Calculus Unraveled

Intuition, Proofs, and Python

Dr. Mike X Cohen

This page contains some important details about the book that basically no one reads but somehow is always in the first page.

© Copyright 2025 Michael X Cohen.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without the written permission of the author, except where permitted by law.

ISBN: 9798309397228, edition 1.

This book was written and formatted in \LaTeX by Mike X Cohen.

The cover of this book was designed by Yuva Oz (art-4-science.com).

If you're reading this, then the book is dedicated to you. I wrote this book for *you*. Now turn the page and start learning calculus!

The past is immutable and the present is fleeting. Forward is the only direction.

Contents

	0.1	Front matter	2
	0.2	Book cover	2
	0.3	Dedication	2
	0.4	Forward	2
1	lnti	roduction to this book	13
1	1.1	What is calculus and why learn it?	13 14
	1.1	· · · · · · · · · · · · · · · · · · ·	$\frac{14}{14}$
	1.2	Why learn calculus from this book?	$\frac{14}{15}$
		Target audience	
	1.4	Prerequisites	16
		1.4.1 Brand new to Python?	17
	1.5	Exercises	17
	1.6	Using the code with this book	18
		1.6.1 Code organization	20
		1.6.2 Modifying and reposting my code	21
	1.7	Online resources	21
	1.8	AI assistance	23
2	Fur	nctions	25
	2.1	What is a function?	26
		2.1.1 Formal definition	27
		2.1.2 What is a variable?	28
		2.1.3 Function outputs and accuracy	30
		2.1.4 Examples of non-functions	31
		2.1.5 Vertical and horizontal line tests	32
		2.1.6 Functions in math vs. Python	33
		2.1.7 f(x) vs. y	35
		2.1.8 Is math notation necessary to define functions?	36
		2.1.9 Conventions for writing functions	36
		2.1.10 Only numbers?	37
	2.2	Number fields	37
	2.3	Domain, codomain, and range of a function	38
		2.3.1 Restrictions on domains and ranges	41
		2.3.2 Notations for domain and range	41
		2.3.3 Determining the domain and range	43
		2.3.4 Why do you need to know the domain and range?	11

	2.4	Injective, surjective, and bijective	44
	2.5	How to "understand" functions	46
			50
	2.6	Functions in numpy and sympy	51
			52
	2.7		54
3	Fan	illies of functions	31
	3.1	Families of functions	62
	3.2		62
	3.3	Polynomials	64
		·	66
			67
	3.4		69
	3.5		70
		•	71
			73
	3.6		75
		3.6.1 Trig functions as ratios	75
			76
		3.6.3 Trig functions as wavey lines (time series)	76
			78
	3.7		79
	3.8	Continuity and discontinuities	31
			32
		· · · · · · · · · · · · · · · · · · ·	33
	3.9	Composite functions	34
		_	35
			36
		3.9.3 Applications of composite functions	37
		3.9.4 Composite functions in coding	38
	3.10		38
		3.10.1 How to find the inverse of a function	91
		3.10.2 Which functions have inverses?	91
			92
		3.10.4 Inverse trig functions	94
	3.11		95
			98
		3.11.2 Why is function symmetry important? 10	00
	3.12	Exercises)2
4	Lim	its 11	L 7
	4.1	Zeno's paradox and limits	
	4.2	Geometric intuition of limits	
	4.3	Limits notation	

