Optimal lower exponent of solutions to two-phase elliptic equations in two dimensions

Silvio Fanzon

(joint work with Mariapia Palombaro)

Karl-Franzens University, Graz Department of Mathematics

Problem

 $\Omega \subset \mathbb{R}^2$ bounded open domain. A map $\sigma \in L^\infty(\Omega; \mathbb{M}^{2 \times 2})$ is **uniformly elliptic** if $\sigma \xi \cdot \xi \geq \lambda |\xi|^2 \,, \ \sigma^{-1} \xi \cdot \xi \geq \lambda |\xi|^2 \qquad \forall \, \xi \in \mathbb{R}^2, \, x \in \Omega \,.$

Problem

 $\Omega \subset \mathbb{R}^2$ bounded open domain. A map $\sigma \in L^\infty(\Omega; \mathbb{M}^{2 \times 2})$ is **uniformly elliptic** if $\sigma \xi \cdot \xi \geq \lambda |\xi|^2 \,, \ \sigma^{-1} \xi \cdot \xi \geq \lambda |\xi|^2 \qquad \forall \, \xi \in \mathbb{R}^2, \, x \in \Omega \,.$

Problem

Study the gradient integrability of distributional solutions $u \in W^{1,1}(\Omega)$ to

$$\operatorname{div}(\sigma \nabla u) = 0, \qquad (0.1)$$

when

$$\sigma = \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2} ,$$

with $\sigma_1,\sigma_2\in\mathbb{M}^{2\times 2}$ constant elliptic matrices, $\{E_1,E_2\}$ measurable partition of Ω .

Problem

 $\Omega \subset \mathbb{R}^2$ bounded open domain. A map $\sigma \in L^{\infty}(\Omega; \mathbb{M}^{2 \times 2})$ is **uniformly elliptic** if $\sigma \xi \cdot \xi \geq \lambda |\xi|^2$, $\sigma^{-1} \xi \cdot \xi \geq \lambda |\xi|^2$ $\forall \xi \in \mathbb{R}^2, x \in \Omega$.

Problem

Study the gradient integrability of distributional solutions $u \in W^{1,1}(\Omega)$ to

$$\operatorname{div}(\sigma \nabla u) = 0, \qquad (0.1)$$

when

$$\sigma = \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2} \,,$$

with $\sigma_1,\sigma_2\in\mathbb{M}^{2\times 2}$ constant elliptic matrices, $\{E_1,E_2\}$ measurable partition of Ω .

Application to composites:

- $ightharpoonup \Omega$ is a section of a composite conductor obtained by mixing two materials with conductivities σ_1 and σ_2
- ▶ the electric field ∇u solves (0.1)
- ► How much can ∇u concentrate, given the geometry $\{E_1, E_2\}$?

Astala's Theorem

Theorem (Astala '94)

Let $\sigma \in L^{\infty}(\Omega; \mathbb{M}^{2 \times 2})$ be uniformly elliptic. There exists exponents 1 < q < 2 < p such that if $u \in W^{1,q}(\Omega)$ solves

$$\operatorname{div}(\sigma\nabla u)=0\,,$$

then $\nabla u \in L^{\mathbf{p}}_{\mathrm{weak}}(\Omega; \mathbb{R}^2)$.

Astala. Area distortion of quasiconformal mappings. Acta Mathematica (1994)

Astala's Theorem

Theorem (Astala '94)

Let $\sigma \in L^{\infty}(\Omega; \mathbb{M}^{2 \times 2})$ be uniformly elliptic. There exists exponents 1 < q < 2 < p such that if $u \in W^{1,q}(\Omega)$ solves

$$\operatorname{div}(\sigma\nabla u)=0\,,$$

then $\nabla u \in L^{\mathbf{p}}_{\mathrm{weak}}(\Omega; \mathbb{R}^2)$.

Question

Are the exponents q and p optimal among two-phase elliptic conductivities

$$\sigma = \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2} ?$$

Astala. Area distortion of quasiconformal mappings. Acta Mathematica (1994)

For two-phase conductivities Astala's exponents $q=q_{\sigma_1,\sigma_2}$ and $p=p_{\sigma_1,\sigma_2}$ have been characterised.

For two-phase conductivities Astala's exponents $q=q_{\sigma_1,\sigma_2}$ and $p=p_{\sigma_1,\sigma_2}$ have been characterised.

For two-phase conductivities Astala's exponents $q=q_{\sigma_1,\sigma_2}$ and $p=p_{\sigma_1,\sigma_2}$ have been characterised.

Remark: it is sufficient to prove optimality in the case

$$\sigma_1 = \begin{pmatrix} 1/K & 0 \\ 0 & 1/S_1 \end{pmatrix} , \qquad \sigma_2 = \begin{pmatrix} K & 0 \\ 0 & S_2 \end{pmatrix} ,$$

where

$$\mathcal{K}>1 \qquad \text{and} \qquad rac{1}{\mathcal{K}} \leq \mathcal{S}_j \leq \mathcal{K} \,, \quad j=1,2 \,.$$

1
$$q_{\sigma_1,\sigma_2}$$
 2 p_{σ_1,σ_2}

For two-phase conductivities Astala's exponents $q=q_{\sigma_1,\sigma_2}$ and $p=p_{\sigma_1,\sigma_2}$ have been characterised.

Remark: it is sufficient to prove optimality in the case

$$\sigma_1 = \begin{pmatrix} 1/K & 0 \\ 0 & 1/S_1 \end{pmatrix} \,, \qquad \sigma_2 = \begin{pmatrix} K & 0 \\ 0 & S_2 \end{pmatrix} \,,$$

where

$${\cal K}>1 \qquad {\sf and} \qquad rac{1}{{\cal K}} \le {\cal S}_j \le {\cal K} \,, \quad j=1,2 \,.$$

The corresponding critical exponents for Astala's theorem are

$$q_{\sigma_1,\sigma_2}=rac{2K}{K+1},\quad p_{\sigma_1,\sigma_2}=rac{2K}{K-1}.$$

For two-phase conductivities Astala's exponents $q=q_{\sigma_1,\sigma_2}$ and $p=p_{\sigma_1,\sigma_2}$ have been characterised.

