i = a+ih$, en cada subitervalo $[x_i,x_{i+1}]$, cambiamos la función f por el polinomio interpolante de grado 1 (figura 7.2).

Figura 7.2: Regla del trapecio

$$\int_{a}^{b} f(x) \ dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x) \ dx$$

Para aproximar cada integral $\int_{x_i}^{x_{i+1}} f(x) dx$ necesitamos el polinomio que interpola a f en $(x_i, f(x_i)), (x_{i+1}, f(x_{i+1}))$: $P(x) = f(x_i) \frac{(x - x_{i+1})}{h} + f(x_{i+1}) \frac{(x - x_i)}{h} + E \text{ con } E = (x - x_i)(x - x_{i+1}) \frac{f''(\xi(x))}{2} \text{ (si } f'' \text{ es continua en } [x_i, x_{i+1}]).$

$$\int_{x_i}^{x_{i+1}} f(x) dx = \int_{x_i}^{x_{i+1}} f(x_i) \frac{(x - x_{i+1})}{h} + f(x_{i+1}) \frac{(x - x_i)}{h} + E dx$$

$$= \frac{h}{2} [f(x_i) + f(x_{i+1})] + \int_{x_i}^{x_{i+1}} (x - x_i)(x - x_{i+1}) \frac{f''(\xi(x))}{2} dx$$

Para calcular $\int_{x_i}^{x_{i+1}} E \, dx$ necesitamos recordar el teorema del valor medio para integrales: Si en $[x_i, x_{i+1}]$ G es continua y φ integrable y de un mismo signo, entonces existe $\eta_i \in]x_i, x_{i+1}[$ tal que $\int_{x_i}^{x_{i+1}} G(x) \varphi(x) \, dx = G(\eta_i) \int_{x_i}^{x_{i+1}} \varphi(x) \, dx$.

Ahora, poniendo $G(x) = f''(\xi(x))/2$ y $\varphi(x) = (x - x_i)(x - x_{i+1})$, obtenemos

$$\int_{x_i}^{x_{i+1}} (x - x_i)(x - x_{i+1}) \frac{f''(\xi_x)}{2} \ dx = -\frac{h^3}{12} f''(\eta_i), \ \eta_i \in]x_i, x_{i+1}[.$$

Observe que $(x-x_i)(x-x_{i+1})$ tiene el mismo signo sobre $[x_i,x_{i+1}]$ (siempre es negativa) y que $\int_{x_i}^{x_{i+1}} (x-x_i)(x-x_{i+1}) \ dx = -h^3/6.$

Finalmente:

$$\int_{x_i}^{x_{i+1}} f(x) \, dx = \frac{h}{2} [f(x_i) + f(x_{i+1})] - \frac{h^3}{12} f''(\eta_i), \ \varepsilon_i \in [x_i, x_{i+1}]. \tag{7.5}$$

Si ponemos, para abreviar los cálculos, $G_i(x) = P_i(x) + (x - x_i)(x - x_{i+1})f''(\xi_i(x))/2$, con $P_i(x)$ el polinomio (lineal) interpolante en $[x_i, x_{i+1}]$, entonces

$$\int_{a}^{b} f(x) dx = \int_{x_{0}}^{x_{1}} G_{0}(x) dx + \int_{x_{1}}^{x_{2}} G_{1}(x) dx + \dots + \int_{x_{n-1}}^{x_{n}} G_{n-1}(x) dx$$
$$= \frac{h}{2} \left(f(x_{0}) + f(x_{n}) + 2 \sum_{i=1}^{n-1} f(x_{i}) \right) - \frac{h^{3}}{12} \sum_{k=0}^{n-1} f''(\eta_{k})$$

donde
$$h = \frac{b-a}{n}$$
, $\eta_i \in [x_i, x_{i+1}]$ y $x_i = a+i \cdot h$, $i = 0, 1, ..., n$.

Podemos simplificar la fórmula observando que

$$-\frac{h^3}{12} \sum_{k=0}^{n-1} f''(\eta_k) = -\frac{h^2}{12} \cdot (b-a) \left[\frac{\sum_{k=0}^{n-1} f''(\eta_k)}{n} \right]$$

La expresión en paréntesis cuadrados es un *promedio* de los valores de f'' en [a,b], por lo tanto este promedio está entre el máximo y el mínimo absoluto de f'' en [a,b] (asumimos f'' continua). Finalmente, por el teorema del valor intermedio, existe $\xi \in]a,b[$ tal que $f''(\xi)$ es igual a este valor promedio, es decir

$$-\frac{h^3}{12}\sum_{k=0}^{n-1}f''(\eta_k)=-\frac{(b-a)h^2}{12}\cdot f''(\xi),\,\xi\in\,]a,b[$$

(Regla compuesta del trapecio).

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left(f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(x_i) \right) - \frac{(b-a)h^2}{12} \cdot f''(\xi)$$
 (7.6)

con $\xi \in]a, b[, h = \frac{b-a}{n} \mathbf{y} \ x_i = a+i \cdot h, i = 0, 1, 2, ..., n.$

Ejemplo 7.5

Aunque sabemos que $\int_0^{\pi} \sec(x) \, dx = 2$, vamos a usar esta integral para ver como funciona la regla compuesta del trapecio. Aproximar $\int_0^{\pi} \sec(x) \, dx$ con tres subintervalos y estimar el error. Además determinar n tal que el error sea $|E| \le 0.5 \times 10^{-8}$.

Solución:
$$n = 3$$
, $h = \frac{\pi - 0}{3} = \frac{\pi}{3}$, $x_0 = 0$, $x_1 = \frac{\pi}{3}$, $x_2 = \frac{2\pi}{3}$ y $x_3 = \pi$. Entonces,
$$\int_0^{\pi} \sec(x) \ dx \approx \frac{\pi/2}{3} \left[\sec(0) + \sec(\pi) + 2 \cdot (\sec(\pi) + \sec(2\pi/3)) \right] = 1.813799364234...$$

El error estimado |E|, en valor absoluto, es $\leq \frac{\pi \cdot (\pi/3)^2}{12} M$ donde M es el máximo absoluto de |f''(x)| en $[0,\pi]$. En este caso M=1 y entonces $|E| \leq 0.287095...$

Para determinar n tal que $|E| \le 0.5 \times 10^{-8}$. Procedemos así: Sabemos que el máximo absoluto de f'' en $[0,\pi]$ es M=1, entonces

$$|E| \le \frac{(b-a)h^2}{12} \cdot M = \pi \cdot \frac{(\pi/n)^2}{12} = \frac{\pi^3}{12n^2}$$

Como queremos $|E| \le 0.5 \times 10^{-8}$, basta con que $\frac{\pi^3}{12n^2} \le 0.5 \times 10^{-8}$. Despejando obtenemos,

$$n \ge \sqrt{\frac{\pi^3}{12 \cdot 0.5 \times 10^{-8}}} \approx 22732.603$$

Tomando n=22732, obtenemos la aproximación $\int_0^{\pi} \operatorname{sen}(x) dx \approx 1.9999999681673$, que efectivamente tiene ocho decimales exactos.

Ejercicios

- 7.1 Implementar la función trapecio (fun, a,b, n).
- **7.2** Implementar la función **trapecio(xi,yi)** donde **(xi,yi)** son datos de una función f posiblemente no conocida. Observe que $y_i = f(x_i)$ y los x_i son datos igualmente espaciados con $\mathbf{a} = \min(\mathbf{xi})$ y $\mathbf{b} = \max(\mathbf{xi})$

7.5 Regla del Simpson.

En vez de usar interpolación lineal, usamos interpolación cuadrática buscando una mejora en el cálculo. Por simplicidad, vamos a hacer el análisis en el intervalo $[x_0, x_2]$. Para construir la parábola que interpola f necesitamos los puntos x_0, x_1 y x_2 .

Figura 7.3

Sea $f^{(4)}$ continua en [a,b]. Interpolando f en [a,b] con $x_0 = a$, $x_1 = (b+a)/2$ y $x_2 = b$ obtenemos el polinomio de Lagrange $P_2(x)$. Entonces,

$$f(x) = P_2(x) + f[x_0, x_1, x_2, x](x - x_0)(x - x_1)(x - x_2)$$

Luego,

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} P_{2}(x) + (x - x_{0})(x - x_{1})(x - x_{2}) f^{(4)}(\xi(x)) / 2 dx$$

$$= \frac{h}{3} [f(a) + 4f(x_{1}) + f(b)] + \int_{a}^{b} (x - x_{0})(x - x_{1})(x - x_{2}) f^{(4)}(\xi(x)) / 2 dx$$

En este caso, $\int_a^b (x-x_0)(x-x_1)(x-x_2) dx = 0$. Tomando $x_3 = x_1$, el polinomio $Q(x) = (x-a)\left(x-\frac{(a+b)}{2}\right)^2(x-b)$ es de un mismo signo sobre [a,b]. Aplicando el teorema (7.2) tenemos

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[f(a) + 4f(x_{1}) + f(b) \right] + \frac{f^{(4)}(\eta)}{4!} \int_{a}^{b} Q(x) dx, \ \eta \in]a, b[$$

$$= \frac{h}{3} \left[f(a) + 4f(x_{1}) + f(b) \right] - \frac{f^{(4)}(\eta)}{90} \left(\frac{b-a}{2} \right)^{5}, \ \eta \in]a, b[$$

pues
$$\int_{a}^{b} Q(x) dx = -\frac{4}{15} \left(\frac{b-a}{2} \right)^{5}$$
.

Para obtener la regla compuesta de Simpson necesitamos n par para poder escribir

$$\int_{a}^{b} f(x) dx = \int_{x_0}^{x_2} f(x) dx + \int_{x_2}^{x_4} f(x) dx + \dots + \int_{x_{n-2}}^{x_n} f(x) dx$$

Luego calculamos cada una de las n/2 integrales:

$$\int_{x_k}^{x_{k+2}} f(x) \, dx = \frac{h}{3} \left[f(x_k) + 4f(x_{k+1}) + f(x_{k+2}) \right] - \frac{f^{(4)}(\eta_k)}{90} \, h^5$$

con $\eta_k \in]x_k, x_{k+2}[y h = (x_{k+2} - x_k)/2.$

$$\int_{a}^{b} f(x) dx = \int_{x_{0}}^{x_{2}} f(x) dx + \int_{x_{2}}^{x_{4}} f(x) dx + \dots + \int_{x_{n-2}}^{x_{n}} f(x) dx$$

$$= \frac{h}{3} \left[f(a) + f(b) + 4 \sum_{i=1}^{n/2} f(x_{2i-1}) + 2 \sum_{i=1}^{n/2-1} f(x_{2i}) \right] - \sum_{k=1}^{n/2} \frac{f^{(4)}(\eta_{k})}{90} h^{5}$$

con $\eta_k \in]x_k, x_{k+2}[y \ h = (b-a)/n.$

(Regla compuesta de Simpson). Si n es par,

$$\int_{a}^{b} f(x) dx = \int_{x_{0}}^{x_{2}} f(x) dx + \int_{x_{2}}^{x_{4}} f(x) dx + \dots + \int_{x_{n-2}}^{x_{n}} f(x) dx$$

$$= \frac{h}{3} \left[f(a) + f(b) + 4 \sum_{i=1}^{n/2} f(x_{2i-1}) + 2 \sum_{i=1}^{n/2-1} f(x_{2i}) \right] - \frac{1}{180} (b-a) h^{4} f^{(4)}(\xi)$$

con
$$\xi \in]a, b[, h = \frac{b-a}{n} \mathbf{y} \ x_i = a+i \cdot h, i = 0, 1, 2, ..., n.$$

La simplificación del término de error se hace como se hizo en la regla del Trapecio.

Aunque la regla de Simpson es muy popular en integración numérica (note que con la misma cantidad de evaluaciones obtenemos una aproximación con un error más pequeño) la regla del Trapecio es más eficiente en ciertos situaciones, como cuando trabajamos con polinomios trigonométricos.

Ejemplo 7.6

Aunque sabemos que $\int_0^{\pi} \operatorname{sen}(x) dx = 2$, vamos a usar esta integral para ver como funciona la regla de Simpson.

- **a.)** Aproximar $\int_0^{\pi} \operatorname{sen}(x) dx \operatorname{con} n = 4$ y estimar el error.
- **b.**) Estime *n* de tal manera que la regla de Simpson aproxime la integral con un error $|E| \le 0.5 \times 10^{-8}$.
- **a.) Solución:** Como n = 4, calculamos x_0 , x_1 x_2 x_3 y x_4 .

$$n=4 \implies h=\frac{\pi-0}{4}=\frac{\pi}{4}, \ x_0=0, \ x_1=\frac{\pi}{4}, \ x_2=\frac{\pi}{2}, \ x_3=\frac{3\pi}{4} \ \text{y} \ x_4=\pi \text{ Entonces},$$

$$\int_0^{\pi} \operatorname{sen}(x) \, dx \approx \frac{\pi/4}{3} [\operatorname{sen}(0) + \operatorname{sen}(\pi) + 4 \cdot (\operatorname{sen}(\pi/4) + \operatorname{sen}(3\pi/4)) + 2 \cdot \operatorname{sen}(\pi/2)] = 2.004559754984...$$

El error estimado |E|, en valor absoluto, es $\leq \frac{\pi \cdot (\pi/4)^4}{180} M$ donde M es el máximo absoluto de $|f^{(4)}(x)|$ en $[0,\pi]$. En este caso M=1 y entonces $|E| \leq 0.00664105...$

b.) Solución:

Sabemos que el máximo absoluto de $f^{(4)}$ en $[0,\pi]$ es M=1, entonces

$$|E| \le \frac{(b-a)h^4}{180} \cdot M = \frac{\pi^5}{180n^4}$$

Como queremos $|E| \le 0.5 \times 10^{-8}$, basta con que $\frac{\pi^5}{180n^4} \le 0.5 \times 10^{-8}$. Despejando obtenemos,

$$n \ge \sqrt[4]{\frac{\pi^5}{180 \cdot 0.5 \times 10^{-8}}} \approx 135.79$$

Tomando n=136, obtenemos la aproximación $\int_0^{\pi} \sin(x) dx \approx 2,00000000316395...$, que efectivamente tiene ocho decimales exactos.

Ejemplo 7.7

Determine un $n \in \mathbb{N}$ tal que al aproximar la integral

$$\int_{-1.5}^{1} 5\cos(1-2x) - 2(x+1)\sin(1-2x) dx$$

con el método de Simpson, el error estimado sea menor o igual a $\delta = 0.5 \times 10^{-7}$. Para esto, use la fórmula de error de este método. Sugerencia: $f^{(4)}(x) = 16\cos(1-2x) - 32(x+1)\sin(1-2x)$ y $f^{(5)}(x) = 64(x+1)\cos(1-2x)$.

Solución: Sea $M = \max|f^{(4)}(x)|$ en [-1.5,4]. Entonces, como b-a=2.5 y $h=\frac{2.5}{n}$, el $n \in \mathbb{N}$ buscado debe ser par y cumplir

$$\frac{(2.5)\left(\frac{2.5}{n}\right)^4}{180} \cdot M \le 0.5 \times 10^{-7}$$

Cálculo de M.

• Puntos críticos:

Fundos criticos:

$$f^{(5)}(x) = 0 \implies 64(x+1)\cos(1-2x) = 0 \implies \begin{cases} x = -1 \\ 1-2x = \frac{\pi}{2} \end{cases}$$

$$\implies \begin{cases} x = -1 \in [-1.5, 1] \checkmark \\ x = \frac{2-\pi}{4} + 2k\pi, \ k \in \mathbb{Z} \end{cases}$$

Las soluciones de la ecuación cos(1-2x) = 0 son

$$k$$
 ... -2 -1 0 1 2 ... $\frac{2-\pi}{4} + 2k\pi$... -12.8518 -6.56858 -0.285398 5.99779 12.281 ...

• Comparación: Los puntos críticos son x = -1 y x = -0.285398...

$$M = \max\{|f^{(4)}(-1.5)|, |f^{(4)}(1)|, |f^{(4)}(-1)|, |f^{(4)}(-0.2853981633974)|\} = 62.4989799215956$$

Por tanto,
$$\frac{(2.5)\left(\frac{2.5}{n}\right)^4}{180} \cdot 62.4989799215956 \le 0.5 \times 10^{-7} \implies n \ge 161.374$$

R/
$$n = 162$$

Simpson: Algoritmo e Implementación.

