ECE421: Introduction to Machine Learning — Fall 2024

Worksheet 4: K-means Clustering and Gaussian Mixture Model

Q1 (Lack of Optimality of K-Means) Consider a K-Means clustering problem instance with K=2 and a dataset of 4 points in $\mathbb R$ as follows: $x_1=-12$, $x_2=-3$, $x_3=3$, and $x_4=12$. Initialize K-Means with the centroids $\mu_1=-3$ and $\mu_2=12$. Demonstrate that in the problem instance above, K-Means converges to a solution that is not globally optimal.

Answer. The centroids are initially set to $\mu_1[0] = -3$ and $\mu_2[0] = 12$. It can be easily verified that with these centroids, the K-means algorithm assigns $\mathcal{B}_1[1] = \{x_1, x_2, x_3\}$ and $\mathcal{B}_2[1] = \{x_4\}$. In the next step, the centroids will be updated to $\mu_1[1] = \frac{x_1 + x_2 + x_3}{3} = -4$ and $\mu_2[1] = x_4 = 12$. It is easy to check that the set memberships will remain unchanged in the next step. Thus, K-Means algorithm converged to the following set membership and centroids:

$$\hat{\mathcal{B}}_1 = \{x_1, x_2, x_3\}, \hat{\mathcal{B}}_2[1] = \{x_4\}, \hat{\mu}_1 = -4, \hat{\mu}_2 = 12$$

. The error at the converged solution is given by $E=(x_1-\hat{\mu}_1)^2+(x_2-\hat{\mu}_1)^2+(x_3-\hat{\mu}_1)^2+(x_4-\hat{\mu}_2)^2=8^2+1^2+7^2+0=114.$

To demonstrate that this is not a globally optimal solution, consider the following set memberships and centroids:

$$\mathcal{B}_1^{\star} = \{x_1, x_2\}, \mathcal{B}_2^{\star} = \{x_3, x_4\}, \mu_1^{\star} = -7.5, \mu_2^{\star} = 7.5.$$

With such set memberships and centroids, the clustering error would be $E^* = 4(4.5)^2 = 81$, which is lower than E.

- **Q2** (K-means algorithm: Problem 6 Final Exam 2018) Consider the K-means algorithm. Let K=2 and let \mathcal{D} be a dataset consisting of four data points with $\mathcal{D}=\{0,0.5,0.5+\Delta,1.5+\Delta\}$, where $\Delta\geq 0$ is a problem parameter. All data points lie on the real line.
 - **2.a** Let $\Delta=0.5$ and initialize K-means by initializing the two cluster centers at $\mu_1=1$ and $\mu_2=2$. Run K-means till convergence. For each iteration l until convergence, describe your set membership $\{\mathcal{B}_1[l],\mathcal{B}_2[l]\}$ and cluster centers $\{\mu_1[l],\mu_2[l]\}$. Make sure you identify the final values of the cluster centers and set membership at convergence.

Answer. Observe that $\mathcal{D} = \{0, 0.5, 1, 2\}$ and the centriods are initialized as $\mu_1[0] = 1, \mu_2[0] = 2$. Thus, we would have the following iterations:

- Iteration 1: $\mathcal{B}_1[1] = \{0, 0.5, 1\}$ and $\mathcal{B}_2[1] = \{2\}$; $\mu_1[1] = 0.5$ and $\mu_2[1] = 2$.
- Iteration 2: $\mathcal{B}_1[2] = \{0, 0.5, 1\}$ and $\mathcal{B}_2[2] = \{2\}$; $\mu_1[2] = 0.5$ and $\mu_2[2] = 2$. The cluster assignments and cluster centroids do not change. Done!
- **2.b** For this part, find a condition that Δ must satisfy, such that Δ has a small positive value, and K-means (initialized in the same manner as in **2.a**, *i.e.*, $\mu_1=1$ and $\mu_2=2$) converges to a different solution from that obtained in **2.a**. In your solution, describe:
 - **2.b.i** What is this condition on Δ and explain your reasoning/derivation.

Answer. It is easy to check that for any $\Delta>1$, in the first iteration of K-Means algorithm, we would have $\mathcal{B}_1[1]=\{0,0.5\}$ and $\mathcal{B}_2[1]=\{0.5+\Delta,1.5+\Delta\}$; $\mu_1[1]=0.25$ and $\mu_2[1]=1+\Delta$. And the set memberships and centroid would remain unchanged in the next iteration. Hence, we would converge to a different solution.