4.4	"Easy" limits by plugging in or factoring	123
	4.4.1 Factoring	124
	4.4.2 Limits and denominators	125
4.5	One-sided limits and infinities	125
4.6	Properties of limits	127
4.7	Continuity and discontinuities, revisited	129
4.8	Limits of trig functions, part 1	129
4.9	Squeeze theorem	133
	4.9.1 Three examples	134
4.10	Limits of trig functions, part 2	136
4.11	Limits categories	139
4.12	Exercises	142
5 Fu	ndamentals of differentiation	151
5.1	Slope of a line	152
5.2	Formal definition of derivative	155
	5.2.1 Example with a linear function	156
	5.2.2 Example with a quadratic function	158
	5.2.3 Proof: Derivative of a constant is $0 \dots \dots$	159
5.3	Various notations for the derivative	160
	5.3.1 Geometric terms	162
5.4	Interpreting derivatives plots	164
	5.4.1 More examples	165
5.5	Differentiation is linear	167
	5.5.1 Proof of linearity	169
5.6		170
5.7	Derivatives of polynomials	171
	5.7.1 Derivative of square root	174
5.8	Derivatives of cosine and sine	174
	5.8.1 Proving the cosine-sin cycle	175
5.9	Derivatives of absolute value and signum	176
5.10	Derivatives of log and exp	178
	5.10.1 Logs of various bases, and their derivatives	179
	5.10.2 Derivative of e^x	180
5.11	Higher-order derivatives	181
5.12	Exercises	183
6 Cri	tical and inflection points	193
6.1	Taxonomy of critical points	194
6.2	Analytic methods to find critical points	196
	6.2.1 Via solving $f'(x) = 0$	197
	6.2.2 Via discontinuities	198
	6.2.3 Endpoints of a restricted domain	199
	6.2.4 Conclusions about finding critical points	200
6.3	Empirical methods to find critical points	200

	6.3.1	Via visual inspection	201
	6.3.2	Grid search	202
	6.3.3	Gradient descent	206
6.4	The "fi	irst derivative test"	208
	6.4.1	First derivative test	208
6.5	Examp	ples of critical points	209
6.6	Inflecti	ion points	213
	6.6.1	Identifying inflection points	215
	6.6.2	Example of sigmoid function	215
6.7	Evalua	ting inflection points	216
6.8	Applic	ations of critical points	217
	6.8.1	Real-world applications of second derivatives $$	218
6.9	Exercis	ses	220
7 Di	fferentia	tion rules	229
7.1		ct rule	230
,.1	7.1.1	Intuition of the product rule	233
	7.1.2	Proving the product rule	233
	7.1.3	More than two functions	234
7.2	-	rule	235
	7.2.1	More than two functions	237
7.3	Quotie	ent rule	237
	7.3.1	Proving the quotient rule	239
7.4		it differentiation	240
	7.4.1	Implicit vs. explicit functions	241
	7.4.2	How to differentiate implicitly	241
	7.4.3	Implicit differentiation in sympy	247
7.5	Numer	rically solving implicit differentiation	248
	7.5.1	Searching for solutions in numpy	249
	7.5.2	Implicit plots in sympy	252
7.6	Implici	it differentiation proofs (log, exp, power)	252
	7.6.1	Natural log	252
	7.6.2	Natural exponential	253
	7.6.3	Power rule	254
7.7	L'Hôpi	ital's rule	254
	7.7.1	Conditions for L'Hôpital's rule	258
7.8	Exercis	ses	261
8 Di	fferentia	tion theorems	269
8.1		entiability implies continuity	270
	8.1.1	Proof	270
	8.1.2	Does continuity imply differentiability?	271
8.2	Interm	ediate value theorem	272
8.3		theorem	274
	8.3.1	Example problem	275

		8.3.2 Conditions for Rolle's theorem	276
	8.4	Mean value theorem	277
		8.4.1 What is the "mean value"?	280
	8.5	The Fundamental Theorem of Calculus	280
		8.5.1 Fundamental Theorem of Calculus, part 1 (FTC-1)	280
		8.5.2 Fundamental theorem of calculus, part 2 (FTC-2)	281
	8.6	Exercises	283
9	Арр	olications of differentiation	289
	9.1	Linear approximations	290
		9.1.1 Intuition of linear approximations	291
		9.1.2 Approximation accuracy	292
		9.1.3 A second example	294
	9.2	Newton's method for finding roots	295
		9.2.1 Newton's method: algorithm	297
		9.2.2 Challenges and failures	298
	9.3	Optimization	299
		9.3.1 How to solve derivative-based optimization problems	s 300
		9.3.2 Example 1: Optimize for surface area	303
		9.3.3 Example 2: Optimize for volume	305
	9.4	Exercises	308
1	0 Mu	Itivariable differentiation	313
	10.1	Two-variable functions	314
		10.1.1 Creating 2D functions in Python	316
		10.1.2 Visualizing 2D functions	318
	10.2	Limits of multivariable functions	319
	10.3	Partial derivatives	323
		10.3.1 Visualizing partial derivatives	325
		10.3.2 Interpreting partial derivatives	326
		10.3.3 Partial derivatives: formal definition	327
	10.4	Higher-order partial derivatives	327
		10.4.1 Symmetry of higher-order partial derivatives	329
		10.4.2 Example	330
	10.5	Gradients and gradient fields	331
		10.5.1 Gradient fields	333
		10.5.2 Gradients and slopes	336
		10.5.3 Jacobian matrix for first-order partial derivatives .	336
		10.5.4 Hessian matrix for second-order partial derivatives	338
	10.6	Gradient descent in 2D	339
	10.7	Exercises	341
1	1 Ma	ke differential art!	353
	11.1	Elf hat	354
	11.2	Elf hat to infinity (and beyond)	355

