ICON Namelist Overview

November 21, 2018

Contents

1	ICO	ON Namelists	4
	1.1	Scripts, Namelist files and Programs	4
		Namelist parameters	
2	Nan	nelist parameters defining the atmospheric model	5
	2.1	assimilation nml	5
	2.2	coupling mode nml	8
	2.3	diffusion nml	9
		dynamics nml	
		$\stackrel{\circ}{\operatorname{echam}}$ $\stackrel{\circ}{\operatorname{cld}}$ $\stackrel{\circ}{\operatorname{nml}}$	
		echam cnv nml	
		echam_gwd_nml	
		echam phy nml	
		echam rad nml	
		echam sso nml	
		echam_vdf_nml	
		ensemble_pert_nml	
		gribout nml	
		grid nml	
		gridref nml	
		ha dyn nml	
		initicon nml	

	2.18 interpol_nml	 . 37
	2.19 io_nml	 . 39
	2.19.1 Restart read/write mode:	 . 43
	2.20 les_nml (parameters for LES turbulence scheme; valid for inwp_turb=5)	 . 43
	2.21 limarea_nml (Scope: l_limited_area=.TRUE. in grid_nml)	 . 45
	2.22 lnd_nml	
	2.23 ls_forcing_nml (parameters for large-scale forcing; valid for torus geometry)	 . 50
	2.24 master_model_nml (repeated for each model)	
	2.25 master_nml	
	2.26 meteogram_output_nml	
	2.27 nonhydrostatic_nml (relevant if run_nml:iequations=3)	
	2.28 nudging_nml	
	2.29 nwp_phy_nml	
	2.30 nwp_tuning_nml	
	2.31 output_nml (relevant if run_nml/output='nml')	
	2.32 parallel_nml	
	2.33 psrad_nml	
	2.34 radiation_nml	
	2.35 run_nml	
	2.36 sleve_nml (relevant if nonhydrostatic_nml:ivctype=2)	
	2.37 synsat_nml	
	2.38 time_nml	
	2.39 transport_nml (used if run_nml/ltransport=.TRUE.)	
	2.40 turbdiff_nml	 . 90
3	Ocean-specific namelist parameters	95
3	3.1 ocean physics nml	
	3.2 sea ice nml (relevant if run nml/iforcing=2 (ECHAM))	
	5.2 sea_ice_iniii (reievant ii run_iniii/norcing=2 (ECITANI))	 . 90
4	Namelist parameters for testcases (NAMELIST ICON)	96
	4.1 ha_testcase_nml (Scope: ltestcase=.TRUE. and iequations=[0,1,2] in run_nml)	 . 96
	4.2 nh_testcase_nml (Scope: ltestcase=.TRUE. and iequations=3 in run_nml)	 . 99
5	External data	107
	5.1 extpar nml (Scope: itopo=1 in run nml)	

6	External packages	109
7	Information on vertical level distribution	109
8	Compile flag for mixed precision	109
A	Arithmetic expression evaluation	109
	A.1 Examples for arithmetic expressions	. 110
	A.2 Expression syntax	. 110
	A.2.1 List of functions	
	A.2.2 List of operators	
	A.2.3 List of available constants	
	A.3 Usage with Fortran	
	A.3.1 Fortran examples	
	A.3.2 Error handling	
	A.4 Remarks	
В	Changes incompatible with former versions of the model code	113

1 ICON Namelists

1.1 Scripts, Namelist files and Programs

Run scripts starting the programs for the models are stored in run/. These scripts write namelist files containing the specified Fortran namelists. Programs are stored in < icon home>/build/<architecture>/bin/.

Table 1: Namelist files

Namelist file	Purpose	Made by script	Used by program
NAMELIST_GRAPH	Generate graphs	create_global_grids.run	grid_command
$NAMELIST_GRID$	Generate grids	$create_global_grids.run$	$\operatorname{grid} \operatorname{_command}$
NAMELIST_GRIDREF	Gen. nested domains	create_global_grids.run	grid_command
NAMELIST_ICON	Run ICON models	exp. <name>.run</name>	$control_model$

1.2 Namelist parameters

The following subsections tabulate all available Fortran namelist parameters by name, type, default value, unit, description, and scope:

- Type refers to the type of the Fortran variable, in which the value is stored: I=INTEGER, L=LOGICAL, R=REAL, C=character string
- Default is the preset value, if defined, that is assigned to this parameter within the programs.
- *Unit* shows the unit of the control parameter, where applicable.
- Description explains in a few words the purpose of the parameter.
- Scope explains under which conditions the namelist parameter has any effect, if its scope is restricted to specific settings of other namelist parameters.

Information on the file, where the namelist is defined and used, is given at the end of each table.

2 Namelist parameters defining the atmospheric model

Namelist parameters for the ICON models are organized in several thematic Fortran namelists controling the experiment, and the properties of dynamics, transport, physics etc.

2.1 assimilation_nml

The main switch for the Latent heat nudging scheme is called ldass_lhn and has to be set in run_nml.

Parameter	Type	Default	Unit	Description	Scope
nlhn_start	I	-9999	s	time in seconds when LHN is applied for the first	$run_nml:ldass_lhn =$
				time	.true.
nlhn_end	I	-9999	s	time in seconds when LHN is applied for the last	$run_nml:ldass_lhn =$
				time	.true.
lhn_coef	R	1.0		Nudging coefficient of adding the increments	
fac_lhn_up	R	2.0		Upper limit of the scaling factor of the temperature	
				profile.	
fac_lhn_down	R	0.5		Lower limit of the scaling factor of the temperature	
				profile.	

Parameter	Type	Default	Unit	Description	Scope
lhn_logscale	L	.TRUE.		Apply all scaling factors as logarithmic values	fac_lhn_down,
					fac_lhn_up,
					fac_lhn_artif
thres_lhn	R	0.1/3600.	mm/s	Minimal value of precipitation rate, either of model	
				or radar. LHN will be applied first for precipitation	
				above it.	
start_fadeout	R	1.0		Value to determine, at which model time step a	
,,	_	TED LIE		fading out of the increments might start.	
lhn_qrs	L	.TRUE.		Use a vertical average of precipitation fluxes as	
				reference to compare with radar observed	
				precipitation, to avoid severe overestimation due to	
				displacement of model surface precipitation.	
				If set .FALSE. the model surface precipitation rate is used as reference.	
rgrsgmax	R	1.0		This value determines the height of the vertical	lm qrs = .TRUE.
rqrsgmax	10	1.0		averaging, to obtain the reference precipitation rate	mi_qis = .TitoE.
				It is the model layer where the quotion of the	
				maximal precipitation flux occurred for the first	
				time.	
lhn hum adj	L	.TRUE.		Apply an increment of specific humidity with	
				respect to the estimated temperature increment to	
				maintain the relative humidty	
lhn no ttend	L	.FALSE.		Only apply moisture increments. Temperature	lhn hum adj=.TRUE.
				increments will only be used for calculation of	"
				moisture increments	
lhn_incloud	L	.TRUE.		Apply increments only in model layers where the	lhn_artif_only=.FALSE.
				underlying latent heat release of the model is	
				positive.	
lhn_limit	L	.TRUE.		Limitation of temperature increments	abs_lhn_lim
abs_lhn_lim	R	50./3600.	K/s	Lower and upper limit for temperature increments	$ln_{limit} = .TRUE.$
				to be added.	
lhn_filt	L	.TRUE.		Vertical smoothing of the profile of temperature	
				increments	

Parameter	Type	Default	Unit	Description	Scope
lhn_relax	L	.FALSE.		Horizontal smoothing of radar data but also of	nlhn_relax
				incorporated model fields	
$nlhn_relax$	I	2	grid	Number of horizontal grid point, where smoothing	$ln_{relax} = .TRUE.$
			points	is applied.	
lhn_artif	L	.TRUE.		Apply an artificial temperature profile to estimate	fac_lhn_artif,
				increments at model grid points without significant	tt_artif_max,
				precipitation (determined by fac lhn artif).	zlev_artif_max,
					std artif ma
fac_lhn_artif	R	5.0		Value of the ratio of radar to model precipitation	lhn_artif=.TRUE.
				rate, from which an artificial temperature profile is	
				applied	
lhn artif only	L	.FALSE.		Scaling the artificial temperature profile instead of	tt artif max,
				local model profile of latent heat release for	zlev_artif_max,
				calculation the increments at any model grid point.	std_artif_max
				The scaling factor is still be determined by the ratio	
				of observed to modelled precipitation rate.	
tt_artif_max	R	0.0015	K	Maximal temperature of Gaussian shaped function	lhn_artif, lhn_artif_only
				used a artificial temperature profile.	
$zlev_artif_max$	R	1000.0	m	Height of maximum of Gaussian shaped function	lhn_artif, lhn_artif_only
				used a artificial temperature profile.	
std_artif_max	R	4.0	m	Parameter defining width of Gaussian shaped	lhn_artif, lhn_artif_only
				function used a artificial temperature profile.	
$nlhnverif_start$	I	-9999	s	time in seconds when online verification within	$run_nml:ldass_lhn =$
				LHN is active for the first time	.true.
$nlhnverif_end$	I	-9999	s	time in seconds when online verification within	$run_nml:ldass_lhn =$
				LHN is active for the last time	.true.
lhn_diag	L	.FALSE.		Enable a extensive diagnostic output, writing into	
				file lhn.log.	
				lhn_diag is set .TRUE. automatically, when online	
				verification is active.	
lhn_dt_obs	R	300.0	s	Frequency of the radar observations	
radar_in	C	'./'		Path where the radar data file is expected.	
radardata_file(:)	C			Name of the radar data file. This might be either in	
	(n dom)			GRIB2 or in NetCDF (recommended).	

Parameter	Type	Default	Unit	Description	Scope
lhn_black	L	.FALSE.		Apply a blacklist information in the radar data	
				obtained by comparison against satelite clound	
				information	
blacklist_file(:)	C			Name of blacklist file, containing a mask concerning	lhn_black=.TRUE.
	(n_dom)			the quality of the radar data.	
				Value 1: good quality	
				Value 0: bad quality	
				This might be either in GRIB2 or in NetCDF	
				(recommended).	
lhn_bright	L	.FALSE.		Apply a model intern bright band detection to	
				avoid strong overestimation due to uncertain radar	
				observations.	
height_file(:)	C			Name of file containing the height of the lowest	lhn_bright=.TRUE.
	(n_dom)			scan for each possible radar station within the given	
				radar composite.	
				This file is required, when applying bright band	
				detection.	
				This might be either in GRIB2 or in NetCDF	
				(recommended).	
nradar	I	200		Maximal number of radar station contained within	lhn_bright=.TRUE.
	(n_dom)			height_file	

Defined and used in: src/namelists/mo_assimilation_nml.f90

$2.2 \quad coupling_mode_nml$

Parameter	Type	Default	Unit	Description	Scope
coupled_mode	L	.FALSE.		.TRUE.: if yac coupling routines have to be called	

Defined and used in: src/namelists/mo_coupling_nml.f90

$2.3 \quad diffusion_nml$

Parameter	Type	Default	Unit	Description	Scope
lhdiff_temp	L	.TRUE.		Diffusion on the temperature field	
lhdiff vn	L	.TRUE.		Diffusion on the horizontal wind field	
$lhdiff_{\mathbf{w}}$	L	.TRUE.		Diffusion on the vertical wind field	
hdiff_order	I	4 (hydro)		Order of ∇ operator for diffusion:	Options 2, 24 and 42 are
		5 (NH)		-1: no diffusion	allowed only in the
				2: ∇^2 diffusion	hydrostatic atm model
				3: Smagorinsky ∇^2 diffusion	(iequations $= 1 \text{ or } 2 \text{ in}$
				4: ∇^4 diffusion	dynamics_nml).
				5: Smagorinsky ∇^2 diffusion combined with ∇^4	
				background diffusion as specified via	
				hdiff_efdt_ratio	
				24 or 42: $\nabla 2$ diffusion from model top to a certain	
				level (cf. k2_pres_max and k2_klev_max below);	
				∇^4 for the lower levels.	
lsmag_3d	L	.FALSE.		.TRUE.: Use 3D Smagorinsky formulation for	hdiff_order=3 or 5;
				computing the horizontal diffusion coefficient	itype_vn_diffu=1
				(recommended at mesh sizes finer than 1 km if the	
				LES turbulence scheme is not used)	
$itype_vn_diffu$	I	1		Reconstruction method used for Smagorinsky	iequations=3,
				diffusion:	hdiff_order=3 or 5
				1: u/v reconstruction at vertices only	
11.00	_			2: u/v reconstruction at cells and vertices	
itype_t_diffu	I	2		Discretization of temperature diffusion:	iequations=3,
				1: $K_h \nabla^2 T$	hdiff_order=3 or 5
1.0				$2: \nabla \cdot (K_h \nabla T)$	1 1100 1 04 40
k2_pres_max	R	-99.	Pa	Pressure level above which ∇^2 diffusion is applied.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
					dynamics nml:iequations
					= 1 or 2.

Parameter	Type	Default	Unit	Description	Scope
k2_klev_max	I	0		Index of the vertical level till which (from the model	$hdiff_order = 24 \text{ or } 42,$
				top) ∇^2 diffusion is applied. If a positive value is	and
				specified for k2_pres_max, k2_klev_max is reset	dynamics_nml:iequations
				accordingly during the initialization of a model run.	= 1 or 2.
hdiff_efdt_ratio	R	1.0		ratio of e-folding time to time step (or 2* time step	
		(hydro)		when using a 3 time level time stepping scheme)	
		36.0		(for triangular NH model, values above 30 are	
		(NH)		recommended when using hdiff_order=5)	
hdiff_w_efdt_ratio	R	15.0		ratio of e-folding time to time step for diffusion on	iequations=3
				vertical wind speed	
hdiff_min_efdt_ratio	R	1.0		minimum value of hdiff_efdt_ratio near model top	iequations=3 .AND.
					hdiff_order=4
hdiff_tv_ratio	R	1.0		Ratio of diffusion coefficients for temperature and	
				normal wind: $T:v_n$	
hdiff_multfac	R	1.0		Multiplication factor of normalized diffusion	n_dom>1
				coefficient for nested domains	
$hdiff_smag_fac$	R	0.15		Scaling factor for Smagorinsky diffusion	iequations=3
		(hydro)			
		0.015			
		(NH)			

Defined and used in: src/namelists/mo_diffusion_nml.f90

$2.4 \quad dynamics_nml$

This namelist is relevant if run_nml:ldynamics=.TRUE.

Parameter	Type	Default	Unit	Description	Scope
iequations	I	3		Equations and prognostic variables. Use positive	
				indices for the atmosphere and negative indices for	
				the ocean.	
				0: shallow water model	
				1: hydrostatic atmosphere, T	
				2: hydrostatic atm., θ ·dp	

Parameter	Type	Default	Unit	Description	Scope
				3: non-hydrostatic atmosphere	
				-1: hydrostatic ocean	
idiv_method	I	1		Method for divergence computation:	
				1: Standard Gaussian integral.	
				Hydrostatic atm. model: for unaveraged normal	
				components	
				Non-hydrostatic atm. model: for averaged normal	
				components	
				2: bilinear averaging of divergence	
divavg_cntrwgt	R	0.5		Weight of central cell for divergence averaging	$idiv_method=2$
lcoriolis	L	.TRUE.		Coriolis force	
sw_ref_height	R	0.9*	m	Reference height of shallow water model used for	
		2.94e4/g		linearization in the semi-implicit time stepping	
				scheme	

Defined and used in: src/namelists/mo_dynamics_nml.f90

$2.5 \quad echam_cld_nml$

The parameterization of cloud microphysics for the ECHAM physics is configured by a data structure $echam_cld_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over the parametrized effects:

Parameter	Type	Default	Unit	Description	Scope
echam_cld_config(jg)%	R	1.0e-7	kg/kg	cloud water and ice minimum mass mixing ratio for	echam_phy_config(jg)%
ccwmin				cover>0	$ m dt_cld > 0.000s$
$echam_cld_config(jg)\%$	R	1.0e-12	kg/kg	cloud water/ice minimum for microphysical	echam_phy_config(jg)%
cqtmin				processes	$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	Tmelt-35	K	maximum temperature for homogeneous freezing	echam_phy_config(jg)%
cthomi		= 238.15			$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	5.0e-6	kg/kg	minimum in-cloud water mass mixing ratio in	$echam_phy_config(jg)\%$
csecfrl				mixed phase clouds	$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	15.		coefficient of autoconversion of cloud droplets to	$echam_phy_config(jg)\%$
ccraut				rain	$ m dt_cld > 0.000s$

Parameter	Type	Default	Unit	Description	Scope
echam_cld_config(jg)%	R	6.		coefficient of accretion of cloud droplets by falling	echam_phy_config(jg)%
ccracl				rain	$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	10.		coefficient of local rainwater production by	echam_phy_config(jg)%
cauloc				autoconversion	$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	0.0		minimum for $cauloc*dz/5000$	echam_phy_config(jg)%
clmin					$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	0.5		maximum for cauloc* $dz/5000$	echam_phy_config(jg)%
clmax					$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	2.5		coefficient of sedimentation velocity of cloud ice	echam_phy_config(jg)%
cvtfall					$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	10.	1.e-6	min effective radius for ice cloud	echam_phy_config(jg)%
ceffmin			m		$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	150.	1.e-6	max effective radius for ice cloud	echam_phy_config(jg)%
ceffmax			m		$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	500.	kg/m3	density of cloud ice	echam_phy_config(jg)%
crhoi					$dt_{cld} > 0.000s$
echam_cld_config(jg)%	R	100.	kg/m3	bulk density of snow	echam_phy_config(jg)%
crhosno					$dt_{cld} > 0.000s$
echam_cld_config(jg)%	R	95.0		coefficient of autoconversion of cloud ice to snow	echam_phy_config(jg)%
ccsaut					$dt_{cld} > 0.000s$
echam_cld_config(jg)%	R	0.1		coefficient of accretion of cloud droplets by falling	echam_phy_config(jg)%
ccsacl				snow	$dt_{cld} > 0.000s$
$echam_cld_config(jg)\%$	R	defval	1e6/m3	, 1	echam_phy_config(jg)%
cn1lnd				$<=100 \mathrm{\ hPa}$	$ m dt_cld > 0.000s$
$echam_cld_config(jg)\%$	R	defval	1e6/m3	, -	echam_phy_config(jg)%
cn2lnd				$>=800~\mathrm{hPa}$	$ m dt_cld > 0.000s$
$echam_cld_config(jg)\%$	R	defval	1e6/m3	, -	echam_phy_config(jg)%
cn1sea				100 hPa	$dt_{cld} > 0.000s$
$echam_cld_config(jg)\%$	R	defval	1e6/m3		echam_phy_config(jg)%
cn2sea				800 hPa	$ m dt_cld > 0.000s$
$echam_cld_config(jg)\%$	R	0.8		ice cloud inhomogeneity factor	echam_phy_config(jg)%
cinhomi					$ m dt_cld > 0.000s$
$echam_cld_config(jg)\%$	R	0.8		liquid cloud inhomogeneity factor, ktype $= 0 =$	echam_phy_config(jg)%
cinhoml1				stratiform clouds	$ m dt_cld > 0.000s$

Parameter	Type	Default	Unit	Description	Scope
echam_cld_config(jg)%	R	0.4		liquid cloud inhomogeneity factor, ktype = 4 =	echam_phy_config(jg)%
cinhoml2				shallow conv. (cf. clwprat)	$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	0.8		liquid cloud inhomogeneity factor, ktype = 1 =	echam_phy_config(jg)%
cinhoml3				deep convection and $ktype = 2 = shallow conv.$ (cf.	$ m dt_cld > 0.000s$
				clwprat) and ktype $= 3 = \text{mid-level conv.}$	
$echam_cld_config(jg)\%$	R	4.0		critical ratio of cloud liq.+ice paths below and	echam_phy_config(jg)%
clwprat				above the top of shallow convection; for ratio >	$ m dt_cld > 0.000s$
				clwprat -> change ktype from 2 to 4	
$echam_cld_config(jg)\%$	R	0.968		critical relative humidity at surface	echam_phy_config(jg)%
crs					$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	0.8		critical relative humidity aloft	echam_phy_config(jg)%
crt					$ m dt_cld > 0.000s$
$echam_cld_config(jg)\%$	I	2		transition parameter for critical relative humidity	echam_phy_config(jg)%
nex				profile	$ m dt_cld > 0.000s$
$echam_cld_config(jg)\%$	I	40		index of highest level for search of top level of	echam_phy_config(jg)%
jbmin				inversion layer over sea (ca. 2 km)	$ m dt_cld > 0.000s$
echam_cld_config(jg)%	I	45		index of bottom level of inversion layer over sea	echam_phy_config(jg)%
jbmax					$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	0.25		fraction of dry adiabatic lapse rate for search of top	echam_phy_config(jg)%
cinv				level of inversion layer over sea	$ m dt_cld > 0.000s$
echam_cld_config(jg)%	R	0.7		minimum effective saturation for cloud cover below	echam_phy_config(jg)%
csatsc				an invesion layer over sea	$ m dt_cld > 0.000s$
echam_cld_config(jg)%	I	13		index of highest level for tropopause calculation	echam_phy_config(jg)%
ncctop					$ m dt_cld > 0.000s$
echam_cld_config(jg)%	I	35		index of lowest level for tropopause calculation	echam_phy_config(jg)%
nccbot					$ m dt_cld > 0.000s$

${\bf 2.6} \quad {\bf echam_cnv_nml}$

The parameterization of convection for the ECHAM physics is configured by a data structure $echam_cnv_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over the parametrized effects:

Parameter	Type	Default	Unit	Description	Scope
echam_cnv_config(jg)%	L	.TRUE.		Switch on penetrative convection.	echam_phy_config(jg)%
lmfpen					$ m dt_cnv > 0.000s$
echam_cnv_config(jg)%	L	.TRUE.		Switch on midlevel convection.	echam_phy_config(jg)%
lmfmid					$ m dt_cnv > 0.000s$
echam_cnv_config(jg)%	L	.TRUE.		Switch on cumulus downdraft.	echam_phy_config(jg)%
lmfdd					$ m dt_cnv > 0.000s$
echam_cnv_config(jg)%	L	.TRUE.		Switch on cumulus friction.	echam_phy_config(jg)%
lmfdudv					dt cnv > 0.000s
echam_cnv_config(jg)%	R	2.0e-4		Entrainment rate for midlevel convection.	echam phy config(jg)%
entrmid					dt cnv > 0.000s
echam cnv config(jg)%	R	3.0e-3		Entrainment rate for shallow convection.	echam phy config(jg)%
entrscv					dt cnv > 0.000s
echam cnv config(jg)%	R	2.0e-4		Entrainment rate for penetrative convection.	echam phy config(jg)%
entrpen				_	dt cnv > 0.000s
echam cnv config(jg)%	R	4.0e-4		Entrainment rate for cumulus downdrafts.	echam phy config(jg)%
entrdd					dt cnv > 0.000s
echam cnv config(jg)%	R	2.5e-4		Coefficient for determining conversion from cloud	echam_phy_config(jg)%
cprcon				water to rain.	dt cnv > 0.000s
echam cnv config(jg)%	R	0.2		Fractional convective mass flux across the top of	echam phy config(jg)%
cmfctop				cloud.	dt cnv > 0.000s
echam cnv config(jg)%	R	0.3		Fractional convective mass flux for downdrafts at	echam phy config(jg)%
cmfdeps				lfs.	dt cnv > 0.000s
echam cnv config(jg)%	R	0.02		Minimum excess buoyancy.	echam phy config(jg)%
cminbuoy					dt cnv > 0.000s
echam_cnv_config(jg)%	R	1.0		Maximum excess buoyancy.	echam phy config(jg)%
cmaxbuoy					dt cnv > 0.000s
echam cnv config(jg)%	R	1.0		Factor for std dev of virtual pot temp.	echam phy config(jg)%
cbfac					dt cnv > 0.000s
echam_cnv_config(jg)%	R	3.0e-4		Maximum entrainment/detrainment rate.	echam_phy_config(jg)%
centrmax				,	dt cnv > 0.000s
echam_cnv_config(jg)%	R	0	Pa	Minimum pressure thickness of clouds for	echam phy config(jg)%
dlev land				precipitation over land.	dt cnv > 0.000s
echam_cnv_config(jg)%	R	0	Pa	Minimum pressure thickness of clouds for	echam_phy_config(jg)%
dlev_ocean				precipitation over ocean.	$ m dt_cnv > 0.000s$

Parameter	Type	Default	Unit	Description	Scope
echam_cnv_config(jg)%	R	3600.		Characteristic convective adjustment time scale.	echam_phy_config(jg)%
cmftau					$ m dt_cnv > 0.000s$
echam_cnv_config(jg)%	R	1.0e-10		Minimum massflux value (for safety).	echam_phy_config(jg)%
cmfcmin					$ m dt_cnv > 0.000s$
$echam_cnv_config(jg)\%$	R	1.0		Maximum massflux value for updrafts.	echam_phy_config(jg)%
cmfcmax					$ m dt_cnv > 0.000s$

2.7 echam gwd nml

The parameterization of atmospheric gravity waves for the ECHAM physics is configured by a data structure $echam_gwd_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over the parametrized effects:

Parameter	Type	Default	Unit	Description	Scope
lheatcal	L	.FALSE.		.TRUE.: compute drag, heating rate and diffusion	echam_phy_config(jg)%
				coefficient from the dissipation of gravity waves	$ m dt_gwd > 0.000s$
				.FALSE.: compute drag only	
emiss_lev	I	10		Index of model level, counted from the surface,	echam_phy_config(jg)%
				from which the gravity wave spectra are emitted	$ m dt_gwd > 0.000s$
rmscon	R	0.87	m/s	Root mean square gravity wave wind at the	echam_phy_config(jg)%
				emission level	$ m dt_gwd > 0.000s$
kstar	R	5.0e-5	$1/\mathrm{m}$	Typical gravity wave horizontal wavenumber	echam_phy_config(jg)%
					$ m dt_gwd > 0.000s$
m_min	R	0.0	1/m	Minimum bound in vertical wavenumber	echam_phy_config(jg)%
					$ m dt_gwd > 0.000s$

2.8 echam_phy_nml

The ECHAM physics is configured by a data structure $echam_phy_config(jg=1:ndom)\%<param>$, which is a 1-dimensional array extending over all domains. The structure contains several parameters providing time control for the atmospheric forcing by the different parameterizations and additional logical switches for controlling the coupling between the parameterizations of the physics and between the dynamics and the physics. Further logical switches control how the atmospheric boundary conditions for the ECHAM physics are determined. Time control parameters are available for the following atmospheric processes:

prc	parameterized process
rad	LW and SW radiation
vdf	vertical diffusion
cnv	cumulus convection
cld	cloud microphysics
gwd	atmospheric gravity wave drag
sso	sub grid scale orographic effects
mox	methane oxidation and water vapor photolysis
car	Cariolle's linearized ozone chemistry
art	ART chemistry

The time control for an atmospheric forcing by a process prc consists of three components, the time interval dt_prc for re-computing the forcing, and the start and end dates and times defining the interval $[sd_prc,ed_prc]$, in which the forcing is either computed, if the date/time coincides with the interval dt_prc , or recycled. Recycling means that the forcing stored from the last computation is used again. Outside of the interval the forcing is set to zero.

