ARITHMETIC Chapter 5

VERANO UNI Numeración

INTRODUCCIÓN

En la vida cotidiana es casi imposible tener una idea respecto de algo si no le damos un valor y en muchos eventos los valores son expresados numéricamente como en:

- La velocidad del bus donde nos desplazamos.
- temperatura del medio ambiente.

- - El tiempo que dura nuestro recreo.

 El precio de la entrada al cine, etc.

Se observa en estos ejemplos que no es suficiente decir rápido o lento, mucho o poco, caliente o frio, caro o barato, etc. En cambio 70 km/h, 15 minutos, 46° o S/ 9.90 nos dan una idea mas cercana a la realidad iHe ahí la importancia de los **NÚMEROS!.**

NUMERACIÓN

DEFINICIÓN

Es parte de la aritmética que se encarga de estudiar la correcta lectura y escritura de los números en general.

NÚMERO

Es un ente matemático sin definición, el cual nos permite cuantificar los elementos de la naturaleza. El número es solamente una idea.

00020

NUMERAL

Es la representación gráfica, mediante signos o símbolos, de un número. Esto significa que un número se puede representar mediante diferentes numerales.

Ejemplo:

```
4 = cuatro = four = tawa = IIII
```

Romanos: I; V; X; L; C; D; M

Hindúes - Árabes: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9

Sistema de numeración

Conjunto de reglas y principios convencionales para representar un número correctamente.

BASE	NOMBRE	CIFRAS
2	Binario	0; 1
3	Ternario	0; 1; 2
4	Cuaternario	0; 1; 2; 3
5	Quinario	0; 1; 2; 3; 4
6	Senario	0; 1; 2, 3; 4; 5
n	Enesimal	0; 1; 2; 3;;(n-1)

PRINCIPIOS

I. DEL ORDEN

Toda cifra en un numeral, tiene un orden, por convención, se indica de derecha a izquierda.

Ejemplo:

Observación:

También podemos encontrar el lugar que ocupa una cifra y se indica de izquierda a derecha.

Ejemplo:

II. DE LA BASE

Todo sistema de numeración posicional tiene una base, que es un número natural mayor que la unidad, el cual indica la cantidad de unidades necesarias y suficientes de un orden cualquiera para formar una unidad del orden inmediato superior. En forma sencilla, la base nos indica la forma de agrupar.

Ejemplo:

EN BASE 10

Es: 12

Agrupando las estrellas:

Es: 13₍₉₎

Observación:

Las cifras, tipos o dígitos son números naturales que siempre son menores que la base.

En base "n" las cifras son: {0;1;2;3;....; (n-1)}

Ejemplo:

$$\overline{m3458}_{(9)} \longrightarrow 0 < m < 9$$

$$30b6_{(8)} \longrightarrow 0 \le b \le 8$$

Nota: La primera cifra es siempre mayor que cero(Significativa)

REPRESENTACIÓN LITERAL DE UN NUMERAL

❖ Numeral de 2 cifras base 10:

$$\overline{ab}$$
 = 10; 11; 12; ...; 98; 99

Numeral de 3 cifras base 5:

$$\overline{cde}_{(5)} = 100_{(5)}; 101_{(5)}; 102_{(5)}; ...; 444_{(5)}$$

Tomar en cuenta:

Letras iguales representan cifras iguales, letras diferentes <u>no</u> necesariamente representan cifras diferentes.

NUMERALES CAPICÚAS

Son aquellos numerales cuyas cifras equidistantes del centro o de los extremos, son iguales.

$$abcba_{(n)}$$

- ❖ Numeral capicúa de 3 cifras en base
 5: 101₍₅₎; 111₍₅₎;.....;444₍₅₎

Ejemplo:

Si el siguiente numeral es capicúa:

$$\overline{(a+1)(a+b)8(7-a)}_{(12)}$$
 Determinar axb.

VALOR ABSOLUTO Y VALOR RELATIVO DE UNA CIFRA:

V. A.: Valor Absoluto

V. R.: Valor Relativo

Ejemplo:

DESCOMPOSICIÓN POLINÓMICA DE UN NUMERAL

Consiste en expresar un número como la suma de sus valores relativos.

