

					Cer	itre l	Nun	nber
			T			T		
Student Number								

2005 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Chemistry

Afternoon Session Friday 5 August 2005

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- Use the Data Sheet and Periodic Table provided
- Use Multiple Choice Answer Sheet provided
- Write your Centre Number and Student Number and the top of this page and page 9

Total marks - 100

Section I

Pages 3-20

75 marks

This section has two parts, Part A and Part B

Part A - 15 marks

- Attempt Questions 1-15
- Allow about 30 minutes for this part

Part B – 60 marks

- Attempt Questions 16-29
- Allow about 1 hour and 45 minutes for this part

Section II

Pages 21-28

25 marks

- Attempt ONE question from Ouestions 30-34
- Allow about 45 minutes for this section

Disclaimer

Every effort has been made to prepare these 'Trial' Higher School Certificate Examinations in accordance with the Board of Studies documents, Principles for Setting HSC Examinations in a Standards-Referenced Framework (BOS Bulletin, Vol 8, No 9, Nov/Dec 1999), and Principles for Developing Marking Guidelines Examinations in a Standards Referenced Framework (BOS Bulletin, Vol 9, No 3, May 2000). No guarantee or warranty is made or implied that the 'Trial' Examination papers mirror in every respect the actual HSC Examination question paper in any or all courses to be examined. These papers do not constitute 'advice' nor can they be construed as authoritative interpretations of Board of Studies intentions. The CSSA accepts no liability for any reliance use or purpose related to these 'Trial' question papers. Advice on HSC examination issues is only to be obtained from the NSW Board of Studies.

EXAMINERS

Christopher Warren (convenor) Kincoppal-Rose Bay, Rose Bay

Karen Bertinshaw Gilroy College, Castle Hill

Philip McIntosh Mt Carmel College, Varroville

Jo McGrouther St Vincents College, Potts Point

Sources

Diagrams for Question 32 – Roebuck, C (2000), *Excel HSC Chemistry*, Pascal Press, Sydney, p177

Diagram for Question 34(b) –

(Accessed

13/4/05)

Section I 75 marks

Part A – 15 marks Attempt Questions 1-15 Allow about 30 minutes for this part

Use the Multiple Choice Answer Sheet provided

1 Identify the following compound.

- (A) Ethanoic acid
- (B) Ethylene
- (C) Ethanol
- (D) Ethene
- Which of the following is an alternative source of the compounds presently obtained from the petrochemical industry?
 - (A) Biomass
 - (B) Haber process
 - (C) Photovoltaic cells
 - (D) Radioisotopes
- 3 Australians have recently become more aware of the 'hole' in the ozone layer above Antarctica. The reason that we should be concerned is that it will
 - (A) allow oxygen to escape and we will have to wear oxygen equipment on Antarctic expeditions
 - (B) expose us to increased levels of ultra violet radiation
 - (C) cause an increase in ozone levels in the troposphere
 - (D) expose us to more CFCs

- 4 In an investigation to compare the pH of a strong acid and a weak acid, which pair of solutions would be most appropriate?
 - (A) 1.0 molL⁻¹ citric acid and 1.0 molL⁻¹ acetic acid
 - (B) 0.10 molL⁻¹ acetic acid and 10 molL⁻¹ hydrochloric acid
 - (C) 0.30 molL⁻¹ citric acid and 0.10 molL⁻¹ hydrochloric acid
 - (D) 0.10 molL⁻¹ acetic acid and 0.10 molL⁻¹ hydrochloric acid
- 5 The diagram below shows a dry cell battery.

Which of the following statements is correct for this dry cell battery?

- (A) The manganese(IV) oxide is the electrolyte
- (B) The graphite rod is the anode
- (C) Graphite is reduced at the cathode
- (D) Zinc is oxidised to zinc (II) at the anode
- A student used a pH meter to measure the acidity of 100mL of 0.1 molL⁻¹ HCl. She found that the pH was 1. She then added 900mL of water and tested the pH again.

