Phylogenetic reconstruction: criteria

Bastien Boussau Bastien.boussau@univ-lyon1.fr @bastounette

How to find the best tree given my data?

Need for a criterion/score

Need for an algorithm to find/construct the tree

How to find the best tree given my data?

- Need for a criterion/score
 - Maximum Parsimony
 - Minimum Evolution or least squares (distance methods)
 - Maximum Likelihood ~ P(D|M)
 - Posterior Probability P(M|D)
- Need for an algorithm to find/construct the tree

How to find the best tree given my data?

- Need for a criterion/score
 - Maximum Parsimony
- Minimum Evolution or least squares (distance methods)
- Maximum Likelihood ~ P(D|M)
- Posterior Probability P(M|D)
 - Need for an algorithm to find/construct the tree

How to find the best tree given my data?

- Need for a criterion/score
 - Maximum Parsimony
- Minimum Evolution or least squares (distance methods)
- Maximum Likelihood ~ P(D|M)
- Posterior Probability P(M|D)
 - Need for an algorithm to find/construct the tree
 - e.g.: try several topologies, (choose some branch lengths,) score the topologies, choose the one that has the best score

Plan: Criteria for evaluating phylogenies

- Criteria for evaluating phylogenetic trees:
 - Distance methods
 - Parsimony
 - Maximum Likelihood

- Posterior probability (Bayesian approach)
- Conventions:
 - We're dealing with aligned sequence data
 - gaps are not taken into account

Distance methods

- Distance-based approaches:
 - least squares methods,
 - Minimum evolution method,
 - Neighbor Joining.

Minimum Evolution or least squares: distance methods

Use a distance matrix:

```
Sp1 ATGCGCT...
Sp2 AGTCGCA...
Sp3 AGGTGCA...
Sp4 ATGCCCT...
```

Criteria: Minimum Evolution or least squares

Sp4 ATGCCCT...

Minimum Evolution or least squares: distance methods

Use a distance matrix:

Sp1 ATGCGCT...

Sp2 AGTCGCA...

Sp3 AGGTGCA...

	Sp1	Sp2	Sp3	Sp4
Sp1	0	0.1	0.2	0.15
Sp2	0.1	0	0.3	0.01
Sp3	0.2	0.3	0	0.6
Sp4	0.15	0.01	0.6	0

Minimum Evolution or least squares: distance methods

Uses a distance matrix:

	Sp1	Sp2	Sp3	Sp4
Sp1	0	0.1	0.2	0.15
Sp2	0.1	0	0.3	0.01
Sp3	0.2	0.3	0	0.6
Sp4	0.15	0.01	0.6	0

Sp4 ATGCCCT...

Minimum Evolution or least squares: distance methods

Uses a distance matrix:

Sp1 ATGCGCT...

Sp2 AGTCGCA... How to compute the distance matrix?

	Sp1	Sp2	Sp3	Sp4
Sp1	0	0.1	0.2	0.15
Sp2	0.1	0	0.3	0.01
Sp3	0.2	0.3	0	0.6
Sp4	0.15	0.01	0.6	0

Minimum Evolution or least squares: distance methods

Uses a distance matrix:

Sp1 ATGCGCT... (1)
Sp2 AGTCGCA... How to compute

Sp3 AGGTGCA...

Sp4 ATGCCCT...

How to compute the distance matrix?

	Sp1	Sp2	Sp3	Sp4
Sp1	0	0.1	0.2	0.15
Sp2	0.1	0	0.3	0.01
Sp3	0.2	0.3	0	0.6
Sp4	0.15	0.01	0.6	0

$$Sp1$$
 ATGCGCT $Sp2$ AGTCGCA \longrightarrow d(Sp1-Sp2) =

$$Sp1$$
 ATGCGCT $Sp2$ AGTCGCA \longrightarrow d(Sp1-Sp2) =

$$Sp1$$
 ATGCGCT $Sp2$ AGTCGCA \longrightarrow d(Sp1-Sp2) = 3/7~0.43

$$Sp1$$
 ATGCGCT $Sp2$ AGTCGCA \longrightarrow d(Sp1-Sp2) = 3/7~0.43

- Use a model of sequence evolution
 - → cf. talk on models, and talk by Maria!
 - -Advantages:
 - Hidden substitutions are taken into account
 - Parameters of the model of substitution can be estimated

Minimum Evolution or least squares: distance methods

Uses a distance matrix:

Sp1	ATGCGCT	
Sp2	AGTCGCA	How to compute

Sp3 AGGTGCA...

Sp4 ATGCCCT...

How to compute the distance matrix?

