BJYZ

Bowen Yao, Jingwu Wang, Yuqi Chen, Ken Chen

Team Member And Role

	Phase 1: Sept. 17th → Oct. 8th	Phase 2: Oct 8th → Oct. 29th	Phase 3: Oct. 29th → Nov. 19th	Phase 4: Nov. 19th → Dec. 1st
Project Manager	Bowen Yao	Zikang Chen	Yuqi Chen	Jingwu Wang
Documentation lead	Jingwu Wang	Bowen Yao	Zikang Chen	Yuqi Chen
Testing lead	Yuqi Chen	Jingwu Wang	Bowen Yao	Zikang Chen
I/O & Orchestration lead	Zikang Chen	Yuqi Chen	Jingwu Wang	Bowen Yao

Communication

Content

- Algorithm
- Testing
- Result and Metrics

System Requirements

- Python Version
 - Python 3.6 or later version
- Imported Library
 - o biopython: Fasta/ Fastq file reader
 - o psutil: for retrieving information on system utilization (CPU, memory, etc)

Project Structure

```
BJYZ/
-- src/
      fasta_reader.py # Reader class for reference genome
      fastg reader.pv # Reader class for sequence reads
      sam_writer.py # Writer class for SAM Files

   substring index.py # Indexing + SW algorithm

   read mapper.py # Project main entry point
  tests/
   — test_fasta_reader.py # Unit tests for fasta_reader

   test fastq reader.py # Unit tests for fastq reader

    — test_sam_writer.py # Unit tests for sam writer

   test substring index.py # Unit tests for substring index algorithm

   test index parallel.py # Unit tests for parallel version

    — file/
                          # Short example input files

   example.fasta

   example.fastq

                          # Folder containing input file
  data/
   — fasta files
   — fasta files
  README.md
                    # Description of project
  requirements.txt
                          # Python dependencies
```

Algorithm

Some Algorithms We Tried

Reference Genome Length - n

Read Genome Length - m

Seed Length - k (kmer)

- Suffix Array
 - Time complexity is O(m log n)
 - Takes several minutes for 1000 reads
- Smith-Waterman Algorithm
 - Gives the optimal approximate matching
 - Low Efficiency Time Complexity O(nm)
 - Takes > 1 hour for 1000 reads
- Hash table + Seeds-and-Extends + Banded Smith-Waterman

Reference Genome

- 1. Decide a k (we choose 20)
- 2. Find all k-mers in the reference genome and store them along with their starting indices to a hash table

$$\begin{array}{c} K=3 \\ ATC: [0,4] \\ TCG: [1/5] \\ CGA: [2] \\ GAT: [3] \end{array}$$

Split Reads - retrieve potential candidate

- 1. Set seed length: Let k = 20 represent the length of each seed. Define l as the number of seeds, where $l = \frac{|R|}{2}$, and |R| is the length of the read R.
- 2. Select seeds: Divide the read R into l non-overlapping or overlapping seeds of length k. Denote these seeds as S_1, S_2, \ldots, S_l , where $S_i = R[i:i+k]$.
- 3. Map seeds to reference genome: For each seed S_i, use the precomputed hash table H to find the corresponding start indices in the reference genome G, denoted as

$$H(S_i) = \{I_1^i, I_2^i, \dots\}$$

Split Reads - apply BandedSW algorithm

4. Extract candidate regions: For each retrieved start index I_j^i from the hash table and let p_i represent the position of seed S_i in R. Extract the corresponding region from the reference genome:

$$G[I_j^i - p_i : I_j^i - p_i + |R|]$$

This region will serve as the candidate for alignment.

- 5. Apply banded Smith-Waterman: Use a banded dynamic programming approach to align R to the extracted region. Define the bandwidth w as a parameter controlling the number of diagonal offsets to compute (e.g., w = 5). The alignment computation is restricted to cells (i, j) where $|i j| \le w$. Compute the alignment score $A(I_i)$ for each candidate region.
- 6. Compute alignment score: After performing the banded Smith-Waterman algorithm, let A(I_jⁱ) denote the alignment score for the start index I_jⁱ. After obtaining the maximum score, we traced the path back to construct CIGAR string.

