Х24 — Атмосферное электричество

A1^{0.80} Пусть проводящий шар радиусом R, несущий заряд Q, помещён в однородное электростатическое поле напряжённостью \vec{E}_0 . Определите полную напряжённость \vec{E} электрического поля в точке с радиус-вектором \vec{r} относительно центра шара, находящейся вне шара. Ответ выразите через Q, \vec{E}_0 , R, ε_0 и \vec{r} .

0.20 Указано, что напряжённость электростатического поля вне шара представляет собой суперпозицию однородного поля, поля точечного заряда и поля диполя, расположенного в центре шара.

0.10 Записано выражение для напряжённости поля диполя с дипольным моментом \vec{p} :

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \left(\frac{3(\vec{p}\cdot\vec{r})\vec{r}}{r^5} - \frac{\vec{p}}{r^3} \right).$$

0.20 Предложен метод определения дипольного момента шара.

0.20 Определён дипольный момент шара:

$$\vec{p} = 4\pi R^3 \varepsilon_0 \vec{E}_0$$

0.10 Получен ответ:

$$\vec{E} = \vec{E}_0 \left(1 - \frac{R^3}{r^3} \right) + \frac{3(\vec{E}_0 \cdot \vec{r})\vec{r}R^3}{r^2} + \frac{Q\vec{r}}{4\pi\varepsilon_0 r^3}.$$

A2^{0.40} Пусть θ - угол между направлением вектора электростатического поля \vec{E}_0 и радиус-вектором \vec{r} некоторой точки поверхности шара относительно его центра. Определите проекцию напряжённости электрического поля $E_n(\theta)$ на направление нормали. Ответ выразите через Q, E_0, R, ε_0 и θ .

0.40 Получено выражение для E_n :

$$E_n = \frac{Q}{4\pi\varepsilon_0 R^2} + 3E_0 \cos\theta$$

А3^{0.20} При каких значениях заряда Q шара величина E_n может обращаться в ноль? Ответ выразите через E_0 , ε_0 и R. Далее во всех пунктах считайте, что заряд шара Q попадает в найденный вами диапазон.

0.10 Записано условие равенства нулю компоненты напряжённости E_n :

$$Q = -12\pi\varepsilon_0 R^2 E_0 \cos\theta.$$

0.10 Определён искомый диапазон Q:

$$Q \in \left[-12\pi R^2 \varepsilon_0 E_0; 12\pi R^2 \varepsilon_0 E_0 \right].$$

А4^{0.50} Пусть заряд шара равен Q. При каком значении угла θ_0 компонента напряжённости $E_n(\theta_0)$ обращается в ноль? Ответ выразите через Q, E_0 , ε_0 и R. Определите также, при каких значениях угла θ на поверхность шара попадают отрицательные ионы, а при каких - положительные. Ответы выразите через θ_0 .

0.10 Определено значение угла θ_0 :

$$\theta_0 = \arccos\left(-\frac{Q}{12\pi R^2 \varepsilon_0 E_0}\right).$$

Страница 1 из 7

 $4 \times$

0.10 Определён диапазон углов, соответствующий попаданию ионов (по 0.1 балла за границу): Отрицательные ионы попадают на поверхность шара при $\theta \in [0,\theta_0]$; Положительные ионы попадают на поверхность шара при $\theta \in [\theta_0,\pi]$.

A5^{1.00} Определите полную производную по времени заряда шара dQ/dt. Ответ выразите через Q, $E_0, \, \varepsilon_0, \, R, \, \sigma_+, \, \sigma_-$ и, если понадобится, θ_0 .

