Lecture 10: Classic Games

Lecture 10: Classic Games

David Silver

Outline

- 1 State of the Art
- 2 Game Theory
- 3 Minimax Search
- 4 Self-Play Reinforcement Learning
- 5 Combining Reinforcement Learning and Minimax Search
- 6 Reinforcement Learning in Imperfect-Information Games
- 7 Conclusions

Why Study Classic Games?

- Simple rules, deep concepts
- Studied for hundreds or thousands of years
- Meaningful IQ test
- Drosophila of artificial intelligence
- Microcosms encapsulating real world issues
- Games are fun!

Al in Games: State of the Art

Program	Level of Play	Program to Achieve Level	
Checkers	Perfect	Chinook	
Chess	Superhuman	Deep Blue	
Othello	Superhuman	Logistello	
Backgammon	Superhuman	TD-Gammon	
Scrabble	Superhuman	Maven	
Go	Superhuman	AlphaGo	
Poker ¹	Perfect	Cepheus	

¹Heads-Up Limit Texas Hold'em

RL in Games: State of the Art

Program	Level of Play RL Program to Achieve L			
Checkers	Superhuman	Chinook		
Chess	International Master	KnightCap / Meep		
Othello	Superhuman	Logistello		
Backgammon	Superhuman	TD-Gammon		
Scrabble	Superhuman	Maven		
Go	Superhuman	AlphaGo		
Poker ¹	Superhuman	SmooCT		

¹Heads-Up Limit Texas Hold'em

Optimality in Games

- What is the optimal policy π^i for *i*th player?
- If all other players fix their policies π^{-i}
- Best response $\pi^i_*(\pi^{-i})$ is optimal policy against those policies
- Nash equilibrium is a joint policy for all players

$$\pi^i = \pi^i_*(\pi^{-i})$$

- such that every player's policy is a best response
- i.e. no player would choose to deviate from Nash

Single-Agent and Self-Play Reinforcement Learning

- Best response is solution to single-agent RL problem
 - Other players become part of the environment
 - Game is reduced to an MDP
 - Best response is optimal policy for this MDP
- Nash equilibrium is fixed-point of self-play RL
 - Experience is generated by playing games between agents

$$a_1 \sim \pi^1, a_2 \sim \pi^2, ...$$

- Each agent learns best response to other players
- One player's policy determines another player's environment
- All players are adapting to each other

Two-Player Zero-Sum Games

We will focus on a special class of games:

- A perfect information game is fully observed by all players
 - Chess, Go have perfect information
 - Poker, Scrabble have imperfect information (hidden state)
- A two-player game has two (alternating) players
 - We will name player 1 white and player 2 black
- A zero sum game has equal and opposite rewards for black and white

$$R^1 + R^2 = 0$$

We consider methods for finding Nash equilibria in perfect information, two-player zero-sum games:

- Game tree search (i.e. planning)
- Self-play reinforcement learning

Minimax¹

■ A value function defines the expected total reward given joint policies $\pi = \langle \pi^1, \pi^2 \rangle$

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

 A minimax value function maximizes white's expected return while minimizing black's expected return

$$v_*(s) = \max_{\pi^1} \min_{\pi^2} v_\pi(s)$$

- A minimax policy is a joint policy $\pi = \langle \pi^1, \pi^2 \rangle$ that achieves the minimax values
- There is a unique minimax value function
- A minimax policy is a Nash equilibrium

Minimax Search

- Minimax values can be found by depth-first game-tree search
- Introduced by Claude
 Shannon: Programming a
 Computer for Playing Chess
- Ran on paper!

