Assignment: Player Detection and Tracking in Sports Video

This project implements a computer vision pipeline for **player detection and tracking** in sports footage. The main objective was to detect players and the ball in each frame, assign consistent IDs, and visualize movement and game events over time.

The pipeline includes:

Object Detection:

A fine-tuned YOLOv11 model was used to detect players and the ball frame by frame.

> Tracking:

ByteTrack was applied to link detections across consecutive frames and assign unique IDs.

Camera Motion Compensation:

Optical flow-based estimation was used to adjust player positions for camera movement.

> Perspective Transformation:

Positions were transformed into a normalized top-down court coordinate system.

Post-Processing and Visualization:

- Player speed and distance traveled were estimated.
- Team assignment was performed using color clustering.
- Ball possession was assigned to the nearest player.
- An annotated output video was generated showing bounding boxes, player IDs, team colors, camera movement, and possession statistics.

Note:

While the pipeline was functional end-to-end, some challenges remained with **player re-identification**—particularly maintaining consistent IDs when players left and re-entered the frame. Improvements would include embedding-based re-ID models and more robust temporal smoothing.

Methodology and Tools

Approach Overview

The project was implemented in **Python**, structured as a modular pipeline combining detection, tracking, camera motion estimation, and visualization. The overall flow:

1. Video Loading:

- o Frames were read using OpenCV.
- Preprocessing was applied as needed.

2. Object Detection:

- o A fine-tuned YOLOv11 model was used to detect players and the ball.
- Batched inference was performed to improve efficiency.

3. Tracking:

- ByteTrack associated detections across frames to assign IDs.
- Tracking data was stored for reproducibility using pickle stubs.

4. Camera Motion Estimation:

- o Optical flow (Lucas-Kanade) estimated camera movement between frames.
- o Player positions were compensated for this motion.

5. Perspective Transformation:

 Detected positions were mapped to a standardized court coordinate system via a homography matrix.

6. Post-Processing:

- Team assignment: KMeans clustering of jersey colors.
- o **Ball possession:** Nearest-player assignment.
- Speed & distance: Estimated using frame-to-frame displacements.

7. Visualization & Output:

- Annotations were drawn onto frames (bounding boxes, IDs, speed, possession, camera movement).
- The final video was saved as MP4.

Challenges and Next Steps

Challenges Encountered

While the pipeline performed the main detection and visualization tasks successfully, several challenges were observed:

Player Re-Identification Consistency

- Player IDs occasionally changed when players exited and re-entered the frame.
- No embedding-based appearance re-identification was implemented, which limited temporal consistency.

Detection Variability

- The YOLOv11 model sometimes missed detections in crowded frames or when players were partially occluded.
- Occasional bounding box jitter and flickering.

Team Assignment Accuracy

- KMeans color clustering worked but was sensitive to lighting and viewpoint changes.
- Some players were incorrectly assigned team colors due to jersey color similarities.

Camera Motion Estimation Noise

 Optical flow sometimes produced noisy estimates, especially in frames with fast pans or limited features.

What Could Be Improved

If more time and resources were available, I would focus on:

> Embedding-based Re-Identification

• Integrate a re-ID model to extract appearance features and maintain player identity over occlusions.

> Tracking Smoothing

• Implement Kalman filtering or trajectory smoothing to reduce ID switching and jitter.

> Detection Enhancements

- Apply test-time augmentation and confidence threshold tuning.
- Explore combining multiple detection models for improved robustness.

> Better Color Segmentation

• Incorporate learned color histograms or fine-tuned classifiers for jersey identification.

> 3D Perspective Calibration

• Use multiple known court landmarks to improve homography accuracy.

Summary

What Was Implemented

Detection and Tracking

- Loaded videos and detected players and the ball using YOLOv11.
- Tracked detections with ByteTrack to assign IDs frame by frame.

> Camera Motion Compensation

• Applied optical flow estimation to adjust positions relative to camera movement.

> Perspective Transformation

Mapped positions to a standardized court coordinate system via homography.

> Team Assignment and Ball Possession

- Used KMeans clustering for team color classification.
- Assigned ball possession to the nearest player in each frame.

> Speed and Distance Estimation

• Calculated approximate speed and distance covered over time windows.

Visualization and Export

- Drew bounding boxes, IDs, team colors, speed, and ball control stats.
- Generated and saved a final annotated video.

What Remains

> Robust Re-Identification

- Re-ID consistency was limited; IDs could switch when players left/re-entered.
- No deep appearance embeddings were implemented.

> Improved Stability

- Detection flicker and bounding box jitter occasionally occurred.
- Kalman smoothing and trajectory filtering could improve this.

Advanced Team Classification

• Simple KMeans color clustering was sensitive to lighting and viewpoint.

Reflections

This project provided hands-on experience with:

- Real-world sports video analysis challenges.
- Combining detection, tracking, and post-processing modules.
- Working with noisy detections and partial occlusions.