

Contents

Theme 1: Number Sense and Operations	
Unit 1: Decimal Place Value and Computation	
Concept 1.1: Decimals to the Thousandths Place	7
Lessons 1 & 2: The Journey Begins	
Decimals to the Thousandths Place	8
Lessons 3 & 4: Place Value Shuffle	
Composing and Decomposing Decimals	. 13
Lesson 5: Comparing Decimals	. 18
Lesson 6: Rounding Decimals	. 19
Concept 1.2: Adding and Subtracting Decimals	.23
Lessons 7 - 9: Estimating Decimal Sums	
Modeling Decimal Addition	
Thinking Like a Mathematician	. 24
Lessons 10 - 13: Subtracting Decimals	
Estimating Decimal Differences	
Subtracting to the Thousandths Place	
Decimal Story Problems	. 29
Unit 2: Number Relationships	
Concept 2.1: Expressions, Equations, and the Real World	.34
Lesson 1: Expressions, Equations, and Variables	35
Lessons 2 - 4: Variables in Equations - Finding the Unknown	n
Telling Stories with Numbers	37

Concept 2.2: Factors and Multiples	40
Lessons 5 & 6: Finding Factors – Prime Factorization	41
Lesson 7: Greatest Common Factors (GCF)	44
Lessons 8 & 9: Identifying Multiples	
Least Common Multiple (LCM)	46
Lesson 10: Factors or Multiples?	49
Unit 3: Multiplication with Whole Numbers	
Concept 3.1: Models for Multiplication	51
Lessons 1 & 2: The Power of Ten	
Using the Area Model to Multiply	52
Lessons 3 & 4: The Distributive Property of Multiplication	
Using the Partial Products Model to Multiply	55
Concept 3.2: Multiplying 4-Digit Numbers by 2-Digit Numbers	59
Lessons 5 - 7: What Is an Algorithm?	
Multiplying Multi-Digit Numbers	
Multiplication Problems in the Real World	60
Theme 2: Mathematical Operations and	
Algebraic Thinking	
Unit 4: Division with Whole Numbers	
Unit 4: Division with Whole Numbers Concept 4.1: Models for Division	65
	65
Concept 4.1: Models for Division	
Concept 4.1: Models for Division Lessons 1 & 2: Understanding Division	66
Concept 4.1: Models for Division Lessons 1 & 2: Understanding Division Using the Area Model to Divide	66 e
Concept 4.1: Models for Division Lessons 1 & 2: Understanding Division Using the Area Model to Divide Lessons 3 & 4: Using the Partial Quotients Model to Divide	66 e 71
Concept 4.1: Models for Division Lessons 1 & 2: Understanding Division Using the Area Model to Divide Lessons 3 & 4: Using the Partial Quotients Model to Divide Estimating Quotients	66 e 71
Concept 4.1: Models for Division Lessons 1 & 2: Understanding Division Using the Area Model to Divide Lessons 3 & 4: Using the Partial Quotients Model to Divide Estimating Quotients Concept 4.2: Dividing by 2-Digit Divisors	66 e 71

Unit 5: Multiplication and Division with Decimals
Concept 5.1: Multiplying Decimals81
Lessons 1 & 2: Multiplying by Powers of Ten
Multiplying Decimals by Whole Numbers 82
Lessons 3 - 5: Multiplying Tenths by Tenths
Estimating Decimal Products
Using the Area Model to Multiply Decimals 85
Lessons 6 & 7: Multiplying Decimals through the Hundredths Place
Multiplying Decimals through the Thousandths
Place
Lessons 8 - 10: Decimals and the Metric System
Measurement, Decimals, and Powers of Ten
Solving Multistep Story Problems
Concept 5.2: Dividing Decimals 92
Lessons 11 – 13: Dividing by Powers of Ten
Patterns and Relationships in Powers of Ten
Modeling Decimal Division
Lessons 14 - 17: Estimating Decimal Quotients
Dividing Decimals by Whole Numbers
Dividing Decimals by Decimals
Solving Challenging Multistep Story Problems. 97
Unit 6: Numerical Expressions and Patterns
Concept 6.1: Evaluating Numerical Expressions
Lessons 1 - 4: Numerical Expressions
Numerical Expressions with Grouping Symbols
Placing Grouping Symbols
Writing Expressions to Represent Scenarios 104
Concept 6.2: Analyzing Numerical Patterns 109
Lessons 5 - 7: Identifying Numerical Patterns
Extending and Creating Numerical Patterns
Solving Problems with Numerical Patterns 110

Theme

Number Sense and Operations

Units of the Theme

Unit 1

Decimal Place Value and Computation

Concept 1.1: Decimals to the Thousandths Place
Concept 1.2: Adding and Subtracting Decimals

Unit 2

Number Relationships

Concept 2.1: Expressions, Equations, and the Real World Concept 2.2: Factors and Multiples

Unit 3

Multiplication with Whole Numbers

Concept 3.1: Models for Multiplication

Concept 3.2: Multiplying 4-Digit Numbers by

2-Digit Numbers

Decimal Place Value and Computation

Concer

1.1 Decimals to the Thousandths Place

Lessons 1&2:

The Journey Begins

Decimals to the Thousandths Place

Learning Objectives:

By the end of these lessons, the student will be able to:

- Read numbers from the Milliards place to the Hundredths place.
- Identify the value of digits from the Milliards place to the Hundredths place.
- · Read decimal numbers to the Thousandths place.
- Write decimal numbers to the Thousandths place.

Lessons 3&4:

Place Value Shuffle
Composing and Decomposing Decimals

Learning Objectives:

By the end of these lessons, the student will be able to:

- Explain how a digit changes value as it moves to the left or right in a decimal or whole number.
- Compose and decompose decimals in multiple ways.

Lesson 5:

Comparing Decimals

Learning Objectives:

By the end of this lesson, the student will be able to:

· Compare decimals to the Thousandths place.

Lesson 6:

Rounding Decimals

Learning Objectives:

By the end of this lesson, the student will be able to:

• Round numbers to the nearest Tenth, Hundredth, or Thousandth.

The Journey Begins Decimals to the Thousandths Place

Remember

Decimal Fraction

It is a number that represents a value less than 1, but greater than 0.

The whole one can be divided into

Ten equal parts

Each part is called one tenth.

$$0.1 = \frac{1}{10}$$

One hundred equal parts

Each part is called one hundredth.

$$0.01 = \frac{1}{100}$$

One thousand equal parts

Each part is called one thousandth.

$$0.001 = \frac{1}{1.000}$$

Note that: In decimals, zeros can be added to the right of the last non-zero digit without changing the value of the number.

Also: 0.2 = 0.20 = 0.200

0.3 = 0.30 = 0.300

.... and so on.

Decimal Number

- It is a number that represents a value greater than 1.
- The decimal number consists of two parts separated by a decimal point.

Whole number part (integer) To the left of the decimal point

Decimal parts (decimal fraction) To the right of the decimal point

It's read as: Three hundred fifty-seven and ninety-four hundredths.

Reading Numbers from One Milliard to Thousandths

earn To read any decimal:

- Divide the whole number into numerical groups according to the place value table.
- Read the number from the left, each number group is followed by its name.
- Read the decimal parts followed by the name of the last decimal part on the right.

	Whole Number											Decimals		
Milliards	Millions			Thousands			Ones			Decimal Point	SI	Hundredths	Thousandths	
Ones	Hundreds	Tens	Ones	Hundreds	Tens	Ones	Hundreds	Tens	Ones	Dec	Tenths	Hund	Thous	
6	0	0	8	0	4	5	1	7	0		1	7		
6 milliard	8 m	illion		45 the	ousai	nd	1	70	a in	17	hun	dre	dth	

The previous number (6,008,045,170.17) is read as:

Six milliard, eight million, forty-five thousand, one hundred seventy and seventeen hundredths.

1
•••
•••
•••

The Value of Digits from One Milliard to One Thousandth

The place value and the value of each digit can be observed in the number 495,173.852 as follows:

Complete the following:

- a In 56,258.96, the digit 9 is in the place
- **b** In 87,022.8, the digit 7 is in the ______place
- **©** In 605.234, the digit 0 is in the ______place and its value is
- **1** In 2,845.127, the digit 5 is in the ______ place
- Write the place value and the value of the encircled digit in the following numbers:

10	Number	Place Value	Value
a	452,207.56		
0	6,500, 7 39.7		
0	9,009.00 9		
0	3 7,000,157.128		
е	80,218. 0 39		

To form the greatest and smallest decimals from given digits:

- **Greatest Number** Arrange the digits from left to right, from the **greatest** to the **smallest**.
- Smallest Number ——— Arrange the digits from left to right, from the smallest to the greatest.

Then, put the decimal point according to the number of decimal parts requested in the question.

Example: Use the digits shown to form the greatest and smallest decimals possible:

a (6,8,3,2,7,5):

	Up to the Tenths Place	Up to the Hundredths Place	Up to the Thousandths Place
Greatest Number	87,653.2	8,765.32	876.532
Smallest Number	23,567.8	2,356.78	235.678

(9,3,8,5,2):

	Up to the Tenths Place	Up to the Hundredths Place	Up to the Thousandths Place
Greatest Number	9,850.2	985.02	98.502
Smallest Number	2,058.9	205.89	20.589

5 Make up the greatest and smallest decimals of the given digits:

	Digits	The	greatest nu up to the	mber	The :	mber	
	The second second	Tenths	Hundredths	Thousandths	Tenths	Hundredths	Thousandths
a	6, 5, 7, 8, 3, 2, 4				1.56	10,000	HOLE
0	8, 3, 0, 7, 4			A GENERAL	159.7	pobla	Ten in
0	3, 2, 8, 7, 3, 5, 0, 7				JIF IE O	eug, s	of the last
0	9, 3, 2, 5, 3, 7, 4				35277	1000512	
e	6, 2, 4, 3				Lede to	80,218.	101

Place Value Shuffle Composing and Decomposing Decimals

Learn The value of the digit changes within the number by changing its place:

From above The value of the digit:

- Increases by 10 times (X 10) as it moves to the left.
- Decreases by 10 times (÷10) as it moves to the right.

Learn Using the place value charts to solve multiplying and dividing by 10 problems

Example (1): Use the place value chart to solve the following problem: 75.4 x 10

	W	hole I	Number		oint	Decimals				
Thou	usand	5	0	nes		nal Po	and make player			
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decir	Tenths	Hundredths	Thousandths	
	14.85		dring stre	7,	5		4	a un jenthy er	et apadespri	
			7	5	4					

• The value of 7 increased when multiplying by 10 from

5

increased when multiplying by 10 from

The value of 4 increased when multiplying by 10 from

5 to 50 0.4 to 4 75.4 754

to

700

Therefore:

The value of

The value of the whole number **75.4** increased when multiplying by **10** from **75.4** to **754**, so $75.4 \times 10 = 754$.

70

ample (2): Use the place value chart to solve the following problem: $75.4 \div 10 = 7.54$

	W	hole N	Number		Point	S			
	usand			nes		nal			
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Deci	Tenths	Hundredths	Thousandths
		121-1		7	5_	1	4		
			policy de	g - 31	7		5	4	

decreased when dividing by 10 from The value of decreased when dividing by 10 from The value of to to 0.04

decreased when dividing by 10 from 0.4 The value of

Therefore: 75.4

The value of the whole number 75.4 decreased by a factor of 10 from **75.4** to **7.54**, so $75.4 \div 10 = 7.54$.

0.5

754

o/t/e/s

- When multiplying by 10 Move all digits of the number one place to the left.
- Move all digits of the number one place to the right. When dividing by 10
- Use the place value charts to solve the following problems. Fill in the blanks to show how the value of each digit has changed:
 - **a** 386 X 10

	W	hole N	lumber		oint	S			
Thousands			Ones			nal P	ner Jis	murt Syst at	al samuel
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decir	Tenths	Hundredths	Thousandths

- The value of ____ (increased/decreased) when multiplying by 10 from ____ to ____ to ____.
- Therefore, the value of the whole number (increased/decreased)

6 2.5 X 10

	W	hole I	lumber			oin t	Decimals			
Thou	usand	5	Ones				2010			
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decir	Tenths	Hundredths	Thousandths	
				Joseph .						
						J.				

© 915 ÷ 10

	W	hole I	Number			oint	Decimals			
	ısand		La Charles Color W	nes		nal P				
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decir	Tenths	Hundredths	Thousandths	
					in the second			N= 1 - + 0.1	sera o	
									XXIII D	

- Therefore, the value of the whole number _____ (increased/decreased) when dividing by 10 from _____ to _____, so 915 ÷ 10 = _____.

d 8.7 ÷ 10

	W	hole N	Number			oint	Decimals			
Thou	ısand	S	Ones				-abn	CRUGHT		
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decil	Tenths	Hundredths	Thousandths	
				7-1						

• The value of	(increased/decreased)	when dividing	by 10 from
to	to upum (paseataen)		

•	Therefore, the value of the whole i	number .		(increased/decreased)
,	when dividing by 10 from	to	, so	8.7 ÷ 10 =	

2 Find the result:

Decomposing Decimal Numbers in Expanded Forms

Learn Extended form is used to decompose decimals. Note the following:

$$\mathbf{a}$$
 0.025 = 0.02 + 0.005

$$0.25 = 0.2 + 0.05$$

6
$$4721.7 = 4,000 + 700 + 20 + 1 + 0.7$$
 6 $472.17 = 400 + 70 + 2 + 0.1 + 0.07$

Decimals can be decomposed in several ways, as in the following example:

3 Decompose the following numbers:

4 Compose the following numbers:

Comparing Decimals

Example: Compere between 85.376 and 85.368, using the following steps:

Ste	p 1	Sto	ep2	Ste	ep3	Step 4	
Compa whole no		digits in	the Tenths ace.	digits	are the in the ths place.	Compare the digits in the Thousandths place.	
85 .367	85.368 If they ar		85. <u>3</u> 68 If they ar		85.368 If they ar	85.36 <mark>7</mark> < 85.36 <u>8</u>	

1 Compare using (<, = or >):

a 45.057 45.100

b 98.013 98.101

© 50.009 50.100

d 10.1 10.011

e 12.01 2.099

f 34.5 34.500

2 Select the greatest number:

- **a** 1.401 , 1.341 , 1.440 , 1.041 **b** 1.055 , 1.3 , 1.28 , 1.045
- 3 Select the smallest number:
 - **a** 20.09 , 20.1 , 20.001 , 20.011 **b** 9.003 , 3.009 , 30.09 , 90.03
- 4 Arrange the following numbers in an ascending order:

45.21 , 54.12 , 45.12 , 54.21 , 51.24

5 Arrange the following numbers in a descending order:

2.011 , 21.010 , 12.001 , 100.12 , 10.012

Rounding Decimals

To the Nearest

Whole Number

Tenth

Hundredth 1 Thousandth

Unit

Ones

One decimal place

0.1

0.01

Two decimal places Three decimal places

0.001 1.000

Learn

Rounding Strategies

First:

The Midpoint Strategy:

xample: Round each of the following numbers:

- a 24.7 (To the nearest whole number)
 - The number 24.7 is located between the numbers 24.0 and 25.0.
 - The midpoint between the two numbers is 24.5.
 - 24.7 is closer to 25.0.

So, $24.7 \approx 25$ (To the nearest whole number)

- **5.74** (To the nearest Tenth)
 - The number 3.74 is located between the numbers 3.70 and 3.80.
 - The midpoint between the two numbers is 3.75.
 - 3.74 is closer to 3.70.

So, $3.74 \approx 3.7$ (To the nearest Tenth)

Q 45.698 (To the nearest Hundredth)

- The number 45.698 is located between the numbers 45.690 and 45.700.
- The midpoint between the two numbers is 45.695.
- 45.698 is closer to 45.700.

So. $45.698 \approx 45.70$ (To the nearest Hundredth)

@ 2.3175 (To the nearest Thousandth)

- The number 2.3175 is located between the numbers 2.3170 and 2.3180.
- The midpoint between the two numbers is 2.3175.
- 2.3175 is located at the midpoint.

So, $2.3175 \approx 2.318$ (To the nearest Thousandth)

Second:

Rounding Rule Strategy:

- 1. Select the digit in the place to be rounded.
- 2. Replace the digits in the places that precede the previously selected digit with zeros.
- Look at the digit in the place preceding the place to be rounded directly.

If this digit is 0, 1, 2, 3, or 4, the number of the specified we add 1 to the number of place remains unchanged.

If this digit is 5, 6, 7, 8 or 9, the specified place.

Round the following numbers to the nearest:

Label the midpoint of the number line. Place the given decimal number at its proper location, and then round to the nearest whole number:

2 Label the midpoint of the number line. Place the given decimal number at its proper location, and then round to the nearest Tenth:

Label the midpoint of the number line. Place the given decimal number at its proper location, and then round to the nearest Hundredth:

4 Round each of the following numbers:

f 0.0396 ≈ (To the nearest Thousandth)

5 Fill in the chart as you round each decimal to the stated place value:

entoel dasi	Number	Round to the Nearest Whole Number	Round to the Nearest Tenth	Round to the Nearest Hundredth
a	56.284			
0	572.089			
0	0.896			
0	50.101			

Lessons 7-9:

Estimating Decimal Sums
Modeling Decimal Addition
Thinking Like a Mathematician

Learning Objectives:

By the end of these lessons, the student will be able to:

- · Estimate sums of decimal numbers.
- Model decimal addition.
- Apply strategies to add decimals to the Thousandths place.
- Check the reasonableness of his/her answers.

Lessons 10-13:

Subtracting Decimals
Estimating Decimal Differences
Subtracting to the Thousandths Place
Decimal Story Problems

Learning Objectives:

By the end of these lessons, the student will be able to:

- Model decimal subtraction.
- Estimate differences of decimal numbers.
- Apply strategies to subtract decimals to the Thousandths place.
- Check the reasonableness of his/her answers.
- Add and subtract decimal numbers to the Thousandths place to solve story problems.

Estimating Decimal Sums Modeling Decimal Addition Thinking Like a Mathematician

Learn

Easy Numbers

The numbers (0, 0.5, and 1) are benchmark numbers. Note the following number line:

0, 0.5, 1, 1.5, ... are called benchmark numbers.

Estimating the Sum of Decimals Using Benchmark Numbers:

The sum of decimals can be estimated using benchmark numbers, as in the following problems:

Strategies for Estimating the Sum of Decimals

Front-End Estimation Benchmark Decimals Separate
Wholes
and Parts

Round to the Nearest (One – Tenth – Hundredth) 1 Estimate the sum of the following decimals:

(Use the strategy you prefer)

2 Taha has 54.20 LE. His brother has 45.75 LE. They want to combine their money to purchase 4 kilograms of apples for 100 LE. Estimate to see if they have enough money.

Learn

Modeling Decimal Addition

First:

Adding Decimals Using the Decimal Model:

Represent each of the two decimals with different colors, their sum is the number of squares of both colors.

3 Use the following decimal models to find the result:

a 0.23 + 0.15 =

b 0.68 + 0.75 =

© 0.08 + 0.8 =

0.85 + 0.78 =

4 Write an expression to match the models. Write an addition problem, and then find the result:

Second: Adding Decimals Using the Place Value Chart:

Write the numbers in the place value chart and add.

Example: 0.375 + 0.28

	WI	nole N	lumber			oint		Decimal	S	
Thou	ısand	S	O	nes		mal P				
Hundreds	Tens	Ones	Hundreds	Tens	Ones		Tenths	Hundredths	Thousandths	
	44	1000			0		3	7	5	
		HE E			0	1.	2	8		
					0		6	5	5	

So, 0.375 + 0.28 = 0.655

Use the place value chart to find the sum:

a 0.8 + 3.09 =

	WI	hole N	lumber			oint	Decimals			
Thou	ısand	S	Oı	nes			2 STREET			
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decil	Tenths	Hundredths	Thousandths	
				ded	bes	n.	E BEE			
ABASEL .	THE RE		Finning	1	hall		nerson	e de manuel f		
	april 19						Land M	Total Street Street		

b 0.245 + 3.89 = _____

A TO	WI	nole N	lumber			oint	Decimals			
	usand		Ones							
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Deci	Tenths	Hundredths	Thousandths	
	BO.		134 62				17.7		mat 6	
				ALC:			T. Carlo			
							MARKET NOT		HART SELECTION	

Q 4.028 + 2.83 =

	WI	nole N	lumber			oint	Decimals			
Thou	usand	5	Oı	nes	ings[]	mal P	Drugh!	Hundredths	Thousandths	
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decil	Tenths			
199.94		1865	mit e		888		ShuH]	I I reilie	neselt. Teel	
	3/91				F 2712		ation !	e one relicati	F (31.0 R 403 / 1	

d 125.36 + 3.08 =

a sme mad	WI	nole N	lumber	1		oint	Decimals			
	ısand		The state of the last	nes	ia (a)	mal P	Jana's	Hundredths	Thousandths	
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Deci	Tenths			
	na. I			EX	10, 10	1.0	rather.	spoulou a	materb et l	
				alo	184 1			nel librat	of house,	
Talke					1 7 9					

Learn

Adding Decimals

Vertically: Arrange the digits correctly, so that the decimal point is under the decimal point, the Ones under the Ones, and the Hundreds under the Hundreds... and so on, and then add.

345.200 2.893 348.093

(Empty spaces can be filled with zeros)

Horizontally: 345,200 + 2,893 = 248,093

6 Add:

45.368 + 2.758

6 0.358 + 34.19

G 45.98 125.3

- **d** 36.89 + 4.5 = ______. **e** 58 + 3.89 = _____.
- **7** Complete: (As in the example)

25 Thousandths + 6 Hundredths = 85 Thousandths.

Place value: 8 Hundredths, 5 Thousandths.

a 3 Thousandths + 4 Thousandths = Thousandths.

Place value: Hundredths, Thousandths.

7 Thousandths + **4** Thousandths = Thousandths.

Place value: Hundredths, Thousandths.

© 39 Thousandths + **5** Thousandths = Thousandths

Place value: Hundredths, Thousandths.

3 Hundredths + 99 Thousandths = Thousandths.

Place value: Tenths, Hundredths, Thousandths.

8 Diaa travels from Cairo to Alexandria and stops to rest in Tanta. If the distance between Cairo and Tanta is 92.61 km, and the distance between Tanta and Alexandria is 147.7 km. what is the distance traveled by Diaa?

Subtracting Decimals - Estimating Decimal Differences - Subtracting to the Thousandths Place - Decimal Story Problems

Learn

Modeling Decimal Subtraction

First:

Modeling Decimal Subtraction:

Represent the greatest decimal fraction on the model, and then remove the squares of the smaller decimal fraction:

$$1.12 - 0.45 = 0.67$$

0.32 - 0.12

$$0.23 - 0.12 = 0.20$$

Use the decimal models to find the result:

1.15
$$-0.52 = ...$$

2 Write an expression to match the models. Write a subtraction problem, and then find the result:

Second: Subtracting Decimals Using the Place Value Chart:

Write the numbers in the place value chart and then subtract.

Example: 24.8 – 7.245

Whole Number							Decimals		
Thou	ısand	S	Or	nes		mal Point	A a a a a a a a a a a a a a a a a a a a		MANAGE
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Deci	Tenths	Hundredths	Thousandths
				2	4		8	0	0
	FA				7		2	4	5
		1.0		1	7		5	5	5

So, 24.8 - 7.245 = 17.555

3 Use the place value table to find the difference:

a 128 - 3.09 =

Whole Number						mal	Decimals		
Thou	usands	5	Or	nes		ecin Poin	Hat	Hundredths	Thousandths
Hundreds	Tens	Ones	Hundreds	Tens	Ones		Tenths		
K MEG									

6 9.245 - 0.86 =

Whole Number						mal	Decimals		
Tho	usand	5	Oı	nes		Soin			
Hundreds	Tens	Ones	Hundreds	Tens	Ones	۵	Tenths	Hundredths	Thousandths
								allene	
				¥			1		

 \bigcirc 8.027 - 0.8 =

Whole Number						nal It	Decimals		
Tho	usand	5	Oı	nes		oin			
Hundreds	Tens	Ones	Hundreds	Tens	Ones	De	Tenths	Hundredths	Thousandths
- E. J. F.				LA	1.55		452.0		
Single d	AL IN	604	55 B S	100	0.87		F-71		
								2046 117	Managara M

d 142.37 – 4.08 =

Whole Number						t a	Decimals		
Tho	usand	5	och e Or	nes) est	oin oin			emdall a
Hundreds	Tens	Ones	Hundreds	Tens	Ones	De	Tenths	Hundredths	Thousandths
TEXTS					V.				Lin Filmilen
				1	7.4	0.66	dite.		ASM SEMIN
		HE TON		File			Temes		BUTH YOUR

Learn

Subtracting Decimals

Example: 48.3 – 5.245

Vertically: Arrange the digits correctly, so that the decimal point is under the decimal point, the Ones under the Ones, and the Hundreds under the Hundreds... and so on, and then subtract. (Empty spaces can be filled with zeros)

48.300 5.245 43.055

Horizontally: 48.300 - 5.245 = 43.055

Subtract:

Learn

Estimating Decimal Differences

Strategies for Estimating Decimal Differences

Front-End Estimation Benchmark **Decimals**

Separate Wholes and Parts Round to the Nearest (One - Tenth -Hundredth)

- 5 Estimate the difference of the following decimals: (Use the strategy you prefer)
 - **a** 8.34 3.43 **→ Estimate**: =
 - **ⓑ** 345.1 − 80.91 **Estimate**: _____**=** _____
 - **©** 7.21 − 4.56 **Estimate**: =
 - **6** 0.981 − 0.089 → Estimate: _____ = ____
- 6 Complete: (As in the example)

75 Thousandths – 3 Hundredths = 45 Thousandths.

Place value: 4 Hundredths, 5 Thousandths.

a 45 Thousandths – 12 Thousandths = Thousandths.