The value for pH that she obtained for the new concentration was

- (A) 10
- (B) 2
- (C) 1
- (D) 0.5

7 The hydrogen for the Haber process can be obtained from the reaction of steam on redhot coke.

$$H_2O(g) + C(s) = CO(g) + H_2(g)$$
 $\Delta H = +131 \text{kJ mol}^{-1}$

Use Le Chatelier's Principle to predict the conditions required for the efficient production of hydrogen.

- (A) High pressure and high temperature
- (B) High pressure and low temperature
- (C) Low pressure and high temperature
- (D) Moderate temperature, high pressure and a catalyst
- Which pair of equations correctly describes the behaviour of the oxides of lithium and carbon when placed with water?

(A)
$$\text{Li}_2\text{O}(s) + \text{H}_2\text{O}(l) \longrightarrow 2 \text{LiOH}(aq)$$

 $2 \text{CO}_2(g) + \text{H}_2\text{O}(l) \longrightarrow \text{HCO}_3(aq) + \text{HCO}_2(aq)$

(B)
$$\text{Li}_2\text{O}(s) + \text{H}_2\text{O}(l) \longrightarrow 2 \text{LiOH}(aq)$$

 $\text{CO}_2(g) + \text{H}_2\text{O}(l) \longrightarrow \text{H}_2\text{CO}_3(aq)$

(C)
$$2 \operatorname{Li_2O}(s) + \operatorname{H_2O}(l) \longrightarrow \operatorname{HLiO_3}(aq) + \operatorname{HLiO_2}(aq)$$

 $C_2O(s) + \operatorname{H_2O}(l) \longrightarrow 2 \operatorname{COH}(aq)$

(D)
$$\text{Li}_2\text{O}(s) + \text{H}_2\text{O}(l) \longrightarrow \text{HLiO}_3(aq) + 2 \text{HLiO}_2(aq)$$

 $\text{CO}(s) + \text{H}_2\text{O}(l) \longrightarrow \text{C}(\text{OH})_2(aq)$

- **9** Which of the following isotopes is the most unstable?
 - $(A) = {}^{1}H$
 - (B) $^{-12}_{6}$ C
 - (C) $^{-14}_{7}$ N
 - (D) $-\frac{18}{8}$ O

10 A student tested 4 household substances using indicators. Which of the following results is recorded correctly?

	Substance	Colour with phenolphthalein	Colour with methyl orange
(A)	wine	pink	red
(B)	ammonia cleaner	pink	yellow
(C)	vinegar	red	blue
(D)	bicarbonate of soda	clear	blue

A student added a solution of barium nitrate to a solution of lawn fertilizer in order to determine the sulfate content of the fertilizer. The resulting solution was heated and stirred and then filtered. Barium nitrate was then added to the filtrate.

It is true to say that

- (A) the barium nitrate is added to the filtrate to determine whether sulfate ions were still present
- (B) the solution was heated and stirred to dissolve the fertilizer and the barium nitrate
- (C) barium nitrate was added to dissolve the fertiliser
- (D) the solution was filtered to remove any impurities in the fertilizer
- Oysters provide a rich source of zinc, an essential trace element in our diet. The minimum recommended intake for an adult is 12mg per day.

If a sample of oysters was found by AAS to contain an average of 200ppm of zinc per oyster how many oysters would an adult have to eat to reach the minimum recommended daily intake?

- (A) 0.2
- (B) 1.7
- (C) 6
- (D) 12

13 The following cathode reaction occurs in the vanadium redox cell.

$$V_2O_5(aq) + 2H^+(aq) + 2e^- \longrightarrow 2VO_2(aq) + H_2O(l)$$

The oxidation state of vanadium changes from

- (A) +5 to +4
- (B) +5 to +2
- (C) +2 to +1
- (D) +4 to +5
- 14 Two water samples from a waste water recycling plant were tested for their level of biochemical oxygen demand.

The following results were obtained.

