

Энергодисперсионный рентгенофлуоресцентный анализатор серы АСЭ-1

Описание метода EDXRF

Важнейшим элементом, определяющим качество и стоимость нефти, является массовая доля серы в углеводородной основе. Большое количество серы в нефти увеличивает расходы на ее транспортировку, усложняет переработку и ухудшает качество нефтепродуктов, активно действует на металлы.

Традиционные химические методы определения массовой доли серы сложны, требуют пробоподготовки, а продолжительность одного анализа составляет несколько часов.

Одним из наиболее массовых, простых и эффективных методов определения серы в нефтепродуктах в настоящее время является энергодисперсионный рентгеновский флуоресцентный анализ EDXRF (Energy-Dispersive X-ray Fluorescence). Для удовлетворения потребности нефтедобывающей и нефтеперерабатывающей промышленности в приборе, позволяющем определять содержание серы по указанному методу, ЗАО «НПО Экрос» и НПП «Буревестник», ОАО совместно разработали и с 2003 года начали серийный выпуск анализаторов серы АСЭ-1.

Метод измерения, используемый в анализаторе, соответствует стандартному методу рентгеновской флуоресценции с дисперсией по энергии, изложенному в ГОСТ Р 51947 и ASTM D 4294. Метрологические характеристики анализатора также соответствуют требованиям этих стандартов.

Принципиальная схема анализатора АСЭ-1 представлена на рис. 1. Жидкая проба, находящаяся в полипропиленовой кювете с дном из сменной полимерной пленки, помещается в пучок первичного излучения миниатюрной рентгеновской трубки. Оптимальное рабочее напряжение — 8 кВ, номинальная мощность — 0,5 Вт. Вторичное излучение, возникающее в образце и состоящее в основном из характеристического излучения серы и рассеянного образцом рентгеновского излучения трубки, регистрируется детектором — газоразрядным пропорциональным счетчиком с неоновым наполнением. Энергетическое разрешение детектора по линии $S K_{\alpha}$ — 630 эВ (27%).

Рис. 1. Принципиальная схема анализатора серы АСЭ-1.

1 — возбуждающее излучение; 2 — рентгеновская трубка; 3 — детектор; 4 — линейный усилитель; 5 — многоканальный амплитудный анализатор; 6 — центральный процессор; 7 — дисплей и принтер; 8 — селективный фильтр; 9 — вторичное излучение; 10 — образец.

Непосредственно перед окном детектора установлен селективный фильтр, пропускающий характеристическое излучение серы и ослабляющий характеристическое излучение аргона воздуха и хлора, иногда присутствующего в нефти и некоторых нефтепродуктах.

При поглощении фотонов рентгеновского излучения в детекторе возникают электрические импульсы, амплитуда которых пропорциональна энергии регистрируемых фотонов. Усиленные импульсы поступают на многоканальный анализатор, осуществляющий дисперсию по энергии в спектр излучения.

На рис. 2 представлены энергетические спектры образца минерального масла с содержанием серы 1 % и образца, не содержащего серы. Амплитудные значения измеренных импульсов, выраженные в единицах энергии регистрируемых фотонов, приведены на горизонтальной оси, а количество импульсов данной энергии за 1 секунду (скорость счета) — на вертикальной. На рисунке наглядно виден специфический пик флуоресценции серы в левой части спектра.

Рис. 2. Спектры образцов минерального масла с содержанием серы 1% (1) и не содержащего серы (2).

3 — окно флуоресценции серы; 4 — окно рассеянного излучения.

Описание прибора

Применение: Анализ серы в бензине, дизельном топливе, керосине, масле, сырой нефти, мазуте и других типах жидких углеводородных продуктов.

Диапазон измерения от 0 до 5 массовых процентов серы позволяет применять данный прибор для анализа содержания серы в любых нефтепродуктах и сортах товарной нефти. Для удобства пользователя есть возможность выбирать единицы измерения содержания серы: % или ppm.

Предел обнаружения 10 ppm (0,0010 мас. % S), сходимость 30 ppm (0,0030% S на 1% образце) позволяет использовать АСЭ-1 для контроля качества дизельного топлива и бензинов.

Интуитивно понятный пользователь- ский интерфейс на русском языке облегчает работу пользователя.

