9. előadás

Mérai László diái alapján

Komputeralgebra Tanszék

2014. ősz

Felbonthatatlanok, prímek

```
Emlékeztető: f felbonthatatlan: csak triviális osztói vannak: \varepsilon, f, \varepsilon \cdot f típusú osztók (ahol \varepsilon egy egység).

p prím: p \mid ab \Rightarrow p \mid a vagy p \mid b.

p prím \Rightarrow p felbonthatatlan.

Az egész számok körében a fordított irány is igaz:
```

Az egész számok körében a fordított irány is igaz:

Tétel

Minden felbonthatatlan szám prímszám.

Bizonyítás

Legyen p felbonthatatlan, és legyen $p \mid ab$. Tfh. $p \nmid b$. Ekkor p és b relatív prímek. A bővített euklideszi algoritmussal kaphatunk x, y egészeket, hogy px + by = 1. Innen pax + aby = a. Mivel p osztója a bal oldalnak, így osztója a jobb oldalnak is: $p \mid a$.

Számelmélet alaptétele

Tétel

Minden nem-nulla, nem egység egész szám sorrendtől és asszociáltaktól eltekintve egyértelműen felírható prímszámok szorzataként.

Bizonyítás

Csak nemnegatív számokra.

Létezés: Indukcióval: n=2, n=3 esetén igaz (prímek). Általában ha n prím, akkor készen vagyunk, ha nem, akkor szorzatra bomlik nemtriviális módon. A tényezők már felbonthatók indukció alapján.

Egyértelműség: Indukcióval: n=2, n=3 esetén igaz (prímek). Tfh. $n=p_1p_2\cdots p_k=q_1q_2\cdots q_\ell$, ahol $p_1,p_2,\ldots,p_k,q_1,q_2,\ldots,q_\ell$ prímek, és n a legkisebb olyan szám, aminek két lényegesen különböző előállítása van. p_1 osztja a bal oldalt \Rightarrow osztja a jobb oldalt, feltehető $p_1=q_1$. Egyszerűsítve: $n'=p_2\cdots p_k=q_2\cdots q_\ell$. Indukció alapján ez már egyértelmű.

Számelmélet alaptétele

Definíció

Egy *n* nem-nulla egész szám kanonikus alakja:

$$n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_\ell^{\alpha_\ell} = \pm \prod_{i=1}^{c} p_i^{\alpha_i}$$
, ahol p_1, p_2, \ldots, p_ℓ pozitív prímek, α_1 , $\alpha_2, \ldots, \alpha_\ell$ pozitív egészek.

Következmény (HF)

Legyenek
$$a, b>1$$
 pozitív egészek: $a=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_\ell^{\alpha_\ell}$, $b=p_1^{\beta_1}p_2^{\beta_2}\cdots p_\ell^{\beta_\ell}$, (ahol most α_i , $\beta_i\geq 0$ nemnegatív egészek!). Ekkor

$$(a,b) = p_1^{\min\{\alpha_1,\beta_1\}} p_2^{\min\{\alpha_2,\beta_2\}} \cdots p_\ell^{\min\{\alpha_\ell,\beta_\ell\}},$$

$$[a,b] = p_1^{\max\{\alpha_1,\beta_1\}} p_2^{\max\{\alpha_2,\beta_2\}} \cdots p_\ell^{\max\{\alpha_\ell,\beta_\ell\}},$$

$$(a,b)\cdot [a,b]=a\cdot b.$$

Flemi számelmélet

Definíció

Egy n > 1 egész esetén legyen $\tau(n)$ az n pozitív osztóinak száma.

Példa

$$\tau(6) = 4$$
, osztók: 1, 2, 3, 6; $\tau(96) = 12$, osztók: 1, 2, 3, 4, 6, 8, ...

