Teorie grafů - Definice

Neorientovaný graf:

<u>Def. 1:</u> Neorientovaný graf je dvojice G=(V,E),kde $V\neq\emptyset$ je množina vrcholů a $E\subseteq$

množina všech
2-prvkových
podmnožin
množiny V

je množina hran.

<u>Def. 2:</u> Neorientovaný graf je trojice $G = (V, E, \varepsilon)$, kde $V \neq \emptyset$ je množina vrcholů, E je množina hran a $V \cap E = \emptyset$, $\varepsilon: E \to \binom{V}{2} \cup \binom{V}{1}$: $e \mapsto \{u, v\}$ je zobrazení incidence.

Úplný graf: Úplný graf o n vrcholech – G = (V, E), kde |V| = n, $E = {V \choose 2}$ jsou všechny možné hrany. Značí se K_n .

Bipartitní graf: Bipartitní graf je G = (V, E), kde $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$, a každá hrana $e = \{u, v\}$ má jeden koncový vrchol z V_1 , druhý z V_2 , nebo i graf bez hran i 1-vrcholový.

Úplný bipartitní graf: Úplný bipartitní graf $K_{m,n}$ je bipartitní graf se stranamy z V_1 o m vrcholech, V_2 o n vrcholech, který má všechny možné hrany.

Podgraf: Podgraf grafu G = (V, E) je graf G'(V', E'), kde $V' \subseteq V$, $E' \subseteq E$ a pro každou hranu $e = \{u, v\} \in E'$ je u, $v \in V'$.

Podgraf indukovaný množinou vrcholů: Podgraf indukovaný množinou vrcholů V' je G' = (V', $\underbrace{E \upharpoonright V'}_{\substack{\text{všechny hrany z E, jejichž oba koncové vrcholy jsou ve V'}}$).

Faktor grafu: Faktor grafu je podgraf G' = (V, E'), kde $E' \subseteq E$.

Slogan: Necháme všechny vrcholy, vyhodíme nějaké hrany.

Isomorfní grafy: Grafy $G_1=(V_1,E_1)$ a $G_2=(V_2,E_2)$ jsou isomorfní, když existuje bijekce (vzájemně jednoznačné zobrazení) f: $V_1 \to V_2$ tak, že $e=\{u,v\} \in E_1$ iff $e'=\{f(u),f(v)\} \in E_2$.

Stupeň vrcholu: Stupeň vrcholu je počet hran incidentních s tím vrcholem. Přičemž

smyčka se počítá 2x. Značení: deg(v), d(v).

r-regulární graf: Graf je r-regulární, je-li stupeň vrcholu d(v) = r.

Skóre grafu: Skóre grafu je posloupnost stupňů jeho vrcholů uspořádaná sestupně. Značíme: $(d_1, d_2, ..., d_n)$.

Nechť $G = (V, E, \varepsilon)$ je neorientovaný graf. Pak

Sled: sled je posloupnost (vrcholů a hran) $v_0e_1v_1e_2...e_nv_n$, kde $v_i \in V$, $e_i \in E$ pro všechna i taková, že pro každé i, $1 \le i \le n$, platí $\varepsilon(e_i) = \{v_{i-1}, v_i\}$.

Uzavřený sled: uzavřený sled je sled délky $n \ge 1$, kde $v_0 = v_n$.

Tah: tah je sled, ve kterém se neopakují hrany.

Cesta: cesta je tah, ve kterém se neopakují vrcholy (s možnou výjimkou, že $v_0 = v_n$).

Kružnice: kružnice je uzavřená cesta, tj. má aspoň 1 hranu a neopakují se hrany ani vrcholy.

Souvislý graf: Graf je souvislý, pokud mezi každými dvěma vrcholy existuje cesta.

Komponenta souvislosti: Komponenta souvislosti grafu G je každý maximální souvislý podgraf v G.

Strom: Strom je souvislý graf bez kružnic.

Les: Les je graf bez kružnic.

Kostra: Kostra souvislého grafu je faktor grafu, který je stromem.

Cena hrany: Nechť G je souvislý ohodnocený graf, tj. je dáno zobrazení

 $c: E \to \mathbb{R}: c(e) = cena hrany e.$

Cena kostry: Cena kostry K = (V(K), E(K)) je součet cen jejích hran. Značíme: $c(K) = \sum_{e \in E(K)} c(e)$.

Minimální kostra: Minimální kostra v G je taková kostra v G, že má nejmenší cenu ze všech koster v G.

Eulerovský tah: Eulerovský tah v grafu G je tah, který obsahuje všechny hrany a všechny

vrcholy.

Poznámka: Každá hrana je v eulerovském tahu právě jeden krát.

