Adaptive Model Predictive Control: Robustness and Parameter Estimation

Mark Cannon

Joint work with:

Matthias Lorenzen Stuttgart
Xiaonan Lu Oxford
Denis Koksal-Rivet Oxford

Motivation

Robust MPC paradigm:

- Uncertainty in model & disturbances affects performance
- Large effort (time & money) spent on model identification offline

Motivation

Adaptive MPC paradigm:

- Identify model online
- Require: robust constraint satisfaction closed loop stability & performance guarantees parameter convergence

Applications

- Uncertain parameters, uncertain demand
- Networks of interacting autonomous agents

Overview

An idea with a long history: e.g. self-tuning control, DMC, GPC \dots [Clarke, Tuffs, Mohtadi, 1987]

Revisited with new tools:

Set membership estimation

[Bai, Cho, Tempo, 1998]

Robust tube MPC

[Langsson, Chryssochoos, Rakovic, Mayne, 2004]

Dual adaptive/predictive control

[Lee & Lee, 2009]

Overview

Recent work on MPC with model adaptation

- Online learning & identification:
 - Persistency of Excitation constraints

[Marafioti, Bitmead, Hovd, 2014]

- Kalman filter-based parameter estimation with covariance matrix in cost
 [Heirung, Ydstie, Foss, 2017]
- Gaussian process regression, particle filtering

```
[Klenske, Zeilinger, Scholkopf, Hennig, 2016]
[Bayard & Schumitzky, 2010]
```

- Robust constraint satisfaction and performance:
 - Constraints based on prior uncertainty set, online update of cost only
 [Aswani, Gonzalez, Sastry, Tomlin, 2013]
 - Set-based identification, stable FIR plant model

[Tanaskovic, Fagiano, Smith, Morari, 2014]

Overview

This talk considers how to

- ensure robust constraint satisfaction;
- update constraints & costs online via set-membership & point estimates;
- enforce parameter convergence via persistency of excitation conditions.

Outline:

- Set membership parameter estimation
- Polytopic tube robust MPC
- Onvex constraints ensuring persistency of excitation

Parameter set estimate

Plant model with unknown parameter vector θ^* and disturbance w:

$$x_{k+1} = A(\theta^*)x_k + B(\theta^*)u_k + w_k$$

Assumption 1: model is affine in unknown parameters

$$x_{k+1} = D_k \theta^* + d_k + w_k$$

$$\begin{cases} D_k = D(x_k, u_k) \\ d_k = A_0 x_k + B_0 u_k \end{cases}$$

Assumption 2: stochastic disturbance $w_k \in \mathcal{W}$ disturbance set $\mathcal{W} \ni 0$ is compact and convex

Unfalsified set: If x_{k+1}, x_k, u_k are known, then $\theta^\star \in \Delta_k$ $\Delta_k = \{\theta: x_{k+1} = D_k\theta + d_k + w, \ w \in \mathcal{W}\}$

Minimal parameter set estimate

Minimal parameter set update:

$$\Theta_{k+1} = \Theta_k \cap \Delta_k$$

Assumption 3: disturbance set is 'tight', i.e. for all $w^0 \in \partial \mathcal{W}$ and $\epsilon > 0$ $\Pr \big\{ \|w_k - w^0\| < \epsilon \big\} \geq p_w(\epsilon)$ where $p_w(\epsilon) > 0 \ \forall \epsilon > 0$

Assumption 4: disturbance is persistently exciting, i.e. $\exists \alpha, \beta, N$ such that

$$\begin{aligned} & \|D_k\| \le \alpha \\ & \sum_{j=k}^{k+N-1} D_j^\top D_j \succeq \beta I \end{aligned}$$

 $\quad \text{for all } k$

Minimal parameter set estimate

If Assumptions 1-4 hold, then
$$\Theta_k \to \{\theta^*\}$$
 as $k \to \infty$ w.p. 1

This follows from:

- $\text{For any } \theta^0 \in \Theta_k \text{, if } \|\theta^* \theta^0\| \geq \epsilon \text{, then}$ $\Pr\{\theta^0 \not\in \Delta_j\} \geq p_w \big(\epsilon \sqrt{\beta/N}\big)$ for all k, all $\epsilon > 0$, and for some $j \in \{k, \ldots, k+N-1\}$
- $\begin{aligned} \textbf{ For any } \theta^0 \in \Theta_0 \text{ such that } \|\theta^0 \theta^*\| \geq \epsilon, \\ & \Pr\{\theta^0 \in \Theta_k\} \leq \left[1 p_w \left(\epsilon \sqrt{\beta/N}\right)\right]^{\lfloor k/N \rfloor} \\ & \text{ for all } k \text{ and all } \epsilon > 0 \end{aligned}$

Minimal parameter set estimate

The complexity of Θ_k is unbounded in general

e.g. Minimal parameter set Θ_k for $k=1,\ldots,6$ with polytopic $\mathcal W$ and Θ_0

Fixed complexity polytopic parameter set estimate

Define
$$\Theta_k = \{\theta : H_{\Theta}\theta \le h_k\}$$
 for fixed $H_{\Theta} \in \mathbb{R}^{n_{\Theta} \times n}$

Update Θ_{k+1} by solving the LPs:

$$[h_{k+1}]_i = \max_{\substack{w_0 \in \mathcal{W}, \dots, w_{N-1} \in \mathcal{W} \\ \theta \in \Theta_k}} [H_{\Theta}]_i \theta$$

subject to

$$\begin{aligned} x_{k-N+2} &= D_{k-N+1}\theta + d_{k-N+1} + w_0 \\ &\vdots \\ x_{k+1} &= D_k\theta + d_k + w_{N-1} \end{aligned}$$

for all $i \in \{1, \ldots, n_{\Theta}\}$

then
$$\Theta_{k+1} \supseteq \Theta_k \cap \bigcap_{j=k-N+1}^k \Delta_j$$
 and
$$\Theta_{k+1} \subseteq \Theta_k \subseteq \dots \subseteq \Theta_0$$

Fixed complexity polytopic parameter set estimate

If Assumptions 1-4 hold, then $\Theta_k \to \{\theta^*\}$ as $k \to \infty$ w.p. 1

This follows from:

 \bullet If $[h_k]_i - [H]_i \theta^* \ge \epsilon$, then

$$\Pr\left\{\{\theta: [H]_i\theta = [h_k]_i\} \cap \bigcap_{j=k-N+1}^k \Delta_j = \emptyset\right\} \ge \left[p_w\left(\frac{\epsilon\beta}{\alpha N}\right)\right]^N$$

for all i, k, and all $\epsilon > 0$

 $\textbf{ 9} \quad \text{For all } \epsilon > 0 \text{ and all } k,$

$$\Pr\Big\{[h_k]_i - [H]_i\theta^* \ge \epsilon\Big\} \le \left\{1 - \left[p_w\left(\frac{\epsilon\beta}{N\alpha}\right)\right]^N\right\}^{\lfloor k/N\rfloor}$$

 $\hbox{ @ Borel-Cantelli lemma applied to } \sum_{k=0}^\infty \Pr\bigl\{[h_k]_i - [H]_i\theta^* \geq \epsilon\bigr\}$ for all i and all $\epsilon>0$

Example: fixed complexity parameter set estimate

Figure: Parameter set Θ_k at time steps $k \in \{0, 1, 2; 10, 25, 50; 100, 500, 5000\}$

Θ set	Volume	Cost*
	(%)	
Θ_0	100	62.22
Θ_1	26.1	61.13
Θ_2	18.3	61.03
Θ_{10}	12.7	60.96
Θ_{25}	8.3	60.93
Θ_{50}	6.3	60.77
Θ_{100}	3.4	59.45
Θ_{500}	0.7	57.94
Θ_{5000}	0.0089	53.95
θ^{\star}	-	52.70

Table: Volume of Θ_k as $\Theta_k/\Theta_0 \times 100\%$; Cost* with same initial x_0 and constraints

Inexact disturbance bounds

What if $\mathcal W$ is not exactly known? Suppose a bounding set $\widehat{\mathcal W}$ is known

Assumption 5: $\widehat{\mathcal{W}}$ is compact and convex, and $\mathcal{W} \subseteq \widehat{\mathcal{W}} \subseteq \mathcal{W} \oplus \rho \mathcal{B}$ for some $\rho \geq 0$, and $\mathcal{B} = \{x : ||x|| \leq 1\}$

