Data collection

Importing libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing dataset

In [2]: data=pd.read_csv(r"C:\Users\user\Downloads\iris.csv")
 data

Out[2]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa
	•••						
	145	146	6.7	3.0	5.2	2.3	Iris-virginica
	146	147	6.3	2.5	5.0	1.9	Iris-virginica
	147	148	6.5	3.0	5.2	2.0	Iris-virginica
	148	149	6.2	3.4	5.4	2.3	Iris-virginica
	149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

head

In [3]: # to display first 8 dataset values
 da=data.head(8)
 da

Out[3]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa

info

```
In [4]:
```

```
# to identify missing values
data.info()
```

```
RangeIndex: 150 entries, 0 to 149

Data columns (total 6 columns):

# Column Non-Null Count Dtype

0 Id 150 non-null int64
1 SepalLengthCm 150 non-null float64
```

<class 'pandas.core.frame.DataFrame'>

2 SepalWidthCm 150 non-null float64 3 PetalLengthCm 150 non-null float64 4 PetalWidthCm 150 non-null float64 5 Species 150 non-null object

dtypes: float64(4), int64(1), object(1)

memory usage: 7.2+ KB

describe

In [5]:

to display summary of the dataset
data.describe()

Out[5]:

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75 %	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

columns

```
In [6]:
           # to display headings of the dataset
           data.columns
Out[6]: Index(['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm',
                   'Species'],
                 dtype='object')
In [7]:
           a=data.dropna(axis=1)
                Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
Out[7]:
                                                                                        Species
            0
                 1
                                                                                0.2
                                5.1
                                                3.5
                                                                1.4
                                                                                      Iris-setosa
            1
                 2
                                4.9
                                                3.0
                                                                1.4
                                                                                0.2
                                                                                      Iris-setosa
            2
                 3
                                4.7
                                                3.2
                                                                1.3
                                                                                0.2
                                                                                      Iris-setosa
            3
                                4.6
                                                3.1
                                                                1.5
                                                                                0.2
                 4
                                                                                      Iris-setosa
                                5.0
                                                3.6
                                                                                0.2
                 5
                                                                1.4
                                                                                      Iris-setosa
                                                                                 ...
                                                 ...
          145 146
                                6.7
                                                3.0
                                                                5.2
                                                                                2.3 Iris-virginica
          146 147
                                6.3
                                                2.5
                                                                5.0
                                                                                1.9 Iris-virginica
                                6.5
          147 148
                                                3.0
                                                                5.2
                                                                                2.0 Iris-virginica
          148 149
                                6.2
                                                3.4
                                                                5.4
                                                                                2.3 Iris-virginica
          149 150
                                5.9
                                                3.0
                                                                5.1
                                                                                1.8 Iris-virginica
         150 rows × 6 columns
In [8]:
           a.columns
         Index(['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm',
                 'Species'],
dtype='object')
```

EDA and Visualization

```
In [9]: sns.pairplot(a)
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x1f5d904fd60>

distribution plot

```
In [10]: sns.displot(a["Id"])
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x1f5db0e5190>

correlation

Out[11]: <AxesSubplot:>

To train the model-Model Building

```
In [12]: x=a[['Id']] y=a['Id']
```

```
In [13]:
           # to split my dataset into training and test data
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [14]:
          from sklearn.linear_model import LinearRegression
          lr= LinearRegression()
          lr.fit(x_train,y_train)
Out[14]: LinearRegression()
In [15]:
          print(lr.intercept_)
          -5.684341886080802e-14
In [16]:
           coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
Out[16]:
             Co-efficient
          Id
                     1.0
In [17]:
           prediction=lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[17]: <matplotlib.collections.PathCollection at 0x1f5dc06a730>
          140
          120
          100
           80
           60
           40
           20
                                  60
                     20
                           40
                                        80
                                              100
                                                     120
                                                           140
In [18]:
          print(lr.score(x_test,y_test))
         1.0
In [19]:
          lr.score(x_train,y_train)
Out[19]: 1.0
```

Ridge regression

```
In [20]:
          from sklearn.linear_model import Ridge,Lasso
In [21]:
          rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
          rr.score(x_test,y_test)
         0.999999974838389
Out[21]:
In [22]:
          rr.score(x_train,y_train)
Out[22]: 0.999999975587197
         Lasso regression
In [23]:
          la=Lasso(alpha=10)
          la.fit(x_train,y_train)
          la.score(x train,y train)
Out[23]:
         0.9999730822246666
In [24]:
          la.score(x test,y test)
         0.999972256583328
Out[24]:
In [25]:
          from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[25]: ElasticNet()
In [26]:
          print(en.coef_)
         [0.99948131]
In [27]:
          print(en.intercept_)
         0.04028977606824924
In [28]:
          predict=en.predict(x_test)
In [29]:
          print(en.score(x_test,y_test))
```

0.9999997227097166