

Ingenieurswetenschappen

Smart City

Probleemoplossen en Ontwerpen Deel 2

Groep 6

Aaron Vandenberghe, Dieter Demuynck, Jolien Barbier Mathis Bossuyt, Rani Jans en Sarah De Meester

o.l.v. Benjamin Maveau Kevin Truyaert en Martijn Boussé

Inhoudsopgave

1	Klantenvereisten	3
2	Hardwareontwerp	3
	2.1 Ontwerpspecificaties	3
	2.2 Ontwerpskeuze	4
	2.3 Assemblage	7
3	Softwareontwerp	7
	3.1 Experimenten	7
	3.2 Definitieve programma's	8
4	Discussie	8
	4.1 Resultaten demo	8
	4.2 Financiële kant	8
5	Besluit	9
6	Bijlagen	10

Inleiding

Vandaag de dag zijn zelfrijdende auto's een actueel thema. Heel wat bedrijven zoals Tesla, BMW en Mercedes zijn volop bezig met de ontwikkeling van deze autonome wagens. Dit vanwege de vele voordelen. Een zelfsturende auto heeft namelijk een veel snellere reactie dan mensen. Hierdoor zullen ongevallen vermeden worden. Bovendien zullen er ook minder files zijn, waardoor er een mogelijke oplossing ontstaat voor de mobiliteitsproblemen. Daarnaast kiest een autonome auto voor de kortste weg. Hierdoor legt de auto minder kilometers af. Dit betekent dat deze soort auto's zowel instaan voor verkeersveiligheid als voor een meer milieubewust autotransport [13, 11]. De moeite waard dus om deze revolutionaire vooruitgang onder de loep te nemen en zelf ermee aan de slag te gaan.

Voor dit project betekent dit dat een zelfsturend autootje in staat moet zijn zich volgens een voorgeprogrammeerde route door een modelstad te bewegen. Dit is het idee van de 'Smart City'. Deze 'Slimme Stad' is een stad waarbij informatietechnologie gebruikt wordt om de stad te beheren en te besturen [15]. Doorheen deze route, zal de auto verschillende obstakels tegenkomen. De bedoeling hierbij is dat deze hindernissen worden herkend en een bijpassende actie wordt uitgevoerd. Hoe dit kan worden geïmplementeerd zal aan bod komen in dit verslag. Daarnaast wordt het ontwerpproces uitvoerig uitgelegd. Hierin wordt het aanschaffen van onderdelen en de vereisten toegelicht.

1 Klantenvereisten

De klant wil dat de auto op een parcours lijnen kan volgen en stoppen aan een stoplijn. Een verkeerslicht moet ook kunnen geïnterpreteerd worden. Het autootje moet ook andere wagens kunnen detecteren en stoppen als deze te dicht komen, om aanrijdingen te vermijden.

2 Hardwareontwerp

2.1 Ontwerpspecificaties

De modelstad bestaat uit enkele straten en kruispunten. De straten zijn telkens 1 meter lang. Op het parcours met donkere of heldere ondergrond zijn er twee soorten lijnen te vinden: volglijnen en stoplijnen. Op het kruispunt zelf zijn er geen lijnen. Het autootje zal deze lijnen moeten kunnen interpreteren en een onderscheid kunnen maken tussen deze twee soorten. Het verschil tussen deze twee lijnen zit hem in de dikte. Volglijnen zijn 25 mm dik, stoplijnen 50 mm. De auto moet de lijnen van 25 mm dik volgen en stoppen bij de lijnen van 50 mm dik 1. Het moet dus een sensor bevatten die deze lijnen kan herkennen, meer bepaald een reflectiesensor. De auto komt een stoplijn tegen bij het naderen van een kruispunt. Hier zal het moeten stoppen en een verkeerslicht moeten interpreteren. Het feit dat het verkeerslicht om 7.5 cm hoogte staat, speelt een rol bij het bepalen van de hoogte van de auto. De auto moet dus voorzien zijn van een kleurensensor of een camera die de twee verschillende kleuren van het stoplicht kan onderscheiden. Bij een rood licht moet de auto blijven stil staan aan de stoplijn, bij groen moet hij weer starten.

