The Art of Giving Talks: Some Thoughts, Advice, and Lessons Learned the Hard Way

Juan Meza

Dean, School of Natural Sciences Professor, Applied Mathematics

Math 298

November 4, 2013

Your mileage may vary!

- This talk may not make you a gifted speaker
- None of the rules that I give you are iron-clad
- You will need to modify these rules to suit your personal speaking style

What is a talk?

A good talk is nothing more than a story

Experiments vs. Computational Science

75,000 increase

4.5 inches diameter

400 operations/s

500 Million increase

200 Billion operations/s, \$400

Computational Research Division

Some reasons for sharpening your communication skills

- 1) Probably the single most important aspect in job hunting is your interview talk. The interview talk can make or break the interview.
- 2) Giving talks is expected in many jobs and is a critical factor in job success.
- 3) If you're heading into academia then you'll be giving talks almost every day!

What types of talks are there?

Job interview

- Present a new result, e.g.
 - at a conference) or
 - a status report for a project

Argue for/against something

What types of talks are there?

Job interview

- Present a new result, e.g.
 - at a conference) or
 - a status report for a project

Argue for/against something

Each of these talks will be different but the basic structure will be the same!

There are three key elements

- The message what is the main idea that you would like to get across to your audience
- The audience who are the people that you want to give your message to
- The connections how do the pieces of your talk fit together

What is your message?

- You should be able to answer the question:
 What's your point?
- The message should be short, 2-3 sentences at most and understandable at a high level
- Short talks (15 minutes or less) should have only one message

Most common mistake in a talk is not having a clear message

Everything in your talk should support your message

- Start with the message and work backwards in developing your talk
- It's incredibly easy to fall into the trap of thinking that
 - is just too interesting to let the audience miss
- If you're not sure, ask yourself once again What's your point?

You need to tune the talk to the audience

- You need to be able to answer the question Why should I care?
- Find out what the makeup of the audience will be and why they are there
- Emphasize or de-emphasize parts of your argument to suit the audience - respect your audience

Second most common mistake is using the same talk for all audiences, i.e. not respecting your audience

Structuring your talk

- It's not enough to lay out the key elements you need to show how the elements fit together
- Walk the audience through your key points and show them how they are related
- Most talks suffer from too much detail and not enough overview - a talk is not a paper

Third most common mistake is to give details rather than showing the connections – determine the significant details!

Some Tips and Tricks Lessons Learned the Hard Way

Please don't do this

416

TABLE VII IEEE 30-Bus System Data (Nominal Power Flow)

Bus data					Line data	
Bus	P inject.	Q inject.	Ang., θ	Volt., V	Line	React.
#	(net), p.u.	(net), p.u.	rad	p.u.	#	X, p.u.
1	0.1765	0.5084	0.0438	1.0500	1	0.06
2	0.9635	2.0656	0.0441	1.0500	2	0.19
3	-0.1200	-0.0600	0.0102	0.9837	3	0.17
4	-0.3800	-0.0800	0.0075	0.9723	4	0.04
5	0.0000	0.0000	-0.0330	0.9740	5	0.20
6	0.0000	0.0000	-0.0178	0.9530	6	0.18
7	-1.1400	-0.5450	-0.0851	0.9314	7	0.04
8	-1.5000	-0.7500	-0.068 <i>5</i>	0.9233	8	0.12
9	0.0000	0.0000	0.0362	0.9759	9	0.08
10	-0.2900	-0.1000	0.0634	0.9890	10	0.04
11	0.0000	0.0000	0.0362	0.9759	11	0.21
12	-0.5600	-0.3750	0.2017	0.9472	12	0.56
13	2.1000	1.2760	0.5018	1.0500	13	0.21
14	-0.3100	-0.0800	0.1444	0.9414	14	0.11
15	-0.4100	-0.1250	0.1697	0.9554	15	0.26
16	-0.1750	-0.0900	0.1032	0.9398	16	0.14
17	-0.4500	-0.2900	0.0476	0.9568	17	0.26
18	-0.1600	-0.0450	0.0468	0.9320	18	0.13
19	-0.4750	-0.1700	-0.0037	0.9300	19	0.20
20	-0.1100	-0.0350	0.0074	0.9423	20	0.20
21	-0.8750	-0.5600	0.1059	1.0280	21	0.19
22	1.5795	2.1958	0.1335	1.0500	22	0.22
23	1.3000	0.8515	0.3294	1.0500	23	0.13
24	-0.4350	-0.3350	0.2010	1.0084	24	0.07
25	0.0000	0.0000	0.3076	1.0115	25	0.21
26	-0.1750	-0.1150	0.2394	0.9638	26	0.08
27	2.0955	1.1650	0.4075	1.0500	27	0.07
28	0.0000	0.0000	0.0193	0.9476	28	0.15
29	-0.1200	-0.0450	0.2871	1.0050	29	0.02
30	-0.5300	-0.0950	0.2047	0.9884	30	0.20
					31	0.18
					32	0.27
					33	0.33
					34	0.38
					35	0.21
					36	0.40
					37	0.42
					38	0.60
					39	0.45
					40	0.20
					41	0.06

