# Chapter 1

# Introduction

"I only work on intractable nonparametrics - Gaussian processes don't count."

Sinead Williamson, personal communication

## 1.1 Regression

The general problem of regression consists of learning a function f mapping from some input space  $\mathcal{X}$  to some output space  $\mathcal{Y}$ . We would like an expressive language which can represent both simple parametric forms of f such as linear, polynomial, etc. and also complex nonparametric functions specified in terms of properties such as smoothness, periodicity, etc. Fortunately, Gaussian processes (GPs) provide a very general and analytically tractable way of capturing both simple and complex functions.

# 1.2 Gaussian process models

Gaussian processes are a flexible and tractable prior over functions, useful for solving regression and classification tasks?. The kind of structure which can be captured by a GP model is mainly determined by its *kernel*: the covariance function. One of the main difficulties in specifying a Gaussian process model is in choosing a kernel which can represent the structure present in the data. For small to medium-sized datasets, the kernel has a large impact on modeling efficacy.

Gaussian processes are distributions over functions such that any finite subset of function evaluations,  $(f(x_1), f(x_2), \dots f(x_N))$ , have a joint Gaussian distribution (?). A

2 Introduction

GP is completely specified by its mean function,  $\mu(x) = \mathbb{E}(f(x))$  and kernel (or covariance) function k(x, x') = Cov(f(x), f(x')). It is common practice to assume zero mean, since marginalizing over an unknown mean function can be equivalently expressed as a zero-mean GP with a new kernel. The structure of the kernel captures high-level properties of the unknown function, f, which in turn determines how the model generalizes or extrapolates to new data. We can therefore define a language of regression models by specifying a language of kernels.

#### 1.2.1 Useful properties of Gaussian process models

- Tractable inference Given a kernel function, the posterior distribution can be computed exactly in closed form. This is a rare property for nonparametric models to have.
- **Expressivity** by choosing different covariance functions, we can express a very wide range of modeling assumptions.
- Integration over hypotheses the fact that a GP posterior lets us exactly integrate over a wide range of hypotheses means that overfitting is less of an issue than in comparable model classes for example, neural nets.
- Marginal likelihood A side benefit of being able to integrate over all hyoptheses is that we compute the *marginal likelihood* of the data given the model. This gives us a principled way of comparing different Gaussian process models.
- Closed-form posterior The posterior predictive distribution of a GP is another GP. This means that GPs can easily be composed with other models or decision procedures. For example, (\*) Carl's reinforcement learning work.

Figure 1.1 shows a Gaussian process posterior. Typically, it's rendered with the mean and +- 2SD, but there's nothing special about mean.

#### 1.2.2 Why assume zero-mean?

It is common practice to assume zero mean, since marginalizing over an unknown mean function can be equivalently expressed as a zero-mean GP with a new kernel.



Fig. 1.1 A visual representation of a one-dimensional Gaussian process posterior. Red isocountours show the marginal density at each input location. Coloured lines are samples from the posterior.

## 1.3 Latent Variable Models

Besides being useful for modeling functions, a simple extension allows GPs to be useful for general density modeling.

Unfortunately, this extension causes many of the useful properties of the GP not to hold.

The GP-LVM can also be thought of as a method for modeling the covariance matrix between all rows of Y using a number of parameters which grows linearly with N.

4 Introduction



Fig. 1.2 A visual representation of the Gaussian process latent variable model. Bottom: density and samples from a 1D Gaussian, specifying the distribution  $p(\mathbf{X})$  in the latent space. Top Right: A function drawn from a GP prior. Left: A nonparametric density defined by warping the latent density through the function drawn from a GP prior.



Fig. 1.3 A visual representation of the Gaussian process latent variable model. Left: Isocontours and samples from a 2D Gaussian, specifying the distribution  $p(\mathbf{X})$  in the latent space. Right: Density and samples from a nonparametric density defined by warping the latent density through a function drawn from a GP prior.