Conectores Traseiros do ordenador (Rear Panel Connectors)

Nota: As actividades a realizar están marcadas con esta Icona Este documento contén campos editables, para almecenar os cambios non empregar Acrobat Reader, senón por exemplo **Foxit Reader**.

Os conectores presentes nas placas bases ou equipos informáticos foron variando co tempo pero, a modo de resumo, podemos atopar os seguintes:

- Transmisión de datos
 - PS/2
 - Serie
 - Paralelo
 - USB
 - Thunderbolt
 - Firewire
 - E-SATA
- Transmisión de vídeo
 - VGA
 - o DVI
 - HDMI
 - DisplayPort
- Transmisión de son
 - Analóxico
 - Dixital

Montaxe da plana nai na carcasa

Colocar a **backplate** ou **I/O Shield** da nosa placa

As caixas traen un oco por onde sairán os conectores traseiros da placa, para que os ocos correspondan cos portos da placa, cada placa nai trae unha backplate correspondente os seus portos traseiros.

Colocación da backplate

Colocar a placa na caixa, aliñando os portos traseiros cos orificios da backplate

Atornillar a placa á caixa

Montaxe da placa nai na carcasa

A modo de exemplo, podes ver as seguintes backplates correspondentes a varias placas.

Exercicio 1: Procura na web http://io-shield.de/en/ as backplates correspondentes os seguintes modelos de placa base. Entrega captura.

- GA-Z77-D3H
- M3A78-EM

Examina os seguintes conectores correspondentes a placa **ASUS P8P67 Deluxe.**

Obtén o manual e lee a páxina 64 para obter máis información.

Exercicio 2: Enche a seguinte táboa

Νō	Nome	Emprégase para
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		

•	Cal é a	diferenza	entre os	portos	10 e	11?	Como	se	chaman	۱?
---	---------	-----------	----------	--------	------	-----	------	----	--------	----

• Cal é a diferenza entre os portos 13 e 14? Como se chaman?

 Cal sería a diferenza se conectásemos un rato no conector 1 ou no conector 8?

Ten esta placa portos USB 3.0 dianteiros?

Exercicio 3: O porto 4 pode amosar diferentes estados.

• Enche a seguinte táboa explicando o seu significado.

LED Actividade					
Estado Descrición					
Apagado					
Azul					
Parpadeando					

Exercicio 4: Os portos 6 e 7 contan con dous led's indicadores.
Enche a seguinte táboa explicando o seu significado.

 Comproba se no ordenador de clase existen, e teñen o mesmo significado.

LED Actividade		LED Velocidade		
Estado	Descrición	Estado	Descrición	
Apagado		Apagado		
Laranxa		Laranxa		
Parpadeando		Verde		

Exercicio 5: Nesta outra placa, identifica os conectores numerados como 1 e 9.

Nο	Nome	Empregábase para
11		
10		
1		
9		

Exercicio 6: Coñeces tódolos conectores correspondentes á placa ASUS M4A89GTD PRO/USB3?,

•	Explica o nome dos conectores marcados en vermello
•	Por que hai portos USB azuis e negros?
	r or que mar perios seb azais e megreen
	r er que mar perres des azais e megreur
	TOT GOO THAT POTTED GOD GLAID O'THOGHOUT
	TOT que trait perreu des assur e tregreur
	TOT QUOTIES DOS GEGIO O FIOGRADO
	TOT que trait person des acute e megreur
	TOT QUOTIES COS GEGIO O FIOGRACO
	T OF QUOTIES COS GEGIO O FROGROCI

Exercicio 7: Procura en Internet as velocidades que faltan dos seguintes portos, e enche a seguinte táboa.

Porto	Vel. (Mb/seg.)
Serie	0,92 Mb/s
Paralelo ECP	20 Mb/s
USB 1.1	12 Mb/s
USB 2.0	480 Mb/s
USB 3.0	4,8 Gb/s
USB 3.1 Gen 2	10 Gb/s
USB 4.0 20	
USB 4.0 40	
e-SATA	2,4 Gb/s
Thunderbolt 2	20 Gb/s
Thunderbolt 3	40 Gb/s

Emprega http://usb.userbenchmark.com para comparar un usb
 3.0 con un 2.0. Entrega unha captura

A interface USB (Universal Serial Bus)

Antigamente cada tipo de periférico empregaba un tipo de conector diferente (serie, paralelo..). Dende a aparición do USB a maioría de periféricos adoptárono, converténdose no interface estendido hoxe en día.

