NASA/CR-2010-216898/VOL3

Broadband Fan Noise Prediction System for Turbofan Engines

Volume 3: Validation and Test Cases

Bruce L. Morin
Pratt & Whitney, East Hartford, Connecticut

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to *help@ sti.nasa.gov*
- Fax your question to the NASA STI Help Desk at 443–757–5803
- Telephone the NASA STI Help Desk at 443–757–5802
- Write to: NASA Center for AeroSpace Information (CASI) 7115 Standard Drive Hanover, MD 21076–1320

NASA/CR-2010-216898/VOL3

Broadband Fan Noise Prediction System for Turbofan Engines

Volume 3: Validation and Test Cases

Bruce L. Morin
Pratt & Whitney, East Hartford, Connecticut

Prepared under Contract NAS3-27727

National Aeronautics and Space Administration

Glenn Research Center Cleveland, Ohio 44135

Acknowledgments

This work was performed under Contract NAS3-27727 (AST Task 13) from the NASA Glenn Research Center (GRC) with Dennis Huff as contract monitor. The author greatly appreciates the following contributions: Dennis Huff (GRC) and Edmane Envia (GRC) for overall direction and coordination the AST Noise Program; Donald Hanson (P&W, retired) and Stewart Glegg (Florida Atlantic University) for providing the noise prediction routines used in BFaNS; Ramons Reba (United Technologies Research Center) for his work on the cascade-response subroutines; Gary Podboy (GRC), Richard Woodward (GRC) and Christopher Hughes (GRC) for providing noise, performance and flow-field data from the Pratt & Whitney and General Electric 22 in. diameter fan rigs that were tested at GRC; Ulrich Ganz (Boeing), John Premo (Boeing) and Timothy Patten (Boeing) for providing noise, performance and flow-field data from the Boeing 18 in. diameter fan rig that was tested at Boeing; Tony Hoang (United Technologies Research Center) for his assistance with computer programming and running test cases; Jon Gilson (P&W), Aaron Farbo (P&W Intern) and Gary Willett (P&W retired) for their assistance with data reduction and analysis; Clint Ingram (formerly P&W) and Mark Stephens (P&W) for providing CFD predictions for the Pratt & Whitney 22 in. diameter fan rig; Wesley Lord (P&W), Douglas Mathews (P&W) and David Topol (P&W) for their helpful comments and suggestions regarding this work.

This work was sponsored by the Fundamental Aeronautics Program at the NASA Glenn Research Center.

Level of Review: This material has been technically reviewed by expert reviewer(s).

Available from

NASA Center for Aerospace Information 7115 Standard Drive Hanover, MD 21076–1320 National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312

Summary

Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements.

The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source.

This report is the third volume of a three-volume set documenting the Broadband Fan Noise Prediction System:

Volume 1: Setup BFaNS User's Manual and Developer's Guide

Volume 2: BFaNS User's Manual and Developer's Guide

Volume 3: Validation and Test Cases

The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by validation studies that were done on three fan rigs. It concludes with recommended improvements and additional studies for BFaNS.

Contents

Sum	mary.		iii
1.0		duction	
2.0	Pratt	& Whitney 22-in. Diameter Fan	1
	2.1	Acoustic Configuration	1
	2.2	Flow-Field Measurement Configuration	2
	2.3	Approach Power	3
	2.4	Effect of Fan Speed	
3.0	Gene	eral Electric 22-in. Diameter Fan.	
	3.1	Acoustic Configurations	
	3.2	Flow-Field Measurement Configuration	
	3.3	Approach Power, 54 Radial Vanes	
	3.4	Effect of Vane Configuration.	
4.0		ng 18-in. Diameter Fan	
	4.1	Acoustic Configurations	
	4.2	Flow-Field Measurement Configuration	
	4.3	55 Percent Design Speed, Low Loading, Small Clearance	
	4.4	Effect of Fan Speed, Low Loading, Small Clearance	
5.0		Pluding Remarks	
6.0		mmendations	
		A.—Pratt & Whitney/NASA Fan Rig Information	
трр		Fan No. 1, Flow-Path Geometry File	
		Fan No. 1, Blade Geometry File	
		Fan No. 1, Vane Geometry File	
Δnn		B.—General Electric/NASA Fan Rig Information	
дрр	B.1	R4 Fan, 54 Radial Vanes, Flow-Path Geometry File	
	D .1	B.1.1 R4 Fan, 54 Radial Vanes, Blade Geometry File	
		B.1.2 R4 Fan, 54 Radial Vanes, Vane Geometry File	
	B.2	R4 Fan, 26 Radial Vanes, Flow-Path Geometry File	
	D.2	B.2.3 R4 Fan, 26 Radial Vanes, Blade Geometry File	
		B.2.4 R4 Fan, 26 Radial Vanes, Vane Geometry File	
	B.3	R4 Fan, 26 Swept Vanes, Flow-Path Geometry File	
	D.3	B.3.5 B-4b. R4 Fan, 26 Swept Vanes, Blade Geometry File	
		B.3.6 R4 Fan, 26 Swept Vanes, Vane Geometry File	
1	an div	C.—Boeing Fan Rig Information	
App		Geometry Files	
	C.1		
		<i>U U</i> ,	53
		C.1.2 Boeing Rig, Blade Geometry File.	
۸		C.1.3 Boeing Rig, Vane Geometry File	
		D.—Turbulence Spectra, GE R4 and M5 Fans	
		E.—Turbulence Spectra, P&W Fan Numbers 1 and 2	
Reie	erence	S	85
		List of Figures	
Figu	re 1.–	-Fan broadband noise sources predicted by BFaNS.	2
		-Acoustic configuration, P&W fan.	
		-Flow-field measurement configuration, P&W fan.	
_		Sound power spectra, approach power, P&W fan no. 1. (a) Calculations excluding	
2		noise. (b) Calculations including blade noise.	4

Figure 5.—Effect of fan speed, P&W fan no. 1. (a) Calculations excluding blade noise. (b)	_
Calculations including blade noise.	5
Figure 6.—Acoustic configurations, GE fan: (a) 54 radial vanes (baseline); (b) 26 radial vanes;	_
(c) 26 swept vanes; and (d) rotor alone	
Figure 7.—Flow-field measurement configuration, GE fan.	
Figure 8.—Sound power spectrum, GE R4 fan, 54 radial vanes (approach power)	
Figure 9.—Sound power spectrum, GE R4 fan, rotor alone (approach power)	8
Figure 10.—Effect of vane configuration: (a) Experimental data; (b) Calculations excluding	0
blade noise; and (c) Calculations including blade noise.	
Figure 11.—Acoustic configuration, Boeing fan.	
Figure 12.—Flow field measurement configuration, Boeing fan.	11
Figure 13.—Sound power spectrum, Boeing fan, 55 percent design speed (low loading, small	11
clearance).	11
Figure 14.—Effect of fan speed, Boeing fan (low loading, small clearance): (a) Including blade	10
noise; and (b) Excluding blade noise.	
Figure A.1—Fan no. 1 rig schematics.	
Figure A.2.—Fan no. 1, average velocity, station A	
Figure A.3.—Fan no. 1, average velocity, station B.	
Figure A.4.—Fan no. 1, average turbulence intensity, station A.	
Figure A.5.—Fan no. 1, average turbulence intensity, station B.	
Figure A.6.—Fan no. 1, average turbulence scale, station A.	
Figure A.7.—Fan no. 1, average turbulence scale, station B.	
Figure B.1.—R4 fan rig schematics	25
Figure B.2.—R4 fan, average velocity, station A.	
Figure B.3.—R4 fan, average velocity, station B.	
Figure B.4.—R4 fan, average turbulence intensity, station A.	
Figure B.5.—R4 fan, average turbulence intensity, station B.	
Figure B.6.—R4 fan, average turbulence scale, station A.	
Figure B.7.—R4 fan, average turbulence scale, station B.	
Figure B.8.—M5 fan, average velocity, station A.	
Figure B.9.—M5 fan, average velocity, station B.	
Figure B.10.—M5 fan, average turbulence intensity, station A.	
Figure B.11.—R4 fan, average turbulence intensity, station B.	
Figure B.12.—M5 fan, average turbulence scale, station A.	
Figure B.13.—M5 fan, average turbulence scale, station B.	
Figure C.1.—Boeing fan rig schematics.	
Figure D.1.—Source diagnostic test, R4 fan, approach, station A.	
Figure D.2.—Source diagnostic test, R4 fan, approach, station B	
Figure D.4.—Source diagnostic test, M5 fan, approach, station B	
Figure E.1.—P&W fan number 1 test, approach, station A	
Figure E.1.—F&W fan number 1 test, approach, station A	
Figure E.3.—P&W fan number 1 test, approach, station B.	
Figure E.4.—P&W fan number 1 test, cutoack, station A	
Figure E.5.—P&W fan number 1 test, sideline, station B. Figure E.6.—P&W fan number 2 test, sideline, station A.	
	63
List of Tables	
Table 1.—Hot-Wire and LDV Data Used in Present Study, P&W Fan	
Table 2.—Hot-Wire and LDV Data Used in Present Study, GE Fan	
Table 3.—Hot-Wire Data Used in Present Study, Boeing Fan	10

Broadband Fan Noise Prediction System for Turbofan Engines Volume 3: Validation and Test Cases

Bruce L. Morin Pratt & Whitney East Hartford, Connecticut 06108

1.0 Introduction

In early turbofan engines, the fan blade passage tone and higher harmonics dominated the fan noise level when compared to fan broadband noise. However, engine makers have been very successful at reducing fan tone noise by decreasing fan tip speed, providing ample spacing between airfoil rows, carefully selecting the airfoil counts, and acoustically treating the fan duct. In fact, tone noise reduction has been so great that fan broadband noise is now a major contributor to the overall engine noise level. Under NASA funding, Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This prediction system is built around acoustic theories developed by Hanson (Refs. 1 to 4) and Glegg (Refs. 5 to 7). These theories account for noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane (FEGV), and noise generated by boundary-layer turbulence passing over the fan trailing edge. Figure 1 shows the fan broadband noise sources that can be predicted with BFaNS.

This report documents the validation studies that were performed on the following three fan rigs:

- Pratt & Whitney 22 in. diameter fan tested in the NASA Glenn Research Center 9- by 15-ft Low Speed Wind Tunnel
- General Electric 22 in. diameter fan tested in the NASA Glenn Research Center 9- by 15-ft Low Speed Wind Tunnel
- Boeing 18 in. diameter fan tested at Boeing Low Speed Aeroacoustic Facility (LSAF)

Volume 1 of this report series provides instructions for running Setup_BFaNS, and Volume 2 provides instructions for running BFaNS.

2.0 Pratt & Whitney 22-in. Diameter Fan

This section describes the validation of BFANS using data acquired from a P&W 22-in. fan (designated Fan no. 1) that was tested in the 9- by 15-ft Low Speed Wind Tunnel at NASA Glenn Research Center. The experimental data consisted of farfield noise, Laser Doppler Velocimeter (LDV) and hot-wire (HW) measurements of the mean velocity and turbulence near the stator leading edge, and total-pressure and total-temperature profiles downstream from the fan.

The flow-field measurements were used in conjunction with CFD calculations to provide the input needed to run BFaNS. The BFaNS validation was done at three speeds corresponding to approach, cutback, and sideline power. The BFANS calculations were compared to experimental data in terms of total sound power spectra.

2.1 Acoustic Configuration

Figure 2 shows the fan configuration that was used during the acoustic tests. The rotor had a diameter of 22 in. and consisted of 18 blades. The stator configuration consisted of 45 radial vanes. Reference 8 provides a more detailed description of the acoustic setup and measurements. Appendix A provides a detailed description of the flow path, blade and vane geometry.

Figure 1.—Fan broadband noise sources predicted by BFaNS.

Figure 2.—Acoustic configuration, P&W fan.

2.2 Flow-Field Measurement Configuration

To facilitate the LDV and hot-wire measurements, the stator was moved 2.33 in. downstream from its nominal location as shown in Figure 3. This modification permitted velocity measurements to be obtained 2.65 and 6.67 in. downstream from the fan tip trailing edge (Stations A and B, respectively). Note that Station A is upstream and Station B is downstream from the nominal location of the stator leading edge in the acoustic configuration (approximately 5.10 in. downstream from the rotor). Though not shown, a bellmouth inlet was installed during all LDV and hot-wire tests. Table 1 lists the LDV and HW data that were used in the present study (shaded cells indicate conditions where data was not acquired).

Appendix A shows plots of the mean and turbulent flow-field measurements acquired at Stations A and B. References 9 and 10 provide additional information on the flow-field data, along with preliminary BFaNS predictions.

TABLE 1.—HOT-WIRE AND LDV DATA USED IN PRESENT STUDY, P&W FAN	AND LDV DATA USED IN PRESENT STUDY, P&	/ FAN
---	--	-------

Corrected fan speed	Acoustic	HW data at	HW Data at	LDV data at	LDV data at
(rpm)	condition	station A	station B	station A	station B
5425	Approach	Yes	Yes	Yes	Yes
7525	Cutback		Yes	No	Yes
8750	Sideline	Yes	Yes	Yes	Yes

Figure 3.—Flow-field measurement configuration, P&W fan.

2.3 Approach Power

Figure 4 shows calculated and measured sound power spectra at approach power. The calculations and measurements have been scaled to an 81-in. diameter fan. The calculations were done using LDV and HW data acquired at Stations A and B (hence, there are four calculated spectra). Recall that Station A is upstream from the vane leading edge, and Station B is downstream from the vane leading edge (see Figure 2 and Figure 3). The calculations in Figure 4(a) exclude blade noise, while those in Figure 4(b) include blade noise.

The calculated spectra in Figure 4(a) show good agreement with the measured data. Across most of the frequency range, the measured spectrum falls between the upper and lower limits of the calculated spectra. However, when blade noise is included (Figure 4(b)), the calculated spectra exceed the measured spectrum over most of the frequency range. These results suggest that BFaNS over-predicts the contribution of blade noise (mainly self noise) relative to vane noise.

Figure 4 also shows that the noise calculations based on HW data are approximately 3 dB greater than those based on LDV data. This result is consistent with the velocity profiles in Appendix A, which show that the HW measured a larger mean velocity than the LDV. Ideally, these two techniques should measure the same profile since the operating conditions were nominally the same between the two tests. Based on correspondence with NASA personnel (Ref. 11), the LDV data is believed to be the most accurate, and the hot-wire data should only be used to determine the turbulent length scale.

2.4 Effect of Fan Speed

Figure 5 shows calculated and measured sound power spectra at approach, cutback and sideline power. The calculations and measurements have been scaled to an 81-in. diameter fan. The calculations are based on the average of the calculations made with the LDV data at Stations A and B (the HW data was used to determine length scale only). The calculations in Figure 5(a) exclude blade noise, while those in Figure 5(b) include blade noise.

