

DESCRIPTION OF THE PROBLEM

- Detect objects on an image, a sequence of images
- Compare different methods of implementation:
 - CPU methods
 - GPU methods, applying data-parallelism concepts
- Benchmark the different methods

THE ALGORITHM

- Reference image and image(s) to test
- Grayscale
- Apply Gaussian blur
- Difference between reference and test image(s)
- Morphological opening and closing with a disk (or retangle)
- Threshold on image
- Connected components

CPU IMPLEMENTATION

Python and OpenCV

C++ and OpenCV

C++ from scratch

GPU IMPLEMENTATION

PERFORMANCE INDICATORS

Number of iterations

Time

FPS

BOTTLENECK

Gaussian Blur

Morphological operation closing and opening

IMPROVEMENT OVER THE GPU IMPLEM.

Box Blur Convolution

125	213	98	203	202	170
104	145	161	204	201	157
72	8	209	202	194	144
73	9	202	201	194	156
81	15	189	185	181	144
15	189	185	194	227	158

Blurred Image

Fast Blur

Morard and Bartovsky algorithms

SUMMARY TABLE OF PERFORMANCE

DEMONSTRATION

THANKS
FOR YOUR
ATTENTION.

ANY QUESTIONS?