MODULE : ANALYSE DE DONNÉES & STATISTIQUES

PLAN

- Planning
- Objectifs
- Partie 1: ANALYSE DE DONNÉES

Objectifs du module

- Se familiariser avec le monde statistique en s'initiant aux différentes techniques d'analyse de données;
- Être capable de bien mener une analyse statistique de la collecte d'information jusqu'à la prise de décision;
- De même, pour le domaine financier, se familiariser avec les différents termes et concepts du domaine;
- Être capable de comprendre au mieux le monde des finances et d'effectuer les opérations financières correctement.

- Cours: 12h (Mme N. Idrissi)
 - principe de l'analyse de données
 - statistiques descriptives, régression,

-...

- TD : exercices d'entrainement et d'application des méthodes vues en cours
- TP: manipulation d'un logiciel d'analyse des données

INTRODUCTION

1. Démarches scientifiques

2. Les étapes de l'analyse statistique

Démarches scientifiques

La démarche hypothético-déductive: la falsification d'hypothèses

2. Les étapes de la démarche statistique

population: ensemble d'individus (=personnes, villes...).

échantillon : ensemble d'éléments extraits d'une population.

1. Echantillonnage/collecte de données

Ensemble des opérations qui visent à prélever un échantillon dans une population.

- * objectif : obtenir un échantillon informatif
 - un échantillon représentatif de la population.
 - et/ou : un échantillon permettant d'obtenir des informations précises.
- * méthode : échantillonnage stratifié, en grappes...
 - le plus simple : un tirage aléatoire simple.

2. Statistiques descriptives

décrire les données, les présenter (choisir les tests appropriés).

3. Estimation

Estimer des paramètres de la population à partir de l'échantillon: \bar{x} n'est pas égale à μ , mais est « proche » de μ et nous donne des informations sur sa valeur.

4. Tests d'hypothèses

* ajustement : la distribution de la population est-elle conforme à une distribution de référence?

La glycémie est-elle une variable normale?

* conformité : le paramètre de la population est-il conforme à une valeur de référence?

La glycémie des patients atteints de bizarrite est-elle identique à celle de patients sains ?

2. Les étapes de la démarche statistique

Tests d'hypothèses

* égalité ou d'homogénéité : comparent plusieurs populations, à l'aide d'un nombre correspondant d'échantillons.

La glycémie des patients traités avec le traitement A est-elle identique à celle des patients traités par B?

* indépendance entre deux caractères.

L'intensité du diabète est-il indépendant du régime alimentaire ?

Plan du cours

Présupposés : notions de probabilités, notions sur les variables aléatoires

- 1 Statistiques descriptives, lois de probabilité, estimation
- 2 tests d'hypothèse, tests de base
- 3 Tests non paramétriques
- 4 ANOVA, Régression

C'est quoi l'AD?

- 1. Objectif(s) visé(s)
- 2. Collecte
- 3. Analyse
- 4. Décision

Exemples

- → Recensement de la population marocaine en 2014 (HCP)(taux de scolarité, genre, milieu, niveau salariale, ...)
- →Entreprises de production (attitudes et préférences des consommateurs, avis, prix, ...)
- → Banques (ménages à crédit, ...)
- →Étude de pathologies (genre, âge, milieu, ...)///
- →/// phénomènes sociales, économiques, religieux,
- →....

Enquête, sondage, questionnaire, ...

POURQUOI LA STATISTIQUE?

- Le fait d'étudier des phénomènes simples ou complexes à partir des faits constatés (une enquête, un sondage, des expériences, ...)
 - ✓ constater l'augmentation et l'amélioration de la récolte en introduisant des engrais spécifiques
 - ✓ l'augmentation du stress avec l'usage fréquent des appareils intelligentes

√ ...

LA STATISTIQUE?

« C 'est un ensemble de méthodes permettant de décrire, d'analyser et d'interpréter d'une manière quantifiable des phénomènes observés

MÉTHODES STATISTIQUES MS Méthodes explicatives Méthodes descriptives Méthodes de prévision Chercher à expliquer la Comprendre le Concerne en particulier liaison entre une comportement des l'analyse et la prévision variable (à expliquer, données en essayant de des séries les visualiser et/ou les dépendante) avec des chronologiques variables explicatives classer en groupes 19 RLS, RLM, ANOVA ACP, AFC, ACM, CAH

NOTIONS STATISTIQUES

Population:

Une population est l'ensemble sur lequel on effectue des observations, des expériences.

