cddlib Reference Manual

Komei Fukuda School of Computer Science McConnel Engineering Building 3480 University Street Montreal, Quebec Canada H3A 2A7

email: fukuda@cs.mcgill.ca

(cddlib ver. 093a, manual ver. August 10, 2003)

Abstract

This is a reference manual for cddlib-093a. The manual is not quite satisfactory but explains the most important functions of polyhedral representation conversion in cddlib. Please use the accompanying README file and test programs to complement the incompleteness.

1 Introduction

The program cddlib is an efficient implementation [12] of the double description Method [14] for generating all vertices (i.e. extreme points) and extreme rays of a general convex polyhedron given by a system of linear inequalities:

$$P = \{x = (x_1, x_2, \dots, x_d)^T \in R^d : b - Ax \ge 0\}$$

where A is a given $m \times d$ real matrix and b is a given real m-vector. In the mathematical language, the computation is the transformation of an H-representation of a convex polytope to an V-representation.

cddlib is a C-library version of the previously released C-code cdd/cdd+. In order to make this library version, a large part of the cdd source (Version 0.61) has been rewritten. This library version is more flexible since it can be called from other programs in C/C++. Unlike cdd/cdd+, cddlib can handle any general input and is more general. Furthermore, additional functions have been written to extend its functionality.

One useful feature of cddlib/cdd/cdd+ is its capability of handling the dual (reverse) problem without any transformation of data. The dual transformation problem of a V-representation to a minimal H-representation and is often called the (convex) hull problem. More explicitly, is to obtain a linear inequality representation of a convex polyhedron given as the Minkowski sum of the convex hull of a finite set of points and the nonnegative hull of a finite set of points in R^{d+1} :

$$P = conv(v_1, \dots, v_n) + nonneg(r_{n+1}, \dots, r_{n+s}),$$

where the Minkowski sum of two subsets S and T of \mathbb{R}^{d+1} is defined as

$$S + T = \{s + t \mid s \in S \text{ and } t \in T\}.$$

As we see in this manual, the computation can be done in straightforward manner. Unlike the earlier versions of $\operatorname{cdd}/\operatorname{cdd}+$ that assume certain regularity conditions for input, cddlib is designed to do a correction transformation for any general input. The user must be aware of the fact that in certain cases the transformation is not unique and there are polyhedra with infinitely many representations. For example, a line segment (1-dimensional polytope) in R^3 has infinitely many minimal H-representations, and a halfspace in the same space has infinitely many minimal V-representations. cddlib generates merely one minimal representation.

cddlib comes with an LP code to solve the general linear programming (LP) problem to maximize (or minimize) a linear function over polyhedron P. It is useful mainly for solving dense LP's with large m (say, up to few hundred thousands) and small d (say, up to 100). It implements a revised dual simplex method that updates $(d+1) \times (d+1)$ matrix for a pivot operation.

The program cddlib has an I/O routines that read and write files in *Polyhedra format* which was defined by David Avis and the author in 1993, and has been updated in 1997. The program called Irs [2] developed by David Avis is a C-implementation of the reverse search algorithm [4] for the same enumeration purpose, and it conforms to Polyhedra format as well. Hopefully, this compatibility of the two programs enables users to use both programs for the same input files and to choose whichever is useful for their purposes. From our experiences with relatively large problems, the two methods are both useful and perhaps complementary to each other. In general, the program cdd+ tends to be efficient for highly degenerate inputs and the program rs tends to be efficient for nondegenerate or slightly degenerate problems.

Although the program can be used for nondegenerate inputs, it might not be very efficient. For nondegenerate inputs, other available programs, such as the reverse search code irs or qhull (developed by the Geometry Center), might be more efficient. See Section 8 for pointers to these codes. The paper [3] contains many interesting results on polyhedral computation and experimental results on cdd+, irs, qhull and porta.

This program can be distributed freely under the GNU GENERAL PUBLIC LICENSE. Please read the file COPYING carefully before using.

I will not take any responsibility of any problems you might have with this program. But I will be glad to receive bug reports or suggestions at the e-mail addresses above. If cdd+ turns out to be useful, please kindly inform me of what purposes cdd has been used for. I will be happy to include a list of applications in future distribution if I receive enough replies. The most powerful support for free software development is user's appreciation and collaboration.