Water sample	$BOD (mg L^{-1})$
1	2
2	16

Using these results, it would be true to conclude that

- (A) sample 2 has 8 times the level of dissolved oxygen of sample 1
- (B) sample 2 was taken in the final stage of treatment
- (C) sample 1 was taken at the beginning of the treatment
- (D) sample 1 has the least amount of biodegradable waste in it
- When the lunar module of Apollo 11 landed on the moon, the fuel used was hydrazine (N₂H₄) and dinitrogen tetroxide(N₂O₄). When these were mixed a spontaneous reaction occurred.

$$2 N_2 H_4(l) + N_2 O_4(l) \longrightarrow 3 N_2(g) + 4 H_2 O(g)$$

What volume of gas would be expelled at, 100kPa and 25°C, for each kilogram of hydrazine used?

- (A) 31 L
- (B) 109 L
- (C) 2707 L
- (D) 5414 L

CATHOLIC SECONDARY SCHOOLS ASSOCIATION OF NEW SOUTH WALES 2005 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

										_
						C_{ϵ}	entre	Nu	mbe	L r
Chemistry		<u> </u>	T	<u> </u>	T		,mu c	, 1 v u.		
Sec	tion I (continued)						Stud	lent	Num	
Atte	t B – 60 marks empt Questions 16-29 w about 1 hour and 45 minutes for this part									
Ans	wer the questions in the spaces provided.									
Shov	w all relevant working in questions involving calculation	ıs.								
Que	stion 16 (4 marks)							M	arks	 S
Poly	(vinyl chloride) is an addition polymer which has many	eve	ryda	y us	es.					
(a)	Draw the structural formula for the vinyl chloride mor	om	er.						1	l
(b)	Define the term addition polymer.								1	l
							. .	•••		
					. .			•••		
						· • • • •		• • •		
(c)	Explain ONE use of this polymer in terms of its physic	cal p	rope	rties	S.				2	;
		• • • • •	• • • • •					· • •		
			• • • • •	• • • • •	• • • • •					

2801-1

Question 17 (2 marks)	Marks
The transuranic element Meitnerium was first detected in Germany in 1982. It existed for five-thousandths of a second. Describe how transuranic elements such as Meitnerium are produced.	2
Question 18 (2 marks)	arks
Describe the uses of ammonia that made Haber's discovery very important at that time in world history.	2

Question 19 (5 marks)	Mark
Assess the viability of the use of cellulose from biomass as a substitute for carbon of structures obtained from petroleum.	chain 5
	• • • • • •
	•••••
	••••
······································	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • •

Question 20 (5 marks)

Marks

A quantity of ethanol was placed in a spirit burner, the wick lit and the energy produced used to heat 100g of water in a beaker. The change in mass of the spirit burner was measured by placing the burner on an electronic balance. The temperature was measured using a probe attached to a data logger. A diagram of the apparatus is shown.

The results are tabulated below.

Time (mins)	Mass of Burner + Alcohol (g)	Temperature (°C)
0	228.3	24
1	227.8	30
2	227.4	37
3	226.9	44
4	226.5	51
5	226.2	58

Question 20 continues on page 13

Calculate the motar heat of combustion of ethanol using these data.
•••••••••••••••••••••••••••••••••••••••

End of Question 20

Question 21 (5 marks)

Marks

3

A student constructed an electrochemical cell using nickel, nickel nitrate, silver and silver nitrate. This can be represented by the following chemical shorthand:

Ni (s) || Ni²⁺(aq) || Ag (s)

$$Ni_{(s)} \mid Ni^{2+}(aq) \parallel Ag^{+}(aq) \mid Ag_{(s)}$$

- Draw a diagram of this electrochemical cell and label the following parts: (a)
 - 1. anode and cathode
 - 2. the direction of electron flow

(b)	Write half equations for each reaction and calculate the cell potential.				
	· · · · · · · · · · · · · · · · · · ·				

Question 22 (3 marks)

Marks

To find the citric acid content of some orange juice, a student used the following equipment.

