Introduction to Bioinformatics

JTMS-19

Marc-Thorsten Hütt

mhuett@constructor.university

Felix Jonas

fjonas@constructor.university

session Wed, 13. Nov. 2024 Hidden Markov models II

What is this session about?

Posterior decoding for HMMs is introduced. First applications of HMMs are discussed.

How can you revise the material after the session?

Read Durbin et al. chapters 3.3, 3.4
Read Baxevanis/Oullette pages 208 – 210
Look at the HMM in Kundaje, et al. (2015). Nature, 518, 317-330.

alternative reading: Hütt/Dehnert chapters 2.8.3 – 2.8.4, 2.9

general properties of HMM

simulation of a sequence

joint probability of the path and the sequence

$$P(x, \pi) = a_{\pi_0 \pi_1} \prod_{i=1}^{L} e_{\pi_i}(x_i) a_{\pi_i \pi_{i+1}}$$

Summary of the Viterbi algorithm

initialization
$$\longrightarrow$$
 recursion \longrightarrow termination \longrightarrow traceback

$$v_0(0) = 1$$
 , $v_k(0) = 0$ $\forall k \in \Sigma_{HMM}$

initialization

$$v_l(i+1) = e_l(x_{i+1}) \max_k \{v_k(i) \, a_{kl}\}$$

recursion

$$\max_{k} \{v_k(L) \, a_{k0}\} = P(x, \pi^*)$$
 termination

$$a_{k0} = \frac{1}{|\Sigma_{HMM}|} \quad \forall k \in \Sigma_{HMM}$$

$$\pi_{L-1}^* = Z_{L-1}(\pi_L^*)$$

traceback

:

$$\pi_{i-1}^* = Z_{i-1}(\pi_i^*)$$

:

A small numerical example

$$x = 3, 1, 5, 6, 6$$
 $a_{FF} = a_{UU} = 0.8$ $a_{UF} = a_{FU} = 0.2$

Summary of the Viterbi algorithm initialization → recursion → termination → traceback $v_0(0) = 1$, $v_k(0) = 0$ $\forall k \in \Sigma_{HMM}$ initialization $v_l(i+1) = e_l(x_{i+1}) \max_{k} \{v_k(i) \, a_{kl}\}$ recursion $\max_{k} \{ v_k(L) \, a_{k0} \} = P(x, \pi^*)$ termination $a_{k0} = \frac{1}{|\Sigma_{HMM}|} \quad \forall \, k \in \Sigma_{HMM}$ $\pi_{L-1}^* = Z_{L-1}(\pi_L^*)$ traceback $\pi_{i-1}^* = Z_{i-1}(\pi_i^*)$

A small numerical example

$$x = 3, 1, 5, 6, 6$$
 $a_{FF} = a_{UU} = 0.8$ $a_{UF} = a_{FU} = 0.2$

$$v_F(1) = e_F(3) \max \{v_0(0) a_{0F}, v_F(0) a_{FF}, v_U(0) a_{UF}\}$$
$$= \frac{1}{6} \max \{1 \cdot 0.5, 0 \cdot 0.8, 0 \cdot 0.2\} = \frac{1}{12} \approx 0.0833$$

$$\begin{split} v_U(1) &= e_U(3) \; \max \left\{ v_0(0) \, a_{0U}, \, v_F(0) \, a_{FU}, \; v_U(0) \, a_{UU} \right\} \\ &= \frac{1}{10} \; \max \left\{ 1 \cdot 0.5, \; 0 \cdot 0.2, \; 0 \cdot 0.8 \right\} = \frac{1}{20} = 0.05 \; . \end{split}$$

