Nirma University

Institute of Technology

Semester End Examination (IR/RPR), May - 2023

B. Tech. in Computer Science and Engineering, Semester-VI

2CS601 Theory of Computation

	20001 Incory of Comparation
Roll/ Exam No. Time: 3 Hou	Supervisor's initial with date Max. Marks: 100
Instructions	 Attempt all questions. Figures to the right indicate full marks. Draw neat sketches wherever necessary. Make suitable assumptions wherever necessary and specify them Section wise separate answer book should be used.
	SECTION-I
Q-1 (A)	Answer the following questions: [16] Minimize the following Finite Automata using the Table filling (08)

CLO3, BL4 (Myhill Nerode) Method.

Construct NFA for the language accepted by regular expression (08) (B) b(a+ba+abb)(ba(a+b)*). Also, convert the resultant NFA to DFA. CL03, BL4 [14]Answer the following questions: Q-2 Design a Turing Machine that accept $L=\{w \mid n_a(w)=n_b(w)=n_c(w)\}$, Here (08) (A) CLO3, BL6 $w \in \{a,b,c\}^*$ OR Design a Turing machine to delete the occurrence of the special (08) (A) character '\$' from the string of binary input. If the input is CLO3, BL6 1101\$01, then the machine should delete the '\$' and give 110101

as output. (Consider the read/write head at first character)

Page 1 of 3

(B) CLO1, BL6	Construct DFA that recognizes the language accepted by the regular expression (101+11) (00)* OR	(06)
(B) CLO1, BL6	Construct DFA that recognizes the language $L=\{n \mid (n \mod 5) > 2\}$	(06)
Q-3 (A) CLO4, BL5	Answer the following questions: Check whether string "aabbba" belongs to the given CFG or not (using CYK algo) S→ AB A→AA AB a B→CC C→b	[20] (08)
(B) CLO4, BL3	Show that the following grammar is ambiguous P→ a P+P P-P P*P P/P [Note: Here, +, -, *, and / are operators of given grammar]	(06)
(C) CLO4, BL3	Show that language L={ a^n b a^m b a^{n+m} n , $m > 1$ } is not regular using Pumping Lemma	(06)
	SECTION-II	
Q-4 (A) CL03, BL3	Answer the following questions: Convert the following Context Free Grammar (CFG) into Greibach Normal Form (GNF)	[22] (08)
(A)	Answer the following questions: Convert the following Context Free Grammar (CFG) into Greibach	
(A) CLO3, BL3 (B)	Answer the following questions: Convert the following Context Free Grammar (CFG) into Greibach Normal Form (GNF) S→CA BB B→b SB C→b	
(A) CLO3, BL3	Answer the following questions: Convert the following Context Free Grammar (CFG) into Greibach Normal Form (GNF) S→CA BB B→b SB C→b A→a	(08)
(A) CLO3, BL3 (B) CLO3, BL6	Answer the following questions: Convert the following Context Free Grammar (CFG) into Greibach Normal Form (GNF) S→CA BB B→b SB C→b A→a Design PDA for the following CFG and trace the string 001101110 S→0B 1A A→0S 1AA 0	(08)

(B) Simplify the following grammar by removing useless, null, and unit (08) CLO1, BL2 productions. Also, identify language generated by resultant grammar and write regular expression.
S→aA|bBB,

A→aaA|€ B→bB|bbC,

C→B, D→B|a

[Note: Here, & represents null production]

OR

- (B) Design Context Free Grammar (CFG) for the given languages L. (08) CLO1, BL6 L= {WaXbYcZd | a>b or b>c or c>d}
- (C) Prove with an example, if S1 and S2 are finite sets with $|S_1|=X$ and (04) CLO2, BL1 $|S_2|=Y$, then $|S_1 \cup S_2| \le X+Y$.
- Q-6 Show that $10^{(2n-1)} + 1$ is divisible by 11 for all the natural numbers [08] CLO2, BL2 using Mathematical Induction.

END----