-->

Sprawozdanie z Listy nr 1

Sara Żyndul

279686

Zadanie 1

1.1 Opis i rozwiązanie

Rozwiązanie obejmujące iteracyjne wyznaczanie epsilona maszynowego macheps, liczby maszynowej eta oraz liczby MAX znajduję się w pliku task1.jl

1.2 Wyniki

Тур	Iteracyjnie	eps(Typ)	Wartość z float.h
Float16	$9.765625000000 imes 10^{-4}$	$9.765625000000 imes 10^{-4}$	N/A
Float32	$1.192092895508 imes 10^{-7}$	$1.192092895508 imes 10^{-7}$	$1.1920928955078125\times 10^{-7}$
Float64	$\boxed{2.220446049250\times 10^{-16}}$	$\boxed{2.220446049250\times 10^{-16}}$	$\boxed{2.2204460492503131\times 10^{-16}}$

Tabela 1: Porównanie wyników eksperymentalnego wyznaczenia macheps z wartościami zwracanymi przez funkcję eps() oraz danymi zawartymi w pilku nagłówkowym float.h dowolnej instalacji języka C.

Тур	Iteracyjnie	nextFloat()
Float16	$5.960464477539 imes 10^{-8}$	$5.960464477539 imes 10^{-8}$
Float32	$1.401298464325 imes 10^{-45}$	$1.401298464325 imes 10^{-45}$
Float64	$4.940656458412\times 10^{-324}$	$4.940656458412\times 10^{-324}$

Tabela 2: Porównanie wyników eksperymentalnego wyznaczenia eta z wartościami zwracanymi przez funkcję nextfloat(typ(0.0)).

Тур	floatmin()	MIN_{nor}
Float32	$1.175494350822\times 10^{-38}$	1.2×10^{-38}
Float64	$2.225073858507 imes 10^{-308}$	$2.2 imes10^{-308}$

Tabela 3: Porównanie wyników zwracanych przez funkcję floatmin() z wartościami liczby MIN_{nor} podanej na wykładzie.

Тур	Iteracyjnie	floatmax()	MAX (wykład)
Float16	$6.550400000000 imes 10^4$	$6.550400000000 imes 10^4$	N/A
Float32	$3.402823466385\times 10^{38}$	$3.402823466385\times 10^{38}$	$3.4 imes 10^{38}$
Float64	$1.797693134862\times 10^{308}$	$1.797693134862\times 10^{308}$	$1.8 imes 10^{308}$

Tabela 4: Porównanie wyników eksperymentalnego wyznaczenia MAX z wartościami zwracanymi przez funkcję floatmax() oraz danymi z wykładu.

1.3 Interpretacja wyników oraz wnioski

• Zgodność wyników:

Eksperymentalne wyniki iteracyjne zgadzają się (do dokładności wydruku) z funkcjami wbudowanymi (eps, nextfloat, floatmin, floatmax) oraz z wartościami z float.h (gdzie dostępne).

Epsilon maszynowy (macheps):

macheps jest stałą wprost wynikającą z liczby bitów mantysy — jest to odległość między 1.0 a następną reprezentowalną liczbą. $\mathrm{macheps}=2^{1-t}$, gdzie t to liczba bitów znaczących (mantysa + 1). Możemy zauważyć następujący związek między precyzją arytmetyki ϵ a epsilonem maszynowym:

$$macheps = 2 * \epsilon$$

- Eta: eta to najmniejsza dodatnia liczba możliwa do reprezentacji (zwykle podnormalna). nextfloat(0.0) zwraca dokładnie tę wartość.
- Związek eta z MIN_{sub} : eta $\approx MIN_{sub}$ czyli minimalna wartość zdenormalizowana.
- **Związek floatmin z** MIN_{nor} : Wartość MIN_{nor} , czyli najmniejszej znormalizowanej liczby w danym typie zmiennopozycyjnym jest w przybliżeniu równa odpowiednim wartościom zwracanym przez floatmin().
- MAX (największa skończona wartość): prevfloat(Inf(T)) oraz floatmax(T) dają tę samą wartość. Do wykrywania overflowu użyteczne jest isinf(T(value)).

Zadanie 2

2.1 Opis i rozwiązanie

Rozwiązanie obejmujące wyznaczanie 3(4/3-1)-1 w arytmetyce zmiennopozycyjnej, które

według Kahan'a przybliża epsilon maszynowy (macheps) znajduję się w pliku task2.jl.

2.2 Wyniki

Тур	Wartość wzoru Kahan'a	eps()
Float16	$-9.77 imes10^{-4}$	$9.77 imes 10^{-4}$
Float32	$1.1920929 imes 10^{-7}$	$1.1920929 imes 10^{-7}$
Float64	$-2.220446049250313 imes 10^{-16}$	$-2.220446049250313\times 10^{-16}$

Tabela 1: Porównanie wyników wyliczeń wyrażenia Kahan'a K=3(4/3-1)-1 z wartościami zwracanymi przez funkcję eps().