Place value: Hundredths, Thousandths.

5 Hundredths – **13** Thousandths = Thousandths.

Place value: Hundredths, Thousandths.

G 4 Tenths – **75** Thousandths = Thousandths.

Place value: Tenths, Hundredths, Thousandths.

© 214 Thousandths - 18 Hundredths = Thousandths.

Place value: Tenths, Hundredths, Thousandths.

7	The width of the Tahya Misr Bridge, which connects northern and eastern Cairo to western Cairo across the Nile River, is 67.3 meters, and the Jiaxing-Shaoxing Sea Bridge in Japan is less in width than the Tahya Misr Bridge by 11.7 meters. How wide is the Jiaxing-Shaoxing Sea Bridge?
8	Rashad and his father went fishing. Each of them caught a giant fish, the mass of the first fish was 53.25 kilograms, and the mass of the other fish reached 46.8 kilograms. What is the mass of the two fish together?
9	The length of the Tahya Misr Bridge is 16.7 km. If Ramy travels along the length of the Tahya Misr Bridge and then returns this distance again, how many kilometers in total does he travel?
10	Sami rides his bike along the Tahya Misr Bridge walkway, which is 16.7 kilometers long and 3.25 kilometers wide. How many kilometers does he still need to ride to reach the end of the bridge?

2.1 Expressions, Equations, and the Real World

Lesson 1:

Expressions, Equations, and Variables

Learning Objectives:

By the end of this lesson, the student will be able to:

- Explain the difference between expressions and equations.
- Explain why there might be an unknown in an expression or equation.
- Use letters or symbols to represent unknowns in expressions and equations.

Lessons 2 - 4:

Variables in Equations Finding the Unknown Telling Stories with Numbers

Learning Objectives:

By the end of these lessons, the student will be able to:

- Apply the relationship between addition and subtraction to find the value of the unknown in an equation.
- Solve equations involving decimal numbers to the Thousandths place.
- Write equations to represent story problems with unknown quantities.
- Write story problems involving addition and subtraction of decimal numbers.
- Solve equations involving decimal numbers to the Thousandths place.

Expressions, Equations, and Variables

Remember

Variable	Expression	Equation
It's a letter or symbol that represents the	It's a set of fixed numbers and	It's a mathematical sentence that includes an equal
unknown value in an equation.	variables that line up next to each other.	relationship between two mathematical expressions.
Such as: x, y, z,	Such as: x + 5, 3 X y	Such as: $5 + x = 9, y = 5 \times 3$

1 Put a tick (/) to classify the following mathematical sentences into "Equation" or Mathematical Expression" or "Other":

	(v) (a data) (v)	Equation	Mathematical Expression	Other
a	4.7 + 3.6 = M			
6	6.4 + 3.2 + 8			
0	56 - x = 47.5			
0	3.4 + L			
е	Aya ran 8 km last week.	88.286	State Teaching	
Ð	3.5 + 2.456 = 2.5 + 3.456	25 CE 2012	LZ 00 chickens 3	Redeminal A. O.
9	37.125 - 13.7			
D	Amir had 3.5 kg of apples.			C les usumes

Learn

Using Letters or Symbols to Represent Unknown Values in Mathematical Expressions and Equations

Example:

Yassin bought a pen and a ruler. He paid 14.5 pounds for them. If the price of the pen is 6.25 pounds, what is the price of the ruler? Write an equation to represent the price of the ruler.

The previous example can be expressed as follows:

What Yassin paid = 14.5 pounds.

The price of the pen = 6.25 pounds.

The price of the ruler is unknown.

- →6.25 + unknown=14.5
- Replace the word unknown with one of the letters (a variable) "y".
- So, the equation that represents the price of the ruler is:

$$6.25 + y = 14.5$$
 or $y = 14.5 - 6.25$

- 2 Read the following story problems. Make an equation for each problem:
 - Ahmed had 25.15 pounds, and he bought a toy for 14.5 pounds.
 How many pounds does Ahmed have left?
 - **b** A class in a school has **45** students. **28** of them are girls. How many boys are there in this class?
 - A farm had 4,200 chickens. 3,350 chickens were sold in a week. How many chickens are left on the farm?
 - Ahmed bought a car for 90,990 pounds and bought a house for his family for 750,250 pounds.
 How much did Ahmed spend to buy the car and the house?

Variables in Equations s Finding the Unknown Telling Stories with Numbers

.earn

Determining the Value of the Unknown

You can use mental math to determine the value of the (unknown) variable in the equation.

xample: Find the value of (a) in each of the following:

a

$$2.5 + a = 7.75$$

$$a = 7.75 - 2.5 = 5.25$$

$$a = 12.7 - 9.7 = 3$$

1 Use mental math to estimate the equations, and then solve them:

a
$$8.235 + p = 10.224$$

b
$$t - 2.445 = 0.26$$

$$\bigcirc$$
 6.82 -h = 1.023

d
$$\mathbf{v} + 42.809 = 100.01$$

$$\odot$$
 5.52 + 2.041 + \mathbf{m} = 9.271

6
$$2.377 + 3.1 = 1.52 + a$$

Remember

Part-to-Whole Bar Model

Bar model: is a schematic diagram that represents the relationship between the whole and the part.

example: From the following bar models, we conclude that:

$$y = 7.5 + 2.5$$

$$m = 10 - 7.5$$

- Write an equation to represent each story problem using (n) as the variable, and find its value. Use the bar models.
 - a Bassem takes the bus from Cairo to Tanta. The distance is 92.7 km. The bus stops 53.5 km away in the city of Banha to take more passengers.

How far is Banha from Tanta?

Bar Model

Bassem and his friend Jana were taking a snorkel. He saw a turtle whose length is 0.78 m. Jana saw another turtle, 0.58 m longer than the first one. How tall is the turtle that Jana saw?

Bar Model

Une. now tall is the fulle that Jana Saw:

© In Jana's backpack, she has a bottle of mass 1.5 kg, books of mass 2.51 kg and a snack. Her full backpack has a mass of 4.535 kg.

What is the mass of the snack?

Bar Model

3 Write a story problem representing each equation, and then solve it:

a x + 2.75 = 12.5

	***************************************	************

	그 그 이 이 그 나는 아이는 그는 것이 없는 것이 없는 것이 없다면 없다.	

b 34.750 - s = 15.25

Lessons 5&6:

Finding Factors

Prime Factorization

Learning Objectives:

By the end of these lessons, the student will be able to:

- Explain the meaning of factors.
- Identify the factors of a given number.
- Use a factor tree to identify the prime factors of a given number.

Lesson 7:

Greatest Common Factors (GCF)

Learning Objectives:

By the end of this lesson, the student will be able to:

- Use factor trees to identify common factors of two whole numbers.
- Use factor trees to identify the greatest common factor of two whole numbers.

Lessons 8&9:

Identifying Multiples
Least Common Multiple (LCM)

Learning Objectives:

By the end of these lessons, the student will be able to:

- Explain the meaning of multiples.
- Identify common multiples of two whole numbers up to 12.
- Explain the meaning of least common multiple.
- Identify the least common multiple of two whole numbers up to 12.

Lesson 10:

Factors or Multiples?

Learning Objectives:

By the end of this lesson, the student will be able to:

- Explain the difference between factors and multiples.
- Identify the greatest common factor and least common multiple of two given numbers.

Finding Factors Prime Factorization

Remember

Factors

Factors are the numbers that are multiplied to form a product.

Or the factor of a number divides the number equally without a remainder.

Methods for Finding the Factors of a Number

Factor T-chart	Factor Rainbow	Factor Tree
18 1 18 2 9 3 6	18 1 2 3 6 9 18	18 1 2 3 6 9 18

- 2 is a factor of all even numbers, whose Ones digit is 0, 2, 4, 6, or 8.
- 3 is a factor of numbers, whose sum of digits is divisible by 3 without a remainder.
- 5 is a factor of numbers, whose Ones digit is 0 or 5.
- Prime number: is a number greater than one and has only two factors, one and the number itself.
- All prime numbers are odd, except 2 The smallest prime number is 2.
- The only even prime number is 2 The smallest odd prime number is 3.
- 1 is neither a prime number nor a composite number.
- Prime numbers less than 100 are:

1 Fill in the missing factors represented by the variables:

Find the factors of each of the following numbers using the method you prefer:

a 16

6 20

C 36

d 48

The factors of 16 are:

The factors of 20 are:

The factors of 36 are:

The factors of 48 are:

earn

Prime Factors

Prime Factorization:

It means writing the composite number as the product of prime numbers.

 $8 = 2 \times 2 \times 2$, $12 = 3 \times 2 \times 2$, $15 = 3 \times 5$

Prime Factorization Using a Factor Tree

Factorize 24 into its prime factors:

- (1) Choose two numbers whose **product** is 24 (1 should not be used).
- Circle the prime numbers and leave them, then continue factorizing the composite numbers.
- (3) Stop when all numbers become **prime numbers**.

Note that: all of the following are true, and we get the same result:

3 Factorize each number into its prime factors using the factor tree:

4 Find the product of the prime factorization listed. Then, list all other factors of the product:

Greatest Common Factors (GCF)

Methods for Factorizing Numbers into their Prime Factors

Example: Factorize 30 into its prime factors:

(1) Factor Tree:

- Choose two numbers whose product is 30.
- Complete the factorization as in the previous lesson.

$$30 = 2 \times 3 \times 5$$

(2) Repeated Division:

- Divide by one of the prime factors of a number.
- Keep dividing by another prime factors.
- Stop when the quotient becomes 1.

$$30 = 2 \times 3 \times 5$$

Learn

Determining the Greatest Common Factor of Two Numbers **Using Prime Factors**

xample: Find the GCF for 24 and 36.

- Factorize both numbers into their prime factors.
- Write the prime factors of both numbers, so that the similar factors are on top of each other.

- For every two same factors, we get a factor.
- The product of these factors is the **greatest common factor**. **So**, the GCF for 36 and 24 is **12**.

28,42

18,27

G 12, 20

16,32

2 There are 15 boys and 20 girls in a classroom. The teacher wants to divide the class into the greatest equal groups, so that the numbers of boys and girls are equal in all groups.

(Use the greatest common factor)

Identifying MultiplesLeast Common Multiple (LCM)

Remember

Multiple of a number:

It is the product we get when we multiply a certain number by another number.

How to Find the Multiples of a Number

Count by Jumping on the Number Line

Use the Hundred Chart

Use Multiplication Facts

- Zero (0) is the **common multiple** of all numbers.
- All numbers are multiples of 1.
 Multiples of numbers are infinite.
- Each number is a multiple of itself.
- The product of any two numbers is a common multiple of them.

For example: $35 = 5 \times 7$, so 35 is a common multiple of 7 and 5.

Example (1): Find the common multiples of 3 and 4.

- The multiples of **3** are: 0, **3**, **6**, **9**, **12**, **15**, **18**, **21**, **24**,
- The multiples of 4 are: 0, 4, 8, 12, 16, 20, 24, 28, 32,
- Common multiples are: 0 , 12 , 24,... (Other answers are available)

Example (2): Find the common multiples of 4, 6, and 8.

- The multiples of 4 are: 0,4,8,12,16,20,24,28,32,36,40,44,48....
- The multiples of 6 are: 0 , 6 , 12 , 18 , 24 , 30 , 36 , 42 , 48 ...
- The multiples of 8 are: 0 , 8 , 16 , 24 , 32 , 40 , 48 ,...
- Common multiples are: 0 , 24 , 48,... (Other answers are available)

1	a Mention the first 10 multiples of 2:
	6 Mention the first 5 multiples of 5 :
	Mention the common multiples of 2 and 5 from those you mentioned:
2	Mention the first 10 multiples of 3:
2	Mention the first 10 multiples of 3:Mention the first 6 multiples of 6:
2	

Learn

Least Common Multiple (LCM)

It is the smallest common multiple of two or more numbers with the exception of zero (0).

Example: Find the LCM of 6 and 8:

you mentioned:

• The multiples of 6 are: 0, 6, 12, 18, 24, 30, 36, 42, 48,

• The multiples of 8 are: 0, 8, 16, 24, 32, 40, 48, 56, 64,

• Common multiples are: 0 , 24 , 48,... (Other answers are available)

The least common multiple of the two numbers (LCM) is 24

Learn

Determining the Least Common Multiple of Two Numbers Using Prime Factors

example: Find the LCM for 12 and 8.

- Factorize the two numbers into their **prime factors**.
- Write the prime factors of the two numbers, so that the similar factors are on top of each other.
- For every two same factors, we get a common factor.
- We also write dissimilar factors.
- The product of these factors is the least common multiple. **So**, the LCM of 8 and 12 is **24**.

Find the GCF and LCM for each of:

a 6, 9

(b) 10, 15

LCM =

G 4,8

LCM =

GCF =

d 12, 9

GCF =

Voltles

- The least common multiple of two prime numbers is their product.
- If one of the two numbers is a factor of the other number, then the larger number is the least common multiple of the two numbers.

Factors or Multiples?

The Difference Between Factors and Multiples

Factors

Factors of a number

Are all pairs whose products are multiplied together to give this number.

- Not all numbers have the same number of factors.
- When a number is divided evenly, it is divided into factors.
- One of the factors can be obtained by dividing the multiple by the other factor.

Multiples

Multiples of a number Are the setting that appears when jumping by the same number, starting from zero.

- All numbers have an infinite number of multiples.
- The multiplier is the product of two factors.
- Multiples can be found by multiplying the factors.

Story Problems

GCF

Usually involves breaking or cutting things into pieces or separating them into multiple groups.

LCM

Usually involves repetition, or two things happening at the same time.

Note the following two examples:

Example (1): ___

Omnia has two strips of cloth. One is 35 cm wide, and the other is 75 cm wide. She wants to cut both pieces into strips of equal width that are as wide as possible. How wide should she cut the strips?

(In this example, Omnia wants to divide the cloth into pieces,

so we use the GCF in the solution)

Solution: $35 = 5 \times 7$

 $75 = 5 \times 5 \times 3$

GCF = 5

The largest width of the strips = 5 cm.

kample Mohame	d trains to walk every 7 days and lift weights every 4
days, he	did both today. After how many days will Mohamed walk
and lift w	veights on the same day? his example, there is a repetition of what Mohamed does,
(III U	so we use the LCM in the solution)
Solution:	보통 가게 있는데 [17][1] [1][1] [1] [1] [1] [1] [1] [1] [1]
	Multiples of 4: 0, 4, 8, 12, 16, 20, 24, 28, 32 LCM = 28
	Mohamed will do both exercises after 28 days.
friends they ex	xercises every 12 days. Rana exercises every 8 days. Bot exercised together today. How many days will it be untercise together again?
friends they ex Malak ther fam She wa person	exercises every 12 days. Rana exercises every 8 days. Both exercised together today. How many days will it be untercise together again? Daked 30 servings of cakes and 48 servings of baklava formily. Into the desserts into containers, so that each receives the same number of servings. How man
friends they ex Malak ther fam She wa person contain	xercises every 12 days. Rana exercises every 8 days. Both exercised together today. How many days will it be untilercise together again? Daked 30 servings of cakes and 48 servings of baklava formily. Into the desserts into containers, so that each receives the same number of servings. How manners will she need?
friends they ex Malak ther fam She wa person contain	exercises every 12 days. Rana exercises every 8 days. Both exercised together today. How many days will it be until ercise together again? Daked 30 servings of cakes and 48 servings of baklava for hily. Ents to divide the desserts into containers, so that each receives the same number of servings. How man

G 2, 1

3 8, 4

Lessons 1&2:

The Power of Ten
Using the Area Model to Multiply

Learning Objectives:

By the end of these lessons, the student will be able to:

- Identify powers of ten.
- Multiply single digits by powers of ten.
- Explain the patterns he/she observes observe when multiplying by powers of ten.
- Multiply using the area model.

Lessons 3&4:

The Distributive Property of Multiplication
Using the Partial Products Model to Multiply

Learning Objectives:

By the end of these lessons, the student will be able to:

- Explain the relationship between the area model of multiplication and the Distributive Property of Multiplication.
- Multiply using the partial products model.
- Estimate products.

The Power of Ten Using the Area Model to Multiply

Remember

Multiplying by 10, 100, 1,000,

Note the following examples:

	Thou	sands	C	nes		Decimal	Tenths	
	Tens	Ones	Hundreds	Tens	Ones	Point	ientris	
				en!	6			
6 X 1 <u>0</u> = 6 <u>0</u>				6	0	•		X10
6 X 1 <u>00</u> = 6 <u>00</u>			6	0	0	•		X 1 00
6 X 1, <u>000</u> = 6, <u>000</u>		6	0	0	0			X 1,000
6 X 1 <u>0,000</u> = 6 <u>0,000</u>	6	0	0	0	0			X 10,000

We note that:

1 Complete the following:

2 Answer the following:

- a A crate of mangoes weighs 9 kilograms. How many kilograms would 1,000 crates weigh?
- **1** If **10** millimeters make **1** centimeter, how many millimeters are in **7** centimeters?
- There are 1,000 milliliters in 1 liter. Omar bought a 2-liter bottle of juice. How many milliliters are in this bottle?

The product of 25 X 3 can be found in different ways

Partial
Products

$$\begin{array}{c}
25 \\
X \quad 3 \\
(3 X 5) \quad 15 \\
(3 X 20) + 60 \\
\hline
75
\end{array}$$

Area Model

20	3	
3 X 20	5 X 3	
= 60	= 15	
60 + 1	5 = 75	

Example (1): 45 X 38

		3	8
	X	30	8
45	40	1,200	320
1	5	150	40

Example (2): 45 X 38

	427				
	X	400	20	7	
69	60	24,000	1,200	420	
٩	9	3,600	180	63	

3 Multiply using the area model:

a 4 X 247 =

6 62 X 36 =

© 84 X 273 =

4 Write the multiplication problem that expresses each model, and then solve it:

b

	800	5	6
10			
3		1593	

- 5 Answer the following
 - a Ali walks 6 kilometers each day. If he walked 187 days a year, how many kilometers would he walk?

• What if Ali were to drive 60 kilometers each day? How many kilometers would he drive in 105 days?

The Distributive Property of Multiplication Weducts Model to Multiplication Using the Partial Products Model to Multiply

Remember

Multiplication Strategies

The Distributive Property of Multiplication:

xample (1): 45 X 38

$$45 \times 38 = (40 + 5) \times (30 + 8)$$

$$= (40 \times 30) + (40 \times 8) + (5 \times 30) + (5 \times 8)$$

$$= 1,200 + 320 + 150 + 40 = 1,710$$

xample (2): 69 X 427

69 X 427 =
$$(60 + 9) \times (400 + 20 + 7)$$

= $(60 \times 400) + (60 \times 20) + (60 \times 7) + (9 \times 400) + (9 \times 20) + (9 \times 7)$
= $24,000 + 1,200 + 420 + 3,600 + 180 + 63$
= $29,463$

Complete the following:

THEME	Al	
HEME	Number Sense and Operations	7

Learn

Flexible Numbers

Note that when multiplying the two numbers 83 X 14, 83 and 14 can be divided using more than one method.

Examples:

$$800 + 320 + 30 + 12 = 1,162$$

a
$$83 \times 14 = (80 + 3) \times (10 + 4)$$
 b $83 \times 14 = (40 + 40 + 3) \times (10 + 4)$

	10	4
40	400	160
40	400	160
3	30	12

a
$$83 \times 14 = (50 + 30 + 3) \times (7 + 7)$$

	7	7
50	350	350
30	210	210
3	21	21

From the above, we find that all methods of dividing numbers lead to the same result.

2 Use the area model to find the result of (74 x 12). Divide the numbers in three different ways:

Learn

The Relationship Between the Area Model of

Multiplication and the Distributive Property of Multiplication

Note the following examples:

5 3 X 513	
500 \ 10 3	
3 1,500 30 9	
$3 \times 513 = (3 \times 500) + (3 \times 10) + (3 \times 3)$	
= 1,500 + 30 + 9 = 1,539	

G 37 X 64

3 Complete using the area model:

	70	3
20	1,400	60
6	420	18

4 Complete the area model and find the product:

**********	************
	Profile to the

Learn

Using the Partial Products Model to Multiply

5 Find the product using the partial products strategy:

C				
				218
			X	37
(X)	N.	
(X)	+	•••••
(X)	+	
(X)	+	
(X)	+	
(X)	+	g

3.2 Multiplying 4-Digit Numbers by 2-Digit Numbers

Lessons 5 - 7:

What Is an Algorithm?
Multiplying Multi-Digit Numbers
Multiplication Problems in the Real World

Learning Objectives:

By the end of these lessons, the student will be able to:

- · Multiply using the standard algorithm.
- Multiply 4-digit numbers by 2-digit numbers using the standard algorithm.
- Use estimation to chéck the reasonableness of his/her answers.
- Solve multistep story problems involving multiplication.

What Is an Algorithm? **Multiplying Multi-Digit Numbers Multiplication Problems in the Real World**

earn

Standard Algorithm for Multiplication

xample: Multiply: 45 X 23

Add the

$$3 \times 45 = 135$$

.earn

Comparing Multiplication Models

Standard Algorithm

40 20 800 100 3 120

Area Model

Partial Products Model 45 23 X 15 (3X5)(3 X 40) 120

Find the product using the standard algorithm for multiplication:

a 78	b 63	© 92	d 46
X 26	X 37	X 19	X 53
	4 3		in the letter and the
+	+	+	+

Learn

Multiplying 4-Digit Numbers by 2-Digit Numbers

ample: Multiply: 4,275 X 46

Area Model

Standard Algorithm for Multiplication

Partial Products Model

	4,000	200	70	5		
40	160,000	8,000	2,800	200		
6	24,000	1,200	420	30		
160,000 + 8,000 + 2,800						

$$+30 = 196,650$$

	4,275
X	46
	25,650
+	171,000

196,650

					4,275
				X	46
(6	X	5)		30
(6	X	70)	+	420
(6	X	200)	+	1,200
(6	X	4,000)	+	24,000
(40	X	5)		200
(40	X	70)		2,800
(40	X	200)		8,000
(40	X	4,000)	1	160,000
				1	196,650

Find the product using the standard algorithm for multiplication:

4,206 X 72

6,00			
X	93		
+			

3 Find the product using the area model:

a	9,472	X !	53
	= "		

6	6,025 X 37
	=

	6,000	20	5
30			
7			

20	
8	

4 Find the product using the partial products model:

a			3,	457
			X	52
(X)		
(X)	+	
(X)	+	
(Χ)	+ .	
(X)	+	
(X)	+ .	
(X)	+ ,	
(X)	+	

0			2,	134
				84
(X)		
(X)	+0,	
(X)	+ ,	
(X)	+ .	
(X)	+	
(X)	+ ,	
(X)	+	
(X)	+ .	
				100

	3,425 X 49	
	Estimate:	
	Actual product:	
	The strategy used:	
0	7,008 X 36	
	Estimate:	
	Actual product:	
	The strategy used:	
	Answer the following:	
	of meat. How many grams of meat of	
•	Mona's son, Wael, makes baklava to recipe calls for 170 grams each of p order to make enough for the custor by 18. How many total grams of nut	istachios, walnuts, and hazelnuts. Ir ners, he needs to multiply his recipe

Theme | D

Mathematical Operations and Algebraic Thinking

Units of the Theme

Unit 4

Division with Whole Numbers

Concept 4.1: Models for Division

Concept 4.2: Dividing by 2-Digit Divisors

Unit 5

Multiplication and Division with Decimals

Concept 5.1: Multiplying Decimals

Concept 5.2: Dividing Decimals

Numerical Expressions and Patterns

Concept 6.1: Evaluating Numerical

Expressions

Concept 6.2: Analyzing Numerical

Patterns

Lessons 1&2:

Understanding Division Using the Area Model to Divide

Learning Objectives:

By the end of these lessons, the student will be able to:

- Use story problems to explain the meaning of division problems.
- Use the area model to solve division problems.

Lessons 3&4:

Using the Partial Quotients Model to Divide Estimating Quotients

Learning Objectives:

By the end of these lessons, the student will be able to:

- Use the partial quotients model to solve division problems.
- Use estimation to check the reasonableness of his/her answers.