	Sp1	Sp2	Sp3	Sp4
Sp1	0	0.1	0.2	0.15
Sp2	0.1	0	0.3	0.01
Sp3	0.2	0.3	0	0.6
Sp4	0.15	0.01	0.6	0

A tree implies distances between tips: compare those patristic distances to sequence-based distances

A tree implies distances between tips: compare those patristic distances to sequence-based distances

A tree implies distances between tips: compare those patristic distances to sequence-based distances

	Sp1	Sp2	Sp3	Sp4
Sp1	0	0.3	0.65	0.15
Sp2	0.3	0	0.55	0.6
Sp3	0.65	0.55	0	0.25
Sp4	0.15	0.6	0.25	0

A
Ť
•

	Sp1	Sp2	Sp3	Sp4
Sp1	0	0.1	0.2	0.15
Sp2	0.1	0	0.3	0.01
Sp3	0.2	0.3	0	0.6
Sp4	0.15	0.01	0.6	0

A tree implies distances between tips: compare those patristic distances to sequence-based distances

	Sp1	Sp2	Sp3	Sp4
Sp1	0	0.3	0.65	0.15
Sp2	0.3	0	0.55	0.6
Sp3	0.65	0.55	0	0.25
Sp4	0.15	0.6	0.25	0

score _{ULS}	=	$(0-0)^2 + (0.3-0.1)^2 + (0.65-$
0.2)2+		

With ULS: Unweighted Least Squares (other criteria have been proposed)

V					
	Sp1	Sp2	Sp3	Sp4	
Sp1	0	0.1	0.2	0.15	
Sp2	0.1	0	0.3	0.01	
Sp3	0.2	0.3	0	0.6	
Sp4	0.15	0.01	0.6	0	

Criteria: Minimum Evolution or least squares

Computing the optimal distances on a given topology

Using the ULS criterion, we can compute the fit between a sequence-based distance matrix and any tree (topology + branch lengths), thanks to the patristic matrix trick.

Computing the optimal distances on a given topology

Using the ULS criterion, we can compute the fit between a sequence-based distance matrix and any tree (topology + branch lengths), thanks to the patristic matrix trick.

But how can we estimate branch lengths on the topology?

Computing the optimal distances on a given topology

Using the ULS criterion, we can compute the fit between a sequence-based distance matrix and any tree (topology + branch lengths), thanks to the patristic matrix trick.

But how can we pick branch lengths on the topology?

ULS provides a mathematical way to find the optimal branch lengths on a given topology! This involves some simple matrix algebra (solving a set of linear equations).

Searching for the best tree using Unweighted Least Squares

- We now know how to compute the ULS score of a tree topology. It involves:
 - Matrix algebra to find the best branch lengths
 - Computing the score_{ULS} for that tree
- Given a set of tree topologies, we can compute the "best" tree topology according to the ULS criterion: it is the one with the lowest score
- How to obtain a set of tree topologies to score is tackled later in the course (see Maria's talk)

Searching for the best tree using Unweighted Least Squares

- We now know how to compute the ULS score of a tree topology. It involves:
 - Matrix algebra to find the best branch lengths
 - Computing the score_{ULS} for that tree
- Given a set of tree topologies, we can compute the "best" tree topology according to the ULS criterion: it is the one with the lowest score
- How to obtain a set of tree topologies to score is tackled later in the course (see Maria's talk)

Minimum evolution criterion

- Motivation similar to parsimony
- Hypothesis: the true tree should be the shortest tree
- → Idea:
 - Given a matrix of pairwise distances and a set of tree topologies to evaluate
 - Match pairwise distances onto each tree topology
 - Sum the branch lengths on each tree
 - Your best estimate is the tree with the smallest sum of branch lengths

Minimum evolution criterion

- Motivation similar to parsimony
- Hypothesis: the true tree should be the shortest tree
- → Idea:
 - Given a matrix of pairwise distances and a set of tree topologies to evaluate
 - Match pairwise distances onto each tree topology: Use least-squares fitting!
 - Sum the branch lengths on each tree
 - Your best estimate is the tree with the smallest sum of branch lengths

Minimum Evolution or least squares: distance methods

Uses a distance matrix:

Sp1	ATGCGCT	
Sp2	AGTCGCA	How to compute

Sp3 AGGTGCA... the distance matrix?

Sp4 ATGCCCT...

	Sp1	Sp2	Sp3	Sp4
Sp1	0	0.1	0.2	0.15
Sp2	0.1	0	0.3	0.01
Sp3	0.2	0.3	0	0.6
Sp4	0.15	0.01	0.6	0

Minimum evolution criterion

- To obtain a Minimum Evolution tree, at some point we have to use Least Squares estimation to assign branch lengths to a tree topology
 - → hybrid approach where two different criteria are mixed up
- However, Minimum evolution works pretty well in practice
- Neighbor-Joining (Saitou and Nei, 1987) is a famous heuristic algorithm for finding the Minimum Evolution tree (not seen in our course, but has been very widely used); see Gascuel and Steel, 2006 for a clear explanation

Summary on distance methods

- Distance methods are the fastest phylogenetic methods available, notably thanks to Neighbor Joining and others (e.g. BioNJ, Weighbor, FastME...)
- Can be based on models of sequence evolution
- Better than Maximum Parsimony when sequences are divergent, but less accurate than Maximum Likelihood or Bayesian Inference
- The main reason is that distance methods do not use the entire data matrix together, but look at it pair of sequences by pair of sequences

Plan: Criteria for evaluating phylogenies

- Criteria for evaluating phylogenetic trees:
 - Distance methods
 - Parsimony
 - Maximum Likelihood

- Posterior probability (Bayesian approach)
- Conventions:
 - We're dealing with aligned sequence data
 - gaps are not taken into account