3D photography on your desk

— Teoria e prática

Horácio Macêdo Issufi Badji

Estrutura da Apresentação

- A Teoria
 - Descrição Teórica do Tema
 - o Apresentação dos Artigos
- A Prática
 - Ferramentas
 - Resultados
 - o Desafios

A Teoria

Descrição Teórica do Tema

- A calibração de câmera e luz
 - o Extrair informações
 - Escalas dos objetos
 - o Propriedades da câmera

Apresentação dos Artigos

- Autores: Bouguet e Perona
 - 1998: Um plano e uma fonte de luz
 - o 1999: Dois planos

- Visão geral do artigo
 - O artigo explica como **extrair formato tridimensional(3d)** de objetos em uma imagem com base na **iluminação fracamente estruturada** usando apenas um luz, um lápis e um fundo quadrilátero para calibração.

Apresentação dos Artigos

A técnica consiste em três passos:

- Calibração
 - da câmera: parâmetros intrínsecos, definição do plano do tampo da mesa
 - o da luz: posição do ponto de luz
 - Não é necessário se houver dois planos ortogonais (1999)
- Mapeamento da sombra
 - o no espaço: onde está a reta da sombra em dado tempo
 - o no tempo: em qual momento a sombra passa sobre cada pixel
- Triangulação
 - o fazer a relação entre a reta da sombra e o momento em que cada pixel deixa de ser sombreado

Apresentação dos Artigos

- A ideia central do experimento
 - O Fazer o scanner do objeto de mundo real para o espaço virtual

A Prática

Ferramentas

- Blender
 - o Confecção de cenas sintéticas para teste da cena
- Python 3.9
 - o 748 linhas de curtição
 - OpenCV para gerência de imagens e calibração de câmera
 - NumPy para matemática em tempos humanamente possíveis
 - Matplotlib para reconstrução de malha
- Nikon D3300
 - Cortesia do PROGRAF
- Objetos diversos
 - o Foca de pelúcia
 - o Dados de RPG
 - o Xícara
 - o Club Social
 - o Cola Pritt
 - o Trena

Ferramentas realmente usadas

- Blender
 - Confecção de cenas sintéticas para teste da cena
 - Duas cenas:
 - 1024 x 768, 100 frames, luz do sol
 - 3840 x 2160, 100 frames, luz de holofote
- Python 3.9
 - 748 linhas de curtição
 - OpenCV para gerência de imagens e calibração de câmera
 - NumPy para matemática em tempos humanamente possíveis
 - Matplotlib para reconstrução de malha
 - Duas versões:
 - Uma das versões funcionou nos dois testes, mas gerou resultados piores
 - Outra versão gerou resultados melhores, mas funcionou apenas no primeiro teste
- Café do Trailer do Adriano

- Ytop = 20px
- Ybottom = 760px
- Contrast threshold = 80
- Kernel size = 1 (sem borramento)
- Camera calibration pattern side = 80mm
- Lamp calibration object height = 70mm

Delta image

- Ytop = 20px
- Ybottom = 760px
- Contrast threshold = 80
- Kernel size = 13
- Camera calibration pattern side = 80mm
- Lamp calibration object height = 70mm

- Ytop = 90px
- Ybottom = 2060px
- Contrast threshold = 80
- Kernel size = 1 (sem borramento)
- Camera calibration pattern side = 80mm
- Lamp calibration object height = 70mm

- Ytop = 90px
- Ybottom = 2060px
- Contrast threshold = 80
- Kernel size = 75
- Camera calibration pattern side = 80mm
- Lamp calibration object height = 70mm

Entender a intuição do problema

• Trabalhar com NumPy com planos e linhas

• Alimentar o Matplotlib direito para gerar malhas

apropriadas

• Python 3.10

200

400

Figure 1

x=1273.5746, y=726.4001, z=-197.2894

Possibilidades de melhora para o futuro

- Testar com imagens capturadas no mundo real
 - As imagens capturadas até hoje no lab não funcionaram porque o openCV foi incapaz de calibrar a câmera
- Variar o número de frames por scan
- Variar posição das luzes e da câmera com relação ao objeto a ser capturado
- Tentar capturar objetos com textura
- Não usar o matplotlib para imprimir malhas 3d que representem objetos
 - o Aprender a usar Open3d

Obrigado!