Exercise Sheet 6

MAGIC009 - Category Theory

November 10th, 2023

- 1. *Note.* This exercise is essentially a special case of the theorem that right adjoints preserve limits. The purpose of the exercise is to work out the details of the proof in this simple case.
 - (i) Let \mathbb{C} and \mathbb{D} be two categories with terminal objects. Prove that a right adjoint functor $G: \mathbb{D} \to \mathbb{C}$ preserves the terminal object.
 - (ii) Let \mathbb{C} and \mathbb{D} be two categories with binary products. Prove that a right adjoint functor $G: \mathbb{D} \to \mathbb{C}$ preserves products.
- 2. Let (P, \leq) and (Q, \leq) be partially ordered sets and consider the associated categories \underline{P} and \underline{Q} , respectively.
 - (i) Unfold what is an adjunction between \underline{P} and Q in terms of (P, \leq) and (Q, \leq) .
 - (ii) Unfold what the statement that right adjoints preserve limits amounts to in this case.
- 3. Consider the following concepts defined by duality:
 - an initial object in \mathbb{C} is a terminal object in \mathbb{C}^{op} ,
 - a coproduct in \mathbb{C} is a product in \mathbb{C}^{op} ,
 - ullet a coequalizer in $\mathbb C$ is an equalizer in $\mathbb C^{\mathsf{op}}$,
 - ullet a pushout in $\mathbb C$ is a pullback in $\mathbb C^{\mathrm{op}}$.

Then,

- (i) unfold explicitly what is an initial object, a coproduct, a coequalizer and a pushout purely in terms of \mathbb{C} ,
- (ii) define explicitly initial object, coproducts, coequalisers and pushouts in the category Set of sets and functions.
- 4. Dualise the following statements (without proving them!)
 - "If a category has binary products and equalisers, then it has pullbacks."
 - "If a category has pullbacks and a terminal object, then it has binary products and equalisers."
 - "A terminal object, if it exists, is unique up to unique isomorphism".
 - "A right adjoint preserves terminal objects".
- 5. We have seen that the functor U: Top → Set mapping a topological space to its set of points has both a left and a right adjoint. Contemplate some consequences of this fact in terms of some limits and colimits in Top and Set.