





# МЕХАНИЗМЫ ИСПОЛНИТЕЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ ОДНООБОРОТНЫЕ

МЭО ГРУППЫ 4000



## ООО «Поволжская электротехническая компания»

## Почтовый адрес:

Российская Федерация, Чувашская Республика, 428000, г. Чебоксары, а/я 163

**Тел./факс:** (8352) 57-05-16, 57-05-19

*E-mail:* info@piek.ru *Caŭm:* www.piek.ru

|     | СОДЕРЖАНИЕ                                   | стр |
|-----|----------------------------------------------|-----|
| 1.  | Описание и работа изделия                    | 4   |
| Ha  | значение изделия4                            |     |
| 1.2 | Технические характеристики                   | 4   |
| 1.3 | Состав, устройство и работа изделия          | 5   |
| 1.4 | Описание и работа составных частей механизма | 6   |
| 1.5 | Маркировка                                   | 6   |
|     | Указание мер безопасности                    |     |
| 3.  | Использование по назначению                  | 7   |
| 3.1 | Подготовка изделия к использованию           | 7   |
| 3.2 | Монтаж и настройка механизма                 | 7   |
| 4.  | Использование изделия                        | 8   |
| 5.  | Техническое обслуживание изделия             | 8   |
| 6.  | Правила хранения и транспортирования         | 9   |
|     |                                              |     |

#### ПРИЛОЖЕНИЯ:

- А- Общий вид, габаритные и присоединительные размеры механизма МЭО-4000-97К
- А1 Общий вид, габаритные и присоединительные размеры механизма МЭО-10000-97К
- Б- Схемы электрические принципиальные механизмов МЭО(Ф) с трехфазным напряжением
- В Схема подключения механизма МЭО(Ф) к трехфазной сети с датчиком БСПТ при бесконтактным управлении

  - Γ Тормоз Ж Общий вид механизма МЭО-4000-97К
  - Д Общий вид Механизма МЭО-10000-97К

#### вниманию потребителей!

Предприятие непрерывно проводит работы по совершенствованию конструкции механизмов, поэтому некоторые конструктивные изменения в руководстве могут быть не отражены.

Руководство по эксплуатации распространяется на механизмы исполнительные электрические однооборотные группы МЭО-4000-97К и МЭО-10000 (далее– механизмы), используемых в системах автоматического регулирования различных технологических процессов.

Руководство по эксплуатации содержит сведения об устройстве, принципе работы, технических данных механизмов, необходимых для обеспечения полного и правильного использования технических возможностей механизмов и правилах, соблюдение которых гарантирует безопасную работу механизмов.

Работы по монтажу, регулировке и пуску механизмов разрешается выполнять лицам, имеющим специальную подготовку и допуск к эксплуатации электроустановок напряжением до 1000 V.

Во избежание поражения электрическим током при эксплуатации механизмов должны быть осуществлены меры безопасности, изложенные в разделе «Указание мер безопасности».

#### 1. ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ

#### 1.1 Назначение

- 1.1.1Механизмы исполнительные электрические однооборотные постоянной скорости МЭО-97К (в дальнейшем механизмы) предназначены для перемещения регулирующих органов в системах автоматического регулирования технологическими процессами в соответствии с командными сигналами автоматических регулирующих и управляющих устройств. Механизмы соответствуют техническим условиям ТУ 4218-002-70235294-2004.
- 1.1.2 Управление механизмами контактное или бесконтактное с помощью пускателя бесконтактного реверсивного ПБР-3А.
- 1.1.3 Механизмы должны размещаться под крышей и в закрытых не обогреваемых помещениях, и предназначены для эксплуатации в следующих климатических условиях по ГОСТ 15150-659.

Климатическое исполнение «У», категория размещения «2»:

- температура окружающего воздуха от минус 30 до плюс 50°C;
- относительная влажность окружающего воздуха до 95~% при температуре  $35^{\circ}$  С и более низких температурах без конденсации влаги.

Климатическое исполнение «Т», категория размещения «2»;

- температура окружающего воздуха от минус 10 до плюс 50°C;
- относительная влажность окружающего воздуха до 100 % при температуре 35<sup>0</sup> С и более низких температурах с конденсацией влаги.

Механизмы должны быть защищены от прямого воздействия солнечной радиации и атмосферных осадков.

