Biostatistics Week V

Ege Ülgen, M.D.

4 November 2021

Hypothesis Testing - Steps

1. Check assumptions, determine H_0 and H_a , choose α

- Assumptions differ based on the test
- The null hypothesis always contains equality (=)

2. Calculate the appropriate test statistic

• z, t, χ^2 , ...

3. Calculate critical values/p value

With the aid of precalculated tables/software

4. Decide whether to reject/fail to reject H₀

• Reject if the statistic is within the critical region/p $\leq \alpha$

	Decision		
H _o	Accept H ₀	Reject H ₀	
H ₀ is True	Correct decision	Type I Error α	
H ₀ is False	Type II Error B	Correct decision	

Reminder

$$test \ statistic = \frac{estimator - null \ value}{standard \ error \ of \ estimator}$$

Two-Sample t-Test

The two-sample t-test (also known as the independent samples t-test) is a method used to test whether the unknown population means of two groups are equal or not

Two-sample t-Test

$$H_0$$
: $\mu_X = \mu_Y$

$$H_a$$
: $\mu_X \neq \mu_Y$

or

$$H_0$$
: $\mu_X - \mu_Y = 0$

$$H_a$$
: μ_X - $\mu_Y \neq 0$

Two-sample t-Test

$$T = rac{ar{X} - ar{Y}}{\sqrt{rac{s_X^2}{n_X} + rac{s_Y^2}{n_Y}}} \sim t(m),$$

$$m = rac{(w_X + w_Y)^2}{\left(rac{w_X^2}{n_X - 1} + rac{w_Y^2}{n_Y - 1}
ight)}$$
 $w_X = s_X^2/n_X, \quad w_Y = s_Y^2/n_Y$

Two-sample t-Test – Example I

id	treatment	perc_benefit	id	treatment	<pre>perc_benefit</pre>
158	trt1	37.2549020	15	trt2	10.0978368
392	trt1	-4.3864459	143	trt2	0.5048635
457	trt1	-5.1075269	470	trt2	-0.8156940
487	trt1	36.7043369	536	trt2	50.000000
723	trt1	5.1303099	549	trt2	-3.0303030
832	trt1	3.1806616	750	trt2	-2.8977108
894	trt1	-3.9062500	891	trt2	26.3872135
1104	trt1	5.9443608	997	trt2	4.3651179
1283	trt1	-0.8601855	1000	trt2	2.3582125
1288	trt1	-3.1674208	1209	trt2	8.9702189

- Mean percentage benefit is 7.078674 for group 1, and 9.593976 for group 2
- Is the difference a significant one?

- 1. Check assumptions, determine H_0 and Ha, choose α
 - We check that the variables are normally distributed
 - H_0 : $\mu_1 = \mu_2$ H_a : $\mu_1 \neq \mu_2$
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$t = -0.3416(\sim t_{17.98834})$$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

95% confidence interval for $\mu_1 - \mu_2 = [-17.98, 12.95]$

 there is not enough evidence to say mean percentage benefit for treatment 1 and treatment 2 are significantly different

Two-sample t-Test – Example II

- In a study,
 - The sedimentation rate of 12 arthritis patients was measured:
 - $\bar{X}_1 = 82.79 \text{ mm and } s_1 = 18.4 \text{ mm}$
 - The sedimentation rate of 15 healthy controls was measured
 - \bar{X}_2 = 69.03 mm and s_2 = 21.4 mm
- Is there a difference between the mean sedimentation rates of the two groups?

- 1. Check assumptions, determine H_0 and Ha, choose α
 - We check that the variables are normally distributed
 - H_0 : $\mu_1 = \mu_2$ H_a : $\mu_1 \neq \mu_2$
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$t = 2.34 \quad (\sim t_{25})$$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

95% confidence interval for $\mu_1 - \mu_2 = [3.52, 33]$

 With 95% confidence, there is enough evidence to say that there is a difference between the mean sedimentation rates of the two groups

Two-sample t-Test – Example III

- "Morbidly obese patients undergoing general anesthesia are at risk of hypoxemia during anesthesia induction"
- A randomized controlled trial investigating:
- Does high-flow nasal oxygenation provide longer safe apnea time compared to conventional facemask oxygenation during anesthesia induction in morbidly obese surgical patients?

