

ĐẠI HỌC HUẾ

KHOA KỸ THUẬT VÀ CÔNG NGHỆ

ૹ૱૽ૣ૿૱ૹ

BÁO CÁO KẾT QUẢ HỌC KÌ I, NĂM HỌC 2022-2023 HỌC PHẦN: HỌC MÁY 1

Giảng viên hướng dẫn: TS. Hoàng Hữu Trung

Lớp: Khoa học dữ liệu và Trí tuệ nhân tạo K3

Nhóm sinh viên thực hiện: Nhóm 5

Thừa Thiên Huế, ngày 17 tháng 12 năm 2023

Bài 1: Linear Regression	2
Phần 1: Giới thiệu dữ liệu	2
Phần 2: Thực hiện bài toán Linear Regression	3
Bài 2: Logistic Regression	12
Phần 1: Giới thiệu	12
1.1 Tập dữ liệu	12
1.2 Thành phần dữ liệu	12
1.3 Ånh về tập dữ liệu	13
PHẦN 2: Chuẩn bị dữ liệu	14
PHẦN 3: Xử lí dữ liệu	16
2.1 Loại bỏ dữ liệu	16
2.2 Loại bỏ các giá trị ngoại lệ	17
2.3 Chuẩn hóa dữ liệu	18
2.4 Xử lý dữ liệu phân loại	20
PHẦN 4: Thực hiện bài toán Logistic regression	21
3.1 Chuẩn bị dữ liệu	21
3.2 Khởi tạo và huấn luyện mô hình Logistic Regression	21
3.3 Đánh giá mô hình	21

Bài 1: Linear Regression

Phần 1: Giới thiệu dữ liệu

Chúng tôi đã chọn bộ dữ liệu có tên là "Salary Dataset" để thực hiện một phân tích về mối quan hệ giữa năm kinh nghiệm và mức lương. Điều này nhằm mục đích hiểu rõ hơn về cách mức lương biến đổi theo thời gian làm việc và đồng thời có thể đưa ra các nhận định hoặc xu hướng quan trọng.

Chúng tôi chọn Google Colab để phân tích bộ dữ liệu "Salary Dataset". Với môi trường làm việc trực tuyến thuận tiện, tích hợp Python và Jupyter, khả năng xử lý mạnh mẽ, và miễn phí, Colab giúp chúng tôi tiếp cận, xử lý dữ liệu một cách hiệu quả và tiết kiệm tài nguyên.

Nguồn: Salary datasets

Link mã nguồn Python: Python Linear regression

Phần 2: Thực hiện bài toán Linear Regression

Đầu tiên, tải lên dữ liệu từ máy tính cá nhân lên máy chủ Colab.

```
from google.colab import files
uploaded = files.upload()

Chon têp Salary_Data.csv

Salary_Data.csv(text/csv) - 454 bytes, last modified: 14/12/2023 - 100% done
Saving Salary_Data.csv to Salary_Data (1).csv
```

Import các thư viện cần thiết cho việc thực hiện phân tích và mô hình hóa dữ liệu bằng Linear Regression.

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
```

Sử dụng *df.info()* là một bước quan trọng để đạt được cái nhìn tổng quan về dữ liệu trong DataFrame bao gồm: Tổng số dòng và cột, tên và kiểu dữ liệu của mỗi cột, số lượng giá trị không rỗng, tổng số bộ nhớ chiếm dụng.

Sử dụng *df.head()* hiển thị một số dòng đầu tiên của DataFrame để có cái nhìn nhanh chóng về cấu trúc và nội dung của dữ liệu.

Sử dụng df in ra toàn bộ DataFrame để có cái nhìn chi tiết.

Tạo một biểu đồ phân tán.

sns.scatterplot(data=df,x='YearsExperience',y='Salary')

Theo như biểu đồ, những người có nhiều năm kinh nghiệm thường có mức lương cao hơn, cũng có một số người có ít năm kinh nghiệm nhưng mức lương cao.

Lọc lấy cột đầu tiên trong df (biến độc lập)

```
x = df.iloc[:,0]
x.head()

0    1.1
1    1.3
2    1.5
3    2.0
4    2.2
Name: YearsExperience, dtype: float64
```

Lọc lấy cột cuối cùng trong df (biến phụ thuộc)

```
y = df.iloc[:,-1]
y.head()

0     39343.0
1     46205.0
2     37731.0
3     43525.0
4     39891.0
Name: Salary, dtype: float64
```

Chia tập dữ liệu thành tập huấn luyện và tập kiểm tra.