 ${f 0.20}$ Записано выражение для компоненты dQ_-/dt , обусловленной попаданием отрицательных ионов:

$$\frac{dQ_{-}}{dt} = -\sigma_{-} \int_{0}^{\theta_{0}} \left(\frac{Q}{2\varepsilon_{0}} + 6\pi R^{2} R_{0} \cos \theta \right) \sin \theta d\theta.$$

 $oxedows_{oldsymbol{0.20}}$ Вычислен интеграл для dQ_-/dt :

$$\frac{dQ_{-}}{dt} = -\sigma_{-} \left(\frac{Q(1 - \cos \theta_{0})}{2\varepsilon_{0}} + 3\pi R^{2} E_{0} \sin^{2} \theta_{0} \right).$$

 ${f 0.20}$ Записано выражение для компоненты dQ_+/dt , обусловленной попаданием положительных ионов:

$$\frac{dQ_{+}}{dt} = -\sigma_{+} \int_{\theta_{0}}^{\pi} \left(\frac{Q}{2\varepsilon_{0}} + 6\pi R^{2} E_{0} \cos \theta \right) \sin \theta d\theta,$$

0.20 Вычислен интеграл для dQ_{+}/dt :

$$\frac{dQ_{+}}{dt} = -\sigma_{+} \left(\frac{Q(1 + \cos \theta_{0})}{2\varepsilon_{0}} - 3\pi R^{2} E_{0} \sin^{2} \theta_{0} \right).$$

0.20 Получен ответ для dQ/dt:

$$\frac{dQ}{dt} = -\frac{Q(\sigma_+ + \sigma_-)}{2\varepsilon_0} + (\sigma_+ - \sigma_-) \left(3\pi R^2 E_0 \sin^2 \theta_0 - \frac{Q\cos \theta_0}{2\varepsilon_0} \right).$$

А6^{0.80} Определите стационарный заряд шара Q_0 , при котором он остаётся постоянным во времени. Ответ выразите через E_0 , ε_0 , R, σ_+ и σ_- .

 ${f 0.40}$ Подставлено значение $heta_0$ и получено квадратное уравнение относительно Q_0 :

$$Q_0^2 - Q_0 \frac{24\pi R^2 \varepsilon_0 E_0(\sigma_+ + \sigma_-)}{(\sigma_+ - \sigma_-)} + 144\pi^2 R^4 \varepsilon_0^2 E_0^2 = 0.$$

0.20 Правильно решено квадратное уравнение:

$$Q_0 = 12\pi R^2 \varepsilon_0 E_0 \left(\frac{\sqrt{\sigma_+} + \sqrt{\sigma_-}}{\sqrt{\sigma_+} - \sqrt{\sigma_-}} \right)^{\pm 1}.$$

 $oldsymbol{0.20}$ Выбран нужный корень и получен ответ для Q_0 :

$$Q_0 = 12\pi R^2 \varepsilon_0 E_0 \left(\frac{\sqrt{\sigma_+} - \sqrt{\sigma_-}}{\sqrt{\sigma_+} + \sqrt{\sigma_-}} \right).$$

Страница 2 из 7 ≈

 $oldsymbol{A7^{0.60}}$ При малых значениях ΔQ зависимость $\dot{Q}(\Delta Q)$ можно представить в виде:

$$\dot{Q} \approx A\Delta Q$$
.

Выразите A через σ_+ , σ_- и ε_0 . Является ли найденное значение заряда Q_0 устойчивым? Ответ обоснуйте.

 $oldsymbol{0.30}$ Для зависимости $\dot{Q}(Q)$ в виде:

$$\dot{Q} = aQ^2 - bQ + c$$

записано приближение:

$$\dot{Q} = -(b - 2aQ_0)\Delta Q$$

0.20 Определено значение A:

$$A = -\frac{\sqrt{\sigma_+ \sigma_-}}{\varepsilon_0}.$$

 $oxed{0.10}$ Для своего знака A сделан вывод об устойчивости значения заряда $Q_0.$

A8^{0.30} Получите зависимость отклонения заряда шара ΔQ от времени t. Ответ выразите через ΔQ_0 , ε_0 , σ_+ , σ_- и t. Покажите также, что вид временной зависимости определяется только произведением $\sigma_+\sigma_-$.

