

Reinforcement Learning

Lecture 5 - Model-free control

Per Mattsson

2022

Department of Information Technology

Repetition

Important concepts

- States, actions and rewards: $s \in S$, $a \in A$, $r \in R$.
- Dynamics/model: p(s', r|s, a).
- **Policy:** $\pi(a|s)$ (For deterministic policy also $a = \pi(s)$.)
- The return: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$
- State-value function:

Expected return when starting in s and following policy π ,

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[G_t|S_t=s\right].$$

Action-value function:

Expected return when starting in s, taking action a and then follow π ,

$$q_{\pi}(s, \mathbf{a}) = \mathbb{E}_{\pi} \left[G_t | S_t = s, A_t = \mathbf{a} \right]$$

Relations and Bellman equations

• Bellman equation for state-values:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s \right]$$

• Bellman equation for action-values:

$$q_{\pi}(s, \mathbf{a}) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = \mathbf{a} \right]$$

Bellman optimality equation:

$$v_*(s) = \max_{a} q_*(s, a) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

• Optimal policy: Act greedily w.r.t $v_*(s)$

$$\pi_*(s) = \operatorname*{arg\,max}_{a} q_*(s, \mathbf{a}) = \operatorname*{arg\,max}_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = \mathbf{a}]$$

Repetition: Dynamic programming

• Policy evaluation: Evaluate $v_{\pi}(s)$ for all s, using e.g., iterative policy evaluation:

$$V(s) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) | S_t = s \right].$$

• **Policy improvement:** Find greedy policy w.r.t $v_{\pi}(s)$,

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a)$$

where
$$q_{\pi}(s, \mathbf{a}) = \sum_{r,s'} p(s', r|s, \mathbf{a}) [r + \gamma v_{\pi}(s')]$$

• Value iteration: Evaluate $v_*(s)$ using

$$V(s) \leftarrow \max_{a} \mathbb{E}\left[R_{t+1} + \gamma V(S_{t+1}) | S_t = s, A_t = a\right]$$

Policy Iteration:

Repetition: Model-free prediction

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

- Policy evaluation (prediction) using only experience.
- Monte-Carlo (MC): (for episodic tasks)

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t)).$$

Temporal differences (TD):

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t)).$$

Can we do policy improvement using only experience?

Model-free control

How to do policy improvement?

• Greedy policy improvement w.r.t $v_{\pi}(s)$:

$$\pi'(s) = \underset{\mathbf{a}}{\operatorname{arg max}} \sum_{r,s'} p(s',r|s,\mathbf{a})[r + \gamma v_{\pi}(s')].$$

This requires the model p(s', r|s, a).

• Greedy policy improvement w.r.t $q_{\pi}(s, a)$:

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a).$$

We do not need the model!

• **Idea 1:** Estimate $q_{\pi}(s, \mathbf{a})$ instead of $v_{\pi}(s)$.

Example: Can we learn enough from greedy actions?

Which door gives most reward?

- Initial: Q(left) = Q(right) = 0.
- You open left and get reward 2:

$$Q(left) = 2, \quad Q(right) = 0$$

• You open left and get reward 0:

$$Q(left) = 1, \quad Q(right) = 0$$

• You open left and get reward 4:

$$Q(left) = 3, \quad Q(right) = 0$$

We never learn about what happens if we open the right door!

Idea 2: Make sure that we continue to explore different options!

ε -greedy exploration

- Trade-off between exploiting current knowledge and exploring new options!
- Possible solution: Ensure that all actions have a non-zero probability.
- ε -soft policy: If $\pi(a|s) \ge \frac{\varepsilon}{|A|}$ for all a and s.

 ε -greedy w.r.t $q_{\pi}(s, a)$:

- With probability 1ε choose a greedy action $\arg \max_{a} q_{\pi}(s, a)$.
- With probability ε choose an action at random.

Policy Improvement Theorem

For any ε -soft policy π , the ε -greedy policy π' w.r.t q_{π} is an improvement, i.e.

$$v_{\pi'}(s) \geq v_{\pi}(s), \quad \text{for all } s \in \mathcal{S}$$

• **Conclusion:** Policy improvement with ε -greedy policies will converge to the best ε -soft policy.

On-policy vs off-policy learning

On-policy learning

- "Learn on the job".
- Estimate $q_{\pi}(s, \mathbf{a})$ by running the policy π .

Off-policy learning

- "Look over someone's shoulder".
- Estimate $q_{\pi}(s, \mathbf{a})$ while running a different policy μ .
- For example: Learn about $q_*(s, \mathbf{a})$ (optimal q-function), while running a policy with more exploration.

Monte-Carlo Control

Monte-Carlo Prediction

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s], \quad q_{\pi}(s, \mathbf{a}) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = \mathbf{a}]$$

Use the policy to collect trajectories

$$S_0, A_0, R_1, S_1, A_1, R_2, \cdots, S_T.$$

- Estimating state-value function:
 - Compute the average over all returns seen from each state.
 - Incremental update:

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t)).$$

- Estimating action-value function:
 - Compute the average over all returns seen from each state/action-pairs.
 - Incremental update:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(G_t - Q(S_t, A_t)).$$

Monte Carlo Backup Diagram

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (G_t - Q(S_t, A_t)).$$

Exploration needed!

Estimation of state-values: $V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t)).$

• Converges to $v_{\pi}(s)$ as $N(s) \to \infty$.

Estimation of action-values: $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)}(G_t - Q(S_t, A_t))$.

- Converges to $q_{\pi}(s, \mathbf{a})$ as $N(s, \mathbf{a}) \to \infty$.
- However if $\pi(a|s) = 0$ for some s and a then we will not learn this action-value!
- ε -soft policies guarantee that $\pi(a|s) > 0$ for all s and a!

So, as long as we use a ε -soft policy Q(s, a) will converge to $q_{\pi}(s, a)$ as the number of sampled episodes goes to ∞ .

Time for policy improvement!

Monte-Carlo Policy Iteration

- **Policy Evaluation:** Monte-Carlo evaluation to get $Q = q_{\pi}$.
- **Policy Improvement:** Let new π be ε -greedy w.r.t q_{π} .
- Will converge to the best ε -soft policy.
- ullet We need infinitely many episodes to guarantee $Q=q_\pi$ not possible in practice.

At every episode:

- **Policy evaluation:** Use MC to update *Q*.
- **Policy improvement:** Let new π be ε -greedy w.r.t Q.
- On-policy: We always update Q towards q_{π} for the current policy.

Monte Carlo Control

- 1. Initialize Q (e.g. $Q(s, \mathbf{a}) = 0$ for all s and \mathbf{a}) and let $\pi = \varepsilon$ -greedy(Q).
- 2. Sample episode using π : $S_0, A_0, R_1, \dots, S_T$.
- 3. For each state S_t and action A_t in the episode

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

- 4. Improve policy: $\pi \leftarrow \varepsilon$ -greedy(Q).
- 5. Go to step 2.

Exploration

- (If we) converge we get the best policy among the ε -soft policies.
- ullet Can gradually reduce arepsilon (but not to fast) towards zero, in order to converge to optimal policy.
- After training we can remove exploration by setting $\varepsilon=0$ (thus using the greedy policy w.r.t estimated Q).

SARSA

TD-prediction has several advantages over MC-prediction:

- Lower variance.
- Can run online (without waiting to end of episode)
- Can use incomplete sequences.

TD-control aka SARSA:

- Apply TD to $q_{\pi}(s, a)$.
- Use ε -greedy policy improvements.
- Can now update every time-step!

TD-prediction

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

 $q_{\pi}(s, \mathbf{a}) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1})|S_t = s, A_t = \mathbf{a}]$

Estimating state-values:

Given $\{S_t, R_{t+1}, S_{t+1}\} \sim \pi$ the update is

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\underbrace{R_{t+1} + \gamma V(S_{t+1})}_{\mathsf{Target}} - V(S_t)\right).$$

Estimating action-values (SARSA):

Given $\{S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}\} \sim \pi$ the update is

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(\underbrace{R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})}_{\mathsf{Target}} - Q(S_t, A_t)\right)$$

$$Q(S, A) \leftarrow Q(S, A) + \alpha(R + \gamma Q(S', A') - Q(S, A))$$

As for MC we can use ε -greedy policies to ensure that all actions are explored.

At every time-step:

- **Policy evaluation:** Use SARSA to update *Q*.
- **Policy improvement:** Let new π be ε -greedy w.r.t Q.
- On-policy: We always update Q towards q_{π} for current policy.
- For fixed ε , tends to the best ε -soft policy.

SARSA-algorithm for control

- Initialize Q(s, a) (e.g. Q(s, a) = 0 for all s and a).
- For each episode
 - 1. Get initial state *S*.
 - 2. Choose *A* from *S* that is ε -greedy w.r.t *Q*.
 - 3. For each step of episode:
 - Take action A and observe R, S'.
 - Choose A' from S' that is ε -greedy w.r.t Q.
 - $Q(S, A) \leftarrow Q(S, A) + \alpha(R + \gamma Q(S', A') Q(S, A)).$
 - $S \leftarrow S'$, $A \leftarrow A'$.

Off-policy control – Q-learning

Off-policy learning

• Want to learn $q_{\pi}(s, a)$ for a **target policy** π with experience from using the **behavior policy** μ .

When is this useful?

- Learn by observing humans or other agents.
- Re-use experience collected from old policies.
- Learn optimal $q_*(s, a)$ while following an exploratory policy.

$$q_{\pi}(s, \mathbf{a}) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \underbrace{A_{t+1}}_{\sim \pi(\mathbf{a}|S_{t+1})}) | S_t = s, A_t = \mathbf{a}
ight]$$

ullet Consider data collect using behavior policy μ

$$S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1} \sim \mu.$$

• Update: Let $A' \sim \pi(a|S_{t+1})$ and use the update

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t)).$$

Off-policy control with Q-learning

- Let both behavior and target policies improve.
- Target policy, π : Greedy w.r.t Q(s, a).
- Behavior policy, μ : ε -greedy w.r.t Q(s, a).
- The Q-learning target is then

$$R_{t+1} + \gamma Q(S_{t+1}, A')$$

where $A' = \arg \max_{a} Q(S_{t+1}, a)$. Inserting this we can rewrite the target as

$$R_{t+1} + \gamma Q(S_{t+1}, rg \max_{\mathbf{a}} Q(S_{t+1}, \mathbf{a})) = R_{t+1} + \gamma \max_{\mathbf{a}} Q(S_{t+1}, \mathbf{a}).$$

Compare to Bellman optimality equation:

$$q_*(s, \mathbf{a}) = \mathbb{E}[R_{t+1} + \gamma \max_{\mathbf{a}} q_*(S_{t+1}, \mathbf{a}) | S_t = s, A_t = \mathbf{a}]$$

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a} Q(S', a) - Q(S, A)\right).$$

Theorem

Q-learning converges to the optimal action-value function $q_*(s, a)$ as $N(s, a) \to \infty$ if the step size α decreases towards 0 with a suitable rate.

- With good estimate of $q_*(s, a)$, can find the optimal policy $\pi_* = \text{greedy}(q_*)$.
- ullet In practice constant lpha often works well if it is small enough.

Q-learning for off-policy control

- Initialize Q(s, a) (e.g. Q(s, a) = 0 for all s and a).
- For each episode
 - 1. Get initial state 5.
 - 2. For each step of episode:
 - Choose *A* from *S* that is ε -greedy w.r.t to *Q*.
 - Take action A and observe R, S'.
 - $Q(S, A) \leftarrow Q(S, A) + \alpha(R + \gamma \max_{a} Q(S', a) Q(S, A)).$
 - $S \leftarrow S'$
- When training is done: Get target policy as greedy w.r.t to Q.

- **Optimal path:** Greedy with respect to q_* (found with Q-learning).
- Safe path: Best ε -soft policy (found with SARSA and fixed $\varepsilon=0.1$).

Summary

Bellman equations vs learning algorithms

Bellman	Sample backup
For v_{π}	TD-target
$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) S_t = s]$	$R_{t+1} + \gamma V(S_{t+1})$
For q_{π}	SARSA-target
$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) S_t = s, A_t = a]$	$R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$
For optimal q_*	Q-learning target
$q_*(s, \mathbf{a}) = \mathbb{E}[R_{t+1} + \gamma \max_{\mathbf{a}} q_*(S_{t+1}, \mathbf{a}) S_t = s, A_t = \mathbf{a}]$	$R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$

Summary

- **Idea:** Estimate $q_{\pi}(s, a)$.
- Exploration: Needed in order to learn about all possible actions.
- ε -greedy policy: Greedy with prob 1ε , and choose random action with prob ε .
- On-policy: MC and SARSA. With fixed ε tends to best ε -soft policy.
- Off-policy: Q-learning. Converge to q_* , which can be used to find optimal policy.

Next:

- Tinkering Notebook 3 and Basic Assignment 2 (soft deadline April 24).
- Function approximation.
- For 7,5 credits: Extra lecture tomorrow.