If dt_prc is not specified, or an empty string or a string of blanks or an interval of length 0s, e.g. "PT0S" is given, then the forcing is switched off for the entire experiment and the start and end dates and times are irrelevant.

If sd_prc or ed_prc are not specified, or an empty string or a string of blanks are given, then the experiment start date and the experiment stop date are used, respectively.

Further the forcing control switch fc_prc can be used to decide if an active process ($dt_prc > 0$) is used for the integration ($fc_prc = 1$) or only computed for diagnostic purposes ($fc_prc = 0$).

Parameter	Type	Default	Unit	Description	Scope
echam_phy_config(jg)%	С	" "		This is the time interval in ISO 8601-2004 format at	${ m run_nml/iforcing} = 2$
dt_prc				which the forcing by the process <i>prc</i> is computed.	
echam_phy_config(jg)%	C	" "		Defines the start date/time in ISO 8601-2004	${ m run_nml/iforcing}=2$
sd_prc				format of the interval [sd_prc,ed_prc], in which the	and $dt_prc > 0.000s$
				forcing by the process <i>prc</i> is computed in intervals	
				$dt_prc.$	
$echam_phy_config(jg)\%$	C	""		Defines the end date/time in ISO 8601-2004 format	${ m run_nml/iforcing}=2$
ed_prc				of the interval [sd_prc,ed_prc], in which the forcing	and $dt_prc > 0.000s$
				by the process prc is computed in intervals dt_prc .	

Parameter	Type	Default	Unit	Description	Scope
echam_phy_config(jg)%	I	1		Forcing control for process prc.	${ m run_nml/iforcing} = 2$
fc_prc				fc_prc = 0: the forcing of the process is not used in	and $dt_prc > 0.000s$
				the integration.	
				fc_prc = 1: the forcing of the process is used in the	
				integration.	
$echam_phy_config(jg)\%$	L	.FALSE.		.TRUE. for sea-ice temperature calculation	$\operatorname{run_nml/iforcing} = 2$
lice					
echam_phy_config(jg)%	L	.FALSE.		.TRUE. for mixed layer ocean	${ m run_nml/iforcing}=2$
lmlo					
echam_phy_config(jg)%	L	.FALSE.		.TRUE. for using the JSBACH land surface model	${ m run_nml/iforcing}=2$
ljsb					
echam_phy_config(jg)%	L	.FALSE.		.TRUE. for AMIP boundary conditions	${ m run_nml/iforcing}=2$
lamip					

$2.9 \quad echam_rad_nml$

The input from ECHAM physics to the PSrad scheme is configured by a data structure $echam_rad_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over the Earth orbit, the computation of the SW incoming flux at the top of the atmosphere and the atmospheric composition:

Parameter	Type	Default	Unit	Description	Scope
echam_rad_config(jg)%	I	0		Selects the spectral solar irradiation (SSI) at 1 AU	echam_phy_config(jg)%
isolrad				distance from the sun	$dt_rad > 0.000s$
				0: SSI of the SRTM scheme, $TSI = 1368.222 \text{ Wm}2$.	
				1: SSI from an external file containing monthly	
				mean time series	
				2: Average 1844–1856 of the SSI time series	
				provided for CMIP5, $TSI = 1360.875 \text{ W/m2}$	
				3: Average 1979–1988 of the SSI time series	
				provided for CMIP5, $TSI = 1361.371 \text{ W/m2}$	
				4: SSI for RCE-type simulation with diurnal cycle,	
				$\mathrm{TSI} = 1069.315~\mathrm{W/m2}$	
				5: SSI for RCE-type simulation without diurnal	
				cycle, $TSI = 433.3371 \text{ W/m2}$	
				6: Average 1850-1873 of the SSI time series	
				provided for CMIP6, $TSI = 1360.744 \text{ W/m2}$	
echam rad config(jg)%	R	1		Scaling factor for the SSI	echam phy config(jg)%
fsolrad				3	$\begin{array}{c c} dt & rad > 0.000s \end{array}$
echam rad config(jg)%	L	.TRUE.		.TRUE. for the realistic VSOP87 Earth orbit	echam phy config(jg)%
l orbvsop87				.FALSE. for the Kepler orbit	dt rad > 0.000s
echam rad config(jg)%	R	0.016715		eccentricity of the Kepler orbit	echam phy config(jg)%
cecc					dt rad > 0.000s and
					1 orbvsop87 = .FALSE.
echam_rad_config(jg) $\%$	R	23.44100	deg	obliquity of the Earth rotation axis on the Kepler	echam_phy_config(jg)%
cobld				orbit	$dt_rad > 0.000s$ and
					$l_{orbvsop87} = .FALSE.$
$echam_rad_config(jg)\%$	L	.FALSE.		.FALSE. for transient VSOP87 Earth orbit	echam_phy_config(jg)%
lyr_perp				.TRUE.: VSOP87 Earth orbit of year yr_perp is	$dt_rad > 0.000s$ and
				perpertuated	$l_{orbvsop87} = .TRUE.$
$echam_rad_config(jg)\%$	L	-99999		year to be used for lyr_perp = .TRUE.	echam_phy_config(jg)%
yr_perp					$dt_rad > 0.000s$ and
					$l_{orbvsop87} = .TRUE.$
$echam_rad_config(jg)\%$	I	0		0: Earth circles on orbit	echam_phy_config(jg)%
nmonth				1-12: Earth orbit position fixed for specified month	$dt_rad > 0.000s$

Parameter	Type	Default	Unit	Description	Scope
echam_rad_config(jg)%	L	.TRUE.		.TRUE. for diurnal cycle in solar irradiation	echam_phy_config(jg)%
ldiur				.FALSE. for zonally averaged solar irradiation	$ m dt_rad > 0.000s$
$echam_rad_config(jg)\%$	L	.FALSE.		.TRUE. for a horizontally independent solar	
l_sph_symm_irr				irradiation; .FALSE. for a horizontally resolved	
				solar irradiation	
$echam_rad_config(jg)\%$	I	1		Selects source for concentration of water vapor,	echam_phy_config(jg)%
irad_h2o				cloud water and cloud ice	$ m dt_rad > 0.000s$
				0: set to zero (or epsilon)	
				1: from tracer	
$echam_rad_config(jg)\%$	I	2		Selects source for concentration of CO2	echam_phy_config(jg)%
irad_co2				0: set to zero (or epsilon)	$dt_rad > 0.000s$ and
				1: from tracer	CO2 tracer is defined
				2: constant vol. mixing ration set by 'vmr _co2'	
				4: spatially constant, time dependent vol. mixing	
				ratio from file	
$echam_rad_config(jg)\%$	I	3		Selects source for concentration of CH4	echam_phy_config(jg)%
irad_ch4				0: set to zero (or epsilon)	$ m dt_rad > 0.000s$
				2: constant vol. mixing ration set by 'vmr _ch4'	
				3: horizontally constant, vertically decaying, with	
				surface vol. mixing ratio set by 'vmr _ch4'	
				4: horizontally constant, vertically decaying, time	
1 0 1 00	_			dependent with surface vol. mixing ratio from file	
echam_rad_config(jg)%	1	3		Selects source for concentration of N2O	echam_phy_config(jg)%
irad_n2o				0: set to zero (or epsilon)	$ m dt_rad > 0.000s$
				2: constant vol. mixing ration set by 'vmr _n2o'	
				3: horizontally constant, vertically decaying, with	
				surface vol. mixing ratio set by 'vmr _n2o'	
				4: horizontally constant, vertically decaying, time	
				dependent with surface vol. mixing ratio from file	

Parameter	Type	Default	Unit	Description	Scope
echam_rad_config(jg)%	I	0		Selects source for concentration of O3	echam_phy_config(jg)%
irad_o3				0: set to zero (or epsilon)	$ m dt_rad > 0.000s$
				1: from tracer	
				2: 3-dim concentration of month 9 from file	
				4: 3-dim concentration of month 1 from file	
				8: 3-dim concentration, time dependent from file	
echam_rad_config(jg)%	I	2		Selects source for concentration of O2	echam_phy_config(jg)%
irad_o2				0: set to zero (or epsilon)	$ m dt_rad > 0.000s$
				2: constant vol. mixing ration set by 'vmr _o2'	
echam_rad_config(jg)%	I	2		Selects source for concentration of CFC11	echam_phy_config(jg)%
irad_cfc11				0: set to zero (or epsilon)	$ m dt_rad > 0.000s$
				2: constant vol. mixing ration set by 'vmr _cfc11'	
				4: spatially constant, time dependent vol. mixing	
				ratio from file	
echam_rad_config(jg)%	I	2		Selects source for concentration of CFC12	echam_phy_config(jg)%
irad_cfc12				0: set to zero (or epsilon)	$ m dt_rad > 0.000s$
				2: constant vol. mixing ration set by 'vmr _cfc12'	
				4: spatially constant, time dependent vol. mixing	
				ratio from file	
echam_rad_config(jg)%	I	2		Selects source for concentration of XYZ	echam_phy_config(jg)%
irad_aero				13: tropospheric 'Kinne' aerosols, time dependent	$ m dt_rad > 0.000s$
				from file	
				14: stratospheric 'Stenchikov' aerosols, time	
				dependent from file	
				15: tropospheric 'Kinne' aerosols + stratospheric	
				'Stenchikov' aerosols, time dependent, both from file	
				18: tropospheric natural 'Kinne' aerosols for 1850 +	
				time dep. stratospheric 'Stenchikov' aerosols, both	
				from file + param. time dep. antropogenic 'simple	
				plumes'	
				any other: set to zero	
echam_rad_config(jg)% vmr_co2	R	348.0e-06	m3/m3	Volume mixing ratio of CO2	echam_phy_config(jg)% dt_rad > 0.000s

Parameter	Type	Default	Unit	Description	Scope
echam_rad_config(jg)%	R	1650.0e-	m3/m3	Volume mixing ratio of CH4	echam_phy_config(jg)%
vmr_ch4		09			$ m dt_rad > 0.000s$
echam_rad_config(jg)%	R	306.0e-09	m3/m3	Volume mixing ratio of N2O	echam_phy_config(jg)%
vmr_n2o					$ m dt_rad > 0.000s$
$echam_rad_config(jg)\%$	R	0.20946	m3/m3	Volume mixing ratio of O2	echam_phy_config(jg)%
vmr_o2					$ m dt_rad > 0.000s$
$echam_rad_config(jg)\%$	R	214.5e-12	m3/m3	Volume mixing ratio of CFC11	echam_phy_config(jg)%
vmr_cfc11					$ m dt_rad > 0.000s$
$echam_rad_config(jg)\%$	R	371.1e-12	m3/m3	Volume mixing ratio of CFC11	echam_phy_config(jg)%
vmr_cfc12					$dt_rad > 0.000s$
$echam_rad_config(jg)\%$	R	1.0		Scaling factor for concentration of water vapor,	echam_phy_config(jg)%
frad_h2o				cloud water and cloud ice	$dt_rad > 0.000s$
$echam_rad_config(jg)\%$	R	1.0		Scaling factor for concentration of CO2	echam_phy_config(jg)%
frad_co2					$dt_rad > 0.000s$
$echam_rad_config(jg)\%$	R	1.0		Scaling factor for concentration of CH4	echam_phy_config(jg)%
frad_ch4					$dt_rad > 0.000s$
$echam_rad_config(jg)\%$	R	1.0		Scaling factor for concentration of N2O	echam_phy_config(jg)%
frad_n2o					$ m dt_rad > 0.000s$
$echam_rad_config(jg)\%$	R	1.0		Scaling factor for concentration of O3	echam_phy_config(jg)%
frad_o3					$ m dt_rad > 0.000s$
echam_rad_config(jg)%	R	1.0		Scaling factor for concentration of O2	echam_phy_config(jg)%
frad_o2					$ m dt_rad > 0.000s$
echam_rad_config(jg)%	R	1.0		Scaling factor for concentration of CFC11 and	echam_phy_config(jg)%
frad_cfc				CFC12	$ m dt_rad > 0.000s$

$2.10 \quad echam_sso_nml$

The parameterization of subgrid scale orographic (SSO) effects for the ECHAM physics is configured by a data structure $echam_sso_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over the parametrized effects:

Parameter	Type	Default	Unit	Description	Scope
echam_sso_config(jg)%	R	40.	m	Minimum height difference of peak height and mean	echam_phy_config(jg) $\%$
gpicmea				height to activate the SSO parameterization.	$ m dt_sso > 0.000s$

Parameter	Type	Default	Unit	Description	Scope
echam_sso_config(jg)%	R	10.	m	Minimum standard deviation of the SSO height to	echam_phy_config(jg)%
gstd				activate the SSO parameterization.	$ m dt_sso > 0.000s$
$echam_sso_config(jg)\%$	R	0.05		Coefficient for orographic gravity wave drag.	echam_phy_config(jg)%
gkdrag					$ m dt_sso > 0.000s$
$echam_sso_config(jg)\%$	R	0.		Coefficient for low level blocking.	echam_phy_config(jg)%
gkwake					$ m dt_sso > 0.000s$
echam_sso_config(jg)%	R	0.		Coefficient for low level lift.	echam_phy_config(jg)%
gklift					$ m dt_sso > 0.000s$
$echam_sso_config(jg)\%$	L	.TRUE.		.FALSE.: SSO effects are directly applied, for the	echam_phy_config(jg)%
lsftlf				case that SSO parameters are valid for the full cell	$ m dt_vdf > 0.000s$
				area.	
				.TRUE.: SSO effects are scaled with the cell area	
				fraction of land including lakes (field sftlf), for the	
				case that SSO parameters are valid only for this	
				part of the cell area.	

2.11 echam vdf nml

The parameterization of vertical diffusion (VDF) for the ECHAM physics is configured by a data structure $echam_vdf_config(jg=1:ndom)\% < param>$, which is a 1-dimensional array extending over all domains. The structure contains parameters providing control over some of the parametrized effects:

Parameter	Type	Default	Unit	Description	Scope
echam_vdf_config(jg)%	L	.TRUE.		switch on/off surface momentum flux	echam_phy_config(jg)%
lsfc_mom_flux					$ m dt_vdf > 0.000s$
$echam_vdf_config(jg)\%$	L	.TRUE.		switch on/off surface heat flux	echam_phy_config(jg)%
lsfc_heat_flux					$ m dt_vdf > 0.000s$
$echam_vdf_config(jg)\%$	R	1.0		neutral limit Prandtl number, can be varied from	echam_phy_config(jg)%
pr0				about 0.6 to 1.0	$ m dt_vdf > 0.000s$
echam_vdf_config(jg)%	R	0.17		neutral non-dimensional stress factor	echam_phy_config(jg)%
f tau0					$\mathrm{dt} \ \mathrm{vdf} > 0.000 \mathrm{s}$
echam vdf config(jg)%	R	0.185		mixing length: coriolis term tuning parameter	echam_phy_config(jg)%
_ c_f					$ m dt_vdf > 0.000s$

Parameter	Type	Default	Unit	Description	Scope
echam_vdf_config(jg)%	R	2.0		mixing length: stability term tuning parameter	echam_phy_config(jg)%
c_n					$\mathrm{dt_vdf} > 0.000\mathrm{s}$
echam_vdf_config(jg)%	R	0.5		ratio of typical horizontal velocity to wstar at free	echam_phy_config(jg)%
wmc				convection	$\mathrm{dt_vdf} > 0.000\mathrm{s}$
$echam_vdf_config(jg)\%$	R	0.4		fraction of first-level height at which surface fluxes	echam_phy_config(jg)%
fsl				are nominally evaluated, tuning param for sfc stress	$\mathrm{dt_vdf} > 0.000\mathrm{s}$
$echam_vdf_config(jg)\%$	R	3.0		1/fbl: fraction of BL height at which lmix hat its	echam_phy_config(jg)%
fbl				max	$ m dt_vdf > 0.000s$

$2.12 \quad ensemble_pert_nml$

Parameter	Type	Default	Unit	Description	Scope
use_ensemble_pert	L	.FALSE.	Oint	Main switch to activate physics parameter perturbations for ensemble forecasts / ensemble data assimilation; the perturbations are applied via random numbers depending on the perturbationNumber (ensemble member ID) specified in gribout_nml. Perturbations are always turned off if perturbationNumber ≤ 0	run_nml:iforcing = inwp
itype_pert_gen	I	1		Mode of ensemble perturbation generation 1: Equal distribution within perturbation range 2: Discrete distribution with 50% probability for default value and 25% probability for upper and lower extrema	
timedep_pert	I	0		Time-dependence of ensemble perturbations (except tkred_sfc, which oscillates with a time scale of 20 days) 0: None 1: Random seed for perturbation generation depends on initial date	
range_gkwake	R	0.5		Variability range for low level wake drag constant	

Parameter	Type	Default	Unit	Description	Scope
range_gkdrag	R	0.04		Variability range for orographic gravity wave drag	
				constant	
range_gfrcrit	R	0.1		Variability range for critical Froude number in SSO	
				scheme	
range_gfluxlaun	R	0.75e-3		Variability range for non-orographic gravity wave	
				launch momentum flux	
range_zvz0i	R	0.25	m/s	Variability range for terminal fall velocity of cloud	$inwp_gscp = 1 \text{ or } 2$
				ice	
range_rain_n0fac	R	4.		Multiplicative change of intercept parameter of	$inwp_gscp = 1 \text{ or } 2$
				raindrop size distribution	
${\rm range_entrorg}$	R	0.2e-3	$1/\mathrm{m}$	Variability range for entrainment parameter in	$inwp_convection = 1$
				convection scheme	
range_rdepths	R	5.e3	Pa	Variability range for maximum allowed shallow	$inwp_convection = 1$
				convection depth	
$range_rprcon$	R	0.25e-3		Variability range for tuning parameter controlling	$ inwp_convection = 1$
				conversion of cloud water into precipitation	
range_capdcfac_et	R	0.75		Maximum fraction of CAPE diurnal cycle	icapdcycl = 3
				correction applied in the extratropics	
range_rhebc	R	0.05		Variability range for RH threshold for the onset of	$inwp_convection = 1$
				evaporation below cloud base	
range_texc	R	0.05	K	Variability range for temperature excess value in	$inwp_convection = 1$
				test parcel ascent	
$range_qexc$	R	0.005		Variability range for mixing ratio excess value in	$inwp_convection = 1$
				test parcel ascent	
range_box_liq	R	0.01		Variability range for box width scale of liquid	$inwp_cldcover = 1$
				clouds in cloud cover scheme	
range_box_liq_asy	R	0.25		Variability range for asymmetry factor for sub-grid	$inwp_cldcover = 1$
				scale liquid cloud distribution	
range_tkhmin	R	0.2	$\mathrm{m}^{2}\mathrm{s}^{-1}$	Variability range for minimum vertical diffusion for	$inwp_turb = 1$
				heat/moisture	
range_tkmmin	R	0.2	$\mathrm{m}^{2}\mathrm{s}^{-1}$	Variability range for minimum vertical diffusion for	$inwp_turb = 1$
				momentum	
range_turlen	R	150	m	Variability range for turbulent mixing length	$inwp_turb = 1$

Parameter	Type	Default	Unit	Description	Scope
range_a_hshr	R	1		Variability range for scaling factor for extended horizontal shear term	$inwp_turb = 1$
${\rm range_tkred_sfc}$	R	4.0		Range for multiplicative change of reduction of minimum diffusion coefficients near the surface	$\mathrm{inwp_turb} = 1$
range_rlam_heat	R	3.0		Variability range (multiplicative!) of laminar transport resistance parameter	$inwp_turb = 1$
range_charnock	R	1.5		Variability range (multiplicative!) of upper and lower bound of wind-speed dependent Charnock parameter	inwp_turb = 1
range_minsnowfrac	R	0.1		Variability range for minimum value to which snow cover fraction is artificially reduced in case of melting snow	$\begin{array}{l} idiag_snowfrac = \\ 20/30/40 \end{array}$
range_c_soil	R	0.25		Variability range for evaporating fraction of soil	
range_cwimax_ml	R	2.0		Variability range for capacity of interception storage (multiplicative)	
range_z0_lcc	R	0.25		Variability range (relative change) of roughness length attributed to each landuse class	
range_rootdp	R	0.2		Variability range (relative change) of root depth attributed to each landuse class	
range_rsmin	R	0.2		Variability range (relative change) of minimum stomata resistance attributed to each landuse class	
range_laimax	R	0.15		Variability range (relative change) of leaf area index (maximum of annual cycle) attributed to each landuse class	
stdev_sst_pert	R	0.	K	Inserting the standard deviation of SST perturbations (present in the model input data) activates a correction factor for the saturation vapor pressure over oceans, which compensates the systematic increase of evaporation due to the SST perturbations.	

Defined and used in: src/namelists/mo_ensemble_pert_nml.f90

2.13 gribout_nml

Parameter	Type	Default	Unit	Description	Scope
preset	С	"determ"	,,	Setting this different to "none" enables a couple of	filetype=2
				defaults for the other gribout_nml namelist	
				parameters. If, additionally, the user tries to set	
				any of these other parameters to a conflicting value,	
				an error message is thrown. Possible values are	
				"none", "deterministic", "ensemble".	
tablesVersion	I	15		Main switch for Table version	filetype=2
backgroundProcess	I	0		Background process	filetype=2
				- GRIB2 code table backgroundProcess.table	
generatingCenter	I	-1		Output generating center. If this key is not set,	filetype=2
				center information is taken from the grid file	
				DWD: 78	
				MPIMET: 98	
				ECMWF: 98	
generatingSubcenter	I	-1		Output generating Subcenter. If this key is not set,	filetype=2
				subcenter information is taken from the grid file	
				DWD: 255	
				MPIMET: 232	
_				ECMWF: 0	
generatingProcess	I(n_dom)	1		generating Process Identifier	filetype=2
Identifier				- GRIB2 code table	
				generatingProcessIdentifier.table	
numberOfForecastsIn-	I	-1		Local definition for ensemble products, (only set if	filetype=2
Ensemble	_			value changed from default)	
perturbationNumber	I	-1		Local definition for ensemble products, (only set if	filetype=2
				value changed from default)	
productionStatusOfPro-	I	1		Production status of data	filetype=2
cessedData				- GRIB2 code table 1.3	
significanceOfReference-	I	1		Significance of reference time	filetype=2
Time			1	- GRIB2 code table 1.2	

Parameter	Type	Default	Unit	Description	Scope
typeOfEnsembleForecast	I	-1		Local definition for ensemble products (only set if	filetype=2
				value changed from default)	
typeOfGeneratingPro-	I	-1		Type of generating process	filetype=2
cess				- GRIB2 code table 4.3	
typeOfProcessedData	I	-1		Type of data	filetype=2
				- GRIB2 code table 1.4	
localDefinitionNumber	I	-1		local Definition Number	filetype=2
				- GRIB2 code table	
				grib2LocalSectionNumber.78.table	
localNumberOfExperi-	I	1		local Number of Experiment	filetype=2
ment					
localTypeOfEnsemble-	I	-1		Local definition for ensemble products (only set if	filetype=2
Forecast				value changed from default)	
lspecialdate_invar	L	.FALSE.		Special reference date for invariant and	$ ext{ filetype} = 2$
				climatological fields	
				.TRUE.: set special reference date 0001-01-01, 00:00	
				.FASLE.: no special reference date	
ldate_grib_act	L	.TRUE.		GRIB creation date	filetype=2
				.TRUE.: add creation date	
				.FALSE.: add dummy date	
lgribout_24bit	L	.FALSE.		If TRUE, write thermodynamic fields ρ , θ_v , T , p	filetype=2
				with 24bit precision instead of 16bit	

Defined and used in: src/namelists/mo_gribout_nml.f90

$2.14 \quad {\rm grid_nml}$

Parameter	Type	Default	Unit	Description	Scope
lplane	L	.FALSE.		planar option	
is_plane_torus	L	.FALSE.		f-plane approximation on triangular grid	
corio_lat	R	0.0	\deg	Center of the f-plane is located at this geographical	lplane=.TRUE. and
				latitude	is_plane_torus=.TRUE.
grid_angular _velocity	R	Earth's	$\mathrm{rad/s}$	The angular velocity in rad per sec.	

Parameter	Type	Default	Unit	Description	Scope
l_limited_area	L	.FALSE.			
$grid_rescale_factor$	R	1.0		Defined as the inverse of the reduced-size earth	
				reduction factor X . Choose grid_rescale_factor	
				< 1 for a reduced-size earth.	
				The geometry and the timestep will be multiplied	
				by this factor.	
				The angular velocity will be divided by this factor.	_
lfeedback	L(n_dom)	.TRUE.		Specifies if feedback to parent grid is performed.	n_dom>1
				Setting lfeedback(1)=.false. turns off feedback for	
				all nested domains; to turn off feedback for selected	
				nested domains, set lfeedback(1)=.true. and set	
		_		".false." for the desired model domains	_
ifeedback_type	I	2		1: incremental feedback	n_dom>1
				2: relaxation-based feedback	
				Note: vertical nesting requires option 2 to run	
	D(1)			numerically stable over longer time periods	
start_time	R(n_dom)	0.	S	Time when a nested domain starts to be active.	n_dom>1
				Relative time w.r.t. experiment start date	
				(ini_datetime_string / experimentStratDate).	
and time	D(n dom)	1.E30		(namelist entry is ignored for the global domain) Time when a nested domain terminates. Relative	n dom > 1
end_time	R(n_dom)	1.E30	S	time w.r.t. experiment start date	n_dom>1
				(ini_datetime_string / experimentStratDate).	
				(namelist entry is ignored for the global domain)	
patch weight	R(n dom)	0.		If patch weight is set to a value > 0 for any of the	n dom>1
paten_weight	Tt(II_dolli)	0.		first level child patches, processor splitting will be	
				performed, i.e. every of the first level child patches	
				gets a subset of the total number or processors	
				corresponding to its patch weight. A value of 0.	
				corresponds to exactly 1 processor for this patch,	
				regardless of the total number of processors. For the	
				root patch and higher level childs, patch weight is	
				not used. However, patch weight must be set to 0	
				for these patches to avoid confusion.	

