5002 Ass3 Report

1. Classification Task (60 marks)

- Training Environment
 Python 2.7, sklearn, numpy, pandas, collections, imblearn
- 2. Features engineer
- Unbalance Data

1. Fulling NaN

Column	NaN Percentage
new_speed	0.993472
old_speed	0.993472
new_time	0.837754
old_time	0.837754

5002 ASS 3

Because these features have value only when certain actions occur, I fill 0 to this feature.

2.Generate features:

Feature	Meaning
watched_videos	Number of watched videos per person
session	Number of used sessions per person
load_video	Number of actions for every person
pause_video	Number of actions for every person
play_video	Number of actions for every person
seek_video	Number of actions for every person
speed_change_video	Number of actions for every person
stop_video	Number of actions for every person
time_scale_sum	Sum of skipped time during watched video for every user
avg_acts_sess	Average number of actions per person take by using one session

	watched_videos	load_video	pause_video	play_video	seek_video	speed_change_video	stop_video	time_scale_sum	avg_acts_sess
user_id									
87ecc:6d051b3	44	113.0	16.0	19.0	1.0	0.0	8.0	25.692416	39
1962400b51af1b	63	243.0	122.0	609.0	33.0	1.0	50.0	1736.581055	58

3. Outliers detection

I use LocalOutlierFactor packet to calculate the LOF , and then cut 0.08 outliers of all samples. Time_scale_sum max value is reduced by LOF.

5002 ASS 3

4. Resample

Class to perform over-sampling using SMOTE and cleaning using ENN.

Combine over- and under-sampling using SMOTE and Edited Nearest Neighbors.

5. Model

Using **RandomForest** to classify the unbalanced data.

6. Reference

2. Fuzzy clustering with EM algorithm

```
interations number: 29
o sse: 1 iteration=====
SSB(p=1): 446507.094647
c1: [ 2.69041963   5.61486053   12.61423393   7.30839493   0.24305278
  0.99537907]
c2: [ 2.98858857 7.42781115 17.13844811 10.41487571 0.23788657
  1.00989487]
2 iteration=====
SSE(p=1): 415299.64096
c1: [ 2.50966266  4.80465069  10.40436458  5.69170016  0.20847102
  0.94497617]
c2: [ 3.32834732  8.95352191  21.51862428  13.55877955  0.28751395
  1.099919091
-----
Final SSE 364790.565244
c1: [ 2.40779443  4.18173286  8.56845482  4.47967262  0.22663779  0.91860717]
c2: [ 4.72741511 15.77470142 41.31131529 26.63004261 0.27119479
  1.420137941
```

3. Outlier detection with LOF

```
K = 3 , Using Euclidean distance
Top 5 outliers
525     4.778060
66     4.315427
333     2.700442
62     2.664327
19     2.525940
Name: lof, dtype: float64
```

5002 ASS 3 3

```
K = 2 , Using Manhattan distance
 Top 5 outliers
525 5.415667
66 4.895008
678 4.000000
402 3.727273
333 3.465476
```

Name: lof, dtype: float64

4 5002 ASS 3