Øving 3 IELET1002 - Datateknikk

Gunnar Myhre, BIELEKTRO

19. oktober 2021

1 Oppgåve 1

Setter opp funksjonstabell for 4-bit gray-kode

Indeks	$a_3 a_2 a_1 a_0$	$g_3g_2g_1g_0$
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Frå dette finner vi sum av standardprodukt

- $g_3 = \Sigma(8, 9, 10, 11, 12, 13, 14, 15)$
- $g_2 = \Sigma(4, 5, 6, 7, 8, 9, 10, 11)$
- $g_1 = \Sigma(2, 3, 4, 5, 10, 11, 12, 13)$

•
$$g_0 = \Sigma(1, 2, 5, 6, 9, 10, 13, 14)$$

Teikner opp Karnaugh-diagram

		a_1a_0			
		00	01	11	10
a_3a_2	00	0	0	0	0
	01	0	0	0	0
	11	1	1	1	1
	10	1	1	1	1

 $g_3 = a_3$

		$a_1 a_0$			
		00	01	11	10
a_3a_2	00	0	0	0	0
	01	1	1	1	1
	11	0	0	0	0
	10	1	1	1	1

$$g_2 = \overline{a_3}a_2 + a_3\overline{a_2}$$

$$g_1 = \overline{a_2}a_1 + a_2\overline{a_1}$$

		a_1a_0			
		00	01	11	10
a_3a_2	00	0	1	0	1
	01	0	1	0	1
	11	0	1	0	1
	10	0	1	0	1

 $g_2=\overline{a_1}a_0+a_1\overline{a_0}.$ Forenkler uttrykka vha. XOR sidan $\overline{A}B+A\overline{B}=A\oplus B$

- $g_3 = a_3$
- $\bullet \ g_2 = a_3 \oplus a_2$
- $\bullet \ g_1 = a_2 \oplus a_1$
- $\bullet \ g_0 = a_1 \oplus a_0$

2 Oppgåve 2

2.1 a)

Først setter vi opp funksjonstabell

S_1	S_0	$m_3 m_2 m_1 m_0$
0	0	0 0 0 1
0	1	0 0 1 0
1	0	0 1 0 0
1	1	1000

uttrykka er gitt ved

- $\bullet \ m_0 = \bar{S}_1 \bar{S}_0$
- $\bullet \ m_1 = \bar{S}_1 S_0$
- $\bullet \ m_2 = S_1 \bar{S}_0$
- $\bullet \ m_3 = S_1 S_0$

vi kan teikne dette som eit logisk skjema vha. åtte AND-portar

2.2 b)

Funksjonen $F(x,y) = \Sigma(1,2)$ kan implementerast med ein XOR-port. Men dersom vi ønsker å bruke ein $2\rightarrow 4$ -dekodar kan vi gjere slik som dette:

Vi kan også implementere denne funksjonen med to NOT-portar, to AND-portar og éin OR-port

3 Oppgåve 3

Antar at det her er snakk om fire databit og ikkje fire addressebit for multipleksaren. Då kan vi implementere den vha. ein $2\rightarrow 4$ -dekodar slik som dette:

Dekodaren som styrt av S_1 og S_0 velger kva for input I som har moglegheit til å slippe igjennom til utgongen Y

4 Oppgåve 4

4.1 a)

Setter først opp ufullstendig funksjonstabell for ein 4→2-kodar

$I_0I_1I_2I_3$	S_1	S_0
1000	0	0
0100	0	1
0010	1	0
0001	1	1

4.2 b)

For å potensielt forenkle logikken i kodaren setter vi opp fullstendig funksjonstabell

$I_0I_1I_2I_3$	S_1	S_0
0000	-	-
0001	1	1
0010	1	0
0011	-	-
0100	0	1
0101	-	-
0110	-	-
0111	-	-
1000	0	0
1001	-	-
1010	-	-
1011	-	-
1100	-	-
1101	-	-
1110	-	-
1111	-	-

Dette kan vi forenkle vha. Karnaugh-diagram:

		I_2I_3			
		00	01	11	10
I_0I_1	00	-	1	-	0
	01	1	-	-	-
	11	-	-	-	-
	10	-	0	-	-

Finner $S_0 = \bar{I}_0 \bar{I}_2$

Finner $S_0=\bar{I}_0\bar{I}_2$ og $S_1=\bar{I}_0\bar{I}_1$. Desse uttrykka kan vi igjen forenkle med DeMorgan: $S_0=\overline{I_0+I_2},\ S_1=\overline{I_0+I_1}$. Funksjonsskjemaet kan vi teikne på denne måten vha. to NOR-portar:

5 Oppgåve 5

Sekvenslogisk skjema for tre ulike vipper: MS-JK, positivt flanketrigga JK og negativt flanketrigga JK:

