2022-2

CROSS VALIDATION CLASIFICACIÓN

CLASE 21

ALGORITMOS DE REGRESIÓN

Modelo de regresión	Función	Función de pérdida	Hiper- parámetro
kNN	No hay	$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	k
Lineal	$Y = \beta_0 + \beta_1 X$		
Multilineal	$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_J X_J$	$\mathcal{L}(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} y_i - \beta^T Xi ^2$	
Polinomial	$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_M X^M$	i=1 $i=1$	M
Lasso	$Y = \beta X$	$L_{LASSO}(\beta) = \frac{1}{n} \sum_{i=1}^{n} y_i - \beta^{T} Xi ^2 + \alpha \sum_{m=1}^{M} \beta_m $	α
Ridge	$Y = \beta X$	$L_{Ridge}(\beta) = \frac{1}{n} \sum_{i=1}^{n} y_i - \beta^{T} Xi 2 + \alpha \sum_{m=1}^{M} \beta_m^2$	α

Para un conjunto de datos dado, ¿qué modelo elegimos?

SELECCIÓN DE MODELOS

- Método para determinar la complejidad del modelo a utilizar, y/o el valor óptimo de los hiperparámetros
- El objetivo es **seleccionar el modelo con mejor capacidad de generalización**, es decir, de entregar predicciones correctas para nuevos datos.
- Para ello, se evalúa alguna métrica de rendimiento (MSE, R², etc.) de los posibles modelos, y se elige aquél que **optimiza la métrica para los datos de prueba**:

SELECCIÓN DE MODELOS: GRID SEARCH

- Método para determinar la complejidad del modelo a utilizar, y/o el valor óptimo de los hiperparámetros
- El objetivo es **seleccionar el modelo con mejor capacidad de generalización**, es decir, de entregar predicciones correctas para nuevos datos.
- Para ello, se evalúa alguna métrica de rendimiento (MSE, R², etc.) de los posibles modelos, y se elige aquél que **optimiza la métrica para los datos de prueba**:

VALIDACIÓN CRUZADA (CROSS VALIDATION, CV)

 Por otra parte, usar una única validación para seleccionar un modelo puede ser problemático, ya que dependiendo de la partición de datos de entrenamiento / prueba, podemos llegar a distintos resultados.

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_M X^M$$

VALIDACIÓN CRUZADA (CROSS VALIDATION, CV)

Validación cruzada → método estadístico para evaluar la generalización de un modelo de manera más estable que usando un conjunto de datos de entrenamiento/prueba.

k-fold cross validation:

- Los datos se dividen en k subconjuntos o "folds" (k~5-10).
- Para cada iteración:
 - Se entrena un modelo utilizando un fold como $\mathcal{D}_{ ext{train}}$, y los otros como $\mathcal{D}_{ ext{test}}$.
 - Se evalúa la precisión de la predicción para \mathcal{D}_{test} .
- Finalmente, se calcula la precisión promedio para todas las iteraciones.

$$Error = \frac{1}{5} \sum_{i=1}^{5} Error_i$$

GRID-SEARCH CROSS-VALIDATION (GridSearchCV)

Aprendizaje Supervisado Métodos de Clasificación

Clasificación kNN

kNN para regresión \rightarrow usamos como predictores, las observaciones disponibles (x,y) más similares a la observación (x) que queremos predecir.

$$\hat{y}_i = \frac{1}{k} \sum_{i=1}^k y_{i_j}$$

 y_{i_j} son los **k** vecinos más cercanos a (xi, y_i)

kNN para regresión \rightarrow usamos como predictores, las observaciones disponibles (x,y) más similares a la observación (x) que queremos predecir.

$$\hat{y}_i = \frac{1}{k} \sum_{i=1}^k y_{i_j}$$

 y_{i_j} son los **k** vecinos más cercanos a (xi, y_i)

kNN para clasificación → clasificamos una observación específica, en base a las categorías de sus vecinos más cercanos.

