Fakulta matematiky, fyziky a informatiky Univerzity Komenského, Bratislava

Projekt z lineárneho programovania A04 - Predikcia kvality vín

Piati proti optimalizácii Tomáš Antal, 2DAV, 0.2 Erik Božík, 2DAV, 0.2 Róbert Kendereš, 2DAV, 0.2 Teo Pazera, 2DAV, 0.2 Andrej Špitalský, 2DAV, 0.2

Obsah

1	Úloha A	2
	1.1 Minimalizovanie L^1 normy	2
	1.1.1 Prípustnosť a optimalita	2
	1.2 Minimalizovanie L^∞ normy	3
	1.2.1 Prípustnosť a optimalita	4
2	Úloha B	5
	2.1 Prevedenie úlohy LP do tvaru pre scipy.optimize.linprog	5
	2.2 Implementovanie regresných LP úloh	5
3	Úloha C	7
4	Úloha D	9
5	Úloha E	10
	5.1 Spracovanie všeobecnej triedy pre L^1 a L^{∞} regresiu	10
	5.2 Diskusia o vhodnotosti použitia L^1 a L^∞ lineárnej regresie	11
6	Prehľad kódu	12

1 Úloha A

Máme dané vektory y, x_1, x_2, \ldots, x_k . Chceme nájsť parametre $\beta_0, \beta_1, \ldots, \beta_k$ také, aby pre vektor $\hat{y} = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$, boli normy $||y - \hat{y}||_1$ a $||y - \hat{y}||_\infty$ minimálne. Vyjadrime vektor \hat{y} ako súčin matice a vektora $\beta = (\beta_0, \beta_1, \ldots, \beta_k)^T$.

$$\hat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k = \begin{pmatrix} | & | & | & | & | \\ \mathbf{1}_n & x_1 & x_2 & \dots & x_k \\ | & | & | & | \end{pmatrix} \beta =: \mathbf{A}\beta$$

1.1 Minimalizovanie L^1 normy

Prevedieme problém zo zadania do tvaru:

$$\min c^T x$$
$$Ax \ge b$$

Zaveď me si nový vektor premenných $t \in \mathbb{R}^n$, ktorým ohraničíme normu $||y - \mathbf{A}\beta||_1$.

$$-t \le y - \mathbf{A}\beta \le t$$

Pre obe ohraničenia, odseparujme premenné od konštánt a prevedieme do maticového tvaru.

$$\left(\begin{array}{c} \mathbf{A} \mid \mathbb{I}_n \end{array} \right) \left(\frac{\beta}{t} \right) \ge y$$

$$\left(\begin{array}{c} -\mathbf{A} \mid \mathbb{I}_n \end{array} \right) \left(\frac{\beta}{t} \right) \ge -y$$

Minimalizovanie L^1 normy ako úloha lineárneho programovania vyzerá teda nasledovne.

$$\min \left(\begin{array}{c|c} \mathbf{0}_{k+1}^{T} & \mathbf{1}_{n}^{T} \end{array} \right) \left(\frac{\beta}{t} \right) \\ \left(\frac{\mathbf{A}}{-\mathbf{A}} & \mathbb{I}_{n} \end{array} \right) \left(\frac{\beta}{t} \right) \geq \left(\frac{y}{-y} \right) \\ \beta \in \mathbb{R}^{k+1}, \ t \geq \mathbf{0}_{n}$$
 (1)

1.1.1 Prípustnosť a optimalita

Dokážme, že (1) je úloha, ktorá nadobúda optimálne riešenie pre ľubovoľné vektory y, x_1, x_2, \ldots, x_k . Nech $|y| := (|y_1|, |y_2|, \ldots, |y_n|)^T$ pre $y = (y_1, y_2, \ldots, y_n)^T$. Ukážme prípustnosť zvolením $\beta = \mathbf{0}_{k+1}$ a t = |y|:

$$\left(\begin{array}{c|c} \mathbf{A} & \mathbb{I}_n \\ \hline -\mathbf{A} & \mathbb{I}_n \end{array}\right) \left(\begin{array}{c} \mathbf{0}_{k+1} \\ \hline & |y| \end{array}\right) = \left(\begin{array}{c} |y| \\ \hline & |y| \end{array}\right) \geq \left(\begin{array}{c} y \\ \hline -y \end{array}\right)$$

$$|y| > \mathbf{0}_n$$

Vidíme, že obe ohraničenia platia, čiže $\left(\mathbf{0}_{k+1}^T,|y|^T\right)^T$ je prípustné riešenie.

