Package 'plantphysioR'

March 27, 2024

```
Title Fundamental Formulas for Plant Physiology
```

Version 1.0.0

```
Description Functions tailored for scientific and student communities involved in plant science research. Functionalities encompass estimation chlorophyll content according to Arnon (1949) <doi:10.1104/pp.24.1.1>, determination water potential of Polyethylene glycol(PEG)6000 as in Michel and Kaufmann (1973) <doi:10.1104/pp.51.5.914> and functions related to estimation of yield related indices like Abiotic tolerance index as given by Moosavi et al.(2008)<doi:10.22059/JDESERT.2008.27115>, Geometric mean productivity (GMP) by Fernandez (1992) <ISBN:92-9058-081-X>, Golden Mean by Moradi et al.(2012)<doi:10.14207/ejsd.2012.v1n3p543>, HAM by Schneider et al.(1997)<doi:10.2135/cropsci1997.0011183X003700010007x>,MPI and TOL by Hossain etal., (1990)<doi:10.2135/cropsci1990.0011183X003000030030x>, RDI by Fischer et al. (1979)<doi:10.1071/AR9791001>,SSI by Fisher et al.(1978)<doi:10.1071/AR9780897>, STI by Fernandez (1993)<doi:10.22001/wvc.72511>,YSI by Bouslama & Schapaugh (1984)<doi:10.2135/cropsci1984.0011183X002400050026x>, Yield index by Gavuzzi et al.(1997)<doi:10.4141/P96-130>.
```

License GPL (>= 3)

URL https://github.com/rameshram96/plantphysioR

BugReports https://github.com/rameshram96/plantphysioR/issues

Depends R (>= 2.10)

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

NeedsCompilation no

Author Ramash Ramasamy [aut, cre] (https://orcid.org/0000-0002-5433-1417)

Maintainer Ramesh Ramasamy <ramesh.rahu96@gmail.com>

Repository CRAN

Date/Publication 2024-03-27 10:10:03 UTC

2 all_indices

R topics documented:

Index		17
	Y_index	16
	YSI	
	YR_ratio	
	yield_reduction	
	yield_data	
	tol_index	
	st_index	
	ss_index	
	R_drought_index	
	peg_6000	
		10
	HAM	9
	Golden_mean	8
	gmp	8
	DRI	7
	chl_total	6
	chl_b	6
	chl_a	5
	caro_total	4
	calculate_PEG_6000	4
	ATI	3
	all_indices	2

all_indices All indices combined

Description

Function to all the indices related to biomass/ yield under different growth conditions

Usage

```
all_indices(Yp, Ys, Mp, Ms)
```

Arguments

үр	Yield under control condition
Ys	Yield under stress condition
Мр	Mean yield of all the genotypes under control condition
Ms	Mean yiels of all the genotyps under Stress condition

Value

Indices Combined

ATI 3

Examples

```
Mp <- mean(yield_data$Yp)
Ms <- mean(yield_data$Ys)
Yp <- yield_data$Yp
Ys <- yield_data$Ys
all_indices(Yp, Ys, Mp, Ms)</pre>
```

ATI

Abiotic Tolerance Index (ATI)

Description

Calculate abiotic tolerance index according to Moosavi et al. (2008)

Usage

```
ATI(Yp, Ys, Mp, Ms)
```

Arguments

Yp	Yield under control condition
Ys	Yield under Stress condition
Мр	Mean yield of all the genotypes under stress condition
Ms	Mean yield of all the genotypes under control condition

Value

ATI

References

Moosavi SS, Samadi YB, Naghavi MR, Zali AA, Dashti H, Pourshahbazi A (2008) Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert. 12: 165-178.

```
ATI(500, 350, 400, 300)
```

4 caro_total

calculate_PEG_6000

Calculate Polyethylene glycol (PEG) 6000 requirement

Description

Calculate Amount of PEG6000 required to reach desired water potential at given temperature

Usage

```
calculate_PEG_6000(C, bar)
```

Arguments

C Temperature of solution in degree centigrade

bar Water potential in bars

Value

PEG6000 required

References

Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant physiology, 51(5), 914-916.

Examples

```
calculate_PEG_6000(25, -4)
```

caro_total

Total carotenoids content

Description

Calculate total carotenoids using Method by Lichtenthaler (1987)

Usage

```
caro_total(A470, A663, A646, fresh_weight)
```

Arguments

A470	Absorbance at 470nm
A663	Absorbance at 663nm
A646	Absorbance at 646nm

fresh_weight Fresh weight of the sample used in grams

chl_a 5

Value

Carotenoids concentration in µg/ml

References

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology (Vol. 148, pp. 350-382). Academic Press.