Understanding Division Using the Area Model to Divide

Remember

Division: It means dividing a certain quantity into equal groups, which is the opposite of multiplication.

$$36 \div 9 = 4$$
 & $39 \div 9 = 4$ (R 3) Because: $4 \times 9 = 36$

Dividend Divisor Quotient Remainder

Here are three word problems to be read carefully:

There are 8 teams playing football, and each team has 9 players.

How many students are there in each team?

Solution:

 $8 \times 9 = 72$ students.

From the above, we note that:

- The numbers are the same, and the problems are all about equal teams.
 However, you can use different operations to solve each of these problems.
- Multiplication: things are already in equal groups.
- Division: things must be divided into equal groups.

1 Answer the following:

- a If 18 plums are divided equally into 3 bags, then how many plums will be in each bag?
- **b** 18 plums are packed in bags. If each 3 plums are put in a bag, how many bags are there?
- G If each bag contains 6 plums, and we have 3 bags, how many plums are there?

Remember

Using the Area Model to Divide

Example: Divide: 753 ÷ 6

Draw a rectangle and write the divisor (6) on the left side of the rectangle.

The quotient will be between 200 and 300.

- (1) We look for a multiple of 6, close to 753.
 - We find that 600 is a multiple of 6; because 600 = 6 X 100.
 - We write 100 over one part of the rectangle,

and we write 753 - 600 = 153 inside it.

- (2) We look for a multiple of 6, close to 153.
 - We find that 120 is a multiple of 6;because 120 = 6 X 20.
 - We write 20 over another part of the rectangle, and we write
 153 120 = 33 inside it.

	100	20	
	753	153	11 334
6	- 600	- 120	
	153	33	

- * 1
- (3) We look for a multiple of 6, close to 33.
 - We find that 30 is a multiple of 6;because 30 = 6 X 5.
 - We write 5 over another part of the rectangle, and we write 33 30 = 3
 inside it.

The remainder (3) is less than the divisor (6), so the division process is completed.

To find the quotient, we add the numbers above the rectangle:

$$100 + 20 + 5 = 125$$

Note that There is more than one way to use the area model to solve division problems, as in the following:

2 Divide using the area model:

a 763 ÷ 5
 b 4,527 ÷ 9
 c 6,820 ÷ 5

Learn

Dividing by a Two-Digit Number Using the Area Model

Example: Divide: 1,625 ÷ 13

We follow the same steps for dividing by a one-digit number:

- (1) We look for a multiple of 13, close to the divisor 1,625.
- (2) We find that $100 \times 13 = 1,300$.
- (3) We write 100 over one part of the rectangle,and we write1,625 1,300 = 325 inside it.

Another Solution

• We repeat the same steps with the rest of the number.

Note that There is more than one way to use the area model to solve division problems, as in the following example:

Example:

Divide: 10,454 ÷ 24

	400	30	5 €	435
	10,454	854	134	
24	- 9,600	- 20	- 120	
	854	134	14	
		2.4	OF IN	4.4

 $10,454 \div 24 = 435 (R 14)$

Another Solution

100 €		100			10 (5 6	435
10,454	8,054	5,654	3,254	854	614	374	134	
- 2,400	- 2,400	- 2,400	- 2,400	- 240	- 240	- 240	- 120	
8,054	5,654	3,254	854	614	374	134	14	

10,454 ÷ 24 = 435 (R 14)

3 Divide using the area model:

4 Complete the area model, then find the quotient:

(400	4 200	0.0
- 6,400	- 1,280	- 96
1,376	96	14

	100	10	2	2
	9,234			
81				

Using the Partial Quotients Model to Divide Estimating Quotients

Remember

Using the Partial Quotients Model to Divide

- (1) We write the division process as shown.
- (2) We look for a multiple of 6, close to 753.
 - We find that 600 is a multiple of 6;
 because 600 = 6 X 100.
- We write 100 on the right, and subtract **753 - 600 = 153**.
- (3) We look for a multiple of 6, close to 153.
 - We find that 120 is a multiple of 6;because 120 = 6 X 20.
 - We write 20 on the right and subtract
 153 120 = 33.
- (4) We look for a multiple of 6, close to 33.
 - We find that 30 is a multiple of 6;because 30 = 6 X 5.
 - We write 5 on the right and subtract 33 30 = 3.

- The remaining number (3) is less than the divisor (6).

 Thus, the division process is completed.
- To find the quotient, we add the numbers on the right: 100 + 20 + 5 = 125.

So,
$$753 \div 6 = 125 (R 3)$$

Note that There is more than one way

to use the partial quotients model

to solve division problems.

$$S_{0},753 \div 6 = 125 (R 3)$$

1 Divide using the partial quotients model:

Learn

Dividing by a Two-Digit Number Using the Partial Quotients Model

Example: Divide: 3,559 ÷ 14

We follow the same steps for dividing by a one-digit number:

- We look for a multiple of 14, close to the divisor 3,559.
 - We find that 200 X 14 = 2,800.
 - We write 200 on the right and subtract 3,559 2,800 = 759.
 - We repeat the same steps with the rest of the number.

$$S_{0}$$
, 3,559 ÷ 14 = 254 (R 3)

Note that There is more than one way to use the partial quotients model to solve division problems, as in the following example.

ample: Divide: 16,884 ÷ 42

Divide using the partial quotients model:

a 18,144 ÷ 56

Complete each partial quotients model, then find the quotient:

$$62,451 \div 3$$

***********	800
51	
30	***************************************
21	
***************************************	100
0	
	30

$$\bigcirc$$
 8.063 \div 60

60	8,063	
	- 7	100
	2,063	
		30
	263	
		4
	23	

13

Remainder =

o tes

Estimating Quotients:

• We use estimation when we want to get an answer close to the actual result.

To estimate the quotient, we use compatible numbers:

• The estimate is close to the actual product when both numbers are close to the two rounded numbers, or when the two numbers are rounded in the same direction.

12,192÷ 24 = 508 and the estimate is 10,000 ÷ 20 = 500

• The estimate is far from the actual result when a number is rounded up and another number is rounded down.

27,032 ÷ 62 = 436 and the estimate is 30,000 ÷ 60 = 500

Estimate the quotient, then find the actual result. Use the strategy you prefer:

 $a 7,800 \div 24$

Estimate = Solution =

6 27,232 ÷ 53

Estimate = Solution = **G** 6.648 ÷ 12

	l.	

Estimate = Solution =

Lessons 5-7:

Using the Standard Algorithm to Divide Checking Division with Multiplication Multistep Story Problems

Learning Objectives:

By the end of these lessons, the student will be able to:

- Use the standard algorithm to divide by a 2-digit divisor.
- Use multiplication to check answers to division problems.
- Solve multistep story problems involving whole numbers and the four operations.

Using the Standard Algorithm to Divide Checking Division with Multiplication Multistep Story Problems

Remember

Using the Standard Algorithm to Divide

Example: Divide: 891 ÷ 3

The steps of the division process:

Second Step: Multiply

Third Step: Subtract

Fourth Step: Drop the next digit

• We repeat the same steps

So,
$$891 \div 3 = 297$$

Note that Multiplication and division are inverse operations, so we can use multiplication to check the result of division.

From the previous example:

297 X 3 = 891, where the product of multiplication is equal to the divisor, so the quotient is true.

Divide: 859 ÷ 8

(Using the standard division algorithm)

- Note that: When dividing 5 ÷ 8, division is **not possible** because 5 < 8.
- So: We put 0 over the digit 5, and we divide 5 and 9 together: 59 ÷ 8.

Thus: $859 \div 8 = 107 (R 3)$

Check: $(107 \times 8) + 3 = 859$

Learn

Dividing by a Two-Digit Number Using the Standard Division Algorithm

Create a multiplication table for the divisor to help you:

$$46 \times 5 = 230$$

Starting from the left, we find that:

9 < 46, so we divide 99 ÷ 64.

With the help of the previous table, we find that:

The nearest multiple of 46 to 99 is $46 \times 2 = 92$.

0 2 1 7

So: $9.982 \div 46 = 217$

Check: $217 \times 46 = 9.982$

Divide using the standard division algorithm:

Answer the following:

a In her cafe, Rana sells cakes that were baked in a bakery. Rana received an order to deliver 350 cakes. She put the cakes in bags, 12 cakes each. Find the number of bags.

5L 1			

Lessons 1&2:

Multiplying by Powers of Ten Multiplying Decimals by Whole Numbers

Learning Objectives:

By the end of these lessons, the student will be able to:

- Explain patterns when multiplying whole numbers by powers of ten.
- · Multiply a decimal by a whole number.

Lessons 3-5:

Multiplying Tenths by Tenths
Estimating Decimal Products
Using the Area Model to Multiply Decimals

Learning Objectives:

By the end of these lessons, the student will be able to:

- Use models to represent multiplying decimals.
- Explain patterns when multiplying Tenths by Tenths.
- Estimate products of decimals.
- · Use the area model to multiply decimals.

Lessons 6&7:

Multiplying Decimals through the Hundredths Place Multiplying Decimals through the Thousandths Place

Learning Objectives:

By the end of these lessons, the student will be able to:

- Use the standard algorithm to multiply decimals through the Hundredths place.
- Use the standard algorithm to multiply decimals through the Thousandths place.
- Use estimation to check the reasonableness of his/her answers.

Lessons 8-10:

Decimals and the Metric System
Measurement, Decimals, and Powers of Ten
Solving Multistep Story Problems

Learning Objectives:

By the end of these lessons, the student will be able to:

- Explain relationships between the metric system and decimals.
- Use decimals to represent equivalent measurements.
- Relate converting measurements in the metric system to multiplying by powers of ten.
- Solve multistep story problems involving addition, subtraction, and multiplication of decimals.

Multiplying by Powers of Ten Multiplying Decimals by Whole Numbers

Remember

Multiplying by (10, 100, 1,000,...)

Note You can add zeros to the left of the last non-zero digit, or add a decimal point to the whole number, or add zeros to the right of the decimal point without changing the value of the number.

Learn

Multiplying by (10, 100, 1,000,...)

When multiplying by 10, 100, or 1,000,
move the decimal point to the right with the same number of zeros.

$$3.4.5 \times 10 = 34.5$$

 $3.4.5 \times 100 = 345$
 $3.4.5 \times 1,000 = 3,450$

Multiplying by (0.1, 0.01, 0.001,...)

$$8. \times 0.1 = 0.8$$

$$8, \times 0.01 = 0.08$$

$$8. \times 0.001 = 0.008$$

When multiplying by
0.1, 0.01, or 0.001,

→ move the decimal point ←
to the left by the same
number of decimal parts.

$$2.1.7 \times 0.1 = 2.17$$

 $2.1.7 \times 0.01 = 0.217$
 $2.1.7 \times 0.001 = 0.0217$

The place of the whole number cannot be left blank, a "0" is added to save its place.

Complete the following patterns:

a

b

C

Note the following examples:

2 Complete the following:

$$\mathbf{0}$$
 1.3 \times 0.1 =

3 Complete the following table:

X	10	100	1,000	1	0.1	0.01	0.001
3							
30		X					
0.3							

Learn

Multiplying Decimals by Whole Numbers

Note the following pattern:

In another way:

When multiplying a whole number by a decimal, we do the multiplication without the decimal point and then put the decimal point while maintaining the same number of decimal parts.

- 1) We multiply: 23 X 9 = 207
- Then we put the decimal point after two digits (2.09).

 S_0 , 23 \times 0.09 = 2.07

4 Find the product of:

Multiplying Tenths by Tenths Estimating Decimal Products **Using the Area Model to Multiply Decimals**

Learn

Multiplying Decimals with Arrays (The Base 10 Grids)

To multiply: 0.3 x 0.6 (using the Base 10 grids)

examples:

$$0.8 \times 0.2 = 0.16$$

$$\bigcirc$$
 0.2 × 1.7 = 0.34

1 Use the Base 10 grids to find the product:

.earn

Estimating the Products of Multiplying Decimals

To estimate decimals, round both numbers to the nearest whole number, and then multiply.

2 Estimate the product of the multiplication (round to the nearest whole number) as in the example:

Example: 24.3 × 1.8 **Estimate:** 24 X 2 = 48

a 28.2 × 11.5

Estimate: ____ = ____

ⓑ 499.6 × 12.7 →

Estimate: ____ = ____

© 558.25 × 99.6 →

Estimate: X =

d 6,649.9 × 0.8

Estimate: _____ X ____ = ______

@ 7.471 × 33.6

Estimate: X =

Using the Area Model to Multiply-Decimals

Example: Multiply using the area model:

$$\bigcirc$$
 3.8 × 0.27

$$3.8 \times 0.27 = 0.6 + 0.16 + 0.21 + 0.056$$

= 1.026

	3	0.2	0.04
5	15	1	0.2
0.2	0.6	0.04	0.008

	3	0.8
0.2	0.6	0.16
0.07	0.21	0.056

Multiply using the area model:

a 0.8 X 2.7

	100	
		Acres de la constante de la co
<u> </u>		

6 4.2 X 3.6

G 7.4 X 27.3

137 FF 100 10 100 100 100 100 100 100 100 1	

Multiplying Decimals through the Hundredths Place Multiplying Decimals through the Thousandths Place

Learn

Using the Standard Algorithm to Multiply Decimals

Example: Multiply: **②** 32.5 X 7.3 **⑤** 3.25 X 7.3

C 3.25 X 73

32.5 X 73

- Multiply the two numbers without the decimals.

- Put the decimal point in the result from the right, after the number of digits equal to the sum of the decimal places in the two numbers before the multiplication.

22,750 23.725

975

 $32.5 \quad X \quad 7.3 \quad = \quad 237.25$ a 1 Decimal 1 Decimal 2 Decimal **Places Place Place**

b $3.25 \times 7.3 = 23.725$ 2 Decimal 3 Decimal 1 Decimal **Places Place Places**

X 73 3.25 = 237.252 Decimal No Decimal 2 Decimal **Places Places Places**

d 32.5 X 73 = 2372.51 Decimal No Decimal 1 Decimal **Places Place Place**

 If the number of digits of the product is less than the sum of the number of decimal places, add zeros by the amount of increment to the left of the resulting number, and then put the decimal point.

4 X 2 = 8, the product of multiplication is one digit, and we need 3 digits, so we add two zeros and then put the decimal point.

1 Use the standard algorithm to multiply (24 X 13), then complete:

74

X 13

2 Use the standard algorithm to multiply:

3.56

a

6

2.369

X 2.5

X 0.34

+

+

C

0

20

X 1.3

56.32

X 0.02

+

+

Decimals and the Metric System Measurement, Decimals, and Powers of Ten Solving Multistep Story Problems

1 Complete, as in the examples:

© 25,378 gm = _____ X ___ = ____ kq.

đ	56.89 L	=	X	=		mL.
9	56 m	=	X	=		km.
) .	Answer the	e following:				
a	Rania is a	nurse in a ho	spital. She is	getting wi	rap bandages	from the
	storage clo	oset for her pa	tients. She n	eeds 1.35 r	neters of ban	dages for
	each of he	r 4 patients. Ho	ow many me	ters does sh	ne need?	
		*				
0	Dalia made	e a liter of suga	ar cane juice.	. She drank	320 milliliter	S.
		rank 0.25 liters.				
C	Ehab wante	s to know how	v much he h	as grown t	his vear In Ia	nuary he
		centimeters. B				The state of
		did Ehab grow				icis tatt.
	•••••					
a	Marwan is	designing a ne	w circuit bo	ard for the	computer be	
		The old circuit			Inches of the late	
		He planned for		Ala Solo er Co	daning was the	in VIII
		it is the differer				timeters)

Lessons 11-13:

Dividing by Powers of Ten
Patterns and Relationships in Powers of Ten
Modeling Decimal Division

Learning Objectives:

By the end of these lessons, the student will be able to:

- Explain patterns he/she notices when dividing by powers of 10.
- Make connections between multiplying and dividing by powers of ten.
- Explain the meaning of decimal division problems.
- · Use models to represent decimal division.

Lessons 14-17:)

Estimating Decimal Quotients
Dividing Decimals by Whole Numbers
Dividing Decimals by Decimals
Solving Challenging Multistep Story Problems

Learning Objectives:

By the end of these lessons, the student will be able to:

- Estimate quotients of decimal division problems.
- Use the standard algorithm to divide decimals through the Thousandths place.
- Use estimation to check the reasonableness of his/her answers.
- Solve multistep story problems involving addition, subtraction, multiplication, and division of decimals.

Dividing by Powers of Ten o Patterns and Relationships in Powers of Ten **Modeling Decimal Division**

earn

Dividing by (10, 100, 1,000,)

$$8. \div 10 = 0.8$$

 $8. \div 100 = 0.08$
 $8. \div 1,000 = 0.008$

When dividing by 10, 100, or 1,000. move the decimal point $\leftarrow 24.36 \div 100 = 0.2436$ to the left with the same number of zeros.

$$24.36 \div 10 = 2.436$$

 $24.36 \div 100 = 0.2436$
 $24.36 \div 1,000 = 0.02436$

Dividing by (0.1, 0.01, 0.001,)

8.
$$\div 0.1 = 80$$
8. $\div 0.01 = 800$
8. $\div 0.001 = 8,000$

When dividing by 0.1, 0.01, or 0.001, move the decimal point to the right with the same number of decimal parts.

$$24.36 \div 0.1 = 243.6$$

 $24.36 \div 0.01 = 2,436$
 $24.36 \div 0.001 = 24,360$

The whole number place cannot be left blank, so "0" is added to save its place.

1 Complete the following patterns:

$$9 \div 0.001 = \dots$$

2 Divide:

- **a** 800 ÷ 1.000 =
- **6**,700 ÷ 100 =
- © 5.7 ÷ 0.1 =
- **d** $2.16 \div 0.01 = \dots$
- **e** 71 ÷ 1,000 =
- **f** 12.8 ÷ 0.01 =

3 Complete the following:

.earn

Metric Conversions with Multiplication and Division

No[t]e

Multiplying by (0.1, 0.01, 0.001 ...)

Dividing by (10, 100, 1.00 ...) equivalent

$$2.5 \times 0.1 = 0.25$$
, $2.5 \div 10 = 0.25$ to $2.5 \times 0.1 = 2.5 \div 10 = 0.25$

Multiplying by (10, 100, 1.00 ...)

is equivalent Dividing by (0.1, 0.01, 0.001 ...)

$$2.5 \times 10 = 25$$
, $2.5 \div 0.1 = 25$

 $2.5 \times 10 = 2.5 \div 0.1 = 25$

From the above, we find that:

- When converting from one measurement unit to another, you can use multiplication or division. × 100

Note the corresponding figure:

- To convert from meters to centimeters, you can multiply by 100 or divide by 0.01.
- To convert from centimeters to meters, you can multiply by 0.01 or divide by 100.

Complete each conversion. Then, write a multiplication equation and a division equation with the same answer:

earn

Modeling Decimal Division

Example (1): Divide: 2.4 ÷ 0.4

Note the corresponding figure, where each column represents 0.1.

- 2.4 consists of two squares, each consisting of 10 columns,

in addition to 4 other columns (24 columns).

- Dividing 2.4 by 0.4 means how many groups of 0.4 by 2.4.
- We find that there are 6 groups, each consisting of 4 columns (0.4), $(24 \div 4 = 6).$

0.4

0.4

0.4

0.4

0.4

So,
$$2.4 \div 0.4 = 6$$

Example (2): Divide: 1.4 ÷ 0.35

Note the corresponding figure, where each square represents **0.01**.

- **0.35** is **35** squares.
- Dividing 1.4 by 0.45 means how many groups of 0.35 by 1.4.
- We find that there are 4 groups, each consisting of 35 squares (0.35), $(140 \div 35 = 4)$.

So, $1.4 \div 0.35 = 4$

5 Use the Base 10 blocks to model the following problems:

a 1.8 ÷ 0.3 =

b 2.7 ÷ 0.9 =

© 1.5 ÷ 0.15 =

d 2.5 ÷ 0.25 =

Estimating Decimal Quotients Dividing Decimals by Whole Numbers Dividing Decimals by Decimals Solving Challenging Multistep Story Problems

Learn

Estimating Decimal Quotients

Example: Estimate: 45.64 ÷ 6.87

Round the dividend to the nearest compatible whole number (a number that is divisible by the divisor after rounding).

The number 45.64 lies between 42 and 49.

45.64 ÷ 6.87

Round the divisor to the nearest whole number:

6.87 ≈ 7

If you use 42, the estimate will be of a lower value: $42 \div 7 = 6$. If you use 49, the estimate will be of a larger value: $49 \div 7 = 7$.

1 Estimate the decimal quotients in each of the following:

d
$$43.35 \div 5$$

2 Emad, an electrician, is the project manager for an upcoming construction project. He needs to find estimates for various projects on site. Read through each problem and estimate the answer:

	Problem	Estimation
a	A team of workers excavates 15.84 cubic meters of dirt each hour. How long will it take them to excavate 78.1 m ³ of dirt?	
6	The frame of the building will be made of 25.3 metric tons (t) of concrete and 52.8 t of steel. What is the total mass of the frame of the building?	ishims#3
0	Each floor of the building needs 28.3 meters of plastic piping. The team has a total of 314.58 m of piping. How many floors can they fit with the piping?	
0	Each steel joist can support 224.6 kilograms of weight. How much weight can 10 steel joists support?	Scheen by H

Learn Dividing Decimals by Whole Numbers

- Assume that the two numbers are whole numbers and do the division.
- Put the decimal point in the result in the same position as the dividend.

Examples: Divide:

Dividing Decimals by Decimals

- Convert the divisor into a whole number: by moving the decimal point to the right (by multiplying by 10, 100, or 1,000...) according to the number of decimal places in the divisor.
- Move the decimal point to the right in the dividend by the same number of digits moved in the divisor.
- You may need to add zeros to the right of the divisor sometimes.
- Perform the division operation.

xamples: Divide:

$$\begin{array}{c|cccc}
 & 8.4 \div 0.24 &= 35 \\
\hline
 & \times 100 & \times 100 \\
 & 840 & \div 24 \\
\hline
 & 035 \\
\hline
 & 24 & 840 \\
\hline
 & 72 & \\
\hline
 & 120 & \\
\hline
 & 0 & \\
\end{array}$$

Sometimes we may need to add a decimal point and an addition to complete the division process, as in the following examples:

- \blacksquare When dividing 462 \div 12, the quotient is 38 and the remainder is 6, so we add the decimal point and 0 to the dividend to complete the division $(456 \div 12 = 38.5)$.
- 2

038.5	24.25
462 0	4 97.00
	8
	17
	_ 16
	1 0
	_ 8
0	20
	20
	0

When dividing 97÷ 4,	0
the quotient is 24 and the remainder is 1,50 w	e add the decimal point and
0 to the dividend twice to complete the division	$1 (97 \div 4 = 24.25).$

3 Use the standard algorithm to divide:

d
$$183.6 \div 34 = \dots$$
 e $78.6 \div 0.6 = \dots$ **f** $98.48 \div 0.8 = \dots$

9
$$8.395 \div 0.23 =$$
 h $9 \div 0.25 =$ **1** $2 \div 1.25 =$

$$\mathbf{6}$$
 9 ÷ 0.25 =

$$\mathbf{0} \ 2 \div 1.25 =$$

A	Answ	- t	ha fe	Mou	ina
4 /	4112W	ei L	ne n	JIIUW	mu.

	, ,
a	Abdallah buys the sturdiest boxes for the products at his market. He
	wonders what the mass of the box is in kilograms. The total mass of
	a box and 3 identical pomegranates is 1.03 kg. When the identical
,	pomegranates in the box are tripled , the total mass is 2.29 kg. What is
	the mass of one of Abdallah's empty boxes?
	The second of th
Ь	Samira is training for her weightlifting competition. She attaches 4 weights to her bar, a pair of larger weights and a pair of smaller weights. One of the larger weights is 12.4 kilograms heavier than one of the smaller weights. Together the four weights have a mass of 100 kg. What is the total mass of the pair of larger weights?
C	Basem is having a sale at his sweets shop. One chocolate candy is 1.95 LE. He will provide 2 free candies for every 10 bought. A customer wants
	to buy 100 candies for an event. How much will the customer spend?

As part of her fitness training, Samira cycles 42.12 kilometers in 2 hours.
If she cycles at the same rate the entire time, how far will she travel in 1 hour?

Give your answer in kilometers and meters using whole numbers.	
kr	n.
Concording to a control of the latter of the	n.

Magdy is filling identical vases with water for flower arrangements at the florist. He pours 18 liters and 250 milliliters equally into 24 vases. When he is finished, Magdy still has 0.85 L of water left.

How much water is in each vase? Give your answer in liters.

Numerical Expressions Numerical Expressions with Grouping Symbols Placing Grouping Symbols Writing Expressions to Represent Scenarios

Learning Objectives:

By the end of these lessons, the student will be able to:

- Use the order of operations to evaluate expressions with whole numbers and decimals.
- Identify how grouping symbols affect the order of operations.
- Evaluate an expression with grouping symbols.
- Evaluate expressions with grouping symbols.
- Place grouping symbols in expressions to generate given values.
- Write an expression to represent a written scenario.

