三大变换总结

一、常用变换对

一、常用变换对		<i>(.</i> \ <i>)</i>	-/.	-/.	-/.
	傅里叶变换		S变换	Z变换	
f(t)	F(jw)	f(t)	F(s)	f(k)	F(z)
$e^{-\alpha t}\varepsilon(t)(\alpha>0)$	$\frac{1}{jw+a}$	$e^{-at}\varepsilon(t)$	$\frac{1}{s+a}$, Re (s) >- a	$a^k \varepsilon(k)$	$\frac{z}{z-a}$, $ z > a $
$g_{ au}(t)$	$\tau Sa(\frac{\omega \tau}{2})$	$e^{-at}\sin(\omega_0 t)\varepsilon(t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}, Re(s) > -a$	$\cos{(eta \mathrm{k})}arepsilon(k)$	$\frac{z(z-\cos\beta)}{z^2-2z\cos\beta+1}, z > 1$
arepsilon(t)	$\pi\delta(\omega) + \frac{1}{\mathrm{j}\omega}$	$e^{-at}\cos\left(\omega_0 t\right)\varepsilon(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}, Re(s) > -a$	$sin(eta \mathrm{k})arepsilon(k)$	$\frac{z \sin \beta}{z^2 - 2z \cos \beta + 1}, z > 1$
$\cos{(\omega_0 t)}$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$	$t^n e^{-at} \varepsilon(t), n \in N^+$	$\frac{n!}{(s+a)^{n+1}}, Re(s) > -a$	$\frac{1}{(n-1)!}k(k-1)\cdots(k-n+2)a^{k-n+1}\varepsilon(k)$	$\frac{z}{(z-a)^n}, z > a $
$\sin(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	$\delta_T(t) \ t >= 0$	$\frac{1}{1 - e^{-sT}}$		
$\frac{\sin{(2at)}}{at}$	$\frac{\pi}{a}g_{4a}(w), a > 0$				
$Sa(\frac{\tau}{2}t)$	$\frac{2\pi}{\tau}g_{\tau}(w)$				
$\frac{\tau}{2\pi}sa(\frac{\tau t}{2})$	$g_{ au}(w)$				
$\frac{1}{\pi}cos(w_0t-\varphi)$	$\delta(w+w_0)e^{j\varphi}+\delta(w-w_0)e^{-j\varphi}$				
$\frac{\tau}{\pi} Sa(\frac{\tau}{2}t)cos(w_0t - \varphi)$	$g_{\tau}(w+w_0)e^{j\varphi}+g_{\tau}(w-w_0)e^{-j\varphi}$				
-38					

