

IR Receiver Modules for Remote Control Systems

LINKS TO ADDITIONAL RESOURCES

DESCRIPTION

These products are miniaturized receivers for infrared remote control systems. A PIN diode and a preamplifier are assembled on a lead frame, the epoxy package acts as an IR filter.

The demodulated output signal can be directly decoded by a microprocessor. The TSOP32G36 and the TSOP34G36 are optimized for the usage with RCMM code with low pulse jitter.

It can suppress almost all spurious pulses from energy saving fluorescent lamps, LCD backlighting, and plasma TVs.

This component has not been qualified according to automotive specifications.

FEATURES

Low output pulse jitter, optimized for RCMM code

- · Photo detector and preamplifier in one package
- Internal filter for PCM frequency
- Improved shielding against EMI
- Supply voltage: 2.5 V to 5.5 V
- Improved immunity against ambient light
- Insensitive to supply voltage ripple and noise
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

Py

RoHS

HALOGEN FREE

GREEN (5-2008)

MECHANICAL DATA

Pinning for TSOP32G36: 1 = OUT, $2 = V_S$, 3 = GNDPinning for TSOP34G36: 1 = OUT, 2 = GND, $3 = V_S$

ORDERING CODE

TSOP3.... - 2160 pieces in tubes

BLOCK DIAGRAM

APPLICATION CIRCUIT

 R_1 and C_1 recommended to reduce supply ripple for $V_S < 2.8 \text{ V}$

TSOP32G36, TSOP34G36

Vishay Semiconductors

PARTS TABLE							
AGC	AGC3 FOR NOISY ENVIRONMENTS						
Carrier frequency 36 kHz	TSOP32G36 (1)	TSOP34G36 ⁽¹⁾					
Package	Mold						
Pinning	1 = OUT, 2 = V _S , 3 = GND	1 = OUT, 2 = GND, 3 = V _S					
Dimensions (mm)	6.0 W x 6.95 H x 5.6 D						
Mounting	Leaded						
Application	Remote control						
Best choice for	⁽¹⁾ RCMM						

ABSOLUTE MAXIMUM RATINGS								
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT				
Supply voltage		V _S	-0.3 to +6	V				
Supply current		I _S	3	mA				
Output voltage		V _O	-0.3 to (V _S + 0.3)	V				
Output current		I _O	5	mA				
Junction temperature		T _j	100	°C				
Storage temperature range		T _{stg}	-25 to +85	°C				
Operating temperature range		T _{amb}	-25 to +85	°C				
Power consumption	T _{amb} ≤ 85 °C	P _{tot}	10	mW				
Soldering temperature	$t \le 10 \text{ s}, 1 \text{ mm from case}$	T _{sd}	260	°C				

Note

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability

ELECTRICAL AND OPTICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Supply current	$E_{V} = 0, V_{S} = 3.3 V$	I _{SD}	0.27	0.35	0.45	mA		
	E _v = 40 klx, sunlight	I _{SH}	-	0.45	-	mA		
Supply voltage		Vs	2.5	-	5.5	V		
Transmission distance	$E_v = 0$, test signal see Fig. 1, IR diode TSAL6200, $I_F = 50$ mA	d	-	30	-	m		
Output voltage low	I _{OSL} = 0.5 mA, E _e = 0.7 mW/m ² , test signal see Fig. 1	V _{OSL}	-	-	100	mV		
Minimum irradiance	Pulse width tolerance: $t_{pi} - 1/f_0 < t_{po} < t_{pi} + 4/f_0, \text{ test signal}$ see Fig. 1	E _{e min.}	-	0.15	0.25	mW/m²		
Maximum irradiance	t_{pi} - 1/f ₀ < t_{po} < t_{pi} + 4/f ₀ , test signal see Fig. 1	E _{e max.}	30	-	-	W/m ²		
Directivity	Angle of half transmission distance	Ψ1/2	-	± 45	-	0		

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

*) $t_{pi} \ge 6/f_0$ is recommended for optimal function

Fig. 1 - Output Active Low

Fig. 2 - Pulse Length and Sensitivity in Dark Ambient

Fig. 3 - Output Function

Fig. 4 - Output Pulse Diagram

Fig. 5 - Frequency Dependence of Responsivity

Fig. 6 - Sensitivity in Bright Ambient

Fig. 7 - Sensitivity vs. Supply Voltage Disturbances

Fig. 8 - Maximum Envelope Duty Cycle vs. Burst Length

Fig. 9 - Sensitivity vs. Ambient Temperature

Fig. 10 - Relative Spectral Sensitivity vs. Wavelength

Fig. 11 - Horizontal Directivity

Fig. 12 - Sensitivity vs. Supply Voltage

SUITABLE DATA FORMAT

This series is designed to suppress spurious output pulses due to noise or disturbance signals. The devices can distinguish data signals from noise due to differences in frequency, burst length, and envelope duty cycle. The data signal should be close to the device's band-pass center frequency (36 kHz) and fulfill the conditions in the table below.

When a data signal is applied to the product in the presence of a disturbance, the sensitivity of the receiver is automatically reduced by the AGC to insure that no spurious pulses are present at the receiver's output. Some examples which are suppressed are:

- DC light (e.g. from tungsten bulbs sunlight)
- · Continuous signals at any frequency
- Strongly or weakly modulated patterns from fluorescent lamps with electronic ballasts (see Fig. 13 or Fig. 14).

Fig. 13 - IR Disturbance from Fluorescent Lamp With Low Modulation

Fig. 14 - IR Disturbance from Fluorescent Lamp With High Modulation

PACKAGE DIMENSIONS in millimeters

Drawing-No.: 6.550-5169.01-4

Issue: 9; 03.11.10

13655

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.