■ Chapitre 1 ■

Suites numériques, Fonctions numériques de la variable réelle

Notations.

- \blacksquare \mathbb{K} désigne l'ensemble \mathbb{R} ou l'ensemble \mathbb{C} .
- $\blacksquare \mathscr{S}(\mathbb{K})$ désigne l'ensemble des suites d'éléments de \mathbb{K} et u, v des éléments de $\mathscr{S}(\mathbb{K})$.
- $\blacksquare I$, J désignent des intervalles de \mathbb{R} et a est un élément de I.
- $\blacksquare \overline{I}$ désigne l'intervalle I union l'ensemble de ses extrémités.
- $\mathscr{F}(I,\mathbb{K})$ désigne l'ensemble des fonctions de I dans \mathbb{R} et f,g des éléments de $\mathscr{F}(I,\mathbb{K})$.

I. Suites numériques

I.1 Quelques cas particuliers

Définition 1 (Suite arithmétique).

Soit $a \in \mathbb{K}$. La suite u définie par $u_0 \in \mathbb{K}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + a$ est une suite arithmétique de raison a.

Propriété 1.

Soit u une suite arithmétique de raison a. Pour tout $n \in \mathbb{N}$,

$$(i). \ u_n = u_0 + na.$$

(ii).
$$\sum_{k=0}^{n} u_k = (n+1)u_0 + \frac{n(n+1)}{2}a.$$

Définition 2 (Suite géométrique).

Soit $q \in \mathbb{K}^* \setminus \{1\}$. La suite u définie par $u_0 \in \mathbb{K}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = qu_n$ est une suite géométrique de raison q.

Propriété 2.

Soit u une suite géométique de raison q. Pour tout $n \in \mathbb{N}$,

$$(i). \ u_n = q^n u_0.$$

(ii).
$$\sum_{k=0}^{n} u_k = u_0 \frac{1-q^{n+1}}{1-q} = u_0 \frac{q^{n+1}-1}{q-1}.$$

Définition 3 (Suite arithmético-géométrique).

Soient $a \in \mathbb{K}$, $q \in \mathbb{K}^* \setminus \{1\}$. La suite u définie par $u_0 \in \mathbb{K}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = qu_n + a$ est une suite arithmético-géométrique.

Propriété 3.

Soient $a \in \mathbb{K}$, $q \in \mathbb{K}^* \setminus \{1\}$ et u une suite arithmético-géométrique.

$$\forall n \in \mathbb{N}, u_n = q^n \left(u_0 - \frac{a}{1 - q} \right) + \frac{a}{1 - q}.$$

Théorème 1 (Suite récurrente double).

Soit $(a,b) \in \mathbb{K}^2$ tel que $b \neq 0$. On considère les suites définies par la relation de récurrence

$$u_{n+2} = au_{n+1} + bu_n, \forall n \in \mathbb{N}.$$

L'équation caractéristique (\mathscr{E}) associée est

$$r^2 - ar - b = 0$$

(i). Si ($\mathscr E$) possède deux racines distinctes $r_1,\,r_2$ dans $\mathbb K$, il existe $(\lambda,\mu)\in\mathbb K^2$ tel que

$$u_n = \lambda r_1^n + \mu r_2^n, \, \forall \, n \in \mathbb{N}.$$

(ii). Si (\mathscr{E}) possède une racine double r_0 dans \mathbb{K} , il existe $(\lambda, \mu) \in \mathbb{K}^2$ tel que

$$u_n = (\lambda + \mu n)r_0^n, \forall n \in \mathbb{N}.$$

(iii). Si $\mathbb{K} = \mathbb{R}$, $u \in \mathscr{S}(\mathbb{R})$ et (\mathscr{E}) possède deux racines non réelles distinctes $r_1 = \rho e^{i\theta}$ et $r_2 = \rho e^{-i\theta}$. Alors, il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$u_n = \lambda \rho^n \cos(n\theta) + \mu \rho^n \sin(n\theta), \forall n \in \mathbb{N}.$$

Exercice 1. Soit $\theta \in]0, \pi[$. Soit (u_n) la suite définie par $u_0 = u_1 = 1$ et pour tout n entier naturel $u_{n+2} = 2\cos(\theta)u_{n+1} - u_n$. Déterminer, pour tout entier naturel n, la valeur de u_n .

