T055803K1vk16.nb

OAMK, Kaukovainion kampus, Tietotekniikka / Susanna Kujanpää T055803 LAITETEKNIIKAN MATEMATIIKKA 1

KERTAUSTEHTÄVIÄ (1. välikoe)

- **1.** Derivoi a) x^{-3} b) $3x^2 + x 1$ c) $(x^2 3)^2$ d) $5x^5$ e) $\frac{x^3}{3}$ f) $2x^2 \cdot 3x^3$ g) $-2x^{-4}$ h) $\frac{1}{1-x}$
- **2.** Derivoi a) $(x^2 x)(x^3 + 3x)$ b) $(2x + 1)^3$ c) $(x^3 5x)^6$ d) $\frac{x^3}{x-1}$ e) $\frac{1-x^2}{2-x}$ f) $x(2x^2 3)^4$
- 3. Derivoi a) $\sqrt{2x-1}$ b) $\sqrt{1-x}$ c) $x\sqrt{x^2+1}$ d) e^{7x} e) $\frac{e^x}{x}$ f) x^2e^{-x} g) $\ln(1-x)$ h) $\ln\sqrt{x}$ i) $\frac{\ln x}{x}$ j) $\ln(\frac{x}{x+1})$
- **4.** Derivoi funktiot a) $\sin 5x$ b) $\cos^2 x$ c) $\tan \frac{x}{2}$ d) $\sin 4t + 3 \cos 2t t$ e) $2e^{3t} + 17 4 \sin 2t$
- **5.** Laske $\frac{dg}{dr}$, $\frac{dg}{ds}$ ja $\frac{dg}{dt}$, kun $g = 2rs^2t^3 t$
- **6.** Määritä paraabelin huipun koordinaatit, kun a) $y = -x^2 + 5x + 3$ b) $y = -x^2 + 4x 3$ c) $y = \frac{1}{2}x^2 + x + \frac{1}{2}$
- 7. Määritä käyrän pisteeseen (-1, 2) piirretyn tangentin yhtälö, kun a) $y = -x^2 + 5x + 8$ b) $y = 4x^2 + 3x + 1$
- **8.** Määritä funktion a) $f(x) = -2x^2 + 6x 1$ b) $f(x) = x + \sqrt{4 x^2}$ c) $f(x) = x^3 + 3x^2 9x$ suurin ja pienin arvo välillä [0, 2].
- **9.** Rakennuksen nurkkauksesta erotetaan 28 m mittaisella teräsverkolla suorakulmion muotoinen koiratarha. Verkkoa tarvitaan vain tarhan kahdelle sivulle. Suunnittele tarha niin, että sen pinta-ala on mahdollisimman suuri.
- **10.** Kolmion kannan ja sitä vastaavan korkeuden summa on 18cm. Laske kolmion alan suurin mahdollinen arvo.
- **11.** Alue muodostuu suorakulmiosta ja puoliympyrästä, jotka ovat päällekäin. Tiedetään, että piirin pituus on 10,0m. Kuinka suuri on alueen suurin mahdollinen pinta-ala?
- 12. Mittauksissa saatiin kuution särmän pituudeksi s = 23,2cm $\pm 0,1$ cm. Anna kuution tilavuuden arvo absoluuttisen virheen avulla.

T055803K1vk16.nb

13. Määritä ensimmäisen kertaluvun osittaisderivaatat muuttujien x ja y suhteen, kun

a)
$$f(x, y) = x^3 + 2x^2y - 4xy^2 + 2y^3$$

b)
$$f(x, y) = x^2 e^{-y}$$

c)
$$f(x, y) = x^2y + \sin x + x \cos y$$

- **14.** Laske funktion $f(x, y) = 3x^2y 2xy$ ensimmäiset osittaisderivaatat pisteessä (1, -2).
- **15.** Laske aineen tiheyden absoluuttinen virhe, kun mitattu massa on $m = (10.2 \pm 0.1)g$ ja mitattu tilavuus on $V = (125 \pm 2)cm^3$.
- **16.** Nesteen pintajännitys voidaan määrittää esimerkiksi torsiovaakamenetelmällä. Tällä menetelmällä määritettiin tislatun veden pintajännitys, jolle on voimassa

kaava
$$\gamma = \frac{m g}{2(l+d)}$$
,

$$miss \ddot{a} \quad m=1,000g \pm 0,080g$$

$$1 = 74,80$$
mm $\pm 0,05$ mm ja

$$d = 1,23mm \pm 0,01mm$$

Määritä veden pintajännityksen absoluuttinen virhe kokonaisdifferentiaalilla.

