Algorithmics I 2021

Algorithmics I

Section 2 - Strings and text algorithms

Dr. Gethin Norman

School of Computing Science University of Glasgow

gethin.norman@glasgow.ac.uk

Text compression

A special case of data compression

saves disk space and transmission time

Text compression must be lossless

i.e. the original must be recoverable without error

Some other forms of compression can afford to be lossy

e.g. for pictures, sound, etc. (not considered here)

Text compression

Examples of text compression

- compress, gzip in Unix, ZIP utilities for Windows, ...
- two main approaches statistical and dictionary

Compression ratio: x/y

- x is the size of compressed file and y is the size of original file
- e.g. measured in B, KB, MB, ...
- compressing a 10MB file to 2MB would yield a compression ratio of 2/10=0.2

Percentage space saved: $(1 - "compression ratio") \times 100%$

- space saved expressed as a percentage of the original file size
- compressing a 10MB file to 2MB yields a percentage space savings of 80%

Space savings in the range 40% - 60% are typical

obviously the higher the saving the better the compression

Text compression - Huffman encoding

The classical statistical method

- now mostly superseded in practice by more effective dictionary methods
- fixed (ASCII) code replaced by variable length code for each character
- every character is represented by a unique codeword (bit string)
- frequently occurring characters are represented by shorter codewords

The code has the prefix property

no codeword is a prefix of another (gives unambiguous decompression)

Based on a Huffman tree (a proper binary tree)

- each character is represented by a leaf node
- codeword for a character is given by the path from the root to the appropriate leaf (left=0 and right=1)
- the prefix property follows from this

Huffman tree construction - Example

Character frequencies:

```
      Space
      E
      A
      T
      I
      S
      R
      O
      N
      U
      H
      C
      D

      15
      11
      9
      8
      7
      7
      7
      6
      4
      3
      2
      1
      1
```

Next, while there is more than one parentless node

add new parent to nodes of smallest weight

Huffman tree construction - Pseudocode

```
// set up the leaf nodes
for (each distinct character c occurring in the text) {
  make a new parentless node n;
  int f = frequency count for c;
  n.setWeight(f); // weight equals the frequency
  n.setCharacter(c); // set character value
 // leaf so no children
 n.setLeftChild(null):
  n.setRightChild(null);
// construct the branch nodes and links
while (no. of parentless nodes > 1){
  make a new parentless node z; // new node
  x, y = 2 parentless nodes of minimum weight; // its children
  z.setLeftChild(x); // set x to be the left child of new node
  z.setRightChild(y); // set y to be the right child of new node
  int w = x.getWeight()+y.getWeight(); // calculate weight of node
  z.setWeight(w); // set the weight of the new node
// the final node z is root of Huffman tree
```

Huffman code - Example

Character frequencies:

```
      Space
      E
      A
      T
      I
      S
      R
      O
      N
      U
      H
      C
      D

      15
      11
      9
      8
      7
      7
      7
      6
      4
      3
      2
      1
      1
```


Huffman code - Example

Character frequencies:

 Space
 E
 A
 T
 I
 S
 R
 O
 N
 U
 H
 C
 D

 15
 11
 9
 8
 7
 7
 7
 6
 4
 3
 2
 1
 1

Algorithmics I, 2021

Huffman encoding - Optimality

Weighted path length (WPL) of a tree T

- $-\Sigma$ (weight)×(distance from root) where sum is over all leaf nodes
- for the example tree: WPL equals: $7\times4 + 7\times4 + 1\times7 + 1\times7 + 2\times6 + 3\times5 + 7\times4 + 11\times3 + 6\times4 + 4\times4 + 15\times2 + 8\times3 + 9\times3 = 279$

Huffman encoding - Optimality

Weighted path length (WPL) of a tree T

- $-\Sigma$ (weight)×(distance from root) where sum is over all leaf nodes
- for the example tree: WPL equals: $7\times4 + 7\times4 + 1\times7 + 1\times7 + 2\times6 + 3\times5 + 7\times4 + 11\times3 + 6\times4 + 4\times4 + 15\times2 + 8\times3 + 9\times3 = 279$

Huffman tree has minimum WPL over all binary trees with the given leaf weights

- Huffman tree need not be unique (e.g. nodes>2 with min weight)
- however all Huffman trees for a given set of frequencies have same WPL
- so what?
- weighted path length (WPL) is the number of bits in compressed file
 - \cdot bits = sum over chars (frequency of char \times code length of char)
- so a Huffman tree minimises this number
- hence Huffman coding is optimal, for all possible codes built in this way