11.3 Acorn from Ooo	cre.		· · · · · · · · · · · · · · · · · · ·			 		355 357 357 359 359 361
11.5 Fun by diff	cre.					 		357 359 359
11.5 Fun by diff	cre.					 		$359 \\ 359$
11.7 Radial curves	ere	 am	1.			 		359
11.8 Rose curves	· ere	an	1.			 		
11.9 Riemann's complex nondifferentiable ice of 11.10 Mandelbrot set	cre	an	n .					261
11.10 Mandelbrot set								201
11.11 The beginning								361
12 Intuition about integration 12.1 Integration as "inverse differentiation" . 12.1.1 Cumulative summation	•					 		363
12.1 Integration as "inverse differentiation" . 12.1.1 Cumulative summation								364
12.1 Integration as "inverse differentiation" . 12.1.1 Cumulative summation								367
12.1.1 Cumulative summation								368
								368
12.1.2 Approximate integration								370
12.2 Integration as geometric area								371
12.3 Integral as a function or number?								374
12.3.1 Two perspectives of integration .								375
12.4 Terms and notations								376
12.5 Fundamental Theorem of Calculus, part								377
12.6 Fundamental Theorem of Calculus, part 1								378
12.7 Reversing the limits of integration								380
12.8 Integration is harder than differentiation								381
12.9 Exercises								383
12.9 Exercises	•		•	•	•	 •	•	909
13 Geometry of integration								387
13.1 Riemann sums								388
13.1.1 Definition of Riemann sum								389
13.1.2 Riemann summation rules								391
13.1.3 Riemann integral	٠					 		393
13.1.4 Why always the x -axis?								394
13.2 Net vs. total area						 		394
13.2.1 Net area	٠					 		395
13.2.2 Total area								395
13.2.3 Calculating net and total area .								396
13.3 Definite integrals in sympy								399
13.4 Lebesgue integrals						 		400
13.4.1 Partition the domain vs. the rang	ge					 		400
13.4.2 Riemann vs. Lebesgue compariso	ns					 		401
13.5 Exercises								403
								413
14 Integrating functions								414
14 Integrating functions 14.1 The power rule for integration						 		414
14.1 The power rule for integration								414