Value Function in Minimax Search

- Search tree grows exponentially
- Impractical to search to the end of the game
- Instead use value function approximator $v(s, \mathbf{w}) \approx v_*(s)$
 - aka evaluation function, heuristic function
- Use value function to estimate minimax value at leaf nodes
- Minimax search run to fixed depth with respect to leaf values

Binary-Linear Value Function

- Binary feature vector $\mathbf{x}(\mathbf{s})$: e.g. one feature per piece
- Weight vector w: e.g. value of each piece
- Position is evaluated by summing weights of active features

$$v(s, \mathbf{w}) = \mathbf{x}(s) \cdot \mathbf{w} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ \vdots \end{bmatrix} \cdot \begin{bmatrix} +5 \\ +3 \\ +1 \\ -5 \\ -3 \\ -1 \\ \vdots \end{bmatrix}$$

$$v(s, \mathbf{w}) = 5 + 3 - 5 = 3$$

Deep Blue

Knowledge

- 8000 handcrafted chess features
- Binary-linear value function
- Weights largely hand-tuned by human experts

Search

- High performance parallel alpha-beta search
- 480 special-purpose VLSI chess processors
- Searched 200 million positions/second
- Looked ahead 16-40 ply

Results

- Defeated human champion Garry Kasparov 4-2 (1997)
- Most watched event in internet history

Chinook

- Knowledge
 - Binary-linear value function
 - 21 knowledge-based features (position, mobility, ...)
 - x4 phases of the game
- Search
 - High performance alpha-beta search
 - Retrograde analysis
 - Search backward from won positions
 - Store all winning positions in lookup tables
 - Plays perfectly from last n checkers
- Results
 - Defeated Marion Tinsley in world championship 1994
 - won 2 games but Tinsley withdrew for health reasons
 - Chinook solved Checkers in 2007
 - perfect play against God

Self-Play Temporal-Difference Learning

- Apply value-based RL algorithms to games of self-play
- **MC**: update value function towards the return G_t

$$\Delta \mathbf{w} = \alpha (\mathbf{G_t} - v(S_t, \mathbf{w})) \nabla_{\mathbf{w}} v(S_t, \mathbf{w})$$

■ TD(0): update value function towards successor value $v(S_{t+1})$

$$\Delta \mathbf{w} = \alpha(\mathbf{v}(S_{t+1}, \mathbf{w}) - \mathbf{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \mathbf{v}(S_t, \mathbf{w})$$

■ TD(λ): update value function towards the λ -return G_t^{λ}

$$\Delta \mathbf{w} = \alpha (\mathbf{G}_t^{\lambda} - v(S_t, \mathbf{w})) \nabla_{\mathbf{w}} v(S_t, \mathbf{w})$$

Policy Improvement with Afterstates

- For deterministic games it is sufficient to estimate $v_*(s)$
- This is because we can efficiently evaluate the afterstate

$$q_*(s,a) = v_*(succ(s,a))$$

- Rules of the game define the successor state succ(s, a)
- Actions are selected e.g. by min/maximising afterstate value

$$A_t = \operatorname*{argmax}_a v_*(succ(S_t, a))$$
 for white $A_t = \operatorname*{argmin}_a v_*(succ(S_t, a))$ for black

This improves joint policy for both players

Self-Play TD in Othello: Logistello

- Logistello created its own features
- Start with raw input features, e.g. "black stone at C1?"
- Construct new features by conjunction/disjunction
- Created 1.5 million features in different configurations
- Binary-linear value function using these features

Reinforcement Learning in Logistello

Logistello used generalised policy iteration

- Generate batch of self-play games from current policy
- Evaluate policies using Monte-Carlo (regress to outcomes)
- Greedy policy improvement to generate new players

Results

Defeated World Champion Takeshi Murukami 6-0

LTD-Gammon

TD Gammon: Non-Linear Value Function Approximation

LTD-Gammon

Self-Play TD in Backgammon: TD-Gammon

- Initialised with random weights
- Trained by games of self-play
- Using non-linear temporal-difference learning

$$\delta_t = v(S_{t+1}, \mathbf{w}) - v(S_t, \mathbf{w})$$
$$\Delta \mathbf{w} = \alpha \delta_t \nabla_{\mathbf{w}} v(S_t, \mathbf{w})$$

