Lezione 13, Algebra delle Matrici

Ricordiamo alcuni esempi:

Esempio: Rotazione di $\pi/2$ radianti intorno all'origine in senso antiorario:

La matrice di L è $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (E1)

Esempio: Supponiamo che $f: \{1,2,3\} \rightarrow \{1,2,3\}$ è una funzione 1-1. Sia

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \qquad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 (E2)

(la base canonica di \mathbb{R}^3). Sia A la matrice 3×3 con colonne

$$\begin{pmatrix} e_{f(1)} & e_{f(2)} & e_{f(3)} \end{pmatrix}$$

Allora,

$$A(e_j) = e_{f(j)}$$

<u>Esempio</u>: Considera le simmetrie dell'insieme {1,2,3} dei vertici di un triangolo equilatero

$$f(1) = 2$$
, $f(2) = 3$, $f(3) = 1$

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 (E3)

la matrice di f

(Esempio, continuato)

$$g(1) = 1, \quad g(2) = 3, \quad g(3) = 2$$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 (E4)

la matrice di g

Fine Esempio

In generale, data una funzione

$$f: \{1,, n\} \to \{1, ..., n\}$$

abbiamo la matrice associata con colonne

$$(e_{f(1)} \ e_{f(2)} \ \cdots \ e_{f(n)}), \qquad \{e_1, \dots, e_n\} \text{ base canonica di } \mathbb{R}^n$$
 (E4*)

Date due funzioni

$$f, g: \{1, ..., n\} \to \{1, ..., n\}$$

abbiamo la funzione composta

$$h(j) = (f \circ g)(j) = f(g(j)) \tag{E5}$$

Torniamo a (E3) and (E4): La matrice (E5) della funzione composta sarà

$$h(1) = f(g(1)) = f(1) = 2$$
, $h(2) = f(g(2)) = f(3) = 1$, $h(3) = f(g(3)) = f(2) = 3$

$$C = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{E6}$$

la matrice di h

Vogliamo definire moltiplicazione di matrici tali che per (E3)...(E6):

$$C = AB ag{E7}$$

In generale, dati spazi vettoriali $\ U,\ V,\ W$ di rispettive dimensioni $\ m,\ \ell,\ n$ e mappe lineari

$$\beta: U \to V, \qquad \alpha: V \to W$$
 (E8)

con matrice B ($\ell \times m$) e matrice A ($n \times \ell$) relativa alle basi \mathbf{B}_m , \mathbf{B}_ℓ , \mathbf{B}_n per U, V, W vogliamo che

$$C = AB$$
 (E9)

sia la matrica della funzione composta $\alpha \circ \beta$ relativa alle basi \mathbf{B}_m , \mathbf{B}_n .

La formula per moltiplicazione della matrice:

$$A = (a_{ij}), \quad B = (b_{jk}), \quad C = (c_{ik}) \implies c_{ik} = \sum_{j=1}^{\ell} a_{ij} b_{jk}$$
 (E10)

Esempio: Per (E3), (E4), (E6):

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Esempio: Per (E1), rotazione di $\pi/2$ radianti intorno all'origine in senso antiorario:

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

Esempio: Dalla lezione 6 segue che, rispetto alla base standard di \mathbb{R}^3 la riflessione sul piano $P = \{x + y + z = 0\}$ è data dalla matrice

$$M = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix} \implies M^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$w \in \mathbb{R}^3 \implies w = \lambda u + v, \ v \in P$$

$$L^2(w) = L^2(\lambda u) + L^2(v) = \lambda u + v = w$$

Matrice di un grafo:

Pittorialmente, un grafo consiste un insieme V di vertici, e un insieme E di collegamenti tra i vertici:

Più formalmente, definiamo un grafo essere una tripla (V,E,f), dove

$$f: E \to \{ (x,y) \in V \times V \mid x \neq y \}$$

è una funzione che specifica i punti finali (vertici) dei collegamenti.

Sia $V = \{v_1, \dots, v_n\}$. La matrice delle adiacenze di G = (V, E, f) è la matrice $n \times n$

$$A(V, E, f) = (a_{ij}), \qquad \begin{cases} 1, & \text{c'è un collegamento che collega } v_i \in v_j \\ 0, & \text{altrimenti} \end{cases}$$
 (E11)

Esempio: La matrice delle adiacenze di G1 è

$$A_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$
(E12)

Esempio: La matrice delle adiacenze di G3 è

$$A_3 = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$
 (E13)

<u>Teorema</u>: Sia A la matrice adiacenza del grafo G. Allora, il coefficiente (i,j) di A^n è il numero percorsi di lunghezza n che collega v_i e v_j . <u>Dimostrazione</u>: Questa è un'applicazione del principio di induzione.

Esempio: C'è un percorso di lunghezza 2 che collega v_i e v_j min G1 per i, j < 6. Ci sono cinque percosi di lunghezza 2 che collegano v_6 a se stesso

$$A_1^2 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \end{pmatrix}$$

Esempio: Ci sono due percorsi di lunghezza 2 che collegano v_2 e v_3 in G3, come mostrato sotto:

$$A_3^2 = \begin{pmatrix} 2 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{pmatrix}$$

La moltiplicazione delle matrici non è commutativa:

In generale, composizione delle funzioni non è commutativa (quando definita). Lo stesso vale per la moltiplicazione di matrici.

