Ejercicios 43-53

Luis Gerardo Arruti Sebastian Sergio Rosado Zúñiga

- Ej 43.
- Ej 44.
- **Ej 45.** Sean $\{R_i\}_{i=1}^n$ una familia de anillos (asociativos con 1). Considere el conjunto $R := \underset{i=1}{\times} R_i$, con las operaciones suma y producto dadas coordenada a coordenada, i.e., para $x = (x_i)_{i=1}^n$ y $y = (y_i)_{i=1}^n$ en R, definimos $x + y := (x_i + y_i)_{i=1}^n$ y $xy = (x_iy_i)_{i=1}^n$.

Pruebe que

- a) Con las operaciones anteriores R es un anillo con $1_R = (1_{R_i})_{i=1}^n$.
- b) Para cada $j \in [1, n]$, la j-ésima pritección $proy_j : R \to R_j$, $x = (x_i)_{i=1}^n \mapsto x_j$, es un morfismo en Rings y survectivo en Sets.
- c) R y $\{proy_j: R \to R_i\}_{i=1}^n$ son un producto en Rings para $\{R_i\}_{i=1}^n$.

Demostración. a) Sean $x, y \in R$, con $x = (x_i)_{i=1}^n$, $y = (y_i)_{i=1}^n$, $z = (z_i)_{i=1}^n$ y $0_R = (0_i)_{i=1}^n$ donde 0_i es el neutro aditivo de R_i para cada $i \in I = \{1, 2, \ldots, n\}$.

Grupo con respecto a la suma

- i) Como $x_i, y_i \in R_i \ \forall i \in I$ entonces $x_i + y_i \in R_i \ \forall i \in I$, así $x + y := (x_i + y_i)_{i=1}^n \in R$. Mas aún, $(x_i + y_i)_{i=1}^n = (y_i + x_i)_{i=1}^n$, por lo que x + y = y + x.
- ii) Como R es anillo para toda $i \in I$, entonces

$$(x+y)+z=[(x_i+y_i)+z_i]_{i=1}^n=[x_i+(y_i+z_i)]_{i=1}^n=x+(y+z).$$

- iii) $0_R + x = (0_i + x_i)_{i=1}^n = (x_i)_{i=1}^n = x$.
- iv) Definimos para cada $x \in R$ $-x := (-x_i)_{i=1}^n$, entonces $x + (-x) = (x_i + (-x_i))_{i=1}^n = (0_i)_{i=1}^n = 0_R$.

Por lo tanto R es un grupo abeliano con la suma.

Monoide con respecto a la multiplicación:

Como R_i es un anillo para cada $i \in I$ se tiene que

- i) $xy = (x_i y_i)_{i=1}^n \in R$ pues $x_i y_i \in R_i \quad \forall i \in I$.
- ii) $(xy)z = [(x_iy_i)z_i]_{i=1}^n = [x_i(y_iz_i)]_{i=1}^n = x(yz).$
- iii) $x1_R = (x_i 1_{R_i})_{i=1}^n = (x_i)_{i=1}^n = x = (x_i)_{i=1}^n = (1_{R_i} x_i)_{i=1}^n = 1_R x.$
- iv) $(x+y)z = [(x_i + y_i)z_i]_{i=1}^n = [x_iz_i + y_iz_i]_{i=1}^n = xz + yz.$

Por lo tanto R es un anillo con $1_R = (1_{R_i})_{i=1}^n$.

b Sea $j \in \{1, 2, ..., n\}$, tomamos $proy_j : R \to R_j$ tal que $z = (z_i)_{i=1}^n \mapsto z_j$ y sean x, y descritos como en el inciso a).

Entonces $proy_j(x+y) = proy_j[(x_i+y_i)_{i=1}^n] = x_j+y_j = proy_j(x)+proy_j(y)$ y $proy_j(xy) = proy_j[(x_iy_i)_{i=1}^n] = x_jy_j = proy_j(x)proy_j(y)$.

