

Lecture #19

Sequential Logic

Lecture #19: Sequential Logic (1/2)

- 1. Introduction
- 2. Memory Elements
- 3. Latches
 - 3.1 *S-R* Latch
 - 3.2 D Latch
- 4. Flip-flops
 - 4.1 S-R Flip-flop
 - 4.2 D Flip-flop
 - 4.3 *J-K* Flip-flop
 - 4.4 T Flip-flop

Lecture #19: Sequential Logic (2/2)

- 5. Asynchronous Inputs
- 6. Synchronous Sequential Circuit
 - 6.1 Flip-flop Characteristic Tables
 - 6.2 Analysis
 - 6.3 Flip-flop Excitation Tables
 - 6.4 Design

7. Memory

- 7.1 Memory Unit
- 7.2 Read/Write Operations
- 7.3 Memory Cell
- 7.4 Memory Arrays

1. Introduction (1/2)

- Two classes of logic circuits
 - Combinational
 - Sequential

Combinational Circuit

 Each output depends entirely on the immediate (present) inputs.

Sequential Circuit

 Each output depends on both present inputs and state.

1. Introduction (2/2)

- Two types of sequential circuits:
 - Synchronous: outputs change only at specific time
 - Asynchronous: outputs change at any time
- Multivibrator: a class of sequential circuits
 - Bistable (2 stable states)
 - Monostable or one-shot (1 stable state)
 - Astable (no stable state)
- Bistable logic devices
 - Latches and flip-flops.
 - They differ in the methods used for changing their state.

2. Memory Elements (1/3)

 Memory element: a device which can remember value indefinitely, or change value on command from its inputs.

Characteristic table:

Command (at time t)	Q(t)	Q(t+1)
Set	Х	1
Reset	Х	0
Memorise /	0	0
No Change	1	1

Q(t) or **Q**: current state

Q(t+1) or Q^+ : next state

2. Memory Elements (2/3)

Memory element with clock.

Clock is usually a square wave.

2. Memory Elements (3/3)

- Two types of triggering/activation
 - Pulse-triggered
 - Edge-triggered
- Pulse-triggered
 - Latches
 - ON = 1, OFF = 0

- Edge-triggered
 - Flip-flops
 - Positive edge-triggered (ON = from 0 to 1; OFF = other time)
 - Negative edge-triggered (ON = from 1 to 0; OFF = other time)

3.1 *S-R* Latch (1/3)

- Two inputs: S and R.
- Two complementary outputs: Q and Q'.
 - When Q = HIGH, we say latch is in SET state.
 - When Q = LOW, we say latch is in RESET state.
- For active-high input S-R latch (also known as NOR gate latch)
 - $R = HIGH \text{ and } S = LOW \rightarrow Q \text{ becomes LOW (RESET state)}$
 - $S = HIGH \text{ and } R = LOW \rightarrow Q \text{ becomes HIGH (SET state)}$
 - Both R and S are LOW → No change in output Q
 - Both R and S are HIGH → Outputs Q and Q' are both LOW (invalid!)
- Drawback: invalid condition exists and must be avoided.

3.1 *S-R* Latch (2/3)

Active-high input S-R latch:

Block diagram:

3.1 *S-R* Latch (3/3)

Characteristic table for active-high input S-R latch:

S	R	Q	Q'	
0	0	NC	NC	No change. Latch remained in present state.
1	0	1	0	Latch SET.
0	1	0	1	Latch RESET.
1	1	0	0	Invalid condition.

S	R	Q(t+1)		
0	0	Q(t)	No change	$Q(t+1) = S + R' \cdot Q$
0	1	0	Reset	4(0.1) 0.11 4
1	0	1	Set	$S \cdot R = 0$
1	1	indeterminate		

3.1 Active-Low S-R Latch

- (You may skip this slide.)
- What we have seen is active-high input S-R latch.
- There are active-low input S-R latches, where NAND gates are used instead. See diagram on the left below.

- In this case,
 - when R=0 and S=1, the latch is reset (i.e. Q becomes 0)
 - when R=1 and S=0, the latch is set (i.e. Q becomes 1)
 - when *S*=*R*=1, it is a no-change command.
 - when S=R=0, it is an invalid command.
- Sometimes, we use the alternative gate diagram for the NAND gate. See diagram on the right above. (This appears in more complex latches/flip-flops in the later slides.)

(Sometimes, the inputs are labelled as S' and R'.)

3.1 Gated S-R Latch

S-R latch + enable input (EN) and 2 NAND gates
→ a gated S-R latch.

Outputs change (if necessary) only when EN is high.

