CS 460/560 Introduction to Computational Robotics Fall 2019, Rutgers University

Lecture 16 Multi-Robot Path Planning

Instructor: Jingjin Yu

Outline

Multi-robot path planning

- **⇒**Applications
- **⇒** Formulations

Feasibility of graph-theoretic MPP

- ⇒The 15-puzzle variant
- ⇒The synchronous rotation variant

Structure and complexity of optimal MPP

Applications – Order Fulfillment

Applications

- ⇒Container ports
- ⇒Fulfillment centers
- ⇒ Delivery drones
- ⇒ Microfluidics (chemical/medical)
- ⇒ Future autonomous vehicles
- ⇒ Many others

Continuous Domain

Continuous formulation

- \Rightarrow Some *n* objects, usually close to each other (crowded)
- ⇒Usually in bounded region (why?)
- ⇒The objects must be moved from one configuration to another
- ⇒No collision is allowed
- ⇒This problem (finding any solution) is PSPACE-hard

Discrete Domain: Single Move per Step

Origin: the 15-puzzle

15	3	2	11		1	2	3	4
8	1	7	13	$ \longrightarrow $	5	6	7	8
12	6	10	4		9	10	11	12
5		14	9		13	14	15	

- \Rightarrow 4 × 4 game board, 15 square game pieces
- ⇒Only pieces adjacent to the empty space can move
- \Rightarrow This is generalized first to $(N^2 1)$ -puzzle

- \Rightarrow Then generalized to general graph with n vertices and up to n-1 robots
- ⇒In these problems only one robot may move at a time
- ⇒Let's call these problems MPP_s
- \Rightarrow Also known as the pebble motion problem (PMG)

Discrete Domain: Parallel Moves

For MPP_s on a n-vertex graph, moves may be parallelized

- ⇒Essentially, there are multiple "move sequences"
- ⇒Each sequence requires one empty vertex in the head
- ⇒It is possible that all robots move in the same step
- ⇒Let's call this MPP_p

Discrete Domain: Parallel Moves w/ Rotation

MPP_p still does not reflect full capabilities of modern robots

⇒Robots should not always require empty vertex to move, e.g.,

- ⇒ We can further allow **rotations** in addition to parallel moves
- \Rightarrow Let's call this MPP_r
- ⇒Problems can be feasible even when there are no empty vertices!

Feasibility of the 15-Puzzle

The 15-puzzle (and (N^2-1) -puzzle in general) is not always feasible

⇒In particular, if two robots are "swapped", it defines an infeasible problem

⇒What happens if we legally swap 4 and 5?

⇒It also (always) flip at least one other pair (in this case, 1 and 2)

A Simple Method for $N^2 - 1$ Puzzle Feasibility

Steps

1. Move the empty spot to the lower right (doesn't matter how you do it)

2. Flatten the square row by row

3. Bubbling each number from 1 and count number of moves

- 4. Sum up X = 6 + 6 + 0 + 3 + 1 + 1 + 1 = 18
- 5. Odd infeasible. Even feasible. X = 18, instance is feasible

Solving of the 15-Puzzle (I)

For
$$(N^2 - 1)$$
-puzzles

- ⇒The only source of infeasibility comes from this
- ⇒ How can we detect this?

⇒Through counting the number of moves for each robot

Now suppose we have a feasible problem, how do we solve it?

⇒We will use the 8-puzzle as an example

Solving the 15-Puzzle (II)

First, move 1 to its goal

Then, move 2 to 3's goal

Then, move 3 to 6's goal, followed by moving 2,3 to their goals

First row is solved!

Solving the 15-Puzzle (III)

Then, solve the first column similarly. In this case, move 4 to 7's goal

Then, move 7 to 8's goal, and solve 4 and 7

Then, the last piece should be readily solvable

Solving the 15-Puzzle (IV)

Procedure for solving the $(N^2 - 1)$ -puzzle

- ⇒ Check feasibility
- ⇒Solve the first (top) row
- \Rightarrow Solve the first (left most) column, now we have a $((N-1)^2-1)$ -puzzle
- ⇒Repeat the above steps until we get a 3-puzzle
- ⇒The 3-puzzle should be readily solvable

The same procedure applies to $N \times M$ -puzzles where $N \neq M$

How many moves are needed?

- \Rightarrow For each robot, may need to move O(N) robots
- \Rightarrow Each robot needs to be moved O(1) times
- \Rightarrow So O(N) total moves
- \Rightarrow For all $N^2 1$ robots, $O(N^3)$ total moves

The method generalizes to 2-connected graphs

General Graphs

How about general graphs?

⇒We can break it into trees and 2-connected graphs

- ⇒We already can solve 2-connected graphs
- ⇒How about trees?

Partitioning Robots on Trees

We can solve the problem by partitioning robots into **equivalence classes**

- ⇒Two robots belong to the same equivalence classes if they can exchange locations
- ⇒It turns out this is easy to determine (well, intuitively)
- ⇒Two robots 1 and 2 that are "adjacent" (i.e., no other robots between them on the tree) cannot exchange (i.e., not equivalent) if they have the following configuration

- ⇒If there is one more empty vertex, then 1 and 2 are equivalent
- ⇒This can be checked (in linear time)
- \Rightarrow Combined with 2-connected graph solver, solves MPP_s on general graph

Feasibility with Parallel Moves

MPP_p feasibility is the same as MPP_s

- ⇒Why?
- ⇒ Every parallel move can be carried out as step-by-step single robot moves

MPP_r, it's slightly different

- ⇒We can decompose the problem into trees and 2-edge-connected components
- \Rightarrow But, we need some methods for solving problems like this (N^2 -puzzle)

Solving N^2 puzzles

 N^2 -puzzle (MPP_r) is similar to (N^2-1)-puzzle (MPP_s)

⇒We can first solve the top row (and left most column)

- \Rightarrow This yields an $(N-1)^2$ -puzzle
- \Rightarrow We do this until we get to 3 \times 3, and solve the top row
- \Rightarrow This leaves us with a 2 \times 3 puzzle, which can be solved
 - ⇒ E.g., exchange 8 and 9

Optimal Formulations

MPP Problem: (G, X_I, X_G) , solution: collision free $P = \{p_1, ..., p_n\}$ Optimality objectives (minimization):

- \Rightarrow Max time (makespan): $\min_{P \in \mathcal{P}} \max_{p_i \in P} time(p_i)$
- \Rightarrow Total time: $\min_{P \in \mathcal{P}} \sum_{p_i \in P} time(p_i)$
- \Rightarrow Max distance: $\min_{P \in \mathcal{P}} \max_{p_i \in P} length(p_i)$
- \Rightarrow Total distance: $\min_{P \in \mathcal{P}} \sum_{p_i \in P} length(p_i)$

Incompatibility of the Formulations

A pair of the four MPP objectives on makespan, total time, max distance, and total distance demonstrates a Pareto-optimal structure.