Differential Cryptanalysis

May 13, 2024

Ji, Yong-hyeon

 \mathbf{X}

1 Definitions

1.1 S-Box

S-Box

Definition 1. Let $n, m \in \mathbb{Z}^+$. A function

$$S: \mathbb{F}_2^n \to \mathbb{F}_2^m$$

is a **S-Box**.

1.2 The XOR operation

$$\bigoplus : \mathbb{F}_2 \times \mathbb{F}_2 \longrightarrow \mathbb{F}_2$$

$$(x, y) \longmapsto z = x + y \mod 2$$

х	y	$z = x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Note (Thinking).

$$\oplus : \mathbb{F}_2 \longrightarrow [\mathbb{F}_2 \to \mathbb{F}_2]$$

$$x \longmapsto \oplus_x = \begin{cases} \mathrm{Id}(y) & : x = 0, \\ \neg(y) & : x = 1. \end{cases}$$

$$\bigoplus_{n} : \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{n} \\
\left(\left\{x_{i}\right\}_{i=1}^{n}, \left\{y_{i}\right\}_{i=1}^{n}\right) \longmapsto \left\{x_{i} \oplus y_{i}\right\}_{i=1}^{n}$$

Note. We use the notation 0_n to denote $0_n = (0, ..., 0)$.

Note (Thinking).

$$\bigoplus_{n} : \mathbb{F}_{2}^{n} \longrightarrow [\mathbb{F}_{2}^{n} \to \mathbb{F}_{2}^{n}]
\{x_{i}\}_{i=1}^{n} \longmapsto (\bigoplus_{n})_{\{x_{i}\}_{i=1}^{n}} = \{z_{i}\}_{i=1}^{n}, \text{ where } z_{i} = \begin{cases} \operatorname{Id}(y_{i}) : x_{i} = 0, \\ \neg(y_{i}) : x_{i} = 1. \end{cases}$$

Proposition 1. Let $X, Y, Z \in \mathbb{F}_2^n$. Then

- (1) $X \oplus_n Y = Y \oplus_n X$
- (2) $(X \oplus_n Y) \oplus Z = X \oplus_n (Y \oplus Z)$
- $(3) \ X \oplus_n 0_n = X = 0_n \oplus_n X$
- (4) $X \oplus_n X = 0_n$
- $(5) \ X \oplus_n Y = 0_n \implies X = Y$
- (6) $A \oplus_n X = B \implies X = A \oplus_n B$

Note. By (4) and (5), we have $X \oplus_n Y = 0 \iff X = Y$.

Proof. PASS

Remark 1.

- The binary operation \oplus provides the structure of an **abelian group** on the set \mathbb{F}_2^n with identity element 0_n .
- Because of the property $(4)X \oplus_n X = 0_n$, we see that the inverse of any element is itself with respect to the operation \oplus .

Definition 2. The **difference** of $X \in \mathbb{F}_2^n$ and $Y \in \mathbb{F}_2^n$ is defined as $X \oplus_n Y \in \mathbb{F}_2^n$.

2 Difference Set

2.1 Definition and Property

Difference Set of Bit-Sequence

Definition 3. Given $\alpha \in \mathbb{F}_2^n$, we define the **difference set** of α as follow:

$$\Delta_{\alpha} = \left\{ (x_1, x_2) \in \mathbb{F}_2^n \times \mathbb{F}_2^n : x_1 \oplus x_2 = \alpha \in \mathbb{F}_2^n \right\} \subseteq \mathbb{F}_2^n \times \mathbb{F}_2^n.$$

Proposition 2. For any $\alpha \in \mathbb{F}_2^n$ the set Δ_{α} contains 2^n elements and can be expressed as

$$\Delta_{\alpha} = \left\{ (x, x \oplus \alpha) : x \in \mathbb{F}_2^n \right\}.$$

Proof. Let

$$S := \left\{ (x_1, x_2) \in \mathbb{F}_2^n \times \mathbb{F}_2^n : x_1 \oplus x_2 = \alpha \in \mathbb{F}_2^n \right\},$$

$$T := \left\{ (x, x \oplus \alpha) : x \in \mathbb{F}_2^n \right\}.$$

We must show that S = T:

 $(S \subseteq T)$ Let $(x, y) \in S$ then by definition $x \oplus y = \alpha$. Since $(x \oplus y = \alpha) \Rightarrow (y = x \oplus \alpha)$,

$$(x, y) = (x, x \oplus \alpha) \in T.$$

 $(T \subseteq S)$ Let $(x, x \oplus \alpha) \in T$. Since

$$x \oplus (x \oplus \alpha) = \alpha$$
,

 $(x, x \oplus \alpha) \in S$.

Corollary 2.1. For any $\alpha \in \mathbb{F}_2^n$, we have $\Delta_{\alpha} \simeq \mathbb{F}_2^n$.