Huffman encoding - Algorithmic requirements

Building the Huffman tree

- if the text length equals n and there are m distinct chars in text
- O(n) time to find the frequencies
- O(mlog m) time to construct the code, for example using a (min-) heap to store the parentless nodes and their weights
 - · initially build a heap where nodes correspond to the m characters labelled by their frequencies, therefore takes O(m) time to build the heap
 - one iteration takes O(log m) time:
 - find and remove (O(log m)) two minimum weights
 - then insert (O(log m)) new weight (sum of minimum weights found)
 - and there are m-1 iterations before the heap is empty
 - each iteration decreases the size of the heap by 1
- so $O(n + m \log m)$ overall
- in fact, m is essentially a constant, so it is really O(n)

Huffman encoding - Algorithmic requirements

Compression & decompression are both O(n) time

assuming m is constant

Compression uses a code table (an array of codes, indexed by char)

- O(mlog m) to build the table:
 - m characters so m paths of length O(log m)
- -0(n) to compress: n characters in the text so n lookups in the array 0(1)
- so $O(n\log m) + O(n)$ overall

Decompression uses the tree directly (repeatedly trace paths in tree)

O(nlog m) as n characters so n paths of length O(log m)

Huffman encoding - Algorithmic requirements

Problem: some representation of the Huffman tree must be stored with the compressed file

otherwise decompression would be impossible

Alternatives

- use a fixed set of frequencies based on typical values for text
 - but this will usually reduce the compression ratio
- use adaptive Huffman coding: the (same) tree is built and adapted by the compressor and by the decompressor as characters are encoded/decoded
 - this slows down compression and decompression (but not by much if done in a clever way)

LZW compression

A popular dictionary-based method

- the basis of compress and gzip in Unix also used in gif and tiff formats
- due to Lempel, Ziv and Welch
- algorithm was under patented to Unisys (but patent now expired)

The dictionary is a collection of strings

- each with a codeword that represents it
- the codeword is a bit pattern
- but it can be interpreted as a non-negative integer

Whenever a codeword is outputted during compression, what is written to the compressed file is the bit pattern

- using a number of bits determined by the current codeword length
- so at any point all bit patterns are the same length

LZW compression

The dictionary is build dynamically during compression

and also during decompression

Initially dictionary contains all possible strings of length 1

Throughout the dictionary is closed under prefixes

i.e. if the string s is represented in the dictionary, so is every prefix of s

It follows that a trie is an ideal representation of the dictionary

- every node in the trie represents a 'word' in the dictionary
- a trie is effective and efficient for other reasons too

LZW compression

Key question: how many bits are in a codeword?

 in the most used version of the algorithm, this value changes as the compression (or decompression) algorithm proceeds

At any given time during compression (or decompression)

- there is a current codeword length k
- so there are exactly 2^k distinct codewords available
 - i.e. all possible bit-strings of length k
- this limits the size of the dictionary
- however the codeword length can be incremented when necessary
- thereby doubling the number of available codewords
- initial value of k should be large enough to encode all strings of length 1

LZW compression - Pseudo code

```
set current text position i to 0;
initialise codeword length k (say to 8);
initialise the dictionary d;
while (the text t is not exhausted) {
 identify the longest string s, starting at position i of text t
 that is represented in the dictionary d;
 // there is such string, as all strings of length 1 are in d
 output codeword for the string s; // using k bits
 // move to the next position in the text
 i += s.length(); // move forward by the length of string just encoded
 c = character at position i in t; // character in next position
 add string s+c to dictionary d, paired with next available codeword;
 // may have to increment the codeword length k to make this possible
```

LZW compression – Variants

Constant codeword length: fix the codeword length for all time

- the dictionary has fixed capacity: when full, just stop adding to it

Dynamic codeword length (the version described here)

- start with shortest reasonable codeword length, say, 8 for normal text
- whenever dictionary becomes full
 - add 1 to current codeword length (doubles the number of codewords)
 - does not affect the sequence of codewords already output
- may specify a maximum codeword length, as increasing the size indefinitely may become counter-productive

LRU version: when dictionary full and codeword length maximal

current string replaces Least Recently Used string in dictionary

LZW compression - Example

Text = G A C G A T A C G A T A C G File size = 14 bytes, or 28 bits if 2 bits/char

Compressed file: 10 000 001 100 011 0101 0111 1001 file size = 26 bits

step	position in string	longest string in dictionary	b	add to dictionary	code
1	1	G	10	GA	4
2	2	А	000	AC	5
3	3	С	001	CG	6
4	4	GA	100	GAT	7
5	6	Т	011	TA	8
6	7	AC	0101	ACG	9
7	9	GAT	0111	GATA	10
8	12	ACG	1001	-	_

