DSCI 5240: Data Mining Homework 01

Group 09: Anji Lanke, Chris Benton, Cody Holmes, Raheyma Khan, Srinivas Rao Kolla

HW 1 - 1:

Section 1: Brief Description of the Data File

The data consists of 22 variables and 2988 observations; TARGET_B and TARGET_D are dependent variables, while the rest are independent variables used for predicting the dependent variables. TARGET_B is a dummy variable with values 0 or 1, and TARGET_D is an interval. The dependent variables include five nominal variables and 15 interval variables. In part 1 of the assignment we will use the predictor variables AVGGIFT, FIRSTT, INCOME, LASTT, AGE, MALEMILI and MALEVET to form simple linear regression models that will predict the response variable TARGET_D.

Section 2: Linear Regression Output

Regression Output for AVGGIFT, FIRSTT, INCOME, and LASTT Variables											
50				Analysis of	Variance						
51											
52				Sum o	£						
53	Source		DF	Square	s Mean	Square	F Value	Pr > F			
54											
55	Model		4	3135		253005	56.22	<.0001			
56	Error		2289	31913		423041					
57	Corrected '	Total	2293	35049	12						
58											
59											
60	Model Fit Statistics										
61											
62	R-Square		0.0895	Adj R-Sq	0.0879						
63	AIC	11331.6488			1333.6707						
64	SBC	1136	0.3391	C(p)	5.0000						
65											
66											
67		Analy	sis of Max	imum Likelihoo	d Estimates	3					
68				a							
69				Standard		P	1-1				
70	Parameter	DF	Estimat	e Error	t Value	Pr >	ICI				
71	T	,	0.164								
72	Intercept	1	0.164		0.12	0.9					
73	AVGGIFT	1	0.413		13.83						
74 75	FIRSTT	1 1	0.0011		5.31						
	INCOME	_	0.540		4.04						
76	LASTT	1	-0.0039	8 0.00192	-2.08	0.0	3/0				

Regression Output for Stepwise Model of Variables AVGGIFT, FIRSTT, INCOME, LASTT, AGE, MALEMILI, and MALEVET

uu	.,								
145				Analysis o	f Variance				
146									
147				Sum	of				
148	Source		DF	Squar	es Mean	Square	F Value	Pr > F	
149									
150	Model		3	332	:16	11072	76.80	<.0001	
151	Error		1991	2870	22 144	.159541			
152	Corrected T	otal	1994	3202	:38				
153									
154									
155		Mod	el Fit Sta	atistics					
156									
157	R-Square	0	.1037	Adj R-Sq	0.1024				
158	AIC	9920	.9826	BIC	9922.9973				
159	SBC	9943	.3762	C(p)	4.3362				
160									
161									
162		Analys	is of Max:	imum Likeliho	od Estimate:	3			
163									
164				Standard	l				
165	Parameter	DF	Estimate	e Error	t Value	Pr >	t		
166									
167	Intercept	1	-2.618	4 0.9794	-2.67	0.00	76		
168	AVGGIFT	1	0.458	4 0.0321	14.28	<.00	001		
169	FIRSTT	1	0.0013	0.000244	5.44	<.00	001		
170	INCOME	1	0.5070	0.1462	3.47	0.00	005		
171									
172									
173	NOTE: No (a	additio	nal) effe	cts met the O	.05 signifi	cance leve	el for enti	ry into the m	nodel.
174									

Section 3: Answers to Q1 – Q7

Q1 Answer

8.95% of the variance in the dependent variable of TARGET_D is explained by the independent variables of AVGGIFT, FIRSTT, INCOME, and LASTT.

Q2 Answer

- 1) For every one unit increase in AVGGIFT, TARGET_D is expected to increase by 0.1646, holding all other variables constant.
- For every one unit increase in FIRSTT, TARGET_D is expected to increase by 0.4130, holding all other variables constant.
- 3) For every one unit increase in INCOME, TARGET_D is expected to increase by 0.00118, holding all other variables constant.
- 4) For every one unit increase in LASTT, TARGET_D is expected to decrease by 0.00398, holding all other variables constant.

O3 Answer

To determine if the variables of AVGGIFT, FIRTT, INCOME, and LASTT are statistically significant, a level of confidence must be established. Common levels of confidence are p-values of 0.1, 0.05, and 0.01. If we

assume a level of significance at the p-value of 0.05, all variables are statistically significant predictors of TARGET_D. Interestingly, if we assumed a level of significance at the p-value of 0.01, all variables would still be significant predictors except the LASTT variable.

Q4 Answer

The variables now selected in the model are AVGGIFT, FIRSTT, and INCOME.

Q5 Answei

Given the new stepwise model, three of the original four variables are significant well beyond a p-value of 0.01. The LASTT variable is not.

Q6 Answer

The paradox is explained by the fact that stepwise regression takes multiple combinations of variables to see which produce the best model. Best model is defined as a model that most increases the R-square value. Within each iteration of the stepwise regression, for instance, the complete output shows the value of R-square increasing at every step, finally stopping an R-square value of 0.1037.

Q7 Answer

Adding the three extra variables did not have any effect on the model. This is because our final model only contains the three variables AVGVGIFT, FIRSTT and INCOME which were part of the first model. Moreover, the final model has a higher R-square value because it does not include the variable LASTT. LASTT was becoming insignificant at p-value = 0.01 in the first model, and therefore has been removed by the final model.

