>>> Algorithmic and Operation Research
>>> Project Topic Presentation

Name: Anna-Aikaterini Kavvada - 1115201500050

Theodora Panagea - 1115201400135

Date: November 25, 2019

>>> Conic Duality

A Briefing

- * Linear and Conic Duality Problems
- * Geometry of Primal and Dual Problems
- * Conic Duality Theorem
- * Is something Wrong?
- * Consequences

>>>	Linear	and	Conic	Duality	Problem

The most important theoretical result in Linear Programming is the LP Duality Theorem...

- * can this theorem be extended to conic problems?
- * What is the extension?

>>> Linear and Conic Duality Problems Cont/d $\,$

Answer:

* can this theorem be extended to conic problems? => Yes!

* What is the extension? => That is our Presantation Topic;)

>>> Geometry of Primal and Dual Problems

The structure of problem (CD) looks quite different from the one of (CP).

BUT

geometrically, the problems are completely similar.

Note: Careful analysis shows that the difference in structures comes just from how we represent the data.

>>> Conic Duality Theorem

Theorem (Conic Duality Theorem)

Considering a primal-dual pair of conic problems, we can prove that it is applicable to:

- * Weak Duality
- * Symmetry
- * Refined Strong Duality

>>> Conic Duality Theorem Cont/d

The Refined Conic Duality Theorem covers the usual Linear Programming Duality Theorem The latter, is the particular case of the former for m=1.

>>> Is Something Wrong?

Oh well...

- * LP duality is stronger that the Conic => The problem is not always feasible or bounded.
- * It is possible to get similar results to those of the LP Duality Problem in the general Conic Problem case.

>>> Are There Consequences?

Yes...

...provided that the primal problem (CP) is strictly feasible, $\exists \quad x \text{ such that}$

$$A_x - \beta >_{\kappa} 0$$

or geometrically

$$L \cap intK \neq \emptyset$$

The End.