Exercises in Foundations in Representation Theory

Exercise Sheet 3

Jendrik Stelzner

Exercise 1.

We define a category \mathcal{C} whose objects are given by $\mathrm{Ob}(\mathcal{C}) = \mathbb{Z}_{\geq 0}$ and where for any two nonnegative integers $n, m \in \mathbb{Z}_{\geq 0}$ the morphism set $\mathcal{C}(n, m)$ is given by the matrix space

$$C(n,m) = M(m \times n, k)$$
.

The compositions of morphisms in \mathcal{C} is the usual matrix multiplication, which is associative. The identity of an object $n \in \mathbb{Z}_{\geq 0}$ is given by the $(n \times n)$ -identity matrix I_n .

We define a functor $F: \mathcal{C} \to k$ -mod by mapping any nonnegative integer $n \in \mathbb{Z}_{\geq 0}$ to the k-vector space $F(n) = k^n$, and mapping any matrix $A \in M(m \times n, k)$ to the k-linear map

$$F(A): k^n \to k^m, \quad x \mapsto Ax.$$

We know from linear algebra that F is both fully faithful and essentially surjective, and hence an equivalence of categories.

Exercise 2.

We have for every k-vector space V bijections

- $\{G$ -representations on $V\}$
- $= \{ \text{group homomorphisms } G \to GL(V) \}$
- = {group homomorphisms $G \to \operatorname{End}_k(V)^{\times}$ }
- $\cong \{k\text{-algebra homomorphisms } k[G] \to \operatorname{End}_k(V)\}$
- $\cong \{k[G]\text{-module structures on }V\},\$

where we use the adjunction $k[-] \dashv (-)^{\times}$. So we can regard every representation (V, ρ) of G over k as an k[G]-module via

$$\sum_{g \in G} a_g g \cdot v = \sum_{g \in G} a_g \rho(g)(v)$$

for all $\sum_{g \in G} a_g g \in k[G]$ and all $v \in V$; we can conversely regard every k[G]-modules V as a representation (V, ρ) of G over k via

$$\rho(g) \colon V \to V$$
, $v \mapsto g \cdot v$

for all $g \in G \subseteq k[G]$ and all $v \in V$. These two constructions are moreover mutually inverse.

Let (V, ρ) and (W, σ) be two representations of G over k and let $f \colon V \to W$ be a k-linear map. Then

 $f \text{ is a homomorphisms of representations} \\ \iff f(\rho(g)(v)) = \rho(g)(f(v)) \text{ for all } g \in G, \ v \in V \\ \iff f(g \cdot v) = g \cdot f(v) \text{ for all } g \in G, \ v \in V \\ \iff f(a \cdot v) = a \cdot f(v) \text{ for all } a \in k[G], \ v \in V \\ \iff f \text{ is a homomorphism of } k[G]\text{-modules} \,.$

This shows altogether that the categories $\mathbf{Rep}_k(G)$ and k[G]-Mod are isomorphic, and therefore in particular equivalent.

Exercise 3.

We denote the given category by \mathcal{G} .

(i)

A G-set X consists of a set X and for every $g \in G$ a map $X_g \colon X \to X$, in such a way that $X_e = \mathrm{id}_X$ and $X_{g_1g_2} = X_{g_1} \circ X_{g_2}$ for all $g_1, g_2 \in G$. A functor $F \colon \mathcal{G} \to \mathbf{Set}$ consists of a single set F(*) and for every $g \in \mathcal{G}(*,*) = G$ a map $F(g) \colon F(*) \to F(*)$, in such a way that $F(e) = \mathrm{id}_X$ and $F(g_1g_2) = F(g_1)F(g_2)$ for all $g_1, g_2 \in G$. We see by setting X = F(*) and $X_g = F(g)$ that both constructs consist of precisely the same data. This shows that a G-set X is the same as a functor $F \colon \mathcal{G} \to \mathbf{Set}$.

Let X and X' be two G-sets with corresponding functors $F, F' \colon \mathcal{G} \to \mathbf{Set}$, and let $f \colon X \to X'$ be a map. Then

f is a homomorphism of G-sets $\iff f(gx) = g(f(x))$ for all $g \in G$, $x \in X$ $\iff f \circ F(g) = F'(g) \circ f$ for every $g \in G$ $\iff f \colon F(*) \to F'(*)$ defines a natural transformation $F \to F'$

This altogether shows that the category G-**Set** is isomorphic to the functor category $\operatorname{Fun}(\mathcal{G}, \operatorname{\mathbf{Set}})$, and therefore in particular equivalent to it.

(ii)

The G-set X which corresponds to the covariant functor $h^*: \mathcal{G} \to \mathbf{Set}$ is given by the set $X = h^*(*) = \mathcal{G}(*, *) = G$, and the action of $g \in G$ on $x \in G$ is given by

$$gx = h^*(g)(x) = g_*(x) = g \circ x = gx$$
.

The G-set X is therefore just the regular left G-set, i.e. the group G acting on itself by left multiplication.