Степень защиты механизмов IP65 по ГОСТ 14254-96 обеспечивает работу механизма при наличии в окружающей среде пыли и струй воды.

Механизмы не предназначены для работы в средах, содержащих агрессивные пары, газы и вещества, вызывающие разрушение покрытий, изоляции и материалов, и во взрывоопасных средах.

Механизмы устойчивы и прочны к воздействию синусоидальных вибраций по группе исполнения VI ГОСТ 12997-84.

#### 1.2 Технические характеристики

Исполнения механизмов и их основные технические данные приведены в таблице 1. Параметры питающей сети электродвигателей механизмов трехфазный ток напряжением: 220/380V, 230/400V, 240/415V частотой 50 Hz.

Параметры питающей сети блока сигнализации положения токового БСП:

- а) токового БСПТ-10:
- постоянный ток напряжением 24 V;
- однофазный переменный ток напряжением 220, 230, 240 V, частотой 50 Hz через блок питания  $Б\Pi$ -20.
  - б) индуктивного БСПИ-10:
  - переменный ток напряжением до 12V, частотой 50 Hz;
  - в) реостатного БСПР-10:
  - постоянный ток напряжением до 12 V;
  - переменный ток напряжением до 12 V, частотой 50 Hz.

Параметры питающей сети выносного блока питания БП-20 - однофазное переменное напряжение: 220, 230, 240 V частотой 50 Hz

Допустимые отклонения от номинального значения параметров переменного тока питающей сети электродвигателя, БСП, блока БП-20:

- напряжения питания от минус 15 до плюс 10%;
- частоты питания от минус 2 до плюс 2 %;

Таблица 1.

| Условное наименование<br>механизма | Номинальный кругящий<br>момент на выходном валу, Nm | Номинальное время полного<br>хода выходного вала, S | Номинальный полный ход<br>выходного вала, г | Тип электродвигателя | Потребляемая мощность в<br>номинальном режиме, W,<br>не более | Масса механизмов, kg,<br>не более |
|------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------|----------------------|---------------------------------------------------------------|-----------------------------------|
| МЭО-4000/25-0,25-97К               | 4000                                                | 25                                                  | 0,25                                        | АИР56В4              | 300                                                           |                                   |
| МЭО-4000/63-0,25-97К               | 4000                                                | 63                                                  | 0,25                                        | АИР56В4              | 300                                                           |                                   |
| МЭО-4000/160-0,63-97К              | 4000                                                | 160                                                 | 0,63                                        | АИР56В4              | 300                                                           | 270                               |
| M9O-10000/63-0,25-97CK             | 10000                                               | 63                                                  | 0,25                                        | АИС71В4              | 900                                                           |                                   |
| МЭО-10000/160-0,63-                | 10000                                               | 160                                                 | 0,63                                        | АИС71В4              | 900                                                           |                                   |
| 97CK                               | 10000                                               |                                                     |                                             |                      |                                                               |                                   |

Усилие на ручке ручного привода механизмов не должно превышать 200 N.

Пусковой крутящий момент механизмов при номинальном напряжении питания превышает номинальный момент не менее, чем в 1,7 раза.

Для ограничения величины выбега выходного вала и предотвращения перемещения его от усилия регулирующего органа при отсутствии напряжения на электродвигателе в механизме предусмотрен механический тормоз.

Выбег выходного вала механизмов при сопутствующей нагрузке, равной 0,5 номинального значения, и номинальном напряжении питания не более:

- 1 % полного хода выходного вала для механизмов с временем полного хода 10 s;
- 0,5 % полного хода выходного вала для механизмов с временем полного хода 25 s;
- 0.25~% полного хода выходного вала для механизмов с временем полного хода  $63~\mathrm{s}$  и более.

Люфт выходного вала механизмов при нагрузке 5 − 6 % номинального значения − не более 0,75°. Значение допустимого уровня шума не превышает 80 dBA по ГОСТ 12.1.003-83.

Средний срок службы механизмов - не менее 15 лет.

Средняя наработка на отказ – не менее 80000 ч.

Механизмы являются восстанавливаемым, ремонтируемым, однофункциональным изделиями.

#### 1.3 Состав, устройство и работа изделия

Механизмы состоят из следующих основных узлов (приложения Ж,Д): редуктора 1, электродвигателя 2, блока сигнализации положения 3, тормоза 4, ручного привода 5, штуцерного ввода 6, упоров 8 и 9, диска упоров 10, рычага 11.

