Markus Heimerl

Embedded Systems Engineer

Contact

✓ contact@markusheimerl.com

J +49 176 78227914

markusheimerl

Technical Skills

Programming

C/C++ (bare-metal), Python, VHDL/Verilog, Assembly

MCU/Processors

ARM Cortex-M, RISC-V, STM32, ESP32

Signal Processing

State Space Models, Kalman Filters, Real-time DSP

Hardware

PCB Design, Oscilloscope, Logic Analyzer, JTAG/SWD

Safety-Critical

AUTOSAR, MISRA C, Fault-tolerant Design

Protocols

SPI, I2C, UART, CAN, BLE

Languages

German

Native Speaker

English

C1 Level (TOEFL iBT 105/120)

Certifications

Aerial Robotics

University of Pennsylvania (2021)

Professional Summary

Embedded Systems Engineer with demonstrated expertise in developing safety-critical, power-constrained systems. Strong background in signal processing algorithms, bare-metal firmware development, and hardware-software co-design. Passionate about pushing the boundaries of embedded systems.

Professional Experience

Automotive Embedded Developer

May 2024 - Present

intive GmbH, Regensburg

- Developing safety-critical ECU network diagnostic and visualization tool for BMW
- Leading refactoring effort to improve performance and maintainability
- Coordinating cross-functional collaboration between hardware and software teams

Embedded Software Engineer

Jul 2023 - Dec 2023

VECTOR Informatik, Regensburg

- Contributed to bootloader development with OTA capabilities for automotive MCUs
- Implemented fault-tolerant firmware update mechanisms with rollback protection

Digital Design Teaching Assistant OTH Regensburg

 ${\rm Mar}~2022$ - ${\rm Dec}~2022$

- Taught FPGA development and digital signal processing fundamentals
- Created practical labs for real-time system design and hardware debugging

Exceptional Technical Projects

Real-Time Flight Control System github.com/markusheimerl/quad

2021 - Present

Designed complete autonomous quadcopter featuring custom PCB, bare-metal firmware, and experimental state space model implementation for state estimation. System integrates IMU sensor fusion, motor control and vision.

High-Performance State Space Models

2024

github.com/markusheimerl/ssm

Implemented optimized C/CUDA state space models for embedded deployment, achieving significant performance improvements while maintaining numerical stability.

RISC-V Processor Implementation

2022

Bachelor's Thesis

Designed complete RV32I processor in VHDL with custom peripherals, VGA controller, and DMA. Implemented hardware debugging interface and achieved stable $100 \mathrm{MHz}$ operation on Xilinx Artix-7 FPGA with comprehensive testbench verification.

Education

B.Sc. Computer Engineering OTH Regensburg - Top 20% of class

2018 - 2022

Focus: Embedded Systems, Digital Signal Processing, Computer Architecture