- 17. Suoran ympyrälieriön korkeuden ja pohjan halkaisijan summa on 20,0cm. Määritä lieriön korkeus ja suurin mahdollinen tilavuus.
- **18.** Käyrälle $y = \sqrt{4 x}$ piirretään tangentti käyrän ja y-akselin leikkauspisteeseen. Laske sen kolmion ala, jonka tangentti muodostaa yhdessä koordinaattiakseleiden kanssa.
- **19.** Olkoon $g(x) = \frac{f(x)}{x}$. Määritä g'(1), kun f(1) = f'(1) = 2.
- **20.** Määritä käyrälle $y = \frac{-1}{6}x^3 + 2x$ pisteeseen (1, 4) piirretyn tangentin yhtälö.
- **21.** Uimahyppääjä ponnistaa hetkellä t = 0s 10 m korkeudessa veden pinnalta olevalta ponnahduslaudalta. Lauseke $h(t) = 10 + 5t 5t^2$ antaa hyppääjän etäisyyden vedenpinnasta hetkellä t.
 - a) Milloin hyppääjä putoaa veteen?
 - b) Mikä on hyppääjän nopeus tuolla hetkellä?

T055803K1vk16.nb 3

VASTAUKSIA

1. a)
$$-3x^{-4}$$
 b) $6x + 1$ c) $4x^3 - 12x$ d) $25x^4$ e) x^2 f) $30x^4$ g) $8x^{-5}$

h)
$$\frac{1}{(1-x)^2}$$

2. a) $5x^4 - 4x^3 + 9x^2 - 6x$ b) $6(2x + 1)^2$ c) $(18x^2 - 30)(x^3 - 5x)^5$ d) $\frac{2x^3 - 3x^2}{(x - 1)^2}$

e)
$$\frac{x^2-4x+1}{(2-x)^2}$$

e) $\frac{x^2 - 4x + 1}{(2-x)^2}$ f) $(2x^2 - 3)^4 + 16x^2(2x^2 - 3)^3$ 3. a) $\frac{1}{\sqrt{2x-1}}$ b) $\frac{-1}{2}(1-x)^{-1/2}$ c) $\frac{2x^2 + 1}{\sqrt{x^2 + 1}}$ d) $7e^{7x}$ e) $\frac{e^x}{x^2}(x-1)$ f) $e^{-x}(2x-x^2)$ g) $\frac{-1}{1-x}$ h) $\frac{1}{2x}$ i) $\frac{1-\ln x}{x^2}$ j) $\frac{1}{x(x+1)}$ 4. a) $5\cos 5x$ b) $-2\cos x \sin x$ c) $1 + \frac{1}{2}\tan^2(\frac{x}{2})$ d) $4\cos 4t - 6\sin 2t - 1$

3. a)
$$\frac{1}{\sqrt{2x-1}}$$

f)
$$e^{-x}(2x - x^2)$$

e)
$$6e^{3t} - 8\cos 2t$$

5. a) $2s^2t^3$ b) $4rst^3$ c) $6rs^2t^2 - 1$

6. a)
$$x = 5/2$$
 ja $y = 37/4$ b) $x = 2$ ja $y = 1$ c) $x = -1$ ja $y = 0$

7. a)
$$y = 7x + 9$$

b) y = -5x - 3

b) 2 ja $2\sqrt{2}$ c) -5 ja 2

10. 40,5cm²

11. $7m^2$

12. V =
$$(12500 \pm 160)$$
 cm³

13. a)
$$3x^2 + 4xy - 4y^2$$
 ja $2x^2 - 8xy + 6y^2$ b) $2xe^{-y}$ ja $-x^2e^{-y}$

c)
$$2xy + cosx + cosy ja x^2 - x siny$$

14. -8 ja 1

15.
$$(82 \pm 2)$$
kg/ m^3

16. 0,006

17. 6,7cm ja 931 cm³

18. 8

19. 0

20.
$$y = \frac{3}{2}x + \frac{5}{2}$$

21. a) t = 2s b) 15m/s