NP-Completeness

<u>Definition</u> SAT = $\{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula } \}$

Example (($x \land \neg y$) $\lor \neg x$) is satisfiable by the assignment x = 1 and y = 0.

Theorem SAT is NP-complete [proof next week]

<u>Definition</u> 3SAT = { $\langle \phi \rangle \mid \phi \text{ is a satisfiable 3CNF formula }}$

A 3CNF formula has the form $(s_{11} \lor s_{12} \lor s_{13}) \land (s_{21} \lor s_{22} \lor s_{23}) \land ...$ where literals s_{ij} are Boolean variables or negated Boolean variables.

Theorem 3CNF is NP-complete [proof next week]

Theorem $L \in NPC$

Proof

- I. Show that $L \in NP$
 - A. Certificate: [Describe certificate]
 - B. Algorithm: [Construct verification algorithm V]
 - C. Runtime: [Argue that V runs in polynomial time]
- II. Show that $S \leq_P L$ [Find a reduction from S to L, where $S \in NPC$]
 - A. Algorithm: [Construct reduction algorithm M]
 - 1. Input: [Give form of input]
 - 2. Output: [Give form of output]
 - B. Reduction: [Show that M is a reduction]
 - 1. (\Rightarrow) : $[x \in S \Rightarrow M(x) \in L]$
 - 2. (\Leftarrow) : $[x \notin S \Rightarrow M(x) \notin L]$
 - C. Runtime: [Argue that M runs in polynomial time]

SAT ∈ NPC

 $SAT \in NP$

certificate: A satisfying assignment of 0/1 to variables *algorithm*:

V ="On input $\langle \phi, c \rangle$:

Scan f, replace variables with 0/1 according to c

Run E to evaluate the formula

 $E = "On input \langle \phi \rangle$:

Find the primary operator

 $\neg \phi_0 \Rightarrow \text{run E on input } \phi_0$; calculate $\neg \phi_0$

 $\phi_1 \wedge \phi_2 \Rightarrow \text{run E on input } \phi_1 \text{ and then run E on input } \phi_2; \text{ calculate } \phi_1 \wedge \phi_2$

 $\phi_1 \lor \phi_2 \Rightarrow \text{run E on input } \phi_1 \text{ and then run E on input } \phi_2; \text{ calculate } \phi_1 \lor \phi_2$

runtime: E's recursion must run in polynomial time – there are less than n operators in a formula and the recursion only runs once for each operator.

SAT is NP-hard

 \forall languages $A \in NP$, $A \leq_P SAT$

Let A be an arbitrary language in NP.

Let N be a NDTM that decides A in n^k time.

Suppose $w \in A$

 $\Leftrightarrow N$ has an accepting branch whose length is $\leq n^k$

 $\Leftrightarrow \exists$ an accepting *tableau* for N on w

A *tableau* of N on w is an $n^k \times n^k$ table whose rows are configurations on a branch of N's computation for w.

#	$\mathbf{q}_{\scriptscriptstyle 0}$	W_1	W_2	_	•••	W	_	•••	1	#	start configuration
#										#	second configuration
#										#	
						W	indo	W			
#										#	n ^k -th configuration

Goal: Generate a formula ϕ (in polynomial-time) that has a "true" assignment iff \exists an accepting tableau for N on w.

Let Q and Γ be the set of states and the tape alphabet of N.

Let
$$C = Q \cup \Gamma \cup \{\#\}$$
.

Let $x_{i,j,s}$ be a variable in the formula ϕ that corresponds to cell (i, j) in the tableau and some $s \in C$.

Note: There are a polynomial number (in n) of such variables: $n^k \times n^k \times k'$ [k and k' are both constants].

Let ϕ be the formula $\phi_{cell} \wedge \phi_{start} \wedge \phi_{move} \wedge \phi_{accept}$, where

- ϕ_{cell} = Every cell in the tableau holds exactly one symbol from C.
- ϕ_{start} = The start configuration is # q0 w₁ w₂ ... w_n ... #
- ϕ_{move} = All transformations in the tableau (from one configuration to the next) are consistent with N's transition function.
- ϕ_{accept} = Some cell in the tableau contains q_{accept} .

$$\phi_{cell} = \forall i, j \in [1..n^k], (\exists s \in C \ni x_{i,j,s} = 1 \text{ and } \forall s, t \in C \text{ where } s \neq t, x_{i,j,s} = 0 \text{ or } x_{i,j,t} = 0)$$

Let $m = n^k$.

$$\forall i, j \in [1..m], P(x_{i,j,s}) \equiv P(x_{1,1,s}) \land P(x_{1,2,s}) \land \dots \land P(x_{1,m,s}) \land \dots \land P(x_{2,1,s}) \land P(x_{2,2,s}) \land \dots \land P(x_{2,m,s}) \land \dots \land \dots \land P(x_{m,1,s}) \land P(x_{m,2,s}) \land \dots \land P(x_{m,m,s})$$

$$\phi_{\text{start}} = X_{1,1,\#} \wedge X_{1,2,q0} \wedge X_{1,3,w1} \wedge X_{1,4,w2} \wedge \dots \wedge X_{1,n+2,wn} \wedge X_{1,n+3,-} \wedge \dots \wedge X_{1,m-1,-} \wedge X_{1,m,\#}$$

$$\phi_{accept} = \forall i, j \in [1..m], x_{i,j,q-accept}$$

 $\phi_{\text{move}} = \forall i, j \in [1..m]$, the (i, j) window is legal (it *might* appear based on the transition)

$$\forall$$
 legal windows $a_1..a_6$, $x_{i-1,j,a1} \land x_{i,j,a2} \land x_{i+1,j,a3} \land x_{i-1,j+1,a4} \land x_{i,j+1,a5} \land x_{i+1,j+1,a6}$