- Safe Apnea time in Control Group (n = 20)
 - $\overline{X_c} = 185.5$
 - $s_c = 53$
- Safe Apnea time in High-Flow Nasal Oxygenation Group (n = 20)
 - $\overline{X_T} = 261.4$
 - $s_T = 77.7$

- 1. Check assumptions, determine H_0 and Ha, choose α
 - We check that the variables are normally distributed
 - H_0 : $\mu_c = \mu_T$ H_a : $\mu_c \neq \mu_T$
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$t = 3.6$$
 (~ $t_{33.53}$)

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

Table 2.	Study Outcomes: Safe Apnea	Time, Minimum Spo ₂	, Plateau ETco ₂ , and	Time to Regain
Baseline	Spo ₂			

High-Flow Nasal				
	Control Group (n = 20)	Oxygenation Group $(n = 20)$	Mean Difference (95% CI)	P Value
Safe apnea time (s)	185.5 ± 53.0	261.4 ± 77.7	75.9 (33.3–118.5)	.001
Minimum Spo ₂ (%)	87.9 ± 4.7	90.9 ± 3.5	3.1 (0.4–5.7)	.026
Plateau ETco ₂ (mm Hg)	38.8 ± 2.5	37.9 ± 3.0	-0.8 (-2.6 to 0.9)	.33
Time to regain baseline Spo ₂ (s)	49.6 ± 20.8	37.3 ± 6.8	-12.3 (-22.2 to -2.4)	.016

Values represent mean ± SD.

Control group: facemask oxygenation.

Abbreviations: CI, confidence interval; ETco2, end-tidal carbon dioxide; Spo2, oxygen saturation measured by pulse oximetry.

"Safe apnea time was significantly longer (261.4 \pm 77.7 vs 185.5 \pm 52.9 seconds; mean difference [95% CI], 75.9 [33.3–118.5]; P = .001)..."

Brief Summary

Biostatistics Week V

Ege Ülgen, M.D.

4 November 2021

Hypothesis Testing - Steps

1. Check assumptions, determine H_0 and H_a , choose α

- Assumptions differ based on the test
- The null hypothesis always contains equality (=)

2. Calculate the appropriate test statistic

• z, t, χ^2 , ...

3. Calculate critical values/p value

With the aid of precalculated tables/software

4. Decide whether to reject/fail to reject H₀

• Reject if the statistic is within the critical region/p $\leq \alpha$

Analysis of Variance (ANOVA)

 Analysis of variance (ANOVA) is a statistical technique that is used to check if the means of two or more groups are significantly different from each other

ANOVA

 H_0 : $\mu_1 = \mu_2 = ... = \mu_n$ H_a : at least one μ_i is different

One-way ANOVA

Analysis of Variance(ANOVA)

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares (MS)	F
Within	$SS_w = \sum_{j=1}^k \sum_{j=1}^l (X - \overline{X}_j)^2$	$df_w = k-1$	$MS_{w} = \frac{SS_{w}}{df_{w}}$	$F = \frac{MS_b}{MS_w}$
Between	$SS_b = \sum_{j=1}^k (\overline{X}_j - \overline{X})^2$	$df_b = \mathbf{n} - \mathbf{k}$	$MS_b = \frac{SS_b}{df_b}$	
Total	$SS_t = \sum_{j=1}^n (\overline{X}_j - \overline{X})^2$	$df_t = n - 1$		

ANOVA

One-way ANOVA – Example I

Table 1: Percentage benefits for 5 patients from each treatment groups.

Treatment 1	Treatment 2	Treatment 3	Treatment 4
-7.2	-13.0	-3.8	7.0
2.5	-0.4	-2.7	1.5
1.4	-1.6	5.3	9.4
-0.7	4.9	-5.9	9.5
-0.9	-0.7	3.7	9.9

The hypothesis of interest is

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$

 H_1 : at least one is different from the others

- 1. Check assumptions, determine H_0 and H_a , choose α
 - Check that data is normally distributed
 - H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ H_a : at least one mean is different
 - $\alpha = 0.05$

2. Calculate the appropriate test statistic

Sources of variation	Sum of squares	degrees-of-freedom	Mean squared error	F	p-value
Between treatment					
Within treatment					
Total					

