

4.4.1 Eficiencia energética y energías renovables

Objetivos de clase

- Comprender la necesidad de incrementar la energía renovable globalmente.
- Reconocer que la eficiencia energética y la reducción del desperdicio de energía son un recurso energético importante.
- Identificar las ventajas y desventajas de la energía solar.

Tabla de contenido

- Importancia de una transición energética
- Eficiencia energética y la reducción del desperdicio de energía
- Ventajas y desventajas del uso de energía solar

Importancia de una transición energética

Antecedentes

Transiciones anteriores de madera a carbón mineral, de carbón mineral a petróleo y gas natural cada una de estas transiciones tomaron entre 50 a 60 años.

Los combustibles fósiles han contribuido a un enorme crecimiento económico and mejorado la calidad de vida de muchas personas.

Combustibles fósiles son asequibles porque sus precios de mercado no incluyen sus efectos nocivos para la salud y el medio ambiente.

Por 40 años las petroleras han tratado de frenar esta transición, pero se espera que se dará a medida que los precios de la energía renovable disminuya.

Source: Vaclav Smil (2017). Energy Transitions: Global and National Perspective & BP Statistical Review of World Energy OurWorldInData.org/fossil-fuels/ • CC BY

Problemas derivados de los combustibles fósiles

Contaminación del aire

Cambio Climático

Acidificación de los océanos

Beneficios de la energía renovable

Es infinita y disponible

Autonomía y soberanía energética

Pasos para la transición

Mejorar la eficiencia energética

Disminuir la dependencia en combustibles fósiles

Incrementar una mezcla de energías renovables

Eficiencia energética y la reducción del desperdicio de energía

Definiciones

Que es la energía?

Es la capacidad de la materia o radiación para realizar un trabajo. Trabajo es mover algo contra una fuerza que se resiste.

1era Ley de Termodinámica: la energía no se crea ni se destruye solo se transforma 2da Ley de Termodinámica: la energía se degrada continuamente en forma de calor. En cualquier conversión de energía nunca se puede obtener el 100% de eficacia. Parte de la energía se perderá como calor y no podrá realizar trabajo.

En el Sistema Internacional a la energía se la expresa en la unidad de medida J (joules) o en cal (calorías) y para la unidad de medida para la potencia es el W (vatio o watt).

Que es eficiencia energética?

La relación entre el rendimiento extraído (servicio, bienes o energía) y la energía usada. Se espera < 100%.

espol

Formas de energía

Energía térmica (ej. Geotérmica) Energía eléctrica (ej. Electricidad) Energía gravitacional (ej. Hidroeléctrica) Energía química (ej. Biomasa) Energía cinética (ej. Eólica)

Con que forma de energía se relaciona?

Análisis de Ciclo de Vida Energético

Análisis de Ciclo de Vida: Técnica que determina los impactos ambientales asociados a un producto asociados a entradas y salidas relevantes del sistema.

Energía incorporada: Cantidad de energía requerida en el ciclo de vida de un producto

espol

Problemas de eficiencia energética y desperdicio de energía

- 1/3 de la energía utilizada en el mundo se podría ahorrar mejorando estos problemas:
 - Eficiencia energética de las operaciones industriales
 - Vehículos, los motores de combustión interna, solo aprovechan el 20% del combustible y el resto se desperdicia en forma de calor.
 - Electrodomésticos
 - Edificios o domicilios pobremente aislados y con fugas que requieren excesivo enfriamiento
 - Expansión urbana incrementa la necesidad de movilizarse en vehículos diariamente
 - Enormes centros de datos (data centers), estos racks que almacenan información de respaldo emplean solo 10% de la energía que consumen, el 90% es perdida en forma de calor, además de equipos de enfriamiento

Conservación energética

 Es el esfuerzo realizado para disminuir el consumo de energía al ajustar nuestros comportamiento. Por ej: usar escaleras en lugar del elevador, montar bicicleta o caminar, secar la ropa en cordeles.

Soluciones para incrementar la eficiencia energética y desperdicio de energía

Flujo de calor residual en industrias

Si la temperatura del flujo es superior a la temperatura ambiente puede potencial para ser recuperado

Proceso Industrial	Temp (~°C
Forja de acero	1320
Horno de cemento	680
Hornear alimentos	260
Calentamiento de agua	85

(Rebello, 1987)

Cogeneración: Produce electricidad y calor de un mismo combustible.