[Iterating through all legal windows may be costly if C is large, but it will *not* depend on input size, and therefore it can be considered constant]

Runtime of a machine that creates ϕ :

$$\begin{aligned} & \varphi_{cell} : O(n^{2k}) \\ & \varphi_{start} : O(n^k) \\ & \varphi_{accept} : O(n^{2k}) \\ & \varphi_{move} : O(n^{2k}) \end{aligned}$$

Example

Let
$$\delta(q_1, a) = \{ (q_1, b, R) \}$$
 and $d(q_1, b) = \{ (q_2, c, L), (q_2, a, R) \}$

Legal windows

a	$\mathbf{q}_{\scriptscriptstyle 1}$	a
$\mathbf{q}_{\scriptscriptstyle 2}$	a	U

a	\mathbf{q}_1	b
a	a	$\mathbf{q}_{\scriptscriptstyle 2}$

a	a	$\mathbf{q}_{\scriptscriptstyle 1}$
a	a	b

#	b	a
#	b	a

a	b	a
a	b	$\mathbf{q}_{\scriptscriptstyle 2}$

Illegal windows

a	b	a
a	a	a

a	$\mathbf{q}_{\scriptscriptstyle 1}$	b
$\mathbf{q}_{\scriptscriptstyle 1}$	a	а

$$\begin{array}{c|cccc} b & q_1 & b \\ \hline q_2 & b & q_2 \\ \end{array}$$

Vertex cover

Let G = (V, E) be an undirected graph. A **vertex cover** is a subset $V' \subseteq V$ of vertices such that if $(u, v) \in E$ then $u \in V'$ or $v \in V'$ (or both)

Example

VERTEX-COVER = $\{ \langle G, k \rangle : \text{graph } G \text{ has a vertex cover of size } k \}$

Theorem VERTEX-COVER ∈ NPC

Proof

(1) $VERTEX-COVER \in NP$

certificate: subset of $V' \subseteq V$ of vertices

algorithm:

check of |V'| = k

for each edge (u, v) in E

check if $u \in V$ or $v \in V$

poly-time: size check takes O(V); edge check takes O(E)

(2) VERTEX-COVER is NP-hard

(we show CLIQUE \leq_P VERTEX-COVER)

Recall that CLIQUE = $\{ \langle G, k \rangle \mid G \text{ has a clique of size } k \}$

(A) Algorithm F: $\langle G, k \rangle \rightarrow \langle G', k' \rangle$

construct G' as $G^* = (V, E^*)$, E^* is the compliment of E [set of all edges not in E] k' = |V| - k

(B) F runs in poly time

 $O(V^2)$ time to change $0 \leftrightarrow 1$ in adjacency matrix.

(C) F computes a reduction

```
\langle G, k \rangle \in CLIQUE \Leftrightarrow \langle G^*, |V| - k \rangle \in VERTEX-COVER
(⇒)
G has clique V' of size k
Let (u, v) be an arbitrary edge in G*
Since (u, v) is not an edge in G,
   at least one of u, v must be outside clique V'
Therefore, at least one of u, v must be in V - V'
V - V' covers (u, v)
Since (u, v) is arbitrary, V - V' covers all (u, v) in G^*
V - V' is a vertex cover for G^* – it has size |V| - k
(\Leftarrow)
G^* has vertex cover V' with size |V| - k
Let both u and v be arbitrary vertices in V - V'
Suppose (u, v) is in G*
Then at least one of u, v must be in vertex cover V'(\Rightarrow \Leftarrow)
So (u, v) is in G
Since u and v are arbitrary,
   for all u, v \text{ in } V - V', (u, v) \text{ is in } G
Therefore, V - V' is a clique of size k for G
[ return to the picture – the complement graph has a clique of size four ]
Example Show that the subgraph isomorphism problem in NP-complete.
SUB-ISO = { \langle G1, G2 \rangle \mid G1 is isomorphic to a subgraph of G2 }
Step 1. Show SUB-ISO \in NP
certificate: An isomorphic mapping m from the vertices of G1 to a subset of the vertices
of G2.
Verification algorithm V
V = "On input \langle \langle G1, G2 \rangle, y \rangle:
for each vertex v in G1
  for each vertex u in G1
     if (u, v) is in G1 and (f(u), f(v)) is not in G2 then return false
     if (u, v) is not in G1 and (f(u), f(v)) is in G2 then return true
return true
Runtime: V takes O(V2) time
Step II. Show CLIQUE \leq_P SUB-ISO
Reduction algorithm M: \langle G, k \rangle \rightarrow \langle G1, G2 \rangle
```

M ="On input $\langle G, k \rangle$:

Construct G2 = G

Construct G1 = complete graph with k vertices

Runtime of M: Polynomial in E + V

Correctness of M: $\langle G, k \rangle \in CLIQUE \Leftrightarrow \langle G1, G2 \rangle \in SUB-ISO$

Assume $\langle G, k \rangle \in CLIQUE$

 \Leftrightarrow G has a clique of size k

 \Leftrightarrow G has a subgraph of size k

⇔ G2 has a subgraph of size k isomorphic to G1

 $\Leftrightarrow \langle G1, G2 \rangle \in SUB-ISO$

<u>Definition</u> VERTEX-COVER = $\{ \langle G, k \rangle \mid G \text{ is an undirected graph with a vertex cover (a set of nodes that touches every edge of G) of k nodes <math>\}$

<u>Definition</u> HAMPATH = $\{ \langle G, s, t \rangle \mid G \text{ has a path from s to t that goes through each node exactly once } \}$

<u>Definition</u> HAMCYCLE = $\{ \langle G \rangle | G \text{ contains a cycle that goes through each node exactly once } \}$