Notemos que no se requiere que n sea par, podríamos multiplicar por 2 y resolver el problema. Sin embargo vamos a suponer que n es par para tener control. Una manera directa de implementar la regla adaptativa de Simpson es alternar los x_i de subíndice par y los x_j de subíndice impar y multiplicarlos por 4 y 2 respectivamente. Esto se puede hacer en una sola línea.

```
Algoritmo 7.1: Regla adaptativa de Simpson
```

```
Datos de entrada: f(x), a, b y n \in \mathbb{N} par.

Salida: Aproximación de \int_a^b f(x) dx.

1 suma=0;

2 h = (b-a)/n;

3 for i = 0 to (n-1) do

4 \int_a^b f(x) dx.

5 \int_a^b f(x) dx.
```

En **R** podemos hacer una implementación vectorizada,

Código R 7.4: Regla de Simpson

```
simpson = function(fun, a,b, n) {
  if (n%%2 != 0) stop("En la regla de Simpson, n es par!")
  h = (b-a)/n
```

7.6 Método de Romberg.

El método de Romberg usa la regla compuesta del trapecio para obtener aproximaciones preliminares y luego el proceso de extrapolación de Richardson para mejorar las aproximaciones.

Extrapolación de Richardson.

Supongamos que queremos estimar I y que podemos expresar I como

$$I = T(h) + a_2 h^2 + a_4 h^4 + a_6 h^6 + \cdots (7.7)$$

En este caso T(h) es una aproximación de I y $a_4h^4 + a_6h^6 + \cdots$ es el error de la estimación.

Supongamos además que T solo se puede evaluar para h > 0 (sino, el error sería nulo y no habría nada qué hacer) por lo que lo único que podemos hacer es tomar valores cada vez más pequeños de h.

Si $h \longrightarrow 0$ entonces las potencias h^4 , h^6 ,... se hacen pequeñas rápidamente por lo que, en la expresión del error $a_4h^4 + a_6h^6 + \cdots$, el sumando que aporta la mayor parte del error es a_4h^4 (si $a_4 \ne 0$). En un primer paso, el método de Romberg pretende mejorar la estimación de L eliminando este sumando. Para hacer esto procedemos así: En la ecuación (7.7) sustituimos h por h/2, luego podemos eliminar el sumando h^2 multiplicando está última expresión por 4 y restando la expresión (7.7):

$$4I = 4T(h/2) + 4a_2h^2/2^2 + 4a_4h^4/2^4 + 4a_6h^6/2^6 + \cdots$$
$$-I = -T(h) - a_2h^2 - a_4h^4 - a_6h^6 + \cdots$$

Sumando y despejando obtenemos

$$I = -\frac{4}{3}T(h/2) - \frac{1}{3}T(h) - a_4h^4/2^2 - 5a_6h^6/16 + \cdots$$
 (7.8)

¿Cuál es la ganancia? I ahora se aproxima con $\frac{4}{3}T(h/2) - \frac{1}{3}T(h)$ con un error más pequeño: $-a_4h^4/2^2 - 5a_6h^6/16 + \cdots$.

Usando la notación O– grande diríamos que en (7.7) el error es de orden $O(h^2)$ (pues h^2 es la potencia dominante) mientras que en (7.8) expresión el error es de orden $O(h^4)$.

Ahora aplicamos el mismo procedimiento a $I = T_1(h) - b_4 h^4 - b_6 h^6 + \cdots$, con $T_1(h) = 4/3 T(h/2) - 1/3 T(h)$, $b_4 = a_4/4$, $b_6 = a_6/2^3$...

Para eliminar b_4h^4 cambiamos h por h/2 y multiplicamos por 16 y restamos la ecuación inicial

$$16I = 16T_1(h/2) - 16b_4h^4/2^4 - 16b_6h^6/64 + \cdots$$

$$-I = -T_1(h) - b_4 h^4 - b_6 h^6 + \cdots$$

Sumando y despejando obtenemos

$$I = \frac{16}{15} T_1(h/2) - \frac{1}{15} T_1(h) - b_6 h^6 / 20 + \cdots$$

Poniendo $T_2(h) = \frac{16}{15} T_1(h/2) - \frac{1}{15} T_1(h)$, entonces podemos decir que $T_2(h)$ aproxima I con un error de orden $O(h^6)$.

Siguiendo este procedimiento obtenemos $I = \frac{4^k}{4^k-1} T_k(h/2) - \frac{1}{4^k-1} T_k(h) + O(h^{2(k+1)})$ en el paso k-ésimo. Esto se puede simplificar y poner como

$$I = T_k(h/2) + \frac{T_k(h/2) - T_k(h)}{4^k - 1} + O(h^{2(k+1)})$$

Matriz de Romberg

El método de Romberg es una aplicación sistemática de esta idea de obtener una aproximación mejorada a partir de aproximaciones anteriores, iniciando con estimaciones de la regla del Trapecio para $h_k = \frac{b-a}{2^{k-1}}$, k=1,2,...

Sea $h_k = \frac{b-a}{2^{k-1}}$, $I = \int_a^b f(x) \, dx$ y $T(h) = \frac{h}{2} \left(f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(x_i) \right)$. Para aplicar el proceso de extrapolación de Richardson necesitamos

$$I = T(h) + a_2 h^2 + a_4 h^4 + a_6 h^6 + \dots + a_{2m-2} h^{2m-2} + a_{2m} h^{2m} f^{(2m)}(\varepsilon)$$
(7.9)

Esto es cierto, pero para justificarlo necesitamos la fórmula de Euler-Maclaurin ([1]), así que aquí vamos a asumir este hecho.

El método de Romberg construye una matriz $R = (R_{i,j})$ en la que todas sus columnas convergen a I (las entradas son sumas de Riemann) pero la rapidez de convergencia crece de una columna a otra y esto se logra usando extrapolación de Richardson.

La primera columna de la matriz son los resultados de aplicar regla compuesta del trapecio: Se elige h=b-a y se aplica regla del trapecio con $h_k=\frac{b-a}{2^{k-1}},\ k=1,2,...$ La notación $R_{k,1}$ corresponde a la aproximación por Trapecios.

•
$$R_{1,1} = \frac{h_1}{2} [f(a) + f(b)] = \frac{b-a}{2} [f(a) + f(b)]$$

•
$$R_{k,1} = \frac{1}{2} \left[R_{k-1,1} + h_{k-1} \sum_{i=1}^{2^{k-2}} f[a + (2i-1) \cdot h_k] \right], k = 2,3,...,n.$$

Observe que $R_{k,1}$ es un fórmula recursiva para la regla compuesta del trapecio.

En particular,

$$R_{1,1} = \frac{b-a}{2} [f(a) + f(b)]$$

$$R_{2,1} = \frac{(b-a)}{4} \left[f(a) + f(b) + 2f\left(\frac{a+b}{2}\right) \right]$$

$$R_{3,1} = \frac{1}{2} \left[R_{2,1} + \frac{a+b}{2} \left[f\left(\frac{3a+b}{4}\right) + f\left(\frac{a+3b}{4}\right) \right] \right]$$

Luego, haciendo $h_{k+1} = h_k/2$ podemos obtener nuevas aproximaciones $R_{k,k}$ de manera recursiva (usando extrapolación), de la siguiente manera,

$$R_{k,j} = R_{k,j-1} + \frac{R_{k,j-1} - R_{k-1,j-1}}{4^{j-1} - 1}$$

En particular, si en la expansión (7.9) cada $a_i \neq 0$, entonces

$$R(n,m) = I + O\left(\frac{1}{2^{(n-1)(m-1)}}\right)$$

El cálculo se hace sencillo si formamos la matriz

Observe que el esquema de cálculo es similar al de diferencias divididas de Newton.

Ejemplo 7.8

Aunque sabemos que $\int_0^{\pi} \sec(x) dx = 2$, vamos a usar esta integral para ver como funciona la regla de Simpson. Aproximar $\int_0^{\pi} \sec(x) dx \cos n = 4$ y n = 6 y estimar el error.

Solución: Calculamos la matriz de Romberg.

k				
1	0			
2	1.570796327	2.094395102		
3	1.896118898	2.004559755	1.998570732	
4	1.974231602	2.00026917	1.999983131	2.00000555

Tabla 7.3

Luego $\int_0^\pi \sin(x) dx \approx 2.000000016$. La estimación del error de truncación requiere comparar los elementos consecutivos de la última fila y escoger el menor

$$|R_{4,1} - R_{4,2}| = 0.0260376$$
 $|R_{4,2} - R_{4,3}| = 0.000286039$ y $|R_{4,2} - R_{4,3}| = 0.000286039$.

Así que la estimación del error en la truncación es de ± 0.000022419 .

Algoritmo e implementación.

Queda como un ejercicio Implementar la función **romberg(fun,a,b,n)**. Podemos usar $\min_{k} \{R_{n,k} - R_{n,k-1}\}$ (el mínimo de las restas de cada dos columnas consecutivas en la fila n) como un estimado del error de truncación aunque frecuentemente éste resulta en una sobreestimación.

En la implementación del método de Romberg podríamos usar como criterio de parada: calcular la fila n > 1 hasta que $\min_k \{R_{n,k} - R_{n,k-1}\} < \delta$ o $n \le \text{numIter}$. Aquí numIter no debería ser más grande que, digamos 15. Además se debe indicar un número mínimo de iteraciones, digamos n = 3. Se trata de una heurística para evitar la finalización prematura cuando el integrando oscila mucho.

7.7 Cuadratura Gaussiana.

En la cuadratura Gaussiana (método de Gauss para aproximar una integral), en vez de usar una partición igualmente espaciada del intervalo [a, b] para aproximar la integral con n + 1 puntos, se escogen los "mejores" $x_0, x_1, ... x_n \in [a, b]$, de tal manera que la aproximación sea exacta al menos, para polinomios de grado menor o igual a 2n+1 (recordemos que Trapecio es exacto para polinomios de grado 1 y Simpson para polinomios de grado 3).

En la figura 7.4, el área de la región que cubre el trapecio relleno es exactamente el área de la región entre la parábola y el eje *X*. La aproximación que da la regla del Trapecio (trapecio punteado) no es exacta en este caso.

Figura 7.4: Cuadratura Gaussiana.

En general, se trata de usar el método de *coeficientes indeterminados*: determinar $c_0, c_1, ..., c_n$ y $x_0, x_1, ..., x_n \in [-1, 1]$ de tal manera que las integrales

$$\int_{-1}^{1} P_{2n+1}(x) dx = c_0 f(x_0) + c_1 f(x_1) + \dots + c_n f(x_n)$$

son exactas para cada $P_{2n+1}(x)$, un polinomio de grado $2n+1,\;n=0,1,2,\dots$

Debemos resolver el sistema (no lineal) con n+1+n+1=2n+2 incognitas,

$$\begin{cases} c_0 f(x_0) + c_1 f(x_1) + \dots + c_n f(x_n) &= \int_{-1}^{1} 1 \, dx &= 2, \qquad f(x) = 1 \\ c_0 f(x_0) + c_1 f(x_1) + \dots + c_n f(x_n) &= \int_{-1}^{1} x \, dx &= 0, \qquad f(x) = x \\ & \vdots & & \vdots \\ c_0 f(x_0) + c_1 f(x_1) + \dots + c_n f(x_n) &= \int_{-1}^{1} x^{2n} \, dx &= \frac{2}{2n+1}, \quad f(x) = x^{2n} \\ c_0 f(x_0) + c_1 f(x_1) + \dots + c_n f(x_n) &= \int_{-1}^{1} x^{2n+1} \, dx &= 0, \qquad f(x) = x^{2n+1} \end{cases}$$

En la tabla que sigue, aparecen la solución aproximada, hasta n = 5.

n	c_i	x_i
1	$c_0 = 1$	$x_0 = -0.5773503$
	$c_1 = 1$	$x_1 = 0.5773503$
2	$c_0 = 0.5555555556$	$x_0 = -0.7745966692$
	$c_1 = 0.8888888889$	$x_1 = 0$
	$c_2 = 0.5555555556$	$x_2 = 0.7745966692$
3	$c_0 = 0.3478548451$	$x_0 = -0.8611363116$

$$\begin{array}{c} c_1 = 0.6521451549 & x_1 = -0.3399810436 \\ c_2 = 0.6521451549 & x_2 = 0.3399810436 \\ c_3 = 0.3478548451 & x_3 = 0.8611363116 \\ \hline \\ 4 & c_0 = 0.2369268850 & x_0 = -0.9061798459 \\ c_1 = 0.4786286705 & x_1 = -0.5384693101 \\ c_2 = 0.5688888889 & x_2 = 0 \\ c_3 = 0.4786286705 & x_3 = 0.5384693101 \\ c_4 = 0.2369268850 & x_4 = 0.9061798459 \\ \hline \\ 5 & c_0 = 0.1713245 & x_0 = -0.932469514 \\ c_1 = 0.3607616 & x_1 = -0.661209386 \\ c_2 = 0.4679139 & x_2 = -0.238619186 \\ c_3 = 0.4679139 & x_3 = 0.238619186 \\ c_4 = 0.3607616 & x_4 = 0.661209386 \\ c_5 = 0.1713245 & x_5 = 0.932469514 \\ \hline \end{array}$$

Tabla 7.4

Se puede probar que $x_0, x_1, ... x_n$ son las raíces de los polinomios de Legendre,

$$P_{n+1}(x) = \frac{(n+1)!}{(2n+2)!} G_n^{(n+1)}(x) \ n = 1, 2, \dots$$

con $G_n^{(n+1)}(x)$ la derivada n+1 de $G_n(x) = (x^2-1)^{n+1}$.

Si tenemos las raíces (que son todas reales), los c_i 's se podrían calcular con la fórmula

$$c_i = \int_{-1}^{1} \prod_{j=0, j \neq i}^{n} \frac{(x - x_j)}{(x_i - x_j)} \, dx$$

(Cuadratura Gaussiana).

• Para calcular en un intervalo [a,b] usando cuadratura Gausiana hacemos el cambio de variable $x=\frac{a+b+(b-a)u}{2}$ y teniendo en cuenta que $dx=\frac{b-a}{2}du$, obtenemos

$$\int_{a}^{b} f(x) dx = \int_{-1}^{1} \frac{b-a}{2} f\left(\frac{a+b+(b-a)u}{2}\right) du = c_0 g(x_0) + c_1 g(x_1) + \dots + c_n g(x_n) + E_n$$

donde, por supuesto,
$$g(u) = \frac{b-a}{2} f\left(\frac{a+b+(b-a)u}{2}\right)$$
.

• Si $g \in C^{2n}[-1,1]$, el error en la fórmula de cuadratura Gaussiana es ([20]),

$$E_n = \frac{2^{2n+1}[(n)!]^4}{(2n+1)[(2n)!]^3} g^{(2n)}(\xi) \text{ con } \xi \in]-1,1[.$$

Ejemplo 7.9

Aproximar $\int_0^{\pi} \operatorname{sen}(x) dx$ con n = 3 y estimar el error.

Solución:

• En este caso, el cambio de variable es $x = \frac{0 + \pi + (\pi - 0)u}{2} = \frac{\pi + \pi u}{2}$ y $dx = \frac{\pi}{2} du$.

$$g(u) = \frac{\pi}{2} \operatorname{sen}\left(\frac{\pi + \pi u}{2}\right) = \frac{\pi}{2} \cos\left(\frac{\pi u}{2}\right).$$

$$\int_0^{\pi} \operatorname{sen}(x) \, dx = \int_{-1}^1 \frac{\pi}{2} \cos(\pi \, u/2) \, du$$

$$\approx c_0 \, g(x_0) + c_1 \, g(x_1) + c_2 \, g(x_2) + c_3 \, g(x_3)$$

$$= \pi/2 \left[c_0 \cos\left(\frac{\pi \, x_0}{2}\right) + c_1 \cos\left(\frac{\pi \, x_1}{2}\right) + c_2 \cos\left(\frac{\pi \, x_2}{2}\right) + c_3 \cos\left(\frac{\pi \, x_3}{2}\right) \right]$$
y usando la tabla de valores,
$$= 1.9999842284987...$$

La estimación del error es,

$$|E_3| = \frac{2^7 \cdot (3!)^4}{7 \cdot (6!)^3} \cdot |g^{(6)}(\xi)| \text{ con } \xi \in]-1,1[.$$

$$\leq \frac{2^7 \cdot (3!)^4}{7 \cdot (6!)^3} \cdot \frac{\pi^7}{128} \approx 0.00149816$$

pues
$$|g^{(6)}(u)| = \frac{\pi^7 \cos\left(\frac{\pi u}{2}\right)}{128} \le \frac{\pi^7}{128}$$
 en] – 1,1[.

7.8 Integrales Impropias.

Las integrales impropias (convergentes) $\int_a^\infty f(x) \, dx$, (a > 0) y $\int_{-\infty}^b f(x) \, dx$, (b < 0); se pueden calcular usando un cambio de variable.

Si a > 0 y $b = \infty$ o si b < 0 y $a = -\infty$ entonces,

$$\int_{a}^{b} f(x) \, dx = \int_{1/b}^{1/a} \frac{1}{t^2} f\left(\frac{1}{t}\right) dt$$

Como 1/a o 1/b es cero, $f\left(\frac{1}{t}\right)$ se indefine. Así que no podemos considerar métodos de integración que evalúen los extremos (como Simpson o Trapecio) sino más bien, de acuerdo a lo que tenemos hasta aquí, cuadratura Gaussiana.

