•	Assignment for point to point and Collective communications in MPI
1.	Write a program in MPI to print total number of process and rank of each process.
2.	Write a simple C++ program to multiply two matrices of size MxN and NxP.
3.	Write a program in MPI where even ranked process prints Hello and odd ranked process prints World.
4.	Write a program in MPI to simulate simple calculator. Perform each operation using different process in parallel.
5.	Write a program in C++ to count the words in a file and sort it in descending order of frequency
	of words i.e. highest occurring word must come first and least occurring word must come last.
6.	Write a MPI program to find the prime numbers between 1 and 100 using two processes.
7.	Write a MPI program using standard send. The sender process sends a number to the receiver. The second
	process receives the number and prints it.
8.	Write a MPI program using synchronous send. The sender process sends a word to the receiver.
	The second process receives the word, toggles each letter of the word and sends it back to the
	first process. Both process use synchronous send operations.
9.	Write a MPI program where the master process (process 0) sends a number to each of the slaves
	and the slave processes receives the number and prints it. Use standard send.
10.	Write a MPI program to add an array of size N using two processes . Print the result in the root
	process. Investigate the amount of time taken by each process.
11.	Write a MPI program to read N elements of the array in the root process (process 0) where N is
	equal to the total number of process. The root process sends one value to each of the slaves. Let
	even ranked process find square of the received element and odd ranked process find cube of
	received element. Use Buffered send.
12.	Write a MPI program to read an integer value in the root process. Root process sends this value
	to process1, Process1 sends this value to Process2 and so on. Last process sends the value back
	to root process. When sending the value each process will first increment the received value by
	one. Write the program using point to point communication routines.
13.	Write a MPI program to read N elements of an array in the root. Search a number in this array
	using root and another process. Print the result in the root.

14.	Write a MPI program to read N elements of an array in the master process. Let N process
	including master process check the array values are prime or not.
15.	Write a MPI program to read value of N in the root process. Using N processes including root find
13.	
	out 1!+(1+2)+3!+(1+2+3+4)+5!+(1+2+3+4+5+6)+hl or (1+2++n) depending
	on whether n is odd or even and print the result in the root process.
16.	Write a MPI program to read N values of the array in the root process. Distribute these N values among N
	processes. Every process finds the square of the value it received. Let every process return these value to
	the root and root process gathers and prints the result. Use collective communication routines.
17.	Write a MPI program to read N values in the root process. Root process sends one value to each
	process. Every process receives it prints the factorial of that number. Use N number of processes.
18.	Modify the above program such that every process returns the factorial to root process. Root
	process gathers the factorial and finds sum of it.
19.	Write a MPI program to read a value M and NxM elements in the root process. Root process
	sends M elements to each process. Each process finds average of M elements it received and
	sends these average values to root. Root collects all the values and finds the total average. Use
	collective communication routines. Use N number of processes.
20	Write a MPI Program to read two strings S1 and S2 of same length in the root process. Using N
	process including the root (string length is evenly divisible by N), produce the concatenated
	resultant string as shown below. Display the resultant string in the root process. Write the
	program using Collective communication routines.
	Eg: String S1: string String S2: length Resultant String : slternigntgh
21	Write a MPI Program to read a string of length M in the root process. Using N processes (N
	evenly divides M) including the root toggle the characters and find the ASCII values of these
	toggled characters. Display the toggled characters and ASCII values in the root process.
22	Write a program to read a value M and NxM number of elements in the root. Using N processes
	do the following task. Find the square of first M numbers, Find the cube of next M numbers and
	so on. Print the results in the root.