

Sequential Models

RNN, LSTM

Presenters: Julius, Curtis

Background

Conditional Probability and Sequential Data

Conditional Probability

- Conditional Probability is the probability something happens given another event happened.
 - a. P(passing | studying) > P(passing | gaming)
- 2. Conditional independence/dependance
 - a. Conditional independence: P(x) = P(x | y)
 - b. Conditional dependance: P(x)
 eq P(x|y)

Sequential Data

 Data is sequential if the probability of one data point is dependant on previous data

a.
$$P(x_t)
eq P(x_t|x_{t-1},\cdots,x_0)$$

- 2. Example
 - a. NLP
 - i. The color of the bus is _____.
 - ii. P(yellow | "The color of the bus is") > P(yellow)
 - b. Sine wave

Sequential models

- 1. Sequential models predict the next data point given previous data points
- 2. Model Examples
 - a. Recurrent Neural Networks (RNN)
 - b. LSTM
 - c. GRU
- 3. Applications
 - a. Natural Language Processing
 - b. Audio Signal Processing
 - c. Reinforcement Learning

Recurrent Neural Networks

Combining new inputs with previous data

Recursive Functions

- 1. Our sequential data is $\,x_1,x_2,\cdots,x_t\,$
- 2. We wish to map each input, x , with a prediction, y_1,y_2,\cdots,y_t

We could learn a function that maps all of the previous inputs to one output, but that would require a function that takes a different number of inputs for each step of the sequence.

$$y_t = f(x_1, \cdots, x_t)$$

Instead, we want a function that takes only one state that summarizes all information necessary to make a prediction.

$$y_t = f(s_t)$$

Parameterized Recursive Functions

- 1. A recursive function takes an input as a result from itself
 - a. We can add additional parameterization with the parameter theta
 - b. This function could be a feed forward neural network

$$s^{(t)}=f(s^{(t-1)}; heta)$$
State at step t
State at step t-1

A state is equal to the function output of the previous state

Unfolding

Recurrent Neural Network Goals

- 1. Summarize: Our network should take the previous state, h_{t-1} , and add the new input, x_t , to get the current state, h_t .
 - a. This acts to summarize all previous inputs, $x_1 \dots t$, into one state vector, h_t .
- 2. Predict: Our network should predict the output, o_t , from the current state, h_t
 - a. These predictions are also noted as \hat{y}_t .
- 3. Train: The network should then compare the output, o_t , with the target value, y_t , and generate a loss, L_t .
 - a. We then train the network through backpropagation using the gradient of the loss with respect to our weight matrices.

RNN Cell

RNN Graph

RNN Details

Figure 10.3: The computational graph to compute the training loss of a recurrent network that maps an input sequence of \boldsymbol{x} values to a corresponding sequence of output \boldsymbol{o} values. A loss L measures how far each \boldsymbol{o} is from the corresponding training target \boldsymbol{y} . When using softmax outputs, we assume \boldsymbol{o} is the unnormalized log probabilities. The loss L internally computes $\hat{\boldsymbol{y}} = \operatorname{softmax}(\boldsymbol{o})$ and compares this to the target \boldsymbol{y} . The RNN has input to hidden connections parametrized by a weight matrix \boldsymbol{U} , hidden-to-hidden recurrent connections parametrized by a weight matrix \boldsymbol{W} , and hidden-to-output connections parametrized by a weight matrix \boldsymbol{V} . Equation 10.8 defines forward propagation in this model. (Left) The RNN and its loss drawn with recurrent connections. (Right) The same seen as a time-unfolded computational graph, where each node is now associated with one particular

time instance.

RNN Feedforward Explanation

- h_0 is initialized
- x_1 is combined with h_0 to get h_1
- o_1 is obtained from h_1
- y_hat_1 probabilities is obtained from o_1
- 5. L_1 is computed from y_1, y_hat_1 with softmax
- 6. Process repeats for each t
- 7.

