

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
18 April 2002 (18.04.2002)

PCT

(10) International Publication Number  
**WO 02/31134 A2**

(51) International Patent Classification<sup>7</sup>: **C12N 9/64**

(21) International Application Number: **PCT/US01/31874**

(22) International Filing Date: 12 October 2001 (12.10.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:  
60/240,117 12 October 2000 (12.10.2000) US

(71) Applicant (for all designated States except US): **FERRING BV [US/US]; Polaris Avenue 144, NL-2132 JX Hoofddorp (NL).**

(72) Inventors; and

(75) Inventors/Applicants (for US only): **QI, Steve [GB/US]; 11034 West Ocean Air Drive, Apt. 24B, San Diego, CA 92130 (US). AKINSANYA, Karen, O. [GB/US]; 7675 Palmilla Drive, Apt. 642B, San Diego, CA 92122-5094 (US). RIVIERE, Pierre, J.-M. [FR/US]; 3993 Via Can-  
grejo, San Diego, CA 92130 (US). JUNIEN, Jean-Louis [FR/FR]; Ferring SAS, F-75507 Paris (FR).**

(74) Agents: **SAMPLES, Kenneth, H. et al.; Fitch, Even, Tabin & Flannery, 120 South LaSalle Street, Suite 1600, Chicago, IL 60603 (US).**

(81) Designated States (national): **AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.**

(84) Designated States (regional): **ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).**

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.



**WO 02/31134 A2**

(54) Title: **NOVEL SERINE PROTEASE GENES RELATED TO DPPIV**

(57) Abstract: Novel proteins or polypeptides having significant sequence homology to DPPIV, nucleic acids coding therefor, cells which have been modified with such nucleic acid so as to express these proteins, antibodies to these proteins, screening methods for the discovery of new therapeutic agents which are inhibitors of the activity of these proteins or of related proteins, and therapeutic agents discovered by such screening methods, as well as new therapeutic treatments, are all provided.

## Novel Serine Protease Genes Related to DPPIV

### Field of the Invention

The present invention relates to novel serine proteases related to dipeptidyl peptidase IV (DPPIV), and to isolated nucleic acids coding for these proteases, all of which are useful for the discovery of new therapeutic agents, for measuring protease 5 activity, and for determining the inhibitory activity of compounds against these proteases.

### Background of the Invention

Proteases and peptidases are enzymes that catalyse the hydrolysis of peptidic amide bonds. Proteases play an important role in the regulation of biological processes 10 in almost every life-form from bacteria to virus to mammals. They perform critical functions in, for example, digestion, blood clotting, apoptosis, activation of immune responses, zymogen activation, viral maturation, protein secretion and protein trafficking. They can be classified according to a number of criteria, such as site of action, substrate preference, and mechanism. So, for example, aminopeptidases act 15 preferentially at the N-terminal residues of a peptide, while carboxypeptidases act preferentially at the C-terminus and endopeptidases act at sites removed from the two termini. Among the carboxy- and aminopeptidases, peptidyl peptidases cleave a single amino acid residue from the substrate, dipeptidyl peptidases cleave a dipeptide unit (two amino acids) from the substrate, and tripeptidases cleave three amino acids from the 20 substrate. Substrate preference is frequently expressed in terms of the amino acid residue immediately N-terminal to the cleavage site. For example, trypsin-like peptidases will preferentially cleave a peptide next to a basic amino acid (arginine or lysine), i.e. where the bond hydrolysed is the Arg/Lys-Xaa bond. As another example, the chymotrypsin-like family of peptidases preferentially hydrolyse peptides adjacent to 25 an aromatic residue. Mechanistically, peptidases are classified as being serine-dependent, cysteine-dependent, aspartic acid-dependent or zinc-dependent.

Because peptidases and proteases are involved in the regulation of many physiological processes, they are attractive targets for the development of therapeutic agents. Protease and peptidase inhibitors are, for example, used in the treatment of 30 hypertension, coagulation disorders, and viral infection.

Proteolytic enzymes that exploit serine in their catalytic activity are ubiquitous, being found in viruses, bacteria and eukaryotes. Over 20 families (denoted S1 - S27) of serine protease have been identified; these are grouped into 6 clans (SA, SB, SC, SE, SF

and SG) on the basis of structural similarity and other functional evidence. Structures are known for four of the clans (SA, SB, SC and SE); these appear to be totally unrelated, suggesting at least four evolutionary origins of serine peptidases and possibly many more, Rawlings and Barrett, Meth. Enzymol. 244: 19-61 (1994).

5       The prolyl oligopeptidase family consists of a number of evolutionarily related peptidases whose catalytic activity seems to be provided by a charge relay system similar to that of the trypsin family of serine proteases, but which evolved by independent convergent evolution. A conserved serine residue has been shown experimentally (in *E. coli* protease II as well as in pig and bacterial PE) to be necessary for the catalytic  
10      mechanism. This serine, which is part of the catalytic triad (Ser, His, Asp), is generally located about 150 residues away from the C-terminal extremity of these enzymes (which are all proteins that contain about 700 to 800 amino acids).

One of the most intensively studied prolyl oligopeptidases is dipeptidyl peptidase IV (DPPIV, EC 3.414.5), a type II glycoprotein, which is the only well characterised  
15      dipeptidyl aminopeptidase known to be located on the outer side of plasma membranes. As indicated above, dipeptidyl aminopeptidases are characterised by their ability to cleave N-terminal dipeptides from a variety of small peptides. Dipeptidyl aminopeptidases show different substrate specificities and cellular localisation, suggesting different functions of each activity in peptide processing. DPPIV is characterised by its capacity to cleave N-  
20      terminal dipeptides containing proline or alanine as the penultimate residue. The DPPIV gene spans approximately 70 kb and contains 26 exons, ranging in size from 45 bp to 1.4 kb. The nucleotide sequence (3,465 bp) of the cDNA contains an open reading frame encoding a polypeptide comprising 766 amino acids. The nucleotides that encode the active site sequence (G-W-S-Y-G) are split between 2 exons. This clearly distinguishes  
25      the genomic organisation of the prolyl oligopeptidase family from that of the classic serine protease family.

DPPIV is widely distributed in mammalian tissues and is found in great abundance in the kidney, intestinal epithelium and placenta (Yaron, A. and Naider, F., Critical Reviews in Biochem. Mol. Biol. 1993 [1], 31). In the human immune system,  
30      the enzyme is expressed almost exclusively by activated T-lymphocytes of the CD4<sup>+</sup> type where the enzyme has been shown to be synonymous with the cell-surface antigen CD26. Although the exact role of DP-IV in human physiology is still not completely understood, recent research has shown that the enzyme clearly has a major role in human physiology and pathophysiology.

On human T cells, DPPIV expression appears late in thymic differentiation and is preferentially restricted to the CD4<sup>+</sup> helper/memory population, and CD26 can deliver a potent co-stimulatory T-cell activation signal. DPPIV, also known as T-cell activation antigen CD26, therefore plays an important role in the immune response via association with CD45 tyrosine phosphatase and, through its ability to bind adenosine deaminase (ADA) to the T-cell surface, protects the T-cell from adenosine-mediated inhibition of proliferation. Furthermore, the regulation of the function of chemokines by CD26/DPPIV appears to be essential for lymphocyte trafficking and infectivity of HIV strains. DPPIV has been associated with numerous functions including involvement in T-cell activation, cell adhesion, digestion of proline containing peptides in the kidney and intestines, HIV infection and apoptosis, and regulation of tumorigenicity in certain melanoma cells, Pethiyagoda et al., *Clin. Exp. Metastasis* 2000;18(5):391-400. DPPIV is also implicated in the endocrine regulation and metabolic physiology. More particularly, DPPIV cleaves the amino-terminal His-Ala dipeptide of GLP-1, generating a GLP-1 receptor antagonist, and thereby shortens the physiological response to GLP-1. Glucagon-like peptide-1 (GLP-1), an incretin that induces glucose-dependent insulin secretion, is rapidly degraded by DPPIV, and since the half-life for DPPIV cleavage is much shorter than the half-life for removal of GLP-1 from circulation, a significant increase in GLP-1 bioactivity (5- to 10- fold) is anticipated from DPP-IV inhibition.

Inhibitors of DPPIV are currently being studied in the clinic as potential therapeutic agents for type 2 diabetes and impaired glucose tolerance.

Various different inhibitors of DPPIV were known in 1993. One of these is a suicide inhibitor N-Ala-Pro-O-(nitrobenzoyl-) hydroxylamine. Another is a competitive inhibitor: e-(4-nitro) benzoxy carbonyl-Lys-Pro, and another is a polyclonal rabbit anti-porcine kidney DPPIV immunoglobulin. Others have since been developed and are described in detail in U.S. Patents Nos. 5,939,560, 6,110,949m 6,011,155 and 5,462,928.

In addition to, but independent of, its serine type catalytic activity, DPPIV binds closely to the soluble extracellular enzyme adenosine deaminase (ADA), acting as a receptor and is thought to mediate signal transduction. DPPIV structure is characterized by two extracellular domains, an  $\alpha/\beta$  fold hydrolase domain and a 7-blade beta-propeller domain consisting of repeated beta sheets of about 50 amino acids. Recently it has been shown that, besides selecting substrates by size, the beta-propeller domain, containing 10 of the 12 highly conserved cysteine residues, contributes to catalysis of the peptidase domain. In addition, the cysteine-rich domain is responsible for DPPIV-binding to collagen I and to extracellular ADA. DPPIV is also reported to play a role in fibronectin-

mediated interactions of cells with extracellular matrix. Recent studies show that the protease activity of DPPIV is not required for its anti-invasive activity because mutants of DPPIV that lack the extracellular serine protease activity maintain such activity.

A number of proteins that share similarities with DPPIV have been reported in  
5 the literature. Several of these proteins have been cloned including DPP-I, DPP-II,  
DPP-III, DPP-X and fibroblast activation protein (FAP). These have been identified and  
characterised either by molecular cloning and functional studies of expressed proteins or  
as biochemical activities in tissue extracts. DPPIV-beta and other novel peptidases with  
functional similarities to DPPIV are not yet cloned. The identification, characterization  
10 and/or appropriate classification of further members of the family of prolyl  
oligopeptidases, the elucidation of their physiological (and particularly  
pathophysiological) role, and the application of that knowledge to the development of  
new therapeutic agents are significant challenges.

#### Summary of the Invention

15 The present invention provides proteins with prolyl oligopeptidase (post-proline  
cleaving) activities that constitute three novel members of a family of proteins related to  
DPPIV, including the full-length proteins, alternative splice forms, subunits, and  
mutants, as well as nucleotide sequences encoding the same. The present invention also  
provides methods of screening for substrates, interacting proteins, agonists, antagonists  
20 or inhibitors of the above proteins, and furthermore to pharmaceutical compositions  
comprising the proteins and/or mutants, derivatives and/or analogues thereof and/or  
ligands thereto.

These novel proteins having significant sequence homology to DPPIV are termed  
dipeptidyl peptidase IV-related protein-1, 2 & 3 (DPRP-1, DPRP-2 and DPRP-3). The  
25 amino acid sequences of DPRP-1, DPRP-2 and DPRP-3 are given in SEQ. ID NOS:1, 3  
and 5 respectively. Further disclosed are nucleic acid sequences coding for these  
proteins (SEQ. ID NOS:2, 4 and 6). Table 1 illustrates the homology (i.e. similarity)  
between the novel proteins DPRP-1, DPRP-2 and DPRP-3 and other known serine  
proteases.

**Table 1 – Comparison of the sequences of these three novel proteins with DPPIV and other Clan SC, Family S9 members and Subfamily B members**

|   | Protease Family                 | Protease name | No. of a.a. | Homology with DPPIV | TM region | Ser-Asp-His Triad | Gene location   | Optimal pH |
|---|---------------------------------|---------------|-------------|---------------------|-----------|-------------------|-----------------|------------|
| 5 | Clan CA, Family C1              | DPPI          | 463         | N                   | N         | N                 | 11q14.1-q14.3   | -          |
|   | Clan SC, Family S28             | DPPII         | 500         | N                   | Y         | N                 | -               | 4.5-6.0    |
|   |                                 | QPP           | 492         | N                   | N         | N                 | -               | 4.5-7.5    |
|   |                                 | PCP           | 496         | N                   | N         | N                 | -               | -          |
|   | Unassigned                      | DPPIII        | 737         | N                   | N         | N                 | -               | -          |
|   | Clan SC, Family S9, Subfamily B | DPPIV         | 766         | 100                 | Y         | Y                 | 2q24.3          | 7.5-8.0    |
|   |                                 | DPPVI         | 865         | 52                  | Y         | Mutation          | 7               | -          |
|   |                                 | FAP           | 760         | 70                  | Y         | Y                 | 2q23            | 7.5-8.0    |
|   |                                 | DPRP-1        | 882         | 41                  | N         | Y                 | 15q22.1-15q22.2 | 7.5-8.0    |
|   |                                 | DPRP-2        | 864         | 39                  | N         | Y                 | 19p13.3         | 7.5-8.0    |
|   |                                 | DPRP-3        | 796         | 54                  | Y         | Mutation          | 2q12.3-2q14.1   | -          |

The greatest homology between DPRP-1, DPRP-2 and DPPIV is seen in the C-terminal sequences. On the basis of sequence homology with DPPIV (see Figure 1), one might predict that these DPRP proteins would have functions that include, but are not limited to, roles as enzymes. Cloning, expression, biochemical and molecular characterization have confirmed this hypothesis.

The expression pattern of DPRPs and the localization to specialized epithelial cells and plasma cells (Leydig cells, prostate epithelial cells, lymphocytes, B cells) is consistent with a role in differentiation, proliferation and inflammation. The localization of the DPRP-1 gene in hormone sensitive cancers (breast, prostate, testicular), tissues regulated by testosterone and the abundant expression in poorly differentiated cancers, demonstrate that DPRP-activating or inhibiting molecules will have numerous therapeutic applications in the treatment of disorders characterized by disregulated growth, differentiation and steroid or polypeptide hormone synthesis and degradation. Data disclosed herein supports the hypothesis that DPRP-1 and DPRP-2 are involved in the regulation of proliferation of *in vitro* models of prostate and testis cancer well known to those skilled in the art.

DPRP-1 and DPRP-2 activities described herein and their expression patterns are compatible with their having functional roles as physiological regulators of the immune and neuroendocrine systems through the enzymatic modification of biochemical mediators like peptides and chemokines. The numerous functions previously described

for DPPIV based upon the use of inhibitors may be due in part to its action and that of similar proteins, like the DPRPs. Therefore, the discovery of selective and potent inhibitors of DPPIV, of the DPRPs and of other related proteases like FAP is considered central to achieving effective and safe pharmaceutical use of these and any newly identified serine protease inhibitors, as well as other active compounds that modify the function(s) of such proteins.

The invention thus provides novel proteins or polypeptides, the nucleic acids coding therefor, cells which have been modified with the nucleic acid so as to express these proteins, antibodies to these proteins, a screening method for the discovery of new therapeutic agents which are inhibitors of the activity of these proteins (or which are inhibitors of DPPIV and not of the proteins), and therapeutic agents discovered by such screening methods. The novel proteins and the nucleic acids coding therefor can be used to discover new therapeutic agents for the treatment of certain diseases, such as for example, reproductive, inflammatory and metabolic disorders and also in the preparation of antibodies with therapeutic or diagnostic value.

In accordance with one aspect of the present invention, there are provided novel, mature, biologically active proteins, principally of human origin. Such proteins may be isolated in small quantities from suitable animal (including human) tissue or biological fluids by standard techniques; however, larger quantities are more conveniently prepared in cultures of cells genetically modified so as to express the protein.

In accordance with another aspect of the present invention, there are provided isolated nucleic acid molecules encoding polypeptides of the present invention including mRNAs, DNAs, cDNAs, genomic DNAs thereof.

In accordance with a further aspect of the present invention, nucleic acid probes are also provided comprising nucleic acid molecules of sufficient length to specifically hybridize to a nucleic acid sequence of the present invention.

In accordance with a still further aspect of the present invention, processes utilizing recombinant techniques are provided for producing such polypeptides useful for *in vitro* scientific research, for example, synthesis of DNA and manufacture of DNA vectors. Processes for producing such polypeptides include culturing recombinant prokaryotic and/or eukaryotic host cells that have been transfected with DNA vectors containing a nucleic acid sequence encoding such a polypeptide and/or the mature protein under conditions promoting expression of such protein and subsequent recovery of such protein or a fragment of the expressed product.

In accordance with still another aspect, the invention provides methods for using DPRP polypeptides and polynucleotides, including the treatment of infections, such as bacterial, fungal, protozoan and viral infections, particularly infections caused by HIV-1 or HIV-2, pain, diabetes, precocious puberty, infertility, obesity, anorexia, bulimia,

5 Parkinson's disease, acute heart failure, hypotension, hypertension, urinary retention, osteoporosis, angina pectoris, myocardial infarction, stroke, ulcers, asthma, allergies, benign prostatic hypertrophy, cancers including hormone-sensitive and androgen-independent cancers, migraines, vomiting, psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, depression, dementia, and severe

10 mental retardation, and dyskinesias, hereinafter collectively referred to as "the Diseases".

In accordance with yet another aspect of the present invention, there is provided a process for utilizing such polypeptides, or polynucleotides encoding such polypeptides, for the discovery of compounds that inhibit the biological activity of the mature proteins thereof, e.g. by cleaving an N-terminal dipeptide, and such inhibitors are thus also

15 provided.

In accordance with a more specific aspect, the invention provides isolated nucleic acid which encodes (a) a polypeptide which includes the amino acid sequence of one of SEQ ID NOS:1, 3 and 5, or (b) a polypeptide having an amino acid sequence that is at least about 70% similar thereto and exhibits the same biological function, or which is an

20 alternative splice variant of one of SEQ ID NOS:2, 4 and 6, or which is a probe comprising at least 14 contiguous nucleotides from said nucleic acid encoding (a) or (b), or which is complementary to any one of the foregoing.

In accordance with another specific aspect, the invention provides a polypeptide which may be optionally glycosylated, and which (a) has the amino acid sequence of a mature protein set forth in any one of SEQ ID NOS:1, 3 and 5; (b) has the amino acid sequence of a mature protein having at least about 70% similarity to one of the mature proteins of (a) and which exhibits the same biological function; (c) has the amino acid sequence of a mature protein having at least about 90% identity with a mature protein of any of SEQ ID NOS:1, 3 and 5; or (d) is an immunologically reactive fragment of (a).

30 In accordance with still another specific aspect, the invention provides a method for the screening for a compound capable of inhibiting the enzymatic activity of at least one mature protein of the invention, which method comprises incubating said mature protein and a suitable substrate for said mature protein in the presence of one or more test compounds or salts thereof, measuring the enzymatic activity of said mature protein,

35 comparing said activity with comparable activity determined in the absence of a test

compound, and selecting the test compound or compounds that reduce the enzymatic activity, and it also provides a method for screening for a compound capable of inhibiting the enzymatic activity of DPPIV that does not inhibit the enzymatic activity of at least one mature protein and a suitable substrate in the presence of one or more 5 inhibitors of DPPIV or salts thereof, measuring the enzymatic activity of said mature protein, comparing said activity with comparable activity determined in the absence of the DPPIV inhibitor, and selecting a compound that does not reduce the enzymatic activity of said mature protein.

These and other aspects of the present invention should be apparent to those 10 skilled in the art from the detailed description which follows.

#### Brief Description of the Drawings

FIGS. 1A and 1B show the co-linear alignment of DPRP-1, DPRP-2, DPRP-3 and DPPIV, with shading being supplied to indicate the same (black) or similar (gray) amino acid residues at a particular location.

15 FIG. 2 is similar to FIG. 1 and shows co-linear alignment of human and mouse DPRP-2.

FIG. 3 is a graph which shows the effects of various tetrapeptide amide inhibitors on dipeptidyl peptidase enzyme activity.

FIGS. 4A-4C show the effects of three inhibitor compounds on the proliferation 20 of PC3 prostate cancer cell lines at various doses.

#### Detailed Description of the Preferred Embodiments

In accordance with an aspect of the present invention, there are provided isolated nucleic acid sequences (polynucleotides), which encode the mature polypeptides having the deduced amino acid sequences of the three DPRP's (SEQ ID NOS:1, 3 and 5).

25 The polynucleotides of this invention were discovered using a human testis cDNA library (DPRP-1), a human colon library (DPRP-2) and a human hypothalamus cDNA library (DPRP-3). Isolated nucleic acid for DPRP-1 contains an open reading frame encoding a protein of approximately 882 amino acids in length which is structurally related to human DPPIV, showing 26% identity, and 41% similarity over the 30 entire human DPPIV protein sequence. Isolated nucleic acid for DPRP-2 contains an open reading frame encoding for a protein of approximately 864 amino acids, which is 39% similar to the entire DPPIV amino acid sequence. Analysis of DPRP-1 and DPRP-2 primary amino acid sequence using hydrophobicity plots predicts that these two proteins do not have a transmembrane domain. Despite this fact, it is possible that these 35 intracellular serine proteases are secreted upon cellular activation. Quiescent cell proline

dipeptidase (QPP) is a serine protease that is targeted to intracellular vesicles that are distinct from lysosomes (Chiravuri M, et al., *J. Immunol.* 2000 Nov 15;165(10):5695-702). This hypothesis expands the potential site(s) and scope of DPRP-1 and DPRP-2 involvement in mechanisms for post-translational regulation of chemokines, cytokines, peptides and polypeptides. The full length DPRP-3 sequence contains 796 amino acids, a signal peptide from 1 to 48, and a transmembrane domain between 34 and 56. The mature protein is predicted to be a type II membrane protein and may be cleaved to produce a soluble form. The amino acid sequence is set forth in SEQ ID NO:5, which was deduced from SEQ ID NO:6 and has 54% similarity with DPPIV.

10 Amino acid sequence alignments of these polypeptides with members of the prolyl oligopeptidase enzyme subfamily S9B show that all three DPRP proteins have overall sequence and structural homology to DPPIV and FAP. DPRPs are predicted to be members of the enzyme Clan SC (Serine nucleophile) with catalytic residues in the order Ser, Asp, His and the active site sequence (G-W-S-Y-G).

15 **Table 2.** Homology (i.e. similarity) between DPRP-1, DPRP-2, DPRP-3 and members of the prolyl oligopeptidase family S9B enzymes.

| DPPIV |  | DPRP-1 |  | DPRP-2 |    | DPRP-3 |  | FAP | DPPVI |
|-------|--|--------|--|--------|----|--------|--|-----|-------|
| 41    |  | 74     |  |        |    |        |  |     |       |
| 39    |  |        |  | 40     |    |        |  |     |       |
| 54    |  | 39     |  |        | 40 |        |  |     |       |
| 70    |  | 41     |  | 39     |    | 52     |  |     |       |
| 52    |  | 40     |  | 42     |    | 68     |  | 54  |       |

DPRP-1, DPRP-2 and DPRP-3 do not exhibit sequence similarity with any members of the classical serine protease families, chymotrypsin and subtilisin. The order 20 of the catalytic triad residues is different in the three main related SC clan families: His-Asp-Ser in chymotrypsin, Asp-His-Ser in subtilisin and Ser-Asp-His in the prolyl oligopeptidases.

As shown in Table 2, DPRP-3 has the highest homology with DPPVI (68% homology and 51% identity). Wada et al isolated cDNA clones for DPPVI, a DPPIV-related protein, from bovine, rat (Wada et al., *Proc. Nat. Acad. Sci.* 89: 197-201. (1992)) and human (Yokotani et al., *Hum. Molec. Genet.* 2:1037-1039 (1993)) brain libraries. They demonstrated that, unlike DPPIV, the catalytic triad in DPPVI does not have the first serine residue. In DPRP-3 two of the amino acids in the catalytic triad

characteristic of the serine protease family are conserved. However, the serine residue itself is replaced by glycine. While the absence of the serine residue is likely to prevent protease activity at this site, it is possible that multiple other functions mediated by other functional domains of the protein remain intact.

5 As briefly described above, DPPIV is a multifunctional molecule that exerts important functions depending on the expressed cells and tissues, in addition to its catalytic activity as a peptidase. DPRP-3 and DPPVI are also likely to maintain multiple functions despite the absence of an intact catalytic triad. For example, DPPVI has been implicated in the regulation of neuronal plasticity. DPPVI is highly expressed in the  
10 hippocampus, thalamus, hypothalamus and striatum. In addition, developmental arrest and embryonic lethality of *rump white* *Rw/Rw* embryos is thought to be due to disruption of the DPPIV gene. *Rw* mutation is associated with a chromosomal inversion spanning 30 cM of the proximal portion of mouse chromosome 5. Genomic analysis of the DPPVI gene on the *Rw* chromosome places the inversion breakpoint in the coding region  
15 resulting in loss of a significant fraction of the C-terminal region, Hough R.B. et al., Proc. Nat. Acad. Sci., 95, 13800-13805 (1998).

The human DPRP-1 gene, predicted to be 32668bp in length, has at least 22 exons and eight transcripts. It maps to chromosome 15 (NT\_010265) at position 15q21.1 – 15q22.1. The lengths of predicted alternative splice variant transcripts vary  
20 between 602bp and 4523bp (see SEQ ID NOS: 7-22). This is in agreement with the multiple transcripts observed by Northern blot analysis (See Example 2). ESTs representing the transcripts were found in numerous tissues including senescent fibroblasts, T-lymphocytes, germinal center B-cells, germ cell seminoma, testis, melanocytes, uterus, ovary breast, multiple sclerosis lesions, pancreas and placenta.

25 Human DPRP-2 belongs to a gene with at least 27 exons and nine splice variants (see SEQ ID NOS:23-40). One SNP was observed in the 3' UTR. (88% (37) C vs. 12% (5) T). The DPRP-2 gene maps to region 19p13.3 of chromosome 19. This location is host to a number of disease markers and is associated with various disorders including hypocalciuric hypercalcemia, type II cerebellar ataxia, muscular dystrophy, convulsions,  
30 susceptibility to atherosclerosis, psoriasis, ectodermal dysplasia, and acute myeloid leukemia. In agreement with the ubiquitous distribution of the mRNA observed by Northern blot analysis (see Example 2), DPRP-2 was expressed in a wide variety of tissues upon examination of EST's coverage (e.g. over 64 EST's expressed in liver, spleen, muscle, melanocytes, heart, lung, placenta, skin, pancreas, stomach, brain  
35 parathyroid gland).

Human DPRP-3 belongs to a gene with at least 23 exons and two splice variants (see SEQ ID NOS:41-44). The gene maps to chromosome 2 (NT\_005445) at position 2q12.3-2q14.1. Transcripts for DPRP-3 did not show as wide a distribution as DPRP-1 and DPRP-2. As shown by Northern blot in Example 2, DPRP-3 expression is restricted  
5 to brain and pancreas. ESTs representing the DPRP-3 mRNA were abundant in tissue derived from multiple sclerosis lesions, hypothalamus, whole brain and nerves, with a few transcripts being found in uterus and colon.

The relationships among human and rodent proteases in clan SC, including DPRP-1 DPRP-2 and DPRP-3, were analyzed using Neighbor Joining method (NJ), see  
10 Saitou and Nei, Mol. Biol. Evol., 4, 406-525 (1987). Phylogenetic analysis shows that among the S9 proteases, DPRP-1 and DPRP-2, both lacking a transmembrane domain, are distinguished from DPPIV and its closely related proteins like FAP. Similarity is shown however between DPPIV and FAP and between DPRP-3 and DPPVI, which are all type II membrane proteins.

15 A database search for additional DPRP-related genes revealed the presence of a murine sequence related to DPRP-1. Alignment of this mouse sequence with the novel human proteases shows that the mDPRP-1 displays considerable homology with its human counterpart (FIG. 2). One skilled in the art will readily recognize that the novel mouse protease gene can be isolated using the sequence information disclosed herein and  
20 can be readily incorporated into one of the routinely used expression constructs which are well known in the art. Use of this disclosed sequence by those skilled in the art to generate a transgenic mouse model will employ development of gene-targeting vectors, for example, that result in homologous recombination in mouse embryonic stem cells. The use of knockout mice in further analysis of the function of DPRP genes is a valuable  
25 tool.

The polynucleotides of the present invention may be in the form of RNA or in the form of DNA; DNA should be understood to include cDNA, genomic DNA, and synthetic DNA. The DNA may be double-stranded or single-stranded and, if single-stranded, may be the coding strand or non-coding (antisense) strand. The coding  
30 sequence which encodes the mature polypeptide may be identical to the coding sequence shown in SEQ ID NOS:2, 4 and 6 respectively, or it may be a different coding sequence encoding the same mature polypeptide, as a result of the redundancy or degeneracy of the genetic code or a single nucleotide polymorphism. For example, it may also be an RNA transcript which includes the entire length of any one of SEQ ID NOS:2, 4 and 6.

The polynucleotides which encode the mature proteins of SEQ ID NOS:1, 3, 5, respectively, may include but are not limited to the coding sequence for the mature protein alone; the coding sequence for the mature polypeptide plus additional coding sequence, such as a leader or secretory sequence or a proprotein sequence; and the 5 coding sequence for the mature protein (and optionally additional coding sequence) plus non-coding sequence, such as introns or a non-coding sequence 5' and/or 3' of the coding sequence for the mature protein.

Thus, the term "polynucleotide encoding a polypeptide" or the term "nucleic acid encoding a polypeptide" should be understood to encompass a polynucleotide or nucleic 10 acid which includes only coding sequence for the mature protein as well as one which includes additional coding and/or non-coding sequence. The terms polynucleotides and nucleic acid are used interchangeably.

The present invention also includes polynucleotides where the coding sequence for the mature protein may be fused in the same reading frame to a polynucleotide 15 sequence which aids in expression and secretion of a polypeptide from a host cell; for example, a leader sequence which functions as a secretory sequence for controlling transport of a polypeptide from the cell may be so fused. The polypeptide having such a leader sequence is termed a proprotein or a preproprotein and may have the leader sequence cleaved, by the host cell to form the mature form of the protein. These 20 polynucleotides may have a 5' extended region so that it encodes a proprotein, which is the mature protein plus additional amino acid residues at the N-terminus. The expression product having such a prosequence is termed a proprotein, which is an inactive form of the mature protein; however, once the prosequence is cleaved an active mature protein remains. Thus, for example, the polynucleotides of the present invention 25 may encode mature proteins, or proteins having a prosequence, or proteins having both a prosequence and a presequence (leader sequence).

The polynucleotides of the present invention may also have the coding sequence fused in frame to a marker sequence which allows for purification of the polypeptides of the present invention. The marker sequence may be a polyhistidine tag, a hemagglutinin 30 (HA) tag, a c-myc tag or a V5 tag when a mammalian host, e.g. COS-1 cells, is used. The HA tag would correspond to an epitope derived from the influenza hemagglutinin protein (Wilson, I., et al., *Cell*, 37:767 (1984)), and the c-myc tag may be an epitope from human Myc protein (Evans, G.I. et al., *Mol. Cell. Biol.* 5: 3610-3616 (1985)).

The term "gene" means the segment of DNA involved in producing a polypeptide 35 chain; it includes regions preceding and following the coding region (leader and trailer)

as well as intervening sequences (introns) between individual coding segments (exons). The term "significant sequence homology" is intended to denote that at least 25%, preferably at least 40%, of the amino acid residues are conserved, and that, of the non-conserved residues, at least 40% are conservative substitutions.

5       Fragments of the full-length genes of the present invention may be used as a hybridization probe for a cDNA library to isolate full-length cDNA as well as to isolate other cDNAs which have significant sequence homology to the gene and will encode proteins or polypeptides having similar biological activity or function. By similar biological activity or function, for purposes of this application, is meant the ability to  
10 cleave an N-terminal dipeptide having Ala or Pro as the penultimate residue or other amino acids. Such a probe of this type has at least 14 bases (at least 14 contiguous nucleotides from one of SEQ ID NOS:2, 4 or 6), preferably at least 30 bases, and such may contain, for example, 50 or more bases. Such probe may also be used to identify a cDNA clone corresponding to a full-length transcript and/or a genomic clone or clones  
15 that contains the complete gene, including regulatory and promoter regions, exons, and introns. Labelled oligonucleotides having a sequence complementary to that of the gene of the present invention are useful to screen a library of human cDNA, genomic DNA or mRNA to locate members of the library to which the probe hybridizes. As an example, a known DNA sequence may be used to synthesize an oligonucleotide probe which is then  
20 used in screening a library to isolate the coding region of a gene of interest.

The present invention is considered to further provide polynucleotides which hybridize to the hereinabove-described sequences wherein there is at least 70%, preferably at least 90%, and more preferably at least 95% identity or similarity between the sequences, and thus encode proteins having similar biological activity. Moreover, as  
25 known in the art, there is "similarity" between two polypeptides when the amino acid sequences contain the same or conserved amino acid substitutes for each individual residue in the sequence. Identity and similarity may be measured using sequence analysis software (e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue,  
30 Madison, WI 53705). The present invention particularly provides such polynucleotides which hybridize under stringent conditions to the hereinabove-described polynucleotides. As herein used, the term "stringent conditions" means conditions which permit hybridization between polynucleotides sequences and the polynucleotide sequences of SEQ ID NOS:2, 4 and 6 where there is at least about 70% identity.  
35 Suitably stringent conditions can be defined by, e.g., the concentrations of salt or

formamide in the prehybridization and hybridization solutions, or by the hybridization temperature, and are well known in the art. In particular, stringency can be increased by reducing the concentration of salt, by increasing the concentration of formamide, and/or by raising the hybridization temperature.

5 For example, hybridization under high stringency conditions may employ about 50% formamide at about 37°C to 42°C, whereas hybridization under reduced stringency conditions might employ about 35% to 25% formamide at about 30°C to 35°C. One particular set of conditions for hybridization under high stringency conditions employs 42°C, 50% formamide, 5x. SSPE, 0.3% SDS, and 200 µg/ml sheared and denatured  
10 salmon sperm DNA. For hybridization under reduced stringency, similar conditions as described above may be used in 35% formamide at a reduced temperature of 35°C. The temperature range corresponding to a particular level of stringency can be further narrowed by calculating the purine to pyrimidine ratio of the nucleic acid of interest and adjusting the temperature accordingly. Variations on the above ranges and conditions  
15 are well known in the art. Preferably, hybridization should occur only if there is at least 95%, and more preferably at least 97%, identity between the sequences. The polynucleotides which hybridize to the hereinabove described polynucleotides in a preferred embodiment encode polypeptides which exhibit substantially the same biological function or activity as the mature protein encoded by one of the cDNAs of  
20 SEQ ID NOS:2, 4 and 6.

As mentioned, a suitable polynucleotide probe may have at least 14 bases, preferably 30 bases, and more preferably at least 50 bases, and will hybridize to a polynucleotide of the present invention which has an identity thereto, as hereinabove described, and which may or may not retain activity. For example, such polynucleotides  
25 may be employed as a probe for hybridizing to the polynucleotides of SEQ ID NOS:2, 4 and 6 respectively, for example, for recovery of such a polynucleotide, or as a diagnostic probe, or as a PCR primer. Thus, the present invention includes polynucleotides having at least a 70% identity, preferably at least a 90% identity, and more preferably at least a 95% identity to a polynucleotide which encodes the polypeptides of SEQ ID NOS:1, 3  
30 and 5 respectively, as well as fragments thereof, which fragments preferably have at least 30 bases and more preferably at least 50 bases, and to polypeptides encoded by such polynucleotides.

As is well known in the art, the genetic code is redundant in that certain amino acids are coded for by more than one nucleotide triplet (codon), and the invention  
35 includes those polynucleotide sequences which encode the same amino acids using a

different codon from that specifically exemplified in the sequences herein. Such a polynucleotide sequence is referred to herein as an "equivalent" polynucleotide sequence. The present invention further includes variants of the hereinabove described polynucleotides which encode for fragments, such as part or all of the mature protein,

5      analogs and derivatives of one of the polypeptides having the deduced amino acid sequence of SEQ ID NOS:1, 3 and 5 respectively. The variant forms of the polynucleotides may be a naturally occurring allelic variant of the polynucleotides or a non-naturally occurring variant of the polynucleotides. For example, the variant in the nucleic acid may simply be a difference in codon sequence for the amino acid resulting

10     from the degeneracy of the genetic code, or there may be deletion variants, substitution variants and addition or insertion variants. As known in the art, an allelic variant is an alternative form of a polynucleotide sequence which may have a substitution, deletion or addition of one or more nucleotides that does not substantially alter the biological function of the encoded polypeptide.

15     The present invention further includes polypeptides which have the deduced amino acid sequence of SEQ ID NOS:1, 3 and 5, as well as fragments, analogs and derivatives of such polypeptides. The terms "fragment," "derivative" and "analog", when referring to the polypeptides of SEQ ID NOS:1, 3 and 5, means polypeptides that retain essentially the same biological function or activity as such polypeptides. An

20     analog might, for example, include a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature protein. The polypeptides of the present invention may be recombinant polypeptides, natural polypeptides or synthetic polypeptide; however, they are preferably recombinant polypeptides, glycosylated or unglycosylated.

25     The fragment, derivative or analog of a polypeptide of SEQ ID NOS:1, 3 and 5 respectively, may be (i) one in which one or more of the amino acid residues is substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid

30     residues includes a substituent group, or (iii) one in which additional amino acids are fused to the mature protein, such as a leader or secretory sequence or a sequence which is employed for purification of the mature polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art to provide upon the basis of the teachings herein.

The polypeptides and polynucleotides of the present invention should be in an isolated form, and preferably they are purified to substantial homogeneity or purity. By substantial homogeneity is meant a purity of at least about 85%.

The term "isolated" is used to mean that the material has been removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally occurring polynucleotide or polypeptide present in a living animal is not considered to be isolated, but the same polynucleotide or polypeptide, when separated from substantially all of the coexisting materials in the natural system, is considered isolated. For DNA, the term includes, for example, a recombinant DNA which is incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote; or which exists as a separate molecule (e.g., a cDNA or a genomic or cDNA fragment produced by polymerase chain reaction (PCR) or restriction endonuclease digestion) independent of other sequences. It also includes a recombinant DNA which is part of a hybrid gene encoding additional polypeptide sequence, e.g., a fusion protein. Further included is recombinant DNA which includes a portion of the nucleotides shown in one of SEQ ID NO:2,4 or 6 which encodes an alternative splice variant of the DPRP. Various alternative splice variants are exemplified in SEQ ID NOS:8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 and 46.

The polypeptides of the present invention include any one of the polypeptide of SEQ ID NOS:1, 3 and 5 (in particular the mature protein), as well as polypeptides which have at least 70% similarity (e.g. preferably at least 60% and more preferably at least 70% identity) to one of the polypeptides of SEQ ID NOS:1, 3 and 5, more preferably at least 90% similarity (e.g. preferably at least 90% identity) to one of the polypeptides of SEQ ID NOS:1, 3 and 5, and most preferably at least 95% similarity (e.g. preferably at least 95% identity) to one of the polypeptides of SEQ ID NOS:1, 3 and 5. Moreover, they should preferably include exact portions of such polypeptides containing a sequence of at least 30 amino acids, and more preferably at least 50 amino acids.

Fragments or portions of the polypeptides of the present invention may be employed as intermediates for producing the corresponding full-length polypeptides by peptide synthesis. Fragments or portions of the polynucleotides of the present invention may also be used to synthesize full-length polynucleotides of the present invention.

The present invention also includes vectors which include such polynucleotides, host cells which are genetically engineered with such vectors and the production of polypeptides by recombinant techniques using the foregoing. Host cells are genetically

engineered (transduced or transformed or transfected) with such vectors which may be, for example, a cloning vector or an expression vector. The vector may be, for example, in the form of a plasmid, a viral particle, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, 5 selecting transformants or amplifying the genes of the present invention. The culture conditions, such as temperature, pH and the like, are those commonly used with the host cell selected for expression, as well known to the ordinarily skilled artisan.

The polynucleotides of the present invention may be employed for producing polypeptides by recombinant techniques. Thus, for example, the polynucleotides may be 10 included in any one of a variety of expression vectors for expressing polypeptides. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. However, any other vector may 15 be used as long as it is replicable and viable in the host.

The appropriate DNA sequence may be inserted into the vector by any of a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures well known in the art, which procedures are deemed to be within the scope of those skilled in this art.

20 The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned: LTR or SV40 promoter, the *E. coli*. lac or trp, the phage lambda P.sub.L promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. 25 The expression vector should also contain a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression. In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells, such as dihydrofolate reductase or neomycin-resistance for 30 eukaryotic cell culture, or such as tetracycline- or ampicillin-resistance in *E. coli*.

The vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein. As representative examples of appropriate hosts, there may be mentioned: bacterial cells, such as *E. coli*, 35 *Streptomyces*, *Salmonella typhimurium*; fungal cells, such as yeast; insect cells, such as

Drosophila S2 and Spodoptera Sf9; animal cells, such as CHO, COS or Bowes melanoma; adenoviruses; plant cells, etc. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.

Synthetic production of nucleic acid sequences is well known in the art as is apparent from CLONTECH 95/96 Catalogue, pages 215-216, CLONTECH, 1020 East Meadow Circle, Palo Alto, Calif. 94303. Thus, the present invention also includes expression vectors useful for the production of the proteins of the present invention

The present invention further includes recombinant constructs comprising one or more of the sequences as broadly described above. The constructs may comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example: Bacterial: pQE70, pQE60, pQE-9 (Qiagen), pBS, pD10, phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene), ptrc99a, pKK223-3, pKK233-3, pDR540 and pRIT5 (Pharmacia); and Eukaryotic: pWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, and pSVL (Pharmacia). However, any other suitable plasmid or vector may be used as long as it is replicable and viable in the host.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol acetyl transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda P.sub.R, P.sub.L and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

Components of the expression vector may generally include: 1) a neomycin phosphotransferase (G418), or hygromycin B phosphotransferase (hyg) gene as a selection marker, 2) an E. coli origin of replication, 3) a T7 and SP6 phage promoter sequence, 4) lac operator sequences, 5) the lactose operon repressor gene (lacIq) and 6) a multiple cloning site linker region. Such an origin of replication (oriC) may be derived from pUC19 (LTI, Gaithersburg, Md.).

A nucleotide sequence encoding one of the polypeptides SEQ ID NOS:2,4 and 6 having the appropriate restriction sites is generated, for example, according to the PCR

protocol described in Example 1 hereinafter, using PCR primers having restriction sites for KpnI (as the 5' primer) and NotI or SacI (as the 3' primer) for DPRP-1, or sites for HindIII (as the 5' primer) and NotI or BamHI (as the 3' primer) for DPRP-2. The PCR inserts are gel-purified and digested with compatible restriction enzymes. The insert and 5 vector are ligated according to standard protocols.

In a further embodiment, the present invention provides host cells containing the above-described constructs. The host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the construct into the host cell 10 can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, lipofection or electroporation (Davis, L., Dibner, M., Battey, J., Basic Methods in Molecular Biology, (1986)).

Such constructs in host cells are preferably used in a conventional manner to produce the gene product encoded by the recombinant sequence. Alternatively, the 15 polypeptides of the invention can be synthetically produced by conventional peptide synthesizers or by chemical ligation of suitable fragments thus prepared.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of 20 the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989).

Transcription of the DNA encoding the polypeptides of the present invention by higher eukaryotes is increased by inserting an enhancer sequence into the vector. 25 Enhancers include cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Examples include the SV40 enhancer on the late side of the replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin-resistance gene of *E. coli* and *S. cerevisiae* TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes, such as 3- 30 phosphoglycerate kinase (PGK), alpha-factor, acid phosphatase, or heat shock proteins, 35

among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion 5 protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. 10 The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desired, provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli*, *Bacillus subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*, although others may also be employed as a matter of 15 choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, 20 pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotech, Madison, Wis., U.S.A.). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced by appropriate means (e.g., 25 temperature shift or chemical induction), and cells are cultured for an additional period. Cells are typically harvested by centrifugation and then disrupted by physical or chemical means, with the resulting crude extract being retained for further purification. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption and use of 30 cell-lysing agents; such methods are well known to those skilled in the art.

Various mammalian cell culture systems can also be employed to express a recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, *Cell*, 23:175 (1981). Other cell lines capable of expressing a compatible vector include, for example, the C127, 3T3, 35 CHO, HeLa and BHK cell lines. Mammalian expression vectors will generally comprise

an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to 5 provide required nontranscribed genetic elements.

The polypeptides can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography 10 and lectin chromatography. Recovery can be facilitated if the polypeptide is expressed at the surface of the cells, but such is not a prerequisite. Recovery may also be desirable of cleavage products that are cleaved following expression of a longer form of the polypeptide. Protein refolding steps as known in this art can be used, as necessary, to complete configuration of the mature protein. High performance liquid chromatography 15 (HPLC) can be employed for final purification steps.

The polypeptides of the present invention may be purified natural products, or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect or mammalian cells in culture). Depending upon the host employed in a recombinant production procedure, the polypeptides of the 20 present invention may be glycosylated or may be non-glycosylated. Polypeptides of the invention may also include an initial methionine amino acid residue.

In a preferred embodiment, the proteins of the invention are isolated and purified so as to be substantially free of contamination from other proteins. For example, the proteins of the invention should constitute at least 80% by weight of the total protein 25 present in a sample, more preferably at least 90%, even more preferably at least 95%, and most preferably at least 98% by weight of the total protein.

These proteins may be in the form of a solution in water, another suitable solvent, such as dimethyl sulphoxide (DMSO) or ethanol, or a mixture of suitable solvents. Examples of mixtures of solvents include 10% (by weight) ethanol in water and 2% (by 30 weight) DMSO in water. A solution may further comprise salts, buffering agents, chaotropic agents, detergents, preservatives and the like. Alternatively, the proteins may be in the form of a solid, such as a lyophilised powder or a crystalline solid, which may also comprise a residual solvent, a salt or the like.

As used herein, the term "antibodies" includes polyclonal antibodies, 35 affinity-purified polyclonal antibodies, monoclonal antibodies, and antigen-binding

fragments, such as F(ab')<sub>2</sub> and Fab' proteolytic fragments. Genetically engineered intact antibodies or fragments, such as chimeric antibodies, Fv fragments, single chain antibodies and the like, as well as synthetic antigen-binding peptides and polypeptides, are also included. Non-human antibodies may be humanized by grafting non-human

5 CDRs onto human framework and constant regions, or by incorporating the entire non-human variable domains (optionally "cloaking" them with a human-like surface by replacement of exposed residues, wherein the result is a "veeneered" antibody). In some instances, humanized antibodies may retain non-human residues within the human variable region framework domains to enhance proper binding characteristics. Through  
10 humanizing antibodies, biological half-life may be increased, and the potential for adverse immune reactions upon administration to humans should be reduced.

Alternative techniques for generating or selecting antibodies useful herein include in vitro exposure of lymphocytes to human prohormone DPRP protein or a peptide therefrom, and selection of antibody display libraries in phage or similar vectors  
15 (for instance, through use of immobilized or labeled human DPRP protein or peptide). Genes encoding polypeptides having potential human DPRP polypeptide binding domains can be obtained by screening random peptide libraries displayed on phage (phage display) or on bacteria, such as *E. coli*. Nucleotide sequences encoding such polypeptides can be obtained in a number of ways well known in this art.

20 As would be evident to one of ordinary skill in the art, polyclonal antibodies can be generated from inoculating a variety of warm-blooded animals, such as horses, cows, goats, sheep, dogs, chickens, rabbits, mice and rats, with a human DPRP polypeptide or a fragment thereof. The immunogenicity of a human prohormone DPRP polypeptide may be increased through the use of an adjuvant, such as alum (aluminum hydroxide) or  
25 Freund's complete or incomplete adjuvant, or surface active substances, such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH or dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and *Corynebacterium parvum* are especially preferable. Polypeptides useful for immunization also include fusion polypeptides, such as fusions of DPRP or a portion  
30 thereof with an immunoglobulin polypeptide or with maltose binding protein. The polypeptide immunogen may be a full-length molecule or a portion thereof. If the polypeptide portion is "hapten-like", such portion may be advantageously joined or linked to a macromolecular carrier, such as keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) or tetanus toxoid, for immunization. Antibodies to DPRP may  
35 also be generated using methods that are well known in the art. Such antibodies may

include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which block or modify interactions at the active sites) are especially preferred for therapeutic use.

5 For the production of antibodies, binding proteins, or peptides which bind specifically to DPRP, libraries of single chain antibodies, Fab fragments, other antibody fragments, non-antibody protein domains, or peptides may be screened. The libraries could be generated using phage display, other recombinant DNA methods, or peptide synthesis (Vaughan, T. J. et al. Nature Biotechnology 14: 309-314 (1996)). Such  
10 libraries would commonly be screened using methods which are well known in the art to identify sequences which demonstrate specific binding to DPRP.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to DPRP have an amino acid sequence consisting of at least about 5 amino acids and, more preferably, of at least about 10 amino acids. It is also preferable that  
15 these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of DPRP amino acids may also be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to DPRP may be prepared using any well known  
20 technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique, although monoclonal antibodies produced by hybridoma cells may be preferred.

In addition, techniques developed for the production of "chimeric antibodies",  
25 such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used, see Neuberger, M.S. et al. Nature 312: 604-608 (1984). Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce DPRP-specific single chain antibodies. Antibodies with related  
30 specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (Burton D. R. Proc. Natl. Acad. Sci. 88: 11120-11123 (1991)).

Antibodies may also be produced by inducing *in vivo* production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly

specific binding reagents as disclosed in the literature. (Orlandi, R. et al. Proc. Natl. Acad. Sci. 86: 3833-3837 (1989)).

Antibody fragments which contain specific binding sites for DPRP may also be generated. For example, such fragments include, but are not limited to, F(ab')<sub>2</sub>,

5 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')<sub>2</sub> fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (Huse, W. D. et al. Science 254: 1275-1281 (1989)).

10 Various immunoassays may be used to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between DPRP and its specific antibody. A two-site, monoclonal-based  
15 immunoassay utilizing monoclonal antibodies reactive to two non-interfering DPRP epitopes is preferred, but a competitive binding assay may also be employed.

As earlier mentioned, the DPRPs can be used in treatment of the Diseases. Pharmaceutical compositions suitable for use in this aspect of the invention include compositions wherein the active ingredients are contained in an effective amount to  
20 achieve the intended purpose relating to one of the Diseases. The determination of a therapeutically effective dose is well within the capability of those skilled in the art and can be estimated initially either in cell culture assays, e.g. of neoplastic cells, or in animal models, usually mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration, which  
25 information is then commonly used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, e.g. a DPRP or fragment thereof, antibodies of DPRP, or an agonist, antagonist or inhibitor of DPRP, which ameliorates particular symptoms or conditions of the Disease. For  
30 example, the amount to be administered may be effective to cleave a desired target substrate upon contact therewith. Therapeutic efficacy and toxicity may likewise be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED50 (the dose therapeutically effective in 50% of the population) or LD50 (the dose lethal to 50% of the population) statistics. The dose  
35 ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the

LD50/ED50 ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the 5 ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

An exact dosage will normally be determined by the medical practitioner in light of factors related to the subject requiring treatment, with dosage and administration being adjusted to provide a sufficient level of the active moiety or to maintain a desired 10 effect. Factors to be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or even once every two weeks, depending 15 on the half-life and clearance rate of the particular formulation.

Yet another aspect of the invention provides polynucleotide molecules having sequences that are antisense to mRNA transcripts of DPRP1, DPRP2 and DPRP-3 polynucleotides. Administration of an antisense polynucleotide molecule can block the production of the protein encoded by DPRP-1, DPRP2 or DPRP-3. The techniques for 20 preparing antisense polynucleotide molecules and administering such molecules are known in the art. For example, antisense polynucleotide molecules can be encapsulated into liposomes for fusion with cells.

In particular, the expression of DPRP-1, DPRP-2 and DPRP-3 in specialized epithelial cells, immune cells (lymphocytes and B cells), astrocytic tumors, and in 25 various hormone sensitive cancers provides evidence of a potential role in the pathophysiology of cancer, metaplasia and metastasis. Therefore in a further aspect, the invention relates to diagnostic assays for detecting diseases associated with inappropriate DPRP activity or expression levels. Antibodies that specifically bind DPRP may be used for the diagnosis of disorders characterized by expression of DPRP, or in assays to 30 monitor patients being treated with DPRP or with agonists or antagonists (inhibitors) of DPRP. Antibodies useful for diagnostic purposes may be prepared in the same manner as those described above for therapeutics. Diagnostic assays for DPRP include methods that utilize the antibody and a label to detect DPRP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and they 35 may be labeled by covalent or non-covalent joining with a reporter molecule. A wide

variety of reporter molecules are known in the art. Recombinant DPRP proteins that have been modified so as to be catalytically inactive can also be used as dominant negative inhibitors. Such modifications include, for example, mutation of the active site.

A variety of protocols for measuring DPRP, including ELISAs, RIAs and FACS, 5 are known in the art and provide a basis for diagnosing altered or abnormal levels of DPRP expression. Normal or standard values for DPRP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to DPRP under conditions suitable for complex formation. The method for detecting DPRP in a biological sample would comprise the 10 steps of: a) providing a biological sample; b) combining the biological sample and an anti-DPRP antibody under conditions which are suitable for complex formation to occur between DPRP and the antibody; and c) detecting complex formation between DPRP and the antibody, thereby establishing the presence of DPRP in the biological sample. The amount of complex formation then may be quantified by various methods, 15 preferably by photometric means. Quantities of DPRP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding DPRP are used for diagnostic purposes, which polynucleotides may include oligonucleotide 20 sequences, complementary RNA and DNA molecules, and PNAs. These polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of DPRP may be correlated with one of the Diseases. The diagnostic assay may be used to distinguish between absence, presence, and excess expression of DPRP and to monitor regulation of DPRP levels during therapeutic 25 intervention. Moreover, pharmacogenomic, single nucleotide polymorphisms (SNP) analysis of the DPRP genes can be used as a method to screen for mutations that indicate predisposition to disease or modified response to drugs.

