Pandas

- Jake VanderPlas. 2016. *Python Data Science Handbook: Essentic Tools for Working with Data*. O'Reilly Media, Inc.
- Chapter 3 Data Manipulation with Pandas
- https://github.com/jakevdp/PythonDataScienceHandbo (https://github.com/jakevdp/PythonDataScienceHandbo

Pandas provides:

- Rich I/O Capabilities (read/write data from/to CSV, Excel, SQL, JSON, etc.)
- 1-dimensional (**Series**) and 2-dimensional tabular (**DataFrame**) data structures.
- Data flexibility (handles missing data, time series, and heterogeneous data types).
- Labeled Rows and columns for data alignment
- Flexible indexing, slicing, fancy indexing, and subsetting of large datasets.

```
In [1]: import numpy as np import pandas as pd pd.__version__

Out[1]: '2.2.3'

In [2]: # type TAB to get the numpy namespace #pd.
```

```
def pprint(*args, sep='\n', end='\n', userepr=True, align=False, breakl
In [3]:
                   "Evaluate and pretty print"
                   if align :
                       max arg len = max(map(len,args))
                       txt2txt = lambda txt : ' '*(max_arg_len-len(txt)) + txt
                       args = list(map(txt2txt, args))
                   geval = lambda txt : eval(txt, globals())
                   txt2txt = lambda txt : f'{repr(geval(txt))}' if userepr else f'{gev
                   output = map(txt2txt, args)
                   txt2txt = lambda txt : f'{txt} = '
                   prefix = map(txt2txt, args)
                   if breakline :
                       po2txt = lambda p,o : (p+'\n'+o).replace('\n','\n'+indent)
                   else:
                       po2txt = lambda p,o : (p+o).replace('\n','\n'+' '*len(p))
                   print(*map(po2txt, prefix, output), sep=sep, end=end)
               class display(object):
                   """Display HTML representation of multiple objects"""
                   template = """<div style="float: left; padding: 10px;">
                   {0}{1}
                   </div>"""
                   def init (self, *args):
                       self.args = args
                   def repr html (self):
                       return '\n'.join(self.template.format(a, eval(a). repr html ())
                                       for a in self.args)
                   def repr (self):
                       return '\n\n'.join(a + '\n' + repr(eval(a))
                                         for a in self.args)
```

Pandas Series

- One-dimensional array of indexed data
- Two key attributes:
 - values : NumPy array
 - index : an array-like object of type pd.Index

```
In [4]:
```

```
d = pd.Series([0.25, 0.5, 0.75, 1.0])
pprint('d', 'd.values', 'd.index', align=True)
```

Series can be created from NumPy arrays:

```
In [6]:

d = pd.Series(np.linspace(0,4,6))

Out[6]:

0     0.0
1     0.8
2     1.6
3     2.4
4     3.2
5     4.0
dtype: float64
```

A series can be indexed just like a NumPy array:

```
In [7]:
                d = pd.Series(np.arange(10,15))
                pprint('d[3]') # simple index --> scalar
                pprint('d[3:]', 'd[3:4]') # slice --> series
                pprint('d[[1,3,0]]', 'd[[1]]') # fancy index --> series
               d[3] = 13
                d[3:] = 3 13
                            14
                       4
                       dtype: int64
                d[3:4] = 3
                           13
                        dtype: int64
               d[[1,3,0]] = 1
                                 11
                                 13
                                 10
                            dtype: int64
                d[[1]] = 1
                            11
                        dtype: int64
```

But... Pandas Series can have an **explicit index**

• If not provided, an **implicit int index** is used [0,1,...,n-1]

dtype: int64

d["b"] = 11

Slicing - Case 1 - non-integer explicit index

- Both non-integer (explicit) and integer (implicit) slices can be used.
- non-integer slice \rightarrow **label-based indexing** \rightarrow [from, to]
- integer slice \rightarrow **position-based indexing** \rightarrow [from, to)

```
In [9]:
```

```
d = pd.Series([100,101,102,103,104], index=["a","b","c","d","e"])
pprint('d')
pprint('d["a"]', 'd["c"]', 'd["a":"c"].values') # explicit index
pprint('d[0:2].values') # implicit index
```

```
d = a    100
    b    101
    c    102
    d    103
    e    104
    dtype: int64
d["a"] = 100
d["c"] = 102
d["a":"c"].values = array([100, 101, 102])
d[0:2].values = array([100, 101])
```

Slicing - Case 2 - integer explicit index

- Slicing is <u>always referred to implicit indexes</u>.
- integer slice \rightarrow **position-based indexing** \rightarrow [from, to)

Fancy Indexing

- Label-based indexing
- Using position-based indexing is deprecated

```
In [11]:
```

```
d = pd.Series([100,101,102,103,104], index=["a","b","c","d","e"])
pprint('d[["a","b","c"]].values')  # implicit index
# WARNING "treating keys as positions is deprecated" --> use Series.il
#pprint('d[[1,2,3]].values')  # implicit index

d = pd.Series([100,101,102,103,104], index=[1,5,4,2,3])
pprint('d[[1,2,3]].values')  # explicit index
```

```
d[["a","b","c"]].values = array([100, 101, 102])
d[[1,2,3]].values = array([100, 103, 104])
```

Series and dictionaries

- Series are kind of specialized Python dictionaries $\{index_{typed} \& ordered \rightarrow value_{typed}\}$
- pd.Series(dict) → create a Series from a dictionary
- pd.Series.to_dict() → create a dictionary from a Series

• .keys() \rightarrow .index

```
In [13]:
d = pd.Series([100,101,102,103,104], index=["a","b","c","d","e"])
pprint('type(d.index) == type(d.keys())')
pprint('d.index == d.keys()')

type(d.index) == type(d.keys()) = True
d.index == d.keys() = array([ True, True, True, True])
d.index is d.keys() = True
```

• ∄ .values()

• .items() → zip object of (index, value)

```
In [14]:

d = pd.Series([100,101,102,103,104], index=["a","b","c","d","e"])
pprint('d.items()')
print(*d.items())

d.items() = <zip object at 0x7f3072d1c500>
('a', 100) ('b', 101) ('c', 102) ('d', 103) ('e', 104)
```

• x in series \rightarrow checks if Series index contains x

```
In [15]:

d = pd.Series([100,101,102,103,104], index=["a","b","c","d","e"])
pprint('102 in d', '"xxx" in d')
```

102 in d = False "xxx" in d = False

Pandas DataFrame

- DataFrames are kind of specialized Python dictionaries $\{index_{typed \& ordered} \rightarrow series\}$ with a common row index
- Kind of Series of Series with a common row index
- Three key attributes:
 - values : NumPy array
 - index and columns: array-like objects of type pd.Index

In [16]:

cities = ['California','Texas','Florida','New York']
population = pd.Series([39538223,29145505,21538187,20201249], index=cit
area = pd.Series([423967, 695662, 170312, 141297], index=cities)
states = pd.DataFrame({'population':population, 'area':area})
states

Out[16]:

	population	area
California	39538223	423967
Texas	29145505	695662
Florida	21538187	170312
New York	20201249	141297

- The index attribute (*row index*) and columns attribute (*column index*) are of type pd.Index
- The values attribute (of type np.ndarray) contains the data

141297]])

[20201249,

A DataFrame can be constructed from a single series:

In [20]:

cities = ['California','Texas','Florida','New York']
population = pd.Series([39538223,29145505,21538187,20201249], index=cit
states = pd.DataFrame(population, columns=['population'])
states

Out[20]:

	population
California	39538223
Texas	29145505
Florida	21538187
New York	20201249

A DataFrame can be constructed from a dictionary of Series:

In [21]:

cities = ['California','Texas','Florida','New York']
population = pd.Series([39538223,29145505,21538187,20201249], index=cit
area = pd.Series([423967, 695662, 170312, 141297], index=cities)
states = pd.DataFrame({'population':population, 'area':area})
states

Out[21]:

	population	area
California	39538223	423967
Texas	29145505	695662
Florida	21538187	170312
New York	20201249	141297

A DataFrame can be constructed from list of dictionaries:

In [22]:

```
data = [
     {'population':39538223, 'area':423967},
     {'population':29145505, 'area':695662},
     {'population':21538187, 'area':170312},
     {'population':20201249, 'area':141297}
]
states = pd.DataFrame(data, index=["California","Texas","Florida","New states
```

Out[22]:

	population	area
California	39538223	423967
Texas	29145505	695662
Florida	21538187	170312
New York	20201249	141297

A DataFrame can be constructed from a two-dimensional NumPy array:

In [23]:

Out[23]:

	population	area
California	39538223	423967
Texas	29145505	695662
Florida	21538187	170312
New York	20201249	141297

A DataFrame can integrate indexes in different orders

In [24]:

cities1 = ['California','Texas','Florida','New York']
population = pd.Series([39538223,29145505,21538187,20201249], index=cit
cities2 = ['Texas','Florida','New York','California']
area = pd.Series([695662, 170312, 141297, 423967], index=cities2)
states = pd.DataFrame({'population':population, 'area':area})
states

Out[24]:

	population	area
California	39538223	423967
Florida	21538187	170312
New York	20201249	141297
Texas	29145505	695662

A DataFrame can integrate indexes with different values

• *Missing* values are filled with NaNs

In [25]:

```
cities1 = ['California','Texas','Florida']
population = pd.Series([39538223,29145505,21538187], index=cities1)
cities2 = ['Texas','Florida','New York']
area = pd.Series([695662, 170312, 141297], index=cities2)
states = pd.DataFrame({'population':population, 'area':area})
states
```

Out[25]:

	population	area
California	39538223.0	NaN
Florida	21538187.0	170312.0
New York	NaN	141297.0
Texas	29145505.0	695662.0

Pandas Index

- Kind of Immutable NumPy array
- Many NumPy attributes, indexable, sliceable, etc.

```
In [26]:
```

```
ind = pd.Index(['California', 'Texas', 'Florida'])
pprint('ind', 'ind[1]', 'ind[:2]', 'ind[[2,0,1]]', align=True, end='\n\
pprint('ind.size', 'ind.shape', 'ind.ndim', 'ind.dtype', align=True)
```

```
ind = Index(['California', 'Texas', 'Florida'], dtype='object'
ind[1] = 'Texas'
ind[:2] = Index(['California', 'Texas'], dtype='object')
ind[[2,0,1]] = Index(['Florida', 'California', 'Texas'], dtype='object'
ind.size = 3
ind.shape = (3,)
ind.ndim = 1
ind.dtype = dtype('0')
```

```
In [27]:
```

```
ind = pd.Index([200, 1000, 300])
pprint('ind', 'ind[1]', 'ind[:2]', 'ind[[2,0,1]]', align=True, end='\n\
pprint('ind.size', 'ind.shape', 'ind.ndim', 'ind.dtype', align=True)
```

```
ind = Index([200, 1000, 300], dtype='int64')
ind[1] = 1000
ind[:2] = Index([200, 1000], dtype='int64')
ind[[2,0,1]] = Index([300, 200, 1000], dtype='int64')

ind.size = 3
ind.shape = (3,)
ind.ndim = 1
ind.dtype = dtype('int64')
```

pd.Index follows many of the conventions of Python's set

- $idx1.union(idx2) \rightarrow combines elements from both Indexes$
- idx1.intersection(idx2) → elements that are common to both Indexes
- idx1.difference(idx2) → elements in idx1 that are not in idx2
- idx1.symmetric_difference(idx2) → elements in either, but not in both
- idx1.equals(idx2) → checks if they contain the same elements in the same order

```
In [28]:
```

```
idx1.union(idx2) = Index([1, 2, 3, 4, 5, 6, 7], dtype='indx1.intersection(idx2) = Index([4, 5], dtype='int64')
        idx1.difference(idx2) = Index([1, 2, 3], dtype='int64')
idx1.symmetric_difference(idx2) = Index([1, 2, 3, 6, 7], dtype='int64')
        idx1.equals(idx2) = False
```

Pandas I/O

- Powerfull and flexible IO collection of functions
 - Text-based files: CSV, TSV, plain text
 - Spreadsheet files: Excel, OpenOffice/LibreOffice
 - Web-based data: HTML
 - Structured data formats: JSON, XML
 - Relational Databases: SQL
 - Other formats: Pickle, HDF5, Parquet, ...
- In (pd.read_...): pd.read_csv, pd.read_excel, pd.read_json,...`
- Out (df.to_...): df.to_csv, df.to_excel, df.to_json,...`

```
In [29]: #pd.read_
#df.to_
```

In [30]:

url = "https://raw.githubusercontent.com/pandas-dev/pandas/refs/heads/m
pd.read_csv(url)

Out[30]:

	SepalLength	SepalWidth	PetalLength	PetalWidth	Name
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
•••	•••	•••	•••	•••	•••
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows \times 5 columns

In [186]:

#!pip install openpyxl
url = "https://github.com/pandas-dev/pandas/raw/refs/heads/main/pandas/
pd.read_excel(url, index_col=0) # use first column as index

Out[186]:

	A	В	С	D
2000-01-03	0.980269	3.685731	-0.364217	-1.159738
2000-01-04	1.047916	-0.041232	-0.161812	0.212549
2000-01-05	0.498581	0.731168	-0.537677	1.346270
2000-01-06	1.120202	1.567621	0.003641	0.675253
2000-01-07	-0.487094	0.571455	-1.611639	0.103469
2000-01-10	0.836649	0.246462	0.588543	1.062782
2000-01-11	-0.157161	1.340307	1.195778	-1.097007

Indexing and Selection

In [32]:

cities = ['California', 'Texas', 'Florida', 'New York', 'Pennsylvania']
area = pd.Series([423967, 695662, 170312, 141297, 119280], index=cities
population = pd.Series([39538223, 29145505, 21538187, 20201249, 1300270
gdp = pd.Series([3.9, 2.7, 1.3, 1.8, 1.0], index=cities) # Gross Domest
df = pd.DataFrame({'area':area, 'population':population, 'GDP':gdp})
df

Out[32]:

	area	population	GDP
California	423967	39538223	3.9
Texas	695662	29145505	2.7
Florida	170312	21538187	1.3
New York	141297	20201249	1.8
Pennsylvania	119280	13002700	1.0

• Simple Indexing → column selection (**Series**)

Out[33]: California 423967 Texas 695662

Florida 170312 New York 141297 Pennsylvania 119280 Name: area, dtype: int64 • Fancy Indexing → columns selection (**DataFrame**)

In [34]:
display("df[['GDP','area']]", "df[['area']]")

Out[34]:

df[['GDP','area']]	df[['area']]

	GDP	area		area
California	3.9	423967	California	423967
Texas	2.7	695662	Texas	695662
Florida	1.3	170312	Florida	170312
New York	1.8	141297	New York	141297
Pennsylvania	1.0	119280	Pennsylvania	119280

In [35]: pprint("df['GDP']")

df['GDP'] = California 3.9
 Texas 2.7
 Florida 1.3
 New York 1.8
 Pennsylvania 1.0

Name: GDP, dtype: float64

• Slicing → rows selection (**DataFrame**)

In [36]:

display('df[:2]', 'df[1:2]', 'df[2:2]')

Out[36]:

df[:2] df[1:2]

	area	population	GDP		area	population	GDP
California	423967	39538223	3.9	Texas	695662	29145505	2.7
Texas	695662	29145505	2.7				
				df[2	:2]		
				area	population GDP	•	

Combining columns & rows selection

- columns are selected with fancy indexes
- rows are selected with (position) slicing

In [37]:

display("df[['area','population']][:3]" , "df[:3][['area','population']

Out[37]:

df[['area','population']][:3] df[:3][['area','population']]

	area	population		area	population
California	423967	39538223	California	423967	39538223
Texas	695662	29145505	Texas	695662	29145505
Florida	170312	21538187	Florida	170312	21538187

Accessing the data through df.values

- df.values → homogeneous NumPy array
- Series values dtypes can be promoted

Masking with comparison operator

- Let op be an operator
- Series op value → broadcasted operation → Series
- DataFrame op value \rightarrow broadcasted operation \rightarrow DataFrame

Texas True
Florida False
New York False
Pennsylvania False
Name: GDP, dtype: bool

display("df * 10" , "df > 2")

Out[40]:

df * 10

	area	population	GDP
California	4239670	395382230	39.0
Texas	6956620	291455050	27.0
Florida	1703120	215381870	13.0
New York	1412970	202012490	18.0
Pennsylvania	1192800	130027000	10.0

df > 2

	area	population	GDP
California	True	True	True
Texas	True	True	True
Florida	True	True	False
New York	True	True	False
Pennsylvania	True	True	False

Boolean Series/DataFrame can be used as indexes

- Boolean Series → select rows
- Boolean DataFrame → select elements (and fill with NaN)

In [41]:

