

Transient respons

Øvelse 4

Emma Spanner 201907955 Mads Emil Nielsen 201908775 Peter Gehlert Theilgaard 201907648 hejhej

Hold 2

9. december 2019

IKLT-MMLS 1. semester Ingeniørhøjskolen Aarhus Universitet

Indhold

1	Ind	lledning								
2	Ana 2.1	v	vse af 1. ordens lavpasfilter	. 3						
3	Simulering									
	3.1 Simularing af 1. ordens lavpasfilter									
		3.1.1	Simularing af $10 \text{ k}\Omega$. 10						
		3.1.2	Simularing af 100 k Ω	. 11						

1 Indledning

Formålet med denne øvelse er at vise:

- Hvordan beregnes og måles steprespons signaler i et kredsløb.
- Hvordan påvirker et kredsløbs komponenter det beregnede og målte steprespons.

I øvelsen betragtes 1. og 2. ordens lavpasfiltre. Resultaterne fra øvelsen præsenteres i form af en målejournal og godkendes af underviserne ved det den afsluttede måling.

2 Analyse

Øvelsen er opdelt i to dele, 1. og 2. ordens lavpasfilter.

2.1 Analyse af 1. ordens lavpasfilter

Figur 1 viser et 1. ordens lavpasfilter med en modstand og en kondensator. V_{in} er stepinput med spænding 0-5 V. Steppet sker til tiden t=0 sek.

$$V_{in}(t) = \begin{cases} 0 & \text{if } t < 0\\ V_0 & \text{if } t > 0 \end{cases} \tag{1}$$

Ligning: 1 Indgangs spændingen er en funktion af t

Figur 1: Første ordens lavpasfilter

Strøm-spænding sammenhængen for en modstand og en kondensator er: Modstand:

$$V_R = R \cdot i \tag{2}$$

Ligning 2: Spændingen over en modstand

Kondensator:

$$i = C \cdot \frac{d(V_C)}{dt} \tag{3}$$

Ligning 3: Strømen gennem en kondensator

Output spænding:

$$V_{Out}(t) = V_C(t) \tag{4}$$

Ligning 4: Spændingen over $V_C(t)$ er den samme som i punktet $V_{Out}(t)$

Følgende 8 delopgaver er givet:

1. Vis ved Kirchhoffs love: KVL

Vis ved Kirchhoffs love at følgende differentialligning gælder for kredsløbet i Figur 1:

$$V_{in}(t) = R \cdot C \cdot \frac{d(V_{out}(t))}{dt} + V_{out}(t)$$
(5)

Efter en kredsløbsanalyse ses det at:

$$V_{in} = V_R + V_C \tag{6}$$

Ved brug af Ligning 1 og Ligning 4 kan ligningen omskrives til

$$V_0 = V_R + V_{Out} \tag{7}$$

Ved at kombinere Ligning 2 og Ligning 3, kan der findes et nyt udtryk fra V_R som er afhængig af tiden t

$$V_R = R \cdot C \cdot \frac{d}{dt} \cdot V_C \tag{8}$$

Dernæst kan den indsættes i Ligning 7 hvilket medføre

$$V_0 = R \cdot C \cdot \frac{d(V_{out}(t))}{dt} + V_{out}(t) \tag{9}$$

2. Løs differentialligningen med hensyn til Vout

Løs differentialligningen med hensyn til Vout for $0 \le t < \infty$ Ligning 5 kan omskrives så konstanten foran $\frac{d(V_{out}(t))}{dt}$ ved at gange igennem med $\frac{1}{R \cdot C}$, det medføre

$$\frac{d(V_{out}(t))}{dt} + \frac{1}{R \cdot C} \cdot V_{out}(t) = \frac{1}{R \cdot C} \cdot V_0 \tag{10}$$