DPRP polynucleotide and polypeptide sequences, fragments thereof, antibodies 30 of DPRPs, and agonists, antagonists or inhibitors of DPRPs can be used to as discovery tools to identify molecular recognition events and therefore proteins, polypeptides and peptides that interact with DPRP proteins. A specific example is phage display peptide libraries where greater than 108 peptide sequences can be screened in a single round of panning. Such methods as well as others are known within the art and can be utilized to identify compounds that inhibit or enhance DPRP-1, DPRP-2 or DPRP-3 activity. 35 Coupled links represent functional interactions such as complexes or pathways, and

proteins that interact with DPRPs can be identified by a yeast two-hybrid system, proteomics (differential 2D gel analysis and mass spectrometry) and genomics (differential gene expression by microarray or serial analysis of gene expression SAGE). Proteins identified as functionally linked to DPRPs and the process of interaction form 5 the basis of methods of screening for inhibitors, agonists and antagonists and modulators of these DPRP-protein interactions.

The term "antagonist," as it is used herein, refers to an inhibitor molecule which, when bound to DPRP, decreases the amount or the duration of the effect of the biological or immunological activity of DPRP, e.g. decreasing the enzymatic activity of 10 the peptidase to cleave the N-terminal dipeptide. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of DPRP; for example, they may include small molecules and organic compounds that bind to and inactivate DPRPs by a competitive or non-competitive type mechanism. Specific examples of DPRP tetrapeptide peptidic enzyme activity inhibitors are 15 described in Example 6 and 7. Inhibitors can be, for example, inhibitors of the DPRP protease activity, or alternatively inhibitors of the binding activity of the DPRP to proteins with which they interact. Specific examples of such inhibitors can include, for example, anti-DPRP antibodies, peptides, protein fragments, or small peptidyl protease inhibitors, or small non-peptide, organic molecule inhibitors which are formulated in a 20 medium that allows introduction into the desired cell type. Alternatively, such inhibitors can be attached to targeting ligands for introduction by cell-mediated endocytosis and other receptor mediated events. Such methods are described further below and can be practiced by those skilled in the art given the DPRP nucleotide and amino acid sequences described herein.

25 A further use for DPRPs is for the screening of potential antagonists for use as therapeutic agents, for example, for inhibiting binding to DPRP, as well as for screening for agonists. DPRP, its immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds which are prospective agonists or antagonists in any of a variety of drug screening techniques. The fragment employed in such screening 30 may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between DPRP and the agent being tested is then measured. Other assays to discover antagonists that will inhibit DPRP are apparent from the disclosures of U.S. Patents Nos. 6,011,155, 6,107,317, 6,110,949, 6,124,305 and 6,166,063, which describe inhibitors of DPPIV. Another worthwhile use

of these DPRPs is the screening of inhibitors of DPPIV to show that they will not have undesired side effects by also inhibiting one or more of the DPRPs.

A method provided for screening a library of small molecules to identify a molecule which binds DPRP generally comprises: a) providing a library of small molecules; b) combining the library of small molecules with the polypeptide of either SEQ ID NOS:1, 3 or 5, or with a fragment thereof, under conditions which are suitable for complex formation; and c) detecting complex formation, wherein the presence of such a complex identifies a small molecule which binds DPRP.

One method for identifying an antagonist comprises delivering a small molecule which binds DPRP into extracts from cells transformed with a vector expressing DPRP along with a chromogenic substrate (e.g. Ala-Pro-AFC or Ala-Pro-AMC) under conditions where cleavage would normally occur, and then assaying for inhibition of cleavage by the enzyme by monitoring changes in fluorescence, or UV light absorption, by spectrophotometry to identify molecules that inhibit cleavage. A reduced rate of reaction or total amount of fluorescence or UV light absorption, in the presence of the molecule, establishes that the small molecule is an antagonist which reduces DPRP catalytic/enzymatic activity. Once such molecules are identified, they may be administered to reduce or inhibit cleaving by a DPRP.

The term "agonist," as used herein, refers to a molecule which, when bound to DPRP, increases or prolongs the duration of the effect of DPRP. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules that bind to and modulate the effect of DPRP. Although it is less likely that small molecules will prove to be effective DPRP agonists, a method for identifying such a small molecule, which binds DPRP as an agonist, comprises delivering a chromogenic form of a small molecule that binds DPRP into cells transformed with a vector expressing DPRP and assaying for fluorescence or UV light absorption changes by spectrophotometry. An increased amount of UV absorption or fluorescence would establish that the small molecule is an agonist that increases DPRP activity.

Another technique for drug screening which may be used provides for high throughput screening of compounds having suitable binding affinity to the protein of interest as described in published PCT application WO84/03564. In this method, large numbers of different small test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The test compounds are reacted with DPRP, or with fragments thereof, and then washed. Bound DPRP is then detected by methods well known in the art. Purified DPRP can also be coated directly onto plates for use in the

aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding DPRP specifically compete with a test compound for binding DPRP. In this manner, antibodies can be used to detect the presence of any peptide that shares one or more antigenic determinants with DPRP.

As indicated above, by investigating the binding sites, ligands may be designed that, for example, have more interactions with DPRP than do its natural ligands. Such antagonist ligands will bind to DPRP with higher affinity and so function as competitive ligands. Alternatively, synthetic or recombinant proteins homologous or analogous to the ligand binding site of native DPRP may be designed, as may other molecules having high affinity for DPRP. Such molecules should also be capable of displacing DPRP and provide a protective effect.

As indicated above, the knowledge of the structures of DPRP enables synthetic binding site homologues and analogues to be designed. Such molecules will facilitate greatly the use of the binding properties to target potential therapeutic agents, and they may also be used to screen potential therapeutic agents. Furthermore, they may be used as immunogens in the production of monoclonal antibodies, which antibodies may themselves be used in diagnosis and/or therapy as described hereinbefore.

Given the ubiquitous expression of several members of the prolyl oligopeptidase S9B family, cell lines in which targeted gene disruption of DPPIV, DPRP-1, DPRP-2, DPRP-3, FAP and DPPVI to establish the null phenotype will be of great value to assist screening for selective and potent compounds. Accordingly, the invention provides such cell lines engineered with Lox-Neo IRES tk cassette and GFP-IRES-Neo Knock-in/out cassette DNA element for constructing somatic gene targeting vectors.

#### Example 1

##### Cloning and Expression of DPRP genes Using the Mammalian Expression System

DNA fragments encoding the full-length polypeptide DPRP-1 were amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the gene, i.e. SEQ ID NO:45 and NO:46. In addition, DNA fragments encoding the full length polypeptide DPRP-2 were amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of that gene, i.e. SEQ ID NO:50 and NO:51. Furthermore, DNA fragments encoding the full length polypeptide DPRP-3 were amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of that gene, i.e. SEQ ID NO:55 and NO:56.

The three amplified sequences were respectively isolated from a 0.7% agarose gel using commercially available kit (GFX PCR DNA and Gel Band Purification Kit, Amersham Pharmacia Biotech Inc., Piscataway NJ, USA). The fragments were then ligated into cloning vector, pGEM-7Zf(-) (Promega Corporation, Madison WI, USA) 5 and sequenced. The corresponding cloning constructs were respectively designated pGEM7-DPRP1, pGEM7-DPRP2 and pGEM7-DPRP3. The DNA sequences encoding the truncated DPRP-1 or DPRP-2 or DPRP-3 were amplified using pGEM7-DPRP1 or pGEM7-DPRP2 or pGEM7-DPRP3 as a template and PCR oligonucleotide primers. SEQ ID NO:45 and NO:47 were used for DPRP-1; SEQ ID NO:50 and NO:52 were used 10 for DPRP-2; and SEQ ID NO:57 and NO:58 for DPRP-3. The amplified sequences were again isolated from a 0.7% agarose gel using the same purification kits and sub-cloned into pGEM-7Zf(-). The resulting constructs were designated pGEM7-DPRP1f, pGEM7-DPRP2f and pGEM7-DPRP3f.

To make the DPRP-1 mammalian expression construct, pGEM7-DPRP1 was 15 digested with the restriction enzymes KpnI and NotI to release the full length DPRP-1 gene. The DNA fragment carrying the DPRP-1 gene was gel band purified using the above kit and then inserted into expression vector pcDNA3 (Invitrogen, Carlsbad CA, USA) to make the native DPRP-1 expression construct, which was designated pcDNA-DPRP1. pGEM7-DPRP1f was digested with the restriction enzymes XbaI and HindIII 20 to release the truncated DPRP-1f gene. The DNA fragment carrying the DPRP-1f gene was gel band purified using the above kit and then inserted into expression vector pcDNA3.1(-)/myc-His A (Invitrogen, Carlsbad CA, USA) to make the tagged DPRP-1 expression construct pcDNA-MycHis-DPRP1.

To make the DPRP-2 mammalian expression construct, pGEM7-DPRP2 was 25 digested with the restriction enzymes HindIII and BamHI to release the full length DPRP-2 gene. The DNA fragment carrying the DPRP-2 gene was gel band purified using the above kit and then inserted into expression vector pcDNA3 (Invitrogen, Carlsbad CA, USA) to make the native DPRP-2 expression construct, which was designated pcDNA-DPRP2. pGEM7-DPRP2f was digested with the restriction enzymes 30 EcoRI and BamHI to release the truncated DPRP-2f gene. The DNA fragment carrying the DPRP-2f gene was gel band purified using the above kit and then inserted into expression vector pcDNA3.1(-)/myc-His B (Invitrogen, Carlsbad CA, USA) to make the tagged DPRP-2 expression construct designated pcDNA-MycHis-DPRP2.

To make the DPRP-3 mammalian expression construct, pGEM7-DPRP3 was 35 digested with the restriction enzymes EcoRI and XhoI to release the full length DPRP-3

gene. The DNA fragment carrying the DPRP-3 gene was gel band purified using the above kit and then inserted into expression vector pcDNA3 (Invitrogen, Carlsbad CA, USA) to make the native DPRP-3 expression construct designated pcDNA-DPRP3. pGEM7-DPRP3f was digested with the restriction enzymes NheI and ApaI to release the 5 truncated DPRP-3f gene. The DNA fragment carrying the DPRP-3f gene was gel band purified using the above kit and then inserted into expression vector pcDNA3.1(-)/myc-His B (Invitrogen, Carlsbad CA, USA) to make the tagged DPRP-3 expression construct pcDNA-MycHis-DPRP3.

Example 2

10 Expression Pattern of DPRP genes in human tissues

Quantitative PCR analysis was carried out to examine the levels of expression of the mRNAs for the polypeptides of the present invention in human tissues. RT PCR was also carried out on a number of human cell lines including but not limited to prostate cancer cells (LNCaP, PC3, DU145), the MLTC-1 line (mouse testis), and MDA-MB231 15 cells (breast cancer). Bands of the expected sizes for DPRP-1, DPRP-2 and DPPIV were all expressed in the various cancer cells lines, with FAP also being expressed at very low levels.

Northern Blot Analysis

20 Northern blot analysis was performed with 2 $\mu$ g poly(A)<sup>+</sup> RNA isolated from eight different tissues using DPRP probes. Specifically, a human Multiple Tissue Northern (MTN) blot (Clontech, Palo Alto, Calif.) was probed with a 1 kb N-terminal fragment that had been radioactively labeled by random priming in the presence of a <sup>32</sup>PdCTP (A. P. Feinberg et al., *Anal. Biochem.*, 132, 6 (1983)). Hybridization was performed at 68°C overnight in ExpressHyb™ hybridization solution (Clontech, Palo 25 Alto, Calif.). The blots were first washed at room temperature in 2 times SSC and 0.05% SDS, and then washed at 60°C (DPRP-1 & DPRP-2) and 50°C (DPRP-3) in 0.1 times SSC and 0.1% SDS.

30 Northern analysis showed expression of DPRP-1 in several tissues with the most abundant signal being in testis, prostate, muscle and brain. Testis showed 3 transcripts approximately 7.5, 4.5 and 2.5 kb in length. The shorter mRNA species was very abundant in testis but negligible in the other tissues tested. DPRP-2 was ubiquitously expressed in every tissue with highest levels in liver and muscle and a predominant transcript at 5kb. DPRP-3 expression was limited to brain and pancreas. Further analysis was conducted for the three proteases in specific brain regions (cerebellum, 35 cortex, medulla, spinal cord, occipital lobe, frontal lobe temporal lobe and putamen).

DPRP-1 was expressed in all regions with low levels present in the spinal cord, while DPRP-2 was expressed in all brain regions tested.

Oligonucleotide primers SEQ ID NO:48 and NO:49 were used for DPRP-1 quantitative PCR, whereas oligonucleotide primers SEQ ID NO:53 and NO:54 were 5 used for DPRP-2 quantitative PCR. Human Multiple Tissue cDNA (MTC<sup>TM</sup>) Panel I and Panel II (Clontech, Palo Alto CA, USA) were used as normalized cDNA templates. 0.5 ng of each cDNA were used in a 25 µl PCR reaction, with each primer at a final concentration of 300 nM. The PCR reaction was performed using a SYBR Green PCR Core Reagents Kit (Applied Biosystems, Foster City CA, USA) and detected with an 10 Applied Biosystems GeneAmp 5700 sequence detection system. Manufacturer's recommended thermal cycling parameter, e.g. 50°C for 2 min, 95°C for 10 min followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min was used. Data obtained shows relatively high rates of expression for both DPRP-1 and DPRP-2 in the pancreas, ovary and testis, and a particularly high rate for DPRP-2 in the liver.

15 **Example 3 – Production of DPRP Polyclonal Antibodies and Western Blotting**

The amino acid sequence deduced from the cDNA encoding DPRP-1 was analyzed using DNASTAR software (DNASTAR, Inc.) to determine regions of high immunogenicity, and a corresponding oligopeptide was synthesized and used to raise anti-DPRP-1 antibodies. The procedure was repeated for DPRP-2 and DPRP-3. The 20 selection of appropriate peptide sequences and the techniques for antibody production are methods well known to those of skill in the art. Selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions, is well known in this art.

Typically, oligopeptides that are about 15 to 20 residues in length, e.g. SEQ ID NO:59 for DPRP-1, SEQ ID NO:60 for DPRP-2 and SEQ ID NO:61 for DPRP-3, were 25 synthesized using an Applied Biosystems Peptide Synthesizer Model 431 A.

Fmoc-chemistry was used and the 19- or 15-residue peptides were respectively coupled to keyhole limpet hemocyanin (KLH, Sigma, St. Louis, Mo.) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS). Rabbits were immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. The resulting 30 antisera were tested for antipeptide activity, e.g., by binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radioiodinated, goat anti-rabbit IgG.

Western blotting was performed using normal human protein samples (Protein Medley) obtained from Clontech (about 36 µg of total proteins). Proteins were 35 fractionated through 10% SDS-polyacrylamide gels, and transferred to 0.45 mm

nitrocellulose membranes. Membranes were blocked in Tris-buffered saline (TBS) with 0.05% Tween 20 and 1% BSA. Anti DPRP-1 or DPRP-2 specific antibodies were used as primary antibodies and were diluted 1:5,000 in Tris-buffered saline with 0.05% Tween 20 (TBST) and the Alkaline Phosphatase (AP) conjugated goat anti-Rabbit IgG (Promega) was diluted 1: 5,000 in the same buffer before use. The positive reaction was visualized by incubating the membrane in Western Blue Stabilized Substrate (Promega) for AP until the bands of interest have reached the desired intensity. DPRP-1 and DPRP-2 proteins were detected in brain, muscles, kidney, prostate, testis and ovary tissues. DPRP-1 and DPRP-2 were synthesized as approximately 101kDa and 100kDa forms, respectively, which are in good agreement with the molecular masses estimated from their primary structure as shown in Table 3.

**Table 3.** Predicted Molecular Weight, Number of potential N-linked glycosylation sites (Asn residues) and predicted pI values of DPRP-1, DPRP-2 and DPRP-3, based on sequence analysis using the method developed by Hopp and Woods, Proc. Nat. Acad. Sci. 78:3824-3828 (1981).

|       | M.W. (Da.) | No. of Asn | pI   |
|-------|------------|------------|------|
| DPRP1 | 101422     | 26         | 5.39 |
| DPRP2 | 98263      | 27         | 6.01 |
| DPRP3 | 90914      | 33         | 6.11 |

Several additional bands of similar molecular weight were observed. These are thought to be due to the presence of post-translational glycosylation of the proteins. Table 3 also shows the number of potential N-glycosylation sites for the DPRP proteins. The presence of glycosylated and unglycosylated forms of the proteins was evaluated using tunicamycin, an inhibitor of the oligosaccharide synthesis. It is evident that the smaller forms were unglycosylated forms. The correlation between mRNA (Northern analysis) and protein quantity (Western analysis) for DPRP-1 is shown in Table 4.

**Table 4.** Correlation of mRNA and protein expression of DPRP-1 in human tissues

|          | Heart | Brain | Placenta | Muscles | Kidney | Prostate | Testis | Ovary |
|----------|-------|-------|----------|---------|--------|----------|--------|-------|
| Northern | ++    | +++   | +        | +++     | ++     | +++      | ++++   | +     |
| Western  | -     | ++++  | -        | +       | ++     | +        | +++    | +++   |

Example 4Immunohistochemical localization of DPRP proteins in human tissues

Four-micron sections were prepared from a number of different formalin-fixed, paraffin-embedded human tissues. Tissue sections were deparaffined through 4 immersions in xylenes for 5 minutes, followed by a graded alcohol series to distilled water. Steam heat induced epitope recovery (SHIER) was used with several different SHIER solutions with and without enzyme digestion tissue in two different concentrations (Ladner et al, Cancer Res.; 60, p 3493-3503, 2000). The treatments and antibody dilutions employed are outlined below.

10        1. Blocking Reagent for 15 minutes (Normal Goat Serum)  
            2. Primary Antibody for 25, 60 min or overnight incubation  
            3. Secondary Antibody for 25 minutes (Biotinylated Goat-anti-rabbit IgG)  
            4. Endogenous Peroxidase Blocking for 3 x 1.5 minutes  
            5. ABC (avidin-biotin complex) / Horse Radish Peroxidase for 25 minutes  
15        6. DAB Chromogen for 3 x 5 minutes (Brown reaction product)  
            7. Light Hematoxylin Counter Stain 1 minute

Positive controls were run to assure the detection chemistries and antigen pretreatments were working appropriately. Rabbit IgG was run as a negative control. An avidin-biotin based tissue staining system was used for the detection of the DPRP-1 antibody. Horseradish peroxide was used as a reporter enzyme with DAB as chromogen. After staining, slides were dehydrated through an alcohol series to absolute ethanol followed by xylene rinses. Slides were permanently coverslipped with glass coverslips and permount. Digital images of representative staining, where positive staining was indicated by a dark brown chromogen (DAB-HRP reaction product), were captured using a video camera from Olympus. Hematoxylin counterstain provides a blue nuclear stain to assess cell and tissue morphology.

DPRP-1 rabbit polyclonal antibody labels formalin-fixed, paraffin-embedded human tissues, including normal testis, prostate glands, endometrial glands, tonsils and pancreas. It was also present in endothelial cells of normal ovary, bladder and kidney. Staining was localized in the cytoplasm in epithelial and some stromal cells such as fibroblasts, endothelial cells and lymphocytes. Interestingly in normal testis tested with DPRP-1 antibodies, there was distinctive expression in Leydig cells and multinucleated macrophages found in interstitial tissue, which is the space surrounding the seminiferous tubules. Tonsil B cells were stained with DPRP-1 antibody.

Example 5Mammalian and Insect Cell Expression of DPRP Proteins and Purification

Plasmid DNA of pcDNA-DPRP1, pcDNA-MycHis-DPRP1, pcDNA-DPRP-2 or pcDNA-MycHis-DPRP2 was transfected into PEAK (EdgeBioSystems, Gaithersburg MD, USA) or COS-1 (ATCC CRL-1650) using LipofectAmine (Life Technologies, Gaithersburg MD, USA) method recommended by the manufacturer. Transfected cells were maintained in DMEM with 5% FBS at 37°C with 5% CO<sub>2</sub> for 48 hours. Cells were then collected and used for recombinant protein extraction. Cells were harvested 48 hours after transfection, homogenized and then spun at 18,000 x g for 40 min. The supernata were collected as cytosolic fractions. This fraction was loaded on TALON spin column (Clontech), and His-tagged proteins were eluted with 50mM PBS, 150mM imidazole, pH 7. Recombinant proteins were then detected by western blotting with anti-myc antibody and visualized using a ProtoBlot II AP system (Promega). Recombinant affinity purified fusions of the DPRP-1 and DPRP-2 were detected by western blot, and DPRP-1 and DPRP-2 were synthesized as 112kDa and 109kDa forms as predicted.

Naturally occurring or recombinant DPRP proteins were substantially purified by immunoaffinity chromatography using antibodies specific for DPRP-1, DPRP-2 or DPRP-3. An immunoaffinity column was constructed by covalently coupling DPRP antibodies to an activated chromatographic resin, such as CNBr-activated Sepharose (Pharmacia & Upjohn). After the coupling, the resin was blocked and washed according to the manufacturer's instructions.

Media or cell extracts containing DPRP proteins were passed over the immunoaffinity column, and the column was washed under conditions that allow the preferential absorbance of DPRPs (e.g., high ionic strength buffers in the presence of detergent). The column was eluted under conditions that disrupt antibody/DPRP binding (e.g., a buffer of pH 2-3 or a high concentration of a chaotropic, such as urea or thiocyanate ion), and purified DPRP was collected.

Example 6Enzymatic Activity of DPRP proteins and Methods of Screening for Inhibitors

The kinetic properties of recombinant DPRP-1 and DPRP-2 were determined in a continuous fluorimetric assay. Buffer, pH and temperature dependence optimization led to the following assay conditions: Enzyme assays were performed in 50mM PBS, pH7.4 50 µl (50 µg/ml) of purified enzymes were mixed with 1 µl of different concentration of Ala-Pro-AMC (Enzyme Systems). Plates were then incubated at 37°C for 30 min, and

fluorescence was detected using a Wallac 1420 Fluorimeter with  $\lambda_{ex}40355$  and  $\lambda_{em}535$ . The  $K_m$  values of DPRP-1 and DPRP-2 were similar (208 and 161  $\mu\text{M}$  respectively).

Further biochemical characterization reveals that DPRP-1 and DPRP-2 have similar profiles to DPPIV. The two purified proteases and DPPIV were preincubated 5 with inhibitors at room temperature for 30 min. Substrate, Ala-Pro-AMC (100  $\mu\text{M}$ ), was then added, and the fluorescence intensity was recorded as 60 readings during a 60 min period. The irreversible serine protease inhibitor AEBSF was the only inhibitor tested that showed strong inhibition of all three enzymes (Table 5). This confirms the structural and domain analysis prediction that these proteins belong to the serine protease 10 superfamily.

**Table 5.** Inhibition of DPRP-1 and DPRP-2 by Protease Inhibitors

| Inhibitor         | Inhibitor Property   | Concentration              | Residual activity<br>(% of control) |        |       |
|-------------------|----------------------|----------------------------|-------------------------------------|--------|-------|
|                   |                      |                            | DPRP-1                              | DPRP-2 | DPPIV |
| AEBSF             | serine, irreversible | 5mM                        | 29.6                                | 23.9   | 21.1  |
| Aprotinin         | serine, reversible   | 5 $\mu\text{g}/\text{ml}$  | 77.5                                | 63.2   | 80.2  |
| Pepstatin         | aspartic, reversible | 2 $\mu\text{g}/\text{ml}$  | 97.3                                | 95.0   | 93.5  |
| DTT               | cysteine             | 2mM                        | 100.1                               | 94.8   | 98.3  |
| B-Mercaptoethonal | cysteine             | 100mM                      | 93.2                                | 84.0   | 98.0  |
| EDTA              | metallo, reversible  | 2mM                        | 91.5                                | 86.0   | 93.5  |
| Leupeptin         | serine, reversible   | 50 $\mu\text{g}/\text{ml}$ | 91.1                                | 90.4   | 90.7  |

20 In addition to Ala-Pro-AMC, additional substrates tested also confirmed that DPRP-1 and DPRP-2 are dipeptidyl peptidases. The data were derived by determining the fluorescence change following a 30-minute incubation of the substrates (125  $\mu\text{M}$ ) with enzymes as a percentage of the fluorescence measured at Ala-Pro-AMC and Gly-Pro-AMC were the only good substrates among those tested.

25 **Table 6.** DPRP-1 and DPRP-2 are dipeptidyl peptidases.

| Substrate       | % Change in Fluorescence at 30 minutes |        |       |
|-----------------|----------------------------------------|--------|-------|
|                 | DPRP-1                                 | DPRP-2 | DPPIV |
| Ala-Pro-AMC     | 239.0                                  | 127.5  | 379.0 |
| Gly-Pro-AMC     | 341.5                                  | 205.0  | 444.0 |
| Ala-Pro-pNA     | 45.5                                   | 44.0   | 29.5  |
| 30 Pro-pNA      | -1                                     | -2.5   | 0.0   |
| Gly-Arg-pNA     | -4.5                                   | -0.5   | 0.0   |
| Lys-Ala-pNA     | 2.5                                    | 0.5    | 0.5   |
| Ala-Phe-Pro-pNA | -4                                     | -0.5   | 2.0   |

Additional natural and non-natural amino acid di-, tri- and tetra-peptides were tested in order to find an optimal substrate for testing each of the DPRP proteins that will also show reduced activity when incubated DPPIV.

The enzyme assay method described here is one of a number of methods that can

5 be utilized to screen for peptide and non-peptide inhibitors of the DPRP enzymes. Libraries of tetrapeptide inhibitors were tested to discover inhibitors of enzyme activity. Candidate inhibitors were prepared as 10-20 mM stock solutions in DMSO and stored at -20°C. Dilutions were made in assay buffer. Inhibition was determined by comparing the changes in fluorescence of the inhibited enzyme to the change in fluorescence of the

10 control (vehicle) enzyme. 100-(f1 units of sample/f1 units of control x 100) gives percent inhibition value. The percent inhibition and the inhibitor concentration at which the enzyme was 50% inhibited ( $IC_{50}$ ) was ascertained by plotting percent inhibition vs. inhibitor concentration on the log scale. As shown in Figure 3, several tetrapeptides amides inhibited enzyme activity, wherein data are expressed as the % of activity in the

15 presence of vehicle (0.02% DMSO) alone. Compounds were added at 1 mM. Most interesting was the apparent differential activity of some tetrapeptides for DPRP-1 and DPRP-2, compared to DPPIV. While all three enzymes were inhibited by Peptide-1, only DPRP-1 and DPRP-2 were significantly inhibited by Peptide-4 and Peptide-5. This demonstrates that selective inhibition of the purified enzymes is achievable.

20 The assay described in this example can also be used to screen additional synthetic or naturally occurring compound libraries, including macromolecules, for agents that either inhibit or enhance DPRP activity. The DPRP-1 and DPRP-2 polypeptides to be used in the assay can be obtained by, for example, *in vitro* translation, recombinant expression (see Example 5) or biochemical procedures. Methods other than

25 those described here can also be used to screen and identify compounds that inhibit DPRP-1, DPRP-2 or DPRP-3, which methods can include, for example, binding assays such as ELISAs and RIAs.

#### Example 7

##### Effect of DPRP Inhibitors on the Proliferation of Human Cancer Cells In Vitro

30 In an attempt to assess the effect that several inhibitors of DPRP-1 and DPRP-2 activity may have on the proliferation of human cancer cells, LNCap, PC3 and Du145, mouse testis line MLTC-1 and MDA-MB231 breast cancer cells were plated ( $10^4$  per well) in 96-well tissue culture plates and allowed to grow and attach for 24 hours at 37°C in a CO<sub>2</sub> incubator. Compounds at various dilutions (final dilutions: 0.1 nM – 10 µM)

35 were then added to the wells for various incubation periods from 24 hours to 96 hours,

with fresh compound being replaced each day. Addition of the diluent DMSO alone served as the control. Following incubation with these compounds in triplicate, proliferation of the cells was determined using an XTT cell proliferation assay (Roche 1-465-015). The plates were read at 490 and 650nm 5 hours after the XTT mix was added.

5 An increase in cell proliferation was observed with three of the inhibitors at concentrations equal to 0.1, 1, 10 and 100 x IC<sub>50</sub>, and the results are shown in FIGS. 4A, 4B and 4C for PC3 cells.

Overall, the DPRPs are expressed in a wide variety of tissues as has been demonstrated by mRNA amplification, western blotting and immunohistochemistry.

10 DPRP-1 was most abundant in the testis by Northern blot and western blot. The large number of expressed sequence tags (ESTs) from testis cDNA sources that are homologous to DPRP-1 also confirms abundant expression of DPRP-1 in testis. Example 4 describes the immunohistochemical localization of DPRP-1 protein in human testis using a specific DPRP-1 antibody. DPRP-1 is strongly expressed in epitheloid Leydig cells, and Leydig cells are the primary source of testicular androgens (male steroid hormones) in the mammalian male. In the interstitium of the testis, Leydig cells and macrophages are in close association with "digitation" of Leydig cell process extending onto macrophage surface. Multinucleated cells in close proximity to the Leydig cells were also stained with DPRP-1 antibody suggesting that the protease was

15 also expressed in macrophages, and macrophages in the testis play an important role in the paracrine regulation of Leydig cells. Cytokines secreted by the testicular macrophages are mitogenic to Leydig cells and play an important role in the differentiation of mesenchymal progenitor cell into mature Leydig cells. A clearer understanding of the proteins and pathways involved in the maturation of the testis is

20 important for the discovery of new treatments for precocious puberty. In addition, Leydig cells cause tumors such as sex cord-stromal tumors via sexual steroid production (predominantly testosterone). Testosterone is associated with several neoplasia and diseases such as breast carcinoma and uterine cancers, ovarian carcinoma and androgenic alopecia (hair loss). Further examination of the localization of DPRP

25 proteins in other glands in the body (e.g. adrenal glands) that produce testosterone and other androgenic hormones are currently under investigation. The possible association of DPRP-1 with steroid and polypeptide hormone biosynthetic pathways functions is being investigated, and Example 7 is relevant to understanding the role of DPRP proteins in prostate, testis and breast in vitro cell models.

Immunohistochemical analysis also localized DPRP-1 to endometrial glands in the uterus (see Example 4), pancreatic acini, glomeruli of the kidney, plasma cells in the bladder, a subset of B-cells in the tonsils, columnar epithelial cells of the prostate and poorly differentiated prostate squamous metaplasia, Gleason grade 4 prostatic carcinoma, and hyperplastic glands in benign prostatic hyperplasia. Positive staining in breast carcinoma, as well as in seminoma and prostate squamous metaplasia, suggests a general association of DPRP-1 with hormone-sensitive tissues, particularly in cells that become poorly differentiated. The presence of the DPRP-1 in specialized epithelial cells and in inflammatory plasma cells (lymphocytes) is also of interest. Inflammatory breast carcinoma has an abundance of infiltrating lymphocytes and an overall bad prognosis. DPRP-1 and other DPRP proteins appear in medullary carcinomas that typically have a constant infiltrating lymphoplasmacytic component at the periphery of the tumor, which is thought to represent a reaction of the host tissues to the neoplasm. Most of the lymphocytes are T Cells, and most of the plasma cells are of the IgG-producing type.

Several antigens are abundant on B cells, a subgroup of breast-cancer cells, and other epithelial cancer cells, and these antigens are targets for a new class of therapeutic monoclonal antibodies with some notable success having been achieved with a humanized monoclonal antibody against the B-cell-specific antigen CD20. Accordingly, monoclonal antibodies to DPRP proteins are felt to be useful to diagnose and treat diseases in which they are involved, including cancer.

The expression of DPRP-1 in specialized epithelial cells of a number of tissues suggests that DPRP-1 and other DPRP proteins may be involved in growth and differentiation thereof. Testing using inhibitors described in Example 6 in *in vitro* models of prostate and testis cancer (Example 7) showed that DPRP-1/DPRP-2 inhibitors caused a 50-60% increase in proliferation of PC3 cells at nM concentrations as shown in FIGS. 4A-4C.

Although the invention has been described in accordance with its preferred embodiments, which constitute the best mode presently known to the inventors, it should be understood that changes and modifications as would be obvious to those skilled in this art may be made without departing from its scope which is set forth in the claims appended hereto. For example, although the disclosure focuses on DPRP-1 and DPRP-2 in certain instances, DPRP-3 and its fragments are considered to be similarly useful, as are nucleic acids encoding same. Particular features of the invention are emphasized in the claims that follow.

**CLAIMS:**1. **Isolated nucleic acid**

which encodes (a) a polypeptide, which includes the amino acid sequence of one of SEQ ID NOS:1, 3 and 5, or (b) a polypeptide having an amino acid sequence that is at least about 70% similar thereto and exhibits the same biological function; or which is an alternative splice variant of one of SEQ ID NOS:2, 4 and 6; or which is a probe comprising at least 14 contiguous nucleotides from said nucleic acid encoding (a) or (b); or which is complementary to any one of the foregoing.

2. **The isolated nucleic acid of claim 1 which is DNA or RNA.**

3. **The isolated nucleic acid of claim 1 which is a DNA transcript that includes the entire length of any one of SEQ ID NOS:2, 4 and 6 or which is complementary to the entire coding region of one of SEQ ID NOS:2, 4 and 6.**

4. **An antisense oligonucleotide directed against the DNA of claim 3.**

5. **The isolated nucleic acid of claim 1 which is an RNA transcript which includes the entire length of any one of SEQ ID NOS:2, 4 and 6.**

6. **The isolated nucleic acid of claim 1 which is an alternative splice variant of one of SEQ ID NOS:2, 4 and 6.**

7. **A polypeptide encoded by the nucleic acid of claim 6.**

8. **The isolated nucleic acid of claim 1 which encodes a polypeptide having an amino acid that is at least about 90% similar to one of SEQ ID NOS:1, 3 and 5.**

9. **The isolated nucleic acid of claim 1 which encodes a polypeptide having an amino acid that is at least about 95% similar to one of SEQ ID NOS:1, 3 and 5.**

10. **The isolated nucleic acid of claim 1 which encodes a polypeptide that has at least about 90% identity with one of SEQ ID NOS:1, 3 and 5.**

11. **A nucleic acid probe according to claim 1 comprising at least 14 contiguous nucleotides from one of SEQ ID NOS:2, 4 and 6.**

12. **An isolated recombinant polynucleotide molecule comprising nucleic acid according to claim 1 plus expression-controlling elements linked operably with said nucleic acid to drive expression thereof.**

13. **An expression vector comprising the nucleic acid of claim 1 encoding a polypeptide having the entire amino acid sequence set forth in any one of SEQ ID NOS:1, 3 and 5 operably linked to a promoter, said expression vector being present in a compatible host cell.**

14. A mammalian, insect or bacterial host cell that has been genetically engineered by the insertion of nucleic acid according to claim 1 which codes for at least the mature protein portion of the amino acid sequence of SEQ ID NO:1, 3 or 5.

15. A process for producing a polypeptide which includes the mature protein portion of one of SEQ ID NOS:1, 3 and 5, which process comprises culturing the host cell of claim 11 under conditions sufficient for the production of said polypeptide.

16. The process of claim 15 wherein said polypeptide is expressed at the surface of said cell and further includes the step of recovering the polypeptide or a fragment thereof from the culture.

17. A polypeptide

which may be optionally glycosylated, and

which (a) has the amino acid sequence of a mature protein set forth in any one of SEQ ID NOS:1, 3 and 5; (b) has the amino acid sequence of a mature protein having at least about 70% similarity to one of the mature proteins of (a) and which exhibits the same biological function; (c) has the amino acid sequence of a mature protein having at least about 90% identity with a mature protein of any of SEQ ID NOS:1, 3 and 5; or (d) is an immunologically reactive fragment of (a).

18. The polypeptide according to claim 14 which is a mature protein having at least about 95% similarity to a mature protein of (a).

19. The polypeptide according to claim 14 which is a mature protein having at least about 95% similarity to a mature protein of (a).

20. The polypeptide according to claim 14 having the amino acid sequence of the mature protein of one of SEQ ID NOS:1, 3 and 5, or is a fragment thereof which exhibits the same biological function as the respective mature protein.

21. A DPRP antagonist which inhibits the biological function of one of said mature proteins of claim 17, 18 and 19.

22. An antibody that recognizes a polypeptide or a fragment according to claim 17.

23. The antibody of claim 22 which recognizes a polypeptide having an amino acid sequence of SEQ ID NO:1 or 3 or 5.

24. A method for the screening for a compound capable of inhibiting the enzymatic activity of at least one mature protein of claim 17, which method comprises incubating said mature protein and a suitable substrate for said mature protein in the presence of one or more test compounds or salts thereof, measuring the enzymatic activity of said mature protein, comparing said activity with comparable activity determined in the

absence of a test compound, and selecting the test compound or compounds that reduce the enzymatic activity.

25. A method for the screening for a compound capable of inhibiting the enzymatic activity of DPPIV that does not inhibit the enzymatic activity of at least one of the mature proteins of claim 20, which method comprises incubating said mature protein and a suitable substrate for said mature protein in the presence of one or more inhibitors of DPPIV or salts thereof, measuring the enzymatic activity of said mature protein, comparing said activity with comparable activity determined in the absence of the DPPIV inhibitor, and selecting a compound that does not reduce the enzymatic activity of said mature protein.

|       |     |                                                               |
|-------|-----|---------------------------------------------------------------|
| DPP4  | 1   | .....MKT PWSVLLGHL.....AAALST                                 |
| DPRP1 | 1   | MAAAMETEQLGAEFETADCREN1ESODRPKEEPFYVERYSWSOLKKKLESDTRKYHGYMM  |
| DPRP2 | 1   | .....ATTGTPHADRGDAATDDPAARFQVAKHSWDLRSLHGSRKYSGLV             |
| DPRP3 | 1   | .....ENOTASVSHIKCOPSKTEKELGSNSPPQEWKGIAIELLVILVSCS            |
| DPP4  | 20  | ITIVBVVLLNKGTDATADSRTTYTLTD...MLKN..TYRLKLYSERWISDHEYLAKOEN   |
| DPRP1 | 61  | AKAPPHDFYFVERNDPDGPHSDRYYLAMSGENRENILFYSE1PKENRAAVIMLSHKKPLL  |
| DPRP2 | 50  | NKAPPHDEQFVKDTDESGPHSHRLYYIAMPYGSRENALLYSEIPKKYRKEALLLLSAKOML |
| DPRP3 | 48  | ITMSVILLSP..DELTNSSETRLSLED..LIRKE..EVLDH.PEARWINDTDWVJKSEN   |
| DPP4  | 75  | .NLVFNAAEYGNSS....IFLENSTDEFCHSINDYSISPDCQFILLEYNYKQAFHSYT    |
| DPRP1 | 121 | .DEFOATDYGYSREEELLRERKRIGTVGLASYDYHOG.SGTFLFOAGSGDGHVEDGGP    |
| DPRP2 | 110 | .DHEFOATPHGYSREEELLRERKRIGVFGJISYDLEHSE.SCLFLFOASNSAHCRDGK    |
| DPRP3 | 101 | GHWIKLNBTNATI....LLENTTEVTE..KASRHSNSPDLKQMLLAYDVKQIISYSYT    |
| DPP4  | 130 | ASIDTYDLNK..RCLITEERIPNNNTQWVTWSPVGHKLAQNNNDIVVKIEPNLPSYR     |
| DPRP1 | 179 | QGHTOOPLIP...NLNETSCPNIR.MDPKICPADPDAIINHSDNISNIETREERRLT     |
| DPRP2 | 168 | NGHIVSPPEP...LEEKTOCSGPR.MDPKICPADPAFELINNSDIEVANIEETGEERRLT  |
| DPRP3 | 155 | ASAKIYNEETREVWELNPPEVEDSVIYQYAAWGVQGQOLIATIENNIIYQPDIKSSSLRLT |
| DPP4  | 187 | STG....KEEITYNITDWVYEEEVFSAYSPLWWSPNETHLAY....A..QFNTSVP      |
| DPRP1 | 235 | IVHETIANMEEEDARSAGVATFVLQEEFDYRSYWWCPKAETTPS.GGKILRILYEDNDES  |
| DPRP2 | 224 | ECHOGLSNVLEDPKSEAGVATFVIQEEFDYIYWWCPTESESEGLKTLRILYEVDES      |
| DPRP3 | 215 | SEG....KEEITFNITADWLYEEELLHSHIHWNSPDIERLAF.....LWINSLVP       |
| DPP4  | 235 | LIEYSFYEDESLGYPKTVRVVPYKAGAVNP..TKFIVVNTDSLSSITNATSIGHTAPAS   |
| DPRP1 | 294 | EVEIIHVTSRPLETREADSIRYPKTCANPKUTFKASEEMIDAEGRILIDVIDKELIQPF   |
| DPRP2 | 284 | EVEIIHVPSPALLEERKTDYSRYPRTGSKNEKIAKLAFFETDSQGKIVSTQEKELOPFS   |
| DPRP3 | 263 | TEVIEPFTGAMYI..KGKQYPYKAGOVNP..TINKLEVNLYG....PTHTLELPPDS     |
| DPP4  | 293 | ELIG.DHYECDVTIWAIQ.ERISLQWLRRION.....                         |
| DPRP1 | 354 | ELFEGVEYIARAGWTPEGKYAWSELDRSOTRLQVLESPELFIPVEEDVMERQRRIESV    |
| DPRP2 | 344 | SLEPKVEYIARAGWTRDGKYAWSELDRPOQWLOMVLAPPALFIPSTENEORLASARAV    |
| DPRP3 | 314 | FKSR.EYYITMVWKVEN.TKTVWRWLNRPON.....                          |
| DPP4  | 322 | .YSVYDQCDYEEESGRWNCLVAROHLEMSITGWVGRFRPSEPHFTLDGNSFYKIIISNE.. |
| DPRP1 | 414 | PDSVTEITIYEETDIEWINHDIFHWFPOS.HEEEELFIFASECKTGFRHLYKITSALNE   |
| DPRP2 | 404 | PRNVQHVVYEEVTNWWINHDIFYPFPPOSEGEDEELCFRANECKTGFCHLYKETAVLKS   |
| DPRP3 | 343 | .ISIETKGETTTG.....ACSKYEMTSITWLSQQNE.EPVFSRDGSFEMTVPVKQG      |

FIG. 1A

|       |     |                                                                |
|-------|-----|----------------------------------------------------------------|
| DPP4  | 379 | E.....GIRHICYFQIDKK....ECTEFITKGTWEVPG....IEAITSDELYYYISSEYK   |
| DPRP1 | 473 | SAYKRSSGGIPEAPSFKCPIK....EEIAITSGEWEVEGRHGSNIQVDEVRLVYFEGTK    |
| DPRP2 | 464 | QGYDWSEPFSEGEDFKCPIK....EEIAITSGEWEVEGRHGSKIWVLEETELVYFEGTK    |
| DPRP3 | 394 | GR.....GEFHIIAMFLIQSKSEQITVRHTSGNWEVK....IAYDETOKTYFLSTE       |
| DPP4  | 424 | GMPGGENLYKEQLSDYTKVTCIACELNPERCQYYSVSFSKEAKYYOLECSGPGLPRYTJH   |
| DPRP1 | 529 | DSPLEHHLYVVSYVPGEVTRLRDRGTSHSOCISQHCDEFSKYSNQHNP.HCVSRYKLS     |
| DPRP2 | 520 | DIPLEHHLYVVSYEAGEEVRLTTPGTSHSCEMSONFDMFSSYSSVSTP.PCVHRYKLS     |
| DPRP3 | 445 | SSPRGKOLYSASTECLLNROCNSCNFMKEQCYFDASFSPMNQHFLLFCEGPRVEVSLH     |
| DPP4  | 484 | SSVNDKGLEYEDNSALDKMLQN..VQMPSKKLDEHILLENETHFAYOMILPPHFDKSKKYP  |
| DPRP1 | 588 | SPEDDPDTORTKEFWAEEPLAGPLPDYTPPEIFSEETTGGTLYGMLYKPHDLQPGKKYP    |
| DPRP2 | 579 | GPDPPDPLHKOPREWAEMEAASCPPDYPPPEIFHEHERDVLVLYGMLYKPHALQPGKKYP   |
| DPRP3 | 505 | STDNPAPKYFILLESNSMLKEAILKKKIGKF..EIZIEHEDDMELPLOSLPPDFMDRNQVA  |
| DPP4  | 542 | LFLDVYAGPCSOKEATVFR..LNWATYLASEENITIVASEDGRGSGYOGDKIMHAINREG   |
| DPRP1 | 648 | TMLFHYGGPQVOLVNNSFKGKTYKYLRLNTLASLGIVVVVIDGRGSCORGLEFEGAERKNG  |
| DPRP2 | 639 | TFLFVYGGPQVOLVNNSFKGKTYKYLRLNTLASLGIVAVVVIDGRGSCORGLEFEGAERKNG |
| DPRP3 | 563 | LFLINDEEFGGOLVTEAE..IDWDHSVLDMDNVIVAREDGRGSGEOGLKILQEIIRREG    |
| DPP4  | 600 | TFEEVEDOIEARQFES.KMGFDNKRIAIWGWSYGGYDSMVLGSGSGVFKCGIAVAPVIR    |
| DPRP1 | 708 | QEEDDDOMEGLQFLASFYDFIDLDRVCIHGWSYGGYLSMALNQFSDIIEVIAAGAPVIR    |
| DPRP2 | 699 | QVEEEDOVEELQFLAQEAKYGFIDLSRVATHGWSYGGYLSIMGLHHPQVFKVIAAGAPVIR  |
| DPRP3 | 621 | SVEVKDQITAWKFLL.KLPWIDSKRASIFGKGYGGYDSMILKSDKEIFKCGSVVAPVTD    |
| DPP4  | 659 | WEAYDGVYTERYMGHPTPEDLDHYRNSTVRSRAENFKQVEYLEHGTADINVHFOQSAQ     |
| DPRP1 | 768 | WEAYDGVYTERYMGHPTDNEGYYLGSVALQAEEKEFSEPNRLLRHGFLDENVHEAHFSEI   |
| DPRP2 | 759 | WEAYDGVYTERYMDPEENAGYEAGSVAVHVERKLENEPNRLLRHGFLDENVHEAHNF      |
| DPRP3 | 680 | LKLYAATGTERYEGURSKEES..TQHAEVHNVHGLKEENLRAHGTADTKVHFOHAAE      |
| DPP4  | 719 | ESKALADVGVDLQAMWYTDEDHGIASSTLHDIYTHNSHEEKCFSLP.....            |
| DPRP1 | 828 | LPSFLWRAGKPYDLQTYEERHSIRVPESGEHEYELHLLNLQENLGSRTAAALKVI.....   |
| DPRP2 | 819 | LPSQLIRAGKPYQLOTYEERHSIRCPESGEHEYEVTLHNFLQEYL.....             |
| DPRP3 | 738 | LICKHLKAGVNYYTQWYPDEGHNVSEK.SKYHLYSTLRAFFSCLKEEISVLPQEPEEDE    |

FIG. 1B

|        |     |                                                                                                                                                     |
|--------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| hDPRP1 | 1   | MAAAAMETEQLGVEIFETA <b>DCEEN</b> .IESQDRPKLEPFYVERYSWSQLKKLLADTRKYHGYM                                                                              |
| mDPRP1 | 1   | MAAAAMETEQLGVEIFETA <b>ECECNGESQDRPKLEPFYVERYSWSQLKKLLADTRKYHGYM</b>                                                                                |
| hDPRP1 | 60  | MAKAPHDFMFVKRN <b>DPDGPHSDR</b> YYLAMSGENRENTLFYSEIPKTINRAAVLMLSWKPL                                                                                |
| mDPRP1 | 61  | MAKAPHDFMFVKRT <b>DPDRPHSDR</b> YYLAMSGENRENTLFYSEIPKTINRAAVLMLSWKPL                                                                                |
| hDPRP1 | 120 | LDLFQATLDYGMSREEELLRERKRIGTVGIA <b>SYDYHOGSGTFLFQAGSGIYH</b> KDGGPQ                                                                                 |
| mDPRP1 | 121 | LDLFQATLDYGMSREEELLRERKRIGTVGIA <b>AYDYHPGSGTFLFQAGSGIYH</b> KDGGPQ                                                                                 |
| hDPRP1 | 180 | GFTQQPLRPNLVETSCPNI <b>RMDPKLCPADPDWIAFIHSNDIWISN</b> VTRERRTYVHNE                                                                                  |
| mDPRP1 | 181 | GFTQQPLRPNLVETSCPNI <b>RMDPKLCPADPDWIAFIHSNDIWISN</b> VTRERRTYVHNE                                                                                  |
| hDPRP1 | 240 | LANMEEDARSAGVATFVLQEEFD <b>RYSGYWWCPKAELTPSGGKILRILYEENDESEVEITH</b>                                                                                |
| mDPRP1 | 241 | LANMEEDPRSAGVATFVLQEEFD <b>RYSGYWWCPQAERTPSGGKILRILYEENDESEVEITH</b>                                                                                |
| hDPRP1 | 300 | VTSPMLERRADSFRYPKTGTANPKVTFKMSEI <b>DAEGRTIDVIDKEL</b> QPFEILFEGV                                                                                   |
| mDPRP1 | 301 | VTSPMLERRADSFRYPKTGTANPKVTFKMSEI <b>DAAGGIIDVIDKEL</b> QPFEILFEGV                                                                                   |
| hDPRP1 | 360 | EYIARAGWTPEGK <b>YAWSII</b> LDRSQ <b>T</b> LQIVLISP <span style="background-color: black; color: black;">ELFIPV</span> <b>EDDV</b> MQQRQLIESVPDSVTP |
| mDPRP1 | 361 | EYIARAGWTPEGK <b>HAWSI</b> LLDRSQ <b>T</b> LQIVLISP <span style="background-color: black; color: black;">ELFIPV</span> <b>EDDV</b> MQQRQLIESVPDSVTP |
| hDPRP1 | 420 | LIIYEETTDIWINI <b>HDIFHVFPQ</b> HEIEIFIFASECKTGFRHLYKITSILKESKYKRSS                                                                                 |
| mDPRP1 | 421 | LIIYEETTDIWINI <b>HDIFHVFPQ</b> HEIEIFIFASECKTGFRHLYKITSILKESKYKRSS                                                                                 |
| hDPRP1 | 480 | GGLPAPSDFKCP <b>IKEEIAITSGEWEVLGRHGSNIQVDEV</b> RLVYFEGTKDSPLEHHLYVV                                                                                |
| mDPRP1 | 481 | GGLPAPSDFKCP <b>IKEEITTSGEWEVLGRHGSNIWVDEA</b> RLVYFEGTKDSPLEHHLYVV                                                                                 |
| hDPRP1 | 540 | SYVNPG <b>EVTRLTDRGYSHSC</b> SOHCDFFISKYSNQKNPHCVSILYKLSSPEDDPTCKTKE                                                                                |
| mDPRP1 | 541 | SYANPG <b>EVVRLTDRGYSHSC</b> SRHCDFFISKYSNQKNPHCVSILYKLSSPEDDPVHKTKE                                                                                |
| hDPRP1 | 600 | FWATI <b>LDSAGPLPDYTPPEIFSFESTTGFTLYGMLYKPHDLQPGKKYPTVLF</b> IYGGPQVQ                                                                               |
| mDPRP1 | 601 | FWATI <b>LDSAGPLPDYTPPEIFSFESTTGFTLYGMLYKPHDLQPGKKYPTVLF</b> IYGGPQVQ                                                                               |
| hDPRP1 | 660 | LVNNRFKG <b>VKYFRI</b> NTLASLG <b>YVVV</b> VIDNRGSCHRG <b>LKFEGAFKYKMGQIEIDDQVEGLQ</b>                                                              |
| mDPRP1 | 661 | LVNNRFKG <b>VKYFRI</b> NTLASLG <b>YVVV</b> VIDNRGSCHRG <b>LKFEGAFKYKMGQIEIDDQVEGLQ</b>                                                              |
| hDPRP1 | 720 | YLAS <b>RYDF</b> LDLRVG <b>IHGWSYGGYLSIMAI</b> MQRSD <b>IFRV</b> AAGAPVTLWIFYDTGYTERY                                                               |
| mDPRP1 | 721 | YLAS <b>OYDF</b> LDLRVG <b>IHGWSYGGYLSLM</b> ALMQRSD <b>IFRV</b> AAGAPVTLWIFYDTGYTERY                                                               |
| hDPRP1 | 780 | MGHPDQN <b>EQGYYLGSVAMQA</b> EKF <b>PSEPNRLLLHGF</b> LDENVHFAHTSILL <span style="background-color: black; color: black;">SFLVRAGKPY</span>          |
| mDPRP1 | 781 | MGHPDQN <b>EQGYYLGSVAMQA</b> EKF <b>PSEPNRLLLHGF</b> LDENVHFAHTSILL <span style="background-color: black; color: black;">SFLVRAGKPY</span>          |
| hDPRP1 | 840 | DLQIYPQERH <b>SIRVPESGEHYELHLLH</b> YQENLGSRIAALKVI                                                                                                 |
| mDPRP1 | 841 | DLQIYPQERH <b>SIRVPESGEHYELHLLH</b> YQENLGSRIAALKVI                                                                                                 |

FIG. 2



FIG. 3



FIG. 4A



FIG. 4B



FIG. 4C

Sequence Listing Summary

## SEQ ID.

1. DPRP1 a.a. sequence
2. DPRP1 DNA sequence
- 5      3. DPRP2 a.a. sequence
4. DPRP2 DNA sequence
5. DPRP-3 a.a. sequence
6. DPRP-3 DNA sequence
7. DPRP-1 transcript 0 a.a. sequence
- 10     8. DPRP-1 transcript 0 DNA sequence
9. DPRP-1 transcript 1 a.a. sequence
10. DPRP-1 transcript 1 DNA sequence
11. DPRP-1 transcript 2 a.a. sequence
12. DPRP-1 transcript 2 DNA sequence
- 15     13. DPRP-1 transcript 3 a.a. sequence
14. DPRP-1 transcript 3 DNA sequence
15. DPRP-1 transcript 4 a.a. sequence
16. DPRP-1 transcript 4 DNA sequence
17. DPRP-1 transcript 5 a.a. sequence
- 20     18. DPRP-1 transcript 5 DNA sequence
19. DPRP-1 transcript 6 a.a. sequence
20. DPRP-1 transcript 6 DNA sequence
21. DPRP-1 transcript 7 a.a. sequence
22. DPRP-1 transcript 7 DNA sequence
- 25     23. DPRP-2 transcript 0 a.a. sequence
24. DPRP-2 transcript 0 DNA sequence
25. DPRP-2 transcript 1 a.a. sequence
26. DPRP-2 transcript 1 DNA sequence
27. DPRP-2 transcript 2 a.a. sequence
- 30     28. DPRP-2 transcript 2 DNA sequence
29. DPRP-2 transcript 3 a.a. sequence
30. DPRP-2 transcript 3 DNA sequence
31. DPRP-2 transcript 4 a.a. sequence
32. DPRP-2 transcript 4 DNA sequence
- 35     33. DPRP-2 transcript 5 a.a. sequence