LZW decompression

Decompression algorithm builds same dictionary as compression algorithm

but one step out of phase

LZW decompression - Pseudo code

```
initialise codeword length k;
initialise the dictionary:
read the first codeword x from the compressed file f; // i.e. read k bits
String s = d.lookUp(x); // look up codeword in dictionary
output s; // output decompressed string
while (f is not exhausted){
  String oldS = s.clone(); // copy last string decompressed
  if (d is full) k++; // dictionary full so increase the code word length
  get next codeword x from f; // i.e. read k bits
  s = d.lookUp(x); // look up codeword in dictionary
 output s; // output decompressed string
  String newS = oldS + s.charAt(0); // string to add to dictionary
  add string newS to dictionary d paired with next available codeword;
```

LZW decompression – Example

Compressed file: 10000001100011010101111001

file size = 26 bits

Uncompressed Text = G A C G A T A C G A T A C G

step	position in file	old string	code from dictionary	string	add to dictionary	code
0	1	-	10	G	-	_
1	3	G	000	Α	GA	4
2	6	А	001	С	AC	5
3	9	С	100	GA	CG	6
4	12	GA	011	Т	GAT	7
5	15	Т	0101	AC	TA	8
6	19	AC	0111	GAT	ACG	9
7	23	GAT	1001	ACG	GATA	10

LZW decompression - Special case

It is possible to encounter a codeword that is not (yet) in the dictionary

- because decompression is 'out of phase' with compression
- but in that case it is possible to deduce what string it must represent
- consider: A A B A B A B A A
 and work through compression and decompression for this text

```
The solution: if (lookUp fails) s = oldS + oldS.charAt(0);
```

Example of this special case is available on moodle

LZW decompression

Appropriate data structure for decompression is a simple table

Complexity of compression and decompression both O(n)

- for a text of length n (if suitably implemented)
- algorithms essentially involves just one pass through the text

Strings - Notation

```
For a string s=s_0s_1...s_{m-1}

    m is the length of the string

    -s[i] is the (i+1)th element of the string, i.e. s_i
    -s[i..j] is the substring from the ith to jth position, i.e. s_i s_{i+1}...s_i
Prefixes and suffixes

    jth prefix is the first j characters of s denoted s[0..j-1]

          \cdot i.e. s[0..j-1] = s_0 s_1 ... s_{i-1}
          \cdot s[0..0-1]=s[0..-1] (the 0th prefix) is the empty string

    jth suffix is the last j characters of s denoted s [m-j..m-1]

          • i.e. s[m-j..m-1] = s_{m-i}s_{m-i+1}...s_{m-1}
          • s[m..m-1] (the Oth suffix) is the empty string
```

String comparison

Fundamental question: how similar, or how different, are 2 strings?

- applications include:
 - biology (DNA and protein sequences)
 - file comparison (diff in Unix, and other similar file utilities)
 - spelling correction, speech recognition,...

A more precise formulation:

```
given strings s=s_0s_2...s_{m-1} and t=t_0t_2...t_{n-1} of lengths m and n, what is the smallest number of basic operations needed to transform s to t?
```

'Basic' operations for transforming strings:

- insert a single character
- delete of a single character
- substitute one character by another

String comparison - String distance

The distance between s and t is defined to be the smallest number of basic operations needed to transform s to t

for example consider the strings s and t

```
s: a b a d c d b
t: a c b a c a c b
```

- we can show an alignment between s and t that illustrates how 4 steps
 would suffice to transform s into t
- hence the distance between s and t is less than or equal to 4

String comparison - String distance

The distance between s and t is defined to be the smallest number of basic operations needed to transform s into t

for example for the strings

```
s: a b a d c d b
t: a c b a c a c b
```

the distance between s and t is less than or equal to 4

```
s: a - b a d c d - b
t: a c b a - c a c b
```

But could it be done in 3 steps?

 the answer is no, proof later based on our algorithm to find the distance for any two strings, so above alignment is an optimal alignment

String comparison - String distance

More complex models are possible

- e.g. we can allocate a cost to each basic operation
- our methods adapt easily but we will stick to the unit-cost model

String comparison algorithms use dynamic programming

- the problem is solved by building up solutions to sub-problems of ever increasing size
- often called the tabular method (it builds up a table of relevant values)
- eventually, one of the values in the table gives the required answer

The dynamic programming technique has applications to many different problems

Recall the ith prefix of string s is the first i characters of s

- let d(i,j) be the distance between ith prefix of s and the jth prefix of t
- distance between s and t is then d(m,n)
 (since s and t of lengths m and n)

