NEW SOLUTIONS OF $a^{p-1} \equiv 1 \pmod{p^2}$

PETER L. MONTGOMERY

Dedicated to the memory of my undergraduate advisor, D. H. Lehmer

ABSTRACT. We tabulate solutions of $a^{p-1} \equiv 1 \pmod{p^2}$ where $2 \le a \le 99$ and where p is an odd prime, $p < 2^{32}$.

1. Introduction and summary

Some number-theoretic questions such as Fermat's conjecture [4] require primes p satisfying

$$a^{p-1} \equiv 1 \pmod{p^2}$$

for given a not a power. Brillhart, Tonascia, and Weinberger [2] list all solutions of (1) for $2 \le a \le 99$ and $3 \le p < 10^6$, plus some solutions for higher p. Lehmer [3] subsequently extended the a=2 search to $p < 6 \cdot 10^9$, finding only the known solutions p=1093 and p=3511. Aaltonen and Inkeri [1] list solutions for prime a < 1000 and $p < 10^4$. Table 1 (next page) extends the table in [2] to $p < 2^{32}$, giving 23 new solutions. Included are the first solutions for a=66 and a=88.

The table in [2] identifies where (1) holds modulo p^3 , with the only solutions for $a \le 99$ and p > 7 being (a, p) = (42, 23) and (68, 113). This search found no more such solutions.

The pair (a, p) = (5, 1645333507) satisfies $p^{a-1} \equiv 1 \pmod{a^2}$ as well as (1). This supplements the pairs (2, 1093), (3, 1006003), and (83, 4871) listed in [1, p. 365].

The largest known p for which multiple a satisfy (1) with $2 \le a \le 99$, a not a power, is p = 331, for which a = 18 and a = 71 satisfy (1).

The Fibonacci sequence is defined by $F_0=0$, $F_1=1$, and $F_n=F_{n-1}+F_{n-2}$ for $n\geq 2$. If $p\neq 5$, then $F_{p-\epsilon}\equiv 0\pmod p$, where $\epsilon=+1$ if $p\equiv \pm 1\pmod 5$ and $\epsilon=-1$ if $p\equiv \pm 2\pmod 5$. Williams [5, pp. 85-86] reports no solution of $F_{p-\epsilon}\equiv 0\pmod p^2$ with $p<10^9$. This search found no such solution with $p<2^{32}$.

Received by the editor June 21, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11-04; Secondary 11D61.

Key words and phrases. Diophantine equation, Fermat quotient, Fibonacci congruence.

This work was supported by U.S. Army fellowship DAAL03-89-G-0063. Thanks to the Department of Mathematics at UCLA and to my graduate advisor David G. Cantor for supplying the computers on which this work was done.

TABLE 1. Solutions of $a^{p-1} \equiv 1 \pmod{p^2}$ with $2 \le a \le 99$ and $3 \le p < 2^{32}$. New solutions are in **bold** font

\overline{a}	Values of p	a	Values of p
	1093 3511	1	3 30109 7278001
1 1	11 1006003	1	647 7079771
1 - 1	20771 40487 53471161 1645333507		5 47699 86197
6	66161 534851 3152573		131 42250279
7	5 491531		2777
10	3 487 56598313	60	29
111	71	61	
12	2693 123653		3 19 127 1291
	863 1747591		23 29 36713 401771
14	29 353		17 163
1 1	29131	1	89351671
	3 46021 48947		7 47 268573
	5 7 37 331 33923 1284043		5 7 19 113 2741
	3 7 13 43 137 63061489		19 223 631 2503037
20	281 46457 9377747 122959073		13 142963
21			3 47 331
	13 673 1595813 492366587	72	
23	13 2481757 13703077 ¹	73	3
	5 25633		5
	3 5 71 486999673	75	17 43 347 31247
)	3 19 23	76	5 37 1109 9241 661049
29		77	32687
30	7 160541	78	43 151 181 1163 56149 4229335793
31	7 79 6451 2806861	79	7 263 3037 1012573 60312841
33	233 47441	80	3 7 13 6343
34		82	3 5
	3 1613 3571		4871 13691 315746063
37	3 77867		163 653 20101
38	17 127	II .	11779
39	8039		68239
40	11 17 307 66431	l i	1999 48121
41	29 1025273 138200401		2535619637
42	23	!!	3 13
	5 103	90	2 202
	3 229 5851	II '	3 293
	1283 131759 157635607		727 383951 12026117 18768727 1485161969
46	3 829		5 509 9221 81551 11 241 32143 463033
47	7 257		2137 15061
	7 257 7		109 5437 8329 12925267
51	5 41		7 2914393
1	461 1228488439	11	3 28627 61001527
53	3 47 59 97		5 7 13 19 83
	19 1949	""	3 / 13 17 03
34	17 1747	ll	

