Interacting with the external world using comodels (aka runners)

Danel Ahman

(joint work with Andrej Bauer)

University of Ljubljana, Slovenia

Gallinette seminar, Nantes, 14.10.2019

The plan

- Computational effects and external resources in PL
- Runners a natural model for top-level runtime
- T-runners for also modelling non-top-level runtimes
- Turning **T**-runners into a **useful programming construct**
- Some programming examples
- Some implementation details

Computational effects and external resources

• Using monads (as in HASKELL)

```
type St a = String \rightarrow (a,String)

f :: St a \rightarrow St (a,a)

f c = c \Rightarrow (\x \rightarrow c \Rightarrow (\y \rightarrow return (x,y)))
```

• Using monads (as in HASKELL)

```
type St a = String \rightarrow (a,String)

f :: St a \rightarrow St (a,a)
f c = c >>= (\x \rightarrow c >>= (\y \rightarrow return (x,y)))
```

• Using alg. effects and handlers (as in Eff, Frank, Koka)

```
effect Get : int
effect Put : int → unit

let g (c:Unit → a!{Get,Put}) =
  with st_handler handle (perform (Put 42); c ()) (* : int → a * int *)
```

• Using monads (as in HASKELL)

```
type St a = String \rightarrow (a,String)

f :: St a \rightarrow St (a,a)

f c = c \Rightarrow (\x \rightarrow c \Rightarrow (\y \rightarrow return (x,y)))
```

• Using alg. effects and handlers (as in Eff, Frank, Koka)

```
effect Get : int
effect Put : int → unit

let g (c:Unit → a!{Get,Put}) =
  with st_handler handle (perform (Put 42); c ()) (* : int → a * int *)
```

Both are good for faking comp. effects in a pure language!
 But what about effects that need access to the external world?

External resources in PL

External resources in PL

• Declare a signature of monads or algebraic effects, e.g.,

```
(* System.IO *)

type IO a

openFile :: FilePath → IOMode → IO Handle
```

```
(* pervasives.eff *)

effect RandomInt : int → int

effect RandomFloat : float → float
```

And then treat them specially in the compiler, e.g.,

```
(* eff/src/backends/eval.ml *)
let rec top_handle op =
  match op with
  | ...
```

External resources in PL

• Declare a signature of monads or algebraic effects, e.g.,

```
(* System.IO *)

type IO a

openFile :: FilePath → IOMode → IO Handle

(* pervasives.eff *)

effect RandomInt : int → int

effect RandomFloat : float → float
```

And then treat them specially in the compiler, e.g.,

```
(* eff/src/backends/eval.ml *)
let rec top_handle op =
  match op with
  | ...
```

but there are some issues with that approach . . .

- Difficult to cover all possible use cases
 - external resources hard-coded into the top-level runtime
 - non-trivial to change what's available and how it's implemented

- Difficult to cover all possible use cases
 - external resources hard-coded into the top-level runtime
 - non-trivial to change what's available and how it's implemented

```
Ohad 4 8:35 PM
So here's the hack I added We should do something a bit more principled
In pervasives.eff:
 effect Write : (string*string) -> unit
in eval.ml under let rec top handle op = add the case:
     | "Write" ->
        (match v with
         | V.Tuple vs ->
            let (file_name :: str :: _) = List.map V.to_str vs in
            let file_handle = open_out_gen
                                 [Open_wronly
                                 :Open append
                                 ;Open_creat
                                 ;Open_text
                                 1 0o666 file_name in
            Printf.fprintf file handle "%s" str:
            close_out file_handle;
            top_handle (k V.unit_value)
```

- Difficult to cover all possible use cases
 - external resources hard-coded into the top-level runtime
 - non-trivial to change what's available and how it's implemented

```
Ohad 4 8:35 PM
So here's the hack I added We should do something a bit more principled
In pervasives.eff:
 effect Write : (string*string) -> unit
in eval.ml under let rec top handle op = add the case:
     | "Write" ->
        (match v with
         | V.Tuple vs ->
            let (file_name :: str :: _) = List.map V.to_str vs in
            let file_handle = open_out_gen
                                 [Open_wronly
                                 :Open append
                                 ;Open_creat
                                 ;Open_text
                                 1 0o666 file_name in
            Printf.fprintf file handle "%s" str:
            close_out file_handle;
            top_handle (k V.unit_value)
```

This talk — a principled modular (co)algebraic approach!

• Lack of linearity for external resources

```
let f (s:string) =
  let fh = fopen "foo.txt" in
  fwrite (fh,s^s);
  fclose fh;
  return fh

let g s =
  let fh = f s in fread fh
```

• Lack of linearity for external resources

Lack of linearity for external resources

- We shall address these kinds of issues indirectly,
 - by **not** introducing a linear typing discipline
 - but instead make it convenient to hide external resources (and address stronger typing disciplines in the future)

• Excessive generality of effect handlers

```
let f (s:string) =
  let fh = fopen "foo.txt" in
  fwrite (fh,s^s);
  fclose fh

let h = handler { fwrite (fh,s) k → return () }

let f' s = handle (f "bar") with h
```

• Excessive generality of effect handlers

```
let f (s:string) =
  let fh = fopen "foo.txt" in
  fwrite (fh,s^s);
  fclose fh
let h = handler \{ fwrite (fh,s) k \rightarrow return () \}
let f' s = handle (f "bar") with h
where misuse of external resources can also be purely accidental
let g (s:string) =
  let fh = fopen "foo.txt" in
  let b = choose () in
  if b then (fwrite (fh,s)) else (fwrite (fh,s^s));
  fclose fh
let nd handler =
  handler { choose () k \rightarrow return (k true ++ k false) }
```