Replace $\mathcal W$ with $\widehat{\mathcal W}$ in the fixed complexity polytopic parameter set update then $\theta^\star \in \widehat{\Delta}_k = \{\theta: x_{k+1} = D_k \theta + d_k + w, \ w \in \widehat{\mathcal W}\}$, and

if Assumptions 1-5 hold, then $\Theta_k \to \{\theta^*\} \oplus \rho \sqrt{N/\beta} \mathcal{B}$ as $k \to \infty$ w.p. 1

Noisy measurements

Let $y_k = x_k + m_k$ be an estimate of x_k

Assumption 6: stochastic measurement noise $m_k \in \mathcal{M}$ where $\mathcal{M} \ni 0$ is a compact, convex polytope

Assumption 7: the noise bound is tight, i.e. for all $m^0 \in \partial \mathcal{M}$ and $\epsilon > 0$ $\Pr \big\{ \| m_k - m^0 \| < \epsilon \big\} \ge p_m(\epsilon)$ where $p_m(\epsilon) > 0 \ \forall \epsilon > 0$

Then $\mathcal{M} = \operatorname{co}\{m^{(j)}, j = 1, \dots, n_{\mathcal{M}}\}$ implies $\theta^* \in \operatorname{co}\{\widehat{\Delta}_k^{(j)}, j = 1, \dots, n_{\mathcal{M}}\}$ $\widehat{\Delta}_k^{(j)} = \left\{\theta : y_{k+1} = D(y_k - m^{(j)}, u_k)\theta + d(y_k - m^{(j)}_k, u_k) + w, \ w \in \widehat{\mathcal{W}}\right\}$

If Assumptions 1-7 hold, then $\Theta_k \to \{\theta^*\} \oplus \rho \sqrt{N/\beta} \mathcal{B}$ as $k \to \infty$ w.p. 1

Parameter point estimate

To ensure closed loop l^2 stability, we define the MPC cost in terms of a point estimate $\hat{\theta}_k$ of θ^\star , computed using a LMS filter

- Given a parameter estimate $\hat{\theta}_k$, let $\hat{x}_{1|k} = A(\hat{\theta}_k)x_k + B(\hat{\theta}_k)u_k$
- \bullet Then for a given parameter update gain $\mu>0$ satisfying

$$1/\mu > \sup_{(x,u)\in\mathcal{Z}} ||D(x,u)||^2$$

the point estimate $\hat{ heta}_k$ is defined

$$\tilde{\theta}_k = \hat{\theta}_{k-1} + \mu D^{\top}(x_{k-1}, u_{k-1})(x_k - \hat{x}_{1|k-1})$$

$$\hat{\theta}_k = \Pi_{\Theta_k}(\tilde{\theta}_k)$$

where Π_{Θ_k} is the Euclidean projection onto Θ_k

Here $\mathcal Z$ is the joint state and control constraint set (assumed bounded) and the point estimate update is simply a projection onto Θ_k if $\mu \to 0$

Parameter point estimate

The closed loop l^2 gain property is based on the following result

If $\sup_{k\in\mathbb{N}}\|x_k\|<\infty$ and $\sup_{k\in\mathbb{N}}\|u_k\|<\infty$, then $\hat{\theta}_k\in\Theta_k$ for all k and

$$\sup_{T \in \mathbb{N}, w_k \in \mathcal{W}, \hat{\theta}_0 \in \Theta_0} \frac{\sum_{k=0}^T \|\tilde{x}_{1|k}\|^2}{\frac{1}{\mu} \|\hat{\theta}_0 - \theta^{\star}\|^2 + \sum_{k=0}^T \|w_k\|^2} \le 1$$

where $\tilde{x}_{1|k} = A(\theta^{\star})x_k + B(\theta^{\star})u_k - \hat{x}_{1|k}$ is the 1-step prediction error

Control Problem

Consider robust regulation of the system

$$x_{k+1} = A(\theta)x_k + B(\theta)u_k + w_k$$

with $\theta \in \Theta_k$, $w_k \in \mathcal{W}$, subject to the state and control constraints

$$Fx_k + Gu_k \le \mathbf{1} = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}^\top$$

Assumption (Robust stabilizability):

There exists a set $\mathcal{X}=\{x: Vx\leq \mathbf{1}\}$ and feedback gain K such that \mathcal{X} is λ -contractive for some $\lambda\in[0,1)$, i.e.

$$V\Phi(\theta)x \leq \lambda \mathbf{1}$$
, for all $x \in \mathcal{X}, \theta \in \Theta_0$.

where
$$\Phi(\theta) = A(\theta) + B(\theta)K$$
.

