Introduction

- The basic of electronic system nowadays is semiconductor device.
- The famous and commonly use of this device is BJTs
 - (Bipolar Junction Transistors).
- It can be use as amplifier and logic switches.
- BJT consists of three terminal:
 - → collector : C
 - → base : B
 - →emitter : E
 - Two types of BJT: pnp and npn

Transistor Construction

3 layer semiconductor device consisting:

- \bullet 2 n- and 1 p-type layers of material \rightarrow npn transistor
- 2 p- and 1 n-type layers of material →pnp transistor
- The term bipolar reflects the fact that holes and electrons participate in the injection process into the oppositely polarized material
- A single pn junction has two different types of bias:
 - forward bias
 - reverse bias
 - Thus, a two-pn-junction device has four types of bias.

Position of the terminals and symbol of BJT.

- Base is located at the middle and more thin from the level of collector and emitter
- The emitter and collector terminals are made of the same type of semiconductor material, while the base of the other type of material

Fig. 4.1: (a) Position of terminals (b) Type of BJT

Common-Base Configuration

- Common-base terminology is derived from the fact that the :
 - base is common to both input and output of the configuration.
 - base is usually the terminal closest to or at ground potential.
- All current directions will refer to conventional (hole) flow and the arrows in all electronic symbols have a direction defined by this convention.
- Note that the applied biasing (voltage sources) are such as to establish current in the direction indicated for each branch.

- To describe the behavior of common-base amplifiers requires two set of characteristics:
 - Input or driving point characteristics.
 - Output or collector characteristics
- The output characteristics has 3 basic regions:
 - Active region -defined by the biasing arrangements
 - Cutoff region region where the collector current is 0A
 - Saturation region region of the characteristics to the left

$$I_C \approx IE$$

 Once a transistor is in the 'on' state, the base-emitter voltage will be assumed to be

$$V_{BE} = 0.7V$$

In the dc mode the level of I_{C} and I_{E} due to the majority carriers are related by a quantity called alpha

$$\alpha = \frac{I_{\rm C}}{I_{\rm E}}$$

$$I_C = \alpha I_E + I_{CBO}$$

- It can then be summarize to $I_C = \alpha I_E$ (ignore I_{CBO} due to small value)
- For ac situations where the point of operation moves on the characteristics curve, an ac alpha defined by

$$\alpha = \frac{\Delta I_{\rm C}}{\Delta I_{\rm E}}$$

Alpha a common base current gain factor that shows the efficiency by calculating the current percent from current flow from emitter to collector. The value of α is typical from 0.9 \sim 0.998.

Common-Emitter Configuration

- It is called common-emitter configuration since:
 - emitter is common or reference to both input and output terminals.
 - emitter is usually the terminal closest to or at ground
 potential.
 - Almost amplifier design is using connection of CE due to the high gain for current and voltage.
 - Two set of characteristics are necessary to describe the behavior for CE; input (base terminal) and output (collector terminal) parameters.

Proper Biasing common-emitter configuration in active region

Input characteristics for a common-emitter NPN transistor

- I_B is microamperes compared to miliamperes of I_C.
- I_B will flow when $V_{BE} > 0.7V$ for silicon and 0.3V for germanium
- Before this value I_B is very small and no I_B.
- Base-emitter junction is forward bias
- Increasing V_{CE} will reduce I_B for different values.

Output characteristics for a common-emitter npn transistor

- For small V_{CE} (V_{CE} < V_{CESAT} , I_{C} increase linearly with increasing of V_{CE}
- V_{CE} > V_{CESAT} I_C not totally depends on V_{CE} → constant I_C
 I_B(uA) is very small compare to I_C (mA). Small increase in I_B cause big increase in I_C
- $I_B=0$ A \rightarrow I_{CEO} occur. Noticing the value when $I_C=0$ A. There is still some value of current flows.

Relationship analysis between a and B

$$I_E = I_C + I_B \tag{1}$$

subtitute equ. Ic =
$$\beta$$
I_B into (1) we get I_E = $(\beta + 1)$ I_B

known :
$$\alpha = \frac{I_c}{I_E} \Rightarrow I_E = \frac{I_c}{\alpha}$$
 (2)

known :
$$\beta = \frac{I_c}{I_B} \Rightarrow I_B = \frac{I_c}{\beta}$$
 (3)

$$\alpha = \frac{\beta}{\beta + 1}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

Common - Collector Configuration

- Also called emitter-follower (EF).
 - It is called common-emitter configuration since both the signal source and the load share the collector terminal as a common connection point.
- The output voltage is obtained at emitter terminal.
- The input characteristic of common-collector configuration is similar with common-emitter. configuration.
 - Common-collector circuit configuration is provided with the load resistor connected from emitter to ground.
 - It is used primarily for impedance-matching purpose since it has high input impedance and low output impedance.