Optimalitu ukážeme zo silnej duality. Šformulujme duálnu úlohu pre duálne premenné $\alpha_1, \alpha_2 \in \mathbb{R}^n$:

$$\begin{aligned} & \mathsf{max} \ \left(\begin{array}{c} y^T \mid -y^T \end{array} \right) \left(\frac{\alpha_1}{\alpha_2} \right) \\ & \left(\begin{array}{c} \mathbf{A}^T \mid -\mathbf{A}^T \end{array} \right) \left(\frac{\alpha_1}{\alpha_2} \right) = \mathbf{0}_{k+1} \\ & \left(\begin{array}{c} \mathbb{I}_n \mid \mathbb{I}_n \end{array} \right) \left(\frac{\alpha_1}{\alpha_2} \right) \leq \mathbf{1}_n \\ & \alpha_1, \alpha_2 \geq \mathbf{0}_n \end{aligned}$$

Vidíme, že táto úloha je prípustná pre $\alpha_1 = \alpha_2 = \mathbf{0}_n$. Z prípustnosti primárnej a duálnej úlohy teda vyplýva, že úloha (1) nadobúda optimálne riešenie pre ľubovoľnú voľbu počiatočných vektorov.

1.2 Minimalizovanie L^{∞} normy

Budeme používať rovnaké značenie pre predikovaný vektor hodnôt $\hat{y} = \mathbf{A}\beta$ ako pri formulácii L^1 normy. Zaveď me si skalár $\gamma \in \mathbb{R}$, ktorým ohraničíme normu $||y - \mathbf{A}\beta||_{\infty}$.

$$-\gamma \mathbf{1}_n \le y - \mathbf{A}\beta \le \gamma \mathbf{1}_n$$

Pre jednotlivé ohraničenia odseparujeme premenné od konštánt a zapíšeme v maticovom tvare.

$$\left(\begin{array}{c} \mathbf{A} \mid \mathbf{1}_n \end{array} \right) \left(\frac{\beta}{\gamma} \right) \ge y$$

$$\left(\begin{array}{c} -\mathbf{A} \mid \mathbf{1}_n \end{array} \right) \left(\frac{\beta}{\gamma} \right) \ge -y$$

Minimalizovanie L^{∞} normy ako úloha lineárneho programovania vyzerá teda nasledovne.

$$\min \left(\begin{array}{c|c} \mathbf{0}_{k+1}^{T} & 1 \end{array} \right) \left(\frac{\beta}{\gamma} \right) \\ \left(\frac{\mathbf{A} & \mathbf{1}_{n}}{-\mathbf{A} & \mathbf{1}_{n}} \right) \left(\frac{\beta}{\gamma} \right) \ge \left(\frac{y}{-y} \right) \\ \beta \in \mathbb{R}^{k+1}, \ \gamma \ge 0 \end{array}$$
 (2)

1.2.1 Prípustnosť a optimalita

Podobný spôsobom ako vyššie ukážeme optimalitu (2). Nech $\beta = \mathbf{0}_{k+1}$ a $\gamma = |\tilde{y}|$, kde $|\tilde{y}| := |\max(y_1, y_2, \dots, y_n)|$ pre $y = (y_1, y_2, \dots, y_n)^T$:

$$\left(\begin{array}{c|c}
\mathbf{A} & \mathbf{1}_n \\
-\mathbf{A} & \mathbf{1}_n
\end{array}\right) \left(\begin{array}{c|c}
\mathbf{0}_{k+1} \\
 & |\tilde{y}|
\end{array}\right) = \left(\begin{array}{c|c}
|\tilde{y}|\mathbf{1}_n \\
|\tilde{y}|\mathbf{1}_n
\end{array}\right) \ge \left(\begin{array}{c}
y \\
-y
\end{array}\right)$$

$$|\tilde{y}| \ge 0$$

Obe ohraničenia platia, čiže $(\mathbf{0}_{k+1}^T, |\tilde{y}|)^T$ je prípustné riešenie. Sformulujme duálnu úlohu s duálnymi premennými $\alpha_1, \alpha_2 \in \mathbb{R}^n$:

$$\begin{aligned} & \max \; \left(\; y^T \; \middle| \; -y^T \; \right) \left(\frac{\alpha_1}{\alpha_2} \right) \\ & \left(\; \mathbf{A}^T \; \middle| \; -\mathbf{A}^T \; \right) \left(\frac{\alpha_1}{\alpha_2} \right) = \mathbf{0}_{k+1} \\ & \left(\; \mathbf{1}_n^T \; \middle| \; \mathbf{1}_n^T \; \right) \left(\frac{\alpha_1}{\alpha_2} \right) \leq 1 \\ & \alpha_1, \alpha_2 \geq \mathbf{0}_n \end{aligned}$$