Принцип работы механизмов заключается в преобразовании электрического сигнала, поступающего от регулирующих и управляющих устройств, во вращательное перемещение выходного вала.

Механизмы изготавливаются для работы в повторно-кратковременном реверсивном режиме с числом включений до 320 в час и продолжительностью включений до 25% при нагрузке на выходном валу в пределах от номинальной противодействующей до 0,5 номинального значения сопутствующей. При этом механизмы допускают работу в течение 1h в повторно-кратковременном реверсивном режиме с числом включений до 630 в час и продолжительностью включений до 25% со следующим повторением не раньше, чем через 3h. Интервал времени между включением и выключением на обратное направление должен быть не менее 50 ms.

Максимальная продолжительность непрерывной работы механизма в реверсивном режиме не должна превышать 10 min.

Электрическая принципиальная схема и схема подключения механизмов приведены в приложениях Б и В.

#### 1.4 Описание и работа составных частей механизма.

Редуктор состоит из корпуса, цилиндрических прямозубых ступеней, ручного привода, тормоза.

Наличие планетарной ступени в редукторе механизмов с номинальным моментом до 4000 Nm позволяет использовать ручной привод независимо от включения или выключения электродвигателя. Включение ручного привода механизма МЭО-10000-97К производиться поворотом по часовой стрелке влево рычага включения ручного привода 5 (приложение Д).

Механизмы изготавливаются с одним из следующих блоков сигнализации положения:

- блок концевых выключателей БКВ;
- реостатным БСПР-10;
- индуктивным
- токовым БСПТ-10M с унифицированными сигналами 0 5, 0 20, 4 20 mA.

по ГОСТ 26.011-80. Нелинейность блока сигнализации положения - + 2,5 %.

Токовый блок сигнализации положения комплектуется в двух вариантах:

- БСПТ-10 М;
- БПИ-30 в составе с БСПИ-10.

Устройство, технические данные и принцип работы блока сигнализации положения приведены в его руководстве по эксплуатации, входящем в комплект поставки механизма.

Устройство тормоза и его узлов приведены в приложении Г.

При работе электродвигателя шарики 10 отжимают тормозные диски 5 от тормозных накладок 7 на величину «А» в пределах A= 0,4...0,5 мм. После выключения электродвигателя пружина 6 возвращает тормозные диски 5 в исходное положение, то есть прижимает его к плоскости тормозных накладок 7, обеспечивая торможение редуктора.

**Внимание!** Включать механизм на длительную работу допускается только с нагрузкой на выходном валу не менее, чем 25 % от номинального значения, так как без нагрузочного момента на валу тормоза шарики не отжимают тормозной диск, что приводит к не растормаживанию тормоза и износу тормозных накладок.

Для заземления корпуса механизма предусмотрен наружный знак заземления с требованиями по ГОСТ 21130-75.

#### 1.5 Маркировка

- 1.5.1 Механизм имеет табличку, на которой нанесены следующие данные:
- товарный знак предприятия изготовителя;
- условное обозначение механизма;
- номинальное напряжение питания, V;
- частота напряжения питания, Нz;
- номер механизма по системе нумерации предприятия изготовителя;
- год изготовления.
- 1.5.2 На корпусе механизма около заземляющего зажима нанесен знак заземления.

#### 2. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 2.1 В процессе технического обслуживания должны выполняться следующие меры безопасности:
- эксплуатацию механизма разрешается проводить лицам, имеющим допуск к эксплуатации электроустановок напряжением до 1000 V и ознакомленным с настоящим руководством по эксплуатации.
- эксплуатация механизма должна осуществляться при наличии инструкции по технике безопасности, учитывающей специфику соответствующего производства и утвержденной руководством предприятия- потребителя
- корпус механизма должен быть заземлен, а место подсоединения проводника должно быть защищено от коррозии нанесением слоя консистентной смазки.
- все работы с механизмом производить при полностью снятом напряжении питания. На щите управления необходимо укрепить табличку с надписью «Не включать работают люди!».
- перед пользованием ручным приводом должны быть приняты меры исключающие возможность подачи напряжения питания на электродвигатель.
  - работы с механизмом производить только исправным инструментом.