Numerical Expressions

Numerical Expressions with Grouping Symbols
Placing Grouping Symbols
Writing Expressions to Represent Scenarios

Learn

Basic Order of Operations

Perform operations inside parentheses if any

Multiply or divide from left to right

Add or subtract from left to right

Example: Use the order of operations to evaluate the expression:

- 1 Perform the subtraction inside the parentheses.
- 2 Perform the division operation.
- Perform the multiplication operation.
- Perform the addition operation.

1 Use the order of operations to evaluate each expression, one step at a time:

- **a** 597.8 ÷ 6.1 + 13 X 1.7 =
- **6** 56.5 X 2.3 15 + 12.7
 - =
- **②** 82.43 X 3.1 + 4.05 ÷ 0.01 − 2.5

=	***************************************
=	***************************************

- **1** 90.7 + 116.6 X 0.1 X 2 20
- **(** 14.5 12.3 ÷ 0.01) + 9.8

=		
=		

6 (45.42 – 17.11) X (82.9 + 17.1)

		•••••	 	*****		 ********	
=							

=							
	****	••••	 	*****	*******	 	
_							

Expanded Order of Operations

Operations within parentheses ()

Operations within brackets []

Operations outside of parentheses or brackets

- Multiply or divide from left to right
- Multiply or divide from left to right
- Multiply or divide from left to right

- Add or subtract from left to right
- Add or subtract from left to right
- Add or subtract from left to right

xample: Use the order of operations to evaluate the expression:

Operations within parentheses ()

Operations within brackets [

Operations outside

of brackets

2 Addition
$$= 3.5 + 2.84 = 3.1$$

Use the order of operations to evaluate each expression:

(a) $2.5 \div [0.5 \times (4.3 - 4.2)] - 2.4$

0		8.4	÷ (3.6	+ 0.4) X	3]	+ 2.7
	=							

	 ***************************************	***************************************	
=	 	***************************************	
=			
=			

© 7.5 X [4 – (7.6 + 2.4) X 0.2]

Changing the order of operations leads to a change in the value.

Note the following examples:

$$= 10 - 0.16 + 2$$

$$= 9.84 + 2$$

$$= 11.84$$

$$= 10 - 0.1 \times 3.6$$

$$= 10 - 0.36$$

b
$$10 - 0.1 \times (1.6 + 2)$$
 c $(10 - 0.1) \times (1.6 + 2)$

$$= 9.9 \times (1.6 + 2)$$

$$= 9.9 \times 3.6$$

$$= 35.64$$

3	Use the order of	f operations to	evaluate each	expression:
-				

a 30 X 2.5 + 47.18 - 3.12 ÷ 0.1	6 30 X ($2.5 + 47.18 - 3.12 \div 0.1$
F =	4p =
	=
	the same of the sa

4 Place grouping symbols (parentheses and/or brackets) in the expressions to generate the given values. Sometimes grouping symbols are not needed.

е	(The value is 42.35) 3.8 X 9.5 + 6.25
	=	
	=	
	=	A A A A A A A A A A A A A A A A A A A
	=	

Writing Expressions to Represent Scenarios

Note the following mathematical expressions:

evaluate the expression:

Subtract 3.5 from 7.2 and divide the result by 10.

Multiply 2.5 by 0.1 and add 3.2

Parentheses are used if the first operation is subtraction or addition.

$$(7.2 - 3.5) \div 10$$

= 3.7 ÷ 10 = 0.37

No parentheses are needed if the first operation is

$$(2.5 \times 0.1) + 3.2$$

= 0.25 + 3.2 = 3.45

multiplication or division

Multiply 217 by 0.01 and subtract the result from 4.8, then divide by 10

$$(4.8 - 217 \times 0.01) \div 10$$

= $(4.8 - 2.17) \div 10 = 2.63 \div 10 = 0.263$

Parentheses are placed to perform **subtraction before division**, and parentheses are not placed for multiplication because it is natural that it is performed first.

5 For each problem, write an expression that matches the clues. Then, evaluate the expression:

a	Subtract 3.1 from 4.62. Then, multiply the result by 2.				
	Sterric Valle at the event in about				

0	Divide 93	by 0.3	and the	n add 114.7
	After that	divide	the resi	alt by 5

6.2 Analyzing Numerical Patterns

Lessons 5 – 7:

Identifying Numerical Patterns Extending and Creating Numerical Patterns Solving Problems with Numerical Patterns

Learning Objectives:

By the end of these lessons, the student will be able to:

- · Identify a numerical pattern.
- Explain the rule for a numerical pattern.
- Use letters to represent unknown quantities in a rule for a numerical pattern.
- Extend a numerical pattern.
- Create a numerical pattern.
- Create two numerical patterns using two given rules.
- Solve real-world problems involving numerical patterns.

Identifying Numerical Patterns Extending and Creating Numerical Patterns Solving Problems with Numerical Patterns

Learn

Numerical Pattern

It is a sequence of numbers according to a certain rule.

Pattern rule: is the relationship between the number and the number before it.

Example: Note the following patterns:

Each number = the previous number + 3

The pattern rule is: n+3 (the variable n represents the previous number)

Each number = the previous number X 2

The pattern rule is: n X 2 (the variable n represents the previous number)

1 Write the rule for each pattern with a variable. Then, complete the pattern by finding the missing values:

Learn

Input/Output Tables

Pattern rule: is the relationship between the input number and the output number.

Note the following patterns:

Input	Output
1	5
2	10
3	15
4	20

Input	Output
8	2
16	4
24	6
32	8

Output number = Input number X 5 Rule: n X 5

Output number = Input number + 4 Rule: n ÷ 4

Write the rule for each pattern with a variable. Then, complete the pattern by finding the missing values:

C

Input Output 6 12 3 4 5 24

Input	Output
2	6
3	9
4	
***************************************	15
	18

	15	.39
	18	
Rule:		

Input	Output
6	1
8	3
10	5
12	
	9
Rule:	

_			
_			

Input	Output
6	4
8	6
10	8
	10
14	- -

Rule:

earn

A pattern rule can consist of more than one operation.

Note the following patterns:

Input	Output
10	6
12	7
14	8
16	9

Rule: $n \div 2 + 1$

Input	Output
31	10
34	11
37	12
40	13

Rule: $(n-1) \div 3$

a	Input	Output
	2	7
	3	10
	4	13
	5	***************************************
		19

)	Input	Output	(
1	1	6	
	3	16	
	5	26	
		36	
	9		
i	D 1		

	Input	Output	
1	10	4	
	12	5	
		6	
	16		
ĺ	18		
j	Rule:		

Input	Output
2	4
3	9
4	16
5	
	36

Rule:

Rule:

Rule:

4 Using the given information, list the first five numbers in the pattern:

d Starting number: 11, Rule: (n + 3) X 10: _____, ____, ____,

5 Use a pattern to help you solve each problem:

a When Shams was 6 years old, her brother Tamer was half her age.

Complete the table to show Shams' and Tamer's ages.

Shams'	Tamer's
Age	Age
15	
17	
	16
22	
	21

How old will Tamer be when Shams is 12?

b A seamstress is making dresses She noticed the amount of fabric she used to make 3 dresses and to make 5 dresses. Use the pattern to complete the table.

Number of	Fabric
Dresses	Needed (m)
1	
2	***************************************
3	7.5
4	
5	12.5

How much fabric will the seamstress need to make 7 dresses?

سلسلة كتب الاستان

Number Sense and Operations

Unit 1: Decimal Place Value and Computation
Pages 4 - 32

Unit 2: Number Relationships

Pages 33 - 59

Unit 3: Multiplication with Whole Numbers

Pages 60 - 78

Mathematical Operations and Algebraic Thinking

Unit 4: Division with Whole Numbers

Pages 79 - 102

Unit 5: Multiplication and Division with Decimals

Pages 103 - 132

Unit 6: Numerical Expressions and Patterns

Pages 133 - 143

Theme

Number Sense and Operations

Units of the Theme

Unit 1

Decimal Place Value and Computation

Concept 1.1: Decimals to the Thousandths Place
Concept 1.2: Adding and Subtracting Decimals

Unit 2

Number Relationships

Concept 2.1: Expressions, Equations, and the Real World

Concept 2.2: Factors and Multiples

Unit 3

Multiplication with Whole Numbers

Concept 3.1: Models for Multiplication

Concept 3.2: Multiplying 4-Digit Numbers by 2-Digit Numbers

Decimal Place Value and Computation

1 Decimals to the Thousandths Place

Exercises on Lessons 1 & 2

The Journey Begins & Decimals to the Thousandths Place

Match each decimal model to the decimal number it represents:

0.400

0.205

0.530

0.750

2 Write each fraction as a decimal:

$$\frac{45}{100}$$
 =

$$\frac{5}{10} = \dots$$

$$\frac{982}{1,000} = \dots$$

$$\frac{1}{100} = \frac{5}{100} = \frac{3}{1,000} = \frac{45}{1,000} = \frac{57}{1,000} = \frac{57}{1,000$$

5 8
$$\frac{3}{100}$$
 =

$$\frac{5}{10} = \dots$$

$$\frac{7}{10} = \frac{2}{10} = \dots$$

$$\frac{5}{100} = \frac{3}{100} = \frac{5}{10} = \frac{7}{100} = \frac{8}{100} = \frac{239}{1,000} = \frac{8}{100} = \frac{239}{1,000} = \frac{1}{1000} = \frac{1}$$

3 Complete the following:

- 1 Three hundred fifty-nine million, forty thousand, six and seventy-nine hundredths (in standard form):
- 2 Six milliard, seventy thousand, ninety-six and five thousandths (in standard form):
- 3 45,025,003.36 (in word form):

4 9,200,000,065.027 (in word form):	• • • • •
In 457,258,350.68, the digit 6 is in the place and its value	-is
6 In 500,725,235.102, the digit in the Hundredths is and its value is	
7 The value of 9 in the Hundredths place is	
8 If the value of 3 is 0.3, then its place value is	
9 The greatest decimal number that can be formed from the digits (6, 3,	, 9,
8, 2, 7) up to the Hundredths is	
10 The greatest decimal number that can be formed from the digits (8, 3,	2,
0, 8) up to the Tenths is	
11 The smallest number that can be formed from the digits (3, 9, 0, 5) up	to
the Thousandths is	
12 The smallest number that can be formed from the digits (8, 3, 5, 8, 2, 7,	2)
up to the Hundredths is	
13 0.523 = thousandths, hundredths, tenths	
14 = 7 tenths, 9 thousandths.	
= 2 hundredths, 4 thousandths.	
Choose the correct answer:	
1 Seven milliard, fifty thousand and seven hundredths =	
(7,050.07 7,000,050.07 7,000,050,000.07 7,000,050,000,.0	7)
2 56,000,500.035 (in word form):	
(fifty-six thousand, five hundred and and thirty-five thousandth	าร
or fifty-six million, five hundred and thirty-five thousandth	าร
of fifty-six million, five hundred thousand and thirty-five thousandth	าร
on fifty-six million, five hundred thousand and thirty-five hundredth	s)

Number Sense and Operations	
3 The place value of 5 in 5 28,239	9.247 is
(Hundred Millions of Hundred	Thousands Hundreds Hundredths
4 The value of 0 in 247,369.205	is
	(0.001 @ 0.01 @ 0.1 @ 0
5 If the value of 7 is 0.7, then its	place value is
	(Tenths of Ones of Tenths of Hundredths
6 If the place value of 3 is Thous	andths, then its value is
	(0.003 @ 0.03 @ 0. @ 3,000
7 4 45 =	(4.45 @ 445 @ 4.045 @ 45.4
8 2.053 =	$(2\frac{53}{10} \odot 2\frac{53}{100} \odot 2\frac{53}{1,000} \odot \frac{253}{1,000}$
The greatest decimal number t	hat can be formed from the digits
(9, 2, 2, 3, 7, 9) up to the Hundre	edth is
(9,97	3.22 a 2,237.99 a 99,732.2 a 22,379.9
10 The greatest decimal number t	hat can be formed from the digits (6, 8,
9, 4) is	(9.864 @ 98.64 @ 986.4 @ 9,864
11 The smallest decimal number t	hat can be formed from the digits
(6, 2, 0, 8, 3) up to the Thousand	dths is
andrive	2,036.008
12 The number of Tenths in 0.386	isparts. (3 or 30 or 83 or 386
13 6 hundredths =	(6 0 0.60 0 0.060 0 0.006
	New March Control of the Control of

Assessment on Lessons 1&2

First:	Comple	ete the following	•	
1 Nine mill	iard, ninety	thousand and nine	thousandths (in digit	s):
				- X (2)
4 The great	est decim a	al number formed fr	om the digits (9, 8, 0, 2	2. 9. 5) up to the
		multiee-op: - Prince		THE RESERVED
5 The value	of 0 in 65	3,852.2 0 8 is		
Second:	Choose	the correct ans	swer:	
1 Four hund	dred millio	n, thirty thousand a	nd thirty hundredths =	
The state of the s			G 4,030,000.30	d 430.30
2 3,000,003	.003 (in w	ord form):	Street Reservable hig	
a Three	hundred, t	hree million and th	ree thousandths	
b Three	million, th	ree and three thous	andths	
© Three	million, th	ree thousand and th	ree thousandths	
d Three	hundred tl	nousand, three and	three thousandths	
3 In		the place value of 5	is Hundredths.	
a 500.46	5	6 46.005	© 40.056	d 46,500
			be formed from the di	gits (5, 2, 3, 7, 2) up
		A 2.275.7		Call of February
a 22,357		b 2,235.7		@ 22.357
	that repres		ths in 4,568.178 is	deligible and the state of the
a 1		6 7	© 8	@ 4
Third:	Match:			
1 Nine hun	dred millio	on and nine hundre	d thousandths a	900,000.90

4 Nine hundred million and nine thousandths

3 Nine hundred, nine and nine thousandths

5 Nine hundred thousand and nine hundredths

2 Nine hundred thousand and ninety hundredths

- **b** 909.009
- **©** 900,000,000.900
- **d** 900,000.09
- @ 900,000,000.009

Exercises on Lessons 3 & 4

Place Value Shuffle & Composing and Decomposing Decimals

- 1 Find the result of each of the following using the place value chart:
 - 1 4.52 X 10 =

Thou	ısand	5	Oi	nes		l Point	to Fred m	S	
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decima	Tenths	Hundredths	Thousandths
				H-S				人类的 清 (四)	
	F 10		The latest	1 .13	English				Action and the second

2 456.258 X 10 =

		ısand			nes		Point		Decimal		
Н	undreds	Tens	Ones	Hundreds	Tens	Ones	Decima	Tenths	Hundredths	Thousandths	
		, L'1		arthress	ens e	e intell		mpg/m	general filmstand		
						300				A A STATE OF THE PARTY OF THE P	

Thou	Thousands		O stanta	nes	ntith	Point	Decimals		
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decimal	Tenths	Hundredths	Thousandths
T DUCE IN	TU						cytan	M. M.	di ukota
TTAL	11 1018	17 91	mort har	1 "	10 715		di redu	id femiliaet je	ollama Syli. 4

4 253.9 ÷ 10 =

Thousands			Oı		Point.	Decimals			
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decima	Tenths	Hundredths	Thousandths
							West Cold		
	1.77			1			THE PERSON	e nelah	

Thousands				Ones			Decimals		
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decimal	Tenths	Hundredths	Thousandths
D. Alley					H-HISCHI				ALUS III - 22 - 12 / 12 / 12 / 12 / 12 / 12 / 12
	Thus			-00			discoun-	Marie Militaria	HIDEL SEALING

2 Complete the following:

- 1 The value of 9.25 increased when multiplying by 10 to
- The value of increased when multiplying by 10 to 8.57.

- The value of increased when dividing by 10 to 24.8.
- 6 The value of 1.25 when dividing by 10 to 0.125.
- 7 893 ÷ 10 =
- 8 6.38 ÷ 10 =
- 9 ÷ 10 = 2.7
- 10 458.36 X 10 =
- 11 X 10 = 25
- **12** 3,000 + 500 + 0.8 + 0.07 + 0.006 =
- 13 25 + 0.025 =
- **14** 200 + 30 + 5 + 0.48 =
- **15** 63 + 0.025 =
- **16** 43.043 = 43 +
- **17** 8,258.36 = 8,000 + 200 + 50 + 8 +
- 18 95.905 =(in expanded form)
- 19 85.36 = Tens + Ones + Tenths + Hundredths.

3 Choose the correct answer:

1 The value of increased when multiplying by 10 to 25.26.

(25.26 **a** 252.6 **a** 2.526 **a** 2.526)

The value of decreased when dividing by 10 to 0.026.

 $(0.026 \odot 0.26 \odot 2.6 \odot 26)$

3 X 10 = 258

(2580 **1** 258 **1** 25.8 **1** 2.58)

4 45 X 10 =

(450 **1** 0.45 **1** 4.5 **1** 40.5)

5 | 8.05 ÷ 10 =

(805 **a** 8.5 **a** 80.5 **a** 0.805)

6 When all digits of a number move one place to the left, its value

(decreases or increases or does not change or other)

When all digits of a number move one place to the, its value decreases. (right or left or other)

- 9 824.12 = (824 + 1 + 2 1 824 + 12 1 824 + 0.12 1 800 + 200 + 4 + 10 + 2)

(does not change on increases from 0.7 to 7 on increases from 70 to 700

of decreases from 0.7 to 0.07)

4 Match:

- 1 58.25 X 10
- 2 58.25 ÷ 10
- 3 582.5 X 10
- 4 582.5 ÷ 10

- **a** 58 + 0.25
- \bigcirc 582 + 0.5
- \bigcirc 5 + 0.825
- **3** 5,800 + 25
- 5 Use the digits (8, 5, 7, 0) and form the smallest decimal number up to the Thousandths, then multiply the result by 10, and complete:

	W	hole N	Number		oint		Decimal	S		
	ısand		ATTOMAS INC.	nes		nal P				
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decir	Tenths	Hundredths	Thousandths	
							WEST IN T	readon enti-	用門的一川府	
35.75	37 PH	pd D	ivlague	unor	Whe	7.5	ero micro	Eller Harter	the sect of the	

_____X ____ = ____

Assessment on Lessons 3&4

First: Choose the correct answer:

- - **a** 4.526
- **6** 4.526
- **©** 452.6
- 450.26
- The value ofdecreases when dividing by 10 to 75.28.
 - **a** 752.8
- **(b)** 7.528
- **©** 750.28
- **d** 75.028

- **3** 400 + 50 + 0.2 + 0.004 =
 - **a** 450.24
 - **b** 450.024
- **©** 450,204
- **d** 45.204

- 4 20.05 =
 - **a** 20 + 5
- \bigcirc 200 + 0.5
- \bigcirc 2 + 0.005
- \bigcirc 20 + 0.05

- 5 85 ÷ 10 =
 - **a** 8.5

- 0.85
- C 0.085
- **6** 850

Second: Complete the following:

- 1 The value of increases when multiplying by 10 to 39.27.
- **3** 45.012 = 45 +
- 4 500 + 20 + 3 + 0.8 + 0.07 + 0.006 =
- $\div 10 = 45.9$

Third: Match:

- 1 78 X 10
- 2 78 ÷ 10 =
- 3 70 + 0.8 =
- 4 7 + 0.08 =
- 5 70 + 0.08 =

- a 7.8
- **(5)** 70.8
- **©** 780
- 70.08
- **9** 7.08

Fourth: Put (\checkmark) or (x) in front of each statement:

- 1 The value of any number is increased when it's divided by 10.
- 2 85.24 X 10 = 8.524
-) $32.725 \div 10 = 27.25$

- **4** 50 + 0.005 = 50.05
-) 5 200 + 20 + 0.2 + 0.002 = 220.202 (

Exercises on Lessons 5 & 6

Comparing Decimals & Rounding Decimals

Complete using (<, = or >):

1 456.25

45.625

2 79.02

790.2

3 42.9

42.900

4 12.500

12.050

5 98.78

103.5

6 90.05

900.5

7 8.5 X 10

85 ÷ 10

8 9.08 X 10

 $9.08 \div 10$

9 0.5 X 10

50

10 85.03

80 + 5 + 0.03

1175 + 0.05

75.50

12 107.05

One hundred, seventy-five hundredths

13 800,008.3

Eight hundred, eight thousand and three tenths

14 700.050,005.50 Seven hundred million, fifty thousand, five and

fifty hundredths

15 400 + 4 + 0.4 + 0.004 Four hundred four, four hundred and forty

thousandths

2 Circle the greatest number:

1 27.03 270.3 .

2 56.38

56.038

560.38

3 180.06

18.006 . 180.60

4 900,900

. 900.090 900.009

3 Circle the smallest number:

1 100.50

150.05 105.05

2 900.25

90.025 , 902.05

3 1,000.02

100,200 100.002

8.237

80.237 . 802.037

4 Round each of the following using the midpoint strategy:

- 1 To the nearest whole number:
 - **a** 5.32 ≈

- **d** 99.87 ≈

- 2 To the nearest Tenth:

- 3 To the nearest Hundredth:

© 0.9999 ≈

ALC: N			
5	Round each of the following numbers	s using the rounding rule stra	tegy:

1 To the nearest whole number:

2 To the nearest Tenth:

3 To the nearest Hundredth:

4 To the nearest Thousandth:

6 Complete the following:

(To the nearest
$$\frac{1}{1,000}$$
)

9
$$56.234 \div 10 =$$
 \approx (To the nearest two decimal places)

ATT.					
7	Choose	the	correct	angwor	
	0110030	LIIC	COLLECT	alisve	

3 56.5 X 10 565 ÷ 10 $(< \odot = \odot > \odot <)$

4 0.32×10 $3.2 \div 10$ $(< 0) = 0) > 0) <math>\leq$

5 56 < < 57 (562 **o** 57.3 **o** 5.6 **o** 56.02)

6≈ 2.5 (To the nearest 0.1)

(2.445 or 2.456 or 0.536 or 2.05)

7 ≈ 69 (To the nearest whole number)

(69.5 or 68.4 or 68.369 or 69.45)

8 56.298 ≈ 56.30 (**To the nearest**)

(100 or 10 or 0.01 or whole number)

9 63.245 ≈ 60 (**To the nearest**)

(0.01 **a** 0.1 **b** 10 **b** whole number)

10 56 + 0.02 + 0.007 ≈ (To the nearest two decimal places)

(56.2 • 56.3 • 56.02 • 56.03)

8 Arrange the following numbers:

1 56.25 , 56.52 , 56.025 , 56.502 , 56.052 (Ascendingly)

_____<

2 6.005 , 5.006 , 50.06 , 60.05 , 5.060 (**Descendingly**)

Assessment on Lessons 5&6

First: Choose the correct answer:

- 1 45 + 0.5 450 + 0.05

 - **a** <

- G = 6 6

(To the nearest whole number)

(To the nearest

- 2 ≈ 75.3

- (To the nearest Tenth)

- **a** 75.03
- **G** 750.3
- 75.34

- 78.098 ≈ **a** 78.1

- **©** 79 **d** 7
- **4** 68.567 ≈ 68.57
 - a whole number **b** Tenth
- C Hundredth
- **d** Thousandth

- ≈ 20.02
 - **a** 20.002 **b** 20.024
- **C** 0.025
- 20.200

(To the nearest Hundredth)

Second: Round the following numbers:

- $4 \ 458.025 \approx$. (To the nearest Ten)
- $5 \ 458.025 \approx \dots$ (To the nearest Hundred)

Third: Compare using (<, = or >):

- **1** 40.02 400 + 2 **2** 50.600 5.006
- **3** 500 + 90 + 3 + 0.8 + 0.07 **593.87**

- 4 300.03 Three hundred and three tenths
- 5 25 + 0.03 + 0.008 Twenty-five and eighty-three hundredths

Fourth: Label the midpoint of the number line. Place the given decimal number at its proper location, and then round:

3 2.875 ≈ ...

To the nearest whole number. To the nearest Tenth. To the nearest Hundredth.

Assessment On Concept

		ou solicop	
First: Complete	the following	g:	
1 Five milliard, five milli	on, five hundred	thousand and five th	ousandths
=			(In digits)
2 The smallest decimal i	number that can	be formed from the o	ligits (9,8,0,5,7)
up to the Hundredths	is		
3 In 8,567.4 9 1, the place	value of 9 is hu	ndredths and its valu	e is
4 The value of 586.47 is	increased when	multiplying by 10 to	
5 458.025 ≈			To the nearest Tenth)
Second: Choose to		연기 기계에 어디를 잘 되었다.	Barrier Man Kill
1 The greatest decimal r			diaits (8 5 9 0 7)
is	idiliber that can	be formed from the t	aigita (0,5,7,0,7)
a 89,750	9.870.5	© 50.789	6 5.078.9
The value of			
a 7,520		© 752	d 75.200
3 4,000 + 40 + 0.4 + 0.04	} =		
a 4,040.44	3 44.44	© 444.04	d 4,400.40
4≈ 75.0	60	(To the	nearest Hundredth)
a 75.694	75.607	© 75.599	d 75.697
Third: Compare	using (<, = or	>):	
1 247.089 247.10	2 45.25	45 + 25 3 2	02.25 20.225
4 20.05 20 + 0.	05 5 1,000	+ 50 + 0.2 + 0.008	1,500.280
Fourth: Match:			
1 Three thousand and t	hree thousandth	ns =	a 0.15
2 150 thousandths =		HERE INCH THE BUILD	5 3,000.003
3 400 + 20 + 0.1 + 0.00	8 =		© 20
4 45.95 X 10 =			d 420.108
5 19.999 ≈	(To the n	earest Hundredth)	e 459.5
Fifth: Answer th	ne following:		

Mazen is planning a trip from Cairo to El Fayoum. He will travel 147.72 kilometers.

