1 Statements

1.1 Class Handout, Chapter 1.3, Implications.

Let a, b, and c be integers, with a and b non-zero. If $(ab) \mid (ac)$, then $b \mid c$.

Proof 1.

Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$ and $b \neq 0$.

Suppose $(ab) \mid (ac)$. Then $\exists k \in \mathbb{Z} \ s.t. \ ac = (ab)k$.

Divide both sides of the equation by a:

$$c = bk$$
.

Since $k \in \mathbb{Z}$, by definition of divides, $b \mid c$.

1.2 Class Handout, Chapter 1.4, Contrapositive and Converse

Prove that for all real numbers a and b, if $a \in \mathbb{Q}$ and $ab \notin \mathbb{Q}$, then $n \notin Q$.

Proof 2.

Let $a, b \in \mathbb{Q}$.

Assume for the sake of contradiction that if $a \in \mathbb{Q}$ and $ab \notin \mathbb{Q}$, we have $b \in \mathbb{Q}$.

Then, $\exists p, q, m, n \in \mathbb{Z}$ s.t. $a = \frac{m}{n}$ and $b = \frac{p}{q}$.

Hence,

$$ab = \frac{m}{n} \cdot \frac{p}{q} = \frac{mp}{nq}$$

As $mp, nq \in \mathbb{Z}$, $ab \in \mathbb{Q}$.

* This contradicts with the fact that $ab \notin \mathbb{Q}$.

So, b must not be rational.

1.3 Chapter 1.1 # 7(c)

Prove the square of an even integer is divisible by 4.

Proof 3.

Suppose $x \in \mathbb{Z}$ is even. Then $\exists k \in \mathbb{Z} \ s.t. \ x = 2k$.

Then, $x^2 = (2k)^2 = 4k^2$.

Since $k^2 \in \mathbb{Z}$, we have $4 \mid 4k^2$.

Theorem 1.1 (Archimedean Principle). For every real number x, there is an integer n, such that n > x.

1.4 Chapter 1.1 # 11

For every positive real number ε , there exists a positive integer N such that $\frac{1}{n} < \varepsilon$ for all $n \ge N$.

Proof 4.

Suppose $\varepsilon \in \mathbb{R}$ and $\varepsilon > 0$.

Since $\varepsilon \in \mathbb{R}$, we have $\frac{1}{n} \in \mathbb{R}$.

Then, by Archimedean Principle, $\exists n \in \mathbb{Z} \ s.t. \ n > \frac{1}{\varepsilon}$.

Hence, $n\varepsilon > 1$ or $\varepsilon > \frac{1}{n}$.

Suppose $N \in \mathbb{Z}$ s.t. $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$

 $\left\lceil \frac{1}{\varepsilon} \right\rceil \text{ means the integer greater to } \frac{1}{\varepsilon} \text{ if } \frac{1}{\varepsilon} \notin \mathbb{Z}, \text{ and the integer equals to } \frac{1}{\varepsilon} \text{ if } \frac{1}{\varepsilon} \in \mathbb{Z}.$

Hence, $N \geq \frac{1}{\varepsilon}$.

As $n > \frac{1}{\varepsilon}$, we have $n \ge N$

1.5 Chapter 1.1 # 12

Use the Archimedean Principle (Theorem 1.1) to prove if x is a real number, then there exists a positive integer n such that -n < x < n.

Proof 5.

Suppose $x \in \mathbb{R}$.

Case 1 If
$$x > 0$$
, then $-x < 0$ (i.e., $-x < 0 < x$).

By the Archimedean Principle, $\exists n \in \mathbb{Z} \ s.t. \ n > x$.

Multiply (-1) on both sides of the inequality:

-n < -x

As
$$-x < 0 < x$$
,

$$-n < -x < 0 < x < n$$

which means -n < x < n, and n is positive.

Case 2 If
$$x < 0$$
, then $-x > 0$ (i.e., $-x > 0 > x$)

Since $x \in \mathbb{R}$, we have $-x \in \mathbb{R}$.

By the Archimedean Principle, $\exists n \in \mathbb{Z} \ s.t. \ n > -x$.

Multiply (-1) on both sides of the inequality:

$$-n < x$$

As
$$x < 0 < -x$$
,

$$-n < x < 0 < -x < n$$

which means -n < x < n, and n is positive.

In all cases, we have proven that $x \in \mathbb{R} \implies \exists n \in \mathbb{Z}, \ n > 0 \ s.t. -n < x < n.$

1.6 Chapter 1.1 # 13

Prove that if x is a positive real number, then there exists a positive integer n such that

Proof 6.

