BIG DATA (CS5620)

Introduction to MapReduce

Instructor: Dr. Yui Man Lui

Why MapReduce

Big Data

- Big data is everywhere
 - There are 2,161,530,000,000 searches in 2013
 - 92,100,000 pages mentioning Albert Einstein
 - Only 38,400 pages mentioning Yui Man Lui
- Gather as much data as you need and run machine learning / data mining / analytics algorithms to generate insights
- Challenges (3Vs)
 - · Big Volume the quantity of generated and stored data
 - Big Velocity the speed at which the data is generated and processed
 - Big variety the type and nature of the data

Big Data

- · Need a fast way to process large amount of data
- MapReduce provides a framework for parallel computations using a large number of nodes
- MapReduce produces a scale-out, distributed, and faulttolerant solution
- Hadoop / GFS is designed to use MapReduce as the primary method of interaction

What is MapReduce

MapReduce

- MapReduce is inspired by the concept of map and reduced in Lisp
 - A map function takes parameters as a function and a set of values
 - (map 'length '(() (a) (ab) (abc))) → (0 1 2 3)
 - The reduce function is a binary function and a set of values as parameters. It combines all values together using the given function
 - (reduce #'+ '(0 1 2 3)) → 6

MapReduce

- MapReduce is a programming model
- MapReduce provides an abstraction to perform simple computations while hiding the details of parallelization, data distribution, load balancing, and fault tolerance
- Developed in Google as a mechanism for processing large amounts of data
 - Distributed data across thousands of machines
 - Same computations are performed on each CPU with different subsets of data

MapReduce

The world has changed

Google Stanford Hardware (1998)

Google Data Center, Iowa

Need to think parallel

How MapReduce Works

Mapper

- Mapper maps input (key, value) pairs to a set of intermediate (key, value) pairs
 - Maps are individual tasks that transform input data to intermediate records
 - · A given input may map to zero or many output pairs

Reducer

- Reducer reduces a set of intermediate values which share a key (hash key) to a smaller set of values
- Reducer has three primary phases Shuffle, Sort, Reduce
 - Shuffle Take similar data and group them together
 - Sort Groups the data to the reducer by keys
 - Reduce Aggregate the data and summarize it in some way

Schematic of MapReduce Computation

- Split phase partitions the data across different mappers
 - Think they are different machines
- Each mapper executes user defined map code on the partitions in parallel
- Data is shuffled such that there is one reducer per key
 - Think they are different machines
- Each reducer executes the user defined reduce code in parallel

Word Count Example

Summary

- Input data distributed to nodes (servers)
- · Each map works on a split data
- Data exchange between nodes in a "shuffle" process
- Intermediate data of the same key goes to the same reducer
- Reducer summarizes the values
- Reducer output is stored
- Need to provide a functional abstraction for mapper and reducer

Python - Word Count Example

```
from multiprocessing import Pool

if __name__ == '__main__':
    text = loadtext('simple.txt')
    numProcessors = 3
    pool = Pool(processes=numProcessors)
    partitioned_text = chunks(text, 1 + len(text) / numProcessors)

single_count_tuples = pool.map(Map, partitioned_text)
    token_to_tuples = Partition(single_count_tuples)
    term_frequencies = pool.map(Reduce, token_to_tuples.items())

term_frequencies.sort(tuple_sort)

for pair in term_frequencies:
    print('%20s: %5s' % (pair[0], pair[1]))
```

```
def loadtext(path):
    word_list = []
    f = open(path, "r")
    for line in f:
        line = line.replace('.',")
        word_list.append(line)

## " ".join(["a", "b", "c"]).split() -> ['a', 'b', 'c']
        text = (".join(word_list)).split()
        return text

def chunks(text, n):
        data_block = []
        for i in xrange(0, len(text), n):
            data_block.append(text[i:i+n])

        return list(data_block)
```

```
def Partition(lst):
    term_freq = {} # dictionary
    for sublst in lst:
        for w in sublst:
        ## if not a key in dictionary, then create a new key
        if (term_freq.get(w[0]) == None):
            term_freq[w[0]] = [w]
        else:
        ## otherwise append to the end
            term_freq[w[0]].append(w)
        return term_freq
```

```
def Map(lst):
    results = []
    for word in lst:
        results.append((word, 1))

    return results

def Reduce(mapping):
    return (mapping[0], sum(pair[1] for pair in mapping[1]))

def tuple_sort (a, b):
    if (a[1] < b[1]):
        return 1
    elif (a[1] > b[1]):
        return -1
    else:
        return cmp(a[0], b[0])
```