Parameter	Type	Default	Unit	Description	Scope
lredgrid_phys	L	.FALSE.		If set to .true. radiation is calculated on a reduced	
				grid (= one grid level higher)	
$ ext{dynamics_grid}$	C			Array of the grid filenames to be used by the	
filename				dycore. May contain the keyword <path> which</path>	
				will be substituted by model_base_dir.	
$dynamics_parent_$	I(n_dom)	i-1		Array of the indexes of the parent grid filenames, as	
$\operatorname{grid}_{\mathbf{id}}$				described by the dynamics_grid_filename array.	
				Indexes start at 1, an index of 0 indicates no parent.	
radiation_grid_	C			Array of the grid filenames to be used for the	lredgrid_phys=.TRUE.
filename				radiation model. Filled only if the radiation grid is	
				different from the dycore grid. May contain the	
				keyword <path> which will be substituted by</path>	
				model_base_dir.	
dynamics_radiation_g	I(n_dom)	1 for i=1		Array of the indexes linking the dycore grids, as	
${ m rid_link}$				described by the dynamics_grid_filename array,	
				and the radiation_grid_filename array. It provides	
				the link index of the radiation_grid_filename, for	
				each entry of the dynamics_grid_filename array.	
				Indexes start at 1, an index of 0 indicates that the	
				radiation grid is the same as the dycore grid. Only	
				needs to be filled when the	
	_	DATCE		radiation_grid_filename is defined.	
create_vgrid	L	.FALSE.		.TRUE.: Write vertical grid files containing (vct_a,	
	C(1-)			vct_b, z_ifc, and z_ifv.	
vertical_grid_filename	C(n_dom)			Array of filenames. These files contain the vertical	
				grid definition (vct_a, vct_b, z_ifc). If empty, the	
				vertical grid is created within ICON during the	
ugo duplicated	т	.TRUE.		setup phase.	
use_duplicated_ connectivity	L	INUE.		if .TRUE., the zero connectivity is replaced by the last non-zero value	
use_dummy_cell_closure	L	.FALSE.		if .TRUE. then create a dummy cell and connect it	
use_dummy_cen_closure	L	TALSE.		to cells and edges with no neighbor	
				to cens and edges with no neighbor	

Defined and used in: src/namelists/mo_grid_nml.f90

2.15 gridref_nml

Parameter	Type	Default	Unit	Description	Scope
grf_intmethod_c	I	2		Interpolation method for grid refinement (cell-based	n_dom>1
				dynamical variables):	
				1: parent-to-child copying	
				2: gradient-based interpolation	
$grf_intmethod_ct$	I	2		Interpolation method for grid refinement (cell-based	n_dom>1
				tracer variables):	
				1: parent-to-child copying	
				2: gradient-based interpolation	
$grf_intmethod_e$	I	6		Interpolation method for grid refinement	n_dom>1
				(edge-based variables):	
				1: inverse-distance weighting (IDW)	
				2: RBF interpolation	
				3: combination gradient-based / IDW	
				4: combination gradient-based / RBF	
				5/6: same as 3/4, respectively, but direct	
				interpolation of mass fluxes along nest interface	
				edges	
grf_velfbk	I	1		Method of velocity feedback:	n_dom>1
				1: average of child edges 1 and 2	
				2: 2nd-order method using RBF interpolation	
$grf_scalfbk$	I	2		Feedback method for dynamical scalar variables	n_dom>1
				(T, p_{sfc}) :	
				1: area-weighted averaging	
				2: bilinear interpolation	
grf_tracfbk	I	2		Feedback method for tracer variables:	n_dom>1
				1: area-weighted averaging	
				2: bilinear interpolation	
$grf_idw_exp_e12$	R	1.2		exponent of generalized IDW function for child	n_dom>1
				edges $1/2$	
$grf_idw_exp_e34$	R	1.7		exponent of generalized IDW function for child	n_dom>1
				edges $3/4$	

Parameter	Type	Default	Unit	Description	Scope
rbf_vec_kern_grf_e	I	1		RBF kernel for grid refinement (edges):	n_dom>1
				1: Gaussian	
				$2: 1/(1+r^2)$	
				3: inverse multiquadric	
rbf_scale_grf_e	R(n_dom)	0.5		RBF scale factor for grid refinement (lateral	n_dom>1
				boundary interpolation to edges). Refers to the	
				respective parent domain and thus does not need to	
				be specified for the innermost nest. Lower values	
				than the default of 0.5 are needed for child mesh	
				sizes less than about 500 m.	
denom_diffu_t	R	135		Deniminator for lateral boundary diffusion of	n_dom>1
				temperature	
denom_diffu_v	R	200		Deniminator for lateral boundary diffusion of	n_dom>1
				velocity	
l_mass_consvcorr	L	.FALSE.		.TRUE.: Apply mass conservation correction in	n_dom>1
				feedback routine	
l_density_nudging	L	.FALSE.		.TRUE.: Apply density nudging near lateral nest	$n_{\text{dom}}>1$.AND.
				boundary if $grf_intmethod_e \le 4$	$led_{back} = .TRUE.$
fbk_relax_timescale	R	10800		Relaxation time scale for feedback	n_dom>1 .AND.
					$led_{a} = TRUE.$
					$AND. ifeedback_type = $
					2

Defined and used in: src/namelists/mo_gridref_nml.f90

$2.16 \quad ha_dyn_nml$

 $This \ name list is \ relevant \ if \ run_nml: ldynamics=. TRUE. \ and \ dynamics_nml: iequations=IHS_ATM_TEMP \ or \ IHS_ATM_THETA.$

Parameter	Type	Default	Unit	Description	Scope
itime_scheme	I	14		Time integration scheme:	
_				11: pure advection (no dynamics)	
				12: 2 time level semi implicit (not yet implemented)	
				13: 3 time level explicit	

Parameter	Type	Default	Unit	Description	Scope
				14: 3 time level with semi implicit correction	
				15: standard 4th-order Runge-Kutta method	
				(4-stage)	
				16: $SSPRK(5,4)$ scheme (5-stage)	
ileapfrog_startup	I	1		How to integrate the first time step when the	$itime_scheme = 13 \text{ or } 14$
				leapfrog scheme is chosen. $1 = \text{Euler forward}$; $2 = a$	
				series of sub-steps.	
asselin_coeff	R	0.1		Asselin filter coefficient	itime_scheme= 13 or 14
si_2tls	R	0.6		weight of time step $n+1$. Valid range: $[0,1]$	itime_scheme=12
si_expl_scheme	I	2		scheme for the explicit part used in the 2 time level	itime_scheme=12
				semi-implicit time stepping scheme. $1 = \text{Euler}$	
				forward; $2 = Adams$ -Bashforth 2nd order	
si_cmin	R	30.0	m/s	semi implicit correction is done for eigenmodes with	itime_scheme=14 and
				speeds larger than si_cmin	lsi_3d=.FALSE.
si_coeff	R	1.0		weight of the semi implicit correction	itime_scheme=14
si_offctr	R	0.7			itime_scheme=14
si_rtol	R	1.0e-3		relative tolerance for GMRES solver	itime_scheme=14
lsi_3d	L	.FALSE.		3D GMRES solver or decomposistion into 2D	lshallow_water=.FALSE.
				problems	and itime_scheme=14
dycore	L	.TRUE.		Assume dry atmosphere	iequations $\in \{1,2\}$
$lref_temp$	L	.FALSE.		Set a background temperature profile as base state	iequations $\in \{1,2\}$
				when computing the pressure gradient force	

$2.17 \quad initicon_nml$

Parameter	Type	Default	Unit	Description	Scope
init mode	I	2		1: MODE DWDANA	
_				start from DWD analysis or FG	
				2: MODE IFSANA	
				start from IFS analysis	
				3: MODE COMBINED	
				IFS atm + ICON/GME soil	
				4: MODE COSMO	
				start from prognostic set of variables as used by	
				COSMO	
				5: MODE IAU	
				start from DWD analysis with incremental	
				analysis update. Extension of MODE_IAU_OLD	
				including snow increments	
				6: MODE IAU OLD	
				start from DWD analysis with incremental	
				analysis update. NOTE: Extension of mode	
				MODE DWDANA INC including W SO	
				increments.	
				7: MODE ICONVREMAP	
				start from DWD first guess with subsequent	
				vertical remapping (work in progress; so far,	
				changing the number of model levels does not yet	
				work)	
dt iau	R	10800	- C	Duration of incremental analysis update (IAU)	init mode=5,6
ut_lau	16	10000	S	procedure. Start time for IAU is the actual model	mit_mode=5,0
				start time (see below).	
dt shift	R	0		Time by which the actual model start time is	init mode=5,6
ut_siiit	l n	0	S	shifted ahead of the nominal date. The latter is	mit_mode=5,0
				given by either ini_datetime_string or	
				experimentStartDate. dt_shift must be	
				NEGATIVE, usually -0.5 dt _iau.	

Parameter	Type	Default	Unit	Description	Scope
iterate_iau	L	.FALSE.		If .TRUE., the IAU phase is calculated twice with	$init_mode=5,6$ and
				halved dt_shift in first cycle (allows writing a fully	$dt_shift < 0$
				initialized analysis at the nominal initialization date	
				while using a centered IAU window for the	
				forecast).	
$start_time_avg_fg$	R	0	s	Start time for calculating temporally averaged first	
				guess output for data assimilation.	
end_time_avg_fg	R	0	s	End time for calculating temporally averaged first	
				guess output for data assimilation.	
				Setting end_time_avg_fg > start_time_avg_fg	
				activates the averaging	
interval_avg_fg	R	0	s	Corresponding averaging interval. Note that	
_ 0_ 0				end time avg fg — start time avg fg must not	
				be smaller than the averaging interval	
rho incr filter wgt	R	0		Vertical filtering weight on density increments	init $mode=5,6$
niter diffu	I	10		Number of diffusion iterations applied on wind	init mode=5,6
_				increments	
niter divdamp	I	25		Number of divergence damping iterations applied	init $mode=5,6$
				on wind increments	
type_iau_wgt	I	1		Weighting function for performing IAU	init mode=5,6
J1 O				1: Top-Hat	_
				2: SIN2	
nlevsoil in	I	4		number of soil levels of input data	init mode=2
zpbl1	R	500.0	m	bottom height (AGL) of layer used for gradient	
•				computation	
zpbl2	R	1000.0	m	top height (AGL) of layer used for gradient	
•				computation	
lread ana	L	.TRUE.		If .FALSE., ICON is started from first guess only.	init mode=1,3
				Analysis field is not required, and skipped if	_ , , , , , , , , , , , , , , , , , , ,
				provided.	
use lakeiceana	L	.FALSE.		If .TRUE., analysis data for sea ice fraction are also	init mode=5,6
				used for freshwater lakes (for the time being	
				restricted to the Great Lakes; extension to other	
				lakes needs to be tested)	

Parameter	Type	Default	Unit	Description	Scope
qcana_mode	I	0		If > 0 , analysis increments for cloud water are read	init_mode=5
		1		and processed.	
		1		1: QC increments are added to QV increments	
		1		2: QC increments are added to QC if clouds are	
	J	1		present, otherwise to QV increments	
qiana_mode	I	0		1: analysis increments for cloud ice are read and	$init_mode=5$
		1		processed.	_
lconsistency_checks	L	.TRUE.		If .FALSE., consistency checks for Analysis and	$init_mode=1,3,4,5,6$
· -		1		First Guess fields are skipped. On default, checks	
		1		are performed for <i>uuidOfHGrid</i> and <i>validity time</i> .	
l coarse2fine mode	L(n_dom)	.FALSE.		If true, apply corrections for coarse-to-fine mesh	
		1		interpolation to wind and temperature	
lp2cintp incr	L(n dom)	.FALSE.		If true, interpolate atmospheric data assimilation	init mode=5,6
r - 1 <u>-</u>	\ - /	1		increments from parent domain.	,
	J	1		Can be specified separately for each nested domain;	
		1		setting the first (global) entry to true activates the	
		1		interpolation for all nested domains.	
lp2cintp sfcana	L(n dom)	.FALSE.		If true, interpolate atmospheric surface analysis	init mode=5,6
-F	/	1		data from parent domain.	
		1		Can be specified separately for each nested domain;	
		1		setting the first (global) entry to true activates the	
		1		interpolation for all nested domains.	
ltile init	L	.FALSE.		True: initialize tiled surface fields from a first guess	init mode=1,5,6
	-			coming from a run without tiles.	
	ı	1		Along coastlines and lake shores, a neighbor search	
	1	1		is executed to fill the variables on previously	
		1		non-existing land or water points with reasonable	
		1		values. Should be combined with ltile coldstart =	
	J	1		.TRUE.	
ltile coldstart	L	.FALSE.		If true, tiled surface fields are initialized with	init mode=1,5,6
	-			tile-averaged fields from a previous run with tiles.	1110_111040 1,0,0
	J	1		A neighbor search is applied to subgrid-scale ocean	
	ı	1		points for SST and sea-ice fraction.	

Parameter	Type	Default	Unit	Description	Scope
lvert_remap_fg	L	.FALSE.		If true, vertical remapping is applied to the	$init_mode=5,6$
				atmospheric first-guess fields, whereas the analysis	
				increments remain unchanged. The number of	
				model levels must be the same for input and output	
				fields, and the z ifc (alias HHL) field pertaining to	
				the input fields must be appended to the first-guess	
				file.	
ifs2icon filename	\mid C			Filename of IFS2ICON input file, default	$init_mode=2$
_				" <path>ifs2icon_R<nroot>B<jlev>_DOM</jlev></nroot></path>	
				<pre><idom>.nc". May contain the keywords <path></path></idom></pre>	
				which will be substituted by model_base_dir, as	
				well as nroot, jlev, and idom defining the current	
				patch.	
$dwdfg_filename$	C			Filename of DWD first-guess input file, default	$init_mode=1,3,5,6$
_				" <path>dwdFG_R<nroot>B<jlev>_DOM <idom>.nc".</idom></jlev></nroot></path>	
				May contain the keywords <path> which will be</path>	
				substituted by model_base_dir, as well as nroot,	
				jlev, and idom defining the current patch.	
$dwdana_filename$	\mid C			Filename of DWD analysis input file, default	$ $ init_mode=1,3,5,6
				" <path>dwdana_R<nroot>B<jlev>_DOM</jlev></nroot></path>	
				<pre><idom>.nc". May contain the keywords <path></path></idom></pre>	
				which will be substituted by model_base_dir, as	
				well as nroot, jlev, and idom defining the current	
				patch.	
filetype	I	-1		One of CDI's FILETYPE_XXX constants.	
		(undef.)		Possible values: 2 (=FILETYPE_GRB2), 4	
				(=FILETYPE_NC2). If this parameter has not	
				been set, we try to determine the file type by its	
				extension "*.grb*" or ".nc".	

Parameter	Type	Default	Unit	Description	Scope
check_fg(jg)%list	C(:)			In ICON a small subset of first guess input fields is	$init_mode=1,5,6$
				declared 'optional', meaning that they are read in if	
				present, but they are not mandatory to start the	
				model. By adding optional fields to this list, they	
				become mandatory for domain jg, such that the	
				model aborts if any of them is missing. This list	
				may include a subset of the optional first guess	
				fields, or even the entire set of first guess fields. On	
				default this list is empty, such that optional fields	
				experience a cold-start initialization if they are	
				missing and the model does not abort.	
$check_ana(jg)\%list$	C(:)			List of mandatory analysis fields for domain jg that	$init_mode=1,5,6$
				must be present in the analysis file. If these fields	
				are not found, the model aborts. For all other	
				analysis fields, the FG-fields will serve as fallback	
				position.	
ana_varnames_map_	C			Dictionary file which maps internal variable names	
file				onto GRIB2 shortnames or NetCDF var names.	
				This is a text file with two columns separated by	
				whitespace, where left column: ICON variable	
				name, right column: GRIB2 short name or NetCDF	
				var name.	

Defined and used in: src/namelists/mo_initicon_nml.f90

${\bf 2.18 \quad interpol_nml}$

Parameter	Type	Default	Unit	Description	Scope
1_intp_c2l	L	.TRUE.		DEPRECATED	
l_mono_c2l	L	.TRUE.		Monotonicity can be enforced by demanding that	
				the interpolated value is not higher or lower than	
				the stencil point values.	

Parameter	Type	Default	Unit	Description	Scope
llsq_high_consv	L	.TRUE.		conservative (T) or non-conservative (F)	
				least-squares reconstruction for high order transport	
lsq_high_ord	I	3		polynomial order for high order reconstruction	
				1: linear	$ihadv_tracer=4$
				2: quadratic	
				30: cubic (no 3^{rd} order cross deriv.)	
				3: cubic	
llsq_lin_consv	L	.FALSE.		conservative (T) or non-conservative (F)	
				least-squares reconstruction for 2nd order (linear)	
				transport	
nudge efold width	R	2.0		e-folding width (in units of cell rows) for lateral	
				boundary nudging coefficient. This switch and the	
				following two pertain to one-way nesting and	
				limited-area mode	
nudge max coeff	R	0.02		Maximum relaxation coefficient for lateral	
9 = =				boundary nudging. Recommended range of values	
				for limited-area mode is $0.06 - 0.075$.	
nudge zone width	I	8		Total width (in units of cell rows) for lateral	
9 = =				boundary nudging zone. For the limited-area mode,	
				a minimum of 10 is recommended. If < 0 the patch	
				boundary depth index is used.	
rbf dim c2l	I	10		stencil size for direct lon-lat interpolation: 4 =	
				nearest neighbor, 13 = vertex stencil, 10 = edge	
				stencil.	
rbf scale mode ll	I	2		Specifies, how the RBF shape parameter is	
				determined for lon-lat interpolation.	
				1: lookup table based on grid level	
				2: determine automatically.	
				So far, this routine only estimates the smallest	
				value for the shape parameter for which the	
				Cholesky is likely to succeed in floating point	
				arithmetic. 3: explicitly set shape parameter in	
				each output namelist (namelist parameter	
				output_nml::rbf_scale, p. 70).	

Parameter	Type	Default	Unit	Description	Scope
rbf_vec_kern_c	I	1		Kernel type for reconstruction at cell centres:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_kern_e	I	3		Kernel type for reconstruction at edges:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_kern_ll	I	1		Kernel type for reconstruction at lon-lat-points:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_kern_v	I	1		Kernel type for reconstruction at vertices:	
				1: Gaussian	
				3: inverse multiquadric	
$rbf_vec_scale_c$	R(n_dom)	resolution-		Scale factor for RBF reconstruction at cell centres	
		dependent			
rbf_vec_scale_e	R(n_dom)	resolution-		Scale factor for RBF reconstruction at edges	
		dependent			
rbf vec scale v	R(n dom)	resolution-		Scale factor for RBF reconstruction at vertices	
	, – ,	dependent			
support_baryctr_intp	L	.FALSE.		Flag. If .FALSE. barycentric interpolation is	
				replaced by a fallback interpolation.	
lreduced nestbdry stencil	L	.FALSE.		Flag. If .TRUE. then the nest boundary points are	
				taken out from the lat-lon interpolation stencil.	

Defined and used in: src/namelists/mo_interpol_nml.f90

$2.19 \quad io_nml$

Parameter	Type	Default	Unit	Description	Scope
lkeep_in_sync	L	.FALSE.		Sync output stream with file on disk after each	
				timestep	
$\mathrm{dt}_{-}\mathrm{diag}$	R	86400.	S	diagnostic integral output interval	run_nml:output =
					"totint"

Parameter	Type	Default	Unit	Description	Scope
lt_checkpoint	R	2592000	s	Time interval for writing restart files. Note that if	output /= "none"
				the value of dt_checkpoint resulting from model	(run_nml)
				default or user's specification is longer than	
				time_nml:dt_restart, it will be reset (by the	
				model) to dt_restart so that at least one restart file	
				is generated during the restart cycle.	
$nextra_2d$	I	0		Number of extra 2D Fields for	dynamics_nml:iequations
				diagnostic/debugging output.	= 3 (to be done for 1, 2)
nextra 3d	I	0		Number of extra 3D Fields for	dynamics nml:iequations
_				diagnostic/debugging output.	= 3 (to be done for 1, 2)
flux avg	L	.TRUE.		if .FALSE. the output fluxes are accumulated	iequations=3
_ ~				from the beginning of the run	iforcing=3
				if .TRUE. the output fluxes are average values	
				from the beginning of the run, except of	
				TOT PREC that would be accumulated	
type_pres_msl	I	1		Specifies method for computation of mean sea level	
·				pressure (and geopotential at pressure levels below	
				the surface).	
				1: GME-type extrapolation,	
				2: stepwise analytical integration,	
				3: current IFS method,	
				4: IFS method with consistency correction	
				5: New DWD method constituting a mixture	
				between IFS and old GME method (departure level	
				for downward extrapolation between 10 m and 150	
				m AGL depending on elevation)	
type_rh	I	1		Specifies method for computation of relative	
- -				humidity	
				1: WMO-type: water only (e s=e s water),	
				2: IFS-type: mixed phase (water and ice),	
				3: IFS-type with clipping (rh ≤ 100)	
gust interval	R	3600.	s	Interval over which wind gusts are maximized	iforcing=3

Parameter	Type	Default	Unit	Description	Scope
output_nml_dict	С	, ,		File containing the mapping of variable names to	output_nml namelists
				the internal ICON names. May contain the	
				keyword <path> which will be substituted by</path>	
				model_base_dir.	
				The format of this file:	
				One mapping per line, first the name as given in	
				the ml_varlist, hl_varlist, pl_varlist or	
				il_varlist of the output_nml namelists, then the	
				internal ICON name, separated by an arbitrary	
				number of blanks. The line may also start and end	
				with an arbitrary number of blanks. Empty lines or	
				lines starting with $\#$ are treated as comments.	
				Names not covered by the mapping are used as they	
				are.	
linvert_dict	L	.FALSE.		If .TRUE., columns in dictionary file	
				output_nml_dict are evaluated in inverse order.	
				This allows using the same dictionary file as for	
				input (ana_varnames_map_file in initicon_nml).	

Parameter	Type	Default	Unit	Description	Scope
netcdf_dict	С	, ,		File containing the mapping from internal names to	output_nml namelists,
				names written to NetCDF. May contain the	NetCDF output
				keyword <path> which will be substituted by</path>	
				model_base_dir.	
				The format of this file:	
				One mapping per line, first the name written to	
				NetCDF, then the internal name, separated by an	
				arbitrary number of blanks (inverse to the	
				definition of output_nml_dict). The line may also	
				start and end with an arbitrary number of blanks.	
				Empty lines or lines starting with $\#$ are treated as	
				comments.	
				Names not covered by the mapping are output as	
				they are.	
				Note that the specification of output variables, e.g.	
				in ml_varlist, is independent from this renaming,	
				see the namelist parameter output_nml_dict for	
				this.	
lnetcdf_flt64_output	L	.FALSE.		If .TRUE. floating point variable output in NetCDF	
				files is written in 64-bit instead of 32-bit accuracy.	
restart_file_type	I	4		Type of restart file. One of CDI's	
				FILETYPE_XXX. So far, only 4	
				(=FILETYPE_NC2) is allowed	
restart_write_mode	C	""		Restart read/write mode.	
				Allowed settings (character strings!) are listed	
				below.	
$nrestart_streams$	I	1		When using the restart write mode "dedicated	restart_write_mode =
				procs multifile", it is possible to split the restart	"dedicated procs multifile"
				output into several files, as if	
				<pre>nrestart_streams * num_io_procs restart</pre>	
				processes were involved. This speeds up the read-in	
				process, since all the files may then be read in	
				parallel.	

Parameter	Type	Default	Unit	Description	Scope
lmask_boundary	L	F		Set to .TRUE., if interpolation zone should be	
				masked in triangular output.	

2.19.1 Restart read/write mode:

Allowed settings for restart_write_mode are:

"sync"

'Old' synchronous mode. PE # 0 reads and writes restart files. All other PEs have to wait.

"async"

Asynchronous restart writing: Dedicated PEs (num_restart_proc > 0) write restart files while the simulation continues. Restart PEs can only parallelize over different patches. — Read-in: PE # 0 reads while other PEs have to wait.

"joint procs multifile"

All worker PEs write restart files to a dedicated directory. Therefore, the directory itself is called the restart file. The information is stored in a way that it can be read back into the model independent from the processor count and the domain decomposition. — Read-in: All worker PEs read the data in parallel.

"dedicated procs multifile"

In this case, all the restart data is first transferred to memory buffers in dedicated restart writer PEs. After that, the work processes carry on with their work immediately, while the restart writers perform the actual restart writing asynchronously. Restart PEs can parallelize over patches and horizontal indices. — Read-in: All worker PEs read the data in parallel..

,, ,,

Fallback mode.

If num_restart_proc == 0 (parallel_nml), then this behaves like "sync", otherwise like "async".

