

AY 2023-2024

ARCHITECTURE AND ORGANIZATION

INTRODUCTION TO ASSEMBLY LANGUAGE: DATA TRANSFER INSTRUCTIONS

Learning Outcomes:

At the end of the topic session, the students should be able to:

- ☐ Define Assembly Language.
- ☐ Explain basic terminologies in Assembly Language.
- ☐ Perform data transfer instructions.

Assembly Language

Low level programming language that provides direct access to microprocessors and other programmable devices

Utility Programs

- Assembler converts source programs from assembly language into machine language
 - Linker combines individual files created by an assembler into a single executable program
 - ➤ Debugger allows you to examine registers and memory while the program is running

Language Translators

OPCODE AND OPERAND

An assembly is made up of opcodes and operands.

DATA TRANSFER INSTRUCTIONS

- 1. MOV INSTRUCTION
- 2. XCHG INSTRUCTION
- 3. PUSH INSTRUCTION 🗸
- 4. POP INSTRUCTION \checkmark

1. MOV INSTRUCTION

FORMAT: MOV D,S

ACTION: D \leftarrow [S]

Example:

- ✓ MOV AX, BX
- MOV BX, [CX] ->
 MOV DX, 001EH
 - → PA (Physical Address)

$$= \overline{SS} \times 10H + [X]$$

Assume the following register content:

$$AX = 0015H$$
 $SS = 2000H$

$$BX = 0019H$$
 \sim $SI = 001EH$ \sim

$$CX = 0012H$$
 $DI = 0017H$

$$DX = 001BH -$$

$$AX = 0015H$$

$$BX = 0019H$$

$$CX = 0012H$$

$$DX = 001BH$$

SS= 2000H

$$SI = 001EH$$

$$DI = 0017H$$

MOV AX, BX

/ MOV DI, 0005

accumulator

Dase

Count

Lata

(In) AX (ID) BX

h-higher 1 - loner

ahal lhbl chel dhal

ah | a| ah | a| ah | a| ah | 56 ah = 34 ah = 56

dx = 1234 dh = 12 d | - 34

AX = 0015H SS = 2000H BX = 0019H SI = 001EH CX = 0012H DI = 0017H DX = 001BH

2. XCHG INSTRUCTION

FORMAT: XCHG D,S

ACTION: [D] <-> [S]

Assume the following register content:

$$AX = 0015H$$
 $SS = 2000H$

$$BX = 0019H$$
 $SI = 001EH$

$$CX = 0012H$$
 $DI = 0017H$

$$DX = 001BH$$

XCHG CX, DX XCHG BX, [AX]-XCHG CX, BX

$$CX = 0.012$$
, $DX = 0.018$
 $V = 0.012$
 $DX = 0.012$
 $DX = 0.012$
 $P.A = SS \times 10H + AX$
 $= 20000 + 0.015$
 $P-A = 20015$
 $20015 - 19 (AL)$
 $20016 - 95 (AH)$
 $019 BX = 9599 AX = 9599 H$

3. PUSH INSTRUCTION

FORMAT: PUSH REG

ACTION: $TOS = SS \times 10H + SP$

$$\underline{SP} = SP - 2$$

```
\sqrt{\text{TOS}} - 1 ← HIGHER BIT \sqrt{\text{TOS}} - 2 ← LOWER BIT
```


EXAMPLE

Assume the following register content:

AX = 0015H

BX = 0019H

CX = 0012H

DX = 001BH

SS = 2000H

SI= 001EH

DI = 0017H

SP = 0035H

PUSH AX = DOIS

EXAMPLE

PUSHAX AX= 0015

4. POP INSTRUCTION

FORMAT: POP REG

ACTION: $TOS = SS \times 10H + SP$

$$SP = SP \pm 2$$

EXAMPLE

Assume the following register content:

AX = 0015H

S = 2000H

BX = 0019H

SI=001EH

CX = 0012H

DI = 0017H

DX = 001BH

✓ POP DX

EXAMPLE

POP DX

$$SP = SP + 2$$

= $6835 + 2$
 $= 0037$