

Schletter, Inc.		35° Tilt w/ Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 14.43 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s =$$
 1.00
$$C_s =$$
 0.64
$$C_e =$$
 0.90

1.20

2.3 Wind Loads

Design Wind Speed, V =	160 mph	Exposure Category = C
Heiaht ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 40.19 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.2 (Pressure)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	2 (Pressure)	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.4 -1.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.2 (Suction)	applied away from the surface.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T ₂ =	0.04	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.0W + 0.5S $0.9D + 1.0W^{M}$ 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

1.2D + 1.6S + 0.5W

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 0.6W1.0D + 0.75L + 0.45W + 0.75S $0.6\mathsf{D} + 0.6\mathsf{W}^{\ M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ $0.362D + 0.875E^{\circ}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	<u>g</u>		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>39</u>	in
$\Phi F_{ty STRONG-AXIS} =$	30.12	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
I _y =	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	-0.296	k-ft
$M_z =$	-0.022	k-ft
M _{y allowable} =	1.281	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>26%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	1.5x0.25 6061-T6	
$F_{ty} =$		ksi
Φ =	0.90	
$S_y =$	0.02	in ³
E =	10100	ksi
$I_y =$	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.002	k-ft
$P_n =$	0.167	k
$M_{y \text{ allowable}} =$	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>6%</u>	

A cross brace kit is required every 34 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	<u>1.31</u>	<u>1724.78</u> k	
Compressive Load =	745.85	<u>1099.01</u> k	
Lateral Load =	<u>17.83</u>	<u>1136.90</u> k	
Moment (Weak Axis) =	0.03	0.00 k	

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 24951.9 in-lbs Resisting Force Required = 831.73 lbs A minimum 60in long x 20in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1386.22 lbs to resist overturning. Minimum Width = <u>20 in</u> in Weight Provided = Sliding 262.29 lbs Force = Use a 60in long x 20in wide x 18in tall Friction = 0.4 Weight Required = 655.73 lbs ballast foundation to resist sliding. Resisting Weight = 1812.50 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 262.29 lbs Cohesion = 130 psf Use a 60in long x 20in wide x 18in tall 8.33 ft² Area = ballast foundation. Cohesion is OK. Resisting = 906.25 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width					
	<u>20 in</u>	21 in	22 in	23 in		
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.67 \text{ ft}) =$	1813 lbs	1903 lbs	1994 lbs	2084 lbs		

ASD LC	1.0D + 1.0S			1.0D + 1.0S 1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W						
Width	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in
FA	240 lbs	240 lbs	240 lbs	240 lbs	302 lbs	302 lbs	302 lbs	302 lbs	381 lbs	381 lbs	381 lbs	381 lbs	29 lbs	29 lbs	29 lbs	29 lbs
FB	149 lbs	149 lbs	149 lbs	149 lbs	481 lbs	481 lbs	481 lbs	481 lbs	457 lbs	457 lbs	457 lbs	457 lbs	-795 lbs	-795 lbs	-795 lbs	-795 lbs
F _V	18 lbs	18 lbs	18 lbs	18 lbs	470 lbs	470 lbs	470 lbs	470 lbs	364 lbs	364 lbs	364 lbs	364 lbs	-525 lbs	-525 lbs	-525 lbs	-525 lbs
P _{total}	2202 lbs	2293 lbs	2384 lbs	2474 lbs	2595 lbs	2686 lbs	2777 lbs	2867 lbs	2650 lbs	2741 lbs	2832 lbs	2922 lbs	321 lbs	376 lbs	430 lbs	484 lbs
M	207 lbs-ft	207 lbs-ft	207 lbs-ft	207 lbs-ft	411 lbs-ft	411 lbs-ft	411 lbs-ft	411 lbs-ft	444 lbs-ft	444 lbs-ft	444 lbs-ft	444 lbs-ft	669 lbs-ft	669 lbs-ft	669 lbs-ft	669 lbs-ft
е	0.09 ft	0.09 ft	0.09 ft	0.08 ft	0.16 ft	0.15 ft	0.15 ft	0.14 ft	0.17 ft	0.16 ft	0.16 ft	0.15 ft	2.08 ft	1.78 ft	1.56 ft	1.38 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	234.5 psf	233.7 psf	233.0 psf	232.3 psf	252.3 psf	250.6 psf	249.1 psf	247.8 psf	254.2 psf	252.4 psf	250.8 psf	249.4 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	294.0 psf	290.4 psf	287.1 psf	284.1 psf	370.6 psf	363.3 psf	356.7 psf	350.6 psf	381.9 psf	374.1 psf	367.0 psf	360.5 psf	308.4 psf	199.2 psf	165.7 psf	150.6 psf

Maximum Bearing Pressure = 382 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 186.6 \text{ ft-lbs}$

Resisting Force Required = 223.91 lbs S.F. = 1.67 Weight Required = 373.19 lbs

Minimum Width = 20 in in Weight Provided = 1812.50 lbs

A minimum 60in long x 20in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E						
Width		20 in			20 in			20 in					
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer				
F _Y	119 lbs	24 lbs	51 lbs	180 lbs	268 lbs	128 lbs	86 lbs	-50 lbs	20 lbs				
F _V	11 lbs	88 lbs	11 lbs	8 lbs	66 lbs	8 lbs	11 lbs	88 lbs	11 lbs				
P _{total}	2362 lbs	2268 lbs	2295 lbs	2316 lbs	2404 lbs	2264 lbs	742 lbs	607 lbs	676 lbs				
М	29 lbs-ft	145 lbs-ft	30 lbs-ft	22 lbs-ft	110 lbs-ft	23 lbs-ft	29 lbs-ft	145 lbs-ft	30 lbs-ft				
е	0.01 ft	0.06 ft	0.01 ft	0.01 ft	0.05 ft	0.01 ft	0.04 ft	0.24 ft	0.04 ft				
L/6	0.28 ft	1.54 ft	1.64 ft	1.65 ft	1.58 ft	1.65 ft	1.59 ft	1.19 ft	1.58 ft				
f _{min}	270.8 sqft	209.3 sqft	262.4 sqft	268.4 sqft	241.2 sqft	261.7 sqft	ft 76.3 sqft 10.0 sqft 68.2						
f _{max}	296.2 psf	334.9 psf	288.3 psf	287.3 psf	335.9 psf	281.8 psf	101.8 psf 135.5 psf 94.1 psf						

Maximum Bearing Pressure = 336 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 20in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	0.574 k	Maximum Axial Load =	1.008 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>10%</u>	Utilization =	<u>18%</u>
Diagonal Strut		<u>Bracing</u>	
Maximum Axial Load =	0.690 k	Maximum Axial Load =	0.167 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>12%</u>	Utilization =	<u>2%</u>

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 33.11 \text{ in} \\ \text{Allowable Story Drift for All Other} & & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & & 0.662 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & & 0.044 \text{ in} \\ \end{array}$

<u>0.044 ≤ 0.662, OK.</u>

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 39.00 \text{ in}$$

$$J = 0.255$$

$$101.554$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

 $\phi F_L = 30.1 \text{ ksi}$

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Use</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_b = 39.00 \text{ in}$$

$$J = 0.255$$

$$105.457$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

3.4.16

 $\phi F_1 =$

$$b/t = 23.9$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.5 \text{ ksi}$$

30.1

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

 $\phi F_L = 1.3 \phi y F c y$

$$\phi F_L St = 30.1 \text{ ksi}$$

$$lx = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.281 \text{ k-ft}$$

77.3

43.2 ksi

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$X = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

S2 =

 $\phi F_L =$

3.4.9

b/t =7.4 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi b/t =23.9 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.5 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{5y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.47 \text{ ksi}$$

$$A = 578.06 \text{ mm}^2$$

$$0.90 \text{ in}^2$$

$$P_{max} = 25.51 \text{ kips}$$

0.0

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.25 \\ & 21.9891 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.7 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.25 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})] \\ \phi F_L = & 29.7 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi b (2*\sqrt{(BpE)}))/(5.1b/t)$$

$$F_{IIT} = 9.4 \text{ ksi}$$

3.4.16

b/t = 4.29

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

3.4.16

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2 b/t =24.46 2.6 t = 6.05 ds = rs = 3.49 S = 21.70 ρst = 0.22 $F_{UT} =$ 9.37 $F_{ST} =$ 28.24 $\phi F_L = Fut + (Fst - Fut)\rho st < Fst$

13.5 ksi

$\phi F_L =$

3.4.18
$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L St = 29.7 \text{ ksi}$$

$$h/t = 4.29$$

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W = 13.5 \text{ ksi}$$

Compression

 $M_{max}St =$

y =

Sx=

3.4.7

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

 $lx = 364470 \text{ mm}^4$ 0.876 in⁴

37.77 mm

0.589 in³

1.455 k-ft

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^* \sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.9.1

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{5y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{max} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

$$\phi F_L = 31.2 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

Not Used 0.0 3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

 $S2 = 141.0$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$
 $k = 39958.2 \text{ mm}^4$

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.423 \text{ k-ft}$$

Weak Axis:

3.4.14

$$\begin{array}{ll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

$$\begin{array}{cccc} C_0 = & 15 \\ Cc = & 15 \\ \end{array}$$

$$\begin{array}{cccc} S2 = \frac{k_1 B b r}{m D b r} \\ S2 = & 77.3 \\ \end{array}$$

$$\begin{array}{cccc} \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \end{array}$$

$$\begin{array}{ccccc} \phi F_L W k = & 31.2 \text{ ksi} \\ y = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ X = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ \end{array}$$

$$\begin{array}{ccccc} M_{\text{max}} W k = & 0.423 \text{ k-ft} \\ \end{array}$$

7.75

mDbr

0.65

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{SI}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$
 $r = 0.437 \text{ in}$
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$S2^* = \frac{3}{\pi} \sqrt{Fcy/R}$$

 $S2^* = 1.23671$

$$32^{\circ} = 1.23671$$

$$\phi$$
cc = 0.83792

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L {=}~24.5226~ksi$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{\text{max}} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{C_c}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_L &= 29.8 \end{split}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

7.75

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$\phi F_L St = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$\phi F_L St = 15 \text{ mm}$$

$$\phi Sx = 0.163 \text{ in}^3$$

0.404 k-ft

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi \varphi Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L = 33.3 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$x = 15 \text{ mm}$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max} W k = 0.450 \text{ k-ft}$$

 $M_{max}St =$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$\pi \sqrt{1097}$$

S2^{*} = 1.23671

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$\theta_{3}$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$\phi F_L {= \phi y F c y}$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 in^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 42.32 \text{ in}$$

$$J = 0.16$$

$$111.025$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 30.0 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_1 = 33.3 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

h/t =

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.0 \text{ ksi}$$
 $k = 39958.2 \text{ mm}^4$
 0.096 in^4

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$M_{max}St =$ 0.406 k-ft

Weak Axis:

3.4.14

$$L_{b} = 42.32 \text{ in}$$

$$J = 0.16$$

$$111.025$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

 $\phi F_L =$

30.0

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ \text{ly} = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ \text{x} = & 15 \text{ mm} \\ \text{Sy} = & 0.163 \text{ in}^3 \\ \text{M}_{\text{max}} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.81475 \\ \textbf{r} = & 0.437 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi cc = & 0.83406 \\ & \phi \textbf{F}_L = & (\phi cc \textbf{Fcy})/(\lambda^2) \\ & \phi \textbf{F}_L = & 8.86409 \text{ ksi} \end{array}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}}Fcy}{Dt}\right)^{2}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_{L} = \phi y Fcy$$

$$\phi F_{L} = 33.25 \text{ ksi}$$

$$\phi F_{L} = 8.86 \text{ ksi}$$

$$A = 323.87 \text{ mm}^{2}$$

$$0.50 \text{ in}^{2}$$

$$P_{max} = 4.45 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	•	-1	•			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL			.8			4		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

		Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	1	M13	Υ	-4.45	-4.45	0	0
2	2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

		Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	Υ	-40.249	-40.249	0	0
Γ	2	M16	Υ	-40.249	-40.249	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-134.509	-134.509	0	0
2	M16	V	-224,182	-224.182	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	269.018	269.018	0	0
2	M16	V	134,509	134,509	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M16	Ζ	6.693	6.693	0	0
3	M13	Ζ	0	0	0	0
4	M16	Z	0	0	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	. B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
	LATERAL - ASD 1.1785D + 0.65.				1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	274.694	2	290.402	2	.006	10	0	10	0	1	0	1
2		min	-314.445	3	-442.431	3	-2.456	4	0	4	0	1	0	1
3	N7	max	.026	3	205.445	1	.08	10	0	10	0	1	0	1
4		min	115	2	20.669	15	-13.421	4	021	4	0	1	0	1
5	N15	max	.103	3	573.732	1	.055	9	0	9	0	1	0	1
6		min	-1.09	2	15.255	15	-13.717	5	021	4	0	1	0	1
7	N16	max	789.218	2	845.389	2	0	2	0	9	0	1	0	1
8		min	-874.538	3	-1326.754	3	-116.547	4	0	3	0	1	0	1
9	N23	max	.027	3	205.845	1	.436	3	0	3	0	1	0	1
10		min	115	2	-1.017	15	-12.828	5	02	5	0	1	0	1
11	N24	max	274.695	2	292.595	2	107.478	3	0	9	0	1	0	1
12		min	-315.622	3	-442.677	3	-3.469	5	0	5	0	1	0	1
13	Totals:	max	1337.289	2	2358.549	2	0	3						
14		min	-1504.448	3	-2054.079	3	-162.143	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	/-y Mome	LC	z-z Mome	LC
1	M2	1	max	186.099	2	.677	6	1.088	4	0	10	0	10	0	1
2			min	-361.62	3	.158	15	065	3	0	4	0	4	0	1
3		2	max	186.234	2	.619	6	.965	4	0	10	0	5	0	15
4			min	-361.519	3	.145	15	065	3	0	4	0	3	0	6
5		3	max	186.369	2	.562	6	.842	4	0	10	0	5	0	15
6			min	-361.417	3	.131	15	065	3	0	4	0	3	0	6
7		4	max	186.504	2	.504	6	.718	4	0	10	0	5	0	15
8			min	-361.316	3	.118	15	065	3	0	4	0	3	0	6
9		5	max	186.639	2	.447	6	.595	4	0	10	0	5	0	15
10			min	-361.215	3	.104	15	065	3	0	4	0	3	0	6
11		6	max	186.774	2	.389	6	.472	4	0	10	0	4	0	15
12			min	-361.114	3	.091	15	065	3	0	4	0	3	0	6
13		7	max	186.908	2	.332	6	.349	4	0	10	0	4	0	15
14			min	-361.013	3	.077	15	065	3	0	4	0	3	0	6
15		8	max	187.043	2	.274	6	.226	4	0	10	0	4	0	15
16			min	-360.912	3	.064	15	065	3	0	4	0	3	0	6
17		9	max	187.178	2	.217	6	.103	4	0	10	0	4	0	15
18			min	-360.81	3	.05	15	065	3	0	4	0	3	0	6
19		10	max	187.313	2	.16	6	.047	1	0	10	0	4	0	15
20			min	-360.709	3	.037	15	065	3	0	4	0	3	0	6
21		11	max	187.448	2	.111	2	.047	1	0	10	0	4	0	15
22			min	-360.608	3	.016	12	16	5	0	4	0	3	0	6
23		12	max	187.583	2	.067	2	.047	1	0	10	0	4	0	15
24			min	-360.507	3	014	3	284	5	0	4	0	3	0	6
25		13	max	187.718	2	.022	2	.047	1	0	10	0	4	0	15
26			min	-360.406	3	048	3	407	5	0	4	0	3	0	6
27		14	max	187.853	2	017	15	.047	1	0	10	0	4	0	15
28			min	-360.305	3	081	3	53	5	0	4	0	3	0	6

