QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation

arXiv:1806.10293, Kalashnikov et al, 2018.

Sumamrized by Hyecheol (Jerry) Jang

Department of Computer Sciences University of Wisconsin–Madison

RL Paper Study, Jun. 29. 2020

Table of Contents

- 1 Motivation
 - 2 Goal
- 3 Overview of Model Architecture
- 4 Bibliography

• Usually, Robots are good at repetitive tasks (e.g. Assembly Line)

- Usually, Robots are good at repetitive tasks (e.g. Assembly Line)
- Want to make Robots that identifies surroundings and behave accordingly, but it is difficult

- Usually, Robots are good at repetitive tasks (e.g. Assembly Line)
- Want to make Robots that identifies surroundings and behave accordingly, but it is difficult
 - Deep Learning
 Provide ability to handling real-world scenarios
 - Reinforcement Learning
 Provide ability to make decision in long-term, using previous experiences in complex and robust scenarios

- Usually, Robots are good at repetitive tasks (e.g. Assembly Line)
- Want to make Robots that identifies surroundings and behave accordingly, but it is difficult
 - Deep Learning
 Provide ability to handling real-world scenarios
 - Reinforcement Learning
 Provide ability to make decision in long-term, using previous experiences in complex and robust scenarios
- Combining two techniques
 - Able to learn policy continuously from their experience
 - No need for manual engineering, use data they collects

• Varience in visual and physical property of objects

- Varience in visual and physical property of objects
 - Hardness of object (Soft or Hard)
 - Surface Characteristics (Slippery, Sticky, . . .)
 - Color Variation
 - Shape Variation
 - . . .

- Varience in visual and physical property of objects
 - Hardness of object (Soft or Hard)
 - Surface Characteristics (Slippery, Sticky, ...)
 - Color Variation
 - Shape Variation
 - . . .
- Noise of sensors

- Varience in visual and physical property of objects
 - Hardness of object (Soft or Hard)
 - Surface Characteristics (Slippery, Sticky, ...)
 - Color Variation
 - Shape Variation
 - . . .
- Noise of sensors
 - ⇒ Still hard to handle though we have sufficiently large training set
 - ⇒ Collecting those training set is expensive (real experiments)

- Focused on learning narrow, individual tasks
 - hitting a ball
 - opening door
 - throwing objects
 - . . .

- Focused on learning narrow, individual tasks
 - hitting a ball
 - opening door
 - throwing objects
 - . . .
 - \Rightarrow Use **Grasping** to achieve *generalization*

- Focused on learning narrow, individual tasks
 - hitting a ball
 - opening door
 - throwing objects
 - . . .
 - ⇒ Use Grasping to achieve generalization
- Approached the grasping task as predicting a grasp pose
 - **1** Observe the scene (*Normally, using a depth camera*)
 - 2 Choose best location to grasp
 - **3** Reach the location (open-loop setting)

- Focused on learning narrow, individual tasks
 - hitting a ball
 - opening door
 - throwing objects
 - . . .
 - ⇒ Use Grasping to achieve generalization
- Approached the grasping task as predicting a grasp pose
 - **1** Observe the scene (*Normally, using a depth camera*)
 - 2 Choose best location to grasp
 - 3 Reach the location (open-loop setting)
 - Different with how humans and animals behave
 - Grasp is a dynamical process that sence and control at each stage

- Focused on learning narrow, individual tasks
 - hitting a ball
 - opening door
 - throwing objects
 - . . .
 - ⇒ Use Grasping to achieve generalization
- Approached the grasping task as predicting a grasp pose
 - **1** Observe the scene (*Normally, using a depth camera*)
 - 2 Choose best location to grasp
 - 3 Reach the location (open-loop setting)
 - Different with how humans and animals behave
 - Grasp is a dynamical process that sence and control at each stage
 - ⇒ Where this researches start!!

