Vikram Voleti (20091845) Multilayer Perceptrons and Convolutional Neural networks

Question 1. (4-4-4-2) Using the following definition of the derivative and the definition of the Heaviside step function :

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon} \qquad H(x) = \begin{cases} 1 & \text{if } x > 0\\ \frac{1}{2} & \text{if } x = 0\\ 0 & \text{if } x < 0 \end{cases}$$

- 1. Show that the derivative of the rectified linear unit $g(x) = \max\{0, x\}$, wherever it exists, is equal to the Heaviside step function.
- 2. Give two alternative definitions of g(x) using H(x).
- 3. Show that H(x) can be well approximated by the sigmoid function $\sigma(x) = \frac{1}{1 + e^{-kx}}$ asymptotically (i.e for large k), where k is a parameter.
- *4. Although the Heaviside step function is not differentiable, we can define its **distributional derivative**. For a function F, consider the functional $F[\phi] = \int_{\mathbb{R}} F(x)\phi(x)dx$, where ϕ is a smooth function (infinitely differentiable) with compact support $(\phi(x) = 0$ whenever $|x| \ge A$, for some A > 0).

Show that whenever F is differentiable, $F'[\phi] = -\int_{\mathbb{R}} F(x)\phi'(x)dx$. Using this formula as a definition in the case of non-differentiable functions, show that $H'[\phi] = \phi(0)$. $(\delta[\phi] \doteq \phi(0))$ is known as the Dirac delta function.)

Answer 1. 1. For x > 0:

$$\frac{d}{dx}g(x) = \lim_{\epsilon \to 0} \frac{g(x+\epsilon) - g(x)}{\epsilon} = \lim_{\epsilon \to 0} \frac{x+\epsilon - x}{\epsilon} = 1$$

For x < 0 (such that $x + \epsilon < 0$ as $\epsilon \to 0$):

$$\frac{d}{dx}g(x) = \lim_{\epsilon \to 0} \frac{g(x+\epsilon) - g(x)}{\epsilon} = \lim_{\epsilon \to 0} \frac{0-0}{\epsilon} = 0$$

For x = 0, approaching from the left gives 0, while approaching from the right gives 1, hence the derivative of g(x) is not defined at x = 0.

... The derivative of g(x) for $x \neq 0$ is equal to H(x).

- 2. (a) g(x) = x * H(x)
 - (b) g(x) = x * (1 H(-x))
- 3. For large k, for x > 0:

$$\lim_{k \to +\infty} \sigma(x) = \lim_{k \to +\infty} \frac{1}{1 + e^{-kx}} = \lim_{k \to +\infty} \frac{1}{1 + e^{-large \ negative \ number>}} = 1$$

For large k, for x < 0:

$$\lim_{k \to +\infty} \sigma(x) = \lim_{k \to +\infty} \frac{1}{1 + e^{-kx}} = \lim_{k \to +\infty} \frac{1}{1 + e^{}} = 0$$

 $\therefore H(x)$ can be well approximated by the sigmoid function $\sigma(x)$ asymptotically.

4. $F'[\phi] = \int_{\mathbb{R}} F'(x)\phi(x)dx$

Vikram Voleti (20091845)

Performing this integration by parts:

$$F'[\phi] = \int_{\mathbb{R}} F'(x)\phi(x)dx = F(x)\phi(x)|_{-\infty}^{+\infty} - \int_{\mathbb{R}} F(x)\phi'(x)dx$$

Since $\phi(x)$ has a compact support, $F(x)\phi(x)|_{-\infty}^{+\infty} = 0 - 0 = 0$.

$$F'[\phi] = -\int_{\mathbb{R}} F(x)\phi'(x)dx$$
 (whenever F is differentiable).

Thus, $H'(\phi) = -\int_{\mathbb{R}} H(x)\phi'(x)dx = -\int_0^{+\infty} \phi'(x)dx = -\phi(x)|_0^{+\infty} = \phi(0)$ (again, since $\phi(x)$ has a compact support).

$$\therefore H'(\phi) = \phi(0)$$

Question 2. (5-8-5-5) Let \boldsymbol{x} be an n-dimensional vector. Recall the softmax function : $S: \boldsymbol{x} \in \mathbb{R}^n \mapsto S(\boldsymbol{x}) \in \mathbb{R}^n$ such that $S(\boldsymbol{x})_i = \frac{e^{\boldsymbol{x}_i}}{\sum_j e^{\boldsymbol{x}_j}}$; the diagonal function : $\operatorname{diag}(\boldsymbol{x})_{ij} = \boldsymbol{x}_i$ if i = j and $\operatorname{diag}(\boldsymbol{x})_{ij} = 0$ if $i \neq j$; and the Kronecker delta function : $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$.

- 1. Show that the derivative of the softmax function is $\frac{dS(\boldsymbol{x})_i}{d\boldsymbol{x}_j} = S(\boldsymbol{x})_i (\delta_{ij} S(\boldsymbol{x})_j)$.
- 2. Express the Jacobian matrix $\frac{\partial S(x)}{\partial x}$ using matrix-vector notation. Use diag(·).
- 3. Compute the Jacobian of the sigmoid function $\sigma(x) = 1/(1 + e^{-x})$.
- 4. Let \mathbf{y} and \mathbf{x} be n-dimensional vectors related by $\mathbf{y} = f(\mathbf{x})$, L be an unspecified differentiable loss function. According to the chain rule of calculus, $\nabla_{\mathbf{x}} L = (\frac{\partial \mathbf{y}}{\partial \mathbf{x}})^{\top} \nabla_{\mathbf{y}} L$, which takes up $\mathcal{O}(n^2)$ computational time in general. Show that if $f(\mathbf{x}) = \sigma(\mathbf{x})$ or $f(\mathbf{x}) = S(\mathbf{x})$, the above matrix-vector multiplication can be simplified to a $\mathcal{O}(n)$ operation.

