Problem sheet

- Q1. Let $A \subseteq \mathbb{A}^n$ be a subset.
 - (a) What is the definition of the closure of A in \mathbb{A}^n ?
 - (b) Prove that $\mathbb{V}(\mathbb{I}(A))$ equals the Zariski closure of A in \mathbb{A}^n .
 - (c) Give an example of a subset in $B \subseteq \mathbb{C}$ whose closure in the Zariski topology does not coincide with its closure in the Euclidean topology.
- Q2. (a) What is the definition of a compact subset of a topological space?
 - (b) Prove that $\mathbb{V}(x^2-y^3)\subseteq\mathbb{C}^2$ is compact in the Zariski topology but not in the Euclidean topology.
- Q3. (a) Find a curve $W \subseteq \mathbb{A}^2$ and a morphism $\varphi : \mathbb{A}^2 \longrightarrow \mathbb{A}^2$, such that W is irreducible but $\varphi^{-1}(W)$ is not.
 - (b) Let Y be a topological space and consider $X \subseteq Y$ with the subspace topology. Prove that if X is irreducible then so is its closure.
 - (c) Prove that isomorphisms preserve irreducibility and dimension of closed affine algebraic varieties.
 - (d) Find the irreducible components of $\mathbb{V}(zx-y,y^2-x^2(x+1))\subseteq \mathbb{A}^3$. You need to justify why each component is irreducible.
- Q4. (a) Let $V \subseteq \mathbb{A}^n$ be a Zariski-closed subset and $a \in \mathbb{A}^n \setminus V$ be a point. Find a polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$ such that

$$f \in \mathbb{I}(V), \quad f(a) = 1.$$

- (b) Let $I, (g) \subseteq \mathbb{C}[x_1, \dots, x_n]$ be two ideals. Assume that $\mathbb{V}(g) \supseteq \mathbb{V}(I)$.
 - (i) Prove that if $I = (f_1, \ldots, f_k)$, then

$$(f_1, \dots, f_k, x_{n+1}g - 1) = \mathbb{C}[x_1, \dots, x_{n+1}].$$
 (1)

- (ii) By only using Equation (1) and not the nullstellensatz, prove that there exists a positive integer m such that $g^m \in I$.
- **Remark.** Using this exercise, we can prove nullstellensatz from a weaker version. Weak nullstellensatz asserts that if $V \neq \emptyset \iff \mathbb{I}(V) \neq (1)$.
- Q5. Prove at least one implication from each of the following equivalences.
 - (a) Show that the pullback $\varphi^*: \mathbb{C}[W] \longrightarrow \mathbb{C}[V]$ is injective if and only if φ is dominant. Recall that a map, φ , is called dominant if its image, $\varphi(V)$, is dense in W.
 - (b) Prove that the pullback $\varphi^* : \mathbb{C}[W] \longrightarrow \mathbb{C}[V]$ is surjective if and only if φ defines an isomorphism between V and some algebraic subvariety of W.
- Q6. (a) Find all the elements of $\max \operatorname{Spec}(\mathbb{C}[x])$ and $\max \operatorname{Spec}(\mathbb{C}[x, 1/x])$, respectively.

- (b) Consider the isomorphism $\varphi: \mathbb{A}^1 \setminus \{0\} \longrightarrow \mathbb{A}^1 \setminus \{0\}, \ a \longmapsto b = 1/a$, and the pullback map on the coordinate rings $\varphi^*: \mathbb{C}[x,1/x] \longmapsto \mathbb{C}[y,1/y]$. Compute $\varphi^*(1/x), \ \varphi^*(2x^2 + \frac{2x^3 + 4x}{x^5}), \ \varphi^*(2-x)$.
- Q7. Consider the affine algebraic hypersurface $V := \mathbb{V}(y ux) \subseteq \mathbb{A}^3$.
 - (a) Prove that the projection $\mathbb{A}^3 \longrightarrow \mathbb{A}^2$, $(x, y, u) \longmapsto (x, u)$ restricts to an isomorphism between V and \mathbb{A}^2 .
 - (b) Prove that the projection $\mathbb{A}^3 \longrightarrow \mathbb{A}^2$, $(x, y, u) \longmapsto (x, y)$ does not restrict to isomorphism between V and \mathbb{A}^2 .
- Q8. Show that any radical ideal I in $\mathbb{C}[x_1,\ldots,x_n]$ is the intersection of all maximal ideals containing I.
- Q9. Let X be a topological space. Prove that $A \subseteq X$ is closed if and only if $A \cap U$ is closed in U (with respect to the subspace topology in U) for every open $U \subseteq X$.
- Q10. (a) Derive the Cauchy–Riemann equations from the picture below and conformality.
 - (b) Write $\frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ and $\frac{\partial f}{\partial y} = \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}$

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) = 0.$$

Thus $\frac{\partial f}{\partial \bar{z}}$ measures the extent by which f from being analytic.

- Q11. Rewrite the proof of Theorem 3.6 for yourself when n=2. That is, prove that \mathbb{P}^2 is an analytic manifolds. Write down all the charts U_0, U_1, U_2 and all the change of coordinates on the intersections explicitly.
- Q12. Look at the lattice representation for $\mathbb{C}[z_1]$ and $\mathbb{C}[z_1^{-1}]$, below:

(i) Highlight the lattice points related to $\mathbb{C}[z_1,z_2]$

(ii) Highlight the lattice points associated to $\mathbb{C}[z_1,z_2^2]$

(iii) Highlight the lattice points related to $\mathbb{C}[z_1z_2^2,z_2^{-1}]$.

