STAT 4550 Project

Omar Ebrahim, Kareem El Touny, Ahmed Khaled 2024-05-06

Importing the libraries

```
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.2
library(ggfortify)
## Warning: package 'ggfortify' was built under R version 4.3.3
library(forecast)
## Warning: package 'forecast' was built under R version 4.3.3
## Registered S3 method overwritten by 'quantmod':
## as.zoo.data.frame zoo
## Registered S3 methods overwritten by 'forecast':
## method from
## autoplot.Arima ggfortify
## autoplot.acf ggfortify
## autoplot.ar ggfortify
## autoplot.bats ggfortify
      autoplot.decomposed.ts ggfortify
## autoplot.ets
                         ggfortify
## autoplot.forecast ggfortify
## autoplot.in ggfortify
## autoplot.ts ggfortify
## fitted.ar ggfortify
## fortify.ts ggfortify
## residuals.ar ggfortify
library(zoo)
## Warning: package 'zoo' was built under R version 4.3.3
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
        as.Date, as.Date.numeric
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.3.2
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
        filter, lag
## The following objects are masked from 'package:base':
##
        intersect, setdiff, setequal, union
```

```
library(readr)
library(tseries)

## Warning: package 'tseries' was built under R version 4.3.3

library(lmtest)

## Warning: package 'lmtest' was built under R version 4.3.2
```

UKDriverDeaths is a time series giving the monthly totals of car drivers in Great Britain killed or seriously injured Jan 1969 to Dec 1984. Compulsory wearing of seat belts was introduced on 31 Jan 1983. We chose this dataset because it is variable by time, and there seems to be a trend which allows us to analyze it in the upcoming data visualization techniques.

## ## 1	DriversKilled 107	1687	867	269	9059	PetrolPrice 0.10297181	12	0	
## 2 ## 3	97 102	1508 1507	825 806	265 319		0.10236300 0.10206249	6 12	0 0	
## 4	87	1385	814		10955	0.10206249	8	0	
## 5	119	1632	991		11823		10	0	
## 6	106	1511	945		12391		13	0	
## 7 ## 8	110 106	1559	1004 1091		13460	0.10377398	11	0	
## 0	107	1630 1579	958		14055 12106	0.10407640 0.10377398	6 10	0	
## 10	134	1653	850		11372		16	0	
## 11	147	2152	1109	434	9834	0.10273011	13	0	
## 12	180	2148	1113	437		0.10199719	14	0	
## 13	125	1752 1765	925 903	316		0.10127456	14	0 0	
## 14 ## 15	134 110	1717	1006	311 351	11000	0.10070398 0.10013961	6 8	0	
## 16	102	1558	892		10733	0.09862110	11	0	
## 17	103	1575	990	486	12912	0.09834929	7	0	
## 18	111	1520	866		12926	0.09808018	13	0	
## 19	120	1805	1095		13990	0.09727921	13	0	
## 20 ## 21	129 122	1800 1719	1204 1029		14926 12900	0.09741062 0.09742524	11 11	0 0	
## 22	183	2008	1147		12034		14	0	
## 23	169	2242	1171		10643		16	0	
## 24	190	2478	1299		10742		14	0	
## 25	134	2030	944		10266	0.09673597	17 16	0	
## 26 ## 27	108 104	1655 1693	874 840		10281 11527	0.09610922 0.09536725	16 15	0	
## 27 ## 28	104	1623	840		12281		13	0	
## 29	157	1805	1007		13587	0.09411762	13	0	
## 30	148	1746	973		13049	0.09353215	15	0	
## 31	130	1795	1097		16055	0.09295405	12	0	
## 32 ## 33	140 136	1926	1194		15220	0.09283979	6	0 0	
## 33 ## 34	136 140	1619 1992	988 1077		13824 12729	0.09272474 0.09226965	9 13	0	
## 35	187	2233	1045		11467		14	0	
## 36	150	2192			11351		15	0	
## 37	159	2080	1005		10803	0.09071160	14	0	
## 38	143	1768	857		10548	0.09027633	3	0	
## 39 ## 40	114 127	1835 1569	879 887		12368 13311	0.08995192 0.08909964	12 13	0	
## 40 ## 41	159	1976	887 1075		13311	0.08867919	13	0	
## 42	156	1853	1121		14088	0.08815929	8	0	
## 43	138	1965	1190	569	16932		8	0	
## 44	120	1689	1058		16164	0.08818133	15	0	
## 45 ## 46	117	1778	939		14883	0.08894029	8	0	
## 46 ## 47	170 168	1976 2397	1074 1089		13532	0.08772661 0.08742885	5 17	0 0	
## 47	198	2654	1208		12025		17	0	
## 49	144	2097	903		11692		13	0	
## 50	146	1963	916		11081	0.08587264	5	0	
## 51	109	1677	787		13745	0.08539822	8	0	
## 52	131	1941	1114		14382		5	0	
## 53 ## 54	151 140	2003	1014 1022		14391 15597		12	0 a	
## 54 ## 55	153	1813 2012			16834	0.08377841	11 13	0 0	
## 56	140	1912	1132		17282	0.08351074	15	0	
## 57	161	2084	1111		15779		11	0	
## 58	168	2080	1008		13946	0.08117889	11	0	
## 59	152	2118	916		12701		10	0	
## 60	136	2150	992			0.09419012	13	0	
## 61 ## 62	113 100	1608 1503	731 665		11616 10808	0.09239984 0.10816148	8 6	0 0	
## 63	103	1548	724			0.10010148	8	0	
## 64	103	1382	744		13605		14	0	
## 65	121	1731	910		14455		12	0	
## 66	134	1798	883		15019		14	0	
## 67	133	1779	900		15662		13	0	
## 68 ## 69	129 144	1887 2004	1057 1076		16745 14717		9	0 0	
## 59	154	2004	919		13756		13	0	
## 71	156	2092	920		12531		6	0	
## 72	163	2051	953		12568	0.11762190	15	0	
## 73	122	1577	664		11249		12	0	
## 74	92	1356	607		11096		16	0	
## 75 ## 76	117 95	1652 1382	777 633		12637 13018		7 12	0 0	
	96	1519	791			0.12354745	10	0	
## 77									