In general, the calculated spectra in Figure 5(a) show good agreement with the measured data, in terms of both level and shape. However, the calculated spectra do not exhibit the subtle "double-hump" that is observed in the measured spectra. In Section 3.0, it will be shown that this "double hump" indicates two separate noise sources; the first hump is associated with vane noise, and the second hump is associated with blade noise. When blade noise is included in the calculations (Figure 5(a)), the calculated spectra are significantly greater than the measured spectra, especially at the high-frequency end of the spectra. Again, this suggests that BFaNS over-predicts the contribution of blade noise relative to vane noise.

Figure 4.—Sound power spectra, approach power, P&W fan no. 1. (a) Calculations excluding blade noise. (b) Calculations including blade noise.

Figure 5.—Effect of fan speed, P&W fan no. 1. (a) Calculations excluding blade noise.

(b) Calculations including blade noise.

3.0 General Electric 22-in. Diameter Fan

This section describes the validation of BFANS using data acquired from a GE 22-in. fan (designated R4) that was tested in the 9- by 15-ft Low Speed Wind Tunnel at NASA Glenn Research Center. The experimental data consisted of farfield noise, Laser Doppler Velocimeter (LDV) and hot-wire (HW) measurements of the mean velocity and turbulence near the stator leading edge, and total-pressure and total-temperature profiles downstream from the fan. Extensive documentation of the testing can be found in References 12 through 18.

The flow-field measurements were used in conjunction with CFD calculations to provide the input needed to run BFaNS. The BFaNS validation was done at three speeds corresponding to approach,

cutback, and sideline power. The BFANS calculations were compared to experimental data in terms of total sound power spectra.

3.1 Acoustic Configurations

Figure 6 shows the fan configurations that were used during the acoustic tests. The rotor had a diameter of 22 in. and consisted of 22 blades. The stator configuration consisted of 54 radial vanes, 26 radial vanes, 26 swept vanes or no vanes. Reference 15 provides a more detailed description of the acoustic setup and farfield noise measurements. Appendix B provides a detailed description of the flow path, blade and vane geometry.

3.2 Flow-Field Measurement Configuration

Figure 7 shows the experimental setup used for the LDV and hot-wire measurements. All LDV and HW data was acquired with the 26-swept-vane configuration. The HW stations were 2.96 and 5.89 in. downstream from the fan trailing edge tip (denoted HW-A and HW-B, respectively). The LDV stations were 3.12 and 6.49 in. downstream from the fan trailing edge tip (denoted LDV-A and LDV-B, respectively). The downstream HW and LDV stations are close to the leading edge of the radial vanes. Table 2 lists the LDV and HW data that were used in the present study (shaded cells indicate conditions where data was not acquired). Note that hot-wire data acquisition was limited to the approach speed and below due to durability problems with the hot wires. Consequently, BFaNS could not be run at cutback or sideline power due to the absence of measured turbulence length scales.

Figure 6.—Acoustic configurations, GE fan: (a) 54 radial vanes (baseline); (b) 26 radial vanes; (c) 26 swept vanes; and (d) rotor alone.

Figure 7.—Flow-field measurement configuration, GE fan.

TABLE 2.—HOT-WIRE AND LDV DATA USED IN PRESENT STUDY, GE FAN

Percent	Corrected fan speed	Acoustic	HW data at	HW data at	LDV data at	LDV data at
design speed	(rpm)	condition	station A	station B	station A	station B
50	6329		No	No	No	No
61.7	7808	Approach	Yes	Yes	Yes	Yes
87.5	11074	Cutback			No	No
100	12657	Sideline			No	No

Appendix B shows plots of the mean and turbulent flow-field measurements acquired at HW and LDV Stations A and B. References 13 and 18 provide a detailed description of the HW and LDV data acquired.

3.3 Approach Power, 54 Radial Vanes

Figure 8 shows calculated and measured sound power spectra at approach power for the 54-radial-vane configuration. The calculations and measurements have been scaled to an 81-in. diameter fan. The solid black line excludes blade noise, while the solid red line includes blade noise. The calculated spectra are the average of the calculations made with the HW-B and LDV-B data. Unlike the calculations for the P&W fan, there was negligible difference between the calculations made with HW or LDV data for the GE fan.

The results for the GE fan are similar to those for the P&W fan. Without blade noise, the calculation is in good agreement with the measured spectrum. With blade noise, the calculation exceeds the measured spectrum, especially at high frequencies (though the overprediction is much less for the R4 fan compared to the P&W fan).

Figure 9 shows calculated and measured sound power spectra at approach power for the rotor-alone configuration. The calculations and measurements have been scaled to an 81-in. diameter fan. The flow-field input used for the rotor-alone noise calculation was obtained from CFD predictions provided by NASA. The red line indicates rotor self noise, and the blue line indicates rotor turbulent inflow noise. For reference, the 54 radial-vane data is included in the figure.

The experimental data shows that the rotor-alone noise is within 3 dB of the 54-radial-vane noise at frequencies greater than 5 kHz (i.e., the rotor is more important than the vane at 5 kHz and above). This explains the subtle "double hump" in the 54-radial-vane noise spectrum. The first hump is associated with vane noise, while the second hump is associated with blade noise. Note that the rotor self-noise calculation agrees fairly well with the measured rotor-alone data. Also, based on the calculations, the rotor turbulent inflow noise is much less important than the rotor self noise.

Figure 8.—Sound power spectrum, GE R4 fan, 54 radial vanes (approach power).

Figure 9.—Sound power spectrum, GE R4 fan, rotor alone (approach power).

3.4 Effect of Vane Configuration

Figure 10 shows calculated and measured sound power spectra at approach power for the 54-radial-vane, 26-radial-vane and 26-swept vane configurations. The calculations and measurements have been scaled to an 81-in. diameter fan. The calculations in Figure 10(b) exclude blade noise, while those in Figure 10(c) include blade noise. In general, the calculations demonstrate the same trend as the experimental data. However, without blade noise, the calculations are more sensitive to the vane configuration than the experimental data. With blade noise, the calculations are less sensitive to vane noise than the experimental data. These results indicate that BFaNS correctly models the physics of noise generation, but may not be able to capture the relative contributions of blade and vane noise.

Figure 10.—Effect of vane configuration: (a) Experimental data; (b) Calculations excluding blade noise; and (c) Calculations including blade noise.

4.0 Boeing 18-in. Diameter Fan

This section describes the validation of BFANS using data acquired from a Boeing 18-in. fan that was tested in Boeing's Low Speed Aeroacoustic Facility (LSAF). The experimental data consisted of farfield noise, hot wire (HW) measurements of the mean velocity and turbulence near the rotor and stator leading edges, and total-pressure and total-temperature profiles downstream from the fan. Detailed documentation of the testing is provided in Ref. 19.

The BFaNS validation was done at three speeds roughly corresponding to 55, 70 and 88 percent of the fan design speed. The BFANS calculations were compared to experimental data in terms of total sound power spectra.

4.1 Acoustic Configurations

Figure 11 shows the fan configurations that were used during the acoustic tests. The rotor had a diameter of 18 in. and consisted of 20 blades. The stator configuration consisted of 60 radial vanes, 30 radial vanes, 15 radial vanes or no vanes. Reference 19 provides a more detailed description of the acoustic setup and farfield noise measurements. Appendix C provides a detailed description of the flow path, blade and vane geometry.

4.2 Flow-Field Measurement Configuration

Figure 12 shows the experimental setup used for hot-wire measurements. Station A was 4.3 in. downstream from the fan trailing edge tip, and Station B was approximately 1.2 in. upstream from the vane leading edge tip. Table 3 lists the HW data that were used in the present study. Reference 19 provides a detailed description of the HW data acquired.

The rig also had the capability to remove the endwall boundary layer at the fan tip. However, all BFaNS predictions in this report were performed with the full boundary layer (i.e., no suction). Also, all BFaNS predictions were done for the 60-vane configuration, with the low fan loading and small tip clearance.

TABLE 3.—HOT-WIRE DATA USED IN PRESENT ST	ΓUDY, BOEING FAN
---	------------------

Percent design	Corrected fan speed	HW data at	HW data at
speed	(rpm)	station A	station B
55	9104	Yes	Yes
70	11586	Yes	Yes
88	14566	Yes	Yes

Figure 11.—Acoustic configuration, Boeing fan.

Figure 12.—Flow field measurement configuration, Boeing fan.

Figure 13.—Sound power spectrum, Boeing fan, 55 percent design speed (low loading, small clearance).

4.3 55 Percent Design Speed, Low Loading, Small Clearance

Figure 13 shows calculated and measured sound power spectra at 55 percent of design speed. The solid black line is the calculation with blade noise. The solid blue line is the calculation without blade noise. When blade noise is included, the calculated shape and level are in good agreement with the measured data. Without blade noise, the calculation is approximately 2 dB less than the data.

4.4 Effect of Fan Speed, Low Loading, Small Clearance

Figure 14 shows calculated and measured sound power spectra at 55, 70 and 88 percent of design speed. The calculations in Figure 14(a) include blade noise, while those in Figure 14(b) exclude blade noise. Note blade noise could not be computed at 88 percent of design speed because the tip Mach number is supersonic. The results show that BFaNS accurately predicted the shape and level of the spectra.

Figure 14.—Effect of fan speed, Boeing fan (low loading, small clearance):
(a) Including blade noise; and (b) Excluding blade noise.

5.0 Concluding Remarks

Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source.

This report documents the validation studies that were performed on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). Volume 1 of this report series provides instructions for running Setup_BFaNS, and Volume 2 provides instructions for running BFaNS.

The validation studies have shown that BFaNS can accurately calculate the shape of the fan broadband noise spectra, and can calculate the spectrum level within a couple of decibels of measured data. BFaNS can also accurately calculate the effect of fan speed, vane count, and vane sweep. However, BFaNS cannot reliably calculate the contribution of blade noise relative to vane noise.

6.0 Recommendations

- (1) Due to the empirical nature of the self-noise prediction, BFaNS cannot reliably predict the contribution of blade self noise relative to the turbulent inflow noise sources. The current self-noise prediction method should be replaced with a method that does not rely on empirical correlations, or one that is based on empirical correlations developed for cascade noise rather than isolated airfoil noise.
- (2) BFaNS does not account for transmission loss across the rotor or stator. Hanson has recently developed this capability (Refs. 20 and 21), and it should be incorporated into BFaNS. This will improve the ability of BFaNS to predict the relative contribution of inlet and aft broadband noise.
- (3) The cascade response routine in BFaNS is valid only for subsonic flows (i.e., when the incident Mach number is less than one). Therefore, BFaNS cannot calculate the noise produced by turbulence interacting with supersonic blade tips. This area deserves further attention because most commercial jet engines have supersonic blade tips at cutback and sideline power.
- (4) The interaction between fan turbulence and the core stator should be added to BFaNS (this is a relatively easy enhancement).
- (5) The modal content of the noise predicted by BFaNS should be used as input for duct propagation codes (CDUCT for example, see Ref. 22). This coupling between source prediction and duct propagation will enhance the capability of the aerospace industry to optimize liner designs and reduce noise.
- (6) Thus far, BFaNS has been validated on a partial set of data that was acquired during the AST program. BFaNS should be thoroughly validated on all the rig data, including the Allison 22-in. fan rig. BFaNS should also be validated on full-scale engine data, which would require turbulence measurements on a full-scale engine.

Appendix A.—Pratt & Whitney/NASA Fan Rig Information

Figure A.1—Fan no. 1 rig schematics.

3.74 in

Note: The nose cone shown above does not represent the actual noise-cone geometry used during the test. It is merely an approximation to facilitate flow-field calculations that were performed on the Fan #1 configuration.

A.1 Fan No. 1, Flow-Path Geometry File

- 7.708 in

Flowpath: I.D. 35 Axial	wall				
-23.1900	-19.1000	-16.8500	-14.6500	-12.5600	-10.8900
-9.2300	-7.8640	-6.5970	-5.4480	-4.5480	-3.9350
-3.3150	-2.6900	-2.0600	-1.1100	-0.5550	0.0000
0.6650	1.3300	2.2300	3.2400		
3.8900	4.2420	4.6730	5.1700	5.9100	6.7400
7.8000	10.1000	11.9300	13.7100	15.0900	17.1400
19.6200					
Radius					

Ε

Centerline - --

0.0600	0.0600	0.0600	0.0600	0.0600	0.0750
0.6350	1.7335	2.6200	3.4120	3.8770	4.1175
4.3110	4.4620	4.5740	4.6900	4.7090	4.7405
4.9020	4.9840	4.9750	4.7300		
4.5150	4.4300	4.3870	4.4000	4.4750	4.5750
4.7000	4.7000	4.7000	4.7000	4.7000	4.7200
5.2350					
Primary Split	ter: Duct I.D	. wall			
30					
Axial					
3.7400	3.7407	3.7418	3.7435	3.7452	3.7470
3.7505	3.7540	3.7575	3.7610	3.7680	3.7750
3.7820	3.7890	3.7960	3.8030	3.8100	
4.2900	5.2500	5.9900	6.5920	7.4220	8.2260
8.8780	9.7700	11.2900	12.9700	14.2700	14.8500
16.5300					
Radius					
5.5500	5.5599	5.5656	5.5719	5.5766	5.5805
5.5869	5.5920	5.5963	5.6000	5.6060	5.6106
5.6142	5.6168	5.6186	5.6196	5.6200	
5.7850	5.8100	5.8100	5.8100	6.0600	6.3500
6.4200	6.4750	6.6450	7.1350	7.2850	7.2550
6.9650					
Primary Split	ter: Core O.D	. wall			
30					
Axial					
3.7400	3.7407	3.7418	3.7435	3.7452	3.7470
3.7505	3.7540	3.7575	3.7610	3.7680	3.7750
3.7820	3.7890	3.7960	3.8030	3.8100	
4.1200	4.5130	4.9030	5.4100	5.9100	6.7400
7.8000	10.1000	11.9300	13.7100	15.0900	17.1400
19.6200					
Radius					
5.5500	5.5401	5.5344	5.5281	5.5234	5.5195
5.5131	5.5080	5.5037	5.5000	5.4940	5.4894
5.4858	5.4832	5.4814	5.4804	5.4800	
5.3100	5.2420	5.2020	5.2050	5.2750	5.3640
5.4100	5.4100	5.4100	5.5300	5.7350	6.1000
6.5850					
Flowpath: O.D	. wall				
35					
Axial	10 1000	16 0500	14 6500	10 5600	10 05 40
-23.1900	-19.1000	-16.8500	-14.6500	-12.5600	-10.8540
-9.1758	-7.7958	-6.6918	-5.3119	-4.4839	-3.9320
-3.3800	-2.5520	-2.0000	-1.2796	-0.6530	0.0000
0.7410	1.4820	2.0700	3.1900	7 4000	0 0060
4.2900	5.3400	5.9900	6.5920	7.4090	8.2260
8.8700	10.1800	11.4900	12.8000	14.1100	15.0000
16.5300					
Radius	11 1200	11 1200	10 0050	10 5100	10.1270
11.1200 10.0915	11.1200	11.1200	10.9050	10.5100	
	10.2000	10.3425	10.5575	10.6885	10.7700
10.8435	10.9330	10.9760	11.0000	11.0550	11.0735
11.0490 11.2100	10.9760 11.3600	10.9850 11.4000	11.0600 11.4100	11.3750	11.3100
11.2100	11.2500	11.2100	11.1650	11.1000	10.9750
10.7300	11.2300	11.2100	11.1000	11.1000	10.9730
10./300					
A.2 Fan N	No. 1, Blade	Geometry	File		
A.L Fall I	10. 1, Diaue	Geometry .	1.116		
LOW NOISE FAN	806 B 7EDO m	D47877=9 STT	·O		
TOM NOTSE EAN	JUU D AERU I	דרכ ב-ווטודים	. •		