Examples

```
caro_total(0.7, 0.041, 0.025, 1)
```

chl_a

Chlorophyll'a' Concentration by Arnon method

Description

Calculates Chlorophyll a Concentration according to Arnon(1949) method

Usage

```
chl_a(A663, A645, v, w)
```

Arguments

V	Final volume of solvent used in ml
A645	Absorbance at 645nm
A663	Absorbance at 663nm

w Fresh weight of the sample used in grams

Value

Chlorophyll a in mg/g of fresh weight

References

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 24(1), 1. doi:10.1104/pp.24.1.1

```
chl_a(0.025, 0.041, 15, 1)
```

6 chl_total

chl_b

Chlorophyll b concentration

Description

Calculates Chlorophyll b Concentration according to Arnon(1949) method

Usage

```
chl_b(A645, A663, v, w)
```

Arguments

A645	Absorbance at 645nm
A663	Absorbance at 663nm
V	Final volume of solvent used in ml

w Fresh weight of the sample used in grams

Value

Chlorophyll b in mg/g of fresh weight

References

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 24(1), 1. doi:10.1104/pp.24.1.1

Examples

```
chl_b(0.041, 0.025, 15, 1)
```

chl_total

Total chlorophyll (a+b) concentration

Description

Calculate Total chlorophyll (a+b) concentration using method by Arnon (1949)

Usage

```
chl_total(A645, A663, v, w)
```

DRI 7

Arguments

A645	Absorbance at 645nm
A663	Absorbance at 663nm

v Final volume of solvent used in ml

w Fresh weight of the sample used in grams

Value

Total chlorophyll (a+b) in mg/g of fresh weight

References

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 24(1), 1. doi:10.1104/pp.24.1.1

Examples

```
chl_total(0.041, 0.025, 15, 1)
```

DRI

Drought resistant index (DRI)

Description

The genotype with high values of this index will be more suitable for drought stress condition

Usage

```
DRI(Yp, Ys)
```

Arguments

Yp Yield under control condition
Ys Yield under stress condition

Value

DRI

```
DRI(500, 350)
```

8 Golden_mean

gmp

Geometric mean productivity (GMP) by Fernandez (1992)

Description

The genotype with high values of this index will be more desirable

Usage

```
gmp(Yp, Ys)
```

Arguments

Yp Yield under control condition
Ys Yield under stress condition

Value

GMP

References

Fernandez, G. C. (1993). Effective selection criteria for assessing plant stress tolerance.

Examples

```
gmp(5, 3)
```

Golden_mean

Golden Mean (GM)

Description

Calculates Golden mean value using Moradi et al.,(2012)

Usage

```
Golden_mean(Yp, Ys)
```

Arguments

Yp Yield under control condition
Ys Yield under stress condition

Value

GM

HAM 9

References

Moradi H, Akbari GA, Khorasani SK, Ramshini HA (2012) Evaluation of drought tolerance in corn (Zea Mays L.) new hybrids with using stress tolerance indices. Eur J Sustain Dev 1. (3): 543-560

Examples

```
Golden_mean(500, 350)
```

HAM

Harmonic Mean

Description

Harmonic Mean

Usage

HAM(Yp, Ys)

Arguments

Yp Yield under control condition
Ys Yield under stress condition

Value

Harmonic mean

References

Schneider, K. A., Rosales-Serna, R., Ibarra-Perez, F., Cazares-Enriquez, B., Acosta-Gallegos, J. A., Ramirez-Vallejo, P., ... & Kelly, J. D. (1997). Improving common bean performance under drought stress. Crop science, 37(1), 43-50.

Examples

HAM(500, 350)

10 peg_6000

mp_index

Mean productivity Index (MPI)- by Hossain et al., (1990)

Description

The genotype with high values of this index will be more desirable

Usage

```
mp_index(Yp, Ys)
```

Arguments

Yp Yield under control condition
Ys Yield under stress condition

Value

Mean productivity Index

References

Hossain, A. B. S., Sears, R. G., Cox, T. S., & Paulsen, G. M. (1990). Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Science, 30(3), 622-627.

peg_6000

Water potential of Polyethylene glycol (PEG) 6000

Description

Calculate the corresponding water potential of PEG6000 when dissolved in 11 of water

Usage

```
peg_6000(peg, C)
```

Arguments

peg Amount PEG600O in grams

C Temperature of the solution in degree centigrade

Value

Water potential in bars

R_drought_index 11

References

Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant physiology, 51(5), 914-916.

