Computable categoricity relative to a degree

Computable Structure Theory and Interactions at Technische Universität Wien in Vienna, Austria

Java Darleen Villano

July 16th, 2024

University of Connecticut

Outline

- 1. Notions of categoricity
- 2. Categoricity relative to a degree

Above $\mathbf{0}''$ and below $\mathbf{0}'$

Generalizing the DHM result

3. Extensions of current work

Embedding lattices

Categoricity relative to a generic degree

Focusing on structures

4. Proof sketch of the poset result

Notions of categoricity

Definition

A computable structure \mathcal{A} is **computably categorical** if for every computable copy \mathcal{B} of \mathcal{A} , there exists a computable isomorphism between \mathcal{A} and \mathcal{B} .

Definition

A computable structure \mathcal{A} is **computably categorical** if for every computable copy \mathcal{B} of \mathcal{A} , there exists a computable isomorphism between \mathcal{A} and \mathcal{B} .

Definition

A computable structure \mathcal{A} is **relatively computably categorical** if for every copy (not necessarily computable) \mathcal{B} of \mathcal{A} , there is a \mathcal{B} -computable isomorphism between \mathcal{A} and \mathcal{B} .

Definition

A computable structure \mathcal{A} is **computably categorical** if for every computable copy \mathcal{B} of \mathcal{A} , there exists a computable isomorphism between \mathcal{A} and \mathcal{B} .

Definition

A computable structure \mathcal{A} is **relatively computably categorical** if for every copy (not necessarily computable) \mathcal{B} of \mathcal{A} , there is a \mathcal{B} -computable isomorphism between \mathcal{A} and \mathcal{B} .

These notions are not equivalent in general.

Definition

A computable structure \mathcal{A} is **computably categorical** if for every computable copy \mathcal{B} of \mathcal{A} , there exists a computable isomorphism between \mathcal{A} and \mathcal{B} .

Definition

A computable structure \mathcal{A} is **relatively computably categorical** if for every copy (not necessarily computable) \mathcal{B} of \mathcal{A} , there is a \mathcal{B} -computable isomorphism between \mathcal{A} and \mathcal{B} .

These notions are not equivalent in general. Gončarov [Gon77] built the first example of a structure which was computably categorical but *not* relatively computably categorical, using an enumeration result by Selivanov [Sel76].

The following relativization of categoricity appears in [DHTM21].

The following relativization of categoricity appears in [DHTM21].

Definition

For $X \in 2^{\mathbb{N}}$, a computable structure \mathcal{A} is **computably** categorical relative to a degree X if for every X-computable copy \mathcal{B} of \mathcal{A} , there is an X-computable isomorphism between \mathcal{A} and \mathcal{B} .

The following relativization of categoricity appears in [DHTM21].

Definition

For $X \in 2^{\mathbb{N}}$, a computable structure \mathcal{A} is **computably** categorical relative to a degree \mathbf{X} if for every X-computable copy \mathcal{B} of \mathcal{A} , there is an X-computable isomorphism between \mathcal{A} and \mathcal{B} .

This is distinct from being X-computably categorical.

Definition

A computable structure \mathcal{A} is **X-computably categorical** if for all computable copies \mathcal{B} of \mathcal{A} , there exists an X-computable isomorphism between \mathcal{A} and \mathcal{B} .

The following relativization of categoricity appears in [DHTM21].

Definition

For $X \in 2^{\mathbb{N}}$, a computable structure \mathcal{A} is **computably** categorical relative to a degree \mathbf{X} if for every X-computable copy \mathcal{B} of \mathcal{A} , there is an X-computable isomorphism between \mathcal{A} and \mathcal{B} .

This is distinct from being X-computably categorical.

Definition

A computable structure \mathcal{A} is **X-computably categorical** if for all computable copies \mathcal{B} of \mathcal{A} , there exists an X-computable isomorphism between \mathcal{A} and \mathcal{B} .

Definition

For $X \in 2^{\mathbb{N}}$, a computable structure \mathcal{A} is **computably** categorical relative to a degree X if for every X-computable copy \mathcal{B} of \mathcal{A} , there is an X-computable isomorphism between \mathcal{A} and \mathcal{B} .

It is also distinct from being relatively Δ_{α}^{0} -categorical.

Definition

For $X \in 2^{\mathbb{N}}$, a computable structure \mathcal{A} is **computably** categorical relative to a degree X if for every X-computable copy \mathcal{B} of \mathcal{A} , there is an X-computable isomorphism between \mathcal{A} and \mathcal{B} .

It is also distinct from being relatively Δ_{α}^{0} -categorical.

Definition

A computable structure \mathcal{A} is **relatively** Δ_{α}^{0} -**categorical** if for any copy \mathcal{B} of \mathcal{A} , there is a $\Delta_{\alpha}^{0}(\mathcal{B})$ -computable isomorphism between \mathcal{A} and \mathcal{B} .

Definition

For $X \in 2^{\mathbb{N}}$, a computable structure \mathcal{A} is **computably** categorical relative to a degree X if for every X-computable copy \mathcal{B} of \mathcal{A} , there is an X-computable isomorphism between \mathcal{A} and \mathcal{B} .

It is also distinct from being relatively Δ_{α}^{0} -categorical.

Definition

A computable structure \mathcal{A} is **relatively** Δ_{α}^{0} -categorical if for any copy \mathcal{B} of \mathcal{A} , there is a $\Delta_{\alpha}^{0}(\mathcal{B})$ -computable isomorphism between \mathcal{A} and \mathcal{B} .