- если при проверке на какие-либо цепи механизма подается напряжение, то не следует касаться токоведущих частей.
- 2.2 Соблюдение мероприятий по технике безопасности и ремонт механизмов должны производиться в полном соответствии с требованиями «Правил технической эксплуатации электроустановок потребителей» (ПТЭ); «Межотраслевых правил по охране труда при эксплуатации электроустановок» (ПОТ).

#### 3. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

#### 3.1 Подготовка изделия к использованию

При получении механизмов следует убедиться в полной сохранности тары. При аличии повреждений следует составить акт в установленном порядке и обратиться с рекламацией к транспортной организации.

Распаковать тару, осмотреть механизм и убедиться в отсутствии внешних повреждений.

Работы по расконсервации должны производиться в соответствии с требованиями ГОСТ 9.014-78.

Перед установкой механизма на объекте необходимо его проверить. С помощью ручки ручного привода повернуть выходной вал механизма на несколько градусов от первоначального положения. Выходной вал должен вращаться плавно.

Проверить работу механизма в режиме реверса от электродвигателя.

Заземляющий провод сечением не менее 4 mm<sup>2</sup> подсоединить к тщательно зачищенному болту заземления, затем затянуть болт. Для предохранения от коррозии нанести слой консистентной смазки.

Подать напряжение питания на контакты 1, 2, 3 (приложение Б), при этом выходной вал механизма должен прийти в движение. Поменять местами концы проводов. Подключенные к клемма 2 и 3, при этом выходной вал механизма должен прийти в движение в другую сторону.

Механизм может устанавливаться на объекте с любым пространственным расположением выходного вала.

#### 3.2 Монтаж и настройка механизма

При установке механизма необходимо предусмотреть свободное место для обслуживания механизма, обеспечить возможность доступа к блоку сигнализации положения и ручному приводу.

Крепление механизмов производиться четырьмя болтами.

Габаритно-присоединительные размеры механизмов приведены в приложениях А, А1.

Прежде чем приступить к установке механизма на арматуру необходимо руководствоваться мерами безопасности изложенными в разделе 2 руководства.

Электрическое подключение механизмов производить через штуцерный ввод.

Для подсоединения необходимо снять крышку 12 (приложение Ж,Д), гайку, шайбу и уплотнение, затем пропустить провод через уплотнение и вс в сборе установить в гнездо штуцерного ввода. Подсоединить провода к клеммным колодкам согласно приложению Б,В. Установить крышку на место. При этом обратить внимание на наличие всех крепежных элементов и их равномерную затяжку.

Провести настройку блока сигнализации положения в соответствия с его руководством по эксплуатации.

**Внимание**! Во избежание перегрузки электродвигателя электрические микровыключатели, ограничивающие крайне положения регулирующего органа, должны срабатывать на 3-50 раньше, чем механический ограничитель встанет на упор. Механический ограничитель предназначен для ограничения крайних положений регулирующего органа трубопроводной арматуры, на случай выхода из строя микровыключателей.

Произвести монтаж заземления как указано в разделе 3.1, нанести консервационную смазку на болт заземления.

Пайку монтажных проводов цепей внешних соединений к контактам розетки штуцерного ввода производить оловянно-свинцовым припоем с применением бескислотных флюсов. После пайки необходимо удалить флюс промыванием мест паек спиртом. Места паек покрыть бакелитовым лаком или эмалью.

Провода, идущие к датчику блока сигнализации положения должны быть пространственно разделены от силовых сетей и экранированы. Сопротивление каждого провода линии связи между механизмом и блоком питания должны быть не более  $12\,\Omega$ .

Проверить мегаомметром сопротивление изоляции электрических цепей, значение которого должно быть не менее 20 М $\Omega$ , и сопротивление заземляющего устройства, к которому подсоединен механизм, значение должно быть не более  $10\Omega$ .

#### 4 ИСПОЛЬЗОВАНИЕ ИЗДЕЛИЯ

- 4.1 Порядок действия обслуживающего персонала при выполнении задач применения изделия:
  - снимите упоры;
- отрегулируйте длину тяги, перемещая рычаг механизма на рабочем угле ручным приводом;
  - установите упоры в крайних положениях рабочего угла поворота рычага;
  - установите регулирующий орган в среднее положение;
- настройте блок сигнализации положения (см. руководство по эксплуатации блока сигнализации положения).
- 4.2 Перечень возможных неисправностей, вероятные причины их возникновения, способы их устранения приведены в таблице 2.