 $\label{eq:display} \mbox{display("df[df['GDP'] > 2]" , "df[df > 2]")}$

Out[41]:

df[df['GDP'] > 2]

	area	population	GDP
California	423967	39538223	3.9
Texas	695662	29145505	2.7

df[df > 2]

	area	population	GDP
California	423967	39538223	3.9
Texas	695662	29145505	2.7
Florida	170312	21538187	NaN
New York	141297	20201249	NaN
Pennsylvania	119280	13002700	NaN

Find the area for cities with GDP>1 and population<30000000:

In [42]:

df[df['GDP'] > 1]

Out[42]:

	area	population	GDP
California	423967	39538223	3.9
Texas	695662	29145505	2.7
Florida	170312	21538187	1.3
New York	141297	20201249	1.8

In [43]:

df[(df['GDP']>1) & (df['population']<30000000)]</pre>

Out[43]:

	area	population	GDP
Texas	695662	29145505	2.7
Florida	170312	21538187	1.3
New York	141297	20201249	1.8

In [44]: df[(df['GDP']>1) & (df['population']<30000000)]['area']

Out[44]: Texas 695662

Florida 170312 New York 141297

Name: area, dtype: int64

Indexers: .loc and .iloc

- $.loc \rightarrow explicit indexing (and slicing)$
- .iloc → implicit indexing (and slicing)
- NumPy style indexing
 - $.loc[i] \rightarrow row i$
 - $.loc[i,j] \rightarrow row i, column j$
 - Simple Indexing, Fancy Indexing and Slicing

In [45]:

df

Out[45]:

	area	population	GDP
California	423967	39538223	3.9
Texas	695662	29145505	2.7
Florida	170312	21538187	1.3
New York	141297	20201249	1.8
Pennsylvania	119280	13002700	1.0

In [46]:

df.loc['Florida']

Out[46]:

area 170312.0 population 21538187.0 GDP 1.3

Name: Florida, dtype: float64

In [47]:

df.loc[['Florida','Texas']]

Out[47]:

	area	population	GDP
Florida	170312	21538187	1.3
Texas	695662	29145505	2.7

In [48]:

df.loc[:'Florida']

Out[48]:

	area	population	GDP
California	423967	39538223	3.9
Texas	695662	29145505	2.7
Florida	170312	21538187	1.3

In [49]:

df.iloc[2]

Out[49]:

area 170312.0 population 21538187.0 GDP 1.3

Name: Florida, dtype: float64

In [50]:

df.iloc[[2,1]]

Out[50]:

	area	population	GDP
Florida	170312	21538187	1.3
Texas	695662	29145505	2.7

In [51]:

df.iloc[:3]

Out[51]:

	area	population	GDP
California	423967	39538223	3.9
Texas	695662	29145505	2.7
Florida	170312	21538187	1.3

In [52]:
df.loc['Florida','population']

Out[52]: 21538187

In [53]:
df.loc[['California','Florida'],'population']

Out[53]: California 39538223 Florida 21538187

Name: population, dtype: int64

In [54]:
df.loc[['California','Florida'],:]

Out[54]: area population GDP

California 423967 39538223 3.9

Florida 170312 21538187 1.3

Using .iloc is similar to using df.values, but maintaining the DataFrame structure (vs. homogeneous NumPy array)

Modifying DataFrames Through Indexing

- The indexing can be used to modify a DataFrame
 - Modify values
 - Add/remove columns
 - Add/remove rows

Modifying DataFrame values

• Simple indexing \rightarrow column assignment

In [57]:

Out[57]:

	area	population	GDP
California	0	39538223	3.9
Texas	O	29145505	2.7
Florida	О	21538187	1.3
New York	О	20201249	1.8
Pennsylvania	O	13002700	1.0

• Fancy Indexing → columns assignment

In [58]:

df2 = df.copy()
df2[['area','GDP']] = 0
df2

Out[58]:

	area	population	GDP
California	О	39538223	0
Texas	О	29145505	0
Florida	O	21538187	0
New York	О	20201249	0
Pennsylvania	0	13002700	O

• Slicing \rightarrow rows assignment

In [59]:

Out[59]:

	area	population	GDP
California	0	0	0.0
Texas	0	0	0.0
Florida	170312	21538187	1.3
New York	141297	20201249	1.8
Pennsylvania	119280	13002700	1.0

• Assigning to df.values[i,j] does not touch the dataframe

In [60]:

Out[60]:

	area	population	GDP
California	423967	39538223	3.9
Texas	695662	29145505	2.7
Florida	170312	21538187	1.3
New York	141297	20201249	1.8
Pennsylvania	119280	13002700	1.0

• Series masking (index is a boolean Series) → rows assignment

In [61]:

```
df2 = df.copy()
pprint('df2["GDP"]>2')
df2[df2['GDP']>2] = 0
df2
```

Out[61]:

	area	population	GDP
California	О	0	0.0
Texas	0	0	0.0
Florida	170312	21538187	1.3
New York	141297	20201249	1.8
Pennsylvania	119280	13002700	1.0

• DataFrame masking (index is a boolean DataFrame) → *elements* assignment

In [62]:

```
df2 = df.copy()
pprint('df2>2')
df2[df2>2] = 0
df2
```

```
df2>2 =
                            population
                                          GDP
                      area
        California
                      True
                                  True
                                         True
                                         True
        Texas
                      True
                                  True
        Florida
                      True
                                        False
                                  True
        New York
                      True
                                  True
                                        False
        Pennsylvania
                     True
                                  True False
```

Out[62]:

	area	population	GDP
California	O	0	0.0
Texas	0	0	0.0
Florida	O	0	1.3
New York	O	0	1.8
Pennsylvania	О	0	1.0

• .loc and .iloc \rightarrow *subset* assignment

In [63]:

df2 = df.copy()
df2.loc[['California','New York'],'population':] = 0
df2

Out[63]:

	area	population	GDP
California	423967	0	0.0
Texas	695662	29145505	2.7
Florida	170312	21538187	1.3
New York	141297	0	0.0
Pennsylvania	119280	13002700	1.0

In [64]:

df2 = df.copy()
df2.iloc[[0,3],1:] = 0
df2

Out[64]:

	area	population	GDP
California	423967	0	0.0
Texas	695662	29145505	2.7
Florida	170312	21538187	1.3
New York	141297	0	0.0
Pennsylvania	119280	13002700	1.0

Adding/Removing columns

- Add: df[new_index] = value
- **Remove**: del df[index] or df.drop(index, axis=1, inplace=True)

In [65]:

```
# add column 'density'
df2 = df.copy()
df2['density'] = df2['population'] / df2['area']
df2
```

Out[65]:

	area	population	GDP	density
California	423967	39538223	3.9	93.257784
Texas	695662	29145505	2.7	41.896072
Florida	170312	21538187	1.3	126.463121
New York	141297	20201249	1.8	142.970120
Pennsylvania	119280	13002700	1.0	109.009893

In [66]:

remove column 'population'
df2 = df.copy()
del df2['population']
df2

Out[66]:

area	GDP
423967	3.9
695662	2.7
170312	1.3
141297	1.8
119280	1.0
	423967 695662 170312 141297

In [67]:

remove column 'population'
df2 = df.copy()
df2.drop('population', axis=1, inplace=True)
df2

Out[67]:

	area	GDP
California	423967	3.9
Texas	695662	2.7
Florida	170312	1.3
New York	141297	1.8
Pennsylvania	119280	1.0

```
In [68]:
```

```
# remove columns ['area', 'population']
df2 = df.copy()
df2.drop(['area', 'population'], axis=1, inplace=True)
df2
```

Out[68]:

	GDP
California	3.9
Texas	2.7
Florida	1.3
New York	1.8
Pennsylvania	1.0

Adding/Removing rows

- Add: df.loc[new_index] = value (WARNING → homogeneous DataFrame)
- **Remove**: df.drop(index, axis=0, inplace=True)

In [69]:

```
# add row 'chicago'
df2 = df.copy()
df2.loc['Chicago'] = [111111,22222222,2.0]
df2
```

Out[69]:

	area	population	GDP
California	423967.0	39538223.0	3.9
Texas	695662.0	29145505.0	2.7
Florida	170312.0	21538187.0	1.3
New York	141297.0	20201249.0	1.8
Pennsylvania	119280.0	13002700.0	1.0
Chicago	111111.0	2222222.0	2.0

In [70]:

remove row 'New York'
df2 = df.copy()
df2.drop('New York', axis=0, inplace=True)
df2

Out[70]:

	area	population	GDP
California	423967	39538223	3.9
Texas	695662	29145505	2.7
Florida	170312	21538187	1.3
Pennsylvania	119280	13002700	1.0

