

#DebateNight - Role of Twitter Socialbots During US Presidential Debate

Marian-Andrei Rizoiu

The research group

1 research associate, 3 PhD students, 2 Honors students, 1 lecturer

Research income & grants

~\$460k

2019 – current:	Crawford School of Public Policy grants, "Evaluating democratic equity through analysing data around public donation to presidential candidates", co-Cl.
2019 – current:	UTS cross-faculty collaboration scheme, "SocialSense: Making sense of the opinions and interactions of online users", Cl.
2019 – current:	Data61 Challenge model grants, "Adaptive skills taxonomy to enable labour market agility", CI.
2018	ANU Social Science Cross-College Grants, "Advanced tools and methods for analysing the role and influence of bots in social media", Cl.
2018	ANU Social Science Cross-College Grants, "Identify Hate Speech and Predict Mass Atrocities", CI.

1.

information diffusion epidemics spreading behavioral modeling

1.

information diffusion epidemics spreading behavioral modeling

1.

information diffusion epidemics spreading behavioral modeling

2.

1.

information diffusion epidemics spreading behavioral modeling

3.

Other projects

Wikipedia privacy

Online Diversity

Smart traffic

Busting Russian Trolls

#DebateNight Role of Twitter Socialbots During US Presidential Debate

Two influencers: the 2016 U.S. Presidential elections

Jenna Abrams

@Jenn_Abrams

Politics is a circus of hypocrisy. I DO care. Any offers/ideas/questions? DM or email me jennnabrams@gmail.com (Yes, there are 3 Ns, this is important)

- **USA**
- & jennabrams.com
- iii Joined October 2014
- Born on October 02

6ok followers

136k followers

Common traits:

- Pro-republican;
- Highly influential, highly followed and retweeted;
- Opinion leaders;

• ...

Two influencers: the 2016 U.S. Presidential elections

Jenna Abrams

@Jenn_Abrams

Politics is a circus of hypocrisy. I DO care. Any offers/ideas/questions? DM or email me jennnabrams@gmail.com (Yes, there are 3 Ns, this is important)

- **USA**
- & jennabrams.com
- iii Joined October 2014
- Born on October 02

6ok followers

136k followers

Common traits:

- Pro-republican;
- Highly influential, highly followed and retweeted;
- Opinion leaders;

• ...

Russian-controlled bots operated by the Internet Research Agency in St. Petersburg

[Forbes, The Guardian, CNN + 50 more]

The political influence of socialbots

SocialBots:

"Software processes that are programmed to appear to be human-generated within the context of social networking sites such as Facebook and Twitter" (Gehl and Bakardjieva 2016, p.2)

Immediate and long term research questions:

- are socialbots influential in the political discourse?
- did they have political partisanship?
- (long term) were they instrumental for the results of the elections?

#DebateNight dataset

- First U.S. Presidential Debate (26 sept 2016, 8.45pm to 10.45pm EDT)
- Twitter Firehose

Dataset stats:

- length: 90 minutes
- #tweets: **6.5M**
- #users: 1.45M

Hashtags:

#DebateNight
#Debates2016
#election2016
#HillaryClinton
#Debates,
#Hillary2016
#DonaldTrump
#Trump2016

Presentation outline

Political partisanship

User botness

Diffusion trees and influence

Diffusion trees and influence

$$p_{ij} = \frac{m_i e^{-r(t_j - t_i)}}{\sum_{k=1}^{j-1} m_k e^{-r(t_j - t_k)}}$$

branching probability

$$p_{ij} = \frac{m_i \mathbf{e}^{-\mathbf{r}(\mathbf{t_j} - \mathbf{t_i})}}{\sum_{k=1}^{j-1} m_k e^{-r(t_j - t_k)}}$$

branching probability

- users retweet fresh content
[Hawkes 1971]
[Wu and Huberman 2007]

#followers of u_i $p_{ij} = \frac{\mathbf{m_i} e^{-\mathbf{r}(\mathbf{t_j} - \mathbf{t_i})}}{\sum_{k=1}^{j-1} m_k e^{-r(t_j - t_k)}}$

branching probability

- users retweet *fresh content*[Hawkes 1971]
 [Wu and Huberman 2007]
- preferential attachment [Barabási 2005]

#followers of u_i $p_{ij} = \frac{\mathbf{m_i} e^{-\mathbf{r}(\mathbf{t_j} - \mathbf{t_i})}}{\sum_{k=1}^{j-1} m_k e^{-r(t_j - t_k)}}$

branching probability

- users retweet *fresh content*[Hawkes 1971]
 [Wu and Huberman 2007]
- preferential attachment [Barabási 2005]

Tweet influence: the expected number of retweets, averaged over all possible trees.

But ... (n-1)! trees 10^{156} trees for 100 tweets

Tractable influence computation

Pair-wise influence score m_{ij}

• • •

Tractable influence computation

Pair-wise influence score m_{ij}

$$m_{15} = m_{11}p_{15} + m_{12}p_{25} + m_{13}p_{35} + m_{14}p_{45}$$

Recursive algorithm $O(n^3)$

Influence vs. cascade size

Density plot for 653K users (45% users start a cascade)

Influence vs. cascade size

Density plot for 653K users (45% users start a cascade)

actor and filmmaker
10.8 million followers

2.1 million followers

comedian

Influence vs. number of followers

Influence vs. number of followers

2 followers
Initiated a
big cascade

now suspended 1 follower Initiated a big cascade

Presentation outline

Political partisanship

User botness

Analyze political behavior of bots

Political polarization (1)

Protocol:

- Top 1000 most frequent hashtags
- Manually labeled as *clearly partisan* pro-democrat or pro-republican

Partisanship stats:

- pro-Democrat hashtags: 93
- pro-Republican hashtags: **86**
- partisan tweets: 65K
- partisan users: 47K

Political polarization (2)

For each user i:

- dem_i #democrat hashtags
- rep_i #republican hashtags

$$\mathcal{P}(u_i) = \frac{rep_i - dem_i}{rep_i + dem_i}$$

Political polarization (2)

For each user i:

- dem_i #democrat hashtags
- rep_i #republican hashtags

Let's Get READY TO RUMBLE AND TELL LIES.