Defined and used in: src/namelists/mo_io_nml.f90

2.20 les nml (parameters for LES turbulence scheme; valid for inwp_turb=5)

Parameter	Type	Default	Unit	Description	Scope
sst	R	300	K	sea surface temperature for idealized LES	isrfc_type=5,4
				simulations	
shflx	R	0.1	$\mathrm{Km/s}$	Kinematic sensible heat flux at surface	$ $ isrfc_type = 2
lhflx	R	0	m/s	Kinematic latent heat flux at surface	$ $ isrfc_type = 2
$isrfc_type$	I	1		surface type	
				0 = No fluxes and zero shear stress	
				1 = TERRA land physics	
				2 = fixed surface fluxes	
				3 = fixed buoyancy fluxes	
				4 = RICO test case	
				5 = fixed SST	
ufric	R	-999	m/s	friction velocity for idealized LES simulations; if <	
				0 then it is automatically diagnosed	
psfc	R	-999	Pa	surface pressure for idealized LES simulations; if <	
				0 then it uses the surface pressure from dynamics	
\min_sfc_wind	R	1.0	m/s	Minimum surface wind for surface layer useful in	
				the limit of free convection	
is_dry_cbl	L	.FALSE.		switch for dry convective boundary layer	
				simulations	
$smag_constant$	R	0.23		Smagorinsky constant	
km_{min}	R	0.0		Minimum turbulent viscosity	
\max_{turb_scale}	R	300.0		Asymtotic maximum turblence length scale (useful	
				for coarse grid LES and when grid is vertically	
				stretched)	
$turb_prandtl$	R	0.333333		turbulent Prandtl number	
bflux	R	0.0007	$\mathrm{m^2/s^3}$	buoyancy flux for idealized LES simulations	isrfc_type=3
				(Stevens 2007)	
tran_coeff	R	0.02	m/s	transfer coefficient near surface for idealized LES	isrfc_type=3
				simulation (Stevens 2007)	
$vert_scheme_type$	I	2		type of time integration scheme in vertical diffusion	
				1 = explicit	
				2 = fully implicit	

Parameter	Type	Default	Unit	Description	Scope
sampl_freq_sec	R	60	S	sampling frequency in seconds for statistical (1D	
				and 0D) output	
avg_interval_sec	R	900	s	(time) averaging interval in seconds for 1D	
				statistical output	
expname	C	ICOLES		expname to name the statistical output file	
ldiag_les_out	L	.FALSE.		Control for the statistical output in LES mode	
les_metric	L	.FALSE.		Switch to turn on Smagorinsky diffusion with 3D	
				metric terms to account for topography	

Defined and used in: src/namelists/mo_les_nml.f90

$2.21 \quad limarea_nml \; (Scope: \; l_limited_area=.TRUE. \; in \; grid_nml)$

Parameter	Type	Default	Unit	Description	Scope
$itype_latbc$	I	0		Type of lateral boundary nudging.	
				0: constant lateral boundary conditions derived	
				from the initial conditions,	
				1: time-dependent lateral boundary conditions	
				provided by an external source (IFS, COSMO or a	
				coarser-resolution ICON run),	
				2: Test mode using time-dependent lateral	
				boundary conditions from a nested ICON run in	
				which the present limited-area domain was	
				operated as a nested grid with identical(!) model	
				level configuration.	
				Available for synchronous read mode	
				$(num_prefetch_proc = 0)$ only!	
$dtime_latbc$	R	10800.0	s	Time difference between two consecutive boundary	$ itype_latbc \ge 1$
				data.	
init_latbc_from_fg	L	.FALSE.		If .TRUE., take lateral boundary conditions for	$ itype_latbc \ge 1$
				initial time from first guess (or analysis) field	

Parameter	Type	Default	Unit	Description	Scope
nudge_hydro_pres	L	.TRUE.		If .TRUE., hydrostatic pressure is used to compute	$itype_latbc \ge 1$
				lateral boundary nudging (recommended if boundary conditions contain hydrostatic pressure, which is usually the case)	
latbc_filename	С			Filename of boundary data input file, these files	itype_latbc ≥ 1
				must be located in the latbc_path directory. Default:	
				"prepiconR <nroot>B<jlev>_<y><m><d><h>.nc".</h></d></m></y></jlev></nroot>	
				The filename may contain keyword tokens (day,	
				hour, etc.) which will be automatically replaced	
				during the run-time. See the table below for a list of allowed keywords.	
latbc path	C			Absolute path to boundary data.	itype latbc ≥ 1
latbe boundary grid	C	,, ,,		Grid file defining the lateral boundary. Empty	$ \text{itype latbc} \ge 1 $
				string means: whole domain is read for the lateral	
				boundary. This NetCDF grid file must contain two	
				integer index arrays: int	
				<pre>global_cell_index(cell), int</pre>	
				global_edge_index(edge), both with attributes	
				nglobal which contains the global size size of the	
				non-sparse cells and edges.	
latbc_varnames_map_ file	_ C			Dictionary file which maps internal variable names onto GRIB2 shortnames or NetCDF var names.	num_prefetch_proc=1
				This is a text file with two columns separated by	
				whitespace, where left column: ICON variable	
				name, right column: GRIB2 short name. This list	
				contains variables that are to be read	
				asynchronously for boundary data nudging in a	
				HDCP2 simulation. All new boundary variables	
				that in the future, would be read asynchronously.	
				Need to be added to text file dict.latbc in run	
				folder.	

Defined and used in: src/namelists/mo_limarea_nml.f90

Keyword substitution in boundary data filename (latbc_filename):

substituted by year (four digits) <y> substituted by month (two digits) <m> substituted by day (two digits) <d> substituted by hour (two digits) <h> substituted by minute (two digits) <min> substituted by seconds (two digits) <sec> substituted by a *relative* day-hour-minute-second string. <ddhhmmss> substituted by a *relative* (three-digit) day-hour string. <dddhh>

2.22 lnd nml

Parameter	Type	Default	Unit	Description	Scope
nlev_snow	I	2		number of snow layers	lmulti_snow=.true.
ntiles	I	1		number of tiles	
lsnowtile	L	.FALSE.		.TRUE.: consider snow-covered and snow-free tiles	ntiles>1
				separately	
frlnd_thrhld	R	0.05		fraction threshold for creating a land grid point	ntiles>1
frlake_thrhld	R	0.05		fraction threshold for creating a lake grid point	ntiles>1
frsea_thrhld	R	0.05		fraction threshold for creating a sea grid point	ntiles>1
frlndtile_thrhld	R	0.05		fraction threshold for retaining the respective tile	ntiles>1
				for a grid point	
lmelt	$\mid L$.TRUE.		.TRUE. soil model with melting process	
$lmelt_var$	$\mid L$.TRUE.		.TRUE. freezing temperature dependent on water	
				content	
lana_rho_snow	L	.TRUE.		.TRUE. take rho_snow-values from analysis file	init_mode=1
$lmulti_snow$	$\mid L$.FALSE.		.TRUE. for use of multi-layer snow model (default	
				is single-sayer scheme)	
l2lay_rho_snow	L	.FALSE.		.TRUE. predict additional snow density for upper	$lmulti_snow = .FALSE.$
				part of the snowpack, having a maximum depth of	
				max_toplaydepth	
$\max_{toplaydepth}$	R	0.25	m	maximum depth of uppermost snow layer	lmulti_snow=.TRUE. or
					l2lay_rho_snow=.TRUE.

Parameter	Type	Default	Unit	Description	Scope
idiag_snowfrac	I	1		Type of snow-fraction diagnosis:	
				1 = based on SWE only	
				2-4 = more advanced experimental methods	
				20, 30, 40 = same as 2, 3, 4, respectively, but with	
				artificial reduction of snow fraction in case of	
				melting snow (shold be used only in combination	
				with lsnowtile=.TRUE.	
itype snowevap	I	2		Tuning of snow evaporation in vegetated areas:	lsnowtile=.TRUE.
v				1: Tuning turned off	
				2: First level of tuning without additional control	
				variables	
				3: Second level of tuning with additional I/O	
				variables for snow age and maximum snow depth	
				(should be used only if these additional variables	
				are avaliable from the DWD assimilation cycle)	
itype lndtbl	I	3		Table values used for associating surface parameters	
v				to land-cover classes:	
				1 = defaults from extpar (GLC2000 and	
				GLOBCOVER2009)	
				2 = Tuned version based on IFS values for	
				globcover classes (GLOBCOVER2009 only)	
				3 = even more tuned operational version	
				(GLOBCOVER2009 only)	
				4 = tuned version for new bare soil evaporation	
				scheme (itype_evsl=4)	
itype_root	I	2		root density distribution:	
				1 = constant	
				2 = exponential	
itype_evsl	I	2		type of bare soil evaporation parameterization	
				2 = Dickinson (1984)	
				3 = Noilhan and Planton (1989)	
				4 = Resistance-based scheme by Jan-Peter Schulz	

Parameter	Type	Default	Unit	Description	Scope
$itype_trvg$	I	2		type of plant transpiration parameterization	1
				2 = BATS scheme, Dickinson (1984)	1
				3 = Extended BATS scheme with additional	1
				prognostic variable for integrated plant	1
				transpiration since sunrise; should be used only	1
				with an appropriate first guess for this variable	1
				coming from the DWD assimilation cycle	T
$itype_heatcond$	I	2		type of soil heat conductivity	
				1 = constant soil heat conductivity	1
				2 = moisture dependent soil heat conductivity	T
				3 = variant of option 2 with reduced near-surface	1
				heat conductivity in the presence of plant cover	1
$itype_interception$	I	1		type of plant interception	1
				1 = standard scheme, effectively switched off by	1
				tiny value cwimax_ml	1
				2 = Rain and snow interception (to be removed)	1
$\operatorname{cwimax}_{-}\operatorname{ml}$	R	1.e-6	m	scaling parameter for maximum interception	$itype_interception = 1$
				storage (almost switched off);	1
				use 5.e-4 to activate interception storage	1
c_soil	R	1.		surface area density of the (evaporative) soil surface	1
				allowed range: $0-2$	
c_soil_urb	R	1.		surface area density of the (evaporative) soil	1
_				surface, urban areas	1
				allowed range: $0-2$	1
itype_hydbound	I	1		type of hydraulic lower boundary condition	
				1 = none	1
				3 = ground water as lower boundary of soil column	1
lstomata	L	.TRUE.		If .TRUE., use map of minimum stomatal resistance	1
				If .FALSE., use constant value of $150 \mathrm{s/m}$.	1
l2tls	L	.TRUE.		If .TRUE., forecast with 2-Time-Level integration	1
				scheme (mandatory in ICON)	1
lseaice	L	.TRUE.		.TRUE. for use of sea-ice model	1
lprog_albsi	L	.FALSE.		If .TRUE., sea-ice albedo is computed	lseaice=.TRUE.
• ==				prognostically	

Parameter	Type	Default	Unit	Description	Scope
llake	L	.TRUE.		.TRUE. for use of lake model	
sstice_mode	I	1		1: SST and sea ice fraction are read from the	iequations=3
				analysis. The SST is kept constant whereas the sea	iforcing=3
				ice fraction can be modified by the seaice model.	
				2: SST and sea ice fraction are read from the	
				analysis. The SST is updated by climatological	
				increments on a daily basis. The sea ice fraction	
				can be modified by the seaice model.	
				3: SST and sea ice fraction are updated daily, based	
				on climatological monthly means	
				4: SST and sea ice fraction are updated daily, based	
				on actual monthly means	
				5: SST and sea ice fraction are updated daily, based	
				on actual daily means (not yet implemented)	
$sst_td_filename$	C			Filename of SST input files for time dependent	$sstice_mode=3,4,5$
				SST. Default is	
				" <path>SST_<year>_<month>_<gridfile>".</gridfile></month></year></path>	
				May contain the keyword <path> which will be</path>	
				substituted by model_base_dir	
$\operatorname{ci_td_filename}$	\mid C			Filename of sea ice fraction input files for time	$sstice_mode=3,4,5$
				dependent sea ice fraction. Default is	
				" <path>CI_<year>_<month>_<gridfile>".</gridfile></month></year></path>	
				May contain the keyword <path> which will be</path>	
				substituted by model_base_dir	

Defined and used in: src/namelists/mo_lnd_nwp_nml.f90

$2.23 \quad {\rm ls_forcing_nml} \ ({\rm parameters} \ {\rm for} \ {\rm large\text{-}scale} \ {\rm forcing}; \ {\rm valid} \ {\rm for} \ {\rm torus} \ {\rm geometry})$

Parameter	Type	Default	Unit	Description	Scope
is_subsidence_moment	L	.FALSE.		switch for enabling LS vertical advection due to	is_plane_torus=.TRUE.
				subsidence for momentum equations	

Parameter	Type	Default	Unit	Description	Scope
is_subsidence_heat	L	.FALSE.		switch for enabling LS vertical advection due to	is_plane_torus=.TRUE.
				subsidence for thermal equations	
is_advection	L	.FALSE.		switch for enabling LS horizontal advection	is_plane_torus=.TRUE.
				(currently only for thermal equations)	
is_geowind	L	.FALSE.		switch for enabling geostrophic wind	is_plane_torus=.TRUE.
is_rad_forcing	L	.FALSE.		switch for enabling radiative forcing	is_plane_torus=.TRUE.
					inwp_rad=.FALSE.
is_theta	L	.FALSE.		switch to indicate that the prescribed radiative	is_plane_torus=.TRUE.
				forcing is for potential temperature	is_rad_forcing=.TRUE.

Defined and used in: src/namelists/mo_ls_forcing_nml.f90

${\bf 2.24} \quad {\bf master_model_nml} \ ({\bf repeated} \ {\bf for} \ {\bf each} \ {\bf model})$

Parameter	Type	Default	Unit	Description	Scope
$model_name$	С			Character string for naming this component.	
${f model_namelist}$	C			File name containing the model namelists.	
filename					
${f model_type}$	I	-1		Identifies which component to run.	
_				1=atmosphere	
				2=ocean	
				3=radiation	
				99=dummy_model	
$model_min_rank$	I	0		Start MPI rank for this model.	
$model_max_rank$	I	-1		End MPI rank for this model.	
$model_inc_rank$	I	1		Stride of MPI ranks.	

$2.25 \quad master_nml$

Parameter	Type	Default	Unit	Description	Scope
institute	С	, ,		Acronym of the institute for which the full institute	
				name is printed in the log file. Options are DWD,	
				MPIM, KIT, or CSCS. Otherwise the full names of	
				MPIM and DWD are printed.	
lrestart	L	.FALSE.		If .TRUE.: Current experiment is started from a	
				restart.	
read_restart_namelists	L	.TRUE.		If .TRUE.: Namelists are read from the restart file	
				to override the default namelist settings, before	
				reading new namelists from the run script.	
				Otherwise the namelists stored in the restart file	
				are ignored.	
lrestart_write_last	L	.FALSE.		If .TRUE.: model run should create restart at	
				experiment end. This is independent from the	
				settings of the restart interval.	
${f model_base_dir}$	С	, ,		General path which may be used in file names of	
				other name lists: If a file name contains the	
				keyword " <path>", then this model_base_dir will</path>	
				be substituted.	

${\bf 2.26} \quad {\bf meteogram_output_nml}$

Nearest neighbour 'interpolation' is used for all variables.

Parameter	Type	Default	Unit	Description	Scope
lmeteogram_enabled	L(n_dom)	.FALSE.		Flag. True, if meteogram of output variables is	
				desired.	
zprefix	C(n_dom)	"METEO		string with file name prefix for output file	
		GRAM "			
ldistributed	L(n dom)	.TRUE.		Flag. Separate files for each PE.	
loutput tiles	L	.FALSE.		Write tile-specific output for some selected	
				surface/soil fields	
$n0_mtgrm$	I(n dom)	0		initial time step for meteogram output.	
ninc mtgrm	I(n_dom)	1		output interval (in time steps)	

Parameter	Type	Default	Unit	Description	Scope
stationlist_tot		53.633,		list of meteogram stations (triples with lat, lon,	
		9.983,		name string)	
		'Ham-			
		burg'			
silent_flush	L(n_dom)	1		do not warn about flushing to disk if .TRUE.	
\max_time_stamps	I(n_dom)	1		number of output time steps to record in memory	
				before flushing to disk	
var_list	C(:)	" "		Positive-list of variables (optional). Only variables	
				contained in this list are included in the meteogram.	
				If the default list is not changed by user input, then	
				all available variables are added to the meteogram	

Defined and used in: src/namelists/mo_mtgrm_nml.f90

${\bf 2.27} \quad {\bf nonhydrostatic_nml~(relevant~if~run_nml:iequations{=}3)}$

Parameter	Type	Default	Unit	Description	Scope
itime_scheme	I	4		Options for predictor-corrector time-stepping scheme: 4: Contravariant vertical velocity is computed in the predictor step only, velocity tendencies are computed in the corrector step only (most efficient option) 5: Contravariant vertical velocity is computed in both substeps (beneficial for numerical stability in very-high resolution setups with extremely steep slops, otherwise no significant impact) 6: As 5, but velocity tendencies are also computed in both substeps (no apparent benefit, but more	iequations=3
rayleigh_type	I	2		expensive) Type of Rayleigh damping 1: CLASSICAL (requires velocity reference state!) 2: Klemp (2008) type	

Parameter	Type	Default	Unit	Description	Scope
rayleigh_coeff	R(n_dom)	0.05		Rayleigh damping coefficient $1/\tau_0$ (Klemp, Dudhia,	
_				Hassiotis: MWR136, pp.3987-4004); higher values	
				are recommended for R2B6 or finer resolution	
$\operatorname{damp}_{-}\operatorname{height}$	R(n_dom)	45000	m	Height at which Rayleigh damping of vertical wind	
_				starts (needs to be adjusted to model top height;	
				the damping layer should have a depth of at least 20	
				km when the model top is above the stratopause)	
htop_moist_proc	R	22500.0	m	Height above which moist physics and advection of	
				cloud and precipitation variables are turned off	
$hbot_qvsubstep$	R	22500.0	m	Height above which QV is advected with	ihadv_tracer=22, 32, 42
				substepping scheme (must be at least as large as	or 52
				htop_moist_proc)	
$\operatorname{vwind}_{\operatorname{offctr}}$	R	0.15		Off-centering in vertical wind solver. Higher values	
				may be needed for R2B5 or coarser grids when the	
				model top is above 50 km. Negative values are not	
				allowed	
$rhotheta_offctr$	R	-0.1		Off-centering of density and potential temperature	
				at interface level (may be set to 0.0 for R2B6 or	
				finer grids; positive values are not recommended)	
$veladv_offctr$	R	0.25		Off-centering of velocity advection in corrector step.	
				Negative values are not recommended	
ivctype	I	2		Type of vertical coordinate:	
				1: Gal-Chen hybrid	
	_	_		2: SLEVE (uses sleve_nml)	
$ndyn_substeps$		5		number of dynamics substeps per fast-physics /	
				transport step	
lhdiff_rcf	L	.TRUE.		.TRUE.: Compute diffusion only at advection time	
				steps (in this case, divergence damping is applied in	
				the dynamical core)	

Parameter	Type	Default	Unit	Description	Scope
lextra_diffu	L	.TRUE.		.TRUE.: Apply additional momentum diffusion at	
				grid points close to the stability limit for vertical	
				advection (becomes effective extremely rarely in	
				practice; this is mostly an emergency fix for	
				pathological cases with very large orographic	
				gravity waves)	
divdamp_fac	R	0.0025		Scaling factor for divergence damping	$lhdiff_rcf = .TRUE.$
$\operatorname{divdamp_order}$	I	4		Order of divergence damping:	$lhdiff_rcf = .TRUE.$
				2 = second-order divergence damping	
				4 = fourth-order divergence damping	
				24 = combined second-order and fourth-order	
				divergence damping and enhanced vertical wind	
				off-centering during the initial spinup phase (does	
				not allow checkpointing/restarting earlier than 2.5	
				hours of integration)	
$\operatorname{divdamp_type}$	I	3		Type of divergence damping:	$lhdiff_rcf = .TRUE.$
				2 = divergence damping acting on 2D divergence	
				3 = divergence damping acting on 3D divergence	
				32 = combination of 3D div. damping in the	
				troposphere with transition to 2D div. damping in	
				the stratosphere	
divdamp_trans_start	R	12500.		Lower bound of transition zone between 2D and 3D	$divdamp_type = 32$
				divergence damping	
divdamp_trans_end	R	17500.		Upper bound of transition zone between 2D and 3D	$divdamp_type = 32$
				divergence damping	
nest_substeps	I	2		Number of dynamics substeps for the child patches.	
				DO NOT CHANGE!!! The code will not work	
				correctly with other values	
l_masscorr_nest	L	.FALSE.		.TRUE.: Apply mass conservation correction also in	ifeedback_type=1
				nested domain	
$iadv_rhotheta$	I	2		Advection method for rho and rhotheta:	
				1: simple second-order upwind-biased scheme	
				2: 2nd order Miura horizontal	
				3: 3rd order Miura horizontal (not recommended)	

Parameter	Type	Default	Unit	Description	Scope
igradp_method	I	3		Discretization of horizontal pressure gradient:	
				1: conventional discretization with metric	
				correction term	
				2: Taylor-expansion-based reconstruction of	
				pressure (advantageous at very high resolution)	
				3: Similar discretization as option 2, but uses	
				hydrostatic approximation for downward	
				extrapolation over steep slopes	
				4: Cubic/quadratic polynomial interpolation for	
				pressure reconstruction	
				5: Same as 4, but hydrostatic approximation for	
				downward extrapolation over steep slopes	
l_zdiffu_t	L	.TRUE.		.TRUE.: Compute Smagorinsky temperature	$hdiff_order=3/5$.AND.
				diffusion truly horizontally over steep slopes	$lhdiff_temp = .true.$
thslp_zdiffu	R	0.025		Slope threshold above which truly horizontal	$hdiff_order=3/5$.AND.
				temperature diffusion is activated	lhdiff_temp=.true.
					.AND. l_zdiffu_t=.true.
thhgtd_zdiffu	R	200	m	Threshold of height difference between neighboring	$hdiff_order=3/5$.AND.
				grid points above which truly horizontal	lhdiff_temp=.true.
				temperature diffusion is activated (alternative	.AND. $l_zdiffu_t=.true$.
				criterion to thslp_zdiffu)	
exner_expol	R	1./3.		Temporal extrapolation (fraction of dt) of Exner	
				function for computation of horizontal pressure	
				gradient. This damps horizontally propagating	
				sound waves. For R2B5 or coarser grids, values	
				between $1/2$ and $2/3$ are recommended. Model will	
				be numerically unstable for negative values.	
l open ubc	L	.FALSE.		.TRUE.: Use open upper boundary condition	
				(rather than w=0) to allow vertical motions related	
				to diabatic heating to extend beyond the model top	

Defined and used in: src/namelists/mo_nonhydrostatic_nml.f90

${\bf 2.28}\quad {\bf nudging_nml}$

Parameters for the upper boundary nudging in the limited-area mode (grid_nml: l_limited_area = .TRUE.). For the lateral boundary nudging, please see interpol_nml and limarea_nml. The characteristics of the driving data for the nudging can be specified in limarea_nml.

Parameter	Type	Default	Unit	Description	Scope
nudge_type	I	0		Nudging type: 0: none 1: upper boundary nudging Please note: - nudge_type = 1 requires l_limited_area = .TRUE nudging is applied in primary domian only	$\begin{array}{c} \operatorname{run_nml:iforcing} = 3 \\ \operatorname{(NWP)} \\ \operatorname{ivctype} = 2 \; (\operatorname{SLEVE}) \end{array}$
max_nudge_coeff_vn	R	0.04	1	Max. nudging coefficient for the horizontal wind (i.e. the edge-normal wind component v_n). Given the wind update due to the nudging term on the rhs: $v_n(t) = v_n^*(t) + \text{nudge_coeff_vn}(z) * \text{ndyn_substeps} * [\overline{v_n}(t) - v_n^*(t)],$ where t and z denote time and height, respectively, $\overline{v_n}(t)$ is the target wind to nudge to, and v_n^* is the value before the nudging, the vertical profile of the nudging coefficient reads: $\text{nudge_coeff_vn}(z) = \text{max_nudge_coeff_vn} * [(z - \text{nudge_start_height})/(\text{top_height} - \text{nudge_start_height})]^2,$ for $\text{nudge_start_height} \le z \le \text{top_height}$ (see $\text{nudge_start_height}$ below), and is zero elsewhere. The range of validity is $\text{max_nudge_coeff_vn} \in [0, \sim 1/\text{ndyn_substeps}],$ where the lower boundary is mandatory.	${ m nudge_type} > 0$

Parameter	Type	Default	Unit	Description	Scope
max_nudge_coeff	R	0.075	1	Max. nudging coefficient for the thermodynamic	$nudge_type > 0$
thermdyn				variables selected by limarea_nml:	
				nudge_hydro_pres. The range of validity is	
				$\max_{\text{nudge_coeff_thermdyn}} \in [0, \sim]$	
				1/ndyn_substeps], where the lower boundary is	
				mandatory.	
nudge_start_height	R	12000	m	Nudging is applied for:	$nudge_type > 0$
				$nudge_start_height \le z \le top_height,$	
				where z denotes the nominal height of the grid	
				layer center, and top_height is the height of the	
				model top (see sleve_nml).	

Defined and used in: src/namelists/mo_nudging_nml.f90

2.29 nwp phy nml

The switches for the physics schemes and the time steps can be set for each model domain individually. If only one value is specified, it is copied to all child domains, implying that the same set of parameterizations and time steps is used in all domains. If the number of values given in the namelist is larger than 1 but less than the number of model domains, then the settings from the highest domain ID are used for the remaining model domains.

If the time steps are not an integer multiple of the advective time step (dtime), then the time step of the respective physics parameterization is automatically rounded to the next higher integer multiple of the advective time step. If the radiation time step is not an integer multiple of the cloud-cover time step it is automatically rounded to the next higher integer multiple of the cloud cover time step.