Remark 2. Let us consider the case $\alpha = 0$ for the set Δ_{α} . When $\alpha = 0$ the difference set is

$$\Delta_0 = \left\{ (x, x) : x \in \mathbb{F}_2^n \right\}$$

This set is often called the **diagonal** of $\mathbb{F}_2^n \times \mathbb{F}_2^n$.

2.2 Difference Sets of a S-BOX

Difference Set of a S-BOX

Let $S: \mathbb{F}_2^n \to \mathbb{F}_2^m$ is a S-box. Let $\alpha \in \mathbb{F}_2^n$ and $\beta \in \mathbb{F}_2^m$. Consider

$$\Delta_{\alpha} = \left\{ (x_1, x_2) : x_1 \oplus x_2 = \alpha \in \mathbb{F}_2^n \right\} \subseteq \mathbb{F}_2^n \times \mathbb{F}_2^n \quad \text{and} \quad \sum_{n=1}^n (x_1, x_2) = \sum_{n$$

$$\Delta_{\beta} = \left\{ (x_1, x_2) : S(x_1) \oplus S(x_2) = \beta \in \mathbb{F}_2^m \right\} \subseteq \mathbb{F}_2^n \times \mathbb{F}_2^n.$$

We define the **difference set** of *S* with respect to α and β by

$$\Delta_{\alpha,\beta} = \Delta_{\alpha} \cap \Delta_{\beta} = \left\{ (x_1, x_2) \in \mathbb{F}_2^n \times \mathbb{F}_2^n : x_1 \oplus x_2 = \alpha \in \mathbb{F}_2^n \text{ and } S(x_1) \oplus S(x_2) = \beta \in \mathbb{F}_2^m \right\}.$$

That is, $\Delta_{\alpha,\beta}$ is the set of ordered pairs of elements from \mathbb{F}_2^n which have a difference of α and such that their images under S have a difference of β .

Remark 3.

• This can also written as

$$\Delta_{\alpha,\beta} = \left\{ (x_1, x_2) \in \Delta_{\alpha} : (S(x_1), S(x_2)) \in \Delta_{\beta} \right\}.$$

• $\Delta_{\alpha,\beta}$ is always defined w.r.t. a given S-Box *S*. If we want to make this dependence explicit we can write $\Delta_{\alpha,\beta}^S$.

Cardinality of a Difference Set

We define $\delta_{\alpha,\beta}$ to be the cardinality of the finite set $\Delta_{\alpha,\beta}$, namely

$$\delta_{\alpha,\beta} := |\Delta_{\alpha,\beta}| \in \mathbb{Z}_{\geq 0}.$$

Proposition 3.

$$\delta_{\alpha,\beta} = \# \left\{ x \in \mathbb{F}_2^n : S(x) \oplus S(x \oplus \alpha) = \beta \in \mathbb{F}_2^m \right\}.$$

Proof.

$$\Delta_{\alpha,\beta} = \Delta_{\alpha} \cap \Delta_{\beta} = \{ (x_1, x_2) : x_1 \oplus x_2 = \alpha \} \cap \{ (x_1, x_2) : S(x_1) \oplus S(x_2) = \beta \}$$

$$= \{ (x, x \oplus \alpha) : x \in \mathbb{F}_2^n \} \cap \{ (x_1, x_2) : S(x_1) \oplus S(x_2) = \beta \}$$

$$= \{ x \in \mathbb{F}_2^n : S(x) \oplus S(x \oplus \alpha) = \beta \in \mathbb{F}_2^n \}.$$

Remark 4.

- When $\alpha = 0$ and $\beta = 0$ we have $\Delta_{0,0} = \Delta_0 = \{(x, x) : x \in \mathbb{F}_2^n\}.$
- In general when $\alpha = 0$ we find that $\Delta_{0,\beta} = \begin{cases} \Delta_0 & : \beta = 0 \\ \emptyset & : \beta \neq 0 \end{cases}$
- Since $|\Delta_0| = 2^n$ and $|\emptyset| = 0$, $\delta_{0,\beta} = \begin{cases} 2^n & : \beta = 0 \\ 0 & : \beta \neq 0 \end{cases}$.

Proposition 4. The integer $\delta_{\alpha,\beta} \in \mathbb{Z}_{\geq 0}$ is always even.

Proof. Recall that 0 is even.

(Case I) When $\alpha = 0$, we saw either $\delta_{0,\beta} \in \{0,2^n\}$ and these are even in either case.

(Case II) Suppose that $\alpha \neq 0$ and $\Delta_{\alpha,\beta} \neq \emptyset$. Let $(x_1,x_2) \in \Delta_{\alpha,\beta}$ then

$$(x_2, x_1) \in \Delta_{\alpha, \beta}$$
 and $x_1 \neq x_2$.

Therefore $(x_1, x_2) \neq (x_2, x_1)$. So if we pair (x_1, x_2) and (x_2, x_1) , we can partition $\Delta_{\alpha,\beta}$ into subsets, each subset having cardinality of 2.

