A POTENTIOKINETIC DETERMINATION OF CORROSION RATES IN ARTIFICIAL SEAWATER-HYPOCHLORITE SOLUTIONS

Joseph Maurice Price

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93940

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

A POTENTIOKINETIC DETERMINATION OF CORROSION RATES IN ARTIFICIAL SEAWATER - HYPOCHLORITE SOLUTIONS

bу

Joseph Maurice Price

June 1976

Thesis Advisor:

Richard A. Reinhardt

Approved for public release; distribution unlimited.

T174155

Unclassified

	REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
. 1	REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
	A POTENTIOKINETIC DETERMI CORROSION RATES IN ARTIFI		s. TYPE OF REPORT & PERIOD COVERED Master's Thesis June 1976
	HYPOCHLORITE SOLUTIONS	CIAL SEAWAIEK-	6. PERFORMING ORG. REPORT NUMBER
	Autном(.) Joseph M. Price		6. CONTRACT OR GRANT NUMBER(e)
. 1	PERFORMING ORGANIZATION NAME AND ADDRES Naval Postgraduate School Monterey, California 9394		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
١.	CONTROLLING OFFICE NAME AND ADDRESS		June 1976
	Naval Postgraduate School Monterey, California 9394		13. NUMBER OF PAGES 111
4.	MONITORING AGENCY NAME & ADDRESS(It ditter	ent from Controlling Office)	18. SECURITY CLASS. (of this report)
	Naval Postgraduate School		Unclassified
	Monterey, California 9394	. 0	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
	DISTRIBUTION STATEMENT (of this Report)		
	Approved for public relea	se; distributi	on unlimited.

17. DISTRIBUTION STATEMENT (of the electract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Corrosion rate, Potentiostat, Potentiokinetic, Artificial seawater, Sodium hypochlorite, seawater-hypoclorite solution.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The corrosion rates of various metal alloys in artificial seawater and artificial seawater-CLOROX solutions was determined potentiokinetically employing the cathodic overvoltage-intercept method. The results obtained in the artificial seawater system agreed quite well with those obtained from previous ocean immersion tests. With the exception of an aluminum alloy, the effect of the addition of CLOROX was the

A Potentiokinetic Determination of Corrosion Rates in Artificial Seawater - Hypochlorite Solutions

bу

Joseph Maurice Price Lieutenant Commander, United States Navy B.S., Illinois Institute of Technology, 1964

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL June 1976

ABSTRACT

The corrosion rates of various metal alloys in artificial seawater and artificial seawater-CLOROX solutions was determined potentiokinetically employing the cathodic overvoltage-intercept method. The results obtained in the artificial seawater system agreed quite well with those obtained from previous ocean immersion tests. With the exception of an aluminum alloy, the effect of the addition of CLOROX was the same for all materials with the corrosion potential becoming more positive and the alloy less resistant to corrosion.

TABLE OF CONTENTS

I.	INTE	RODUCTION	14
	Α.	BACKGROUND	14
	В.	CORROSION PHENOMENA	16
II.	EXPE	ERIMENTAL PROCEDURES	20
	Α.	THE PROBLEMS OF DIRECT METHODS OF DETERMINING CORROSION RATES IN SEAWATER	20
	В.	POTENTIOKINETIC DETERMINATION OF CORROSION CURRENT DENSITY	21
	С.	CHOICE OF CORROSIVE MEDIUM	24
	D.	METAL ELECTRODES	26
	E.	EQUIPMENT	29
	F.	EXPERIMENTAL PROCEDURES	37
	G.	PROBLEMS	38
III.	PRES	SENTATION OF DATA	40
	Α.	PREPARATION OF DATA FOR ANALYSIS	40
		DETERMINATION OF CORROSION RATES	
IV.	CONC	CLUSIONS	71
	Α.	DETERMINATION OF CORROSION RATES IN ARTIFICIAL SEAWATER	71
	В.	CORROSIVITY OF THE HYPOCHLORITE ION IN ARTIFICIAL SEAWATER	71
	C.	CHANGE IN CORROSION POTENTIAL WITH HYPOCHLORITE ION CONCENTRATION	76
	D.	SUMMARY	76
ν.	RECO	OMMENDATIONS	77
APPEN	NDIX	A PREPARATION OF ARTIFICIAL SEAWATER	79
APPEN	VDIX	B COMPOSITION OF METALLIC SAMPLES	84

APPENDIX C TABLES OF EXPERIMENTAL DATA	86
LIST OF REFERENCES	109
INITIAL DISTRIBUTION LIST	111

LIST OF TABLES

TABLE	I	EMF Series	19
TABLE	II	Summary of Electrochemical Information for Experimental Trials	43
TABLE	III	Comparison of Corrosion Rates in Seawater Determined from Present Work with Previously Measured Values	45
TABLE	IA	Potentiokinetically Determined Values of Corrosion Rates in Artificial Seawater	48
TABLE	V	Definition of Rabald's Symbols	72
TABLE	VI	Corrosion Resistance of Metals in Hypo- chlorite Solutions	73
TABLE	VII	Suitability of Metals for Use in Hypo- chlorite-Seawater Systems	75
TABLE	VIII	Formula for 1 kg of Artificial Seawater	81
TABLE	IX	Comparison of the Composition of Natural and Artificial Seawaters	82
TABLE	X	Comparison of pH and Conductivity of Standard and Artificial Seawaters	83
TABLE	XI	Chemical Composition, Equivalent Weight and Density of Metal Samples	85
TABLE	XII	Copper in Untreated Seawater	87
TABLE	XIII	Copper in Seawater Treated with 2.123 ml CLOROX	88
TABLE	XIA	Copper in Seawater Treated with 4.245 ml CLOROX	89
TABLE	XV	Copper in Seawater Treated with 8.49 ml CLOROX	90
TABLE	XVI	Nickel in Untreated Seawater	91
TABLE	XAII	Nickel in Seawater Treated with 2.123 ml CLOROX	92

TABLE	XVIII	Nickel in Seawater Treated with 4.24 ml CLOROX	93
TABLE	XIX	Nickel in Seawater Treated with 8.49 ml CLOROX	94
TABLE	XX	Naval Brass in Untreated Seawater	95
TABLE	XXI	Naval Brass in Seawater Treated with 8.49 ml CLOROX	96
TABLE	XXII	Phosphor Bronze in Untreated Seawater	97
TABLE	XXIII	Phosphor Bronze in Seawater Treated with 8.29 ml CLOROX	98
TABLE	VXIV	Copper-Nickel Alloy in Untreated Seawater-	99
TABLE	VXX	Copper-Nickel Alloy in Seawater Treated with 8.49 ml CLOROX	100
TABLE	IVXX	K-Monel in Untreated Seawater	101
TABLE	XXVII	K-Monel in Seawater Treated with 8.49 ml CLOROX	102
TABLE	XXVIII	HY-80 Steel Alloy in Untreated Seawater	103
TABLE	XXIX	HY-80 Steel Alloy in Seawater Treated with 8.49 ml CLOROX	104
TABLE	XXX	Stainless Steel in Untreated Seawater	105
TABLE	XXXI	Stainless Steel in Seawater Treated with 8.49 ml CLOROX	106
TABLE	XXXII	Aluminum Alloy in Untreated Seawater	107
TABLE	XXXIII	Aluminum Alloy in Seawater Treated with 8.49 ml CLOROX	108

LIST OF ILLUSTRATIONS

Figure	1	Anodic and Cathodic Polarization Curves	22
Figure	2	Specimen, electrode holder, and teflon washer prior to assembly	27
Figure	3	Specimen and dowel assembled for polishing	28
Figure	4	Experimental equipment arrangement	31
Figure	5	Electrode connections to potentiostat	32
Figure	6	Corrosion cell assembly	33
Figure	7	Corrosion cell assembly in heating mantle	35
Figure	8	Information displays	36
Figure	9	Potential vs current, nickel in seawater	41
Figure	10	Third order regression analysis, nickel in seawater	42
Figure	11	Copper in untreated seawater	49
Figure	12	Copper in seawater treated with 34.69 ppm OCl	50
Figure	13	Copper in seawater treated with 56.37 ppm OC1	51
Figure	14	Copper in seawater treated with 89.65 ppm OCl	52
Figure	15	Nickel in untreated seawater	5 3
Figure	16	Nickel in seawater treated with 26.24 ppm OC1	54
Figure	17	Nickel in seawater treated with 53.77 ppm OC1	55
Figure	18	Nickel in seawater treated with 108.46 ppm OCl	56
Figure	19	Naval brass in untreated seawater	5 7
Figure	20	Naval brass in seawater treated with 93.29	58

Figure	21	Copper-nickel (70/30) alloy in untreated seawater	59
Figure	22	Copper-nickel (7030) alloy in seawater treated with 102.22 ppm OCl	60
Figure	23	K-Monel in untreated seawater	61
Figure	24	K-Monel in seawater treated with 88.85 ppm OC1	62
Figure	25	Phosphor bronze in untreated seawater	63
Figure	26	Phosphor bronze in seawater treated with 108.64 ppm OC1	64
Figure	27	HY-80 steel alloy in untreated seawater	65
Figure	28	HY-80 steel alloy in seawater treated with 108.9 ppm OC1	66
Figure	29	Stainless steel in untreated seawater	67
Figure	30	Stainless steel in seawater treated with 99.31 ppm OC1	68
Figure	31	Aluminum alloy 7075 in untreated seawater	69
Figure		Aluminum alloy 7075 in seawater treated with 96.82 ppm OC1	70

LIST OF SYMBOLS

β Tafel slope

e equivalent weight

e electron

E cell potential (volts)

E_{corr} corrosion potential (volts)

E o standard electrode potential oxidation half-reaction

 ${\tt E_R^\circ}$ standard electrode potential reduction half-reaction

F Faraday's constant (96,500 coulombs)

G change in Gibbs Free Energy Function

j current density (μA/cm²)

j_{corr} corrosion current density (μΑ/cm²)

log decimal logarithm

M metal

Mⁿ⁺ metal ion

mil .001 inch

N normal (equivalent weight/liter)

ppm parts per million (mass ratio)

R_{corr} corrosion rate

R_{mmpy} corrosion rate in mm/year

 R_{mpy} corrosion rate in mils/year

SCE saturated calomel electrode

SiC silicon carbide

[OC1] hypochlorite ion concentration

OCl hypochlorite ion

ACKNOWLEDGEMENT

The author wishes to express his appreciation to all those whose assistance and encouragement made this investigation possible. The number of people who should be thanked is too great for the space allowed. However, special thanks are due to Ken Graham and Roy Edwards for assistance in developing techniques and providing the necessary guidance in the use of laboratory equipment; Bob Sanders and Bob Smith for locating and repairing equipment so the experimental investigation could be assomplished; and to Professor R. A. Reinhardt and Associate Professor A. J. Perkins for guidance and encouragement throughout this investigation.