Tétel

Legyen n > 1 egész, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_\ell^{\alpha_\ell}$ kanonikus alakkal. Ekkor $\tau(n) = (\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdots (\alpha_\ell + 1).$

Bizonvítás

n lehetséges osztóit úgy kapjuk, hogy a $d = p_1^{\beta_1} p_2^{\beta_2} \cdots p_\ell^{\beta_\ell}$ kifejezésben az összes β_i kitevő végigfut a $\{0, 1, \dots, \alpha_i\}$ halmazon. Így ez a kitevő $\alpha_i + 1$ -féleképpen választható.

Példa

$$\tau(2 \cdot 3) = (1+1) \cdot (1+1) = 4;$$
 $\tau(2^5 \cdot 3) = (5+1) \cdot (1+1) = 12.$

2014. ősz

Prímekről

Tétel (Euklidesz)

Végtelen sok prím van.

Bizonyítás

Indirekt tfh. csak véges sok prím van. Legyenek ezek p_1, \ldots, p_k . Tekintsük az $n = p_1 \cdots p_k + 1$ számot. Ez nem osztható egyetlen p_1, \ldots, p_k prímmel sem, így n prímtényezős felbontásában kell szerepelnie egy újabb prímszámnak.

Tétel (Dirichlet, NB)

Ha a, d egész számok, d > 0, (a, d) = 1, akkor végtelen sok ak + d alakú $(k \in \mathbb{Z})$ prím van.

Prímekről

Prímszámtétel: x-ig a prímek száma $\sim \frac{x}{\ln x}$. (Sok prím van!) Prímek száma:

X	prímek száma	$x/\ln x$	
10	4	4, 33	
100	25	21,71	
1000	168	144, 76	
10000	1229	1085, 73	

Eratoszthenész szitája: Keressük meg egy adott *n*-ig az összes prímet. Soroljuk fel 2-től *n*-ig az egész számokat. Ekkor 2 prím. A 2 (valódi) többszörösei nem prímek, ezeket húzzuk ki. A következő (ki nem húzott) szám 3 szintén prím. A 3 (valódi) többszörösei nem prímek, ezeket húzzuk ki...

Ismételjük az eljárást \sqrt{n} -ig. A ki nem húzott számok mind prímek.

Kongruenciák

Oszthatósági kérdésekben sokszor csak a maradékos osztás esetén kapott maradék fontos:

- hét napjai;
- órák száma.

Példa

 $16 \mod 3 = 1$, $4 \mod 3 = 1$: 3-mal való oszthatóság esetén 16 "=" 4.

Definíció

Legyenek a, b, m egészek, ekkor $a \equiv b \pmod{m}$ (a és b kongruensek modulo m), ha $m \mid a - b$, és $a \not\equiv b \pmod{m}$ (a és b inkongruensek), ha $m \nmid a - b$.

Ekvivalens megfogalmazás: $a \equiv b \pmod{m} \Leftrightarrow a \mod m = b \mod m$, azaz m-mel osztva ugyanazt az osztási maradékot adják.

Példa

 $16 \equiv 4 \pmod{3}$ ui. $3 \mid 16 - 4 \Leftrightarrow 16 \pmod{3} = 1 = 4 \pmod{3}$: $16 \equiv 4 \pmod{2}$ ui. $2 \mid 16 - 4 \Leftrightarrow 16 \mod 2 = 0 = 4 \mod 2$;

 $16 \not\equiv 4 \pmod{5}$ ui. $5 \nmid 16 - 4 \Leftrightarrow 16 \pmod{5} = 1 \not= 4 = 4 \pmod{5}$.

Kongruencia tulajdonságai

Tétel

Minden a, b, c, d, m és m' egész számra igaz

- 1. $a \equiv a \pmod{m}$;
- 2. $a \equiv b \pmod{m}$, $m' \mid m \Rightarrow a \equiv b \pmod{m'}$;
- 3. $a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}$;
- 4. $a \equiv b \pmod{m}$, $b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$;
- 5. $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \Rightarrow a + c \equiv b + d \pmod{m}$;
- 6. $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \Rightarrow ac \equiv bd \pmod{m}$.

