# 6 FCC §2.1053 & §24.238(a) - Spurious Radiated Emissions

## **6.1** Applicable Standards

According to FCC §24.238(a) the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

### **6.2** Test Procedure

The transmitter was placed on the turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =  $10 \log (TX \text{ Power in Watts}/0.001)$  – the absolute level Spurious attenuation limit in dB =  $43 + 10 \log_{10}$  (power out in Watts)

## 6.3 Test Equipment List and Details

| Manufacturer       | Description                   | Model No.     | Serial No.                   | Calibration<br>Date | Calibration<br>Interval |  |
|--------------------|-------------------------------|---------------|------------------------------|---------------------|-------------------------|--|
| Sunol Science Corp | System Controller             | SC99V         | 122303-1                     | N/A                 | N/A                     |  |
| Sunol Sciences     | Antenna,<br>Biconi-Log        | JB3           | A020106-2                    | 2014-09-17          | 1 year                  |  |
| COM-POWER          | Antenna, Dipole               | AD-100        | 721033DB1, 2<br>721033DB3, 4 | 2014-11-03          | 2 year                  |  |
| Hewlett Packard    | Pre-amplifier<br>1GHz-26.5GHz | 8447D         | 2944A06639                   | 2015-05-08          | 1 year                  |  |
| HP/ Agilant        | Pre Amplifier                 | 8449B OPT HO2 | 3008A0113                    | 2015-05-19          | 1 year                  |  |
| Agilent            | Analyzer,<br>Spectrum         | E4440A        | MY44303352                   | 2014-11-13          | 1 year                  |  |
| Eaton              | Antenna, Horn                 | 96001         | 2617                         | 2014-11-18          | 1 year                  |  |
| EMCO               | Antenna, Horn                 | 3115          | 9511-4627                    | 2015-01-15          | 1 year                  |  |

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

# 6.4 Test Setup Block Diagram

**Radiated Emissions Testing** 



## **6.5** Test Environmental Conditions

| Temperature:       | 20-21°C         |
|--------------------|-----------------|
| Relative Humidity: | 47-49 %         |
| ATM Pressure:      | 101.4-101.6 kPa |

The testing was performed by Bo Li on 2014-04-18 in 5 Meter Chamber 3.

# 6.6 Test Results

# **Carrier Wave Signal**

Downlink (Channel frequency = 1940 MHz)

| Indica             | ated                   |                  | Test Antenn |                   |                    | S              | Substituted |      |                            |                |                |
|--------------------|------------------------|------------------|-------------|-------------------|--------------------|----------------|-------------|------|----------------------------|----------------|----------------|
| Frequency<br>(MHz) | S.A.<br>Amp.<br>(dBuV) | Azimuth (degree) | Height (cm) | Polarity<br>(H/V) | Frequency<br>(MHz) | Level<br>(dBm) | Correction  |      | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 67.45              | 50.89                  | 76               | 162         | V                 | 67.45              | -45.85         | 0           | 0.2  | -46.05                     | -13            | -33.05         |
| 66.869             | 43.42                  | 311              | 235         | Н                 | 66.869             | -53.6          | 0           | 0.2  | -53.8                      | -13            | -40.8          |
| 46.35              | 48.02                  | 360              | 100         | V                 | 46.35              | -48.72         | 0           | 0.2  | -48.92                     | -13            | -35.92         |
| 106.156            | 43.54                  | 275              | 258         | Н                 | 106.156            | -54.12         | 0           | 0.26 | -54.38                     | -13            | -41.38         |
| 1000               | 49.35                  | 260              | 100         | V                 | 1000               | -54.37         | 6.845       | 0.64 | -48.165                    | -13            | -35.165        |
| 3862               | 52.73                  | 89               | 100         | Н                 | 3862               | -40.68         | 9.251       | 1.47 | -32.899                    | -13            | -19.899        |
| 3862               | 54.63                  | 290              | 100         | V                 | 3862               | -39.66         | 8.653       | 1.47 | -32.477                    | -13            | -19.477        |
| 1990               | 46.41                  | 307              | 100         | Н                 | 1990               | -53.81         | 8.983       | 0.92 | -45.747                    | -13            | -32.747        |

# Downlink (Channel frequency = 1960 MHz)

| Indica             | ated                   |                  | Test A      | ntenna            |                 | S              | Substituted |      |                            |                |                |
|--------------------|------------------------|------------------|-------------|-------------------|-----------------|----------------|-------------|------|----------------------------|----------------|----------------|
| Frequency<br>(MHz) | S.A.<br>Amp.<br>(dBuV) | Azimuth (degree) | Height (cm) | Polarity<br>(H/V) | Frequency (MHz) | Level<br>(dBm) | Correction  |      | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 67.45              | 50.89                  | 76               | 162         | V                 | 67.45           | -45.85         | 0           | 0.2  | -46.05                     | -13            | -33.05         |
| 66.869             | 43.42                  | 311              | 235         | Н                 | 66.869          | -53.6          | 0           | 0.2  | -53.8                      | -13            | -40.8          |
| 46.35              | 48.02                  | 360              | 100         | V                 | 46.35           | -48.72         | 0           | 0.2  | -48.92                     | -13            | -35.92         |
| 106.156            | 43.54                  | 275              | 258         | Н                 | 106.156         | -54.12         | 0           | 0.26 | -54.38                     | -13            | -41.38         |
| 3918               | 65                     | 52               | 100         | V                 | 3918            | -29.29         | 8.653       | 1.47 | -22.107                    | -13            | -9.107         |
| 3918               | 61.02                  | 21               | 100         | Н                 | 3918            | -32.39         | 9.251       | 1.47 | -24.609                    | -13            | -11.609        |
| 9640               | 45.42                  | 163              | 100         | V                 | 9640            | -34.22         | 11.235      | 2.3  | -25.285                    | -13            | -12.285        |
| 9658               | 45.94                  | 227              | 100         | Н                 | 9658            | -40.52         | 12.074      | 2.3  | -30.746                    | -13            | -17.746        |