Rovnako vidíme, že táto úloha je prípustná pre $\alpha_1=\alpha_2=\mathbf{0}_n$. Teda, zo silnej duality, úloha (2) nadobúda optimálne riešenie pre ľubovoľnú voľbu počiatočných vektorov.

2 Úloha B

2.1 Prevedenie úlohy LP do tvaru pre scipy.optimize.linprog

Metóda linprog z modulu scipy. optimize vyžaduje nasledujúci tvar úlohy LP:

$$\begin{aligned} \min c^T x \\ A_{ub} x &\leq b_{ub} \\ A_{eq} x &\leq b_{eq} \\ l &\leq x \leq u \end{aligned} \qquad l, u \in (\mathbb{R} \cup \{\texttt{None}\})^n \end{aligned}$$

Hodnota None vo vektoroch $l,\ u$ značí neohraničenosť v danom smere. Upravme teda úlohy vyjadrené vyššie do predpísaného tvaru.

Pre L^1 regresiu:

$$\begin{split} & \min \; \left(\; \mathbf{0}_{k+1}^T \; \middle| \; \mathbf{1}_n^T \; \right) \left(\frac{\beta}{t} \right) \\ & \left(\frac{-\mathbf{A} \; \middle| \; -\mathbb{I}_n}{\mathbf{A} \; \middle| \; -\mathbb{I}_n} \right) \left(\frac{\beta}{t} \right) \leq \left(\frac{-y}{y} \right) \\ & \text{None} \leq \beta_i \leq \text{None} & i = 0, 1, \dots, k \\ & 0 \leq t_j \leq \text{None} & j = 1, \dots, n \end{split}$$

Pre L^{∞} regresiu:

$$\begin{aligned} & \min \; \left(\begin{array}{c|c} \mathbf{0}_{k+1}^T & 1 \end{array} \right) \left(\frac{\beta}{\gamma} \right) \\ & \left(\frac{-\mathbf{A} & -\mathbf{1}_n}{\mathbf{A} & -\mathbf{1}_n} \right) \left(\frac{\beta}{\gamma} \right) \leq \left(\frac{-y}{y} \right) \\ & \text{None} \leq \beta_i \leq \text{None} \\ & 0 < \gamma < \text{None} \end{aligned} \qquad i = 0, 1, \dots, k$$

Úlohy v zdrojovom kóde sú implementované práve v tomto tvare.

2.2 Implementovanie regresných LP úloh

Na implementáciu formulovaných LP úloh využívame tri knžnice:

- numpy tvorenie matíc a vektorov, načítanie dát
- scipy.optimize implementovaný LP solver
- matplotlib.pyplot na vykresľovanie grafov.

Dáta relevantné pre túto úlohu sú uložené v súbore $\mathtt{data/A04plotregres.npz}$. Jedná sa o 16 bodov v \mathbb{R}^2 , kde prvá súradnica reprezentuje nezávislú premennú (vektor týchto súradníc označíme x) a druhá závislú premennú (označíme y).

Vytvorme si potrebné štruktúry pre využitie metódy scipy.optimize.linprog pre LP formuláciu s L^1 normou:

Pomocou solvera získame vektor optimálnych β koeficientov:

$$\beta_0^{(1)} \approx -9.8378, \ \beta_1^{(1)} \approx 2.1297$$

Podobne implementujeme L^{∞} formuláciu:

Znovu, pomocou solvera získame vektor optimálnych β koeficientov:

$$\beta_0^{(\infty)} \approx 15.4545, \ \beta_1^{(\infty)} \approx 1.7045$$

Pomocou získaných β koeficientov vykreslíme regresné priamky spolu s pôvodnými dátami.

3 Úloha C

V tejto úlohe sa snažíme predikovať kvalitu vína, inšpirovaní prístupom Orleya Ashenfeltera k predikcii cien vína z Bordeaux.

