

Haken's algorithm

Recognizing the unknotDan Tobias

Which of these are the unknot?

All of them!

- Thistlethwaite unknot
- Ochiai's unknot
- Simple unknot

If K is a knot in S^3 , how can we decide if K is the unknot?

- We want to focus on determining if our knot bounds an embedded disk since the only knot which does so is the unknot
- Analyze the knot complement using normal surface theory to find this disk
- Recast this problem as an integer programming problem, and examine the solutions to see if we bound a disk

- 1. Triangulate the knot compliment $S^3 \setminus K$
- 2. Construct finitely many fundamental solutions to the normal surface equations
- 3. Filter out the solutions which don't mean the quadrilateral condition
- 4. Check if any of the solutions are disks using Euler characteristic
- 5. Check if the boundary of this disk is essential on the boundary of knot compliment

Start by defining two types of normal disks:

- Normal triangles are disks in a 3-simplex which meets three edges and three faces of the simplex
- Normal quadrilaterials are disks in a 3-simplex which meet four faces and four edges

A normal surface in a triangulated 3-manifold then is one which intersects each 3-simplex in a disjoint union of normal triangles and quadrilaterals.

- ullet A compressing disk for a surface F is an embedded disk where the boundary of the disk lies in ∂F
- ullet If the boundary of the disk doesn't bound a disk on F, then it is a non-trivial compressing disk
- A surface with only trivial compressing disks is called incompressible

an incompressible surface and a compression of a torus

- If F is an embedded surface in M^3 then F intersects tetrahedrons T in the triangulation in a collection of subsurfaces. Each intersection of the surface with ∂T will be a simple closed curve, disjoint from the others
- ullet Each closed curve cuts ∂T into two disks. The Loop theorem then guarantees that we have a compressing disk in T which allow us to create a new surface whose components meet T in disks and 2-spheres
- ullet We discard the 2-sphere components since T is a ball so irreducible and $T\#S^2\cong T$
- Curves contained in a face of a tetrahedron can be isotoped across that face and eliminated

Compression of a piece of a torus in a tetrahedron

Consider adding context for this isotope

- Now we can repeat these processes for all tetrahedron to be left with surfaces which intersect each edge of ∂T at most once
- Disks which meet each edge at most once can only be normal triangles or quadrilaterals

And so we can decompose an embedded surface into a disjoint union of normal surfaces in $M^3!$

We can breakdown the behavior in each tetrahedron by noticing that there are only 7 types of disks which can completely characterize the normal surface

Now assign a vector $(x_1, x_2, ..., x_7)$ that corresponds to the normal surface where x_i is the number of disks of type i that occur in across all tetrahedrons.

- ullet In the reverse direction, say we have some vector X as described, this won't exactly result in a properly embedded surface, so we need to add some conditions
- One condition is that the disks in adjacent tetrahedrons are appropriately stitched together—this yields the normal surface equations
- A tetrahedron can only contain at most one type of quadrilateral—this yields the quadrilateral condition

Regular exchanges

To be filled in

Integer programming

- There are matching equations of the form $x_{i_1}+x_{i_2}=x_{i_3}+x_{i_4}$ since each face of a tetrahedron has arcs which are created by only one type of triangle and one type of quadrilateral. We can add the condition $x_i \geq 0$ to get the *normal surface equations*
- ullet Having at most one type of quadrilaterial just means that if some $x_i
 eq 0$ it forces some other x_j to be 0

Integer Programming

Fundamental solutions

Suppose $A,\,B,\,$ and C are solutions to the normal surface equations and C is an embedded normal surface with C=A+B

- ullet Then A and B also give rise to embedded normal surfaces
- ullet Previous bullet implies $\chi(C)=\chi(A)+\chi(B)$
- ullet If there does not exist A and B where C=A+B then C is called fundamental

Integer Programming

Now that we know that all solutions can be broken into fundamental solutions we have the following important fact:

There are only finitely many fundamental solutions

Finitely many fundamental solutions

- The solutions to the normal surface equations form a cone, and we can extend the solutions over the reals to get a cone in $\mathbb{R}^n_{>0}$
- ullet This cone intersects the convex simplex $\sum x_i = 1$ with $x_i \geq 0$ in a simplex with finitely many vertices v_j
- The integer solutions to the normal surface equations can be expressed as a rational linear combination of these v_j , similarly the integer multiples of $v_j, V_j = \sum \lambda_j v_j$ form a rational basis for all normal surfaces. Which means for a normal surface $X = \sum t_j V_j$

Finitely many fundamental solutions

- Take the compact set S of real solutions to the normal surface equations in the form $s=\sum t_i V_i, 0 \leq t_i \leq 1, 1 \leq j \leq n$
- Compactness guarantees only a finite number of integral points
- If X is an integral solution not in S, then for $t_k>1$ $X=V_k+(\sum t_jV_j-V_k)$
- ullet This implies all fundamental solutions are in S
- Then we just filter the solutions which meet the quadrilateral condition to get an embedded surface

References

• Joels paper (for graphics and understanding)