(19) 대한민국특허청(KR) (12) 등록특허공보(B1)

(51) Int. CI. ⁶ HO2M 3/10		(45) 공고일자 (11) 등록번호 (24) 등록일자	1999년 11월 15일 10-0231214 1999년08월27일
(21) 출원번호 (22) 출원일자	10-1997-0035241 1997년07월26일	(65) 공개번호 (43) 공개일자	특 1999-00 1 1978 1999년 02월 18일
(73) 특허권자	엘지전자주식회사 구자홍	-	
(72) 발명자	서울특별시 영등포구 여의도동 이상균	5 20번지	
(74) 대리인	서울특별시 노원구 상계동 404 최영복	4-26	
심시관 : 김남정			
(54) 인버터 회로의 과전류 보호장치			

명세서

*6*2 L

도면의 간단한 설명

도 1은 종래 브리지 인버터회로의 과전류 보호장치의 회로 구성도

도 2는 종래 브리지 인버터 회로의 과전류 보호장치에 있어서, 트랜지스터(Q1)(Q6)의 구동시 정상전류의 경로상태를 보인 도면

도 3은 종래 브리지 인버터 회로의 과전류 보호장치에 있어서, 트랜지스터(Q1)(Q6)의 오프에 의한 전류 경로를 보이기 위한 도면

도 4는 본 발명 브리지 인버터 회로의 과전류 보호장치의 회로 구성도

도 5은 본 발명 브리지 인버터 회로의 과전류 보호장치에 있어서, 트랜지스터(Q11)(Q16)의 오프에 의한 전류 경로를 보이기 위한 도면

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야의 종래기술

본 발명은 인버터회로에 있어서, 특히 인버터에 흐르는 전류를 감지하여 과전류 발생시 트랜지스터를 보호하는 과전류 보호장치에 트랜지스터의 온 후 오프에따라 모터로 부터 유발되는 지연전류에 의해 과전류의 보호장치의 오동작을 방지하도록 한 인버터 회로의 과전류 보호장치에 관한 것이다.

종래 6-브리지 인버터회로의 구성은 도 1 에 도시된 바와같이,

모터 등의 부하를 구동시키기 위하여 스위칭하는 인버터(1)와, 상기 인버터(1)의 과전류 발생시 소자를 보호하기 위한 과전류 보호회로(2)로 구성된다.

한편, 인버터(1)는 모터의 구동 주파수를 제어하기 위하여 온/오프 스위칭하는 트랜지스터(Q1-Q6)와, 모터 등의 부하에 의한 지연전류로 부터 상기 트랜지스터(Q1-Q6)를 보호하기 위하여 각 소자(Q1-Q6)에 병렬로 연결되어 있는 프리 휠링 다이오드(Free Whelling Diode)(D1-D6)와, DC링크(-)에 접속되어 흐르는 전류에 의한 전압을 유발시키는 분류(Shunt) 저항(Rs1)로 구성되며,

상기 과전류 보호회로(2)는 상기 분류저항(Rs1)에 병렬로 접속되어 단락사고나 부하의 변동에 따른 분류 저항(Rs1)에 유기된 전압값을 감지하여 트랜지스터(Q1-Q6)를 트립(Trip)시켜 보호하게 된다.

미 설명 부호 L1은 모터 등의 부하로 부터 지연전류를 유기되는 리액터 성분, R1은모터 등의 등가저항, C1은 콘덴서이다.

상기와 같이 구성되는 종래 인버터 회로의 동작을 도 1내지 도 3를 참조하여설명하면 다음과 같다.

도 1에 도시된 바와같이, 인버터(1)는 모터 등을 구동시키기 위한 구동 주파수로 스위칭되어 상기 모터 를 구동시키게 되는데,

상기 인버터(1)는 트랜지스터(Q1-Q6)중에서 미도시된 모터의 회전을 제어하기 위한 구동 주파수를 트랜지스터(Q1-Q6)를 이용하여 온/오프 스위칭으로 제어하게 된다.

여기서, 상기 트랜지스터(Q1-Q6)에 병렬로 연결되어 있는 프리 휠링 다이오드(D1-D6)는 미 도시된 모터 등의 부하에 지니는 리액터성분으로 인해 유기되는 전류로 부터 상기 트랜지스터(Q1-Q6)를 보호하게 되 고, 상기 저항(R1)은 모터와등가저항이다.

상기와 같이 인버터(1)의 트랜지스터(Q1-Q6)를 온 시키게 되는 스위칭 모드일 때를 보면 다음과 같다.

도 2에 도시된 바와같이, 상기 트랜지스터(Q1-Q6)중에서 구동신호를 제 1 트랜지스터와 제6트랜지스터(Q1,Q6)를 구동시키게 되면, 상기 제 1,제 6트랜지스터(Q1,Q6)는 온 되게 된다.

