Tema 4 El nivel de enlace: Redes de área local (LAN)

(1904) Redes de Comunicaciones

Contenidos

- 4.1. Introducción
- 4.2. Direccionamiento de enlace
 - 4.2.1. Direcciones MAC
 - 4.2.2. Protocolo ARP
- 4.3. Redes cableadas de área local
 - 4.3.1. El control de acceso al medio
 - 4.3.2. Las redes Ethernet
 - 4.3.3. El nivel físico en redes Ethernet
 - 4.3.4. Equipos de interconexión
 - 4.3.5. VLANs
- 4.4. Redes inalámbricas de área local
 - 4.4.1. El control de acceso al medio
 - 4.4.2. Tecnología 802.11
 - 4.4.3. El nivel físico en redes inalámbricas

Objetivo del nivel de enlace

- Proporcionar un servicio de envío de tramas <u>entre nodos conectados</u> <u>directamente</u>
- Este nivel involucra a hosts y routers (nodos)
 - Nodo emisor: encapsula los paquetes en tramas y las envía a través del enlace
 - Nodo receptor: entrega los paquetes al nivel de red
- Existen distintos tipos de protocolos de enlace que operan sobre distintos medios de transmisión.

Posibles funciones del nivel de enlace

- Comunicación local
 - Proporcionar un servicio de comunicación entre nodos adyacentes sobre un único enlace físico
- Sincronización de trama
 - Identificar el comienzo y el final de cada trama
- Coordinación de la comunicación
 - Repartir el enlace entre varios nodos (enlaces multipunto)
 - Mecanismo de control de acceso al medio
 - Esquema de direccionamiento físico
- Detección/corrección de errores
 - Identificar y descartar tramas erróneas
- Control de flujo (opcional)
 - Regular el tráfico entre el nodo emisor y nodo el receptor
- Recuperación de errores (opcional)
 - Resolver situaciones anómalas (tramas erróneas, perdidas o duplicadas)

Servicios y protocolos del nivel de enlace

- Los protocolos de nivel de enlace para LAN que veremos son:
 - Ethernet (802.3)
 - Entrega no garantizada de las tramas
 - Control de flujo opcional
 - WiFi (802.11)
 - Entrega garantizada de tramas (sólo en el medio inalámbrico)
 - Control de flujo obligatorio de parada y espera
 - Establecimiento de asociaciones (~ conexiones)
 - Ninguno ofrece garantías de latencia o ancho de banda
- Servicio proporcionado al nivel de red
 - Sin conexión, no confiable

Arquitectura de IEEE 802

- Define una arquitectura específica para redes LAN y PAN
 - Los protocolos de nivel 3 o superiores son comunes con OSI
 - Los protocolos de niveles inferiores son específicos para LAN

802.2: protocolo LLC (Logical Link Control)

802.3: estándares [Fast/Gig/10Gig] Ethernet

802.5: paso de testigo en anillo (token ring)

802.11: WLAN

802.15: WPAN

802.16: WIMAX

Funciones de IEEE 802

- Funciones de la subcapa MAC IEEE 802
 - Sincronización de trama
 - Detección de errores
 - Control de acceso al medio de transmisión
- Funciones de la capa física IEEE 802
 - Generación/eliminación del preámbulo y sincronización de bit
 - Transmisión/recepción de bits
 - Especificación del medio de transmisión y la topología
 - Codificación/decodificación de señales

Pila TCP/IP con IEEE 802

Contenidos

- 4.1. Introducción
- 4.2. Direccionamiento de enlace
 - 4.2.1. Direcciones MAC
 - 4.2.2. Protocolo ARP
- 4.3. Redes cableadas de área local
 - 4.3.1. El control de acceso al medio
 - 4.3.2. Las redes Ethernet
 - 4.3.3. El nivel físico en redes Ethernet
 - 4.3.4. Equipos de interconexión
 - 4.3.5. VLANs
- 4.4. Redes inalámbricas de área local
 - 4.4.1. El control de acceso al medio
 - 4.4.2. Tecnología 802.11
 - 4.4.3. El nivel físico en redes inalámbricas

