Encryptions in Different Network Layers

- Application Layer
 - Secure Email
- Transport Layer
 - TLS
- Network Layer
 - IP SEC
- Physical Layer
 - IEEE 802.11 WiFi Security
 - 4G/5G Security

Why do we need security in different layers?

Mutual Authentication and Shared Symmetric Key Derivation: Brief History

- I.Wired Equivalent Privacy (**WEP**): Designed in 1999, but attacked and hacked in 2001
- 2.WiFi Protected Access (WPAI): Developed in 2003, introducing message integrity checks and avoid attacks that allowed a user to infer encryption keys after observing the stream of encrypted messages for a period of time
- 3.WPA2 (2004): Mandated the use of AES
- 4.WPA3 (2018): Solve an attack to WPA2 when we reuse a nounce.

WEP design goals

- Symmetric key crypto
 - confidentiality
 - end host authorization
 - data integrity

- given encrypted packet and key, can decrypt; can continue to decrypt packets when preceding packet was lost (unlike Cipher Block Chaining (CBC) in block ciphers)
- Efficient
 - implementable in hardware or software

End-point authentication w/ nonce

Nonce: number (R) used only once —in-a-lifetime

How to prove Alice "live": Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

WEP authentication

Notes:

- not all APs do it, even if WEP is being used
- * AP indicates if authentication is necessary in beacon frame
- done before association

WEP – Access Control

- > Before association, the STA needs to authenticate itself to the AP
- > Authentication is based on a simple challenge-response protocol:
 - \diamond STA \rightarrow AP: authenticate request
 - \Diamond AP \rightarrow STA: authenticate challenge (r) // r is 128 bits long
 - \diamond STA \rightarrow AP: authenticate response $(e_K(r))$
 - ♦ AP → STA: authenticate success/failure
- ➤ Once authenticated, the STA can send an association request, and the AP will respond with an association response
- > If authentication fails, no association is possible

Review: Symmetric Stream Ciphers

- combine each byte of keystream with byte of plaintext to get ciphertext:
 - $m(i) = i^{th}$ unit of message
 - $ks(i) = i^{th}$ unit of keystream
 - $-c(i) = i^{th}$ unit of ciphertext
 - $-c(i) = ks(i) \oplus m(i)$ (\oplus = exclusive or)
 - $m(i) = ks(i) \oplus c(i)$
- WEP uses RC4

Stream cipher and packet independence

- Recall design goal: each packet separately encrypted
- If for frame n+1, use keystream from where we left off for frame n, then each frame is not separately encrypted
 - need to know where we left off for packet n
- **WEP approach:** initialize keystream with key + new IV for each packet:

WEP Encryption (I)

- Sender calculates Integrity Check Value (ICV) over data
 - Four-byte hash/CRC for data integrity
- Each side has 40-bit shared key
- Sender creates 24-bit initialization vector (IV), appends to key: gives 64-bit key
- Sender also appends keyID (in 8-bit field)
- 64-bit key inputted into pseudo random number generator to get keystream
- Data in frame + ICV is encrypted with RC4:
 - B\bytes of keystream are XORed with bytes of data & ICV
 - IV & keyID are appended to encrypted data to create payload
 - payload inserted into 802.11 frame

WEP Encryption (2)

Note: New IV for each frame

WEP decryption overview

- Receiver extracts IV
- Inputs IV, shared secret key into pseudo random generator, gets keystream
- XORs keystream with encrypted data to decrypt data + ICV
- Verifies integrity of data with ICV
 - Note: message integrity approach used here is different from MAC (message authentication code) and signatures (using PKI).

WEP – Message Confidentiality and Integrity

Breaking 802.11 WEP encryption

security hole:

- 24-bit IV, one IV per frame, → IV's eventually reused
- IV transmitted in plaintext → IV reuse detected

attack:

- Trudy causes Alice to encrypt known plaintext d₁ d₂ d₃ d₄ ...
- Trudy sees: $c_i = d_i \times OR k_i^{IV}$
- Trudy knows c_i and d_i, so can compute k_iIV
- Trudy knows encrypting key sequence $k_1^{IV} k_2^{IV} k_3^{IV} ...$
- Next time IV is used, Trudy can decrypt!

