Sistemas de Manufactura

2024-2

Semana XV

Captura de calificaciones

Pre examen

Examen

Fin de clases

noviembre 2024

		octu	bre	202	4	
0	Lu	Ma	Mi	Ju	Vi	Sá
		1	2	3	4	5
	7	8	9	10	11	12
	14	15	16	17	18	19
)	21	22	23	24	25	26
27	28	29	30	31		

domingo	lunes	martes	miércoles	jueves	viernes	sábado
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

diciembre 2024

					24 . 26 27 28 29 30	26 27 29 30 31
domingo	lunes	rtes	miércoles	jueves	VIL nes	, bado
1	2	(3)	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

Forma de evaluación Tema IV

Evaluación escrita: 40%

Avances proyecto integrador : 40%

• Actitud: 20%

Forma de evaluación

ACTIVIDAD FECHA

Dudas y seguimiento PI por 15 min por Todos los días alumn@

Forma de evaluación

ACTIVIDAD	FECHA
Dudas y seguimiento PI por 15 min por alumn@	Todos los días
Tienes derecho a pre examen para obtener puntos extra	02 de Diciembre

Forma de evaluación

ACTIVIDAD	FECHA
Dudas y seguimiento PI por 15 min por alumn@	Todos los días
Tienes derecho a pre examen para obtener puntos extra	02 de Diciembre
Exposición de la unidad requisito para tener derecho a examen	03 de Diciembre

Temario

	Tema			Subtemas
Análisis procesos	de	flujo	de	 4.1. Caracterización del Material y su utilización en los procesos. 4.2. VSM. (Value Stream Mapping). 4.3. Lean Supply Chain. 4.4. Tecnologías de grupos.

Administración científica

Línea de ensamblado

Características

- 1. Estudio de tiempos, para estándares de trabajo.
- 2. Estudio de movimientos, para descubrir el método mejor para ejecutar una tarea.

- 1. Se hizo posible la producción en masa de productos de consumo complejos
- 2. Se dio origen a la automatización de la manufactura

Trabajo y Tiempo Estándar

"El valor de una idea radica en su uso". – Thomas Edison

Actividades de aprendizaje

Identifica las variables de entrada y salida del procedimiento para clonar, crear Branch y crear nuevos archivos.

Tiempo Estándar

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Actividad 1	Actividad 2	Actividad 3
Clonar	Crear Branch y	Crear archivos
repositorio y	crear carpeta con	.tex, .bib y
configurar la ruta	número de lista y	.gitignore y dar
en git bash	carpeta img	push a GitHub y
	donde se	crear un pull
	guardarán los	request
	cuatro SOP's y	
	hojas de registro	

Tiempo Estándar

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Ejemplo de Aplicación para Cálculo de Tiempo Estándard.

Paso 1 Siguiendo Método Maytag, determinar si la duración de la actividad es,

- a) 2.0 minutos o menos, entonces, tomar 10 lecturas
- b) más de 2.0 minutos, entonces, tomar 5 lecturas

Paso 2 Tomar las lecturas de tiempo iniciales para cada una de las actividades que integran mi proceso y calcular tiempos de ciclo

	Actividad 1	A	ctividad 2	1	Actividad 3
Lectura	Duración	Lectura	Duración	Lectura	Duración
1	45.600 min	1	13.500 min	1	47.700 min
2	43.200 min	2	15.900 min	2	47.750 min
3	45.800 min	3	16.000 min	3	46.800 min
4	44.700 min	4	14.600 min	4	46.900 min
5	44.800 min	5	14.500 min	5	47.600 min
Promedio Act 1	44.820 min	Promedio Act 2	14.900 min	Promedio Act 3	47.350 min
Cáloulos	-CUI 44/ D12/D16)/E	Cálaulai -	CLUBAL CAR CAE VE	Cálaula	CLU 41/1111/16 \/E

Tiempo Estándar

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Actividad	Factor R/X	Factor Tabla	Lecturas Columna
Actividad 1	0.67	0.67	129
Actividad 2	0.77	0.77	171
Actividad 3	1.05	1.00	296

Fundamentos: Mejora Continua = f(x)

Mejora C.	=	Visión	+	Habilidad	+	Incentivos	+	Recursos	+	Plan estratégico
Confusión	=		+	Habilidad	+	Incentivos	+	Recursos	+	Plan y Estrategia
Ansiedad	=	Visión	+		+	Incentivos	+	Recursos	+	Plan y Estrategia
Cambios lentos	=	Visión	+	Habilidad	+		+	Recursos	+	Plan y Estrategia
Frustración	=	Visión	+	Habilidad	+	Incentivos	+		+	Plan y Estrategia
Salida en falso	=	Visión	+	Habilidad	+	Incentivos	+	Recursos	+	

Cultura

« La Mejora Continua es el resultado de la cultura y no sólo de herramientas »

Enfoque

"Qué importa tu esfuerzo si el camino es incierto"

Enfoque

Toda acción debe tener una alineación y esta alineación debe estar soportada en Seguridad y medio ambiente, calidad, costo y entrega

"Por fin, las herramientas en un orden correcto"

PHVA/PDCA

El ciclo de Deming, Ciclo de Mejora Continua basado en Planear-Hacer-Verificar-Ajustar

Sistema de Mejora Continua

- La Mejora Continua no es algo extra, jes una forma de trabajo!,
 es un orden, es la forma cómo las organizaciones evitan el caos.
- PDCA no es una metodología para hacer proyectos, es mucho más que eso, es el sistema de Mejora Continua.
- PDCA es una manera organizada de hacer las cosas.
- Los fundamentos, la cultura y el enfoque son totalmente necesarios antes de hablar de las <u>herramientas</u>.