Direcciones MAC

- Las direcciones IP (o direcciones lógicas):
 - Son direcciones del nivel de red
 - Se utilizan para hacer llegar un datagrama a su destino
- Las direcciones MAC (o direcciones físicas):
 - Se usan para hacer llegar una trama desde una interfaz a otra interfaz conectada al mismo enlace
 - Las direcciones MAC son, habitualmente, de 48 bits:
 - Habitualmente cada tarjeta de red tiene una dirección MAC única preasignada que se puede modificar por software
 - La asignación de direcciones MAC la gestiona el IEEE
 - Los fabricantes compran rangos de direcciones MAC (24 bits fijos + 24 bits variables) para asegurar la unicidad

Direcciones MAC

- Resolución de direcciones físicas
 - Las direcciones IP no pueden usarse para enviar paquetes porque el nivel de enlace requiere direcciones MAC
 - ¿Cómo consigue el host que envía el paquete la dirección MAC del destino a partir de la dirección IP?
 - Protocolo ARP (Address Resolution Protocol)
 - Permite a un equipo obtener la dirección MAC de otro a partir de su dirección IP
 - Existen diversas optimizaciones para evitar tener que recurrir al protocolo ARP continuamente
 - Interfaz: tabla ARP con entradas <IP, MAC, TTL>
 - RFC 826

Formato del paquete

Hardware Type		Protocol Type			
Hardware length	Protocol length	Operation Request 1, Reply 2			
Sender hardware address (For example, 6 bytes for Ethernet)					
Sender protocol address (For example, 4 bytes for IP)					
Target hardware address (For example, 6 bytes for Ethernet) (It is not filled in a request)					
Target protocol address (For example, 4 bytes for IP)					

ARP Request (broadcast) ⇒ ARP Reply (unicast)

a. ARP request is broadcast

b. ARP reply is unicast

Escenarios posibles de resolución de direcciones

Case 1. A host has a packet to send to another host on the same network.

Case 3. A router receives a packet to be sent to a host on another network.

It must first be delivered to the appropriate router.

Case 2. A host wants to send a packet to another host on another network.

It must first be delivered to the appropriate router.

Case 4. A router receives a packet to be sent to a host on the same network.

Contenidos

- 4.1. Introducción
- 4.2. Direccionamiento de enlace
 - 4.2.1. Direcciones MAC
 - 4.2.2. Protocolo ARP
- 4.3. Redes cableadas de área local
 - 4.3.1. El control de acceso al medio
 - 4.3.2. Las redes Ethernet
 - 4.3.3. El nivel físico en redes Ethernet
 - 4.3.4. Equipos de interconexión
 - 4.3.5. VLANs
- 4.4. Redes inalámbricas de área local
 - 4.4.1. El control de acceso al medio
 - 4.4.2. Tecnología 802.11
 - 4.4.3. El nivel físico en redes inalámbricas

Aplicaciones de LAN

- Tipos de redes de área local (LAN,Local Area Networks)
 - LANs de ordenadores personales
 - Necesidad de interconectar entre sí los PCs y los servidores
 - Servicios centralizados de almacenamiento
 - Servicios centralizados de procesamiento (cliente/servidor)
 - Compartición de recursos
 - LANs de grandes equipos
 - Necesidad de interconectar servidores, supercomputadores y/o dispositivos de almacenamiento masivo
 - La velocidad de transmisión es un requerimiento crítico
 - LANs troncales (backbone)
 - Necesidad de interconectar varias LAN
 - La fiabilidad es un requerimiento crítico
 - Mayor velocidad de transmisión que las LAN tradicionales

Integración de varias LAN

En todas las LAN la dispersión geográfica es limitada

Control de acceso al medio

- Hay dos tipos de configuración del enlace de transmisión
 - Punto a punto (sólo dos equipos interconectados directamente)
 - La estación destino de una trama es conocida
 - El medio de transmisión está siempre disponible si es full-dúplex o debe alternarse en el caso semi-dúplex
 - Multipunto o difusión (dos o más equipos comparten medio)
 - Hay varias alternativas a la hora de repartir el canal de transmisión.
 - Asignación estática del canal: división del enlace en varios canales de manera predeterminada (multiplexión)
 - Propia de las conexiones de banda ancha
 - Asignación dinámica del canal: manejo de colisiones, acceso aleatorio o por contienda
 - Propia de las redes de área local