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
29		15	max	187.987	2	031	15	.047	1	0	10	0	4	0	15
30			min	-360.204	3	128	4	653	5	0	4	0	3	0	6
31		16	max	188.122	2	044	15	.047	1	0	10	0	4	0	15
32			min	-360.102	3	185	4	776	5	0	4	0	3	0	6
33		17	max	188.257	2	058	15	.047	1	0	10	0	4	0	15
34			min	-360.001	3	243	4	899	5	0	4	0	3	0	6
35		18	max	188.392	2	071	15	.047	1	0	10	0	9	0	15
36			min	-359.9	3	3	4	-1.023	5	0	4	0	3	0	6
37		19	max	188.527	2	085	15	.047	1	0	10	0	9	0	15
38			min	-359.799	3	358	4	-1.146	5	0	4	0	3	0	6
39	M3	1	max	242.628	2	1.734	6	.015	10	0	5	0	4	0	6
40			min	-224.724	3	.407	15	-1.305	4	0	1	0	10	0	15
41		2	max		2	1.558	6	.015	10	0	5	0	1	0	2
42			min	-224.776	3	.365	15	-1.172	4	0	1	0	10	0	3
43		3	max	242.488	2	1.382	6	.015	10	0	5	0	1	0	2
44			min	-224.829	3	.324	15	-1.038	4	0	1	0	5	0	3
45		4	max		2	1.205	6	.015	10	0	5	0	1	0	15
46			min	-224.881	3	.283	15	904	4	0	1	0	5	0	4
47		5	max		2	1.029	6	.015	10	0	5	0	1	0	15
48			min	-224.934	3	.241	15	771	4	0	1	0	5	0	4
49		6	max		2	.852	6	.015	10	0	5	0	1	0	15
50		-	min	-224.986	3	.2	15	637	4	0	1	0	5	0	4
51		7			2	.676		.015	10		5	0	1	0	15
		-	max				6			0	1		5		
52		0	min	-225.039	3	.1 <u>58</u>	15	503	4	0		0		0	4
53		8	max	242.138	2	<u>.5</u> .117	6	.015 37	10	0	5	0	1	0	15
54			min	-225.091	3		15		4	0		0	5	001	4
55		9		242.068	2	.323	6	.015	10	0	5	0	1	0	15
56		40	min	-225.144	3	.075	15	236	4	0	1	0	5	001	4
57		10	max		2	.147	6	.015	10	0	5	0	1	0	15
58		4.4	min	-225.196	3	.034	15	102	4	0	1	0	5	001	4
59		11	max		2	.007	2	.053	5	0	5	0	1	0	15
60		4.0	min	-225.249	3	054	3	072	1	0	1	0	5	001	4
61		12	max		2	049	15	.187	5	0	5	0	1	0	15
62					3	206	4	072	1	0	1	0	5	001	4
63		13	max	241.788	2	091	15	.32	5	0	5	0	1	0	15
64			min	-225.354	3	382	4	072	1	0	1	0	5	001	4
65		14	max		2	132	15	.454	5	0	5	0	1	0	15
66			min	-225.406	3	559	4	072	1	0	1	0	5	001	4
67		15	max		2	174	15	.588	5	0	5	0	9	0	15
68			min	-225.459	3	735	4	072	1	0	1	0	5	0	4
69		16		241.578		215	15		5	0	5	0	9	0	15
70			min	-225.511	3	911	4	072	1	0	1	0	5	0	4
71		17	max	241.508	2	256	15	.855	5	0	5	0	10	0	15
72			min	-225.564	3	-1.088	4	072	1	0	1	0	4	0	4
73		18	max	241.438	2	298	15	.989	5	0	5	0	10	0	15
74			min	-225.616	3	-1.264	4	072	1	0	1	0	4	0	4
75		19	max	241.368	2	339	15	1.122	5	0	5	0	5	0	1
76			min			-1.44	4	072	1	0	1	0	1	0	1
77	M4	1	max		1	0	1	.081	10	0	1	0	5	0	1
78			min	20.317	15	0	1	-12.556	4	0	1	0	2	0	1
79		2	max		1	0	1	.081	10	0	1	0	10	0	1
80			min	20.337	15	0	1	-12.612	4	0	1	001	4	0	1
81		3		204.409	1	0	1	.081	10	0	1	0	10	0	1
82			min	20.356	15	0	1	-12.668	4	0	1	002	4	0	1
83		4	max		1	0	1	.081	10	0	1	0	10	0	1
84		_	min	20.376	15	0	1	-12.724	4	0	1	003	4	0	1
85		5		204.539	1	0	1	.081	10	0	1	0	10	0	1
UU		J	шах	∠∪⊤.∪∪∜		U		.001	IU	U		U	ΙŪ	U	

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC			z-z Mome	. LC
86			min	20.395	15	0	1	-12.78	4	0	1_	005	4	0	1
87		6	max	204.603	1	0	1	.081	10	0	_1_	0	10	0	1
88			min	20.415	15	0	1	-12.836	4	0	1	006	4	0	1
89		7	max	204.668	1	0	1	.081	10	0	1	0	10	0	1
90			min	20.434	15	0	1	-12.892	4	0	1	007	4	0	1
91		8	max	204.733	1	0	1	.081	10	0	1	0	10	0	1
92			min	20.454	15	0	1	-12.948	4	0	1	008	4	0	1
93		9	max	204.797	1	0	1	.081	10	0	1	0	10	0	1
94			min	20.473	15	0	1	-13.004	4	0	1	009	4	0	1
95		10	max	204.862	1	0	1	.081	10	0	1	0	10	0	1
96			min	20.493	15	0	1	-13.06	4	0	1	01	4	0	1
97		11	max	204.927	1	0	1	.081	10	0	1	0	10	0	1
98			min	20.512	15	0	1	-13.117	4	0	1	011	4	0	1
99		12	max	204.992	1	0	1	.081	10	0	1	0	10	0	1
100		12	min	20.532	15	0	1	-13.173	4	0	1	013	4	0	1
101		13	max	205.056	1	0	1	.081	10	0	1	0	10	0	1
102		13	min	20.551	15	0	1	-13.229	4	0	1	014	4	0	1
103		14			1	0	1	.081	10	0	1	0	10	0	1
		14	max				1								_
104		4.5	min	20.571	15	0	•	-13.285	4	0	1_	015	4	0	1
105		15	max	205.186	1	0	1	.081	10	0	1_	0	10	0	1
106		4.0	min	20.59	15	0	1	-13.341	4	0	1_	016	4	0	1
107		16	max	205.25	1	0	1	.081	10	0	1	0	10	0	1
108			min	20.61	15	0	1	-13.397	4	0	1_	017	4	0	1
109		17	max	205.315	1	0	1	.081	10	0	_1_	0	10	0	1
110			min	20.629	15	0	1	-13.453	4	0	1_	019	4	0	1
111		18	max	205.38	1	0	1	.081	10	0	_1_	0	10	0	1
112			min	20.649	15	0	1	-13.509	4	0	1	02	4	0	1
113		19	max	205.445	1	0	1	.081	10	0	<u>1</u>	0	10	0	1
114			min	20.669	15	0	1	-13.565	4	0	1	021	4	0	1
115	M6	1	max	555.046	2	.656	6	1.026	4	0	3	0	3	0	1
116			min	-1008.426	3	.144	15	309	3	0	5	0	1	0	1
117		2	max	555.181	2	.599	6	.902	4	0	3	0	3	0	15
118			min	-1008.325	3	.13	15	309	3	0	5	0	1	0	6
119		3	max	555.316	2	.541	6	.779	4	0	3	0	4	0	15
120			min	-1008.224	3	.117	15	309	3	0	5	0	1	0	6
121		4	max	555.45	2	.484	6	.656	4	0	3	0	4	0	15
122			min	-1008.123	3	.103	15	309	3	0	5	0	1	0	6
123		5	max	555.585	2	.436	2	.533	4	0	3	0	4	0	15
124			min	-1008.022	3	.09	15	309	3	0	5	0	1	0	6
125		6	max	555.72	2	.391	2	.41	4	0	3	0	4	0	15
126				-1007.92		.076	15	309	3	0	5	0	1	0	6
127		7	max		2	.346	2	.287	4	0	3	0	4	0	15
128			min	-1007.819	3	.059	12	309	3	0	5	0	1	0	6
129		8	max		2	.301	2	.163	4	0	3	0	4	0	15
130			min	-1007.718	3	.037	12	309	3	0	5	0	3	0	2
131		9	max	556.125	2	.256	2	.04	4	0	3	0	4	0	15
132			min	-1007.617	3	.01	3	309	3	0	5	0	3	0	2
133		10	max		2	.212	2	.005	9	0	3	0	4	0	15
134		10	min	-1007.516	3	024	3	309	3	0	5	0	3	0	2
135		11		556.395		.167	2	.005	9		3		4		15
		11	max	-1007.415	3	057	3	309	3	0	5	0	3	0	2
136		10	min											_	
137		12	max		2	.122	2	.005	9	0	3	0	4	0	15
138		40	min	-1007.313	3	091	3	332	5	0	5	0	3	0	2
139		13	max		2	.077	2	.005	9	0	3	0	4	0	12
140			min	-1007.212	3	124	3	4 <u>55</u>	5	0	5_	0	3	0	2
141		14	max	556.799	2	.032	2	.005	9	0	3	0	4	0	12
142			min	-1007.111	3	158	3	578	5	0	5	0	3	0	2

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
143		15	max	556.934	2	012	2	.005	9	0	3	0	4	0	12
144			min	-1007.01	3	192	3	701	5	0	5	0	3	0	2
145		16	max	557.069	2	057	2	.005	9	0	3	0	4	0	12
146			min	-1006.909	3	225	3	825	5	0	5	0	3	0	2
147		17	max	557.204	2	073	15	.005	9	0	3	0	4	0	3
148			min	-1006.808	3	265	4	948	5	0	5	0	3	0	2
149		18		557.339	2	086	15	.005	9	0	3	0	9	0	3
150			min	-1006.707	3	322	4	-1.071	5	0	5	0	3	0	2
151		19		557.473	2	1	15	.005	9	0	3	0	9	0	3
152		13	min	-1006.605	3	379	4	-1.194	5	0	5	0	3	0	2
153	M7	1			2	1.76	4	.058	3	0	9	0	4	0	2
	IVI 7		max						-						
154				-582.902	3	.423	15	-1.293	4	0	3	0	3	0	3
155		2	max		2	1.583	4	.058	3	0	9	0	4	0	2
156			min	-582.954	3	.382	15	-1.159	4	0	3	0	3	0	3
157		3	max	689.945	2	1.407	4	.058	3	0	9	0	9	0	2
158			min	-583.007	3	.34	15	-1.026	4	0	3	0	3	0	3
159		4	max	689.875	2	1.231	4	.058	3	0	9	0	9	0	2
160			min	-583.059	3	.299	15	892	4	0	3	0	3	0	3
161		5	max	689.805	2	1.054	4	.058	3	0	9	0	9	0	15
162			min	-583.112	3	.257	15	758	4	0	3	0	5	0	3
163		6	max		2	.878	4	.058	3	0	9	0	9	0	15
164				-583.164	3	.216	15	625	4	0	3	0	5	0	6
165		7	max		2	.702	4	.058	3	0	9	0	9	0	15
166			min	-583.217	3	.174	15	491	4	0	3	0	5	0	6
167		8	max	689.595	2	.525	4	.058	3	0	9	0	9	0	15
168		0	min	-583.269	3	.133	15	357	4	0	3	0	5	001	6
		0							_	_					_
169		9	max		2	.349	4	.058	3	0	9	0	9	0	15
170		40		-583.322	3	.07	12	224	4	0	3	001	5	001	6
171		10	max	689.455	2	.195	2	.058	3	0	9	0	9	0	15
172				-583.374	3	008	3	09	4	0	3	001	5	001	6
173		11	max		2	.058	2	.058	3	0	9	0	9	0	15
174			min	-583.427	3	111	3	002	9	0	3	001	5	001	6
175		12	max	689.315	2	033	15	.178	5	0	9	0	9	0	15
176			min	-583.479	3	214	3	002	9	0	3	001	5	001	6
177		13	max	689.245	2	074	15	.312	5	0	9	0	9	0	15
178			min	-583.532	3	357	6	002	9	0	3	0	5	001	6
179		14	max		2	116	15	.446	5	0	9	0	9	0	15
180				-583.584	3	534	6	002	9	0	3	0	5	001	6
181		15	max	689.105	2	157	15	.579	5	0	9	0	9	0	15
182				-583.637	3	71	6	002	9	0	3	0	5	0	6
183		16		689.035	2	199	15	.713	5	0	9	0	9	0	15
184		10		-583.689	3	887	6	002	9	0	3	0	5	0	6
185		17		688.965	2	24	15	.847	5	0	9	0	9	0	15
		17					6	002	9	0	3	0	5	0	
186		10		-583.742	3	-1.063				-				_	6
187		18		688.895	2	282	15	.98	5	0	9	0	9	0	15
188		40		-583.794	3	-1.239	6	002	9	0	3	0	3	0	6
189		19		688.825	2	323	15	1.114	5	0	9	0	9	0	1
190				-583.847	3_	-1.416	6	002	9	0	3	0	3	0	1
191	M8	1	max	572.567	_1_	0	1	.057	9	0	1	0	4	0	1
192			min	14.904	15	0	1	-12.799	4	0	1	0	3	0	1
193		2	max	572.632	1	0	1	.057	9	0	1	0	9	0	1
194			min	14.924	15	0	1	-12.855	4	0	1	001	4	0	1
195		3	max		1	0	1	.057	9	0	1	0	9	0	1
196			min	14.943	15	0	1	-12.911	4	0	1	002	4	0	1
197		4	max		1	0	1	.057	9	0	1	0	9	0	1
198			min	14.963	15	0	1	-12.967	4	0	1	003	4	0	1
199		5			1	0	1	.057	9	0	1	0	9	0	1
199		_ ວ	max	312.020				.007	_ ฮ	U		U	_ '	U	$\perp \perp \perp$