I. INTRODUCTION

A. BACKGROUND

The problems of corrosion and fouling are primary considerations in the design of ships and marine installations. In the internal seawater systems of ships and marine power stations, where heat transfer and long service life are critical, the common anti-fouling and corrosion prevention procedures, e.g., anti-fouling paints, increased wall thickness of piping and tubes, corrosion— and fouling—resistant alloys, etc., may actually reduce the heat transfer capabilities of the system, and most assuredly will increase the cost of fabrication. Therefore, if more efficient heat transfer systems are to be constructed, these corrosion problems will have to be better understood, thus providing for a more intelligent selection of materials.

One novel solution proposed for the fouling problem is to treat the incoming seawater with the hypochlorite ion, either by the addition of a sodium hypochlorite (NaOC1) solution or by on-site electrolysis of saline water to produce NaOC1.

$$Na^{+}Cl^{-} + H_{2}O \xrightarrow{\text{electrolysis}} Na^{+}OCl^{-} + H_{2}(g)$$

A device to introduce the hypochlorite ion in this latter manner is currently manufactured and marketed by Engelhard Industrial Division of Engelhard Minerals and Chemical Corporation under the trade name of CHLOROPAC.

It is commonly accepted that 0.5 parts per million (ppm) of chlorine in the form of the hypochlorite ion $(9.7 \times 10^{-6} \text{ N})$ will control mollusk growth in seawater systems. [1],[2]. The recommended operating prodecures for the CHLOROPAC are designed to provide this low concentration (0.5 ppm) in the areas where fouling is to be controlled; near the generator, however, the OC1 concentration may be as high as 100 ppm $(2.0 \times 10^{-3} \text{ N})$ [2].

The ability of dilute NaOCl solutions to control the growth of marine life has been demonstrated in many industrial applications. The CHLOROPAC system was evaluated in an inservice test by the British Ship Research Association (BSRA) from May 1973 through September 1973. The BSRA report concluded that the CHLOROPAC system successfully prevented the growth of marine fouling with no increase in the corrosion of the seawater systems that could be attributed to the hypochlorite ion concentration [2]. However, during the BSRA evaluation, no attempt was made to measure the extent of corrosion or corrosion rate in either the seawater or seawater hypochlorite environments. A search of the literature resulted in a wide range of reported corrosion rates for the same metals in natural seawater. These values were determined in various locations and under various and nonreproducible conditions.

It is the intent of this thesis to determine by potentiodynamic methods the corrosion rate of selected metals with marine applications in an environment of synthetic seawater

and to compare these rates with those obtained in a synthetic seawater-sodium hypochlorite solution

B. CORROSION PHENOMENA

Any number of paradoxical and complicated examples of the corrosion process can be and have been described. U. R. Evans suggested that "Possibly it is the strangeness of corrosion reactions which cause the orthodox physical chemist to regard the whole subject with suspicion" [3]. In the language of the electrochemist or corrosion scientist, the anode is often referred to as the active electrode and the cathode as the noble electrode. Corrosion, if defined as metal loss from the solid state, occurs at anodic areas, which exist at areas of lower electrode (reduction) potential within the cell. In all cases the oxidation-reduction reactions can be represented algebraically as:

$$\sum_{\gamma} v_{\gamma} M_{\gamma} \pm ne^{-} = 0$$

where v_{γ} is the number of formulas (or moles) in the balanced equation;

 M_{γ} is the chemical species; and ne is the number of free electrons.

Thermodynamics provides information about the feasibility of a given net electrochemical cell reaction to take place, from the change in the Gibbs Free Energy Function (ΔG); the more negative the value of ΔG , the greater the tendency for the reaction to take place [4]. For electrochemical reactions:

where n is the number of electrons involved in the reaction; F is Faraday's Constant, 96500 coulombs/equivalent;

E° is the reversible cell potential.

The cell potential is determined from those for the separate oxidation and reduction half-cell reactions. For example, the corrosion of iron (Fe) in aerated seawater is:

$$2Fe + 0_2 + 2H_2O \longrightarrow 2Fe^{++} + 4OH^{-}$$

separating this reaction into its anodic and cathodic half cell reactions:

$$2 \text{Fe} \longrightarrow 2 \text{Fe}^{++} + 2 \text{e}^{-}$$
 $E_0 = -.440 \text{V}$
 $0_2 + 2 \text{H}_2 \text{O} + 4 \text{e}^{-} \longrightarrow 40 \text{H}^{-}$
 $E_R = .401 \text{V}$
 $E^\circ = .401 \text{V} - .440 \text{V} = .841 \text{V}$

Since E° is positive, ΔG is negative and the reaction is feasible.

Although the change in the Gibbs Function can tell if corrosion is possible, it cannot predict the corrosion rate (R_{corr}). The corrosion rate is determined by the current flowing between the anode and cathode. In accordance with Ohm's law, this current is equal to the difference between the anode and cathode potentials divided by the total resistance of the circuit. When current flows between the anode and cathode, the potentials of both change. This change is called polarization [6].

The object of polarization experiments is to determine a steady state corrosion current density (j_{corr}) and then calculate a corrosion rate assuming uniform or general corrosion. From Faraday's law the corrosion rate can be determined by the relationship:

$$R_{corr} = kj_{corr} e/\rho$$

where:

 ρ is the density of the metal corroding (g/cm³), e is the equivalent weight of the metal (g), j_{corr} is the corrosion current density(μ A/cm²), k is a constant that includes Faraday's constant and the conversion factors required to obtain the desired units of length and time [6].

Therefore:

$$R_{corr}(in mils/year) = .1287j_{corr}e/\rho$$

and

$$R_{corr}$$
(in mm/year) = .003270 j_{corr} e/o

The current accepted units for penetration corrosion rates are mils/year.

TABLE I
EMF SERIES [5]

REDUCTION HALF REACTIONS	STANDARD REDUCTION POTENTIAL (volts)
Hg ⁺⁺ (aq) + 2e ⁻ = 2Hg(1)	0.788
0 ₂ + 2H ₂ O + 4e = 4OH	0.401
$Cu^{++}(aq) + 2e^{-} = Cu(s)$	0.337
2H ⁺ (aq) + 2e ⁻ = H ₂ (g)	0.000
Ni ⁺⁺ (aq) + 2e ⁻ = Ni(s)	-0.250
Fe ⁺⁺ (aq) + 2e ⁻ = Fe(s)	-0.440
Zn ⁺⁺ (aq) + 2e ⁻ = Zn(s)	-0.763
Al ⁺⁺⁺ (aq) + 3e ⁻ = Al(s)	-1.662
Na ⁺ (aq) + e ⁻ = Na(s)	-2.714

II. EXPERIMENTAL PROCEDURES

A. THE PROBLEMS OF DIRECT METHODS OF DETERMINING CORROSION
RATES IN SEAWATER

Corrosion rates in seawater have commonly been determined by mounting metal coupons on a wood or metal rack and immersing the rack into the ocean, then measuring the weight loss or penetration directly [7,8,9,10,11]. This method is time consuming and expensive. The rack must be designed and constructed to avoid the following disturbing factors:

- Galvanic action between different specimens or between the rack and specimens.
- Local shielding of any appreciable area of a test piece so as to provide an opportunity for concentration cell corrosion.
- Non-uniform flow of water past surfaces of different specimens.
- 4. Corrosion-accelerating or inhibiting effects of corrosion products from the rack material.
- 5. Abrasion of loose specimens due to rubbing against their supports.
 - 6. Mechanical damage by floating objects.
 - 7. Loss of the specimens due to rack failure.

To further compound the problem, materials to be compared directly should be exposed for the same length of time, since the growth of fouling organisms is seasonly dependent and

causes seasonal variations in the corrosion rates. The immersion tests normally take from six months to three years to perform. In addition to the above complexities, the researcher is unable to control the environment of the test specimens. Since most test sites are near shore, the composition of the seawater and local pollutants, and velocity across the specimens is variable and location dependent. As a result, corrosion rates obtained in this manner vary considerably from site to site [7]. In an attempt to alleviate some of these problems, a laboratory potentickinetic method of determining corrosion rates was evaluated in this study. The aim was to determine the ability of this method to predict from laboratory evaluations in artificial seawater the corrosion rates which would result due to immersion testing in natural seawater.

B. POTENTIOKINETIC DETERMINATION OF CORROSION CURRENT DENSITY

Faraday's Law shows that the rate of metal converted to metal ion is proportional to the current transferred within a corrosion cell. Therefore, the determination of a general or uniform corrosion rate rests upon determining the current density associated with the corrosion potential. If the electrolyte is sufficiently stirred to prevent concentration polarization and the distance between the working and reference electrodes is small or the current is small so that the IR drop between these electrodes is insignificant, then the potential can be related to the current density by the Tafel

Figure 1. Anodic and cathodic polarization curves showing corrosion potential and current density.