Para un dato x_0 :

1. Se calcula la distancia a todos los demás puntos x_i :

$$D^{2}(\mathbf{x}_{i}, \mathbf{x}_{0}) = \sum_{j=1}^{P} (x_{i,j} - x_{0,j})^{2}$$

2. Se identifican los k puntos del dataset de entrenamiento más cercanos a $x_0 \rightarrow \mathcal{N}_0$

kNN para clasificación → clasificamos una observación específica, en base a las categorías de sus vecinos más cercanos.

3. Se estima la probabilidad condicional de la clase j, como la fracción de puntos en \mathcal{N}_0 cuya respuestas son j

$$P(Y = j | X = x_0) = \frac{1}{k} \sum_{i \in \mathcal{N}_0} I(y_i = j)$$

4. Se aplica la regla de Bayes y se clasifica la observación de prueba x_0 a la clase con la mayor probabilidad estimada.

$$k = 3$$
: para \bigstar
 $P(Y = A|X_1, X_2) = \frac{1}{3}, P(Y = B|X_1, X_2) = \frac{2}{3} \Rightarrow Y = B$

CLASIFICACIÓN KNN: NORMALIZACIÓN

Si hay múltiples predictores: se define una medida de distancia multidimensional para identificar las observaciones más similares o "vecinos".

- Distancia euclideana: $D(x_i, x_0) = \sqrt{\sum_{j=1}^{P} (x_{i,j} x_{0,j})^2}$
- Si los predictores tienen diferentes escalas y variabilidad → se introducen efectos de escala en la medición de distancia.
- Por lo tanto, para p > 1, es necesario estandarizar los predictores.
- Normalización z: se resta la media, y se divide por la desviación estándar.

$$x_{scaled} = \frac{x - \mu}{\sigma}$$

CLASIFICACIÓN KNN: NORMALIZACIÓN

Ejemplo: Predicción de comportamiento de compra de clientes de una RS en base a su edad

e ingresos.

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
				•••	

Datos normalizados

CLASIFICACIÓN kNN: Ejemplo

CLASIFICACIÓN: EVALUACIÓN DEL MODELO

Matriz de confusión: es usada para evaluar los resultados de la clasificación

• $oldsymbol{\mathcal{C}_{i,j}}$: número de observaciones que se sabe están en el grupo i, y son clasificadas en el grupo j

o O	$egin{aligned} C_{0,0} \ ext{Verdaderos} \ ext{negativos} \ (tn) \end{aligned}$	$C_{0,1}$ Falso positivo (fp)				
Real	$C_{1,0}$ Falso negativo (fn)	$oldsymbol{\mathcal{C}_{1,1}}{Verdaderos}$ positivos (tp)				
I	0	1				
Predicción						

Accuracy/ Exactitud: fracción de aciertos (en el dataset de prueba)

$$accuracy = \frac{tp + tn}{tp + fp + tn + fn}$$

Precision/Precisión: capacidad de no clasificar como "positivo" un negativo

$$precision = \frac{tp}{tp + fp}$$

CLASIFICACIÓN: EVALUACIÓN DEL MODELO

Matriz de confusión: es usada para evaluar los resultados de la clasificación

• $m{\mathcal{C}_{i,j}}$: número de observaciones que se sabe están en el grupo i, y son clasificadas en el grupo j

CLASIFICACIÓN: EVALUACIÓN DEL MODELO

Matriz de confusión: es usada para evaluar los resultados de la clasificación

• $m{\mathcal{C}}_{i,j}$: número de observaciones que se sabe están en el grupo i, y son clasificadas en el grupo j

Recall / Sensibilidad: capacidad del clasificador de identificar todos los "positivos"

$$recall = \frac{tp}{tp + fn}$$

F-score: promedio ponderado de precisión y recall

$$F = 2 * \frac{\text{precision*recall}}{\text{precision+recall}}$$

CLASIFICACIÓN kNN: Ejemplo

