195 Exam Review 3-D formulation = momentum continuity physical meaning constitutive relations for single Phase
thermo - eq of state
hydrodynamic - stress
real flux turbulent flow PandIt mixing Ength incompressible inviscid laminar flow parabola steady state 1-D conduction) temp profile independent, dependent Then depth Osec turbulent (Reynold's Stress)
origin of turbulent stress
approx. velocity profile
mixing length shear stress of furbulent fbw internal turbulence

)	
turbulent intensity	_
	_
eddy diffusivity molecular diffusivity	
Molecular dittusivity)	
Prandl+ Number	
P-clet	_
Reunolds Number scale mom.	
Prand It Number Condinension	
trand Number S group	
Mach	
Control Volume analysis	
Macs 7	
momentum S LOCA	
energy S breakflow	
(cntical flow)	
loss of flow	
loss of heat sink	
TOST OF TICK! STATE	
	-
	j

7	31
	-
	-
- •	_
-	
_	-

····

rbulent Stres				 . <u> </u>
			· · ·	

	_			
		,		 •
	 		<u>-</u>	
		-		
			· · · · · · · · · · · · · · · · · · ·	
	- 			
				 · - -
				 -
				

<u> </u>

Prandlt's Assumption 1/4/- K, VX Ivyl = k, k, dv.l V; = K2 8/x = K2 dVxl 2+= l' dv dvx L= Ky distance from wall P = k2y2 | dVx | dVx 7+ -> To near wall dy = 1 m L Vx = / Tw Inly! thermal diffusivity 8m CST 18t energy transfer by turbulence 9"= Q = 1 Sm CST ST= ldT » EH = 2/Vy// due to Po mixing length q"= plvs/ CldT

-
10.00
-
-
a age
-

1	10
 -	
_	
 	mar

· momentum equation 3 + V. PVV = -VP - V.2+ P3 avg over area, again p is uniform in A Jρ<Vz> + dρ<VzVz> = -d<ρ> pressure -)<TZZ> normal shear wall (fpV/V) -4 2w gravity driver + 092

1-D Balance Applied to Reactor System integrate over primary system · mass balance -> 0 over system

Piviai = prvrar · momentum equation comps. 8 dp<Vz>dz = SpidVzili timerate of change of momentum thru ith component 8 ∂ p < V₂ V₂ ≥ dt = 0 convective acceleration 8-XPdZ = DPpump delta pressure & F. PV: Vidz - Σ(FL+k); (P, V. [V.]) 8 2 (Zi) dZ = 0 & P9Z, dZ = [(Pgl - PgBST Ln) = 0 + pgBDThlh
Th-Tc [[P.V.]] = DRump + [(pgl - pg BATln); - [fl + k), (P.V.)

		1
		-
1.1 2		
	•	
	-	
·		
	_	
		-
	-	
		-

In - thermal driving head
difference in deight of thermal centers obtained only when heat source is below heat sink SG- HX center of gravity profile heat heat flux CORF

	_
-	
	

