Vv417 Lecture 22

Jing Liu

UM-SJTU Joint Institute

November 21, 2019

- It is clearly better to use an orthonormal basis than using some other basis.
- So it is important to derive a process for constructing an orthonormal basis

$$\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n\}$$

for an n-dimensional inner product space ${\mathcal V}$ from an ordinary basis

$$\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n\}$$

• We want to construct the \mathbf{u}_i 's so that

$$\operatorname{span}(\mathbf{u}_1,\ldots,\mathbf{u}_k)=\operatorname{span}(\mathbf{x}_1,\ldots,\mathbf{x}_k)$$

• Our construct here is based on projections, to begin the process, let

$$\mathbf{u}_1 = \left(\frac{1}{\|\mathbf{x}_1\|}\right)\mathbf{x}_1 \implies \operatorname{span}(\mathbf{u}_1) = \operatorname{span}(\mathbf{x}_1)$$

 \bullet Let \mathbf{p}_1 denote the projection of \mathbf{x}_2 onto the subspace $\mathrm{span}(\mathbf{u}_1) = \mathrm{span}(\mathbf{x}_1)$

$$\mathbf{p}_1 = \langle \mathbf{x}_2, \mathbf{u}_1 \rangle \mathbf{u}_1 \implies (\mathbf{x}_2 - \mathbf{p}_1) \perp \mathbf{u}_1$$

Q: Note that $\mathbf{x_2} - \mathbf{p_1} \neq \mathbf{0}$, why?

 $\bullet \ \mathsf{Since} \ \mathbf{u}_1 = \left(\frac{1}{\|\mathbf{x}_1\|}\right) \mathbf{x}_1 \mathsf{, thus}$

$$\mathbf{x}_2 - \mathbf{p}_1 = \mathbf{x}_2 - \langle \mathbf{x}_2, \mathbf{u}_1 \rangle \mathbf{u}_1 = \mathbf{x}_2 - \langle \mathbf{x}_2, \left(\frac{1}{\|\mathbf{x}_1\|}\right) \mathbf{x}_1 \rangle \left(\frac{1}{\|\mathbf{x}_1\|}\right) \mathbf{x}_1$$

So if we set

$$\mathbf{u}_2 = \frac{1}{\|\mathbf{x}_2 - \mathbf{p}_1\|} (\mathbf{x}_2 - \mathbf{p}_1)$$

then \mathbf{u}_2 is a unit vector orthogonal to \mathbf{u}_1 . It is clear that

$$\operatorname{span}(\mathbf{u}_1, \mathbf{u}_2) \subset \operatorname{span}(\mathbf{x}_1, \mathbf{x}_2)$$

 \bullet Since \mathbf{u}_1 and \mathbf{u}_2 are orthogonal, so they are linearly independent, $\:$ and hence

$$\{\mathbf{u}_1, \mathbf{u}_2\}$$

is an orthonormal basis for $\operatorname{span}(\mathbf{x}_1, \mathbf{x}_2)$, and

$$\operatorname{span}(\mathbf{u}_1, \mathbf{u}_2) = \operatorname{span}(\mathbf{x}_1, \mathbf{x}_2)$$

• To find \mathbf{u}_3 , continue in the same way. Let \mathbf{p}_2 be the projection of \mathbf{x}_3 onto

$$\operatorname{span}(\mathbf{u}_1, \mathbf{u}_2) = \operatorname{span}(\mathbf{x}_1, \mathbf{x}_2)$$

• Since $\{\mathbf{u}_1, \mathbf{u}_2\}$ is orthonormal,

$$\mathbf{p}_2 = \langle \mathbf{x}_3, \mathbf{u}_1 \rangle \mathbf{u}_1 + \langle \mathbf{x}_3, \mathbf{u}_2 \rangle \mathbf{u}_2$$

and if set

$$\mathbf{u}_3 = \frac{1}{\|\mathbf{x}_3 - \mathbf{p}_2\|} (\mathbf{x}_3 - \mathbf{p}_2)$$

then

$$\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}$$

is an orthonormal basis for the subspace $\mathrm{span}(\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3)=\mathrm{span}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3)$

• To obtain an orthonormal basis for the inner product space V, we continue this process until we have n vectors in the set.