RNN Feedforward

Affine

$$oldsymbol{a}^{(t)} = oldsymbol{b} + oldsymbol{W} oldsymbol{h}^{(t-1)} + oldsymbol{U} oldsymbol{x}^{(t)},$$

Affine function (hidden network)

Hidden state
$$m{h}^{(t)} = anh(m{a}^{(t)}),$$

Output

$$oldsymbol{o}^{(t)} = oldsymbol{c} + oldsymbol{V} oldsymbol{h}^{(t)}$$
 Output network

RNN Feedforward

Predictions

$$\hat{m{y}}^{(t)} = \operatorname{softmax}(m{o}^{(t)}),$$
Prediction probabilities

Loss

$$L\left(\{\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(\tau)}\}, \{\boldsymbol{y}^{(1)}, \dots, \boldsymbol{y}^{(\tau)}\}\right)$$

$$= \sum_{t} L^{(t)}$$

$$= -\sum_{t} \log p_{\text{model}}\left(y^{(t)} \mid \{\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(t)}\}\right),$$

Backpropagation Through Time

Backpropagation Through Time

Gradient formulas for reference:

$$\nabla_{\boldsymbol{h}^{(\tau)}} L = \boldsymbol{V}^{\top} \nabla_{\boldsymbol{o}^{(\tau)}} L. \tag{10.19}$$

We can then iterate backward in time to back-propagate gradients through time, from $t = \tau - 1$ down to t = 1, noting that $\boldsymbol{h}^{(t)}$ (for $t < \tau$) has as descendents both $\boldsymbol{o}^{(t)}$ and $\boldsymbol{h}^{(t+1)}$. Its gradient is thus given by

$$\nabla_{\boldsymbol{h}^{(t)}} L = \left(\frac{\partial \boldsymbol{h}^{(t+1)}}{\partial \boldsymbol{h}^{(t)}}\right)^{\top} (\nabla_{\boldsymbol{h}^{(t+1)}} L) + \left(\frac{\partial \boldsymbol{o}^{(t)}}{\partial \boldsymbol{h}^{(t)}}\right)^{\top} (\nabla_{\boldsymbol{o}^{(t)}} L)$$

$$= \boldsymbol{W}^{\top} (\nabla_{\boldsymbol{h}^{(t+1)}} L) \operatorname{diag} \left(1 - \left(\boldsymbol{h}^{(t+1)}\right)^{2}\right) + \boldsymbol{V}^{\top} (\nabla_{\boldsymbol{o}^{(t)}} L),$$
(10.21)

$$\nabla_{\mathbf{c}} L = \sum_{t} \left(\frac{\partial \mathbf{o}^{(t)}}{\partial c} \right)^{\top} \nabla_{\mathbf{o}^{(t)}} L = \sum_{t} \nabla_{\mathbf{o}^{(t)}} L, \tag{10.22}$$

$$\nabla_{\boldsymbol{b}} L = \sum_{t} \left(\frac{\partial \boldsymbol{h}^{(t)}}{\partial \boldsymbol{b}^{(t)}} \right)^{\top} \nabla_{\boldsymbol{h}^{(t)}} L = \sum_{t} \operatorname{diag} \left(1 - \left(\boldsymbol{h}^{(t)} \right)^{2} \right) \nabla_{\boldsymbol{h}^{(t)}} L, (10.23)$$

$$\nabla_{\boldsymbol{V}}L = \sum_{t} \sum_{i} \left(\frac{\partial L}{\partial o_{i}^{(t)}} \right) \nabla_{\boldsymbol{V}} o_{i}^{(t)} = \sum_{t} \left(\nabla_{\boldsymbol{o}^{(t)}} L \right) \boldsymbol{h}^{(t)^{\top}}, \tag{10.24}$$