2 Polyhedra H- and V-Formats (Version 1999)

Every convex polyhedron has two representations, one as the intersection of finite halfspaces and the other as Minkowski sum of the convex hull of finite points and the nonnegative hull of finite directions. These are called H-representation and V-representation, respectively.

Naturally there are two basic Polyhedra formats, H-format for H-representation and V-format for V-representation. These two formats are designed to be almost indistinguishable, and in fact, one can almost pretend one for the other. There is some asymmetry arising from the asymmetry of two representations.

First we start with the H-representation. Let A be an $m \times d$ matrix, and let b be a column m-vector. The Polyhedra format (H-format) of the system $b - Ax \ge \mathbf{0}$ of m inequalities in d variables $x = (x_1, x_2, \ldots, x_d)^T$ is

```
various comments

H-representation
(linearity t i_1 i_2 ... i_t)

begin

m d+1 numbertype
b -A

end

various options
```

where numbertype can be one of integer, rational or real. When rational type is selected, each component of b and A can be specified by the usual integer expression or by the rational expression "p/q" or "-p/q" where p and q are arbitrary long positive integers (see the example input file rational.ine). In the 1997 format, we introduced "H-representation" which must appear before "begin". There was one restriction in the old polyhedra format (before 1997): the last d rows must determine a vertex of P. This is obsolete now.

In the new 1999 format, we added the possibility of specifying **linearity**. This means that for H-representation, some of the input rows can be specified as **equalities**: $b_{ij} - A_{ij} = 0$ for all j = 1, 2, ..., t. The linearity line may be omitted if there are no equalities.

Option lines can be used to control computation of a specific program. In particular both cdd and lrs use the option lines to represent a linear objective function. See the attached LP files, samplelp*.ine.

Next we define Polyhedra V-format. Let P be represented by n gerating points and s generating directions (rays) as $P = conv(v_1, \ldots, v_n) + nonneg(r_{n+1}, \ldots, r_{n+s})$. Then the Polyhedra V-format for P is

```
various comments
V-representation
(linearity t i_1 i_2 ... i_t)
begin
n+s
       d+1 numbertype
  1
       v_1
  1
       v_n
  0
       r_{n+1}
  0
       r_{n+s}
end
various options
```

Here we do not require that vertices and rays are listed separately; they can appear mixed in arbitrary order.

Linearity for V-representation specifies a subset of generators whose coefficients are relaxed to be **free**: for all j = 1, 2, ..., t, the $k = i_j$ th generator (v_k or r_k whichever is the i_j th generator) is a free generator. This means for each such a ray r_k , the line generated by r_k is in the polyhedron, and for each such a vertex v_k , its coefficient is no longer nonnegative but still the coefficients for all v_i 's must sum up to one.

When the representation statement, either "H-representation" or "V-representation", is omitted, the former "H-representation" is assumed.

It is strongly suggested to use the following rule for naming H-format files and V-format files:

- (a) use the filename extension ".ine" for H-files (where ine stands for inequalities), and
- (b) use the filename extension ".ext" for V-files (where ext stands for extreme points/rays).

3 Basic Object Types (Structures) in cddlib

Here are the types (defined in cddtypes.h) that are important for the cddlib user. The most important one, **dd_MatrixType**, is to store a Polyhedra data in a straightforward manner. Once the user sets up a (pointer to) dd_MatrixType data, he/she can load the data to an internal data type (dd_PolyhedraType) by using functions described in the next section, and apply the double descrition method to get another representation. As an option dd_MatrixType can save a linear objective function to be used by a linear programming solver.

