1 Onde estamos

Com as conclusões que chegamos em relação ao **cálculo da tabela Simplex com base na inversa**, estamos aptos a entender uma aplicação direta dos conceitos: o algoritmo Simplex Revisado (ou simplex por multiplicadores).

2 Retomando o quadro genérico

Como vimos, em função de uma base (B), podemos recuperar todos os valores de uma tabela Simplex, usando as **fórmulas genéricas**:

Embora as fórmulas estejam escritas com as variáveis **básicas** e **não básicas** de forma separada, elas funcionam para quaisquer valores. Lembrando que um modelo de PL na forma padrão é:

$$\min \mathbf{z} = \mathbf{c}^T \mathbf{x}$$
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
$$\mathbf{x} \ge 0$$

Seja

$$\begin{cases} A_i : & \text{Coluna } i \text{ da matriz A} \\ c_i : & \text{Elemento } i \text{ do vetor c} \end{cases}$$

Para atualizarmos a coluna A_i (novo valor \overline{A}_i), e o valor de c_i (novo valor \overline{c}_i) usamos as seguintes fórmulas:

$$\overline{c}_i^T = \mathbf{c}_i^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_i$$

$$\overline{A}_i = \mathbf{B}^{-1} \mathbf{A}_i$$

OBS: Essa atualização pode ser feita com mais de uma coluna ao mesmo tempo, bastando substituir A_i e c_i pelo conjunto de colunas e valores que serão atualizados.

EXEMPLO Considere o modelo de PL na forma padrão e a sua tabela final a seguir:

	x_1	x_2	x_3	x_4	x_5	-z
$\overline{\mathrm{VB}}$	0	0	3/2	0	1/2	11
x_1	1	0	1/2	0	-1/2	1
x_4	0	0	0	1	1	8
x_2	0	1	1/2	0	1/2	5

Suponha que queiramos encontrar os valores atualizados (da tabela final) de $c^T = [c_3, c_4, c_5] = [3/2, 0, 1/2]$, sabendo que a base tem $[x_1, x_4, x_2]$.

Podemos usar a fórmula:

$$\bar{c}_i = \mathbf{c}_i^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_i$$

EXEMPLO Coletando os dados:

1.
$$c_i^T = [0, 0, 0]$$

$$\begin{array}{l} 1. \ \ c_i^T = [0,0,0] \\ 2. \ \ \mathbf{c}_B^T = [-1,0,-2] \\ 3. \end{array}$$

$$\mathbf{B} = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{array} \right]$$

4.

$$\mathbf{A}_i = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Temos que a inversa da base é:

$$B^{-1} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 1 \\ 1/2 & 0 & 1/2 \end{bmatrix}$$

Assim:

$$\bar{c}_i^T = \mathbf{c}_i^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_i = \underbrace{\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}}_{\mathbf{c}_i^T} - \underbrace{\begin{bmatrix} -1 & 0 & -2 \end{bmatrix}}_{\mathbf{c}_B^T} \underbrace{\begin{bmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 1 \\ 1/2 & 0 & 1/2 \end{bmatrix}}_{\mathbf{B}^{-1}} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\mathbf{A}_i} = \underbrace{\begin{bmatrix} 3/2 & 0 & 1/2 \end{bmatrix}}_{\mathbf{A}_i}$$

EXEMPLO Considere o modelo de PL e a sua tabela final a seguir:

	x_1	x_2	x_3	x_4	x_5	$-\mathbf{Z}$
$\overline{\mathrm{VB}}$	0	0	3/2	0	1/2	11
x_1	1	0	1/2	0	-1/2	1
x_4	0	0	0	1	1	8
x_2	0	1	1/2	0	1/2	5

Suponha que agora queremos encontrar as colunas da matriz referentes às variáveis x_3 e x_4 , ou seja A_3 e A_4 .