Split Reads - apply BandedSW algorithm

7. Early exit: Set the early exit score threshold as

$$\tau = 0.1 \times |R|$$

where |R| is the length of the read. If $A(I_j^i) > \tau$, then exit the loop and claim I_j^i as the alignment for the read R. Otherwise, proceed to the next start index.

8. Reverse complement case: If no start index satisfies $A(I_j^i) > \tau$, compute the reverse complement of R, and repeat the process from step 2.

Parameters

- k: Seed Length [significantly impact the speed]
 - The larger k, the faster
 - The larger k, the lower possibility to find a match
- Seed num: The number of seeds for each read
 - The larger, the greater possibility of finding a match
 - The larger, the more comparison that slows speed
- DP threshold: Matching similarity
- Bandwidth: BandedSW bandwidth
 - The lower bandwidth, the faster
 - The lower bandwidth, the accuracy may not be ensured

Testing

Testing on I/O

- ReadFasta and ReadFastq
 - Test on empty file
 - Test incorrect input path
 - Test on malformed file
 - Test on a simple correct file

SAMWriter

- Validate the SAM file output
- Check correct header
- Check correct mapping

Testing on Parallel Mapping

- Comparison of Expected Start and End Position
 - For each read in the dataset, compare the match index returned by the mapping algorithm with the corresponding expected start and end position from the ground truth data
- Performance Metrics Calculation:
 - Precision
 - Recall
 - Runtime

Result

Midterm Result

Midterm Metrics For Test Dataset 1:

Wall Clock Time (s)	CPU Time (s)	Reads Per Minute	Memory Usage (MB)
4.30	4.27	14,019	41.91

Break-down:

True Positive	False Positive	True Negative	False Negative
811	0	188	1

Precision	Recall	F1 Score
1.00	1.00	1

Midterm Metrics For Test Dataset 2:

Wall Clock Time (s)	CPU Time (s)	Reads Per Minute	Memory Usage (MB)
4.27	4.24	14,151	40.58

Break-down:

True Positive	False Positive	True Negative	False Negative
799	0	188	13

Precision	Recall	F1 Score
1.00	0.98	0.99

Final Result

Final Metrics For Challenging Test Dataset 1:

Wall Clock Time (s)	CPU Time (s)	Reads Per Minute	Memory Usage (MB)
37.60	33.34	531,822	614.60

Break-down:

True Positive	False Positive	True Negative	False Negative
259,851	7,322	66,132	0

Correctness	Precision	Recall	F1 Score
97.8%	0.97	1.00	0.99

Final Metrics For Challenging Test Dataset 2:

Wall Clock Time (s)	CPU Time (s)	Reads Per Minute	Memory Usage (MB)
39.37	35.48	507,888	632.62

Break-down:

True Positive	False Positive	True Negative	False Negative
258,145	8,856	66,199	105

