Anti-thickness geométrico para gráficas completas con hasta diez vértices.

David Gustavo Merinos Sosa María Dolores Lara Cuevas (Ph. D)

29 de septiembre de 2019

Thickness

En 1961, Harary propone un problema:

Demuestre la siguiente conjetura: Para cualquier gráfica G con 9 vértices, G o su gráfica complementaria \overline{G} es no planar.

Harary, Battle y Kodoma y Tutte probaron, de manera independiente, que K_9 no es la unión de dos *gráficas planares* (no es biplanar). En 1963, Tutte definió el *thickness* de una gráfica, generalizando el término de biplanaridad.

 $[\]overline{G}$:La gráfica inducida resultante de remover todas las aristas de G de K_n

Thickness Geométrico

En el año 2000, Dillencourt, Eppstein y Hirschberg dan el valor exacto del *thickness geométrico* para gráficas completas.

Ellos definen el thickness, $\theta(G)$, de una gráfica G como el mínimo número de gráficas planares en una descomposición de G. Por otro lado, definen el thickness geométrico, $\overline{\theta}(G)$, de G como el número mínimo de gráficas planas que existen en una descomposición de G, para todos los dibujos geométricos de G.

Gráfica de cruce

Es posible abstraer la información de los cruces de gráficas geométricas usando un tipo de gráficas a las que llamamos *gráficas de adyacencia*.

Las gráficas de adyacencia tienen como conjunto de vértices a las aristas de la gráfica completa que es inducida por algún conjunto S de n puntos.

Nosotros llamamos gráfica de cruce $E_{pp}(S)$ a la gráfica de adyacencia en la que existe una arista entre dos vértices cuando sus aristas correspondientes se cruzan.

Si encontramos una coloración propia de $E_{pp}(S)$ las clases cromáticas representan gráficas planas. Luego, el número cromático $\chi(E_{pp}(S))^2$ nos dice el mínimo número de gráficas planas que componen a la gráfica inducida por S.

Finalmente: $\overline{\theta}(K_n(S)) = \min\{\chi(E_{pp}(S)) : S \text{ es un conjunto de } n \text{ puntos}\}$

 $^{^2 \}text{El}$ número cromático, $\chi(G)$, de G es el mínimo número de clases cromáticas en una coloración propia de G.

Gráficas de adyacencia

Existen otras gráficas de adyacencia, si consideramos otro criterio para definir las aristas de la gráfica de adyacencia podemos obtener diferentes resultados.

- W(S): Existe una arista entre dos vértices si las aristas correspondientes comparten un vértice o son disjuntas. Las clases cromáticas son crossing families.
- I(S): Existe una arista entre dos vértices si las aristas correspondientes se intersectan. Las clases cromáticas son *emparejamientos planos*.
- D(S): Existe una arista entre dos vértices si las aristas correspondientes son disjuntas. Las clases cromáticas son *thrackles*.

Definiciones

Una gráfica geométrica G=(V,E) es un par de conjuntos V de puntos en el plano y E de segmentos de recta que unen pares de puntos de V. Llamamos vértices y aristas a estos conjuntos, respectivamente. Una gráfica geométrica es completa si contiene a todas las aristas entre pares de vértices de V.

Figura: En esta gráfica geométrica $V = \{p_1, p_2, p_3, p_4, p_5\}$ y $E = \{(p_1, p_2), (p_1, p_3), \dots, (p_4, p_5)\}$. Esta gráfica geométrica es completa.

Summary

- EX
 - a document preparation system
 - professional quality typesetting output
- Output artefacts
 - Academic: papers, theses, books
 - Dedicated document types
 - Domain-specific material
- Usage scenario
 - Direct authoring
 - Automatic generation (via scripts etc)
 - As back-end of other applications

Questions?

liantze@gmail.com, support@overleaf.com
http://tex.stackexchange.com

Want to download this deck?