The basis of dynamic programming method is a recurrence relation

- more precisely we define the distance d(i,j) between ith prefix of s and the jth prefix of t in terms of the distance between shorter prefixes
 i.e. in terms of the distances d(i-1,j-1), d(i,j-1) and d(i-1,j)
- in the base cases we set d(i,0)=i and d(0,j)=j for all $i \le n$ and $j \le m$
- since the distance from/to an empty string to/from a string of length k
 is equal to k (we require k insertions/deletions)

In an optimal alignment of the ith prefix of s with the jth prefix of the last position of the alignment must either be of the form:

if
$$s[i-1] = t[j-1]$$
 and $\begin{bmatrix} - \\ * \end{bmatrix}$, $\begin{bmatrix} * \\ - \end{bmatrix}$ or $\begin{bmatrix} * \\ \$ \end{bmatrix}$ otherwise

where - is a gap, while * and \$ are arbitrary but different characters

In this case, no operations are required and the distance is given by that between the i-1th and j-1th prefixes of s and t

$$d(i,j) = \begin{cases} d(i-1,j-1) & \text{if } s[i-1]=t[j-1] \\ & \text{otherwise} \end{cases}$$

In an optimal alignment of the ith prefix of s with the jth prefix of the last position of the alignment must either be of the form:

if
$$s[i-1] = t[j-1]$$
 and $\begin{bmatrix} -\\ * \end{bmatrix}$, $\begin{bmatrix} *\\ -\end{bmatrix}$ or $\begin{bmatrix} *\\ \$ \end{bmatrix}$ otherwise

where - is a gap, while * and \$ are arbitrary but different characters

In this case, insert element into s and distance given by 1 (for the insertion) plus distance between i^{th} prefix of s and $i-1^{th}$ prefix of t

$$d(i,j) = \begin{cases} d(i-1,j-1) & \text{if } s[i-1] = t[j-1] \\ \\ 1 + min\{ d(i,j-1) \end{cases}$$
 otherwise

In an optimal alignment of the ith prefix of s with the jth prefix of the last position of the alignment must either be of the form:

if
$$s[i-1] = t[j-1]$$
 and $\begin{bmatrix} - \\ * \end{bmatrix}$, or $\begin{bmatrix} * \\ - \end{bmatrix}$ otherwise

where - is a gap, while * and \$ are arbitrary but different characters

In this case, delete an element from s and distance given by 1 plus distance between i-1th prefix of s and ith prefix of t

$$d(i,j) = \begin{cases} d(i-1,j-1) & \text{if } s[i-1] = t[j-1] \\ \\ 1 + min\{ d(i,j-1), d(i-1,j), \end{cases}$$
 otherwise

In an optimal alignment of the ith prefix of s with the jth prefix of the last position of the alignment must either be of the form:

if
$$s[i-1] = t[j-1]$$
 and $\begin{bmatrix} - \\ * \end{bmatrix}$, $\begin{bmatrix} * \\ - \end{bmatrix}$ or $\begin{bmatrix} * \\ \$ \end{bmatrix}$ otherwise

where - is a gap, while * and \$ are arbitrary but different characters

In this case, substitute an element in s and distance given by 1 plus distance between i-1th prefix of s and i-1th prefix of t

```
d(i,j) = \begin{cases} d(i-1,j-1) & \text{if } s[i-1]=t[j-1] \\ \\ 1 + min\{ \ d(i,j-1), \ d(i-1,j), \ d(i-1,j-1) \ \} \text{ otherwise} \end{cases}
```

In an optimal alignment of the ith prefix of s with the jth prefix of the last position of the alignment must either be of the form:

if
$$s[i-1] = t[j-1]$$
 and $\begin{bmatrix} - \\ * \end{bmatrix}$, $\begin{bmatrix} * \\ - \end{bmatrix}$ or $\begin{bmatrix} * \\ \$ \end{bmatrix}$ otherwise

where - is a gap, while * and \$ are arbitrary but different characters

We take the minimum when $s[i-1] \neq t[j-1]$ as we want the optimal (minimal) distance

```
d(i,j) = \begin{cases} d(i-1,j-1) & \text{if } s[i-1]=t[j-1] \\ \\ 1 + min\{ d(i,j-1), d(i-1,j), d(i-1,j-1) \} \text{ otherwise} \end{cases}
```

The complete recurrence relation is given by:

$$d(i,j) = \begin{cases} d(i-1,j-1) & \text{if } s[i-1]=t[j-1] \\ \\ 1+min\{\ d(i,j-1),d(i-1,j),d(i-1,j-1)\} & \text{otherwise} \end{cases}$$

subject to d(i,0)=i and d(0,j)=j for all $i \le n-1$ and $j \le m-1$

String distance - Dynamic programming

The dynamic programming algorithm for string distance comes immediately from the formula

- fill in the entries of an $m \times n$ table row by row, and column by column

Time and space complexity both O(mn)

- a consequence of the size of the table
- can easily reduce the space complexity to O(m+n)
- just keep the most recent entry in each column of the table

But what about obtaining an optimal alignment?