Таблица 2

| Неисправность             | Вероятная причина    | Способ устранения          |
|---------------------------|----------------------|----------------------------|
| 1. При включении механизм | Нарушена             | Проверить цепь и устранить |
| не работает               | электрическая цепь   | неисправность              |
|                           | Механизм стоит на    | Включить в обратную        |
|                           | упоре                | сторону                    |
|                           | Нарушена обмотка     | Заменить обмотку или весь  |
|                           | электродвигателя     | электродвигатель           |
| 2. Тормоз не обеспечивает | Износились тормозные | Заменить тормозные         |
| торможение при нагрузке   | накладки             | накладки                   |
| на выходном валу          | Частичный износ      | Расконтрить регулировочные |
|                           | тормозных накладок   | винты 11(приложение Г) и   |
|                           |                      | повернуть их по часовой    |
|                           |                      | стрелке, затем снова       |
|                           |                      | законтрить гайкой 9        |
|                           | Попадание масла на   | Протереть тормозные        |
|                           | рабочие поверхности  | накладки и обезжирить их   |
|                           | тормозных накладок   | спиртом                    |
| 3. Увеличенный выбег      | Износ тормозных      | См. п. 2                   |
| выходного вала механизма  | накладок             |                            |
|                           | Попадание масла на   |                            |
|                           | их рабочие           |                            |
|                           | поверхности          |                            |
| 4. Увеличенный люфт       | Большой износ        | Заменить зубчатые пары     |
| выходного вала механизма  | последних ступеней   |                            |
|                           | зубчатой передачи    |                            |
|                           | Люфт в шпонках       | Заменить шпонки            |
|                           | рычага механизма     |                            |
|                           | или выходного колеса |                            |
| Не происходит             | Вышел из строя       | Заменить                   |
| срабатывание              | микровыключатель     | микровыключатель           |
| микровыключателей         |                      |                            |

#### 5 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ИЗДЕЛИЯ

5.1 В процессе эксплуатации механизмы должны подвергаться внешнему осмотру, профилактике, ревизии и ремонту. Эксплуатации механизмов с поврежденными деталями и другими неисправностями запрещается.

Ввиду приработки тормозных накладок рекомендуется при наработке 150-250 h произвести осмотр и подрегулировку тормозного устройства согласно таблице 2.

Тормозное устройство после регулировки должно обеспечить фиксацию положения, равного 1,7 номинального момента на выходном валу.

Периодичность профилактических осмотров механизмов устанавливается в зависимости от производственных условий, но не реже чем через год, а блока сигнализации положения через каждые 6 месяцев.

Во время профилактических осмотров необходимо производить следующие работы:

- после отключения механизма от источника питания очистить наружные поверхности механизма от грязи и пыли;
  - проверить затяжку всех крепежных болтов, болты должны быть равномерно затянуты;
- проверить состояние заземляющего устройства, в случае необходимости (при наличии ржавчины), заземляющие элементы должны быть очищены и после затяжки болта заземления вновь покрыты консистентной смазкой;
- проверить уплотнение штуцерного ввода. При легком подергивании кабель не должен выдергиваться и проворачиваться в узле уплотнения.
- проверить настройку блока сигнализации положения, в случае необходимости произвести его подрегулировку.

Через пять лет эксплуатации необходимо произвести разборку, осмотр и замену старой смазки. Для этого механизм необходимо отсоединить от источника питания, снять с места установки и последующие работы производить в мастерской.

Разобрать механизм до состояния возможности удаления старой смазки в редукторе, промыть все детали и высушить. Собрать редуктор, обильно смазав трущиеся поверхности подвижных частей редуктора смазкой ЛИТОЛ-24 или ЦИАТИМ-203.

- собрать механизм;
- произвести настройку БСП;
- произвести регулировку тормоза.

В процессе эксплуатации при увеличения выбега выходного вала механизма произвести регулировку зазора «А» тормоза в пределах A= 0,4...0,6 мм.

Для этого необходимо (приложение Г):

- отвинтить крепежные болты и отсоединить электродвигатель;
- расконтрить регулировочные винты 11 и повернуть их на  $180^\circ$  по часовой стрелке, затем снова законтрить гайкой 9.
  - подсоединить электродвигатель с помощью крепежных болтов.

#### 6. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

Хранение механизмов со всеми комплектующими изделиями должно производиться с консервацией и в заводской упаковке в условиях хранения «3» по ГОСТ 15150-69.

