# Verification of DDSYS

BY CHAO PAN

### 1 SDOF

### 1.1 Classic SDOF system

Equation of motion

$$m \ddot{u} + c \dot{u} + k u = -m a_g \tag{1}$$

Parameter definition

$$\omega = \sqrt{\frac{k}{m}} \qquad \zeta = \frac{c}{2\sqrt{mk}}$$

Parameter setting

$$m=1$$
  $k=100$   $c=0.4$  
$$\omega=10$$
  $\zeta=0.02$ 

#### 1.1.1 Case I: resonant exitation

$$a_g = \sin(\omega t) \tag{2}$$



 $\textbf{Figure 1.} \ \ \text{Response of SDOF system under resonant exitation}$ 

#### 1.1.2 Case II: seismic exitation

Time-history curve of the ground motion is shown below



Figure 2. Ground motion



Figure 3. Seismic response

# 1.2 SDOF system with bilinear spring

Equation of motion

$$m \ddot{u} + c \dot{u} + f(u) = -m a_g \tag{3}$$

## Parameter setting

$$m = 1$$
  $c = 0.4$   $k_0 = 100$   $u_y = 0.01$   $\alpha = 0.1$ 

## 1.2.1 Case I: resonant exitation



Figure 4.



Figure 5.

## 1.2.2 Case II: seismic exitation



Figure 6.



Figure 7.



Figure 8.