- 34. DPRP-2 transcript 5 DNA sequence
- 35. DPRP-2 transcript 6 a.a. sequence
- 36. DPRP-2 transcript 6 DNA sequence
- 37. DPRP-2 transcript 7 a.a. sequence
- 5      38. DPRP-2 transcript 7 DNA sequence
- 39. DPRP-2 transcript 8 a.a. sequence
- 40. DPRP-2 transcript 8 DNA sequence
- 41. DPRP-3 transcript 0 a.a. sequence
- 42. DPRP-3 transcript 0 DNA. Sequence
- 10     43. DPRP-3 transcript 1 a.a. sequence
- 44. DPRP-3 transcript 1 DNA sequence
- 45. DPRP1 forward primer used for cloning
- 46. DPRP1 reverse primer used for cloning full length gene
- 47. DPRP1 reverse primer used for cloning fusion gene
- 15     48. DPRP1 forward primer used for expression profiling
- 49. DPRP1 reverse primer used for expression profiling
- 50. DPRP2 forward primer used for cloning
- 51. DPRP2 reverse primer used for cloning full length gene
- 52. DPRP2 reverse primer used for cloning fusion gene
- 20     53. DPRP2 forward primer used for expression profiling
- 54. DPRP2 reverse primer used for expression profiling
- 55. DPRP3 forward primer used for cloning
- 56. DPRP3 reverse primer used for cloning full length gene
- 57. DPRP3 forward primer used for cloning fusion gene
- 25     58. DPRP3 reverse primer used for cloning fusion gene
- 59. DPRP1 peptide antigen sequences
- 60. DPRP2 peptide antigen sequences
- 61. DPRP3 peptide antigen sequences

## SEQUENCE LISTING

<110> Qi, Steve  
Akinsanya, Karen  
Riviere, Pierre  
Junien, Jean-Louis

<120> NOVEL SERINE PROTEASE GENES RELATED TO DPPIV

<130> 70669

<150> US 60/240,117

<151> 2000-10-12

<160> 61

<170> Patent In version 3.1

<210> 1

<211> 882

<212> PRT

<213> Homo sapiens

<400> 1

Met Ala Ala Ala Met Glu Thr Glu Gln Leu Gly Val Glu Ile Phe Glu  
1 5 10 15  
Thr Ala Asp Cys Glu Glu Asn Ile Glu Ser Gln Asp Arg Pro Lys Leu  
20 25 30  
Glu Pro Phe Tyr Val Glu Arg Tyr Ser Trp Ser Gln Leu Lys Lys Leu  
35 40 45  
Leu Ala Asp Thr Arg Lys Tyr His Gly Tyr Met Met Ala Lys Ala Pro  
50 55 60  
His Asp Phe Met Phe Val Lys Arg Asn Asp Pro Asp Gly Pro His Ser  
65 70 75 80  
Asp Arg Ile Tyr Tyr Leu Ala Met Ser Gly Glu Asn Arg Glu Asn Thr  
85 90 95  
Leu Phe Tyr Ser Glu Ile Pro Lys Thr Ile Asn Arg Ala Ala Val Leu  
100 105 110  
Met Leu Ser Trp Lys Pro Leu Leu Asp Leu Phe Gln Ala Thr Leu Asp  
115 120 125  
Tyr Gly Met Tyr Ser Arg Glu Glu Glu Leu Leu Arg Glu Arg Lys Arg  
130 135 140  
Ile Gly Thr Val Gly Ile Ala Ser Tyr Asp Tyr His Gln Gly Ser Gly  
145 150 155 160  
Thr Phe Leu Phe Gln Ala Gly Ser Gly Ile Tyr His Val Lys Asp Gly  
165 170 175  
Gly Pro Gln Gly Phe Thr Gln Gln Pro Leu Arg Pro Asn Leu Val Glu  
180 185 190  
Thr Ser Cys Pro Asn Ile Arg Met Asp Pro Lys Leu Cys Pro Ala Asp  
195 200 205  
Pro Asp Trp Ile Ala Phe Ile His Ser Asn Asp Ile Trp Ile Ser Asn  
210 215 220  
Ile Val Thr Arg Glu Glu Arg Arg Leu Thr Tyr Val His Asn Glu Leu  
225 230 235 240  
Ala Asn Met Glu Glu Asp Ala Arg Ser Ala Gly Val Ala Thr Phe Val  
245 250 255

Leu Gln Glu Glu Phe Asp Arg Tyr Ser Gly Tyr Trp Trp Cys Pro Lys  
 260 265 270  
 Ala Glu Thr Thr Pro Ser Gly Gly Lys Ile Leu Arg Ile Leu Tyr Glu  
 275 280 285  
 Glu Asn Asp Glu Ser Glu Val Glu Ile Ile His Val Thr Ser Pro Met  
 290 295 300  
 Leu Glu Thr Arg Arg Ala Asp Ser Phe Arg Tyr Pro Lys Thr Gly Thr  
 305 310 315 320  
 Ala Asn Pro Lys Val Thr Phe Lys Met Ser Glu Ile Met Ile Asp Ala  
 325 330 335  
 Glu Gly Arg Ile Ile Asp Val Ile Asp Lys Glu Leu Ile Gln Pro Phe  
 340 345 350  
 Glu Ile Leu Phe Glu Gly Val Glu Tyr Ile Ala Arg Ala Gly Trp Thr  
 355 360 365  
 Pro Glu Gly Lys Tyr Ala Trp Ser Ile Leu Leu Asp Arg Ser Gln Thr  
 370 375 380  
 Arg Leu Gln Ile Val Leu Ile Ser Pro Glu Leu Phe Ile Pro Val Glu  
 385 390 395 400  
 Asp Asp Val Met Glu Arg Gln Arg Leu Ile Glu Ser Val Pro Asp Ser  
 405 410 415  
 Val Thr Pro Leu Ile Ile Tyr Glu Glu Thr Thr Asp Ile Trp Ile Asn  
 420 425 430  
 Ile His Asp Ile Phe His Val Phe Pro Gln Ser His Glu Glu Glu Ile  
 435 440 445  
 Glu Phe Ile Phe Ala Ser Glu Cys Lys Thr Gly Phe Arg His Leu Tyr  
 450 455 460  
 Lys Ile Thr Ser Ile Leu Lys Glu Ser Lys Tyr Lys Arg Ser Ser Gly  
 465 470 475 480  
 Gly Leu Pro Ala Pro Ser Asp Phe Lys Cys Pro Ile Lys Glu Glu Ile  
 485 490 495  
 Ala Ile Thr Ser Gly Glu Trp Glu Val Leu Gly Arg His Gly Ser Asn  
 500 505 510  
 Ile Gln Val Asp Glu Val Arg Arg Leu Val Tyr Phe Glu Gly Thr Lys  
 515 520 525  
 Asp Ser Pro Leu Glu His His Leu Tyr Val Val Ser Tyr Val Asn Pro  
 530 535 540  
 Gly Glu Val Thr Arg Leu Thr Asp Arg Gly Tyr Ser His Ser Cys Cys  
 545 550 555 560  
 Ile Ser Gln His Cys Asp Phe Phe Ile Ser Lys Tyr Ser Asn Gln Lys  
 565 570 575  
 Asn Pro His Cys Val Ser Leu Tyr Lys Leu Ser Ser Pro Glu Asp Asp  
 580 585 590  
 Pro Thr Cys Lys Thr Lys Glu Phe Trp Ala Thr Ile Leu Asp Ser Ala  
 595 600 605  
 Gly Pro Leu Pro Asp Tyr Thr Pro Pro Glu Ile Phe Ser Phe Glu Ser  
 610 615 620  
 Thr Thr Gly Phe Thr Leu Tyr Gly Met Leu Tyr Lys Pro His Asp Leu  
 625 630 635 640  
 Gln Pro Gly Lys Lys Tyr Pro Thr Val Leu Phe Ile Tyr Gly Gly Pro  
 645 650 655  
 Gln Val Gln Leu Val Asn Asn Arg Phe Lys Gly Val Lys Tyr Phe Arg  
 660 665 670  
 Leu Asn Thr Leu Ala Ser Leu Gly Tyr Val Val Val Val Ile Asp Asn  
 675 680 685  
 Arg Gly Ser Cys His Arg Gly Leu Lys Phe Glu Gly Ala Phe Lys Tyr  
 690 695 700  
 Lys Met Gly Gln Ile Glu Ile Asp Asp Gln Val Glu Gly Leu Gln Tyr  
 705 710 715 720

Leu Ala Ser Arg Tyr Asp Phe Ile Asp Leu Asp Arg Val Gly Ile His  
 725 730 735  
 Gly Trp Ser Tyr Gly Tyr Leu Ser Leu Met Ala Leu Met Gln Arg  
 740 745 750  
 Ser Asp Ile Phe Arg Val Ala Ile Ala Gly Ala Pro Val Thr Leu Trp  
 755 760 765  
 Ile Phe Tyr Asp Thr Gly Tyr Thr Glu Arg Tyr Met Gly His Pro Asp  
 770 775 780  
 Gln Asn Glu Gln Gly Tyr Tyr Leu Gly Ser Val Ala Met Gln Ala Glu  
 785 790 795 800  
 Lys Phe Pro Ser Glu Pro Asn Arg Leu Leu Leu His Gly Phe Leu  
 805 810 815  
 Asp Glu Asn Val His Phe Ala His Thr Ser Ile Leu Leu Ser Phe Leu  
 820 825 830  
 Val Arg Ala Gly Lys Pro Tyr Asp Leu Gln Ile Tyr Pro Gln Glu Arg  
 835 840 845  
 His Ser Ile Arg Val Pro Glu Ser Gly Glu His Tyr Glu Leu His Leu  
 850 855 860  
 Leu His Tyr Leu Gln Glu Asn Leu Gly Ser Arg Ile Ala Ala Leu Lys  
 865 870 875 880  
 Val Ile

<210> 2  
 <211> 2671  
 <212> DNA  
 <213> Homo sapiens  
 <400> 2

|             |             |              |             |             |             |      |
|-------------|-------------|--------------|-------------|-------------|-------------|------|
| cggtaccatg  | gcagcagcaa  | tggaaacaga   | acagctgggt  | gttgagatat  | ttgaaaactgc | 60   |
| ggactgtgag  | gagaatattg  | aatcacagga   | tcggccctaa  | ttggagccctt | tttatgttga  | 120  |
| cgccgtattcc | tggagtcagc  | ttaaaaagct   | gcttggccat  | accagaaaaat | atcatggcta  | 180  |
| catgtatggct | aaggcaccac  | atgatttcat   | gtttgtgaag  | aggaatgatc  | cagatggacc  | 240  |
| tcattcagac  | agaatctatt  | accttgccat   | gtctggtag   | aacagagaaaa | atacactgtt  | 300  |
| ttatttctgaa | atccccaaaa  | ctatcaataq   | agcagcagtc  | ttaatgctct  | cttggaaagcc | 360  |
| tcttttggat  | ctttttcagg  | caacactgga   | ctatgaaatg  | tattctcgag  | aagaagaact  | 420  |
| attaagagaaa | agaaaaacgca | ttggaacagt   | cggaaattgct | tcttacgatt  | atcacaagg   | 480  |
| aagtggaaaca | tttctgtttc  | aagccggtag   | tggaaatttat | cacgtaaaag  | atggagggcc  | 540  |
| acaaggattt  | acgcaacaac  | ctttaaggcc   | caatctagtg  | gaaactagtt  | gtccccacat  | 600  |
| acggatggat  | ccaaaattat  | gccctgctga   | tccagactgg  | attgcttttta | tacatagcaq  | 660  |
| cgatattttgg | atatctaaca  | tctgttaaccag | agaagaaaagg | agactcaett  | atgtgcacaa  | 720  |
| tgagctagcc  | aacatggaaag | aagatgccag   | atcagctgga  | gtcgctacct  | ttgttctcca  | 780  |
| agaagaattt  | gatagatatt  | ctggctattt   | gtggtgtcca  | aaagctgaaa  | caactcccag  | 840  |
| tggtggtaaa  | attcttagaa  | ttcttatatga  | agaaaatgtat | gaatctgagg  | tggaaatttat | 900  |
| tcatgttaca  | tcccctatgt  | tggaaacaag   | gagggcagat  | tcattccgtt  | atcctaaaac  | 960  |
| aggtacagca  | aatcttaaaag | tcacttttaa   | gatgtcagaa  | ataatgattt  | atgctgaagg  | 1020 |
| aaggatcata  | gatgtcatag  | ataaggaact   | aattcaacct  | tttgagatc   | tatttgaagg  | 1080 |
| agttgaatat  | attgcccagag | ctggatggac   | tcctgaggga  | aaatatgctt  | ggtccatcct  | 1140 |
| actagatcgc  | tcccagactc  | gcctgcagat   | agtgttgatc  | tcacctgaaat | tatttattccc | 1200 |
| agtagaaagat | gatgttatgg  | aaaggccagag  | actcatttgag | tcagtgcctg  | attctgtgac  | 1260 |
| gccactaatt  | atctatgaag  | aaacaacaga   | catctggata  | aatatccatg  | acatcttca   | 1320 |
| tgtttttccc  | caaagtacg   | aaaggaaaaat  | tgagtttatt  | ttgcctctg   | aatgaaaaac  | 1380 |
| aggtttccgt  | catttataca  | aaattacatc   | tattttaaag  | gaaagcaaat  | ataaacgatc  | 1440 |
| cagtgggtgg  | ctgcctgctc  | caagtgttatt  | caagtgtct   | atccaaagagg | agatagcaat  | 1500 |
| taccagtgtt  | gaatggaaag  | ttcttggccg   | gcatggatct  | aatatccaag  | ttgtatgaagt | 1560 |
| cagaaggctg  | gtatatttt   | aggccaccaa   | agactccccct | ttagagcato  | acctgtacgt  | 1620 |
| agtcaagtac  | gtaaatccctg | gagagggtgac  | aaggctgact  | gaccgtggct  | actcacattc  | 1680 |
| ttgctgcata  | agtcaact    | gtgacttctt   | tataagtaag  | tatagtaacc  | agaagaatcc  | 1740 |
| acactgtgt   | tccctttaca  | agctatcaag   | tcctgaagat  | gacccaaactt | gaaaaacaaa  | 1800 |
| ggaattttgg  | gccaccattt  | tggattcagc   | aggtcccttt  | cctgactata  | ctcctccaga  | 1860 |
| aattttctct  | tttggaaagta | ctactggatt   | tacattgtat  | gggatgctct  | acaagcctca  | 1920 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| tgatctacag cctggaaaga aatatcctac tgcgtgttc atatatggtg gtcctcggt     | 1980 |
| gcagttgggt aataatcgat tttaaggagt caagtattt cgcttgaata ccctagctc     | 2040 |
| tctaggttat gtgggtgt tag tgatagacaa cagggatcc tgcaccgag ggcttaaatt   | 2100 |
| tgaaggcgcc tttaaatata aatgggtca aatagaaaatt gacgatcagg tggaaaggact  | 2160 |
| ccaatatcta gcttcgtat atgatttcat tgacttagat cgtgtggca tccacggctg     | 2220 |
| gtcctatgga ggataacctt ccctgatggc attaatcgag aggtcagata tcttcagggt   | 2280 |
| tgctattgtt gggccccag tcactctgt gatcttcat gatacaggat acacggAACG      | 2340 |
| ttatatgggt caccctgacc agaatgaaca gggcttattac ttaggatctg tggccatgca  | 2400 |
| agcagaaaag tttccctctg aaccaaattcg tttactgctc ttacatgggtt tcctggatga | 2460 |
| aatgatttccat ttgcacata ccagtatatt actgagttt ttagtgaggg ctggaaAGCC   | 2520 |
| acattatgaa ctgcacatctc ctcaggagag acacagcata agagttcctg aatcgggaga  | 2580 |
| acattatgaa ctgcacatctc tgcactacct tcaagaaaac cttggatcac gtattgctgc  | 2640 |
| tctaaaagt atatgagcg cccgcgagctc c                                   | 2671 |

<210> 3  
<211> 863  
<212> PRT  
<213> Homo sapiens  
<400> 3

|                                                                 |  |
|-----------------------------------------------------------------|--|
| Met Ala Thr Thr Gly Thr Pro Thr Ala Asp Arg Gly Asp Ala Ala Ala |  |
| 1 5 10 15                                                       |  |
| Thr Asp Asp Pro Ala Ala Arg Phe Gln Val Gln Lys His Ser Trp Asp |  |
| 20 25 30                                                        |  |
| Gly Leu Arg Ser Ile Ile His Gly Ser Arg Lys Tyr Ser Gly Leu Ile |  |
| 35 40 45                                                        |  |
| Val Asn Lys Ala Pro His Asp Phe Gln Phe Val Gln Lys Thr Asp Glu |  |
| 50 55 60                                                        |  |
| Ser Gly Pro His Ser His Arg Leu Tyr Tyr Leu Gly Met Pro Tyr Gly |  |
| 65 70 75 80                                                     |  |
| Ser Arg Glu Asn Ser Leu Leu Tyr Ser Glu Ile Pro Lys Lys Val Arg |  |
| 85 90 95                                                        |  |
| Lys Glu Ala Leu Leu Leu Ser Trp Lys Gln Met Leu Asp His Phe     |  |
| 100 105 110                                                     |  |
| Gln Ala Thr Pro His His Gly Val Tyr Ser Arg Glu Glu Leu Leu     |  |
| 115 120 125                                                     |  |
| Arg Glu Arg Lys Arg Leu Gly Val Phe Gly Ile Thr Ser Tyr Asp Phe |  |
| 130 135 140                                                     |  |
| His Ser Glu Ser Gly Leu Phe Leu Phe Gln Ala Ser Asn Ser Leu Phe |  |
| 145 150 155 160                                                 |  |
| His Cys Arg Asp Gly Gly Lys Asn Gly Phe Met Val Ser Pro Met Lys |  |
| 165 170 175                                                     |  |
| Pro Leu Glu Ile Lys Thr Gln Cys Ser Gly Pro Arg Met Asp Pro Lys |  |
| 180 185 190                                                     |  |
| Ile Cys Pro Ala Asp Pro Ala Phe Phe Ser Phe Ile Asn Asn Ser Asp |  |
| 195 200 205                                                     |  |
| Leu Trp Val Ala Asn Ile Glu Thr Gly Glu Glu Arg Arg Leu Thr Phe |  |
| 210 215 220                                                     |  |
| Cys His Gln Gly Leu Ser Asn Val Leu Asp Asp Pro Lys Ser Ala Gly |  |
| 225 230 235 240                                                 |  |
| Val Ala Thr Phe Val Ile Gln Glu Glu Phe Asp Arg Phe Thr Gly Tyr |  |
| 245 250 255                                                     |  |
| Trp Trp Cys Pro Thr Ala Ser Trp Glu Gly Ser Glu Gly Leu Lys Thr |  |
| 260 265 270                                                     |  |
| Leu Arg Ile Leu Tyr Glu Glu Val Asp Glu Ser Glu Val Glu Val Ile |  |
| 275 280 285                                                     |  |
| His Val Pro Ser Pro Ala Leu Glu Glu Arg Lys Thr Asp Ser Tyr Arg |  |
| 290 295 300                                                     |  |
| Tyr Pro Arg Thr Gly Ser Lys Asn Pro Lys Ile Ala Leu Lys Leu Ala |  |
| 305 310 315 320                                                 |  |

Glu Phe Gln Thr Asp Ser Gln Gly Lys Ile Val Ser Thr Gln Glu Lys  
           325                  330                  335  
 Glu Leu Val Gln Pro Phe Ser Ser Leu Phe Pro Lys Val Glu Tyr Ile  
           340                  345                  350  
 Ala Arg Ala Gly Trp Thr Arg Asp Gly Lys Tyr Ala Trp Ala Met Phe  
           355                  360                  365 -  
 Leu Asp Arg Pro Gln Gln Trp Leu Gln Leu Val Leu Leu Pro Pro Ala  
           370                  375                  380  
 Leu Phe Ile Pro Ser Thr Glu Asn Glu Glu Gln Arg Leu Ala Ser Ala  
           385                  390                  395                400  
 Arg Ala Val Pro Arg Asn Val Gln Pro Tyr Val Val Tyr Glu Glu Val  
           405                  410                  415  
 Thr Asn Val Trp Ile Asn Val His Asp Ile Phe Tyr Pro Phe Pro Gln  
           420                  425                  430  
 Ser Glu Gly Glu Asp Glu Leu Cys Phe Leu Arg Ala Asn Glu Cys Lys  
           435                  440                  445  
 Thr Gly Phe Cys His Leu Tyr Lys Val Thr Ala Val Leu Lys Ser Gln  
           450                  455                  460  
 Gly Tyr Asp Trp Ser Glu Pro Phe Ser Pro Gly Glu Asp Glu Phe Lys  
           465                  470                  475                480  
 Cys Pro Ile Lys Glu Glu Ile Ala Leu Thr Ser Gly Glu Trp Glu Val  
           485                  490                  495  
 Leu Ala Arg His Gly Ser Lys Ile Trp Val Asn Glu Glu Thr Lys Leu  
           500                  505                  510  
 Val Tyr Phe Gln Gly Thr Lys Asp Thr Pro Leu Glu His His Leu Tyr  
           515                  520                  525  
 Val Val Ser Tyr Glu Ala Ala Gly Glu Ile Val Arg Leu Thr Thr Pro  
           530                  535                  540  
 Gly Phe Ser His Ser Cys Ser Met Ser Gln Asn Phe Asp Met Phe Val  
           545                  550                  555                560  
 Ser His Tyr Ser Ser Val Ser Thr Pro Pro Cys Val His Val Tyr Lys  
           565                  570                  575  
 Leu Ser Gly Pro Asp Asp Asp Pro Leu His Lys Gln Pro Arg Phe Trp  
           580                  585                  590  
 Ala Ser Met Met Glu Ala Ala Ser Cys Pro Pro Asp Tyr Val Pro Pro  
           595                  600                  605  
 Glu Ile Phe His Phe His Thr Arg Ser Asp Val Arg Leu Tyr Gly Met  
           610                  615                  620  
 Ile Tyr Lys Pro His Ala Leu Gln Pro Gly Lys Lys His Pro Thr Val  
           625                  630                  635                640  
 Leu Phe Val Tyr Gly Gly Pro Gln Val Gln Leu Val Asn Asn Ser Phe  
           645                  650                  655  
 Lys Gly Ile Lys Tyr Leu Arg Leu Asn Thr Leu Ala Ser Leu Gly Tyr  
           660                  665                  670  
 Ala Val Val Val Ile Asp Gly Arg Gly Ser Cys Gln Arg Gly Leu Arg  
           675                  680                  685  
 Phe Glu Gly Ala Leu Lys Asn Gln Met Gly Gln Val Glu Ile Glu Asp  
           690                  695                  700  
 Gln Val Glu Gly Leu Gln Phe Val Ala Glu Lys Tyr Gly Phe Ile Asp  
           705                  710                  715                720  
 Leu Ser Arg Val Ala Ile His Gly Trp Ser Tyr Gly Gly Phe Leu Ser  
           725                  730                  735  
 Leu Met Gly Leu Ile His Lys Pro Gln Val Phe Lys Val Ala Ile Ala  
           740                  745                  750  
 Gly Ala Pro Val Thr Val Trp Met Ala Tyr Asp Thr Gly Tyr Thr Glu  
           755                  760                  765

Arg Tyr Met Asp Val Pro Glu Asn Asn Gln His Gly Tyr Glu Ala Gly  
 770 775 780  
 Ser Val Ala Leu His Val Glu Lys Leu Pro Asn Glu Pro Asn Arg Leu  
 785 790 795 800  
 Leu Ile Leu His Gly Phe Leu Asp Glu Asn Val His Phe Phe His Thr  
 805 810 815  
 Asn Phe Leu Val Ser Gln Leu Ile Arg Ala Gly Lys Pro Tyr Gln Leu  
 820 825 830  
 Gln Ile Tyr Pro Asn Glu Arg His Ser Ile Arg Cys Pro Glu Ser Gly  
 835 840 845  
 Glu His Tyr Glu Val Thr Leu Leu His Phe Leu Gln Glu Tyr Leu  
 850 855 860

<210> 4  
<211> 2617  
<212> DNA  
<213> Homo sapiens  
<400> 4

|            |             |             |            |             |             |      |
|------------|-------------|-------------|------------|-------------|-------------|------|
| caagcttacc | atggccacca  | ccgggacccc  | aacggccgac | cgaggcgcacg | cagccgccac  | 60   |
| agatgaccgg | gccgcggcgct | tccaggtaca  | gaagcactcg | tgggacgggc  | tccggagcat  | 120  |
| catccacggc | agccgcaagt  | actcgggcct  | cattgtcaac | aaggcgcccc  | acgacttcca  | 180  |
| gtttgtcgag | aagacggatg  | agtctggcc   | ccactccac  | cgccctctact | acctggaaat  | 240  |
| gccatatggc | agccgagaga  | actccctcct  | ctactctgag | attcccaaga  | aggtcggaa   | 300  |
| agaggctctg | ctgctcctgt  | cctgaaagca  | gatgctggat | catttccagg  | ccacgccccca | 360  |
| ccatgggtc  | tactctcggt  | aggaggagct  | gctgaggagg | cgaaaacgcc  | tgggggtctt  | 420  |
| cggcatcacc | tcctacgact  | tccacagcg   | gagtggcc   | ttcctcttcc  | aggccagcaa  | 480  |
| cagcctcttc | cactgtcgcg  | acggcgccaa  | gaacggcttc | atgggttccc  | ctatgaaacc  | 540  |
| gctggaaatc | aagacccagt  | gctcagggcc  | ccggatggac | ccaaaaatct  | gccctggcga  | 600  |
| ccctgccttc | tttccttca   | tcaataacag  | cgacctgtgg | gtggccaaca  | tgcagacagg  | 660  |
| cgaggagcgg | cggtcgac    | tctgcccacca | aggttatcc  | aatgttctgg  | atgacccaa   | 720  |
| gtctgcgggt | gtggccac    | tctgtataca  | ggaagagttc | gaccgcttca  | ctgggtactg  | 780  |
| gtggtgcccc | acagcctcct  | ggttgggttc  | agagggctc  | aagacgtgc   | gaatcctgta  | 840  |
| tgaggaagtc | gatgagtccg  | aggtggaggt  | cattcacgtc | ccctcttctg  | cgctagaaga  | 900  |
| aaggaagacg | gactcgatc   | ggttccca    | gacaggcgc  | aagaatccca  | agattgcctt  | 960  |
| gaaactggct | gagttccaga  | ctgacagcc   | ggcaagatc  | gtctcgaccc  | aggagaagga  | 1020 |
| gctggtgcag | cccttcagct  | cgctgttccc  | gaaggtggag | tacatgc     | ggccgggtg   | 1080 |
| gaccggat   | ggcaaataacg | cctggccat   | gttcctggac | cgcccccage  | agtggctcca  | 1140 |
| gctcgccctc | ctccccccgg  | ccctgttcat  | cccgagcaca | gagaatgagg  | agcagcggct  | 1200 |
| agcctctgcc | agagctgtcc  | ccaggaatgt  | ccagccgtat | gtgggttacg  | aggaggtcac  | 1260 |
| caacgtctgg | atcaatgttc  | atgacatctt  | ctatcccttc | ccccaatcag  | agggagagga  | 1320 |
| cgagctctgc | tttctcccg   | ccaaatgaatg | caagaccggc | ttctgcccatt | tgtacaaatg  | 1380 |
| caccgcgtt  | ttaaaatccc  | agggctacga  | ttggagttag | cccttcagcc  | ccggggaaaga | 1440 |
| tgaatttaag | tgccccatta  | aggaagagat  | tgctctgacc | agcgggtaat  | gggaggttt   | 1500 |
| ggcgaggcac | ggctccaaga  | tctgggtcaa  | tgaggagacc | aagctgggt   | acttccaggg  | 1560 |
| caccaaggac | acgcccgtgg  | agcaccac    | ctacgtggc  | agctatgagg  | cgccggcga   | 1620 |
| gatcgtagc  | ctcaccacgc  | ccggcttctc  | ccatagctgc | tccatgagcc  | agaacttcga  | 1680 |
| catgttcgtc | agccactaca  | gcagcgtgag  | cacggccccc | tgcgtgcacg  | tctacaagct  | 1740 |
| gagcgcccc  | gacgacgacc  | ccctgcacaa  | gcagccccgc | ttctgggcta  | gcatgatgga  | 1800 |
| ggcagccagc | tgcggccgg   | attatgttcc  | tccagagatc | ttccatttcc  | acacgcgtc   | 1860 |
| ggatgtcg   | ctctacggca  | tgtatctacaa | gccccacgc  | ttcgagccag  | ggaagaagca  | 1920 |
| ccccaccgtc | ctcttgtat   | atggaggccc  | ccaggtgcag | ctgggtata   | actccttcaa  | 1980 |
| aggcatcaag | tacttgcggc  | tcaacacact  | ggcctccctg | ggctacgccc  | tgggtgtat   | 2040 |
| tgacggcagg | ggctccgtc   | agcgagggt   | tcgggttgc  | ggggccctga  | aaaaccaat   | 2100 |
| gggcccagg  | gagatcgagg  | accaggtgg   | gggcctgcag | ttcggtggcc  | agaagtatgg  | 2160 |
| cttcatcgac | ctgagccgag  | ttgccatcca  | tggctggcc  | tacgggggt   | tcctctcgct  | 2220 |
| catggggcta | atccacaagc  | cccaggtgtt  | caaggtggcc | atcgccgggt  | ccccgggtcac | 2280 |
| cgtctggatg | gcctacgaca  | cagggtacac  | tgagcgtac  | atggacgtcc  | ctgagaacaa  | 2340 |
| ccagcacggc | tatgagggcgg | gttccgtggc  | cctgcacgt  | gagaagctgc  | ccaatgagcc  | 2400 |
| caaccgttgc | tttatcc     | acggcttcc   | ggacaaaac  | gtgcacttt   | tccacacaaa  | 2460 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| cttcctcgta tcccaactga tccgaggcagg gaaacacctac cagctccaga tctacccaa | 2520 |
| cgagagacac agtattcgct gccccgagtc gggcgagcac tatgaagtca cgttgctgca  | 2580 |
| ctttctacag gaataacctct gagcggccgc ggatccg                          | 2617 |

<210> 5  
<211> 796  
<212> PRT  
<213> Homo sapiens  
<400> 5

|                                                                 |  |
|-----------------------------------------------------------------|--|
| Met Asn Gln Thr Ala Ser Val Ser His His Ile Lys Cys Gln Pro Ser |  |
| 1 5 10 15                                                       |  |
| Lys Thr Ile Lys Glu Leu Gly Ser Asn Ser Pro Pro Gln Arg Asn Trp |  |
| 20 25 30                                                        |  |
| Lys Gly Ile Ala Ile Ala Leu Leu Val Ile Leu Val Val Cys Ser Leu |  |
| 35 40 45                                                        |  |
| Ile Thr Met Ser Val Ile Leu Leu Ser Pro Asp Glu Leu Thr Asn Ser |  |
| 50 55 60                                                        |  |
| Ser Glu Thr Arg Leu Ser Leu Glu Asp Leu Phe Arg Lys Asp Phe Val |  |
| 65 70 75 80                                                     |  |
| Leu His Asp Pro Glu Ala Arg Trp Ile Asn Asp Thr Asp Val Val Tyr |  |
| 85 90 95                                                        |  |
| Lys Ser Glu Asn Gly His Val Ile Lys Leu Asn Ile Glu Thr Asn Ala |  |
| 100 105 110                                                     |  |
| Thr Thr Leu Leu Leu Glu Asn Thr Thr Phe Val Thr Phe Lys Ala Ser |  |
| 115 120 125                                                     |  |
| Arg His Ser Val Ser Pro Asp Leu Lys Tyr Val Leu Leu Ala Tyr Asp |  |
| 130 135 140                                                     |  |
| Val Lys Gln Ile Phe His Tyr Ser Tyr Thr Ala Ser Tyr Val Ile Tyr |  |
| 145 150 155 160                                                 |  |
| Asn Ile His Thr Arg Glu Val Trp Glu Leu Asn Pro Pro Glu Val Glu |  |
| 165 170 175                                                     |  |
| Asp Ser Val Leu Gln Tyr Ala Ala Trp Gly Val Gln Gly Gln Leu     |  |
| 180 185 190                                                     |  |
| Ile Tyr Ile Phe Glu Asn Asn Ile Tyr Tyr Gln Pro Asp Ile Lys Ser |  |
| 195 200 205                                                     |  |
| Ser Ser Leu Arg Leu Thr Ser Ser Gly Lys Glu Glu Ile Ile Phe Asn |  |
| 210 215 220                                                     |  |
| Gly Ile Ala Asp Trp Leu Tyr Glu Glu Glu Leu Leu His Ser His Ile |  |
| 225 230 235 240                                                 |  |
| Ala His Trp Trp Ser Pro Asp Gly Glu Arg Leu Ala Phe Leu Met Ile |  |
| 245 250 255                                                     |  |
| Asn Asp Ser Leu Val Pro Thr Met Val Ile Pro Arg Phe Thr Gly Ala |  |
| 260 265 270                                                     |  |
| Leu Tyr Pro Lys Gly Lys Gln Tyr Pro Tyr Pro Lys Ala Gly Gln Val |  |
| 275 280 285                                                     |  |
| Asn Pro Thr Ile Lys Leu Tyr Val Val Asn Leu Tyr Gly Pro Thr His |  |
| 290 295 300                                                     |  |
| Thr Leu Glu Leu Met Pro Pro Asp Ser Phe Lys Ser Arg Glu Tyr Tyr |  |
| 305 310 315 320                                                 |  |
| Ile Thr Met Val Lys Trp Val Ser Asn Thr Lys Thr Val Val Arg Trp |  |
| 325 330 335                                                     |  |
| Leu Asn Arg Pro Gln Asn Ile Ser Ile Leu Thr Val Cys Glu Thr Thr |  |
| 340 345 350                                                     |  |
| Thr Gly Ala Cys Ser Lys Lys Tyr Glu Met Thr Ser Asp Thr Trp Leu |  |
| 355 360 365                                                     |  |
| Ser Gln Gln Asn Glu Glu Pro Val Phe Ser Arg Asp Gly Ser Lys Phe |  |
| 370 375 380                                                     |  |
| Phe Met Thr Val Pro Val Lys Gln Gly Gly Arg Gly Glu Phe His His |  |
| 385 390 395 400                                                 |  |

Ile Ala Met Phe Leu Ile Gln Ser Lys Ser Glu Gln Ile Thr Val Arg  
 405 410 415  
 His Leu Thr Ser Gly Asn Trp Glu Val Ile Lys Ile Leu Ala Tyr Asp  
 420 425 430  
 Glu Thr Thr Gln Lys Ile Tyr Phe Leu Ser Thr Glu Ser Ser Pro Arg  
 435 440 445  
 Gly Arg Gln Leu Tyr Ser Ala Ser Thr Glu Gly Leu Leu Asn Arg Gln  
 450 455 460  
 Cys Ile Ser Cys Asn Phe Met Lys Glu Gln Cys Thr Tyr Phe Asp Ala  
 465 470 475 480  
 Ser Phe Ser Pro Met Asn Gln His Phe Leu Leu Phe Cys Glu Gly Pro  
 485 490 495  
 Arg Val Pro Val Val Ser Leu His Ser Thr Asp Asn Pro Ala Lys Tyr  
 500 505 510  
 Phe Ile Leu Glu Ser Asn Ser Met Leu Lys Glu Ala Ile Leu Lys Lys  
 515 520 525  
 Lys Ile Gly Lys Pro Glu Ile Lys Ile Leu His Ile Asp Asp Tyr Glu  
 530 535 540  
 Leu Pro Leu Gln Leu Ser Leu Pro Lys Asp Phe Met Asp Arg Asn Gln  
 545 550 555 560  
 Tyr Ala Leu Leu Leu Ile Met Asp Glu Glu Pro Gly Gly Gln Leu Val  
 565 570 575  
 Thr Asp Lys Phe His Ile Asp Trp Asp Ser Val Leu Ile Asp Met Asp  
 580 585 590  
 Asn Val Ile Val Ala Arg Phe Asp Gly Arg Gly Ser Gly Phe Gln Gly  
 595 600 605  
 Leu Lys Ile Leu Gln Glu Ile His Arg Arg Leu Gly Ser Val Glu Val  
 610 615 620  
 Lys Asp Gln Ile Thr Ala Val Lys Phe Leu Leu Lys Leu Pro Tyr Ile  
 625 630 635 640  
 Asp Ser Lys Arg Leu Ser Ile Phe Gly Lys Gly Tyr Gly Tyr Ile  
 645 650 655  
 Ala Ser Met Ile Leu Lys Ser Asp Glu Lys Leu Phe Lys Cys Gly Ser  
 660 665 670  
 Val Val Ala Pro Ile Thr Asp Leu Lys Leu Tyr Ala Ser Ala Phe Ser  
 675 680 685  
 Glu Arg Tyr Leu Gly Met Pro Ser Lys Glu Glu Ser Thr Tyr Gln Ala  
 690 695 700  
 Ala Ser Val Leu His Asn Val His Gly Leu Lys Glu Glu Asn Ile Leu  
 705 710 715 720  
 Ile Ile His Gly Thr Ala Asp Thr Lys Val His Phe Gln His Ser Ala  
 725 730 735  
 Glu Leu Ile Lys His Leu Ile Lys Ala Gly Val Asn Tyr Thr Met Gln  
 740 745 750  
 Val Tyr Pro Asp Glu Gly His Asn Val Ser Glu Lys Ser Lys Tyr His  
 755 760 765  
 Leu Tyr Ser Thr Ile Leu Lys Phe Phe Ser Asp Cys Leu Lys Glu Glu  
 770 775 780  
 Ile Ser Val Leu Pro Gln Glu Pro Glu Glu Asp Glu  
 785 790 795

<210> 6  
<211> 2583  
<212> DNA  
<213> Homo sapiens  
<400> 6

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| gcctggatt gtgcaactgtc cagggtcctg aaacatgaac caaactgcca gcgtgtccca  | 60  |
| tcacatcaag tgtcaaccct caaaaacaat caaggaactg ggaagttaaca gccctccaca | 120 |
| gagaaactgg aaggaaattt ctattgtct gctgggtatt ttagttgtat gtcactcat    | 180 |

|             |             |             |              |              |             |      |
|-------------|-------------|-------------|--------------|--------------|-------------|------|
| cactatgtca  | gtcatcctct  | taagcccaga  | tgaactcaca   | aattcgtag    | aaaccaggatt | 240  |
| gtctttggaa  | gacctctta   | ggaaagactt  | tgtgcttcac   | gatccagagg   | ctcggtggat  | 300  |
| caatgataca  | gatgtgggt   | ataaaagcga  | gaatggacat   | gtcattaaac   | tgaatataga  | 360  |
| aacaaaatgc  | accdacattat | tattggaaaa  | cacaactttt   | gtaaccttca   | aagcatcaag  | 420  |
| acattcagt   | tcaccagatt  | taaaatatgt  | ccttctggca   | tatgtatgtca  | aacagatttt  | 480  |
| tcatttattcg | tatactgctt  | cataatgtat  | ttacaacata   | cacactaggg   | aagtttggga  | 540  |
| gttaaatcct  | ccagaagtag  | aggactccgt  | cttgcaatgtac | gccccctggg   | gtgtccaagg  | 600  |
| gcagcagctg  | atttatattt  | ttggaaaataa | tatctactat   | caacctgata   | taaagagcag  | 660  |
| ttcattgcga  | ctgacatctt  | ctggaaaaga  | agaaaataatt  | ttaatggga    | ttgtctactg  | 720  |
| gttatatgaa  | gaggaaactcc | tgcattctca  | catcgccccac  | ttgggtgtcac  | cagatggaga  | 780  |
| aagacttgc   | ttcctgtatga | taatgactc   | tttggatcccc  | accatggta    | tccctcggtt  | 840  |
| tactggagcg  | ttgtatccca  | aaggaaaagca | gtatccgtat   | cctaaggcag   | gtcaagtgaa  | 900  |
| cccaacaata  | aaattatatg  | ttgtaaacct  | gtatggacca   | actcacactt   | tggagctcat  | 960  |
| gccacctgac  | agctttaat   | caagagaata  | ctatatcaat   | atggttaaat   | gggtaagcaa  | 1020 |
| taccaagact  | gtggtaagat  | ggttaaacccg | acctcagaac   | atctccatcc   | tcacagtctg  | 1080 |
| tgagaccact  | acaggtgctt  | gtagaaaaaa  | atatgagatg   | acatcagata   | cgtggctctc  | 1140 |
| tcagcagaat  | gaggagcccg  | ttgtttctag  | agacggcagc   | aaattctta    | tgacagtgcc  | 1200 |
| tguttaagca  | ggggggacgt  | gagaatttca  | ccacatagct   | atgttctca    | tccagagtaa  | 1260 |
| aagtgagca   | attaccgtgc  | ggcatctgac  | atcaggaaac   | ttggaaagtga  | taaagatctt  | 1320 |
| ggcatacagat | gaaactactc  | aaaaaaattt  | ctttctgagc   | actgaatctt   | ctcccagagg  | 1380 |
| aaggcagctg  | tacagtgcctt | ctactgaagg  | attattgaat   | cgccaaatgc   | tttcatgtaa  | 1440 |
| tttcatgaaa  | gaacaatgt   | catattttga  | tgccagttt    | agtcccatga   | atcaacattt  | 1500 |
| cttattattc  | tgtgaaggtc  | caagggtccc  | agtggtcagc   | ctacatagta   | cggacaaccc  | 1560 |
| agcaaaatat  | tttatattgg  | aaagcaattc  | tatgtcgaag   | gaagctatcc   | tgaagaagaa  | 1620 |
| gatagggaaag | ccagaaaatta | aaatccttca  | tattgacgac   | tatgaacttc   | ctttacagtt  | 1680 |
| gtcccttccc  | aaagatttt   | ttggaccgaaa | ccagttatgt   | cttctgtta    | taatggatga  | 1740 |
| agaaccagga  | ggccagctgg  | ttacagataa  | gttccatatt   | gactgggatt   | ccgtactcat  | 1800 |
| tgacatggat  | aatgtcattt  | tagcaagatt  | tgatggcaga   | ggaagtggat   | tccagggtct  | 1860 |
| aaaaattttt  | caggagattt  | atcgaagatt  | aggttcagta   | gaagtaaagg   | accaaataac  | 1920 |
| agctgtgaaa  | tttttgcgt   | aactgcctt   | cattgactcc   | aaaagattaa   | gcatttttgg  | 1980 |
| aaagggttat  | ggtggctata  | ttgcataat   | gatctaaaaa   | ttagatgaaa   | agctttttaa  | 2040 |
| atgtggatcc  | gtgggtgcac  | ctatcacaga  | cttggaaattt  | tatgcctcag   | ctttctctga  | 2100 |
| aagataccctt | gggatgccat  | ctaaggaaaga | aagcacttac   | caggcagcc    | gtgtgtcaca  | 2160 |
| taatgttcat  | ggcttggaaag | aagaaaatatt | attaataatt   | catggaaactg  | ctgacacacaa | 2220 |
| agttcatttc  | caacactcag  | cagaatttat  | caagcaccta   | ataaaagctg   | gagtgaatta  | 2280 |
| tactatgcag  | gtctaccccg  | atgaagggtca | taacgttatct  | gagaagagca   | agtatcatct  | 2340 |
| ctacagcaca  | atccctcaat  | tcttcgtat   | ttgttggaaag  | gaagaaaatatt | ctgtgtcacc  | 2400 |
| acaggaacca  | gaagaagatg  | aataatggac  | cgtattttata  | cagaactgaa   | gggaatattt  | 2460 |
| aggctcaatg  | aaacctgaca  | aagagactgt  | aatattgtat   | ttgttccaga   | atgtcaaggg  | 2520 |
| cagcttacgg  | agatgtcaact | ggagcagcac  | gctcagagac   | agtgaactag   | catttgaata  | 2580 |
| cac         |             |             |              |              |             | 2583 |

<210> 7  
<211> 690  
<212> PRT  
<213> Homo sapiens  
<400> 7

```

Met Ala Ala Ala Met Glu Thr Glu Gln Leu Gly Val Glu Ile Phe Glu
1           5           10          15
Thr Ala Asp Cys Glu Glu Asn Ile Glu Ser Gln Asp Arg Pro Lys Leu
20          25          30
Glu Pro Phe Tyr Val Glu Arg Tyr Ser Trp Ser Gln Leu Lys Lys Leu
35          40          45
Leu Ala Asp Thr Arg Lys Tyr His Gly Tyr Met Met Ala Lys Ala Pro
50          55          60
His Asp Phe Met Phe Val Lys Arg Asn Asp Pro Asp Gly Pro His Ser
65          70          75          80
Asp Arg Ile Tyr Tyr Leu Ala Met Ser Gly Glu Asn Arg Glu Asn Thr
85          90          95

```

Leu Phe Tyr Ser Glu Ile Pro Lys Thr Ile Asn Arg Ala Ala Val Leu  
 100 105 110  
 Met Leu Ser Trp Lys Pro Leu Leu Asp Leu Phe Gln Ala Thr Leu Asp  
 115 120 125  
 Tyr Gly Met Tyr Ser Arg Glu Glu Glu Leu Leu Arg Glu Arg Lys Arg  
 130 135 140  
 Ile Gly Thr Val Gly Ile Ala Ser Tyr Asp Tyr His Gln Gly Ser Gly  
 145 150 155 160  
 Thr Phe Leu Phe Gln Ala Gly Ser Gly Ile Tyr His Val Lys Asp Gly  
 165 170 175  
 Gly Pro Gln Gly Phe Thr Gln Gln Pro Leu Arg Pro Asn Leu Val Glu  
 180 185 190  
 Thr Ser Cys Pro Asn Ile Arg Met Asp Pro Lys Leu Cys Pro Ala Asp  
 195 200 205  
 Pro Asp Trp Ile Ala Phe Ile His Ser Asn Asp Ile Trp Ile Ser Asn  
 210 215 220  
 Ile Val Thr Arg Glu Glu Arg Arg Leu Thr Tyr Val His Asn Glu Leu  
 225 230 235 240  
 Ala Asn Met Glu Glu Asp Ala Arg Ser Ala Gly Val Ala Thr Phe Val  
 245 250 255  
 Leu Gln Glu Glu Phe Asp Arg Tyr Ser Gly Tyr Trp Trp Cys Pro Lys  
 260 265 270  
 Ala Glu Thr Thr Pro Ser Gly Gly Lys Ile Leu Arg Ile Leu Tyr Glu  
 275 280 285  
 Glu Asn Asp Glu Ser Glu Val Glu Ile Ile His Val Thr Ser Pro Met  
 290 295 300  
 Leu Glu Thr Arg Arg Ala Asp Ser Phe Arg Tyr Pro Lys Thr Gly Thr  
 305 310 315 320  
 Ala Asn Pro Lys Val Thr Phe Lys Met Ser Glu Ile Met Ile Asp Ala  
 325 330 335  
 Glu Gly Arg Ile Ile Asp Val Ile Asp Lys Glu Leu Ile Gln Pro Phe  
 340 345 350  
 Glu Ile Leu Phe Glu Gly Val Glu Tyr Ile Ala Arg Ala Gly Trp Thr  
 355 360 365  
 Pro Glu Gly Lys Tyr Ala Trp Ser Ile Leu Leu Asp Arg Ser Gln Thr  
 370 375 380  
 Arg Leu Gln Ile Val Leu Ile Ser Pro Glu Leu Phe Ile Pro Val Glu  
 385 390 395 400  
 Asp Asp Val Met Glu Arg Gln Arg Leu Ile Glu Ser Val Pro Asp Ser  
 405 410 415  
 Val Thr Pro Leu Ile Ile Tyr Glu Glu Thr Thr Asp Ile Trp Ile Asn  
 420 425 430  
 Ile His Asp Ile Phe His Val Phe Pro Gln Ser His Glu Glu Glu Ile  
 435 440 445  
 Glu Phe Ile Phe Ala Ser Glu Cys Lys Thr Gly Phe Arg His Leu Tyr  
 450 455 460  
 Lys Ile Thr Ser Ile Leu Lys Glu Ser Lys Tyr Lys Arg Ser Ser Gly  
 465 470 475 480  
 Gly Leu Pro Ala Pro Ser Asp Phe Lys Cys Pro Ile Lys Glu Glu Ile  
 485 490 495  
 Ala Ile Thr Ser Gly Glu Trp Glu Val Leu Gly Arg His Gly Ser Asn  
 500 505 510  
 Ile Gln Val Asp Glu Val Arg Arg Leu Val Tyr Phe Glu Gly Thr Lys  
 515 520 525  
 Asp Ser Pro Leu Glu His His Leu Tyr Val Val Ser Tyr Val Asn Pro  
 530 535 540  
 Gly Glu Val Thr Arg Leu Thr Asp Arg Gly Tyr Ser His Ser Cys Cys  
 545 550 555 560  
 Ile Ser Gln His Cys Asp Phe Phe Ile Ser Lys Tyr Ser Asn Gln Lys  
 565 570 575

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asn | Pro | His | Cys | Val | Ser | Leu | Tyr | Lys | Leu | Ser | Ser | Pro | Glu | Asp | Asp |
| 580 |     |     |     |     |     |     |     | 585 |     |     |     |     | 590 |     |     |
| Pro | Thr | Cys | Lys | Thr | Lys | Glu | Phe | Trp | Ala | Thr | Ile | Leu | Asp | Ser | Ala |
| 595 |     |     |     |     |     |     |     | 600 |     |     |     |     | 605 |     |     |
| Gly | Pro | Leu | Pro | Asp | Tyr | Thr | Pro | Pro | Glu | Ile | Phe | Ser | Phe | Glu | Ser |
| 610 |     |     |     |     |     |     |     | 615 |     |     |     |     | 620 |     |     |
| Thr | Thr | Gly | Phe | Thr | Leu | Tyr | Gly | Met | Leu | Tyr | Lys | Pro | His | Asp | Leu |
| 625 |     |     |     |     |     |     |     | 630 |     |     | 635 |     |     | 640 |     |
| Gln | Pro | Gly | Lys | Lys | Tyr | Pro | Thr | Val | Leu | Phe | Ile | Tyr | Gly | Gly | Arg |
| 645 |     |     |     |     |     |     |     | 645 |     |     | 650 |     |     | 655 |     |
| Leu | Leu | Leu | Leu | Gly | Pro | Gln | Ser | Leu | Cys | Gly | Ser | Ser | Met | Ile | Gln |
| 660 |     |     |     |     |     |     |     | 660 |     |     | 665 |     |     | 670 |     |
| Asp | Thr | Arg | Asn | Val | Ile | Trp | Val | Thr | Leu | Thr | Arg | Met | Asn | Arg | Ala |
| 675 |     |     |     |     |     |     |     | 675 |     |     | 680 |     |     | 685 |     |
| Ile | Thr |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 690 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