(a)	Identify the piece of equipment that holds the sodium hydroxide solution.	1
(b)	Outline the procedure required to rinse this piece of equipment before use.	1
(c)	Identify a potential source of error in this experiment.	1
Quest	ion 23 (3 marks)	
_	ion 20 (5 marks)	Marks
(a)	Identify a practising Australian scientist you have studied during this Chemistry course.	Marks 1
	Identify a practising Australian scientist you have studied during this	
	Identify a practising Australian scientist you have studied during this Chemistry course.	
(a)	Identify a practising Australian scientist you have studied during this Chemistry course.	1
(a)	Identify a practising Australian scientist you have studied during this Chemistry course. Describe his/her work.	1
(a)	Identify a practising Australian scientist you have studied during this Chemistry course. Describe his/her work.	1

	the refrigerator, had th	water), one at room temperatur neir pH determined using a prol	
Soda Water Bottle A Bottle B	pH 5.21 4.63	Temperature (°C) 25 4)
Account for the difference	e in pH in terms of Le C	Chatelier's principle.	
		······································	•••••
Question 25 (4 marks)			Marks
	oper functioning of the	${\rm PO_3}^{1-}$, or, ${\rm H_2PO_4}^{1-}$ / ${\rm HPO_4}^{2-}$, in the body. Describe the action of the	

Marks

Question 24 (4 marks)

Questi	on 26 (7 marks)	Marks
	mL bottle of concentrated sulfuric acid (18 molL ⁻¹) was dropped in a laboratory nt. Solid sodium hydrogen carbonate (NaHCO ₃) was used to neutralize the acid.	
(a)	Justify the choice of the solid sodium hydrogen carbonate to clean up the spill. Include relevant equation(s).	4
	······	
(b)	Calculate the minimum mass of sodium hydrogen carbonate needed to neutralise the spilled acid completely.	3

1

2

CH₃

Many organic compounds, other than esters, are responsible for the distinctive aromas or flavours of foods. The following molecules are 'active' ingredients in various foods. Only ONE of these is an ester.

Pentyl ethanoate - found in lollies

(a)	Identify the ester.
(b)	Outline how this ester could be produced in a school laboratory.

Ques	tion 28 (6 marks)	Marks
(a)	Identify your local catchment area.	1
(b)	Outline a chemical test that is carried out to test for a possible named contaminant in a water sample from your local catchment area.	2
	······································	
(c)	Describe the methods used to purify and sanitise the drinking water supplied from your catchment area.	3
	\$	
	·	

Question 29 (7 marks)	Marks
Evaluate the effectiveness of the steps taken to alleviate the problems associated with the use of CFCs.	7
<u></u>	

Chemistry

Section II

25 marks Attempt ONE question from Questions 30-34 Allow about 45 minutes for this section

Answer the question in a SEPARATE writing booklet.

Show all relevant working in questions involving calculations.

		Page
Question 30	Industrial Chemistry	22-23
Question 31	Shipwrecks, Corrosion and Conservation	24
Question 32	The Biochemistry of Movement	25
Question 33	The Chemistry of Art	26
Question 34	Forensic Chemistry	27-28

Question 30 – Industrial Chemistry (25 marks)

Marks

- (a) Pressure, volume, concentration and temperature all have an effect on an equilibrium reaction.
 - (i) Which of these factors will alter the equilibrium constant?

1

2

(ii) Compare the effect of an increase in pressure on the following equilibria.

Oxidation of ammonia

$$4 \text{ NH}_3(g) + 5O_2(g)$$
 \longrightarrow $4NO(g) + 6H_2O(g)$

Production of hydrogen iodide

$$H_2(g) + I_2(g)$$
 \longrightarrow $2HI(g)$

(b) The Solvay Process is illustrated below.

(i) Identify the major product of the Solvay Process.

1

(ii) Choose ONE of the chemical changes that occur in this process and explain the chemistry involved.

3

(c) Analyse the processes required to manufacture sulfuric acid from Earth materials.