One can easily verify that if $0 < \Delta < 1$, we would always converge to $\mathcal{B}_1 = \{0,0.5\}$ and $\mathcal{B}_2 = \{0.5 + \Delta, 1.5 + \Delta\}$. Let $x_3 = 0.5 + \Delta$. Observe that for any $0 < \Delta < 1$, $\mathcal{B}_1[1] = \{0,0.5,0.5+\Delta\}$, $\mathcal{B}_2[1] = \{1.5+\Delta\}$, and $\mu_1[1] = \frac{1+\Delta}{3}$ and $\mu_2[1] = 1.5+\Delta$. It is easy to show that $|x_3 - \mu_1[1]| < |\mu_2[1] - x_3|$, when $0 < \Delta < 1$, and we will converge to the same solution as in $\mathbf{2.a}$.

2.b. ii As in **2.a**, run the cluster algorithm, describe the values of cluster centers and set membership for each iteration until convergence.

Answer. With $\Delta > 1$,

- Iteration 1: $\mathcal{B}_1[1]=\{0,0.5\}$ and $\mathcal{B}_2[1]=\{0.5+\Delta,1.5+\Delta\};\ \mu_1[1]=0.25$ and $\mu_2[1]=1+\Delta.$
- Iteration 2: $\mathcal{B}_1[2] = \{0, 0.5\}$ and $\mathcal{B}_2[2] = \{0.5 + \Delta, 1.5 + \Delta\}$; $\mu_1[2] = 0.25$ and $\mu_2[2] = 1 + \Delta$. Converged!
- Q3 (Gaussian Mixture Model: Problem 5 Final Exam 2018) Consider an already-trained Gaussian Mixture Model (GMM) that is trained to fit data on student performance in a class. The GMM uses two components (K=2) as the class consists of two categories of students: undergraduate students (category 1) and graduate students (category 2). The learned parameters of the GMM are as follows.
 - The weights of the two categories (i.e., the responsibilities) are $\pi_1=\frac{2}{3}$ (undergraduate) and $\pi_2=\frac{1}{3}$ (graduate).
 - The distribution that fits scores in category 1 is $\mathcal{N}(x; 70, 10^2)$.
 - The distribution that fits scores in category 2 is $\mathcal{N}(x; 80, 5^2)$.
 - **3.a** According to the GMM, what is the probability that an arbitrarily selected student scores greater than 80%? That is, compute $\mathbb{P}[X \geq 80]$, where X denotes the score of the student. In your computation, use the approximation that for zero-mean σ^2 -variance random variable Z, $\mathbb{P}[|Z| \leq \sigma] = \frac{2}{3}$.

Answer. Note that

$$p(x) = \pi_1 \mathcal{N}(x \mid 70, 10^2) + \pi_2 \mathcal{N}(x \mid 80, 5^2).$$

Thus,

$$\begin{split} \mathbb{P}[X \geq 80] &= \pi_1 \mathbb{P}_{X \sim \mathcal{N}(70, 10^2)}[X \geq 80] + \pi_2 \mathbb{P}_{X \sim \mathcal{N}(80, 5^2)}[X \geq 80] \\ &= \frac{2}{3} \cdot \frac{1}{2} \left(1 - \mathbb{P}_{X \sim \mathcal{N}(70, 10^2)}[|X| < 80] \right) + \frac{1}{3} \cdot \frac{1}{2} \\ &= \frac{1}{3} \left(1 - \mathbb{P}_{X \sim \mathcal{N}(0, 10^2)}[|X| < 10] \right) + \frac{1}{6} \\ &\approx \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{6} = \frac{5}{18}. \end{split}$$

3.b If a particular student has a score greater than 80, what is the probability that the student is from category 1? That is, compute $\mathbb{P}[\mathsf{class} = 1 \mid X \geq 80]$. (Use the same approximation as in the previous part.)

Answer. Applying the Bayes' rule, i.e., $\mathbb{P}[A \mid B] = \frac{\mathbb{P}[B|A]\mathbb{P}[A]}{\mathbb{P}[B]}$, we have

$$\begin{split} \mathbb{P}[\mathsf{class} = 1 \mid X \geq 80] &= \frac{\mathbb{P}[(X \geq 80) \mid \mathsf{class} = 1] \mathbb{P}[\mathsf{class} = 1]}{\mathbb{P}[(X \geq 80)]} \\ &= \mathbb{P}_{X \sim \mathcal{N}(70, 10^2)}[X \geq 80] \times \pi_1 \times \frac{18}{5} \\ &= \frac{2}{5}. \end{split}$$