Remark: it is sufficient to prove optimality in the case

$$\sigma_1 = \begin{pmatrix} 1/K & 0 \\ 0 & 1/S_1 \end{pmatrix} \,, \qquad \sigma_2 = \begin{pmatrix} K & 0 \\ 0 & S_2 \end{pmatrix} \,,$$

where

$$\label{eq:Kappa} {\cal K}>1 \qquad \text{and} \qquad \frac{1}{{\cal K}} \le {\it S}_j \le {\it K} \ , \quad j=1,2 \, .$$

The corresponding critical exponents for Astala's theorem are

$$q_{\sigma_1,\sigma_2}=rac{2K}{K+1},\quad p_{\sigma_1,\sigma_2}=rac{2K}{K-1}.$$

Upper exponent optimality

Theorem (Nesi, Palombaro, Ponsiglione '14)

Let $\sigma_1 = \mathsf{diag}(1/K, 1/S_1), \sigma_2 = \mathsf{diag}(K, S_2)$ with K > 1 and $S_1, S_2 \in [1/K, K]$.

(f) If $\sigma \in L^{\infty}(\Omega; \{\sigma_1, \sigma_2\})$ and $u \in W^{1, \frac{2K}{K+1}}(\Omega)$ solves

$$\operatorname{div}(\sigma \nabla u) = 0 \tag{0.2}$$

then $\nabla u \in L^{\frac{2K}{K-1}}_{\text{weak}}(\Omega; \mathbb{R}^2)$.

f There exists $\bar{\sigma} \in L^{\infty}(\Omega; \{\sigma_1, \sigma_2\})$ and a weak solution $\bar{u} \in W^{1,2}(\Omega)$ to (0.2) with $\sigma = \bar{\sigma}$, satisfying affine boundary conditions and such that $\nabla \bar{u} \notin L^{\frac{2K}{K-1}}(\Omega; \mathbb{R}^2)$.

Upper exponent optimality

Theorem (Nesi, Palombaro, Ponsiglione '14)

Let $\sigma_1 = \mathsf{diag}(1/K, 1/S_1), \sigma_2 = \mathsf{diag}(K, S_2)$ with K > 1 and $S_1, S_2 \in [1/K, K]$.

(f) If $\sigma \in L^{\infty}(\Omega; \{\sigma_1, \sigma_2\})$ and $u \in W^{1, \frac{2K}{K+1}}(\Omega)$ solves

$$\operatorname{div}(\sigma \nabla u) = 0 \tag{0.2}$$

then $\nabla u \in L^{\frac{2K}{K-1}}_{\text{weak}}(\Omega; \mathbb{R}^2)$.

fi There exists $\bar{\sigma} \in L^{\infty}(\Omega; \{\sigma_1, \sigma_2\})$ and a weak solution $\bar{u} \in W^{1,2}(\Omega)$ to (0.2) with $\sigma = \bar{\sigma}$, satisfying affine boundary conditions and such that $\nabla \bar{u} \notin L^{\frac{2K}{K-1}}(\Omega; \mathbb{R}^2)$.

Question we address

Is the lower exponent $\frac{2K}{K+1}$ optimal?

Lower exponent optimality

Theorem (F., Palombaro '17)

Let $\sigma_1 = \text{diag}(1/K, 1/S_1), \sigma_2 = \text{diag}(K, S_2)$ with K > 1 and $S_1, S_2 \in [1/K, K]$. There exist

- ▶ coefficients $\sigma_n \in L^{\infty}(\Omega; \{\sigma_1; \sigma_2\})$,
- ightharpoonup exponents $p_n \in \left[1, \frac{2K}{K+1}\right]$,
- functions $u_n \in W^{1,1}(\Omega)$ such that $u_n(x) = x_1$ on $\partial \Omega$,

such that

$$\begin{split} \operatorname{\mathsf{div}}(\sigma_n \nabla u_n) &= 0\,, \\ \nabla u_n \in L^{\rho_n}_{\operatorname{weak}}(\Omega;\mathbb{R}^2), \quad \rho_n &\to \frac{2K}{K+1}, \quad \nabla u_n \notin L^{\frac{2K}{K+1}}(\Omega;\mathbb{R}^2)\,. \end{split}$$

F., Palombaro. Calculus of Variations and Partial Differential Equations (2017)

Theorem (Approximate solutions for two phases)

Let
$$A, B \in \mathbb{M}^{2 \times 2}$$
, $C := \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$, and $\delta > 0$. Assume that

$$B-A=a\otimes n$$
 for some $a\in\mathbb{R}^2, n\in S^1$. (Rank-one connection)

Theorem (Approximate solutions for two phases)

Let $A, B \in \mathbb{M}^{2 \times 2}$, $C := \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$, and $\delta > 0$. Assume that $B - A = a \otimes n$ for some $a \in \mathbb{R}^2$, $n \in S^1$. (Rank-one connection)

 \exists piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$ and $\operatorname{dist}(\nabla f, \{A, B\}) < \delta$ a.e. in Ω .

Theorem (Approximate solutions for two phases)

Let
$$A,B\in\mathbb{M}^{2 imes2}$$
, $C:=\lambda A+(1-\lambda)B$ with $\lambda\in[0,1]$, and $\delta>0$. Assume that

$$B-A=a\otimes n$$
 for some $a\in\mathbb{R}^2, n\in S^1$. (Rank-one connection)

 \exists piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$ and $\operatorname{dist}(\nabla f, \{A, B\}) < \delta$ a.e. in Ω .

