Optimization for CS: Math Intro II

Sridhar Mahadevan

Outline

- Hahn-Banach theorem in general normed vector spaces
- * Farkas lemma and Duality in Linear Programming
- * Polar cone theorem and systems of inequalities
- Conjugate Functions and Conjugate Duality

Dual spaces

- * Given a vector space X, the dual space X* is defined as the space of all real-valued linear functionals on X
- * Dual spaces play a crucial role in the theory of optimization
- Examples:
 - * In Euclidean n-dimensions, $X^* = X$
 - * The dual of a Hilbert space is another Hilbert space

Norm of a linear functional

- * First, given f*, g* in dual space X*, it is easy to see that
- * $(3 f^* 2g^*)(x) = 3 f^*(x) 2 g^*(x)$
- * Given a linear functional f* on the dual space X*, its norm is defined as

$$||f^*|| = \inf_{M} \{M : |f^*(x)| \le M ||x||, x \in X\}$$

$$||f^*|| = \sup_{x \in X} \frac{|f^*(x)|}{||x||}$$

$$||f^*|| = \sup_{||x|| = 1} |f^*(x)|$$

Decomposition using Linear Functionals

- * Let X be a normed linear vector space.
- Denote the dual space by X*, elements of which are linear functionals on X
- * For any f* in X*, and a point x in X for which f*(x) is non-zero, we have

$$Kernel(f^*) = \{x | f^*(x) = 0\}$$

$$X = [\operatorname{Kernel}(f^*)] \oplus \operatorname{Span}[x]$$

Proof of Kernel Decomposition

* Note we can write each element y in X as

$$y = \left[y - \frac{f^*(y)}{f^*(x)} x \right] + \frac{f^*(y)}{f^*(x)} x$$

* where it follows that the first element is in the kernel of f*

$$f^* \left(y - \frac{f^*(y)}{f^*(x)} x \right) = 0$$

* A linear subspace Z is said to be of co-dimension 1 if

$$X = Z \oplus \operatorname{span}(x_0)$$

* A hyperplane is a translate of a subspace of co-dimension 1

Co-Dimension of Subspaces

- * **Lemma**: A linear subspace Z of a vector space X is of co-dimension 1 if and only if it is the kernel of some linear functional f*
- * **Proof**: We have already shown that the kernel of a linear functional is of co-dimension 1. It remains to show that given a subspace of co-dimension 1, we can define a suitable linear functional f*

$$X = Z \oplus \operatorname{span}(x_0)$$
$$f^*(z + \lambda x_0) = \lambda$$

Extension of Linear Functionals

- * **Lemma:** If Y is a subspace of X, any linear functional f* on Y can be extended to all of X. Also, for each x in X, there is a linear functional f* which is non-zero on x.
- Proof: Simply define the extension g* of f* as

$$X = Y \oplus Z \Rightarrow x = y + z$$

Define $g^*(x) = f^*(y)$

* For the second part, given any x in X, define the linear functional

$$f^*(\lambda x) = \lambda \|x\|$$

Sublinear functionals

* A real-valued function p on X is sublinear if it is positively homogeneous and sub-additive

$$p(\alpha x) = \alpha p(x), \alpha \ge 0$$
$$p(x_1 + x_2) \le p(x_1) + p(x_2)$$

* For example, norms are sublinear functionals

Hahn-Banach Lemma

Hahn-Banach Lemma: Let p be a sub linear functional on the linear vector space X, and let Y be a subspace of X. Let $f^*(x)$ be a linear functional defined on Y such that

$$f^*(x) \le p(x)$$
 for all $x \in Y$

Let z be a vector in $X \sim Y$. Then f^* can be extended to the space $\mathrm{Span}(Y+z)$ such that

$$f^*(x) \le p(x)$$
 for all $x \in \operatorname{Span}(Y + z)$

Proof

Proof: Note that every vector in Span(Y + z) can be written uniquely as $x = y + \lambda z$ where $y \in Y$. What we need to show its that it is possible to extend f^* such that

$$f^*(y + \lambda z) = f^*(y) + \lambda f^*(z) \le p(y + \lambda z), \lambda \in R$$

