2. 데이터 표현

- 1.1. 진법 [25]

- 1) 수와 숫자
 - 수(number)는 그 수를 의미하는 기호인 숫자(numeric character)로 나타낸다.
- 2) 진법

용어

진법

수를 숫자로 나타내는 방법으로 숫자의 위치에 따라 가중치(weight)를 부여하는 방법이다.

가중치(weight)

└ 가중치는 기수(radix 또는 base)의 승수(거듭제곱)를 이용한다.

기수(radix, base)

└ 기수(radix, base)는 2 이상의 양의 정수다.

r진번

└ 기수가 r(r >= 2)인 경우의 진법

r지스

r 진법으로 표현된 수

└ r개의 숫자 (0, 1, 2, ..., r-1)로 표현

기수r

└ r진수임을 나타내기 위해 r진수 오른쪽 아래 기수 r을 표기

r진수 N은 정수부분이 n자리, 소수점 이하 부분이 m자리라 할 때 다음과 같이 표현됨

- ak(a의 아래첨자 k) 는 진법에서 사용하는 숫자로, 각 자리의 계수

└ 0 ≤ a_k < r 이어야 함

여러가지 진법에 따른 수 표현

└ 16진수의 경우 10개의 숫자와 나머지 6개의 숫자(A,B,C,D,E,F)는 영문자에서 빌려쓰고 있음

- 3) 진수변환

(1) r진수의 10진수 변환

_ 16진수 9AB.C를 10진수로 변환하시오. 풀이 9AB.C₁₆ = 9×16² + 10×16¹ + 11×16º + 12×16⁻¹ = 2304 + 160 + _ 11 + 0.75 = 2475.75

(2) 10진수의 r진수 변환

증명[29-30]

문제풀이

(3) 2진수와 2^n진수 상호 변환

- 2진수를 구성하는 각 자릿수는 비트(bit : binary digit)로 표현한다.

n개의 비트는 2^n개의 수를 표현할 수 있다.

2진수의 각 비트를 소수점 중심으로 2비트씩 묶으면 4개의 수를 표현할 수 있는 숫자 조합(00, 01, 10, 11)을 얻을 수 있다.

└ 주어진 2진수를 4개의 숫자로 수를 표현하는 4진법으로 해석할 수 있다.

2진수의 2^n진수 변환

└ 예제

└ n비트씩 묶을 때 부족한 비트 수만큼 0이 있다고 가정하고 반드시 필요한 수만큼씩 묶어서 해석해야 함

- 2^n진수(n>=2)의 2진수 변환

└ 2^n진수의 각 자리의 수에 대응하는 n비트의 2진수로 모두 바꾸면 된다.

- 4) 기타 변환
 - └ r진수를 s진수로 변환하는 경우 (단, r!=s, r!=10, s!=10)
 - └ 1번 변환방법으로 r진수를 10진수로 변환한다음 2번 변환방법으로 다시 s진수로 변환한다.

1.1. 진법 (2)

└ 4) 산술연산 (arithmetic operations)

진수 r인 수에 대한 산술연산(arithmetic operations)은 10진수의 산술연산과 같다. 다만 r개의 숫자만 사용할 수 있음에 주의해야 한다.

두 개의 2진수에 대한 가산, 감산, 승산, 제산

두 개의 2진수에 대한 가산, 감산, 승산, 제산의 예는 다음과 같다.

가산

│ 두 개의 2진수 가산은 모든 자리의 합의 결과가 0이거나 1이 된다는 것을 제외하고는 10진수의 경우와 같은 방법으로 계산하며, 주저인 자리에서 발생하는 올림수(carry)는 바로 윗자리에서 합산한다.

감사

주어진 자리 숫자에서의 내림수(borrow)가 피감수의 해당 자리에 2를 더해 주는 것을 제외하고는 10진수ᡂ의 경우와 같다

- 승산

_ 승수의 숫자가 항상 0이거나 1이므로 부분 곱셈의 결과는 피승수와 같거나 0이 되며, 이들을 자릿수에 맞추어 모두 더해 - 주면 된다.

제산

피제수에서 제수를 계속 빼서 (피제수가 제수보다 작아지거나 0이 될 때까지), 그때까지 뺀 횟수가 몫이 되고, 빼고 남은 값이 나머지가 된다.

8진법, 16진법 또는 다른 r진법의 산술연산

8진법s, 16진법1s 또는 다른 진법의 산술 연산을 위해서는 두 개의 한 자릿수의 합과 곱의 값을 알 수 있는 표가 필요하다. 예를 들어 4진수4의 가산과 감산을 위해서는 (표 2.2)와 같은 산술 연산표를 이용하면 간편하다.

r진법의 두 수를 가산하는 보다 쉬운 방법

· 주어진 자리의 두 숫자를 10진수로 바꾸어 10진수 덧셈을 하고, 그 결과를 다시 r진법의 합과 올림수로 변환

예제

└ 진수가 r인 두 수의 승산은 10진법으로 산술연산하고, 그때마다의 중간 결과를 r진법으로 변환함으로써 이루어진다.