 $\fbox{\textbf{0.20}}$ Для своего значения A получено:

$$\Delta Q(t) = \Delta Q_0 e^{At}$$

0.10 Получено выражение для $\Delta Q(t)$ в следующем виде:

$$\Delta Q(t) = \Delta Q_0 \exp\left(-\frac{\sqrt{\sigma_+ \sigma_-}t}{\varepsilon_0}\right).$$

B1^{0.50} Определите вектор \vec{E} напряжённости электростатического поля в области пересечения изолированных эллипсоидов. Ответ выразите через ho, \vec{l} , $arepsilon_0$ и A.

 $oldsymbol{0.20}$ Показано, что компоненты напряжённости E_x и E_y в области пересечения равны нулю.

0.30 Получено выражение для $ec{E}$:

$$\vec{E} = -\frac{\rho A \vec{l}}{\varepsilon_0}.$$

0.10 Пункт оценивается при неправильном знаке в выражении для \vec{E} .

B2^{0.30} Рассмотрим изолированный равномерно поляризованный вдоль оси z эллипсоид. Пусть напряжённость электростатического поля внутри эллипсоида равняется \vec{E} . Определите вектор поляризации эллипсоида \vec{P} . Ответ выразите через \vec{E} , ε_0 и A.

 $oldsymbol{0.10}$ Записана связь величины $hoec{l}$ с вектором поляризации $ec{P}$:

$$\vec{P} = \rho \vec{l}.$$

 $oldsymbol{0.10}$ Выражение для $ec{E}$ записано в виде:

$$\vec{E} = -\frac{A\vec{P}}{\varepsilon_0}.$$

Страница 3 из 7 ∞

 $oldsymbol{0.10}$ Получен ответ для $ec{P}$:

$$\vec{P} = -\frac{\varepsilon_0 \vec{E}}{A}.$$

B3^{0.30} Определите вектор поляризации \vec{P} эллипсоида. Ответ выразите через \vec{E}_0 , ε_0 и A. Определите также максимальную величину поверхностной плотности заряда σ_{max} на поверхности эллипсоида. Ответ выразите через P.

 $oldsymbol{0.10}$ Получен ответ для $ec{P}$:

$$\vec{P} = \frac{\varepsilon_0 \vec{E}_0}{A}.$$

 $\boxed{\mathbf{0.20}}$ Получен ответ для σ_{max} :

$$\sigma_{max} = P$$
.

 ${f B4^{0.40}}$ Выразите полную компоненту напряжённости электростатического поля E_n на поверхности проводника через поверхностную плотность заряда σ и ε_0 . Определите максимальную величину напряжённости E_{max} электростатического поля на поверхности эллипсоида. Ответ выразите через E_0 и A.

0.20 Из теоремы Гаусса получено:

$$E_n = \frac{\sigma}{\varepsilon_0}.$$

- **0.10** Указано, что величина E_n максимальна при максимальном значении σ .
- **0.10** Получен ответ для E_{max} :

$$E_{max} = \frac{E_0}{A}.$$

B5^{0.40} В листах ответов приведён рисунок, на котором над бесконечной проводящей плоскостью расположен точечный диполь, дипольный момент которого направлен перпендикулярно плоскости. В листах ответов приведите электростатическое изображение диполя в проводящей плоскости. Используя полученный результат, приведите в листах ответов электростатическое изображение половины равномерно поляризованного эллипсоида вращения, контактирующего с проводящей плоскостью экваториальным сечением.

- 0.10 Указано, что изображение точечного диполя с дипольным моментом \vec{p} представляет собой диполь с тем же дипольным моментом \vec{p} и расположено на том же расстоянии от плоскости.
 - 0.10 В листах ответов приведено электростатическое изображение точечного диполя.
- 0.10 Указано, что электростатическое изображение половины равномерно поляризованного эллипсоида дополняет его до целого.
- 0.10 В листах ответов приведено электростатическое изображение половины равномерно поляризованного эллипсоида.

