2. sprawozdanie z laboratorium Hurtownie Danych

Mikołaj Kubś, 272662

11 marca 2025

1 Zadanie 1. Ekstrakcja danych

1.1

Utworzyć zestawienie, które dla poszczególnych miesięcy i lat przedstawi informację o liczbie różnych klientów. Przygotuj zapytanie z i bez użycia polecenia pivot.

1.1.1 Wersja bez pivot

- 1 SELECT
- 2 YEAR(OrderDate),
- 3 MONTH(OrderDate),
- 4 COUNT(DISTINCT CustomerID)
- 5 FROM Sales.SalesOrderHeader
- GROUP BY YEAR(OrderDate), MONTH(OrderDate)
- 7 ORDER BY YEAR(OrderDate), MONTH(OrderDate)

Rysunek 1: Wynik wykonania kwerendy 1

1.1.2 Wersja z użyciem pivot

```
WITH UniqueCustomers AS (
       SELECT
           YEAR(OrderDate) AS OrderYear,
           MONTH(OrderDate) AS OrderMonth,
           CustomerID
       FROM Sales.SalesOrderHeader
       GROUP BY YEAR(OrderDate), MONTH(OrderDate), CustomerID
  )
  SELECT * FROM UniqueCustomers
  PIVOT (
10
       COUNT(CustomerID)
11
       FOR OrderMonth IN ([1], [2], [3], [4],
12
                           [5], [6], [7], [8],
13
                           [9], [10], [11], [12])
  ) AS PivotTable
  ORDER BY OrderYear;
```

Rysunek 2: Wynik wykonania kwerendy 1 z pivot

1.2

Utworzyć zestawienie zawierające w wierszach imiona i nazwiska sprzedawców, a w kolumnach kolejne lata. Wartością będzie liczba obsłużonych transakcji. Wyświetlić tylko tych sprzedawców, którzy pracowali przez wszystkie 4 lata.

```
SELECT * FROM

(
SELECT

FirstName, LastName, SalesOrderID,

YEAR(OrderDate) AS OrderYear FROM Sales.SalesPerson

JOIN HumanResources.Employee ON

Employee.BusinessEntityID = SalesPerson.BusinessEntityID

JOIN Person.Person ON

Person.BusinessEntityID = Employee.BusinessEntityID

JOIN Sales.SalesOrderHeader ON
```

```
SalesOrderHeader.SalesPersonID = SalesPerson.BusinessEntityID
WHERE YEAR(HireDate) = 2011
AS SourceTable
PIVOT (
COUNT(SalesOrderID)
FOR OrderYear IN ([2011], [2012], [2013], [2014])
AS PivotedTable
ORDER BY FirstName
```

Rysunek 3: Wynik wykonania kwerendy 2

1.3

Zdefiniować zapytanie wyznaczające sumę kwot sprzedaży towarów oraz liczbę różnych produktów w zamówieniach w poszczególnych latach, miesiącach, dniach.

```
YEAR(OrderDate) AS "Rok",

MONTH(OrderDate) AS "Miesiąc",

DAY(OrderDate) AS "Dzień",

SUM(LineTotal) AS "Suma",

COUNT(DISTINCT ProductID) AS "Liczba_różnych_produktów"

FROM Sales.SalesOrderHeader

JOIN Sales.SalesOrderDetail ON

SalesOrderDetail.SalesOrderID = SalesOrderHeader.SalesOrderID

GROUP BY YEAR(OrderDate), MONTH(OrderDate), DAY(OrderDate)

ORDER BY YEAR(OrderDate), MONTH(OrderDate), DAY(OrderDate)
```


Rysunek 4: Wynik wykonania kwerendy 3

1.4

Wykorzystując polecenie CASE przygotować podsumowania do zestawienia z poprzedniego zadania tak, aby sumowane były kwoty zamówień oraz obliczana liczba różnych produktów dla poszczególnych miesięcy i dni tygodnia. Uwaga: Pamiętaj o wybraniu właściwego atrybutu funkcji datepart tak, aby zgadzała się nazwa dnia tygodnia

```
SET DATEFIRST 1;
  SET LANGUAGE Polish;
  SELECT
       YEAR(OrderDate) AS "Rok",
5
       DATENAME(month, OrderDate) AS "Miesiac",
6
       CASE DATEPART(dw, OrderDate)
           WHEN 1 THEN 'Poniedziałek'
           WHEN 2 THEN 'Wtorek'
           WHEN 3 THEN 'Sroda'
10
           WHEN 4 THEN 'Czwartek'
11
           WHEN 5 THEN 'Piatek'
12
           WHEN 6 THEN 'Sobota'
13
           WHEN 7 THEN 'Niedziela'
14
       END AS "Dzień tygodnia",
15
       SUM(LineTotal) AS "Suma",
16
       COUNT(DISTINCT ProductID) AS "Liczba_różnych_produktów"
  FROM Sales.SalesOrderHeader
18
   JOIN Sales.SalesOrderDetail ON
19
       SalesOrderDetail.SalesOrderID = SalesOrderHeader.SalesOrderID
20
  GROUP BY
21
       YEAR(OrderDate),
^{22}
       DATENAME(month, OrderDate),
23
       MONTH(OrderDate),
```

```
DATEPART(dw, OrderDate)
ORDER BY
YEAR(OrderDate),
MONTH(OrderDate),
DATEPART(dw, OrderDate)
```

```
| Bit | Brack | Bit |
```

Rysunek 5: Wynik wykonania kwerendy 4

1.5

Przygotować zestawienie, w którym dla wybranych klientów przygotujemy kartę lojalnościową:

