Project Development Phase Model Performance Test

Date	10 November 2022	
Team ID	PNT2022TMID04308	
Project Name	Natural Disasters Intensity Analysis and	
	Classification using Artificial Intelligence	
Maximum Marks	10 Marks	

Model Performance Testing:

S.No.	Parameter	Values	Screenshot		
1.	Model Summary	Convolutional Neural Network or	CNN_model.summary()		
		CNN is a type of artificial neural	Model: "sequential_2"		
		network, which is widely used for	Layer (type)	Output Shape	Param #
		image/object recognition and classification. Deep Learning thus	conv2d 2 (Conv2D)		896
			conv2d_2 (Conv2D)	(None, 62, 62, 32)	070
		recognizes objects in an image by using a CNN.	max_pooling2d_2 (MaxPooling	(None, 31, 31, 32)	6
		CNN has four layers. They are	2D)		
		Convolution layer, Pooling layer,	flatten_2 (Flatten)	(None, 30752)	0
		Flatten layer, Fully connected layer.	dense 8 (Dense)	(None, 300)	9225900
		CONVOLUTION LAYER:			
		The majority of computations	dense_9 (Dense)	(None, 200)	60200
		happen in the convolutional layer,	dense_10 (Dense)	(None, 150)	30150
		which is the core building block of a	dense_11 (Dense)	(None, 120)	18120
		CNN. A second convolutional layer	dense_ii (bense)	(None, 120)	10120
		can follow the initial convolutional	dense_12 (Dense)	(None, 500)	60500
		layer. The process of convolution	dense_13 (Dense)	(None, 650)	325650
		involves a kernel or filter inside this	dance 14 (Perce)	(Non- 759)	400350
		layer moving across the receptive	dense_14 (Dense)	(None, 750)	488250
		fields of the image, checking if a	dense_15 (Dense)	(None, 50)	37550
		feature is present in the image.	dense_16 (Dense)	(None, 750)	38250
		Pooling layer:			
		Like the convolutional layer, the	dense_17 (Dense)	(None, 350)	262850
		pooling layer also sweeps a	dense_18 (Dense)	(None, 150)	52650
		kernel or filter across the input	dense_19 (Dense)	(None, 450)	67950
		image. But unlike the	dense_15 (Sense)	(Hone) 450)	0,730
		convolutional layer, the pooling	dense_20 (Dense)	(None, 950)	428450
		layer reduces the number of	dense_21 (Dense)	(None, 100)	95100
		parameters in the input and also results in some information loss.	dense_22 (Dense)	(None, 105)	10605
		On the positive side, this layer	dense_zz (bense)	(None, 103)	10002
		reduces complexity and improves	dense_23 (Dense)	(None, 190)	20140
		the efficiency of the CNN.	dense_24 (Dense)	(None, 130)	24830
			dense_25 (Dense)	(None, 4)	524

		Fully connected layer: The FC layer is where image classification happens in the CNN based on the features extracted in the previous layers. Here, fully connected means that all the inputs or nodes from one layer are connected to every activation unit or node of the next layer	
2.	Accuracy	Training Accuracy – 93.94%	- accuracy: 0.9057 - val_loss: 1.5248 - val_accuracy: 0.7020
		Validation Accuracy -72.73%	- accuracy: 0.9313 - val_loss: 1.2206 - val_accuracy: 0.7424
			- accuracy: 0.9245 - val_loss: 1.3768 - val_accuracy: 0.7475
			- accuracy: 0.9340 - val_loss: 1.3843 - val_accuracy: 0.7475
			- accuracy: 0.9367 - val_loss: 1.2302 - val_accuracy: 0.7525
			- accuracy: 0.9340 - val_loss: 1.3193 - val_accuracy: 0.7323
			- accuracy: 0.9528 - val_loss: 1.3630 - val_accuracy: 0.7323
			- accuracy: 0.9326 - val_loss: 1.4956 - val_accuracy: 0.7374
			- accuracy: 0.9299 - val_loss: 1.5619 - val_accuracy: 0.7374
			- accuracy: 0.9394 - val_loss: 1.5368 - val_accuracy: 0.7273