The two dimensional array data in the structure **dd_MatrixType** is **dd_Amatrix** whose components are of type **mytype**. The type mytype is set to be either the rational type **mpq_t** of the GNU MP Library or the C double array of size 1. This abstract type allows us to write a single program that can be compiled with the two different arithmetics, see example programs such as simplected, testlp*.c and testcdd*.c in the **src** and **src-gmp** subdirectories of the source distribution.

```
#define dd_FALSE 0
#define dd_TRUE 1
typedef long dd_rowrange;
typedef long dd_colrange;
typedef long dd_bigrange;
typedef set_type dd_rowset;
                              /* set_type defined in setoper.h */
typedef set_type dd_colset;
typedef long *dd_rowindex;
typedef int *dd_rowflag;
typedef long *dd_colindex;
typedef mytype **dd_Amatrix; /* mytype is either GMP mpq_t or 1-dim double array. */
typedef mytype *dd_Arow;
typedef enum {
  dd_Real, dd_Rational, dd_Integer, dd_Unknown
} dd_NumberType;
typedef enum {
  dd_Inequality, dd_Generator, dd_Unspecified
} dd_RepresentationType;
typedef enum {
  dd_MaxIndex, dd_MinIndex, dd_MinCutoff, dd_MaxCutoff, dd_MixCutoff,
  dd_LexMin, dd_LexMax, dd_RandomRow
} dd_RowOrderType;
```

```
typedef enum {
  dd_InProgress, dd_AllFound, dd_RegionEmpty
} dd_CompStatusType;
typedef enum {
  dd_DimensionTooLarge, dd_ImproperInputFormat,
  dd_NegativeMatrixSize, dd_EmptyVrepresentation,
  dd_IFileNotFound, dd_OFileNotOpen, dd_NoLPObjective, dd_NoRealNumberSupport, dd_NoError
} dd_ErrorType;
typedef enum {
  dd_LPnone=0, dd_LPmax, dd_LPmin
} dd_LPObjectiveType;
typedef enum {
  dd_LPSundecided, dd_Optimal, dd_Inconsistent, dd_DualInconsistent,
  dd_StrucInconsistent, dd_StrucDualInconsistent,
  dd_Unbounded, dd_DualUnbounded
} dd_LPStatusType;
typedef struct matrixdata *dd_MatrixPtr;
typedef struct matrixdata {
  dd_rowrange rowsize;
  dd_rowset linset;
    /* a subset of rows of linearity (ie, generators of
        linearity space for V-representation, and equations
        for H-representation. */
  dd_colrange colsize;
  dd_RepresentationType representation;
  dd_NumberType numbtype;
  dd_Amatrix matrix;
  dd_LPObjectiveType objective;
  dd_Arow rowvec;
} dd_MatrixType;
typedef struct setfamily *dd_SetFamilyPtr;
typedef struct setfamily {
  dd_bigrange famsize;
  dd_bigrange setsize;
  dd_SetVector set;
} dd_SetFamilyType;
typedef struct lpsolution *dd_LPSolutionPtr;
typedef struct lpsolution {
  dd_DataFileType filename;
  dd_LPObjectiveType objective;
  dd_LPSolverType solver;
  dd_rowrange m;
```

4 Library Functions

Here we list some of the most important library functions/procedures. We use the following convention: poly is of type dd_PolyhedraPtr, matrix, matrix1 and matrix2 are of type dd_MatrixPtr, err is of type dd_ErrorType*, ifile and ofile are of type char*, A is of type dd_Amatrix, point and vector are of type dd_Arow, d is of type dd_colrange, m and i are of type dd_rowrange, x is of type mytype, a is of type signed long integer, b is of type double, set is of type set_type. Also, setfam is of type dd_SetFamilyPtr, lp is of type dd_LPPtr, solver is of type dd_LPSolverType, roworder is of type dd_RowOrderType.

4.1 Library Initialization

```
void dd_set_global_constants(void) :
```

This is to set the global constants such as dd_zero, dd_purezero and dd_one for sign recognition and basic arithmetic operations. Every program to use cddlib must call this function before doing any computation. Just call this once. See Section 4.3.3 for the definitions of constants.