	14.2.1 Fundamental Theorem of Calculus, with C	420
	14.2.2 Geometry of C	421
	14.2.3 Indeterminacy of indefinite integrals	422
	14.2.4 Initial value problems	423
14.3	Linearity of integration	424
	14.3.1 Proving the scalar multiplication property	426
	14.3.2 Proving the function addition property	426
	14.3.3 Examples	427
	14.3.4 Mistakes to watch out for	428
	14.3.5 Geometry of scalars in integration	429
14.4	Integrating transcendental functions	429
	14.4.1 Integrating the natural exponential	430
	14.4.2 Integrating $ln(x)$	432
	14.4.3 Integrating sin and cos	432
14.5	Product, quotient, and chain rules?	433
14.6	Calculating net and total area	434
	14.6.1 Problem type 1: given integrals	435
	14.6.2 Problem type 2: Given graph with roots	436
	14.6.3 Problem type 3	438
14.7	Integrating even and odd functions	439
14.8	Numerical integration in scipy	441
14.9	Exercises	444
15 Imr	aranar intagrals	155
-		155
15.1	What are improper integrals?	456
15.1 15.2	What are improper integrals?	$456 \\ 457$
15.1	What are improper integrals?	456 457 459
15.1 15.2	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule	456 457 459 461
15.1 15.2	What are improper integrals? One infinite integration bound	456 457 459 461 461
15.1 15.2 15.3	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term	456 457 459 461 461
15.1 15.2 15.3	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term Two infinite bounds	456 457 459 461 461 462
15.1 15.2 15.3	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term Two infinite bounds Improper trig integrals	456 457 459 461 461 462 466
15.1 15.2 15.3	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term Two infinite bounds Improper trig integrals 15.5.1 Definite integrals of sine and cosine	456 457 459 461 461 462 466
15.1 15.2 15.3 15.4 15.5	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term Two infinite bounds Improper trig integrals 15.5.1 Definite integrals of sine and cosine 15.5.2 Gausian-tapered cosine	456 457 459 461 461 462 466 466 468
15.1 15.2 15.3	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term Two infinite bounds Improper trig integrals 15.5.1 Definite integrals of sine and cosine 15.5.2 Gausian-tapered cosine Functions with discontinuities	456 457 459 461 461 462 466 466 468
15.1 15.2 15.3 15.4 15.5	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term Two infinite bounds Improper trig integrals 15.5.1 Definite integrals of sine and cosine 15.5.2 Gausian-tapered cosine Functions with discontinuities 15.6.1 Jump discontinuity	456 457 459 461 461 462 466 468 469 469
15.1 15.2 15.3 15.4 15.5	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term Two infinite bounds Improper trig integrals 15.5.1 Definite integrals of sine and cosine 15.5.2 Gausian-tapered cosine Functions with discontinuities 15.6.1 Jump discontinuity 15.6.2 Infinite discontinuity	456 457 459 461 461 462 466 468 469 469
15.1 15.2 15.3 15.4 15.5	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term Two infinite bounds Improper trig integrals 15.5.1 Definite integrals of sine and cosine 15.5.2 Gausian-tapered cosine Functions with discontinuities 15.6.1 Jump discontinuity 15.6.2 Infinite discontinuity 15.6.3 Removable discontinuity	456 457 459 461 461 462 466 468 469 471 472
15.1 15.2 15.3 15.4 15.5	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term Two infinite bounds Improper trig integrals 15.5.1 Definite integrals of sine and cosine 15.5.2 Gausian-tapered cosine Functions with discontinuities 15.6.1 Jump discontinuity 15.6.2 Infinite discontinuity	456 457 459 461 461 462 466 468 469 469
15.1 15.2 15.3 15.4 15.5 15.6	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term Two infinite bounds Improper trig integrals 15.5.1 Definite integrals of sine and cosine 15.5.2 Gausian-tapered cosine Functions with discontinuities 15.6.1 Jump discontinuity 15.6.2 Infinite discontinuity 15.6.3 Removable discontinuity Exercises	456 457 459 461 461 462 466 468 469 471 472
15.1 15.2 15.3 15.4 15.5 15.6	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term Two infinite bounds Improper trig integrals 15.5.1 Definite integrals of sine and cosine 15.5.2 Gausian-tapered cosine Functions with discontinuities 15.6.1 Jump discontinuity 15.6.2 Infinite discontinuity 15.6.3 Removable discontinuity Exercises Egration techniques and tricks	456 457 459 461 461 461 462 468 469 471 472 474
15.1 15.2 15.3 15.4 15.5 15.6	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term Two infinite bounds Improper trig integrals 15.5.1 Definite integrals of sine and cosine 15.5.2 Gausian-tapered cosine Functions with discontinuities 15.6.1 Jump discontinuity 15.6.2 Infinite discontinuity 15.6.3 Removable discontinuity Exercises Egration techniques and tricks U-substitution	456 457 459 461 461 462 466 468 469 471 472 474
15.1 15.2 15.3 15.4 15.5 15.6 15.7 16 Inte	What are improper integrals? One infinite integration bound Convergence and divergence 15.3.1 The rule 15.3.2 Important caveat to this rule 15.3.3 Check the highest-power term Two infinite bounds Improper trig integrals 15.5.1 Definite integrals of sine and cosine 15.5.2 Gausian-tapered cosine Functions with discontinuities 15.6.1 Jump discontinuity 15.6.2 Infinite discontinuity 15.6.3 Removable discontinuity Exercises egration techniques and tricks U-substitution Integration by parts	456 457 459 461 461 462 466 468 469 471 472 474

