Perfect quantum simulation through tensor networks

PLAN

- Introduction context and theory
- Presentation of the project
- Tensor networks in Quantum Computing
- Application to QML
- Further discussion

Context And Theory

LIMITATIONS OF STATEVECTOR SIMULATION

- Exponential increase in space and time complexity with number of qubits
- Turn to tensor networks instead
- Parallelize contraction to gain time
- Cheaper memory and more time efficient

MAIN IDEAS OF TENSOR GRAPHS

- See quantum gates as linear mappings: tensors
- Multiple methods to turn a quantum circuit into a tensor graph
 - Tree Tensor Network, Matrix Product State, Projected Entangled Pair states

FOR THIS PROJECT: PENNYLANE + JAX

qml.device("default.tensor", method="mps",
**kwargs_mps)

GOAL OF THE PROJECT

- Objective: look into perfect simulation with high number of qubits through parallel contraction of tensor networks.
- First: characterize efficiency of parallelization.
- Second: apply these methods to QML problems.
- Third: Try on real QPU (IBM)

Tensor networks in quantum computing

IMPLEMENTATION AND FIRST TESTS

Pennylane module: default.qubit vs default.tensor

Computationnal method: MPS and TN

MPS (approx, low entanglement)

TN (exact result, higher cost)

IMPLEMENTATION AND FIRST TESTS

Use of JAX: scientific computing library for parallelisation

Jax.vmap: run batches of circuits in parallel

Jax.jit: compile circuit execution to XLA

RESULTS

CIRCUIT A CIRCUIT B

RESULTS - CIRCUIT A - WITH PARAMETERS

RESULTS - CIRCUIT B - NO PARAMETERS

RESULTS - SUMMARY

- Clear advantage for tensors on default qubit
- However, it is important to **choose the tensor architecture** accordingly to the circuit design --> MPS or TN or other.
- JAX has a **variable advantage**: we noticed this advantage was clear for circuits with static input --> to take advantage of the XLA compilation.
- We will further show how we used this to take advantage of JAX

Application to QML

CLASSIC QML PIPELINE

- Encoding classical data points into quantum states
- Calculating a similarity matrix
- Applying Spectral Clustering Algorithm
- Evaluating with a NMI score

Figure 8: Clustering results

EVALUATING MORE COMPLEX DATASETS

dist = np.exp(similarity_adjoint(6, 2, X_moons_scaled, sim, pm) * 50)

QML IMPLEMENTATION USING PENNYLANE-JAX

MAIN DIFFERENCES WITH CLASSICAL IMPLEMENTATION:

- 1. Calling qml.state() to retrieve the final quantum state vector
- 2. Compute the fidelity outside the circuit by focusing on the amplitude of the 000...0 basis state.
- 3. Use a tensor-network simulator (default.tensor)
- 4. Leverage JAX's just-in-time (JIT) compilation

IMPROVING THE IMPLEMENTATION

So far: basic approach with a two parameters circuit

```
def circuit(x1, x2):
    fidelity_adjoint_circuit_pennylane(n_qubits, n_features, x1, x2)
    return qml.state() # The calculation of fidelity is done outside the circuit

circuit = jax.jit(circuit)

for i in range(n_samples):
    for j in range(i):
        state = circuit(X_jax[i], X_jax[j]).block_until_ready()
```

Switch to only one!

```
for i in range(n_samples):
    # We create the circuit for the given x1
    circuit = x1_fixed_circuit(n_qubits, n_features, X_jax[i])
    circuit = jax.jit(circuit) # Extra cost: we run the compilation of the circuit for each i. But,
        we now only have one dynamic parameter.
    for j in range(i):
        state = circuit(X_jax[j])
```

BUT, INEFFICIENT USE OF CPUS

ADDITIONAL LEVEL OF PARALLELISM: PMAP

- Create batch of parameters
- Run the different circuit in parallel (mimick Sampler)

```
circuit = x1_fixed_circuit(n_qubits, n_features, X_jax[i])
circuit = jax.jit(circuit)
p_circuit = jax.pmap(circuit) # We use the pmap function to adapt it for use with pmax

# We run for X[:i], but we cut it in batch_size for use with pmap
n_iter = i//batch_size + 1 # batch_size is defined by the number of cores allocated for jax

for j in range(n_iter):
    if j == n_iter - 1:
        batch_parameters = X_jax[j*batch_size:i]
    else:
        batch_parameters = X_jax[j*batch_size:(j+1)*batch_size]

states = p_circuit(batch_parameters)
```

- Amazing increase in performances!
- But now, memory access limits performances

PENNYLANE VS QISKIT: HIGH NUMBER OF QUBITS AND FEATURES

Quantum Clustering Performance by Number of Qubits

70 - 225

70 - 225

70 - 225

100 - 200

100 - 175 (s) ewil uojano 200

100 - 100

100 - 100

100 - 100

100 - 100

Number of Qubits

Figure 15: 4 Features

Figure 16: 8 Features

Figure 17: 16 Features

RESULTS ON REAL DATASETS

Figure 18: Number of features equal to number of Qubits

Figure 19: Twice more Qubits than features

Thanks