LOW NOISE	FAN 806 B AERO	D TD47877-9	SLTO		
20					
'XLE	•				
4.65548	4.80239	4.94556	5.08495	5.22093	5.35348
5.90934	6.41638	6.88740	7.32601	7.74196	8.13807
8.51869	8.88521	9.23982	9.58395	9.91842	10.2435
10.5587	10.8633				
'YLE	•				
567895	588340	609174	629111	648962	667595
744498	824584	904788	992043	-1.08189	-1.16632

-1.24253 -1.65190 'ZLE	-1.31212 -1.72870	-1.37652	-1.43886	-1.50221	-1.57272
-1.00811	-1.03756	-1.06347	-1.08875	-1.11289	-1.13349
-1.20593	-1.25193	-1.28397	-1.30400	-1.29983	-1.28975
-1.27619	-1.26075	-1.24393	-1.22449	-1.19780	-1.15417
-1.09281	-1.02071				
'BETA1*ML	'				
55.7458	54.9105	54.0276	53.2297	52.4571	51.6819
48.7347	46.6936	44.6492	42.2231	39.6174	37.5233
35.8931	34.5615	33.3949	32.2920	31.1840	29.9504
28.6866	27.4006				
'XTE	'				
4.93962	5.10930	5.26980	5.42266	5.56906	5.70931
6.27890	6.78156	7.23521	7.65333	8.04079	8.40556
8.75182	9.08183	9.39724	9.69970	9.99141	10.2808
10.5657	10.8751				
'YTE	, , , , , , , , , , , , , , , , , , , ,				
0.524705	0.517738	0.514805	0.513000	0.512786	0.512125
0.513708	0.532117	0.572642	0.625699	0.710444	0.804671
0.894696	0.979065	1.05923	1.13705	1.21706	1.30696
1.40889	1.51529				
'ZTE		1 24400	1 26706	1 20060	1 41220
1.29429 1.48889	1.32014 1.52820	1.34422 1.54646	1.36786 1.55607	1.39068 1.55606	1.41338 1.54638
1.48889	1.52820	1.51853	1.50025	1.47267	1.42852
1.36479	1.28487	1.31033	1.30023	1.4/20/	1.42032
1.304/9 'BETA2*	1.2040/				
76.1635	77.4035	78.2908	79.0146	79.5876	80.0921
82.0861	83.9269	84.3108	82.0091	78.5042	75.2138
72.2325	69.4598	66.8028	64.1682	61.4027	58.3470
54.9446	51.2012	00.0020	01.1002	01.102/	30.3170
	01.2012				

A.3 Fan No. 1, Vane Geometry File

LOW NOISE FEG	GV X15 25 sl's	s slto			
20					
'XLE	'				
5.81543	6.07863	6.35643	6.59566	6.90891	7.18609
7.43791	7.67066	7.95978	8.23011	8.48556	8.84815
9.18955	9.51486	9.82664	10.1281	10.4232	10.7192
11.0326	11.4030				
'YLE	'				
449733	430289	411172	395951	377949	364261
353612	345217	336145	328454	321500	311809
303671	297059	291824	288351	287275	297467
335125	415682				
'ZLE	1				
713627	728927	742346	752635	764726	774127
781648	787710	794249	799586	804088	809806
814288	817782	820461	822273	823108	820298
807738	773823				
'BETA1*ML	'				
37.3937	39.0014	40.5328	41.7413	43.1730	44.2960
45.2044	45.9543	46.7966	47.5311	48.1919	49.0922
49.8502	50.4856	51.0276	51.4772	51.7887	51.2722
48.8049	43.2694				
'XTE	1				
6.32387	6.55653	6.80855	7.02577	7.30814	7.55533
7.77806	7.98297	8.23775	8.47732	8.70524	9.03119
9.33987	9.63470	9.91772	10.1917	10.4606	10.7302
11.0101	11.3128				
'YTE	1				
0.123309	0.112095			0.837858E-01	
	0.691759E-01				
0.510384E-01	0.476922E-01	0.449980E-01	0.434292E-01	0.431074E-01	0.477307E-01
0.657158E-01	0.105735				
'ZTE	'				
0.775949	0.782104	0.786912	0.790609	0.795179	0.799012
0.802266	0.804980	0.807934	0.810288	0.812156	0.814328

0.815905	0.817067	0.817894	0.818404	0.818659	0.818807
0.818535	0.815486				
'BETA2*	Ť				
96.9231	96.6664	96.3713	96.1203	95.7892	95.5016
95.2361	94.9556	94.6544	94.4819	94.3689	94.3057
94.2763	94.2799	94.3256	94.3937	94.5246	94.9275
95.8411	97.4711				

Figure A.2.—Fan no. 1, average velocity, station A.

Figure A.3.—Fan no. 1, average velocity, station B.

Figure A.4.—Fan no. 1, average turbulence intensity, station A.

Figure A.5.—Fan no. 1, average turbulence intensity, station B.

Figure A.6.—Fan no. 1, average turbulence scale, station A.

Figure A.7.—Fan no. 1, average turbulence scale, station B.

Appendix B.—General Electric/NASA Fan Rig Information

Note: The M5 geometry was not available; therefore, noise predictions for the M5 fan were not performed

Note: The nose cone shown above does not represent the actual noise-cone geometry used during the test. It is merely an approximation to facilitate flow-field calculations that were performed on the R4 fan configuration.

B.1 R4 Fan, 54 Radial Vanes, Flow-Path Geometry File

Flowpath:	Inside D	iameter	Wall -	HUB			
90 Axial							
-6.50232	27 -6.	.232568	-5.	962808	-5.693	049	-5.423289
-5.15353		.883770		614011	-4.344		-4.074492
-3.80473		.534973		265214	-2.995		-2.725695
-2.45593		.186176		916416	-1.646		-1.376897
-1.10713 0.24165		.837379 .511419		567619 781178	-0.297 1.050		-0.028100 1.320697
1.59045		.860216		129975	2.399		2.669494
2.93925		.209013		478773	3.748		4.018291
4.28805	51 4	.557810	4.	827570	5.097	329	5.367089
5.63684		.906608		176367	6.446		6.715886
6.98564		.255405		525164	7.794		8.064683
8.33444 9.68324		.604202		873961 222759	9.143 10.492		9.413480 10.762278
11.03203		.301796		571556	11.841		12.111075
12.38083		.650594		920353	13.190		13.459872
13.72963	31 13	.999391	14.	269150	14.538	910	14.808669
15.07842		.348188		617948	15.887		16.157467
16.42722	26 16	.696985	16.	966745	17.236	504	17.506264
Radius 2.25080	15 2	.250757	2	250756	2.250	19/19	2.250945
2.25090		.250737		251318	2.250		2.268878
2.29741		.373692		525183	2.674		2.791127
2.90035	57 3	.002891	3.	099274	3.189	671	3.276292
3.35836		.435867		509917	3.581		3.650682
3.72036		.794309		878063	3.969		4.067281
4.17076 4.65677		.275789		379734 799961	4.479 4.862		4.572974 4.921029
4.97626		.029055		079441	5.127		5.173022
5.21431		.251548		287234	5.322		5.356940
5.39104	18 5	.429903	5.	478404	5.534	245	5.592687
5.64914		.699345		740850	5.772		5.795676
5.81099		.821017		827340	5.831		5.833467
5.83508 5.83624		.836256 .837039		836969 839078	5.836 5.843		5.836439 5.850944
5.85989		.875535		892634	5.916		5.941113
5.97135		.001601		037731	6.073		6.113309
6.15500	01 6	.196693	6.	242894	6.289	515	6.336137
Primary Sp	olitter.	Inside	Diamete	r Wall	- UPPER		
60	DIICCCI.	Instac	Diamete	ı waıı	OTTER		
Axial							
1.59045		.860216		129975	2.399		2.669494
2.93925		.209013		478773	3.748		4.018291
4.28805 5.63684		.557810		827570 176367	5.097 6.446		5.367089 6.715886
6.98564		.255405		525164	7.794		8.064683
8.33444		.604202		873961	9.143		9.413480
9.68324	10 9	.952999	10.	222759	10.492		10.762278
11.03203		.301796		571556	11.841		12.111075
12.38083		.650594		920353	13.190		13.459872
13.72963 15.07842		.999391		269150 617948	14.538 15.887		14.808669 16.157467
16.42722		.696985		966745	17.236		17.506264
Radius							
4.17076		.275788	4.	379734	4.479	830	4.572974
4.65677		.731722		799960	4.862		4.921028
4.97626		.029056		079442	5.127		5.173022
5.21431 5.39104		.251549		287233 478404	5.322 5.534		5.356940 5.592687
5.64914		.699345		740850	5.772		5.795675
5.81099		.821017		827340	5.831		5.833467
5.83508	38 5	.836256	5.	836969	5.836	978	5.836440
5.83624		.837039		839078	5.843		5.850944
5.85989		.875535		892634	5.916		5.941114
5.97135 6.15500		.001601		037731 242894	6.073 6.289		6.113308 6.336136
0.1000	0		٠.	_ 12074	0.209	010	3.330130

Primary Split	tter: Outside	Diameter Wall	- LOWER	
60 Axial				
1.590456	1.860216	2.129975	2.399735	2.669494
2.939254	3.209013	3.478773	3.748532	4.018291
4.288051	4.557810	4.827570	5.097329	5.367089
5.636848	5.906608	6.176367	6.446126	6.715886
6.985645 8.334443	7.255405 8.604202	7.525164 8.873961	7.794924 9.143721	8.064683 9.413480
9.683240	9.952999	10.222759	10.492518	10.762278
11.032037	11.301796	11.571556	11.841315	12.111075
12.380834	12.650594	12.920353	13.190113	13.459872
13.729631	13.999391	14.269150	14.538910	14.808669
15.078429	15.348188	15.617948	15.887707	16.157467
16.427226	16.696985	16.966745	17.236504	17.506264
Radius 4.170762	4.275788	4.379734	4.479830	4.572974
4.656778	4.731722	4.799960	4.862567	4.921028
4.976264	5.029056	5.079442	5.127756	5.173022
5.214311	5.251549	5.287233	5.322438	5.356940
5.391048	5.429903	5.478404	5.534245	5.592687
5.649140	5.699345	5.740850	5.772924	5.795675
5.810993	5.821017	5.827340	5.831110	5.833467
5.835088 5.836242	5.836256 5.837039	5.836969 5.839078	5.836978 5.843604	5.836440 5.850944
5.859892	5.875535	5.892634	5.916299	5.941114
5.971357	6.001601	6.037731	6.073982	6.113308
6.155001	6.196693	6.242894	6.289515	6.336136
Flowpath: (Outside Diamete	er Wall - TIP		
90				
Axial				
-6.502327	-6.232568	-5.962808	-5.693049	-5.423289
-5.153530 -3.804733	-4.883770 -3.534973	-4.614011 -3.265214	-4.344251 -2.995454	-4.074492 -2.725695
-2.455935	-2.186176	-1.916416	-1.646657	-1.376897
-1.107138	-0.837379	-0.567619	-0.297860	-0.028100
0.241659	0.511419	0.781178	1.050938	1.320697
1.590456	1.860216	2.129975	2.399735	2.669494
2.939254	3.209013	3.478773	3.748532	4.018291
4.288051	4.557810	4.827570	5.097329	5.367089
5.636848 6.985645	5.906608 7.255405	6.176367 7.525164	6.446126 7.794924	6.715886 8.064683
8.334443	8.604202	8.873961	9.143721	9.413480
9.683240	9.952999	10.222759	10.492518	10.762278
11.032037	11.301796	11.571556	11.841315	12.111075
12.380834	12.650594	12.920353	13.190113	13.459872
13.729631	13.999391	14.269150	14.538910	14.808669
15.078429	15.348188	15.617948	15.887707	16.157467
16.427226 Radius	16.696985	16.966745	17.236504	17.506264
11.010941	11.012493	11.013998	11.015268	11.016401
11.017396	11.018124	11.018691	11.019068	11.019232
11.019168	11.018869	11.018327	11.017558	11.016528
11.015241	11.013677	11.011839	11.011221	11.006656
10.995469	10.981015	10.966768	10.953494	10.940141
10.926359 10.865967	10.912204	10.898097	10.884698	10.873096
10.865967	10.865466 10.922375	10.870844	10.879611 10.962651	10.891271 10.984550
11.006749	11.028477	11.048728	11.067650	11.085357
11.101904	11.117003	11.130196	11.141621	11.150951
11.157653	11.160125	11.156557	11.145514	11.127017
11.104327	11.080913	11.059781	11.042190	11.028078
11.017560	11.010750	11.006802	11.004715	11.003883

11.003863	11.003966	11.003947	11.003903	11.003971
11.003982	11.003810	11.003820	11.006583	11.013209
11.022273	11.036808	11.051996	11.069672	11.087250
11.104318	11.121385	11.134995	11.148494	11.158052
11.164576	11.171100	11.168430	11.164928	11.161425

