Artificial Intelligence AI 2002 Lecture 18

Ms. Mahzaib Younas

Lecturer Department of Computer Science
FAST NUCES CFD

Perceptron Training Rule

• The *perceptron training rule*, which revises the weight w_i associated with input x_i according to the rule:

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta(t - o)x_i$$

Where:

- t is target value
- *o* is perceptron output
- η is small constant (e.g., 0.1) called learning rate

Perceptron Training Rule

- The perceptron rule finds a successful weight vector when the training examples are linearly separable,
- It fails to converge if the examples are **not linearly separable**.
- The solution is ... Delta Rule also known as (Widrow- Hoff Rule)

Delta Rule

• use *gradient descent* to search the hypothesis space of possible weight vectors to find the weights that best fit the training examples.

Perceptron

The decision surface represented by a two-input perceptron x_1 and x_2 . (a) A set of training examples and the decision surface of a perceptron that classifies them correctly. (b) A set of training examples that is not linearly separable.

Delta Rule

Delta Rule

 In <u>perceptron training rule</u> we employ thresholded perceptron

$$o(\mathbf{x}) = \Phi^{1}$$
 if $\mathbf{w}.\mathbf{x} > 0$
-1 otherwise

- The delta training rule is the task of training an unthresholded perceptron;
 - a *linear unit* for which the output o is given by

$$o(\mathbf{x}) = \mathbf{w}.\mathbf{x}$$

 A linear unit corresponds to the first stage of a perceptron, without the threshold.

Delta Rule

- In order to derive a weight learning rule for linear units,
 - Specify a measure for the *training error* of a hypothesis (weight vector), relative to the training examples.

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

- D is the set of training examples,
- t_d is the target output for training example d,
- \circ o_d is the output of the linear unit for training example d
- E is characterized as a function of w, because the linear unit output
 o depends on this weight vector.

Hypothesis Space

• For a linear unit with two weights, the hypothesis space H is the w_0 , w_1 plane.

Error of different hypotheses.

- Gradient descent search determines a weight vector that minimizes E by
 - Starting with an arbitrary initial weight vector,
 - Repeatedly modifying it in small steps.
 - At each step, the weight vector is altered in the direction that produces the steepest descent along the error surface,
 - This process continues until the global minimum error is reached.

How can we calculate the direction of steepest descent along the error surface?

This direction can be found by computing the derivative of
 E with respect to each component of the vector w.

$$\nabla E(\vec{w}) \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n} \right]$$

• Notice $\nabla E(\vec{w})$ is itself a vector, whose components are the partial derivatives of \vec{E} with respect to each of the w_i .

 The gradient specifies the direction that produces the steepest increase in E. The training rule for gradient descent is,

$$\vec{w} \leftarrow \vec{w} + \Delta \vec{w}$$

where,

$$\Delta \vec{w} = -\eta \nabla E(\vec{w})$$

• The negative sign is present because we want to move the weight vector in the direction that *decreases E*.

 This training rule can also be written in its component form,

$$ec{w} \leftarrow ec{w} + \Delta ec{w}$$
 $w_i \leftarrow w_i + \Delta w_i$ where,

$$\Delta \vec{w} = -\eta \nabla E(\vec{w}) \qquad \Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

• The steepest descent is achieved by altering each component w_i in proportion to $\frac{\partial E}{\partial w}$

• The vector of derivatives $\frac{\partial}{\partial w_i}$ that form the gradient can be obtained by differentiating E from delta rule

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \qquad \frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$o(\mathbf{x}) = \mathbf{w}.\mathbf{x}$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_{d \in D} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x}_d)$$

$$\frac{\partial E}{\partial w_i} = \sum_{d \in D} (t_d - o_d) (-x_{id})$$

- We now have an equation that gives $\frac{\partial}{\partial w_i}$ in terms of
 - the linear unit inputs x_{id} ,
 - outputs o_d ,
 - \circ target values t_d associated with the training examples
- The weight update rule for gradient descent becomes,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) \ x_{id}$$

GRADIENT-DESCENT(training_examples, η)

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero.
 - For each $\langle \vec{x}, t \rangle$ in training_examples, Do
 - Input the instance \vec{x} to the unit and compute the output o
 - For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i$$

• For each linear unit weight w_i , Do

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) \ x_{id}$$

$$w_i \leftarrow w_i + \Delta w_i$$

- Gradient descent is an important general paradigm for learning.
- It is a strategy for searching through a <u>large or infinite</u> hypothesis space that can be applied whenever
 - the hypothesis space contains continuously parameterized hypotheses (e.g., the weights in a linear unit),
 - the error can be differentiated with respect to these hypothesis parameters

- The key practical difficulties in applying gradient descent are:
 - be quite slow (i.e., it can require many thousands of gradient descent steps),
 - b) if there are multiple local minima in the error surface, then there is no guarantee that the procedure will find the global minimum.