Parameter	Type	Default	Unit	Description	Scope
inwp_gscp	I (max_	1		cloud microphysics and precipitation	$run_nml:iforcing = inwp$
_	dom)			0: none	
				1: hydci (COSMO-EU microphysics, 2-cat ice:	
				cloud ice, snow)	
				2: hydci gr (COSMO-DE microphysics, 3-cat ice:	
				cloud ice, snow, graupel)	
				3: as 1, but with improved ice nucleation scheme by	
				C. Koehler	
				4: Two-moment microphysics by A. Seifert	
				9: Kessler scheme	
qi0	R	0.0	kg/kg	cloud ice threshold for autoconversion	inwp_gscp=1
qc0	R	0.0	kg/kg	cloud water threshold for autoconversion	inwp_gscp=1
mu rain	R	0.0	-, -	shape parameter in gamma distribution for rain	inwp_gscp>0
rain_n0_factor	R	1.0		tuning factor for intercept parameter of raindrop	inwp_gscp>0
				size distribution	
mu_snow	R	0.0		shape parameter in gamma distribution for snow	inwp_gscp>0
icpl_aero_gscp	I	0		0: off	currently only for
				1: simple coupling between autoconversion and	$inwp_gscp = 1$
				Tegen aerosol climatology; requires irad_aero=6	
				More advanced options are in preparation	
$inwp_convection$	I (max_	1		convection	$ run_nml:iforcing = inwp $
	dom)			0: none	
				1: Tiedtke/Bechtold convection	
lshallowconv_only	L (max_	.FALSE.		.TRUE.: use shallow convection only	$inwp_convection = 1$
	dom)				
$ldetrain_conv_prec$	L (max_	.FALSE.		.TRUE.: Activate detrainment of convective rain	$inwp_convection = 1$
	dom)			and snow	

Parameter	Type	Default	Unit	Description	Scope
icapdcycl	I	0		Type of CAPE correction to improve diurnal cycle	inwp convection $= 1$
				for convection:	
				0 = none (IFS default prior to autumn 2013)	
				1 = intermediate testing option	
				2 = correctoins over land and water now	
				operational at ECMWF	
				3 = correction over land as in 2 restricted to the	
				tropics, no correction over water (this choice	
				optimizes the NWP skill scores)	
icpl aero conv	I	0		0: off	
				1: simple coupling between autoconversion and	
				Tegen aerosol climatology; requires irad aero=6	
iprog_aero	I	0		0: off	
-				1: simple prognostic aerosol scheme, based on 2D	
				aerosol optical depth fields of Tegen climatology;	
				requires irad_aero=6	
icpl_o3_tp	I	1		0: off	$irad_o3 = 7 \text{ or } 9$
				1: simple coupling between the ozone mixing ratio	
				and the thermal tropopause, restricted to the	
				extratropics	
$inwp_cldcover$	I (max_	1		cloud cover scheme for radiation	run_nml:iforcing = inwp
	dom)			0: no clouds (only QV)	
				1: diagnostic cloud cover (by Martin Koehler)	
				2: prognostic total water variance (not yet started)	
				3: clouds from COSMO SGS cloud scheme	
				4: clouds as in turbulence (turbdiff)	
				5: grid scale clouds	
$inwp_radiation$	I (max_	1		radiation	run_nml:iforcing = inwp
	dom)			0: none	
				1: RRTM radiation	
				2: Ritter-Geleyn radiation	
				3: PSRAD radiation	

Parameter	Type	Default	Unit	Description	Scope
inwp_satad	I	1		saturation adjustment	run_nml:iforcing = inwp
				0: none	
				1: saturation adjustment at constant density	
$inwp_turb$	I (max_	1		vertical diffusion and transfer	run_nml:iforcing = inwp
	dom)			0: none	
				1: COSMO diffusion and transfer	
				2: GME turbulence scheme	
				3: EDMF-DUALM (work in progress)	
				5: Classical Smagorinsky diffusion	
$inwp_sso$	I (max_	1		subgrid scale orographic drag	run_nml:iforcing = inwp
_	dom)			0: none	
				1: Lott and Miller scheme (COSMO)	
inwp gwd	I (max_	1		non-orographic gravity wave drag	run_nml:iforcing = inwp
_	dom)			0: none	
				1: Orr-Ern-Bechtold-scheme (IFS)	
$inwp_surface$	I (max_	1		surface scheme	run_nml:iforcing = inwp
_	dom)			0: none	
				1: TERRA	
ustart_raylfric	R	160.0	m/s	wind speed at which extra Rayleigh friction starts	$ \text{inwp_gwd} > 0$
$efdt_min_raylfric$	R	10800.	s	minimum e-folding time of Rayleigh friction	$ \text{inwp_gwd} > 0$
				(effective for u > ustart_raylfric + 90 m/s)	
$latm_above_top$	L (max_	.FALSE.		.TRUE.: take into account atmosphere above model	$inwp_radiation > 0$
	dom)			top for radiation computation	
itype z0	I	2		Type of roughness length data used for turbulence	inwp turb > 0
				scheme:	
				1 = land-cover-related roughness including	
				contribution from sub-scale orography (does not	
				account for tiles)	
				2 = land-cover-related roughness based on	
				tile-specific landuse class	
				3 = land-cover-related roughness based on	
				tile-specific landuse class including contribution	
				from sub-scale orography	

Parameter	Type	Default	Unit	Description	Scope
${ m dt_conv}$	R (max_	600.	S	time interval of convection and cloud-cover call.	$run_nml:iforcing = inwp$
	dom)			If convection is switched off, dt_conv controlls the	
				time interval of cloud-cover, only.	
				currently each subdomain has the same value	
${ m dt_rad}$	R (max_	1800.	s	time interval of radiation call	run_nml:iforcing = inwp
	dom)			currently each subdomain has the same value	
$ m dt_sso$	R (max_	1200.	s	time interval of sso call	run_nml:iforcing = inwp
	dom)			currently each subdomain has the same value	
$ m dt_gwd$	R (max_	1200.	s	time interval of gwd call	run_nml:iforcing = inwp
	dom)			currently each subdomain has the same value	
lrtm_filename	C(:)	"rrtmg_		NetCDF file containing longwave absorption	
		lw.nc"		coefficients and other data for RRTMG_LW	
				k-distribution model.	
cldopt_filename	C(:)	"ECHAM		NetCDF file with RRTM Cloud Optical Properties	
		6_CldOpt		for ECHAM6.	
		Props.nc"			

Defined and used in: src/namelists/mo_nwp_phy_nml.f90

$2.30 \quad nwp_tuning_nml$

Please note: These tuning parameters are NOT domain specific.

Parameter	Type	Default	Unit	Description	Scope					
SSO (Lott and Miller)	SSO (Lott and Miller)									
tune_gkwake	R (max_	1.5		low level wake drag constant	$run_nml:iforcing = inwp$					
	dom)									
tune_gkdrag	R (max_	0.075		gravity wave drag constant	$run_nml:iforcing = inwp$					
	dom)									
tune_gfrcrit	R (max_	0.4		critical Froude number (controls depth of blocking	$run_nml:iforcing = inwp$					
	dom)			layer)						
tune_grcrit	R (max_	0.25		critical Richardson number (controls onset of wave	$run_nml:iforcing = inwp$					
	dom)			breaking)						

Parameter	Type	Default	Unit	Description	Scope
GWD (Warner McIntyre)		'		-	-
tune_gfluxlaun	R	2.50e-3		total launch momentum flux in each azimuth (rho_o x F_o)	run_nml:iforcing = inwp
Grid scale microphysics	s (one mom	ient)			
tune_zceff_min	R	0.01		Minimum value for sticking efficiency	run_nml:iforcing = inwp
tune_v0snow	R	25.0		factor in the terminal velocity for snow	run_nml:iforcing = inwp
tune_zvz0i	R	1.25	m/s	Terminal fall velocity of ice	run_nml:iforcing = inwp
tune_icesedi_exp	R	0.33		Exponent for density correction of cloud ice sedimentation	run_nml:iforcing = inwp
Convection scheme					
tune_entrorg	R	1.85e-3	1/m	Entrainment parameter valid for dx=20 km (depends on model resolution)	run_nml:iforcing = inwp
tune_rprcon	R	1.4e-3		Coefficient for conversion of cloud water into precipitation	run_nml:iforcing = inwp
tune rdepths	R	2.e4	Pa	Maximum allowed depth of shallow convection	run_nml:iforcing = inwp
tune_capdcfac_et	R	0.5		Fraction of CAPE diurnal cycle correction applied in the extratropics	icapdcycl = 3
$tune_rhebc_land$	R	0.75		RH threshold for onset of evaporation below cloud base over land	run_nml:iforcing = inwp
tune_rhebc_land_trop	R	0.75		RH threshold for onset of evaporation below cloud base over land in the tropics	run_nml:iforcing = inwp
tune_rhebc_ocean	R	0.85		RH threshold for onset of evaporation below cloud base over sea	run_nml:iforcing = inwp
tune_rhebc_ocean_trop	R	0.80		RH threshold for onset of evaporation below cloud base over sea in the tropics	run_nml:iforcing = inwp
tune_rcucov	R	0.05		Convective area fraction used for computing evaporation below cloud base	run_nml:iforcing = inwp
tune_rcucov_trop	R	0.05		Convective area fraction used for computing evaporation below cloud base in the tropics	run_nml:iforcing = inwp
tune_texc	R	0.125	K	Excess value for temperature used in test parcel ascent	run_nml:iforcing = inwp

Parameter	Type	Default	Unit	Description	Scope
tune_qexc	R	0.0125		Excess fraction of grid-scale QV used in test parcel	$run_nml:iforcing = inwp$
				ascent	
tune_box_liq	R	0.05		Box width for liquid cloud diagnostic in cloud cover	$run_nml:iforcing = inwp;$
				scheme	$inwp_cldcover = 1$
tune_box_liq_asy	R	2.5		Asymmetry factor for liquid cloud cover diagnostic	$run_nml:iforcing = inwp;$
					$inwp_cldcover = 1$
lcalib_clcov	L	.TRUE.		Apply calibration of layer-wise cloud cover	$run_nml:iforcing = inwp$
				diagnostics	
Misc					
itune_albedo	I	0		MODIS albedo tuning	$run_nml:iforcing = inwp$
				0: None	albedo_type=2
				1: dimmed sahara	
tune_minsnowfrac	R	0.2		Minimum value to which the snow cover fraction is	lnd_nml:idiag_snowfrac
				artificially reduced in case of melting show	=20/30/40
IAU					
max_freshsnow_inc	R	0.025		Maximum allowed freshsnow increment per analysis	init_mode=5
				cycle (positive or negative)	(MODE_IAU)

Defined and used in: src/namelists/mo_nwp_tuning_nml.f90

2.31 output nml (relevant if run nml/output='nml')

Please note: There may be several instances of output_nml in the namelist file, every one defining a list of variables with separate attributes for output.

Parameter	Type	Default	Unit	Description	Scope
dom	I(:)	-1		Array of domains for which this name-list is used.	
				If not specified (or specified as -1 as the first array	
				member), this name-list will be used for all	
				domains.	
				Attention: Depending on the setting of the	
				parameter l_output_phys_patch these are either	
				logical or physical domain numbers!	

Parameter	Type	Default	Unit	Description	Scope
file_interval	С	5 5		Defines the length of a file in terms of an ISO-8601 duration string. An example for this time stamp	
				format is given below. This namelist parameter can	
				be set instead of steps_per_file.	
filename format	C	see de-		Output filename format. Includes keywords path,	
_		scription.		output_filename, physdom, etc. (see below).	
				Default is	
				<pre><output_filename>_DOM<physdom>_<levtype>_</levtype></physdom></output_filename></pre>	
				<jfile></jfile>	
$filename_extn$	C	"default"		User-specified filename extension (empty string also	
				possible). If this namelist parameter is chosen as	
				"default", then we have ".nc" for NetCDF output	
filatyma	I	4		files, and ".grb" for GRIB1/2.	
filetype	1	4		One of CDI's FILETYPE_XXX constants. Possible values:	
				2=FILETYPE GRB2,	
				4=FILETYPE NC2,	
				5=FILETYPE NC4	
m levels	C	None		Model level indices (optional).	
_				Allowed is a comma- (or semicolon-) separated list	
				of integers, and of integer ranges like "1020". One	
				may also use the keyword "nlev" to denote the	
				maximum integer (or, equivalently, "n" or "N").	
				Furthermore, arithmetic expressions like	
				"(nlev - 2)" are possible.	
				Basic example:	
				m_levels = "1,3,510,20(nlev-2)"	
h_levels	R(:)	None	m	height levels	
p_levels	R(:)	None	Pa	pressure levels	
i_levels	R(:)	None	K	isentropic levels	
i_levels	R(:)	None	K	isentropic levels	

Parameter	Type	Default	Unit	Description	Scope
$ml_varlist$	C(:)	None		Name of model level fields to be output.	
hl_varlist	C(:)	None		Name of height level fields to be output.	
pl_varlist	C(:)	None		Name of pressure level fields to be output.	
il varlist	C(:)	None		Name of isentropic level fields to be output.	
include last	L	.TRUE.		Flag whether to include the last time step	
mode _	I	2		1 = forecast mode, $2 = $ climate mode	
				In climate mode the time axis of the output file is	
				set to TAXIS_ABSOLUTE. In forecast mode it is	
				set to TAXIS_RELATIVE. Till now the forecast	
				mode only works if the output is at multiples of 1	
				hour	
taxis_tunit	I	2		Time unit of the TAXIS_RELATIVE time axis.	mode=1
				$1 = TUNIT_SECOND$	
				$2 = { m TUNIT_MINUTE}$	
				$5 = TUNIT_HOUR$	
				$9 = TUNIT_DAY$	
				For a complete list of possible values see cdilib.c	
$\operatorname{output_bounds}$	R(k*3)	None		Post-processing times: start, end, increment. We	
				choose the advection time step matching or	
				following the requested output time, therefore we	
				require output_bounds(3) > dtime. Multiple	
				triples are possible in order to define multiple	
				starts/ends/intervals. See namelist parameters	
				output_start, output_end, output_interval for	
				an alternative specification of output events.	
$output_time_unit$	I	1		Units of output bounds specification.	
				1 = second	
				2 = minute	
				3 = hour	
				4 = day	
				5 = month	
				6 = year	

Parameter	Type	Default	Unit	Description	Scope
output_filename	С	None		Output filename prefix (which may include path).	
				Domain number, level type, file number and	
				extension will be added, according to the format	
				given in namelist parameter "filename_format".	
$\operatorname{output_grid}$	L	.FALSE.		Flag whether grid information is added to output.	
output_start	C(:)	5 5		ISO8601 time stamp for begin of output. An	
				example for this time stamp format is given below.	
				More than one value is possible in order to define	
				multiple start/end/interval triples. See namelist	
				parameter output_bounds for an alternative	
				specification of output events.	
$\operatorname{output}_{\operatorname{end}}$	C(:)	5 5		ISO8601 time stamp for end of output. An example	
_				for this time stamp format is given below. More	
				than one value is possible in order to define	
				multiple start/end/interval triples. See namelist	
				parameter output_bounds for an alternative	
				specification of output events.	
$output_interval$	C(:)	5 5		ISO8601 time stamp for repeating output intervals.	
				We choose the advection time step matching or	
				following the requested output time, therefore we	
				require output_bounds(3) > dtime. An example	
				for this time stamp format is given below. More	
				than one value is possible in order to define	
				multiple start/end/interval triples. See namelist	
				parameter output_bounds for an alternative	
				specification of output events.	
operation	\mid C	None		Choose "mean" for generating time averaged output	
				for the given list of variables or groups. The	
				corresponding interval is the output_interval.	
				Supported are 2D and 3D fields on model levels of	
				the atmosphere and land model. Any other value	
			1	than mean will be ignored.	

Parameter	Type	Default	Unit	Description	Scope
pe_placement_il	I(:)	-1		Advanced output option: Explicit assignment of	
				output MPI ranks to the isentropic level output file.	
				At most stream_partitions_il different ranks	
				can be specified. See namelist parameter	
				<pre>pe_placement_ml for further details.</pre>	
pe_placement_hl	I(:)	-1		Advanced output option: Explicit assignment of	
				output MPI ranks to the height level output file. At	
				most stream_partitions_hl different ranks can be	
				specified. See namelist parameter	
				<pre>pe_placement_ml for further details.</pre>	
pe_placement_ml	I(:)	-1		Advanced output option: Explicit assignment of	
				output MPI ranks to the model level output file. At	
				most stream_partitions_ml different ranks can be	
				specified, out of the following list: 0	
				(num_io_procs - 1). If this namelist parameters is	
				not provided, then the output ranks are chosen in a	
				Round-Robin fashion among those ranks that are	
				not occupied by explicitly placed output files.	
$pe_placement_pl$	I(:)	-1		Advanced output option: Explicit assignment of	
				output MPI ranks to the pressure level output file.	
				At most stream_partitions_pl different ranks	
				can be specified. See namelist parameter	
				<pre>pe_placement_ml for further details.</pre>	
ready_file	C	'default'		A ready file is a technique for handling	
				dependencies between the NWP processes. The	
				completion of the write process is signalled by	
				creating a small file with name ready_file.	
				Different output_nml's may be joined together to	
				form a single ready file event. The setting of	
				<pre>ready_file = "default" does not create a ready</pre>	
				file. The ready file name may contain string tokens	
				<pre><path>, <datetime>, <ddhhmmss>, <dddhhmmss></dddhhmmss></ddhhmmss></datetime></path></pre>	
				which are substituted as described for the namelist	
				parameter filename_format.	

Parameter	Type	Default	Unit	Description	Scope
reg_def_mode	I	0		Specify if the "delta" value prescribes an interval	remap=1
				size or the total *number* of intervals: 0: switch	
				automatically between increment and no. of grid	
				points, 1: reg_lon/lat_def(2) specifies increment,	
				2: reg_lon/lat_def(2) specifies no. of grid points.	
remap	I	0		interpolate horizontally	
				0: none	
				1: to regular lat-lon grid	
north pole	R(2)	0,90		definition of north pole for rotated lon-lat grids	
				([longitude, latitude].	
reg lat def	R(3)	None		start, increment, end latitude in degrees.	remap=1
				Alternatively, the user may set the number of grid	_
				points instead of an increment. Details for the	
				setting of regular grids is given below together with	
				an example.	
reg_lon_def	R(3)	None		The regular grid points are specified by three	remap=1
				values: start, increment, end given in degrees.	
				Alternatively, the user may set the number of grid	
				points instead of an increment. Details for the	
				setting of regular grids is given below together with	
				an example.	
$steps_per_file$	I	-1		Max number of output steps in one output file. If	
				this number is reached, a new output file will be	
				opened.	
$steps_per_file_inclfirst$	L	see descr.		Defines if first step is counted wrt.	
				steps_per_file files count. The default is	
				.FALSE. for GRIB2 output, and .TRUE. otherwise.	
stream_partitions_hl	I	1		Splits height level output of this namelist into	
				several concurrent alternating files. See namelist	
				parameter stream_partitions_ml for details.	
$stream_partitions_il$	I	1		Splits isentropic level output of this namelist into	
				several concurrent alternating files. See namelist	
				parameter stream_partitions_ml for details.	

Parameter	Type	Default	Unit	Description	Scope	
stream_partitions_ml	I	1		Splits model level output of this namelist into		
				several concurrent alternating files. The output is		
				split into N files, where the start date of part i gets		
				an offset of $(i-1)$ * output_interval. The output		
				interval is then replaced by $N * \text{output_interval}$,		
				the include_last flag is set to .FALSE., the		
				steps_per_file_inclfirst flag is set to .FALSE.,		
				and the steps_per_file counter is set to 1.		
stream partitions pl	I	1		Splits pressure level output of this namelist into		
				several concurrent alternating files. See namelist		
				parameter stream_partitions_ml for details.		
rbf_scale	R	-1.		Explicit setting of RBF shape parameter for	interpol nml:rbf scale me	ode ll=3
				interpolated lon-lat output. This namelist		_
				parameter is only active in combination with		
				interpol_nml:rbf_scale_mode_ll=3.		

Defined and used in: src/io/shared/mo_name_list_output_init.f90

Interpolation onto regular grids: Horizontal interpolation onto regular grids is possible through the namelist setting remap=1, where the mesh is defined by the parameters

- reg_lon_def: mesh latitudes in degrees,
- reg_lat_def: mesh longitudes in degrees,
- north_pole: definition of north pole for rotated lon-lat grids.

The regular grid points in reg_lon_def, reg_lat_def are each specified by three values, given in degrees: start, increment, end. The mesh then contains all grid points start + k * increment <= end, where k is an integer. Instead of defining an increment it is also possible to prescribe the number of grid points.

- Setting the namelist parameter reg_def_mode=0: Switch automatically from increment specification to no. of grid points, when the reg_lon/lat_def(2) value is larger than 5.0.
- 1: reg_lon/lat_def(2) specifies increment

• 2: reg_lon/lat_def(2) specifies no. of grid points

For longitude values the last grid point is omitted if the end point matches the start point, e.g. for 0 and 360 degrees.

Examples

```
local grid with 0.5 degree increment:  reg\_lon\_def = -30., 0.5, 30.   reg\_lat\_def = 90., -0.5, -90.   global grid with 720x361 grid points: <math display="block"> reg\_lon\_def = 0., 720, 360.   reg\_lat\_def = -90., 360, 90.
```

Time stamp format: The namelist parameters output_start, output_end, output_interval allow the specification of time stamps according to ISO 8601. The general format for time stamps is YYYY-MM-DDThh:mm:ss where Y: year, M: month, D: day for dates, and hh: hour, mm: minute, ss: second for time strings. The general format for durations is PnYnMnDTnHnMnS. See, for example, http://en.wikipedia.org/wiki/ISO_8601 for details and further specifications.

NOTE: as the mtime library underlaying the output driver currently has some restrictions concerning the specification of durations:

- 1. Any number n in PnYnMnDTnHnMnS must have two digits. For instance use "PT06H" instead of "PT6H"
- 2. In a duration string PnyearYnmonMndayDTnhrHnminMnsecS the numbers nxyz must not pass the carry over number to the next larger time unit: 0<=nmon<=12, 0<=nhr<=23, 0<=nmin<=59, 0<=nsec<=59.999. For instance use "P01D" instead of "PT24H", or "PT01M" instead of "PT60S".

Soon the formatting problem will be resolved and the valid number ranges will be enlarged. (2013-12-16).

Examples

```
date and time representation (output_start, output_end) 2013-10-27T13:41:00Z duration (output_interval) POODTO6H00M00S
```

Variable Groups

Keyword "group:": Using the "group: " keyword for the namelist parameters ml_varlist, hl_varlist, pl_varlist, sets of common variables can be added to the output:

```
group:alloutput of all variables (caution: do not combine with mixed vertical interpolation)group:atmo_ml_varsbasic atmospheric variables on model levelsgroup:atmo_pl_varssame set as atmo_ml_vars, but except pres
```

```
group:atmo_zl_vars
                                                  same set as atmo ml vars, but expect height
                                                  additional prognostic variables of the nonhydrostatic model
group:nh_prog_vars
group:atmo_derived_vars
                                                  derived atmospheric variables
group:rad_vars
group:precip_vars
group:cloud_diag
group:pbl_vars
group:phys_tendencies
group:land_vars
                                                  snow variables
group:snow_vars
group:multisnow_vars
                                                  multi-layer snow variables
group:additional_precip_vars
group:dwd_fg_atm_vars
                                                  DWD first guess fields (atmosphere)
                                                  DWD first guess fields (surface/soil)
group:dwd_fg_sfc_vars
group:ART_AERO_VOLC
                                                  ART volcanic ash fields
group: ART_AERO_RADIO
                                                  ART radioactive tracer fields
group:ART_AERO_DUST
                                                  ART mineral dust aerosol fields
                                                  ART sea salt aerosol fields
group:ART_AERO_SEAS
                                                  time mean output: temp, u, v, rho
group:prog_timemean
group:tracer_timemean
                                                  time mean output: qv, qc, qi
group:echam_timemean
                                                  time mean output: most echam surface variables
group:atmo_timemean
                                                  time mean variables from prog_timemean,tracer_timemean, echam_timemean
```

Keyword "tiles:": The "tiles:" keyword allows to add all tiles of a specific variable to the output, without the need to specify all tile fields separately. E.g. "tiles:t_g" (read: "tiles of t_g") automatically adds all t_g_t_X fields to the output. Here, X is a placeholder for the tile number. Make sure to specify the name of the aggregated variable rather than the name of the corresponding tile container (i.e. in the given example it must be t_g, and not t_g_t!).

Note:

There exists a special syntax which allows to remove variables from the output list, e.g. if these undesired variables were contained in a previously selected group.

Typing "-<varname>" (for example "-temp") removes the variable from the union set of group variables and other selected variables. Note that typos are not detected but that the corresponding variable is simply not removed!

Keyword substitution in output filename (filename_format):

substituted by model_base_dir path substituted by output_filename output_filename substituted by physical patch ID physdom substituted by level type "ML", "PL", "HL", "IL" levtype like levtype, but in lower case levtype_l substituted by output file counter jfile substituted by ISO-8601 date-time stamp in format YYYY-MM-DDThh:mm:ss.sssZ datetime substituted by ISO-8601 date-time stamp in format YYYYMMDDThhmmssZ datetime2 substituted by ISO-8601 date-time stamp in format YYYYMMDDThhmmss.sssZ datetime3 substituted by relative day-hour-minute-second string ddhhmmss substituted by relative three-digit day-hour-minute-second string dddhhmmss substituted by relative hour-minute-second string hhhmmss If namelist is split into concurrent files: number of stream partitions. npartitions If namelist is split into concurrent files: stream partition index of this file. ifile_partition total_index If namelist is split into concurrent files: substituted by the file counter (like in jfile), which an "unsplit" namelist would have produced

$2.32 \quad parallel_nml$

Parameter	Type	Default	Unit	Description	Scope
nproma	I	1		chunk length	
n_ghost_rows	I	1		number of halo cell rows	
division_method	I	1		method of domain decomposition	
				0: read in from file	
				1: use built-in geometric subdivision	
division_file_name	C			Name of division file	$division_method = 0$
ldiv_phys_dom	L	.TRUE.		.TRUE.: split into physical domains before	$division_method = 1$
				computing domain decomposition (in case of	
				merged domains)	
				(This reduces load imbalance; turning off this	
				option is not recommended except for very small	
				processor numbers)	
p_test_run	L	.FALSE.		.TRUE. means verification run for MPI	
				parallelization (PE 0 processes full domain)	
l_test_openmp	L	.FALSE.		if .TRUE. is combined with p_test_run=.TRUE.	$p_{test_run} = .TRUE.$
				and OpenMP parallelization, the test PE gets only	
				1 thread in order to verify the OpenMP	
				parallelization	
l_log_checks	L	.FALSE.		if .TRUE. messages are generated during each	
	_			synchonization step (use for debugging only)	
l_fast_sum	L	.FALSE.		if .TRUE., use fast (not	
	_			processor-configuration-invariant) global summation	
use_dycore_barrier	L	.FALSE.		if .TRUE., set an MPI barrier at the beginning of	
				the nonhydrostatic solver (do not use for	
	_			production runs!)	
itype_exch_barrier	I	0		1: set an MPI barrier at the beginning of each MPI	
				exchange call	
				2: set an MPI barrier after each MPI WAIT call	
				3: 1+2 (do not use for production runs!)	