[a] Linear current density scale [b] Logarithmic current density scale reaction (i,o)
4
0H $^{-}$ \rightarrow (ii,o) 4 0H $^{-}$ \rightarrow (ii,o) 4 0H $^{-}$ \rightarrow 4 0H $^{-}$ \rightarrow

Law [4,12]. The Tafel Law can be expressed either by:

$$E = \alpha + \beta \log(j)$$

or

where β is the anodic or cathodic Tafel slope and like E_{corr} and j_{corr} is dependent upon the nature of the electrode and its environment. Ideally when potential vs current density is plotted semilogarithmically for various values of E and j, the anodic and cathodic curves will obey the Tafel relationship at a distance from E_{corr} and become curved and asymptotic to E_{corr} as E approaches E_{corr} (Figure 1). Then by extending the Tafel slopes to intersect the horizontal representing E_{corr} , it should be possible to determine the corrosion current density. This method is referred to as the overvoltage-intercept method [13,14]. As can be seen from Figures 11 through 32, the actual experimental curves obtained do not always have a readily identifiable Tafel slope. This was particularly true for the anodic curves in this study. The cathodic slope was determined in the region [14]:

$$E_{corr} - 0.05V \le E \le E_{corr} - 0.20V.$$

Experimentally it has been determined that the best value for the corrosion current density can be obtained by extending the cathodic slope to intersect with the corrosion potential [13,14]. This apparent discrepancy can be partially attributed to the fact that the anodic reactions are not uniformly distributed over the surface of the specimen, therefore the

area used in calculation of janodic may be in error [13]. It is also conceivable that a number of oxidation-reduction reactions are occurring at potentials above Ecorr, whereas, at lower potentials the reduction of oxygen predominates [12]. In any case, the cathodic overvoltage-intercept method was applied in this study because the expense in setting up the experiments was minimal and results could be obtained in a matter of hours vice months.

C. CHOICE OF CORROSIVE MEDIUM

Seawater is a complex, delicately balanced solution of many salts containing living matter, suspended silt, dissolved gases, and decaying organic matter. An individual effect of each of these components affecting the corrosion behavior of the system is not readily separated. The major factors which can be identified as effecting corrosion rates are:

- 1. Dissolved oxygen content
- 2. Biological activity
- 3. Temperature
- 4. Velocity
- 5. Salinity
- 6. pH
- 7. Chemical composition [16].

In order to develop a standard procedure and reduce the number of uncontrollable factors, a standard electrolyte was necessary. To avoid the effects of organic matter and biological activity, local Monterey Bay water was not used.

Standard seawater from the IAPSO Standard Sea-Water Service, Charlottenlund, Denmark, was not used because the quantity required was cost-prohibitive. Therefore, a laboratory substitute was desirable. Initially, a .6N solution of sodium chloride was considered. However, a search of the literature showed that where this solution was substituted for seawater, the resulting corrosion rates were generally higher than those obtained in seawater and that the disparity was time dependent [17]. The ultimate choice of electrolyte was the formula and procedure developed by Kester, et al [18] and described in Appendix A. This formula closely reproduces the composition of standard seawater and could be made relatively inexpensively in the quantity required. After the artificial seawater was prepared, its conductivity and pH were compared with a standard sample.

The desired hypochlorite ion concentration was obtained using CLOROX additions. A new bottle of CLOROX was first standardized by iodimetry and the hypochlorite ion concentration determined to be 0.45807N [19]. The desired concentration of the hypochlorite ion was then calculated in terms of a volume of CLOROX and added to the measured amount of seawater. For example, in order to obtain a hypochlorite concentration of 100 ppm in 2kg of seawater, the following calculations were required:

- 1. 100 ppm [OC1] = .2g OC1 /2kg seawater
- 2. Molecular weight of $OCl^{-} = 16.000 + 35.457 = 51.457$
- 3. Number of moles required = .2g/51.457g/mole = 3.887 mmoles

- 4. Volume of CLOROX to be added to 2kg seawater
 = 3.887 mmoles/.45807 moles/liter
 - = 8.4856ml.

Therefore, 8.49ml of CLOROX was pipetted into 2kg of seawater to produce a hypochlorite concentration of approximately 100 ppm.

D. METAL ELECTRODES

The metal alloy samples from which the electrodes were manufactured were provided by Mare Island Naval Shipyard, Laboratory Division, and are representative of the alloys used in ship construction. The chemical composition of the samples, their density and equivalent weights are given in Appendix B.

The samples were cut and machined to 0.500 in (1.27 cm) diameter and cut to a length of .375 in (0.95 cm). Each electrode was drilled and tapped to facilitate mounting on an electrode holder (Figure 2). Before being mounted on the electrode holder, the specimens were first mounted on a short length of 1/2 inch wood doweling with sealing wax (Figure 3) and polished on a lathe with various grades of SiC paper, finishing with 600 grit SiC paper. The samples were then placed in a test tube, covered with benzene, and placed in an ultrasonic bath for approximately ten minutes to clean the surfaces. The samples remained in the benzene until just prior to mounting, but no longer than three hours. Before assembling the working electrode, the specimen was placed in a 50 ml erlenmeyer flask filled with distilled water, stoppered

Figure 2. Specimens, electrode holder and teflon washer prior to assembly.

Figure 3. Specimen and dowel assembled for polishing.

and returned to the ultrasonic bath and rinsed for about one minute. The sample was then dried, the top coated lightly with stopcock grease and threaded on the electrode holder. The teflon washer spaced between the sample and the glass tubing sealed the end of the tube and was cut in such a manner to position the salt bridge probe 1.778 mm from the sample. The area of the corroding surface was approximately 5 cm².

Two platinum auxiliary electrodes were prepared from high purity sheet stock with dimensions 1.28 cm by 1.768 cm for a surface area of 4.53 cm². The platinum electrodes were then platinized and stored in distilled water until required for use. Frequent cleaning and replatinizing of the surfaces were required during the period of the experiment.

E. EQUIPMENT

The equipment used to determine the corrosion current densities was:

- 1. TRW Instruments Model 200A Research Potentiostat
- 2. Hewlett-Packard Mosely 136A X-Y Recorder
- Precision Scientific Co. Magnamix magnetic stirrer and stirring bar
- 4. 2 liter resin kettle heating mantle
- 5. 2 liter reaction flask (resin kettle) and cover
- 6. 100 ml three necked flask
- 7. Heating mantle for a round bottom flask
- 8. Saturated calomel electrode (SCE)
- 9. Salt bridge

- 10. Thermometers: 0° to 50 °C range, 2
- 11. General Radio Company Variac Autotransformers, 2
- 12. Weston Model 1240 Digital Multimeter
- 13. Seven (7) receptacle outlet box
- 14. Constant voltage isolation transformer
- 15. Leeds and Northrup Company Temperature Potentiometer
- 16. Platinum auxiliary electrode
- 17. Metal sample working electrode

The complete experimental arrangement is shown in Figure 4.

The three electrodes were connected to the potentiostat in accordance with the technical manual and illustrated in Figure 5. The grounds were lifted on the recorder, multimeter and stirrer before these units were connected to the outlet box. This was necessary to avoid introducing stray currents into the potentiostat. The potentiostat and resin kettle heating mantle Variac were also connected to the outlet box, and the outlet box was connected to the isolation transformer. The heating mantle for the reference cell was connected directly to the bench electrical supply.

The corrosion cell consisted of a two-liter reaction flask which contained two kilograms of artificial seawater and the required amount of CLOROX. The electrodes, salt bridge probe and thermometer were arranged as shown in Figure 6. The salt bridge probe was positioned to "look" at the working electrode without blocking the current path from the platinum auxiliary electrode. The salt bridge probe was maintained at a distance of 1.778 mm from the working

Figure 4. Experiment Equipment Arrangement

- 1. Potentiostat
- 2. X-Y Recorder
- 3. Digital multimeter 6. Reference cell
- 4. corrosion cell
- 5. Magnetic stirrer

Figure 5. Electrode connections to potentiostat.

Figure 6. Corrosion cell assembly

- (1) Reference electrode(2) Working electrode

- (3) Thermometer
 (4) Salt bridge probe
 (5) Stirrer

electrode surface by fitting the tip of the probe into a notch cut into the teflon washer and adjusting a screw type hose clamp located above the rubber stopper and between the working electrode and the salt bridge probe. A magnetic stirring bar was placed in the cell and the cell placed within the resin kettle heating mantle (Figure 7).

The reference cell consisted of a 100 ml three-necked flask filled with saturated potassium chloride (KCl) solution with a saturated calomel electrode (SCE) fitted in the center neck. The salt bridge probe and thermometer were fitted into the remaining necks.

The salt bridge was constructed from two disposable Pasteur pipettes with the tips bent at right angles and cut to the desired length. These probes were then filled with a hot saturated KCl-Agar solution and cooled. The two probes were connected with Tygon tubing and a glass "T". The tubing was then filled with saturated KCl through the "T" and the "T" then stoppered. This arrangement allowed the salt bridge to flex as required during the replacement of electrodes and electrolyte.

The current and potential measuring outputs of the potentiostat were connected to the X and Y axes respectively.

The X axis of the recorder was scaled by the output of the Leeds and Northrup temperature potentiometer. The Y axis was scaled with the potential output of the potentiostat.

The calibration of the recorder was checked frequently during the experiment and the recording annotated with the

Figure 7. Corrosion cell assembly in heating mantle.

Figure 8. Information displays

- (1) Digital multimeter (potential)
- (2) Voltmeter
- (3) Potential meter
- (4) Current meter
- (5) X-Y recorder (potential vs current)

with the meter values. The potential setting was monitored with the Weston digital multimeter which allowed accurate determination of the potential to within one millivolt (Figure 8).

F. EXPERIMENTAL PROCEDURES

The operation of the potentiostat was in accordance with the procedures contained in the technical manual. The reference cell and corrosion cell were first brought up to the temperature of 25 °C. The corrosion cell Variac was de-energized after the cell reached 25 °C to reduce electrical interference. The resin kettle heating mantle nearly enveloped the corrosion cell and was able to maintain the temperature for over one hour. The mantle also partially screened the cell from electrical interference. The equipment was so sensitive to electrical interference that before measurements were begun, all fluorescent lamps in the vicinity were extinguished. Then the calculated volume of CLOROX was added to the cell and the electrolyte solution was stirred. The working electrode was assembled and immersed into the electrolyte and the cell allowed to stand on open circuit for fifteen minutes. During this period the hypochlorite ion concentration was determined by iodimetry. For runs without the addition of hypochlorite, 0.1 g of sodium thiosulfate per 2 kg seawater was added to prevent the formation of hypochlorite ion by the electrolysis in the seawater.

After the fifteen minute time period, the open circuit potential was measured, the cell potential was then preset

0.6 V below the open circuit potential and the cell was energized. The cell potential was then manually scanned at a rate of 1 mV/sec in the noble direction until the indicated cell potential was .5 V above the measured corrosion potential. Upon completion of one scan, the working electrode was exchanged and the process repeated. At the end of the second scan the cell was removed from the mantle and the electrolyte hypochlorite ion concentration was determined. The electrolyte was renewed after every other scan. The corroded surface area was measured by a dial caliper.