# Downlink (Channel frequency = 1980 MHz)

| Indica             | ated                   |                  | Test A      | ntenna            |                    | 5              | Substituted |      |                            |                |                |
|--------------------|------------------------|------------------|-------------|-------------------|--------------------|----------------|-------------|------|----------------------------|----------------|----------------|
| Frequency<br>(MHz) | S.A.<br>Amp.<br>(dBuV) | Azimuth (degree) | Height (cm) | Polarity<br>(H/V) | Frequency<br>(MHz) | Level<br>(dBm) | Correction  |      | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 67.45              | 50.89                  | 76               | 162         | V                 | 67.45              | -45.85         | 0           | 0.2  | -46.05                     | -13            | -33.05         |
| 66.869             | 43.42                  | 311              | 235         | Н                 | 66.869             | -53.6          | 0           | 0.2  | -53.8                      | -13            | -40.8          |
| 46.35              | 48.02                  | 360              | 100         | V                 | 46.35              | -48.72         | 0           | 0.2  | -48.92                     | -13            | -35.92         |
| 106.156            | 43.54                  | 275              | 258         | Н                 | 106.156            | -54.12         | 0           | 0.26 | -54.38                     | -13            | -41.38         |
| 4457               | 45.76                  | 126              | 100         | V                 | 4457               | -47.03         | 10.398      | 1.39 | -38.022                    | -13            | -25.022        |
| 3975               | 62.83                  | 165              | 100         | Н                 | 3975               | -31.06         | 9.283       | 1.52 | -23.297                    | -13            | -10.297        |
| 3975               | 65.81                  | 93               | 100         | V                 | 3975               | -27.17         | 8.817       | 1.52 | -19.873                    | -13            | -6.873         |
| 9613               | 45.52                  | 181              | 100         | Н                 | 9613               | -40.94         | 12.074      | 2.3  | -31.166                    | -13            | -18.166        |

# Uplink (Channel frequency = 1860 MHz)

| Indica             | ated                   |                  | Test A      |                   |                    | 9              | Substituted                     |                       |                            |                |                |
|--------------------|------------------------|------------------|-------------|-------------------|--------------------|----------------|---------------------------------|-----------------------|----------------------------|----------------|----------------|
| Frequency<br>(MHz) | S.A.<br>Amp.<br>(dBuV) | Azimuth (degree) | Height (cm) | Polarity<br>(H/V) | Frequency<br>(MHz) | Level<br>(dBm) | Ant. Gain<br>Correction<br>(dB) | Cable<br>Loss<br>(dB) | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 67.45              | 50.89                  | 76               | 162         | V                 | 67.45              | -45.85         | 0                               | 0.2                   | -46.05                     | -13            | -33.05         |
| 66.869             | 43.42                  | 311              | 235         | Н                 | 66.869             | -53.6          | 0                               | 0.2                   | -53.8                      | -13            | -40.8          |
| 46.35              | 48.02                  | 360              | 100         | V                 | 46.35              | -48.72         | 0                               | 0.2                   | -48.92                     | -13            | -35.92         |
| 106.156            | 43.54                  | 275              | 258         | Н                 | 106.156            | -54.12         | 0                               | 0.26                  | -54.38                     | -13            | -41.38         |
| 3692               | 75                     | 313              | 100         | V                 | 3692               | -49.5          | 9.503                           | 1.47                  | -41.467                    | -13            | -28.467        |
| 3692               | 75.08                  | 179              | 100         | Н                 | 3692               | -48.66         | 9.586                           | 1.47                  | -40.544                    | -13            | -27.544        |
| 9245               | 48.66                  | 301              | 100         | V                 | 9245               | -63.34         | 11.701                          | 2.3                   | -53.939                    | -13            | -40.939        |
| 7913               | 45.72                  | 220              | 100         | Н                 | 7913               | -71.84         | 11.167                          | 1.91                  | -62.583                    | -13            | -49.583        |

# Uplink (Channel frequency = 1880 MHz)

| Indica             | ated                   |                  | Test A      | ntenna            |                 | 5              | Substituted                     |                       |                            |                |                |
|--------------------|------------------------|------------------|-------------|-------------------|-----------------|----------------|---------------------------------|-----------------------|----------------------------|----------------|----------------|
| Frequency<br>(MHz) | S.A.<br>Amp.<br>(dBuV) | Azimuth (degree) | Height (cm) | Polarity<br>(H/V) | Frequency (MHz) | Level<br>(dBm) | Ant. Gain<br>Correction<br>(dB) | Cable<br>Loss<br>(dB) | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 67.45              | 50.89                  | 76               | 162         | V                 | 67.45           | -45.85         | 0                               | 0.2                   | -46.05                     | -13            | -33.05         |
| 66.869             | 43.42                  | 311              | 235         | Н                 | 66.869          | -53.6          | 0                               | 0.2                   | -53.8                      | -13            | -40.8          |
| 46.35              | 48.02                  | 360              | 100         | V                 | 46.35           | -48.72         | 0                               | 0.2                   | -48.92                     | -13            | -35.92         |
| 106.156            | 43.54                  | 275              | 258         | Н                 | 106.156         | -54.12         | 0                               | 0.26                  | -54.38                     | -13            | -41.38         |
| 3748               | 83.48                  | 43               | 100         | V                 | 3748            | -41.02         | 9.503                           | 1.47                  | -32.987                    | -13            | -19.987        |
| 3748               | 82.53                  | 40               | 100         | Н                 | 3748            | -41.21         | 9.533                           | 1.47                  | -33.147                    | -13            | -20.147        |
| 5760               | 46.4                   | 359              | 100         | V                 | 5760            | -74.94         | 11.073                          | 1.1                   | -64.967                    | -13            | -51.967        |
| 4428               | 46.15                  | 0                | 100         | Н                 | 4428            | -77.77         | 10.885                          | 1.39                  | -68.275                    | -13            | -55.275        |