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
200			min	14.982	15	0	1	-13.023	4	0	1	005	4	0	1
201		6	max	572.891	1	0	1	.057	9	0	1	0	9	0	1
202			min	15.002	15	0	1	-13.079	4	0	1	006	4	0	1
203		7	max	572.956	1	0	1	.057	9	0	1	0	9	0	1
204			min	15.021	15	0	1	-13.135	4	0	1	007	4	0	1
205		8	max	573.02	1	0	1	.057	9	0	1	0	9	0	1
206			min	15.041	15	0	1	-13.191	4	0	1	008	4	0	1
207		9	max	573.085	1	0	1	.057	9	0	1	0	9	0	1
208			min	15.06	15	0	1	-13.247	4	0	1	009	4	0	1
209		10	max	573.15	1	0	1	.057	9	0	1	0	9	0	1
210			min	15.08	15	0	1	-13.303	4	0	1	01	4	0	1
211		11	max	573.215	1	0	1	.057	9	0	1	0	9	0	1
212			min	15.099	15	0	1	-13.359	4	0	1	012	4	0	1
213		12	max	573.279	1	0	1	.057	9	0	1	0	9	0	1
214			min	15.119	15	0	1	-13.416	4	0	1	013	4	0	1
215		13	max	573.344	1	0	1	.057	9	0	1	0	9	0	1
216			min	15.138	15	0	1	-13.472	4	0	1	014	4	0	1
217		14	max	573.409	1	0	1	.057	9	0	1	0	9	0	1
218			min	15.158	15	0	1	-13.528	4	0	1	015	4	0	1
219		15	max	573.473	1	0	1	.057	9	0	1	0	9	0	1
220			min	15.177	15	0	1	-13.584	4	0	1	017	4	0	1
221		16	max	573.538	1	0	1	.057	9	0	1	0	9	0	1
222			min	15.197	15	0	1	-13.64	4	0	1	018	4	0	1
223		17	max	573.603	1	0	1	.057	9	0	1	0	9	0	1
224			min	15.216	15	0	1	-13.696	4	0	1	019	4	0	1
225		18	max	573.667	1	0	1	.057	9	0	1	0	9	0	1
226			min	15.236	15	0	1	-13.752	4	0	1	02	4	0	1
227		19	max		1	0	1	.057	9	0	1	0	9	0	1
228			min	15.255	15	0	1	-13.808	4	0	1	021	4	0	1
229	M10	1	max	187.236	2	.714	4	1.116	5	0	1	0	9	0	1
230			min	-245.321	3	.183	15	047	1	0	5	0	3	0	1
231		2	max		2	.657	4	.992	5	0	1	0	4	0	15
232			min	-245.22	3	.17	15	047	1	0	5	0	3	0	4
233		3	max	187.506	2	.599	4	.869	5	0	1	0	4	0	15
234						.599								0	101
					3			047	1	0	5	0		0	4
235		4	min max	-245.119	3	.156	15 4	047 .746	1		<u>5</u> 1		3		4
235			min max	<u>-245.119</u> 187.641	2	.156 .542	15 4	.746		0	1	0	3 4	0	
236			min	-245.119 187.641 -245.018		.156 .542 .143	15	.746 047	5	0		0	3	0	4 15 4
236 237		4	min max min	-245.119 187.641 -245.018 187.776	3	.156 .542 .143 .484	15 4 15	.746 047 .623	1 5 1	0 0 0	1 5 1	0 0	3 4 3	0 0 0	4 15
236		4	min max min max	-245.119 187.641 -245.018 187.776 -244.916	2 3 2	.156 .542 .143	15 4 15 4 15 4	.746 047	1 5 1 5	0 0 0	1 5	0 0 0 0	3 4 3 4	0 0 0 0	4 15 4 15 4
236 237 238 239		5	min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91	2 3 2 3 2	.156 .542 .143 .484 .129	15 4 15 4 15 4	.746 047 .623 047	1 5 1 5	0 0 0 0	1 5 1 5	0 0 0 0 0	3 4 3 4 3	0 0 0 0	4 15 4 15
236 237 238 239 240		5	min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815	2 3 2 3 2	.156 .542 .143 .484 .129 .427 .116	15 4 15 4 15	.746 047 .623 047 .5 047	1 5 1 5 1 5	0 0 0 0 0	1 5 1 5	0 0 0 0	3 4 3 4 3 4	0 0 0 0 0	4 15 4 15 4 15 4
236 237 238 239		5 6	min max min max min max min	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815	2 3 2 3 2 3 2	.156 .542 .143 .484 .129 .427	15 4 15 4 15 4 15	.746 047 .623 047	1 5 1 5 1 5	0 0 0 0 0 0	1 5 1 5 1 5	0 0 0 0 0 0	3 4 3 4 3 4 3	0 0 0 0 0 0	15 4 15 4 15 4
236 237 238 239 240 241 242		5 6	min max min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714	2 3 2 3 2 3 2	.156 .542 .143 .484 .129 .427 .116 .369 .102	15 4 15 4 15 4 15 4	.746 047 .623 047 .5 047 .377 047	1 5 1 5 1 5 1 5	0 0 0 0 0 0 0	1 5 1 5 1 5	0 0 0 0 0 0 0	3 4 3 4 3 4	0 0 0 0 0 0 0 0	4 15 4 15 4 15 4 15 4
236 237 238 239 240 241 242 243		5 6 7	min max min max min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714 188.18	2 3 2 3 2 3 2 3	.156 .542 .143 .484 .129 .427 .116 .369 .102 .312	15 4 15 4 15 4 15 4 15	.746 047 .623 047 .5 047 .377 047 .253	1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0	1 5 1 5 1 5 1	0 0 0 0 0 0 0 0	3 4 3 4 3 4 3 4	0 0 0 0 0 0 0	4 15 4 15 4 15 4 15
236 237 238 239 240 241 242 243 244		5 6 7	min max min max min max min max min	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714 188.18 -244.613	2 3 2 3 2 3 2 3 2 3	.156 .542 .143 .484 .129 .427 .116 .369 .102 .312 .085	15 4 15 4 15 4 15 4 15 4	.746 047 .623 047 .5 047 .377 047	1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0	1 5 1 5 1 5 1	0 0 0 0 0 0 0 0 0	3 4 3 4 3 4 3 4 3 4 3	0 0 0 0 0 0 0 0 0	15 4 15 4 15 4 15 4 15 4
236 237 238 239 240 241 242 243 244 245		5 6 7 8	min max min max min max min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714 188.18 -244.613 188.315	2 3 2 3 2 3 2 3 2 3 2	.156 .542 .143 .484 .129 .427 .116 .369 .102 .312 .085 .254	15 4 15 4 15 4 15 4 15 4 12 4	.746 047 .623 047 .5 047 .377 047 .253 047 .13	1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0	1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0	3 4 3 4 3 4 3 4 3 5	0 0 0 0 0 0 0 0 0 0	4 15 4 15 4 15 4 15 4 15
236 237 238 239 240 241 242 243 244 245 246		5 6 7 8	min max min max min max min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714 188.18 -244.613 188.315 -244.512	2 3 2 3 2 3 2 3 2 3 2 3 2	.156 .542 .143 .484 .129 .427 .116 .369 .102 .312 .085 .254	15 4 15 4 15 4 15 4 15 4 12 4	.746 047 .623 047 .5 047 .377 047 .253 047 .13	1 5 1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0	1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0	3 4 3 4 3 4 3 4 3 5 3	0 0 0 0 0 0 0 0 0 0 0	4 15 4 15 4 15 4 15 4 15 4 15 4
236 237 238 239 240 241 242 243 244 245 246 247		4 5 6 7 8	min max min max min max min max min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714 188.18 -244.613 188.315 -244.512 188.45	2 3 2 3 2 3 2 3 2 3 2 3 2	.156 .542 .143 .484 .129 .427 .116 .369 .102 .312 .085 .254 .063 .197	15 4 15 4 15 4 15 4 15 4 12 4	.746 047 .623 047 .5 047 .377 047 .253 047 .13 047	1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0 0	1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0 0	3 4 3 4 3 4 3 4 3 5 5	0 0 0 0 0 0 0 0 0 0 0 0	4 15 4 15 4 15 4 15 4 15 4 15 4 15 4
236 237 238 239 240 241 242 243 244 245 246 247 248		4 5 6 7 8 9	min max min max min max min max min max min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714 188.18 -244.613 188.315 -244.512 188.45 -244.411	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	.156 .542 .143 .484 .129 .427 .116 .369 .102 .312 .085 .254 .063 .197	15 4 15 4 15 4 15 4 15 4 12 4 12 4	.746 047 .623 047 .5 047 .377 047 .253 047 .13 047 .008 047	1 5 1 5 1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0 0 0	1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 3 4 3 4 3 4 3 5 3 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 15 4 15 4 15 4 15 4 15 4 15 4 15 4
236 237 238 239 240 241 242 243 244 245 246 247 248 249		4 5 6 7 8	min max min max min max min max min max min max min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714 188.18 -244.613 188.315 -244.512 188.45 -244.411 188.585	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	.156 .542 .143 .484 .129 .427 .116 .369 .102 .312 .085 .254 .063 .197 .04	15 4 15 4 15 4 15 4 15 4 12 4 12 4 12 4	.746047 .623047 .5047 .377047 .253047 .13047 .008047	1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 3 4 3 4 3 4 3 5 3 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 15 4 15 4 15 4 15 4 15 4 15 4 15 4 15
236 237 238 239 240 241 242 243 244 245 246 247 248 249		4 5 6 7 8 9	min max min max min max min max min max min max min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714 188.18 -244.613 188.315 -244.512 188.45 -244.411 188.585 -244.31	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	.156 .542 .143 .484 .129 .427 .116 .369 .102 .312 .085 .254 .063 .197 .04 .139 .018	15 4 15 4 15 4 15 4 15 4 12 4 12 4 12 4	.746047 .623047 .5047 .377047 .253047 .13047 .008047	1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 3 4 3 4 3 4 3 5 5 3 5 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 15 4 15 4 15 4 15 4 15 4 15 4 15 4 15
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251		4 5 6 7 8 9	min max min max min max min max min max min max min max min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714 188.18 -244.613 188.315 -244.512 188.45 -244.411 188.585 -244.31 188.72	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	.156 .542 .143 .484 .129 .427 .116 .369 .102 .312 .085 .254 .063 .197 .04 .139 .018	15 4 15 4 15 4 15 4 12 4 12 4 12 4 12 4	.746047 .623047 .5047 .377047 .253047 .13047 .008047 .008128 .008	1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 3 4 3 4 3 4 3 5 5 3 5 3 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 15 4 15 4 15 4 15 4 15 4 15 4 15 4 15
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251		4 5 6 7 8 9 10	min max min max min max min max min max min max min max min max min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714 188.18 -244.613 188.315 -244.512 188.45 -244.411 188.585 -244.31 188.72 -244.208	2 3 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 3 2 2 3 3 2 2 3 3 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 3 2 3	.156 .542 .143 .484 .129 .427 .116 .369 .102 .312 .085 .254 .063 .197 .04 .139 .018 .082 01	15 4 15 4 15 4 15 4 12 4 12 4 12 4 12 4	.746047 .623047 .5047 .377047 .253047 .13047 .008047 .008128 .008252	1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 5 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 3 4 3 4 3 4 3 5 3 5 3 5 3 5 3 5 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 15 4 15 4 15 4 15 4 15 4 15 4 15 4 15
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252		4 5 6 7 8 9	min max min max min max min max min max min max min max min max min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714 188.18 -244.613 188.315 -244.512 188.45 -244.411 188.585 -244.31 188.72 -244.208 188.854	2 3 2 3 2 2 2 2 3 2	.156 .542 .143 .484 .129 .427 .116 .369 .102 .312 .085 .254 .063 .197 .04 .139 .018 .082 01	15 4 15 4 15 4 15 4 12 4 12 4 12 4 12 4	.746047 .623047 .5047 .377047 .253047 .13047 .008047 .008128 .008252 .008	1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 5 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 3 4 3 4 3 4 3 5 3 5 3 5 3 5 3 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 15 4 15 4 15 4 15 4 15 4 15 4 15 4 15
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254		4 5 6 7 8 9 10 11 12	min max min max min max min max min max min max min max min max min max min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714 188.18 -244.613 188.315 -244.512 188.45 -244.411 188.585 -244.31 188.72 -244.208 188.854 -244.107	2 3 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 3 2 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 3 2 3	.156 .542 .143 .484 .129 .427 .116 .369 .102 .312 .085 .254 .063 .197 .04 .139 .018 .082 01	15 4 15 4 15 4 15 4 12 4 12 4 12 4 12 4	.746047 .623047 .5047 .377047 .253047 .13047 .008047 .008128 .008252 .008375	1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 5 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 3 4 3 4 3 4 3 5 3 5 3 5 3 5 3 5 3 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 15 4 15 4 15 4 15 4 15 4 15 4 15 4 15
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252		4 5 6 7 8 9 10	min max min max min max min max min max min max min max min max min max min max min max min max	-245.119 187.641 -245.018 187.776 -244.916 187.91 -244.815 188.045 -244.714 188.18 -244.613 188.315 -244.512 188.45 -244.411 188.585 -244.31 188.72 -244.208 188.854 -244.107	2 3 2 3 2 2 2 2 3 2	.156 .542 .143 .484 .129 .427 .116 .369 .102 .312 .085 .254 .063 .197 .04 .139 .018 .082 01	15 4 15 4 15 4 15 4 12 4 12 4 12 4 12 4	.746047 .623047 .5047 .377047 .253047 .13047 .008047 .008128 .008252 .008	1 5 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 5 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 3 4 3 4 3 4 3 5 3 5 3 5 3 5 3 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 15 4 15 4 15 4 15 4 15 4 15 4 15 4 15

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC y	y-y Mome	LC	z-z Mome	. LC
257		15	max	189.124	2	006	15	.008	10	0	1	0	5	0	12
258			min	-243.905	3	111	3	621	4	0	5	0	3	0	4
259		16	max	189.259	2	019	15	.008	10	0	1	0	5	0	12
260			min	-243.804	3	15	6	744	4	0	5	0	3	0	4
261		17	max	189.394	2	033	15	.008	10	0	1	0	5	0	12
262			min	-243.703	3	207	6	867	4	0	5	0	3	0	4
263		18	max	189.529	2	046	15	.008	10	0	1	0	5	0	12
264			min	-243.602	3	265	6	99	4	0	5	0	3	0	4
265		19	max	189.664	2	06	15	.008	10	0	1	0	10	0	12
266			min	-243.5	3	322	6	-1.114	4	0	5	0	3	0	4
267	M11	1	max	242.227	2	1.719	6	.072	1	0	4	0	3	0	2
268			min	-225.91	3	.396	15	-1.268	5	0	10	0	1	0	15
269		2	max	242.157	2	1.543	6	.072	1	0	4	0	3	0	2
270			min	-225.963	3	.355	15	-1.134	5	0	10	0	1	0	15
271		3	max	242.087	2	1.366	6	.072	1	0	4	0	3	0	2
272			min	-226.015	3	.313	15	-1	5	0	10	0	1	0	3
273		4	max	242.017	2	1.19	6	.072	1	0	4	0	3	0	15
274			min	-226.068	3	.272	15	867	5	0	10	0	4	0	4
275		5	max	241.947	2	1.014	6	.072	1	0	4	0	3	0	15
276			min	-226.12	3	.23	15	733	5	0	10	0	4	0	4
277		6	max	241.877	2	.837	6	.072	1	0	4	0	3	0	15
278			min	-226.173	3	.189	15	599	5	0	10	0	4	0	4
279		7	max	241.807	2	.661	6	.072	1	0	4	0	3	0	15
280			min	-226.225	3	.147	15	466	5	0	10	0	4	001	4
281		8	max	241.737	2	.484	6	.072	1	0	4	0	3	0	15
282			min	-226.278	3	.106	15	332	5	0	10	0	4	001	4
283		9	max	241.667	2	.308	6	.072	1	0	4	0	3	0	15
284		l –	min	-226.33	3	.064	15	198	5	0	10	0	4	001	4
285		10	max	241.597	2	.144	2	.072	1	0	4	0	3	0	15
286		10	min	-226.383	3	.023	15	072	3	0	10	0	4	001	4
287		11	max	241.527	2	.007	2	.091	4	0	4	0	3	0	15
288		- ' '	min	-226.435	3	048	3	072	3	0	10	0	4	001	4
289		12	max	241.457	2	06	15	.224	4	0	4	0	3	0	15
290		12	min	-226.488	3	222	4	072	3	0	10	0	4	001	4
291		13	max	241.387	2	101	15	.358	4	0	4	0	3	0	15
292		13	min	-226.54	3	398	4	072	3	0	10	0	4	001	4
293		14	max		2	143	15	.492	4	0	4	0	3	0	15
294		14	min	-226.593	3	575	4	072	3	0	10	0	4	001	4
295		15	max	241.247	2	184	15	.625	4	0	4	0	3	0	15
296		13	min	-226.645	3	751	4	072	3	0	10	0	4	0	4
297		16		241.177		226	15		4	0	4	0	3	0	15
298		10			3	927	4	072	3	0	10	0	5	0	4
299		17		241.107	2	267	15	.893	4	0	4	0	3	0	15
300		17	min	-226.75	3	-1.104	4	072	3	0	10	0	5	0	4
301		18		241.037	2	309	15	1.026	4	0	4	0	3	0	15
302		10		-226.803	3	-1.28	4	072	3	0	10	0	10	0	4
303		19					15	1.16	4	-	4		4		1
		19		240.967	2	35				0		0		0	
304	M40	4	min		3_	-1.456	4	072	3	0	10	0	10	0	1
305	M12	1	max	204.68	1	0	1	.439	3	0	1	0	4	0	1
306		0	min	-1.548	5_1	0	1	-11.816	5	0	1	0	3	0	1
307		2	max	204.745	_1_	0	1	.439	3	0	1	0	1	0	1
308			min	-1.517	5_	0	1	-11.872	5	0	1	001	5	0	1
309		3	max		_1_	0	1	.439	3	0	1	0	3	0	1
310			min	-1.487	5	0	1	-11.928	5	0	1	002	5	0	1
311		4	max		_1_	0	1	.439	3	0	1	0	3	0	1
312		_	min	-1.457	5	0	1	-11.985	5	0	1	003	5	0	1
313		5	max	204.939	_1_	0	1	.439	3	0	1	0	3	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
314			min	-1.427	5	0	1	-12.041	5	0	1	004	5	0	1
315		6	max	205.004	1	0	1	.439	3	0	1	0	3	0	1
316			min	-1.397	5	0	1	-12.097	5	0	1	005	5	0	1
317		7	max	205.068	1	0	1	.439	3	0	1	0	3	0	1
318			min	-1.366	5	0	1	-12.153	5	0	1	006	5	0	1
319		8	max	205.133	1	0	1	.439	3	0	1	0	3	0	1
320			min	-1.336	5	0	1	-12.209	5	0	1	008	5	0	1
321		9	max	205.198	1	0	1	.439	3	0	1	0	3	0	1
322			min	-1.306	5	0	1	-12.265	5	0	1	009	5	0	1
323		10	max	205.262	1	0	1	.439	3	0	1	0	3	0	1
324			min	-1.276	5	0	1	-12.321	5	0	1	01	5	0	1
325		11	max	205.327	1	0	1	.439	3	0	1	0	3	0	1
326			min	-1.246	5	0	1	-12.377	5	0	1	011	5	0	1
327		12	max	205.392	1	0	1	.439	3	0	1	0	3	0	1
328			min	-1.216	5	0	1	-12.433	5	0	1	012	5	0	1
329		13	max	205.457	1	0	1	.439	3	0	1	0	3	0	1
330			min	-1.185	5	0	1	-12.489	5	0	1	013	5	0	1
331		14	max		1	0	1	.439	3	0	1	0	3	0	1
332			min	-1.155	5	0	1	-12.545	5	0	1	014	5	0	1
333		15	max	205.586	1	0	1	.439	3	0	1	0	3	0	1
334			min	-1.125	5	Ö	1	-12.601	5	Ö	1	015	5	0	1
335		16	max	205.651	1	0	1	.439	3	0	1	0	3	0	1
336		- 10	min	-1.095	5	0	1	-12.658	5	0	1	016	5	0	1
337		17	max	205.715	1	0	1	.439	3	0	1	0	3	0	1
338		- 17	min	-1.065	5	0	1	-12.714	5	0	1	018	5	0	1
339		18	max	205.78	1	0	1	.439	3	0	1	0	3	0	1
340		10	min	-1.037	15	0	1	-12.77	5	0	1	019	5	0	1
341		19	max	205.845	1	0	1	.439	3	0	1	0	3	0	1
342		19	min	-1.017	15	0	1	-12.826	5	0	1	02	5	0	1
343	M1	1	max	60.126	1	339.475	3	2.009	10	0	2	.025	4	0	2
344	IVI I		min	3.152	10	-208.707	2	-14.369	4	0	3	004	10	0	3
345		2	max	60.287	1	339.304	3	2.009	10	0	2	.022	4	.046	2
346			min	3.285	10	-208.936	2	-14.127	4	0	3	004	10	074	3
347		3	max	120.144	3	4.364	4	2.001	10	0	10	.018	4	.09	2
348		3	min	-33.879	2	-30.634	2	-12.797	4	0	1	003	10	146	3
349		4	max	120.264	3	4.071	4	2.001	10	0	10	.015	4	.097	2
350		4	min	-33.719	2	-30.863	2	-12.555	4	0	1	003	10	145	3
351		5		120.384	3	3.777	4	2.001	10	0	10	.013	4	.104	2
352		- O	max	-33.559	2	-31.091	2	-12.313	4	0	1	002	10	143	3
353		6		120.504	3	3.484	4	2.001	10	0	10	002 .01	4	143 .11	2
354		0	max	-33.399		-31.32		-12.071		0	1	002	10		3
355		7		120.624	3	3.19	4	2.001		0	10	.002	4		2
356				-33.239	2	-31.549	2	-11.829	10 4	0	1	001	10	.117	3
		0		120.744									_	14	
357		8			3	2.897	4	2.001	10	0	10	.005	3	.124	2
358		0	min	-33.078	2	-31.777 2.659	2	<u>-11.587</u> 2.001	4	0		<u> </u>	10	138	2
359		9		120.864	3		14		10		10		3	.131	
360		40	min	-32.918	2	-32.006	2	-11.345	4	0	1	0	10	136	3
361		10	max		3	2.434	14	2.001	10	0	10	.002	3	.138	2
362		4.4		-32.758	2	-32.235	2	-11.103	4	0	1	0	2	134	3
363		11	max	121.105	3	2.21	14	2.001	10	0	10	0	3	.145	2
364		40		-32.598	2	-32.464	2	-10.861	4	0	1	002	4	132	3
365		12		121.225	3	1.985	14	2.001	10	0	10	0	10	.152	2
366		4 -		-32.438	2	-32.692	2	-10.619	4	0	1	005	4	13	3
367		13		121.345	3	1.76	14	2.001	10	0	10	.001	10	.159	2
368			min	-32.278	2	-32.921	2	-10.377	4	0	1	007	4	128	3
369 370		14	max	121.465 -32.117	3	1.535 -33.15	14 2	2.001 -10.159	10 14	0	10	.002 009	10	.166 126	3

