CARDIOVASCULAR PHARMACOLOGY

AZIDE-LIKE

Thiazide Diuretics | Mechanism of Action, Indications, Adverse

Medical Editor: Abigail S. Xu, RPh

OUTLINE

I) MECHANISM OF ACTION

Reactions, Contraindications

- II) INDICATIONS
- III) ADVERSE DRUG REACTIONS
- IV) REVIEW QUESTIONS
- V) REFERENCES

MECHANISM OF ACTION <= <= Mg²⁺ <= Na⁺ ? 4 5 NaCl 13 1 Acetazolamide 2 Osmotic agents (mannitol H₂O (-6 3 Loop agents (eg. furosemide) (4) Thiazides 2 (5) Aldosteron 2 1> H.O 6 ADH antagonis

Figure 1. Renal Tubule Transport Systems and Sites of Action of Diuretics in the Nephron [Trevor, Katzung, & Kruidering-Hall, 2015]

(1) Normal Physiology of Distal Convoluted Tubule

Figure 2. Mechanism of sodium and chloride reabsorption and calcium movement in the distal convoluted tubule [Trevor, Katzung, & Kruidering-Hall, 20151

Distal Convoluted Tubule (DCT)

- o Part of nephron where Thiazide and Thiazide-like diuretics primarily work
- o Responsible for 5-10% of NaCl reabsorption
- o Water follows NaCl

• Thiazide and Thiazide-like diuretics are mainly used in high blood pressure (BP)

Last edited: 9/26/2021

• They control BP by inhibiting NaCl reabsorption in the DCT; thus, inhibiting water reabsorption → ↓Blood volume → ↓BP

Apical/Luminal Surface of DCT

- o Facing lumen/ tubule containing filtrate
- o Na⁺-Cl⁻ co-transporter (NCC)
 - Transports Na⁺ and Cl⁻ from tubular lumen into the cell
- Permeable to Ca2+

Basolateral Surface of DCT

- o Peritubular capillaries present
- o Facing intersitium- blood
- o Na⁺/K⁺ ATPase Pump
 - 3 Na⁺ out of the cell (into the blood)
 - 2 K⁺ into cell

○ Na⁺/Ca²⁺ exchanger (NCX)

- Na⁺ back into cell
- Ca²⁺ out of the cell (into blood)
 - ↓Ca²⁺ in cell

o Parathyroid Hormone controls Ca2+ reabsorption

- ↑Ca²⁺ in the DCT lumen compared to ↓Ca²⁺ in the cell due to $NCX \rightarrow$ concentration gradient
- Ca²⁺ moves from tubular lumen into the cell (apical surface is permeable to Ca2+)
- Ca2+ can again be transported out of the cell via $NCX \rightarrow \uparrow Ca^{2+}$ in blood

• Effects on Electrolytes in the Bloodstream

- ↑ Ca²⁺
- ↑ Na⁺ & Cl⁻ → osmotic gradient → pull water from tubular lumen into bloodstream via aquaporins

Summary DCT Normal Physiology

- Na²⁺ and Cl⁻ are retained in blood, pulling water into bloodstream.
- Ca²⁺ levels in blood is regulated via NCX.

(2) Mechanism of Thiazide and Thiazide-Like Diuretics

• Inhibit NaCl co-transporter (NCC)

- o ↓Na⁺, ↓Cl⁻into the cell
 - \LCI in bloodstream
 - ↓Na+ that will be pumped out by Na+/K+ ATPase
- JNa⁺/K⁺ ATPase Pump activity
 - ⊥K⁺ into cell
 - \!\Na⁺ pumped out into blood stream
 - but the Na⁺ concentration in blood is still higher than the Na⁺ in the cell → concentration gradient
- o Na+ in the bloodstream goes into cell via NCX
 - ↑Na⁺ in cell
 - ↑Ca²⁺ is pumped out of the cell → ↑Ca²⁺ into blood, ↓Ca²⁺ in cell
- $\circ \uparrow Ca^{2+}$ in lumen than in cell \rightarrow concentration gradient
- o Ca2+ in lumen enters cell and pumped out to the bloodstream via NCX → ↑Ca2+ in blood

• Effects:

o JNa⁺ & Cl⁻ reabsorption

- Josmotic gradient to drive water movement
- JH₂O reabsorption
- ↓Blood Volume: ↓Blood Pressure (BP)

o ↑Ca²⁺ reabsorption

- Useful in osteoporosis, osteopenia
- Useful in people prone to developing calcium oxalate/ calcium phosphate kidney stones

(3) Types

(i) Thiazide Diuretics

- Hydrochlorothiazide (HCTZ)
- Chlorothiazide

(ii) Thiazide-like Diuretics

- More effective
- Chlorthalidone
- Metolazone
 - Used in Congestive Heart Failure (CHF), in combination with loop diuretics to get extra sodium and water pull
- Have Sulfa component
 - \circ Contraindicated in sulfa allergies \rightarrow can lead to acute interstitial nephritis