# Uplink (Channel frequency = 1900 MHz)

| Indica             | ated                   |                     | Test A      | ntenna            |                    | 5              | Substituted                     |                       |                            |                |                |
|--------------------|------------------------|---------------------|-------------|-------------------|--------------------|----------------|---------------------------------|-----------------------|----------------------------|----------------|----------------|
| Frequency<br>(MHz) | S.A.<br>Amp.<br>(dBuV) | Azimuth<br>(degree) | Height (cm) | Polarity<br>(H/V) | Frequency<br>(MHz) | Level<br>(dBm) | Ant. Gain<br>Correction<br>(dB) | Cable<br>Loss<br>(dB) | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 67.45              | 50.89                  | 76                  | 162         | V                 | 67.45              | -45.85         | 0                               | 0.2                   | -46.05                     | -13            | -33.05         |
| 66.869             | 43.42                  | 311                 | 235         | Н                 | 66.869             | -53.6          | 0                               | 0.2                   | -53.8                      | -13            | -40.8          |
| 46.35              | 48.02                  | 360                 | 100         | V                 | 46.35              | -48.72         | 0                               | 0.2                   | -48.92                     | -13            | -35.92         |
| 106.156            | 43.54                  | 275                 | 258         | Н                 | 106.156            | -54.12         | 0                               | 0.26                  | -54.38                     | -13            | -41.38         |
| 3833               | 78.16                  | 13                  | 100         | V                 | 3833               | -44.89         | 9.151                           | 1.47                  | -37.209                    | -13            | -24.209        |
| 3833               | 73.18                  | 350                 | 100         | Н                 | 3833               | -49.96         | 9.255                           | 1.47                  | -42.175                    | -13            | -29.175        |
| 5732               | 60.75                  | 110                 | 100         | V                 | 5732               | -60.59         | 11.073                          | 1.1                   | -50.617                    | -13            | -37.617        |
| 5732               | 52.99                  | 264                 | 100         | Н                 | 5732               | -68.26         | 11.093                          | 1.1                   | -58.267                    | -13            | -45.267        |

# 7 FCC §2.1051 & §24.238(a) - Spurious Emissions at Antenna Terminals

## 7.1 Applicable Standards

According to FCC §24.238(a) and §2.1051 the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB

## 7.2 Test Procedure

The EUT was connected to the spectrum analyzer and Signal Generator followed by  $50\Omega$ - $75\Omega$  matching pad.

The resolution bandwidth of the spectrum analyzer was set at 1MHz. Sufficient scans were taken to show any out of band emissions up to 10<sup>th</sup> harmonic.



## 7.3 Test Equipment List and Details

| Manufacturers | Descriptions              | Models | Serial<br>Numbers | Calibration<br>Dates | Calibration<br>Interval |
|---------------|---------------------------|--------|-------------------|----------------------|-------------------------|
| Agilent       | Spectrum Analyzer         | E4440A | MY44303352        | 2014-10-16           | 1 year                  |
| Agilent       | Signal Generator E4438C M |        | MY45091309        | 2014-07-15           | 1 year                  |

**Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

## 7.4 Test Environmental Conditions

| Temperature:       | 21-23° C      |
|--------------------|---------------|
| Relative Humidity: | 42-48 %       |
| ATM Pressure:      | 101.4-102 kPa |

The testing was performed by Ronak Patel 2015-06-08 to 2015-06-29 in the RF Site.

#### 7.5 Test Results

Please refer to the following plots.

#### GSM/GPRS DL

Low 30MHz-10GHz



Low 10GHz-20GHz



Middle 30MHz-10GHz



Middle 10GHz-20GHz



High 30MHz-10GHz



High 10GHz-20GHz



## GSM/GPRS UL

Low 30MHz-10GHz



Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



#### CDMA/EVDO DL

Low 30MHz-10GHz



Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



#### CDMA/EVDO UL

Low 30MHz-10GHz





#### Middle 30MHz-10GHz

## \* Agilent Peak Search Ref 24.8 dBm #Peak Atten 10 dB Next Peak Next Pk Right Next Pk Left Min Search Pk-Pk Search Marker 7.142000000 GHz -37.31 dBm Mkr → CF -Tun More 1 of 2 Stop 10.000 GHz Sweep 16.64 ms (601 pts) #VBW 3 MHz No Peak Found



High 30MHz-10GHz



High 10GHz-20GHz



#### WCDMA DL

#### Low 30MHz-10GHz

## # Agilent Peak Search Ref 21.7 dBm #Peak Atten 10 dB Next Peak Next Pk Right Next Pk Left Min Search Pk-Pk Search Marker 2.140000000 GHz Mkr → CF Tun -19.90 dBm **More** 1 of 2 Stop 10.000 GHz Sweep 16.64 ms (601 pts) #VBW 3 MHz

