Plum update

Buonaiuto, Collins, Wolkovich

January 14, 2021

0.1 Basic model

- subset data to include only observations of flowers (BBCH 60-67) [could drop to 65]
- model: BBCH.v ~ doy.observation.centered + (1|species).
 In this situation we are "controling for" doy. Performed a LOO comparision vs. Intercept only, and pooling on slopes and intercepts. I also ran a no-pooling model for species only to understand how the partial pooling is impacting results.
- Ran several different kinds of models.
 - Gaussian with BBCH as is (7,9,11,15,17 etc)
 - Gaussian with scaled BBCH (0,1,2,3,4 etc)
 - Poission with scaled BBCH
 - Oridnal (cumuliative distrubution with logit link function)

0.2 Trait correlation and hypotheses

• pdsi (drought tolerance hypothesis)

- petal length (insect visibility hypothesis)
- fruit diameter (early flowering hypothesis)
- min T (drought tolerance to cold tolderance hypothesis)
- soil type (drought tolerance or resource allocation)
- phylogeny (emailed Joey Shaw on 14 DEC 2020 for newick file...no response)

0.3 Some plots

Teaser

FLS and Climate Change

	species	Wight_1915	FNA	Agree
1	angustifolia	В	B/W	N
2	gracilis	В	B/W	N
3	umbellata	В	$\mathrm{B/W}$	N
4	nigra	В	B/W	N
5	alleghaniensis	В	\mathbf{B}	
6	geniculata	В	\mathbf{B}	Y
7	maritima	В	В	Y
8	texana	В	$\mathrm{B/W}$	N
9	rivularis	B/W	B/W	Y
10	mexicana	B/W	\mathbf{B}	N
11	munsonia	B/W	$\mathrm{B/W}$	
12	americana	W	B/W	N
13	hortulana	\mathbf{W}	B/W	N
14	$\operatorname{subcordata}$	W	W	Y

Figure 1: The two main sources that describe FLS in American plums do it pretty differenty

Figure 2: Basic model comparing no-pooling and partial-pooling. Seems like the uncertainty intervals are the main differences

Figure 3: This is gaussian rescaled (BBCH 0,1,2,3 etc), but y axis transfored back to original BBCH. Controlling for DOY.

Figure 4: Same as above but poisson

Figure 5: Ordinal vs. rescaled gaussian. (need to fix y axes)

Figure 6: Modeled PDSI (red) and FLS (black) for each species plotted on same axis. Next step: Joint model

Figure 7: Seems like leaves are more sensitive than flowers