2.3 Wnioski

Można zauważyć że, aby dla badanych typów wyrażenie Kahan'a poprawnie wyznaczało epsilon maszynowy trzeba na wynik operacji nałożyć moduł, a więc macheps=|3(4/3-1)-1|. Błędy w bicie znaku wynikają z różnej ostatniej cyfry mantysy w reprezentacji fl(4/3).

$$K = 3(fl(4/3) - 1) - 1 = 3(4/3 + \delta - 1) - 1 = 3(1/3 + \delta) - 1 = 1 + 3\delta - 1 = 3\delta$$

Jeśli
$$fl(4/3) < 4/3$$
 to $\delta < 0$ i $K < 0$.

Jeśli
$$fl(4/3)>4/3$$
 to $\delta>0$ i $K>0$.

Zadanie 3

3.1 Opis i Rozwiązanie

Zadanie polega na eksperymentalnym sprawdzeniu, czy liczby są równomiernie rozłożone w odpowiednich przedziałach ([1,2],[1/2,1] oraz [2,4]) i sprawdzeniu ile wynosi krok w przedziale (odległość między następnymi liczbami). Rozwiązanie znajduje się w pliku task3.jl.

3.2 Wyniki

k	x ($1+k*2^{-52}$)	20 dolnych bitów mantysy	ok?
0	1.00000000000000000000	000000000000000000000000000000000000000	TAK
1	1.0000000000000000222	00000000000000000000000001	TAK
2	1.000000000000000444	000000000000000000000000000000000000000	TAK

k	x ($1+k*2^{-52}$)	20 dolnych bitów mantysy	ok?
3	1.000000000000000666	000000000000000000011	TAK
4	1.0000000000000000888	000000000000000000000000000000000000000	TAK
5	1.000000000000001110	000000000000000000101	TAK
6	1.000000000000001332	00000000000000000110	TAK
7	1.000000000000001554	000000000000000000111	TAK
8	1.000000000000001776	00000000000000001000	TAK
9	1.000000000000001998	00000000000000001001	TAK
10	1.0000000000000002220	00000000000000001010	TAK

Tabela 1: Sprawdzenie, czy wzór $1+k\times 2^{-52}$ odwzorowuje kolejne liczby Float64 w przedziale [1,2]. Możemy zauważyć, że dla kolejnych wartości k mantysa pokazuje, że kroki między liczbami są pojedyncze. Kolumna 'ok?' sprawdza, czy mantysa odzwierciedla liczbę k oraz czy x jest równy dokładnie $1+k\times 2^{-52}$.

x	nextfloat(x) - x	krok teoretyczny (2^{e-52})	wykładnik e
1.0000000000000000000000000000000000000	$2.220446049250313081*10^{-16}$	$2.220446049250313081*10^{-16}$	0
1.000000000000000022	$2.220446049250313081*10^{-16}$	$2.220446049250313081*10^{-16}$	0
1.00000000000002220	$2.220446049250313081*10^{-16}$	$2.220446049250313081*10^{-16}$	0
1.5000000000000000000	$2.220446049250313081*10^{-16}$	$2.220446049250313081*10^{-16}$	0
1.999999999999978	$2.220446049250313081*10^{-16}$	$2.220446049250313081*10^{-16}$	0

Tabela 2: Próbkowanie na przedziale [1,2]. Tabela przedstawia wybrane wartości x i pozwala sprawdzić, że odległość między następnymi liczbami maszynowymi jest równa 2^{e-52} , gdzie e to rzeczywisty wykładniki liczby x (tutaj e=0).

х	nextfloat(x) - x	krok teoretyczny (2^{e-52})	wykładnik e
5.000000000000000000000000000000000000	$1.110223024625156540*\\ 10^{-16}$	$1.110223024625156540* \\ 10^{-16}$	-1
$5.00000000000000111 * 10^{-1}$	$1.110223024625156540*\\ 10^{-16}$	$1.110223024625156540*\\ 10^{-16}$	-1
7.5000000000000000000000000000000000000	$1.110223024625156540*\\ 10^{-16}$	$1.110223024625156540* \\ 10^{-16}$	-1
$9.999999999999889 * 10^{-1}$	$1.110223024625156540*$ 10^{-16}	$1.110223024625156540*\\ 10^{-16}$	-1

Tabela 3: Próbkowanie na przedziale [1/2,1]. Reszta j.w..

x	nextfloat(x) - x	krok teoretyczny (2^{e-52})	wykładnik e
2.0000000000000000000	$4.440892098500626162*10^{-16}$	$4.440892098500626162*10^{-16}$	1

x	nextfloat(x) - x	krok teoretyczny (2^{e-52})	wykładnik e
2.000000000000000044	$4.440892098500626162*10^{-16}$	$4.440892098500626162*10^{-16}$	1
3.000000000000000000	$4.440892098500626162*10^{-16}$	$4.440892098500626162*10^{-16}$	1
3.999999999999956	$4.440892098500626162*10^{-16}$	$4.440892098500626162*10^{-16}$	1

Tabela 4: Próbkowanie na przedziale [2, 4]. Reszta j.w..

