Simple Linear Regression

1) Delivery_time -> Predict delivery time using sorting time

Data Import and Cleaning:

- We start by importing the necessary Python libraries: matplotlib.pyplot, numpy, pandas, and seaborn.
- The delivery time data is read from the 'delivery_time.csv' file into a Pandas DataFrame called **df**.
- To improve data quality, we remove outliers from the 'Delivery Time' column, specifically values of 29, 21.5, and 17.90.

```
In [81]: import matplotlib.pyplot as plt, numpy as np, pandas as pd,seaborn as sns
In [82]: df = pd.read_csv('delivery_time.csv')

In [83]: df = df[df['Delivery Time'] != 29]
    df = df[df['Delivery Time'] != 21.5]
    df = df[df['Delivery Time'] != 17.90]
    df
```

Out[83]:

	Delivery Time	Sorting Time
0	21.00	10
1	13.50	4
2	19.75	6
3	24.00	9
5	15.35	6
6	19.00	7
7	9.50	3
9	18.75	9
10	19.83	8
11	10.75	4
12	16.68	7
13	11.50	3
14	12.03	3
15	14.88	4
16	13.75	6
4-	10 11	7

Data Exploration:

- **df.head()** displays the first few rows of the dataset.
- df.shape provides information about the number of rows and columns in the DataFrame.
- **df.describe()** offers summary statistics for the numerical columns.
- **df.info()** reveals details about data types and potential missing values.
- **df.isnull().values** checks for any missing values within the DataFrame.

Data Visualization:

- We utilize Seaborn to create a box plot of the 'Delivery Time' column, visualizing the distribution of delivery times.
- A correlation heatmap is generated using Seaborn to visualize relationships between the numerical variables within a separate dataset called **data**.


```
# Calculate the correlation matrix
correlation_matrix = data.corr()

# Create a correlation heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
plt.title('Correlation Heatmap')
plt.show()
```



```
In [93]: plt.scatter(x,y)
   plt.xlabel("Sorting T")
   plt.ylabel("Delivery T")
```

Out[93]: Text(0, 0.5, 'Delivery T')

Linear Regression Model:

```
In [94]: from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=2)
In [95]: x_train = np.array(x_train).reshape(-1,1)
    x_test = np.array(x_test).reshape(-1,1)
```

- We prepare the data for building a linear regression model.
- The 'Sorting Time' column is designated as the independent variable (x), and the 'Delivery Time' column is designated as the dependent variable (y).
- Data is divided into training and testing sets using train_test_split from sklearn.model selection.
- We reshape the independent variables in both the training and testing sets using NumPy to accommodate the model's requirements.

Linear Regression Modeling:

- We import the **LinearRegression** model from **sklearn.linear_model**.
- An instance of the linear regression model (Ir) is created and fitted with the training data.

Model Visualization:

 A scatter plot is generated to visualize the relationship between 'Sorting Time' and 'Delivery Time.' Additionally, the linear regression line is overlaid on the training data for further insight.

Delivery Time Prediction:

- We define a function, Delivery(Ir), to make predictions for delivery times based on sorting times.
- Users are prompted to input a sorting time, and the function utilizes the trained linear regression model to predict the corresponding delivery time.
- The predicted delivery time is then displayed as 'Predicted Delivery Time.

Conclusion:

• The assignment is summarized by highlighting the key steps involved, including data import, cleansing, exploration, visualization, model construction, and delivery time prediction.