Table of Contents

- Motivation
- 2 Goal
- 3 Overview of Model Architecture
- 4 Bibliography

Use Reinforcement Learning with Deep Neural Network to perform pre-grasp manipulation, response to dynamic disturbances, and learn grasping in a generic framework that makes minimal assumptions about the task

Goal: Constraint/Condition + Literature Review

- Closed-loop condition (With feedback, Morrison, et al.)
 - For the other papers work on closed-loop grasping, they deals with servoing problems.
 - This paper focuses on making generalized RL algorithm
 - In practice, it makes Kalashnikov et al.'s method (this method) to autonomously acquire complicated grasping strategy

Goal: Constraint/Condition + Literature Review

- Closed-loop condition (With feedback, Morrison, et al.)
 - For the other papers work on closed-loop grasping, they deals with servoing problems.
 - This paper focuses on making generalized RL algorithm
 - In practice, it makes Kalashnikov et al.'s method (this method) to autonomously acquire complicated grasping strategy
- Self-supervised learning task
 - Compare to prevoius work(by Zeng et al.), Kalashnikov et al. utilize more general action space
 - Actions consist of end-effector Cartesian motion and gripper opening/closing

Goal: Constraint/Condition + Literature Review

- Closed-loop condition (With feedback, Morrison, et al.)
 - For the other papers work on closed-loop grasping, they deals with servoing problems.
 - This paper focuses on making generalized RL algorithm
 - In practice, it makes Kalashnikov et al.'s method (this method) to autonomously acquire complicated grasping strategy
- **Self-supervised** learning task
 - Compare to prevoius work(by Zeng et al.), Kalashnikov et al. utilize more general action space
 - Actions consist of end-effector Cartesian motion and gripper opening/closing
- Observation comes from a single RGB camera over the sholder
 - Many current grasping system utilizes depth sensing
 - Using wrist-mounted cameras

Table of Contents

- Motivation
- 2 Goal
- 3 Overview of Model Architecture
- 4 Bibliography

- General Formulation of Robotic Manipulation: Based on Markov Decision Process (MDP)
 - partially observed formulation (POMDP) is more general.
 - However, assuming current observation contains all necessary information for this task, it is sufficient to use MDP.

- General Formulation of Robotic Manipulation: Based on Markov Decision Process (MDP)
 - partially observed formulation (POMDP) is more general.
 - However, assuming current observation contains all necessary information for this task, it is sufficient to use MDP.
- MDP have a general and powerful formalism for decision making problems.

However, it is hard to train

- General Formulation of Robotic Manipulation: Based on Markov Decision Process (MDP)
 - partially observed formulation (POMDP) is more general.
 - However, assuming current observation contains all necessary information for this task, it is sufficient to use MDP.
- MDP have a general and powerful formalism for decision making problems.
 - However, it is hard to train
- For each step of MDP:
 - **1** Observes Image from robot's camera (see Fig. 1)
 - 2 choose a gripper command, Reward:
 - failed grasp: reward of 0
 - successful grasp: reward of 1
 Defined success when the robot holds the object above a certain height

- General Formulation of Robotic Manipulation: Based on Markov Decision Process (MDP)
 - partially observed formulation (POMDP) is more general.
 - However, assuming current observation contains all necessary information for this task, it is sufficient to use MDP.
- MDP have a general and powerful formalism for decision making problems.
 - However, it is hard to train
- For each step of MDP:
 - **1** Observes Image from robot's camera (see Fig. 1)
 - 2 choose a gripper command, Reward:
 - failed grasp: reward of 0
 - successful grasp: reward of 1
 Defined success when the robot holds the object above a certain height

Figure 1: Configuration of robot cell, with a sample observation image on top-right box

- Usually, Generalization needs diverse data
 - However, recollecting experience on numerous objects after every policy update is impractical
 - Reason for not using on-policy algorithm