Answer 2. 1. To show that : $\frac{dS(\boldsymbol{x})_i}{d\boldsymbol{x}_i} = S(\boldsymbol{x})_i \left(\delta_{ij} - S(\boldsymbol{x})_j\right)$

Using quotient rule:

$$\frac{dS(\boldsymbol{x})_i}{d\boldsymbol{x}_j} = \frac{d}{d\boldsymbol{x}_j} \left(\frac{e^{\boldsymbol{x}_i}}{\sum_k e^{\boldsymbol{x}_k}} \right) = \frac{\sum_k e^{\boldsymbol{x}_k} \cdot \frac{d}{d\boldsymbol{x}_j} (e^{\boldsymbol{x}_i}) - e^{\boldsymbol{x}_i} \cdot \frac{d}{d\boldsymbol{x}_j} (\sum_k e^{\boldsymbol{x}_k})}{(\sum_k e^{\boldsymbol{x}_k})^2}$$

Here,
$$\frac{d}{d\mathbf{x}_j}(e^{\mathbf{x}_i}) = \begin{cases} e^{\mathbf{x}_i} & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \implies \frac{d}{d\mathbf{x}_j}(e^{\mathbf{x}_i}) = \delta_{ij}.e^{\mathbf{x}_i}$$

Also,
$$\frac{d}{dx_i}(\sum_k e^{x_k}) = e^{x_j}$$

Thus.

$$\frac{dS(\boldsymbol{x})_i}{d\boldsymbol{x}_j} = \frac{\sum_k e^{\boldsymbol{x}_k} . \delta_{ij} . e^{\boldsymbol{x}_i} - e^{\boldsymbol{x}_i} . e^{\boldsymbol{x}_j}}{(\sum_k e^{\boldsymbol{x}_k})^2} \\
= \frac{e^{\boldsymbol{x}_i} (\sum_k e^{\boldsymbol{x}_k} . \delta_{ij} - e^{\boldsymbol{x}_j})}{(\sum_k e^{\boldsymbol{x}_k})^2} \\
= \frac{e^{\boldsymbol{x}_i}}{\sum_k e^{\boldsymbol{x}_k}} . \left(\frac{\sum_k e^{\boldsymbol{x}_k} . \delta_{ij}}{\sum_k e^{\boldsymbol{x}_k}} - \frac{e^{\boldsymbol{x}_j}}{\sum_k e^{\boldsymbol{x}_k}}\right) \\
= S(\boldsymbol{x})_i (\delta_{ij} - S(\boldsymbol{x})_j)$$

$$\therefore \frac{dS(\boldsymbol{x})_i}{d\boldsymbol{x}_j} = S(\boldsymbol{x})_i \left(\delta_{ij} - S(\boldsymbol{x})_j\right)$$

2. Jacobian of softmax:

$$\frac{\partial S(\boldsymbol{x})}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial S(\boldsymbol{x})_1}{\partial \boldsymbol{x}_1} & \frac{\partial S(\boldsymbol{x})_1}{\partial \boldsymbol{x}_2} & \dots & \frac{\partial S(\boldsymbol{x})_1}{\partial \boldsymbol{x}_n} \\ \frac{\partial S(\boldsymbol{x})_2}{\partial \boldsymbol{x}_1} & \frac{\partial S(\boldsymbol{x})_2}{\partial \boldsymbol{x}_2} & \dots & \frac{\partial S(\boldsymbol{x})_2}{\partial \boldsymbol{x}_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial S(\boldsymbol{x})_n}{\partial \boldsymbol{x}_1} & \frac{\partial S(\boldsymbol{x})_n}{\partial \boldsymbol{x}_2} & \dots & \frac{\partial S(\boldsymbol{x})_n}{\partial \boldsymbol{x}_n} \end{bmatrix}$$

$$= \begin{bmatrix} S(\boldsymbol{x})_1.(1 - S(\boldsymbol{x})_1) & -S(\boldsymbol{x})_1.S(\boldsymbol{x})_2 & \dots & -S(\boldsymbol{x})_1.S(\boldsymbol{x})_n \\ -S(\boldsymbol{x})_2.S(\boldsymbol{x})_1 & S(\boldsymbol{x})_2.(1 - S(\boldsymbol{x})_2) & \dots & -S(\boldsymbol{x})_2.S(\boldsymbol{x})_n \\ \vdots & \vdots & \ddots & \vdots \\ -S(\boldsymbol{x})_n.S(\boldsymbol{x})_1 & -S(\boldsymbol{x})_n.S(\boldsymbol{x})_2 & \dots & S(\boldsymbol{x})_n.(1 - S(\boldsymbol{x})_n) \end{bmatrix}$$

$$= \begin{bmatrix} S(\boldsymbol{x})_{1} - S(\boldsymbol{x})_{1}.S(\boldsymbol{x})_{1} & -S(\boldsymbol{x})_{1}.S(\boldsymbol{x})_{2} & \dots & -S(\boldsymbol{x})_{1}.S(\boldsymbol{x})_{n} \\ -S(\boldsymbol{x})_{2}.S(\boldsymbol{x})_{1} & S(\boldsymbol{x})_{2} - S(\boldsymbol{x})_{2}.S(\boldsymbol{x})_{2} & \dots & -S(\boldsymbol{x})_{2}.S(\boldsymbol{x})_{n} \\ \vdots & \vdots & \ddots & \vdots \\ -S(\boldsymbol{x})_{n}.S(\boldsymbol{x})_{1} & -S(\boldsymbol{x})_{n}.S(\boldsymbol{x})_{2} & \dots & S(\boldsymbol{x})_{n} - S(\boldsymbol{x})_{n}.S(\boldsymbol{x})_{n} \end{bmatrix}$$