7.9 Integración con R

La función **integrate()**, en la base de **R**, calcula numéricamente la integral definida de una función y además hace una estimación del error. Si la función maneja vectores, se debe vectorizar con **Vectorize()** antes de usar **integrate()**.

Código R 7.5:Usando integrate()

```
f = function(x) exp(-x) * cos(x)
integrate(f, 0, pi)
# 0.521607 with absolute error < 7.6e-15

# Vectorize() si f opera con vectores
f1 = function(x) max(0, x)
h = Vectorize(f1)
integrate(h, -1, 1)
# 0.5 with absolute error < 5.6e-15

fgauss = function(t) exp(-t^2/2)
integrate(fgauss, -Inf, Inf)
# 2.506628 with absolute error < 0.00023</pre>
```

Para extraer solo el valor de la integral (sin el error estimado) usamos

```
integrate(fgauss, -Inf, Inf)$value
# [1] 2.506628
```

Ejemplo 7.10 (Ceros de una función definida por una integral)

La función $S(x) = \int_0^x t - \sin(t^2) - 1 \, dt$ no tiene primitiva elemental. Esta función tiene un cero cerca de x = 2.5. Podemos usar la función **newtonRaphson()** del paquete **pracma** para aproximar este cero. Esta función **newtonRaphson()** hace derivación numérica en el cálculo.

```
Código R 7.6: Cero de una función definida por una integral
```

```
st = function(t) t-sin(t^2)-1
S = function(x) integrate(st, 0, x)$value
# Graficar S(x)-----
```

```
h = Vectorize(S)
curve(h, 0,3)
#-----
require(pracma)
newtonRaphson(S, 2.5)

# $root
# [1] 2.388456

# $f.root
# [1] 6.297833e-16

# $niter
# [1] 5

# $estim.prec
# [1] 3.083087e-16
```

En el paquete **pracma** hay varias funciones para integrar, usando versiones mejoradas de los métodos que hemos visto más arriba. En particular hay métodos de integración para funciones discretas.

Ejercicios

- **7.3** Considere la integral $I = \int_0^1 e^{-x} dx$.
 - a.) Aproximar la integral con la regla del Trapecio para n = 4 y estime el error de la aproximación.
 - b.) Estime n de tal manera que, usando la regla del Trapecio, el error estimado es $\leq 0.5 \times 10^{-10}$. Use su implementación en Excel para calcular la aproximación correspondiente (de I).
 - c.) Aproximar la integral con la regla del Simpson para n = 4 y estime el error de la aproximación.
 - d.) Estime n de tal manera que, usando la regla del Simpson, el error estimado sea $\leq 0.5 \times 10^{-10}$. Use su implementación en Excel para calcular la aproximación correspondiente (de I).
 - e.) Aproximar la integral con el método de Romberg para n = 4 y estime el error de la aproximación.
 - f.) Use su implementación del método de Romberg para encontrar experimentalmente, usando la estimación del error, el n adecuado para el que el error estimado sea $\leq 0.5 \times 10^{-10}$.
 - g.) Aproximar la integral con cuadratura Gaussiana para n=4 y estime el error de la aproximación.
 - h.) Estime n de tal manera que, usando cuadratura Gaussiana, el error estimado sea $\leq 0.5 \times 10^{-10}$. **Ayuda:** aquí no se trata de hacer un despeje de n (por la presencia de factoriales) sino, más bien, ensayar (tanteo) con valores de n (en la fórmula del error) hasta lograr el objetivo. Observe que $g(u) = \frac{1}{2} e^{-(u+)/2}$. Las derivadas de g tienen un patrón:

$$|g'(u)| = \frac{1}{4} e^{-(u+1)/2}$$

$$|g''(u)| = \frac{1}{8} e^{-(u+1)/2}$$

$$|g^{(3)}|(u) = \frac{1}{16} e^{-(u+1)/2}$$

$$|g^{(4)}(u)| = \frac{1}{32} e^{-(u+1)/2}$$

- 7.4 Aproximar $\int_0^1 \frac{\cos x}{\sqrt{x}} dx$ con el método de Simpson con n = 4.
- **7.5** Considere las integrales de Fresnel, $S(x) = \int_0^x \sec(t^2) dt$ y $C(x) = \int_0^x \cos(t^2) dt$. Se sabe que existe un valor $\xi \in [1,2]$ tal que $S(\xi) = C(\xi)$. Aproxime este valor usando el método de la secante. **7.6** La "función error" se define como $\operatorname{Erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$. Aproximar $\operatorname{Erf}(1.5)$ usando los cuatro métodos de
- integración hasta que la diferencia en cada resultado sea $\leq 0.5 \times 10^{-5}$.
- **7.7** De una función f, conocemos la siguiente información

x	f(x)
0	3.592
0.2	3.110
0.4	3.017
0.6	2.865
0.8	2.658

Tabla 7.5

- a.) Aproximar $\int_0^{0.8} f(x) dx$ usando regla del Trapecio.
- b.) Aproximar $\int_0^{0.8} f(x) dx$ usando regla del Simpson.
- c.) Aproximar $\int_0^{0.8} f(x) dx$ usando Romberg (interpolar con polinomios de grado 2).
- **7.8** Aproxime $\int_{1}^{20} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$ con n = 6.
- **7.9** Aproxime $\int_{1}^{5} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx$ con n = 6.
- 7.10 La función de Bessel de orden cero se define como

$$J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \operatorname{sen} t) \, dt$$

Derivando bajo el signo integral obtenemos $\frac{d}{dx}J_0(x) = \frac{1}{\pi}\int_0^{\pi} \frac{d}{dx}\left[\cos(x \sin t)\right] dt$

$$J_0'(x) = -\frac{1}{\pi} \int_0^{\pi} \operatorname{sen} t \operatorname{sen}(x \operatorname{sen} t) dt$$

$$J_0''(x) = -\frac{1}{\pi} \int_0^{\pi} (\operatorname{sen} t)^2 \cos(x \operatorname{sen} t) dt$$

$$\vdots \qquad \vdots$$

$$\left| J_0^{(n)}(x) \right| = \begin{cases} \frac{1}{\pi} \int_0^{\pi} \left| (\operatorname{sen} t)^n \cos(x \operatorname{sen} t) \right| dt & \text{si n es par} \\ \frac{1}{\pi} \int_0^{\pi} \left| (\operatorname{sen} t)^n \sin(x \operatorname{sen} t) \right| dt & \text{si n es impar} \end{cases}$$

- a.) Muestre que $|J_0^{(n)}(x)| \le \frac{1}{\pi} \int_0^{\pi} 1 \, dt = 1$, $n = 0, 1, 2, \dots$ Sugerencia: Si f es continúa en [a, b] entonces mín $f \le \frac{1}{b-a} \int_a^b f(x) \, dx \le \max f$
- b.) Dado $\delta > 0$, determine n de tal manera que si aproximamos $J_0(x)$ con la regla compuesta de Simpson, el error sea $\leq \delta$.
- c.) Implemente en \mathbb{R} , una función $\mathsf{JOSimpson}(x,\mathsf{delta})$ para aproximar $J_0(x)$, usando la regla de Simpson, con un error estimado $\leq \delta$.
- d.) Realice la representación gráfica de $J_0(x)$ con $x \in [-5, 5]$.
- e.) La función $J_0(x)$ tiene un cero x^* en [2,3]. Implemente una versión del método de bisección y una versión del método de Newton que operen con la función **J0Simpson(x,0.5*1e-5)** y aproxime en cada caso x^* con un error estimado $\leq 0.5 \times 10^{-8}$.
- **7.11** Considere la integral $I = \int_0^1 e^{-x^2} dx$.
 - a.) Aproximar la integral con la regla compuesta de Simpson con n = 4
 - b.) Estime el error en la aproximación anterior.
 - c.) Estime n de tal manera que, usando la regla comuesta de Simpson, el error estimado de la aproximación sea $\leq 0.5 \times 10^{-10}$.
- **7.12** De una función f, conocemos la siguiente información

$$x$$
 $f(x)$ 03.50.23.10.430.62.80.82.6

Aproximar $\int_0^{0.8} f(x) dx$ usando regla compuesta de Simpson con n = 4.

Revisado: Marzo, 2022 Versión actualizada de este libro: https://tecdigital.tec.ac.cr/servicios/revistamatematica/Libros/

Consideremos el problema de valor inicial

$$\frac{dy}{dt} = f(t, y(t)), \quad a \le t \le b, \quad y(a) = y_0$$
(8.1)

Buscamos una función $y(t) \in c^1[a, b]$ que satisfaga la identidad (8.1). Se asume que f(t, y) está definida para $t \in [a, b]$ y $y \in \mathbb{R}^m$. Por supuesto, en este texto solo estudiamos el caso m = 1.

Existencia y unicidad. En teoría de ecuaciones diferenciales se establece el siguiente teorema,

Teorema 8.1

Si f(t, y) es continua en $t \in [a, b]$ y respecto a y satisface la condición de Lipschitz

$$||f(t,y)-f(t,y^*)|| \le L||y-y^*||, t \in [a,b], y, y^* \in \mathbb{R},$$

entonces el problema de valor inicial (8.1) tiene una única solución y(t), $a \le t \le b$, para cualquier $y_0 \in \mathbb{R}$.

Solución numérica. Desde el punto de vista numérico lo que nos interesa encontrar aproximaciones $y_a(t_i)$ a los valores exactos $y(t_i)$. En este capítulo, los $t_i \in [a,b]$ los tomaremos igualmente espaciados, es decir, si h = (b-a)/n, $ti = a + i \cdot h$, i = 0, 1, ..., n.

Si uno lo prefiere, puede construir una tabla de aproximaciones $\{(t_i, y_a(t_i)), i = 0, 1, ..., n\}$ y por interpolación, contruir una solución aproximada $y_a(t), t \in [a, b]$.

Figura 8.1: Solución numérica de un problema de valor inicial

Supongamos que tenemos el problema de valor inicial

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = y_0$$
 (8.2)

Si tenemos una aproximación (t_i, y_i) de $(t_i, y(t_i))$, el paso siguiente en un método de un solo paso es

$$y_{i+1} = y_i + h \cdot \Phi(t_i, y_i; h), h > 0.$$

La función Φ se puede ver como el incremento aproximado en cada paso y define cada método de un solo paso. **Orden del método**. Para definir el orden del método necesitamos definir el *error de truncación*. Sea u(t) la solución del problema 8.2 pero pasando por el punto (genérico) (x, y), es decir, u(t) es la solución del problema local

$$\frac{du}{dx} = f(t, u), \quad x \le t \le x + h, \quad u(x) = y \tag{8.3}$$

A u(t) se le llama solución de referencia. Si $y^* = y + h\Phi(x, y; h)$, y^* aproxima u(x + h) con un error de truncación $T(x, y; h) = \frac{1}{h}(y^* - u(x + h))$.

El método Φ se dice de orden p si $||T(x, y; h)|| \le C h^p$ uniformemente sobre [a, b] donde la constante C no depende de x, y o h. Esta propiedad es usual escribirla como

$$T(x, y; h) = O(h^p), h \rightarrow 0,$$

es decir, entre más grande p, más exacto es el método.

A continuación, vamos a ver algunos métodos de un solo paso.

8.1 Método de Euler

Euler propuso este método en 1768. Consiste en seguir la tangente en cada punto (t_i, y_i) . Hacemos una partición del intervalo [a, b] en n subintervalos $[t_i, t_{i+1}]$, cada uno de longitud h = (b-a)/n. Luego, $t_{i+1} = a + i \cdot h = t_i + h$. Iniciando con (t_0, y_0) , se calcula la ecuación de la tangente en (t_i, y_i) : $y_T(t) = f(t_i, y_i)(t - t_i) + y_i$ y se evalúa en $t = t_{i+1} = t_i + h$, es decir,

$$y(t_{i+1}) \approx y_{i+1} = y_i + h f(t_i, y_i), \quad i = 0, 1, ..., n$$

Figura 8.3: Tangentes en (t_i, y_i) , i = 0, 1, ...15.

Ejemplo 8.1

Consideremos el problema de valor inicial $\frac{dy}{dt} = 0.7y - t^2 + 1$, $t \in [1,2]$, y(1) = 1. Aquí a = 1, b = 2. Si n = 10 entonces h = 0.1 y $t_i = a + h$ i = 1 + 0.1 i

$$\begin{cases} y_0 = 1 \\ y_{i+1} = y_i + h(0.7 * y_i - t_i^2 + 1) = y_i + 0.1(0.7y_i - (1 + 0.1i)^2 + 1), & i = 1, ..., n \end{cases}$$

5 .	•	5 0
i	t_i	y_i
0	1	1
1	1.1	1.07
2	1.2	1.1239
3	1.3	1.15857
4	1.4	1.17067
5	1.5	1.15662
6	1.6	1.11258
7	1.7	1.03446
8	1.8	0.917877
9	1.9	0.758128
10	2.	0.550197

Tabla 8.1: $y(t_i) \approx y_i = y_{i-1} + h f(t_{i-1}, y_i), i = 1, 2, ..., 10.$

8.2 Algoritmo e implementación

En el algoritmo se usan los datos t_0 , y_0 , h y n. Se imprimen n datos (t_i, y_i) y el gráfico.

Figura 8.4: Método de Euler

```
Datos de entrada: f(t, y), a, b, y_0, n

Salida: Imprime las aproximaciones (t_i, y_i), i = 0, 1, ..., n

1 h = (b - a)/n;

2 t_0 = a;

3 for i = 1 ton do

4 y_1 = y_0 + h \cdot f(t_0, y_0);

5 t_0 = a + i \cdot h;

6 y_0 = y_1;

7 print((t_0, y_0));
```

Código R 8.1: Método de Euler

```
euler1 = function(f, t0, y0, h, n) {
    #Datos igualmente espaciados iniciando en x0 = a, paso h. "n" datos
    t = seq(t0, t0 + (n-1)*h, by = h) # n datos
    y = rep(NA, times=n) # n datos
    y[1]=y0
    for(i in 2:n ) y[i]= y[i-1]+h*f(t[i-1], y[i-1])
    print(cbind(t,y)) # print
    plot(t,y, pch=19, col="red") # gráfica
}
```


8.3 Métodos de Taylor de orden superior.

El método de Euler opera con un polinomio de Taylor de orden uno (rectas). Es natural, como propuso Euler, usar más términos e la expansión de Taylor (si f es suficientemente derivable). Usando una expansión de orden m nos lleva a un método de orden $O(h^m)$. El costo de calcular las derivadas en estos tiempos se le delega a los computadores, lo que hace que el método (todavía de un solo paso), sea una opción viable.

En este método, calculamos el polinomio de Taylor alrededor de $t = t_i$ (en potencias de $t - t_i$) y evaluamos este polinomio en $t_{i+1} = t_i + h$. Nos queda un polinomio en potencias de h,

$$y(t_{i+1}) = y(t_i + h) = y(t_i) + h y'(t_i) + \frac{h^2}{2} y''(t_i) + \dots + \frac{h^m}{m!} y^{(m)}(t_i) + \frac{h^{m+1}}{(m+1)!} y^{(m+1)}(\xi_i), \quad \text{con } \quad \xi_i \in]t_i, \ t_i + h[.$$

Como y'(t) = f(t, y), las derivadas sucesivas se pueden calcular usando regla de la cadena (en dos variables).

$$\left\{ \begin{array}{rcl} y^{(0)}(t) & = & f^{[0]}(t,y) = f(t,y), \\ \\ y^{(k+1)}(t) & = & f^{[k+1]}(t,y) = f^{[k]}_t(t,y) + f^{[k]}_y(t,y) \, f(t,y), & k = 0,1,2,...,m. \end{array} \right.$$

Entonces, sacando el factor común h queda

$$y(t_{i+1}) \approx y_{i+1} = y_i + \frac{h}{h} \left[f^{[0]}(t_i, y_i) + \frac{h}{2} f^{[1]}(t_i, y_i) + \frac{h^2}{3!} f^{[2]}(t_i, y_i) + \dots + \frac{h^{m-1}}{m!} f^{[m-1]}(t_i, y_i) \right], i = 0, 1, \dots, n. \quad (8.4)$$

Observe que $f^{[k+1]}(t_i, y_i)$ se construye con las derivadas parciales "anteriores":

$$f^{[k+1]}(t_i, y_i) = f_t^{[k]}(t_i, y_i) + f_v^{[k]}(t_i, y_i) f(t_i, y_i)$$

El siguiente ejemplo muestra el uso de esta fórmula.

Ejemplo 8.2

Consideremos el problema de valor inicial $\frac{dy}{dt} = 0.7y - t^2 + 1$, $t \in [1,2]$, y(1) = 1. La solución exacta es $y(t) = 1.42857t^2 + 4.08163t - 4.42583e^{0.7t} + 4.40233$.

