Définition

Exemple -

Des t-shirts sont vendus à l'unité. Un t-shirt coute 11 €.

Le prix à payer en euros s'obtient en multipliant le nombre de t-shirts achetés par 11.

Le nombre de t-shirts achetés et le prix à payer sont deux grandeurs proportionnelles.

11 est le coefficient de proportionnalité.

Luc a acheté 6 t-shirts.

Le prix en euros qu'il a payé est : $6 \times 11 = 66$.

Hatim a acheté des t-shirts et a payé 132 euros.

Le nombre de t-shirts qu'il a achetés est : $132 \div 11 = 12$.

Les deux grandeurs étudiées sont le nombre de t-shirt et le prix à payer (en €). On peut regrouper les données dans un tableau.

Exemple -

Des stylos sont vendus 2,10 € l'un et 20 € le paquet de dix. On ne peut pas obtenir le prix à payer en multipliant le nombre de stylos achetés par un même nombre : le prix à payer et le nombre de stylos achetés ne sont pas des grandeurs proportionnelles.

Nombre de stylos achetés	1 7 ×21	10
Prix à payer (en €)	2,10	20 ^2

On aurait pu aussi faire le raisonnement suivant. Si les deux grandeurs étaient proportionnelles, alors 10 stylos couteraient 10 fois plus cher qu'un stylo, soit $10 \times 2.1 \in = 21 \in$.

Ce n'est pas le cas (10 stylos coutent en réalité 20 €), donc ces deux grandeurs ne sont pas proportionnelles.

Ш

Propriété

Méthode -

Exemple

Au restaurant scolaire, tous les repas sont au même prix.

Si 3 repas coutent 12,90 € et 2 repas coutent 8,60 €, alors:

5 repas coutent 12,90 € + 8,60 € = 21,50 €

Méthode –

Exemple

En randonnée, Marianne marche toujours à la même vitesse.

En 3 heures, elle parcourt 12 km. Combien parcourt-elle en 5 heures?

En 1 heure, elle parcourt 3 fois moins de distance qu'en 3 heures, soit 4 km.

En 5 heures, elle parcourt 5 fois plus de distance qu'en 1 heure, soit 20 km.

	÷	3	× 5
Temps de marche (en h)	3	1	5
Distance parcourue (en km)	12	4	20

Méthode –

Exemple

Pour fabriquer 10 sacs, une usine a besoin de 20 m² de tissu.

On passe du nombre de sacs fabriqués à la surface de tissu (en m²) en multipliant par 2.

Nombre de sacs fabriqués	10	32	742
Surface de tissu (en m²)	20	64	√×2

On cherche la surface de tissu dont elle aura besoin pour fabriquer 32 sacs.

 $32 \times 2 = 64$. Elle aura besoin de 64 m^2 de tissu.

Ш]

Définitions

Exemple

Sur le plan ci-contre à l'échelle $\frac{1}{200000}$, qu'on peut aussi noter

1 : 200 000, le chemin de randonnée entre les Granges d'Astau et le lac d'Oô mesure environ 3,4 cm. Quelle est sa longueur réelle ?

Une longueur de 3,4 cm sur le plan correspond à une longueur réelle de : 3,4 cm \times 200 000 = 680 000 cm soit 6 800 m ou encore 6,8 km.

Remarque

IV]

Définition

Exemple

L'eau de la mer Méditerranée contient 4 % de sel. Cela signifie que :

- 100 g d'eau contiennent 4 g de sel;
- la proportion de sel dans l'eau est égale à $\frac{4}{100}$;
- la masse de sel et la masse d'eau sont proportionnelles, avec pour coefficient de proportionnalité $\frac{4}{100}$ soit 0,04.

Masse d'eau (en g)	100	×0,04
Masse de sel (en g)	4	~ ~ ~ ~ ~

Propriété

Exemple

Quelle est la masse de sel contenue dans 680 g d'eau de la mer Méditerranée ? On doit calculer 4 % de 680 g : $680 \times \frac{4}{100} = 680 \times 0.04 = 27.2$. Dans 680 g d'eau, il y a 27.2 g de sel.

$$680 \times \frac{4}{100} = 680 \times 0.04 = \frac{27.2}{100}$$

Masse d'eau (en g)	100	680	7	×0,04
Masse de sel (en g)	4	?	2	X 0,04