



#### **QUANTITATIVE INVESTMENT MANAGEMENT**

**LECTURE 9** 

**Bond Pricing with Binomial Trees** 

#### J P Singh

**Department of Management Studies** 



### VALUING AN OPTION-FREE BOND WITH THE BINOMIAL MODEL

7% annual coupon bond has two years maturity. The interest rate tree is shown in the adjacent figure. Fill in the tree and calculate the value of the bond today.





#### **SOLUTION**

# Consider the value of the bond at the upper node for Period

$$\frac{1(V_{1,U}): V_{1,U} = \frac{1}{2} \left[ \frac{\$100 + \$7}{1.071826} + \frac{\$100 + \$7}{1.071826} \right] = \$99.830$$

# Similarly, the value of the bond at the lower node for Period

$$\frac{1(V_{1,L})\text{is: }V_{1,L} = \frac{1}{2} \left[ \frac{\$100 + \$7}{1.053210} + \frac{\$100 + \$7}{1.053210} \right] = \$101.594$$







• Now calculate  $V_0$ , the current value of the bond at Node 0.

• 
$$V_0 = \frac{1}{2} \times \left[ \frac{\$99.830 + \$7}{1.045749} + \frac{\$101.594 + \$7}{1.045749} \right] = 102.999$$



#### SHORT-CUT CALCULATIONS IN THIS EXAMPLE

$$V_{1,U} = \frac{\$100 + \$7}{1,071826} = \$99.830$$

$$V_{1,L} = \frac{\$100 + \$7}{1.053210} = \$101.594$$

$$V_{0} = \left[ \left( \frac{\$99.830 + \$101.594}{2} \right) + \$7 \right] \times \left[ \frac{1}{1.045749} \right]$$

$$= 102.999$$





# **CALIBRATING A BINOMIAL TREE**

# **CALIBRATING A BINOMIAL TREE**

- In practice, the interest rate tree is usually generated using specialized computer software. The underlying process conforms to three rules:
- The interest rate tree should generate arbitrage-free values for the benchmark security.
- This means that the value of benchmark bonds produced by the interest rate tree must be equal to their market price, which excludes arbitrage opportunities.



- This requirement is very important because without it, the model will not properly price more complex callable and puttable securities, which is the intended purpose of the model.
- As stated earlier, adjacent forward rates (for the same period) are  $e^{2\sigma}$  apart.
- Hence, knowing one of the forward rates for a particular nodal period and the interest rate volatility allows us to compute the other forward rates for that period in the tree.

• The middle forward rate (or mid-point in case of even number of rates) in a period is set approximately equal to the implied (from the benchmark spot rate curve) one-period forward rate for that period.

### **EXAMPLE**

X has collected the following information on the par rate curve. It is required to:

- (i) calculate the arbitrage free implied forward rates.
- (ii) generate a binomial interest rate tree consistent with this data and an assumed volatility of 20% given that  $i_{1/l} = 5.7883\%$ .

| Maturity | Par Rate |
|----------|----------|
| 1        | 3%       |
| 2        | 4%       |
| 3        | 5%       |



# **SOLUTION**

- To generate the tree, we need to compute the forward rate for various initiation points and 1year maturities.
- For this purpose, we need the various spot rates.

• For 
$$S_{01}$$
, we have:  $100 = \frac{103}{1 + S_{01}}$  or  $S_{01} = 3\%$ 

• For 
$$S_{02}$$
, we have:  $100 = \frac{4}{1+S_{01}} + \frac{104}{(1+S_{02})^2}$ 

• = 
$$\frac{4}{1+0.03} + \frac{104}{(1+S_{02})^2}$$
 or  $S_{02} = 4.02\%$ 

• Similarly,  $S_{03} = 5.069\%$ 



Implied arbitrage free one-year forward rates:

$$f_{01} = S_{01} = 3\%$$

$$f_{12} = \frac{(1 + S_{02})^2}{(1 + S_{01})} - 1 = \frac{(1 + 0.0402)^2}{(1 + 0.03)} - 1$$

$$= 5.05\%$$

$$f_{23} = \frac{(1 + S_{03})^3}{(1 + S_{02})^2} - 1 = \frac{(1 + 0.05069)^3}{(1 + 0.0402)^2} - 1$$

$$= 7.20\%$$



## TREE CALIBRATION

- Given that  $i_{1,U}=5.7883\%$ ,  $\sigma=20\%$  so that:  $i_{1,L}=5.7883\% \times e^{-0.40}=3.8800\%$ .
- For the rates  $i_{2,UU}$ ,  $i_{2,UL}$ ,  $i_{2,LL}$  no information other than volatility is given.
- We make the assumptions that (i) the tree is recombinant and (ii) the implied forward rate  $f_{23}=7.20\%$  corresponds to the middle rate  $i_{2.UL}=i_{2.LU}=7.20\%$ . Then,
- $i_{2,LL}=i_{2,UL}e^{-2\sigma}=(0.072)e^{-0.40}=0.0483$  or 4.83%
- $i_{2.UU} = i_{2.UL}e^{+2\sigma} = (0.072)e^{+0.40} = 0.1074 \text{ or } 10.74\%$



## **EXAMPLE**

 X is interested in valuing a threeyear, 3% annualpay Treasury bond using the adjacent binomial tree. Value the bond.

| 0  | 1       | 2        |
|----|---------|----------|
| 3% | 5.7883% | 10.7383% |
|    | 5.7883% | 7.1981%  |
|    | 3.8800% | 7.1981%  |
|    | 3.8800% | 4.8250%  |







• 
$$V_{2,UU} = \frac{103}{(1.107383)} = $93.01$$

• 
$$V_{2,UL} = V_{2,LU} = \frac{103}{(1.071981)} = $96.08$$

• 
$$V_{2,LL} = \frac{103}{(1.048250)} = $98.26$$

• 
$$V_{1,U} = \frac{1}{2} \times \left[ \frac{93.01+3}{1.057883} + \frac{96.08+3}{1.057883} \right] = \$92.21$$

• 
$$V_{1,L} = \frac{1}{2} \times \left[ \frac{93.08+3}{1.038800} + \frac{98.26+3}{1.038800} \right] = \$96.43$$

• 
$$V_0 = \frac{1}{2} \times \left[ \frac{92.21+3}{1.03} + \frac{96.43+3}{1.03} \right] = \$94.485$$

