ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра общей физики

Лабораторная работа 2.1.4

Определение теплоемкости твердых тел

Преподаватель: доцент Игуманов А.Ю.

Обучающийся: Глотов А.А

1 Введение

1.1 Аннотация

Данная работа посвящена изучению явления нагрева твердых тел и определению их теплоемкости. Используются следующие методы: анализ и сведение к полиномиальной функции графиков зависимости R(t), их экстраполяция к нулевой точке. Зависимость сопротивления от времени снимается с помощью электронных омметра и секундомера

Цель работы:

- 1. измерение количества подведенного тепла и вызванного им нагрева твердого тела
- 2. определение теплоемкости по экстраполяции отношения $\Delta Q/\Delta T$ к нулевым потерям тепла

Приборы и материалы:

- калориметр с нагревателем и термометром сопротивления
- амперметр
- вольтметр
- мост постоянного тока
- источник питания 36 В

1.2 Теоретические сведения

В данной работе происходит измерение теплоемкости твердого тела с использованием следующей принципиальной связи:

$$C = \frac{\Delta Q}{\Delta T} \tag{1}$$

Определение количества теплоты, переданного телу вызывает некоторые затруднения, так как часть теплоты будет передано окружающей среде через стенки калориметра. В итоге, количество теплоты, переданное телу с учетом теплопотерь через стенки можно определить как:

$$\Delta Q = P\Delta t - \lambda \left(T - T_{\kappa} \right) \Delta t, \tag{2}$$

где P – мощность нагревателя, λ – коэффициент теплоотдачи стенок калориметра, T – температура тела, T_{κ} – температура окружающего калориметр воздуха, Δt – время, в течении которого происходит нагрев.

Из уравнений (1) и (3) получаем:

$$C = \frac{P - \lambda \left(T - T_{\kappa}\right)}{\Delta T / \Delta t} \tag{3}$$

Формула (3) является основной расчетной формулой данной работы.

1.3 Схема эксперимента

При неизменной мощности нагревателя определим зависимость сопротивления термометра от времени для пустого калориметра Для этого сначала сбалансируем мост. Замкнем цепь нагревателя и одновременно включим секундомер. Установим на мосте постоянного тока сопротивление, немного большее (на 0,5%), чем это необходимо для балансировки (стрелка гальванометра при этом отклонится от нулевого значения). В тот момент, когда сопротивление термометра возрастет до значения, установленного на мосте, и балансировка восстановится, отметим показания секундомера. Затем вновь увеличим сопротивление на мосте и отметим время восстановления балансировки и т. д. Таким образом получим 10–15 точек.

Охладим калориметр до исходной температуры. Поместим туда исследуемое тело и проведем аналогичную серию измерений. Повторим вышеописанные действия для каждого из трех исследуемых конусов. По полученным четырем наборам точек построим графики зависимости $\mathbf{R}(t)$ и проведем плавные кривые.

Определим полиномиальные уравнения этих кривых, а затем по этим данных - уравнение касательных к ним. Экстраполируем графики полученных уравнений к точке нулевых потерь тепла

Определим теплоемкости исследуемых систем "калориметр + конус" и пустого калориметра. По разности значений определим значения теплоемкостей наших конусов.

1.4 Методика измерений

В формуле (3) в знаменателе стоит величина, для определения которой воспользуемся следующей методикой:

Построим график зависимости $\frac{\Delta T}{\Delta t} = f\left(T\right)$ для широкого диапазона температур, после чего экстраполируем его для значения $T = T_{\kappa}$. В таком случае формула (3) приобретает вид:

$$C = \frac{P}{(\Delta T/\Delta t)_{T_e}} \tag{4}$$

Измерение температуры строится на принципе линейной зависимости сопротивления материала от изменения температуры по закону:

$$R_T = R_0 \left(1 + \alpha \Delta T \right), \tag{5}$$

Где R_0 – сопротивление термометра при комнатной температуры, R_T – сопротивление термометра при данной температуре. Учитывая данную зависимость, получаем итоговый вид для основной формулы:

$$C = \frac{PR\alpha}{\left(\frac{dR}{dt}\right)_{T_{K}} \left(1 + \alpha\Delta T_{K}\right)} \tag{6}$$

Коэффициент α , входящий в данную формулу для меди равен $\alpha=4.28\cdot 10^{-3}\,K^{-1}$, все остальные величины определяются экспериментально.

1.5 Экспериментальная установка

Установка состоит из калориметра с пенопластовой изоляцией, помещенного в ящик из многослойной клееной фанеры. Внутренние стенки калориметра выполнены из материала с высокой теплопроводностью. Надежность теплового контакта между телом и стенками обеспечивается их формой: они имеют форму

Рис. 1: Схема установки

усеченных конусов и плотно прилегают друг к другу. Для выталкивания образца служит винт в донышке внутренней стенки калориметра.