5

Question 30 continues on page 23

Questic	on 30 (coi	ntinued)	Marks						
(d)	As part of your study of this Option you performed a first-hand investigation to carry out saponification and test the product.								
	(i)	Describe the procedure you used for this investigation.	3						
	(ii)	Justify your method of data collection.	3						
(e)		the impact on the environment of the developments in technology e to manufacture sodium hydroxide.	7						

End of Question 30

Question 31 – Shipwrecks, Corrosion and Conservation (25 marks) Marks Luigi Galvani demonstrated "animal electricity" by making the muscles twitch in a dead frog. Alessandro Volta proposed a different theory about the origins of this electricity. Identify another scientist who contributed toward our understanding 1 (i) of electrochemistry. 2 Compare the theories of Galvani and Volta. (ii) 1 Identify ONE condition at great ocean depths which led to the (b) (i) prediction that shipwrecks would corrode slowly. Explain how this condition led to the prediction of a slow rate of 3 (ii) corrosion. Support your answer with balanced chemical equations. With reference to the factors that affect an electrolysis reaction, analyse 5 (c) how an understanding of electrolysis has led to the development of efficient processes that can be applied in the conservation and restoration of marine artefacts. You were required to perform a first-hand investigation to compare and (d) describe the rate of corrosion of materials in different salt concentrations. 2 Outline the procedure for your investigation. (i) 4 Justify the procedure. (ii) Assess the impact of new materials and the development of corrosion 7 (e) protection systems on the construction of marine going vessels, with a particular emphasis on the 20th Century.

Question 32 – The Biochemistry of Movement (25 marks)

Marks

(a) (i) Identify the main use of ATP in the body.

1

(ii) Compare the structure of ATP and ADP.

2

(b) (i) Identify the name of the process shown below.

1

3

(ii) Explain the importance of this process. Use an equation to support your answer.

As part of your study of this Option you performed a first-hand investigation to

5

(c) Analyse the effects of changes in pH and temperature on enzyme activity.

1

(i) Draw the structure of glucose.

compare the structures of glycogen and glucose.

(d)

.1

(ii) Outline the procedure you used for this investigation.

3

(iii) Justify the choice of materials.

2

(e) Assess the impact of discoveries in biochemistry on the understanding of the changes that occur in the muscles of a sprinter.

7

Question 33 – The Chemistry of Art (25 marks)

Marks

- (a) Ammonia (NH₃) is an example of a molecule that acts as a ligand.
 - (i) Identify another molecule that can act as a ligand.

1

(ii) Describe the colour change when the following complex is formed from a Cu²⁺ solution and excess ammonia.

1

- H₃N Cu² NH₃
- (iii) Write a chemical reaction showing the formation of this complex.

1

(b) (i) Identify the name of the element with the following electronic configuration.

1

3d

4s

(ii) Account for TWO different oxidation states of this element.

3

(c) Analyse the reasons for the position of Manganese in the periodic table in terms of its electron arrangement, ionisation energy and electronegativity.

5

- (d) As part of your study of this Option you performed a first-hand investigation to observe the colour changes of a transition metal in its different oxidation states.
 - (i) Outline the procedure you used for this investigation.

3

(ii) Justify the chemicals used.

3

(e) Assess the impact of technology in analysing the range of pigments used by artists throughout history.

7

Question 34 – Forensic Chemistry (25 marks)

Marks

- (a) Carbohydrates such as cellulose, starch and glycogen can be used to distinguish between plant and animal materials
 - (i) Identify the general formula for a carbohydrate.

1

(ii) Compare the use of carbohydrates by plants and animals.

2

(b) A section of a DNA molecule is shown below.

(i) Identify the three main components of DNA.

1

(ii) Explain how DNA is analysed to identify relationships between people.

3

(c) With reference to a first hand investigation you have carried out, analyse the factors that allow a chemist to use emission spectroscopy to identify an element.

5

Question 34 continues on page 28

Questi	on 34 (co	ontinued)	Marks
(d)	•	t of your study of this Option you performed a first-hand investigation rate a mixture of organic materials.	
	(i)	Outline the procedure you used for this investigation.	3
	(ii)	Justify your choice of solvent(s)	3
(e)		the impact of developments in a range of technologies on the ability mists to resolve forensic investigations.	7

End of paper

CATHOLIC SECONDARY SCHOOLS ASSOCIATION CHEMISTRY DATA SHEET

Avogadro's constant, N A		$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at	100 kPa and	
	at 0°C (273 K)	22.71 L
	at 25°C (298 K)	24.79 L
Ionisation constant for water at	25°C (298.15 K), Kw	1.0×10^{-14}
Specific heat capacity of water	***************************************	$4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