- a. srebrną, jeśli klient wykonał co najmniej 2 transakcje w sklepie;
- b. złotą, jeśli wykonał co najmniej 4 transakcje w sklepie, w tym co najmniej
- 2transakcje, których łączna kwota przekraczała 250%średniej wartości zamówień w bazie;
- c. platynową, jeśli klient spełniał warunki otrzymania karty złotej oraz w co najmniej jednej transakcji kupił jednocześnie produkty ze wszystkich kategorii

```
WITH AvgOrderValue AS (
      SELECT AVG(TotalOrderValue) AS AvgValue
      FROM (
3
           SELECT SalesOrderID, SUM(LineTotal) AS TotalOrderValue
           FROM Sales.SalesOrderDetail
           GROUP BY SalesOrderID
      ) AS OrderValues
  ),
  CustomerOrders AS (
      SELECT
10
           SOH.CustomerID,
           COUNT(DISTINCT SOH.SalesOrderID) AS TransactionCount,
           SUM(SOD.LineTotal) AS TotalTransactionValue,
13
           SUM(CASE WHEN OrderValues.TotalOrderValue > 2.5 * A.AvgValue
14
```

```
THEN 1 ELSE 0 END) AS HighValueOrderCount
15
       FROM Sales.SalesOrderHeader SOH
16
       JOIN Sales.SalesOrderDetail SOD ON SOD.SalesOrderID = SOH.SalesOrderID
       JOIN (
           SELECT SalesOrderID, SUM(LineTotal) AS TotalOrderValue
           FROM Sales.SalesOrderDetail
           GROUP BY SalesOrderID
21
       ) AS OrderValues ON SOH.SalesOrderID = OrderValues.SalesOrderID
22
       CROSS JOIN AvgOrderValue A
23
       GROUP BY SOH.CustomerID
24
  ),
25
  UniqueCategories AS (
26
       SELECT
27
           C.CustomerID,
28
           COUNT(DISTINCT PC.ProductCategoryID) AS CategoryCount
29
       FROM Sales.Customer C
30
       JOIN Sales.SalesOrderHeader SOH ON SOH.CustomerID = C.CustomerID
31
       JOIN Sales.SalesOrderDetail SOD ON SOD.SalesOrderID = SOH.SalesOrderID
       JOIN Production.Product PR ON PR.ProductID = SOD.ProductID
       JOIN Production.ProductSubcategory PSC ON
34
           PSC.ProductSubcategoryID = PR.ProductSubcategoryID
35
       JOIN Production. ProductCategory PC
36
           ON PC.ProductCategoryID = PSC.ProductCategoryID
37
       GROUP BY C.CustomerID
  )
39
  SELECT
40
       P.FirstName AS "Imię",
41
       P.LastName AS "Nazwisko",
42
       COALESCE(CO.TransactionCount, 0) AS "Liczba transakcji",
43
       COALESCE(CO.TotalTransactionValue, 0) AS "Łączna_kwota_transakcji",
44
       CASE
           WHEN CO.TransactionCount >= 4
               AND CO.HighValueOrderCount >= 2
47
               AND COALESCE(UC.CategoryCount, 0) =
48
                    (SELECT COUNT(*) FROM Production.ProductCategory)
49
               THEN 'Platynowa'
50
           WHEN CO. TransactionCount >= 4
51
               AND CO.HighValueOrderCount >= 2
               THEN 'Złota'
           WHEN CO. TransactionCount >= 2
               THEN 'Srebrna'
55
```

```
ELSE 'Brak_karty'
END AS "Kolor_karty"
FROM Sales.Customer C
LEFT JOIN CustomerOrders CO ON CO.CustomerID = C.CustomerID
LEFT JOIN UniqueCategories UC ON UC.CustomerID = C.CustomerID
JOIN Person.Person P ON P.BusinessEntityID = C.CustomerID
ORDER BY CO.TransactionCount DESC;
```


Rysunek 6: Wynik wykonania kwerendy 5

2 Zadanie 2. Analiza danych

2.1

Przedstaw wyniki zadania 1 w postaci tabel i wykresów przestawnych w programie MS Excel. Zinterpretuj wyniki.

2.1.1

Rok\Miesiąc	V	1	2	3	4	5	6	7	8	9	10	11	12	Suma końcowa
2011						43	141	231	250	157	327	230	228	1607
2012		336	219	304	269	293	390	385	285	352	321	383	378	3915
2013		400	325	441	428	426	713	1675	1727	1741	1893	2041	1970	13780
2014		2073	1713	2342	2058	2350	898							11434
Suma końcowa		2809	2257	3087	2755	3112	2142	2291	2262	2250	2541	2654	2576	30736

Rysunek 7: Wykres przestawny z wyników kwerendy 1

2.1.2

Rok\Miesiąc	~	1	. 2	3	4	5	6	7	8	9	10	11	12	Suma końcowa
2011						43	141	231	250	157	327	230	228	1607
2012		336	219	304	269	293	390	385	285	352	321	383	378	3915
2013		400	325	441	428	426	713	1675	1727	1741	1893	2041	1970	13780
2014		2073	1713	2342	2058	2350	898							11434
Suma końcowa		2809	2257	3087	2755	3112	2142	2291	2262	2250	2541	2654	2576	30736

Rysunek 8: Wynik wykonania kwerendy 5

2.1.3

Rysunek 9: Tabela z wyników kwerendy 2

2.1.4

Rysunek 10: Tabela z wyników kwerendy 2

2.2

Przygotuj 5 dodatkowych tabel/wykresów, które pokażą ciekawe zależności w bazie AdventureWorks przy użyciu Power BI lub Tableau. Przedstaw wnioski biznesowe wynikające z tych zestawień