

دانشكده مهندسي كامپيوتر

پرسش و پاسخ تصویری

گزارش سمینار برای دریافت درجه کارشناسی ارشد در رشته مهندسی کامپیوتر گرایش هوش مصنوعی

مریم سادات هاشمی

استاد راهنما

سيد صالح اعتمادي

دی ۱۳۹۹

چکیده

چکیدہ

واژگان کلیدی: واژگان کلیدی

فهرست مطالب

ج																هرست تصاوير
چ																هرست جداول
١																صل ۱: مقدمه
١																١_١ شرح مسئله
۲						•										۱_۲ کاربرد و اهمیت مسئله
٣						•										۱ ـ ۳ بررسی چالشهای موجود در این مسئله .
۴						•										۱ ـ ۴ بررسي مجموعه دادگان مطرح اين حوزه
۴																۱ _ ۴ _ ۱ مجموعه داده DAQUAR
۵																۱ _ ۴ _ ۲ مجموعه داده VQA [۳] [۳]
٧												•		۵	۶	ا ۴_۳ مجموعه داده Visual Madlibs
٧																۱ ـ ۴ ـ ۴ مجموعه داده Visual7w
٨								•				•				۱ _ ۴ _ ۵ مجموعه داده CLEVR مجموعه
٩																۱ _ ۴ _ ۶ مجموعه داده Tally-QA ا
٠																۱ _ ۴ _ ۷ مجموعه داده KVQA .
١										ی	ۣیر	ہو	تص	خ	<u>۔</u>	۱ ۵ تقویت مجموعهداده در مسئله پرسش و پاس
٣						•		•	(ری	یر	ہو	تص	خ	ســـــــــــــــــــــــــــــــــــــ	۱ _ ۶ بررسی فازهای مختلف مسئله پرسش و پاس
٣											ل	وا	w	و	بر	۱_9_۱ فاز ۱ : استخراج ویژگی از تصوی
.,												t	í			

<u>ن</u>	فهرست مطالب
	مهرست معابب

19	١_٤_٣فاز٣: توليد جواب
19	۱ _۷ شبکه های از قبل آموزش دیده بر روی زبان طبیعی و تصویر
۲۰	۱ _ ۸ معیارهای ارزیابی مسئله پرسش و پاسخ تصویری
۲۱	۱ _ ۸ _ ۱ معیار دقت
۲۱	۲ _ ۸ _ ۲ معیار شباهت Wu-Palmer معیار شباهت
۲۲	۱_۸_۳معیار اجماع
۲۲	[Y1]MPT%_A_1
۲۲	[٣۵]BLEU۵_٨_1
۲۳	
۲۳	۱ _ ۹ چگونگی ساخت مجموعه داده حاوی پرسش و پاسخ به زبان فارسی
74	راجع
٣.	اژەنامە فارسى بە انگليسى
٣١	اژهنامه انگلیسی به فارسی

فهرست تصاوير

۲	مثالی از سیستم پرسش و پاسخ متنی و تصویری	1-1
۵	چند نمونه از مجموعهداده DAQUAR [۳۰]	۲_۱
۶	چند نمونه از مجموعهداده VQA v1 - real (۳) عید نمونه از مجموعهداده	
۶	چند نمونه از مجموعهداده VQA v1 - abstarct چند نمونه از مجموعهداده	
٧	چند نمونه از مجموعهداده VQA v2 [۱۳]	۵_۱
٨	یک نمونه از مجموعهداده Visual Madlibs یک نمونه از مجموعهداده	۶_۱
	چند نمونه از مجموعهداده Visual7W [۵۸]. ردیف اول،پاسخهای سبز رنگ، پاسخ	٧_١
	صحیح هستند و پاسخهای قرمز پاسخهای نادرست تولید شده توسط انسان است. ردیف	
٩	دوم، کادر زرد جواب صحیح است و کادرهای قرمز پاسخهای اشتباه انسانی است	
١.	چند نمونه از مجموعهدادهCLEVR [۱۹]	۸_۱
	چند نمونه از مجموعهداده Tally-QA). عكس سمت چپ يك نمونه از سوالات ساده و	۹_۱
١.	عكس سمت راست يك نمونه از سوالات پيچيده است	
۱۱	۱چند نمونه از مجموعهدادهKVQA [۴۱]	٠_١
18	۱ معماری شبکه CBOW و Skip-gram	

فهرست جداول

۴.	بررسی اجمالی مجموعه داده های معروف در حوزه پرسش و پاسخ تصویری	1-1
	الگوهای استفاده شده برای تولید سوال در مجموعهداده DAQUAR. سوالات می تواند در	۲_۱
۵.	مورد یک تصویر و یا مجموعهای از تصاویر باشد [۳۰]	
	بررسی اجمالی مهمترین شبکههای عصبی کانولوشنی که بر روی مجموعهداده ImageNet	۳_۱
۱۴.	آموزش داده شده	
۱۵.	شبکههای عصبی کانولوشنی استفاده شده در مدلهای پرسش و پاسخ تصویری	۴_۱
١٨.	word embedding های استفاده شده در مدلهای برسش و باسخ تصویری	۵_۱

فصل ١

مقدمه

۱ ـ ۱ شرح مسئله

در سالهای اخیر پیشرفتهای زیادی در مسائل هوش مصنوعی و یادگیری عمیق که در تقاطع دو حوزه پردازش زبان طبیعی و بینایی ماشین قرار می گیرند؛ رخ داده است. یکی از مسائلی که اخیراً مورد توجه قرارگرفته است؛ پرسش و پاسخ تصویری است. با توجه به یک تصویر و یک سؤال به زبان طبیعی، سیستم سعی می کند با استفاده از عناصر بصری تصویر و استنتاج جمع آوری شده از سوال متنی، پاسخ صحیح را پیدا کند [۳۲]. پرسش و پاسخ تصویری نسخه گسترش یافته مسئله پرسش و پاسخ متنی است است که اطلاعات بصری به مسئله اضافه شده است. شکل ۱ ـ ۱ گویای تفاوت این دو مسئله است.

در سیستم پرسش و پاسخ متنی، یک متن و یک سوال متنی به عنوان ورودی به سیستم داده می شود و انتظار می رود که سیستم با توجه به درک و تفسیری که از متن و سوال بدست می آورد؛ یک جواب متنی را خروجی دهد. اما در سیستم پرسش و پاسخ تصویری، یک تصویر و یک سوال متنی به ورودی سیستم داده می شود و انتظار می رود که سیستم بتواند با استفاده از عناصر بصری تصویر و تفسیری که از سوال بدست می آورد؛ یک پاسخ متنی را در خروجی نشان دهد.

مسئله پرسش و پاسخ تصویری پیچیدگی بیشتری نسبت به مسئله پرسش و پاسخ متنی دارد زیرا تصاویر بعد بالاتر و نویز بیشتری نسبت به متن دارند. علاوه بر این، تصاویر فاقد ساختار و قواعد دستوری زبان هستند. در نهایت هم، تصاویر غنای بیشتری از دنیای واقعی را ضبط میکنند، در حالی که زبان طبیعی در حال حاضر

شکل ۱ ـ ۱: مثالی از سیستم پرسش و پاسخ متنی و تصویری

نشانگر سطح بالاتری از انتزاع دنیای واقعی است [۵۳].

۱ کاربرد و اهمیت مسئله

در طی سالهای متمادی، محققان به دنبال ساخت ماشینهایی بودند که به اندازه ی کافی باهوش باشند که از آن به طور موثر همانند انسانها برای تعامل استفاده کنند. مسئله ی پرسش و پاسخ تصویری یکی از پلههای رسیدن به این رویای هوش مصنوعی است و از این جهت حائز اهمیت است.

کاربردهای بسیاری برای پرسش و پاسخ تصویری وجود دارد. یکی از مهمترین موارد دستیار هوشمند برای افراد کمبینا و نابینا است [۱۴]. علاوه بر این، در سال های اخیر دستیاران صوتی و عاملهای گفتگو کانند مانند که میتوانند با انسانها با استفاده از زبان طبیعی میتوانند با انسانها با استفاده از زبان طبیعی ارتباط برقرار کنند. در حال حاضر این دستیاران با استفاده از صوت و متن این ارتباط را برقرار میکنند در نتیجه گفتگوی بین این دستیاران با انسانها مشابه دنیای واقعی نمیباشد. این ارتباط را میتوان با استفاده از دادههای تصویری و ویدئویی به واقعیت نزدیکتر کرد. اینجاست که مسئلهی پرسش و پاسخ تصویری برای نزدیک کردن تعامل بین انسان و عاملهای گفتگو به دنیای واقعی میتواند موثر باشد. همین موضوع را میتوانیم به صورت گسترده تری در رباتها مشاهده کنیم. برای اینکه ربات بتواند بهتر با انسانها ارتباط

Voice Assistants \

Conversational Agents

برقرار کند و به سوالات و درخواستها پاسخ دهد؛ نیاز دارد که درک و فهم درستی از اطراف داشته باشد که این مستلزم داشتن تصویری دقیق از پیرامون است. بنابراین این ربات میتواند برای پاسخ به پرسشها از دانشی که از طریق تصویر پیرامون خود بدست میآورد، جواب درستی را بدهد.

