MTH 309 - Activity 4 Matrix Algebra

- 1. Consider the linear transformation $R_{\theta} \colon \mathbb{R}^2 \to \mathbb{R}^2$ that rotates the space by θ radians counterclockwise.
 - (a) What is the matrix representation of R_{θ} ?
 - (b) Describe in words what the effect of the composition $R_{\theta} \circ R_{\theta}$ is on the space.
 - (c) What is the matrix representation of the composition $R_{\theta} \circ R_{\theta}$ based on your answer to part (b)?
 - (d) What is the matrix representation of the composition $R_{\theta} \circ R_{\theta}$ based on the definition?
 - (e) What can you deduce by comparing these two matrix representations?
- 2. Redo parts (b) (e) from problem 1 for the composition $R_{\theta} \circ R_{\phi}$.
- 3. Consider the inverse of R_{θ} .
 - (a) Describe in words what the inverse of R_{θ} does to the space.
 - (b) What is the matrix representation of R_{θ}^{-1} based on your description from part (a)?
 - (c) Describe in words what the effect of the composition $R_{\theta}^{-1} \circ R_{\theta}$ is on the space.
 - (d) What is the matrix representation of the composition $R_{\theta}^{-1} \circ R_{\theta}$ based on your description in part (c)?
 - (e) What is the matrix representation of the composition $R_{\theta}^{-1} \circ R_{\theta}$ based on the definition?
 - (f) Write an equation that relates the matrix representations of R_{θ} , R_{θ}^{-1} , and the composition $R_{\theta}^{-1} \circ R_{\theta}$.
- 4. Generalize problem 3 part (f) to a generic invertible linear transformation $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ that has matrix representation A.
- 5. How might you compute the inverse of a matrix? Below are some examples to try with.

$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 3 & -2 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 10 \end{bmatrix}$$