

Question 7 Um cilindro de raio $R=11\,cm$ e com massa de $m=2,5\,Kg$, inicialmente em repouso, está livre para rotacionar ao redor de seu próprio eixo. Uma corda com massa desprezível é então enrolada ao seu redor é tem uma das pontas puxada com uma força de $F=17\,N$.

Assumindo que a corda não desliza, encontre:

- (a) (4 pontos) O torque exercido no cilindro pela corda.
- (b) (4 pontos) A aceleração angular do cilindro.
- (c) (2 pontos) A velocidade angular do cilindro depois de $t=0,5\,s.$

$ \begin{array}{cccc} $	17) = 1,87 Nm	
D) $\mathcal{L} = I \propto$ culindro oco $I_{aco} = M R^2 = (2,5)(0,11)^2 = 0,03$ culindro solido $I_{solido} = 1 M R^2 = 0,015 \text{ kg m}^2$ $\mathcal{L}_{aco} = \frac{\mathcal{L}}{2} = 62 \text{ rad/s}^2$ $\mathcal{L}_{aco} = \frac{\mathcal{L}}{2} = 62 \text{ rad/s}^2$ $\mathcal{L}_{aco} = \frac{\mathcal{L}}{2} = 125 \text{ rad/s}^2$ Ou simplismente $x = 1,87$ $I_{aco} = I_{aco}$	Okg m² W= Wo + xt wo = 0 w - xt Word = 31 rad/A Walido = 6 2 rad/A	

Continuação do espaço para a questão 07.

(c)
$$\omega(t) = \omega_0 + \alpha t$$

 $\omega_0 = 0$
 $\omega_{\infty}(0,5\lambda) = 31 \text{ rad/}\lambda$
 $\omega_{\text{soliolo}}(0,5\lambda) = 62 \text{ rad/}\lambda$

(a) (4 pontos) Determine as as velocidades das partículas após a colisão?

(b) (6 pontos) Quando a partícula 2 se choca com uma parede no ponto $x_p=70$ cm ricocheteia sem perder velocidade escalar. Em que ponto do eixo x a partícula 2 volta a colidir com a partícula 1?

		$]4 \square 5 \square 6 \square 7 \square 8 \square 9 \square 1$
Pantes = Polepois	antes	1 ~= 2 m/x 2
m, 10 = m, 01 + m	e No (1) depois	\sim \sim \sim \sim \sim \sim
conservação de Energia	λ.;	
2 m, v= 1 m, v,2+	$\frac{1}{2} m_2 n_2 (2)$	
$\mathcal{A}_{2} = \frac{m_{1}}{m_{2}} \left(\sigma - \sigma_{1} \right)$		
De (2) $\frac{1}{2}m_1 N^2 = \frac{1}{2}m_1 N_1 +$	$\frac{1}{2}m_2\left(\frac{m_1}{m_2}\right)^2$ (N	-01)2
~= ~1 + <u>m1</u> (V - N,)2	
$\left(\sqrt[3]{-\sqrt[3]{1}} \right) = \frac{m_1}{m_2} \left(\sqrt[3]{-\sqrt[3]{1}} \right)^2$		
(0+ NI) (N-NI) =	m, (v-v,) (v-v	1)
=> m2 n+ m2 n	= m1 ~ - m1 ~1	=> N= = m1-m2 N

$$N_1 = \frac{(0,30-0,40)}{(0,30+0,40)} (2,0) \Rightarrow N_1 = -0,286 \text{m/s}$$

$$\mathcal{H}_1 = \mathcal{N}_1 \left(\frac{2 \, \mathcal{L}_p}{\mathcal{N}_1 + \mathcal{N}_2} \right)$$

$$3c_1 = (-0,286) \left(\frac{2.(0,70)}{-0,286+1,71} \right) = -0,28m$$

Question 8 Considere 2 patinadores, A e B, de massa $60\,kg$, deslizando com atrito desprezível sobre uma pista de gelo, aproximando-se um do outro com velocidades iguais e opostas de $5\,m/s$, segundo retas paralelas, separadas por uma distância de $1,40\,m$.

(a) (2 ponto) Calcule o momento angular do sistema colocando o referêncial no patinador A.

(b) (4 ponto) Calcule o momento angular do sistema colocando o referêncial no patinador B e comparando com o item anterior responda se houve conservação.

(c) (4 ponto) Considere que os dois patinadores ao passarem um pelo outro seguram-se pelas mãos, passando a descrever um movimento circular uniforme. Determine a velocidade angular deste MCU levando em conta que a separação entre eles mantém-se em $1,40\,m$.

Continuação do espaço para a questão 08.

Continuação do espaço para a que so so contro de maria

$$L_{\parallel} = L_{A} + L_{B} = 2 \operatorname{ren} P = 2 \left(\frac{d}{a}\right) \operatorname{mn} = 2 \operatorname{mn} P$$

$$L_{\parallel} = L_{A} + L_{B} = 2 \operatorname{mn} P = 2 \left(\frac{d}{a}\right) \operatorname{mn} = 2 \operatorname{mn} P = 2 \left(\frac{d}{a}\right) = 2 \operatorname{mn} P = 2 \left(\frac{d}{a}\right) = 2 \operatorname{mn} P = 2 \operatorname$$

$$\omega = \frac{2(5)}{(1,4)} \Rightarrow \frac{\omega - 7,14 \operatorname{rad}}{4}$$