HW 1 - 2:

Section 1: Brief Description of the Data File

The data consists of 22 variables and 2988 observations; TARGET_B and TARGET_D are dependent variables, while the rest are independent variables used for predicting the dependent variables. TARGET_B is a dummy variable with values 0 or 1, and TARGET_D is an interval. The dependent variables include five nominal variables and 15 interval variables. In part 2 of the assignment we will use the predictor variables AVGGIFT, FIRSTT, INCOME, and LASTT to form a logistic regression model that will predict the response variable TARGET_B.

Section 2: Logistic Regression Output

Group 9: Anji Lanke, Chris Benton, Raheyma Khan, Sriniva Rao Kolla, and Cody Holmes HW1-1

103											
103					Optimizati	on Results					
105											
106	Iterations				3	Function Calls			6		
107	Hessian Cal	lls			4	Active Constra	ints		0		
108	Objective H	unctio	on	1	550.0686342	Max Abs Gradie	nt Element		0.0000178732		
109	Ridge				0	Actual Over Pr	ed Change		1.0004674447		
110											
111	Convergence criterion (GCONV=1E-6) satisfied.										
112											
113											
114	Likeli	ihood E	Ratio Test fo	r Global Null	Hypothesis:	BETA=0					
115											
116	-2 Log	, Likel	lihood	Likelihood							
117	Intercept	5]	Intercept &	Ratio							
118	Only	7	Covariates	Chi-Square	DF	Pr > ChiSq					
119											
120	3180.131	L	3100.137	79.9941	4	<.0001					
121											
122											
123			An	alysis of Max	imum Likelih	ood Estimates					
124											
125				Standard	Wald		Standardized				
126	Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq	Estimate	Exp(Est)			
127											
128	Intercept	1	0.2900	0.2375	1.49	0.2221		1.336			
129	AVGGIFT	1	-0.0167	0.00604	7.60	0.0058	-0.0793	0.983			
130	FIRSTT	1	0.000175	0.000039	20.32	<.0001	0.1112	1.000			
131	INCOME	1	0.1038	0.0232	19.98	<.0001	0.1064	1.109			
132	LASTT	1	-0.00161	0.000338	22.57	<.0001	-0.1147	0.998			
133											
134											
134											
135											
136			Dorder to								
137 138	Effect		Point Estimate								
139	Firect		racimate.								
140	AVGGIFT		0.983								
141	FIRSTT		1.000								
142	INCOME		1.109								
143	LASTT		0.998								
144											

Section 3: Answers to Q1 - Q4

Q1 Answer

The model is valid. The estimated probability of the predicted values for TARGET_B falls between 0 and 1. Moreover, -2xlog likelihood has a smaller value for model with intercept and covariates. The chi square test also shows the model is valid at all levels of significance.

Q2 Answer

The variables AVGGIFT and LASTT have odds ratios less than 1, which implies that the probability of them not occurring is greater than the probability of them occurring. FIRSTT has an odds ratio equal to 1 which means that it is equally likely for the event to occur or not. INCOME has odds ratio greater than 1 so the probability of it occurring is greater.

Q3 Answer

A level of confidence such as .1, .05, or .01 has to be set in order to determine significance. Based on any of the common levels of confidence, all variables (FIRSTT, INCOME, LASTT, and AVGGIFT) are significant

Commented [KR1]: @Lanke, Anji I have copied your answers here.

Can you please explain your first three answers. I have different answers for them actually.

Commented [LA2R1]: For Q1, I have considered probability instead of odds ratio. Could you please correct me if i am wrong.

Commented [KR3R1]: I'm not sure about this answer myself. I was thinking we will prove validity by likelihood ratio chi square or -2xlog likelihood. But your answer is also making sense.

Commented [BC4R1]: Can we include a bit about the Likelihood Ratio as well? I think both would work well for this question and it might be good to include both.

Commented [KR5]: My answer for Q2 is also different. Please verify.

Commented [LA6R5]: Both of our answers are same. I did not make it clear interms of event occur or not. Replaced my answer with yours.

Commented [KR7R5]: Okay. Thank you for the clarification!

predictors for TARGET_B. While AVGGIFT has a Chi-Square of .0058, it is still below the lowest common level of confidence of .01.

Q4 Answer

The equation of the model is

$$ln\left(\frac{p}{1-p}\right) = 0.29 - 0.0167 \ AVGGIFT + 0.000175 \ FIRSTT + 0.1038 \ INCOME - 0.00161 \ LASTT$$

The odds ratio is equal to (p/1-p). The coefficients of independent variables in the above equation give the rate of change in the log of odds ratio as the independent variables change. A one unit increase in AVGGIFT reduces the log of odds ratio by 0.0167 units. A one unit increase in FIRSTT increases the log of odds ratio by 0.000175 units. A one unit increase in INCOME increases the log of odds ratio by 0.1038 units. A one unit increase in LASTT decreases the log of odds ratio by 0.00161 units.

Changing our logistic regression equation to the one below makes it easier to understand the coefficients.

$$\left(\frac{p}{1-p}\right) = e^{0.29} * e^{-0.0167*AVGGIFT} * e^{0.000175*FIRSTT} * e^{0.1038*INCOME} * e^{-0.00161*LASTT}$$

Now, a one unit increase in AVGGIFT causes the odds ratio to increase by e $^{-0.0167}$ = 0.983 units. A one unit increase in FIRSTT causes the odds ratio to increase by e $^{-0.000175}$ = 1.000 units. A one unit increase in INCOME causes the odds ratio to increase by e $^{-0.1038}$ = 1.109 units. A one unit increase in LASTT causes the odds ratio to increase by e $^{-0.00161}$ = 0.998 units.

Commented [KR8]: My answer for Q4 is different from Anji's. Please let me know if its correct.

Commented [LA9R8]: My bad, i missed the exponential part in the formula. We will go with your answer.