• Excessive generality of effect handlers

```
let f (s:string) =
let fh = fopen "foo.txt" in
fwrite (fh,s^s);
fclose fh

let h = handler { fwrite (fh,s) k → return () }

let f' s = handle (f "bar") with h
```

- We shall address these kinds of issues directly,
 - by proposing a restricted form of handlers for resources
 - that support controlled initialisation and finalisation,
 - and limit how general handlers can be used

Runners enter the spotlight

• Given a **signature**¹ Σ of operation symbols $(A_{op}, B_{op} \text{ are sets})$

$$op: A_{op} \leadsto B_{op}$$

a runner² \mathcal{R} for Σ is given by a carrier $|\mathcal{R}|$ and co-operations

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}: A_{\operatorname{op}} \times |\mathcal{R}| \longrightarrow B_{\operatorname{op}} \times |\mathcal{R}|\right)_{\operatorname{op} \in \Sigma}$$

¹We consider runners for signatures, but the work generalises to alg. theories.

²In the literature also known as **comodels** for Σ (or for an algebraic theory).

• Given a **signature**¹ Σ of operation symbols $(A_{op}, B_{op} \text{ are sets})$

$$op: A_{op} \leadsto B_{op}$$

a $runner^2$ ${\cal R}$ for Σ is given by a carrier $|{\cal R}|$ and co-operations

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}: A_{\operatorname{op}} \times |\mathcal{R}| \longrightarrow B_{\operatorname{op}} \times |\mathcal{R}|\right)_{\operatorname{op} \in \Sigma}$$

• For example, a natural runner \mathcal{R} for S-valued state signature

get:
$$1 \rightsquigarrow S$$
 set: $S \rightsquigarrow 1$

is given by

$$|\mathcal{R}| \stackrel{\text{def}}{=} S$$
 $\overline{\text{get}}_{\mathcal{R}} (\star, s) \stackrel{\text{def}}{=} (s, s)$ $\overline{\text{set}}_{\mathcal{R}} (s, s) \stackrel{\text{def}}{=} (\star, s)$

¹We consider runners for signatures, but the work generalises to alg. theories.

²In the literature also known as **comodels** for Σ (or for an algebraic theory).

- Runners/comodels have been used for
 - operational semantics using tensors of models and comodels
 [Plotkin and Power '08]
 - stateful running of algebraic effects [Uustalu '15]
 - linear-use state-passing translation

[Møgelberg and Staton '11, '14]

- Runners/comodels have been used for
 - operational semantics using tensors of models and comodels
 [Plotkin and Power '08]
 and
 - **stateful running** of algebraic effects

[Uustalu '15]

• linear-use state-passing translation

[Møgelberg and Staton '11, '14]

- The latter explicitly rely on one-to-one correspondence between
 - \bullet runners $\mathcal R$
 - $\bullet \ monad \ morphisms^3 \ \ r: Free_{\Sigma}(-) \longrightarrow \text{St}_{|\mathcal{R}|} \\$

where

$$\mathbf{St}_{C}X \stackrel{\mathsf{def}}{=} C \Rightarrow X \times C$$

 $^{{}^{3}}$ Free $_{\Sigma}(X)$ is the free monad ind. defined with leaves val x and nodes op (a, κ) .

• For our purposes, we see runners

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}: A_{\operatorname{op}} \times |\mathcal{R}| \longrightarrow B_{\operatorname{op}} \times |\mathcal{R}|\right)_{\operatorname{op} \in \Sigma}$$

• For our purposes, we see runners

$$\left(\overline{op}_{\mathcal{R}}: A_{op} \times |\mathcal{R}| \longrightarrow B_{op} \times |\mathcal{R}|\right)_{op \in \Sigma}$$

- But what if this runtime is not the runtime?
 - hardware vs OS
 - OS vs VMs
 - VMs vs sandboxes

• For our purposes, we see runners

$$\left(\overline{op}_{\mathcal{R}}: A_{op} \times |\mathcal{R}| \longrightarrow B_{op} \times |\mathcal{R}|\right)_{op \in \Sigma}$$

- But what if this runtime is not the runtime?
 - hardware vs OS
 - OS vs VMs
 - VMs vs sandboxes
- Unfortunately, runners, as defined above, are not readily able to
 - use external resources
 - signal failure caused by unavoidable circumstances

• For our purposes, we see runners

$$\left(\overline{op}_{\mathcal{R}}: A_{op} \times |\mathcal{R}| \longrightarrow B_{op} \times |\mathcal{R}|\right)_{op \in \Sigma}$$

- But what if this runtime is not the runtime?
 - hardware vs OS
 - OS vs VMs
 - VMs vs sandboxes
- Unfortunately, runners, as defined above, are not readily able to
 - use external resources
 - signal failure caused by unavoidable circumstances
- But is there a useful generalisation that would achieve this?

• Møgelberg and Staton usefully observed that a runner \mathcal{R} is equivalently simply a family of **generic effects** for $\mathbf{St}_{|\mathcal{R}|}$, i.e.,

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}: A_{\operatorname{op}} \longrightarrow \operatorname{\mathbf{St}}_{|\mathcal{R}|} B_{\operatorname{op}}\right)_{\operatorname{op} \in \Sigma}$$

• Møgelberg and Staton usefully observed that a runner \mathcal{R} is equivalently simply a family of **generic effects** for $\mathbf{St}_{|\mathcal{R}|}$, i.e.,

$$\left(\overline{op}_{\mathcal{R}}: A_{op} \longrightarrow \mathbf{St}_{|\mathcal{R}|} B_{op}\right)_{op \in \Sigma}$$

• Building on this, we define a **T-runner** \mathcal{R} for Σ to be given by

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}:A_{\operatorname{op}}\longrightarrow \mathbf{T}\,B_{\operatorname{op}}\right)_{\operatorname{op}\in\Sigma}$$

