```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt

In [2]: #COLLECTING THE DATA
    dataset= ("G:/.shortcut-targets-by-id/lppkxhk1_ilqkagib3HrczZa5MYHb9N5V/BUA 500 Projec

In [3]: df= pd.read_csv(dataset)
    type(df)

Out[3]: pandas.core.frame.DataFrame

In [4]: #Original table to be cleaned
    df.head(20)
```

Out[4]:

	rank	global company	country	sales_billions	profit_billions	assets_billions	marketValue_billions
0	1	Berkshire Hathaway	United States	\$276.09 B	\$89.8 B	\$958.78 B	\$741.48 B
1	2	ICBC	China	\$208.13 B	\$54.03 B	\$5,518.51 B	\$214.43 B
2	3	Saudi Arabian Oil Company (Saudi Aramco)	Saudi Arabia	\$400.38 B	\$105.36 B	\$576.04 B	\$2,292.08 B
3	4	JPMorgan Chase	United States	\$124.54 B	\$42.12 B	\$3,954.69 B	\$374.45 B
4	5	China Construction Bank	China	\$202.07 B	\$46.89 B	\$4,746.95 B	\$181.32 B
5	6	Amazon	United States	\$469.82 B	\$33.36 B	\$420.55 B	\$1,468.4 B
6	7	Apple	United States	\$378.7 B	\$100.56 B	\$381.19 B	\$2,640.32 B
7	8	Agricultural Bank of China	China	\$181.42 B	\$37.38 B	\$4,561.05 B	\$133.38 B
8	9	Bank of America	United States	\$96.83 B	\$31 B	\$3,238.22 B	\$303.1 B
9	10	Toyota Motor	Japan	\$281.75 B	\$28.15 B	\$552.46 B	\$237.73 B
10	11	Alphabet	United States	\$257.49 B	\$76.03 B	\$359.27 B	\$1,581.72 B
11	12	Microsoft	United States	\$184.9 B	\$71.19 B	\$340.39 B	\$2,054.37 B
12	13	Bank of China	China	\$152.43 B	\$33.57 B	\$4,192.84 B	\$117.83 B
13	14	Samsung Group	South Korea	\$244.16 B	\$34.27 B	\$358.88 B	\$367.26 B
14	15	ExxonMobil	United States	\$280.51 B	\$23.04 B	\$338.92 B	\$359.73 B
15	16	Shell	United Kingdom	\$261.76 B	\$20.27 B	\$404.38 B	\$211.1 B
16	17	Ping An Insurance Group	China	\$181.37 B	\$15.74 B	\$1,587.11 B	\$121.69 B
17	18	Wells Fargo	United States	\$84.12 B	\$20.58 B	\$1,939.71 B	\$176.77 B
18	19	Verizon Communications	United States	\$134.35 B	\$21.52 B	\$366.6 B	\$218.02 B
19	20	AT&T	United States	\$163.03 B	\$17.33 B	\$551.62 B	\$141.79 B
							•

```
In [5]: # checking for missing data

# counting the number of missing values in each column
df_number= df.isnull().sum()
print(df_number)

# replacing the missing data with 0
df = df.fillna(0)

df.head(200)
```

rank
global company
country
sales_billions
profit_billions
assets_billions
marketValue_billions
dtype: int64

Out[5]:

	rank	global company	country	sales_billions	profit_billions	assets_billions	marketValue_billions
	0 1	Berkshire Hathaway	United States	\$276.09 B	\$89.8 B	\$958.78 B	\$741.48 B
	1 2	ICBC	China	\$208.13 B	\$54.03 B	\$5,518.51 B	\$214.43 B
	2 3	Saudi Arabian Oil Company (Saudi Aramco)	Saudi Arabia	\$400.38 B	\$105.36 B	\$576.04 B	\$2,292.08 B
	3 4	JPMorgan Chase	United States	\$124.54 B	\$42.12 B	\$3,954.69 B	\$374.45 B
	4 5	China Construction Bank	China	\$202.07 B	\$46.89 B	\$4,746.95 B	\$181.32 B
	•••						
19)5 195	Telefónica	Spain	\$46.42 B	\$9.4 B	\$124.2 B	\$29.44 B
19)6 197	China Vanke	China	\$71.42 B	\$3.5 B	\$304.19 B	\$27.92 B
19	97 198	NAB - National Australia Bank	Australia	\$15.76 B	\$4.78 B	\$669.03 B	\$77.24 B
19)8 199	Cathay Financial	Taiwan	\$34.46 B	\$4.99 B	\$418.7 B	\$28.9 B
19	99 200	Qualcomm	United States	\$36.04 B	\$9.99 B	\$42.82 B	\$149.68 B