3.2 Gated *D* Latch (1/2)

- Make input R equal to $S' \rightarrow \text{gated } D$ latch.
- D latch eliminates the undesirable condition of invalid state in the S-R latch.

3.2 Gated *D* Latch (2/2)

- When EN is high,
 - $D = HIGH \rightarrow latch$ is SET
 - $D = LOW \rightarrow latch$ is RESET
- Hence when EN is high, Q "follows" the D (data) input.
- Characteristic table:

EN	D	Q(t+1)	Q(t+1)	
1	0	0	Reset	
1	1	1	Set	
0	X	Q(t)	No change	

When EN=1, Q(t+1) = D

4. Flip-flops (1/2)

- Flip-flops are synchronous bistable devices.
- Output changes state at a specified point on a triggering input called the clock.
- Change state either at the positive (rising) edge, or at the negative (falling) edge of the clock signal.

4. Flip-flops (2/2)

- S-R flip-flop, D flip-flop, and J-K flip-flop.
- Note the ">" symbol at the clock input.

Positive edge-triggered flip-flops

Negative edge-triggered flip-flops

4.1 S-R Flip-flop

- S-R flip-flop: On the triggering edge of the clock pulse,
 - $R = HIGH \text{ and } S = LOW \rightarrow Q \text{ becomes LOW (RESET state)}$
 - $S = HIGH \text{ and } R = LOW \rightarrow Q \text{ becomes HIGH (SET state)}$
 - Both R and S are LOW → No change in output Q
 - Both R and S are HIGH → Invalid!
- Characteristic table of positive edge-triggered S-R flip-flop:

S	R	CLK	Q(t+1)	Comments
0	0	X	Q(t)	No change
0	1	\uparrow	0	Reset
1	0	\uparrow	1	Set
1	1	\uparrow	?	Invalid

X = irrelevant ("don't care")

↑ = clock transition LOW to HIGH

4.2 *D* Flip-flop (1/2)

- D flip-flop: Single input D (data). On the triggering edge of the clock pulse,
 - $D = HIGH \rightarrow Q$ becomes HIGH (SET state)
 - $D = LOW \rightarrow Q$ becomes LOW (RESET state)
- Hence, Q "follows" D at the clock edge.
- Convert S-R flip-flop into a D flip-flop: add an inverter.

A positive edge-triggered D flip-flop formed with an S-R flip-flop.

D	CLK	Q(t+1)	Comments
1	<u></u>	1	Set
0	\uparrow	0	Reset

↑ = clock transition LOW to HIGH

4.2 *D* Flip-flop (2/2)

- Application: Parallel data transfer.
 - To transfer logic-circuit outputs X, Y, Z to flip-flops Q1, Q2 and Q3 for storage.

* After occurrence of negative-going transition

4.3 *J-K* Flip-flop (1/2)

- J-K flip-flop: Q and Q' are fed back to the pulse-steering NAND gates.
- No invalid state.
- Include a toggle state
 - J = HIGH and $K = LOW \rightarrow Q$ becomes HIGH (SET state)
 - $K = HIGH \text{ and } J = LOW \rightarrow Q \text{ becomes LOW (RESET state)}$
 - Both J and K are LOW → No change in output Q
 - Both J and K are HIGH \rightarrow Toggle

4.3 *J-K* Flip-flop (2/2)

J-K flip-flop circuit:

Characteristic table:

J	Κ	CLK	Q(t+1)	Comments
0	0	1	Q(t)	No change
0	1	\uparrow	0	Reset
1	0	\uparrow	1	Set
1	1	\uparrow	Q(t)'	Toggle

$$Q(t+1) = J \cdot Q' + K' \cdot Q$$

Q	J	K	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

4.4 T Flip-flop

T flip-flop: Single input version of the J-K flip-flop, formed by tying both inputs together.

Characteristic table:

T	CLK	Q(t+1)	Comments
0	↑	Q(t)	No change
1	\uparrow	Q(t)'	Toggle

$$Q(t+1) = T \cdot Q' + T' \cdot Q$$

Q	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

5. Asynchronous Inputs (1/2)

- S-R, D and J-K inputs are synchronous inputs, as data on these inputs are transferred to the flip-flop's output only on the triggered edge of the clock pulse.
- Asynchronous inputs affect the state of the flip-flop independent of the clock; example: preset (PRE) and clear (CLR) [or direct set (SD) and direct reset (RD)].
- When *PRE*=HIGH, Q is <u>immediately</u> set to HIGH.
- When CLR=HIGH, Q is immediately cleared to LOW.
- Flip-flop in normal operation mode when both PRE and CLR are LOW.

5. Asynchronous Inputs (2/2)

 A J-K flip-flop with active-low PRESET and CLEAR asynchronous inputs.

End of File