Stochastic Gradient Descent

 The idea behind stochastic gradient descent is to approximate the gradient descent search by updating weights incrementally, following the calculation of the error for each individual example.

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_{id}$$

$$\Delta w_i = \eta (t - o) x_i$$

Stochastic Gradient Descent

 One way to view this stochastic gradient descent is to consider a distinct error function defined for each individual training example d as follows.

$$E_d(\vec{w}) = \frac{1}{2}(t_d - o_d)^2$$

- where t, and o_d are the target value and the unit output value for training example d.
- $^{\circ}$ Stochastic gradient descent iterates over the training examples $m{d}$ in $m{D}$,
- at each iteration altering weights according to the gradient

Stochastic Gradient Descent

GRADIENT-DESCENT(training_examples, η)

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each w_i to zero.
 - For each (\vec{x}, t) in training_examples, Do
 - Input the instance \vec{x} to the unit and compute the output o
 - For each linear unit weight w_i, Do

$$w_i \leftarrow w_i + \eta(t-o)x_i$$

The Key Difference

- In stochastic gradient descent, weights are updated upon examining each training example.
- Whereas in standard gradient descent, the error is summed over all examples before updating weights,
 - Standard gradient descent requires more computation per weight update step.
 - Standard gradient descent is often used with a larger step size per weight update than stochastic gradient descent.

The Key Difference

- When there are multiple local minima with respect to $\boldsymbol{E}(\boldsymbol{w})$,
 - The **stochastic gradient descent** can sometimes avoid falling into these local minima,
 - It is due to the reason that it uses various $\Box E_d(\overrightarrow{w})$ rather than $\Box E(\overrightarrow{w})$ to guide its search.

Training Rules

- Perceptron Training Rule: guarantee to succeed if
 - training examples are linearly separable
 - Sufficiently small learning rate

Delta Rule:

- use gradient descent
- converges only asymptotically toward the minimum error hypothesis,
- converges regardless of whether the training data are linearly separable.

Difference between gradient and stochastic gradient Descent Algorithm

Gradient Descent	Stochastic Gradient	
	Descent	
Computes gradient using the whole Training sample	Computes gradient using a single Training sample	
Slow and computationally expensive algorithm	Faster and less computationally expensive than Batch GD	
Not suggested for huge training samples.	Can be used for large training samples.	
Deterministic on nature	Stochastic in nature	

Multilayer Perceptron Architecture

MLP used to describe any general feedforward (no recurrent connections) network

Hidden Layers

OR function

X_1	x_2	У
0	0	0
0	1	1
1	0	1
1	1	1

XOR function

X_1	x_2	У
0	0	0
0	1	1
1	0	1
1	1	0

 $\mathbf{X_1}$

0

()

0

2 hidden nodes 1 output

Weights:

$$w_{11} = w_{12} = 1$$
 $w_{21} = w_{22} = 1$
 $w_{01} = -1.5$
 $w_{02} = -0.5$
 $w_{13} = -1$
 $w_{23} = 1$
 $w_{03} = -0.5$

Piecewise linear classification using an MLP with threshold (perceptron) units

 $\mathbf{X_1}$

 $\mathbf{0}$

0

 $\mathbf{0}$

0

0

0

()

0

2 hidden nodes 1 output

Weights:

$$w_{11} = w_{12} = 1$$
 $w_{21} = w_{22} = 1$
 $w_{01} = -1.5$
 $w_{02} = -0.5$
 $w_{13} = -1$
 $w_{23} = 1$
 $w_{03} = -0.5$

Piecewise linear classification using an MLP with threshold (perceptron) units

- The single perceptron can only express <u>linear decision</u> <u>surfaces</u>.
- The kind of multilayer networks learned by the back propagation algorithm are capable of expressing a rich variety of <u>nonlinear decision surfaces</u>.