	傅里叶变换		S 变换		Z变换
定义 $f(t)$	$=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)e^{j\omega t}d\omega$	定义	$F(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$	f(k)	$F(z) = \sum_{k=-\infty}^{\infty} f(k)z^{-k} ($
	$0\leftrightarrow 2\pi f(-\omega)$				
尺度平移 f(at	$(a) \leftrightarrow \frac{1}{ a } F(j\frac{\omega}{a}) e^{j\frac{b}{a}\omega}$	尺度平移	$f(at-b)\varepsilon(at-b), a > 0b \ge 0 \longleftrightarrow \frac{1}{a}F(\frac{s}{a})e^{-\frac{b}{a}s}b > ab_0$	单边移位性质	$f(k-m), m > 0$ $z^{-m}F(z) + \sum_{k=0}^{m-1} f(k-m)z^{-k}, z > \alpha$
	$e^{\pm j\omega_0 t} \leftrightarrow F[j(\omega \pm \omega_0)]$	频移	$f(t)e^{s_0t} \leftrightarrow F(s-s_0), \sigma > \sigma_0 + Re(s_0)$		<i>k</i> ≡0
	$(x) = \pi [f(\infty) + f(-\infty)] \delta(\omega) + \frac{F_k(j\omega)}{(j\omega)^k}$		~XX.	7(\$).	-XX.
) ($(j\omega) \leftrightarrow (-jt)^n f(t)$	S 域微分	$-tf(t) \leftrightarrow F'(s), \sigma > \sigma_0$	Z域微分	$Z[kf(k)] = -z\frac{\mathrm{d}}{\mathrm{d}z}F(z)$
	$\frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) ^2 d\omega = \int_{-\infty}^{\infty} f(t) ^2 dt$			能量定理	$E = \lim_{N \to \infty} \sum_{k=-N}^{N} f(k) ^2$
功率定理 P=-	$\frac{1}{T} \int_0^T f^2(t) dt = \left(\frac{A_0}{2}\right)^2 + \sum_{n=1}^{\infty} \frac{1}{2} A_n^2 = \sum_{n=-\infty}^{\infty} F_n ^2$			功率定理	$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{N} f(k) ^2$
初值定理	<i>π</i> -1 <i>π</i> ω	初值定理	$f(0_+) = \lim_{s \to \infty} sF(s)$ F(s)为真分式,若不是真分式,化为多项式+真分式的形式,仅带入真分式	初值定理部分	$f(M) = \lim_{z \to \infty} z^M F(z)$
终值定理		终值定理	$f(\infty) = \lim_{\substack{s \to \infty \\ s \to \infty}} sF(s)$ 1、极点在左半平面 2、极点只有单极点在原点,其余极点在左半平面	终值定理	$f(\infty) = \lim_{z \to 1} \frac{z - 1}{z} F(z) = \lim_{z \to 1} (z - 1) F(z)$ 收敛域包含单位圆
				z 域尺度	$Z[a^k f(k)] = F(\frac{z}{\alpha}), (\alpha \mid \alpha \mid < \mid z \mid < \beta \mid \alpha \mid)$
				K域反转	$f(-k) \leftrightarrow F(z^{-1}), \frac{1}{\beta} < z < \frac{1}{\alpha}$
				部分和	$g(k) = \sum_{i=-\infty}^{k} f(i) \leftrightarrow \frac{z}{z-1} F(z), \max(\alpha, 1) < z < \beta$
-38	-			-3	
				~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
) y	Oh			10 JAN	O. A.

三、小专题 1、冲激函数

$$\delta[f(t)] = \sum_{i=1}^{n} \frac{1}{|f'(t_i)|} \delta(t - t_i)$$
$$\delta^{(n)}(at) = \frac{1}{|a|} \frac{1}{a^n} \delta^{(n)}(t)$$

2、求周期由 $T_1 = \frac{a}{b}$, $T_2 = \frac{c}{d}$ 共同决定的周期 T $T = \frac{a \pi c \text{的最小公倍数}}{b \pi d \text{的最大公约数}}$

$$T = \frac{a\pi c \log \pi / \sqrt{\log x}}{b\pi d \log \pi / \sqrt{\log x}}$$

3、信号的最大频率

信号的形式	对应的最高频率		
f(t)	fm		
f(at)	afm		
f(bt)	bfm		
f(at)+f(bt)	afm 和 bfm 中较大的频率		
f(at)*f(bt)	afm 和 bfm 中较小的频率		
f(at) • f(bt)	afm+bfm		

4、对输入信号e(t)乘以 $S(t) = cos(w_0t)$,输出信号y(t)输入信号e(t)的频域的Y(jw)与E(jw)的关系

 $y(t) = e(t) \cdot s(t)$ 对上式进行双边傅里叶变换:

$$Y(jw) = \frac{1}{2\pi} E(jw) * S(jw)$$
 $Y(jw) = \frac{1}{2\pi} E(jw) * \pi[\delta(w + w_0) + \delta(w - w_0)]$
 $Y(jw) = \frac{1}{2} E(jw) * [\delta(w + w_0) + \delta(w - w_0)]$
发现:输出信号对应的频谱Y(jw)是对输入信号对应的频谱E(jw)

1、把E(jw)的幅值变为原来的 $\frac{1}{2}$

- 2、把 $\frac{1}{2}$ E(jw)的左右平移w₀ 5、 F_n 和F(jw)有关系 $F_n = \frac{F(jw)}{2\pi\delta(w-c)}$

可方便计算幅频响应和相频响应

6、等宽门函数卷积得等腰三角形,不等宽门函数卷积得等腰梯形

7、求频率响应过程中,能进行 $H(jw) = H(s)_{|s=jw}$ 和 $H(e^{jw}) = H(z)_{|z=e^{jw}}$ 代换的前提? $H(jw) = H(s)_{|s=jw}$ 要求H(s)收敛域包含jw轴 $H(e^{jw}) = H(z)_{|z=e^{jw}}$ 要求H(z)收敛域包含单位圆