Apostol p.30 no.2

 \mathbf{a}

Proceed with Gram-Schmidt:

$$u_{1} = (1, 1, 0, 0)$$

$$e_{1} = \frac{1}{\sqrt{2}}(1, 1, 0, 0) = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0)$$

$$u_{2} = (0, 1, 1, 0) - \frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0) = (-\frac{1}{2}, \frac{1}{2}, 1, 0)$$

$$e_{2} = \sqrt{\frac{2}{3}}(-\frac{1}{2}, \frac{1}{2}, 1, 0) = (-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \sqrt{\frac{2}{3}}, 0)$$

$$u_{3} = (0, 0, 1, 1) - \sqrt{\frac{2}{3}}(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{3}, 0) = (\frac{1}{3}, -\frac{1}{3}, \frac{1}{3}, 1)$$

$$e_{3} = \frac{\sqrt{3}}{2}(\frac{1}{3}, -\frac{1}{3}, \frac{1}{3}, 1) = (\frac{1}{2\sqrt{3}}, -\frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{\sqrt{3}}{2})$$

Note that (1,0,0,1) = (1,1,0,0) + (0,0,1,1) - (0,1,1,0), so it is linearly dependent. Thus, e_1, e_2, e_3 form an orthonormal basis.

b

Proceed with Gram-Schmidt:

$$u_{1} = (1, 1, 0, 1)$$

$$e_{1} = \frac{1}{\sqrt{3}}(1, 1, 0, 1) = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}})$$

$$u_{2} = (1, 0, 2, 1) - \frac{2}{\sqrt{3}}(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}) = (\frac{1}{3}, -\frac{2}{3}, 2, \frac{1}{3})$$

$$e_{2} = \sqrt{\frac{3}{14}}(\frac{1}{3}, -\frac{2}{3}, 2, \frac{1}{3}) = (\frac{1}{\sqrt{42}}, -\frac{2}{\sqrt{42}}, \sqrt{\frac{6}{7}}, \frac{1}{\sqrt{42}})$$

Note that (1, 2, -2, 1) = 2(1, 1, 0, 1) - (1, 0, 2, 1), so e_1, e_2 form an orthonormal basis.

Apostol p.30 no.5

First we will show that $\int_0^\infty e^{-t}t^n dt = n!$ for $n \in \mathbb{Z}_{>0}$.

With integration by parts, $\int_0^\infty e^{-t}t^{n+1}dt = \left[-e^{-t}t^{n+1}\right]\Big|_0^\infty - n\int_0^\infty e^{-t}t^ndt = n\int_0^\infty -e^{-t}t^ndt.$

Inducting on n, for n=0 we have that $\int_0^\infty = e^{-t}dt = [-e^{-t}]\Big|_0^\infty = 1$. Then, assuming the above for n=k, $\int_0^\infty e^{-t}t^{k+1}dt = (k+1)\int_0^\infty e^{-t}t^kdt = (k+1)(k!) = (k+1)!$.

$$y_{0} = 1$$

$$y_{1} = t - \int_{0}^{\infty} e^{-t}t dt$$

$$= t - 1$$

$$y_{2} = t^{2} - \frac{\langle t^{2}, 1 \rangle}{\langle 1, 1 \rangle} - \frac{\langle t^{2}, t - 1 \rangle}{\langle t - 1, t - 1 \rangle} (t - 1)$$

$$= t^{2} - 2! - \frac{3! - 2!}{2! - 2! + 1!} (t - 1) = t^{2} - 4t + 2$$

$$y_{3} = t^{3} - \frac{\langle t^{3}, 1 \rangle}{\langle 1, 1 \rangle} - \frac{\langle t^{3}, t - 1 \rangle}{\langle t - 1, t - 1 \rangle} (t - 1) - \frac{\langle t^{3}, t^{2} - 4t + 2 \rangle}{\langle t^{2} - 4t + 2 \rangle} (t^{2} - 4t + 2)$$

$$= t^{3} - 3! - (4! - 3!)(t - 1) - \frac{5! - 4(4!) + 2(3!)}{4! - 8(3!) - 20(2!) - 16 + 4} (t^{2} - 4t + 2)$$

$$= t^{3} - 6 - 18(t - 1) - 9(t^{2} - 4t + 2)$$

$$= t^{3} - 9t^{2} + 18t - 6$$

Problem 1

Claim. Let V be a finite dimensional inner product space, and $U \subseteq V$ any subspace. Then, $\dim(U) + \dim(U^{\perp}) = V$.

Proof. We will show sometimes stronger:

$$U+U^\perp=V$$

where $U+U^{\perp}=\{u+v\mid u\in U, v\in U^{\perp}\}.$

We have from class that for any vector $v \in V$, $\exists x, x^{\perp} \mid x + x^{\perp} = v$ where $x \in U, x^{\perp} \in U^{\perp}$, so $V \subseteq U + U^{\perp}$. Further, since U, U^{\perp} are subspaces of V, if $u \in U, v \in V^{\perp}, u, v \in V \implies u + v \in V$, so $U + U^{\perp} \subseteq V$.