All we need to do in fact is find a number $f^*(z)$ such that the above inequality holds. For any two vectors $y_1, y_2 \in Y$, since f^* is a linear functional on Y, it follows that

$$f^*(y_1 + y_2) = f^*(y_1) + f^*(y_2) \le p(y_1 + y_2) = p(y_1 - z + z + y_2) \le p(y_1 - z) + p(y_2 + z)$$

Therefore, it follows that

$$f^*(y_1) - p(y_1 - z) \le -f^*(y_2) + p(y_2 + z)$$

To select a value for $f^*(z)$, simply pick the supremum value of the left-hand equation above.

Zorn's Lemma

* Let a partial ordering be defined on a set X:

$$a \le a$$
, for all $a \in X$ $a \le b$ and $b \le a \Rightarrow a = b$, for all $a, b \in X$ $a \le b$, $b \le c \Rightarrow a \le c$, for all $a, b, c \in X$

* Zorn's Lemma: Let X be a partially ordered set where every totally ordered subset has an upper bound. Then, X has a maximal element.

Hahn Banach Theorem: Extension form

Hahn Banach Theorem: Let p be a sub linear functional on the linear vector space X, and let Y be a subspace of X. Let $f^*(x)$ be a linear functional defined on Y such that

$$f^*(x) \le p(x)$$
 for all $x \in Y$

Then f^* can be extended to the entire space X such that

$$f^*(x) \le p(x)$$
 for all $x \in X$

Proof: Consider the set of all extensions, which is a partially ordered set. Apply Zorn's Lemma. This set has a maximal element which is defined over all X.

$$(Y_1, f_1^*) \le (Y_2, f_2^*)$$
 if $Y_1 \subseteq Y_2$ and $f_2^*(x) = f_1^*(x) \ \forall x \in Y_1$

Alignment and Orthogonality

- * Let X* be the dual space to X. Let f* be some linear functional in X*.
- * f* is aligned with a vector x in X $ff^*(x) = \langle x, f^* \rangle = ||f^*|| ||x||$
- * The vector x and functional f* are orthogonal fif $(x) = \langle x, f^* \rangle = 0$
- * The orthogonal complement of a subset S of X is the set of all f* in X* that are orthogonal to every x in S

Minimum Norm problem in dual spaces

- * Let x be a vector in linear space X at a distance d from subspace M
- * Then the vector in M that is closest to x can be computed as:

$$d = \inf_{m \in M} ||x - m|| = \max_{\|f^*\| \le 1, f^* \in M^{\perp}} f^*(x) = \langle f^*, x \rangle$$

* If f* is a linear functional at distance d from M^{\perp} , then

$$d = \min_{m^* \in M^{\perp}} \|f^* - m^*\| = \sup_{x \in M, \|x\| \le 1} f^*(x) = \langle f^*, x \rangle$$

Consequence of HB Theorem

* Let X be a normed linear space, and Y be a subspace of X where f* is a linear functional defined on Y. Then f* can be extended to a linear functional F* on X such that

$$f^*(x) = F^*(x) \text{ for all } x \in Y$$

 $||f^*|| = ||F^*||$

* **Proof**: Pick p, the sublinear functional p that dominates f*, as:

$$p(x) = ||f^*|| ||x||$$

Application: Approximation

- * The Hahn-Banach theorem is extremely valuable in answering questions regarding whether some class of functions can be approximated arbitrarily well by another class
- * Example: consider the space of continuous functions C[0,1]. Can any continuous function be approximated arbitrarily well by a polynomial? (Stone Weierstrass theorem)
- * Example: Can any continuous function on R^n be approximated by a feedforward neural net as a linear superposition of sigmoid functions? (Cybenko)

Hyperplanes

- * A hyperplane H in a linear vector space X is a maximal proper linear variety
- If H is contained in some variety V, either H=V or V= X
- For every hyperplane H in X, there is a linear function f* and c such that H = {x : f*(x) = c}