Some useful formulae

 $pH = -log_{10} [H^{+}] \qquad \Delta H = -mC\Delta T$

Some standard potentials

Some standard potentials										
$K^+ + e^-$	=	$K_{(s)}$	-2.94 V							
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	$Ba_{(s)}$	-2.91 V							
$Ca^{2+} + 2e^{-}$	\rightleftharpoons	$Ca_{(s)}$	-2.87 V							
$Na^+ + e^-$	\rightleftharpoons	$Na_{(s)}$	−2.71 V							
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	$Mg_{(s)}$	-2.36 V							
$A1^{3+} + 3e^{-}$	\rightleftharpoons	$Al_{(s)}$	-1.68 V							
$Mn^{2+} + 2e^-$	\rightleftharpoons	$Mn_{(s)}$	-1.18 V							
$H_2O + e^-$	\rightleftharpoons	$^{1}/_{2}$ $H_{2(g)} + OH^{-}$	-0.83 V							
$Zn^{2+} + 2e^{-}$	\rightleftharpoons	$Zn_{(s)}$	-0.76 V							
$Fe^{2+} + 2e^{-}$	_	$Fe_{(s)}$	$-0.44~{ m V}$							
$Ni^{2+} + 2e^{-}$	=	$Ni_{(s)}$	-0.24 V							
$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$	\rightleftharpoons	$Sn_{(s)}$	-0.14 V							
$Pb^{2+} + 2e^{-}$	_	$Pb_{(s)}$	-0.13 V							
$H^+ + e^-$	\rightleftharpoons	$^{1}/_{2}$ $H_{2(g)}$	0.00 V							
$SO_4^{2-} + 4H^+ + 2e^-$		$SO_{2(aq)} + 2H_2O$	0.16 V							
$Cu^{2+} + 2e^{-}$		$Cu_{(s)}$	0.34 V							
$\frac{1}{2} O_{2(g)} + H_2 O + 2e^{-1}$	=	20H ⁻	0.40 V							
$Cu^+ + e^-$		$Cu_{(s)}$	0.52 V							
$\frac{1}{2} I_{2(s)} + e^{-}$	=	Ţ-	0.54 V							
$^{1}/_{2} I_{2(aq)} + e^{-}$	\rightleftharpoons	I_	0.62 V							
$Fe^{3+} + e^{-}$	=	Fe^{2+}	0.77 V							
$Ag^+ + e^-$	\rightleftharpoons	$Ag_{(s)}$	0.80 V							
$^{1}/_{2} Br_{2(l)} + e^{-}$	\rightleftharpoons	Br ⁻	1.08 V							
$^{1}/_{2} Br_{2(aq)} + e^{-}$		Br	1.10 V							
$\frac{1}{2} O_{2(g)} + 2H^{+} + 2e^{-}$		H_2O	1.23 V							
$\frac{1}{2} \text{Cl}_{2(g)} + e^{-}$		Cl ⁻	1.36 V							
$\frac{1}{2} \operatorname{Cr}_2 \operatorname{O}_7^{2-} + 7 \operatorname{H}^+ + 3 \operatorname{G}_7^{2-}$	e [−] ←	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V							
$^{1}/_{2} \text{Cl}_{2(aq)} + e^{-}$	=	Cl ⁻	1.40 V							
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V							
$\frac{1}{2} F_{2(g)} + e^{-}$		\mathbf{F}^{-}	2.89 V							