<210> 8  
<211> 4523  
<212> DNA  
<213> Homo sapiens  
<400> 8

|             |             |             |              |             |            |      |
|-------------|-------------|-------------|--------------|-------------|------------|------|
| aagtgtctaaa | gcctccgagg  | ccaaggccgc  | tgctactgcc   | gccgctgctt  | cttagtgccg | 60   |
| cgttcggccgc | ctgggttgtc  | accggcgccc  | ccgcccggagga | agccactgca  | accaggaccg | 120  |
| gagtggaggc  | ggcgcacat   | gaagcggcgc  | aggccccctc   | catagcgcac  | gtcgggacgg | 180  |
| tccggggcggg | gccggggggg  | aggaaaaatgc | aacatggcag   | cagcaatgg   | aacagaacag | 240  |
| ctgggtgttgc | agatatttga  | aactgcggac  | tgtgaggaga   | atattgaatc  | acaggatcgg | 300  |
| cctaaatttgg | agcctttta   | tgttgagcgg  | tattcttgg    | gtcagcttaa  | aaagctgctt | 360  |
| gccgatacca  | gaaaatatca  | tggctacatg  | atggctaagg   | caccacatga  | tttcatgttt | 420  |
| gtgaagagga  | atgatccaga  | tggacctcat  | tcagacagaa   | tctattacct  | tgccatgtct | 480  |
| ggtgagaaca  | gagaaaaatac | actgttttat  | tctgaaattc   | ccaaaactat  | caatagagca | 540  |
| gcagtcttaa  | tgctcttgc   | gaagcctctt  | ttggatcttt   | ttcaggcaac  | actggactat | 600  |
| ggaatgtatt  | ctcgagaaga  | agaactatta  | agagaaaagaa  | aacgcattgg  | aacagtccga | 660  |
| attgtcttt   | acgattatca  | ccaaggaagt  | ggaacatttc   | tgttcaago   | cggttagtgg | 720  |
| atttatcacg  | taaaagatgg  | agggccacaa  | ggatttacgc   | aacaaccttt  | aaggcccaat | 780  |
| ctagtgaaa   | ctagttgtcc  | caacatacgg  | atggatccaa   | aattatgccc  | tgctgatcca | 840  |
| gactggattt  | cttttataca  | tagcaacgat  | atttgatat    | ctaacatcgt  | aaccagagaa | 900  |
| gaaaggagac  | tcacttatgt  | gcacaatgag  | ctagccaaca   | tgaaagaaga  | tgccagatca | 960  |
| gctggagtcg  | ctacctttgt  | tctccaagaa  | gaatttgata   | gatattctgg  | ctattggtgg | 1020 |
| tgtccaaaag  | ctgaaacaac  | tcccagtgg   | ggtaaaaattc  | ttagaattct  | atatgaagaa | 1080 |
| aatgtatgaat | ctgaggtgga  | aattattcat  | gttacatccc   | ctatgttgg   | aacaaggagg | 1140 |
| gcagattcat  | tccgttatcc  | taaaacaggt  | acagcaaatc   | ctaaagtcac  | ttttaagatg | 1200 |
| tcagaaataa  | tgattgtatgc | tgaaggaagg  | atcatagatg   | tcatagataa  | ggaactaatt | 1260 |
| caaccccttgc | agattctatt  | tgaaggagtt  | gaatatattg   | ccagagctgg  | atggactcct | 1320 |
| gagggaaaat  | atgcttggc   | cacccctacta | gatcgctccc   | agactcgct   | acagatagtg | 1380 |
| tttgatctcac | ctgaattatt  | tatcccagta  | gaagatgtat   | ttatggaaag  | gcagagactc | 1440 |
| attggatcg   | tgcctgatcc  | tgtgacgcca  | ctaattatct   | atgaagaaac  | aacagacatc | 1500 |
| tggataaaata | tccatgacat  | ctttcatgtt  | tttccccaaa   | gtcacgaaga  | gaaaatttag | 1560 |
| tttatttttg  | cctctgaatg  | aaaaacaggt  | ttccgtcatt   | tataaaaaat  | tacatctatt | 1620 |
| ttaaaggaaa  | gcaaatataa  | acgatccagt  | ggtgggctgc   | ctgctccaag  | tgatttcaag | 1680 |
| tgtccatatca | aagaggagat  | agcaattacc  | agtggtgaat   | ggaagtct    | tggccggcat | 1740 |
| ggatctaata  | tccaagttga  | tgaagttaga  | aggctggat    | attttgaagg  | caccaaagac | 1800 |
| tcccctttag  | agcatcacct  | gtacgtagtc  | agttacgtaa   | atccctggaga | ggtgacaagg | 1860 |
| ctgactgacc  | gtggctactc  | acattcttgc  | tgcacatcgtc  | agcaactgtga | cttctttata | 1920 |
| agtaagtata  | gtaaccagaa  | gaatccacac  | tgtgtgtccc   | tttacaagct  | atcaagtcc  | 1980 |
| gaagatgacc  | caacttgcaa  | aacaaaggaa  | ttttggcca    | ccattttgg   | ttcagcaggt | 2040 |
| cctcttcctg  | actatactcc  | tccagaaatt  | ttctcttttg   | aaagtactac  | tggatttaca | 2100 |
| ttgtatggta  | tgctctacaa  | gcctcatgat  | ctacagcctg   | gaaagaaaata | tcctactgt  | 2160 |

|             |             |             |             |             |            |      |
|-------------|-------------|-------------|-------------|-------------|------------|------|
| ctgttcatat  | atggtgttcg  | gttgctattg  | ctggggcccc  | agtcactctg  | tggatcttct | 2220 |
| atgatacagg  | atacacggaa  | cgttatatgg  | gtcacccctga | ccagaatgaa  | cagggctatt | 2280 |
| acttaggatc  | tgtggccatg  | caagcagaaa  | agttcccctc  | tgaaccaaata | cgttactgc  | 2340 |
| tcttacatgg  | tttccctggat | gagaatgtcc  | attttgcaca  | taccagtata  | ttactgagtt | 2400 |
| tttttagttag | ggctggaaag  | ccatatgatt  | tacagatcta  | tcctcaggag  | agacacagca | 2460 |
| taagagttc   | tgaatcggga  | gaacattatg  | aactgcattc  | tttgcactac  | cttcaagaaa | 2520 |
| accttggatc  | acgtattgtc  | gctctaaaag  | tgatataattt | ttgacctgtg  | tagaactctc | 2580 |
| tggtatacac  | tggctattta  | acccaaatgag | gagggttaat  | caacagaaaa  | cacagaattg | 2640 |
| atcatcacat  | tttgataacct | gccatgtaac  | atctactcct  | gaaaataaaat | gtggtgccat | 2700 |
| gcaggggtct  | acgggttgt   | gttagtaact  | aataccctaa  | ccccacatgc  | tcaaaatcaa | 2760 |
| atgatacata  | ttcctgagag  | acccagcaat  | accataagaa  | ttactaaaaaa | aaaaaaaaaa | 2820 |
| aaaaagacat  | tagcaccatg  | tattcatact  | accctatttt  | cacttttaat  | agtattataa | 2880 |
| acttcatgaa  | cttaatttagt | gtatttttac  | agtatacttt  | tgagtttgtt  | aaaatatgat | 2940 |
| gatatttagt  | attgggttgg  | ttcagttcca  | gaatcttga   | ctagttacag  | atttgatagc | 3000 |
| acttaaatgt  | aattgaatag  | cttagtctc   | attgcttggg  | cataatccagc | atgttatgaa | 3060 |
| ctaataacta  | ttaaacttga  | cttaaccagt  | cattcattaa  | taattttca   | aggataactt | 3120 |
| agtggcctcc  | taaagacact  | tgttttggca  | ctgaccagg   | tttagccaat  | ttaatctgta | 3180 |
| tctagtataa  | ataattctca  | tttttcttg   | atgatattaa  | cagagtgggc  | ttttcccttt | 3240 |
| gcataaaaggc | tagtaactgt  | atatgttagca | tggatttaat  | tagtcatgat  | attgataatt | 3300 |
| acaggcagaa  | aatttttaat  | caaattgatta | gagcttaat   | atttgcaggc  | aagtttttt  | 3360 |
| ttttccttta  | agaaaaggaa  | aaagtacaca  | ttcactagaa  | ttcttcagaa  | aatttagtgg | 3420 |
| tgccagttc   | catttggat   | ttccttattt  | aaatattcta  | gaattttaag  | gagattgaag | 3480 |
| ggaatcacag  | tgggggtgggg | agacctgggt  | ttggggatg   | acagagagaa  | gaggtggtga | 3540 |
| gggcctgatt  | aaaaactaag  | cagaagtagt  | tttaacaaaa  | atactcatga  | aatgtttgg  | 3600 |
| aaactgaaat  | ttaaacaact  | gtaatattaa  | ggaaaccaga  | atcaataaaat | cactgtctt  | 3660 |
| ccagcacagc  | tacagagtaa  | catgattcag  | gggaggaaaa  | ttcctttaga  | gttactttt  | 3720 |
| taattcttt   | ttttttct    | cttaggtta   | gaaatcttac  | aaatttaaac  | tttatcctt  | 3780 |
| taaaattatt  | tgaacataat  | ttagatattg  | taagctaaa   | atacaatgt   | ttatagataa | 3840 |
| cctcttacc   | ataaaactaat | ccctggcaag  | ccatggctc   | ctttttttt   | ttggtgttta | 3900 |
| aaggctgtaa  | acagttttc   | tgaatgatca  | tgaactttc   | ttggtttagc  | actaggattt | 3960 |
| agctatgaag  | agagctcata  | ggcttccagg  | tgctaattga  | gatctgccct  | gttagagtct | 4020 |
| tggggtgcta  | gattggtcac  | attgacacca  | gtggcaggga  | aggcatctat  | gagtttgatg | 4080 |
| cttttatca   | cacacttcag  | tgtttagaaa  | gttattacca  | atactttaa   | acaacactcc | 4140 |
| aagaaaattt  | gctatatttc  | tttctcatca  | ctacagagag  | agtagatttc  | cccatagaga | 4200 |
| gcacagcctc  | cattagtaag  | gttggtact   | attggttaaga | ggtgacttc   | attgacacca | 4260 |
| agtgggaggt  | aggaaagcc   | cagaaatggc  | aggatgatat  | ggtggttctg  | tcttgggaa  | 4320 |
| aggattggg   | ttttgtgtt   | tgtatttata  | ctgtataata  | gataccacgc  | tttttcttat | 4380 |
| tatctgtata  | tgtattgtt   | ttcatgttt   | atattttccc  | atgccaagat  | ttgtttat   | 4440 |
| atattttcaa  | tgttaaatta  | aattgattt   | ggtaactttc  | ttcccccaaga | aagtattttc | 4500 |
| cccccttaaq  | ataaaatctga | ctg         |             |             |            | 4523 |

```
<210> 9  
<211> 241  
<212> PRT  
<213> Homo sapiens  
<400> 9
```

```

Met Ala Ala Ala Met Glu Thr Glu Gln Leu Gly Val Glu Ile Phe Glu
      1           5           10          15
Thr Ala Asp Cys Glu Glu Asn Ile Glu Ser Gln Asp Arg Pro Lys Leu
      20          25          30
Glu Pro Phe Tyr Val Glu Arg Tyr Ser Trp Ser Gln Leu Lys Lys Leu
      35          40          45
Leu Ala Asp Thr Arg Lys Tyr His Gly Tyr Met Met Ala Lys Ala Pro
      50          55          60
His Asp Phe Met Phe Val Lys Arg Asn Asp Pro Asp Gly Pro His Ser
      65          70          75          80
Asp Arg Ile Tyr Tyr Leu Ala Met Ser Gly Glu Asn Arg Glu Asn Thr
      85          90          95
Leu Phe Tyr Ser Glu Ile Pro Lys Thr Ile Asn Arg Ala Ala Val Leu

```

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 100                                                             | 105 | 110 |
| Met Leu Ser Trp Lys Pro Leu Leu Asp Leu Phe Gln Ala Thr Leu Asp |     |     |
| 115                                                             | 120 | 125 |
| Tyr Gly Met Tyr Ser Arg Glu Glu Glu Leu Leu Arg Glu Arg Lys Arg |     |     |
| 130                                                             | 135 | 140 |
| Ile Gly Thr Val Gly Ile Ala Ser Tyr Asp Tyr His Gln Gly Ser Gly |     |     |
| 145                                                             | 150 | 155 |
| Thr Phe Leu Phe Gln Ala Gly Ser Gly Ile Tyr His Val Lys Asp Gly |     |     |
| 165                                                             | 170 | 175 |
| Gly Pro Gln Gly Phe Thr Gln Gln Pro Leu Arg Pro Asn Leu Val Glu |     |     |
| 180                                                             | 185 | 190 |
| Thr Ser Cys Pro Asn Ile Arg Met Asp Pro Lys Leu Cys Pro Ala Asp |     |     |
| 195                                                             | 200 | 205 |
| Pro Asp Trp Ile Ala Phe Ile His Ser Asn Asp Ile Trp Ile Ser Asn |     |     |
| 210                                                             | 215 | 220 |
| Ile Val Thr Arg Glu Glu Arg Arg Leu Thr Tyr Val His Asn Gly Lys |     |     |
| 225                                                             | 230 | 235 |
| Ala                                                             |     | 240 |

<210> 10  
<211> 1356  
<212> DNA  
<213> Homo sapiens  
<400> 10

|                                                                      |      |
|----------------------------------------------------------------------|------|
| aagtgcataaa gcctccgagg ccaaggccgc tgctactgcc gccgctgctt ctttagtgccg  | 60   |
| cgttcgccgc ctgggttgtc accggcgccg ccggcgagga agccactgca accaggaccg    | 120  |
| gagtgaggagc ggcgcagcat gaagcggcgc aggccccctc catagcgcac gtcgggacgg   | 180  |
| tccggggcggg gcccggggga aggaaaatgc aacatggcag cagcaatggaa aacagaacag  | 240  |
| ctgggtgttgc agatatttgc aactgcggac tggaggaga atattgaaatc acaggatcgg   | 300  |
| cctaaatttgc agccttttta ttgtgaggcg tattcttgc gtcagcttaa aaagctgtctt   | 360  |
| gccgatacca gaaaatatca tggctacatg atggctaagg caccacatga tttcatgttt    | 420  |
| gtgaagagga atgatccaga tggacctcat tcagacagaa tcttattacct tgccatgtct   | 480  |
| ggtgagaaca gagaaaatac actgttttat tctgaaattc cccaaaactat caatagagca   | 540  |
| gcagtcttaa tgctcttgc gaaggcttgc ttggatcttt ttccaggcaac actggactat    | 600  |
| ggaatgtatt ctcgagaaga agaactatta agagaaagaa aacgcattgg aacagtccga    | 660  |
| attgcttctt acgattatca ccaaggaagt ggaacatttc tggcaagc cggttagtgg      | 720  |
| atttatcacg taaaagatgg agggccacaa ggatttacgc aacaaccttt aaggccaaat    | 780  |
| ctagtggaaa ctagttgtcc caacatacgg atggatccaa aattatggcc tgctgatcca    | 840  |
| gactggattt ctttataca tagcaacgt atttgatatt ctaacatcgta aaccagagaa     | 900  |
| gaaaggagac tcacttatgt gcacaatggt aaggcgtagt tcttcagatt tactttctg     | 960  |
| aacagtattt tttgaagtat aatttgcgc ttgcattttg aaatttagatt accacgttgg    | 1020 |
| gtgatcttta tatttgaat tcaagtcttt aaaatttta aaaaatggag aaaagtacag      | 1080 |
| aggataacctt gtatgtacca catgtataat attcattttta atgttttaat gttcatttc   | 1140 |
| aaacagtcaa aaaaaagaac ctctgacatg attgttcttt tagcttgcta agactgccag    | 1200 |
| aattttccca aaactgttct tattaaaata aaatttttagg cttaggcattgg tggctcatgc | 1260 |
| ctgtaatcct agcactctgg gaggctgagg caggcagatt gtttagcccc agaagttcaa    | 1320 |
| gatcaggatg ggcaacatgg tgacacctcg tttgac                              | 1356 |

<210> 11  
<211> 661  
<212> PRT  
<213> Homo sapiens  
<400> 11

|                                                                 |    |    |    |
|-----------------------------------------------------------------|----|----|----|
| Met Ala Ala Ala Met Glu Thr Glu Gln Leu Gly Val Glu Ile Phe Glu |    |    |    |
| 1                                                               | 5  | 10 | 15 |
| Thr Ala Asp Cys Glu Glu Asn Ile Glu Ser Gln Asp Arg Pro Lys Leu |    |    |    |
| 20                                                              | 25 | 30 |    |
| Glu Pro Phe Tyr Val Glu Arg Tyr Ser Trp Ser Gln Leu Lys Lys Leu |    |    |    |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 35                                                              | 40  | 45  |
| Leu Ala Asp Thr Arg Lys Tyr His Gly Tyr Met Met Ala Lys Ala Pro |     |     |
| 50                                                              | 55  | 60  |
| His Asp Phe Met Phe Val Lys Arg Asn Asp Pro Asp Gly Pro His Ser |     |     |
| 65                                                              | 70  | 75  |
| Asp Arg Ile Tyr Tyr Leu Ala Met Ser Gly Glu Asn Arg Glu Asn Thr |     | 80  |
| 85                                                              | 90  | 95  |
| Leu Phe Tyr Ser Glu Ile Pro Lys Thr Ile Asn Arg Ala Ala Val Leu |     |     |
| 100                                                             | 105 | 110 |
| Met Leu Ser Trp Lys Pro Leu Leu Asp Leu Phe Gln Ala Thr Leu Asp |     |     |
| 115                                                             | 120 | 125 |
| Tyr Gly Met Tyr Ser Arg Glu Glu Glu Leu Leu Arg Glu Arg Lys Arg |     |     |
| 130                                                             | 135 | 140 |
| Ile Gly Thr Val Gly Ile Ala Ser Tyr Asp Tyr His Gln Gly Ser Gly |     |     |
| 145                                                             | 150 | 155 |
| Thr Phe Leu Phe Gln Ala Gly Ser Gly Ile Tyr His Val Lys Asp Gly |     |     |
| 165                                                             | 170 | 175 |
| Gly Pro Gln Gly Phe Thr Gln Gln Pro Leu Arg Pro Asn Leu Val Glu |     |     |
| 180                                                             | 185 | 190 |
| Thr Ser Cys Pro Asn Ile Arg Met Asp Pro Lys Leu Cys Pro Ala Asp |     |     |
| 195                                                             | 200 | 205 |
| Pro Asp Trp Ile Ala Phe Ile His Ser Asn Asp Ile Trp Ile Ser Asn |     |     |
| 210                                                             | 215 | 220 |
| Ile Val Thr Arg Glu Glu Arg Arg Leu Thr Tyr Val His Asn Glu Leu |     |     |
| 225                                                             | 230 | 235 |
| Ala Asn Met Glu Glu Asp Ala Arg Ser Ala Gly Val Ala Thr Phe Val |     |     |
| 245                                                             | 250 | 255 |
| Leu Gln Glu Glu Phe Asp Arg Tyr Ser Gly Tyr Trp Trp Cys Pro Lys |     |     |
| 260                                                             | 265 | 270 |
| Ala Glu Thr Thr Pro Ser Gly Gly Lys Ile Leu Arg Ile Leu Tyr Glu |     |     |
| 275                                                             | 280 | 285 |
| Glu Asn Asp Glu Ser Glu Val Glu Ile Ile His Val Thr Ser Pro Met |     |     |
| 290                                                             | 295 | 300 |
| Leu Glu Thr Arg Arg Ala Asp Ser Phe Arg Tyr Pro Lys Thr Gly Thr |     |     |
| 305                                                             | 310 | 315 |
| Ala Asn Pro Lys Val Thr Phe Lys Met Ser Glu Ile Met Ile Asp Ala |     |     |
| 325                                                             | 330 | 335 |
| Glu Gly Arg Ile Ile Asp Val Ile Asp Lys Glu Leu Ile Gln Pro Phe |     |     |
| 340                                                             | 345 | 350 |
| Glu Ile Leu Phe Glu Gly Val Glu Tyr Ile Ala Arg Ala Gly Trp Thr |     |     |
| 355                                                             | 360 | 365 |
| Pro Glu Gly Lys Tyr Ala Trp Ser Ile Leu Leu Asp Arg Ser Gln Thr |     |     |
| 370                                                             | 375 | 380 |
| Arg Leu Gln Ile Val Leu Ile Ser Pro Glu Leu Phe Ile Pro Val Glu |     |     |
| 385                                                             | 390 | 395 |
| Asp Asp Val Met Glu Arg Gln Arg Leu Ile Glu Ser Val Pro Asp Ser |     |     |
| 405                                                             | 410 | 415 |
| Val Thr Pro Leu Ile Ile Tyr Glu Glu Thr Thr Asp Ile Trp Ile Asn |     |     |
| 420                                                             | 425 | 430 |
| Ile His Asp Ile Phe His Val Phe Pro Gln Ser His Glu Glu Glu Ile |     |     |
| 435                                                             | 440 | 445 |
| Glu Phe Ile Phe Ala Ser Glu Cys Lys Thr Gly Phe Arg His Leu Tyr |     |     |
| 450                                                             | 455 | 460 |
| Lys Ile Thr Ser Ile Leu Lys Glu Ser Lys Tyr Lys Arg Ser Ser Gly |     |     |
| 465                                                             | 470 | 475 |
| Gly Leu Pro Ala Pro Ser Asp Phe Lys Cys Pro Ile Lys Glu Glu Ile |     |     |
| 485                                                             | 490 | 495 |
| Ala Ile Thr Ser Gly Glu Trp Glu Val Leu Gly Arg His Gly Ser Asn |     |     |
| 500                                                             | 505 | 510 |
| Ile Gln Val Asp Glu Val Arg Arg Leu Val Tyr Phe Glu Gly Thr Lys |     |     |

| 515                                                             | 520 | 525 |
|-----------------------------------------------------------------|-----|-----|
| Asp Ser Pro Leu Glu His His Leu Tyr Val Val Ser Tyr Val Asn Pro |     |     |
| 530                                                             | 535 | 540 |
| Gly Glu Val Thr Arg Leu Thr Asp Arg Gly Tyr Ser His Ser Cys Cys |     |     |
| 545                                                             | 550 | 555 |
| Ile Ser Gln His Cys Asp Phe Phe Ile Ser Lys Tyr Ser Asn Gln Lys |     | 560 |
| 565                                                             | 570 | 575 |
| Asn Pro His Cys Val Ser Leu Tyr Lys Leu Ser Ser Pro Glu Asp Asp |     |     |
| 580                                                             | 585 | 590 |
| Pro Thr Cys Lys Thr Lys Glu Phe Trp Ala Thr Ile Leu Asp Ser Ala |     |     |
| 595                                                             | 600 | 605 |
| Gly Pro Leu Pro Asp Tyr Thr Pro Pro Glu Ile Phe Ser Phe Glu Ser |     |     |
| 610                                                             | 615 | 620 |
| Thr Thr Gly Phe Thr Leu Tyr Gly Met Leu Tyr Lys Pro His Asp Leu |     |     |
| 625                                                             | 630 | 635 |
| Gln Pro Gly Lys Lys Tyr Pro Thr Val Leu Phe Ile Tyr Gly Gly Leu |     | 640 |
| 645                                                             | 650 | 655 |
| Leu Arg Cys Ser Trp                                             |     |     |
| 660                                                             |     |     |

<210> 12  
 <211> 4829  
 <212> DNA  
 <213> Homo sapiens  
 <400> 12

|              |             |             |             |             |             |      |
|--------------|-------------|-------------|-------------|-------------|-------------|------|
| aagtgtaaaa   | gcctccgagg  | ccaaggccgc  | tgctactgcc  | gccgctgctt  | cttagtgccc  | 60   |
| cgttcggcgc   | ctgggttgtc  | accggcgccg  | ccggcgagga  | agccactgca  | accaggaccg  | 120  |
| gagttggaggc  | ggcgcaagcat | gaagcggcgc  | aggccccctc  | catagcgcac  | gtcggggacgg | 180  |
| tccggggcgg   | gcccggggga  | aggaaaatgc  | aacatggcag  | cagcaatggaa | aacagaacag  | 240  |
| ctgggtgttgc  | agataatttga | aactgcggac  | tgtgaggaga  | atattgaatc  | acaggatcgg  | 300  |
| cctaaatgg    | agcctttta   | tgttgcggcgt | tattcttggaa | gtcagcttaa  | aaagctgttt  | 360  |
| gccgatacca   | gaaaatatca  | tggctacatg  | atggcttaagg | caccacatga  | tttcatgttt  | 420  |
| gtgaagagga   | atgatccaga  | tggacctcat  | tcagacagaa  | tctattacct  | tgccatgtct  | 480  |
| ggtgagaaca   | gagaaaatac  | actgttttat  | tctgaaaattc | ccaaaactat  | caatagagca  | 540  |
| gcagtcttaa   | tgctctcttgc | gaagccttctt | ttggatcttt  | ttcaggcaac  | actggactat  | 600  |
| ggaatgtatt   | ctcgagaaga  | agaactatta  | agagaaaagaa | aacgcattgg  | aacagtccga  | 660  |
| attgtttttt   | acgattatca  | ccaaggaagt  | ggaacatttc  | tgtttcaagc  | cggttagtgg  | 720  |
| atttatca     | aaaagatgg   | agggccacaa  | ggatttacgc  | aacaaccttt  | aaggcccaat  | 780  |
| ctagtggaaa   | ctagttgtcc  | caacatacgg  | atggatccaa  | aattatgccc  | tgctgatcca  | 840  |
| gactggatttgc | cttttataca  | tagcaacat   | atttggatat  | ctaacatcgt  | aaccagagaa  | 900  |
| gaaaggagac   | tcaattatgt  | gcacaatgg   | ctagccaaaca | tgaagaaga   | tgccagatca  | 960  |
| gctggagtcg   | ctacctttgt  | tctccaagaa  | gaatttgata  | gatattctgg  | ctattgggtgg | 1020 |
| tgtccaaaag   | ctgaaaacaac | tcccagtgg   | ggtaaaattc  | ttagattct   | atatgaagaa  | 1080 |
| aatgtatgt    | ctgaggtgg   | attattcat   | gttacatccc  | ctatgttggaa | aacaaggagg  | 1140 |
| gcagattcat   | tccgttatcc  | aaaaacaggt  | acagcaaatac | ctaaagtcac  | ttttaagatg  | 1200 |
| tcagaaataa   | tgattgtatgc | tgaaggaagg  | atcatagatg  | tcatagataa  | ggaactaatt  | 1260 |
| caaccttttgc  | agatttttatt | tgaaggagtt  | gaatatattg  | ccagagctgg  | atggactcct  | 1320 |
| gagggaaaat   | atgctttgtc  | catacctacta | gatcgctccc  | agactcgcc   | acagatagtg  | 1380 |
| ttgatctcac   | ctgaattatt  | tatcccagta  | gaagatgtat  | ttatggaaag  | gcagagactc  | 1440 |
| attggatcg    | tgcctgttgc  | tgtgacgcca  | ctaattatct  | atgaagaaac  | aacagacatc  | 1500 |
| tggataaaata  | tccatgacat  | ctttcatgtt  | tttccccaaa  | gtcacgaaga  | ggaaatttgag | 1560 |
| tttatttttgc  | cctctgaatg  | aaaaacaggt  | ttccgtcatt  | tataaaaaat  | tacatctatt  | 1620 |
| ttaaaggaaa   | gcaaatataa  | acgatccagt  | ggtgggtgc   | tgcgtccaag  | tgatttcaag  | 1680 |
| tgtccatata   | aagaggagat  | agcaattacc  | agtggtgaat  | ggaagttct   | tggccggcat  | 1740 |
| ggatctaata   | tccaaatgt   | tgaagtcaga  | aggctggat   | atttgaagg   | caccaaagac  | 1800 |
| tcccctttag   | agcatcacct  | gtacgttagtc | agttacgtaa  | atccctggaga | ggtgacaagg  | 1860 |
| ctgactgacc   | gtggctactc  | acattttgc   | tgcgttcgtc  | agcaactgtga | cttcttata   | 1920 |
| agtaagtata   | gtaaccagaa  | gaatccacac  | tgtgtgtccc  | tttacaagct  | atcaagtcc   | 1980 |
| gaagatgacc   | caacttgcaa  | aacaaaggaa  | tttggccca   | ccatgggca   | ttcagcagggt | 2040 |

cctcttcctg actatactcc tccagaaatt ttctctttt aaagtactac tggatttaca 2100  
 ttgtatggga tgctctacaa gcctcatgat ctacagcctg gaaagaaaata tcctactgtg 2160  
 ctgttcatat atgggtgtct cctcagggtgc agttggtaa taatcggtt aaaggagtca 2220  
 agtatttccg cttgaataacc ctgcctc taggttatgt ggtttagtgc atagacaaca 2280  
 ggggatccctg tcaccgaggg cttaaatttg aaggcgcctt taaatataaa atgggtcaaa 2340  
 tagaaatttg cgatcagggtg gaaggactcc aatatctagc ttctcgatgat gatttcattg 2400  
 acttagatcg tggggcatc cacggctggt cctatggagg atacctctcc ctgatggcat 2460  
 taatgcagag gtcagatate ttcagggttg ctattgtgg ggccccagtc actctgtgga 2520  
 tcttctatga tacaggatac acggaacggtt atatgggtca ccttgaccag aatgaacagg 2580  
 gctattactt aggatctgtg gccatgcaag cagaaaaattt cccctctgaa ccaaatcggt 2640  
 tactgctctt acatgggttc ctggatgaga atgtccattt tgacatacc agtatattac 2700  
 tgagttttt agtgagggtct gggaaagccat attgttaca gatctatcct caggagagac 2760  
 acagcataaag agttcctgaa tcgggagaaac attgttaca gcatctttt cactaccc 2820  
 aagaaaaacact tggatcacgt attgctgctc taaaagtgtataattttga cctgtgtaga 2880  
 actctcttgtt atacactggc tatttaacca aatgaggagg ttaatcaac agaaaaacaca 2940  
 gaattgatca tcacattttgc atacctgcca tgtaacatct actcctgaaa ataaatgtgg 3000  
 tgccatgcag gggctacgg tttgtgttag taatctaata ccttaacccc acatgctcaa 3060  
 aatcaaatga tacatattcc tgagagaccc agcaataccca taagaattac taaaaaaaaa 3120  
 aaaaaaaaaa agacattagc accatgtattt catactaccc tattttcaact ttaatagta 3180  
 ttataaactt catgaactta attagtgtat ttttacagta tacttttgag tttgttaaaa 3240  
 tatgatgata ttatgtgattt gtttgggtca gttccagaat ctttgcattt ttacagattt 3300  
 gatagcactt aaatgttaattt gaatagctt tgcttcattt ctgggcata tccagcatgt 3360  
 tatgaactaa taactattaa acttgactta accagtcattt cattaataat ttttcaagga 3420  
 taacttagtg gcctcctaaa gacacttggt ttggcactga ccagttttt gccaatttaa 3480  
 tctgtatcta gtataaataa ttctcatttt tctttgtga tattaacaga gtgggctttt 3540  
 ccttttgcattt aaaggctagt aactgttataat gttagcatgaa ttttatttttgcattt 3600  
 ataattacag gcagaaaaattt ttaatcaaa tgattagac ttttatttttgcattt 3660  
 tttttttttt ccttaagaa aaggaaaaag tacacattca ctagatttttgcattt 3720  
 tagtggtgcag agtttccattt ttgttatttcc ttatttttttgcattt 3780  
 ttgaaggggaa tcacagtggg gtggggagac ctgggttgg ggaatgacag agagaagagg 3840  
 tggtgaggcctt ctgattttttt actaaggcaga agtagttttt acaaaaaatac tcatgaaaaat 3900  
 gtttggaaac tgaaattttt acaactgtaa tattaaaggaa accagaatca ataaatcact 3960  
 gtcttgcacag cacagctaca gagtaacatg attcaggggg gggaaagtttgcattt 4020  
 cttttataat tttttttttt tttctcttta gtttttttttgcattt 4080  
 tccttttaaa attatttttgcattt cataatttttgcattt atatttttgcattt 4140  
 agataacccctt tttaccataa actaatccctt ggcaagccat ggctctctttt ttttttttttgcattt 4200  
 ttttttttttgcattt 4260  
 ttttttttttgcattt 4320  
 ttttttttttgcattt 4380  
 ttttttttttgcattt 4440  
 ttttttttttgcattt 4500  
 ttttttttttgcattt 4560  
 ttttttttttgcattt 4620  
 ttttttttttgcattt 4680  
 ttttttttttgcattt 4740  
 ttttttttttgcattt 4800  
 ttttttttttgcattt 4829

<210> 13  
 <211> 358  
 <212> PRT  
 <213> Homo sapiens  
 <400> 13

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Ala | Ala | Ala | Met | Glu | Thr | Glu | Gln | Leu | Gly | Val | Glu | Ile | Phe | Glu |
| 1   |     |     |     | 5   |     |     |     | 10  |     |     |     | 15  |     |     |     |
| Thr | Ala | Asp | Cys | Glu | Glu | Asn | Ile | Glu | Ser | Gln | Asp | Arg | Pro | Lys | Leu |
|     |     |     |     | 20  |     |     |     | 25  |     |     |     | 30  |     |     |     |
| Glu | Pro | Phe | Tyr | Val | Glu | Arg | Tyr | Ser | Trp | Ser | Gln | Leu | Lys | Lys | Leu |
|     |     |     |     | 35  |     |     |     | 40  |     |     |     | 45  |     |     |     |

Leu Ala Asp Thr Arg Lys Tyr His Gly Tyr Met Met Ala Lys Ala Pro  
     50                     55                     60  
 His Asp Phe Met Phe Val Lys Arg Asn Asp Pro Asp Gly Pro His Ser  
     65                     70                     75                     80  
 Asp Arg Ile Tyr Tyr Leu Ala Met Ser Gly Glu Asn Arg Glu Asn Thr  
     85                     90                     95  
 Leu Phe Tyr Ser Glu Ile Pro Lys Thr Ile Asn Arg Ala Ala Val Leu  
     100                    105                    110  
 Met Leu Ser Trp Lys Pro Leu Leu Asp Leu Phe Gln Ala Thr Leu Asp  
     115                    120                    125  
 Tyr Gly Met Tyr Ser Arg Glu Glu Glu Leu Leu Arg Glu Arg Lys Arg  
     130                    135                    140  
 Ile Gly Thr Val Gly Ile Ala Ser Tyr Asp Tyr His Gln Gly Ser Gly  
     145                    150                    155                    160  
 Thr Phe Leu Phe Gln Ala Gly Ser Gly Ile Tyr His Val Lys Asp Gly  
     165                    170                    175  
 Gly Pro Gln Gly Phe Thr Gln Gln Pro Leu Arg Pro Asn Leu Val Glu  
     180                    185                    190  
 Thr Ser Cys Pro Asn Ile Arg Met Asp Pro Lys Leu Cys Pro Ala Asp  
     195                    200                    205  
 Pro Asp Trp Ile Ala Phe Ile His Ser Asn Asp Ile Trp Ile Ser Asn  
     210                    215                    220  
 Ile Val Thr Arg Glu Glu Arg Arg Leu Thr Tyr Val His Asn Glu Leu  
     225                    230                    235                    240  
 Ala Asn Met Glu Glu Asp Ala Arg Ser Ala Gly Val Ala Thr Phe Val  
     245                    250                    255  
 Leu Gln Glu Glu Phe Asp Arg Tyr Ser Gly Tyr Trp Trp Cys Pro Lys  
     260                    265                    270  
 Ala Glu Thr Thr Pro Ser Gly Gly Lys Ile Leu Arg Ile Leu Tyr Glu  
     275                    280                    285  
 Glu Asn Asp Glu Ser Glu Val Glu Ile Ile His Val Thr Ser Pro Met  
     290                    295                    300  
 Leu Glu Thr Arg Arg Ala Asp Ser Phe Arg Tyr Pro Lys Thr Gly Thr  
     305                    310                    315                    320  
 Ala Asn Pro Lys Val Thr Phe Lys Met Ser Glu Ile Met Ile Asp Ala  
     325                    330                    335  
 Glu Gly Arg Ser Lys Leu Met Lys Ser Glu Gly Trp Tyr Ile Leu Lys  
     340                    345                    350  
 Ala Pro Lys Thr Pro Leu  
     355

<210> 14  
 <211> 4309  
 <212> DNA  
 <213> Homo sapiens  
 <400> 14

|             |            |            |            |             |             |     |
|-------------|------------|------------|------------|-------------|-------------|-----|
| aagtgcataaa | gcctccgagg | ccaaggccgc | tgctactgcc | gccgctgctt  | cttagtgccg  | 60  |
| cgttcggccgc | ctgggttgtc | accggcgccg | ccgcccagga | accactgca   | accaggacccg | 120 |
| gagtggaggc  | ggcgcagcat | gaagcggcgc | aggcccgtc  | catagcgcac  | gtcgggacgg  | 180 |
| tccggggggg  | gccgggggga | aggaaaatgc | aacatggcag | cagcaatgg   | aacagaacag  | 240 |
| ctgggttgtt  | agatatttga | aactgcggac | tgtgaggaga | atattgaatc  | acaggatcg   | 300 |
| cctaaattgg  | agcctttta  | tgttgagcgg | tattcctgga | gtcagcttaa  | aaagctgctt  | 360 |
| gccgatacca  | gaaaatatca | tggctacatg | atggctaagg | caccacatga  | tttcatgttt  | 420 |
| gtgaagagga  | atgatccaga | tggacctcat | tcagacagaa | tcttattacct | tgccatgtct  | 480 |
| ggtgagaaca  | gagaaaatac | actgttttat | tctgaaattc | ccaaaaactat | caatagagca  | 540 |
| gcagtcttaa  | tgctctcttg | gaagcctctt | ttggatcttt | ttcaggcaac  | actggactat  | 600 |
| ggaatgtatt  | ctcgagaaga | agaactatta | agagaaagaa | aacgcattgg  | aacagtcg    | 660 |
| attgcttctt  | acgattatca | ccaaggaagt | ggaacatttc | tgtttcaagc  | cggtatgtgg  | 720 |
| atttatcagc  | taaaagatgg | agggccacaa | ggattacgc  | aacaacctt   | aaggccaat   | 780 |

|             |               |              |               |              |              |      |
|-------------|---------------|--------------|---------------|--------------|--------------|------|
| ctagtggaaa  | ctagttgtcc    | caacatacgg   | atggatccaa    | aattatgccc   | tgctgatcca   | 840  |
| gactggattg  | cttttataca    | tagcaacgt    | atttggatat    | ctaacatcg    | aaccagagaa   | 900  |
| gaaaggagac  | tcacttatgt    | gcacaatgag   | ctagccaaaca   | tggaagaaga   | tgccagatca   | 960  |
| gctggagtgc  | ctacccttgt    | tctccaagaa   | gaatttgata    | gatattctgg   | ctattggtgg   | 1020 |
| tgtccaaaag  | ctgaaaacaac   | tcccagtgg    | ggtaaaattc    | ttagaattct   | atatgaagaa   | 1080 |
| aatgtgaat   | ctgaggtgg     | aattattcat   | gttacatccc    | ctatgttgg    | aacaaggagg   | 1140 |
| gcagattcat  | tccgttatcc    | taaaacaggt   | acagcaaattc   | ctaaagtac    | ttttaagatg   | 1200 |
| tcagaaataa  | tgattgtatgc   | tgaaggaaga   | tccaaagtga    | tgaagtca     | aggctggat    | 1260 |
| attttgaagg  | caccaaagac    | tcccctttag   | agcatcacct    | gtacgtagtc   | agttacgtaa   | 1320 |
| atccctggaga | ggtgacaagg    | ctgactgacc   | gtggctactc    | acatcttgc    | tgcatca      | 1380 |
| agcaactgt   | cttcttttata   | agtaagtata   | gtaaccagaa    | gaatccacac   | tgtgtgtccc   | 1440 |
| tttacaagct  | atcaagtcct    | gaagatgacc   | caacttgc      | aacaaaggaa   | ttttgggcca   | 1500 |
| ccatttttga  | ttcagcagg     | cctcttcctg   | actatactcc    | tccagaaatt   | ttctcttttgc  | 1560 |
| aaagtactac  | tggatttaca    | ttgtatggga   | tgctctacaa    | gcctcatgat   | ctacagcctg   | 1620 |
| gaaagaaaata | tcctactgt     | ctgttcatat   | atgggtgtct    | cctcagggtc   | agttgggtgaa  | 1680 |
| taatcggtt   | aaaggagtca    | agtatttccg   | cttgaatacc    | ctagccttc    | tagttatgt    | 1740 |
| gggtttagtgc | atagacaaca    | ggggatcctg   | tcaccgaggg    | ctttaatttgc  | aaggcgcctt   | 1800 |
| taaatataaa  | atgggtcaaa    | tagaaattga   | cgatcagg      | gaaggactcc   | aatatctagc   | 1860 |
| ttctcgat    | gatttcatttgc  | acttagatcg   | tgtgggc       | cacggcttgc   | cctatggagg   | 1920 |
| atacccttcc  | ctgatggcat    | taatgcagag   | gtcagat       | ttcagggttgc  | ctattgtgtt   | 1980 |
| ggccccagtc  | actctgttgc    | tcttctatga   | tacaggatac    | acggAACGTT   | atatgggtca   | 2040 |
| ccctgaccag  | aatgaacagg    | gctattactt   | aggatctgt     | gccatgc      | cagaaaagtt   | 2100 |
| ccccctctgaa | ccaaatcg      | tactgctt     | acatggttc     | ctggatgaga   | atgtccatt    | 2160 |
| tgcacatacc  | agtatattac    | tgatgttttgc  | agtggggct     | ggaaagccat   | atgatttaca   | 2220 |
| gatctatcct  | caggagagac    | acagcataag   | agttcctgaa    | tcgggagaac   | attatgaact   | 2280 |
| gcacatcttgc | cactaccc      | aaagaaaaccc  | tggatcacgt    | attgctgctc   | taaaagtgt    | 2340 |
| ataattttga  | cctgtgt       | actctctgtt   | atacactggc    | tatthaacca   | aatgaggagg   | 2400 |
| ttaatcaac   | agaaaacaca    | gaatttgc     | tcacat        | tttgc        | tgtaacatct   | 2460 |
| actcctgaaa  | ataatgtgg     | tgccatgc     | gggtctacgg    | tttgggt      | taatctaata   | 2520 |
| ccttaacccc  | acatgctcaa    | aatcaaata    | tacatattcc    | tgagagaccc   | agcaatacc    | 2580 |
| taagaattac  | aaaaaaaaaaaa  | aaaaaaaaaaaa | agacattagc    | accatgtatt   | catactaccc   | 2640 |
| tattttca    | ttaatagta     | ttataaactt   | catgaactt     | attagtgtat   | ttttacagta   | 2700 |
| tacttttgc   | tttggtaaaa    | tatgtatgata  | ttatgtatttgc  | gttgggttca   | gttccagaat   | 2760 |
| ctttgactat  | ttacagat      | gatagactt    | aaatgtatt     | gaatagctt    | tgcttcatttgc | 2820 |
| cttgggcata  | tccagcatgt    | tatgtactt    | taactatttgc   | acttgcatttgc | accagtcttgc  | 2880 |
| cattaataat  | tttcaagga     | taacttagt    | gcctcc        | gacacttgc    | ttggcactg    | 2940 |
| ccagtttttgc | gccaatttgc    | tctgtatct    | gtataaataa    | tttgcatttgc  | tcttgcatttgc | 3000 |
| tattaacaga  | gtgggcttgc    | ccttttgc     | aaaggctgt     | aactgtat     | gtacatgg     | 3060 |
| ttaatttgt   | catgtat       | ataatttgc    | gcagaaaatttgc | ttaatcaaa    | tgatttagagc  | 3120 |
| ttaatatttgc | gcaggcaat     | tttttttttgc  | cctttaagaa    | aaggaaaag    | tacacattca   | 3180 |
| ctagaatttgc | tcagaaaatttgc | tagtgggt     | agtttccatttgc | tgttatttgc   | ttataaaat    | 3240 |
| attcttagat  | ttaaggaga     | ttgaagg      | tcacagtgg     | gtggggagac   | ctgggtttgg   | 3300 |
| ggaatgac    | agagaagagg    | ttgtgagg     | ctgat         | tttttttttgc  | tttttttttgc  | 3360 |
| acaaaaat    | tcatgaaaat    | ttttggaaac   | tgaaatttgc    | acaactgtt    | tattaaggaa   | 3420 |
| accagaatca  | ataatcact     | gtcttgcc     | cacagotaca    | gagtaacat    | attcagg      | 3480 |
| ggaaaagttc  | cttagat       | tttttttttgc  | tttttttttgc   | tttttttttgc  | tttttttttgc  | 3540 |
| tcttacaaat  | ttaatcttgc    | tttttttttgc  | tttttttttgc   | tttttttttgc  | tttttttttgc  | 3600 |
| cttaaaat    | aaatgtttat    | agataac      | tttaccata     | actaattcc    | ggcaagccat   | 3660 |
| ggctctcttgc | tttttttttgc   | tttttttttgc  | tttttttttgc   | tttttttttgc  | tttttttttgc  | 3720 |
| cttttcttgc  | tttagcact     | ggat         | tttgcatttgc   | tttgcatttgc  | tttgcatttgc  | 3780 |
| aatttgc     | tgccatgttgc   | gagtcttgg    | gtgctat       | ggtcacatttgc | acaccatgg    | 3840 |
| cagggaaaggc | atctat        | tttgcatttgc  | tttgcatttgc   | tttgcatttgc  | tttgcatttgc  | 3900 |
| ttaccaatac  | ttttaaacaa    | caacttgc     | aaatttgc      | tatttcttgc   | tcatcactac   | 3960 |
| agagagat    | gat           | tttgcatttgc  | tttgcatttgc   | tttgcatttgc  | tttgcatttgc  | 4020 |
| gtatgttgc   | gacttcat      | tttgcatttgc  | tttgcatttgc   | tttgcatttgc  | tttgcatttgc  | 4080 |
| ataatagata  | ccacgttttgc   | tcttattat    | tgtat         | tttgcatttgc  | tttgcatttgc  | 4140 |
| tttccatgc   | caagatttgc    | ttatata      | tttgcatttgc   | tttgcatttgc  | tttgcatttgc  | 4200 |
| actttcttgc  | ccaagaaagt    | tttgcatttgc  | tttgcatttgc   | tttgcatttgc  | tttgcatttgc  | 4260 |
|             |               |              |               |              |              | 4309 |

<210> 15  
<211> 108  
<212> PRT  
<213> Homo sapiens  
<400> 15

Met Ala Ala Ala Met Glu Thr Glu Gln Leu Gly Val Glu Ile Phe Glu  
1 5 10 15  
Thr Ala Asp Cys Glu Glu Asn Ile Glu Ser Gln Asp Arg Pro Lys Leu  
20 25 30  
Glu Pro Phe Tyr Val Glu Arg Tyr Ser Trp Ser Gln Leu Lys Lys Leu  
35 40 45  
Leu Ala Asp Thr Arg Lys Tyr His Gly Tyr Met Met Ala Lys Ala Pro  
50 55 60  
His Asp Phe Met Phe Val Lys Arg Asn Asp Pro Asp Gly Pro His Ser  
65 70 75 80  
Asp Arg Ile Tyr Tyr Leu Gly Asn Lys Ser Leu Ile Asp His Asp Arg  
85 90 95  
Phe Ser Lys Ser Lys Met Pro Glu Ile Ala Ser Ser  
100 105

<210> 16  
<211> 620  
<212> DNA  
<213> Homo sapiens  
<400> 16

|               |            |             |            |            |            |     |
|---------------|------------|-------------|------------|------------|------------|-----|
| aagtgtctaaa   | gcctccgagg | ccaaggccgc  | tgctactgcc | gccgctgctt | cttagtgccg | 60  |
| cgttcggcgc    | ctgggttgtc | accggcgccc  | ccgcccagga | agccactgca | accaggacgg | 120 |
| gagtggaggc    | ggcgcat    | aaagcggcgc  | aggccccgtc | catagcgac  | gtcgggacgg | 180 |
| tccgggcggg    | gcccggggga | aggaaaaatgc | aacatggcag | cagcaatgg  | aacagaacag | 240 |
| ctgggtgttgc   | agatatttga | aactgcggac  | tgtgaggaga | atattgaatc | acaggatcgg | 300 |
| cctaaatttttgc | agcctttta  | tgttgagcgg  | tattccttgc | gtcagcttaa | aaagctgctt | 360 |
| gccgataccat   | gaaaatatca | tggctacatg  | atggctaagg | caccacatga | tttcatgttt | 420 |
| gtgaagagggat  | atgatccaga | tggacctcat  | tcagacagaa | tctattacct | tggtaacaag | 480 |
| tcattaatttgc  | atcatgatcg | tttttcaaaa  | tcgaagatgc | cagaaattgc | ttcttcctaa | 540 |
| agcttagcttgc  | aaatgccttt | ctttagatgg  | tctgattagg | aaaacaaaca | ataaaaccat | 600 |
| tagtttgttc    | ccactcaaca |             |            |            |            | 620 |

<210> 17  
<211> 194  
<212> PRT  
<213> Homo sapiens  
<400> 17

Met Ala Ala Ala Met Glu Thr Glu Gln Leu Gly Val Glu Ile Phe Glu  
 1 5 10 15  
 Thr Ala Asp Cys Glu Glu Asn Ile Glu Ser Gln Asp Arg Pro Lys Leu  
 20 25 30  
 Glu Pro Phe Tyr Val Glu Arg Tyr Ser Trp Ser Gln Leu Lys Lys Leu  
 35 40 45  
 Leu Ala Asp Thr Arg Lys Tyr His Gly Tyr Met Met Ala Lys Ala Pro  
 50 55 60  
 His Asp Phe Met Phe Val Lys Arg Asn Asp Pro Asp Gly Pro His Ser  
 65 70 75 80  
 Asp Arg Ile Tyr Tyr Leu Ala Met Ser Gly Glu Asn Arg Glu Asn Thr  
 85 90 95  
 Leu Phe Tyr Ser Glu Ile Pro Lys Thr Ile Asn Arg Ala Ala Val Leu  
 100 105 110  
 Met Leu Ser Trp Lys Pro Leu Leu Asp Leu Phe Gln Ala Thr Leu Asp  
 115 120 125  
 Tyr Gly Met Tyr Ser Arg Glu Glu Glu Leu Leu Arg Glu Arg Lys Arg  
 130 135 140  
 Ile Gly Thr Val Gly Ile Ala Ser Tyr Asp Tyr His Gln Gly Ser Gly  
 145 150 155 160  
 Thr Phe Leu Phe Gln Ala Gly Ser Gly Ile Tyr His Val Lys Asp Gly  
 165 170 175  
 Gly Pro Gln Gly Phe Thr Gln Pro Leu Arg Pro Asn Leu Val Glu Thr  
 180 185 190  
 Cys Ala

<210> 18  
 <211> 832  
 <212> DNA  
 <213> Homo sapiens  
 <400> 18

aagtgcataaa gcctccgagg ccaaggccgc tgctactgcc gccgctgctt cttagtgccg 60  
 cgttcggccgc ctgggttgtc accggcgccg cggccgagga agccactgca accaggaccg 120  
 gagtgaggagc ggcgcagcat gaagcggcgc agggccgctc catagcgcac gtcgggacgg 180  
 tccggggcggg gcccggggga aggaaaatgc aacatggcag cagcaatggg aacagaacag 240  
 ctgggtgttg agatatttga aactgcggac tgtgaggaga atattgaatc acaggatcgg 300  
 cctaaattgg agcctttta tggcggcgg tattcctgga gtcagcttaa aaagctgctt 360  
 gcccatacca gaaaatatca tggctacatg atggctaagg caccacatga tttcatgttt 420  
 gtgaagagga atgatccaga tggacctcat tcagacagaa tctattacct tgccatgtct 480  
 ggtgagaaca gagaaaatac actgttttat tctgaaattc cccaaactat caatagagca 540  
 gcagtcttaa tgctcttttgaagccttctt ttggatctt ttcaggcaac actggactat 600  
 ggaatgtatt ctcgagaaga agaactatta agagaaagaa aacgcattgg aacagtccga 660  
 attgcttctt acgattatca ccaaggaagt ggaacatttc tggatcttcaagc cggtagtgga 720  
 atttatcacg taaaagatgg agggccacaa ggatttacgc wacaacctt aaggccaat 780  
 cttagtggaaa ctastttgtsc caracytgca tgacccaatc agatcctgta ga 832

<210> 19  
 <211> 658  
 <212> PRT  
 <213> Homo sapiens  
 <400> 19

Met Ala Ala Ala Met Glu Thr Glu Gln Leu Gly Val Glu Ile Phe Glu  
 1 5 10 15  
 Thr Ala Asp Cys Glu Glu Asn Ile Glu Ser Gln Asp Arg Pro Lys Leu  
 20 25 30  
 Glu Pro Phe Tyr Val Glu Arg Tyr Ser Trp Ser Gln Leu Lys Lys Leu  
 35 40 45  
 Leu Ala Asp Thr Arg Lys Tyr His Gly Tyr Met Met Ala Lys Ala Pro

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 50                                                              | 55  | 60  |
| His Asp Phe Met Phe Val Lys Arg Asn Asp Pro Asp Gly Pro His Ser |     |     |
| 65                                                              | 70  | 75  |
| Asp Arg Ile Tyr Tyr Leu Ala Met Ser Gly Glu Asn Arg Glu Asn Thr |     | 80  |
| 85                                                              | 90  | 95  |
| Leu Phe Tyr Ser Glu Ile Pro Lys Thr Ile Asn Arg Ala Ala Val Leu |     |     |
| 100                                                             | 105 | 110 |
| Met Leu Ser Trp Lys Pro Leu Leu Asp Leu Phe Gln Ala Thr Leu Asp |     |     |
| 115                                                             | 120 | 125 |
| Tyr Gly Met Tyr Ser Arg Glu Glu Glu Leu Leu Arg Glu Arg Lys Arg |     |     |
| 130                                                             | 135 | 140 |
| Ile Gly Thr Val Gly Ile Ala Ser Tyr Asp Tyr His Gln Gly Ser Gly |     |     |
| 145                                                             | 150 | 155 |
| Thr Phe Leu Phe Gln Ala Gly Ser Gly Ile Tyr His Val Lys Asp Gly |     | 160 |
| 165                                                             | 170 | 175 |
| Gly Pro Gln Gly Phe Thr Gln Gln Pro Leu Arg Pro Asn Leu Val Glu |     |     |
| 180                                                             | 185 | 190 |
| Thr Ser Cys Pro Asn Ile Arg Met Asp Pro Lys Leu Cys Pro Ala Asp |     |     |
| 195                                                             | 200 | 205 |
| Pro Asp Trp Ile Ala Phe Ile His Ser Asn Asp Ile Trp Ile Ser Asn |     |     |
| 210                                                             | 215 | 220 |
| Ile Val Thr Arg Glu Glu Arg Arg Leu Thr Tyr Val His Asn Glu Leu |     |     |
| 225                                                             | 230 | 235 |
| Ala Asn Met Glu Glu Asp Ala Arg Ser Ala Gly Val Ala Thr Phe Val |     | 240 |
| 245                                                             | 250 | 255 |
| Leu Gln Glu Glu Phe Asp Arg Tyr Ser Gly Tyr Trp Trp Cys Pro Lys |     |     |
| 260                                                             | 265 | 270 |
| Ala Glu Thr Thr Pro Ser Gly Gly Lys Ile Leu Arg Ile Leu Tyr Glu |     |     |
| 275                                                             | 280 | 285 |
| Glu Asn Asp Glu Ser Glu Val Glu Ile Ile His Val Thr Ser Pro Met |     |     |
| 290                                                             | 295 | 300 |
| Leu Glu Thr Arg Arg Ala Asp Ser Phe Arg Tyr Pro Lys Thr Gly Thr |     |     |
| 305                                                             | 310 | 315 |
| Ala Asn Pro Lys Val Thr Phe Lys Met Ser Glu Ile Met Ile Asp Ala |     | 320 |
| 325                                                             | 330 | 335 |
| Glu Gly Arg Ile Ile Asp Val Ile Asp Lys Glu Leu Ile Gln Pro Phe |     |     |
| 340                                                             | 345 | 350 |
| Glu Ile Leu Phe Glu Gly Val Glu Tyr Ile Ala Arg Ala Gly Trp Thr |     |     |
| 355                                                             | 360 | 365 |
| Pro Glu Gly Lys Tyr Ala Trp Ser Ile Leu Leu Asp Arg Ser Gln Thr |     |     |
| 370                                                             | 375 | 380 |
| Arg Leu Gln Ile Val Leu Ile Ser Pro Glu Leu Phe Ile Pro Val Glu |     |     |
| 385                                                             | 390 | 395 |
| Asp Asp Val Met Glu Arg Gln Arg Leu Ile Glu Ser Val Pro Asp Ser |     | 400 |
| 405                                                             | 410 | 415 |
| Val Thr Pro Leu Ile Ile Tyr Glu Glu Thr Thr Asp Ile Trp Ile Asn |     |     |
| 420                                                             | 425 | 430 |
| Ile His Asp Ile Phe His Val Phe Pro Gln Ser His Glu Glu Ile     |     |     |
| 435                                                             | 440 | 445 |
| Glu Phe Ile Phe Ala Ser Glu Cys Lys Thr Gly Phe Arg His Leu Tyr |     |     |
| 450                                                             | 455 | 460 |
| Lys Ile Thr Ser Ile Leu Lys Glu Ser Lys Tyr Lys Arg Ser Ser Gly |     |     |
| 465                                                             | 470 | 475 |
| Gly Leu Pro Ala Pro Ser Asp Phe Lys Cys Pro Ile Lys Glu Glu Ile |     | 480 |
| 485                                                             | 490 | 495 |
| Ala Ile Thr Ser Gly Glu Trp Glu Val Leu Gly Arg His Gly Ser Asn |     |     |
| 500                                                             | 505 | 510 |
| Ile Gln Val Asp Glu Val Arg Arg Leu Val Tyr Phe Glu Gly Thr Lys |     |     |
| 515                                                             | 520 | 525 |
| Asp Ser Pro Leu Glu His His Leu Tyr Val Val Ser Tyr Val Asn Pro |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 530 | 535 | 540 |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Gly | Glu | Val | Thr | Arg | Leu | Thr | Asp | Arg | Gly | Tyr | Ser | His | Ser | Cys | Cys |
| 545 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 560 |
| Ile | Ser | Gln | His | Cys | Asp | Phe | Phe | Ile | Ser | Lys | Tyr | Ser | Asn | Gln | Lys |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 575 |
| 565 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 575 |
| Asn | Pro | His | Cys | Val | Ser | Leu | Tyr | Lys | Leu | Ser | Ser | Pro | Glu | Asp | Asp |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 590 |
| 580 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 590 |
| Pro | Thr | Cys | Lys | Thr | Lys | Glu | Phe | Trp | Ala | Thr | Ile | Leu | Asp | Ser | Ala |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 595 |
| 595 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 605 |
| Gly | Pro | Leu | Pro | Asp | Tyr | Thr | Pro | Pro | Glu | Ile | Phe | Ser | Phe | Glu | Ser |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 610 |
| 610 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 620 |
| Thr | Thr | Gly | Phe | Thr | Leu | Tyr | Gly | Met | Leu | Tyr | Lys | Pro | His | Asp | Leu |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 625 |
| 625 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 640 |
| Gln | Pro | Gly | Lys | Lys | Tyr | Pro | Thr | Val | Leu | Phe | Ile | Tyr | Gly | Gly | Arg |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 645 |
| 645 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 650 |
| Val | Lys |     |     |     |     |     |     |     |     |     |     |     |     |     | 655 |