Bizonyítás

- 1. $m \mid 0 = a a$;
- 2. $m' \mid m \mid a b \Rightarrow m' \mid a b$;
- 3. $m \mid a b \Rightarrow m \mid b a = -(a b);$
- 4. $m \mid a b, m \mid b c \Rightarrow m \mid a c = (a b) + (b c);$
- 5. $m \mid a b, m \mid c d \Rightarrow m \mid (a + c) (b + d) = (a b) + (c d);$
- 6. $a = q_1 m + b$, $c = q_2 m + d$ $(q_1, q_2 \in \mathbb{Z}) \Rightarrow$ $\Rightarrow ac = (q_1 m + b)(q_2 m + d) = m(q_1 q_2 m + q_1 d + q_2 b) + bd$.

10.

Kongruencia tulajdonságai

Példa

Mi lesz $345 \mod 7 = ?$

$$345 = 34 \cdot 10 + 5 \equiv 6 \cdot 3 + 5 = 18 + 5 \equiv 4 + 5 = 9 \equiv 2 \pmod{7}$$
.

Emlékeztető: $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \Rightarrow ac \equiv bd \pmod{m}$.

Következmény: $a \equiv b \pmod{m} \Rightarrow ac \equiv bc \pmod{m}$.

Példa

$$14 \equiv 6 \pmod{8} \Rightarrow 42 \equiv 18 \pmod{8}$$

A másik irány nem igaz!

$$2 \cdot 7 \equiv 2 \cdot 3 \pmod{8} \not\Rightarrow 7 \equiv 3 \pmod{8}$$
.

Kongruencia tulajdonságai

Tétel

Legyenek a, b, c, m egész számok. Ekkor $ac \equiv bc \pmod{m} \Leftrightarrow a \equiv b \pmod{\frac{m}{(c,m)}}$

Következmény: (c, m) = 1 esetén $ac \equiv bc \pmod{m} \Leftrightarrow a \equiv b \pmod{m}$. Példa $2 \cdot 7 \equiv 2 \cdot 3 \pmod{8} \Rightarrow 7 \equiv 3 \pmod{\frac{8}{7}}$.

Bizonyítás

 $\begin{array}{l} \text{Legyen } d = (c,m). \text{ Ekkor} \\ ac \equiv bc \; (\operatorname{mod} m) \Leftrightarrow m \mid c(a-b) \Leftrightarrow \frac{m}{d} \left| \frac{c}{d} (a-b) \right. \text{ Mivel } \left(\frac{m}{d}, \frac{c}{d} \right) = 1, \\ \text{ez\'ert } \frac{m}{d} \left| \frac{c}{d} (a-b) \Leftrightarrow \frac{m}{d} \right| (a-b) \Leftrightarrow a \equiv b \; \left(\operatorname{mod} \frac{m}{d} \right). \end{array}$

12.

Lineáris kongruenciák

Oldjuk meg a $2x \equiv 5 \pmod{7}$ kongruenciát!

Ha x egy megoldás és $x \equiv y \pmod{7}$, akkor y szintén megoldás.

Keressük a megoldást a $\{0,1,\ldots,6\}$ halmazból!

$$x = 0 \Rightarrow 2x = 0 \not\equiv 5 \pmod{7};$$

 $x = 1 \Rightarrow 2x = 2 \not\equiv 5 \pmod{7};$
 $x = 2 \Rightarrow 2x = 4 \not\equiv 5 \pmod{7};$
 $x = 3 \Rightarrow 2x = 6 \not\equiv 5 \pmod{7};$
 $x = 4 \Rightarrow 2x = 8 \equiv 1 \not\equiv 5 \pmod{7};$
 $x = 5 \Rightarrow 2x = 10 \equiv 3 \not\equiv 5 \pmod{7};$
 $x = 6 \Rightarrow 2x = 12 \equiv 5 \pmod{7}.$

A kongruencia megoldása: $\{6 + 7\ell : \ell \in \mathbb{Z}\}.$

Van-e jobb módszer?

Oldjuk meg a $23x \equiv 4 \pmod{211}$ kongruencát! Kell-e 211 próbálkozás?