Categoricity relative to a degree

How does computable categoricity relative to a degree behave?

How does computable categoricity relative to a degree behave? In particular, we eventually want to understand this notion's behavior for classes of structures (e.g. Boolean algebras, posets, etc.)

How does computable categoricity relative to a degree behave? In particular, we eventually want to understand this notion's behavior for classes of structures (e.g. Boolean algebras, posets, etc.)

Fact

A computable structure A is relatively computably categorical if for all $X \in 2^{\mathbb{N}}$, A is computably categorical relative to X.

How does computable categoricity relative to a degree behave? In particular, we eventually want to understand this notion's behavior for classes of structures (e.g. Boolean algebras, posets, etc.)

Fact

A computable structure A is relatively computably categorical if for all $X \in 2^{\mathbb{N}}$, A is computably categorical relative to X.

We first begin with the following result from [DHTM21].

Fact (Downey, Harrison-Trainor, Melnikov [DHTM21])

If $\mathcal A$ is a computable structure and it is computably categorical relative to some degree $\mathbf d \geq \mathbf 0''$, then $\mathcal A$ has a $\mathbf 0''$ -computable Σ_1^0 Scott family. In particular, $\mathcal A$ is computably categorical relative to all $\mathbf d > \mathbf 0''$.

The cone above 0''

We sketch the proof of this fact. We first need the following results.

Theorem (Ash, Knight, Manasse, and Slaman [Ash+89]; Chisholm [Chi90])

A structure is relatively computably categorical if and only if it has a formally Σ_1 Scott family.

The cone above 0''

We sketch the proof of this fact. We first need the following results.

Theorem (Ash, Knight, Manasse, and Slaman [Ash+89]; Chisholm [Chi90])

A structure is relatively computably categorical if and only if it has a formally Σ_1 Scott family.

Theorem (Gončarov [Gon80])

If a structure is computably categorical and its $\forall \exists$ theory is decidable, then it is relatively computably categorical.

The cone above 0''

We sketch the proof of this fact. We first need the following results.

Theorem (Ash, Knight, Manasse, and Slaman [Ash+89]; Chisholm [Chi90])

A structure is relatively computably categorical if and only if it has a formally Σ_1 Scott family.

Theorem (Gončarov [Gon80])

If a structure is computably categorical and its $\forall \exists$ theory is decidable, then it is relatively computably categorical.

We'll use a relativized version of Gončarov's theorem in the proof sketch.

The cone above 0"

We sketch the proof of this fact. We first need the following results.

Theorem (Ash, Knight, Manasse, and Slaman [Ash+89]; Chisholm [Chi90])

A structure is relatively computably categorical if and only if it has a formally Σ_1 Scott family.

Theorem (Gončarov [Gon80] (relativized))

If a structure is computably categorical relative to \mathbf{d} and its $\forall \exists$ theory is \mathbf{d} -decidable, then it has a Scott family of \exists -formulas that is c.e. in \mathbf{d} .

We'll use a relativized version of Gončarov's theorem in the proof sketch.

Proof sketch.

(1) Suppose \mathcal{A} is computably categorical relative to a degree $\mathbf{d} \geq \mathbf{0}''$. Since \mathcal{A} is computable, its $\forall \exists$ diagram is computable from $\mathbf{0}''$ and hence from \mathbf{d} .

Proof sketch.

- (1) Suppose \mathcal{A} is computably categorical relative to a degree $\mathbf{d} \geq \mathbf{0}''$. Since \mathcal{A} is computable, its $\forall \exists$ diagram is computable from $\mathbf{0}''$ and hence from \mathbf{d} .
- (2) By the relativized version of Gončarov's [Gon80] result, \mathcal{A} has a formally Σ_1 Scott family c.e. in **d**.

Proof sketch.

- (1) Suppose \mathcal{A} is computably categorical relative to a degree $\mathbf{d} \geq \mathbf{0}''$. Since \mathcal{A} is computable, its $\forall \exists$ diagram is computable from $\mathbf{0}''$ and hence from \mathbf{d} .
- (2) By the relativized version of Gončarov's [Gon80] result, \mathcal{A} has a formally Σ_1 Scott family c.e. in **d**.
- (3) We can use $\mathbf{0}''$ to enumerate this Scott family of \exists -formulas, and so this is a formally Σ_1 Scott family relative to $\mathbf{0}''$.

Proof sketch.

- (1) Suppose \mathcal{A} is computably categorical relative to a degree $\mathbf{d} \geq \mathbf{0}''$. Since \mathcal{A} is computable, its $\forall \exists$ diagram is computable from $\mathbf{0}''$ and hence from \mathbf{d} .
- (2) By the relativized version of Gončarov's [Gon80] result, \mathcal{A} has a formally Σ_1 Scott family c.e. in \mathbf{d} .
- (3) We can use $\mathbf{0}''$ to enumerate this Scott family of \exists -formulas, and so this is a formally Σ_1 Scott family relative to $\mathbf{0}''$.

Using this Scott family, we can computably build isomorphisms, and so for every $\mathbf{d} \geq \mathbf{0}''$, \mathcal{A} is computably categorical relative to \mathbf{d} .

Proof sketch.

- (1) Suppose \mathcal{A} is computably categorical relative to a degree $\mathbf{d} \geq \mathbf{0}''$. Since \mathcal{A} is computable, its $\forall \exists$ diagram is computable from $\mathbf{0}''$ and hence from \mathbf{d} .
- (2) By the relativized version of Gončarov's [Gon80] result, \mathcal{A} has a formally Σ_1 Scott family c.e. in **d**.
- (3) We can use $\mathbf{0}''$ to enumerate this Scott family of \exists -formulas, and so this is a formally Σ_1 Scott family relative to $\mathbf{0}''$.