Control Problem

State and control input sequences predicted at time k: $u_{i|k}, x_{i|k}$, $i=0,1,\ldots$ are expressed in terms of decision variables $\mathbf{v}=(v_{0|k},\ldots,v_{N|k})$:

$$u_{i|k} = \begin{cases} Kx_{i|k} + v_{i|k} & i = 0, 1, \dots \\ Kx_{i|k} & \end{cases}$$

The regulation cost is defined in terms of point estimate $\hat{\theta}_k$:

$$J_N(x_k, \hat{\theta}_k, \mathbf{v}_k) = \sum_{i=0}^{N-1} \left(\|\hat{x}_{i|k}\|_Q^2 + \|\hat{u}_{i|k}\|_R^2 \right) + \|\hat{x}_{N|k}\|_P^2$$

where $\hat{x}_{i|k}$, $\hat{u}_{i|k}$ are defined by $\hat{x}_{0|k} = x_k$ and

$$\begin{split} \hat{x}_{i+1|k} &= A(\hat{\theta}_k) \hat{x}_{i|k} + B(\hat{\theta}_k) \hat{u}_{i|k} \\ \hat{u}_{i|k} &= K \hat{x}_{i|k} + v_{i|k} \end{split}$$

and where $P \succeq \Phi^\top(\theta) P \Phi(\theta) + Q + K^\top R K$ for all $\theta \in \Theta_0$

Tube MPC

A sequence of sets (a "tube") is constructed to bound the predicted state $x_{i|k}$, with ith cross section, $\mathcal{X}_{i|k}$:

$$\mathcal{X}_{i|k} = \{x : Vx \le \alpha_{i|k}\}$$

where V is determined offline and $\alpha_{i|k}$ are online decision variables

• For robust satisfaction of $x_{i|k} \in \mathcal{X}_{i|k}$, we require $V\Phi(\theta)x + VB(\theta)v_{i|k} + \bar{w} \leq \alpha_{i+1|k} \quad \text{for all } x \in \mathcal{X}_{i|k}, \ \theta \in \Theta_k$

where
$$[\bar{w}]_i = \max_{w \in \mathcal{W}} [V]_i w$$

3 For robust satisfaction of $Fx_{i|k} + Gu_{i|k} \leq 1$, we require

$$(F+GK)x+Gv_{i|k} \leq 1$$
 for all $x \in \mathcal{X}_{i|k}$

Condition (A) is bilinear in x and θ , but it can be expressed in terms of linear inequalities using a vertex representation of either $\mathcal{X}_{i|k}$ or Θ_k

Tube MPC

We generate the vertex representation:

$$\mathcal{X}_{i|k} = \operatorname{co}\{x_{i|k}^1, \dots x_{i|k}^m\}$$

using the property that $\{x: [V]_r x \leq [\alpha_{i|k}]_r\}$ is a supporting hyperplane of $\mathcal{X}_{i|k}$ for each r:

Hence each vertex $x_{i|k}^j$ is given by the intersection of hyperplanes corresponding to a fixed set of rows of V, and

$$x_{i|k}^j = U^j \alpha_{i|k}$$

for some U^j , determined offline from the vertices of $\mathcal{X} = \{x : Vx \leq 1\}$

Tube MPC

In terms of both hyperplane and the vertex descriptions of $\mathcal{X}_{i|k}$, the robust tube constraints become

- $(F + GK)U^{j}\alpha_{i|k} + Gv_{i|k} \le 1, \ j = 1, \dots, m$

Now condition (B) is linear and (A) can be equivalently written as linear constraints using

Polyhedral set inclusion lemma

Let
$$\mathcal{P}_i = \{x : F_i x \leq f_i\} \subset \mathbb{R}^n \text{ for } i = 1, 2.$$
 Then $\mathcal{P}_1 \subseteq \mathcal{P}_2$ iff

$$\exists \Lambda \geq 0$$
 such that $\Lambda F_1 = F_2$ and $\Lambda f_1 \leq f_2$