Correctness	Precision	Recall	F1 Score
97.31%	0.97	1.00	0.98

															igh risi	-																					
Project start date:	8/25/2024					Augus	it			Septe	embe	r															Octo	ber									
Scrolling increment:	5					30 31	1 2	3 4	1 5	6 7	8	9 10 1	11 12 1	13 14	15 16	17 18	19	20 21	22 2	3 24	25 2	6 27	28 2	9 30	1 2	3	4 5	6	7 8	9 1	0 11	12 13	14	15 16	17 2	18 19	20
Milestone description	Category	Assigned to	Progress	Start	Days	F S	s M	т и	v т	F S	s	мту	w T	F S	s M	T W	т	F S	s I	и т	w	F	s s	м	ти	/ т	F S	s	м т	wı	F	s s	м	T W	т	F S	s
gorithm																																					
Hashing	On Track	Bowen Yao	100%	8/30/2024	21					- 0g -							.,																				
Suffix array	On Track	Bowen Yao	100%	9/9/2024	14																																
SWT	On Track	Zikang Chen	100%	9/23/2024	28																																
ocumentation				_																																	
Code comments	On Track	Jingwu Wang	100%	8/30/2024	35																																
Design Doc	On Track	Bowen Yao	100%	9/29/2024	21																																
Readme	On Track	Bowen Yao	100%	9/29/2024	21																																
sting																																					
Testing fasta, fastq readers	On Track	Yuqi Chen	100%	8/30/2024	25																																
Testing output sam files	On Track	Yuqi Chen	100%	8/30/2024	25															_															Ш		
Testing performance	On Track	Jingwu Wang	100%	9/22/2024	28																v 72		- 22					100 /10		. 97	- N						
)																																					
Writing fasta readers	On Track	Zikang Chen	100%	8/30/2024	14																																
Writing fastq readers	On Track	Zikang Chen	100%	8/30/2024	14																					Ш											
Writing sam output	On Track	Yuqi Chen	100%	9/15/2024	28																																
esentation Preparation																																	Ц		Щ		
Preparing slides	On Track	All	100%	10/14/2024	7																																

Final Project

Med risk High risk On track Low risk Unassigned Legend: Project start date: 10/19/2024 October November Decembe Scrolling increment: 1 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 Milestone description Category Assigned to Progress Start Days S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M **Algorithm Optimization** 10/19/2024 On Track Zikang Chen 100% 21 Implementing the parallel design banned SWT On Track Yuqi Chen 100% 11/8/2024 14 fine-tune parameters On Track Jingwu Wang 100% 11/22/2024 Documentation Code comments On Track Bowen Yao 100% 10/19/2024 35 11/18/2024 Design Doc On Track Zikang Chen 100% 14 On Track 100% 11/18/2024 14 Readme Yuqi Chen Testing 100% 10/19/2024 25 Testing performance On Track Jingwu Wang Testing format of sam files On Track Bowen Yao 100% 11/12/2024 14 Testing on NOTs Zikang Chen 100% 11/24/2024 On Track 1/0 Writing CIGAR string On Track Yuqi Chen 100% 10/19/2024 21 Jingwu Wang 100% 11/8/2024 16 Writing other fields On Track SAM file formats On Track Bowen Yao 100% 11/24/2024 **Presentation Preparation** On Track All 11/24/2024 Preparing slides

Further Development

- Compile C code using Cython
- GPU acceleration

Conclusion

Hash table + Seeds-and-Extends + Smith-Waterman ~14000 reads/min (Midterm Goal)

Added "Banded" Smith-Waterman

~90000 reads/min

Added **Parallelism** on read level

~500000 reads/min

Citation

- Alser, M., Rotman, J., Deshpande, D., Taraszka, K., Shi, H., Baykal, P. I., Yang, H. T., Xue, V., Knyazev, S., Singer, B. D., Balliu, B., Koslicki, D., Skums, P., Zelikovsky, A., Alkan, C., Mutlu, O., & Mangul, S. (2021). Technology dictates algorithms: Recent developments in read alignment. *Genome Biology*, 22(1). https://doi.org/10.1186/s13059-021-02443-7
- Y. -L. Liao, Y. -C. Li, N. -C. Chen and Y. -C. Lu, "Adaptively Banded Smith-Waterman Algorithm for Long Reads and Its Hardware Accelerator," 2018 IEEE 29th International Conference on Application-specific Systems, Architectures and Processors (ASAP), Milan, Italy, 2018, pp. 1-9, doi: 10.1109/ASAP.2018.8445105.
- Treangen, T. J., & Salzberg, S. L. (2011). Repetitive DNA and next-generation sequencing: computational challenges and solutions. *Nature reviews. Genetics*, *13*(1), 36–46. https://doi.org/10.1038/nrg3117