```
x_train,x_test,y_train,y_test = train_test_split(x,y, test_size = 0.1 , random_state=2)
```

 x_train là biến đại diện cho tập dữ liệu huấn luyện. x_train chứa giá trị của các biến độc lập được sử dụng để "đào tạo" mô hình, giúp nó học từ dữ liệu và có khả năng dự đoán tốt trên dữ liệu mới.

```
x_train
9
        3.7
        7.1
 21
 19
        6.0
 23
        8.2
        3.0
 3
        2.0
 20
        6.8
 5
        2.9
 27
        9.6
 12
        4.0
        2.2
 10
        3.9
        5.1
 28
       10.3
 25
        9.0
 17
        5.3
        1.5
 2
 7
        3.2
 26
        9.5
 24
        8.7
        5.9
 18
        4.0
 11
 22
        7.9
 29
       10.5
 13
        4.1
 15
        4.9
        3.2
 Name: YearsExperience, dtype: float64
```

 x_test là biến được sử dụng để đại diện cho tập dữ liệu kiểm tra. Nó chứa giá trị của các biến độc lập mà mô hình chưa bao giờ nhìn thấy trong quá trình đào tạo. x_test giúp đánh giá hiệu suất của mô hình trên dữ liệu mới và kiểm tra khả năng tổng quát hóa của nó.

y_train là biến được sử dụng để đại diện cho tập dữ liệu kết quả huấn luyện.
y_train chứa giá trị của biến phụ thuộc (kết quả) tương ứng với x_train - tức là giá trị mà mô hình cần học cách dự đoán từ các biến độc lập.

y_test là biến được sử dụng để đại diện cho tập dữ liệu kết quả kiểm tra. y_test chứa giá trị của biến phụ thuộc (kết quả) tương ứng với x_test. Điều này giúp đánh giá khả năng dự đoán của mô hình trên dữ liệu mới, chưa được mô hình nhìn thấy trong quá trình đào tạo.

```
y_test

1 46205.0
0 39343.0
14 61111.0
Name: Salary, dtype: float64
```

Khởi tạo một mô hình tuyến tính và huấn luyện mô hình Linear Regression trên tập dữ liệu huấn luyện.

```
lr = LinearRegression()

lr.fit(x_train.values.reshape(-1,1),y_train.values.reshape(-1,1))

LinearRegression
LinearRegression()
```

Dự đoán giá trị của biến phụ thuộc (kết quả) trên tập dữ liệu kiểm tra (x_test).

a = lr.coef được sử dụng để lấy giá trị hệ số (coefficient) từ mô hình Linear Regression đã được đào tạo (lr).

 $b = lr.intercept_{-}$ được sử dụng để lấy giá trị của hệ số chệch (intercept) từ mô hình Linear Regression đã được đào tạo (lr). Hệ số chệch là giá trị dự đoán của biến phụ thuộc khi tất cả các biến độc lập đều bằng 0.

```
a = lr.coef_
a
array([[9661.28460754]])

b = lr.intercept_
b

array([24447.59619818])
```

Thay số cho ra kết quả.

```
y = ax + b

9661.28460754 * 1.3 + 24447.59619818

37007.266187982
```

Hiển thị các thống kê mô tả của DataFrame bao gồm số lượng, mean, std, min, max và các phần vị của các biến trong DataFrame.

0	print(df.describe())	
∃	count mean std min 25% 50% 75% max	YearsExperience 30.000000 5.313333 2.837888 1.100000 3.200000 4.700000 7.700000 10.500000	Salary 30.000000 76003.000000 27414.429785 37731.000000 56720.750000 65237.000000 100544.750000 122391.000000

Thực hiện kiểm định Shapiro-Wilk để kiểm tra tính chuẩn của phân phối của biến 'Salary'. Mục đích của kiểm định Shapiro-Wilk trong trường hợp này là kiểm tra xem biến 'Salary' có phân phối gần với phân phối chuẩn hay không, điều này có thể ảnh hưởng đến sự hiệu quả của các phương pháp thống kê dựa trên giả định phân phối chuẩn.

```
from scipy.stats import shapiro
stat, p_value = shapiro(df['Salary'])
print(f'Statistics={stat:.3f}, p-value={p_value:.3f}')

Statistics=0.910, p-value=0.015
```

Tạo biểu đồ histogram của biến 'Salary' và cùng lúc vẽ đường phân phối ước lượng (Kernel Density Estimate - KDE) lên trên histogram.

```
sns.histplot(df['Salary'], kde=True)
```


Biểu đồ này cho thấy phân bố tần số của mức lương trong dữ liệu. Đường KDE cho thấy rằng mức lương có xu hướng tập trung ở khoảng 50.000 đến 100.000 đô la.

Tạo ma trận tương quan và tạo biểu đồ heatmap của ma trận tương quan đó.