Robust MPC online optimization problem

Summary of constraints in the online MPC optimization at time k:

$$\begin{split} Vx_k &\leq \alpha_{0|k} \\ \Lambda^j_{i|k} H_\Theta &= VD(U^j \alpha_{i|k}, KU^j \alpha_{i|k} + v_{i|k}) \\ \Lambda^j_{i|k} h_k &\leq \alpha_{i+1|k} - Vd(u^j \alpha_{i|k}, KU^j \alpha_{i|k} + v_{i|k}) - \bar{w} \\ \Lambda^j_{i|k} &\geq 0 \\ (F + GK)U^j \alpha_{i|k} + Gv_{i|k} &\leq \mathbf{1} \\ \Lambda^j_{N|k} H_\Theta &= VD(U^j \alpha_{N|k}, KU^j \alpha_{N|k}) \\ \Lambda^j_{N|k} h_k &\leq \alpha_{N|k} - Vd(u^j \alpha_{N|k}, KU^j \alpha_{N|k}) - \bar{w} \\ \Lambda^j_{N|k} &\geq 0 \\ (F + GK)U^j \alpha_{N|k} &\leq \mathbf{1} \\ &\qquad \qquad \text{for } i = 0, \dots, N-1, \ j = 1, \dots, m \end{split}$$

Let $\mathcal{F}(x_k, \Theta_k)$ be the feasible set for the decision variables $\mathbf{v}_k, \alpha_k, \Lambda_k$

Robust adaptive MPC algorithm

Offline: Choose Θ_0 , \mathcal{X} , feedback gain K, and compute P

Online, at each time $k = 1, 2, \ldots$

- **I** Given x_k , update the set (Θ_k) and point $(\hat{\theta}_k)$ parameter estimates
- 2 Compute the solution $(\mathbf{v}_k^*, \pmb{\alpha}_k^*, \pmb{\Lambda}_k^*)$ of the QP:

$$\begin{aligned} & \min_{\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k} J(x_k, \hat{\theta}_k, \mathbf{v}_k) \\ & \text{subject to } (\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k) \in \mathcal{F}(x_k, \Theta_k) \end{aligned}$$

 $\mbox{3}$ Apply the control law $u_k^* = K x_k + v_{0|k}^*$

Robust adaptive MPC algorithm

The MPC algorithm has the following closed loop properties:

If $\theta^* \in \Theta_0$ and $\mathcal{F}(x_0, \Theta_0) \neq \emptyset$, then for all k > 0:

- $\bullet^{\star} \in \Theta_k$
- $D(x_k, \Theta_k) \neq \emptyset$
- $Fx_k + Gu_k \le 1$

and the closed loop system is finite-gain l^2 -stable, i.e. there exist constants $c_0,c_1,c_2>0$ such that for all T:

$$\sum_{k=0}^{T} \|x_k\|^2 \le c_0 \|x_0\|^2 + c_1 \|\hat{\theta}_0 - \theta^*\|^2 + c_2 \sum_{k=0}^{T} \|w_k\|^2$$

Numerical example

Second-order linear system with

$$(A(\theta), B(\theta)) = (A_0, B_0) + \sum_{i=1}^{3} (A_i, B_i)\theta_i$$

$$\begin{split} A_0 &= \begin{bmatrix} 0.5 & 0.2 \\ -0.1 & 0.6 \end{bmatrix}, \quad B_0 = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix}, \quad A_1 = \begin{bmatrix} 0.042 & 0 \\ 0.072 & 0.03 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \\ A_2 &= \begin{bmatrix} 0.015 & 0.019 \\ 0.009 & 0.035 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 0 & 0 \\ -0 & 0 \end{bmatrix}, \quad B_3 = \begin{bmatrix} 0.0397 \\ 0.059 \end{bmatrix}. \end{split}$$

- $> \text{ true parameter } \theta^\star = [0.8 \ \ 0.2 \ \ -0.5]^\top \text{, initial set } \Theta_0 = \{\theta: \|\theta\|_\infty \leq 1\}.$
- ho disturbance uniformly distributed on $\mathcal{W}=\{w\in\mathbb{R}^2:\;\|w\|_\infty\leq 0.1\}$, w_k
- \triangleright state and input constraints: $[x]_2 \ge -0.3$ and $u_k \le 1$.

