COGNOME:

NOME:

MATRICOLA:

DATA: 21 giugno 2023

Calculus 1 - Test

Scrivere nella tabella sottostante la lettera corrispondente alla risposta a ciascuna domanda. Tenere presente che le risposte esatte valgono 3 punti, quelle sbagliate -1 punto, mentre le domande senza risposta valgono 0 punti. Ciascun quesito ha una e una sola risposta corretta.

ſ	1	2	3	4	5	6	7	8	9	10

- 1. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione. Quale delle seguenti affermazioni è vera?
 - (a) Se f è strettamente monotona, allora f è iniettiva.
 - (b) Se f è strettamente monotona, allora f è suriettiva.
 - (c) Se f è iniettiva, allora f è strettamente monotona.
 - (d) Se f è suriettiva, allora f è strettamente monotona.
- **2.** Se $f: \mathbb{R} \to \mathbb{R}$ è una funzione limitata, allora:
 - (a) il massimo di f esiste ed è finito.
 - (b) l'estremo superiore di f esiste ed è finito.
 - (c) l'estremo superiore di f esiste ma non si può dire se sia finito.
 - (d) nessuna delle precedenti.
- **3.** Siano $f: \mathbb{R} \to \mathbb{R}$ e $x_0 \in \mathbb{R}$ tali che $\lim_{x \to x_0} f(x) = -\infty$. Allora:
 - (a) per ogni M > 0 esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $|x x_0| < \delta$ si ha f(x) < -M.
 - (b) per ogni $\varepsilon > 0$ esiste M > 0 tale che per ogni $x \in \mathbb{R}$ con $|x x_0| < \varepsilon$ si ha f(x) < -M.
 - (c) per ogni $\varepsilon > 0$ esiste M > 0 tale che per ogni $x \in \mathbb{R}$ con $0 < |x x_0| < \varepsilon$ si ha f(x) < -M.
 - (d) per ogni M > 0 esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $0 < |x x_0| < \delta$ si ha f(x) < -M.
- **4.** Siano $f, g, h : \mathbb{R} \to \mathbb{R}$ tali che $h(x) \leq f(x) \leq g(x)$ per ogni $x \in \mathbb{R}$. Sia $x_0 \in \mathbb{R}$ e $\lim_{x \to x_0} h(x) = \ell \in \mathbb{R}$. Cosa ci permette di affermare che $\lim_{x \to x_0} f(x) = \ell$?
 - (a) f continua in x_0 .
 - (b) g, h continue in x_0 .
 - (c) $\lim_{x\to x_0} g(x) = \ell$.
 - (d) Nessuna delle precedenti.
- **5.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione tale che f(x) > M per ogni x tale che $2 < x < 2 + \frac{1}{M}$, dove M > 0. Allora:
 - (a) $\lim_{x\to 2^+} f(x) = +\infty$.
 - (b) $\lim_{x\to 2^{-}} f(x) = +\infty$.
 - (c) $\lim_{x\to 2} f(x) = +\infty$.
 - (d) $\lim_{x\to\infty} f(x) = 2$.

- **6.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione tale che $\lim_{x \to +\infty} f(x) = 1$. Allora:
 - (a) f è limitata.
 - (b) se f è derivabile, $\lim_{x\to+\infty} f'(x) = 0$.
 - (c) esiste M > 0 tale che f è monotona per ogni x > M.
 - (d) esiste M > 0 tale che $f(x) > \frac{1}{2}$ per ogni x > M.
- **7.** Sia $f:(a,b)\to\mathbb{R}$ una funzione continua. Allora
 - (a) f è limitata in (a, b).
 - (b) f è derivabile in (a, b).
 - (c) per ogni $x_0 \in (a, b)$, si ha $\lim_{x \to x_0} f(x) = f(x_0)$.
 - (d) f ammette massimo e minimo in (a, b).
- **8.** Sia $f:(a,b)\to\mathbb{R}$ una funzione derivabile. Quale delle seguenti affermazioni è falsa?
 - (a) f è crescente in (a, b) se e solo se $f'(x) \ge 0$ per ogni $x \in (a, b)$.
 - (b) se f'(x) > 0 per ogni $x \in (a, b)$, allora f è strettamente crescente in (a, b).
 - (c) se f è strettamente crescente in (a, b), allora f'(x) > 0 per ogni $x \in (a, b)$.
 - (d) se f è decrescente in (a, b), allora $f'(x) \leq 0$ per ogni $x \in (a, b)$.
- 9. Sia $f \colon \mathbb{R} \to \mathbb{R}$ una funzione derivabile. Quale delle seguenti affermazioni è falsa?
 - (a) La derivata di $\int_0^x f(t) dt$ è f(x).
 - (b) f è una primitiva di f'.
 - (c) f è Riemann integrabile su [a, b] per ogni $a, b \in \mathbb{R}$ con a < b.
 - (d) Per ogni $a, b \in \mathbb{R}$ con a < b, si ha $\int_a^b f(x) dx = f'(b) f'(a)$.
- **10.** Sia $f: [0,2] \to \mathbb{R}$ una funzione continua in $[0,2] \setminus \{1\}$ e tale che $\lim_{x \to 1^-} f(x) = 1$, $\lim_{x \to 1^+} f(x) = 2$. Allora:
 - (a) non esiste nessuna primitiva di f in (0,2).
 - (b) f ammette infinite primitive su (0,2).
 - (c) f non è Riemann integrabile su [0, 2].
 - (d) nessuna delle precedenti.