The Gram-Schmidt Process

Suppose $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is a basis for the inner product space \mathcal{V} . Let

$$\mathbf{u_1} = \left(\frac{1}{\|\mathbf{x_1}\|}\right)\mathbf{x_1}$$

and define $\mathbf{u}_2, \ldots, \mathbf{u}_n$ recursively by

$$\mathbf{u}_{k+1} = \left(\frac{1}{\|\mathbf{x}_{k+1} - \mathbf{p}_k\|}\right) (\mathbf{x}_{k+1} - \mathbf{p}_k) \quad \text{for} \quad k = 1, \dots, n-1$$

where

$$\mathbf{p}_k = \langle \mathbf{x}_{k+1}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \langle \mathbf{x}_{k+1}, \mathbf{u}_2 \rangle \mathbf{u}_2 + \dots + \langle \mathbf{x}_{k+1}, \mathbf{u}_k \rangle \mathbf{u}_k$$

is the projection of \mathbf{x}_{k+1} onto $\mathrm{span}(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_k)$. Then the set

$$\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n\}$$

is an orthonormal basis for \mathcal{V} .

Exercise

Find an orthonormal basis for \mathcal{P}_2 if the inner product on \mathcal{P}_2 is defined by

$$\langle p, q \rangle = \sum_{i=1}^{3} p(x_i)q(x_i),$$
 where $x_1 = -1$, $x_2 = 0$, and $x_3 = 1$.

Solution

• Starting with the basis $\{1, x, x^2\}$,

$$||1||^2 = \langle 1, 1 \rangle = 1 + 1 + 1 = 3$$

So

$$\mathbf{u}_1 = \left(\frac{1}{\|1\|}\right) 1 = \frac{1}{\sqrt{3}}$$

Set

$$\mathbf{p}_1 = \langle x, \frac{1}{\sqrt{3}} \rangle = \left(-1 \cdot \frac{1}{\sqrt{3}} + 0 \cdot \frac{1}{\sqrt{3}} + 1 \cdot \frac{1}{\sqrt{3}} \right) = 0$$

This means

$$x - \mathbf{p}_1 = x$$

$$\implies ||x - \mathbf{p}_1||^2 = \langle x, x \rangle = (-1) \cdot (-1) + 0 \cdot 0 + 1 \cdot 1 = 2$$

Hence

$$\mathbf{u}_2 = \frac{1}{\sqrt{2}}x$$

Finally,

$$\mathbf{p}_2 = \langle x^2, \frac{1}{\sqrt{3}} \rangle \frac{1}{\sqrt{3}} + \langle x^2, \frac{x}{\sqrt{2}} \rangle \frac{x}{\sqrt{2}} = \frac{2}{3}$$

thus

$$\mathbf{u}_3 = \frac{1}{\|x^2 - \mathbf{p}_2\|} (x^2 - \mathbf{p}_2) = \frac{\sqrt{6}}{2} (x^2 - \frac{2}{3})$$

Exercise

Find an orthonormal basis for $col(\mathbf{A})$, where

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 4\\ 1 & 4 & -2\\ 1 & 4 & 2\\ 1 & -1 & 0 \end{bmatrix}$$

Solution

• First of all, we have to determine the column space,

$$\mathbf{A} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

• Thus the columns are linearly independent, and

$$col(\mathbf{A}) = span{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3}$$

 \bullet Apply Gram-Schmidt to the columns since they form a basis for $\operatorname{col}(\mathbf{A})$. Let

$$r_{11} = \|\mathbf{a}_1\| = \sqrt{\langle \mathbf{a}_1, \mathbf{a}_1 \rangle} = 2$$

