

SEQUENCE LISTING

- <110> SUMITOMO ELECTRIC INDUSTRIES, LTD. NAKAMURA, Takeshi
- <120> HUMAN CYCLIN I AND GENES ENCODING THE SAME
- <130> 050212-0278
- <140> 09/736,250
- <141> 2000-12-15
- <150> 09/054,492
- <151> 1998-04-03
- <150> PCT/JP96/02905
- <151> 1996-10-07
- <150> 284663/1995
- <151> 1995-10-05
- <160> 5
- <170> PatentIn version 3.3
- <210> 1
- <211> 377
- <212> PRT
- <213> Homo sapiens
- <400> 1
- Met Lys Phe Pro Gly Pro Leu Glu Asn Gln Arg Leu Ser Phe Leu Leu 1 5 10 15
- Glu Lys Ala Ile Thr Arg Glu Ala Gln Met Trp Lys Val Asn Val Arg 20 25 30
- Lys Met Pro Ser Asn Gln Asn Val Ser Pro Ser Gln Arg Asp Glu Val 35 40 45
- Ile Gln Trp Leu Ala Lys Leu Lys Tyr Gln Phe Asn Leu Tyr Pro Glu 50 55 60
- Thr Phe Ala Leu Ala Ser Ser Leu Leu Asp Arg Phe Leu Ala Thr Val 65 70 75 80
- Lys Ala His Pro Lys Tyr Leu Ser Cys Ile Ala Ile Ser Cys Phe Phe 85 90 95
- Leu Ala Ala Lys Thr Val Glu Glu Asp Glu Arg Ile Pro Val Leu Lys

100	105	110

Val Leu i	Ala Arg 115	Asp Se	r Phe	Cys 120	Gly	Cys	Ser	Ser	Ser 125	Glu	Ile	Leu
Arg Met (Glu Arg	Ile Il	Leu 135	Asp	Lys	Leu	Asn	Trp 140	Asp	Leu	His	Thr
Ala Thr 1	Pro Leu	Asp Pho		His	Ile	Phe	His 155	Ala	Ile	Ala	Val	Ser 160
Thr Arg	Pro Gln	Leu Le	ı Phe	Ser	Leu	Pro 170	Lys	Leu	Ser	Pro	Ser 175	Gln
His Leu A	Ala Val 180	Leu Th	r Lys	Gln	Leu 185	Leu	His	Cys	Met	Ala 190	Cys	Asn
Gln Leu	Leu Gln 195	Phe Ar	g Gly	Ser 200	Met	Leu	Ala	Leu	Ala 205	Met	Val	Ser
Leu Glu 1 210	Met Glu	Lys Le	ı Ile 215	Pro	Asp	Trp	Leu	Ser 220	Leu	Thr	Ile	Glu
Leu Leu (225	Gln Lys	Ala Gl		Asp	Ser	Ser	Gln 235	Leu	Ile	His	Cys	Arg 240
Glu Leu '	Val Ala	His Hi 245	s Leu	Ser	Thr	Leu 250	Gln	Ser	Ser	Leu	Pro 255	Leu
Asn Ser	Val Tyr 260	Val Ty	r Arg	Pro	Leu 265	Lys	His	Thr	Leu	Val 270	Thr	Cys
Asp Lys	Gly Val 275	Phe Ar	g Leu	His 280	Pro	Ser	Ser	Val	Pro 285	Gly	Pro	Asp
Phe Ser 290	Lys Asp	Asn Se	r Lys 295		Glu	Val	Pro	Val 300	Arg	Gly	Thr	Ala
Ala Phe 305	Tyr His	His Le 31		Ala	Ala	Ser	Gly 315	Cys	Lys	Gln	Thr	Ser 320
Thr Lys	Arg Lys	Val Gl 325	ı Glu	Met	Glu	Val 330	Asp	Asp	Phe	Tyr	Asp 335	Gly

Ile Lys Arg Leu Tyr Asn Glu Asp Asn Val Ser Glu Asn Val Gly Ser 340 345 350

Val Cys Gly Thr Asp Leu Ser Arg Gln Glu Gly His Ala Ser Pro Cys 355 360 365

Pro Pro Leu Gln Pro Val Ser Val Met 370 375

<210> 2 <211> 1134

<212> DNA

<213> Homo sapiens

<400> atqaaqttte cagqqeettt qqaaaaccaq aqattqtett teetqttqqa aaaqqeaate 60 actagggaag cacagatgtg gaaagtgaat gtgcggaaaa tgccttcaaa tcagaatgtt 120 tctccatccc agagagatga agtaattcaa tggctggcca aactcaagta ccaattcaac 180 ctttacccag aaacatttgc tctggctagc agtcttttgg ataggttttt agctaccgta 240 aaggeteate caaaataett gagttgtatt geaateaget gtttttteet agetgeeaag 300 360 actgttgagg aagatgagag aattccagta ctaaaggtat tggcaagaga cagtttctgt ggatgttcct catctgaaat tttgagaatg gagagaatta ttctggataa gttgaattgg 420 gatcttcaca cagccacacc attggatttt cttcatattt tccatgccat tgcagtgtca 480 actaggeete agttaetttt eagtttgeee aaattgagee eateteaaca tttggeagte 540 cttaccaagc aactacttca ctgtatggcc tgcaaccaac ttctgcaatt cagaggatcc 600 atgcttqctc tggccatggt tagtctggaa atggagaaac tcattcctga ttggctttct 660 cttacaattq aactqcttca qaaaqcacaq atqqataqct cccaqttqat ccattqtcqq 720 gagettgtgg cacateacet ttetactetg cagtetteec tgeetetgaa tteegtttat 780 gtctaccgtc ccctcaagca caccctggtg acctgtgaca aaggagtgtt cagattacat 840 ccctcctctg tcccaggccc agacttctcc aaggacaaca gcaagccaga agtgccagtc 900 agaggtacag cagcetttta ceateatete ecagetgeea gtgggtgeaa geagacetet 960 actaaacgca aagtagagga aatggaagtg gatgacttct atgatggaat caaacggctc 1020 tataatgaag ataatgtctc agaaaatgtg ggttctgtgt gtggcactga tttatcaaga 1080 caagagggac atgcttcccc ttgtccacct ttgcagcctg tttctgtcat gtag 1134

```
<210> 3
      33
<211>
<212> DNA
<213> Artificial Sequence
<220>
<223> Chemically synthesized
<400> 3
                                                                     33
cgttcccggg tatgaagttt ccagggcctt tgg
<210> 4
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Chemically synthesized
<400> 4
                                                                     31
acggctcgag ctacatgaca gaaacaggct g
<210> 5
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Chemically synthesized
<400> 5
Glu Asp Asn Val Ser Glu Asn Val Gly Ser Val Cys Gly Thr
```