What is a good decision boundary?

Example:

 The speech recognition task involves distinguishing among 10 possible vowels, all spoken in the context of "h-d" (i.e., "hid," "had," "head," "hood," etc.).

- What type of <u>unit</u> shall we use as the basis for constructing multilayer networks?
- Multiple layers of cascaded linear units still produce only linear functions, and we prefer networks capable of representing highly nonlinear functions
- The perceptron unit is another possible choice, is it?
 - its discontinuous threshold makes it undifferentiable and hence unsuitable for gradient descent.

AI2002 35

- One solution is the sigmoid unit:
 - a unit very much like a perceptron, but based on a
 - smoothed, differentiable threshold function.
- Like the perceptron, the sigmoid unit
 - first computes a linear combination of its inputs,
 - then applies a threshold to the result.

AI2002 36

Multilayer Networks

- In case of sigmoid unit, however, the threshold output is a continuous function of its input.
- More precisely, the sigmoid unit computes its output o as,

$$o = \sigma(\vec{w} \cdot \vec{x})$$

$$\sigma(y) = \frac{1}{1 + e^{-y}}$$

• σ is often called the sigmoid function or, alternatively, the logistic function.

Sigmoid Threshold Unit

Sigmoid Function

- Sigmoid function maps a very large input domain to a small range of outputs, it is often referred to as the squashing function of the unit.
- The sigmoid function has the <u>useful property</u> that its derivative is easily expressed in terms of its output.

$$\sigma(y) = \frac{1}{1 + e^{-y}}$$

$$\frac{d\sigma(y)}{dy} = \sigma(y) \cdot (1 - \sigma(y))$$

Sigmoid Function

- The term e^{-y} in the sigmoid function definition is sometimes replaced by $e^{-k.y}$
 - where k is some positive constant that determines the steepness.
- The function tanh is also sometimes used in place of the sigmoid function.

The Back Propagation algorithm has two

- hases: Forward pass phase: computes 'functional signal', feed forward propagation of input pattern signals through network
- Backward pass phase: computes 'error signal', propagates the error backwards through network starting at output units
 - (where the error is the difference between actual and desired output values)

42 AI2002

Input patterns

Conceptually: Forward Activity - Backward Error

- The back propagation algorithm learns the weights for a multilayer network,
 - given a network with a fixed set of units and interconnections.
- It employs gradient descent to attempt to minimize the squared error between the network output values and the target values for these outputs.
- As we are considering networks with multiple output units, we begin by redefining E to sum the errors over all of the network output units.

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2$$

• where **outputs** is the set of output units in the network, and t_{kd} and O_{kd} are the target and output values associated with the kth output unit and training example d.

BACKPROPAGATION(training_examples, η , n_{in} , n_{out} , n_{hidden})

Each training example is a pair of the form (\vec{x}, \vec{t}) , where \vec{x} is the vector of network input values, and \vec{t} is the vector of target network output values.

 η is the learning rate (e.g., .05). n_{in} is the number of network inputs, n_{hidden} the number of units in the hidden layer, and n_{out} the number of output units.

The input from unit i into unit j is denoted x_{ji} , and the weight from unit i to unit j is denoted w_{ji} .

- Create a feed-forward network with n_{in} inputs, n_{hidden} hidden units, and n_{out} output units.
- Initialize all network weights to small random numbers (e.g., between -.05 and .05).
- Until the termination condition is met, Do

For each (\vec{x}, \vec{t}) in training_examples, Do

Propagate the input forward through the network:

1. Input the instance \vec{x} to the network and compute the output o_u of every unit u in the network.

Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term δ_k

$$\delta_k \leftarrow o_k(1-o_k)(t_k-o_k)$$

3. For each hidden unit h, calculate its error term δ_h

$$\delta_h \leftarrow o_h(1-o_h) \sum_{k \in outputs} w_{kh} \delta_k$$

4. Update each network weight w_{ji}

$$w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$$

where

$$\Delta w_{ji} = \eta \, \delta_j \, x_{ji}$$

Reading Material

- Artificial Intelligence, A Modern Approach
 Stuart J. Russell and Peter Norvig
 - Chapter 18.
- Machine Learning
 Tom M. Mitchell
 - Chapter 4.