└ 예제 2.13 [37]

여기서 오른쪽 계산과정은 왼쪽의 두 8진수8의 각 곱셈 결과를 10진수10로 나타내고 다시 8진수8로 나타낸 것이다. 가장오른쪽의 8진수8에서 ○표를 한 숫자들은 각 자리에서의 올림수(carry)를 의미한다. 예를 들면, (4×4)8 = (20)8에서 왼쪽 숫자 2는 (4×7)8의 곱셈에 더해질 올림수이고, 마지막 자리 숫자 0만 8진수 부분 곱셈의 해당 자리에 놓이게 되는 숫자이다.

1.2. 보수 [38]

개요

보수의 개념, 보수를 이용한 r진수의 감산

2진수를 다루는 컴퓨터에서의 감산이 보수를 이용하여 가산만으로도 가능함

1) 보수의 개념

r진수(r) N을 r의 보수 (r's complement)와 (r−1)의 보수 ((r−1)'s complement) 등 두 가지 보수가 있다. 예를 들어, 2진 수₂에는 2의 보수와 1의 보수가 있고, 10진수₁₀에는 10의 보수와 9의 보수가 있다.

(1) r의 보수

└ 정수부분 n개의 자리로 구성된 r진수 N에 대한 r의 보수는 (식 2.2)와 같이 정의

예를 들어, - 10진수 $_{10}$ 35.34의 10의 보수는 10^2 - 35.34 = 64.66이고, - 2진수 $_2$ 110111의 2의 보수는 2^6 - (110111) $_2$ = (1000000 $_2$ - 110111 $_2$) = 001001 $_2$ 이다.

위의 공식과 다르게 (r-1)의 보수를 구한 다음 가장 낮은 자리에 1을 더하여 구할 수도 있다

즉, 10진수 678의 9의 보수는 10³ - 10° - 678 = 999 - 678 = 321 이므로 678의 10의 보수는 321 + 1 = 322 - 가 된다. 2진수 1110의 1의 보수는 1110의 1을 0으로, 0은 1로 바꿈으로써 0001을 구한다. 따라서 1110₂의 2의 보수는 0001 + 1 = 0010이 된다.

(2) (r-1)의 보수

정수부분이 n개의 자리로 구성되고 소수점 아래가 m개의 자리로 구성된 r진수 N에 대한 (r-1)의보수는 다음과 같다.

└ N에 대한 (r-1)의 보수 = r^n - r^(-m) - N

즉, r^n - r^- 에서 수 N을 빼면 (r-1)의 보수가 얻어진다. 예를 들면, 10진수 35.34에 대한 9의 보수는 10^2 - 10^{-2} - 35.34 = 99.99 - 35.34 = 64.65 이고, 2진수 1101.11의 1의 보수는 $(2^4$ - 2^{-2} - $1101.11)_2$ = (1111.11 - $1101.11)_2$ = $(0010.00)_2$

└ 일반적으로 2진수의 1의 보수는 2진수의 0을 1로, 1은 0으로 서로 바꾸면 쉽게 구할 수 있다.

└ r의 보수와 (r-1)의 보수의 관계

└ r의 보수 = (r-1)의 보수 + 가장 낮은 자리의 1

- 즉, 정수에서 2의 보수는 1의 보수에 1을 더한 것과 같다.

└ 위의 공식과 다르게 (r-1)의 보수를 구한 다음 가장 낮은 자리에 1을 더하여 구할 수도 있다

2) 보수를 이용한 감산

└ 감산을 보수와 가산으로 처리할 수 있는 이론적 근거

└ 즉, 감수(subtrahend)를 부호(sign)를 보함하여 r의 보수를 한 다음 피감수(minuend)에 가산한다.

10진수 감산 923-678

923-678=245인데 이것을 678의 10의 보수 322를 이용하여 923+322=1245를 구하고, 여기서 올림수 1을 무시하면 동일한 답 245를 구할 수 있다. 그러나 이 경우 678의 10의 보수는 1000-678=322로 구해야 하므로 여전히 감산을 이용해야 한다.

2진수 감산 10112-01012

1011₂에 0101₂의 2의 보수를 구해 더해 준 다음 올림수만 무시하면 구할 수 있다. 그런데 여기서 0101₂의 2의 보수는 먼저 0101₂의 1의 보수를 구한 다음 그 결과에 1만 더해 주면 구할 수 있다. 그리고 0101₂의 1의 보수는 앞에서 설명한 것처럼 0은 1로, 1은 0으로 바꿈으로써 구할 수 있다.

└ 1.3. 부호 있는 2진수[41]

개요

수를 표현하는 방법 중 양수뿐만 아니라 음수를 표현하는 방법

ᅡ수

부호

소수점

수의 크기

소수점의 위치 정하는 방법에 따른 수 표현방법

고정 소수점(fixed point)

소수점의 위치가 고정

부동 소수점(floating point)

└ 소수점의 위치가 상대적으로 이동

└ 이 항에서는 고정소수점 표현 방법에 따라 양의 정수, 영, 음의 정수를 표현하는 방법만 다룬다.

부호 있는 정수를 2진수로 표현하기

우선 표현하고자 하는 수를 몇 비트로 표현할 것인지를 정해야 한다.

└ 4비트를 이용하여 부호 있는 2진수를 세 가지로 표현한 것

└ 어떤 표현방법을 사용하더라도 양수를 표현하는 2진수는 동일하지만, 음수를 표현하는 2진수는 각각 다르다.

- 1) 부호 있는 절대치 표현
- 2) 부호 있는 1의 보수 표현
- 3) 부호 있는 2의 보수 표현