# CASE STUDY: BREAST CANCER CLASSIFICATION

# STEP #1: PROBLEM STATEMENT

- Predicting if the cancer diagnosis is benign or malignant based on several observations/features
- 30 features are used, examples:
  - radius (mean of distances from center to points on the perimeter)
  - texture (standard deviation of gray-scale values)
  - perimeter
  - area
  - smoothness (local variation in radius lengths)
  - compactness (perimeter^2 / area 1.0)
  - concavity (severity of concave portions of the contour)
  - concave points (number of concave portions of the contour)
  - symmetry
  - fractal dimension ("coastline approximation" 1)
- Datasets are linearly separable using all 30 input features
- Number of Instances: 569
- Class Distribution: 212 Malignant, 357 Benign
- · Target class:
  - Malignant
  - Benign

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

# **STEP #2: IMPORTING DATA**

```
In [1]:
```

```
# import libraries
import pandas as pd # Import Pandas for data manipulation using dataframes
import numpy as np # Import Numpy for data statistical analysis
import matplotlib.pyplot as plt # Import matplotlib for data visualisation
import seaborn as sns # Statistical data visualization
# %matplotlib inline
```

```
In [2]:
```

```
# Import Cancer data drom the Sklearn library
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
```

```
In [3]:
```

```
cancer
Out[3]:
```

```
I. 440E-01],
           [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
           7.039e-0211),
 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
          1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
          1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
          1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
          0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
          1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
          0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
          1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
          1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0,
          0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
          0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0,
          1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,
          1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
          1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
          1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
          1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
          1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1]),
 'target names': array(['malignant', 'benign'], dtype='<U9'),
 'DESCR': 'Breast Cancer Wisconsin (Diagnostic)
Database\n======\n\nNotes\n----\nData Set
Characteristics:\n :Number of Instances: 569\n\n :Number of Attributes: 30 numeric, predictiv
e attributes and the class\n\n :Attribute Information:\n - radius (mean of distances from
center to points on the perimeter) \  - texture (standard deviation of gray-scale values) \  \n
- perimeter\n - area\n - smoothness (local variation in radius lengths)\n - cc
mpactness (perimeter^2 / area - 1.0)\n - concavity (severity of concave portions of the
contour)\n - concave points (number of concave portions of the contour)\n - symmetry
\n - fractal dimension ("coastline approximation" - 1)\n\n The mean, standard error,
and "worst" or largest (mean of the three\n largest values) of these features were computed
for each image,\n resulting in 30 features. For instance, field 3 is Mean Radius, field\n
13 is Radius SE, field 23 is Worst Radius.\n\n - class:\n
                                                                                                      - WDBC-Malignant\n
=\n
                                                                         6.981 28.11\n texture (mean):
====== ====\n
                      radius (mean):
9.71 39.28\n perimeter (mean):
143.5 2501.0\n smoothness (mean):
                                                                        43.79 188.5\n
                                                                                               area (mean):
                                                                        0.053 0.163\n compactness (mean):
0.019 0.345\n concavity (mean):
                                                                       0.0 0.427\n concave points (mean):
                                                                        0.106 0.304\n fractal dimension (mean):
0.0
        0.201\n symmetry (mean):
0.05 0.097\n radius (standard error): 0.112 2.873\n texture (standard error): 0.36 4.885\n perimeter (standard error): 0.757 21.98\n area (standard error): 6.802 542.2\n smoothness (standard error): 0.002 0.031\n compactness (standard error)
or): 0.002 0.135\n concavity (standard error): 0.0 0.396\n concave points (standard error): 0.0 0.053\n symmetry (standard error): 0.008 0.079\n
fractal dimension (standard error): 0.001 0.03\n radius (worst):
                                                                                                                        7.93
                                                          12.02 49.54\n perimeter (worst):
36.04\n texture (worst):
                                                                        185.2 4254.0\n smoothness (worst):
50.41 251.2\n area (worst):
0.071 0.223\n
                                                                        0.027 1.058\n
                      compactness (worst):
                                                                                               concavity (worst):
                                                                      0.0 0.291\n symmetry (worst):
        1.252\n concave points (worst):
                                                                      0.055 0.208\n
0.156 0.664\n fractal dimension (worst):
:Class Distribution: 212 - Malignant, 357 - Benign\n\n :Creator: Dr. William H. Wolberg, W.
Nick Street, Olvi L. Mangasarian\n\n :Donor: Nick Street\n\n :Date: November, 1995\n\nThis is
a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.\nttps://goo.gl/U2Uwz2\nFeatures
are computed from a digitized image of a fine needle\naspirate (FNA) of a breast mass. They
{\tt describe} \verb| ncharacteristics of the cell nuclei present in the image. \verb| nnSeparating plane described a | {\tt describe} | {\tt nnSeparating plane described} | {\tt describe} | {\tt nnSeparating plane described} | {\tt nnSeparatin
bove was obtained using\nMultisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision
Tree\nConstruction Via Linear Programming." Proceedings of the 4th\nMidwest Artificial
Intelligence and Cognitive Science Society, \npp. 97-101, 1992], a classification method which uses
linear\nprogramming to construct a decision tree. Relevant features\nwere selected using an
exhaustive search in the space of 1-4\n and 1-3 separating planes.\n mThe actual linear pr
ogram used to obtain the separating plane\nin the 3-dimensional space is that described in:\n[K. P
. Bennett and O. L. Mangasarian: "Robust Linear\nProgramming Discrimination of Two Linearly
Inseparable Sets", \nOptimization Methods and Software 1, 1992, 23-34].\nThis database is also av
ailable through the UW CS ftp server:\n\nftp ftp.cs.wisc.edu\ncd math-prog/cpo-dataset/machine-lea
rn/WDBC/\n\nReferences\n-----\n - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear fe
ature extraction \n for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on \n
Electronic Imaging, Caionae and Machaeleau, volume 1005 pages 061 070 \n
```

```
- O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and \n
                                                                                              pro
gnosis via linear programming. Operations Research, 43(4), pages 570-577, \n July-August
1995.\n - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques\n
                                                                                              to
diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) \n 163-171.\n',
 'feature_names': array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',
        \hbox{\tt 'mean smoothness', 'mean compactness', 'mean concavity',}
        'mean concave points', 'mean symmetry', 'mean fractal dimension',
        'radius error', 'texture error', 'perimeter error', 'area error',
        'smoothness error', 'compactness error', 'concavity error',
        'concave points error', 'symmetry error',
        'fractal dimension error', 'worst radius', 'worst texture',
        'worst perimeter', 'worst area', 'worst smoothness',
'worst compactness', 'worst concavity', 'worst concave points',
        'worst symmetry', 'worst fractal dimension'], dtype='<U23')}
In [4]:
cancer.keys()
Out[4]:
dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])
In [5]:
print(cancer['DESCR'])
Breast Cancer Wisconsin (Diagnostic) Database
______
Notes
Data Set Characteristics:
   :Number of Instances: 569
   :Number of Attributes: 30 numeric, predictive attributes and the class
    :Attribute Information:
        - radius (mean of distances from center to points on the perimeter)
        - texture (standard deviation of gray-scale values)
        - perimeter
        - area
        - smoothness (local variation in radius lengths)
        - compactness (perimeter^2 / area - 1.0)
        - concavity (severity of concave portions of the contour)
        - concave points (number of concave portions of the contour)
        - fractal dimension ("coastline approximation" - 1)
       The mean, standard error, and "worst" or largest (mean of the three
       largest values) of these features were computed for each image,
        resulting in 30 features. For instance, field 3 is Mean Radius, field
       13 is Radius SE, field 23 is Worst Radius.
        - class:
                - WDBC-Malignant
                - WDBC-Benign
    :Summary Statistics:
    Min
   radius (mean):
                                         6.981 28.11
                                         9.71
    texture (mean):
                                         43.79 188.5
   perimeter (mean):
                                         143.5 2501.0
   area (mean):
                                        0.053 0.163
   smoothness (mean):
   compactness (mean):
                                        0.019 0.345
                                              0.427
                                        0.0
   concavity (mean):
   concave points (mean):
                                         0.0
                                                0.201
                                         0.106 0.304
    symmetry (mean):
```