Solutions: built through simple laminates

Theorem (Approximate solutions for two phases)

Let
$$A, B \in \mathbb{M}^{2 \times 2}$$
, $C := \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$, and $\delta > 0$. Assume that

$$B-A=a\otimes n$$
 for some $a\in\mathbb{R}^2, n\in S^1$. (Rank-one connection)

 \exists piecewise affine Lipschitz map $f:\Omega\to\mathbb{R}^2$ such that f(x)=Cx on $\partial\Omega$ and

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Solutions: built through simple laminates

► rank-one connection allows to laminate in direction *n*,

Theorem (Approximate solutions for two phases)

Let
$$A,B\in\mathbb{M}^{2 imes2}$$
, $C:=\lambda A+(1-\lambda)B$ with $\lambda\in[0,1]$, and $\delta>0$. Assume that

$$B-A=a\otimes n$$
 for some $a\in\mathbb{R}^2, n\in S^1$. (Rank-one connection)

 \exists piecewise affine Lipschitz map $f:\Omega\to\mathbb{R}^2$ such that f(x)=Cx on $\partial\Omega$ and

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Solutions: built through simple laminates

- rank-one connection allows to laminate in direction *n*,
- ▶ ∇f oscillates in δ -neighbourhoods of A and B,

Theorem (Approximate solutions for two phases)

Let
$$A,B\in\mathbb{M}^{2 imes2}$$
, $C:=\lambda A+(1-\lambda)B$ with $\lambda\in[0,1]$, and $\delta>0$. Assume that

$$B-A=a\otimes n$$
 for some $a\in\mathbb{R}^2, n\in S^1$. (Rank-one connection)

 \exists piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$ and

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Solutions: built through simple laminates

- ▶ rank-one connection allows to laminate in direction n,
- ▶ ∇f oscillates in δ -neighbourhoods of A and B,
- \blacktriangleright λ proportion for A, 1λ proportion for B,

Theorem (Approximate solutions for two phases)

Let
$$A, B \in \mathbb{M}^{2 \times 2}$$
, $C := \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$, and $\delta > 0$. Assume that

$$B-A=a\otimes n$$
 for some $a\in\mathbb{R}^2, n\in S^1$. (Rank-one connection)

 \exists piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$ and

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Solutions: built through simple laminates

- ▶ rank-one connection allows to laminate in direction n,
- ▶ ∇f oscillates in δ -neighbourhoods of A and B,
- ▶ λ proportion for A, 1λ proportion for B,
- this allows to recover boundary data C.

 $\mathcal{L}^2_{\Omega} \text{ is the normalised Lebesgue measure restricted to } \Omega \leadsto \mathcal{L}^2_{\Omega}(B) := |B \cap \Omega|/|\Omega|.$

 $\mathcal{L}^2_{\Omega} \text{ is the normalised Lebesgue measure restricted to } \Omega \leadsto \mathcal{L}^2_{\Omega}(B) := |B \cap \Omega|/|\Omega|.$

Gradient distribution

Let $f: \Omega \to \mathbb{R}^2$ be Lipschitz. The **gradient distribution** of f is the Radon measure $\nabla f_\#(\mathcal{L}^2_\Omega)$ on $\mathbb{M}^{2\times 2}$ defined by

$$\nabla f_{\#}(\mathcal{L}^{2}_{\Omega})(V) := \mathcal{L}^{2}_{\Omega}((\nabla f)^{-1}(V)), \quad \forall \text{ Borel set } V \subset \mathbb{M}^{2 \times 2}.$$

 \mathcal{L}^2_Ω is the normalised Lebesgue measure restricted to $\Omega \leadsto \mathcal{L}^2_\Omega(B) := |B \cap \Omega|/|\Omega|$.

Gradient distribution

Let $f: \Omega \to \mathbb{R}^2$ be Lipschitz. The **gradient distribution** of f is the Radon measure $\nabla f_\#(\mathcal{L}^2_\Omega)$ on $\mathbb{M}^{2\times 2}$ defined by

Let f_{δ} be the map given by the previous Theorem. Then as $\delta \to 0$,

$$\nu_{\delta} := (\nabla f_{\delta})_{\#}(\mathcal{L}_{\Omega}^{2}) \stackrel{*}{\rightharpoonup} \nu := \lambda \delta_{\mathcal{A}} + (1 - \lambda)\delta_{\mathcal{B}} \quad \text{in} \quad \mathcal{M}(\mathbb{M}^{2 \times 2}).$$

 \mathcal{L}^2_Ω is the normalised Lebesgue measure restricted to $\Omega \leadsto \mathcal{L}^2_\Omega(B) := |B \cap \Omega|/|\Omega|$.

Gradient distribution

Let $f: \Omega \to \mathbb{R}^2$ be Lipschitz. The **gradient distribution** of f is the Radon measure $\nabla f_\#(\mathcal{L}^2_\Omega)$ on $\mathbb{M}^{2\times 2}$ defined by

Let f_{δ} be the map given by the previous Theorem. Then as $\delta \to 0$,

$$\nu_{\delta} := (\nabla f_{\delta})_{\#}(\mathcal{L}_{\Omega}^{2}) \stackrel{*}{\rightharpoonup} \nu := \lambda \delta_{\mathcal{A}} + (1 - \lambda)\delta_{\mathcal{B}} \quad \text{in} \quad \mathcal{M}(\mathbb{M}^{2 \times 2}).$$

The measure ν is called a **laminate of first order**, and it encodes:

Oscillations of ∇f_{δ} about $\{A, B\}$ and their proportions.

 \mathcal{L}^2_Ω is the normalised Lebesgue measure restricted to $\Omega \leadsto \mathcal{L}^2_\Omega(B) := |B \cap \Omega|/|\Omega|$.

Gradient distribution

Let $f: \Omega \to \mathbb{R}^2$ be Lipschitz. The **gradient distribution** of f is the Radon measure $\nabla f_\#(\mathcal{L}^2_\Omega)$ on $\mathbb{M}^{2\times 2}$ defined by

Let f_{δ} be the map given by the previous Theorem. Then as $\delta \to 0$,

$$\nu_{\delta} := (\nabla f_{\delta})_{\#}(\mathcal{L}_{\Omega}^{2}) \stackrel{*}{\rightharpoonup} \nu := \lambda \delta_{\mathcal{A}} + (1 - \lambda)\delta_{\mathcal{B}} \quad \text{in} \quad \mathcal{M}(\mathbb{M}^{2 \times 2}).$$

The measure ν is called a **laminate of first order**, and it encodes:

- **Oscillations** of ∇f_{δ} about $\{A, B\}$ and their proportions.
- ▶ Boundary condition since the barycentre of ν is $\overline{\nu} := \int_{\mathbb{M}^{2\times 2}} M \, d\nu(M) = C$.