Además, si $a \in R_j$ para alguna $j \in \{1, 2, ..., n\}$, se tiene el elemento $\hat{a} \in R$ tal que $\hat{a} = (a_i)_{i=1}^n$ donde $a_i = 0 \quad \forall i \neq j \quad \text{y} \quad a_j = a$. Así $proy_j(\hat{a}) = a$ y en consecuencia $proy_j$ es un morfismo de anillos suprayectivo.

c Sea P un anillo y $\{p_i: P \to R_i\}_{i=1}^n$ una familia de morfismos de anillos. Sea $\varphi: P \to R$ tal que $\varphi(x) = x_p$ donde x es el elemento de R tal que $x_p = (x_i)_{i=1}^n$ con $x_i = p_i(x)$ para cada $i \in \{1, 2, ..., n\}$. Veamos que es morfismo de anillos.

Como p_i es morfismo de anillos y $p_i(x) \in R_i \quad \forall i \in \{1, 2, ..., n\}$ y para cada $x \in P$, entonces si $(a_i)_{i=1}^n = \varphi(x)$ se tiene que $a_i = p_i(x)$ para cada $i \in \{1, 2, ..., n\}$ por lo tanto φ está bien definida.

Sean $x, y \in P$, entonces

$$\varphi(x+y) = (x+y)_p = (p_i(x+y))_{i=1}^n = (p_i(x) + p_i(y))_{i=1}^n$$
$$= (p_i(x))_{i=1}^n + (p_i(y))_{i=1}^n = x_p + y_p = \varphi(x) + \varphi(y)$$

У

$$\varphi(xy) = (xy)_p = (p_i(xy))_{i=1}^n = (p_i(x)p_i(y))_{i=1}^n$$

= $(p_i(x))_{i=1}^n (p_i(y))_{i=1}^n = x_p y_p = \varphi(x)\varphi(y).$

Por lo tanto φ es un morfismo de anillos. Notemos que, para toda $x \in P$, $proy_j \circ \varphi(x) = proy_j(x_p) = p_j(x)$ para cada $j \in \{1, 2, ..., n\}$, por lo tanto $p_j = proy_j \circ \varphi$.

Por último si existiera $\eta: P \to R$ tal que $p_j = proy_j \eta$ para cada $j \in \{1, 2, ..., n\}$, entonces para cada $x \in P$ se tiene que $\eta(x) \in R$, es decir, $\eta(x) = (x_i)_{i=1}^n$ con $x_i \in R_i \quad \forall i \in \{1, 2, ..., n\}$. Ahora, como $proy_j \eta(x) = p_j(x)$, entonces $x_j = p_j(x) \quad \forall j \in \{1, 2, ..., n\}$, es decir, $\eta(x) = (p_i(x))_{i=1}^n = x_p = \varphi(x)$.

Por lo tanto φ es único y así R y $\{proy_j : R \to R_i\}_{i=1}^n$ son un producto en Rings para $\{R_i\}_{i=1}^n$.

 \mathbf{Ej} 46. Para una categoría $\mathscr{C},$ pruebe que las siguientes condiciones son equivalentes

- a) $\mathscr C$ tiene objeto cero y biproductos $A \coprod A$ en $\mathscr C$, $\forall A \in \mathscr C$.
- b) \mathscr{C}^{op} tiene objeto cero y biproductos $A \coprod A$ en \mathscr{C}^{op} , $\forall A \in \mathscr{C}$.

Demostración. Notemos que $\mathscr C$ tiene objeto cero si y sólo si $\mathscr C^{op}$ tiene objeto cero, pues si $\mathscr C$ tiene objeto cero 0, entonces $|\operatorname{Hom}_{\mathscr C}(X,0)|=1=|\operatorname{Hom}_{\mathscr C}(0,X)|, \quad \forall X\in\mathscr C$, pero esto pasa si y sólo si $|\operatorname{Hom}_{\mathscr C}(0,X)|=1=|\operatorname{Hom}_{\mathscr C}(X,0)|, \quad \forall X\in\mathscr C^{op}$.

 $b \to a$ Es análogo a lo anterior pues $(\mathscr{C}^{op})^{op} = \mathscr{C}$.

Ej 47.

Ej 48.

 \mathbf{Ej} 49. Pruebe que, para un anillo R

a) Mod(R) es abeliana.

3

b) mod(R) es abeliana si R es un anillo artiniano izquierdo, donde mod(R) es la subcategoría de Mod(R), cuyos objetos son los R-módulos finitamente generados.

Demostración. [a] Por los ejercicios 29 y 30, Mod(R) tiene kerneles y cokerneles, por el ejercicio 32 es normal y conormal y por el ejercicio 41 tiene productos y coproductos (en particular tiene productos y coproductos finitos) entonces por el teorema 1.10.1 c) se tiene que Mod(R) es abeliana.

Ej 50. Sean $\mathscr A$ y $\mathscr B$ categorías aditivas y $F:\mathscr A\to\mathscr B$ un funtor de cualquier varianza. Pruebe que los siguientes son equivalentes:

- a) F es aditivo.
- b) $F_{op} := F \circ D_{\mathscr{A}^{op}} : \mathscr{A}^{op} \longrightarrow \mathscr{B}$ es aditivo.
- c) $F^{op} := D_{\mathscr{B}} \circ F : \mathscr{A} \longrightarrow \mathscr{B}^{op}$ es aditivo.
- d) $F_{op}^{op} := D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}} : \mathscr{A}^{op} \longrightarrow \mathscr{B}^{op}$ es aditivo.

(Se cambió ligeramente el enunciado para fines practicos de la demostración.)

 $\begin{array}{ll} \textit{Demostraci\'on}. \ \text{Recordemos} \ \text{que} \ \mathscr{A}^{op} \ \text{y} \ \mathscr{B}^{op} \ \text{son categor\'as} \ \text{abelianas por} \\ 1.9.15, \ \text{tambi\'en} \ \text{que} \ D_{\mathscr{A}^{op}}: \mathscr{A}^{op} \longrightarrow \mathscr{A} \ \text{es un funtor contravariante tal} \\ \text{que} \ (\ A \stackrel{f}{\longrightarrow} B \) \mapsto (\ B \stackrel{f^{op}}{\longrightarrow} A \) \ \text{y, como} \ \text{Hom}_{\mathscr{A}}(X,Y) \\ \text{es un grupo abeliano, } \text{Hom}_{\mathscr{A}^{op}}(Y,X) \ \text{es tambi\'en un grupo abeliano.} \end{array}$

Se probará el caso en que F es covariante

 $g^{op}: \operatorname{Hom}_{\mathscr{A}^{op}}(C,B), \text{ entonces}$

 $\underbrace{ [a) \Rightarrow b }$ Supongamos F es aditivo. Entonces $F: \operatorname{Hom}_{\mathscr{A}}(X,Y) \longrightarrow \operatorname{Hom}_{\mathscr{B}}(F(X),F(Y))$ es un morfismo en Ab para toda $X,Y \in \mathscr{A}$. Así para cualesquiera $f^{op}: \operatorname{Hom}_{\mathscr{A}^{op}}(B,A)$ y

$$F_{op}(f^{op} \circ g^{op}) = F \circ D_{\mathscr{A}^{op}}(f^{op} \circ g^{op}) = F \circ D_{\mathscr{A}^{op}}((g \circ f)^{op}) = F(g \circ f)$$

$$= F(g) \circ F(f) = F \circ D_{\mathscr{A}^{op}}(g^{op}) \circ F \circ D_{\mathscr{A}^{op}}(f^{op}) = F_{op}(g^{op}) \circ F_{op}(f^{op}).$$

Es decir, F_{op} es un funtor aditivo (pues es contravariante).

 $b \Rightarrow c$ Supongamos F_{op} es aditivo. Entonces F_{op} : $\operatorname{Hom}_{\mathscr{A}^{op}}(Y,X) \longrightarrow \operatorname{Hom}_{\mathscr{R}}(F(X),F(Y))$ es un morfismo en Ab para toda $X,Y \in \mathscr{A}$. Así para cualesquiera $f:\operatorname{Hom}_{\mathscr{A}}(B,C)$ y $g:\operatorname{Hom}_{\mathscr{A}}(A,B)$, entonces

$$\begin{split} F^{op}(f\circ g) &= D_{\mathscr{B}}\circ F(f\circ g) = D_{\mathscr{B}}(F(f\circ g)) = (F(f\circ g))^{op} = [F((g^{op}\circ f^{op})^{op})]^{op} \\ &= [F\circ D_{\mathscr{A}^{op}}(g^{op}\circ f^{op})]^{op} = [F\circ D_{\mathscr{A}^{op}}(f^{op})\circ F\circ D_{\mathscr{A}^{op}}(g^{op})]^{op} \\ &= [F(f)\circ F(g)]^{op} = (F(g))^{op}\circ (F(f))^{op} = D_{\mathscr{B}}\circ F(g)\circ D_{\mathscr{B}}\circ F(f) = F^{op}(g)\circ F^{op}(f). \end{split}$$

Es decir, F^{op} es un funtor aditivo (pues es contravariante).

 $c) \Rightarrow d$ Supongamos F^{op} es aditivo. Entonces

 $F^{op}: \overline{\operatorname{Hom}}_{\mathscr{A}}(X,Y) \longrightarrow \operatorname{Hom}_{\mathscr{B}^{op}}(F(Y),F(X))$ es un morfismo en Ab para toda $X,Y \in \mathscr{A}$. Así para cualesquiera $g: \operatorname{Hom}_{\mathscr{A}}(A,B)$ y $f: \operatorname{Hom}_{\mathscr{A}}(B,C)$, entonces

$$\begin{split} F^{op}_{op}(f^{op} \circ g^{op}) &= D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}}(f^{op} \circ g^{op}) = D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}}((g \circ f)^{op}) \\ &= D_{\mathscr{B}} \circ F(g \circ f) = D_{\mathscr{B}} \circ F(f) \circ D_{\mathscr{B}} \circ F(g) \\ &= D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}}(f^{op}) \circ D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}}(g^{op}) \\ &= F^{op}_{op}(f^{op}) \circ F^{op}_{op}(g^{op}). \end{split}$$

Es decir, F_{op}^{op} es un funtor aditivo covariante.

 $d) \Rightarrow a$ Supongamos F_{op}^{op} es aditivo. Entonces $F_{op}^{op}: \operatorname{Hom}_{\mathscr{A}^{op}}(X,Y) \longrightarrow \operatorname{Hom}_{\mathscr{B}^{op}}(F(X),F(Y))$ es un morfismo en Ab para toda $X,Y \in \mathscr{A}$. Así para cualesquiera $g: \operatorname{Hom}_{\mathscr{A}}(A,B)$ y $f: \operatorname{Hom}_{\mathscr{A}}(B,C)$, entonces

$$\begin{split} F(f\circ g) &= F\circ D_{\mathscr{A}^{op}}(g^{op}\circ f^{op}) = [D_{\mathscr{B}}\circ F\circ D_{\mathscr{A}^{op}}(g^{op}\circ f^{op})]^{op} \\ &= [D_{\mathscr{B}}\circ F\circ D_{\mathscr{A}^{op}}(g^{op})\circ D_{\mathscr{B}}\circ F\circ D_{\mathscr{A}^{op}}(f^{op})]^{op} = [D_{\mathscr{B}}\circ F(g)\circ D_{\mathscr{B}}\circ F(f)]^{op} \\ &= (D_{\mathscr{B}}\circ F(f))^{op}\circ (D_{\mathscr{B}}\circ F(g))^{op} = F(f)\circ F(g). \end{split}$$

Es decir, F_{op}^{op} es un funtor aditivo covariante.

El caso en que F es contravariante es análogo a esta demostración.

Ej 51.

Ej 52.

Ej 53. Sea $G: \mathscr{A} \longrightarrow \mathscr{B}$ un funtor contravariante entre categorías aditivas. Pruebe que G s aditivo si y sólo si manda productos finitos en \mathscr{A} a coproductos finitos en \mathscr{B} .

Demostración. Decimos que un funtor contravariante $G: \mathcal{A} \longrightarrow \mathcal{B}$ entre categorías aditivas manda productos finitos en \mathcal{A} a coproductos finitos en \mathcal{B} si el funtor $G_{op} := G \circ D_{\mathcal{A}^{op}}$ preserva coproductos finitos en \mathcal{A}^{op} .

Supongamos G es aditivo, entonces $G_{op} := G \circ D_{\mathscr{A}^{op}}$ es aditivo por el ejercicio 50. Así, por 1.10.2 G_{op} preserva coproductos finitos en \mathscr{B} .

Ahora, si suponemos que G manda productos finitos de $\mathscr A$ en coproductos finitos de $\mathscr B$ se tiene por definición que $G\circ D_{\mathscr A^{op}}$ preserva coproductos finitos en $\mathscr A^{op}$, entonces por 1.10.2 G_{op} es aditivo, así G es aditivo.