کارگاه یادگیری عمیق با پایتون: تشخیص اشیا

- □ دستهبندی و مکانیابی.
 - 🗖 یک شی در تصویر
 - □ شناسایی نقاط عطف
- □ تشخیص وضعیت قرارگیری
 - □ تشخیص اشیا.
 - 🗖 چند شی در تصویر
 - 🗖 پنجره لغزان
- □ شبکههای کاملا کانولوشنی
 - □ الگوريتم YOLO

تشخیص اشیا: اجرای نمایشی

□ دستهبندی تصویر و شناسایی اشیا.

دستەبندى تصوير

دستهبندی و مکانیابی

شناسایی اشیا

- 🗖 یک شی در هر تصویر
- □ تخمین مختصات جعبه محاطی
- □ ارزیابی از طریق نسبت اشتراک به اجتماع (IoU)

مکانیابی به عنوان رگرسیون

دستهبندی و مکانیابی

تابع هزینه: مجموع مربعات خطا

$$\begin{bmatrix} 1 \\ b_x \\ b_y \\ b_h \\ b_w \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$L(\hat{y}, y) = \begin{cases} \sum_{i=1}^{f} (\hat{y}_i - y_i)^2, & y_1 = 1\\ (\hat{y}_1 - y_1)^2, & y_1 = 0 \end{cases}$$

تشخيص نقاط عطف: تشخيص احساسات

Zhanpeng Zhang, et. al. Facial Landmark Detection by Deep Multi-task Learning, ECCV, 2014

تشخيص نقاط عطف: تشخيص وضعيت

Xianjie Chen and Alan Yuille, Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise, NIPS, 2014.

ايجاد مجموعه آموزشي

آموزش شبكه كانولوشني

شناسایی اشیا با پنجره لغزان

شناسایی اشیا با پنجره لغزان

شناسایی اشیا با پنجره لغزان

هزینه محاسباتی بسیار بالا!

پنجره لغزان: کاهش هزینههای مماسباتی

شناسایی اشیا با پنجره لغزان

□ تبدیل لایههای کاملا متصل به لایههای کانولوشنی.

□ تبدیل لایههای کاملا متصل به لایههای کانولوشنی.

انجام محاسبات مربوط به پنجره لغزان به صورت موازی و همزمان!

امتمال وجور اشیا رر هر یک از پنجرهها

اشتراک بر روی اجتماع

□ معیاری به منظور محاسبه میزان همپوشانی دو جعبه محاطی.

$$IoU = \frac{|B_1 \cap B_2|}{|B_1 \cup B_2|} \ge 0.5$$

اشتراک بر روی اجتماع

□ معیاری به منظور محاسبه میزان همپوشانی دو جعبه محاطی.

IoU = 0.5

IoU = 0.7

IoU = 0.9

اشتراک بر روی اجتماع

□ معیاری به منظور محاسبه میزان همپوشانی دو جعبه محاطی.

$$IoU = \frac{|B_1 \cap B_2|}{|B_1 \cup B_2|}$$

```
def iou(b1, b2):
   # determine the coordinates of the intersection rectangle
   # each box is a list of four numbers like [x1, y1, x2, y2]
   xA = \max(b1[0], b2[0])
   yA = max(b1[1], b2[1])
   xB = min(b1[2], b2[2])
   yB = min(b1[3], b2[3])
   # compute the area of intersection
   area intersect = (xB - xA + 1) * (yB - yA + 1)
   # Calculate area of the two boxes
   area b1 = (b1[2] - b1[0] + 1) * (b1[3] - b1[1] + 1)
   area b2 = (b2[2] - b2[0] + 1) * (b2[3] - b2[1] + 1)
   # compute and return the intersection over union
   return area_intersect / float(area_b1 + area_b2 - area_intersect)
```

ههپوشانی اشیا و جعبههای لنگر

$$y = \begin{bmatrix} y_{a1} \\ y_{a2} \end{bmatrix}$$
 به ازای هر فانه

جعبه لنگر ۱

معبههای لنگر

- □ انتخاب جعبههای لنگر
- □ طراحی جعبههای لنگر به صورت دستی
- □ استفاده از الگوریتم خوشهبندی [۵ خوشه]

$$D(B_1, B_2) = 1 - IoU(B_1, B_2)$$

معيار فاصله

الگوریتی YOLO

□ ایجاد مجموعه آموزشی.

۱ - رهگذر

۲ - خودرو

۳ – موتورسیکلت

🗆 خروجي.

الگوریتی YOLO

0,0

19 × 19 × & × A

1 216 IV aili $p_c = 0$ $p_c = 0$ $b_x = 0$ $b_x = 0$ $b_y = 0$ $b_v = 0$ $b_h = 0$ $b_h = 0$ $b_w = 0$ $b_w = 0$ $C_1 = 0$ $C_1 = 0$ $C_2 = 0$ $C_2 = 0$ $C_3 = 0$ $C_3 = 0$ $p_c = 0$ $p_c = 1$ $b_x = 0$ $b_{x} = 0.7$ $b_{y} = 0.7$ $b_v = 0$ $b_h = 0$ $b_h = 0.8$ $b_w = 0$ $b_{w} = 1.9$ $C_1 = 0$ $C_1 = 0$ $C_2 = 0$ $C_2 = 1$ $C_3 = 0$ $C_3 = 0$

الگوریتی YOLO: پیشبینی

سرکوب غیر بیشینه

□ اطمینان از این که هر شی، بیش از یک بار شناسایی نمیشود.

الگوریتی YOLO: سرکوب غیر بیشینه

□ پیشبینیهایی را که احتمال کمی دارند، حذف کن. [کمتر از ۱۰/۶]

- □ برای هر دسته [رهگذر، خودرو، موتورسیکلت]:
 - تا زمانی که پیشبینی دیگری وجود دارد:
 - پیشبینی با بیشترین احتمال را انتخاب کن.
 - این پیشبینی را به عنوان خروجی در نظر بگیر.
- تمام پیشبینیهایی را که همپوشانی بالایی با پیشبینی انتخاب شده دارند، حذف کن.

$$IoU >= 0.5$$

الگوریتی YOLO: سرکوب غیر بیشینه


```
# Iterate each class
for c in range (classes):
    # Sort boxes according to their prob for class c
   boxes.sort(key=lambda box: box[0][c], reverse=True)
    # Iterate each box
   for i in range(len(boxes) - 1):
       box i = boxes[i]
       if box_i[0][c] == 0:
            continue
        for box j in boxes[i + 1:]:
            # Take iou threshold into account
            if iou(box i[1], box i[2], box j[1], box j[2]) >= threshold:
               box j[0][c] = 0
return boxes
```

معماری 20102