Round the distance to the nearest whole number.

1.2 Adding and Subtracting Decimals

Exercises on Lessons 7-9

Estimating Decimal Sums, Modeling Decimal Addition & Thinking Like a Mathematician

1 Estimate the sum of each of the following:

1 Using rounding to the nearest Tenth strategy:

2 Using benchmark decimals strategy:

3 Using Front-End Estimation strategy:

$$\bigcirc$$
 0.35 + 1.25

2 Add using the decimal model:

3 Add using the place value table:

Thousands			Ones			l Point	Decimals			
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decima	Tenths	Hundredths	Thousandths	
							T T			
				Na of	- 47			- 1 - In' - I		

Thousands			Ones				Decimals		
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decima	Tenths	Hundredths	Thousandths
			-						
									911 - 1

3 32.56 + 1,856.996 =

	ısand			nes	Tall	Point		Decimal	
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decimal	Tenths	Hundredths	Thousandths
	1		,	11/4		-			

4 69,586.35 + 892 .9 =

Thou	usand	S	Oı	nes		oint	Decimals		
Hundreds	Tens	Ones	Hundreds	Tens	Ones	cimal F	Tenths	Hundredths	Thousandths
						De			
						ľ			

5 69,245.7 + 36.578 =

Thou	Thousands			Ones			Decimals			
Hundreds	Tens	Ones	Hundreds	Tens	Ones	ecimal F	Tenths	Hundredths	Thousandths	
	, m) ut/	rail.						Sal Jack		
				3						

4 Find the result:

 1
 56.458
 2
 483.258
 3
 82.025
 4
 0.369

 +
 7.58
 +
 736.27
 +
 129.975
 +
 +
 12.57

- 5 56.367 + 56,246.34 =
- **6** 56.31 + 8,000.249 =
- 7 39.56 + 245.36 =
- 8 638.47 + 56,324.98 =

5 Write an expression to match the following models, and write an addition problem, then find the result:

6 Complete the following:

Place value: Hundredths, Thousandths.

2 45 Thousandths + 15 Thousandths = Thousandths.

Place value: Hundredths, Thousandths.

3 456 Thousandths + 265 Thousandths = Thousandths.

Place value: Tenths, Hundredths, Thousandths.

4 5 Hundredths + 68 Thousandths = Thousandths.

Place value: Tenths, Hundredths, Thousandths.

5 15 Hundredths + 28 Hundredths = Thousandths.

Place value: Tenths, Hundredths, Thousandths.

6 3 Tenths + 28 Thousandths = Thousandths.

Place value: Tenths, Hundredths, Thousandths.

7 Complete the following: 19925 145 1992 1992 1992

- 1 The benchmark decimal closest to 0.99 is
- The benchmark decimal closest to 0.001 is

- 6 15 Hundredths + 37 Hundredths = Hundredths.
- 7 5 Tenths + Hundredths = 560 Thousandths.
- **8** 45.36 + = 57.79
- 9 0.45 + = 1

10 0.2 + 0.5 + = 2

8 Choose the correct answer:

1 The model representing the addition problem 0.25 + 0.4 is

or ____

2 The model representing the addition problem 0.3 + 0.4 is

or

4 The addition problem that represents the corresponding model is

(0.09 + 0.48 • 0.9 + 0.48

- 7 The estimate of the sum of 3.752 + 2.358 using rounding to the nearest 0.01 strategy is (5 @ 6.1 @ 6.2 @ 6.11)
- 8 4 Tenths + 3 Thousandths = Thousandths. (0.403 @ 7 @ 43 @ 403)
- 9 0.7 + 1.2 + = 2

 $(1.9 \odot 1.1 \odot 0.1 \odot 0.3)$

10 0.256 + = 1

(0.854 @ 1.744 @ 0.8 @ 0.744)

9 Answer the following:

- Malak wants to cycle 40 km in a week. By Thursday, Malak had covered 34.99 km, and on Friday she had covered 4.01 km.

 Did Malak achieve her goal or not? (Show your answer)
- 2 A merchant bought 953.543 kilograms of fruit. The next day, he bought 240,615 kilograms. Estimate the total amount bought by the merchant in the two days. Use the strategy of rounding to the nearest 0.1.
- 3 Fayrouz has 5 meters of fabric. If she needs 3.75 meters to make a dress, and 1.23 meters to make pants, estimate the length of the fabric that Fayrouz needs. Use the strategy of rounding to the nearest whole number. Is the fabric that she has enough or not?

Assessment on Lessons 7-9

First: Choose the correct answer:

- - \mathbf{a} 0.28 + 0.15
- \bigcirc 2.8 + 1.5
- © 2.8 + 0.15 © 0.28 + 1.5

2 Which of the following models expresses the addition problem 0.45 + 0.5?

- - **a** 37.92
- **6** 8.52
- @ 85.2
- **37.95**

- 4 0.75 + = 1

© 0.35

1.75

5 65.5 + 5 =

a 1.25

a 66

6 70.5

6 0.25

- **@** 65.55
- 655.5

Second: Complete the following:

- 1 The estimated sum of 4.6 + 5.3 using rounding to the nearest whole number strategy is
- 2 The estimated sum of 6.12 + 3.28 using rounding to the nearest Tenth strategy is
- 3 4 Hundredths + 27 Thousandths = Thousandths.
- 4 452.8 + 2.782 =
- + 0.62 = 1

Third: Match:

- 1 3.5 + 2.5
- 2 0.35 + 0.25 =
- 3 0.35 + 2.5 =
- 4 3.5 + 0.25 =
- **5** 35 + 25 =

- **a** 0.6
- **6** 2.85
- 6
- **6**0
- **3.75**

Exercises on Lessons 10-13

Subtracting Decimals, Estimating Decimal Differences, Subtracting to the Thousandths Place & Decimal Story Problems

Subtract using the decimal model:

2 Subtract using the place value table:

Thousands			Ones			Point		Decimal	s
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decimal	Tenths	Hundredths	Thousandths
						•			
									7 7 11 15
					~				

	ısand		Ones			l Point	Decimals		
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decima	Tenths	Hundredths	Thousandths
		1							•
		700	T MAKE		4 1 1 1 1 1 1 1				
		- (x f							0.20.00

3 45.369 – 9.98 =

Thou	ısand	5	0	nes	II br	Point	165	Decimal	S
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decimal	Tenths	Hundredths	Thousandths
			LEAL.		,	•		THE RESERVE	inegality.
	Talka			11,70	10		. "		

4 56.023 – 9.88 =

	ısand							Decimal	als	
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decimal	Tenths	Hundredths	Thousandths	
				1			ino, i e a			
		-a/1								

5 1,250 – 889.56 =

	isands		1-5 1	nes		Point	Decimals		
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decimal	Tenths	Hundredths	Thousandths
`			75/10/1			•			
						•			

6 56,025.35 – 9,258.9 =

	ısand			nes		Point	Decimals		
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Decimal	Tenths	Hundredths	Thousandths
						•			
		1.0							

3 Find the result:

4 Write an expression to match the following models, and write the subtraction problem, then find the result:

5 Estimate the difference of each of the following:

1 Using rounding to the nearest Tenth strategy:

a 75.02 – 27.18

 \bigcirc 9.235 - 5.2

© 25,152.24 – 105.45 =

d 45.258 – 7.39

e 56.321 – 9.8

1 765.3 – 7.589

2 Using benchmark decimals strategy:

a 0.99 - 0.51

b 25.01 – 3.45

G 8.9 - 2.001

e 7.01 – 0.65

15.01 - 7.96

d 1.98 – 0.53

3 Using Front-End Estimation strategy:

0	31	5.	36	_	89.	65

6 Complete the following:

1 79 Thousandths – 15 Thousandths = Thousandths.

Place value: Hundredths, Thousandths.

2 82 Thousandths – 47 Thousandths = Thousandths.

Place value: Hundredths, Thousandths.

3 620 Thousandths – 174 Thousandths = Thousandths.

Place value: Tenths, Hundredths, Thousandths.

4 14 Hundredths – 37 Thousandths = Thousandths.

Place value: Tenths, Hundredths, Thousandths.

5 63 Hundredths – 18 Hundredths = Thousandths.

Place value: Tenths, Hundredths, Thousandths.

6 5 Tenths – 24 Thousandths = Thousandths.

Place value: Tenths, Hundredths, Thousandths.

7 Complete the following:

- 6 75 Hundredths 9 Hundredths = Hundredths.
- 7 Tenths Hundredths = 650 Thousandths.
- 8 963.16 = 56.35
- 9 1 = 0.45
- **10** 12.5 = 35.73
- 8 Choose the correct answer:
 - 1 The model representing the subtraction problem 0.83 0.5 is

o

O

or

2 The model representing the subtraction problem 0.8 – 0.65 is

O)

O

- The subtraction problem that represents the opposite model is $(0.83 0.4 \odot 8.3 0.4)$
 - **o** 83 40 **o** 0.83 0.04)

 $(1.72 - 0.17 \odot 1.72 - 1.7 \odot 1.72 - 1.17)$

172 - 117

THEME Number Sense and Operations	
5 The estimate of 78.089 – 5.247 u	sing rounding to the nearest 0.01
strategy is	(72.84 or 72.842 or 72.9 or 65)
6 The estimate of 25.368 – 5.247 u	ising rounding to the nearest 0.1
strategy is	(20 or 20.2 or 20.12 or 25.121)
7 The estimate of 86.25 – 14.89 us	ing rounding to the nearest whole
number strategy is	(71.36 • 71.4 • 71 • 70)
8 3 Tenths – 15 Thousandths =	Thousandths.
	(2.85 • 285 • 0.15 • 0.285)
9 12.78 = 8.8	(3.98 or 21.58 or 11.9 or 13.66)
10 1 = 0.214	(786 @ 0.786 @ 1.214 @ 0.213)
does Mohamed have left?	for 5,640.5 pounds. How many pounds
	which the train traveled a distance o
239.47 km. What is the remaining	ng distance from the road?
	per day. If he drinks 0.5 liters in the

Assessment on Lessons 10-13

Choose the correct answer: First:

- - \mathbf{a} 0.42 0.27
- \bigcirc 4.2 2.7
- \mathbf{C} 4.2 0.27
- 0.42 2.7
- 2 Which of the following models expresses the subtraction problem 0.72-0.4?

- **3** 7.15 2.6 =
 - **a** 4.55
- **6** 9.75
- **G** 6.09
- **d** 7.41

- **4** 1 = 0.47
 - **a** 1.47
- **b** 1.53

- **C** 0.53
- **d** 0.47

- **5** 8 0.45 =
 - **a** 8.45
- 8 55
- **©** 7.45
- **d** 7.55

Second: Complete the following:

- 1 The estimated difference of 4.2 1.8 using rounding to the nearest whole number strategy is
- 2 The estimated difference of 18.46 7.25 using rounding to the nearest Tenth strategy is
- 3 5 Hundredths + 35 Thousandths = Thousandths.
- 4 32.7 + 2.079 =

-0.47 = 0.53

Third: Match:

- **1** 15.2 5.2 **2** 1.52 0.52 **3** 15.2 0.52 **4** 152 5.2 **5** 152 52

- **a** 1
- **(b)** 10
- **C** 100
- **14.68**
- **e** 146.8

Fourth:

Emad caught three fish whose lengths were 29.28 cm, 29.255 cm, and 35.17 cm. What is their total length? What is the difference between the longest fish and the shortest fish?....

Assessment Off Concept

First: Complete the following:

- 1 The estimated difference of 6.527 0.293 using rounding to the nearest Tenth strategy is
- 7 Hundredths + 24 Thousandths = _____ Thousandths.
- **3** 45.25 + = 90.5 **4** 59.126 42.35 = ...
- 5 5 Tenths 5 Thousandths = Thousandths.

Second: Choose the correct answer:

- - $\bigcirc 0.5 0.27$

 $\bigcirc 0.5 - 2.7$

 \bigcirc 0.5 + 0.27

- 0.5 + 27
- - **a** 22 + 30

0.22 - 0.03

 \bigcirc 2.2 + 3.0

- 0.22 + 0.30
- **3** 2.45 = 0.55

© 300

0.10

- 4 5.456 3.456 =
 - **a** 8.912
- **6** 200
- © 20 © 2
- 5 3 Tenths 33 Thousandths = Thousandths.

- **a** 0.267
- **6** 267

- **©** 2.67 **©** 26.7

Third: Match each model to its expression:

- 1 0.72 0.04
- **2** 0.42 0.32 **3** 0.09 + 0.41 **4** 0.72 + 0.18

Fourth: Answer the following:

Emad had 56.5 pounds. He bought a pen for 12.25 pounds and a notebook for 15.5 pounds. How much money does Emad have left?

Concept

Number Relationships

2.1 Expressions, Equations and the Real World

Exercises on Lesson

Expressions, Equations, and Variables

1 Choose the correct answer:
1 45 + y – 2.5 is a/an
(variable of mathematical expression of equation of other)
25 + 5.7 X 2 is a/an
(variable of mathematical expression of equation of other)
3 "Ahmed sleeps 7 hours a day." is a/an
(variable of mathematical expression of equation of other)
4 12 + 3.7 = y is a/an
(variable of mathematical expression of equation of other)
5 8 + x - 7 = 6.7 is a/an
(variable of mathematical expression of equation of other)
6 "The largest 3-digit number is 999." is a/an
(variable of mathematical expression of equation of other)
7 "Walaa has 1.25 kg of pistachios." is a/an
(variable of mathematical expression of equation of other)
8 The equation that represents "12.5 plus a number equals 15" is

 $(15 - x = 12.5 \odot 15 + x = 12.5 \odot 12.5 + x = 15 \odot 12.5 + 15 = x)$

$$(a - 12 = 7.5 \odot 12 - a = 7.5 \odot 7.5 - a = 12 \odot 12 - 7.5 = a)$$

10 In the equation 45 - m = 25, if 45 represents the number of students in one of the classes and 25 represents the number of girls in this class, then the variable m represents the

(number of girls on number of boys on number of students

or number of teachers)

11 In the equation 75 - 56.3 = y, if 75 represents the money that Yassin owns, and 56.3 represents the money he spent, then the variable y represents

(the money with him now on the money he spent on the money he got, on the money that was with him first)

12 Adel is comparing the height of two plants in the garden using this equation: 92.5 - n = 45.5, where 92.5 is the height of one of them, then the variable **n** in this equation represents

(the difference between the height of the two plants,

- of the sum of the height of the two plants,
- the height of one of the plants @ Adel's height)

The equation $36.5 + 2.15 = \mathbf{m}$ is similar to the equation $(36.5 = y + 2.15 \odot y + 36.5 = 2.15 \odot 36.5 - y = 2.15 \odot 2.15 + 36.5 = y)$

14 If the dimensions of a rectangle are 5.5 cm and 7.2 cm, then the variable

(length of width of perimeter of area)

15 Huda bought a pen for 12.5 pounds and a ruler for 3.25 pounds. The

$$(3.25 + b = 12.5 \odot 12.5 + b = 3.25 \odot 12.5 - b = 3.25 \odot 12.5 + 3.25 = b)$$

- Read the following story problems. Make an equation for each problem:
 - 1 Hazem has 125 pounds. He bought books for 65.5 pounds. What is the remaining money with Hazem?
 - A classroom in a school has 21 girls and 15 boys. How many students are there in this class?
 - 3 A cattle farm has 90 cows and 75 buffaloes. What is the difference between the number of cows and buffaloes?
 - 4 Mazen is 145 cm tall and his brother Fouad is 20 cm taller than him. How tall is Fouad?
 - 5 Two numbers whose sum is 255 and one of them is 107.5. What is the other number?
- Match:
- 1 The difference between 5.5 and 3.7
- 2 The sum of **5.5** and **3.7**
- 3.7 plus a number equals 5.5
- 4 5.5 minus a number equals 3.7
- 5 A number minus 3.5 equals 3.7

a
$$3.7 + 5.5 = y$$

b
$$3.7 + a = 5.5$$

$$\bigcirc$$
 m - 3.5 = 3.7

3
$$5.5 - 3.7 = x$$

$$\Theta$$
 5.5 - $n = 3.7$

Assessment on Lesson 1

First: Choose the correct at	nswer:	
1 5 + x + 3 is		
a a variable b a mathematical	expression © an equation	d other
2 7 + 5 = m + 3 is		
a a variable	expression © an equation	1 other
In the equation 45 + x = 86, if 86 represents the number of the classes and 45 represents the number of		ts in one of
a the number of girls	the number of boys	
© the number of students	d the number of teachers	
 4 Hussam compared the lengths of two 1.52 - 1.25 = y, the letter y represent a the height of one of his colleague b the sum of the height of his colleague c the difference between the height d the height of Hussam 5 The equation that represents the difference a m = 3.79 + 4.25 b m - 3.79 = 4.25 	agues ts of his colleagues tce between 4.25 and 3.79 is	n = 4.25 – 3.79
Second: Put (/) for the correct statement:	ct statement and (x) for	the wrong
1 " $\mathbf{x} + 5 = 7.8$ " is called a mathematical	expression.	(
2 "4 + 5 = 12 – 3" is called an equation.		(
In the equation $\mathbf{a} = 2.5 + 8.7$, the varia	able " a " represents the differe	nce between
8.7 and 2.5.		(
4 The equation $4.5 + 6.25 = \mathbf{x}$ is the sar		= y . (
5 The equation that represents "12.5 pl	us a number equals 15	
is 12.5 + b = 15.		alife diffe
Third: Match:	1/2	G LO
1 The difference between 18.5 and 12		18.5 + 12.5
2 The sum of 18.5 and 12.5		18.5 – 12.5
3 12.5 plus a number equals 18.5		-a = 12.5
4 18.5 minus a number equals 12.5		12.5 = 18.5
5 A number plus 12.5 equals 18.5	© 12.5	+ a = 18.5

Exercises on Lessons 2-4

Variables in Equations, Finding the Unknown & Telling Stories with Numbers

1 Use mental math to estimate the equations, and then solve them:

$$1 2.45 + n = 5.24$$

$$\mathbf{v} - 12.40 = 3.01$$

$$38.5 - m = 4.25$$

$$48.12 + x = 20$$

$$6 2.377 + 3.1 = 1.52 + a$$

$$763 - 15 = p + 10$$

n = _____.

2 Complete the following:

1 If
$$2.5 + 3.5 + y = 16$$
,

3 If
$$95 - 65.27 = z - 29.73$$
.

4 If
$$10.5 - 2.5 = a - 8$$
,

8 If
$$r = 32.5$$
,

then
$$\mathbf{b} + 56.75 =$$

then
$$\mathbf{e} - 11.102 =$$

then
$$48 - \mathbf{r} =$$

3 Write an equation that expresses each of the following bar models, then find the value of the variable "x":

4 Choose the correct answer:

2 If
$$75.5 - x = 15.5$$
, then $x =$

5 If
$$\mathbf{w} - 12.5 = 8.5 - 3.5$$
, then $\mathbf{w} = \dots$.

1	11	.3	1
1	х	3.5	

	1.3	11	
RU	X	8	
	Х	8	0

-91	Y					
0		^	6			
9	3.5	11.3				

7	The bar model that expresses the equation $s - 1.2 = 5.8$ is
	The ball model that expresses the equations 1.2 5.0 is

1	5.	.8		1	.2		15 sing.	Situation		21 11 21	7	٦١
+	S	1.2	•	5.8	S	9	5.8	1.2	•	S	5.8	11

7	r	n	6.	.5		15	5.5	r	n	١
1	6.5	15.5	15.5	m	•	m	6.5	6.5	9.5	11

$$(y + 2.7 = 3.8 \text{ or } y - 2.7 = 3.8 \text{ or } y - 3.8 = 2.7 \text{ or } y + 3.8 = 2.7)$$

V	V
4.8	2.5

$$(w + 2.5 = 4.8 \text{ or } 4.8 - w = 2.5 \text{ or } w = 4.8 - 2.5 \text{ or } w - 2.5 = 4.8)$$

5 Express each of the following equations using the bar model, and then solve the equation:

$$m + 2.5 = 3.7$$

$$u - 3.75 = 9$$

$$9.8 - v = 6.7$$

$$9.1 + 2.7 = s$$

- 6 Write an equation to represent the story problems using (n) as the variable and find its value. Use the bar models.
 - 1 The distance between Cairo and Alexandria via the agricultural road is 225 km. Damanhour is located on the agricultural road, 61.3 km from Alexandria. How far is the distance between Damanhour and Cairo?

2 The sum of the height of the school building and the height of a tree
adjacent to the building is 28.7 m. If the height of the school building is
20.5 meters, find the height of the tree.

3 If Ahmed weighed 40.7 kg two years ago and his weight increased by 6.9 kg, what is Ahmed's weight now?

7 Write a story problem representing each equation, and then solve it:

$$19.25 + 2.75 = m$$

$$2 \times -125 = 45.8$$

Assessment on Lessons 2-4

First: Choose the correct answer:

- 1 If 78.45 + y = 90, then $y = \dots$.
 - **a** 78.45
- **©** 168.45
- **11.55**

- 2 If 12 m = 5.125, then m =

- **b** 5.125
- **17.125**

- 3 If 2.5 + 3.4 + x = 7, then x = ...
- **a** 2.5 + 3.4 + 7 **b** 7 2.5 + 3.4 **c** 7 (2.5 + 3.4) **d** (7 + 2.5) 3.4

- 4 If 5.4 + 2.6 = c 1.9, then $c = \dots$.
 - **a** 6.1

- The bar model that expresses the equation x + 5.5 = 7 is

5

)	(
7		5.5
	C	

	7
Х,	5.5
(1

Second: Complete the following:

- 1 If 8.5 + y = 15, then y = ...
- 2 If 2.125 z = 6.782 6.75, then z = ...
- 3 If $\mathbf{m} = 3.25$, then $\mathbf{m} + 3.275 = \dots$.
- The equation that expresses the bar model is
- 8.005 4.08
 - 17 2.35 y

Third:

Match each model to the appropriate equation:

$$y = 1.2 + 2.63$$

$$y = 9.25 - 6.35$$

$$y = 2.63 - 1.2$$

$$y = 2.63 + 1.2$$

Fourth:

Ezz ran 3 days last week, he ran 5.24 km on Monday and 6.50 km on Wednesday. If the total distance he ran during the week is 15 km, what is the distance he ran on Friday? Write an equation to represent the problem, use (m) as the variable and find its value. Use the bar model.

Assessment On concept

Choose the correct answer: First:

- 1 2.15 + x = 9.25 is
 - a a variable b a mathematical expression c an equation d other
- 2 If 28.45 y = 15.05, then $y = \dots$
 - **a** 13.40
- **b** 43.50
- **©** 28.45
- **d** 15.05
- $\boxed{3}$ In the equation 38.50 + \mathbf{x} = 80.25, if 80.25 represents the amount that Hossam owns and 38.50 represents the amount remaining with him, then x represents
 - a the amount he owns

the amount he has left

c the amount he spent

- **c** other
- 4 The equation that represents the sum of 6.35 and 3.14 is

$$am = 6.35 + 3.14$$

a
$$m = 6.35 + 3.14$$
 b $m - 3.14 = 6.35$ **c** $m - 6.35 = 3.14$ **d** $m = 6.35 - 3.14$

$$\mathbf{C}$$
 m $-6.35 = 3.1$

$$\mathbf{d}$$
 m = 6.35 - 3.14

2	2.6
X	4

2.6 1.4

1	2.6
Х	1.4
STATE AND	a

Second: Complete the following:

- 1 If 8.5 y = 1.5 + 6.5, then $y = \dots$.
- 2 If 5.52 + 2.01 + x = 9.21, then $x = \dots$
- 3 If m = 3.01, then $m 0.5 = \dots$.
- 4 Using the equation f + 0.28 = 9.07, complete the corresponding bar model.

Third: Put () for the correct statement and () for the wrong statement:

1 "x + 3.2 = 1.2 + 7.8" is called a variable. ()

The equation 7.2 + 1.05 = x is similar to the equation 1.05 + 7.2 = y.