B.1.1 R4 Fan, 54 Radial Vanes, Blade Geometry File

NASA SOURCE 51	DIAGNOSTICS FAN	ROTOR AIRFOIL	DATA	
XLE				
-3.300717	-3.303915	-3.308069	-3.313466	-3.320478
-3.329237		-3.353832	-3.370878	-3.392150
-3.418686		-3.493053	-3.544538	-3.608829
-3.689264		-3.916614	-4.075167	-4.273249
-4.520267		-5.215665	-5.700811	-6.305202
-7.061386		-8.427943	-8.918634	-9.317897
-9.638566		-10.098216	-10.260604	-10.390247
-10.493849		-10.643064	-10.696157	-10.738645
-10.772639		-10.821598	-10.839005	-10.852930
-10.864068		-10.880105	-10.885588	-10.889806
-10.893050		10.000103	10.003300	10.000000
YLE				
0.056513	0.058546	0 061100	0 064622	0 060001
		0.061189	0.064622	0.069084
0.074656		0.090283	0.101076	0.114469
0.131012		0.175824	0.204982	0.238555
0.275329		0.353320	0.395976	0.448298
0.516396		0.691755	0.792850	0.932052
1.099041		1.360980	1.423135	1.429222
1.423645		1.426293	1.433713	1.441308
1.448014		1.457092	1.459912	1.462011
1.463594		1.465734	1.466459	1.467026
1.467472		1.468104	1.468316	1.468480
1.468602				
ZLE				
-1.297397	-1.297990	-1.298759	-1.299756	-1.301048
-1.302654	-1.304649	-1.307122	-1.310177	-1.313935
-1.318526	-1.324082	-1.330689	-1.338260	-1.346318
-1.353738	-1.359192	-1.361348	-1.360299	-1.357423
-1.351905	-1.338306	-1.312679	-1.274927	-1.226397
-1.165348	-1.119212	-1.100427	-1.086893	-1.073364
-1.064533	-1.060213	-1.057601	-1.055210	-1.052501
-1.049508	-1.046523	-1.043761	-1.041353	-1.039327
-1.037654	-1.036288	-1.035179	-1.034283	-1.033560
-1.032978	-1.032511	-1.032136	-1.031847	-1.031624
-1.031453				
BETAT1				
66.841801	66.815885	66.783103	66.742593	66.683989
66.614494	66.518115	66.399710	66.240933	66.033458
65.750624	65.367511	64.835773	64.115349	63.168008
61.994470	60.685418	59.429298	58.195041	56.664610
54.802715		51.019784	48.935041	46.509141
43.978135		39.574998	38.087785	36.851772
35.808748		34.436097	33.761993	33.149026
32.648950		31.915624	31.643311	31.425093
31.245763		30.986595	30.895777	30.819186
30.759661		30.676131	30.646688	30.624129
30.608167				
XTE				
-4.088949	-4.092535	-4.097195	-4.103248	-4.111110
-4.120854		-4.147878	-4.166385	-4.189279
-4.217576		-4.295610	-4.348718	-4.414104
-4.494511		-4.714419	-4.862988	-5.045069
-5.268126		-5.878458	-6.292905	-6.801577
-7.431083		-8.579360	-8.995760	-9.339889
-9.620321		-10.027071	-10.172226	-10.288950
-10.382961		-10.520140	-10.569674	-10.609668
-10.641939		-10.688969	-10.705896	-10.719543
-10.730546		-10.746562	-10.752061	-10.756291
-10.759545		10.140302	10./52001	10.730231
YTE				

0.59555 0.575546 0.514516 0.344221 -0.097081 -1.075679 -1.572818 -1.625258 -1.644310 -1.647074 -1.647700	0.593313 0.567943 0.492602 0.285327 -0.237919 -1.269325 -1.579427 -1.632740 -1.645274 -1.647280	0.590397 0.558513 0.465780 0.214571 -0.392177 -1.430582 -1.590009 -1.637674 -1.645954 -1.647433	0.586604 0.546824 0.433002 0.129390 -0.576410 -1.533526 -1.603047 -1.640837 -1.646446 -1.647550	0.581671 0.532360 0.392969 0.026424 -0.812905 -1.565878 -1.615155 -1.642914 -1.646806 -1.647635
ZTE				
1.490532	1.491784	1.493412	1.495524	1.498265
1.501657	1.505851	1.511032	1.517420	1.525280
1.534918	1.546681	1.560933	1.578008	1.598115
1.621252	1.647092	1.675143	1.705382	1.738630
1.773224	1.795254	1.785352	1.761071	1.718796
1.631256	1.531697	1.440159	1.362147	1.302295
1.252064	1.208955	1.174382	1.147466	1.126418
1.109854	1.096681	1.086109	1.077594	1.070730
1.065192	1.060726	1.057124	1.054220	1.051879
1.049991	1.048470	1.047244	1.046300	1.045575
1.045016				
BETAT2				
123.481562	123.359068	123.200406	122.994211	122.723927
122.390499	121.977237	121.463885	120.829013	120.048534
119.084911	117.907573	116.482608	114.764199	112.735775
110.376564	107.716961	104.740661	101.130447	96.493614
90.782852	84.861986	79.986424	74.797613	68.264310
59.838997	53.438499	49.173076	45.258556	43.025379
42.047168	41.267618	40.301256	39.256656	38.427494
37.915711	37.615648	37.431940	37.300851	37.201613
37.121749 36.894472	37.054726 36.866245	37.000575 36.849647	36.955608 36.828629	36.922670 36.820108
36.894472	30.800∠45	30.84984/	30.020029	30.820108
30.012149				

B.1.2 R4 Fan, 54 Radial Vanes, Vane Geometry File

NASA SOURCE DIAGNOSTICS VANE STATOR AIRFOIL DATA 51 XLE -5.416727 -5.419984 -5.424215 -5.429717 -5.436869 -5.445656 -5.456452 -5.469716 -5.486012 -5.506033 -5.597970 -5.699591 -5.560848 -5.643573 -5.530631 -5.768402 -5.852918 -5.956717 -6.084190 -6.240739 -6.433002 -6.669145 -6.959180 -7.315404 -7.752908 -9.909304 -8.290226 -8.827341 -9.264373 -9.619956 -10.336369 -10.492330 -10.619282 -10.144755 -10.722619 -10.875172 -10.976212 -10.806724 -10.930878 -11.013106 -11.043136 -11.067576 -11.087468 -11.103658 -11.116835 -11.127559 -11.136287 -11.143391 -11.148856 -11.153060 -11.156293 YLE -0.406363 -0.406194 -0.405973 -0.405686 -0.405312 -0.404852 -0.404287 -0.403591 -0.402734 -0.401682 -0.400392 -0.398819 -0.396905 -0.394579 -0.391767 -0.388400 -0.384440 -0.379891 -0.374796 -0.369099 -0.345888 -0.362613 -0.354976 -0.335125 -0.322678 -0.308797 -0.296720 -0.288643 -0.284890 -0.283530 -0.283985 -0.285139 -0.285764 -0.285726 -0.285371 -0.285092 -0.285040 -0.285216 -0.285526 -0.285869 -0.286472 -0.286714 -0.286918 -0.287089 -0.286190 -0.287347 -0.287443 -0.287229 -0.287516 -0.287574 -0.287618 ZLE 7.267998 7.268016 7.268040 7.268072 7.268112 7.268163 7.268225 7.268301 7.268394 7.268508

7.268649 7.270013 7.273715 7.283655 7.293630 7.297163 7.298362 7.298744 7.298871	7.268822 7.270496 7.275023 7.286515 7.294653 7.297535 7.298473 7.298783	7.269035 7.271083 7.276612 7.288820 7.295467 7.297823 7.298564 7.298814	7.269298 7.271793 7.278489 7.290805 7.296127 7.298047 7.298636 7.298839	7.269619 7.272658 7.280753 7.292380 7.296694 7.298222 7.298696 7.298857
BETAT1 131.281769 131.152542 130.761550 129.669266 127.242161 123.024853 123.582709 125.514202 127.005851 127.651582 127.867114	131.272356	131.246212	131.223061	131.190830
	131.100057	131.044341	130.971196	130.874959
	130.623424	130.456048	130.250116	129.982424
	129.283355	128.854058	128.385733	127.861015
	126.511595	125.711721	124.809808	123.857544
	122.618754	122.587236	122.795412	123.133131
	124.028165	124.490860	124.887123	125.190549
	125.867713	126.185061	126.509030	126.772852
	127.182839	127.330880	127.471321	127.568032
	127.713520	127.773353	127.810731	127.848052
TE -5.731794 -5.760493 -5.843336 -6.070358 -6.692492 -8.397385 -10.102280 -10.724414 -10.951438 -11.034283 -11.062981	-5.735029	-5.739233	-5.744697	-5.751801
	-5.771126	-5.784135	-5.800049	-5.819518
	-5.872474	-5.908123	-5.951734	-6.005087
	-6.150211	-6.247900	-6.367413	-6.513622
	-6.911319	-7.179029	-7.506539	-7.907212
	-8.887561	-9.288233	-9.615743	-9.883452
	-10.281151	-10.427359	-10.546871	-10.644561
	-10.789686	-10.843039	-10.886650	-10.922299
	-10.975257	-10.994726	-11.010640	-11.023649
	-11.042974	-11.050076	-11.055543	-11.059748
VTE 0.000471 0.000470 0.000469 0.000470 0.000472 0.000464 0.000467 0.000466 0.000463 0.000468	0.000471	0.000471	0.000472	0.000471
	0.000470	0.000469	0.000469	0.000468
	0.000470	0.000471	0.000473	0.000473
	0.000468	0.000469	0.000473	0.000473
	0.000471	0.000468	0.000475	0.000471
	0.000464	0.000468	0.000471	0.000460
	0.000467	0.000462	0.000467	0.000464
	0.000469	0.000470	0.000467	0.000466
	0.000463	0.000463	0.000463	0.000468
8.809691	8.809727	8.809773	8.809833	8.809911
8.810006	8.810122	8.810264	8.810437	8.810648
8.810906	8.811219	8.811600	8.812058	8.812607
8.813257	8.814007	8.814852	8.815793	8.816864
8.818124	8.819621	8.821311	8.823187	8.825278
8.827568	8.829410	8.830547	8.831099	8.831244
8.831086	8.830804	8.830573	8.830452	8.830420
8.830431	8.830447	8.830440	8.830409	8.830365
8.830317	8.830269	8.830224	8.830184	8.830150
8.830121	8.830096	8.830075	8.830059	8.830048
8.830036 BETAT2 86.977677 86.975419 86.966653 86.987708 87.028719 87.323123 87.590556 87.649347 87.700663	86.973932 86.969165 86.968617 86.995244 87.050052 87.347619 87.606019 87.658172 87.709592	86.976088 86.970769 86.977814 86.996859 87.087533 87.449030 87.640125 87.670551 87.709429	86.973618 86.963695 86.980755 87.022108 87.184788 87.501262 87.669546 87.678676 87.701384	86.968883 86.964786 86.998967 87.024978 87.230916 87.537642 87.656125 87.676479 87.694857

B.2 R4 Fan, 26 Radial Vanes, Flow-Path Geometry File

-	Inside Diameter	Wall - HUB		
90 Axial				
-6.49241	6 -6.223068	-5.953719	-5.684371	-5.415023
-5.14567		-4.606978	-4.337630	-4.068281
-3.79893		-3.260236	-2.990888	-2.721540
-2.45219		-1.913495	-1.644147	-1.374798 -0.028057
-1.10545 0.24129		-0.566754 0.779988	-0.297405 1.049336	1.318684
1.58803		2.126729	2.396078	2.665426
2.93477		3.473471	3.742819	4.012167
4.28151		4.820212	5.089561	5.358909
5.62825		6.166954	6.436302	6.705650
6.97499		7.513695	7.783043	8.052392
8.32174 9.66848		8.860437 10.207178	9.129785 10.476526	9.399133 10.745875
11.01522		11.553919	11.823268	12.092616
12.36196		12.900661	13.170009	13.439357
13.70870	6 13.978054	14.247402	14.516751	14.786099
15.05544		15.594144	15.863492	16.132840
16.40218	9 16.671537	16.940885	17.210234	17.479582
Radius 2.24737	5 2.247327	2.247326	2.247418	2.247515
2.24747		2.247887	2.246574	2.247313
2.29391		2.521335	2.670133	2.786873
2.89593	7 2.998315	3.094551	3.184809	3.271299
3.35324		3.504568	3.575620	3.645118
3.71470		3.872152	3.962959	4.061083
4.16440 4.64967		4.373049 4.792390	4.472974 4.855125	4.566171 4.913521
4.96853		5.071623	5.119928	5.165138
5.20637		5.279164	5.314289	5.348764
5.38247	6 5.416936	5.453929	5.493934	5.537243
5.58364		5.683952	5.736703	5.789956
5.84177		5.933454	5.969981	5.997972
6.01689 6.03921		6.035462 6.044091	6.038257 6.047901	6.038766 6.051907
6.05567		6.062712	6.066678	6.071428
6.07824		6.099421	6.116455	6.138545
6.16410	7 6.198385	6.234064	6.280068	6.326072
Primary Sp	litter: Inside	Diameter Wall	- UPPER	
60				
Axial				
1.58803		2.126729	2.396078	2.665426
2.93477 4.28151		3.473471 4.820212	3.742819 5.089561	4.012167 5.358909
5.62825		6.166954	6.436302	6.705650
6.97499		7.513695	7.783043	8.052392
8.32174	0 8.591088	8.860437	9.129785	9.399133
9.66848		10.207178	10.476526	10.745875
11.01522		11.553919	11.823268	12.092616
12.36196 13.70870		12.900661 14.247402	13.170009 14.516751	13.439357 14.786099
15.05544		15.594144	15.863492	16.132840
16.40218		16.940885	17.210234	17.479582
Radius				
4.16440		4.373049	4.472974	4.566173
4.64967		4.792390 5.071623	4.855125	4.913521 5.165137
4.96853 5.20637		5.071623	5.119929 5.314288	5.348764
5.38247		5.453929	5.493934	5.537243
5.58364		5.683953	5.736702	5.789956
5.84177		5.933453	5.969981	5.997972
6.01689	3 6.028712	6.035463	6.038257	6.038766

6.039213	6.041073	6.044092	6.047901	6.051906
6.055678	6.059180	6.062712	6.066677	6.071427
6.078244	6.087572	6.099422	6.116455	6.138545
6.164107	6.198385	6.234063	6.280068	6.326072

