3.2. VECTOR SPACES

63

Remark: One may wonder whether axiom (V4) is really needed. Could it be derived from the other axioms? The answer is **no**. For example, one can take $E = \mathbb{R}^n$ and define $\cdot : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ by

$$\lambda \cdot (x_1, \dots, x_n) = (0, \dots, 0)$$

for all $(x_1, \ldots, x_n) \in \mathbb{R}^n$ and all $\lambda \in \mathbb{R}$. Axioms (V0)–(V3) are all satisfied, but (V4) fails. Less trivial examples can be given using the notion of a basis, which has not been defined yet.

The field K itself can be viewed as a vector space over itself, addition of vectors being addition in the field, and multiplication by a scalar being multiplication in the field.

Example 3.1.

- 1. The fields \mathbb{R} and \mathbb{C} are vector spaces over \mathbb{R} .
- 2. The groups \mathbb{R}^n and \mathbb{C}^n are vector spaces over \mathbb{R} , with scalar multiplication given by

$$\lambda(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n),$$

for any $\lambda \in \mathbb{R}$ and with $(x_1, \dots, x_n) \in \mathbb{R}^n$ or $(x_1, \dots, x_n) \in \mathbb{C}^n$, and \mathbb{C}^n is a vector space over \mathbb{C} with scalar multiplication as above, but with $\lambda \in \mathbb{C}$.

3. The ring $\mathbb{R}[X]_n$ of polynomials of degree at most n with real coefficients is a vector space over \mathbb{R} , and the ring $\mathbb{C}[X]_n$ of polynomials of degree at most n with complex coefficients is a vector space over \mathbb{C} , with scalar multiplication $\lambda \cdot P(X)$ of a polynomial

$$P(X) = a_m X^m + a_{m-1} X^{m-1} + \dots + a_1 X + a_0$$

(with $a_i \in \mathbb{R}$ or $a_i \in \mathbb{C}$) by the scalar λ (in \mathbb{R} or \mathbb{C}), with $m \leq n$, given by

$$\lambda \cdot P(X) = \lambda a_m X^m + \lambda a_{m-1} X^{m-1} + \dots + \lambda a_1 X + \lambda a_0.$$

- 4. The ring $\mathbb{R}[X]$ of all polynomials with real coefficients is a vector space over \mathbb{R} , and the ring $\mathbb{C}[X]$ of all polynomials with complex coefficients is a vector space over \mathbb{C} , with the same scalar multiplication as above.
- 5. The ring of $n \times n$ matrices $M_n(\mathbb{R})$ is a vector space over \mathbb{R} .
- 6. The ring of $m \times n$ matrices $M_{m,n}(\mathbb{R})$ is a vector space over \mathbb{R} .
- 7. The ring C(a,b) of continuous functions $f:(a,b)\to\mathbb{R}$ is a vector space over \mathbb{R} , with the scalar multiplication λf of a function $f:(a,b)\to\mathbb{R}$ by a scalar $\lambda\in\mathbb{R}$ given by

$$(\lambda f)(x) = \lambda f(x),$$
 for all $x \in (a, b).$