Data Structures – Practical Assignment 2

Oren Gal –	
Chen Barnoy –	

Class documentation:

DHeap

Fields:

Туре	Name	Description	
int	size	The current heap size.	
int	max_size	The maximum possible size of the heap.	
int	d	The number of children of each node.	
DHeap_item[]	array	Array that represents the heap. Each item in the array is a DHeap_item.	

Skeleton methods:

Туре	Signature	Description	Time complexity
int	getSize()	Returns the heap's size.	0(1)
			Because the field is
			updated during the other
			methods without changing
			their optimal time
			complexity.
int	arrayToHeap(DHeap_item[] array1)	The function builds a new heap from the given array.	O(n)
		Previous data of the heap should be erased.	
		Returns the number of comparisons made between items.	

Boolean	isHeap()	The function returns true if and only if the D-ary tree rooted	$O(n \cdot d)$
		at array[0] satisfies the heap property or has size == 0.	
static int	parent(int i, int d)	Compute the index of the parent of node i, in a complete d-	0(1)
		ary tree stored in an array.	
static int	child(int i, int k, int d)	Compute the index of the k-th child of node i, in a complete	0(1)
		d-ary tree stored in an array.	
int	Insert(DHeap_item item)	Inserts the given item to the heap.	O(logn)
		Returns the number of comparisons made during the	
		insertion.	
int	Delete_Min()	Deletes the minimum item in the heap.	$O(d \cdot logn)$
		Returns the number of comparisons made during the	
		deletion.	
DHeap_item	Get_Min()	Returns the minimum item in the heap.	
int	Decrease_Key(DHeap_item item, int	Decerases the key of the given item by delta.	O(logn)
	delta)	Returns number of comparisons made as a result of the	
		decrease.	
int	Delete(DHeap_item item)	Deletes the given item from the heap.	$O(d \cdot logn)$
		Returns number of comparisons during the deletion.	
static int	DHeapSort(int[] array1, int d)	Sort the input array using heap-sort (build a heap, and	$O(d \cdot n \cdot logn)$
		perform n times: get-min, del-min). Sorting should be done	
		using the DHeap, name of the items is irrelevant.	
		Returns the number of comparisons performed.	

Helper methods:

Туре	Signature	Description	Time complexity
int	heapifyDown(DHeap_item item)	Compares iteratively between the item and its children, and switches its position with the minimal child, if they break the heap rule. Returns the number of comparisons performed.	$O(d \cdot logn)$
int	heapifyUp(DHeap_item item)	Compares iteratively between the item and its parent, and switches its position with the parent, if they break the heap rule.	O(logn)

		Returns the number of comparisons performed.		
DHeap_item	minChild(DHeap_item item)	Returns the item's child with the minimal key. O(d		
int	numOfChildren(DHeap_item item)	Returns the number of item's children.	0(1)	
void	switchItems(DHeap_Item item, DHeap_Item parent)	Switches between item and its parent. $O(1)$		
Boolean	parentIsLegal (DHeap_item item)	Compares the item to its parent and returns true if and only if the heap property is maintained.	0(1)	
int	hasLegalChildren(DHeap_item item)	Returns -1 if and only if all children of item follow the heap rule, else, returns the position of the child that breaks the heap rule.	O(d)	
int	getLeavesStartIndex()	Calculates the index i for which the indices {i ,, size-1} represent the set of all leaves in the heap.	0(1)	

DHeap_Item

Fields:

Туре	Name	Description	
String	name	The item's name.	
int	key	The item's key.	
int	pos	The item's position in the array that represents the heap.	

Methods: Time complexity of all methods is $\mathcal{O}(1)$

Туре	Signature	Description	
int	getKey()	Returns the item's key.	
int	getPos()	Returns the item's pos.	
String	getName()	Returns the item's name.	
void	setPos(int pos1)	Sets pos to position.	
void	setKey(int key1)	Sets key to key1.	

Benchmark measurements – part 1 (arrayToHeap+DHeapSort)

No. elements	d	Avg. no. comparisons	d*n*log₀n
1,000	2	16,137	19,932
1,000	3	15,800	18,863
1,000	4	17,028	19,932
10,000	2	228,331	265,754
10,000	3	220,364	251,508
10,000	4	236,843	265,754
100,000	2	2,947,778	3,321,928
100,000	3	2,834,527	3,143,855
100,000	4	3,017,290	3,321,928

- הכנסה של מערך לערימה עולה $(0 \cdot n \log_d n)$ עולה $(0 \cdot n \log_d n)$, ולכן הסיבוכיות האסימפטומטית של שתי הפעולות האלו תהיה הגדולה מבניהן heap-sort $(0 \cdot n \log_d n)$ נשים לב שהחסם $(0 \cdot n \log_d n)$ מתאר בצורה טובה את מספר ההשוואות.