Vamos a aplicar el método de Taylor de orden m = 4 con n = 10. Tenemos a = 1, b = 2, h = 0.1 y $t_i = 1 + 0.1$ i. Ahora debemos calcular las derivadas,

$$\begin{split} f^{[0]}(t,y) &= 0.7y - t^2 + 1, \\ f^{[1]}(t,y) &= f_t^{[0]}(t,y) + f_y^{[0]}(t,y) \, f(t,y) = -2t + 0.7(0.7y - t^2 + 1), \\ f^{[2]}(t,y) &= f_t^{[1]}(t,y) + f_y^{[1]}(t,y) \, f(t,y) = -2 - 2 \cdot 0.7^1 t + 0.7^2 (0.7y - t^2 + 1), \\ f^{[3]}(t,y) &= f_t^{[2]}(t,y) + f_y^{[2]}(t,y) \, f(t,y) = -2 \cdot 0.7^1 - 2 \cdot 0.7^2 t + 0.7^3 (0.7y - t^2 + 1). \\ \begin{cases} y_0 &= 1 \\ \\ y_{i+1} &= y_i + h \left[f^{[0]}(t_i,y_i) + \frac{h}{2} f^{[1]}(t_i,y_i) + \frac{h^2}{3!} f^{[2]}(t_i,y_i) + \frac{h^3}{4!} f^{[3]}(t_i,y_i) \right], \, i = 0,1,...,n. \end{cases} \end{split}$$

$$\text{Asi, } y_1 = y_0 + \textcolor{red}{0.1} \left[f^{[0]}(t_0, y_0) + \textcolor{red}{\frac{0.1}{2}} f^{[1]}(t_0, y_0) + \textcolor{red}{\frac{0.1^2}{3!}} f^{[2]}(t_0, y_0) + \textcolor{red}{\frac{0.1^3}{4!}} f^{[3]}(t_0, y_0) \right] = 1.06193158375.$$

En la tabla se continúa el cálculo hasta y_{10} .

	Método de Taylor		
	de orden 4	Valor exacto	
t_i	y_i	$y(t_i)$	
1.0	1.0	1.0	
1.1	1.06193158375	1.061931432036279	
1.2	1.105577521330614	1.105577223160223	
1.3	1.127540292137498	1.127539827069448	
1.4	1.124176027574661	1.124175372973675	
1.5	1.091576648813122	1.091575779638891	
1.6	1.025550709391196	1.025549597968614	
1.7	0.92160284874683	0.92160146451555	
1.8	0.77491175596324	0.77491006520478	
1.9	0.58030653570613	0.58030450124654	
2.0	0.33224136049833	0.33223894138437	

Ejemplo 8.3

Considere el problema de valor inicial $y' = -40y + te^{3t}$, $t \in [1,2]$, y(1) = 10.

(a.) Aplique el *método de Taylor* de orden m = 4 para aproximar y(1.2) usando h = 0.2.

Solución:

$$t_0 = 1$$
, $y_0 = 10$ y $h = 0.2$

$$f^{[0]}(t,y) = -40y + te^{3t}, f^{[0]}(1,10) = -40 \cdot 10 + 1 \cdot e^{3 \cdot 1} = -379.9144630$$

$$f^{[1]}(t,y) = e^{3t}(1-37t) + 1600y$$

$$f^{[2]}(t,y) = e^{3t}(1489t - 34) - 64000y$$

$$f^{[3]}(t,y) = e^{3t}(1387 - 59533t) + 2560000y$$

$$y_1 = y_0 + 0.2 \left[f^{[0]}(t_0, y_0) + \frac{0.2}{2} f^{[1]}(t_0, y_0) + \frac{0.2^2}{3!} f^{[2]}(t_0, y_0) + \frac{0.2^3}{4!} f^{[3]}(t_0, y_0) \right]$$

$$= y_0 + 0.2 \left[-379.9144630 + \frac{0.2}{2} \cdot 15276.92067 + \frac{0.2^2}{3!} \cdot -610775.543 + \frac{0.2^3}{4!} \cdot 24432106.37 \right]$$

$$\approx 1053.9952$$

(b.) Aplique el *método de Runge-Kutta* de orden 4 para aproximar y(1.2) usando h = 0.2.

Solución: $t_0 = 1$, $y_0 = 10$ y h = 0.2

$$k_1 = \frac{h}{2}f(t_0, y_0)$$
 = $\frac{0.2}{2} \cdot -379.9144630768124 = -37.99144630768124$

$$k_2 = \frac{h}{2} f\left(t_0 + \frac{h}{2}, y_0 + k_1\right) = \frac{0.2}{2} f\left(1 + \frac{0.2}{2}, 10 - 37.99...\right) = 114.9481755119973$$

$$k_3 = \frac{h}{2} f\left(t_0 + \frac{h}{2}, y_0 + k_2\right) = -496.8103117667169$$

$$k_4 = \frac{h}{2} f(t_0 + h, y_0 + 2k_3) = 3938.87428226697$$

 $y_1 = y_0 + \frac{1}{3} (k_1 + 2k_2 + 2k_3 + k_4) \approx 1055.7195211$

La solución de este tipo de ecuación es de caracter exponencial. Se tomó $h=0.2\,$ solo por simplicidad, pero un paso h = 0.2 es muy grosero y nos da aproximaciones con errores muy grandes. Si usamos un h más pequeño podemos obtener aproximaciones con más sentido, por ejemplo si $h=0.0001\,$ obtenemos, en la iteración i = 2000, una aproximación muy cercana al valor correcto: $y(1.2) \approx y_{2000} = 1.004754122804870$. Nótese la gran diferencia obtenida con h = 0.2 y la obtenida con h = 0.0001

implementación

Para calcular las derivadas parciales vamos a usar el paquete Deriv. La función Deriv(f, "t") de este paquete, devuelve la derivada parcial de f respecto a t.

Código R 8.2: Método de Taylor (orden 4)

```
#install.packages(Deriv)
require(Deriv) # derivadas parciales
#--- Metodo de Taylor, orden 4
mtaylor4= function(f, t0, y0, h, n){
  #Datos igualmente espaciados iniciando en t0 = a, paso h. "n" datos
  t = seq(t0, t0 + (n-1)*h, by = h) # n datos
 y = rep(NA, times=n)
                                    # n datos
  v[1] = v0
  # Derivadas parciales con el paquete Deriv. Deriv(f)
  ft=Deriv(f,"t"); fy=Deriv(f,"y")
  f1 = function(t,y)
  ft(t,y)+fy(t,y)*f(t,y)
  f1t=Deriv(f1,"t"); f1y=Deriv(f1,"y")
  f2= function(t,y) f1t(t,y)+f1y(t,y)*f(t,y)
  f2t=Deriv(f2,"t");
                       f2y=Deriv(f2,"y")
  f3= function(t,y) f2t(t,y)+f2y(t,y)*f(t,y) # orden m = 4
  for(i in 2:n ){
     f0i = f(t[i-1], y[i-1])
     f1i = f1(t[i-1], y[i-1])
     f2i = f2(t[i-1], y[i-1])
     f3i = f2(t[i-1], y[i-1])
     y[i] = y[i-1] + h*(f0i + h/2*f1i + h^2/6*f2i + h^3/24*f3i)
  }
  print(cbind(t,y))
  plot(t,y, pch=19, col="red",cex = 2) #gráfica
```

}

8.4 Métodos de Runge-Kutta.

Como decíamos, los métodos de un solo paso tienen la forma

$$y_{i+1} = y_i + h \cdot \Phi(t_i, y_i; h), h > 0.$$

En el método de Euler la función incremento es

$$\Phi(t_i, y_i; h) = f(t_i, y_i)$$

Para el método de Taylor de orden 2 es,

$$\Phi(t_i, y_i; h) = f(t_i, y_i) + \frac{h}{2} \left[f_t(t_i, y_i) + f_y(t_i, y_i) f(t_i, y_i) \right]$$
(8.5)

Los métodos de Runge-Kutta son métodos diseñados pensando en imitar las expansiones de Taylor pero usando solo evaluaciones de la función f(t, y). En el caso del método de Runge-Kutta de orden 2, se trata de modificar el método de Euler escribiendo

$$\Phi(t_i, y_i; h) = a_1 k_1 + a_2 k_2, \tag{8.6}$$

con $k_1 = f(t, y)$ y $k_2 = f(t + \alpha h, y + \beta h k_1)$, es decir, no se va a evaluar en la tangente hasta $t_i + h$ sino antes, usando la pendiente de la tangente en $(t + \alpha h, y + \beta h k_1)$.

Expandiendo 8.5 y 8.6 en potencias de h (usando la fórmula de Taylor en dos variables) y comparando se obtiene, entre varias opciones, $\alpha = 1$, $\beta = 1$, $a_1 = a_2 = 1/2$. Esto nos da un método Runge-Kutta de orden 2,

$$y_{i+1} = y_i + \frac{h}{2} [f(t_i, y_i) + f(t_i + h, y_i + hf(t_i, y_i))]$$

El método clásico de Runge-Kutta de orden 4 tiene una función de incremento que coincide con el polinomio de Taylor hasta el sumando con el término h^4 . Este método se puede escribir como,

$$\begin{cases} y_0 &= y(a), \\ \\ y_{i+1} &= y_i + \frac{1}{3}(k_1 + 2k_2 + 2k_3 + k_4), i = 0, 1, 2, \dots \end{cases}$$

donde k_1, k_2, k_3 y k_4 se calculan así:

$$k_{1} = \frac{h}{2} f(t_{i}, y_{i}),$$

$$k_{2} = \frac{h}{2} f\left(t_{i} + \frac{h}{2}, y_{i} + k_{1}\right),$$

$$k_{3} = \frac{h}{2} f\left(t_{i} + \frac{h}{2}, y_{i} + k_{2}\right),$$

$$k_{4} = \frac{h}{2} f\left(t_{i} + h, y_{i} + 2k_{3}\right),$$

Algoritmo e implementación

El algoritmo es una copia de las fórmulas.

Implementación

Código R 8.3: Método de Runge-Kutta (orden 4)

```
rungekutta = function(f,t0,y0,h,n){
t = seq(t0, t0+n*h, by=h)
y = rep(NA, times=(n+1))
# length(t)==length(y)
y[1] = y0
for(k in 2:(n+1)){
    k1=h/2*f(t[k-1],y[k-1])
    k2=h/2*f(t[k-1]+h/2, y[k-1]+k1)
    k3=h/2*f(t[k-1]+h/2, y[k-1]+k2)
    k4=h/2*f(t[k-1]+h, y[k-1]+2*k3)
    y[k] = y[k-1]+1/3*(k1+2*k2+2*k3+k4)
```

Figura 8.5: Método de Runge-Kutta de orden 4

```
Datos de entrada: f(t, y), m, a, b, y_0, n

Salida: Imprime las aproximaciones (t_i, y_i), i = 0, 1, ..., n

1 h = (b - a)/n;

2 t_0 = a;

3 for i = 1 ton do

4 k_1 = \frac{h}{2}f(t_i, y_i);

5 k_2 = \frac{h}{2}f\left(t_i + \frac{h}{2}, y_i + k_1\right);

6 k_3 = \frac{h}{2}f\left(t_i + \frac{h}{2}, y_i + k_2\right);

7 k_4 = \frac{h}{2}f\left(t_i + h, y_i + 2k_3\right);

8 y_1 = y_i + \frac{1}{3}(k_1 + 2k_2 + 2k_3 + k_4);

9 t_0 = a + i \cdot h;

10 y_0 = y_1;

11 print((t_0, y_0));
```

```
dat = cbind(t,y)
print(as.matrix(dat))
plot(t,y,pch=20, col="red")
}
#Pruebas----
options(digits = 15)
f=function(t,y) 0.7*y-t^2+1
t0=1; y0=1; h= 0.1; n= 10
rungekutta(f,t0,y0,h,n)
#---
        t
# [2,] 1.1 1.061931481666667
# [3,] 1.2 1.105577309762072
# [4,] 1.3 1.127539963145176
# [5,] 1.4 1.124175572644375
# [6,] 1.5 1.091576058813342
# ...
```

Ejercicios

- **8.1** Considere el problema de valor inicial $y' = \cos(2t) + \sin(3t)$, $t \in [0,1]$, y(0) = 1.
 - a.) Usando el método de Euler, aproximar y(0.4) con h = 0.1.
 - b.) Usando el método de Taylor de orden 4, aproximar y(0.4) con h = 0.2
 - c.) Usando el método de Runge-Kutta de orden 4, aproximar y(0.4) con h = 0.2
- **8.2** Considere el problema de valor inicial $y' = t \exp(3t) 40y$, $t \in [1,2]$, y(1) = 10.
 - a.) Usando el método de Euler, aproximar y(0.4) con h = 0.1.
 - b.) Usando el método de Taylor de orden 4, aproximar y(0.4) con h = 0.2
 - c.) Usando el método de Runge-Kutta de orden 4, aproximar y(0.4) con h=0.2
- **8.3** Usando el método de Runge-Kutta de orden 4, aproximar y(0.2) (con h = 0.1) si $y(t) = \int_0^t e^{-t^2} dt$. (Debe convertir el cálculo de la integral en un problema de valor inicial.)

Paquete "deSolve" de R

Las ecuaciones diferenciales (EDOs) están presentes en todo lugar en ciencias e ingienería. **R** tiene varios paquetes para resolver numéricamente EDOs. Una visión general de los paquetes que se pueden usar se puede obtener en https://cran.r-project.org/web/views/DifferentialEquations.html.

Uno de los paquetes es **deSolve** En la descripción del paquete se puede leer

"deSolve provides functions that solve initial value problems of a system of first-order ordinary differential equations (ODE), of partial differential equations (PDE), of differential algebraic equations (DAE), and of delay differential equa- tions. The functions provide an interface to the FORTRAN functions lsoda, lsodar, lsode, lsodes of the ODEPACK collection, to the FORTRAN func- tions dvode and daspk and a C-implementation of solvers of the Runge-Kutta family with fixed or variable time steps. The package contains routines designed for solving ODEs resulting from 1-D, 2-D and 3-D partial differential equations (PDE) that have been converted to ODEs by numerical differencing."

Para resolver numéricamente ODEs podemos usar la función ode () del paquete deSolve.

```
ode(y, times, func, parms, method = c("lsoda",
   "lsode", "lsodes", "lsodar",
   "vode", "daspk", "euler", "rk4",
   "ode23", "ode45", "radau", "bdf",
   "bdf_d", "adams", "impAdams",
   "impAdams_d"), ...)
```

Como se ve, hay varios métodos que se pueden invocar. Si la función func no tiene parámetros, se podría poner parms=NULL cuando se invoca ode().

Ejemplo 8.4 Termodinámica

Considere un cuerpo con temperatura interna T el cual se encuentra en un ambiente con temperatura constante T_e . Suponga que su masa m se concentrada en un solo punto. Entonces la la transferencia de calor entre el cuerpo y el entorno externo puede ser descrita con la ley de Stefan-Boltzmann,

$$v(t) = \epsilon \gamma S (T^4(t) - T_e^4)$$

donde t es tiempo y ϵ es la constante de Boltzmann ($\epsilon = 5.6 \times 10^{-8} J/\text{m}^2 K^2$ s, donde J = joule, K = Kelvin y "m" y "s" son como usual, metros y segundos). γ es la constante de "emisividad" del cuerpo, S el área de la superficie y v es la tasa de transferencia del calor. La tasa de variación de la energía E(t) = mCT(t) (donde C indica el calor específico del material que constituye el cuerpo) es igual, en valor absoluto, a la tasa v. En consecuencia, si $T(0) = T_0$, el cálculo de T(t) requiere la solución de la ecuación diferencial ordinaria

$$\frac{dT}{dt} = -\frac{v(t)}{mC} \quad (*)$$

Usando 20 intervalos iguales y t variando de 0 a 200 segundos, resuelva numéricamente la ecuación (*) si el cuerpo es un cubo de lados de longitud 1 m y masa igual a 1 Kg. Asuma que $T_0 = 180\,\text{K}$, $T_e = 200\,\text{K}$, $\gamma = 0.5\,\text{y}$ $C = 100\,\text{J/(Kg/K)}$. Hacer una representación gráfica del resultado.