0.05 0.097

0.112 2.873

fractal dimension (mean):

radius (standard error):

Electionic imaging: Science and rechnology, volume 1900, pages out-o/0,\n

San Jose, CA,

texture (standard error): 0.36 4.885 0.757 21.98 perimeter (standard error): 6.802 542.2 0.002 0.031 area (standard error): smoothness (standard error): 0.002 0.135 compactness (standard error): concavity (standard error): 0.0 0.396 concave points (standard error): 0.0 0.053 symmetry (standard error): 0.008 0.079 fractal dimension (standard error): 0.001 radius (worst): 7.93 12.02 49.54 texture (worst): perimeter (worst): 50.41 251.2 area (worst): 185.2 4254.0 0.071 0.223 0.027 1.058 smoothness (worst): compactness (worst): 1.252 concavity (worst): 0.0 concave points (worst): 0.0 0.291 symmetry (worst): 0.156 0.664 0.055 0.208 fractal dimension (worst): 

:Missing Attribute Values: None

:Class Distribution: 212 - Malignant, 357 - Benign

:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian

:Donor: Nick Street :Date: November, 1995

This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu  $\verb|cd| math-prog/cpo-dataset/machine-learn/WDBC/|$ 

## References

- W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993.
- O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995.
- W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171.

## In [6]:

```
['malignant' 'benign']
In [7]:
print(cancer['target'])
1 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\;
     1 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\;
     1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\;
             1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\;
     1 1 1 1 1 1 1 0 0 0 0 0 0 1]
In [8]:
print(cancer['feature names'])
 ['mean radius' 'mean texture' 'mean perimeter' 'mean area'
       'mean smoothness' 'mean compactness' 'mean concavity'
       'mean concave points' 'mean symmetry' 'mean fractal dimension'
     'radius error' 'texture error' 'perimeter error' 'area error'
     'smoothness error' 'compactness error' 'concavity error'
     'concave points error' 'symmetry error' 'fractal dimension error'
       'worst radius' 'worst texture' 'worst perimeter' 'worst area'
      'worst smoothness' 'worst compactness' 'worst concavity'
      'worst concave points' 'worst symmetry' 'worst fractal dimension']
In [9]:
print(cancer['data'])
 [[1.799e+01 1.038e+01 1.228e+02 ... 2.654e-01 4.601e-01 1.189e-01]
     [2.057e+01 1.777e+01 1.329e+02 ... 1.860e-01 2.750e-01 8.902e-02]
     [1.969e+01 2.125e+01 1.300e+02 ... 2.430e-01 3.613e-01 8.758e-02]
     [1.660e+01 2.808e+01 1.083e+02 ... 1.418e-01 2.218e-01 7.820e-02]
     [2.060e+01 2.933e+01 1.401e+02 ... 2.650e-01 4.087e-01 1.240e-01]
     [7.760e+00 2.454e+01 4.792e+01 ... 0.000e+00 2.871e-01 7.039e-02]]
In [10]:
cancer['data'].shape
Out[10]:
 (569, 30)
In [11]:
df_cancer = pd.DataFrame(np.c_[cancer['data'], cancer['target']], columns = np.append(cancer['featu
 re names'], ['target']))
In [12]:
df cancer.head()
Out[12]:
```

|   | mean<br>radius | mean<br>texture | mean<br>perimeter | mean<br>area | mean<br>smoothness | mean compactness | mean<br>concavity | mean concave points | mean<br>symmetry | mean<br>fractal<br>dimension | worst<br>texture |     |
|---|----------------|-----------------|-------------------|--------------|--------------------|------------------|-------------------|---------------------|------------------|------------------------------|------------------|-----|
| 0 | 17.99          | 10.38           | 122.80            | 1001.0       | 0.11840            | 0.27760          | 0.3001            | 0.14710             | 0.2419           | 0.07871                      | <br>17.33        | 184 |
| 1 | 20.57          | 17.77           | 132.90            | 1326.0       | 0.08474            | 0.07864          | 0.0869            | 0.07017             | 0.1812           | 0.05667                      | <br>23.41        | 158 |
| 2 | 19.69          | 21.25           | 130.00            | 1203.0       | 0.10960            | 0.15990          | 0.1974            | 0.12790             | 0.2069           | 0.05999                      | <br>25.53        | 152 |
| 3 | 11.42          | 20.38           | 77.58             | 386.1        | 0.14250            | 0.28390          | 0.2414            | 0.10520             | 0.2597           | 0.09744                      | <br>26.50        | 98. |
| 4 | 20.29          | 14.34           | 135.10            | 1297.0       | 0.10030            | 0.13280          | 0.1980            | 0.10430             | 0.1809           | 0.05883                      | <br>16.67        | 152 |

# 5 rows × 31 columns

In [13]:

df\_cancer.tail()

Out[13]:

|     | mean<br>radius | mean<br>texture | mean<br>perimeter | mean<br>area | mean<br>smoothness | mean compactness | mean<br>concavity | mean concave points | mean<br>symmetry | mean<br>fractal<br>dimension | <br>worst<br>texture | ŗ |
|-----|----------------|-----------------|-------------------|--------------|--------------------|------------------|-------------------|---------------------|------------------|------------------------------|----------------------|---|
| 564 | 21.56          | 22.39           | 142.00            | 1479.0       | 0.11100            | 0.11590          | 0.24390           | 0.13890             | 0.1726           | 0.05623                      | <br>26.40            | 1 |
| 565 | 20.13          | 28.25           | 131.20            | 1261.0       | 0.09780            | 0.10340          | 0.14400           | 0.09791             | 0.1752           | 0.05533                      | <br>38.25            | 1 |
| 566 | 16.60          | 28.08           | 108.30            | 858.1        | 0.08455            | 0.10230          | 0.09251           | 0.05302             | 0.1590           | 0.05648                      | <br>34.12            | 1 |
| 567 | 20.60          | 29.33           | 140.10            | 1265.0       | 0.11780            | 0.27700          | 0.35140           | 0.15200             | 0.2397           | 0.07016                      | <br>39.42            | 1 |
| 568 | 7.76           | 24.54           | 47.92             | 181.0        | 0.05263            | 0.04362          | 0.00000           | 0.00000             | 0.1587           | 0.05884                      | <br>30.37            | 5 |

# 5 rows × 31 columns

```
In [14]:
```

```
x = np.array([1,2,3])
x.shape
```

# Out[14]:

(3,)

# In [15]:

```
Example = np.c_[np.array([1,2,3]), np.array([4,5,6])]
Example.shape
```

# Out[15]:

(3, 2)

# STEP #3: VISUALIZING THE DATA

```
In [16]:
```

```
sns.pairplot(df_cancer, hue = 'target', vars = ['mean radius', 'mean texture', 'mean area', 'mean p
erimeter', 'mean smoothness'] )
```

# Out[16]:

<seaborn.axisgrid.PairGrid at 0x1c93d061b00>















In [17]:

sns.countplot(df\_cancer['target'], label = "Count")