Parameter	Type	Default	Unit	Description	Scope
iorder_sendrecv	I	1		Sequence of send/receive calls:	
				1 = irecv/send	
				$2=\mathrm{isend/recv}$	
				3 = isend/irecv	
$default_comm$ -	I	1		Default implementation of mo_communication to	
_pattern_type				be used:	
				1 = original	
				2 = YAXT	
$itype_comm$	I	1		1: use local memory for exchange buffers	
				3: asynchronous halo communication for dynamical	
				core (currently deactivated)	
$\operatorname{num_io_procs}$	I	0		Number of I/O processors (running exclusively for	
				$\operatorname{doing} I/O)$	
num restart procs	I	0		Number of restart processors (running exclusively	
				for doing restart)	
${f num_prefetch_proc}$	I	1		Number of processors for prefetching of boundary	itype_latbc ≥ 1
				data asynchronously for a limited area run (running	
				exclusively for reading Input boundary data.	
				Maximum no of processors used for it is limited to	
				1).	
pio_type	I	1		Type of parallel I/O. Only used if number of I/O	
				processors greater than number of domains.	
				Experimental!	
use_icon_comm	L	.FALSE.		Enable the use of MPI bulk communication through	
				the icon_comm_lib	
$icon_comm_debug$	L	.FALSE.		Enable debug mode for the icon_comm_lib	
\max_send_recv-	I	131072		Size of the send/receive buffers for the	
_buffer_size				icon_comm_lib.	
use_dp_mpi2io	L	.FALSE.		Enable this flag if output fields shall be gathered by	
				the output processes in DOUBLE PRECISION.	

Parameter	Type	Default	Unit	Description	Scope
restart_chunk_size	I	1		(Advanced namelist parameter:) Number of levels	
				to be buffered by the asynchronous restart process.	
				The (asynchronous) restart is capable of writing	
				and communicating more than one 2D slice at once.	

Defined and used in: src/namelists/mo_parallel_nml.f90

$2.33 \quad psrad_nml$

Parameter	Type	Default	Unit	Description	Scope
lradforcing	L(2)	.FALSE.		switch for diagnostics of aerosol forcing in the solar	
				spectral range (lradforcing(1)) and the thermal	
				spectral range (lradforcing (2)).	
lw_gpts_ts	I	1		number of g-points in Monte-Carlo spectral	
				integration for thermal radiation, see	
				lw_spec_samp	
lw_spec_samp	I	1		sampling of spectral bands in radiation calculation	
				for thermal radiation	
				lw_spec_samp = 1: standard broad band sampling	
				$lw_spec_samp = 2$: Monte-Carlo spec- tral	
				integration (MSCI); lw_gpts_ts randomly chosen	
				g-points per column and radiation call	
				lw_spec_samp = 3: choose g-points not	
				completely randomly in order to reduce errors in	
				the surface radiative fluxes	
rad_perm	I	0		integer number that influences the perturbation of	
				the random seed from column to column	
sw_gpts_ts	I	1		number of g-points in Monte-Carlo spectral	
				integration for solar radiation, see sw_spec_samp	

Parameter	Type	Default	Unit	Description	Scope
sw_spec_samp	I	1	Cint	sampling of spectral bands in radiation calculation for solar radiation sw_spec_samp = 1: standard broad band sampling sw_spec_samp = 2: Monte-Carlo spectral integration (MSCI); lw_gpts_ts randomly chosen g-points per column and radiation call sw_spec_samp = 3: choose g-points not completely randomly in order to reduce errors in	Бсоре
				the surface radiative fluxes	

Defined and used in: src/echam_phy_psrad/mo_psrad_radiation.f90

2.34 radiation_nml

Parameter	Type	Default	Unit	Description	Scope
ldiur	L	.TRUE.		switch for solar irradiation:	
				.TRUE.:diurnal cycle,	
				.FALSE.:zonally averaged irradiation	
nmonth	I	0		0: Earth circles on orbit	
				1-12: Earth orbit position fixed for specified month	
lyr_perp	$\mid L \mid$.FALSE.		.FALSE.: transient Earth orbit following VSOP87	
				.TRUE.: Earth orbit of year yr_perp of the	
				VSOP87 orbit is perpertuated	
yr_perp	\mid L	-99999		year used for lyr_perp = .TRUE.	

Parameter	Type	Default	Unit	Description	Scope
isolrad	I	0	T	Insolation scheme	
				0: Use original SRTM insolation.	
				1: Use insolation from external file containing the	
				spectrally resolved insolation (monthly means)	
				2: Use preindustrial insolation as in CMIP5	
				(average from 1844–1856)	
				3: Use insolation for AMIP-type CMIP5 simulation	
				(average from 1979–1988)	
				4: Use insolation for RCE-type simulation with	
				$\cos(\text{zenith angle}) = \text{pi}/4 \text{ (with PSRAD: use "4" if}$	
				the diurnal cycle is switched on)	
				5: Use insolation for RCE-type simulation with	
				PSRAD if the diurnal cycle is switched off.	
izenith	I	4		Choice of zenith angle formula for the radiative	
				transfer computation.	
				0: Sun in zenith everywhere	
				1: Zenith angle depends only on latitude	
				2: Zenith angle depends only on latitude. Local	
				time of day fixed at 07:14:15 for radiative transfer	
				computation ($\sin(ext{time of day}) = 1/ ext{pi}$	
				3: Zenith angle changing with latitude and time of	
				day	
				4: Zenith angle and irradiance changing with	
				season, latitude, and time of day (iforcing=inwp	
				only)	
islope_rad	I	0		Slope correction for surface radiation:	
				0: None	
				1: Slope correction for direct solar radiation	
				without shading effects	
${ m albedo_type}$	I	1		Type of surface albedo	iforcing=inwp
				1: based on soil type specific tabulated values (dry	
				soil)	
				2: MODIS albedo	

Parameter	Type	Default	Unit	Description	Scope
direct_albedo	I	4		Direct beam surface albedo. Options mainly differ in terms of their solar zenith angle (SZA) dependency) 1: SZA dependency following Ritter-Geleyn; applied to unconditionally all grid points 2: SZA dependency following Zaengl (pers. comm.). Same as 1 for water, but for 'rough surfaces' over land the direct albedo is not allowed to exceed the corresponding broadband diffuse albedo. 3: SZA dependency following Yang (2008) for snow-free land points. Same as 1 for water/ice and 2 for snow. 4: SZA dependency following Briegleb (1992) for snow-free land points. Same as 1 for water/ice and 2 for snow.	iforcing=inwp albedo_type=2
icld_overlap	I	2		Method for cloud overlap calculation in shortwave part of RRTM 1: maximum-random overlap 2: generalized overlap (Hogan, Illingworth, 2000) 3: maximum overlap 4: random overlap	iforcing=inwp inwp_radiation=1

Parameter	Type	Default	Unit	Description	Scope
irad_h2o	I	1		Switches for the concentration of radiative agents	
$irad_co2$		2		$irad_xyz = 0$: set to zero	
$irad_ch4$		3		irad_h2o = 1: vapor, cloud water and cloud ice	
irad_n2o		3		from tracer variables	
$irad_o3$		0		$irad_co2 = 1: CO_2$ from tracer variable	
$irad_o2$		2		$irad_{co2}/ch4/n2o/o2/cfc11/cfc12 = 2:$	
irad_cfc11		2		concentration given by	
$irad_cfc12$		2		$\rm vmr_co2/ch4/n2o/o2/cfc11/cfc12$	
				$irad_ch4/n2o = 3$: tanh-profile with surface	
				concentration given by vmr ch4/n2o	
				$irad_{co2}/cfc11/cfc12 = 4$: time dependent	
				concentration from greenhouse gas file	
				$irad_ch4/n2o = 4$: time dependent tanh-profile	
				with surface concentration from greenhouse gas file	
				irad_o3 = 2: ozone climatology from MPI	
				$irad_o3 = 4$: ozone clim for Aqua Planet Exp	
				$irad_o3 = 6$: ozone climatology with T5	
				geographical distribution and Fourier series for	
				seasonal cycle for $run_nml/iforcing = 3$ (NWP)	
				irad_o3 = 7: GEMS ozone climatology (from IFS)	
				$for run_nml/iforcing = 3 (NWP)$	
				$irad_o3 = 8$: ozone climatology for AMIP	
				irad_o3 = 9: MACC ozone climatology (from IFS)	
				for run_nml/iforcing = 3 (NWP)	
				$irad_o3 = 79$: Blending between GEMS and	
				MACC ozone climatologies (from IFS) for	
				run_nml/iforcing = 3 (NWP); MACC is used over	
				Antarctica	
				irad_o3 = 97: As 79, but MACC is also used above	
				1 hPa with transition zone between 5 hPa and 1	
				hPa	
				irad_o3 = 10: Linearized ozone chemistry (ART	
				extension necessary) for run_nml/iforcing = 3	
				(NWP)	

Parameter	Type	Default	Unit	Description	Scope
vmr_co2	R	348.0e-6		Volume mixing ratio of the radiative agents	
vmr_ch4		1650.0e-9			
vmr_n2o		306.0e-9			
vmr_o2		0.20946			
vmr_cfc11		214.5e-12			
vmr_cfc12		371.1e-12			
fh2o	R	1.		Scaling factors for concentrations used in radiation	run_nml/iforcing=2
fco2		1.			(ECHAM)
fch4		1.			
fn2o		1.			
fo3		1.			
fo2		1.			
fcfc		1.			
irad_aero	I	2		Aerosols	
				1: prognostic variable	
				2: global constant	
				3: externally specified	
				5: Tanre aerosol climatology for run_nml/iforcing	
				=3 (NWP)	
				6: Tegen aerosol climatology for run_nml/iforcing	
				= 3 (NWP) . AND. itopo = 1	
				9: ART online aerosol radiation interaction, uses	
				Tegen for aerosols not chosen to be represented in	
				ART for run_nml/iforcing = 3 (NWP) .AND.	
				itopo =1 .AND. lart=TRUE .AND. iart_ari=1	
lrad_aero_diag	L	.FALSE.		writes actual aerosol optical properties to output	
ighg	I	0		Select dynamic greenhouse gases scenario (read	$run_nml/iforcing=2$
				from file)	(ECHAM)
				0 : select default gas volume mixing ratios - 1990	
				values (CMIP5)	
				1: transient CMIP5 scenario from file	

$2.35 \quad run_nml$

Parameter	Type	Default	Unit	Description	Scope
nsteps	I	-999		Number of time steps of this run. Allowed range is	
				≥ 0 ; setting a value of 0 allows writing initial	
				output (including internal remapping) without	
				calculating time steps.	
dtime	R	600.0	S	time step.	
				For real case runs the maximum allowable time step	
				can be estimated as	
				$1.8 \cdot \text{ndyn}_\text{substeps} \cdot \overline{\Delta x} \text{s km}^{-1},$	
				where $\overline{\Delta x}$ is the average resolution in km and	
				ndyn_substeps is the number of dynamics substeps	
				set in nonhydrostatic_nml. ndyn_substeps should	
				not be increased beyond the default value 5.	
ltestcase	L	.TRUE.		Idealized testcase runs	
ldynamics	L	.TRUE.		Compute adiabatic dynamic tendencies	
iforcing	I	0		Forcing of dynamics and transport by	
				parameterized processes. Use positive indices for	
				the atmosphere and negative indices for the ocean.	
				0: no forcing	
				1: Held-Suarez forcing	
				2: ECHAM forcing	
				3: NWP forcing	
				4: local diabatic forcing without physics	
				5: local diabatic forcing with physics	
				-1: MPIOM forcing (to be done)	
ltransport	L	.FALSE.		Compute large-scale tracer transport	
ntracer	I	0		Number of advected tracers handled by the	
				large-scale transport scheme	
$lvert_nest$	L	.FALSE.		If set to .true. vertical nesting is switched on (i.e.	
				variable number of vertical levels)	

Parameter	Type	Default	Unit	Description	Scope
num_lev	I(max_dom)	31		Number of full levels (atm.) for each domain	lvert_nest=.TRUE.
nshift	I(max_dom)	0		vertical half level of parent domain which coincides with upper boundary of the current domain required for vertical refinement, which is not yet implemented	lvert_nest=.TRUE.
ltimer	L	.TRUE.		TRUE: Timer for monitoring the runtime of specific routines is on (FALSE = off)	
timers level	I	1		, ,	
activate_sync_timers	L	F		TRUE: Timer for monitoring runtime of communication routines (FALSE = off)	
msg_level	I	10		controls how much printout is written during runtime. For values less than 5, only the time step is written.	
$msg_timestamp$	L	.FALSE.		If .TRUE., precede output messages by time stamp.	
test_mode	I	0		Setting a value larger than 0 activates a dummy mode in which time stepping is changed into just doing iterations, and MPI communication is replaced by copying some value from the send buffer into the receive buffer (does not work with nesting and reduced radiation grid because the send buffer may then be empty on some PEs)	iequations = 3
${\tt debug_check_level}$	I	0		Setting a value larger than 0 activates debug checks.	

Parameter	Type	Default	Unit	Description	Scope
output	C(:)	"nml", "totint"		Main switch for enabling/disabling components of the model output. One or more choices can be set (as an array of string constants). Possible choices are:	
				• "none": switch off all output;	
				• "nml": new output mode (cf. output_nml);	
				• "totint": computation of total integrals.	
				• "maxwinds": write max. winds to separate ASCII file "maxwinds.log".	
				If the output namelist parameter is not set explicitly, the default setting "nml","totint" is assumed.	
restart_filename	С			File name for restart/checkpoint files (containing keyword substitution patterns <gridfile>, <idom>, <rsttime>, <mtype>). default: "<gridfile>_restart_<mtype>_<rsttime>.nc".</rsttime></mtype></gridfile></mtype></rsttime></idom></gridfile>	
profiling_output	I	1		controls how profiling printout is written: TIMER_MODE_AGGREGATED=1, TIMER_MODE_DETAILED=2, TIMER_MODE_WRITE_FILES=3.	
lart	L	.FALSE.		Main switch which enables the treatment of atmospheric aerosol and trace gases (The ART package of KIT is needed for this purpose)	
ldass_lhn	L	.FALSE.		Main switch which enables the assimilation of radar derived precipitation rate via Latent Heat Nudging	
check_uuid_gracefully	L	.FALSE.		If this flag is set to .TRUE. we give only warnings for non-matching UUIDs.	

Defined and used in: src/namelists/mo_run_nml.f90

2.36 sleve_nml (relevant if nonhydrostatic_nml:ivctype=2)

Parameter	Type	Default	Unit	Description	Scope
min_lay_thckn	R	50	m	Layer thickness of lowermost layer; specifying zero	
				or a negative value leads to constant layer	
				thicknesses determined by top_height and nlev	
max_lay_thckn	R	25000	m	Maximum layer thickness below the height given by	
				htop_thcknlimit (NWP recommendation: 400 m)	
				Use with caution! Too ambitious settings may result	
				in numerically unstable layer configurations.	
htop_thcknlimit	R	15000	m	Height below which the layer thickness does not	
				exceed max_lay_thckn	
itype_laydistr	I	1		Type of analytical function used to specify the	
				distribution of the vertical coordinate surfaces	
				1: transformed cosine, 2: third-order polynomial	
top_height	R	23500.0	m	Height of model top	
stretch_fac	R	1.0		Stretching factor to vary distribution of model	
				levels; values <1 increase the layer thickness near	
				the model top	
decay_scale_1	R	4000	m	Decay scale of large-scale topography component	
decay_scale_2	R	2500	m	Decay scale of small-scale topography component	
decay_exp	R	1.2		Exponent of decay function	
flat_height	R	16000	m	Height above which the coordinate surfaces are flat	
lread_smt	L	.FALSE.		read smoothed topography from file (TRUE) or	
				compute internally (FALSE)	

Defined and used in: src/namelists/mo_sleve_nml.f90

2.37 synsat nml^1

This namelist enables the RTTOV library incorporated into ICON for simulating satellite radiance and brightness temperatures. RTTOV is a radiative transfer model for nadir-viewing passive visible, infrared and microwave satellite radiometers, spectrometers and interferometers, see

¹Important note: This feature is currently active for configuration dwd+cray only.

https://nwpsaf.eu/deliverables/rtm

for detailed information.

Parameter	Type	Default	Unit	Description	Scope
lsynsat	L	.FALSE.		Main switch: Enables/disables computation of	
	(max_dom)		synthetic satellite imagery for each model domain.	
nlev_rttov	I	51		Number of RTTOV levels.	

Enabling the synsat module makes the following 32 two-dimensional output fields available:

SYNMSG_RAD_CL_IR3.9	SYNMSG_BT_CL_IR3.9	SYNMSG_RAD_CL_WV6.2	SYNMSG_BT_CL_WV6.2
SYNMSG_RAD_CL_WV7.3	SYNMSG_BT_CL_WV7.3	SYNMSG_RAD_CL_IR8.7	SYNMSG_BT_CL_IR8.7
SYNMSG_RAD_CL_IR9.7	SYNMSG_BT_CL_IR9.7	SYNMSG_RAD_CL_IR10.8	SYNMSG_BT_CL_IR10.8
SYNMSG_RAD_CL_IR12.1	SYNMSG_BT_CL_IR12.1	SYNMSG_RAD_CL_IR13.4	SYNMSG_BT_CL_IR13.4
SYNMSG_RAD_CS_IR3.9	SYNMSG_BT_CS_IR3.9	SYNMSG_RAD_CS_WV6.2	SYNMSG_BT_CS_WV6.2
SYNMSG_RAD_CS_WV7.3	SYNMSG_BT_CS_WV7.3	SYNMSG_RAD_CS_IR8.7	SYNMSG_BT_CS_IR8.7
SYNMSG_RAD_CS_IR9.7	SYNMSG_BT_CS_IR9.7	SYNMSG_RAD_CS_IR10.8	SYNMSG_BT_CS_IR10.8
SYNMSG_RAD_CS_IR12.1	SYNMSG_BT_CS_IR12.1	SYNMSG_RAD_CS_IR13.4	SYNMSG_BT_CS_IR13.4

Here, RAD denotes radiance, BT brightness temperature, CL cloudy, and CS clear sky, supplemented by the channel name. Defined and used in: src/namelists/mo_synsat_nml.f90

$2.38 \quad time_nml$

Parameter	Type	Default	Unit	Description	Scope
calendar	I	1		Calendar type:	
				0=Julian/Gregorian	
				1=proleptic Gregorian	
				$2{=}30 \mathrm{day/month},360 \mathrm{day/year}$	

Parameter	Type	Default	Unit	Description	Scope
dt_restart	R	86400.*30.	s	Length of restart cycle in seconds. This namelist	
				parameter specifies how long the model runs until it	
				saves its state to a file and stops. Later, the model	
				run can be resumed, s. t. a simulation over a long	
				period of time can be split into a chain of restarted	
				model runs.	
				Note that the frequency of writing restart files is	
				controlled by io_nml:dt_checkpoint. Only if the	
				value of dt_checkpoint resulting from model	
				default or user's specification is longer than	
				dt_restart, it will be reset (by the model) to	
				dt_restart so that at least one restart file is	
				generated during the restart cycle. If dt_restart is	
				larger than but not a multiple of dt_checkpoint,	
				restart file will <i>not</i> be generated at the end of the	
				restart cycle.	
ini datetime string	C	,2008-		Initial date and time of the simulation	
		09-01T			
		00:00:00Z			
end datetime string	C	'2008-		End date and time of the simulation	
ena_aaccomic_scring		09-01T			
		01:40:00Z			
is relative time	L	.FALSE.		.TRUE., if time loop shall start with step 0	
				regardless whether we are in a standard run or in a	
				restarted run (which means re-initialized run).	
				1000001000 1011 (William House 10 Illiam 200 1011).	

Length of the run If "nsteps" in run_nml is positive, then nsteps*dtime is used to compute the end date and time of the run. Else the initial date and time, the end date and time, dt_restart, as well as the time step are used to compute "nsteps".

${\bf 2.39 \quad transport_nml \; (used \; if \; run_nml/ltransport=.TRUE.)}$

Parameter	Type	Default	Unit	Description	Scope
lvadv tracer	L	.TRUE.		TRUE: compute vertical tracer advection	
_				FALSE: do not compute vertical tracer advection	
ihadv tracer	I(ntracer)	2		Tracer specific method to compute horizontal	
_				advection:	
				0: no horiz. transport (note that the specific tracer	
				quantity q is kept constant and not tracer mass ρq)	
				1: upwind (1st order)	
				2: Miura (2nd order, linear reconstr.)	
				3: Miura3 (quadr. or cubic reconstr.)	$lsq_high_ord \in [2,3]$
				4: FFSL (quadr. or cubic reconstr.)	$lsq_high_ord \in [2,3]$
				5: hybrid Miura3/FFSL (quadr. or cubic reconstr.)	$lsq_high_ord \in [2,3]$
				20: miura (2nd order, lin. reconstr.) with	
				subcycling	
				22: combination of miura and miura with	
				subcycling	
				32: combination of miura and miura with	
				subcycling	
				42: combination of FFSL and miura with	
				subcycling	
				52: combination of hybrid FFSL/Miura3 with	
				subcycling	
				Subcycling means that the integration from time	
				step n to n+1 is splitted into substeps to meet the	
				stability requirements. For NWP runs, substepping	
				is generally applied above $z = 22 \mathrm{km}$ (see	
				nonhydrostatic_nml/hbot_qvsubstep).	
$ivadv_tracer$	I(ntracer)	3		Tracer specific method to compute vertical	$lvadv_tracer=TRUE$
				advection:	

Parameter	Type	Default	Unit	Description	Scope
				0: no vert. transport (note that tracer mass ρq	
				instead of the specific tracer quantity q is kept	
				constant. This differs from the behaviour in	
				horizontal direction!)	
				1: upwind (1st order)	
				3: ppm_cfl (3^{rd} order, handles CFL > 1)	
				30: ppm (3rd order, CFL<=1)	
iadv_tke	I	0		Type of TKE advection	inwp_turb=1
				0: no TKE advection	
				1: vertical advection only	
				2: vertical and horizontal advection	
lstrang	L	.FALSE.		Time splitting method	
-				TRUE: second order Strang splitting	
				FALSE: first order Godunov splitting	
tracer names	C(:)	'Int2Str(i)'		Tracer-specific name suffixes. When running	iforcing≠ inwp, iecham'
_				idealized cases or the hydrostatic ICON, this	
				variable is used to specify tracer names. If nothing	
				is specified, the tracer name is given as	
				PREFIX+Int2String(i), where i is the tracer	
				index. Note that this namelist variable has no effect	
				for nonhydrostatic real-case runs, if the NWP- or	
				ECHAM physics packages are switched on.	
npassive tracer	I	0		number of additional passive tracers which have no	
- –				sources and are transparent to any physical process	
				(no effect).	
				Passive tracers are named Qpassive ID, where ID	
				is a number between ntracer and	
				ntracer+npassive_tracer.	
				NOTE: By default, limiters are switched of for	
				passive tracers and the scheme 52 is selected for	
				horizontal advection.	
init formula	C	, ,		Comma-separated list of initialization formulas for	npassive tracer > 0
_				additional passive tracers.	
itype hlimit	I(ntracer)	4		Type of limiter for horizontal transport:	

Parameter	Type	Default	Unit	Description	Scope
				0: no limiter	
				3: monotonous flux limiter	
				4: positive definite flux limiter	
$itype_vlimit$	I(ntracer)	1		Type of limiter for vertical transport:	
_				0: no limiter	
				1: semi-monotone slope limiter	
				2: monotonous slope limiter	
				4: positive definite flux limiter	
beta_fct	R	1.005		factor of allowed over-/undershooting in	$itype_hlimit = 3$
				monotonous limiter	
iord_backtraj	I	1		order of backward trajectory calculation:	
				1: first order	
				2: second order (iterative; currently 1 iteration	ihadv_tracer='miura'
				hardcoded; experimental!)	
igrad_c_miura	I	1		Method for gradient reconstruction at cell center	
				for 2nd order miura scheme	
				1: Least-squares (linear, non-consv)	ihadv_tracer=2
				2: Green-Gauss	
ivcfl_max	I	5		determines stability range of vertical PPM-scheme	ivadv_tracer=3
				in terms of the maximum allowable CFL-number	
llsq_svd	L	.TRUE.		use QR decomposition (FALSE) or SV	
				decomposition (TRUE) for least squares design	
				matrix A	
lclip_tracer	L	.FALSE.		Clipping of negative values	

Defined and used in: src/namelists/mo_advection_nml.f90

${\bf 2.40 \quad turbdiff_nml}$

	Parameter	Type	Default	Unit	Description	Scope
	imode_turb	I	1		Mode of solving the TKE equation for atmosph.	
					layers:	
					0: diagnostic equation	
					1: prognostic equation (current version)	
					2: prognostic equation (intrinsically positive	
					definite)	
	$imode_tran$	I	0		Same as $imode_turb$ but only for the transfer layer	
	$icldm_turb$	I	2		Mode of water cloud representation in turbulence	
					for atmosph. layers:	
					-1: ignoring cloud water completely (pure dry	
					scheme)	
					0: no clouds considered (all cloud water is	
					evaporated)	
					1: only grid scale condensation possible	
					2: also sub grid (turbulent) condensation considered	
	$icldm_tran$	I	2		Same as $icldm_turb$ but only for the transfer layer	
	q _crit	R	1.6		critical value for normalized super-saturation	
	$itype_wcld$	I	2		type of water cloud diagnosis within the turbulence	$icldm_turb=2 or$
					scheme:	$icldm_tran=2$
					1: employing a scheme based on relative humitidy	
					2: employing a statistical saturation adjustment	
	itype_sher	I	0		Type of shear forcing used in turbulence:	
					0: only vertical shear of horizontal wind	
					1: previous plus horizontal shear correction	
					2: previous plus shear from vertical velocity	
					3: same as option 1, but (when combined with	
					ltkeshs=.TRUE.) scaling of coarse-grid horizontal	
					shear production term with $\frac{1}{\sqrt{Ri}}$	
	ltkeshs	L	.FALSE.		Include correction term for coarse grids in	itype_sher ≥ 1
					horizontal shear production term (needed at	
					non-convection-resolving model resolutions in order	
					to get a non-negligible impact)	
	ltkesso	L	.TRUE.		Consider TKE-production by sub grid SSO wakes	$inwp_sso = 1$
•		:				·

Parameter	Type	Default	Unit	Description	Scope
imode_tkesso	I	1		mode of calculat. the SSO source term for TKE	
				production:	
				1: original implementation	
				2: Ri-dependent reduction factor for Ri>1	
ltkecon	L	.FALSE.		Consider TKE-production by sub grid convective	$ \text{inwp_conv} = 1$
				plumes (inactive)	
ltkeshs	L	.FALSE.		Consider TKE-production by separated horizontal	
				shear eddies (inactive)	
ltmpcor	L	.FALSE.		Consider thermal TKE sources in enthalpy equation	
lsflcnd	L	.TRUE.		Use lower flux condition for vertical diffusion	
				calculation (TRUE) instead of a lower	
				concentration condition (FALSE)	
lexpcor	L	.FALSE.		Explicit corrections of implicitly calculated vertical	
				diffusion of non-conservative scalars that are	
				involved in sub grid condensation processes	
tur_len	R	500.0	m	Asymptotic maximal turbulent distance	
_				$(\kappa * tur \ len \ is the integral turbulent master length$	
				scale)	
pat len	R	100.0	m	Effective length scale of thermal surface patterns	
				controlling TKE-production by sub grid	
				kata/ana-batic circulations. In case of $pat_len = 0$,	
				this production is switched off.	
c_{diff}	R	0.2	1	Length scale factor for vertical diffusion of TKE. In	
				case of $c_diff = 0$, TKE is not diffused vertically.	
a_stab	R	0.0	1	Factor for stability correction of turbulent length	
				scale. In case of $a_stab = 0$, the turbulent length	
				scale is not reduced for stable stratification.	
a_hshr	R	0.20	1	Length scale factor for the separated horizontal	ltkeshs=.TRUE.
				shear mode. In case of $a_hshr = 0$, this shear	
				mode has no effect.	
alpha0	R	0.0123	1	Lower bound of velocity-dependent Charnock	
				parameter	

Parameter	Type	Default	Unit	Description	Scope
alpha0_max	R	0.0335	1	Upper bound of velocity-dependent Charnock	
				parameter. Setting this parameter to 0.0335 or	
				higher values implies unconstrained velocity	
				dependence	
alpha1	R	0.75	1	Scaling parameter for molecular roughness of ocean	
				waves	
tkhmin	R	0.75	m^2/s	Scaling factor for minimum vertical diffusion	
				coefficient (proportional to $Ri^{-2/3}$) for heat and	
				moisture	
tkmmin	R	0.75	$\rm m^2/s$	Scaling factor for minimum vertical diffusion	
				coefficient (proportional to $Ri^{-2/3}$) for momentum	
$tkmmin_strat$	R	4	$\rm m^2/s$	Scaling factor for stratospheric minimum vertical	
				diffusion coefficient (proportional to $Ri^{-1/3}$) for	
				momentum, valid above 17.5 km (tropics above 22.5	
				km)	
$tkhmin_strat$	R	0.75	m^2/s	Scaling factor for stratospheric minimum vertical	
				diffusion coefficient (proportional to $Ri^{-1/3}$) for	
				heat and moisture, valid above 17.5 km (tropics	
				above 22.5 km)	
$itype_synd$	I	2		Type of diagnostics of synoptic near surface	
				variables:	
				1: Considering the mean surface roughness of a grid	
				box	
				2: Considering a fictive surface roughness of a	
				SYNOP lawn	
rlam_heat	R	1.0	1	Scaling factor of the laminar boundary layer for	
				heat (scalars). The larger rlam_heat, the larger is	
				the laminar resistance.	
rat_sea	R	10.0	1	Ratio of laminar scaling factors for scalars over sea	
				and land. The larger rat_sea, the larger is the	
				laminar resistance for a sea surface compared to a	
				land surface.	
tkesmot	R	0.15	1	Time smoothing factor within [0, 1] for TKE. In	
				case of $tkesmot = 0$, no smoothing is active.	

