Moje notatki na bazie skryptu topology without tears

Lukasz Kopyto

February 27, 2024

1 Przestrzenie topologiczne

1.1 Topologia: definicje, lematy, zadania i rozwiazania

1.1.1 Definicja: Topologia

Niech X bedzie niepustym zbiorem. Mowimy, ze zbior T zawierajacy podzbiory X jest topologia na X jesli:

- X oraz zbior pusty \emptyset , naleza do T,
- ullet suma skonczona badz nie zbiorow z T nalezy do T, inaczej T jest zamkniety na sume, i ta suma moze byc nieskonczona
- przekroj dowolnych dwoch zbiorow z T nalezy do T, inaczej T jest zamkniety na przekroj, ale przekroj skonczony

Para (X,T) nazywamy **przestrzenia topologiczna.**

1.1.6 Definicja: Topologia dyskretna(discrete topology)

Niech X bedzie niepustym zbiorem oraz T kolekcja wszystkich podzbiorow X. Wtedy mowimy, ze T jest **topologia dyskretna** na zbiorze X. Przestrzen topologiczna (X,T) jest nazywana **przestrzenia dyskretna**

1.1.7 Definicja: Topologia niedyskretne(indiscrete topology)

Niech X bedzie niepustym zbiorem oraz $T = \{X, \emptyset\}$. Wtedy mowimy, ze T jest **topologia niedyskretna** oraz (X, T) jest **przestrzenia niedyskretna**

1.1.9 Lemat: Topologia dyskretna i singletony

Jezeli (X,T) jest przestrzenia topologiczna, taka ze, dla kazdego $x \in X$, singleton x, $\{x\}$ jest w X, to X jest topologia dyskretna.

Dowod:

Wystarcz sprawdzie prawdziwosc trzech warunkow, z definicji 1.1.1.

- 1. Z definicji T jest topologia, wiec zawiera X oraz \emptyset .
- 2. Niech S bedzie suma skonczona lub nie dowolnej liczby zbiorow z T. Poniewaz mozemy zapisac S jako $S = \bigcup_{x \in S} \{x\}$, a kazdy singleton $\{x\} \in X$, wnioskujemy stad, ze $S \in T$
- 3. Analogicznie dowodzimy, ze przekroj dowolnych dwoch zbiorow z T nalezy do T

Cwiczenia 1.1

- 1. Niech $X = \{a, b, c, d, e, f\}$. Ustal czy podane kolekcje podzbiorow X sa topologia na X
 - (a) $T_1 = \{X, \emptyset, \{a\}, \{a, f\}, \{b, f\}, \{a, b, f\}\}$
 - (b) $T_2 = \{X, \emptyset, \{a, b, f\}, \{a, b, d\}, \{a, b, d, f\}\}$
 - (c) $T_3 = \{X, \emptyset, \{f\}, \{e, f\}, \{a, f\}\}\$

Odpowiedz:

(a) Jest topologia.

- (b) Nie jest, bo $\{a, b, f\} \cap \{a, b, d\} = \{a, b\} \notin T_2$
- (c) Nie jest, bo $\{e, f\} \cup \{a, f\} = \{a, e, f\} \notin T_3$
- 2. Niech $X = \{a, b, c, d, e, f\}$. Wskaz i uzasadnij ktore kolekcje podzbiorow X sa topologia na X
 - (a) $T_1 = \{X, \emptyset, \{c\}, \{b, d, e\}, \{b, c, d, e\}, \{b\}\}$
 - (b) $T_2 = \{X, \emptyset, \{a\}, \{b, d, e\}, \{a, b, d\}, \{a, b, d, e\}\}$
 - (c) $T_3 = \{X, \emptyset, \{b\}, \{a, b, c\}, \{d, e, f\}, \{b, d, e, f\}\}$

Odpowiedz:

- (a) Nie, bo $\{c\} \cup \{b\} = \{b, c\} \notin T_1$
- (b) Nie, bo $\{b, d, e\} \cap \{a, b, d\} = \{b, d\} \notin T_2$
- (c) Jest topologia.
- 3. Niech $X = \{a, b, c, d, e, f\}$ oraz T bedzie topologia dyskretna na X, ktore z ponizszych podpunktow sa prawdziwe?
 - (a) $X \in T$ Prawda
 - (b) $\{X\} \in T$ Falsz
 - (c) $\{\emptyset\} \in T$ Falsz
 - (d) $\emptyset \in T$ Prawda
 - (e) $\emptyset \in X$ Falsz
 - (f) $\{\emptyset\} \in X$ Falsz
 - (g) $\{a\} \in T$ Prawda
 - (h) $a \in T$ Falsz
 - (i) $\emptyset \subseteq X$ Prawda
 - (j) $\{a\} \in X$ Falsz
 - (k) $\{\emptyset\} \subseteq X$ Falsz
 - (1) $a \in X$ Prawda
 - (m) $X \subseteq T$ Falsz
 - (n) $\{a\} \subseteq T$ Falsz
 - (o) $\{X\} \subseteq T$ Prawda
 - (p) $a \subseteq T$ Falsz
- 4. Niech (X,T) bedzie dowolna przestrzenia topologiczna. Udowodnij, ze **przekroj skonczonej liczby(dowolnej) elementow** z T jest elementem T

