

Bölüm 5: Dizge Algoritmaları

Algoritmalar

- Metinlerle dolu bir dünyada yaşıyoruz.
- E-postalar, mesajlar, sosyal medya paylaşımları, haber metinleri...
- Bilgisayarlarımızda her gün sayısız metinle karşılaşıyoruz.
- Peki, bu metinler nasıl düzenlenir ve analiz edilir?
- Dizge (String) algoritmaları,
 - metinlerde arama,
 - değiştirme,
 - karşılaştırma gibi işlemleri gerçekleştirir.

- Farklı string algoritmaları, farklı çalışma prensiplerine sahiptir.
- Brute Force (Zorlama) Arama:
 - Metnin tamamını tek tek tarayarak arama yapar (basit ama yavaştır).
- Knuth-Morris-Pratt (KMP) Algoritması:
 - Arama paternindeki tekrarlardan faydalanarak daha hızlı arama yapar.
- Boyer-Moore Algoritması:
 - Arama paterninin sonundaki karakterlerden başlayarak arama yapar.
- Rabin-Karp Algoritması:
 - Metnin ve arama paterninin hash değerlerini karşılaştırarak arar.

- Bir metin içinde belirli bir örüntüyü (pattern) arayan basit bir algoritma.
- Naive (Saf) olarak adlandırılır çünkü basit bir yaklaşım kullanır.
- Ortalama ve en kötü durumda O(m * n) zaman karmaşıklığına sahiptir.
 - (m: örüntü uzunluğu, n: metin uzunluğu)

İşleyiş

- Metindeki her konum için örüntünün ilk karakterinin eşleşip eşleşmediğini kontrol edilir.
- Eşleşen karakterlerin tümü için örüntünün tam olarak eşleşip eşleşmediğini kontrol edilir.
 - Eşleşme Durumu: eşleşme pozisyonu rapor edilir.
 - Eşleşmeme Durumu: sonraki pozisyonlar kontrol edilir.
- Metindeki tüm konumlar için adımlar tekrarlanır.

16

- Bir metin içinde belirli bir örüntüyü bulmak için kullanılır.
- Donald Knuth, Vaughan Pratt ve James H. Morris tarafından geliştirilmiştir.
- Ortalama ve en kötü durumda O(m + n) zaman karmaşıklığına sahiptir.
 - (m: örüntü uzunluğu, n: metin uzunluğu)

İşleyiş

- Ön İşleme: Örüntü içindeki her karakter için,
 - eşleşme durumunda geri dönülecek pozisyonları belirleyen,
 - en uzun önek-suffix eşleşmesini bulan bir tablo oluşturulur.
- Örüntü Arama: Metin içinde arama yapılırken,
 - örüntü ile eşleşmeyen karakterlerde geri dönülecek pozisyonlar,
 - tablodan elde edilen geri dönüş değerleri kullanılarak hesaplanır.
- Eşleşme Kontrolü: Eşleşen karakterlerin tümü için örüntünün tam olarak eşleşip eşleşmediği kontrol edilir.

Örnek

Metin: "ababcababcabababd"

Örüntü: "ababd"

Örüntü Tablosu:

a: 0, b: 0, a: 1, b: 2, d: 0

Longest Proper Prefix

30

- Bir metin içinde belirli bir örüntüyü arar.
- Robert S. Boyer ve J Strother Moore tarafından geliştirilmiştir.
- Ortalama ve en kötü durumda O(n/m) zaman karmaşıklığına sahiptir.
 - (n: metin uzunluğu, m: desen uzunluğu)

İşleyiş

- Ön İşleme: Örüntü içindeki her karakter için eşleşme durumunda geri dönülecek pozisyonları belirleyen bir tablo oluşturulur.
- Arama: Metin içinde örüntüyü ararken, eşleşmeyen karakterlerde tablodan yararlanarak geri dönülecek pozisyonlar hesaplanır.
- Eşleşme Kontrolü: Eşleşen karakterlerin tümü için örüntünün tam olarak eşleşip eşleşmediği kontrol edilir.
- Kötü Karakter Kaydırma Kuralı: Eşleşmeyen bir karakter varsa, örüntüdeki bu karakterin metindeki en sağdaki konumu baz alınarak kaydırma yapılır.
- İyi Sone Kuralı: Eşleşmeyen bir alt-dizgi varsa, örüntüdeki bu alt-dizginin metindeki en sağdaki konumu baz alınarak kaydırma yapılır.

Örnek

- Metin: "abccbaabccbaabcbcabbabcabc"
- Desen: "abcbcabbabcabc"
- Desen Tablosu:
 - a: 10, b: 8, c: 7
- Sonuç:
 - Pozisyon 12: "abcbcabbabcabc"

Boyer Moore

Boyer Moore

Boyer Moore

59

- Bir metin içinde belirli bir örüntüyü bulmak için kullanılır.
- Michael O. Rabin ve Richard M. Karp tarafından geliştirilmiştir.
- Ortalama ve en kötü durumda O(n + m) zaman karmaşıklığına sahiptir.
 - (n: metin uzunluğu, m: örüntü uzunluğu)

İşleyiş

- Hash: Örüntü ve metin içindeki alt dizgelerin hash değerleri hesaplanır.
- Eşleşme Kontrolü: Hash değerleri eşleşen alt dizgeler karşılaştırılır.
- Doğrulama: Eşleşme olduğunda, karakter bazında doğrulanır.
- Kaydırma ve Yeniden Hesaplama: Eşleşme olmadığında, yeni bir alt dizge seçilir ve hash değeri yeniden hesaplanır.
- Tekrarlama: Tüm metin boyunca adımlar tekrarlanır.

Örnek

Metin: "abracadabra"

Örüntü: "cad"

İşleyiş:

Hash Değerleri: Metin: "abr", Örüntü: "cad"

Eşleşme Kontrolü: Hash değerleri eşleşmez.

Kaydırma ve Yeniden Hesaplama: Yeni alt dizge seçilir: "bra"

VUATS	1	<u>Values</u>
5 + 1 = 6 T S		U = 1 T = 2 S = 3 A = 4
2 + 3 = 5		V = 5

VUATS	2	<u>Values</u>
$\overline{1 + 4} = 5$ Spurious Hit $T S$ $2 + 3 = 5$		U = 1 T = 2 S = 3 A = 4 V = 5

VUATS	3	<u>Values</u>
$\overline{T \; S} = 6$		U = 1 T = 2 S = 3 A = 4
2 + 3 = 5		V = 5

VUATS	4	<u>Values</u>
2 + 3 = 5 Matched! TS $2 + 3 = 5$		U = 1 T = 2 S = 3 A = 4 V = 5

SON