Acceso aleatorio o por contienda

- Problemas de la asignación estática del canal
 - Son ineficientes en las LANs porque:
 - El número de transmisores es elevado y variable, por tanto es difícil predecir cuántos deben compartir el canal
 - El tráfico es a ráfagas, es difícil anticipar cuántos bytes transmite cada host
- El acceso aleatorio o por contienda, sin embargo requiere mecanismos de control para:
 - Gestionar el acceso al enlace
 - Determinar cuándo se puede enviar la trama
 - Resolver los problemas derivados de las colisiones (envíos simultáneos)
 - Detectar la colisión y reintentar el envío de la trama
- Protocolos MAC dinámicos:
 - CSMA/CD (Ethernet)
 - CSMA/CA (WiFi)

CSMA

- CSMA (Carrier Sense Multiple Access)
 - Acceso múltiple con detección de portadora
 - Cada estación escucha el canal antes de transmitir
 - Si el canal está ocupado, la estación debe esperar
 - Si se produce una colisión, cada estación espera un tiempo aleatorio (backoff) y vuelve a intentarlo

CSMA

- CSMA (Carrier Sense Multiple Access)
 - ¿Qué debería hacer una estación si el canal está libre? ¿Cuánto debería esperar si el canal está ocupado?
 - <u>CSMA 1-persistente</u>: la estación escucha el canal continuamente; si el canal está libre, la estación transmite la trama; si el canal está ocupado, la estación espera a que quede libre y vuelve a intentarlo
 - Bueno para redes en las que la carga no es muy elevada, puesto que evita tiempos de espera innecesarios.
 - En el caso en el que no se puedan detectar colisiones resulta ineficiente
 - <u>CSMA no persistente</u>: la estación escucha el canal; si el canal está libre, la estación transmite la trama; si el canal está ocupado, la estación espera un tiempo aleatorio y vuelve a intentarlo
 - Apropiada para canales más saturados
 - Soporta mejor los entornos en los cuales no se pueden detectar colisiones

CSMA/CD

- CSMA/CD (Carrier Sense Multiple Access/Collision Detection)
 - Con CSMA, la trama se transmite por completo incluso cuando se produce una colisión
 - Con CSMA/CD, se escucha el medio mientras se transmite la trama para detectar una posible colisión
 - Si se produce una colisión (aumento nivel de voltaje), cada estación:
 - Detiene la transmisión de la trama en curso
 - Transmite una señal de perturbación (*jam*) para asegurar que las restantes estaciones detectan la colisión
 - Espera tiempo aleatorio (backoff) y vuelve a intentarlo
 - Se utiliza ampliamente en la subcapa MAC de 802.3 (Ethernet)

CSMA/CD

CSMA/CD (Carrier Sense Multiple Access/Collision Detection)

Ethernet

- En 1976 Metcalfe y Boggs publican el artículo:
 - "Ethernet: Distributed Packet-Switching For Local Computer Networks"

Ethernet

- Nivel físico
 - Velocidad de transmisión de 10 Mbps
 - Diferentes tipos de cableado, al menos de 25 MHz de ancho de banda
 - Topología en bus y en estrella
 - Codificación Manchester
- Nivel de enlace
 - Formato de la trama Ethernet
 - Campo Longitud/Tipo
 - Detección de errores (CRC)
 - Control de acceso al medio: CSMA/CD 1-persistente
 - Posibilidad de relleno en el campo de datos de la trama para detección de colisiones
 - Espacio entre tramas (InterFrame Gap, IFG)
 - Algoritmo de retroceso exponencial binario para el cálculo del backoff

Transmisión de señales

- Tipos de señales
 - Analógicas: cualquier valor dentro de un rango
 - Digitales: número limitado de valores

- Una señal simple no transporta información
 - La señal debe ser manipulada introduciendo cambios identificables por el receptor representativos de la información transmitida: esquema de codificación de la información en una señal analógica o digital

Transmisión de datos

- Transmisión digital
 - Datos analógicos o digitales codificados en señal digital
 - Transmisión de datos mediante diferentes esquemas de codificación
 - La codificación elegida intentará:
 - Minimizar ancho de banda requerido, coste y complejidad
 - Facilitar sincronización de bit y detección de errores en el receptor
 - Maximizar la inmunidad frente al ruido y las interferencias