Model Name

Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
371		15	max	121.585	3	1.311	14	2.001	10	0	10	.002	10	.174	2
372			min	-31.957	2	-33.379	2	-10.037	14	0	1	011	4	124	3
373		16	max	82.473	2	179.29	2	2.014	10	0	1	.003	10	.179	2
374			min	2.557	15	-209.264	3	-9.731	1	0	5	013	4	121	3
375		17	max	82.633	2	179.061	2	2.014	10	0	1	.003	10	.14	2
376			min	2.605	15	-209.436	3	-9.731	1	0	5	015	14	075	3
377		18	max	-3.311	10	323.287	2	2.095	10	0	5	.003	10	.071	2
378			min	-60.284	1	-172.366	3	-20.469	4	0	2	02	4	038	3
379		19	max	-3.177	10	323.058	2	2.095	10	0	5	.004	10	0	2
380			min	-60.124	1	-172.538	3	-20.227	4	0	2	024	4	0	3
381	M5	1	max	162.09	1	1043.292	3	0	1	0	9	.025	4	0	3
382			min	-12.624	3	-625.274	2	-96.842	3	0	3	0	11	0	2
383		2	max	162.25	1	1043.121	3	0	1	0	9	.022	4	.135	2
384			min	-12.504	3	-625.503	2	-96.842	3	0	3	006	3	226	3
385		3	max	309.829	3	4.209	9	10.235	3	0	3	.018	4	.269	2
386		-	min	-77.412	2	-94.084	2	-14.167	4	0	4	026	3	447	3
387		4		309.949	3	4.018	9	10.235	3	0	3	.015	4	.289	2
388		4	max	-77.252	2	-94.313	2	-13.925	4	0	4	023	3	439	3
		5	min						3	-		.012	_		2
389		5	max	310.069	3	3.828	9	10.235		0	3		4	.309	
390			min	-77.091	2	-94.541	2	-13.683	4	0	4	021	3	431	3
391		6	max	310.189	3	3.637	9	10.235	3	0	3	.009	4	.33	2
392		_	min	-76.931	2	-94.77	2	-13.441	4	0	4	019	3	423	3
393		7	max	310.31	3	3.446	9	10.235	3	0	3	.006	4	.351	2
394			min	-76.771	2	-94.999	2	-13.199	4	0	4	017	3	415	3
395		8	max	310.43	3	3.256	9	10.235	3	0	3	.003	4	.371	2
396			min	-76.611	2	-95.227	2	-12.957	4	0	4	015	3	407	3
397		9	max	310.55	3	3.065	9	10.235	3	0	3	0	4	.392	2
398			min	-76.451	2	-95.456	2	-12.715	4	0	4	012	3	399	3
399		10	max	310.67	3	2.875	9	10.235	3	0	3	0	1	.413	2
400			min	-76.291	2	-95.685	2	-12.473	4	0	4	01	3	391	3
401		11	max	310.79	3	2.684	9	10.235	3	0	3	0	1	.433	2
402			min	-76.13	2	-95.914	2	-12.231	4	0	4	008	3	383	3
403		12	max	310.91	3	2.493	9	10.235	3	0	3	0	1	.454	2
404			min	-75.97	2	-96.142	2	-11.989	4	0	4	008	4	375	3
405		13	max	311.03	3	2.303	9	10.235	3	0	3	0	1	.475	2
406			min	-75.81	2	-96.371	2	-11.747	4	0	4	01	4	367	3
407		14	max	311.15	3	2.112	9	10.235	3	0	3	0	1	.496	2
408			min	-75.65	2	-96.6	2	-11.505	4	0	4	013	4	359	3
409		15	max	311.271	3	1.921	9	10.235	3	0	3	0	3	.517	2
410			min	-75.49	2	-96.829	2	-11.263	4	0	4	015	4	351	3
411		16		248.701	2	513.413	2	10.222	3	0	3	.003	3	.533	2
412			min	-1.032	5	-554.477	3	-9.913	4	0	4	018	4	338	3
413		17	max		2	513.184	2	10.222	3	0	3	.005	3	.421	2
414			min	957	5	-554.648		-9.671	4	0	4	02	4	218	3
415		18		1.725	3	977.61	2	9.355	3	0	4	.007	3	.211	2
416				-162.254	1	-502.539	3	-22.03	5	0	9	025	4	108	3
417		19	max	1.845	3	977.381	2	9.355	3	0	4	.009	3	0	3
418			min	-162.094	1	-502.71	3	-21.788	5	0	9	029	4	0	2
419	M9	1	max	60.126	1	339.338	3	103.15	3	0	3	.004	10	0	2
420	IVIO		min	.986	15	-208.707	2	-2.008	10	0	2	027	3	0	3
421		2			1	339.166	3	103.15	3	0	3	.019	5	.046	2
422			max	1.034				-2.008	10		2	017	1	074	3
		2	min		15	-208.936	2			0			5		
423		3	max		3	3.486	9	9.668	1	0	1	.038		.09	2
424		A	min	-33.461	2	-30.607	2	-18.041	5	0	5	015	1	146	3
425		4		119.387	3	3.296	9	9.668	1	0	1	.034	5	.097	2
426		_	min	-33.301	2	-30.836	2	-17.799	5	0	5	013	1	144	3
427		5	max	119.507	3	3.105	9	9.668	_ 1	0	_1_	.03	5	.104	2

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
428			min	-33.141	2	-31.065	2	-17.557	5	0	5	011	1	143	3
429		6	max	119.627	3	2.914	9	9.668	1	0	1_	.026	5	.11	2
430			min	-32.981	2	-31.293	2	-17.315	5	0	5	008	1	141	3
431		7	max	119.747	3	2.724	9	9.668	1	0	1_	.022	5	.117	2
432			min	-32.821	2	-31.522	2	-17.073	5	0	5	006	1	139	3
433		8	max	119.867	3	2.533	9	9.668	1	0	1_	.019	5	.124	2
434			min	-32.66	2	-31.751	2	-16.831	5	0	5	004	1	138	3
435		9	max	119.987	3	2.343	9	9.668	1	0	1_	.015	5	.131	2
436			min	-32.5	2	-31.98	2	-16.589	5	0	5	002	1	136	3
437		10	max	120.108	3	2.152	9	9.668	1	0	1_	.013	3	.138	2
438			min	-32.34	2	-32.208	2	-16.347	5	0	5	0	1	134	3
439		11	max	120.228	3	1.961	9	9.668	1	0	1_	.012	3	.145	2
440			min	-32.18	2	-32.437	2	-16.105	5	0	5	0	10	132	3
441		12	max	120.348	3	1.771	9	9.668	1	0	1	.012	3	.152	2
442			min	-32.02	2	-32.666	2	-15.863	5	0	5	0	10	13	3
443		13	max	120.468	3	1.58	9	9.668	1	0	1_	.011	3	.159	2
444			min	-31.86	2	-32.895	2	-15.621	5	0	5	001	10	129	3
445		14	max	120.588	3	1.389	9	9.668	1	0	1_	.011	3	.166	2
446			min	-31.699	2	-33.123	2	-15.379	5	0	5	002	5	127	3
447		15	max	120.708	3	1.199	9	9.668	1	0	1_	.01	1	.173	2
448			min	-31.539	2	-33.352	2	-15.137	5	0	5	006	5	125	3
449		16	max	82.702	2	178.963	2	9.731	1	0	10	.013	1	.179	2
450			min	4.501	15	-210.148	3	-13.755	5	0	4	008	5	121	3
451		17	max	82.862	2	178.734	2	9.731	1	0	10	.015	1	.14	2
452			min	4.549	15	-210.319	3	-13.513	5	0	4	011	5	075	3
453		18	max	7.822	5	323.287	2	10.098	1	0	2	.017	1	.071	2
454			min	-60.284	1	-172.348	3	-25.09	5	0	3	017	5	038	3
455		19	max	7.897	5	323.058	2	10.098	1	0	2	.019	1	0	2
456			min	-60.124	1	-172.52	3	-24.848	5	0	3	022	5	0	3
457	M13	1	max	103.14	3	208.647	2	986	15	0	2	.027	3	0	2
458			min	-2.009	10	-339.42	3	-60.123	1	0	3	004	10	0	3
459		2	max	103.14	3	150.769	2	277	15	0	2	.021	3	.105	3
460			min	-2.009	10	-243.746	3	-44.438	1	0	3	007	2	065	2
461		3	max	103.14	3	92.891	2	.76	10	0	2	.017	3	.176	3
462			min	-2.009	10	-148.073	3	-28.752	1	0	3	013	1	109	2
463		4	max	103.14	3	35.013	2	2.716	10	0	2	.012	3	.212	3
464			min	-2.009	10	-52.399	3	-13.066	1	0	3	021	1	132	2
465		5	max	103.14	3	43.275	3	7.5	2	0	2	.008	3	.214	3
466			min	-2.009	10	-22.865	2	-10.917	3	0	3	022	1	134	2
467		6	max	103.14	3	138.949	3	18.305	1	0	2	.004	3	.181	3
468			min	-2.009	10	-80.742	2	-9.886	3	0	3	019	1	115	2
469		7	max	103.14	3	234.623	3	33.991	1	0	2	.005	5	.114	3
470			min	-2.009	10	-138.62	2	-8.856	3	0	3	009	1	076	2
471		8	max	103.14	3	330.296	3	49.677	1	0	2	.009	2	.012	3
472			min	-2.009	10	-196.498	2	-7.826	3	0	3	002	3	015	2
473		9	max		3	425.97	3	65.362	1	0	2	.027	1_	.066	2
474			min	-2.009	10	-254.376		-6.795	3	0	3	005	3	125	3
475		10	max	103.14	3	-5.635	15	81.048	1	0	2	.053	1	.168	2
476			min	-2.009	10	-521.644	3	3.81	12	0	3	022	3	296	3
477		11	max	42.728	4	254.376	2	7.938	3	0	3	.027	1	.066	2
478			min	-2.009	10	-425.97	3	-65.362	1	0	2	02	3	125	3
479		12	max		4	196.498	2	8.969	3	0	3	.009	2	.012	3
480			min	-2.009	10	-330.296	3	-49.676	1	0	2	017	3	015	2
481		13	max	35.635	4	138.62	2	9.999	3	0	3	.002	10	.114	3
482			min	-2.009	10	-234.622	3	-33.991	1	0	2	013	3	076	2
483		14	max	32.088	4	80.742	2	11.029	3	0	3	0	10	.181	3
484			min	-2.009	10	-138.949	3	-18.305	1	0	2	019	1	115	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]		y-y Mome	LC	z-z Mome	LC
485		15	max	28.541	4	22.865	2	12.06	3	0	3	0	5	.214	3
486			min	-2.009	10	-43.275	3	-7.5	2	0	2	022	1	134	2
487		16	max	24.994	4	52.399	3	15.576	4	0	3	.005	5	.212	3
488			min	-2.009	10	-35.013	2	-2.716	10	0	2	021	1	132	2
489		17	max	21.448	4	148.073	3	28.752	1	0	3	.009	5	.176	3
490			min	-2.009	10	-92.891	2	76	10	0	2	013	1	109	2
491		18	max	17.901	4	243.746	3	44.438	1	0	3	.015	4	.105	3
492			min	-2.009	10	-150.769	2	1.196	10	0	2	007	2	065	2
493		19	max	14.354	4	339.42	3	60.124	1	0	3	.025	4	0	2
494			min	-2.009	10	-208.647	2	3.152	10	0	2	004	10	0	3
495	M16	1	max	24.84	5	323.139	2	7.897	5	0	3	.019	1	0	2
496			min	-10.084	1	-172.56	3	-60.127	1	0	2	022	5	0	3
497		2	max	21.294	5	232.879	2	8.992	5	0	3	.004	3	.054	3
498			min	-10.084	1	-125.459	3	-44.442	1	0	2	019	5	1	2
499		3	max	17.747	5	142.62	2	10.088	5	0	3	0	3	.091	3
500			min	-10.084	1	-78.358	3	-28.756	1	0	2	018	4	168	2
501		4	max	14.2	5	52.36	2	11.183	5	0	3	001	12	.11	3
502			min	-10.084	1	-31.257	3	-13.07	1	0	2	021	1	203	2
503		5	max	10.654	5	15.844	3	12.278	5	0	3	003	10	.113	3
504			min	-10.084	1	-37.9	2	-7.11	3	0	2	022	1	206	2
505		6	max	7.107	5	62.945	3	18.301	1	0	3	0	10	.099	3
506			min	-10.084	1	-128.16	2	-6.079	3	0	2	019	1	176	2
507		7	max	3.56	5	110.046	3	33.987	1	0	3	.002	5	.068	3
508			min	-10.084	1	-218.419	2	-5.049	3	0	2	009	3	113	2
509		8	max	2.362	3	157.147	3	49.673	1	0	3	.009	2	.019	3
510			min	-10.084	1	-308.679	2	-4.018	3	0	2	011	3	018	2
511		9	max	2.362	3	204.248	3	65.359	1	0	3	.027	1	.109	2
512		ľ	min	-10.084	1	-398.939	2	-2.988	3	0	2	012	3	046	3
513		10	max	14.714	5	251.349	3	81.044	1	0	14	.053	1	.27	2
514		10	min	-10.28	14	-489.198	2	-1.958	3	0	2	013	3	128	3
515		11	max	11.167	5	398.939	2	4.717	5	0	2	.027	1	.109	2
516			min	-10.084	1	-204.248	3	-65.358	1	0	3	008	5	046	3
517		12	max	7.62	5	308.679	2	5.812	5	0	2	.009	2	.019	3
518		12	min	-10.084	1	-157.147	3	-49.673	1	0	3	006	5	018	2
519		13	max	4.073	5	218.419	2	6.908	5	0	2	.002	10	.068	3
520		13	min	-10.084	1	-110.046	3	-33.987	1	0	3	009	1	113	2
521		14	max	2.095	10	128.16	2	8.003	5	0	2	0	15	.099	3
522		17	min	-10.084	1	-62.945	3	-18.301	1	0	3	019	1	176	2
523		15	max	2.095	10	37.9	2	9.467	4	0	2	.002	5	.113	3
524		13	min	-10.084	1	-15.844	3	-7.464	2	0	3	022	1	206	2
525		16	max		10		3	14.147	4	0	2	.005	5	.11	3
526		10	min	-10.084	1	-52.36	2	-2.691	10	0	3	021	1	203	2
527		17	max	2.095	10	78.358	3	28.756	1	0	2	.009	5	.091	3
528		17	min	-13.15	4	-142.62	2	735	10	0	3	013	1	168	2
529		18	max	2.095	10	125.46	3	44.442	1	0	2	.015	4	.054	3
530		10	min	-16.696	4	-232.879	2	1.221	10	0	3	007	2	1	2
531		19			10	172.561	3	60.127	1	0	2	.024	4	0	2
532		19	max min	-20.243	4	-323.139	2	3.177	10	0	3	004	10	0	5
	M15	1			1			.173	3		1		1		1
533	IVITO		max	150 227	3	.696 0	3		1	0	3	0		0	1
534 535		2	min	<u>-158.227</u> 0	<u> </u>	.618	3	.173	3	<u> </u>	1	<u> </u>	3	<u> </u>	1
			max	_							3		-		
536		2		_	3	0 541	3	172	1	0		0	3	0	3
537		3	max	150 270	1	.541	1	.173	3	0	1	0	1	0	1
538		4		-158.378		0		172	-	0	3	0	3	0	3
539		4	max	150 151	1	.464	3	.173	3	0	3	0	1	0	1
540		_	min	-158.454	3	0		172		0		0	3	0	3
541		5	max	0	1	.387	3	.173	3	0	1	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	
542			min	-158.529	3	0	1	0	1	0	3	0	3	0	3
543		6	max	0	1	.309	3	.173	3	0	1	0	1	0	1
544			min	-158.605	3	0	1	0	1	0	3	0	3	0	3
545		7	max	0	1	.232	3	.173	3	0	1	0	3	0	1
546			min	-158.68	3	0	1	0	1	0	3	0	1	0	3
547		8	max	0	1_	.155	3	.173	3	0	1	0	3	0	1
548			min	-158.756	3	0	1	0	1	0	3	0	1	0	3
549		9	max	0	1	.077	3	.173	3	0	1	0	3	0	1
550			min	-158.831	3	0	1	0	1	0	3	0	1	0	3
551		10	max	0	1	0	1	.173	3	0	1	0	3	0	1
552			min	-158.907	3	0	1	0	1	0	3	0	1	0	3
553		11	max	0	1	0	1_	.173	3	0	1_	0	3	0	1
554			min	-158.982	3	077	3	0	1	0	3	0	1	0	3
555		12	max	0	1	0	1	.173	3	0	1	0	3	0	1
556			min	-159.058	3	155	3	0	1	0	3	0	1	0	3
557		13	max	0	1	0	1	.173	3	0	1_	0	3	0	1
558			min	-159.133	3	232	3	0	1	0	3	0	1	0	3
559		14	max	0	1	0	1	.173	3	0	1	0	3	0	1
560			min	-159.209	3	309	3	0	1	0	3	0	1	0	3
561		15	max	0	1	0	1	.173	3	0	1	0	3	0	1
562			min	-159.284	3	387	3	0	1	0	3	0	1	0	3
563		16	max	0	1_	0	1	.173	3	0	1	0	3	0	1
564			min	-159.36	3	464	3	0	1	0	3	0	1	0	3
565		17	max	0	1	0	1	.173	3	0	1	0	3	0	1
566			min	-159.435	3	541	3	0	1	0	3	0	1	0	3
567		18	max	0	1	0	1	.173	3	0	1_	0	3	0	1
568			min	-159.511	3	618	3	0	1	0	3	0	1	0	3
569		19	max	0	1	0	1	.173	3	0	1	0	3	0	1
570			min	-159.587	3	696	3	0	1	0	3	0	1	0	1
571	M16A	1_	max	0	1_	1.934	4	.389	4	0	3	0	3	0	1
572			min	-167.33	4	0	1	073	3	0	4	0	4	0	1
573		2	max	0	1	1.719	4	.348	4	0	3	0	3	0	1
574			min	-167.285	4	0	1	073	3	0	4	0	4	0	4
575		3	max	0	1	1.504	4	.308	4	0	3	0	3	0	1
576			min	-167.24	4	0	1	073	3	0	4	0	4	0	4
577		4	max	0	1	1.289	4	.267	4	0	3	0	3	0	1
578			min	-167.196	4	0	1	073	3	0	4	0	4	001	4
579		5	max	0	1_	1.074	4	.227	4	0	3	0	3	0	1
580			min		4	0	1	073	3	0	4	0	9	002	4
581		6	max	0	1	.859	4	.186	4	0	3	0	3	0	1
582				-167.106		0	1	073	3	0	4	0	9		4
583		7	max		1	.645	4	.146	4	0	3	0	3	0	1
584				-167.061	4	0	1_	073	3	0	4	0	9	002	4
585		8	max		_1_	.43	4	.105	4	0	3	0	5	0	1
586			min		4	0	1	073	3	0	4	0	9	002	4
587		9	max		1	.215	4	.065	4	0	3	0	5	0	1
588		4 -	min		4	0	1	073	3	0	4	0	9	002	4
589		10	max		1	0	1	.024	4	0	3	0	5	0	1
590				-166.927	4	0	1	073	3	0	4	0	9	002	4
591		11	max		1	0	1	.009	9	0	3	0	5	0	1
592		4 -		-166.882	4	215	4	073	3	0	4	0	9	002	4
593		12	max		1	0	1	.009	9	0	3	0	5	0	1
594		4 -		-166.838		43	4	073	3	0	4	0	9	002	4
595		13	max		1	0	1	.009	9	0	3	0	5	0	1
596			min	-166.793	4	645	4	099	5	0	4	0	3	002	4
597		14	max		9	0	1	.009	9	0	3	0	5	0	1
598			min	-166.753	5	859	4	139	5	0	4	0	3	002	4