17 Inte	egration applications in geometry	499
17.1	Area between two curves	500
	17.1.1 Area with predefined intervals	502
	17.1.2 Area defined by function intersections	504
17.2	Parametric curves	505
	17.2.1 Examples of parametric curves	506
	17.2.2 Applications of parametric curves	507
17.3	Arc (curve) length	508
	17.3.1 Deriving and understanding the formula	508
17.4	Numerical arc length approximations $\ \ldots \ \ldots \ \ldots$	511
	17.4.1 Direct implementation in numpy	512
	17.4.2 Approximations using scipy	515
17.5	Volumes of solids of revolution	517
	17.5.1 Visualizing volumes	519
	17.5.2 The disk method	521
	17.5.3 The washer method	525
	17.5.4 Numerical approximations	529
17.6	Exercises	532
18 Inte	egration and statistics	543
18.1	Introduction to probability and statistics	544
	18.1.1 What are distributions?	545
18.2	Probability density functions	546
	18.2.1 Examples of pdfs	548
18.3	Cumulative distribution functions	552
	18.3.1 Examples of cdfs	554
18.4	Application: pdf and cdf in the z-test	557
	18.4.1 Probability of IQ scores in a certain range	558
	18.4.2 Statistical inference	560
18.5	Data sample distributions	561
18.6	Statistical moments	562
	18.6.1 What are moments?	563
	18.6.2 Calculating analytic and empirical moments	563
	18.6.3 Moments of pdfs	565
	18.6.4 Moments of numerical data	566
18.7	Exercises	567
19 Mu	ltivariable integration	575
19.1	Terms and concepts	576
	19.1.1 Terminology	576
	19.1.2 Multivariable definite integrals and volume	577
19.2	Multivariable indefinite integrals	577
	19.2.1 Constants of integration	579
19.3	Visualizing double partial indefinite integrals	581
	19.3.1 Using sympy	582

	19.3.2	Using scipy				583
19.4	Multiva	riable definite integrals				587
19.5	Approxi	mating definite integrals				588
	19.5.1	Numerical approximations using numpy				589
	19.5.2	Numerical approximations using scipy				590
19.6	Integrat	ion with variable limits				591
	19.6.1	Numerical approximations				593
19.7	Exercise	es				596

CHAPTER 1

Introduction to this book

What is calculus and why learn it?

Calculus is the study of *change*. In particular, the idea of calculus is to use simple mathematical techniques (mostly differentiation and integration, which are just fancy ways of expressing subtraction and addition) to understand the complicated behavior of mathematical functions (a function is a set of rules that governs how numbers behave).

I learned, forgot, and re-learned calculus several times in my life. I consider this an advantage in teaching calculus, because each time I re-learned it, I saw calculus from a different perspective and with a new appreciation for its conceptual simplicity, beauty, and occasional surprising conclusions. I am reasonably confident that you will also learn and forget calculus (perhaps you already have). That's just how it goes.

There are many reasons why someone (e.g., you) would want to learn calculus. Here's a non-exhaustive list:

- 1. You want to understand other topics that have calculus as a prerequisite, such as physics, engineering, computational biology, finance, or myriad other technical subjects.
- 2. You are a practicing or aspiring data scientist and want a deeper understanding of statistical and machine-learning algorithms.
- 3. You like to challenge yourself and learn math as a hobby (yes, this really is true for lots of people!).
- 4. You don't actually want to learn calculus; it's required for your degree or educational program. There's nothing wrong with this motivation!

Why learn calculus from this book?

There are many calculus textbooks — a few of which are excellent, while many others are either impenetrable or are irrelevant to modern computer-based applications.

Here's the point: If you want a calculus book like any other calculus book, then buy any other calculus book.

Chapter 1 (14)

I've tried to organize and write this book to be different and unique, to provide a learning approach and perspective that is rigorous but approachable, intuitive yet practical, blending theory with hands-on coding and problem-solving techniques. You will solve exercises, create high-quality graphics, and code algorithms. I believe this will help you understand modern, real-world applications of calculus without getting bogged down in endless repetitive equations to solve.

Most importantly, I use Python code to help you understand concepts in math, because you can learn a lot of math with a bit of coding. Many more people in the world have coding experience than have formal math training. In over 20 years of teaching, I have witnessed uncountable situations where learners can't make sense of equations — until they implement them in code, make graphs, change parameters, and solve code-based exercises.

I envision three types of people who would benefit from this book.