상기 트랜지스터(Q1,Q6)의 온에 의해 DC 링크(+)단으로 인가되는 전류는 제 1 트랜지스터(Q1)의 온 스위칭에 의해 인덕터(L1) 및 저항(R1)을 거쳐(A에서 B방향으로) 제 6 트랜지스터(Q6)에 인가된다.

상기 제 6트랜지스터(Q6)에 인가된 전류는 분류저항(R_s1)을 통하여 DC링크(-)단에 인가되는 루프로 정상 적으로 진행하게 된다.

이때, 제 1,제 6트랜지스터(Q1,Q6)를 구동시키고 있을 때 단락사고나 부하의 급작스러운 변동으로 인해 제 1, 제 6트랜지스터(Q1,Q6)에 과전류가 흐르게 될 경우, DC링크(+)단으로 부터 인가되는 전류는 제 1,제 6트랜지스터(Q1)(Q6)를 통해 분류저항(Rs1)으로 인가되고, 상기 전류는 DC링크(-)단으로 흐르게 된 다.

상기 분류저항(Rs1) 양단으로 접속되어 있는 과전류 보호회로(2)는 상기 분류저항(Rs1)에 유기된 전압 값(-,+)을 감지하게 되고, 상기 감지된 전압으로 과전류가 흐른다고 판단되는 경우 트랜지스터(Q1-Q6)를 트립(Trip)시켜 보호하게 된다.

한편, 도 3과 같이 트랜지스터(Q1-Q6)를 온 후 오프시키게 되는 모터 등에 의한 지연전류가 흐르는 프리 휠링 모드일때를 보면.

상기 트랜지스터(Q1,Q6)가 구동되고 있을 때 상기 트랜지스터(Q1,Q6)를 오프시키게 되면, 리액터성분을 모터가 지니고 있음으로 지연전류가 발생하게 된다.

상기 지연전류는 A에서 B방향으로 전류가 흐르게 되고, 상기 트랜지스터(Q6,Q1) 오프로 인해 상기 지연 전류의 경로는 제 5프리 휠링 다이오드(D5)를 통해 제 2프리 휠링 다이오드(D2)로 흐르게 된다.

이때의 지연전류의 경로는 과전류를 보호하기 위한 분류저항(Rs1)에 흐르는전류는 정상상태와 반대로 흐르게 되고, 상기 지연전류로 분류저항(Rs1) 양단에 유기되는 전압값이 역전압(분류저항의 +,-가 역전)으로 걸리게 되고, 이로 인해 과전류 보호회로가 오동작 가능성이 있다.

방영이 이루고자하는 기술적 과제

종래는 이상에서와 같이 과전류 보호회로에 프리 휠리 모드일 때 트랜지스터의 온 후 오프시키게 될 때 리액터성분이 모터의 지연전류로 인해 분류저항에 정상상태와 반대의 전류가 흐르게 되고, 상기 트랜지 스터 보호회로의 오동작 가능성이 있게 되는 문제가 있다.

상기와 같은 문제점을 해결하기 위하여 본 발명은 과전류 보호회로의 오동작을 방지하기 위하여 분류저항으로 프리 휠링 다이오드를 통해 경로로 전류가 흐를 경우 분류저항으로 정장상태와 같은 전류가 흐르도록 한 것으로, 분류저항의 양단에 접속된 과전류 보호회로의 일측을 제 12, 제 14, 제 16 프리 휠링 다이오드의 애노드단에 직접 접속시켜 DC 링크(-)단에 상기 프리 휠링 다이오드의 애노드가 접속되도록하여 상기 프리 휠링 다이오드는 트랜지스터의 에미터단으로 부터 분리시켜 구성시켰다.

발명의 구성 및 작용

본 발명 인버터 회로의 과전류 보호회로의 구성은 도 4에 도시된 바와같이,

모터 등의 부하를 구동시키기 위하여 스위칭하는 인버터(11)와, 상기 인버터(11)를 과전류로 부터 보호하기 위한 과전류 보호회로(12)로 구성되며,

상기 인버터(11)는 모터를 구동주파수를 온/오프 스위칭하여 구동하는 트랜지스터(011-016)와, 상기 트랜지스터(011,013,015)에 콜렉터와 에미터축에 연결되어 과전류로 부터 보호하는 프리 휠링다이오드(D11,D13,D16)와, 상기 트랜지스터(012,014,016)의 콜렉터에 케소드를 연결하고, DC링크(-)단에 공통으로 애노드단에연결되어 있는 프리 휠링 다이오드(D12,D14,D16)와, DC링크(-)단에 접속되어 흐르는 전류에 의한 전압을 유발시키는 분류(Shunt) 저항(Rs11)과, 상기 분류저항(Rs11)의 양단 전압을 감지하여 트랜지스터(01-06)를 과전류로 부터 보호하는 과전류 보호회로(12)이다.