Primary Splitter	r: Outside	Diameter Wall -	- LOWER	
60				
Axial	4 055004	0.406500	0.000000	0 665406
1.588033	1.857381	2.126729	2.396078	2.665426
2.934774	3.204123	3.473471	3.742819	4.012167
4.281516	4.550864	4.820212	5.089561	5.358909
5.628257	5.897605	6.166954	6.436302	6.705650
6.974999	7.244347	7.513695	7.783043	8.052392
8.321740	8.591088	8.860437	9.129785	9.399133
9.668481	9.937830 11.284571	10.207178 11.553919	10.476526	10.745875 12.092616
11.015223 12.361964	12.631313	12.900661	11.823268 13.170009	13.439357
13.708706	13.978054	14.247402	14.516751	14.786099
15.055447	15.324796	15.594144	15.863492	16.132840
16.402189	16.671537	16.940885	17.210234	17.479582
Radius	10.071337	10.540005	17.210254	17.479302
4.164406	4.269274	4.373049	4.472974	4.566173
4.649675	4.724481	4.792390	4.855125	4.913521
4.968534	5.021083	5.071623	5.119929	5.165137
5.206370	5.243566	5.279164	5.314288	5.348764
5.382476	5.416936	5.453929	5.493934	5.537243
5.583649	5.632729	5.683953	5.736702	5.789956
5.841779	5.890196	5.933453	5.969981	5.997972
6.016893	6.028712	6.035463	6.038257	6.038766
6.039213	6.041073	6.044092	6.047901	6.051906
6.055678	6.059180	6.062712	6.066677	6.071427
6.078244	6.087572	6.099422	6.116455	6.138545
6.164107	6.198385	6.234063	6.280068	6.326072
<u> </u>	ide Diameter	Wall - TIP		
90				
Axial		5 050540	5 604054	- 44-000
-6.492416	-6.223068	-5.953719	-5.684371	-5.415023
-5.145674	-4.876326	-4.606978	-4.337630	-4.068281
-3.798933	-3.529585	-3.260236	-2.990888	-2.721540
-2.452192	-2.182843	-1.913495	-1.644147	-1.374798
-1.105450	-0.836102	-0.566754	-0.297405	-0.028057
0.241291	0.510640	0.779988	1.049336	1.318684
1.588033	1.857381	2.126729	2.396078	2.665426
2.934774 4.281516	3.204123 4.550864	3.473471 4.820212	3.742819 5.089561	4.012167 5.358909
5.628257	5.897605	6.166954	6.436302	6.705650
6.974999	7.244347	7.513695	7.783043	8.052392
8.321740	8.591088	8.860437	9.129785	9.399133
9.668481	9.937830	10.207178	10.476526	10.745875
11.015223	11.284571	11.553919	11.823268	12.092616
12.361964	12.631313	12.900661	13.170009	13.439357
13.708706	13.978054	14.247402	14.516751	14.786099
15.055447	15.324796	15.594144	15.863492	16.132840
16.402189	16.671537	16.940885	17.210234	17.479582
Radius				
10.994159	10.995708	10.997211	10.998479	10.999611
11.000604	11.001331	11.001897	11.002274	11.002436
11.002373				
10.998452	11.002075	11.001534	11.000766	10.999738
10.330432		11.001534 10.995056	11.000766 10.994439	10.999738
10.978711	11.002075			
	11.002075 10.996891	10.995056	10.994439	10.989879
10.978711	11.002075 10.996891 10.964280	10.995056 10.950053	10.994439 10.936799	10.989879 10.923467
10.978711 10.909705	11.002075 10.996891 10.964280 10.895572	10.995056 10.950053 10.881487	10.994439 10.936799 10.868108	10.989879 10.923467 10.856521

10.989968	11.011576	11.031997	11.050845	11.068482
11.085019	11.100056	11.113285	11.124435	11.133971
11.142259	11.149022	11.153910	11.157242	11.159369
11.159982	11.158829	11.155923	11.151492	11.145803
11.138692	11.129869	11.119142	11.106721	11.093042
11.077677	11.060821	11.043626	11.027036	11.011759
10.999095	10.990629	10.987237	10.989251	10.995330
11.005777	11.019678	11.035147	11.052036	11.070549
11.087467	11.103926	11.119437	11.131994	11.141692
11.149538	11.152595	11.154867	11.149640	11.144413

B.2.3 R4 Fan, 26 Radial Vanes, Blade Geometry File

NASA SOURCE	DIAGNOSTICS FAN	ROTOR AIRFOIL	DATA	
51				
XLE			0.000446	0.045445
-3.295686		-3.303026	-3.308416	-3.315417
-3.324162		-3.348720	-3.365741	-3.386981
-3.413476		-3.487729	-3.539136 -4.068956	-3.603328
-3.683642		-3.910644 -5.207716		-4.266736 -6.295592
-4.513378 -7.050624		-8.415097	-5.692122 -8.905043	-9.303695
-9.623877		-10.082826	-10.244967	-10.374412
-10.477855		-10.626843	-10.679855	-10.722278
-10.756222		-10.805104	-10.822486	-10.836389
-10.847510		-10.863523	-10.868997	-10.873209
-10.876449		10.000020	10.000337	10.070203
YLE				
0.056427	0.058457	0.061095	0.064524	0.068979
0.074543		0.090146	0.100922	0.114295
0.130812	0.151054	0.175556	0.204670	0.238192
0.274909	0.313423	0.352781	0.395373	0.447615
0.515609	0.599317	0.690701	0.791642	0.930631
1.097366	1.225780	1.358905	1.420966	1.427043
1.421476	1.419680	1.424119	1.431528	1.439111
1.445807	1.451040	1.454871	1.457687	1.459782
1.461363		1.463500	1.464224	1.464790
1.465236		1.465866	1.466078	1.466241
1.466364				
ZLE				
-1.295420		-1.296780	-1.297775	-1.299065
-1.300669		-1.305130	-1.308180	-1.311932
-1.316517		-1.328661	-1.336220	-1.344266
-1.351675		-1.359273	-1.358225	-1.355354
-1.349844		-1.310679	-1.272984	-1.224527
-1.163572		-1.098750	-1.085236	-1.071728
-1.062910 -1.047908		-1.055990 -1.042170	-1.053602 -1.039766	-1.050897 -1.037743
-1.036073		-1.033601	-1.032706	-1.031984
-1.031404		-1.030563	-1.030274	-1.031904
-1.029880		1.030303	1.030274	1.030032
BETAT1				
66.841540	66.816244	66.782973	66.742628	66.684322
66.614716		66.399865	66.240827	66.033530
65.750686		64.835810	64.115501	63.168021
61.994455	60.685341	59.429313	58.194918	56.664497
54.802421	53.044079	51.019713	48.934801	46.508760
43.977919	41.697659	39.575252	38.087769	36.851916
35.809081	35.100383	34.436503	33.762171	33.149025
32.649496	32.247174	31.915523	31.643164	31.425564
31.245939	31.101752	30.986446	30.895654	30.819033
30.759656	30.713830	30.676545	30.646580	30.624292
30.608500				
XTE				
-4.082717		-4.090950	-4.096994	-4.104844
-4.114573		-4.141556	-4.160035	-4.182895
-4.211148		-4.289063	-4.342091	-4.407376
-4.487660		-4.707234	-4.855577	-5.037379
-5.260097		-5.869499	-6.283314	-6.791211
-7.419757 -9.605659		-8.566285 -10.011789	-8.982050 -10.156722	-9.325653 -10.273268
7.003033	7.031043	10.011/09	10.10122	10.2/3200

-10.367136 -10.625720 -10.714191 -10.743147 YTE	-10.442887 -10.651714 -10.723044	-10.504106 -10.672677 -10.730183	-10.553565 -10.689579 -10.735673	-10.593498 -10.703205 -10.739898
0.594647 0.574669 0.513732 0.343696 -0.096933 -1.074039 -1.570421 -1.622781 -1.641804 -1.644564 -1.645189	0.592409 0.567078 0.491851 0.284892 -0.237556 -1.267390 -1.577020 -1.630252 -1.642767 -1.644769	0.589497 0.557661 0.465070 0.214244 -0.391579 -1.428401 -1.587586 -1.635178 -1.643445 -1.644922	0.585710 0.545990 0.432342 0.129193 -0.575531 -1.531188 -1.600604 -1.638336 -1.643936 -1.645038	0.580784 0.531549 0.392370 0.026384 -0.811666 -1.563492 -1.612693 -1.640410 -1.644296 -1.645124
1.488260 1.499368 1.532579 1.618781 1.770521 1.628770 1.250155 1.108162 1.063569 1.048391 1.043424	1.489511 1.503556 1.544324 1.644581 1.792518 1.529363 1.207113 1.095009 1.059109 1.046872	1.491136 1.508729 1.558554 1.672590 1.782631 1.437964 1.172592 1.084454 1.055513 1.045648	1.493245 1.515107 1.575603 1.702783 1.758387 1.360071 1.145717 1.075952 1.052613 1.044706	1.495981 1.522955 1.595679 1.735980 1.716176 1.300310 1.124701 1.069098 1.050275 1.043981
123.481468 122.390757 119.085037 110.376716 90.782803 59.838861 42.046861 37.915861 37.121897 36.894533 36.812206	123.359254 121.977183 117.907387 107.717081 84.862107 53.438826 41.267578 37.615470 37.055565 36.866287	123.200188 121.464469 116.482699 104.740096 79.986019 49.173476 40.301317 37.432165 37.000673 36.849766	122.994565 120.828806 114.763998 101.130260 74.797570 45.258485 39.256564 37.300308 36.955570 36.828928	122.724239 120.048482 112.736276 96.493397 68.263904 43.024895 38.427425 37.201853 36.922893 36.820111

B.2.4 R4 Fan, 26 Radial Vanes, Vane Geometry File

NASA SOURCE	DIAGNOSTICS VANE	STATOR AIRFOIL	DATA	
51				
XLE				
-5.356835	-5.360157	-5.364475	-5.370089	-5.377387
-5.386353	-5.397370	-5.410906	-5.427534	-5.447961
-5.473057	-5.503883	-5.541746	-5.588244	-5.645342
-5.715442	-5.801483	-5.907064	-6.036592	-6.195462
-6.390305	-6.629235	-6.922182	-7.281330	-7.721694
-8.261791	-8.801073	-9.239424	-9.595829	-9.885674
-10.121456	-10.313321	-10.469486	-10.596599	-10.700069
-10.784289	-10.852844	-10.908639	-10.954050	-10.991011
-11.021088	-11.045566	-11.065489	-11.081700	-11.094894
-11.105632	-11.114369	-11.121482	-11.126953	-11.131159
-11.134397				
YLE				
-0.815912	-0.815544	-0.815065	-0.814440	-0.813627
-0.812628	-0.811398	-0.809889	-0.808038	-0.805765
-0.802971	-0.799538	-0.795330	-0.790184	-0.783910
-0.776304	-0.767166	-0.756316	-0.743606	-0.728903
-0.712053	-0.693055	-0.672365	-0.650916	-0.629767
-0.609960	-0.595816	-0.589100	-0.587397	-0.588667
-0.591009	-0.593001	-0.594158	-0.594544	-0.594373
-0.593860	-0.593188	-0.592481	-0.591817	-0.591215
-0.590691	-0.590242	-0.589865	-0.589551	-0.589292

-0.589079	-0.588906	-0.588762	-0.588652	-0.588567
-0.588500				
ZLE				
7.257049	7.257068	7.257093	7.257125	7.257167
7.257218	7.257281	7.257359	7.257452	7.257568
7.257712	7.257887	7.258101	7.258362	7.258680
7.259070	7.259542	7.260114	7.260808	7.261654
7.262699 7.272570	7.263993 7.275416	7.265561 7.277711	7.267423 7.279691	7.269702 7.281259
7.282502	7.283514	7.284327	7.284987	7.285530
7.285976	7.286336	7.286622	7.286847	7.287024
7.287163	7.287273	7.287362	7.287434	7.287490
7.287536	7.287573	7.287602	7.287625	7.287643
7.287657				
BETAT1				
129.750477	129.739334	129.724029	129.711335	129.690163
129.665530	129.627791	129.589303	129.534697	129.468759
129.389145	129.295995	129.175876	129.030101	128.849841
128.634655	128.374227	128.078744	127.740472	127.359260
126.954853	126.491982	125.966723	125.376778	124.699379
123.996106	123.539135	123.403865	123.483888	123.711160
124.029141	124.390496	124.777101	125.162297	125.546844
125.924712	126.260976	126.563697	126.826379	127.055075
127.246984	127.406053	127.541061	127.648344	127.744013
127.814372 128.006387	127.877335	127.926293	127.960454	127.987897
120.000307 XTE				
-5.968562	-5.971792	-5.975988	-5.981445	-5.988539
-5.997199	-6.007771	-6.020678	-6.036434	-6.055669
-6.079152	-6.107820	-6.142817	-6.185543	-6.237701
-6.301377	-6.379113	-6.474012	-6.589866	-6.731300
-6.903964	-7.114753	-7.372083	-7.686234	-8.069750
-8.537947	-9.006143	-9.389659	-9.703811	-9.961140
-10.171928	-10.344593	-10.486028	-10.601881	-10.696780
-10.774516	-10.838192	-10.890350	-10.933077	-10.968074
-10.996741	-11.020225	-11.039460	-11.055216	-11.068122
-11.078694	-11.087355	-11.094450	-11.099905	-11.104103
-11.107331				
YTE				
0.000849	0.000848	0.000849	0.000849	0.000849
0.000848	0.000848	0.000849	0.000849	0.000849
0.000851 0.000849	0.000850	0.000850	0.000848	0.000847
0.000849	0.000849 0.000831	0.000849 0.000875	0.000844 0.001030	0.000838
0.001001	0.000991	0.000873	0.001030	0.000992
0.000983	0.000990	0.000991	0.000987	0.000987
0.000995	0.001000	0.000995	0.000991	0.000991
0.000995	0.000995	0.000994	0.000992	0.000989
0.000991	0.000989	0.000990	0.000991	0.000992
0.000993				
ZTE	10 464000	10 404004	10 465050	10 465160
10.464846	10.464897	10.464964	10.465050	10.465163
10.465301	10.465467	10.465672	10.465922	10.466226
10.466595	10.467046	10.467589	10.468244 10.473650	10.469028
10.469959 10.476458	10.471045 10.477498	10.472282 10.478033	10.478429	10.475088 10.478971
10.478994	10.477498	10.475833	10.473969	10.472043
10.470109	10.468323	10.475653	10.466063	10.465543
10.465265	10.465103	10.464980	10.464857	10.464729
10.464599	10.464472	10.464359	10.464258	10.464171
10.464100	10.464039	10.463988	10.463948	10.463918
10.463894				
BETAT2				
87.543584	87.541705	87.539768	87.537604	87.537903
87.535262	87.531083	87.532151	87.526585	87.529965
87.534993	87.532980	87.522486	87.499900	87.500703
87.508280	87.492757	87.482505	87.464872	87.468266

87.456714	87.435190	87.431004	87.438093	87.415635
87.417438	87.407650	87.418157	87.422962	87.418133
87.410126	87.400043	87.402715	87.405149	87.408546
87.391481	87.363950	87.359101	87.372998	87.389326
87.389493	87.387180	87.397875	87.397881	87.398400
87.395349	87.389629	87.387746	87.388776	87.378480
87.377135				