Using this Scott family, we can computably build isomorphisms, and so for every $\mathbf{d} \geq \mathbf{0}''$, \mathcal{A} is computably categorical relative to \mathbf{d} . The DHM fact implies that for *any* computable structure \mathcal{A} , either it is computably categorical relative to *all* degrees above $\mathbf{0}''$ or to *no* degree above $\mathbf{0}''$.

In the c.e. degrees, being computably categorical relative to a degree is *not* monotonic.

Theorem (Downey, Harrison-Trainor, Melnikov [DHTM21])

There is a computable structure A and c.e. degrees

$$\mathbf{0} = Y_0 <_T X_0 <_T Y_1 <_T X_1 <_T \dots$$
 such that

In the c.e. degrees, being computably categorical relative to a degree is *not* monotonic.

Theorem (Downey, Harrison-Trainor, Melnikov [DHTM21])

There is a computable structure A and c.e. degrees

$$\mathbf{0} = Y_0 <_T X_0 <_T Y_1 <_T X_1 <_T \dots$$
 such that

(1) A is computably categorical relative to Y_i for each i,

In the c.e. degrees, being computably categorical relative to a degree is *not* monotonic.

Theorem (Downey, Harrison-Trainor, Melnikov [DHTM21])

There is a computable structure A and c.e. degrees

$$\mathbf{0} = Y_0 <_T X_0 <_T Y_1 <_T X_1 <_T \dots$$
 such that

- (1) A is computably categorical relative to Y_i for each i,
- (2) A is not computably categorical relative to X_i for each i,

In the c.e. degrees, being computably categorical relative to a degree is *not* monotonic.

Theorem (Downey, Harrison-Trainor, Melnikov [DHTM21])

There is a computable structure A and c.e. degrees

$$\mathbf{0} = Y_0 <_T X_0 <_T Y_1 <_T X_1 <_T \dots$$
 such that

- (1) A is computably categorical relative to Y_i for each i,
- (2) A is not computably categorical relative to X_i for each i,
- (3) A is computably categorical relative to $\mathbf{0}'$.

In the c.e. degrees, being computably categorical relative to a degree is *not* monotonic.

Theorem (Downey, Harrison-Trainor, Melnikov [DHTM21])

There is a computable structure A and c.e. degrees

$$\mathbf{0} = Y_0 <_T X_0 <_T Y_1 <_T X_1 <_T \dots$$
 such that

- (1) A is computably categorical relative to Y_i for each i,
- (2) A is not computably categorical relative to X_i for each i,
- (3) A is computably categorical relative to $\mathbf{0}'$.

The structure they constructed to witness this was a directed graph.

Generalizing to partial orders of c.e. degrees

We generalize this result to partial orders of c.e. degrees.

Generalizing to partial orders of c.e. degrees

We generalize this result to partial orders of c.e. degrees.

Theorem (V. [Vil24])

Let $P = (P, \leq)$ be a computable partially ordered set and let $P = P_0 \sqcup P_1$ be a computable partition. Then, there exists a computable directed graph \mathcal{G} and an embedding h of P into the c.e. degrees where

- (1) \mathcal{G} is computably categorical;
- (2) \mathcal{G} is computably categorical relative to each degree in $h(P_0)$; and
- (3) G is not computably categorical relative to each degree in $h(P_1)$.

Extensions of current work

Future directions: embedding a lattice

The techniques utilized in proving the poset result can also be combined with the usual techniques to construct minimal pairs.

Theorem (V. [Vil24])

There exists a computable computably categorical directed graph \mathcal{G} and c.e. sets X_0 and X_1 such that

- (1) X_0 and X_1 form a minimal pair,
- (2) \mathcal{G} is not computably categorical relative to X_0 and to X_1 , and
- (3) \mathcal{G} is computably categorical relative to $X_0 \oplus X_1$.

Future directions: embedding a lattice

The techniques utilized in proving the poset result can also be combined with the usual techniques to construct minimal pairs.

Theorem (V. [Vil24])

There exists a computable computably categorical directed graph \mathcal{G} and c.e. sets X_0 and X_1 such that

- (1) X_0 and X_1 form a minimal pair,
- (2) \mathcal{G} is not computably categorical relative to X_0 and to X_1 , and
- (3) \mathcal{G} is computably categorical relative to $X_0 \oplus X_1$.

Question

Can you embed bigger distributive lattices into the c.e. degrees in a manner similar to the poset result?

Future directions: given a c.e. degree

Another question you can ask is the following.

Question

Given an arbitrary noncomputable c.e. set D, can you always build a computable graph $\mathcal G$ where

- (1) \mathcal{G} is computably categorical, and
- (2) \mathcal{G} is not computably categorical relative to D?

Future directions: given a c.e. degree

Another question you can ask is the following.

Question

Given an arbitrary noncomputable c.e. set D, can you always build a computable graph $\mathcal G$ where

- (1) \mathcal{G} is computably categorical, and
- (2) \mathcal{G} is not computably categorical relative to D?

Conjecture

Given an arbitrary noncomputable c.e. set D, there is a computable graph \mathcal{G} which is computably categorical and not computably categorical relative to D, and vice-versa.

Definition

A degree **d** is **low for isomorphism** if for every pair of computable structures \mathcal{A} and \mathcal{B} , $\mathcal{A} \cong_{\mathbf{d}} \mathcal{B}$ if and only if $\mathcal{A} \cong_{\Delta^0_1} \mathcal{B}$.

