A számításelmélet alapjai 2. 4. gyakorlat

<u>Cél:</u> Predikátum logika nyelvének megismerése. Mondatok formalizálása.

<u>Fogalmak:</u> univerzum (alaphalmaz, individuum halmaz), individuum konstansok, - változók, függvények, term, predikátum, atomi formula, kvantorok, predikátum formula, prímformula, közvetlen részformula, prímkomponens, zárt és nyílt formulák, interpretáció, változókiértékelés, formula kiértékelés, elsőrendű értéktábla, formalizálás

Szorgalmi feladat megoldása

<u>Gyakorlat:</u> Formalizálja ítéletkalkulusban az alábbi szöveget és bizonyítsa, hogy az A1,A2 tautologikus következménye B!

A1: Ha elég ennivalót csomagoltam az útra, akkor nem leszek éhes.

A2: Ha nem leszek éhes, akkor jól érzem magam.

B: Tehát, ha nem érzem jól magam, akkor nem csomagoltam elég ennivalót az útra.

Ítéletváltozók:

P: elég ennivalót csomagoltam az útra; Q: éhes leszek; R: jól érzem magam;

A1: $P \rightarrow \neg Q$ A2: $\neg Q \rightarrow R$ B: $\neg R \rightarrow \neg P$

Igazság táblával: Minden esetben, amikor igazak a feltételek, akkor igaz az állítás is.

	0			,	0
P	Q	R	$P \rightarrow \neg Q$	$\neg Q \rightarrow R$	$\neg R \rightarrow \neg P$
i	i	i	h	i	i
i	i	h	h	i	h
i	h	i	i	i	i
i	h	h	i	h	h
h	i	i	i	i	i
h	i	h	i	i	i
h	h	i	i	i	i
h	h	h	i	h	i

<u>Feladat:</u> Válasszuk ki, hogy melyik formula nyílt, illetve melyik zárt! Jelölje, hogy melyik kvantor melyik változót köti! Karikázza be a szabad változókat!

1.	$\forall y \exists x \ (\ Q(x,y) \to \exists x \forall y \exists z \forall v (\ R(x,y,z,v) \land \neg \ \forall x Q(x,y) \)\)$	<u>zárt</u> / nyílt
2.	$\exists x \forall y Q(x,y) \to \exists x \neg \exists z \forall v R(x, y, z, v)$	zárt / <u>nyílt</u>
3.	$\neg \exists z \forall y Q(\mathbf{x}, y) \rightarrow \exists x (\forall y \exists z \forall v R(x, y, z, v) \land P(x))$	zárt / <u>nyílt</u>
4.	$\exists x \forall y \neg (Q(x,y) \rightarrow \exists x \neg \exists z \forall v R(x,y,z,v))$	<u>zárt</u> / nyílt
5.	$\neg \exists x \forall y Q(x,y) \rightarrow \exists x \exists z (\forall v R(x,y,z,v) \land P(v))$	zárt / <u>nyílt</u>

<u>Feladat:</u> Adott az alábbi formula egy L(P;f,a) formalizált nyelven, melynek (2;2,0) a típusa(szignatúrája).

$$\exists x \forall y (\neg P(y,x) \lor P(f(x,y),a))$$

a) Hány lehetséges interpretációja lehet ennek a nyelvnek az {1,2} individuum halmazon?

b)Az alábbi lehetséges interpretációban számítsuk ki a formula értékét!

$$P:<$$
 (kisebb reláció) , $f:$ minimum függvény, $a=1$

$$\exists x \forall y ((y \ge x) \lor (\min(x,y) \le 1))$$

x=1 estén $\forall y (y \ge 1)$ igaz, így ebben az interpretációban a formula igaz.

<u>Gyakorlat:</u> $L(P_1,P_2,P_3;f,a)$ egy elsőrendű nyelv. A típusa (2,1,2;1,0). Egy interpretációja pedig a következő:

 $D = \{1,2\}$ az alaphalmaz;

P₁ predikátumnak az egyenlőség,

P₂ predikátumnak a következő definíció:

$$P_2(1) = h$$
 és $P_2(2) = i$

 P_3 predikátum pedig a \leq reláció;

az f függvény legyen az identitás függvény, az a konstans legyen 1.

Írjuk fel az alábbi formulákat a fenti interpretációban, és értékeljük ki őket szabad változóik összes lehetséges behelyettesítésével. /A kiértékeléseket táblázatba is foglalhatjuk./

a) $P_2(f(f(x))$

b)
$$P_1(x,a) \rightarrow P_3(f(x),y) \wedge P_2(a)$$

c) $\forall x (P_2(x)) \rightarrow P_3(a,y)$

Formalizálás

Feladat: Formalizálja predikátum kalkulusban az alábbi szöveget!

Minden egyetemista becsületes.

János nem becsületes.

Tehát János nem egyetemista.

Alaphalmaz: emberek

Predikátumok:

B(x): igaz, ha x becsületes ember.

E(x): igaz, ha x egyetemista.

Konstans: Jánost jelöljük a-val.

Feltételek formalizálása:

A1:
$$\forall x (E(x) \rightarrow B(x))$$

A2:
$$\neg$$
B(a)

Állítás: $\neg E(a)$

Bizonyítás okoskodással:

A1-ből következik, hogy $E(a) \rightarrow B(a)$. Ha az utófeltétel hamis és az implikáció igaz, akkor az előfeltételnek hamisnak kell lenni, azaz $\neg E(a)$ igaz.

Gyakorlat: Formalizálja predikátum kalkulusban az alábbi szöveget!

Minden atléta erős.

Mindenki, aki erős és okos, az karrierre számíthat.

Péter atléta.

Péter okos.

Tehát Péter karrierre számíthat.

Elsőrendű logikai törvények:

- (a) ha x nem szabad változója A-nak $\forall xA \sim A$ és $\exists xA \sim A$,
- (b) $\forall x \forall y A \sim \forall y \forall x A \text{ és } \exists x \exists y A \sim \exists y \exists x A$,
- (c) $\neg \exists xA \sim \forall x \neg A \text{ és } \neg \forall xA \sim \exists x \neg A,$
- (d) ha x nem szabad változója A-nak

$$A \wedge \forall xB \sim \forall x(A \wedge B) \text{ és } A \wedge \exists xB \sim \exists x(A \wedge B),$$

$$A \lor \forall xB \sim \forall x(A \lor B) \text{ és } A \land \exists xB \sim \exists x(A \lor B),$$

$$A \to \forall xB \sim \forall x(A \to B) \text{ és } A \to \exists xB \sim \exists x(A \to B),$$

$$\forall xB \to A \sim \exists x(B \to A) \text{ és } \exists xB \to A \sim \forall x(B \to A),$$

(e) $\forall xA \land \forall xB \sim \forall x(A \land B)$ és $\exists xA \lor \exists xB \sim \exists x(A \lor B)$.