Examen partiel - GEL-2002 H21

Amine Miled 22 février 2021

La durée de l'examen est de 2h50.

Voici le circuit à analyser pour l'examen :

1. Section diode (3 points)

Pour cette section, considérer uniquement la section diode du circuit.

- 1. Quels sont les trois modèles de diodes? Dessiner le schéma et le graphe pour chaque modèle.
- 2. Quels sont les comportements possibles pour la section SD? (indice : il y a deux comportements possibles)
- 3. Trouver les expressions pour les tensions V_1 , V_2 , V_3 , V_4 ainsi que pour les courants I_0 , I_1 , I_2 , I_3 , I_4 , I_5 , I_6 , I_7 , en fonction de V_{DD} , V_{SS} , et la tension de seuil des diodes.

2. Section MOS (5 points)

Pour cette section, considérer uniquement la section MOS du circuit. Également, utiliser le modèle des diodes sans leur résistance interne.

- 4. Nommer le type des transistors T_1 et T_2 .
- 5. Expliquer quel est le rôle des capacités C_1 , C_2 et C_3 .
- 6. Trouver les expressions pour les tensions V_5 , V_6 et les courants I_{R_1} , I_{R_2} et I_{R_3} en fonction des résistances, de V_{DD} , V_{SS} et de la tension de seuil V_{th} du transistor.
- 7. a. Quelle est la différence entre le modèle grand signal et le modèle petit signal d'un transistor?
 - b. Quelles-sont les deux considérations particulières faut-il prendre lorsque qu'on utilise le modèle petit signal?
- 8. Dessiner le modèle petit signal du circuit.
- 9. Trouver le R_{in_1} et le R_{out_1} .
- 10. Trouver le gain du transistor $\frac{V_6}{V_5}$.

3. Section bipolaire (5 points)

Pour cette section, considérer uniquement la section bipolaire du circuit.

- 11. Trouver les expressions pour les tensions V_7 , V_8 , V_9 et les courants I_{R_4} , I_{R_5} , I_{R_6} , en fonction de V_{DD} , V_{SS} et de la tension de seuil V_{th} du transistor.
- 12. Dessiner le modèle petit signal du circuit.
- 13. Trouver le R_{in_2} et le R_{out_2} .
- 14. Trouver le gain du transistor $\frac{V_9}{V_7}$.

4. Circuit global (2 points)

Pour cette section, considérer à la fois le section MOS et la section bipolaire du circuit.

- 15. Dessiner le modèle petit signal pour le circuit complet.
- 16. Déduire $\frac{V_6}{V_5}$, sans réanalyser le circuit MOS.
- 17. Déduire $\frac{V_9}{V_5}$, sans réanalyser le circuit MOS.

5. Logique (2 points)

- 18. Dessiner le schéma pour une porte logique ET à deux entrées et une porte logique OU à deux entrées.
- 19. Dessiner le schéma pour la fonction logique F = (a.b.c + d).a.b.

6. Convertisseur DC (3 points)

- 20. Dessiner le circuit qui convertit un signal alternatif centré sur zéro en un signal continu. Utiliser les élements suivants : pont de diodes, capacité, dione Zener.
- 21. Expliquer le rôle de chaque élement du circuit en dessinant le graphe des transformations effectuées sur le signal alternatif.