B.3 R4 Fan, 26 Swept Vanes, Flow-Path Geometry File

Flowpath:	Inside Dia	nmeter	Wall - HUB			
Axial						
-6.58101	2 -6.3	307988	-6.0349	964	-5.761940	-5.488917
-5.21589		942869	-4.6698		-4.396821	-4.123797
-3.85077		577750	-3.3047		-3.031702	-2.758678
-2.48565		212631	-1.9396		-1.666583	-1.393559
-1.12053		347512	-0.5744		-0.301464	-0.028440
0.24458		17607	0.7906		1.063655	1.336679
1.60970		882726	2.1557		2.428774	2.701798
2.97482		247845	3.5208		3.793893	4.066917
4.33994		512964	4.8859		5.159012	5.432036
5.70506		78083	6.2511		6.524131	6.797155
7.07017		343202	7.6162		7.889250	8.162274
8.43529		708322	8.9813		9.254369	9.527393
9.80041		73441	10.3464		10.619488	10.892512
11.16553		138560	11.7115		11.984607	12.257631
12.53065		303679	13.0767		13.349726	13.622750
13.89577		68798	14.4418		14.714845	14.987869
15.26089		33917	15.8069		16.079964	16.352988
16.62601		399036	17.1720		17.445083	17.718107
Radius	.2 10.0	33030	17.1720	700	17.445005	17.710107
2.27804	13 2 2	277993	2.2779	303	2.278086	2.278184
2.27814		277939	2.2785		2.277231	2.296334
2.32521		102416	2.5557		2.706569	2.824902
2.93545		39230	3.1367		3.228269	3.315939
3.39900			3.5523		3.624413	
		177445				3.694859 4.116500
3.76539		340224	3.9249 4.4327		4.017037	
4.22123 4.71306		327530 789160	4.452		4.534007 4.921322	4.628337 4.980497
5.03634		89725	5.1410		5.190151	5.235796
5.27714		315005	5.3513		5.387377	5.421951
5.45378		183371	5.5118		5.540183	5.568631
5.59684		524491	5.6513		5.677274	5.702190
5.72598		748543	5.7697		5.789558	5.807803
5.82437		339240	5.8525		5.864429	5.875103
5.88478		393738	5.9022		5.910888	5.920390
5.93176		946565	5.9656		5.988472	6.014392
6.04310		74581	6.1092		6.146275	6.185302
6.22796	0.2	272015	6.3175	006	6.364912	6.412795
Primary Sp	olitter: I	nside	Diameter Wa	all - UP	PER	
60						
Axial		00706	0 1555	7.5.0	0 400774	0.701700
1.60970		382726	2.1557		2.428774	2.701798
2.97482		247845	3.5208		3.793893	4.066917
4.33994		512964	4.8859		5.159012	5.432036
5.70506		78083	6.2511		6.524131	6.797155
7.07017		343202	7.6162		7.889250	8.162274
8.43529		708322	8.9813		9.254369	9.527393
9.80041		73441	10.3464		10.619488	10.892512
11.16553		138560	11.7115		11.984607	12.257631
12.53065		303679	13.0767		13.349726	13.622750
13.89577		68798	14.4418		14.714845	14.987869
15.26089		33917	15.8069		16.079964	16.352988
16.62601	.∠ 16.8	399036	17.1720	UOU	17.445083	17.718107
Radius		27521	4 4205	700	4 E24007	4 (20227
4.22123		327531 789162	4.4327		4.534007	4.628337
4.71306 5.03634			4.8578		4.921322 5.190150	4.980496 5.235795
J.U3034	5.0	89725	5.1410	000	0.130130	J. ZJJ 195

5.277147	5.315006	5.351330	5.387377	5.421950
5.453787	5.483371	5.511820	5.540183	5.568630
5.596844	5.624491	5.651341	5.677274	5.702190
5.725983	5.748543	5.769778	5.789558	5.807803
5.824374	5.839240	5.852539	5.864429	5.875103
5.884788	5.893738	5.902256	5.910887	5.920390
5.931762	5.946565	5.965664	5.988472	6.014391
6.043109	6.074581	6.109251	6.146275	6.185302
6.227963	6.272015	6.317507	6.364912	6.412795

Primary 60	Splitter:	Outside	Diameter Wall	- LOWER	
Axial					
	9702	1.882726	2.155750	2.428774	2.7017
	4822	3.247845	3.520869	3.793893	4.0669
	9941	4.612964	4.885988	5.159012	5.4320
	5060	5.978083	6.251107	6.524131	6.7971
	0179	7.343202	7.616226	7.889250	8.1622
	5298	8.708322	8.981345	9.254369	9.5273
		10.073441	10.346464	10.619488	10.8925
11.16		11.438560	11.711583	11.984607	12.2576
12.53	0655	12.803679	13.076702	13.349726	13.6227
13.89	5774	14.168798	14.441822	14.714845	14.9878
15.26	0893 1	15.533917	15.806941	16.079964	16.3529
16.62	6012	16.899036	17.172060	17.445083	17.7181
Radius					
4.22	1233	4.327531	4.432723	4.534007	4.6283
4.71	3060	4.789162	4.857885	4.921322	4.9804
	6348	5.089725	5.141060	5.190150	5.2357
	7147	5.315006	5.351330	5.387377	5.4219
	3787	5.483371	5.511820	5.540183	5.5686
	6844	5.624491	5.651341	5.677274	5.7021
	5983	5.748543	5.769778	5.789558	5.8078
	4374	5.839240	5.852539	5.864429	5.8751
	4788	5.893738	5.902256	5.910887	5.9203
		5.946565			
		J. 940J0J	5.965664	5.988472	6.0143
5.93			C 1000E1	C 14C07E	C 10E3
6.04	3109	6.074581 6.272015	6.109251 6.317507	6.146275 6.364912	
6.04	3109 7963	6.074581 6.272015			
6.04 6.22	3109 7963	6.074581 6.272015	6.317507		
6.04 6.22 Flowpat	3109 7963	6.074581 6.272015	6.317507		
6.04 6.22 Flowpat 90	3109 7963 h: Outsid	6.074581 6.272015	6.317507		6.4127
6.04 6.22 Flowpat 90 Axial	3109 7963 h: Outsid	6.074581 6.272015 de Diamete	6.317507 er Wall - TIP	6.364912	6.4127 -5.4889
6.04 6.22 Flowpat 90 Axial -6.58	3109 7963 h: Outsid	6.074581 6.272015 de Diamete	6.317507 er Wall - TIP -6.034964	6.364912 -5.761940	-5.4889 -4.1237
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85	3109 7963 h: Outsid	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749	6.317507 er Wall - TIP -6.034964 -4.669845 -3.304726	-5.761940 -4.396821 -3.031702	-5.4889 -4.1237 -2.7586
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48	3109 .7963 h: Outsid 1012 - 5893 - 0773 - 5654	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630	6.317507 Per Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606	-5.761940 -4.396821 -3.031702 -1.666582	-5.4889 -4.1237 -2.7586 -1.3935
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12	3109 .7963 h: Outsid 1012 - 5893 - 0773 - 5654 - 0535	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511	6.317507 er Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463	-5.4889 -4.1237 -2.7586 -1.3935 -0.0284
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24	3109 .7963 h: Outsid 1012 - 5893 - 0773 - 5654 - 0535 - 4585	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608	6.317507 er Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656	-5.4889 -4.1237 -2.7586 -1.3935 -0.0284 1.3366
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60	3109 .7963 h: Outsid 1012 - .5893 - .0773 - .5654 - .0535 - .4585 .9704	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728	6.317507 er Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775	-5.4889 -4.1237 -2.7586 -1.3935 -0.0284 1.3366 2.7017
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60 2.97	3109 .7963 h: Outsid 1012 - 5893 - 0773 - 5654 - 0535 - 4585 9704 4823	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847	6.317507 er Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895	-5.4889 -4.1237 -2.7586 -1.3935 -0.0284 1.3366 2.7017 4.0669
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60 2.97 4.33	3109 7963 h: Outsid 1012 - 5893 - 0773 - 5654 - 0535 - 4585 9704 4823 9942	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847 4.612966	6.317507 er Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871 4.885990	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895 5.159014	-5.4889 -4.1237 -2.7586 -1.3935 -0.0284 1.3366 2.7017 4.0669 5.4320
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60 2.97 4.33 5.70	3109 7963 h: Outsid 1012 - 5893 - 0773 - 5654 - 0535 - 4585 9704 4823 9942 5062	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847 4.612966 5.978085	6.317507 er Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871 4.885990 6.251109	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895 5.159014 6.524133	-5.4889 -4.1237 -2.7586 -1.3935 -0.0284 1.3366 2.7017 4.0669 5.4320 6.7971
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60 2.97 4.33 5.70 7.07	3109 7963 h: Outsid 1012 - 5893 - 0773 - 5654 - 0535 - 4585 9704 4823 9942 5062 0181	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847 4.612966 5.978085 7.343205	6.317507 Per Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871 4.885990 6.251109 7.616229	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895 5.159014 6.524133 7.889252	-5.4889 -4.1237 -2.7586 -1.3935 -0.0284 1.3366 2.7017 4.0669 5.4320 6.7971 8.1622
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60 2.97 4.33 5.70 7.07 8.43	3109 7963 h: Outsid 1012 - 5893 - 0773 - 5654 - 0535 - 4585 9704 4823 9942 5062 0181 5300	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847 4.612966 5.978085 7.343205 8.708324	6.317507 Per Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871 4.885990 6.251109 7.616229 8.981348	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895 5.159014 6.524133 7.889252 9.254372	-5.4889 -4.1237 -2.7586 -1.3935 -0.0284 1.3366 2.7017 4.0669 5.4320 6.7971 8.1622 9.5273
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60 2.97 4.33 5.70 7.07 8.43 9.80	3109 7963 h: Outsid 1012 - 5893 - 0773 - 5654 - 0535 - 4585 9704 4823 19942 5062 0181 15300 0419	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847 4.612966 5.978085 7.343205 8.708324	6.317507 Per Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871 4.885990 6.251109 7.616229 8.981348 10.346467	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895 5.159014 6.524133 7.889252 9.254372 10.619491	-5.4889 -4.1237 -2.7586 -1.3935 -0.0284 1.3366 2.7017 4.0669 5.4320 6.7971 8.1622 9.5273
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60 2.97 4.33 5.70 7.07 8.43 9.80 11.16	3109 7963 h: Outsid 1012 - 5893 - 0773 - 5654 - 0535 - 4585 9704 4823 9942 5062 0181 5300 0419 : 5539 :	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847 4.612966 5.978085 7.343205 8.708324 10.073443 11.438562	6.317507 Per Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871 4.885990 6.251109 7.616229 8.981348 10.346467 11.711586	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895 5.159014 6.524133 7.889252 9.254372 10.619491 11.984610	-5.4889 -4.1237 -2.7586 -1.3935 -0.0284 1.3366 2.7017 4.0669 5.4320 6.7971 8.1622 9.5273 10.8925 12.2576
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60 2.97 4.33 5.70 7.07 8.43 9.80 11.16 12.53	3109 7963 h: Outsid 1012 5893 0773 5654 0535 4585 9704 4823 9942 5062 0181 5300 0419 5539 0658	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847 4.612966 5.978085 7.343205 7.343205 8.708324 10.073443 11.438562 12.803682	6.317507 Per Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871 4.885990 6.251109 7.616229 8.981348 10.346467 11.711586 13.076706	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895 5.159014 6.524133 7.889252 9.254372 10.619491 11.984610 13.349729	-5.4889 -4.1237 -2.7586 -1.3935 -0.0284 1.3366 2.7017 4.0669 5.4320 6.7971 8.1622 9.5273 10.8925 12.2576
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.25 -2.48 -1.12 0.24 1.60 2.97 4.33 5.70 7.07 7.07 8.43 9.80 11.16 12.53 13.89	3109 7963 h: Outsid 1012 5893 0773 5654 0535 4585 9704 4823 9942 5062 0181 5300 0419 5539 0658 5777	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847 4.612966 5.978085 7.343205 8.708324 10.073443 11.438562 12.803682 14.168801	6.317507 Per Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871 4.885990 6.251109 7.616229 8.981348 10.346467 11.711586 13.076706 14.441825	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895 5.159014 6.524133 7.889252 9.254372 10.619491 11.984610 13.349729 14.714849	-5.4889 -4.1237 -2.7586 -1.3366 2.7017 4.0669 5.4320 6.7971 8.1622 9.5273 10.8925 12.2576 13.6227
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60 2.97 4.33 5.70 7.07 8.43 9.80 11.16 12.53 13.89	3109 7963 h: Outsid 1012 5893 0773 5654 0535 4585 9704 4823 9942 5062 0181 5300 0419 5539 0658 5777 0896	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847 4.612966 5.978085 7.343205 8.708324 10.073443 11.438562 12.803682 14.168801 15.533920	6.317507 Per Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871 4.885990 6.251109 7.616229 8.981348 10.346467 11.711586 13.076706 14.441825 15.806944	6.364912 -5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895 5.159014 6.524133 7.889252 9.254372 10.619491 11.984610 13.349729 14.714849 16.079968	-5.4889 -4.1237 -2.7586 -1.3366 2.7017 4.0669 5.4320 6.7971 8.1622 9.5273 10.8925 12.2576 13.6227 14.9878
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60 2.97 4.33 5.70 7.07 8.43 9.80 11.16 12.53 13.89 15.26 16.62	3109 7963 h: Outsid 1012 5893 0773 5654 0535 4585 9704 4823 9942 5062 0181 5300 0419 5539 0658 5777 0896	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847 4.612966 5.978085 7.343205 8.708324 10.073443 11.438562 12.803682 14.168801	6.317507 Per Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871 4.885990 6.251109 7.616229 8.981348 10.346467 11.711586 13.076706 14.441825	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895 5.159014 6.524133 7.889252 9.254372 10.619491 11.984610 13.349729 14.714849	-5.4889 -4.1237 -2.7586 -1.3366 2.7017 4.0669 5.4320 6.7971 8.1622 9.5273 10.8925 12.2576 13.6227 14.9878
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60 2.97 4.33 5.70 7.07 8.43 9.80 11.16 12.53 13.89	3109 7963 h: Outsid 1012 5893 0773 5654 0535 4585 9704 4823 9942 5062 0181 5300 0419 5539 0658 5777 0896	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847 4.612966 5.978085 7.343205 8.708324 10.073443 11.438562 12.803682 14.168801 15.533920	6.317507 Per Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871 4.885990 6.251109 7.616229 8.981348 10.346467 11.711586 13.076706 14.441825 15.806944	6.364912 -5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895 5.159014 6.524133 7.889252 9.254372 10.619491 11.984610 13.349729 14.714849 16.079968	-5.4889 -4.1237 -2.7586 -1.3366 2.7017 4.0669 5.4320 6.7971 8.1622 9.5273 10.8925 12.2576 13.6227 14.9878
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60 2.97 4.33 5.70 7.07 8.43 9.80 11.16 12.53 13.89 15.26 16.62	3109 7963 h: Outsid 1012 5893 0773 5654 0535 4585 9704 4823 9942 5062 10181 15300 0419 15539 10658 15777 10896 16016	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847 4.612966 5.978085 7.343205 8.708324 10.073443 11.438562 12.803682 14.168801 15.533920	6.317507 Per Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871 4.885990 6.251109 7.616229 8.981348 10.346467 11.711586 13.076706 14.441825 15.806944	6.364912 -5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895 5.159014 6.524133 7.889252 9.254372 10.619491 11.984610 13.349729 14.714849 16.079968	6.4127 -5.4889 -4.1237 -2.7586 -1.3935 -0.0284 1.3366 2.7017 4.0669 5.4320 6.7971 8.1622 9.5273 10.8925 12.2576 13.6227 14.9878 16.3529 17.7181
6.04 6.22 Flowpat 90 Axial -6.58 -5.21 -3.85 -2.48 -1.12 0.24 1.60 2.97 4.33 5.70 7.07 8.43 9.80 11.16 12.53 13.89 15.26 16.62 Radius	3109 7963 h: Outsid 1012 5893 0773 5654 0535 4585 9704 4823 9942 5062 0181 5300 0419 5539 0658 5777 10896 6016	6.074581 6.272015 de Diamete -6.307988 -4.942869 -3.577749 -2.212630 -0.847511 0.517608 1.882728 3.247847 4.612966 5.978085 7.343205 8.708324 10.073443 11.438562 12.803682 14.168801 15.533920 16.899039	6.317507 Per Wall - TIP -6.034964 -4.669845 -3.304726 -1.939606 -0.574487 0.790632 2.155751 3.520871 4.885990 6.251109 7.616229 8.981348 10.346467 11.711586 13.076706 14.441825 15.806944 17.172063	-5.761940 -4.396821 -3.031702 -1.666582 -0.301463 1.063656 2.428775 3.793895 5.159014 6.524133 7.889252 9.254372 10.619491 11.984610 13.349729 14.714849 16.079968 17.445087	6.1853 6.4127 -5.4889 -4.1237 -2.7586 -1.3935 -0.0284 1.3366 2.7017 4.0669 5.4320 6.7971 8.1622 9.5273 10.8925 12.2576 13.6227 14.9878 16.3529 17.7181 11.1497 11.1525