##	78	108	1421	790	409	15235	0.11633748	9	0
## 7	79	108	1442	803	416	15552	0.11516148	9	0
## 8	80	106	1543	884	511	16905	0.11450120	6	0
## 8	81	140	1656	769	393	14776	0.11352298	7	0
## 8	82	114	1561	732	345	14104	0.11193018	13	0
## 8		158	1905	859		12854	0.11061053	14	0
	84	161	2199	994		12956	0.11527439	13	0
	85	102	1473	704		12177	0.11379349	14	0
	86 87	127	1655	684		11918	0.11234958	11	0
## 8		125	1407	671		13517	0.11175347	11	0
## 8		101	1395	643		14417	0.10964252	10	0
## 8		97	1530	771		15911	0.10844090	4	0
## 9		112	1309	644		15589	0.10788494	8	0
## 9	91	112	1526	828	458	16543	0.10908477	9	0
## 9	92	113	1327	748	427	17925	0.10757145	10	0
## 9	93	108	1627	767	346	15406	0.10616402	10	0
## 9	94	128	1748	825	421	14601	0.10630000	5	0
## 9	95	154	1958	810	344	13107	0.10482531	13	0
## 9	96	162	2274	986	370	12268	0.10345175	12	0
## 9	97	112	1648	714	291	11972	0.10144992	10	0
## 9	98	79	1401	567	224	12028	0.10040232	9	0
## 9	99	82	1411	616	266	14033	0.09886203	7	0
## :	100	127	1403	678	338	14244	0.10249615	5	0
## :	101	108	1394	742	298	15287	0.10302743	10	0
## :	102	110	1520	840	386	16954	0.10217891	5	0
## :	103	123	1528	888	479	17361	0.09983664	6	0
## :	104	103	1643	852	473	17694	0.09263669	8	0
##		97	1515	774	332	16222	0.09181496	6	0
##		140	1685	831		14969	0.09072430	12	0
##		165	2000	889		13624	0.09002121	15	0
## :		183	2215	1046		13842	0.08933071	7	0
		148		889				14	0
## :			1956			12387	0.08844273		
## :		111	1462	626		11608	0.08835257	4	0
## :		116	1563	808		15021	0.08675736	10	0
## :		115	1459	746		14834	0.08499524	8	0
## :		100	1446	754		16565	0.08456794	7	0
## :		106	1622	865		16882	0.08443190	11	0
## :		134	1657	980		18012	0.08435088	3	0
## :		125	1638	959		18855	0.08360098	5	0
## :	117	117	1643	856	384	17243	0.08341726	11	0
## :	118	122	1683	798	366	16045	0.08274514	10	0
## :	119	153	2050	942	432	14745	0.08523527	10	0
## :	120	178	2262	1010	390	13726	0.08477030	7	0
## :	121	114	1813	796	306	11196	0.08445892	10	0
## :	122	94	1445	643	232	12105	0.08535212	11	0
## 3	123	128	1762	794	342	14723	0.08755921	9	0
## :	124	119	1461	750	329	15582	0.09038292	7	0
## :	125	111	1556	809	394	16863	0.09078329	8	0
## :	126	110	1431	716		16758	0.10874278	13	0
## :	127	114	1427	851		17434	0.11414223	8	0
## :		118	1554	931		18359	0.11299293	5	0
## :		115	1645	834		17189	0.11132071	8	0
## :		132	1653	762		16909	0.10912623	7	0
## :		153	2016	880		15380	0.10769846	12	0
## :		171	2207	1077		15161	0.10760157	10	0
## :		115	1665	748		14027	0.10377502	7	0
## :		95	1361	593		14478	0.10711417	4	0
## :		92	1506	720		16155	0.10737477	10	0
## :		100	1360	646 765		16585	0.11169537	4	0
## :		95	1453	765		18117	0.11063818	8	0
## :		114	1522	820		17552	0.11185521	8	0
## :		102	1460	807		18299	0.10974234	7	0
## :		104	1552	885		19361	0.10819393	10	0
## :		132	1548	803		17924	0.10625536	8	0
## :		136	1827	860		17872	0.10419303	14	0
## :		117	1737	825		16058	0.10193397	8	0
## :	144	137	1941	911		15746	0.10279382	9	0
## :	145	111	1474	704	284	15226	0.10476034	8	0
## :	146	106	1458	691	316	14932	0.10400254	6	0
## :	147	98	1542	688	321	16846	0.11665552	7	0
## :	148	84	1404	714	358	16854	0.11516148	6	0
## :	149	94	1522	814	378	18146	0.11298954	5	0
## :	150	105	1385	736	382	17559	0.11386064	4	0
## :	151	123	1641	876	433	18655	0.11911808	5	0
## :		109	1510	829		19453	0.12448999	10	0
## :		130	1681	818		17923	0.12322295	7	0
## :		153	1938	942		17915	0.12067793	10	0
		134	1868	782		16496	0.12104898	12	0
## :	100								
## :		99	1726	823		13544	0.11696857	7	0

```
115
                    1456 595 238 13601 0.11275026
                                                        4
## 157
                                                            0
## 158
              104
                    1445
                          673 285 15667 0.10807931
## 159
              131
                    1456 660 324 17358 0.10883852
## 160
             108 1365 676 346 18112 0.11129177