미 설명 부호 L11은 모터 등의 부하로 부터 지연전류를 유기되는 리액터 성분, R11은 모터 등의 등가저항. C11은 콘덴서이다.

상기와 같이 구성되는 본 발명 인버터 회로의 과전류 보호회로를 동작은 도 4 및 도 5를 참조하여 설명 하면 다음과 같다.

모터 등의 구동주파수를 인가하는 인버터(11)의 하단에 위치한 프리 휠링 다이오드(D12,D14,D16)의 애노드단을 DC링크(-)단에 접속시켜 상기 트랜지스터(Q12,Q14,Q16)의 에미터와 분리시키고 콜렉터에 케소드만 연결시켰다.

상기 인버터(11)의 상단에 위치한 프리 휠링 다이오드(D11,D13,D15)는 기존과 동일하게 트랜지스터(Q11,Q13,Q15)에 병렬로 연결하였다.

먼저, 도 4에 도시된 바와같이 모터의 주파수를 주파수를 제어하는 스위칭 모드를 보면,

상기 스위칭 모드에 의해 트랜지스터(Q11)(Q16)의 베이스에 구동신호가 인가되어 상기

트랜지스터(Q11)(Q16)는 온 된다.

A .

상기 트랜지스터(Q11)의 온 에 의해 DC링크(+)단의 전류는 상기 트랜지스터(Q11)의 스위칭으로 인덕터(L11) 및 저항(R11)을 거쳐 트랜지스터(Q16)로 흐르는 전류는 A방향에서 B방향으로 흐르게 된다.

상기 트랜지스터(Q16)를 통하여 전류는 분류저항(Rs11)을 거쳐 DC링크(~)단으로 흐르게 되면, 이때, 과전류 보호회로(12)는 분류저항(RS11)의 양단에 걸리는전압을 감지하여 트랜지스터(Q11-Q16)를 보호하게된다.

상기와 같이 스위칭 모드시의 전류는 기존과 같은 경로로 하여 흐르게 됨을 알수 있다.

한편, 트랜지스터(Q11-Q16)가 온동작 후 오프될 때 지연전류가 흐르는 프리 휠링 모드일 때,

도 5에 도시된 바와같이, 구동되는 트랜지스터(Q11,Q16)를 오프시키게 되면,상기 트랜지스터(Q11,Q16)의 오프에 의해 미도시된 모터등이 가지고 있는 리액터성분으로 인해 유기된 전류는 A 에서 B로 지연된 전류가 흐르게 된다.

상기 지연전류는 DC링크(-)단으로 인가되고, 상기 인가된 전류는 과전류 보호회로(12)에 접속된 프리 휠링 다이오드(D12)의 애노드단으로 인가되는 경로로 흐르게 된다.

상기 지연된 전류는 분류저항(RS11)을 거치지 않고 프리 휠링 다이오드(D12)를 지나는 경로로 흐르게 된다.

발명의 효과

본 발명은 이상에서 설명한 바와같이, 트랜지스터가 오프되어 지연전류가 흐르는 프리 휠링 모드에서 분류저항에 걸리는 정상상태와 반대로 걸리는 전압으로 인해 트랜지스터 보호회로의 오동작을 방지하도록하단의 프리 휘링 다이오드의 애노의 연결을 DC링크(-)단에 직접연결시키므로서, 다른 하드웨어 첨가없이 인버터회로를 프리 휠링 모드에서 안전하게 동작시키는 효과가 있다.

(57) 청구의 범위

청구항 1

부하를 구동하는 인버터회로에 있어서,

스위칭 모드일 때 기존과 동일하게 분류저항(Rs11)을 통과하는 정상전류의 경로를 갖고, 프리 휠링 모드일 때 트랜지스터(Q11-Q16)의 오프로 인한 과전류 보호회로(12)의 오동작을 방지하기 위하여 지연전류를 분류저항(Rs11)으로 부터 우회시키는 경로를 갖는 인버터(11)를 포함하는 것을 특징으로 하는 인버터 회로의 과전류 보호장치.

청구항 2

제 1항에 있어서, 상기 인버터(11)는 하단의 프리 휘링 다이오드(D12, D14, D16)의 케소드롤 하단 트랜지스터(Q12,Q14,Q16)의 콜렉터에 연결하고 에미터로 부터 분리되는 상기 프리 휠링다이오드(D12.D14.D16)의 애노드를 DC링크(-)족에 공통으로 연결시키는 것을 특징으로 하는 인버터 회로의 과전류 보호장치.

도면

도면1

도면2

도면3

도면4

도면5