Eulerovský graf: Eulerovský graf je graf, ve kterém je uzavřený tah.

Orientovaný graf: Orientovaný graf je trojice $G = (V, E, \varepsilon)$, kde V, E jsou disjunktní množiny, $V \neq \emptyset$, ε je incidenční zobrazení ε : $E \rightarrow V \times V$: $e \mapsto (u, v)$.

Výstupní stupeň vrcholu: Výstupní stupeň vrcholu v je počet hran s počátečním vrcholem v. Značení: $deg_{out}(v)$, $d^+(v)$, $d_{out}(v)$.

Vstupní stupeň vrcholu v: Vstupní stupeň vrcholu v je počet hran s koncovým vrcholem v. Značení: $\deg_{in}(v)$, $d^-(v)$, $d_{in}(v)$.

Stupeň vrcholu v: $d(v) = d_{in}(v) + d_{out}(v)$

Orientovaný sled: Orientovaný sled je posloupnost $v_0e_1v_1...e_kv_k$, kde $\varepsilon(e_i)=(v_{i-1}, v_i)$ "po směru šipek".

Cyklus: orientovaný tah + orientovaná cesta + orientovaná kružnice

Neorientovaný sled: Neorientovaný sled je posloupnost $v_0e_1v_1...e_kv_k$, kde $\varepsilon(e_i) = (v_{i-1}, v_i)$ nebo $\varepsilon(e_i) = (v_i, v_{i-1})$.

Eulerovský tah v orientovaném grafu: Eulerovský tah v orientovaném grafu je orientovaný tah, který obsahuje všechny hrany a všechny vrcholy.

Eulerovský orientovaný graf: Orientovaný graf je eulerovský, když v něm existuje uzavřený eulerovský tah.

Acyklický graf: Acyklický graf je orientovaný graf, ve kterém není cyklus.

Kořenový strom: Kořenový strom je orientovaný graf, který je strom a má kořen.

Kořen orientovaného grafu: Kořen orientovaného grafu je vrchol, z něhož vede orientovaná cesta do každého vrcholu.

Topologické uspořádaní vrcholů: Topologické uspořádaní vrcholů orientovaného grafu

G je uspořádaní vrcholů do posloupnosti $v_1, v_2,..., v_n$, že platí: pokud $e = (v_i, v_j)$, pak i < j. Slogan: Všechny hrany "jdou dopředu".

Jádro orientovaného grafu: Jádro orientovaného grafu G=(V,E) je množina vrcholů $J\in V$ taková, že

- (1) mezi vrcholy z J nevede žádná hrana
- (2) z každého vrcholu mimo jádro vede aspoň 1 hrana do J.

Silně souvislý orientovaný graf: Orientovaný graf je silně souvislý, pokud pro každé dva vrcholy u, v existuje orientovaná z u do v.

Silně souvislá komponenta: Silně souvislá komponenta orientovaného grafu je každý jeho maximální silně souvislý podgraf.

Kondenzace orientovaného grafu G = (V, E) je orientovaný graf G' = (V', E'), kde

 $V' = \{ silně souvislé komponenty v G \},$

 $E' = \{(K_1, K_2); \text{ existuje } u \in K_1, \text{ existuje } v \in K_2; (u, v) \in E\}.$

Obarvení grafu: Obarvení grafu G=(V, E) je zobrazení b: $V \to B$, kde B je množina barev, takové, že pro každou hranu $e=\{u,v\}\in E$ platí, že $b(u)\neq b(v)$.

Barevnost grafu: Barevnost grafu G (chromatické číslo) je nejmenší počet barev potřebný pro obarvení grafu. Značí se $\chi(G)$.

k-barevnost grafu: Graf je k-barevný, když $k \leq |V|$ a graf lze obarvit k barvami.

Klika: Klika v grafu je množina vrcholů, která indukuje maximální úplný podgraf.

Klikovost grafu: Klikovost grafu je počet vrcholů v nejpočetnější klice. Značí se $\omega(G)$.

Maximální nezávislá množina v grafu: Maximální nezávislá množina v grafu je množina vrcholů, která indukuje maximální diskrétní podgraf.

Nezávislost grafu: Nezávislost grafu je počet vrcholů v nejpočetnější maximální nezávislé množině. Značí se $\alpha(G)$.

 ${\bf Rovinn\acute{y}}$ graf: Graf je rovinný, když má rovinné nakreslení.

Nechť G je rovinný graf spolu s nějakým rovinným nakreslením. Pak

Stěna grafu: stěna grafu je část roviny ohraničená křivkami pro hrany.

Stupeň stěny: stupeň stěny je počet hran, které stěnu ohraničují, přičemž hrana uvnitř stěny se počítá 2x.