• Møgelberg and Staton usefully observed that a runner \mathcal{R} is equivalently simply a family of **generic effects** for $\mathbf{St}_{|\mathcal{R}|}$, i.e.,

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}: A_{\operatorname{op}} \longrightarrow \operatorname{\mathbf{St}}_{|\mathcal{R}|} B_{\operatorname{op}}\right)_{\operatorname{op} \in \Sigma}$$

• Building on this, we define a **T-runner** \mathcal{R} for Σ to be given by

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}:A_{\operatorname{op}}\longrightarrow \mathbf{T}\,B_{\operatorname{op}}\right)_{\operatorname{op}\in\Sigma}$$

• The one-to-one correspondence with monad morphisms

$$r: \mathbf{Free}_{\Sigma}(-) \longrightarrow \mathbf{T}$$

now simply amounts to the univ. property of free models, i.e.,

$$r_X (val x) = \eta_X x$$
 $r_X (op(a, \kappa)) = \underbrace{(r_X \circ \kappa)^{\dagger} (\overline{op}_{\mathcal{R}} a)}_{op_{\mathcal{M}}(a, r_X \circ \kappa)}$

• Møgelberg and Staton usefully observed that a runner \mathcal{R} is equivalently simply a family of **generic effects** for $\mathbf{St}_{|\mathcal{R}|}$, i.e.,

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}: A_{\operatorname{op}} \longrightarrow \operatorname{\mathbf{St}}_{|\mathcal{R}|} B_{\operatorname{op}}\right)_{\operatorname{op} \in \Sigma}$$

• Building on this, we define a **T-runner** $\mathcal R$ for Σ to be given by

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}:A_{\operatorname{op}}\longrightarrow \mathbf{T}\,B_{\operatorname{op}}\right)_{\operatorname{op}\in\Sigma}$$

• The one-to-one correspondence with monad morphisms

$$r: \mathbf{Free}_{\Sigma}(-) \longrightarrow \mathbf{T}$$

now simply amounts to the univ. property of free models, i.e.,

$$\mathsf{r}_X \left(\mathsf{val} \, X \right) = \eta_X \, X$$
 $\mathsf{r}_X \left(\mathsf{op}(a, \kappa) \right) = \underbrace{\left(\mathsf{r}_X \circ \kappa \right)^\dagger \left(\overline{\mathsf{op}}_{\mathcal{R}} \, a \right)}_{\mathsf{op}_{\mathcal{M}} \left(a, \mathsf{r}_X \circ \kappa \right)}$

Observe that κ appears in a tail call position on the right!

• What would be a **useful class of monads T** to use?

- What would be a useful class of monads T to use?
- We want a runner to be a bit like a kernel of an OS, i.e., to
 - (i) provide management of (internal) resources
 - (ii) use further external resources
 - (iii) signal failure caused by unavoidable circumstances

- What would be a **useful class of monads T** to use?
- We want a runner to be a bit like a kernel of an OS, i.e., to
 - (i) provide management of (internal) resources
 - (ii) use further external resources
 - (iii) signal failure caused by unavoidable circumstances
- Algebraically (and pragmatically), this amounts to taking
 - (i) getenv : $\mathbb{1} \rightsquigarrow C$, setenv : $C \rightsquigarrow \mathbb{1}$
 - (ii) op : $A_{op} \leadsto B_{op}$ (op $\in \Sigma'$, for some external Σ')
 - (iii) kill : $S \rightsquigarrow \mathbb{O}$
 - s.t., (i) satisfy state equations; and (i) commute with (ii) and (iii)

- What would be a useful class of monads T to use?
- We want a runner to be a bit like a kernel of an OS, i.e., to
 - (i) provide management of (internal) resources
 - (ii) use further external resources
 - (iii) signal failure caused by unavoidable circumstances
- Algebraically (and pragmatically), this amounts to taking
 - (i) getenv : $\mathbb{1} \rightsquigarrow C$, setenv : $C \rightsquigarrow \mathbb{1}$
 - (ii) op : $A_{op} \leadsto B_{op}$ $(op \in \Sigma', \text{ for some external } \Sigma')$
 - (iii) kill : $S \rightsquigarrow \mathbb{O}$
 - s.t., (i) satisfy state equations; and (i) commute with (ii) and (iii)
- The induced monad is then isomorphic to

$$\mathsf{T} X \stackrel{\mathsf{def}}{=} C \Rightarrow \mathsf{Free}_{\Sigma'} \big((X \times C) + S \big)$$

• The corresponding **T-runners** \mathcal{R} for Σ are then of the form

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}: A_{\operatorname{op}} \longrightarrow C \Rightarrow \operatorname{Free}_{\Sigma'}((B_{\operatorname{op}} \times C) + S)\right)_{\operatorname{op} \in \Sigma}$$

• The corresponding **T-runners** \mathcal{R} for Σ are then of the form

$$\left(\overline{\mathsf{op}}_{\mathcal{R}}: A_{\mathsf{op}} \longrightarrow \mathcal{C} \Rightarrow \mathsf{Free}_{\Sigma'}\big((B_{\mathsf{op}} \times \mathcal{C}) + \mathcal{S}\big)\right)_{\mathsf{op} \in \Sigma}$$

Observe that raising signals in S discards the state,
 but not all problems are terminal—they can be recovered from

• The corresponding **T-runners** \mathcal{R} for Σ are then of the form

$$\left(\overline{\mathsf{op}}_{\mathcal{R}}: A_{\mathsf{op}} \longrightarrow \mathcal{C} \Rightarrow \mathsf{Free}_{\Sigma'}\big((B_{\mathsf{op}} \times \mathcal{C}) + \mathcal{S}\big)\right)_{\mathsf{op} \in \Sigma}$$