B6^{0.50} Покажите, что выражение для максимальной напряжённости электростатического поля E_{max} совпадает с выражением, найденным в пункте B4, и найдите его численное значение. Достаточно ли величины напряжённости электростатического поля E_0 для пробоя воздуха в какой-либо точке пространства, если он происходит при напряжённости, равной $E_{np} = 30$ кВ/см?

- **0.30** Обосновано, что если половина эллипсоида поляризована равномерно, на плоской поверхности выполняются граничные условия.
 - **0.10** Рассчитана величина E_{max} :

$$E_{max} \approx 7.4 \cdot 10^{12} \mathrm{B/M}.$$

0.10 Сделан вывод, что величины E_0 достаточно для пробоя воздуха.

С1^{0.30} Принимая потенциал шара равным потенциалу на поверхности Земли, т.е нулю, определите величину заряда q_0 шара. Ответ выразите через ε_0 , E_0 , R_0 и h. Влиянием электростатического поля шара на электростатическое поле Земли можно пренебречь. Влиянием электростатического поля зарядов, расположенных на проводе, можно пренебречь во всём пространстве.

0.20 Записано условие равенства потенциала шара нулю:

$$E_0 h + \frac{q_0}{4\pi\varepsilon_0 R_0} = 0.$$

0.10 Получен ответ для q_0 :

$$q_0 = -4\pi\varepsilon_0 R_0 h E_0.$$

C2^{0.40} Определите величину силы тока I, перетекающего из атмосферы в шар, если проводимость воздуха во всей атмосфере можно принять равной σ_0 . Ответ выразите через E_0 , R_0 , h, ε_0 и σ_0 .

0.20 Записано выражение для силы тока I:

$$I = -4\pi R_0^2 \sigma_0 E.$$

oxedows Получено выражение для E:

$$E = -\frac{E_0 h}{R_0}.$$

0.10 Получен ответ для силы тока I:

$$I = 4\pi R_0 h \sigma_0 E_0.$$

С3^{0.30} Запишите выражение для условия равенства нулю потенциала шара. В уравнение могут войти $E_0,\,h,\,q_0,\,q,\,R_0$ и R.

0.20 Потенциал электростатического поля сферических поверхностей в центре шара составляет:

$$\varphi_q + \varphi_{q_0} = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_0}{R_0} + \frac{q}{R} \right).$$

0.10 Получено правильное уравнение:

$$E_0 h + \frac{1}{4\pi\varepsilon_0} \left(\frac{q_0}{R_0} + \frac{q}{R} \right) = 0.$$

 $C4^{0.30}$ Из условия равенства силы текущего тока I, пересекающего сферическую поверхность внутри и вне ионизированного слоя, получите уравнение, связывающее заряды q_0 и q. В уравнение также могут войти проводимости σ_0 и σ .

 $oldsymbol{0.10}$ Записано выражение для I_{in} :

$$I_{in} = -\frac{q_0 \sigma}{\varepsilon_0}.$$

[0.10] Записано выражение для I_{out} :

$$I_{out} = -\frac{(q_0 + q)\sigma_0}{\varepsilon_0}.$$

0.10 Получено правильное уравнение:

$$(q_0 + q)\sigma_0 = q_0\sigma.$$

С5^{0.20} Определите величину силы тока I, перетекающего из атмосферы в шар в этом случае. Ответ выразите через $E_0, R_0, R, h, \varepsilon_0, \sigma_0$ и σ .