# Out[17]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x1c93eebdeb8>



# In [18]:

```
sns.scatterplot(x = 'mean area', y = 'mean smoothness', hue = 'target', data = df_cancer)
```

Out[18]:



# In [19]:

```
#sns.lmplot('mean area', 'mean smoothness', hue ='target', data = df_cancer_all, fit_reg=False)
```

# In [20]:

```
# Let's check the correlation between the variables
# Strong correlation between the mean radius and mean perimeter, mean area and mean primeter
plt.figure(figsize=(20,10))
sns.heatmap(df_cancer.corr(), annot=True)
```

# Out[20]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x1c93f754940>



# STEP #4: MODEL TRAINING (FINDING A PROBLEM SOLUTION)

# In [21]:

# In [22]:

Х

# Out[22]:

|    | mean<br>radius | mean<br>texture | mean<br>perimeter | mean<br>area | mean<br>smoothness | mean<br>compactness | mean<br>concavity | mean<br>concave<br>points | mean<br>symmetry | mean<br>fractal<br>dimension |         | worst<br>radius | t   |
|----|----------------|-----------------|-------------------|--------------|--------------------|---------------------|-------------------|---------------------------|------------------|------------------------------|---------|-----------------|-----|
| 0  | 17.990         | 10.38           | 122.80            | 1001.0       | 0.11840            | 0.27760             | 0.300100          | 0.147100                  | 0.2419           | 0.07871                      |         | 25.380          | 1   |
| 1  | 20.570         | 17.77           | 132.90            | 1326.0       | 0.08474            | 0.07864             | 0.086900          | 0.070170                  | 0.1812           | 0.05667                      |         | 24.990          | 2   |
| 2  | 19.690         | 21.25           | 130.00            | 1203.0       | 0.10960            | 0.15990             | 0.197400          | 0.127900                  | 0.2069           | 0.05999                      |         | 23.570          | 2   |
| 3  | 11.420         | 20.38           | 77.58             | 386.1        | 0.14250            | 0.28390             | 0.241400          | 0.105200                  | 0.2597           | 0.09744                      |         | 14.910          | 2   |
| 4  | 20.290         | 14.34           | 135.10            | 1297.0       | 0.10030            | 0.13280             | 0.198000          | 0.104300                  | 0.1809           | 0.05883                      |         | 22.540          | 1   |
| 5  | 12.450         | 15.70           | 82.57             | 477.1        | 0.12780            | 0.17000             | 0.157800          | 0.080890                  | 0.2087           | 0.07613                      |         | 15.470          | 2   |
| 6  | 18.250         | 19.98           | 119.60            | 1040.0       | 0.09463            | 0.10900             | 0.112700          | 0.074000                  | 0.1794           | 0.05742                      |         | 22.880          | 2   |
| 7  | 13.710         | 20.83           | 90.20             | 577.9        | 0.11890            | 0.16450             | 0.093660          | 0.059850                  | 0.2196           | 0.07451                      |         | 17.060          | 2   |
| 8  | 13.000         | 21.82           | 87.50             | 519.8        | 0.12730            | 0.19320             | 0.185900          | 0.093530                  | 0.2350           | 0.07389                      |         | 15.490          | 3   |
| 9  | 12.460         | 24.04           | 83.97             | 475.9        | 0.11860            | 0.23960             | 0.227300          | 0.085430                  | 0.2030           | 0.08243                      |         | 15.090          | 4   |
| 10 | 16.020         | 23.24           | 102.70            | 797.8        | 0.08206            | 0.06669             | 0.032990          | 0.033230                  | 0.1528           | 0.05697                      |         | 19.190          | 3   |
| 11 | 15.780         | 17.89           | 103.60            | 781.0        | 0.09710            | 0.12920             | 0.099540          | 0.066060                  | 0.1842           | 0.06082                      |         | 20.420          | 2   |
| 12 | 19.170         | 24.80           | 132.40            | 1123.0       | 0.09740            | 0.24580             | 0.206500          | 0.111800                  | 0.2397           | 0.07800                      |         | 20.960          | 2   |
| 13 | 15.850         | 23.95           | 103.70            | 782.7        | 0.08401            | 0.10020             | 0.099380          | 0.053640                  | 0.1847           | 0.05338                      |         | 16.840          | 2   |
| 14 | 13.730         | 22.61           | 93.60             | 578.3        | 0.11310            | 0.22930             | 0.212800          | 0.080250                  | 0.2069           | 0.07682                      |         | 15.030          | 3   |
| 15 | 14.540         | 27.54           | 96.73             | 658.8        | 0.11390            | 0.15950             | 0.163900          | 0.073640                  | 0.2303           | 0.07077                      |         | 17.460          | 3   |
| 16 | 14.680         | 20.13           | 94.74             | 684.5        | 0.09867            | 0.07200             | 0.073950          | 0.052590                  | 0.1586           | 0.05922                      |         | 19.070          | 3   |
| 17 | 16.130         | 20.68           | 108.10            | 798.8        | 0.11700            | 0.20220             | 0.172200          | 0.102800                  | 0.2164           | 0.07356                      |         | 20.960          | 3   |
| 18 | 19.810         | 22.15           | 130.00            | 1260.0       | 0.09831            | 0.10270             | 0.147900          | 0.094980                  | 0.1582           | 0.05395                      |         | 27.320          | 3   |
| 19 | 13.540         | 14.36           | 87.46             | 566.3        | 0.09779            | 0.08129             | 0.066640          | 0.047810                  | 0.1885           | 0.05766                      |         | 15.110          | 1   |
| 20 | 13.080         | 15.71           | 85.63             | 520.0        | 0.10750            | 0.12700             | 0.045680          | 0.031100                  | 0.1967           | 0.06811                      |         | 14.500          | 2   |
| 21 | 9.504          | 12.44           | 60.34             | 273.9        | 0.10240            | 0.06492             | 0.029560          | 0.020760                  | 0.1815           | 0.06905                      |         | 10.230          | 1   |
| 22 | 15.340         | 14.26           | 102.50            | 704.4        | 0.10730            | 0.21350             | 0.207700          | 0.097560                  | 0.2521           | 0.07032                      |         | 18.070          | 1   |
| 23 | 21.160         | 23.04           | 137.20            | 1404.0       | 0.09428            | 0.10220             | 0.109700          | 0.086320                  | 0.1769           | 0.05278                      |         | 29.170          | 3   |
| 24 | 16.650         | 21.38           | 110.00            | 904.6        | 0.11210            | 0.14570             | 0.152500          | 0.091700                  | 0.1995           | 0.06330                      |         | 26.460          | 3   |
| 25 | 17.140         | 16.40           | 116.00            | 912.7        | 0.11860            | 0.22760             | 0.222900          | 0.140100                  | 0.3040           | 0.07413                      |         | 22.250          | 2   |
| 26 | 14.580         | 21.53           | 97.41             | 644.8        | 0.10540            | 0.18680             | 0.142500          | 0.087830                  | 0.2252           | 0.06924                      |         | 17.620          | 3   |
| 27 | 18.610         | 20.25           | 122.10            | 1094.0       | 0.09440            | 0.10660             | 0.149000          | 0.077310                  | 0.1697           | 0.05699                      |         | 21.310          | 2   |
| 28 | 15.300         | 25.27           | 102.40            | 732.4        | 0.10820            | 0.16970             | 0.168300          | 0.087510                  | 0.1926           | 0.06540                      |         | 20.270          | 3   |
| 29 | 17.570         | 15.05           | 115.00            | 955.1        | 0.09847            | 0.11570             | 0.098750          | 0.079530                  | 0.1739           | 0.06149                      |         | 20.010          | 1   |
|    |                |                 |                   |              |                    |                     |                   |                           |                  |                              |         |                 | Ī., |
|    |                | 25.44           | 48.34             | 170.4        | 0.08668            | 0.11990             | 0.092520          | 0.013640                  | 0.2037           | 0.07751                      | <b></b> |                 | 3   |
|    | 11.540         |                 | 74.65             | 402.9        | 0.09984            | 0.11200             | 0.067370          | 0.025940                  |                  | 0.06782                      | <b></b> | 12.260          | H   |
|    | 14.470         |                 | 95.81             | 656.4        | 0.08837            | 0.12300             | 0.100900          | 0.038900                  |                  | 0.06341                      | <b></b> | 16.220          | -   |
|    | 14.740         |                 | 94.70             | 668.6        | 0.08275            | 0.07214             | 0.041050          | 0.030270                  |                  | 0.05680                      | ļ       | 16.510          | H   |
|    | 13.210         |                 | 84.88             | 538.4        | 0.08671            | 0.06877             | 0.029870          | 0.032750                  |                  | 0.05781                      | <b></b> | 14.370          | _   |
|    | 13.870         |                 | 89.77             | 584.8        | 0.09578            | 0.10180             | 0.036880          | 0.023690                  |                  | 0.06688                      |         | 15.050          | -   |