- Observe that raising signals in S discards the state,
 but not all problems are terminal—they can be recovered from
- Our solution: consider signatures Σ, Σ' with operation symbols

$$op: A_{op} \leadsto B_{op} + E_{op}$$

• The corresponding **T-runners** \mathcal{R} for Σ are then of the form

$$\left(\overline{\mathsf{op}}_{\mathcal{R}}: A_{\mathsf{op}} \longrightarrow \mathit{C} \Rightarrow \mathsf{Free}_{\Sigma'}\big((B_{\mathsf{op}} \times \mathit{C}) + \mathit{S}\big)\right)_{\mathsf{op} \in \Sigma}$$

- Observe that raising signals in S discards the state,
 but not all problems are terminal—they can be recovered from
- Our solution: consider signatures Σ, Σ' with operation symbols

$$\mathsf{op}: A_\mathsf{op} \leadsto B_\mathsf{op} + E_\mathsf{op} \qquad (\mathsf{which} \ \mathsf{we} \ \mathsf{write} \ \mathsf{as} \quad \mathsf{op}: A_\mathsf{op} \leadsto B_\mathsf{op} \ ! \ E_\mathsf{op})$$

• The corresponding **T-runners** \mathcal{R} for Σ are then of the form

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}: A_{\operatorname{op}} \longrightarrow C \Rightarrow \mathbf{Free}_{\Sigma'}\big((B_{\operatorname{op}} \times C) + S\big)\right)_{\operatorname{op} \in \Sigma}$$

- Observe that raising signals in S discards the state,
 but not all problems are terminal—they can be recovered from
- Our solution: consider signatures Σ, Σ' with operation symbols $op: A_{op} \leadsto B_{op} + E_{op}$ (which we write as $op: A_{op} \leadsto B_{op} \mid E_{op}$)
- With this, our **T-runners** \mathcal{R} for Σ are (with "primitive" excs.)

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}: A_{\operatorname{op}} \longrightarrow \mathbf{K}_{C}^{\Sigma'!E_{\operatorname{op}} \notin S} B_{\operatorname{op}}\right)_{\operatorname{op} \in \Sigma}$$

where we call $\mathbf{K}_{C}^{\Sigma!E \notin S}$ a **kernel monad**, given by

$$\mathbf{K}_{C}^{\Sigma!E \nmid S} X \stackrel{\text{def}}{=} C \Rightarrow \mathbf{Free}_{\Sigma} (((X + E) \times C) + S)$$

T-runners as a programming construct

T-runners as a programming construct

• As our **T-runners** for Σ are of the form

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}:A_{\operatorname{op}}\longrightarrow \mathbf{K}_{C}^{\Sigma'!E_{\operatorname{op}} \slash\hspace{-0.1cm} \downarrow S}B_{\operatorname{op}}\right)_{\operatorname{op} \in \Sigma}$$

we accommodate runners as values and co-ops. as kernel code

let $R = runner \{ op_1 x_1 \rightarrow K_1 , ... , op_n x_n \rightarrow K_n \} @ C$

T-runners as a programming construct

• As our **T-runners** for Σ are of the form

$$\left(\overline{\operatorname{op}}_{\mathcal{R}}: A_{\operatorname{op}} \longrightarrow \mathbf{K}_{C}^{\Sigma'!E_{\operatorname{op}} \notin S} B_{\operatorname{op}}\right)_{\operatorname{op} \in \Sigma}$$

we accommodate runners as values and co-ops. as kernel code

```
let R = runner \{ op_1 x_1 \rightarrow K_1, ..., op_n x_n \rightarrow K_n \} @ C
```

For instance, we can implement a write-only file handle as

where

(fwrite : FileHandle
$$\times$$
 String $\rightsquigarrow 1 ! E$) $\in \Sigma'$

$$\Sigma \stackrel{\mathsf{def}}{=} \{ \mathsf{write} : \mathsf{String} \leadsto 1 \mid E \cup \{ \mathsf{WriteSizeExceeded} \} \}$$
 $\mathsf{IOError} \in S$

• Recall that the components r_X of the monad morphism

$$r: \mathbf{Free}_{\Sigma}(-) \longrightarrow \mathbf{T}$$

induced by a T-runner R are all tail-recursive

 \bullet Recall that the components r_X of the monad morphism

$$r: \mathbf{Free}_{\Sigma}(-) \longrightarrow \mathbf{T}$$

induced by a T-runner $\mathcal R$ are all tail-recursive

• We make use of it to enable one to run user code:

```
using R @ M_{init} run M finally {return x @ c \rightarrow M<sub>ret</sub> , ... raise e @ c \rightarrow M<sub>e</sub> ... , ... kill s \rightarrow M<sub>s</sub> ...}
```

• Recall that the components r_X of the monad morphism

$$r: \mathbf{Free}_{\Sigma}(-) \longrightarrow \mathbf{T}$$

induced by a T-runner \mathcal{R} are all tail-recursive

• We make use of it to enable one to run user code:

```
 \begin{array}{l} \text{using R @ M_{init}} \\ \text{run M} \\ \text{finally } \{ \text{return} \times \text{@ c} \rightarrow \text{M}_{ret} \text{ , ... raise e @ c} \rightarrow \text{M}_{e} \text{ ... , ... kill s} \rightarrow \text{M}_{s} \text{ ...} \} \\ \end{array}
```

where (a user monad)

• Ms are user code, modelled using $\mathbf{U}^{\Sigma \mid E} X \stackrel{\text{def}}{=} \mathbf{Free}_{\Sigma}(X + E)$

