Topology Exam: Spring 2018.

Answer SIX of the NINE questions

- 1. In each case give a proof, or give a counterexample and prove it is a counterexample.
 - (a) int(int U) = int(U)
 - (b) $\operatorname{cl}(\operatorname{cl}(U)) = \operatorname{cl}(\operatorname{int}(U))$
 - (c) int(cl(int(U))) = int(U)
 - (d) $int(U \times V) = int(U) \times int(V)$
- 2. An ultrafilter on a set X is a collection \mathcal{U} of subsets of X with the properties that
 - (i) If $U, V \in \mathcal{U}$ then $U \cap V \in \mathcal{U}$
 - (ii) If $U \subset X$ then $U \in \mathcal{U}$ or $X \setminus U \in \mathcal{U}$.
 - (iii) $\emptyset \notin \mathcal{U}$
 - (a) Show that if $V \supset U$ and $U \in \mathcal{U}$ then $V \in \mathcal{U}$.
 - (b) Show that $\mathcal{T} := \mathcal{U} \cup \{\emptyset\}$ is a topology on X.
 - (c) If X is infinite show that the topology is connected, but not compact and not Hausdorff.
- 3. Suppose (X, d_X) is separable (there is a countable dense subset) metric space and (Y, d_Y) is a compact metric space. Let Z be the metric space consisting of the set of all continuous maps $f: X \to Y$ with metric

$$d_Z(f,g) = \sup_{x \in X} d_Y(fx, gx)$$

Let $W \subset Z$ be the subspace of all 2-Lipschitz maps $(f: X \to Y \text{ is 2-Lipschitz if } d_Y(fx_1, fx_2) \leq 2d_X(x_1, x_2)$ for all $x_1, x_2 \in X$). For each of Z and W either prove it is sequentially compact, or give a counterexample and prove it is one.

- 4. Let $X \subset \mathbb{R}^2$ be the subspace $\{(x, (1/x)\sin(1/x)) : x > 0\} \cup \{(x, y) : x \leq 0\}$. (a) Is X connected? (b) Is X path connected? In each case prove your answer is correct.
- 5. Prove that the product of two compact Hausdorff spaces is compact and Hausdorff.
- 6. Let $A = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le y \le 1\}$ and $B = \{(x,y,z) \in A \times J : yz = x\}$ where $J \subset \mathbb{R}$ is an interval defined below, each topologized as a subspace of Euclidean space. Define $\pi : B \to A$ by $\pi(x,y,z) = (x,y)$. Let $X = B/\pi$ be the quotient space.
 - (a) If J = [0, 1] prove that X is homeomorphic to A. [hint: is X compact?]
 - (b) If J = [0, 1) prove X is not homeomorphic to A. [hint: is X compact?]

Turn Over (the exam)

- 7. Let (X,d) be a metric space. Recall that a metric completion of X is a complete metric space (X',d') and a map $f:X\to X'$ such that f is an isometry onto f(X) and f(X) is dense in X'.
 - (a) Carefully define a metric space (X', d') and map $f: X \to X'$ that forms a completion of X. State, without proof, everything that must be checked to confirm that your definition is a metric completion of X.
 - (b) Now fill in the following details. Assuming d' forms a metric, prove that f is an isometry onto f(X) and that f(X) is dense in X'.
 - (c) Let $X = \{(\cos t, \sin t) : 0 < t < 2\pi\}$ with the metric $d((\cos a, \sin a), (\cos b, \sin b)) = |b-a|$. State, without proof, what well-known metric space the metric completion of (X, d) is isometric to.
- 8. Let $X = \mathbb{R}^n \setminus \{0\}$ with the subspace topology from \mathbb{R}^n . Let \sim be the equivalence relation on X given by $\vec{x} \sim \vec{y}$ if and only if $\vec{x} = t\vec{y}$ for some t > 0. Prove that X/\sim is homeomorphic to $S^{n-1} := \{\vec{x} \in \mathbb{R}^n : ||\vec{x}|| = 1\}$ with the subspace topology from \mathbb{R}^n .
- 9. Suppose $p: Y \to X$ is a covering space.
 - (a) Prove, using only the definition of covering space, that if $f:[0,1] \to X$ is continuous, and $t_0 = 0$, and $y \in Y$ with $p(y) = f(t_0)$, then there is a continuous map $F:[0,1] \to Y$ such that $p \circ F = f$ and $F(t_0) = y$.
 - (b) Modify (a) so that [0,1] is replaced by $S^1 := \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ with the topology as a subspace of \mathbb{R}^2 and $t_0 = (1,0)$. Does such F always exist? Prove your answer is correct.