Copyright 2000-2010 Agilent Technologies

#### Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



WCDMA UL

Low 30MHz-10GHz





#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



### LTE 1.4 MHz QPSK DL

## Low 30MHz-10GHz

# 

#### Low 10GHz-20GHz



## Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



LTE 1.4 MHz QPSK UL

Low 30MHz-10GHz





#### Middle 30MHz-10GHz

## # Agilent Peak Search Mkr1 7.042 GHz -37.05 dBm Ref 24.8 dBm #Peak Atten 10 dB **Next Peak** Next Pk Right Next Pk Left Min Search Pk-Pk Search Mkr → CF Tun 7.042000000 GHz -37.05 dBm Stop 10.000 GHz Sweep 16.64 ms (601 pts) #Res BW 1 MHz #VBW 3 MHz



High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 3 MHz QPSK UL

#### Low 30MHz-10GHz

#### \* Agilent Marker → 1.924 GH: 8.74 dBm #Atten 0 dB Ref 11.7 dBm Mkr → CF Mkr → CF Step Mkr → Start Marker || | 1.924000000 GHz Mkr → Stop 8.74 dBm Start 30 MHz #Res BW 1 MHz Stop 10.000 GHz Sweep 16.64 ms (601 pts) \*VBW 3 MHz Mkr <sub>△</sub> → Spar Type Freq Freq Freq Freq Mkr $\triangle \rightarrow CF$ Mkr → Ref Lvl Copyright 2000-2010 Agilent Technologies

#### Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



LTE 3 MHz QPSK UL

Low 30MHz-10GHz





## Middle 30MHz-10GHz

### Peak Search 4kr1 7.059 GH: -38.12 dBm Ref 24.8 dBm #Peak Atten 10 dB Next Peak Log 10 dB/ Offst 27.8 dB Next Pk Right Next Pk Left Min Search Pk-Pk Search Marker 7.059000000 GHz Mkr → CF -Tun -38.12 dBm More 1 of 2 Stop 10.000 GHz Sweep 16.64 ms (601 pts) #VBW 3 MHz No Peak Found



High 30MHz-10GHz



High 10GHz-20GHz



## LTE 5 MHz QPSK DL

#### Low 30MHz-10GHz



Low 10GHz-20GHz



## Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



LTE 5 MHz QPSK UL

Low 30MHz-10GHz







Middle 30MHz-10GHz



Middle 10GHz-20GHz



High 30MHz-10GHz



High 10GHz-20GHz



## LTE 10 MHz QPSK DL

## Low 30MHz-10GHz



## Low 10GHz-20GHz



## Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 10 MHz QPSK UL

Low 30MHz-10GHz





#### Middle 30MHz-10GHz

## \* Agilent Peak Search Atten 10 dB Next Peak Next Pk Right Next Pk Left Min Search Pk-Pk Search Marker 6.876000000 GHz -Tun Mkr → CF -37.53 dBm More Stop 10.000 GHz Sweep 16.64 ms (601 pts) Start 30 MHz #Res BW 1 MHz #VBW 3 MHz No Peak Found



High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 15 MHz QPSK DL

## Low 30MHz-10GHz

## Low 10GHz-20GHz





## Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



## LTE 15 MHz QPSK UL

Low 30MHz-10GHz





## Middle 30MHz-10GHz

#### # Agilent Peak Search Mkr1 6.228 GHz -40.13 dBm Ref 24.8 dBm Atten 10 dB **Next Peak** Next Pk Right Next Pk Left Min Search Pk-Pk Search Marker 6.228000000 GHz =Tun Mkr → CF -40.13 dBm More 1 of 2 Start 30 MHz #Res BW 1 MHz Stop 10.000 GHz Sweep 16.64 ms (601 pts) #VBW 3 MHz



High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 20 MHz QPSK DL

## Low 30MHz-10GHz

## 

## Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 20 MHz QPSK UL

Low 30MHz-10GHz





## Middle 30MHz-10GHz

## # Agilent Peak Search Atten 10 dB Next Peak Next Pk Right Offst 27.8 dB Next Pk Left Min Search Pk-Pk Search Marker 7.125000000 GHz Mkr → CF -37.75 dBm More Stop 10.000 GHz 16.64 ms (601 pts) 1 of 2 #VBW 3 MHz



High 30MHz-10GHz



High 10GHz-20GHz



### LTE 1.4 MHz 16QAM DL

#### Low 30MHz-10GHz



Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



LTE 1.4 MHz 16QAM UL

Low 30MHz-10GHz





#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 3 MHz 16QAM DL

#### Low 30MHz-10GHz



Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 3 MHz 16QAM UL

Low 30MHz-10GHz





#### Middle 30MHz-10GHz

### \* Agilent Peak Search Atten 10 dB Next Peak Next Pk Right Next Pk Left Min Search Pk-Pk Search Marker 7.159000000 GHz -Tun Mkr → CF -37.36 dBm More Stop 10.000 GHz Sweep 16.64 ms (601 pts) #Res BW 1 MHz #VBW 3 MHz No Peak Found