G. PROBLEMS

As with any piece of equipment that has not been exercised for any period of time, the potentiostat required extensive rehabilitation and realignment. All power transistors and many resistors of the heat sink required replacing before the potentiostat would operate. Then, in order to align the unit, all vacuum tubes on the current amplifier board was replaced. During the experiment, these same tubes were replaced twice again.

Initially, it was intended to plot log (current) versus potential. However, the logarithmic amplifier was not compatable with the potentiostat and had to be disconnected from the system.

The early trials showed a great disparity in the corrosion potential and current densities obtained in successive scans in the same electrolyte. It was then determined that the electrolysis of the electrolyte was producing a

significant concentration of hypochlorite ion. It was empirically determined that 0.1 g of the reducing agent, sodium thiosulfate, precluded the development of a measurable concentration of the hypochlorite ion for at least three successive scans. To insure that the hypochlorite ion concentration increase would not be a significant problem, only two scans were made in the electrolyte before renewal. Similar considerations limited the use of the hypochlorite-seawater systems to two successive scans.

An additional and uncontrollable complication was the interference in the system caused by stray high frequency electrical noise, especially a tone associated with the IBM terminal located on the second deck of Spanagel Hall. When this tone was generated, the recorder circuit was saturated and the potentiostat was de-energized. If the duration of the noise was long enough, the trial was abandoned, causing a loss of time and materials. Most of the 60 Hz electrical noise was, however, effectively screened out by the isolation transformer and the heating mantle.

Finally, during the last week of experimentation, the Model 136A recorder failed and was replaced with the Model 7035B recorder.

III. PRESENTATION OF DATA

A. PREPARATION OF DATA FOR ANALYSIS

The data generated during each experimental run were recorded directly as potential vs current (Figure 9) on a Hewlett-Packard X-Y recorder. Because of the range of current required to reach and maintain the desired potentials, the potentiostat current range scale was shifted at each decade to provide greater precision in determining the current associated with a particular potential. Next, a convenient interval was chosen on the potential axis and the associated current value identified. The area of the corroded surface of the sample was measured and the current density then computed. A summary of data is presented in Appendix C.

The E vs log(j) points were plotted on the WANG 720C Computer. A third-order curve was drawn separately through the anodic and cathodic points in an effort to assist in identifying the Tafel (linear) region of each curve (Figure 10) With the aid of these curves, the anodic and cathodic Tafel slopes were extended to intersect the measured corrosion potential. The intersection of the cathodic Tafel slope and Ecorr determined the corrosion current density (jcorr). Figures 11 through 32 illustrate this procedure. Table II lists the corrosion current density and corrosion potential for each trial.

Potential vs Current, nickel in seawater. Figure 9.

Figure 10. Third order regression analysis - nickel in seawater.

TABLE II

SUMMARY OF ELECTROCHEMICAL INFORMATION
FOR EXPERIMENTAL TRIALS

Specimen	[OCl ⁻](ppm)	jcorr (µA/cm²)	Ecorr (V vs SCE)
Copper	0 33.69 56.38 89.65	5.75 64.56 457.8 239.9	266 174 101 059
Nickel	0 26.24 53.78 108.5	3.311 66.07 93.33 31.62	338 .062 009 .033
Naval Brass	0	7.762	287
QQ-B-637	93.29	66.07	132
Phosphor Bronze	0	10.96	236
QQ-B-750	108.5	120.2	071
Copper Nickel	0	3.020	288
Mil-C-15726E	102.2	100.0	010
K-Monel	0	5.495	300
Alloy K-500	88.85	26.92	.077
Steel Alloy	0	83.18	520
HY-80	104.5	354.8	335
Stainless Steel	0	.4365	211
Alloy 304	99.31	4.073	.125
Aluminum	0	58.88	793
Alloy 7075	96.82	12.59	757

B. DETERMINATION OF CORROSION RATES

Table III gives the corrosion rates in millimeter/year (R_mmpy) and mils/year (R_mpy) determined from

These are compared to the values for $R_{\rm mpy}$ found in the literature for the metal specimens in seawater. The values quoted in the literature are for metal coupons completely immersed in the oceans at various depths. The values for $R_{\rm mpy}$ determined from the present work fall within the upper range of the reported values, with the exception of those determined for phosphor bronze, aluminum alloy 7075 and steel alloy HY-80.

The experimentally determined corrosion current densities in artificial seawater and hypochlorite ion solution and the resulting corrosion rates are given in Table IV.

With the exception of Aluminum Alloy 7075, all corrosion rates increased at least one order of magnitude with the addition of approximately 100 ppm OCI to the artificial seawater. The corrosion rate for Aluminum Alloy 7075 decreased to approximately one quarter of the corrosion rate in the untreated seawater.

The following symbols are used in Figures 11 through 32:

- (1) +·+ representing the mean value and standard deviation for those trials with four or more runs.
- (2) 0,X for those trials consisting of duplicate runs, 0 represents the first run and X the second.

COMPARISON OF CORROSION RATES IN SEAWATER

TABLE III

COMPARISON OF CORROSION RATES IN SEAWATER DETERMINED FROM PRESENT WORK WITH PREVIOUSLY MEASURED VALUES

	<u>Metal</u>	Location	R _{mpy}
1.	COPPER		
	Present work	$R_{mmpy} = 6.69 \times 10^{-2}$	2.63
	Reinhart, et al [8]	Port Hueneme, Ca	0.9 1.1 1.2
	NRL [11]	Key West, Fla	0.37
	Uhlig [7]	Bristol Channel	2.8
	·	Bridgeport, Ct	2.4
		Eastport, Me	0.4
~		San Francisco, Ca	4.0
		Kure Beach, N.C.	1.4 1.5 1.6 1.7
2.	NICKEL		
	Present work	$R_{\rm mmpy} = 3.59 \times 10^{-2}$	1.41
	Reinhart, et al	Port Hueneme, Ca	6.9 4.5 1.9 1.5
	Fontana and Greene		1.0

Table III Nickel (Cont.)

	Uhlig [7]	Bridgeport, Ct	0.8
		Bristol Channel	0.3
		San Francisco, Ca	1.2
		Kure Beach, N.C.	1.0
3.	NAVAL BRASS		
	Present Work	$R_{\text{mmpy}} = 9.89 \times 10^{-2}$	3.89
	NRL [11]	Key West, Fla	0.26
	Uhlig [7]	Bristol Channel	4.3 0.6 1.7 1.8
4.	PHOSPHOR BRONZE		
	Present Work	R _{mmpy} = .133	5.25
	Reinhart, et al [8]	Port Hueneme, Ca	1.1
	Uhlig [7]	Kure Beach, N.C.	0.8
5.	COPPER NICKEL		
	Present Work	$R_{\text{mmpy}} = 3.49 \times 10^{-2}$	1.37
	Reinhart, et al [8]	Port Hueneme, Ca	0.3
	NRL [11]	Key West, Fla	0.07
	Uhlig [7]	Kill-van-Kull, N.J.	1.5
		Cape May, N. J.	0.5
		Kure Beach, N.C.	0.3
6.	K-MONEL		
	Present Work	$R_{\rm mmpy} = 6.12 \times 10^{-2}$	2.41

Table III K-Monel (Cont.)

	Reinhart, et al	Port Hueneme, Ca	3.6
	Uhlig [7]	Eastport, Me	1.2
		San Francisco, Ca	2.4
		Kill-van-Kull, N.J.	1.2
		Cape May, N.J.	1.7
		Kure Beach, N.C.	0.3
7.	HY-80 STEEL		
	Present Work	R _{numpy} = .960	37.8
	Schreir [12]	Approximate value	4 to 14
8.	STAINLESS STEEL		
	Present Work	$R_{\text{mmpy}} = 4.78 \times 10^{-3}$.188
	Reinhart, et al [8]	Port Hueneme, Ca	0.4 0.5 0.7 1.2
	NRL [9]	Tongue of the Ocean	0.24
9.	ALUMINUM 7075		
	Present Work	$R_{mmpy} = .757$	29.8
	NRL [10]	Key West, Fla	11 to 20

TABLE IV

POTENTIOKINETICALLY DETERMINED VALUES OF CORROSION

RATES IN ARTIFICIAL SEAWATER

Metal	[OC1 ⁻] ppm	j _{corr} (µA/cm ²)	R_{mpy}	Rmmpy
Copper	0	5.75	2.63	6.69×10^{-2}
	34.69	64.56	29.5	.752
	56.37	457.8	210.0	5.32
	89.65	239.9	110.0	2.79
Nickel	0	3.311	1.41	3.59×10^{-2}
	26.24	66.07	28.2	.716
	53,77	93.33	39.79	1.01
	108.5	31.62	13.48	.342
Naval Brass	0	7.762	3.89	9.89×10^{-2}
	93.29	66.07	33.1	.842
Phosphor Br	ronze 0	10.96	5.25	.133
	108.5	120.2	57.6	1.46
Copper-Nicke	cel 0	3,020	1.37	3.49×10^{-2}
	102.2	100.0	45.41	1.15
K-Monel	0	5.495	2.41	6.12×10^{-2}
	88.85	26.92	11.8	.300
HY-80 Steel	L 0	83.18	37.8	.960
	104.5	354.8	161.2	4.09
Stainless	0	.4365	.188	4.78×10^{-3}
Steel	99.31	4.073	1.75	4.45×10^{-2}
Aluminum 70	075 0	58.88	29.8	.757
	96.82	12.59	6.37	.162

Figure 11. Copper in untreated seawater.

Figure 12. Copper in seawater treated with 34.69 ppm OC1

Figure 13. Copper in artificial seawater treated with 56.37 ppm OCl.

Figure 14. Copper in seawater treated with 89.65 ppm OCl.

Figure 15. Nickel in untreated seawater.

Figure 16. Nickel in seawater treated with 26.24 ppm OCl..

Figure 17. Nickel in seawater treated with 53.77 ppm OCl.

Figure 18. Nickel in seawater treated with 108.46 ppm OCl..

Figure 19. Naval brass in untreated seawater.

Figure 20. Naval brass in seawater treated with 93.29 ppm OCl.