Échantillon:

Une partie de la population tirée au hasard ou représente un ensemble de données bien choisi -> taille

Individu (unité statistique) :

Les individus sont les éléments de la population/échantillon étudié(e).

Variable statistique (les statistiques):

C'est une caractéristique précise observée sur les individus en question.

Série statistique :

C'est l'ensemble de valeurs numériques ou autres observées d'un caractère statistique (sur l'échantillon)

Exemple:

- 1. L'entreprise MyLadyInc voudrait lancer une nouvelle gamme de son produit Gold. Pour cela, elle mène une étude sur 1692 personnes qui a montré que 75% de personnes sont satisfaits pour le prix de 700 dhs dont 63% sont des jeunes, 55% sont des femmes, parmi elles 25% sont des chefs d'entreprises.
- 1. Le ministère d'agriculture voudrait étudier la répartition des terres agricoles de la région de BM. Pour cela, il procède à un inventaire des exploitations agricoles de la région et noter pour chacune d'elle sa taille.

VARIABLES

L'ensemble <u>des valeurs numériques</u> ou nombres qu'elle peut de prendre ou mesurer

L'ensemble des <u>valeurs exprimées sous</u> <u>forme littérale</u> ou par un codage numérique. On parle de <u>modalités</u>

Taille, salaire, nombre d'enfants, nombre d'étudiants, ...

Sexe, couleur, taille vêtements, catégorie d'âge, ...

REPRÉSENTATION DES DONNÉES (PHASE 1)

Tableau (ind x vars)

Chaque caractère est observé sur un individu

ind\v ars	x ₁	X ₂	 X _m
1			
2			
3			
n			

Tableau effectif / fréquence

Chaque caractère en commun est observé sur un ensemble d'individus

	sexe
F	620
Н	150

	Niveau scolaire		
PM	1208		
SC	25678		
HG	23886		

Exemples

N° Exploitation	Taille (ha)	Age du chef d'exploitation (années)	Culture dominante	Nombre de personnes employées
1	50	50	blé	2
2	50.5	45	5 vigne	
3	35	38	orge	3
4	62.1	25	blé	6
5	20	65	vigne	1
6	10	57	vigne	1
630	56	45	blé	2

Dans le tableau présenté ci-dessus, il y a :

combien d'individus ?	
combien de variables ?	

1- REPRÉSENTATION GRAPHIQUE

Permet une première analyse visuelle de la distribution des données/variables

Histogramme

Nuage de points

2- TABLEAUX DE FRÉQUENCE

Valeurs de	Effectifs	Fréquences	%	Effectifs cumulés	Effectifs cumulés
la variable				croissants	décroissants
				N_{i}	N'i
\mathbf{X}_{1}	n_1	$f_1 = n_1/n$	$ f_1 \times 100 $	$N_1 = n_1$	$N'_1 = n_k + \dots + n_1 = n$
			1		
• • •	•••	• • •		$N_2 = n_1 + n_2$	$N'_2 = n_k + \dots + n_2$
Xi	n_i	$f_i = n_i/n$	$f_i \times 100$	$N_3 = n_1 + n_2 + n_3$	$N'_3 = n_k + + n_3$
			1		
•••		• • •			••••
X_k	n_k	$f_k = n_k/n$	$f_k \times 100$	$N_{k-1} = n_1 + \dots + n_{k-1}$	$N'_{k-1} = n_k + n_{k-1}$
			K		
Total:	$\sum n_i = n$	$\sum f_i = 1$	100		$N'_k = n_k$

VARIABLES QUALITATIVES

Modalités	Effectifs	Fréquences	%
Bleu	60	0.200	20,0
Noir	160	0,533	53,3
Noisette	40	0,133	13,3
Vert	40	0,133	13,3

Modalités	Effectifs
Pas satisfait (A)	10
Un peu (B)	25
satisfait (C)	40
Passionnément (D)	32

300 personnes sur lesquelles on a observé la couleur des yeux

107 personnes ont été interrogées sur leur satisfaction du nouveau produit laitier

VARIABLES QUANTITATIVES

-- cas discret --

Niveau scolaire x _i	Effectif	Fréquence
	$n_{\rm i}$	f_i
0 (maternelle)	103	0,286
1 (CP)	115	0,319
2 (CE1)	95	0,264
3 (CE2)	35	0,097
4 (CM1)	10	0,028
5 (CM2)	2	0,006