```
correlation_matrix = df.corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
```

Kết quả:

Biểu đồ này cho thấy mối quan hệ giữa các biến trong DataFrame. Các giá trị dương cho thấy mối quan hệ thuận, trong khi các giá trị âm cho thấy mối quan hệ nghịch. Cường độ của mối quan hệ được biểu thị bằng độ đậm của màu.

Dự đoán mức lương cho năm kinh nghiệm việc làm:

Kết quả:

Biểu đồ này được sử dụng để hiển thị mối quan hệ giữa kinh nghiệm làm việc và mức lương. Đường màu xanh dương cho thấy đường hồi quy tuyến tính giữa hai biến. Mũi tên đỏ cho thấy mức lương dự đoán (77767\$) cho năm kinh nghiệm làm việc là 5,5 năm.

Bài 2: Logistic Regression

Phần 1: Giới thiệu

1.1 Tập dữ liệu

Tập dữ liệu nhóm chọn có tên weather AUS.csv.

Nguồn: Rain in Australia (kaggle.com)

Link mã nguồn Python: Python Logistic regression

1.1.1 Ngữ cảnh

Dự đoán mưa ngày hôm sau bằng cách đào tạo các mô hình phân loại trên biến mục tiêu RainTomorrow.

1.1.2 Nội dung

Bộ dữ liệu này chứa khoảng 10 năm quan sát thời tiết hàng ngày từ nhiều địa điểm trên khắp nước Úc.

RainTomorrow là biến mục tiêu để dự đoán. Nó có nghĩa là - trời mưa vào ngày hôm sau, Có hay Không? Cột này là Có nếu mưa cho ngày hôm đó là 1mm trở lên.

1.2 Thành phần dữ liệu

Bộ dữ liệu này chứa khoảng 10 năm quan sát thời tiết hàng ngày từ nhiều trạm thời tiết Úc.

RainTomorrow là biến mục tiêu để dự đoán. Nó có nghĩa là - trời mưa vào ngày hôm sau, Có hay Không?

Cột này là Có nếu mưa cho ngày hôm đó là 1mm trở lên.

Tên cột	Giải thích
Date	Ngày quan sát
Location	Tên chung của vị trí trạm thời tiết
MinTemp	Nhiệt độ tối thiểu (°C)
MaxTemp	Nhiệt độ tối đa (°C)
Rainfall	Lượng mưa ghi nhận trong ngày (mm)
Evaporation	Sự bốc hơi của chảo loại A (mm) trong 24 giờ đến 9
	giờ sáng
Sunshine	Số giờ nắng chói chang trong ngày (giờ)
WindGustDir	Hướng gió giật mạnh nhất trong 24 giờ đến nửa đêm
WindGustSpeed	Tốc độ (km/h) gió giật mạnh nhất trong 24 giờ đến
	nửa đêm
WindDir9am	Hướng gió lúc 9 giờ sáng
WindDir3pm	Hướng gió lúc 3 giờ chiều

WindSpeed9am	Tốc độ gió (km/giờ) trung bình trên 10 phút trước 9				
	giờ sáng				
WindSpeed3pm	Tốc độ gió (km/giờ) trung bình trong 10 phút trước 3				
	giờ chiều				
Humidity9am	Độ ẩm (%) lúc 9 giờ sáng				
Humidity3pm	Độ ẩm (%) lúc 3 giờ chiều				
Pressure9am	Áp suất khí quyển (hpa) giảm xuống mực nước biển				
	trung bình lúc 9 giờ sáng				
Pressure3pm	Áp suất khí quyển (hpa) giảm xuống mực nước biển				
	trung bình lúc 3 giờ chiều				
Cloud9am	Một phần bầu trời bị mây che khuất lúc 9 giờ sáng.				
	Điều này được đo bằng "oktas", là đơn vị của phần				
	tám. Nó ghi lại bao nhiêu				
Cloud3pm	Phần bầu trời bị mây che khuất (trong "oktas": phần				
	tám) lúc 3 giờ chiều. Xem Cload9am để biết mô tả về				
	các giá trị				
Temp9am	Nhiệt độ ((°C) lúc 9 giờ sáng				
Temp3pm	Nhiệt độ ((°C) lúc 3 giờ chiều				
RainToday	Boolean: 1 nếu lượng mưa (mm) trong 24 giờ đến 9				
	giờ sáng vượt quá 1mm, nếu không thì 0				
RainTomorrow	Lượng mưa ngày hôm sau tính bằng mm. Được sử				
	dụng để tạo biến phản hồi RainTomorrow. Một loại				
	thước đo "rủi ro".				

1.3 Ảnh về tập dữ liệu

Date	Location	MinTemp Max	Temp Rai	infall Evaporation	Sunshine	WindGustDir	WindGustSpeed WindDir9am	WindDir3pm	WindSpeed9am	WindSpeed3pm	Humidity9am	Humidity3pm	Pressure9am Pr	ressure3pm Cloud	9am Cloud	i3pm Te	mp9am Te	mp3pm RainTod	ay RainTomorrow
12/1/2008	Albury	13.4	22.9	0.6 NA	NA	W	44 W	WNW	20	24	7.	1 22	1007.7	1007.1	8 NA		16.9	21.8 No	No