Figuur 1: Kruispunt

Ook moet het wagentje voorgaande wagens kunnen detecteren en stoppen wanneer deze te dichtbij komen. Als de wagen van achter wordt aangereden is dit niet zijn fout, dus enkel voorliggers kunnen een probleem vormen. Om andere wagens te herkennen moet het wagentje een afstandssensor bevatten die voorliggers detecteert en vervolgens een signaal verzendt zodat de motoren vertragen om een botsing te voorkomen. Er moet dus ook gezorgd worden voor een zo kort mogelijke remafstand.

Verder moet de auto aan een aanvaardbare snelheid voortbewegen. De tandwielmotoren rond de wielen zorgen voor de aandrijving. Daarbij is het belangrijk dat het een beperkte massa heeft, maximaal 500 gram. Dit zal ervoor zorgen dat het op een veilige manier zich aan ongeveer $10~\rm cm/s$ kan voortbewegen zodat ook de remafstand beperkt blijft.

Ten slotte moet men vanop afstand kunnen ingrijpen wanneer er iets fout loopt, zoals een aanrijding. Zo zal de auto bestuurbaar gemaakt worden vanuit een toetsenbord.

2.2 Ontwerpskeuze

Chassis

Als eerste wordt de chassis besproken. Voor deze auto wordt een rechthoekige variant gebruikt met als afmetingen 80 mm op 172 mm [8]. Deze is handig in gebruik wegens de verscheidene groottes van de groeven. Bovendien is de rechthoekige vorm zeer gemakkelijk om alle componenten van de auto vast te hechten. Een ronde chassis zoals bijvoorbeeld is hiervoor minder geschikt [6]. Ook zijn er in deze laatste groeven aanwezig voor de wielen. Dit impliceert dat er minder ruimte is om andere onderdelen te assembleren op het onderstel.

Wielen

Een goede keuze voor de wielen zijn die met respectievelijk een diameter en dikte van 42 mm en 19 mm. Figuur 2 geeft een idee hoe ze eruit zien.

$4 \mid \text{INHOUDSOPGAVE}$

Figuur 2: Wiel met diameter 42 mm en dikte 19 mm [9].

De dikte van dit wiel is geschikt om voldoende grip te hebben. Bij dunnere banden is er dus minder grip en dat zou ervoor kunnen zorgen dat de auto niet snel genoeg kan remmen bij obstakels en stoplijnen [2]. Daarnaast is de diameter evenredig met de versnelling en de nodige kracht. Een kleiner wiel impliceert namelijk een kleinere kracht en een kleine versnelling. Een groot wiel daarentegen levert een grote versnelling maar heeft een grote kracht nodig. Het is dus belangrijk dat de middenweg wordt genomen om een goede snelheid te behalen zonder al te veel moeite.

De auto van dit project is een driewieler. Dit heeft enkele voordelen. Eerst en vooral is dit eenvoudiger om te draaien. Als je vier wielen hebt, zijn er twee vaste punten en dus meer wrijving waardoor de auto minder vlot kan draaien. Om af te slaan is het makkelijker om één vast punt te hebben en dat de andere wielen eromheen draaien. Ten tweede reduceert een driewieler de kosten van het project. Een vierde wiel was niet nodig dus zou het niet verstandig zijn om aan het te kopen. Zo is er ook nog marge in het budget voor eventuele wijzigingen tijdens het project. Idealiter wordt als derde wiel gebruik gemaakt van een kogelwiel. We kozen voor het kogelwiel omdat dit flexibelere draaibewegingen heeft dan een normaal wiel.

Motoren

Aansluitend hierbij spelen de tandwielmotoren ook een belangrijke rol. Motoren met een groot tandwiel starten zeer gemakkelijk maar behalen geen al te grote snelheid. Kleine tandwielen hebben dan weer de omgekeerde eigenschap. Het is dus van belang dat er een tandwielen worden gebruikt met een gemiddelde grootte namelijk de motor met verhouding 50:1. Niet alleen de grootte speelt een rol, maar ook de kracht van de motor. Hiervoor wordt het best gekozen voor de "High Power" (HP). Deze motoren hebben een grote efficiëntie. Een bijkomend voordeel is het gewicht dat slechts 9,5 gram bedraagt [4]. Hoe minder de onderdelen wegen, hoe minder kracht je nodig hebt om de auto te laten rijden.