Срок хранения механизмов не более 24 месяцев со дня отгрузки. При необходимости более длительного хранения должна производиться переконсервация механизмов по варианту зашиты B3-14 или B3-15 по ГОСТ 9.014-78.

Условия транспортирования механизмов должны соответствовать условиям хранения «5» для климатического исполнения «Y2» или «6» для климатического исполнения «T2», но при атмосферном давлении не ниже 35,6 кРа и температуре не ниже минус  $50^{\circ}$ С, или условиям хранения «3» по ГОСт 15150-69 при морских перевозках в трюмах. Время транспортирования – не более 45 суток.

Механизмы транспортируются всеми видами транспорта в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта. Транспортирование на самолетах должно осуществляться в герметизированных отапливаемых отсеках.

Во время погрузочно-разгрузочных работ и транспортирования, упакованные механизмы не должны подвергаться резким ударом и воздействию атмосферных осадков. Способ укладки упакованных механизмов на транспортное средство должен исключать их самопроизвольное перемещение.

Приложение А (обязательое) Общий вид, габаритные и присоединительные размеры механизма МЭО–4000–97К



## ПРИЛОЖЕНИЕ Б (обязательное)

# Схемы электрические принципиальные механизмов МЭО(Ф) с трехфазным напряжением питания

Рисунок Б.1 Схема механизма с БКВ



Рисунок Б.2 Схема механизма с БСПР–10. Остальное см. рисунок Б.1



Рисунок Б.З Схема механизма с БСПИ–10. Остальное см. рисунок Б.1

Рисунок Б.4 Схема механизма с БСПТ–10М. Остальное см. рисунок Б.1





Диаграмма работы микровыключателей

|   | ,                         | ,                     |                    | ,             |         |  |  |
|---|---------------------------|-----------------------|--------------------|---------------|---------|--|--|
| ſ | микро<br>выклю-<br>чатель | контакт<br>разъема X1 | Положение арматуры |               |         |  |  |
|   |                           |                       | открыто            | промежуточное | закрыто |  |  |
| ſ | <i>S1</i>                 | 1–2                   |                    |               |         |  |  |
|   |                           | 3–4                   |                    |               |         |  |  |
|   | <i>S2</i>                 | 5-6                   |                    |               |         |  |  |
|   |                           | 7–8                   |                    |               |         |  |  |
|   | 53                        | 9-10                  |                    |               |         |  |  |
|   |                           | 11-12                 |                    |               |         |  |  |
|   | <i>S</i> 4                | 13–14                 |                    |               |         |  |  |
|   |                           | 15-16                 |                    |               |         |  |  |

L1, L2 –катушка индуктивности; М – электродвигатель АИР;

R1, R2– датчик реостатный;

S1, S2, S3, S4- микровыключатели;

БД-20 датчик токовый;

Х1, Х2-клеммный блок РП 28

S1 – промежуточный микровыключатель открытия

S2 — промежуточный микровыключатель закрытия

S3 – конечный микровыключатель открытия

S4 — конечный микровыключатель закрытия

### ПРИЛОЖЕНИЕ В (рекомендуемое)

# Схема подключения исполнительного механизма МЭО(Ф) к трехфазной сети с датчиком БСПТ при бесконтактном управлении



F - автоматы защиты; A - пускатель ПБР-3А; УУ -устройство управляющее; ИМ - исполнительный механизм; БП- 20 -блок питания (24V); X1- разъем РП10-30; S1, S2, S3, S4 - микровыключатели конечных и промежуточных положений выбраны условно.

# Приложение $\Gamma$ (обязательное) Тормоз

Внимание! Данная конструкция тормоза позволяет осуществлять регулировку зазоров без разборки узла тормоза, что существенно упрощает данный процесс, снижает трудоемкость, повышает надежность работы.



1- корпус, 2- полумуфта, 3- шестерня, 4- сухарь, 5 – тормозной диск, 6- пружина, 7 – накладка тормозная, 8 – крышка, 9 – гайка, 10 – шарик, 11 – винт.



1-редуктор; 2-электродвигатель; 3-блок сигнализации положения или БКВ; 4-тормоз; 5- привод ручной; 6- ввод штуцерный; 7-колодка клеммная; 8-упор правый; 9-упор левый; 10-диск упоров, 11-рычаг; 12- крышка; 13-болт заземления.