Câmeras no Processo de Renderização

- Detalharemos o sistema de coordenadas da câmera
 - Volume de visualização
 - Projeção para 2D
 - Transformação para o viewport

4

Modelo de Câmera Pinhole

- Olhando pelo pinhole, vê-se um volume do espaço
- Raios de luz refletem do objeto e convergem no pinhole
 - Formam a imagem no plano de trás
- Pinhole é onde a câmera sintética estará (centro de projeção)
- O volume visto é o volume de visualização
- No nosso modelo, o plano
 - Está na frente do pinhole

5

Volume de Visualização

•	O volume de visualização
	contém tudo que a câmera vê

- Cônico
 - Aproxima o que o olho vê
 - Matemática cara para recortar objetos nesse cone
- Pode ser aproximado usando um volume retangular
 - Permite recorte mais facilmente
- Volume retangular pode ser usado para projeções paralelas
 - Não simula o olho ou uma câmera

Volume de visualização paralelo

Volume de Visualização

- Dado um volume de visualização
 - É necessário saber como projetar a cena para o plano
- Raios projetores
 - Mapeiam pontos na cena para pontos no filme

7

Volume de Visualização

- · Volumes Paralelos
 - Não importa o quão longe o objeto esteja
 - Aparecerá na cena
 - Basta estar no volume de visualização
 - Raios projetores são paralelos ao vetor direção da câmera
- Volume Perspectivo
 - Raios convergem para o centro de projeção

8

O Plano de Projeção

- O Plano de Projeção é um plano no espaço 3D
 - A cena 3D é projetada num retângulo ("o filme") desse plano
 - Do retângulo ele é mapeado para o viewport na tela
- No nosso modelo de câmera, esse retângulo
 - Será perpendicular a direção da câmera
 - Estará centrado em torno do vetor de direção da câmera
 - Será condizente às dimensões do nosso volume de visualização

O Viewport

- Viewport é a área retangular da sua tela onde a cena é desenhada
 - Corresponde a área da janela disponibilizada pelo SO
 - · Pode ser subdividida

10

Construindo o Volume de Visualização

- Precisamos de saber 6 parâmetros para tirar uma foto
 - Considerando o nosso modelo de câmera sintética
 - Um volume de visualização perspectivo
- Parâmetros
 - 1) Posição da câmera (Position)
 - 2) Direção da câmera (Look vector)
 - 3) Orientação da câmera (Up Vector)
 - Ângulo em torno do Look vector
 - Representado aqui pelo Up vector

11

Construindo o Volume de Visualização

- Parâmetros
 - 4) Razão entre a largura e a altura (Aspect ratio)
 - 5) Ângulo de abertura (Height angle)
 - Quanto maior, mais coisas cabem na cena
 - No entanto, quanto maior, maior a distorção perspectiva
 - 6) Planos de corte (front plane e back plane)
 - Determinam a que distância a cena começa e termina

Parâmetros da Câmera

- Posição
 - Onde a câmera está localizada no sistema de coordenadas do mundo
 - Usaremos o sistema de coordenadas da mão direita

Primalshell
https://commons.wikimedia.org/wiki/File:3D_Cartesian_Coodinate_Handedness.jpg
CC BV-SA 3.0

13

Parâmetros da Câmera

- Orientação: Look vector e Up vector
 - Definida por uma direção (Look vector)
 - Equivalente a escolher um ponto para olhar a partir de sua posição
 - Definida pela orientação da câmera em torno do vetor anterior
 - Up vector desempenha esse papel

14

Parâmetros da Câmera

- Orientação: Look vector e Up vector
 - Look vector
 - Direção para onde a câmera aponta
 - 3 graus de liberdade (DOF)
 - Pode ser qualquer vetor no espaço 3D
 - Up vector
 - Orienta a câmera em torno do Look vector
 - Exemplo
 - Portrait
 - Landscape
 - Up vector e look vector
 - Não pode ser colineares
 - Não precisam ser perpendiculares

15

Sistema de Coordenadas da Câmera

- Equivalente aos eixos x, y, z o SC da câmera usa u, v, w
 - Não confundir com o w das coordenadas homogêneas
- Sistema de coordenadas da mão direita