کاربرد دیگر این مسئله در پزشکی است. در بسیاری از موارد تحلیل تصاویر پزشکی مانند تصاویر کاربرد دیگر این مسئله در پزشکی متخصص هم دشوار است. اما یک سیستم پرسش و پاسخ تصویری می تواند با تحلیل و تشخیص موارد غیرطبیعی موجود در تصویر، به عنوان نظر دوم به پزشک متخصص کمک کند. از طرفی ممکن است در بعضی اوقات بیمار دسترسی به پزشک را نداشته باشد تا شرح تصاویر را متوجه شود. وجود سیستم پرسش و پاسخ تصویری می تواند آگاهی بیمار را نسبت به بیماری افزایش دهد و از نگرانی او بکاهد [۴۷].

Υ_{-} بررسی چالشهای موجود در این مسئله

در مقایسه با مسائل دیگری که مشترک بین پردازش زبان طبیعی و بینایی ماشین است مانند توصیف تصویر 7 و بازیابی متن به تصویر 7 ، مسئله پرسش و پاسخ تصویری چالش برانگیزتر است زیرا (۱) سوالات از پیش تعیین نشده است. به این معنی که در مسئلهای مانند تشخیص اشیا، سوال این است که چه اشیایی در تصویر وجود دارد و این سوال از پیش تعیین شده است و در طول حل مسئله تغییر نمی کند و تنها تصویر تغییر می کند که منجر به پاسخها متفاوت می شود. اما در پرسش و پاسخ تصویری، برای هر تصویر سوالات متفاوت و مرتبط با همان تصویر پرسیده می شود که در زمان اجرا تعیین می شود. (۲) اطلاعات موجود در تصویر ابعاد بالایی دارد که پردازش آنها به زمان و حافظه زیادی نیاز دارد. (۳) مسئله پرسش و پاسخ تصویری نیاز به حل مسائل پایهای و فرعی دارد مانند تشخیص اشیا 6 (آیا در تصویر سگ وجود دارد؟)، تشخیص فعالیت 7 (آیا کودک گریه می کند؟)، طبقه بندی صفات 7 (چتر چه رنگی است؟)، شمارش (چند نفر در تصویر وجود دارد؟)، طبقه بندی صحنه 7 (هوا بارانی است؟) و روابط مکانی بین اشیا (چه چیزی بین گربه و مبل است؟).

Image Captioning*

Text-to-image Retrieval^{*}

Object Detection^b

Activity Recognition⁹

Attribute Classification V

Scene Classification^A

سال انتشار	تعدادسوالات	تعداد تصاوير	مجموعهداده
7.14	17491	1444	[r·]DAQUAR
7.10	814184	7.471	[٣]VQA v1
7.10	891	١٠٧٣٨	[\$\delta \beta \] Visual Madlibs
7.19	77.1104	474	[A Nisual7w
7.17	11.09.4	7.471	[\\mathbf{r}]VQA v2
7.17	104004	1	[\¶]CLEVR
7.19	W.59.V	180	[\] Tally-QA
7.19	١٨٣٠٠٧	745.7	[۴1]KVQA

جدول ۱ ـ ۱: بررسی اجمالی مجموعه داده های معروف در حوزه پرسش و پاسخ تصویری.

۱ _ ۴ بررسی مجموعه دادگان مطرح این حوزه

در این بخش به معرفی مجموعهدادههای مشهور در حوزه ی پرسش و پاسخ تصویری می پردازیم و ویژگیهای هر کدام را بررسی خواهیم کرد. در جدول ۱ ـ ۱ اطلاعات آماری این مجموعهدادهها به صورت خلاصه آمدهاست.

۱_۴_۱ مجموعه داده DAQUAR

DAQUAR مخفف DAQUAR مخفف VQA منتشرشده است. این اولین مجموعه داده ای است که برای مسئله VQA منتشرشده است. تصاویر از مجموعه داده ای است که برای مسئله VQA منتشرشده است. تصاویر از مجموعه داده کوچک است و در مجموع ۱۴۴۹ تصویر دارد. NYU-Depth V2 شامل ۱۴۴۹ زوج پرسش و پاسخ با ۲۴۸۳ سوال منحصر به فرد است. برای تولید پرسش و پاسخ ها از دو روش مصنوعی و انسانی استفاده شده است. در روش مصنوعی پرسش و پاسخ ها به صورت خود کار از الگوهای موجود در جدول ۱ – ۲ تولید شده است. در روش دیگر از ۵ نفر انسان خواسته شده است تا پرسش و پاسخ تولید کنند. تعداد پرسش و پاسخ های آموزشی در این مجموعه داده ۶۷۹۴ و تعداد پرسش و پاسخ های تست ۹۶۴ است و به طور میانگین برای هر عکس تقریبا ۹ پرسش و پاسخ وجود دارد. این مجموعه داده با مشکل بایاس روبه رو است زیرا تصاویر این مجموعه تنها مربوط به داخل خانه است و بیش از مجموعه داده با مشکل بایاس روبه رو است زیرا تصاویر این مجموعه تنها مربوط به داخل خانه است و بیش از مورد وجود دارد که اشیایی مثل میز و صندلی در پاسخ ها تکرارشده است.

جدول ۱ _ ۲: الگوهای استفاده شده برای تولید سوال در مجموعه داده DAQUAR. سوالات می تواند در مورد یک تصویر و یا مجموعه ای از تصاویر باشد [۳۰] .

نمونه	الگو	توضيح	
How many cabinets are in image1?	How many {object} are in {image id}?	شمارشي	منفرد
How many gray cabinets are in image1?	How many {color} {object} are in {image id}?	شمارش <i>ی</i> و رنگ	منفرد
Which type of the room is depicted in image1?	HWhich type of the room is depicted in {image id}?	نوع اتاق	منفرد
What is the largest object in image1?	What is the largest {object} in {image id}?	صفآت عالى	منفرد
How many black bags?	How many {color} {object}?	شمارش <i>ی</i> و رنگ	مجموعهاي
Which images do not have sofa?	Which images do not have {object}?	نفی نوع ۱	مجموعهاي
Which images are not bedroom?	Which images are not {room type}?	نفی نوع ۲	مجموعهاي
Which images have desk but do not have a lamp?	Which images have {object} but do not have a {object}?	نفی نوع ۳	مجموعهاي

QA: (What is the object on the counter in QA: (How many doors are open?, 1) the corner?, microwave)

QA: (Where is oven?, on the right side of refrigerator)

شكل ١ _ ٢: چند نمونه از مجموعهداده DAQUAR

۲_4_۱ مجموعه داده VQA [۳] [۱۳]

مجموعهداده (Visual Question Answering v1(VQA v1 مجموعهداده الاستراكين مجموعهداده المتاكين مجموعهداده المتاكين پرسش و پاسخ تصویری است. این مجموعهداده شامل دو بخش است. یک بخش از تصاویر واقعی ساخته شده است که VQA-real نام دارد و بخش دیگر با تصاویر کارتونی ساخته شده است که با نام -VQA abstract از آن در مقالات باد می شود.

VQA-real به ترتیب شامل ۱۲۳۲۸۷ تصویر آموزشی و ۸۱۴۳۴ تصویر آزمایشی است که این تصاویر از مجموعه داده MS-COCO [۲۵] تهیه شده است. برای جمع آوری پرسش و پاسخ از نیروی انسانی استفاده شده است. برای هر تصویر حداقل ۳ سوال منحصربهفرد وجود دارد و برای هر سوال ۱۰ پاسخ توسط کاربرهای منحصر به فرد جمع آوری شده است. این مجموعه داده شامل ۴۱۴۱۶۳ سوال به صورت open-ended و چندگزینه ای است. در [۳] بررسی دقیقی در مورد نوع سوالات، طول سوالات و پاسخها و غیره انجامشدهاست.

https://visualga.org/

مجموعهداده از بین بردن نیاز به تجزیه و تحلیل تصاویر واقعی است تا مدلها برای پاسخ به سوالات تمرکز خود مجموعهداده از بین بردن نیاز به تجزیه و تحلیل تصاویر واقعی است تا مدلها برای پاسخ به سوالات تمرکز خود را بر روی استدلالهای سطح بالاتری بگذارند. تصاویر کارتونی در این مجموعهداده به صورت دستی توسط انسانها و به وسیلهی رابط کاربری که از قبل آماده شده است؛ ساخته شده است. تصاویر می تواند دو حالت را نشان دهند: داخل خانه و خارج از خانه که هر کدام مجموعه متفاوتی از عناصر را شامل می شوند از جمله کروانات، اشیا و انسانها با حالتهای مختلف. در مجموع ۲۰۰۰ تصویر ایجاد شده است. مشابه -۷۷۸ حیوانات، اشیا و انسانها با حالتهای مختلف. در مجموع ۲۰۱۰ تصویر ایجاد شده است. مشابه -۷۷۸ سوال برای هر تصویر (یعنی در کل ۱۵۰۰۰ سوال) و برای هر سوال ۱۰ پاسخ جمع آوری شده است. مجموعه داده ۱۷۷۸ VQA v1 نسبت به ۷۷۹ VQA v2 متوازن تر است و تعصبات زبانی در ۷۷۸ v1 کاهش داده است. مجموعه داده ۷۷۸ VQA v2 نسبت به ۷۷۸ VQA v2 متوازن تر است و تعصبات زبانی در مجموعه داده ۷۷۸ VQA v2 نسبت به ۷۷۸ VQA v2 تقریبا دو برابر مجموعه داده ی ۷۷۸ VQA v2 تقریبا دو برابر مجموعه داده ی ۷۷۸ VQA v2 است. در مجموعه داده ی ۷۷۸ VQA v2 تقریبا برای هر سوال دارند.