Ejemplo:

$$4328 = 4 \times 10^3 + 3 \times 10^2 + 2 \times 10^1 + 8 \times 10^0$$

$$3412_{(7)} = 3 \times 7^3 + 4 \times 7^2 + 1 \times 7^1 + 2 \times 7^0$$

En General:

$$\overline{abcde}_{(n)} = a \times n^4 + b \times n^3 + c \times n^2 + d \times n^1 + e \times n^0$$

Descomposición en Bloques

Consiste en descomponer un numeral tomando de manera conveniente las cifras de 2 en 2, o de 3 en 3, etc.

Ejemplos:

1).
$$\overline{ababab} = \overline{ab}.10^4 + \overline{ab}.10^2 + \overline{ab}$$

$$\overline{ababab} = 10101.\overline{ab}$$

2).
$$\overline{abcabc}_{(n)} = \overline{abc}_{(n)}.n^3 + \overline{abc}_{(n)}$$

$$\overline{abcabc}_{(n)} = \overline{abc}_{(n)}.(n^3 + 1)$$

CAMBIO DE BASE

I. De Base n≠10 a Base 10

El método consiste en descomponer polinómicamente el numero dado y el resultado obtenido será el numeral expresado en base 10.

Ejemplo: Expresar 435₍₈₎ a base 10.

$$435_{(8)} = 4 \times 8^2 + 3 \times 8^1 + 5 \times 8^0$$

$$435_{(8)} = 4 \times 64 + 3 \times 8 + 5 \times 1$$

$$435_{(8)} = 256 + 24 + 5$$

$$435_{(8)} = 285$$

II. De Base 10 a Base m≠10

"El método, consiste en realizar divisiones sucesivas los residuos y el ultimo cociente son las cifras de numeral en base m"

Ejemplo: Expresar 416 a base 9.

01

III. De Base n≠10 a Base m≠10

"El método, consiste en pasar de base n a base 10 y de base 10 finalmente a base m"

Ejemplo: Expresar 1133₍₇₎ a base 9.

$$1133_{(7)} = 416$$
 $416 = 512_{(9)}$

$$\therefore$$
 1133₍₇₎ = 416 = 512₍₉₎

Observación:

Del ejemplo anterior:

$$1133_{(7)} = 512_{(9)}$$

Se

observa: 1133 > 512 : Numerales

7 < 9 : Bases

SE CUMPLE:

"A mayor valor aparente del numeral, menor base y a menor valor aparente del numeral, mayor base"

Mayor(+) Menor(-)

$$(1133_{(7)} = (512_{(9)})$$

Menor(-) Mayor(+)

CASOS ESPECIALES DE CAMBIOS DE BASE

1. De base n a base nk

Procedimiento: De derecha a izquierda formamos bloques de k en k cifras. Pasamos a base 10 cada bloque, con estos valores y en el mismo orden, formamos el numeral en base n^k.

Ejemplo: Expresemos 11100101011011₂ en base 16.

Notemos que pasaremos de base 2 a base 2⁴, entonces formamos, de derecha a izquierda, los bloques de 4 en 4 cifras. Así:

Calculamos el valor de cada bloque:

BASE 2	11(2)	1001(2)	0101(2)	1011(2)
BASE 16	3	9	5	(11)

Finalmente, tendremos: $11100101011011_2 = 395(11)_{(16)}$

2. De base n^k a base n

Procedimiento: Cada cifra la expresamos en base n, teniendo en cuenta de obtener siempre k cifras, completando con ceros a la derecha de cada bloque si es necesario. Con los bloques obtenidos formamos el numeral en base n.

Ejemplo: Expresemos (11)10(32)7₍₁₂₅₎ en base 5.