Exercicio 8: Cal crees que foron os motivos do seu éxito?

Evolución

	Ano	Norma	Vel. Teórica		Pot. Eléctrica	Conector
	1996	USB 1.0	0,192 MB/s	1,5 Mb/s	500 mAmp	A,B
	1998	USB 1.1	1,5 MB/s	12 Mb/s	500 mAmp	A,B
•	2000	USB 2.0	60 MB/s	480 Mb/s	500 mAmp	A,B
SS ←	2009	USB 3.1 Gen 1	600 MB/s	4,8 Gb/s	900 mAmp, 4,5 W	A,B
ss	2014	USB 3.1 Gen 2	1250 MB/s	10 Gb/s	5 Amp, 100 W, 20 V	A,B
	2019	USB 3.2	2500MB/s	20 Gb/s	100 W	С
(20<;-		USB 4 20		20 Gb/s	240 W / 48 V	С
40~		USB 4 40		40 Gb/s	240 W / 48 V	С

USB 3.0

• Bidireccional, mentres que os anteriores son unidireccionais.

- Entrega captura de bechmark de dispositivos USB 3.0.
- Procura en Internet dúas placas nai
 - o Unha que teña portos USB 3.1 Gen1
 - o Outra que teña portos USB 3.1 Gen2
 - Entrega capturas de ambas placas onde se vexa o pedido nas especificacións da placa

Conexión dos cables USB

O evolucionar a velocidade da Interfacer USB, tamén foi evolucionado os posibles conectores. Están resumidos no seguinte gráfico

Evolución:

- Inicialmente agora tíñamos dous tipos de conectores:
 - **Tipo A:** Conectábase no ordenador
 - Tipo B: Conectábase no periférico: Impresora, cámara,
- Logo apareceron as versións micro e mini para dispositivos máis pequenos (móbiles)
- Para distinguir os conectores máis rápidos, a partir da versión 3.0 son de cor azul.

Problema: Os conectores só encaixan dun xeito, o cal podía facernos perder moito tempo. E os cables tiñan dous extremos diferentes (Tipo A e B), un tiña que ir en cada dispositivo Para solucionalo apareceu o **Conector USB tipo-C**

Conector USB Tipo-C

É un conector totalmente reversible. Da igual o sentido no que enchufemos o cable, sempre acertamos.

Temos todo tipo de cables adaptadores, pero se os dous dispositivos teñen o porto USB-C, ambos extremos serán iguais.

Os novos tipos de USB proporcionan maiores potencias eléctricas maiores. Polo que podemos alimentar aparatos cada vez máis potentes.

O conector Tipo C combinado co USB 3.1 Gen 2 permitirá alimentar todo tipo de dispositivos, xa que transmite ata 100 vatios cando a maioría de portátiles só precisan 60 vatios.

Ademais como é reversible, o mesmo cable pode empregarse para recibir carga ou proporcionala, con isto podemos compartir a carga entre varios dispositivos.

Permitirá eliminar todos os distintos tipos de cargadores existentes non mercado.

Problema: **O USB Tipo-C só é un conector**. O cable pode implementar as tecnoloxías USB 2.0, USB 3.1 Gen1 ou Gen2.

Un cable incorrecto podería suministrar unha alimentación incorrecta e danar o dispositivo.

Por iso todos os cargadores con **Power Delivery 3.0/3.1** terán un chip eMarker que proporcionará a voltaxe correcta ó dispositivo.

