DANMARKS TEKNISKE UNIVERSITET

Side 1 af 4 sider

Skriftlig 2-timers prøve, 17. maj 2014

Kursus: Matematik 2 01035

Tilladte hjælpemidler: Alle af DTU tilladte.

Vægtning af opgaverne: Opgave 1: 30%, Opgave 2: 15%, Opgave 3: 25%, Opgave 4: 30%.

Vægtningen er kun vejledende. Sættet bedømmes som en helhed. For at opnå fuldt point i opgaverne 2, 3 og 4 kræves at mellemregninger medtages i rimeligt omfang. Alle svar i opgaverne 2, 3 og 4 skal begrundes, eventuelt med en henvisning til lærebogen.

NB. Opgave 1 er en multiple-choice opgave og svaret på hvert spørgsmål angives ved afkrydsning på det vedlagte løsningsark, der afleveres som en del af besvarelsen. Udregninger hørende til opgave 1 skal ikke afleveres og vil ikke kunne indgå i bedømmelsen. Ved svaret "ved ikke" gives 0 %, ved korrekt svar gives +5%, og ved et forkert svar gives -2.5%.

Opgave 1

- (i) Den uendelige række $\sum_{n=1}^{\infty} \cos \left(\frac{1}{n} + \frac{\pi}{4} \right)$ er:
 - a) Divergent.
 - b) Absolut konvergent.
 - c) Betinget konvergent.
 - d) ved ikke.
- (ii) Den uendelige række $\sum_{n=1}^{\infty}\frac{(-1)^n}{(2+n)^2}$ er:
 - a) Divergent.
 - b) Absolut konvergent.
 - c) Betinget konvergent.
 - d) ved ikke.
- (iii) Summen af $\sum_{n=3}^{\infty} \frac{4}{2^n} x^n$ er lig med:
 - a) $\frac{2x^3}{1-x}$ for |x| < 1.
 - b) $\frac{x^3}{1-x}$ for |x| < 2.
 - c) $\frac{x^3}{2-x}$ for |x| < 2.
 - d) ved ikke.

- (iv) Bestem konvergensradius ρ for potensrækken $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} b^{2n} x^n$, hvor $b \in \mathbb{R}$ og b > 0. Svaret er:
 - a) $\rho = b^2$.
 - b) $\rho = \frac{1}{b^2}$.
 - c) $\rho = \frac{1}{b}$.
 - d) ved ikke.
- (v) Vi betragter differentialligningen $y''(t) + y'(t) + y(t) = \sin(\omega t)$. Overføringsfunktionen er $H(s) = \frac{1}{s^2 + s + 1}$. Det stationære svar er:
 - a) $y(t) = \frac{1-\omega^2}{(1-\omega^2)^2 + \omega^2} \cos(\omega t) + \frac{\omega}{(1-\omega^2)^2 + \omega^2} \sin(\omega t)$.
 - b) $y(t) = \frac{1-\omega^2}{(1-\omega^2)^2 + \omega^2} \sin(\omega t) \frac{\omega}{(1-\omega^2)^2 + \omega^2} \cos(\omega t)$.
 - c) $y(t) = \frac{1-\omega^2}{1+\omega^4+\omega^2}\sin(\omega t) \frac{\omega}{1+\omega^4+\omega^2}\cos(\omega t)$.
 - d) ved ikke.
- (vi) Betragt rækken

$$\sum_{n=1}^{\infty} \left(\frac{1}{n^3} \cos(nt) - \frac{1}{(2n+1)^2} \sin(nt) \right) \tag{1}$$

med variable led, afhængige af $t \in \mathbb{R}$. En konvergent majorantrække er:

- a) $\sum_{n=1}^{\infty} \left(\frac{1}{n^3} \frac{1}{(2n+1)^2} \right)$.
- b) $\sum_{n=1}^{\infty} \frac{1}{n^3}$.
- c) $\sum_{n=1}^{\infty} \left(\frac{1}{n^3} + \frac{1}{(2n+1)^2} \right)$.
- d) ved ikke.

Opgavesættet fortsætter - Vend!

Opgave 2

Betragt det homogene differentialligningssystem givet ved

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} , \quad \text{hvor } \mathbf{A} = \begin{pmatrix} -1 & a & 0 \\ 0 & -2 & 1 \\ 1 & 0 & -2 \end{pmatrix} . \tag{2}$$

Den afhængige variabel $\mathbf{x}(t)$ er en tredimensional vektorfunktion af tiden $t \in [0; \infty[$ og $a \in \mathbb{R}$ er en reel konstant. I Maple udregnes det karakteristiske polynomium for matricen \mathbf{A} til at være

$$det(\mathbf{A} - \lambda \mathbf{I}) = -\lambda^3 - 5\lambda^2 - 8\lambda + a - 4.$$
(3)

(i) For hvilke værdier af a er differentialligningssystemet (2) asymptotisk stabilt?

Opgave 3

Vi betragter differentialligningen

$$\frac{dy}{dx} + xy = x^2 \exp(-x) , \qquad (4)$$

hvor $x \in \mathbb{R}$.

- (i) Vis at potensrækken for funktionen $x^2 \exp(-x)$ er $\sum_{n=2}^{\infty} \frac{(-1)^n}{(n-2)!} x^n$.
- (ii) Antag y kan skrives på potensrækkeformen $y(x) = \sum_{n=0}^{\infty} a_n x^n$ og bestem ved indsættelse i ligning (4) rekursionsformler for $a_n, n = 0, 1, 2, \ldots$

Opgavesættet fortsætter - Vend!

Opgave 4

Funktionen fer $2\pi\text{-periodisk}$ og i intervallet $\left]-\pi,\pi\right]$ er f givet ved

$$f(x) = \begin{cases} 1 + \sin(3x) & \text{for } -\pi < x \le 0, \\ 0 & \text{for } 0 < x \le \pi. \end{cases}$$
 (5)

- (i) Skitser grafen for f(x), hvor $x \in [-\pi, \pi]$.
- (ii) Hvilken værdi konvergerer Fourierrækken for f mod i punktet x = 0?
- (iii) Undersøg, om Fourierrækken for f er uniformt konvergent på \mathbb{R} .
- (iv) Find Fourierrækken for f. Du må bruge Maple.

Opgavesættet slut.