- 1. Students using this book to help them learn calculus. Perhaps your assigned calculus book is overly stuffy or leaves everything "as an exercise to the reader."
- 2. Professionals in fields related to the quantitative sciences, including data science, engineering, physics, and computational biology, who want to understand the analyses they are applying, develop new algorithms, or advance in their career by increasing their math and math-coding knowledge.
- 3. Math enthusiasts. You might be surprised how many people choose to learn math in their free time, simply as an enjoyable way to pass the time while increasing mental acuity.

Prerequisites

The obvious You need to *want* to learn calculus. You need an intention and a goal. Maybe that goal is to pass your university calculus exam, maybe that goal is to get a data-science job, maybe that goal is to understand machine-learning algorithms, or maybe your goal is simply to have an intellectually stimulating hobby. It doesn't matter what your goal is (it is, after all, *your* goal).

I hope that having an intention to learn is almost enough for you to succeed in learning calculus from this book. All the points below are minor in comparison to the importance of having a reason to make even a small but consistent effort to learn a new skill.

High-school math You need to be comfortable with arithmetic and basic algebra. Can you solve for x in $4x^2 = 9$? Then you have enough algebra knowledge to continue. Other concepts will be introduced as the need arises.

There are formulas, equations, and algorithms in this book, but I try to explain them in plain English, illustrate them with graphs and diagrams, and provide you with Python code so you can explore the math through simulations and visualizations.

Programming It is no understatement to write that modern applied mathematics relies 100% on programming. There is simply no way to implement math without knowing at least a little bit of coding.

Fortunately, there are well-developed coding libraries that implement the low-level details. This means that you don't need to be a professional programmer to understand all the code in this book. But you do need to be comfortable with coding.

In this book, I use Python, because it is one of the most popular languages for modern applied math (statistics, machine-learning, deep learning, etc). I'm pretty sure it won't *always* be so popular; some other language will be developed that is better, easier, and faster¹. But the good news is that all programming languages share some similarities, so learning calculus in Python will help you apply math in any other language. In other

¹Julia Programming Language looks promising, for example.

words, learning coding is time *invested*, not time *wasted*, even if you use a different language in practice. Anyway, ChatGPT (or other advanced language AI) can translate Python code into R, MATLAB, Julia, or other languages with decent accuracy.

To be clear: You do not *need* any coding to work through this book. You can skip all the code and all the coding exercises and focus on the conceptual and interpretational topics. But I designed this book such that a deep understanding of the material comes from working through the code and code exercises.

People learn best by seeing and doing, rather than by letting their eyes bounce over words and equations. This is a guiding philosophy of my writing and my teaching.

1.4.1 Brand new to Python?

I assume some basic Python proficiency in this book. If you're brand-new to Python, then you should probably wait to delve into this book until after taking an intro-Python course or book. There are myriad free and paid resources available for learning Python.

I tried to keep the code fairly simple in this book, while being advanced enough to express the nuanced principles of calculus. The point is to use Python as a tool to help you learn and understand calculus, not to use gratuitously fancy and dense code. And if you want to challenge yourself, then please embellish my code! You should see my code as a starting point for your own explorations and applications, not as immutable text with no room for customization.

I am sure you have heard this before: *Math is not a spectator sport*. If you simply read this book without solving any exercises, then sure, you'll learn something and I hope you find the book useful. But to really understand calculus, you need to solve calculus problems.

I designed the exercises to require some effort and creativity. They can

Chapter 1 (17)

be solved only through coding. These are opportunities for you to explore concepts, visualizations, and parameters in ways that are difficult or impossible to do without code.

I very strongly encourage you to work through the exercises². They are not just busy work; they are ways to solidify, explore, and expand your understanding of calculus in ways that are not possible from only reading the chapters. The exercises also provide a wealth of code that you can use to continue learning and applying calculus concepts.

I provide my code solutions to all exercises, but keep in mind that there are many correct coding solutions; the point is for you to explore and understand calculus using code, not to reproduce my code exactly.

Feel free to look at my code solutions as much as you like. It's not cheating! This is especially true if you are new to Python, and if you understand the calculus concepts but struggle with the coding syntax. The purpose of the exercises is to give you opportunities to learn, explore, and expand your knowledge; they are not meant to be quantitative assessments.