Model Name

Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
599		15	max	.149	9	0	1	.009	9	0	3	0	5	0	1
600			min	-166.79	5	-1.074	4	18	5	0	4	0	3	002	4
601		16	max	.233	9	0	1	.009	9	0	3	0	5	0	1
602			min	-166.828	5	-1.289	4	22	5	0	4	0	3	001	4
603		17	max	.316	9	0	1	.009	9	0	3	0	9	0	1
604			min	-166.865	5	-1.504	4	261	5	0	4	0	3	0	4
605		18	max	.4	9	0	1	.009	9	0	3	0	9	0	1
606			min	-166.903	5	-1.719	4	301	5	0	4	0	4	0	4
607		19	max	.484	9	0	1	.009	9	0	3	0	9	0	1
608			min	-166.94	5	-1.934	4	342	5	0	4	0	4	0	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.002	2	.011	2	.001	9	7.037e-4	5	NC	3	NC	1
2			min	004	3	011	3	009	5	-2.483e-4	3	3911.628	2	NC	1
3		2	max	.002	2	.01	2	.001	9	7.252e-4	5	NC	3	NC	1
4			min	004	3	011	3	009	5	-2.347e-4	3	4277.787	2	NC	1
5		3	max	.002	2	.009	2	.001	9	7.467e-4	5	NC	3	NC	1
6			min	003	3	01	3	009	5	-2.212e-4	3	4714.838	2	NC	1
7		4	max	.002	2	.008	2	.001	9	7.682e-4	5	NC	1_	NC	1
8			min	003	3	01	3	009	5	-2.077e-4	3	5240.088	2	NC	1
9		5	max	.002	2	.007	2	0	9	7.896e-4	5	NC	1	NC	1
10			min	003	3	009	3	009	5	-1.941e-4	3	5876.657	2	NC	1
11		6	max	.001	2	.006	2	0	9	8.111e-4	5	NC	1	NC	1
12			min	003	3	009	3	008	5	-1.806e-4	3	6655.927	2	NC	1
13		7	max	.001	2	.006	2	0	9	8.326e-4	5	NC	1	NC	1
14			min	003	3	008	3	008	5	-1.671e-4	3	7621.306	2	NC	1
15		8	max	.001	2	.005	2	0	9	8.541e-4	5	NC	1	NC	1
16			min	002	3	008	3	008	5	-1.535e-4	3	8834.153	2	NC	1
17		9	max	.001	2	.004	2	0	9	8.756e-4	5	NC	1	NC	1
18			min	002	3	007	3	007	5	-1.4e-4	3	NC	1	NC	1
19		10	max	0	2	.003	2	0	9	8.971e-4	5	NC	1	NC	1
20			min	002	3	007	3	007	5	-1.264e-4	3	NC	1	NC	1
21		11	max	0	2	.003	2	0	9	9.186e-4	5	NC	1	NC	1
22			min	002	3	006	3	006	5	-1.129e-4	3	NC	1	NC	1
23		12	max	0	2	.002	2	0	9	9.401e-4	5	NC	1	NC	1
24			min	001	3	005	3	006	5	-9.937e-5	3	NC	1	NC	1
25		13	max	0	2	.002	2	0	9	9.616e-4	5	NC	1	NC	1
26			min	001	3	005	3	005	5	-8.583e-5	3	NC	1	NC	1
27		14	max	0	2	.001	2	0	9	9.831e-4	5	NC	1	NC	1
28			min	001	3	004	3	004	5	-7.229e-5	3	NC	1	NC	1
29		15	max	0	2	0	2	0	9	1.005e-3	5	NC	1	NC	1
30			min	0	3	003	3	003	5	-5.875e-5	3	NC	1	NC	1
31		16	max	0	2	0	2	0	9	1.026e-3	5	NC	1	NC	1
32			min	0	3	002	3	003	5	-4.522e-5	3	NC	1	NC	1
33		17	max	0	2	0	2	0	9	1.048e-3	5	NC	1	NC	1
34			min	0	3	002	3	002	5	-3.728e-5	1	NC	1	NC	1
35		18	max	0	2	0	2	0	9	1.069e-3	5	NC	1	NC	1
36			min	0	3	0	3	0	5	-3.013e-5	9	NC	1	NC	1
37		19	max	0	1	0	1	0	1	1.091e-3	5	NC	1	NC	1
38			min	0	1	0	1	0	1	-2.379e-5	9	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.142e-5	9	NC	1	NC	1
40			min	0	1	0	1	0	1	-5.212e-4	5	NC	1	NC	1
41		2	max	0	3	0	2	.003	5	1.494e-5	1	NC	1	NC	1
42			min	0	2	0	3	0	9	-5.224e-4	5	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
43		3	max	0	3	0	2	.005	5	1.931e-5	1	NC	1_	NC	1
44			min	0	2	002	3	0	9	-5.237e-4	5	NC	1	NC	1
45		4	max	0	3	0	2	.008	5	2.368e-5	1	NC	1_	NC	1
46			min	0	2	003	3	0	9	-5.249e-4	5	NC	1	NC	1
47		5	max	0	3	0	2	.011	4	2.806e-5	1	NC	1	NC	1
48			min	0	2	004	3	0	9	-5.261e-4	5	NC	1	NC	1
49		6	max	0	3	0	2	.013	4	3.243e-5	1	NC	1	NC	1
50			min	0	2	005	3	0	9	-5.274e-4	5	NC	1	NC	1
51		7	max	0	3	0	2	.016	4	3.68e-5	1	NC	1	NC	1
52			min	0	2	005	3	0	9	-5.286e-4	5	NC	1	NC	1
53		8	max	0	3	.001	2	.018	4	4.118e-5	1	NC	1	NC	1
54			min	001	2	006	3	0	10	-5.298e-4	5	NC	1	NC	1
55		9	max	.001	3	.001	2	.02	4	4.555e-5	1	NC	1	NC	1
56		Ť	min	001	2	007	3	0		-5.311e-4	5	NC	1	NC	1
57		10	max	.001	3	.002	2	.023	4	4.992e-5	1	NC	1	NC	1
58		10	min	001	2	007	3	0		-5.323e-4	5	NC	1	NC	1
59		11	max	.001	3	.002	2	.025	4	5.43e-5	1	NC	1	NC	1
60			min	002	2	008	3	0	_	-5.335e-4	5	NC	1	NC	1
61		12		.002	3	.003	2	.027	4	5.867e-5	1	NC	1	NC	1
62		12	max	002	2	008	3	.027		-5.348e-4	5	NC NC	1	NC NC	1
63		13	min	.002	3	.004	2	.029	4	6.304e-5	-	NC NC	1	NC NC	1
		13	max		2	004 008	3				1				
64		4.4	min	002				0	10	-5.36e-4	5	NC NC	<u>1</u> 1	NC NC	1
65		14	max	.002	3	.005	2	.031	4	6.742e-5		NC NC		NC	1
66		4.5	min	002	2	009	3	0		-5.372e-4	5	NC NC	1_	NC NC	1
67		15	max	.002	3	.005	2	.032	4	7.179e-5	_1_	NC 0.407.000	1_	NC	1
68		4.0	min	002	2	009	3	0		-5.385e-4	5	8497.803	2	NC	1
69		16	max	.002	3	.006	2	.034	4	7.616e-5	_1_	NC	1_	NC	1
70			min	002	2	009	3	0		-5.397e-4	5	7218.294	2	NC	1
71		17	max	.002	3	.007	2	.036	4	8.054e-5	1_	NC	1_	NC	1
72			min	002	2	009	3	0		-5.409e-4	5	6225.012	2	NC	1
73		18	max	.002	3	.008	2	.037	4	8.491e-5	_1_	NC	1_	NC	1
74			min	003	2	009	3	0		-5.422e-4	5	5445.404	2	NC	1
75		19	max	.003	3	.01	2	.039	4	8.928e-5	_1_	NC	3	NC	1
76			min	003	2	009	3	0	10	-5.434e-4	5	4828.204	2	NC	1
77	M4	1_	max	0	1	.012	2	0	10	3.016e-3	5	NC	1_	NC	1
78			min	0	15	011	3	041	4	-1.097e-4	1	NC	1_	473.644	4
79		2	max	0	1	.012	2	0	10	3.016e-3	5	NC	1_	NC	1
80			min	0	15	011	3	037	4	-1.097e-4	1	NC	1	516.245	4
81		3	max	0	1	.011	2	0	10	3.016e-3	5	NC	1_	NC	1
82			min	0	15	01	3	034	4	-1.097e-4	1	NC	1	566.936	4
83		4	max	0	1	.01	2	0	10	3.016e-3	5	NC	1	NC	1
84			min	0	15	009	3	031		-1.097e-4	1	NC	1	627.85	4
85		5	max	0	1	.01	2	0		3.016e-3	5	NC	1	NC	1
86			min	0	15	009	3	028		-1.097e-4	1	NC	1	701.888	4
87		6	max	0	1	.009	2	0		3.016e-3	5	NC	1	NC	1
88			min	0	15	008	3	024		-1.097e-4	1	NC	1	793.086	4
89		7	max	0	1	.008	2	0		3.016e-3	5	NC	1	NC	1
90		<u> </u>	min	0	15	007	3	021		-1.097e-4	1	NC	1	907.191	4
91		8	max	0	1	.008	2	0		3.016e-3	5	NC	1	NC	1
92			min	0	15	007	3	018		-1.097e-4	1	NC	1	1052.619	
93		9	max	0	1	.007	2	0		3.016e-3	5	NC NC	1	NC	1
		3			15	007	3			-1.097e-4		NC NC		1242.095	_
94		10	min	0				016			1_		1_		
95		10	max	0	1	.006	2	0		3.016e-3	5_1	NC NC	1_	NC	1_4
96		4.4	min	0	15	006	3	013		-1.097e-4	1_	NC NC	1_	1495.622	4
97		11	max	0	1	.006	2	0		3.016e-3	5_	NC NC	1_	NC 4046 444	1
98		40	min	0	15	005	3	01		-1.097e-4	<u>1</u>	NC NC	1_	1846.144	
99		12	max	0	1	.005	2	0	10	3.016e-3	5_	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
100			min	0	15	004	3	008	4	-1.097e-4	1_	NC	1_	2351.114	
101		13	max	0	1	.004	2	00	10		5	NC	_1_	NC	1
102			min	0	15	004	3	006	4	-1.097e-4	1_	NC	<u>1</u>	3118.297	4
103		14	max	00	1	.003	2	0	10	3.016e-3	_5_	NC	_1_	NC	1
104			min	0	15	003	3	004	4	-1.097e-4	<u>1</u>	NC	_1_	4369.951	4
105		15	max	0	1	.003	2	0	10	3.016e-3	5	NC	1_	NC	1
106			min	0	15	002	3	003	4	-1.097e-4	1_	NC	_1_	6628.191	4
107		16	max	0	1	.002	2	0	10		_5_	NC	1_	NC	1
108			min	0	15	002	3	002	4	-1.097e-4	1_	NC	1_	NC	1
109		17	max	0	1	.001	2	0	10	3.016e-3	5	NC	_1_	NC	1
110			min	0	15	001	3	0	4	-1.097e-4	<u>1</u>	NC	1_	NC	1
111		18	max	0	1	0	2	0	10	3.016e-3	5	NC	_1_	NC	1
112			min	0	15	0	3	0	4	-1.097e-4	_1_	NC	_1_	NC	1
113		19	max	0	1	0	1	0	1	3.016e-3	_5_	NC	1_	NC	1
114			min	0	1	0	1	0	1	-1.097e-4	1_	NC	_1_	NC	1
115	<u>M6</u>	1	max	.006	2	.032	2	0	9	7.364e-4	4	NC	3	NC	1
116			min	011	3	031	3	009	5	-3.577e-7	9	1338.175	2	5375.729	3
117		2	max	.005	2	.03	2	0	9	7.592e-4	_4_	NC	3	NC	1
118			min	01	3	03	3	009	5	-7.808e-7	9	1434.927	2	5676.42	3
119		3	max	.005	2	.027	2	0	9	7.821e-4	4_	NC	3	NC	1
120			min	009	3	028	3	009	5	-1.204e-6	9	1546.198	2	6038.687	3
121		4	max	.005	2	.025	2	00	9	8.049e-4	4_	NC	3	NC	1
122			min	009	3	026	3	009	5	-1.627e-6	9	1674.902	2	6475.038	3
123		5	max	.005	2	.023	2	0	9	8.277e-4	4	NC	3_	NC	1_
124			min	008	3	025	3	009	5	-2.05e-6	9	1824.796	2	7002.224	
125		6	max	.004	2	.021	2	0	9	8.505e-4	4	NC	3	NC	1
126			min	008	3	023	3	009	5	-2.473e-6	9	2000.798	2	7642.931	3
127		7	max	.004	2	.019	2	0	9	8.733e-4	4	NC	3	NC	1
128			min	007	3	021	3	008	5	-2.896e-6	9	2209.471	2	8428.37	3
129		8	max	.004	2	.017	2	0	9	8.962e-4	4	NC	3_	NC	1
130			min	006	3	02	3	008	5	-3.32e-6	9	2459.763	2	9402.361	3
131		9	max	.003	2	.015	2	0	9	9.19e-4	4	NC	3	NC	1
132			min	006	3	018	3	008	5	-3.743e-6	9	2764.201	2	NC	1
133		10	max	.003	2	.014	2	0	9	9.418e-4	4	NC	3_	NC	1_
134			min	005	3	016	3	007	5	-4.166e-6	9	3140.867	2	NC	1
135		11	max	.003	2	.012	2	00	9	9.646e-4	4_	NC	3	NC	1
136			min	005	3	014	3	007	5	-4.589e-6	9	3616.868	2	NC	1
137		12	max	.002	2	.01	2	0	9	9.874e-4	4	NC	3	NC	1
138			min	004	3	013	3	006	5	-5.012e-6	9	4234.767	2	NC	1
139		13	max	.002	2	.008	2	0	9	1.01e-3	4	NC	1_	NC	1
140			min	004	3	011	3	005			9			NC	1
141		14	max	.002	2	.007	2	00	9	1.033e-3	4_	NC	_1_	NC	1
142			min	003	3	009	3	004	5	-5.858e-6	9	6236.452	2	NC	1
143		15	max	.001	2	.005	2	0	9	1.056e-3	4	NC	_1_	NC	1
144			min	002	3	007	3	004	5	-6.282e-6	9	8002.676	2	NC	1
145		16	max	00	2	.004	2	00	9	1.079e-3	4_	NC	_1_	NC	1
146			min	002	3	005	3	003	4	-6.705e-6	9	NC	<u>1</u>	NC	1
147		17	max	0	2	.003	2	0	9	1.102e-3	4	NC	_1_	NC	1
148			min	001	3	004	3	002	4	-7.128e-6	9	NC	1_	NC	1
149		18	max	0	2	.001	2	0	9	1.124e-3	4	NC	1_	NC	1
150			min	0	3	002	3	0	4	-7.551e-6	9	NC	1_	NC	1
151		19	max	0	1	0	1	0	1	1.147e-3	4	NC	_1_	NC	1
152			min	0	1	0	1	0	1	-7.974e-6	9	NC	1_	NC	1
153	<u>M7</u>	1_	max	0	1	0	1	0	1	3.798e-6	9	NC	1	NC	1
154			min	0	1	0	1	0	1	-5.482e-4	4	NC	1_	NC	1
155		2	max	0	3	.001	2	.003	4	3.367e-6	9	NC	1_	NC	1
156			min	0	2	002	3	0	9	-5.412e-4	4	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