Q: What shape is the bench seat?

A: oval, semi circle, curved, curved, double curve, banana, curved, wavy, twisting, curved

Q: What color is the stripe on the train?

A: white, white, white, white, white, white, white, white

Q: Where are the magazines in this picture?

A: On stool, stool, on stool, on bar stool, on table, stool, on stool, on chair, on bar stool, stool

شکل ۱ ـ ۳: چند نمونه از مجموعهداده VQA v1 - real [۳]

Q: Who looks happier?. A: old person, man, man, man, old man, man, man, man, man, grandpa

Q: Where are the flowers?
A: near tree, tree, around tree, tree, by tree, around tree, around tree, grass, beneath tree, base of tree

Q: How many pillows? A: 1, 2, 2, 2, 2, 2, 2, 2, 2, 2

شکل ۱ _ ۴: چند نمونه از مجموعهداده VQA v1 - abstarct شکل

Who is wearing glasses?

Is the umbrella upside down?

How many children are in the bed?

[17] VQA v2 شکل - 2: چند نمونه از مجموعهداده

Visual Madlibs مجموعه داده $^{-}$

مجموعه داده Visual Madlibs شکل متفاوتی از پرسش و پاسخ را ارائه می دهد. برای هر تصویر جملاتی در نظرگرفته شدهاست و یک کلمه از آن که معمولا مربوط به آدم، اشیا و فعالیتهای نمایش دادهشده در تصویر است؛ از جمله حذفشده و به جای آن جای خالی قرارگرفتهاست. پاسخها کلماتی هستند که این جملات را تكميل ميكنند. براي مثال جمله "دو [جايخالي]در پارك [جايخالي] بازيميكنند. "در وصف يك تصوير بیانشدهاست که با دو کلمه "مرد" و "فریزبی" میتوان جاهای خالی را پرکرد. این مجموعهداده شامل ۱۰۷۳۸ تصویر از مجموعهداده MS-COCO ایست. جملات با جای خالی به طور خودکار و با استفاده از الگوهای از پیش تعیین شده تولید شدهاند. پاسخها در این مجموعه داده به هر دو شکل open-ended و چندگزینهای است.

$[\Delta \Lambda]$ Visual7w مجموعه داده

مجموعهداده Visual7W نيز بر اساس مجموعهداده MS-COCO الالالالاته ساخته شده است. اين مجموعهداده شامل ۴۷۳۰۰ تصویر و ۳۲۷۹۳۹ جفت سوال و پاسخ است. این مجموعهداده همچنین از ۱۳۱۱۷۵۶ پرسش و پاسخ چندگزینهای تشکیل شدهاست که هر سوال ۴ گزینه دارد و تنها یکی از گزینه ها پاسخ صحیح سوال است. برای جمع آوری سوالات چندگزینه ای توسط انسان ها از پلتفرم آنلاین Amazon Mechanical Turk استفاده شده است. نکته ی حائز اهمیت در این مجموعه داده این است که تمامی اشیایی که در متن پرسش یا

- 1. This place is a park
- 2. When I look at this picture, I feel competitive.
- 3. The most interesting aspect of this picture is the guys playing shirtless.
- 4. One or two seconds before this picture was taken, the person caught the frisbee.
- 5. One or two seconds after this picture was taken, the guy will throw the frisbee.
- 6. Person A is wearing blue shorts
- 7. Person A is in front of person B
- 8. Person A is blocking person B.
- 9. Person B is a young man wearing an orange hat
- 10. Person B is on a grassy field.
- 11. Person B is holding a frisbee.
- 12. The frisbee is white and round.
- 13. The frisbee is in the hand of the man with the orange cap.
- 14. People could throw the frisbee.
- 15. The people are playing with the frisbee

شکل ۱ _ ۶: یک نمونه از مجموعهداده Visual Madlibs شکل ۱

پاسخ ذکرشدهاست، به نحوی به کادر محدودکننده ی آن شی در تصویر مرتبط شدهاست. مزیت این روش، رفع ابهامهای موجود در متن است. همان طور که از نام این مجموعه داده پیداست؛ سوالات آن با ۷ کلمه ی why who when where what کلمه شامل که حرف اول آن w است شروع می شود. این ۷ کلمه شامل که حرف اول آن w است. پرسشی که حرف اول آن wighalaw نسبت به به مجموعه داده VQA v1 غنی تر و سخت تر است. همچنین پاسخها طولانی تر هستند.

۱_۴_۱ مجموعه داده CLEVR مجموعه

CLEVR یک مجموعهداده برای ارزیابی درک بصری سیستمهای VQA است. تصاویر این مجموعهداده با استفاده از سه شی استوانه، کره و مکعب تولیدشدهاست. برای هر کدام از این اشیا دو اندازه متفاوت، دو جنس متفاوت و هشت رنگ مختف در نظر گرفته شده است. سوالات هم به طور مصنوعی بر اساس مکانی که اشیا در تصویر قرار گرفته اند؛ ایجاد شدهاست. سوالات در CLEVR به گونهای طراحیشدهاست که جنبههای مختلف استدلال بصری توسط سیستمهای VQA را مورد ارزیابی قرار می دهد از جمله شناسایی ویژگی، شمارش اشیا، مقایسه، روابط مکانی اشیا و عملیات منطقی. در این مجموعهداده مکان تصاویر نیز با

What endangered animal is featured on the truck?

- A bald eagle.
- A: A sparrow.
 A: A humming bird.
 A: A raven.

Q: Where will the driver go if turning right?

- Onto 24 3/4 Rd. A: Onto 25 3/4 Rd.
- A: Onto 23 3/4 Rd.

Q: When was the picture

- A: During a wedding.
- A: During a bar mitzvah.
 A: During a funeral.
 A: During a Sunday church

Q: Who is under the umbrella?

- A: Two women.
- A: A child.
 A: An old man.
- A: A husband and a wife.

Q: Why was the hand of the Q: How many magnets are woman over the left shoulder of the man?

- A: They were together and engaging in affection.
- A: The woman was trying to get the man's attention.
 A: The woman was trying to scare the man.
- A: The woman was holding

on the bottom of the

computer in the corner?

Q: Which doughnut has

شكل ١ _٧: چند نمونه از مجموعهداده Visual7W [۵۸]. رديف اول، پاسخ هاى سبز رنگ، پاسخ صحيح هستند و پاسخهای قرمز پاسخهای نادرست تولید شده توسط انسان است. ردیف دوم، کادر زرد جواب صحیح است و کادرهای قرمز پاسخهای اشتباه انسانی است.

استفاده ازیک مستطیل مشخص شدهاست.

۲_۴_۱ مجموعه داده Tally-QA

در سال ۲۰۱۹، مجموعه داده Tally-QA منتشر شد که بزرگترین مجموعه داده پرسش و پاسخ تصویری برای شمارش اشیا است. اکثر مجموعه داده های شمارش اشیا در پرسش و پاسخ تصویری دارای سوالات ساده هستند که برای پاسخدادن به این سوالها تنها کافی است که اشیا در تصویر تشخیص داده شوند. بنابراین، این موضوع باعث ایجاد مجموعه دادهی Tally-QA شد که علاوه بر سوالات ساده، سوالات پیچیده را نیز در بر می گیرد که برای پاسخ دادن به آنها به استدلال بیشتری از تشخیص اشیا نیاز است. تعداد سوالات ساده در Tally-QA برابر با ۲۱۱۴۳۰ و تعداد سوالات پیچیده برابر با ۷۶۴۷۷ است. سوالات ساده این مجموعهداده از مجموعهداده های دیگری (Vy VQA v2 [۱۳] و Visual Genome) برداشته شده است و سوالات پیچیده با استفاده از ۸۰۰ کاربر انسانی از طریق پلتفرم آنلاین Amazon Mechanical Turk جمع آوری شده است. مجموعه داده Tally-QA به سه بخش آموزش و تست_ساده و تست_پیچیده تقسیم می شود. بخش تست_

Q: How big is the gray Q: There is a purple rubber object that is ball that is the same behind the big shiny size as the red cylinthing behind the big der; what material is metallic thing that is it? on the left side of the purple ball?

A: metal

Q: There is a tiny Q: What is the shape rubber thing that is of the tiny green thing the same color as the that is made of the metal cylinder; what same material as the shape is it?

A: cylinder

A: cylinder

Q: There is a small Q: Is the size of the ball that is made of red rubber sphere the the same material as same as the purple the large block; what color is it?