Items	PD 3.1	PD 3.0
Max. charging power	240W	100W
Fixed voltage	5V, 9V, 15V, 20V 28V, 36V, 48V	5V, 9V, 15V, 20V
Adjustable voltage	15V-28V 15V-36V 15V-48V	3.3V-5.9V 3.3V-11V 3.3V-16V 3.3V-21V
Max. Power Current	5A	5A
USB Type-C Cable Max. voltage	50V (EPR Cable)	20V

Exercicio 10:

- **Entrega capturas** de dous cables tipo C que procures en Amazon.
 - Un tipo 3.0
 - Outro tipo 3.1 Gen 2
 - Compara os prezos

Exercicio 11:

 Observa os conectores traseiros da placa GA-AX370-Gaming 5 (rev 1.0).

• Cales son os seguintes conectores?

Conector	Explicación
b	
С	
е	
f	

Exercicio 12:

 Observa os conectores traseiros da placa ASUS ROG STRIX X299-XE GAMING.

• Explica os seguintes conectores?

Conector	Explicación
1	
4	
5	
6	
8	

Cargar dispositivos dende o USB

Pode ocorrer que deixemos dispositivos conectados o noso equipo durante largo tempo para que se carguen. Pero **hai un problema**, se o equipo entra en suspensión por inactividade, os portos usb deixan de alimentar os dispositivos.

En Windows podemos cambiar o comportamento dos portos USB, para que sigan alimentando ós dispositivos aínda co equipo en suspensión. Temos que desmarcar a opción seleccionada.

Thunderbolt

Hoxe en día o estándar para conectar periféricos é o USB, pero aínda así temos que empregar moitos tipos de cables para conectar todos os dispositivos do equipo: Conectores HDMI, VGA, Audio, Corrente....

O estándar Thunderbolt 3 pretende unificar todas as conexións nun único cable cun conector USB Tipo-C

Por exemplo o MacBook Retina só ten un porto USB Tipo-C que emprega para todo.

- Puerto USB-C compatible con:
 - o Carga
 - USB 3.1 Gen 1 (hasta 5 Gb/s)
 - o Salida de vídeo DisplayPort 1.2 nativa
 - o Salida VGA mediante un adaptador multipuerto de USB-C a VGA (se vende por separado)
 - o Salida de vídeo HDMI mediante un adaptador multipuerto de USB-C a AV digital (se vende por separado)

A nova versión do cable Thunderbolt 4, pretende substituír a todos os anteriores.

Thunderbolt 2

20gbps

THUNDERBOLT.

Mini DisplayPort Connector

7.50mm

Thunderbolt

40gbps

Type-C

Exercicio 13:

 Procura un portátil que non sexa de Apple que empregue ese porto. Entrega captura onde se vexa o modelo, e a característica procurada.

- Procura en Amazon un cable deste tipo. Entrega captura onde se vexa o producto e o prezo.
- Que relación ten o Thunderbolt coas eGPU?

Conectores de Vídeo

Examinamos as distintas posibilidades que temos para conectar un monitor o noso equipo.

Ano	Nome	Conector	Características
1987	VGA		Só VídeoAnalóxicoPeor calidade
1999	DVI		Só VídeoTransmite 4K

2002	HDMI	•	Son e Vídeo A mellor opción PC-TV Está suxeito a royalties
2007	DisplayPort	•	Son e Vídeo A mellor opción para PC
	USB Tipo-C	•	Só é un conector, Pode implementar DisplayPort

VGA (Video Graphics Array)

- Tamén chamado D-Sub 15
- É o máis antigo, apareceu en 1987
- Resolución máxima 2048x1536 píxeles.
- É analóxico e pode perder moita calidade en función da lonxitude do cable, interferencias...

Exercicio 14.

 Supón que tes a seguinte placa nai. Imaxina que é o equipo do profesor, e queres conectarlle un monitor e un proxector.

- Sería posible facelo sen conectarlle unha tarxeta gráfica adicional?
- Que problema terías?
- Supón que pos unha tarxeta gráfica nun slot de expansión.
 Sacaría imaxe por ambas ou só por unha?
- Que é PEG?