In addition to my coding solutions, I have also created online videos in which I explain the Python code and solutions. You can find those videos on my YouTube channel www.youtube.com/@mikexcohen1, or see the online code on github for a direct link.

https://github.com/mikexcohen/calculus_book

Using the code with this book

You can use any IDE that you find most comfortable. I wrote all the Python code using Google's Colab service, which is free and integrates well with their other products, including Google Drive. Therefore, I recommend using Colab to follow along in this book, especially if you are relatively new to Python. The main libraries I use are numpy, scipy, sympy, and matplotlib.

Getting the book code into Google Colab involves three steps: download the code from github, upload the code to Google Drive, open the code files in Google Colab.

²I mean, like, really super-duper a lot encourage this.

Download the code The code for this book is available at https://github.com/mikexcohen/Calculus book.

If you are comfortable with git, then you can clone this repository to sync the files locally. If you have no idea what that previous sentence means, then don't worry! You can get all the code without knowing anything about git, and without needing to log in, sign up, give an email address, pay, or anything else.

Simply go to that URL, look for the green button that says "Code", click on that button, and look for the link that says "Download zip" (see Figure 1.1A). This will download one zip file that contains all the code material that you will need for this entire book.

Unpack that zip file on your computer.

A) Get the code from github

B) Open in Google Colab

Figure 1.1: Screenshots of getting the book code from my github to your Google-colab. It might look slightly different on your computer.

Upload the code to Google Drive Google Drive is a free cloud-based storage service that Google provides to its users. You do not need to pay to use Drive, but you do need a Google account.

In a browser, go to drive.google.com (log in to your Google account if you're not already logged in). Create a folder for this book. Find the files you downloaded to your local computer, and simply select and drag them into the Drive folder to upload the files. Note that Drive does not unpack zip files, so you'll need to unzip the files on your local computer first.

Now those files are stored in the cloud. That's convenient because you can access them from any internet-connected computer. In fact, you can delete the files from your local computer if they bother you for some reason.

Chapter 1 (19)

Open the files in Colab Select a Python notebook file (they end with extension ".ipynb"), and either double-click the file or right-click and select Open With, Google Colaboratory (Figure 1.1B). It will open a new tab with the notebook file. If you have absolutely no idea what you are looking at, then you need to learn some Python before continuing with this book. If you are familiar with Python but are new to Colab, then you can consider watching a YouTube video about Colab to become familiar with the environment. But the Colab interface is easy and won't take long to master.

It is also possible to import the files directly from github onto Colab via the File, Open menu options. But this imports only one file at a time, so I think it's easier to upload them all at once to your Drive.

(A note on paying for Google services: You can pay to upgrade your Drive storage limit and/or to get better access to Colab servers. Paying for these services is absolutely not necessary for this book, but something you might consider if you anticipate heavy usage for other applications.)

I recommend creating a copy of my code to modify. That way, you have the original version of my code, and you can feel comfortable making whatever changes you like to your version. Of course, you can always download a fresh version from my github repository.

Using a different Python IDE Using Google's Colab service will help ensure that you can reproduce all the results and figures in this book. Therefore, I recommend using Colab.

You can use any other IDE, on a cloud or on your local computer. But keep in mind that some things in Python are IDE- and version-dependent. It is possible that you will need to make some modifications to my code, for example for visualizations and LATEX formatting in sympy output. Please understand that I cannot provide detailed support for difficulties or errors encountered when using the code outside of Colab.

1.6.1 Code organization

Each chapter has two Python notebook files: one file to create the figures in the text, and one file that provides full solutions to all of the exercises. (Some figures appear in the text but are created as part of the exercises; these instances are indicated in the code files with comments.)

The file naming is by chapter number, chapter label, and file contents. For example, here are the two file names for Chapter 4: ch04_limits_figures.ipynb ch04_limits_exercises.ipynb

Within each file, there is a subheading for each figure or exercise. A few figures in the book were made in Inkscape; these do not have corresponding code cells.

1.6.2 Modifying and reposting my code

Modifying my code Yes, please do! I very much hope that you see my code not as immutable text, but instead as a source of inspiration for you to modify, adapt, and explore.