VARIABLES QUANTITATIVES

-- cas continu--

Classes	Effectifs
$[e_1 - e_2[$	n_1
$[e_2 - e_3[$	n_2
••••	• • • •
$[e_k - e_{k+1}[$	n_k

Représentation par intervalles ou classes

Age (ans)	Nombre de personnes
20 à 30	100
30 à 40	150
40 à 50	90
50 à 65	20

Rectification

é 10 20 30 40 50 65

- La correction des effectifs ou des fréquences se fait en trois ét
- 1- Calcul des amplitudes des classes a;
- **2-** Choix d'une amplitude de base a (généralement l'amplitude la plus petite) et calcul du rapport amplitude de la classe sur l'amplitude de base (a_i/a)
- <u>3-</u> Calcul des effectifs corrigés : $n_i' = n_i/(a_i/a)$ ou $f_i' = f_i/(a_i/a)$

Age x _i	Effectif	a_{i}	a _i /a	n'i
	$n_{\rm i}$			
[20-30[100	10	1	100
[30-40[150	10	1	150
[40-50[90	10	1	90
[50-65]	20	15	15/10	13,33

En résumé

3- PARAMÈTRES STATISTIQUES

- Les paramètres (indicateurs, mesures) statistiques sont des calculs (une seule quantité numérique) qui ont pour but de :
 - Résumer d'une manière claire et précise l'essentiel de l'information relative au caractère statistique observé
 - Permettre d'avoir une idée sur la distribution statistique du caractère observé;

Les paramètres statistiques ne concernent que les variables quantitatives

PARAMETRES STATISTIQUES

Tendance centrales

- mode
- moyenne
- médiane

Dispersion

- variance
- écart-type
- étendue
- coefficient de variation

Position

- quartile
- centile

Indicateurs centrales

Moyenne: valeur numérique autour de laquelle les observations sont réparties et notée \overline{X}

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n} \qquad \text{ou} \qquad \frac{\sum_{i=1}^{n} n_i x_i}{\sum_{i=1}^{n} n_i}$$

Mode: c'est la valeur dont la fréquence est la plus élevée.

 Médiane: elle correspond à la valeur du caractère observé (x) pour laquelle 50% des valeurs observées sont supérieures et 50% sont inférieures.

Nombre impair d'observations

Nombre pair d'observations

La série $X=(x_1,x_2,...,x_n)$ originale doit être triée en $X'=(x_{(1)},x_{(2)},...,x_{(n)})$

Comparaison

Indicateurs de position

- Les quartiles sont les valeurs qui partagent la série statistique en quatre parts égales.
 - Le 1^{er} quartile Q1, est la valeur en dessous de laquelle se situent 25 % des observations;
 - Le 2^{ème} quartile Q2 est la valeur en dessous de laquelle se situent 50 % des observations et audessus de laquelle se situent 50 % de la population. Il correspond donc à M;
 - Le 3^{ème} quartile Q3 est la valeur en dessous de laquelle se situent 75 % des observations.

- Les déciles sont les valeurs qui partagent la série en 10 parts égales.
 - Le 1^{er} décile D1 est la valeur en dessous de laquelle se situent 10 % des observations;
 - Le 2^{ème} décile D2 est la valeur en dessous de laquelle se situent 20 % des observations;
 - Etc.
 - Le 9^{ème} décile D9 est la valeur en dessous de la quelle se situent 90 % des observations ou encore au-dessus de laquelle se situent 10 % de ces observations.

Indicateurs de dispersion

Mesure l'écart par rapport à la moyenne

Etendue:
$$R = x_{max} - x_{min}$$

$$V = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$\sigma = \sqrt{V}$$

Coefficient de variation:

$$\frac{\sigma}{x}$$

Distance interquartile:

DI (IQ)=
$$Q_3 - Q_1$$

TD1

✓ Exercice 1:

Le tableau suivant représente les notes de statistiques de 2 classes différentes dans une école:

Centre classes	Classes x _i	Effectifs n _{1i}	Effectifs n _{2i}	$-\frac{1}{x_1}$	$\overline{x_2}$
2	[0; 4	0	2	0	4
6]4; 8]	1	2	6	12
10]8; 12]	10	3	100	30
14]12; 16]	2	3	28	42
18]16; 20]	0	2	0	36

- 1. Représenter le polygone/ histogramme des deux classes
- 2. Etudier la dispersion pour confirmer vos constats
- 3. Mode et médiane

