Proposition 51.28. For any proper convex function f on \mathbb{R}^n and for any vector $x \in \mathbb{R}^n$, the following conditions on a vector $y \in \mathbb{R}^n$ are equivalent.

- (a) $y \in \partial f(x)$.
- (b) The function $\langle z, y \rangle f(z)$ achieves its supremum in z at z = x.
- (c) $f(x) + f^*(y) \le \langle x, y \rangle$.
- (d) $f(x) + f^*(y) = \langle x, y \rangle$.

If (cl(f))(x) = f(x), then there are three more conditions all equivalent to the above conditions.

- (a^*) $x \in \partial f^*(y)$.
- (b*) The function $\langle x, z \rangle f^*(z)$ achieves its supremum in z at z = y.
- (a^{**}) $y \in \partial(\operatorname{cl}(f))(x)$.

The following results are corollaries of Proposition 51.28; see Rockafellar [138] (Corollaries 23.5.1, 23.5.2, 23.5.3).

Corollary 51.29. For any proper convex function f on \mathbb{R}^n , if f is closed, then $y \in \partial f(x)$ iff $x \in \partial f^*(y)$, for all $x, y \in \mathbb{R}^n$.

Corollary 51.29 states a sort of adjunction property.

Corollary 51.30. For any proper convex function f on \mathbb{R}^n , if f is subdifferentiable at $x \in \mathbb{R}^n$, then $(\operatorname{cl}(f))(x) = f(x)$ and $\partial(\operatorname{cl}(f))(x) = \partial f(x)$.

Corollary 51.30 shows that the closure of a proper convex function f agrees with f whereever f is subdifferentiable.

Corollary 51.31. For any proper convex function f on \mathbb{R}^n , for any nonempty closed convex subset C of \mathbb{R}^n , for any $y \in \mathbb{R}^n$, the set $\partial \delta^*(y|C) = \partial I_C^*(y)$ consists of the vectors $x \in \mathbb{R}^n$ (if any) where the linear form $z \mapsto \langle z, y \rangle$ achieves its maximum over C.

There is a notion of approximate subgradient which turns out to be useful in optimization theory; see Bertsekas [19, 17].

Definition 51.17. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be any proper convex function. For any $\epsilon > 0$, for any $x \in \mathbb{R}^n$, if f(x) is finite, then an ϵ -subgradient of f at x is any vector $u \in \mathbb{R}^n$ such that

$$f(z) \ge f(x) - \epsilon + \langle z - x, u \rangle$$
, for all $z \in \mathbb{R}^n$.

See Figure 51.23. The set of all ϵ -subgradients of f at x is denoted $\partial_{\epsilon} f(x)$ and is called the ϵ -subdifferential of f at x.