| 545 | 13.620<br>mean  | 23.23<br><b>mean</b> | 87.19<br><b>mean</b> | 573.2<br><b>mean</b> | 0.09246<br><b>mean</b> | 0.06747<br><b>mean</b>     | 0.029740<br>mean  | 0.0 <b>2443</b> 6  | mean             | 0.058 <b>mean</b> |     | 15.350<br>worst |   |
|-----|-----------------|----------------------|----------------------|----------------------|------------------------|----------------------------|-------------------|--------------------|------------------|-------------------|-----|-----------------|---|
| 546 | 1 <b>a</b> dia9 | textore              | βēr∛mheter           | 32 <b>ár@a</b>       | 9m964Aness             | 0ol <del>1</del> p2∕ctness | <b>0</b> 0101√10y | 6.005495<br>points | ยิ่งใหม่คือจetry | 0.06201           | ::: | 14d459          | ₽ |
| 547 | 10.260          | 16.58                | 65.85                | 320.8                | 0.08877                | 0.08066                    | 0.043580          | 0.024380           | 0.1669           | 0.06714           |     | 10.830          | 2 |
| 548 | 9.683           | 19.34                | 61.05                | 285.7                | 0.08491                | 0.05030                    | 0.023370          | 0.009615           | 0.1580           | 0.06235           |     | 10.930          | 2 |
| 549 | 10.820          | 24.21                | 68.89                | 361.6                | 0.08192                | 0.06602                    | 0.015480          | 0.008160           | 0.1976           | 0.06328           |     | 13.030          | 3 |
| 550 | 10.860          | 21.48                | 68.51                | 360.5                | 0.07431                | 0.04227                    | 0.000000          | 0.000000           | 0.1661           | 0.05948           |     | 11.660          | 2 |
| 551 | 11.130          | 22.44                | 71.49                | 378.4                | 0.09566                | 0.08194                    | 0.048240          | 0.022570           | 0.2030           | 0.06552           |     | 12.020          | 2 |
| 552 | 12.770          | 29.43                | 81.35                | 507.9                | 0.08276                | 0.04234                    | 0.019970          | 0.014990           | 0.1539           | 0.05637           |     | 13.870          | 3 |
| 553 | 9.333           | 21.94                | 59.01                | 264.0                | 0.09240                | 0.05605                    | 0.039960          | 0.012820           | 0.1692           | 0.06576           |     | 9.845           | 2 |
| 554 | 12.880          | 28.92                | 82.50                | 514.3                | 0.08123                | 0.05824                    | 0.061950          | 0.023430           | 0.1566           | 0.05708           |     | 13.890          | 3 |
| 555 | 10.290          | 27.61                | 65.67                | 321.4                | 0.09030                | 0.07658                    | 0.059990          | 0.027380           | 0.1593           | 0.06127           |     | 10.840          | 3 |
| 556 | 10.160          | 19.59                | 64.73                | 311.7                | 0.10030                | 0.07504                    | 0.005025          | 0.011160           | 0.1791           | 0.06331           |     | 10.650          | 2 |
| 557 | 9.423           | 27.88                | 59.26                | 271.3                | 0.08123                | 0.04971                    | 0.000000          | 0.000000           | 0.1742           | 0.06059           |     | 10.490          | 3 |
| 558 | 14.590          | 22.68                | 96.39                | 657.1                | 0.08473                | 0.13300                    | 0.102900          | 0.037360           | 0.1454           | 0.06147           |     | 15.480          | 2 |
| 559 | 11.510          | 23.93                | 74.52                | 403.5                | 0.09261                | 0.10210                    | 0.111200          | 0.041050           | 0.1388           | 0.06570           |     | 12.480          | 3 |
| 560 | 14.050          | 27.15                | 91.38                | 600.4                | 0.09929                | 0.11260                    | 0.044620          | 0.043040           | 0.1537           | 0.06171           |     | 15.300          | 3 |
| 561 | 11.200          | 29.37                | 70.67                | 386.0                | 0.07449                | 0.03558                    | 0.000000          | 0.000000           | 0.1060           | 0.05502           |     | 11.920          | 3 |
| 562 | 15.220          | 30.62                | 103.40               | 716.9                | 0.10480                | 0.20870                    | 0.255000          | 0.094290           | 0.2128           | 0.07152           |     | 17.520          | 4 |
| 563 | 20.920          | 25.09                | 143.00               | 1347.0               | 0.10990                | 0.22360                    | 0.317400          | 0.147400           | 0.2149           | 0.06879           |     | 24.290          | 2 |
| 564 | 21.560          | 22.39                | 142.00               | 1479.0               | 0.11100                | 0.11590                    | 0.243900          | 0.138900           | 0.1726           | 0.05623           |     | 25.450          | 2 |
| 565 | 20.130          | 28.25                | 131.20               | 1261.0               | 0.09780                | 0.10340                    | 0.144000          | 0.097910           | 0.1752           | 0.05533           |     | 23.690          | 3 |
| 566 | 16.600          | 28.08                | 108.30               | 858.1                | 0.08455                | 0.10230                    | 0.092510          | 0.053020           | 0.1590           | 0.05648           |     | 18.980          | 3 |
| 567 | 20.600          | 29.33                | 140.10               | 1265.0               | 0.11780                | 0.27700                    | 0.351400          | 0.152000           | 0.2397           | 0.07016           |     | 25.740          | 3 |
| 568 | 7.760           | 24.54                | 47.92                | 181.0                | 0.05263                | 0.04362                    | 0.000000          | 0.000000           | 0.1587           | 0.05884           |     | 9.456           | 3 |

569 rows × 30 columns

```
In [23]:
```

```
y = df_cancer['target']
y
```

# Out[23]:

```
0.0
     0.0
1
2
      0.0
      0.0
      0.0
4
5
     0.0
     0.0
7
      0.0
8
      0.0
9
      0.0
10
      0.0
      0.0
11
12
      0.0
13
      0.0
      0.0
14
      0.0
15
16
      0.0
17
      0.0
```