Door het gebruik van deze motoren is er nood aan motorbeugels zodat de ze aan de chassis vastgemaakt kunnen worden. Aangezien de motoren een breedte van 12 mm en een hoogte van 10 mm hebben, is het logisch dat de beugels met afmetingen 12 mm op 10 mm worden genomen [7]. Verder is een dubbele aandrijfmotor essentieel om de tandwielmotoren met de microcontroller te verbinden. In dit project wordt gekozen voor de Dual Drive DRV8833 [5].

Microcontroller

De microcontroller is cruciaal voor de werking van de auto. Het zorgt ervoor dat het autootje de taken correct uitvoert. De keuze van de microcontroller gaat in dit project naar NI MyRIO in plaats van Raspberry Pi [3],[14]. Dit is omdat deze zowel met analoge als digitale signalen kan werken. Bij Raspberry Pi zijn er enkel digitale inputs beschikbaar. Dit heeft implicaties voor de keuze van de sensoren, waarvoor ik verwijs naar het onderdeel over sensoren in 2.2. Daaruit volgt dat alles in LabVIEW geprogrammeerd wordt. Deze software en microcontroller zijn ervoor gemaakt om samen te werken. Dit biedt veel voordelen tijdens de implementatie. In sectie ?? wordt hier dieper op ingegaan. Daarnaast heeft dit ook invloed op de keuze van het chassis. Achteraf viel het op dat de microcontroller niet paste op het chassis waardoor men het heeft vastgemaakt met makerbeams.

Sensoren

Zoals al aangehaald is, wordt in dit ontwerp gewerkt met een reflectiesensor en een afstandssensor. Er bestaan twee soorten, namelijk sensoren met digitale output en met analoge output. Zoals hierboven verteld is, kunnen beiden gebruikt worden met de NI MyRIO. De analoge sensoren geven meer info dan de digitale. De digitale kunnen maar één of twee signalen doorgeven aan de microcontroller namelijk nul of een. Ofwel staat de sensor aan ofwel uit. De analoge sensoren geven analoge signalen. Dit soort signaal kan alle waarden aannemen, in tegenstelling tot een digitaal signaal. Langs de andere kant zorgen de analoge sensoren voor meer programmeerwerk [16]. Voor dit project is het beter dat de informatieoverdracht tussen sensor en microcontroller vlot verloopt met behulp van echte waarden. Bij keuze van een analoge sensor is dit dus voldaan, alhoewel er meer programmeerwerk bij komt kijken. De reflectiesensor zal onderaan de auto, dichtbij de grond geplaatst worden zodat de lijnen op het juiste moment zullen herkend worden.

Ook om de kleuren groen en rood te herkennen, is er nood aan een sensor of camera. Er is keuze tussen een Raspberry Pi-camera, webcam en kleurensensor voor het interpreteren van de stoplichten. In dit ontwerp wordt gekozen voor de kleurensensor. Deze is compatibel met de NI MyRIO en weegt maar 3,23 gram [1, 10]. Bovendien weegt de webcam 223,6 gram. Hoe minder de wagen weegt, hoe stabieler het is en hoe minder kracht het nodig heeft om een bepaalde snelheid te kunnen halen. De Raspberry Pi-camera is enkel bruikbaar met een Raspberry Pi als microcontroller. Aangezien in dit model wordt gewerkt met een NI MyRIO, is dit dus geen optie [12]. Samengevat: de kleurensensor heeft als voordeel dat het zeer licht is en compatibel is met de NI MyRIO-microcontroller.

LED-lampjes

Als extra optie om LED's te plaatsen omdat het ons het meest haalbaar leek in vergelijking met de andere ideeën. Eerst dachten we eraan om servomotoren te

gebruiken maar deze waren schaars en ingewikkeld te modelleren waardoor er risico zou zijn dat het wagentje niet juist werkt.

2.3 Assemblage

Voordat het autootje fysiek geassembleerd wordt, werd dit eerst via de computer gedaan. Aan de hand van de reeds gemaakte 3D-modellen, werd een 3D-model van het autootje gemaakt. Doordat de apparte onderdelen van het autootje al af waren, moesten die enkel nog samengevoegd worden. Het 3D-model zie je in figuur Moet nog ingevoegd worden/verwijzing naar figuur stap voor stap opbouw Door dit model was het gemakkelijker om de wagen in elkaar te zetten omdat er naar iets toegewerkt werd en de plaatsing van de onderdelen zichtbaar was. Er wordt gestart met het chassis. Daar worden dan de motoren met wielen aan de onderkant opgeplaatst. Ook het kogelwiel wordt bevestigd aan de onderkant. Helemaal van voor wordt een steunpaal gezet. Aan de voorkant wordt de reflectiesensor onder de steunpaal vast gemaakt. Ook aan de voorkant maar dan vooraan op de steunpaal de afstandssensor bevestigd. Aan de zijkant van de paal wordt op een hoogte van 7.5 cm wordt de kleursensor bevestigd. Dit is aan de rechterkant vast gemaakt. Net achter de steunpaal wordt de dual drive motor geplaatst. Dwars op het midden van het chassis wordt de microcontroller bevestigd.