✓ Les autres exercices vous sont fournis en papier

Phase 3 -

Analyse statistique bivariée

Chapitre 2 Régression linéaire simple

N. IDRISSI
FACULTE DES SCIENCES ET TECHNIQUES
DEPARTEMENT INFORMATIQUE
BENI MELLAL
BLOC C RDC

Objectif

Etudier la relation entre deux variables <u>quantitatives</u>:

Nuage de points:

- description de l'association linéaire: corrélation, régression linéaire simple
- 2. <u>explication / prédiction</u>
 <u>d'une variable à partir de</u>
 <u>l'autre</u>: modèle linéaire
 simple

La corrélation

Est le degré de dépendance entre deux variables quantitatives

Est positive, négative ou pulle

Nulle, faible, moyenne ou forte

$$(y_i - \bar{y}) > 0$$

Contribution > 0

La corrélation

Statistique descriptive de la relation entre X et Y: variation conjointe

1. La covariance

Dans l'échantillon:
$$cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \overline{xy}$$

Estimation pour la population:
$$cov(x,y) = \hat{\sigma}_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$cov(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} x_i y_i - \frac{n}{n-1} \overline{x} \overline{y}$$

2. Le coefficient de corrélation linéaire

« de Pearson »

Dans l'échantillon:

$$r_{xy} = \frac{s_{xy}}{\sqrt{s_x^2 s_y^2}}$$

Estimation pour la population:

$$\hat{o}_{xy} = r_{xy} = \frac{s_{xy}}{\sqrt{s_x^2 s_y^2}}$$

Degree of Correlation

Weak Positive

None

Strong Negative

Moderate Negative

Weak Negative

de covariance absolu: -1 ≤ r ≤ 1

r = 0

 X_1

Tests de la corrélation

b. Test de $\rho = 0$

$$\begin{cases} H_0: \rho = 0 & \text{Absence de corrélation} \\ H_a: \rho \neq 0 \end{cases}$$

Sous Ho:
$$\left| t_{obs} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \right| < t_{n-2,\alpha}^{\text{Si H0 est rejetée (p-value corrélation}}$$

La régression linéaire

Conditions d'utilisation

a. Normalité

- Test de Shapiro-Wilk ou Kolmogorov-Smirnov
- Tracé Q-Q plot

H0 : les données suivent une distribution normale

H1 : les données ne suivent pas une distribution normale

b. Homoscédasticité

La variance de Y est indépendante de X et vice-versa.

H0 : les variances des deux groupes sont égales.

H1 : les variances sont différentes.

- Test F
- Test de Bartelett
- · Test de Levene

Modélisation mathématique

On suppose:
$$y = f(x) = a + b*x$$

Modèle:
$$Y_i = a + bX_i + e_i$$
 avec, pour $X = x_i$, Y_i : $N(a+bx_i, \sigma)$

- X = variable explicative (« indépendante »)
- Y = variable expliquée (dépendante)

L'estimation des paramètres

a? b? Méthode d'estimation: les moindres carrés:

Méthode des moindres carrés

On cherche à minimiser :

$$\sum_{i=1}^{n} (y_i - (a + bx_i))^2 = E(a,b)$$

$$\begin{cases} \frac{\partial E}{\partial a} = \sum_{i=1}^{n} 2(y_i - (a + bx_i))(-1) = 0 & (1) \\ \frac{\partial E}{\partial b} = \sum_{i=1}^{n} 2(y_i - (a + bx_i))(-x_i) = 0 & (2) \end{cases}$$

$$(1) \Rightarrow \sum_{i=1}^{n} y_i = \sum_{i=1}^{n} (a + bx_i) = na + b\sum_{i=1}^{n} x_i$$

$$n\bar{y} = na + nb\bar{x}$$

$$a = \bar{y} - b\bar{x}$$

$$\hat{b} = \frac{\text{cov}(x, y)}{s^2}$$

→ On peut alors prédire y pour x compris dans l'intervalle des valeurs de l'échantillon:

$$\hat{y}_i = \hat{a} + \hat{b}x_i$$

Qualité de l'ajustement

On a supposé: $Y_i = a + bX_i + e_i$ avec pour $X = x_i$, Y_i : $N(a+bx_i, \sigma)$

- distribution normale des erreurs
- variance identique (homoscédasticité)
- indépendance:
- linéarité de la relat $\Theta V(e_i,e_j)=0$

Test *a posteriori* : étude du nuage de points/ du graphe des résidus

Normalité de l'erreur

Résidus

Valeurs prédites

Valeurs prédites

Possibilité de transformation: attention aux transformations ad hoc

Décomposition de la variation

Quelle part de la variabilité de Y est expliquée par la relation linéaire avec X?