<210> 20

<211> 4676

<212> DNA

<213> Homo sapiens

<400> 20

|              |             |              |              |             |             |      |
|--------------|-------------|--------------|--------------|-------------|-------------|------|
| aagtgtctaaa  | gcctccgagg  | ccaaggccgc   | tgtactgcc    | gccgctgctt  | cttagtgccc  | 60   |
| cgttcggcgc   | ctgggttgtc  | accggcgccg   | ccggcgagga   | agccactgca  | accaggaccc  | 120  |
| gagtggaggc   | ggcgacat    | gaagcgccgc   | aggccccgtc   | catagcgac   | gtcgggacgg  | 180  |
| tccggggcggg  | gcccggggga  | aggaaaatgc   | aacatggcag   | cagcaatgg   | aacagaacag  | 240  |
| ctgggtgttgc  | agatatttga  | aactgcggac   | tgtgaggaga   | atattgaatc  | acaggatcgg  | 300  |
| cctaaatttgg  | agcctttta   | tgttgagcgg   | tattcttgg    | gtcagcttaa  | aaagctgctt  | 360  |
| gccgatacc    | aaaaatatca  | tggctacatg   | atggctaagg   | caccacatga  | tttcatgttt  | 420  |
| gtgaagagga   | atgatccaga  | tggacctcat   | tcagacagaa   | tctattacct  | tgccatgtct  | 480  |
| ggtgagaaca   | gagaaaatac  | actgttttat   | tctgaaattc   | ccaaaaactat | caatagagca  | 540  |
| gcagtcttaa   | tgctcttttgc | gaagccttctt  | ttggatcttt   | ttcaggcaac  | actggactat  | 600  |
| ggaatgtatt   | ctcgagaaga  | agaactatta   | agagaaagaa   | aacgcattgg  | aacagtccga  | 660  |
| attgttttttgc | acgattatca  | ccaaggaaatgc | ggaacatttc   | tgtttcaago  | cggttagtgg  | 720  |
| atttatcacg   | taaaagatgg  | agggccacaa   | ggatttacgc   | aacaaccttt  | aaggcccaat  | 780  |
| ctagtggaaa   | ctagttgtcc  | caacatacgg   | atggatccaa   | aattatgccc  | tgctgatcca  | 840  |
| gactggatttgc | cttttataca  | tagcaacat    | atttggatat   | ctaacatcg   | aaccagagaa  | 900  |
| gaaaggagac   | tcacttatgt  | gcacaatgg    | ctagccaaaca  | tgaagaaga   | tgccagatca  | 960  |
| gctggagtgc   | ctaccccttgc | tctccaagaa   | gaatttgata   | gatattctgg  | ctattgggtgg | 1020 |
| tgtccaaaag   | ctgaaacaac  | tcccagtgg    | ggtaaaatttgc | ttagaattct  | atatgaagaa  | 1080 |
| aatgtatgaat  | ctgaggtgg   | aattattcat   | gttacatccc   | ctatgttgg   | aacaaggagg  | 1140 |
| gcagattcat   | tccgttatcc  | taaaacaggt   | acagcaaatac  | ctaaagtca   | ttttaaatgt  | 1200 |
| tcagaaataa   | tgattgtgc   | tgaaggaagg   | atcatagatg   | tcatagataa  | ggaactaatt  | 1260 |
| caaccccttgc  | agattctatt  | tgaaggaggt   | aatatatttgc  | ccagagctgg  | atggactcct  | 1320 |
| gagggaaaat   | atgcttggc   | cattctacta   | gatcgctccc   | agactcgcc   | acagatagt   | 1380 |
| tttgatctcac  | ctgaattatt  | tatcccagt    | gaagatgt     | ttatggaaag  | gcagagactc  | 1440 |
| attggatctgc  | tgcctgttgc  | tgtgacgcca   | ctaattatct   | atgaagaaac  | aacagacatc  | 1500 |
| tggataaaata  | tccatgacat  | ctttcatgtt   | tttccccaaa   | gtcacgaaga  | ggaaatttgag | 1560 |
| tttatttttgc  | cctctgtatgc | aaaaacaggt   | ttccgtcatt   | tataaaaaat  | tacatctatt  | 1620 |
| ttaaaggaaa   | gcaaatataa  | acgatccagt   | ggtgggctgc   | ctgctccaag  | tgatttcaag  | 1680 |
| tgtccatataa  | aagaggagat  | agcaattacc   | agtggtgaat   | gggaagttct  | tggccggcat  | 1740 |
| ggatctaata   | tccaaatgt   | tgaagtccaa   | aggctggat    | atttgaagg   | caccaaagac  | 1800 |
| tcccctttag   | agcatcaccc  | gtacgtatgc   | agttacgtaa   | atccctgg    | ggtgacaagg  | 1860 |
| ctgactgacc   | gtggctactc  | acattcttgc   | tgcatacg     | agcaactgt   | cttcttata   | 1920 |
| agtaagtata   | gtaaccagaa  | gaatccacac   | tgtgtgtccc   | tttacaagct  | atcaagtcct  | 1980 |
| gaagatgtacc  | caacttgc    | aacaaaggaa   | ttttggggca   | ccatcttgg   | ttcagcagg   | 2040 |
| cctcttcctgc  | actatactcc  | tccagaaatt   | ttctcttttgc  | aaagtactac  | tggatttaca  | 2100 |
| ttgtatgg     | tgctctacaa  | gcctcatgt    | ctacagcctg   | gaaagaaata  | tcctactgt   | 2160 |
| ctgttcataat  | atgggtgtcg  | ggtcaatag    | aaattgacga   | tcaggtggaa  | ggactccaaat | 2220 |

|              |               |             |             |             |              |      |
|--------------|---------------|-------------|-------------|-------------|--------------|------|
| atcttagctc   | tcgatatatgtat | ttcattgact  | tagatcggt   | gggcattcac  | ggctggcc     | 2280 |
| atggaggata   | cctctccctg    | atggcattaa  | tgcagaggc   | agatatctt   | agggttgcta   | 2340 |
| ttgctggggc   | cccagtca      | ctgtggatct  | tctatgatac  | aggatacacg  | gaacgttata   | 2400 |
| tgggtcaccc   | tgaccagaat    | gaacagggt   | attacttagg  | atctgtggcc  | atgcaagcag   | 2460 |
| aaaagtccc    | ctctgaacca    | aatcgtttac  | tgctcttaca  | tggtttctg   | gatgagaatg   | 2520 |
| tccatttgc    | acataccagt    | atattactga  | gttttttagt  | gagggtcgga  | aagccatatg   | 2580 |
| attacagat    | ctatcctcag    | gagagacaca  | gcataaagat  | tccctgaatcg | ggagaacatt   | 2640 |
| atgaactgca   | tcttttgcac    | taccttcaag  | aaaaccttgg  | atcacgtatt  | gctgcttcaa   | 2700 |
| aagtgtatata  | attttgcacct   | gtgttagaact | ctctggtata  | cactggctat  | ttaaccaaata  | 2760 |
| gaggagggtt   | aatcaacaga    | aaacacagaa  | ttgatcatca  | cattttgata  | cctgccccatgt | 2820 |
| aacatctact   | cctgaaaata    | aatgtggc    | catgcagggg  | tctacgggtt  | gtggtagtaa   | 2880 |
| tctaatact    | taaccccaca    | tgctcaaaaat | caaatgatac  | atattcctga  | gagaccacgc   | 2940 |
| aataccataa   | gaattactaa    | aaaaaaaaaa  | aaaaaaaaaa  | cattagcacc  | atgtattcat   | 3000 |
| actaccctat   | tttcaactttt   | aatagtatta  | taaacttcat  | gaacttaatt  | agtgtatTTT   | 3060 |
| tacagtatac   | ttttgggtt     | gttaaaatat  | gatgatatta  | gtgattgggtt | tggttcagtt   | 3120 |
| ccagaatctt   | tgactagtt     | cagatttgat  | agcactaaaa  | tgttaattgaa | tagcttatgc   | 3180 |
| ttcattgctt   | gggcataatcc   | agcatgttat  | gaactaataaa | ctattaaact  | tgacttaacc   | 3240 |
| agtcaattat   | taataatttt    | tcaaggataa  | cttagtggcc  | tctaaagac   | acttgtttt    | 3300 |
| gcactgacca   | gtttttagcc    | aatitaatct  | gtatctagta  | taaataattc  | tcattttct    | 3360 |
| ttgatgatata  | taacagagtg    | ggcttttctt  | tttgcataaa  | ggctagtaac  | tgttatgt     | 3420 |
| gcatggattt   | aatttagtcat   | gatattgata  | attacaggca  | gaaaattttt  | aatcaaata    | 3480 |
| tttagagctt   | aatatttgca    | ggcaagttt   | tttttttctt  | ttaagaaaaag | gaaaagatc    | 3540 |
| acatttca     | gaatttttca    | gaaaatttt   | tggtgcagtt  | ttccattttgg | tatttcctta   | 3600 |
| ttaaaatatt   | ctagaattttt   | aaggagattt  | aagggaatca  | cagtgggtt   | gggagacctg   | 3660 |
| gggttgggaa   | atgacagaga    | gaagaggtgg  | tgagggccctg | ataaaaact   | aagcagaagt   | 3720 |
| agttttttaaca | aaaatactca    | tgaaaatgtt  | tggaaactga  | aattttaaaca | actgtatata   | 3780 |
| taaggaaaacc  | agaatcaata    | aatactgtc   | ttgccagcac  | agctacagag  | taacatgatt   | 3840 |
| caggggagga   | aaagttccctt   | agagttactt  | ttataattct  | tttttttttt  | cctcttaggt   | 3900 |
| tttagaaatct  | tacaatttttta  | aacttttatcc | ttttaaaattt | atttgaacat  | aatttagata   | 3960 |
| ttgttaagctt  | aaaatacaaaa   | tgtttataga  | taacctcttt  | accataaaact | aatccctggc   | 4020 |
| aagccatggc   | tctctttttt    | tttttgggtt  | ttaaagctgt  | taaacagttt  | ttctgaatga   | 4080 |
| tcatgaactt   | ttcttggttt    | agcacttagga | tttagctatg  | aagagagctc  | ataggcttcc   | 4140 |
| agggtctaat   | tgagatctgc    | cctgttagag  | tcttgggtt   | ctagattgg   | cacattgaca   | 4200 |
| ccagtggcag   | ggaaggcata    | tatgagttt   | atgctttta   | tcacacactt  | cagtgttag    | 4260 |
| aaagtttattt  | ccaataactttt  | taaacaacac  | tccaagaaaa  | tttgctatata | ttctttctca   | 4320 |
| tcactacaga   | gagagtagat    | ttccccatag  | agagcacacg  | ctccatttagt | aaggttgggt   | 4380 |
| actattggta   | agaggtggac    | ttcattgaca  | ccaagtggga  | ggttagggaaa | gcccagaaat   | 4440 |
| ggcaggatga   | tatgggggtt    | ctgtcggtt   | gaaaggattt  | gggttttgc   | gtttgtatTT   | 4500 |
| atactgtata   | atagatacca    | cgctttttct  | tattatctgt  | atatgtattt  | cttttcatgt   | 4560 |
| ttgatattttt  | cccatgccaa    | gatttggttt  | tatataatttt | caatgttaaa  | ttaaatttgat  | 4620 |
| ttgggtaact   | ttcttccccca   | agaaagtattt | ttccccctta  | agataaaatc  | tgactgt      | 4676 |

<210> 21  
 <211> 613  
 <212> PRT  
 <213> Homo sapiens  
 <400> 21

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Ala | Ala | Ala | Met | Glu | Thr | Glu | Gln | Leu | Gly | Val | Glu | Ile | Phe | Glu |
| 1   |     |     |     | 5   |     |     |     | 10  |     |     |     |     | 15  |     |     |
| Thr | Ala | Asp | Cys | Glu | Glu | Asn | Ile | Glu | Ser | Gln | Asp | Arg | Pro | Lys | Leu |
|     |     |     |     |     |     |     | 20  |     | 25  |     |     |     | 30  |     |     |
| Glu | Pro | Phe | Tyr | Val | Glu | Arg | Tyr | Ser | Trp | Ser | Gln | Leu | Lys | Lys | Leu |
|     |     |     |     |     |     |     | 35  |     | 40  |     |     | 45  |     |     |     |
| Leu | Ala | Asp | Thr | Arg | Lys | Tyr | His | Gly | Tyr | Met | Met | Ala | Lys | Ala | Pro |
|     |     |     |     |     |     |     | 50  |     | 55  |     |     | 60  |     |     |     |
| His | Asp | Phe | Met | Phe | Val | Lys | Arg | Asn | Asp | Pro | Asp | Gly | Pro | His | Ser |
|     |     |     |     |     |     |     | 65  |     | 70  |     | 75  |     | 80  |     |     |
| Asp | Arg | Ile | Tyr | Tyr | Leu | Ala | Met | Ser | Gly | Glu | Asn | Arg | Glu | Asn | Thr |
|     |     |     |     |     |     |     | 85  |     | 90  |     |     | 95  |     |     |     |

Leu Phe Tyr Ser Glu Ile Pro Lys Thr Ile Asn Arg Ala Ala Val Leu  
 100 105 110  
 Met Leu Ser Trp Lys Pro Leu Leu Asp Leu Phe Gln Ala Thr Leu Asp  
 115 120 125  
 Tyr Gly Met Tyr Ser Arg Glu Glu Leu Leu Arg Glu Arg Lys Arg  
 130 135 140  
 Ile Gly Thr Val Gly Ile Ala Ser Tyr Asp Tyr His Gln Gly Ser Gly  
 145 150 155 160  
 Thr Phe Leu Phe Gln Ala Gly Ser Gly Ile Tyr His Val Lys Asp Gly  
 165 170 175  
 Gly Pro Gln Gly Phe Thr Gln Gln Pro Leu Arg Pro Asn Leu Val Glu  
 180 185 190  
 Thr Ser Cys Pro Asn Ile Arg Met Asp Pro Lys Leu Cys Pro Ala Asp  
 195 200 205  
 Pro Asp Trp Ile Ala Phe Ile His Ser Asn Asp Ile Trp Ile Ser Asn  
 210 215 220  
 Ile Val Thr Arg Glu Glu Arg Arg Leu Thr Tyr Val His Asn Glu Leu  
 225 230 235 240  
 Ala Asn Met Glu Glu Asp Ala Arg Ser Ala Gly Val Ala Thr Phe Val  
 245 250 255  
 Leu Gln Glu Glu Phe Asp Arg Tyr Ser Gly Tyr Trp Trp Cys Pro Lys  
 260 265 270  
 Ala Glu Thr Thr Pro Ser Gly Gly Lys Ile Leu Arg Ile Leu Tyr Glu  
 275 280 285  
 Glu Asn Asp Glu Ser Glu Val Glu Ile Ile His Val Thr Ser Pro Met  
 290 295 300  
 Leu Glu Thr Arg Arg Ala Asp Ser Phe Arg Tyr Pro Lys Thr Gly Thr  
 305 310 315 320  
 Ala Asn Pro Lys Val Thr Phe Lys Met Ser Glu Ile Met Ile Asp Ala  
 325 330 335  
 Glu Gly Arg Ile Ile Asp Val Ile Asp Lys Glu Leu Ile Gln Pro Phe  
 340 345 350  
 Glu Ile Leu Phe Glu Gly Val Glu Tyr Ile Ala Arg Ala Gly Trp Thr  
 355 360 365  
 Pro Glu Gly Lys Tyr Ala Trp Ser Ile Leu Leu Asp Arg Ser Gln Thr  
 370 375 380  
 Arg Leu Gln Ile Val Leu Ile Ser Pro Glu Leu Phe Ile Pro Val Glu  
 385 390 395 400  
 Asp Asp Val Met Glu Arg Gln Arg Leu Ile Glu Ser Val Pro Asp Ser  
 405 410 415  
 Val Thr Pro Leu Ile Ile Tyr Glu Glu Thr Thr Asp Ile Trp Ile Asn  
 420 425 430  
 Ile His Asp Ile Phe His Val Phe Pro Gln Ser His Glu Glu Ile  
 435 440 445  
 Glu Phe Ile Phe Ala Ser Glu Cys Lys Thr Gly Phe Arg His Leu Tyr  
 450 455 460  
 Lys Ile Thr Ser Ile Leu Lys Glu Ser Lys Tyr Lys Arg Ser Ser Gly  
 465 470 475 480  
 Gly Leu Pro Ala Pro Ser Asp Phe Lys Cys Pro Ile Lys Glu Glu Ile  
 485 490 495  
 Ala Ile Thr Ser Gly Glu Trp Glu Val Leu Gly Arg His Gly Ser Asn  
 500 505 510  
 Ile Gln Val Asp Glu Val Arg Arg Leu Val Tyr Phe Glu Gly Thr Lys  
 515 520 525  
 Asp Ser Pro Leu Glu His His Leu Tyr Val Val Ser Tyr Val Asn Pro  
 530 535 540  
 Gly Glu Val Thr Arg Leu Thr Asp Arg Gly Tyr Ser His Ser Cys Cys  
 545 550 555 560  
 Ile Ser Gln His Cys Asp Phe Phe Ile Ser Lys Tyr Ser Asn Gln Lys  
 565 570 575

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asn | Pro | His | Cys | Val | Ser | Leu | Tyr | Lys | Leu | Ser | Ser | Pro | Glu | Asp | Asp |
| 580 |     |     |     |     |     |     |     | 585 |     |     |     | 590 |     |     |     |
| Pro | Thr | Cys | Lys | Thr | Lys | Glu | Phe | Trp | Ala | Thr | Ile | Leu | Asp | Ser | Val |
| 595 |     |     |     |     |     |     |     | 600 |     |     |     | 605 |     |     |     |
| Leu | Arg | Cys | Ser | Trp |     |     |     |     |     |     |     |     |     |     |     |
| 610 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

<210> 22  
<211> 4685  
<212> DNA  
<213> Homo sapiens  
<400> 22

|              |             |              |               |             |             |      |
|--------------|-------------|--------------|---------------|-------------|-------------|------|
| aagtgcataaa  | gcctccgagg  | ccaaggccgc   | tgctactgcc    | gccgctgctt  | cttagtgccg  | 60   |
| cgttcggccgc  | ctgggttgtc  | accggcgccg   | ccgcccggaga   | agccactgca  | accaggacgg  | 120  |
| gagtggaggc   | ggcgccagcat | gaagcgccgc   | aggccccctc    | catagcgcac  | gtcgggacgg  | 180  |
| tccggggcggg  | gccggggggg  | aggaaaatgc   | aacatggcag    | cagcaatggg  | aacagaacag  | 240  |
| ctgggtgttgc  | agatatttgc  | aactgcggac   | tgtgaggaga    | atattgaatc  | acaggatcg   | 300  |
| cctaaattgg   | agcctttta   | tgttgagcgg   | tattcttgc     | gtcagcttaa  | aaagctgtt   | 360  |
| gccgatacca   | aaaaatatca  | tggctacatg   | atggctaagg    | caccacatga  | tttcatgttt  | 420  |
| gtgaagagga   | atgatccaga  | tggacctcat   | tcagacagaa    | tcttattacct | tgccatgtct  | 480  |
| ggtgagaaca   | gagaaaatac  | actgttttat   | tctgaaattc    | ccaaaactat  | caatagagca  | 540  |
| gcagtcttaa   | tgctcttttgc | gaagccttctt  | ttggatcttt    | ttcaggcaac  | actggactat  | 600  |
| ggaatgtatt   | ctcgagaaga  | agaactatta   | agagaaaagaa   | aacgcattgg  | aacagtccg   | 660  |
| attgttttctt  | acgattatca  | ccaaggaaatgt | ggaacatttc    | tgtttcaagc  | cggttagtgg  | 720  |
| atttatcacg   | taaaagatgg  | agggccacaa   | ggatttacgc    | aacaaccttt  | aaggcccaat  | 780  |
| ctagtggaaa   | ctagtgttcc  | caacatacgg   | atggatccaa    | aattatgccc  | tgctgatcca  | 840  |
| gactggatttgc | cttttataca  | tagcaacat    | atttggatat    | ctaacatcg   | aaccagagaa  | 900  |
| gaaaggagac   | tcacttatgt  | gcacaatgg    | ctagccaaaca   | tgaaagaaga  | tgccagatca  | 960  |
| gctggagtcg   | ctacctttgt  | tctccaaagaa  | gaatttgata    | gatattctgg  | ctattgggg   | 1020 |
| tgtccaaatgg  | ctgaaacaac  | tcccagtgg    | ggtaaaaatttgc | tttagattct  | atatgaagaa  | 1080 |
| aatgtatggat  | ctgaggtgg   | aattattcat   | gttacatccc    | ctatgttgg   | aacaaggagg  | 1140 |
| gcagattcat   | tccgttatcc  | taaaacaggt   | acagcaaatac   | ctaaagtac   | tttttagatg  | 1200 |
| tcagaaataaa  | tgattgtatgc | tgaaggaagg   | atcatagatg    | tcatagataa  | ggaactaatt  | 1260 |
| caaccttttgc  | agattcttatt | tgaaggagtt   | gaatatatttgc  | ccagagctgg  | atggactcct  | 1320 |
| gagggaaaat   | atgcttgg    | cattctacta   | gatcgcccc     | agactcgcc   | acagatagt   | 1380 |
| ttgatctcac   | ctgaattatt  | tatcccagta   | gaagatgtat    | ttatggaaag  | gcagagactc  | 1440 |
| attgagttag   | tgcctgattc  | tgtgacgcca   | ctaattatct    | atgaagaaac  | aacagacatc  | 1500 |
| tggataaaata  | tccatgacat  | ctttcatgtt   | tttccccaaa    | gtcacgaaga  | ggaaatttag  | 1560 |
| tttatttttgc  | cctctgaatg  | caaaacaggt   | ttccgttcatt   | tataaaaaat  | tacatctatt  | 1620 |
| ttaaaggaaa   | gcaaatataa  | acgatccagt   | ggtgggctgc    | ctgctccaag  | tgatttcaag  | 1680 |
| tgtcctatca   | aagaggagat  | agcaattacc   | agtggtgaat    | gggaagttct  | tggccggcat  | 1740 |
| ggatctaata   | tccaaatgt   | tgaagtcaga   | aggctggat     | atttgaagg   | caccaaaagac | 1800 |
| tcccctttag   | agcatcacct  | gtacgtatgc   | agttacgtaa    | atccctggaga | ggtgacaagg  | 1860 |
| ctgactgacc   | gtggctactc  | acattcttgc   | tgcacatgc     | agcaactgt   | cttcttata   | 1920 |
| agtaagtata   | gtaaccagaa  | gaatccacac   | tgtgttccc     | tttacaagct  | atcaagtcct  | 1980 |
| gaagatgacc   | caacttgc    | aacaaaggaa   | tttgggcca     | ccatggg     | ttcagtcctc  | 2040 |
| aggtgcagg    | ggtgataat   | cggtttaag    | gagtcaagta    | tttccgttgc  | aataccctag  | 2100 |
| cctctctagg   | ttatgtgg    | gtatgtatag   | acaacagggg    | atccctgt    | cgagggttca  | 2160 |
| aatttgaagg   | cgcctttaaa  | tataaaatgg   | gtcaaataga    | aatttgcgt   | caggtggaa   | 2220 |
| gactccaata   | tctagtttct  | cgatatgtt    | tcattgactt    | agatcggt    | ggcatccacg  | 2280 |
| gctggccctt   | tggaggatac  | ctctccctga   | tggcatata     | gcagagg     | gatatcttca  | 2340 |
| gggttgcata   | tgctggggcc  | ccagtcactc   | tgtggatctt    | ctatgtata   | ggatatacgg  | 2400 |
| aacgttata    | gggtcaccct  | gaccagaatg   | aacagggt      | ttacttagga  | tctgtggcca  | 2460 |
| tgcaagcaga   | aaagtcccc   | tctgaaccaa   | atcggttact    | gctcttacat  | ggtttctgg   | 2520 |
| atgagaatgt   | ccattttgc   | cataccagta   | tattactgag    | tttttagt    | agggctggaa  | 2580 |
| agccatata    | tttacagatc  | tatccctcagg  | agagacacag    | cataagagtt  | cctgaatcg   | 2640 |
| gagaacat     | tgaactgc    | cttttgcact   | accttcaaga    | aaaccttgg   | tcacgttatt  | 2700 |
| ctgctctaa    | agtgatataa  | ttttgacctg   | tgtagaactc    | tctggatatac | actggctatt  | 2760 |
| taaccaaata   | aggaggttta  | atcaacagaa   | aacacagaat    | tgtatcatc   | attttgatac  | 2820 |

|             |              |             |             |             |             |      |
|-------------|--------------|-------------|-------------|-------------|-------------|------|
| ctggccatgt  | acatctactc   | ctgaaaataa  | atgtggtgcc  | atgcaggggt  | ctacggtttg  | 2880 |
| tggtagtaat  | ctaataccctt  | aaccccacat  | gctcaaaatc  | aatgataca   | tattccctgag | 2940 |
| agaccaggca  | ataccataag   | aattactaaa  | aaaaaaaaaa  | aaaaaaaagac | attagcacca  | 3000 |
| tgtattcata  | ctaccctatt   | ttcactttt   | atagtattat  | aaacttcatg  | aacttaatta  | 3060 |
| gtgtattttt  | acagtatact   | tttgagttt   | ttaaaaatatg | atgatattag  | tgattgggtt  | 3120 |
| ggttcagttc  | cagaatcttt   | gactagttac  | agatttgata  | gcacttaaat  | gtaattgaat  | 3180 |
| agcttagtgt  | tcattgctt    | ggcatatcca  | gcatgttag   | aactaataac  | tattaaactt  | 3240 |
| gacttaacca  | gtcattcatt   | aataattttt  | caaggataac  | tttagtggctt | cctaaagaca  | 3300 |
| cttggtttgg  | cactgaccag   | tttttagcca  | atthaatctg  | tatctagtat  | aaataattct  | 3360 |
| cattttctt   | tgatgatatt   | aacagagtgg  | gcttttcott  | ttgcataaaag | gctagtaact  | 3420 |
| gtatatgtat  | catggattta   | attagtcatg  | atattgataa  | ttacaggcag  | aaaattttt   | 3480 |
| atcaaatgtat | tagagcttaa   | atatttgcag  | gcaagttttt  | tttttcottt  | taagaaaagg  | 3540 |
| aaaaagtaca  | catttcaactag | aattcttcag  | aaaatttagt  | ggtgcctagg  | tccatttgg   | 3600 |
| atttccttat  | taaaatattc   | tagaattttt  | aggagattga  | agggaatcac  | agtggggtgg  | 3660 |
| ggagacctgg  | gtttggggaa   | tgacagagag  | aagaggtgtt  | gagggcctga  | ttaaaaacta  | 3720 |
| agcagaagta  | gttttaacaa   | aaatactcat  | gaaaatgttt  | gaaaactgaa  | atttaaacaa  | 3780 |
| ctgtaatatt  | aaggaaacca   | gaatcaataa  | atcaactgtct | tgccagcaca  | gctacagagt  | 3840 |
| aacatgattc  | agggggaggaa  | aagttcctt   | gagttacttt  | tataattctt  | tttttttttc  | 3900 |
| ctcttaggtt  | tagaaatctt   | acaaaatttaa | actttatcc   | ttaaaaattt  | tttgaacata  | 3960 |
| attttagatat | tgtaagctta   | aaatacacaat | gtttatagat  | aacctcttta  | ccataaacta  | 4020 |
| atccctggca  | agccatggct   | ctttttttt   | ttttgggtgtt | taaaggctgt  | aaacagtttt  | 4080 |
| tctgaatgtat | catgaacttt   | tcttggttt   | gcactaggat  | ttagctatga  | agagagctca  | 4140 |
| taggcttca   | ggtgcataatt  | gagatctgcc  | ctgttagagt  | tttgggggtgc | tagattggtc  | 4200 |
| acattgacac  | cagtggcagg   | gaaggcactt  | atgagttga   | tgctttttat  | cacacactt   | 4260 |
| agtgtttaga  | aagtatttac   | caatactttt  | aaacaacact  | ccaagaaaat  | ttgtatatt   | 4320 |
| tcttcttcat  | cactacagag   | agagtagatt  | tccccataga  | gagccacagcc | tccattagta  | 4380 |
| aggttggtga  | ctattggtaa   | gaggtggact  | tcatttgacac | caagtgggag  | gtagggaaag  | 4440 |
| cccagaaaatg | gcaggatgtat  | atggtggttc  | tgtcggtggg  | aaaggtattt  | ggttttgctg  | 4500 |
| tttgtattta  | tactgtataa   | tagataccac  | gtttttctt   | attatctgtat | tatgtattgc  | 4560 |
| ttttcatgtt  | tgtatatttc   | ccatgccaag  | atttgtttat  | atataattttc | aatgttaaat  | 4620 |
| taaattgtatt | tgggtaactt   | tcttccccaa  | gaaagtattt  | tcccccttaa  | gtataaaatct | 4680 |
| qactg       |              |             |             |             |             | 4685 |

<210> 23  
<211> 892  
<212> PRT  
<213> Homo sapiens  
<400> 23

|     |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|
| Met | Arg | Lys | Val | Lys | Lys | Leu | Arg | Leu | Asp  | Lys | Glu | Asn | Thr | Gly | Ser |
| 1   |     |     |     | 5   |     |     |     |     | 10   |     |     |     |     | 15  |     |
| Trp | Arg | Ser | Phe | Ser | Leu | Asn | Ser | Glu | Gly  | Ala | Glu | Arg | Met | Ala | Thr |
|     |     |     |     |     | 20  |     |     |     | 25   |     |     |     |     | 30  |     |
| Thr | Gly | Thr | Pro | Thr | Ala | Asp | Arg | Gly | Asp  | Ala | Ala | Ala | Thr | Asp | Asp |
|     |     |     |     |     | 35  |     |     | 40  |      |     |     | 45  |     |     |     |
| Pro | Ala | Ala | Arg | Phe | Gln | Val | Gln | Lys | His  | Ser | Trp | Asp | Gly | Leu | Arg |
|     |     |     |     |     | 50  |     | 55  |     |      |     |     | 60  |     |     |     |
| Ser | Ile | Ile | His | Gly | Ser | Arg | Lys | Tyr | Ser  | Gly | Leu | Ile | Val | Asn | Lys |
|     |     |     |     |     | 65  |     | 70  |     |      | 75  |     |     |     | 80  |     |
| Ala | Pro | His | Asp | Phe | Gln | Phe | Val | Gln | Lys  | Thr | Asp | Glu | Ser | Gly | Pro |
|     |     |     |     |     | 85  |     |     | 90  |      |     |     |     | 95  |     |     |
| His | Ser | His | Arg | Leu | Tyr | Tyr | Leu | Gly | Met  | Pro | Tyr | Gly | Ser | Arg | Glu |
|     |     |     |     |     | 100 |     |     | 105 |      |     |     |     | 110 |     |     |
| Asn | Ser | Leu | Leu | Tyr | Ser | Glu | Ile | Pro | 'Lys | Lys | Val | Arg | Lys | Glu | Ala |
|     |     |     |     |     | 115 |     |     | 120 |      |     |     | 125 |     |     |     |
| Leu | Leu | Leu | Leu | Ser | Trp | Lys | Gln | Met | Leu  | Asp | His | Phe | Gln | Ala | Thr |
|     |     |     |     |     | 130 |     | 135 |     |      |     | 140 |     |     |     |     |
| Pro | His | His | Gly | Val | Tyr | Ser | Arg | Glu | Glu  | Glu | Leu | Leu | Arg | Glu | Arg |
|     |     |     |     |     | 145 |     |     | 150 |      |     | 155 |     |     |     | 160 |
| Lys | Arg | Leu | Gly | Val | Phe | Gly | Ile | Thr | Ser  | Tyr | Asp | Phe | His | Ser | Glu |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     | 165 | 170 | 175 |     |     |     |     |     |     |     |     |     |     |     |     |
| Ser | Gly | Leu | Phe | Leu | Phe | Gln | Ala | Ser | Asn | Ser | Leu | Phe | His | Cys | Arg |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     | 180 |     |     | 185 |     |     |     |     |     |     |     | 190 |     |     |
| Asp | Gly | Gly | Lys | Asn | Gly | Phe | Met | Val | Ser | Pro | Met | Lys | Pro | Leu | Glu |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     | 195 |     |     | 200 |     |     |     |     |     |     |     | 205 |     |     |
| Ile | Lys | Thr | Gln | Cys | Ser | Gly | Pro | Arg | Met | Asp | Pro | Lys | Ile | Cys | Pro |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 210 | 215 | 220 |
| Ala | Asp | Pro | Ala | Phe | Phe | Ser | Phe | Ile | Asn | Asn | Ser | Asp | Leu | Trp | Val |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 225 | 230 | 235 |
| Ala | Asn | Ile | Glu | Thr | Gly | Glu | Glu | Arg | Arg | Leu | Thr | Phe | Cys | His | Gln |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 245 | 250 | 255 |
| Gly | Leu | Ser | Asn | Val | Leu | Asp | Asp | Pro | Lys | Ser | Ala | Gly | Val | Ala | Thr |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 260 | 265 | 270 |
| Phe | Val | Ile | Gln | Glu | Glu | Phe | Asp | Arg | Phe | Thr | Gly | Tyr | Trp | Trp | Cys |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 275 | 280 | 285 |
| Pro | Thr | Ala | Ser | Trp | Glu | Gly | Ser | Glu | Gly | Leu | Lys | Thr | Leu | Arg | Ile |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 290 | 295 | 300 |
| Leu | Tyr | Glu | Glu | Val | Asp | Glu | Ser | Glu | Val | Glu | Val | Ile | His | Val | Pro |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 305 | 310 | 315 |
| Ser | Pro | Ala | Leu | Glu | Glu | Arg | Lys | Thr | Asp | Ser | Tyr | Arg | Tyr | Pro | Arg |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 325 | 330 | 335 |
| Thr | Gly | Ser | Lys | Asn | Pro | Lys | Ile | Ala | Leu | Lys | Leu | Ala | Glu | Phe | Gln |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 340 | 345 | 350 |
| Thr | Asp | Ser | Gln | Gly | Lys | Ile | Val | Ser | Thr | Gln | Glu | Lys | Glu | Leu | Val |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 355 | 360 | 365 |
| Gln | Pro | Phe | Ser | Ser | Leu | Phe | Pro | Lys | Val | Glu | Tyr | Ile | Ala | Arg | Ala |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 370 | 375 | 380 |
| Gly | Trp | Thr | Arg | Asp | Gly | Lys | Tyr | Ala | Trp | Ala | Met | Phe | Leu | Asp | Arg |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 385 | 390 | 395 |
| Pro | Gln | Gln | Trp | Leu | Gln | Leu | Val | Leu | Leu | Pro | Pro | Ala | Leu | Phe | Ile |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 405 | 410 | 415 |
| Pro | Ser | Thr | Glu | Asn | Glu | Glu | Gln | Arg | Leu | Ala | Ser | Ala | Arg | Ala | Val |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 420 | 425 | 430 |
| Pro | Arg | Asn | Val | Gln | Pro | Tyr | Val | Val | Tyr | Glu | Glu | Val | Thr | Asn | Val |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 435 | 440 | 445 |
| Trp | Ile | Asn | Val | His | Asp | Ile | Phe | Tyr | Pro | Phe | Pro | Gln | Ser | Glu | Gly |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 450 | 455 | 460 |
| Glu | Asp | Glu | Leu | Cys | Phe | Leu | Arg | Ala | Asn | Glu | Cys | Lys | Thr | Gly | Phe |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 465 | 470 | 475 |
| Cys | His | Leu | Tyr | Lys | Val | Thr | Ala | Val | Leu | Lys | Ser | Gln | Gly | Tyr | Asp |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 485 | 490 | 495 |
| Trp | Ser | Glu | Pro | Phe | Ser | Pro | Gly | Glu | Asp | Glu | Phe | Lys | Cys | Pro | Ile |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 500 | 505 | 510 |
| Lys | Glu | Glu | Ile | Ala | Leu | Thr | Ser | Gly | Glu | Trp | Glu | Val | Leu | Ala | Arg |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 515 | 520 | 525 |
| His | Gly | Ser | Lys | Ile | Trp | Val | Asn | Glu | Glu | Thr | Lys | Leu | Val | Tyr | Phe |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 530 | 535 | 540 |
| Gln | Gly | Thr | Lys | Asp | Thr | Pro | Leu | Glu | His | His | Leu | Tyr | Val | Val | Ser |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 545 | 550 | 555 |
| Tyr | Glu | Ala | Ala | Gly | Glu | Ile | Val | Arg | Leu | Thr | Thr | Pro | Gly | Phe | Ser |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 565 | 570 | 575 |
| His | Ser | Cys | Ser | Met | Ser | Gln | Asn | Phe | Asp | Met | Phe | Val | Ser | His | Tyr |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 580 | 585 | 590 |
| Ser | Ser | Val | Ser | Thr | Pro | Pro | Cys | Val | His | Val | Tyr | Lys | Leu | Ser | Gly |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 595 | 600 | 605 |
| Pro | Asp | Asp | Asp | Pro | Leu | His | Lys | Gln | Pro | Arg | Phe | Trp | Ala | Ser | Met |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 610 | 615 | 620 |
| Met | Glu | Ala | Ala | Ser | Cys | Pro | Pro | Asp | Tyr | Val | Pro | Pro | Glu | Ile | Phe |
|     |     |     |     |     |     |     |     |     |     |     |     |     | 625 | 630 | 635 |
| His | Phe | His | Thr | Arg | Ser | Asp | Val | Arg | Leu | Tyr | Gly | Met | Ile | Tyr | Lys |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
|                                                                 | 645 | 650 | 655 |
| Pro His Ala Leu Gln Pro Gly Lys Lys His Pro Thr Val Leu Phe Val |     |     |     |
| 660                                                             | 665 | 670 |     |
| Tyr Gly Gly Pro Gln Val Gln Leu Val Asn Asn Ser Phe Lys Gly Ile |     |     |     |
| 675                                                             | 680 | 685 |     |
| Lys Tyr Leu Arg Leu Asn Thr Leu Ala Ser Leu Gly Tyr Ala Val Val |     |     |     |
| 690                                                             | 695 | 700 |     |
| Val Ile Asp Gly Arg Gly Ser Cys Gln Arg Gly Leu Arg Phe Glu Gly |     |     |     |
| 705                                                             | 710 | 715 | 720 |
| Ala Leu Lys Asn Gln Met Gly Gln Val Glu Ile Glu Asp Gln Val Glu |     |     |     |
| 725                                                             | 730 | 735 |     |
| Gly Leu Gln Phe Val Ala Glu Lys Tyr Gly Phe Ile Asp Leu Ser Arg |     |     |     |
| 740                                                             | 745 | 750 |     |
| Val Ala Ile His Gly Trp Ser Tyr Gly Phe Leu Ser Leu Met Gly     |     |     |     |
| 755                                                             | 760 | 765 |     |
| Leu Ile His Lys Pro Gln Val Phe Lys Val Ala Ile Ala Gly Ala Pro |     |     |     |
| 770                                                             | 775 | 780 |     |
| Val Thr Val Trp Met Ala Tyr Asp Thr Gly Tyr Thr Glu Arg Tyr Met |     |     |     |
| 785                                                             | 790 | 795 | 800 |
| Asp Val Pro Glu Asn Asn Gln His Gly Tyr Glu Ala Gly Ser Val Ala |     |     |     |
| 805                                                             | 810 | 815 |     |
| Leu His Val Glu Lys Leu Pro Asn Glu Pro Asn Arg Leu Leu Ile Leu |     |     |     |
| 820                                                             | 825 | 830 |     |
| His Gly Phe Leu Asp Glu Asn Val His Phe Phe His Thr Asn Phe Leu |     |     |     |
| 835                                                             | 840 | 845 |     |
| Val Ser Gln Leu Ile Arg Ala Gly Lys Pro Tyr Gln Leu Gln Ile Tyr |     |     |     |
| 850                                                             | 855 | 860 |     |
| Pro Asn Glu Arg His Ser Ile Arg Cys Pro Glu Ser Gly Glu His Tyr |     |     |     |
| 865                                                             | 870 | 875 | 880 |
| Glu Val Thr Leu Leu His Phe Leu Gln Glu Tyr Leu                 |     |     |     |
| 885                                                             | 890 |     |     |

<210> 24  
 <211> 4302  
 <212> DNA  
 <213> Homo sapiens  
 <400> 24

|            |            |              |             |             |             |      |
|------------|------------|--------------|-------------|-------------|-------------|------|
| caggccgcgc | cctgggtcgc | tcaacttccg   | ggtcaaaggt  | gcctgagccg  | gcgggtcccc  | 60   |
| tgtgtccgcc | cgggctgtcg | tcccccgcgc   | ccgcccacttc | cggggtegca  | gtcccgggca  | 120  |
| tggagccgcg | accgtgaggc | gccgctggac   | ccgggacgcac | ctgcccagtc  | cggccgcgc   | 180  |
| cccacgtccc | ggtctgtgtc | ccacgcctgc   | agctgaaatg  | gaggctctct  | ggacccttta  | 240  |
| gaaggcaccc | ctgccttcct | gaggtcagct   | gagcggtaa   | tgcggaaaggt | taagaaaactg | 300  |
| cgcctggaca | aggagaacac | cggaagttgg   | agaagcttct  | cgtcgaattc  | cgagggggct  | 360  |
| gagaggatgg | ccaccaccgg | gaccccaacg   | gccgaccgag  | gcgacgcagc  | cgccacagat  | 420  |
| gaccggcgcg | cccgttcca  | ggtcagaag    | cactcggtgg  | acgggctccg  | gagcatcatc  | 480  |
| cacggcagcc | gcaagtactc | gggcctcatt   | gtcaacaagg  | cgcggcacga  | cttccagttt  | 540  |
| gtgcagaaga | cggatgagtc | tggggcccccac | tcccaccgccc | tctactacct  | gggaatgcca  | 600  |
| tatggcagcc | gagagaactc | cctctctac    | tctgagattc  | ccaagaaggt  | ccgaaagag   | 660  |
| gctctgtctc | tcctgtcctg | gaagcagatc   | ctggatcatt  | tccaggccac  | gccccaccat  | 720  |
| ggggtctact | ctcgggagga | ggagctgctg   | agggagcga   | aacgcctggg  | ggtcttcggc  | 780  |
| atcacctct  | acgacttcca | cagcgagat    | ggccttctcc  | tcttccaggc  | cagcaacagc  | 840  |
| ctcttccact | gccgcgacgg | cgcaagaac    | ggcttcatgg  | tgtcccctat  | gaaaccgctg  | 900  |
| gaaatcaaga | cccagtgtc  | agggccccgg   | atggacccca  | aatctgccc   | tgccgaccct  | 960  |
| gccttcttct | ccttcataa  | taacagcgcac  | ctgtgggtgg  | ccaacatcga  | gacaggcgcag | 1020 |
| gagccgcgc  | tgaccctctg | ccaccaaggt   | ttatccaatg  | tcttggatga  | ccccaaagtct | 1080 |
| gcgggtgtgg | ccacccctgt | catacaggaa   | gagttcgacc  | gcttcactgg  | gtactgttgg  | 1140 |
| tgccccacag | cctcctggga | aggttcagag   | ggcctcaaga  | cgtcgacat   | cctgtatgag  | 1200 |
| gaagtgcgtg | agtccgaggt | ggaggtcatt   | cacgtcccct  | ctcctgcgc   | agaagaaagg  | 1260 |
| aagacggact | cgtatcggt  | ccccaggaca   | ggcagcaaga  | atcccaagat  | tgccttgaaa  | 1320 |

|             |             |             |             |             |              |      |
|-------------|-------------|-------------|-------------|-------------|--------------|------|
| ctggctgagt  | tccagactga  | cagccagggc  | aagatcgct   | cgaccaggga  | gaaggagctg   | 1380 |
| gtgcagcct   | tcagctcgct  | gttcccgaag  | gtggagtaca  | tcggcagggc  | cgggtggacc   | 1440 |
| cgggatggca  | aatacgccctg | ggccatgttc  | ctggaccggc  | cccagcagt   | gctccagctc   | 1500 |
| gtcctccccc  | ccccggccct  | gttcatcccg  | agcacagaga  | atgaggagca  | gcccgtagcc   | 1560 |
| tctgccagag  | ctgtccccag  | aatgtccag   | ccgtatgtgg  | tgtacgagga  | ggtcaccaac   | 1620 |
| gtctggatca  | atgttcatga  | catcttat    | cccttcccc   | aattaggggg  | agaggacgag   | 1680 |
| ctctgttttc  | tccgcgccaa  | tgaatgcaga  | accggcttct  | gccatttgta  | caaagtccacc  | 1740 |
| gcccgtttaa  | aatcccaggg  | ctacgatgg   | agtgagccct  | tcagccccgg  | ggaagatgaa   | 1800 |
| ttaagtgcc   | ccattaagga  | agagattgt   | ctgaccagcg  | gtaatggga   | ggttttggcg   | 1860 |
| aggcacggc   | ccaagatctg  | ggtcaatgag  | gagaccaaggc | tggtgtactt  | ccagggcacc   | 1920 |
| aaggacacgc  | cgtcgagca   | ccacctctac  | gtggtcagct  | atgaggccggc | cggcgagatc   | 1980 |
| gtacgcctca  | ccacgccccgg | cttctccat   | agctgtccca  | tgagccagaa  | cttcgacatg   | 2040 |
| ttcgtcagcc  | actacagcag  | cgtgagcagc  | ccgcctcg    | tcaegtcta   | caagctgagc   | 2100 |
| ggccccgaeg  | acgacccct   | gcacaaggcag | ccccgttct   | gggctagcat  | gatggaggca   | 2160 |
| gccagctgcc  | ccccggattt  | tgttcctcca  | gagatcttcc  | atttccacac  | gcccgtggat   | 2220 |
| gtcgggctt   | acggcatgtat | ctacaagccc  | cacgccttgc  | agccagggaa  | gaagcacccc   | 2280 |
| acccgttctt  | ttgttatatgg | aggccccccag | gtgcagctgg  | tgaataactc  | cttcaaaggc   | 2340 |
| atcaagta    | tgcggctcaa  | cacactggcc  | tcctgggtt   | acgcgttgg   | tgtgattgac   | 2400 |
| ggcaggggct  | cctgtcagcg  | agggcttcgg  | tgcgaaagggg | ccctgaaaaaa | ccaaatgggc   | 2460 |
| cagggtggaga | tcgaggacca  | ggtggagggc  | ctgcagttcg  | tggccgagaa  | gtatggcttc   | 2520 |
| atcgacctga  | gcccggatgc  | catccatggc  | tggctcttacg | ggggcttct   | ctcgctcatg   | 2580 |
| gggctaattcc | acaagccca   | ggtgttcaag  | gtggccatcg  | cggggtcccc  | ggtcaccgtc   | 2640 |
| tggatggcct  | acgacacagg  | gtacactgag  | cgctacatgg  | acgtccctga  | gaacaaccag   | 2700 |
| cacggctatg  | aggcgggttc  | cgtggccctg  | cacgtggaga  | agctgcccac  | tgagcccaac   | 2760 |
| cgcttgccta  | tcctccacgg  | ttcctggac   | gaaaacgtgc  | actttttcca  | cacaaacttc   | 2820 |
| ctcgctccc   | aactgatccg  | agcagggaaa  | ccttaccaggc | tccagatcta  | ccccaaacggag | 2880 |
| agacacagta  | ttcgctgccc  | cgagtcgggc  | gagcactatg  | aagtacgtt   | gctgacttt    | 2940 |
| ctacaggaat  | acctotgagc  | ctgcccaccc  | ggagcccca   | catcacagca  | caagtggctg   | 3000 |
| cagcctccgc  | ggggaaaccag | gccccgggg   | ctgagttggcc | cgcccccccc  | agtgaggcac   | 3060 |
| tttgcggcc   | ccagcgttgg  | ccagccccgg  | ggagccgtg   | ccttcaccgc  | cccgacgcct   | 3120 |
| tttattcctt  | tttaaacgct  | tttgggtttt  | atgtccctg   | cttcttggtt  | gcccggacacag | 3180 |
| agagatgggt  | gtctcgggcc  | agcccccctt  | ctcccccctt  | tctggggagga | ggaggtcaca   | 3240 |
| cgctgtggg   | cactggagag  | gccagaagag  | actcagagga  | gccccgtgcc  | ttccgcctgg   | 3300 |
| ggctccctgt  | gacctctcag  | tcctctggcc  | cgccagcca   | ccgtccccag  | caccaagca    | 3360 |
| tgcaattgcc  | tgtccccccc  | ggccagccct  | cccaacttga  | tgtttgtgtt  | ttgtttgggg   | 3420 |
| ggatattttt  | cataattatt  | taaaagacag  | gccgggcccgc | gtggctacg   | tctgtatcc    | 3480 |
| cagcacttt   | ggaggctgag  | gccccgggat  | cacctgaggt  | tggagttca   | agaccagcct   | 3540 |
| ggccaacatg  | ggggaaacccc | gtctctacta  | aaaataaaaa  | aaattagccg  | ggtgtgggg    | 3600 |
| cgcgtgccta  | taatccccagc | tactcgggag  | gctgaggcag  | gagaatcgct  | tgaacccggg   | 3660 |
| agggtggaggt | tcgggtgagc  | caagatcgca  | ccattgcact  | ccagcctggg  | caacaagagc   | 3720 |
| gaaactctgt  | ctcaaaataa  | ataaaaaata  | aaagacagaa  | agcaaggggt  | gcctaaatct   | 3780 |
| agacttgggg  | tccacaccgg  | gcagcggggt  | tgcaacccag  | cacctggtag  | gctccatttc   | 3840 |
| ttcccaagcc  | cgagcagagg  | gtcatcgccc  | ccccacagga  | gaaaggccca  | ggggcccg     | 3900 |
| ggggcaccac  | ctgtggacag  | ccctctgttc  | cccaagctt   | cagggcaggca | ctgaaacgca   | 3960 |
| ccgaacttcc  | acgctctgt   | ggtcagtgcc  | ggtgtcccc   | tcccccagccc | agccgccccag  | 4020 |
| ccacatgtgt  | ctgcctgacc  | cgtacacacc  | agggttccg   | gggttggggag | ctgaaccatc   | 4080 |
| cccacctcag  | ggttatattt  | ccctctcccc  | tccccc      | gccaagagct  | ctgcccgggg   | 4140 |
| cgggcaaaaa  | aaaaagtaaa  | aagaaaagaa  | aaaaaaaaaa  | aagaaacaaa  | ccacctctac   | 4200 |
| atattatgg   | aagaaaatat  | ttttgtcgat  | tcttattttt  | ttataattat  | gcgtggaaga   | 4260 |
| agttagacaca | ttaaacgatt  | ccagttggaa  | acatgtcacc  | tg          |              | 4302 |