3 If 5.63 - m = 2.15, then m = 5.63 + 2.15.

4 The equation that represents the difference between 18.5 and 12.5 is z - 18.5 = 12.5.

5 The equation that represents the corresponding bar model is 9.05 + w = 11.35.

11.35 9.5 **w**

Fourth: Write the equation that represents each bar model, and then solve it:

30.258 15.27 **m** y 3.05 4.123 9.253 **x** 6.7

Fifth: Answer the following:

1 Bassem bought **two** watermelons with a total mass of **2.64 kg**. If the first watermelon had a mass of **1.36 kg**, what is the mass of the second watermelon? Write an equation to represent the problem, use (m) as the variable and find its value. Use the bar model.

2 Write a story problem representing the following equation and then solve it: $\mathbf{w} = 9.2 - 5.025$

The Court of the C

2.2 Factors and Multiples

Exercises on Lessons 5 & 6

Finding Factors & Prime Factorization

1	Fill in the	missina	factors	represented	by the	variables:
	I III III LIIC	Hijoonid	Ideters	Colocation	Dy LIIC	Valiables.

Find the factors of each of the following numbers using the method you prefer:

2 12

The factors of 8 are:

The factors of 12 are:

The factors of 18 are:

The factors of 24 are:

5 16

6 30

8 60

The factors of 16 are:

The factors of **30** are:

The factors of 42 are:

The factors of 60 are:

3 Factorize each number into its prime factors using the factor tree:

4 Complete the following sentences:

- 1 The number of factors of a prime number is ______factors.
- 2 All prime numbers are odd numbers, except which is an even number.
- is the smallest prime number.
- 4is the smallest odd prime number.
- 5 is a number greater than one and has only two factors.
- 6 The smallest 2-digit prime number is
- 8 The number of factors of 25 is factors.
- 9 1, 2, 4, 8, 16 are the factors of
- 10 The prime factors of 21 are
- 2 is a factor of all numbers whose Ones digit is

13 If the prime factors of a number are 2 X 3 X 3, t	hen the factors of this
number are	Leeged 1
14 If the factors of a number are 1, 2, 4, 8, then the	e prime factors of this
number are	
5 Choose the correct answer:	
1is a factor of all numbers.	(0 0 1 0 2 0 3)
The number of factors of 9 is factors.	(2 0 3 0 4 0 6)
3is a prime number.	(51 🕶 52 🐨 57 🐨 59)
4 The two numbers 3 and 5 together are prime fact	tors of
	(30 @ 25 @ 18 @ 53)
5 The prime number (has no factors	one factor only
only of has two factors only	has three factors only
6is a factor of 24.	(14 🕶 18 🕶 17 🕶 12)
The numbers 2, 3, 5, 7 are numbers .	
(even of odd	oprime opcomposite
8 The prime factors of 12 are (2 x 6 🕡 3 x 4	4 0 2 x 2 x 3 0 1 x 12
9 If the factors of a number are 1, 2, 3, 6, then its prin	
(1 X 6 🐠	1 X 2 00 2 X 3 00 2 X 6
10 If the prime factors of a number are 2 X 2 X 2, then	the number is
2 3 C 10 10 10 10 10 10 10 10 10 10 10 10 10	(8 0 4 0 6 0 222
	The state of the s
6 Put (✓) in front of the correct statement, an	
wrong statement:	
17 is a prime number.	Tulli Buston
2 22 is a composite number.	
3 The prime number whose sum of factors is 8 is 7	
4 The smallest prime number is 1.	
5 All prime numbers are odd numbers.	in transact, to the Callet
6 4 is a prime number because it has more than tw	o factors. (
7 The smallest even prime number is 2.	hade robas: (LES)
8 The smallest odd prime number is 3.	(
9 2, 2 and 5 are the prime factors of 10.	diff. Inc introduction

THEME Number Sense and Operations

46 Maths Prim. 5 - First Term

Assessment on Lessons 5&6

FIISL. Cho	ose the correct an	iswer:	
1 The number of f	actors of 16 is		
a 3	6 4	© 5	d 6
2 If the factors of	a number are 1, 2, 3, 4	, 6, 12 , then its pri	ime factors are
a 2 x 2 x 3	b 3 x 4	© 2 x 6	d 1 x 12
	me number formed fro		
a 2 4 4 is a factor of	b 10	© 11	d 12
a 14	6 34	© 22	d 32
	rs 2 and 7 together are	_	
a 72	b 14	© 27	d 9
Second: Matc	h:		
			6 2757
1 Factors of 20	20		a 2, 3, 5, 7
2 Prime factors of	The state of the s		b 1, 2, 4, 5, 10, 20
3 Prime numbers	less than 10		© 2, 3, 3
4 Factors of 18	BALLE NO		@ 2, 2, 5
5 Prime factors of	18		e 1, 2, 3, 6, 9, 18
Third: Com	plete the following	a:	
	ers are odd numbers, e		an even number.
If a X 9 = 36, the		- 14- 4	
	s of 25 are: 25 =		
	ne numbers whose On		or
	prime factors are 2, 2		
	orize each numbe or tree:	r into its prime	lactors using the
1 45	2 32	1 0	3 60
C+ 0			00
The state of the s			
- Lauminette			
45 =	32 =		60 =

Exercises on Lesson

Greatest Common Factors (GCF)

1	Find the greatest comr	non factor (GCF)	of each of	the following
	I ma are greatest some	11011100001	0. 00.0 0.	

1	12,8			
	12 =	 	 	
	8 =	 	 	

Complete the following sentences:
1 If $y = 2 \times 2 \times 2 \times 2$, then $y =$ 2 If $d = 3 \times 3 \times 5$, then $d =$
The factors of 27 are 4 The factors of 31 are
5 The prime factors of 17 are
6 The prime factors of 26 are
7 The greatest common factor of 3 and 5 is
8 The greatest common factor of 7 and 14 is
9 The prime number whose factors sum is 12 is
10 The first number between 90 and 100 is
Choose the correct answer:
1 The prime factors of 14 are (2X7 @ 1X14 @ 1X2X7 @ 2X3X4)
2 The prime factors of 16 are (2X8 @ 2X2X4 @ 4X4 @ 2X2X2X2)
3 If the prime factors of a number are 2,3,3, then the factors of this
number are
4 If the prime factors of a number are 2,2,5, then the factors of this
number are
5 The greatest common factor of any two prime numbers is
(the largest number of the smallest number of one of zero)
6 The greatest common factor of two numbers, one of which is a factor
of the other is (the largest number of the smaller number
on the product of the two numbers on the sum of the two numbers)
7 The greatest common factor of 28 and 14 is (7 @ 2 @ 28 @ 14)
8 The greatest common factor of 11 and 5 is (11 @ 5 @ 1 @ 16)
9 The common prime factors of two numbers are 2, 2, 3, then the GCF
For these two numbers
10 The common factor of two numbers are 1, 2, 3, 6, then the GCF for
these two numbers is (36 0 6 0 12 0 16)

Assessment on Lesson 7

First: Cho	ose the correct	answer:	
1 The prime factor	s of 14 are		
a 2	b 2, 7	© 1, 2, 7, 14	@ 2
2 If the prime fact	cors of a number ar	e 2, 2, 3 , then the factor	rs of this number are
	2 2 100	L1 state multiplication	atardel (ef-
a 2 X 2 X 3	6 2,6	© 12	d 1,2,3,4,6,12
The greatest cor	nmon factor of any	two prime numbers is	
a the largest n	umber	b the smallest	number
© 1		d there is no co	ommon factors
4 The greatest co	mmon factor of 21 a	and 7 is	
a 7	b 21	© 28	(14)
5 The common pr numbers is		numbers are: 2, 3, 5 , then	the GCF of these two
a 6	6 30	© 10	@ 2
Second: Com	plete the follow	ing sentences:	
1 If n = 2 X 2 X 7	then, n =		
2 The factors of 2	3 are		(
3 The prime factor	ors of 19 are	VE Just Serbellions	renamed from the
4 The greatest co	mmon factor of 8 a	nd 5 is	
5 A prime numbe	r whose factors sun	n is 6 is	
Third: Find	the greatest co	mmon factor for eac	ch of the following
1 30,20		2 12,48	
30 =		12 =	
20 =		48 =	
GCF =	=	GCF =	=
Fourth:			
Find the greatest	common factor for t	the two numbers (6 X 6)	and (5 X 8).

Exercises on Lessons 8 & 9

Identifying Multiples & Least Common Multiple (LCM)

<u> </u>	
1 Circle the multiples of the following numbers:	
1 3 — 2 , 6 , 12 , 14 , 21 , 25 , 30 , 37 , 42	
2 6 0 , 2 , 18 , 21 , 30 , 42 , 52 , 56 , 60	
3 10 — 5 , 15 , 10 , 25 , 35 , 40 , 50 , 95 , 100	
4 5 — 8 , 12 , 25 , 45 , 59 , 85 , 150 , 551 , 15	interities
5 7 — 2 , 14 , 27 , 35 , 47 , 49 , 63 , 77 , 81	
2 Answer the following:	
1 a List the first 10 multiples of 3:	
b List the first 5 multiples of 6 :	
© The common multiples of 3 and 6 of those you listed:	
The least common multiple of the two numbers is	
2 a List the first 7 multiples of 6:	
6 List the first 7 multiples of 4 :	
© The common multiples of 6 and 4 of those you listed:	
The least common multiple of the two numbers is	
3 a List the first 5 multiples of 8:	
b List the first 10 multiples of 4 :	
© The common multiples of 8 and 4 of those you listed:	ne ne
The least common multiple of the two numbers is	= 08
4 a List the first 10 multiples of 2:	
b List the first 5 multiples of 6 :	= 403
C List the first 8 multiples of 8:	B) (M)
The common multiples of 2,6 and 8 of those you listed:	at best
The least common multiple of the numbers is	

3 Find the GCF and LCM for each of the following:

1 8.6

3 15,6

5 18, 12

GCF =

7 28, 14

4 choose the correct answer:

1	is a multiple of 9 .	(19 o 6 o 3 o 27)

- 4 The LCM of **9** and **6** is ______. (54 **a** 36 **b** 18 **b** 9)
- 5 The LCM of **8** and **10** is ______. (10 **0** 80 **0** 8 **0** 40)
- is a number that has more than one set of factor pairs

 (Prime number @ Factor @ Multiple @ Composite number)
- is the number that is **multiplied** by another number to get the product. (Prime number of Factor of Multiple of Composite number)
- 8 Counting by jumping is a way to find the of a number.

(sum on factors on multiples on other)

9 The least common multiple of any **two** prime numbers is ______.

(the largest number o the smaller number

- of the product of the two numbers of the sum of the two numbers)
- - of the product of the two numbers of the sum of the two numbers)

Assessment on Lessons 8&9

First: C	hoose the correct a	answer:	
1 is	a multiple of 8 .		no miss and Ex
a 2	b 4	© 16	d 6
2 24 is a multi	ple of		ALTO MOLECULARIO
a 16	b 14	© 8	d 9
The common	multiple of all number	rs is	163
a 0	6 1	© 2	d 3
4 The LCM of 8	and 4 is		
a 4	6 8	© 16	d 12
5 The LCM of 3	and 5 is		ar janahara
a 8	6 15	© 30	d 45
2 Ais 5 Ais	is a number that is mulg is a way to find the a factor of all numbers number's only factor pa	S. Arian San and Sulfago, more	ber to get a product.
1 8,16		2 15, 20	on a the pro
		15 -	
7.00		20	
GCF =	=		
LCM =	=	LCM =	=
Fourth:	Find the LCM for the	e numbers 6, 8, and	12.
		, , , ,	
2 The multipl	es of 8 are:,	, , ,	, , , ,
The multipl	es of 12 are:	,,	•
4 The commo	n multiples are:	5 LCM =	·

Exercises on Lesson 10

Factors or Multiples?

1	Find the GCF	and LCM for	each of the following:
---	--------------	-------------	------------------------

1	12,8		
	*****************	 **********************	
		 ** *** *** *** *** *** *** ***	

 0	1		
	ı		

3	16,	20
)	10,	20

GCF	=	
_		

4	14,	21

2 6,9

2011					_
GCF	=				

GCF	=	adi
LCM		

on the same day? 2 Omnia has two strips of fabrics. One is 45 centimeters wide, a other is 75 cm wide. She wants to cut both pieces into strips of width that are as wide as possible. How wide should she cut the same number of the same numbe	f equa
other is 75 cm wide. She wants to cut both pieces into strips of width that are as wide as possible. How wide should she cut the	f equ
other is 75 cm wide. She wants to cut both pieces into strips of width that are as wide as possible. How wide should she cut the	f equ
what is the smallest quantity of each type of fruit that she sold?	of ead
4 Two alarms, one of which rings regularly every two hours, and the	ne oth

5	A dealer has 18 kg of oranges and 27 kg of apples. If the dealer wants to divide the oranges and apples into bags of the same mass. What is the largest number of bags for each type of fruit to have bag with the same
	masses? How many kilograms of oranges will each bag contain? How many kilograms of apples will each bag contain?
-	A hospital has 12 doctors, and 28 nurses. Find the largest number of
0	equal groups that can be formed of both doctors and nurses. How many doctors are in each group? What is the number of nurses in each group?
7	Mahmoud wanted to divide 24 pens and 36 notebooks into groups, so that each group contains the same number of tools. What is the largest number of groups that can be formed for each type of tool, so that each group has the same number?
8	Adel goes to the club every 3 days to train for football, and his friend Ahmed goes to the same club every 4 days to train for volleyball. After how many days do the two friends meet?

Assessment on Lesson 10

		THE PERSON NAMED OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERS	TOTAL PER PER PER PER
First: C	noose the correct	answer:	
1 The GCF for 1	2 and 18 is	in the temperal tops	
a 2	b 3	G 6	d 9
2 The LCM for 6	and 8 is		All Signed and All Street, and
a 2	b 24	© 48	d 14
The number o	f factors of 24 is		
a 8	b 6	© 3	d 12
4 Which of the f	ollowing is a multipl	e of 12 ?	Kultura et a la
a 6	6 3	© 12	Q 4
5 Which of the f	ollowing is a commo	n multiple of 9 and 6	? 37 316 4 75 76 30 17
a 3	6 12	© 27	d 18
Second: Co	mplete the follow	ng contones.	
	27 are	ing sentences:	
		70	
The multiples	ors of 27 are	30 are	
4 The greatest of	ommon factor of 10		
		and 12 is	
	swer the following		
			e sells pencils in boxes
			number of each, what
is the minimur	n number of pencils t	hat she will have to b	ouy?
		ocoming trip. He has	
			ical without any food
tert over. what	is the greatest numb	er of snack bags that	Nour can make?

Assessment On Concept 2

First: C	hoose the correct ans	swer:		5.585
1 The	number has only two	factors.		
a prime	b composite	© even	d odd	
1, 2, 5 and 1	0 are factors of			
a 1	6 5	© 10	d 18	
3	is a common multiple of	10 and 5 .		
a 20	6 15	© 5	d 24	
4 All the follov	ving numbers are multiple	es of 8 , except		
a 16	6 24	© 32	d 36	
The greatest	common factor of 12 and		ACRETA'S SECTION OF	
a 2	6 3	© 6	d 12	
Second: C	omplete the following	sentences:		FE 15
1	is a common factor of all	numbers.		
2 40 , 25 , 15 are	e multiples of the number			
3	is a common multiple of	all numbers.		
4 The LCM of 1	L 5 and 30 is			
5 If $40 = 5 \times 8$,	thenis a multiple of	the two numbers	and	
Third: P	ut (🗸) for the correc	t statement an	d (X) for the wro	ng
S	tatement:			
1 2 is an odd p	orime number.)
2 The GCF for	the numbers 2 and 3 is 3.)
The prime fa	ctors of 18 are 1, 2, 3, 6, 9	18.	()
4 14 is the LC	M of 2 and 14 . ()	5 0 and 7 are	the multiples of 7 . ()
Fourth: A	nswer the following:	on the second		
Sameh wanted	to divide 21 pens and 35	notebooks into gr	oups, so that each gro	oup
contains the sa	me number of tools. What	is the largest nu	mber of groups that	can
	ach type of tool?		1000	
How many pens	are in each group? How	many notebooks a	re in each group?	
		,		
••••••				400

Multiplication with Whole Numbers

3.1 Models for Multiplication

Exercises on Lessons & 2

The Power of Ten & Using the Area Model to Multiply

Complete the following:

2 Multiply using the area model:

************	44

	1001100000000	
Γ		
_ L		

Λ	A	V	217	_	
4	4	Х	21/	=	

	 r seeger	_
= 3JF		
		_
	1	

 Dr. Car	D 10	

3 Write the multiplication problem that expresses the following models, and then solve it:

4	00 50	7
9	1 10	
	(22 127:0)	1

Choose the correct answer:

- 1 8 X = 8.000
- 2 100 X = 700
- 3 6 X 10,000 =
- 4 5 kg = gm.
- 5 5 X 100 4 X 1,000
- 6 2 X 10,000 9 X 1,000

- $(10 \odot 100 \odot 1,000 \odot 0.001)$
 - $(7 \odot 70 \odot 700 \odot 7,000)$
- (600,000 @ 60,000 @ 6,000 @ 600)

 - (50 @ 500 @ 5,000 @ 0.005)
 - (> or = or < or ≤)
 - $(> or = or < or \leqslant)$
- 7 When 8.67 is multiplied by 10, the value of 6 changes to
 - $(0.06 \odot 0.6 \odot 6 \odot 60)$
- The multiplication problem that expresses the corresponding area model is
- 5 500 400 15

(5 X 915 or 5 X 183 or 143 or 5 X 12)

The multiplication problem that expresses the corresponding model is

800

(4 X 870 or 4 X 807 or 4 X 780 or 4 X 708)

10 The multiplication problem that expresses the corresponding area model is

	30	6
20		
7		

(36 X 27 or 63 X 72 or 207 X 306 or 26 X 37)

11 The multiplication problem that expresses the corresponding area model is

	300	70	5
10	14		
9		- 1111	T I

(19 X 15 or 19 X 312 or 19 X 375 or 573 X 91)

12 The area model that represents 45 x 36 is

13 The area model that represents 24 X 308 is

	300	8
2		
4		

14 The area model that represents 67 X 174 is

	1	7	4
60		Min	6 7 7
7			

	10	70	40
60		7.7	
7		ħ.i	

100	70	4
W.		
4.76	9 1	
	100	100 70

	100	70	4
60		TIL	
7			

15 The multiplication problem that expresses the corresponding area model is

600	90
40	6

(690 X 46 or 640 X 96 or 23 X 32 or 203 X 32)

Answer the following:

- 1 Hazem bought 7 books, the price of each book is 10 pounds. Find what Hazem paid.
- Mona saves 100 pounds every month. How much does Mona save in 5 months?
- 3 Amr bought 4 suits, the price of one suit is 10,000 pounds. Find what Amr paid.
- 4 A box contains 200 balls. How many balls are in eight similar boxes?

Assessment on Lessons 1&2

First:

Choose the correct answer:

- 1 5 X = 5,000
 - **a** 10

6 100

- **C** 1,000
- **d** 10.000

- 2 8 X 1,000 20 X 40 **a** <

G >

(a) ≥

- 3 8,000 =
 - **a** 8 X 10
- **6** 8 X 100
- **©** 8 X 1.000
- **@** 8 X 10,000
- 4 The multiplication problem that expresses the following model is
 - **a** 24 X 48
 - @ 24 X 32

- **b** 24 X 720
- **d** 640 X 128
- 600 120 40
- 5 The model that expresses the following multiplication problem 7 X 308 is

Second: Complete the following:

1 1,000 X 3 =

2 100 X

- 3 X 9 = 900,000
- 40 5 1,200 15

			5
5		************	350
	5	200	

Third:

Match:

- 1 4 X 100
- 2 4 X 10
- 3 4 X 1,000
- 4 4 X 100,000
- 5 4 X 10,000

- **a** 40
- **(b)** 4,000
- **G** 400
- 40.000
- **@** 400,000

Fourth: Answer the following:

Aya ran a 5-kilometer race on Saturday. If there are 1,000 meters in 1 kilometer, how many meters did she run?

Exercises on Lessons 3 & 4

The Distributive Property of Multiplication & Using the Partial Products Model to Multiply

1 Find the product using the Distributive Property:

2 Solve using the area model:

4		40	7	
	10			
Z	3			

(.... X) + (.... X) + (.... X) + (.... X)

Solve using the area model:

1		
	(8 X 20)	+(8X7)

2 (9 X 600) + (9 X 7)

4

 $(40 \times 70) + (40 \times 3) + (6 \times 70) + (6 \times 3)$

 $(20 \times 100) + (20 \times 7) + (3 \times 100) + (3 \times 7)$

5

6

(60 X 200) + (60 X 80) + (60 X 3)

 $(20 \times 500) + (20 \times 80) + (20 \times 4)$ + (4 X 500) + (4 X 80) + (4 X 4)

+ (4 X 200) + (4 X 80) + (4 X 3)

4 Find the product using the partial products strategy:

65 903 37 X 5 X 9 X (..... X) + (..... X) + 5 6 4 706 53 86 32 12 27 X (..... X) + (.....X) (..... X) + 9 7 8 638 347 549 12 23 (..... X) (..... X) + (..... X) + (..... X) + (..... X) + (..... X) + (..... X) + (..... X) + (...... X) + (....X) + (..... X) +

Using the rectangle model, find the result of 74 x 12. Divide the numbers in three different ways:

6 Complete the following:

7	***************************************	3
	8,000	
4	800	

9 640.343	14.40	10		11	
08_00_1		# p = 1 R*	95	east of mean	802
	Χ	X	43		Χ
(5 X 6)		(X	**********	(7X)	
(5 X 30)	+	(X) +		(7X)	+
(20 X 6)	+	(X) +		(40 X)	+
(20 X 30)	+	(X) +		(40 X)	+

7 Choose the correct answer:

1 5
$$\times$$
 (600 + 2) = (5 \times 8 or 5 \times 62 or 5 \times 602 or 5 \times 6,002)

$$3 12 \times 200 + 12 \times 30 + 12 \times 5 = 12 \times \dots$$
 (12 or 205 or 230 or 235)

(85 X 37 @ 83 X 57 @ 87 X 35 @ 78 X 35)

2,500	300
300	36

(56 X 56 @ 25 X 36 @ 65 X 65 @ 300 X 36)

	200	7
40		1 2 =
8		

(48 X 270 @ 48 X 27 @ 48 X 207 @ 48 X 9)

200 6	5	_20	6		200	60			20	60
8		8		<u> </u>	8		or	8		(6

10 The area model that represents

	4	3	130	4	70	3			70	4			7	3
50		- 101	0	50			<u>or</u>	50	1,5	N Y	or or	5	N/S	
70				4	r J	77		3	A			4	1.3	

Assessment on Lessons 3&4

Choose the correct answer: First:

- 1 7 X (500 + 4) =
 - a 7 X 54
- 7 X 504
- C 7 X 5,004
- **d** 7 X 9
- $(60 \times 20) + (60 \times 3) + (7 \times 20) + (7 \times 3) = \dots$
 - a 67 X 23
- 62 X 73
- G 63 X 27
- **6** 76 X 32
- 3 The area model that represents (2 X 500) + (2 X 20) + (2 X 4) is
 - 500 20
- 2 4 6
- 50 2
- 50 20
- 4 The problem that represents the opposite area model is
 - $a 4 \times (6 + 9)$
- \bullet 4 X (60 + 9)
- **Q** 4 X (600 + 9) **d** 4 X (60 + 90)
- - a 50 + 6
- 5 + 6
- \bigcirc 50 + 60
- \mathbf{d} 5 + 60

Second: Complete the following:

- $X = (20 \times 500) + (20 \times 6) + (4 \times 500) + (4 \times 6)$

Multiply using the following partial products models: Third:

- 89
- 45 37 (..... X) + (..... X) +
- 627 (..... X) + (..... X) + (.....) + (X) + (..... X) +

Assessment On concept 1

		1-11-11-			
First: Choose the	e correct answ	er:			
1 5 X 1,000 =					
a 50	500	© 5,000	•	50,000	
25 X 80 =					
a 2 X 10,000	2 X 1,000	© 2 X 100	•	2 x 10	
3 The area model that repr	esents (9X 200)	+ (9 X 40) + (9 X 5) is		•
200 40 5	2 4 5	20 4	5	20 40	5
9 9		9	9 [53
a	6	C		(
4 The multiplication proble	em that the opposi	te model repre	esents is	60	9
a 46 X 29	49 X 62		4	40	
G 42 X 69	26 X 94			2	R.
5 The multiplication proble	em that the opposi	te model repre	esents is		
a 12 X 32 b	12 X 302			3,000	20
© 102 X 302	102 X 32			600	4
Second: Complete	the following:				
	2 1,	000 X	= 7,000		
3 X = (10					
4 9 X = 9 × (600 +				(7X)
Third: Solve the fo	allowing proble	mo using the	montion	nd strate) (1) (1)
Solve the lo	ollowing proble	nis using the	mentione	su su ate	;gy.
1 2 X 47	2 82 X 15	_	14 X 23		
(Distributive Property)	(Partial	Products)		(Area Mod	del)
Sees A. W. S.					
Foundby Annual Att	a fallandan				

Fourth: Answer the following:

Omar owns 12 buses to transport tourists, each bus can carry 25 passengers. How many passengers can Omar carry each day if each bus is full?