(4) Additional Mechanism

- Complete underlying physiology not fully understood yet
- Promote vasodilation → ↓Total Peripheral Resistance (TPR) → ↓Blood Pressure
- Thiazide and Thiazide-like diuretics probably stimulates **Prostaglandin (PG) production**
- PG helps promote the vasodilation

Summary of MOA

- Thiazide and Thiazide-like diuretics inhibits NaCl reabsorption via NCC
 - o ↓NaCl in blood
 - o ↓water in blood
 - ↓blood volume
 - o ∫blood pressure

MECHANISM OF ACTION

Figure 3. Mechanism of Action of Thiazide and Thiazide-Like
Diuretics

II) INDICATIONS

(A) HYPERTENSION

- ↓Na⁺ & Cl⁻ reabsorption
- $\bullet \ \downarrow \textbf{H}_2\textbf{O} \ reabsorption$
- ↓Blood Volume
- ↓Blood Pressure (BP)

(B) FLUID OVERLOAD

(1) Causes

- Congestive Heart Failure
- Cirrhosis
- Acute Kidney Injury
- Nephrotic syndrome

(2) Manifestations

Peripheral Edema

- $_{\odot}$ Accumulation of fluid in the tissue spaces in the leg
- o pain, swelling

• Pulmonary Edema

- Accumulation of fluid in the interstitial spaces between alveoli and pulmonary capillaries
- o Difficulty breathing

Ascites

o Accumulation of fluid in the abdomen

(3) Mechanism

- ↓Na⁺ & Cl⁻ reabsorption
- JH₂O reabsorption
- ↓excess fluid
- Iblood volume
- ↓edema
- Loop Diuretics are the mainstay in the treatment of fluid overload.
- Thiazides in fluid overload
 - o Monotherapy
 - o Dual Therapy with a loop diuretic: more common
 - Ex. Metolazone + loop diuretic (Furosemide)

(C) NEPHROGENIC DIABETES INSIPIDUS (DI)

(1) Pathophysiology of Nephrogenic DI

- Diabetes Insipidus: not enough antidiuretic hormone is produced
- Normal Physiology:
 - Antidiuretic hormone (ADH) or Vasopressin is synthesized by the <u>supraoptic nucleus</u> and <u>paraventricular nucleus</u> of the <u>hypothalamus</u>
 - o secreted by the posterior pituitary gland
 - o ADH binds to V2 Receptors of the collecting duct
 - o Signals production of aquaporins
 - o Water is pulled from the tubular lumen into the tubular cells, then into the blood $\rightarrow \downarrow H_2O$ in urine

• Nephrogenic Diabetes Insipidus:

- o Normal ADH production
- o V2 receptors defective
- o No aquaporin activation
- $\circ \downarrow H_2O$ in blood
- \circ ↑H₂O in urine \rightarrow ↑urination

Why give a diuretic to someone already losing water?

(2) Paradoxical Mechanism of Thiazide Diuretic

- Induce mild hypovolemia
- ↓Na⁺ & Cl⁻ reabsorption
- ↓H₂O reabsorption
- JBlood Volume
- ↓Blood flow to glomerulus
- ↓Glomerular Filtration Rate (GFR)
- Proximal Convoluted Tubule (PCT) has more time to reabsorb Na⁺, Cl⁻, and H₂O
- ↑reabsorption of Na⁺, Cl⁻, H₂O
- ↓Na⁺, Cl⁻, and H₂O in urine → ↓water loss

(D) HYPERCALCIURIA

- High calcium in urine, which can combine with phosphates and oxalates
- ↑risk of kidney stones
- Thiazide diuretics prevent formation of kidney stones
 - o ↑Ca²⁺ reabsorption into blood
 - o ↓Ca²⁺ in kidney tubules

(E) OSTEOPENIC/ OSTEOPOROSIS: BRITTLE BONES

- ↑Ca²⁺ reabsorption
- Stimulate calcitonin production
- ↑osteoblast activity → build bones

THIAZIDE & THIAZIDE LIKE DIURETICS INDICATIONS

Figure 4. Summary of Indications of Thiazide and Thiazide-like

III) ADVERSE DRUG REACTIONS

(A) GOUT

- Uric Acid is excreted from the blood into the tubular cells and into the tubular lumen via Organic Acid/ Anion Transporters (OAT) in the apical and basolateral surfaces of the Proximal Convoluted Tubule
- Thiazides inhibit OAT
 - o ↑Uric Acid in blood
 - o Hyperuricemia
 - o Gout
 - uric acid (monosodium urate) crystals deposit in joints, especially the first metatarsophalangeal (MTP) joint of the big toe
 - causing pain and tenderness

(B) ELECTROLYTE IMBALANCES

• Inhibition of Na+-Cl- Cotransporters

- o ↓Na⁺, Cl⁻reabsorption
 - o ↑Na+, Cl-retained in kidney tubules
 - o ↑Na+, Cl-excreted in urine
 - ↓Na⁺ in blood: Hyponatremia
 - o ↓Cl⁻in blood: Hypochloremia

