SYSTÈME ET RÉSEAUX

LICENCE INFORMATIQUE

UNIVERSITÉ PARIS 8

OUMAIMA EL JOUBARI

ELJOUBARI.OUM@GMAIL.COM

2) FONCTIONNEMENT DES RÉSEAUX

G. Modèle en couches:

- OSI (Open Systems Interconnection): Un modèle théorique qui décrit la manière dont les différents composants logiciels et matériels impliqués dans une communication en réseau se répartissent les tâches et interagissent les uns avec les autres.
- TCP/IP: Un approche pratique utilisée comme modèle de réseau de référence pour Internet.

TCP: définit la manière dont des applications créent des canaux de communication fiables à l'échelle du réseau.

IP: définit la manière dont les ordinateurs peuvent se transmettre des données via un ensemble routé de réseaux interconnectés.

2) FONCTIONNEMENT DES RÉSEAUX

- Objectif: assurer la transmission de bits entre les entités physiques: ETTD & ETCD
 - ☐ ETTD: équipement terminal de traitement de données
 - ☐ ETCD: équipement terminal de circuit de données
- Unité d'échanges: le bit
- Services:
 - La nature et caractéristiques du médium de communication;
 - ☐ Le mode de connexion au réseau;
 - Le choix du codage de bits;
 - Les tensions et fréquences utilisées.

2) FONCTIONNEMENT DES RÉSEAUX

- Objectif:
 - ☐ Assurer la transmission entre deux systèmes;
 - ☐ Détecter et corriger les erreurs issues de la couche inférieure
- Unité d'échanges: la trame (frame)
- Services:
 - Structuration de données en trames;
 - Contrôle d'erreur en émission et réception;
 - Définition des règles de synchronisation.

2) FONCTIONNEMENT DES RÉSEAUX

- Objectif:
 - ☐ Assurer l'acheminement des messages à travers le réseau;
 - Acheminement de bout-en-bout.
- Unité d'échanges: le paquet
- Services:
 - Le routage;
 - ☐ La commutation des paquets;
 - Prendre en charge la segmentation et le regroupage.

2) FONCTIONNEMENT DES RÉSEAUX

- Objectif:
 - ☐ Acheminement de bout-en-bout.
- Unité d'échanges: le datagramme
- Services:
 - Fragmentation en paquets;
 - Multiplexage/démultiplexage des services;
 - □ Prendre en charge la segmentation et le regroupage.

2) FONCTIONNEMENT DES RÉSEAUX

- Objectif:
 - Fournir un ensemble de service pour la coordination des applications.
- Unité d'échanges: le datagramme
- Services:
 - Etablissement de connexion entre les applications;
 - ☐ Définition de points de synchronisation en cas d'erreur.

2) FONCTIONNEMENT DES RÉSEAUX

- Objectif:
 - ☐ Permettre la manipulation des objets typés plutôt que des bits;
 - ☐ Fournir une représentation standard pour ces objets.
- Unité d'échanges: le datagramme
- Services:
 - ☐ Définition d'une notation abstraite pour les objets typés;
 - Compression / Cryptage.

2) FONCTIONNEMENT DES RÉSEAUX

- Apporter à l'utilisateur les services de base offerts par le réseau.
- Unité d'échanges: le datagramme
- Services:
 - Exemples d'applications standards: FTP, SMTP,....
 - Terminaux virtuels: Telnet...

2) FONCTIONNEMENT DES RÉSEAUX

G. Modèle en couches: TCP/IP

- Cette couche regroupe les couches physique et de liaison des données du modèle OSI.
- Objectif:
 - ☐ Fournir le moyen de délivrer des données aux systèmes rattachés au réseau.

2) FONCTIONNEMENT DES RÉSEAUX

G. Modèle en couches: TCP/IP

Internet

- L'équivalent de cette couche dans le modèle OSI est la couche Réseau.
- Objectif:
 - Assurer la transmission des paquets d'un hôte à un autre et de faire en sorte qu'ils arrivent à destination.

2) FONCTIONNEMENT DES RÉSEAUX

G. Modèle en couches: TCP/IP

Transport 3

- Cette couche a le même rôle que la couche 4 du modèle OSI.
- Objectif:
 - Détermine comment les données doivent être envoyées : de manière fiable ou pas.

2) FONCTIONNEMENT DES RÉSEAUX

G. Modèle en couches: TCP/IP

- Cette couche regroupe les trois couches de session, présentation et application du modèle OSI.
- Objectif:
 - ☐ Fournir les protocoles de haut niveau.

2) FONCTIONNEMENT DES RÉSEAUX

- Le processus de communication:
- I. Création de données au niveau de la couche application de l'hôte source;
- 2. Segmentation et encapsulation des données lorsqu'elles vont descendre la pile de protocoles dans l'hôte source;
- 3. Génération des données sur les différents supports qui se trouvent au niveau de la couche d'accès au réseau dans la pile;
- 4. Transport des données à travers l'interréseau, qui est composé de supports et de périphériques intermédiaires;
- 5. Réception des données par la couche d'accès au réseau de l'hôte de destination;
- 6. Décapsulation et assemblage des données lorsqu'elles remontent la pile au niveau de l'hôte de destination;
- 7. Transmission des données à l'application de destination.