Odpowiedz:

Udowodnimy to przez indukcje wzgledem liczby elementow przekroju.

Teza: Dla przestrzeni topologicznej (X,T) przekroj skonczonej liczby elementow z T jest elementem T.

Podstawa indukcji: dla n = 2, mamy $\bigcap_{i=1}^{2} A_i$, gdzie $A_i \in T$, A_i sa dowolnymi zbiorami nalezacymi do T. Poniewaz T jest topologia na X wiec z definicji, przekroj dowolnych dwoch zbiorow nalezacych do T, nalezy do T, zatem $\bigcap_{i=1}^{2} A_i \in T$.

Krok indukcyjny: Ustalmy teraz dowolne $n \in \mathbb{N}$ i zalozmy, ze $\bigcap_{i=1}^{n} A_i \in T$. Pokaze ze dla n+1 teza zachodzi. Oznaczmy sobie

$$B = \bigcap_{i=1}^{n} A_i$$
. Dla $n+1$ mamy:

$$\bigcap_{i=1}^{n+1} A_i = \bigcap_{i=1}^n A_i \cap A_{n+1} = \text{ zal. ind. } = B \cap A_{n+1} \text{ Poniewaz } B \in T \text{ oraz } A_{n+1} \in T \text{ wiec z definicji topologi, } B \cap A_{n+1} \in T$$

Zatem na mocy zasady indukcji matematycznej, dla przestrzeni topologicznej (X,T) przekroj skonczonej liczby elementow z T jest elementem T.

- 5. Niech R bedzie zbiorem liczb rzeczywistych. Udowodnij ze kazdy z następujących kolekcji podzbiorow R jest topologia.
 - (a) T_1 zawiera \mathbb{R}, \emptyset oraz kazdy przedzial (-n, n), dla dowolnego $n \in \mathbb{N}^+$, gdzie (-n, n) oznacza zbior $\{x \in \mathbb{R} : -n < x < n\}$
 - (b) T_2 zawiera \mathbb{R}, \emptyset oraz kazdy przedzial [-n, n], dla dowolnego $n \in \mathbb{N}^+$, gdzie [-n, n] oznacza zbior $\{x \in \mathbb{R} : -n \le x \le n\}$

(c) T_3 zawiera \mathbb{R}, \emptyset oraz kazdy przedzial $[n, \infty)$, dla dowolnego $n \in \mathbb{N}^+$, gdzie $[n, \infty)$ oznacza zbior $\{x \in \mathbb{R} : n \leq x\}$

Odpowiedz:

Trzeba kazdy podpunkt sprawdzie z definicji topologii, czyli w kazdym podpunkcie sprawdzie czy (a') X oraz \emptyset naleza do T, (b') zamknietosc na sume teoriomnogosciowa skonczona lub nie i (c') zamknietosc na przekroj(skonczony)

dla T_1 mamy:

- (a') Z opisu T_1 mamy, ze $\mathbb{R} \in T_1$ oraz $\emptyset \in T_1$
- (b') Niech $U = \bigcup_{\alpha \in A} U_{\alpha}$ gdzie $A_{\alpha} \in T_1$ oraz A jest pewnym zbiorem indeksowym, bedzie dowolna suma(skonczona badz nie) zbiorow. Rozwazmy przypadki:
 - $U_{\alpha} = \mathbb{R}$ dla pewnego $\alpha \in A$. Wtedy $\bigcup_{\alpha \in A} U_{\alpha} = \mathbb{R} \in T_1$
 - $U_{\alpha} \neq \mathbb{R}$ dla kazdego $\alpha \in A$. Wtedy mamy przypadki:
 - $U_{\alpha} = \emptyset \text{ dla kazdego } \alpha \in A.$ Wtedy $\bigcup_{\alpha \in A} U_{\alpha} = \emptyset \in T_{1}$
 - $-U_{\alpha} \neq \emptyset$ dla pewnego $\alpha \in A$ oraz zbior

$$B = \{n : U_{\alpha} = (-n, n) \land n \in \mathbb{N} \land \alpha \in A\}$$

jest ograniczony z gory.