(iii)

Let X be the left regular G-set, as before. We find that

$$\operatorname{End}_{G\operatorname{-\mathbf{Set}}}(X) = (G\operatorname{-\mathbf{Set}})(X,X) \cong \operatorname{\mathbf{Fun}}(G\operatorname{-\mathbf{Set}},\operatorname{\mathbf{Set}})(h^*,h^*) \cong h^*(*) = \mathcal{G}(*,*) = G.$$

Under this bijection, the group element $g \in G$ corresponds the the endomorphism of G-sets $X \to X$ which is given by right multiplication with g. Thus the Yoneda lemma tells us that every endomorphism of X is given by right multiplication with a unique element $g \in G$. Moreover, the explicit description of the bijection

$$\operatorname{Fun}(G\operatorname{-Set},\operatorname{Set})(h^*,h^*) \to h^*(*), \quad \eta \mapsto \eta_*(*)$$

tells us that for every endomorphism of G-sets $\varphi \colon X \to X$, the corresponding group element $g \in G$ is given by $g = \varphi(e)$.

Exercise 4.

We convince ourselves that K is indeed a category:

For any two objects (A, B, h) and (A', B', h') of the proposed category \mathcal{K} , the collection of morphisms $(A, B, h) \to (A', B', h')$ is a subset of $\mathcal{A}(A, A') \times \mathcal{B}(B, B')$, and is hence again a set (and not a proper class).

The composition of morphisms in \mathcal{K} is well-defined: If $(f,g):(A,B,h)\to (A',B',h')$ and $(f',g'):(A',B',h')\to (A'',B'',h'')$ are two morphisms then in the diagram

$$S(A) \xrightarrow{h} T(B) \xrightarrow{S(f' \circ f)} S(A') \xrightarrow{h'} T(B') \xrightarrow{T(g' \circ g)} T(g' \circ g)$$

$$S(f') \downarrow \qquad \qquad \downarrow T(g') \xrightarrow{T(g')} S(A'') \xrightarrow{h''} T(B'') \leftarrow$$

both squares and both triangles commute; from this it follows that the outer square also commutes. That the composition in \mathcal{K} is associative follows from the associativity of the compositions in \mathcal{A} and \mathcal{B} .

For every object (A, B, h) of \mathcal{K} , the morphism $(\mathrm{id}_A, \mathrm{id}_B) : (A, B, h) \to (A, B, h)$ is the identity of (A, B, h) in \mathcal{K} as it holds for all morphisms $(f', g') : (A', B', h') \to (A, B, h)$ and all morphisms $(f'', g'') : (A, B, h) \to (A'', B'', h'')$ that

$$(\mathrm{id}_A,\mathrm{id}_B)\circ(f',g')=(\mathrm{id}_A\circ f',\mathrm{id}_B\circ g')=(f',g')$$

and

$$(f'',g'') \circ (\mathrm{id}_A,\mathrm{id}_B) = (f'' \circ \mathrm{id}_A,g'' \circ \mathrm{id}_B) = (f'',g'').$$

(i)

A functor $S: 1 \to \mathcal{C}$ is the same as an object $X \in \mathrm{Ob}(\mathcal{C})$ through the assignment X = S(*). An object of the comma category $\mathcal{K} = (S, \mathrm{Id}_{\mathcal{C}})$ is therefore the same as a tupel (Y, f) consisting of an object $Y \in \mathrm{Ob}(\mathcal{C})$ and a morphisms $f: X \to Y$. A morphisms $g: (Y, f) \to (Y', f')$ is then a morphisms $g: Y \to Y$ with $g \circ f = f'$, i.e. such that the triangle

commutes. The given comma category \mathcal{K} is therefore (isomorphic to) the under-X category.

(ii)

The objects of the given comma category $\mathcal{K} = (\mathrm{Id}_{\mathcal{C}}, \mathrm{Id}_{\mathcal{C}})$ are tripels (X, X', f) consisting of two objects $X, X' \in \mathrm{Ob}(\mathcal{C})$ and a morphisms $f \colon X \to X'$ between them. We can therefore identify the objects of \mathcal{K} with the morphisms in \mathcal{C} . For any two morphisms $(X \xrightarrow{f} X')$ and $(Y \xrightarrow{g} Y')$, a morphisms $f \to f'$ in \mathcal{K} is then a pair (h, h') of morphisms $h \colon X \to Y$ and $h' \colon X' \to Y'$ which make the square

$$X \xrightarrow{f} X'$$

$$\downarrow h \qquad \qquad \downarrow h'$$

$$Y \xrightarrow{g} Y'$$

commute. The given comma category $\mathcal K$ is therefore (isomorphic to) the morphism category of $\mathcal C.$

(iii)

A functor $S: 1 \to \mathbf{Grp}$ is again the same as choosing an object $S(*) \in \mathbf{Grp}$, i.e. choosing a group G := S(*). The objects of the given comma category $\mathcal{K} = (S, (-)^{\times})$ can therefore be identified with the pairs (A, φ) consisting of a k-algebra A and a

group homomorphism $\varphi \colon A^{\times} \to G$. A morphism $f \colon (A, \varphi) \to (B, \psi)$ is then an algebra homomorphism $f \colon A \to B$ which makes the triangle

commute. By using the adjunction $k[-] \vdash (-)^{\times}$ we may further identify the given comma category $\mathcal K$ with the under-k[G] category, i.e. the category whose objects are pairs (A,f) consisting of a k-algebra A and an algebra homomorphism $f \colon k[G] \to A$, and in which a morphism $g \colon (A,f) \to (A',f')$ is an algebra homomorphism $g \colon A \to A'$ which makes the triangle

commute.