Parameter	Type	Default	Unit	Description	Scope
fresmot	R	0.0	1	Vertical smoothing factor within [0, 1] for TKE	
				forcing terms. In case of $frcmot = 0$, no smoothing	
				is active.	
$imode_frcsmot$	I	1		1 = apply vertical smoothing (if frcsmot > 0)	
				uniformly over the globe	
				2 = restrict vertical smoothing to the tropics	
				(reduces the moist bias in the tropics while avoiding	
				adverse effects on NWP skill scores in the	
				extratropics)	
impl_s	R	1.20	1	Implicit weight near the surface (maximal value)	
impl_t	R	0.75	1	Implicit weight near top of the atmosphere	
				(minimal value)	
lconst_z0	$\mid L$.FALSE.		TRUE: horizontally homogeneous roughness length	
_				z0	
$const_z0$	R	0.001	m	value for horizontally homogeneous roughness	lconst_z0=.TRUE.
1.1.00	_			length z0	
ldiff_qi	L	.FALSE.		Turbulent diffusion of cloud ice, if .TRUE.	_
itype_tran	I	2		type of surface-atmosphere transfer	
lprfcor	L	.FALSE.		using the profile values of the lowest main level	
				instead of the mean value of the lowest layer for	
1 1		EALGE		surface flux calculations	
lnonloc	$\mid L \mid$.FALSE.		nonlocal calculation of vertical gradients used for	
10 1	т	DALCE		turbul. diff.	
lfreeslip	L	.FALSE.		.TRUE.: use a free-slip lower boundary condition,	
				i.e. neither momentum nor heat/moisture fluxes	
1 0	т	DALCE		(use for idealized runs only!)	
lcpfluc	L	.FALSE.		consideration of fluctuations of the heat capacity of	
				air	

Defined and used in: src/namelists/mo_turbdiff_nml.f90

3 Ocean-specific namelist parameters

$3.1 \quad ocean_physics_nml$

Parameter	Type	Default	Unit	Description	Scope
i_sea_ice	I	1		0: No sea ice, 1: Include sea ice	
				.FALSE.: compute drag only	
richardson factor tracer	I	0.5e-5	m/s		
richardson factor veloc	I	0.5e-5	m/s		
l_constant_mixing	L	.FALSE.	,		

$3.2 \quad sea_ice_nml \; (relevant \; if \; run_nml/iforcing = 2 \; (ECHAM))$

Parameter	Type	Default	Unit	Description	Scope
i_ice_therm	I	2		Switch for thermodynamic model:	In an ocean run
				1: Zero-layer model	$i_{sea_ice must be} >= 1.$
				2: Two layer Winton (2000) model	In an atmospheric run
				3: Zero-layer model with analytical forcing (for	the ice surface type must
				diagnostics)	be defined.
				4: Zero-layer model for atmosphere-only runs (for	
				diagnostics)	
i_ice_dyn	I	0		Switch for sea-ice dynamics:	
				0: No dynamics	
				1: FEM dynamics (from AWI)	
i_ice_albedo	I	1		Switch for albedo model. Only one is implemented	
				so far.	
i_Qio_type	I	2		Switch for ice-ocean heat-flux calculation method:	Defaults to 1 when
				1: Proportional to ocean cell thickness (like	i_ice_dyn=0 and 2
				MPI-OM)	otherwise.
				2: Proportional to speed difference between ice and	
				ocean	
kice	I	1		Number of ice classes (must be one for now)	
hnull	R	0.5	m	Hibler's h_0 parameter for new-ice growth.	

Parameter	Type	Default	Unit	Description	Scope
hmin	R	0.05	m	Minimum sea-ice thickness allowed.	
ramp_wind	R	10	days	Number of days it takes the wind to reach correct	
				strength. Only used at the start of an	
				OMIP/NCEP simulation (not after restart).	

4 Namelist parameters for testcases (NAMELIST_ICON)

The ICON model code includes several experiments, so-called test cases, for the shallow water model as well as the 3-dimensional atmosphere. Depending on the specified experiment, initial conditions and boundary conditions are computed internally.

4.1 ha_testcase_nml (Scope: ltestcase=.TRUE. and iequations=[0,1,2] in run_nml)

Parameter	Type	Default	Unit	Description	Scope
ctest_name	С	'JWw'		Name of test case:	
				'SW_GW': gravity wave	$lshallow_water=.TRUE.$
				'USBR': unsteady solid body rotation	lshallow_water=.TRUE.
				'Will_2': Williamson test 2	lshallow_water=.TRUE.
				'Will_3': Williamson test 3	lshallow_water=.TRUE.
				'Will_5': Williamson test 5	$lshallow_water=.TRUE.$
				'Will_6': Williamson test 6	lshallow_water=.TRUE.
				'GW': gravity wave (nlev=20 only!)	$lshallow_water=.FALSE.$
				'LDF': local diabatic forcing test without physics	$lshallow_water=.FALSE.$
					and iforcing=4
				'LDF-Moist': local diabatic forcing test with	lshallow_water=.FALSE.,
				physics initalised with zonal wind field	and iforcing=5
				'HS': Held-Suarez test	$lshallow_water=.FALSE.$
				'JWs': Jablonowski-Will. steady state	$lshallow_water=.FALSE.$
				'JWw': Jablonowski-Will. wave test	$lshallow_water=.FALSE.$
				'JWw-Moist': Jablonowski-Will. wave test	$lshallow_water=.FALSE.$
				including moisture	
				'APE': aqua planet experiment	$lshallow_water=.FALSE.$
				'MRW': mountain induced Rossby wave	$lshallow_water=.FALSE.$

Parameter	Type	Default	Unit	Description	Scope
				'MRW2': modified mountain induced Rossby wave	lshallow_water=.FALSE.
				'PA': pure advection	$lshallow_water=.FALSE.$
				'SV': stationary vortex	lshallow_water=.FALSE.,
					ntracer = 2
				'DF1': deformational flow test 1	
				'DF2': deformational flow test 2	
				'DF3': deformational flow test 3	
				'DF4': deformational flow test 4	
				'RH': Rossby-Haurwitz wave test	$lshallow_water=.FALSE.$
tracer_inidist_list	I(:)	1		For a subset of testcases pre-defined initial tracer	ha_testcase_nml='PA',
				distributions are available. This namelist parameter	'JABW','DF'
				specifies the initial distribution for each tracer. In	
				the following the testcases and the pre-defined	
				numbers are given:	
				'PA': 4,5,6,7,8	
				'JABW':1,2,3,4	
				'DF': 5,6,7,8,9	
				For more details on the initial distributions, please	
	R	0.0	1	have a look into the code.	-++ 'WY:11 9'
rotate_axis_deg	I K	0.0	deg	Earth's rotation axis pitch angle	ctest_name= 'Will_2',
					'Will_3', 'JWs', 'JWw', 'PA', 'DF1234'
gw brunt vais	$ _{\mathrm{R}}$	0.01	1/s	Brunt Vaisala frequency	ctest name= 'GW'
gw_brunt_vais gw_u0	R	0.01	$\frac{1}{\text{m/s}}$	zonal wind parameter	ctest_name= 'GW'
gw lon deg	R	180.0	\deg	longitude of initial perturbation	ctest_name= 'GW'
gw lat deg	R	0.0	deg	latitude of initial perturbation	ctest_name= 'GW'
jw uptb	R	1.0	m/s	amplitude of the wave pertubation	ctest name= 'JWw'
3 = T			(?)	r	
mountctr_lon_deg	R	90.0	deg	longitude of mountain peak	ctest_name= 'MRW(2)'
mountctr_lat_deg	R	30.0	deg	latitude of mountain peak	$ctest_name = 'MRW(2)'$
mountctr_height	R	2000.0	m	mountain height	ctest_name= 'MRW(2)'
mountctr_half_width	R	1500000.0	m	mountain half width	$ctest_name = 'MRW(2)'$
mount_u0	R	20.0	m/s	wind speed for MRW cases	ctest_name= 'MRW(2)'
rh_wavenum	I	4		wave number	ctest_name= 'RH'

Parameter	Type	Default	Unit	Description	Scope
rh_init_shift_deg	R	0.0	deg	pattern shift	ctest_name= 'RH'
ihs_init_type	I	1		Choice of initial condition for the Held-Suarez test.	ctest_name= 'HS'
				1: the zonal state defined in the JWs test case;	
				other integers: isothermal state (T=300 K,	
				ps=1000 hPa, u=v=0.)	
lhs_vn_ptb	L	.TRUE.		Add random noise to the initial wind field in the	ctest_name= 'HS'
				Held-Suarez test.	
hs_vn_ptb_scale	R	1.	m/s	Magnitude of the random noise added to the initial wind field in the Held-Suarez test.	ctest_name= 'HS'
lrh_linear_pres	L	.FALSE.		Initialize the relative humidity using a linear	ctest_name=
				function of pressure.	'JWw-Moist','APE',
					'LDF-Moist'
$rh_at_1000hpa$	R	0.75		relative humidity	ctest_name=
				0,1	'JWw-Moist','APE',
				at 1000 hPa	'LDF-Moist'
linit tracer fv	L	.TRUE.		Finite volume initialization for tracer fields	ctest name='PA'
ape sst case	C	'sst1'		SST distribution selection	ctest_name='APE'
				'sst1': Control experiment	
				'sst2': Peaked experiment	
				'sst3': Flat experiment	
				'sst4': Control-5N experiment	
				'sst gobs': Qobs SST distribution exp	
				'sst ice': Control SST distribution with -1.8 C	
				above $64 \text{ N/S}.$	
ildf_init_type	I	0		Choice of initial condition for the Local diabatic	ctest_name= 'LDF'
				forcing test. 1: the zonal state defined in the JWs	
				test case; other: isothermal state (T=300 K,	
				ps=1000 hPa, u=v=0.)	
ldf_symm	L	.TRUE.		Shape of local diabatic forcing:	ctest_name=
				.TRUE.: local diabatic forcing symmetric about the	'LDF','LDF-Moist'
				equator (at 0 N)	
				.FALSE.: local diabatic forcing asym. about the	
				equator (at 30 N)	

$4.2 \quad nh_testcase_nml \; (Scope: \; ltestcase=.TRUE. \; and \; iequations=3 \; in \; run_nml)$

Parameter	Type	Default	Unit	Description	Scope
nh_test_name	С	'jabw'		testcase selection	
				'zero': no orography	
				'bell': bell shaped mountain at 0E,0N	
				'schaer': hilly mountain at 0E,0N	
				'jabw': Initializes the full Jablonowski Williamson	
				test case.	
				'jabw_s': Initializes the Jablonowski Williamson	
				steady state test case.	
				'jabw_m': Initializes the Jablonowski Williamson	
				test case with a mountain instead of the wind	
				perturbation (specify mount_height).	
				'mrw_nh': Initializes the full Mountain-induced	
				Rossby wave test case.	
				'mrw2_nh': Initializes the modified	
				mountain-induced Rossby wave test case.	
				'mwbr_const': Initializes the mountain wave with	
				two layers test case. The lower layer is isothermal	
				and the upper layer has constant brunt vaisala	
				frequency. The interface has constant pressure.	
				'PA': Initializes the pure advection test case.	
				'HS_nh': Initializes the Held-Suarez test case. At	
				the moment with an isothermal atmosphere at rest	
				(T=300K, ps=1000hPa, u=v=0, topography=0.0).	
				'HS_jw': Initializes the Held-Suarez test case with	
				Jablonowski Williamson initial conditions and zero	
				topography.	
				'APE_nwp, APE_echam, APE_nh,	
				APEc_nh, ': Initializes the APE experiments.	
				With the jabw test case, including moisture.	

Parameter	Type	Default	Unit	Description	Scope
				'wk82': Initializes the Weisman Klemp test case	$l_{\rm limited_area} = .TRUE.$
				'g_lim_area': Initializes a series of general	
				limited area test cases: itype_atmos_ana	
				determines the atmospheric profile,	
				itype_anaprof_uv determines the wind profile and	
				itype_topo_ana determines the topography	
				'dcmip_bw_11': Initializes (moist) baroclinic	
				instability/wave (DCMIP2016)	
				'dcmip_pa_12': Initializes Hadley-like	
				meridional circulation pure advection test case.	
				'dcmip_rest_200': atmosphere at rest test	lcoriolis = .FALSE.
				(Schaer-type mountain)	
				'dcmip_mw_2x': nonhydrostatic mountain	lcoriolis = .FALSE.
				waves triggered by Schaer-type mountain	
				'dcmip_gw_31': nonhydrostatic gravity waves	
				triggered by a localized perturbation (nonlinear)	
				'dcmip_gw_32': nonhydrostatic gravity waves	$l_{\text{limited_area}} = .TRUE.$
				triggered by a localized perturbation (linear)	and lcoriolis $=$.FALSE.
				'dcmip_tc_51': tropical cyclone test case with	lcoriolis = .TRUE.
				'simple physics' parameterizations (not yet	
				implemented)	
				'dcmip_tc_52': tropical cyclone test case with	lcoriolis = .TRUE.
				with full physics in Aqua-planet mode	
				'CBL': convective boundary layer simulations for	is_plane_torus= .TRUE.
				LES package on torus (doubly periodic) grid	
is_toy_chem	L	.FALSE.		Terminator toy chemistry activated when .TRUE.	

Parameter	Type	Default	Unit	Description	Scope
tracer_inidist_list	I(:)	1		For a subset of testcases pre-defined initial tracer	nh_test_name='PA',
				distributions are available. This namelist parameter	'JABW','DF'
				specifies the initial distribution for each tracer. In	
				the following the testcases and the pre-defined	
				numbers are given:	
				'PA': 4,5,6,7,8	
				'JABW':1,2,3,4	
				'DF': 5,6,7,8,9	
				For more details on the initial distributions, please	
				have a look into the code.	
$\operatorname{dcmip}_{\operatorname{bw}}\%$				DCMIP2016 baroclinic wave test	'dcmip_bw_11'
deep	I	0		deep atmosphere	
				(1 = yes or 0 = no)	
moist	I	0		include moisture, i.e. $qv \neq 0$	
				(1 = yes or 0 = no)	
pertt	I	0		type of initial perturbation	
				(0 = exponential, 1 = stream function)	
${ m toy_chem}\%$				terminator toy chemistry	is_toy_chem=.TRUE.
dt_chem	R	300	s	chemistry tendency update interval	
$ m dt_cpl$	R	300	s	chemistry-transport coupling interval	
id_cl	I	1		Tracer container slice index for species CL	
id_cl2	I	2		Tracer container slice index for species CL2	
jw_up	R	1.0	m/s	amplitude of the u-perturbation in jabw test case	nh_test_name='jabw'
$u0_mrw$	R	20.0	m/s	wind speed for mrw(2) and mwbr_const cases	nh_test_name=
					'mrw(2)_nh' and
					'mwbr_const'
$mount_height_mrw$	R	2000.0	m	maximum mount height in mrw(2) and	nh_test_name=
				mwbr_const	'mrw(2)_nh' and
					'mwbr_const'
$mount_half_width$	R	1500000.0	m	half width of mountain in mrw(2), mwbr_const	nh_test_name=
				and bell	'mrw(2)_nh',
					'mwbr_const' and 'bell'

Parameter	Type	Default	Unit	Description	Scope
mount_lonctr_mrw_deg	R	90.	deg	lon of mountain center in mrw(2) and mwbr_const	nh_test_name=
					'mrw(2)_nh' and
					'mwbr_const'
mount_latctr_mrw_deg	R	30.	deg	lat of mountain center in mrw(2) and mwbr_const	$nh_test_name =$
					'mrw(2)_nh' and
					'mwbr_const'
temp_i_mwbr_const	R	288.0	K	temp at isothermal lower layer for mwbr_const case	$nh_test_name =$
					'mwbr_const'
p_int_mwbr_const	R	70000.	Pa	pres at the interface of the two layers for	$nh_test_name =$
				mwbr_const case	'mwbr_const'
bruntvais_u_mwbr_const	R	0.025	1/s	constant brunt vaissala frequency at upper layer for	$nh_test_name =$
				mwbr_const case	'mwbr_const'
mount_height	R	100.0	m	peak height of mountain	nh_test_name= 'bell'
layer_thickness	R	-999.0	m	thickness of vertical layers	If layer_thickness < 0 ,
					the vertical level
					distribution is read in
					from externally given
					HYB_PARAMS_XX.
n_flat_level	I	2		level number for which the layer is still flat and not	$layer_thickness > 0$
				terrain-following	
nh_u0	R	0.0	m/s	initial constant zonal wind speed	$nh_test_name = 'bell'$
nh_t0	R	300.0	K	initial temperature at lowest level	$nh_test_name = 'bell'$
nh_brunt_vais	R	0.01	1/s	initial Brunt-Vaisala frequency	nh_test_name = 'bell'
torus_domain_length	R	100000.0	m	length of slice domain	nh_test_name = 'bell',
					lplane=.TRUE.
rotate_axis_deg	R	0.0	deg	Earth's rotation axis pitch angle	nh_test_name= 'PA'
lhs_nh_vn_ptb	L	.TRUE.		Add random noise to the initial wind field in the	nh_test_name=
				Held-Suarez test.	'HS_nh'
lhs_fric_heat	L	.FALSE.		add frictional heating from Rayleigh friction in the	nh_test_name=
				Held-Suarez test.	'HS_nh'
hs_nh_vn_ptb_scale	R	1.	m/s	Magnitude of the random noise added to the initial	nh_test_name=
				wind field in the Held-Suarez test.	'HS_nh'
rh_at_1000hpa	R	0.7	1	relative humidity at 1000 hPa	nh_test_name= 'jabw',
					nh_test_name= 'mrw'

Parameter	Type	Default	Unit	Description	Scope
qv_max	R	20.e-3	kg/kg	specific humidity in the tropics	nh_test_name= 'jabw',
					nh_test_name= 'mrw'
ape_sst_case	\mid C	'sst1'		SST distribution selection	nh test name='APE nwp
				'sst1': Control experiment	'APE echam'
				'sst2': Peaked experiment	_
				'sst3': Flat experiment	
				'sst4': Control-5N experiment	
				'sst qobs': Qobs SST distribution exp.	
				'sst const': constant SST	
ape_sst_val	R	29.0	$\deg C$	aqua planet SST for ape_sst_case='sst_const'	nh_test_name=
					'APE nwp',
					'APE_echam'
$linit_tracer_fv$	L	.TRUE.		Finite volume initialization for tracer fields	pure advection tests, only
$lcoupled_rho$	L	.FALSE.		Integrate density equation 'offline'	pure advection tests, only
$qv_{max}wk$	R	0.014	Kg/kg	maximum specific humidity near	nh_test_name='wk82'
				the surface, range 0.012 - 0.016	
				used to vary the buoyancy	
u_{infty_wk}	R	20.	m/s	zonal wind at infinity height	nh_test_name='wk82'
				range 0 45.	
				used to vary the wind shear	
bub_amp	R	2.	K	maximum amplitud of the thermal perturbation	nh_test_name='wk82'
bubctr_lat	R	0.	deg	latitude of the center of the thermal perturbation	nh_test_name='wk82'
bubctr_lon	R	90.	deg	longitude of the center of the thermal perturbation	nh_test_name='wk82'
$bubctr_z$	R	1400.	m	height of the center of the thermal perturbation	nh_test_name='wk82'
bub_hor_width	R	10000.	m	horizontal radius of the thermal perturbation	nh_test_name='wk82'
bub_ver_width	R	1400.	m	vertical radius of the thermal perturbation	nh_test_name='wk82'
$itype_atmo_ana$	I	1		kind of atmospheric profile:	$nh_test_name =$
				1 piecewise N constant layers	'g_lim_area'
				2 piecewise polytropic layers	
$itype_anaprof_uv$	I	1		kind of wind profile:	$nh_test_name =$
				1 piecewise linear wind layers	'g_lim_area'
				2 constant zonal wind	
				3 constant meridional wind	

Parameter	Type	Default	Unit	Description	Scope
itype_topo_ana	I	1		kind of orography:	nh_test_name=
				1 schaer test case mountain	'g_lim_area'
				2 gaussian_2d mountain	
				3 gaussian_3d mountain	
				any other no orography	
nlayers_nconst	I	1		Number of the desired layers with a constant	nh_test_name=
				Brunt-Vaisala-frequency	'g_lim_area' and
					itype_atmo_ana=1
p_base_nconst	R	100000.	Pa	pressure at the base of the first N constant layer	nh_test_name=
					'g_lim_area' and
					itype_atmo_ana=1
$theta0_base_nconst$	R	288.	K	potential temperature at the base of the first N	nh_test_name=
				constant layer	'g_lim_area' and
					itype_atmo_ana=1
h_nconst	R(nlayers	0., 1500.,	m	height of the base of each of the N constant layers	nh_test_name=
	_nconst)	12000.			'g_lim_area' and
					itype_atmo_ana=1
N_n const	R(nlayers	0.01	1/s	Brunt-Vaisala-frequency at each of the N constant	nh_test_name=
	_nconst)			layers	'g_lim_area' and
					itype_atmo_ana=1
rh_nconst	R(nlayers	0.5	%	relative humidity at the base of each N constant	nh_test_name=
	_nconst)			layers	'g_lim_area' and
					itype_atmo_ana=1
$rhgr_nconst$	R(nlayers	0.	%	relative humidity gradient at each of the N constant	nh_test_name=
	-nconst)			layers	'g_lim_area' and
					itype_atmo_ana=1
nlayers_poly	I	2		Number of the desired layers with constant gradient	nh_test_name=
				temperature	'g_lim_area' and
					itype_atmo_ana=2
p_base_poly	R	100000.	Pa	pressure at the base of the first polytropic layer	nh_test_name=
					'g_lim_area' and
					itype_atmo_ana=2

Parameter	Type	Default	Unit	Description	Scope
h_poly	R(nlayers	0., 12000.	m	height of the base of each of the polytropic layers	nh_test_name=
	_poly)				'g_lim_area' and
					itype_atmo_ana=2
t_poly	R(nlayers	288., 213.	K	temperature at the base of each of the polytropic	$nh_test_name =$
	_poly)			layers	'g_lim_area' and
					itype_atmo_ana=2
rh_poly	R(nlayers	0.8, 0.2	%	relative humidity at the base of each of the	nh_test_name=
	_poly)			polytropic layers	'g_lim_area' and
					itype_atmo_ana=2
rhgr_poly	R(nlayers	5.e-5, 0 .	%	relative humidity gradient at each of the polytropic	nh_test_name=
	_poly)			layers	'g_lim_area' and
					itype_atmo_ana=2
nlayers_linwind	I	2		Number of the desired layers with constant U	nh_test_name=
				gradient	'g_lim_area' and
					itype_anaprof_uv=1
h_linwind	R(nlayers	0., 2500.	m	height of the base of each of the linear wind layers	nh_test_name=
	_lin-				'g_lim_area' and
	wind)		,		itype_anaprof_uv=1
u_linwind	R(nlayers	5, 10.	m/s	zonal wind at the base of each of the linear wind	nh_test_name=
	_lin-			layers	'g_lim_area' and
	wind)		. ,		itype_anaprof_uv=1
ugr_linwind	R(nlayers	0., 0.	1/s	zonal wind gradient at each of the linear wind layers	nh_test_name=
	_lin-				'g_lim_area' and
	wind)		,		itype_anaprof_uv=1
vel_const	R	20.	m/s	constant zonal/meridional wind	nh_test_name=
				(itype_anaprof_uv=2,3)	'g_lim_area' and
	_				itype_anaprof_uv=2,3
$mount_lonc_deg$	R	90.	deg	longitud of the center of the mountain	nh_test_name=
		_	_		'g_lim_area'
mount_latc_deg	R	0.	deg	latitud of the center of the mountain	nh_test_name=
, , ,					'g_lim_area'
schaer_h0	R	250.	m	h0 parameter for the schaer mountain	nh_test_name=
					'g_lim_area' and
					itype_topo_ana=1

