Variational autoencoder

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Autoencoders - Issues

- No sampling
- Learns just compression

Variational autoencoder

- Autoencoder
 - with noise in bottleneck

Why does noise help?

Variational autoencoder - formal definition

- Encoder
 - $q(\mathbf{z} | \mathbf{x}) = \mathcal{N}(\mathbf{z}; \mu_{\theta}(\mathbf{x}), \sigma_{\theta}^{2}(\mathbf{x})\mathbf{I})$
- Sampling $\mathbf{f} \sim q(\mathbf{z} \mid \mathbf{x})$
- Decoder
 - $P(\mathbf{x} \mid \mathbf{f})$
- Approximately learns $P(\mathbf{x})$
 - Variational lower bound

Encoder

Decoder

Variational autoencoder -Issues

- Fails in high dimensions
 - Hard to embed spherical distributions
- Blurry outputs
 - Pixel-distance