A: blue

A: yes

شكل ١ ـ ٨: چند نمونه از مجموعهداده CLEVR [١٩]

ساده تنها شامل سوالات ساده و بخش تست_پیچیده تنها دارای سوالات پیچیدهای است که از Amazon ساده تنها شامل سوالات بیچیدهای است.

"How many giraffes?"

"How many giraffes are drinking water?"

شکل 1 - 9: چند نمونه از مجموعه داده Tally-QA، عکس سمت چپ یک نمونه از سوالات ساده و عکس سمت راست یک نمونه از سوالات پیچیده است.

۱_۴_۱ مجموعه داده KVQA مجموعه

مجموعه داده KVQA که مخفف KVQA که مخفف KVQA است در سال ۲۰۱۹ است در سال ۲۰۱۹ است در سال ۲۰۱۹ طراحی شده است به طوری که بر خلاف مجموعه داده های قبلی، برای پیدا کردن پاسخ سوالات نیاز به دانش خارجی دارد. بدین منظور این مجموعه داده شامل ۱۸۳ هزار پرسش و پاسخ در مورد ۱۸ هزار شخص معروف

شامل ورزشکاران، سیاستمداران و هنرمندان است. اطلاعات و تصاویر مرتبط با این اشخاص از Wikidata و شامل ورزشکاران، سیاستمداران و هنرمندان است. اطلاعات و تصاویر است. این مجموعهداده به صورت تصادفی به سه بخش آموزش، ارزیابی و آزمون به ترتیب با نسبت های 0.7 ، 0.2 و 0.1 تقسیم شده است. تنوع پرسش و پاسخ ها در KVQA به گونهای در نظر گرفته شده است که مشکل همیشگی بایاس در مجموعهدادههای پرسش و پاسخ تصویری، در این مجموعه داده وجود نداشته باشد.

(a) *Wikipedia caption*: Khan with United States Secretary of State Hillary Clinton in 2009.

Q: Who is to the left of Hillary Clinton? (spatial)
A: Aamir Khan

Q: Do all the people in the image have a common occupation? (multi-entity, intersection, I-hop, Boolean)
A: No

(b) *Wikipedia caption*: Cheryl alongside Simon Cowell on The X Factor, London, June 2010.

Q: What is the age gap between the two people in the image? (multi-entity, subtraction, 1-hop)

A: 24 years

Q: How many people in this image were born in United Kingdom? (1-hop, multi-entity, counting)
A: 2

(c) Wikipedia caption: BRICS leaders at the G-20 summit in Brisbane, Australia, 15 November 2014

Q: Were all the people in the image born in the same country? (Boolean, multi-entity, intersection)
A: No

Q: Who is the founder of the political party to which person second from left belongs to? (spatial, multi-back Newson Presed Mockarica

A: Syama Prasad Mookerjee

(d) *Wikipedia caption*: Serena Williams and Venus Williams, Australian Open 2009.

Q: Who among the people in the image is the eldest? (multi-entity, comparison)
A: **Person in the left**

Q: Who among the people in the image were born after the end of World War II? (multi-entity, multi-relation, comparison)
A: Both

شکل ۱ ـ ۱۰: چند نمونه از مجموعهداده KVQA (۴۱

ا کے تصویری مجموعه داده در مسئله پرسش و پاسخ تصویری $\Delta = 1$

به لطف توسعه سریع شبکههای عصبی عمیق مسئله پرسش و پاسخ تصویری به موفقیتهای بزرگی دست یافته است. مطالعات نشان می دهد که عملکرد شبکههای عصبی عمیق به میزان دادههای آموزشی بستگی دارد و همیشه از دادههای آموزشی بیشتر سود می برند. یکی از ترفندهای اصلی در شبکههای عصبی عمیق تقویت داده ۱۰ است که به طور گسترده در بسیاری از مسائل پردازش تصویر و بینایی ماشین مورد استفاده قرار می گیرد. اما مقالات کمی وجود دارد که مسئله تقویت داده را در پرسش و پاسخ تصویری بررسی کردهاند.

data augmentation \.

یکی از چالشهای تقویت داده در مسئله پرسش و پاسخ تصویری این است که هیچ یک از روشهای تقویت داده مبتنی بر تصویر مانند چرخش ۱۱ و ورق زدن ۱۲ نمی توانند مستقیماً بر روی مسئله پرسش و پاسخ تصویری اعمال شود زیرا ساختار معنایی آن حفظ نخواهد شد. به عنوان مثال با چرخش یک تصویر ممکن است پرسش و پاسخ مرتبط با آن (مانند «ماشین در سمت چپ یا راست سطل زباله است؟») دیگر درست نباشد.

در [۲۲] برای اولین بار دو روش برای تقویت داده در مسئله پرسش و پاسخ تصویری پیشنهاد شد. در روش اول برای تولید پرسش و پاسخ از الگو استفاده می شود. برای تولید الگو از حاشیه نویسی ۱۳ موجود در مجموعه داده استفاده می شود. با استفاده از این روش ۴ نوع سوال تولید می شود: (۱) سوالات بله و خیر (۲) سوالات شمارشی (۳) تشخیص شی، صحنه و یا فعالیت (۴) تشخیص ورزش. برای مثال برای تولید سوالات بله و خیر، با استفاده از حاشیهنویسی موجود در مجموعه داده لیستی از اشیا موجود در تصویر آماده می شود. سپس اگر محدوده مربوط به اشیا بزرگتر از ۲۰۰۰ پیکسل باشد، سوالی مانند « آیا [شی] در تصویر وجود دارد؟» تولید می شود که پاسخ آن هم «بله» است. به همین ترتیب با استفاده از دانشی که از مجموعه داده ميتوان بدست آورد؛ براي ساير انواع سوالات الگويي براي توليد سوال و پاسخ آن توليد مي شود. يكي از مشكلات این روش برای تقویت داده این است كه سوالات تولید شده انعطافپذیر نیستند و ممكن است شباهت زیادی به نحوهی طرح سوالات موجود در مجموعهداده نداشته باشند. به همین علت، روش دیگری در [۲۲] مبتنی بر LSTM برای تولید سوال برای هر تصویر پیشنهاد شده است. این شبکه از دو لایه LSTM تشکیل شده است که هر کدام دارای ۱۰۰۰ واحد مخفی است و پس از آنها نیز دو لایهی کاملا متصل که هر كدام ۷۰۰۰ نورون مخفى دارند(برابر با تعداد واژگان) ساخته شده است. براي توليد سوال، در ابتدا توكن شروع سوال به همراه ویژگیهای تصویر به شبکه داده می شود. برای هر تصویر ۳۰ سوال تولید می شود که تنها سه تا از پرتکرارترین سوالات نگه داشته می شود. برای پیدا کردن جواب سوالهای تولیده شده توسط شبکه LSTM از یک شبکهی ساده MLP که در [۲۰] پیشنهاد شده است؛ استفاده شده است. در [۲۲] نشان دادند که استفاده از این دو روش برای تقویت دادهها منجر به بهبود عملکرد روشهای موجود برای حل مسئله پرسش و پاسخ تصویری میشود.

اخیرا در [۴۸] برای تقویت داده روشی مبتنی بر تولید نمونه های خصمانه ۱۴ پیشنهاد شده است که بر

rotation 11

flipping \f

annotation 17

adversarial examples \\

خلاف کارهای قبلی، تقویت داده هم برای تصاویر و هم برای سوالات انجام میشود.

۱ _ ۶ بررسی فازهای مختلف مسئله پرسش و پاسخ تصویری

بسیاری از محققان راه حلها یا الگوریتمهایی را برای حل مسئله پرسش و پاسخ تصویری پیشنهاد کردهاند که به طور کلی می توان آن را به یک فرآیند سه فازی تقسیم بندی کرد. فاز اول این فرآیند استخراج ویژگی از تصویر و سوالات است که راه حلهای موفق در این فاز ریشه در روزهای باشکوه یادگیری عمیق دارد زیرا بیشتر راه حلهای موفق در این حوزه از مدلهای یادگیری عمیق استفاده می کنند مانند CNN ها برای استخراج ویژگی از سوالات. در فاز دوم که ویژگی از تصویر و RNN ها و انواع آن (GRU و LSTM) برای استخراج ویژگی از سوالات. در فاز دوم که مهم ترین و اصلی ترین فاز می باشد، ویژگی های استخراج شده از تصویر و سوال باهم ترکیب می شوند. سپس از ترکیب ویژگی ها برای تولید پاسخ نهایی در فاز سوم استفاده می شود.

۱ ـ ۶ ـ ۱ فاز ۱: استخراج ویژگی از تصویر و سوال

استخراج ویژگی از تصویر و سوال مرحلهی مقدماتی در پرسش و پاسخ تصویری است. ویژگی تصویر، تصویر را به عنوان یک بردار عددی توصیف میکند تا بتوان به راحتی عملیاتهای مختلف ریاضی را بر روی آن اعمال کرد. روشهای زیادی وجود دارد که به صورت مستقیم از تصویر ویژگی استخراج میکنند مانند بردار ساده SIFT، RGB ، تبدیل HAAR و HOG. اما با ظهور شبکههای یادگیری عمیق، نیاز به استخراج ویژگی به صورت مستقیم از بین رفت زیرا این شبکهها قادر به یادگیری ویژگی هستند. آموزش مدلهای یادگیری عمیق به منابع محاسباتی گران قمیت و مجموعه داده های بزرگ نیاز دارد. از این رو، استفاده از مدلهای شبکه عصبی عمیق از قبل آموزش دیده، استخراج ویژگی از تصاویر را به راحتی امکان پذیر میکنند.