In [71]:

remove rows ['California','New York']
df2 = df.copy()
df2.drop(['California','New York'], axis=0, inplace=True)
df2

Out[71]:

	area	population	GDP
Texas	695662	29145505	2.7
Florida	170312	21538187	1.3
Pennsylvania	119280	13002700	1.0

Operating on Data

- Arithmetic operators and NumPy functions can be applied to Series/DataFrames
- Indexes are preserved
- Binary operations/functions align the indexses
 - Can manage incomplete data inserting NaNs
- DataFrame and Series operation have broadcasting property

Index Preservation

In [72]:

df

Out[72]:

	area	population	GDP
California	423967	39538223	3.9
Texas	695662	29145505	2.7
Florida	170312	21538187	1.3
New York	141297	20201249	1.8
Pennsylvania	119280	13002700	1.0

In [73]:

df * 10

Out[73]:

	area	population	GDP
California	4239670	395382230	39.0
Texas	6956620	291455050	27.0
Florida	1703120	215381870	13.0
New York	1412970	202012490	18.0
Pennsylvania	1192800	130027000	10.0

In [74]:

np.log(df[['area','population']])

Out[74]:

	area	population
California	12.957411	17.492778
Texas	13.452619	17.187811
Florida	12.045387	16.885338
New York	11.858619	16.821255
Pennsylvania	11.689229	16.380668

Python operators have their equivalent Pandas object methods:

Python operator	Pandas method(s)
+	add
_	sub, subtract
*	mul, multiply
/	truediv, div, divide
//	floordiv
%	mod
**	pow

Index Alignment

```
In [75]:
                x = pd.Series({'A': 10,'B': 20})
                y = pd.Series({'B': 4, 'A': 5})
                x / y
                      2.0
Out[75]:
                      5.0
                 dtype: float64
In [76]:
                x = pd.Series({'A': 10,'B': 20, 'C':30})
                y = pd.Series({'B': 4, 'C': 5, 'D':3})
                x / y
                      NaN
Out[76]:
                     5.0
                      6.0
                 C
                      NaN
                 dtype: float64
```

```
In [77]:
```

```
df1 = pd.DataFrame({
    'first':pd.Series([1,2],index=["A","B"]),
    'second':pd.Series([1,2],index=["A","B"])})
df2 = pd.DataFrame({
    'first':pd.Series([3,2],index=["A","C"]),
    'second':pd.Series([2,4],index=["A","C"])})
```

In [78]:

display("df1", "df2", "df1 + df2")

Out[78]:

Pandas arithmetic functions have a fill_value parameter to be used in place of missing entries:

In [79]:

df1.add(df2)

Out[79]:

	first	second
A	4.0	3.0
В	NaN	NaN
С	NaN	NaN

In [80]:

df1.add(df2, fill_value=0)

Out[80]:

	first	second
A	4.0	3.0
В	2.0	2.0
C	2.0	4.0

In [81]:

df1.loc['C']=0
df2.loc['B']=0
display("df1" , "df2" , "df1+df2")

df1+df2

Out[81]:

df1

	first	second		first	second		first	second
A	1	1	A	3	2	A	4	3
В	2	2	C	2	4	В	2	2
С	О	0	В	О	0	С	2	4

df2

Operations Between DataFrames and Series

- Broadcasting, *similar* to NumPy
 - Limited to row-wise

Out[82]:

| A B C D |
| x 3 9 0 5 |
| y 6 9 5 0 |
| z 3 9 4 0

In [83]:

display("df" , "df - df.loc['x']" , "df.sub(df.loc['x'], axis=1)")

Out[83]:

df - df.loc['x'] df.sub(df.loc['x'], axis=1)

In [84]:

df

Out[84]:

	A	В	C	D
x	3	9	O	5
у	6	9	5	0
z	3	9	4	0

In [85]:

Broadcasting rules...
display("df - df['A']" , "df.sub(df['A'], axis=0)")

Out[85]:

df - df['A']

	A	В	C	D	X	y	z
x	NaN						
y	NaN						
z	NaN						

df.sub(df['A'], axis=0)

	A	В	C	D
x	O	6	-3	2
y	О	3	-1	-6
z	0	6	1	-3

pd.DataFrame(df['A']) is a single column dataframe, but there is no broadcasting between dataframes...

In [86]: display("pd.DataFrame(df['A'])" , "df - pd.DataFrame(df['A'])")

Out[86]: pd.DataFrame(df['A']) df - pd.DataFrame(df['A'])

A		A	В	C	D
x 3	x	Ο	NaN	NaN	NaN
у 6	y	О	NaN	NaN	NaN
z 3	z	О	NaN	NaN	NaN

Handling Missing Data

Pandas use Sentinel Values to handle not available (NA) values:

- None, np.nan and pd.NA
 - Integer data: pd.NA
 - Floating point data: np.nan and pd.NA
 - General object data: None, np.nan and pd.NA
- By default, in numeric data, None → np.nan (floating point)

```
In [87]:
                s = pd.Series([None,2,3])
                pprint('s', 's[0]', 'type(s[0])', align=True)
                         s = 0
                                 NaN
                             1 2.0
                                  3.0
                             dtype: float64
                      s[0] = nan
                type(s[0]) = <class 'numpy.float64'>
In [88]:
                s = pd.Series([np.nan,2,3])
                pprint('s', 's[0]', 'type(s[0])', align=True)
                         s = 0
                                 NaN
                                 2.0
                                  3.0
                             dtype: float64
                      s[0] = nan
                type(s[0]) = <class 'numpy.float64'>
```

```
In [89]:
                  s = pd.Series([pd.NA,2,3])
                  pprint('s', 's[0]', 'type(s[0])', align=True)
                                  <NA>
                           s = 0
                               1
                                        3
                               dtype: object
                        s[0] = \langle NA \rangle
                 type(s[0]) = <class 'pandas._libs.missing.NAType'>
In [90]:
                  s = pd.Series([None,2,3], dtype='Int64')
                  pprint('s', 's[0]', 'type(s[0])', align=True)
                           s = 0
                                    <NA>
                               1
                               dtype: Int64
                        s[0] = \langle NA \rangle
                 type(s[0]) = <class 'pandas._libs.missing.NAType'>
```

```
In [91]: s = pd.Series([np.nan,2,3], dtype='Int64')
    pprint('s', 's[0]', 'type(s[0])', align=True)
```

```
In [92]:
                 pprint('pd.Series([None, "a", 123])')
                 pd.Series([None, "a", 123]) = 0
                                                   None
                                                      a
                                              2
                                                    123
                                              dtype: object
In [93]:
                 pprint('pd.Series([np.nan,"a",123])')
                 pd.Series([np.nan,"a",123]) = 0
                                                     NaN
                                                     123
                                                dtype: object
                 pprint('pd.Series([pd.NA,"a",123])')
In [94]:
                 pd.Series([pd.NA,"a",123]) = 0
                                                    <NA>
                                                       а
                                                     123
                                               dtype: object
```

Table of upcasting conventions in Pandas when NA values are introduced:

Typeclass	Conversion when storing NAs	NA sentinel value
floating	No change	np.nan
object	No change	None or np.nan
integer	Cast to float64	np.nan
boolean	Cast to object	None or np.nan

Ignoring Null values

- Most Numpy functions are not nan-aware (generate nan)
 - nan-aware NumPy functions (ignore nans):
 - ∘ np.nansum
 - ∘ np.nanmin
 - ∘ np.nanmax
 - NumPy does not handle $pd.NA \rightarrow ERROR$
- Pandas functions are NaN and NA aware (ignore nans)

```
In [95]:
```

```
s.values = array([ 1., 2., nan, 3., 4.])
s.values.sum() = nan
s.values.min() = nan
s.values.max() = nan
np.sum(s.values) = nan
np.min(s.values) = nan
np.max(s.values) = nan
np.nansum(s.values) = 10.0
np.nanmin(s.values) = 1.0
np.nanmax(s.values) = 4.0
s.sum() = 10.0
s.min() = 1.0
s.max() = 4.0
```

```
In [96]:
```

```
s.values = array([1, 2, <NA>, 3, 4], dtype=object)
s.sum() = 10
s.min() = 1
s.max() = 4
```

Detecting Null values

- isnull \rightarrow boolean mask (True/False) where Null values
- notnull → opposite of isnull

```
In [97]:
                 s = pd.Series([1,2,None,3,4])
                 pprint('s.isnull()', 's.notnull()', sep="\n\n", align=True)
                 s.isnull() = 0
                                    False
                                    False
                                    True
                                    False
                                    False
                               dtype: bool
                 s.notnull() = 0
                                     True
                                     True
                                    False
                                     True
                                     True
                               dtype: bool
```