Notemos que pasaremos de basé 5³ a base 5, entonces expresamos cada cifra a la base 5, debiendo obtener siempre bloques de 3 cifras, completando con ceros cuando sea necesario. Así:

BASE 125	(11)	1	0	(32)	7
BASE 5	021(5)	001(5)	000(5)	112 ₍₅₎	012 (5)

Finalmente, tendremos: $(11)10(32)7_{(125)} = 21001000112012_{(5)}$

PROPIEDADES

NUMERAL DE CIFRAS MÁXIMAS

$$\frac{(n-1)(n-1)(n-1)....(n-1(n-1)_{(n)})}{k \text{ cifras}} = n^{k}-1$$

Ejemplos:
$$999 = 10^3 - 1$$

 $4444_5 = 5^4 - 1 = 624$
 $222222_3 = 3^6 - 1 = 728$

OBSERVACIÓN: Si N =
$$7^9$$
-1 Entonces N = $\underbrace{666666666}_{9 \text{ cifras}}$

INTERVALO DE UN NUMERAL

$$n^{k-1} \le \overline{abc... ...xyz}_{(n)} < n^k$$
 $k \text{ cifras}$

Ejemplos:
$$10^2 \le \overline{abc} < 10^3$$

 $6^3 \le \overline{xyzw}_6 < 6^4$
 $4^5 \le \overline{mnpqrs}_4 < 4^6$

OBSERVACIÓN: Si N =
$$\overline{2xyz}_{(5)}$$

$$\rightarrow 2000_{(5)} \le N < 3000_{(5)}$$

$$\rightarrow 2 \times 5^{3} \le N < 3 \times 5^{3}$$

NUMERAL DE BASES SUCESIVAS

Para determinar el valor de este tipo de expresiones la desarrollamos de abajo hacia arriba. Así por ejemplo:

$$52_{43_{13_{26_{(8)}}}} = 52_{43_{13_{(22)}}} = 52_{43_{(25)}} = 52_{(103)}$$

Sin embargo hay casos particulares en el su desarrollo es inmediato. Así tenemos:

$$\begin{array}{rcl}
 \overline{1a}_{\underline{}} & = a+b+c+...+x+(N) \\
 \overline{} & 1c_{\underline{}} \\
 \overline{} & \cdot \\
 & \cdot \\
 \hline & 1x \\
 & (N)
\end{array}$$

$$\overline{17}_{15}_{15}_{18} = 7+5+9+8+(36) = 65$$

$$19_{18}_{(36)}$$

1. Calcule a + b, si:

$$15425_{(a)} = \overline{a1}_{(b)}.\overline{b3}_{(8)}$$

- A) 10
- B) 11
- C) 12

- D) 13
- E) 14

RESOLUCIÓN

Se Tiene:

$$15425_{(a)} = \overline{a1}_{(b)} \cdot \overline{b3}_{(8)}$$

La base de un SPN es un entero mayor que la unidad, y las cifras de un numeral son enteros no negativos, necesariamente menores que la base.

De dicha igualdad, se observa:

$$...$$
 a + b = 13

Rpta: D

2. Si se cumple que:

$$\overline{a2b}_{(9)} = \overline{a72}_{(c)}$$

Calcule a. c - b

- A) 4
- B) 8

C) 7

- D) 2
- E) 10

RESOLUCIÓN

Se Tiene:

Observemos
$$7 < c < 9$$
 | $c = 8$

Reemplazando:
$$\overline{a2b}_{(9)} = \overline{a72}_{(8)}$$

Descomponiendo Polinómicamente:

$$a \times 9^2 + 2 \times 9 + b = a \times 8^2 + 7 \times 8 + 2$$

Efectuando:
$$17 \times a + b = 40$$

$$\begin{vmatrix} & & & \\$$

$$\therefore$$
 a × c - b = 10

Rpta: E

3. Calcule (b - a), si

$$\overline{ab} = a(a+b)$$

- A) 2
- B) 3 C) 4

- D) 5
- E) 6

RESOLUCIÓN

Por Dato:

$$\overline{ab} = a(a+b)$$

Descomponiendo Polinómicamente ab:

$$a \times 10 + b = a \times (a + b) = a^2 + a \times b$$

$$10 \times a - a^2 = a \times b - b$$

$$a \times (10 - a) = b \times (a - 1)$$

Observemos que a y b son cifras del sistema decimal, solo toman valores del 0 al 9.