Esempio: Torniamo alle (E3), (E4), (E6), $f \circ g \neq g \circ f$, $AB \neq BA$:

f:

f(g):

g(f):

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad C = AB = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad D = BA = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$D = BA = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

La moltiplicazione delle matrici è associativa:

Invece, la composizione delle funzioni è associativa (quando definita). Lo stesso vale per la moltiplicazione di matrici.

Esempio: Torniamo alle (E3), (E4), (E6):

$$(BA)B = DB = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$B(AB) = BC = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$f^{-1} = (g \circ f) \circ g = g \circ (f \circ g)$$

La somma di matrici: Siano $A=(a_{ij})$ e $B=(b_{ij})$ due matrici $n\times m$. Allora,

$$A + B = C,$$
 $C = (c_{ij})$ dove $c_{ij} = a_{ij} + b_{ij}$ (E14)

Chiaramente:

$$A + B = B + A \tag{E15}$$

La Proprietà Distributiva: Quando definiti,

$$A(B+C) = AB + AC,$$
 $(A+B)C = AC + BC$ (E16)

Matrici di permutazione, Matrice di Identità

Una matrice P tipo $n \times n$ è detta matrice di permutazione se è la matrice (E4*) di a permutazione $f:\{1,\ldots,n\} \to \{1,\ldots,n\}$, cioè

$$P = (e_{f(1)} \quad e_{f(2)} \quad \cdots \quad e_{f(n)})$$

La matrice della permutazione identità è chiamata matrice identità

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Si verifica facilmente che se A è una qualsiasi matrice $n \times m$ allora

$$I_n A = AI_m = A$$

Matrici elementari (di Gauss)

<u>Definizione</u>: Una matrice elementare di Gauss è una matrice nxn ottenuta applicando una singola mosse di Gauss alla matrice identità .

Esempio: Per n=2 i tipi di matrici elementari sono

- (1) Aggiungi un multiplo di una riga a un'altra riga $\begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}$
- (2) Moltiplicare una riga per uno scalare diverso da zero $\begin{pmatrix} c & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix}$
- (3) Scambia due righe $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Proprietà chiave: Sia E la matrice elementare ottenuta applicando una mossa di Gauss M alla matrice identità $n \times n$. Sia A una matrice $n \times m$. Quindi, EA è la matrice ottenuta applicando la mossa di Gauss M ad A.

Esempio:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 2R_1} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 8 & 15 \end{pmatrix}$$

<u>Lemma</u>: Sia M una mossa di Gauss e M' la mossa inversa di Gauss. Siano E ed E' le matrici corrispondenti. Allora, $EE'=E'E=I_n$

Nota: E' è la matrice inversa di E, che di solito si scrive E^{-1} .

Fattorizzazione della matrice

In particulare, Sia A una matrice $n \times n$ e M_1, \ldots, M_k le mosse di Gauss necessarie per trasformare A in una matrice scalina A' utilizzando l'eliminazione gaussiana.

Sia E_j la matrice elementare ottenuta applicando M_j alla matrice identità $n \times n$. Allora,

$$E_k \cdots E_1 A = A'$$

Perciò,

$$A = E_1' \cdots E_{k-1}' E_k' A'$$

Esempio:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{r_2 = r_2 + r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{r_3 = r_3 + r_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

$$\xrightarrow{r_4 = r_4 + r_3} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = A' = I_4$$

Quindi:

$$M_{1} = \{r_{2} = r_{2} + r_{1}\}, \quad M_{2} = \{r_{3} = r_{3} + r_{2}\}, \quad M_{3} = \{r_{4} = r_{4} + r_{3}\}$$

$$M'_{1} = \{r_{2} = r_{2} - r_{1}\}, \quad M'_{2} = \{r_{3} = r_{3} - r_{2}\}, \quad M'_{3} = \{r_{4} = r_{4} - r_{3}\}$$

$$E'_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad E'_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad E'_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

$$A = E'_{1}E'_{2}E'_{3}A' = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Matrice trasposta

Ricorda che la matrice trasposta A^t di una matrice A è la matrice ottenuta scambiando le righe con le colonne di A.

Segue per calcolo diretto utilizzando la formula (E10) che

$$(AB)^t = B^t A^t$$

Matrice Definita Positiva

Sia A una matrice $n \times n$ tale che $A^t = A$. Allora A si dice una matrice definita positiva se (e sole se)

$$u^t A u > 0$$

per qualsiasi vettore colonna n-dimensionale diverso da zero u.

Esercizio: Se A è definita positiva allora la formula

$$(u,v) = u^t A v$$

definisce un prodotto scalare su \mathbb{R}^n (spazio dei vettori colonna n-dimensionali).

Una matrice A tipo $n \times n$ si dice dominante diagonalmente per righe se e solo se

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|, \qquad i = 1, \dots, n$$

<u>Teorema:</u> Sia A una matrice quadrata dominante diagonalmente per righe. Se $A=A^t$ allora A è definita positiva.

Esempio: Se A è la matrice di un grafo G, allora $A=A^t$. Quindi, possiamo ottenere una matrice definita positiva $\widehat{A}=(\widehat{a}_{ij})$ ponendo

$$\hat{a}_{ij} = \begin{cases} 1 + \sum_{i \neq j} |a_{ij}| & i = j \\ a_{ij} & i \neq j \end{cases}$$