 \mathcal{L}^2_Ω is the normalised Lebesgue measure restricted to $\Omega \leadsto \mathcal{L}^2_\Omega(B) := |B \cap \Omega|/|\Omega|$.

Gradient distribution

Let $f: \Omega \to \mathbb{R}^2$ be Lipschitz. The **gradient distribution** of f is the Radon measure $\nabla f_\#(\mathcal{L}^2_\Omega)$ on $\mathbb{M}^{2\times 2}$ defined by

Let f_{δ} be the map given by the previous Theorem. Then as $\delta \to 0$,

$$\nu_{\delta} := (\nabla f_{\delta})_{\#}(\mathcal{L}_{\Omega}^{2}) \stackrel{*}{\rightharpoonup} \nu := \lambda \delta_{A} + (1 - \lambda)\delta_{B} \quad \text{in} \quad \mathcal{M}(\mathbb{M}^{2 \times 2}).$$

The measure ν is called a **laminate of first order**, and it encodes:

- **Oscillations** of ∇f_{δ} about $\{A, B\}$ and their proportions.
- **Boundary condition** since the barycentre of ν is $\overline{\nu} := \int_{\mathbb{M}^{2\times 2}} M \, d\nu(M) = C$.
- ▶ Integrability since for p > 1 we have

$$\frac{1}{|\Omega|} \int_{\Omega} |\nabla f_{\delta}|^p dx = \int_{\mathbb{M}^{2\times 2}} |M|^p d\nu_{\delta}(M).$$

Let $C = \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$ and $\operatorname{rank}(B - A) = 1$. Let $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$,

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Let $C = \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$ and $\operatorname{rank}(B - A) = 1$. Let $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$,

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Further splitting: $B = \mu B_1 + (1 - \mu)B_2$ with $\mu \in [0, 1]$, rank $(B_2 - B_1) = 1$.

Let $C = \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$ and $\operatorname{rank}(B - A) = 1$. Let $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$,

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Further splitting: $B = \mu B_1 + (1 - \mu) B_2$ with $\mu \in [0, 1]$, rank $(B_2 - B_1) = 1$.

New gradient: apply previous Proposition to the set $\{x \in \Omega \colon \nabla f \sim B\}$ to obtain $\tilde{f} \colon \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial \Omega$,

$$\operatorname{dist}(\nabla \tilde{f}, \{A, B_1, B_2\}) < \delta$$
 a.e. in Ω .

Let $C = \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$ and $\operatorname{rank}(B - A) = 1$. Let $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$,

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Further splitting: $B = \mu B_1 + (1 - \mu)B_2$ with $\mu \in [0, 1]$, rank $(B_2 - B_1) = 1$.

New gradient: apply previous Proposition to the set $\{x \in \Omega \colon \nabla f \sim B\}$ to obtain $\tilde{f} \colon \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial \Omega$,

$$\operatorname{dist}(\nabla \tilde{f}, \{A, B_1, B_2\}) < \delta$$
 a.e. in Ω .

The gradient distribution of \tilde{f} is given by

$$\nu = \lambda \, \delta_A + (1 - \lambda) \mu \, \delta_{B_1} + (1 - \lambda) (1 - \mu) \, \delta_{B_2}.$$

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let $\nu = \sum_{i=1}^{N} \lambda_i \delta_{A_i}$ be a laminate of finite order, s.t.

- ightharpoonup $\overline{\nu} = A$,
- $A = \sum_{i=1}^{N} \lambda_i A_i \text{ with } \sum_{i=1}^{N} \lambda_i = 1.$

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let $\nu = \sum_{i=1}^{N} \lambda_i \delta_{A_i}$ be a laminate of finite order, s.t.

- $ightharpoonup \overline{\nu} = A$.
- $A = \sum_{i=1}^{N} \lambda_i A_i \text{ with } \sum_{i=1}^{N} \lambda_i = 1.$

Fix $\delta > 0$. \exists a piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$, that is,

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let $\nu = \sum_{i=1}^{N} \lambda_i \delta_{A_i}$ be a laminate of finite order, s.t.

- $ightharpoonup \overline{\nu} = A$.
- $A = \sum_{i=1}^{N} \lambda_i A_i \text{ with } \sum_{i=1}^{N} \lambda_i = 1.$

Fix $\delta > 0$. \exists a piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$, that is,

► dist(∇f , supp ν) < δ a.e. in Ω ,

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let $\nu = \sum_{i=1}^{N} \lambda_i \delta_{A_i}$ be a laminate of finite order, s.t.

- ightharpoonup $\overline{\nu} = A$,
- $A = \sum_{i=1}^{N} \lambda_i A_i \text{ with } \sum_{i=1}^{N} \lambda_i = 1.$

Fix $\delta > 0$. \exists a piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$, that is,

- ▶ $\operatorname{dist}(\nabla f, \operatorname{supp} \nu) < \delta$ a.e. in Ω ,
- ▶ f(x) = Ax on $\partial \Omega$,

Laminates of finite order

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let $\nu = \sum_{i=1}^{N} \lambda_i \delta_{A_i}$ be a laminate of finite order, s.t.

- ightharpoonup $\overline{\nu} = A$,
- $A = \sum_{i=1}^{N} \lambda_i A_i \text{ with } \sum_{i=1}^{N} \lambda_i = 1.$

Fix $\delta > 0$. \exists a piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$, that is,

- ▶ $\operatorname{dist}(\nabla f, \operatorname{supp} \nu) < \delta$ a.e. in Ω ,
- ▶ f(x) = Ax on $\partial \Omega$,
- $|\{x \in \Omega : |\nabla f(x) A_i| < \delta\}| = \lambda_i |\Omega|.$

Strategy: explicit construction of u_n by **convex integration methods**.

Strategy: explicit construction of u_n by **convex integration methods**.

