

優先等級排程法

- 學習完本單元,您將可以:
 - 了解優先等級排程法及無限等待問題

優先等級排程法

- **優先等級排程法(Priority Scheduling)**是給予每一個處理程序優先等級,並依照優先等級將處理程序由高優先等級排至低優先等級,然後依序分派處理程序擁有中央處理器。
 - 當處理程序有相同的優先等級時,則採用先到先服務方式 處理。

• 實作上分為不可奪取優先等級排程法(Non-Preemptive Priority Scheduling)及可奪取優先等級排程法(Preemptive priority Scheduling)。

優先等級排程法的範例

	Process	CPU Burst	Priority		
	P1	5	3		_
	P2	1	1		
	P3	10	2		
	P4	1	4		
	P5	2	2		
1		6		16	18
P1		P3		P5	P2

Process	Turnaround Time	Waiting Time	
P1	6	1	
P2	19	18	
P3	16	6	
P4	1	0	
P5	18	16	

優先等級排程法發生餓死的情況

- 當處理程序之優先等級很低,系統內不斷有較高優先等級之 處理程序出現,則低優先等級之處理程序可能造成永遠無法 被執行的問題,以致此低優先等級處理程序無限懸置(Indefinite Blocking)或餓死(Starvation)。

 - 利用時間升級(Aging)機制來解決。 變動優先等級(Dynamic Priority)或浮動優先等級(Floating Priority) •
- 時間升級(Aging)機制:等待時間超過訂定時間,讓此處理程序的優先等級往上升;佔有中央處理器時間超過訂定的時 間,讓此處理程序的優先等級往下降。

最高反應時間比率優先排程法

• 反應時間比率 (Response Ratio) 與等待時間及中央處理器時間有關,它的公式為

- 計算出反應時間比率愈高的處理程序優先處理。
- 以反應時間比率當作變動優先等級來排程。

餓死的情況

- 系統內不斷有優先執行的處理程序出現,則某些處理程序可能永遠無法被執行,造成此處理程序無限懸置(Indefinite Blocking)或餓死(Starvation)。
 - 最短工作優先排程法
 - 優先等級排程法
 - 多階層佇列排程法