12/2/2008	Albury	7.4	25.1	0 NA	NA	WNW	44 NNW	wsw	4	22	4	4 25	1010.6	1007.8 NA	NA		17.2	24.3 No	No
12/3/2008	Albury	12.9	25.7	0 NA	NA	WSW	46 W	WSW	19	26	31	8 30	1007.6	1008.7 NA		2	21	23.2 No	No
12/4/2008	Albury	9.2	28	0 NA	NA	NE	24 SE	E	11	9	4:	5 16	1017.6	1012.8 NA	NA		18.1	26.5 No	No
12/5/2008	Albury	17.5	32.3	1 NA	NA	W	41 ENE	NW	7	20	8:	2 33	1010.8	1006	7	8	17.8	29.7 No	No
12/6/2008	Albury	14.6	29.7	0.2 NA	NA	WNW	56 W	w	19	24	5.	5 23	1009.2	1005.4 NA	NA		20.6	28.9 No	No
12/7/2008	Albury	14.3	25	0 NA	NA	W	50 SW	w	20	24	4	9 19	1009.6	1008.2	1 NA		18.1	24.6 No	No
12/8/2008	Albury	7.7	26.7	0 NA	NA	W	35 SSE	w	6	17	4	8 19	1013.4	1010.1 NA	NA		16.3	25.5 No	No
12/9/2008	Albury	9.7	31.9	0 NA	NA	NNW	80 SE	NW	7	28	4:	2 9	1008.9	1003.6 NA	NA		18.3	30.2 No	Yes
12/10/2008	Albury	13.1	30.1	1.4 NA	NA	W	28 S	SSE	15	11	. 51	8 27	1007	1005.7 NA	NA		20.1	28.2 Yes	No
12/11/2008	Albury	13.4	30.4	0 NA	NA	N	30 SSE	ESE	17	6	4	8 22	1011.8	1008.7 NA	NA		20.4	28.8 No	Yes
12/12/2008	Albury	15.9	21.7	2.2 NA	NA	NNE	31 NE	ENE	15	13	8	9 91	1010.5	1004.2	8	8	15.9	17 Yes	Yes
12/13/2008	Albury	15.9	18.6	15.6 NA	NA	W	61 NNW	NNW	28	28	7	6 93	994.3	993	8	8	17.4	15.8 Yes	Yes
12/14/2008	Albury	12.6	21	3.6 NA	NA	SW	44 W	SSW	24	20	6.	5 43	1001.2	1001.8 NA		7	15.8	19.8 Yes	No
12/15/2008	Albury	8.4	24.6	0 NA	NA	NA	NA S	WNW	4	30	5	7 32	1009.7	1008.7 NA	NA		15.9	23.5 No	NA
12/16/2008	Albury	9.8	27.7 NA	NA NA	NA	WNW	50 NA	WNW	NA	22	. 50	0 28	1013.4	1010.3	0 NA		17.3	26.2 NA	No
12/17/2008	Albury	14.1	20.9	0 NA	NA	ENE	22 SSW	E	11	9	69	9 82	1012.2	1010.4	8	1	17.2	18.1 No	Yes
12/18/2008	Albury	13.5	22.9	16.8 NA	NA	W	63 N	WNW	6	20	8	0 65	1005.8	1002.2	8	1	18	21.5 Yes	Yes
12/19/2008	Albury	11.2	22.5	10.6 NA	NA	SSE	43 WSW	sw	24	17	4	7 32	1009.4	1009.7 NA		2	15.5	21 Yes	No
12/20/2008	Albury	9.8	25.6	0 NA	NA	SSE	26 SE	NNW	17	6	4	5 26	1019.2	1017.1 NA	NA		15.8	23.2 No	No
12/21/2008	Albury	11.5	29.3	0 NA	NA	S	24 SE	SE	9	9	5	6 28	1019.3	1014.8 NA	NA		19.1	27.3 No	No
12/22/2008	Albury	17.1	33	0 NA	NA	NE	43 NE	N	17	22	31	8 28	1013.6	1008.1 NA		1	24.5	31.6 No	No
12/23/2008	Albury	20.5	31.8	0 NA	NA	WNW	41 W	w	19	20	5	4 24	1007.8	1005.7 NA	NA		23.8	30.8 No	No
12/24/2008	Albury	15.3	30.9	0 NA	NA	N	33 ESE	NW	6	13	5:	5 23	1011	1008.2	5 NA		20.9	29 No	No
12/25/2008	Albury	12.6	32.4	0 NA	NA	W	43 E	w	4	19	4	9 17	1012.9	1010.1 NA	NA		21.5	31.2 No	No
12/26/2008	Albury	16.2	33.9	0 NA	NA	wsw	35 SE	wsw	9	13	4:	5 19	1010.9	1007.6 NA		1	23.2	33 No	No
12/27/2008	Albury	16.9	33	0 NA	NA	WSW	57 NA	W	0	26	4	1 28	1006.8	1003.6 NA		1	26.6	31.2 No	No
12/28/2008	Albury	20.1	32.7	0 NA	NA	WNW	48 N	WNW	13	30	5	6 15	1005.2	1001.7 NA	NA		24.6	32.1 No	No
12/29/2008	Albury	19.7	27.2	0 NA	NA	WNW	46 NW	WSW	19	30	4:	9 22	1004.8	1004.2 NA	NA		21.6	26.1 No	Yes
12/30/2008	Albury	12.5	24.2	1.2 NA	NA	WNW	50 WSW	sw	11	22	7	8 70	1005.6	1003.4	8	8	12.5	18.2 Yes	No
12/31/2008	Albury	12	24.4	0.8 NA	NA	W	39 WNW	WNW	17	17	4	8 28	1006.1	1005.1	1 NA		16.9	22.7 No	No
1/1/2009	Albury	11.3	26.5	0 NA	NA	WNW	56 W	WNW	19	31	4	6 26	1004.5	1003.2 NA	NA		19.7	25.7 No	No
1/2/2009	Albury	9.6	23.9	0 NA	NA	W	41 WSW	SSW	19	11	4	4 22	1014.4	1013.1 NA	NA		14.9	22.1 No	No
1/3/2009	Albury	10.5	28.8	0 NA	NA	SSE	26 SSE	E	11	7	4	3 22	1018.7	1014.8 NA	NA		17.1	26.5 No	No
1/4/2009	Albury	12.3	34.6	0 NA	NA	WNW	37 SSE	NW	6	17	4:	1 12	1015.1	1010.3 NA	NA		20.7	33.9 No	No
1/5/2009	Albury	12.9	35.8	0 NA	NA	WNW	41 ENE	NW	6	26	4.	1 9	1012.6	1009.2 NA	NA		22.4	34.4 No	No

PHẦN 2: Chuẩn bị dữ liệu

Nhập thư viện để chuẩn bị cho các bước xử lý dữ liệu sau này.