Definition

A degree **d** is **low for isomorphism** if for every pair of computable structures \mathcal{A} and \mathcal{B} , $\mathcal{A} \cong_{\mathbf{d}} \mathcal{B}$ if and only if $\mathcal{A} \cong_{\Delta^0_1} \mathcal{B}$.

Theorem (Franklin, Solomon [FS14])

Every 2-generic degree is low for isomorphism.

Definition

A degree **d** is **low for isomorphism** if for every pair of computable structures \mathcal{A} and \mathcal{B} , $\mathcal{A} \cong_{\mathbf{d}} \mathcal{B}$ if and only if $\mathcal{A} \cong_{\Delta^0_1} \mathcal{B}$.

Theorem (Franklin, Solomon [FS14])

Every 2-generic degree is low for isomorphism.

This means that there *cannot* be a computable structure A which is not computably categorical but is computably categorical relative to **d** for a 2-generic degree **d**.

Definition

A degree **d** is **low for isomorphism** if for every pair of computable structures \mathcal{A} and \mathcal{B} , $\mathcal{A} \cong_{\mathbf{d}} \mathcal{B}$ if and only if $\mathcal{A} \cong_{\Delta^0_1} \mathcal{B}$.

Theorem (Franklin, Solomon [FS14])

Every 2-generic degree is low for isomorphism.

This means that there *cannot* be a computable structure A which is not computably categorical but is computably categorical relative to **d** for a 2-generic degree **d**.

Conjecture

There exists a (properly) 1-generic G such that there is a computable directed graph A where A is not computably categorical but is computably categorical relative to G.

Question

For structures other than directed graphs, can you produce an example which witnesses the pathological behavior in the poset result?

Question

For structures other than directed graphs, can you produce an example which witnesses the pathological behavior in the poset result?

There are some results in the literature that give a negative result for certain classes of structures already.

Question

For structures other than directed graphs, can you produce an example which witnesses the pathological behavior in the poset result?

There are some results in the literature that give a negative result for certain classes of structures already.

Theorem (Bazhenov [Baz14])

For every degree $\mathbf{d} < \mathbf{0}'$, a computable Boolean algebra is \mathbf{d} -computably categorical if and only if it is computably categorical.

Corollary (from results in [Hir+02] and [Mil+18])

For the following classes of structures, there exists a computable example in each class which witnesses the pathological behavior in the poset result:

- (1) symmetric, irreflexive graphs; partial orderings; lattices; rings with zero-divisors; integral domains of arbitrary characteristic; commutative semigroups; and 2-step nilpotent groups (Theorem 1.22 of [Hir+02])
- (2) countable fields (Theorem 1.8 of [Mil+18])

Proof sketch of the poset result

For $p \in P$, we build uniformly c.e. sets A_p .

For $p \in P$, we build uniformly c.e. sets A_p .

Definition

For $p \in P$, we define the c.e. set

$$D_p = \bigoplus_{q \le p} A_q.$$

For $p \in P$, we build uniformly c.e. sets A_p .

Definition

For $p \in P$, we define the c.e. set

$$D_p = \bigoplus_{q \le p} A_q.$$

Our embedding will be the map $h(p) = D_p$.

For $p \in P$, we build uniformly c.e. sets A_p .

Definition

For $p \in P$, we define the c.e. set

$$D_p = \bigoplus_{q \le p} A_q.$$

Our embedding will be the map $h(p) = D_p$.

We also have the following notation for convenience.

Definition

$$\overline{D_p} := \bigoplus_{q \neq p} A_q.$$

We use the following notation for graphs.

We use the following notation for graphs.

Definition

• \mathcal{M}_e is the eth (partial) computable graph with domain ω where $E(x,y) \iff \Phi_e(x,y) = 1$ and $\neg E(x,y) \iff \Phi_e(x,y) = 0$.

We use the following notation for graphs.

Definition

- \mathcal{M}_e is the eth (partial) computable graph with domain ω where $E(x,y) \iff \Phi_e(x,y) = 1$ and $\neg E(x,y) \iff \Phi_e(x,y) = 0$.
- $\mathcal{M}_{i}^{D_{p}}$ is the *i*th (partial) D_{p} -computable graph with domain ω where $E(x,y) \iff \Phi_{i}^{D_{p}}(x,y) = 1$ and $\neg E(x,y) \iff \Phi_{i}^{D_{p}}(x,y) = 0$.

•
$$N_e^p$$
: $\Phi_e^{\overline{D_p}} \neq A_p$,

- N_e^p : $\Phi_e^{\overline{D_p}} \neq A_p$,
- S_e : if $\mathcal{G}\cong\mathcal{M}_e$, then there exists a computable isomorphism $f_e:\mathcal{G}\to\mathcal{M}_e$,

- $N_e^p: \Phi_e^{\overline{D_p}} \neq A_p$,
- S_e : if $\mathcal{G}\cong\mathcal{M}_e$, then there exists a computable isomorphism $f_e:\mathcal{G}\to\mathcal{M}_e$,
- for $p \in P_0$, T_i^p : if $\mathcal{G} \cong \mathcal{M}_i^{D_p}$, then there exists a D_p -computable isomorphism $g_i^{D_p}: \mathcal{G} \to \mathcal{M}_i^{D_p}$,

- $N_e^p: \Phi_e^{\overline{D_p}} \neq A_p$,
- S_e : if $\mathcal{G}\cong\mathcal{M}_e$, then there exists a computable isomorphism $f_e:\mathcal{G}\to\mathcal{M}_e$,
- for $p \in P_0$, T_i^p : if $\mathcal{G} \cong \mathcal{M}_i^{D_p}$, then there exists a D_p -computable isomorphism $g_i^{D_p}: \mathcal{G} \to \mathcal{M}_i^{D_p}$, and
- for $q \in P_1$, $R_e^q : \Phi_e^{D_q} : \mathcal{G} \to \mathcal{B}_q$ is not an isomorphism where \mathcal{B}_q is a D_q -computable copy of \mathcal{G} we build.

