Chapter 7 Multi-processing

Ref: Computer Organization and Architecture, 8th Edition, William Stalling

Content

- Types of Parallel Processor Systems
- SMP
- Cluster
- NUMA
- Multicore processors

CO&ISA, NLT 2020 2

Introduction

- Overall goal: increasing performance
 - For a large software
 - For a large number of small individual software
 - With energy efficiency
- Approaches in previous chapters?
 - Pipeline
 - Super scaler
 - Multi-threaded
 - → increase performance of a single CPU core

Multi-thread vs multi-processing

Multi-thread

(b) Interleaving and overlapping (multiprocessing; multiple processors)

Running

Comparison?

Types of Parallel Processor Systems

CO&ISA, NLT 2020 5

Types of Parallel Processor Systems

- Single instruction, single data (SISD) stream: A single processor executes a single instruction stream to operate on data stored in a single memory.
- Single instruction, multiple data (SIMD) stream: A single machine instruction controls the simultaneous execution of a number of processing elements
- Multiple instruction, single data (MISD) stream: not implemented
- Multiple instruction, multiple data (MIMD) stream: A set of processors simultaneously execute different instruction sequences on different data sets.

SISD

- CU: Control Unit
- □ PU: Processing Unit
- MU: Memory Unit
- Sequential execution
- Data stored in a single main memory
- → Uniprocessor computer

CO&ISA, NLT 2020 7

SIMD

- 1 instruction stream
- Multiple processing units
- Each PC processes data from a separate memory
- All PUs execute the same instruction stream from CU
- Example: GPU

Comparison: Current Processors

CPU **GPU**

MIMD

- Multiple instruction, multiple data
- Require multiple CUs and PUs
- Shared or distributed memory

MIMD with shared memory

MIMD with distributed memory

Types of MIMD

- Tightly coupled: standalone CPUs connect to memory and IOs by system buses.
 - Symmetric Multiprocessor: e.g. multi-core CPU.
 - Non-uniform Memory Access.
- Loosely coupled: CPUs are connected via high speed network connections

Symmetric Multiprocessor (SMP)

- Two or more similar processors of comparable capability
- These processors share the same main memory and I/O facilities
- All processors share access to I/O devices
- All processors can perform the same functions (symmetric)
- The system is controlled by an integrated operating system
 - Provides interaction between processors and system resources

Symmetric Multiprocessor Organization

SMP Design Considerations (1)

Hardware

Cache coherence: Each processor has a separate cache. A single data on main memory can be mapped to multiple cache on different CPUs.

■ Software (OS):

- Simultaneous concurrent processes.
- Multi-processer scheduling.
- Synchronization.
- Memory management
- Reliability and fault tolerance

Cluster

Group of interconnected, whole computers working together as a unified computing resource. Each computer in a cluster is typically referred to as a node.

- Absolute scalability
- Incremental scalability
- High availability
- Superior price/performance

Cluster Configurations

Cluster Computer Architecture

High-speed network/switch

Example: blade server

SMP vs cluster

- Both are high performance computer architecture
- SMP
 - Easy to use and maintenance
 - Closer to uniprocessor system
 - Small size and low power consumption

Cluster

- High computing capability
- Scalability
- Hight dependability and availability

SMP vs cluster

- □ SMP
 - Limited capability.
- Cluster
 - Separated memory on each node
 - Complicated software

combining advantages of SMP and cluster: NUMA

Cache-coherence NUMA

21

Multicore Processors

- Conventional performance improvement
 - Pipelining
 - Superscalar
 - Multithreading
 - increasingly difficult engineering challenge in CPU design
- Pollack:
 - "Performance is roughly proportional to square root of increase in complexity"
 - double the logic in a processor core, then it delivers only 40% more performance
- □ The use of multiple cores has the potential to provide near-linear performance improvement with the increase in the number of cores

CO&ISA, NLT 2020 22

Multicore Organization Alternatives

ARM11 MPCore

(a) Dedicated L1 cache

AMD Opteron

(b) Dedicated L2 cache

CPU Core 1

L2 cache

L1-I

main memory

L1-D

(d) Shared L3 cache

Intel Core i7

ARM11 MPCore

CO&ISA, NLT 2020 25

How many core is enough?

- □ The more core the higher performance?
 - Not really, it depends on the sequential portion of code
- Amdahl's law

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

How many core is enough?

Overhead

■ How many core is best suited for end-user PC?

Khi nào cần nhiều core?

- □ Database server. Ex: SELECT * FROM ...
- Multithreaded native applications
- Multiprocess applications
- Java applications

The end!