```
import warnings
import numpy as np
import pandas as pd
from scipy import stats
from sklearn import preprocessing
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
```

Dùng hàm warnings để tắt tất cả các cảnh báo trong quá trình chạy mã.

```
# Tắt tất cả các cảnh báo
warnings.filterwarnings("ignore")
```

Đọc file CSV và lưu DataFrame vào biến **df**. Sau đó in ra màn hình kích thước của DataFrame.

```
# Đọc tập dữ liệu từ file csv
df = pd.read_csv("./weatherAus.csv")
print("Kích thước dataframe dữ liệu thời tiết:"
, df.shape)
# Hiển thị tập dữ liệu
print(df.head())
```

```
Kích thước dataframe dữ liệu thời tiết: (145460, 23)
      Date Location MinTemp MaxTemp Rainfall Evaporation Sunshine \
0 2008-12-01 Albury 13.4 22.9 0.6 NaN
                                                            NaN
1 2008-12-02 Albury
                       7.4
                              25.1
                                        0.0
                                                  NaN
                                                            NaN
                    12.9 25.7
9.2 28.0
                                      0.0
2 2008-12-03 Albury
3 2008-12-04 Albury
4 2008-12-05 Albury 17.5 32.3
                                      1.0
 WindGustDir WindGustSpeed WindDir9am ... Humidity9am Humidity3pm \
    W 44.0 W ... 71.0
WNW 44.0 NNW ... 44.0
1
                              NNW ...
                   46.0
                             W ...
SE ...
2
        WSW
                                            38.0
         NE
                    24.0
                                            45.0
                   41.0
                             ENE ...
                                           82.0
  Pressure9am Pressure3pm Cloud9am Cloud3pm Temp9am Temp3pm RainToday \
      1007.7
               1007.1 8.0 NaN 16.9 21.8
1007.8 NaN NaN 17.2 24.3
0
1
      1010.6
                                                    24.3
                                                               No
               1008.7 NaN 2.0 21.0 23.2
1012.8 NaN NaN 18.1 26.5
1006.0 7.0 8.0 17.8 29.7
2
      1007.6
      1017.6
     1010.8
  RainTomorrow
О
1
           No
[5 rows x 23 columns]
```

In ra màn hình tên các cột.