Numerical example: constraint satisfaction

Figure: Realized closed-loop trajectory from initial condition $x_0 = \begin{bmatrix} 3 & 6 \end{bmatrix}^T$ (red line), predicted state tube at time k = 0 (tube cross-sections: blue, terminal set: pink)

Numerical example: constraint satisfaction

Figure: Realized closed-loop trajectory from initial condition $x_0 = \begin{bmatrix} 3 & 6 \end{bmatrix}^T$ (red line), predicted control tube at time k = 0 (tube cross-sections: blue)

Persistent excitation

The PE condition evaluated over a future horizon is nonconvex in $u_{i|k}$, $x_{i|k}$:

(PE):
$$\sum_{i=0}^{N-1} D^{\top}(x_{i|k}, u_{i|k}) D(x_{i|k}, u_{i|k}) \succeq \beta I$$

Let
$$u_{i|k}=\bar{u}_{i|k}+\tilde{u}_{i|k}$$
 and $x_{i|k}=\bar{x}_{i|k}+\tilde{x}_{i|k}$, where $\bar{x}_{0|k}=x_k$ and
$$\bar{u}_{i|k}=K\bar{x}_{i|k}+v_{i+1|k-1}^*$$

$$\bar{x}_{i+1|k}=A(\hat{\theta}_k)\bar{x}_{i|k}+B(\hat{\theta}_k)\bar{u}_{i|k}$$

then
$$D_{i|k} = \bar{D}_{i|k} + \tilde{D}_{i|k}$$
, $\bar{D}_{i|k} = D(\bar{x}_{i|k}, \bar{u}_{i|k})$, $\tilde{D}_{i|k} = D(\tilde{x}_{i|k}, \tilde{u}_{i|k})$

$$D_{i|k}^{\top} D_{i|k} = \tilde{D}_{i|k}^{\top} \bar{D}_{i|k} + \bar{D}_{i|k}^{\top} \tilde{D}_{i|k} + \bar{D}_{i|k}^{\top} \tilde{D}_{i|k} + \tilde{D}_{i|k}^{\top} \tilde{D}_{i|k}$$

$$\succeq \tilde{D}_{i|k}^{\top} \bar{D}_{i|k} + \bar{D}_{i|k}^{\top} \tilde{D}_{i|k} + \bar{D}_{i|k}^{\top} \bar{D}_{i|k}$$

so
$$\tilde{D}_{i|k}^{\top}\bar{D}_{i|k}+\bar{D}_{i|k}^{\top}\tilde{D}_{i|k}+\bar{D}_{i|k}^{\top}\bar{D}_{i|k}\succeq\beta I$$
 implies $D_{i|k}^{\top}D_{i|k}\succeq\beta I$

Persistent excitation

A sufficient condition for $\sum_{i=0}^{N-1} D_{i|k}^{\top} D_{i|k} \succeq \beta_k I$ is an LMI in $\tilde{x}_{i|k}, \tilde{u}_{i|k}, \beta_k$

(PE-LMI):
$$\sum_{i=0}^{N-1} \left(\tilde{D}_{i|k}^{\top} \bar{D}_{i|k} + \bar{D}_{i|k}^{\top} \tilde{D}_{i|k} + \bar{D}_{i|k}^{\top} \bar{D}_{i|k} \right) \succeq \beta_k I$$

This can be expressed in terms of the MPC optimization variables using

$$\begin{split} \tilde{x}_{i|k} &\in \mathcal{X}_{i|k} - \{\bar{x}_{i|k}\} \\ \tilde{u}_{i|k} &\in K(\mathcal{X}_{i|k} - \{\bar{x}_{i|k}\}) + \{v_{i|k}\} - \{v_{i+1|k-1}^*\} \end{split}$$

Hence

$$\begin{split} \tilde{D}_{i|k} &\in \operatorname{co}\Bigl\{D\bigl(U^j\alpha_{i|k} - \bar{x}_{i|k}, K(U^j\alpha_{i|k} - \bar{x}_{i|k}) + v_{i|k} - v_{i+1|k-1}^*\bigr)\Bigr\} \end{split}$$
 so (PE-LMI) is equivalent to an LMI in optimization variables $\mathbf{v}_k, \boldsymbol{\alpha}_k, \beta_k$