PLAN DU COURS

I. Réseaux informatiques:

- I) Introduction sur les réseaux et Internet
- 2) Fonctionnement des réseaux
- 3) Couche physique
- 4) Couche Liaison de données
- 5) Couche réseau: Relayage et adressage IP
- 6) Routage dynamique
- 7) Couche transport: TCP & UDP
- 8) Applications: DNS & HTTP

3) LA COUCHE PHYSIQUE

A. Fonctions principales de la couche:

- Pour transmettre les bits entre un émetteur et un récepteur, il est nécessaire d'établir une liaison sur une voie de transmission munies d'équipement de transmission à ses extrémités.
- Types de support: câbles, fibre optique, ondes hertziennes,...
- Types de communication : Simplex, half-duplex, full-duplex

3) LA COUCHE PHYSIQUE

A. Fonctions principales de la couche:

Types de liaison:

- ETTD: ordinateur, imprimante, scanner, téléphone mobile,...
- ETCD: modem, satellite, station de base,...

3) LA COUCHE PHYSIQUE

B. Normalisation des jonctions:

	UIT-T	EIA	ISO
Connecteurs DB9 DB15 DB25 DB37			DP4902 DP4903 DP2110 DP4902
Caractéristiques électriques	V28 V10 (X26) V11 (X27) V35	RS 232C RS 423 RS 422	
Caractéristiques fonctionnelles	V24 V35 X21 X24	RS 232C RS 449	

- UIT-T: Union Internationale des Télécommunications
- EIA: Electronic Industry Association
- ISO: International Organization for Standardization

I. RÉSEAUX INFORMATIQUES 3) LA COUCHE PHYSIQUE

C. Les supports de transmission:

Deux catégories de supports:

- Les supports guidés (filaires) : Paires torsadées, câble coaxial, fibre optique.
- Les supports non guidés (non-filaires): Les ondes hertziennes, radio-éléctriques, lumineuses.

Performance d'un support: dépend de la bande passante, l'atténuation et les bruits.

 Pour les supports non guidés, l'atténuation et bruits sont très variables (conditions atmosphériques).

3) LA COUCHE PHYSIQUE

C. Les supports de transmission: supports guidés

La paire torsadée:

Constituée de deux brins en cuivre torsadés et isolés.

Deux types: blindée et non blindée.

- > FTP-Foiled Twisted Pair (blindée): entourée d'une feuille métallique.
- > STP-Shielded Twisted Pair (blindée) : entourée d'une tresse métallique.
- > UTP-Unshielded Twisted Pair (non blindée): plusieurs qualités classées en catégories.

3) LA COUCHE PHYSIQUE

- La paire torsadée:
 - ➤ Bande passante: 0.4 Mhz à 1000 MHz
 - > Avantages: coût très faible, connexion facile.
 - Inconvénients: Faible immunité au bruit.
 - Ex: Ethernet a un débit de 100 Mbits/s, utilise 2 paires, 1 paire par direction de communication.

3) LA COUCHE PHYSIQUE

- Le câble coaxial:
- > Seul le brin central transporte les données.
- Le blindage protège les signaux contre les parasites électromagnétiques et sert de masse.
- ➤ II existe plusieurs types de câbles coaxiaux : RG-59, RG-8, RG-11,...

3) LA COUCHE PHYSIQUE

- Le câble coaxial:
- > Plus grande bande passante que la paire torsadée: quelques GHz
- Les débits du câble coaxial peuvent atteindre 800 Mbit/s
- > Avantages: Meilleure protection au bruit.
- Inconvénients : Installation assez difficile.
- > Ex: Ce type de câble était très utilisé pour la TV & Internet.

3) LA COUCHE PHYSIQUE

- La fibre optique:
- Constituée d'un brin central en verre ou en plastique entouré d'une gaine optique en verre ou en plastique.
- > Ce système permet de garder le rayon lumineux à l'intérieur de la fibre.
- Il existe deux types:
 - Mono-mode: grandes distances.
 - Multi-mode: courtes distances.

