Smoothed Particle Hydrodynamics

Partikelberechnungen

SPH Algorithmus

Update der Partikel-Position analog zu N-Body:

- 1. Berechne die auf jeden Partikel wirkenden Kräfte (Druck, Viskosität, Boundary, Gravitation)
- 2. Berechne neue Position mittels

$$Velo_i = (Force_i / mass_i) \cdot \Delta t$$

 $Pos_i = Velo_i \cdot \Delta t$

Berechnung physikalischer Größen

Grundsätzlich: Approximation einer physikalischen Größe A_i für den Partikel i als gewichtete Summe über benachbarte Partikel

 Je näher ein Partikel, desto größer der Beitrag zur Summe

Beispiel Dichte:

$$rho_i = \sum_{j} mass_j \cdot W(distance(i, j))$$

wobei W ein geeigneter smoothing kernel ist

Qualitative Kräfte-Übersicht

Druck

- •Jeder Partikel übt Kraft in Richtung eines jeden Nachbarn aus
- •Betrag abhängig von Dichte und Abstand der Partikel

Viskosität

- Innere Reibung
- •Hält Partikel in der Spur
- •Kraft wirkt in Richtung der mittleren lokalen Geschwindigkeitsdifferenz

Boundary

•Wird modelliert durch Kräfte, die von den Wänden in Richtung der Partikel wirken

Parallelität

Implementiert als n-Body-System

Nachbarschaft

- Problem: O(n²) Interaktionsberechnungen
- Lösung: Beschränkung auf (un-)mittelbare Nachbarschaft

Visualisierung

Oberfläche

- Mithilfe von Marching Cubes
- Unterteilung des Raums in Voxelgitter
- Pro Voxel
 - "Belegte" Eckpunkte bestimmen
 - Mesh aus Vorlage übernehmen (ggf. Rotation)

Marching Cubes

- Benötigte Schritte
 - Ermittle belegte Voxel
 - Bestimme Konfiguration
 - Fülle Vertex und Index Buffer
 - Zusätzlich fürs Rendern die Normalen
- Kritischer Parameter
 - Gittergröße

Deferred Shading

- Zeichnen der Szenen in Texturen
 - Erlaubt einfache Postprocessing Effekte
 - Ursprünglich für Lichtberechnung
 - Wasser Effekt

