Lecture 9

Rivest-Shamir-Adelman (RSA)

CS 450/650

Fundamentals of Integrated Computer Security

Euler's Totient Function

- Euler's totient function, written ø (n), is defined as the number of positive integers less than n and relatively prime to n
- By convention, $\emptyset(1) = 1$
- Examples: $\emptyset(7) = 6$, $\emptyset(4) = 2$
- For a prime p, \emptyset (p) = p-1
- Suppose we have two primes p and q, with p!=q. Then we have, for n=pq, $\emptyset(n) = \emptyset(pq) = \emptyset(p) * \emptyset(q) = (p-1)(q-1)$

Euler's Totient Function

$$arphi(n) = arphi\left({p_1}^{k_1}
ight)arphi\left({p_2}^{k_2}
ight)\cdotsarphi\left({p_r}^{k_r}
ight)$$

$$= n \left(1 - rac{1}{p_1}
ight) \left(1 - rac{1}{p_2}
ight) \cdots \left(1 - rac{1}{p_r}
ight)$$

$$\emptyset(30)=?$$

$$\emptyset(25)=?$$

$$\emptyset(100)=?$$

M

n	$\phi(n)$
1	1
2	1
3	2
4	2
5	4
6	2
7	6
8	4
9	6
10	4

n	$\phi(n)$
11	10
12	4
13	12
14	6
15	8
16	8
17	16
18	6
19	18
20	8

n	$\phi(n)$
21	12
22	10
23	22
24	8
25	20
26	12
27	18
28	12
29	28
30	8

Modular Arithmetic

- $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
 - $-[(11 \mod 10) + (12 \mod 10)] \mod 10 = (11 + 12)$ $\mod 10$
- $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
 - $-[(11 \mod 10) (12 \mod 10)] \mod 10 = (11 12)$ $\mod 10$
- $[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$
 - $-[(11 \mod 10) \times (12 \mod 10)] \mod 10 = (11 \times 12)$ $\mod 10$

Modular Arithmetic

• $(m^e \mod n)^d \mod n = m^{ed} \mod n$

RSA

- To encrypt message M compute
 - $-c = m^e \mod n$

- To decrypt ciphertext c compute
 - $-m = c^d \mod n$

- Parameters to decide
 - e, d, n

M

Key Choice

- Let p and q be two large prime numbers
- Let n = pq
- Compute $\phi(n) = \phi(p)\phi(q) = (p-1)(q-1)$, where ϕ is Euler's totient function. This value is kept private.

\mathbb{M}

Key Choice

- Choose an integer e such that $1 < e < \varphi(n)$ and $\gcd(e, \varphi(n)) = 1$; i.e., e and $\varphi(n)$ are coprime.
 - e is released as the encryption key.
- Determine d as $d \equiv e^{-1}$ (mod $\phi(n)$); or solve for d given $d \cdot e \equiv 1$ (mod $\phi(n)$)
 - d is the decryption key
- (e, d) is the RSA key pair

The Correctness of RSA

Given c = me mod n we must show

- $-m = c^d \mod n$
- c^d mod n = (m^e mod n)^d mod n
- (me mod n)d mod n = med mod n
- $m^{ed} = m^{1+h\varphi(n)} = m \left(m^{\varphi(n)} \right)^h \equiv m(1)^h \equiv m \pmod{n}$
 - Since $d \cdot e \equiv 1 \pmod{\phi(n)}$, we can write $ed = 1 + h\phi(n)$ for some non-negative integer h
 - Euler's Theorem: If x is relatively prime to n then $x^{\varphi(n)} \mod n = 1$

Example

• Select primes p=11, q=3

•
$$n = p^* q = 11^*3 = 33$$

• Compute $\phi(33) = \phi(11)\phi(3) = (11-1)*(3-1)=20$

Choose e = 3

Example (cont.)

Compute d such that

e * d mod
$$\phi(n) = 1$$

3 * d mod 20 = 1
d = 7

Public key =
$$(n, e) = (33, 3)$$

Private key = $(d) = (7)$

\mathbb{M}

Example (cont.)

Now say we want to encrypt message m = 5

- $c = m^e \mod n = 5^3 \mod 33 = 125 \mod 33 = 26$
 - Hence the ciphertext c = 26

To check decryption, we compute

$$m = c^d \mod n = 26^7 \mod 33 = 5$$

M

RSA

- Why the security of RSA depends on the hardness of big integer factoring?
 - Recall that e and n are public
 - If attacker can factor n, he can use e to easily find
 d
 - since ed mod (p-1)(q-1) = 1
 - Factoring the modulus breaks RSA
 - It is not known whether factoring is the only way to break RSA

14

\mathbb{M}

RSA key-length strength

- RSA has challenges for different key-lengths
 - RSA-140 (bit size of n is 140)
 - Factored in 1 month using 200 machines in 1999
 - RSA-155
 - Factored in 3.7 months using 300 machines in 1999
 - RSA-160
 - Factored in 20 days in 2003
 - RSA-200
 - Factored in 18 month in 2005
 - RSA-210, RSA-220, RSA-232, ... RSA-2048