• Recall that the components r_X of the monad morphism

$$r: \mathbf{Free}_{\Sigma}(-) \longrightarrow \mathbf{T}$$

induced by a T-runner $\mathcal R$ are all tail-recursive

We make use of it to enable one to run user code:

```
 \begin{array}{l} \textbf{using} \ R \ @ \ M_{init} \\ \textbf{run} \ M \\ \textbf{finally} \ \{ \textbf{return} \times @ \ c \rightarrow M_{ret} \ , \ ... \ \textbf{raise} \ e \ @ \ c \rightarrow M_e \ ... \ , \ ... \ \textbf{kill} \ s \rightarrow M_s \ ... \} \\ \end{array}
```

where

(a user monad)

- Ms are user code, modelled using $\mathbf{U}^{\Sigma ! E} X \stackrel{\text{def}}{=} \mathbf{Free}_{\Sigma} (X + E)$
- M_{init} produces the initial kernel state
- M is the user code being run using the runner R
- M_{ret}, M_e, M_s finalise for return values, exceptions, and signals

 \bullet Recall that the components r_X of the monad morphism

$$r: \mathbf{Free}_{\Sigma}(-) \longrightarrow \mathbf{T}$$

induced by a **T**-runner \mathcal{R} are all **tail-recursive**

• We make use of it to enable one to run user code:

```
using R @ M_{init} run M finally {return x @ c \rightarrow M<sub>ret</sub> , ... raise e @ c \rightarrow M<sub>e</sub> ... , ... kill s \rightarrow M<sub>s</sub> ...}
```

where (a user monad)

- Ms are **user code**, modelled using $\mathbf{U}^{\Sigma!E} X \stackrel{\text{def}}{=} \mathbf{Free}_{\Sigma}(X+E)$
- M_{init} produces the initial kernel state
- M is the user code being run using the runner R
- M_{ret}, M_e, M_s finalise for return values, exceptions, and signals
- M_{ret} and M_e depend on the final state c, but M_s does not

• For instance, we can define a PYTHON-esque with construct

```
with fileName do M = using R<sub>FH</sub> @ (fopen fileName) run M finally { return \times @ fh \rightarrow fclose fh; return \times , raise e @ fh \rightarrow fclose fh; raise e , kill s \rightarrow return () }
```

- Importantly, here
 - the file handle is hidden from M
 - M can only use write but not fopen and fclose
 - write : String → 1 ! *E* ∪ {WriteSizeExceeded}
 - fopen and fclose are limited to initialisation-finalisation

A core calculus for programming with runners

Core calculus (syntax)

Core calculus (syntax)

• Ground types (types of ops. and kernel state)

$$A, B, C ::= B \mid 1 \mid 0 \mid A \times B \mid A + B$$

Types

$$X, Y ::= B \mid 1 \mid 0 \mid X \times Y \mid X + Y$$

$$\mid X \xrightarrow{\Sigma} Y \mid E$$

$$\mid X \xrightarrow{\Sigma} Y \mid E \not\downarrow S @ C$$

$$\mid \Sigma \Rightarrow \Sigma' \not\downarrow S @ C$$

Values

$$\Gamma \vdash V : X$$

• User computations

$$\Gamma \not \sqsubseteq M : X ! E$$

Kernel computations

$$\Gamma \stackrel{\Sigma}{\vdash} K : X ! E \not \downarrow S @ C$$

Core calculus (user computations)

```
M, N ::= \operatorname{return} V
              try M with {return x \mapsto M_{\text{return}},
                                  (raise e \mapsto N_e)_{e \in E}
                VW
                match V with \{\langle x, y \rangle \mapsto M\}
                match V with \{\}_X
                match V with \{\text{inl } x \mapsto M, \text{inr } y \mapsto N\}
                op_{X}(V, (x.M), (N_{e})_{e \in E})
                \mathsf{raise}_X e
                using V @ W run M finally {return x @ c \mapsto M,
                                                          (raise \ e \ @ \ c \mapsto N_e)_{e \in E}
                                                          (kill\ s\mapsto N_s)_{s\in S}
                kernel K @ V finally {return x @ c \mapsto M,
                                                (raise e @ c \mapsto N_e)_{e \in E}
                                                (kill\ s\mapsto N_s)_{s\in S}
```

Core calculus (kernel computations)

```
K, L ::= \operatorname{return}_C V
              try K with {return x \mapsto K_{\text{return}},
                                  (raise \ e \mapsto L_e)_{e \in E}
                VW
               match V with \{\langle x, y \rangle \mapsto K\}
               match V with \{\}_{X@C}
               match V with \{\text{inl } x \mapsto K, \text{inr } y \mapsto L\}
               \operatorname{op}_{X \cap C}(V, (x \cdot K), (L_e)_{e \in E})
               raise_{X@C} e
               kill_{X@C} s
               getenv_C(c.K)
               setenv(V, K)
               user M with {return x \mapsto K_{\text{return}},
                                     (raise e \mapsto L_e)_{e \in E}
```


• For example, the typing rule for running user comps. is

$$\begin{split} \Gamma \vdash V : \Sigma \Rightarrow \Sigma' \not \in \mathcal{S} @ C & \Gamma \vdash W : C \\ \Gamma \not \sqsubseteq M : X ! E & \Gamma, x : X, c : C \not \sqsubseteq' N_{ret} : Y ! E' \\ & \left(\Gamma, c : C \not \sqsubseteq' N_e : Y ! E'\right)_{e \in E} & \left(\Gamma \not \sqsubseteq' N_s : Y ! E'\right)_{s \in S} \end{split}$$

$$\Gamma \not \sqsubseteq' \mathbf{using} \ V @ \ W \ \mathbf{run} \ M \ \mathbf{finally} \ \left\{ \ \mathbf{return} \ x @ \ c \mapsto N_{ret} \ , \\ & \left(\mathbf{raise} \ e \ @ \ c \mapsto N_e\right)_{e \in E} \ , \\ & \left(\mathbf{kill} \ s \mapsto N_s\right)_{s \in S} \ \right\} : Y ! E' \end{split}$$