Podemos usar a fórmula:

$$\overline{A}_i = \mathbf{B}^{-1} \mathbf{A}_i$$

EXEMPLO Coletando os dados:

1.

$$\mathbf{B} = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{array} \right]$$

2.

$$\mathbf{B}^{-1} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 1 \\ 1/2 & 0 & 1/2 \end{bmatrix}$$

3.

$$\mathbf{A}_i = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right]$$

Portanto:

$$\overline{A}_i = \mathbf{B}^{-1} \mathbf{A}_i = \underbrace{\begin{bmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 1 \\ 1/2 & 0 & 1/2 \end{bmatrix}}_{\mathbf{B}^{-1}} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}}_{\mathbf{A}_i} = \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \\ 1/2 & 0 \end{bmatrix}$$

3 Motivação: qual o problema do Simplex?

Considerando o seguinte quadro inicial Simplex:

VB	x_1	x_2	x_3	x_4	x_5	b
	-100	-150	0	0	0	0
x_3	2	3	1	0	0	120
x_4	1	0	0	1	0	40
x_5	0	1	0	0	1	30

Na primeira iteração **olhamos para a linha** c^T para encontrar o mínimo, para A_2 e b para fazer a razão. Em seguida realizamos o pivoteamento, e **todos os elementos da tabela** são alterados:

$$\begin{cases} c^T : n \\ A : mxn \\ b^T : m \end{cases}, Total = (n+1)(m+1)$$

$$z : 1$$

A tabela atualizada fica da seguinte forma:

VB	x_1	x_2	x_3	x_4	x_5	b
	-100	0	0	0	150	4500
x_3	2	0	1	0	-3	30
x_4	1	0	0	1	0	40
x_2	0	1	0	0	1	30

Novamente olhamos para a linha c^T para encontrar o mínimo, para A_1 e b para fazer a razão. Embora tenhamos atualizado toda a tabela na iteração passada, nenhum dos valores em vermelho foi usado nessa iteração!

Conclusão

Percebemos então que ao usarmos o Simplex por quadros, muitos valores são atualizados e não são utilizados nas iterações seguintes. Esse fato justifica uma utilização mais inteligente do Simplex, pelo algoritmo chamado **Simplex Revisado**.

OBS: O modelo resolvido nesta apresentação é o mesmo do resolvido em "Simplex Fase II". Compare os dois métodos e veja que os resultados são os mesmos.

4 Simplex Revisado

IDEIA GERAL

O Simplex revisado parte do pressuposto de que, se sabemos qual é a base (\mathbf{B}), então é possível calcular a sua inversa B^{-1} , e consequentemente fazer uso das fórmulas genéricas para recuperar o quadro Simplex. Com isso, ao invés de atualizar o quadro todo a toda iteração, simplesmente geramos as informações relevantes a medida que precisamos delas.

VB	x_1	x_2	x_3	x_4	x_5	b
	-100	-150	0	0	0	0
x_3	2	3	1	0	0	120
x_4	1	0	0	1	0	40
x_5	0	1	0	0	1	30

Seja o quadro inicial como mostrado acima. Temos que inicialmente $x_B^T = [x_3, x_4, x_5]$, e a base é $B = [A_3 A_4 A_5]$. Na primeira iteração nada é alterado, pois já temos todos os dados, assim:

$$\begin{cases} x_2 \text{ entra na base} \\ x_5 \text{ sai da base} \end{cases}$$

VB	x_1	x_2	x_3	x_4	x_5	b
	-100	-150	0	0	0	0
x_3	2	3	1	0	0	120
x_4	1	0	0	1	0	40
x_2	0	1	0	0	1	30

Assim, temos que $x_B^T = [x_3, x_4, x_2]$, e a **nova base** é $B = [A_3 A_4 A_2]$, ou seja:

$$\mathbf{B} = \left[\begin{array}{rrr} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Para sabermos se o algoritmo pode parar, devemos calcular os valores de c^T atualizados pela fórmula $\overline{c}_i^T = \mathbf{c}_i^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_i$

VB	x_1	x_2	x_3	x_4	x_5	b
	-100	-150	0	0	0	0
x_3	2	3	1	0	0	120
x_4	1	0	0	1	0	40
x_2	0	1	0	0	1	30

Para isso, precisamos então de B^{-1} , c_B^T , c_i^T e A_i .

Temos que:

$$\mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{c}_{B}^{T} = \begin{bmatrix} 0 & 0 & -150 \end{bmatrix}, \mathbf{c}_{i}^{T} = \begin{bmatrix} -100 & 0 \end{bmatrix} \mathbf{A}_{i} = \begin{bmatrix} 2 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Portanto

$$\overline{c}_i^T = [\overline{c}_1, \overline{c}_5] = \mathbf{c}_i^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_i$$

$$\overline{c}_i^T = \begin{bmatrix} -100 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 & -150 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = [-100, 150]$$

Assim, sabemos que o novo vetor c^T fica:

$$c^T = [-100, 0, 0, 0, 100]$$

Como existe $c_i < 0$ o algoritmo deve continuar, e portanto selecionamos a variável x_1 para entrar na base (min c_i^T).

O próximo passo é a seleção da variável que sai da base, pela razão b/A_i , de forma que precisamos encontrar os valores atualizados de A_1 e b. Novamente usamos as fórmulas genéricas:

$$\bar{b} = B^{-1}b$$

$$\overline{A}_i = \mathbf{B}^{-1} \mathbf{A}_i$$

Temos então que:

$$\overline{b} = B^{-1}b = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 120 \\ 40 \\ 30 \end{bmatrix} = \begin{bmatrix} 30 \\ 40 \\ 30 \end{bmatrix}$$

е

$$\overline{A}_i = \mathbf{B}^{-1} \mathbf{A}_i = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

Agora, com os valores atualizados podemos determinar a variável que sai da base, pelo $min\{b/A_i\}$. Temos que minimo = 30/2 = 15, na primeira linha. A primeira linha tinha a variável x_3 como básica, portanto:

$$\begin{cases} x_1 \text{ entra na base} \\ x_3 \text{ sai da base} \end{cases}$$

VB	x_1	x_2	x_3	x_4	x_5	b
	-100	-150	0	0	0	0
x_1	2	3	1	0	0	120
x_4	1	0	0	1	0	40
x_2	0	1	0	0	1	30

Assim, temos que $x_B^T = [x_1, x_4, x_2]$, e a base é $B = [A_1 A_4 A_2]$, ou seja:

$$\mathbf{B} = \left[\begin{array}{ccc} 2 & 0 & 3 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Para sabermos se o algoritmo pode parar, devemos calcular os valores de c^T atualizados pela fórmula $\overline{c}_i^T = \mathbf{c}_i^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_i$

Para isso, precisamos então de B^{-1} , c_B^T , c_i^T e A_i .

Temos que:

$$\mathbf{B}^{-1} = \begin{bmatrix} 1/2 & 0 & -3/2 \\ -1/2 & 1 & 3/2 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{c}_B^T = \begin{bmatrix} -100 & 0 & -150 \end{bmatrix}, \mathbf{c}_i^T = \begin{bmatrix} 0 & 0 \end{bmatrix} \mathbf{A}_i = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Portanto

$$\overline{c}_i^T = [\overline{c}_3, \overline{c}_5] = \mathbf{c}_i^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_i$$

$$\overline{c}_i^T = \left[\begin{array}{ccc} 0 & 0 \end{array} \right] - \left[\begin{array}{ccc} -100 & 0 & -150 \end{array} \right] \left[\begin{array}{ccc} 1/2 & 0 & -3/2 \\ -1/2 & 1 & 3/2 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} \right] = \left[50, 0 \right]$$

Assim, sabemos que o novo vetor c^T fica:

$$c^T = [0, 0, 50, 0, 0]$$

Como não existe $c_i < 0$ o algoritmo **pode parar**, e temos a solução ótima com as variáveis básicas $x_B^T = [x_1, x_4, x_2]$. Agora só é necessário coletar os valores das variáveis (vetor \bar{b}) e o **custo** da fo.

$$\bar{b} = B^{-1}b = \begin{bmatrix} 1/2 & 0 & -3/2 \\ -1/2 & 1 & 3/2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 120 \\ 40 \\ 30 \end{bmatrix} = \begin{bmatrix} 15 \\ 25 \\ 30 \end{bmatrix}$$