<210> 25  
 <211> 518  
 <212> PRT  
 <213> Homo sapiens  
 <400> 25

Met Arg Lys Val Lys Lys Leu Arg Leu Asp Lys Glu Asn Thr Gly Ser  
 1 5 10 15  
 Trp Arg Ser Phe Ser Leu Asn Ser Glu Gly Ala Glu Arg Met Ala Thr

|                                                                     |             |     |
|---------------------------------------------------------------------|-------------|-----|
| 20                                                                  | 25          | 30  |
| Thr Gly Thr Pro Thr Ala Asp Arg Gly Asp Ala Ala Ala                 | Thr Asp Asp |     |
| 35                                                                  | 40          | 45  |
| Pro Ala Ala Arg Phe Gln Val Gln Lys His Ser Trp Asp Gly Leu Arg     |             |     |
| 50                                                                  | 55          | 60  |
| Ser Ile Ile His Gly Ser Arg Lys Tyr Ser Gly Leu Ile Val Asn Lys     |             |     |
| 65                                                                  | 70          | 75  |
| Asp Ala Pro His Asp Phe Gln Phe Val Gln Lys Thr Asp Glu Ser Gly Pro |             |     |
| 85                                                                  | 90          | 95  |
| His Ser His Arg Leu Tyr Tyr Leu Gly Met Pro Tyr Gly Ser Arg Glu     |             |     |
| 100                                                                 | 105         | 110 |
| Asn Ser Leu Leu Tyr Ser Glu Ile Pro Lys Lys Val Arg Lys Glu Ala     |             |     |
| 115                                                                 | 120         | 125 |
| Leu Leu Leu Ser Trp Lys Gln Met Leu Asp His Phe Gln Ala Thr         |             |     |
| 130                                                                 | 135         | 140 |
| Pro His His Gly Val Tyr Ser Arg Glu Glu Leu Leu Arg Glu Arg         |             |     |
| 145                                                                 | 150         | 155 |
| Lys Arg Leu Gly Val Phe Gly Ile Thr Ser Tyr Asp Phe His Ser Glu     |             |     |
| 165                                                                 | 170         | 175 |
| Ser Gly Leu Phe Leu Phe Gln Ala Ser Asn Ser Leu Phe His Cys Arg     |             |     |
| 180                                                                 | 185         | 190 |
| Asp Gly Gly Lys Asn Gly Phe Met Val Ser Pro Met Lys Pro Leu Glu     |             |     |
| 195                                                                 | 200         | 205 |
| Ile Lys Thr Gln Cys Ser Gly Pro Arg Met Asp Pro Lys Ile Cys Pro     |             |     |
| 210                                                                 | 215         | 220 |
| Ala Asp Pro Ala Phe Phe Ser Phe Ile Asn Asn Ser Asp Leu Trp Val     |             |     |
| 225                                                                 | 230         | 235 |
| Ala Asn Ile Glu Thr Gly Glu Glu Arg Arg Leu Thr Phe Cys His Gln     |             |     |
| 245                                                                 | 250         | 255 |
| Gly Leu Ser Asn Val Leu Asp Asp Pro Lys Ser Ala Gly Val Ala Thr     |             |     |
| 260                                                                 | 265         | 270 |
| Phe Val Ile Gln Glu Glu Phe Asp Arg Phe Thr Gly Tyr Trp Trp Cys     |             |     |
| 275                                                                 | 280         | 285 |
| Pro Thr Ala Ser Trp Glu Gly Ser Glu Gly Leu Lys Thr Leu Arg Ile     |             |     |
| 290                                                                 | 295         | 300 |
| Leu Tyr Glu Glu Val Asp Glu Ser Glu Val Glu Val Ile His Val Pro     |             |     |
| 305                                                                 | 310         | 315 |
| Ser Pro Ala Leu Glu Glu Arg Lys Thr Asp Ser Tyr Arg Tyr Pro Arg     |             |     |
| 325                                                                 | 330         | 335 |
| Thr Gly Ser Lys Asn Pro Lys Ile Ala Leu Lys Leu Ala Glu Phe Gln     |             |     |
| 340                                                                 | 345         | 350 |
| Thr Asp Ser Gln Gly Lys Ile Val Ser Thr Gln Glu Lys Glu Leu Val     |             |     |
| 355                                                                 | 360         | 365 |
| Gln Pro Phe Ser Ser Leu Phe Pro Lys Val Glu Tyr Ile Ala Arg Ala     |             |     |
| 370                                                                 | 375         | 380 |
| Gly Trp Thr Arg Asp Gly Lys Tyr Ala Trp Ala Met Phe Leu Asp Arg     |             |     |
| 385                                                                 | 390         | 395 |
| 400                                                                 |             |     |
| Pro Gln Gln Trp Leu Gln Leu Val Leu Leu Pro Pro Ala Leu Phe Ile     |             |     |
| 405                                                                 | 410         | 415 |
| Pro Ser Thr Glu Asn Glu Glu Gln Arg Leu Ala Ser Ala Arg Ala Val     |             |     |
| 420                                                                 | 425         | 430 |
| Pro Arg Asn Val Gln Pro Tyr Val Val Tyr Glu Glu Val Thr Asn Val     |             |     |
| 435                                                                 | 440         | 445 |
| Trp Ile Asn Val His Asp Ile Phe Tyr Pro Phe Pro Gln Ser Glu Gly     |             |     |
| 450                                                                 | 455         | 460 |
| Glu Asp Glu Leu Cys Phe Leu Arg Ala Asn Glu Cys Lys Thr Gly Phe     |             |     |
| 465                                                                 | 470         | 475 |
| Cys His Leu Tyr Lys Val Thr Ala Val Leu Lys Ser Gln Gly Tyr Asp     |             |     |
| 485                                                                 | 490         | 495 |
| Trp Ser Glu Pro Phe Ser Pro Gly Glu Gly Glu Gln Ser Leu Thr Asn     |             |     |

500  
Ala Val Asp Ser Ser Arg  
515

505

510

<210> 26  
<211> 2411  
<212> DNA  
<213> Homo sapiens  
<400> 26

|                                                            |      |
|------------------------------------------------------------|------|
| caggccgcgg cctgggtcgc tcaacttccg ggtcaaaggt gcctgagccg     | 60   |
| tgtgtccggc gcggtgtcg tcccccgctc ccggccacttc cggggtcgca     | 120  |
| tggagccgcg accgtgaggc gcccgtggac ccgggacgac ctgcccagtc     | 180  |
| cccacgtccc ggtctgtgtc ccacgectgc agctgaaatg gaggtctct      | 240  |
| gaaggccacc ctgccttcgt gaggtcagct gagcggtaa tgccgaaggt      | 300  |
| cgcctggaca aggagaacac cggaaatgg agaagttct cgctgaattc       | 360  |
| gagaggatgg ccaccacgg gaccccaacg gccgaccgag gcgacgcagc      | 420  |
| gacccggccg cccgttcca ggtcagaag cactcgaaa acgggtctcg        | 480  |
| cacggcagcc gcaagtaactt gggctcatt gtcaacaagg cgcccccacga    | 540  |
| gtgcagaaga cggatgagt tggcccccac tcccacccgc tctactacct      | 600  |
| tatggcagcc gagagaactc cctcttctac tctgagattc ccaagaaggt     | 660  |
| gctctgtcgc tcctgtctg gaagcagatg ctggatcatt tccaggccac      | 720  |
| ggggtctact ctcggagga ggagctgctg agggagcgg aacgcctggg       | 780  |
| atcaccttc acgacttcca cagcggatgtt ggcctttcc tcttccaggc      | 840  |
| ctcttcact gccgogacgg cggcaagaac ggctcatgg tgcctccat        | 900  |
| gaaatcaaga cccagtgtc agggccccgg atggacccca aaatctgcc       | 960  |
| gccttcattt ctttcatcaa taacagcgcac ctgtgggtgg ccaacatcga    | 1020 |
| gagcggcggc tgaccttctg ccaccaaggt ttatccaatg tcctggatga     | 1080 |
| cggggtgtgg ccacccgtt catacaggaa gagttcgacc gtttactgg       | 1140 |
| tgcctccatcag cctcttggaa aggttcagag ggcctcaaga cgctgcgaat   | 1200 |
| gaagtcgtatg agtccgaggt ggaggtcatt cacgtccccct tcctgtcg     | 1260 |
| aagacggact cgtatcggtt cccaggaca ggcagcaaga atcccaagat      | 1320 |
| ctggctgatgt tccagactga cagccaggcc aagatcgctt cgaccaggaa    | 1380 |
| gtgcagccct tcagctcgat gttcccgaaatggatcata tcggccaggcc      | 1440 |
| cgggatggca aatacgccgtt ggcattgttc ctggaccggc cccagcgtt     | 1500 |
| gtccctccccc ccccgccctt gttcatcccg agcacagaga atgaggagca    | 1560 |
| tctggccagag ctgtccccag gaatgtcccg ccgtatgtgg tgcacggaa     | 1620 |
| gtctggatca atgttcatga catcttctat cccttccccca aatcagaggaa   | 1680 |
| ctctgttttc tccggcccaa tgaatgcac accggcttctt gcaatttgta     | 1740 |
| gcccgtttaa aatcccgagg ctacgattgg agtggccct tcagccccgg      | 1800 |
| cagagctgtt cgaatgtctt cgtactcatcg cgttagtcac gtgtggttca    | 1860 |
| tgttcattgg tcggccccccc cactcagccca gcacaccctg cgggagaagg   | 1920 |
| ggcaggaagc cagccttccc cagtgtactgc atgatotggc agggctttaga   | 1980 |
| gttggcttat tcaggcagca gatgttactga gcacccccc ttgtccaggc     | 2040 |
| accagggggtt ggcacccctac gcccacagg tcaaatccgg ccaccaccc     | 2100 |
| ataaaagttt attggcactg agccacagcc acttgtttac agagactgtc     | 2160 |
| tttgtgtcgc agcagcagaa ctgggttagtc ccagcagaaaa ctgttgcata   | 2220 |
| ttactgtcta gccccttgcata gaaacattt ccagctctgt ctgttaggtag   | 2280 |
| attgttcaact gtaaaataaaag aaaaaggaaa atccctgtc tttggacccctt | 2340 |
| aggcagtatt ccagaaaacag ttagaggtgc tgcctctgggt gtgtgttg     | 2400 |
| agatcctagt c                                               | 2411 |

<210> 27  
<211> 892  
<212> PRT  
<213> Homo sapiens  
<400> 27

Met Arg Lys Val Lys Lys Leu Arg Leu Asp Lys Glu Asn Thr Gly Ser  
1 5 10 15

Trp Arg Ser Phe Ser Leu Asn Ser Glu Gly Ala Glu Arg Met Ala Thr  
 20 25 30  
 Thr Gly Thr Pro Thr Ala Asp Arg Gly Asp Ala Ala Ala Thr Asp Asp  
 35 40 45  
 Pro Ala Ala Arg Phe Gln Val Gln Lys His Ser Trp Asp Gly Leu Arg  
 50 55 60  
 Ser Ile Ile His Gly Ser Arg Lys Tyr Ser Gly Leu Ile Val Asn Lys  
 65 70 75 80  
 Ala Pro His Asp Phe Gln Phe Val Gln Lys Thr Asp Glu Ser Gly Pro  
 85 90 95  
 His Ser His Arg Leu Tyr Tyr Leu Gly Met Pro Tyr Gly Ser Arg Glu  
 100 105 110  
 Asn Ser Leu Leu Tyr Ser Glu Ile Pro Lys Lys Val Arg Lys Glu Ala  
 115 120 125  
 Leu Leu Leu Ser Trp Lys Gln Met Leu Asp His Phe Gln Ala Thr  
 130 135 140  
 Pro His His Gly Val Tyr Ser Arg Glu Glu Glu Leu Leu Arg Glu Arg  
 145 150 155 160  
 Lys Arg Leu Gly Val Phe Gly Ile Thr Ser Tyr Asp Phe His Ser Glu  
 165 170 175  
 Ser Gly Leu Phe Leu Phe Gln Ala Ser Asn Ser Leu Phe His Cys Arg  
 180 185 190  
 Asp Gly Gly Lys Asn Gly Phe Met Val Ser Pro Met Lys Pro Leu Glu  
 195 200 205  
 Ile Lys Thr Gln Cys Ser Gly Pro Arg Met Asp Pro Lys Ile Cys Pro  
 210 215 220  
 Ala Asp Pro Ala Phe Phe Ser Phe Ile Asn Asn Ser Asp Leu Trp Val  
 225 230 235 240  
 Ala Asn Ile Glu Thr Gly Glu Glu Arg Arg Leu Thr Phe Cys His Gln  
 245 250 255  
 Gly Leu Ser Asn Val Leu Asp Asp Pro Lys Ser Ala Gly Val Ala Thr  
 260 265 270  
 Phe Val Ile Gln Glu Glu Phe Asp Arg Phe Thr Gly Tyr Trp Trp Cys  
 275 280 285  
 Pro Thr Ala Ser Trp Glu Gly Ser Glu Gly Leu Lys Thr Leu Arg Ile  
 290 295 300  
 Leu Tyr Glu Glu Val Asp Glu Ser Glu Val Glu Val Ile His Val Pro  
 305 310 315 320  
 Ser Pro Ala Leu Glu Glu Arg Lys Thr Asp Ser Tyr Arg Tyr Pro Arg  
 325 330 335  
 Thr Gly Ser Lys Asn Pro Lys Ile Ala Leu Lys Leu Ala Glu Phe Gln  
 340 345 350  
 Thr Asp Ser Gln Gly Lys Ile Val Ser Thr Gln Glu Lys Glu Leu Val  
 355 360 365  
 Gln Pro Phe Ser Ser Leu Phe Pro Lys Val Glu Tyr Ile Ala Arg Ala  
 370 375 380  
 Gly Trp Thr Arg Asp Gly Lys Tyr Ala Trp Ala Met Phe Leu Asp Arg  
 385 390 395 400  
 Pro Gln Gln Trp Leu Gln Leu Val Leu Leu Pro Pro Ala Leu Phe Ile  
 405 410 415  
 Pro Ser Thr Glu Asn Glu Glu Gln Arg Leu Ala Ser Ala Arg Ala Val  
 420 425 430  
 Pro Arg Asn Val Gln Pro Tyr Val Val Tyr Glu Glu Val Thr Asn Val  
 435 440 445  
 Trp Ile Asn Val His Asp Ile Phe Tyr Pro Phe Pro Gln Ser Glu Gly  
 450 455 460  
 Glu Asp Glu Leu Cys Phe Leu Arg Ala Asn Glu Cys Lys Thr Gly Phe  
 465 470 475 480  
 Cys His Leu Tyr Lys Val Thr Ala Val Leu Lys Ser Gln Gly Tyr Asp  
 485 490 495

Trp Ser Glu Pro Phe Ser Pro Gly Glu Asp Glu Phe Lys Cys Pro Ile  
500 505 510  
Lys Glu Glu Ile Ala Leu Thr Ser Gly Glu Trp Glu Val Leu Ala Arg  
515 520 525  
His Gly Ser Lys Ile Trp Val Asn Glu Glu Thr Lys Leu Val Tyr Phe  
530 535 540  
Gln Gly Thr Lys Asp Thr Pro Leu Glu His His Leu Tyr Val Val Ser  
545 550 555 560  
Tyr Glu Ala Ala Gly Glu Ile Val Arg Leu Thr Thr Pro Gly Phe Ser  
565 570 575  
His Ser Cys Ser Met Ser Gln Asn Phe Asp Met Phe Val Ser His Tyr  
580 585 590  
Ser Ser Val Ser Thr Pro Pro Cys Val His Val Tyr Lys Leu Ser Gly  
595 600 605  
Pro Asp Asp Asp Pro Leu His Gln Pro Arg Phe Trp Ala Ser Met  
610 615 620  
Met Glu Ala Ala Ser Cys Pro Pro Asp Tyr Val Pro Pro Glu Ile Phe  
625 630 635 640  
His Phe His Thr Arg Ser Asp Val Arg Leu Tyr Gly Met Ile Tyr Lys  
645 650 655  
Pro His Ala Leu Gln Pro Gly Lys Lys His Pro Thr Val Leu Phe Val  
660 665 670  
Tyr Gly Gly Pro Gln Val Gln Leu Val Asn Asn Ser Phe Lys Gly Ile  
675 680 685  
Lys Tyr Leu Arg Leu Asn Thr Leu Ala Ser Leu Gly Tyr Ala Val Val  
690 695 700  
Val Ile Asp Gly Arg Gly Ser Cys Gln Arg Gly Leu Arg Phe Glu Gly  
705 710 715 720  
Ala Leu Lys Asn Gln Met Gly Gln Val Glu Ile Glu Asp Gln Val Glu  
725 730 735  
Gly Leu Gln Phe Val Ala Glu Lys Tyr Gly Phe Ile Asp Leu Ser Arg  
740 745 750  
Val Ala Ile His Gly Trp Ser Tyr Gly Gly Phe Leu Ser Leu Met Gly  
755 760 765  
Leu Ile His Lys Pro Gln Val Phe Lys Val Ala Ile Ala Gly Ala Pro  
770 775 780  
Val Thr Val Trp Met Ala Tyr Asp Thr Gly Tyr Thr Glu Arg Tyr Met  
785 790 795 800  
Asp Val Pro Glu Asn Asn Gln His Gly Tyr Glu Ala Gly Ser Val Ala  
805 810 815  
Leu His Val Glu Lys Leu Pro Asn Glu Pro Asn Arg Leu Leu Ile Leu  
820 825 830  
His Gly Phe Leu Asp Glu Asn Val His Phe Phe His Thr Asn Phe Leu  
835 840 845  
Val Ser Gln Leu Ile Arg Ala Gly Lys Pro Tyr Gln Leu Gln Ile Tyr  
850 855 860

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Pro | Asn | Glu | Arg | His | Ser | Ile | Arg | Cys | Pro | Glu | Ser | Gly | Glu | His | Tyr |
| 865 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 880 |
| Glu | Val | Thr | Leu | Leu | His | Phe | Leu | Gln | Glu | Tyr | Leu |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     | 885 |     | 890 |     |

<210> 28  
<211> 4219  
<212> DNA  
<213> Homo sapiens  
<400> 28

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| caggccgcgg  | cctgggtcg   | tcaacttccg  | ggtaaaaggt  | gcctgagccg  | gcgggtcccc  | 60   |
| tgtgtccggc  | gcccgtgtcg  | tcccccgc    | ccgcacttc   | cggggtcg    | gtccccggca  | 120  |
| tggagccggc  | accgtgaggc  | gccgctggac  | ccgggacgc   | ctgcccagtc  | cgccccggc   | 180  |
| cccacgtccc  | ggtctgtgtc  | ccacgcctgc  | agctggaaatg | gaggctctct  | ggaccctta   | 240  |
| gaaggcacc   | ctgccttcct  | gaggtcagct  | gagcggtaa   | tgcggaaaggt | taagaaaactg | 300  |
| cgcctggaca  | aggagaacac  | cggaagttgg  | agaagcttct  | cgtcgaattc  | cgagggggct  | 360  |
| gagaggatgg  | ccaccaacccg | gaccccaac   | gccgaccgg   | gcatgcgc    | cgccacagat  | 420  |
| gacccggccg  | cccgttcca   | ggtcagaag   | cactctggg   | acgggctccg  | gacatcatc   | 480  |
| cacggcagcc  | gcaagtactc  | gggcctcatt  | gtcaacaagg  | cgccccacga  | cttccagtt   | 540  |
| gtcagaaga   | cgatgagtc   | tggcccccac  | tcccacccgc  | tctactacct  | gggaatgcca  | 600  |
| tatggcagcc  | gagagaactc  | cctcctctac  | tctgagatc   | ccaagaaggt  | ccggaaagag  | 660  |
| gctctgtcg   | tcctgtctcg  | gaagcagatg  | ctggatcatt  | tccaggccac  | gccccaccat  | 720  |
| ggggtctact  | ctcgggagga  | ggagctgtcg  | agggagcga   | aacgcctggg  | ggtcttcggc  | 780  |
| atcacctcct  | acgacttcca  | cagcagatg   | ggcctcttc   | tcttccaggc  | cagcaacagc  | 840  |
| ctcttccact  | gcccggacgg  | cgcaagaac   | ggttcatgg   | tgtccccat   | gaaaccgctg  | 900  |
| gaaatcaaga  | cccagtgtc   | agggcccccgg | atggacccca  | aatctgccc   | tgccgaccct  | 960  |
| gccttcttct  | ccttcatcaa  | taacagcgc   | ctgtgggtgg  | ccaacatcga  | gacaggcgag  | 1020 |
| gagcggcggc  | tgaccttctg  | ccaccaagg   | ttatccaatg  | tcttggatga  | ccccaaatct  | 1080 |
| gcgggtgtgg  | ccaccttctgt | catacaggaa  | gagttcgacc  | gttcaactgg  | gtactgtgg   | 1140 |
| tgccccacag  | cctcctggg   | aggttcagag  | ggcctaaga   | cgctgcgaat  | cctgtatgag  | 1200 |
| gaagtcgtat  | agtccgaggt  | ggaggtcatt  | cacgtcccc   | cttctgcgc   | agaagaaagg  | 1260 |
| aagacggact  | cgtatcggt   | ccccaggaca  | ggcagcaaga  | atcccaagat  | tgccttggaa  | 1320 |
| ctggctgagt  | tccagactga  | cagccaggcc  | aagatcgtct  | cgacccagg   | gaaggagctg  | 1380 |
| gtgcagccct  | tcaagtcgtct | gttcccgaa   | gtggagtaca  | tcgcaggggc  | cggggtggacc | 1440 |
| cgggatggca  | aatacgctg   | ggccatgttc  | ctggaccggc  | cccagcagt   | gttccagctc  | 1500 |
| gtccttcctcc | ccccggccct  | tttcatcccg  | agcacagaga  | atgaggagca  | gcccgttagcc | 1560 |
| tctgccagag  | ctgtccccag  | aatgtccag   | ccgtatgtgg  | tgtacgg     | gttccaccaac | 1620 |
| gtctggatca  | atgttcatga  | catttctat   | ccctcccc    | aatcagaggg  | agaggacgag  | 1680 |
| ctctgttttc  | tccgcgc     | aaatgc      | accggcttct  | gccatttgta  | caaagtcc    | 1740 |
| gccgttttaa  | aatcccagg   | ctacgattgg  | agtggccct   | tcagccccgg  | ggaagatgaa  | 1800 |
| ttaagtgcc   | ccattaagga  | agagattgt   | ctgaccagcg  | gtgaatggg   | gttggatggcg | 1860 |
| aggcacggct  | ccaagatctg  | gttcaatgg   | gagaccaagc  | tgtgtactt   | ccagggcacc  | 1920 |
| aaggacacgc  | cgttggagca  | ccacctctac  | gtggtcagct  | atgaggccgc  | cgccgagatc  | 1980 |
| gtacgcctca  | ccacgccccgg | tttctccat   | agtcgttcca  | tgagccagaa  | cttcgcacatg | 2040 |
| ttcgtcagcc  | actacagcag  | cgttggac    | ccgcctcg    | tgacgttcta  | caagctgagc  | 2100 |
| ggcccccacg  | acgacccct   | gcacaagg    | ccccgttct   | ggcttagcat  | gttggaggca  | 2160 |
| gccagctgcc  | ccccggatta  | tttccctcca  | gagatcttcc  | atttccacac  | gcttcggat   | 2220 |
| gtgcggctt   | acggcatgtat | ctacaaggccc | cacgccttgc  | agccaggggaa | gaagcacc    | 2280 |
| accgttctt   | ttgttatatgg | aggccccccag | gtgcagctgg  | tgaataactc  | tttcaaaaggc | 2340 |
| atcaagtact  | tgcggtctaa  | cacactggcc  | tccctgggt   | acgcctgtgt  | tgtgattgac  | 2400 |
| ggcaggggct  | cctgtcagcg  | agggcttcgg  | ttcgaagggg  | ccctgaaaaaa | ccaaatgggc  | 2460 |
| caggtggaga  | tcgaggacca  | gttggaggggc | ctgcagttcg  | tgcggagaa   | gtatggctt   | 2520 |
| atcgacactg  | gccgagttgc  | catccatggc  | tggtcttacg  | ggggcttctt  | ctcgctcatg  | 2580 |
| gggctaattcc | acaagcccc   | gtgttcaag   | gtggccatcg  | cggtgtcccc  | ggtcaccgtc  | 2640 |
| tggatggctt  | acgacacagg  | gtacactgag  | cgctacatgg  | acgtccctga  | gaacaaccag  | 2700 |
| cacggctatg  | aggcggttcc  | cgtggccctg  | cacgtggaga  | acgtccccaa  | ttagccaaac  | 2760 |
| cgcttgcctt  | ttctccacgg  | tttccctggac | gaaaacgtgc  | actttttcca  | cacaaacttc  | 2820 |
| ctcgctctcc  | aactgatccg  | agcaggggaa  | ccttaccagc  | tccagatcta  | ccccaaacgag | 2880 |
| agacacagta  | ttcgctgccc  | cgagtcgggc  | gagcactatg  | aagtacacgtt | gtgcacttt   | 2940 |

|                                                           |              |      |
|-----------------------------------------------------------|--------------|------|
| ctacaggaat acctctgagc ctgcccaccc ggagccgcca catcacagca    | caagtggctg   | 3000 |
| cagcctccgc ggggaaccag gcggggaggga ctgagtgcc cgcccccccc    | agtgaggcac   | 3060 |
| tttgtcccgcc ccagcgctgg ccagccccga ggagccgctg ccttcacccgc  | cccgacgcct   | 3120 |
| tttatccctt tttaaacgcgt ctgggttt atgtccgctg cttcttggtt     | gcccagacag   | 3180 |
| agagatgggt gtctcgcc agcccccctt ctcggccct tctgggagga       | ggaggtcaca   | 3240 |
| cgctgtatggg cactggagag gccagaagag actcagagga              | gcccggctgcc  | 3300 |
| ggctccctgt gacctctcg tccccctggcc cggccagcca cctgtccccag   | cacccaagca   | 3360 |
| tgcaattgcc tgccccccc ggcgcctc cccaaacttga tgggtgtt        | ttgtttgggg   | 3420 |
| ggatatttt cataattatt taaaagacag gcccggcgcg gtggctcacg     | tctgtaatcc   | 3480 |
| cagcacccgtt ggaggctgag gccccggat cacctgaggt tggaggtt      | agaccaggct   | 3540 |
| ggccaacatg gggaaacccc gtctctacta aaaataaaaa aaattagccg    | ggtgtgggtt   | 3600 |
| cgcggtgccta taatcccagc tactcggag gctgaggcag gagaatcgct    | tgaacccggg   | 3660 |
| agggtggaggt tgccgtgagc caagatcgca ccattgcact              | ccagcctggg   | 3720 |
| gaaactctgt ctcaaaataa ataaaaaaaataa aaagacagaa            | caacaagagc   | 3780 |
| agacttgggg tccacacccg gcagcgggggt tgcaacccag cacctggtag   | gctccatattc  | 3840 |
| tcccaagcc cgacttctcg gcaggcactg aaacgcacccg aacttccacg    | ctctgtcggt   | 3900 |
| cagtggcgcg tgcctccctcc ccagcccagc cgcccgacca              | catgtgtctg   | 3960 |
| acacaccagg ggttcgggg ttgggagctg aaccatcccc acctcagggt     | tatattttcc   | 4020 |
| tctcccttc cctcccccgc aagagctctg ccagggcgg gcaaaaaaaaaa    | aagtaaaaaaag | 4080 |
| aaaagaaaaaa aaaaaaaaaaag aaacaaacca cctctacata ttatggaaag | aaaatatttt   | 4140 |
| tgtcgattct tattttta taattatgctg tggagaagt agacacatta      | aacgattcca   | 4200 |
| gttggaaaca tgtcacctg                                      |              | 4219 |

<210> 29  
 <211> 832  
 <212> PRT  
 <213> Homo sapiens  
 <400> 29

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| Met Arg Lys Val Lys Lys Leu Arg Leu Asp Lys Glu Asn Thr Gly Ser |     |     |     |
| 1                                                               | 5   | 10  | 15  |
| Trp Arg Ser Phe Ser Leu Asn Ser Glu Gly Ala Glu Arg Met Ala Thr |     |     |     |
| 20                                                              | 25  | 30  |     |
| Thr Gly Thr Pro Thr Ala Asp Arg Gly Asp Ala Ala Ala Thr Asp Asp |     |     |     |
| 35                                                              | 40  | 45  |     |
| Pro Ala Ala Arg Phe Gln Val Gln Lys His Ser Trp Asp Gly Leu Arg |     |     |     |
| 50                                                              | 55  | 60  |     |
| Ser Ile Ile His Gly Ser Arg Lys Tyr Ser Gly Leu Ile Val Asn Lys |     |     |     |
| 65                                                              | 70  | 75  | 80  |
| Ala Pro His Asp Phe Gln Phe Val Gln Lys Thr Asp Glu Ser Gly Pro |     |     |     |
| 85                                                              | 90  | 95  |     |
| His Ser His Arg Leu Tyr Tyr Leu Gly Met Pro Tyr Gly Ser Arg Glu |     |     |     |
| 100                                                             | 105 | 110 |     |
| Asn Ser Leu Leu Tyr Ser Glu Ile Pro Lys Lys Val Arg Lys Glu Ala |     |     |     |
| 115                                                             | 120 | 125 |     |
| Leu Leu Leu Ser Trp Lys Gln Met Leu Asp His Phe Gln Ala Thr     |     |     |     |
| 130                                                             | 135 | 140 |     |
| Pro His His Gly Val Tyr Ser Arg Glu Glu Glu Leu Leu Arg Glu Arg |     |     |     |
| 145                                                             | 150 | 155 | 160 |
| Lys Arg Leu Gly Val Phe Gly Ile Thr Ser Tyr Asp Phe His Ser Glu |     |     |     |
| 165                                                             | 170 | 175 |     |
| Ser Gly Leu Phe Leu Phe Gln Ala Ser Asn Ser Leu Phe His Cys Arg |     |     |     |
| 180                                                             | 185 | 190 |     |
| Asp Gly Gly Lys Asn Gly Phe Met Val Ser Pro Met Lys Pro Leu Glu |     |     |     |
| 195                                                             | 200 | 205 |     |
| Ile Lys Thr Gln Cys Ser Gly Pro Arg Met Asp Pro Lys Ile Cys Pro |     |     |     |
| 210                                                             | 215 | 220 |     |
| Ala Asp Pro Ala Phe Phe Ser Phe Ile Asn Asn Ser Asp Leu Trp Val |     |     |     |
| 225                                                             | 230 | 235 | 240 |
| Ala Asn Ile Glu Thr Gly Glu Glu Arg Arg Leu Thr Phe Cys His Gln |     |     |     |

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
|                                                                 | 245 | 250 | 255 |
| Gly Leu Ser Asn Val Leu Asp Asp Pro Lys Ser Ala Gly Val Ala Thr |     |     |     |
| 260                                                             | 265 | 270 |     |
| Phe Val Ile Gln Glu Glu Phe Asp Arg Phe Thr Gly Tyr Trp Trp Cys |     |     |     |
| 275                                                             | 280 | 285 |     |
| Pro Thr Ala Ser Trp Glu Gly Ser Glu Gly Leu Lys Thr Leu Arg Ile |     |     |     |
| 290                                                             | 295 | 300 |     |
| Leu Tyr Glu Glu Val Asp Glu Ser Glu Val Glu Val Ile His Val Pro |     |     |     |
| 305                                                             | 310 | 315 | 320 |
| Ser Pro Ala Leu Glu Glu Arg Lys Thr Asp Ser Tyr Arg Tyr Pro Arg |     |     |     |
| 325                                                             | 330 | 335 |     |
| Thr Gly Ser Lys Asn Pro Lys Ile Ala Leu Lys Leu Ala Glu Phe Gln |     |     |     |
| 340                                                             | 345 | 350 |     |
| Thr Asp Ser Gln Gly Lys Ile Val Ser Thr Gln Glu Lys Glu Leu Val |     |     |     |
| 355                                                             | 360 | 365 |     |
| Gln Pro Phe Ser Ser Leu Phe Pro Lys Val Glu Tyr Ile Ala Arg Ala |     |     |     |
| 370                                                             | 375 | 380 |     |
| Gly Trp Thr Arg Asp Gly Lys Tyr Ala Trp Ala Met Phe Leu Asp Arg |     |     |     |
| 385                                                             | 390 | 395 | 400 |
| Pro Gln Gln Trp Leu Gln Leu Val Leu Leu Pro Pro Ala Leu Phe Ile |     |     |     |
| 405                                                             | 410 | 415 |     |
| Pro Ser Thr Glu Asn Glu Glu Gln Arg Leu Ala Ser Ala Arg Ala Val |     |     |     |
| 420                                                             | 425 | 430 |     |
| Pro Arg Asn Val Gln Pro Tyr Val Val Tyr Glu Glu Val Thr Asn Val |     |     |     |
| 435                                                             | 440 | 445 |     |
| Trp Ile Asn Val His Asp Ile Phe Tyr Pro Phe Pro Gln Ser Glu Gly |     |     |     |
| 450                                                             | 455 | 460 |     |
| Glu Asp Glu Leu Cys Phe Leu Arg Ala Asn Glu Cys Lys Thr Gly Phe |     |     |     |
| 465                                                             | 470 | 475 | 480 |
| Cys His Leu Tyr Lys Val Thr Ala Val Leu Lys Ser Gln Gly Tyr Asp |     |     |     |
| 485                                                             | 490 | 495 |     |
| Trp Ser Glu Pro Phe Ser Pro Gly Glu Asp Glu Phe Lys Cys Pro Ile |     |     |     |
| 500                                                             | 505 | 510 |     |
| Lys Glu Glu Ile Ala Leu Thr Ser Gly Glu Trp Glu Val Leu Ala Arg |     |     |     |
| 515                                                             | 520 | 525 |     |
| His Gly Ser Lys Ile Trp Val Asn Glu Glu Thr Lys Leu Val Tyr Phe |     |     |     |
| 530                                                             | 535 | 540 |     |
| Gln Gly Thr Lys Asp Thr Pro Leu Glu His His Leu Tyr Val Val Ser |     |     |     |
| 545                                                             | 550 | 555 | 560 |
| Tyr Glu Ala Ala Gly Glu Ile Val Arg Leu Thr Thr Pro Gly Phe Ser |     |     |     |
| 565                                                             | 570 | 575 |     |
| His Ser Cys Ser Met Ser Gln Asn Phe Asp Met Phe Val Ser His Tyr |     |     |     |
| 580                                                             | 585 | 590 |     |
| Ser Ser Val Ser Thr Pro Pro Cys Val His Val Tyr Lys Leu Ser Gly |     |     |     |
| 595                                                             | 600 | 605 |     |
| Pro Asp Asp Asp Pro Leu His Lys Gln Pro Arg Phe Trp Ala Ser Met |     |     |     |
| 610                                                             | 615 | 620 |     |
| Met Glu Ala Ala Ser Cys Pro Pro Asp Tyr Val Pro Pro Glu Ile Phe |     |     |     |
| 625                                                             | 630 | 635 | 640 |
| His Phe His Thr Arg Ser Asp Val Arg Leu Tyr Gly Met Ile Tyr Lys |     |     |     |
| 645                                                             | 650 | 655 |     |
| Pro His Ala Leu Gln Pro Gly Lys Lys His Pro Thr Val Leu Phe Val |     |     |     |
| 660                                                             | 665 | 670 |     |
| Tyr Gly Gly Pro Gln Val Gln Leu Val Asn Asn Ser Phe Lys Gly Ile |     |     |     |
| 675                                                             | 680 | 685 |     |
| Lys Tyr Leu Arg Leu Asn Thr Leu Ala Ser Leu Gly Tyr Ala Val Val |     |     |     |
| 690                                                             | 695 | 700 |     |
| Val Ile Asp Gly Arg Gly Ser Cys Gln Arg Gly Leu Arg Phe Glu Gly |     |     |     |
| 705                                                             | 710 | 715 | 720 |
| Ala Leu Lys Asn Gln Met Gly Gln Val Glu Ile Glu Asp Gln Val Glu |     |     |     |

|                                             |                     |             |
|---------------------------------------------|---------------------|-------------|
| 725                                         | 730                 | 735         |
| Gly Leu Gln Phe Val Ala Glu Lys Tyr         | Gly Phe Ile Asp Leu | Ser Arg     |
| 740                                         | 745                 | 750         |
| Val Ala Ile His Gly Trp Ser Tyr             | Gly Gly Phe Leu Ser | Leu Met Gly |
| 755                                         | 760                 | 765         |
| Leu Ile His Lys Pro Gln Val Phe Lys Ala Gln | Pro Leu Ala         | Tyr Pro     |
| 770                                         | 775                 | 780         |
| Pro Arg Leu Pro Gly Arg Lys Arg Ala Leu     | Phe Pro His Lys     | Leu Pro     |
| 785                                         | 790                 | 795         |
| Arg Leu Pro Thr Asp Pro Ser Arg Glu Thr     | Leu Pro Ala Pro     | Asp Leu     |
| 805                                         | 810                 | 815         |
| Pro Gln Arg Glu Thr Gln Tyr Ser Leu Pro Arg | Val Gly Arg Ala     | Leu         |
| 820                                         | 825                 | 830         |

<210> 30  
<211> 4159  
<212> DNA  
<213> Homo sapiens  
<400> 30

|                                              |                                  |      |
|----------------------------------------------|----------------------------------|------|
| caggccgcgg cctgggtcgc tcaacttccg ggtcaaagggt | gcctgagccg gcgggtcccc            | 60   |
| tgtgtccggcc gcggtgtcg tcccccgctc ccggccacttc | cggggtcgca gtcccgggca            | 120  |
| tggagccgcg accgtgggc gcccgtggac ccggggacgac  | ctgcccagtc cggccgcgc             | 180  |
| cccacgtccc ggtctgtgtc ccacgcctgc agctgaaatg  | gaggctctct ggacccttta            | 240  |
| gaaggcaccc ctgcccctct gaggtcagct gagcggtaa   | tgcggaaagggt taagaaaactg         | 300  |
| cgcctggaca aggagaacac cgaaaggttgg agaagcttct | cgctgaattc cgagggggct            | 360  |
| gagaggatgg ccaccacccg gaccccaacg gccgaccgag  | gcgacgcagc cgccacagat            | 420  |
| gacccggccg cccgccttcca ggtgcagaag cactcggtgg | acgggctccg gagcatcatc            | 480  |
| cacggcagcc gcaagtactc gggcctcatt gtcaacaagg  | cgcccccacga cttccagttt           | 540  |
| gtgcagaaga cggatgagtc tggggcccac tcccacccgc  | tctactacct gggaaatgcca           | 600  |
| tatggcagcc gagagaactc ctcctctac tctgagattc   | ccaagaagggt cccgaaagag           | 660  |
| gctctgtgc tcctgtcctg gaagcagatg ctggatcatt   | tccaggccac gccccaccat            | 720  |
| ggggtctact ctcggagga ggagctgtg agggagcgg     | aacgcctggg ggtcttggc             | 780  |
| atcacctcct acgacttcca cagcgagat ggcctttcc    | tcttccaggc cagcaacagc            | 840  |
| ctcttccact gccgcacgg cggcaagaac ggcttcatgg   | tgtcccstat gaaaccgctg            | 900  |
| gaaatcaaga cccagtgtctc agggcccccgg atggaccca | aatctgccc tgccgaccct             | 960  |
| gccttcttct cttcatcaa taacagcgac ctgtgggtgg   | ccaacatcga gacaggcgag            | 1020 |
| gagcggcggc tgacccctcg ccaccaagggt ttatccaatg | tcttgatga ccccaagtct             | 1080 |
| gcgggtgtgg ccacccctcg catacaggaa gagttcgacc  | gttcaactgg gtactgggtgg           | 1140 |
| tgccccacag ctcctggga agttcagag ggcctaaga     | cgctgcgaat cctgtattag            | 1200 |
| gaagtcgatg agtccgaggt ggaggtcatt cacgtccc    | ctcctgcgct agaagaaagg            | 1260 |
| aagacggact cgtatcggt accccaggaca ggcagcaaga  | atcccaagat tgccttgaaa            | 1320 |
| ctggctgagt tccagactga cagccaggc aagatcgct    | cgaccaggaa gaaggagctg            | 1380 |
| gtgcagccct ttagctcgct gttcccgaag gtggagatca  | tcgcccaggc cgggtggacc            | 1440 |
| cgggatggca aataccctg ggccatgttc ctggaccggc   | cccagcagtg gctccagctc            | 1500 |
| gtcctccctcc cccccccct gttcatcccg agcacagaga  | atgaggagca gcggttagcc            | 1560 |
| tctgccagag ctgtccccag gaatgtccag ccgtatgtgg  | tgtacgagga ggtcaccac             | 1620 |
| gtctggatca atgttcatga catcttctat cccttcccc   | aatcagaggg agaggacgag            | 1680 |
| ctctgttttc tccgcctcaa tgaatgcag accggctct    | gccatttgta caaagtacc             | 1740 |
| ggcgttttaa aatcccaagg ctacgattgg agtggccct   | tcagccccc ggaagatgaa             | 1800 |
| ttaagtgcc ccattaagga agagattgt ctgaccagcg    | gtgaatggg ggtttggcg              | 1860 |
| aggcacggct ccaagatctg ggtcaatgag gagaccaagc  | tgggtactt ccagggcacc             | 1920 |
| aaggacacgc cgctggagca ccacccctac gtggatcgat  | atgaggcggc cggcgagatc            | 1980 |
| gtacgcctca ccacccccgg cttctccat agtgcgtcca   | tgagccagaa cttcgacatg            | 2040 |
| ttcgtcagcc actacacgc cgtggacacg ccgcctcg     | tgacgtcta caagctgagc             | 2100 |
| ggcccccgacg acgacccct gcacaaggcg ccccgcttct  | gggcttagcat gatggaggca           | 2160 |
| gccagctgcc cccccggatta tggccatcca gagatctcc  | attccacac gcgctcggat             | 2220 |
| gtgcggctct acggcatgtat cttacaagccc           | cacgccttgc agccaggaa gaagcaccccc | 2280 |
| accgtccctt ttgtatatgg aggccccccag gtgcagctgg | tgaataactc cttcaaaggc            | 2340 |
| atcaagtact tgcggctcaa cacactggcc tccctggct   | acgcccgtggt tggattgac            | 2400 |

ggcaggggct cctgtcagcg agggcttcgg ttcgaagggg ccctaaaaaa ccaaattggc 2460  
 cagggtggaga tcgaggacca ggtggagggc ctgcagttcg tggccgagaa gtatggctc 2520  
 atcgacactga gccgagttgc catccatggc tggcttacg ggggcttct ctcgetatg 2580  
 gggctaattcc acaagccccca ggtgttcaag gcccacccgc ttgttatcc tccacggct 2640  
 cctggacgaa aacgtgcact ttttccacac aaacttccctc gtctcccaac tgatccgagc 2700  
 agggaaacct taccagctcc agatctaccc caacgagaga cacagtattc gctgccccga 2760  
 gtcggggcggag cactatgaag tcacgttget gcactttcta caggaatacc tctgagcctg 2820  
 cccacccggga gcccacat cacagcacaa gtggctgcag cctccgggg gaaccaggcg 2880  
 ggagggactg agtggccgcg gggcccccagt gaggcactt gtcccgccca gcgctggcca 2940  
 gccccggaga gcccgtgcct teaccggccc gacgcctttt atectttttt aaacgcttt 3000  
 gggttttatg tccgtgttctt cttgggttgc gagacagaga gatgggtgtc tcggggccagc 3060  
 cccttccttc cccgccttctt gggaggagga ggtcacacgc tgatgggcac tggagaggcc 3120  
 agaagagact cagaggagcg ggtgccttc cgcctggggc tcctgtgac ctctcagttc 3180  
 cctggccccc ccagccaccc tccccagcac ccaagcatgc aattgcctgt cccccccggc 3240  
 cagccctcccc aacttgatgt ttgtgtttt tttgggggaa tattttcat aattatttaa 3300  
 aagacagggcc gggcgccgtg gtcacgtct gtaatcccag cactttggaa ggctgaggcg 3360  
 ggcggatcac ctgaggttgg gagttcaaga ccagcctggc caacatgggg aaaccccgtc 3420  
 tctactaaaa atacaaaaaa tttagccgggt gtggtgccgc gtgcctataa tcccagctac 3480  
 tcggggaggt gaggcaggag aatcgctga acccgaggagg tggaggttgc ggtgagccaa 3540  
 gatcgaccca ttgcactcca gcctgggcaa caagagcgaa actctgtctc aaaataaaa 3600  
 aaaaataaaa gacagaaaagc aagggggtgcc taaatctaga cttggggtcc acaccgggca 3660  
 gccccgggttc aaccggcac ctggtaggc ccatttcttc ccaagcccgaa gcagagggtc 3720  
 atgcgggccc cacaggagaa gcccggcaggg cccgcgggg gcaccacctg tggacagccc 3780  
 tcctgtcccc aagtttcag gcaggactg aaacgcaccc aacttccacg ctctgctgg 3840  
 cagtggcgcc tgtccctcc ccagcccgcc cgcccgccca catgtgtctg cctgaccctg 3900  
 acacaccagg gttccgggg ttggagctg aaccatcccc acctcagggt tatatttccc 3960  
 tctcccttc cctcccgcc aagagctctg ccagggcgcc gcaaaaaaaaaa aagtaaaaag 4020  
 aaaagaaaaaa aaaaaaaaaaag aaacaaacca cctctacata ttatggaaag aaaatatttt 4080  
 tgtcgattct tattttta taattatgcg tggagaagt agacacatta aacgattcca 4140  
 gttggaaaca tgtcacctg 4159

<210> 31  
 <211> 832  
 <212> PRT  
 <213> Homo sapiens  
 <400> 31

Met Arg Lys Val Lys Lys Leu Arg Leu Asp Lys Glu Asn Thr Gly Ser  
 1 5 10 15  
 Trp Arg Ser Phe Ser Leu Asn Ser Glu Gly Ala Glu Arg Met Ala Thr  
 20 25 30  
 Thr Gly Thr Pro Thr Ala Asp Arg Gly Asp Ala Ala Ala Thr Asp Asp  
 35 40 45  
 Pro Ala Ala Arg Phe Gln Val Gln Lys His Ser Trp Asp Gly Leu Arg  
 50 55 60  
 Ser Ile Ile His Gly Ser Arg Lys Tyr Ser Gly Leu Ile Val Asn Lys  
 65 70 75 80  
 Ala Pro His Asp Phe Gln Phe Val Gln Lys Thr Asp Glu Ser Gly Pro  
 85 90 95  
 His Ser His Arg Leu Tyr Tyr Leu Gly Met Pro Tyr Gly Ser Arg Glu  
 100 105 110  
 Asn Ser Leu Leu Tyr Ser Glu Ile Pro Lys Lys Val Arg Lys Glu Ala  
 115 120 125  
 Leu Leu Leu Ser Trp Lys Gln Met Leu Asp His Phe Gln Ala Thr  
 130 135 140  
 Pro His His Gly Val Tyr Ser Arg Glu Glu Glu Leu Leu Arg Glu Arg  
 145 150 155 160  
 Lys Arg Leu Gly Val Phe Gly Ile Thr Ser Tyr Asp Phe His Ser Glu  
 165 170 175  
 Ser Gly Leu Phe Leu Phe Gln Ala Ser Asn Ser Leu Phe His Cys Arg

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 180                                                             | 185 | 190 |
| Asp Gly Gly Lys Asn Gly Phe Met Val Ser Pro Met Lys Pro Leu Glu |     |     |
| 195                                                             | 200 | 205 |
| Ile Lys Thr Gln Cys Ser Gly Pro Arg Met Asp Pro Lys Ile Cys Pro |     |     |
| 210                                                             | 215 | 220 |
| Ala Asp Pro Ala Phe Phe Ser Phe Ile Asn Asn Ser Asp Leu Trp Val |     |     |
| 225                                                             | 230 | 235 |
| Ala Asn Ile Glu Thr Gly Glu Glu Arg Arg Leu Thr Phe Cys His Gln |     |     |
| 245                                                             | 250 | 255 |
| Gly Leu Ser Asn Val Leu Asp Asp Pro Lys Ser Ala Gly Val Ala Thr |     |     |
| 260                                                             | 265 | 270 |
| Phe Val Ile Gln Glu Glu Phe Asp Arg Phe Thr Gly Tyr Trp Trp Cys |     |     |
| 275                                                             | 280 | 285 |
| Pro Thr Ala Ser Trp Glu Gly Ser Glu Gly Leu Lys Thr Leu Arg Ile |     |     |
| 290                                                             | 295 | 300 |
| Leu Tyr Glu Glu Val Asp Glu Ser Glu Val Glu Val Ile His Val Pro |     |     |
| 305                                                             | 310 | 315 |
| Ser Pro Ala Leu Glu Glu Arg Lys Thr Asp Ser Tyr Arg Tyr Pro Arg |     |     |
| 325                                                             | 330 | 335 |
| Thr Gly Ser Lys Asn Pro Lys Ile Ala Leu Lys Leu Ala Glu Phe Gln |     |     |
| 340                                                             | 345 | 350 |
| Thr Asp Ser Gln Gly Lys Ile Val Ser Thr Gln Glu Lys Glu Leu Val |     |     |
| 355                                                             | 360 | 365 |
| Gln Pro Phe Ser Ser Leu Phe Pro Lys Val Glu Tyr Ile Ala Arg Ala |     |     |
| 370                                                             | 375 | 380 |
| Gly Trp Thr Arg Asp Gly Lys Tyr Ala Trp Ala Met Phe Leu Asp Arg |     |     |
| 385                                                             | 390 | 395 |
| 400                                                             |     |     |
| Pro Gln Gln Trp Leu Gln Leu Val Leu Leu Pro Pro Ala Leu Phe Ile |     |     |
| 405                                                             | 410 | 415 |
| Pro Ser Thr Glu Asn Glu Glu Gln Arg Leu Ala Ser Ala Arg Ala Val |     |     |
| 420                                                             | 425 | 430 |
| Pro Arg Asn Val Gln Pro Tyr Val Val Tyr Glu Glu Val Thr Asn Val |     |     |
| 435                                                             | 440 | 445 |
| Trp Ile Asn Val His Asp Ile Phe Tyr Pro Phe Pro Gln Ser Glu Gly |     |     |
| 450                                                             | 455 | 460 |
| Glu Asp Glu Leu Cys Phe Leu Arg Ala Asn Glu Cys Lys Thr Gly Phe |     |     |
| 465                                                             | 470 | 475 |
| 480                                                             |     |     |
| Cys His Leu Tyr Lys Val Thr Ala Val Leu Lys Ser Gln Gly Tyr Asp |     |     |
| 485                                                             | 490 | 495 |
| Trp Ser Glu Pro Phe Ser Pro Gly Glu Asp Glu Phe Lys Cys Pro Ile |     |     |
| 500                                                             | 505 | 510 |
| Lys Glu Glu Ile Ala Leu Thr Ser Gly Glu Trp Glu Val Leu Ala Arg |     |     |
| 515                                                             | 520 | 525 |
| His Gly Ser Lys Ile Trp Val Asn Glu Glu Thr Lys Leu Val Tyr Phe |     |     |
| 530                                                             | 535 | 540 |
| Gln Gly Thr Lys Asp Thr Pro Leu Glu His His Leu Tyr Val Val Ser |     |     |
| 545                                                             | 550 | 555 |
| 560                                                             |     |     |
| Tyr Glu Ala Ala Gly Glu Ile Val Arg Leu Thr Thr Pro Gly Phe Ser |     |     |
| 565                                                             | 570 | 575 |
| His Ser Cys Ser Met Ser Gln Asn Phe Asp Met Phe Val Ser His Tyr |     |     |
| 580                                                             | 585 | 590 |
| Ser Ser Val Ser Thr Pro Pro Cys Val His Val Tyr Lys Leu Ser Gly |     |     |
| 595                                                             | 600 | 605 |
| Pro Asp Asp Asp Pro Leu His Lys Gln Pro Arg Phe Trp Ala Ser Met |     |     |
| 610                                                             | 615 | 620 |
| Met Glu Ala Ala Ser Cys Pro Pro Asp Tyr Val Pro Pro Glu Ile Phe |     |     |
| 625                                                             | 630 | 635 |
| 640                                                             |     |     |
| His Phe His Thr Arg Ser Asp Val Arg Leu Tyr Gly Met Ile Tyr Lys |     |     |
| 645                                                             | 650 | 655 |
| Pro His Ala Leu Gln Pro Gly Lys His Pro Thr Val Leu Phe Val     |     |     |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 660                                                             | 665 | 670 |
| Tyr Gly Gly Pro Gln Val Gln Leu Val Asn Asn Ser Phe Lys Gly Ile |     |     |
| 675                                                             | 680 | 685 |
| Lys Tyr Leu Arg Leu Asn Thr Leu Ala Ser Leu Gly Tyr Ala Val Val |     |     |
| 690                                                             | 695 | 700 |
| Val Ile Asp Gly Arg Gly Ser Cys Gln Arg Gly Leu Arg Phe Glu Gly |     |     |
| 705                                                             | 710 | 715 |
| Ala Leu Lys Asn Gln Met Gly Gln Val Glu Ile Glu Asp Gln Val Glu |     |     |
| 725                                                             | 730 | 735 |
| Gly Leu Gln Phe Val Ala Glu Lys Tyr Gly Phe Ile Asp Leu Ser Arg |     |     |
| 740                                                             | 745 | 750 |
| Val Ala Ile His Gly Trp Ser Tyr Gly Gly Phe Leu Ser Leu Met Gly |     |     |
| 755                                                             | 760 | 765 |
| Leu Ile His Lys Pro Gln Val Phe Lys Ala Gln Pro Leu Ala Tyr Pro |     |     |
| 770                                                             | 775 | 780 |
| Pro Arg Leu Pro Gly Arg Lys Arg Ala Leu Phe Pro His Lys Leu Pro |     |     |
| 785                                                             | 790 | 795 |
| Arg Leu Pro Thr Asp Pro Ser Arg Glu Thr Leu Pro Ala Pro Asp Leu |     |     |
| 805                                                             | 810 | 815 |
| Pro Gln Arg Glu Thr Gln Tyr Ser Leu Pro Arg Val Gly Arg Ala Leu |     |     |
| 820                                                             | 825 | 830 |