3.3 Wnioski

Możemy zauważyć, że każda liczba zmiennopozycyjna na przedziale [1,2] jest równomiernie rozmieszczona z krokiem $\delta=2^{-52}$. Po wykonaniu eksperymentów na przedziałach [1,2],[1/2,1] oraz [2,4] możemy stwierdzić, że liczby na przedziale $[2^e,2^{e+1}]$ są rozmieszczone równomiernie z krokiem 2^{e-52} .

Zadanie 4

4.1 Opis i Rozwiązanie

Rozwiązanie obejmujące znalezienie pierwszego takiego x w arytmetyce Float64, że 1 < x < 2 oraz $x \times (1/x) \neq 1$ znajduje się w pliku task4.jl.

4.2 Wyniki

4.3 Wnioski

Nawet przy prostych, pojedynczych operacjach w arytmetyce zmiennopozycyjnej trzeba brać pod uwagę możliwość pojawienia się błędu.

Zadanie 5

5.1 Opis i Rozwiązanie

Zadanie polega na wykorzystaniu czterech algorytmów sumowania do obliczenia iloczynu skalarnego dwóch wektorów:

x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049].

Rozwiązanie znajduje się w pliku task5.jl.

5.2 Wyniki

Wynik dokładny iloczynu skalarnego: $-1.00657107000000 imes 10^{-11}$

Algorytm	Float32	Float64
а	-4.999442994594573975	$1.025188136829667182\times 10^{-10}$
b	-4.543457031250000000	$-1.564330887049436569\times 10^{-10}$
С	-5.000000000000000000000000000000000000	0.0000000000000000000000000000000000000
d	-5.000000000000000000000000000000000000	0.0000000000000000000000000000000000000

Tabela 1: Porównanie obliczania iloczynu skalarnego w precyzji pojedynczej i podwójnej poprzez algorytmy dodawania: a) po kolei w przód, b) po kolei od tyłu, c) od największego do najmniejszego oraz d) od najmniejszego do największego.

5.3 Wnioski

Float32 ma za małą precyzję, by uzyskać dobre przybliżenie tego iloczynu skalarnego i daje bardzo duży błąd. Float64 pozwala uzyskać o wiele lepsze przybliżenie iloczynu skalarnego, przy czym algorytmy a i b dają błąd bezwzględny rzędu 10^{-10} , a algorytmy c i d dają mniejszy błąd rzędu 10^{-11} . Grupowanie zgodnie ze znakiem pozwala więc zmniejszyć anulację.

Zadanie 6

6.1 Cel i Rozwiązanie

Zadanie polegało na obliczaniu kolejnych wartości funkcji f i g: $f(x)=\sqrt(x^2+1)-1, \, g(x)=x^2/(\sqrt(x^2+1)+1)$ i określeniu, która z nich jest bardziej wiarygodna (matematycznie f=g).

Rozwiązanie znajduje się w pliku task6.jl

6.2 Wyniki

n	Wartość $f(8^{-n})$	Wartość $g(8^{-n})$
1	$7.782218537318641438 * 10^{-3}$	$7.782218537318706490*10^{-3}$
2	$1.220628628286757333*10^{-4}$	$1.220628628287590136*10^{-4}$
3	$1.907346813823096454*10^{-6}$	$1.907346813826565901*10^{-6}$

n	Wartość $f(8^{-n})$	Wartość $g(8^{-n})$
4	$2.980232194360610265*10^{-8}$	$2.980232194360611588*10^{-8}$
5	$4.656612873077392578*10^{-10}$	$4.656612871993190406*10^{-10}$
6	$7.275957614183425903*10^{-12}$	$7.275957614156956124*10^{-12}$
7	$1.136868377216160297*10^{-13}$	$1.136868377216095674*10^{-13}$
8	$1.776356839400250465*10^{-15}$	$1.776356839400248887*10^{-15}$
9	0.0000000000000000000000000000000000000	$2.775557561562891351*10^{-17}$
176	0.0000000000000000000000000000000000000	$6.475817233170386704*10^{-319}$
177	0.0000000000000000000000000000000000000	$1.011846442682872922*10^{-320}$
178	0.0000000000000000000000000000000000000	$1.581010066691988941*10^{-322}$
179	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000

Tabela 1: Porównanie wartości funkcji f i g dla kolejnych wartości argumentu $x=8^{-1},8^{-2},\ldots$

6.3 Wnioski

Obie funkcje są matematycznie równe, ale w arytmetyce zmiennoprzecinkowej dają różne wyniki z powodu zaokrągleń.