158 min 0 2 004 3 0 9 -5.343e-4 4 159 4 max .001 3 .004 2 .008 4 2.504e-6 9 160 min 001 2 006 3 0 9 -5.273e-4 4 161 5 max .001 3 .005 2 .011 4 2.073e-6 9 162 min 002 2 008 3 0 9 -5.203e-4 4 94i 163 6 max .002 3 .006 2 .014 4 2.709e-5 3 164 min 002 2 01 3 0 9 -5.134e-4 4 75i 165 7 max .002 3 .007 2 .016 4 5.569e-5 3 166 min 003 2	NC 1 NC 1 NC 1 NC 1	NC NC NC	1
159 4 max .001 3 .004 2 .008 4 2.504e-6 9 160 min 001 2 006 3 0 9 -5.273e-4 4 161 5 max .001 3 .005 2 .011 4 2.073e-6 9 162 min 002 2 008 3 0 9 -5.203e-4 4 94 163 6 max .002 3 .006 2 .014 4 2.709e-5 3 164 min 002 2 01 3 0 9 -5.134e-4 4 75 165 7 max .002 3 .007 2 .016 4 5.569e-5 3 166 min 003 2 011 3 0 9 -5.064e-4 4 629 168 min 003 2 013 3 0 9 -4.995e-4 4 53	NC 1 NC 1		1
160 min 001 2 006 3 0 9 -5.273e-4 4 161 5 max .001 3 .005 2 .011 4 2.073e-6 9 162 min 002 2 008 3 0 9 -5.203e-4 4 94 163 6 max .002 3 .006 2 .014 4 2.709e-5 3 164 min 002 2 01 3 0 9 -5.134e-4 4 75 165 7 max .002 3 .007 2 .016 4 5.569e-5 3 166 min 003 2 011 3 0 9 -5.064e-4 4 628 167 8 max .003 3 .009 2 .019 4 8.428e-5 3 168 min 003	NC 1	NC	
161 5 max .001 3 .005 2 .011 4 2.073e-6 9 162 min 002 2 008 3 0 9 -5.203e-4 4 94 163 6 max .002 3 .006 2 .014 4 2.709e-5 3 164 min 002 2 01 3 0 9 -5.134e-4 4 75 165 7 max .002 3 .007 2 .016 4 5.569e-5 3 166 min 003 2 011 3 0 9 -5.064e-4 4 629 167 8 max .003 3 .009 2 .019 4 8.428e-5 3 168 min 003 2 013 3 0 9 -4.995e-4 4 53 169 9			1
162 min 002 2 008 3 0 9 -5.203e-4 4 944 163 6 max .002 3 .006 2 .014 4 2.709e-5 3 164 min 002 2 01 3 0 9 -5.134e-4 4 756 165 7 max .002 3 .007 2 .016 4 5.569e-5 3 166 min 003 2 011 3 0 9 -5.064e-4 4 628 167 8 max .003 3 .009 2 .019 4 8.428e-5 3 168 min 003 2 013 3 0 9 -4.995e-4 4 53 169 9 max .003 3 .01 2 .021 4 1.129e-4 3 170 min		NC	1
162 min 002 2 008 3 0 9 -5.203e-4 4 944 163 6 max .002 3 .006 2 .014 4 2.709e-5 3 164 min 002 2 01 3 0 9 -5.134e-4 4 756 165 7 max .002 3 .007 2 .016 4 5.569e-5 3 166 min 003 2 011 3 0 9 -5.064e-4 4 626 167 8 max .003 3 .009 2 .019 4 8.428e-5 3 168 min 003 2 013 3 0 9 -4.995e-4 4 53 169 9 max .003 3 .01 2 .021 4 1.129e-4 3 170 min	NC 1	NC	1
163 6 max .002 3 .006 2 .014 4 2.709e-5 3 164 min 002 2 01 3 0 9 -5.134e-4 4 75a 165 7 max .002 3 .007 2 .016 4 5.569e-5 3 166 min 003 2 011 3 0 9 -5.064e-4 4 62a 167 8 max .003 3 .009 2 .019 4 8.428e-5 3 168 min 003 2 013 3 0 9 -4.995e-4 4 53 169 9 max .003 3 .01 2 .021 4 1.129e-4 3 170 min 003 2 014 3 0 9 -4.925e-4 4 45	87.656 2	NC	1
164 min 002 2 01 3 0 9 -5.134e-4 4 75d-165 165 7 max .002 3 .007 2 .016 4 5.569e-5 3 166 min 003 2 011 3 0 9 -5.064e-4 4 62d-164e-4 167 8 max .003 3 .009 2 .019 4 8.428e-5 3 168 min 003 2 013 3 0 9 -4.995e-4 4 532 169 9 max .003 3 .01 2 .021 4 1.129e-4 3 170 min 003 2 014 3 0 9 -4.925e-4 4 459	NC 1	NC	1
165 7 max .002 3 .007 2 .016 4 5.569e-5 3 166 min 003 2 011 3 0 9 -5.064e-4 4 626 167 8 max .003 3 .009 2 .019 4 8.428e-5 3 168 min 003 2 013 3 0 9 -4.995e-4 4 533 169 9 max .003 3 .01 2 .021 4 1.129e-4 3 170 min 003 2 014 3 0 9 -4.925e-4 4 459	84.262 2	NC	1
166 min 003 2 011 3 0 9 -5.064e-4 4 626 167 8 max .003 3 .009 2 .019 4 8.428e-5 3 168 min 003 2 013 3 0 9 -4.995e-4 4 532 169 9 max .003 3 .01 2 .021 4 1.129e-4 3 170 min 003 2 014 3 0 9 -4.925e-4 4 459	NC 1	NC	1
167 8 max .003 3 .009 2 .019 4 8.428e-5 3 168 min 003 2 013 3 0 9 -4.995e-4 4 53: 169 9 max .003 3 .01 2 .021 4 1.129e-4 3 170 min 003 2 014 3 0 9 -4.925e-4 4 45:	81.136 2	NC	1
168 min 003 2 013 3 0 9 -4.995e-4 4 533 169 9 max .003 3 .01 2 .021 4 1.129e-4 3 170 min 003 2 014 3 0 9 -4.925e-4 4 459	NC 1	NC	1
169 9 max .003 3 .01 2 .021 4 1.129e-4 3 170 min003 2014 3 0 9 -4.925e-4 4 459	25.304 2	NC	1
170 min003 2014 3 0 9 -4.925e-4 4 459	NC 3	NC	1
	90.675 2	NC	1
171 10 max .003 3 .011 2 .023 4 1.415e-4 3	NC 3	NC	1
	07.275 2	NC	1
	NC 3	NC	1
	32.989 2	NC	1
	NC 3	NC	1
	40.77 2	NC	1
	NC 3	NC NC	1
	12.296 2	NC NC	
		NC NC	1
	NC 3 34.592 2		1
		NC NC	
	NC 3	NC NC	1
	98.125 2	NC NC	
	NC 3	NC NC	1
	95.683 2	NC	1
	NC 3	NC	1_
	21.675 2	NC	1_
	NC 3	NC	1
	771.69 2	NC	1
	NC 3	NC	1
	42.201 2	NC	1
	NC 1	NC	1
	NC 1	464.924	4
	NC 1	NC	1
	NC 1	506.742	4
	NC 1	NC	1_
	NC 1	556.504	4
	NC 1	NC	1
	NC 1	616.301	4
	NC 1	NC	1_
	NC 1	688.982	4
201 6 max .002 1 .027 2 0 9 2.893e-3 4	NC 1	NC	1_
	NC 1	778.509	4
	NC 1	NC	1
	NC 1	890.524	4
	NC 1	NC	1
	NC 1	1033.289	4
	NC 1	NC	1
	NC 1	1219.297	4
	NC 1	NC	1
	NC 1	1468.185	4
211 11 max .001 1 .016 2 0 9 2.893e-3 4	NC 1	NC	1
212 min 0 15014 3011 4 -2.782e-4 3	NC 1	1812.294	4
213 12 max .001 1 .014 2 0 9 2.893e-3 4	NC 1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
214			min	0	15	012	3	008	4	-2.782e-4	3	NC	1_	2308.031	4
215		13	max	0	1	.012	2	00	9	2.893e-3	_4_	NC	_1_	NC	1
216			min	0	15	01	3	006	4	-2.782e-4	3	NC	1_	3061.188	4
217		14	max	0	1	.01	2	0	9	2.893e-3	4	NC	1_	NC	1
218		4.5	min	0	15	009	3	005	4	-2.782e-4	3	NC NC	1_	4289.967	4
219		15	max	0	1	.008	2	0	9	2.893e-3	4_	NC NC	1_	NC CEOC 040	1
220		4.0	min	0	15	007	3	003	4	-2.782e-4	3	NC NC	1_	6506.949	4
221		16	max	0	15	.006	2	0 002	9	2.893e-3	4	NC NC	1	NC NC	1
222		17	min	0	1	005	3		4	-2.782e-4	3	NC NC	1		•
223		17	max	<u> </u>	15	.004 003	3	<u> </u>	9	2.893e-3 -2.782e-4	<u>4</u> 3	NC NC	1	NC NC	1
225		18	min max	0	1	.002	2	0	9	2.893e-3	4	NC NC	1	NC NC	1
226		10	min	0	15	002	3	0	4	-2.782e-4	3	NC NC	1	NC NC	1
227		19	max	0	1	<u>002</u> 0	1	0	1	2.893e-3	4	NC	1	NC	1
228		19	min	0	1	0	1	0	1	-2.782e-4	3	NC	1	NC	1
229	M10	1	max	.002	2	.011	2	0	10	1.598e-4	1	NC NC	3	NC	1
230	IVITO		min	003	3	011	3	005	4	-6.495e-4	3	3914.594	2	NC	1
231		2	max	.002	2	.01	2	0	10	1.522e-4	1	NC	3	NC	1
232			min	002	3	011	3	006	4	-6.258e-4	3	4281.136	2	NC	1
233		3	max	.002	2	.009	2	0	10	1.902e-4	4	NC	3	NC	1
234			min	002	3	01	3	006	4	-6.021e-4	3	4718.666	2	NC	1
235		4	max	.002	2	.008	2	0	10	2.381e-4	4	NC	1	NC	1
236			min	002	3	01	3	006	4	-5.784e-4	3	5244.518	2	NC	1
237		5	max	.002	2	.007	2	0	10	2.859e-4	4	NC	1	NC	1
238			min	002	3	009	S	006	4	-5.547e-4	3	5881.853	2	NC	1
239		6	max	.001	2	.006	2	0	3	3.338e-4	4	NC	1	NC	1
240			min	002	3	009	3	006	4	-5.31e-4	3	6662.112	2	NC	1
241		7	max	.001	2	.006	2	0	3	3.816e-4	4	NC	1	NC	1
242			min	002	3	008	3	006	4	-5.073e-4	3	7628.785	2	NC	1
243		8	max	.001	2	.005	2	0	3	4.295e-4	4	NC	1_	NC	1
244			min	002	3	008	3	006	4	-4.836e-4	3	8843.358	2	NC	1
245		9	max	.001	2	.004	2	0	3	4.773e-4	<u>4</u>	NC	1_	NC	1
246			min	001	3	007	3	006	4	-4.599e-4	3	NC	1_	NC	1
247		10	max	0	2	.003	2	0	3	5.252e-4	4	NC	1_	NC	1
248		4.4	min	<u>001</u>	3	007	3	005	4	-4.362e-4	3	NC NC	1_	NC NC	1
249		11	max	0	2	.003	2	0	3	5.73e-4	4	NC	1	NC	1
250		40	min	001	3	006	3	005	4	-4.125e-4	3	NC NC	1_	NC NC	1
251		12	max	0	2	.002	2	0	3	6.209e-4	4	NC NC	1	NC NC	1
252		12	min	0	3	005	3	005	4	-3.888e-4	3	NC NC	1	NC NC	•
253 254		13	max min	0	2	.002 005	3	0 004	3	6.687e-4 -3.651e-4	4	NC NC	1	NC NC	1
255		11	max	0	2	.005	2	004 0	3	7.165e-4	4	NC NC	1	NC NC	1
256		14	min	0	3	004	3	004	4	-3.414e-4		NC NC	1	NC NC	1
257		15	max	0	2	004	2	004	3	7.644e-4	4	NC	1	NC	1
258		13	min	0	3	003	3	003	4	-3.177e-4	3	NC	1	NC	1
259		16	max	0	2	003	2	<u>003</u> 0	3	8.122e-4	4	NC	1	NC	1
260		10	min	0	3	002	3	002	4	-2.94e-4	3	NC	1	NC	1
261		17	max	0	2	0	2	0	3	8.601e-4	4	NC	1	NC	1
262			min	0	3	002	3	001	4	-2.703e-4		NC	1	NC	1
263		18	max	0	2	0	2	0	3	9.079e-4	4	NC	1	NC	1
264			min	0	3	0	3	0	4	-2.466e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	9.558e-4	4	NC	1	NC	1
266			min	0	1	0	1	0	1	-2.229e-4		NC	1	NC	1
267	M11	1	max	0	1	0	1	0	1	1.068e-4	3	NC	1	NC	1
268			min	Ö	1	0	1	0	1	-4.57e-4	4	NC	1	NC	1
269		2	max	0	3	0	2	.002	4	7.996e-5	3	NC	1	NC	1
270			min	0	2	0	3	0	3	-4.857e-4	4	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
271		3	max	0	3	0	2	.005	4	5.315e-5	3	NC	1_	NC	1
272			min	0	2	002	3	0	3	-5.144e-4	4	NC	1	NC	1
273		4	max	0	3	0	2	.007	4	2.635e-5	3	NC	1	NC	1
274			min	0	2	003	3	001	3	-5.431e-4	4	NC	1	NC	1
275		5	max	0	3	0	2	.009	4	5.737e-6	10	NC	1	NC	1
276			min	0	2	004	3	002	3	-5.718e-4	4	NC	1	NC	1
277		6	max	0	3	0	2	.012	4	6.611e-6	10	NC	1	NC	1
278			min	0	2	005	3	002	3	-6.005e-4	4	NC	1	NC	1
279		7	max	0	3	<u>.003</u> 0	2	.014	4	7.485e-6	10	NC	1	NC	1
280			min	0	2	005	3	002	3	-6.292e-4	4	NC	1	NC	1
281		8		0	3	.001	2	.016	5	8.36e-6	10	NC	1	NC	1
		0	max												_
282			min	001	2	006	3	003	3	-6.58e-4	4_	NC NC	1_	NC NC	1
283		9	max	.001	3	.001	2	.018	5	9.234e-6	10	NC	1_	NC	1
284			min	001	2	007	3	003	3	-6.867e-4	4_	NC	1_	NC	1
285		10	max	.001	3	.002	2	.02	5	1.011e-5	<u>10</u>	NC	_1_	NC	1_
286			min	001	2	007	3	003	3	-7.154e-4	4	NC	1_	NC	1
287		11	max	.001	3	.002	2	.022	5	1.098e-5	<u>10</u>	NC	<u>1</u>	NC	1_
288			min	002	2	008	3	003	3	-7.441e-4	4	NC	1	NC	1
289		12	max	.002	3	.003	2	.024	5	1.186e-5	10	NC	1	NC	1
290			min	002	2	008	3	003	3	-7.728e-4	4	NC	1	NC	1
291		13	max	.002	3	.004	2	.026	5	1.273e-5	10	NC	1	NC	1
292			min	002	2	008	3	003	3	-8.015e-4	4	NC	1	NC	1
293		14	max	.002	3	.005	2	.027	5	1.361e-5	10	NC	1	NC	1
294			min	002	2	009	3	003	3	-8.302e-4	4	NC	1	NC	1
295		15	max	.002	3	.005	2	.029	5	1.448e-5	10	NC	1	NC	1
296		13	min	002	2	009	3	003	3	-8.59e-4	4	8508.311	2	NC	1
		16			3		2				•	NC		1	
297		16	max	.002		.006		.031	5	1.535e-5	<u>10</u>		1_	NC	1
298		4-	min	002	2	009	3	003	3	-8.877e-4	4_	7226.41	2	NC	1
299		17	max	.002	3	.007	2	.032	5	1.623e-5	10	NC NC	1	NC	1
300		10	min	002	2	009	3	003	3	-9.164e-4	4_	6231.445	2	NC	1
301		18	max	.002	3	.008	2	.034	5	1.71e-5	10	NC	1_	NC	1
302			min	003	2	009	3	003	3	-9.451e-4	4	5450.63	2	NC	1
303		19	max	.003	3	.01	2	.035	5	1.798e-5	<u>10</u>	NC	3	NC	1
304			min	003	2	009	3	002	3	-9.738e-4	4	4832.552	2	NC	1
305	M12	1	max	0	1	.012	2	.001	3	3.404e-3	4	NC	1	NC	1
306			min	0	5	011	3	038	5	-2.275e-5	10	NC	1	502.481	5
307		2	max	0	1	.012	2	.001	3	3.404e-3	4	NC	1	NC	1
308			min	0	5	011	3	035	5	-2.275e-5	10	NC	1	547.661	5
309		3	max	0	1	.011	2	.001	3	3.404e-3	4	NC	1	NC	1
310			min	0	5	01	3	032	5	-2.275e-5		NC	1	601.422	5
311		4	max	0	1	.01	2	.001	3	3.404e-3		NC	1	NC	1
312			min	0	5	009	3	029	5	-2.275e-5		NC	1	666.021	5
313		5			1	.01	2	<u>029</u> 0	3	3.404e-3		NC	1	NC	1
		5	max	0	-						4				
314			min	0	5	009	3	026	5	-2.275e-5		NC NC	1_	744.538	5
315		6	max	0	1	.009	2	0	3	3.404e-3	4_	NC	1_	NC	1
316		_	min	0	5	008	3	023	5	-2.275e-5		NC	1_	841.251	5
317		7	max	0	1	.008	2	0	3	3.404e-3	_4_	NC	_1_	NC	1
318			min	0	5	008	3	02	5	-2.275e-5	<u>10</u>	NC	_1_	962.253	5
319		8	max	0	1	.008	2	0	3	3.404e-3	4	NC	1	NC	1
320			min	0	5	007	3	017	5	-2.275e-5	10	NC	1	1116.468	5
321		9	max	0	1	.007	2	0	3	3.404e-3	4	NC	1	NC	1
322			min	0	5	006	3	015	5	-2.275e-5	10	NC	1	1317.389	5
323		10	max	0	1	.006	2	0	3	3.404e-3	4	NC	1	NC	1
324			min	0	5	006	3	012	5	-2.275e-5		NC	1	1586.226	_
325		11	max	0	1	.006	2	0	3	3.404e-3	4	NC	1	NC	1
326			min	0	5	005	3	01	5	-2.275e-5		NC	1	1957.905	_
327		12			1		2	<u>01</u> 0	3	3.404e-3	4	NC	1	NC	1
321		<u> 12</u>	max	0		.005		U	_ ა	J.4U48-3	4	INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
328			min	0	5	004	3	008	5	-2.275e-5	10	NC	1_	2493.345	5
329		13	max	0	1	.004	2	0	3	3.404e-3	4_	NC	_1_	NC	1
330			min	0	5	004	3	006	5	-2.275e-5	10	NC	1	3306.802	5
331		14	max	0	1	.003	2	0	3	3.404e-3	4	NC	1_	NC	1_
332			min	0	5	003	3	004	5	-2.275e-5	10	NC	1	4633.925	5
333		15	max	0	1	.003	2	0	3	3.404e-3	4	NC	1_	NC	1
334			min	0	5	003	3	003	5	-2.275e-5	10	NC	1	7028.274	5
335		16	max	0	1	.002	2	0	3	3.404e-3	4	NC	1	NC	1
336			min	0	5	002	3	002	5	-2.275e-5	10	NC	1	NC	1
337		17	max	0	1	.001	2	0	3	3.404e-3	4	NC	1	NC	1
338			min	0	5	001	3	0	5	-2.275e-5	10	NC	1	NC	1
339		18	max	0	1	0	2	0	3	3.404e-3	4	NC	1	NC	1
340			min	0	5	0	3	0	5	-2.275e-5	10	NC	1	NC	1
341		19	max	0	1	0	1	0	1	3.404e-3	4	NC	1	NC	1
342			min	0	1	0	1	0	1	-2.275e-5	10	NC	1	NC	1
343	M1	1	max	.01	3	.027	3	.006	5	4.364e-3	2	NC	1	NC	1
344			min	01	2	022	2	0	9	-6.513e-3	3	NC	1	NC	1
345		2	max	.01	3	.016	3	.008	5	2.166e-3	2	NC	4	NC	1
346			min	01	2	013	2	0	9	-3.205e-3	3	5474.269	2	NC	1
347		3	max	.01	3	.007	3	.009	5	2.549e-4	5	NC	4	NC	1
348			min	01	2	005	2	001	9	-7.465e-5	9	2805.878	3	NC	1
349		4	max	.01	3	.002	2	.011	5	2.566e-4	5	NC	4	NC	1
350			min	01	2	002	3	002	9	-6.366e-5	9	1876.675	3	9779.241	5
351		5	max	.01	3	.009	2	.013	5	2.582e-4	5	NC	4	NC	1
352			min	01	2	009	3	002	9	-5.267e-5	9	1468.498	3	6896.256	5
353		6	max	.01	3	.014	2	.015	5	2.599e-4	5	NC	4	NC	1
354			min	01	2	014	3	002	9	-4.168e-5	9	1248.419	3	5238.292	5
355		7	max	.01	3	.018	2	.017	5	2.615e-4	5	NC	4	NC	1
356			min	01	2	018	3	001	9	-3.069e-5	9	1119.368	3	4179.209	5
357		8	max	.01	3	.022	2	.02	5	2.632e-4	5	NC	4	NC	1
358			min	01	2	022	3	001	9	-1.97e-5	9	1043.462	3	3454.266	5
359		9	max	.01	3	.024	2	.022	5	2.649e-4	5	NC	4	NC	1
360			min	01	2	023	3	0	9	-8.705e-6	9	1003.695	3	2933.164	5
361		10	max	.009	3	.025	2	.025	4	2.696e-4	4	NC	4	NC	1
362			min	01	2	024	3	0	9	-1.72e-6	10	992.434	3	2532.083	4
363		11	max	.009	3	.025	2	.027	4	2.751e-4	4	NC	4	NC	1
364			min	01	2	023	3	0	10	-4.331e-6	10	1007.432	3	2222.048	4
365		12	max	.009	3	.023	2	.03	4	2.807e-4	4	NC	4	NC	1
366			min	01	2	021	3	0	10	-6.942e-6		1050.771	3	1982.65	4
367		13	max	.009	3	.02	2	.032	4	2.862e-4	4	NC	4	NC	1
368			min		2	018	3	0		-9.553e-6				1794.733	4
369		14		.009	3	.015	2	.035	4	2.918e-4	4	NC	4	NC	1
370			min	01	2	014	3	0	10	-1.216e-5		1260.267	3	1645.502	_
371		15	max	.009	3	.009	2	.037	4	2.973e-4	4	NC	4	NC	1
372			min	01	2	008	3	0		-1.478e-5		1477.121	3	1526.164	
373		16	max	.009	3	.002	2	.039	4	4.541e-4	4	NC	4	NC	1
374			min	01	2	002	3	0	10	-1.668e-5	10	1865.611	3	1430.534	_
375		17	max	.009	3	.006	3	.041	4	4.208e-3	4	NC	4	NC	1
376			min	01	2	008	2	0	10	-5.336e-6	9	2707.012	3	1354.315	4
377		18	max	.009	3	.015	3	.042	4	3.233e-3	2	NC	1	NC	1
378		'	min	01	2	018	2	0	10	-1.878e-3	3	5307.93	3	1294.068	4
379		19	max	.009	3	.023	3	.044	4	6.526e-3	2	NC	1	NC	1
380		'	min	01	2	03	2	0	9	-3.899e-3	3	5693.919	2	1248.959	4
381	M5	1	max	.027	3	.079	3	.006	5	2.525e-5	4	NC	1	NC	1
382	IVIO		min	029	2	064	2	0	9	8.013e-8	11	4054.867	3	NC	1
383		2	max	.029	3	064 .048	3	.007	5	1.739e-4	3	NC	4	NC	1
384		-	min	029	2	039	2	0	9	-4.981e-6	9	1833.931	2	NC NC	1
304			1111111	028		038		U	J	- 1 .3016-0	3	1000.301		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
385		3	max	.027	3	.019	3	.009	5	3.263e-4	3	NC	4	NC	1
386			min	029	2	014	2	0	9	-9.963e-6	9	939.979	2	NC	1
387		4	max	.027	3	.007	2	.011	5	3.128e-4	3	NC	5	NC	1
388			min	029	2	006	3	0	9	-9.45e-6	9	641.724	3	9693.742	3
389		5	max	.027	3	.026	2	.013	5	2.993e-4	3	NC	5	NC	1
390			min	029	2	026	3	0	9	-8.938e-6	9	501.555	3	8120.187	3
391		6	max	.027	3	.042	2	.016	5	2.858e-4	3	NC	5	NC	1
392			min	029	2	043	3	0	9	-8.425e-6	9	426.507	3	7345.555	
393		7	max	.026	3	.055	2	.018	5	2.723e-4	3	NC	5	NC	1
394			min	029	2	055	3	0	9	-7.913e-6	9	382.784	3	6999.833	-
395		8		.026	3	.065	2	.021	4	2.701e-4	5	NC	5	NC	1
		-	max												_
396			min	029	2	064	3	0	9	-7.401e-6	9_	357.297	3_	6941.948	3
397		9	max	.026	3	.072	2	.023	4	2.79e-4	5_	NC	5	NC NC	1
398			min	029	2	069	3	0	9	-6.888e-6	9	344.205	3	7120.433	
399		10	max	.026	3	.075	2	.026	4	2.881e-4	_4_	NC	_5_	NC	1
400			min	029	2	07	3	0	9	-6.376e-6	9	337.914	2	7532.48	3
401		11	max	.026	3	.074	2	.029	4	2.973e-4	4_	NC	5_	NC	1
402			min	029	2	068	3	0	9	-5.863e-6	9	340.273	2	8214.582	3
403		12	max	.026	3	.069	2	.031	4	3.065e-4	4	NC	5	NC	1
404			min	029	2	062	3	0	9	-5.351e-6	9	352.944	2	9250.66	3
405		13	max	.026	3	.06	2	.034	4	3.156e-4	4	NC	5	NC	1
406			min	029	2	053	3	0	9	-4.838e-6	9	378.973	2	NC	1
407		14	max	.026	3	.046	2	.036	4	3.248e-4	4	NC	5	NC	1
408			min	028	2	04	3	0	9	-4.326e-6	9	425.361	2	NC	1
409		15	max	.026	3	.028	2	.038	4	3.34e-4	4	NC	5	NC	1
410		13	min	028	2	024	3	0	9	-3.813e-6	9	508.675	2	NC	1
		16			3		2								
411		16	max	.026		.005		.04	4	4.923e-4	4	NC C4C CCF	5	NC NC	1
412		4-	min	028	2	005	3	0	9	-3.784e-6	9	646.925	3	NC	1
413		17	max	.026	3	.017	3	.042	4	4.199e-3	4_	NC	4	NC	1
414		1.0	min	029	2	023	2	0	9	-1.524e-5	9	938.331	3	NC	1
415		18	max	.026	3	.042	3	.043	4	2.157e-3	4_	NC	4	NC	1
416			min	028	2	055	2	0	9	-7.856e-6	9	1839.987	3	NC	1
417		19	max	.026	3	.067	3	.044	4	7.264e-6	5	NC	3	NC	1
418			min	028	2	089	2	0	9	-3.281e-6	3	1895.181	2	NC	1
419	M9	1	max	.01	3	.025	3	.006	5	6.55e-3	3	NC	1	NC	1
420			min	01	2	022	2	0	9	-4.364e-3	2	NC	1	NC	1
421		2	max	.01	3	.015	3	.005	4	3.203e-3	3	NC	4	NC	1
422			min	01	2	013	2	0	10	-2.165e-3	2	5474.764	2	NC	1
423		3	max	.01	3	.005	3	.006	4	7.45e-5	1	NC	4	NC	1
424			min	01	2	005	2	0	10	-8.197e-5	3	2575.369	3	NC	1
425		4	max	.01	3	.002	2	.006	4		1	NC	4	NC	1
426			min	01	2	003	3	0	3	-8.455e-5		1777.198	3	NC	1
427		5		.01	3	.003	2	.007	4	4.986e-5	1	NC	4	NC NC	1
		<u> </u>	max								<u>ာ</u>				_
428		_	min	01	2	01	3	002	3	-8.713e-5	3	1410.914	3	8084.42	3
429		6	max	.01	3	.014	2	.008	4	3.753e-5	1_	NC	4	NC 7044 COE	1
430		-	min	01	2	015	3	003	3	-8.971e-5	3	1209.474	3	7014.685	
431		7	max	.01	3	.018	2	.01	4	2.521e-5	1	NC	_4_	NC	1
432			min	01	2	019	3	004	3	-9.23e-5	3	1090.298	3	6394.24	3
433		8	max	.01	3	.022	2	.012	4	1.289e-5	1_	NC	4	NC	1
434			min	01	2	022	3	005	3	-9.488e-5	3	1020.185	3	6046.415	3
435		9	max	.01	3	.024	2	.015	4	2.096e-5	5	NC	4	NC	1
436			min	01	2	024	3	005	3	-9.746e-5	3	984.014	3	5160.849	4
437		10	max	.01	3	.025	2	.017	4	3.284e-5	5	NC	4	NC	1
438			min	01	2	024	3	005	3	-1.e-4	3	975.021	3	4009.533	4
439		11	max	.01	3	.025	2	.02	5	4.472e-5	5	NC	4	NC	1
440			min	01	2	024	3	005	3	-1.026e-4	3	991.387	3	3237.825	-
441		12	max	.01	3	.023	2	.023	5	5.661e-5	5	NC	4	NC	1
441		12	шах	.01	⊥ວ_	.023		.023	_ ວ_	J.0018-3	<u> ပ</u>	INC	4	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
442			min	01	2	022	3	005	3	-1.052e-4	3	1035.4	3	2680.496	
443		13	max	.009	3	.02	2	.026	5	6.849e-5	5	NC	4_	NC	1
444			min	01	2	018	3	005	3	-1.078e-4	3	1114.387	3	2277.685	5
445		14	max	.009	3	.015	2	.029	5	8.037e-5	_5_	NC	4	NC	1
446			min	01	2	014	3	004	3	-1.104e-4	3	1244.254	3	1978.63	5
447		15	max	.009	3	.009	2	.033	5	9.225e-5	5	NC 101	4	NC	1
448		4.0	min	01	2	008	3	003	3	-1.13e-4	3	1459.404	3	1751.213	5
449		16	max	.009	3	.002	2	.036	5	2.65e-4	5	NC	4	NC	1_
450			min	01	2	002	3	002	3	-1.046e-4	3	1844.301	3	1575.161	5
451		17	max	.009	3	.006	3	.038	5	4.276e-3	4_	NC	4_	NC 4.407.004	1
452		40	min	01	2	008	2	<u>001</u>	3	-2.514e-5	9	2677.139	3	1437.081	5
453		18	max	.009	3	.015	3	.041	5	2.135e-3	5_	NC FOEO F4	1_	NC 4000 745	1
454		40	min	01	2	018	2	0	9	-3.233e-3	2	5250.51	3	1326.715	4
455		19	max	.009	3	.024	3	.044	4	3.893e-3	3_	NC	1_	NC	1
456	MAO	1	min	<u>01</u>	2	03	2	0	9	-6.527e-3	2	5707.781	2	1233.706	4
457	M13	1	max	0	9	.025	3	.01	3	3.92e-3	3	NC	1_	NC NC	1
458			min	006	5	022	2	01	2	-3.253e-3	2	NC NC	1_	NC NC	1
459		2	max	0	9	.053	3	.008	3	4.793e-3	3	NC	4	NC	1
460		2	min	006	5	<u>04</u>	2	<u>01</u>	2	-3.971e-3	2	2837.834	3	NC NC	1
461		3	max	0 006	9	.077 056	3	.008	2	5.666e-3	2	NC 1523.768	4	NC NC	1
462		1	min					011		-4.688e-3			3	NC NC	1
463		4	max	0	9	.094	3	.01	2	6.538e-3	3	NC 1138.747	3	NC NC	1
464		-	min	006		068	2	012		-5.405e-3 7.411e-3	2	NC	_		
465		5	max	0	9	.104	3	.012	3	7.411e-3	3		4	NC NC	1
466 467		6	min	<u>006</u> 0	5 9	<u>075</u> .106	3	015 .015	3	-6.122e-3 8.284e-3	3	999.09 NC	<u>3</u> 4	NC NC	1
		<u> </u>	max	006	5				2		2	976.805		9653.977	_
468		7	min		9	078	3	018	_	-6.84e-3	3	NC	<u>3</u>	NC	1
469 470			max	0 006	5	.101	2	.018	2	9.157e-3 -7.557e-3		1039.238	3	6731.445	
471		8	min	<u>006</u> 0	9	076 .092	3	021 .021	3		3	NC	<u>3</u> 4	NC	1
471		0	max	006	5	072	2	025	2	1.003e-2 -8.274e-3	2	1178.764	3	5190.966	_
473		9	max	000	9	.083	3	.024	3	1.09e-2	3	NC	4	NC	4
474		9	min	006	5	067	2	028	2	-8.991e-3	2	1369.195	3	4398.705	
475		10	max	<u>000</u>	9	.079	3	.027	3	1.178e-2	3	NC	4	NC	4
476		10	min	006	5	064	2	029	2	-9.709e-3	2	1486.023	3	4135.351	2
477		11	max	000	9	.083	3	.028	3	1.091e-2	3	NC	4	NC	4
478			min	006	5	067	2	028	2	-8.992e-3	2	1369.193	3	4176.838	_
479		12	max	<u>.000</u>	9	.092	3	.029	3	1.004e-2	3	NC	4	NC	1
480		12	min	006	5	072	2	025	2	-8.274e-3	2	1178.762	3	4159.886	
481		13	max	0	9	.101	3	.027	3	9.169e-3	3	NC	4	NC	1
482		10	min	006	5	076	2	021		-7 557e-3				4447.65	
483		14	max	0	9	.106	3	.025	3	8.301e-3	3	NC	4	NC	1
484			min	006	5	078	2	018	2	-6.84e-3	2	976.804	3	5098.27	3
485		15	max	0	9	.105	3	.022	3	7.432e-3	3	NC	4	NC	1
486			min	006	5	075	2	015	2	-6.123e-3	2	999.089	3	6326.295	3
487		16	max	0	9	.095	3	.019	3	6.564e-3	3	NC	4	NC	1
488			min	006	5	068	2	012	2	-5.405e-3	2	1138.746	3	8715.343	3
489		17	max	0	9	.078	3	.015	3	5.695e-3	3	NC	4	NC	1
490			min	006	5	056	2	011	2	-4.688e-3	2	1523.766	3	NC	1
491		18	max	0	9	.054	3	.012	3	4.827e-3	3	NC	4	NC	1
492			min	006	5	04	2	01	2	-3.971e-3	2	2837.831	3	NC	1
493		19	max	0	9	.027	3	.01	3	3.958e-3	3	NC	1	NC	1
494		Ĭ	min	006	5	022	2	01	2	-3.254e-3	2	NC	1	NC	1
495	M16	1	max	0	9	.024	3	.009	3	4.315e-3	2	NC	1	NC	1
496			min	044	4	03	2	01	2	-3.4e-3	3	NC	1	NC	1
497		2	max	0	9	.04	3	.012	3	5.268e-3	2	NC	4	NC	1
498			min	044	4	057	2	01	2	-4.1e-3	3	2835.512	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