I.2 Limite d'une suite

Définition 4 (Limite, Convergence, Divergence).

Soit $\ell \in \mathbb{K}$. La suite u converge vers ℓ si

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} ; \forall n \geqslant n_0, |u_n - \ell| \leqslant \varepsilon.$$

Si (u_n) converge vers ℓ , cet élément est unique, c'est la *limite* de (u_n) .

S'il n'existe pas d'élément ℓ tel que la suite u converge vers ℓ , la suite est divergente.

Exercice 2.

- 1. Soit u une suite à valeurs entières. Montrer que u est convergente si et seulement si u est stationnaire.
- **2. Lemme de CESARÒ.** Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite convergeant vers un réel ℓ . Montrer que $\left(\frac{1}{n}\sum_{k=1}^n u_k\right)_{n\in\mathbb{N}^*}$ converge vers ℓ . Que pensez-vous de la réciproque?

Théorème 2

Si u est une suite convergente, alors u est bornée.

Exercice 3. Définir une suite bornée et non convergente.

I.3 Suites extraites

Définition 5 (Sous-suite).

La suite v est une sous-suite (ou suite extraite) de u s'il existe une application $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que pour tout $n \in \mathbb{N}$, $v_n = u_{\varphi(n)}$.

Exercice 4.

- **1.** Montrer que la suite $((-1)^n)_{n\in\mathbb{N}}$ possède une sous-suite convergente.
- **2.** Exprimer, à l'aide de deux fonctions φ et ψ , la suite extraite d'une suite extraite.

Théorème 3.

Soit $\ell \in \mathbb{K}$. Les assertions suivantes sont équivalentes

- (i). $\lim u = \ell$.
- (ii). Toute suite extraite de u admet pour limite ℓ .
- (iii). $\lim_{n \to +\infty} u_{2n} = \lim_{n \to +\infty} u_{2n+1} = \ell.$

Exercice 5. Montrer que la suite $\left(\cos \frac{n\pi}{3}\right)_{n\in\mathbb{N}}$ n'admet pas de limite.

I.4 Suites à valeurs réelles

Proposition 4 (Limite & Inégalité).

Soit $(\ell_1, \ell_2) \in \mathbb{R}^2$. On suppose que u (resp. v) converge vers ℓ_1 (resp. ℓ_2). S'il existe $p \in \mathbb{N}$ tel que pour tout $n \geq p$, $u_n \leq v_n$, alors $\ell_1 \leq \ell_2$.

Exercice 6. Montrer que, en général, les inégalités strictes deviennent larges lors du passage à la limite.

Théorème 4 (Caractérisation séquentielle de la borne supérieure).

Soient $m \in \mathbb{R}$ et A une partie de \mathbb{R} non vide et majorée. $m = \sup A$ si et seulement si

- $* \forall a \in A, a \leqslant m,$
- * $\exists (u_n)_{n \in \mathbb{N}} \in \mathscr{S}(A) ; \lim_{n \to +\infty} u_n = m.$

Exercice 7.

- **1.** Soit $A = \left\{ (-1)^n + \frac{(-1)^{n+1}}{n+1}, n \in \mathbb{N} \right\}$. Déterminer, si elles existent, les bornes supérieure et inférieure de A.
- 2. Écrire le théorème correspondant pour les bornes inférieures.

Définition 6 (Limite infinie).

(i). La suite u tend vers $+\infty$ si

$$\forall M \geqslant 0, \exists n_0 \in \mathbb{N} ; \forall n \geqslant n_0, u_n \geqslant M.$$

(ii). La suite u tend vers $-\infty$ si $(-u_n)$ tend vers $+\infty$.

Théorème 5 (Limite & Signe).

Soit $\ell \in \mathbb{R}$. Si u converge vers ℓ et $\ell > 0$, alors la suite u est strictement positive à partir d'un certain rang.

Exercice 8. Rappeler les opérations usuelles sur les limites puis généraliser le théorème des suites extraites aux suites admettant des limites infinies.

I.5 Existence de limites - Suites à valeurs réelles

Théorème 6 (Théorème d'encadrement).

Soient u, v, w trois suites réelles et $\ell \in \mathbb{R}$ telles que v et w convergent vers ℓ . Si, à partir d'un certain rang, $v \leq u \leq w$, alors u est une suite convergente et sa limite vaut ℓ .