Características de esquemas de codificación

- Parámetros básicos de la señalización digital:
 - Temporización de un bit (duración)
 - Nivel de la señal asociado a cada valor de bit (0 ó 1)
- Factores que caracterizan la señalización digital:
 - Espectro de la señal
 - Ancho de banda (W) requerido
 - Presencia de componente continua (DC)
 - Capacidad de sincronización de la señal en el receptor
 - Capacidad de detección de errores en el receptor
 - Inmunidad frente a ruido e interferencias
 - Coste y complejidad

Codificaciones polares

- Codificación Manchester (Bifase)
 - Inversión de polaridad en mitad de cada intervalo de bit
 - Utilizada en tecnología Ethernet a 10 Mbps
 - Ventajas:
 - Eliminación de DC
 - Sincronización en cada bit
 - Detección de errores
 - Inconveniente:
 - Requiere ↑ W

Topología de Ethernet

Cableado

Nombre	Cable	Long.Máx.Seg.	Nodos/Seg.	Comentarios	
10Base5	Coaxial	500 m	100	Bus (en desuso)	
10Base2	Coaxial	185 m	30	Bus (en desuso)	
10Base-T	Par trenzado	100 m	2	Requiere equipo interconexión	
10Base-F	Fibra óptica	2000 m	2	2 Usado para enlaces troncales	

Formato general

- Formato de la trama Ethernet
 - Preámbulo
 - 7 bytes con 10101010 para sincronización de bit (5,6 μs)
 - Guión de inicio (SFD, Start Frame Delimiter)
 - 1 byte con 10101011 para indicar el inicio de la trama (0,8 μs)
 - Direcciones MAC de destino y origen
 - Longitud / Tipo
 - Relleno (padding): utilizado para garantizar que la trama tiene un tamaño mínimo de 64 bytes (detección de colisiones con CSMA/CD)
 - Suma de comprobación: CRC-32

Campo Longitud / Tipo

- Formato de la trama Ethernet
 - $\overline{}$ Tipo ≥ 1536 (Ethernet II)
 - Protocolo del paquete encapsulado en el campo de datos:
 - Paquete IP (0x0800)
 - Paquete ARP (0x0806)
 - Paquete RARP (0x0835)

Fast Ethernet

- Características generales:
 - Nivel físico
 - Velocidad de transmisión de 100 Mbps
 - Diferentes tipos de cableado y codificaciones:
 - Topología en estrella con concentrador o conmutador
 - Utiliza par trenzado con 125 MHz de ancho de banda
 - Nivel de enlace
 - Formato de la trama y control de acceso al medio idénticos a Ethernet
 - Idea clave: reducción del tiempo de bit de 100 a 10 ns
 - Actualmente es la Ethernet más extendida

Codificación digital para Fast Ethernet

- Bipolar
 - Uso de tres niveles de voltaje (+, cero y -)
 - Línea en estado ocioso equivale a 0
 - Codificación de 1's alternando entre positivo y negativo
 - Ventaja:
 - Eliminación de DC
 - Inconveniente:
 - Secuencia larga de 0's

Codificación digital para Fast Ethernet

- Codificación por bloques
 - Codificación 4B/5B:
 - Cada 4 bits de datos se codifican con 5 bits de código
 - El código resultante 4B/5B se codifica con Bipolar
 - Máximo de tres 0's por cada 5 bits de código para facilitar la sincronización y compensar la DC

Código	Datos	Codigo
11110	1000	10010
01001	1001	10011
10100	1010	10110
10101	1011	10111
01010	1100	11010
01011	1101	11011
01110	1110	11100
	11110 01001 10100 10101 01010 01011	11110 1000 01001 1001 10100 1010 10101 1011 01010 1100 01011 1101

11101

Gigabit Ethernet

- Características generales:
 - Nivel físico
 - Velocidad de transmisión de 1000 Mbps
 - Diferentes tipos de cableado:
 - Topología en estrella con conmutador
 - Nivel de enlace
 - Formato de la trama Ethernet con extensión de portadora y control de acceso al medio de Ethernet con ráfagas de tramas
 - Idea clave: reducción del tiempo de bit de 10 a 1 ns
 - Alternativa popular como LAN troncal (backbone)