4.2 Core Functions

There are two types of core functions in cddlib. The first type runs the double description (DD) algorithm and does a representation conversion of a specified polyhedron. The standard header for this type is dd_DD*. The second type solves an linear program and the standard naming is dd_LP*. Both computations are nontrivial and the users (especially for the DD algorithm) must know that there is a serous limit in the sizes of problems that can be practically solved. Please check *.ext and *.ine files that come with cddlib to get ideas of tractable problems.

```
dd_PolyhedraPtr dd_DDMatrix2Poly(matrix, err) :
```

Store the representation given by matrix in a polyhedra data, and generate the second representation of *poly. It returns a pointer to the data. *err returns dd_NoError if the computation terminates normally. Otherwise, it returns a value according to the error occured.

dd_PolyhedraPtr dd_DDMatrix2Poly2(matrix, roworder, err) :

This is the same function as dd_DDMatrix2Poly except that the insertion order is specified by the user. The argument roworder is of dd_RowOrderType and takes one of the values: dd_MaxIndex, dd_MinIndex, dd_MinCutoff, dd_MaxCutoff, dd_MixCutoff, dd_LexMin, dd_LexMax, dd_RandomRow. In general, dd_LexMin is the best choice which is in fact chosen in dd_DDMatrix2Poly. If you know that the input is already sorted in the order you like, use dd_MinIndex or dd_MaxIndex. If the input contains many redundant rows (say more than 80% redundant), you might want to try dd_MaxCutoff which might result in much faster termination, see [3, 12]

boolean dd_DDInputAppend(poly, matrix, err) :

Modify the input representation in *poly by appending the matrix of *matrix, and compute the second representation. The number of columns in *matrix must be equal to the input representation.

boolean dd_LPSolve(lp, solver, err) :

Solve 1p by the algorithm solver and save the solututions in *1p. Unlike the earlier versions (dplex, cdd+), it can deal with equations and totally zero right hand sides. It is recommended that solver is dd_DualSimplex, the revised dual simplex method that updates a $d \times d$ dual basis matrix in each pivot (where d is the column size of lp).

The revised dual simplex method is ideal for dense LPs in small number of variables (i.e. small column size, typically less than 100) and many inequality constraints (i.e. large row size, can be a few ten thousands). If your LP has many variables but only few constraints, solve the dual LP by this function.

When it is compiled for GMP rational arithmetics, it first tries to solve an LP with C double floating-point arithmetics and verifies whether the output basis is correct with GMP. If so, the correct solution is computed with GMP. Otherwise, it (re)solves the LP from scratch with GMP. This is newly implemented in the version 093. The original (non-crossover) version of the same function is still available as boolean dd_LPSolve0.

dd_boolean dd_Redundant(matrix, i, point, err) :

Check whether ith data in matrix is redundant for the representation. If it is nonredundant, it returns a certificate. For H-representation, it is a point in R^d which satisfies all inequalities except for the ith inequality. If i is a linearity, it does nothing and always returns dd_FALSE.

dd_rowset dd_RedundantRows(matrix, err) :

Returns a maximal set of row indices such that the associated rows can be eliminated without changing the polyhedron. The function works for both V- and H-representations.

dd_boolean dd_SRedundant(matrix, i, point, err) :

Check whether *i*th data in matrix is strongly redundant for the representation. If *i* is a linearity, it does nothing and always returns dd_FALSE. Here, *i*th inequality in H-representation is *strongly redundant* if it is redundant and there is no point in the polyhedron satisfying the inequality with equality. In V-representation, *i*th point is *strongly redundant* if it is redundant and it is in the relative interior of the polyhedron. If it is not strongly redundant, it returns a certificate.

dd_boolean dd_ImplicitLinearity(matrix, i, err) :

Check whether ith row in the input is forced to be linearity (equality for H-representation). If i is linearity itself, it does nothing and always returns dd_FALSE.

dd_rowset dd_ImplicitLinearityRows(matrix, err) :

Returns the set of indices of rows that are implicitly linearity. It simply calls the library function dd_ImplicitLinearity for each inequality and collects the row indices for which the answer is dd_TRUE.

dd_SetFamilyPtr dd_Matrix2Adjacency(matrix, err) :

Computes the adjacency list of input rows using the LP solver and without running the representation conversion. When the input is H-representation, it gives the facet graph of the polyhedron. For V-representation, it gives the (vertex) graph of the polyhedron. It is required that the input matrix is a minimal representation. Run redundancy removal functions before calling this function, see the sample code adjacency.c.

dd_SetFamilyPtr dd_Matrix2WeakAdjacency(matrix, err) :