3 The DDT of a S-Box

3.1 Definition and Property

Differential Distribution Table

Let $S : \mathbb{F}_2^n \to \mathbb{F}_2^m$ be a S-Box. The **differential distribution table** (abbreviated DDT) of S is a table (or matrix) with 2^n -rows and 2^m -columns. We denote it by \mathcal{D}_S or just by \mathcal{D} .

- The rows are indexed by the elements $\alpha \in \mathbb{F}_2^n = \{0, \dots, 2^n 1\}$.
- The columns are indexed by the elements $\beta \in \mathbb{F}_2^m = \{0, \dots, 2^m 1\}$.
- The entry at row index α and column index β is given by $\delta_{\alpha,\beta} = |\Delta_{\alpha,\beta}|$. That is,

$$\mathcal{D} = (\delta_{\alpha,\beta})_{2^n \times 2^m}.$$

Remark 5. The DDT of a S-Box is just table of all the possible integer values $\delta_{\alpha,\beta}$.

\mathcal{D}	0	1	• • •	β	• • •	$2^{m}-1$
0	2 ⁿ	0				0
1						
:						
α				$\delta_{\alpha,\beta}$		
:						
$2^{n} - 1$						

Proposition 5. Let $S: \mathbb{F}_2^n \to \mathbb{F}_2^m$ be a S-Box with differential distribution table \mathcal{D} . The following properties hold for \mathcal{D} .

- (1) Every entry in \mathcal{D} is a non-negative even integer between 0 and 2^n .
- (2) The top-left entry of \mathcal{D} is 2^n .
- (3) The first row of \mathcal{D} consists of all zeros except the first entry which is 2^n .
- (4) If S is one-to-one then the first column of \mathcal{D} consists all zeros except the first entry which is 2^n .
- (5) The sum of the entries of each row is 2^n .
- (6) If S is bijective then every row and column of the DDT add up to 2^n .

3.2 The DDT and Probabilities

When designing and analyzing attacks by differential cryptanalysis, we often want to translate the integer values from the DDT into probabilities.

Note. The **probability** p that E occurs is defined to be the quotient of the cardinalities of the sets E and Ω :

$$p = \frac{|E|}{|\Omega|}.$$

Probability of DDT

Definition 4. Let the universe is $\Omega = \Delta_{\alpha}$ and the event $E = \Delta_{\alpha,\beta}$. We define probability $p_{\alpha,\beta}$ as follows:

$$p_{\alpha,\beta} = \frac{\left|\Delta_{\alpha,\beta}\right|}{\left|\Delta_{\alpha}\right|} = \frac{\delta_{\alpha,\beta}}{2^{n}}.$$

Remark 6. Equivalently we can regard the universe $\Omega = \mathbb{F}_2^n$ and the event as the set

$$E = \left\{ x \in \mathbb{F}_2^n : S(x) \oplus S(x \oplus \alpha) = \beta \right\}.$$

4 The DDT of a Linear S-Box

Linear S-Box

Definition 5. A S-Box $L: \mathbb{F}_2^n \to \mathbb{F}_2^m$ is said to be **linear** if

$$x_1, x_2 \in \mathbb{F}_2^n \implies L(x_1 \oplus x_2) = L(x_1) \oplus L(x_2).$$

Proposition 6. Let $L: \mathbb{F}_2^n \to \mathbb{F}_2^m$ be a linear S-Box. Let $\alpha \in \mathbb{F}_2^n$ and $\beta \in \mathbb{F}_2^n$. Then the difference sets of L and their cardinalities are given by

$$\Delta_{\alpha,\beta} = \begin{cases} \Delta_{\alpha} & : \beta = L(\alpha) \\ \emptyset & : \beta \neq L(\alpha) \end{cases}, \quad \delta_{\alpha,\beta} = \begin{cases} 2^{n} & : \beta = L(\alpha) \\ 0 & : \beta \neq L(\alpha) \end{cases}.$$

That is, every row of the DDT of L consists of all zeros except one entry with a value of 2^n .

Proof. Let $\alpha \in \mathbb{F}_2^n$. Assume that $(x_1, x_2) \in \Delta_\alpha$, namely $x_1 \oplus x_2 = \alpha$ then

$$L(x_1) \oplus L(x_2) = L(x_1 \oplus x_2) = L(\alpha).$$

So
$$(x_1, x_2) \in \Delta_{\alpha, \beta} \iff \beta = L(\alpha)$$
.

Department of Information Security, Cryptology and Mathematics
College of Science and Technology
Kookmin University

References

- [1] "Intro to Category Theory" YouTube, uploaded by Warwick Mathematics Exchange, 1 Feb 2023, https://www.youtube.com/watch?v=AUD2Rpoy604
- [2] ProofWiki. "Definition:Metacategory" Accessed on [May 05, 2024]. https://proofwiki.org/wiki/Definition:Metacategory.
- [3] nLab. "category" Accessed on [May 05, 2024]. https://ncatlab.org/nlab/show/category# Grothendieck61.