В стенку калориметра вмонтированы электронагреватель и термометр сопротивления. Схема включения нагревателя изображена на рисунке (1). Система реостатов позволяет установить нужную силу тока в цепи нагревателя. По амперметру и вольтметру определяется мощность, выделяемая током в нагревателе. Величина сопротивления термометра нагревателя измеряется мостом постоянного тока.

Рис. 2: Устройство калориметра

На рисунке изображено устройство калориметра. Запишем также иные параметры экспериментальной установки

материал образца:	железо	латунь	алюминий
масса образца, г	$813,2 \pm 0,1$	$868,7 \pm 0,1$	$294,2 \pm 0,1$

Таблица 1: Параметры исследуемых образцов

$$R_0 = 17.73 \pm 0.01 \, \mathrm{Om}, P = 10.8 \mathrm{Bt}$$

2 Результаты измерений и обработка данных

Снимем зависимость R(t) и занесем полученные данные в таблицу

Enemy		Fe	!	L		Al		
$T_0 = 292.4K$		$T_0 = 29$	03.2K	$T_0 = 29$	05.8K	$T_0 = 29$	7.0K	
R, Om	t, c	R, Ом	t, c	R, Ом	t, c	R, Ом	t, c	
17.730	0	17.679	0	17.722	0	17.805	0	
17.780	34	17.747	39	17.772	40	17.855	44	
17.830	79	17.797	104	17.822	94	17.905	101	
17.880	124	17.847	172	17.872	160	17.955	161	
17.930	170	17.897	242	17.922	223	18.005	227	
17.980	220	17.947	315	17.972	294	18.055	293	
18.030	270	17.997	391	18.022	365	18.105	361	
18.080	321	18.047	470	18.072	439	18.155	427	
18.130	374	18.097	546	18.122	511	18.205	498	
18.180	429	18.147	628	18.172	590	18.255	570	
18.230	486	18.197	710	18.222	667	18.305	645	
18.280	545	18.247	796	18.272	749	18.355	719	
18.330	605	18.297	884	18.322	831	18.405	797	
18.380	665	18.347	973	18.372	918	18.455	875	
18.430	729	18.397	1065	18.422	1008	18.505	956	

По полученным точкам построим графики зависимостей R(t). Для наглядности сдвинем их все в точку (0;0)

Приведем приближенные уравнения каждой из наших кривых. enemy: $R=-8*10^{-13}*t^4+2*10^{-9}*t^3-1*10^{-6}*t^2+0,0013*t+17.73$ Fe: $R=-4*10^{-13}*t^4+1*10^{-9}*t^3-1*10^{-6}*t^2+0,001*t+17.679$ L: $R=-6*10^{-13}*t^4+1*10^{-9}*t^3-1*10^{-6}*t^2+0,0011*t+17.722$ Al: $R=-5*10^{-13}*t^4+1*10^{-9}*t^3-9*10^{-7}*t^2+0,001*t+17.805$

Продиффиринцируем наши уравнения и подставим полученные ранее значения времени, таким образом по полученным точкам построим и определим уравнение зависимости $\frac{dR}{dt}(R)$. Из-за очевидности преобразований, зафиксируем здесь только конечные точки и полученные уравнения.

Enemy		Fe		L		Al	
$\frac{dR}{dt}, \frac{O_{M}}{c} * 10^{-4}$	R, Ом	$\frac{dR}{dt}$, $\frac{O_{\rm M}}{c}$ * 10^{-4}	R, Ом	$\frac{dR}{dt}$, $\frac{O_{\rm M}}{c}$ * 10^{-4}	R, Ом	$\frac{dR}{dt}$, $\frac{O_{\rm M}}{c}$ * 10^{-4}	R, Ом
13.4	17.730	10.2	17.679	11.1	17.722	10.5	17.805
12.7	17.780	9.5	17.747	10.2	17.772	9.7	17.855
11.8	17.830	8.5	17.797	9.2	17.822	9.0	17.905
11.1	17.880	7.7	17.847	8.2	17.872	8.3	17.955
10.5	17.930	7.0	17.897	7.5	17.922	7.8	18.005
10.0	17.980	6.6	17.947	7.0	17.972	7.4	18.055
9.7	18.030	6.3	17.997	6.7	18.022	7.2	18.105
9.4	18.080	6.2	18.047	6.5	18.072	7.0	18.155
9.2	18.130	6.1	18.097	6.5	18.122	6.9	18.205
9.0	18.180	6.1	18.147	6.5	18.172	6.9	18.255
8.8	18.230	6.1	18.197	6.4	18.222	6.8	18.305
8.6	18.280	6.0	18.247	6.3	18.272	6.7	18.355
8.3	18.330	5.8	18.297	6.1	18.322	6.5	18.405
8.0	18.380	5.3	18.347	5.5	18.372	6.1	18.455
7.4	18.430	4.6	18.397	4.6	18.422	5.5	18.505