Computes the weak adjacency list of input rows using the LP solver and without running the representation conversion. When the input is H-representation, it gives the graph where its nodes are the facets two nodes are adjacent if and only if the associated facets have some intersection. For V-representation, it gives the graph where its nodes are the vertices and two nodes are adjacent if and only if the associated vertices are on a common facet. It is required that the input matrix is a minimal representation. Run redundancy removal functions before calling this function, see the sample code adjacency.c.

dd_MatrixPtr dd_FourierElimination(matrix, err) :

Eliminate the last variable from a system of linear inequalities given by matrix by using the Fourier's Elimination. If the input matrix is V-representation, *err returns dd_NotAvailForV. This function does not remove redundancy and one might want to call redundancy removal functions afterwards. See the sample code fourier.c.

dd_MatrixPtr dd_BlockElimination(matrix, set, err) :

Eliminate a set of variables from a system of linear inequalities given by matrix by using the extreme rays of the dual linear system. See comments in the code cddproj.c for details. This might be a faster way to eliminate variables than the repeated FourierElimination when the number of variables to eliminate is large. If the input matrix is V-representation, *err returns dd_NotAvailForV. This function does not remove redundancy and one might want to call redundancy removal functions afterwards. See the sample code projection.c.

dd_rowrange dd_RayShooting(matrix, point, vector) :

Finds the index of a halfspace first left by the ray starting from point toward the direction vector. It resolves tie by a lexicographic perturbation. Those inequalities violated by point will be simply ignored.

4.3 Data Manipulations

4.3.1 Number Assignments

For number assignments, one cannot use such expressions as x=(mytype)a. This is because cddlib uses an abstract number type (mytype) so that it can compute with various number types such as C double and GMP rational. User can easily add a new number type by redefining arithmetic operations in cddmp.h and cddmp.c.

void dd_init(x) :

This is to initialize a mytype variable x and to set it to zero. This initialization has to be called before any mytype variable to be used.

void dd_clear(x) :

This is to free the space allocated to a mytype variable x.

void dd_set_si(x, a) :

This is to set a mytype variable x to the value of signed long integer a.

void dd_set_si2(x, a, b) :

This is to set a mytype variable x to the value of the rational expression a/b, where a is signed long and b is unsigned long integers.

void dd_set_d(x, b) :

This is to set a mytype variable x to the value of double b. This is available only when the library is compiled without -DGMPRATIONAL compiler option.

4.3.2 Arithmetic Operations for mytype Numbers

Below x, y, z are of type mytype.

void dd_add(x, y, z) :

Set x to be the sum of y and z.

void dd_sub(x, y, z) :

Set x to be the substraction of z from y.

void dd_mul(x, y, z) :

Set x to be the multiplication of y and z.

void dd_div(x, y, z) :

Set x to be the division of y over z.

void dd_inv(x, y) :

Set x to be the reciplocal of y.

4.3.3 Predefined Constants

There are several mytype constants defined when dd_set_global_constants(void) is called. Some constants depend on the double constant dd_almostzero which is normally set to 10^{-7} in cdd.h. This value can be modified depending on how numerically delicate your problems are but an extra caution should be taken.

mytype dd_purezero:

This represents the mathematical zero 0.

mytype dd_zero :

This represents the largest positive number which should be considered to be zero. In the GMPRATIONAL mode, it is equal to dd_purezero. In the C double mode, it is set to the value of dd_almostzero.

mytype dd_minuszero :

The negative of dd_zero.

mytype dd_one :

This represents the mathematical one 1.

4.3.4 Sign Evaluation and Comparison for mytype Numbers

Below x, y, z are of type mytype.

dd_boolean dd_Positive(x) :

Returns dd_TRUE if x is considered positive, and dd_FALSE otherwise. In the GMPRA-TIONAL mode, the positivity recognition is exact. In the C double mode, this means the value is strictly larger than dd_zero.

dd_boolean dd_Negative(x) works similarly.

dd_boolean dd_Nonpositive(x) :

Returns the negation of dd_Positive(x). dd_Nonnegative(x) works similarly.

dd_boolean dd_EqualToZero(x) :

Returns dd_TRUE if x is considered zero, and dd_FALSE otherwise. In the GMPRATIONAL mode, the zero recognition is exact. In the C double mode, this means the value is inbetween dd_minuszero and dd_zero inclusive.

dd_boolean dd_Larger(x, y):

Returns dd_TRUE if x is strictly larger than y, and dd_FALSE otherwise. This is implemented as dd_Positive(z) where z is the subtraction of y from x. dd_Smaller(x, y) works similarly.

dd_boolean dd_Equal(x, y) :

Returns dd_TRUE if x is considered equal to y, and dd_TALSE otherwise. This is implemented as dd_TALSE otherwise is the subtraction of y from x.