## 161
            103 1487 755 410 18581 0.11130401
                                                        4
                                                           0
## 162
              115
                    1558 815 411 18759 0.11545436
                                                        8
             122 1488 867 496 20668 0.11476830
## 163
## 164
            122 1684 933 534 21040 0.11720743
## 165
             125 1594 798 396 18993 0.11907640
                                                        7
                                                            0
              137
                    1850
                          950 470 18668 0.11796586
                                                       12
## 166
                    1998 825 385 16768 0.11744913
## 167
             138
                                                        2
                                                            0
## 168
                    2079 911 411 16551 0.11698846
## 169
            120 1494 619 281 16231 0.11261054
                                                        8 0
## 170
              95
                    1057
                          426 300 15511 0.11365702
## 171
              100
                   1218 475 318 18308 0.11314445
                                                           1
## 172
             89 1168 556 391 17793 0.11849553
              82 1236 559 398 19205 0.11796940
## 173
                                                        3
                                                           1
## 174
              89
                    1076
                          483 337 19162 0.11768661
## 175
              60
                    1174 587 477 20997 0.12005924
                                                        6
                                                            1
## 176
             84 1139 615 422 20705 0.11943775
## 177
            113 1427 618 495 18759 0.11888127
                                                        8 1
## 178
              126
                    1487
                         662 471 19240 0.11846236
             122 1483 519 368 17504 0.11801660
## 179
## 180
            118 1513 585 345 16591 0.11770662
## 181
             92 1357 483 296 16224 0.11777609
                   1165 434 319 16670 0.11479699
## 182
              86
                                                        3
                                                            1
## 183
              81
                    1282 513 349 18539 0.11573525
                                                        4
                                                            1
## 184
             84 1110 548 375 19759 0.11535626
## 185
             87 1297 586 441 19584 0.11481536
                   1185 522 465 19976 0.11477748
             90
## 186
## 187
              79
                   1222 601 472 21486 0.11493598
             96 1284 644 521 21626 0.11479699
## 188
## 189
             122 1444 643 429 20195 0.11409316
## 190
              120
                    1575 641 408 19928 0.11646552
                                                        7
                                                           1
## 191
              137
                    1737
                          711 490 18564 0.11602611
                                                        4
                                                            1
                    1763 721 491 18149 0.11606673
## 192
              154
                                                        7 1
Seatbelts <- ts(Seatbelts, start = 1969, frequency=12)
SeatbeltsTS <- Seatbelts[,1]</pre>
frequency(SeatbeltsTS)
## [1] 12
summary(SeatbeltsTS)
```

```
Min. 1st Qu. Median
                    Mean 3rd Qu.
60.0 104.8 118.5 122.8 138.0
                                  198.0
```