یکی از بهترین شبکههای عصبی برای استخراج ویژگی از تصویر، شبکههای عصبی کانولوشنی هستند. در جدول ۱-۳ چند نمونه از برجستهترین شبکههای عصبی کانولوشنی که بر روی مجموعهداده ImageNet در جدول ۱ مراشه در پرسش و پاسخ تصویری از این آموزش داده شدهاند؛ آورده شده است. بیشتر مدلهای ارائه شده در پرسش و پاسخ تصویری از این شبکههای عصبی کانولوشنی استفاده میکنند تا محتوای تصویری خود را به بردارهایی عددی تبدیل کنند. جدول ۱ - ۴ لیستی از مدلهای استفاده شده برای حل مسئله پرسش و پاسخ تصویری را نشان می دهد و مشخص میکند که هر کدام از این مدلها برای استخراج ویژگی از تصویر از کدام یک از شبکههای عصبی

جدول $1-\pi$: بررسی اجمالی مهمترین شبکههای عصبی کانولوشنی که بر روی مجموعه داده 1 آموزش داده شده.

ابعاد خروجی(تعداد ویژگیها)	ابعاد ورودي	تعداد لايهها	سال	مدل CNN
4.99	YYY×YYY	٨	7.17	[\frac{9}{r}]AlexNet
4.99	774×774	19	7.14	[۴۵]VGGNet
1.74	PYY×PYY	77	7.14	[F ?] Google Net
7.167	774×774	107	7.10	[\ \ \dots] ResNet

کانولوشنی موجود در جدول I = T بهره میبرد. همانطور که واضح است VGGNet به طور ResNet و NGGNet به طور گستردهای در سیستمهای پرسش و پاسخ تصویری مورد استفاده قرار گرفتهاند. یکی از دلایلی که محققان VGGNet را ترجیح میدهند این است که ویژگیهایی را استخراج میکند که عمومیت بیشتری دارد و برای مجموعه داده هایی غیر از ImageNet که این مدلها بر روی آنها آموزش داده میشوند، موثرتر هستند. دلایل دیگر شامل همگرایی سریع در fine-tuning و پیاده سازی ساده در مقایسه با ResNet و GoogLeNet است. نیرا نکته قابل توجه دیگر در جدول I = T روند مهاجرت از VGGNet به ResNet در مقالات اخیر است. زیرا در سالهای اخیر، منابع محاسباتی کافی با هزینه مناسب در دسترس محققان می باشد.

بیشتر الگوریتمهای یادگیری ماشین و یادگیری عمیق قادر به پردازش متن به شکل خام وساده نیستند و برای بازنمایی متنها نیاز به word embedding دارند. مسئله پرسش و پاسخ تصویری نیز از این قاعده مستثنا نیست و باید برای بازنمایی سوالات از word embedding استفاده کند. word embedding نگاشت کلمات یا عبارات از واژگان به بردارهای عددی است تا کامپیوترها بتوانند به راحتی آنها را پردازش کنند. word عمدتاً برای مدلسازی زبان و یادگیری ویژگی در پردازش زبان طبیعی استفاده می شود. ایده اصلی در پشت تمام روشهای word embedding ، گرفتن هرچه بیشتر اطلاعات معنایی و ریخت شناسی است.

روشهای word embedding بسیاری در مسئله پرسش و پاسخ تصویری استفاده شده است. در ادامه به برجسته ترین و پرکاربرد ترین روشهای word embedding موجود و استفاده شده در مسئله پرسش و پاسخ تصویری می پردازیم و معایب و مزایای هر کدام را بررسی خواهیم کرد.

روش کدگذاری one-hot ساده ترین روش word embedding است. در این روش یک لغتنامه از همه واژههای منحصر به فرد موجود در مجموعه داده ساخته می شود و اندیس یکتایی به هر واژه اختصاص می یابد. بنابراین برای هر واژه یک بردار به طول تعداد واژه ها ساخته می شود که تمامی مقادیر آن صفر است به جز

جدول ۱ ـ ۴: شبکه های عصبی کانولوشنی استفاده شده در مدل های پرسش و پاسخ تصویری.

ResNet	GoogleNet	VGGNet	AlexNet	مدل پرسش و پاسخ تصویری
		√		[Mage_QA
	√			[\\]Talk_to_Machine
		√		VQA
			√	Vis_Madlibs
		✓		[\mathbb{Y}\lambda]VIS + LSTM
		✓		[ar]Ahab
		✓		[?]ABC-CNN
		✓		[Y]Comp_QA
		✓		[٣۴]DPPNet
		✓		[YA]Answer_CNN
		✓		[Y۶]VQA-Caption
√				[\A]Re_Baseline
✓				[\ •]MCB
	✓			[a a] SMem-VQA
		✓		[۴۳]Region_VQA
		✓		[\Delta\]Vis7W
✓	✓	✓	✓	["\]Ask_Neuron
✓				
√				[Y9]HAN
		✓		[av]StrSem
√				[r·]AVQAN
√				[YF]CMF
✓				[YV]EnsAtt
√				[F]MetaVQA
✓				[۴]DA-NTN
✓				[a]QGHC
√				[FY]QTA
✓				[٣۶]WRAN
✓				[å\] QAR

شكل ١ _ ١ : معماري شبكه CBOW و Skip-gram

اندیس مربوط به همان واژه که مقدار آن یک است. پیادهسازی این روش آسان است اما طول بردارها بزرگ است زیرا برابر با تعداد کل واژه های منحصر به فرد مجموعه داده است و هزینه زیادی برای ذخیرهسازی دارد. بزرگترین عیب این روش این است که نمی توان از آن معنا و مفهوم استخراج کرد زیرا فاصله ی تمامی کلمات با هم یکسان است. در صورتی که ما انتظار داریم؛ کلماتی که مشابه هم هستند بردارهای نزدیک به هم یا مشابه هم داشته باشند و کلملاتی که معنای متفاوتی با یکدیگر دارند تا حد امکان بردارهایشان از هم دور باشند.

برای رفع مشکلات کدگذاری one-hot ، دو روش CBOW و [TT] و [TT] و [TT] پیشنهاد شد که از شبکههای عصبی به عنوان جز اصلی خود استفاده میکنند. این دو مدل بر عکس هم کار میکنند. در هر دو مدل، از یک شبکه عصبی سه لایه که شامل لایه ورودی، لایه پنهان ولایه خروجی است، استفاده شده است. درمدل CBOW کلمات اطراف و نزدیک به یک کلمه ([TT] کلمه) به لایه ورودی داده می شود و مدل سعی میکند این کلمه ([TT] امین کلمه) را حدس بزند. بعد از آموزش این شبکه، وزن بین لایهی پنهان و لایه خروجی کلمات مجموعه داده را بازنمایی میکند که هر ستون آن بردار مربوط به یک کلمه را نشان می دهد. در مدل کلمات مجموعه داده را بازنمایی میکند که هر ستون آن بردار مربوط به یک کلمه را نشان می دهد. در مدل کلمات مجموعه داده را بازنمایی میکند که هر ستون آن بردار مربوط به یک کلمه باید کلمات اطراف و نزدیک به آن را حدس بزند. معماری CBOW و Skip-gram در شکل [TT]

یکی دیگر از word embedding های مشهور، مدل بردار سراسری یا به اختصار ۱۶ GloVe است که توسط ینینگتون و همکاران [۳۷] در سال ۲۰۱۴ در تیم یردازش زبانهای طبیعی دانشگاه استنفورد معرفی و توسعه

Continouse Bag Of Words \^\alpha

Global Vector 19

داده شد. آیا نیاز به توضیح کامل این روش است؟

با پیشرفت یادگیری عمیق در دهه اخیر، محققان برای استخراج ویژگی و بازنمایی متن از CNN ، CNN استفاده [۱۷] و GRU و [۱۷] استفاده کردند. در مسئله پرسش و پاسخ تصویری برای استخراج ویژگی از سوال با استفاده از CNN بردارهای کلمات سوال در کنار هم قرار داده می شود سپس به لایه های کانولوشنی یک بعدی داده می شود و فیلترهای متفاوتی بر روی آن ها اعمال می شود و پس از عبور از لایه max-pooling ویژگی ها بدست می آید.

توضيح LSTM لازمه؟ توضيح GRU لازمه؟

مدلهای مختلف در مسئله پرسش و پاسخ تصویری از word embedding های ذکر شده در بالا برای تولید بردار ویژگی برای سوالها استفاده کردهاند. جدول $1-\Delta$ لیستی از مدلهای پرسش و پاسخ تصویری به همراه word embedding استفاده شده در آنها را نمایش می دهد. با بررسی جدول $1-\Delta$ مشاهده می کنیم که محققان حوزه ی پرسش و پاسخ تصویری ترجیح می دهند؛ برای استخراج ویژگی از متن و بازنمایی آن از که محققان حوزه ی پرسش و پاسخ تصویری ترجیح می دهند؛ برای استخراج ویژگی از متن و بازنمایی آن از LSTM استفاده کنند. آنها معتقد هستند که RNN ها عملکرد بهتری نسبت به روشهای مستقل از دنباله ی کلمات مانند word2vec دارند. اما آموزش RNN ها نیاز به دادههای برچسب خورده ی زیادی دارد.