• For example, the typing rule for running user comps. is

```
\Gamma \vdash V : \Sigma \Rightarrow \Sigma' \not\downarrow S @ C \qquad \Gamma \vdash W : C
\Gamma \vdash M : X ! E \qquad \Gamma, x : X, c : C \vdash N_{ret} : Y ! E'
(\Gamma, c : C \vdash N_e : Y ! E')_{e \in E} \qquad (\Gamma \vdash N_s : Y ! E')_{s \in S}
\Gamma \vdash \text{using } V @ W \text{ run } M \text{ finally } \{ \text{ return } x @ c \mapsto N_{ret} ,
(\text{raise } e @ c \mapsto N_e)_{e \in E} ,
(\text{kill } s \mapsto N_s)_{e \in S} \} : Y ! E'
```

• and the main β -equation for running user comps. is

```
 \begin{split} \Gamma & \stackrel{\Sigma'}{=} \textbf{using} \ R_C \ @ \ \textit{W} \ \textbf{run} \ (\texttt{op}_X \ (\textit{V}, (x.M), (\textit{M}_e)_{e \in \textit{E}_{op}})) \ \textbf{finally} \ \textit{F} \\ & \equiv \textbf{kernel} \ R_{op}[V] \ @ \ \textit{W} \ \textbf{finally} \ \textit{f} \\ & \qquad \textbf{return} \ x \ @ \ \textit{c'} \mapsto \textbf{using} \ R_C \ @ \ \textit{c'} \ \textbf{run} \ \textit{M} \ \textbf{finally} \ \textit{F} \ , \\ & \qquad (\textbf{raise} \ e \ @ \ \textit{c'} \mapsto \textbf{using} \ R_C \ @ \ \textit{c'} \ \textbf{run} \ \textit{M}_e \ \textbf{finally} \ \textit{F})_{e \in \textit{E}_{op}} \ , \\ & \qquad (\textbf{kill} \ \textit{s} \mapsto \textit{N}_s)_{s \in \textit{S}} \ \} : \ \textit{Y} \ ! \ \textit{E'} \end{split}
```

• The calculus also includes subtyping, and subsumption rules

$$\frac{\Gamma \vdash V : A \qquad A \lessdot B}{\Gamma \vdash V : B}$$

$$\frac{\Gamma \not \vdash M : A \mid E \qquad \Sigma \subseteq \Sigma' \qquad A \lessdot B \qquad E \subseteq E'}{\Gamma \not \vdash M : B \mid E'}$$

$$\frac{A \lessdot B \qquad E \subseteq E' \qquad S \subseteq S' \qquad C = C'}{\Gamma \not \vdash K : B \mid E' \not \vdash S' \otimes C'}$$

• The calculus also includes subtyping, and subsumption rules

$$\frac{\Gamma \vdash V : A \qquad A <: B}{\Gamma \vdash V : B}$$

$$\frac{\Gamma \not\vdash M : A \mid E \qquad \Sigma \subseteq \Sigma' \qquad A <: B \qquad E \subseteq E'}{\Gamma \not\vdash M : B \mid E'}$$

$$\frac{F \vdash K : A \mid E \not\downarrow S @ C \qquad \Sigma \subseteq \Sigma'}{A <: B \qquad E \subseteq E' \qquad S \subseteq S' \qquad C = C'}$$

$$\frac{A <: B \qquad E \subseteq E' \qquad S \subseteq S' \qquad C = C'}{\Gamma \not\vdash K : B \mid E' \not\downarrow S' @ C'}$$

- We use C = C' to have (standard) proof-irrelevant subtyping
- Otherwise, instead of just C <: C', we would need a **lens** $C' \leftrightarrow C$

Core calculus (semantics)

Core calculus (semantics)

- Monadic semantics, for simplicity in Set, using
 - user monads $\mathbf{U}^{\Sigma!E} X \stackrel{\text{def}}{=} \mathbf{Free}_{\Sigma}(X+E)$
 - kernel monads $K_C^{\Sigma!E \nmid S} X \stackrel{\text{def}}{=} C \Rightarrow \text{Free}_{\Sigma} (((X + E) \times C) + S)$

Core calculus (semantics)

- Monadic semantics, for simplicity in Set, using
 - user monads $\mathbf{U}^{\Sigma!E} X \stackrel{\text{def}}{=} \mathbf{Free}_{\Sigma}(X+E)$
 - kernel monads $K_C^{\Sigma!E \notin S} X \stackrel{\text{def}}{=} C \Rightarrow \text{Free}_{\Sigma} (((X + E) \times C) + S)$

• (At a high level) the **judgements** are interpreted as

$$[\![\Gamma \vdash V : X]\!] : [\![\Gamma]\!] \longrightarrow [\![X]\!]$$

$$[\![\Gamma \vdash M : X ! E]\!] : [\![\Gamma]\!] \longrightarrow \mathbf{U}^{\Sigma ! E} [\![X]\!]$$

$$[\![\Gamma \vdash K : X ! E \not S @ C]\!] : [\![\Gamma]\!] \longrightarrow \mathbf{K}^{\Sigma ! E \not S} [\![X]\!]$$

Core calculus (semantics ctd.)

However, to prove coherence of the semantics (subtyping!),
 we actually give the semantics in the subset fibration

Core calculus (semantics ctd.)

