TABLE A1.5

FONCTION DE RÉPARTITION DE LA LOI NORMALE RÉDUITE

(Probabilité de trouver une valeur inférieure à u)

				,						
u	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0 0,1 0,2 0,3 0,4	0,5000 0,5398 0,5793 0,6179 0,6554 0,6915	0,5040 0,5438 0,5832 0,6217 0,6591 0,6950	0,5080 0,5478 0,5871 0,6255 0,6628 0,6985	0,5120 0,5517 0,5910 0,6293 0,6664 0,7019	0,5160 0,5557 0,5948 0,6331 0,6700 0,7054	0,5199 0,5596 0,5987 0,6368 0,6736 0,7088	0,5239 0,5636 0,6026 0,6406 0,6772 0,7123	0,5279 0,5675 0,6064 0,6443 0,6808 0,7157	0,5319 0,5714 0,6103 0,6480 0,6844 0,7190	0,5359 0,5753 0,6141 0,6517 0,6879 0,7224
0,6 0,7 0,8 0,9	0,7257 0,7580 0,7881 0,8159	0,7290 0,7611 0,7910 0,8186	0,7324 0,7642 0,7939 0,8212	0,7357 0,7673 0,7967 0,8238	0,7389 0,7704 0,7995 0,8264	0,7422 0,7734 0,8023 0,8289	0,7454 0,7764 0,8051 0,8315	0,7486 0,7794 0,8078 0,8340	0,7517 0,7823 0,8106 0,8365	0,7549 0,7852 0,8133 0,8389
1,0 1,1 1,2 1,3	0,8413 0,8643 0,8849 0,9032	0,8438 0,8665 0,8869 0,9049	0,8461 0,8686 0,8888 0,9066	0,8485 0,8708 0,8907 0,9082	0,8508 0,8729 0,8925 0,9099	0,8531 0,8749 0,8944 0,9115	0,8554 0,8770 0,8962 0,9131	0,8577 0,8790 0,8980 0,9147	0,8599 0,8810 0,8997 0,9162	0,8621 0,8830 0,9015 0,9177
1,4 1,5 1,6 1,7	0,9192 0,9332 0,9452 0,9554	0,9207 0,9345 0,9463 0,9564	0,9222 0,9357 0,9474 0,9573	0,9236 0,9370 0, 9 484	0,9251 0,9382 0,9495	0,9265 0,9394 0,9505	0,9279 0,9406 0,9515	0,9292 0,9418 0,9525	0,9306 0,9429 0,9535	0,9319 0,9441 0,9545
1,8 1,9 2,0	0,9641 0,9713 0,9772	0,9649 0,9719 0,9779	0,9656 0,9726 0,9783	0,9582 0,9664 0,9732 0,9788	0,9591 0,9671 0,9738 0,9793	0,9599 0,9678 0,9744 0,9798	0,9608 0,9686 0,9750 0,9803	0,9616 0,9693 0,9756 0,9808	0,9625 0,9699 0,9761 0,9812	0,9633 0,9706 0,9767
2, 1 2, 2 2, 3	0,9821 0,9861 0,9893	0,9826 0,9864 0,9896	0,9830 0,9868 0,9898	0,9834 0,9871 0,9901	0,9838 0,9875 0,9904	0,9842 0,9878 0,9906	0,9846 0,9881 0,9909	0,9850 0,9884 0,9911	0,9854 0,9887 0,9913	0,9817 0,9857 0,9890 0,9916
2,4 2,5 2,6 2,7	0,9918 0,9938 0,9953 0,9965	0,9920 0,9940 0,9955 0,9966	0,9922 0,9941 0,9956 0,9967	0,9925 0,9943 0,9957 0,9968	0,9927 0,9945 0,9959 0,9969	0,9929 0,9946 0,9960 0,9970	0,9931 0,9948 0,9961 0,9971	0,9932 0,9949 0,9962 0,9972	0,9934 0,9951 0,9963 0,9973	0,9936 0,9952 0,9964 0,9974
2,8 2,9	0,9974 0,9981	0,9975 0,9982	0,9976 0,9982	0,9977	0,9977 0,9984	0,9978 0,9984	0,9979 0,9985	0,9979 0,9985	0,9980	0,9981 0,9986

Table pour les grandes valeurs de u

u	3,0	3, 1	3,2	3,3	3,4	3,5	3,6	3,8	4,0	4,5
F(u)	0,99865	0,99904	0,99931	0,99952	0,99966	0,99976	0,999841	0,999928	0,999968	0,999997

XI.1 Quantiles de la loi $\mathcal{N}(0,1)$

Soit X une v.a. de loi $\mathcal{N}(0,1)$, on pose

$$2\int_{x}^{\infty} e^{-y^{2}/2} \frac{dy}{\sqrt{2\pi}} = \mathbb{P}(|X| \ge x) = \alpha.$$

a/2 -x 0 +x

La table donne les valeurs de x en fonction de α . Par exemple $\mathbb{P}(|X| \ge 0.6280) \simeq 0.53$.

0.0 0.1 0.2	0.00 ∞ 1.6449 1.2816	2.5758 1.5982 1.2536	2.3263 1.5548 1.2265	0.03 2.1701 1.5141 1.2004	0.04 2.0537 1.4758	0.05 1.9600 1.4395	0.06 1.8808 1.4051	0.07 1.8119 1.3722	0.08 1.7507 1.3408	0.09 1.6954 1.3106
0.3 0.4 0.5 0.6 0.7 0.8 0.9	1.0364 0.8416 0.6745 0.5244 0.3853 0.2533 0.1257	0364 1.0152 8416 0.8239 6745 0.6588 6244 0.5101 8853 0.3719 9533 0.2404	0.9945 0.8064 0.6433 0.4959 0.3585 0.2275	0.9741 0.7892 0.6280 0.4817 0.3451 0.2147	1.1750 0.9542 0.7722 0.6128 0.4677 0.3319 0.2019 0.0753	1.1503 0.9346 0.7554 0.5978 0.4538 0.3186 0.1891 0.0627	1.1264 0.9154 0.7388 0.5828 0.4399 0.3055 0.1764 0.0502	1.1031 0.8965 0.7225 0.5681 0.4261 0.2924 0.1637 0.0376	1.0803 0.8779 0.7063 0.5534 0.4125 0.2793 0.1510 0.0251	1.0581 0.8596 0.6903 0.5388 0.3989 0.2663 0.1383 0.0125