mean(SeatbeltsTS)

```
## [1] 122.8021
```

sd(SeatbeltsTS)

```
## [1] 25.37989
```

min(SeatbeltsTS)

```
## [1] 60
```

max(SeatbeltsTS)

```
## [1] 198
```

SeatbeltsTS

```
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
##
## 1969 107 97 102 87 119 106 110 106 107 134 147 180
## 1970 125 134 110 102 103 111 120 129 122 183 169 190
## 1971 134 108 104 117 157 148 130 140 136 140 187 150
## 1972 159 143 114 127 159 156 138 120 117 170 168 198
## 1973 144 146 109 131 151 140 153 140 161 168 152 136
## 1974 113 100 103 103 121 134 133 129 144 154 156 163
## 1975 122 92 117 95 96 108 108 106 140 114 158 161
## 1976 102 127 125 101 97 112 112 113 108 128 154 162
## 1977 112 79 82 127 108 110 123 103 97 140 165 183
## 1978 148 111 116 115 100 106 134 125 117 122 153 178
## 1979 114 94 128 119 111 110 114 118 115 132 153 171
## 1980 115 95 92 100 95 114 102 104 132 136 117 137
## 1981 111 106
                98
                    84 94 105 123 109 130 153 134 99
## 1982 115 104 131 108 103 115 122 122 125 137 138 152
## 1983 120 95 100 89 82 89 60 84 113 126 122 118
## 1984 92 86 81 84 87 90 79 96 122 120 137 154
```

autoplot(SeatbeltsTS) + labs(x= "Date", y= "Driver Deaths", title="Road Casualties in Great Britain (1969 - 1984)") + theme_ minimal()

Over the period from 1969 to 1984, there is a noticeable downward trend in the number of driver deaths. While the overall trend is downward, there | | -----|

```
decomposedres <- decompose(SeatbeltsTS)
plot(decomposedres)</pre>
```

Decomposition of additive time series

| In the observed section, there is a downward trend over the years particularly for the mean, the fluctuations in the variation remain the same. T |

```
data(Seatbelts)
Sb <- Seatbelts[,1]
class(Sb)

## [1] "ts"

summary(Sb)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 60.0 104.8 118.5 122.8 138.0 198.0

plot(Sb,xlab="Date", ylab = "Driver Deaths",main="Road Casualties in Great Britain (1969 - 1984)")</pre>
```

Road Casualties in Great Britain (1969 - 1984)

autoplot(Sb) + labs(x ="Date", y = "Driver Deaths", title="Road Casualties in Great Britain (1969 - 1984)")

Road Casualties in Great Britain (1969 - 1984)

boxplot(Sb~cycle(Sb),xlab="Date", ylab = "Driver Deaths" ,main ="Road Casualties in Great Britain (1969 - 1984)")

Road Casualties in Great Britain (1969 - 1984)

decomposeTS <- decompose(Sb, "multiplicative")
autoplot(decomposeTS)</pre>


```
library(lmtest)
lm_model <- lm(Sb ~ 1)
dwtest(lm_model)

##

## Durbin-Watson test
##

## data: lm_model
## DW = 0.73963, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is greater than 0</pre>
```

