Facts about Rings of Fractions

1 Introduction

Fact 1.1. For saturated S, if f(a) is a unit in $S^{-1}A$, then $a \in S$.

Proof.

$$\frac{a}{1}\cdot\frac{b}{t}=\frac{1}{1}$$

$$\frac{ab}{t} = \frac{1}{1}$$

$$(ab,t)\equiv (1,1)$$

$$(ab - t)u = 0$$

$$abu = tu$$

$$abu \in S$$

As S is saturated, $a \in S$.

Fact 1.2. For A a field, and $S = \{-1, 1\}, S^{-1}A \cong A$.

Proof. It is easily verified that the standard isomorphism from A to $S^{-1}A$ is 1-1 and onto. \Box

Fact 1.3. For A a field, and S a multiplicatively closed subset of A not containing zero, $S^{-1}A \cong A$.

Proof. The standard homomorphism $f: a \mapsto a/1$ of A into $S^{-1}A$ is injective: if a/1 = a'/1 then $a \cdot 1 = a1 \cdot 1$, then a = a'. It is surjective: $f(as^{-1}) = f(a)f(s^{-1}) = (a/1)(s^{-1}/1) = \ldots$, but $s^{-1}/1 = 1/s$ as $s^{-1}s = 1 \cdot 1$; continuing, $\ldots = (a/1)(1/s) = a/s$.

Fact 1.4. For A a field, and S a multiplicatively closed subset of A not containing zero, $S^{-1}A \cong A$.

Proof. The standard homomorphism $f: a \mapsto a/1$ of A into $S^{-1}A$ is injective: if a/1 = a'/1 then $a \cdot 1 = a1 \cdot 1$, then a = a'. It is surjective: $f(as^{-1}) = f(a)f(s^{-1}) = (a/1)(s^{-1}/1) = \ldots$, but $s^{-1}/1 = 1/s$ as $s^{-1}s = 1 \cdot 1$; continuing, ...

Example 1.5. Some example.