			Γ	*						-			7			**********	T			_			
nancium	223.0]	7507	Сволівпи	132.9	Ç	55	čubidium	85,47	RB 37	CHANNEUTT	39.10	77	5	Sodium	22.99	<u>z</u> =	Lithium	6.941	 	ىئ	ydrogen	 	
Redium	[226.0]	₹86 2008	Bariem	137.3	ස	56	Strontium	87.62	S1 38	Calcium	40.08	Ca	J.	Magnesium	24.31	Z.	Beryllium	9.012	Вс	4			
Actinides		89-103	Lanthanides			57-71	Yttrium	88.91	Υ 96	Scandium	44.96	38 14 14 14 14	31										
Rutherfordism	[261.1]	R 04	Hafnion	178.5	tagas prin prins prin prins prins prins prins prins prins prins prins prins prins prin prins prins prins prins prins prin prin prin prin prin prin pri	72	Zirconium	91.22	40 Zi	Titanium	47.87	11.	33										
Dubraium	[262.1]	₽ <u>6</u>	Tanışlum	180.9	Ta	73	Miobium	92.91	4 ¥	Vanadium	50.94	~ [22										
Scaborgium	[263.1]	%.S	Tungston	183.8	₹	74	Molybdenum	95.94	X ;5	Chromusts	52.00	C,	3.4										
Bohnum	[264,1]	B107	Rhenium	186.2	Re	75	Technenium	[98.91]	743	Manganese	54.94	Z.	35					~		À1			Jum
Hadaium	[265.1]	FH 801	Osmium	190.2	Š	76	Ruthenium	101.1	Ru Ru	iron	55,85	7) t	26					Atomic Weight		Atomic Number			TE PERIODIC TABLE
Meineriam	[268]	M9	Indium	192.2	Power P	77	Rhodium	102.9	R#	Coball	58.93	<u>ଚ୍</u>	37				(rold	197.0	Au	79	KEY		
Ununsilam		Um 110	Platinum	195.1	Ρt	78	Palladium	106.4	Pd Pd	Nickel	58.69	Z	χc				Name of clement		Symbol of clement				ABL
Unquaquiren		Uuu	Cold	197.0	Αu	79	Silver	107.9	47 Ag	Copper	63.55	<u>و</u> ز	20				21		nem!				<u> </u>
Ususbum		112 Cub	Метсигу	200.6	140	08	Cadmuum	112.4	£	Zinc	65.39	Zn	UŁ										
		مسر مسرد فعرا	Thailium	204.4	_	200	Indium	114.8	n t	Gallium	69,72	G.	1.6	Aluminium	26,98	Αï	BOTOR	10.81	ಹ	٧,	**************************************		
Ununquadium		114 Uuq	Lond	207.2	Pb	. œ	Tin	118.7	Sn	Gemanium	72.61	S.	22	Silicon	28.09	Si:	C BI DOD	12.01	0	6	Processing and the second seco		
		115	Bixmuth	209.0	Bi	83	Antimony	121.8	Sb 1	Arrenie	74.92	ĀS	1 1	Phosphorus	30.97	-0 5	Milrogen	14.01	7.	7			
Ununhexium		116 Uuh	Polonium	[210.0]	Po	200	Tellerium	127.6	4,5	Selenium	78.96	Se.	3.4	Sulfur	32.07	ν ₀	Oxygen	16.00	0	00			
		7	Amazino	[210.0]	Αί	85	Indine	126.9	1 23	Bromine	79.90	æ	5 £	Chlorine	35.45	Ω.	Fluorinc	19.00	77	•		···-	
Ununoctium		118 Uuo	Radon	[222.0]	Rn	86	Хсноп	131.3	X 24	Krypton	83.80	~	36	Argun	39.95	Ài	Neon	20.18	Z.	10	Helium	4.003	He

Actinides 89 Ac [227.0]

90 Th 232.0

91 Pa 231.0 Protectinium

92 U 238.0 Utanium

93 NP [237.0] Neptunium

94 Pu [239.1]

95 Am [241.1]

96 Cm [244.1]

97 Bk [249.1] Berkelium

98 Cf (2)(6)(1)

99 Es [252.1]

[257.1]

101 Md [258.1] Mendelsvium

102 No [259.1]

103 LJ [262.1] Lanthanides

57 La 138.9

58 Ce 140.1

59 60 Pr Nd 140.9 144.2 Prascodymium Neodymium

Pin Pin [146.9] Pronethium

62 Sm 150.4 Samarium

Eu Eu 152.0

04 0d 157.3 Gadolinium

158.9

56 Dy 162.5

67 Ho 164.9

68 Er 167.3

69 Tm 168.9

70 Yb 173.0 Ytterbium

71 Lu 175.0 Lutetium