The DW statistic is from 0 to 4. A value around 2 is no autocorrelation, less than 2 positive autocorrelation, greater than 2 negative autocorrela

Dickey-Fuller (DF) Test:

```
# Load necessary package if not already loaded
library(tseries)

# Perform Dickey-Fuller test
adf.test(Sb)

## Warning in adf.test(Sb): p-value smaller than printed p-value

##

## Augmented Dickey-Fuller Test
##

## data: Sb

## Dickey-Fuller = -6.1975, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
```

For Dickey-Fuller, the test statistic -6.1975 is quite negative and shows strong evidence against the null hypothesis of unit root. Next, lag or

Augmented Dickey-Fuller (ADF) Test:

```
adf_result <- adf.test(Sb)

## Warning in adf.test(Sb): p-value smaller than printed p-value

print(adf_result)</pre>
```

```
##
## Augmented Dickey-Fuller Test
##
## data: Sb
## Dickey-Fuller = -6.1975, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
```

The Augmented Dickey-Fuller test results show that the series is stationary, meaning that the mean & variance remain constant over time. -6.1975 i

Autocorrelation Function (ACF):

```
library(ggplot2) # Load the ggplot2 package for plotting
library(stats)
                 # Load the stats package for acf function
# Calculate autocorrelation function (ACF)
acf_result <- acf(Sb, plot = FALSE)</pre>
# Extract lag and autocorrelation values
lags <- acf_result$lag</pre>
acf_values <- acf_result$acf</pre>
# Create data frame
acf_df <- data.frame(lag = lags, acf = acf_values)</pre>
# Plot ACF using ggplot2 with white background
p5<- ggplot(acf_df, aes(x = lag, y = acf)) +
 geom_bar(stat = "identity", fill = "#0099f9") +
  labs(title = "Correlogram of Road Casualties in Great Britain (1969 - 1984)",
      x = "Lag", y = "Autocorrelation") +
 theme_minimal() +
 theme(panel.background = element_rect(fill = "white"),
        plot.background = element_rect(fill = "white"),
        panel.grid.major = element_line(color = "gray"),
        panel.grid.minor = element_blank(),
        axis.line = element_line(color = "black"),
        text = element_text(color = "black"))
print(p5)
```


Significant positive autocorrelations at lower lags suggest that the road casualties data exhibit persistence which means that high casualty perio

Partial Autocorrelation Function (PACF):

```
library(ggplot2) # Load the ggplot2 package for plotting
library(stats)
                  # Load the stats package for acf function
# Calculate autocorrelation function (ACF)
pacf_result <- pacf(Sb, plot = FALSE)</pre>
# Extract lag and autocorrelation values
lags <- pacf_result$lag</pre>
pacf_values <- pacf_result$acf</pre>
# Create data frame
pacf_df <- data.frame(lag = lags, pacf = pacf_values)</pre>
# Plot ACF using ggplot2 with white background
p6<- ggplot(pacf_df, aes(x = lag, y = pacf)) +
  geom_bar(stat = "identity", fill = "#0099f9") +
  labs(title = "Correlogram of Road Casualties in Great Britain (1969 - 1984)",
       x = "Lag", y = "Autocorrelation") +
  theme minimal() +
  theme(panel.background = element_rect(fill = "white"),
        plot.background = element_rect(fill = "white"),
        panel.grid.major = element_line(color = "gray"),
        panel.grid.minor = element_blank(),
        axis.line = element_line(color = "black"),
        text = element_text(color = "black"))
print(p6)
```


The plot for road shows significant positive partial autocorrelations at lag 1 which means there is a strong direct relationship between driver de

Modeling and Forecasting TS Data

To determine the optimal order of an ARIMA model using different information criteria such as AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), FPE (Final Prediction Error), and HQ (Hannan-Quinn Criterion)