100	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
499		3	max	0	9	.055	3	.015	3	6.222e-3	2	NC 4547.045	4_	NC	1
500		1	min	044	4	081	2	011	2	-4.799e-3	3	1517.245	2	NC NC	1
501		4	max	0	9	.066	3	.018	3	7.176e-3	2	NC	4_	NC	1
502		_	min	044	4	099	2	012	2	-5.499e-3	3	1127.203	2	9219.757	3
503 504		5	max	0 044	9	.073 109	2	.021 015	2	8.129e-3 -6.199e-3	3	NC 980.214	2	NC 6919.252	3
505		6	min	044 0	9	.076	3	.023	3	9.083e-3	2	NC	4	NC	1
506		0	max	044	4	112	2	018	2	-6.898e-3	3	946.115	2	5691.818	3
507		7	max	044	9	.076	3	.025	3	1.004e-2	2	NC	4	NC	1
508			min	044	4	109	2	021	2	-7.598e-3	3	988.478	2	5009.886	3
509		8	max	044 0	9	.073	3	.026	3	1.099e-2	2	NC	4	NC	1
510			min	044	4	101	2	025	2	-8.298e-3	3	1094.18	2	4666.804	3
511		9	max	044	9	.069	3	.026	3	1.194e-2	2	NC	4	NC	4
512		1 9	min	044	4	093	2	027	2	-8.997e-3	3	1236.35	2	4426.22	2
513		10	max	044	9	.067	3	.026	3	1.29e-2	2	NC	4	NC	4
514		10	min	044	4	089	2	028	2	-9.697e-3	3	1321.217	2	4160.278	2
515		11	max	0	9	.069	3	.024	3	1.194e-2	2	NC	4	NC	4
516			min	044	4	093	2	027	2	-8.993e-3	3	1236.35	2	4426.223	2
517		12	max	0	9	.073	3	.023	3	1.099e-2	2	NC	4	NC	1
518		12	min	044	4	101	2	025	2	-8.29e-3	3	1094.18	2	5226.671	2
519		13	max	044	9	.076	3	.021	3	1.004e-2	2	NC	4	NC	1
520		10	min	044	4	109	2	021	2	-7.586e-3	3	988.478	2	6784.873	2
521		14	max	0	9	.076	3	.019	3	9.083e-3	2	NC	4	NC	1
522		17	min	044	4	112	2	018	2	-6.882e-3	3	946.115	2	8339.623	3
523		15	max	0	9	.073	3	.016	3	8.13e-3	2	NC	4	NC	1
524		13	min	044	4	109	2	015	2	-6.178e-3	3	980.214	2	NC	1
525		16	max	<u>.044</u>	9	.066	3	.014	3	7.177e-3	2	NC	4	NC	1
526		10	min	044	4	099	2	012	2	-5.474e-3	3	1127.203	2	NC	1
527		17	max	0	9	.054	3	.012	3	6.223e-3	2	NC	4	NC	1
528			min	044	4	081	2	011	2	-4.77e-3	3	1517.245	2	NC	1
529		18	max	<u>.044</u>	9	.04	3	.01	3	5.27e-3	2	NC	4	NC	1
530		10	min	044	4	057	2	01	2	-4.067e-3	3	2835.512	2	NC	1
531		19	max	0	9	.023	3	.009	3	4.317e-3	2	NC	1	NC	1
532		10	min	044	4	03	2	01	2	-3.363e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	4.094e-4	3	NC	1	NC	1
534	10110		min	0	1	0	1	0	1	-6.331e-4	5	NC	1	NC	1
535		2	max	0	3	0	5	.004	4	7.471e-4	3	NC	1	NC	1
536			min	0	4	001	9	0	3	-6.345e-4	5	NC	1	NC	1
537		3	max	0	3	.002	5	.008	4	1.085e-3	3	NC	1	NC	1
538			min	0	4	002	9	003	3	-6.918e-4	2	NC	1	7277.75	4
539		4	max	0	3	.002	5	.013	4			NC	1	NC	9
540			min	001	4	004	9	007	3	-1.02e-3	2	NC	1	4488.236	
541		5	max	0	3	.003	5	.018	4	1.76e-3	3	NC	1	NC	9
542			min	002	4	004	9	011	3	-1.347e-3	2	NC	1	3105.45	3
543		6	max	0	3	.004	5	.023	4	2.098e-3	3	NC	2	NC	9
544			min	002	4	005	9	016	3	-1.675e-3	2	9182.439	1	2265.111	3
545		7	max	0	3	.004	5	.026	4	2.436e-3	3	NC	2	NC	9
546			min	002	4	006	9	021	3	-2.003e-3	2	8143.167	1	1772.961	3
547		8	max	0	3	.005	5	.029	4	2.773e-3	3	NC	2	8595.017	9
548			min	003	4	007	3	026	3	-2.33e-3	2	7519.447	1	1463.25	3
549		9	max	.001	3	.005	5	.03	4	3.111e-3	3	NC	2	7521.476	9
550			min	003	4	007	3	031	3	-2.658e-3	2	7183.724	1	1260.438	
551		10	max	.001	3	.006	5	.03	4	3.449e-3	3	NC	2	6810.198	
552			min	003	4	007	3	034	3	-2.986e-3	2	7077.518	1	1126.542	
553		11	max	.001	3	.006	5	.029	4	3.786e-3	3	NC	2	6365.415	
554			min	004	4	007	3	037	3	-3.314e-3	2	7183.724	1	1041.61	3
555		12	max	.001	3	.006	5	.028	2	4.124e-3	3	NC	2	6141.444	
											_		_		