So the first vector in the orthonormal basis is

$$\mathbf{q}_1 = \frac{1}{r_{11}} \mathbf{a}_1$$

ullet To find the projection of ${f a}_2$ onto ${f q}_1$, we compute

$$r_{12} = \langle \mathbf{q}_1, \mathbf{a}_2 \rangle = 3$$

• To find the vector that is orthogonal to the span of q_1 ,

$$\mathbf{a}_2 - r_{12}\mathbf{q}_1$$

To normalize this orthogonal component of a₂

$$r_{22} = \|\mathbf{a}_2 - r_{12}\mathbf{q}_1\| = 5$$

Thus the second vector in the orthonormal basis is

$$\mathbf{q}_2 = \frac{1}{r_{22}}(\mathbf{a}_2 - r_{12}\mathbf{q}_1) = \frac{1}{r_{22}}(\mathbf{a}_2 - \frac{r_{12}}{r_{11}}\mathbf{a}_1)$$

• To find the projection of a_3 onto $\mathcal{W} = \mathrm{span}\{\mathbf{q}_1, \mathbf{q}_2\}$,

$$r_{13} = \langle \mathbf{q}_1, \mathbf{a}_3 \rangle = 2$$

 $r_{23} = \langle \mathbf{q}_2, \mathbf{a}_3 \rangle = -2$

ullet To find the vector that is orthogonal to ${\mathcal W}$

$$\mathbf{a}_3 - r_{13}\mathbf{q}_1 - r_{23}\mathbf{q}_2$$

To normalize this orthogonal component of a₃,

$$r_{33} = \|\mathbf{a}_3 - r_{13}\mathbf{q}_1 - r_{23}\mathbf{q}_2\| = 4$$

Thus the last vector in the orthonormal basis is

$$\mathbf{q}_3 = \frac{1}{r_{33}} \left(\mathbf{a}_3 - r_{13} \mathbf{q}_1 - r_{23} \mathbf{q}_2 \right)$$
$$= \frac{1}{r_{33}} \left(\mathbf{a}_3 - \frac{r_{13}}{r_{11}} \mathbf{a}_1 - \frac{r_{23}}{r_{22}} (\mathbf{a}_2 - \frac{r_{12}}{r_{11}} \mathbf{a}_1) \right)$$

ullet Therefore the set is an orthonormal basis for $\operatorname{col}(\mathbf{A})$

$$\mathcal{B} = \{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\} = \left\{ \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \right\}$$

ullet If we retain all the inner products and norms computed during Gram-Schmidt process, a factorization of the matrix old A can be obtained. For example,

$$\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}, \quad \mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix} = \begin{bmatrix} 2 & 3 & 2 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \end{bmatrix}$$

$$\mathbf{Q}\mathbf{R} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 & 3 & 2 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{bmatrix} = \mathbf{A}$$

Gram-Schmidt QR Factorization

If A is an $m \times n$ matrix of rank n, then A can be factored into a product

$$A = QR$$

where \mathbf{Q} is an $m \times n$ matrix with orthonormal column vectors and \mathbf{R} is an upper triangular $n \times n$ matrix whose diagonal entries are all positive.

Proof

• Let $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_{n-1}$ be the projection vectors and $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$ be the orthonormal basis of $\operatorname{col}(\mathbf{A})$ derived from the Gram-Schmidt process, and

$$\begin{split} r_{11} &= \|\mathbf{a}_1\| \quad \text{and} \quad r_{kk} = \|\mathbf{a}_k - \mathbf{p}_{k-1}\| \qquad \text{for} \quad k = 2, \dots, n \\ r_{ik} &= \mathbf{q}_i^{\mathrm{T}} \mathbf{a}_k \qquad \text{for} \quad i = 1, \dots, k-1 \quad \text{and} \quad k = i+1, \dots, n \end{split}$$

By the Gram-Schmidt process,

$$r_{11}\mathbf{q}_1 = \mathbf{a}_1$$

$$r_{kk}\mathbf{q}_k = \mathbf{a}_k - r_{1k}\mathbf{q}_1 - r_{2k}\mathbf{q}_2 - \dots - r_{k-1,k}\mathbf{q}_{k-1} \qquad \text{for} \quad k = 2,\dots, n$$

• If we set $\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix}$ and defined $\mathbf{R} = \begin{bmatrix} r_{11} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & r_{33} \end{bmatrix}$, then the

kth column of the product \mathbf{QR} will be \mathbf{a}_k for $k = 1, \dots, n$. Therefore,

$$\mathbf{QR} = \mathbf{A}$$