4.3.5 Polyhedra Data Manipulation

dd_MatrixPtr dd_PolyFile2Matrix (f, err) :

Read a Polyhedra data from stream f and store it in matrixdata and return a pointer to the data.

dd_MatrixPtr dd_CopyInequalities(poly) :

Copy the inequality representation pointed by poly to matrixdata and return dd_MatrixPtr.

dd_MatrixPtr dd_CopyGenerators(poly) :

Copy the generator representation pointed by poly to matrixdata and return dd_MatrixPtr.

dd_SetFamilyPtr dd_CopyIncidence(poly) :

Copy the incidence representation of the computed representation pointed by poly to setfamily and return dd_SetFamilyPtr. The computed representation is Inequality if the input is Generator, and the vice visa.

dd_SetFamilyPtr dd_CopyAdjacency(poly) :

Copy the adjacency representation of the computed representation pointed by poly to setfamily and return dd_SetFamilyPtr. The computed representation is Inequality if the input is Generator, and the vice visa.

dd_SetFamilyPtr dd_CopyInputIncidence(poly) :

Copy the incidence representation of the input representation pointed by poly to setfamily and return d_SetFamilyPtr.

dd_SetFamilyPtr dd_CopyInputAdjacency(poly) :

Copy the adjacency representation of the input representation pointed by poly to setfamily and return d_SetFamilyPtr.

void dd_FreePolyhedra(poly) :

Free memory allocated to poly.

4.3.6 LP Data Manipulation

dd_LPPtr dd_MakeLPforInteriorFinding(lp) :

Set up an LP to find an interior point of the feasible region of 1p and return a pointer to the LP. The new LP has one new variable x_{d+1} and one more constraint: $\max x_{d+1}$ subject to $b - Ax - x_{d+1} \ge 0$ and $x_{d+1} \le K$, where K is a positive constant.

dd_LPPtr dd_Matrix2LP(matrix, err) :

Load matrix to lpdata and return a pointer to the data.

dd_LPSolutionPtr dd_CopyLPSolution(lp) :

Load the solutions of lp to lpsolution and return a pointer to the data. This replaces the old name dd_LPSolutionLoad(lp).

void dd_FreeLPData(lp) :

Free memory allocated to 1p.

4.3.7 Matrix Manipulation

dd_MatrixPtr dd_CopyMatrix(matrix) :

Make a copy of matrixdata pointed by matrix and return a pointer to the copy.

dd_MatrixPtr dd_AppendMatrix(matrix1, matrix2) :

Make a matrixdata by copying *matrix1 and appending the matrix in *matrix2 and return a pointer to the data. The colsize must be equal in the two input matrices. It returns a NULL pointer if the input matrices are not appropriate. Its rowsize is set to the sum of the rowsizes of matrix1 and matrix2. The new matrixdata inherits everything else (i.e. numbertype, representation, etc) from the first matrix.

int dd_MatrixAppendTo(& matrix1, matrix2) :

Same as dd_AppendMatrix except that the first matrix is modified to take the result.

int dd_MatrixRowRemove(& matrix, i) :

Remove the *i*th row of matrix.

dd_MatrixPtr dd_MatrixSubmatrix(matrix, set) :

Generate the submatrix of matrix by removing the rows indexed by set and return a matrixdata pointer.

dd_MatrixPtr dd_CopyMatrix(matrix) :

Make a copy of matrixdata pointed by matrix and return a pointer to the copy.

dd_SetFamilyPtr dd_Matrix2Adjacency(matrix, err) :

Return the adjacency list of the representation given by matrix. The computation is done by the built-in LP solver. The representation should be free of redundancy when this function is called. See the function dd_rowset dd_RedundantRows and the example program adjacency.c.

