MEU302 - Algèbre TD2

Rappel de cours

Definition 1. Bla bla

MEU302 - Algèbre TD2

Exercice 2

Exercice 2.1

Soit E l'événement sur lequel $X=\pi X$. Si $\omega\in E$ alors

$$\lim_{n \to \infty} \cos(X(\omega))^n + \cos(2X(\omega))^{2n} = \lim_{n \to \infty} 1^n + 1^{2n} = 2$$

Si $\omega \notin E$ alors

$$\lim_{n \to \infty} \cos(X(\omega))^n + \cos(2X(\omega))^{2n} = \lim_{n \to \infty} [0, 1]^n + [0, 1]^{2n} = 0$$

Donc $\lim_{n\to\infty}\cos(X)^n+\cos(2X)^{2n}=2.1_E$. On a $\exists Z$ tq $\forall n, |X_n| \leq Z \implies Z=2$ et $\exists X$ tq $X=\lim n\to\infty X_n \implies X=2.1_E$. Donc on peut utiliser le théorème de convergence dominée.

$$\lim_{n \to \infty} \mathbb{E}[X_n] = \mathbb{E}[X] = \mathbb{E}[2.1_E] = 2P(E) = 2P(X \in \pi \mathbb{Z}) = 0$$

Exercice 2.2

même raisonnement

$$\lim_{n \to \infty} \mathbb{E}[X_n] = \mathbb{E}[X] = \mathbb{E}[2.1_E] = 2P(E) = 2P(X \in \pi \mathbb{Z}) = 2p_1$$