- However, to prove coherence of the semantics (subtyping!),
 we actually give the semantics in the subset fibration
- For instance, kernel computations are interpreted as

where $\Gamma^s \vdash K : X^s \otimes C$ is a skeletal kernel typing judgement

Core calculus (semantics ctd.)

- However, to prove coherence of the semantics (subtyping!),
 we actually give the semantics in the subset fibration
- For instance, kernel computations are interpreted as

where $\Gamma^s \vdash K : X^s \otimes C$ is a skeletal kernel typing judgement

No essential obstacles to extending to Sub(Cpo) and beyond

Core calculus (semantics ctd.)

- However, to prove coherence of the semantics (subtyping!),
 we actually give the semantics in the subset fibration
- For instance, kernel computations are interpreted as

where $\Gamma^s \vdash K : X^s \otimes C$ is a skeletal kernel typing judgement

- No essential obstacles to extending to **Sub(Cpo)** and beyond
- Ground type restriction on C needed to stay within $\mathbf{Sub}(-)$
 - Otherwise, analogously to subtyping, we'd need lenses instead

Runners in action

Runners can be vertically nested

Runners can be vertically nested

```
using R<sub>FH</sub> @ (fopen fileName)
run (
  using R<sub>FC</sub> @ (return "")
   run M
  finally {
     return \times 0 str \rightarrow write str; return \times,
    raise e \emptyset str \rightarrow raise e \}
finally {
   return x @ fh \rightarrow fclose fh; return x,
  raise e @ fh \rightarrow fclose fh; raise e , kill IOError \rightarrow return ()}
```

where the **file contents runner** (with $\Sigma' = 0$) is defined as

Vertical nesting for instrumentation

Vertical nesting for instrumentation

```
• using R<sub>Sniffer</sub> ② (return 0)
run M
finally {
    return x ② c →
        let fh = fopen "nsa.txt" in fwrite (fh,toStr c); fclose fh }
```

where the instrumenting runner is defined as

- The runner $R_{Sniffer}$ implements the same sig. Σ that M is using
- As a result, the runner R_{Sniffer} is **invisible** from M 's viewpoint

• First, we define a runner for integer-valued ML-style state as

```
type IntHeap = (Nat \rightarrow (Int + 1)) \times Nat
                                                                       type Ref = Nat
let R_{IntState} = runner  {
  alloc x \rightarrow let h = getenv () in
                                                          (* alloc : Int \rightsquigarrow Ref ! 0 *)
              let (r,h') = heapAlloc h x in
              setenv h':
              return r,
  deref r \rightarrow let h = getenv () in
                                                          (* deref : Ref \rightsquigarrow Int ! 0 *)
              match (heapSel h r) with
               inl x \rightarrow return x
               inr () → kill ReferenceDoesNotExist ,
  assign r y \rightarrow let h = getenv () in  (* assign : Ref \times Int \rightsquigarrow 1 ! 0 *)
                  match (heapUpd h r y) with
                  | inl h' → setenv h'
                  | inr () → kill ReferenceDoesNotExist
  ① IntHeap
```

ullet Next we define a runner for monotonicity layer on top of R_{IntState}

Next we define a runner for monotonicity layer on top of R_{IntState}
 type MonMemory = Ref → ((Int → Int → Bool) + 1)

```
let R_{MonState} = runner {
 monAlloc x rel \rightarrow let r = alloc x in
                                                      (*: Int \times Ord \rightsquigarrow Ref! 0 *)
                      let m = getenv () in
                      setenv (memAdd m r rel);
                      return r,
                                                   (* monDeref : Ref → Int ! 0 *)
 monDeref r \rightarrow deref r.
 monAssign r y \rightarrow let x = deref r in (* : Ref × Int \rightsquigarrow 1 ! \{MV\} *)
                      let m = getenv () in
                      match (memSel m r) with
                       | inl rel \rightarrow if (rel \times y)
                                   then (assign r y)
                                   else (raise Monotonicity Violation)
                       inr → kill PreorderDoesNotExist
  ① IntHeap
```

• We can then perform runtime monotonicity verification as

• We can then perform runtime monotonicity verification as

```
using R_{IntState} @ ((fun \_ \rightarrow inr ()), 0)
                                                  (* init empty ML—style heap *)
run (
 using R_{MonState} ( (fun \_ \rightarrow inr ()) (* init empty preorders memory *)
 run (
   let r = monAlloc 0 (\leq) in
   monAssign r 1;
   try (monAssign r 0) with {
                                                   (* R<sub>MonState</sub> raises exception *)
     return _ → monAssign r 3.
     raise Monotonicity Violation \rightarrow return ()};
   monAssign r 2
 finally {return x \otimes m \rightarrow return x,
           raise Monotonicity Violation @m \rightarrow ...,
           kill PreorderDoesNotExist → ... }
finally {return x \otimes h \rightarrow print h; return x,
          kill ReferenceDoesNotExist → ... }
```

Runners can also be horizontally paired

Runners can also be horizontally paired

• Given a runner for Σ

```
let R_1 = \text{runner} \{ ..., op_{1i} \times K_{1i}, ... \} @ C_1
and a runner for \Sigma'
let R_2 = runner \{ \dots, op_{2i} \times k_{2i}, \dots \} @ C_2
we can pair them to get a runner for \Sigma \cup \Sigma'
let R = runner  {
  op_{1i} \times \rightarrow let (c,c') = getenv () in
              let (x,c^{II}) = k_{1i} \times in
              setenv (c<sup>11</sup>,c<sup>1</sup>);
              return x,
  op_{2j} x \rightarrow ... (* analogously to above *),
```

