

Order of Magnitude Markers: An Empirical Study on Large Magnitude Number Detection

Rita Borgo, Joel Dearden, Mark W. Jones Swansea University, Visual Computing Group

Problem - Compare Vietnam and Venezuela

Problem - Compare Vietnam and Venezuela

Research

- Designed a new type of visual encoding
- Has 10x increase in numerical resolving power
- Compared against various encodings
- User study

Possible approaches

Tukey's ladder of powers (re-expression) [2]

Isenberg et al. [3] Dual scale charts and transformations

Possible approaches

Scale-stack bar charts, Hlawatsch et al

Our design aims

- Flexible encoding working together within a chart (e.g. malaria data), or separately (e.g. across a map – tested in user study).
- View all data regardless of magnitude (broken axis and panel charts break this).
- Visualize positive and negative quantities.
- Greater resolving power compared to existing techniques.

Final design

- Normalized scientific notation A×10^B where 1≤A≤10 and B∈Z.
- A Significand, B Exponent
- Big/small effect –
 exponent (largest effect on
 number) represented with
 the biggest visual
 component.

Height of the thin grey bar indicates the significand on a 0 to 10 scale

In this case 5.2

Number of blue lines stacked vertically indicates the exponent

In this case 8

Value ≈ **5.2E+8**

Final design

(a) Negative depicted above x-axis

(b) Negative depicted below x-axis

(a) Half-life of isotopes (days)

(b) Activity released of isotopes (PBq)

Other tested markers

- Design evolution.
- Other markers tested in user study.
- For the purposes of the user study, negative numbers were omitted to simplify things (logarithmic scale and ratio tests would be a problem).

User study: Task A, Magnitude Estimation

Order of magnitude map explorer

Magnitude estimate

Value≈7.6E+3

Remaining stimuli examples

Stimuli design

- Significand and exponent generated randomly.
- Non-integers discarded to make fair comparisons with text marker. i.e., remove floating point numbers.
- 0 and 1 not used to make log(A×10^B)>0 and defined.
- Answers accepted as correct if within 10% of the target value.
- All stimuli are stored so a specific experiment can be reconstructed.

Results: Magnitude Estimation Task A

- OOMMs significantly more accurate than logarithm (p<<0.002)
- OOMM3 and 4
 significantly more
 accurate than SSB
 (p≪0.002)
- See paper for response time analysis

User study: Target Identification Task B

Motivation: Can we compare values using the designs across the screen with many (potentially similar) distractors?

Stimuli design

- Same as A with additional requirement for target selection:
 - Largest number forced to be an outstanding outlier.
 - The second largest number and all the distractors are within two exponent levels.

Results: Target Identification Task B

OOMMs
 significantly more
 accurate than
 logarithm, linear
 and SSB
 (p<<0.002)

Divide A by B = 80,000 / 40,000 = 2

A is 2 times larger than B

Divide A by B = 100,000 / 500 = 200

A is 200 times larger than B

A is 200 times larger than B

A has 3 more **blue bars** than B

=

A is 3 **orders of magnitude** larger than B

A has a **grey bar** 5 times smaller than B

A has a **significand** 5 times smaller than B

1000 times larger and 5 times smaller = 1000 * 0.2 = 200 A is 200 times larger than B

Results: Ratio Estimation Task C

- OOMMs significantly more accurate than linear and logarithm (p≪0.002)
- OOMM5 significantly more accurate than SSB_№ (p<<0.002)

User study: Trends Analysis Task D

Motivation:

 Analyse and
 quantify trends

Results: Trends Analysis Task D

 OOMM1 and 3 significantly less accurate than linear (p<<0.002)

Conclusion

- Increased expressive power
- Good response time in user study
- Suggestive that usability outweighs novelty
- Confirms Hlawatsch et al new designs that increase the space of representable numbers can increase task accuracy and speed

Work funded by: Leverhulme and RIVIC

Prepared answers

 Remaining slides are answers to anticipated questions or omitted slides.

Analysis (A and C)

- A and C magnitude estimation and ratio estimation – answers not exact.
- Use error threshold.
- Graphs show trend of accuracy against increasing error tolerance.

Text: small magnitude

- Only integers were used in the user study.
- Identify the largest and second largest in this random data (apart from outstanding outlier).

Resolving power

- Assume marker height of 150 pixels.
- Assume b bit colour display (usually 8 bit).
- Linear, logarithmic and scale-stack bars achieve 150 unique numerical representations.
- Colour 2^b unique numerical representations, although fewer are perceived.
- Ours 1500 representations possible. (10× increase in resolving power)

Related literature

Cleveland and McGill [4], extracting quantitative information from graphs

MURDER RATES PER 100,000 POPULATION, 1978

Final user study

- 21 participants, 2 females, 19 males.
- Basic knowledge required, graphs, logarithmic scale..., therefore
- Maths, Physics, Engineering and Computer Science graduates and undergraduates.

Design history

- Designs that favoured pre-attentive processing.
 - Minimum of colours 2-3.
 - Associating different colours to different shapes.
 - Low visual complexity (defined as detail, intricacy, number of geometric features, etc.)
- Software written to allow us to experiment with marker design.
- Big/small effect exponent (largest effect on number) represented with the biggest visual component.