 Conversely, the level set of any functional defines a hyperplane

Minkowski functional of a convex set

- * Let K be a convex set in a linear normed space X, such that 0 is an interior point of K
- * The Minkowski functional p of K is defined on X as

$$p(x) = \inf\{r : \frac{x}{r} \in K, r > 0\}$$

* It can be shown that the Minkowski functional is a sublinear functional

Properties of Minkowski Functional

* The Minkowski functional of a convex set K is positive homogeneous and convex

if
$$\frac{x}{r} \in K$$
 then $p_K(\alpha x) = \alpha r$, $\alpha \ge 0$
if $\frac{x}{a}$, $\frac{y}{b} \in K$ then $\frac{a}{a+b}\frac{x}{a} + \frac{b}{a+b}\frac{y}{b} = \frac{x+y}{a+b} \in K$
Hence $p_K(x+y) \le a+b = p_K(x) + p_K(y)$

* If x is an interior point of K, its Minkowski functional is < 1

Lagrange Duality: Example

- Consider solving the following minimization problem:
 - * Minimize $x^2 + y^2$ subject to x + y = 1
- * Introduce a new variable (`Lagrange dual") p that intuitively measures the `price" for violating the constraint x+y=1
 - * $L(x,y,p) = x^2 + y^2 + p(1 x y)$
- Minimize L w.r.t. x and y holding p fixed
 - * This yields x = y = p/2 or x = y = 1/2

Lagrangian Duality

- We will illustrate the usefulness of Hahn-Banach theorem in the duality principle for LP
- Each LP has a corresponding dual
 - * Minimizing the primal is equivalent to maximizing the dual

$$\min_{x} c^{T} x$$

$$Ax = b$$

$$x \ge 0$$

Lagrangian Duality in LP

- Define the original LP problem as a primal problem
 - Minimize c'x subject to
 - * Ax = b, x >= 0
- Consider the relaxed problem
 - * Minimize c'x + p'(b Ax)
 - * such that $x \ge 0$
- * The vector p represents a ``price'' vector for violating Ax = b

Duality in LP

 Note that the dual problem solution is a lower bound on the solution of the primal problem

$$min_{x\geq 0} (c'x + p'(b - Ax)) \leq c'x^* + p'(b - Ax^*) = c'x^*$$

We can write the dual problem as

$$p'b + \min_{x \ge 0} \left((c' - p'A)x \right)$$

Duality in LP

* Note that $\min_{x>0}(c'-p'A)x=-\infty \text{ when } (c'-p'A)<0$

Dual LP Problem: $\max_{p \in \mathbb{R}^m} p'b$

such that $p'A \leq c'$

Example of Dual LP problem

Primal problem:

Minimize $x_1 + x_2$ such that

$$x_1 + 2x_2 - x_3 = 2$$

$$x_1 - x_4 = 1$$

$$x_1, x_2, x_3, x_4 >= 0$$

* Dual Problem:

Maximize $2p_1 + p_2$ such that

$$p_1 + p_2 <= 1$$

$$2p_1 <= 1$$

$$p_1, p_2 >= 0$$

Farkas Lemma and LP

- * Farkas' lemma states that either a vector is in a given convex cone, or there is a hyperplane separating the vector from the cone
- * Fundamental result that forms the basis for understanding duality in LP

Farkas Lemma

- * Let A be a matrix of size m x n.
- * Let b be a column vector of size m
- * Then, only one of the following holds:
 - ¹ Ax = b has a nonnegative solution (x >= 0)
 - y' A >= 0 and y' b < 0 has a solution
- Proof: Follows from Hahn-Banach theorem

Proof of Farkas Lemma

Proof: Suppose both conditions are true. Then, a contradiction ensues:

$$0 \le (y' A)x = y'(Ax) = y' b < 0!$$

- * Let C be the convex set of non-negative vectors Ax, x>=0.
- * If b is in C, then condition 1 holds. Otherwise, b is separable from C by a hyperplane. Specifically, there is a vector p such that p'b < p'y for all y in C
- * Since $A_i\delta$ is in C for $\delta >=0$, it follows $p'b < \delta p'A_i$.
- * This implies $(1/\delta)p'b < p'A_i$. As $\delta \rightarrow$ infinity, $p'A_i >= 0$, so p'A >= 0

