Simulation Exercise: Exponential Distributions

Kenneth Fajardo

Overview

This project investigates the variations of the exponential distribution as the population size approaches a large number 1000. The probability distribution is given by

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

where λ is set to 0.2.

Initialization

The data consists of the means of randomly generated probabilities using the $regexp(n, \lambda)$ function, for a population size of 1000. We used a for loop for the calculation. λ is set to 0.2. For consistency, we also set the random seed to 1.

```
set.seed(1)
data <- c()  # create blank vector
n <- 1000  # population size
lambda <- 0.2  # assign lambda

for(i in seq_along(1:1000)){
    # calculate and store the mean of the values randomly generated
    # over the exponential distribution
    data <- rbind(data, mean(rexp(n, lambda)))
}</pre>
```

1. Show the sample mean and compare it to the theoretical mean of the distribution.

The theoretical mean μ in an exponential distribution is given by

$$\mu = \frac{1}{\lambda}$$

Substituting the value of λ , we get $\mu = 5$

```
1/lambda
```

[1] 5

Now, for calculating the sample mean, we only need the *mean* function in R.

```
mean(data)
```

```
## [1] 5.00393
```

We see that the sample mean is approximately equal to the theoretical mean $(\mu \approx 5)$. To further illustrate, see the figure below.

Illustration of the Mean in an Exponential Distribution

2. Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution. The theoretical variance σ^2 in an exponential distribution is given by

Means of Exponential Distribution Values

$$\sigma^2 = \frac{1}{\lambda^2 n}$$

Substituting the value of λ , we get $\sigma^2 = 25$

```
1/(lambda^2 *n)
```

[1] 0.025

R has a built-in var function for calculating variance. Using it on our data, we get

```
var(data)
```

```
## [,1]
## [1,] 0.02667744
```

We can see that the **theoretical variance** is approximately equal to the sample variance ($\sigma^2 \approx 0.025$).

3. Show that the distribution is approximately normal.

One way to show normality is through histograms. Using the function *hist*, we can see the distribution of the means of exponential values. We, then, overlay the histogram with a bell curve, representing normal distribution.

Simulation of Exponential Distribution with n=1000

We can observe that the frequencies of the means follow a normal distribution. This is true according to the Central Limit Theorem when n approaches large numbers.