- can use a 'traceback' in the table (see example below)
- less obvious how this can be done using only O(m+n) space
- but in fact it turns out that it's still possible (Hirschberg's algorithm)

String distance - Example

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	С	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	1	2	3	4	5	6	7
2	Ь	2	1	1	1	2	3	4	5	6
3	a	3	2	2	2	1	2	3	4	5
4	d	4	3	3	3	2	2	3	4	5
5	C	5	4	3	4	3	2	3	3	4
6	d	6	5	4	4	4	3	3	4	4
7	b	7	6	5	4	5	4	4	4	4

The entries are calculated one by one by application of the formula

- the final table: d(7,8)=4 so the string distance is 4

String distance - Dynamic programming

The traceback phase used to construct an optimal alignment

- trace a path in the table from bottom right to top left
- draw an arrow from an entry to the entry that led to its value

Interpretation

- vertical steps as deletions
- horizontal steps as insertions
- diagonal steps as matches or substitutions
 - · a match if the distance does not change and a substitution otherwise

The traceback is not necessarily unique

since there can be more than one optimal alignment

String distance - Example (traceback)

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	С	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	+1	2	3	4	5	6	7
2	b	2	1	1	1	2	3	4	5	6
3	a	3	2	2	2	1	2	3	4	5
4	d	4	3	3	3	2	2 <	- 3	4	5
5	C	5	4	3	4	3	2	3	3	4
6	d	6	5	4	4	4	3	3	4	4
7	b	7	6	5	4	5	4	4	4	4

Corresponding alignment:

```
s: a - b a d - c d b
t: a c b a c a c - b
step: d ← h ← d ← d ← h ← d ← v ← d
(d=diagonal, v = vertical, h = horizontal)
```

String/pattern search

Searching a (long) text for a (short) string/pattern

- many applications including
 - information retrieval
 - text editing
 - computational biology

Many variants, such as exact or approximate matches

- first occurrence or all occurrences
- one text and many strings/patterns
- many texts and one string/pattern

We describe three different solutions to the basic problem:

- given a text t (of length n) and a string/pattern s (of length m)
- find the position of the first occurrence (if it exists) of s in t
- usually n is large and m is small

String search - Brute force algorithm

Given a text t (of length n) and a string/pattern s (of length m) find the position of the first occurrence (if any) of s in t

The naive brute force algorithm

- also known as exhaustive search (as we simply test all possible positions)
- set the current starting position in the text to be zero
- compare text and string characters left-to-right until the entire string is matched or a character mismatches
- in the case of a mismatch
 advance the starting position in the text by 1 and repeat
- continue until a match is found or the text is exhausted

Algorithms expressed with char arrays rather than strings in Java

String search - Brute force algorithm

```
/** return smallest k such that s occurs in t starting at position k */
public int bruteForce (char[] s, char[] t){
  int m = s.length; // length of string/pattern
  int n = t.length; // length of text
  int sp = 0; // starting position in text t
  int i = 0; // curr position in text
  int j = 0; // curr position in string/pattern s
  while (sp <= n-m && j < m) { // not reached end of text/string</pre>
     if (t[i] == s[j]){ // chars match
        i++: // move on in text
        j++; // move on in string/pattern
     } else { // a mismatch
        j = 0; // start again in string
        sp++; // advance starting position
        i = sp; // back up in text to new starting position
  if (j == m) return sp; // occurrence found (reached end of string)
  else return -1; // no occurrence (reached end of text)
```

String search - Brute force algorithm

Worst case is no better than O(mn)

- e.g. search for
$$s = aa \dots ab$$
 in $t = aa \dots aaaa \dots ab$
length m

m character comparisons needed at each n-(m+1) positions in the text
 before the text/pattern is found

Typically, the number of comparisons from each point will be small

- often just 1 comparison needed to show a mismatch
- so we can expect O(n) on average

Challenges: can we find a solution that is...

- 1. linear, i.e. O(m+n) in the worst case?
- 2. (much) faster than brute force on average?

