# MS Excel spreadsheet for "Wing Box sizing tool – worked example"

#### Also:

- ✓ Q & A running throughout the session (Join at *menti.com* & use code 18 66 63 12)
- ✓ Brief comments on questions asked on "Ed Discussion"

Dr-Ing Demetrios T. Venetsanos

# Timeline

Department of AERONAUTICS

### **Design Sessions**

Introduction to Airframes

Civil Airframes

Military Airframes



| Design Sessions                                                |   |                                                     |  |  |
|----------------------------------------------------------------|---|-----------------------------------------------------|--|--|
| Workshop 1: Loads & Fatigue Workshop 2: Lifting Surface Design |   |                                                     |  |  |
| Types of loading                                               |   | Wing structural layout                              |  |  |
| Symmetric Manoeuvre Loads                                      |   | General Aviation Wings                              |  |  |
| Asymmetric Loads                                               | П | Commercial Aircraft Wings                           |  |  |
| Analysis of Lifting Surfaces                                   |   | Design Options                                      |  |  |
| Analysis of Fuselages                                          |   |                                                     |  |  |
| Loading action work example                                    |   | Design of Members                                   |  |  |
|                                                                | П | Instability of compression covers - Flat plates     |  |  |
| Fatigue - Introduction                                         |   | Instability of compression covers - Curved plates   |  |  |
| Design Methodology                                             |   | Skin-stringer panels - Introduction                 |  |  |
| Designing for Fatigue                                          | П | Skin-stringer panels - Buckling & catchpole diagram |  |  |
| Fatigue Life                                                   |   | Skin-stringer panels - FARRAR efficiency            |  |  |
| Safe ty Factors                                                |   | Spar Design                                         |  |  |
| Miner's Rule & Failure Curves                                  |   | Rib Design                                          |  |  |
| Examples                                                       |   |                                                     |  |  |
| Worked Example                                                 |   |                                                     |  |  |
|                                                                |   |                                                     |  |  |

| Design Sessions                             |                                                    |  |  |
|---------------------------------------------|----------------------------------------------------|--|--|
| Workshop 3: Fuselage Design                 | Workshop 4: Secondary Structure & Composite Design |  |  |
| Introduction to tubular fuselage structures | Secondary Structure                                |  |  |
| Fuselage stressed-skin design               | Cutouts                                            |  |  |
| Design of light frames                      | Joints & Fittings                                  |  |  |
| Design of he avy frames                     | Engine Mounts                                      |  |  |
|                                             |                                                    |  |  |
| Fuselage design tool                        | Composite Component Design                         |  |  |
|                                             | Introduction to Composites                         |  |  |
|                                             | Composite structures                               |  |  |
|                                             | Composite Material Handbook                        |  |  |
|                                             | Composite Airframes                                |  |  |
|                                             | Composite Design - Part 1                          |  |  |
|                                             | Composite Design - Part 2                          |  |  |
|                                             | Buckling of composites                             |  |  |
|                                             | Sandwich panels                                    |  |  |
|                                             |                                                    |  |  |
|                                             | Worked example                                     |  |  |

We are HERE





## Without stringers:

- ✓ top & bottom skin carry bending moment Mx
- ✓ top skin in tension & bottom skin in compression
- ✓ ETB applies with skin thickness t, box width c, and box height H
- ✓ Global (Euler) buckling is considered



**With** stringers (A<sub>s</sub>: cross-sectional area of each stringer):

- ✓ top & bottom skin AND stringers carry bending moment Mx
- ✓ top skin/stringers in tension & bottom skin/stringers in compression
- ✓ panel of width w defined as part of skin between stringers
- stringers smeared onto skin-> skin effective thickness  $t_{eff}$ :  $t_{eff} = t + \left(\frac{A_s}{b}\right)$
- $\checkmark$  ETB applies with **effective thickness**  $t_{\text{eff}}$ , **panel width c**, box height H
- ✓ Global (Euler) buckling is considered
- ✓ Local buckling modes are considered

## Skin (without stringers)

At wing station examined:

(pitch-up M positive: top skin in compression & bottom skin in tension)