<210> 32  
<211> 4076  
<212> DNA  
<213> Homo sapiens  
<400> 32

|                                                                      |      |
|----------------------------------------------------------------------|------|
| caggccgcgc cctgggtcgc tcaacttcgg ggtcaaaggt gcctgagccg gcgggtcccc    | 60   |
| tgtgtccgcc gcggctgtcg tcccccgctc ccggcacttc cggggtcgca gtcccgggca    | 120  |
| tggagccgcg accgtgaggc gccgctggac cggggacgac ctgcccagtc cggccgcgc     | 180  |
| cccacgtccc ggtctgtgtc ccacgcctgc agctggaaatg gaggctctct ggacccttta   | 240  |
| gaaggcaccc ctgccttcct gaggtcagct gagcggtaa tgccgaaggt taagaaactg     | 300  |
| cgcctggaca aggagaacac cggaaagtgg agaagcttct cgctgaattc cgagggggct    | 360  |
| gagaggatgg ccaccacccgg gaccccaacg gccgaccggag ggcacgcagc cgccacagat  | 420  |
| gacccggccg cccgccttcca ggtcagaag cactcggtgg acgggctccg ggcacatcatc   | 480  |
| cacggcagcc gcaagtactc gggcctcatt gtcaacaagg cgcacccacga cttccagttt   | 540  |
| gtgcagaaga cggatgagtc tggggccccac tcccaccggc tctactacct ggaaatgcca   | 600  |
| tatggcagcc gagagaactc ctcctctac tctgagattc ccaagaaggt cccgaaagag     | 660  |
| gtctctgtgc tcctgtctg gaagcagatg ctggatcatt tccaggccac gccccaccat     | 720  |
| ggggctact ctcggggagga ggagctgctt agggagccga aacgcctggg ggtcttcggc    | 780  |
| atcacctct acgacttcca cagcgagat ggcctttcc tcttccaggc cagcaacagc       | 840  |
| ctcttccact gccgcacgg cggcaagaac ggcttcatgg tgcctccat gaaaccgctg      | 900  |
| gaaatcaaga cccagtgtc agggcccccgg atggacccca aaatctgccc tgccgaccct    | 960  |
| gccttctct cttcatcaa taacagcgcac ctgtgggtgg ccaacatcga gacaggcggag    | 1020 |
| gagccggccgc tgaccttctg ccaccaaggt ttatccaatg tcctggatga ccccaagtct   | 1080 |
| gcgggtgtgg ccacccctgt catacaggaa gagttcgacc gcttactgg gtactgggtgg    | 1140 |
| tgcctccacag ctcctggga aggttcagag ggcctcaaga cgctgcgaat cctgtatgag    | 1200 |
| gaagtcgtatc agtccgaggt ggaggtcatt cacgtccccct tccttcgcgtc agaagaaagg | 1260 |
| aagacggact cgtatcggtt cccccaggaca ggcagcaaga atcccaagat tgccttggaaa  | 1320 |
| ctggctgagt tccagactga cagccaggc aagatcgct cgacccaggaa gaaggagctg     | 1380 |
| gtgcagccct tcagctcgct gtccctggaa gtggagatca tgcgcaggcgc cgggtggacc   | 1440 |
| cgggatggca aatacgccctg ggcctatgttc ctggacccggc cccagcgtg gctccagctc  | 1500 |
| gtcctccctcc cccccggccct gttcatccccc agcacagaga atgaggagca gcggctagcc | 1560 |
| tctgccagag ctgtccccag gaatgtccag ccgtatgtgg tgcacggagga ggtcaccaac   | 1620 |
| gtctggatca atgttcatga catcttctat cccttcccccc aatcagaggg agaggacgag   | 1680 |
| ctctgttttc tccgcggccaa tgaatgcag accggcttct gccatggta caaatcacc      | 1740 |
| gcccgtttaa aatcccaaggc ctacgattgg agtgaggccct tcagccccgg ggaagatgaa  | 1800 |
| ttaagtggcc ccatthaagga agagattgct ctgaccagcg gtgaatggg ggttttggcg    | 1860 |
| aggcacggct ccaagatctg ggtcaatgag gagaccaagc tgggttactt ccagggcacc    | 1920 |

|             |              |             |             |             |              |      |
|-------------|--------------|-------------|-------------|-------------|--------------|------|
| aaggacacgc  | cgctggagca   | ccacctctac  | gtggtcagct  | atgaggcggc  | cggcgagatc   | 1980 |
| gtacgcctca  | ccacgccccgg  | cttctcccat  | agctgtcca   | ttagccagaa  | cttcgacatg   | 2040 |
| ttcgtcagcc  | actacagcag   | cgtgagcag   | ccgcccgtcg  | tgcacgtcta  | caagctgagc   | 2100 |
| ggccccgacg  | acgaccccc    | gcacaaggag  | ccccgcttct  | gggctagcat  | gatggaggca   | 2160 |
| gccagctgcc  | ccccggattta  | tgttccctca  | gagatctcc   | atttccacac  | gctcgatgat   | 2220 |
| gtgcccgtct  | acggcatgat   | ctacaagccc  | cacgccttgc  | agccagggaa  | gaagcacccc   | 2280 |
| accgtcctct  | ttgtatatgg   | aggcccccaag | gtgcagctgg  | tgaataactc  | cttcaaaggc   | 2340 |
| atcaagtact  | tgccgctcaa   | cacactggcc  | tccctgggct  | acggcgtgg   | tgtgattgac   | 2400 |
| ggcaggggct  | cctgtcagcg   | agggcttcgg  | ttcgaagggg  | ccctgaaaaaa | ccaaatgggc   | 2460 |
| cagggtggaga | tcgaggacca   | ggtggagggg  | ctgcaggatcg | tggccgagaa  | gtatggcttc   | 2520 |
| atcgacactg  | gcccggatgtc  | catccatggc  | tggcttactc  | ggggcttctt  | ctcgctcatg   | 2580 |
| gggctaatcc  | acaagcccc    | ggtgttcaag  | gcccacccgc  | ttgcttatcc  | tccacggctt   | 2640 |
| cctggacgaa  | aacgtgcact   | ttttccacac  | aaacttctc   | gttcccaaac  | tgtccgagc    | 2700 |
| agggaaacact | taccagctcc   | agatctacc   | caacgagaga  | cacagtattc  | gtgccccga    | 2760 |
| gtcggggcgag | cactatgaag   | tcacgttgc   | gcacttcta   | caggaatacc  | tctgagcctg   | 2820 |
| cccaccggga  | gcccggacat   | cacagcacaa  | gtggctgcag  | cctccgggg   | gaaccaggcg   | 2880 |
| ggagggactg  | agtggcccg    | ggggcccagt  | gaggcactt   | gttccggcca  | gcgctggcca   | 2940 |
| gccccggagga | gcccgtgcet   | tcaccggccc  | gacgcctttt  | atccccctt   | aaacgtctt    | 3000 |
| gggtttatg   | tccgtgttt    | cttgggttgc  | gagacagaga  | gatgggtgtc  | tccggccagc   | 3060 |
| ccctcctctc  | ccccgttct    | gggaggagga  | ggtcacacgc  | tgtgggcac   | tggagaggcc   | 3120 |
| agaagagact  | cagaggagcg   | ggctgccttc  | cgctggggc   | tcctctgtac  | ctctcagtcc   | 3180 |
| cctggccccc  | ccagccaccc   | tccccagcac  | ccaagcatgc  | aattgcctgt  | ccccccggc    | 3240 |
| cagcctcccc  | aacttgcatt   | tttgtttttt  | tttgggggg   | tatttttcat  | aattattaa    | 3300 |
| aagacaggcc  | gggcgcgggt   | gctcacgtct  | gtaatcccag  | cactttggg   | ggctgaggcg   | 3360 |
| ggcggatcac  | ctgagggttgg  | gagttcaaga  | ccagcgtgc   | caacatgggg  | aaacccgtc    | 3420 |
| tctactaaaa  | ataaaaaaaaa  | ttagccgggt  | gttggggcgc  | gtgcctataa  | tcccagctac   | 3480 |
| tcggggaggct | gaggcaggag   | aatcgcttgc  | acccggggagg | ttgagggtgc  | ggtgaggccaa  | 3540 |
| gatcgaccca  | ttgcactcca   | gcctgggca   | caagagcgaa  | actctgtctc  | aaaataaata   | 3600 |
| aaaaataaaaa | gacagaaaagc  | aagggggtgc  | taaatctaga  | cttggggtcc  | acaccggca    | 3660 |
| gcggggttgc  | aaacctcagcac | ctggtaggc   | ccatttctc   | ccaagccccg  | ctttcaggca   | 3720 |
| ggcactgaaa  | cgcacccgaa   | ttccacgctc  | tgctggtcag  | tggcggctgt  | ccccctcccc   | 3780 |
| gcccgccgc   | ccagccacat   | gtgtctgcct  | gaccggtaca  | caccagggg   | tccggggttg   | 3840 |
| ggagctgaac  | catccccacc   | tcagggttat  | atttccctct  | cccccctccct | ccccgccaag   | 3900 |
| agctctgcca  | ggggccggca   | aaaaaaaaaa  | taaaaaagaaa | agaaaaaaaaa | aaaaaaagaaaa | 3960 |
| caaaccact   | ctacatatta   | tggaaagaaa  | atattttgt   | cgatttttat  | tctttataaa   | 4020 |
| ttatgcgtgg  | aagaagtaga   | cacattaaac  | gattccagtt  | ggaaacatgt  | cacctg       | 4076 |

<210> 33  
<211> 879  
<212> PRT  
<213> Homo sapiens  
<400> 33

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Arg | Lys | Val | Lys | Lys | Leu | Arg | Leu | Asp | Lys | Glu | Asn | Thr | Gly | Ser |
| 1   |     |     |     | 5   |     |     |     | 10  |     |     | 15  |     |     |     |     |
| Trp | Arg | Ser | Phe | Ser | Leu | Asn | Ser | Glu | Gly | Ala | Glu | Arg | Met | Ala | Thr |
|     |     |     |     |     | 20  |     |     | 25  |     |     | 30  |     |     |     |     |
| Thr | Gly | Thr | Pro | Thr | Ala | Asp | Arg | Gly | Asp | Ala | Ala | Ala | Thr | Asp | Asp |
|     |     |     |     |     | 35  |     |     | 40  |     |     | 45  |     |     |     |     |
| Pro | Ala | Ala | Arg | Phe | Gln | Val | Gln | Lys | His | Ser | Trp | Asp | Gly | Leu | Arg |
|     |     |     |     |     | 50  |     |     | 55  |     |     | 60  |     |     |     |     |
| Ser | Ile | Ile | His | Gly | Ser | Arg | Lys | Tyr | Ser | Gly | Leu | Ile | Val | Asn | Lys |
|     |     |     |     |     | 65  |     |     | 70  |     |     | 75  |     |     | 80  |     |
| Ala | Pro | His | Asp | Phe | Gln | Phe | Val | Gln | Lys | Thr | Asp | Glu | Ser | Gly | Pro |
|     |     |     |     |     | 85  |     |     | 90  |     |     | 95  |     |     |     |     |
| His | Ser | His | Arg | Leu | Tyr | Tyr | Leu | Gly | Met | Pro | Tyr | Gly | Ser | Arg | Glu |
|     |     |     |     |     | 100 |     |     | 105 |     |     | 110 |     |     |     |     |
| Asn | Ser | Leu | Leu | Tyr | Ser | Glu | Ile | Pro | Lys | Lys | Val | Arg | Lys | Glu | Ala |
|     |     |     |     |     | 115 |     |     | 120 |     |     | 125 |     |     |     |     |
| Leu | Leu | Leu | Leu | Ser | Trp | Lys | Gln | Met | Leu | Asp | His | Phe | Gln | Ala | Thr |

|                                                                 |                     |     |
|-----------------------------------------------------------------|---------------------|-----|
| 130                                                             | 135                 | 140 |
| Pro His His Gly Val Tyr Ser Arg Glu Glu Glu                     | Leu Leu Arg Glu Arg |     |
| 145                                                             | 150                 | 155 |
| Lys Arg Leu Gly Val Phe Gly Ile Thr Ser Tyr Asp Phe His Ser Glu |                     | 160 |
| 165                                                             | 170                 | 175 |
| Ser Gly Leu Phe Leu Phe Gln Ala Ser Asn Ser Leu Phe His Cys Arg |                     |     |
| 180                                                             | 185                 | 190 |
| Asp Gly Gly Lys Asn Gly Phe Met Val Ser Pro Met Lys Pro Leu Glu |                     |     |
| 195                                                             | 200                 | 205 |
| Ile Lys Thr Gln Cys Ser Gly Pro Arg Met Asp Pro Lys Ile Cys Pro |                     |     |
| 210                                                             | 215                 | 220 |
| Ala Asp Pro Ala Phe Phe Ser Phe Ile Asn Asn Ser Asp Leu Trp Val |                     |     |
| 225                                                             | 230                 | 235 |
| Ala Asn Ile Glu Thr Gly Glu Glu Arg Arg Leu Thr Phe Cys His Gln |                     | 240 |
| 245                                                             | 250                 | 255 |
| Gly Leu Ser Asn Val Leu Asp Asp Pro Lys Ser Ala Gly Val Ala Thr |                     |     |
| 260                                                             | 265                 | 270 |
| Phe Val Ile Gln Glu Glu Phe Asp Arg Phe Thr Gly Tyr Trp Trp Cys |                     |     |
| 275                                                             | 280                 | 285 |
| Pro Thr Ala Ser Trp Glu Gly Ser Glu Gly Leu Lys Thr Leu Arg Ile |                     |     |
| 290                                                             | 295                 | 300 |
| Leu Tyr Glu Glu Val Asp Glu Ser Glu Val Glu Val Ile His Val Pro |                     |     |
| 305                                                             | 310                 | 315 |
| Ser Pro Ala Leu Glu Glu Arg Lys Thr Asp Ser Tyr Arg Tyr Pro Arg |                     | 320 |
| 325                                                             | 330                 | 335 |
| Thr Gly Ser Lys Asn Pro Lys Ile Ala Leu Lys Leu Ala Glu Phe Gln |                     |     |
| 340                                                             | 345                 | 350 |
| Thr Asp Ser Gln Gly Lys Ile Val Ser Thr Gln Glu Lys Glu Leu Val |                     |     |
| 355                                                             | 360                 | 365 |
| Gln Pro Phe Ser Ser Leu Phe Pro Lys Val Glu Tyr Ile Ala Arg Ala |                     |     |
| 370                                                             | 375                 | 380 |
| Gly Trp Thr Arg Asp Gly Lys Tyr Ala Trp Ala Met Phe Leu Asp Arg |                     |     |
| 385                                                             | 390                 | 395 |
| 400                                                             |                     |     |
| Pro Gln Gln Trp Leu Gln Leu Val Leu Leu Pro Pro Ala Leu Phe Ile |                     |     |
| 405                                                             | 410                 | 415 |
| Pro Ser Thr Glu Asn Glu Glu Gln Arg Leu Ala Ser Ala Arg Ala Val |                     |     |
| 420                                                             | 425                 | 430 |
| Pro Arg Asn Val Gln Pro Tyr Val Val Tyr Glu Glu Val Thr Asn Val |                     |     |
| 435                                                             | 440                 | 445 |
| Trp Ile Asn Val His Asp Ile Phe Tyr Pro Phe Pro Gln Ser Glu Gly |                     |     |
| 450                                                             | 455                 | 460 |
| Glu Asp Glu Leu Cys Phe Leu Arg Ala Asn Glu Cys Lys Thr Gly Phe |                     |     |
| 465                                                             | 470                 | 475 |
| 480                                                             |                     |     |
| Cys His Leu Tyr Lys Val Thr Ala Val Leu Lys Ser Gln Gly Tyr Asp |                     |     |
| 485                                                             | 490                 | 495 |
| Trp Ser Glu Pro Phe Ser Pro Gly Glu Asp Glu Phe Lys Cys Pro Ile |                     |     |
| 500                                                             | 505                 | 510 |
| Lys Glu Glu Ile Ala Leu Thr Ser Gly Glu Trp Glu Val Leu Ala Arg |                     |     |
| 515                                                             | 520                 | 525 |
| His Gly Ser Lys Gly Thr Lys Asp Thr Pro Leu Glu His His Leu Tyr |                     |     |
| 530                                                             | 535                 | 540 |
| Val Val Ser Tyr Glu Ala Ala Gly Glu Ile Val Arg Leu Thr Thr Pro |                     |     |
| 545                                                             | 550                 | 555 |
|                                                                 |                     | 560 |

Gly Phe Ser His Ser Cys Ser Met Ser Gln Asn Phe Asp Met Phe Val  
 565 570 575  
 Ser His Tyr Ser Ser Val Ser Thr Pro Pro Cys Val His Val Tyr Lys  
 580 585 590  
 Leu Ser Gly Pro Asp Asp Asp Pro Leu His Lys Gln Pro Arg Phe Trp  
 595 600 605  
 Ala Ser Met Met Glu Ala Ala Ser Cys Pro Pro Asp Tyr Val Pro Pro  
 610 615 620  
 Glu Ile Phe His Phe His Thr Arg Ser Asp Val Arg Leu Tyr Gly Met  
 625 630 635 640  
 Ile Tyr Lys Pro His Ala Leu Gln Pro Gly Lys Lys His Pro Thr Val  
 645 650 655  
 Leu Phe Val Tyr Gly Pro Gln Val Gln Leu Val Asn Asn Ser Phe  
 660 665 670  
 Lys Gly Ile Lys Tyr Leu Arg Leu Asn Thr Leu Ala Ser Leu Gly Tyr  
 675 680 685  
 Ala Val Val Val Ile Asp Gly Arg Gly Ser Cys Gln Arg Gly Leu Arg  
 690 695 700  
 Phe Glu Gly Ala Leu Lys Asn Gln Met Gly Gln Val Glu Ile Glu Asp  
 705 710 715 720  
 Gln Val Glu Gly Leu Gln Phe Val Ala Glu Lys Tyr Gly Phe Ile Asp  
 725 730 735  
 Leu Ser Arg Val Ala Ile His Gly Trp Ser Tyr Gly Gly Phe Leu Ser  
 740 745 750  
 Leu Met Gly Leu Ile His Lys Pro Gln Val Phe Lys Val Ala Ile Ala  
 755 760 765  
 Gly Ala Pro Val Thr Val Trp Met Ala Tyr Asp Thr Gly Tyr Thr Glu  
 770 775 780  
 Arg Tyr Met Asp Val Pro Glu Asn Asn Gln His Gly Tyr Glu Ala Gly  
 785 790 795 800  
 Ser Val Ala Leu His Val Glu Lys Leu Pro Asn Glu Pro Asn Arg Leu  
 805 810 815  
 Leu Ile Leu His Gly Phe Leu Asp Glu Asn Val His Phe Phe His Thr  
 820 825 830  
 Asn Phe Leu Val Ser Gln Leu Ile Arg Ala Gly Lys Pro Tyr Gln Leu  
 835 840 845  
 Gln Ile Tyr Pro Asn Glu Arg His Ser Ile Arg Cys Pro Glu Ser Gly  
 850 855 860  
 Glu His Tyr Glu Val Thr Leu Leu His Phe Leu Gln Glu Tyr Leu  
 865 870 875

<210> 34  
 <211> 4263  
 <212> DNA  
 <213> Homo sapiens  
 <400> 34

|            |             |             |             |             |            |     |
|------------|-------------|-------------|-------------|-------------|------------|-----|
| caggccgcgc | cctgggtcgc  | tcaacttccg  | ggtcaaaggt  | gcctgagccg  | gcgggtcccc | 60  |
| tgtgtccgcc | gcggcgatgcg | tcccccgcctc | ccgcccacttc | cggggtcgca  | gtcccgccca | 120 |
| tggagccgcg | accgtgaggc  | ggcgctggac  | ccggggacgac | ctgcccagtc  | cgccgcgcgc | 180 |
| cccacgtccc | ggtctgtgtc  | ccacgcctgc  | agctgaaatg  | gaggctctct  | ggacccttta | 240 |
| gaaggcaccc | ctgcccctct  | gagggtcagct | gagcggttaa  | tgcggaaaggt | taagaaactg | 300 |
| cgcctggaca | aggagaacac  | cggaagtgg   | agaagttct   | cgctgaattc  | cgagggggct | 360 |
| gagaggatgg | ccaccacccgg | gaccccaacg  | gccgacccag  | cgacgcgcgc  | cgccacacat | 420 |
| gacccggccg | cccgcttcca  | ggtgcagaag  | cactcggtgg  | acgggctccg  | gagcatcatc | 480 |
| cacggcagcc | gcaagtactc  | gggcctcatt  | gtcaacaagg  | cgccccacga  | cttccagttt | 540 |
| gtgcagaaga | cggatgagtc  | tgggccccac  | tcccacccgc  | tctactacct  | ggaatgcca  | 600 |
| tatggcagcc | gagagaactc  | cctcctctac  | tctgagattc  | ccaagaaggt  | ccggaaagag | 660 |
| gctctgctgc | tcctgtcctg  | gaagcagatg  | ctggatcatt  | tccaggccac  | gccccaccat | 720 |
| ggggctact  | ctcgggagga  | ggagctgctg  | agggagcgga  | aacgcctggg  | ggtcttcggc | 780 |

atcacctcct acgacttcca cagcgagagt ggcctcttcc tcttccaggc cagcaacagc 840  
 ctcttccact gccgcgacgg cggaagaac ggcttcatgg tggcccstat gaaaccgtg 900  
 gaaatcaaga cccagtgcgc agggccccgg atggaccca aaatctgccc tgccgaccct 960  
 gccttcttct cttcatcaa taacagcgac ctgtgggtgg ccaacatcg aacaggcgag 1020  
 gageggcgcc tgacccctcg ccaccaagggt ttatccaatg tcctggatga ccccaagtct 1080  
 ggggtgtgg ccacccctcgata cacaggaa gagttcgacc gtttactgg gtactgggtgg 1140  
 tgcccccacag cttccctggga aggttcagag ggcttcaaga cgctgcgaat cctgtatgag 1200  
 gaagtcgat agtcccgaggt ggaggttattt cactgcctt ctccctgcgt aagaaagg 1260  
 aagacggact cgtatcgta cccaggaca ggcagcaaga atcccaagat tgccctgaaa 1320  
 ctggctgagt tccagactga cagccaggc aagatcgctc cgacccaggaa gaaggagctg 1380  
 gtgcagccct tcagtcgct ttccctggaa gtggagatca tcgcccggc cgggtggacc 1440  
 cgggatggca aatacgccct ggccatgttc ctggccggc cccagcgtg gctccagctc 1500  
 gtccctctcc ccccgccct ttcatcccg agcacagaga atgaggagca gcccgttagcc 1560  
 tctggccagag ctgtccccag gaatgtccag cctgtatgtgg tgcacccaggaa ggttccaaac 1620  
 gtctggatca atgttcatga catcttcttat cccttccccc aatcagaggg agaggagcag 1680  
 ctctgttttc tccggccca tgaatgcag accggcttgc gcatcttgc caaagtccacc 1740  
 gccgttttaa aatcccgagg ctacgattgg agtgagccct tcagcccccgg ggaagatgaa 1800  
 ttaagtgcc ccattaaaggag agagattgtc ctgacccaggc gtgaatgggg ggttttggcg 1860  
 aggacacggtt ccaaggccac caaggacacg cgcgtggagc accacctcta cgtggtcagc 1920  
 tatgaggcgccgg cggcgagat cgtacgcctc accacgcggc gtttctccca tagtgcgtcc 1980  
 atgagccaga acttcgacat gttcgtcagc cactacagca gctgtggccac gcccgcctgc 2040  
 gtgcacgtt acaagctgag cggcccccggc gacgacccccc tgacacaagca gccccgccttc 2100  
 tgggctaga tcatggggc agccagctgc ccccccggatt atgttccctcc agagatcttc 2160  
 cattttccaca cgcgtcgga tgcggcttc tacggcatga tctacaagcc ccacgccttg 2220  
 cagccaggga agaagccccc caccgtccct tttgtatatg gaggcccccgg ggtgcagctg 2280  
 gtgaataact cttccaaagg catcaagtac ttgcggctca acacactggc ctccctggc 2340  
 tacggcggtt ttgtgattga cggcaggggc tcctgtcagc gagggcttcg gttcgaaggg 2400  
 qccctgaaaa accaatggg ccagggtggag atcgaggacc aggtggaggg cctgcagttc 2460  
 gtggccgaga agtattggctt catcgacctg agccgagttt ccatccatgg ctggcttac 2520  
 gggggcttcc tctcgctcat ggggctaattt cacaagccccc aggtgttcaa ggtggccatc 2580  
 ggggggtccc cggtcaccgt ctggatggcc tacgacacag ggtacactga ggcgtacatg 2640  
 gacgtccctg agaacaacca gcacggctat gaggcgggtt cctggccct gcacgtggag 2700  
 aagctgcccata atgagccaa cccgttgcattt atcctccacg gtttccctggaa gaaaacgtg 2760  
 cactttttcc acacaaacctt ctcgtctcc caactgtatcc gagcaggggaa accttaccag 2820  
 ctccagatct accccaaacga gagacacagt attcgctgcc cccagtcggg cgagcactat 2880  
 gaagtcaagt tgctgcactt tctacaggaa tacctctgag cctgcccacc gggagccgccc 2940  
 acatcacagc acaagtggct gcagccctcc cggggaaacca ggcgggaggg actgagttgc 3000  
 cccggggccc cagtggggca ctttgtccccc cccagcgtg gccagccccc aggagccgt 3060  
 gccttccaccc ccccgacgccc ttttacccctt ttttacccgc tcttgggttt tatgtccgt 3120  
 gtttcttgggt tgccgagaca gagagatggg ggtctcggtt cagccctcc tctcccccggcc 3180  
 ttctggggagg aggagggtcac acgtctgttgc gcactggaga gcccagaaga gactcagagg 3240  
 agcggggctgc ctccgcctg gggctccctg tgacctctca tttttccctggc cccggccagcc 3300  
 accegtcccca gcacccaagc atgcaattgc ctgtcccccc cggccagccct ccccaacttg 3360  
 atgtttgtt tttttttggg gggatatttt tcataattat taaaagaca ggcggggcgc 3420  
 ggtggctcac gtctgtatcc ccagcactttt gggaggctga ggcggggcga tcacctgagg 3480  
 ttggggatgttcc aagaccagcc tggccaaacat ggggaaaccc cgtctctact aaaaatacaa 3540  
 aaaattagcc ggggtgtgggt ggcgtgcct ataatccag ctactcgga ggcgtaggca 3600  
 ggagaatcgc ttgaacccgg gagggtggagg ttgcgggttag ccaagatcgc accattgcac 3660  
 tccagccctgg gcaacaagag cggaaactctg tctcaaaaata aataaaaaat aaaagacaga 3720  
 aagcaaggggg tgcctaaatc tagacttggg gtccacaccg ggcagcgggg ttgcaacccca 3780  
 gcacccggta ggctccattt cttcccaagc cccggcggagag ggtcatgcgg gccccacagg 3840  
 agaagccggcc agggcccccgg gggggccacca cctgtggaca gcctccctgt ccccaagctt 3900  
 tcaggcaggc actgaaacgc accgaacttc cactgcgtc tggtcgtatgg cggctgtccc 3960  
 ctcccccagcc cagccggccca gccacatgtg tctgcctgac cctgtacacac caggggttcc 4020  
 ggggttggga gctgaaccat ccccacctca gggttatattt tccctctccctt ccctccccc 4080  
 cggcaagagc tctgcgggg gcccggcaaaa aaaaaatggaa aagaaaaaga aaaaaaaaaaa 4140  
 aaagaaaacaa accacccctta catattatgg aaagaaaata tttttgtcga ttcttattct 4200  
 ttataattt tgcgtggaaag aagttagacac attaaacacat tccagttggaa aacatgtcac 4260  
 ctg 4263

<210> 35  
 <211> 879  
 <212> PRT  
 <213> Homo sapiens  
 <400> 35

Met Arg Lys Val Lys Leu Arg Leu Asp Lys Glu Asn Thr Gly Ser  
 1 5 10 15  
 Trp Arg Ser Phe Ser Leu Asn Ser Glu Gly Ala Glu Arg Met Ala Thr  
 20 25 30  
 Thr Gly Thr Pro Thr Ala Asp Arg Gly Asp Ala Ala Ala Thr Asp Asp  
 35 40 45  
 Pro Ala Ala Arg Phe Gln Val Gln Lys His Ser Trp Asp Gly Leu Arg  
 50 55 60  
 Ser Ile Ile His Gly Ser Arg Lys Tyr Ser Gly Leu Ile Val Asn Lys  
 65 70 75 80  
 Ala Pro His Asp Phe Val Gln Lys Thr Asp Glu Ser Gly Pro  
 85 90 95  
 His Ser His Arg Leu Tyr Tyr Leu Gly Met Pro Tyr Gly Ser Arg Glu  
 100 105 110  
 Asn Ser Leu Leu Tyr Ser Glu Ile Pro Lys Lys Val Arg Lys Glu Ala  
 115 120 125  
 Leu Leu Leu Ser Trp Lys Gln Met Leu Asp His Phe Gln Ala Thr  
 130 135 140  
 Pro His His Gly Val Tyr Ser Arg Glu Glu Glu Leu Leu Arg Glu Arg  
 145 150 155 160  
 Lys Arg Leu Gly Val Phe Gly Ile Thr Ser Tyr Asp Phe His Ser Glu  
 165 170 175  
 Ser Gly Leu Phe Leu Phe Gln Ala Ser Asn Ser Leu Phe His Cys Arg  
 180 185 190  
 Asp Gly Gly Lys Asn Gly Phe Met Val Ser Pro Met Lys Pro Leu Glu  
 195 200 205  
 Ile Lys Thr Gln Cys Ser Gly Pro Arg Met Asp Pro Lys Ile Cys Pro  
 210 215 220  
 Ala Asp Pro Ala Phe Phe Ser Phe Ile Asn Asn Ser Asp Leu Trp Val  
 225 230 235 240  
 Ala Asn Ile Glu Thr Gly Glu Glu Arg Arg Leu Thr Phe Cys His Gln  
 245 250 255  
 Gly Leu Ser Asn Val Leu Asp Asp Pro Lys Ser Ala Gly Val Ala Thr  
 260 265 270  
 Phe Val Ile Gln Glu Glu Phe Asp Arg Phe Thr Gly Tyr Trp Trp Cys  
 275 280 285  
 Pro Thr Ala Ser Trp Glu Gly Ser Glu Gly Leu Lys Thr Leu Arg Ile  
 290 295 300  
 Leu Tyr Glu Glu Val Asp Glu Ser Glu Val Glu Val Ile His Val Pro  
 305 310 315 320  
 Ser Pro Ala Leu Glu Glu Arg Lys Thr Asp Ser Tyr Arg Tyr Pro Arg  
 325 330 335  
 Thr Gly Ser Lys Asn Pro Lys Ile Ala Leu Lys Leu Ala Glu Phe Gln  
 340 345 350  
 Thr Asp Ser Gln Gly Lys Ile Val Ser Thr Gln Glu Lys Glu Leu Val  
 355 360 365  
 Gln Pro Phe Ser Ser Leu Phe Pro Lys Val Glu Tyr Ile Ala Arg Ala  
 370 375 380  
 Gly Trp Thr Arg Asp Gly Lys Tyr Ala Trp Ala Met Phe Leu Asp Arg  
 385 390 395 400  
 Pro Gln Gln Trp Leu Gln Leu Val Leu Leu Pro Pro Ala Leu Phe Ile  
 405 410 415

Pro Ser Thr Glu Asn Glu Glu Gln Arg Leu Ala Ser Ala Arg Ala Val  
                   420                  425                  430  
 Pro Arg Asn Val Gln Pro Tyr Val Val Tyr Glu Glu Val Thr Asn Val  
                   435                  440                  445  
 Trp Ile Asn Val His Asp Ile Phe Tyr Pro Phe Pro Gln Ser Glu Gly  
                   450                  455                  460  
 Glu Asp Glu Leu Cys Phe Leu Arg Ala Asn Glu Cys Lys Thr Gly Phe  
                   465                  470                  475                  480  
 Cys His Leu Tyr Lys Val Thr Ala Val Leu Lys Ser Gln Gly Tyr Asp  
                   485                  490                  495  
 Trp Ser Glu Pro Phe Ser Pro Gly Glu Asp Glu Phe Lys Cys Pro Ile  
                   500                  505                  510  
 Lys Glu Glu Ile Ala Leu Thr Ser Gly Glu Trp Glu Val Leu Ala Arg  
                   515                  520                  525  
 His Gly Ser Lys Gly Thr Lys Asp Thr Pro Leu Glu His His Leu Tyr  
                   530                  535                  540  
 Val Val Ser Tyr Glu Ala Ala Gly Glu Ile Val Arg Leu Thr Thr Pro  
                   545                  550                  555                  560  
 Gly Phe Ser His Ser Cys Ser Met Ser Gln Asn Phe Asp Met Phe Val  
                   565                  570                  575  
 Ser His Tyr Ser Ser Val Ser Thr Pro Pro Cys Val His Val Tyr Lys  
                   580                  585                  590  
 Leu Ser Gly Pro Asp Asp Asp Pro Leu His Lys Gln Pro Arg Phe Trp  
                   595                  600                  605  
 Ala Ser Met Met Glu Ala Ala Ser Cys Pro Pro Asp Tyr Val Pro Pro  
                   610                  615                  620  
 Glu Ile Phe His Phe His Thr Arg Ser Asp Val Arg Leu Tyr Gly Met  
                   625                  630                  635                  640  
 Ile Tyr Lys Pro His Ala Leu Gln Pro Gly Lys Lys His Pro Thr Val  
                   645                  650                  655  
 Leu Phe Val Tyr Gly Gly Pro Gln Val Gln Leu Val Asn Asn Ser Phe  
                   660                  665                  670  
 Lys Gly Ile Lys Tyr Leu Arg Leu Asn Thr Leu Ala Ser Leu Gly Tyr  
                   675                  680                  685  
 Ala Val Val Val Ile Asp Gly Arg Gly Ser Cys Gln Arg Gly Leu Arg  
                   690                  695                  700  
 Phe Glu Gly Ala Leu Lys Asn Gln Met Gly Gln Val Glu Ile Glu Asp  
                   705                  710                  715                  720  
 Gln Val Glu Gly Leu Gln Phe Val Ala Glu Lys Tyr Gly Phe Ile Asp  
                   725                  730                  735  
 Leu Ser Arg Val Ala Ile His Gly Trp Ser Tyr Gly Gly Phe Leu Ser  
                   740                  745                  750  
 Leu Met Gly Leu Ile His Lys Pro Gln Val Phe Lys Val Ala Ile Ala  
                   755                  760                  765  
 Gly Ala Pro Val Thr Val Trp Met Ala Tyr Asp Thr Gly Tyr Thr Glu  
                   770                  775                  780  
 Arg Tyr Met Asp Val Pro Glu Asn Asn Gln His Gly Tyr Glu Ala Gly  
                   785                  790                  795                  800  
 Ser Val Ala Leu His Val Glu Lys Leu Pro Asn Glu Pro Asn Arg Leu  
                   805                  810                  815  
 Leu Ile Leu His Gly Phe Leu Asp Glu Asn Val His Phe Phe His Thr  
                   820                  825                  830  
 Asn Phe Leu Val Ser Gln Leu Ile Arg Ala Gly Lys Pro Tyr Gln Leu  
                   835                  840                  845  
 Gln Ile Tyr Pro Asn Glu Arg His Ser Ile Arg Cys Pro Glu Ser Gly  
                   850                  855                  860  
 Glu His Tyr Glu Val Thr Leu Leu His Phe Leu Gln Glu Tyr Leu  
                   865                  870                  875

<210> 36  
<211> 4180  
<212> DNA  
<213> Homo sapiens  
<400> 36

|             |            |             |             |             |             |      |
|-------------|------------|-------------|-------------|-------------|-------------|------|
| caggccgcg   | cctgggtcg  | tcaacttccg  | ggtcaaaggt  | gcctgagccg  | gcgggtcccc  | 60   |
| tgtgtccgcc  | gcggctgtcg | tcccccgtc   | ccgcccacttc | cggggtcg    | gtccccggca  | 120  |
| tggagcccg   | accgtgaggc | gcegctggac  | ccgggacgac  | ctgcccagt   | cggccgccc   | 180  |
| cccaagtccc  | ggtctgtgtc | ccacgctgc   | agctgaatg   | gaggctctt   | ggaccctta   | 240  |
| gaaggcaccc  | ctgccttc   | gaggtcagct  | gagcggtaa   | tgcggaaggt  | taagaaactg  | 300  |
| cgccctggaca | aggagaacac | cggaagttgg  | agaagcttct  | cgctgaattc  | cgagggggct  | 360  |
| gagaggatgg  | ccaccacccg | gacccaacg   | gccgaccgag  | gacgacgcgc  | cgccacagat  | 420  |
| gacccggccg  | cccgcttcca | ggtcagaag   | cactcg      | acgggctccg  | gagcatcatc  | 480  |
| cacggcagcc  | gcaagtaact | gggcctcatt  | gtcaacaagg  | cgccccacga  | cttccagttt  | 540  |
| gtgcagaaga  | cggatgagtc | tgggccccac  | tcccacccgc  | tctactacct  | ggaaatgcca  | 600  |
| tatggcagcc  | gagagaactc | cctcctctac  | tctgagattc  | ccaagaaggt  | cgaaaaagag  | 660  |
| gtctctgtgc  | tcctgtctc  | gaagcagatg  | ctggatcatt  | tccaggccac  | gccccaccat  | 720  |
| gggggtctact | ctcggagga  | ggagctgt    | acggagcgg   | aacgcctgg   | ggtcttcggc  | 780  |
| atcacctct   | acgacttcca | cagcagatg   | ggccttcc    | tcttccaggc  | cagcaacagc  | 840  |
| ctcttccact  | gccgogacgg | cgcaagaac   | ggcttcatgg  | tgcccccata  | gaaaccgctg  | 900  |
| gaaatcaaga  | cccagtgtc  | agggccccgg  | atggacccca  | aaatctgccc  | tgccgaccct  | 960  |
| gccttc      | ccttcatcaa | taacagcgcac | ctgtgggtgg  | ccaaacatcga | gacaggcggag | 1020 |
| gagcggcggc  | tgacottctg | ccaccaaggt  | ttatccaatg  | tcttggatga  | ccccaaagtct | 1080 |
| gcgggtgtgg  | ccacccctcg | catacaggaa  | gatgtc      | gcttacttgg  | gtactggtgg  | 1140 |
| tgccccacag  | cctcttggg  | aggttcagag  | ggcctcaaga  | cgctgcgaat  | cctgttatgag | 1200 |
| gaagtcgtat  | agtccgaggt | ggaggtcatt  | cacgtccc    | cttctgcgt   | agaagaaaagg | 1260 |
| aagacggact  | cgtatcggt  | ccccaggaca  | ggcagcaaga  | atcccaagat  | tgccttgaaa  | 1320 |
| ctggctgagt  | tccagactga | cagccaggcc  | aagatcgt    | cgacccagga  | gaaggagctg  | 1380 |
| gtgcagccct  | ttagtcgt   | gttcccga    | gtggatcata  | tcgcccggc   | cggttgacc   | 1440 |
| cgggatggca  | aatacgcc   | ggccatgttc  | ctggaccggc  | cccagcagt   | gtccagctc   | 1500 |
| gtcctccccc  | ccccggcc   | gttcatccc   | agcacagaga  | atgaggagc   | gcccgtagcc  | 1560 |
| tctgccagag  | ctgtccccag | aatgtcc     | ccgtatgtgg  | tgtacgagga  | ggtcaccac   | 1620 |
| gtctggatca  | atgttcatga | catcttctat  | cccttcccc   | aatcagaggg  | agaggacgag  | 1680 |
| ctctgtttt   | tccgcgcca  | tgaatgc     | accggcttct  | gccattt     | caaagtccacc | 1740 |
| gcccgtttaa  | aatcccgagg | ctacgattgg  | agtggcc     | tca         | ggagatgaa   | 1800 |
| ttaagtgcc   | ccattaagga | agagattgt   | ctgaccagc   | gtgaatgg    | ggtttggcg   | 1860 |
| aggcacggct  | ccaagggcac | caaggacac   | ccgctgg     | accacct     | cgtgtcagc   | 1920 |
| tatgaggccg  | ccggcgagat | cgtacgc     | accacgccc   | gttctcc     | tagtgc      | 1980 |
| atgagccaga  | acttcgacat | gttgc       | cactacagc   | gctg        | gac         | 2040 |
| gtgcacgt    | acaagctg   | cgccccgac   | gacgac      | tg          | cacaagc     | 2100 |
| tgggctagca  | tgtggaggc  | agccagct    | ccccggatt   | atgttcc     | agagatctc   | 2160 |
| catttccaca  | cgcgtcg    | tgtcg       | tacgg       | tctaca      | ccacgc      | 2220 |
| cagccaggga  | agaagcaccc | caccgt      | ttt         | gat         | tttgc       | 2280 |
| gtataatact  | ccttcaaagg | catca       | tt          | g           | cccccgtt    | 2340 |
| tacggcgtt   | ttgtgattga | ccgg        | cc          | gg          | tgg         | 2400 |
| gccctgaaaa  | accaaatggg | ccagg       | cc          | gg          | ttcg        | 2460 |
| gtggccgaga  | agtatggctt | catcg       | ac          | gg          | ggagg       | 2520 |
| gggggtttcc  | tctcg      | cat         | gg          | gg          | ccat        | 2580 |
| gcgggtgtcc  | cggtcaccgt | ctggatgg    | tacg        | ac          | ccat        | 2640 |
| gacgtccctg  | agaacaacca | gcacggct    | gagg        | gg          | gtgg        | 2700 |
| aagctgcca   | atgagccaa  | ccgtt       | cc          | gg          | ccat        | 2760 |
| cacttttcc   | acacaaactt | cctcg       | ca          | gg          | ccat        | 2820 |
| ctccagatct  | acccaaacga | gagac       | cc          | gg          | ccat        | 2880 |
| gaagtacagt  | tgctgc     | actt        | cc          | gg          | ccat        | 2940 |
| acatcacagc  | acaagtg    | ccgc        | cc          | gg          | ccat        | 3000 |
| ccgcgggccc  | cagt       | ttt         | cc          | gg          | ccat        | 3060 |
| gccttcac    | ccccgacg   | ttt         | cc          | gg          | ccat        | 3120 |
| gcttcttgt   | tgccg      | gagaca      | gag         | gg          | ccat        | 3180 |

|                                                                        |      |
|------------------------------------------------------------------------|------|
| ttctgggagg aggaggtcac acgctgatgg gcactggaga gcccagaaga gactcagagg      | 3240 |
| acggggctgc ctccgcctg gggctccctg tgacctctca gtccccctggc cggccagcc       | 3300 |
| accgtccccca gcacccaagc atgcaattgc ctgtcccccc cggccagcct ccccaacttg     | 3360 |
| atgtttgtgt tttgttggg gggatatttt tcataattat taaaagaca ggccgggcgc        | 3420 |
| ggtggctcac gtctgtaatc ccagcacttt gggaggctga ggcggggcggta cacctgagg     | 3480 |
| ttgggagttc aagaccagcc tggccaacat gggaaaccc cgtctctact aaaaatacaa       | 3540 |
| aaaatttagcc gggtgtggg ggcgtgcct ataatcccag ctactcgga ggctgaggca        | 3600 |
| ggagaatcgc ttgaacccgg gaggtggagg ttgcggtag ccaagatcgc accattgcac       | 3660 |
| tccagcctgg gcaacaagag cgaaactctg tctcaaaaata aataaaaaat aaaagacaga     | 3720 |
| aagcaagggg tgcctaaatc tagacttggg gtccacaccg ggcagcgggg ttgcaaccca      | 3780 |
| gcacctggta ggctccattt ctcccaagc ccgacttca ggcaggcact gaaacgcacc        | 3840 |
| gaacttccac gctctgctgg tcaagtggcggt ctgtccccctc cccagcccg ccccccagcc    | 3900 |
| acatgtgtct gcctgaccgg tacacaccag gggttccggg gttggagct gaaccatccc       | 3960 |
| cacctcaggg ttatatttcc ctctccctt ccctcccgca caagagctct gccaggcg         | 4020 |
| ggcaaaaaaaaaaa aaagtaaaaaa gaaaagaaaa aaaaaaaaaa gaaacaaacc acctctacat | 4080 |
| attatggaaa gaaaatattt ttgtcgattt ttattctttt ataattatgc gtggaaagaaag    | 4140 |
| tagacacatt aaacgattcc agttggaaac atgtcacctg                            | 4180 |

<210> 37  
<211> 819  
<212> PRT  
<213> Homo sapiens  
<400> 37

|                                                                 |  |
|-----------------------------------------------------------------|--|
| Met Arg Lys Val Lys Lys Leu Arg Leu Asp Lys Glu Asn Thr Gly Ser |  |
| 1 5 10 15                                                       |  |
| Trp Arg Ser Phe Ser Leu Asn Ser Glu Gly Ala Glu Arg Met Ala Thr |  |
| 20 25 30                                                        |  |
| Thr Gly Thr Pro Thr Ala Asp Arg Gly Asp Ala Ala Ala Thr Asp Asp |  |
| 35 40 45                                                        |  |
| Pro Ala Ala Arg Phe Gln Val Gln Lys His Ser Trp Asp Gly Leu Arg |  |
| 50 55 60                                                        |  |
| Ser Ile Ile His Gly Ser Arg Lys Tyr Ser Gly Leu Ile Val Asn Lys |  |
| 65 70 75 80                                                     |  |
| Ala Pro His Asp Phe Gln Phe Val Gln Lys Thr Asp Glu Ser Gly Pro |  |
| 85 90 95                                                        |  |
| His Ser His Arg Leu Tyr Tyr Leu Gly Met Pro Tyr Gly Ser Arg Glu |  |
| 100 105 110                                                     |  |
| Asn Ser Leu Leu Tyr Ser Glu Ile Pro Lys Lys Val Arg Lys Glu Ala |  |
| 115 120 125                                                     |  |
| Leu Leu Leu Ser Trp Lys Gln Met Leu Asp His Phe Gln Ala Thr     |  |
| 130 135 140                                                     |  |
| Pro His His Gly Val Tyr Ser Arg Glu Glu Glu Leu Leu Arg Glu Arg |  |
| 145 150 155 160                                                 |  |
| Lys Arg Leu Gly Val Phe Gly Ile Thr Ser Tyr Asp Phe His Ser Glu |  |
| 165 170 175                                                     |  |
| Ser Gly Leu Phe Leu Phe Gln Ala Ser Asn Ser Leu Phe His Cys Arg |  |
| 180 185 190                                                     |  |
| Asp Gly Gly Lys Asn Gly Phe Met Val Ser Pro Met Lys Pro Leu Glu |  |
| 195 200 205                                                     |  |
| Ile Lys Thr Gln Cys Ser Gly Pro Arg Met Asp Pro Lys Ile Cys Pro |  |
| 210 215 220                                                     |  |
| Ala Asp Pro Ala Phe Phe Ser Phe Ile Asn Asn Ser Asp Leu Trp Val |  |
| 225 230 235 240                                                 |  |
| Ala Asn Ile Glu Thr Gly Glu Glu Arg Arg Leu Thr Phe Cys His Gln |  |
| 245 250 255                                                     |  |
| Gly Leu Ser Asn Val Leu Asp Asp Pro Lys Ser Ala Gly Val Ala Thr |  |
| 260 265 270                                                     |  |

Phe Val Ile Gln Glu Glu Phe Asp Arg Phe Thr Gly Tyr Trp Trp Cys  
 275 280 285  
 Pro Thr Ala Ser Trp Glu Gly Ser Glu Gly Leu Lys Thr Leu Arg Ile  
 290 295 300  
 Leu Tyr Glu Glu Val Asp Glu Ser Glu Val Glu Val Ile His Val Pro  
 305 310 315 320  
 Ser Pro Ala Leu Glu Glu Arg Lys Thr Asp Ser Tyr Arg Tyr Pro Arg  
 325 330 335  
 Thr Gly Ser Lys Asn Pro Lys Ile Ala Leu Lys Leu Ala Glu Phe Gln  
 340 345 350  
 Thr Asp Ser Gln Gly Lys Ile Val Ser Thr Gln Glu Lys Glu Leu Val  
 355 360 365  
 Gln Pro Phe Ser Ser Leu Phe Pro Lys Val Glu Tyr Ile Ala Arg Ala  
 370 375 380  
 Gly Trp Thr Arg Asp Gly Lys Tyr Ala Trp Ala Met Phe Leu Asp Arg  
 385 390 395 400  
 Pro Gln Gln Trp Leu Gln Leu Val Leu Pro Pro Ala Leu Phe Ile  
 405 410 415  
 Pro Ser Thr Glu Asn Glu Glu Gln Arg Leu Ala Ser Ala Arg Ala Val  
 420 425 430  
 Pro Arg Asn Val Gln Pro Tyr Val Val Tyr Glu Glu Val Thr Asn Val  
 435 440 445  
 Trp Ile Asn Val His Asp Ile Phe Tyr Pro Phe Pro Gln Ser Glu Gly  
 450 455 460  
 Glu Asp Glu Leu Cys Phe Leu Arg Ala Asn Glu Cys Lys Thr Gly Phe  
 465 470 475 480  
 Cys His Leu Tyr Lys Val Thr Ala Val Leu Lys Ser Gln Gly Tyr Asp  
 485 490 495  
 Trp Ser Glu Pro Phe Ser Pro Gly Glu Asp Glu Phe Lys Cys Pro Ile  
 500 505 510  
 Lys Glu Glu Ile Ala Leu Thr Ser Gly Glu Trp Glu Val Leu Ala Arg  
 515 520 525  
 His Gly Ser Lys Gly Thr Lys Asp Thr Pro Leu Glu His His Leu Tyr  
 530 535 540  
 Val Val Ser Tyr Glu Ala Ala Gly Glu Ile Val Arg Leu Thr Thr Pro  
 545 550 555 560  
 Gly Phe Ser His Ser Cys Ser Met Ser Gln Asn Phe Asp Met Phe Val  
 565 570 575  
 Ser His Tyr Ser Ser Val Ser Thr Pro Pro Cys Val His Val Tyr Lys  
 580 585 590  
 Leu Ser Gly Pro Asp Asp Asp Pro Leu His Lys Gln Pro Arg Phe Trp  
 595 600 605  
 Ala Ser Met Met Glu Ala Ala Ser Cys Pro Pro Asp Tyr Val Pro Pro  
 610 615 620  
 Glu Ile Phe His Phe His Thr Arg Ser Asp Val Arg Leu Tyr Gly Met  
 625 630 635 640  
 Ile Tyr Lys Pro His Ala Leu Gln Pro Gly Lys Lys His Pro Thr Val  
 645 650 655  
 Leu Phe Val Tyr Gly Gly Pro Gln Val Gln Leu Val Asn Asn Ser Phe  
 660 665 670  
 Lys Gly Ile Lys Tyr Leu Arg Leu Asn Thr Leu Ala Ser Leu Gly Tyr  
 675 680 685  
 Ala Val Val Val Ile Asp Gly Arg Gly Ser Cys Gln Arg Gly Leu Arg  
 690 695 700  
 Phe Glu Gly Ala Leu Lys Asn Gln Met Gly Gln Val Glu Ile Glu Asp  
 705 710 715 720  
 Gln Val Glu Gly Leu Gln Phe Val Ala Glu Lys Tyr Gly Phe Ile Asp  
 725 730 735

Leu Ser Arg Val Ala Ile His Gly Trp Ser Tyr Gly Gly Phe Leu Ser  
 740 745 750  
 Leu Met Gly Leu Ile His Lys Pro Gln Val Phe Lys Ala Gln Pro Leu  
 755 760 765  
 Ala Tyr Pro Pro Arg Leu Pro Gly Arg Lys Arg Ala Leu Phe Pro His  
 770 775 780  
 Lys Leu Pro Arg Leu Pro Thr Asp Pro Ser Arg Glu Thr Leu Pro Ala  
 785 790 795 800  
 Pro Asp Leu Pro Gln Arg Glu Thr Gln Tyr Ser Leu Pro Arg Val Gly  
 805 810 815  
 Arg Ala Leu

