Chapitre 4 Sémantiques des BNF et arbres d'analyse

- 4.1 Sémantique dirigée par la syntaxe
- 4.2 Introduction a la notion de parenthesage implicité
- 4.3 Formaliser niveaux de précédence dans BNF elles-mêmes

Problèmatique

On considère le mini-langage \mathbf{E} d'expressions arithmétiques sur ensemble de terminaux $V_T \stackrel{def}{=} \{\text{`I'}, \text{`-'}, \text{`(', ')'}\}$

Comment définir une sémantique aux mots dans ce langage? e.g. une fonction de $V_T^* \to \mathbb{Z}$ de domaine \mathbf{E} .

ldée

- 1. Associer une structure d'arbres d'analyse à cette BNF avec une signature tq chaque alternative correspond à un constructeur distinct.
- 2. Définir la sémantique sur cette structure d'arbre.

Définition des arbres d'analyse

Déf. À la BNF de **E**, on associe la BNF d'arbres (sur $V_T \cup [1, 4]$)

Déf. Pour $t \in (V_T \cup [1,4])^*$, on note $\chi(t)$ le mot de V_T^* obtenu en "effaçant" de t les symboles de [1,4].

Exo 4.1[†] Calculer $\chi(t)$ avec t valant "2 – 4 (3 1 I – 1 I)". Définir χ par induction sur les mots.

Déf. Si $t \in \mathbf{E_P}$, on dit que t est un arbre d'analyse de $\chi(t)$.

Exo 4.2[†] Donner l'ensemble des arbres d'analyse du mot I--I-I

Exo 4.3 Pour $L \subseteq (V_T \cup [1,4])^*$, on pose $\chi(L) = \{\chi(t) \mid t \in L\}$. Montrer que $\mathbf{E} = \chi(\mathbf{E}_{\mathbf{P}})$.

(C-à-d $w \in \mathbf{E}$ ssi il existe $t \in \mathbf{E}_{\mathbf{P}}$ avec t arbre d'analyse de w).

Une sémantique sur la BNF de E

1
$$\mathbf{E} \uparrow r$$
 ::= 'I' $r := 1$
2 | '-' $\mathbf{E} \uparrow r_1$ $r := -r_1$
3 | $\mathbf{E} \uparrow r_1$ '-' $\mathbf{E} \uparrow r_2$ $r := r_1 - r_2$
4 | '(' $\mathbf{E} \uparrow r$ ')'

Définition Un mot w admet la sémantique r ssi il existe un arbre d'analyse t de w tq $r = [\![t]\!]$, où $[\![t]\!]$ est calculée avec la BNF

Ambiguïté et non-déterminisme

Exo 4.4 † Pour chacun des mots suivants, dessiner l'ensemble de ses arbres d'analyse puis la propagation d'attributs sur ces arbres d'analyse.

- 1. I-I-I
- 2. (I-I)-I
- 3. I-(I-I)

Définition Une BNF engendrant deux arbres d'analyses distincts du même mot w est dite *ambiguë* : ce mot a *éventuellement* plusieurs sémantiques (donc une sémantique non-déterministe).

NB La BNF associée à un AFD (Automate Fini Déterministe) est non-ambiguë.

Idée de la suite rendre sémantiques déterministes avec *règles de précédences* qui éliminent les arbres d'analyses indésirables.

Chapitre 4 Sémantiques des BNF et arbres d'analyse

- 4.1 Sémantique dirigée par la syntaxe
- 4.2 Introduction à la notion de parenthésage implicite
- 4.3 Formaliser niveaux de précédence dans BNF elles-mêmes

Précédence des opérateurs

Sur expressions arithmétiques $20-2\times 3$ pourrait à priori représenter " $(20-2)\times 3$ " ou " $20-(2\times 3)$ ".

Par convention

$$x - y \times z \stackrel{\text{def}}{=} x - (y \times z)$$
 et $x \times y - z \stackrel{\text{def}}{=} (x \times y) - z$

Formellement "×" de *précédence plus élévée* que "—". En pratique, utilise *niveaux de précédence inversement ordonnés*. (i.e. un petit nombre correspond à une précédence élévée!)

Exemple pour le langage C multiplication * et division / de niveau 5 versus soustraction - et addition + de niveau 6.

ATTENTION, précédence aussi pour opérateurs unaires ! Exo $\bf 4.5^{\dagger}$ parenthésage explicite de " $-1 \mid 2 \& 3$ " ?

Associativité des opérateurs

Pb du parenthésage implicite pour opérateurs non associatifs : $(5-3)-2\neq 5-(3-2) \qquad \text{et} \qquad (2^3)^2\neq 2^{(3^2)}$

associativité à gauche $x-y-z\stackrel{def}{=}(x-y)-z$. le cas de tous opérateurs arithmétiques sauf puissance ci-dessus.

associativité à droite $x^{y^z} \stackrel{def}{=} x^{(y^z)}$.

ATTENTION, associativité en fait définie par niveau de précédence x + y - z = (x + y) - z et x - y + z = (x - y) + z

Retour sur l'exemple

1
$$\mathbf{E} \uparrow r$$
 ::= 'I' $r := 1$
2 | '-' $\mathbf{E} \uparrow r_1$ $r := -r_1$
3 | $\mathbf{E} \uparrow r_1$ '-' $\mathbf{E} \uparrow r_2$ $r := r_1 - r_2$
4 | '(' $\mathbf{E} \uparrow r$ ')'

Exo 4.6[†] Avec ce système d'attributs, quel arbre d'analyse associer à "I--I-I" pour que le résultat corresponde à la convention usuelle.