$$\begin{split} v_F(2) &= e_F(1) \, \max \left\{ v_F(1) \, a_{FF}, \, v_U(1) \, a_{UF} \right\} \\ &= \frac{1}{6} \, \max \left\{ \frac{1}{12} \cdot 0.8, \, \frac{1}{20} \cdot 0.2 \right\} \\ &\approx \frac{1}{6} \, \max \left\{ 0.067, \, 0.01 \right\} = 0.011 \end{split} \qquad \begin{aligned} v_U(2) &= e_U(1) \, \max \left\{ v_F(1) \, a_{FU}, \, v_U(1) \, a_{UU} \right\} \\ &= \frac{1}{10} \, \max \left\{ \frac{1}{12} \cdot 0.2, \, \frac{1}{20} \cdot 0.8 \right\} \\ &\approx \frac{1}{10} \, \max \left\{ 0.0167, \, 0.04 \right\} = 0.004 \; . \end{aligned}$$

A small numerical example

$$x = 3, 1, 5, 6, 6$$
 $a_{FF} = a_{UU} = 0.8$ $a_{UF} = a_{FU} = 0.2$

	x = 3, 1, 5, 6,	6						
i	$v_F(i)$	$v_U(i)$	$\pi^*(i)$					
1	0.0833	0.05	\overline{F}					
2	0.011	0.004	F	3	1	5	6	6
3	0.0015	0.00032	F	\boldsymbol{F}	F	F	U	1 1
4	0.0002	0.00015	U	I'	Γ	I'	O	U
5	0.000026	0.000059	$\longrightarrow U$					

•

elementary example: casino with two dice

 $S_{HMM} = \{ F, U \}$

•

Rolls	315116246446644245321131631164152133625144543631656626566666
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	651166453132651245636664631636663162326455235266666625151631
Die	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

•

Summary of the forward and backward algorithms

$$P(x, \pi_i = k) = P(x_1, \dots, x_i, \pi_i = k) P(x_{i+1}, \dots, x_L \mid x_1, \dots, x_i, \pi_i = k)$$

$$\equiv f_k(i)$$

$$= P(x_{i+1}, \dots, x_L \mid \pi_i = k)$$

$$\equiv b_k(i)$$

$$f_0(0) = 1, f_k(0) = 0 \ \forall k \in \Sigma_{HMM}$$

initialization

$$f_l(i+1) = e_l(x_{i+1}) \sum_{l} f_k(i)a_{kl}$$

recursion

$$P(x) = \sum_{\pi} P(x, \pi)$$

marginal probability

Summary of the forward and backward algorithms

$$P(x,\pi_i=k) = \underbrace{P(x_1,\ldots,x_i,\pi_i=k)}_{\equiv f_k(i)} \underbrace{P(x_{i+1},\ldots,x_L\,|\,x_1,\ldots,x_i,\pi_i=k)}_{=P(x_{i+1},\ldots,x_L\,|\,\pi_i=k)}$$

$$= b_k(i)$$

$$b_k(L) = a_{k0} \quad k \in \Sigma_{HMM} \qquad \text{initialization}$$

$$b_k(i) = \sum_{l \in \Sigma_{HMM}} a_{kl}e_l(x_{i+1})b_l(i+1) \qquad \text{recursion}$$

$$P(x) = \sum_{l \in \Sigma_{HMM}} a_{0l}e_l(x_1)b_l(1) \qquad \text{termination}$$

Summary of the forward and backward algorithms

$$P(x, \pi_i = k) = P(x_1, \dots, x_i, \pi_i = k) P(x_{i+1}, \dots, x_L \mid x_1, \dots, x_i, \pi_i = k)$$

$$\equiv f_k(i)$$

$$= P(x_{i+1}, \dots, x_L \mid \pi_i = k)$$

$$\equiv b_k(i)$$

$$P(x, \pi_i = k) = f_k(i) b_k(i)$$

intermediate result

$$P(x, \pi_i = k) = P(\pi_i = k \mid x)P(x)$$

definition of the conditional probability

$$P(\pi_i = k \mid x) = \frac{f_k(i) b_k(i)}{P(x)}$$

final result:

posterior probability of a HMM state *k* at position i given the sequence *x*.

'posterior decoding'