Автоматическая поправка на отношение С/Н углеводородной матрицы позволяет уменьшить ошибку измерения при работе с разными типами нефти, и при отличии отношения С/Н в пробе от градуировочных образцов. Такая ошибка могла бы составлять ±50 ppm на 1 единицу С/Н для стандартного образца 1% S.

Градуировки: до 9 кривых, от 3 до 20 градуировочных точек с автоматическим расчетом коэффициентов градуировочных уравнений; возможен ручной ввод градуировочных данных. Большое количество градуировочных кривых позволяет создавать отдельные градуировки для различных диапазонов концентраций с линейной или параболической зависимостью количества сосчитанных импульсов от концентрации серы.

Градуировочные уравнения:

Для диапазона концентраций от 0 до 0,1% — уравнение линейного вида $c_s = A + Bx$

Для диапазона концентраций от 0,1 до 5% — уравнение квадратичного вида $c_s = A + Bx + Cx^2$, где

 c_s — массовая доля серы, %;

A, B, C — коэффициенты уравнения;

x — отношение интенсивности серы к интенсивности рассеянного излучения.

Время анализа составляет от 10 до 600 секунд и устанавливается пользователем. Короткая экспозиция в 10 секунд позволяет быстро получить результат измерения в образце с высоким содержанием серы, или провести оценочный анализ, не требующий высокой точности. Экспозиция до 600 секунд позволяет уменьшить ошибку измерения при малых содержаниях серы (менее 150 ppm).

Возможность снятия спектра рентгенофлуоресцентного излучения обеспечивает удобство настройки и диагностики прибора. Снятый спектр как отображается на графическом дисплее, так и выводится на встроенный принтер.

Вертикальное расположение измерительной кюветы над детектором обеспечивает единообразное искривление майларового окна под давлением образца, и не поз-

воляет пузырькам воздуха попадать в область облучения. Измерительная кювета представляет собой одноразовый полиэтиленовый контейнер для жидкой пробы 4–10 мл с кольцом для фиксации рентгеновской пленки и крышкой.

Дополнительная защитная кювета препятствует попаданию нефтепродуктов внутрь прибора при случайном опрокидывании измерительной кюветы.

Титановая задвижка кюветного отделения обеспечивает защиту пользователя от рентгеновского излучения. Рентгеновская трубка закрывается задвижкой все время, когда не проводится измерение.

Большой графический дисплей с под- светкой позволяет отображать значительный объём текстовой информации, пользовательские меню, снятый спектр, градуировочные кривые и результаты измерений.

Малошумный встроенный термопринтер позволяет распечатывать результаты измерений, спектр, выполненные градуировки и настройки. При этом он не нуждается в обслуживании (не требует замены или заправки картриджей).

Сертификат о внесении в государственный реестр средств измерений №247772-03 от 17.05.2003 г.

Санитарно-гигиеническое заключение освобождает прибор от радиационного контроля и учета, лицензирования его использования, разрешает его транспортирование без ограничений.

Прибор производится на предприятии, система качества которого сертифицирована по ГОСТ Р ИСО 9001.

Технические характеристики

Принцип измерения	EDXRF
Диапазон измерения массовой доли серы, %	0,002-5,000
Время измерения, с	10-600
Объем пробы, мл	5–10
Рентгеновская трубка: анод U, кВ I, мкА	Ti 4-8 40-100
Устройство управления, обработки и вывода данных	Встроенный микропроцессор, графический дисплей, термопринтер
Рентгеновский детектор	Неоновый пропорциональный счетчик
Условия эксплуатации	Температура 10-35°C, влажность не более 80%
Питание	220±10 В, 50 Гц
Потребляемая мощность, Вт	100
Масса, кг	15
Габариты, мм	450x350x210
Измерение спектра	Амплитудный анализатор, 256 каналов; вывод спектра на дисплей и принтер

Базовая комплектация прибора включает 50 измерительных кювет и 200 м майларовой пленки толщиной 3 мкм, 10 рулонов термобумаги для встроенного принтера, подставку на 22 кюветы.

Расширенная комплектация дополнительно включает в себя 50 кювет, 200 м пленки, источник бесперебойного питания, комплект государственных стандартных образцов массовой доли серы в минеральном масле от 0 до 5% (14 штук) для проведения градуировки.