Sistema de Mejora Continua

Fase I, Despliegue, Fase II, Desarrollo, Fase III, Consolidación.

Modelo aplicable a cada unidad de negocio

¿Cuántos PDCA tienes que hacer en una empresa?

TABLERO PDCA

	PLANEAR	HACER	VERIFICAR	AJUSTAR 🔷
	ESTRATEGIA	ESCALERA DE DESPLIEGUE	DETECCIÓN DE OPORTUNIDADES	GESTIÓN DE PROYECTOS
	- OGSM	- Trabajo Estándar	- Costos de no calidad	A) Selección de Proyectos - Matriz Pugh
	- Definición de	- Gestión Visual	- Tableros de Gestión	B) Metodología - A3 - DMAIC – 6 SIGMA - 8 D'S
: 1: egue	indicadores	- Recorridos Gemba	- Dashboards (Paneles de control)	C) Solución de Problemas - Definición de problemas - 5W's y 2H's
FASE Desplie	- Cascadeo de objetivos	7+1 Desperdicios5'S	- Scorecard (Cartas de puntaje)	 SMART Análisis causa l 5M ISHIKAWA Pareto Plan de acción
			- Boxscore (Cuadro de resultados)	Seguimiento -Gantt, -Matriz RACI, Control -Gráficos de Control, -Plan de Control

Hacer-Escalera De Despliegue

Implementar la base de Mejora Continua típicamente involucra el concepto de 5S.

Programa de estandarización de limpiezas, sus etapas tienen el acrónimo SOLES (Seleccionar, Organizar, Limpiar, Estandarizar, Sustentar)

Hacer-Escalera De Despliegue

TABLERO PDCA

DMAIC

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

"Un emprendedor es alguien que tiene una visión de algo y quiere crear". – David Karp

DMAIC

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

FASES	PASOS	HERRAMIENTAS
Definir	Análisis básico del proceso	Gantt, matriz priorización
Medir	 Selecciona la característica critica de calidad. Definir como vamos a medir. Validar el sistema de medición. 	 Voz del cliente, Matriz Causa Efecto, AMEF, Graficas de tendencia. Mapa de procesos, 7 M's, Herramientas de calidad Gage, R&R, ANOVA
Analizar	 Establecer la capacidad del producto Definir los objetivos de desempeño Identificar fuentes de variación 	 Análisis capacidad (Cp, Cpk, Cmk), intervalos de confianza Pruebas de hipótesis, 7H's. 7M's. Correlación, Brainstorming
Mejorar	 Encontrar variables importantes Implementar soluciones 	 DOE, regresión AMEF, Lean Manufacturing, 5's, matriz priorización.
Controlar	 Establecer tolerancias de operación Validar sistemas de medida Determinar la capacidad del proceso Implantar controles del proceso 	 Regresión Gage, R&R, ANOVA Gráficos de control Auditorias, AMEF

Estadística Básica

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

«Lo único peor que comenzar algo y fallar... es no comenzarlo en absoluto». – Seth Godin

Estadística Básica

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Estadísticas Descriptiva:

Se encarga de proporcionar información sobre lo que está sucediendo en ese momento. Se enfoca en la recopilación y presentación de los datos.

Estadística Inferencial:

Es la encargada de inferir o predecir lo que está sucediendo en una población utilizando diferentes técnicas en probabilidad y métodos matemáticos basándose en lo que sucede en una muestra. La estadística básica inferencial se calcula utilizando las medidas tomadas de un grupo de elementos (muestra) procedentes de un grupo más grande llamado población.

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

«Ya sea que pienses que puedes o que no puedes, tienes razón». — Henry Ford

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Es el análisis que determina si un proceso es capaz de satisfacer las necesidades del cliente, haciendo referencia a la distribución y tipo de datos.

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Distribución y Tipo de Datos

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

 Permite la comparación contra la competencia si es que es usado como indicador de desempeño.

 El resultado determinará si somos capaces de producir de acuerdo a las especificaciones.

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Métricas de capacidad	Definición	Propósito
Nivel Sigma	El número de desviaciones estándar que caben, desde la media hasta el límite de especificación más cercano	Métrico Universal de Seis Sigma
Ср	Capacidad Potencial Corto Plazo - Compara el rango del proceso contra el rango de especificación a corto plazo, no toma en consideración el centrado	
Cpk	Capacidad Real a Corto Plazo - Compara el rango del proceso a corto plazo contra los límites de especificación, toma en consideración el centrado y obtiene el mínimo valor entre ambos extremos	
Рр	Capacidad Potencial a Largo Plazo: Compara el rango de tu proceso a largo plazo contra el rango de especificación, no toma en consideración el centrado	
Ppk	Capacidad Real a Largo Plazo - Compara el rango de tu proceso a largo plazo contra los límites de especificación, toma en consideración el centrado y obtiene el mínimo valor entre ambos extremos	¿El proceso es realmente capaz de cumplir con especificaciones del cliente a largo plazo?