In [98]: s[s.notnull()]

Out[98]: 1.0

2.0

3.0

4 4.0

dtype: float64

Dropping Null values

- dropna \rightarrow copy with the null values removed
 - Series: remove Null values
 - DataFrame: remove rows/columns containing Null values
- inplace parameter: bool, default False
 - If True, remove/fill in-place. Note: this will modify any other views on this object (e.g., a no-copy slice for a column in a DataFrame).

```
s = pd.Series([1,2,None,3,4])
In [99]:
                 s.dropna()
                      1.0
Out[99]:
                     2.0
                 3
                      3.0
                 4
                      4.0
                 dtype: float64
In [100]:
                 pprint('s',end='\n\n')
                 s.dropna(inplace=True)
                 pprint('s')
                 s = 0
                          1.0
                          2.0
                     1
                         NaN
                          3.0
                          4.0
                     dtype: float64
                          1.0
                 s = 0
                          2.0
                     1
                          3.0
                          4.0
                     dtype: float64
```

In [101]:

a = np.arange(15,dtype='float64').reshape(3,5)
a[(0,2,2),(3,0,2)] = np.nan
df = pd.DataFrame(a)
df

Out[101]:

In [102]:

df.dropna() # df.dropna(axis=0)

Out[102]:

In [103]:

df.dropna(axis=1)

Out[103]:

Filling Null values

- fillna \rightarrow copy with the null values replaced
- inplace parameter: bool, default False
 - If True, remove/fill in-place. Note: this will modify any other views on this object (e.g., a no-copy slice for a column in a DataFrame).
- **DEPRECATED** method parameter: {bfill, ffill, None}, default None
 - ffill → forward fill, propagate the previous value forward
 - bfill \rightarrow back fill, propagate the next values backward
- use data.ffill() and data.bfill() instead
 - axis parameter: axis along which forward/back fill

In [104]:

s = pd.Series([1, None, 2, None, 3], index=list('abcde'), dtype='Int64'
pprint('s', 's.fillna(0)', 's.ffill()', 's.bfill()', align=True)

```
1
          s = a
                   <NA>
                      2
              C
                   <NA>
              dtype: Int64
s.fillna(0) = a
              dtype: Int64
 s.ffill() = a
                   2
              dtype: Int64
  s.bfill() = a
                   1
              d
              dtype: Int64
```

```
In [105]:
```

```
a = np.arange(15,dtype='float64').reshape(3,5)
a[(0,2,2),(3,0,2)] = np.nan
df = pd.DataFrame(a)
display("df" , "df.fillna(0)")
```

Out[105]:

df

	0	1	2	3	4
o	0.0	1.0	2.0	NaN	4.0
1	5.0	6.0	7.0	8.0	9.0
2	NaN	11.0	NaN	13.0	14.0

df.fillna(o)

	0	1	2	3	4
o	0.0	1.0	2.0	0.0	4.0
1	5.0	6.0	7.0	8.0	9.0
2	0.0	11.0	0.0	13.0	14.0

In [106]:

df

Out[106]:

In [107]:

display("df.ffill()" , "df.ffill(axis=1)")

Out[107]:

df.ffill()

df.ffill(axis=1)

	0	1	2	3	4			o	1	2	3	4
o	0.0	1.0	2.0	NaN	4.0	o	0.0		1.0	2.0	2.0	4.0
1	5.0	6.0	7.0	8.0	9.0	1	5.0		6.0	7.0	8.0	9.0
2	5.0	11.0	7.0	13.0	14.0	2	NaN	Ī	11.0	11.0	13.0	14.0

```
In [108]:
```

df

Out[108]:

	0	1	2	3	4
0	0.0	1.0	2.0	NaN	4.0
1	5.0	6.0	7.0	8.0	9.0
2	NaN	11.0	NaN	13.0	14.0

In [109]:

display("df.bfill()" , "df.bfill(axis=1)")

Out[109]:

df.bfill()

	0	1	2	1	3 4
o	0.0	1.0	2.0	8.0	4.0
1	5.0	6.0	7.0	8.0	9.0
2	NaN	11.0	NaN	13.0	14.0

df.bfill(axis=1)

Concatenating Datasets

```
In [110]:
```

```
def make_df(col_index,row_index):
    """Quickly make a DataFrame"""
    data = {c: [str(c) + str(r) for r in row_index] for c in col_index}
    return pd.DataFrame(data, index=list(row_index), columns=list(col_i

# example DataFrame
display("make_df('ABCDEF',range(3))" , "make_df('ABCDEF','xyz')")
```

make_df('ABCDEF','xyz')

Out[110]:

make_df('ABCDEF',range(3))

Cy Dy Ey Fy 1 A1 B1 C1 D_1 E1 F1 y Ay By D2 C_2 **E2** F2 BzCz Dz ² A2 B2 \mathbf{z} $\mathbf{A}\mathbf{Z}$ Fz

pd.concat()

• Similar to NumPy concatenate

```
In [111]:
                 s1 = pd.Series(['A', 'B', 'C'], index=[1, 2, 3])
                 s2 = pd.Series(['D', 'E', 'F'], index=[4, 5, 6])
                 pd.concat([s1, s2])
                       Α
Out[111]:
                 3
                       C
                      D
                 5
                 dtype: object
In [112]:
                 s1 = pd.Series(['A', 'B', 'C'], index=[1, 2, 3])
                 s2 = pd.Series(['D', 'E', 'F'], index=[1, 2, 3])
                 pd.concat([s1, s2], axis=1)
Out[112]:
                  <sup>1</sup> A D
                  <sub>2</sub> B E
                  3 C
                        F
```

```
In [113]:
```

```
df1 = make_df('AB', 'uv')
df2 = make_df('AB', 'xy')
display('df1', 'df2', 'pd.concat([df1, df2])')
```

Out[113]:

```
In [114]:
```

```
df1 = make_df('AB', 'xy')
df2 = make_df('CD', 'xy')
display('df1', 'df2', 'pd.concat([df1, df2], axis=1)')
```

Out[114]:

• **Index preservation**: pd.concatenate *preserves* indices (result could have duplicate indices)

In [115]:

```
df1 = make_df('AB', 'xy')
df2 = make_df('AB', 'xy')
df_axis0 = pd.concat([df1, df2])
df_axis1 = pd.concat([df1, df2], axis=1)
display('df1', 'df2', 'df_axis0', 'df_axis1')
```

Out[115]:

• verify_integrity=True prevents index duplication (raises ValueError)

In [116]:

```
df1 = make_df('AB', 'xy')
df2 = make_df('AB', 'xy')
try:
    pd.concat([df1, df2], verify_integrity=True)
except ValueError as e:
    print("axis=0 ValueError:", e)
try:
    pd.concat([df1, df2], axis=1, verify_integrity=True)
except ValueError as e:
    print("axis=1 ValueError:", e)
display('df1', 'df2')
```

```
axis=0 ValueError: Indexes have overlapping values: Index(['x', 'y'], daxis=1 ValueError: Indexes have overlapping values: Index(['A', 'B'], daxis=1 ValueError: Indexes have overlapping values: Indexes have overlapping values: Index(['A', 'B'], daxis=1 ValueError: Indexes have overlapping values: Indexes have overlapping values
```

Out[116]:

$$\frac{A \quad B}{x \quad Ax \quad Bx} \quad \frac{A \quad B}{x \quad Ax \quad Bx} \\
\frac{x \quad Ay \quad By}{y \quad Ay \quad By} \quad \frac{y \quad Ay \quad By}{y}$$

• ignore_index=True ignores overlapped indexes (replaced by RangeIndex)

In [117]:

```
df_axis0.index = RangeIndex(start=0, stop=4, step=1)
df_axis0.columns = Index(['A', 'B'], dtype='object')
df_axis1.index = Index(['x', 'y'], dtype='object')
df_axis1.columns = RangeIndex(start=0, stop=4, step=1)
```

Out[117]:

- join="outer" (default): could create Null data
- join="inner: avoids Null data
 - axis=0 → removes columns
 - $axis=1 \rightarrow removes rows$

```
In [118]:
                 df1 = make df('ABC', [1,2])
                 df2 = make df('BCD', [3,4])
                 display('df1', 'df2')
Out[118]:
                  df1
                                      df2
                                C
                                      <sup>3</sup> B<sub>3</sub> C<sub>3</sub> D<sub>3</sub>
                   1 A1
                          B1 C1
                   <sup>2</sup> A2 B2 C2
                                    4 B4 C4 D4
In [119]:
                 df outer = pd.concat([df1, df2])
                 df inner = pd.concat([df1, df2], join='inner')
                 display('df outer', 'df inner')
Out[119]:
                  df_outer
                                               df_inner
                                  C1 NaN
                                               1 B1
                   1 A1
                            B1
                                                       C1
                   <sup>2</sup> A2
                            B2
                                 C_2
                                      NaN
                                               <sup>2</sup> B2
                                                       C_2
                            B3 C3 D3
                                               з ВЗ
                   з NaN
```

4 B4

B4 C4 D4

4 NaN

In [120]:

df1 = make_df('AB', [1,2,3])
df2 = make_df('CD', [2,3,4])
display('df1', 'df2')

Out[120]:

$$\frac{A \quad B}{1 \quad A1 \quad B1} \quad \frac{C \quad D}{2 \quad C2 \quad D2}$$

$$\frac{A \quad B}{1 \quad A1 \quad B1} \quad \frac{C \quad D}{2 \quad C2 \quad D2}$$

$$\frac{A \quad B1}{2 \quad A2 \quad B2} \quad \frac{C \quad C2 \quad D2}{2 \quad C3 \quad D3}$$

$$\frac{A \quad B3 \quad B3}{2 \quad A3 \quad B3} \quad \frac{A \quad C4 \quad D4}{2 \quad C4}$$

In [121]:

df_outer = pd.concat([df1, df2], axis=1)
df_inner = pd.concat([df1, df2], axis=1, join='inner')
display('df_outer', 'df_inner')

Out[121]:

dí	_out	er			d	f_inn	er		
		A I	3 C	D		A	В	C	D
1	A1	B1	NaN	NaN	2	A2	B2	C2	D2
2	A2	B2	C2	D2	3	A3	В3	С3	D3
3	A3	В3	С3	D3		-			
4	NaN	I NaN	C4	D4					

Merging Datasets

pd.merge()

- Merges two Series/DataFrame
- Common columns are used as merging keys

```
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None)
left_index=False, right_index=False, sort=False,
suffixes=('_x', '_y'), copy=None, indicator=False, validate=None
```

In [122]:

Out[122]:

df1 df2

	employee	group			employee	hire_date
o	Bob	Accounting	O)	Lisa	2004
1	Jake	Engineering	1		Bob	2008
2	Lisa	Engineering	2	•	Jake	2012

In [123]:

pd.merge(df1, df2)

Out[123]:

	employee	group	hire_date
0	Bob	Accounting	2008
1	Jake	Engineering	2012
2	Lisa	Engineering	2004

In [124]:

Out[124]:

df1 df2

	employee	group	hire_date		group	supervisor
o	Bob	Accounting	2008	o	Accounting	Carly
1	Jake	Engineering	2012	1	Engineering	Guido
2	Lisa	Engineering	2004	2	HR	Steve

In [125]:

pd.merge(df1, df2)

Out[125]:

	employee	group	hire_date	supervisor
o	Bob	Accounting	2008	Carly
1	Jake	Engineering	2012	Guido
2	Lisa	Engineering	2004	Guido

In [126]:

Out[126]:

df1

	employee	group	hire_date
o	Bob	Accounting	2008
1	Jake	Engineering	2012
2	Lisa	Engineering	2004

df2

	group	skills
o	Accounting	math
1	Accounting	spreadsheets
2	Engineering	software
3	Engineering	math

In [127]:

pd.merge(df1, df2)

Out[127]:

-	employee	group	hire_date	skills
o	Bob	Accounting	2008	math
1	Bob	Accounting	2008	spreadsheets
2	Jake	Engineering	2012	software
3	Jake	Engineering	2012	math
4	Lisa	Engineering	2004	software
5	Lisa	Engineering	2004	math

- on=column_name → use column as key
- left_on=name1, right_on=name2 → use columns as key

In [128]:

df2 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'], 'salary': [
display('df1', 'df2')

Out[128]:

df1 df2

	employee	group	hire_date		name	salary
0	Bob	Accounting	2008	o	Bob	70000
1	Jake	Engineering	2012	1	Jake	80000
2	Lisa	Engineering	2004	2	Lisa	120000
				3	Sue	90000

In [129]:

pd.merge(df1, df2, left_on="employee", right_on="name")

Out[129]:

	employee	group	hire_date	name	salary
0	Bob	Accounting	2008	Bob	70000
1	Jake	Engineering	2012	Jake	80000
2	Lisa	Engineering	2004	Lisa	120000

Using left_on=name1, right_on=name2 implies a redundant column

In [130]:

pd.merge(df1, df2, left_on="employee", right_on="name")

Out[130]:

	employee	group	hire_date	name	salary
0	Bob	Accounting	2008	Bob	70000
1	Jake	Engineering	2012	Jake	80000
2	Lisa	Engineering	2004	Lisa	120000

In [131]:

pd.merge(df1, df2, left_on="employee", right_on="name").drop('name', ax

Out[131]:

	employee	group	hire_date	salary
0	Bob	Accounting	2008	70000
1	Jake	Engineering	2012	80000
2	Lisa	Engineering	2004	120000

• left_index=True, right_index=True → use indexes as key

In [132]:

Out[132]:

df1

d	f_2
•	

	employee	group	hire_date		salary
•	Roh	Accounting	0008	name	
	DOD	Accounting	2008	Bob	70000
1	Iako	Engineering	2012		/0000
_	vane	Engineering	2012	Jake	80000
9	Lica	Engineering	2004		00000
_	Lisa	Engineering	2004	Lisa	120000
					120000

In [133]:

pd.merge(df1, df2, left_on='employee', right_index=True)

Out[133]:

	employee	group	hire_date	salary
o	Bob	Accounting	2008	70000
1	Jake	Engineering	2012	80000
2	Lisa	Engineering	2004	120000

- df1.join(df2) → index based merging
 - pd.merge(df1, df2, left_index=True, right_index=True)

In [134]:

df1.set_index('employee', inplace=True)
display('df1', 'df2')

Out[134]:

df1

df2

	group	hire_date		salary
employee			name	
Bob	Accounting	2008	Bob	70000
Jake	Engineering	2012	Jake	80000
Lisa	Engineering	2004	Lisa	120000

In [135]:

df1.join(df2)

Out[135]:

	group	hire_date	salary
employee			
Bob	Accounting	2008	70000
Jake	Engineering	2012	80000
Lisa	Engineering	2004	120000

• how='inner' (default) → intersection

In [136]:

Out[136]:

df1 df2 pd.merge(df1, df2)

	name	food		name	drink	_		name	food	drink
0	Peter	fish	o	Mary	wine	O	•	Peter	fish	water
1	Paul	beans	1	Joseph	beer	1		Mary	bread	wine
2	Mary	bread	2	Peter	water					
3	Adam	fish	3	Alice	beer					

• how='outer' → union (Null values)

In [137]:

display('df1', 'df2', 'pd.merge(df1, df2, how="outer")')

Out[137]:

df1

df2

	name	food		name	drink
o	Peter	fish	o	Mary	wine
1	Paul	beans	1	Joseph	beer
2	Mary	bread	2	Peter	water
3	Adam	fish	3	Alice	beer

pd.merge(df1, df2, how="outer")

	name	food	drink
0	Adam	fish	NaN
1	Alice	NaN	beer
2	Joseph	NaN	beer
3	Mary	bread	wine
4	Paul	beans	NaN
5	Peter	fish	water

• how='left' → keep left key (Null values)

In [138]:

display('df1', 'df2', 'pd.merge(df1, df2, how="left")')

Out[138]:

df1 df2

	name	food		name	drink
o	Peter	fish	0	Mary	wine
1	Paul	beans	1	Joseph	beer
2	Mary	bread	2	Peter	water
3	Adam	fish	3	Alice	beer

pd.merge(df1, df2, how="left")

	name	food	drink
o	Peter	fish	water
1	Paul	beans	NaN
2	Mary	bread	wine
3	Adam	fish	NaN

• how='right' → keep left key (Null values)

In [139]:

display('df1', 'df2', 'pd.merge(df1, df2, how="right")')

Out[139]:

df1 df2

	name	food		name	drink
o	Peter	fish	0	Mary	wine
1	Paul	beans	1	Joseph	beer
2	Mary	bread	2	Peter	water
3	Adam	fish	3	Alice	beer

pd.merge(df1, df2, how="right")

	name	food	drink
0	Mary	bread	wine
1	Joseph	NaN	beer
2	Peter	fish	water
3	Alice	NaN	beer