1 Rewrite the equation $\operatorname{div}(\sigma \nabla u) = 0$ as a differential inclusion

$$\nabla f(x) \in T$$
, for a.e. $x \in \Omega$ (0.3)

for $f: \Omega \to \mathbb{R}^2$ and an appropriate target set $T \subset \mathbb{M}^{2 \times 2}$. Note: u and f have the same integrability.

Strategy: explicit construction of u_n by **convex integration methods**.

1 Rewrite the equation $\operatorname{div}(\sigma \nabla u) = 0$ as a differential inclusion

$$\nabla f(x) \in T$$
, for a.e. $x \in \Omega$ (0.3)

for $f: \Omega \to \mathbb{R}^2$ and an appropriate target set $T \subset \mathbb{M}^{2 \times 2}$. Note: u and f have the same integrability.

2 Construct a laminate ν with supp $\nu \subset T$ and the right integrability.

Strategy: explicit construction of u_n by **convex integration methods**.

1 Rewrite the equation $\operatorname{div}(\sigma \nabla u) = 0$ as a differential inclusion

$$\nabla f(x) \in T$$
, for a.e. $x \in \Omega$ (0.3)

for $f: \Omega \to \mathbb{R}^2$ and an appropriate target set $T \subset \mathbb{M}^{2 \times 2}$.

Note: *u* and *f* have the **same** integrability.

- **2** Construct a laminate ν with supp $\nu \subset T$ and the right integrability.
- **3** Convex integration Proposition \implies construct $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$. In this way f solves (0.3) and

$$abla f \in L^q_{
m weak}(\Omega;\mathbb{R}^2)\,, \;\; q \in \left(rac{2K}{K+1} - rac{\pmb{\delta}}{\pmb{\delta}}, rac{2K}{K+1}
ight]\,, \qquad
abla f
otin L^q_{
m weak}(\Omega;\mathbb{R}^2)\,.$$

Strategy: explicit construction of u_n by **convex integration methods**.

1 Rewrite the equation $\operatorname{div}(\sigma \nabla u) = 0$ as a differential inclusion

$$\nabla f(x) \in T$$
, for a.e. $x \in \Omega$ (0.3)

for $f: \Omega \to \mathbb{R}^2$ and an appropriate target set $T \subset \mathbb{M}^{2 \times 2}$.

Note: *u* and *f* have the **same** integrability.

- **2** Construct a laminate ν with supp $\nu \subset T$ and the right integrability.
- **3** Convex integration Proposition \implies construct $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$. In this way f solves (0.3) and

$$abla f \in L^q_{\mathrm{weak}}(\Omega; \mathbb{R}^2) \,, \ \ q \in \left(rac{2K}{K+1} - rac{\pmb{\delta}}{\pmb{\delta}}, rac{2K}{K+1}
ight] \,, \qquad
abla f
otin L^{rac{2K}{K+1}}(\Omega; \mathbb{R}^2) \,.$$

These methods were developed for isotropic conductivities $\sigma \in L^{\infty}(\Omega; \{KI, \frac{1}{K}I\})$. The adaptation to our case is non-trivial because of the lack of symmetry of the target set T, due to the anisotropy of σ_1 and σ_2 .

Astala, Faraco, Székelyhidi. Convex integration and the L^p theory of elliptic equations.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2008)

Rewriting the PDE as a differential inclusion

Let K > 1, $S_1, S_2 \in [1/K, K]$ and define

$$\begin{split} &\sigma_1 := \mathsf{diag}\big(1/K, 1/S_1\big)\,, \quad \sigma_2 := \mathsf{diag}\big(K, S_2\big)\,, \qquad \sigma := \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2}\,, \\ &T_1 := \left\{ \begin{pmatrix} x & -y \\ S_1^{-1} y & K^{-1} x \end{pmatrix} \,:\, x, y \in \mathbb{R} \right\}\,, \quad T_2 := \left\{ \begin{pmatrix} x & -y \\ S_2 y & K x \end{pmatrix} \,:\, x, y \in \mathbb{R} \right\}. \end{split}$$

Rewriting the PDE as a differential inclusion

Let K>1, $S_1,S_2\in [1/K,K]$ and define

$$\begin{split} \sigma_1 &:= \mathsf{diag}\big(1/\mathsf{K}, 1/\mathsf{S}_1\big)\,, \quad \sigma_2 := \mathsf{diag}\big(\mathsf{K}, \mathsf{S}_2\big)\,, \qquad \sigma := \sigma_1 \chi_{\mathsf{E}_1} + \sigma_2 \chi_{\mathsf{E}_2}\,, \\ T_1 &:= \left\{ \begin{pmatrix} x & -y \\ \mathsf{S}_1^{-1} \, y & \mathsf{K}^{-1} \, x \end{pmatrix} \,:\, x, y \in \mathbb{R} \right\}\,, \quad T_2 := \left\{ \begin{pmatrix} x & -y \\ \mathsf{S}_2 \, y & \mathsf{K} \, x \end{pmatrix} \,:\, x, y \in \mathbb{R} \right\}. \end{split}$$

Lemma (F., Palombaro '17)

A function $u \in W^{1,1}(\Omega)$ is solution to

$$\operatorname{div}(\sigma \nabla u) = 0$$

iff there exists $v \in W^{1,1}(\Omega)$ such that $f = (u, v) \colon \Omega \to \mathbb{R}^2$ satisfies

$$\nabla f(x) \in T_1 \cup T_2$$
 in Ω .

Moreover $E_1 = \{x \in \Omega : \nabla f(x) \in T_1\}$ and $E_2 = \{x \in \Omega : \nabla f(x) \in T_2\}$.