Red eléctrica inteligente (Smart Grid)

- La red eléctrica transmite y distribuye electricidad desde la planta de generación hacia los usuarios. El Smart Grid permite la flujo de energía bidireccional
- Facturación detallada por franjas horarias permite al consumidor discernir entre las diferentes horas de consumo

Transportación más eficiente

Tipos de vehículos más eficientes

Rendimiento del combustible

Porque desperdiciamos tanta energía

- La electricidad proveniente de combustibles fósiles es artificialmente barata debido a:
 - Subsidios
 - Costos ambientales y a la salud no incluidos en el precio.

Efecto rebote

Illustration of rebound effects

Ventajas y desventajas del uso de la Energía Solar

Calentando edificios y agua con energía solar

Los sistemas de calefacción solar pasivos y activos pueden calentar agua y edificios de manera efectiva.

Calentamiento solar pasivo: Captan y acumulan el calor de la radiación solar directa. Se necesita ventanas bien aisladas que disminuyan la perdida de la temperatura. Ancestralmente ya se usaban paredes muy gruesas de piedra o adobe para almacenar el calor por más tiempo. En climas cálidos se debe utilizar colores claros en techos y paredes para reflejar el calor.

Calentando edificios y agua con energía solar

Calentamiento solar activo: Calefones solares, una vez que el costo inicial esta pagado el agua se calienta gratis

Calentando edificios y agua con energía solar

Calefón solar de placa plana

Calefón solar de tubos al vacío

Solar Térmico

Cocinas solares

Hornos solares

Paneles Fotovoltaicos

Son de silicio puro o silicio policristalino que permiten la conductividad de electricidad.

Un grupo de celdas conectadas crean un panel.

Pueden ser conectadas a redes eléctricas o a baterías.

Los paneles pueden rígidos o flexibles e incrustarse en paredes, vidrio, ropa.

Se pueden colocar en techos o inclusive flotando sobre lagos, represas o canales.

Tienen eficiencia entre 15% al 20% de convertir la radiación solar en electricidad

Su costo se ha reducido entre el 2001 al 2015 en 83% y sigue disminuyendo, por producción masiva.

Tipos y componentes de los sistemas de **Paneles Fotovoltaicos**

Sistema desconectado de la red

Sistema conectado a la red

Usos típicos de Paneles Solares

- Iluminación y seguridad
- Bombas de agua
- Comunicaciones
- Equipos de monitoreo remoto
- Refrigeración remota
- Electricidad en comunas
- Electricidad para edificios o casas

Paneles Fotovoltaicos

1.3 billones de persona no tienen acceso a la electricidad. Algunos de ellos tienen electricidad prepagada.

Tienen eficiencia entre 15% al 20% de convertir la radiación solar en electricidad

Su costo se ha reducido entre el 2001 al 2015 en 83% y sigue disminuyendo, por producción masiva.

Vida útil de 30 años

Capacidad instalada global

Celdas Fotovoltaicas

Ventajas

Benigno al medio ambiente (No emisiones de CO2 u otros contaminantes del aire y silencioso durante la operación)

Fácil de instalar, mover y expandir, al ser modular

Costos competitivos

Recurso abundante y disponible

Muy confiable

Bajos costos de operación y mantenimiento

Desventajas

Depende de la radiación solar

Genera electricidad Correcta Directa

Alto costo inicial

Necesita almacenamiento o un sistema de respaldo

Puede alterar ecosistemas desérticos

Referencias

- G. Tyler Miller, Scott Spoolman. (2019). Living in the Environment. (19va). Estados Unidos: Cengage. ISBN: 978-1-337-09415-3
- http://ecomedioambiente.com/energias-renovables/energia-undimot riz/
- Guayaquil Cielo Florido, Guía para la instalación de techos, paredes y fachadas verdes en la ciudad de Guayaquil, Fundación Proyecta Verde, M.I. Municipalidad de Guayaquil (https://www.guayaquilcieloflorido.com/la-guia)
- https://blog.conaltura.com/certificaci%C3%B3n-leed-y-edge-vivienda s-sostenibles-verdevivo
- https://www2.uned.es/biblioteca/energiarenovable3/energia.htm

Trabajo autónomo

Visita al Centro de Desarrollo Tecnológico Sostenible del Campus

Pre lectura:

https://www.datacenterdynamics.com/es/features/eficiencia-energ%C3%A9tica-reto-de-los-data-centers-del-futuro/