High 30MHz-10GHz



High 10GHz-20G



#### LTE 5 MHz 16QAM DL

#### Low 30MHz-10GHz



#### Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



### LTE 5 MHz 16QAM UL

Low 30MHz-10GHz





Middle 30MHz-10GHz



Middle 10GHz-20GHz



High 30MHz-10GHz



High 10GHz-20GHz



### LTE 10 MHz 16QAM DL

### Low 30MHz-10GHz



### Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



### LTE 10 MHz 16QAM UL

Low 30MHz-10GHz





### Middle 30MHz-10GHz

#### ★ Agilent Peak Search Mkr1 7.175 GH: -36.92 dBm Ref 24.8 dBm #Peak Atten 10 dB Next Peak Next Pk Right Next Pk Left Min Search Pk-Pk Search Marker 7.175000000 GHz Mkr → CF Tun -36.92 dBm More 1 of 2 Stop 10.000 GHz Sweep 16.64 ms (601 pts) #VBW 3 MHz No Peak Found



High 30MHz-10GHz



High 10GHz-20GH



#### LTE 15 MHz 16QAM DL

#### Low 30MHz-10GHz



### Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 15 MHz 16QAM UL

Low 30MHz-10GHz





### Middle 30MHz-10GHz

### # Agilent Peak Search Mkr1 7.125 GHz -37.16 dBm Ref 24.8 dBm #Peak Atten 10 dB **Next Peak** Next Pk Right Next Pk Left Min Search Pk-Pk Search Marker 7.125000000 GHz Mkr → CF -37.16 dBm Stop 10.000 GHz Sweep 16.64 ms (601 pts) #VBW 3 MHz #Res BW 1 MHz



High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 20 MHz 16QAM DL

Low 30MHz-10GHz



Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 20 MHz 16QAM UL

Low 30MHz-10GHz





#### Middle 30MHz-10GHz

#### ₩ Agilent Peak Search Mkr1 7.109 GH: -36.47 dBm Ref 24.8 dBm #Peak Atten 10 dB **Next Peak** Next Pk Right Next Pk Left Min Search Pk-Pk Search Marker 7.109000000 GHz Tun Mkr → CF -36.47 dBm More 1 of 2 Stop 10.000 GHz Sweep 16.64 ms (601 pts) #VBW 3 MHz No Peak Found



High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 1.4 MHz 64QAM DL

#### Low 30MHz-10GHz

#### # Agilent Peak Search Mkr1 2.140 GH: -21.46 dBm Ref 21.7 dBm #Peak Atten 10 dB **Next Peak** Next Pk Right Next Pk Left Min Search Pk-Pk Search Marker Mkr → CF 2.1400000000 GHz -21.46 dBm More 1 of 2 Stop 10.000 GHz #VBW 3 MHz Sweep 16.64 ms (601 pts) Copyright 2000-2010 Agilent Technologies

#### Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



LTE 1.4 MHz 64QAM UL

Low 30MHz-10GHz





### Middle 30MHz-10GHz

### 🔆 Agilent Peak Search Ref 24.8 dBm #Peak Atten 10 dB Next Peak Next Pk Right Next Pk Left Min Search Pk-Pk Search Marker 7.075000000 GHz -Tun Mkr → CF -37.03 dBm More 1 of 2 Stop 10.000 GHz Sweep 16.64 ms (601 pts) #VBW 3 MHz No Peak Found



High 30MHz-10GHz



High 10GHz-20GHz



### LTE 3 MHz 64QAM DL

Low 30MHz-10GHz



Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 3 MHz 64QAM UL

Low 30MHz-10GHz





#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 5 MHz 64QAM DL

#### Low 30MHz-10GHz

Low 10GHz-20GHz





#### Middle 30MHz-10GHz

#### \* Agilent Peak Search Ref 21.7 dBm #Peak Atten 10 dB **Next Peak** Next Pk Right Next Pk Left Min Search Pk-Pk Search £(f): Marker Mkr → CF Tun 2.140000000 GHz -23.57 dBm More 1 of 2 Stop 10.000 GHz Sweep 16.64 ms (601 pts) #VBW 3 MHz



High 30MHz-10GHz

High 10GHz-20GHz





### LTE 5 MHz 64QAM UL

Low 30MHz-10GHz





#### Middle 30MHz-10GHz

### 💥 Agilent Peak Search Atten 10 dB Next Peak Next Pk Right Next Pk Left Min Search Pk-Pk Search Marker 8.687000000 GHz Mkr → CF Tun -36.96 dBm **More** 1 of 2 Stop 10.000 GHz Sweep 16.64 ms (601 pts) Start 30 MHz #Res BW 1 MHz #VBW 3 MHz No Peak Found



High 30MHz-10GHz



High 10GHz-20GHz



### LTE 10 MHz 64QAM DL

#### Low 30MHz-10GHz

#### Low 10GHz-20GHz





#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



### LTE 10 MHz 64QAM UL

Low 30MHz-10GHz





#### Middle 30MHz-10GHz

# 



High 30MHz-10GHz



High 10GHz-20GHz



### LTE 15 MHz 64QAM DL

#### Low 30MHz-10GHz



#### Low 10GHz-20GHz



### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



#### LTE 15 MHz 64QAM UL

Low 30MHz-10GHz





#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



### LTE 20 MHz 64QAM DL

#### Low 30MHz-10GHz



#### Low 10GHz-20GHz



#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



TE 20 MHz 64QAM UL

Low 30MHz-10GHz





#### Middle 30MHz-10GHz





High 30MHz-10GHz



High 10GHz-20GHz



## **Intermodulation**

Downlink (ALC off)

