班级自动化 7 班 学号220320726	姓名彭尚品	教师签字
实验日期2023/10/9	_预习成绩	总成绩

实验名称 用惠斯通电桥测电阻

一. 实验目的

利用惠斯通电桥测试线性元件的阻值及剩度

二. 实验预习

绘制惠斯通电桥电路图,并说明平衡时满足条件。

电路

平衡状态: C.D两点的电位相等 Rx = 1/2 R = NR rx.rx — 比例臂 R — 比较臂

三. 实验现象及数据记录

1.惠斯通电桥测量电阻

电阻 (阻值)	N	R_s (Ω)	$R_x(\Omega)$	$\Delta R_s (\Omega)$	⊿n (格)	S (格)
1 ΚΩ	1	988.1	988.1	1	//	10869
10 ΚΩ	1	99.7	99.7	0.1	4	3988

2.惠斯通电桥灵敏度测量

N	$R_s(\Omega)$	$R_x(\Omega)$	$\Delta R_s (\Omega)$	△n (格)	S(格)
0.01	982600	982.6	1000	6	589.6
0.1	9880.0	988.0	10	5	4940
1	988.1	988.1	1	11	10869
10	98.7	987	٥.١	6	5922
100	9.8	980	0.1	Ь	588

教师	姓名
签字	MENTS.

四. 实验结论及现象分析

对比不同的 N 值下,惠斯通电桥灵敏度变化,并分析其他可能影响惠斯通电桥灵敏度参量答:

N	S (格)
0.01	589.6
0.1	4940
1	10869
10	5 922
100	588

在惠斯通电桥中的 N 值是两个分压电阻的比值,对电桥的灵敏度有直接影响。当 N 接近 1 时电桥灵敏度最高,N 越远离 1,灵敏度越低

其他可能影响电桥精度的因素:

电源电压: 电源电压的增加可以提高电桥的灵敏度

测量仪器的精度:使用高精度的测量仪器可以提高电桥的灵敏度

温度变化:温度变化会引起电阻值的变化,进而影响电桥的灵敏度

电桥的设计和布局: 电桥的布局也可能影响灵敏度, 减小电桥导线长度可以提高灵敏度

五. 讨论问题

- 1.电桥测电阻为什么不能测量小于1Ω的电阻?
- 2.用什么方法保护电流计,不至于因电流过大而损坏?
- 3. 当电桥平衡后, 若互换电源和检流计位置, 电桥是否仍然平衡? 并证明。
- 答: 1、待测电阻太小时,无法排除导线上的电阻等的干扰,误差较大
- 2、使用检流计测量时,间歇地按下开关;先将滑动变阻器阻值调大;先将检流计灵敏度调低;先将 Rs 设置成最大,然后再调小
- 3、仍然平衡