The following script will loop through different combinations of p (AR order), d (differencing), and q (MA order) parameters, fit ARIMA models for each combination, compute AIC, BIC, FPE, and HQ criteria, and then find the optimal order based on each criterion.

```
# Load necessary packages
library(forecast)
# Define the time series data
# Replace 'AP' with your actual time series data
ts_data <- Sb
\# Define the maximum values for p, d, and q
max_p <- 3 # Maximum value for AR order</pre>
max_d <- 1 # Maximum value for differencing</pre>
max_q <- 3 # Maximum value for MA order</pre>
\mbox{\#} Initialize matrices to store AIC, BIC, FPE, and HQ values
AIC_matrix <- matrix(NA, nrow = max_p, ncol = max_q)
BIC_matrix <- matrix(NA, nrow = max_p, ncol = max_q)
FPE_matrix <- matrix(NA, nrow = max_p, ncol = max_q)</pre>
HQ_{matrix} \leftarrow matrix(NA, nrow = max_p, ncol = max_q)
# Loop through different combinations of p, d, and q parameters
for (p in 1:max_p) {
  for (q in 1:max_q) {
    for (d in 0:max_d) {
      # Skip combinations that result in non-invertible models
      if (p + d + q > 0) {
        tryCatch({
          \# Fit ARIMA model for the current combination of p, d, and q
          arima_model \leftarrow arima(ts_data, order = c(p, d, q))
          # Compute AIC, BIC, FPE, and HQ criteria
          AIC_matrix[p, q] <- AIC(arima_model)
          BIC_matrix[p, q] <- BIC(arima_model)</pre>
          FPE_matrix[p, q] <- logLik(arima_model) * (-2 / length(ts_data))</pre>
          HQ_matrix[p, q] \leftarrow log(length(ts_data)) * (p + q + 1) - 2 * logLik(arima_model)
        }, error = function(e) {
        })
    }
  }
# Find the optimal order based on each criterion
optimal_order_AIC <- which(AIC_matrix == min(AIC_matrix), arr.ind = TRUE)</pre>
optimal_order_BIC <- which(BIC_matrix == min(BIC_matrix), arr.ind = TRUE)</pre>
optimal_order_FPE <- which(FPE_matrix == min(FPE_matrix), arr.ind = TRUE)</pre>
optimal\_order\_HQ \ \leftarrow \ which(HQ\_matrix \ == \ min(HQ\_matrix), \ arr.ind \ = \ TRUE)
# Print the optimal orders
cat("Optimal Order (AIC):", optimal_order_AIC, "\n")
## Optimal Order (AIC): 2 2
cat("Optimal Order (BIC):", optimal_order_BIC, "\n")
## Optimal Order (BIC): 2 2
cat("Optimal Order (FPE):", optimal_order_FPE, "\n")
## Optimal Order (FPE): 2 3
cat("Optimal Order (HQ):", optimal_order_HQ, "\n")
## Optimal Order (HQ): 2 2
```

The AIC, BIC, and HQ all suggest the same model that is ARIMA(2,0,2), which makes it a potentially robust choice for the model. However, FPE crite

Automatic ARIMA

ARIMA forecasting captures the autocorrelation in a series and models it directly. Autocorrelation are values that show how a series relates to itself over a time series. ARIMA models are typical for outperforming exponential smoothing methods when historical data is long and non-volatile.

```
# Load the forecast package for ARIMA modeling
library(forecast)

# Fit automatic ARIMA model
auto_arima_model <- auto.arima(Sb)

# Print model summary
print(summary(auto_arima_model))</pre>
```

```
## Series: Sb
## ARIMA(1,0,2)(0,1,1)[12] with drift
##
## Coefficients:
##
                  ma1
                          ma2
                                 sma1
                                         drift
          ar1
##
        0.9497 -0.5740 -0.2048 -0.8858 -0.1225
## s.e. 0.0498 0.0872 0.0753 0.0863 0.0900
## sigma^2 = 251.7: log likelihood = -759.2
## AIC=1530.4 AICc=1530.89 BIC=1549.56
##
## Training set error measures:
                    ME RMSE MAE
##
                                           MPE
                                                    MAPE
                                                             MASE
## Training set 0.6768785 15.14566 11.191 -0.7505822 9.355091 0.6630612
##
                    ACF1
## Training set -0.00559305
```

The ARIMA(1,0,2)(0,1,1)[12] model with drift (adds constant trend to the model) is well-fitted to the data because it captures both the seasonal i

Residuals Diagnostics

To diagnose the residuals of an ARIMA model, you can use various techniques including the Augmented Dickey-Fuller (ADF) test or inspecting the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) of the residuals. In these plots, if the autocorrelation coefficients of the residuals are significant at certain lags (outside the blue shaded region in the plot), it indicates that the residuals exhibit some patterns that are not captured by the model.