Exercice 9. Soit $a \in \mathbb{C}$. Montrer que $\lim_{n \to +\infty} \frac{a^n}{n!} = 0$.

Théorème 7 (Théorème de la limite monotone - Cas croissant).

Soit u une suite croissante.

- (i). Si u est majorée, alors elle converge vers le réel $\ell = \sup\{u_n, n \in \mathbb{N}\}.$
- (ii). Si u n'est pas majorée, alors elle tend vers $+\infty$.

Exercice 10. (Constante d'EULER) Montrer, en utilisant le théorème précédent, que la suite $\left(\sum_{k=1}^{n} \frac{1}{k} - \ln n\right)_{n \in \mathbb{N}}$ converge vers une constante notée γ .

En déduire la limite de $\left(\sum_{k=1}^{n} \frac{(-1)^k}{k}\right)_{n \in \mathbb{N}^*}$.

Théorème 8 (Théorème des suites adjacentes).

On suppose que u et v sont adjacentes, i.e.

- (i). u est croissante, (ii). v es
 - (ii). v est décroissante,
- $(iii). \lim (u v) = 0.$

Alors, u et v convergent vers une même limite.

Exercice 11. (Irrationalité de e) Montrer que les suites de terme général $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot n!}$ convergent vers une même limite. En admettant que leur limite commune est e, montrer que e est irrationnel.

II. Fonctions de la variable réelle

II.1 Fonctions continues sur un intervalle

Théorème 9 (Caractérisation séquentielle de la limite).

Soit $a \in \overline{I}$. La fonction f admet ℓ comme limite en a si et seulement si pour toute suite réelle (u_n) à valeurs dans I telle que $\lim_{n \to +\infty} u_n = a$, la suite $(f(u_n))_{n \in \mathbb{N}}$ converge vers ℓ .

Exercice 12. Montrer que la fonction définie sur \mathbb{R}^* par $x \mapsto \cos \frac{1}{x}$ n'admet pas de limite en 0.

Théorème 10 (Théorème des bornes, Admis).

Toute fonction continue sur un segment est bornée et atteint ses bornes.

II.2 Continuité - Fonctions à valeurs réelles

Théorème 11 (Théorème des Valeurs Intermédiaires).

Soit $f \in \mathcal{C}([a, b], \mathbb{R})$. Pour toute valeur y comprise entre f(a) et f(b), il existe un réel $c \in [a, b]$ tel que f(c) = y.

Exercice 13. Écrire un algorithme dichotomie qui donne une valeur par défaut, approchée à ε près, d'un zéro d'une fonction f qui s'annule sur un intervalle [a, b].

Théorème 12 (Théorème de la bijection monotone).

Soit f une fonction continue et strictement monotone sur un intervalle I. Alors f réalise une bijection de I sur J = f(I). Sa bijection réciproque f^{-1} est continue et strictement monotone de J sur I, de même monotonie que f.

Exercice 14. Préciser les définitions des fonctions de trigonométrie circulaire réciproque ainsi que leur courbe représentative.

II.3 Dérivation

Proposition 5 (Structure).

Soit $\lambda \in \mathbb{K}$ et $a \in I$. Sous réserve d'existence des dérivées de f et g,

- (i). $f + \lambda g$ est dérivable en a et $(f + \lambda g)'(a) = f'(a) + \lambda g'(a)$.
- (ii). fg est dérivable en a et (fg)'(a) = f'(a)g(a) + f(a)g'(a).
- (iii). Si $g(a) \neq 0$, alors la fonction f/g est définie au voisinage de a, est dérivable en a et $\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) f(a)g'(a)}{g(a)^2}$.
- (iv). Si $f \circ g$ est définie, alors $f \circ g$ est dérivable en a et $(f \circ g)'(a) = g'(a) \cdot f'(g(a))$

(v). Si f est bijective au voisinage de a et $x_0 = f(a)$. Alors, $f'(a) \neq 0$ si et seulement si f^{-1} est dérivable en x_0 . Le cas échéant, $(f^{-1})'(x_0) = \frac{1}{f'(a)}$.

Exercice 15. Retrouver les dérivées des fonctions arcsin, arccos et arctan.

Définition 7 (Dérivées n-ème).