Rewriting the PDE as a differential inclusion

Let K > 1, $S_1, S_2 \in [1/K, K]$ and define

$$\begin{split} \sigma_1 &:= \mathsf{diag}\big(1/\mathsf{K}, 1/\mathsf{S}_1\big)\,, \quad \sigma_2 := \mathsf{diag}\big(\mathsf{K}, \mathsf{S}_2\big)\,, \qquad \sigma := \sigma_1 \chi_{\mathsf{E}_1} + \sigma_2 \chi_{\mathsf{E}_2}\,, \\ T_1 &:= \left\{ \begin{pmatrix} x & -y \\ \mathsf{S}_1^{-1} \, y & \mathsf{K}^{-1} \, x \end{pmatrix} \,:\, x, y \in \mathbb{R} \right\}\,, \quad T_2 := \left\{ \begin{pmatrix} x & -y \\ \mathsf{S}_2 \, y & \mathsf{K} \, x \end{pmatrix} \,:\, x, y \in \mathbb{R} \right\}. \end{split}$$

Lemma (F., Palombaro '17)

A function $u \in W^{1,1}(\Omega)$ is solution to

$$\operatorname{div}(\sigma \nabla u) = 0$$

iff there exists $v \in W^{1,1}(\Omega)$ such that $f = (u,v) \colon \Omega \to \mathbb{R}^2$ satisfies

$$\nabla f(x) \in T_1 \cup T_2$$
 in Ω .

Moreover $E_1 = \{x \in \Omega \colon \nabla f(x) \in T_1\}$ and $E_2 = \{x \in \Omega \colon \nabla f(x) \in T_2\}.$

Key Remark: u and f enjoy the same integrability properties.

Targets in conformal coordinates

Conformal coordinates: Let $A \in \mathbb{M}^{2 \times 2}$. Then $A = (a_+, a_-)$ for $a_+, a_- \in \mathbb{C}$, defined by

$$Aw = a_+w + a_-\overline{w}, \quad \forall w \in \mathbb{C}.$$

Targets in conformal coordinates

Conformal coordinates: Let $A \in \mathbb{M}^{2\times 2}$. Then $A = (a_+, a_-)$ for $a_+, a_- \in \mathbb{C}$, defined by

$$Aw = a_+w + a_-\overline{w}, \quad \forall w \in \mathbb{C}.$$

The sets of conformal linear maps and anti-conformal linear maps are

$$\begin{split} E_0 &:= \{(z,0): \ z \in \mathbb{C}\} \\ E_\infty &:= \{(0,z): \ z \in \mathbb{C}\} \end{split} \tag{Anti-conformal maps}$$

Targets in conformal coordinates

Conformal coordinates: Let $A \in \mathbb{M}^{2 \times 2}$. Then $A = (a_+, a_-)$ for $a_+, a_- \in \mathbb{C}$, defined by

$$Aw = a_+w + a_-\overline{w}, \quad \forall w \in \mathbb{C}.$$

The sets of conformal linear maps and anti-conformal linear maps are

$$\begin{split} E_0 &:= \{(z,0): \ z \in \mathbb{C}\} \\ E_\infty &:= \{(0,z): \ z \in \mathbb{C}\} \end{split} \tag{Conformal maps}$$

Target sets in conformal coordinates are

$$T_1 = \{(a, d_1(\overline{a})) : a \in \mathbb{C}\}, \qquad T_2 = \{(a, -d_2(\overline{a})) : a \in \mathbb{C}\},$$

where the operators $d_j\colon \mathbb{C} o \mathbb{C}$ are defined as

$$d_j(a) := k \operatorname{\mathsf{Re}} a + i \, s_j \operatorname{\mathsf{Im}} a \,, \quad \text{with} \quad k := rac{K-1}{K+1} \quad \text{and} \quad s_j := rac{S_j-1}{S_j+1} \,.$$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} =$$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$\frac{\mathsf{JR}_{\theta}}{\mathsf{JR}_{\theta}} = \lambda_1 A_1 + (1 - \lambda_1) P_1$$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.
$$JR_{\theta} = \lambda_1 A_1 + (1 - \lambda_1) P_1$$

$$= \lambda_1 A_1 + (1 - \lambda_1) (\mu_1 B_1 + (1 - \mu_1) 2JR_{\theta})$$

$$\sim \nu_1$$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.
$$JR_{\theta} = \lambda_1 A_1 + (1 - \lambda_1) P_1$$

$$\begin{aligned}
& = \lambda_1 A_1 + (1 - \lambda_1) P_1 \\
&= \lambda_1 A_1 + (1 - \lambda_1) (\mu_1 B_1 + (1 - \mu_1) 2JR_{\theta}) \\
&\sim \nu_1
\end{aligned}$$

$$2JR_{\theta} = \lambda_2 A_2 + (1 - \lambda_2)P_2$$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_1 A_1 + (1 - \lambda_1) P_1$$

$$= \lambda_1 A_1 + (1 - \lambda_1) (\mu_1 B_1 + (1 - \mu_1) 2JR_{\theta})$$

$$\sim \nu_1$$

$$2JR_{\theta} = \lambda_2 A_2 + (1 - \lambda_2) P_2$$

$$= \lambda_2 A_2 + (1 - \lambda_2) (\mu_2 B_2 + (1 - \mu_2) 3JR_{\theta})$$

 $\sim \nu_2$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_{1}A_{1} + (1 - \lambda_{1})P_{1}$$

$$= \lambda_{1}A_{1} + (1 - \lambda_{1})(\mu_{1}B_{1} + (1 - \mu_{1})2JR_{\theta})$$

$$\sim \nu_{1}$$

$$2JR_{\theta} = \lambda_{2}A_{2} + (1 - \lambda_{2})P_{2}$$

$$= \lambda_{2}A_{2} + (1 - \lambda_{2})(\mu_{2}B_{2} + (1 - \mu_{2})3JR_{\theta})$$

$$\sim \nu_{2}$$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_{1}A_{1} + (1 - \lambda_{1})P_{1}$$

$$= \lambda_{1}A_{1} + (1 - \lambda_{1})(\mu_{1}B_{1} + (1 - \mu_{1})2JR_{\theta})$$

$$\sim \nu_{1}$$

$$2JR_{\theta} = \lambda_{2}A_{2} + (1 - \lambda_{2})P_{2}$$

$$= \lambda_{2}A_{2} + (1 - \lambda_{2})(\mu_{2}B_{2} + (1 - \mu_{2})3JR_{\theta})$$

$$\sim \nu_{2}$$

Lemma: $\exists p(\theta) \in \left[\frac{2S}{S+1}, \frac{2K}{K+1}\right]$ continuous, with $p(0) = \frac{2K}{K+1}$ and a sequence ν_n of laminates s.t.