```
# Tên các cột
col_names = df.columns
print(col names)
```

Kết quả:

In ra các thống kê cơ bản như mean, std, min, max của mỗi cột dạng số trong DataFrame.

```
# Thống kê cơ bản của mỗi cột
print(df.describe())
```

	MinTemp	MaxTemp	Rainfall	Evaporation	\
coun	t 143975.000000	144199.000000	142199.000000	82670.000000	
mean	12.194034	23.221348	2.360918	5.468232	
std	6.398495	7.119049	8.478060	4.193704	
min	-8.500000	-4.800000	0.000000	0.000000	
25%	7.600000	17.900000	0.000000	2.600000	
50%	12.000000	22.600000	0.000000	4.800000	
75%	16.900000	28.200000	0.800000	7.400000	
max	33.900000	48.100000	371.000000	145.000000	
	Sunshine	WindGustSpeed	WindSpeed9am	WindSpeed3pm	\
coun	t 75625.000000	135197.000000	143693.000000	142398.000000	
mean	7.611178	40.035230	14.043426	18.662657	
std	3.785483	13.607062	8.915375	8.809800	
min	0.000000	6.000000	0.000000	0.000000	
25%	4.800000	31.000000	7.000000	13.000000	
50%	8.400000	39.000000	13.000000	19.000000	
75%	10.600000	48.000000	19.000000	24.000000	
max	14.500000	135.000000	130.000000	87.000000	
	Humidity9am	Humidity3pm	Pressure9am	Pressure3pm	\
coun	t 142806.000000	140953.000000	130395.00000	130432.000000	
mean	68.880831	51.539116	1017.64994	1015.255889	
std	19.029164	20.795902	7.10653	7.037414	
min	0.000000	0.000000	980.50000	977.100000	
25%	1.000000	2.000000	12.300000	16.60000	
50%	5.000000	5.000000	16.700000	21.10000	
75%	7.000000	7.000000	21.600000	26.40000	
max	9.000000	9.000000	40.200000	46.70000	

PHẦN 3: Xử lí dữ liệu

2.1 Loại bỏ dữ liệu

In ra số lượng giá trị không rỗng (không phải là null) của từng cột, sắp xếp theo giá trị tăng dần.

```
# Kiểm tra giá trị Null
print(df.count().sort_values())
```

Sunshine	75625
Evaporation	82670
Cloud3pm	86102
Cloud9am	89572
Pressure9am	130395
Pressure3pm	130432
WindDir9am	134894
WindGustDir	135134
WindGustSpeed	135197
Humidity3pm	140953
WindDir3pm	141232
Temp3pm	141851
RainTomorrow	142193
RainToday	142199
Rainfall	142199
WindSpeed3pm	142398
Humidity9am	142806
Temp9am	143693
WindSpeed9am	143693
MinTemp	143975
MaxTemp	144199
Location	145460
Date	145460
dtype: int64	

Loại bỏ các cột không cần thiết từ DataFrame. Các cột bị loại bỏ là 'Sunshine', 'Evaporation', 'Cloud3pm', 'Cloud9am', và 'Date' và in ra kích thước mới của DataFrame.

```
# Loại bỏ các cột không cần thiết
df = df.drop(columns=['Sunshine','Evaporation','Cloud3pm','Cloud9am',
'Date'],axis=1)
print(df.shape)
```

Loại bỏ các hàng có ít nhất một giá trị null từ DataFrame và in ra kích thước mới của DataFrame sau khi loại bỏ giá trị null.

```
# Loại bỏ các hàng chứa giá trị Null
df = df.dropna()
print(df.shape)
```

2.2 Loại bỏ các giá trị ngoại lệ

Sử dụng Z-score để xác định giá trị ngoại lệ và loại bỏ chúng khỏi DataFrame. In ra kích thước mới của DataFrame sau khi loại bỏ giá trị ngoại lệ.