- Greedy policy improvement (no exploration)
- Algorithm always converged in practice
- Not true for other games

TD Gammon: Results

- Zero expert knowledge ⇒ strong intermediate play
- \blacksquare Hand-crafted features \implies advanced level of play (1991)
- 2-ply search \implies strong master play (1993)
- 3-ply search \implies superhuman play (1998)
- Defeated world champion Luigi Villa 7-1 (1992)

New TD-Gammon Results

Simple TD

■ TD: update value towards successor value

- Value function approximator $v(s, \mathbf{w})$ with parameters \mathbf{w}
- Value function backed up from raw value at next state

$$v(S_t, \mathbf{w}) \leftarrow v(S_{t+1}, \mathbf{w})$$

- First learn value function by TD learning
- Then use value function in minimax search (no learning)

$$v_{+}(S_t, \mathbf{w}) = \min_{s \in leaves(S_t)} v(s, \mathbf{w})$$

Simple TD: Results

- Othello: superhuman performance in *Logistello*
- Backgammon: superhuman performance in *TD-Gammon*
- Chess: poor performance
- Checkers: poor performance
- In chess tactics seem necessary to find signal in position
- e.g. hard to find checkmates without search
- Can we learn directly from minimax search values?

TD Root

■ TD root: update value towards successor search value

• Search value is computed at root position S_t

$$v_+(S_t, \mathbf{w}) = \min_{s \in leaves(S_t)} v(s, \mathbf{w})$$

■ Value function backed up from search value at next state

$$v(S_t, \mathbf{w}) \leftarrow v_+(S_{t+1}, \mathbf{w}) = v(I_+(S_{t+1}), \mathbf{w})$$

• Where $I_+(s)$ is the leaf node achieving minimax value from s

TD Root in Checkers: Samuel's Player

- First ever TD learning algorithm (Samuel 1959)
- Applied to a Checkers program that learned by self-play
- Defeated an amateur human player
- Also used other ideas we might now consider strange

TD Leaf

■ TD leaf: update search value towards successor search value

Search value computed at current and next step

$$v_+(S_t, \mathbf{w}) = \min_{s \in leaves(S_t)} v(s, \mathbf{w}), \quad v_+(S_{t+1}, \mathbf{w}) = \min_{s \in leaves(S_{t+1})} v(s, \mathbf{w})$$

■ Search value at step t backed up from search value at t+1

$$v_{+}(S_{t}, \mathbf{w}) \leftarrow v_{+}(S_{t+1}, \mathbf{w})$$

$$\implies v(l_{+}(S_{t}), \mathbf{w}) \leftarrow v(l_{+}(S_{t+1}), \mathbf{w})$$

TD leaf in Chess: Knightcap

- Learning
 - Knightcap trained against expert opponent
 - Starting from standard piece values only
 - Learnt weights using TD leaf
- Search
 - Alpha-beta search with standard enhancements
- Results
 - Achieved master level play after a small number of games
 - Was not effective in self-play
 - Was not effective without starting from good weights

TD leaf in Checkers: Chinook

- Original Chinook used hand-tuned weights
- Later version was trained by self-play
- Using TD leaf to adjust weights
 - Except material weights which were kept fixed
- Self-play weights performed ≥ hand-tuned weights
- i.e. learning to play at superhuman level

TreeStrap

■ TreeStrap: update search values towards deeper search values

- Minimax search value computed at all nodes $s \in nodes(S_t)$
- Value backed up from search value, at same step, for all nodes

$$u(s, \mathbf{w}) \leftarrow v_{+}(s, \mathbf{w})$$

$$\implies v(s, \mathbf{w}) \leftarrow v(l_{+}(s), \mathbf{w})$$

Treestrap in Chess: Meep

- Binary linear value function with 2000 features
- Starting from random initial weights (no prior knowledge)
- Weights adjusted by TreeStrap
- Won 13/15 vs. international masters
- Effective in self-play
- Effective from random initial weights