- Usually, Generalization needs diverse data
 - However, recollecting experience on numerous objects after every policy update is impractical
 - Reason for not using on-policy algorithm
- Using scalable off-policy algorithm based on Q-learning
 - actor-critic algorithm are popular for handling continuous actions
 - However, Kalashnikov et al. found scalable and more stable ways to train only Q-function

- Usually, Generalization needs diverse data
 - However, recollecting experience on numerous objects after every policy update is impractical
 - Reason for not using on-policy algorithm
- Using scalable off-policy algorithm based on Q-learning
 - actor-critic algorithm are popular for handling continuous actions
 - However, Kalashnikov et al. found scalable and more stable ways to train only Q-function
- Large Dataset and Network (See Fig. 2)
 - Kalashnikov et al. devised distributed training system (with 7 robots)
 - Asynchronously update target values, collect on-policy data, reloads off-policy data from previous experiences, and train network on both data stream.

Figure 2: Distributed Reinforcement Learning infrastructure for QT-Opt.

Optional: On-policy vs Off-policy

- On-policy Learning learns the value of the policy being carried out by the agent, including the exploration steps.
 - e.g. SARSA(State-Action-Reward-State-Action) (See Fig. 3)
- Off-policy Learning learns the value of the optimal policy independently of the agent's action
 e.g. Q-Learning (See Fig. 4)

Optional: On-policy vs Off-policy


```
controller SARSA(S,A,γ,α)
inputs:
       S is a set of states
       A is a set of actions
       y the discount
       \alpha is the step size
internal state:
                                                                               controller Q-learning(S,A,y,a)
       real array OS.AI
                                                                               2:
                                                                                          Inputs
       previous state s
                                                                               3:
                                                                                                  S is a set of states
       previous action a
                                                                                                 A is a set of actions
begin
                                                                               5:
                                                                                                 y the discount
       initialize O/S.A/ arbitrarily
                                                                               6.
                                                                                                 \alpha is the step size
                                                                               7:
                                                                                          Local
       observe current state s
                                                                                                 real array O/S.A1
                                                                               8:
       select action a using a policy based on O
                                                                                                 previous state s
                                                                               9:
       repeat forever:
                                                                               10:
                                                                                                   previous action a
              carry out an action a
                                                                                           initialize Q/S,A/ arbitrarily
                                                                               11:
              observe reward rand state s'
                                                                               12.
                                                                                           observe current state s
              select action a'using a policy based on O
                                                                               13.
                                                                                           repeat
              Q[s,a] \leftarrow Q[s,a] + \alpha(r + \gamma Q[s',a'] - Q[s,a])
                                                                                                   select and carry out an action a
                                                                               14
               5-5'
                                                                               15:
                                                                                                   observe reward r and state s'
                                                                                                   Q[s,a] \leftarrow Q[s,a] + \alpha(r + \gamma \max_{a'} Q[s',a'] - Q[s,a])
               a = a'
                                                                               16:
                                                                               17:
                                                                                                   s +s'
       end-repeat
                                                                               18
                                                                                           until termination
end
```

Figure 3: SARSA Algorithm

Figure 4: Q-Learning Algorithm

Table of Contents

- Motivation
- 2 Goal
- 3 Overview of Model Architecture
- 4 Bibliography

Bibliography I

- Kalashnikov, Dmitry, et al. QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. 28 Nov. 2018, arxiv.org/abs/1806.10293.
- Irpan, Alex, and Peter Pastor. Scalable Deep Reinforcement Learning for Robotic Manipulation. 28 June 2018, ai.googleblog.com/2018/06/scalable-deep-reinforcementlearning.html.
- Morrison, Douglas, et al. "Closing the Loop for Robotic Grasping: A Real-Time, Generative Grasp Synthesis Approach." Robotics: Science and Systems XIV, 2018, doi:10.15607/rss.2018.xiv.021.
- Poole, David Lynton, and Alan K. Mackworth. Artificial Intelligence: Foundations of Computational Agents. Cmabridge University Press, 2018.