**GSM** 

### Low Channel

High Channel



### **CDMA**

## Low Channel



# High Channel



### **WCDMA**

### Low Channel



High Channel



# LTE-QPSK 1.4 MHz

## Low Channel



# High Channel



## LTE-QPSK 3 MHz

### Low Channel



High Channel



# LTE-QPSK 5 MHz

Low Channel



# High Channel



### LTE-QPSK 10 MHz

#### Low Channel



High Channel



## LTE-QPSK 15 MHz

Low Channel





### LTE-QPSK 20 MHz

#### Low Channel



High Channel



## LTE-16QAM 1.4 MHz

Low Channel





### LTE-16QAM 3 MHz

#### Low Channel

Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-16QAM 5 MHz

Low Channel





### LTE-16QAM 10 MHz

#### Low Channel

High Channel





## LTE-16QAM 15 MHz

Low Channel





### LTE-16QAM 20 MHz

#### Low Channel

VBW 620 kHz

Center 1.937 50 GHz #Res BW 200 kHz

Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-64QAM 1.4 MHz

More 1 of 2

#### Low Channel

Span 80 MHz Sweep 6.04 ms (601 pts)





### LTE-64QAM 3 MHz

#### Low Channel

High Channel



# LTE-64QAM 5 MHz

Low Channel





### LTE-64QAM 10 MHz

#### Low Channel

\* Agilent Trace Trace Ref 21.3 dBm Atten 10 dB Clear Write Max Hold Min Hold View =Tun Blank More 1 of 2 Center 1.935 00 GHz #Res BW 100 kHz Span 40 MHz Sweep 12.12 ms (601 pts) VBW 300 kHz Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-64QAM 15 MHz

Low Channel





### LTE-64QAM 20 MHz

## Low Channel



High Channel



## Downlink (ALC on)

#### **GSM**

Low Channel





#### **CDMA**

#### Low Channel



High Channel



#### **WCDMA**

#### Low Channel





## LTE-QPSK 1.4 MHz

## Low Channel



High Channel



#### LTE-QPSK 3 MHz

Low Channel





### LTE-QPSK 5 MHz

#### Low Channel



High Channel



## LTE-QPSK 10 MHz

Low Channel





### LTE-QPSK 15 MHz

#### Low Channel



VBW 430 kHz

Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-QPSK 20 MHz

Low Channel





### LTE-16QAM 1.4 MHz

#### Low Channel

Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-16QAM 3 MHz

**More** 1 of 2

Low Channel

Span 5 MHz Sweep 67.4 ms (601 pts)





### LTE-16QAM 5 MHz

#### Low Channel



High Channel



## LTE-16QAM 10 MHz

Low Channel





### LTE-16QAM 15 MHz

#### Low Channel

VBW 430 kHz

Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-16QAM 20 MHz

**More** 1 of 2

Low Channel

Span 60 MHz Sweep 8.12 ms (601 pts)





### LTE-64QAM 1.4 MHz

#### Low Channel



High Channel



## LTE-64QAM 3 MHz

Low Channel





### LTE-64QAM 5 MHz

#### Low Channel



High Channel



#### LTE-64QAM 10 MHz

Low Channel





### LTE-64QAM 15 MHz

#### Low Channel



High Channel



#### LTE-64QAM 20 MHz

Low Channel





# Uplink (ALC off)

#### **GSM**

## Low Channel



High Channel



#### **CDMA**

#### Low Channel





#### **WCDMA**

#### Low Channel



High Channel



#### LTE-QPSK 1.4 MHz

#### Low Channel





### LTE-QPSK 3 MHz

#### Low Channel



High Channel



#### LTE-QPSK 5 MHz

Low Channel





### LTE-QPSK 10 MHz

#### Low Channel



High Channel



#### LTE-QPSK 15 MHz

Low Channel





### LTE-QPSK 20 MHz

#### Low Channel



VBW 620 kHz

Copyright 2000-2012 Agilent Technologies

High Channel



#### LTE-16QAM 1.4 MHz

#### Low Channel





### LTE-16QAM 3 MHz

#### Low Channel



Copyright 2000-2012 Agilent Technologies

High Channel



#### LTE-16QAM 5 MHz

#### Low Channel





### LTE-16QAM 10 MHz

#### Low Channel

# Agilent

Center 1.855 00 GHz #Res BW 100 kHz

Copyright 2000-2012 Agilent Technologies

Atten 10 dB

Trace

1 2 3

Clear Write

Span 40 MHz Sweep 12.12 ms (601 pts)

Min Hold

View

Blank

**More** 1 of 2



High Channel

## LTE-16QAM 15 MHz

Low Channel





### LTE-16QAM 20 MHz

#### Low Channel



VBW 620 kHz

Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-64QAM 1.4 MHz

## Low Channel





### LTE-64QAM 3 MHz

#### Low Channel



High Channel



## LTE-64QAM 5 MHz

### Low Channel





### LTE-64QAM 10 MHz

#### Low Channel

# Agilent Trace Trace Atten 10 dB Clear Write Max Hold Min Hold View =Tun Blank **More** 1 of 2 Center 1.855 00 GHz #Res BW 100 kHz Span 40 MHz Sweep 12.12 ms (601 pts)

VBW 300 kHz

Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-64QAM 15 MHz

Low Channel





### LTE-64QAM 20 MHz

More 1 of 2

#### Low Channel

Atten 10 dB Trace

1 2 3

Span 80 MHz Sweep 6.04 ms (601 pts)



VBW 620 kHz

# Agilent

Center 1.860 00 GHz #Res BW 200 kHz

Copyright 2000-2012 Agilent Technologies

High Channel



Uplink (ALC on) GSM

#### Low Channel





#### **CDMA**

#### Low Channel



# High Channel



### **WCDMA**

#### Low Channel





## LTE-QPSK 1.4 MHz

Min Hold

View

Blank

More 1 of 2

#### Low Channel

# Agilent

Atten 10 dB

Trace
1 2 3

Clear Write

Max Hold

Span 5 MHz Sweep 67.4 ms (601 pts)