▶ supp $\nu_n \subset T_1 \cup T_2 \cup E_\infty$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_{1}A_{1} + (1 - \lambda_{1})P_{1}$$

$$= \lambda_{1}A_{1} + (1 - \lambda_{1})(\mu_{1}B_{1} + (1 - \mu_{1})2JR_{\theta})$$

$$\sim \nu_{1}$$

$$2JR_{\theta} = \lambda_{2}A_{2} + (1 - \lambda_{2})P_{2}$$

$$= \lambda_{2}A_{2} + (1 - \lambda_{2})(\mu_{2}B_{2} + (1 - \mu_{2})3JR_{\theta})$$

$$\sim \nu_{2}$$

- ▶ supp $\nu_n \subset T_1 \cup T_2 \cup E_\infty$
- $ightharpoonup \overline{\nu}_n = JR_{\theta}$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_{1}A_{1} + (1 - \lambda_{1})P_{1}$$

= $\lambda_{1}A_{1} + (1 - \lambda_{1})(\mu_{1}B_{1} + (1 - \mu_{1}) 2JR_{\theta})$
 $\sim \nu_{1}$

$$2JR_{\theta} = \lambda_{2}A_{2} + (1 - \lambda_{2})P_{2}$$

$$= \lambda_{2}A_{2} + (1 - \lambda_{2})(\mu_{2}B_{2} + (1 - \mu_{2})3JR_{\theta})$$

$$\sim \nu_{2}$$

- ▶ supp $\nu_n \subset T_1 \cup T_2 \cup E_{\infty}$
- $ightharpoonup \overline{\nu}_n = JR_{\theta}$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_{1}A_{1} + (1 - \lambda_{1})P_{1}$$

$$= \lambda_{1}A_{1} + (1 - \lambda_{1})(\mu_{1}B_{1} + (1 - \mu_{1})2JR_{\theta})$$

$$\sim \nu_{1}$$

$$2JR_{\theta} = \lambda_{2}A_{2} + (1 - \lambda_{2})P_{2}$$

$$= \lambda_{2}A_{2} + (1 - \lambda_{2})(\mu_{2}B_{2} + (1 - \mu_{2})3JR_{\theta})$$

$$\sim \nu_{2}$$

- ▶ supp $\nu_n \subset T_1 \cup T_2 \cup E_\infty$
- $ightharpoonup \overline{\nu}_n = JR_{\theta}$
- lacksquare $\int_{\mathbb{M}^{2 imes2}} |M|^{p(heta)}\,d
 u_n(M) o\infty$ as $n o\infty$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_{1}A_{1} + (1 - \lambda_{1})P_{1}$$

$$= \lambda_{1}A_{1} + (1 - \lambda_{1})(\mu_{1}B_{1} + (1 - \mu_{1})2JR_{\theta})$$

$$\sim \nu_{1}$$

$$2JR_{\theta} = \lambda_{2}A_{2} + (1 - \lambda_{2})P_{2}$$

$$= \lambda_{2}A_{2} + (1 - \lambda_{2})(\mu_{2}B_{2} + (1 - \mu_{2})3JR_{\theta})$$

$$\sim \nu_{2}$$

Lemma: $\exists p(\theta) \in \left[\frac{2S}{S+1}, \frac{2K}{K+1}\right]$ continuous, with $p(0) = \frac{2K}{K+1}$ and a sequence ν_n of laminates s.t.

- ▶ supp $\nu_n \subset T_1 \cup T_2 \cup E_\infty$
- $ightharpoonup \overline{\nu}_n = JR_{\theta}$
- $lacksquare \int_{\mathbb{M}^{2 imes2}} |M|^{p(heta)}\, d
 u_n(M) o\infty ext{ as } n o\infty$

Remark: barycentre *J* gives the right growth.

We want to construct $f \colon \Omega \to \mathbb{R}^2$ such that

We want to construct $f:\Omega\to\mathbb{R}^2$ such that

▶ $\operatorname{dist}(\nabla f, T_1 \cup T_2) < \varepsilon$ a.e. in Ω ,

We want to construct $f:\Omega\to\mathbb{R}^2$ such that

- ▶ $\operatorname{dist}(\nabla f, T_1 \cup T_2) < \varepsilon$ a.e. in Ω ,
- f = Jx on $\partial \Omega$,

We want to construct $f:\Omega\to\mathbb{R}^2$ such that

- ▶ $\operatorname{dist}(\nabla f, T_1 \cup T_2) < \varepsilon$ a.e. in Ω ,
- f = Jx on $\partial \Omega$.

We want to construct $f:\Omega\to\mathbb{R}^2$ such that

- ▶ $\operatorname{dist}(\nabla f, T_1 \cup T_2) < \varepsilon$ a.e. in Ω ,
- $ightharpoonup f = Jx \text{ on } \partial\Omega.$
- $\triangleright \nabla f \notin L^{\frac{2K}{K+1}}$.

We want to construct $f: \Omega \to \mathbb{R}^2$ such that

- ▶ $\operatorname{dist}(\nabla f, T_1 \cup T_2) < \varepsilon$ a.e. in Ω ,
- $ightharpoonup f = Jx \text{ on } \partial\Omega.$
- $\triangleright \nabla f \notin L^{\frac{2K}{K+1}}$.

Idea: alternate one step of the staircase laminate with the convex integration Proposition.

