

Facial Landmarks Detection using a Cascade of Recombinator Networks

Pedro Diego López¹, Roberto Valle¹, Luis Baumela¹

Univ. Politécnica de Madrid

Output

Diego López¹, Roberto Valle¹, Luis Baumela¹

Output

Dieg

http://www.dia.fi.upm.es/~pcr/research.html

Problem Definition and Contribution

Facial landmarks detection is a crucial step for many face analysis problems such as verification, recognition, attributes estimation, etc.

• CNNs are very robust but they lack accuracy because they cannot enforce the landmarks to represent a valid face shape of a human face.

We investigate the use of a cascade of CNN regressors and a map dropout layer to learn position of landmarks using the location of its neighbors.

• We present a loss function that is able to handle missing landmarks. It allows an aggressive data augmentation that provides state-of-the-art results in the 300W, COFW and AFLW data sets.

$$\mathcal{L} = \sum_{i=1}^{N} \left(-\frac{1}{||\mathbf{w}_i^g||_1} \sum_{l=1}^{L} \left(\mathbf{w}_i^g(l) \cdot \mathbf{m}_i^g(l) \cdot \log(\mathbf{m}_i(l)) \right) \right), \tag{1}$$

Experiments on 300W

	Common		Challenging		Full			
300W public	pupils	corners	pupils	corners	pupils	corners		
	NME	NME	NME	NME	NME	NME	AUC_8	FR_8
RCN [2]	4.70	_	9.00	_	5.54	_	-	-
RCN+DKM [2]	4.67	-	8.44	-	5.41	-	-	_
DAN [3]	4.42	3.19	7.57	5.24	5.03	3.59	55.33	1.16
TSR [4]	4.36	-	7.56	_	4.99	-	_	_
RAR [6]	4.12	-	8.35	_	4.94	-	_	_
SHN [7]	4.12	-	7.00	4.90	-	-	-	_
$\mathbf{CRN} (S=1)$	4.26	3.07	8.69	6.01	5.09	3.62	55.62	2.75
$\mathbf{CRN} (S=2)$	4.12	2.97	7.90	5.47	4.83	3.44	57.44	1.88

	Indoor			Outdoor			Full		
300W private	corners		corners			corners			
	NME	AUC_8	FR_8	NME	AUC_8	FR_8	NME	AUC_8	FR_8
DAN [3]	_	_	-	_	_	_	4.30	47.00	2.67
SHN [7]	4.10	-	-	4.00	-	-	4.05	-	-
$\mathbf{CRN}\left(S=1\right)$	4.42	45.91	1.66	4.45	45.25	2.66	4.43	45.59	2.16
$\mathbf{CRN} (S=2)$	4.28	47.36	2.66	4.25	47.32	2.00	4.26	47.35	2.33

D - ----14 --

Acknowledgements: The authors gratefully acknowledge funding from the Spanish Ministry of Economy and Competitiveness under project TIN2016-75982-C2-2-R.

Architecture diagram

- It is composed of S stages where each stage represents a network that combines features across multiple branches B.
- ullet The output of each stage is a probability map per each landmark providing information about the position of the L landmarks in the input image.
- The maximum of each probability map determines the landmarks positions.

Experiments on COFW and AFLW

COFW	NME	pupils AUC_8	FR_8	AFLW	height NME
RAR [6]	6.03	_	_	Bulat et al. [1]	2.85
Wu <i>et al</i> . [5]	5.93	-	_	CCL [8]	2.72
SHN [7]	5.6	-	_	TSR [4]	2.17
CRN(S=1)	5.75	30.91	11.04	CRN(S=1)	2.29
CRN(S=2)	5.49	33.13	7.88	CRN(S=2)	2.21
				0.8 Understand 0.6 0.4 0.2	
		CRN (33.13) (7.89) RCN (28.89) (13.61			CRN (45.73) (2.84 RCN (44.70) (4.04

References

- [1] Bulat, A., Tzimiropoulos, G.: Binarized convolutional landmark localizers for human pose estimation and face alignment with limited resources. In: Proc. International Conference on Computer Vision (ICCV) (2017)
- [2] Honari, S., Yosinski, J., Vincent, P., Pal, C.J.: Recombinator networks: Learning coarse-to-fine feature aggregation. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
- [3] Kowalski, M., Naruniec, J., Trzcinski, T.: Deep alignment network: A convolutional neural network for robust face alignment. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2017)
- [4] Lv, J., Shao, X., Xing, J., Cheng, C., Zhou, X.: A deep regression architecture with two-stage re-initialization for high performance facial landmark detection. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
- [5] Wu, Y., Ji, Q.: Robust facial landmark detection under significant head poses and occlusion. In: Proc. International Conference on Computer Vision (ICCV) (2015)
- [6] Xiao, S., Feng, J., Xing, J., Lai, H., Yan, S., Kassim, A.A.: Robust facial landmark detection via recurrent attentive-refinement networks. In: Proc. European Conference on Computer Vision (ECCV) (2016)
- on Computer Vision (ECCV) (2016)

 7] Yang, J., Liu, Q., Zhang, K.: Stacked hourglass network for robust facial landmark localisation. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition
- Workshops (CVPRW) (2017)

 [8] Zhu, S., Li, C., Change, C., Tang, X.: Unconstrained face alignment via cascaded compositional learning. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)