3 Softwareontwerp

Om te kunnen implementeren is het belangrijk om informatie in te winnen door opzoekingswerk. Het is dan ook cruciaal dat er specifieker wordt gezocht hoe het materiaal best gebruikt kan worden. Dit is nuttig om de communicatie tussen de sensoren en de NI MyRIO-controller te begrijpen. Ook de spanning dat nodig is om de sensoren te laten te werken is belangrijk. Zo zijn er enkele poorten die precies 5 volt leveren. Dit is perfect, aangezien dit compatibel is met het spanningsverschil van de sensoren. Vervolgens kan het elektrisch circuit opgesteld worden. Dit is handig om te weten welke onderdelen er met elkaar worden verbonden. Eenmaal dit in orde is, kan het programmeerwerk beginnen.

Voor het schrijven van stukjes code, is het ten sterkste aangeraden om over de onderdelen van de auto te beschikken opdat de fragmenten van de code kunnen worden uitgetest. In de subsectie die volgt wordt een korte analyse gegeven van de observaties die volgen uit kleine experimenten. Om de testen mogelijk te maken, moet er eerst contact worden gemaakt tussen een computer en de microcontroller. Dit kan gerealiseerd worden met de 'LED' functie in LabVIEW. Eenmaal er connectie is, branden de lampjes op de microcontroller en kunnen de experimenten van start gaan.

3.1 Experimenten

Signalen ontvangen en versturen

Het doel van de eerste test is de communicatie met de microcontroller te begrijpen. Met behulp van het standaardprogramma main.vi in LabVIEW kan er gezien worden hoe de microcontroller beweegt. De tweede test bestaat uit

het versturen en ontvangen van signalen. Om te weten wanneer een signaal verstuurd wordt, wordt volgend experiment uitgevoerd. Een draad wordt bevestigd tussen de poorten van 11 en 13 Ampère. Op het moment dat de draad kantelt en hierdoor op de **z-as meer dan 0,5 wordt weergegeven,**wordt er een signaal ontvangen door de poort van 13 A. Van hieruit wordt een nieuw signaal verstuurd maar dit keer naar de computer. Bijkomend is dit experiment nuttig om te begrijpen hoe er kan gedebugd worden. Bovendien is het cruciaal voor de verdere implementatie van de auto.

Sensoren

Met behulp van voorbeeldprogramma's is het mogelijk om de gekregen data die van de sensoren te interpreteren. Zo is er een idee met welke waarden er moet gewerkt worden in het definitief programma.

Een eerste experiment is met de reflectiesensor. Deze sensor werkt met een programma dat de zes waarden Een van de vereisten voor het autootje is een lichte en donkere kleur te onderscheiden. Om te weten welke waarden de sensor geeft, kan dit worden getest met een wit papier, de zwarte voorkant van een laptop en een grijs tafelblad. Bij het papier wordt een waarde dichtbij 1 verkregen terwijl bij het donkere spectrum waarden tussen 4 en 4,5. Door het experimentje is er nu geweten welke waarden er moeten gebruikt worden om de lijn op de grond te kunnen volgen.

Het volgende experiment is met de afstandssensor. Bij deze test wordt een voorwerp eerst ver van de sensor gehouden en dan dichterbij. Bij afstanden kleiner dan 80 cm worden lage waarden bekomen zoals 0,1. Afstanden groter dan 80 cm geven een negatieve waarde. Wanneer de afstand echter op een tiental cm van de sensor verwijderd is, wordt een maximale waarde van 3 verkregen. Eenmaal de lengte tussen de afstandssensor en het voorwerp kleiner is dan 10 cm, zakt de geleidelijk aan naar 2. De conclusie van deze test: voor de afstandssensor zullen de waarden twee en drie moeten gebruikt worden.