802. I I i: Improved Security

- Numerous (stronger) forms of encryption possible
- Provides key distribution
- Uses authentication server separate from access point

802. I I: Authentication, Encryption

Arriving mobile must:

- associate with access point: (establish) communication over wireless link
- authenticate to network

802. I Ii: Authentication, Encryption

- discovery of security capabilities:
 - AP advertises its presence, forms of authentication and encryption provided
 - device requests specific forms authentication, encryption desired

although device, AP already exchanging messages, device not yet authenticated, does not have encryption keys

802. I I: Authentication, Encryption

- 2 mutual authentication and shared symmetric key derivation:
 - [AS, mobile] already have shared common secret (e.g., password)
 - [AS, mobile] use shared secret, nonces (prevent relay attacks), cryptographic hashing (ensure message integrity) to authenticating each other
 - [AS, mobile] derive symmetric session key

802.11:WPA3 handshake

- ^aAS generates *Nonce_{AS}*, sends to mobile
- **b**mobile receives Nonce_{AS}
 - generates Nonce_M
 - generates symmetric shared session key K_{M-AP} using $Nonce_{AS}$, $Nonce_{M}$, MAC addresses of mobile and AS, and initial shared secret
 - sends Nonce_M, and HMAC-signed value using Nonce_{AS} and initial shared secret
- \bigcirc AS derives symmetric shared session key K_{M-AP}

802. I I: authentication, encryption

- 3 shared symmetric session key distribution (e.g., for AES encryption)
 - same key derived at [mobile, AS]
 - AS informs AP of the shared symmetric session

802. I I: authentication, encryption

- 4 encrypted communication between mobile and remote host via AP
 - same key derived at mobile, AS
 - AS informs AP of the shared symmetric session

802. I I: authentication, encryption

 Extensible Authentication Protocol (EAP) [RFC 3748] defines end-to-end request/response protocol between mobile device, AS

Encryptions in Different Network Layers

- Application Layer
 - Secure Email
- Transport Layer
 - TLS
- Network Layer
 - IP SEC
- Physical Layer
 - IEEE 802.11 WiFi Security
 - 4G/5G Security

Why do we need security in different layers?

- arriving mobile must:
 - associate with BS: (establish) communication over 4G wireless link
 - authenticate itself to network, and authenticate network
- notable differences from WiFi
 - mobile's SIMcard provides global identity, contains shared keys
 - services in visited network depend on (paid) service subscription in home network

- mobile, BS use derived session key K_{BS-M} to encrypt communications over 4G link
- MME in visited network + HHS in home network, together play role of WiFi AS
 - ultimate authenticator is HSS
 - trust and business relationship between visited and home networks

- (a) authentication request to home network HSS
 - mobile sends attach message (containing its IMSI, visited network info) relayed from BS to visited MME to home HHS
 - IMSI identifies mobile's home network

- b HSS use shared-in-advance secret key, K_{HSS-M}, to derive authentication token, *auth_token*, and expected authentication response token, *xres_{HSS}*
 - $auth_token$ contains info encrypted by HSS using K_{HSS-M} , allowing mobile to know that whoever computed $auth_token$ knows shared-in-advance secret
 - mobile has authenticated network
 - visited HSS keeps xres_{HSS} for later use

- © authentication response from mobile:
 - mobile computes res_M using its secret key to make same cryptographic calculation that HSS made to compute $xres_{HSS}$ and sends res_M to MME

- d mobile is authenticated by network:
 - MME compares mobile-computed value of res_M with the HSS-computed value of $xres_{HSS}$. If they match, mobile is authenticated! (why?)
 - MME informs BS that mobile is authenticated, generates keys for BS

Authentication, encryption: from 4G to 5G

- 4G: MME in visited network makes authentication decision
- 5G: home network provides authentication decision
 - visited MME plays "middleman" role but can still reject
- 4G: uses shared-in-advance keys
- 5G: keys not shared in advance for IoT
- 4G: device IMSI transmitted in cleartext to BS
- 5G: public key crypto used to encrypt IMSI