11.148537	11.146954	11.145094	11.144468	11.139848
11.128527	11.113897	11.099478	11.086043	11.072528
11.058579	11.044253	11.029975	11.016415	11.004662
10.997435	10.996941	11.002361	11.011303	11.023008
11.037576	11.054704	11.074055	11.095138	11.117540
11.139788	11.161870	11.182139	11.202155	11.215710
11.229100	11.236480	11.242274	11.244181	11.243522
11.240329	11.235912	11.228514	11.220239	11.210999
11.201222	11.191209	11.180980	11.170924	11.161669
11.153554	11.146475	11.141077	11.138075	11.136992
11.136987	11.137149	11.137113	11.137054	11.137110
11.137225	11.136878	11.136743	11.139054	11.144890
11.155511	11.169943	11.185459	11.202701	11.221603
11.238830	11.255937	11.271424	11.284403	11.294512
11.301850	11.306308	11.306928	11.303662	11.296490

B.3.5 B-4b. R4 Fan, 26 Swept Vanes, Blade Geometry File

NASA SOURCE	DIAGNOSTICS FAN	ROTOR AIRFOIL	DATA	
51				
XLE				
-3.340660		-3.348099	-3.353562	-3.360659
-3.369524		-3.394417	-3.411670	-3.433199
-3.460056		-3.535323	-3.587431	-3.652499
-3.733908		-3.964009	-4.124481	-4.324960
-4.574967		-5.278780	-5.769798	-6.381501
-7.146836		-8.529930	-9.026561	-9.430654
-9.755203		-10.220415	-10.384768	-10.515981
-10.620836		-10.771857	-10.825593	-10.868594
-10.903000 -10.995536		-10.952551 -11.011766	-10.970168 -11.017315	-10.984262 -11.021585
-11.024868		-11.011/66	-11.01/313	-11.021383
-11.024868 YLE	1			
0.057197	0.059255	0.061929	0.065404	0.069920
0.037197		0.091376	0.102299	0.115854
0.132597		0.177951	0.207463	0.241442
0.278660		0.357595	0.400768	0.453723
0.522645		0.700126	0.802445	0.943330
1.112341		1.377449	1.440356	1.446517
1.440873		1.443552	1.451062	1.458749
1.465537		1.474725	1.477579	1.479702
1.481305		1.483471	1.484205	1.484778
1.485230		1.485869	1.486084	1.486250
1.486374				
ZLE				
-1.313097	-1.313697	-1.314476	-1.315485	-1.316792
-1.318418	-1.320437	-1.322940	-1.326032	-1.329835
-1.334482	-1.340105	-1.346792	-1.354454	-1.362610
-1.370120	-1.375640	-1.377821	-1.376760	-1.373849
-1.368264	-1.354501	-1.328564	-1.290355	-1.241237
-1.179450	-1.132756	-1.113743	-1.100046	-1.086353
-1.077415	-1.073043	-1.070400	-1.067979	-1.065237
-1.062208		-1.056392	-1.053954	-1.051904
-1.050211		-1.047706	-1.046798	-1.046067
-1.045478		-1.044626	-1.044333	-1.044108
-1.043934				
BETAT1				
66.841920		66.783037	66.742464	66.684126
66.614647		66.399774	66.240639	66.033436
65.750527		64.835723	64.115307	63.167938
61.994326		59.429369	58.194911	56.664573
54.802536		51.019993	48.934833	46.509207
43.978321		39.574961	38.088167	36.851786
35.809419		34.436220	33.761689	33.148814
32.649151 31.245482		31.915376 30.986606	31.642890 30.896034	31.425661 30.819014
31.245482		30.986606	30.896034	30.819014
30.759578		30.073000	30.040328	30.024430
XTE	1			
-4.138430	-4.142060	-4.146776	-4.152902	-4.160859
-4.170722		-4.198072	-4.216804	-4.239974
4.10/22	4.102340	4.170072	4.210004	4.233374

-4.268613 -4.548899 -5.331875 -7.521008 -9.736737 -10.508606 -10.770720 -10.860396 -10.889748 YTE	-4.303975 -4.648844 -5.608778 -8.165472 -9.965199 -10.585391 -10.797068 -10.869372	-4.347592 -4.771470 -5.949595 -8.683180 -10.148410 -10.647445 -10.818316 -10.876607	-4.401343 -4.921836 -6.369057 -9.104619 -10.295321 -10.697579 -10.835448 -10.882173	-4.467519 -5.106120 -6.883883 -9.452910 -10.413456 -10.738056 -10.849261 -10.886454
0.602761 0.582510 0.520742 0.348386 -0.098256 -1.088696 -1.591851 -1.6644926 -1.664206 -1.667006 -1.667039	0.600492 0.574816 0.498563 0.288779 -0.240798 -1.284685 -1.598540 -1.652498 -1.665184 -1.667213	0.597541 0.565271 0.471417 0.217166 -0.396923 -1.447893 -1.609250 -1.657492 -1.665872 -1.667369	0.593703 0.553440 0.438242 0.130956 -0.583385 -1.552084 -1.6622446 -1.660693 -1.666369 -1.667487	0.588709 0.538802 0.397724 0.026743 -0.822741 -1.584827 -1.634700 -1.662795 -1.666734 -1.667573
1.508569 1.519828 1.553493 1.640871 1.794682 1.650995 1.267215 1.123284 1.078082 1.062697 1.057662	1.509837 1.524073 1.565398 1.667023 1.816979 1.550232 1.223585 1.109952 1.073562 1.061157	1.511484 1.529317 1.579822 1.695415 1.806956 1.457586 1.188594 1.099252 1.069916 1.059916	1.513622 1.535782 1.597104 1.726019 1.782382 1.378630 1.161352 1.090634 1.066977 1.058962	1.516396 1.543737 1.617454 1.759669 1.739595 1.318054 1.140049 1.083687 1.064607 1.058227
BETAT2 123.481490 122.390886 119.085069 110.376617 90.782524 59.839296 42.046849 37.915810 37.122089 36.894595 36.812225	123.359128 121.977428 117.907460 107.716938 84.861963 53.438460 41.267239 37.615249 37.054914 36.866235	123.199538 121.464103 116.482743 104.740458 79.985831 49.173302 40.301294 37.432006 37.000237 36.849618	122.994199 120.829208 114.764342 101.130253 74.797611 45.258691 39.256844 37.300492 36.955278 36.828841	122.723999 120.048846 112.735963 96.493585 68.264318 43.025093 38.427290 37.201673 36.922331 36.820435

B.3.6 R4 Fan, 26 Swept Vanes, Vane Geometry File

NASA SOURCE 51	DIAGNOSTICS VANE	STATOR AIRFOIL	DATA	
XLE				
-5.436280	-5.439158	-5.442898	-5.447761	-5.454082
-5.461904	-5.471583	-5.483561	-5.498379	-5.516716
-5.539403	-5.567472	-5.602200	-5.645162	-5.698305
-5.764034	-5.845315	-5.945811	-6.070047	-6.223644
-6.413625	-6.648677	-6.939284	-7.298377	-7.742211
-8.290494	-8.838033	-9.280193	-9.637332	-9.925845
-10.158876	-10.346982	-10.498800	-10.621397	-10.720419
-10.800375	-10.864911	-10.916997	-10.959044	-10.993000
-11.020428	-11.042585	-11.060489	-11.074954	-11.086639
-11.096085	-11.103716	-11.109882	-11.114625	-11.118274
-11.121081				
YLE				
-0.795390	-0.795226	-0.795011	-0.794732	-0.794368
-0.793918	-0.793359	-0.792669	-0.791815	-0.790761
-0.789458	-0.787847	-0.785854	-0.783396	-0.780383
-0.776725	-0.772351	-0.767202	-0.761226	-0.754169

-0.744985	-0.732126	-0.715833	-0.696765	-0.673254
-0.647653	-0.624627	-0.605792	-0.590409	-0.577678
-0.568304	-0.563855	-0.563534	-0.564812	-0.566707
-0.569411 -0.588533	-0.573070 -0.591309	-0.577260 -0.593618	-0.581446 -0.595519	-0.585243 -0.597070
-0.598334	-0.599362	-0.600195	-0.600838	-0.601335
-0.601717	0.033002	0.000130	0.000000	0.001000
ZLE				
7.446051	7.447709	7.449862	7.452662	7.456302
7.460806	7.466381	7.473278	7.481812	7.492373
7.505443	7.521616	7.541629	7.566395	7.597041
7.634959 8.010277	7.681865 8.146364	7.739886 8.314905	7.811643 8.523576	7.900407 8.781817
9.101016	9.420207	9.677826	9.886405	10.054845
10.190549	10.300364	10.389606	10.461797	10.519979
10.566864	10.604698	10.635252	10.659930	10.679867
10.695974	10.708991	10.719511	10.728012	10.734879
10.740430	10.744915	10.748541	10.751328	10.753473
10.755123				
BETAT1 129.873150	120 062205	129.848513	129.827107	129.802346
129.773619	129.863295 129.736074	129.693068	129.638014	129.568716
129.481512	129.368901	129.229323	129.050014	128.857568
128.607673	128.314696	127.973795	127.575615	127.130741
126.605518	125.962763	125.200603	124.386658	123.410217
122.396922	121.571660	120.986038	120.658848	120.525876
120.574000	120.771182	121.134839	121.499509	121.811339
122.113521	122.448580	122.789434	123.115802	123.399654
123.642627 124.352260	123.849998 124.429915	124.012872 124.487676	124.147636 124.540279	124.263409 124.578784
124.532260	124.429913	124.40/0/0	124.540279	124.3/0/04
XTE				
-5.808912	-5.811751	-5.815439	-5.820235	-5.826470
-5.834159	-5.843640	-5.855333	-5.869753	-5.887536
-5.909467	-5.936511	-5.969862	-6.010993	-6.061715
-6.124266	-6.201406	-6.296534	-6.413849	-6.558524
-6.736938 -8.484455	-6.956962 -8.993346	-7.228297 -9.405998	-7.562913 -9.740613	-7.975567 -10.011949
-10.231968	-10.410378	-10.555044	-10.672351	-10.767471
-10.844597	-10.907134	-10.957841	-10.998956	-11.032294
-11.059325	-11.081243	-11.099017	-11.113427	-11.125114
-11.134590	-11.142273	-11.148503	-11.153296	-11.156983
-11.159819				
YTE 0.001041	0.001060	0.001082	0.001110	0.001142
0.001176	0.001000	0.001002	0.001110	0.001142
0.001204	0.001206	0.001210	0.001206	0.001217
0.001206	0.001080	0.001023	0.001045	0.001062
0.001212	0.001035	0.001207	0.001063	0.001136
0.000984	0.001951	0.002761	0.004607	0.007416
0.010569	0.014645	0.019606	0.023682	0.027651
0.032176 0.051551	0.036805 0.054106	0.041123 0.056215	0.045015 0.057949	0.048511 0.059371
0.060532	0.061480	0.050213	0.062848	0.063305
0.063659	0.001100	0.002202	0.002010	0.00000
ZTE				
10.909956	10.911592	10.913717	10.916482	10.920075
10.924505	10.929971	10.936710	10.945022	10.955273
10.967913	10.983503	11.002730	11.026443	11.055693
11.091771	11.136288	11.191225	11.259048	11.342788
11.446181	11.573838	11.731372	11.925663	12.165092
12.459756	12.754123	12.992770	13.186594	13.343133
13.469471 13.816706	13.571556 13.850841	13.653922 13.878137	13.720418 13.900045	13.773914 13.917696
13.931945	13.943466	13.952789	13.960340	13.966455
13.971413	13.975430	13.978686	13.981192	13.983118
13.984600				

BETAT2				
86.816576	86.817569	86.820224	86.821634	86.823566
86.820002	86.824669	86.826677	86.823118	86.815478
86.806812	86.799077	86.800492	86.800990	86.804042
86.797891	86.784666	86.789030	86.794510	86.774798
86.780127	86.771108	86.758127	86.737510	86.717064
86.699335	86.678051	86.647505	86.672113	86.679102
86.647844	86.668759	86.674780	86.657714	86.665654
86.683688	86.682664	86.681759	86.679799	86.662979
86.641556	86.640914	86.641261	86.636507	86.625623
86.627781	86.619108	86.613853	86.606500	86.601761
86.599825				

Figure B.2.—R4 fan, average velocity, station A.

Figure B.3.—R4 fan, average velocity, station B.

Figure B.4.—R4 fan, average turbulence intensity, station A.

Figure B.5.—R4 fan, average turbulence intensity, station B.

Figure B.6.—R4 fan, average turbulence scale, station A.

Figure B.7.—R4 fan, average turbulence scale, station B.

Figure B.9.—M5 fan, average velocity, station B.

Figure B.10.—M5 fan, average turbulence intensity, station A.

Figure B.11.—R4 fan, average turbulence intensity, station B.

Figure B.12.—M5 fan, average turbulence scale, station A.

Figure B.13.—M5 fan, average turbulence scale, station B.

Appendix C.—Boeing Fan Rig Information

Figure C.1.—Boeing fan rig schematics.