$$= \begin{bmatrix} S(\boldsymbol{x})_1 & 0 & \dots & 0 \\ 0 & S(\boldsymbol{x})_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & S(\boldsymbol{x})_n \end{bmatrix} - \begin{bmatrix} S(\boldsymbol{x})_1.S(\boldsymbol{x})_1 & S(\boldsymbol{x})_1.S(\boldsymbol{x})_2 & \dots & S(\boldsymbol{x})_1.S(\boldsymbol{x})_n \\ S(\boldsymbol{x})_2.S(\boldsymbol{x})_1 & S(\boldsymbol{x})_2.S(\boldsymbol{x})_2 & \dots & S(\boldsymbol{x})_2.S(\boldsymbol{x})_n \\ \vdots & \vdots & \ddots & \vdots \\ S(\boldsymbol{x})_n.S(\boldsymbol{x})_1 & S(\boldsymbol{x})_n.S(\boldsymbol{x})_2 & \dots & S(\boldsymbol{x})_n.S(\boldsymbol{x})_n \end{bmatrix}$$

$$= \operatorname{diag}(S(\boldsymbol{x})) - \begin{bmatrix} S(\boldsymbol{x})_1 \\ S(\boldsymbol{x})_2 \\ \vdots \\ S(\boldsymbol{x})_n \end{bmatrix} \cdot \begin{bmatrix} S(\boldsymbol{x})_1 & S(\boldsymbol{x})_2 & \dots & S(\boldsymbol{x})_n \end{bmatrix}$$

$$= \operatorname{diag}(S(\boldsymbol{x})) - S(\boldsymbol{x}) \cdot S(\boldsymbol{x})^{\top}$$

$$= \operatorname{diag}(S(\boldsymbol{x})) - S(\boldsymbol{x}).S(\boldsymbol{x})^{\top}$$

3.
$$\frac{d}{d\mathbf{x}_{i}}\sigma(\mathbf{x})_{i} = \frac{d}{d\mathbf{x}_{i}}\left(\frac{1}{1+e^{-\mathbf{x}_{i}}}\right) = -\frac{e^{-\mathbf{x}_{i}}}{(1+e^{-\mathbf{x}_{i}})^{2}} = \frac{1}{1+e^{-\mathbf{x}_{i}}} \cdot \frac{e^{-\mathbf{x}_{i}}+1-1}{1+e^{-\mathbf{x}_{i}}} = \frac{1}{1+e^{-\mathbf{x}_{i}}} \cdot \left(\frac{1+e^{-\mathbf{x}_{i}}}{1+e^{-\mathbf{x}_{i}}} - \frac{1}{1+e^{-\mathbf{x}_{i}}}\right) \\
= \sigma(\mathbf{x})_{i} * (1 - \sigma(\mathbf{x})_{i}) \\
\frac{d}{d\mathbf{x}_{j}}\sigma(\mathbf{x})_{i} = 0$$

: Jacobian of sigmoid :

$$\frac{\partial \sigma(\boldsymbol{x})}{\partial \boldsymbol{x}} = \begin{bmatrix}
\frac{\partial \sigma(\boldsymbol{x})_1}{\partial \boldsymbol{x}_1} & \frac{\partial \sigma(\boldsymbol{x})_1}{\partial \boldsymbol{x}_2} & \dots & \frac{\partial \sigma(\boldsymbol{x})_1}{\partial \boldsymbol{x}_n} \\
\frac{\partial \sigma(\boldsymbol{x})_2}{\partial \boldsymbol{x}_1} & \frac{\partial \sigma(\boldsymbol{x})_2}{\partial \boldsymbol{x}_2} & \dots & \frac{\partial \sigma(\boldsymbol{x})_2}{\partial \boldsymbol{x}_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \sigma(\boldsymbol{x})_n}{\partial \boldsymbol{x}_1} & \frac{\partial \sigma(\boldsymbol{x})_n}{\partial \boldsymbol{x}_2} & \dots & \frac{\partial \sigma(\boldsymbol{x})_n}{\partial \boldsymbol{x}_n}
\end{bmatrix}$$

$$= \begin{bmatrix}
\sigma(\boldsymbol{x})_1 * (1 - \sigma(\boldsymbol{x})_1) & 0 & \dots & 0 \\
0 & \sigma(\boldsymbol{x})_2 * (1 - \sigma(\boldsymbol{x})_2) & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & \sigma(\boldsymbol{x})_n * (1 - \sigma(\boldsymbol{x})_n)
\end{bmatrix}$$

$$= \operatorname{diag}(\sigma(\boldsymbol{x}) * (1 - \sigma(\boldsymbol{x})))$$

4.
$$\nabla_{\boldsymbol{x}} L = (\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}})^{\top} \nabla_{\boldsymbol{y}} L$$

If $\mathbf{y} = \sigma(\mathbf{x})$, $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ is the Jacobian of sigmoid = diag $(\sigma(\mathbf{x}) * (1 - \sigma(\mathbf{x})))$. Since this is a diagonal matrix, it is sufficient to compute only the n diagonal elements, and multiply each of them with the corresponding element in $\nabla_{\mathbf{y}} L$. Hence, this can be done in $\mathcal{O}(n)$ time.

If $\mathbf{y} = S(\mathbf{x})$, $(\frac{\partial \mathbf{y}}{\partial \mathbf{x}})^{\top} \nabla_{\mathbf{x}} L = (\operatorname{diag}(S(\mathbf{x})) - S(\mathbf{x}).S(\mathbf{x})^{\top}) \nabla_{\mathbf{x}} L = \operatorname{diag}(S(\mathbf{x})) \nabla_{\mathbf{x}} L - S(\mathbf{x}).S(\mathbf{x})^{\top}.\nabla_{\mathbf{x}} L$ We just saw that $\operatorname{diag}(S(\mathbf{x})) \nabla_{\mathbf{x}} L$ can be computed in $\mathcal{O}(n)$ time. $S(\mathbf{x})^{\top}.\nabla_{\mathbf{x}} L$ is an inner product of two *n*-dimensional vectors, and so takes $\mathcal{O}(n)$ time to produce a scalar. $S(\mathbf{x}) = S(\mathbf{x})$. $S(\mathbf{x}) = S(\mathbf{x})$ takes $S(\mathbf{x}) = S(\mathbf{x})$.