Equipos de interconexión

- Nivel físico:
 - Concentrador (hub): retransmite la señal entrante por todas las líneas de salida
 - El dominio de colisión es único
 - El dominio de broadcast es único
- Nivel de enlace:
 - Conmutador (switch): retransmite la trama entrante por la línea de salida apropiada (autoaprendizaje)
 - Hay un dominio de colisión por puerto
 - El dominio de broadcast es único
 - Conmutador (switch) VLAN: conmutador con capacidad de crear
 LAN virtuales (VLAN)
 - Hay un dominio de colisión por puerto
 - Hay un dominio de broadcast por VLAN

Ethernet conmutada

- Basada en el uso de par trenzado y conmutadores
- El uso de conmutadores divide el dominio de colisión
- No aumenta la velocidad, sólo proporciona paralelismo
- Los conmutadores pueden tener puertos con diferentes capacidades y velocidades de transmisión
 - Autonegociación
- Si los enlaces son full-dúplex, no hay colisiones
 - Control de flujo

Uso de varios equipos de interconexión

Ejemplo de uso de Gigabit Ethernet LAN troncal

Datacenters (Warehouse Scale Computers)

Centros de datos de Google, Facebook, Amazon...

Datacenter Switch Cluster (30 racks) DRAM: 30TB, 500us, 10MB/s Disk: 4.80PB, 12ms, 10MB/s Introduction to the Design of Warehouse-Scale Machines", L. Barroso & U. Holzle.

Ethernet conmutada

- Autoprendizaje de direcciones MAC
 - Switch: tabla con entradas <MAC, interfaz, TTL>

MAC	interfaz	TTL
A	1	60
A'	4	60

Tabla del switch (inicialmente vacía)

LAN virtuales (VLANs)

- ¿Problemas de esta infraestructura de red?
 - ¿Movilidad de usuarios?
 - Dominio de broadcast único:
 - ¿Eficiencia?
 - ¿Seguridad?
 - ¿Coste?
 - Múltiples conmutadores con varios puertos libres

- Sol.: IEEE 802.1Q VLAN (Virtual LAN)
 - Un conmutador con soporte VLAN puede definir múltiples LAN virtuales sobre la misma infraestructura

LAN virtuales (VLANs)

 Un conmutador con soporte VLAN puede agrupar puertos...

(podría agrupar MACs)

- ... operando como varios conmutadores virtuales diferentes
 - División del dominio de broadcast

Ventajas de las VLANs

- Flexibilidad (grupos de trabajo virtuales):
 - VLAN constituida por distintos hosts independientemente de su situación física dentro de la LAN de una organización
 - Los usuarios/recursos pueden ubicarse donde más convenga
- Simplificación de la administración:
 - El cambio de ubicación de un usuario no implica reconfigurar el router (sólo se reconfigura el puerto)
- Eficiencia y seguridad:
 - Se reduce el tráfico broadcast a destinos innecesarios
 - Las VLAN con más tráfico broadcast no saturan al resto
 - Se impide el acceso al tráfico broadcast de otras VLAN
- Coste:
 - Reduce el número de conmutadores y routers necesarios

Topologías VLAN

- Cada VLAN identifica a una subred IP diferente
- El tráfico entre VLANs pasa siempre por el router

Topologías VLAN

- Si una VLAN se extiende más allá de los límites de un único conmutador, ¿cómo se sabe a qué VLAN pertenecen las tramas que circulan entre ambos?
- Sol.: IEEE 802.1Q define dos tipos de enlaces:
 - Trunk: ambos dispositivos con soporte 802.1Q (tramas etiquetadas o tagged frames)
 - Access: dispositivo sin soporte 802.1Q (tramas sin etiquetar o legacy frames)

Topologías VLAN

- Los enlaces entre los hosts y el conmutador pueden ser trunk o access
- Los enlaces entre los routers y el conmutador deben ser trunk si pertenecen a más de una VLAN

Etiquetado de tramas en 802.1Q

- Ampliación del formato de trama Ethernet para poder etiquetar las tramas (requiere soporte VLAN):
 - Tipo (802.1QTagType):0x8100
 - VID (VLAN Identifier) de 12 bits: identificador de VLAN