3) LA COUCHE PHYSIQUE

C. Les supports de transmission: supports guidés

• La fibre optique:

Fibre	Туре	Dimensions (micron)	Largeur de bande OFLBW (850 nm-1 300 nm)	Largeur de bande RML (850 nm)
OM1	Multimode	62,5 / 125	200-500 MHz•km	Non spécifié
OM2	Multimode	50 / 125	500-500 MHz•km	Non spécifié
OM3	Multimode	50 / 125	1 500-500 MHz•km	2 000 MHz•km
OM4	Multimode	50 / 125	3 500-500 MHz•km	4 700 MHz•km
OS1	Monomode	9 / 125	> 10 GHz•km (non spécifié)	> 10 GHz•km (non spécifié)
OS2	Monomode	9 / 125	> 10 GHz•km (non spécifié)	> 10 GHz•km (non spécifié)

Optical Fiber Core Diameters

Figure 1: Optical Fiber Core Diameters

3) LA COUCHE PHYSIQUE

- La fibre optique:
- Très grande bande passante : plusieurs GHz
- Vitesse de transmission: 10-100 Gbps.
- Distance entre les répéteurs: 10-100 km.
- Avantages: Insensible aux interférences, plus résistant et plus léger que le cuivre.
- Inconvénients : Coût très important, sensible à l'humidité, .

3) LA COUCHE PHYSIQUE

- La fibre optique:
- > Propagation dans la fibre optique:

- 2a: diamètre du cœur
- n l: indice de réfraction du milieu l
- n2: indice de réfraction du milieu 2
- Θ: angle maximale d'acceptance
- i: angle d'incidence à l'interface cœur/gaine
- r: angle de réfraction
- > ON: ouverture numérique

3) LA COUCHE PHYSIQUE

- La fibre optique:
- > Propagation dans la fibre optique:

$$\triangleright$$
 ON = $\sin \theta$

$$> n_1 \sin \theta = n_2 \sin r$$

$$\geq$$
 R1 = R2. cos r

$$> \sin \theta = \sqrt{n_1^2 + n_2^2}$$

3) LA COUCHE PHYSIQUE

C. Les supports de transmission: supports guidés

La fibre optique:

Exercice:

Une fibre optique multimode à saut d'indice a une ouverture numérique de 0,22 et un indice de réfraction du cœur de n1 = 1,465.

Déterminez :

- I. La bande passante en bit/s de cette fibre pour une longueur de 1 km.
- 2. L'indice *n*2.

$$\triangleright$$
 ON = $\sin \theta$

$$> n_1 \sin \theta = n_2 \sin r$$

$$ightharpoonup R1 = R2.\cos r$$

3) LA COUCHE PHYSIQUE

C. Les supports de transmission: supports guidés

Nomenclature des réseaux Ethernet:

Les réseaux Ethernet sont symbolisés par Ethernet x base y. Un nom de la forme x B y se lit de la façon suivante :

- B: modulation de base
- x : bande passante (en méga bits par seconde)
- y : définie le type de câble utilisé :
 - > 5 : câble coaxial de 1.7cm de diamètre (gros Ethernet)
 - > 2 : câble coaxial de 0.5cm de diamètre (Ethernet fin, cheapernet)
 - T: paires torsadées
 - > F: fibre optique

3) LA COUCHE PHYSIQUE

- Infrarouge :
 - Utilisation: interconnexion de proximité.
 - Débit théorique: 115 kbps 4 Mbps.
 - Portée: quelques mètres en visibilité directe.
 - Avantages: Faible coût, transmission sécurisée, connectivité rapide.
 - Inconvénients: faible portée, alignement des appareils, sans obstacles.

3) LA COUCHE PHYSIQUE

- Bluetooth :
 - Utilisation: interconnexion de proximité.
 - Débit théorique: I 10 Mbps.
 - Portée: 10 m / 100 m avec amplificateur de puissance.
 - Avantages: Faible consommation d'énergie, technologie adapté à la mobilité, faible coût.
 - Inconvénients: Nombre de périphériques limités, faible portée, débit limité.

3) LA COUCHE PHYSIQUE

- Wi-Fi (Wireless Fidelity) :
 - Utilisation: interconnexion des équipements dans un réseau local sans fil.
 - Débit théorique: 11 Mbps.
 - Portée: Plusieurs dizaines de mètres.
 - Avantages: Faible consommation d'énergie, technologie adapté à la mobilité, faible coût.
 - Inconvénients: Nombre de périphériques limités, faible portée, débit limité.

I. RÉSEAUX INFORMATIQUES 3) LA COUCHE PHYSIQUE

- Wi-Fi (Wireless Fidelity) :
 - Mode Ad Hoc (sans infrastructure) : convient pour un réseau comportant 2 ordinateurs pour échanger des données dans un réseau local ou pour partager une connexion internet.
 - Mode infrastructure : convient pour un réseau comportant plus de 2 ordinateurs.
 Dans ce mode, les ordinateurs se connectent tous à un point d'accès.

3) LA COUCHE PHYSIQUE

- D'autres types de supports sans fil:
 - Wi-Max: Transmission sans fil haut débit (70 Mbps). Il s'adresse notamment au marché des réseaux métropolitains (MAN).
 - > Z-Wave: Communication sans fil dans des systèmes de réseau maillé. Il a une portée de 30 mètres et un débit maximal de 100 Kbps.
 - DSRC (Dedicated Short Range)/ WAVE (Wireless Access in Vehicular Environment): conçus pour les systèmes de transport intelligents. Ils offrent un débit maximal de 27 Mbps et une portée de plus d'1 Km.