Figure 21. Copper-nickel (70/30) alloy in untreated seawater.

Figure 22. Copper-nickel (70/30) alloy in seawater treated with 102.22 ppm OCI.

Figure 23. K-Monel in untreated seawater.

Figure 24. K-Monel in seawater treated with 88.85 ppm OCl

Figure 25. Phosphor bronze in untreated seawater.

Figure 26. Phosphor bronze in seawater treated with 108.64 ppm OCl.

Figure 27. HY-80 steel alloy in untreated seawater.

Figure 28. HY-80 steel alloy in seawater treated with 108.9 ppm OCl.

Figure 29. Stainless steel in untreated seawater.

Figure 30. Stainless steel in seawater treated with 99.31 ppm OCl.

Figure 31. Aluminum alloy 7075 in untreated seawater.

Figure 32. Aluminum alloy 7075 in seawater treated with 96.82 ppm OCl .

IV. CONCLUSIONS

A. DETERMINATION OF CORROSION RATES IN ARTIFICIAL SEAWATER

It has been reported that the instantaneous corrosion rates produced by potentiokinetic methods may differ by as much as two orders of magnitude from the average corrosion rates obtained by immersion tests [20]. The results obtained from this research, on the other hand, agreed quite well with those obtained by the immersion tests. Only in the cases of phosphor bronze, HY-80 steel and aluminum alloy 7075 did the measured corrosion rates fall outside the range of previously reported values, and even for the latter, the measured corrosion rates were of the correct order of magnitude. This close correlation corroborated that the cathodic overvoltage-intercept method could produce reasonable results, and that the artificial seawater-sodium thiosulfate system closely approximated natural seawater.

B. CORROSIVITY OF THE HYPOCHLORITE ION IN ARTIFICIAL SEAWATER

The addition of 100 ppm hypochlorite ion to artificial seawater increased the corrosion rate by two orders of magnitude for the copper and copper-nickel (70/30) alloy samples. The corrosion rates of nickel, naval brass, phosphor bronze, K-Monel, HY-80 steel and stainless steel were increased by a single order of magnitude. The corrosion rate of aluminum alloy 7075 decreased in the hypochlorite-seawater system.

The results obtained show some similarity to the qualitative values of corrosion resistance which Rabald has reported [21] for more concentrated sodium hypochlorite solutions. Rabald's remarks and comments, based on current research, are given in Table VI. Rabald uses the following symbology in the Table to describe the usefulness of the individual materials under ordinary conditions of pressure and temperature:

- + resistant
- (+) fairly resistant
- (-) not particularly resistant
 - unusable.

These symbols can also be considered as upper limits of acceptable corrosion rates as given in Table V.

TABLE V

DEFINITION OF RABALD'S SYMBOLS

Symbol	Maximum Al	corrosic Fe	on rates Cu	(mm/year) Ni
+	0.11	0.11	.008	0.10
(+)	1.08	1.12	0.98	1.00
(-)	3.24	3.37	2.95	2.99

Rabald also provides a classification system for materials based upon general cost considerations and corrosion resistance. Using his guidelines, Table VII was constructed from the corrosion rates of the present work.

TABLE VI

CORROSION RESISTANCE OF METALS IN SODIUM HYPOCHLORITE SOLUTIONS

Aluminum alloys (without copper)

+ to - Room temp., solution up to 3% (20740 ppm)

Comment - Aluminum alloy 7075 experimentally shows
increased resistance to corrosion in the 100 ppm OC1 seawater solution. It could be rated (+) using this
criterion.

Bronze

(+) to (-) Room temp., solutions with 3% (20740 ppm) active chlorine.

<u>Comment</u> - The corrosion rate for phosphor bronze falls within the definition by Rabald as not particularly resistant (-).

Copper, Brass (60-90% copper)

+ Room temp., solution under 2% (13830 ppm).

Copper ions catalytically increase the decomposition NaOCl solution.

Comment - The corrosion rates determined for copper and naval brass in 100 ppm OCl -seawater solution classify copper as (-) and naval brass as (+).

Copper-Nickel alloys

+ Room temp., 2% (13830 ppm) solution.

<u>Comment</u> - The corrosion rate determined for coppernickel (70/30) alloy in 100 ppm OCl -seawater solution classify copper-nickel as (-) to -.

TABLE VI (Cont)

Iron, Cast Iron, and Steel

Room temp., 0.1% (691 ppm) solution. Iron ions catalytically increase the decomposition of NaOCl.

<u>Comment</u> - The corrosion rate for HY-80 steel is well within the unusable region.

Austenitic chromium-nickel steels (18-20% Cr, 8-11% Ni, Stabilized)

<u>Comment</u> - Stainless steel is resistant to corrosion in 100 ppm OCl -seawater solution.

Nickel

+ to - Room temp., .1 g/l (69.1 ppm) solution. Penetration 0.10 mm/year.

<u>Comment</u> - Corrosion rate determined for nickel in 53.77 ppm OCl -seawater solution was 1.01 mm/year. This classifies nickel as (-).

Monel metal

+ to - Room temp., 0.1 g/l (69.1 ppm) solution.

Penetration 0.01 mm/year.

Comment - The corrosion rate determined for Monel in 100 ppm OCl -seawater solution is .300 mm/year, which classifies Monel at (+).

TABLE VII

SUITABILITY OF METALS FOR USE IN HYPOCHLORITE-SEAWATER SYSTEMS

Metal	Observed [OC1-] ppm	Economic Performance Rating
Copper	0	Satisfactory
	34+	Do not use
Nickel	0	Satisfactory
	26+	Do not use
Naval brass	0	Satisfactory
	93.29	Use only under special conditions for short exposure
Phosphor bronze	0	Use with caution
	108.5	Do not use
Copper-nickel	0	Satisfactory
	102.2	Do not use
K-Monel	0	Satisfactory
	88.85	Use with caution
HY-80 steel	0	Use only under special conditions for short exposure
	104.5	Do not use
Stainless steel	0	Satisfactory
	99.31	Satisfactory
Aluminum 7075	0	Do not use
	96.82	Use with caution

C. CHANGE IN CORROSION POTENTIAL WITH HYPOCHLORITE ION CONCENTRATION

Another interesting phenomenon observed during the experimentation was the change in corrosion potential with the change in hypochlorite ion concentration. The exact relationship between the hypochlorite ion concentration and corrosion potential was not determined in this study.

D. SUMMARY

With the exception of the aluminum alloy, the effect of the addition of hypochlorite ion was the same for all materials evaluated, with the corrosion potential becoming more positive and the metal less resistant to corrosion. No attempt was made to extrapolate corrosion rates from higher hypochlorite ion concentrations to those lower concentrations at which the shipboard seawater systems are expected to operate, and the equipment precluded making accurate measurements at these lower (0.5 ppm) concentrations. However, if the changes in corrosion rate with hypochlorite ion concentration noted for copper and nickel are representative, then a noticeable increase in corrosion should occur in the seawater systems even with the 0.5 ppm concentration.

V. RECOMMENDATIONS

Current literature contains little information about potentiokinetic studies of corrosion in seawater systems. The determination of the general resistance to corrosion, the types of corrosion, and the corrosion products developed in a marine environment are of great interest. Further research in this area, therefore, could be conducted using the present equipment with minimal expense, but with a great deal of patience and imagination to improve the equipment's performance and to extend the procedures. Among the changes recommended are:

- (1) The overhaul or replacement of the potentiostat.
- (2) The procurement of a linear scan device to drive the potentiostat through the desired range at the desired rate.
- (3) The procurement or modification of a logarithmic amplifier to facilitate the recording of data directly on a semi-logarithmic plot.
- (4) The development and verification of a fast scan procedure, many of which are discussed in current literature. The subjects recommended for investigation are:
 - (1) Verification of the result of this research.
- (2) Determination of corrosion rates and potentials at lower hypochlorite ion concentrations.
 - (3) Extension of this research to other materials

with marine significance.

(4) Determination of type products and rate of corrosion with the additional use of the scanning electron microscope.

There are many other procedures advanced in the literature based on optical methods which allow measurements of the corrosion process without the introduction of an externally applied current. These methods could also be evaluated using equipment already on hand at the school.

A better understanding of the corrosion resistance of construction materials is necessary for the more efficient allocation of resources within the navy and civilian community. The school has the capability to make a contribution in this area with existing resources.

APPENDIX A

PREPARATION OF ARTIFICIAL SEAWATER

The formula and procedure developed by Kester, et al, were used in producing the quantity of synthetic standard seawater required. The seawater was manufactured in 36 kg amounts. This amount of water was normally consumed in ten working days.

The formula for 1 kg of artificial seawater given in Table VIII is designed to bring the composition of the artificial seawater to within 1 mg/kg of the major components in natural seawater. The impurities in reagent grade salts will not change the composition of artificial seawater by more than 1 mg/kg, but may cause great deviation from the composition with respect to the minor constituents. A comparison of the composition of standard natural seawater and artificial seawater is given in Table IX.

The solutions of the volumetric salts were initially prepared at 2.5 times greater concentration using new chemical stock, were diluted to the desired concentration and densities were checked prior to mixing in the final solution.

To avoid precipitation of insoluble compounds, the gravimetric salts were weighed and added to distilled water equivalent to 40% of the mass of the complete solution, the system was stirred and more distilled water was added to bring the total mass to 70% of the mass of the complete

solution. The volumetric salts were mixed in a separate container and distilled water added to bring the total mass to 30% of the complete solution. The two resulting solutions were added together and stirred overnight.

The pH and conductivity were measured and checked with standard seawater procured from I.A.S.P.O. Standard Seawater Service, Charlottenlund Slot, DK-2920, Charlottenlund, Denmark. The results of the comparisons are shown in Table X.

