CPE301 - SPRING 2019

Design Assignment 2B

Student Name: Francisco Mata Carlos

Student #: 1012593607

Student Email: matacarl@unlv.nevada.edu

Primary Github address: https://github.com/chicosisco/da_sub.git

Directory: repository/cpe301/DesignAssignments/DA2B

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

a. Atmega328p Xplained Mini

b. Multi-functional Shield

c. Atmel Studio 7

Block diagram with pins used in the Atmega328P

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

C Code

```
#include <avr/interrupt.h>
#include <util/delay.h>
int main(void)
       DDRB = (1 << 4); //PB4 as an output
       DDRB = 0XFF;
       PORTB = 0xFF; // setting portb high, which turns led off
       PORTD = 1<<2; //pull-up activated
       EICRA = 0x2; //make INTO falling edge triggered
       EIMSK= (1<<INT0); // enable external interrupt 0</pre>
       sei (); // enable interrupt
while (1)
                //waiting for interruption
       ISR (INTO vect) // ISR for external interrupt 0
{
       PORTB ^= (1<<4); //toggle PORTB4
      <u>_delay_ms(1250);</u> // 1.25s delay
}
Assembly Code
; DA2B Assem.asm
; Created: 3/9/2019 2:06:22 AM
; Author : Francisco Mata Carlos
.include <m328pdef.inc>
.ORG 0 ;location for reset
JMP MAIN
.ORG 0x02 ;location external interrupt 0
JMP EX0 ISR
MAIN:
       SBI DDRB, 5 ;setting PB5 as output
       SBI PORTB, 5 ;settng PB5 high so led is off
       LDI R20, HIGH(RAMEND)
       OUT SPH, R20
       LDI R20, LOW(RAMEND)
       LDI R20, 0X2 ;initializing stack
       LDI R20, 0X2 ; make INTO falling edge triggered
       STS EICRA, R20
       SBI DDRB, 4 ;set PORTB4 as output
       SBI PORTB, 4 ;set PORTB4 high to keep led off until interrupt
       SBI PORTD, 2 ;pull-up activated
```

LDI R20, 1<<INTO; enable INTO
OUT EIMSK, R20; masking specific bit

```
SEI; enable interrupts
HERE: JMP HERE
EX0_ISR:
     IN R21, PORTB ; PORTB an input
     LDI R22, (1<<4) ;00100000
     EOR R21, R22 ;toggl led
     OUT PORTB, R21 ;turn on led
     rcall delay_1s
     rcall delay_100ms
     rcall delay 100ms
     rcall delay 50ms
     RETI ; return to next instruction after interrupt
_____
; Below is the time delay subroutine used for the code above
_____
delay_1s:
     rcall delay_100ms
     rcall delay_100ms
     rcall delay_100ms
     rcall delay 100ms
     rcall delay_100ms
     rcall delay_100ms
     rcall delay_100ms
     rcall delay_100ms
     rcall delay 100ms
     rcall delay_100ms
     ret
delay_100ms:
     rcall delay_10ms
     ret
delay_50ms:
   rcall delay 10ms
     rcall delay 10ms
     rcall delay_10ms
     rcall delay_10ms
     rcall delay_10ms
     ret
delay_10ms:
     rcall delay_1ms
     rcall delay_1ms
```

```
rcall delay_1ms
       rcall delay 1ms
       rcall delay 1ms
       rcall delay_1ms
       rcall delay_1ms
       rcall delay_1ms
       rcall delay_1ms
       rcall delay_1ms
       ret
delay_1ms: ;1ms per loop
       rcall delay_1ms_16
       rcall delay_1ms_16
       rcall delay_1ms_16
       rcall delay_1ms_16
       ret
delay_1ms_16:
       push r16 ;save the value in r16
       ldi r16, 249;3984 cycles
delay_1a:
             ;1 cycle
       nop
       dec r16
       brne delay_1a ;2 cycles
       pop r16 ;restore the value in r16
       ret
```

3. DEVELOPED MODIFIED CODE OF TASK 2/A from TASK 1/A

Same as above

4. SCHEMATICS

5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

TASK1A_Code

1. Implement Design Assignment 2A.2 using INTO (PD2 pin) interrupt mechanism.

The snapshot below shows the time delay of about 1.25s. A time delay line was used above the while loop in order to inspect the delay being used.

```
* Created: 3/9/2019 12:50:59 AM
  * Author : Francisco Mata Carlos
                                                                        Processor Status
                                                                                                 Value
                                                                             Name
 #define F_CPU 16000000UL // clock
 #include <avr/io.h> //header files
                                                                         Program Counter 0x00000053
 #include <avr/interrupt.h>
                                                                         Stack Pointer
                                                                                          0x08FD
 #include <util/delay.h>
                                                                                          0x0000
                                                                         X Register
□int main(void)
                                                                         Y Register
                                                                                          0x08FF
 {
                                                                         Z Register
                                                                                          0x0000
                                                                         Status Register
                                                                                          IITHSVNZC
     DDRB = (1 << 4); //PB4 as an output
     DDRB = 0XFF;
                                                                                          20000022
                                                                         Cycle Counter
     PORTB = 0xFF; // setting portb high, which turns led off
                                                                         Frequency
                                                                                          16.000 MHz
     PORTD = 1<<2; //pull-up activated
                                                                         Stop Watch
     EICRA = 0x2; //make INTO falling edge triggered
                                                                                           1,250,001.38 µs
     _delay_ms(1250); // 1.25s delay
                                                                        ■ Registers
     EIMSK= (1<<INT0); // enable external interrupt 0
     sei (); // enable interrupt
                                                                          R00
                                                                                           0x00
                                                                          R01
                                                                                           0x00
                                                                          R02
                                                                                           0x00
 while (1)
               //waiting for interruption
     {
                                                                          R03
                                                                                           0x00
     3
                                                                          R04
                                                                                           0x00
                                                                          R05
                                                                                           0x00
     ISR (INTO_vect) // ISR for external interrupt 0
                                                                          R06
                                                                                           0x00
     PORTB ^= (1<<4); //toggle PORTB5
_delay_ms(1250); // 1.25s delay
                                                                          R07
                                                                                           0x00
                                                                          R08
                                                                                           0x00
```

TASK1B_Assembly

2. Implement Design Assignment 2A.2 using INTO (PD2 pin) interrupt mechanism.

The snapshot below shows the time delay of about 1.25s. A subroutine time-delay was placed before the while loop in order to inspect the delay being used.

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)

7. VIDEO LINKS OF EACH DEMO Assembly Code

https://youtu.be/YsqnW_ZT4O8

C Code

https://youtu.be/PUeKfl3emqU

8. GITHUB LINK OF THIS DA

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

NAME OF THE STUDENT