C.1 Geometry Files

C.1.1 Boeing Rig, Flow-Path Geometry File

Flowpath: I.D. 29	wall				
Axial	00 6000	04 0000	04 0060	05 0450	06 1170
23.1170	23.6230	24.2280	24.8360	25.3450	26.1170
26.3900	26.7374	27.0848	27.4423	27.7797	28.1271
28.4745	28.8219	29.1693	29.2500	29.6000	31.0000
31.4700	35.9000	37.0000	42.5200	49.0000	49.5000
50.0000	50.5000	51.0000	51.5000	54.7533	
Radius					
0.0000	0.9888	1.8864	2.5575	3.0022	3.5163
3.6200	3.7103	3.7880	3.8532	3.9063	3.9474
3.9766	3.9942	4.0000	4.0000	4.0000	4.3743
4.5000	4.5000	4.5000	4.5000	6.9800	7.1900
7.3400		7.4800	7.5000	7.5000	
Primary Splitte					
11	J. J				
Axial					
31.4700	35.9000	37.0000	42.5200	49.0000	49.5000
50.0000	50.5000	51.0000	51.5000	54.7533	49.3000
Radius	30.3000	31.0000	31.3000	34.7333	
	4 5000	4 5000	4 5000	6 0000	7 1000
	4.5000		4.5000	6.9800	7.1900
7.3400	7.4300	7.4800	7.5000	7.5000	
Primary Splitte	er: Core O.D	. wall			
11					
Axial					
31.4700	35.9000	37.0000	42.5200	49.0000	49.5000

50.0000	50.5000	51.0000	51.5000	54.7533	
Radius					
4.5000	4.5000	4.5000	4.5000	6.9800	7.1900
7.3400	7.4300	7.4800	7.5000	7.5000	
Flowpath: O.D.	. wall				
28					
Axial					
4.9429	5.0150	5.1438	5.3966	5.7069	6.0147
6.4818	7.0105	7.4589	7.9989	26.6700	27.0630
28.5250	28.9690	29.3790	31.0000	39.9853	40.9935
41.2438	41.4794	41.7104	41.9961	42.3073	42.9881
44.0022	44.5470	44.9914	45.7425		
Radius					
10.9952	10.6302	10.3620	10.0090	9.7160	9.5257
9.3174	9.1546	9.0962	9.0625	9.0625	9.0000
8.7500	8.6700	8.6000	8.6500	8.6500	8.6546
8.6802	8.7118	8.7800	8.8752	8.9857	9.2302
9.5895	9.8086	9.9114	10.0073		

C.1.2 Boeing Rig, Blade Geometry File

	SEARCH FAN ROTOR	AIRFOIL DATA		
13				
XLE				
3.561559	3.639948	3.835290	4.130931	4.507303
4.944070	5.426711	5.961138	6.514472	7.082766
7.664885	8.259810	8.882345		
YLE				
654542	671351	721084	795199	888330
988913	-1.079903	-1.152941	-1.219800	-1.269694
-1.320424	-1.392598	-1.442951		
ZLE				
26.395505	26.409969	26.432180	26.463606	26.498208
26.543040	26.601611	26.675780	26.748059	26.823387
26.893716	26.954570	27.020048		
BETA1				
57.857351	56.483573	53.607210	50.185181	46.688229
43.138043	39.729072	36.696557	34.150685	31.799668
29.371879	26.976377	23.840608		
XTE				
3.994701	4.061711	4.229500	4.483066	4.805972
5.180914	5.596003	6.058247	6.540309	7.039913
7.553667	8.080504	8.640662		
YTE				
.207561	.242441	.326880	.448857	.595086
.748331	.886733	1.001627	1.098912	1.170944
1.235934	1.316475	1.375659		
7.TE				
29.179786	29.170911	29.161129	29.141444	29.111954
29.063591	28.992426	28.898010	28.805873	28.711970
28.627272	28.556980	28.479465	20.000070	20.721370
BETA2	20.00000	20:179100		
79.126653	81.126920	85.814697	87.522874	79.700167
71.804414	64.544103	57.713709	51.440481	45.963414
41.375492	37.494574	33.285370	71.440401	47.702414
41.3/3492	37.494374	55.205570		

C.1.3 Boeing Rig, Vane Geometry File

BOEIN 25	G NOISE RESEARCH	FAN ROTOR AIRFO	IL DATA		
XLE					
	4.444516	4.621318	4.797917	4.974300	5.150474
	5.326517	5.502514	5.678491	5.854412	6.030246
	6.205996	6.381669	6.557270	6.732800	6.908259
	7.083648	7.258973	7.434238	7.609443	7.784592
	7.959685	8.134723	8.309708	8.484640	8.659533
YLE					
	521443	512240	503283	494939	487390
	480031	472047	463123	453707	444241
	434797	425355	415957	406676	397607
	388840	380399	372308	364638	357478

350920	345039	339930	335719	332129
ZLE				
33.558464	33.551719	33.545323	33.539482	33.534258
33.529211	33.523811	33.517896	33.511798	33.505812
33.499986	33.494304	33.488786	33.483468	33.478388
33.473574	33.469021	33.464721	33.460687	33.456934
33.453476	33.450314	33.447460	33.444927	33.442591
BETA1				
54.377055	54.956615	55.496653	55.957781	56.321473
56.655262	57.047177	57.528590	58.049527	58.561855
59.057595	59.539306	60.002626	60.440277	60.842064
61.198488	61.506767	61.764938	61.965412	62.098746
62.154838	62.126665	62.004202	61.771489	61.461663
XTE	02.120000	02.001202	01.771103	01.101000
4.449688	4.626422	4.802974	4.979351	5.155568
5.331666	5.507683	5.683635	5.859512	6.035303
6.211015	6.386653	6.562220	6.737721	6.913157
7.088532	7.263849	7.439113	7.614324	7.789486
7.964601	8.139671	8.314697	8.489683	8.664629
YTE YTE	0.137071	0.314077	0.407003	0.004025
.475292	.463891	.452492	.441234	.430168
.418995	.407329	.395015	.382252	.369235
	.342490	.328754	.314802	.309233
.355987		.328734	.242207	.227107
.286336	.271821			
.211805	.196305	.180614	.164646	.148411
ZTE	24 000042	24 007000	24 002000	25 000071
34.973038	34.980243	34.987208	34.993882	35.000271
35.006563	35.012960	35.019511	35.026069	35.032508
35.038799	35.044942	35.050921	35.056718	35.062316
35.067708	35.072895	35.077874	35.082642	35.087198
35.091547	35.095686	35.099617	35.103363	35.106910
BETA2				
63.044815	63.938711	64.836718	65.742298	66.660284
67.595264	68.550815	69.529029	70.529018	71.550060
72.592986	73.659331	74.749669	75.865051	77.007562
78.179898	79.384721	80.623190	81.898540	83.215142
84.578259	85.990699	87.455907	88.989549	89.424262

Appendix D.—Turbulence Spectra, GE R4 and M5 Fans

Appendix E.—Turbulence Spectra, P&W Fan Numbers 1 and 2

Figure E.2.—P&W fan number 1 test, approach, station B.

Figure E.3.—P&W fan number 1 test, cutback, station B.

Figure E.4.—P&W fan number 1 test, sideline, station A.

Figure E.5.—P&W fan number 1 test, sideline, station B.

References

- 1. Hanson, D.B., and Horan, K.P., "Turbulence/Cascade Interaction: Spectra of Inflow, Cascade Response, and Noise," Paper No. 98–2319, presented at the AIAA/CEAS 4th Aeroacoustics Conference, Toulouse, France, June 2–4, 1998.
- 2. Hanson, D.B., "Influence of Lean and Sweep On Noise of Cascades With Turbulent Inflow," Paper No. 99–1863, presented at the AIAA/CEAS 5th Aeroacoustics Conference, Seattle, WA, May 10–12, 1999.
- 3. Hanson, D.B., "Theory for Broadband Noise of Rotor and Stator Cascade With Inhomogeneous Inflow Turbulence Including Effects of Lean and Sweep," NASA/CR—2001-210762, May 2001.
- 4. Hanson, D.B., "Theory for Broadband Noise of Rotor and Stator Cascades With Inhomogeneous Inflow Turbulence Including Effects of Lean and Sweep," NASA/CR—2001-210762, May 2001.
- 5. Glegg, S.A.L., "Airfoil Self Noise Generated in a Cascade," AIAA Paper 96–1739, presented at the 2nd AIAA/CEAS Aeroacoustics Conference, State College, PA, May 1996.
- 6. Glegg, S.A.L., and Jochault, C., "Broadband Self Noise from a Ducted Fan," presented at the 3rd AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, May 1997.
- 7. Glegg, S.A.L, and Jochault, C., "Fan Self Noise Prediction," Florida Atlantic University Report, April 1997
- 8. Dittmar, J.H., Elliott, D.M., and Bock, L.A., "Some Acoustic Results from the Pratt & Whitney Advanced Ducted Propulsor Fan 1," NASA/TM—1999-209049, March 1999.
- 9. Morin, B.L. and Gilson, J., "Analysis of Wake Data for Predicting Broadband Noise from Fan Exit Guide Vanes," United Technologies Research Center, UTRC98–09, August 1999.
- 10. Morin, B.L., "Broadband Fan Noise Prediction System for Gas Turbine Engines," AIAA Paper 99–1889, presented at the AIAA/CEAS 5th Aeroacoustics Conference, Seattle, WA, May 10–12, 1999.
- 11. Podboy, G.G., Private Communication, Mar 1999.
- 12. Hughes, C.E., "Aerodynamic Performance of Scale Model Turbofan Outlet Guide Vanes Designed for Low Noise," AIAA–2002–0374, Jan 2002.
- 13. Podboy, G.G., Krupar, M.J., Helland, S.M., and Hughes, C.E., "Steady and Unsteady Flow Field Measurements Within a NASA 22 Inch Fan Model," AIAA–2002–1033, Jan 2002.
- 14. Hughes, C.E., Jeracki, R.J., Woodward, R.P., and Miller, C.J., "Fan Noise Source Diagnostic Test Rotor Alone Aerodynamic Performance Results," AIAA–2002–2426, 2002.
- 15. Woodward, R.P., Hughes, C.E., Jeracki, R.J., and Miller, C.J., "Fan Noise Source Diagnostic Test Far Field Acoustic Results," AIAA–2002–2427, 2002.
- 16. Heidelberg, L.J., "Fan Noise Source Diagnostic Test—Tone Modal Structure Results," AIAA–2002–2428, 2002.
- 17. Premo, J., and Joppa, P., "Fan Noise Source Diagnostic Test— Wall Measured Circumferential Array Mode Results," AIAA–2002–2429, 2002.
- 18. Podboy, G.G., "Fan Noise Source Diagnostic Test LDV Measured Flow Field Results," AIAA–2002–2431, 2002.
- 19. Ganz, U.W., Joppa, P.D., Patten, T.J., and Scharpf, D.F., "Boeing 18-inch Fan Rig Broadband Noise Test," NASA/CR—1998-208704, September 1998.
- 20. Hanson, D.B., "Broadband Noise of Fans With Unsteady Coupling Theory to Account for Rotor and Stator Reflection/Transmission Effects," NASA/CR—2001-211136-Revised, November 2001 (reprinted January 2003).
- 21. Hanson, D.B., "Broadband Theory for Coupled Fan Stages Including Blade Row Reflection/Transmission Effects," AIAA–2002–2488, presented at the 8th AIAA/CEAS Aeroacoustics Conference, Breckenridge, Colorado, June 17–19, 2002.
- 22. Dougherty, R.P., "A Parabolic Approximation for Flow Effects on Sound Propagation in Non-Uniform, Softwall Duct," AIAA 99–1822, presented at the AIAA/CEAS 5th Aeroacoustics Conference, Seattle, Washington, May 10–12, 1999.

burden, to Department o Respondents should be control number.	f Defense, Washington Heado	quarters Services, Directly other provision of law	ctorate for Information Operations and F	Reports (0704-0188), 1215 J	this collection of information, including suggestions for reducing this efferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. a collection of information if it does not display a currently valid OMB	
1. REPORT DATE		2. REPORT TY	PE		3. DATES COVERED (From - To)	
01-11-2010		Final Contrac	tor Report			
4. TITLE AND SUBTITLE Broadband Fan Noise Prediction System for Turbo Volume 3: Validation and Test Cases			an Engines		5a. CONTRACT NUMBER NAS3-27727	
volume 3. vandatio	ii and Test Cases		5b. GRANT NUMBER			
					5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Morin, Bruce, L.					5d. PROJECT NUMBER	
				5e. TASK NUMBER		
			5f. WORK UNIT NUMBER WBS 561581.02.08.03.18.03			
7. PERFORMING Pratt & Whitney 400 Main Street East Hartford, C			8. PERFORMING ORGANIZATION REPORT NUMBER E-17477-3			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, DC 20546-0001					10. SPONSORING/MONITOR'S ACRONYM(S) NASA	
					11. SPONSORING/MONITORING REPORT NUMBER NASA/CR-2010-216898-VOL3	
Unclassified-Un		TEMENT				
Subject Categories: 71 and 02 Available electronically at http://gltrs.grc.nasa.gov This publication is available from the NASA Center for AeroSpace Information, 443-757-5802						
13. SUPPLEMEN	TARY NOTES					
on the leading edges fan rigs that were tes of fan speed, vane of Setup_BFaNS conve power spectra gener volume of a three-volume of a three-volume of a three-volume of the office of th	of the fan and fan exit g sted during the NASA Ac punt, and vane sweep alse erts user-specified geome ated by the fan and FEG' blume set documenting th Developer's Guide; and V on studies that were done	uide vane, and nois dvanced Subsonic To o agreed well with etry and flow-field V. The output file for the Broadband Fan I Volume 3: Validation	se generated by boundary-layer t Fechnology Program (AST). The measurements. The noise predic information into a BFaNS input from BFaNS contains the inlet, a Noise Prediction System: Volum	urbulence passing over e predicted noise spectra tion system consists of file. From this input file fit and total sound power te 1: Setup_BFaNS User volume begins with an o	computes the noise generated by turbulence impinging the fan trailing edge. BFaNS has been validated on three a agreed well with measured data. The predicted effects two computer programs: Setup_BFaNS and BFaNS. e., BFaNS computes the inlet and aft broadband sound r spectra from each noise source. This report is the third r's Manual and Developer's Guide; Volume 2: BFaNS overview of the Broadband Fan Noise Prediction System, titional studies for BFaNS.	
Fan blades; Van	RMS es; Broadband; Turl	bulence; Rotor	stator interactions			
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF	19a. NAME OF RESPONSIBLE PERSON STI Help Desk (email:help@sti.nasa.gov)	
a. REPORT U	b. ABSTRACT U	c. THIS PAGE	UU	PAGES 95	19b. TELEPHONE NUMBER (include area code) 443-757-5802	

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188