High Channel



## LTE-QPSK 3 MHz

Low Channel

VBW 43 kHz

Copyright 2000-2012 Agilent Technologies





### LTE-QPSK 5 MHz

#### Low Channel

# Agilent Trace Trace Atten 10 dB Clear Write Max Hold Min Hold View Tun Blank **More** 1 of 2

VBW 150 kHz

Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-QPSK 10 MHz

Low Channel

Stop 1.862 50 GHz ep 23.28 ms (601 pts)





### LTE-QPSK 15 MHz

#### Low Channel

VBW 430 kHz

Tun

Center 1.857 5 GHz #Res BW 150 kHz

Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-QPSK 20 MHz

Blank

**More** 1 of 2

Low Channel

Span 60 MHz Sweep 8.12 ms (601 pts)





### LTE-16QAM 1.4 MHz

#### Low Channel

Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-16QAM 3 MHz

Low Channel





### LTE-16QAM 5 MHz

#### Low Channel



Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-16QAM 10 MHz

## Low Channel





### LTE-16QAM 15 MHz

#### Low Channel

High Channel





## LTE-16QAM 20 MHz

Low Channel





## LTE-64QAM 1.4 MHz

## Low Channel

Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-64QAM 3 MHz

More 1 of 2

#### Low Channel



# High Channel



## LTE-64QAM 5 MHz

## Low Channel



Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-64QAM 10 MHz

Blank

More 1 of 2

#### Low Channel



# High Channel



## LTE-64QAM 15 MHz

## Low Channel



VBW 430 kHz

Copyright 2000-2012 Agilent Technologies

High Channel



## LTE-64QAM 20 MHz

Low Channel



# High Channel



## **8** FCC §24.238(b) - Band Edge

## 8.1 Applicable Standards

According to FCC §24.238(b) the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB

#### 8.2 Test Procedure

The EUT was connected to the spectrum analyzer and Signal Generator followed by  $50\Omega$ - $75\Omega$  matching pad.

The center of the spectrum analyzer was set according to center frequency of the EUT to be transmitted and resolution bandwidth was set to at least 1MHz or 1% of the emission bandwidth



## **8.3** Test Equipment List and Details

| Manufacturers | Descriptions      | Models | Serial<br>Numbers | Calibration<br>Dates | Calibration<br>Interval |
|---------------|-------------------|--------|-------------------|----------------------|-------------------------|
| Agilent       | Spectrum Analyzer | E4440A | MY44303352        | 2015-06-22           | 1 year                  |
| Agilent       | Signal Generator  | E4438C | MY45091309        | 2014-07-15           | 1 year                  |

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

#### **8.4** Test Environmental Conditions

| Temperature:       | 21-23° C      |
|--------------------|---------------|
| Relative Humidity: | 42-48 %       |
| ATM Pressure:      | 101.4-102 kPa |

The testing was performed by Ronak Patel on 2015-06-08 to 2015-06-29 in the RF Site.

## 8.5 Test Results

Please refer to the following plots.

#### GSM/GPRS

Low DL



High DL



Low UL



High UL



#### **CDMA**

Low DL



High DL



Low UL



High UL



#### **WCDMA**

Low DL High DL





Low UL \* Agilent Marker Mkr1 1.850 000 GHz -37.193 dBm Select Marker #Atten 10 dB Marker Log 10 dB/ Offst 27.6 dB 1.850000000 GHz Normal -37.193 dBm Delta DI -13.0 dBm Delta Pair **Jelta Pair** (Tracking Ref) Ref Span Pair <u>Center</u> Off More 1 of 2 Span 15 MHz Sweep 17.48 ms (601 pts) Center 1.852 400 GHz VBW 150 kHz



## LTE 1.4MHz DL QPSK

Low





## LTE 1.4MHz UL QPSK





## LTE 3MHz DL QPSK

Low High





## LTE 3MHz UL QPSK





## LTE 5MHz DL QPSK





### LTE 5MHz UL QPSK





#### LTE 10MHz DL QPSK



## LTE 10MHz UL QPSK



#### LTE 15MHz DL QPSK





#### LTE 15MHz UL QPSK





#### LTE 20MHz DL QPSK







#### LTE 20MHz UL QPSK

Low High





#### LTE 1.4MHZ DL 16QAM

Low High





#### LTE 1.4MHZ UL 16QAM

Low High





#### LTE 3 MHz DL 16QAM

Low High





#### LTE 3 MHz UL 16QAM

Low High





#### LTE 5 MHz DL 16QAM





#### LTE 5 MHz UL 16QAM





#### LTE 10 MHz DL 16QAM





#### LTE 10 MHz UL 16QAM





#### LTE 15 MHz DL 16QAM





## LTE 15 MHz UL 16QAM





#### LTE 20 MHz DL 16QAM





#### LTE 20 MHz UL 16QAM





LTE 1.4 MHz DL 64QAM







## LTE 1.4 MHz UL 64QAM





#### LTE 3 MHz DL 64QAM





#### LTE 3 MHz UL 64QAM





#### LTE 5 MHz DL 64QAM





#### LTE 5 MHz UL 64QAM





#### LTE 10 MHz DL 64QAM

Low High





#### LTE 10 MHz UL 64QAM





#### LTE 15 MHz DL 64QAM





#### LTE 15 MHz UL 64QAM





## LTE 20 MHz DL 64QAM





High

#### LTE 20 MHz UL 64QAM





# 9 FCC §20.21 – Out of Band Rejection

## 9.1 Applicable Standard

According to FCC Part 20.21, a frequency selective booster shall have -20 dB at the band edge referenced to the gain in the center of the pass band of the booster, where band edge is the end of the licensee's allocated spectrum.