Solo cumple: |a = 4|

$$4 \times (10 - 4) = b \times (4 - 1)$$

4. Halle x si:

$$12_{12_{12}(x)} = 13_{13_{(8)}}$$

- A) 6
- B) 7
- C) 8

- D) 9
- E) 10

RESOLUCIÓN

Se Tiene:

$$12_{12_{12}(x)} = 13_{13_{(8)}}$$

Aplicando la Propiedad para Bases Sucesivas:

$$2 + 2 + 2 + x = 3 + 3 + 8$$

 $6 + x = 14$
 $x = 8$

5. Si:

$$\overline{nnmm} = 13.n.\overline{mm}$$

Calcule m +n.

- A) 12
- B) 17

C) 10

D) 8

E) 5

RESOLUCIÓN

Por Dato: $\overline{nnmm} = 13. n. \overline{mm}$

Descomponiendo Polinómicamente:

$$n \times 10^3 + n \times 10^2 + m \times 10 + m = 13 \times n \times (10m + m)$$

Efectuando:
$$1100 \times n + 11 \times m = 13 \times n \times 11 \times m$$

Dividimos entre 11: $100 \times n + m = 13 \times n \times m$

$$100 \times n = 13 \times n \times m - m$$

$$100 \times n = m \times (13n - 1)$$
En dicha igualdad (13n - 1) debe ser divisor de 100.

$$m + n = 10$$

6. Halle a + b, si:

$$\overline{aba}_{(7)} = \overline{11b1}_{(6)}$$

- A) 6
- B) 7
- C) 8

D) 9

E) 10

RESOLUCIÓN

Por Dato:

$$\overline{aba}_{(7)} = \overline{11b1}_{(6)}$$

Descomponiendo Polinómicamente:

$$a \times 7^2 + b \times 7 + a = 1 \times 6^3 + 1 \times 6^2 + b \times 6 + 1$$

Efectuando:

$$50 \times a + 7 \times b = 253 + 6 \times b$$

$$50 \times a + b = 253$$

 $50 \times a + b = 253$
 $50 \times a + b = 3$

$$..$$
 a + b = 8

7. Calcule a . b, si:

$$\overline{aabb} = b \cdot b \cdot b(a+b) \cdot (a+b)$$

- A) 35
- B) 42
- C) 72

D) 28

E) 48

RESOLUCIÓN

Se Tiene:

$$\overline{aabb} = b \cdot b \cdot b(a + b) \cdot (a + b)$$

Descomponiendo Polinómicamente \overline{aabb} :

$$a \times 10^3 + a \times 10^2 + b \times 10 + b = b^3 \times (a + b)^2$$

Efectuando:

$$1100 \times a + 11 \times b = b^3 \times (a + b)^2$$

$$11 \times (100a + b) = b^3 \times (a + b)^2$$

 $\overline{a0b}$

11 ×
$$\overline{a0b}$$
 = b^3 × (a + b)² a + b = 11

Ahora:
$$\overline{a0b} = b^3 \times 11$$
 Solo: $b = 4$
 $\overline{a0b} = 4^3 \times 11 = 704$ $a = 7$

$$...$$
 a × b = 28

Rpta: D

8. Siendo:

$$\overline{{\left(\frac{k}{m}\right)}{\left(\frac{k}{m+2}\right)}{\left(\frac{k}{m+4}\right)}_{(15)}} = \overline{ab9c}_{(k-2)}$$

Calcule a + b + c + m + k

- A) 20
- B) 22
- C) 23

- D) 24
- E) 25

RESOLUCIÓN

Se Tiene: $\frac{k}{\binom{k}{m}\binom{k}{m+2}\binom{k}{m+4}} = \overline{ab9c}_{(k-2)}$

Se Observa: K - 2 > 9 K > 11

Además: K − 2 < 15 K < 17

Ya que en la igualdad de numerales, a menor numeral aparente le corresponde mayor base, y viceversa

Entonces: K: 12, 13, 14, 15, 16

Tenga en cuenta que al dividir k entre m; m + 2 y m + 4, los resultados son enteros.

