1

Síntesis y reconocimiento de obras musicales

Autores: Alejandro Magnorsky, Andrés Mata Suárez, Mariano Merchante Instituto Tecnológico de Buenos Aires

Resumen

Palabras clave

I. INTRODUCCIÓN

II. DESARROLLO

A. Cálculo de la temperatura del cilindro

La temperatura de un cilindro uniforme puede modelarse como una función u(r,t), donde r es la coordenada radial desde el eje del cilindro y t es el tiempo. Dicha función debe satisfacer la siguiente ecuación diferencial:

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} = \frac{1}{4K} \frac{\partial u}{\partial t} \tag{1}$$

para $\frac{1}{2} < r < 1$ y 0 < t < 10.

Las condiciones de contorno, para $0 \le t \le 10$, son:

$$u(\frac{1}{2}, t) = t \tag{2}$$

$$u(1,t) = 100 + 40t \tag{3}$$

Además, la condición inicial, para $\frac{1}{2} \le r \le 1$, es:

$$u(r,0) = 200(r - 0.5) \tag{4}$$

El objetivo es, entonces, encontrar una aproximación $v_k^m \approx u(\frac{1}{2} + k\Delta r, m\Delta t)$, donde $k = 0, 1, \dots, n$ siendo $n = \frac{1-\frac{1}{2}}{\Delta r}$ y $m = 0, 1, \dots, l$ con $l = \frac{10}{\Delta t}$.

Para ello, se utilizan las siguientes diferencias:

$$\frac{\partial^2 u}{\partial r^2} = \frac{u(r + \Delta r, t) - 2u(r, t) + u(r - \Delta r, t)}{\Delta r^2} + O(\Delta r^2)$$
 (5)

$$\frac{\partial u}{\partial r} = \frac{u(r + \Delta r, t) - u(r - \Delta r, t)}{2\Delta r} + O(\Delta r^2)$$
(6)

$$\frac{\partial u}{\partial t} = \frac{u(r, t + \Delta t) - u(r, t)}{\Delta t} + O(\Delta t) \tag{7}$$

Escribiendo las aproximaciones de las diferencias centradas en la ecuación (1), se obtiene el siguiente esquema:

$$\frac{v_{k+1}^m - 2v_k^m + v_{k-1}^m}{\Delta r^2} + \frac{1}{\frac{1}{2} + k\Delta r} \frac{v_{k+1}^m - v_{k-1}^m}{2\Delta r} = \frac{1}{4K} \frac{v_k^{m+1} - v_k^m}{\Delta t}$$
(8)

$$v_k^{m+1} = v_k^m + \frac{4K\Delta t}{\Delta r^2} (v_{k+1}^m - 2v_k^m + v_{k-1}^m) + \frac{4K\Delta t}{\Delta r + 2k\Delta r^2} (v_{k+1}^m - v_{k-1}^m)$$
(9)

Listing 1: Implementación del cálculo de v_k^m .

```
function v = centeredDifferences(deltaR, deltaT)
        K = 0.1;
        n = (1/2)/deltaR;
l = 10/deltaT;
        v = zeros(1+1,n+1);
        for k = 0:n
                v(1,k+1) = 200*(1/2 + k*deltaR - 0.5);
        endfor
        for m=0:1
                v(m+1,1) = m*deltaT;
                v(m+1, n+1) = 100 + 40*m*deltaT;
        endfor
        for m=1:1
                for k=2:n
                         v(m+1,k) = v(m,k) + 4*K*deltaT/deltaR^2 * (v(m,k+1) - 2*v(m,k) + v(m,k-1)) + 4*K*
                             deltaT/(2*deltaR*(1/2+k*deltaR)) * (v(m,k+1) - v(m,k-1));
                endfor
        endfor
```

endfunction

Las condiciones de contorno y la inicial se deducen de las ecuaciones (2), (3) y (4):

$$v_0^m = m\Delta t \tag{10}$$

$$v_n^m = 100 + 40m\Delta t \tag{11}$$

$$v_k^0 = 200(\frac{1}{2} + k\Delta r - 0.5) \tag{12}$$

III. RESULTADOS

IV. CONCLUSIONES

REFERENCIAS

Mathews, John H., Fink, Kurtis D., "Numerical Methods Using MATLAB", Prentice Hall, 1999