Wtedy, z tego ze zbior B jest ograniczony z gory i zawiera liczby naturalne, wiemy ze istnieje najmniejsza liczba naturalna m, ktora ogranicza ten zbior z gory. Wezmy zatem liczbe m. Zauwazmy, ze m jest jednoczesnie maximum zbioru B. Z definicji zbioru T_1 mamy, ze $(-m, m) \in T_1$ oraz z tego, ze B jest ograniczony z gory, wnioskujemy

$$\bigcup_{\alpha \in A} U_{\alpha} = (-m, m) \in T_1$$

 $-U_{\alpha} \neq \emptyset$ dla pewnego $\alpha \in A$ oraz zbior

$$B = \{n : U_{\alpha} = (-n, n) \land n \in \mathbb{N} \land \alpha \in A\}$$

jest nieograniczony z gory.

Wtedy, mam sprzecznosc, bo załozylismy, ze $\mathbb{R} \notin T_1$, z drugiej strony zbior B jest nieograniczony, a

$$\bigcup_{\alpha \in A} U_{\alpha} = \bigcup_{n=1}^{\infty} (-n, n) = \mathbb{R}$$

Zatem ten podpunkt odpada.

Sprawdzilismy zatem wszystkie mozliwości i otrzymalismy, ze zbior T_1 jest zamkniety na sume(skonczona badz nie)

(c') Wezmy dwa dowolne zbiory $B \in T_1$ oraz $C \in T_1$. Pokazemy, ze $B \cap C \in T_1$

Rozwazmy przypadk:

- $B \lor C = \emptyset$ Wtedy: $B \cap C = \emptyset \in T_1$
- $B \wedge C \neq \emptyset$ Wtedy mamy przypadki:
 - $-B \wedge C = \mathbb{R}$ Wtedy $B \cap C = \mathbb{R} \in T_1$
 - $-B \lor C \neq \mathbb{R}$

Wtedy ktorys ze zbiorow(byc moze oba) jest postaci (-m, m) dla $m \in \mathbb{N}$. Jesli $B = \mathbb{R}$ i $C = (-m, m), m \in \mathbb{N}$ to $B \cap C = (-m, m) \in T_1$. Drugi przypadek to gdy oba sa postaci prostej, czyli B = (-m, m) oraz C = (-n, n) dla $m, n \in \mathbb{N}$. Wtedy niech k = min(m, n), mamy $B \cap C = (-k, k) \in T_1$

Zatem T_1 zamkniete na przekroj.

 T_1 jest zatem topologia. c.b.d.u.

dla T_2 mamy:

Dowod bedzie analogiczny do tego z T_1 . Postaram sie go bardziej ladnie zrobic.

- (a') Z opisu T_2 wnioskujemy, ze $\mathbb{R} \in T_2$ oraz $\emptyset \in T_2$.
- (b') Niech $U = \bigcup_{\alpha \in A} U_{\alpha}$, gdzie $U_{\alpha} \in T_2$ oraz A jest pewnym zbiorem indeksowym. Rozwazmy przypadki:

- $U_{\alpha} = \mathbb{R}$ dla pewnego $\alpha \in A$. Wtedy: $U = \mathbb{R} \in T_2$
- $U_{\alpha} \neq \mathbb{R}$ dla kazdego $\alpha \in A$ Wtedy: Rozwazmy przypadki:
 - $-\ U_{\alpha}=\emptyset$ dla kazdego $\alpha\in A$ W
tedy: $U=\emptyset\in T_2$
 - $-U_{\alpha} \neq \emptyset$ dla pewnego α Wtedy: Wprowadzmy sobie funkcje zdaniowa

$$P(x) = (\exists \alpha \in A)(U_{\alpha} = [-x, x])$$

oraz zbior

$$B = \{n : P(n) \land n \in \mathbb{N}\}\$$

jako zbior indeksow n dla ktorych istnieje $\alpha \in A$ taka ze $U_{\alpha} = [-n, n]$.

Nastepnie rozwazmy dwa przypadki:

I. Zbior B jest ogranioczony z gory. Wtedy z tego, ze B jest ograniczony oraz B zawiera tylko liczby naturalne, wnioskujemy, ze istnieje w B maximum. Niech m = max(B). Wtedy $U = [-m, m] \in T_2$

II. Zbior B jest nieograniczony z gory. Wtedy $U = \bigcup_{\alpha \in A} U_{\alpha} = \bigcup_{n=1}^{\infty} [-n, n] = \mathbb{R}$, lecz załozylismy, ze $U \neq \mathbb{R}$. Zatem sprzecznosc, wiec ten przypadek nam odpada.