TABLE VIII

FORMULA FOR 1 kg OF ARTIFICIAL SEAWATER

A. Gravimetric Salts

Salt	g/kg of solution
NaCl	23.926
Na ₂ SO ₄ (anhydrous)	4.008
KCl	0.677
NaHCO ₃	0.196
KBr	0.098
H ₃ BO ₃	0.026
NaF	0.003

B. <u>Volumetric Salts</u>

Salt	Conc M/l	ml/kg of solution
MgCl ₂ ·6H ₂ O	1.000	53.27
CaCl ₂ ·2H ₂ O	1.000	10.33
SrCl ₂ .6H ₂ 0	0.100	0.90

C. Distilled water to bring total weight to 1 kg

The resulting pH should be between 7.9 and 8.3

TABLE IX

COMPARISON OF THE COMPOSITION OF NATURAL AND ARTIFICIAL SEAWATERS

Ion	Natural seawater (g/kg)	Artificial seawater (g/kg)	Difference %
Cl-	19.353	19.353	0.0
Na ⁺	10.760	10.765	0.046
so ₄	2.712	2.711	0.037
Mg++	1.294	1.295	0.077
Ca ⁺⁺	0.413	0.414	0.24
K ⁺	0.387	0.387	0.0
HCO3	0.142	0.142	0.0
Br-	0.067	0.066	1.5
Sr ⁺⁺	0.008	0.008	0.0
H ₃ BO ₃	0.026	0.026	0.0
F-	0.001	0.001	0.0

TABLE X

COMPARISON OF pH AND CONDUCTIVITY
OF STANDARD AND ARTIFICIAL SEAWATERS

Date	Temp °C	Standard pH Cond	Seawater (mmho/cm)	Artificia pH Cond	l Seawater
1/13/76	23	8.3	39.93	8.3	39.93
2/25/76	20	8.3	40.02	8.3	39.67
3/11/76	19	8.2	39.57	8.15	40.76
3/30/76	19.8	8.3	40.21	8.1	39.29
4/20/76	24	8.32	39.57	8.28	40.85

APPENDIX B

COMPOSITION OF METALLIC SAMPLES

With the exception of the pure metals, the samples used to manufacture the electrodes were provided by the Metallurgy Laboratory, Mare Island Naval Shipyard (MINSY), Vallejo, California, with the chemical assay reports. The pure metals were provided by the Department of Mechanical Engineering, Naval Postgraduate School, and were considered to be 99.99% pure.

The density of each specimen was determined in the laboratory. The gram-equivalent weight (e) for the alloys was determined from the following formula:

$$e = \sum_{i=1}^{n} \frac{X_i A_i}{Z_i}$$

where:

X_i is the mass fraction of the metal component
A_i is the gram molecular weight of the metal component
Z_i is the oxidation state of the predominant form of the natural occurring oxides of the metal component.

A summary of the above properties for each sample is given in Table ${\tt XI.}$

TABLĘ XI

CHEMICAL COMPOSITION, EQUIVALENT WEIGHT AND DENSITY OF METAL SAMPLES

^ Alloy	Percent Composition	equivalent wt	g,/cm³
Copper	Cu(99.99)	31.77	8.933
Nickel	Ni(99.99)	29.355	8.86
Naval Brass QQ-B-750	Cu(61.3), Zn(38.10), Sn(.60), Fe(.10), Pb(.10), Other(.10).	32,418	8,319
Phosphor Bronze QQ-B-750	Cu(94.8), Sn(5.16), P(.04), Fe(<.05), Mn(<.05), Zn(<.05), Pb(<.02)	33.187	8.909
Copper Nickel Mil-C-15726E	Cu(67.49), Ni(31.5), Fe(.58), Mn(.42), P(.007), Pb(<.05), Zn(<.05)	30.805	8.731
K-Monel Alloy K-500	Ni(65,30), Cu(29,50), Al(2.80), Fe(1.00), C(.15), Si(.15), Mn(.60), Ti(.50)	28.654	8.410
Steel HY-80	Fe(95.27), Ni(2.75), Cr(1.40), Mo(.40), C(.18)	27.734	7.857
Stainless Steel 304	Stainless Steel Fe(71.59), Cr(18.36), Ni(9.06), Mn(.94), C(.05) 304	25.990	7.775
Aluminum Alloy 7075	Al(89.8), Mg(2.5), Cu(1.6), Cr(0.5), Zn(5.6)	10.805	2.749

APPENDIX C

TABLES OF EXPERIMENTAL DATA

The form in which experimental data were collected (Figure 9) was not suitable for inclusion within this paper.

The tables which are included in this Appendix will allow the polarization curves of Figures 11 through 32 to be reproduced and the resulting values for the corrosion current density to be verified.

With the exception of the trials involving:

Steel alloy Hy-80, both trials;

Copper in seawater treated with 2.123 ml and 4.245 ml CLOROX;

Nickel in seawater treated with 2.123 ml and 4.245 ml CLOROX;

all data represent the summary of a minimum of four runs. With the exception of the six enumerated trials, the data are presented as the mean and standard deviation (std. dev.). The six enumerated trials were duplicate runs only, and the data for each run are presented.

The values recorded for Potential and $E_{\rm corr}$ are valid to three significant digits, the values recorded for Current Density and OCl $^-$ are valid to four significant digits. The data were prepared for presentation by a WANG 720C Computer.

TABLE XII

COPPER IN UNTREATED SEAWATER

Potentia (V vs SCE	Mean Mean	
002505050505050505050505050505050505050	11750.0000 8082.0000 4761.0000 4761.0000 1126.8000 739.6240 74.67650 -12.76500 -12.63720 -41.8770 -41.8770 -785.0880 -71.81770 -785.0880 -71.16.6200 -1114.6200 -1114.6200 -1127.4400	2.080 3.44460 2.9830 4.4960 2.9830 4.29630 13.5500 13.1200 12.3800 14.3900 14.3900 14.3900 14.3900 14.3900 14.3900 14.3900 14.3900
E _{corr} (V	Mean vs SCE)266	

TABLE XIII

COPPER IN SEAWATER TREATED WITH 2.123 ml CLOROX

Potential (V vs SCE)	Current Density Run 1	(µA/cm ²) Run 2
252505050505050505050505050505050505050	44590.000 38710.000 34660.000 30200.0000 24120.0000 15810.0000 14190.000 14190.000 14590.000 16220.000 17840.0000 17840.00000 17840.00000 17840.000000 17840.0000 17840.0000 17840.00000 17840.00000 17840.00000 17840.00000 17840.000000 17840.00000000000000000000000000000000000	34440.000 30660.0000 26660.0000 17371.0000 13510.0000 77554.0000 77332.0000 4110.0000 24444.7300 -38.3700 -103.33000 -1653.69000 -2464.69000 -2464.69000 -3333.455.69000 -403.90000 -403.90000 -404.40000
	Run I	Run 2 166
E _{corr} (V vs S	SCE)182	. 100
[oc1 ⁻]	ppm 32.400	34.970

TABLE XIV

COPPER IN SEAWATER TREATED WITH 4.25 ml CLOROX

2.

Potential (V vs SCE)	Current Run-1	Density (µA/cm ²) Run 2
437520505050505050505050505050505050505050	79540.000 685300.0000 655330.0000 552480.0000 552480.0000 487450.0000 3224570.0000 185300.0000 112900.0000 17730.00000 17730.00000 17730.00000 17730.00000 17730.0000 17730.0000	74190.000 69160.0000 65540.0000 565540.0000 56500.0000 52480.0000 485240.0000 40010.0000 33780.0000 19900.0000 13970.0000 13862.0000 13862.0000 14862.0000 14862.0000 14862.0000 14862.0000 14862.0000 15862.0000 16862.0000 16862.0000 16862.0000 17841.0000 18862.0000 19862.00000 19862.00000 19862.00000 19862.00000 19862.00000 19862.00000 19862.000000000000000000000000000000000000
E _{corr} (V vs S	Run 1 (CE)086	Run 2 116
	ppm 55.080	57.670

TABLE XV

COPPER IN SEAWATER TREATED WITH 8.49 ml CLOROX

Potential (V vs SCE)	Current Density Mean	(μA/cm ²) Std. Dev.
.400 .375 .325 .3250 .2250 .2250 .2250 .2250 .2250 .2250 .2250 .0025 .00	44600.000 41010.000 37820.000 34950.000 32570.000 30710.000 29480.000 27140.000 24910.000 15110.000 15110.000 12870.000 11250.000 4545.000 4545.000 4545.000 4545.000 -205.700 -205.700 -222.500 -247.800 -250.300 -247.800 -250.300 -247.800 -247.800 -247.800 -247.800 -442.400 -442.400 -442.400 -442.400 -442.400 -442.400 -442.800 -431.300 -431.300 -431.300 -455.200	10520.000 9670.000 8190.0000 7170.0000 6210.0000 4400.0000 44720.0000 43720.0000 43810.0000 7853.0000 7853.0000 15445.0000 7853.0000 120.0000
E _{corr} (V vs	Mean SCE)059	Std. Dev.
[001]	_{PPm} 89.650	7.240

TABLE XVI

NICKEL IN UNTREATED SEAWATER

Potential (V vs SCE)	Current <u>Mean</u>	Density	(µA/cm ²) Std. Dev.
05050505050505050505050505050505050505	3266.000 2996.0000 27696.0000 22535.0000 20222.0000 16320.0000 18977.4000 208.970.4000 117.6850 -116.3320 -21.166.9970 -116.9889 -21.1850 -116.9889 -116.9889 -116.9990 -116.9900 -1125.3300 -1125.3300 -1125.3300 -1125.3000 -1125.6000		9.000000000000000000000000000000000000
E (17 :	Mean rs SCE)338		.000
E _{corr} (V v	, a GCL) .330		

TABLE XVII

NICKEL IN SEAWATER TREATED WITH 2.123 ml CLOROX

Potential (<u>V vs SCE</u>)	Current Run 1	Density	(µA/cm ²) Run 2
.400 .33520 .332750 .332750 .2220750 .1220750 .1220750 .002570 .002570 .002570 .1222570 .222570 .222570 .332570 .332570 .332570	Current Run 1 68380.000 63690.000 556600.000 32590.000 19380.000 10890.000 3238.000 -25.560 -61.560 -74.534 -104.400 -123.600 -127.800		75070.000 638440.0000 5458990.0000 3237440.0000 132300.0000 1323857.0000 13235.5000 1924.9200 1024.9400 1127.6000 1128.3000 1117.6000 1128.3000
E _{corr} (V vs	SCE) .10		Run 2 .023
[001]	ppm 28.51	0	23.970