Question 3. (3-3-3-3) Recall the definition of the softmax function : $S(\mathbf{x})_i = e^{\mathbf{x}_i} / \sum_i e^{\mathbf{x}_j}$.

- 1. Show that softmax is translation-invariant, that is: S(x+c) = S(x), where c is a scalar constant.
- 2. Show that softmax is not invariant under scalar multiplication. Let $S_c(\mathbf{x}) = S(c\mathbf{x})$ where $c \geq 0$. What are the effects of taking c to be 0 and arbitrarily large?
- 3. Let \boldsymbol{x} be a 2-dimentional vector. One can represent a 2-class categorical probability using softmax $S(\boldsymbol{x})$. Show that $S(\boldsymbol{x})$ can be reparameterized using sigmoid function, i.e. $S(\boldsymbol{x}) = [\sigma(z), 1 \sigma(z)]^{\top}$ where z is a scalar function of \boldsymbol{x} .
- 4. Let \boldsymbol{x} be a K-dimentional vector $(K \geq 2)$. Show that $S(\boldsymbol{x})$ can be represented using K-1 parameters, i.e. $S(\boldsymbol{x}) = S([0, y_1, y_2, ..., y_{K-1}]^{\top})$ where y_i is a scalar function of \boldsymbol{x} for $i \in \{1, ..., K-1\}$.

Answer 3. 1.
$$S(\boldsymbol{x}+c)_i = \frac{e^{(\boldsymbol{x}_i+c)}}{\sum_j e^{(\boldsymbol{x}_j+c)}} = \frac{e^c * e^{\boldsymbol{x}_i}}{\sum_j e^{c} * e^{(\boldsymbol{x}_j)}} = \frac{e^c * e^{\boldsymbol{x}_i}}{e^c * \sum_j e^{(\boldsymbol{x}_j)}} = \frac{e^{\boldsymbol{x}_i}}{\sum_j e^{(\boldsymbol{x}_j)}} = S(\boldsymbol{x})_i$$

$$\implies S(\boldsymbol{x}+c) = S(\boldsymbol{x})$$

2. $S_c(\boldsymbol{x})_i = S(c\boldsymbol{x}) = \frac{e^{c\boldsymbol{x}_i}}{\sum_j e^{c\boldsymbol{x}_j}} = \frac{(e^{\boldsymbol{x}_i})^c}{\sum_j (e^{\boldsymbol{x}_j})^c} \neq S(\boldsymbol{x})_i$ unless c=1. Hence, softmax is not invariant under scalar multiplication.

$$c = 0 \implies S_c(\mathbf{x})_i = \frac{(e^{\mathbf{x}_i})^0}{\sum_j (e^{\mathbf{x}_j})^0} = \frac{1}{\sum_j 1} = \frac{1}{n}$$

Hence, when c = 0, the softmax values in every dimension are equal to 1/n.

$$c \to +\infty \implies S_c(\boldsymbol{x})_i = \lim_{c \to +\infty} \frac{(e^{\boldsymbol{x}_i})^c}{\sum_j (e^{\boldsymbol{x}_j})^c} = \lim_{c \to +\infty} \frac{1}{\sum_j (\frac{e^{\boldsymbol{x}_j}}{e^{\boldsymbol{x}_j}})^c}$$

If
$$\boldsymbol{x}_i = \boldsymbol{x}_i$$
, $\lim_{c \to +\infty} \left(\frac{e^{\boldsymbol{x}_j}}{e^{\boldsymbol{x}_i}}\right)^c = 1$.

If
$$\boldsymbol{x}_i > \boldsymbol{x}_i$$
, $\lim_{c \to +\infty} \left(\frac{e^{\boldsymbol{x}_j}}{e^{\boldsymbol{x}_i}}\right)^c = 0$.

If
$$\boldsymbol{x}_i < \boldsymbol{x}_j$$
, $\lim_{c \to +\infty} \left(\frac{e^{\boldsymbol{x}_j}}{e^{\boldsymbol{x}_i}}\right)^c \to +\infty$.

So, if \boldsymbol{x}_i is the maximum of all \boldsymbol{x}_j s, $\lim_{c\to+\infty} 1/\sum_j (\frac{e^{\boldsymbol{x}_j}}{e^{\boldsymbol{x}_i}})^c = 1/(0+0+\cdots+1+\cdots+0) = 1$. For any other \boldsymbol{x}_i , $\lim_{c\to+\infty} 1/\sum_j (\frac{e^{\boldsymbol{x}_j}}{e^{\boldsymbol{x}_i}})^c = 1/(\infty+\infty+\cdots+1+\cdots+\infty) = 0$.

Hence, when $c \to +\infty$, the output is 1 at the dimension with the highest value, and 0 in all other dimensions.

3. When \boldsymbol{x} is 2-dimensional, say $[x_1, x_2]^{\top}$, $S(\boldsymbol{x})_1 = S(x_1) = \frac{e^{x_1}}{e^{x_1} + e^{x_2}} = \frac{1}{1 + e^{x_2 - x_1}} = \frac{1}{1 + e^{-(x_1 - x_2)}} = \sigma(x_1 - x_2)$

$$S(\boldsymbol{x})_2 = S(x_2) = \frac{e^{x_2}}{e^{x_1} + e^{x_2}} = \frac{1}{e^{x_1 - x_2} + 1} = \frac{1 + e^{x_1 - x_2} - e^{x_1 - x_2}}{e^{x_1 - x_2} + 1} = 1 - \frac{e^{x_1 - x_2}}{e^{x_1 - x_2} + 1} = 1 - \frac{1}{1 + e^{-(x_1 - x_2)}} = 1 - \frac{1}{1 + e^{-(x_1 - x_2)}}$$
$$= 1 - \sigma(x_1 - x_2)$$

Hence, if z = x1 - x2, $S(\mathbf{x}) = [\sigma(z), 1 - \sigma(z)]^{\top}$.