Solución:

S = 6m². Sustituyendo los valores dados, el problema queda

$$\frac{dT}{dt} = -1.68 * 10^{-9} * T(t)^{4} + 2.6880 \text{ con } T(0) = 180 \text{ y } t \in [0,200]$$

Usando la función **ode()** del paquete **deSolve** el código sería,

```
#install.packages("deSolve")
  require(deSolve)
# La función ode() requiere obligatoriamente, varias cosas que debemos agregar
# ode(valores iniciales, tis , func, parms, method, ...)

fp = function(t,y, parms){
  s = -1.68*10^(-9)*y^4+2.6880
  return(list(s))  # ode requiere salida sea una lista
}
```

```
tis= seq(0,200,200/20)
# Usamos la función ode()
sol = ode(c(180), tis, fp, parms=NULL, method = "rk4") # método Runge Kutta orden 4

# Salida
tabla = cbind(tis, sol[,2] )
colnames(tabla) = c("ti", " Ti ")
tabla
# Representación
plot(tis, sol[,2] )
```

```
# ------ Salida -----
    ti
                Τi
[1,]
       0 180.0 #cond inicial T(0)=180
[2,] 10 187.580416562439
[3,] 20 192.460046001208
[4,] 30 195.489656884594
[5,] 40 197.326828018094
[6,] 50 198.424598570510
[7,] 60 199.074694193581
[8,] 70 199.457615740818
[9,] 80 199.682448224214
[10,] 90 199.814211064647
[11,] 100 199.891345429875
[12,] 110 199.936470940649
[13,] 120 199.962860490560
[14,] 130 199.978289770848
[15,] 140 199.987309699712
[16,] 150 199.992582334281
[17,] 160 199.995664336939
[18,] 170 199.997465807242
[19,] 180 199.998518773943
[20,] 190 199.999134231810
[21,] 200 199.999493964391
```


Ejemplo 8.5

Las ecuaciones de Lorentz es un sistema dinámico con comportamiento caótico (el primero en ser descrito). ESte modelo consiste de tres ecuaciones diferenciales que expresan la dinámica de tres variables x, y, z que se asume, representan un comportamiento idealizado de la atmósfera de la tieraa. El modelo es

$$x' = ax + yz$$

$$y' = b(y-z)$$

$$z' = -xy + cy - z$$

Las varibales x, y y z representan la distribución horizontal y vertical de la temperatura y el flujo convectivo (la "convección es" la producción de flujos de gases y líquidos por el contacto con cuerpos u objetos de mayor temperatura) y a = -8/3, b = -10 y c = 28 son parámetros.

La solución numérica sería algo así:

```
a = -8/3; b = -10; c = 28
yini = c(X = 1, Y = 1, Z = 1)
Lorenz = function (t, y, parms) {
  with(as.list(y), {
    dX \leftarrow a * X + Y * Z
    dY \leftarrow b * (Y - Z)
    dZ < - -X * Y + c * Y - Z
    list(c(dX, dY, dZ))
  })
}
# Resolvemos para 100 días produciendo una salida cada 0.01 día
times = seq(from = 0, to = 100, by = 0.01)
out = ode(y = yini, times = times, func = Lorenz,parms = NULL)
# Gráfica
plot(out, lwd = 2)
plot(out[,"X"], out[,"Y"], type = "l", xlab = "X",ylab = "Y", main = "Mariposa")
```


8.5 Algunos Detalles Teóricos.

Definición 8.1

Consideremos un conjunto $D \subseteq \mathbb{R}^2$ y una función f(t, y) definida en D. Si existe una constante L > 0 tal que

$$|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2|, \ \forall (t, y_1), (t, y_2) \in D$$

se dice que f(t, y) cumple una condición de Lipschitz en la variable y en D. A L se le llama constante de Lipschitz para f.

Nota: Una condición *suficiente* para que f(t,y) cumpla una condición de Lipschitz en D es que exista L > 0 tal que $\left|\frac{\partial f}{\partial v}(t,y)\right| \le L, \ \ \forall \, (t,y) \in D$

Definición 8.2

Un conjunto $D \subseteq \mathbb{R}$ se dice convexo si $\forall (t_1, y_1), (t_2, y_2) \in D$, el segmento $\{(1 - \lambda)(t_1, y_1) + \lambda(t_2, y_2), \lambda \in [0, 1]\}$ está contenido en D.

Nota: Observe que, cuando $\lambda = 0$ estamos en el punto inicial (t_1, y_1) y cuando $\lambda = 1$ estamos en el punto final (t_2, y_2) . $\lambda = 1/2$ corresponde al punto medio del segmento.

Teorema 8.2

Si $D = \{(t, y) : a \le t \le b, -\infty \le y \le \infty\}$ y si f(t, y) es continua en D y satisface una condición de Lipschitz respecto a y en D, entonces el problema (*) tiene una solución única y(t) para $a \le t \le b$.

Nota: Un problema de valor inicial está *bien planteado* si pequeños cambios o perturbaciones en el planteo del problema (debido a errores de redondeo en el problema inicial, por ejemplo), ocasiona cambios pequeños en la solución del problema. Si un problema cumple las hipótesis del teorema anterior, entonces está bien planteado.

Ejemplo 8.6

Consideremos el problema de valor inicial $y' = y - t^2 + 1$, $t \in [0,4]$, y(0) = 0.5. Aquí $f(t,y) = y - t^2 + 1$. Si $D = \{(t,y) : 0 \le t \le 4, -\infty \le y \le \infty\}$, entonces como

$$\left| \frac{\partial f}{\partial y}(t, y) \right| = |1| \ \ \forall \, (t, y) \in D$$

f cumple una condición de Lipschitz en y (en este caso podemos tomar L=1). Además, como f(t,y) es continua en D, el problema de valor inicial tiene una solución única. De hecho la única solución es $y(t) = (t+1)^2 - 0.5e^t$

8.6 Estimación del error

Teorema 8.3

Si $D = \{(t, y) : a \le t \le b, -\infty \le y \le \infty\}$ y si f(t, y) es continua en D y satisface una condición de Lipschitz respecto a y en D con constante L entonces si existe una constante M tal que

$$|y''(t)| \le M, \ \forall \ t \in [a, b]$$

entonces para cada i = 0, 1, 2, ..., n,

$$|y(t_i) - y_i| \le \frac{hM}{2L} (e^{L(t_i - a)} - 1)$$

Nota: para calcular |y''(t)| usamos regla de la cadena: $y''(t) = \frac{\partial f}{\partial t}(t,y) + \frac{\partial f}{\partial y}(t,y) \cdot y'(t)$. Posiblemente sea difícil obtener M dado que puede ser necesaria información acerca de y(t).

Revisado: Marzo, 2022 Versión actualizada de este libro: https://tecdigital.tec.ac.cr/servicios/revistamatematica/Libros/

A.1 Inducción Matemática

Frecuentemente vamos a usar algunas propiedades de las funciones continuas, tanto a nivel teórico como a nivel de cálculo. Paralelamente se usan razonamientos que involucran *inducción matemática*, es decir, razonamientos acerca de afirmaciones que involucran un entero n y que para probarlos se necesita de un esquema de deducción que permita concluir que la afirmación es válida para todo entero n mayor que cierto entero inicial n_1 .

Principio de Inducción Matemática.

Sea A(n) una afirmación que contiene al entero n. Se puede concluir que la afirmación A(n) es verdadera para toda $n \ge n_1$ si es posible

- a.) probar que $A(n_1)$ es cierta
- b.) probar que si se supone A(k) verdadera para un k arbitrario pero $\geq n_1$, entonces A(k+1) es verdadera.

Ejemplo A.1

Afirmación $A(n): 1+r+r^2+\cdots+r^n=\frac{1-r^{n+1}}{1-r}$ si para toda $n\geq 0$, y r una constante diferente de 1. ¿Qué dice esta afirmación?. Que la suma de las primeras n+1 potencias de r se pueden calcular con una fórmula, sin necesidad de hacer la suma.

sin necesidad de hacer la suma.
• Si
$$n = 0$$
, $1 = \frac{1 - r^{0+1}}{1 - r} = \frac{1 - r}{1 - r} = 1$

• Si
$$n = 1$$
, $1 + r = \frac{1 - r^2}{1 - r}$

• Si
$$n = 1000$$
, $1 + r + r^2 + \dots + r^{1000} = \frac{1 - r^{1001}}{1 - r}$

• Si
$$r = \frac{1}{2}$$
,

$$1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^{50} = \frac{1 - \left(\frac{1}{2}\right)^{51}}{1 - \frac{1}{2}} = 2 - \left(\frac{1}{2}\right)^{50} \approx 2.$$

Prueba de la afirmación A(n).

Para probar que la afirmación es verdadera, usamos el principio de inducción

- a.) Es cierta para n = 0 pues $1 = \frac{1 r^{0+1}}{1 r} = \frac{1 r}{1 r}$ si $r \neq 1$.

$$1 + r + r^2 + \dots + r^k = \frac{1 - r^{k+1}}{1 - r}$$
 si $r \neq 1$

Ahora probamos que es cierta para k+1, es decir que

$$1 + r + r^2 + \dots + r^k + r^{k+1} = \frac{1 - r^{k+2}}{1 - r}$$

En efecto

Como
$$1+r+r^2+\dots+r^k = \frac{1-r^{k+1}}{1-r}$$
 entonces
$$1+r+r^2+\dots+r^k+r^{k+1} = \frac{1-r^{k+1}}{1-r}+r^{k+1}$$

$$= \frac{1-r^{k+1}+r^{k+1}-r^{k+2}}{1-r}$$

$$= \frac{1-r^{k+2}}{1-r}$$

Ejercicios

- A.1 Verifique que $1+2+3\cdots+n=\frac{n(n+1)}{2}$ para toda $n \ge 1$
- **A.2** Verifique que $r^p + r^{p+1} + \dots + r^{p+n} = \frac{r^p r^{p+n+1}}{1-r}$ donde $r \neq 1$ y $p \in \mathbb{Z}^+$ son constantes. **A.3** Verifique que $(1+h)^n > 1 + nh$, para n > 1 y h una constante no nula pero > -1.

Funciones continuas. Máximos y mínimos absolutos. **A.2**

En todos los algoritmos de este capítulo se supone que se trabaja con funciones al menos continuas en un intervalo I, es decir funciones sin "huecos" ni asíntotas verticales en el intervalo. Esto es indispensable para que nuestros algoritmos de aproximaciones sucesivas no se vean detenidos por una situación de estas.

La continuidad es una propiedad "puntual". Una función es continua en todo un intervalo si es continua en cada uno de sus puntos.

Definición A.1 Límites. Función continua.

El símbolo $\lim_{x \to 0} f(x) = A$ significa que para todo $\epsilon > 0$ existe un $\delta > 0$ tal que

$$|f(x) - A| < \epsilon$$
 siempre que $0 < |x - a| < \delta$

Una función $f: \mathbb{R} \longrightarrow \mathbb{R}$, se dice continua en un punto x = a si $\lim_{x \to a} f(x) = f(a)$.

Una función $f: \mathbb{R} \longrightarrow \mathbb{R}$, se dice continua en un conjunto I si f es continua en todos los puntos de I

Las siguientes igualdades son equivalentes,

- 1. $\lim_{x \to a} f(x) = A.$

- 2. $\lim_{x \to a} f(x) A = 0.$ 3. $\lim_{x \to a} |f(x) A| = 0.$ 4. $\lim_{h \to 0} f(a+h) = A.$

Ejemplo A.2

- 1. $y = \frac{\text{sen}(x)}{x}$ no es continua en x = 0 aunque $\lim_{x \to 0} \frac{\text{sen}(x)}{x} = 1$
- 2. $y = \frac{\text{sen}(x)}{x}$ es continua en $[1, \frac{\pi}{2}]$
- 3. $y = \frac{\cos(x-1)}{x-1}$ no es continua en x = 1

Las representaciones gráficas se ven en la figura siguiente

Figura A.1

Conocer la derivada de una función f sería suficiente para decidir si f es continua o no. Esto es así pues el cálculo de la derivada requiere la continuidad.

La continuidad y la derivabilidad en un punto requieren que la función este definida en un entorno abierto de éste. Como nos interesan los intervalos (ya sea abiertos o cerrados), definimos "continuidad por la derecha", "continuidad por la izquierda", "derivabilidad por la derecha" y "derivabilidad por la izquierda", usando límites unilaterales.

Cuando hablamos de continuidad o derivabilidad de una función en un intervalo cerrado, en los extremos del intervalo se debe entender que la derivabilidad o la continuidad es por "la derecha" o "por la izquierda".

Teorema A.1

Si f es derivable en un intervalo I entonces f es continua en este intervalo.

Por supuesto, el recíproco es falso. Una función puede ser continua en un punto pero no derivable. Tal es el caso de f(x) = |x| que es continua en x = 0 pero no derivable (la gráfica presenta "un pico" en x = 0). Por esta razón en muchos teoremas se pide que una función sea "continua y derivable" aunque decir que es "derivable" sería suficiente.

Ejemplo A.3

• La función $f(x) = \frac{1}{x-1} + \frac{1}{x-2} + \dots + \frac{1}{x-3}$ es continua en $\mathbb{R} - \{1, 2, 3\}$ pues $f'(x) = \frac{-1}{(x-1)^2} - \frac{1}{(x-2)^2} - \frac{1}{(x-3)^2}$

está definida en $\mathbb{R} - \{1, 2, 3\}$.

Máximos y mínimos absolutos.

Para analizar el error cometido en una aproximación del valor de una función f en un punto, la teoría establece, en general, el error exacto en términos de un valor $|g(\xi)|$ donde se sabe que ξ está en un intervalo I, pero es desconocido. En estos casos, la estimación del error requiere cambiar $|g(\xi)|$ por una cota superior de g en I. Usualmente la cota superior es el máximo absoluto de |g| en I.

Definición A.2 Máximos y mínimos absolutos.

Sea f una función definida en un conjunto I de números reales. f tiene un máximo absoluto M en I si hay un punto $c_1 \in I$ tal que $f(x) \le f(c_1)$, $\forall x \in I$. En este podemos poner $M = f(c_1)$.

f tiene un mínimo absoluto m en I si hay un punto $c_2 \in I$ tal que $f(x) \ge f(c_2)$, $\forall x \in I$. En este podemos poner $m = f(c_2)$.

Figura A.2

Las funciones continuas tienen propiedades que requieren como hipótesis, que el intervalo donde estas propiedades se cumplen sea cerrado.

Teorema A.2 de Weierstrass

Si la función f es continua en el intervalo [a,b] entonces f alcanza su máximo y su mínimo absoluto en *este intervalo*

- Observe que el máximo absoluto de f, si existe, puede ser un m'aximo relativo o el valor de f en un extremo del intervalo I
- Observe que el mínimo absoluto de f, si existe, puede ser un minimo relativo o el valor de f en un extremo de I
- Si $f'(x) \ge 0$ en I = [a, b] entonces f es creciente en I. En este caso

$$m = f(a) \le f(x) \le f(b) = M$$

• Si $f'(x) \le 0$ en I = [a, b] entonces f es decreciente en I. En este caso

$$M = f(a) \ge f(x) \ge f(b) = m$$

• Si f es derivable en I = [a, b], entonces f tiene extremos absolutos en I. Si $\{p_1, ..., p_n\}$ son los puntos $críticos^1$ de f en I, entonces

$$m = Min\{f(a), f(p_1), ..., f(p_n), f(b)\} \le f(x) \le M = Max\{f(a), f(p_1), ..., f(p_n), f(b)\}$$

- Caso especial: Sea f es derivable en I = [a, b], sean $\{p_1, ..., p_n\}$ son los puntos críticos de f en I y $|A| = \{|f(a)|, |f(p_1)|, ..., |f(p_n)|, |f(b)|\}$. Entonces:
 - a) Si f cambia de signo en I,

$$m = 0 \le |f(x)| \le M = \text{Máx } |A|$$

b) Si f no cambia de signo en I,

$$m = \text{Min } |A| \le |f(x)| \le M = \text{Máx } |A|$$

 $^{^{1}}$ p es punto crítico de f si f'(p) = 0 o si f' se indefine en p.

Figura A.3

Ejemplo A.4

1. Sea f(x) = 2x. Sea I = [1/2, 4].

Como f'(x) = 2 > 0 entonces f es creciente en I. Luego,

$$1 = f(1/2) \le 2x \le f(4) = 8$$

Figura A.4

- 2. Sea $f(x) = x \cos(4x) 1$. Sea I = [1,2]. En este caso la función no es monótona en I. Debemos comparar los valores de f en los puntos críticos en I con los valores de f en los extremos de I.
 - puntos críticos

$$f'(x) = 1 + 4\sin(4x).$$

$$1 + 4\sin(4x) = 0 \qquad \Longrightarrow \left\{ \begin{array}{ll} 4x & = & \arcsin(-1/4) + 2k\pi, \ k \in \mathbb{Z} \\ \\ 4x & = & \pi + \arcsin(-1/4) + 2k\pi, \ k \in \mathbb{Z} \end{array} \right.$$

$$\Rightarrow \begin{cases} x = \frac{\arcsin(-1/4) + 2k\pi}{4}, & k \in \mathbb{Z} \\ x = \frac{\pi - \arcsin(-1/4) + 2k\pi}{4}, & k \in \mathbb{Z} \end{cases}$$

De todas las soluciones, la única que está en I = [1,2] es

$$x = \frac{\arcsin(-1/4) + 2\pi}{4} \approx 1.50763$$

Figura A.5

•
$$m = Min\{f(1), f(1.50763...), f(2)\} \approx \{0.6536, -0.4606, 1.1455\}$$

•
$$M = Máx\{f(1), f(1.50763...), f(2)\}$$

$$m \approx -0.4606$$

$$M \approx 1.1455$$

Así,
$$-0.4606... \le x - \cos(4x) - 1 \le 1.1455...$$
 en $I = [1, 2]$

Figura A.6

Una teorema que nos será muy útil es

Teorema A.3 Acotación para funciones continuas

Sea f continua en un intervalo [a, b]. Entonces existe un número $K \ge 0$ tal que $|f(x)| \le K$ para todo $x \in [a, b]$

Ejemplo A.5

• Sea $f(x) = -2^{-x} \ln(2)$. Si I = [0, 1],

Figura A.7

 $|f(x)| \le M = |f(0)| \approx 0.693147$

La existencia de soluciones de la ecuación f(x) = 0 esta basado en el siguiente teorema

Teorema A.4 Teorema del valor Intermedio

Si f es continua en [a, b] con $f(a) \neq f(b)$, entonces para cada $c \in [f(a), f(b)]$ existe una preimagen x = p en [a, b] tal que f(p) = c.

