Dr. G. Tapken Marius Kaiser

Di 26.11.24

7. Tutoriumsblatt zur Mathematik 2

Aufgabe 15

Die nebenstehende Skizze zeigt den Beginn einer Folge von Quadraten. Das äußere Quadrat besitzt eine Fläche von $4m^2$. Jedes Quadrat der Folge entsteht dadurch, dass die Mittelpunkte der Seiten des vorhergehenden Quadrates der Folge verbunden werden. Bestimmen Sie die Summe der Flächen aller dieser unendlich vielen Quadrate.

Aufgabe 16

Die folgenden Funktionen sind an der Stelle x_0 nicht definiert. Lässt sich $f(x_0)$ so festlegen, dass die Funktion f an der Stelle x_0 stetig wird?

a)
$$f(x) = \frac{2x^2 - 5x - 3}{x^2 + x - 12}$$
 $x_0 = 3$ c) $f(x) = \frac{|x|}{x}$ $x_0 = 0$

c)
$$f(x) = \frac{|x|}{x}$$
 $x_0 = 0$

b)
$$f(x) = \frac{2+x^2}{\sqrt{2}-x}$$
 $x_0 = \sqrt{2}$

Aufgabe 17

Welche der folgenden auf \mathbb{R} definierten Funktionen ist in $x_0 = 0$ differenzierbar? Berechnen Sie die Ableitung in x_0 , falls diese existiert.

a)
$$f_1(x) = x\sqrt{|x|}$$

a)
$$f_1(x) = x\sqrt{|x|}$$
 b) $f_2(x) = \begin{cases} 2 + (x+1)^2 & \text{für } x < 0 \\ x^3 + 2x + 3 & \text{für } x \ge 0 \end{cases}$ c) $f_3(x) = \sqrt{x^4 + x^2}$

c)
$$f_3(x) = \sqrt{x^4 + x^2}$$

Hinweis: Verwenden Sie die Definition der Differenzierbarkeit

Aufgabe 18

Berechnen Sie die Ableitungen der folgenden Funktionen:

a)
$$f_1(x) = 2x \cdot \ln(x)$$

b)
$$f_2(x) = e^x \cdot \cos(x)$$

c)
$$f_3(x) = 2x \cdot e^x \cdot \sin(x)$$

d)
$$f_4(x) = (\tan(x))^2$$

e)
$$f_5(x) = \frac{5x^4 - x^2 - 3x + 2}{x^3 - 7x^2 + x}$$

f)
$$f_6(x) = \cot(x) = \frac{\cos(x)}{\sin(x)}$$

g)
$$f_7(x) = (\sin(2x-4))^2$$

h)
$$f_8(x) = e^{x^2 - 2x + 5}$$

i)
$$f_9(x) = \ln(x^3 - 2x)$$

$$j) f_{10}(x) = \ln\left(\left(\frac{3x-2}{x^2}\right)^3\right)$$

Hinweis: Sie dürfen verwenden, dass $\frac{d}{dx}e^x = e^x$, $\frac{d}{dx}\ln(x) = \frac{1}{x}$, $\frac{d}{dx}\sin(x) = \cos(x)$, $\frac{d}{dx}\cos(x) = -\sin(x)$, $\tan(x) = \frac{\sin(x)}{\cos(x)}$

Aufgabe 19

Betrachten Sie die durch die untenstehende Abbildung definierte Funktion $f:[0,5] \to \mathbb{R}$.

Hat f eine Umkehrfunktion? Falls nein, weshalb nicht?

Falls ja, zeichnen Sie die Funktion f^{-1} in die untenstehende Abbildung. Was ist der Definitionsbereich von f^{-1} ? Für welche x hat f^{-1} eine Ableitung?