Zatem T_2 jest zamkniety na sume.

- (c') Wezmy dowolne dwa zbiory $B \in T_2$ oraz $C \in T_2$. Wtedy: Rozwazmy przypadki:
 - $B = \mathbb{R} \wedge C = \mathbb{R}$. Wtedy: $B \cap C = \mathbb{R} \in T_2$.
 - WLOG zalozmy, ze $B \neq \mathbb{R}$. Wtedy: Rozwazmy przypadki:
 - $-B = \emptyset$. Wtedy bezwzgledu na C: $B \cap C = \emptyset \in T_2$
 - $B \cap B = [-n, n]$ dla pewnego $n \in \mathbb{N}$. Wtedy: I. Jesli $C = \emptyset$ to: $B \cap C = \emptyset \in T_2$.

II. Jesli
$$C = [-m, m]$$
 dla pewnego $m \in \mathbb{N}$, Wtedy: Niech $k = min(m, n)$, mamy $B \cap C = [-k, k] \in T_2$

Zatem T_2 jest zamkniete na skonczone przekroje.

Podsumowujac, sprawdzilismy z definicji topologii i otrzymalismy ze T_2 jest topologia. c.b.d.u.

dla T_3 mamy:

- (a') Z opisu T_3 mamy, ze $\mathbb{R} \in T_3$ oraz $\emptyset \in T_3$
- (b') Niech $U=\bigcup_{\alpha\in A}U_{\alpha},$ gdzie $U_{\alpha}\in T_{2}$ oraz A jest pewnym zbiorem indeksowym.

Wprowadzmy sobie funkcje zdaniowa

$$P(x) = (\exists \alpha \in A)(U_{\alpha} = [x, \infty])$$

oraz zbior

$$B = \left\{ n : P(n) \land n \in \mathbb{N}^+ \right\}$$

B to zbior wszystkich indeksow n dla ktorych $U_{\alpha} = [n, \infty]$. Poniewaz zbior ten zawiera tylko liczby naturalne, wiec ma minimum. Niech m = min(B). Wtedy $U = [m, \infty] \in T_3$. Zatem T_3 jest zamkniety na sume.

(c') Wezmy sobie dowolne zbiory $B \in T_3$ oraz $C \in T_3$. Niech b = min(B) oraz c = min(C). Wtedy $B \cap C = [min(b, c), \infty] \in T_3$ bo $min(b, c) \in \mathbb{N}$. Zatem T_3 jest zamkniety na przekroj.

Podsumowujac, rozwazylismy wszystkie mozliwości i otrzymalsmy, ze T_3 jest topologia.

6. Niech N bedzie zbiorem liczb naturalnych dodatnich. Udowodnij ze kazda z nastepujacych kolekcji(w ramkach) podzbiorow N jest topologia.

Definicja: Initial segment topology; poki co brak polskiego tlumaczenia

 T_1 zawiera \mathbb{N} oraz \emptyset oraz kazdy zbior $\{1, 2, 3, \dots, n\}$, dla dowolnego n naturalnego dodatniego.

Dowod:

- Z opisu mamy, ze $\emptyset \in T_1$ oraz $\mathbb{N} \in T_1$
- Niech $U = \bigcup_{\alpha \in A} \overline{U_{\alpha}}$ dla pewnego zbioru indeksowego A i $\overline{U_{\alpha}} \in T_1$. Wprowadzmy sobie funkcje zdaniowa

$$P(x) = (\exists \alpha \in A)(U_{\alpha} = \{1, 2, 3, \dots, x\})$$

oraz zbior

$$B = \{ n : P(n) \land n \in \mathbb{N}^+ \}$$

Rozwazmy przypadki:

- Zbior B jest ogranioczony z gory.
 - Poniewaz B zawiera liczby naturalne dodatnie i jest ograniczony z gory wiec zawiera maximum. Niech m = max(B). Zatem dla pewnego $\alpha, U_{\alpha} = \{1, 2, ..., m\}$. Wtedy $U = \{1, 2, ..., m\} \in T_1$.
- Zbior B jest nieograniczony z gory. Poniewaz zbior B zawiera liczby naturalne dodatnie(od 1 wzwyz) i nie jest ograniczony z gory, wiec $B = \mathbb{N}$. Zatem dla dowolnej $\alpha \in A$ istnieje $\alpha' \in A$ taka ze, $U_{\alpha} \subset U_{\alpha'}$. Zatem $U = \mathbb{N}$.

Zatem T_1 jest zamkniety na sume.