... or this

Constrained Optimization equations

$$\min_{\theta, V, z, \gamma, \mu_1, \dots, \mu_6, \lambda} e^T \gamma \tag{26}$$

s.t.
$$F(\theta, V, z, \gamma) = 0$$
 (27)

$$e + \frac{\partial F}{\partial z}^{T} \lambda - \mu_1 + \mu_2 = 0 \tag{28}$$

$$J^{T}\lambda + \begin{bmatrix} -A^{T}\mu_{5} + A^{T}\mu_{6} \\ -\mu_{3} + \mu_{4} \end{bmatrix} = 0$$
 (29)

$$\mu_1 \cdot z = 0 \tag{30}$$

$$\mu_2 \cdot \left(P_{pq}^0 + z \right) = 0 \tag{31}$$

$$\mu_3 \cdot (V_{\min} - V) = 0 \tag{32}$$

$$\mu_4 \cdot (V - V_{\text{max}}) = 0 \tag{33}$$

$$\mu_5 \cdot (\pi/2 + A\theta) = 0 \tag{34}$$

$$\mu_6 \cdot (A\theta - \pi/2) = 0 \tag{35}$$

Essential elements in a talk

- Why is this problem important?
 - Why should I care?
- What was the outcome/product/....
 - Is there a tangible result?

- What was your contribution?
 - Use words like, "This is my main result"

Poster "talks"

- Similar to other talks; all previous points apply
- More interactive
 - Need to prepare more for questions
 - May have to re-organize on the fly
- Premium on being concise

Keep your main points simple

- Most people/societies/cultures have a hard time dealing with more than 3 ideas at one time
- Remember that for a large part of your audience the material is new
- Paraphrase the main points in several ways - please do not read the bullets verbatim

Give specific examples where possible

- Examples can be used to clarify a given point
- Examples can create a big impact
- Examples, especially visual ones are better than written examples

Drug Design (Take 1)

- Drug design can be formulated as an energy minimization problem.
- A single new drug may cost between \$800 million and \$1.8 billion to develop from start to finish.
- The design process typically takes over 10 years due to the large number of trial drugs that need to be considered.
- There are various energy functions used to describe the molecules involved.
- There are thousands of parameters because the size of the drugs is large.
- Are all these details necessary, what's his point?
- Due to physical constraints the optimization problem contains numerous nonlinear constraints.
- It can be shown that there are thousands of local minima which makes it difficult for most optimization methods.
- Thank goodness for email, so I don't have to listen to all of this.
- We are working on special optimization methods to solve this minimization problem.
- By using visualization techniques we can speed up the optimization methods.
- The end result is that we can speed up the discovery process possibly savings hundreds of millions of dollars and thousands of lives.

Drug Design (Take 2)

- A single new drug may cost over \$800 million to develop and the design process typically takes over 10 years.
- Computer simulations can be used to predict new drugs
- Total simulation took approximately 32 hours on a desktop computer

Juan Meza, Ricardo Oliva, Scientific Computing, LBNL

Question & Answer Period

Handling questions

 Anticipate and prepare for the obvious questions

First make sure you understand the question

 Try to answer all questions, but some questions can/should be deferred.

Handling questions

 Anticipate and prepare for the obvious questions

First make sure you understand the question

 Try to answer all questions, but some questions can/should be deferred.

Don't Panic!

Top 10

- 1) Have a clear message you want to deliver
- 2) Prepare for your audience
- 3) Tie the pieces together into a story
- 4) Only use material that supports your message
- 5) Avoid unnecessary details
- 6) Use (visual) examples to clarify your points
- 7) State the importance of your problem
- 8) Present your contribution
- 9) Prepare for questions
- 10) Practice, practice, practice

Sample 30 minute talk

- Set the stage (5-10 minutes)
 - Tell the audience what the main issues are
 - Lay out your problem/issue
 - Describe why it's important!
- What happened (10-15 minutes)
 - How was the problem resolved
 - Only need the key ideas here (significant details)
 - Don't necessarily need chronological order
- Summarize (5 minutes)
- Questions?