۱_۶_۲ فاز ۲: بازنمایی مشترک تصویر و سوال

در گام اول پرسش و پاسخ تصویری، تصویر و سوال به طور مستقل پردازش می شوند تا از آنها ویژگی استخراج شود. روشهای مختلف برای انجام این کار، در بخش 1-9-1 به تفصیل بررسی شد. در گام بعدی، این ویژگیها باید به یک فضای مشترک ترسیم شوند و یا به عبارتی ترکیب شوند تا آماده گام آخر (تولید پاسخ) شوند. در ادامه این بخش، به مرور روشهای ترکیب ویژگیهای استخراج شده از سوال و تصویر می پردازیم.

روشهای پایه

ساده ترین و پایه ای ترین روش ها برای ترکیب ویژگی ها concatination ، جمع متناظر ویژگی ها ۱۱ و ضرب متناظر ویژگی ها ۱۸ است. مالینوفسکی در [۳۱] این سه روش را امتحان کرده است و دریافت کرد که ضرب

element-wise addition \\

element-wise multiplication \^

جدول ۱ ـ ۵: word embedding های استفاده شده در مدلهای پرسش و پاسخ تصویری.

GRU	LSTM	CNN	GloVe	Skip-gram/Word2vec	CBOW	one-hot	مدل پرسش و پاسخ تصویری
				✓			[٣٩]Image_QA
	√						[\\]Talk_to_Machine
					✓		[r]VQA
				✓			[\$\darkappa P \right] Vis_Madlibs
	✓						[٣٨]VIS + LSTM
	✓						[۶]ABC-CNN
	✓						[Y]Comp_QA
\checkmark							[٣۴]DPPNet
		✓					[YA]Answer_CNN
	√						[Y?]VQA-Caption
				\checkmark			[\ \ \]Re_Baseline
	✓						[\ •]MCB
					√		[a a] SMem-VQA
				✓			[۴۳]Region_VQA
						✓	[\delta\lambda]Vis7W
√	✓	\checkmark			✓		[Marian Section
		✓					[\delta]SCMC
	✓						[Y¶]HAN
	√						[av]StrSem
						✓	[F·]AVQAN
	√		✓				[YF]CMF
			✓				[YV]EnsAtt
\checkmark			✓				[۴٩]MetaVQA
√							[۴]DA-NTN
\checkmark							[a]QGHC
\checkmark							[٣۶] WRAN
			✓				[ål]QAR

متناظر ویژگیها منجر به دقت بالاتری میشود. یافته مهم دیگر مالینوفسکی این است که نرمالسازی L2 ویژگیهای تصویر، تأثیر قابل توجهی دارد به خصوص در روشهای concatination و جمع متناظر ویژگیها. با توجه به نتایج آنها، جمع متناظر ویژگیها پس از نرمالسازی از دقت بالاتری برخوردار است. در [۴۳] از ضرب نقطهای (داخلی) بین ویژگیهای استخراج شده از تصویر در سطح region و word embedding های حاصل از سوال استفاده شده است.

روش کلاسیک دیگر برای یافتن رابطه بین دو بردار که ریشه آن در علم آمار است، روش ۱۹ CCA است که برای ترکیب ویژگیهای تصویر و سوال در VQA استفاده شده است. CCA بازنمایی مشترک بین بردار تصویر و بردار سوال را پیدا میکند. CCA یک نسخه نرمالیزه شده به نام nCCA نیز دارد که توسط [۱۲] پیشنهاد شده است. در [۵۶] و [۵۰] از هر دو مدل nCCA و CCA برای ترکیب بردارهای ویژگی سوال و تصویر استفاده کردند و دریافتند که روش nCCA به ویژه در مورد سوالات چندگزینهای عملکرد بهتری دارد.

روشهای مبتنی بر شبکههای عصبی end-to-end

در اینجا، محققان شبکههای عصبی عمیق end-to-end را با لایههای خاص برای ترکیب ویژگیهای تصویر و سوال آموزش میدهند. ساختار و عملکرد این لایه ممکن است برای مدلهای مختلف پیشنهادشده متفاوت باشد.

ادامه اش باید تکمیل بشه ...

٣_8_1 فاز **٣**: توليد جواب

باید تکمیل شود.

۱ ـ ۷ شبکه های از قبل آموزش دیده بر روی زبان طبیعی و تصویر

در سالهای اخیر شاهد ظهور شبکههای از قبل آموزش دیده تنها بر روی دادههای تصویری و یا تنها بر روی دادههای از بانهای دادههای زبانی بوده ایم.ا ستفاده از این شبکهها منجر به بهبود مسائل موجود در بینایی ماشین و پردازش زبانهای

Analysis Correlation Canonical 19

Analysis Correlation Canonical normalized*.

طبیعی شده است. با الهام از این موضوع شبکه های از قبل آموزش دیده بر روی داده های تصویری و داده های زبانی نیز ایجاد شدند که هدف آن ها بازنمایی مشترک داده های تصویری و داده های زبانی است. بنابراین می توان از این شبکه ها برای بهبود عملکرد مسائل مشترک بین بینایی ماشین و پردازش زبان های طبیعی مانند پرسش و پاسخ تصویری نیز استفاده کرد. در ادامه به بحث و بررسی چند نمونه از این شبکه ها می پردازیم. معماری این شبکه ها به طور کلی به دو دسته تک جریان و دو جریان تقسیم می شود.

معماري تک جريان

پایه و اساس این معماری مدل BERT است. به طور کلی مدلهای پیشنهادشده در این معماری از دادههای ... برای آموزش به صورت موازی استفاده میکنند برای مثال تصویر به همراه یک جمله توصیف کننده آن و یا یک فیلم به همراه زیرنویس. به علاوه این مدلها با ترکیبی از اهداف مختلف مانند ... و ... و ... و ... بهینه میشود. سپس از بازنماییهای آموختهشده در کارهای ... استفاده میشود. به عنوان مثال، روش VideoBERT میشود. سپس از بازنماییهای آموختهشده در کارهای ... استفاده میشود. به عنوان مثال، روش B2T2 برای یک کار ... مانند تولید توصیف فیلم طراحی شده است. در حالی که چندین مدل دیگر مانند PVL-BERT و VL-BERT و OSCAR و حود دارد که همگی برای ... طراحی شدهاند و کارهای پایین دستی را تسهیل میکنند. آثاری مانند VLP و OSCAR مدلهای واحدی ساختهاند که میتوانند به طور مشترک دادههای ... را ... و ... کنند.

معماري دو جريان

در مقابل معماری تک جریان، معماریهای دو جریان دو رمزگذار مستقل را برای یادگیری بازنماییهای تصویری و متنی به کار گرفتند. VILBERT و VILBERT نمونههایی از معماری دو جریان هستند که از اصول توجه به خود برای یادگیری مشترک بازنمایی از دادههای تصویری و متنی استفاده میکنند. VILBERT یک لایه ترانسفورماتور مشترک را ایجاد میکند، در حالی که LXMERT از یک رمزگذار متقابل استفاده میکند. مشابه معماری تک جریان، معماریهای دو جریان نیز مدلهای خود را با ... و ... و ... و ... بهینه میکنند.

ا کے معیارہای ارزیابی مسئلہ پرسش و پاسخ تصویری $\Lambda - 1$

در این بخش میخواهیم به طور مختصر معیارهای ارزیابی شناخته شده در مسئله پرسش و پاسخ تصویری را بررسی کنیم. همان طور که قبلا ذکر شد؛ معمولا دو نوع سوال در مجموعه داده های پرسش و پاسخ تصویری در نظر گرفته می شود: سوالات موالات چندگزینه ای، در سوالات چندگزینه ای، برای هر سوال

دقیقا یک پاسخ صحیح وجود دارد. بنابراین ارزیابی آن ساده است زیرا میتوان به راحتی از معیار دقت استفاده کرد. اما در سوالات open-ended این امکان وجود دارد که چندین پاسخ صحیح برای هر سوال وجود داشته باشد. بنابراین ارزیابی در این حالت ساده نخواهد بود. برای حل این موضوع، اکثر مجموعهدادههای پرسش و پاسخ تصویری پاسخها را محدود به چند کلمه(۱ تا ۳ کلمه) میکنند و یا پاسخها را از یک مجموعه بسته انتخاب میکنند.

در ادامه به بررسی مهمترین معیارهای این حوزه میپردازیم. اما ارزیابی مسئله پرسش و پاسخ تصویری همچنان یک مسئله حل نشده است. هر کدام از روشها و معیارهای ارزیابی موجود، مزیتها و معایب خاص خود را دارند. بنابراین برای انتخاب معیار ارزیابی باید به مواردی همچون ساختار مجموعهداده و نحوه ساخت آن، میزان بایاس موجود در مجموعهداده و ... توجه نمود.