Reposting my code I am occasionally asked whether I allow people to post my code, or modifications to it, on websites, blogs, github, or the like. My answer is yes! Absolutely, please feel free to use and share my code as you like. I ask only that you cite the source at the top of the code file. You can include the url to the book on github or the link to the book on amazon.com or wherever you purchased it. It can be something as simple as:

This code is modified from Mike X Cohen's book on calculus; for code and links to the book, see https://github.com/mikexcohen/calculus_book

Using other computer languages I have zero doubt that all exercises and visualizations can be solved using MATLAB, R, Julia, Mathematica, C++, or any other numerical processing language. If you want to use another language, then that's great! But I cannot support questions or difficulties for other languages.

If you would like to translate all of the book code into a different language, please contact me. I would be happy to link to your github page from mine. At the time of this writing, ChatGPT is impressive, but imperfect in translating a large amount of code. Any AI-translated code would need to be thoroughly checked by a human expert.

Online resources

Online course This book is based on online courses that I created. The book and the courses are similar, but not redundant. You don't need to enroll in the online course to follow along with this book, or the other way around.

Some people prefer to learn from online videos while others prefer to learn from textbooks. I try to cater to both types of learners. Following both may be beneficial, but I want to make it clear that the two resources are independent, and it is not my intention to upsell you.

You can find a list of all my online courses at sincxpress.com.

This online course is separate from the free video explanations of the exercises that accompany this book. Those videos are designed for this book and are available on my YouTube channel or via a direct link from the github repository that contains the code for this book.

Searching for explanations Although I have tried to write this book as a self-contained resource to master calculus, it is naive to think that everyone will find it the perfect resource that I intend it to be. Everyone learns differently, and everyone has a different way of understanding mathematical concepts.

If you struggle to understand something, don't jump to the conclusion that you aren't smart enough to understand it; a simpler possibility is that the explanation I find intuitive is not the explanation that you find intuitive. I try to give several explanations of the same concepts, in hopes that you'll find traction with at least one of them. If none of those works for you, don't hesitate to search the Internet or other textbooks if you need different or alternative explanations.

Online code The book itself has only the occasional snippet of code. Instead, *all* of the code — including the code to create the figures in the book and the solutions to the exercises — is available at https://github.com/mikexcohen/calculus_book

The best way to learn from this book is to have the code in front of you while reading the book. You can see how the statistics concepts are

Chapter 1 (22)

implemented and how I created the figures. You can adjust the code to explore the concepts, and you can compare your exercise solutions with mine.

I apologize for stating multiple times that the code is available online and not entirely printed in the book, but I have had quite a few experiences of people complaining that I don't make my code available or that my code is incomplete — even giving my books and courses poor ratings online. I'm not angry about it, because I know that those people were just so excited to learn that they rushed through the introductory material (can you blame them??).

I wrote this book in 2024, when large language models like ChatGPT were becoming very popular and very hyped. It is impossible to predict how technology will develop and impact life in the future; but deep, complex language models like ChatGPT, Claude, and Gemini have the potential to have a significant impact on the way we write and learn.

I spent a lot of time exploring ChatGPT (models 3.5, and 4/o), and considering whether it could be useful for my books. ChatGPT is a remarkably good writer, but there were three limitations that prevented me from incorporating it into my writing (this book and my other books and courses): First, several explanations were incorrect, although the writing style was so fluid and authoritative that it would be easy to be fooled. Second, I found ChatGPT4's writing style to be stuffy, overly formal, and sesquipedalian³, like a gifted teenager who consults his thesaurus too often. Third, ChatGPT often equivocates and hedges, refusing to state that something is correct or incorrect, right or wrong, or appropriate or inappropriate.

There were times that I struggled with phrasing a sentence, and which I asked ChatGPT4 to rewrite. In none of those cases did I take ChatGPT's suggestions verbatim (I have tried and failed repeatedly to get ChatGPT to emulate my writing style), but in all of those cases ChatGPT helped me improve the readability of those sentences.

 $^{^3\}mathrm{Yes},$ I had to look up this word; I love the meaning but never remember the word itself

Most of the AI assistance in creating this book came from me asking ChatGPT to help implement some aspects of coding, including details of visualizations, debugging, and styling LATEX. Interestingly, ChatGPT often failed to provide a correct solution, but usually gave good tips that helped me find the right solution.

Anyway, the point is that on the cusp of what may be the "era of AI writing," I can assure you that this book is fully human-written, with the occasional assistance from ChatGPT-4 to smooth out clunky sentences and help with coding issues.