Runners can also be horizontally paired

ullet Given a runner for Σ

```
let R_1 = \text{runner} \{ ... , op_{1i} x \rightarrow k_{1i} , ... \} @ C_1
and a runner for \Sigma'
 let R_2 = \text{runner} \{ \dots, \text{ op}_{2i} \times X \rightarrow k_{2i}, \dots \} @ C_2
we can pair them to get a runner for \Sigma \cup \Sigma'
 let R = runner  {
   op_{1i} \times \rightarrow let (c,c') = getenv () in
                 let (x,c^{II}) = k_{1i} \times in
                 setenv (c<sup>11</sup>,c<sup>1</sup>);
                 return x,
   op_{2j} x \rightarrow ... (* analogously to above *),
 \{ (C_1 \times C_2) \}
```

• For instance, this way we can build a runner for IO and state

Other examples

Other examples

- More general forms of (ML-style) state (for general Ref A)
 - if the host language allows it, we use GADTs, etc for safety
 - some examples extract a footprint from a larger memory
- Combinations of different effects and runners
 - in particular the combination of IO and state
 - good use case for both vertical and horizontal composition
- KOKA-style ambient values and ambient functions
 - ambient values are essentially mutable variables/parameters
 - ambient functions are applied in their lexical context
 - a runner that treats amb. fun. application as a co-operation
 - amb. funs. are stored in a context-depth-sensitive heap
 - the appl. co-operation restores the heap to the lexical context

Implementing runners

- A small experimental language Coop⁴
 - Implements the core calculus with few extras
 - The interpreter is directly based on the denotational semantics
 - Top-level containers for running external (OCaml) code

⁴coop [/ku:p/] – a cage where small animals are kept, especially chickens

- A small experimental language Coop⁴
 - Implements the core calculus with few extras
 - The interpreter is directly based on the denotational semantics
 - Top-level containers for running external (OCaml) code
- A HASKELL library HASKELL-COOP
 - A shallow-embedding of the core calculus in HASKELL
 - Uses one of the Freer monad implementations underneath
 - Again, the operational aspects implement the denot. semantics
 - Top-level containers for arbitrary HASKELL monads
 - Examples make use of HASKELL's features (GADTs, ...)

⁴coop [/ku:p/] - a cage where small animals are kept, especially chickens

- A small experimental language Coop⁴
 - Implements the core calculus with few extras
 - The interpreter is directly based on the denotational semantics
 - Top-level containers for running external (OCaml) code
- A HASKELL library HASKELL-COOP
 - A shallow-embedding of the core calculus in HASKELL
 - Uses one of the Freer monad implementations underneath
 - Again, the operational aspects implement the denot. semantics
 - Top-level containers for arbitrary HASKELL monads
 - Examples make use of HASKELL's features (GADTs, ...)
- Both still need some finishing touches, but will be public soon

⁴coop [/ku:p/] - a cage where small animals are kept, especially chickens

```
module AmbientsTests where
import Control.Runner
import Control.Runner.Ambients
ambFun :: AmbVal Int -> Int -> AmbEff Int
ambFun x y =
  do x <- getVal x;</pre>
     return (x + y)
test1 :: AmbEff Int
test1 =
  withAmbVal
    (4 :: Int)
    (\ x ->
      withAmbFun
        (ambFun x)
        (\ f ->
          do rebindVal x 2:
             applyFun f 1))
test2 = ambTopLevel test1
```

Wrapping up

- Runners are a natural model of top-level runtime
- We propose T-runners to also model non-top-level runtimes
- We have turned T-runners into a (practical?) programming construct, that supports controlled initialisation and finalisation
- I showed you some combinators and programming examples
- Two implementations in the works, COOP & HASKELL-COOP
- Future: lenses in subtyping and semantics, category of runners, handlers, larger case studies, refinement typing, compilation, . . .

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 834146.

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-17-1-0326

Thank you!

Core calculus (semantics ctd.)

- $\llbracket V \rrbracket_{\gamma} = \mathcal{R} = \left(\overline{\operatorname{op}}_{\mathcal{R}} : \llbracket A_{\operatorname{op}} \rrbracket \longrightarrow \mathbf{K}_{\llbracket C \rrbracket}^{\Sigma'! E_{\operatorname{op}} \downarrow S} \llbracket B_{\operatorname{op}} \rrbracket \right)_{\operatorname{op} \in \Sigma}$
- $[W]_{\gamma} \in [C]$
- $\llbracket M \rrbracket_{\gamma} \in \mathbf{U}^{\Sigma!E} \llbracket A \rrbracket$
- $[\![\text{return} \times @ c \rightarrow N_{ret}]\!]_{\gamma} \in [\![A]\!] \times [\![C]\!] \longrightarrow \mathbf{U}^{\Sigma'!E'}[\![B]\!]$
- $[(\text{raise e } \mathbf{0} \ c \rightarrow N_e)_{e \in E}]]_{\gamma} \in E \times [[C]] \longrightarrow \mathbf{U}^{\Sigma'!E'}[[B]]$
- $[\![(\mathbf{kill} \ \mathbf{s} \to N_s)_{s \in S}]\!]_{\gamma} \in S \longrightarrow \mathbf{U}^{\Sigma'!E'}[\![B]\!]$
- allowing us to use the free model property to get

$$\mathbf{U}^{\Sigma!E}\llbracket A\rrbracket \xrightarrow{\mathsf{r}_{\llbracket A\rrbracket + E}} \mathbf{K}^{\Sigma'!E \frac{\ell}{2}S}\llbracket A\rrbracket \xrightarrow{(\lambda \llbracket N_{ret} \rrbracket_{\gamma})^{\ddagger}} \llbracket C\rrbracket \Rightarrow \mathbf{U}^{\Sigma'!E'}\llbracket B\rrbracket$$

and then apply the resulting composite to $[\![M]\!]_\gamma$ and $[\![W]\!]_\gamma$