١_٨_١ معبار دقت

اگر چه در سوالات چندگزینهای برای سنجش یک مدل معیار دقت کافی است اما در سوالات معیار دقت معیار دقت سختگیرانه است زیرا فقط در حالتی که پاسخ مدل کاملا مطابق با پاسخ در نظر گرفته شده باشد، پذیرفته می شود. برای مثال اگر صورت سوال «چه حیواناتی در تصویر است؟» باشد و پاسخ مدل به جای «سگها» پاسخ «سگ» باشد؛ غلط تلقی می شود. بنابراین به دلیل این محدودیت هایی که معیار دقت دارد؛ معیارهای دیگری برای ارزیابی این نوع سوالات پیشنهاد شده است.

$$Accuracy = \frac{Number\ of\ questions\ answered\ correctly}{Total\ questions} \tag{1-1}$$

$[\Delta^*]$ Wu-Palmer معیار شباهت $Y_A - 1$

این معیار ارزیابی توسط مالینوفسکی [۳۰] برای پرسش و پاسخ تصویری ارائه شد. این معیار از تئوری مجموعههای فازی الهام گرفته شده است و نسبت به معیار دقت سختگیری کمتری دارد. معیار شباهت -Wu مجموعههای فازی الهام گرفته شده است و نسبت به معیار دقت سختگیری کمتری دارد. معیار شباهت Palmer سعی میکند که تفاوت بین پاسخ پیشبینی شده با پاسخ صحیح را از لحاظ معنایی اندازه گیری کند. یکی از معیار این است که به پاسخهایی که از لحاظ لغوی شبیه هم هستند ولی از لحاظ معنایی متفاوت هستند، امتیاز بالایی میدهد. زمانی که پاسخهای ما به صورت عبارت یا جمله باشد؛ این معیار

عملكرد خوبي ندارد.

۱_۸_۳ معیار اجماع

از این معیار زمانی استفاده می شود که هر سوال توسط کاربرهای انسانی متفاوتی پاسخ داده شود. در واقع برای هر سوال چندین پاسخ مستقل وجود داشته باشد. این معیار دو نوع دارد: میانگین اجماع و کمترین اجماع. در میانگین اجماع امتیاز نهایی برابر با میانگین وزندار پاسخهای وارد شده توسط کاربرهای متفاوت است و در کمترین اجماع پاسخ پیشبینی شده حداقل باید با یکی از پاسخها مطابقت داشته باشد. در مسئلهی پرسش و پاسخ تصویری معمولا از حالت کمترین اجماع استفاده می شود و آستانه را هم برابر ۳ قرار می دهند به این معنی که اگر پاسخ پیشبینی شده با ۳ و یا بیشتر از ۳ پاسخ برابر باشد امتیاز کامل می گیرد و در غیر این صورت هیچ امتیازی کسب نخواهد کرد. از معایب این روش می توان به هزینه زیاد جمع آوری پاسخ برای سوالات اشاره کرد. آنتول و همکارانش از این معیار ارزیابی در [۳] استفاده کردهاند.

$$Accuracy_{VQA} = min(\frac{n}{\mathbf{r}}, \mathbf{1})$$
 (Y-1)

$[\Upsilon^{\dagger}]MPT \quad \Upsilon_{-}\Lambda_{-}$

یکی از مشکلات مجموعهدادههای پرسش و پاسخ تصویری توزیع غیریکنواخت انواع سوالهاست. دراین مواقع، نمی توان از معیار دقت استفاده کرد. بنابراین در [۲۱] معیار جدیدی به نام MPT از ارائه شده است که توزیع نامتوازن سوالها را جبران میکند. معیار MPT میانگین دقت برای هر نوع سوال را محاسبه میکند. از نسخهی نرمالایز شده ی این معیار نیز برای رفع مشکل بایاس در توزیع پاسخها استفاده می شود.

[T] BLEU & _ \ \ \

BLEU ^{۱۲} یکی از معیارهای ارزیابی خودکار ترجمه ماشینی است. در [۱۴] پیشنهاد داده شد که از این معیار n-gram نیز برای ارزیابی پرسش و پاسخ تصویری میتوان استفاده کرد. معیار BLEU کنار هم قرار گرفتن میتوان

Mean Per Type Y

BiLingual Evaluation Understudy

های پاسخ پیش بینی شده و پاسخ صحیح را اندازهگیری میکند. معمولا BLEU زمانی که جملهها کوتاه باشند، با شكست مواجه مي شود.

[\P]METEOR $9-\lambda_1$

METEOR نیز همانند BLEU یکی از معیارهای ارزیابی خودکار ترجمه ماشینی است. به پیشنهاد [۱۴] از این معیار هم می توان برای پرسش و پاسخ تصویری نیز استفاده نمود. معیار METEOR سعی می کند که همترازی بین کلمات موجود در پاسخ پیشبینی شده و پاسخ صحیح را پیدا کند.

۱ _ ۹ چگونگی ساخت مجموعه داده حاوی پرسش و پاسخ به زبان فارسی باید تکمیل شود.

Metric for Evaluation of Translation with Explicit ORdering Y*

مراجع

- [1] ACHARYA, M., KAFLE, K., AND KANAN, C. Tallyqa: Answering complex counting questions. in *Proceedings of the AAAI Conference on Artificial Intelligence* (2019), volume 33, pp. 8076–8084.
- [2] Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Deep compositional question answering with neural module networks. corr abs/1511.02799 (2015). *arXiv preprint arXiv:1511.02799* (2015).
- [3] Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Lawrence Zitnick, C., and Parikh, D. Vqa: Visual question answering. in *Proceedings of the IEEE international conference on computer vision* (2015), pp. 2425–2433.
- [4] BAI, Y., Fu, J., Zhao, T., and Mei, T. Deep attention neural tensor network for visual question answering. in *Proceedings of the European Conference on Computer Vision (ECCV)* (2018), pp. 20–35.
- [5] CAO, L., GAO, L., SONG, J., XU, X., AND SHEN, H. T. Jointly learning attentions with semantic cross-modal correlation for visual question answering. in *Australasian Database Conference* (2017), Springer, pp. 248–260.
- [6] CHEN, K., WANG, J., CHEN, L.-C., GAO, H., XU, W., AND NEVATIA, R. Abc-cnn: An attention based convolutional neural network for visual question answering. *arXiv* preprint *arXiv*:1511.05960 (2015).
- [7] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. Learning phrase representations using rnn encoder-decoder for statistical machine translation. *arXiv* preprint arXiv:1406.1078 (2014).

- [8] DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K., AND FEI-FEI, L. Imagenet: A large-scale hierarchical image database. in 2009 IEEE conference on computer vision and pattern recognition (2009), Ieee, pp. 248–255.
- [9] Denkowski, M., and Lavie, A. Meteor universal: Language specific translation evaluation for any target language. in *Proceedings of the ninth workshop on statistical machine translation* (2014), pp. 376–380.
- [10] FUKUI, A., PARK, D. H., YANG, D., ROHRBACH, A., DARRELL, T., AND ROHRBACH, M. Multimodal compact bilinear pooling for visual question answering and visual grounding. *arXiv* preprint arXiv:1606.01847 (2016).
- [11] GAO, H., MAO, J., ZHOU, J., HUANG, Z., WANG, L., AND XU, W. Are you talking to a machine? dataset and methods for multilingual image question. in *Advances in neural information processing systems* (2015), pp. 2296–2304.
- [12] Gong, Y., Ke, Q., Isard, M., and Lazebnik, S. A multi-view embedding space for modeling internet images, tags, and their semantics. *International journal of computer vision 106*, 2 (2014), 210–233.
- [13] GOYAL, Y., KHOT, T., SUMMERS-STAY, D., BATRA, D., AND PARIKH, D. Making the v in vqa matter: Elevating the role of image understanding in visual question answering. in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (2017), pp. 6904–6913.
- [14] GURARI, D., LI, Q., STANGL, A. J., GUO, A., LIN, C., GRAUMAN, K., LUO, J., AND BIGHAM, J. P. Vizwiz grand challenge: Answering visual questions from blind people. in *Proceedings* of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 3608–3617.
- [15] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning for image recognition. in *Proceedings of the IEEE conference on computer vision and pattern recognition* (2016), pp. 770–778.
- [16] HINTON, G. E., KRIZHEVSKY, A., AND SUTSKEVER, I. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25 (2012), 1106–1114.
- [17] Hochreiter, S., and Schmidhuber, J. Long short-term memory. *Neural computation* 9, 8 (1997), 1735–1780.