¹Incorrectly printed as "1370377" in [2].

2. Programming considerations

As in [2] and [3], it suffices to compute the last two digits of the base p representation of each intermediate result. Since (1) is equivalent to $a^{(p-1)/2} \equiv \pm 1 \pmod{p^2}$, we can save a squaring mod p^2 .

The programs in [2] fixed the base a and looped through values of p. One can instead check all values of a together for a given p. Then the value of $a^{(p-1)/2} \pmod{p^2}$ need be calculated the long way (binary method of exponentiation) only for prime a: if $a = a_1 a_2$ where

$$a_1^{(p-1)/2} \equiv \pm (1+pb_1) \pmod{p^2}$$
 and $a_2^{(p-1)/2} \equiv \pm (1+pb_2) \pmod{p^2}$,

then $a^{(p-1)/2} \equiv \pm (1 + p(b_1 + b_2)) \pmod{p^2}$. The latter computation reduces to an addition modulo p. Since $\pi(100) = 25$ whereas there are 87 nonpowers below 100, this represents a potential 70% savings.

The search for $p < 2^{31}$ was done on a DECstation 3100 (MIPS architecture). To compute a product $ab \mod p$ where $0 \le a$, b < p but where $ab \mod p$ exceed the largest single-precision integer, the program computed $q = a \cdot b \cdot \frac{1+\epsilon}{p}$, using floating-point arithmetic, where $2^{-50} \ll \epsilon \ll 1/p$. The relative error in any floating-point computation is at most 2^{-52} (53-bit mantissas), ensuring that

$$\frac{ab}{p} \le q \le \frac{ab}{p}(1+1/p) < \frac{ab}{p} + 1$$

and hence that $\lfloor \frac{ab}{p} \rfloor \in \{ \lfloor q \rfloor, \lfloor q \rfloor - 1 \}$; the choice is made using the sign of $r = ab - p \lfloor q \rfloor$. Since $-2^{31} < -p \le r < p < 2^{31}$, this r can be computed by integer arithmetic modulo 2^{32} .

This technique fails for $p > 2^{31}$ unless the program uses 64-bit arithmetic to compute the tentative remainder (it would also require converting unsigned 32-bit integers to/from floating point). Instead, the computations for $p > 2^{31}$ were done on a NeXT with a Motorola 68040 chip. The 68040 can divide a 64-bit unsigned integer by a 32-bit unsigned integer, obtaining quotient and remainder in one instruction (if the quotient does not overflow), but the MIPS architecture lacks such. The 3100 tried all primes in an interval of length 10 million per hour. The 68040 computations took slightly longer, searching an interval of length 7 million per hour.

BIBLIOGRAPHY

- 1. M. Aaltonen and K. Inkeri, Catalan's equation $x^p y^q = 1$ and related congruences, Math. Comp. **56** (1991), 359-370.
- J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, Computers in Number Theory (A. O. L. Atkin and B. J. Birch, eds.), Academic Press, London and New York, 1971, pp. 213–222.
- 3. D. H. Lehmer, On Fermat's quotient, base two, Math. Comp. 36 (1981), 289-290.
- 4. Daniel Shanks and H. C. Williams, Gunderson's function in Fermat's last theorem, Math. Comp. 36 (1981), 291-295.
- 5. H. C. Williams, The influence of computers in the development of number theory, Comput. Math. Appl. 8 (1982), 75-93.

Department of Mathematics, Oregon State University, Corvallis, Oregon 97331-4605

E-mail address: pmontgom@math.orst.edu