La dérivée n-ème de f, notée $f^{(n)}$ est définie par récurrence par

- $* f^{(0)} = f$
- * Si $f^{(n-1)}$ est est dérivable, alors $f^{(n)} = (f^{(n-1)})'$.

Proposition 6 (Formule de LEIBNIZ).

Si f et g sont n fois dérivables, alors $(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$.

Exercice 16. Déterminer la dérivée n-ème de $x \mapsto x^2 e^x$.

Définition 8 (Classe \mathcal{C}^n).

Soit $n \in \mathbb{N}$. Une fonction est de *classe* \mathscr{C}^n sur I si et seulement si elle est n fois dérivable sur I et si sa dérivée nème est continue sur I.

Une fonction est de classe \mathscr{C}^{∞} si elle est dérivable à tout ordre.

Exercice 17. Déterminer une fonction dérivable sur \mathbb{R} mais dont la dérivée n'est pas continue en un point de \mathbb{R} .

II.4 Formules de Taylor

Théorème 13 (Formule de TAYLOR avec Reste Intégral).

Soient $n \in \mathbb{N}$ et $f: I \to \mathbb{K}$ une fonction de classe \mathscr{C}^{n+1} . Alors, pour tout $(a, x) \in I^2$,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + \int_{a}^{x} \frac{(x - t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Exercice 18.

- **1.** Montrer que, pour tout $x \in]-1, +\infty[$, $\ln(1+x) \le x$.
- **2.** Montrer que pour tout x réel, $\lim_{n\to+\infty}\sum_{k=0}^n\frac{x^k}{k!}=\exp(x)$.

Théorème 14 (Formule de TAYLOR-YOUNG).

Soit $f: I \to \mathbb{K}$ une fonction de classe \mathscr{C}^n . Alors, pour tout $a \in I$,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n).$$

Exercice 19.

- 1. Déterminer une suite de réels non nuls u convergente telle que (u_n) et (u_{n+1}) ne soient pas équivalentes.
- **2.** Déterminer un équivalent de la suite de terme général $u_n = 1 \cos\left(\frac{1}{n}\right) \ln\left(1 + \frac{1}{n}\right)$.
- **3.** Déterminer un équivalent de la suite de terme général $u_n = 1 \cos\left(\frac{1}{n}\right) \ln\left(1 + \frac{1}{2n^2}\right)$.

- **4.** Déterminer deux suites équivalentes (u_n) et (v_n) telles que (e^{u_n}) et (e^{v_n}) ne soient pas équivalentes
- **5.** Déterminer deux suites équivalentes (u_n) et (v_n) telles que $((1+u_n)^n)$ et $((1+v_n)^n)$ ne soient pas équivalentes.

Exercice 20.

- 1. Retrouver les développements limités classiques.
- **2.** Déterminer le développement limité à l'ordre 4 en 2π de $e^{\sqrt{\cos(x)}}$

Théorème 15 (Primitivation des développements limités).

Soit $f:I\to\mathbb{K}$ une fonction continue. Si f possède un développement limité d'ordre n en $a\in I$, i.e.

$$f(x) = \sum_{k=0}^{n} a_k (x - a)^k + o((x - a)^n),$$

alors toute primitive F de f possède un développement limité à l'ordre n+1 en a et

$$F(x) = F(a) + \sum_{k=0}^{n} \frac{a_k}{k+1} (x-a)^{k+1} + o((x-a)^{n+1}).$$

Exercice 21.

- 1. Déterminer le développement limité à tout ordre en 0 de la fonction arctangente.
- 2. Déterminer le développement limité à l'ordre 5 en 0 de la fonction tangente.

3. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x + x^3 \sin \frac{1}{x}$ si $x \neq 0$ et f(0) = 0. Montrer que f admet un développement limité à l'ordre 2 en 0 alors que f' n'admet pas de développement limité à l'ordre 1 en 0.

II.5 Dérivation - Fonctions à valeurs réelles

Théorème 16 (Théorème de ROLLE).

Soient a < b deux réels et f une fonction continue sur [a, b] et dérivable sur [a, b] telle que f(a) = f(b). Alors

$$\exists c \in]a, b[; f'(c) = 0.$$

Exercice 22.

- 1. Montrer que ces hypothèses sont optimales.
- **2.** Montrer que ce résultat est faux si f est à valeurs complexes.