We have the following requirements:

- $N_e^p: \Phi_e^{\overline{D_p}} \neq A_p$,
- S_e : if $\mathcal{G}\cong\mathcal{M}_e$, then there exists a computable isomorphism $f_e:\mathcal{G}\to\mathcal{M}_e$,
- for $p \in P_0$, T_i^p : if $\mathcal{G} \cong \mathcal{M}_i^{D_p}$, then there exists a D_p -computable isomorphism $g_i^{D_p}: \mathcal{G} \to \mathcal{M}_i^{D_p}$, and
- for $q \in P_1$, $R_e^q : \Phi_e^{D_q} : \mathcal{G} \to \mathcal{B}_q$ is not an isomorphism where \mathcal{B}_q is a D_q -computable copy of \mathcal{G} we build.

The N_e^p requirements ensure that h is an embedding of P into the c.e. degrees.

We have the following requirements:

- $N_e^p: \Phi_e^{\overline{D_p}} \neq A_p$,
- S_e : if $\mathcal{G}\cong\mathcal{M}_e$, then there exists a computable isomorphism $f_e:\mathcal{G}\to\mathcal{M}_e$,
- for $p \in P_0$, T_i^p : if $\mathcal{G} \cong \mathcal{M}_i^{D_p}$, then there exists a D_p -computable isomorphism $g_i^{D_p}: \mathcal{G} \to \mathcal{M}_i^{D_p}$, and
- for $q \in P_1$, $R_e^q : \Phi_e^{D_q} : \mathcal{G} \to \mathcal{B}_q$ is not an isomorphism where \mathcal{B}_q is a D_q -computable copy of \mathcal{G} we build.

The N_e^p requirements ensure that h is an embedding of P into the c.e. degrees. The S_e requirements ensure that \mathcal{G} is computably categorical.

We have the following requirements:

- $N_e^p: \Phi_e^{\overline{D_p}} \neq A_p$,
- S_e : if $\mathcal{G}\cong\mathcal{M}_e$, then there exists a computable isomorphism $f_e:\mathcal{G}\to\mathcal{M}_e$,
- for $p \in P_0$, T_i^p : if $\mathcal{G} \cong \mathcal{M}_i^{D_p}$, then there exists a D_p -computable isomorphism $g_i^{D_p}: \mathcal{G} \to \mathcal{M}_i^{D_p}$, and
- for $q \in P_1$, $R_e^q : \Phi_e^{D_q} : \mathcal{G} \to \mathcal{B}_q$ is not an isomorphism where \mathcal{B}_q is a D_q -computable copy of \mathcal{G} we build.

The N_e^p requirements ensure that h is an embedding of P into the c.e. degrees. The S_e requirements ensure that \mathcal{G} is computably categorical. The T_i^p requirements ensure that \mathcal{G} is computably categorical relative to all degrees in $h(P_0)$.

We have the following requirements:

- $N_e^p: \Phi_e^{\overline{D_p}} \neq A_p$,
- S_e : if $\mathcal{G}\cong\mathcal{M}_e$, then there exists a computable isomorphism $f_e:\mathcal{G}\to\mathcal{M}_e$,
- for $p \in P_0$, T_i^p : if $\mathcal{G} \cong \mathcal{M}_i^{D_p}$, then there exists a D_p -computable isomorphism $g_i^{D_p}: \mathcal{G} \to \mathcal{M}_i^{D_p}$, and
- for $q \in P_1$, $R_e^q : \Phi_e^{D_q} : \mathcal{G} \to \mathcal{B}_q$ is not an isomorphism where \mathcal{B}_q is a D_q -computable copy of \mathcal{G} we build.

The N_e^p requirements ensure that h is an embedding of P into the c.e. degrees. The S_e requirements ensure that \mathcal{G} is computably categorical. The T_i^p requirements ensure that \mathcal{G} is computably categorical relative to all degrees in $h(P_0)$. The R_e^q requirements ensure that \mathcal{G} is not computably categorical relative to any degree in $h(P_1)$.

We build the computable directed graph $\mathcal G$ in stages.

We build the computable directed graph $\mathcal G$ in stages.

At stage s = 0, we set the domain of \mathcal{G} to be empty.

We build the computable directed graph $\mathcal G$ in stages.

At stage s = 0, we set the domain of G to be empty.

At stage s>0, we add two new connected components by adding a_{2s} and a_{2s+1} as root nodes. We attach 2-loop to each node. Then, we attach a (5s+1)-loop to a_{2s} and a (5s+2)-loop to a_{2s+1} .

We build the computable directed graph $\mathcal G$ in stages.

At stage s = 0, we set the domain of \mathcal{G} to be empty.

At stage s>0, we add two new connected components by adding a_{2s} and a_{2s+1} as root nodes. We attach 2-loop to each node. Then, we attach a (5s+1)-loop to a_{2s} and a (5s+2)-loop to a_{2s+1} .

Definition

The root node a_{2s} in our graph \mathcal{G} with its loops is the 2sth connected component or just the 2sth component of \mathcal{G} .

