Relazione: Creazione di una Rete Segmentata con 4 VLAN

Scenario:

Simulazione di una piccola rete aziendale/ufficio con 4 aree di lavoro distinte, denominate "Scrivania 0", "Scrivania 1", "Scrivania 2" e "Scrivania 3". Ogni scrivania è dotata di un PC client e di un server dedicato. L'obiettivo è segmentare la rete in 4 VLAN separate, una per ciascuna scrivania, per isolare il traffico e migliorare la sicurezza.

Topologia di Rete:

- **Dispositivo Centrale:** Uno switch Cisco Catalyst 2960 di livello 2.
- Endpoint:
 - Scrivania 0: PC0 (Client), Server0
 - Scrivania 1: PC1 (Client), Server1
 - Scrivania 2: PC2 (Client), Server2
 - Scrivania 3: PC3 (Client), Server3
- Connessioni: Ogni PC e server è connesso tramite cavo Ethernet a una porta dello switch Cisco Catalyst 2960.

Configurazione delle VLAN sullo Switch Cisco Catalyst 2960:

- 1. Accesso all'Interfaccia di Configurazione dello Switch:
 - In Packet Tracer, si è cliccato sullo switch Catalyst 2960 per accedere alla sua interfaccia di configurazione.
- Creazione delle VLAN:
 - Utilizzando le schermate di configurazione, sono state create quattro VLAN con i seguenti ID e nomi descrittivi:
 - VLAN 100: Scrivania 0
 - VLAN 101: Scrivania 1
 - VLAN 102: Scrivania 2
 - VLAN 103: Scrivania 3
- 3. Assegnazione delle Porte dello Switch alle VLAN:
 - Tramite le schermate di configurazione delle porte (interfacce) dello switch 2960, le porte a cui sono connessi i PC e i server di ciascuna scrivania sono state configurate come porte di accesso ("access ports") e assegnate alla VLAN corrispondente. Ad esempio, le porte per PC0 e Server0 sono state assegnate alla VLAN 100, le porte per PC1 e Server1 alla VLAN 101, e così via.
- 4. Configurazione degli Indirizzi IP (Sui PC e Server):
 - Agli PC e ai server di ciascuna scrivania sono stati assegnati indirizzi IP appartenenti a subnet logiche distinte, coerenti con la VLAN di appartenenza.

Test di Connettività (Ping):

Sono stati eseguiti test di connettività utilizzando il comando "ping" tra i dispositivi all'interno della stessa VLAN e tra dispositivi in VLAN diverse.

- 1. Ping Intra-VLAN (Comunicazione all'interno della stessa VLAN):
 - Sono stati eseguiti ping tra il PC e il server di ciascuna scrivania (appartenenti alla stessa VLAN).
 - RISULTATO: I test di ping tra i dispositivi appartenenti alla stessa VLAN (VLAN 100, 101, 102, 103) hanno avuto ESITO POSITIVO.
- 2. **Spiegazione:** Questo risultato conferma il corretto funzionamento della segmentazione VLAN all'interno dello switch Catalyst 2960. I dispositivi sulla stessa VLAN si trovano nello stesso dominio di broadcast e possono comunicare direttamente a livello 2.
- 3. Ping Inter-VLAN (Comunicazione tra VLAN diverse):
 - Sono stati eseguiti ping tra i PC e i server di scrivanie diverse (appartenenti a VLAN differenti).
 - RISULTATO: I test di ping tra i dispositivi appartenenti a VLAN diverse (VLAN 100 verso 101, ecc.) hanno avuto ESITO NEGATIVO.
- **Spiegazione:** Questo risultato è atteso in una configurazione con un solo switch di livello 2. Il 2960, operando a livello 2, non esegue il routing tra VLAN. Pertanto, il traffico destinato a un host su una VLAN diversa non viene inoltrato.

Motivazioni per la Scelta di Ricorrere alle VLAN:

L'implementazione di VLAN su uno switch Cisco Catalyst 2960 in questo scenario offre i seguenti vantaggi:

- 1. Isolamento del Traffico: Il traffico di rete di ciascuna scrivania è logicamente separato all'interno della propria VLAN (VLAN 100, 101, 102, 103). Questo isolamento garantisce:
 - Maggiore Sicurezza: Impedisce la comunicazione non autorizzata a livello 2 tra le diverse aree di lavoro, limitando la potenziale diffusione di minacce.
 - Migliori Prestazioni: Riduce il dominio di broadcast per ciascuna VLAN, diminuendo il traffico non necessario e migliorando l'efficienza della rete per i dispositivi all'interno di ciascun segmento.
- 2. Organizzazione Logica: L'utilizzo delle VLAN permette di organizzare i dispositivi in base alla loro funzione (appartenenza alla scrivania), semplificando la gestione e la comprensione della struttura logica della rete.
- 3. Flessibilità: La configurazione delle VLAN tramite le schermate di Packet Tracer offre flessibilità nell'aggiunta, spostamento o modifica dei dispositivi. È sufficiente modificare l'assegnazione della porta alla VLAN desiderata attraverso l'interfaccia grafica.
- 4. Utilizzo Efficiente dell'Infrastruttura: Un singolo switch fisico (il Catalyst 2960) viene utilizzato per supportare più segmenti di rete logici, ottimizzando l'uso delle risorse hardware.

5

In conclusione, l'utilizzo di uno switch Cisco Catalyst 2960 di livello 2 per creare 4 VLAN separate per le diverse scrivanie ha permesso di segmentare con successo la rete a livello logico, configurando il tutto tramite le intuitive schermate di Packet Tracer. I test di ping hanno confermato l'isolamento del traffico tra le VLAN. Per abilitare la comunicazione tra le diverse scrivanie (le diverse VLAN), sarebbe necessario implementare un dispositivo di livello 3 per eseguire il routing inter-VLAN. Il Catalyst 2960 si dimostra uno strumento efficace per implementare la segmentazione di rete tramite VLAN, anche attraverso la sua interfaccia grafica.

				-						
Fire	Last Status	Source	Destination	Type	Color	Time(sec)	Periodic	Num	Edit	Delete
•	Failed	PC0	PC2	IC		0.000	N	0	(
	Event Lis	t								
	Vis.	Time	(sec) Last	Device)	At Device		Туре	9	
		0.00	0			PC0			ICM	•
		0.00	0			PC0			ARP	
		0.00	1 PC0			Switch0			ARP	
		0.00	2 Swite	ch0		Server0			ARP	
	(19)	2.00	4			PC0			ICM	•

Fire Last Status	Source	Destination	Type Co	olor Time(sec)	Periodic	Num	Edit Delete	
Successful	PC0	Server0	IC	0.000	N	0	(
Event Lis	t							
Vis.	Time(s	ne(sec) Last Device		At Device	T			
	0.000			PC0		ICM	IP	
	0.001	PC0		Switch0		ICM	IP	
	0.002		0	Server0		ICMP		
	0.003	Server	0	Switch0		ICM	IP	
(9)	0.004	Switch	0	PC0		ICM	IP	