Exercice 23. Soit P un polynôme non nul à coefficients réels. Montrer que si P est scindé à racines simples sur \mathbb{R} , alors P' est scindé à racines simples sur \mathbb{R} .

Théorème 17 (Théorème des accroissements finis).

Soient a < b deux réels et f une fonction continue sur [a, b] et dérivable sur [a, b]. Alors

$$\exists c \in]a, b[; f(b) - f(a) = f'(c)(b - a).$$

Théorème 18 (Inégalité des accroissements finis).

Soient $f \in \mathcal{D}(I)$ et m, M deux réels tels que pour tout $x \in I, m \leqslant f'(x) \leqslant M$. Alors, pour tout $(x,y) \in I^2$, si $x \leqslant y$, alors $m(y-x) \leqslant f(y) - f(x) \leqslant M(y-x)$.

Exercice 24.

- **1.** Montrer que la fonction sinus est 1-lipschitzienne sur \mathbb{R} .
- **2.** Montrer que ce résultat reste vrai si f est de classe \mathscr{C}^1 et à valeurs complexes.

Corollaire 19

Soit $f \in \mathcal{D}(I)$. La fonction f est constante sur I si et seulement si f' est identiquement nulle.

Corollaire 20 (Caractérisation de la stricte monotonie).

Soit $f \in \mathcal{D}(I)$. La fonction f est strictement monotone sur I si f' est de signe constant sur I et s'il n'existe pas d'intervalle (non réduit à un point) inclus dans I sur lequel f' est identiquement nulle.

II.6 Théorèmes de prolongement

Théorème 21 (Prolongement par continuité).

Soient $a \in \mathbb{R}$, $\mathscr{D} \subset \mathbb{R}$, $f \in \mathscr{F}(\mathscr{D}, \mathbb{K})$ et h > 0 tel que $[a - h, a + h] \setminus \{a\} \subset \mathscr{D}$.

- (i). Si $a \in \mathcal{D}$, alors f est continue en a si et seulement si elle est continue à droite et à gauche en a.
- (ii). Si $a \notin \mathcal{D}$, alors f admet une limite ℓ en a si et seulement si elle admet ℓ pour limite à droite et à gauche en a. Si ℓ est fini, la fonction \widetilde{f} est continue en a, où $\widetilde{f}: \mathcal{D} \cup \{a\} \to \mathbb{K}$ $x \neq a \mapsto f(x)$

La fonction \widetilde{f} est le prolongement par continuité de f en a.

Exercice 25.

- **1.** Soit $a \in \mathbb{R}$. Montrer que la fonction $f: x \mapsto \frac{x^3 a^3}{x a}$ est prolongeable par continuité sur \mathbb{R} .
- **2.** Soit $f: \mathbb{R}^{\star} \to \mathbb{R}$, $x \mapsto \frac{\sin x}{x}$. Montrer que f est prolongeable par continuité sur \mathbb{R} .

Théorème 22 (Théorème de la limite de la dérivée).

Soient $a \in I$ et f une fonction continue sur I et dérivable sur $I \setminus \{a\}$. Si $\lim_{x \to a} f'(x) = \ell$, alors

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \ell.$$

En particulier,

- (i). Si ℓ est fini, alors f est dérivable en a et $f'(a) = \ell$.
- (ii). Si ℓ est infini, alors f n'est pas dérivable en a. La courbe représentative de f admet une tangente verticale en a.

Exercice 26.

- **1.** Montrer que la fonction $x \mapsto x^2 \ln(x)$ est prolongeable en une fonction de classe \mathscr{C}^1 sur \mathbb{R}_+ .
- **2.** La réciproque est fausse. Soit f définie pour tout réel non nul x par $f(x) = x^2 \sin \frac{1}{x}$ et f(0) = 0. Montrer que f est continue sur \mathbb{R} et dérivable sur \mathbb{R} mais que f' n'admet pas de limite en 0.

Corollaire 23 (Théorème de prolongement de classe \mathscr{C}^k).

Soit $k \in \mathbb{N} \cup \{\infty\}$. Si f est une fonction de classe \mathscr{C}^k sur $I \setminus \{a\}$ et pour tout $i \in [0, k]$, $f^{(i)}$ possède une limite finie en a, alors f admet un prolongement de classe \mathscr{C}^k sur I.