- [18] Jabri, A., Joulin, A., and Van Der Maaten, L. Revisiting visual question answering baselines. in *European conference on computer vision* (2016), Springer, pp. 727–739.
- [19] JOHNSON, J., HARIHARAN, B., VAN DER MAATEN, L., FEI-FEI, L., LAWRENCE ZITNICK, C., AND GIRSHICK, R. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (2017), pp. 2901–2910.
- [20] KAFLE, K., AND KANAN, C. Answer-type prediction for visual question answering. in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (2016), pp. 4976–4984.
- [21] KAFLE, K., AND KANAN, C. An analysis of visual question answering algorithms. in *Proceedings of the IEEE International Conference on Computer Vision* (2017), pp. 1965–1973.
- [22] Kafle, K., Yousefhussien, M., and Kanan, C. Data augmentation for visual question answering. in *Proceedings of the 10th International Conference on Natural Language Generation* (2017), pp. 198–202.
- [23] Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalantidis, Y., Li, L.-J., Shamma, D. A., et al. Visual genome: Connecting language and vision using crowdsourced dense image annotations. *International journal of computer vision 123*, 1 (2017), 32–73.
- [24] LAO, M., GUO, Y., WANG, H., AND ZHANG, X. Cross-modal multistep fusion network with co-attention for visual question answering. *IEEE Access* 6 (2018), 31516–31524.
- [25] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft coco: Common objects in context. in *European conference on computer vision* (2014), Springer, pp. 740–755.
- [26] LIN, X., AND PARIKH, D. Leveraging visual question answering for image-caption ranking. in *European Conference on Computer Vision* (2016), Springer, pp. 261–277.
- [27] LIOUTAS, V., PASSALIS, N., AND TEFAS, A. Explicit ensemble attention learning for improving visual question answering. *Pattern Recognition Letters 111* (2018), 51–57.
- [28] MA, L., Lu, Z., AND LI, H. Learning to answer questions from image using convolutional neural network. in *AAAI* (2016).

- [29] Malinowski, M., Doersch, C., Santoro, A., and Battaglia, P. Learning visual question answering by bootstrapping hard attention. in *Proceedings of the European Conference on Computer Vision (ECCV)* (2018), pp. 3–20.
- [30] Malinowski, M., and Fritz, M. A multi-world approach to question answering about real-world scenes based on uncertain input. in *Advances in neural information processing systems* (2014), pp. 1682–1690.
- [31] Malinowski, M., Rohrbach, M., and Fritz, M. Ask your neurons: A deep learning approach to visual question answering. *International Journal of Computer Vision 125*, 1-3 (2017), 110–135.
- [32] Manmadhan, S., and Kovoor, B. C. Visual question answering: a state-of-the-art review. *Artificial Intelligence Review* (2020), 1–41.
- [33] MIKOLOV, T., CHEN, K., CORRADO, G., AND DEAN, J. Efficient estimation of word representations in vector space. *arXiv preprint arXiv:1301.3781* (2013).
- [34] Noh, H., Hongsuck Seo, P., and Han, B. Image question answering using convolutional neural network with dynamic parameter prediction. in *Proceedings of the IEEE conference on computer vision and pattern recognition* (2016), pp. 30–38.
- [35] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu: a method for automatic evaluation of machine translation. in *Proceedings of the 40th annual meeting of the Association for Computational Linguistics* (2002), pp. 311–318.
- [36] PENG, L., YANG, Y., BIN, Y., XIE, N., SHEN, F., JI, Y., AND XU, X. Word-to-region attention network for visual question answering. *Multimedia Tools and Applications* 78, 3 (2019), 3843–3858.
- [37] PENNINGTON, J., SOCHER, R., AND MANNING, C. D. Glove: Global vectors for word representation. in *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)* (2014), pp. 1532–1543.
- [38] Ren, M., Kiros, R., and Zemel, R. Exploring models and data for image question answering. in *Advances in neural information processing systems* (2015), pp. 2953–2961.
- [39] REN, M., KIROS, R., AND ZEMEL, R. Image question answering: A visual semantic embedding model and a new dataset. *Proc. Advances in Neural Inf. Process. Syst 1*, 2 (2015), 5.

- [40] Ruwa, N., Mao, Q., Wang, L., and Dong, M. Affective visual question answering network. in 2018 IEEE conference on multimedia information processing and retrieval (MIPR) (2018), IEEE, pp. 170–173.
- [41] Shah, S., Mishra, A., Yadati, N., and Talukdar, P. P. Kvqa: Knowledge-aware visual question answering. in *Proceedings of the AAAI Conference on Artificial Intelligence* (2019), volume 33, pp. 8876–8884.
- [42] SHI, Y., FURLANELLO, T., ZHA, S., AND ANANDKUMAR, A. Question type guided attention in visual question answering. in *Proceedings of the European Conference on Computer Vision (ECCV)* (2018), pp. 151–166.
- [43] Shih, K. J., Singh, S., and Hoiem, D. Where to look: Focus regions for visual question answering. in *Proceedings of the IEEE conference on computer vision and pattern recognition* (2016), pp. 4613–4621.
- [44] SILBERMAN, N., HOIEM, D., KOHLI, P., AND FERGUS, R. Indoor segmentation and support inference from rgbd images. in *European conference on computer vision* (2012), Springer, pp. 746–760.
- [45] SIMONYAN, K., AND ZISSERMAN, A. Very deep convolutional networks for large-scale image recognition. *arXiv* preprint arXiv:1409.1556 (2014).
- [46] SZEGEDY, C., LIU, W., JIA, Y., SERMANET, P., REED, S., ANGUELOV, D., ERHAN, D., VAN-HOUCKE, V., AND RABINOVICH, A. Going deeper with convolutions. in *Proceedings of the IEEE conference on computer vision and pattern recognition* (2015), pp. 1–9.
- [47] TALAFHA, B., AND AL-AYYOUB, M. Just at vqa-med: A vgg-seq2seq model. in *CLEF (Working Notes)* (2018).
- [48] Tang, R., Ma, C., Zhang, W. E., Wu, Q., and Yang, X. Semantic equivalent adversarial data augmentation for visual question answering. in *European Conference on Computer Vision* (2020), Springer, pp. 437–453.
- [49] TENEY, D., AND VAN DEN HENGEL, A. Visual question answering as a meta learning task. in *Proceedings of the European Conference on Computer Vision (ECCV)* (2018), pp. 219–235.
- [50] TOMMASI, T., MALLYA, A., PLUMMER, B., LAZEBNIK, S., BERG, A. C., AND BERG, T. L. Combining multiple cues for visual madlibs question answering. *International Journal of Computer Vision 127*, 1 (2019), 38–60.

- [51] TOOR, A. S., WECHSLER, H., AND NAPPI, M. Question action relevance and editing for visual question answering. Multimedia Tools and Applications 78, 3 (2019), 2921–2935.
- [52] WANG, P., WU, Q., SHEN, C., HENGEL, A. V. D., AND DICK, A. Explicit knowledge-based reasoning for visual question answering. arXiv preprint arXiv:1511.02570 (2015).
- [53] Wu, Q., Teney, D., Wang, P., Shen, C., Dick, A., and van den Hengel, A. Visual question answering: A survey of methods and datasets. Computer Vision and Image Understanding 163 (2017), 21-40.
- [54] Wu, Z., and Palmer, M. Verb semantics and lexical selection. arXiv preprint cmplg/9406033 (1994).
- [55] Xu, H., AND SAENKO, K. Ask, attend and answer: Exploring question-guided spatial attention for visual question answering. in European Conference on Computer Vision (2016), Springer, pp. 451–466.
- [56] Yu, L., Park, E., Berg, A. C., and Berg, T. L. Visual madlibs: Fill in the blank description generation and question answering. in Proceedings of the ieee international conference on computer vision (2015), pp. 2461–2469.
- [57] Yu, Z., Yu, J., Xiang, C., Fan, J., and Tao, D. Beyond bilinear: Generalized multimodal factorized high-order pooling for visual question answering. IEEE transactions on neural networks and learning systems 29, 12 (2018), 5947-5959.
- [58] ZHU, Y., GROTH, O., BERNSTEIN, M., AND FEI-FEI, L. Visual7w: Grounded question answering in images. in Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 4995-5004.

واژهنامه فارسی به انگلیسی

Voice assistants	دستياران صوتي
Conversational agents	عاملهای گفتگو
Image captioning	وصيف تصوير
Text-to-image retrieval	بازیابی متن به تصویر
Object detection	نشخيص اشيا
Activity detection	نشخيص فعاليت
Attribute classification	طبقهبندی صفات
Scene classification	طبقهبندی صحنه
Global vector	
Element-wise addition	جمع متناظر
Element-wise multiplication	ضرّب متناظر
Rotation	چرخش
Flipping	ررق زدن
Data augmentation	فزایش داده

واژهنامه انگلیسی به فارسی

Voice assistants	دستياران صوتي
Conversational agents	عاملهای گفتگو
Image captioning	وصيف تصوير
Text-to-image retrieval	بازیابی متن به تصویر
Object detection	نشخیص اشیا
Activity detection	نشخيص فعاليت
Attribute classification	طبقهبندی صفات
Scene classification	طبقهبندی صحنه
Global vector	
Element-wise addition	جمع متناظر
Element-wise multiplication	ضرّب متناظر
rotation	چرخش
flipping	ررق زدن
Data augmentation	فایش داده

			4
Λ.	bst	ro	ct.
$\overline{}$	1131		LL.

abstract

Keywords: keywords

Iran University of Science and Technology Computer Engineering Department

Visual Question Answering

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Computer Engineering

By:

Maryam Sadat Hashemi

Supervisor:

Sayyed Sauleh Eetemadi

December 2020