Assignment 2

	00.31 1 2022
Assigment Date	08 November 2022
Student Name	Surya V S
Student Register Number	620619106039
Maximum Marks	2

1.Importing package

import pandas as pd
import seaborn as sns
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline

2.Loading dataset

df = pd.read_csv("Churn_Modelling.csv")

df

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender
Age 0 42	1	15634602	Hargrave	619	France	Female
1	2	15647311	Hill	608	Spain	Female
41 2	3	15619304	Onio	502	France	Female
42 3 39	4	15701354	Boni	699	France	Female
4 43	5	15737888	Mitchell	850	Spain	Female

• • •	•	• •	• • •	• • •	• •	• • • • • • • • • • • • • • • • • • • •	• • •
9995 39	99	96 15606	229	Obijiaku	77	1 France	Male
9996 35	99	97 15569	892	Johnstone	51	6 France	Male
9997 36	99	98 15584	-532	Liu	70	9 France	Female
9998 42	99	15682	355	Sabbatini	77	2 Germany	Male
9999 28	100	15628	319	Walker	79	2 France	Female
0	Tenure 2	Balance 0.00	Num(OfProducts 1	HasCrCard 1	IsActiveMe	mber \
1	1	83807.86		1	0		1
2	8	159660.80		3	1		0
3	1	0.00		2	0		0
4	2	125510.82		1	1		1
	•••	• • • •		•••	• • •		•••
9995	5	0.00		2	1		0
9996 9997	10 7	57369.61 0.00		1 1	1 0		1 1
9998	3	75075.31		2	1		0
9999	4	130142.79		1	1		0
	Fstimat	edSalary E	xite	1			
0		.01348.88		1			
1		12542.58		9			
2	1	.13931.57	1	1			
3		93826.63	6	9			
4		79084.10	(9			
 9995		 96270.64		Ə			
9996	1	.01699.77		9			
9997	-	42085.58		1			
9998		92888.52		- 1			
9999		38190.78	6	9			

[10000 rows x 14 columns]

3. Visualizations

a) Univariate Analysis

sns.displot(df.Gender)

<seaborn.axisgrid.FacetGrid at 0x7f1cc8cc7710>

b) Bi-Variate Analysis

df.plot.line()

<matplotlib.axes._subplots.AxesSubplot at 0x7f1cc8a68f10>

c) Multi-Variate Analysis

sns.lmplot("Tenure","NumOfProducts",df,hue="NumOfProducts",
fit reg=False);

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y, data. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

4. Perform descriptive statistic on the dataset df.describe()

	RowNumber	CustomerId	CreditScore	Age		
Tenure	<u> </u>					
count	10000.00000	1.000000e+04	10000.000000	10000.000000		
10000.	000000					
mean	5000.50000	1.569094e+07	650.528800	38.921800		
5.0128	300					
std	2886.89568	7.193619e+04	96.653299	10.487806		
2.8921	L74					
min	1.00000	1.556570e+07	350.000000	18.000000		
0.0000	900					
25%	2500.75000	1.562853e+07	584.000000	32.000000		
3.0000	900					
50%	5000.50000	1.569074e+07	652.000000	37.000000		
5.000000						
75%	7500.25000	1.575323e+07	718.000000	44.000000		
7.000000						
max	10000.00000	1.581569e+07	850.000000	92.000000		

	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
count	10000.000000	10000.000000	10000.00000	10000.000000	
mean	76485.889288	1.530200	0.70550	0.515100	
std	62397.405202	0.581654	0.45584	0.499797	
min	0.000000	1.000000	0.00000	0.000000	
25%	0.000000	1.000000	0.00000	0.000000	
50%	97198.540000	1.000000	1.00000	1.000000	
75%	127644.240000	2.000000	1.00000	1.000000	
max	250898.090000	4.000000	1.00000	1.000000	
	EstimatedSalary	/ Exited			
count	10000.000000	10000.000000			
mean	100090.239881	0.203700			
std	57510.492818	0.402769			
min	11.580000	0.000000			
25%	51002.110000	0.000000			
50%	100193.915000	0.000000			
75%	149388.247500	0.000000			
max	199992.480000	1.000000			

5. Handle the Missing values

```
data = pd.read_csv("Churn_Modelling.csv")
pd.isnull(data["Gender"])
0
       False
1
       False
       False
2
3
       False
       False
9995
       False
9996
      False
9997
      False
9998
       False
9999
       False
Name: Gender, Length: 10000, dtype: bool
```

6. Find the outliers and replace the outliers

```
sns.boxplot(df['Age'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f1cc5a28b90>