4. Let $\mathbf{x} = [x_1, x_2, \cdots, x_K]^{\top}$.

$$S(\boldsymbol{x}) = [S(x_1), S(x_2), \cdots, S(x_K)]^{\mathsf{T}}$$

$$S(\boldsymbol{x}) = [S(x_1), S(x_2), \cdots, S(x_K)]^{\top}$$

$$S(\boldsymbol{x})_1 = S(x_1) = \frac{e^{x_1}}{e^{x_1} + e^{x_2} + \cdots + e^{x_K}} = \frac{1}{1 + e^{(x_2 - x_1)} + \cdots + e^{(x_K - x_1)}} = \frac{e^0}{e^0 + e^{(x_2 - x_1)} + \cdots + e^{(x_K - x_1)}}$$

$$S(\boldsymbol{x})_j = S(x_j) = \frac{e^{x_j}}{e^{x_1} + \cdots + e^{x_j} + \cdots} = \frac{e^{(x_j - x_1)}}{e^0 + \cdots + e^{(x_j - x_1)} + \cdots}$$

$$S(\mathbf{x})_j = S(x_j) = \frac{e^{x_j}}{e^{x_1 + \dots + e^{x_j} + \dots}} = \frac{e^{(x_j - x_1)}}{e^{0 + \dots + e^{(x_j - x_1)} + \dots}}$$

Thus, we can see that $S(\boldsymbol{x}) = S([x_1, x_2, x_3, \cdots, x_K]^\top) = S([0, x_2 - x_1, x_3 - x_1, \cdots, x_K - x_1]).$

Hence, $S(\mathbf{x})$ can be represented using K-1 parameters.

Question 4. (15) Consider a 2-layer neural network $y: \mathbb{R}^D \to \mathbb{R}^K$ of the form :

$$y(x,\Theta,\sigma)_k = \sum_{i=1}^{M} \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_i + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

for $1 \le k \le K$, with parameters $\Theta = (\omega^{(1)}, \omega^{(2)})$ and logistic sigmoid activation function σ . Show that there exists an equivalent network of the same form, with parameters $\Theta' = (\tilde{\omega}^{(1)}, \tilde{\omega}^{(2)})$ and tanh activation function, such that $y(x, \Theta', \tanh) = y(x, \Theta, \sigma)$ for all $x \in \mathbb{R}^D$, and express Θ' as a function of Θ .

Answer 4. Recall that $\sigma(x) = \frac{1}{1+e^{-x}}$, and $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}} = \frac{1 + 1 - 1 - e^{-2x}}{1 + e^{-2x}} = 2 \cdot \frac{1}{1 + e^{-2x}} - 1 = 2\sigma(2x) - 1$$

$$\implies \sigma(x) = \frac{1}{2} \left(\tanh(\frac{x}{2}) + 1 \right)$$

$$y(x, \Theta, \sigma)_{k} = \sum_{j=1}^{M} \omega_{kj}^{(2)} \cdot \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_{i} + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \omega_{kj}^{(2)} \cdot \frac{1}{2} \left(\tanh \left(\frac{1}{2} \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_{i} + \omega_{j0}^{(1)} \right) \right) + 1 \right) + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \frac{\omega_{kj}^{(2)}}{2} \left(\tanh \left(\sum_{i=1}^{D} \frac{\omega_{ji}^{(1)}}{2} x_{i} + \frac{\omega_{j0}^{(1)}}{2} \right) + 1 \right) + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \frac{\omega_{kj}^{(2)}}{2} \tanh \left(\sum_{i=1}^{D} \frac{\omega_{ji}^{(1)}}{2} x_{i} + \frac{\omega_{j0}^{(1)}}{2} \right) + \sum_{j=1}^{M} \frac{\omega_{kj}^{(2)}}{2} + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \tilde{\omega}_{kj}^{(2)} \tanh \left(\sum_{i=1}^{D} \tilde{\omega}_{ji}^{(1)} x_{i} + \tilde{\omega}_{j0}^{(1)} \right) + \tilde{\omega}_{k0}^{(2)}$$

$$= y(x, \Theta', \tanh)$$

 \therefore There exists an equivalent network such that $y(x, \Theta', \tanh) = y(x, \Theta, \sigma)$ for all $x \in \mathbb{R}^D$.

Here,
$$\Theta' = \left(\tilde{\omega}^{(1)}, \left(\tilde{\omega}_{k0}^{(2)}, \tilde{\omega}_{k1}^{(2)}, \tilde{\omega}_{k2}^{(2)}, ..., \tilde{\omega}_{kM}^{(2)}\right)\right) = \left(\frac{\omega^{(1)}}{2}, \left(\sum_{j=1}^{M} \frac{\omega_{kj}^{(2)}}{2} + \omega_{k0}^{(2)}, \frac{1}{2}\omega_{k1}, \frac{1}{2}\omega_{k2}, ..., \frac{1}{2}\omega_{kM}\right)\right)$$

Question 5. (2-2-2-2) Given $N \in \mathbb{Z}^+$, we want to show that for any $f : \mathbb{R}^n \to \mathbb{R}^m$ and any sample set $\mathcal{S} \subset \mathbb{R}^n$ of size N, there is a set of parameters for a two-layer network such that the output $y(\boldsymbol{x})$ matches $f(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathcal{S}$. That is, we want to interpolate f with g on any finite set of samples \mathcal{S} .