```
# Loại bỏ các giá trị ngoại lệ
z = np.abs(stats.zscore(df._get_numeric_data()))
print(z)
df = df[(z < 3).all(axis=1)]
print(df.shape)</pre>
```

```
MinTemp MaxTemp Rainfall WindGustSpeed WindSpeed9am
        0.133606 0.108909 0.226104 0.353152 0.692529
         0.826105 0.209120 0.379755
                                                 0.353152
       0.053630 0.295856 0.379755 0.520274
                                                               0.562048
        0.538192 0.628341 0.379755 1.318072 0.481803
0.789409 1.249943 0.123670 0.102468 1.003728
                                             0.733144
0.733144
145454 1.449917 0.267923 0.379755
                                                               0.040123
145455 1.561884 0.036629 0.379755
                                                              0.220840
                                                1.485194
145456 1.433922 0.238032 0.379755
                                                                 0.220840
145457 1.146009 0.469326 0.379755
                                                 0.231776
                                                                 0.742765
                                             0.983827 0.220840
145458 0.762124 0.483782 0.379755
         WindSpeed3pm Humidity9am Humidity3pm Pressure9am Pressure3pm \
            0.615619 0.195478 1.389100 1.493284 1.232228
0.366169 1.263051 1.242074 1.062586 1.127614
0
1

    0.865070
    1.587168
    0.997030
    1.508136
    0.993110

    1.255260
    1.209031
    1.683153
    0.022970
    0.380371

    0.116718
    0.789694
    0.850004
    1.032883
    1.396622

2
         145454

    1.005810
    0.884914
    1.291083
    1.016646
    0.740495

    1.255260
    0.614816
    1.438109
    0.853278
    0.561157

    1.255260
    0.776874
    1.291083
    0.481987
    0.217424

145455
145456
145457
             1.504711 0.884914 1.291083 0.244360
145458
                                                                          0.172590
145458 0.363629 0.569886
[107868 rows x 12 columns]
(103113, 18)
```

2.3 Chuẩn hóa dữ liệu

Chuẩn hóa dữ liệu số bằng cách sử dụng hàm scale từ thư viện preprocessing của scikit-learn.

```
# Chuẩn hóa dữ liệu
numerical = [var for var in df.columns if df[var].dtype=="float64"]
for col in numerical:
    df[col] = preprocessing.scale(df[col])
print(df.head())
```

```
Location MinTemp MaxTemp Rainfall WindGustDir WindGustSpeed \
0 Albury 0.145603 -0.120266 -0.136427 W 0.412970
1 Albury -0.812264 0.198699 -0.406190
                                                       WNW
                                                                  0.412970
2 Albury 0.065781 0.285690 -0.406190 WSW 0.587351
3 Albury -0.524904 0.619154 -0.406190 NE -1.330844
4 Albury 0.800146 1.242587 0.043415 W 0.151398
  WindDir9am WindDir3pm WindSpeed9am WindSpeed3pm Humidity9am Humidity3pm \
       W WNW 0.731022 0.651862 0.220448 -1.375995
         NNW
                     WSW -1.400118 0.397380 -1.251106 -1.227261
       W WSW 0.597826 0.906343 -1.578118 -0.979372

SE E -0.467744 -1.256749 -1.196604 -1.673462

ENE NW -1.000529 0.142899 0.819970 -0.830638
   Pressure9am Pressure3pm Temp9am Temp3pm RainToday RainTomorrow
   -1.552929 -1.275167 -0.078542 -0.063572 No No
1 -1.114503 -1.169077 -0.031111 0.307266
1 -1.114563 -1.169677 -0.631111 0.367266 NO

2 -1.568048 -1.032677 0.569679 0.144098 No

3 -0.056231 -0.411298 0.111181 0.633604 No

4 -1.084266 -1.441878 0.063750 1.108277 No
                                                                            No
```

Sử dụng LabelEncoder để chuyển các giá trị "Yes" và "No" trong cột "RainToday" và "RainTomorrow" thành 1 và 0 tương ứng.

```
# Chuyển Yes/No -> 1/0

df["RainToday"] = LabelEncoder().fit_transform(df["RainToday"])

df["RainTomorrow"] = LabelEncoder().fit_transform(df["RainTomorrow"])

print(df.head())
```

2.4 Xử lý dữ liệu phân loại

In ra số lượng và tên của các biến phân loại trong DataFrame.

```
# Xử lý dữ liệu phân loại
categorical = [var for var in df.columns if df[var].dtype=='object']
print("Number of categorical variables: ", len(categorical))
print(categorical)
```

Kết quả:

```
Number of categorical variables: 4 ['Location', 'WindGustDir', 'WindDir9am', 'WindDir3pm']
```

In ra các giá trị duy nhất trong từng cột phân loại và tạo các biến giả tưởng cho các biến phân loại sử dụng phương pháp "one-hot encoding" bằng hàm get_dummies của pandas.

