CS5670: Computer Vision

Noah Snavely

Image Resampling & Interpolation

Image 5

This image is too big to fit on the screen. How can we generate a half-sized version?

Image sub-sampling

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

1/4

Image sub-sampling

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Why does this look so crufty?

Source: S. Seitz

Image sub-sampling

Source: F. Durand

Even worse for synthetic images

Aliasing

- Occurs when your sampling rate is not high enough to capture the amount of detail in your image
- Can give you the wrong signal/image—an alias
- To do sampling right, need to understand the structure of your signal/image
- Enter Monsieur Fourier...
- To avoid aliasing:
 - sampling rate ≥ 2 * max frequency in the image
 - said another way: ≥ two samples per cycle
 - This minimum sampling rate is called the Nyquist rate

Source: L. Zhang

Wagon-wheel effect

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

(See http://www.michaelbach.de/ot/mot_wagonWheel/index.html)

Nyquist limit – 2D example

Aliasing

- When downsampling by a factor of two
 - Original image has frequencies that are too high

How can we fix this?

Gaussian pre-filtering

Gaussian 1/2

G 1/4

Solution: filter the image, then subsample

Subsampling with Gaussian pre-filtering

Solution: filter the image, then subsample

Compare with...

Gaussian prefiltering

 Solution: filter the image, then subsample

Gaussian pyramids [Burt and Adelson, 1983]

- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform

Gaussian Pyramids have all sorts of applications in computer vision

Gaussian pyramids [Burt and Adelson, 1983]

 How much space does a Gaussian pyramid take compared to the original image?

Gaussian Pyramid

The Laplacian Pyramid

Upsampling

- This image is too small for this screen:
- How can we make it 10 times as big?
- Simplest approach:
 repeat each row
 and column 10 times
- ("Nearest neighbor interpolation")

d = 1 in this example

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

d = 1 in this example

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

d = 1 in this example

- What if we don't know f?
 - Guess an approximation: \tilde{f}
 - Can be done in a principled way: filtering
 - Convert F to a continuous function:

$$f_F(x) = F(\frac{x}{d})$$
 when $\frac{x}{d}$ is an integer, 0 otherwise

Reconstruct by convolution with a reconstruction filter, h

$$\tilde{f} = h * f_F$$

Source: B. Curless

Reconstruction filters

What does the 2D version of this hat function look like?

Often implemented without cross-correlation

E.g., http://en.wikipedia.org/wiki/Bilinear_interpolation

Better filters give better resampled images

• **Bicubic** is common choice

$$r(x) = \frac{1}{6} \begin{cases} (12 - 9B - 6C)|x|^3 + (-18 + 12B + 6C)|x|^2 + (6 - 2B) & |x| < 1\\ ((-B - 6C)|x|^3 + (6B + 30C)|x|^2 + (-12B - 48C)|x| + (8B + 24C) & 1 \le |x| < 2\\ 0 & otherwise \end{cases}$$

Cubic reconstruction filter

Original image: 🔬 x 10

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

Also used for resampling

Raster to Vector Graphics

Depixelating Pixel Art

Modern methods

From Romano, et al: RAISR: Rapid and Accurate Image Super Resolution, https://arxiv.org/abs/1606.01299