Then, $U+U^{\perp}=V$, and from an ealier homework, $\dim(U)+\dim(U^{\perp})-\dim(U\cap U^{\perp})=V$. However, if $x\in U, U^{\perp}, \langle x,x\rangle=0 \implies x=0$. Thus, $\dim(U\cap U^{\perp})=0$, and the initial claim follows.

Problem 3

Let $S: U \to V$ be a linear map with adjoint S^* .

 \mathbf{a}

Claim. S^* has an adjoint and $(S^*)^* = S$.

Proof.

$$\langle S(u), v \rangle = \langle u, S^*(v) \rangle \implies \overline{\langle v, S(u) \rangle} = \overline{\langle S^*(v), u \rangle} \implies \langle v, S(u) \rangle = \langle S^*(v), u \rangle$$

The last part holds by taking the complex conjugate of both sides, which is a bijective operation as shown on an earlier homework. Further, since adjoints are unique, $(S^*)^* = S$.

b

Claim.

$$\ker(S^*) = (\operatorname{im} S)^{\perp}$$

Proof. If $x \in \ker(S^*)$, then we have that

$$\langle S(u), x \rangle = \langle u, S(x) \rangle = \langle u, 0 \rangle = 0$$

Then $x \in (\text{im}S)^{\perp}$.

Similarly, if $x \in (\text{im}S)^{\perp}$ then

$$0 = \langle S(u), x \rangle = \langle u, S^*(x) \rangle$$

Then, one of $u, S^*(x) = 0$. Since this holds for any u, we have that $S^*(x) = 0$.

Thus,
$$x \in \ker(S^*) \iff x \in (\operatorname{im} S)^{\perp}$$
.

 \mathbf{c}

Claim.

$$\ker(S) = (\operatorname{im} S^*)^{\perp}$$

Proof. This follows from part a and b immediately, as we simply take part b and apply it to S^* . Then, since we have that $(S^*)^* = S$, part b gives that

$$\ker((S^*)^*) = \ker(S) = (\operatorname{im} S^*)^{\perp}$$

 \mathbf{d}

Claim. If S is invertible, then S^* is invertible, S^{-1} has an adjoint, and $(S^*)^{-1} = (S^{-1})^*$.

Proof. We know that the adjoint exists, as it is equivalent to the conjugate transpose of the original matrix representing the linear transformation.

Further, since $I^T = I$, and I is a real matrix, then the adjoint of I is still I.

In general, we have that

$$\langle u, v \rangle = \langle u, \mathrm{Id}^*(v) \rangle$$

we easily see that $Id^* = Id$ works, and so $Id^* = Id$ as adjoints are unique.

Now, from problem 2, we have that

$$(T \circ S)^* = S^* \circ T^*$$

Taking $T = S^{-1}$, we have that $\mathrm{Id}^* = S^* \circ (S^{-1})^*$. By the definition of inverse, we have that $(S^{-1})^* = (S^*)^{-1}$.

Problem 4

Claim. Let $S:U\to V$ be a linear map between finite inner product spaces. Then,

$$\dim(\mathrm{im}S^*) = \dim(\mathrm{im}S).$$

Proof. We have that as $\ker(S^*) = (\operatorname{im}(S))^{\perp}$, $\dim(\ker(S^*)) = \dim((\operatorname{im}(S))^{\perp})$. From problem 1, we have that $\dim((\operatorname{im}(S))^{\perp}) = \dim(V) - \dim(\operatorname{im}(S))$, and so

$$\dim(\ker(S^*)) = \dim(V) - \dim(\operatorname{im}(S))$$

From rank-nullity, we have that

$$\dim(V) = \dim(\operatorname{im}(S^*)) + \dim(\ker(S^*))$$

Combining the two, we get that $\dim(\operatorname{im}(S^*)) = \dim(\operatorname{im}(S))$.

Now, we have from the email that S^* is the complex conjugate of the transpose of A, where A is the matrix representing S for a choice of basis. Further, put \overline{A} for the matrix with entries the complex conjugate of A.

Then, $\dim(\operatorname{im}(S^*)) = \dim(\operatorname{im}(S))$, where the image of S is simply the column space of A, and the image of S^* is then the column space of $\overline{A^T}$ (as this is a property of column spaces shown in class).

Now, we have that the dimension of the span of a set of vectors $v_1, \ldots v_n$ is the same as the dimension of the space of $\overline{v_1}, \ldots, \overline{v_n}$.

To see this, note that for $x = \sum_{i=1}^{n} c_i v_i$, $\overline{x} = \sum_{i=1}^{n} c_i \overline{v_i}$, by a property proved on a past homework.

Then, any basis of $v_1, \ldots v_n$, say x_1, \ldots, x_k , has a corresponding basis $\overline{x_1}, \ldots \overline{x_n}$ for $\overline{v_1}, \ldots \overline{v_n}$, and so they must be of the same dimension.

Then, the column space of A^T has the same dimension as the column space of $\overline{A^T}$; since the column rank of $\overline{A^T} = \dim(\operatorname{im}(S^*))$, we have that $\dim(\operatorname{im}(S^*)) = \operatorname{the column rank}$ of A^T .

The column rank of A^T , however, is also the row rank of A, by the definition of transposes, and so the row rank of $A = \dim(\operatorname{im}(S^*)) = \dim(\operatorname{im}(S)) = \operatorname{the column rank of } A$.

Thus, we have that row and column rank are the same.