е

$$-z = -\mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b} = -\begin{bmatrix} -100 & 0 & -150 \end{bmatrix} \begin{bmatrix} 15 \\ 25 \\ 30 \end{bmatrix} = 6000$$

Usando o método Simplex Revisado, não precisamos atualizar toda a tabela Simplex, simplesmente os valores que são necessários naquela iteração, de forma geral (iniciando com uma base B e uma inversa B^{-1}):

PASSOS DO SIMPLEX REVISADO

- 1. Encontre os valores atualizados de A_i e b.
- 2. Determine a variável que entre e a que sai da base com os valores atualizados.
- 3. Atualize a base B e a inversa B^{-1}
- 4. Atualize c_T , se $c_T >= 0$ PARE. Senão volte para o passo 1.

Essa abordagem possui algumas limitações:

- 1. Uma limitação do método Simplex revisado é a **determinação da inversa da base** B^{-1} a cada iteração. Isso implica o cálculo da eliminação de Gauss em uma matriz mxm a toda iteração.
- 2. Esse problema pode ser parcialmente resolvido, aproveitando a inversa de iterações antigas.
- 3. Note que o Simplex sempre faz a troca de **uma coluna de B** a cada iteração (variável que sai e que entra na base). Dessa forma, podemos usar a inversa da iteração anterior e somente atualizar com a nova coluna que deve fazer parte da nova base.

5 Cálculo da nova inversa a partir da anterior

Considere a primeira matriz inversa B_1^{-1} do exemplo resolvido (a própria identidade):

$$\mathbf{B}_{1}^{-1} = \left[\begin{array}{ccc} x_{3} & x_{4} & x_{5} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Para fazer a atualização da inversa, precisamos de duas informações:

- 1. A nova coluna c que deve ser inserida.
- 2. Em qual posição ela será inserida (coluna p).

O primeiro passo então é determinar qual é a coluna da identidade original referente ao índice $p(I_p)$. Em seguida, realizamos as operações na matriz B^{-1} atual, necessárias para transformar c em I_p . O resultado final é a nova matriz inversa.

Continuando com o exemplo, na primeira iteração determinamos que x_2 entra na base e x_5 sai, dessa forma temos que:

e:
$$\mathbf{B}_{1}^{-1} = \begin{bmatrix} x_{3} & x_{4} & x_{5} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} c = \begin{bmatrix} x_{2} \\ 3 \\ 0 \\ 1 \end{bmatrix} p = 3, I_{p} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Podemos escrever uma matriz aumentada, com todas as informações:

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Agora só precisamos executar as operações em linhas para transformar a coluna de x_2 em I_p . São elas:

1.
$$L_1 \leftarrow L_1 - 3L_3$$

A nova matriz inversa B_2^{-1} fica:

$$\mathbf{B}_2^{-1} = \left[\begin{array}{ccc} x_3 & x_4 & x_2 \\ 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Na nova iteração, temos que $\underset{x_3}{x_1}$ entra na base e x_3 sai. De forma que:

$$\mathbf{B}_{2}^{-1} = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} c = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} p = 1, I_{p} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

A matriz aumentada fica:

$$\begin{bmatrix} x_3 & x_4 & x_2 & x_1 \\ 1 & 0 & -3 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Para transformar x_1 em I_p :

1.
$$L_1 \leftarrow L_1/2$$

2.
$$L_2 \leftarrow L_2 - L_1$$

Finalmente, a última inversa B_3^{-1} fica:

$$\mathbf{B}_{3}^{-1} = \begin{bmatrix} 1/2 & 0 & -3/2 \\ -1/2 & 1 & 3/2 \\ 0 & 0 & 1 \end{bmatrix}$$

Dessa forma, conseguimos calcular todas as matrizes inversas, usando as informações anteriormente calculadas.

6 Exercícios

- 1. Existe alguma desvantagem em usar o método Simplex por tabelas? Qual?
- 2. Qual é a ideia central do método Simplex revisado? Por quê ele pode ser considerado uma melhoria do método Simplex?
- 3. Existe alguma desvantagem em usar o método Simplex revisado? Como essa desvantagem pode ser sanada?