4.4 Input/Output Functions

dd_MatrixPtr dd_PolyFile2Matrix (f, err) :

Read a Polyhedra data from stream f and store it in matrixdata and return a pointer to the data.

boolean dd_DDFile2File(ifile, ofile, err) :

Compute the representation conversion for a polyhedron given by a Polyhedra file ifile, and write the other representation in a Polyhedra file ofile. *err returns dd_NoError if the computation terminates normally. Otherwise, it returns a value according to the error occured.

void dd_WriteMatrix(f, matrix) :

Write matrix to stream f.

void dd_WriteNumber(f, x) :

Write x to stream f. If x is of GMP mpq_t rational p/q, the output is p/q. If it is of C double, it is formated as a double float with a decimal point.

void dd_WritePolyFile(f, poly) :

Write tt poly to stream f in Polyhedra format.

void dd_WriteErrorMessages(f, err) :

Write error messages given by err to stream f.

void dd_WriteSetFamily(f, setfam) :

Write the set family pointed by **setfam** to stream **f**. For each set, it outputs its index, its cardinality, a colon ":" and a ordered list of its elements.

void dd_WriteSetFamilyCompressed(f, setfam) :

Write the set family pointed by setfam to stream f. For each set, it outputs its index, its cardinality or the negative of the cardinality, a colon ":" and the elements in the set or its complements whichever is smaller. Whenever it outputs the complements, the cardinality is negated so that there is no ambiguity. This will be considered standard for outputing incidence (*.icd, *ecd) and adjacency (*.iad, *.ead) data in cddlib. But there is some minor incompatibility with cdd/cdd+ standalone codes.

void dd_WriteProgramDescription(f) :

Write the cddlib version information to stream f.

void dd_WriteDDTimes(f, poly) :

Write the representation conversion time information on poly to stream f.

4.5 Obsolete Functions

boolean dd_DoubleDescription(poly, err) : (removed in Version 0.90c)

The new function dd_DDMatrix2Poly(matrix, err) (see Section 4.2) replaces (and actually combines) both this and dd_Matrix2Poly(matrix, err).

dd_PolyhedraPtr dd_Matrix2Poly(matrix, err) : (removed in Version 0.90c)

See above for the reason for removal.

dd_LPSolutionPtr dd_LPSolutionLoad(lp): (renamed in Version 0.90c)

This function is now called dd_CopyLPSolution(lp).

5 An Extension of the CDD Library in GMP mode

Starting from the version 093, the GMP version of cddlib, libcddgmp.a, contains all cdd library functions in two arithmetics. All functions with the standard prefix dd_are computed with the GMP rational arithmetics as before. The same fuctions with the new prefix ddf_are now added to the library libcddgmp.a that are based on the C double floating-point arithmetics. Thus these functions are equivalent to libcdd.a functions, except that all functions and variable types are with prefix ddf_and the variable type mytype is replaced by myfloat.

In this sense, libcdd.a is a proper subset of libcddgmp.a and in principle one can do everything with libcddgmp.a. See how the new dd_LPSolve is written in cddlp.c.

6 Examples

See example codes such as testcdd*.c, testlp*.c, redcheck.c, adjacency.c, and simplecdd.c in the src and src-gmp subdirectories of the source distribution.

7 Numerical Accuracy

If you need speedy computation with floating-point arithmetic, you might want to "play with" the constant dd_almostzero defined in cdd.h:

#define dd_almostzero 1.0E-7

This number is used to recognize whether a number is zero: a number whose absolute value is smaller than dd_almostzero is considered zero, and nonzero otherwise. You can change this to modify the behavior of cddlib. One might consider the default setting is rather large for double precision arithmetic. This is because cddlib is made to deal with highly degenerate data and it works better to treat a relatively large "epsilon" as zero.

Another thing one can do is scaling. If the values in one column of an input is of smaller magnitude than those in another column, scale one so that they become comparable.

8 Other Useful Codes

There are several other useful codes available for vertex enumeration and/or convex hull computation such as lrs, qhull, porta and irisa-polylib. The pointers to these codes are available at

- 1. lrs by D. Avis [2] (C implementation of the reverse search algorithm [4]).
- 2. qhull by C.B. Barber [5] (C implementation of the beneath-beyond method, see [8, 15], which is the dual of the dd method).

