Université Abou Bekr Belakaid Faculté des Sciences Département d'Informatique Matière : Programmation Linéaire

TD2 Résolution Graphique d'un Programme Linéaire

Exercice 1

Un atelier de confection dispose de 70 mètres de coton, 52 mètres de laine et 35 mètres de soie. La fabrication d'un complet nécessite 1 mètre de coton, 1 mètre de laine et 0.25 mètre de soie. Celle d'une robe nécessite 1 mètre de coton, 0.5 mètre de laine et un mètre de soie. Un complet se vend 5000 DA et une robe 9000 DA.

- 1. Écrire le programme linéaire correspondant à la maximisation du revenu. On notera X_1 et X_2 respectivement, les nombres de complets et de robes que l'atelier produit.
- 2. Résoudre le programme linéaire graphiquement

Exercice 2

Un artisan menuisier fabrique des tables et des chaises à base du bois et d'un métal pour le compte d'un revendeur, il emploie deux jeunes stagiaires. Son stock pour la semaine à venir en bois est 60 m² et 30 mettre du métal. La fabrication d'une table nécessite 3h du travail et 5 m² du bois et 2m du métal, et pour fabriquer une chaise il faut 1.5 h du travail et 2 m² du bois et 1m du métal. Le menuisier et ses stagiaires travaillent 40 h par semaine, une table génère le profit de 2000 DA et une chaise dégage un profit de 1200 DA.

- 1. Modéliser ce problème sous forme d'un programme linéaire afin de maximiser le bénéfice hebdomadaire ?
- 2. Résoudre le programme linéaire graphiquement

Exercice 3

Un fabricant produit 2 variétés de biscuit, l'une à la noix de coco et l'autre au chocolat, selon le schéma suivant :

Biscuit	Ingrédient			Prix de
	Farine	Chocolat	Noix de coco	vente
A	1	0	3	6
В	1	5	0	5
Disponible	8	22	12	

- 1. Formuler le problème comme un PL
- 2. Résoudre le programme linéaire graphiquement

Exercice 1

Un atelier de confection dispose de 70 mètres de coton, 52 mètres de laine et 35 mètres de soie. La fabrication d'un complet nécessite 1 mètre de coton, 1 mètre de laine et 0.25 mètre de soie. Celle d'une robe nécessite 1 mètre de coton, 0.5 mètre de laine et un mètre de soie. Un complet se vend 5000 DA et une robe 9000 DA.

- 1. Écrire le programme linéaire correspondant à la maximisation du revenu. On notera X_1 et X_2 respectivement, les nombres de complets et de robes que l'atelier produit.
- 2. Résoudre le programme linéaire graphiquement

	Complet (X1)	Robe(X2)	Qte
Coton	1	1	70
Laine	1	0.5	52
Soie	0.25	1	35
Profit	5000	9000	

Programme linéaire

Max
$$z = 5000 \text{ x} 1 + 9000 \text{ x} 2$$

s.c.
$$x1 + x2 \le 70$$

$$x1 + 0.5 x2 \le 52$$

$$0.25 \times 1 + \times 2 \le 35$$

$$X1, x2 >= 0$$

Résolution graphique

On trace les droites:

$$(D1): x1+ x2 = 70$$

$$(D2)$$
: $x1+0.5$ $x2=52$

$$(D3): 0.25 \times 1 + \times 2 = 36$$

Solution optimale se trouve dans les sommets

 $Z_A = 324000$

$$Z_B = 430810$$
 (optimum)

 $Z_{C}=260000$

Université Abou Bekr Belakaid Faculté des Sciences

Département d'Informatique

Matière: Programmation Linéaire

Point A(0, 36)

$$Z_A = 5000 * 0 + 9000 * 36 = 324.000DA$$

Point C(52, 0)

$$Z_C = 5000*52 + 9000*0 = 260.000DA$$

Point B(?,?)

Le point B est l'intersection du deux droite (D2) et (D3)

(D2):
$$x1+0.5 x2=52$$
 (1)

(D3):
$$0.25 \times 1 + \times 2 = 36$$
 (2)

(2)
$$x 4 \rightarrow x1 + 4x2 = 144$$
 (3)

$$(3) - (1) \rightarrow 3.5 \text{ x} = 92 \rightarrow \text{x} = 26.29$$

On remplace x2=26.29 dans (1) ou (2) on trouve x1=38.84

$$Z_B = 5000*38.84 + 9000*26.29 = 430810DA$$

Donc le point B est la solution optimale

Matière: Programmation Linéaire

Exercice 2

Un artisan menuisier fabrique des tables et des chaises à base du bois et d'un métal pour le compte d'un revendeur, il emploie deux jeunes stagiaires. Son stock pour la semaine à venir en bois est 60 m² et 30 mettre du métal. La fabrication d'une table nécessite 3h du travail et 5 m² du bois et 2m du métal, et pour fabriquer une chaise il faut 1.5 h du travail et 2 m² du bois et 1m du métal. Le menuisier et ses stagiaires travaillent 40 h par semaine, une table génère le profit de 2000 DA et une chaise dégage un profit de 1200 DA.

- 1. Modéliser ce problème sous forme d'un programme linéaire afin de maximiser le bénéfice hebdomadaire ?
- 2. Résoudre le programme linéaire graphiquement

1- Modélisation du problème

Matière première	Table	Chaise	Quantité
Bois	5	2	60 m^2
Métal	2	1	30 m
Volume horaire	3	1.5	40 heures
Prix de vente	2000DA	1200DA	

On notera respectivement x_1 et x_2 le nombre de table et de chaise à fabriquer

Max
$$Z= 2000 x_1 + 1200 x_2$$

s.c.
$$5x_1 + 2x_2 \le 60$$

$$2x_1 + x_2 \le 30$$

$$3x_1 + 1.5 x_2 \le 40$$

$$x_1, x_2 > = 0$$

2- Résolution graphique

On trace les droites:

(D1):
$$5x_1 + 2x_2 = 60$$

(D2):
$$2x_1 + x_2 = 30$$

(D3):
$$3x_1 + 1.5 x_2 = 40$$

La solution optimale se trouve dans l'un des sommets A, B ou C

Sommet A(12, 0)

Sommet C(0, 26.66)

Sommet B(?,?)

Le sommet B est l'intersection du deux droite (D1) et (D3)

(D1):
$$5x_1 + 2x_2 = 60$$
 ----(1)

(D3):
$$3x_1 + 1.5 x_2 = 40$$
 ----(2)

$$1.5*(1)-2*(2) \rightarrow 1.5x_1 = 10 => x_1 = 6.66$$

On remplace la valeur de x_1 dans (1) ou (2) et on calcule la valeur de x_2

$$x_2 = 13.35$$

Sommet B(6.66, 13.35)

 $Z_A = 2000*12 + 1200*0 = 24000DA$

 $Z_B=2000*6.66+1200*13.35=173520DA$ solution optimale

 $Z_C = 2000*0 + 1200*26.66 = 31992DA$