Corolario A.1 Si f es continua en [a,b] y si f(a) y f(b) difieren en el signo, existe $p \in a, b$ tal que f(p) = 0.

Figura A.8

Ejemplo A.6

- 1. La función $f(x) = x^3 + x + 1$ tiene un *cero* en [-1,0] pues f(-1)f(0) = -1 < 02. La función $f(x) = \frac{1}{x-1} + \frac{1}{x-2} + \dots + \frac{1}{x-3}$ tiene un *cero* en]1,2[y otro *cero* en]2,3[pues, evaluando en $x = 1.2, \ x = 1.8, \ x = 2.8$ podemos verificar un cambio de signo.

$$f(1.2) = 3.194..., f(1.8) = -4.58333..., f(2.2) = 4.58333..., f(2.8) = -3.19444...$$

Además son los únicos ceros, ya que f es decreciente:

$$f'(x) = \frac{-1}{(x-1)^2} - \frac{1}{(x-2)^2} - \frac{1}{(x-3)^2} < 0$$

Otro teorema que nos será útil es

Teorema A.5

Si f es continua en x = p y si $f(p) \neq 0$, existe entonces un intervalo p = 0, $p + \delta$ en el que f tiene el mismo signo que f(p).

Figura A.9

Ejercicios

A.4 Calcule el máximo y mínimo absoluto de las siguientes funciones, en el intervalo que se indica

- a.) $f(x) = e^x$ en [0,2]
- b.) $f(x) = 80 x^3 + 12 \operatorname{sen}(2x)$ en [1,2]
- c.) $f(x) = |80x^3 + 12 \operatorname{sen}(2x)|$ en [-2, 1]
- d.) $f(x) = \frac{1}{2}(\cos(x) + \sin(x))$ en [-1, 1].

e.)
$$f(x) = \frac{-2 + 4x^2}{e^{x^2}}$$
 en [-1,1].

f.)
$$f(x) = \frac{1}{x-1} + \frac{1}{x-2} + \dots + \frac{1}{x-3}$$
 en [6/5,9/5]

g.)
$$f(x) = |(x^2 - 1)/3|$$
 en $[-0.5, 0]$

A.5 Considere $g(x) = 2^{-x}$.

- a.) Muestre que $g(x) \in [1/3, 1]$ si $x \in [1/3, 1]$
- b.) ¿Podría encontrar una constante positiva k < 1 tal que $|g'(x)| \le k \ \forall x \in]1/3,1[?]$
- **A.6** Sea $g(x) = (x^3 1)/4$.
 - 1. Muestre que $g(x) \in [-1, 1]$ si $x \in [-1, 1]$
 - 2. ¿Podría encontrar una constante positiva k < 1 tal que $|g'(x)| \le k \ \forall x \in [-1,1]$?
- **A.7** Verifique que $f(x) = 1 + 4 \operatorname{sen}(4x)$ tiene un cero en [1,2].
- **A.8** Verifique que $f(x) = x^3 + x + 1$ tiene solamente un cero en \mathbb{R} .
- **A.9** Si $f(x) = -\tan(x + \pi/10)$, determine los extremos absolutos de |f'(x)| en [-1,1]
- **A.10** Considere $g(x) = 1/2(\text{sen}(x) + \cos(x))$. Calculando el máximo y el mínimo absoluto de g en [0,1], verifique que

$$0.270151... \le g(x) \le 0.920735...$$
 en [0,1].

$$-0.150584... \le g'(x) \le 0.5$$
 en]0,1[.

A.11 Sea $g(x) = (x^2 - 1)/3$. Verifique que

$$0 \le g(x) \le -1/3$$
 si $x \in [-1, 1]$

$$|g'(x)| \le 2/3$$
 si $x \in [-1, 1]$

A.12 Sea $f(x) = \ln x$. Verifique que si $\xi \in [1, e]$,

$$\left| \frac{f''(\xi)}{2} (x-1)(x-e) \right| \le \frac{1}{2} |(x-1)(x-e)|$$

A.13 Considere ET_n , ES_n y EG_n definidas de la siguiente manera:

$$ET_{n} = \frac{(b-a)^{3}}{12n^{2}} \cdot f''(\xi), \quad \text{con } \xi \in]a, b[,$$

$$ES_{n} = \frac{(b-a)^{5}}{180n^{4}} f^{(4)}(\xi), \quad \text{con } \xi \in]a, b[,$$

$$EG_{n} = \frac{2^{2n+1}[(n)!]^{4}}{(2n+1)[(2n)!]^{3}} g^{(2n)}(\xi) \quad \text{con } \xi \in]-1, 1[\quad y \ g(x) = \frac{b-a}{2} f\left(\frac{a+b+(b-a)x}{2}\right).$$

- 1. Si $f(x) = \operatorname{sen} x$ y a = 0, b = 1, n = 10; estimar $|ET_{10}|$ y $|ES_{10}|$
- 2. Si $f(x) = e^{-x}$ y a = 0, b = 1, n = 3; estimar $|EG_3|$

A.3 Teorema de Taylor

El teorema de Taylor no dice que si tenemos dos números α y u en un intervalo I, y si una función f es n+1 veces derivable en I, entonces $f(\alpha)$ se puede aproximar con un polinomio $P_n(x)$ de grado n para el que $P_n(u) = 0$.

Además podemos estimar el error cometido usando una cota superior de $f^{(n+1)}$ entre α y u. Adicionalmente, si α es desconocida y se sabe que $f(\alpha) = 0$ entonces podemos obtener una aproximación de α .

Teorema A.6 Teorema de Taylor con forma diferencial del resto

Supongamos que f es una función con derivadas continuas hasta el orden n+1 en un intervalo I Dados $\alpha, u \in I$, existe ξ , en el intervalo cerrado con extremos $u \vee \alpha$, tal que

$$f(\alpha) = f(u) + f'(u)(\alpha - u) + \frac{f''(u)}{2!}(\alpha - u)^2 + \dots + \frac{f^{(n)}(u)}{n!}(\alpha - u)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(\alpha - u)^{n+1}$$

Figura A.10

- $P_n(x) = f(u) + f'(u)(x-u) + \frac{f''(u)}{2!}(x-u)^2 + \dots + \frac{f^{(n)}(u)}{n!}(x-u)^n$ es el *polinomio de Taylor* de orden n alrededor
- $\frac{\operatorname{de} x = u.}{f^{(n+1)}(\xi)} (\alpha u)^{(n+1)} \text{ es el } resto.$
- Se puede escribir $f(\alpha) \approx P_n(\alpha)$ con error $\frac{f^{(n+1)}(\xi)}{(n+1)!} (\alpha u)^{n+1}$, con ξ entre u y α .
- Como en general ξ es un número desconocido, es útil observar que si $|f^{(n+1)}(x)| \leq M$ en un intervalo que contenga a \alpha y a u, entonces podemos obtener una estimación del resto

$$\left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (\alpha - u)^{n+1} \right| \le \left| \frac{M}{(n+1)!} (\alpha - u)^{n+1} \right|$$

Observe que si u está suficientemente cercano a α o si n es suficientemente grande, entonces el *resto* podría ser despreciable.

Ejemplo A.7

1. Como $f(x) = e^x$ y todas sus derivadas son continuas en todo \mathbb{R} , entonces podemos aproximar e^2 con un polinomio d'Taylor de grado 10 alrededor de u = 0. En este caso, $\alpha = 2$ y

$$e^{2} = f(0) + f'(0)(2 - 0) + \frac{f''(0)}{2!}(2 - 0)^{2} + \dots + \frac{f^{(n)}(0)}{n!}(2 - 0)^{n} + \frac{f^{(n+1)}(\xi)}{(n+1)!}(2 - 0)^{n+1}$$

$$= 1 + 2 + \frac{2^{2}}{2} + \dots + \frac{2^{n}}{n!} + \frac{f^{(n+1)}(\xi)}{(n+1)!} 2^{n+1} \text{ con } \xi \text{ entre } 0 \text{ y } 2$$

$$\leq 1 + 2 + \frac{2^{2}}{2} + \dots + \frac{2^{n}}{n!} + \frac{e^{2}2^{n+1}}{(n+1)!} \text{ pues } f^{(n+1)}(u) = e^{u} \leq e^{2} \text{ en } [0,2].$$

En particular, $e^2 \approx 1 + 2 + \frac{2^2}{2} + \dots + \frac{2^{10}}{10!} = 7.3889...$ con error $\leq \frac{e^2 2^{11}}{(11)!} = 0.000379...$

- 2. Sea $Q(x) = a_0 + a_1 x + \dots + a_n x^n$ con $a_n \neq 0$. Como $Q^{(n+1)}(x) \equiv 0$ entonces el polinomio de Taylor $P_n(x)$ es idéntico a Q(x) (pues el resto es 0).
- 3. Podemos aproximar cos(1) con el polinomio de Taylor para cos(x), de orden n = 3, alrededor de $u = \pi/2 \approx 1.57079$.

Como $P_3(x) = -(x - \pi/2) + \frac{1}{6}(x - \pi/2)^3$ entonces $\cos(1) \approx P_3(1) = 0.5398...$ con error

$$\left| \frac{\cos(\xi)(1 - \pi/2)^4}{4!} \right| \le \left| \frac{1 \cdot (1 - \pi/2)^4}{4!} \right| = 0.00442...$$

pues $|\cos(x)| \le 1 \ \forall x$.

4. Si α es un cero de $f(x) = 1 + 4 \operatorname{sen}(4x)$ en [1,2] entonces si $u \in [1,2]$, podemos escribir

$$f(\alpha) = 0 = f(u) + f'(u)(\alpha - u) + \frac{f''(\xi)}{2!}(\alpha - u)^2$$

de donde, despejando α (del factor lineal) obtenemos

$$\alpha = u - \frac{f(u)}{f'(u)} - \frac{f''(\xi)}{2f'(u)}(\alpha - u)^2$$

Si el *resto* es despreciable (es decir, si u está suficientemente cercano a α), entonces

$$\alpha \approx u - \frac{f(u)}{f'(u)}$$

• Por ejemplo, si u = 1.5 entonces $\alpha \approx 1.50765892743399...$

Un caso especial del teorema de Taylor el el teorema del valor medio para derivadas

Teorema A.7 Teorema del valor medio para derivadas

Si f es continua y derivable en [a, b] entonces existe $\xi \in]a, b[$ tal que

$$\frac{f(b) - f(a)}{b - a} = f'(\xi)$$

Ejercicios

- **A.14** Calcule *n* tal que $P_n(1)$ aproxime $\cos(1)$ con un error estimado ≤ 0.0000005 .
- **A.15** Calcule el Polinomio de Taylor $P_3(x)$, alrededor de u = 0, para $Q(x) = x^3 x + 1$
- **A.16** Calcule el Polinomio de Taylor $P_3(x)$, alrededor de $u = \pi/2$, para $Q(x) = x^3 x + 1$ y verifique que $P_3(x) = Q(x)$
- **A.17** Aproxime el único cero de $f(x) = x^3 + x + 1$ en [-1,0], usando $P_2(x)$ alrededor de u = -0.5 (la solución con doce decimales exactos es -0.682327803828...).

A.4 Notación O de Landau

Es muy adecuado recurrir a algunas funciones cuyo comportamiento es muy familiar, para compararlas con expresiones más complejas en un entorno de x_0 o en el infinito. Nos interesa saber si una función f es tan "rápida" como g analizando si el cociente $\left|\frac{f}{g}\right|$ permanece acotado en un entorno dado.

Definición A.3

Decimos que $f \in O(g)$ conforme $x \rightarrow \infty$ si existe $M \vee K > 0$ tal que

$$|f(x)| \le K|g(x)|$$
 para todo $x > M$.

 $f \in O(g)$ conforme $x \longrightarrow x_0$ si existe $\delta > 0$ y K > 0 tal que

$$|f(x)| \le K|g(x)| \operatorname{con} |x - x_0| < \delta$$

 $f \in o(g)$ conforme $x \longrightarrow x_0$, si

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

Ejemplo A.8

1.
$$x_n = \frac{n^2 - 1}{n^3} \in O(1/n)$$
 conforme $n \to \infty$ ya que $\frac{n^2 - 1}{n^3} \le \frac{1}{n}$ para todo $n > 1$.

2. Si
$$f \in o(1)$$
 entonces $\lim_{x \to x_0} f(x) = 0$

Abusando del lenguaje escribimos $\lim_{x \to x_0} o(1) = 0$

3. Como
$$\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} \in o((x-x_0)^n)$$
 cuando $x \longrightarrow x_0$, se puede escribir

$$f(x) = f(x_0) + f'(u)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

4. Como
$$\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} \in O((x-x_0)^{n+1})$$
 cuando $x \to x_0$, se puede escribir

$$f(x) = f(x_0) + f'(u)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + O((x - x_0)^{n+1})$$

5. Algunos desarrollos limitados conforme $x \rightarrow 0$

a)
$$ln(x+1) = x - x^2/2 + o(x^2)$$

b)
$$ln(x+1) = x + o(x)$$

c)
$$tan(x) = x + o(x^2)$$

d)
$$tan(x) = x + o(x)$$
 (solo cambia de $o(x^2)$ a $o(x)$)

$$e$$
) $sen(x) = x + o(x)$

f) x = x + o(x) (igual que la de seno!)

Propiedades de o(g). Cálculo de límites.

El teorema de Taylor nos permite aproximar funciones complicadas con polinomios. Puesto que es fácil operar con polinomios, esto puede ayudar a simplificar algunas expresiones complicadas que aparecen en el cálculo de límites, por ejemplo. Solo necesitamos conocer la manera de operar con expresiones 'del tipo o(g)'.

Propiedades de o(g)

- $o(g) \pm o(g) = o(g)$
- $k \cdot o(g) = o(g), k \neq 0.$

- $f \cdot o(g) = o(fg)$
- $o(g)^n = o(g^n)$

Usando estas propiedades podemos calcular límites operando con expansiones de Taylor. Primero se hace una simplificación de una parte de la expresión, usando desarrollos limitados, y luego para las otras partes de la expresión se busca un desarrollo limitado adecuado para obtener la simplificación de la expresión. Observe que para una función dada, se pueden usar distintos desarrollos limitados.

Ejemplo A.9

1. Vamos a calcular $\lim_{x\to 0} \frac{\tan(x) - \ln(x+1)}{\tan(x)\ln(x+1)}$ usando los desarrollos limitados adecuados.

$$\lim_{x \to 0} \frac{\tan(x) - \ln(x+1)}{\tan(x) \ln(x+1)} = \lim_{x \to 0} \frac{x + o(x^2) - (x - x^2/2 + o(x^2))}{\tan(x) \ln(x+1)}$$

$$= \lim_{x \to 0} \frac{x^2/2 + o(x^2)}{(x + o(x))(x + o(x))}$$

$$= \lim_{x \to 0} \frac{x^2/2 + o(x^2)}{x^2(1 + o(1))(1 + o(1))}$$

$$= \lim_{x \to 0} \frac{1/2 + o(1)}{(1 + o(1))(1 + o(1))} = 1/2$$

2.
$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{x + o(x)}{x + o(x)} = 1$$

Ejercicios

Calcular los siguientes límites usando desarrollos limitados

A.18
$$\lim_{x \to 0} \frac{x}{\operatorname{sen}(x)}$$
A.19
$$\lim_{x \to 0} \frac{\ln(x+1)}{x + \tan(x)}$$

A.5 Sucesiones

Definición A.4

Una sucesión $x_0, x_1, ..., x_k, \cdots$, denotada $\{x_n\}_{n=0}^{\infty}$ o simplemente x_n , es una función $x : \mathbb{N} \longrightarrow \mathbb{R}$.

Figura A.11

Notación: Se acostumbra escribir " x_n " en vez de la notación funcional x(n) y, abusando del lenguaje, se dice "la sucesión x_n ".

Una sucesión puede ser definida por una *relación de recurrencia* cuando se conocen uno o varios valores iniciales y una relación entre x_n y uno o más términos anteriores.

