Table 1: Cosmological parameters obtabined using CLASS/Montepython.

Parameter	TT+lowE	TE+lowE	EE+lowE	TT,TE,EE+lowE	TT,TE,EE+lowE+lensing	TT,TE,EE+lowE+lensing+BAO
Ω_b	0.022120	0.022490	0.024000	0.022360	0.022370	0.022420
Ω_{cdm}	0.120600	0.117700	0.115800	0.120200	0.120000	0.119330
$100\theta_s$	1.040770	1.041390	1.039990	1.040900	1.040920	1.041010
$ au_{reio}$	0.052200	0.049600	0.052700	0.054400	0.054400	0.056100
$ln(10^{10}A_s)$	3.040000	3.018000	3.052000	3.045000	3.044000	3.047000
n_s	0.962600	0.967000	0.980000	0.964900	0.964900	0.966500
H_0	67.057179	68.635837	70.221045	67.455893	67.542540	67.856459
Ω_{Λ}	0.682609	0.702412	0.716487	0.686702	0.687922	0.692149
Ω_m	0.317391	0.297588	0.283513	0.313298	0.312078	0.307851
$\Omega_m(h^2)$	0.142720	0.140190	0.139800	0.142560	0.142370	0.141750
$\Omega_m(h^3)$	0.095704	0.096221	0.098169	0.096165	0.096160	0.096187
σ_8	0.823707	0.805473	0.808800	0.824298	0.823206	0.822584
S_8	0.568139	0.550616	0.552121	0.568228	0.567097	0.565433
$\sigma_8(\Omega_m)^{0.25}$	0.506284	0.492867	0.494559	0.506505	0.505665	0.504732
z_{re}	7.517746	7.126083	7.109238	7.684799	7.679184	7.829391
$10^{9} A_{s}$	2.090524	2.045035	2.115762	2.101003	2.098903	2.105209
$10^9 A_s e^{-2\tau}$	1.883280	1.851905	1.904110	1.884410	1.882527	1.881774
${\rm Age} \; [{\rm Gyr}]$	13.831663	13.759999	13.631875	13.800279	13.797707	13.786593
z_*	1089.101101	1088.481739	1086.812032	1088.804132	1088.778652	1088.675577
r_*	144.588090	145.048878	144.360985	144.504360	144.547937	144.681421
$100\theta_{\star}$	1.042958	1.043508	1.042460	1.043247	1.043270	1.043473
z_{drag}	1059.361606	1059.983761	1063.171547	1059.874452	1059.881987	1059.943091
$r_{drag} [\mathrm{Mpc}]$	147.232818	147.592268	146.443933	147.072439	147.114193	147.236294
$k_D[Mpc^{-1}]$	0.013762	0.013403	0.012712	0.013615	0.013600	0.013538
z_{eq}	3411.242931	3350.754030	3341.429662	3407.417562	3402.874883	3388.051537
k_{eq}	0.010410	0.010226	0.010197	0.010398	0.010385	0.010339
$100\theta_{s,eq}$	0.442527	0.448759	0.450171	0.443141	0.443556	0.445039