18

19

20

21

22

23

24

0.0

1.0

1.0

1.0

0.0

0.0

0.0

```
25
      0.0
26
      0.0
27
      0.0
28
     0.0
29
     0.0
     . . .
539
      1.0
    1.0
540
541
     1.0
542
     1.0
    1.0
543
544
      1.0
545
      1.0
546
     1.0
547
     1.0
548
    1.0
     1.0
549
550
      1.0
     1.0
551
552
     1.0
553
    1.0
554
    1.0
555
      1.0
556
      1.0
557
     1.0
558
    1.0
559
     1.0
    1.0
560
561
      1.0
     0.0
562
563
     0.0
564
    0.0
565
     0.0
566
      0.0
567
      0.0
568
    1.0
Name: target, Length: 569, dtype: float64
In [24]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state=5)
In [25]:
X_train.shape
Out[25]:
(455, 30)
In [26]:
X_test.shape
Out[26]:
(114, 30)
In [27]:
y train.shape
Out[27]:
(455,)
In [28]:
y_test.shape
```

```
Out[28]: (114,)
```

In [29]:

```
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix

svc_model = SVC()
svc_model.fit(X_train, y_train)
```

# Out[29]:

```
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
```

# STEP #5: EVALUATING THE MODEL

In [30]:

```
y_predict = svc_model.predict(X_test)
cm = confusion_matrix(y_test, y_predict)
```

#### In [31]:

```
sns.heatmap(cm, annot=True)
```

#### Out[31]:

<matplotlib.axes. subplots.AxesSubplot at 0x1c93face2b0>



# In [32]:

 $\verb|print(classification_report(y_test, y_predict))|\\$ 

| support | f1-score | recall | precision |             |
|---------|----------|--------|-----------|-------------|
| 48      | 0.00     | 0.00   | 0.00      | 0.0         |
| 66      | 0.73     | 1.00   | 0.58      | 1.0         |
| 114     | 0.42     | 0.58   | 0.34      | avg / total |

C:\Users\Dr. Ryan\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:1135: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.

'precision', 'predicted', average, warn\_for)

# **STEP #6: IMPROVING THE MODEL**

# In [33]:

```
min_train = X_train.min()
min_train
```

# Out[33]:

| mean radius             | 6.981000   |
|-------------------------|------------|
| mean texture            | 9.710000   |
| mean perimeter          | 43.790000  |
| mean area               | 143.500000 |
| mean smoothness         | 0.052630   |
| mean compactness        | 0.019380   |
| mean concavity          | 0.000000   |
| mean concave points     | 0.000000   |
| mean symmetry           | 0.106000   |
| mean fractal dimension  | 0.049960   |
| radius error            | 0.111500   |
| texture error           | 0.362100   |
| perimeter error         | 0.757000   |
| area error              | 6.802000   |
| smoothness error        | 0.001713   |
| compactness error       | 0.002252   |
| concavity error         | 0.000000   |
| concave points error    | 0.000000   |
| symmetry error          | 0.007882   |
| fractal dimension error | 0.000950   |
| worst radius            | 7.930000   |
| worst texture           | 12.020000  |
| worst perimeter         | 50.410000  |
| worst area              | 185.200000 |
| worst smoothness        | 0.071170   |
| worst compactness       | 0.027290   |
| worst concavity         | 0.000000   |
| worst concave points    | 0.000000   |
| worst symmetry          | 0.156500   |
| worst fractal dimension | 0.055040   |
| dtype: float64          |            |

# In [34]:

```
range_train = (X_train - min_train).max()
range_train
```

# Out[34]:

| mean radius             | 21.129000   |
|-------------------------|-------------|
| mean texture            | 29.570000   |
| mean perimeter          | 144.710000  |
| mean area               | 2355.500000 |
| mean smoothness         | 0.110770    |
| mean compactness        | 0.326020    |
| mean concavity          | 0.426800    |
| mean concave points     | 0.201200    |
| mean symmetry           | 0.198000    |
| mean fractal dimension  | 0.045790    |
| radius error            | 2.761500    |
| texture error           | 4.522900    |
| perimeter error         | 21.223000   |
| area error              | 518.798000  |
| smoothness error        | 0.029417    |
| compactness error       | 0.133148    |
| concavity error         | 0.396000    |
| concave points error    | 0.052790    |
| symmetry error          | 0.071068    |
| fractal dimension error | 0.028890    |
| worst radius            | 25.190000   |
| worst texture           | 37.520000   |
| worst perimeter         | 170.390000  |
| worst area              | 3246.800000 |
| worst smoothness        | 0.129430    |
| worst compactness       | 1.030710    |
| worst concavity         | 1.105000    |
|                         |             |

worst concave points 0.291000
worst symmetry 0.420900
worst fractal dimension 0.152460