Využívame dáta zo súboru ${\tt A04wine.csv}$ a aplikujeme modely L^1 a L^∞ z úlohy A. Budeme využívať podobný postup ako v úlohe B. Na implementáciu formulovaných LP úloh využívame opäť:

- pandas načítanie dát z csv súboru
- numpy tvorenie matíc a vektorov
- scipy.optimize implementovaný LP solver

Vyberieme z dát dané nezávislé premenné x a závislú premennú y:

```
y = data['Price']
x = data[['WinterRain','AGST', 'HarvestRain', 'Age', 'FrancePop']]
```

Z počtu nezávislých premenných získame rozmer vektora β (+1 kvôli konŠtantnému členu):

```
numberOfVariablesBeta = x.shape[1] + 1
```

Vytvoríme potrebné štruktúry pre zostavenie modelu normy L^1 :

Naformulujeme problém a vyriešime pomocou scipy.optimize.linprog

Po vyriešení vyberieme z riešenia koeficienty:

```
betas = solve.x[:numberOfVariablesBeta]
```

Čo nám dá:

```
\beta_0^{(1)} \approx -8.8801 \cdot 10^{-1}, \ \beta_1^{(1)} \approx 1.5793 \cdot 10^{-3}, \ \beta_2^{(1)} \approx 5.2130 \cdot 10^{-1}
\beta_3^{(1)} \approx -4.5137 \cdot 10^{-3}, \ \beta_4^{(1)} \approx 1.1300 \cdot 10^{-2}, \ \beta_5^{(1)} \approx -2.2111 \cdot 10^{-5}
```

Z týchto výsledkov môžeme usúdiť, že najviac pozitívne vplýva na cenu vína metrika AGST - Average growing season temperature a najsignifikantnejší negatívny vplyv má dážď počas zberu.

Ďalej zostrojíme relevantné štruktúry a naformulujeme LP pre L^{∞} normu:

Vyriešime aj tento problém pomocou scipy.optimize.linprog() pre L^{∞} normu a vyberieme β koeficienty:

Po čom dostaneme:

$$\beta_0^{(\infty)} \approx 3.4841, \ \beta_1^{(\infty)} \approx 8.3399 \cdot 10^{-4}, \ \beta_2^{(\infty)} \approx 6.0027 \cdot 10^{-1}$$
$$\beta_3^{(\infty)} \approx -3.3416 \cdot 10^{-3}, \ \beta_4^{(\infty)} \approx -2.3036 \cdot 10^{-2}, \ \beta_5^{(\infty)} \approx -1.1958 \cdot 10^{-4}$$

Vidíme, že aj regresia pomocou L^{∞} normy odhaduje najväčší pozitívny vplyv meetriky AGST a najväčší negatívny vplyv dažďu počas zberu. Zmenil sa však vplyv premennej vek (oproti prechádzajúceu modelu) z pozitívneho na negatívny.

4 Úloha D

Vytvorme funkciu $r_{squared}(x, y, beta)$ - kde x je matica vektorov nezávislých premenných, y je vektor závislej premennej, beta je vektor optimálnych β koeficientov získaných regresiou - ktorá bude počítať R^2 koeficient podľa definície:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} \qquad \hat{y} = \beta_{0} + \beta_{1}x_{1} + \dots + \beta_{k}x_{k}, \ \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

```
def r_squared(x: np.ndarray, y: np.ndarray, beta: np.ndarray) -> float:
    # calculate y-hat and mean of y vector
    y_hat = beta[0] + np.dot(x, beta[1:])
    y_mean = np.mean(y)

res1 = 0  # partial result for the numerator in the formula
    res2 = 0  # partial result for the denominator in the formula

# calculate the sums
for i in range(len(y)):
    res1 += (y[i] - y_hat[i]) ** 2
    res2 += (y[i] - y_mean) ** 2

# calculate the R^2 coefficient
    result = 1 - (res1 / res2)
    return result
```

Implementujeme metódu na dátach A04wine.csv. Načítame dáta pomocou pandas.read_csv(), rozdelíme ich do premenných (rovnako ako v predošlých úlohách):

```
data = pd.read_csv('data/A04wine.csv')
y = data['Price']
x = data[['WinterRain', 'AGST', 'HarvestRain', 'Age', 'FrancePop']]
```

Podobne ako vyššie, vyriešime potrebné LP problémy pre načítané dáta a vypočítame \mathbb{R}^2 koeficient:

```
betas = solve.x[:numberOfVariablesBeta]
betas_inf = solve_inf.x[:numberOfVariablesBeta]

r_squared(x, y, betas)
r_squared(x, y, betas_inf)
```

Vypočítané príslušné R-kvadráty teda sú:

$$R_{(1)}^2 \approx 0.78813$$

 $R_{(\infty)}^2 \approx 0.80649$

Z toho môžeme usúdiť, že pre dané dáta regresia pomocou Chebyshevovej normy lepšie zachytáva rozptyl dát.