#debatenight #debates #Debates2016 #cnn #nevertrump #neverhillary #Obama

Botness score and bot detection

Bot detection:

- BotOrNot [Davis et al, WWW '16] [Varol et al, ICWSM'17]
 - RandomForest classifier
 - more than 1000 features from metadata
 - o very likely human
 - 1 very likely bot
 - 94.5% precision

Botometer

@Botometer

Online tool to classify Twitter accounts as human or bot. Formerly known as BotOrNot, part of the OSoMe project at Indiana University

- O Bloomington, IN
- S botometer.iuni.iu.edu
- S-a alăturat în aprilie 2014

Separating bots from humans

Three populations

Population	Effective
All	1,451,388
Protected	45,316
Suspended	10,162

Separating bots from humans

Three populations

Population	Effective
All	1,451,388
Protected	45,316
Suspended	10,162

[Varol et al, ICWSM'17] use a threshold of 0.5

Presentation outline

User influence

Political partisanship

User botness

Activity profiling

Bots and **Suspended** are more active than **Humans** and **Protected**

Some **Bots** are highly followed, while most are ignored

User influence

The average **Bot** has 2.5 times more influence than the average **Human**

The average pro-Republican **Bot** is twice as influential as the average pro-Democrat **Bot**

Political partisanship

Bots are more likely to be pro-Republican (than pro-Democrat)

Very highly influential users are more likely to be pro-Democrat

Polarization map

Polarization map

Very highly influential users are pro-Democrat

(D: 7201, R: 5736)

Very highly influential users are pro-Democrat

(D: 7201, R: 5736)

Highly influential **Bots** are pro-Republican

(D: 24, R: 45)

Very highly influential users are pro-Democrat

(D: 7201, R: 5736)

Highly influential **Bots** are pro-Republican

(D: 24, R: 45)

Mid-influential humans are pro-Republican

(D: 1530, R: 3311)

Summary

A scalable algorithm to estimate user influence from latent network structures

Three measures to quantify the influence, the political partisanship and botness of Twitter users

A detailed analysis of the role and influence of socialbots during the first U.S. Presidential debate.

Summary

A scalable algorithm to estimate user influence from latent network structures

Three measures to quantify the influence, the political partisanship and botness of Twitter users

A detailed analysis of the role and influence of socialbots during the first U.S. Presidential debate.

Limitations:

Organizational accounts appear as **Bots**; binary partisanship characterization (e.g. independent voters)

Were Bots instrumental for the results of the elections?

#DebateNight: The Role and Influence of **Socialbots** in the Democratic Process

https://github.com/computationalmedia/cascade-influence

A scalable algorithm to estimate user influence from latent network structures

Three measures to quantify the influence, the political partisanship and botness of Twitter users

A detailed analysis of the role and influence of socialbots during the first U.S. Presidential debate.

Limitations:

Organizational accounts appear as **Bots**; binary partisanship characterization (e.g. independent voters)

Were Bots instrumental for the results of the elections?

User identity via semantic edit distance: A case study of Russian trolls on Twitter

Behavioral Data Science

[Kim et al Jour. Comp. Social Science '19]

Identity through the digital traces that actors leave behind

User identity via semantic edit distance: A case study of Russian trolls on Twitter

Behavioral Data Science

Identity through the digital traces that actors leave behind

Thank you!

Other projects

Other projects

Wikipedia privacy

Online Diversity

[McCarthy et al '19]

Smart traffic

[Mihaita et al ITSC'19]

Vocation compass

Transfer learning for Hate Speech detection

[Rizoiu et al ICWSM'19]

[Kern et al PNAS'19]

Other projects – references

[Rizoiu et al WSDM'16] Rizoiu, M.-A., Xie, L., Caetano, T., & Cebrian, M. (2016). Evolution of Privacy Loss in Wikipedia. In International Conference on Web Search and Data Mining (WSDM '16) (pp. 215–224). New York, New York, USA: ACM Press. http://arxiv.org/pdf/1512.03523.pdf

[McCarthy et al '19] McCarthy, P. X., Rizoiu, M.-A., Eghbal, S., & Falster, D. S. (2019). Longterm evolutionary trends of diversity online.

[Mihaita et al ITSC'19] Mihaita, A.-S., Li, H., He, Z., & Rizoiu, M.-A. (2019). Motorway Traffic Flow Prediction using Advanced Deep Learning. In 22nd Intelligent Transportation Systems Conference (ITSC'19).

[Kern et al PNAS'19] Kern, M. L., McCarthy, P. X., Chakrabarty, D., & Rizoiu, M.-A. (2019). Social Media-Predicted Personality Traits Can Help Match People to their Ideal Jobs. Proceedings of the National Academy of Sciences (under review).

[Rizoiu et al ICWSM'19] Rizoiu, M.-A., Wang, T., Ferraro, G., & Suominen, H. (2019). Transfer Learning for Hate Speech Detection in Social Media. International AAAI Conference on Web and Social Media (ICWSM'19) (under review). http://arxiv.org/abs/1906.03829