נתבונן בערימה שבה השבה יש $d \cdot n \log_d n$ השוואות ובכך נוכיח שהחסם הדוק (חסם תטא): DHeap-sort מבצע n איטרציות של $d \cdot n \log_d n$ השוואות ובכך נוכיח שהחסם הדוק (חסם תטא): להמפתחות שונים ומסודרים בכל רמה לפי הגודל משמאל – הכי קטן, לימין – הכי גדול, ונניח בה"כ ש-heapify-down משווה כל צומת לבניו לפי- הבן הימני

n בעלות מקסימלית של $d \cdot \log_d n$ השוואות, ועבור heapify-down מושווה ראשון ואז הולכים שמאלה אחד אחד לפי הסדר. במקרה זה, בכל איטרציה נבצע $d \cdot \log_d n$ בעלות מקסימלית של $d \cdot n \log_d n$ השוואות, כנדרש.

Benchmark measurements – part 2 (DecreaseKey)

delta	d	Avg. no. comparisons
1	2	99,999
1	3	99,999
1	4	99,999
100	2	152,953
100	3	130,858
100	4	122,891
1000	2	303,453
1000	3	213,246
1000	4	18,1145

הערה 1: לפי הניסוח של השאלה ולפי מה שנכתב בפורום אין קשר ישיר בין המדידות שביצענו בסעיף לבין הניתוח התאורטי – במדידות יש מקרה ספציפי של Decrease-key לפי סדר הכנסה עם delta קבוע, ובשאלה התבקשנו לעשות זאת בלי תלות ב delta, ולפי התשובות בפורום, עבור סדרה **כלשהי** של פעולות ולא בהכרח לפי סדר ההכנסה.

הערה 2: המקרה delta=1 הוא מקרה קצה, בו לא ייתכן שיבוצעו השוואות כלל, למעט השוואה אחת של כל ילד לאביו – סה"כ 99,999 השוואות כי המקרה שבו עושים decrease-key לשורש לא מוסיפה השוואה. הסיבה לזה היא המחיקה לפי סדר ההכנסה: עבור delta=1 המקרה היחיד בו תיתכן השוואה היא המקרה בו אבא של הצומת שהפעלנו עליו Decrease-key הוא בעל מפתח זהה לצומת. זה לא ייתכן, כי אם נתבונן בצומת, וניצור שרשרת ממנו למעלה באופן הבא: נשרשר אותו אל אביו אם יש להם את אותו מפתח ואם לא, נעצור. נקבל שרשרת שבה האיבר הגבוה ביותר בשרשרת הוכנס ראשון, אחריו הוכנס זה שמתחתיו וכן הלאה, כאשר האחרון שהוכנס הוא זה שבתחתית השרשרת. הסיבה לזה היא שheapify-up לא מחליף בין צמתים עם אותו מפתח. לכן, כשנפעיל decrease-key על כל איברי הערימה, הוא יופעל על השרשרת החל מהגבוה ביותר עד לנמוך ביותר, ובאופן זה כלל הערימה לא יופר בשום שלב. זה נכון לכל צומת בעץ ולכן לא יבוצעו השוואות כלל בכל התהליך.

תשובה לשאלה:

פעולת decrease-key יחידה עולה $O(\log_d n)$ במקרה הגרוע, לכן סדרה של n פעולות במקרה הגרוע היא $O(\log_d n)$. נראה דוגמה של n פעולות מעולת עולה $n\log_d n$ השוואות ובכך נוכיח שהחסם הוא הדוק (חסם תטא):

נתבונן בעץ מלא שבו כל המפתחות זהים, נניח שכולם 0. בשלב ראשון נפעיל decrease-key עלה כלשהו עם 1=delta ובכך נשווה אותו לכל הרמות מעליו, $\log_d n$ השוואות והוא יהפוך לשורש. בשלב השני נפעיל decrease-key עלה אחר עם מפתח 0 עם delta=2. כעת הוא גם יעלה כל הדרך למעלה log_d n כלומר $\log_d n$ השוואות והוא יהפוך לשורש, נמשיך כך, ובכל שלב מגדיל את delta ב-1 על מנת שיפועפע עד השורש. נשים לב שהאלגוריתם מוגדר היטב, כי 0 ויהפוך לשורש, כלומר בעץ, לכן כל עוד לא שינינו את כל האיברים יש צומת עם מפתח 0 ומהמינימליות שלו – הוא עלה. ואנחנו מבצעים את האלגוריתם עד שאין צמתים עם מפתח 0 כלומר בדיוק n פעמים, פעם אחת על כל צומת. סה"כ $n \log_d n$ השוואות, כנדרש.