Ejemplo A.10

1.
$$x_n = \frac{(-1)^n + 1}{2}, n \ge 0.$$

En este caso los primeros términos de la sucesión son

2. (**Relación de recurrencia**).
$$x_0 = 1$$
, $x_n = 0.5 \left(x_{n-1} + \frac{A}{x_{n-1}} \right)$, $A \ge 0$.

En este caso, si A = 2, los primeros términos de la sucesión (usando 5 dígitos de precisión) son

Figura A.12

3. (Relación de recurrencia).
$$x_0 = 1$$
, $x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$

En este caso, si $f(x) = x^2 - 2$, los primeros términos de la sucesión (usando 5 dígitos de precisión) son

Figura A.13

Ejercicios

A.20 Dé el término general x_n de la sucesión -1, 1, -1, 1, -1, ...

A.21 Verifique que si $f(x) = x^2 - A$, la sucesión definida por

$$x_0 = 1$$
, $x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$

es equivalente a $x_0 = 1$, $x_n = 0.5 \left(x_{n-1} + \frac{A}{x_{n-1}} \right)$.

A.22 Sea $x_n = \frac{x_{n-1}}{2} + \frac{1}{2}$. Verifique, usando inducción matemática, que $x_n = \frac{x_0}{2^n} + \sum_{k=1}^n \frac{1}{2^k}$

Definición A.5 Límite

Decimos que la sucesión x_n tiene límite L, lo que se escribe

$$\lim_{n\to\infty}x_n=L$$

si para cualquier $\epsilon>0$ existe un número natural N tal que si $n\geq N$ entonces $|x_n-L|<\epsilon$

Figura A.14

Como muchas veces tratamos con valores absolutos y con términos de sucesiones tales como x_{n+k} , el siguiente teorema es muy útil

Teorema A.8

Si
$$\lim_{n\to\infty} |x_n - L| = 0$$
 entonces $\lim_{n\to\infty} x_n = L$

Si k es un entero positivo y si $\lim_{n\to\infty}|x_n-L|=0$ entonces $\lim_{n\to\infty}x_{n+k}=L$

El cálculo del límite de una sucesión (si existe), se puede hacer usando las mismas técnicas usadas para el cálculo del límite de una función.

Teorema A.9 Cálculo de Límites

Si $\lim_{x\to\infty} f(x) = L$ y si f está definida en \mathbb{Z}^+ , entonces

$$\lim_{n\to\infty} f(n) = L$$

Las sucesiones convergentes permanecen acotadas pero las sucesiones acotadas no siempre convergen, solo las sucesiones monótonas (siempre crecientes o siempre decrecientes) acotadas, convergen.

Además, si una sucesión converge, la distancia entre sus términos se hace pequeña, tanto como se quiera, a partir de un subíndice N.

Teorema A.10

Si la sucesión x_n es una sucesión monótona acotada, x_n converge.

Si la sucesión x_n es convergente, x_n es acotada.

Si la sucesión x_n es convergente, dado cualquier $\epsilon > 0$, existe un natural N tal que $|x_n - x_{n+1}| < \epsilon$ para todo $n \ge N$.

Ejemplo A.11

Sea $x_0 = 0$ y $x_{n+1} = \sqrt{x_n + 2}$. La sucesión x_n converge por ser monótona y acotada. Veamos

- i. x_n es creciente, es decir $x_{n+1} \ge x_n$ para toda n. En efecto, procediendo por inducción
 - a) $x_1 = \sqrt{2} \ge x_0$
 - *b*) Supongamos que $x_n \ge x_{n-1}$

$$x_n \geq x_{n-1}$$

$$x_n + 2 \ge x_{n-1} + 2$$

$$\sqrt{x_n+2} \ge \sqrt{x_{n-1}+2}$$
, pues $y = \sqrt{x}$ es creciente.

$$x_{n+1} \geq x_n$$

- ii. Usando inducción podemos verificar x_n está acotada por 2, es decir $x_n \le 2$ para toda n. En efecto,
 - a) $x_0 \le 2$
 - b) Supongamos que $x_n \le 2$

$$x_n \leq 2$$

$$x_n + 2 \leq 4$$

$$\sqrt{x_n+2} \leq \sqrt{4}$$

$$x_{n+1} \leq 2$$

Ejemplo A.12

- 1. $\lim_{n\to\infty} (1/2)^n = 0$ pues $\lim_{x\to\infty} (1/2)^x = 0$.
- 2. Si $x_0 = 1$ y $x_{n+1} = \frac{1}{2} x_n$ entonces $\lim_{n \to \infty} x_n = 0$ pues

$$x_{n+1} = \frac{1}{2} x_n = \left(\frac{1}{2}\right)^2 x_{n-1} = \dots = \left(\frac{1}{2}\right)^{n+1} x_0$$

3. A veces debemos usar la definición de límite de una sucesión para comprobar algún resultado.

Esta definición dice que el límite de la sucesión es L si la distancia entre x_n y L (o sea $|x_n - L|$) se puede hacer tan pequeña como queramos a partir de un subíndice k en adelante.

Podemos mostrar que $\lim_{n\to\infty} (1/2)^n = 0$ usando la definición, de la siguiente manera:

• Habría que verificar que dado un número $\epsilon > 0$ tan pequeño como queramos, siempre es posible encontrar un subíndice k a partir del cual $|x_k - 0| < \epsilon$. En este caso el razonamiento es sencillo, a partir de la desigualdad $|x_k - 0| < \epsilon$, buscamos el "k" a partir del cual esta afirmación se cumple.

$$|x_k - 0| < \epsilon$$

$$\iff |(1/2)^k - 0| < \epsilon$$

$$\iff (1/2)^k < \epsilon, \text{ pues } (1/2)^k > 0$$

$$\iff k \ln(1/2) < \ln(\epsilon)$$

$$\iff k > \frac{\ln(\epsilon)}{\ln(1/2)}, \text{ pues } \ln(1/2) < 0$$

Esto demuestra que siempre hay un subíndice k a partir del cual la distancia de $(1/2)^k$ a 0 es tan pequeña como queramos.

Por ejemplo si $\epsilon = 1.0 \times 10^{-17}$ entonces $|(1/2)^k - 0| < 1.0 \times 10^{-17}$ si

$$k > \frac{\ln(1.0 \times 10^{-17})}{\ln(1/2)} \approx 56.47$$

El siguiente teorema, conocido de manera coloquial como *teorema del sándwich* o *teorema del emparedado*, es muy útil para decidir algunos resultados sobre sucesiones.

Teorema A.11 Teorema de intercalación

Si existe un entero N > 0 tal que $a_n \le x_n \le b_n$, $\forall n > N$, y si el límite de las sucesiones a_n y b_n existe cuando $n \longrightarrow \infty$, entonces si

$$\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} b_n$$

también $\lim_{n \to \infty} x_n = L$

El teorema dice no solo que el límite de x_n existe, también que es igual a L. En los siguientes ejemplos vamos a ver una aplicaciones de carácter teórico que aparecen en algunos razonamientos que están mas adelante.

Ejemplo A.13

1. Si
$$|x_n - L| \le K \left(\frac{1}{2}\right)^n$$
, $\forall n \ge N$ entonces

$$0 \le |x_n - L| \le K \left(\frac{1}{2}\right)^n$$

es decir, $|x_n - L|$ está entre las sucesiones $a_n = 0$ y $b_n = K\left(\frac{1}{2}\right)^n$, $\forall n \geq N$. Ahora, como $\lim_{n \to \infty} 0 = 0 = \lim_{n \to \infty} K\left(\frac{1}{2}\right)^n$, se concluye

$$\lim_{n \to \infty} |x_n - L| = 0 \text{ o también } \lim_{n \to \infty} x_n = L$$

2. Supongamos que $|x_n - L| \le \frac{M}{n}$, $\forall n \ge N \pmod{N}$ (con $N \in \mathbb{N}$) entonces

$$0 \le |x_n - L| \le \frac{M}{n}$$

es decir, $|x_n - L|$ está entre las sucesiones $a_n = 0$ y $b_n = \frac{M}{n}$, $\forall n \geq N$. Ahora, como $\lim_{n \to \infty} 0 = 0 = \lim_{n \to \infty} \frac{M}{n}$, se concluye

$$\lim_{n \to \infty} |x_n - L| = 0 \text{ o también } \lim_{n \to \infty} x_n = L$$

Ejercicios

A.23 Calcule $\lim_{n \to \infty} \frac{\cos(n)}{n}$

A.24 Verifique que $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$

A.25 Si $0 < \alpha < 1$, $e_0 > 0$ y $|e_n| < \alpha^n e_0$, calcule $\lim_{n \to \infty} |e_n|$

A.26 Suponga que $0 < \alpha < 1$, $e_0 > 0$ y $|e_{n+1}| < \alpha e_n$ para toda n > 1. Verifique que $\lim_{n \to \infty} |e_n| = 0$

A.27 Calcule $\lim_{n \to \infty} x_n$ si $x_n = \frac{x_{n-1}}{2} + \frac{1}{2}$. **A.28** (\star) Sea $x_0 = 0$ y $x_{n+1} = \sqrt{x_n + 2}$. Verifique que la sucesión converge y que $\lim_{n \to \infty} x_n = 2$.

A.29 (*) Verifique que $\lim_{n \to \infty} x_n = 2$ si $x_1 = \sqrt{2}$ y $x_n = \sqrt{2x_{n-1}}$.

A.30 Verifique que la sucesión $a_1 = \sqrt{2}$, $a_2 = \sqrt{2}^{\sqrt{2}}$, $a_3 = \sqrt{2}^{\sqrt{2}^{\sqrt{2}}}$,..., es convergente. Solución: Procedemos por inducción. Observe que $a_n = \sqrt{2}^{a_{n-1}}$, n = 2,3,... entonces como la exponencial a^x (a > 1)

- i.) a_n es creciente. En efecto, $a_2 > a_1$ pues $\sqrt{2}^{\sqrt{2}} > \sqrt{2}$. Además si $a_n > a_{n-1}$ entonces $a_{n+1} = \sqrt{2}^{a_n} > \sqrt{2}^{a_{n-1}} = \sqrt{2}^{a_n}$
- ii.) $a_n < 2$, n = 1, 2, ... En efecto, $a_1 = \sqrt{2} < 2$. Además si $a_n < 2$ entonces $a_{n+1} = \sqrt{2}^{a_n} < \sqrt{2}^2 = 2$.

A.6 Teorema del valor medio para integrales

Si en $[x_i, x_{i+1}]$ G es continua y φ integrable y de un mismo signo, entonces existe $\varepsilon_i \in]x_i, x_{i+1}[$ tal que $\int_{x_i}^{x_{i+1}} G(x)\varphi(x) \, dx = G(\varepsilon_i) \int_a^b \varphi(x) \, dx.$

Ejemplo A.14

(x-a)(x-b) es integrable (y de primitiva conocida) y de un mismo signo en [a,b] (negativa), entonces:

$$\int_{a}^{b} (x-a)(x-b)e^{x^{3}}dx = -e^{\varepsilon^{3}} \frac{(b-a)^{3}}{6} \operatorname{con} \varepsilon \in]a,b[.$$

A.7 Bits y Bytes

La memoria del computador está formada por una gran cantidad de bytes y cada byte está constituido por 8 bits. Un bit puede almacenar un 1 o un 0.

Un bit (binary digit) se refiere a un dígito en el sistema numérico en base 2. Por ejemplo $(10010111)_2$ es un número de 8 bits de largo

Un byte es una colección de bits. Actualmente un byte son 8 bits.

Una palabra (word) es un grupo de bits. El tamaño de palabra típico puede ser 32 o 64 bits, etc.

Cuando se habla de capacidad de almacenamiento, se acostumbra llamar kilobit (kb) a $2^{10} = 1024$ bits, megabit (mb) a $2^{20} = 1024$ kb, gigabit (gb) a 1024 mb y terabit (tb) a 2^{40} bits.

Ejemplo A.15

- Una variable entera (int) está formada por 4 bytes, es decir 32 bits. Estos 32 bits representan el valor almacenado por esa variable en binario.
- Si una variable tipo int almacena el número $5 = 1 * 2^2 + 0 * 2^1 + 1 * 2^0$, su representación en memoria sería algo como

- Como tenemos 32 bytes, las variables int solo pueden almacenar enteros entre $10...0000000 = -2^{31}$ (el -0 no cuenta) y $2^{31} 1 = (01...11111111)_2$
- Las variables long usan 64 bits y almacenan enteros entre -2^{63} y $2^{63}-1$.

¿Porqué 1.0000000... = 0.999999... ? Tal vez, la mejor manera de tratar este detalle es indicar que es un convenio. Aún así se puede verificar su consistencia con la teoría de varias maneras, unas más rigurosas que otras.

Los números racionales son insuficientes para hacer mediciones en el mundo real. Un ejemplo clásico es el triángulo rectángulo con catetos de medida 1. La hipotenusa medirá $\sqrt{2}$, que no es un número racional. Los números reales son una *completación* de los números racionales. Muchos números que usamos de manera natural

como $e, e^{1.4142}, e^{\sqrt{2}}$, etc., solo tienen significado como límites de una sucesión de números racionales. Por ejemplo, $\sqrt{2}$ es el límite de la sucesión de números racionales

Los números reales pueden ser definidos (construidos) como límites de sucesiones (de Cauchy) de números racionales. Una sucesión x_n se dice que es una sucesión de Cauchy si para cualquier $\epsilon > 0$ siempre se puede encontrar un N a partir del cual $|x_n - x_m| < \epsilon$ para todo n, m > N (o sea, los términos de la sucesión están tan cerca como se quiera a partir de algún N). Dos sucesiones de Cauchy x_n, y_n son *equivalentes* si $(x_n - y_n)$ tiene límite 0. Esto define una *relación de equivalencia*. Una sucesión x_n representa a todas las sucesiones equivalentes a ella. En particular, el número real 0.99999... es el límite de la sucesión (de Cauchy)

que es equivalente a la sucesión de Cauchy

que tiene como límite el número real 1. Como ambas sucesiones son equivalentes, representan el mismo número real. O sea, 0.999... = 1.

Como un ejemplo de consistencia, observe que como $ar + ar^2 + \cdots = \frac{ar}{1-r}$ si |r| < 1, entonces

$$0.9999... = 9\left(\frac{1}{10}\right) + 9\left(\frac{1}{10}\right)^2 + 9\left(\frac{1}{10}\right)^3 \cdots = \frac{9\left(\frac{1}{10}\right)}{1 - \frac{1}{10}} = 1$$

- [1] W. Gautschi. Numerical Analysis. An Introduction. Birkhäuser, 1997.
- [2] P. Henrici. Essentials of Numerical Analysis. Wiley, New York, 1982.
- [3] J. Stoer,. *Introduction to Numerical Analysis*. 3rd ed. Springer, 2002.
- [4] D. Kahaner, K. Moler, S. Nash. Numerical Methods and Software. Prentice Hall. 1989.
- [5] D. Kincaid, W. Cheney. *Numerical Analysis. Mathematics of Scientific Computing*. Brooks-Cole Publishing Co.1991.
- [6] R. Burden, J. Faires. *AnAlisis NumArico*. 6ta ed. Thomson. 1998.
- [7] E. Cheney, *Introduction to Approximation Theory*. Internat. Ser. Pure ans Applied Mathematics. McGraw-Hill. 1966.
- [8] J.P. Berrut, L. N. Trefethen. "Barycentric Lagrange Interpolation" Siam Rewiew. Vol. 46, No. 3. 2004.
- [9] J. Higham, "The numerical stability of barycentric Lagrange interpolation". IMA Journal of Numerical Analysis 24. 2004.
- [10] Kaufman, E. y Lenker, T. "Linear Convergence and the Bisection Algorithm". Amer. Math. Monthly, 93:48-51, 1986.
- [11] Brent, R.P. "An Algorithm with Guaranteed Convergence for Finding a Zero of a Function." Computer Journal 14 (1971), 422-425. http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pd/rpb005.pdf
- [12] Press, W.; Teukolsky, S.; Vterling, W.; Flannery, B. *Numerical Recipes in C. The Art of Scientific Computing*. 2da Ed. Cambridge Universite Press. 1992.
- [13] Chapra, S.; Canale, R. *Métodos Numéricos para Ingenieros*. Ed. Mc Graw Hill, 4a. ed., 2002.