3.2 Multiplying 4-Digit Numbers by 2-Digit Numbers

Exercises on Lessons 5-7

What Is an Algorithm?, Multiplying Multi-Digit Numbers & Multiplication Problems in the Real World

1 Find the product using the standard algorithm for multiplication:

1	82	2 608	3	264
	X 4	X 9		X 7
	A little w		9	
4	9324	5 39	6	75
	X 8	X 25		X 36
	IIQa ¹			
		+		+
- 3				35 II. 1
7	306	8 617	9	4,107
	X 18	X 54		X 36
	a bar you and	antes and a second second		
	+	+		+
	2017	Carlotte of the state of the st		J-1-
10	6,073	8,347	12	9,678
	X 48	X 76		X 32
	14	d. 3.4 10 + 7 1 0		+ 10

2 Find the product using the area model:

2	6,	3	24	X	25	=		
---	----	---	----	---	----	---	--	--

_	**********	************	 **********
	********		 **********

	**********	***********	

 	d	

-	***************************************	************	***********	
	**********		***************************************	

3 Find the product using the partial products model:

1

			7,526
		Χ	42
(Χ)	25	
(X)	+ ,	
(X)	+ ,,	
(X)	+ ,	*******
(X)	+ ,	
(X)	+ ,	***************************************
(X)	+ ,	
(X)	+	

2

			4	1,231
			Χ	36
(X)		
(X)	+	
(X)	+	
(X)	+	
(X)	+	
(X)	+	
(X)	+	
(X)	+	
			-	W. 15.00 C. 15.00

A CONTRACTOR	4		
5,324			3,294
X 27			X 53
(X	(X)
(X) +	(X) +
() +	(X) +
(X) +	(X) +
(X) +	(X) +
(X) +	(X) +
(X	(X) +
(X) + /
	1 4 4 4		
Estimate the product of the m actual product. Use the strate 1 7,325 X 12 Estimate:			n find the
actual product. Use the strate 1 7,325 X 12	gy you prefe		en find the
actual product. Use the strate 1 7,325 X 12 Estimate:	gy you prefe		en find the
actual product. Use the strate 1 7,325 X 12 Estimate: Actual product: The strategy used:	gy you prefe		en find the
actual product. Use the strate 1 7,325 X 12 Estimate: Actual product:	gy you prefe		en find the
actual product. Use the strate 1 7,325 X 12 Estimate: Actual product: The strategy used:	gy you prefe		en find the
actual product. Use the strate 1 7,325 X 12 Estimate: Actual product: The strategy used: 2 4,537 X 37 Estimate:	gy you prefe		en find the
actual product. Use the strate 1 7,325 X 12 Estimate: Actual product: The strategy used: 2 4,537 X 37 Estimate: Actual product: The strategy used:	gy you prefe		en find the
actual product. Use the strate 1 7,325 X 12 Estimate: Actual product: The strategy used: 2 4,537 X 37 Estimate: Actual product:	gy you prefe		en find the
actual product. Use the strate 1 7,325 X 12 Estimate: Actual product: The strategy used: 2 4,537 X 37 Estimate: Actual product: The strategy used:	gy you prefe		en find the

4 6,324 X 34	
Estimate:	
Actual product:	. Park and a second for the first of
The strategy used:	
Answer the following:	
1 Each river bus can carry 22 passen	gers at a time.
What is the maximum number of p	and the second of the second o
carry during 25 trips?	
2 A rectangular piece of land has a le	ength of 256 meters, and a width of
3 Khaled bought 34 meters of cloth, piasters. What is the price of the clo	
4 A bus is 1,285 centimeters long. Ho	ow long are 21 buses?
5 Marwan bought a car, and agreed we to pay for it in 12 equal installment 9,865 pounds. What is the price of	
Mona saves 1,023 pounds every mona saves in 18 months?	onth. What is the total amount that
7 16 persons participated in an exhib How much did they all win?	pition, and each won 8,234 pounds.
8 A bag of fruit has a mass of 2,445 g similar bags?	grams. What is the mass of 45
***************************************	***************************************

Assessment On concept 2

The problem that re	epre	sents the opposi	te area model			_
a 5,403 X 67	6	5,043 X 67			000 400	3
© 5,430 X 67	0	543 X 67		60 7	Davis Brigh	
The problem that re	epre:	sents the opposi	ite area model	is		
a 3,502 X 43	6	3,052 X 43		120,000	2,000	8
© 3,520 X 43	0	352 X 43		9,000	150	1
The model that rep	rese	nts 6,350 X 73 is	S	in in		
6,000 300 50		6,000 300 5	6,000 3	0 5	500 30	5
70	70		70 3	70	9-17 <u>5</u> M	
	3]]		
a		0	C		d	
3,006 X 25 =	6		© 7,650		75,150	
a 21,042		90,000	0 7,000	0	73,130	
2,300 X 30 =			© 60,900		96,000	
a 69,000	•	6,900	60,900	O O	90,000	
Second: Solve to	he f	ollowing prob	lems using th	e mention	ed strat	eç
5,080 X 23		2 9,007 X 64	all the late of	2,125 X 74		
(Distributive Prope	erty)	(Partia	al Products)	(4	Area Mo	del
supplied with the supplier						
		. 4				
Third: Answe	r th	e following:				
Allove						

Theme Theme

lathematical perations nd Algebraic hinking

Units of the Theme

Unit 4

Division with Whole Numbers

Concept 4.1: Models for Division

Concept 4.2: Dividing by 2-Digit Divisors

Unit 5

Multiplication and Division with Decimals

Concept 5.1: Multiplying Decimals

Concept 5.2: Dividing Decimals

Numerical Expressions and Patterns

Concept 6.1: Evaluating Numerical

Expressions

Concept 6.2: Analyzing Numerical

Patterns

Division with Whole Numbers

4.1 Models for Division

Exercises on Lessons 1 & 2

Understanding Division & Using the Area Model to Divide

- 1 Answer the following:
 - 1 A teacher has **96** books and wants to distribute them equally among **4** students. How many books will each student get?
 - 2 Hazem bought **7** books. The price of each book is **23** pounds. What did Hazem pay?
 - 3 Emad puts 85 cups in boxes, so that each box can accommodate 5 cups. How many boxes are needed for that?
 - 4 Samah bought **76** sweets and distributed them equally among **6** of her friends. How many pieces will each friend get? Will there be pieces of sweets left with Samah?
 - 5 Mona saves 35 pounds every month. How much does Mona save in 5 months?

- 6 Eman bought 8 books of the same kind for 144 pounds. What is the price of one book?
- 7 A box has 256 balls. How many balls are in eight identical boxes?
- 8 What is the number that if divided by 6, the result is 27?
- 9 What is the number that if divided by 7, the result is 42 and the remainder is 4?
- 10 If the quotient is 5, the divisor is 4 and the remainder is 2, what is the value of the dividend?
- 2 Divide using the area model:

.....

7	946	<u>.</u>	2	=	1	
V 40	7-TQ		_			

10 1,378 ÷ 2 =

3 Divide using the area model:

10 32,144 ÷ 82 = 11 23,595 ÷ 39 = 13 64,158 ÷ 52 = 12 67,814 ÷ 41 = 4 Complete the area model, then find the quotient: 1 3 4 4,635 135 45 - 4,500 - 135 5 6 100 1,856 356 **- 1,500 | - 300 | - 45** 32 - 9,600

84 Maths Prim. 5 - First Term

	100	100	40	5
	8,575			
35				

5 Complete the area model, then complete the table:

	Area Model	Dividend	Divisor	Quotient	Remainder
1		56,160	45		
2	200 300 40 2 16,817	and telephone			
3	24				
4			72	357	12
5	42				

Assessment on Lessons 1&2

200

1.960 8 - 1.600

360

Choose the correct answer:

1	The division	problem	that	expresses	the
	opposite mo	del is			

a
$$1,960 \div 8 = 2,225$$
 b $360 \div 8 = 245$

©
$$1,960 \div 8 = 245$$

©
$$1,960 \div 8 = 245$$
 d $1,960 \div 8 = 605$

2	The	divisor	in the	corresponding	model	is	
---	-----	---------	--------	---------------	-------	----	--

a	14

	3	The	remainder	of the	division	in the	opposite	model	is .
-1		1110	Cilialiaci	OI LIIC	UI VI JIUII	III CIIC	Opposite	HOUCE	

0	4	2
a)	1	Z

	3,912	312	72
12	- 3,600	- 240	- 72
	312	72	0

30

-1,890

2,205

315

300

20

-160

200

40

226

86

-140

20

20 360

-160

200

5

- 40

6

- 84

6

5

315

- 315

86

2

The quotient in the opposite model is ...

a 435

- **b** 4,305
- C 4,350
- **d** 4.035

5 If 45 x 12	= 540, then the	remainder o	f 545 ÷	12 is.
--------------	-----------------	-------------	---------	--------

Second: Use the area model to solve the following problems:

2 3,634 ÷ 12

4,000

-252,000

254,205

220,5

Third: Answer the following:

- 1 A red hat costs 400 LE, which is 4 times as much as a blue hat. How much does a blue hat cost?
- There are 138 job applicants for a vacancy. They will need to place the applicants in 6 rooms while they fill out the application. How many people will be in each room?

Exercises on Lessons 3 & 4

Using the Partial Quotients Model to Divide & **Estimating Quotients**

1 Divide using the partial quotients model:

Foundary day

2 Divide using the partial quotients model:

Divide Laing the of the attivity

3 Complete using the partial quotients model, then find the quotient:

1	Z	3	4
8 984	8,328	45 10,530	36
-	- 8,000 1,000	-	100
	328		
	- 320	-	100
	8		
	_ 8	-	8
HE HE MAN	0	14.4. <u> 14.4. 14.4. </u> 14.6004 5000 14.4.	000
5	6	7	8
24 99,180	24	20 C C C C C C C C C C C C C C C C C C C	The Market Market
- 96,000 4,00	00	- 4,500 100	- 500
3,180			
- 2,400		100	- 320 10
780		· · · · · · · · · · · · · · · · · · ·	
- 720	··· 200	100	10
60			
- 48	-	<u>-</u> 2	- 2
12	000	13	000

4 Complete using the partial quotients model, then complete the table:

1

	а	6	0
D- di-1	3 2337 -	42 –	
Partial			
Quotients		20	20
Model			
			- 52 1
		11	00
Dividend	N	15	
Divisor		21 2 37 37 37	
Quotient		1 4 000 A 000 E -	
Remainder			

2

	а	0	0	
	75,257	22		
	- 65,000 1,000	- 1,000	- 260 20	
Partial				
Quotients	- 6,500		- 20	
Model	50		20	
	507			
	- 455 7	- 7 7		
		000	0	
Dividend		3 1		
Divisor				
Quotient				
Remainder				

36,024 ÷ 9

Estimate =	
Solution =	

6 Match:

15	6,087	
11.1	- 3,000	200
-	3,087	80 16
	- 3,000	200
144	87	
	- 75	5
-4	12	by T
	3	111

		a	
	200	50	1
	8,534	1,734	34
34	- 6,800	- 1,700	- 34
	1,734	34	00

ſ			C	- 5.5	
		200	200	50	6
		3,648	2,048	448	48
	8	- 1,600	- 1,600	- 400	- 48
		2,048	448	48	00

7 Answer the following:

- 1 The owner of a juice shop owns 2,880 paper cups. If he uses them within 12 days equally, how many cups did he use every day?
- 2 An association donated 11,250 pounds and it was distributed equally among 45 persons. What is the share of each of them?
- 3 A fruit merchant bought 349 kg of mangoes, and then bought another 364 kg. He wants to distribute the sum of what he bought among 3 boxes equally. How many kilograms are in each box?

Assessment on Lessons 3&

Choose the correct answer:

48	11,232	
_	9,600	200
	4 (72	

1,632

a 11.232 **6** 48

1,440 30 192

C 234

192 4

0

- **12** 36,514
- The remainder of division in the opposite model is
- 36,000 **3,000**

a 36,514

514

6 12

480 40

© 3.042

34

d 10

24 2 10

3 The dividend in the opposite model is

65 8,060

a 8.060

- 6,500 **100**

65

1,560 **- 1,300 20**

C 174 **@** 260

260

260 4

- 4 800 X 30 = **a** 240,000
- **6** 24,000
- **©** 2,400
- **Q** 240

- 5 500 X = 400,000

6 8.000

- **©** 80,000
- **@** 800,000

a 800

Second: Divide using the partial quotients model:

Third: Answer the following:

Adel bought a car for 69,380 pounds and paid 65,940 pounds of its price, then he paid the rest of its price over four months equally.

What is the value of the monthly installment?

Assessment On concept

First: Choose the correct answer:

- 1 The quotient in the opposite model is
 - **a** 1,226
- **6** 24
- **©** 3.504
- **d** 146
- The divisor in the opposite model is
 - a 5,635
 - **6** 23
 - **G** 245
 - 0 0

	100	20	20	6
(0)	3,504	1,104	624	144
24	- 2,400	- 480	- 480	- 144
	1,104	624	144	0

25	5,635	
-	4,600	200
Laborio	1,035	
_	920	40
	115	
_	115	5
	0	

400

15 - 6,000

6.154

154

10

- 150

154

- The remainder of division in the opposite model is
 - **a** 15

- 6.154
- C 410
- **G** 4
- 4 If $45 \times 24 = 1,080$, then $10,800 \div 24 = \dots$.
 - **a** 45

- **b** 24 **c** 450
- **d** 240
- - **a** 20

- **b** 26
- © 155
- **4.050**

Second: Divide using the strategy you prefer:

- 1 45,240 ÷ 9 =
- 2 23,154 ÷ 6 =
- 3 3,096 ÷ 12 =
- 4 78,321 ÷ 26 =

Third: Complete the following:

- 1 45.000 ÷ 5 =
- 2 40,000 ÷ = 8,000
- 3 = 34 = 10,000
- ÷ 12 = 3.000

Fourth: Answer the following:

- 1 If the profit of one of the shops is 7,280 pounds, and they will be distributed equally among 5 persons, what is the share of each person?
- If 168 pupils are divided equally into groups of 12 pupils each, how many groups can we get?

4.2 Dividing by 2-Digit Divisors

Exercises on Lessons 5 - 7

Using the Standard Algorithm to Divide, Checking **Division with Multiplication & Multistep Story Problems**

Divide using the standard division algorithm:

1
$$75 \div 5 = \dots$$
 2 $86 \div 3 = \dots$ **3** $156 \div 6 = \dots$

$$5756 \div 3 = \dots$$

$$94,935 \div 7 = \dots$$

10
$$8,016 \div 4 = \dots$$
 11 $9,177 \div 3 = \dots$

2 Divide using the standard division algorithm:

$$10 105,821 \div 41 = \dots$$

Complete the partial quotients model, then find the quotient:

4 Divide using different division strategies:

	Algorithm	Quotients Model	Area Model	Division
	-			10,455 ÷ 85
1	Jaer was ar	noos), then find t		= (3 Cump
			Rec Elli	
		NEC S	8 78	1712
	-			3,213 ÷ 17
2				=
	<u> </u>			
			566 1602	
	1.08_		The state of the s	
3	181	-		50,312 ÷ 38
	111	-		
	-	-		

E	Com	nlata	the	foll	owing	١.
0	Com	piere	uie	1011	Owning	ŀ

1	If 35 X 13 =	455, then	455 ÷ 13	=		
---	--------------	-----------	----------	---	--	--

2 If
$$6.048 \div 24 = 252$$
, then $24 \times 252 = \dots$

3 If
$$61 \times 16 = 976$$
, then $980 \div 61 = 16$ and the remainder is

4 If
$$2,000 \div 54 = 37$$
, and the remainder is 2, then $37 \times 54 = \dots$.

					10101	
7	The number that if multiplied by	17	gives the	result	1.260	S
•	THE HUILIDEL WISE II MIGRIPHES BY		9.100 0.10		_,	

6 Answer the following:

1	A bakery made 140 servings of baklava for a party. If each baking tray
	holds 12 servings of baklava, how many trays will be needed to hold all
	the baklava?

In one year, a textile factory used **11,650** meters of cotton, **4,950** fewer meters of silk than cotton, and **3,500** fewer meters of wool than silk. How many meters of fabric were used in all?

Assessment On concept

First: Choose the correct answer:

1 The quotient in the following division 2 The divisor in the following division model is

	0437
a 5,248	12 5,248
	- 48
b 12	44
C 4	_ 36
	88
d 437	_ 84
	A

model is

		0181
a 4,528	25	4,528
	_	25
b 25		202
© 3		200
		28
d 181	_	25
		3

- The remainder in the following division model is
 - **a** 954 029 954 **6** 32 64 **@** 26 314 288 **Q** 29 26
- 4 From the following division model, 802 =

802		
a 22 X 36 + 10	13114-140	036
6 22 + 36 X 10	22	802
		66
© 22 X 36 X 10		142
a 22 + 36 + 10	_	132
C 22 + 30 + 10		10

- **5** 24.000 ÷ 600 =

- **a** 4 **b** 40 **c** 400 **d** 4,000

Second: Complete the following:

- 1 If 4 X 60 = 240, then 400 X 600 = 2 450,000 ÷ = 900
- 4 If 248 ÷ 12 = 20 (R 8), then 12 X 20 + = 248. 5 60 X 300

Third: Answer the following:

There are 205 people at a concert. After the concert, 40 people left in cars, the rest of them want to go home by a microbus. If the load of each microbus is 11 people, how many microbuses are needed for everyone to get home?

Multiplication and Division with Decimals

5.1 Multiplying Decimals

Exercises on Lessons 1 & 2

Multiplying by Powers of Ten & Multiplying Decimals by Whole Numbers

1 Find the product of:

2 Find the product of:

5 2.6 X 0.6	=	•••••••••••••••••••••••••••••••••••••••	6 17 X 0.001	=	•
7 3.33 X 5	=	•	8 9.56 X 9	=	
9 253 X 0.003	=		10 0.008 X 5	=	
11 4.5 X 0.09	=		12 6.35 X 3	=	
13 2.4 X 12	=	•	14 0.45 X 13	***************************************	
15 3.7 X 22	=		16 27 X 2.1	=	
17 4.3 X 52	=		18 20.5 X 12	=	
19 12.4 X 11	=		20 45 X 2.07	=	
21 0.365 X 23	=		22 0.15 X 124		
23 3.02 X 12	=		24 1.12 X 36	=	
3 Complete the	follow	ving:			
1	X 10	= 50	2	X 100	= 3,300
3	X 1,000	= 20,000	4	X 0.1	= 0.7
5	X 0.01	= 0.03	6	X 0.001	= 0.002
7	X 10	= 5	8	X 100	= 50
9	X 1,000	= 700	10	X 0.1	= 0.24
11	K 0.01	= 0.024	12		= 0.017
13 42 X	•••••	= 420	14 23 X		= 2,300
15 65 X		= 56,000	16 14 X		= 1.4
17 6.3 X		= 0.063	18 32 X		= 0.032
19 0.05 X	•••••	= 50	20 63.7 X		= 6,370
21 2.05 X		= 20.5	22 0.06 X		= 0.006
23 3.7 X	•••••	= 3,700	24 20 X		= 0.02

4 Compare using (<, = or >):

- 1 25 X 0.1
- 0.25 X 10
- 2 50 X 0.01
- 0.5 X 100

- 3 73.2 X 0.1
- 0.732 X 100
- 4 36 X 0.1
- 3.6 X 10

- **5** 56 X 11
- 5.6 X 11
- 6 45 X 0.12
- 4.5 X 12

- 7 1.44 X10
- 1.2 X 12
- 8 75 X 0.01
- 0.25 X 3

- 9 15 X 0.15
- 2.25 X 0.1
- 10 9 X 0.9
- 8.1 X .01

5 Match:

- 25 X 10
- 25 X100
- 25 X 0.1
- 25 X 0.01

a 2.5 X 1,000

2.5 X 0.1

2.5 X 100

0.25 X 10

6 Complete the following:

- 1 If 6 X 25 = 150, then 6 X 0.25 =
- 2 If 8 X 50 = 400, then 0.8 X 5 =
- 3 If 5 X 24 = 120, then 5 X 2.4 =
- 4 If 1.2 X 25 = 30, then 12 X 0.25 =
- 5 If 0.24 X 5 = 1.2, then 2.4 X 5 =
- 7 When multiplying by, we move the decimal point one place to the right
- 8 When multiplying by, we move the decimal point 3 places to the left.
- 9 When multiplying 2.45 x 100, the place value of 4 changes fromto
- 1.5 X = 30
- 11 10.5 X = 1.05
- 12 0.25 X = 200

- 13 7.5 X = 15
- 14 11 X = 12.1
- 15 0.31 X = 0.93

Assessment on Lessons 1&2

First: Find the product of:

Second: Compare using (<, = or >):

0.5 X 3

8 X 0.06

Third: Match:

2 2.35 X 0.1

3 2.35 X 100

4 2.35 X 1,000

@ 23.5 X 0.01

Fourth: Complete the following:

Exercises on Lessons 3-5

Multiplying Tenths by Tenths, Estimating Decimal Products & Using the Area Model to Multiply Decimals

1 Use the Base 10 grids to find the product:

2 Write the multiplication problem represented by each of the following Base 10 grids, then find the result:

2X =

3 X =

4 X =

5 X =

3 Estimate the product of the multiplication. Round to the nearest whole number:

1 2.5 X 89.7

Estimate: ____ = ____

2 6.45 X 20.45

Estimate: ____ = ___

3 100.2 X 29.7

Estimate: X =

4 4.28 X 3.68

Estimate: X =

5 14.8 X 29.7

Estimate: X =

6 99.7 X 3.7

Estimate X =

7 0.24 X 243.4

Estimate: X =

8 6.8 X 63.5

Estimate: ____ X ___ =

4 Multiply using the area model:

*********	*********

2 0.08 X 4.7

3 6 X 20.3

4 0.9 X 4.2

	71	
		1.23

5 0.6 X 3.04

		- [

6 9 X 20.3

- 4	11	1 5-10

7 0.12 X 4.5

8 63 X 0.74

71.5	

9 0.24 X 2.7

	100
 endi	Allege

15 0.14 X 17.3

16 3.57 X 1.7

 SHIP	UISIL	VILLE

5 Write the multiplication problem that expresses the following area models, and then solve them:

0.3 0.2 0.07

5	. X	=	
	40	5	
3			
0.5		1 0 0 0 T	

***************************************	X		
	0.1	0.04	0.002
40	- B+		
7	7, 7	11 7 1	й авы

	3	0.4	0.09	
4	J.	afin\		
0.7	Esigl	t5" L71		

6 Choose the correct answer:

1 The multiplication problem that represents the opposite model is

(16 X 80 or 1.6 X 0.8

160 X 80 0 1.6 X 8)

The multiplication problem that represents the opposite model is

(3 X 9 **1** 30 X 0.9 **1** 30 X 90 **1** 0.3 X 0.9)

The multiplication problem that represents the opposite model is (50.3 X 7.32 or 5.3 X 7.32 or 5.3 X 73.2 or 50.3 X 73.2)

0.3 0.02 50

4 The multiplication problem that represents the opposite model is (5.7 X 22.3 @ 57 X 223 @ 5.07 X 202.3 @ 5.07 X 22.3)

20 0.3 5 0.07

- 5 If 12 X 45 = 540, then X 0.45 = 540. (1.2 @ 0.12 @ 120 @ 1,200)
- 6 If 1.3 X 7.2 = 9.36, then 13 X = 93.6. (0.72 7.2 7.2 720)

 $(60 \odot 6 \odot 57 \odot 65.4)$

(0 • 13 • 12 • 6.1)

 $(> \bigcirc \bigcirc \bigcirc = \bigcirc \bigcirc \bigcirc < \bigcirc \bigcirc \bigcirc \le)$

 $(> \mathbf{0}\mathbf{0}\mathbf{0} = \mathbf{0}\mathbf{0}\mathbf{0} < \mathbf{0}\mathbf{0}\mathbf{0} \leqslant)$

9 35 X 0.2

10 3.6 X 0.01 36 X 10

ASSESSMENT on Lessons 3-5

First:

Write the multiplication problem represented by each of the following Base 10 grids, then find the product:

Second: Write the multiplication problems that express the following area models, and then solve them:

0.7	1.00	FILE	
0./			

1	

G 76-14-5	

2	

0.2	ALIEN,		
0.04		X &U	

Third: Complete the following:

4 If
$$625 \times 4 = 2,500$$
, then $6.25 \times 0.4 = \dots$. 5 If $2.5 \times 1.6 = 4$, then $25 \times 16 = \dots$.

Fourth: Answer the following:

Marwa is a museum curator. She wants to repaint the museum walls, which are measured in meters. There are four walls, each measuring 3.8 m × 15.2 m. Estimate how many square meters she needs to cover with paint. Explain your answer.