Examples

```
peg_6000(20, 25)
```

R_drought_index

Relative Drought Index (RDI)

Description

Calculates relative drought index according to Fisher and Wood (1979)

Usage

```
R_drought_index(Yp, Ys, Mp, Ms)
```

Arguments

Yp	Yield under control condition
Ys	Yield under stress condition
Мр	Mean Yield of all the genotypes under control Condition
Ms	Mean Yield of all the genotypes under stress Condition

Value

RDI

References

Fischer RA, Wood JT (1979) Drought resistance in spring wheat cultivars III. Yield association with morphological traits. Aust J Agr Res. 30: 1001-1020

```
R_drought_index(500, 350, 400, 300)
```

12 st_index

	٠		
SS	1	ทด	eχ

Stress susceptibility index (SSI) by Fischer and Maurer (1978)

Description

The genotype with high SSI < 1 are more resistant to drought stress conditions

Usage

```
ss_index(Yp, Ys, Ms, Mp)
```

Arguments

Yp	Yield under control condition
Ys	Yield under Stress condition

Ms Mean yield of all the genotypes under control condition

Mp Mean yield of all the genotypes under stress condition

Value

SSI

References

Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), 897-912.

Examples

```
ss_index(500, 350, 450, 370)
```

st_index

Calculate Stress tolerance index (STI) suggested by Fernandez (1992)

Description

The genotype with high STI values will be tolerant to drought

Usage

```
st_index(Yp, Ys)
```

Arguments

Yp	Yield under control condition
Ys	Yield under stress condition

tol_index 13

Value

STI

References

Fernandez, G. C. (1993). Effective selection criteria for assessing plant stress tolerance.

Examples

```
st_index(500, 350)
```

tol_index

Tolerance index -TOL by Hossain et al., (1990)

Description

Higher the TOL value indicates the genotype is tolerant to stress

Usage

```
tol_index(Yp, Ys)
```

Arguments

Yp Yield under control condition

Ys Yield under stress condition

Value

TOL

References

Hossain, A. B. S., Sears, R. G., Cox, T. S., & Paulsen, G. M. (1990). Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Science, 30(3), 622-627.

```
tol_index(500, 350)
```

14 yield_reduction

yield_data

Example data

Description

Yield data of rice in kg/ha under two different growth conditions

Usage

```
yield_data
```

Format

A data frame with 50 rows and 3 variables:

Genotype character Genotype

Yp integer Yield under control condition

Ys integer Yield under drought condition

Source

Simulated data, no external source were used

References

No external reference

yield_reduction

Yield Reduction

Description

Claculate percent yield reduction over control

Usage

```
yield_reduction(Yp, Ys)
```

Arguments

Yp Yield under control condition
Ys Yield under stress condition

Value

YR

YR_ratio 15

Examples

```
yield_reduction(500, 350)
```

YR_ratio

Yield reduction ratio (YR)

Description

lesser the YR value more stable under stress conditions

Usage

```
YR_ratio(Yp, Ys)
```

Arguments

Yp Yield under control condition
Ys Yield under stress condition

Value

YR

Examples

YR_ratio(500, 350)

YSI

Yield reduction index or Yield Stability Index (YSI)

Description

Higer YSI value depicts that particular genotype is stable under both normal and stressed conditions

Usage

```
YSI(Yp, Ys)
```

Arguments

Yp Yield under control condition
Ys Yield under stress condition

Value

YSI

16 Y_index

References

Bouslama, M., & Schapaugh Jr, W. T. (1984). Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop science, 24(5), 933-937.

Examples

```
YSI(500, 350)
```

Y_index

Yield index (YI)

Description

Yield index (YI)

Usage

```
Y_index(Ys, Ms)
```

Arguments

Ys Yield under stress condition

Ms Mean Yield of all the genotypes under stress Condition

Value

Yield Index

References

Gavuzzi, P., Rizza, F., Palumbo, M., Campanile, R. G., Ricciardi, G. L., & Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian journal of plant science, 77(4), 523-531.

```
Y_index(500, 300)
```

Index

```
\ast datasets
    yield_data, 14
\verb|all_indices|, 2
ATI, 3
calculate_PEG_6000,4
caro_total, 4
chl_a, 5
chl_b, 6
chl_total, 6
DRI, 7
gmp, 8
{\tt Golden\_mean,\,8}
HAM, 9
mp\_index, 10
peg_6000, 10
{\tt R\_drought\_index}, 11
ss_index, 12
st\_index, 12
tol_index, 13
Y_index, 16
yield_data, 14
yield\_reduction, 14
YR_ratio, 15
YSI, 15
```