Lineáris kongruenciák

Tétel

Legyenek a, b, m egész számok, m>1. Ekkor az $ax\equiv b\pmod{m}$ megoldható $\Leftrightarrow (a,m)\mid b$. Ez esetben pontosan (a,m) darab páronként inkongruens megoldás van $\operatorname{mod} m$.

Bizonyítás

Mivel $(a, m) | a, m \Rightarrow (a, m) | ax + my = b$. Ha d = (a, m) | b legyen a' = a/d, b' = b/d, m' = m/d: a'x + m'y = b'

 $ax \equiv b \pmod{m} \Leftrightarrow ax + my = b \text{ valamely } y \text{ egészre.}$

Mivel (a', m') = 1 bővített euklideszi algoritmussal kiszámolható x_0 , y_0 együttható, hogy $a'x_0 + m'y_0 = 1 \Rightarrow a'(b'x_0) + m'(b'y_0) = b'$, azaz $x_1 = b'x_0$, $y_1 = b'y_0$ megoldás lesz.

Megoldások száma: legyenek x, ill. y megoldások. Az a'x + m'y = b' és $a'x_1 + m'y_1 = b'$ egyenleteket kivonva egymásból kapjuk: $a'(x - x_1) = m'(y_1 - y) \Rightarrow m' \mid x - x_1 \Rightarrow x = x_1 + m'k$:

 $k = 0, 1, \dots, d - 1$. Ezek megoldások $y = y_1 - ka'$ választással.

14.

2014. ősz

Lineáris kongruenciák

- 1. $ax \equiv b \pmod{m} \Leftrightarrow ax + my = b$.
- 2. Oldjuk meg az ax + my = (a, m) egyenletet (bővített euklideszi algoritmus)!
- 2. Ha $(a, m) \mid b \Leftrightarrow \text{van megoldás}$.
- 4. Megoldások: $x_i = \frac{b}{(a,m)}x + k\frac{m}{(a,m)}$: k = 0, 1, ..., (a,m) 1.

Példa Oldjuk meg a $23x \equiv 4 \pmod{211}$ kongruencát!

i	r _n	q_n	x _i
-1	23	_	1
0	211	_	0
1	23	0	1
2	4	9	-9
3	3	5	46
4	1	1	-55
5	0	3	_

Algoritmus:
$$r_{i-2} = r_{i-1}q_i + r_i$$
, $x_{-1} = 1$, $x_0 = 0$, $x_i = x_{i-2} - q_ix_{i-1}$.

Lnko: $(23, 211) = 1 \mid 4 \Rightarrow$

Egy megoldás: $x_0 = 4(-55) \equiv 202 \pmod{211}$.

Osszes megoldás: $\{202 + 211\ell : \ell \in \mathbb{Z}\}.$

Ezek megoldások: $23 \cdot (202 + 211\ell) - 4 = 4642 + 211\ell = (22 + \ell) \cdot 211$

Lineáris kongruenciák

Példa

Oldjuk meg a $10x \equiv 8 \pmod{22}$ kongruenciát!

i	r _n	q_n	Xi
$\overline{-1}$	10	_	1
0	22	_	0
1	10	0	1
2	2	2	-2
3	0	5	_

Algoritmus:
$$r_{i-2} = r_{i-1}q_i + r_i$$
,
 $x_{-1} = 1$, $x_0 = 0$,
 $x_i = x_{i-2} - q_i x_{i-1}$

Lnko:
$$(10, 22) = 2 \mid 8 \Rightarrow$$

Két inkongruens megoldás:
 $x_1 = 4(-2) \equiv 14 \pmod{22}$
 $x_2 = 4(-2) + \frac{22}{2} \equiv 14 + 11 \equiv 3 \pmod{22}$.

Összes megoldás: $\{14+22\ell:\ \ell\in\mathbb{Z}\}\bigcup\{3+22\ell:\ \ell\in\mathbb{Z}\}.$ Ezek megoldások: $x_1=14$: $10\cdot 14-8=132=6\cdot 22$, $x_2=3$: $10\cdot 3-8=22=1\cdot 22$.