COMPUTER SCIENCE TRIPOS Part IA – 2015 – Paper 2

8 Discrete Mathematics (MPF)

(a) Prove that, for all natural numbers n,

$$n^{13} \equiv n \pmod{1365}$$

You may use any standard results provided that you state them clearly.

[5 marks]

(b) For n ranging over the natural numbers \mathbb{N} , let

Even(n) be the predicate $\exists k \in \mathbb{N}. \ n = 2 \cdot k$

and let

Odd(n) be the predicate $\exists l \in \mathbb{N}. \ n = 2 \cdot l + 1$

Prove that

$$\forall n \in \mathbb{N}. \text{ Even}(n) \vee \text{Odd}(n)$$

by the Principle of Induction.

[5 marks]

- (c) Let $F: A \longrightarrow B$ be a relation, from a set A to a set B.
 - (i) Define what it means for F to be a (total) function. [2 marks]
 - (ii) Prove that F is a function if, and only if, there exists a relation $G: B \longrightarrow A$ such that $\mathrm{id}_A \subseteq G \circ F$ and $F \circ G \subseteq \mathrm{id}_B$. [8 marks]