Dept. of Computer Science and Engineering

Artificial Intelligence and Machine Learning (CS52)

Term: October 2024 – Jan 2025 Unit 1 - Problems Faculty Coordinator : Jamuna S Murthy

- 1. Write the PEAS description and task environment characteristics for:
 - Robot vacuum cleaner operating in a household setting.
 - Automated medical diagnostic system for identifying skin cancer.
 - Voice-activated personal assistant (like Siri or Alexa) in a smart home.
 - Stock trading bot designed to maximize returns on stock investments.
 - Agricultural robot responsible for monitoring and optimizing crop growth in a farm field.
 - Speech-based language translation app for real-time conversation translation.
 - Search and rescue drone designed for locating people in a disaster-stricken area.
 - Recommendation system that suggests movies or TV shows to users based on their preferences.
 - AI-driven chatbot for customer service that assists users with common questions and issues.
 - Intelligent traffic management system that controls traffic lights to reduce congestion in a city.
 - Facial recognition system used for security purposes in airports.
 - AI-powered news aggregator that curates personalized news feeds for users.
 - Automated plant-watering system for indoor plants in a greenhouse.
 - Real-time game-playing AI agent designed to play chess against human players.
 - self-driving car navigating urban traffic.
- 2. Given an initial state of a 8-puzzle problem and final state to be reached-

2	8	3
1	6	4
7		5

Initial State

1	2	3
8		4
7	6	5

Final State

Find the most cost-effective path to reach the final state from initial state using A^* Algorithm. Consider g(n) = Depth of node and h(n) = Number of misplaced tiles.

Dept. of Computer Science and Engineering

3. Consider the following graph to find the shortest path from **S** to **G** using A* Algorithm:

4. Consider the following graph. The numbers written on edges represent the distance between the nodes. The numbers written on nodes represent the heuristic value. Find the most cost-effective path to reach from start state A to final state J using A* Algorithm.