#### 9.2 Test Procedure

KDB 935210 D05, Section 3.3.

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The span of the spectrum analyzer was set to be wide enough in order to capture the spectrum of entire operating band.

## 9.3 Test Equipment List and Details

| Manufacturers | Descriptions      | Models | Serial<br>Numbers | Calibration<br>Dates | Calibration<br>Interval |
|---------------|-------------------|--------|-------------------|----------------------|-------------------------|
| Agilent       | Spectrum Analyzer | E4440A | MY44303352        | 2014-10-16           | 1 year                  |
| Agilent       | Signal Generator  | E4438C | MY45091309        | 2014-07-15           | 1 year                  |

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

## 9.4 Test Environmental Conditions

| Temperature:       | 21-23° C      |
|--------------------|---------------|
| Relative Humidity: | 42-48 %       |
| ATM Pressure:      | 101.4-102 kPa |

The testing was performed by Ronak Patel on 2015-06-08 to 2015-06-29 in the RF Site.

#### 9.5 Test Results

Please refer to the following plot,

## Downlink, 1930 – 1990 MHz



Uplink, 1850 – 1910 MHz



# **10** FCC §2.1091 - RF Exposure

## 10.1 Applicable Standards

According to §2.1091 (Mobile Devices) RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

| Frequency Range<br>(MHz)                            | Electric Field<br>Strength<br>(V/m) | Magnetic Field<br>Strength<br>(A/m) | Power Density<br>(mW/cm²) | Averaging Time<br>(minute) |  |
|-----------------------------------------------------|-------------------------------------|-------------------------------------|---------------------------|----------------------------|--|
| Limits for General Population/Uncontrolled Exposure |                                     |                                     |                           |                            |  |
| 0.3-1.34                                            | 614                                 | 1.63                                | *(100)                    | 30                         |  |
| 1.34-30                                             | 824/f                               | 2.19/f                              | $*(180/f^2)$              | 30                         |  |
| 30-300                                              | 27.5                                | 0.073                               | 0.2                       | 30                         |  |
| 300-1500                                            | /                                   | /                                   | f/1500                    | 30                         |  |
| 1500-100,000                                        | /                                   | /                                   | 1.0                       | 30                         |  |

Note: f = frequency in MHz

#### 10.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$ 

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

#### 10.3 Test Results

## **Downlink (Directional Antenna)**

Maximum peak output power at antenna input terminal (dBm): 16.04

Maximum peak output power at antenna input terminal (mW): 40.180

Prediction distance (cm): 30

Prediction frequency (MHz): 1960

Antenna Gain, typical (dBi): 10

Maximum Antenna Gain (numeric): 10

Power density at predication frequency and distance (mW/cm<sup>2</sup>): 0.036

MPE limit for uncontrolled exposure at predication frequency (mW/cm<sup>2</sup>): 1.0

<sup>\* =</sup> Plane-wave equivalent power density

# **Downlink (Omni Directional Antenna)**

| Prediction distance (cm): 30  Prediction frequency (MHz): 196  Antenna Gain, typical (dBi): 5  Maximum Antenna Gain (numeric): 3.1 | beak output power at antenna input terminal (dBm): 16               | .04       |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------|
| Prediction frequency (MHz): 196  Antenna Gain, typical (dBi): 5  Maximum Antenna Gain (numeric): 3.1                               | peak output power at antenna input terminal (mW): 40.               | .180      |
| Antenna Gain, typical (dBi): 5  Maximum Antenna Gain (numeric): 3.1                                                                | <u>Prediction distance (cm):</u> 30                                 | _         |
| Maximum Antenna Gain (numeric): 3.1                                                                                                | Prediction frequency (MHz): 19                                      | <u>60</u> |
|                                                                                                                                    | Antenna Gain, typical (dBi): 5                                      |           |
| Power density at predication frequency and distance (mW/cm <sup>2</sup> ): 0.0                                                     | Maximum Antenna Gain (numeric): 3.1                                 | 1622      |
| 1 ower density at predication frequency and distance (in whem).                                                                    | ty at predication frequency and distance (mW/cm <sup>2</sup> ): 0.0 | 0113      |
| MPE limit for uncontrolled exposure at predication frequency (mW/cm <sup>2</sup> ): 1.0                                            | olled exposure at predication frequency (mW/cm <sup>2</sup> ): 1.0  | <u>)</u>  |

# Uplink

| Maximum peak output power at antenna input terminal (dBm):                          | <u>15.86</u>  |
|-------------------------------------------------------------------------------------|---------------|
| Maximum peak output power at antenna input terminal (mW):                           | 38.548        |
| Prediction distance (cm):                                                           | <u>30</u>     |
| <u>Prediction frequency (MHz):</u>                                                  | <u>1852.5</u> |
| Antenna Gain, typical (dBi):                                                        | <u>10</u>     |
| Maximum Antenna Gain (numeric):                                                     | <u>10</u>     |
| Power density at predication frequency and distance (mW/cm <sup>2</sup> ):          | 0.0341        |
| MPE limit for uncontrolled exposure at predication frequency (mW/cm <sup>2</sup> ): | <u>1.0</u>    |

## **Results**

For uplink and downlink, the highest power density levels at **30 cm** are below the MPE uncontrolled exposure limit.