INF344 – Données du Web Internet

Antoine Amarilli

Vue générale

- Plusieurs échelles (locale et globale)
- Pile de protocoles
- Messages imbriqués

Le modèle OSI

#	Couche	Exemples	Fonctionnalités	
7	Application	HTTP, FTP, SMTP	tâche utilisateur de haut niveau	
4	Transport	TCP, UDP, ICMP	sessions, fiabilité, fragmentation	
3	Réseau	IPv4, IPv6	routage, adressage, non fiable	
2	Lien	Ethernet, 802.11	données fiables, adresses locales	
1	Physique	Ethernet, 802.11	échange physique, non fiable	

→ Plus la couche est basse, plus l'enveloppe est à l'extérieur

Table des matières

Modèle OSI

Couches basses

Couches hautes

IP (Internet Protocol), couche 3

- Donner des adresses aux machines
- · Router des paquets entre ces adresses
- · Déterminer la position géographique d'une machine

	Année	Exemple	Adresses
IPv4	1981	208.80.152.201	\leq 2 ³²
IPv6	1998	2620 : 0 : 860 :ed 1 a:: 1	$\leq 2^{128}$

- · Network Address Translation pour pallier la pénurie d'adresses
- \rightarrow On peut envoyer des messages à une adresse.

SONDAGE: IPv4 vs IPv6

Quelle part du trafic utilise IPv4 plutôt que IPv6?

• **A**: moins de 25%

• **B**: 25%-50%

• **C**: 50%-75%

• **D**: plus de 75%

SONDAGE: IPv4 vs IPv6

Quelle part du trafic utilise IPv4 plutôt que IPv6?

· A: moins de 25%

· B: 25%-50%

• **C**: 50%-75%

• **D**: plus de 75%

Trafic IPv6 vs IPv4

https://www.google.com/intl/en/ipv6/statistics.html

IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

- Service pour convertir www.wikipedia.org en 208.80.152.201
- · Hiérarchie: org, wikipedia.org, en.wikipedia.org, etc.
- · Résolution hiérarchique; gTLDs, registrars, coûts, TLDs effectifs

- · Service pour convertir www.wikipedia.org en 208.80.152.201
- · Hiérarchie: org, wikipedia.org, en.wikipedia.org, etc.
- · Résolution hiérarchique; gTLDs, registrars, coûts, TLDs effectifs
- · Cache à différents niveaux
- · Problèmes de **sécurisation** (authentification, empoisonnement...)
- · Caractères spéciaux (IDN, Punycode) et problèmes afférents

- · Service pour convertir www.wikipedia.org en 208.80.152.201
- · Hiérarchie: org, wikipedia.org, en.wikipedia.org, etc.
- · Résolution hiérarchique; gTLDs, registrars, coûts, TLDs effectifs
- · Cache à différents niveaux
- · Problèmes de **sécurisation** (authentification, empoisonnement...)
- · Caractères spéciaux (IDN, Punycode) et problèmes afférents
- · Indirection:
 - Plusieurs adresses par nom de domaine (services multiples, répartition de charge)
 - · Plusieurs noms de domaine par adresse (virtual hosts)
- → Qui gère le DNS? Qui a droit à un nom de domaine?
- → DNS alternatifs, autres technologies décentralisées (Namecoin...)

- · Service pour convertir www.wikipedia.org en 208.80.152.201
- · Hiérarchie: org, wikipedia.org, en.wikipedia.org, etc.
- · Résolution hiérarchique; gTLDs, registrars, coûts, TLDs effectifs
- · Cache à différents niveaux
- · Problèmes de **sécurisation** (authentification, empoisonnement...)
- · Caractères spéciaux (IDN, Punycode) et problèmes afférents
- · Indirection:
 - Plusieurs adresses par nom de domaine (services multiples, répartition de charge)
 - · Plusieurs noms de domaine par adresse (virtual hosts)
- → Qui gère le DNS? Qui a droit à un nom de domaine?
- → DNS alternatifs, autres technologies décentralisées (Namecoin...)

(Démo : résolution DNS avec dig.)