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.
Step A. Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$

Recall $I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right].$

Step A. Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$ Step B. Laminate ν_1 from J to $2J \sim \text{growth } p_1$

Recall $I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$. Step A. Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$ Step B. Laminate ν_1 from J to $2J \rightsquigarrow \text{growth } p_1$

Recall $I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right].$

Step A. Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$ Step B. Laminate ν_1 from J to $2J \sim \text{growth } p_1$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } \rho_1$

This determines the exponent range I_{δ}

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \rightarrow \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } \rho_1$

This determines the exponent range I_{δ}

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

▶ Split W_1 . Since $W_1 \sim 2J \implies$ point $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

▶ Split W_1 . Since $W_1 \sim 2J \implies$ point $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right].$$

Step A. Define $f_1(x) := Jx \implies \theta_1 = 0, \rho_1 = \frac{2K}{K+1}$

Step B. Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$

Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right].$$

Step A. Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$

Step B. Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$

Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, \rho_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

- ▶ Split W_1 . Since $W_1 \sim 2J \implies$ point $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, \rho_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup ightharpoonup Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } p_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup ightharpoonup Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to 2J \sim growth ρ_1
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup ightharpoonup Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

▶ Proposition $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } \rho_2$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to 2J \sim growth ρ_1
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup ightharpoonup Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

▶ Proposition $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } \rho_2$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from **J** to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } \rho_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup ightharpoonup Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

- ▶ Proposition $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } p_2$
- ▶ Set $f_3 := g$ in the set $\{\nabla f_2 \sim W_1\}$ and $f_3 := f_2$ otherwise $\implies \nabla f_3$ grows like p_2

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies$ point $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup \sim Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

- ▶ Proposition $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } \rho_2$
- ▶ Set $f_3 := g$ in the set $\{\nabla f_2 \sim W_1\}$ and $f_3 := f_2$ otherwise $\implies \nabla f_3$ grows like p_2

Step 1. Split $W_2 \sim$ Laminate ν_3 with growth $p_3 \in I_\delta$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to 2J \sim growth ρ_1
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup \sim Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

- ▶ Proposition $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } \rho_2$
- ▶ Set $f_3 := g$ in the set $\{\nabla f_2 \sim W_1\}$ and $f_3 := f_2$ otherwise $\implies \nabla f_3$ grows like p_2

Step 1. Split $W_2 \sim$ Laminate ν_3 with growth $p_3 \in I_\delta$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ightharpoonup Climb from $(2+\rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ▶ \sim Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

- ▶ Proposition $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } \rho_2$
- ▶ Set $f_3 := g$ in the set $\{\nabla f_2 \sim W_1\}$ and $f_3 := f_2$ otherwise $\implies \nabla f_3$ grows like p_2

Step 1. Split $W_2 \sim \text{Laminate } \nu_3 \text{ with growth } p_3 \in I_{\delta}$ **Iterating:** $\sim f_n$ obtained by successive modifications on nested sets going to zero in measure $\implies f_n \rightarrow f$

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{0.4}$$

when $\sigma \in {\{\sigma_1, \sigma_2\}}$ for $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ elliptic.

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{0.4}$$

when $\sigma \in {\{\sigma_1, \sigma_2\}}$ for $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ elliptic.

▶ Optimal exponents q_{σ_1,σ_2} and p_{σ_1,σ_2} were already characterised and the upper exponent p_{σ_1,σ_2} was proved to be optimal.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{0.4}$$

when $\sigma \in {\{\sigma_1, \sigma_2\}}$ for $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ elliptic.

▶ Optimal exponents q_{σ_1,σ_2} and p_{σ_1,σ_2} were already characterised and the upper exponent p_{σ_1,σ_2} was proved to be optimal.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

• We proved the optimality of the lower critical exponent q_{σ_1,σ_2} .

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{0.4}$$

when $\sigma \in {\{\sigma_1, \sigma_2\}}$ for $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ elliptic.

▶ Optimal exponents q_{σ_1,σ_2} and p_{σ_1,σ_2} were already characterised and the upper exponent p_{σ_1,σ_2} was proved to be optimal.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

• We proved the optimality of the lower critical exponent q_{σ_1,σ_2} .

Perspectives:

► Stronger result for lower critical exponent: showing $\exists u \in W^{1,1}(\Omega)$ solution to (0.4) and s.t. $\nabla u \in L^{\frac{2K}{K+1}}_{\text{weak}}(\Omega; \mathbb{R}^2)$ but $\nabla u \notin L^{\frac{2K}{K+1}}(B; \mathbb{R}^2)$, \forall ball $B \subset \Omega$. Modifying staircase laminate?

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{0.4}$$

when $\sigma \in {\{\sigma_1, \sigma_2\}}$ for $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ elliptic.

▶ Optimal exponents q_{σ_1,σ_2} and p_{σ_1,σ_2} were already characterised and the upper exponent p_{σ_1,σ_2} was proved to be optimal.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

• We proved the optimality of the lower critical exponent q_{σ_1,σ_2} .

Perspectives:

- ▶ Stronger result for lower critical exponent: showing $\exists u \in W^{1,1}(\Omega)$ solution to (0.4) and s.t. $\nabla u \in L^{\frac{2K}{K+1}}_{\text{weak}}(\Omega; \mathbb{R}^2)$ but $\nabla u \notin L^{\frac{2K}{K+1}}(B; \mathbb{R}^2)$, \forall ball $B \subset \Omega$. Modifying staircase laminate?
- ► Extend these results to three-phase conductivities $\sigma \in \{\sigma_1, \sigma_2, \sigma_3\}$.

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{0.4}$$

when $\sigma \in {\sigma_1, \sigma_2}$ for $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ elliptic.

▶ Optimal exponents q_{σ_1,σ_2} and p_{σ_1,σ_2} were already characterised and the upper exponent p_{σ_1,σ_2} was proved to be optimal.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

• We proved the optimality of the lower critical exponent q_{σ_1,σ_2} .

Perspectives:

- ▶ Stronger result for lower critical exponent: showing $\exists u \in W^{1,1}(\Omega)$ solution to (0.4) and s.t. $\nabla u \in L^{\frac{2K}{K+1}}_{\text{weak}}(\Omega; \mathbb{R}^2)$ but $\nabla u \notin L^{\frac{2K}{K+1}}(B; \mathbb{R}^2)$, \forall ball $B \subset \Omega$. Modifying staircase laminate?
- ▶ Extend these results to three-phase conductivities $\sigma \in \{\sigma_1, \sigma_2, \sigma_3\}$.
- ▶ Dimension $d \ge 3$? Even only in the isotropic case $\sigma \in \{KI, K^{-1}I\}$ for K > 1. Main difficulty: Astala's Theorem is missing in higher dimensions.

Thank You!