Variabilité? Somme des Carrés des Ecarts SCE:

$$SCE_T = \sum_{i=1}^{n} (y_i - \bar{y})^2 = ns_y^2$$

SCE Totale

SCE reg.lin. (Expliquée)

SCE hors reg.lin. (erreur)

$$\sum_{i=1}^{N} (Y_i - \overline{Y})^2$$

$$\sum_{i=1}^{N} (\hat{Y}_i - \overline{Y})^2$$

$$\sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

Relation entre r et r²

Coefficient de détermination

$$SCE_{reg.lin.} = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = \sum_{i=1}^{n} ((a + bx_i) - (a + b\bar{x}))^2$$
$$= b^2 \sum_{i=1}^{n} (x_i - \bar{x})^2 = b^2 n s_x^2 = b^2 SCE_x$$

Donc
$$r^2 = \frac{b^2 n s_x^2}{n s_y^2} = (\frac{\text{cov}(x, y)}{s_x^2})^2 \frac{s_x^2}{s_y^2} = \frac{(\text{cov}(x, y))^2}{s_x^2 s_y^2} = (r)^2$$

$$r^2 = \frac{SCE_{reg.lin.}}{SCE_T}$$
 En particulier, $r = 0 \ll r^2 = 0$

Tests

Test de la décomposition de la variation ou analyse de variance (ANOVA): H_0 : $\rho^2 = 0$

$$\frac{\sigma_{reg.lin.}^{2}}{\sigma_{horsreg.lin.}^{2}} = \frac{SCE_{reg.lin.}/1}{SCE_{horsreg.lin.}/(n-2)} : F_{n-2}^{1}$$

NB:
$$\frac{SCE_{reg.lin.}/1}{SCE_{horsreg.lin.}/(n-2)} = \frac{r^2SCE_T}{(1-r^2)SCE_T/(n-2)} = (\frac{r\sqrt{n-2}}{\sqrt{1-r^2}})^2$$

$$\frac{SCE_{reg.lin.}/1}{SCE_{horsreg.lin.}/(n-2)}:F_{n-2}^{1} \qquad \text{num\'eriquement} \\ \text{\'equivalent \`a} \qquad \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}:T_{n-2}$$

Autres tests

- comparaison de la pente à une valeur non nulle
- comparaison de l'ordonnée à l'origine à une valeur quelconque

Chapitre 3 Analyse en Composantes Principales A.C.P.

N. IDRISSI
Faculté des Sciences et Techniques
Béni Mellal
Departement d'Informatique

Introduction

L'ACP, introduite par K. Pearson et Thurston (années 20), est une technique des statistiques descriptives destinée à l'analyse des données multidimensionnelles.

- → Comprendre la structure d'un ensemble de variables (regroupement, points isolés, ...)
- → Réduire la dimension de l'espace des descripteurs (variables) avec le minimum de perte d'information

Position du Problème

Sujet	Math	Sciences	Français	Latin	Musique
Jean	6	6	5	5,5	8
Aline	8	8	8	8	9
Annie	6	7	11	9,5	11
Monique	14,5	14,5	15,5	15	8
Didier	14	14	12	12	10
André	11	10	5,5	7	13
Pierre	5,5	7	14	11,5	10
Brigitte	13	12,5	8,5	9,5	12
Evelyne	9	9,5	12,5	12	18

Rappels

Matrice de variance-covariance : mesure la liaison entre les différents descripteurs

$$\Sigma = \left(\operatorname{cov}(X_i, X_j) \right)_{i,j}$$
où $\operatorname{cov}(X_i, X_i) = \operatorname{Var}(X_i)$.

Matrice de corrélation : $R = (R_{ij})_{i,j} = \Sigma/\delta_{Xi} \delta_{Xj}$

Matrice de corrélation

1	0,970	-0,064	0,094
	1	-0,102	0,037
		1	0,986
			1

Commentaires

Le tableau initiale (ind x var) est difficile à lire (en particulier lorsqu'on a plusieurs variables et sujets, n,p >>>).

Par conséquent les relations entre les différentes variables sont indétectables à première vue.

La matrice de corrélation montre les variables qui sont fortement corrélées entre elles.

Comment se fait la réduction de la dimension tout en préservant les liaisons entre les différentes variables?