dtype: float64

# In [35]:

X\_train\_scaled = (X\_train - min\_train)/range\_train

# In [36]:

X\_train\_scaled

# Out[36]:

|     | mean<br>radius | mean<br>texture | mean<br>perimeter | mean<br>area | mean<br>smoothness | mean<br>compactness | mean<br>concavity | mean concave points | mean<br>symmetry | mean<br>fractal<br>dimension | <br>    |
|-----|----------------|-----------------|-------------------|--------------|--------------------|---------------------|-------------------|---------------------|------------------|------------------------------|---------|
| 306 | 0.294335       | 0.206628        | 0.278350          | 0.167183     | 0.293220           | 0.101620            | 0.003423          | 0.016208            | 0.288889         | 0.196113                     | <br>0.2 |
| 410 | 0.207251       | 0.265810        | 0.198328          | 0.108809     | 0.324546           | 0.103521            | 0.065206          | 0.104374            | 0.273232         | 0.200262                     | <br>0.2 |
| 197 | 0.525297       | 0.410213        | 0.508673          | 0.373806     | 0.190304           | 0.205632            | 0.258435          | 0.287177            | 0.358586         | 0.075126                     | <br>0.4 |
| 376 | 0.169861       | 0.355428        | 0.182157          | 0.082700     | 0.343956           | 0.449727            | 0.534208          | 0.295278            | 0.569697         | 0.754313                     | <br>0.1 |
| 244 | 0.587770       | 0.466351        | 0.589524          | 0.429421     | 0.452018           | 0.418441            | 0.480084          | 0.441650            | 0.463636         | 0.219262                     | <br>0.5 |
| 299 | 0.167022       | 0.452486        | 0.159353          | 0.080959     | 0.441184           | 0.149040            | 0.058458          | 0.093191            | 0.320707         | 0.340686                     | <br>0.1 |
| 312 | 0.273510       | 0.123774        | 0.266049          | 0.153089     | 0.318769           | 0.184345            | 0.094939          | 0.126640            | 0.273232         | 0.249836                     | <br>0.2 |
| 331 | 0.283923       | 0.326006        | 0.281459          | 0.157291     | 0.389636           | 0.285627            | 0.166518          | 0.146620            | 0.354040         | 0.337192                     | <br>0.2 |
| 317 | 0.531923       | 0.309773        | 0.517656          | 0.375080     | 0.404712           | 0.283173            | 0.264761          | 0.395129            | 0.377273         | 0.145883                     | <br>0.5 |
| 341 | 0.124237       | 0.241123        | 0.123350          | 0.058162     | 0.290512           | 0.223606            | 0.197329          | 0.113917            | 0.492929         | 0.464949                     | <br>0.1 |
| 156 | 0.506366       | 0.373013        | 0.508673          | 0.348206     | 0.531462           | 0.451261            | 0.434630          | 0.523857            | 0.460101         | 0.255514                     | <br>0.4 |
| 71  | 0.090255       | 0.166723        | 0.103656          | 0.042666     | 0.408053           | 0.410159            | 0.201640          | 0.142744            | 0.425253         | 0.870059                     | <br>0.0 |
| 218 | 0.606702       | 0.400744        | 0.593670          | 0.461261     | 0.371942           | 0.341145            | 0.298032          | 0.431958            | 0.522222         | 0.127757                     | <br>0.7 |
| 344 | 0.223816       | 0.194116        | 0.215880          | 0.117512     | 0.563059           | 0.163886            | 0.093861          | 0.161531            | 0.479293         | 0.329766                     | <br>0.2 |
| 247 | 0.279663       | 0.148799        | 0.284431          | 0.156527     | 0.315699           | 0.353414            | 0.321931          | 0.197813            | 0.270707         | 0.308583                     | <br>0.2 |
| 212 | 1.000000       | 0.296246        | 1.000000          | 1.000000     | 0.555836           | 0.405558            | 0.750000          | 0.792744            | 0.296970         | 0.115527                     | <br>3.0 |
| 559 | 0.214350       | 0.480893        | 0.212356          | 0.110380     | 0.360928           | 0.253727            | 0.260544          | 0.204026            | 0.165657         | 0.343743                     | <br>0.1 |
| 176 | 0.138341       | 0.282381        | 0.143805          | 0.067459     | 0.400469           | 0.337464            | 0.306232          | 0.184692            | 0.307576         | 0.681371                     | <br>0.1 |
| 422 | 0.219083       | 0.213392        | 0.218851          | 0.112375     | 0.507087           | 0.298816            | 0.166284          | 0.223509            | 0.417172         | 0.289146                     | <br>0.1 |
| 248 | 0.173648       | 0.524518        | 0.167369          | 0.086394     | 0.396678           | 0.162444            | 0.055740          | 0.080268            | 0.422727         | 0.291112                     | <br>0.1 |
| 232 | 0.200625       | 0.815015        | 0.186580          | 0.103290     | 0.227228           | 0.050181            | 0.011638          | 0.031978            | 0.396465         | 0.181699                     | <br>0.1 |
| 444 | 0.522931       | 0.241461        | 0.509364          | 0.359372     | 0.332581           | 0.318447            | 0.255389          | 0.310835            | 0.333333         | 0.171216                     | <br>0.4 |
| 383 | 0.255999       | 0.262766        | 0.254647          | 0.135598     | 0.465559           | 0.338384            | 0.138051          | 0.143141            | 0.363131         | 0.347674                     | <br>0.2 |
| 279 | 0.325098       | 0.184985        | 0.312349          | 0.188453     | 0.383949           | 0.176370            | 0.104944          | 0.184443            | 0.530303         | 0.187159                     | <br>0.2 |
| 494 | 0.292442       | 0.366250        | 0.278281          | 0.167778     | 0.187054           | 0.102356            | 0.042174          | 0.062425            | 0.329798         | 0.194802                     | <br>0.2 |
| 316 | 0.246060       | 0.147785        | 0.231221          | 0.134961     | 0.223075           | 0.039077            | 0.026312          | 0.025104            | 0.309596         | 0.142608                     | <br>0.1 |
| 523 | 0.318472       | 0.303348        | 0.310552          | 0.181490     | 0.420060           | 0.268757            | 0.126172          | 0.188022            | 0.330303         | 0.403363                     | <br>0.2 |
| 90  | 0.361541       | 0.483936        | 0.350909          | 0.220420     | 0.335019           | 0.204527            | 0.072680          | 0.146968            | 0.315657         | 0.189998                     | <br>0.3 |
| 469 | 0.219556       | 0.286439        | 0.225209          | 0.112630     | 0.585628           | 0.395436            | 0.238988          | 0.276541            | 0.453030         | 0.493339                     | <br>0.2 |
| 373 | 0.646457       | 0.258370        | 0.628913          | 0.505837     | 0.377629           | 0.270597            | 0.357779          | 0.444384            | 0.258081         | 0.105263                     | <br>0.6 |
|     |                |                 |                   |              |                    |                     |                   |                     |                  |                              | <br>    |
| 539 | 0.033603       | 0.531958        | 0.031442          | 0.011420     | 0.307394           | 0.308325            | 0.216776          | 0.067793            | 0.493434         | 0.601660                     | <br>0.0 |

| 110 | 0.132330<br>mean | 0.246195<br>mean | 0.129293<br>mean | 0.062280<br>mean | 0.461045<br>mean | 0.198331<br>mean | 0.101546<br>mean       | 0.0 <b>%&amp;&amp;a</b> n | 0.264646<br>mean       | 0.451 <b>m/e5an</b>   |     | 0.1 |
|-----|------------------|------------------|------------------|------------------|------------------|------------------|------------------------|---------------------------|------------------------|-----------------------|-----|-----|
| 5   | 0. <b>25%609</b> | 0.202570         | perfinerer       | 0.143688         |                  |                  | ପରୀବିତ୍ୟ <b>ି</b> ଅନ୍ତ | 6.905aye<br>points        | ย <b>ง</b> ร์กำลจิจสรา | 0.571522<br>dimension | ::: | 0.2 |
| 144 | 0.178380         | 0.177883         | 0.169097         | 0.089917         | 0.228401         | 0.098184         | 0.052741               | •                         | 0.171212               | 0.151125              |     | 0.1 |
| 103 | 0.137015         | 0.327697         | 0.139313         | 0.065719         | 0.432157         | 0.237992         | 0.144189               | 0.150547                  | 0.446970               | 0.289583              |     | 0.1 |
| 210 | 0.643618         | 0.420358         | 0.628222         | 0.486733         | 0.345491         | 0.354027         | 0.384255               | 0.475199                  | 0.356061               | 0.006115              |     | 0.6 |
| 446 | 0.509679         | 0.619547         | 0.507981         | 0.355806         | 0.427372         | 0.343599         | 0.397844               | 0.412177                  | 0.329798               | 0.200917              |     | 0.5 |
| 41  | 0.187846         | 0.393642         | 0.194251         | 0.096625         | 0.632572         | 0.314153         | 0.244611               | 0.281759                  | 0.421717               | 0.409260              |     | 0.1 |
| 362 | 0.273510         | 0.308759         | 0.263147         | 0.149904         | 0.398393         | 0.184467         | 0.062980               | 0.088519                  | 0.353030               | 0.259227              |     | 0.2 |
| 377 | 0.306640         | 0.625634         | 0.290927         | 0.177712         | 0.203485         | 0.085516         | 0.029780               | 0.055517                  | 0.182323               | 0.167504              |     | 0.2 |
| 254 | 0.590137         | 0.325330         | 0.571557         | 0.435364         | 0.459240         | 0.304951         | 0.323102               | 0.426988                  | 0.361616               | 0.142171              |     | 0.7 |
| 146 | 0.228075         | 0.232330         | 0.243245         | 0.122479         | 0.509795         | 0.461996         | 0.388707               | 0.368539                  | 0.817172               | 0.518672              |     | 0.2 |
| 86  | 0.354915         | 0.397362         | 0.348697         | 0.214264         | 0.377449         | 0.245660         | 0.282099               | 0.245427                  | 0.512626               | 0.139769              |     | 6.0 |
| 542 | 0.367220         | 0.531282         | 0.351807         | 0.222925         | 0.271915         | 0.161831         | 0.096181               | 0.150447                  | 0.393939               | 0.149378              |     | 0.3 |
| 431 | 0.256472         | 0.269530         | 0.260383         | 0.137678         | 0.476393         | 0.344212         | 0.181373               | 0.139115                  | 0.379293               | 0.459926              |     | 0.1 |
| 65  | 0.369114         | 0.481231         | 0.370465         | 0.222798         | 0.582920         | 0.394209         | 0.296860               | 0.448757                  | 0.451010               | 0.362088              |     | 6.0 |
| 205 | 0.385205         | 0.235712         | 0.380001         | 0.243303         | 0.326171         | 0.234648         | 0.176898               | 0.202734                  | 0.269697               | 0.216204              |     | 0.3 |
| 44  | 0.292915         | 0.409199         | 0.287679         | 0.164721         | 0.401824         | 0.261702         | 0.193510               | 0.261034                  | 0.346465               | 0.257917              |     | 6.0 |
| 27  | 0.550381         | 0.356442         | 0.541151         | 0.403524         | 0.377088         | 0.267530         | 0.349110               | 0.384245                  | 0.321717               | 0.153527              |     | 0.5 |
| 80  | 0.211510         | 0.380791         | 0.207449         | 0.109531         | 0.519726         | 0.227716         | 0.107568               | 0.110984                  | 0.394949               | 0.438742              |     | 0.2 |
| 437 | 0.334091         | 0.212039         | 0.317808         | 0.198557         | 0.288435         | 0.121373         | 0.082802               | 0.146322                  | 0.330303               | 0.196986              |     | 0.3 |
| 113 | 0.167022         | 0.354413         | 0.171723         | 0.080959         | 0.537781         | 0.340225         | 0.151734               | 0.152485                  | 0.435354               | 0.608430              |     | 0.1 |
| 204 | 0.259785         | 0.300643         | 0.257757         | 0.143664         | 0.424483         | 0.265076         | 0.187559               | 0.189911                  | 0.436869               | 0.300721              |     | 0.2 |
| 519 | 0.273037         | 0.236388         | 0.267570         | 0.148716         | 0.540489         | 0.283173         | 0.090909               | 0.148857                  | 0.535354               | 0.355318              |     | 0.2 |
| 411 | 0.192106         | 0.240785         | 0.187478         | 0.097516         | 0.497156         | 0.179928         | 0.071368               | 0.123260                  | 0.330303               | 0.293514              |     | 0.1 |
| 8   | 0.284869         | 0.409537         | 0.302052         | 0.159754         | 0.674099         | 0.533157         | 0.435567               | 0.464861                  | 0.651515               | 0.522603              |     | 0.3 |
| 73  | 0.322732         | 0.205614         | 0.322300         | 0.187052         | 0.433962         | 0.333170         | 0.182498               | 0.251938                  | 0.304040               | 0.342870              |     | 0.3 |
| 400 | 0.517251         | 0.382482         | 0.557045         | 0.361070         | 0.635280         | 0.730691         | 0.747188               | 0.595427                  | 0.531818               | 0.462765              |     | 0.5 |
| 118 | 0.416442         | 0.446398         | 0.427821         | 0.271322         | 0.567572         | 0.477946         | 0.499766               | 0.471123                  | 0.523232               | 0.509937              |     | 0.4 |
| 206 | 0.137015         | 0.255665         | 0.132195         | 0.064487         | 0.507990         | 0.162383         | 0.041143               | 0.097018                  | 0.441414               | 0.281503              |     | 0.0 |