Simulation-Based Search

- Self-play reinforcement learning can replace search
- Simulate games of self-play from root state S_t
- Apply RL to simulated experience
 - Monte-Carlo Control ⇒ Monte-Carlo Tree Search
 - Most effective variant is UCT algorithm
 - Balance exploration/exploitation in each node using UCB
 - Self-play UCT converges on minimax values
 - Perfect information, zero-sum, 2-player games
 - Imperfect information: see next section

Performance of MCTS in Games

- MCTS is best performing method in many challenging games
 - Go (last lecture)
 - Hex
 - Lines of Action
 - Amazons
- In many games simple Monte-Carlo search is enough
 - Scrabble
 - Backgammon

Simple Monte-Carlo Search in Scrabble (Maven)

- Reinforcement Learning
 - Maven evaluates moves by score + v(rack)
 - Binary-linear value function of rack
 - Using one, two and three letter features
 - Q??????, QU?????, III????
 - Learnt by Monte-Carlo policy iteration (cf. Logistello)
- Monte-Carlo Search (MCS)
 - Roll-out moves by imagining n steps of self-play
 - Evaluate resulting position by score + v(rack)
 - Score move by average evaluation in rollouts
 - Select and play highest scoring move
 - Specialised endgame search using B*

Maven: Results

- Maven beat world champion Adam Logan 9-5
- Here Maven predicted endgame to finish with MOUTHPART
- Analysis showed
 Maven had error rate of 3 points per game

Game-Tree Search in Imperfect Information Games

 Players have different information states and therefore separate search trees

- There is one node for each information state
 - summarising what a player knows
 - e.g. the cards they have seen
- Many real states may share the same information state
- May also aggregate states e.g. with similar value

Issues in Applying RL to Imperfect Information Games

- Learning dynamics are also more problematic than single agent case
 - Environment depends upon the opponent's current policies
 - Non-stationary environment = ¿ potential cycles during learning
- Local search more challenging with hidden state
 - Can apply self-play to history of player's observations
 - Sufficient to learn a best response to opponents
 - and hence a Nash equilibrium
 - But insufficient for local game-tree search from current state
 - Requires an estimate of opponent's hidden state to take opponent's perspective

Fictitious Play

At each iteration *j*, for each player *i*

- Compute average policy $\mu^i = \frac{1}{N} \sum_{j=1}^N \pi^i_j$
- Compute best response to opponents' average policies, $\pi_i^i = \pi_*^i(\mu^{-i})$

Fictitious play converges to Nash equilibrium for a wide class of imperfect information games

Fictitious Self-Play

At each iteration j, for each player i

- Update average policy μ_i^i by supervised learning
 - Each player predicts their own policy
 - lacksquare Using previous iterations 1,...,j as training data
- lacktriangle Update best response π^i by reinforcement learning
 - Treating opponents as part of the environment
 - Using games of self-play as training data

Using deep neural networks, FSP achieved superhuman performance in No-Limit Texas Holdem Poker

RL in Games: A Successful Recipe

Program	Input features	Value Fn	RL	Training	Search
Chess		Linear	TreeStrap	Self-Play	$\alpha\beta$
Меер	Pieces, pawns,			/ Expert	
Checkers		Linear	TD leaf	Self-Play	$\alpha\beta$
Chinook	Pieces,				
Othello		Linear	MC	Self-Play	$\alpha\beta$
Logistello	Disc configs				
Backgammon		Neural	$TD(\lambda)$	Self-Play	$\alpha\beta$ /
TD Gammon	Num checkers	network			MCS
Go		Neural	MC /	Self-Play	MCTS
AlphaGo	Stones,	network	Reinforce	/ Expert	
Scrabble		Linear	MC	Self-Play	MCS
Maven	Letters on rack				
Limit Hold'em		Neural	TD	Self-Play	-
NFSP	Cards	network			