TABLE XVIII

NICKEL IN SEAWATER TREATED WITH 4.245 ml CLOROX

Potential (V vs SCE)	Current Density Run 1	(µA/cm ²) Run 2
.400 .3750 .33200 .2250 .2220 .1507 .2220 .110750 .00250	63740.000 55720.000 47290.000 34950.000 27760.000 22820.000 18300.000 4112.000 3063.000 2262.000 865.600 637.400 431.800 246.700 113.100 43.1800 -104.900 -121.300 -135.700 -154.200 -164.500 -174.800 -174.800 -174.800 -193.300 -199.400 -207.7700 -224.100	44200.000 39060.0000 34540.0000 29210.0000 262110.0000 5161.0000 5162.0000 51645.8000 51645.8000 5155.1000 -133.4000 -143.3000 -1443.9000 -1554.2000 -1554.2000 -1704.8900 -1704.8900 -1704.8900
E _{corr} (V vs	Run 1 SCE)005	Run 2 012
[OC1 ⁻] p	_{pm} 57.020	50.540

TABLE XIX

NICKEL IN SEAWATER TREATED WITH 8.49 ml CLOROX

Potential (V vs SCE)	Mean	ensity (µA/cm²) Std. Dev.
. 250 . 250 . 250 . 250 . 2075 . 1075 . 1075 . 0050 . 00250 . 00250 . 00250 . 00250 	7291.000 5869.000 4991.000 3427.000 1342.000 738.000 247.600 -13.760 -67.340 -159.6000 -285.7800 -285.7800 -285.7800 -312.7800 -3	3687.000 2049.000 1917.000 1677.000 1215.000 786.000 3962.900 14.880 26.130 59.100 59.100 33.100 26.900 12.200 12.200 12.200 11.500 11.500 11.500 26.300
411	Mean .033	Std. Dev.
E _{corr} (V vs SC		3.370
. [OC1] ppn	1 108.300	5.570

TABLE XX

NAVAL BRASS IN UNTREATED SEAWATER

Potential (V vs SCE)	Current Density <u>Mean</u>	Std. Dev.
.1075050505050505050505050505050505050505	35150.000 32180.000 28460.000 25560.000 21710.000 15890.000 12970.000 9936.000 4747.000 4747.000 4747.000 4747.230 -5.620 -17.530 -29.460 -41.3400 -41.3400 -112.6000 -112.9000 -112.9000 -135.800 -142.200	8930.000 8780.0000 7250.0000 65510.0000 13409.0000 8000.0000 8000.0000 8000.0000 8000.0000 8000.0000 11409.0000 8000.0000 8000.0000 8000.0000 8000.0000 8000.0000 8000.0000 8000.0000 8000.0000 1174.4000 1174.41.300 1174.41.300 1174.41.300 1174.4000 1170.0000 117
E _{corr} (V vs	Mean SCE)287	Std. Dev. .012

TABLE XXI

NAVAL BRASS IN SEAWATER TREATED WITH 8.49 ml CLOROX

Potential (V vs SCE) .300 .275 .250 .225 .175 .150 .125 .100 .075 .050 .000025075125125125125125125125125125125125125125125125012512512501251250	Current Density Mean 27300.000 26400.000 25110.000 24420.000 21980.000 21980.000 19590.000 18580.000 17230.000 18100.000 18100.000 1840.000 16810.000 16810.000 16440.000 6771.000 2960.000 449.800 255.230 -104.500 -196.000 -259.31.100 -347.500 -313.100 -347.500 -313.100 -347.500 -313.100 -347.500 -313.100 -347.500 -313.100 -347.500 -343.900 -413.900 -413.900 -413.900	7810.000 7480.000 7480.000 7480.000 7320.000 6910.000 6910.000 3390.000 3370.000 3370.000 3370.000 3360.000 3360.000 3220.000 2039.000 1084.000 217.000 217.000 217.000 1136.800 113.200 1105.700 105.700 114.300
425 450 475 500	-413.900 -420.700 428.100 -442.400	114.300 108.600 112.400 110.300
	Mean	Std. Dev.
E _{corr} (V vs SC)	E)132	.023
[OC1 ⁻] ppm	93.290	1.130

TABLE XXII

PHOSPHOR BRONZE IN UNTREATED SEAWATER

Potential (V vs SCE)	Current Density <u>Mean</u>	γ (μΑ/cm ²) Std. Dev.
05050505050505050505050505050505050505	14470.000 14340.0000 11060.0000 5498.0000 3430.0000 1615.0000 3456.3000 3355.9000 3355.9000 3355.9000 356492 -9.1340 -29.7000 -567.6520 -949.1000 -129.7000 -129.7000 -129.7000 -129.7000 -129.7000 -129.7000 -129.7000 -129.7000 -129.7000 -129.7000 -129.7000 -129.7000 -129.7000 -2237.33000 -2255.7000 -2269.7000	2430.000 970.0000 830.0000 8491.0000 4679.0000 4679.0000 1288.7000 126.62449 126.626449 33.44.92630 44.92630 44.92630 45.53600 677000 1062.85000 107.00
E _{corr} (V vs SC	Mean 236	.004

TABLE XXIII

PHOSPHOR BRONZE IN SEAWATER TREATED WITH 9.49 ml CLOROX

Potential (<u>V vs SCE</u>)	Current Density Mean	(µA/cm ²) Std. Dev.
.400 .335055050505050505050505050505050505050	25750.000 23240.000 17750.000 16900.000 16900.000 177700.000 18000.000 17750.000 17750.000 16440.000 16440.000 16540.000 18250.000 18250.000 14930.000 14930.000 14930.000 -248.000 -210.600 -2248.000 -248.000 -2566.000 -2566.000 -2566.000 -2579.700	4210.000 3430.000 21850.0000 12850.0000 122630.0000 22630.0000 22630.0000 22630.0000 237340.0000 32750.0000 32750.0000 32750.0000 32750.0000 32750.0000 32750.0000 32750.0000 32750.0000 32750.0000 32760.0000 32777.1000 41.0000 41.0000 42.0000 1774.2000
E _{corr} (V vs SCE)	<u>Mean</u> 071	Std. Dev009
[OC1 ⁻] ppm	108.500	3.400

TABLE XXIV

COPPER-NICKEL ALLOY IN UNTREATED SEAWATER

Potential (V vs SCE)	Current Density Mean	(µA/cm ²) Std. Dev.
00505050505050505050505050505050505050	6893.000 4813.0000 3107.0000 1516.0000 3193.4200 159.4000 856.1640 29.07440 -22.0420 -18.6580 -18.6580 -18.6580 -18.6580 -18.6580 -18.6580 -18.6580 -18.6580 -2359.3370 -47.290 -553.1300 -553.14080 -673.4950 -673.4950 -82.0620 -78	511.000 558.0000 558.0000 169.0000 169.0000 169.0000 169.0000 169.0000 170.00000 170.0000 170.0000 170.0000 170.0000 170.0000 170.0000 170.0000 170.0000 170.0000 170.0000 170.0000 170.0000 170.0000 170.0000 170.0000 170.0000 170.0000 170.0000 170.00000 170.00000 170.
E _{corr} (V vs	Mean	Std. Dev 000

TABLE XXV

COPPER-NICKEL ALLOY IN SEAWATER TREATED WITH 8.49 ml CLOROX

Potential (V vs SCE)	Current Density Mean	(µA/cm2) Std. Dev.
.3505 .32005 .32705 .225205 .227705 .12005 .0005700 .0005	21880.000 17420.000 15280.000 12230.000 12230.000 12230.000 25550.000 25550.000 26560.000 17390.000 12580.000 12580.000 12580.000 16.6660 -24.350 -76.010 -144.800 -203.700 -248.300 -371.200 -497.300 -497.300 -689.300 -689.300 -678.100 -704.800 -713.200	5430.000 54280.0000 2920.0000 22140.0000 1570.0000 10690.0000 10150.0000 7570.0000 10150.0000 7570.0000 10150.0000 10150.0000 7570.0000 3748.0000 16.570 394.700 944.700 73.6000 519.8000 958.4000 169.8000 1
	Mean	Std. Dev.
E _{corr} (V v	s SCE)010	.008
[001-]	_{ppm} 102.200	9.030

TABLE XXVI

K-MONEL IN UNTREATED SEAWATER

Potential	Current Density	(µA/cm²)
(V vs SCE)	Mean	Std. Dev.
.100 .075 .050 .025	15440.000	3720.000
.075	8667.000	2265.000
.025	500.200	260.600
. 000	94.100	3720.000 2265.000 4142.000 260.600 28.620 7.320
.000 025 050 075	42.030	6.320
075	29.280	6.320 1.360
075 100 125 150 175	19.810	260.600 28.620 7.320 6.320 1.360 3.360 3.360 11.590 11.250
150	28.090	11.590
175	32.240	11.590 13.250 12.060 5.490 2.110 2.341
225	17.490	5.490
250	13.570	2.110
2/3 - 300	9.218 258	2.110 2.341 .789 1.770
325	-6.375	1.770
350 - 375	-10.610 -15.550	1.770 3.590 4.110 1.990
400	-22.190	1.990
- .425	-30.990 -45.260	7.590 13.280
475	-58.460	19.200
500	-70.810	21.480
550	- 94.080	26.340
575	-102.500	28.300
600 625	-116.700 -131.600	46.200
650	-158.100	38.700
- 125 - 125 - 125 - 125 - 125 - 126 - 126	15440.000 86672.0000 417.00200 942.7770 299.8270 128.2790 128.2790 128.2790 128.2790 128.2790 128.2790 128.2790 129.2258 109.25188	4.110 1.990 7.590 13.280 19.280 23.340 26.340 28.340 38.800 46.700 51.800 54.600
-,700	2777100	•
	Mean	Std. Dev.
E (V va scr)	300	.003
E _{corr} (V vs SCE)		

TABLE XXVII

K-MONEL IN SEAWATER TREATED WITH 8.49 ml CLOROX

Potential (V vs SCE)	Current Density <u>Mean</u>	(µA/cm²) Std. Dev.
. 5075 . 4405 . 4405 . 4405 . 3300 . 3300 . 2200 . 1075 . 1075 . 0005 . 0005	109600.000 104000.000 97630.000 91780.000 85320.000 78950.000 78950.000 59580.000 59580.000 39400.000 39420.000 26150.000 17010.000 17010.000 1836.000 -363.670 -363.670 -140.2700 -140.200 -140.200 -140.200 -234.900 -234.900 -238.500 -318.500 -318.500 -318.500 -314.000	23320.000 22710.000 22710.000 19000.000 17700.000 16030.000 144120.000 12860.000 10020.000 8030.000 4250.000 2533.000 2533.000 2533.000 11020.000
	Mean	Std. Dev.
E _{corr} (V vs	SCE) .077	.018
[OC1-]	ppm 88.850	2.800