Conmutadores VLAN

- Reenvío de tramas en un conmutador VLAN
 - El conmutador determina la VLAN de las tramas entrantes:
 - Etiquetado explícito: el identificador está en la propia trama
 - Etiquetado implícito: obtenido a partir de una tabla interna con entradas <Puerto, VLAN ID>
 - Entradas estáticas (habitual):
 - » Gestionadas por el administrador de la red
 - Entradas dinámicas:
 - » Autoaprendidas mediante el análisis de las tramas entrantes anotando la dirección MAC fuente/el puerto y el VLAN ID
 - En función del puerto de salida (modo trunk o access), el conmutador etiquetará las tramas o no

Problemas

- Problema 1. Si VLAN7 (1,2 y 3) es 10.0.0.1/24 y VLAN8 (4, 5 y 6) es 192.168.0.1/24, y todos los enlaces están en modo access:
 - Dibuja la topología equivalente sin soporte VLAN.
 - Detalla la secuencia de intercambio de paquetes al ejecutar en PC1 ping 10.0.0.3 y ping 192.168.0.2.

Campos trama Ethernet		Campos paquete IP / ARP / ICMP					
MAC	MAC	Tipo*	IP	MAC	IP	MAC	ICMP
Origen	Destino		Origen	Origen**	Destino	Destino**	***

 ¿Se podría eliminar uno de los enlaces entre el router y en el conmutador?

Contenidos

- 4.1. Introducción
- 4.2. Direccionamiento de enlace
 - 4.2.1. Direcciones MAC
 - 4.2.2. Protocolo ARP
- 4.3. Redes cableadas de área local
 - 4.3.1. El control de acceso al medio
 - 4.3.2. Las redes Ethernet
 - 4.3.3. El nivel físico en redes Ethernet
 - 4.3.4. Equipos de interconexión
 - 4.3.5. VLANs
- 4.4. Redes inalámbricas de área local
 - 4.4.1. El control de acceso al medio
 - 4.4.2. Tecnología 802.11
 - 4.4.3. El nivel físico en redes inalámbricas

WLANs

- Ventajas de las WLAN
 - Flexibilidad
 - Las microondas permiten poder salvar obstáculos
 - Los emisores/receptores pueden colocarse en cualquier sitio
 - Fácil instalación
 - Bibliotecas, hoteles, aeropuertos, edificios históricos,...
 - Coste
 - Ahorro en conectores, cables, mantenimiento,...
 - Una vez que se proporciona acceso a la red a un usuario los posteriores no incrementan su coste de instalación
- Desventajas de las WLAN
 - Calidad de servicio
 - Menor que en las redes cableadas
 - Mayor porcentaje de error y mayor retardo que redes cableadas
 - Seguridad
 - Privacidad, uso ilegítimo, interferencias,...

Arquitecturas WLAN

- Dispositivos WLAN
 - Estación (STA)
 - Host con interfaz inalámbrica
 - Punto de acceso (AP, Access Point) o estación base
 - Posibilita la comunicación inalámbrica entre dos o más STAs
- WLAN independiente
 - Independent Basic Service Set (IBSS)
 - Red ad-hoc entre estacions
 - No hace uso de APs

Arquitecturas WLAN

WLAN de infraestructura

- Basic Service Set (BSS)
 - Grupo de STAs que utilizan el mismo AP
 - Identificador (BSSID): dirección MAC del AP
- Extended Service Set (ESS)
 - Grupo de BSSs conectados entre sí mediante un DS
 - Identificador (ESSID): cadena de caracteres
- Sistema de distribución (DS)
 - Red de interconexión entre los BSSs
 - Wireless DS (WDS): red de interconexión inalámbrica entre los BSSs

Control de acceso al medio inalámbrico (CSMA/CA)

- En redes inalámbricas, es difícil detectar colisiones
 - La señal recibida es mucho más débil que la señal transmitida por lo que la comparación es compleja
 - Las colisiones se producen en el receptor pero no necesariamente en el emisor (estaciones ocultas)
- Se intenta evitarlas usando CSMA/CA en lugar de CSMA/CD
- Aún así, CSMA/CA no resuelve todos los problemas:
 - Estaciones ocultas