String search - KMP algorithm

The Knuth-Morris-Pratt (KMP) algorithm

addresses first challenge: linear (O(m+n)) in the worst case

It is an on-line algorithm

- i.e., it removes the need to back-up in the text
- involves pre-processing the string to build a border table
- border table: an array b with entry b[j] for each position j of the string

If we get a mismatch at position j in the string/pattern

- we remain on the current text character (do not back-up)
- the border table tells us which string character should next be compared with the current text character

String search - KMP algorithm

A substring of string s is a sequence of consecutive characters of s

- if s has length n, then s[i..j] is a substring for i and j with $0 \le i \le j \le n-1$

A prefix of s is a substring that begins at position 0

- i.e. s[0..j] for any j with $0 \le j \le n-1$

A suffix of s is a substring that ends at position n-1

- i.e. s[i..n-1] for any i with $0 \le i \le n-1$

A border of a string s is a substring that is both a prefix and a suffix and cannot be the string itself

- e.g. s = a c a c g a t a c a c
- a c and a c a c are borders and a c a c is the longest border

Many strings have no border

- we then say that the empty string ε (of length 0) is the longest border

String search - Border table

KMP algorithm requires the border table of the string pattern

 a border of a string s is a substring that is both a prefix and a suffix and cannot be the string itself

Border table b: array which has the same size as the string

```
- b[j] = the length of the longest border of s[0..j-1]
= max \{ k \mid s[0..k-1] = s[j-k..j-1] \land k < j \}
```

Example

no common prefix/suffix of ababac so set to 0

Example - Mismatch between s and t at position 9 in s

Applying the brute force algorithm, after the mis-match:

- s has to be 'moved along' one position relative to t
- then we start again at position 0 in s and jump back j-1 positions in t

Example - Mismatch between s and t at position 9 in s

Applying the KMP algorithm, after the mis-match:

- s has to be 'moved along' until the characters to the left of i again match

Need to move s along until the characters to the left of i match therefore need start of s[0..j-1] to match end of s[0..j-1]

- therefore use longest border of s [0..j-1]
- i.e. longest substring that is both a prefix and a suffix of s[0..j-1]

Example - Mismatch between s and t at position 9 in s

Applying the KMP algorithm, after the mis-match:

- s has to be 'moved along' until the characters to the left of i again match
- this determines the new value of j, the value of i is unchanged
- length of the longest border of s[0..j-1] is 4 in this case
 - i.e. longest substring that is both a prefix and a suffix of s[0..j-1]
- so the new value of j is 4

Example - Mismatch between s and t at position 9 in s

Applying the KMP algorithm, after the mis-match:

- s has to be 'moved along' until the characters to the left of i again match

If we cannot move s along to get a match, then we need to

reset j (i.e. return to the start of the string) and i remains unchanged

Example - Mismatch between s and t at position 0 in s

Applying the KMP algorithm, after the mis-match:

- s has to be 'moved along' until the characters to the left of i again match

If we cannot move s along to get a match, then we need to

- reset j (i.e. return to the start of the string) and i remains unchanged
- unless j is already 0 and in this case increment i

KMP search - Implementation

```
/** return smallest k such that s occurs from position k in t or -1 if no k exists */
public int kmp(char[] t, char[] s) {
   int m = s.length; // length of string/pattern
  int n = t.length; // length of text
  int i = 0; // current position in text
  int j = 0; // current position in string s
  int [] b = new int[m]; // create border table
   setUp(b); // set up the border table
  while (i <= n) { // not reached end of text</pre>
     if (t[i] == s[j]){ // if positions match
         i++; // move on in text
         i++; // move on in string
        if (j = m) return i - j; // reached end of string so a match
      } else { // mismatch adjust current position in string using the border table
          if (b[i] > 0) // there is a common prefix/suffix
              i = b[i]; // change position in string (position in text unchanged)
         else { // no common prefix/suffix
             if (j = 0) i++; // move forward one position in text if not advanced
             else j = 0; // else start from beginning of the string
   return -1; // no occurrence
```

KMP - Example

String/pattern has been found

position in string j=6

Algorithmics I, 2021

```
while (i<n)
   if (t[i] == s[j]){
        i++; j++;
   }
   else {
        if (b[j]>0) j = b[j];
        else {
            if (j=0) i++;
            else j = 0;
        }
   }
}
```

For the complexity we need to know the number of loop iterations Consider values of \mathbf{i} and \mathbf{k} (where $\mathbf{k}=\mathbf{i}-\mathbf{j}$) during the iterations

- clearly i≤n and since j is never negative we also have k≤n
- in each iteration either i or k is incremented and neither is decremented

```
while (i<n)
   if (t[i] == s[j]){
       i++; j++;
   }
   else {
       if (b[j]>0) j = b[j];
       else {
         if (j=0) i++;
         else j = 0;
   }
}
```

For the complexity we need to know the number of loop iterations Consider values of \mathbf{i} and \mathbf{k} (where $\mathbf{k}=\mathbf{i}-\mathbf{j}$) during the iterations