 $f(x)=\sqrt(x^2+1)-1$ traci dokładność przez odejmowanie dwóch bliskich liczb - stąd już dla umiarkowanie małych x wyniki są mniej dokładne, a dla wszystkich $i\geq 9$ funkcja daje dokładne 0 w Float64.

 $g(x)=x^2/(\sqrt(x^2+1)+1)$ jest numerycznie stabilniejsza - unika bezpośredniej anulacji i daje poprawne małe wartości (w tym podnormalne) do momentu rzeczywistego underflow w arytmetyce.

g kontynuuje malejącą skalę aż do bardzo małych rzędów równych 10^{-322} zanim zaniknie; f "zeruje się" dużo wcześniej - to pokazuje, że g zachowuje znaczące cyfry tam, gdzie f ich nie zachowuje.

Zadanie 7

7.1 Cel i Rozwiązanie

Celem zadania było eksperymentalne sprawdzenie jakie wartości h pozwalają najlepiej przybliżyć wartość pochodnej wyliczonej ze wzoru $(f(x_0+h)-f(x_0))/h$. Rozwiązanie zadania znajduję się w pliku task7.jl.

7.2 Wyniki

n	Przybliżenie pochodnej f	Błąd bezwzględny	Wartość (h+1)
0	$2.0179892252685967*10^{0}$	$1.9010469435800585*10^{0}$	2.00000000000000000
1	$1.8704413979316472*10^{0}$	$1.7534991162431091*10^{0}$	1.50000000000000000
2	$1.1077870952342974*10^{0}$	$9.9084481354575926*10^{-1}$	1.25000000000000000
3	$6.2324127929758166*10^{-1}$	$5.0629899760904351*10^{-1}$	1.125000000000000000
4	$3.7040006620351917*10^{-1}$	$2.5345778451498102*10^{-1}$	1.06250000000000000
5	$2.4344307439754687*10^{-1}$	$1.2650079270900871*10^{-1}$	1.03125000000000000
6	$1.8009756330732785*10^{-1}$	$6.3155281618789694*10^{-2}$	1.01562500000000000
26	$1.1694233864545822*10^{-1}$	$5.6956920069239914*10^{-8}$	1.0000000149011612
27	$1.1694231629371643*10^{-1}$	$3.4605178278468429*10^{-8}$	1.0000000074505806
28	$1.1694228649139404*10^{-1}$	$4.8028558907731167*10^{-9}$	1.0000000037252903
29	$1.1694222688674927*10^{-1}$	$5.4801788884617508 * 10^{-8}$	1.0000000018626451
30	$1.1694216728210449*10^{-1}$	$1.1440643366000813*10^{-7}$	1.0000000009313226
49	1.25000000000000000000000000000000000000	$8.0577183114618478*10^{-3}$	1.0000000000000018
50	0.00000000000000000000000000000000000	$1.1694228168853815*10^{-1}$	1.00000000000000000
51	0.00000000000000000000000000000000000	$1.1694228168853815*10^{-1}$	1.00000000000000004
52	-5.000000000000000000000000000000000000	$6.1694228168853815*10^{-1}$	1.0000000000000000000000000000000000000
53	0.00000000000000000000000000000000000	$1.1694228168853815*10^{-1}$	1.000000000000000000
54	0.00000000000000000000000000000000000	$1.1694228168853815*10^{-1}$	1.00000000000000000

Tabela 1: Tabela przedstawia wyliczone w arytmetyce Float64 przybliżone wartości pochodnej dla $h=2^{-n}$ wraz z błędem bezwzględnym obliczonej wartości z wartością dokładną w arytmetyce Float64 równą 0.11694228168853815.

7.3 Wnioski

Gdy nie bierzemy pod uwagę błędów wynikających z arytmetyki zmiennopozycyjnej, przy przybliżaniu wartości pochodnej wzorem podanym w zadaniu im mniejsza jest wartość h, tym bardziej dokładna jest wartość pochodnej.

W arytmetyce Float64 błąd bezwzględny stale się zmniejsza od n=0 aż do n=28, dla którego wartość pochodnej jest najbardziej dokładna. Dla większych n z powodu błędów zaokrągleń i w końcu efektów takich jak 1+h==1 dla n>=53 dokładność spada.