• Wezmy dowolne dwa zbiory $B \in T_1$ oraz $C \in T_1$

Rozwazmy przypadki:

- $-B = C = \mathbb{N}$. Wtedy: $B \cap C = \mathbb{N} \in T_1$
- WLOG $B \neq \mathbb{N}$. Wtedy:

Rozwazmy przypadki:

- * $B = \emptyset$ Wtedy:
 - Bezwzgledu na C. $B \cap C = \emptyset \in T_1$
- * $B \neq \emptyset$, czyli $B = \{1, 2, ..., n\}$ dla pewnego $n \in \mathbb{N}$ to:

Jesli $C = \emptyset$, to $B \cap C = \emptyset \in T_1$.

Jesli $C = \{1, 2, \dots, m\}$ dla pewnego $m \in \mathbb{N}$, to $B \cap C = \{1, 2, \dots, min(n, m)\} \in T_1$

Zatem T_1 jest zamkniety na przekroj.

Zatem T_1 to topologia.

Definicja: Final segment topology; poki co brak polskiego tlumaczenia

 T_2 zawiera \mathbb{N} oraz \emptyset oraz kazdy zbior $\{n, n+1, n+2, \ldots\}$, dla dowolnego n naturalnego dodatniego.

Dowod:

- Z opisu mamy, ze $\emptyset \in T_2$ oraz $\mathbb{N} \in T_2$
- Niech $U = \bigcup_{\alpha \in A} \overline{U_{\alpha}}$, gdzie A jest pewnym zbiorem indeksowym oraz $\overline{U_{\alpha}} \in T_2$. Wprowadzmy sobie funkcje zdaniowa

$$P(x) = (\exists \alpha \in A)(U_{\alpha} = \{x, x + 1, x + 2, \dots\})$$

oraz zbior

$$B = \left\{ n : P(n) \land n \in \mathbb{N}^+ \right\}$$

Niech m = min(B). Wtedy dla kazdego $\alpha \in A, U_{\alpha} \subset \{m, m+1, ...\}$ oraz $U = \{m, m+1, ...\} \in T_2$. Zatem T_2 jest zamkniety na sume.

• Wezmy dowolne $B \in T_2$ oraz $C \in T_2$.

Rozwazmy przypadki:

 $-B = \emptyset \lor C = \emptyset$. Wtedy:

$$B \cap C = \emptyset \in T_2$$

 $-B = \mathbb{N} \wedge C = \mathbb{N}$. Wtedy:

$$B \cap C = \mathbb{N} \in T_2$$

– Zaden z nich nie jest pusty oraz oba nie sa zbiorem \mathbb{N} . Wtedy: Jesli $B = \{m, m+1, \dots\}$ dla pewnego $m \in \mathbb{N}$ oraz $C = \{n, n+1, \dots\}$ dla pewnego $n \in \mathbb{N}$, to $B \cap C = \{max(m, n), max(m, n)$

Jesli WLOG $B = \{m, m+1, \ldots\}$ dla pewnego $m \in \mathbb{N}$ oraz $C = \mathbb{N}$ to $B \cap C = \{m, m+1, \ldots\} \in T_2$

Zatem T_2 jest zamkniete na przekroj

Zatem T_2 to topologia. c.b.d.u.

- 7. Wypisz wszystkie mozliwe topologie na ponizszych zbiorach:
 - (a) $X = \{a, b\}$

Odpowiedz:

Sa takie 4 topologie:

$$T_1 = \{X, \emptyset\}$$

$$T_2 = \{X, \emptyset, \{a\}, \{b\}\}$$

$$T_3 = \{X, \emptyset, \{b\}\}\$$

$$T_4 = \{X, \emptyset, \{a\}\}$$

(b) $X = \{a, b, c\}$

Odpowiedz:

Jest takich 29 topologii:TODO PRZEPISAC Z KARTKI JE TUTAJ

TODO NAPISZ DOWOD ZE JEST ICH 29, NA WIKI SPRAWDZ: TOPOLOGIES ON SET WITH 3 ELEMENTS

$$T_1 = \{X, \emptyset\}$$

$$T_2 = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \}$$

$$T_3 = \{X, \emptyset, \{a\}\}\$$

$$T_4 = \{X, \emptyset, \{b\}\}$$

$$T_5 = \{X, \emptyset, \{c\}\}\$$

$$T_6 = \{X, \emptyset, \{a\}, \{a, b\}\}$$

$$T_7 = \{X, \emptyset, \{a\}, \{a, c\}\}$$

$$T_8 = \{X, \emptyset, \{b\}, \{b, c\}\}\$$

$$T_9 = \left\{ X, \emptyset, \left\{ b \right\}, \left\{ b, a \right\} \right\}$$