CSMA/CA

- CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)
 - Acceso múltiple con detección de portadora y prevención de colisiones
 - Intenta evitar las colisiones con dos estrategias:
 - Espacio entre tramas y envío no-persistente
 - Se envían confirmaciones (ACK) para asegurar que no se produjo una colisión y que la trama fue recibida correctamente.
 - Se utiliza ampliamente en la subcapa MAC de 802.11 (WiFi)

Subcapa MAC en 802.11

- Envío de paquetes unicast (CSMA/CA)
 - La estación debe esperar DIFS antes de enviar trama
 - El receptor confirma que la trama se recibió correctamente (CRC)
 con un ACK tras esperar SIFS
 - En caso de error se retransmite la trama
 - Es un protocolo de <u>parada y espera</u>
 - La retransmisión implica reiniciar el algoritmo

Modo de operación en 802.11

- Las STAs tienen que asociarse con los puntos de acceso:
 - Los APs envían tramas beacon periódicamente con información de su BSS
 - Los STAs escanean los canales buscando tramas de beacon.
 - Seleccionan con qué AP se asocian por este orden
 - Primero se elige la red por orden de preferencia de usuario
 - Segundo se elige el AP con mayor potencia de señal
 - Se autentican frente al AP elegido
 - Se puede usar para ello una clave compartida o un usuario+contraseña
 - Se asocian con el AP elegido (establecimiento de la conexión)
 - El AP necesita reservar recursos para mantener la conexión
- A continuación, pueden enviar tráfico TCP/IP
 - Normalmente el orden suele ser:
 - DHCP
 - ARP

Codificación analógica

- Codificación basada en una señal de frecuencia constante: portadora
- Transmisión de datos modificando parámetros de la portadora (frecuencia, amplitud, fase): modulación

Modulaciones de una sola componente

- Modulación de amplitud (ASK)
 - Distinta amplitud para cada valor de bit
 - Muy sensible a cambios de voltaje
 - Por ejemplo, ruido o interferencias
 - Usada en líneas de fibra óptica

Modulaciones de una sola componente

- Modulación de frecuencia (FSK)
 - Distinta frecuencia para cada valor de bit
 - Menos sensible a cambios de voltaje pero limitada por W
 - Utilizada en tecnologías como Bluetooth 5.0

- Modulación de fase (PSK)
 - Distinta fase para cada valor de bit
 - Las variaciones de fase son fácilmente identificables

Velocidad de modulación y de transmisión

- Velocidad de transmisión (V_T)
 - Número de bits transmitidos por unidad de tiempo
 - bps, Kbps, Mbps, Gbps, ...
- Velocidad de modulación (V_M)
 - Número máximo de cambios por unidad de tiempo
 - Baudios
 - Cada cambio de estado podría codificar varios bits
- Relación entre ambos conceptos

$$V_{M} = \frac{1}{T_{e}} \qquad V_{T} = \frac{\log_{2} n}{T_{e}} = V_{M} \cdot \log_{2} n$$

- T_e: duración de cada estado
- n: número de estados

Modulación de varias componentes

- Modulación de amplitud en cuadratura (QAM)
 - El ancho de banda limita FSK, pero no la combinación entre ASK y PSK
 - X variaciones en fase, Y variaciones en amplitud = X·Y estados distintos (diagrama de constelación)
 - En este caso $V_T > V_M$ porque $V_T = V_M \cdot \log_2 (X \cdot Y)$
 - Una buena elección de X e Y proporciona resistencia al ruido y robustez ante errores
 - Utilizada en tecnologías como 802.11n (WiFi N)
 - Ejemplo de diagramas de constelación para 16-QAM:

Relación de conceptos

T (periodo) =
$$1/16 s = 62,5 ms$$

 $V_m = 8 baudios$

$$T_e$$
 (símbolo) = 1/8 s = 125 ms
 $V_t = V_m * log_2 N = 8 * 3 = 24 bps$

Modulación: 2 amplitudes, 4 fases => 2*4 QAM = 8-QAM

Problema

Sabiendo que la señal senoidal de la figura transmite los bits 00111000100101:

¿Cuál es la frecuencia de la portadora?

¿Qué tipo de modulación se utiliza?

Dibuja su diagrama de constelación.

Por último, calcula T_e , V_M y V_T .

Tema 4 El nivel de enlace: Redes de área local

(1904) Redes de Comunicaciones