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

PLAZO

	Ŭ
	O
	T
	S
L	

	Corto Plazo	Largo Plazo
σ	Ср	Pp
μ	Cpk	Ppk

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Estima el valor de Cp

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Estima el valor de Cpk

Cpk =

Cpk =

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

En forma general se pueden presentar los siguientes escenarios:

- Problemas de dispersión (El Cp nos lo va a indicar)
- Problemas de ubicación (El Cpk es significativamente menor al Cp)
- Problemas de ubicación y dispersión (Cp en condiciones no favorables y adicional un Cpk significativamente menor a valor del Cp)

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

«Capacidad de Proceso Discreta»

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

La escala de medida no se puede realizar una subdivisión, por ejemplo:

Característica	Discreto	
Dimensión	Pasa/No pasa	
Tiempo	Programa: Sí/no	
Cumplimiento	Entrega: Sí/no	
Calidad	Buena/Mala	
Aprobar materia	Acredita/No acredita	

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Conceptos clave para la capacidad discreta

Unidad:

Es un elemento completo, por ejemplo, una chamarra, un asesor telefónico.

Si consideramos las quejas generadas por 32 alumnos de la materia SM entonces estamos analizando 32 unidades.

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Conceptos clave para la capacidad discreta

Oportunidad:

Una Característica que se inspecciona o prueba contra un estándar.

Ejemplo: Pueden reprobar en 4 temas (Introducción, Indicadores, Solución de problemas, Análisis de flujo), por lo tanto se tienen 4 oportunidades

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Conceptos clave para la capacidad discreta

Defecto:

Cualquier oportunidad que al no satisfacer un requerimiento o estándar se convierte en falla, por ejemplo 11 quejas entre los 32 alumnos.

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Unidades =

Oportunidades =

Defectos =

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Unidades = 4

Oportunidades = 5

Defectos = 9

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

	Worksheet 1 ***						
	+	C1		C2			
		UO)		
П	1		5		2		
Г	2		5		2		
	3		5		2		
	4		5		3		

Unidades = 4

Oportunidades = 5

Defectos = 9

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Stat -> Quality Tools -> Capability Analysis -> Binomial...

Capability Analysis (Bi	nomial Distribution)	X
C1 UO C2 D	Defectives: Sample size Constant size: Uo Historical p: Coptional Enter a target %Defective for this process (optional)	Tests Options Storage
Select Help		OK Cancel

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Summary Stats (95.0% confidence) %Defective: 45.00 Lower CI: 23.**0**6 Upper CI: 68.47 Target: 0.00PPM Def: 450000 230578 Lower CI: Upper CI: 68**47**22 Process Z: 0.1257 Lower CI: **-0.4809** Upper Cl: 0.7369

Capacidad Normal

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

«Al final, una visión sin la capacidad de ejecutarla es probablemente una alucinación». – Steve Case

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Métricos:

Para calcular la capacidad real y potencial de un proceso es necesario tener una distribución norma

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Seis sigma es una mentira

Toda la industria busca llegar a 3.4 partes por millón a largo plazo. Esto no lo encontrarás con 6 sigmas sino con 4.5 sigmas.

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Seis sigma es una mentira

6 sigma nace por un estándar donde se generaliza que toda variación a corto plazo tiene que agregarse 1.5 sigmas, sin embargo esto es falso pues cada proceso tiene un cambio diferente a través del tiempo.

Capacidad Normal

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Si quieres calcular tu **nivel sigma** simplemente multiplica Cpk x 3, es por ello que Cpk de 2 es el valor deseado:

Nivel Sigma Largo Plazo	DPUMO
1	158655.25
1.5	66807.20
2	22750.13
2.5	6209.67
3	1349.90
3.5	232.63
4	31.67
4.5	3.4

- 1 Selecciona **Graph > Probability Plot**.
- 2 Selecciona Single, después click OK.

- 3 En Graph variables, selecciona la variable.
- 4 Click OK

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Mean 40.37 St Dev 2.271 N 70 AD 0.657 P-Value 0.083

Al tener P-Value > 0.05 tiene una distribución normal

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Stat -> Quality Tools -> Capability Analysis -> Normal

Overall Capability					
1.32					
1.52					
1.12					
1.12					
*					
Potential (Within) Capability					
1.20					
1.38					
1.02					
1.02					

¿Qué es? -> ¿Para qué? -> ¿Cómo? -> Ejemplo -> Ejercicio

Overall Capability Pp 1.32 PPL 1.52 PPU 1.12 Ppk 1.12 Cpm *

Potential (Within) Capability

Mala capacidad
Capacidad limitada
Buena capacidad
Capacidad nivel seis sigma