- 1. Write the generic form of the function $y: \mathbb{R}^n \to \mathbb{R}^m$ defined by a 2-layer network with N-1 hidden units, with linear output and activation function ϕ , in terms of its weights and biases $(\boldsymbol{W}^{(1)}, \boldsymbol{b}^{(1)})$ and $(\boldsymbol{W}^{(2)}, \boldsymbol{b}^{(2)})$.
- 2. In what follows, we will restrict $\mathbf{W}^{(1)}$ to be $\mathbf{W}^{(1)} = [\mathbf{w}, \cdots, \mathbf{w}]^{\top}$ for some $\mathbf{w} \in \mathbb{R}^n$ (so the rows of $\mathbf{W}^{(1)}$ are all the same). Show that the interpolation problem on the sample set $\mathcal{S} = \{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(N)}\} \subset \mathbb{R}^n$ can be reduced to solving a matrix equation : $\mathbf{M}\tilde{\mathbf{W}}^{(2)} = \mathbf{F}$, where $\tilde{\mathbf{W}}^{(2)}$ and \mathbf{F} are both $N \times m$, given by

$$\tilde{\boldsymbol{W}}^{(2)} = [\boldsymbol{W}^{(2)}, \boldsymbol{b}^{(2)}]^{\top}$$
 $\boldsymbol{F} = [f(\boldsymbol{x}^{(1)}), \cdots, f(\boldsymbol{x}^{(N)})]^{\top}$

Express the $N \times N$ matrix \boldsymbol{M} in terms of \boldsymbol{w} , $\boldsymbol{b}^{(1)}$, ϕ and $\boldsymbol{x}^{(i)}$.

- *3. **Proof with Relu activation.** Assume $\boldsymbol{x}^{(i)}$ are all distinct. Choose \boldsymbol{w} such that $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$ are also all distinct (Try to prove the existence of such a \boldsymbol{w} , although this is not required for the assignment See Assignment 0). Set $\boldsymbol{b}_{j}^{(1)} = -\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \epsilon$, where $\epsilon > 0$. Find a value of ϵ such that \boldsymbol{M} is triangular with non-zero diagonal elements. Conclude. (Hint: assume an ordering of $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$.)
- *4. Proof with sigmoid-like activations. Assume ϕ is continuous, bounded, $\phi(-\infty) = 0$ and $\phi(0) > 0$. Decompose \boldsymbol{w} as $\boldsymbol{w} = \lambda \boldsymbol{u}$. Set $\boldsymbol{b}_j^{(1)} = -\lambda \boldsymbol{u}^{\top} \boldsymbol{x}^{(j)}$. Fixing \boldsymbol{u} , show that $\lim_{\lambda \to +\infty} \boldsymbol{M}$ is triangular with non-zero diagonal elements. Conclude. (Note that doing so preserves the distinctness of $\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)}$.)

Answer 5. 1.

$$y(\mathbf{x}) = \mathbf{W}^{(2)}.\phi(\mathbf{W}^{(1)}.\mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)}$$

2. For each $x^{(i)}$ in the sample set S,

$$y(\boldsymbol{x}^{(i)}) = \boldsymbol{W}^{(2)}.\phi(\boldsymbol{W}^{(1)}.\boldsymbol{x}^{(i)} + \boldsymbol{b}^{(1)}) + \boldsymbol{b}^{(2)} = [\boldsymbol{W}^{(2)},\boldsymbol{b}^{(2)}].[\phi(\boldsymbol{W}^{(1)}.\boldsymbol{x}^{(i)} + \boldsymbol{b}^{(1)}.1),1]^{\top}$$
$$= [\phi(\boldsymbol{x}^{(i)\top}.\boldsymbol{W}^{(1)\top} + 1.\boldsymbol{b}^{(1)\top}),1].[\boldsymbol{W}^{(2)},\boldsymbol{b}^{(2)}]^{\top}$$

Since this is an interpolation problem, we would like $y(\mathbf{x}^{(i)}) = f(\mathbf{x}^{(i)})$. Combining all $\mathbf{x}^{(i)}$ s:

$$F = [f(\boldsymbol{x}^{(1)}), \cdots, f(\boldsymbol{x}^{(N)})]^{\top} = [y(\boldsymbol{x}^{(1)}), \cdots, y(\boldsymbol{x}^{(N)})]^{\top}$$

$$= \begin{bmatrix} y(\boldsymbol{x}^{(1)})^{\top} \\ \vdots \\ y(\boldsymbol{x}^{(N)})^{\top} \end{bmatrix} = \begin{bmatrix} (\boldsymbol{W}^{(2)}.\phi(\boldsymbol{W}^{(1)}.\boldsymbol{x}^{(1)} + \boldsymbol{b}^{(1)}) + \boldsymbol{b}^{(2)})^{\top} \\ \vdots \\ (\boldsymbol{W}^{(2)}.\phi(\boldsymbol{W}^{(1)}.\boldsymbol{x}^{(N)} + \boldsymbol{b}^{(1)}) + \boldsymbol{b}^{(2)})^{\top} \end{bmatrix}$$

$$= \begin{bmatrix} \phi(\boldsymbol{x}^{(1)\top}.\boldsymbol{W}^{(1)\top} + \boldsymbol{b}^{(1)\top}).\boldsymbol{W}^{(2)\top} + \boldsymbol{b}^{(2)\top} \\ \vdots \\ \phi(\boldsymbol{x}^{(N)\top}.\boldsymbol{W}^{(1)\top} + \boldsymbol{b}^{(1)\top}).\boldsymbol{W}^{(2)\top} + \boldsymbol{b}^{(2)\top} \end{bmatrix}$$

$$= \begin{bmatrix} \phi(\boldsymbol{x}^{(1)\top}.\boldsymbol{W}^{(1)\top} + \boldsymbol{b}^{(1)\top}) \\ \vdots \\ \phi(\boldsymbol{x}^{(N)\top}.\boldsymbol{W}^{(1)\top} + \boldsymbol{b}^{(1)\top}) \end{bmatrix} .\boldsymbol{W}^{(2)\top} + \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} .\boldsymbol{b}^{(2)\top}$$

$$= \begin{bmatrix} \phi(\boldsymbol{x}^{(1)\top}.\boldsymbol{W}^{(1)\top} + \boldsymbol{b}^{(1)\top}) & 1 \\ \vdots & \vdots \\ \phi(\boldsymbol{x}^{(N)\top}.\boldsymbol{W}^{(1)\top} + \boldsymbol{b}^{(1)\top}) & 1 \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{W}^{(2)\top} \\ \boldsymbol{b}^{(2)\top} \end{bmatrix} = \boldsymbol{M}.[\boldsymbol{W}^{(2)}, \boldsymbol{b}^{(2)}]^{\top} = \boldsymbol{M}.\tilde{\boldsymbol{W}}^{(2)}$$