TABLE XXVIII

HY-80 STEEL ALLOY IN UNTREATED SEAWATER

Potential	Current Density	$(\mu A/cm^2)$
(V vs SCE)	Run 1	Run 2
00505050505050505050505050505050505050	77060.000 73800.000 68920.000 65060.000 65060.000 57540.000 52860.000 44930.000 44930.000 44270.000 32730.000 28260.000 24600.000 12710.000 12710.000 1566.000	63150.000 62740.000 58490.000 555660.000 49380.000 49380.000 40280.000 28540.000 28540.000 28540.000 28540.000 2857.000 48300.000 13340.000 4837.000 -192.900 -127.500 -157.900 -117.400 -127.500 -117.400 -127.500 -117.400 -127.500 -117.400 -127.500 -182.200 -182.200 -182.200 -182.200 -192.300 -192.300 -192.300 -192.300 -192.300 -192.300 -192.300 -192.300
E _{corr} (V vs 3	SCE)512	528

TABLE XXIX

HY-80 STEEL ALLOY IN SEAWATER TREATED WITH 8.49 ml CLOROX

Potential (V vs SCE)	Current Density Run 1	(µA/cm ²) Run_2
00505050505050505050505050505050505050	125500.000 118400.000 110600.000 103100.000 881940.0000 73490.0000 655360.0000 42670.0000 -2858.9500 -3387.1000 -4489.5000 -4488.5000 -4489.5000 -5200.66000 -5541.4000 -55671.6600 -55671.6000 -6612.4000 -6612.4000	114900.000 90000 90000 90000 90000 90000 8235330.0000 5235330.0000 53360.0000 533
7 (7)	Run 1 SCE)325	Run 2 344
E _{corr} (V vs	3CE) -,323	.344
[OC1 ⁻] p	pm 100.100	108.900

TABLE XXX

STAINLESS STEEL IN UNTREATED SEAWATER

Potential (<u>V vs SCE)</u>	Current Density Mean	(μA/cm ²) Std. Dev.
	24.7600 76000 760302 760302 760302 760302 760302 760302 760302 7604	3.834105553112004266284431055000000000000000000000000000000000
E _{corr} (V vs SC	Mean E)211	Std. Dev. .001

TABLE XXXI

STAINLESS STEEL IN SEAWATER TREATED WITH 8.49 ml CLOROX

Potential (V vs SCE)	Current Density <u>Mean</u>	y (µA/cm ²) Std. Dev.
525 525 5200 52	435600.000 35600.000 28090.000 28090.000 16010.000 38332.000 19309.000 706.500 307.4000 121.200 96.1650 -16.782 -18.780 -125.780 -18.7750 -24.460 -242.190 -597.350 -74.790 -79.910	5180.000 4180.000 5410.0000 4640.0000 5749.0000 5749.0000 852.0000 852.8000 113.8000 123.86000 117.4000 129.51500 100.06800 117.6000 129.51500 120.4200 13.9200 13.9200 146.6200 120.3700
E _{corr} (V vs	<u>Mean</u> 5 SCE) .125	Std. Dev032
[001]	ppm 99.310	1.150

TABLE XXXII

ALUMINUM ALLOY IN UNTREATED SEAWATER

Potential (V vs SCE)	Current Density <u>Mean</u>	(μΑ/cm ²) Std. Dev.
445050505050505050505050505050505050505	54160.000 51230.000 46810.000 42930.000 34930.000 31930.000 27670.000 23380.000 17710.000 13860.000 17580.000 17580.000 2321.000 358.700 -54.770 -65.980 -72.700 -76.740 -82.450 -88.150 -90.890 -96.340 -101.500 -111.200 -111.200 -111.200 -1128.100 -128.300 -128.300 -128.300 -128.300 -155.300	8967.000 8142.000 5906.000 4506.000 3198.000 1762.000 4070.000 2047.000 1741.000 1741.000 1741.000 1741.000 1741.520 9.390 12.830 11.520 9.210 8.5500 7.340 7.1620 5.400 6.500 11.200 14.300 11.200 14.300 11.300 129.000 37.0000 43.900
E _{corr} (V vs	SCE)793	.005

TABLE XXXIII

ALUMINUM ALLOY IN SEAWATER TREATED WITH 8.40 ml CLOROX

Potential (V vs SCE)	Mean	Density (µA/cm ²) Std. Dev.
425 4425 4425 4505 5505 5505 667025 667025 7777025 7777025 88575 9970025 112570 112	96340.000 89350.000 82480.000 75610.000 69280.000 62210.000 53440.000 27090.000 27090.000 21010.000 4677.000 2086.000 312.700 -13.450 -19.080 -22.730 -22.730 -22.730 -23.970 -33.940 -38.450 -38.940 -38.940 -41.170 -46.6670 -787.670 -102.900 -118.100	19210.000 17060.000 16370.000 16370.000 15480.000 15480.000 14440.000 14440.000 14260.000 1700.0000 1700.0000 1700.0000 1700.0000 1700.0000 1700.00000 1700.0000000000
	Mean	Std. Dev.
E _{corr} (v vs	SCE)757	.007
.[oc1] _I	96.820	7.380

LIST OF REFERENCES

- [1] Haderlie, E. C., Private communication
- [2] British Ship Research Association Contract Report W189, An Assessment of the CHLOROPAC Electrolytic Chlorinator, by D. W. Trotman, February 1974.
- [3] Pourbaix, Marcel, <u>Lectures on Electrochemical Corrosion</u>, Plenum Press, 1973.
- [4] Uhlig, H. H., <u>Corrosion and Corrosion Control</u>, 2nd ed., Wiley, 1971.
- [5] Fontana, M. G. and Greene, N. D., Corrosion Engineering, McGraw-Hill, 1967.
- [6] Carpenter Technology, reprint from Chemical Engineering (17 May 1971 to 3 May 1972), A New Refresher Corrosion Causes and Control, 1974.
- [7] Uhlig, H. H., editor, <u>The Corrosion Handbook</u>, John Wiley and Sons, 1948.
- [8] Naval Civil Engineering Laboratory Technical Note N-1213, Corrosion of Materials in Surface Seawater After 12 and 18 Months of Exposure, by F. M. Reinhart and J. F. Jenkins, January 1972.
- [9] Naval Research Laboratory Memorandum Report 1948, Marine Corrosion Studies Sixth Interim Report of Progress,
 The Corrosion Characteristics and Response to Cathodic Protection of Several Stainless Steel Alloys in Quiescent Sea Water, by T. J. Lennox, Jr., M. H. Peterson, and R. E. Groover, November 1968.
- [10] Naval Research Laboratory Memorandum Report 1961, Marine Corrosion Studies, Seventh Interim Report of Progress, The Characterization of the Corrosion Behavior and Response to Cathodic Protection of Mineteen Aluminum Alloys in Sea Water, by R. E. Groover, T. J. Lennox and M. H. Peterson, January 1969.
- [11] Naval Research Laboratory Memorandum Report 2183, Marine Corrosion Studies, Eighth Interim Report of Progress,
 The Corrosion Characteristics and Response to Cathodic Protection of Copper Alloys in Quiescent Sea Water, by
 R. E. Groover, T. J. Lennox, and M. H. Peterson,
 October 1970.

- [12] Pourbaix, M., <u>Lectures on Electrochemical Corrosion</u>, Plenum Press, 1973.
- [13] Evans, U. R., The Corrosion and Oxidation of Metals: First Supplementary Volume, p. 323-324, St. Martins Press, 1968.
- [14] Evans, S. and Koehler, E. L., "Use of Polarization Methods in the Determination of the Rate of Corrosion of Aluminum Alloys in Anaerobic Media", Journal of the Electrochemical Society, v. 108, No. 6, p. 509-514, June 1961.
- [15] Shreir, L. L., editor, <u>Corrosion</u>, John Wiley & Sons, 1963.
- [16] Defense Metals Information Center Report 245, Corrosion of Metals in Marine Environments, Battelle Memorial Institute, May 1970.
- [17] Evans, U. R., <u>The Corrosion and Oxidation of Metals</u>, p. 165, St Martins Press Inc., 1960.
- [18] Kester, D. R., Duedall, I. W., Connors, D. N. and Pytkowicz, R. M., "Preparation of Artificial Seawater", <u>Limnology and Oceanography</u>, v. 12, p. 176-178, December 1967.
- [19] Kolthoff, I. M. and Sandell, E. B., <u>Textbook of Quantitative Inorganic Analysis</u>, p. 614-626, The MacMillan Company, 1948.
- [20] Petrolite Corporation, Operating Principles and Operating Modes Polarization Admittance Instantaneous Rate, undated.
- [21] Rabald, E., <u>Corrosion Guide</u>, 2nd revised ed., p. xxvii-xxx, and p. 703-706, Elsevier Publishing Co., 1968

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0212 Naval Postgraduate School Monterey, California 93940		2
3.	Department Chairman, Code 61 Department of Physics and Chemistry Naval Postgraduate School Monterey, California 93940		2
4.	Professor R. A. Reinhardt, Code 61Ri Department of Physics and Chemistry Naval Postgraduate School Monterey, California 93940		2
5.	Assoc. Professor A. J. Perkins, Code 69Ps Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940		1
6.	LCDR Joseph M. Price, USN 808 W. North First Street Shelbyville, Illinois 62565		1
7.	CAPT Dean Taylor, USN Executive Director External Development, Code 006 Naval Postgraduate School		1

Thesis 1.55812
P9345 Price
c.1 A potentiokinetic determination of corrosion rates in artificial seawater-hypochlorite solutions.

Thesis P9345 Price c.1 A 165812

A potentiokinetic determination of corrosion rates in artificial seawater-hypochlorite solutions.

thesP9345
A potentiokinetic determination of corro

3 2768 001 93195 9

DUDLEY KNOX LIBRARY