Pista: Observa a seguinte opción da BIOS desa placa

Init Display First
Surround View
Disabled
Virtualization
AMD K8 Cool&Quiet
Hard Disk Boot Pr
First Boot Device
Second Boot Device
Third Boot Device
Password Check

[Onboard]
Disabled
Disabled
Disabled

Init Display First
PCI Slot []
Onboard []

DVI (Digital Vídeo Interface)

- Apareceu en 1999. O seu obxectivo era facer desaparecer o VGA.
- É capaz de transmitir vídeo díxital sen comprimir a unha resolución máxima de 2560 x 1600 píxeles a 60 Hz.
- Ten diferentes variantes
 - DVI-A: Só sinais analóxicas.
 - DVI-D: Só sinais díxitais.
 - DVI-I: Ambas

Single-Link vs Dual-Link:

Tanto DVI-D como DVI-I permite dous tipos de conectores

- Single-Link: resolución máxima de 1920x1200 píxeles a 60 Hz
- Dual-Link: resolución máxima a 2560 x 1600 píxeles a 60 Hz.

Se nos fixamos, as variantes que aceptas sinal analóxica teñen 4 pins na parte da esquerda

Nestes tres casos, só precisamos conectar un adaptador DVI-VGA, que non precisa circuitería adicional.

A nivel de calidade as variantes dixitais ofrecen a mesma, pero as versións **DUAL-Link ofrecen a maior calidade**.

Exercicio 15.

• Procura información sobre en que consisten as seguintes resolucións.

Nome	N.º Pixeles	Outros Nomes	Dispositivos
8K		Ningún	Televisores
4K		"Cinema" 4K	Proyectores de cine
UHD		4K,Ultra HD, 2160p	Televisores
2K		Ningún	Proyectores de cine
WUXGA		Widescreen Ultra Extended Graphics Array	Monitores, Proyectores
1080p		Full HD, HD, Alta Definición, 2K	Televisores, Monitores
720p		HD	Televisores

HDMI (High-Definition Multimedia Interface)

- Apareceu no 2002. O seu obxectivo era facer desaparecer o Euroconector e os conectores analóxicos das televisións.
- Pode trasmitir son e vídeo sen comprimir.
- HDMI-CEC (HDMI Consumer Electronics Control): Permite controlar varios dispositivos con un único mando a distancia.
- Temos as seguintes versións

Versión	Resolución Máxima	Ancho de Banda	Características Adicionais
Hdmi 1.0	1080p a 60Hz	4,9 Gbps	Ata 8 canles de Audio
Hdmi 1.4	4096x2160 px a 24Hz 3840x2160 px a 30Hz 4K a 30Hz		Compatibilidade coas novas TV 4K Apareceu co formato Blu-Ray 3D Poderían incluír Ethernet
Hdmi 2.0a	4k a 60Hz	18 Gbps	
Hdmi 2.1	4K a 120Hz 8K a 60Hz	48 Gbps	

Importante: Necesitamos mercar un cable compatible coa versión que necesitemos.

- Se queremos ver unha película en 4K a 30Hz, tanto o cable, como a televisión, como o reprodutor deben cumprir a norma Hdmi 1.4.
- Algúns fabricantes distinguen dous tipos de cables
 - Hdmi de categoría 1: soporta vídeo 1080p
 - Hdmi de categoría 2 ou alta velocidade: soporta resolucións maiores.

DisplayPort

- Apareceu en 2007, pensado para o emprego en ordenadores.
- Transmite os datos empregando micropaquetes co cal é máis efectivo.
- Pode transmitir catro canais de datos por separado: audio, vídeo.... Nun formato aberto polo que non hai que pagar licenzas (en hdmi si)
- Podemos empregar o conector USB Tipo-C para transmitir imaxe e son baixo Display Port
- Facilita conectar varios monitores e é máis efectivo se temos que empregar cables de máis de 15 metros, xa que emprega fibra óptica que atenúa menos a sinal.

Versión	Resolución Máxima	Ancho de Banda	Características Adicionais
1.1	4K a 30Hz	8,64Gbps	Ata 8 canles de Audio
1.3	4K a 120Hz 5K a 60Hz 8K a 30Hz		Pode transmitir dúas fontes de vídeo 4K o tempo
1.4		21.6 Gbps	Engade tecnoloxías como HDR, compresión de imaxe DSC para facer streaming a 8K e 60Hz

Se nos fixamos, o conector DisplayPort ten un botón, o premelo un par de ganchos ocúltanse para facilitar a inserción, pero cando soltamos aparecen novamente. Deste xeito queda anclado o conector ó equipo.