Suppose $x \in \mathbb{R}, \ x > 0$

Case 1 If
$$0 < x \le 1$$
, then $\frac{1}{x} \ge 1$.

Hence,
$$x \le 1 \le \frac{1}{x}$$
.

As $x \in \mathbb{R}$, $\frac{1}{r} \in \mathbb{R}$, then by the Archimedean Principle (Theorem 1.1):

$$\exists n \in \mathbb{Z} \ s.t. \ n > \frac{1}{x}.$$

Hence,
$$nx > 1$$
 or $x > \frac{1}{n}$.

Hence,
$$nx > 1$$
 or $x > \frac{1}{n}$.
As $x \le \frac{1}{x}$, $n > \frac{1}{x}$, and $x > \frac{1}{n}$, we have

$$\frac{1}{n} < x < n.$$

Case 2 If
$$x > 1$$
, then $0 < \frac{1}{x} < 1$.
Hence, $\frac{1}{x} < 1 < x$.

As $x \in \mathbb{R}$, by the Archimedean Principle:

$$\exists n \in \mathbb{Z} \ s.t. \ n > x > 0$$

Hence,
$$\frac{1}{n} < \frac{1}{x}$$

As $\frac{1}{x} < x$, $\frac{1}{n} < \frac{1}{x}$, and $n > x$, we have

$$\frac{1}{n} < x < n$$

In all cases, we proven that $x \in \mathbb{R}, \ x > 0 \implies \exists n \in \mathbb{Z}, n > 0 \ s.t. \ \frac{1}{n} < x < n.$

1.7 Handout Chapter 1.4-2 More Contradictions and Equivelance

There are no positive integer solutions to the equation $x^2-y^2=10$.

Proof 7.

Assume for the sake of contradiction that there are positive integer solutions to the equation $x^2 - y^2 = 10$.

Suppose $\exists x, y \in \mathbb{Z}$ and x > 0, y > 0 s.t. $x^2 - y^2 = 10$.

Then, we have $x^2 = 10 + y^2$.

Since x > 0, $x^2 > 0$, we have $10 + y^2 > 0$.

Then, $y^2 > -10$.

* This contradicts with the fact that $y^2 \ge 0$ if $y \in \mathbb{Z}$.

So, our assumption is wrong. There must be no positive integer solutions to the equation $x^2 - y^2 = 10$.

1.8 Handout Chapter 1.4-2 More Contradictions and Equivelence

Show that if $a\in\mathbb{Q}$ and $b\in\mathbb{Q}'$, then $a+b\in\mathbb{Q}'$

Remark. The notation \mathbb{Q} means the set for rational numbers, and \mathbb{Q}' means the set for irrational numbers.

Proof 8.

Suppose $a \in \mathbb{Q}$ and $b \in \mathbb{Q}'$

Assume for the sake of contradiction that $a + b \in \mathbb{Q}$.

Then, $\exists m, n, p, q \in \mathbb{Z}$ such that $a = \frac{m}{n}$ and $a + b = \frac{p}{q}$.

Then,

$$b = \frac{p}{q} - a = \frac{p}{q} - \frac{m}{n} = \frac{pn - mq}{qn} \in \mathbb{Q}$$

Since $pn - mq \in \mathbb{Q}$ and $qn \in \mathbb{Z}$, we have $b = \frac{pn - mq}{qn} \in \mathbb{Q}$.

* This contradicts with the fact that $b \in \mathbb{Q}'$.

So, a + b must be irrational.

1.9 Handout Chapter 1.4-2 More Contradictions and Equivelence

If $n \in \mathbb{N}$ and $2^n - 1$ is prime, then n is prime.

Proof 9.

We will prove the contrapositive: if n is not prime, then $2^n - 1$ is not prime.

Suppose n is not prime. Then, $\exists a, b \in \mathbb{Z}$ with 1 < a, b < n s.t. n = ab.

Then, $2^n - 1 = 2^{ab} = (2^a)^b - 1$.

Notice that for $x^w - 1$, by polynomial long division, have

$$x^{w} - 1 = (x - 1) (x^{w-1} + x^{w-2} + \dots + 1),$$

Substitute $x = 2^a$ and w = b, we have

$$2^{n} - 1 = (2^{a} - 1) \left[(2^{a})^{b-1} + (2^{a})^{b-2} + \dots + 1 \right].$$

Since $(2^a - 1) \in \mathbb{Z}$ and $\left[(2^a)^{b-1} + (2^a)^{b-2} + \dots + 1 \right] \in \mathbb{Z}$, we see that $2^n - 1$ is not prime.