3.2 Definitieve programma's

4 Discussie

4.1 Resultaten demo

Nog te schrijven.

4.2 Financiële kant

In het financieel rapport 6 krijgt men een beeld van wat er is aangekocht en hoeveel eenheden hieraan zijn besteed.

In dit project kreeg elke groep 3500 eenheden om te bieden en onderdelen te bestellen voor de auto. Bij de eerste bestelling werden in totaal 1615 eenheden uitgegeven. Na de bieding, waaraan 1350 eenheden werden gespendeerd, bleven er nog 535 eenheden over. Deze 535 eenheden werden besteden aan de mechanische stukken en draden.

5 Besluit

Nog te schrijven.

6 Bijlagen

Financieel rapport

Academiejaar 2020-2021

Groep 6

Onderdelen	Prijs per onderdeel	Aantal	Totaal per onderdeel
NI MyRio	240	1	240
Oplaadbare LITHIUM-ION batterij	90	2	180
Robot chassis rechthoekig zwart	70	1	70
Micro Metal Gear Motor 50:1 HP	160	2	320
QTR-8A analoge reflectie sensor array	150	1	150
Optische afstandssensor analoog	160	1	160
Kleurensensor	150	1	150
Tiny breadboard	40	1	40
Dual drive	70	1	70
Wiel 42x19mm	35	2	70
Ball Caster	60	1	60
JST Connector 2p 2mm M haaks	5	1	5
Micro metal gear motor beugel	25	2	50
Printplaat	50	1	50

Bibliografie

- [1] 17003 trust exis webcam with 640x480 resolution. https://befarnell.com/trust/17003/webcam-exis-trust-uk/dp/1860369. (Accessed on 03/19/2021).
- [2] Brede band: voor- en nadelen van brede banden? je leest ze hier. https://www.tuning-gids.nl/brede-autoband.htm#. (Accessed on 04/23/2021).
- [3] myrio-1900 user guide and specifications national instruments. https://www.ni.com/pdf/manuals/376047c.pdf. (Accessed on 04/02/2021).
- [4] Pololu 50:1 micro metal gearmotor hp 6v. https://www.pololu.com/product/998/. (Accessed on 03/19/2021).
- [5] Pololu drv8833 dual motor driver carrier. https://www.pololu.com/product/2130/specs. (Accessed on 03/19/2021).
- [6] Pololu 5"robot chassis rrc04a solid red. https://www.pololu.com/product/1500/. (Accessed on 03/19/2021).
- [7] Pololu micro metal gearmotor bracket extended pair. https://www.pololu.com/product/1089/. (Accessed on 03/19/2021).
- [8] Pololu rp5/rover 5 expansion plate rrc07a (narrow) solid black. https://www.pololu.com/product/1531/. (Accessed on 03/19/2021).
- [9] Pololu wheel 42×19mm pair. https://www.pololu.com/product/1090/. (Accessed on 03/19/2021).
- [10] Rgb color sensor with ir filter and white led tcs34725 : Id 1334 : \$7.95 : Adafruit industries, unique & fun diy electronics and kits. https://www.adafruit.com/product/1334. (Accessed on 03/19/2021).
- [11] R.jelies 3685195 cbm masterthesis (3).pdf. https://dspace.library. uu.nl/. (Accessed on 04/30/2021).
- [12] Rpi 8mp camera board. raspberry-pi daughter board, raspberry pi camera board, version 2. https://be.farnell.com/raspberry-pi/rpi-8mp-camera-board. (Accessed on 03/19/2021).
- [13] Stilstaan bij autonoom rijden. https://dspace.library.uu.nl/. (Accessed on 04/30/2021).
- [14] Teach, learn, and make with raspberry pi. https://www.raspberrypi.org/. (Accessed on 03/19/2021).

- [15] What is a smart city? definition and examples twi. https://www.twi-global.com/technical-knowledge/faqs/what-is-a-smart-city# SmartCityDefinition. (Accessed on 04/23/2021).
- [16] What's the difference between analog and digital sensors?

 skylerh automation. https://skylerh.com/difference-between-analog-and-digital-sensors/
 #using-sensors-to-tell-controller-whats-out-there. (Accessed on 03/26/2021).

KU Leuven Kulak Wetenschap & Technologie Etienne Sabbelaan 53, 8500 Kortrijk Tel. +32 56 24 60 20