5 Úloha E

5.1 Spracovanie všeobecnej triedy pre L^1 a L^∞ regresiu

Vypracovali sme modul \mathtt{Model} pre počítanie L^1 a L^∞ regresie z ľubovoľných číselných dát, ktorý využíva LP formulácie popísané vyššie. Konkrétne $\mathtt{L1Model}$ využíva formuláciu na minimalizovanie L^1 normy a $\mathtt{LInfModel}$ minimalizuje L^∞ normu. Príklad použitia tohto modelu sa nachádza v $\mathtt{model_demonstration.ipynb}$ Následne opíšeme jednotlivé metódy jednotlivých modelov.

```
Model.__init__(dependent_vect, independent_vect)
```

Konštruktor triedy, spoločný pre oba modely, vytvorí inštanciu, ktorá si drží dáta a vie na nich vykonávať operácie popísané nižšie.

Argumenty:

- dependent_vect: np.array vektor závislých premenných
- independent_vect:np.array matica, ktorej stĺpce sú vektory nezávislých premenných

```
Model.solve()
```

Metóda, ktorá vyrieši regresnú LP úlohu na daných dátach. L1Model.solve() rieši minimalizáciou L^1 normy a LInfModel.solve(), rieši minimalizáciou L^∞ normy.

Vracia:

• np.array - vektor optimálnych β premenných

Po zavolaní tejto metódy si inštancia uloží vektor optimálnych β premenných do atribútu self._beta, potrebné pre metódy popísané nižšie.

```
Model.r2()
```

Vypočíta R^2 koeficient pre dané dáta a vypočítaný vektor β . Vracia:

float - výsledný R² koeficient

```
Model.visualize()
```

Ak je počet nezávislých premenných 1 alebo 2, táto metóda vykreslí graf dát spolu s vypočítanou regresnou priamkou, resp. rovinou.

Vracia:

• bool - úspešnosť vizualizácie, kde False označuje, že nezávislých premenných je viac ako 2, čiže nie je možné vykresliť graf

5.2 Diskusia o vhodnotosti použitia L^1 a L^{∞} lineárnej regresie

Nasledujúca krátka sekcia popisuje len naše pozorovania, tvrdenia nie sú nami matematicky dokázané

Vyššie v sekcii 1 sme ukázali, že implementácie lineárnej regresie pomocou merania vzdialenost L^1 a L^∞ normou majú optimálne riešenie, pre ľubovoľné vstupné dáta. Snažili sme sa odpozorovať, ako sa jednotlivé prístupy odlišujú pre nejaké konkrétne dáta.

V dátach, v ktorých je výrazná lineárna závislosť, minimalizovanie L^1 normy veľmi dobre zachytáva práve tento lineárny vzťah, aj v prítomnosti outlierov. Toto správanie vie ale viesť aj k tzv. *overfittingu*. Model príliš tesne zachytáva takéto správanie, čo môže viesť k horším odhadom pre budúce pozorovania. Takisto potenciálna kolinearita niektorých dátových bodov môže spôsobiť, že model práve cez nich preloží regresnú priamku namiesto toho, aby zachytil všeobecný smer rozptylu dát.

Na druhej strane minimalizovanie L^{∞} normy je veľmi ovplyvňované outliermi. Aj pre "jasne" lineárna dáta s jedným chybným pozorovaním, tento bod výrazne odkloní regresnú priamku. To ale zároveň spôsobuje, že pre dáta, ktoré sa dajú "pekne" uzavrieť nejakým elipsoidom, takáto regresia zahytáva práve hlavnú os tohto elipsoidu a teda smer rozptylu dát (čo môže mať súvis aj s tým, že v sekcii 4 nám vyšiel koeficient determinácice vyšší práve pre tento prípad).

6 Prehľad kódu

SEM SA NAPÍŠE STRUČNÝ PREHĽAD KÓDU, KEĎ BUDE FINÁLNA ŠTRUKTÚRA HOTOVÁ