CSE: Faculty of Computer Science and Engineering Thuyloi University

Hồi quy tuyến tính

Trình bày: PGS.TS Nguyễn Hữu Quỳnh

Thuyloi University

Giới thiệu

Bài toán:

Cho: 1000 căn nhà trong thành phố, mỗi căn nhà:

- rộng x_1 m2,
- $có x_2$ phòng ngủ
- cách trung tâm thành phố x_3 km
- giá của mỗi căn nhà

Hỏi: giá của căn nhà thứ 1001 là bao nhiêu?

Thuyloi University

Giới thiệu

• Hàm dự đoán y = f(x) có dạng thế nào? Ở đây $x = [x_1, x_2, x_3]$ $f(x) = w_1x_1 + w_2x_2 + w_3x_3 + w_0$

• Một hàm số có thể mô tả mối quan hệ giữa giá nhà và 3 đại lượng đầu vào:

$$y \approx f(x) = \hat{y}$$

- Mối quan hệ y≈f(x) là một mối quan hệ tuyến tính (linear).
- Bài toán trên là bài toán thuộc loại regression. Do đó, bài toán đi tìm các hệ số tối ưu $\{w_1, w_2, w_3, w_0\}$ được gọi là bài toán Linear Regression.

Thuyloi University

Giới thiệu

- y và ŷ là hai giá trị khác nhau do có sai số mô hình, tuy nhiên, chúng ta mong muốn rằng sự khác nhau này rất nhỏ.
- Linear là thẳng, phẳng:
 - trong không gian hai chiều, một hàm số được gọi là tuyến tính nếu đồ thị của nó có dạng một đường thẳng.
 - trong không gian ba chiều, một hàm số được goi là tuyến tính nếu đồ thị của nó có dạng một mặt phẳng.
 - trong không gian nhiều hơn 3 chiều, là siêu mặt phẳng (hyperplane).

Thuyloi University

Dang của Linear Regression

- Trong phương trình: $f(x) = w_1x_1 + w_2x_2 + w_3x_3 + w_0$, nếu chúng ta đặt
 - $\mathbf{w} = [w_1, w_2, w_3, w_0]^T$ là vector hệ số cần phải tối ưu
 - $x = [1, x_1, x_2, x_3]$ là vector (hàng) dữ liệu đầu vào
- Phương trình trên có thể được viết lại dưới dạng:

$$y \approx xw = \hat{y}$$

Sai số dự đoán

• Với một cặp (x_i, y_i) i = 1, 2 ... N, chúng ta muốn sự sai khác e_i giữa giá trị thực y_i và giá trị dự đoán \hat{y}_i là nhỏ nhất:

$$\frac{1}{2}e_i^2 = \frac{1}{2}(y_i - \hat{y}_i)^2 = \frac{1}{2}(y_i - x_i w)^2$$

- Hệ số $\frac{1}{2}$ là để thuận tiện cho việc tính toán (khi tính đạo hàm thì số $\frac{1}{2}$ sẽ bị triệt tiêu).
- Chúng ta cần e_i^2 vì $e_i = y_i \hat{y}_i$ có thể là một số âm, việc nói e_i nhỏ nhất sẽ không đúng vì khi $e_i = -\infty$ là rất nhỏ nhưng sự sai lệch là rất lớn.ss

Thuyloi University

Hàm mất mát

• Chúng ta muốn, tổng sai số là nhỏ nhất, tương đương với việc tìm w để hàm số sau đạt giá trị nhỏ nhất:

$$\mathcal{L}(w) = \frac{1}{2} \sum_{i=1}^{N} (y_i - x_i w)^2$$

• Chúng ta cần tìm vector hệ số w sao cho giá trị của hàm mất mát này càng nhỏ càng tốt

$$\mathbf{w}^* = \operatorname*{argmin} \mathcal{L}(\mathbf{w})$$

Hàm mất mát

 Trước khi đi tìm lời giải, chúng ta đơn giản hóa phép toán trong phương trình hàm mất mát:

$$\mathcal{L}(w) = \frac{1}{2} \sum_{i=1}^{N} (y_i - x_i w)^2$$

- $y = [y_1; y_2; ... y_N]$ là một véc tơ cột chứa tất cả nhãn của dữ liệu huấn luyện
- $X = [x_1; x_2; ... x_N]$ là ma trận dữ liệu đầu vào mà mỗi hàng là một điểm dữ liệu
- Hàm $\mathcal{L}(w)$ được viết thành:

$$\mathcal{L}(\mathbf{w}) = rac{1}{2} \sum_{i=1}^N (y_i - ar{\mathbf{x}}_i \mathbf{w})^2$$

$$= \frac{1}{2} \|\mathbf{y} - \bar{\mathbf{X}}\mathbf{w}\|_2^2$$

Nghiệm cho bài toán Linear Regression

- Cách phổ biến nhất để tìm nghiệm cho một bài toán tối ưu là giải phương trình đạo hàm bằng 0! Nhưng chỉ trường hợp
 - · tính đạo hàm và
 - việc giải phương trình đạo hàm bằng 0 không quá phức tạp.
- Với các mô hình tuyến tính, hai việc này là khả thi
- Đạo hàm theo w của hàm mất mát là:

$$\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{X}^T (\mathbf{X} \mathbf{w} - \mathbf{y})$$

Thuyloi University

Nghiệm cho bài toán Linear Regression

Phương trình đạo hàm bằng 0 tương đương với:

$$\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y} \quad (*)$$

Đặt
$$\mathbf{A} \triangleq \mathbf{X}^T \mathbf{X}$$
 và $\mathbf{X}^T \mathbf{y} \triangleq \mathbf{b}$

Nếu ma trận vuông A khả nghịch thì phương trình (*) có nghiệm duy nhất

$$\mathbf{w} = \mathbf{A}^{-1}\mathbf{b}$$
.

Thuyloi University

Bài toán

• Chúng ta có 1 bảng dữ liệu về chiều cao và cân nặng của 15 người:

STT	Chiều cao (cm)	Cân nặng (kg)
1	147	49
2	150	50
3	153	51
4	155	52
5	158	54
6	160	56
7	163	58
8	165	59

STT	Chiều cao (cm)	Cân nặng (kg)
9	168	60
10	170	72
11	173	63
12	175	64
13	178	66
14	180	67
15	183	68

Bài toán

- Bài toán đặt ra là: dự đoán cân nặng của một người dựa vào chiều cao của họ
- Ta nhận thấy: cân nặng tỉ lệ thuận với chiều cao (càng cao càng nặng)
- Để kiểm tra độ chính xác của model tìm được, ta sẽ giữ lại dòng 4 và 6 để kiểm thử

$$w = [[-33.73541021]]$$

[0.55920496]]

$$y1 = w_1*155 + w_0$$

$$y2 = w_1*160 + w_0$$