Exercises on Lessons 6 & 7

Multiplying Decimals through the Hundredths Place & Multiplying Decimals through the Thousandths Place

1 Multiply (35 x 12) using the standard algorithm, then complete:

2 Multiply (105 X 24) using the standard algorithm, then complete:

1 7

3 Multiply using the standard algorithm:

36	0.368	6.07	115.2
X 0.7	X 5	X , 9	× 0.06
and Amphies		ST CONTRACTOR	d may have
4.57	3.336	7 37.07	12.25
X 5.9	<u>X 21</u>	X 13	X 3.5
+	+	· 6 6 4	+
9 6.35	3,021	20.02	3.27
X 1.7	× 0.032	X 3.6	24
		1 1 3 6 3 6 5 6 6	på Billin
+	+	+	+
	1		

4 Compare using (<, = or >):

1 2.8 X 3.4 0.28 X 34 2 6.3 X 12 0.63 X 12

3 6.4 X 0.37 64 X 3.7 **4** 2.2 X 2.2 0.22 X 22

5 4.5 X 0.2 45 X 20 **6** 6.34 X 32 63.4 X 3.2

7 0.45 X 0.1 4.5 X 10 8 67 X 10.2 67 X 1.2

9 0.5 X 0.8 0.2 X 0.2 10 3.2 X 3.2 0.32 X 320

5 Answer the following:

- 1 Nada bought 26 meters of fabric. If the price of one meter was 43.5 pounds, how many pounds did Nada pay?
- 2 Khaled bought 9.5 liters of juice with the price of 12.7 pounds per liter. How many pounds did Khaled pay?
- If a pizza costs 22.25 LE, how much does 12 pizzas of the same kind cost?
- A merchant bought two types of cloth, one at a price of 92.5 pounds per square meter, and the other at a price of 58 pounds per square meter. If he bought 10 meters of the first type and 6.5 meters of the second type, how many pounds did the merchant pay?
- Malik walked 7.9 km on Friday and 3.6 km on Saturday, then Malik repeated that every weekend for 6 weeks. How many total kilometers did Malek walk in 6 weeks?

Assessment on Lessons 6&7

Complete the following:

Second: Use the standard algorithm to multiply:

5.6

0.73

2.8

2.08

62

(To the nearest Tenth) | (To the nearest Hundredth) | (To the nearest whole number)

If 452 X 27 = 12,204, then:

Fourth: Compare using (<, = or >):

Exercises on Lessons 8-10

Decimals and the Metric System, Measurement, Decimals, and Powers of Ten & Solving Multistep Story Problems

1 Complete:

1 8,523 ml	=	X	=	liters.
2 954 ml	=	X	=	liters.
3 25 ml	= ,	X	=	liters.
4 78 liters	=	X	=	ml.
5 2.5 liters	= Suddyny St wing	X	=	ml.
6 1.24 liters	=	X	=	ml.
7 23 km	=	X	=r	neters.
8 0.753 km	=	X	=r	neters.
9 235 m	=	X	=	km.
10 3,235 m	=	X	=	km.
11 32 m	mean anticity of theore	X	=	cm.
12 3.35 m	=	X	=	cm.
13 0.12 m	=	X	=	dm.
14 45 cm	=	X	=	m.
15 1,247 cm	=	X	=	m.
16 7.5 dm	=	X	=	.cm.
17 7.5 kg	=	X	=	gm.
18 85 gm	=	X	=	kg.
19 235 mm	=	X	=	cm.
20 2.8 cm	=	X	=	mm.

2 Choose the correct answer:

1 6.52 kg = gm.

(65.2 @ 652 @ 6,520 @ 65,200)

2 549 gm = kg.

(5.490 **a** 5.49 **b** 54.9 **d** 0.549)

3 62 ml =L.

(620 @ 6.2 @ 0.62 @ 0.062)

4 63.5 liters = ml.

(635 **a** 6,350 **a** 63,500 **a** 635,000)

5 45 cm = meters.

(4,500 **a** 450 **a** 4.5 **b** 0.45)

6 0.028 meters =cm.

 $(0.28 \odot 2.8 \odot 28 \odot 280)$

7 | 3.2 km = m.

 $(32 \odot 0.32 \odot 3,200 \odot 0.032)$

8 45 meters = km.

 $(0.045 \odot 4,500 \odot 4.5 \odot 450)$

9 4.5 cm = mm.

(45 **a** 0.45 **b** 450 **b** 0.045)

10 256 mm = cm.

 $(0.256 \odot 2.56 \odot 25.6 \odot 2,560)$

3 Compare using (<, = or >):

1 45 kg

4,500 gm

2 3.25 cm

32.5 mm

3 2.5 meters 2,500 cm

4 63 liters

0.063 ml

5 5,000 m

0.5 km

6 0.02 km

2,000 mm

7 11.5 L

15.1 L

8 50 cm

5 mm

9 600 m

6 km

10 0.025 kg

2.5 gm

4 Put (in front of the correct statement, and (in front of the wrong statement:

 $\frac{1}{1}$ 78 kg = 7,800 g

2 3.5 m = 350 cm

3 200 ml = 0.2 liters

|4| 63 km = 0.063 gm

5 12.5 meters = 1.25 dm

6 1 cm = 0.1 mm

7 1 cm = 0.01 meters	()	8 25 ml = 0.025 liters (
9 10.2 mm = 1.02 cm	(4)	10 45.3 L = 0.453 ml (
5 Answer the following	•		
1 Eman wants to know he	ow mu	ch he	r height increased.
			at the end of the year she was 145 Eman increase in height?
2 Hazem bought 7 books Hazem paid.	, the pi	rice o	f one book is 23.5 pounds. Find wha
3 A fruit merchant has 5 boxes of peaches, each			angoes, each weighing 9.5 kg and 600 grams.
What is the total weigh	ts of th	hė fru	its that the trader has?
30 - 30 - 50 - 50 - 50 - 50 - 50 - 50 -	•••••		To account the second of the s
If Mazen is 1.64 meters	tall a	nd Ma	aryam is 145 centimeters tall.
Find the sum of their h	eights	and t	he difference between them in cm.
5 Sami drinks 4 liters of v	water d		f he drinks 1.25 liters of water in th
morning, and 2,450 mil	liliters	of wa	ater in the afternoon, how many liter
of water will he drink in	n the e	venin	g?
	*************	***************************************	

Mathematical Operations and Algebraic Thinking 🞐

•118 Math Prim. 5 - First Term

Assessment on Lessons 8-10

First: Choose the correct answer:

$$kg = 460 \text{ gm}.$$

Second: Complete the following:

Third: Compare using (<, = or >):

Fourth: Answer the following:

Ali's cat weighs 7 kilograms and his dog weighs 17 kilograms. When Ali took them to the vet, he knew that his cat had gained 0.45 kilograms and his dog had gained 0.12 kilograms. What is the total weight of the two pets now?

Assessment On concept

The state of the s				
First:	Choose	the c	orrect	answer:

- 1 The multiplication problem that expresses the corresponding model is
 - a 0.12 X 0.35
- **6** 1.2 X 3.5
- C 0.3 X 0.5

30

5

d 30 X 50

0.3

0.05

The area model that expresses 2.5 X 0.34 is

b

- 20 5
- 0.5 7
- 20 0.5
 - 3 0.5
- - 7 0.5 0.3

- - **a** 0.04
- **6** 0.4

C 4

d 40

0.5

- 4 0.48 liter = milliliter.
 - **a** 0.048
- **6** 4.8

C 48

d 480

- 5 (3 Tenths) X (8 Hundredths) =
 - **a** 0.024
- **6** 0.24
- **C** 24

Q 240

Second: Complete the following:

- 1 86 X = 0.086 2 If 24 X 12 = 288, then 2.4 X 0.012 =

- 4,258 gm =X = kg. 5 0.7 X 0.8 X 0.5 =

Third: Compare using (<, = or >):

- 1 0.2 X 0.01

- 0.4 X 0.05 2 6.2 X 100 0.062 X 10
- 3 75 cm

- 750 ml 4 1.2 X 3.5 0.12 X 350

Fourth: Answer the following:

- 1 The length of the route taken by the river bus is 58.7 km. How many kilometers would the river bus travel if it traveled this route 9 times a day?
- 2 Souad bought 20 meters of fabric. If the price of one meter is 65.5 pounds, what is the price of the whole fabric?

5.2 Dividing Decimals

Exercises on Lessons 11-13

Dividing by Powers of Ten, Patterns and Relationships in Powers of Ten & Modeling Decimal Division

1 Divide:

2 Complete the following:

$$\div 0.1 = 2.4$$

$$\div 0.01 = 2.5$$

3 Complete the following patterns:

4 Match:

5 Compare using (<, = or >):

$$25 \div 0.01$$

$$3 \div 0.001$$

$$1.5 \div 10$$

6 Complete each conversion. Then, write a multiplication equation and a division equation with the same answer:

7 Use the Base 10 blocks to model the following problems:

1 1.4 ÷ 0.7 =

2 2.5 ÷ 0.5 =

3 1.2 ÷ 0.6 =

4 2.1 ÷ 0.7 =

5 1.8 ÷ 0.9 =

6 2.4 ÷ 0.8 =

7 1.8 ÷ 0.45 =

8 2.4 ÷ 0.6 =

ASSESSMENT on Lessons 11-13

First: Complete the following:

Second: Use the Base 10 blocks to model the problems and divide:

Complete each conversion. Then, write a multiplication equation and a division equation with the same answer:

Fourth: Compare using (<, = or >):

Exercises on Lessons 14-17

Estimating Decimal Quotients, Dividing Decimals by Whole Numbers, Dividing Decimals by Decimals & Solving Challenging Multistep Story Problems

1 Estimate the decimal quotients in each of the following: (round the dividend to the nearest whole number and the divisor to the nearest compatible whole number)

1 56.7 ÷ 8.7 Estimate:	· =	or ÷	=
--------------------------------------	-----	------	---

2 Use the standard algorithm to divide:

3 Use the standard algorithm to divide:

4 Use the standard algorithm to divide:

3 1.242 ÷ 0.006 =

4 1.536 ÷ 0.6 =

5 245 ÷ 0.7 =

6 934 ÷ 0.8 =

7 65.65 ÷ 0.13 =

8 1.44 ÷ 1.2 =

9 45.6 ÷ 0.15 =

5 If $53 \times 31 = 1,643$, then:

6 Compare using (<, = or >):

7	Answer	the	follo	wing:
---	--------	-----	-------	-------

1 Rashida saved 350 pounds to buy a toy car. She was saving 12.5 pounds for every day she did some simple work. How many days did she have to work to save enough cash to buy the toy?
2 A father divided the sum of 99 pounds equally among his five children. How many pounds does each son take?
Mona bought 9 meters of fabric, and paid 214.2 pounds. What is the price of one meter of fabric?
If the profits of a shop are 728 pounds, and these profits are to be distributed equally among 5 persons, what is the share of one person?
A car consumed 210 liters of gasoline in 4 months. What is the average gasoline that the car consumed in one month?
6 Bilal buys 6 bags of fruits, each bag contains 4.25 kg. He wants to give some fruits to two of his friends. What is the weight of the fruits that each friend takes?
7 Maha walked 3,000 meters every day for two weeks, the following week she walked 14 kilometers.
How many kilometers did she walk during those three weeks?
Sarah bought 20 kilograms of sugar. If she uses 4.5 kilograms to make the drinks and distributes the rest among 5 bags equally, how many kilograms of sugar are in each bag?

Assessment on Lessons 14-17

Use the standard algorithm to divide:

Second: If 434 X 12 = 5,208, then:

Third: Match:

$$\bigcirc$$
 1,225 ÷ 0.25

Fourth: Answer the following:

The mass of a package of cake is 0.08 kilogram heavier than the mass of a package of cookies. The mass of 6 packages of cake is the same as the mass of 9 packages of cookies. Label your answers.

What is the mass of a **single** package of cookies?

What is the mass of a **single** package of cake?

Assessment On concept 2

First: Choose the correct answer:

1liter = 45 milliliters.

a 0.045

6 45,000

© 0.45

d 4.500

2 3 Tenths ÷ 5 Hundredths =

a 15

6

© 0.015

@ 0.06

3 24.7 ÷ = 0.247

a 0.01

6 0.1

C 10

100

4 9.6 ÷ 0.1 =

a 9.6 X 0.1

6 96 X 0.1

© 96 X 10

d 9.6 X 10

5 0.001 X = 0.25 ÷ 10

a 0.25

6 2.5

© 25

d 250

Second: Complete the following:

1 75.03 ÷ = 750.3

2 18,000 ÷ 100 =

3 18 X 0.01 = 18 ÷

4 45.36 cm = mm.

5 If 2.5 X 1.2 = 3, then $3 \div 25 = \dots$.

Third Match:

1 25 X 0.1

2 2.5 X 0.1

3 2.5 X 0.01

4 2.5 X 10

a 2.5 ÷ 10

 \bullet 2.5 ÷ 0.1

 \bigcirc 0.25 \div 0.1

d 0.25 ÷ 10

Fourth: Answer the following:

A factory for the manufacture of pasta produces 832.5 kg of pasta daily, which are packed in bags of 450 grams per bag. Find the number of bags needed for this.

Numerical Expressions and Patterns

6.1 Evaluating Numerical Expressions

Exercises on Lessons 1-4

Numerical Expressions, Numerical Expressions with Grouping Symbols, Placing Grouping Symbols & Writing Expressions to Represent Scenarios

1 Use the order of operations to evaluate each expression, one step at a time:

1 1.5 + 2.5 + 0.7 = = =	2 9.8 - 2.6 - 1.3 = =	3 8.01 + 7 - 10.02 = = =
4 24 - 5.5 + 4.3 = =	5 0.2 X 2 X 4.2 = =	6 4.5 ÷ 3 ÷ 0.5 = =
7 2.5 X 8 ÷ 0.5 = =	8 4.8 ÷ 6 X 0.5 = =	9 8 X 2.5 + 10.2 = = =
10 4.2 X 10 - 8.2 = = =	11 7.5 + 4 X 2.4 = =	12 1.5 - 0.3 X 0.3 = =
13 4 ÷ 0.8 + 2.5 =	14 0.36 ÷ 0.9 – 0.4 =	15 4.2 + 1.6 ÷ 2 =

2 Use the order of operations to evaluate each expression, one step at a time:

=

5	7	2 X 0.1 + 0.5 X 10	
	= .		
	= .		

9	0.	.6)	8 >	+	7.5	X	10	+ ().7	X :	3	
	=											
	=											
	_											

3 Use the order of operations to evaluate each expression, one step at a time:

1 4.2 X (10 - 9.2)	2 (7.5 – 4) X 0.1	3 (4.3 + 0.7) X 0.3
= 2 4 4 2 2		
	=	=
4 4 X (5.8 + 4.2)	5 0.36 ÷ (0.9 – 0.3)	6 (4.2 + 1.6) ÷ 2
	=	
100=		=
7 2.4 ÷ (7.8 – 7.2)	8 16 ÷ (0.9 + 0.7)	9 (5.2 – 0.4) ÷ 6
		=
	=	=

4 Use the order of operations to evaluate each expression:

1 [0.85 X (2.7 + 7.3)] - 3.5	2 25 + [0.5 X (4.2 - 3) - 1] =
=	
3 [(20.5 – 10) X 0.3] ÷ 0.1 =	4 [(0.36+1.2) ÷ (0.6+0.2)] X 5 =
5 12 X [(0.1 + 0.5) X 10] ÷ 8 =	6 54 ÷ [75 X 0.1 - (15÷10)] = = = = = = = = = = = = = = = = = =
= The Property Williams	

5	Place grouping symbols (parentheses and/or brackets) in the
	expressions to generate the given values. Sometimes grouping
	symbols are not needed.

	The value is 5) 0.5 X 5.4 + 4.6	
=		
=		

2	(The value is 0.6)
	5.6 - 5.5 X 6
	=
1	=

	The value is 9 4.5 ÷ 5 X 10)
=	***************************************	
=		
=		
=		

4 (The				
	12 X	5.4	- 4.4	2 + (J.8
=			1		••••
=					
=			,,,,,,,,,,,		
=					

6 Match:

7 For each problem, write an expression that matches the clues. Then, evaluate the expression:

1 Add 5.9 and 12.6. Then multiply the result by 10.

2	THE A	result	100 M			
	17	19.60				
		uelleu	24.10	33 2	Haw	

3 Multiply 0.542 by 100 and add 2.5.	4 Divide 456 by 10 and add 4.4.
5 Divide 93 by 0.3. Then add 114.7 and divide the result by 5.	6 Add 30.5, 5.5, and 4. Then subtract the result from 125.5 and finally multiply by 100.
7 Multiply 7.6 by 100. Next subtract 34.3. Then add 12.4. Finally divide the result by 0.1.	8 Divide 4.5 by 0.1. Then add 5.5. Multiply by 10.
Answer the following:	
Adel bought 16.5 kg of apple. He games wants to give the rest to 5 of his feach friend get if he divided it equals	friends. How many kilograms would ally among them?
2 Maha walked 2.5 kilometers every week, she walked 54.2 km. How m those three weeks?	day for two weeks. The following any kilometers did she walk during
	Each bag contains 12 balloons. He ds at his birthday party. If he has 8

Assessment On concept

First: Choose th	e correct ans	swer:		
1 4.5 + 35 X 0.1 =				0-0-
a 8 b		© 0.8		d 39.5
1.2 X (0.3 + 0.2) =				
a 0.56		© 6		d 5.6
The mathematical exp	ession that exp	resses "Add 3.	5 and 3.7	/. Then multiply by
0.8" is	/75.77\\0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 0 0 1	A 75 V 77 . 00
a 3.5 + 3.7 X 0.8 b				
The mathematical expi a subtract 0.3 from 4.			presseu	dS
b divide 0.3 by 1.2. Th		y 1.2		
© subtract 4.5 from 0.		v 1 2		
d divide 0.3 by 1.2. Th			5	
5 5.6 + 0.5 - 0.4 X 1.5 =		result from 1	.5	
a 6.1 – 0.6 b		© 5.6 + 0.5	5 – 0.6	d 6.1 – 0.4 X 1.5
Second: Use the o				
1 9.2 + 2.5 X 4 ÷ 5				- 2.3) X (8.5 + 2.5)
=		(0.1 7.2)]		2.5 / / (0.5 · 2.5)
=		48		
=				
Third: Place gro	uning symbol	s (narenthe	eses an	d/or brackets) iı
				lues. Sometime:
	symbols are i	HE RESERVED THE RESERVED THE RESERVED		10-01-31(189/5
1 (The value is 2.2)	the state of the s			e value is 10.38)
2.5 – 3 X 0.07 + 0.03				0.4 X 2 – 2.42
=	. =		=	
=	=	•••••	=	
	=		=	
	=		*****	
Fourth: Answer th	e following:			
Hoda is filling identical va		for flower arra	angemen	ts at the florist.
She starts with 15.75 liter	s and pours an	egual amoun	t into 16	vases. When she is

finished, Hoda still has 3.75 L of water left. How much water is in each vase? Give your answer in liters. Write an expression that matches the scenario, then

evaluate the expression.

6.2 Analyzing Numerical Patterns

Exercises on Lessons 5-7

Identifying Numerical Patterns, Extending and Creating
Numerical Patterns & Solving Problems with Numerical Patterns

1 Write the rule for each pattern with a variable. Then, complete the pattern by finding the missing values:

1	2, 5, 8, 11, 14, 17,	Rule:
] 2, 3, 0, ±±, ± 1, ±/,	Nute

2 Write the rule for each pattern with a variable. Then, complete the pattern by finding the missing values:

1	Input	Output	2
1	15 -	************	
	17		
	21	14	ki Ar
	25	18	
	1	20	1

Output
10
30
40
50

Input	Output	4
5		
7	10	
9	12	
	14	
	16	

Input	Output
1	6
2	7
3	
4	
5	

Rule	

R	u	le		***************************************
B #	*	-	٠	***************************************

5	Input	Output	6	Input	Output	7	Input	Output	8	Input	Output
	39		M	3	9	K	6			2	6
	33			6			10	5		4	12
	27	9			27		14	7		6	/
	21	7		************	36		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9		8	
		5		15	45	11,01		11		10	
	Rule:			Rule:			Rule:			Rule:	

3 Use the rule shown and complete the table:

1	Input	Output	2	Input	Output	3	Input	Output	4	Input	Output
	15			3				12		1	
3		5			27			16	ă	2	
	35			15				20		3	
		9			72			24		4	
	55			27	ļ			28	375	5	
	Rule:	n ÷ 5		Rule:	n X 3	1,60	Rule:	n – 4		Rule	n + 7

4 Using the given information, list the first five numbers in the pattern:

pattern:	
1 Starting number: 3, Rule: n + 5	2 Starting number: 1.2, Rule: n + 0.

7 Starting	number	: 32 , Ru	le: n ÷ 2	8	Starti	ng n	umbe	er: 1, R	Rule: n	÷C).5

- 9 Starting number: 4, Rule: n X3 + 1 10 Starting number: 2, Rule: (n+1)X2
- Write the rule for each pattern with a variable. Then, complete the pattern by finding the missing values:

	Input	Output	2	Input	Output	3	Input	Output	4	Input	Output
9	7			3	6	o, er	1		-	4	9
	11		10	9	8	i kur	2	10	113	6	13
	15	4		15	10	3	3	14		8	17
	19	5			12		4	18		10	
		6		27				22		12	
	27	7	- 4	33				26		14	
	Rule:			Rule:			Rule:		1	Rule:	

CARL CONTRACTOR OF THE PARTY OF			
Rule:	Rule:	Rule:	Rule:

5	Input	Output	6	Input	Output	7	Input	Output	8	Input	Output
d	1		ovi	1	6		9			2	4
	2		1 To 12 To 11	2	11		11	4		4	16
	3	27	Less)	3	16		13	5		6	36
	4	64	į		21		15	6		8	
į		125		5	J. S.			7		10	
Y	6	216		6				8		12	
	Dules	N. H. S. P. P. S.		Dules		,	Dules			Dules	

Rule:	Rule:	Rule:	Rule:

6 Use a pattern to help you solve each problem:

1 When Salma was six years old, her brother Alaa was twice her age. Complete the following table and answer:

Salma's age	Alaa's age
6	
7	
	16
15	
20	

- What is the age of Alaa when Salma is 12 years old?
- **b** What is the age of Salma when Alaa was 8?

Hussam makes pancakes with sugar, he uses 150 gm of flour to make one pancake. Use the pattern to complete the table:

Number of Pancakes	Amount of Flour (gm)
1	150
2	
3	450
4	
5	

- a How much flour will it take to make 6 pancakes?
- How many pancakes does Hossam make using 1.5 kg of flour?
- 3 Fouad reads for 3 hours per day. Complete the following table and answer:

Number of Days	Number of Hours
2	
5	
	21
. 8	
10	

- a How many hours does Fouad read in 6 days?
- **b** How many days does Fouad read for 9 hours?

4 Malak travels in her car at a speed of 80 km per hour. Complete the following table and answer:

Number of Hours	Distance (km)
1.5	***************************************
2	
	200
3	
	400

- What is the distance traveled by her in 4 hours?
- How many hours does it take for Malak to travel 360 km?

Assessment On concept

First:	Chanse t	he correct	answer.
	0110000		and the .

- 1 The pattern rule of (15 , 21 , 27 , 33 , 39 , 45 ,) is
 - a_{n+6}
- **b** n 6
- CnX6
- (1) n ÷ 6
- 2 The next number in the pattern (1,1,2,3,5,8,13) is
 - **a** 42

6 24

G 16

- 3 1.5 + n is the rule of _____.
 - **a** 2.5 , 3.5 , 4.5 , 5.5 , 6.5 ,......
- **6** 2 , 3.5 , 5 , 6.5 , 8 ,......

5 The rule of the following pattern is

- **©** 4, 4.5, 5, 5.5, 6, 6.5,
- **d** 2,4.5,7,9.5,12,14.5,......
- 4 The rule of the following pattern is

Input	Output
5	11
6	13
7	15

- an X 2 + 1
- (n+1)X2
- **G**n+1X2
- \bigcirc (n+2)X1

- Output Input 31 10 34 11 37 12
- $a_{n-1} \div 3$
- 0 n X 3 + 1
- **G** $(n-1) \div 3$
- $0 n \div 3 1$

Second: Using the given information, list the first five numbers in the pattern:

- 1 Starting number: 5, Rule: n + 5:

Third: Write the rule for each pattern with a variable. Then, complete the pattern by finding the missing values:

- 1 3,8,13,18,.....
- Rule:

- 2 0,4,8,12,....
- Rule:
- Rule:

Fourth: Answer the following:

The library charges a fine on the first day of EGP 3 in case of the delay in returning the book. Another fine is charged for each additional day of $\frac{2}{2}$ pounds.

If Khaled delays returning the book for three days, what is the amount that he will pay for the delay? (Indicate your answer)