<210> 38  
 <211> 4120  
 <212> DNA  
 <213> Homo sapiens  
 <400> 38

|             |             |            |             |             |             |      |
|-------------|-------------|------------|-------------|-------------|-------------|------|
| caggccgcgc  | cctgggtcg   | tcaacttccg | ggtcaaaggt  | gcctgagccg  | gcgggtcccc  | 60   |
| tgtgtccgcc  | gcggcgtcg   | ccccccgctc | ccgcccacttc | cggggtcgca  | gtccccggca  | 120  |
| tggagccgcg  | accgtgaggc  | gccgctggac | ccggggacgac | ctgcccagtc  | cggccgcgc   | 180  |
| cccacgtccc  | ggtctgtgtc  | ccacgcctgc | agctggaaatg | gaggctctct  | ggacccctta  | 240  |
| gaaggcacc   | ctgcocctct  | gaggtcagct | gagcggtaa   | tgcggaaaggt | taagaaaactg | 300  |
| cgcctggaca  | aggagaacac  | cggaagtttg | agaagcttct  | cgcgtgaattc | cgagggggct  | 360  |
| gagaggatgg  | ccaccacccg  | gaccccaacg | gccgaccgag  | gcgcacgcgc  | cgcacacagat | 420  |
| gacccggccg  | cccgcttcca  | ggtgcagaag | cactcgtggg  | acgggctccg  | gagcatcatc  | 480  |
| cacggcagcc  | gcaagtactc  | gggcctcatt | gtcaacaagg  | cgcggccacga | cttccagtt   | 540  |
| gtgcagaaga  | cggatgagtc  | tggggccac  | tcccacccgc  | tctactacct  | ggaaatgcca  | 600  |
| tatggcagcc  | gagagaactc  | cctcctctac | tctgagattc  | ccaagaaggt  | ccggaaagag  | 660  |
| gctctgctgc  | tcctgtcctg  | gaagcagatg | ctggatcatt  | tccaggccac  | gccccaccat  | 720  |
| ggggtctact  | ctcgggagga  | ggagctgctg | agggagcgg   | aacgcctggg  | ggtcttcggc  | 780  |
| atcacctct   | acgacttcca  | cagcgagat  | ggccttctcc  | tcttccaggc  | cagcaacagc  | 840  |
| ctcttccact  | gccgcgcacgg | cgcaagaac  | ggttcatgg   | tgtcccstat  | gaaaccgctg  | 900  |
| gaaatcaaga  | cccagtgc    | agggccccgg | atggacccca  | aatctgccc   | tgccgaccct  | 960  |
| gccttcttct  | ccttcatcaa  | taacagcgc  | ctgtgggtgg  | ccaaacatcga | gacaggcgc   | 1020 |
| gagcggcggc  | tgaccttctg  | ccaccaaggt | ttatccaatg  | tcttggatga  | ccccaaagtct | 1080 |
| gccccgtgtt  | ccacccctcg  | catacaggaa | gagttcgacc  | gtttcaactgg | gtactggtgg  | 1140 |
| tgcggccac   | cctcctggga  | aggttcagag | ggcctcaaga  | cgcgtcgaa   | cctgtatgag  | 1200 |
| gaagtgcgt   | agtccgaggt  | ggaggtcatt | cacgtcccc   | cttctgcgt   | agaagaaaagg | 1260 |
| aagacggact  | cgtatcggt   | ccccaggaca | ggcagcaaga  | atcccaagat  | tgccttggaa  | 1320 |
| ctggctgagt  | tccagactga  | cagccaggcc | aagatcgtct  | cgacccagga  | gaaggagctg  | 1380 |
| gtcagccct   | ttagctcgct  | tttcccgaag | gtggagatca  | tcgcaggcc   | cgggtggacc  | 1440 |
| cgggatggca  | aatacgctg   | ggccatgttc | ctggaccggc  | cccaacgcgt  | gttccagctc  | 1500 |
| gtccttctcc  | ccccggccct  | gttcatcccg | agcacagaga  | atgaggagca  | gcggctagcc  | 1560 |
| tctgccagag  | ctgtccccag  | aatgttccag | ccgtatgtgg  | tgtacgagga  | ggtccaccaac | 1620 |
| gtctggatca  | atgttcatga  | catcttctat | cccttcccc   | aatcagaggg  | agaggacgag  | 1680 |
| ctctgccttc  | tcgcgcctaa  | tgaatgcag  | accggcttct  | gccatttgta  | caaagtccacc | 1740 |
| gccgttttaa  | aatcccagg   | ctacgattgg | agtggccct   | tcagccccgg  | ggaagatgaa  | 1800 |
| ttaagtgcc   | ccattaagga  | agagattgt  | ctgaccagcg  | gtgaatggga  | gttggggcg   | 1860 |
| aggcacggct  | ccaagggcac  | caaggacacg | ccgctggagc  | accacctcta  | cgtggcagc   | 1920 |
| tatgaggccg  | cggcgcagat  | cgtacgcctc | accacgcccc  | gtttctccca  | tagctgcctc  | 1980 |
| atgagccaga  | acttcgacat  | tttcgtcagc | cactacagca  | gcgtgagcac  | gccgcctgc   | 2040 |
| gtgcacgtct  | acaagctgag  | cggccccgac | gacgacccccc | tgccacaagca | gccccgttcc  | 2100 |
| tgggctagca  | ttagtggaggc | agccagctgc | ccccccggatt | atgttccctcc | agagatcttc  | 2160 |
| catttccaca  | cgcgcgtcg   | tgtgcggctc | tacggcatga  | tctacaagcc  | ccacgccttg  | 2220 |
| cagccaggga  | agaagcacc   | caccgtcctc | tttgttatgt  | gaggccccca  | ggtgcagctg  | 2280 |
| gtgaataact  | ccttcaaagg  | catcaagtac | ttgcggctca  | acacactggc  | ctccctggc   | 2340 |
| tacgcccgtgg | ttgtgattga  | ccgcaggggc | tcctgtcagc  | gaggggcttcg | gttcgaaggg  | 2400 |
| gccctgaaaa  | accaaatggg  | ccaggtggag | atcgaggacc  | aggtggaggg  | cctgcagttc  | 2460 |

|                                                                           |      |
|---------------------------------------------------------------------------|------|
| gtggccgaga agtatggctt catcgacctx agccgagttg ccatccatgg ctggtcctac         | 2520 |
| gggggcttcc ttcgcgtcat ggggctaatac cacaaggccc aggtgttcaa ggcccaaccg        | 2580 |
| cttgcttatac ctccacggct tcctggacga aaacgtgcac ttttccaca caaaacttcc         | 2640 |
| cgtctcccaa ctgatccgag cagggaaacc ttaccagctc cagatctacc ccaacgagag         | 2700 |
| acacagtatt cgctccccg agtcgggcga gcactatgaa gtcacggtgc tgcaacttct          | 2760 |
| acaggaatac ctctgagct gcccacccggg agccgcacca tcacagcaca agtggctgca         | 2820 |
| gcctccgcgg ggaaccaggc gggagggact gagtgccccg cgggccccag tgaggcactt         | 2880 |
| tgtccccccc agcgctggcc agccccggg agccgcgtgcc ttcacccccc cgacgccttt         | 2940 |
| tatccctttt taaacgtct tgggttttat gtccgcgtct tctgggttgc cgagacagag          | 3000 |
| agatgggtt ctccggccag ccctctctc cccgccttc tggaggagg aggtcacacg             | 3060 |
| ctgtatggca ctggagaggc cagaagagac tcagaggagc gggctgcctt ccgcctgggg         | 3120 |
| ctccctgtga cctctcagtc ccctggcccg gccagccacc gtc(cccagca cccaageatg        | 3180 |
| caattgcctg tcccccccg ccagcctccc caacttgatg tttgtttt gtttgggggg            | 3240 |
| atattttta taattattha aaagacaggc cgggcgggtt ggctcaegtc tgaatccca           | 3300 |
| gcactttggg aggctgagggc gggcggtatca cctgaggtt ggagttcaag accagcctgg        | 3360 |
| ccaaacatggg gaaaccccgct ctctactaaa aataaaaaaa attagccggg tgggtggcg        | 3420 |
| cgtgcctata atcccagcta ctccggggc tgaggcagga gaatcgctt aacccgggag           | 3480 |
| gtggagggtt cgggtgagccca agatcgaccc attgcactcc acgcctggca acaagagcga       | 3540 |
| aactctgtct caaaataaat aaaaaataaa agacagaaaag caaggggtgc ctaaatctag        | 3600 |
| acttgggggtc cacaccggc agcgggggtt caacccagca cctgttaggc tccatttctt         | 3660 |
| cccaagcccg agcagagggtt catgcgggc ccacaggaga agcggccagg gcccgcgggg         | 3720 |
| ggcaccaccc gtggacagcc ctctgtccc caagcttca ggcaaggact gaaacgcacc           | 3780 |
| gaacctccac gctctgtgg tcagtggcg cgtccctc cccagcccg ccgcccagcc              | 3840 |
| acatgtgtct gcctgacccg tacacaccag ggttccggg gttgggagct gaaccatccc          | 3900 |
| cacctcaggg ttatatttcc ctctcccccctt ccctcccccgc caagagctt gccaggggcg       | 3960 |
| ggaaaaaaaaaa aaagaaaaaaaaaa gaaaagaaaaa aaaaaaaaaaa gaaacaaacc acctctacat | 4020 |
| attatggaaa gaaaatattt ttgtcgattt ttattttt ataattatgc gtggagaag            | 4080 |
| tagacacatt aaacgattcc agttggaaac atgtcacctg                               | 4120 |

<210> 39  
<211> 819  
<212> PRT  
<213> Homo sapiens  
<400> 39

|                                                                 |  |
|-----------------------------------------------------------------|--|
| Met Arg Lys Val Lys Lys Leu Arg Leu Asp Lys Glu Asn Thr Gly Ser |  |
| 1 5 10 15                                                       |  |
| Trp Arg Ser Phe Ser Leu Asn Ser Glu Gly Ala Glu Arg Met Ala Thr |  |
| 20 25 30                                                        |  |
| Thr Gly Thr Pro Thr Ala Asp Arg Gly Asp Ala Ala Ala Thr Asp Asp |  |
| 35 40 45                                                        |  |
| Pro Ala Ala Arg Phe Gln Val Gln Lys His Ser Trp Asp Gly Leu Arg |  |
| 50 55 60                                                        |  |
| Ser Ile Ile His Gly Ser Arg Lys Tyr Ser Gly Leu Ile Val Asn Lys |  |
| 65 70 75 80                                                     |  |
| Ala Pro His Asp Phe Gln Phe Val Gln Lys Thr Asp Glu Ser Gly Pro |  |
| 85 90 95                                                        |  |
| His Ser His Arg Leu Tyr Tyr Leu Gly Met Pro Tyr Gly Ser Arg Glu |  |
| 100 105 110                                                     |  |
| Asn Ser Leu Leu Tyr Ser Glu Ile Pro Lys Lys Val Arg Lys Glu Ala |  |
| 115 120 125                                                     |  |
| Leu Leu Leu Ser Trp Lys Gln Met Leu Asp His Phe Gln Ala Thr     |  |
| 130 135 140                                                     |  |
| Pro His His Gly Val Tyr Ser Arg Glu Glu Glu Leu Leu Arg Glu Arg |  |
| 145 150 155 160                                                 |  |
| Lys Arg Leu Gly Val Phe Gly Ile Thr Ser Tyr Asp Phe His Ser Glu |  |
| 165 170 175                                                     |  |
| Ser Gly Leu Phe Leu Phe Gln Ala Ser Asn Ser Leu Phe His Cys Arg |  |
| 180 185 190                                                     |  |

Asp Gly Gly Lys Asn Gly Phe Met Val Ser Pro Met Lys Pro Leu Glu  
     195                       200                       205  
 Ile Lys Thr Gln Cys Ser Gly Pro Arg Met Asp Pro Lys Ile Cys Pro  
     210                       215                       220  
 Ala Asp Pro Ala Phe Phe Ser Phe Ile Asn Asn Ser Asp Leu Trp Val  
     225                       230                       235                       240  
 Ala Asn Ile Glu Thr Gly Glu Glu Arg Arg Leu Thr Phe Cys His Gln  
     245                       250                       255  
 Gly Leu Ser Asn Val Leu Asp Asp Pro Lys Ser Ala Gly Val Ala Thr  
     260                       265                       270  
 Phe Val Ile Gln Glu Glu Phe Asp Arg Phe Thr Gly Tyr Trp Trp Cys  
     275                       280                       285  
 Pro Thr Ala Ser Trp Glu Gly Ser Glu Gly Leu Lys Thr Leu Arg Ile  
     290                       295                       300  
 Leu Tyr Glu Glu Val Asp Glu Ser Glu Val Glu Val Ile His Val Pro  
     305                       310                       315                       320  
 Ser Pro Ala Leu Glu Glu Arg Lys Thr Asp Ser Tyr Arg Tyr Pro Arg  
     325                       330                       335  
 Thr Gly Ser Lys Asn Pro Lys Ile Ala Leu Lys Leu Ala Glu Phe Gln  
     340                       345                       350  
 Thr Asp Ser Gln Gly Lys Ile Val Ser Thr Gln Glu Lys Glu Leu Val  
     355                       360                       365  
 Gln Pro Phe Ser Ser Leu Phe Pro Lys Val Glu Tyr Ile Ala Arg Ala  
     370                       375                       380  
 Gly Trp Thr Arg Asp Gly Lys Tyr Ala Trp Ala Met Phe Leu Asp Arg  
     385                       390                       395                       400  
 Pro Gln Gln Trp Leu Gln Leu Val Leu Leu Pro Pro Ala Leu Phe Ile  
     405                       410                       415  
 Pro Ser Thr Glu Asn Glu Glu Gln Arg Leu Ala Ser Ala Arg Ala Val  
     420                       425                       430  
 Pro Arg Asn Val Gln Pro Tyr Val Val Tyr Glu Glu Val Thr Asn Val  
     435                       440                       445  
 Trp Ile Asn Val His Asp Ile Phe Tyr Pro Phe Pro Gln Ser Glu Gly  
     450                       455                       460  
 Glu Asp Glu Leu Cys Phe Leu Arg Ala Asn Glu Cys Lys Thr Gly Phe  
     465                       470                       475                       480  
 Cys His Leu Tyr Lys Val Thr Ala Val Leu Lys Ser Gln Gly Tyr Asp  
     485                       490                       495  
 Trp Ser Glu Pro Phe Ser Pro Gly Glu Asp Glu Phe Lys Cys Pro Ile  
     500                       505                       510  
 Lys Glu Glu Ile Ala Leu Thr Ser Gly Glu Trp Glu Val Leu Ala Arg  
     515                       520                       525  
 His Gly Ser Lys Gly Thr Lys Asp Thr Pro Leu Glu His His Leu Tyr  
     530                       535                       540  
 Val Val Ser Tyr Glu Ala Ala Gly Glu Ile Val Arg Leu Thr Thr Pro  
     545                       550                       555                       560  
 Gly Phe Ser His Ser Cys Ser Met Ser Gln Asn Phe Asp Met Phe Val  
     565                       570                       575  
 Ser His Tyr Ser Ser Val Ser Thr Pro Pro Cys Val His Val Tyr Lys  
     580                       585                       590  
 Leu Ser Gly Pro Asp Asp Asp Pro Leu His Lys Gln Pro Arg Phe Trp  
     595                       600                       605  
 Ala Ser Met Met Glu Ala Ala Ser Cys Pro Pro Asp Tyr Val Pro Pro  
     610                       615                       620  
 Glu Ile Phe His Phe His Thr Arg Ser Asp Val Arg Leu Tyr Gly Met  
     625                       630                       635                       640  
 Ile Tyr Lys Pro His Ala Leu Gln Pro Gly Lys Lys His Pro Thr Val  
     645                       650                       655

Leu Phe Val Tyr Gly Gly Pro Gln Val Gln Leu Val Asn Asn Ser Phe  
 660 665 670  
 Lys Gly Ile Lys Tyr Leu Arg Leu Asn Thr Leu Ala Ser Leu Gly Tyr  
 675 680 685  
 Ala Val Val Val Ile Asp Gly Arg Gly Ser Cys Gln Arg Gly Leu Arg  
 690 695 700  
 Phe Glu Gly Ala Leu Lys Asn Gln Met Gly Gln Val Glu Ile Glu Asp  
 705 710 715 720  
 Gln Val Glu Gly Leu Gln Phe Val Ala Glu Lys Tyr Gly Phe Ile Asp  
 725 730 735  
 Leu Ser Arg Val Ala Ile His Gly Trp Ser Tyr Gly Gly Phe Leu Ser  
 740 745 750  
 Leu Met Gly Leu Ile His Lys Pro Gln Val Phe Lys Ala Gln Pro Leu  
 755 760 765  
 Ala Tyr Pro Pro Arg Leu Pro Gly Arg Lys Arg Ala Leu Phe Pro His  
 770 775 780  
 Lys Leu Pro Arg Leu Pro Thr Asp Pro Ser Arg Glu Thr Leu Pro Ala  
 785 790 795 800  
 Pro Asp Leu Pro Gln Arg Glu Thr Gln Tyr Ser Leu Pro Arg Val Gly  
 805 810 815  
 Arg Ala Leu

<210> 40  
 <211> 4037  
 <212> DNA  
 <213> Homo sapiens  
 <400> 40

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| caggccgcgc  | cctgggtcgc  | tcaacttccg  | ggtcaaaggt  | gcctgagccg  | gcgggtcccc  | 60   |
| tgtgtccgcc  | gccccgtgtcg | tcccccgcctc | ccggccacttc | cggggtcgca  | gtcccgggca  | 120  |
| tggagccgcg  | accgtgaggc  | gcccgtggac  | ccgggacgcac | ctgcccagtc  | cgccgcggcgc | 180  |
| cccacgtccc  | ggtctgtgtc  | ccacgcctgc  | agctggaaatg | gaggctctct  | ggacctttta  | 240  |
| gaaggcacc   | ctgcccctct  | gaggtcagct  | gagcggtaa   | tgccggaaggt | taagaaaactg | 300  |
| cgcctggaca  | aggagaacac  | cggaagttgg  | agaagcttct  | cgctgaattc  | cgagggggct  | 360  |
| gagaggatgg  | ccaccacccgg | gaccccaacg  | gccgaccgag  | gcgcacgcgc  | cgccacagat  | 420  |
| gacccggccg  | cccgcttcca  | ggtgcagaag  | cactcggtgg  | acgggctccg  | gagcatcatc  | 480  |
| cacggcagcc  | gcaagtactc  | gggcctcatt  | gtcaacaagg  | cgccccacga  | cttccagttt  | 540  |
| gtgcagaaga  | cgatgtgtc   | tgggcccccac | tcccacccgc  | tctactacct  | ggaaatgcca  | 600  |
| tatggcagcc  | gagagaactc  | cctcctctac  | tctgagattc  | ccaagaaggt  | ccggaaagag  | 660  |
| gctctgctgc  | tcctgtcctg  | gaagcagatg  | ctggatcatt  | tccaggccac  | gccccaccat  | 720  |
| ggggctact   | ctcggggagga | ggagctgctg  | agggagcggaa | aacgcctgggg | ggtcttcggc  | 780  |
| atcacctcct  | acgacttcca  | cagcgagatg  | ggcctcttcc  | tcttccaggc  | cagcaacagc  | 840  |
| ctcttccact  | gccgcgcacgg | cgcaagaac   | ggcttcatgg  | tgtccccttat | gaaaccgctg  | 900  |
| gaaatcaaga  | cccagtgtc   | agggccccgg  | atggacccca  | aatctgccc   | tgccgaccct  | 960  |
| gccttcttct  | cettcatcaa  | taacagcgcac | ctgtgggtgg  | ccaacatcga  | gacaggcggag | 1020 |
| gagcggcggc  | tgaccttctg  | ccaccaaggt  | ttatccaatg  | tcttggatga  | ccccaaagtct | 1080 |
| gcgggtgtgg  | ccacccctcg  | catacaggaa  | gagttcgacc  | gttcaactgg  | gtactgggtgg | 1140 |
| tgccccacag  | cctcctggga  | aggttcagag  | ggcctaaga   | cgtgcgaat   | cctgtattag  | 1200 |
| gaagtgcgt   | agtcccgaggt | ggaggtcatt  | cacgtcccct  | ctcctgcgt   | agaagaaaagg | 1260 |
| aagacggact  | cgtatcggt   | ccccaggaca  | ggcagcaaga  | atcccaagat  | tgcctgaaa   | 1320 |
| ctggctgagt  | tccagactga  | cagccagggc  | aagatcgtct  | cgaccaggaa  | gaaggagctg  | 1380 |
| gtgcaggccct | tcaagtcgt   | gttcccgaag  | gtggagtaca  | tcgcccaggc  | cggttgacc   | 1440 |
| cgggatggca  | aatacgcctg  | ggccatgttc  | ctggaccggc  | cccaggactg  | gtccagctc   | 1500 |
| gtccttctcc  | ccccggccct  | gttcatcccg  | agcacagaga  | atgaggagca  | gcggctagcc  | 1560 |
| tctgccagag  | ctgtccccag  | gaatgtccag  | ccgtatgtgg  | tgtacgagga  | ggtcaccaac  | 1620 |
| gtctggatca  | atgttcatga  | catcttctat  | cccttcccc   | aatcagaggg  | agaggacgag  | 1680 |
| ctctgcttcc  | tccgcgccaa  | tgaatgcgaag | accggcttct  | gccatttgta  | caaagtccacc | 1740 |
| gccgttttaa  | aatcccagg   | ctacgattgg  | agtgagccct  | tcagccccgg  | ggaagatgaa  | 1800 |
| ttaagtgcc   | ccattaagga  | agagattgct  | ctgaccagcg  | gtgaatggga  | ggttttggcg  | 1860 |

|             |              |             |             |             |             |      |
|-------------|--------------|-------------|-------------|-------------|-------------|------|
| aggcacgct   | ccaaggcgcac  | caaggacacg  | ccgctggagc  | accacctcta  | cgtggtcagc  | 1920 |
| tatgaggcgg  | ccggcgagat   | cgtacgcctc  | accacccccg  | gcttctccca  | tagctgtcc   | 1980 |
| atgagccaga  | acttcgacat   | gttcgtcagc  | cactacagca  | gcgtgagcac  | gccgcctcgc  | 2040 |
| gtgcacgtct  | acaagcttag   | cggccccgac  | gacgacccccc | tgcacaagca  | gccccgcttc  | 2100 |
| tgggctagca  | tgatggaggc   | agccagctgc  | ccccccgatt  | atgttcttc   | agagatcttc  | 2160 |
| catttccaca  | cgcgctcgg    | tgtgcggctc  | tacggcatga  | tctacaagcc  | ccacgccttg  | 2220 |
| cagccaggg   | agaagcaccc   | caccgtccctc | tttgtatatg  | gaggccccca  | ggtgcagctg  | 2280 |
| gtgaataact  | ccttcaaagg   | catcaagtac  | ttgcgctca   | acacactggc  | ctccctggc   | 2340 |
| tacggccgtgg | ttgtgtattga  | cggcagggc   | tcctgtcage  | gagggcttcg  | gttcgaaggg  | 2400 |
| gcccgtaaaa  | accaaataggg  | ccaggtggag  | atcgaggacc  | aggtggaggg  | cctgcagttc  | 2460 |
| gtggccgaga  | agtatggctt   | catcgacctg  | agccgagttg  | ccatccatgg  | ctggcttac   | 2520 |
| gggggctcc   | tctcgctcat   | ggggctaatac | cacaagcccc  | aggtgttcaa  | ggcccaacccg | 2580 |
| cttgcttatac | ctccacggct   | tcctggacga  | aaacgtgcac  | tttttccaca  | caaacttcct  | 2640 |
| cgtctccaa   | ctgatccgag   | cagggaaacc  | ttaccoagctc | cagatctacc  | ccaacgagag  | 2700 |
| acacagtatt  | cgctgcccc    | agtcgggca   | gcaactatgaa | gtcacgttc   | tgcaacttct  | 2760 |
| acaggaataac | ctctgagct    | gcccacccgg  | agccgcccaca | tcacagcaca  | agtggctgca  | 2820 |
| gcctccgcgg  | ggaaccaggc   | gggagggact  | gagtggcccg  | egggccccag  | tgaggcactt  | 2880 |
| tgtccccc    | agcgctggcc   | agccccgagg  | agccgctgcc  | ttcacccgccc | cgacgccttt  | 2940 |
| tatccttttt  | taaacgctct   | tgggttttat  | gtccgctgct  | tcttggttgc  | cgagacagag  | 3000 |
| agatgggtgt  | ctcgggccag   | ccccctccctc | ccccgccttc  | tgggaggagg  | aggtcacadcg | 3060 |
| ctgatggca   | ctggagaggc   | cagaagagac  | tcagaggagc  | gggctgcctt  | ccgcctgggg  | 3120 |
| ctccctgtga  | cctctcagtc   | ccctggcccg  | gccagccacc  | gtccccagca  | cccaagcatg  | 3180 |
| caattgcctg  | tccccccccc   | ccagcctccc  | caacttgatg  | tttgtgtttt  | gtttgggggg  | 3240 |
| atattttca   | taatttatta   | aaagacaggc  | cgggcgcggt  | ggtcacgctc  | tgtaatccca  | 3300 |
| gcactttggg  | aggctgaggc   | gggcccata   | cctgagggtt  | ggagttcaag  | accagcctgg  | 3360 |
| ccaacatggg  | gaaaacccgt   | ctctactaaa  | aataaaaaaa  | attagccggg  | tgtggggcgc  | 3420 |
| cgtgcctata  | atcccgacta   | ctcgggaggc  | tgaggcagga  | gaatcgctt   | aacccggggag | 3480 |
| gtggaggttg  | cggtgagcc    | agatcgacc   | attgcactcc  | agcctggca   | acaagagcga  | 3540 |
| aactctgtct  | caaaaataat   | aaaaaaaataa | agacagaaaag | caaggggtgc  | ctaaatctag  | 3600 |
| acttggggtc  | cacacccggc   | agcgggggtt  | caacccagca  | cctggtaggc  | tccatttctt  | 3660 |
| cccaagcccg  | actttcaggc   | aggcactgaa  | acgcacccgaa | cttccacgct  | ctgctggtca  | 3720 |
| gtggcggctg  | tccccctcccc  | agcccagccg  | cccagccaca  | tgtgtctgc   | tgaccctgtac | 3780 |
| acaccagggg  | ttccggggtt   | gggagctgaa  | ccatccccac  | ctcagggtta  | tatccctctc  | 3840 |
| tccctttccc  | tccccgccaa   | gagctctgcc  | agggggccggc | aaaaaaaaaa  | gtaaaaagaa  | 3900 |
| aagaaaaaaaa | aaaaaaaaagaa | acaaaaccacc | tctacatatt  | atggaaagaa  | aatatttttg  | 3960 |
| tcgattctta  | ttcttttata   | attatgcgtg  | gaagaagtag  | acacattaaa  | cgattccagt  | 4020 |
| tggaaacatg  | tcacactg     |             |             |             |             | 4037 |

<210> 41  
<211> 706  
<212> PRT  
<213> Homo sapiens  
<400> 41

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asp | Thr | Asp | Val | Val | Tyr | Lys | Ser | Glu | Asn | Gly | His | Ile | Val | Ile | Lys | Leu |
| 1   |     |     |     | 5   |     |     |     | 10  |     |     |     |     |     |     | 15  |     |
| Asn | Ile | Glu | Thr | Asn | Ala | Thr | Thr | Leu | Leu | Leu | Glu | Asn | Thr | Thr | Phe |     |
|     |     |     |     | 20  |     |     |     | 25  |     |     |     |     |     | 30  |     |     |
| Val | Thr | Phe | Lys | Ala | Ser | Arg | His | Ser | Val | Ser | Pro | Asp | Leu | Lys | Tyr |     |
|     |     |     | 35  |     |     |     | 40  |     |     |     |     | 45  |     |     |     |     |
| Val | Leu | Leu | Ala | Tyr | Asp | Val | Lys | Gln | Ile | Phe | His | Tyr | Ser | Tyr | Thr |     |
|     |     |     | 50  |     |     |     | 55  |     |     |     | 60  |     |     |     |     |     |
| Ala | Ser | Tyr | Val | Ile | Tyr | Asn | Ile | His | Thr | Arg | Glu | Val | Trp | Glu | Leu |     |
|     |     |     | 65  |     |     |     | 70  |     |     |     | 75  |     |     | 80  |     |     |
| Asn | Pro | Pro | Glu | Val | Glu | Asp | Ser | Val | Leu | Gln | Tyr | Ala | Ala | Trp | Gly |     |
|     |     |     |     | 85  |     |     |     | 90  |     |     |     |     |     | 95  |     |     |
| Val | Gln | Gly | Gln | Gln | Leu | Ile | Tyr | Ile | Phe | Glu | Asn | Asn | Ile | Tyr | Tyr |     |
|     |     |     |     | 100 |     |     |     | 105 |     |     |     |     | 110 |     |     |     |

Gln Pro Asp Ile Lys Ser Ser Ser Leu Arg Leu Thr Ser Ser Gly Lys  
 115 120 125  
 Glu Glu Ile Ile Phe Asn Gly Ile Ala Asp Trp Leu Tyr Glu Glu Glu  
 130 135 140  
 Leu Leu His Ser His Ile Ala His Trp Trp Ser Pro Asp Gly Glu Arg  
 145 150 155 160  
 Leu Ala Phe Leu Met Ile Asn Asp Ser Leu Val Pro Thr Met Val Ile  
 165 170 175  
 Pro Arg Phe Thr Gly Ala Leu Tyr Pro Lys Gly Lys Gln Tyr Pro Tyr  
 180 185 190  
 Pro Lys Ala Gly Gln Val Asn Pro Thr Ile Lys Leu Tyr Val Val Asn  
 195 200 205  
 Leu Tyr Gly Pro Thr His Thr Leu Glu Leu Met Pro Pro Asp Ser Phe  
 210 215 220  
 Lys Ser Arg Glu Tyr Tyr Ile Thr Met Val Lys Trp Val Ser Asn Thr  
 225 230 235 240  
 Lys Thr Val Val Arg Trp Leu Asn Arg Pro Gln Asn Ile Ser Ile Leu  
 245 250 255  
 Thr Val Cys Glu Thr Thr Gly Ala Cys Ser Lys Lys Tyr Glu Met  
 260 265 270  
 Thr Ser Asp Thr Trp Leu Ser Gln Gln Asn Glu Glu Pro Val Phe Ser  
 275 280 285  
 Arg Asp Gly Ser Lys Phe Phe Met Thr Val Pro Val Lys Gln Gly Gly  
 290 295 300  
 Arg Gly Glu Phe His His Ile Ala Met Phe Leu Ile Gln Ser Lys Ser  
 305 310 315 320  
 Glu Gln Ile Thr Val Arg His Leu Thr Ser Gly Asn Trp Glu Val Ile  
 325 330 335  
 Lys Ile Leu Ala Tyr Asp Glu Thr Thr Gln Lys Ile Tyr Phe Leu Ser  
 340 345 350  
 Thr Glu Ser Ser Pro Arg Gly Arg Gln Leu Tyr Ser Ala Ser Thr Glu  
 355 360 365  
 Gly Leu Leu Asn Arg Gln Cys Ile Ser Cys Asn Phe Met Lys Glu Gln  
 370 375 380  
 Cys Thr Tyr Phe Asp Ala Ser Phe Ser Pro Met Asn Gln His Phe Leu  
 385 390 395 400  
 Leu Phe Cys Glu Gly Pro Arg Val Pro Val Val Ser Leu His Ser Thr  
 405 410 415  
 Asp Asn Pro Ala Lys Tyr Phe Ile Leu Glu Ser Asn Ser Met Leu Lys  
 420 425 430  
 Glu Ala Ile Leu Lys Lys Ile Gly Lys Pro Glu Ile Lys Ile Leu  
 435 440 445  
 His Ile Asp Asp Tyr Glu Leu Pro Leu Gln Leu Ser Leu Pro Lys Asp  
 450 455 460  
 Phe Met Asp Arg Asn Gln Tyr Ala Leu Leu Leu Ile Met Asp Glu Glu  
 465 470 475 480  
 Pro Gly Gly Gln Leu Val Thr Asp Lys Phe His Ile Asp Trp Asp Ser  
 485 490 495  
 Val Leu Ile Asp Met Asp Asn Val Ile Val Ala Arg Phe Asp Gly Arg  
 500 505 510  
 Gly Ser Gly Phe Gln Gly Leu Lys Ile Leu Gln Glu Ile His Arg Arg  
 515 520 525  
 Leu Gly Ser Val Glu Val Lys Asp Gln Ile Thr Ala Val Lys Phe Leu  
 530 535 540  
 Leu Lys Leu Pro Tyr Ile Asp Ser Lys Arg Leu Ser Ile Phe Gly Lys  
 545 550 555 560  
 Gly Tyr Gly Gly Tyr Ile Ala Ser Met Ile Leu Lys Ser Asp Glu Lys  
 565 570 575

Leu Phe Lys Cys Gly Ser Val Val Ala Pro Ile Thr Asp Leu Lys Leu  
 580 585 590  
 Tyr Ala Ser Ala Phe Ser Glu Arg Tyr Leu Gly Met Pro Ser Lys Glu  
 595 600 605  
 Glu Ser Thr Tyr Gln Ala Ala Ser Val Leu His Asn Val His Gly Leu,  
 610 615 620  
 Lys Glu Glu Asn Ile Leu Ile Ile His Gly Thr Ala Asp Thr Lys Val  
 625 630 635 640  
 His Phe Gln His Ser Ala Glu Leu Ile Lys His Leu Ile Lys Ala Gly  
 645 650 655  
 Val Asn Tyr Thr Met Gln Val Tyr Pro Asp Glu Gly His Asn Val Ser  
 660 665 670  
 Glu Lys Ser Lys Tyr His Leu Tyr Ser Thr Ile Leu Lys Phe Phe Ser  
 675 680 685  
 Asp Cys Leu Lys Glu Glu Ile Ser Val Leu Pro Gln Glu Pro Glu Glu  
 690 695 700  
**Asp Glu**  
 705

<210> 42  
 <211> 4541  
 <212> DNA  
 <213> Homo sapiens  
 <400> 42

|                                                                             |      |
|-----------------------------------------------------------------------------|------|
| gkctykgtkg wtsmagatac agatgtggtg tataaaaagcg agaatggaca tgcattaaa           | 60   |
| ctgaatatag aaacaaatgc taccacatta ttattggaaa acacaacttt tgtaaccttc           | 120  |
| aaagcatcaa gacattcagt ttccaccaat ttaaaatatg tccttctggc atatgtgtc            | 180  |
| aaacagattt ttcatttattc gtatactgct tcataatgtga tttacaacat acacactagg         | 240  |
| gaagtttggg agtttaatcc tccagaagta gaggactccg tcttgcagta cgcggcctgg           | 300  |
| ggtgtccaag ggcagcagct gatttatattt tttgaaaata atatctacta tcaacctgat          | 360  |
| ataaaagagca gttcattgcg actgacatct tctggaaaag aagaaataat ttttaatggg          | 420  |
| attgtctact ggttatataa agaggaactc ctgcattctc acatcgccc ctgggtgtca            | 480  |
| ccagatggag aaagacttgc ctccctgtatg ataaatgact ctttggtacc caccatggtt          | 540  |
| atcccctcggt ttactggagc gttgtatccc aaaggaaaagc agtacccgtt tcctaaggca         | 600  |
| ggtcaagtga acccaacaat aaaattataat gttgtaaacc tttatggacc aactcacact          | 660  |
| ttggagctca tgccacactga cagctttaaa tcaagagaat actatatcac tatggtaaaa          | 720  |
| tgggttaagea ataccaagac tttgtttaaaa gttttaacc gacccatggaa catctccatc         | 780  |
| ctcacagctt gtgagaccac tacagggtct tttttttttt aatatgagat gacatcgat            | 840  |
| acgtggctct ctcagcagaa tgaggagccc gtgtttcttca gagacggcag caaattctt           | 900  |
| atgacagtgc ctgttaagca agggggacgt ggagaatttc accacatago tatgttcc             | 960  |
| atccagatgtt aaagttagca aattaccgtt cggcatctga catcaggaaa ctggaaatgt          | 1020 |
| ataaaagatct tggcatacga tgaaactact caaaaaattt actttctgag cactgaatct          | 1080 |
| tctcccagag gaaggcagct gtacagtgtct tctactgaag gattattgaa tcgccaatgc          | 1140 |
| atttcatgtt atttcatgaa agaacaatgt acatattttt atgcccatttt tagtcccattt         | 1200 |
| aatcaacatt tcttattttt ctgttaaggt ccaagggtcc cagtggcag cctacatagt            | 1260 |
| acggacaacc cagcaaaaata ttttatattt gaaagcaattt ctatgttgc ggaagctatc          | 1320 |
| ctgaagaaga agataggaaa gccagaaattt aaaatccctc atattgacga ctatgaactt          | 1380 |
| cctttacagt ttttttttttcaaaatgtt atggaccgaa accagtatgc ttttctgtta             | 1440 |
| ataatggatg aagaaccagg aggccagctt gttacagata agttccatatt tgactggat           | 1500 |
| tccgtactca ttgacatggta taatgttattt gtagcaagat ttgttgcag aggaagtttgg         | 1560 |
| ttccagggtc tgaaaattttt gcaggagattt catcgaagat tagtttgcgtt agaagttaaag       | 1620 |
| gaccaaaaataa cagctgttca attttttgcgtt aaactgcctt acattgactc caaaaagatta      | 1680 |
| agcattttttt gaaagggttta tgggttgcattt attgttgcattt tgatctttttt atcagatgaa    | 1740 |
| aagcttttttta aatgttgcattt cgtgggttgcattt cctatcactt acttggaaattt gtatgcctca | 1800 |
| gtttttctgtt aaagatatact tgggttgcattt tctaaggaaag aagacttca ccaggcagcc       | 1860 |
| agtgtgttgcattt aatgttgcattt tgggttgcattt gaaaggaaata tattaataat tcatggaaact | 1920 |
| gctgacacaaa aagtttgcattt ccaacacttca gcagaattaa tcaagcactt aataaaaagctt     | 1980 |
| ggagtgtttaattt atactatgca ggttgcattt gatgttgcattt ataacgttca tgagaagggc     | 2040 |

<210> 43  
<211> 691  
<212> PRT  
<213> *Homo sapiens*  
<400> 43

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asp | Thr | Asp | Val | Val | Tyr | Lys | Ser | Glu | Asn | Gly | His | Ile | Val | Ile | Lys | Leu |
| 1   |     |     |     |     | 5   |     |     |     | 10  |     |     |     |     |     | 15  |     |
| Asn | Ile | Glu | Thr | Asn | Ala | Thr | Thr | Leu | Leu | Leu | Glu | Asn | Thr | Thr | Phe |     |
|     |     |     |     |     |     | 20  |     |     |     | 25  |     |     |     |     | 30  |     |
| Val | Thr | Phe | Lys | Ala | Ser | Arg | His | Ser | Val | Ser | Pro | Asp | Leu | Lys | Tyr |     |
|     |     |     |     |     |     | 35  |     |     | 40  |     |     |     | 45  |     |     |     |
| Val | Leu | Leu | Ala | Tyr | Asp | Val | Lys | Gln | Ile | Phe | His | Tyr | Ser | Tyr | Thr |     |
|     |     |     |     |     |     | 50  |     |     | 55  |     |     | 60  |     |     |     |     |
| Ala | Ser | Tyr | Val | Ile | Tyr | Asn | Ile | His | Thr | Arg | Glu | Val | Trp | Glu | Leu |     |
|     |     |     |     |     |     | 65  |     |     | 70  |     |     | 75  |     |     | 80  |     |

Asn Pro Pro Glu Val Glu Asp Ser Val Leu Gln Tyr Ala Ala Trp Gly  
                   85                  90                  95  
 Val Gln Gly Gln Gln Leu Ile Tyr Ile Phe Glu Asn Asn Ile Tyr Tyr  
                   100              105              110  
 Gln Pro Asp Ile Lys Ser Ser Ser Leu Arg Leu Thr Ser Ser Gly Lys  
                   115              120              125  
 Glu Glu Ile Ile Phe Asn Gly Ile Ala Asp Trp Leu Tyr Glu Glu Glu  
                   130              135              140  
 Leu Leu His Ser His Ile Ala His Trp Trp Ser Pro Asp Gly Glu Arg  
                   145              150              155              160  
 Leu Ala Phe Leu Met Ile Asn Asp Ser Leu Val Pro Thr Met Val Ile  
                   165              170              175  
 Pro Arg Phe Thr Gly Ala Leu Tyr Pro Lys Gly Lys Gln Tyr Pro Tyr  
                   180              185              190  
 Pro Lys Ala Gly Gln Val Asn Pro Thr Ile Lys Leu Tyr Val Val Asn  
                   195              200              205  
 Leu Tyr Gly Pro Thr His Thr Leu Glu Leu Met Pro Pro Asp Ser Phe  
                   210              215              220  
 Lys Ser Arg Glu Tyr Tyr Ile Thr Met Val Lys Trp Val Ser Asn Thr  
                   225              230              235              240  
 Lys Thr Val Val Arg Trp Leu Asn Arg Pro Gln Asn Ile Ser Ile Leu  
                   245              250              255  
 Thr Val Cys Glu Thr Thr Gly Ala Cys Ser Lys Lys Tyr Glu Met  
                   260              265              270  
 Thr Ser Asp Thr Trp Leu Ser Gln Gln Asn Glu Glu Pro Val Phe Ser  
                   275              280              285  
 Arg Asp Gly Ser Lys Phe Phe Met Thr Val Pro Val Lys Gln Gly Gly  
                   290              295              300  
 Arg Gly Glu Phe His His Ile Ala Met Phe Leu Ile Gln Ser Lys Ser  
                   305              310              315              320  
 Glu Gln Ile Thr Val Arg His Leu Thr Ser Gly Asn Trp Glu Val Ile  
                   325              330              335  
 Lys Ile Leu Ala Tyr Asp Glu Thr Thr Gln Lys Ile Ser Ala Ser Thr  
                   340              345              350  
 Glu Gly Leu Leu Asn Arg Gln Cys Ile Ser Cys Asn Phe Met Lys Glu  
                   355              360              365  
 Gln Cys Thr Tyr Phe Asp Ala Ser Phe Ser Pro Met Asn Gln His Phe  
                   370              375              380  
 Leu Leu Phe Cys Glu Gly Pro Arg Val Pro Val Val Ser Leu His Ser  
                   385              390              395              400  
 Thr Asp Asn Pro Ala Lys Tyr Phe Ile Leu Glu Ser Asn Ser Met Leu  
                   405              410              415  
 Lys Glu Ala Ile Leu Lys Lys Ile Gly Lys Pro Glu Ile Lys Ile  
                   420              425              430  
 Leu His Ile Asp Asp Tyr Glu Leu Pro Leu Gln Leu Ser Leu Pro Lys  
                   435              440              445  
 Asp Phe Met Asp Arg Asn Gln Tyr Ala Leu Leu Ile Met Asp Glu  
                   450              455              460  
 Glu Pro Gly Gly Gln Leu Val Thr Asp Lys Phe His Ile Asp Trp Asp  
                   465              470              475              480  
 Ser Val Leu Ile Asp Met Asp Asn Val Ile Val Ala Arg Phe Asp Gly  
                   485              490              495  
 Arg Gly Ser Gly Phe Gln Gly Leu Lys Ile Leu Gln Glu Ile His Arg  
                   500              505              510  
 Arg Leu Gly Ser Val Glu Val Lys Asp Gln Ile Thr Ala Val Lys Phe  
                   515              520              525  
 Leu Leu Lys Leu Pro Tyr Ile Asp Ser Lys Arg Leu Ser Ile Phe Gly  
                   530              535              540

Lys Gly Tyr Gly Tyr Ile Ala Ser Met Ile Leu Lys Ser Asp Glu  
 545 550 555 560  
 Lys Leu Phe Lys Cys Gly Ser Val Val Ala Pro Ile Thr Asp Leu Lys  
 565 570 575  
 Leu Tyr Ala Ser Ala Phe Ser Glu Arg Tyr Leu Gly Met Pro Ser Lys  
 580 585 590  
 Glu Glu Ser Thr Tyr Gln Ala Ala Ser Val Leu His Asn Val His Gly  
 595 600 605  
 Leu Lys Glu Glu Asn Ile Leu Ile Ile His Gly Thr Ala Asp Thr Lys  
 610 615 620  
 Val His Phe Gln His Ser Ala Glu Leu Ile Lys His Leu Ile Lys Ala  
 625 630 635 640  
 Gly Val Asn Tyr Thr Met Gln Val Tyr Pro Asp Glu Gly His Asn Val  
 645 650 655  
 Ser Glu Lys Ser Lys Tyr His Leu Tyr Ser Thr Ile Leu Lys Phe Phe  
 660 665 670  
 Ser Asp Cys Leu Lys Glu Glu Ile Ser Val Leu Pro Gln Glu Pro Glu  
 675 680 685  
 Glu Asp Glu  
 690

<210> 44  
<211> 4496  
<212> DNA  
<213> Homo sapiens  
<400> 44

gkctykgtkg wtsmagatac agatgtggtg tataaaagcg agaatggaca tgcattaaa 60  
 ctgaatatag aaacaaatgc taccacatta ttattggaaa acacaacttt tgtaaccttc 120  
 aaagcatcaa gacattcagt ttcaccagat ttaaaatatg tccttctggc atatgatgtc 180  
 aaacagattt ttcattattc gtatactgct tcataatgtga tttacaacat acacactagg 240  
 gaagtttggg agttaaatcc tccagaagta gaggactccg tcttgcagta cgcggcctgg 300  
 ggtgtccaaag ggcagcagct gatttatatt tttgaaaata atatctacta tcaacctgtat 360  
 ataaagagaca gttcattgcg actgacatct tctggaaaag aagaaataat ttttatggg 420  
 attgctgact ggttatatga agaggaactc ctgcattctc acatgcggca ctgggtggca 480  
 ccagatggag aaagacttgc cttcctgtat ataaatgact ctttggtacc caccatggtt 540  
 atccctcggt ttactggagc gttgtatccc aaaggaaaagc agtacccgta tcctaaggca 600  
 ggtcaagtga acccaacaat aaaattatat gttgtaaacc tgcgtatggacc aactcacact 660  
 ttggagctca tgccacctga cagctttaaa tcaagagaat actatatcac tatggtaaaa 720  
 tgggttaagca ataccaagac tgggttaaga tggttaaacc gacctcagaa catctccatc 780  
 ctcacagctt gtgagaccac tacaggctt tgcgtatggacc aatatgagat gacatcagat 840  
 acgtggctct ctcagcagaa tgaggagccc gtgtttctc gagacggcag caaattctt 900  
 atgacagtgc ctgttaagca agggggacgt ggagaatttc accacatagc tatgttcc 960  
 atccagatgtt aaagtggac aattaccgtt cgccatctga catcaggaaa ctggggagtgc 1020  
 ataaagatct tggcatacga tggaaactact caaaaaatca gtgcattctac tgaaggatta 1080  
 ttgaatcgcc aatgcatttc atgttaatttc atgaaagaac aatgtacata ttttgatgcc 1140  
 agtttagtc ccatgaatca acatttctta ttattctgtg aaggtccaag ggtccctgt 1200  
 gtcagcttac atagtacgga caacccagca aaatattta tattggaaag caattctatg 1260  
 ctgaaggaag ctatctgaa gaagaagata ggaaagccag aaattaaaat ctttcattt 1320  
 gacgactatg aacttcctt acagttgtcc cttcccaaag attttatggc cggaaaccag 1380  
 tatgtcttc tgtaataat ggatgaagaa ccaggaggcc agctggttac agataagttc 1440  
 catattgact gggattccgt actcattgac atggataatg tcattgttagc aagatttgat 1500  
 ggcagaggaa gtggattcca gggctgaaa attttgcagg agattcatcg aagatttagt 1560  
 tcagtagaaag taaaggacca aataacagct gtgaaattt tgctgaaact gccttacatt 1620  
 gactccaaaa gattaagcat ttttggaaag ggttatggtg gctatattgc atcaatgatc 1680  
 taaaatcag atgaaaagct ttttaatgt ggatccgtgg ttgcacctat cacagacttg 1740  
 aatttgtatg cctcagctt ctctgaaaga tacctggga tgccatctaa ggaagaaagc 1800  
 acttaccagg cagccagtgt gctacataat gttcatggct taaaagaaga aaatataat 1860  
 ataattcatg gaactgctga cacaaggatc catttccaaac actcagcaga attaatcaag 1920

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| cacctaataa  | aagctggagt  | gaattataact | atgcaggct   | acccagatga  | aggcataac   | 1980 |
| gtatctgaga  | agagcaagta  | tcatctctac  | agcacaatcc  | tcaaattctt  | cagtattgt   | 2040 |
| ttgaaggaaag | aatatatctgt | gctaccacag  | gaaccagaag  | aagatgaata  | atggaccgta  | 2100 |
| tttatacaga  | actgaaggga  | atattgagge  | tcaatgaaac  | ctgacaaaga  | gactgtaata  | 2160 |
| ttttagttgc  | tccagaatgt  | caagggcage  | ttacggagat  | gtcactggag  | cagcacgctc  | 2220 |
| agagacagtg  | aactagcatt  | tgaatacaca  | agtccaagtc  | tactgtgtt   | ctaggggtgc  | 2280 |
| agaaccggtt  | tcttgatgt   | agagaggctc  | aagggttgg   | ttcttggag   | aaattagttt  | 2340 |
| tgcattaaag  | taggagtagt  | gcatgtttc   | ttctgttata  | cccctgtttt  | ttctgttaact | 2400 |
| agttgctctc  | attnaatttt  | cactggccac  | catcatctt   | gcatataatg  | cacaatctat  | 2460 |
| catctgtcct  | acagtcctg   | atcttcatg   | gctgagctc   | aatctaacac  | tttactgtac  | 2520 |
| ctttataata  | agtcaattc   | tttcattgtc  | tattattatg  | cttaagaaaa  | tattcagtt   | 2580 |
| ataaaaaaaca | gagttttta   | tgtaatttc   | gtttttaaaa  | agacattatt  | aaatgggtca  | 2640 |
| aaggacatata | agaaatgtgg  | atttcagcac  | cttccaaagt  | tcagccagg   | atcagtagat  | 2700 |
| acaatatactt | taaatgaaca  | cacgagtgt   | tgttcacaa   | tatataataca | caagtgtgca  | 2760 |
| tatacagtt   | atgaaactat  | ctttaaatgt  | tattcatgt   | ataaagagta  | aacgtttgat  | 2820 |
| gaattagaag  | agatgcttt   | ttccaagcta  | taatggatgc  | tttggtaat   | gagccaaata  | 2880 |
| tgatgaaaca  | tttttccaa   | ttcaatttc   | agctattgt   | ttcctataaa  | tgttgggtt   | 2940 |
| gtgtttggta  | ttgttttttag | tggttaatag  | ttttccagtt  | gcatttaatt  | tttgaatat   | 3000 |
| gataccttgt  | cacatgtaaa  | ttagatactt  | aaatattaaa  | ttatagttt   | tgataaaagaa | 3060 |
| attttgttaa  | caatgcaatg  | ccactgagtg  | ctattttgt   | ctttgggtt   | agaaggctt   | 3120 |
| tttcaaaact  | cttggcctt   | ttacttc     | ctctcagtg   | agaatcaatt  | ctcattttca  | 3180 |
| tcgtaaaagc  | aaatagctgg  | attatttc    | ttgcagttt   | ctattttgt   | ttccatgcct  | 3240 |
| gccccattca  | tctgttactg  | ttaatttca   | attttctgg   | tgagaattag  | aaatgaaata  | 3300 |
| ttttttattc  | atggccaaa   | aagttcacag  | acagcagtg   | ttgcttattt  | ctttgaattt  | 3360 |
| aaggcaca    | atgcatcaat  | ttctgtgt    | ttgttacttg  | cagtagtaag  | taactgagag  | 3420 |
| cataaaataa  | acctgactgt  | atgaagtcaa  | ttaaagtgt   | gagaacattt  | aacttgggt   | 3480 |
| actaaagtca  | gaatatacttc | tcacttca    | taagggtatc  | tccagaagat  | atctaaaagt  | 3540 |
| ctgtataaa   | cttagaagtt  | cagataaattc | taggcaggat  | actgcattt   | tgtgtttt    | 3600 |
| aaaaagttct  | taggacagac  | tgaattatca  | taacttatgg  | catcaggagg  | aaactttaaa  | 3660 |
| atatacaagga | atcaacttgt  | caccctcctg  | ttttgttggaa | ggatcaaccc  | caaattctgg  | 3720 |
| gtattttgt   | acatgtgaat  | catggatttg  | gtattcaact  | ttttccctgg  | atgccttgaa  | 3780 |
| atcggttctt  | ccatgtctca  | ctgggttca   | tttaaaaatag | gagaggctt   | ctttctgaa   | 3840 |
| agatccattt  | tagtctttt   | tcaagaatag  | tgaacacatt  | ttttaacaaa  | ataagttgt   | 3900 |
| attttaaaaag | gaaagttttt  | cctattttt   | taagatggaa  | atttctttt   | aggctaattt  | 3960 |
| gaaatccaac  | tgaagctttt  | taaccaatat  | tttaaaaattt | aaccactaga  | gtttttatg   | 4020 |
| atgcaaatga  | ttatgttgc   | tgaaagggt   | ggttttattt  | aatgtctatt  | tgagttatcat | 4080 |
| ttaaaaagta  | tttgctttt   | actgtcatca  | tttctcttgc  | tttatttatta | ttatcaatgt  | 4140 |
| ttatctattt  | ttcaatttaat | ttaatacagt  | ttctaatgt   | aaagacattt  | ttctggaaacc | 4200 |
| cgttttcccc  | ttaaacacta  | aagagacctc  | aagtggaaagc | atattgctta  | gttaggaaggt | 4260 |
| agaaaaatgtt | aatccctg    | attcttgc    | ttttaatgac  | agggtcattt  | tcagtaaagg  | 4320 |
| aaatgctcac  | caacacatag  | tcaccaacta  | ttaaaggaat  | catgtgattt  | gattttcccc  | 4380 |
| tgtatacatg  | tacccttgg   | cataatccca  | ctatttcata  | catattttatg | cattgctaga  | 4440 |
| ttttccttagg | actccaaatag | catgctttcc  | aagtgttatt  | attcccttaa  | tgttaa      | 4496 |

```
<210> 45
<211> 29
<212> DNA
<213> Homo sapiens
<400> 45
```

cggttaccatg gcagcagcaa tggaaacag

29

<210> 46  
<211> 39  
<212> DNA  
<213> *Homo sapiens*  
<400> 46

ggagctcgcg gccgctcata tcacttttag agcagcaat

39

<210> 47  
<211> 27  
<212> DNA  
<213> Homo sapiens  
<400> 47

caagctttat cacttttaga gcagcaa

27

<210> 48  
<211> 22  
<212> DNA  
<213> Homo sapiens  
<400> 48

cacattcttg ctgcatacgta ca

22

<210> 49  
<211> 22  
<212> DNA  
<213> Homo sapiens  
<400> 49

ttgggtcatc ttcaggactt ga

22

<210> 50  
<211> 27  
<212> DNA  
<213> Homo sapiens  
<400> 50

caagcttacc atggccacca ccgggac

27

<210> 51  
<211> 37  
<212> DNA  
<213> Homo sapiens  
<400> 51

cggatcccg cgccgctcaga ggtattcctg tagaaag

37

<210> 52  
<211> 27  
<212> DNA  
<213> Homo sapiens  
<400> 52

cggatccagg tattcctgtt gaaagt

27

<210> 53  
<211> 20  
<212> DNA  
<213> Homo sapiens  
<400> 53

tacgccgtgg ttgtgattga

20

<210> 54  
<211> 20  
<212> DNA

<213> Homo sapiens  
<400> 54

ccatacttct cggccacgaa 20

<210> 55  
<211> 19  
<212> DNA  
<213> Homo sapiens  
<400> 55

gcctgggatt gtgcactgt 19

<210> 56  
<211> 29  
<212> DNA  
<213> Homo sapiens  
<400> 56

gtgtattcaa atgcttagttc actgtctct 29

<210> 57  
<211> 22  
<212> DNA  
<213> Homo sapiens  
<400> 57

agcttagcact gtccagggtc ct 22

<210> 58  
<211> 25  
<212> DNA  
<213> Homo sapiens  
<400> 58

agggcccttc atcttcttct ggttc 25

<210> 59  
<211> 19  
<212> PRT  
<213> Homo sapiens  
<400> 59

Val Glu Asp Asp Val Met Glu Arg Gln Arg Leu Ile Glu Ser Val Pro  
1 5 10 15

Asp Ser Val

<210> 60  
<211> 19  
<212> PRT  
<213> Homo sapiens  
<400> 60

Ser Thr Glu Asn Glu Glu Gln Arg Leu Ala Ser Ala Arg Ala Val Pro  
1 5 10 15

Arg Asn Val

<210> 61  
<211> 15

<212> PRT  
<213> Homo sapiens  
<400> 61

Lys Glu Ala Ile Leu Lys Lys Lys Ile Gly Lys Pro Glu Ile Lys  
1 5 10 15