• ↑Ca²⁺ reabsorption: **Hypercalcemia**

- o Inhibition of NCC
- \circ ↓Na $^+$, ↓Cl $^-$ into the cell
 - ↓Cl⁻ in bloodstream
 - ↓Na⁺ that will be pumped out by Na⁺/K⁺ ATPase
- ↓Na⁺/K⁺ ATPase Pump activity

- ⊥K⁺ into cell
- ⊥Na⁺ pumped out into blood stream
- but the Na⁺ concentration in blood is still higher than the Na⁺ in the cell → concentration gradient
- o Na+ in the bloodstream goes into cell via NCX
 - ↑Na⁺ in cell
 - ↑Ca²⁺ is pumped out of the cell → ↑Ca²⁺ into blood, ↓Ca²⁺ in cell
- $\circ \uparrow Ca^{2^{+}}$ in lumen than in cell \rightarrow concentration gradient
- o Ca2+ in lumen enters cell and pumped out to the bloodstream via NCX → ↑Ca2+ in blood
- o ↓Ca²+ in urine

↑Na⁺ in urine

- o More sodium is moving from the distal convoluted tubule to the collecting duct than normal, creating a concentration gradient, where Na+ levels in the tubular cells of the collecting duct is lower and the tubular lumen has higher Na+levels
- o Na⁺ moves into tubular cell
- o Na+/K+ ATPase pumps Na+ out of cell into blood
- o If cations (+ charged ions, i.e. Na*) are moving into the cell and leaving the tubular lumen, the lumen becomes negatively charged
- o (-) charged lumen attracts cations (i.e., K+ and H+) in the tubular cells to be excreted in the urine
- o ↓K+ in blood: Hypokalemia
- o ↓H⁺ in blood: **Metabolic Alkalosis**

Summary: Effects of Thiazide Diuretics on Urine **Levels of Electrolytes**

- Hyperuricemia
- Hypercalcemia
- Hyponatremia
- Hypochloremia
- Hypokalemia
- Metabolic alkalosis

Table 1. Effect of Thiazide Diuretics on Urine Levels of **Flectrolytes**

Electrolytes	
↑Urine Levels	↓Urine Levels
Na⁺	Ca ²⁺
Cl ⁻	
H ₂ O	
K ⁺	
H ⁺	

(C) HYPERGLYCEMIA

Pancreatic β-Cell

- Normal Physiology
 - o GLUT transporters: bring glucose into cell
 - \circ Glucose $\rightarrow \rightarrow \rightarrow$ ATP
 - o ATP binds and closes ATP-sensitive K+ channel
 - o K⁺ cannot leak out of cell
 - ↑↑↑ (+) charge → activation of voltage gated Ca²⁺ channels
 - o Ca2+ moves into the cell and stimulate the release of insulin from vesicles into bloodstream
 - o Insulin binds to insulin receptor and activate transporters that move glucose into the cell
 - o ↓blood glucose

Thiazides given

- o ↓K+ in blood
- o K+ in cells move out to the blood to compensate for ↓serum K⁺
- ↓K⁺ in cells
- ↓ (+) charge → ↓activation of voltage gated Ca²⁺ channels
- o ↓insulin released into blood
- o ↓glucose movement into cell

(D) ACUTE INTERSTITIAL NEPHRITIS

- Allergic reaction to Sulfa Group of Thiazide-like diuretics
- Signs and Symptoms (triad):
 - o Arthralgia
 - o Rash
 - o Intrarenal Acute Kidney Injury
 - o †eosinophil count in CBC

Summary:

Table 2. Effect of Thiazides on Serum levels of Electrolytes/ Substance

↑Serum Levels	↓Serum Levels
Ca ²⁺	Na ⁺
Uric Acid	Cl ⁻
Glucose	H ₂ O
	K ⁺
	H ⁺ (metabolic alkalosis)

SIDE EFFECTS / ADRS

Figure 5. Summary of Adverse Effects of Thiazide and Thiazide-like Diuretics

IV) REVIEW QUESTIONS

- 1) Where is the primary site of action of Thiazide Diuretics?
 - a. Proximal Convoluted Tubule
 - b. Collecting Duct
 - c. Loop of Henle
 - d. Distal Convoluted Tubule
- 2) Which of the following contain Sulfa group?
 - a. Hydrochlorothiazide
 - b. Chlorothiazide
 - c. Thiazide Diuretics
 - d. Chlorthalidone
- 3) True or False: Thiazides cause hypoglycemia.

- a. True
- b. False
- 4) Which of the following is not an effect of thiazides?
 - a. Hypokalemia
 - b. Hyponatremia
 - c. Hypochloremia
 - d. Hypocalcemia
- 5) Thiazides are usually combined with what in treating fluid overload?
 - a. Vasopressin
 - b. Loop Diuretic
 - c. Osmotic Diuretic
 - d. Acetazolamide

CHECK YOUR ANSWERS

REFERENCES

• Trevor, A., Katzung, B., & Kruidering-Hall, M. (2015). Katzung & Trevor's Pharmacology Examination & Board Review. McGraw Hill