- clearly i≤n and since j is never negative we also have k≤n
- in each iteration either i or k is incremented and neither is decremented

```
\cdot i++ > i and (i++)-(j++) = i-j
```

```
while (i<n)
   if (t[i] == s[j]){
      i++; j++;
}
else {
      if (b[j]>0) j = b[j];
      else {
        if (j=0) i++;
        else j = 0;
      }
}
```

For the complexity we need to know the number of loop iterations Consider values of \mathbf{i} and \mathbf{k} (where $\mathbf{k}=\mathbf{i}-\mathbf{j}$) during the iterations

- clearly i≤n and since j is never negative we also have k≤n
- in each iteration either i or k is incremented and neither is decremented

```
\cdot i = i and i-b[j] > i-j
```

since b[j]<j as b[j] longest border in a string of length j

```
while (i<n)
   if (t[i] == s[j]){
       i++; j++;
   }
   else {
       if (b[j]>0) j = b[j];
       else {
         if (j=0) i++;
         else j = 0;
   }
}
```

For the complexity we need to know the number of loop iterations Consider values of \mathbf{i} and \mathbf{k} (where $\mathbf{k}=\mathbf{i}-\mathbf{j}$) during the iterations

- clearly i≤n and since j is never negative we also have k≤n
- in each iteration either i or k is incremented and neither is decremented

```
\cdot i++ > i \text{ and } (i++)-j > i-j
```

```
while (i<n)
   if (t[i] == s[j]){
        i++; j++;
   }
   else {
        if (b[j]>0) j = b[j];
        else {
            if (j=0) i++;
            else j = 0;
        }
   }
}
```

For the complexity we need to know the number of loop iterations Consider values of \mathbf{i} and \mathbf{k} (where $\mathbf{k}=\mathbf{i}-\mathbf{j}$) during the iterations

- clearly i≤n and since j is never negative we also have k≤n
- in each iteration either i or k is incremented and neither is decremented

```
\cdot i = i and i-0 > i-j
```

since j>0 must hold for the else case to be taken

```
while (i<n)
   if (t[i] == s[j]){
        i++; j++;
   }
   else {
        if (b[j]>0) j = b[j];
        else {
            if (j=0) i++;
            else j = 0;
        }
   }
```

For the complexity we need to know the number of loop iterations Consider values of \mathbf{i} and \mathbf{k} (where $\mathbf{k}=\mathbf{i}-\mathbf{j}$) during the iterations

- clearly i≤n and since j is never negative we also have k≤n
- in each iteration either i or k is incremented and neither is decremented
- so the number of iterations of the loop is at most 2n

Hence KMP is O(n) in the worst case

KMP search is O(n) in the worst case

Creating the border table

- naïve method requires O(j²) steps to evaluate b[j] giving O(m³) overall
- a more efficient method is possible that requires just O(m) steps in total involves a subtle application of the KMP algorithm (details are omitted)

Overall complexity of KMP search

- KMP can be implemented to run in O(m+n) time
- O(m) for setting up the border table
- O(n) for conducting the search

Have addressed challenge 1

– KMP algorithm is linear (i.e. O(m+n))

Boyer-Moore Algorithm

Challenge 1: can we find a solution that is linear in the worst case?

Yes: KMP

Challenge 2: can we find a solution that is (much) faster than brute force on average?

Boyer-Moore: almost always faster than brute force or KMP

- variants are used in many applications
- typically, many text characters are skipped without even being checked
- the string/pattern is scanned right-to-left
- text character involved in a mismatch is used to decide next comparison

Boyer-Moore Algorithm - Example

Search for 'pill' in 'the caterpillar'

```
the caterpillar pill ^
```

Search for string from right to left

start by comparing mth element of text with last character of string
 m is the length of the string, i.e. equals 4

Boyer-Moore Algorithm - Example

Search for 'pill' in 'the caterpillar'

```
the caterpillar
pill
∧
```

Search for string from right to left

- continue search from the last position in the string
- 'p' matches and we have found the string in the text

Boyer-Moore Algorithm - Simplified version

The string is scanned right-to-left

- text character involved in a mismatch is used to decide next comparison
- involves pre-processing the string to record the position of the last occurrence of each character c in the alphabet
- therefore the alphabet must be fixed in advance of the search

Last occurrence position of character c in the string s

- equals $\max\{k \mid s[k]=c\}$ if such a k exists and -1 otherwise

Want to store last occurrence position of c in an array element p[c]

- but in Java we can not index an array by characters
- instead can use the static method Character.getNumericValue(c)
- to compute an appropriate array index

Simplified version (often called the Boyer-Moore-Horspool algorithm)