- 3. porta by T. Christof and A. Löbel [7] (C implementation of the Fourier-Motzkin elimination).
- 4. IRISA polyhedral library by D.K. Wilde [16] (C implementation of a variation of the dd algorithm).
- 5. pd by A. Marzetta [13] (C implementation of the primal-dual algorithm [6]).
- 6. Geometry Center Software List by N. Amenta [1].
- 7. Computational Geometry Pages by J. Erickson [9].
- 8. Linear Programming FAQ by R. Fourer and J. Gregory [10].
- 9. ZIB Berlin polyhedral software list: ftp://elib.zib-berlin.de/pub/mathprog/polyth/index.html.
- 10. Polyhedral Computation FAQ [11].

Acknowledgements.

I am grateful to Th. M. Liebling who provided me with an ideal opportunity to visit EPFL for the academic year 1993-1994. Without his support, the present form of this program would not have existed. Later, H.-J. Lüthi (ETHZ) joined to support the the development of cdd codes (cdd, cdd+, cddlib). There are many people who helped me to improve cdd, in particular, I am indebted to David Avis, Alexander Bockmayr, David Bremner, Henry Crapo, Istvan Csabai, Francois Margot, Marc Pfetsch, Alain Prodon, Jörg Rambau, Shawn Rusaw, Matthew Saltzman, Masanori Sato and those listed in the HISTORY file.

References

- [1] N. Amenta. Directory of computational geometry. http://www.geom.umn.edu/software/cglist/.
- [2] D. Avis. *User's Guide for lrs Version 3.2*, 1997. available from lrs homepage ftp://mutt.cs.mcgill.ca/pub/C/lrs.html.
- [3] D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms. *Computational Geometry: Theory and Applications*, 7:265–302, 1997.
- [4] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. *Discrete Comput. Geom.*, 8:295–313, 1992.
- [5] C.B. Barber, D.P. Dobkin, and H. Huhdanpaa. *qhull, Version 2.1.* The Geometry Center, Minnesota, U.S.A., 1995. program and report available from ftp://geom.umn.edu/pub/software/qhull.tar.Z.
- [6] D. Bremner, K. Fukuda, and A. Marzetta. Primal-dual methods for vertex and facet enumeration. In *Proc.* 13th Annu. ACM Sympos. Comput. Geom., pages 49–56, 1997.
- [7] T. Christof and A. Löbel. PORTA: Polyhedron representation transformation algorithm (ver. 1.3.1), 1997. http://www.zib.de/Optimization/Software/Porta/.

- [8] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.
- [9] J. Erickson. Computational geometry pages, list of software libraries and codes. http://compgeom.cs.uiuc.edu/~jeffe/compgeom/.
- [10] R. Fourer and J.W. Gregory. Linear programming frequently asked questions (LP-FAQ). http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html.
- [11] K. Fukuda. Polyhedral computation FAQ, 1998. Both html and ps versions available from http://www.ifor.math.ethz.ch/~fukuda/fukuda.html.
- [12] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler, and I. Manoussakis, editors, *Combinatorics and Computer Science*, volume 1120 of *Lecture Notes in Computer Science*, pages 91–111. Springer-Verlag, 1996. ps file available from ftp://ftp.ifor.math.ethz.ch/pub/fukuda/reports/ddrev960315.ps.gz.
- [13] A. Marzetta. pd C-implementation of the primal-dual algorithm, 1997. code available from http://wwwjn.inf.ethz.ch/ambros/pd.html.
- [14] T.S. Motzkin, H. Raiffa, GL. Thompson, and R.M. Thrall. The double description method. In H.W. Kuhn and A.W.Tucker, editors, Contributions to theory of games, Vol. 2. Princeton University Press, Princeton, RI, 1953.
- [15] K. Mulmuley. Computational Geometry, An Introduction Through Randamized Algorithms. Prentice-Hall, 1994.
- [16] D.K. Wilde. A library for doing polyhedral operations. Master's thesis, Oregon State University, Corvallis, Oregon, Dec 1993. Also published in IRISA technical report PI 785, Rennes, France; Dec, 1993.