```
df['Age']=np.where(df['Age']>50,40,df['Age'])
df['Age']
0
        42
1
        41
2
        42
3
        39
4
        43
        . .
9995
        39
9996
        35
9997
        36
9998
        42
9999
        28
Name: Age, Length: 10000, dtype: int64
sns.boxplot(df['Age'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f1cc592b3d0>


```
df['Age']=np.where(df['Age']<20,35,df['Age'])</pre>
```

```
df['Age']
0
         42
1
         41
2
         42
3
         39
4
         43
         . .
9995
         39
9996
         35
9997
         36
9998
         42
9999
         28
```

Name: Age, Length: 10000, dtype: int64

7. Check for Categorical columns and perform encoding
pd.get_dummies(df, columns=["Gender", "Age"], prefix=["Age",
"Gender"]).head()

RowNumbe	er	CustomerId	Surname	CreditScore	Geography	Tenure
Balance \						
0	1	15634602	Hargrave	619	France	2
0.00						
1	2	15647311	Hill	608	Spain	1
83807.86						
2	3	15619304	Onio	502	France	8
159660.80						
3	4	15701354	Boni	699	France	1
0.00						
4	5	15737888	Mitchell	850	Spain	2
125510.82					•	
_	_			_	_	_

	NumOfProducts	HasCrCard	IsActiveMember	 Gender_41	Gender_42
\					
0	1	1	1	 0	1
1	1	0	1	 1	0
2	3	1	0	 0	1
3	2	0	0	 0	0
4	1	1	1	 0	0

	Gender_43	Gender_44	Gender_45	Gender_46	Gender_47	Gender_48	\
0	0	0	0	0	0	0	
1	0	0	0	0	0	0	
2	0	0	0	0	0	0	
3	0	0	0	0	0	0	
4	1	0	0	0	0	0	

	Gender_49	Gender_50
0	0	0
1	0	0
2	0	0
3	0	0
4	0	0

[5 rows x 45 columns]

8. Split the data into dependent and independent variables

a) Split the data into Independent variables.

```
X = df.iloc[:, :-1].values
print(X)

[[1 15634602 'Hargrave' ... 1 1 101348.88]
  [2 15647311 'Hill' ... 0 1 112542.58]
  [3 15619304 'Onio' ... 1 0 113931.57]
  ...
  [9998 15584532 'Liu' ... 0 1 42085.58]
  [9999 15682355 'Sabbatini' ... 1 0 92888.52]
  [10000 15628319 'Walker' ... 1 0 38190.78]]
```

b) Split the data into Dependent variables.

```
Y = df.iloc[:, -1].values
print(Y)
[1 0 1 ... 1 1 0]
```

9. Scale the independent variables

import pandas as pd

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[["CustomerId"]] = scaler.fit_transform(df[["CustomerId"]])
```

۸	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender
Age 0 42	1	0.275616	Hargrave	619	France	Female
1 41	2	0.326454	Hill	608	Spain	Female
2 42	3	0.214421	Onio	502	France	Female
3 39	4	0.542636	Boni	699	France	Female
4 43	5	0.688778	Mitchell	850	Spain	Female
• • •	• • •	• • •	• • •	• • •	• • •	• • •

. . .

print(df)

9995 39	99	96 0.162	2119	Obijiaku	77	'1 France	Male
9996 35	99	997 0.016	765	Johnstone	51	.6 France	Male
9997 36	99	998 0.075	327	Liu	76	9 France	Female
9998 42	99	999 0.466	637	Sabbatini	77	2 Germany	Male
9999 28	100	000 0.250	483	Walker	79	92 France	Female
0	Tenure 2	Balance 0.00	Num	1	1	IsActiveMer	1
1 2	1 8	83807.86 159660.80		1 3	0 1		1 0
3	1	0.00		2	0		0
4	2	125510.82		1	1		1
		• • •		• • •	• • •		• • •
9995	5	0.00		2	1		0
9996	10	57369.61		1	1		1
9997	7	0.00		1	0		1
9998	3 4	75075.31		2 1	1		0
9999	4	130142.79		1	1		0
	Estimat	edSalary E	xite	ed			
0	1	.01348.88		1			
1		12542.58		0			
2		.13931.57		1			
3		93826.63		0			
4		79084.10		0			
 9995		96270.64	• •	0			
9996		.01699.77		0			
9997		42085.58		1			
9998		92888.52		1			
9999		38190.78		0			

[10000 rows x 14 columns]

10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
train_size=0.8
X = df.drop(columns = ['Tenure']).copy()
```

```
y = df['Tenure']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test_size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
(8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
(None, None)
```