linearAlgebra: Scaling and Distance

Ivan Jacob Agaloos Pesigan

Deviation - Mean Centering

The $n \times 1$ vector of deviations from the mean is given by

$$d = x - \bar{x} \tag{1}$$

where \boldsymbol{x} is an $n \times 1$ column vector and \bar{x} is the mean of \boldsymbol{x} .

```
d(x[, 1])

## [,1]

## [1,] 0.24

## [2,] 0.04

## [3,] -0.16

## [4,] -0.26

## [5,] 0.14

## [6,] 0.54

## [7,] -0.26

## [8,] 0.14

## [9,] -0.46

## [10,] 0.04
```

The $n \times k$ matrix of deviations from the mean is given by

$$D = X - 1_n \bar{x} \tag{2}$$

where X is an $n \times 1$ matrix, $\mathbf{1}_n$ is an $n \times 1$ column vector of ones, and \bar{x} is the $k \times 1$ mean vector of X.

d (2	()				
##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
##	1	0.24	0.19	-0.05	-0.02
##	2	0.04	-0.31	-0.05	-0.02
##	3	-0.16	-0.11	-0.15	-0.02
##	4	-0.26	-0.21	0.05	-0.02
##	5	0.14	0.29	-0.05	-0.02
##	6	0.54	0.59	0.25	0.18
##	7	-0.26	0.09	-0.05	0.08
##	8	0.14	0.09	0.05	-0.02
##	9	-0.46	-0.41	-0.05	-0.02
##	10	0.04	-0.21	0.05	-0.12

Standardized Score - Scaling

The standardized score of the vector \boldsymbol{x} is given by

$$z = \frac{x - \bar{x}}{s} \tag{3}$$

where \bar{x} is the mean and s is the standard deviation of x.

```
z(x[, 1])

## [,1]

## [1,] 0.8237318

## [2,] 0.1372886

## [3,] -0.5491545

## [4,] -0.8923761

## [5,] 0.4805102

## [6,] 1.8533965

## [7,] -0.8923761

## [8,] 0.4805102

## [9,] -1.5788192

## [10,] 0.1372886
```

The standardized score for the j^{th} column of a matrix \boldsymbol{X} is given by

$$z_j = \frac{x_j - \bar{x}_j}{s_j} \tag{4}$$

where x_j is the j^{th} column of a matrix X, \bar{x}_j is the mean of x_j , and s_j is the standard deviation of x_j .

```
z(x)
      Sepal.Length Sepal.Width Petal.Length Petal.Width
##
## 1
         0.8237318
                     0.6186158
                                   -0.46291 -0.2535463
## 2
        0.1372886
                   -1.0093205
                                   -0.46291
                                             -0.2535463
## 3
        -0.5491545
                    -0.3581460
                                   -1.38873
                                             -0.2535463
                    -0.6837333
        -0.8923761
## 4
                                    0.46291
                                             -0.2535463
## 5
        0.4805102
                    0.9442031
                                   -0.46291
                                             -0.2535463
                                    2.31455
## 6
        1.8533965
                     1.9209649
                                              2.2819165
```

```
-0.8923761 0.2930285
                                  -0.46291
                                           1.0141851
## 8
        0.4805102
                                            -0.2535463
                    0.2930285
                                   0.46291
## 9
       -1.5788192
                   -1.3349078
                                  -0.46291
                                            -0.2535463
## 10
       0.1372886 -0.6837333
                                   0.46291 -1.5212777
```

Δ^2 - Squared Mahalanobis Distance

The squared Mahalanobis distance of the vector \boldsymbol{x} is given by

$$\Delta^2 = (\boldsymbol{x} - \boldsymbol{\mu})' \, \boldsymbol{\Sigma}^{-1} \, (\boldsymbol{x} - \boldsymbol{\mu}) \tag{5}$$

where μ is the mean vector and Σ is the covariance matrix.

```
deltacapsq(
    x,
    mu = colMeans(x),
    sigmacap = stats::cov(x)
)

## 1 2 3 4 5 6 7 8

## 2.1836824 6.0959842 2.3508914 2.6450391 3.3674652 7.2574119 3.7700132 0.7755954

## 9 10

## 3.0556619 4.4982552
```