Federated Learning Paper Sharing

Lisen Dai

Federated Learning Paper Sharing

Lisen Dai

November 20, 2020

FedOpt: Towards Communication Efficiency and Privacy Preservation in Federated Learning Sparse Compression Algorithm

Federated Learning Paper Sharing

Lisen Dai

Goal: reduce the number of communication bits during the models training.

$$\Delta \theta = \mathcal{SGD}_n(\theta, D_{mini-batches}) - \theta$$

 θ : Deep Neural Network parameters.

 \mathcal{SGD}_n : refers to the set of gradient updates after n epochs of SGD on DNN (deep neural network) parameters θ during the sampling of mini-batches from local data Once we have the updates $\delta v...$

FedOpt: Towards Communication Efficiency and Privacy Preservation in Federated Learning

Federated Learning Paper Sharing

Lisen Da

Input: temporal vector $\Delta \theta$, Sparsity Fraction q

Output: sparse temporal $\Delta \theta^*$

Initialization;

$$num^+ \leftarrow top_a(\Delta\theta)$$
; $num^- \leftarrow top_a(-\Delta\theta)$;

 $\Psi^+ \leftarrow$

Algorithm 1: SCA: Communication Efficiency in FedOpt

FedOpt: Towards Communication Efficiency and Privacy Preservation in Federated Learning

Federated Learning Paper Sharing

Lisen Da