*M*: bending moment

*b*<sub>2</sub>: wing box height

c: wing box width

t: skin thickness (can be different for top & bottom skin)

n: number of panels (skin strips between stringers)

b<sub>1</sub>: panel width

F: axial load due to bending moment M

N: axial load (due to M) per unit length



Optimum design: buckling and yielding occur simultaneously

Width considered: wing box width c

Axial Load due to M: 
$$F = \left(\frac{M}{b_2}\right)$$

Axial Load (due to M) per unit length:  $N = \left(\frac{F}{c}\right) = \left(\frac{M}{c b_2}\right)$ 

Axial stress (due to M): 
$$\sigma = \left(\frac{F}{A}\right) = \left(\frac{M}{b_2 c t}\right) = \left(\frac{N}{t}\right)$$

Critical global buckling stress:  $\sigma_{crit,gb} = 3.62 E \left(\frac{t}{c}\right)^2$ 

Best material efficiency:  $\sigma_{crit,gb} = \sigma$ 

Skin thickness required (no stringers):

$$3.62 E\left(\frac{t}{c}\right)^{2} = \left(\frac{N}{t}\right) \to t = \sqrt[3]{\left(\frac{N c}{3.62 E}\right)} = \sqrt[3]{\left(\frac{M e}{e b_{2} 3.62 E}\right)} = \sqrt[3]{\left(\frac{M}{3.62 E b_{2}}\right)}$$

#### **Imperial College** London

## Skin (with stringers)

Department of **AERONAUTICS** 

At wing station examined:

**M**: bending moment

wing box height b<sub>2</sub>:

wing box width

skin thickness (can be different for top & bottom skin)

number of panels (skin strips between stringers)

b<sub>1</sub>: panel width

axial load due to bending moment M

N: axial load (due to M) per unit length

pitch-up M positive: top skin in compression & bottom skin in tension







Panel Effective Thickness 
$$t_{eff} = t + \left(\frac{A_s}{b}\right)$$

Axial Load due to M: 
$$F = \left(\frac{M}{b_2}\right)$$

Axial Load (due to M) per unit length: 
$$N = \left(\frac{F}{c}\right) = \left(\frac{M}{c \ b_2}\right)$$

Axial stress (due to M): 
$$\sigma = \left(\frac{F}{A}\right) = \left(\frac{M}{b_2 \ c \ t_{eff}}\right) = \left(\frac{N}{t_{eff}}\right)$$

Critical global buckling stress: 
$$\sigma_{crit,gb} = 3.62 E \left(\frac{t_{eff}}{c}\right)^2$$

Best material efficiency:  $\sigma_{crit,gb} = \sigma = \sigma_{localbuckl}$ 

First estimation of skin thickness (with stringers): 
$$3.62 \ E\left(\frac{t_{eff}}{b}\right)^2 = \left(\frac{N}{t_{eff}}\right) \rightarrow t_{eff} = \sqrt[3]{\left(\frac{N \ b}{3.62 \ E}\right)} = \sqrt[3]{\left(\frac{M \ b_1}{c \ b_2 \ 3.62 \ E}\right)}$$

!! Apply Farrar approach !!





Fig.2.

Contours of  $f\sqrt{\frac{L}{PE_T}}$  for Z-section stringers where initial buckling coincides with failure.

P .... compressive end load carried per inch width of skin-stringer combination

L .... rib or frame spacing.

T .... thickness of skin with same cross sectional area as skin- stringer combination

E .... compression Young's modulus of skin-stringer material.

 $E_T$  ... tangent modulus of skin-stringer material.

f .... mean stress realised by skin and stringers at failure (Note: f=P/T)

F.... Farrar coefficient

- ✓ For a given geometry, calculate the ratios A<sub>s</sub>/bt and t<sub>s</sub>/t
- ✓ From the graph, read the associated value F for the Farrar coefficient
- ✓ Use Eq.(1) to estimate the mean stress by skin and stringer at failure

$$f = F \sqrt{P \frac{E_T}{L}}$$

THE DESIGN OF COMPRESSION STRUCTURES FOR MINIMUM WEIGHT D. J. FARRAR, M.A., A.F.R.Ae.S

Paper received March 1949.

Mr. Farrar is Assistant Chief Designer, Aircraft Division, Bristol Aeroplane Co. Ltd.