- · Service pour convertir www.wikipedia.org en 208.80.152.201
- · Hiérarchie: org, wikipedia.org, en.wikipedia.org, etc.
- · Résolution hiérarchique; gTLDs, registrars, coûts, TLDs effectifs
- · Cache à différents niveaux
- · Problèmes de **sécurisation** (authentification, empoisonnement...)
- · Caractères **spéciaux** (IDN, Punycode) et problèmes afférents
- · Indirection:
 - Plusieurs adresses par nom de domaine (services multiples, répartition de charge)
 - · Plusieurs noms de domaine par adresse (virtual hosts)
- → Qui gère le DNS? Qui a droit à un nom de domaine?
- → DNS alternatifs, autres technologies décentralisées (Namecoin...)

(Démo : résolution DNS avec dig.)

ightarrow On peut envoyer des messages à une machine nommée.

TCP (Transmission Control Protocol), couche 4

- IP n'est pas fiable
 - → TCP fournit des accusés de réception
- · IP limite la taille
 - ightarrow TCP permet de fragmenter
- · IP peut mélanger les paquets
 - → TCP garantit que les paquets arrivent dans l'ordre
- IP n'est pas multiplexé
 - → TCP introduit des sessions et des ports. (e.g. 80 pour le Web... mais possible de forcer : http://localhost:8080/)

TCP (Transmission Control Protocol), couche 4

- IP n'est pas fiable
 - → TCP fournit des accusés de réception
- · IP limite la taille
 - → TCP permet de **fragmenter**
- · IP peut mélanger les paquets
 - → TCP garantit que les paquets arrivent dans l'ordre
- IP n'est pas multiplexé
 - → TCP introduit des sessions et des ports. (e.g. 80 pour le Web... mais possible de forcer: http://localhost:8080/)

(Démo : communication TCP avec netcat.)

TCP (Transmission Control Protocol), couche 4

- IP n'est pas fiable
 - → TCP fournit des accusés de réception
- · IP limite la taille
 - → TCP permet de **fragmenter**
- · IP peut mélanger les paquets
 - → TCP garantit que les paquets arrivent dans l'ordre
- IP n'est pas multiplexé
 - → TCP introduit des **sessions** et des **ports**. (e.g. 80 pour le Web... mais possible de forcer : http://localhost:8080/)

(Démo : communication TCP avec netcat.)

 $\,\,
ightarrow\,$ On peut avoir un canal de communication avec une machine.

Table des matières

Modèle OS

Couches basses

Couches hautes

TLS (Transport Layer Security), layer 5-6

- C'est dangereux de communiquer en clair! (mots de passe, numéros CB...)
- · Garanties : intégrité, authenticité, confidentialité
- HTTP + TLS = HTTPS. https://.
- · Utilise de la cryptographie asymétrique
- · Ne protège pas toutes les métadonnées (taille, etc.)
- Évolution vers HTTPS (+HSTS), HTTP est marqué comme non sécurisé

SONDAGE: HTTPS

Quelle proportion des pages Web chargées par les utilisateurs de Chrome est chiffrée avec HTTPS? ^a

- **A**: moins de 25%
- **B**: 25%-50%
- · **C**: 50%-75%
- **D**: plus de 75%

SONDAGE: HTTPS

Quelle proportion des pages Web chargées par les utilisateurs de Chrome est chiffrée avec HTTPS? ^a

- **A**: moins de 25%
- **B**: 25%-50%
- · **C**: 50%-75%
- · D: plus de 75%

 Let's Encrypt : vérification automatique (protocole ACME) et signature d'un certificat HTTPS

 Let's Encrypt : vérification automatique (protocole ACME) et signature d'un certificat HTTPS

Certificat Extended
 Validation : vérification
 manuelle d'identité par des
 tiers de confiance

 Let's Encrypt: vérification automatique (protocole ACME) et signature d'un certificat HTTPS

Certificat Extended
 Validation : vérification
 manuelle d'identité par des
 tiers de confiance

(Démo : communication chiffrée avec ncat --ssl, tentatives d'interception infructueuses avec wireshark.)

 Let's Encrypt : vérification automatique (protocole ACME) et signature d'un certificat HTTPS

Certificat Extended
 Validation : vérification
 manuelle d'identité par des
 tiers de confiance

(Démo : communication chiffrée avec ncat --ssl, tentatives d'interception infructueuses avec wireshark.)

→ On a un canal de communication chiffré entre deux machines