455 rows × 30 columns

In [37]:

4

sns.scatterplot(x = X\_train['mean area'], y = X\_train['mean smoothness'], hue = y\_train)

# Out[37]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x1c93fb7dac8>



## In [38]:

```
sns.scatterplot(x = X_train_scaled['mean area'], y = X_train_scaled['mean smoothness'], hue = y_train)
```

### Out[38]:

<matplotlib.axes. subplots.AxesSubplot at 0x1c93fc637f0>



# In [39]:

```
min_test = X_test.min()
range_test = (X_test - min_test).max()
X_test_scaled = (X_test - min_test)/range_test
```

# In [40]:

```
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix
svc_model = SVC()
svc_model.fit(X_train_scaled, y_train)
```

# Out[40]:

```
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
```

# In [41]:

```
y_predict = svc_model.predict(X_test_scaled)
cm = confusion_matrix(y_test, y_predict)
sns.heatmap(cm,annot=True,fmt="d")
```

# Out[41]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x1c94022fc50>



0 1

#### In [42]:

```
print(classification_report(y_test,y_predict))
```

| support | f1-score | recall | precision |             |
|---------|----------|--------|-----------|-------------|
| 48      | 0.95     | 0.90   | 1.00      | 0.0         |
| 66      | 0.96     | 1.00   | 0.93      | 1.0         |
| 114     | 0.96     | 0.96   | 0.96      | avg / total |

# **IMPROVING THE MODEL - PART 2**

```
In [43]:
```

```
param_grid = {'C': [0.1, 1, 10, 100], 'gamma': [1, 0.1, 0.01, 0.001], 'kernel': ['rbf']}
```