Exercice 27. Montrer que la fonction définie sur \mathbb{R}_+^* par $f(x) = e^{-\frac{1}{x}}$ est prolongeable en une fonction de classe \mathscr{C}^{∞} sur \mathbb{R} .

III. Suites récurrentes

Soit (u_n) une suite définie par récurrence par $u_0 \in D \subset I$ et, pour tout entier naturel n, $u_{n+1} = f(u_n).$

- **1.** Montrer que la suite (u_n) est bien définie, i.e. $\forall n \in \mathbb{N}, u_n \in I$. En général, on montre que $f(D) \subset D$.
- **2.** Convergence de u. Si f est continue et u converge vers ℓ , alors ℓ est un point fixe de f. Ces points fixes sont obtenus par l'étude de $q: x \mapsto f(x) - x$.
- a) Si f est contractante sur D, i.e. il existe $k \in [0,1]$ tel que f soit k-lipschitzienne. Si f admet un point fixe ℓ , il est unique et u converge vers ℓ . On obtient également une majoration de la rapidité de convergence.
- b) Si f est à valeurs réelles et g est de signe constant. La suite u est monotone. Sa monotonie dépend du signe de q.
- c) Si f est à valeurs réelles et croissante. La suite u est monotone. Sa monotonie dépend de la comparaison de ses deux premiers termes.
- **d)** Si f est à valeurs réelles et décroissante. Alors, $f \circ f$ est croissante et les suites (u_{2n}) et (u_{2n+1}) sont monotones et de monotonies contraires. Si elles convergent vers une même limite, alors u converge.

Exercice 28. Étudier la suite définie par $u_0 \in \mathbb{R}$ et pour tout n entier naturel, $u_{n+1} = 2u_n - u_n^2$.

Exemple d'étude asymptotique de suite récurrente

Exercice 29. Soient a > 0, I = [0, a] et $f: I \to \mathbb{R}$ continue telle que :

- (i). pour tout $x \in]0, a], 0 < f(x) < x$;
- (ii). il existe $\alpha > 0$ et c > 0 tels que $f(x) = x cx^{\alpha+1} + o_0(x^{\alpha+1})$.

Soit (u_n) la suite définie par $u_0 \in I \setminus \{0\}$ et pour tout $n \ge 0$, $u_{n+1} = f(u_n)$.

- **1.** Montrer que la suite (u_n) converge et déterminer sa limite.
- **2. a)** Soit γ un réel non nul. Montrer que $u_{n+1}^{\gamma} = u_n^{\gamma} c\gamma u_n^{\alpha+\gamma} + o\left(u_n^{\alpha+\gamma}\right)$.
 - **b)** Montrer qu'il existe γ tel que la suite $(u_{n+1}^{\gamma} u_n^{\gamma})$ converge dans \mathbb{R}^* .
- **3.** En déduire un équivalent de la suite (u_n) .

On pourra utiliser le lemme de Cesarò.

- 4. Applications. Déterminer, pour chacune des suites suivantes, un équivalent simple.
 - a) Soit u définie par $u_0 \in [0, \pi[$ et pour $n \ge 0, u_{n+1} = \sin(u_n)$.
 - **b)** Soit u la suite définie par $u_0 > 0$ et pour $n \ge 0$, $u_{n+1} = \ln(1 + u_n)$.

🚺 Programme officiel (PCSI)

Techniques fondamentales de calcul en analyse (p.9)

Nombres réels et suites numériques (p. 12)

Limites, continuité et dérivabilité (p. 13)

Analyse asymptotique (p. 16)

Mathématiciens

LEIBNIZ Gottfried Wilhelm (1^{er} juil. 1646 à Leipzig-14 nov. 1716 à Hanovre).

Rolle Michel (21 avr. 1652 à Ambert-8 nov. 1719 à Paris).

TAYLOR Brook (18 août 1685 à Edmonton-29 déc. 1731 à Londres).

EULER Leonhard (15 avr. 1707 à Basel-18 sept. 1783 à St Pétersbourg).

CESARÒ Ernesto (12 mar. 1859 à Naples-12 sept. 1906 à Torre Annunziata).

Young William Henry (20 oct. 1863 à Londres-7 juil. 1942 à Lausanne).