```
In [185]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")

In [186]:

from IPython import get_ipython

In [187]:

hospital_data = pd.read_csv("hospital_appointment.csv")

In [188]:

hospital_data.head()
```

Out[188]:

	PatientId	AppointmentID	Gender	ScheduledDay	AppointmentDay	Age	Neighbourhood	S
0	2.987250e+13	5642903	F	2016-04- 29T18:38:08Z	2016-04- 29T00:00:00Z	62	JARDIM DA PENHA	
1	5.589980e+14	5642503	М	2016-04- 29T16:08:27Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA	
2	4.262960e+12	5642549	F	2016-04- 29T16:19:04Z	2016-04- 29T00:00:00Z	62	MATA DA PRAIA	
3	8.679510e+11	5642828	F	2016-04- 29T17:29:31Z	2016-04- 29T00:00:00Z	8	PONTAL DE CAMBURI	
4	8.841190e+12	5642494	F	2016-04- 29T16:07:23Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA	
4								•

```
In [189]: ▶
```

```
hospital_data.tail()
```

Out[189]:

	PatientId	AppointmentID	Gender	ScheduledDay	AppointmentDay	Age	Neighbourho
110522	2.572130e+12	5651768	F	2016-05- 03T09:15:35Z	2016-06- 07T00:00:00Z	56	MARIA OR'
110523	3.596270e+12	5650093	F	2016-05- 03T07:27:33Z	2016-06- 07T00:00:00Z	51	MARIA OR'
110524	1.557660e+13	5630692	F	2016-04- 27T16:03:52Z	2016-06- 07T00:00:00Z	21	MARIA OR'
110525	9.213490e+13	5630323	F	2016-04- 27T15:09:23Z	2016-06- 07T00:00:00Z	38	MARIA OR'
110526	3.775120e+14	5629448	F	2016-04- 27T13:30:56Z	2016-06- 07T00:00:00Z	54	MARIA OR
4							>

```
In [190]:
hospital_data.shape

Out[190]:
(110527, 14)
In [191]:
```

```
hospital_data.columns
```

Out[191]:

```
In [192]:
```

```
hospital_data.rename(columns={'No-show': 'No_show'}, inplace=True)
hospital_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True)
hospital_data.rename(columns={'Handcap': 'Handicap'}, inplace=True)
```

H In [193]:

hospital_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 110527 entries, 0 to 110526 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype				
0	PatientId	110527 non-null	float64				
1	AppointmentID	110527 non-null	int64				
2	Gender	110527 non-null	object				
3	ScheduledDay	110527 non-null	object				
4	AppointmentDay	110527 non-null	object				
5	Age	110527 non-null	int64				
6	Neighbourhood	110527 non-null	object				
7	Scholarship	110527 non-null	int64				
8	Hypertension	110527 non-null	int64				
9	Diabetes	110527 non-null	int64				
10	Alcoholism	110527 non-null	int64				
11	Handicap	110527 non-null	int64				
12	SMS_received	110527 non-null	int64				
13	No_show	110527 non-null	object				
dtype	dtypes: float64(1), int64(8), object(5)						

memory usage: 11.8+ MB

In [194]: H

hospital_data.describe()

Out[194]:

	PatientId	AppointmentID	Age	Scholarship	Hypertension	Diabet
count	1.105270e+05	1.105270e+05	110527.000000	110527.000000	110527.000000	110527.0000
mean	1.474963e+14	5.675305e+06	37.088874	0.098266	0.197246	0.0718
std	2.560949e+14	7.129575e+04	23.110205	0.297675	0.397921	0.2582
min	3.920000e+04	5.030230e+06	-1.000000	0.000000	0.000000	0.0000
25%	4.172615e+12	5.640286e+06	18.000000	0.000000	0.000000	0.0000
50%	3.173180e+13	5.680573e+06	37.000000	0.000000	0.000000	0.0000
75%	9.439170e+13	5.725524e+06	55.000000	0.000000	0.000000	0.0000
max	9.999820e+14	5.790484e+06	115.000000	1.000000	1.000000	1.0000
4						+

```
6/6/22, 11:43 PM
                               Hospital Appointment Analysis and Prediction using Machine Learning - Jupyter Notebook
                                                                                                   H
  In [195]:
  hospital_data.isnull().sum()
  Out[195]:
  PatientId
                      0
  AppointmentID
                      0
  Gender
                      0
  ScheduledDay
                      0
  AppointmentDay
                      0
                      0
  Age
  Neighbourhood
                      0
  Scholarship
                      0
  Hypertension
                      0
  Diabetes
                      0
  Alcoholism
                      0
 Handicap
                      0
  SMS_received
                      0
  No_show
                      0
  dtype: int64
  In [196]:
                                                                                                   H
  hospital_data.nunique()
  Out[196]:
  PatientId
                       61744
                      110527
  AppointmentID
  Gender
                            2
                      103549
  ScheduledDay
  AppointmentDay
                           27
                         104
  Neighbourhood
                           81
  Scholarship
                            2
  Hypertension
                            2
  Diabetes
                            2
                            2
  Alcoholism
  Handicap
                            5
                            2
  SMS received
                            2
  No_show
  dtype: int64
  In [197]:
                                                                                                   Ы
  hospital_data1 = hospital_data[['Gender', 'Scholarship', 'Hypertension',
```

'Diabetes', 'Alcoholism', 'Handicap',

'SMS_received', 'No_show']]

```
In [198]:
                                                                                            M
for i in hospital_data1.columns:
    plt.figure(figsize=(15,6))
    sns.countplot(hospital_data1[i], data = hospital_data1,
                   palette='hls')
    plt.xticks(rotation = 90)
    plt.show()
  70000
  60000
  50000
  40000
  30000
  20000
  10000
                                       Gender
In [199]:
hospital_data2 = hospital_data.copy()
In [200]:
                                                                                            H
hospital_data2.drop(['PatientId','AppointmentID','ScheduledDay','AppointmentDay'] , axis
In [201]:
                                                                                            H
hospital_data2['Age'].replace(0, hospital_data2['Age'].mean() , inplace = True)
In [202]:
hospital_data2['Age'] = hospital_data2['Age'].abs()
```

In [203]: ▶

hospital_data2.hist(figsize=(12,12));

In [204]: ▶

```
hospital_data2.No_show.value_counts().plot.bar(color=['green','red']);
plt.title("ratio of attendence")
plt.xlabel("showing up")
plt.ylabel("count")
plt.show()
```


In [205]: ▶

In [206]: ▶

In [207]: ▶

In [208]: ▶

In [209]: ▶

In [210]: ▶

In [211]:

```
plt.figure(figsize=[20,20])
e = hospital_data2.groupby(['Neighbourhood','No_show']).size().unstack()
e.Yes.plot(kind='bar' , alpha=.5 , color = 'red' , label= 'no show')
e.No.plot(kind='bar' , alpha=.5 , color = 'green' , label= 'show')
plt.legend()
plt.title("The relation between neighbourhood and showing up")
plt.xlabel("Neighbourhood")
plt.ylabel("patients")
plt.show()
```



```
In [212]:
```

```
plt.figure(figsize=(15,6))
sns.boxplot(hospital_data2['Age'])
plt.xticks(rotation = 90)
plt.show()
```



```
In [213]:
hospital_age= hospital_data2['Age']
Q3 = hospital_age.quantile(0.75)
Q1 = hospital_age.quantile(0.25)
IQR = Q3 - Q1
lower_limit = Q1 - (1.5*IQR)
upper_limit = Q3 + (1.5*IQR)
age_outliers = hospital_age[(hospital_age <lower_limit) | (hospital_age >upper_limit)]
age_outliers
```

Out[213]:

```
63912
         115.0
63915
         115.0
68127
         115.0
76284
         115.0
         115.0
97666
Name: Age, dtype: float64
```

In [214]: H

```
hospital_data_new = hospital_data.drop([63912, 63915, 68127, 76284, 97666])
```

```
In [215]:
```

```
hospital_data_new.corr()
```

Out[215]:

	PatientId	AppointmentID	Age	Scholarship	Hypertension	Diabetes	Alcoho
PatientId	1.000000	0.004027	-0.004157	-0.002879	-0.006492	0.001607	0.01
AppointmentID	0.004027	1.000000	-0.019152	0.022617	0.012742	0.022631	0.03
Age	-0.004157	-0.019152	1.000000	-0.092431	0.504727	0.292510	0.09
Scholarship	-0.002879	0.022617	-0.092431	1.000000	-0.019729	-0.024898	0.03
Hypertension	-0.006492	0.012742	0.504727	-0.019729	1.000000	0.433096	0.08
Diabetes	0.001607	0.022631	0.292510	-0.024898	0.433096	1.000000	0.01
Alcoholism	0.011013	0.032946	0.095863	0.035020	0.087973	0.018471	1.00
Handicap	-0.007820	0.014111	0.077370	-0.008520	0.080249	0.057629	0.00
SMS_received	-0.009792	-0.256635	0.012686	0.001190	-0.006306	-0.014554	-0.02
4							•

M

plt.figure(figsize=(15,6))
sns.heatmap(hospital_data_new.corr(), annot = True)
plt.show()

In [217]:

hospital_data_new.head()

Out[217]:

	PatientId	AppointmentID	Gender	ScheduledDay	AppointmentDay	Age	Neighbourhood	S
0	2.987250e+13	5642903	F	2016-04- 29T18:38:08Z	2016-04- 29T00:00:00Z	62	JARDIM DA PENHA	
1	5.589980e+14	5642503	М	2016-04- 29T16:08:27Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA	
2	4.262960e+12	5642549	F	2016-04- 29T16:19:04Z	2016-04- 29T00:00:00Z	62	MATA DA PRAIA	
3	8.679510e+11	5642828	F	2016-04- 29T17:29:31Z	2016-04- 29T00:00:00Z	8	PONTAL DE CAMBURI	
4	8.841190e+12	5642494	F	2016-04- 29T16:07:23Z	2016-04- 29T00:00:00Z	56	JARDIM DA PENHA	
4								•

```
M
In [218]:
from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()
hospital_data_new['Gender'] = label_encoder.fit_transform(hospital_data_new['Gender'])
hospital_data_new['No_show']= label_encoder.fit_transform(hospital_data_new['No_show'])
In [219]:
                                                                                        H
hospital_data_new.columns
Out[219]:
Index(['PatientId', 'AppointmentID', 'Gender', 'ScheduledDay',
       'AppointmentDay', 'Age', 'Neighbourhood', 'Scholarship', 'Hypertens
ion',
       'Diabetes', 'Alcoholism', 'Handicap', 'SMS_received', 'No_show'],
      dtype='object')
In [220]:
                                                                                        H
x = hospital_data_new[['Gender', 'Scholarship', 'Hypertension',
       'Diabetes', 'Alcoholism', 'Handicap', 'SMS_received']]
In [221]:
                                                                                        H
y = hospital_data_new.No_show
In [222]:
                                                                                        H
x.shape
Out[222]:
(110522, 7)
In [223]:
                                                                                        M
y.shape
Out[223]:
(110522,)
In [224]:
                                                                                        M
from sklearn.model_selection import train_test_split
In [225]:
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2,
                                                     random state=42)
```

```
In [230]:
                                                                                              M
from sklearn.linear_model import LogisticRegression
In [231]:
                                                                                              И
classifier= LogisticRegression(random state=0)
classifier.fit(x_train, y_train)
Out[231]:
LogisticRegression(random_state=0)
In [232]:
                                                                                              H
print("Training Accuracy :", classifier.score(x_train, y_train))
print("Testing Accuracy :", classifier.score(x_test, y_test))
Training Accuracy: 0.7983645678998382
Testing Accuracy: 0.7969690115358516
In [236]:
                                                                                              H
from sklearn.tree import DecisionTreeClassifier
In [237]:
classifier_dt= DecisionTreeClassifier(criterion='entropy', random_state=0)
classifier_dt.fit(x_train, y_train)
Out[237]:
DecisionTreeClassifier(criterion='entropy', random_state=0)
In [238]:
                                                                                              M
print("Training Accuracy :", classifier_dt.score(x_train, y_train))
print("Testing Accuracy :", classifier_dt.score(x_test, y_test))
Training Accuracy: 0.7986020787857538
```

Training Accuracy : 0.7986020787857538 Testing Accuracy : 0.7970594888034381