$$T_{10} = \{X, \emptyset, \{c\}, \{c, a\}\}\$$

$$T_{11} = \{X, \emptyset, \{c\}, \{c, b\}\}\$$

$$T_{12} = \{X, \emptyset, \{a\}, \{a, b, c\}\}\$$

$$T_{13} = \{X, \emptyset, \{b\}, \{a, b, c\}\}\$$

$$T_{14} = \{X, \emptyset, \{c\}, \{a, b, c\}\}\$$

8. Udowodnij ponizszy lemat.

Lemat: Topologia dyskretna i podzbiory nieskonczone

Niech X bedzie zbiorem niesok
nczonym oraz T topologia na X. Jezeli kazdy nieskonczony
 podzbior X nalezy do T, to T jest topologia dyskretna.

Dowod:

Zgodnie z ktoryms tam lematem(latwy dowod), jesli T zawiera $\{x\}$ gdzie $x \in X$ jest dowolnym elementem X, to T jest topologia dyskretna.

Zatem wezmy dowolny element $x \in X$. Skoro X jest nieskonczonym zbiorem i kazdy nieskonczony podzbior X jest w T, to oznacza, ze mozemy sobie wybrac z X, nieskonczony ciag roznowartosciowy, w ktorym nie ma elementu x.

Jak? Na przyklad tak:

$$\begin{cases} a_1 = \begin{cases} 1 \text{ jesli } x \neq 1 \\ 0 \text{ jesli } x = 1 \end{cases} \\ a_n = \min \{ y : y \in X \land y \neq x \land (\forall i \in \{1, 2, \dots, n-1\}) (a_i \neq y) \} \end{cases}$$

Nastepnie rozwazmy dwa nieskonczone zbiory:

$$A = \{a_n : n = 2 \times k \land k \in \mathbb{Z}\} \cup \{x\}$$

$$B = \{a_n : n = 2 \times k + 1 \land k \in \mathbb{Z}\} \cup \{x\}$$

Wtedy oczywiscie $A \in T$ oraz $B \in T$ oraz $A \cap B = \{x\} \in T$

Z dowolnosci x, wnioskujemy, ze T zawiera dowolny singleton $\{x\}$ taki ze, $x \in X$. Zatem T jest topologia dyskretna. c.b.d.u.

- 9. Wskaz i udowodnij, ktore z ponizszych zbior liczb rzeczywistych R sa topologiami.
 - T_1 : zawiera \mathbb{R}, \emptyset oraz kazdy przedzial (a, b) gdzie $a, b \in \mathbb{R}$ oraz a < b;

Nie:

Wezmy sobie zbior $A = \{1, 2\}$ oraz $B = \{4, 5\}$. Oczywiscie $A \in T_1$ oraz $B \in T_1$, ale suma $A \cup B = \{1, 2\} \cup \{4, 5\} \notin T_1$

 T_2 : zawiera \mathbb{R}, \emptyset oraz kazdy przedzial (-r, r) gdzie $r \in \mathbb{R}^+$;

Tak:

- Z definicjie $\mathbb{R} \in T_2$ oraz $\emptyset \in T_2$
- Wezmy dowolna $U = \bigcup_{\alpha \in A} U_{\alpha}$, gdzie $U_{\alpha} \in T_2$ oraz A jest pewnym zbiorem indeksowym. Wtedy jesli pewien $U_{\alpha} = \mathbb{R}$ to $U = \mathbb{R} \in T_2$. W przeciwnym przypadku, jesli kazdy $U_{\alpha} = \emptyset$ to $U = \emptyset \in T_2$. W przeciwnym przypadku, jesli nie kazdy $U_{\alpha} = \emptyset$ wtedy rozwazmy przypadki: jesli zbior indeksow r, dla ktorych $U_{\alpha} = (-r, r)$, jest ograniczony, to wiemy, ze istnieje indeks $q \in \mathbb{R}$, taki ze $(\forall \alpha in A)(U_{\alpha} \subseteq (-q, q))$ oraz $(-q, q) \in T_2$. Z drugiej strony jesli zbior indeksow r, dla ktorych $U_{\alpha} = (-r, r)$, jest nieograniczony, to $U = \mathbb{R} \in T_2$.
- Wezmy dowolne dwa zbiory $A \in T_2$ oraz $B \in T_2$. Wtedy jesli ktorys z nich jest \emptyset to $A \cap B = \emptyset$. Jesli zaden z nich nie jest \emptyset , to albo oba sa \mathbb{R} , wtedy $A \cap B = \mathbb{R} \in T_2$ albo ktorys z nich nie jest \mathbb{R} . Wtedy albo jeden z nich jest postaci (-r,r) albo oba sa tej postaci, (-r,r), (-q,q). W kazdym przypadku zauwazamy, ze $A \cap B = (-r,r) \in T_2$ lub $A \cap B = (-min(r,q), min(r,q)) \in T_2$
- T_3 : zawiera \mathbb{R}, \emptyset oraz kazdy przedzial (-r, r) gdzie $r \in \mathbb{Q}^+$;