200 rows × 7 columns

4

```
#CLEANING THE DATA
In [6]:
        # 1. define a function with what we need
        def clean_number(number):
            number= number[1:-2] # remove first and Last characters
            number= number.replace(",","") # remove commas
            number= float(number) #change from string to float
            number= round(number,1) #round to 1 decimal
            return (number)
        # 2. specify the columns to clean
        cols_to_clean=["sales_billions","profit_billions","assets_billions","marketValue_billi
        # 3. apply the clean_number function to the specified columns using apply()
        #df_cleaned is the name for the "new" cleaned dateset
        df_cleaned= df[cols_to_clean].apply(lambda col: col.apply(clean_number))
        # 4. combine the cleaned columns with the original dataframe
        df_cleaned= pd.concat([df.drop(cols_to_clean, axis=1), df_cleaned], axis=1)
```

٦	1.11	+ 1	7	
J	и	_	L /	٠.

	rank	global company	country	sales_billions	profit_billions	assets_billions	marketValue_billions
0	1	Berkshire Hathaway	United States	276.1	89.8	958.8	741.5
1	2	ICBC	China	208.1	54.0	5518.5	214.4
2	3	Saudi Arabian Oil Company (Saudi Aramco)	Saudi Arabia	400.4	105.4	576.0	2292.1
3	4	JPMorgan Chase	United States	124.5	42.1	3954.7	374.4
4	5	China Construction Bank	China	202.1	46.9	4746.9	181.3
•••							
195	195	Telefónica	Spain	46.4	9.4	124.2	29.4
196	197	China Vanke	China	71.4	3.5	304.2	27.9
197	198	NAB - National Australia Bank	Australia	15.8	4.8	669.0	77.2
198	199	Cathay Financial	Taiwan	34.5	5.0	418.7	28.9
199	200	Qualcomm	United States	36.0	10.0	42.8	149.7

200 rows × 7 columns

In [8]: #PREPARING DATA FOR ANALYSIS

#Adding the financial ratios to the table

#Adding a new column / calculation of the ratio/ Rounding the float number to 1 decimal
df_cleaned["Profit_margin%"]= ((df_cleaned["profit_billions"]/df_cleaned["sales_billions"]/df_cleaned["sales_billions"]/df_cleaned["sales_billions"]/df_cleaned["sales_billions"]/df_cleaned["assets_billions"]/df_cl

df_cleaned.head(200)

Out[8]:			global				t- k:II:		ъ.
		rank	company	country	sales_billions	profit_billions	assets_billions	marketValue_billions	Pi
	0	1	Berkshire Hathaway	United States	276.1	89.8	958.8	741.5	
	1	2	ICBC	China	208.1	54.0	5518.5	214.4	
	2	3	Saudi Arabian Oil Company (Saudi Aramco)	Saudi Arabia	400.4	105.4	576.0	2292.1	
	3	4	JPMorgan Chase	United States	124.5	42.1	3954.7	374.4	
	4	5	China Construction Bank	China	202.1	46.9	4746.9	181.3	
	•••								
	195	195	Telefónica	Spain	46.4	9.4	124.2	29.4	
	196	197	China Vanke	China	71.4	3.5	304.2	27.9	
	197	198	NAB - National Australia Bank	Australia	15.8	4.8	669.0	77.2	
	198	199	Cathay Financial	Taiwan	34.5	5.0	418.7	28.9	
	199	200	Qualcomm	United States	36.0	10.0	42.8	149.7	

200 rows × 10 columns

→

In [9]: #ANALYZE THE DATA

#Definining the total market cap for the 200 largest companies in the world.
total_marketcap = df_cleaned['marketValue_billions'].sum()
print("The total market capitalization of the 200 largest companies in the US is \$", t