Encore un exemple

On considère la BNF de profils $\mathbf{S}\uparrow\mathbb{Z}$ et $\mathbf{E}\downarrow\mathbb{N}\uparrow\mathbb{Z}$:

Exo La BNF étant ambiguë, dessiner tous les arbres possibles du mot 'x + x', avec la propagation d'attributs.

Exo On considère que '#' est prioritaire sur '-' (qui est associatif à gauche). Quel est le résultat du calcul?

Application à la spécification d'interpréteurs

Spécification d'intepréteurs

via BNF ambiguë attribuée + précédences

Voir fichier fourni MiniExemple_BisonYacc/calc.y.

Exo 4.7 Écrire la BNF attribuée sous-jacente de cet interpréteur. Donner l'arbre d'analyse de "- 10 ^ - 3 - 5" (et faire le calcul d'attributs).

Chapitre 4 Sémantiques des BNF et arbres d'analyse

- 4.1 Sémantique dirigée par la syntaxe
- 4.2 Introduction a la notion de parentnesage implicité
- 4.3 Formaliser niveaux de précédence dans BNF elles-mêmes

Problématique

Transformer "spécification" d'un analyseur via BNF attribuée + précédences en une BNF attribuée non-ambiguë "équivalente".

```
"équivalente" = \hat{m} syntaxe (langage reconnu) et \hat{m} sémantique associée (précédences + attributs)
```

Motivation ramener la théorie à l'étude des BNF non-ambiguës.

Difficultés

- ▶ Il n'existe pas forcément une BNF non-ambiguë équivalente.
- ► Le problème est indécidable : on applique des "patrons" à partir d'exemples types \leadsto "heuristiques".

Encodage des précédences d'une BNF d'expressions

Introduire un non-terminal $\mathbf{E_n}$ par niveau de précédence n via $\mathbf{E_n} \stackrel{def}{=}$ ensemble des expr tq tt opérateur de précédence > n apparaît uniquement dans une sous-expr de forme "(e)"

Pour *n* maximal, $\mathbf{E_n} \equiv \text{ensemble des expressions}$.

Construction des équations

- ▶ pour tout n > 0, $\mathbf{E_n} \supseteq \mathbf{E_{n-1}}$ (ce qui induit $\mathbf{E_n} := \mathbf{E_{n-1}} \mid \ldots$)
- **>** pour n maximal, on a alternative $E_0 \supseteq (E_n)$.
- ► Tout op binaire ♠ de niveau n induit une des 3 alternatives si n associatif à gauche, si n associatif à droite, si n non-associatif, $E_n \supseteq E_n \spadesuit E_{n-1} \spadesuit E_n$ si n non-associatif, $E_n \supseteq E_{n-1} \spadesuit E_{n-1}$

NB Associativité fixée par niveau de précédence!

Exemples

Exo 4.8[†] Appliquer cette méthode sur les BNF suivantes.

On se limitera à se convaincre "à la main" de la non-ambiguïté sur quelques exemples.

- 1. l'exemple de l'introduction.
- 2. la BNF de la section 6.1 du sujet de TP.
- 3. la BNF tirée de la spécification Bison à l'exo 4.7.

Langage algébrique intrinsèquement ambigu

Soit $A \stackrel{def}{=} \{a^n b^n c^k | n, k \text{ de } \mathbb{N}\}$ et $B \stackrel{def}{=} \{a^k b^n c^n | n, k \text{ de } \mathbb{N}\}.$

Exo 4.9[†] Trouver une BNF pour le langage $A \cup B$. Montrer que cette BNF est ambiguë.

Thm Toute BNF qui engendre le langage $A \cup B$ est ambiguë.

Raison "intuitive"

Le langage $A \cap B = \{a^n b^n c^n | n \in \mathbb{N}\}$ n'est pas algébrique (par lemme de l'étoile des langages algébriques).

Un mot de $A \cap B$ ne peut donc pas avoir un unique arbre d'analyse.

Indécidabilité de la détection des ambiguïtés

Exemple sur $V_T = \{a, b, 1, 2\}$ et $V_N = \{S, U, V\}$

$$S ::= U \mid V$$

 $U ::= 1 U a \mid 2 U a b a \mid 1 a \mid 2 a b a$
 $V ::= 1 V a a \mid 2 V b \mid 1 a a \mid 2 b$

Exo 4.10 Cette BNF est-elle ambiguë?

..

Généralisable pour param
$$(n, (u_i, v_i)_{i \in 1..n})$$
 tq $u_i, v_i \in \{a, b\}^* \setminus \{\epsilon\}$ $(\text{sur } V_T = \{a, b, 1, ..., n\})$

$$U ::= 1 U u_1 | \dots | n U u_n | 1 u_1 | \dots | n u_n$$

 $V ::= 1 V v_1 | \dots | n V v_n | 1 v_1 | \dots | n v_n$

Problème " $U \cap V = \emptyset$?" indécidable!

(i.e : on sait montrer qu'il n'existe pas d'algorithme).

Cf "Problème de correspondance de Post" sur wikipédia.

Problèmes qu'il reste à examiner...

Étant donnée une BNF G qcq,

- 1. comment gérer le fait qu'on ne sait pas détecter les ambiguïtés éventuelles de *G* ?
- comment avoir une analyse syntaxique "efficace" ?

Solutions connues depuis les années 1970 et outillées (yacc/bison, ANTLR, etc) via théorie des *grammaires hors-contextes* :

- 1. définition de familles de BNF non-ambigües avec parsing efficace (linéaire).
- 2. "méthodes" pour tenter de ramener G à une telle famille.