Thus, the interpolation problem can be reduced to solving a matrix equation : $M.\tilde{W}^{(2)} = F$. Here, M is :

$$\begin{split} \boldsymbol{M} &= \begin{bmatrix} \phi(\boldsymbol{x}^{(1)\top}.\boldsymbol{W}^{(1)\top} + \boldsymbol{b}^{(1)\top}) & 1 \\ & \vdots & \vdots \\ \phi(\boldsymbol{x}^{(N)\top}.\boldsymbol{W}^{(1)\top} + \boldsymbol{b}^{(1)\top}) & 1 \end{bmatrix} \\ &= \begin{bmatrix} \phi(\boldsymbol{W}^{(1)}\boldsymbol{x}^{(1)} + \boldsymbol{b}^{(1)})^{\top} & 1 \\ \vdots & \vdots \\ \phi(\boldsymbol{W}^{(1)}\boldsymbol{x}^{(N)} + \boldsymbol{b}^{(1)})^{\top} & 1 \end{bmatrix} \\ &= \begin{bmatrix} \phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(1)} + \boldsymbol{b}_{1}^{(1)}) & \phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(1)} + \boldsymbol{b}_{2}^{(1)}) & \cdots & \phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(1)} + \boldsymbol{b}_{N-1}^{(1)}) & 1 \\ \phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(2)} + \boldsymbol{b}_{1}^{(1)}) & \phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(2)} + \boldsymbol{b}_{2}^{(1)}) & \cdots & \phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(2)} + \boldsymbol{b}_{N-1}^{(1)}) & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(N-1)} + \boldsymbol{b}_{1}^{(1)}) & \phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(N-1)} + \boldsymbol{b}_{2}^{(1)}) & \cdots & \phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(N-1)} + \boldsymbol{b}_{N-1}^{(1)}) & 1 \\ \phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(N)} + \boldsymbol{b}_{1}^{(1)}) & \phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(N-1)} + \boldsymbol{b}_{2}^{(1)}) & \cdots & \phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(N)} + \boldsymbol{b}_{N-1}^{(1)}) & 1 \end{bmatrix} \end{split}$$

3. When ϕ is ReLU, and $\boldsymbol{b}_{j}^{(1)} = -\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \epsilon \ (\epsilon > 0)$, the diagonal elements of \boldsymbol{M} are : $\phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \boldsymbol{b}_{j}^{(1)}) = \phi(\epsilon) > 0 \ (\because \epsilon > 0)$

For M to be triangular, all elements below the diagonal must be negative, so then ReLU non-linearity will make them 0.

 $\implies \mathbf{w}^{\top} \mathbf{x}^{(i)} + \mathbf{b}_{j}^{(1)} < 0 \text{ for } i > j \implies \mathbf{w}^{\top} \mathbf{x}^{(i)} - \mathbf{w}^{\top} \mathbf{x}^{(j)} + \epsilon < 0 \implies \epsilon < \mathbf{w}^{\top} (\mathbf{x}^{(j)} - \mathbf{x}^{(i)})$ $\therefore \epsilon > 0, \text{ we assume that } \mathbf{x}^{(i)} \text{ are ordered such that } \mathbf{w}^{\top} (\mathbf{x}^{(j)} - \mathbf{x}^{(i)}) > 0 \implies \mathbf{w}^{\top} \mathbf{x}^{(j)} > \mathbf{w}^{\top} \mathbf{x}^{(i)}$ for i > j.

 $\therefore \epsilon$ can be any real number such that :

$$0 < \epsilon < \min_{i>j} \left(\boldsymbol{w}^{\top} (\boldsymbol{x}^{(j)} - \boldsymbol{x}^{(i)}) \right)$$

Conclusion: Since M is upper triangular, the linear system $\boldsymbol{M}\tilde{\boldsymbol{W}}^{(2)} = \boldsymbol{F}$ can be solved easily for $\tilde{\boldsymbol{W}}^{(2)}$. The last row of \boldsymbol{M} is simply $[0,\cdots,0,1] \implies \operatorname{LastRow}(\boldsymbol{M}\tilde{\boldsymbol{W}}^{(2)}) = \boldsymbol{b}^{(2)\top} = \operatorname{LastRow}(\boldsymbol{F}) = f(\boldsymbol{x}^{(N)}\top) \implies \boldsymbol{b}^{(2)} = f(\boldsymbol{x}^{(N)})$.

Considering second last row: $[0, \cdots, \phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(N-1)} + \boldsymbol{b}_{N-1}^{(1)}), 1] = [0, \cdots, \phi(\epsilon), 1] \implies \phi(\epsilon).\boldsymbol{W}_{(N-1)}^{(2)} + \boldsymbol{b}^{(2)} = f(\boldsymbol{x}^{(N-1)}) \implies \boldsymbol{W}_{(N-1)}^{(2)} = (f(\boldsymbol{x}^{(N-1)}) - f(\boldsymbol{x}^{(N)}))/\phi(\epsilon)$. And so on.. Hence, $\tilde{\boldsymbol{W}}^{(2)}$ can be found easily when \boldsymbol{M} is triangular.