Nos portátiles podemos atopar o conector Mini-DisplayPort, coidado porque é moi semellante o de Thunderbolt.

• Examina os conectores da placa **Gigabyte GA-H81M-HD3**. Identifica todos os **conectores de vídeo** que poidas.

Conector	Explicación

•	Se conectamos monitores en tódolos conectores de vídeo,
	sacará imaxe por todos?

•	Se ademais, conectamos unha tarxeta gráfica PCI-E x16, por
	onde sacará imaxe. Polos conectores da tarxeta, da placa ou
	ambas?

Pista: Se examinamos as opcións de configuración da BIOS no manual

Initial Display Output

Specifies the first initiation of the monitor display from the installed PCI graphics card, PCI Express graphics card, or the onboard graphics.

▶ IGFX Sets the onboard graphics as the first display.

▶ PCle 1 Slot Sets the graphics card on the PCIEX16 slot as the first display. (Default)

▶ PCI Sets the graphics card on the PCI slot as the first display.

• Que significa a seguinte opción da BIOS?

Intel Processor Graphics Memory Allocation				
Allows you to set the onboard graphics memory size. Options are: 32M~1024M. (Default: 64M				

Conectores de Son

Conectores Analóxicos

Inicialmente os equipos só tiñan tres saídas de son analóxico

- Micrófono
- Liña de Entrada: Introducir son analóxico para manipulalo dixitalmente. **Exemplo Walkman**.
- Liña de Saída (Line-out): É unha saída sen amplificación (amplificar implica distorsión), pesada para ser conectada a un dispositivo externo que amplifique a sinal con calidade. Exemplo Altofalantes.

Hoxe en día soportan sistemas de son 5.1.

Exercicio 17. Examina os seguintes conectores correspondentes a placa ASUS P8P67 Deluxe. En que cores enchufarías as seguintes configuracións de Son?

•		utaria	as as seg	uintes configu
•	Altofalantes			
•	Micrófono e	Casc	os	
	Mic:		, Cascos	
•	Altofalantes 5	5.1	_	
	2 Dianteiros :			
	2 Traseiros :			•
	Subwoofer:			
				_

O conector é un jack stéreo de 3,5 mm

Conectores Dixitais

Os conectores de audio díxitais, tamén coñecidos por S/PDIF (Sony Philips Digital Interface), están pensados para conectar un equipo de alta fidelidade, e transmitir o son coa máxima calidade. Poden ser de dous tipos:

Na seguinte imaxe vemos os conectores pertencentes á placa **ASUS P8P67 Deluxe.**

Trátase de saídas dixitais de son:

O Superior é un conector coaxial

- O inferior é un conector de fibra óptica, tamén chamado TOSLINK,
 - A fibra óptica ten unha gran vantaxe. Non é susceptible a interferencias electromagnéticas. Isto é moi importante a hora de transmitir son, xa que non tería ningunha distorsión.

As saídas de audio dixitais non só son típicas dos ordenadores, senón tamén dos reprodutores domésticos. Por exemplo un reprodutor de DVD.

Exercicio 18. Procura en Amazon conectores para as entradas SPDIF, tanto coaxial como óptico. Entregar capturas.

Tes que entregar...

Este documento debidamente cuberto e crea un documento coas seguintes capturas como mínimo :

- Ex01 01: Backplate GA-Z77-D3H
- Ex01 01: Backplate M3A78-EM
- Ex07 01: Benchmark USB con http://usb.userbenchmark.com
- Ex09 01: Captura Benchmark USB 3.0
- Ex09 02: Captura placa USB 3.1 Gen1.
- Ex09 03: Captura placa USB 3.1 Gen2.
- Ex10 01: Captura cable Tipo-C USB 3.0.
- Ex10 02: Captura cable Tipo-C USB 3.1 Gen2.
- Ex13 01: Captura Portátil porto Thunderbolt 3
- Ex13 02: Captura cable porto Thunderbolt 3
- Ex18 01: Captura cable conector son dixital óptico
- Ex18 02: Captura cable conector son dixital coaxial.

