Homework 4 - Results

October 23, 2018

Likelihood Function

$$I_{i}^{1} = \int \left[\prod_{t} \frac{1}{\sigma_{1t}} \phi \left(\frac{y_{it1} - X_{it1}\beta_{1} - \theta_{i}}{\sigma_{1t}} \right) \right] \Phi \left(\frac{\sum_{t} (X_{it1} - X_{it0}) \tilde{\beta} - Z_{i} \delta - \theta_{i} \gamma}{\sigma_{w}} \right)$$

$$(1)$$

$$\frac{1}{\sqrt{2\pi}\sigma_{\theta}} \exp \left(-\left(\frac{\theta_{i}}{\sqrt{2}\sigma_{\theta}} \right)^{2} \right) d\theta$$

$$(2)$$

 Use Gauss-Hermite to approximate integral. Change of variables necessary.

Introduction

Test on fake data first

β0	stde		TRUE	σ	stde		TRUE	δz	stde		TRUE
	0.65	0.86	1.00		0.53	0.24	0.50		4.95	0.05	5.00
	2.08	0.18	2.00		0.50	0.31	0.50		2.94	0.05	3.00
	-0.02	0.01	-0.02		0.49	0.25	0.50				
	0.52	0.02	0.50		0.50	0.05	0.50	δt	std	e	TRUE
					0.70	0.03	0.71		0.71	0.12	0.50
β1	std	e	TRUE		0.73	0.04	0.71				
	1.51	0.54	0.85		0.69	0.04	0.71	ρ	std	e	TRUE
	3.23	0.20	3.50		0.70	0.04	0.71		0.76	0.05	0.80
	0.00	0.02	-0.03		0.97	0.05	1.00				
	1.02	0.04	1.00		0.64	0.05	0.63				

▶ Mean school choice: Data = 0.367; Simulated = 0.366

Summary stats of zb

Mean: 0.020392

Minimum: -2.929359

1st Quartile: -0.628405

Median: 0.002442

3rd Quartile: 0.619182

Maximum: 2.957066

▶ New Mean school choice: 0.217

Estimates in log-units

- ightharpoonup ATE = 11.49
- ► ATT = 8.12
- ► LATE = 8.46

NLSY data

- ▶ X = experience, experience2 and family income
- Z = tuition, family income, numsibs, scores, mother and father education

Likelihood Function

$$\Phi\left(\frac{Xs_{1i}\tilde{\beta} + (exp_{s=1,i} - exp_{s=0,i})\tilde{\beta} + (exp_{s=1,i}^2 - exp_{s=0,i}^2)\tilde{\beta} + Xs_i^4\tilde{\beta} - Z_i\delta}{\sigma_w}\right)$$
(3)
(4)

```
1.0 22.0 38.0

0.0 38.0 22.0

0.0 38.0 22.0

0.0 38.0 22.0

0.0 38.0 22.0

1.0 22.0 38.0

1.0 22.0 38.0

1.0 22.0 38.0

1.0 22.0 38.0

1.0 22.0 38.0

1.0 22.0 38.0

1.0 22.0 38.0

1.0 22.0 38.0
```

NLSY data

- ► Initial guesses:
- OLS on each wage equation, probit on Zs, standard errors from OLS
- probit on Xs, Zs, but experience is a perfect predictor!

What I tried

- X = experience, experience2 and family income
- Z = tuition, family income, numsibs, scores, mother and father education
- If I take the log(10000*income) and tuition, standard errors blow up to 1e10 on δ_Z and σ_w , very low variaton may be cause
- If i just multiply family income and tuition by 10^a , a = 1, 2, 3, 4, model doesn't converge
- Same thing happens by removing family income from Z
- Same thing happens by permutating with numsbis, scores, mother and father educ.

NLSY Estimates

βο			σ		δz		
Constant	9.58	σ0	0.30	constant	-1.09		-0.57
Exp	0.18	σ0	0.20	tuition	-0.27	ρ	
Exp^2	-0.01	σ0	0.19	family inc	-0.27		1.02
Family Inc	0.06	σ0	0.25	numsibs -0	.005168		
		σ1	0.34	scores	0.24		
β1		σ1	0.22	mother	0.05		
Constant	8.72	σ1	0.26	father 0	.183375		
Exp	0.29	σ1	0.31				
Exp^2	-0.01	σw	0.33				
Family Inc	0.00	σt	0.38				

No standard errors :(

NLSY fit

NLSY fit

NLSY fit

▶ Mean school choice: Data = 0.372; Simulated = 0.372!

Summary stats of tuition

Mean: 0.214001 Minimum: 0.000000

1st Quartile: 0.159418 Median: 0.207967

3rd Quartile: 0.257659 Maximum: 0.522191

Estimates

- ▶ So, I will zero tuition for those below the mean
- ▶ New mean school choice: 0.372!

Summary stats sim y0

Mean: 31,645.128 Minimum: 4,904.970 1st Quartile: 20,792.095 Median: 28,934.711 3rd Quartile: 39,456.350 Maximum: 155,488.773

Summary stats sim y1

Mean: 29,664.918 Minimum: 3,547.429 1st Quartile: 17,553.850 Median: 25,781.921 3rd Quartile: 37,211.698 Maximum: 152,681.450

Estimates

- ► ATE = -1,980.21
- ► ATT = 8,623.56
- ► LATE = ?