CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 10 FEBBRAIO 2017

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza (I, II o recupero). Non è necessario consegnare la traccia.

Esercizio 1. Negare le frasi:

- (i) Per ogni $x \in \mathbb{Z}$ esiste $y \in \mathbb{Z}$ tale che xy = x.
- (ii) Per ogni $X \in \mathcal{P}(S)$ esiste $Y \in \mathcal{P}(S)$ tale che $X \cap Y \subset X$.

Esercizio 2. In $M_2(\mathbb{Z}_{16})$ si consideri il sottoinsieme $G = \left\{ \begin{pmatrix} a & b \\ \bar{0} & \bar{1} \end{pmatrix} \middle| a \in \mathcal{U}(\mathbb{Z}_{16}) \land b \in \mathbb{Z}_{16} \right\}$.

- (i) Determinare |G|.
- (ii) Verificare che G è chiuso rispetto alla moltiplicazione (righe per colonne) tra matrici, che (G,\cdot) è un gruppo e che non è abeliano.
- (iii) Determinare l'inverso di $\begin{pmatrix} \bar{7} & \bar{1} \\ \bar{0} & \bar{1} \end{pmatrix}$ in (G, \cdot) .

Sia
$$H := \left\{ \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}, B \right\}$$
, dove $B = \begin{pmatrix} \bar{1} & \bar{8} \\ \bar{0} & \bar{1} \end{pmatrix}$.

- (iv) Verificare che B coincide col suo inverso in (G,\cdot) .
- (v) Verificare prima che H è una parte chiusa in (G,\cdot) , poi che H è un sottogruppo di (G,\cdot) .

Sia \mathcal{R} la relazione binaria definita in G ponendo, per ogni $x, y \in G$, $x \mathcal{R} y \iff x^{-1}y \in H$.

- (vi) Ricordando che per ogni $x,y\in G$ si ha $y^{-1}x=(x^{-1}y)^{-1}$, verificare che $\mathcal R$ è una relazione di equivalenza in G.
- (vii) Calcolare $\left[\left(\frac{\bar{1}}{\bar{0}}\frac{\bar{0}}{\bar{1}}\right)\right]_{\mathcal{R}}$.
- (viii) Provare che, per ogni $g \in G$, $[g]_{\mathcal{R}} = \{gh \mid h \in H\} = \{g, gB\}$.

Esercizio 3. Siano S un insieme ed A una sua parte. Facendo riferimento all'anello $(\mathcal{P}(S), \triangle, \cap)$, si consideri l'applicazione

$$\varphi_A \colon X \in \mathcal{P}(S) \longmapsto A \vartriangle X \in \mathcal{P}(S).$$

- (i) Dimostrare che φ_A è biettiva e determinare φ_A^{-1} (ricordare che A è dotato di opposto in $\mathcal{P}(S)$).
- (ii) Per quali scelte di A si ha $\varphi_A = \mathrm{id}_{\mathcal{P}(S)}$?

Definita la relazione binaria Σ in $\mathcal{P}(S)$ ponendo, per ogni $X,Y\in\mathcal{P}(S)$,

$$X \Sigma Y \iff X \triangle A \subseteq Y \triangle A,$$

- (iii) si provi che Σ è una relazione d'ordine.
- (iv) Si determinino in $(\mathcal{P}(S), \Sigma)$ gli eventuali elementi minimali, massimali, minimo, massimo.
- (v) Per quali cardinalità di S la relazione Σ è totale?
- (vi) Disegnare il diagramma di Hasse di $(\mathcal{P}(S), \Sigma)$ nel caso in cui $S = \{1, 2\}$ e $A = \{1\}$.

Esercizio 4. Sia $f = x^4 - 4x^2 - 21 \in \mathbb{Z}[x]$.

- (i) Dimostrare che esistono $a, b \in \mathbb{Z}$ tali che $f = (x^2 + a)(x^2 + b)$.
- (ii) Per ciascuna scelta di A tra i campi \mathbb{Q} , \mathbb{R} , \mathbb{Z}_2 \mathbb{Z}_3 , \mathbb{Z}_5 , riguardato f come polinomio a coefficienti in A, se ne determini una decomposizione in prodotto di polinomi monici irriducibili in A[x] e si dica se f ha o meno radici in A.