Model Name

Schletter, Inc.HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
556			min	004	4	007	3	037	3	-3.641e-3	2	7519.447	1	995.755	3
557		13	max	.002	3	.006	5	.027	2	4.462e-3	3	NC	2	6130.428	9
558			min	005	4	007	3	036	3	-3.969e-3	2	8143.167	1	986.138	3
559		14	max	.002	3	.006	5	.024	2	4.8e-3	3	NC	2	6366.538	9
560			min	005	4	006	3	032	3	-4.297e-3	2	9182.439	1	1017.108	3
561		15	max	.002	3	.006	5	.018	2	5.137e-3	3	NC	1	8274.271	15
562			min	005	4	006	3	026	3	-4.625e-3	2	NC	1	1104.503	
563		16	max	.002	3	.006	5	.011	1	5.475e-3	3	NC	1	NC	13
564			min	006	4	005	3	017	3	-4.952e-3	2	NC	1	1291.291	3
565		17	max	.002	3	.006	2	.006	4	5.813e-3	3	NC	1	NC	4
566			min	006	4	004	3	004	3	-5.28e-3	2	8926.787	2	1712.231	3
567		18	max	.002	3	.008	2	.013	3	6.15e-3	3	NC	1	NC	4
568			min	006	4	003	3	013	2	-5.608e-3	2	6840.493	2	3048.992	3
569		19	max	.002	3	.01	2	.034	3	6.488e-3	3	NC	1	NC	1
570		10	min	007	4	002	3	03	2	-5.936e-3	2	5518.026	2	NC	1
571	M16A	1	max	.002	2	.004	2	.01	3	1.827e-3	3	NC	1	NC	1
572	WHOTE		min	003	4	004	4	01	2	-1.997e-3	2	NC	1	NC	1
573		2	max	.001	2	.002	2	.003	3	1.765e-3	3	NC	1	NC	1
574			min	002	4	007	4	005	2	-1.905e-3	2	NC	1	8374.276	_
575		3	max	.002	2	0	2	.002	1	1.702e-3	3	NC	1	NC	4
576		_ J	min	002	4	01	4	006	5	-1.813e-3	2	9778.475	4	4746.157	3
577		4	max	.002	2	001	2	.004	1	1.64e-3	3	NC	1	NC	9
578		_	min	002	4	012	4	01	5	-1.721e-3	2	6708.605	4	3616.758	
579		5	max	.002	2	002	2	.006	1	1.577e-3	3	NC	1	NC	9
580		J	min	002	4	014	4	015	5	-1.629e-3	2	5234.793	4	3130.525	
581		6	max	.002	2	004	10	.007	1	1.515e-3	3	NC	3	NC	9
582		0	min	002	4	016	4	019	5	-1.537e-3	2	4405.631	4	2922.518	
583		7	max	.002	2	004	10	.008	1	1.453e-3	3	NC	3	NC	9
584			min	002	4	018	4	023	5	-1.445e-3	2	3907	4	2693.567	5
585		8	max	<u>002</u> 0	2	005	10	.008	1	1.39e-3	3	NC	3	NC	9
586		0	min	002	4	003 019	4	026	5	-1.353e-3	2	3607.746	4	2319.952	5
587		9	max	<u>002</u> 0	2	005	12	.007	1	1.328e-3	3	NC	12	NC	9
588		9	min	001	4	003 019	4	029	5	-1.261e-3	2	3446.67	4	2112.313	
589		10	max	<u>001</u> 0	2	01 9 005	12	.007	1	1.265e-3	3	NC	12	NC	9
590		10	min	001	4	005 019	4	03	5	-1.169e-3	2	3395.714	4	2018.762	5
591		11		<u>001</u> 0	2	019 005	12	.006	1	1.203e-3	3	NC	12	NC	9
592		11	max	001	4	005 019	4	03	5	-1.077e-3	2	3446.67	4	2018.954	
		12	min		2	019 005	12		1		3	NC	3	NC	9
593		12	max	0			4	.005	5	1.14e-3	2	3607.746		2113.342	
594		12	min	0	4	018	-	028		-9.851e-4			4		
595 596		13	max	<u> </u>	2	004 016	12	.004 026	5	1.078e-3 -8.932e-4	2	NC 3907	<u>3</u>	NC 2323.629	5
		4.4	min												
597		14		0	2	004	12	.002	1	1.016e-3	3	NC	3	NC	1
598		4.5	min	0	4	014	4	022	5	-8.012e-4	2	4405.631	4_	2705.081	5
599		15	max	0	2	003	12	.001	9	9.532e-4	3_	NC	1_	NC	1
600		40	min	0	4	012	4	018	5	-7.092e-4	2	5234.793	4_	3384.963	
601		16	max	0	2	002	12	0	9	8.908e-4	3	NC CZOO COE	1_	NC 4000 040	1
602		47	min	0	4	009	4	013	5	-6.172e-4	2	6708.605	4	4686.619	
603		17	max	0	2	002	12	0	9	8.505e-4	4	NC	1	NC 7040.050	1
604		40	min	0	4	006	4	008	5	-5.252e-4	2	9778.475	4	7648.253	
605		18	max	0	2	0	12	0	3	9.103e-4	4_	NC	1_	NC NC	1
606		4.0	min	0	4	003	4	003	5	-4.332e-4	2	NC	1_	NC	1
607		19	max	0	1	0	1	0	1	9.7e-4	4_	NC	1	NC NC	1
608			min	0	1	0	1	0	1	-3.413e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.