Symbolic Transition Systems in Practice

- States are made up of state variables $v \in V$
 - A state is an assignment to all variables
- A Transition System is (V, I, T)
 - V: a set of state variables, V' denotes next state variables
 - I: a set of initial states
 - T: a transition relation
 - $T(v_0, ..., v_n, v'_0, ..., v'_n)$ holds when there is a transition
 - Note: will often still use s to denote symbolic states (just know they're made up of variables)
- Symbolic state machine is built by translating another representation
 - E.g. a program, a mathematical model, a hardware description, etc...