Configuration of loops in \mathcal{G}

Basic strategies: N_e^p

This is our basic strategy to satisfy all N_e^p for $p \in P$.

Basic strategies: N_e^p

This is our basic strategy to satisfy all N_e^p for $p \in P$.

Let s be the current stage of the construction and let α be an N_e^p -strategy.

1. If α is first eligible to act at stage s, it defines its witness x_{α} to be a large unused number.

This is our basic strategy to satisfy all N_e^p for $p \in P$.

Let s be the current stage of the construction and let α be an N_e^p -strategy.

- 1. If α is first eligible to act at stage s, it defines its witness x_{α} to be a large unused number.
- 2. Check if $\Phi_e^{\overline{D_p}}(x_\alpha)[s] \downarrow = 0$ and keep x_α out of A_p .

This is our basic strategy to satisfy all N_e^p for $p \in P$.

Let s be the current stage of the construction and let α be an N_e^p -strategy.

- 1. If α is first eligible to act at stage s, it defines its witness x_{α} to be a large unused number.
- 2. Check if $\Phi_e^{\overline{D_p}}(x_\alpha)[s] \downarrow = 0$ and keep x_α out of A_p . If not, α takes no action at stage s.

This is our basic strategy to satisfy all N_e^p for $p \in P$.

Let s be the current stage of the construction and let α be an N_e^p -strategy.

- 1. If α is first eligible to act at stage s, it defines its witness x_{α} to be a large unused number.
- 2. Check if $\Phi_e^{\overline{D_p}}(x_\alpha)[s] \downarrow = 0$ and keep x_α out of A_p . If not, α takes no action at stage s. If so, α enumerates x_α into A_p and restrains $A_p \upharpoonright (\text{use}(\Phi_e^{\overline{D_p}}(x_\alpha)) + 1)$.

This is our basic strategy to satisfy all S_e requirements to make \mathcal{G} computably categorical.

This is our basic strategy to satisfy all S_e requirements to make \mathcal{G} computably categorical.

Let s be the current stage of the construction and let α be an S_e -strategy.

1. If α is first eligible to act at stage s, it sets its parameter $n_{\alpha}=0$. It looks for copies in $\mathcal{M}_e[s]$ of the $2n_{\alpha}$ th and $(2n_{\alpha}+1)$ st components of $\mathcal{G}[s]$. It defines $f_{\alpha}[s]$ to be the empty map.

This is our basic strategy to satisfy all S_e requirements to make \mathcal{G} computably categorical.

Let s be the current stage of the construction and let α be an S_e -strategy.

- 1. If α is first eligible to act at stage s, it sets its parameter $n_{\alpha}=0$. It looks for copies in $\mathcal{M}_e[s]$ of the $2n_{\alpha}$ th and $(2n_{\alpha}+1)$ st components of $\mathcal{G}[s]$. It defines $f_{\alpha}[s]$ to be the empty map.
- 2. If n_{α} is defined and $f_{\alpha}[s-1]$ is defined for all $m < n_{\alpha}$, α looks for copies of the $2n_{\alpha}$ th and $(2n_{\alpha}+1)$ st components of $\mathcal{G}[s]$.

3. If no copies of the $2n_{\alpha}$ th and $(2n_{\alpha} + 1)$ st components are found, α takes no additional action at stage s, retains the value of n_{α} , and sets $f_{\alpha}[s] = f_{\alpha}[s-1]$.

3. If no copies of the $2n_{\alpha}$ th and $(2n_{\alpha}+1)$ st components are found, α takes no additional action at stage s, retains the value of n_{α} , and sets $f_{\alpha}[s] = f_{\alpha}[s-1]$. If copies are found, α extends $f_{\alpha}[s-1]$ to $f_{\alpha}[s]$ by matching the components in $\mathcal{G}[s]$ to the copies found in $\mathcal{M}_{e}[s]$ and increments n_{α} by 1.

Let $p \in P_0$. Our basic strategy to satisfy all T_i^p requirements to make \mathcal{G} computably categorical relative to D_p is similar to our S_e -strategy. Let α be a T_i^p -strategy.

Let $p \in P_0$. Our basic strategy to satisfy all T_i^p requirements to make \mathcal{G} computably categorical relative to D_p is similar to our S_e -strategy. Let α be a T_i^p -strategy.

For each n, we try to find copies of the 2nth and (2n+1)st components of \mathcal{G} in $\mathcal{M}_i^{D_p}$.

Let $p \in P_0$. Our basic strategy to satisfy all T_i^p requirements to make \mathcal{G} computably categorical relative to D_p is similar to our S_e -strategy. Let α be a T_i^p -strategy.

For each n, we try to find copies of the 2nth and (2n+1)st components of \mathcal{G} in $\mathcal{M}_i^{D_p}$. But now because D_p is a c.e. set, loops in $\mathcal{M}_i^{D_p}$ or embeddings using a finite part of D_p as an oracle be

injured.

Let $p \in P_0$. Our basic strategy to satisfy all T_i^p requirements to make \mathcal{G} computably categorical relative to D_p is similar to our S_e -strategy. Let α be a T_i^p -strategy.

For each n, we try to find copies of the 2nth and (2n+1)st components of \mathcal{G} in $\mathcal{M}_i^{D_p}$. But now because D_p is a c.e. set, loops in $\mathcal{M}_i^{D_p}$ or embeddings using a finite part of D_p as an oracle be

injured.