Boyer-Moore Algorithm - Simplified version

In our pseudocode we assume an array p[c] indexed by characters

- the characters range over the underlying alphabet of the text
- p[c] records the position in the string of the last occurrence of char c
- if the character c is absent from the string s, then let p[c]=-1

Assume ASCII character set (128 characters)

- for Unicode (more than 107,000 characters), p would be a large array

On finding a mismatch there is a jump step in the algorithm

- if the mismatch is between s[j] and t[i]
- 'slide s along' so that position p[t[i]] of s aligns with t[i]
 - · i.e. align last position in s of character t[i] with position i of t
- if this moves s in the 'wrong direction', instead move s one position right
- if t[i] does not appear in string, 'slide string' passed t[i]
 - · i.e. align position -1 of s with position i of t

- i records the current position in the text we are checking
- j records the current position in the string we are checking
- sp records the current starting position of string in the text

- i records the current position in the text we are checking
- new value of i equals i+(m-1)-p[t[i]]

- j records the current position in the string we are checking
- new value of j equals m-1 (start again from the end of the string/pattern)

- sp records the current starting position of string in the text
- new value of sp equals sp+j-p[t[i]] as this is the amount the pattern/ string has been moved forward

Assume a mismatch between position s[j] and position t[i]

Case 2: last position of character t[i] in s is at least at position j

move string along by one place and start again from the end of the string

- i records the current position in the text we are checking
- j records the current position in the string we are checking
- sp records the current starting position of string in the text

Assume a mismatch between position s[j] and position t[i]
Case 2: last position of character t[i] in s is at least at position j

- i records the current position in the text we are checking
- new value of i equals i+(m-1)-(j-1) = i+(m-j)

Assume a mismatch between position s[j] and position t[i]
Case 2: last position of character t[i] in s is at least at position j

- j records the current position in the string we are checking
- new value of j equals m-1

Assume a mismatch between position s[j] and position t[i]
Case 2: last position of character t[i] in s is at least at position j

- sp records the current starting position of string in the text
- new value of sp equals sp+1

- i records the current position in the text we are checking
- j records the current position in the string we are checking
- sp records the current starting position of string in the text

- i records the current position in the text we are checking
- new value of i equals i+m

- i records the current position in the text we are checking
- new value of i equals i+m

- j records the current position in the string we are checking
- new value of j equals m-1 (start again from the end of the string/pattern)

- sp records the current starting position of string in the text
- new value of sp equals sp+(j+1) as this is the amount the pattern/
 string has been moved forward

Boyer-Moore Algorithm - All cases

Case 1: p[t[i]] < j and $p[t[i]] \ge 0$

- new value of i equals i+m-1-p[t[i]]
- new value of j equals m-1

Case 2: **p**[t[i]]>j

- new value of i equals i+m-j
- new value of j equals m-1
- new value of sp equals sp+1

Case 3: p[t[i]]=-1

- new value of i equals i+m
- new value of j equals m-1
- new value of sp equals sp+j+1

```
Note p[t[i]] cannot equal j as p[t[i]] last position of character t[i] in s and mismatch between t[i] and s[j]
```

Boyer-Moore Algorithm - All cases

We find that we can express these updates as follows:

- new value of i equals i + m min(1+p[t[i]],j)
- new value of j equals m-1
- new value of sp equals sp + max(j-p[t[i]],1)

You do not need to learn these updates, just how the algorithm works

- this is sufficient for running it on an example (as you saw)
- and for working out what the updates are if needed (again as you saw)

Boyer-Moore Algorithm - Implementation

```
/** return smallest k such that s occurs at k in t or -1 if no k exists */
public int bm(char[] t, char[] s) {
  int m = s.length; // length of string/pattern
  int n = t.length; // length of text
   int sp = 0; // current starting position of string in text
   int i = m-1; // current position in text
   int j = m-1; // current position in string/pattern
  // declare a suitable array p
   setUp(s, p); // set up the last occurrence array
  while (sp <= n-m \&\& j >= 0) {
      if (t[i] == s[i]){ // current characters match
         i--; // move back in text
         j--; // move back in string
      } else { // current characters do not match
         sp += max(1, j - p[t[i]]);
         i += m - min(j, 1 + p[t[i]]);
         j = m-1; // return to end of string
   if (j < 0) return sp; else return -1; // occurrence found yes/no</pre>
```

Boyer-Moore Algorithm - Complexity

Worst case is no better than O(mn)

- e.g. search for
$$s = ba$$
 ... aa in $t = aa$... $aaaa$... aa length n

m character comparisons needed at each n-(m+1) positions in the text
 before the text/pattern is found

There is an extended version which is linear, i.e. O(m+n)

this as the good suffix rule (or magic)