0.10 Получено выражение для q_0 :

$$q_0 = -\frac{4\pi\varepsilon_0 R_0 h E_0}{1 + \frac{R_0}{R} \left(\frac{\sigma}{\sigma_0} - 1\right)}.$$

0.10 Получено выражение для I:

$$I = \frac{4\pi R_0 h \sigma E_0}{1 + \frac{R_0}{R} \left(\frac{\sigma}{\sigma_0} - 1\right)}.$$

C6^{0.10} Покажите, что при $R \approx R_0$ приближённое выражение для силы тока I переходит в выражение, соответствующее отсутствию ионизированного слоя.

0.10 Выражение для I приведено к виду:

$$I \approx 4\pi Rh\sigma_0 E_0$$
.

 $\mathbf{D1^{0.20}}$ Определите величину дрейфовой скорости u движения электронов. Ответ выразите через e, E, $\lambda,$ m и $\overline{v}_{\scriptscriptstyle \mathrm{T}}.$

0.10 Записано выражение для a:

$$a = \frac{eE}{m}$$
.

 $oldsymbol{0.10}$ Получено выражение для u:

$$u = \frac{eE\lambda}{2m\overline{v}_{\scriptscriptstyle T}}$$

D2^{0.40} Из баланса энергии определите среднюю величину $\overline{\Delta W}$ потери кинетической энергии электрона при столкновении с молекулами воздуха. Ответ выразите через $e,\,E,\,\lambda,\,m$ и \overline{W} .

0.20 Записано выражение для средней мощность электростатического поля по перемещения одного электрона:

$$\overline{P} = eEu$$

0.10 Записано выражение для ΔW :

$$\overline{\Delta W} = eEu\tau.$$

 $oldsymbol{0.10}$ Получен ответ для $\overline{\Delta W}$:

$$\overline{\Delta W} = \frac{(eE\lambda)^2}{4W}.$$

К данному пункту применяется PEP от пункта D1.

Страница 6 из 7 ≈

D3^{1.00} Получите точное выражение для величины $\overline{\Delta W}/\overline{W}$. Ответ выразите через m и M. Упростите ваш ответ с учётом $m \ll M$. Если вы не смогли решить этот пункт - в дальнейшем считайте, что $\overline{\Delta W}/\overline{W} = m/M$.

0.20 Определена скорость молекулы воздуха в системе отсчёта центра масс:

$$v' = v_C = \frac{mv}{m+M}.$$

0.30 Определена скорость молекулы воздуха в лабораторной системе отсчёта:

$$v_M = 2v_C \cos(\varphi/2)$$
.

 $oxed{0.20}$ Записано выражение для $\overline{\Delta W}$:

$$\Delta W = \frac{Mm^2v^2}{4\pi(m+M)^2} \int_{0}^{\pi} (1+\cos\varphi) \cdot 2\pi\sin\varphi d\varphi.$$

 ${f 0.10}$ Вычислен интеграл для ${\overline {\Delta W}}$:

$$\overline{\Delta W} = \frac{Mm^2v^2}{(m+M)^2}.$$

 $\overline{f 0.10}$ Получено выражение для $\overline{\Delta W}/\overline{W}$:

$$\frac{\overline{\Delta W}}{\overline{W}} = \frac{2Mm}{(M+m)^2}.$$

 $oxed{0.10}$ Правильное приближение для $\overline{\Delta W}/\overline{W}$:

$$\frac{\overline{\Delta W}}{\overline{W}} \approx \frac{2m}{M}.$$

 $\mathbf{2}$ \times

0.20 Получен ответ для \overline{W} (по 0.2 балла за формулу и численное значение):

$$\overline{W} = \frac{1}{2} \sqrt{\frac{M}{2m}} eE\lambda \approx 4.2 \cdot 10^{-17}$$
Дж.

K данному пункту применяется PEP от пунктов D1-D3.

0.20 Получен ответ для u (по 0.2 балла за формулу и численное значение):

$$u = \frac{1}{2} \sqrt{\frac{eE\lambda\sqrt{2}}{\sqrt{Mm}}} \approx 27.6 \text{km/c}.$$

K данному пункту применяется PEP от пунктов D1 - D3.