

1 16. (Original) A combination of a housing and a battery pack,

2 (A) the housing comprising:

3 (A1) first and second rails in the interior of the housing;

4 (A2) an end stop in the interior of the housing;

5 (A3) a battery compartment defined by a recess in the housing;

6 (A4) a battery latch dimensioned to slide between the first and second
7 rails, the battery latch including at least one resilient spring member integral to the
8 battery latch, the at least one resilient spring member being placed against the end
9 stop to provide a spring bias that causes the battery latch to slide to an extended
10 position, the battery latch including at least one protruding member that extends at
11 least partially into the battery compartment when the battery latch is in the
12 extended position;

13 (A5) a slide button coupled to the battery latch and accessible on the
14 outside of the housing, the slide button allowing a user to slide the slide button
15 and thereby move the battery latch to a retracted position that removes the at least
16 one protruding member from the battery compartment;

17 (A6) at least one battery pack retainer recess;

18 (B) the battery pack comprising:

19 (B1) an enclosure having at least a portion dimensioned to fit within the
20 battery compartment;

21 (B2) the portion of the enclosure including at least one extending portion
22 that is configured to go in the at least one battery pack retainer recess of the
23 housing when the battery pack is installed in the housing; and

24 (B3) the portion of the enclosure including at least one recess that aligns
25 with and receives the at least one protruding member when the battery pack is
26 installed in the housing.

1 17. (Currently amended) A method for removably coupling a battery pack to a housing of
2 a portable electronic device, the method comprising the steps of:

3 (A) providing a battery latch within the housing, the battery latch comprising:

4 (A1) a body portion;

5 (A2) at least one resilient spring member integral to and extending from
6 the body portion;

7 (A3) at least one protruding member that extends at least partially into a
8 battery compartment defined in the housing, the at least one resilient spring
9 member biasing the at least one protruding member into the battery compartment;

10 (B) providing a slide button protruding through an elongated slot in the housing
11 and into an opening in the battery latch to couple the slide button to the body portion
12 through the elongated slot in the housing and to retain the battery latch in the housing;

13 (C) [(B)] installing a battery pack into the battery compartment, the battery pack
14 comprising at least one recess that receives the at least one protruding member when the
15 battery pack is installed in the battery compartment of the housing, the battery pack being
16 installed by pressing the battery pack against the at least one protruding member, thereby
17 forcing the at least one protruding member against the bias of the at least one resilient
18 spring member until the battery latch slides to a retracted position, allowing the battery
19 pack to move past the at least one protruding members until the at least one protruding
20 member is biased into the at least one recess of the battery pack when the battery pack is
21 fully seated in the battery compartment of the housing.

1 18. (Original) The method of claim 17 further comprising the step of:

2 (C) removing the battery pack from the battery compartment by sliding a slide
3 button coupled to the battery latch until the at least one protruding member is in the
4 retracted position and removing the battery pack from the battery compartment while
5 holding the slide button in a position so that the battery latch is in the retracted position.

1 19. (Currently amended) A method for assembling a battery latch and a slide button into
2 a housing,

3 (A) the battery latch comprising:

4 (A1) a body portion;

5 (A2) at least one resilient spring member integral to and extending from
6 the body portion; and

7 (A3) at least one protruding member integral to and extending from the
8 body portion that extends at least partially into a battery compartment of a housing
9 when the battery latch is installed in the housing, the at least one resilient spring
10 member biasing the at least one protruding member into the battery compartment;

11 (B) the slide button comprising:

12 (B1) at least one retaining portion that is configured to be inserted into an
13 opening in the battery latch;

14 (C) the housing comprising:

15 (C1) first and second rails in the interior of the housing;

16 (C2) an end stop in the interior of the housing;

17 (C3) a battery compartment defined by a recess in the housing;

18 (C4) the battery latch being dimensioned to slide between the first and
19 second rails, the battery latch including at least one resilient spring member
20 integral to the battery latch, the at least one resilient spring member being placed
21 against the end stop to provide a spring bias that causes the battery latch to slide to
22 an extended position, the battery latch including at least one protruding member
23 that extends at least partially into the battery compartment when the battery latch
24 is in the extended position, the battery latch further including at least one opening;
25 and

26 (C5) an elongated slot, a portion of the elongated slot overlying the at least
27 one opening of the battery latch;

(claim 19 continued)

- 27 (D) wherein the method comprises the steps of:
- 28 (D1) sliding the body portion under the first and second rails;
- 29 (D2) placing end portions of the resilient spring members against the end
- 30 stop;
- 31 (D3) placing the retaining portions of the slide button through the
- 32 elongated slot in the housing and into the opening in the battery latch until the at
- 33 least one retaining portion clicks to thereby couple [coupled] the slide button to
- 34 the body portion through the elongated slot in the housing and to retain the battery
- 35 latch in the housing.

STATUS OF THE CLAIMS

Claims 1-19 were originally filed in this patent application. In the previous amendment, claims 1-15 were cancelled. In the pending office action, claims 16-18 were rejected under 35 U.S.C. §102(b) as being anticipated by U.S. Patent No. 4,871,629 to Bunyea. Claim 19 was rejected under 35 U.S.C. §103(a) as being unpatentable over Murakami in view of U.S. Patent No. 4,791,756 to Simpson. No claim was allowed. Claims 17 and 19 are amended herein. Claims 16-19 as originally filed are currently pending.