4. Decomposing $\boldsymbol{w} = \lambda \boldsymbol{u}$, and setting $\boldsymbol{b}_{j}^{(1)} = -\lambda \boldsymbol{u}^{\top} \boldsymbol{x}^{(j)}$, \boldsymbol{M} can be formulated as:

The diagonal elements of \boldsymbol{M} are : $\phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \boldsymbol{b}_{i}^{(1)}) = \phi(\lambda \boldsymbol{u}^{\top}\boldsymbol{x}^{(j)} - \lambda \boldsymbol{u}^{\top}\boldsymbol{x}^{(j)}) = \phi(0) > 0$

The non-diagonal elements are $\phi(\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)} + \boldsymbol{b}_{j}^{(1)}) = \phi(\lambda \boldsymbol{u}^{\top}\boldsymbol{x}^{(i)} - \lambda \boldsymbol{u}^{\top}\boldsymbol{x}^{(j)}) = \phi(\lambda \boldsymbol{u}^{\top}(\boldsymbol{x}^{(i)} - \boldsymbol{x}^{(j)}))$

 \therefore For elements lower than the diagonal, i > j. Assuming the same ordering as in 3.,

 $\boldsymbol{w}^{\top}(\boldsymbol{x}^{(j)} - \boldsymbol{x}^{(i)}) > 0 \implies \lambda \boldsymbol{u}^{\top}(\boldsymbol{x}^{(i)} - \boldsymbol{x}^{(j)}) < 0$

 $\therefore \lambda \to +\infty \implies \text{lower-diagonal elements} \to 0.$

 $\therefore \lim_{\lambda \to +\infty} M$ is triangular with non-zero diagonal elements.

Conclusion: Same as above, as $\lambda \to +\infty$.

Question 6. (6) Compute the full, valid, and same convolution (with kernel flipping) for the

Answer 6. Full convolution:

following 1D matrices: [1, 2, 3, 4] * [1, 0, 2]

$$\begin{bmatrix} 1,2,3,4 \end{bmatrix} * \begin{bmatrix} 1,0,2 \end{bmatrix} = \begin{bmatrix} [2,0,1,0,0,0].[0,0,1,2,3,4],\\ [2,0,1,0,0].[0,1,2,3,4],\\ [2,0,1,0].[1,2,3,4],\\ [0,2,0,1].[1,2,3,4],\\ [0,0,2,0,1].[1,2,3,4,0],\\ [0,0,0,2,0,1].[1,2,3,4,0,0] \end{bmatrix} = \begin{bmatrix} 1,2,5,8,6,8 \end{bmatrix}$$

Valid convolution: (don't pad the input)

$$[1,2,3,4] * [1,0,2] = \begin{bmatrix} [2,0,1,0].[1,2,3,4], \\ [0,2,0,1].[1,2,3,4] \end{bmatrix} = [5,8]$$

Same convolution: (pad input only enough to make output the same size)

$$\begin{bmatrix} 1,2,3,4 \end{bmatrix} * \begin{bmatrix} 1,0,2 \end{bmatrix} = \begin{bmatrix} [2,0,1,0,0].[0,1,2,3,4], \\ [2,0,1,0].[1,2,3,4], \\ [0,2,0,1].[1,2,3,4], \\ [0,0,2,0,1].[1,2,3,4,0] \end{bmatrix} = \begin{bmatrix} 2,5,8,6 \end{bmatrix}$$

Question 7. (5-5) Consider a convolutional neural network. Assume the input is a colorful image of size 256×256 in the RGB representation. The first layer convolves 64.8×8 kernels with the input, using a stride of 2 and no padding. The second layer downsamples the output of the first layer with a 5×5 non-overlapping max pooling. The third layer convolves 128.4×4 kernels with a stride of 1 and a zero-padding of size 1 on each border.

- 1. What is the dimensionality (scalar) of the output of the last layer?
- 2. Not including the biases, how many parameters are needed for the last layer?

Answer 7. 1. Using the formula :
$$o = \lfloor \frac{i+2p-k}{s} \rfloor + 1$$

 $256 \times 256 \times 3$ $\xrightarrow{1} \left(\lfloor \frac{256-8}{2} \rfloor + 1 \right) \times \left(\lfloor \frac{256-8}{2} \rfloor + 1 \right) \times 64 = 125 \times 125 \times 64$
 $125 \times 125 \times 64$ $\xrightarrow{2} \left(\lfloor \frac{125-5}{5} \rfloor + 1 \right) \times \left(\lfloor \frac{125-5}{5} \rfloor + 1 \right) \times 64 = 25 \times 25 \times 64$
 $25 \times 25 \times 64$ $\xrightarrow{3} \left(\lfloor \frac{25+2-4}{1} \rfloor + 1 \right) \times \left(\lfloor \frac{25+2-4}{1} \rfloor + 1 \right) \times 128 = 24 \times 24 \times 128$

2. Last layer convolves 128.4×4 kernels on a 64-channel input $\implies 128 * (4 * 4 * 64) = 131072$ parameters.

Question 8. (4-4-4) Assume we are given data of size $3 \times 64 \times 64$. In what follows, provide the correct configuration of a convolutional neural network layer that satisfies the specified assumption. Answer with the window size of kernel (k), stride (s), padding (p), and dilation (d), with convention d = 1 for no dilation). Use square windows only (i.e. same k for both width and height).

- 1. The output shape of the first layer is (64, 32, 32).
 - (a) Assume k = 8 without dilation.
 - (b) Assume d = 7, and s = 2.
- 2. The output shape of the second layer is (64, 8, 8). Assume p = 0 and d = 1.
 - (a) Specify k and s for pooling with non-overlapping window.
 - (b) What is output shape if k = 8 and s = 4 instead?
- 3. The output shape of the last layer is (128, 4, 4).
 - (a) Assume we are not using padding or dilation.
 - (b) Assume d = 2, p = 2.
 - (c) Assume p = 1, d = 1.

Answer 8. Using the formulae : $o = \lfloor \frac{i+2p-k'}{s} \rfloor + 1$; k' = k + (d-1)*(k-1)

- 1. (a) k = 8, s = 2, p = 3, d = 1
 - (b) k = 1, s = 2, p = 0, d = 7
- 2. (a) k = 4, s = 4
 - (b) $64 \times 7 \times 7$
- 3. (a) k = 2, s = 2, p = 0, d = 1
 - (b) k = 1, s = 1, p = 2, d = 2
 - (c) k = 3, s = 1, p = 1, d = 1