问题描述

我们研究了从大量测度中进行相位恢复的问题。特别的,我们希望重建一个复值信号 $\mathbf{x}inC^n$,我们对其进行了一个无相采样: $y_r = |\langle \mathbf{a}_r, \mathbf{x} \rangle|^2, r = 1, \dots, m$ (已知这些相的样本可以生成一个线性系统。) 这篇文章提出了一个非凸的相位恢复问题,和它的一个紧致解。

简而言之,这个算法开始于一个基于谱方法生成的初始值,然后通过迭代低复杂度的初始 更新规则,提炼一个初始估计。这个过程跟梯度下降是很像的。这个算法的主要贡献是证 明了相位恢复问题可以用几乎是最少的随机度量得到。实际上,可以证明一系列的迭代可 以以几何速度收敛到真实解。理论上,这个算法可以导出一个接近线性时间的模型实现。

相变

信号模型

随机低通信号

这里, x 由下式给定:

$$x[t] = \sum_{k=-(M/2-1)}^{M/2} (X_k + iY_k)e^{2\pi i(k-1)(t-1)/n},$$

其中 $M=n/8, X_k, Y_k$ 是服从 $\mathcal{N}(0,1)$ 的独立同分布的。

随机高斯信号

这个模型中, $\mathbf{x} \in C^n$ 是一个复随机高斯向量。每一个维度的形式都是 x[t] = X + iY, 其中 X 和 Y 都是服从 $\mathcal{N}(0,1)$.

测度方法

两种方式:

高斯测度

采样 m = nL 个随机复高斯向量 \mathbf{a}_k 使用如下的形式进行测度: $|\mathbf{a}_k^* \mathbf{x}|^2$.

衍射图案

考虑获得性模型: $y_r = \left| \sum_{t=0}^{n-1} x[t] \bar{d}_l(t) e^{-i2\pi kt/n} \right|^2$, 其中 $r = (l,k), 0 \le k \le n-1, \le l \le L$.

实验

我们进行了三组实验,得到的结果都是收敛的。运行时间小于 1s。

随机生成数据

首先通过高斯分布生成随机信号, 并取 m/n = 4.5. 定义初始值如下:

n = 128 m = 576x = Re(x) + i*Im(x)

A = randn(m, n) + i * randn(m, n)

得到的结果如下:

初始相对误差	2500 次迭代结果
1.0489348203835522	3.9402815057984826e-15
1.03898179977986	1.4300247639334214e-15
1.0162443311529112	4.772241069328224e-14

我将运行误差随迭代次数的变化绘制成如下的图:

图 1: 实验 1

图 2: 实验 2

图 3: 实验 3