#### In [44]:

from sklearn.model\_selection import GridSearchCV

# In [45]:

```
grid = GridSearchCV(SVC(),param_grid,refit=True,verbose=4)
```

#### In [46]:

```
grid.fit(X_train_scaled,y_train)
```

```
Fitting 3 folds for each of 16 candidates, totalling 48 fits
[CV] C=0.1, gamma=1, kernel=rbf .....
[CV] C=0.1, gamma=1, kernel=rbf, score=0.9671052631578947, total= 0.0s
[CV] C=0.1, gamma=1, kernel=rbf ......
   C=0.1, gamma=1, kernel=rbf, score=0.9210526315789473, total=
[CV] C=0.1, gamma=1, kernel=rbf .....
[CV] C=0.1, gamma=1, kernel=rbf, score=0.9470198675496688, total= 0.0s
[CV] C=0.1, gamma=0.1, kernel=rbf .....
[CV] C=0.1, gamma=0.1, kernel=rbf, score=0.9144736842105263, total= 0.0s
[CV] C=0.1, gamma=0.1, kernel=rbf ......
[CV] C=0.1, gamma=0.1, kernel=rbf, score=0.8881578947368421, total= 0.0s
[CV] C=0.1, gamma=0.1, kernel=rbf ......
[CV] C=0.1, gamma=0.1, kernel=rbf, score=0.8675496688741722, total=
[CV] C=0.1, gamma=0.01, kernel=rbf ......
    C=0.1, gamma=0.01, kernel=rbf, score=0.6381578947368421, total=
[CV]
[CV] C=0.1, gamma=0.01, kernel=rbf .....
[CV] C=0.1, gamma=0.01, kernel=rbf, score=0.6381578947368421, total=
[CV] C=0.1, gamma=0.01, kernel=rbf .....
[CV] C=0.1, gamma=0.01, kernel=rbf, score=0.6423841059602649, total=
                                                     0.0s
C=0.1, gamma=0.001, kernel=rbf, score=0.6381578947368421, total=
[CV] C=0.1, gamma=0.001, kernel=rbf, score=0.6381578947368421, total=
[CV] C=0.1, gamma=0.001, kernel=rbf ......
[CV] C=0.1, gamma=0.001, kernel=rbf, score=0.6423841059602649, total=
[CV] C=1, gamma=1, kernel=rbf .....
   C=1, gamma=1, kernel=rbf, score=0.993421052631579, total= 0.0s
[CV]
[CV] C=1, gamma=1, kernel=rbf .....
[CV] C=1, gamma=1, kernel=rbf, score=0.9473684210526315, total= 0.0s
[CV] C=1, gamma=1, kernel=rbf ......
[CV] C=1, gamma=1, kernel=rbf, score=0.9801324503311258, total= 0.0s
[CV] C=1, gamma=0.1, kernel=rbf .....
[CV] C=1, gamma=0.1, kernel=rbf, score=0.9736842105263158, total= 0.0s
[CV] C=1, gamma=0.1, kernel=rbf .....
[CV] C=1, gamma=0.1, kernel=rbf, score=0.9276315789473685, total=
```

```
[CV] C=1, gamma=0.1, kernel=rbf .....
[CV] C=1, gamma=0.1, kernel=rbf, score=0.9403973509933775, total= 0.0s
[CV] C=1, gamma=0.01, kernel=rbf ......
[CV] C=1, gamma=0.01, kernel=rbf, score=0.9144736842105263, total= 0.0s
[CV] C=1, gamma=0.01, kernel=rbf .....
                      1 out of
                               1 | elapsed:
                                           0.0s remaining:
                                                          0.0s
[Parallel(n jobs=1)]: Done
[Parallel(n jobs=1)]: Done
                      2 out of
                               2 | elapsed:
                                           0.0s remaining:
                                                          0.0s
[Parallel(n jobs=1)]: Done
                      3 out of
                               3 | elapsed:
                                           0.0s remaining:
                                                          0.0s
[CV] C=1, gamma=0.01, kernel=rbf, score=0.8947368421052632, total= 0.0s
[CV] C=1, gamma=0.01, kernel=rbf ......
   C=1, gamma=0.01, kernel=rbf, score=0.8675496688741722, total= 0.0s
[CV]
[CV] C=1, gamma=0.001, kernel=rbf .....
[CV] C=1, gamma=0.001, kernel=rbf, score=0.6381578947368421, total= 0.0s
[CV] C=1, qamma=0.001, kernel=rbf .....
[CV] C=1, gamma=0.001, kernel=rbf, score=0.6381578947368421, total= 0.0s
[CV] C=1, gamma=0.001, kernel=rbf ......
   C=1, gamma=0.001, kernel=rbf, score=0.6423841059602649, total=
[CV] C=10, gamma=1, kernel=rbf .....
[CV] C=10, gamma=1, kernel=rbf, score=0.993421052631579, total= 0.0s
[CV] C=10, gamma=1, kernel=rbf .....
[CV] C=10, gamma=1, kernel=rbf, score=0.9605263157894737, total= 0.0s
[CV] C=10, gamma=1, kernel=rbf .....
   C=10, gamma=1, kernel=rbf, score=0.9735099337748344, total= 0.0s
[CV]
[CV] C=10, gamma=0.1, kernel=rbf .....
[CV] C=10, gamma=0.1, kernel=rbf, score=0.993421052631579, total= 0.0s
[CV] C=10, gamma=0.1, kernel=rbf .....
[CV] C=10, gamma=0.1, kernel=rbf, score=0.9671052631578947, total= 0.0s
[CV] C=10, gamma=0.1, kernel=rbf ......
   C=10, gamma=0.1, kernel=rbf, score=0.9735099337748344, total=
[CV]
[CV] C=10, qamma=0.01, kernel=rbf ......
[CV] C=10, gamma=0.01, kernel=rbf, score=0.9736842105263158, total=
[CV] C=10, gamma=0.01, kernel=rbf ......
[CV] C=10, gamma=0.01, kernel=rbf, score=0.9210526315789473, total=
[CV] C=10, gamma=0.01, kernel=rbf .....
[CV] C=10, gamma=0.01, kernel=rbf, score=0.9403973509933775, total=
                                                       0.0s
[CV] C=10, gamma=0.001, kernel=rbf .....
[CV] C=10, gamma=0.001, kernel=rbf, score=0.9144736842105263, total=
                                                        0.0s
[CV] C=10, gamma=0.001, kernel=rbf .....
   C=10, gamma=0.001, kernel=rbf, score=0.8947368421052632, total=
[CV]
[CV] C=10, gamma=0.001, kernel=rbf .....
[CV] C=10, gamma=0.001, kernel=rbf, score=0.8675496688741722, total=
[CV] C=100, gamma=1, kernel=rbf .....
[CV] C=100, gamma=1, kernel=rbf, score=0.9605263157894737, total= 0.0s
[CV] C=100, gamma=1, kernel=rbf .....
   C=100, gamma=1, kernel=rbf, score=0.9539473684210527, total=
[CV] C=100, gamma=1, kernel=rbf ......
[CV] C=100, gamma=1, kernel=rbf, score=0.9801324503311258, total= 0.0s
[CV] C=100, gamma=0.1, kernel=rbf, score=0.9868421052631579, total= 0.0s
[CV] C=100, gamma=0.1, kernel=rbf .......
[CV]
   C=100, gamma=0.1, kernel=rbf, score=0.9539473684210527, total=
[CV] C=100, gamma=0.1, kernel=rbf ......
[CV] C=100, gamma=0.1, kernel=rbf, score=0.9801324503311258, total=
[CV] C=100, gamma=0.01, kernel=rbf .....
[CV] C=100, gamma=0.01, kernel=rbf, score=0.993421052631579, total=
[CV] C=100, gamma=0.01, kernel=rbf ......
[CV] C=100, gamma=0.01, kernel=rbf, score=0.9671052631578947, total=
[CV] C=100, qamma=0.01, kernel=rbf .....
[CV] C=100, gamma=0.01, kernel=rbf, score=0.9735099337748344, total=
                                                        0.0s
[CV] C=100, gamma=0.001, kernel=rbf ......
   C=100, gamma=0.001, kernel=rbf, score=0.9736842105263158, total=
[CV] C=100, gamma=0.001, kernel=rbf .....
[CV] C=100, gamma=0.001, kernel=rbf, score=0.9210526315789473, total=
                                                         0.0s
[CV] C=100, gamma=0.001, kernel=rbf .....
[CV] C=100, gamma=0.001, kernel=rbf, score=0.9403973509933775, total=
                                                         0.0s
[Parallel(n jobs=1)]: Done 48 out of 48 | elapsed: 0.3s finished
```

```
max_teer i, productitey=raise, raindom_state=None, Shiringfilde,
tol=0.001, verbose=False),
   fit_params=None, iid=True, n_jobs=1,
   param_grid={'C': [0.1, 1, 10, 100], 'gamma': [1, 0.1, 0.01, 0.001], 'kernel': ['rbf']},
   pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
   scoring=None, verbose=4)
```

### In [47]:

```
grid.best_params_
```

# Out[47]:

```
{'C': 10, 'gamma': 0.1, 'kernel': 'rbf'}
```

### In [48]:

```
grid.best_estimator_
```

### Out[48]:

```
SVC(C=10, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma=0.1, kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
```

# In [49]:

```
grid_predictions = grid.predict(X_test_scaled)
```

### In [50]:

```
cm = confusion_matrix(y_test, grid_predictions)
```

# In [51]:

```
sns.heatmap(cm, annot=True)
```

# Out[51]:

<matplotlib.axes. subplots.AxesSubplot at 0x1c94162d400>



# In [52]:

 $\verb|print(classification_report(y_test, grid_predictions))|\\$ 

| support | f1-score | recall | precision |             |
|---------|----------|--------|-----------|-------------|
| 48      | 0.97     | 0.94   | 1.00      | 0.0         |
| 66      | 0.98     | 1.00   | 0.96      | 1.0         |
| 114     | 0.97     | 0.97   | 0.97      | avg / total |

Classification of each Datapoint whether the cancer is benign or malignant acheived Precision, Recall and F1 score of 97%...... Hence, our Model can be Deployed into Production.