Запишем получившиеся уравнения (приблизительные) $\frac{dR}{dt}(R)$: enemy: $\frac{dR}{dt}(R) = -0.0047*R^4 + 0.3359*R^3 - 9.0314*R^2 + 107.8968*R - 487.2627$ Fe: $\frac{dR}{dt}(R) = -0.0092*R^4 + 0.6558*R^3 - 17.6176*R^2 + 210.3259*R - 941.4295$ L: $\frac{dR}{dt}(R) = -0.0112*R^4 + 0.8022*R^3 - 21.5944*R^2 + 258.3006*R - 1158.4233$ Al: $\frac{dR}{dt}(R) = -0.0059x4 + 0.4233x3 - 11.4197x2 + 136.9071x - 615.3561$

Экстраполируем наш график к точке, где потери тепла нулевые, т.е. в точку, где температура системы равна комнатной (точка начального сопротивления)

эксперимент:	enemy	Fe	L	Al
$\frac{dR}{dt}(R), \frac{O_{\rm M}}{c} * 10^{-4}$	12.22	8.30	9.43	10.56

Теперь по формуле (6) определим теплоемкости наших систем

эксперимент:	enemy	Fe	L	Al
$C, \frac{\Pi \times}{K}$	669.5	1039.2	971.7	886.7

Зная, что полученные теплоемкости - сумма теплоемкостей калориметра и нашего тела, посчитаем удельные теплоемкости.

Погрешности наших измерений складываются из случайной и систематической. В нашем случае, систематическая погрешность мала, а случайная определяется погрешностями экстраполяции. С помощью специализированных программ определим ее.

эксперимент:	enemy	Fe	L	Al
$c, \frac{\coprod_{\kappa_{\Gamma} * K}}{\kappa_{\Gamma} * K}$	-	454.6	347.9	738.3
относительная погрешность:	0.011	0.007	0.005	0.009

Тогда итоговые значения теплоемкостей:

$$c_{Fe} = (455 \pm 8) \frac{\text{Дж}}{\text{кг*}K}$$
 $c_L = (347 \pm 6) \frac{\text{Дж}}{\text{кг*}K}$
 $c_{Fe} = (738 \pm 15) \frac{\text{Дж}}{\text{кг*}K}$

3 Обсуждение результатов и выводы

В ходе работы были достигнуты следующие цели:

- Зафиксирована зависимость сопротивления калориметра в зависимости от его температуры и содержимого
- Экспериментально получены значения теплоемкостей исследуемых твердых тел и удельных теплоемкостей материалов, из которых они были изготовлены, а также калориметра

Значения теплоемкостей получены с довольно неплохой точностью (до 2%), что объясняется малой погрешностью измерительных приборов, а также компьютизированными методами обработки данных, которые позволили установить максимально подходящие функции под полученные точки.

Итоговые значения удельных теплоемкостей также получены с неплохой точностью. Однако удовлетворительным можно считать только результат измерений для железного тела $((455\pm8)\frac{Д_{\mathcal{K}}}{\mathrm{Kr}*K}$ - эксперимент и $440\,\frac{Д_{\mathcal{K}}}{\mathrm{Kr}*K}$ - табличное значение). Для латунного $((347\pm6)\frac{Д_{\mathcal{K}}}{\mathrm{Kr}*K}$ - эксперимент и $400\,\frac{Д_{\mathcal{K}}}{\mathrm{Kr}*K}$ - табличное значение) алюминиевого $((738\pm15)\frac{Д_{\mathcal{K}}}{\mathrm{Kr}*K}$ - эксперимент и $920\,\frac{Z_{\mathcal{K}}}{\mathrm{Kr}*K}$ - табличное значение) образцов результат нельзя считать приемлемым.

В связи с большим расхождением двух из трех результатов с табличными значениями, можно сделать несколько выводов. Во-первых, предложенный метод ручной обработки данных с помощью построения касательных не оправдан. При его использовании погрешность увеличилась бы многократно, а лучший результат можно было бы получить только случайным образом. Во-вторых,следует задуматься о перепроверке результатов с другими образцами и на других установках. Если результат повторится - это будет говорить о крайне низкой точности метода. Если ошибка будет исключена, то можно будет утверждать о неисправности установки