Duality Theorem for LP

- * Lemma: if there exists x and p such that c'x = p'b, then $x = x^*$ is the optimal primal solution and $p = p^*$ is the optimal dual solution
- * **Proof**: Note that since any dual solution forms a lower bound on the primal solution, it follows that:
 - * $c'x = p'b \le c'y$ (for any y)
 - Consequently, x must be optimal

Duality in LP: Alternate Form

- * Primal:
 - * Minimize c'x such that Ax >= b
- * Dual form:
 - Maximize p'b such that
 - p'A = c'
 - * p >= 0

LP Duality Theorem Proof

- * Let $I = \{i \mid a'_i x^* = b_i\}$ where x^* is the optimal primal solution
- * Any vector d such that $a_i'd \ge 0$ for any i in I also satisfies $c'd \ge 0$
- * This holds since $a'_i(x^* + \varepsilon d) >= b_i$ for all i. Hence $c'(x^* + \varepsilon d) >= c^*$.
- * By Farkas lemma, c can be written as $c = \sum_{i \in I} p_i a_i$. Define $p_i = 0$ for i not in I. This implies p'A = c'.
- * Also, $p'b = \sum_{i \in I} p_i b_i = \sum_{i \in I} p_i a'_i x^* = c'x^*$.
- * This means dual cost = primal cost, and hence both are optimal!

Polar Cone Theorem

* Recall the definition of a cone:

$$C = \{ y \in X : y = \alpha x, x \in X, \alpha > 0 \}$$

Polar Cone C 900

Polar Cone C 900

* The **polar cone** is defined as:

$$C^{\perp} = \{ y \in X : \langle y, x \rangle \le 0, x \in C \}$$

* The polar cone theorem states:

System of Inequalities

Let C be a convex set and f_1, \ldots, f_k be convex functions such that dom $f_i \supset ri$ C. Let g_1, \ldots, g_l be affine functions such that the system

$$g_1(x) \le 0, \dots, g_l(x) \le 0$$

has at least one solution in the ri C. Then, only one of the following alternatives holds:

• There exists some $x \in C$ such that

$$f_1(x) < 0, \dots, f_k(x) < 0$$
 $g_1(x) \le 0, \dots g_l(x) \le 0$

• There exists non-negative real numbers $\lambda_1, \ldots, \lambda_k, \xi_1, \ldots, \xi_l$ such that at least one of the λ_i are non-zero and

$$\lambda_1 f_1(x) + \ldots + \lambda_k f_k(x) + \xi_1 g_1(x) + \ldots + \xi_l g_l(x) \ge 0, \ \forall x \in C$$

Farkas Lemma

- * Let A be a matrix of size m x n.
- Let b be a column vector of size
 m
- * Then, only one of the following holds:
- Ax = b has a nonnegative solution $(x \ge 0)$
- y' A >= 0 and y' b < 0 has a solution

* **Proof**: Suppose both conditions are true. Then, a contradiction ensues:

$$0 \le (y' A)x = y'(Ax) = y' b < 0!$$

- * Let C be the convex set of nonnegative vectors Ax, x>=0.
- * If b is in C, then condition 1 holds. Otherwise, b is separable from C by a hyperplane.

Farkas Lemma and LP

- * Farkas' lemma states that either a vector is in a given convex cone, or there is a hyperplane separating the vector from the cone
- * Fundamental result that forms the basis for understanding duality in LP

Reading Assignment

- Conjugate Duality is covered in Chapter 3 of Boyd and Vandenberghe
- Lagrange Duality is covered in Chapter 5 of Boyd and Vandenberghe
- * Read article on Hahn-Banach theorem on Moodle
- Work out all the examples in this lecture