Aggregation and Grouping

Planets Data

Information on exoplanets (planets that orbit a star other than the Sun) that astronomers have discovered.

```
In [140]: import seaborn as sns
planets = sns.load_dataset('planets')
planets.shape
```

Out[140]: (1035, 6)

In [141]:

planets.head(10) #planets[:10]

Out[141]:

		method	number	orbital_period	mass	distance	year
0	Radial Vel	ocity	1	269.300	7.10	77.40	2006
1	Radial Vel	ocity	1	874.774	2.21	56.95	2008
2	Radial Vel	ocity	1	763.000	2.60	19.84	2011
3	Radial Vel	ocity	1	326.030	19.40	110.62	2007
4	Radial Vel	ocity	1	516.220	10.50	119.47	2009
5	Radial Vel	ocity	1	185.840	4.80	76.39	2008
6	Radial Vel	ocity	1	1773.400	4.64	18.15	2002
7	Radial Vel	ocity	1	798.500	NaN	21.41	1996
8	Radial Vel	ocity	1	993.300	10.30	73.10	2008
9	Radial Vel	ocity	2	452.800	1.99	74.79	2010

In [142]:

planets.dropna(inplace=True)
print(planets.shape)
planets.head(10)

(498, 6)

Out[142]:

	metho	d number	orbital_period	mass	distance	year
o	Radial Velocity	1	269.300	7.10	77.40	2006
1	Radial Velocity	1	874.774	2.21	56.95	2008
2	Radial Velocity	1	763.000	2.60	19.84	2011
3	Radial Velocity	1	326.030	19.40	110.62	2007
4	Radial Velocity	1	516.220	10.50	119.47	2009
5	Radial Velocity	1	185.840	4.80	76.39	2008
6	Radial Velocity	1	1773.400	4.64	18.15	2002
8	Radial Velocity	1	993.300	10.30	73.10	2008
9	Radial Velocity	2	452.800	1.99	74.79	2010
10	Radial Velocity	2	883.000	0.86	74.79	2010

Aggregation functions

Some built-in Pandas aggregations:

Aggregation	Description
count()	Total number of items
<pre>first(), last()</pre>	First and last item
<pre>mean(), median()</pre>	Mean and median
min(), max()	Minimum and maximum
std(),var()	Standard deviation and variance
mad()	Mean absolute deviation
<pre>sum(),prod()</pre>	Sum and product of all items

In [143]: planets = sns.load dataset('planets') df = planets.dropna().drop(['method', 'number'], axis=1) print(df.shape) pprint('df.min()', 'df.max()', 'df.mean()', 'df.std()', align=True) (498, 4)df.min() = orbital period 1.3283 0.0036 mass distance 1.3500 1989.0000 year dtype: float64 df.max() = orbital period 17337.5 25.0 mass distance 354.0 year 2014.0 dtype: float64 df.mean() = orbital period 835.778671 mass 2.509320 distance 52.068213 year 2007.377510 dtype: float64 df.std() = orbital period 1469.128259 3.636274 mass

distance

dtype: float64

year

46.596041 4.167284

In [144]: df = planets.drop(['method', 'number'], axis=1) print(df.shape) pprint('df.min()', 'df.max()', 'df.mean()', 'df.std()') (1035, 4)df.min() = orbital period 0.090706 0.003600 mass distance 1.350000 year 1989.000000 dtype: float64 df.max() = orbital period 730000.0 25.0 mass distance 8500.0 2014.0 year dtype: float64 df.mean() = orbital period 2002.917596 2.638161 mass distance 264.069282 year 2009.070531 dtype: float64 df.std() = orbital_period 26014.728304 3.818617 mass distance 733.116493

year

dtype: float64

3.972567

The GroupBy Object

- df.groupby() → a *collection** of DataFrames
 - Kind os a special view of a DataFrame
- Can be indexed just like a DataFrame → a GroupBy object
- Provides easy operations of type *split-apply-combine*


```
In [145]:
                 planets.groupby('method')
                 <pandas.core.groupby.generic.DataFrameGroupBy object at 0x7f2c2b732cf0>
Out[145]:
In [146]:
                 planets.groupby('method')['orbital_period']
                 <pandas.core.groupby.generic.SeriesGroupBy object at 0x7f2c2b76c3e0>
Out[146]:
In [147]:
                 planets.groupby('method')['orbital period'].median()
                 method
Out[147]:
                 Astrometry
                                                     631,180000
                 Eclipse Timing Variations
                                                    4343.500000
                 Imaging
                                                   27500.000000
                 Microlensing
                                                    3300.000000
                 Orbital Brightness Modulation
                                                       0.342887
                 Pulsar Timing
                                                      66.541900
                 Pulsation Timing Variations
                                                    1170.000000
                 Radial Velocity
                                                     360.200000
                 Transit
                                                       5,714932
                 Transit Timing Variations
                                                      57.011000
                 Name: orbital period, dtype: float64
```

Method not explicitly implemented by the GroupBy object are passed through and called on the groups.

```
In [148]: planets['orbital_period'].describe()
```

Out[148]:

count	992.000000
mean	2002.917596
std	26014.728304
min	0.090706
25%	5.442540
50%	39.979500
75%	526.005000
max	730000.000000

Name: orbital_period, dtype: float64

In [149]:

planets.groupby('method')['orbital_period'].describe()

Out[149]:

	count	mean	std	min	25%
method					
Astrometry	2.0	631.180000	544.217663	246.360000	438.
Eclipse Timing Variations	9.0	4751.644444	2499.130945	1916.250000	290
Imaging	12.0	118247.737500	213978.177277	4639.150000	834
Microlensing	7.0	3153.571429	1113.166333	1825.000000	237
Orbital Brightness Modulation	3.0	0.709307	0.725493	0.240104	0.29
Pulsar Timing	5.0	7343.021201	16313.265573	0.090706	25.2
Pulsation Timing Variations	1.0	1170.000000	NaN	1170.000000	1170
Radial Velocity	553.0	823.354680	1454.926210	0.736540	38.0
Transit	397.0	21.102073	46.185893	0.355000	3.16
Transit Timing Variations	3.0	79.783500	71.599884	22.339500	39.6

GroupBy object is iterable

• A sequence of (groupby_value , Series/DataFrame) pairs

In [150]:

```
for method,df in planets.groupby('method'):
    print(f'{method:30s} {df.shape=}')
```

```
Astrometry
                               df.shape=(2, 6)
Eclipse Timing Variations
                               df.shape=(9, 6)
                               df.shape=(38, 6)
Imaging
Microlensing
                               df.shape=(23, 6)
Orbital Brightness Modulation df.shape=(3, 6)
Pulsar Timing
                               df.shape=(5, 6)
Pulsation Timing Variations
                               df.shape=(1, 6)
Radial Velocity
                               df.shape=(553, 6)
Transit
                               df.shape=(397, 6)
                               df.shape=(4, 6)
Transit Timing Variations
```

Aggregate, filter, transform, apply

GroupBy objects have aggregate(), filter(), transform(), and apply() methods that efficiently implement a variety of useful operations before combining the grouped data.

In [151]:

planets.groupby('method')[['orbital_period','distance']].aggregate(['cc

Out[151]:

	orbital_period			distance		
	count	min	max	count	min	max
method						
Astrometry	2	246.360000	1016.000000	2	14.98	20.7
Eclipse Timing Variations	9	1916.250000	10220.000000	4	130.72	500.
Imaging	12	4639.150000	730000.000000	32	7.69	165.0
Microlensing	7	1825.000000	5100.000000	10	1760.00	7720
Orbital Brightness Modulation	3	0.240104	1.544929	2	1180.00	1180
Pulsar Timing	5	0.090706	36525.000000	1	1200.00	1200
Pulsation Timing Variations	1	1170.000000	1170.000000	О	NaN	NaN
Radial Velocity	553	0.736540	17337.500000	530	1.35	354.
Transit	397	0.355000	331.600590	224	38.00	8500
Transit Timing Variations	3	22.339500	160.000000	3	339.00	2119

Working with Time Series

- Pandas is compatible with dates, times, and time-indexed data
- Time-based indexes can be used for time series
- Standard + date-only special indexing

Python dates and times: datetime and dateutil

Out[152]: datetime.datetime(2025, 4, 14, 0, 0)

dateutil module can parse dates from a variety of string formats:

Out[153]: datetime.datetime(2025, 4, 14, 0, 0)

