Class 10: Structural Bioinformatics (pt 1)

Grace Wang (PID: A16968688)

Table of contents

The PDB database	1
Question 1	2
Question 2	2
Question 3	2
Visualizing with Mol-star	3
Using the bio3d package in R	5
Molecular visualization in R	7
Predicting functional motions of a structure	3

The PDB database

The main repository of biomolecular structure data is called the Protein Data Bank (PDB). It is the second oldest database (after GenBank).

What is currently in the PDB?

```
stats <- read.csv("Data Export Summary.csv", row.names = 1)
head(stats)</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	171,959	18,083	12,622	210	84	32
Protein/Oligosaccharide	10,018	2,968	34	10	2	0
Protein/NA	8,847	5,376	286	7	0	0
Nucleic acid (only)	2,947	185	1,535	14	3	1
Other	170	10	33	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	202,990					

```
Protein/Oligosaccharide 13,032
Protein/NA 14,516
Nucleic acid (only) 4,685
Other 213
Oligosaccharide (only) 22
```

Question 1

What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy?

```
del_comma <- function(x){
   as.numeric(gsub(",", "", x))
}
stats <- data.frame(apply(stats, 2, del_comma), row.names = rownames(stats))
sum(stats$X.ray) / sum(stats$Total) * 100

[1] 82.37223
sum(stats$EM) / sum(stats$Total) * 100</pre>
```

[1] 11.30648

Question 2

What proportion of structures in the PDB are protein?

```
sum(stats["Protein (only)", -ncol(stats)]) / sum(stats$Total) * 100
```

[1] 86.2107

Question 3

Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

Skipped

Visualizing with Mol-star

Explore the HIV-1 protease structure with PDB code 1 ${ t HSG}$.

We will use Mol-star.

Figure 1: Figure 1. A first view of HIV-Pr.

Figure 2: Figure 2. A view of the ligand-binding region of HIV-Pr. $\,$

Figure 3: Figure 3. The relevant Asp residues and water molecule (HOH 308) in MK1 binding.

Using the bio3d package in R

The Bio3D package is focused on structural bioinformatics analysis and allows us to read and analyze PDB (and related) datasets.

library(bio3d)

Warning: package 'bio3d' was built under R version 4.4.3

pdb <- read.pdb("1HSG")</pre>

Note: Accessing on-line PDB file

pdb

```
Call: read.pdb(file = "1HSG")

Total Models#: 1
  Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)

Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
  Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

Non-protein/nucleic Atoms#: 172 (residues: 128)
  Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]

Protein sequence:
  PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
```

attributes(pdb)

```
$names
[1] "atom" "xyz" "seqres" "helix" "sheet" "calpha" "remark" "call"
$class
[1] "pdb" "sse"
```

We can see atom data with pdb\$atom.

calpha, remark, call

head(pdb\$atom)

```
type eleno elety alt resid chain resno insert
                                                  X
                                                         у
1 ATOM
              N < NA >
                        PRO
                                         <NA> 29.361 39.686 5.862 1 38.10
2 ATOM
              CA <NA>
                        PRO
                                         <NA> 30.307 38.663 5.319 1 40.62
                               Α
3 ATOM
          3
               C <NA>
                        PRO
                                    1 <NA> 29.760 38.071 4.022 1 42.64
                              Α
4 ATOM
                             Α
                                   1 <NA> 28.600 38.302 3.676 1 43.40
         4
              O <NA>
                        PRO
5 ATOM
          5
              CB <NA>
                        PRO
                              Α
                                    1 <NA> 30.508 37.541 6.342 1 37.87
                        PRO
                                    1 <NA> 29.296 37.591 7.162 1 38.40
6 ATOM
          6
              CG <NA>
                               Α
 segid elesy charge
```

head(pdbseq(pdb))

```
1 2 3 4 5 6
```

Molecular visualization in R

We can make a quick 3d visualization with the view.pdb() function.

```
#install.packages("pak")
#pak::pak("bioboot/bio3dview")
library(bio3dview)

#install.packages("NGLVieweR")
library(NGLVieweR)
```

Warning: package 'NGLVieweR' was built under R version 4.4.3

```
# view.pdb(pdb, backgroundColor = "cyan", colorScheme = "sse") |>
# setSpin()
```

```
sel <- atom.select(pdb, resno = 25)

# view.pdb(pdb,

# highlight = sel,

# highlight.style = "spacefill",

# cols = c("green", "orange")) |>

# setRock()
```

Predicting functional motions of a structure

Diagonalizing Hessian...

We can finish off with a bioinformatics prediction of the functional motions of a protein. We will run a Normal Mode Analysis (NMA).

```
adk <- read.pdb("6s36")
  Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE
adk
 Call: read.pdb(file = "6s36")
   Total Models#: 1
     Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
     Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 244 (residues: 244)
     Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
   Protein sequence:
      MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
      DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
      VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
      YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
+ attr: atom, xyz, seqres, helix, sheet,
        calpha, remark, call
m <- nma(adk)
                            Done in 0.03 seconds.
 Building Hessian...
```

Done in 0.47 seconds.

plot(m)


```
# view.nma(m)
```

We can write out a trajectory of the predicted dynamics and view this in Mol-star.