Aufgabe 4

```
1
         Input G=(V,E)
 2
 3
         v_{start} := \text{getFirst}(V)
         K := \{v_{start}\}
 4
         E' \coloneqq E
 5
         weights := sumAllWeights(E')
 6
         tourWeights := 0
 7
 8
         while !SetEquals(K,V):
 9
10
             u := getLast(K)
             E'' := E'
11
12
13
             while true:
                  \mathbf{if}(\mathrm{E}'' = \emptyset):
14
                      return ∅ //Error
15
16
17
18
                  weights' := weights
                  tourWeights' := tourWeights
19
                  E''' \coloneqq E'
20
21
22
                  v := getMinCostFrom(E'', u)
                  cost := getCost(E'', (u,v))
23
                  weights' -= \cos t
24
                  tourWeights' += cost
25
26
                  forall(k in K && k \neq v_{start}):
27
                      E''' = removeIfExists(E''', (k,v))
28
29
                  if(TSP-E((V',E'''), (tourWeights' + getCost(E'',(v,v_start))))
30
31
                      return add(K,v)
                  else if(TSP-E((V',E'''),weights))
32
                      K = add(K,v)
33
                      E' = E'''
34
                      weights = weights'
35
36
                      tourWeights = tourWeights'
37
                      break
                  else
38
                      E'' = remove(E'', (u,v))
39
40
41
42
         return K
```

Aufgabe 5

TODO: Korrektheit + Laufzeit

Hierzu nehmen wir uns eine Formel φ in 3-KNF mit den Klauseln k_i . Jedes k_i in φ ist daher der Form $(x_i \vee y_i \vee z_i)$. Nun teilen wir jedes k_i in zwei weitere Klauseln k_i' und k_i'' , wobei wir auch noch für jede Klausel eine Variable c_i , und für alle Klauseln die Variable f=0 einführen.

```
Aus k_i wird also k_i' \wedge k_i'' = (x_i \vee y_i \vee c_i) \wedge (\bar{c_i} \vee z_i \vee f). Hierbei wird c_i auf \neg (x_i \vee y_i)
```

gesetzt.

Diese Konstruktion können wir in Linearer Zeit erstellen.

Korrektheit:

Sei φ in 3-KNF mit gegebener Belegung der Variablen. Dann ist jede Klausel k_i der Form $(x_i \vee y_i \vee z_i)$.

Hieraus konstruieren wir eine neue aussagenlogische Formel φ' wie oben beschrieben.

- Falls x_i oder y_i wahr ist, so setzen wir c_i auf 0. Damit ist zum einen die Klausel k'_i wahr, zum anderen gibt es in dieser Klausel mindestens sowohl ein wahres, als auch ein falsches Literal. Desweiteren ist dadurch (unabhängig von z_i) auch k''_i wahr, da dort \bar{c}_i enthalten ist. Auch diese Klausel besitzt sowohl ein wahres, als auch ein falsches Literal (f).
- Falls x_i und y_i falsch sind, aber z_1 wahr, dann setzen wir c_i auf 1. Damit ist die erste Klausel (k'_i) wahr und besitzt auch wieder mindestens ein wahres, als auch ein falsches Literal. Die Klausel k'_i ist aufgrund von z_i auch wahr, und besitzt auch wieder ein wahres und ein falsches Literal (f).
- Falls keines der drei Literale wahr ist, so gibt es ja keine Erfüllende Belegung der Variablen, weshalb die gesamte Formel nicht in 3-SAT ist. Trotzdem setzen wir hier ja c_i auf 1, weshalb ja die Klausel k_i' war ist. Jedoch ist die Klausel k_i'' folglich nicht wahr, weshalb die resultierende Formel auch nicht in NOT-ALL-EQUAL-SAT ist.

Damit ist der Wahrheitsgrad von φ' immer genau derselbe wie von φ für jede Belegung. Hat also φ keine erfüllende Belegung (nicht in 3-SAT), so hat auch φ' keine erfüllende Belegung (nicht in NOT-ALL-EQUAL-SAT).

Hat aber φ eine erfüllende Belegung (ist in 3-SAT), so hat φ' eine erfüllende Belegung, die die gleichen Variablen gleich belegt, und weitere Variablen so belegt, dass jede Klausel mindestens ein wahres und ein falsches Literal besitzt (ist in NOT-ALL-EQUAL-SAT).

Aufgabe 6

- (a) Hierzu bauen wir uns einen Verifizierer, welches als Zertifikat einen Vektor $x \in \{0,1\}^n$ übergeben bekommt, welches einfach codiert werden kann als $x_1...x_n$. Unser Verifizierer überprüft nun Folgende Dinge:
 - Eingabe korrekt formatiert (Linearer Zeitaufwand in n).
 - Überstimmt die Vektordimension n von x überein mit der gegebenen Matrix A und dem Vektor b? (höchstens Quadratischer Zeitaufwand in $n \cdot m$, je nach Codierung der Matrix A)
 - Berechnung von Ax (Quadratischer Zeitaufwand in $n \cdot m$)
 - Abgleich, ob $Ax \geq b$ (Linearer Zeitaufwand in n).

Damit läuft der Verifizierer in polynomieller Zeit und $\{-1,0,1\}$ -RESTRICTED INTEGER PROGRAMM ist in NP.