WHAT IS CLAIMED IS:

1. A compound having the general formula:

$$\begin{array}{c|c} R & H & A \\ \hline & O & N & Z \\ \hline & CO_2R' & \end{array}$$
 (I)

in which R is a benzyl, 2-thienylmethyl, or cyanomethyl group; R' is selected from the group consisting of H, physiologically acceptable salts or metal, ester groups, ammonium cations, -- $CHR_2OCO(CH_2)_nCH_3$, -- $CHR_2OCOC(CH_3)_3$, acylthiomethyl, acyloxy-alpha-benzyl, deltabutyrolactonyl, methoxycarbonyloxymethyl, phenyl, methylsulphinylmethyl, β -morpholinoethyl, dialkylaminoethyl, and dialkylaminocarbonyloxymethyl, in which R_2 is selected from the group consisting of H and lower alkyl; A is selected from the group consisting of S, O, SO, SO₂ and CH_2 ; and Z is a donor fluorescent moiety.

2. The compound of claim 1, wherein the donor fluorescent moiety is selected from the group consisting of:

$$R_{3} \xrightarrow{O} X \xrightarrow$$

(X)

(XI)

R₃ is a linker for the fluorescent donor.

3. The compound of claim 2, wherein the linker is selected from the group consisting of a direct bond to a heteroatom in the fluorescent moiety, $--O(CH_2)_n$ --, $--S(CH_2)_n$ --, $--N^+R_2$ (CH₂)_n, $--OCONR_2(CH_2)_n$ --, $--O_2C(CH_2)_n$ --, $--SCSNR_2(CH_2)_n$ --, $--SCSNR_2(CH_2)_n$ --, $--SCSO(CH_2)_n$ --, $--SCSO(CH_2)_n$ --, $--SCSO(CH_2)_n$ --, $--SCSO(CH_2)_n$ --, $--SCSO(CH_2)_n$ --, and

in which R_2 , n and m are as previously defined; and m is an integer from 0 to 4.

4. The compound of claim 1, wherein the compound has the structure:

5. A method for detecting the presence of β -lactamase activity in a sample, comprising: contacting the sample with at least one compound of general formula I:

$$R$$
 A
 CO_2R'
 CO_2R'

in which R is a benzyl, 2-thienylmethyl, or cyanomethyl group, or a quencher; R' is selected from the group consisting of H, physiologically acceptable salts or metal, ester groups, ammonium cations, --CHR₂OCO(CH₂)_nCH₃, --CHR₂OCOC(CH₃)₃, acylthiomethyl, acyloxy-alpha-benzyl, deltabutyrolactonyl, methoxycarbonyloxymethyl, phenyl, methylsulphinylmethyl, β -morpholinoethyl, dialkylaminoethyl, and dialkylaminocarbonyloxymethyl, in which R₂ is selected from the group consisting of H and lower alkyl; A is selected from the group consisting of S, O, SO, SO₂ and CH₂; and Z is a donor fluorescent moiety.

- 6. The method of claim 5, wherein said sample has a β -lactamase reporter gene.
- 7. The method of claim 6, wherein said β -lactamase reporter gene is in a mammalian cell.
- 8. The method of claim 5, wherein samples having β -lactamase activity are separated from samples having no β -lactamase activity by fluorescent-activated cell sorting.
- 9. The method of claim 5, wherein the β -lactamase activity results from a β -lactamase enzyme that was prepared by mutagenesis of another β -lactamase enzyme.
- 10. The method of claim 5, wherein said compound is a membrane permeant derivative.
- 11. The method of claim 5, wherein the donor fluorescent moiety is selected from the group consisting of:

(X)

(XI)

R₃ is a linker for the fluorescent donor.

12. The method of claim 11, wherein the linker is selected from the group consisting of a direct bond to a heteroatom in the fluorescent moiety, $-O(CH_2)_n$ --, $-S(CH_2)_n$ --, $-N^+R_2$ (CH₂)_n, $-OCONR_2(CH_2)_n$ --, $-O2C(CH_2)_n$ --, $-SCSNR_2(CH_2)_n$ --, $-SCSO(CH_2)_n$ --, $-SCSO(CH_2)_n$ --, $-SCSO(CH_2)_n$ --, $-SCSO(CH_2)_n$ --, and

$$-S$$
 $N(CH_2)m O$

in which R_2 , n and m are as previously defined; and m is an integer from 0 to 4.

13. The method of claim 5, wherein the compound has the structure:

- 14. A method for determining whether a compound of claim 1 is a substrate for a β -lactamase enzyme, comprising: contacting said compound with a sample containing said β -lactamase enzyme; exciting at the wavelength for the said compound when cleaved; and measuring fluorescence.
- 15. The method of claim 14, wherein said compound is a membrane permeant derivative.
- 16. The method of claim 14, wherein said β -lactamase enzyme has been prepared by mutagenesis of another β -lactamase enzyme.