SINGLE COUNT TUPLES

[[('ABC', 1), ('XYZ', 1), ('PQ', 1)], [('XYZ', 1), ('ABC', 1), ('XYZ', 1)], [('PQ', 1)]]

PARTITION DATA

{'XYZ': [('XYZ', 1), ('XYZ', 1), ('XYZ', 1)], 'ABC': [('ABC', 1), ('ABC', 1)], 'PQ': [('PQ', 1), ('PQ', 1)]}

TERM FREQUENCIES

[('XYZ', 3), ('ABC', 2), ('PQ', 2)]

XYZ: 3 ABC: 2 PQ: 2

Python – MRJOB Word Count Example

```
from mrjob.job import MRJob
import re
WORD_RE = re.compile(r"[\w']+")

class MRWordFreqCount(MRJob):
    def mapper(self, _, line):
        for word in WORD_RE.findall(line):
        ## we see this word one time
            yield (word, 1)

def reducer(self, word, counts):
        yield (word, sum(counts))

if __name__ == '__main__':
        MRWordFreqCount.run()
```

```
python mr_wordcount-2.py simple.txt > output.txt

cat output.txt

"ABC" 2
"PQ" 2
"XYZ" 3
```

Python – MRJOB Another Word Count Example

```
from mrjob.job import MRJob

class MRWordFrequencyCount(MRJob):

def mapper(self, _, line):
    yield "chars", len(line)
    yield "words", len(line.split())

## we see one line
    yield "lines", 1

def reducer(self, key, values):
    yield key, sum(values)

if __name__ == '__main__':
    MRWordFrequencyCount.run()
```

- python mr_wordcount_example.py test.txt > output.txt
- > cat output.txt

```
"chars" 464
"lines" 2
"words" 78
```

Natural Join using MapReduce

Natural Join

- · Joining database A and database B
 - Database A has attributes A1, A2, and A3
 - · Database B has attributes A3, A4, and A5
- Find the records that agree on their attribute A3
 - i.e, the third attribute in database A and the first attribute in database B

Natural Join Example

<u>sid</u>	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

sid rating sname age 22 dustin 7 45.0 31 lubber 8 55.5 58 rusty 10 35.0

S1

R1

R1⊳⊲S1 =

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

Natural Join using MapReduce

- Mapper
 - · For each record (A1, A2, A3) in database A
 - Produce a key-value pair (A3, ("A", (A1,A2)))
 - For each record (A3, A4, A5) in database B
 - Produce a key-value pair (A3, ("B", (A4,A5)))
- Reducer
 - · For all of the pairs with same key
 - Construct all pairs comprising one with "A" and other with the first component "B"
 - e.g., ("A", (A1,A2)) and ("B", (A4,A5))
 - Produce a record with (A1, A2, A3, A4, A5)

Natural Join using MapReduce Two-way joins (can be extended to multi-way joins) The join operation actually happens on the reduce side Initial Data Map Phase Shuffle, Sort, Partition & Combine Reduce Phase Phase | 1 Jack | 2 Daniel | 4 Martin | 5 King | 3 Mary | 4 0 Jane | 5 1 London | 2 1 Glasgow | 4 1 Nome | 5 1 London | 4 1 Nome | 4 1 Nome | 5 1 London | 5 Nome | 5 1 London | 5 Nome | 5 Nome

MapReduce Implementation

- Google has a proprietary implementation in C++
 - · Bindings in Java, Python
- Hadoop is an open-source implementation in Java

Supporting Casts for Hadoop

- High Level languages for describing MapReduce applications
 - Pig (data exploration) for data processing written in Pig Latin (dataflow language) developed by Yahoo
 - Hive (data warehousing) Query language HQL developed by Facebook
 - MRJOB supports Amazon's Elastic MapReduce service developed by Yelp
- HBase
 - · Column-oriented distributed DBMS
- ZooKeeper
 - Coordination service for distributed applications