```
categorical_columns = ['Location', 'WindGustDir', 'WindDir3pm',
'WindDir9am']

# Hiển thị các giá trị duy nhất trong từng cột phân loại
for col in categorical_columns:
    print(np.unique(df[col]))

# Tạo các biến giả tưởng (dummy variables)
df = pd.get_dummies(df, columns=categorical_columns)
```

```
['Adelaide' 'Albury' 'AliceSprings' 'BadgerysCreek' 'Ballarat' 'Bendigo' 'Brisbane' 'Cairns' 'Canberra' 'Cobar' 'CoffsHarbour' 'Dartmoor' 'Darwin' 'GoldCoast' 'Hobart' 'Katherine' 'Launceston' 'Melbourne' 'MelbourneAirport' 'Mildura' 'Moree' 'MountGambier' 'Nhil' 'NorahHead' 'NorfolkIsland' 'Nuriootpa' 'PearceRAAF' 'Perth' 'PerthAirport' 'Portland' 'Richmond' 'Sale' 'Sydney' 'SydneyAirport' 'Townsville' 'Tuggeranong' 'Uluru' 'WaggaWagga' 'Walpole' 'Watsonia' 'Williamtown' 'Witchcliffe' 'Wollongong' 'Woomera']
['E' 'ENE' 'ESE' 'N' 'NE' 'NNE' 'NNW' 'NW' 'S' 'SE' 'SSE' 'SSW' 'SW' 'W' 'WNW' 'WSW']
['E' 'ENE' 'ESE' 'N' 'NE' 'NNE' 'NNW' 'NW' 'S' 'SE' 'SSE' 'SSW' 'SW' 'W' 'WNW' 'WSW']
['E' 'ENE' 'ESE' 'N' 'NE' 'NNE' 'NNW' 'NW' 'S' 'SE' 'SSE' 'SSW' 'SW' 'W' 'WNW' 'WSW']
```

PHẦN 4: Thực hiện bài toán Logistic regression

3.1 Chuẩn bị dữ liệu

3.1.1 Tính năng mô hình

Đặt X là tất cả các đặc trưng và y là biến mục tiêu:

- X là DataFrame chứa tất cả các đặc trưng (các cột trừ cột "RainTomorrow");
- y là Series chứa biến mục tiêu "RainTomorrow".

```
# Đặt X là tất cả các đặc trưng
X = df.loc[:, df.columns != 'RainTomorrow']
# Đặt y là biến mục tiêu RainTomorrow
y = df.RainTomorrow
```

3.1.2 Chia dữ liệu thành tập huấn luyện và tập kiểm thử

Sử dụng hàm train_test_split từ scikit-learn để chia dữ liệu thành tập huấn luyện và tập kiểm thử.

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=
0.25, random_state=42)
```

3.2 Khởi tạo và huấn luyện mô hình Logistic Regression

Sử dụng mô hình Logistic Regression và huấn luyện nó trên tập huấn luyện (X_train, y_train) và y_pred.

```
# Tách dữ liệu thành 5 phần và trộn để tránh thiên lệch
logReg = LogisticRegression()
logReg.fit(X_train, y_train)
# Dự đoán trên tập kiểm thử với mô hình đã được huấn luyện
y_pred = logReg.predict(X_test)
```

3.3 Đánh giá mô hình

Dùng mô hình đã huấn luyện để dự đoán trên tập kiểm thử và tính độ chính xác của mô hình.

```
# Đánh giá mô hình
accuracy_score = accuracy_score(y_test, y_pred)
print("Độ chính xác của tập dữ liệu: {:.2f}".format(accuracy_score))
```

```
Độ chính xác của tập dữ liệu: 0.86
```

Chọn ngẫu nhiên 100 điểm từ tập kiểm thử để biểu diễn trên biểu đồ.

```
# Chọn ngẫu nhiên 100 điểm từ tập kiểm thử
random_indices = np.random.choice(len(X_test), size=100, replace=
False)
```

Vẽ biểu đồ scatter plot so sánh giữa kết quả thực tế và kết quả dự đoán.

```
# Biểu đò điểm so sánh kết quả thực tế và dự đoán
plt.figure(figsize=(16, 5))
plt.scatter(range(100), y_test.iloc[random_indices], color="black"
, label="Thực tế")
plt.scatter(range(100), y_pred[random_indices], color="red", marker=
"x", label="Dự đoán")

plt.title(
"Biểu đò so sánh Kết quả Thực tế và Dự đoán 'Ngày mai trời có mưa ha
y không?'"
, fontsize=15, fontweight="bold")
plt.xlabel("Số mẫu (mẫu)", fontsize=12)
plt.ylabel("Có mưa (1) / Không có mưa (0)", fontsize=12)
plt.legend(title="Kết quả", title_fontsize=12, fontsize=12)
plt.yticks([0, 1])
plt.show()
```