Odpowiedz:

Nie. Rozwazmy ciag liczb wymiernych r_n dazacy do liczby niewymiernej r. Dodatkowo rozwazmy nieskonczona sume zbiorow $\bigcup_{i=1}^{\infty} (-r_n, r_n)$. Wtedy przy $n \to \infty, (-r_n, r_n) \to (-r, r)$. Kazdy zbior z $\bigcup_{i=1}^{infty} (-r_n, r_n)$ jest w T_3 ale (-r, r) juz nie jest.

 T_4 : zawiera \mathbb{R}, \emptyset oraz kazdy przedzial [-r, r] gdzie $r \in \mathbb{Q}^+$;

Odpowiedz:

Nie. Rozwazmy ciag liczb wymiernych r_n dazacy do liczby wymiernej r. Dodatkowo rozwazmy nieskonczona sume zbiorow $\bigcup_{i=1}^{\infty} [-r_n + \frac{1}{n}, r_n - \frac{1}{n}]$. Wtedy przy $n \to \infty, [-r_n + \frac{1}{n}, r_n - \frac{1}{n}] \to (-r, r)$. Kazdy zbior z sumy $\bigcup_{i=1}^{\infty} [-r_n + \frac{1}{n}, r_n - \frac{1}{n}]$ jest w T_4 , ale (-r, r) juz nie jest.

 T_5 : zawiera \mathbb{R}, \emptyset oraz kazdy przedzial (-r, r) gdzie $r \in \mathbb{R}^+ \setminus \mathbb{Q}$;

Odpowiedz:

Nie. Rozwazmy ciag liczb niewymiernych dazacy do liczby wymiernej. Niech r_n bedzie ciagiem liczb wymiernych dazacym do $\sqrt{2}$. Nastepnie rozwazmy ciag $g_n = 2 + \sqrt{2} - r_n$. Wtedy $\bigcup_{i=1}^{\infty} (-g_n, g_n)$ dazy do (-2, 2) przy $n \to \infty$. Argumentacja podobna jak w przykładzie 4.

 T_6 : zawiera \mathbb{R}, \emptyset oraz kazdy przedzial [-r, r] gdzie $r \in \mathbb{R}^+ \setminus \mathbb{Q}$;

Odpowiedz:

Nie. Rozwazmy ciag liczb niewymiernych dazacy do liczby wymiernej g_n . Rozwazmy nieskonczona sume $\bigcup_{i=1}^{\infty} [-g_n + \frac{1}{n}, g_n - \frac{1}{n}]$. Suma ta dazy do [-g, g], gdzie g jest liczba wymierna.

 T_7 : zawiera \mathbb{R}, \emptyset oraz kazdy przedzial [-r, r) gdzie $r \in \mathbb{R}^+$;

Odpowiedz:

Nie. Przyklad z podpunktu 4 tutaj zadziala.

 T_8 : zawiera \mathbb{R}, \emptyset oraz kazdy przedzial (-r, r] gdzie $r \in \mathbb{R}^+$;

Odpowiedz: Nie. Przyklad z podpunktu 4 takza tutaj zadziala.

 T_9 : zawiera \mathbb{R}, \emptyset , kazdy przedzial [-r, r] oraz kazdy przedzial (-r, r) gdzie $r \in \mathbb{R}^+$;

Odowiedz:

Tak. Mozna tu zrobic dowod w stylu tych poprzednich- czyli przeanalizowac wszystkie przypadki, ale poczekam na cos lepszego. Zostanie to tutaj uzupelnione.

 T_{10} : zawiera \mathbb{R}, \emptyset , kazdy przedzial [-n, n] oraz kazdy przedzial (-r, r) gdzie $n \in \mathbb{N}^+$ oraz $r \in \mathbb{R}^+$;

Odpowiedz:

Tak. Mozna tu zrobic dowod w stylu tych poprzednich- czyli przeanalizowac wszystkie przypadki, ale poczekam na cos lepszego. Zostanie to tutaj uzupelnione.