Parameter	Type	Default	Unit	Description	Scope
schaer_a	R	5000.	m	-a- parameter for the schaer mountain,	nh_test_name=
				also half width in the north and south side of the	'g_lim_area' and
				finite ridge to round the sharp edges	itype_topo_ana=1,2
schaer_lambda	R	4000.	m	lambda parameter for the schaer mountain	nh_test_name=
					'g_lim_area' and
					itype_topo_ana=1
lshear_dcmip	L	FALSE		run dcmip_mw_2x with/without vertical wind	nh_test_name=
				shear	'dcmip_mw_2x'
				FALSE: dcmip_mw_21: non-sheared	
				TRUE : dcmip_mw_22: sheared	
halfwidth_2d	R	10000.	m	half length of the finite ridge in the north-south	nh_test_name=
				direction	'g_lim_area' and
					itype_topo_ana=1,2
m_height	R	1000.	m	height of the mountain	nh_test_name=
					'g_lim_area' and
					itype_topo_ana=2,3
m_width_x	R	5000.	m	half width of the gaussian mountain in the	nh_test_name=
				east-west direction	'g_lim_area' and
				half width in the north-south direction in the	itype_topo_ana=2,3
				rounding of the finite ridge (gaussian_2d)	
m_width_y	R	5000.	m	half width of the gaussian mountain in the	nh_test_name=
				north-south direction	'g_lim_area' and
					itype_topo_ana=2,3
gw_u0	R	0.	m/s	maximum amplitude of the zonal wind	nh_test_name=
					'dcmip_gw_3X'
gw_clat	R	90.	\deg	Lat of perturbation center	nh_test_name=
					'dcmip_gw_3X'
gw_delta_temp	R	0.01	K	maximum temperature perturbation	nh_test_name=
()					'dcmip_gw_32'
u_cbl(2)	R	0:0	m/s	to prescribe initial zonal velocity profile for	nh_test_name=CBL
			and	convective boundary layer simulations where	
			1/s	u_cbl(1) sets the constant and u_cbl(2) sets the vertical gradient	

Parameter	Type	Default	Unit	Description	Scope
v_cbl(2)	R	0:0	m/s	to prescribe initial meridional velocity profile for	nh_test_name=CBL
			and	convective boundary layer simulations where	
			1/s	v_cbl(1) sets the constant and v_cbl(2) sets the	
				vertical gradient	
$th_cbl(2)$	R	290:0.006	K and	to prescribe initial potential temperature profile for	nh_test_name=CBL
			K/m	convective boundary layer simulations where	
				th_cbl(1) sets the constant and th_cbl(2) sets the	
				gradient	

Defined and used in: src/testcases/mo_nh_testcases.f90

5 External data

$5.1 \quad extpar_nml \ (Scope: itopo=1 \ in \ run_nml)$

Parameter	Type	Default	Unit	Description	Scope
itopo	I	0		0: analytical topography/ext. data	
				1: topography/ext. data read from file	
itype_vegetation_cycle	I	1		1: annual cycle of LAI solely based on NDVI	
				climatology	
				2: additional use of monthly T2M climatology to	
				get more realistic values in extratropics (requires	
				external parameter data contining this field)	
				3: as 2 with additional coupling of vegetation	
				parameters to T2M bias in transitional seasons	
				(requires DWD assimilation cycle including soil	
				moisture analysis)	
n_iter_smooth_topo	I(n_dom)	0		iterations of topography smoother	itopo = 1
fac_smooth_topo	R	0.015625		pre-factor of topography smoother	n_iter_smooth_topo >
					0

Parameter	Type	Default	Unit	Description	Scope
hgtdiff_max_smooth_tope	R	0.	m	RMS height difference to neighbor grid points at	n_iter_smooth_topo >
				which the smoothing pre-factor fac_smooth_topo	0
				reaches its maximum value (linear proportionality	
				for weaker slopes)	
heightdiff_threshold	R(n_dom)	3000.	m	height difference between neighboring grid points	
				above which additional local nabla2 diffusion is	
				applied	
lrevert_sea_height	L	.FALSE.		If .TRUE., sea point heights will be reverted to	$n_{iter_smooth_topo} > 0$
				original (raw data) heights after topography	0
				smoothing was applied.	
l_emiss	L	.TRUE.		read and use external surface emissivity map	itopo = 1
$extpar_filename$	C			Filename of external parameter input file, default:	
				" <path>extpar_<gridfile>". May contain the</gridfile></path>	
				keyword <path> which will be substituted by</path>	
				model_base_dir.	
read_nc_via_cdi	L	.FALSE.		.TRUE.: read NetCDF input data via cdi library	
				.FALSE.: read NetCDF input data using parallel	
				NetCDF library	
				Note: GRIB2 input data is always read via cdi	
				library / GRIB API. For NetCDF input, this switch	
				allows optimizing the input performance, but there	
				is no general rule which option is faster.	
extpar_varnames_map_	C	, ,		Filename of external parameter dictionary, This is a	
file				text file with two columns separated by whitespace,	
				where left column: NetCDF name, right column:	
				GRIB2 short name. It is required, if external	
				parameter are read from a file in GRIB2 format.	

Defined and used in: src/namelists/mo_extpar_nml.f90

6 External packages

7 Information on vertical level distribution

If no vertical sleve coordinate is chosen (ivctype / =2), the hydrostatic and nonhydrostatic models need hybrid vertical level information to generate the terrain following coordinates. The hybrid level specification is stored in <icon home>/hyb_params/HYB_PARAMS_<nlev>. The hydrostatic model assumes to get pressure based coordinates, the nonhydrostatic model expects height based coordinates. For further information see <icon home>/hyb_params/README.

8 Compile flag for mixed precision

To speed up code parts strongly limited by memory bandwidth (primarily the dynamical core and the tracer advection), an option exists to use single precision for variables that are presumed to be insensitive to computational accuracy. This affects most local arrays in the dynamical core routines (solve_nonhydro and velocity_advection), some local arrays in the tracer transport routines, the metrics coefficients, arrays used for storing tendencies or differenced fields (gradients, divergence etc.), reference atmosphere fields, and interpolation coefficients. Prognostic variables and intermediate variables affecting the accuracy of mass conservation are still treated in double precision. To activate the mixed-precision option, the cpp flags '-D__MIXED_PRECISION' and '-D__MIXED_PRECISION_2' need to be specified in the configuration settings used for generating the Makefile. The latter flag is used for physics tendencies. Note that interpolation to a latitude-longitude grid is not supported for single-precision variables; if you desire to output physics tendency fields on a regular grid for diagnostic purposes, do not set '-D_MIXED_PRECISION_2'.

A Arithmetic expression evaluation

The mo_expression module evaluates basic arithmetic expressions specified by character-strings. It is possible to include mathematical functions, operators, and constants. An application of this module is the evaluation of arithmetic expressions povided as namelist parameters.

Besides, Fortran variables can be linked to the expression and used in the evaluation. The implementation supports scalar input variables as well as 2D and 3D fields.

From a users' point of view, the basic usage of this module is described in Section A.1 below. Technically, infix expressions are processed based on a Finite State Machine (FSM) and Dijkstra's shunting yard algorithm. A more detailed described of the Fortran interface is given in Section A.3.

A.1 Examples for arithmetic expressions

Basic examples:

- "sqrt(2.0)"
- "sin(45*pi/180.) * 10 + 5"
- "if(1. > 2, 99, -1.*pi)"
- "min(1,2)"

Variables are used with a bracket notation:

• "sqrt([u]^2 + [v]^2)"

Note that the use of variables requires that these are enabled ("linked") by the Fortran routine that calls the mo_expression module.

A.2 Expression syntax

A.2.1 List of functions

name	#args	description
log(), exp()	1	natural logarithm and its inverse function.
sin(), cos()	1	trigonometric functions
sqrt()	1	square root
min(), max()	2	minimum and maximum of two values
if (value, then, else)	3	conditional expression (value > 0.)

A.2.2 List of operators

name	evaluates to		
a + b, a - b, a * b, a / b	(a+b), (a-b), (a*b), (a/b)		
a * b, a / b			
a ^ b	a^b		
a > b	$\begin{cases} 1, & \text{if } a > b, \\ 0, & \text{otherwise.} \end{cases}$		
a < b	$\begin{cases} 1, & \text{if } a < b, \\ 0, & \text{otherwise.} \end{cases}$		

A.2.3 List of available constants

name of constant	assigned value	description
pi	4 atan(1)	mathematical constant equal to a circle's cir-
		cumference divided by its diameter
r	$6.371229 \cdot 10^6$	Earth's radius ¹

A.3 Usage with Fortran

The minimal Fortran interface is as follows:

- 1. The TYPE expression which is initialized with the character-string that specifies the arithmetic expression.
- 2. The type-bound procedure evaluate(), which returns the result (scalar or array-shaped) as a POINTER.
- 3. The type-bound procedure link() connecting a variable to a name in the character-string expression.

${\bf A.3.1} \quad {\bf Fortran\ examples}$

The following examples illustrate the arithmetic expression parser. The calls to DEALLOCATE the data structures have been ommitted for the sake of brevity:

1. Scalar arithmetic expression:

```
formula = expression("sin(45*pi/180.) * 10 + 5")
CALL formula%evaluate(val)
... use "val" for some purpose ...
```

2. Masking of a 2D array as an example for the link procedure:

```
formula = expression("if([z_sfc] > 2., [z_sfc], 0.)")
CALL formula%link("z_sfc", z_sfc)
CALL formula%evaluate(val_2D)
... use "val_2D(:,:)" for some purpose ...
```

A.3.2 Error handling

Invalid arithmetic expressions yield "empty" expression objects. When these are evaluated, a NULL() pointer is returned. A successful expression evaluation can be tested with the err_no variable:

```
IF (formula%err_no == ERR_NONE) THEN
    ...
END IF
```

In case of error, the err_no variable also provides the reason for the aborted evaluation process.

A.4 Remarks

- Variable names are treated case-sensitive!
- For 3D array input it is implicitly assumed that 2D fields are embedded in 3D fields as "3D(:,level,:) = 2D(:,:)".

¹This number seems to be based on Hayford's 1910 estimate of the Earth. It is used in ICON as well as MPAS and was almost certainly taken from the Jablonowski and Williamson test case (QJRMS, 2006).

Changes incompatible with former versions of the model code

Change:

12016

- $\bullet \ \operatorname{Renamed} \ \mathbf{var_names_map_file} \to \mathbf{output_nml_dict}.$
- $\bullet \ {\rm Renamed} \ \mathbf{out} \quad \mathbf{varnames} \quad \mathbf{map} \quad \mathbf{file} \rightarrow \mathbf{netcdf} \quad \mathbf{dict}.$
- The dictionary in netcdf dict is now reversed, s.t. the same map file as in output nml dict can be used to translate variable names to the ICON internal names and back.

 $\begin{array}{c} \text{output_nml: namespace} \\ 2013\text{-}04\text{-}26 \end{array}$

Date of Change: 12051

• Removed obsolete namelist variable namespace from output_nml.

gribout nml: generatingCenter, generatingSubcenter

2013 - 04 - 2612051

- Introduced new namelist variables generatingCenter and generatingSubcenter.
- If not set explicitly, center and subcenter information is copied from the input grid file

radiation_nml: albedo_type 2013-05-03

Change:
Date of Change: 12118

• Introduced new namelist variable albedo type

• If set to 2, the surface albedo will be based on the MODIS data set.

Change: initicon nml: dwdinc filename

 Date of Change:
 2013-05-24

 Revision:
 12266

• Renamed dwdinc_filename to dwdana_filename

Change: initicon_nml: l_ana_sfc

 Date of Change:
 2013-06-25

 Revision:
 12582

- \bullet Introduced new namelist flag l ana sfc
- If true, soil/surface analysis fields are read from the analysis fiel dwdfg_filename. If false, surface analysis fields are not read. Soil and surface are initialized with the first guess instead.

Change: new nwp phy tend list: output names consistent with variable names

 Date of Change:
 2013-06-25

 Revision:
 12590

- $\bullet \ temp_tend_radlw \to ddt_temp_radlw$
- $\bullet \ temp_tend_turb \to ddt_temp_turb$
- \bullet temp tend drag \rightarrow ddt temp drag

Change: prepicon_nml, remap_nml, input_field_nml

 Date of Change:
 2013-06-25

 Revision:
 12597

• Removed the sources for the "prepicon" binary!

• The "prepicon" functionality (and most of its code) has become part of the ICON tools.

Change: initicon_nml
Date of Change: 2013-08-19
Revision: 13311

• The number of vertical input levels is now read from file. The namelist parameter **nlev_in** has become obsolete in r12700 and has been removed.

 $\begin{array}{ll} \textit{Change:} & \textit{parallel_nml} \\ \textit{Date of Change:} & \textit{2013-10-14} \\ \textit{Revision:} & \textit{14160} \end{array}$

• The namelist parameter exch msgsize has been removed together with the option iorder sendrecv=4.

 $\begin{array}{ll} {\it Change:} & {\it parallel_nml} \\ {\it Date of Change:} & {\it 2013-08-14} \\ {\it Revision:} & {\it 14164} \end{array}$

• The namelist parameter **use_sp_output** has been replaced by an equivalent switch **use_dp_mpi2io** (with an inverse meaning, i.e. we have **use_dp_mpi2io** = **.NOT. use_sp_output**).

 $\begin{array}{ll} \textit{Change:} & \text{parallel_nml} \\ \textit{Date of Change:} & \textbf{2013-08-15} \\ \textit{Revision:} & \textbf{14175} \end{array}$

• The above-mentioned namelist parameter **use_dp_mpi2io** got the default .FALSE. By this, the output data are sent now in single precision to the output processes.

initicon nml: l ana sfc

Date of Change: 2013-10-21 14280 Revision:

• The above-mentioned namelist parameter l ana sfc has been replaced by lread ana. The default is set to .TRUE., meaning that analysis fields are required and read on default. With Iread ana=.FALSE. ICON is able to start from first guess fields only.

output_nml: lwrite_ready, ready_directory 2013-10-25

14391

- The namelist parameters lwrite_ready and ready_directory have been replaced by a single namelist parameter ready_file, where ready_file /= 'default' enables writing ready files.
- Different output_nml's may be joined together to form a single ready file event they share the same ready_file.

output nml: output bounds

Date of Change: 2013 - 10 - 2514391 Revision:

• The namelist parameter **output bounds** specifies a start, end, and increment of output invervals. It does no longer allow multiple triples.

 $\begin{array}{c} output_nml:\ steps_per_file\\ 2013-10-30 \end{array}$

14422

• The default value of the namelist parameter steps per file has been changed to -1.

Change: run nml Date of Change: 2013-11-13 Revision:14759

- The dump/restore functionality for domain decompositions and interpolation coefficients has been removed from the model code. This means, that the parameters
 - ldump_states,
 - lrestore_states,
 - ldump_dd,
 - lread_dd,
 - nproc_dd,
 - dd_filename,
 - dump_filename,
 - l_one_file_per_patch

have been removed together with the corresponding functionality from the ICON model code.

 $\begin{array}{c} \mathbf{output_nml:\ filename_format} \\ \mathbf{2013-12-02} \end{array}$

Change:
Date of Change: 15068

• The string token <ddhhmmss> is now substituted by the relative day-hour-minute-second string, whereas the absolute date-time stamp can be inserted using <datetime>.

output_nml: ready_file 2013-12-03

Date of Change: Revision: 15081 • The ready file name has been changed and may now contain string tokens cpath>, <datetime>, <ddhmmss> which are substituted as described for the namelist parameter filename_format.

interpl_nml: rbf_vec_scale_ll 2013-12-06

15156

• The real-valued namelist parameter rbf_vec_scale_ll has been removed.

• Now, there exists a new integer-valued namelist parameter, rbf_scale_mode_11 which specifies the mode, how the RBF shape parameter is determined for lon-lat interpolation.

io nml $2\overline{0}13-12-06$ 15161

- Removed remaining vlist-related namelist parameter. This means that the parameters
 - out filetype
 - out expname
 - dt data
 - dt file
 - lwrite dblprec, lwrite decomposition, lwrite vorticity, lwrite divergence, lwrite pres, lwrite z3, lwrite tracer, lwrite tend phy, lwrite radiation, lwrite precip, lwrite cloud, lwrite tke, lwrite surface, lwrite omega, lwrite initial, lwrite oce timestepping

are no longer available.

gridref nml $2014 - 0\overline{1} - 07$

• Changed namelist defaults for nesting: grf_intmethod_e, l_mass_consvcorr, l_density_nudging.

 $\begin{array}{ll} \textit{Change:} & \text{interpol_nml} \\ \textit{Date of Change:} & 2014\text{-}02\text{-}10 \\ \textit{Revision:} & 16047 \end{array}$

• Changed namelist default for rbf_scale_mode_11: The RBF scale factor for lat-lon interpolation is now determined automatically by default.

Change: echam_phy_nml
Date of Change: 2014-02-27

Revision: 16313

• Replace the logical switch lcover by the integer switch icover that is used in ECHAM-6.2. Values are transferred as follows: .FALSE. = 1 (=default), .TRUE. = 2.

Change: turbdiff_nml
Date of Change: 2014-03-12
Revision: 16527

• Change constant minimum vertical diffusion coefficients to variable ones proportional to $1/\sqrt{Ri}$ for inwp_turb = 10; at the same time the defaults for tkhmin and tkmmin are increased from $0.2 \,\mathrm{m}^2/\mathrm{s}$ to $0.75 \,\mathrm{m}^2/\mathrm{s}$.

Change: nwp_phy_nml
Date of Change: 2014-03-13
Revision: 16560

• Removed namelist parameter dt_ccov, since practically it had no effect. For the quasi-operational NWP-setup, the calling frequency of the cloud cover scheme is the same as that of the convection scheme. I.e. both are synchronized.

Change: nwp phy nml Date of Change: 2014 - 03 - 2416668

 $\bullet \ \ \text{Changed namelist default for } \ \textbf{itype_z0} : \ \text{use land cover related roughness only (itype_z0=2)}.$

 $\begin{array}{ll} \textit{Change:} & \text{nonhydrostatic_nml} \\ \textit{Date of Change:} & \textbf{2014-05-16} \end{array}$

17293

• Removed switch for vertical TKE advection in the dynamical core (lvadv tke). TKE advection has been moved into the transport scheme and can be activated with iadv_tke=1 in the transport_nml.

 $rac{ ext{nonhydrostatic}_{ ext{nml}}}{2014 ext{-}05 ext{-}27}$

17492

• Removed namelist parameter model_restart_info_filename in namelist master_model_nml.

 $transport_nml$ Date of Change: 2014-06-05 17654

• Changed namelist default for itype_hlimit from monotonous limiter (3) to positive definite limiter (4).

 $\begin{array}{c} nh_pzlev_nml \\ 2014\text{-}08\text{-}28 \end{array}$ Change: Date of Change:

Revision: 18795 • Removed namelist nh_pzlev_nml. Instead, each output namelist specifies its separate list of p_levels, h_levels, and i_levels.

 $\begin{array}{c} nonhydrostatic_nml \\ 2014\text{-}10\text{-}27 \end{array}$

Date of Change: 19670

• Removed namelist parameter l_nest_rcf in namelist nonhydrostatic_nml.

nonhydrostatic nml

2014-11-24 20073

• Removed namelist parameter iadv_rcf in namelist nonhydrostatic_nml. The number of dynamics substeps per advective step are now specified via ndyn_substeps. The meaning of run_nml:dtime has changed and denotes the advective time step.

 $20\overline{1}5-03-25$ Date of Change:

• Namelist parameter lzaxis_reference is deprecated and has no effect anymore. However, users are not forced to modify their scripts instantaneously: lzaxis_reference=.FALSE. is still a valid namelist setting, but it has no effect and a warning will be issued. lzaxis_reference finally removed in r24606.

limarea nml 2016-02-08 Date of Change: 26390 Revision:

• Namelist parameter dt_latbc has been removed. Its value is now identical to the namelist parameter dtime_latbc.

 $\begin{array}{ll} \textit{Change:} & \text{interpol_nml} \\ \textit{Date of Change:} & \textbf{2016-02-11} \\ \textit{Revision:} & \textbf{26423} \end{array}$

• Namelist parameter 1_intp_c21 is deprecated and has no effect anymore.

 $\begin{array}{ll} \textit{Change:} & & \text{lnd_nml} \\ \textit{Date of Change:} & & \textbf{2016-07-21} \\ \textit{Revision:} & & \textbf{28536} \end{array}$

• The numbering of the various options for sstice_mode has changed. Former option 2 became 3, former option 3 became 4, and former option 4 became 5. This was necessary, because a new option was introduced (option 2).

 $\begin{array}{ll} \textit{Change:} & \text{initicon_nml} \\ \textit{Date of Change:} & 2016\text{-}07\text{-}22 \\ \textit{Revision:} & 28556 \end{array}$

• Namelist parameter latbc_varnames_map_file has been moved to the namelist limarea_nml.

Change: transport_nml
Date of Change: 2016-09-22
Revision: 29339

• Namelist parameter niter_fct has been removed, since the functionality of iterative flux correction is no longer available.

Change: initicon_nml
Date of Change: 2016-10-07
Revision: 29484

• Namelist parameter l_sst_in has been removed. In case of init_mode=2 (IFSINIT), sea points are now initialized with SST, if provided in the input file. Otherwise sea points are initialized with the skin temperature. The possibility to use the skin temperature despite having the SST available has been dropped.

Change: initicon_nml
Date of Change: 2016-12-14

Revision: 62288ed77b2975182204a2ec6fa210a3fb1ad8a7

• Namelist parameters ana_varlist, ana_varlist_n2 have been renamed to check_ana(jg)%list, with jg indicating the patch ID.

 $\begin{array}{ll} \textit{Change:} & \text{initicon_nml} \\ \textit{Date of Change:} & 2017\text{-}01\text{-}27 \\ \textit{Revision:} & \text{ae1be66f} \end{array}$

• The default value of the namelist parameter num_prefetch_proc has been changed to 1, i.e. asynchronous read-in of lateral boundary data is now enabled.

 $\begin{array}{ll} \textit{Change:} & \text{interpol_nml} \\ \textit{Date of Change:} & \textbf{2017-01-31} \\ \textit{Revision:} & \text{e1c56104} \end{array}$

• With the introduction of the namelist parameter lreduced_nestbdry_stencil in the namelist interpol_nml the nest boundary points are no longer removed from lat-lon interpolation stencil by default.

 $\begin{array}{ll} \textit{Change:} & limarea_nml \\ \textit{Date of Change:} & 2017\text{-}03\text{-}14 \\ \textit{Revision:} & 631b731627 \end{array}$

• The namelist parameter nlev_latbc is now deprecated. Information about the vertical level number is taken directly from the input file.

echam phy nml / mpi phy nml Change:

Date of Change: 2017-04-19

 $icon-aes:icon-aes-mag\ 9ecee54f69108716308029d8d7aa0296c343a3c2$

• The namelist echam phy nml is replaced by the namelist mpi phy nml, which extends the control to multiple domains and introduces time control in terms of start and end date/time [sd prc,ed prc] and time interval dt prc for individual atmospheric processes prc.

mpi phy nml / echam phy nml and mpi sso nml / echam sso nml Change:

Date of Change: 2017 - 11 - 22

Revision: icon-aes:icon-aes-cfgnml f84219511329281d441d81923fe97ce1d7ecf007

• The namelists, configuration variables and related modules are renamed from ...mpi phy... to ...echam phy... because programmers felt that the acronym "mpi" for "Max Planck Institute" in relation to physics cannot be distinguished from "mpi" for "Message Passing Interface" as used in the parallelization.

 $\begin{array}{l} \mathbf{gw_hines_nml} \ / \ \mathbf{echam_gwd_nml} \\ \mathbf{2017\text{-}} \mathbf{11\text{-}} \mathbf{24} \end{array}$

 $icon-aes: icon-aes-cfgnml\ 699346b5d318d53be215e0b8e8b5ba8631d44c48$

• The namelists gw hines nml is replaced by the namelist echam gwd nml, which extends the control to multiple domains.

 $vdiff_nml / echam_vdf_nml$

2017-11-27

icon-aes:icon-aes- $cfgnml\ f1dec0a0d3b8ec506861975cd59a729fe43fdf8e$

• The namelists vdiff nml is replaced by the namelist echam vdf nml, which additionally includes tuning parameters for the total turbulent energy scheme, and extends the control to multiple domains.

Change: echam conv nml / echam cnv nml

Date of Change: $2017 - 1\overline{1} - 29$

Revision: icon-aes:icon-aes-cfgnml 099c40f88dbaae6c7cc79ea878e5862847ef7e27

• The namelists echam conv nml is replaced by the namelist echam cnv nml, which extends the control to multiple domains.

 $\begin{array}{c} echam_cloud_nml \ / \ echam_cld_nml \\ 2017\text{-}12\text{-}04 \end{array}$

Date of Change:

Revision: $icon-aes: icon-aes-cfgnml\ a facc 102 a 87 b 03 f 78 ff 47 ad 0 b 7 af 8f 348 bacef 6f$

• The namelists echam cloud nml is replaced by the namelist echam cld nml, which extends the control to multiple domains.

 $psrad_orbit_nml \ / \ radiation_nml \ / \ echam \ \ rad \ \ nml$ Change:

2017-12-12 Date of Change:

 $icon-aes: icon-aes-cfgnml\ 8da 087238b81183c337a3b1ae81d2b2e3dafdba8$ Revision:

• For controlling the input of ECHAM physics to the PSrad scheme, the namelists psrad orbit nml and radiation nml are replaced by the namelist echam rad nml, which extends the control to multiple domains. For controlling the input of NWP physics to the RRTMG radiation, the radiation nml namelist remains valid. The psrad orbit nml namelist, which is not used for RRTMG radiation, is deleted.