- Les variables de départ sont remplacées par « des vecteurs propres » de la matrice Σ ou de la matrice R, appelés Composantes principales.
- Y-a-t-il un critère d'arrêt ? généralement on s'arrête quand au moins 75% de la variance est expliquée par la variance cumulée par les CP.
- Ou en appliquant le critère de Kaiser (80% de l'information est gardée ou de valeur propre >=1)

Qu'est-ce qu'un vecteur propre?

 λ est une **valeur propre** de la matrice A si et seulement si $A\mathbf{v} = \lambda \mathbf{v}$

Le vecteur \mathbf{v} dans la relation ci-dessus est appelé $\mathbf{vecteur}$ associé à λ Les valeurs propres s'obtiennent en résolvant le système d'équations $\det(A-\lambda \mathbf{I})=0$.

Le nombre de valeurs propres, $\lambda_1 > \dots > \lambda_p$, est égal au nombre de colonnes de la matrice A

→ La somme des valeurs propres de A est égale à la variance contenue dans l'ensemble des données.

Expression des composantes principales

D'un point de vue pratique les composantes principales s'écrivent $F_i = \lambda_1 X_1 + \ldots + \lambda_p X_p$

c'est-à-dire que F_j est une combinaison linéaire des variables initiales X_1,\dots , $X_{\rm p}$.

En plus de cet aspect calculatoire on doit pouvoir faire des affirmations sur la qualité de la réduction et la qualité de la représentation graphique.

Représentation graphique

Lorsque les différentes CP ont été trouvées on peut représenter les différentes variables et les différents individus dans le plan CP1, CP2 comme illustré ci-dessous

Interprétation

Chaque valeur propre représente la variance prise en compte par la composante principale correspondante.

Par exemple:

CP_1	CP_2	CP_3	CP_4
2.0011	1.8668	0.0317	0.0003
0.5003	0.4917	0.0079	0.0001
0.5003	0.9920	0.9999	1.0000
	0.5003	2.0011 1.8668	2.0011 1.8668 0.0317 0.5003 0.4917 0.0079

Ici les deux premières composantes rendent compte de 0,5003+0,4917 = 0,9920 = 99,2 % de la variance totale.

Ce qui veut dire que les 4 variables peuvent être remplacées par les 2 premières composantes (CP1, CP2) tout en préservant la quasi-totalité de l'information (réduction).

Résultats des calculs

Scores des individus : il s'agit des valeurs prises par les composantes principales sur les individus. Ici

Suj	CP_1	CP_2	CP_3	CP_4
s1	0.0771	-2.7515	-0.0935	0.0166
s2	2.2153	-0.0327	0.1778	-0.0095
s3	-2.4608	-0.0173	0.2445	-0.0036
s4	0.7734	1.5097	0.0664	0.0219
s5	-0.6606	1.3926	-0.2592	0.0064
s6	0.0556	-0.1008	-0.1360	-0.0319

Résultats (suite I)

Saturations des variables : il s'agit des coefficients de corrélation entre les variables et les composantes principales.

Var	CP_1	CP_2	CP_3	CP_4
	_			<u>'</u>
$\mid Z_1$	0.6288	-0.7687	-0.1169	-0.0048
Z_2	0.6651	-0.7366	0.1228	0.0030
Z_3	-0.8094	-0.5857	0.0413	-0.0119
Z_4	-0.7129	-0.7002	-0.0355	0.0121
				·

La première composante est surtout corrélée avec les deux dernières variables;

La deuxième composante est corrélée avec les deux premières variables et la dernière;

Résultats (suite II)

Contribution (relative) d'un individu à la formation d'une composante principale :

$$\frac{0,0771^2}{0,0771^2 + ... + 0,0556^2} = 0,64\%$$

Qualité de la représentation :

pour sujet 1 et CP2

QLT =
$$\frac{2,7515^2}{0,0771^2 + ... + 0,0166^2} = 0,998$$

Résultats (suite II)

Qualité de la représentation d'une variable à la formation d'une CP : contribution de la première variable à la formation de la première composante principale

CTR =
$$\frac{0,6288^2}{0,6288^2 + 0,6651^2 + ... + 0,7129^2} = 0,1976$$

A retenir

<u>Interpréter chaque axe</u>: part de la variance, variables avec lesquelles il est corrélé, contribution.

Individus proches de l'origine : ils ont peu contribué à l'inertie.

<u>Interpréter</u>:

Les regroupements d'individus et variables;

Les oppositions marquées;

Les points isolés

A vos machines!