NumPy's datetime64

dtype='datetime64[D]')

```
In [154]:
                 import numpy as np
                 date = np.array('2025-04-14', dtype=np.datetime64)
                 date
                 array('2025-04-14', dtype='datetime64[D]')
Out[154]:
                Vectorized operations can be applied to dates:
In [155]:
                date + np.arange(20)
                 array(['2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17',
Out[155]:
                        '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21',
                        '2025-04-22', '2025-04-23', '2025-04-24', '2025-04-25',
```

'2025-04-26', '2025-04-27', '2025-04-28', '2025-04-29', '2025-04-30', '2025-05-01', '2025-05-02', '2025-05-03'],

Dates and times in Pandas

```
In [156]: date = pd.to_datetime("4th of July, 2015")
    date
```

Out[156]: Timestamp('2015-07-04 00:00:00')

Vectorized operations can be applied to dates:

Dates and times in Pandas

DatetimeIndex provides a time index

Standard indexing patterns:

Date-only indexing patterns:

dtype: int64

Time Series Data Structures

- *time stamps*: Timestamp (np.datetime64) → DatetimeIndex
- *time Periods*: Period (np.datetime64) → PeriodIndex
- time deltas or durations: Timedelta (np.timedelta64) → TimedeltaIndex

pd.to_datetime() (parser) → Timestamp or DatetimeIndex

```
In [161]:
```

• DatetimeIndex.to_period() → PeriodIndex

• Timestamp - Timestamp \rightarrow Timedelta:

In [164]: dates[1]-dates[0]

Out[164]: Timedelta('1 days 00:00:00')

• DatetimeIndex - Timestamp → TimedeltaIndex:

In [165]: dates-dates[0]

Out[165]: TimedeltaIndex(['0 days', '1 days', '3 days', '4 days', '5 days'], dtyp

- pd.date_range() → DatetimeIndex
- pd.period_range() → PeriodIndex
- pd.timedelta_range() → TimedeltaIndex

Resampling, Shifting, and Windowing

In [170]:

#!pip install pandas-datareader
from pandas_datareader import data
#goog = data.DataReader('GOOG', start=2020, end='2024',data_source='stc
goog = data.DataReader('GOOG', start=2020, end='2024', data_source='stc
goog.head()

Out[170]:

Open		High	Low	Close	Volume
Date					
2020-01-02	67.0775	68.4070	67.0775	68.3685	28134620
2020-01-03	67.3930	68.6250	67.2770	68.0330	23740120
2020-01-06	67.5000	69.8250	67.5000	69.7105	34662980
2020-01-07	69.8970	70.1495	69.5190	69.6670	30233860
2020-01-08	69.6040	70.5790	69.5420	70.2160	30583540

In [171]: goog = goog['Close']

In [172]: %matplotlib inline
 import matplotlib.pyplot as plt
 import seaborn; seaborn.set()

In [173]: goog.plot(linewidth=0.5);

- resample(freq).aggregate_func() → data aggregation
- asfreq(freq) → data selection
 - ≈ resample(freq).last()

In [174]:

```
# 'BYE': Business Year End (last business day of year)
goog.plot(alpha=0.5, style='-', linewidth=0.5)
goog.resample('BYE').mean().plot(style=':')
goog.asfreq('BYE').plot(style='--');
plt.legend(['original', 'resample', 'asfreq'], loc='upper left');
```


Resampling can generate Null values

• method="ffill" | "bfill" \rightarrow how values are imputed

```
In [175]:
                 d = goog.head()
                 pprint("d" , "d.asfreq('D')", "d.asfreq('D',method='ffill')", align=Tru
                                            d = Date
                                                2020-01-02
                                                               68.3685
                                                2020-01-03
                                                               68.0330
                                                2020-01-06
                                                               69.7105
                                                2020-01-07
                                                               69.6670
                                                2020-01-08
                                                               70.2160
                                                Name: Close, dtype: float64
                                d.asfreq('D') = Date
                                                2020-01-02
                                                               68.3685
                                                2020-01-03
                                                               68.0330
                                                2020-01-04
                                                                   NaN
                                                2020-01-05
                                                                   NaN
                                                2020-01-06
                                                               69.7105
                                                2020-01-07
                                                               69.6670
                                                2020-01-08
                                                               70.2160
                                                Freq: D, Name: Close, dtype: float64
                 d.asfreq('D',method='ffill') = Date
                                                               68.3685
                                                2020-01-02
                                                2020-01-03
                                                               68.0330
                                                2020-01-04
                                                               68.0330
                                                2020-01-05
                                                               68.0330
                                                2020-01-06
                                                               69.7105
                                                2020-01-07
                                                               69.6670
```

2020-01-08

70.2160 Freq: D, Name: Close, dtype: float64

```
In [176]:
```

```
fig, ax = plt.subplots(2, sharex=True)
data = goog.head()

data.asfreq('D').plot(ax=ax[0], marker='o')

data.asfreq('D', method='bfill').plot(ax=ax[1], style='-o')
data.asfreq('D', method='ffill').plot(ax=ax[1], style='--o')
ax[1].legend(["back-fill", "forward-fill"]);
```


- $shift() \rightarrow shift the data$
 - shift(int) → shift the data int positions
 - shift(int, freq) \rightarrow shift the data int number of freq

```
In [177]:
```

pprint("goog.head()", "goog.shift(3).head()", "goog.shift(3,'D').head()

```
goog.head() = Date
                           2020-01-02
                                          68.3685
                           2020-01-03
                                          68.0330
                           2020-01-06
                                          69.7105
                           2020-01-07
                                          69.6670
                           2020-01-08
                                          70.2160
                           Name: Close, dtype: float64
    goog.shift(3).head() = Date
                                              NaN
                           2020-01-02
                           2020-01-03
                                              NaN
                           2020-01-06
                                              NaN
                           2020-01-07
                                          68.3685
                           2020-01-08
                                          68.0330
                           Name: Close, dtype: float64
goog.shift(3,'D').head()
                         = Date
                           2020-01-05
                                          68.3685
                           2020-01-06
                                          68.0330
                           2020-01-09
                                          69.7105
                           2020-01-10
                                          69.6670
                           2020-01-11
                                          70.2160
                           Name: Close, dtype: float64
```

Compute differences over time (frequencies):

```
In [178]:
                pprint("goog.head()", "goog.shift(-365,'D').head()", align=True)
                                goog.head() = Date
                                              2020-01-02
                                                            68.3685
                                              2020-01-03
                                                            68.0330
                                              2020-01-06
                                                            69.7105
                                              2020-01-07
                                                           69.6670
                                              2020-01-08
                                                           70.2160
                                              Name: Close, dtype: float64
                goog.shift(-365,'D').head() = Date
                                              2019-01-02
                                                            68.3685
                                              2019-01-03
                                                            68.0330
                                              2019-01-06
                                                           69.7105
                                              2019-01-07
                                                           69.6670
                                              2019-01-08
                                                            70.2160
                                              Name: Close, dtype: float64
```

In [179]:

```
data = goog.asfreq('D', method='ffill')
ROI = 100 * (data.shift(-365,'D') / data - 1)
ROI.plot()
plt.ylabel('% Return on Investment');
```


- rolling() → rolling window
 - aggregation functions can be applied to a rolling window

In [180]:

```
r365 = goog.rolling(365).mean()
r200 = goog.rolling(200).mean()
data = pd.DataFrame({'GOOG': goog, '1year mean': r365, '200d mean': r200 ax = data.plot(style=['-', '--', ':'])
ax.lines[0].set_alpha(0.3)
```


In [181]: pprint("goog.head()", "goog.shift(3).head()", "goog.shift(3,'D').head()

```
goog.head() = Date
                           2020-01-02
                                          68.3685
                           2020-01-03
                                          68.0330
                           2020-01-06
                                          69.7105
                           2020-01-07
                                          69.6670
                           2020-01-08
                                          70.2160
                           Name: Close, dtype: float64
    goog.shift(3).head() = Date
                                              NaN
                           2020-01-02
                           2020-01-03
                                              NaN
                           2020-01-06
                                              NaN
                           2020-01-07
                                          68.3685
                           2020-01-08
                                          68.0330
                           Name: Close, dtype: float64
goog.shift(3,'D').head()
                         = Date
                           2020-01-05
                                          68.3685
                           2020-01-06
                                          68.0330
                           2020-01-09
                                          69.7105
                           2020-01-10
                                          69.6670
                           2020-01-11
                                          70.2160
                           Name: Close, dtype: float64
```