Reemplazando: $632_{(15)} = \overline{ab9c} = 6 \times 15^2 + 3 \times 15 + 2$

$$ab9c = 1397 \quad a = 1 \quad b = 3 \quad c = 7$$

$$\therefore$$
 a + b + c + m + k = 25

Rpta: E

9. Dado:

$$\overline{abcd} = 57.\overline{ab} + 38.\overline{cd}$$

Calcule a + b + c + d

- A) 15
- B) 16

C) 17

D) 18

E) 19

RESOLUCIÓN

Por Dato:

$$\overline{abcd} = 57.\overline{ab} + 38.\overline{cd}$$

Descomponiendo Polinómicamente en Bloques:

$$\overline{ab} \times 10^2 + \overline{cd} = 57 \times \overline{ab} + 38 \times \overline{cd}$$

 $100 \times \overline{ab} - 57 \times \overline{ab} = 38 \times \overline{cd} - \overline{cd}$

$$43 \times \overline{ab} = 37 \times \overline{cd}$$

$$\frac{\overline{ab}}{\overline{cd}} = \frac{37}{43}$$

$$a + b + c + d = 3 + 7 + 4 + 3 = 17$$

10. Calcule b, sabiendo que:

$$1225_{\overline{(a1)}} = 961_{\overline{(1b)}}$$

- A) 1
- B) 2

C) 3

- D) 4
- E) 5

RESOLUCIÓN

Observe:

$$\overline{a1} < \overline{1b}$$

Reemplazando:

$$1225_{(11)} = 961_{(1b)}$$

Descomponiendo Polinómicamente:

$$1 \times 11^{3} + 2 \times 11^{2} + 2 \times 11 + 5 = 9 \times \overline{1b}^{2} + 6 \times \overline{1b} + 1$$

Ahora:
$$1\overline{1b} \times (3 \times \overline{1b} + 2) \neq \overline{13} \times 41$$

11. Calcule a+b+n,

si
$$\overline{abab}_{(n)} = 481$$
.

- A) 7
- B) 8

C) 9

- D) 10
- E) 11

RESOLUCIÓN

Descomponemos en bloques:

$$\overline{ab}_{(n)} \times n^2 + \overline{ab}_{(n)} = 481 = 37 \times 13$$

$$\overline{ab}_{(n)} \times (n^2 + 1) = 37 \times 13$$
 $n = 6$

$$\overline{ab}_{(6)} = 13 = 21_{(6)}$$
 \Rightarrow a = 2 ; b = 1

$$a + b + n = 2 + 1 + 6 = 9$$

12. Calcule el máximo valor de n en:

$$\overline{ab}_{(9)} = \overline{ba}_{(n)}$$

- A) 63 B) 65 C) 67

- D) 64 E) 66

RESOLUCIÓN

Descomponemos polinómicamente:

$$a \times 9 + b = b \times n + a$$

 $8 \times a = b \times (n - 1) = 64$: Para que n sea máximo, b debe ser mínimo $b = 1$
 $(n - 1) = 64$

$$n = 65$$

Rpta: B

13. Si $\overline{aaaaa}_5 = \overline{mnd3}$. Calcule a+m+n+d.

- A) 11
- B) 12
- C) 13

- D) 10
- E) 15

RESOLUCIÓN

Descomponemos polinómicamente:

$$a \times 5^{4} + a \times 5^{3} + a \times 5^{2} + a \times 5 + a = \overline{mnd3}$$

$$781 \times a = \overline{mnd3}$$

$$1 \times 3 = 2343$$

$$m = 2; n = 3; d = 4$$

$$a + m + n + d = 3 + 2 + 3 + 4 = 12$$

Rpta: B

14. Calcule a si $\overline{2aa}_{(3a)} = \overline{a6a}_7$

- A) 1
- B) 2
- C) 3

- D) 4
- E) 5

RESOLUCIÓN

Descomponemos polinómicamente:

$$2 \times (3a)^{2} + a \times (3a) + a = a \times 7^{2} + 6 \times 7 + a$$

$$2\cancel{1} \times a^{2} = \cancel{4}\cancel{9} \times a + \cancel{4}\cancel{2}$$

$$3 \qquad 7 \qquad 6$$

$$a \times (3a - 7) = 6 = 3 \times 2$$

15. Si se cumple:

$$458_{(m)} = 284_{(n)}$$

 $460_{(m)} = 288_{(n)}$

Determine m+n.

- A) 20
- B) 22 C) 28

- D) 26
 - E) 24

RESOLUCIÓN

Tenemos:
$$460_{(m)}^{m} = 288_{(n)}$$
 $(-)$ $458_{(m)} = 284_{(n)}$ $m = 12$

Descomponemos Polinomicamente:

$$4 \times 12^{2} + 6 \times 12 = 2 \times n^{2} + 8 \times n + 8$$

 $640 = 2 \times n^{2} + 8 \times n$
 $320 = n \times (n + 4)$ $n = 16$

$$m + n = 28$$

16. Calcule n si

- A) 4
- B) 5

C) 6

D) 7

E) 8

RESOLUCIÓN

Por propiedad:

$$3.n + \overline{nn} = 70$$

$$3.n + 10n + n = 70$$

$$n = 5$$

Rpta: B

17. Dada la igualdad:

$$\overline{a(a+1)(a+2)(a+3)}_{(5)} = \overline{bcd}_{(7)}$$

Halle la suma de a, b, c y d.

- A) 10
- B) 12

C) 13

- D) 14
- E) 15

RESOLUCIÓN

Notemos que: a = 1

$$1234_{(5)} = \overline{bcd}_{(7)}$$

$$= 1x5^3 + 2x5^2 + 3x5 + 4 = 194 \longrightarrow A base 7$$

$$= 365_{(7)}$$

$$b=3$$
; $c=6$; $d=5$

$$a+b+c+d=1+3+6+5=15$$

Rpta: E

18. Convertir el número 101101101... 101₍₂₎ de 30 cifras, a base 8. Dé como respuesta la suma de sus cifras.

- A) 50
 - B) 45
- C) 9

- D) 20
- E) 55

RESOLUCIÓN

Tenemos que pasar: De base 2 a base 2³

De derecha a izquierda, formamos bloques de 3 cifras.

Estos serán 10 bloques iguales a: $101_{(2)} = 5$

El numeral en base 8, consta de 10 cifras 5:

55555555₍₈₎

: Suma de cifras = 50

Rpta: A

19.Si:

$$\overline{\left(\frac{9}{m}\right)\left(\frac{6}{m}\right)\left(\frac{15}{m}\right)_{7}} = \overline{(m-1)(m-1)(m-2)(m-1)_{n}}$$

Calcule m.n

- A) 12
- B) 6

C) 18

- D) 24
- E) 15

RESOLUCIÓN

Notemos que: "m" es divisor común de 9, 6 y 15. (pero mayor que 1)

$$m = 3$$

Tenemos:

$$325_{(7)} = 2212_{(n)}$$
 $n = 40$

$$= 3x7^{2} + 2x7 + 5 = 166$$

$$= 2212_{(4)}$$

$$m.n = 3x4 = 12$$

Rpta: A

20. ¿Cuál es la base del mayor numeral de k cifras, que equivale al mayor numeral de 3k cifras del sistema decuplo?

- A) 100
- B) 1000
- C) 100k

- D) 20k
- E) 2k

RESOLUCIÓN

Tenemos:

$$(n-1)(n-1)...(n-1)_{(n)} = 999....999_{(10)}$$

K cifras

3K cifras

$$n^{K} - 1 = 10^{3K} - 1$$
 $n^{K} = 1000^{K}$

$$\therefore$$
 n = 1000

Rpta: B

MUCHAS GRACIAS

ATENTAMENTE SU PROFESOR