375

CHAPTER 10

$$\nabla_{\mathbf{W}}L = \sum_{t} \sum_{i} \left(\frac{\partial L}{\partial h_{i}^{(t)}} \right) \nabla_{\mathbf{W}^{(t)}} h_{i}^{(t)}$$
(10.25)

$$= \sum_{t} \operatorname{diag} \left(1 - \left(\boldsymbol{h}^{(t)} \right)^{2} \right) \left(\nabla_{\boldsymbol{h}^{(t)}} L \right) \boldsymbol{h}^{(t-1)^{\top}}, \tag{10.26}$$

$$\nabla_{\boldsymbol{U}}L = \sum_{t} \sum_{i} \left(\frac{\partial L}{\partial h_{i}^{(t)}} \right) \nabla_{\boldsymbol{U}^{(t)}} h_{i}^{(t)}$$
(10.27)

$$= \sum_{t} \operatorname{diag} \left(1 - \left(\boldsymbol{h}^{(t)} \right)^{2} \right) \left(\nabla_{\boldsymbol{h}^{(t)}} L \right) \boldsymbol{x}^{(t)^{\top}}, \tag{10.28}$$

Types of RNN problems

- 1. One-one: (given an image, is this a bird or not)
- 2. One-many: (given an image, give a description of this image)
- 3. Many-one: (given video, classify genre; predict sentiment of sentence)
- 4. Many-many: (given video, predict label for each frame; translate a sentence)

Deep RNNs

- 1. Why not just make RNNs more deep? Doesn't solve...
 - a. Vanishing gradient problem
 - b. The network "forgets" information in the hidden state over long time steps
- 2. Adding Convolutions
 - a. Use CNNs to have a "sliding window" over time steps
 - b. Takes advantage of extracting information from features close in time with less computational overhead
- 3. Adding Attention
 - a. Makes the network focus on particular parts of the input that is relevant to prediction

Long short-term memory (LSTM)

Brief introduction to LSTM's

Issues with vanilla RNN's

- 1. Vanishing Gradients
- 2. Difficult to retain long term memory within our hidden state h

Solution

- Long Short Term Memory cells which maintain a hidden state, and a cell state.
- 2. RNN is able to read, write and erase information from cell state through gates.
 - a. Gates are nearly open or nearly closed, open meaning information can pass through, closed meaning information cannot pass through.

Vanilla LSTM Cell

1.

https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:The_LS_TM_cell.png

Multiple LSTM Cells

1.

The repeating module in an LSTM contains four interacting layers.

https://hackernoon.com/understanding-architecture-of-lstm-cell-from-scratch-with-code-8da40f0b71f4

Vanilla LSTM Cell

- 1. Composed of several smaller neural networks
- 2. Each layer/nn have their own weights
- 3. Layers typically end in sigmoid or tanh
 - a. Sigmoid squashes inputs between 0 and 1 deciding what information should be forgotten.
 - b. Tanh rescales inputs between -1 and 1.

H := Previous Output, X := new input, C := Cell State

Intuition: Forget Gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- Based on the previous output and current input, decides what information is relevant by squashing the combined feature vector [h_t-1, x_t] with a sigmoid function (squashes inputs between 0 and 1, 0 being forgotten input).
- Uses element-wise multiplication to effectively forget unimportant cell state features based on the relevancy matrix f_t

Intuition: Input Gate

$$i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Adds in new information to the cell state. Note, cell state acts as long term memory within a lstm cell.
- Does this by determining what is relevant like in the forget gate (i_t) and element wise multiplying that by rescaled inputs (C_t prime) then adding it to the current cell state (C_t).

Intuition: Output Gate

- Uses the existing cell state to decide what information will be propagated onwards to the next step/what the general output will be.
- Once again decides what's relevant (sigmoid) then forgets/reinforces relevant information through a
 dot product.

Conclusion

- 1. LSTM's allow long term memory to be stored for longer in comparison to vanilla RNN's
- 2. LSTM's do not avoid vanishing gradients entirely

GRUs act similarly to LSTM's with fewer weights and fewer gates.

Remember you can just do :)

CLASS torch.nn.LSTM(*args, **kwargs)
CLASS torch.nn.GRU(*args, **kwargs)

Thank you for coming!

References

Goodfellow, Ian, et al. Deep Learning. MIT Press, 2017. http://www.deeplearningbook.org