2. Calculate the appropriate test statistic

Step 1: Calculate the treatment means and grand mean:

$$\bar{x}_1 = \frac{-7.2 + 2.5 + 1.4 + (-0.7) + (-0.9)}{5} = -0.98$$

$$\bar{x}_2 = \frac{-13.0 + (-0.4) + (-1.6) + 4.9 + (-0.7)}{5} = -2.16$$

$$\bar{x}_3 = \frac{-3.8 + (-2.7) + (5.3) + (-5.9) + 3.7}{5} = 0.68$$

$$\bar{x}_4 = \frac{7.0 + 1.5 + 9.4 + 9.5 + 9.9}{5} = 7.46$$

$$\bar{x} = \frac{-7.2 + \dots + (-0.9) + (-13.0) + \dots + (-0.7) + (-3.8) + \dots + 3.7 + 7.0 + \dots + 9.9}{20} = 0.91$$

2. Calculate the appropriate test statistic

Step 3: Calculate between treatment sum of squared error:

$$5(-0.98 - 0.91)^2 + 5(-2.16 - 0.91)^2 + 5(0.68 - 0.91)^2 + 5(7.46 - 0.91)^2 = 292.138$$

Step 4: Calculate the total sum of squared error:

$$(-7.2 - 0.91)^2 + \dots + (-0.9 - 0.91)^2 + (-13.0 - 0.91)^2 + \dots + (-0.7 - 0.91)^2 + (-3.8 - 0.91)^2 + \dots + (3.7 - 0.91)^2 + (7.0 - 0.91)^2 + \dots + (9.9 - 0.91)^2 = 667.198$$

Step 5: Calculate the within-group sum of squared error as 667.198 - 292.138 = 375.06

2. Calculate the appropriate test statistic

Step 6: Total d.o.f.: 20 - 1, 19; between treatment d.o.f: 4-1=3; within treatment d.o.f.: 19-3=16

Step 7: Calculate mean sugared error for between treatment as 292.138/3=97.38

Step 8: Calculate mean squared error for within treatment as 375.06.198/16=23.44

Step 9: Calculate F value as 97.38/23.44=4.154

- 3. Calculate **rejection zone**/p value
- 4. Decide whether to reject/fail to reject H₀

- 3. Calculate rejection zone/p value
- 4. Decide whether to reject/fail to reject H₀

One-way ANOVA — Example II

THE LANCET, AUGUST 12, 1978

MEGALOBLASTIC HÆMOPOIESIS IN PATIENTS RECEIVING NITROUS OXIDE

J. A. L. Amess J. F. Burman G. M. REES D. G. NANCEKIEVILL

D. L. MOLLIN

Departments of Hæmatology, Cardiothoracic Surgery, and Anæsthetics, St. Bartholomew's Hospital, West Smithfield, London EC1A 7BE

- 22 patients who underwent coronary artery bypass graft surgery (CABG) are separated into 3 different treatment groups (different ventilation strategies)
- Is there a difference in red blood cell folic acid measurements at 24 hours between the 3 treatment groups?

Group I.—8 patients received approximately 50% nitrous oxide and 50% oxygen mixture continuously for 24 h. 1 patient received 2000 µg of hydroxocobalamin intramuscularly immediately before and after the operation.

Group II.—9 patients received approximately 50% nitrous oxide and 50% oxygen mixture only during the operation (5–12 h) and thereafter 35–50% oxygen for the remainder of the 24 h period.

Group III.—5 patients received no nitrous oxide but were ventilated with 35-50% oxygen for 24 h.

Group I	Group II	Group III
243	206	241
251	210	258
275	226	270
291	249	293
347	255	328
354	273	
380	285	
392	295	
	309	

- 1. Check assumptions, determine H_0 and H_a , choose α
 - Check that data is normally distributed
 - H_0 : $\mu_1 = \mu_2 = \mu_3$ H_a : at least one mean is different
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic
 - F = 3.71 $\sim F_{2.19}$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

p = 0.043631

• With 95% confidence, we can conclude that the mean RBC folic acid level of at least one group is significantly different than the others

Next, we perform 2-sample t-tests between all pairs of groups

Brief Summary

- Analysis of variance (ANOVA) is a statistical technique that is used to check if the means of two or more groups are significantly different from each other
 - ANOVA checks the impact of one or more factors by comparing the means of different samples
 - One-way ANOVA checks the impact of one factor
- Pairwise two-sample t-tests can then be used to determine which group(s) is different