Санкт-Петербургский государственный университет St Petersburg University Математико-Механический факультет

Отчет по лабораторной работе №7 «Поперечные колебания круглой пластины»

Выполнили студенты 351 гр.: Бобу Юлия, Соболев Леонид, Теплова Татьяна, Курбанов Нурлан, Егоров Павел,

Пчельников Павел.

Схема установки

Исходные данные

Толщина пластины $h = 3 \, MM$

Радиус пластины R = 24 см

Диаметр отверстия d = 8 мм

Коэффициент Пуассона $\sigma = 0.5$

Плотность материала пластины $\rho = 2850 \ \kappa c/m^3$

Модуль упругости $E = 7 \cdot 10^{10} \, \Pi a$

Теоретические данные

Собственная форма колебаний однородной пластины подчиняется дифференциальному уравнению в полярных координатах:

$$\Delta(\Delta w) - \frac{\rho h p^2}{D} w = 0$$
, где $\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2}$, $D = \frac{E h^3}{12(1-\sigma^2)}$

Краевые условия, соответствующие свободному краю пластины, получаются в виде:

$$\frac{\partial^2 w}{\partial r^2} + \sigma \left(\frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \varphi^2} \right) = 0,$$

$$\frac{\partial}{\partial r} \left[\frac{\partial^2 w}{\partial r^2} + (2 - \sigma) \left(\frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \varphi^2} \right) \right] = 0.$$

Условия жесткого закрепления по краям центрального отверстия принимают вид:

$$w=0, \frac{\partial w}{\partial n}=0.$$

Первое уравнение будет выполнено для форм, удовлетворяющих уравнениям:

$$\Delta w \pm k^2 w$$
, $k^4 = \frac{\rho h p^2}{D}$

Решение ищется методом разделения переменных в виде $w(r, \varphi) = R(r) \Phi(\varphi)$.

Подставляя это решение в уравнение и разделяя переменные, получим следующую систему уравнений:

$$\frac{d^2\Phi}{d\phi^2} + n^2\Phi = 0, \quad \frac{d^2R}{dr^2} + \frac{1}{r}\frac{dR}{dr} + \left(\pm k^2 - \frac{n^2}{r^2}\right)R = 0$$

Общее решение для целых значений n имеет вид:

$$w(r,\varphi) = \cos(n\varphi) \left(J_n(kr) + \lambda I_n(kr) + \mu N_n(kr) + \nu K_n(kr) \right)$$

 J_n — функция Бесселя порядка $n;\ I_n$ — модифицированная функция Бесселя порядка $n;\ N_n$ — функция Неймана порядка $n;\ J_n$ — функция Бесселя порядка n.

Экспериментальные данные

Собственная частота, Гц	Собственная форма
220	
370	
430	
530	

620	
880	
1020	
1140	
1340	
1670	