Jest Weights

Weights

Warn

Jenta

J

* if Jh

Olecuin and

Du Op(t)

bor t>s,

then are on

these components disaprens.

When α is next eligible to act at stage s, it will check if $D_p[t] \neq D_p[s]$ where t is the previous α -stage.

When α is next eligible to act at stage s, it will check if $D_p[t] \neq D_p[s]$ where t is the previous α -stage.

If $D_p[t] \neq D_p[s]$, then α will update its parameter n_α accordingly depending on what type of injury occurred.

When α is next eligible to act at stage s, it will check if $D_p[t] \neq D_p[s]$ where t is the previous α -stage.

If $D_p[t] \neq D_p[s]$, then α will update its parameter n_α accordingly depending on what type of injury occurred. Otherwise, it will proceed to try and match the $2n_\alpha$ th and $(2n_\alpha+1)$ st components of \mathcal{G} for the n_α parameter it had at the beginning of stage s.

Finally, for $q \in P_1$, we do the following to satisfy all R_e^q requirements to make \mathcal{G} not computably categorical relative to D_q .

Finally, for $q \in P_1$, we do the following to satisfy all R_e^q requirements to make \mathcal{G} not computably categorical relative to D_q .

We will build a D_q -computable graph \mathcal{B}_q which is isomorphic to \mathcal{G} in stages, similarly to how we built \mathcal{G} .

Finally, for $q \in P_1$, we do the following to satisfy all R_e^q requirements to make \mathcal{G} not computably categorical relative to D_q .

We will build a D_q -computable graph \mathcal{B}_q which is isomorphic to \mathcal{G} in stages, similarly to how we built \mathcal{G} . At stage s=0, let $\mathcal{B}_q=\emptyset$.

Finally, for $q \in P_1$, we do the following to satisfy all R_e^q requirements to make \mathcal{G} not computably categorical relative to D_q .

We will build a D_q -computable graph \mathcal{B}_q which is isomorphic to \mathcal{G} in stages, similarly to how we built \mathcal{G} . At stage s=0, let $\mathcal{B}_q=\emptyset$. At stage s>0, add two new root nodes b_{2s}^q and b_{2s+1}^q and attach to each one a 2-loop.

This is our diagonalization strategy to satisfy all R_e^q .

This is our diagonalization strategy to satisfy all R_e^q .

Let s be the current stage of the construction and let α be an R_e^q -strategy.

1. If α is first eligible to act at stage s, it defines its parameter n_{α} to be a large unused number.

This is our diagonalization strategy to satisfy all R_e^q .

Let s be the current stage of the construction and let α be an R_e^q -strategy.

- 1. If α is first eligible to act at stage s, it defines its parameter n_{α} to be a large unused number.
- 2. α checks if $\Phi_e^{D_q}[s]$ maps the $2n_{\alpha}$ th and $(2n_{\alpha} + 1)$ st components of $\mathcal{G}[s]$ to the corresponding copies in $\mathcal{B}_q[s]$.

This is our diagonalization strategy to satisfy all R_e^q .

Let s be the current stage of the construction and let α be an R_e^q -strategy.

- 1. If α is first eligible to act at stage s, it defines its parameter n_{α} to be a large unused number.
- 2. α checks if $\Phi_e^{D_q}[s]$ maps the $2n_{\alpha}$ th and $(2n_{\alpha}+1)$ st components of $\mathcal{G}[s]$ to the corresponding copies in $\mathcal{B}_q[s]$. If not, α takes no further action.

This is our diagonalization strategy to satisfy all R_e^q .

Let s be the current stage of the construction and let α be an R_e^q -strategy.

- 1. If α is first eligible to act at stage s, it defines its parameter n_{α} to be a large unused number.
- 2. α checks if $\Phi_e^{D_q}[s]$ maps the $2n_\alpha$ th and $(2n_\alpha+1)$ st components of $\mathcal{G}[s]$ to the corresponding copies in $\mathcal{B}_q[s]$. If not, α takes no further action. If α sees such a computation, it defines m_α to be the max of the uses of these computations and restrains $D_q \upharpoonright \langle m_\alpha, q \rangle$.

allns
$$D_q \mid \langle m_\alpha, q \rangle$$
.

 $N S \cap H \mid \mathbb{R}^{2n} C \circ \mathcal{I} \mid \mathbb{R}^{2n} \mathcal{I}$
 $N \cap \mathcal{I} \cap \mathcal{I$

3. α attaches a (5n+3)-loop to a_{2n} and b_{2n}^q and a (5n+4)-loop to a_{2n+1} and b_{2n+1}^q .

3. α attaches a (5n+3)-loop to a_{2n} and b_{2n}^q and a (5n+4)-loop to a_{2n+1} and b_{2n+1}^q . Let v_{α} be the use associated with these loops appearing in \mathcal{B}_q . Note that $v_{\alpha} > m_{\alpha}$.

- 3. α attaches a (5n+3)-loop to a_{2n} and b_{2n}^q and a (5n+4)-loop to a_{2n+1} and b_{2n+1}^q . Let v_{α} be the use associated with these loops appearing in \mathcal{B}_q . Note that $v_{\alpha} > m_{\alpha}$.
- 4. α now issues a challenge to all higher priority requirements which are S_e and T_i^p :

- 3. α attaches a (5n+3)-loop to a_{2n} and b_{2n}^q and a (5n+4)-loop to a_{2n+1} and b_{2n+1}^q . Let v_{α} be the use associated with these loops appearing in \mathcal{B}_q . Note that $v_{\alpha} > m_{\alpha}$.
- 4. α now issues a challenge to all higher priority requirements which are S_e and T_i^p : they must now extend their embeddings, if possible, to include these new loops.