1.2 Zbiory otwarte: definicje, lematy, zadania i rozwiazania

1.2.1 Definicja: Zbior otwarty- open set

Niech (X,T) bedzie przestrzenia topologiczna. Wtedy elementy T nazywaja sie **zbiory otwarte.**

1.2.2 Lemat: Przestrzen topologiczna i zbiory otwarte

Niech (X,T) bedzie przestrzenia topologiczna. Wtedy

- X oraz \emptyset sa zbiorami otwartymi.
- suma(skonczona lub nie) zbiorow otwartych jest zbiorem otwartym
- przekroj skonczony zbiorow otwartych jest zbiorem otwartym

Dowod: Wynika to wprost z definicji. Podpunkt trzeci wynika z zadania 4.

1.2.3 Definicja: Zbior domkniety- closed set

Niech (X,T) bedzie przestrzenia topologiczna. Podzbior S zbioru X jest **zbiorem domknietym** w (X,T) jesli jego dopelnienie w $X, X \setminus S$, jest zbiorem otwartym w (X,T)

Komentarz

Czyli mowimy, ze S, bedace podzbiorem X, jest zbiorem domknietym w (X, T) jesli jego dopelnienie w X, czyli $X \setminus S$ jest otwarte, czli jesli $X \setminus S \in T$

Zauwazmy, ze jesli (X,T) jest przestrzenia dyskretna, wtedy kazdy podzbior X jest zbiorem domknietym. Jednakze w przestrzeni niedyskretnej, (X,T), jedynymi zbiorami domknietymi sa X oraz \emptyset

1.2.5 Lemat: Przestrzen topologiczna i zbiory domkniete

Niech (X,T) bedzie przestrzenia topologiczna. Wtedy

- \emptyset oraz X sa zbiorami domknietymi
- przekroj skonczonej lub nieskonczonej liczby zbiorow domknietych jest zbiorem domknietym
- suma skonczonej liczby zbiorow zamknietych jest zbiorem domknietym

Komentarz:

Mozna tu dostrzec pewna analogie pomiedzy przestrzenia topologiczna i zbiorami otwartymi

Dowod:

TODO

_Cwiczenie 1.2:

- 1. Wypisz wszystkie 64 podzbiory zbioru $X = \{a, b, c, d, e, f\}$. Obok kazdego zbioru wypisz czy jest
 - clopen
 - ani clopen ani open
 - open ale nie closed
 - closed ale nie open
- 2. Niech (X,T) bedzie przestrzenia topologiczna z własnościa taka, ze kazdy podzbior jest domkniety(closed). Udowodnij ze jest to przestrzen dyskretna.
- 3. Pokaz ze jesli (X,T) jest przestrzenia dyskretna lub przestrzenia nie dyskretna, wtedy kazdy otwarty(open) zbior jest clopen zbiorem. Znajdz topologia T na zbiorze $X = \{a, b, c, d\}$, ktora nie jest dyskretna oraz nie jest nie dyskretna ale ma wlasnosc taka, ze kazdy zbior otwarty(open) jest clopen.
- 4. Niech X bedzie zbiorem nieskonczonym. Jesli T jest topologia na X taka ze kazdy nieskonczony podzbior X jest domkniety(closed), udowodnij ze T jest topologia dyskretna.
- 5. Niech X bedzie nieskonczonym zbiorem oraz T topologia na X z wlasnoscia taka, ze jedynym nieskonczonym podzbiorem X, ktory jest otwarty jest X. Czy (X,T) musi byc przestrzenia niedyskretna?
- 6. Niech T bedzie topologia na zbiorze X taka, ze ma tylko 4 zbiory; dokladnie, $T = \{X, \emptyset, A, B\}$ gdzie A i B to niepuste rozlaczne, podzbiory **wlasciwe**(czyli nie moga byc rowne X) X.
 - Udowodnij ze A i B spelniaja tylko jeden z wymienionych kryteriow:

- $B = X \setminus A$;
- $A \subset B$;
- $B \subset A$.

Korzystajac z powyzszego zadania, wypisz wszystkie topolobia na $X=\{1,2,3,4\}$ zawierajace dokładnie 4 zbiory.

- 7. Uzywajac indukcji, udowodnij ze wraz ze wzrostem n, gdzie n to liczba elementow zbioru X, liczba topologii na zbiorze X wzrasta.
 - Uzywajac indukcji udowonij ze jesli skonczony zbior X ma $n \in \mathbb{N}$ punktow, to ma conajmniej (n-1)! roznych topologii.
 - Jesli zbior X jest dowolnym nieskonczonym zbiorem o mocy(cardinality) \aleph , czyli jest przeliczalny. Udowodnij, ze jest conajmniej 2^{\aleph} roznych topologii na X. Wywnioskuj ze kazdy nieskonczony zbior ma nieprzeliczlanie duzoe roznych topologii na sobie.
- 1.3 Skonczenie-domknieta topologia(ang. The Finite-Closed Topology): definicje lematy, zadania i rozwiazania.