- [14] Mathews, J; Fink, K. Métodos Numéricos con MATLAB. Prentice Hall, 3a. ed., 2000.
- [15] Dahlquist, G. Björk, A. *Numerical Mathematics in Scientific Computation*. www.mai.liu.se/~akbjo. Consultada en Mayo, 2006.
- [16] Zeng, Z. "MultRoot A Matlab package computing polynomial roots and multiplicities". http://www.neiu.edu/~zzeng/Papers/zrootpak.pdf). Consultada en Mayo, 2006.
- [17] Zeng, Z. "Computing multiple roots of inexact polynomials". http://www.neiu.edu/~zzeng/Papers/zroot.ps. Consultada en Mayo, 2006.
- [18] Plofker, Kim. "An example of the secant method of iterative approximation in a fifteenth-century Sanskrit text", *Historia Math.* 23, 246-256.
- [19] DAez, Pedro. "A note on the convergence of the secant method for simple and multiple roots" Applied Mathematics Letters, Vol. 16, Issue 8, pp. 1211-1215, 200.
- [20] Ralston, A.; Rabinowitz, P. A First Course in Numerical Analysis. 2nd ed. Dover, 1978.
- [21] "CRAN Task View: Numerical Mathematics". http://cran.r-project.org/web/views/NumericalMathematics.html
- [22] "Data Analysts Captivated by R's Power". http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html?pagewanted=all
- [23] W. Mora, A. Borbón. *Edición de Textos Científicos con LaTeX*. ITCR. https://tecdigital.tec.ac.cr/servicios/revistamatematica/material_didactico/libros/
- [24] Norman Matloff. *The Art of R Programming: A Tour of Statistical Software Design*. No Starch Press; 1 edition (October 15, 2011).

Soluciones del Capítulo 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Soluciones del Capítulo 2

- **2.1** $|p \tilde{p}| \le 0.5 \times 10^{-4}$ pero $|p \tilde{p}| \ne 0.5 \times 10^{-5}$ así que tenemos 4 deciamles correctos. Luego, solo 0.001 y 0.0002 son $> 10^{-4}$ así que solo hay dos cifras significativas. solo
- **2.2** $|p-\tilde{p}| \le 0.000001 \le 0.5 \times 10^{-5}$ pero no se sabe si $|p-\tilde{p}| < 10^{-6}$, entonces solo podemos asegurar 5 decimales correctos.
- **2.3** Sirve cualquier $\delta \le 0.5 \times 10^{-3}$.

Soluciones del Capítulo 3

3.1 b.) $f(0.3) \approx p_3(0.3)$ con error ≤ 0.002025

 $\{-5.4977871, -2.3561945, 0.7853982, 3.9269908\}$

3.2 a.)
$$n = 10$$

3.3

a.) Solución:

cos
$$x$$
 – sen x = 0 \implies cos x = sen x \implies 1 = $\frac{\sin x}{\cos x}$ \implies tan x = 1 \implies $x = \frac{\pi}{4} + k\pi$ con $k \in \mathbb{Z}$. Podemos usar **R** para hacer una lista de soluciones desde, por ejemplo, k = -4 hasta k = 4.

 \therefore Las soluciones buscadas (aproximadas) de la ecuación $\cos x - \sin x = 0$ en el intervalo I = [-6, 6], son

b.) Solución: Necesitamos calcular las primeras tres derivadas de f y evaluar en a=0 para para obtener el polinomio

$f^k(x)$			$f^k(0) = 1$
f(x)	=	$e^x \cos x$	f(0) = 1
f'(x)	=	$e^x(\cos(x) - \sin(x))$	f'(0) = 1
f''(x)	=	$-2e^x\sin(x)$	f''(0) = 0
$f^{(3)}(x)$	=	$-2e^x(\sin(x)+\cos(x))$	$f^{(3)}(0) = -2$
$f^{(4)}(x)$	=	$-4e^x\cos(x)$	f(0) = -4
$f^{(5)}(x)$	=	$-4e^x(\cos(x)-\sin(x))$	f(0) = -4

De este modo, $P_3(x) = 1 + x - \frac{x^3}{3}$

Comentario adicional: En la gráfica que sigue se muestra la función f en negro y el polinomio de Taylor alrededor de a = 0, en rojo.

Figura A.1: Función f en negro y el polinomio de Taylor $P_3(x)$ alrededor de a=0, en rojo

c.) Solución:

Aproximación: $f(0.3) \approx P_3(0.3) = 1.291$

Estimación del error: $|R_3(0.3)| \le \frac{(0.3-0)^4}{4!} \cdot M$ donde M es el máximo absoluto de $f^{(4)}(x) = -4e^x \cos(x)$ en el intervalo [0, 0.3]

Cálculo de M:

- Puntos críticos: $f^{(5)}(x) = 0 \implies -4e^x(\cos(x) \sin(x)) = 0 \implies \cos(x) \sin(x) = 0$. Como vimos en el item 1, esta ecuación **no** tiene solución en el intervalo [0, 0.3]
- Comparación $M = \max\{|f^{(4)}(0)|, |f^{(4)}(0.3)|\} \approx -5.1582774961797435$
- \therefore El error al aproximar f(0.3) con $P_3(0.3)$ es menor o igual a 0.00174092

Comentario adicional: En la gráfica que sigue se muestra la diferencia entre el valor calculado por el polinomio de Taylor (en rojo) y el valor de la función

Figura A.2: Diferencia entre el valor calculado por el polinomio de Taylor (en rojo) y el valor de la función

Soluciones del Capítulo 4

4.1

a.)

b.)

c.)

d.)

e.)

4.2

a.)

b.)

4.3

4.4

a.)

b.)

4.5

4.6

4.7

4.8

4.9

4.10

4.11

a.)

b.)

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

a.)

b.)

4.21

4.22

4.23

4.13

4.14

4.15

d.)

4.24

4.16

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

Soluciones del Capítulo 5

5.1

5.2 (0, 1, 2, 3, 4)

5.3 a.)
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 10 & 0 \\ 3/2 & -7 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1/2 & 5/2 \\ 0 & 0 & 18 \end{pmatrix}$$

b.)
$$U = A$$
. $A = I \cdot A$

c.) Esta matriz no tiene descomposición LU

5.4 a.)
$$X^* = (0,0,0)$$

b.)
$$X^* = (x = -\frac{13}{18}, y = \frac{17}{18}, z = -\frac{7}{18})$$

c.) $X^* = (1, 4, -23, -75)$

c.)
$$X^* = (1, 4, -23, -75)$$

5.5
$$L = \begin{pmatrix} 1 & 0 \\ 1/4 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 4 & 10 \\ 0 & 3/2 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AX = (5,6)^T \implies Y^* = (1,1.75), \ x \approx -2.666667, \ y \approx 1.166667$$

Los otros casos los puede verificar con **R**

5.6

5.7 Use la implementación en **R** para comparar resultados.

install.packages("Matrix") library(Matrix) (A <- matrix(c(4, 3, -2, 5, 2, -4, 6, 1, -1, 2, -5, 6, 3,

5.8 Use la implementación en **R** para comparar resultados.

5.9

5.10 Use la implementación en **R** para comparar resultados.

5.11 Use la implementación en **R** para comparar resultados.

5.12

5.13 Compare con la implementación en R

5.14 x = 0.3741, y = 0.0654.

Soluciones del Capítulo 6

6.1

6.2

a.)

$$P_3(x) = \frac{1 \cdot (x-1)(x-3)(x-4)}{(0-1)(0-3)(0-4)} + \frac{2 \cdot (x-0)(x-3)(x-4)}{(1-0)(1-3)(1-4)} + \frac{0 \cdot (x-0)(x-1)(x-4)}{(3-0)(3-1)(3-4)} + \frac{4 \cdot (x-0)(x-1)(x-3)}{(4-0)(4-1)(4-3)}$$

b.)

c.)
$$f(3.5) \approx P_3(3.5) = 1.21875$$

6.3

a.)
$$P_3(x) = x(x-1)(x-3)(x-4)\left(\frac{1}{3(x-1)} - \frac{1}{12x} + \frac{1}{3(x-4)}\right)$$

b.)
$$P_3(x) = \frac{\frac{1}{3(x-1)} - \frac{1}{12x} + \frac{1}{3(x-4)}}{-\frac{1}{6(x-3)} + \frac{1}{6(x-1)} - \frac{1}{12x} + \frac{1}{12(x-4)}}$$

c.)
$$P(0) = 1$$
, etc.

d.)
$$f(3.5) \approx P_3(3.5) = 1.21875$$

6.4 Forma Modificada,

$$P_3(x) = (x - 0.5)(x - 0.4)(x - 0.3)(x - 0.2) \left(-\frac{4700.}{x - 0.4} + \frac{2650.}{x - 0.3} - \frac{200.}{x - 0.2} + \frac{1750.}{x - 0.5} \right)$$

Forma Baricéntrica,
$$P_3(x) = \frac{-\frac{4700.}{x-0.4} + \frac{2650.}{x-0.3} - \frac{200.}{x-0.2} + \frac{1750.}{x-0.5}}{-\frac{500.}{x-0.4} + \frac{500.}{x-0.3} - \frac{166.667}{x-0.2} + \frac{166.667}{x-0.5}}$$
$$f(0.35) \approx P_3(0.35) = 7.5375$$

6.5

$$P_{1}(x) = y_{0}L_{n,0}(x) + y_{1}L_{n,1}(x)$$

$$= y_{0}\frac{(x-x_{1})}{(x_{0}-x_{1})} + y_{1}\frac{(x-x_{0})}{(x_{1}-x_{0})}$$

$$= \frac{y_{0}(x-x_{1}) - y_{1}x + y_{1}x_{0} + x_{1}y_{1} - x_{1}y_{1}}{x_{0}-x_{1}}$$

$$= \frac{(y_{0}-y_{1})}{(x_{0}-x_{1})}(x-x_{1}) + y_{1}$$

6.6

a.)
$$P_2(x) = 44.875(x - 0.4)(x - 0.2) + 38.5x(x - 0.2) - 77.75(x - 0.4)x$$

b.)
$$J_0(0.25) \approx P_3(0.25)/\pi = 0.974128$$

6.7 La tabla acumulada es,

Salarios (\$)	1000	2000	3000	4000
Frecuencia	9	39	74	116

La cantidad estimada de personas con salario entre \$1000 y \$1500 es $P_3(1500) - 9 = 23.5 - 9 = 14.5$, es decir, unas 15 personas.

6.8 Como
$$1+3x^*=1.75\Longrightarrow x^*=0.25$$
. El polinomio interpolante es, $P_2(x)=9.72544\left(x-\frac{1}{3}\right)\left(x-\frac{1}{6}\right)-7.49065x\left(x-\frac{1}{6}\right)-2.54653\left(x-\frac{1}{3}\right)x$ $\cos(1.75)\approx P_2(0.25)=-0.17054$

6.9

a.) Usamos la subtabla,

$$v(m^3/kg)$$
 0.10377 0.11144 $s(kJ/Kg \cdot K)$ 6.4147 6.5453

El polinomio interpolantes es $P_1(x) = -836.336(x - 0.11144) + 853.364(x - 0.10377)$. La entropía s para un volumen especifico v de $0.108 m^3/kg$ es $6.48673(kJ/Kg \cdot K)$

- **b.)** En este caso usamos los tres datos, el polinomio interpolantes es $P_2(x) = 38665.6(x 0.1254)(x 0.11144) + 22408.7(x 0.10377)(x 0.11144) 61129.2(x 0.1254)(x 0.10377)$. La entropía s para un volumen especifico v de $0.108 \, m^3 / kg$ es $6.48753(kJ/Kg \cdot K)$
- **6.10** Usando toda la tabla obtenemos $f(0.25) \approx P_5(0.25) = 0.00120042$.

6.11

$$|f(2.71) - P(2.71)| \le \left| \frac{M}{3!} (2.71 - 1)(2.71 - 2)(2.71 - 3) \right|$$

 $f^{(3)}(x) = 2/x$ y $f^{(4)}(x) = -2/x^2$. Como $f^{(4)}$ no se anula, $M = \max\{|f^{(3)}(1)|, |f^{(3)}(3)|\} = 2$.

$$|f(2.71) - P(2.71)| \le 0.117363$$

6.12

$$|f(1.22) - P(1.22)| \le \left| \frac{M}{4!} (1.22 - 0.5)(1.22 - 1.1)(1.22 - 1.2)(1.22 - 1.3) \right|$$

$$f^{(4)}(x) = -\frac{48 \left(4x^4 - 12x^2 + 1\right)}{\left(2x^2 + 1\right)^4} \text{ y } f^{(5)}(x) = \frac{384 \left(4x^5 - 20x^3 + 5x\right)}{\left(2x^2 + 1\right)^5}.$$

Los puntos críticos en [0.5, 1.3] son x = 0.513743, x = 0. Entonces M = 48 y

$$|f(1.22) - P(1.22)| \le 0.00027648$$

6.13

$$|e^{0.6} - P(0.6)| \le \left| \frac{M}{3!} (0.6 - 0)(0.6 - 0.5)(0.6 - 1) \right|$$

 $f^{(3)}(x) = f^{(4)}(x) = e^x$. No hay puntos críticos y M = e.

$$|e^{0.6} - P(0.6)| \le 0.0108731$$

6.14 Aquí se pide estimar el error al interpolar $f(0.71) = \cos(3 \cdot 0.71 + 1)$ con P(0.71). Si M es el máximo absoluto de |f'''| en [0, 1], entonces,

$$|f(0.71) - P(0.71)| \le \left| \frac{M}{3!} (0.71 - 0)(0.71 - 0.5)(0.71 - 1) \right|$$

Máximo absoluto de |f'''|

Puntos críticos: $f^{(4)}(x) = 0 \implies 81\cos(1+3x) = 0 \implies x = \frac{(2k+1)\frac{\pi}{2}-1}{3}, k \in \mathbb{Z}$. Algunas soluciones son $\{..., -2.95133, -1.90413, -0.856932, 0.190265, 1.23746, 2.28466, 3.33186, ...\}.$

El único punto crítico en el intervalo es $x = \frac{\frac{\pi}{2} - 1}{3} \approx 0.190265...$

Comparación: $M = \text{Máx}\{|f'''(0)|, |f'''(\frac{\frac{\pi}{2} - 1}{3})|, |f'''(1)|\} = 27. \text{ Así,}$

$$|f(0.71) - P(0.71)| \le 0.194575$$

6.15

$$|f(0.25) - P(0.25)| \le \left| \frac{M}{3!} (0.25 - 0)(0.25 - 1/6)(0.25 - 1/3) \right|$$

 $f^{(3)}(x) = 27 \operatorname{sen}(1+3x), f^{(4)}(x) = 81 \cos(1+3x)$. Punto crítico en [0,1/3], x = 0.190265. Entonces M = 27 y

$$|f(0.25) - P(0.25)| \le 0.0078125$$

- **6.16** Aplicar la fórmula para el error general en interpolación cúbica $h = \pi/2$.
- **6.17** Aplicar la fórmula para el error general en interpolación cúbica con h = 0.2
- 6.18
- 6.19
- 6.20
- 6.21

$$|f(x) - P_n(x)| \le \frac{M}{(n+1)!} |(x^* - x_0)(x^* - x_1) \cdots (x^* - x_n)| \le \frac{M}{(n+1)!} (b-a)^{n+1}$$

pues $|(x^* - x_i)| \le (b - a)$ para cada i = 0, 1, ..., n.

6.22

$$\begin{cases} S_0(x) = 0 - 1/2(x - 0) + 0(x - 0)^2 + 3/2(x - 0)^3 & \text{si} \quad x \in [0, 1], \\ S_1(x) = 1 + 4(x - 1) + 9/2(x - 1)^2 - 3/2(x - 1)^3 & \text{si} \quad x \in [1, 2]. \end{cases}$$

6.23

a.)
$$\begin{cases} S_0(x) = -160 + 1.49061(x - 100) + 0 \cdot (x - 100)^2 - 0.00002(x - 100)^3 & \text{si} \quad x \in [100, 200], \\ S_1(x) = -35 + 0.76876(x - 200) - 0.00721(x - 200)^2 + 0.00002(x - 200)^3 & \text{si} \quad x \in [200, 300], \\ S_2(x) = -4.2 + 0.10832(x - 300) + 0.0006(x - 300)^2 - 3.77272 \times 10^{-6}(x - 300)^3 & \text{si} \quad x \in [300, 400], \\ S_3(x) = 9 + 0.117952153(x - 400) - 0.0005(x - 400)^2 + 1.28229 \times 10^{-6}(x - 400)^3 & \text{si} \quad x \in [400, 500]. \\ S_4(x) = 16.9 + 0.05287(x - 500) - 0.0001(x - 500)^2 + 4.43540 \times 10^{-7}(x - 500)^3 & \text{si} \quad x \in [400, 500]. \end{cases}$$

b.) $S_3(450) = 13.8079(cm^3/mol)$

Tabla A.1: El polinomio interpolante es la gráfica en roja, en azul está el trazador cúbico.

Figura A.3: El polinomio interpolante es la gráfica en roja, en azul está el trazador cúbico.

Soluciones del Capítulo 7

7.1

7.2

7.3

a.)

b.)

c.)

d.)

e.)

f.)

g.)

h.)

7.4

7.5

7.6

7.5

a.)

b.)

c.)

7.8

7.9

7.10

a.)

b.)
$$n \ge \sqrt[4]{\frac{\pi^5}{180\delta}}$$
.

c.)

d.)

e.)

7.11

a.)

b.)

c.)

7.12

Soluciones del Capítulo 8

8.1

8.2

8.3