The total market capitalization of the 200 largest companies in the US is \$ 36006.0 b illions

In [10]: #Creating a group (groupby) and sorting it in descending
#We are defining here how much participation in the 200 largest companies in the world
countries= (df_cleaned.groupby("country")["marketValue_billions"].sum().sort_values(as
countries = countries.head(10)
countries.head(10)

```
country
Out[10]:
         United States
                            21578.7
          China
                             2321.6
          Saudi Arabia
                             2292.1
         United Kingdom
                             1178.0
          Switzerland
                             1161.4
          Japan
                             1036.1
          France
                              900.5
          Germany
                              798.1
          Canada
                              697.0
          Taiwan
                              603.1
         Name: marketValue_billions, dtype: float64
```

In [11]: countries.plot (x="country",y="marketValue_billions", kind="pie",autopct='%1.0f%%')
 plt.ylabel("% of total market cap")
#The US has 66% of the total market in the top 10 countries with the highest market ca

Out[11]: Text(0, 0.5, '% of total market cap')

In [12]: #Creating a new table with the top 20 companies
 df_top20 = df_cleaned.head(20)
 df_top20.head(20)

Out[12]:

	rank	global company	country	sales_billions	profit_billions	assets_billions	marketValue_billions
0	1	Berkshire Hathaway	United States	276.1	89.8	958.8	741.5
1	2	ICBC	China	208.1	54.0	5518.5	214.4
2	3	Saudi Arabian Oil Company (Saudi Aramco)	Saudi Arabia	400.4	105.4	576.0	2292.1
3	4	JPMorgan Chase	United States	124.5	42.1	3954.7	374.4
4	5	China Construction Bank	China	202.1	46.9	4746.9	181.3
5	6	Amazon	United States	469.8	33.4	420.6	1468.4
6	7	Apple	United States	378.7	100.6	381.2	2640.3
7	8	Agricultural Bank of China	China	181.4	37.4	4561.1	133.4
8	9	Bank of America	United States	96.8	31.0	3238.2	303.1
9	10	Toyota Motor	Japan	281.8	28.1	552.5	237.7
10	11	Alphabet	United States	257.5	76.0	359.3	1581.7
11	12	Microsoft	United States	184.9	71.2	340.4	2054.4
12	13	Bank of China	China	152.4	33.6	4192.8	117.8
13	14	Samsung Group	South Korea	244.2	34.3	358.9	367.3
14	15	ExxonMobil	United States	280.5	23.0	338.9	359.7
15	16	Shell	United Kingdom	261.8	20.3	404.4	211.1
16	17	Ping An Insurance Group	China	181.4	15.7	1587.1	121.7
17	18	Wells Fargo	United States	84.1	20.6	1939.7	176.8
18	19	Verizon Communications	United States	134.3	21.5	366.6	218.0
19	20	AT&T	United States	163.0	17.3	551.6	141.8
							•

```
In [13]: #Visualization of the ratios of the top 20 companies in the Forbes 2022 list.
df_top20.plot(x="global company", y=["Profit_margin%", "Price_to_sales", "return_on_as
```

Out[13]: <AxesSubplot:xlabel='global company'>


```
In [14]: #Creating a new table for the bottom 20 companies
    df_bottom20 = df_cleaned.tail(20)
    df_bottom20.head(20)
```

Out[14]:

	rank	global company	country	sales_billions	profit_billions	assets_billions	marketValue_billion
180	181	Banco Bradesco	Brazil	28.3	4.1	296.9	43.
181	182	Accenture	Ireland	56.7	6.4	44.3	196.
182	183	ING Group	Netherlands	21.5	5.7	1081.8	39.
183	184	Honeywell International	United States	34.4	5.5	64.5	130.
184	185	Mizuho Financial	Japan	26.8	5.4	1957.6	31.
185	186	Linde	United Kingdom	30.8	3.8	81.6	157.
186	187	ArcelorMittal	Luxembourg	76.7	15.0	90.5	29.
187	188	Canadian Imperial Bank	Canada	18.7	5.3	677.5	51.
188	189	Poly Developments & Holdings Group	China	42.9	4.2	219.7	32.
189	190	Micron Technology	United States	31.2	9.0	63.7	77.
190	191	ANZ	Australia	18.4	4.6	707.1	56.
191	192	Fubon Financial	Taiwan	33.2	5.2	378.8	30.
192	193	China Telecom	China	68.2	4.0	121.1	35.
193	194	HCA Healthcare	United States	59.7	6.8	52.2	63.
194	195	Dow	United States	58.4	6.8	63.3	50.
195	195	Telefónica	Spain	46.4	9.4	124.2	29.
196	197	China Vanke	China	71.4	3.5	304.2	27.
197	198	NAB - National Australia Bank	Australia	15.8	4.8	669.0	77.
198	199	Cathay Financial	Taiwan	34.5	5.0	418.7	28.
199	200	Qualcomm	United States	36.0	10.0	42.8	149.
							•

In [15]: #Visualization of the ratios of the top 20 companies in the Forbes 2022 list.
df_bottom20.plot(x="global company", y=["Profit_margin%", "Price_to_sales", "return_or

Out[15]: <AxesSubplot:xlabel='global company'>


```
In [16]: #Visualization of the ratios of the top 20 companies in the Forbes 2022 list.
#Comparing companies in the same industry (IT, Internet, Software & Services) Alphabet

df_Alp_Micro.head()
```

Out[16]:		rank	global company	country	sales_billions	profit_billions	assets_billions	marketValue_billions	Profit_
	10	11	Alphabet	United States	257.5	76.0	359.3	1581.7	
	11	12	Microsoft	United States	184.9	71.2	340.4	2054.4	

```
In [17]: ax = df_Alp_Micro.plot(x='global company', y=["Profit_margin%", "Price_to_sales", "ret

#displaying the values on the chart
for i, v in enumerate(df_Alp_Micro["Profit_margin%"]):
    ax.text(i, v + 1, str(v), ha='right', va='bottom')
for i, v in enumerate(df_Alp_Micro["Price_to_sales"]):
    ax.text(i, v + 1, str(v), ha="left", va='bottom')
for i, v in enumerate(df_Alp_Micro["return_on_assets%"]):
    ax.text(i, v + 1, str(v), ha='left', va='bottom')
```



```
In [18]: #Visualization of the ratios of the banking companies JP Morgan and Bank of America.

df_JP_BoA= df_top20.loc[[3,8]]

df_JP_BoA.head()
```

Out[18]:		rank	global company	country	sales_billions	profit_billions	assets_billions	marketValue_billions	Profit_r
	3	4	JPMorgan Chase	United States	124.5	42.1	3954.7	374.4	
	8	9	Bank of America	United States	96.8	31.0	3238.2	303.1	

```
In [19]: ax = df_JP_BoA.plot(x='global company', y=["Profit_margin%", "Price_to_sales", "return
#displaying the values on the chart

for i, v in enumerate(df_JP_BoA["Profit_margin%"]):
    ax.text(i, v + 1, str(v), ha='left', va='top')
for i, v in enumerate(df_JP_BoA["Price_to_sales"]):
    ax.text(i, v + 1, str(v), ha="right", va='top')
for i, v in enumerate(df_JP_BoA["return_on_assets%"]):
    ax.text(i, v + 1, str(v), ha='left', va='bottom')
```



```
In [20]: #Visualization of the ratios of the Telecommunications Services companies on the top 2
#AT&T, Telefonica and China Telecom.

df_Tele= df_cleaned.loc[[19,195,192]]
```

df_Tele.head()

Out[20]:		rank	global company	country	sales_billions	profit_billions	assets_billions	marketValue_billions	Profi
	19	20	AT&T	United States	163.0	17.3	551.6	141.8	
	195	195	Telefónica	Spain	46.4	9.4	124.2	29.4	
	192	193	China Telecom	China	68.2	4.0	121.1	35.2	

In [29]: ax = df_Tele.plot(x='global company', y=["profit_billions","Profit_margin%", "Price_to

In []:
In []:
In []:
In []:

In []:	
In []:	
In []:	