Robust adaptive MPC algorithm with PE condition

Offline: Choose Θ_0 , \mathcal{X} , γ , feedback gain K, and compute P

Online, at each time $k = 1, 2, \ldots$:

- Given x_k , update set (Θ_k) and point $(\hat{\theta}_k)$ parameter estimates, and compute $\bar{x}_{i|k}, \bar{u}_{i|k}, i = 0, \dots, N-1$
- 2 Compute the solution $(\mathbf{v}_k^*, \pmb{lpha}_k^*, \pmb{\Lambda}_k^*)$ of the semidefinite program

$$\begin{split} & \min_{\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k, \boldsymbol{\beta}_k} J(x_k, \hat{\boldsymbol{\theta}}_k, \mathbf{v}_k) - \gamma \boldsymbol{\beta}_k \\ \text{subject to } & (\mathbf{v}_k, \boldsymbol{\alpha}_k, \boldsymbol{\Lambda}_k) \in \mathcal{F}(x_k, \boldsymbol{\Theta}_k) \text{ and (PE-LMI)} \end{split}$$

 \blacksquare Apply the control law $u_k^* = Kx_k + v_{0|k}^*$

PE condition: numerical example

Figure: Evolution of closed loop system state x_k with PE weighting ($\gamma=10^3$)

PE condition: numerical example

Figure: Evolution of closed loop system state x_k without PE weighting ($\gamma = 0$)

PE condition: numerical example

Figure: Evolution of closed loop system state x_k with time-varying PE weighting

Time-varying parameters

Assumption (time-varying parameters)

There exists a constant r_{θ} such that the parameter vector θ_k^{\star} satisfies $\theta_k^{\star} \in \Theta_0$ for all k and $\|\theta_{k+1}^{\star} - \theta_k^{\star}\| \leq r_{\theta}$

Define the dilation operator:

$$R_j(\Theta) = \{\theta : H_{\Theta}\theta \le h + jr_{\theta}\mathbf{1}\}\$$

Then the minimal parameter set at k+1 is

$$\Theta_{k+1} = R_1(\Theta_k \cap \Delta_k) \cap \Theta_0$$

and Θ_k is replaced in the tube MPC constraints by

$$\Theta_{i|k} = R_i(\Theta_k) \cap \Theta_0$$

Robust adaptive MPC algorithm with time-varying parameters

Parameter estimate bounds and recursive feasibility properties are unchanged:

Theorem (Closed loop properties)

If $\theta^{\star} \in \Theta_0$ and $\mathcal{F}(x_0, \Theta_0) \neq \emptyset$, then for all k > 0:

- $\bullet^{\star} \in \Theta_k$
- $D(x_k, \Theta_k) \neq \emptyset$
- $Fx_k + Gu_k \leq 1$

But the LMS filter has an additional tracking error, which invalidates the l^2 properties, i.e. "certainty equivalence" no longer applies

However other performance measures can be used in this context, such as the min-max approach of [Lorenzen, Allgöwer, Cannon, 2017]

Numerical example: time-varying parameters

Figure: Parameter set Θ_k at times $k \in \{0, 100, 200, 300, 400, 500\}$ for the time-varying system with $r_\theta = 0.01$

Numerical example: time-varying parameters

Figure: Parameter set Θ_k at times $k \in \{0, 5, 25, 70, 120, 500\}$ for the non-time-varying case for comparison

Conclusions & Outlook

Conclusions:

- Stable adaptive robust MPC is computationally tractable
- Set-membership parameter estimation and LMS point estimates are obvious choices for MPC cost functions and robust constraints
- Nonconvex PE conditions can be relaxed to convex sufficient conditions

Future work

- How to ensure recursive feasibility with PE constraints?
- How to balance requirements for performance and parameter convergence with PE penalty term in cost
- Alternative control objectives and stability properties
- Can we relax the assumption of bounded disturbances?

References:

- M. Lorenzen, M. Cannon, & F. Allgöwer, "Robust MPC with recursive model update"
 Automatica (2019)
- X. Lu, M. Cannon, "Robust adaptive tube model predictive control" ACC (2019)