Комплектация по требованию

В зависимости от объекта измерения и содержания серы, прибор может комплектоваться майларовой либо поликарбонатной пленкой толщиной 3, 4, 5 или 6 мкм. Также возможна поставка любого количества расходных материалов — пленки, кювет, термобумаги.

Дополнительное программное обеспечение позволяет передавать информацию о проведенных измерениях и настройках с прибора на персональный компьютер, что позволяет обрабатывать и хранить в электронном виде большой объем информации.

Сопровождение

- Анализатор серы является сложным аналитическим прибором, и при его введении в эксплуатацию у заказчика требуется проведение пусконаладочных работ и обучение персонала. Опытный специалист в области рентгенофлуоресцентного анализа поможет ускорить ввод прибора в эксплуатацию и адаптировать его к конкретным рабочим условиям для получения качественных результатов анализов. При этом пользователь быстрее осваивает приемы работы с прибором и более полно использует все его возможности.
- Специалисты сервисной службы ЗАО «НПО Экрос» осуществляют обслуживание, гарантийный и послегарантийный ремонт как в сервисном центре в Санкт-Петербурге, так и в региональных представительствах, а также выезжают непосредственно в лаборатории клиентов.
- Наша компания осуществляет оперативную поставку всех расходных материалов, необходимых для работы прибора: рентгеновской пленки, измерительных кювет, термобумаги, а также стандартных образцов для проведения градуировки.

199106, г. Санкт-Петербург, Среднегаванский пр., 13 Тел.: (812) 325-3883, 322-9898; факс (812) 325-3877 E-mail: info@ecros.ru URL: www.ecros.ru НПО ЭКРОС — член ассоциации «РОСХИМРЕАКТИВ»

Региональные представительства

 Архангельск arkhangelsk@ecros.ru Тел./факс:(8182) 66-9052. 	
 Астрахань astrakhan@ecros.ru Тел./факс: (8512) 39-0340, 39-0341. 	
 Волгоград volgograd@ecros.ru Тел./факс:(8442) 32-7970, 32-77-16. 	
 Екатеринбург ekaterinburg@ecros.ru Тел./факс: (343) 365-9884, 365-9885, 371-9631. 	
 ◆ Краснодар krasnodar@ecros.ru Тел./факс: (861) 255-2183, 259-4348. 	
 Москва moskva@ecros.ru, Тел./факс: (095) 497-9007, 975-7022, 497-6909. ecros@kahovka.itn.ru Тел./факс: (095) 975-7148. 	
 ◆ Нижний Новгород nnovgorod@ecros.ru Тел./факс: . (8312) 12-0952, 12-1951, 65-9512. 	
 ◆ Новосибирск novosibirsk@ecros.ru Тел./факс: (383) 229-7105, 210-2003, 210-0866. 	
♦ Омск omsk@ecros.ru Тел./факс: (3812) 65-4653, 65-9646.	
◆ Пермь perm@ecros.ru Тел./факс: (342) 216-3104, 216-7134, 216-8909.	
 ◆ Самара samara@ecros.ru. Тел./факс:(846) 279-4854. 	
♦ Саратов saratov@ecros.ru Тел./факс: (8452) 29-2340, 29-1988, 29-1985.	
◆ Сургут surgut@ecros.ru Тел./факс: . (3462) 32-7070, 32-7272, 55-5545.	
 Тольятти tolyatti@ecros.ru Тел./факс: (8482) 42-0406, 37-0952. 	
 Ярославль yaroslavl@ecros.ru Тел./факс: . (0852) 55-5125, 55-5015, 55-3544. 	
Республика Башкортостан	
◆ Уфа ufa@ecros.ru Тел./факс: (3472) 48-8081, 48-8343, 48-8903.	
Республика Татарстан ♦ Казань kazan@ecros.ru Тел./факс: (843) 277-5701, 277-5709.	
Казахстан • Атырау ecros-caspiy@nursat.kz СП «Экрос-Каспий» Тел./факс:+7 (3122) 21-2208.	
Украина ◆ Киев info@ecros.com.ua СП «Экрос-Украина» Тел./факс: +38 (044) 467-6295, 467-6296.	
Таджикистан	
◆ Душанбе ecros_rt@mail.ru Тел./факс:	

Научно-производственное объединение «Экрос»

- Производство и поставка лабораторной мебели, аналитических приборов и химических реактивов.
- Решение комплексных аналитических задач в сфере промышленности, науки и образования.