Augmented Dickey-Fuller (ADF) Test for Residuals:

```
# Perform Augmented Dickey-Fuller test for residuals
adf.test(residuals(auto_arima_model))

## Warning in adf.test(residuals(auto_arima_model)): p-value smaller than printed
## p-value

##

## Augmented Dickey-Fuller Test
##

## data: residuals(auto_arima_model)
## Dickey-Fuller = -5.7588, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
```

Since p-value= 0.01 < 0.05, we reject the null hypothesis that our model is non-stationary then the model is stationary.

(ACF) and (PACF) of Residuals:

```
# Plot Autocorrelation Function (ACF) of residuals
acf(residuals(auto_arima_model))
```

Series residuals(auto_arima_model)

 $\begin{tabular}{ll} # Plot Partial Autocorrelation Function (PACF) of residuals \\ pacf(residuals(auto_arima_model)) \end{tabular}$

Series residuals(auto_arima_model)

Both ACF amd PACF plots show cutt-off throughout, which means there is no sign of autocorrelation in this model.

p6<-tsdiag(auto_arima_model)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic


```
print(p6)
## NULL
```

Standardized Residuals plot indicate having outliers which can be handled by applying some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking for some transformation or data cleaning such as checking such as chec

To test the normality of residuals from an ARIMA model, you can use:

1. Shapiro-Wilk Test:

```
# Perform Shapiro-Wilk test for normality of residuals
shapiro.test(residuals(auto_arima_model))
```

```
##
## Shapiro-Wilk normality test
##
## data: residuals(auto_arima_model)
## W = 0.97992, p-value = 0.007399
```

Since the p-value is less than 0.05, we reject the null hypothesis that the residuals are normally distributed. Residuals of the ARIMA model show 2. Kolmogorov-Smirnov Test:

```
# Perform Kolmogorov-Smirnov test for normality of residuals
ks.test(residuals(auto_arima_model), "pnorm", mean = mean(residuals(auto_arima_model)), sd = sd(residuals(auto_arima_model)))
```

```
##
## Asymptotic one-sample Kolmogorov-Smirnov test
##
## data: residuals(auto_arima_model)
## D = 0.065639, p-value = 0.3797
## alternative hypothesis: two-sided
```

p-value is greater than 0.05 then we fail to reject H0 that states that the data follows a specific distribution which can be a normal distribution 3. Visual Inspection:

```
# Histogram of residuals
hist(residuals(auto_arima_model), main = "Histogram of Residuals")
```

Histogram of Residuals


```
# Q-Q plot of residuals
qqnorm(residuals(auto_arima_model))
qqline(residuals(auto_arima_model))
```

Normal Q-Q Plot

In the Q-Q plot, if the residuals follow a normal distribution, the points should approximately fall along the diagonal line.

By performing these tests and visual inspections, you can assess whether the residuals from your ARIMA model are approximately normally distributed

While both plots don't indicate a perfect normal distribution, the deviations from the 45 degree line in the Q-Q plot is not that significant to : Outliers check

1. Boxplot:

```
# Box-plot of residuals
boxplot(resid(auto_arima_model), main = "Boxplot of Residuals")
```

Boxplot of Residuals

The boxplot indicates that we have 7 outliers which further verify the standardized residuals coclusion that outliers are present and more modific Ljung—Box test

The Ljung-Box test is a statistical test used to check for the presence of autocorrelation in a time series at various lags.

```
# Load necessary package
library(stats)

# Perform Ljung-Box test for autocorrelation of residuals
Box.test(residuals(auto_arima_model), lag = 3)

##

## Box-Pierce test
##

## data: residuals(auto_arima_model)
## X-squared = 0.15839, df = 3, p-value = 0.984
```

Ljung Box test confirms that there is no autocorrelation since p-value is greater than 0.05 fail to reject HO: no autocorrelation

ARIMA Forecasting

```
Arimaforecast <- forecast(auto_arima_model, h=12)
plot(Arimaforecast)
```

Forecasts from ARIMA(1,0,2)(0,1,1)[12] with drift


```
p6<-autoplot(Arimaforecast)
forecastSb <- forecast(auto_arima_model, level = c(95), h = 36)
p7<-autoplot(forecastSb)
print(p7)</pre>
```

Forecasts from ARIMA(1,0,2)(0,1,1)[12] with drift

The ARIMA forecast appears to capture the overall trend in the time series data, showing a gradual increase in values over time. However, there as