• w

- Vetor unitário
- Sentido oposto ao Look vector

• v

- É parte do Up vector
- Perpendicular ao look vector
- Vetor unitário (normalizado)

• u

- Unitário e perpendicular a w e v

16

Sistema de Coordenadas da Câmera

• Existem 3 transformações padrões no SC da câmera

- Roll
 - Rotacionar em torno de w
- Yaw
 - Rotacionar em torno de v
- Pitch
 - Rotacionar em torno de u
- Para realizar essas operações
 - Leve a câmera para origem
 - Alinhe seu SC com o do mundo
 - Aplique a transformação desejada
 - Desfaça as anteriores

17

Parâmetros da Câmera

- Aspect Ratio
 - Análogo às dimensões de um filme
 - Razão de largura por altura
 - Aspect ratio do viewport
 - Definido pelo dispositivo
 - Pela janela do SO
 - Ou pelo programadorQuadrado -> 1:1
 - Aspect ratio da janela de visualização (janela do volume de visualização) define a dimensão da imagem que será mapeada para o viewport
 - Boa ideia manter mesmo aspect ratio entre o viewport e a janela de visualização

https://commons.wikimedia.org/w ki/File:Aspect_ratio_4_3_example_ipq CC BY-SA 3.0

18

Parâmetros da Câmera

- Ângulo de visualização
 - Determina a abertura do volume de visualização
 - Influencia a quantidade de distorção perspectiva
 - Nenhuma (projeção paralela)
 - · Muita (wide-angle lenses)
 - No volume de visualização
 - É geralmente definido pelo height angle
 - Esse amarra o width angle pelo aspect ratio
 - Escolher o ângulo de abertura
 - É como escolher a lente

19

Parâmetros da Câmera

- Lentes feitas para longa distancia (zoom)
 - Têm pouca distorção (quase projeção paralela)
- Lentes olho de peixe (Fishe eye ou Wide-angle)
 - Têm muita distorção

20

Parâmetros da Câmera

- Planos de corte
 - Usados para limitar uma faixa de profundidade dos objetos de interesse
 - Definidos por "near plane" e "far plane" distances
 - Objetos fora da faixa são descartados
 - Objetos interceptando as faixas são cortados

	Parâmetros da Câmera		
-	• Planos de corte		
	 Por que utilizar o "near plane"? Coisas muito próximas da câmera bloqueiam a visão dos outros 		
	 Objetos parecem distorcidos Não queremos desenhar coisas localizadas atrás da câmera 		
	22		
22			
	Parâmetros da Câmera		
_	raiametros da Camera		
	 Planos de corte Por que utilizar o "far plane"? 		
	Não queremos desenhar objetos muito longe da câmera Objetos longe são muito pequenos para serem significantes O custo de desenho deles também é alto		
	 Os planos de corte devem posicionados corretamente Não muito próximo, "near plane" Não muito distante, "far plane" 		
23	23		
	Parâmetros da Câmera		
-	Planos de corte em jogos		
	 As vezes a câmera do jogo é posicionada de forma que você pode ver dentro do objeto Parte dele caiu fora do "near plane" e portanto foi removida 		
	Uma técnica para disfarçar esse efeito é fazer o objeto desparecer lentamente		
	24		

Parâmetros da Câmera

- Planos de corte em jogos
 - Todo jogador já viu objetos pulando para dentro do jogo do nada
 - O objeto entra dentro do volume de visualização e é renderizado
 - Solução antiga
 - · Adicionar uma neblina
 - Solução nova
 - Nível de detalhes dinâmico

25

25

Parâmetros da Câmera

- Comprimento focal (Focal Length)
 - Algumas câmera modelam
 - É uma medida de foco ideal
 - Objeto próximo a essa distância
 - Desenhado em foco
 - Objeto longe dessa distância
 - Desenhado embaçado

https://www.youtube.com/watch?v=csZMgQZu4F8 ²

26

Volume de Visualização Paralelo

- Descrevemos até agora o volume perspectivo
- O que descreve um volume paralelo para câmera ortográficas?
 - Tudo do anterior
 - Exceto o ângulo de abertura que será simplesmente a altura

27

Volume de Visualização Paralelo

- Objetos são do mesmo tamanho não importa a distância
- Fácil de projetar do 3D para o 2D

28

29

Perguntas ?????

29