5. If all higher S_e and T_i^p requirements can meet this challenge and α becomes eligible to act again at a later stage, it enumerates v_{α} into A_q . This makes the (5n+3)- and (5n+4)-loops in \mathcal{B}_q disappear.

6. α reattaches a (5n+3)-loop to b_{2n+1}^q and a (5n+4)-loop to b_{2n}^q . It also attaches a (5n+1)-loop to a_{2n+1} and to b_{2n+1}^q , and a (5n+2)-loop to a_{2n} and to b_{2n}^q .

6. α reattaches a (5n+3)-loop to b_{2n+1}^q and a (5n+4)-loop to b_{2n}^q . It also attaches a (5n+1)-loop to a_{2n+1} and to b_{2n+1}^q , and a (5n+2)-loop to a_{2n} and to b_{2n}^q .

Our final configuration of loops in \mathcal{B}_q is now:

There are several interactions and conflicts to keep note of in the construction.

There are several interactions and conflicts to keep note of in the construction.

Interaction 1

The R_e^q -strategy wants to diagonalize while the S_e and T_i^p -strategies want to build embeddings:

There are several interactions and conflicts to keep note of in the construction.

Interaction 1

The R_e^q -strategy wants to diagonalize while the S_e and T_i^p -strategies want to build embeddings: this was resolved by having R_e^q "wait" for higher priority S_e and T_i^p requirements and the homogenizing part of step 6 in the R_e^q -strategy.

There are several interactions and conflicts to keep note of in the construction.

Interaction 1

The R_e^q -strategy wants to diagonalize while the S_e and T_i^p -strategies want to build embeddings: this was resolved by having R_e^q "wait" for higher priority S_e and T_i^p requirements and the homogenizing part of step 6 in the R_e^q -strategy.

Interaction 2

The N_e^p -strategy must enumerate numbers into A_p to achieve independence of degrees:

There are several interactions and conflicts to keep note of in the construction.

Interaction 1

The R_e^q -strategy wants to diagonalize while the S_e and T_i^p -strategies want to build embeddings: this was resolved by having R_e^q "wait" for higher priority S_e and T_i^p requirements and the homogenizing part of step 6 in the R_e^q -strategy.

Interaction 2

The N_e^p -strategy must enumerate numbers into A_p to achieve independence of degrees: this is resolved on a tree of strategies and by letting T_i^p check for any changes in D_p up to a finite part each stage.

The last important interaction comes from the poset ordering on P.

The last important interaction comes from the poset ordering on P.

Interaction 3

An R_e^q -strategy β and a T_i^p -strategy α when q < p in P and T_i^p is of higher priority than R_e^q :

The last important interaction comes from the poset ordering on P.

Interaction 3

An R_e^q -strategy β and a T_i^p -strategy α when q < p in P and T_i^p is of higher priority than R_e^q : the T_i^p -strategy needs an additional step for when it is challenged to enumerate any uses associated to the $2n_\beta$ th and $(2n_\beta + 1)$ st components of \mathcal{G} into A_p . This lets us lift uses for T_i^p so it can succeed.

References

- [Ash+89] C. Ash et al. "Generic copies of countable structures". Annals of Pure and Applied Logic 42.3 (1989), pp. 195–205. ISSN: 0168-0072.
- [Baz14] N. A. Bazhenov. " Δ_2^0 -Categoricity of Boolean Algebras". Journal of Mathematical Sciences 203.4 (2014), pp. 444–454. DOI: 10.1007/s10958-014-2148-9.
- [Chi90] J. Chisholm. "Effective Model Theory vs.

 Recursive Model Theory". The Journal of Symbolic

 Logic 55.3 (1990), pp. 1168–1191. ISSN: 00224812.

[DHTM21] R. Downey, M. Harrison-Trainor, and A. Melnikov. "Relativizing computable categoricity". *Proc. Amer. Math. Soc.* 149.9 (2021), pp. 3999–4013. ISSN: 0002-9939.

[FS14] J. N. Y. Franklin and R. Solomon. "Degrees that Are Low for Isomorphism". 3 (2014), pp. 73–89. DOI: 10.3233/COM-140027.

[Gon77] S. S. Gončarov. "The quantity of nonautoequivalent constructivizations". Algebra and Logic 16.3 (May 1977), pp. 169–185. ISSN: 1573-8302.

[Gon80] S. S. Gončarov. "The problem of the number of nonautoequivalent constructivizations". Algebra i Logika 19.6 (1980), pp. 621–639, 745.

[Hir+02] D. R. Hirschfeldt et al. "Degree spectra and computable dimensions in algebraic structures".

Annals of Pure and Applied Logic 115.1 (2002),

pp. 71-113. ISSN: 0168-0072. DOI:

https://doi.org/10.1016/S0168-0072(01)00087-2.

URL: https://www.sciencedirect.com/science/

article/pii/S0168007201000872.

[Mil+18] R. Miller et al. "A Computable Functor from Graphs to Fields". The Journal of Symbolic Logic 83.1 (2018), 326–348. DOI: 10.1017/jsl.2017.50.

[Sel76] V. L. Selivanov. "Enumerations of families of general recursive functions". Algebra and Logic 15.2 (Mar. 1976), pp. 128–141. ISSN: 1573-8302.

[Vil24] J. D. Villano. Computable categoricity relative to a c.e. degree. 2024. arXiv: 2401.06641 [math.L0].

Thanks

Thank you for your attention!

I'd be happy to answer any questions.