# Designing a Data Warehouse on the Microsoft SQL Server Platform

## UNDERSTANDING THE FUNDAMENTAL CONCEPTS OF A DATA WAREHOUSE



Ana Voicu @ana\_voicu



### Overview



### Goals and purpose of a data warehouse Introducing dimensional modeling

- What are facts and fact tables?
- What are dimensions and dimension tables?
- Star schemas

#### Putting it all together

- The 4-step dimensional design process



### Goals of a Data Warehouse Solution



### What Is a Data Warehouse?



### Problems a Data Warehouse Can Solve





### Requirements of a Data Warehouse Solution

Easily accessible Consistent Fast Foundation for Flexible Secure decision-making



### Responsibilities of a Data Warehouse Designer

Understand the business users

Deliver high-quality, relevant, and accessible information

Sustain the DW environment



### Introduction to Dimensional Modeling



### Dimensional Modeling



Database design method optimized for data warehouse solutions

Popular technique because it addresses two important requirements:

- Deliver data in an understandable format
- Deliver fast query performance

Key word is "simplicity"



### Elements of a Dimensional Model



Facts (the measurements/metrics or facts from your business process)



Dimensions (for providing the context of a business process event)



Attributes (the various characteristics of a dimension)



Star schema (and/or OLAP cubes)



"We sell ice-cream and other products in various locations and measure our achievements over time."

**Jane Poppins** 

Happy Scoopers CEO



### Fact Tables and Facts



Fact table = table that stores the performance measurements resulting from an organization's business process events



#### Fact = a business measure

- Sales
- Profit
- Volume
- Number of transactions



### Fact Tables and Facts



#### Facts answer questions like:

- "What are we doing?" (sell, buy, count)
- "What do we want to achieve?" (more sales, bigger profit)

1 row in the fact table is 1 measurement in real life Fact columns in a fact table should be additive Facts make sense in combination with dimensions

- Linked with foreign keys
- Date/Time dimension is present in most data warehouses



### Example of a Fact Table



#### Sales fact

Date key

Product key

Store key

Employee key

**Transaction #** 

**Unit price** 

Quantity



### Example of a Fact Table





### Example of a Fact Table







### Characteristics of Fact Tables



1:1 relationship between fact table row and real-world event

Most facts should be additive



Foreign keys to dimension tables



Composite key as PK for fact table



### What Are Dimensions?



Companions to a fact table

Textual context associated with a business process measurement event



### Questions Answered by Dimension Tables





### Example of a Dimension Table



#### **Product Dimension**

Product key

Product name

Brand name

Category name

Subcategory name

Package type

Package size

Weight

Weight unit of measure



### Characteristics of Dimension Tables



### No limit for the number of attributes in a dimension table

- Common to have tables with 50 to 100 attributes
- Some dimension tables have only a handful of attributes

#### Have fewer rows than fact tables

- But can be much wider

#### Defined by a single primary key

- Basis for the referential integrity with the fact table

#### **Denormalized**

- Flattened many-to-one relationships within a single dimension table



#### The primary source of

- Query constraints
- Groupings
- Report labels

## Quality of attributes quality of the system

- Use real words vs. cryptic abbreviations
- Minimize codes in the dimension tables

### Dimension Attributes

| Product<br>Key | Name                                  | Category name | Subcategory name         |
|----------------|---------------------------------------|---------------|--------------------------|
| 1              | Beery cotton candy                    | Candy         | French candy             |
| 2              | Cotton candy                          | Candy         | French candy             |
| 3              | Peppermint candy (seasonal)           | Candy         | Fudge                    |
| 4              | Green tea ice cream                   | Ice-cream     | Reduced fat              |
| 5              | Chocolate chip cookie dough ice cream | Ice-cream     | Fat-free frozen<br>dairy |
| 6              | Neapolitan ice cream                  | Ice-cream     | Lactose-free             |
| 7              | Cantuccini                            | Cookie        | Biscotti                 |
| 8              | Chocolate mint cookie                 | Cookie        | Retro snacks             |
| 9              | Lemon cookie                          | Cookie        | Fruity cookies           |



### Dimensional Model



### Dimensional Model



### Dimensional Model



### Dimensional Model as a Star Schema





### Dimensional Model as a Snowflake





### Dimensional Model as a Snowflake



### The Four-step Dimensional Design Process



### Dimensional Design



Is done "with pen and paper"

Focuses on understanding the deliverables of the project

**Consists of four steps** 



### Steps of Dimensional Design



Select the business process

Declare the grain

Identify the dimensions

Identify the facts



### Step 1: Select the Business Process



Low-level activities performed by an organization

Are identified by listening carefully to the business users

#### **Characteristics:**

- Expressed as verbs
- Are supported by an operational system
- Generate KPIs





### Step 2: Identify the Grain

## Specify the detail level of a business process we want to measure

| Example                     | Grain                                          | Questions to ask                                                    |
|-----------------------------|------------------------------------------------|---------------------------------------------------------------------|
| Sales/day                   | One row at the end of the day                  | How much was payed by each customer? Is this important information? |
| Sales/day/order             | One row for every finished order               | What was the most sold product? Is this important information?      |
| Sales/day/order/<br>product | One row for every product sold within an order | Is this enough information?                                         |



### Step 2: Identify the Grain



Specify the detail level of a business process we want to measure

"How do you describe a single row in the fact table?"

Grain declarations are expressed in business terms



### Steps 3 and 4

#### Identify the dimensions

"How do business users describe the data resulting from the process?"

"who, what, where, when, why, how"

#### **Examples:**

- o Date
- Product
- Customer
- Employee

#### Identify the facts

"What is the process measuring?"

All candidate facts must be true to the grain for that fact table

Facts with different grains are split in separate tables

#### **Examples:**

- Sales price
- Sales quantity (or Units sold)



Both business requirements and the realities of the source data should be considered when designing the dimensional model