Ved hjælp af en løsnings protokol Ligning 10 nu løses:

$$P(t) = \frac{1}{R \cdot C} \tag{11}$$

$$Q(t) = \frac{1}{R \cdot C} \cdot V_0 \tag{12}$$

$$\mu(t) = e^{\int P(t)dt} \to e^{(\frac{t}{R \cdot C})} \tag{13}$$

Ligning 13: Hjælpefunktion

$$F(t) = \int \mu(t) \cdot Q(t)dt \to V_0 + k \cdot e^{-\frac{t}{R \cdot C}}$$
(14)

Ligning 14: Stamfunktion

$$V_{Out}(t) = \frac{1}{\mu(t)} \cdot (F(t) + k) \xrightarrow{simplify} V_{Out}(t) = V_0 + k \cdot e^{-\frac{t}{R \cdot C}}$$
(15)

Ligning 15: Fuldstændig løsning

$$k = V_{Out}(0) \xrightarrow{solve,k} -V_0 \tag{16}$$

Ligning 16: Betingelse

$$V_{Out}(t) = V_0 - V_0 \cdot e^{\frac{-t}{R \cdot C}} \tag{17}$$

Ligning 17: Specifikke Løsning

3. Beregn tidskonstanten

Beregn tidkonstanten τ for lavpasfilteret med hhv. $R=10~k\Omega$, $R=100~k\Omega$ og C=100nF. Tidskonstanten er et udtryk for at V_{Out} er opnået 63% af V_{in} .

$$\tau = R \cdot C \tag{18}$$

Ligning 18: Generel tidskonstant

Tidskonstant τ_{10} :

Ved brug af Ligning 18 kan τ_{10} beregnes:

$$\tau_{10} = R_{10} \cdot C$$

$$\tau_{10} = 10k\Omega \cdot 100nF$$

$$\tau_{10} = 1ms$$
(19)

Tidskonstant τ_{100} :

Ved brug af Ligning 18 kan τ_{100} beregnes:

$$\tau_{100} = R_{100} \cdot C$$

$$\tau_{100} = 100k\Omega \cdot 100nF$$

$$\tau_{100} = 10ms$$
(20)

Figur 2: $10k\Omega$ - 0-50ms

Figur 4: $10k\Omega$ - 0-50ms

4. Beregn kurveform

Beregn kurveform for Vout med hhv. $R=10~k\Omega$ og $R=100~k\Omega$, og vis disse grafisk for $0 \le t \le 50ms$

Bestemt er: $V_0 = 5V \text{ og } t = 0s, 0.1ms..50ms$

Kurveformen er givet ved Ligning 17, da dette er den specifikke løsning.

Derefer kan man nu indsætte parametrene i ligningen og derved får man 2 nye ligninger der begge afhænger af tiden t:

 $V_{Out_{10}}(t)$:

$$V_{Out_{10}}(t) = 5V - 5V \cdot e^{-\frac{t}{10k\Omega \cdot 100nF}}$$
 (21)

 $V_{Out_{100}}(t)$:

$$V_{Out_{100}}(t) = 5V - 5V \cdot e^{-\frac{t}{100k\Omega \cdot 100nF}}$$
 (22)

5. Beregn Vout max

Beregn den maksimale værdi af Vout i de to tilfælde. Når V_{Max} skal beregnes vil den være højste i det signalet stepper ned. Det vil sige ved t = 50ms V_{OutMax_10} :

$$V_{OutMax_{10}}(50ms) = 5V - 5V \cdot e^{-\frac{50ms}{10k\Omega \cdot 100nF}}$$
$$V_{OutMax_{10}}(50ms) = 5V$$
(23)

 V_{OutMax_100} :

$$V_{OutMax_{100}}(50ms) = 5V - 5V \cdot e^{-\frac{50ms}{100k\Omega \cdot 100nF}}$$

$$V_{OutMax_{100}}(50ms) = 4.996V \tag{24}$$

6. Bestem stigetiden tr

Bestem stigetiden tr (10-90%). Stigetiden er den tid det tager V_{out} at komme fra 10% til 90% af V_{in} .

Ved $10k\Omega$:

!!!!!MANGLER BEGRUNDELSE FOR AT BRUGE LOGEITMEN!!!!

$$t_{10} = -ln(0.9) \cdot \tau_{10}$$

$$t_{10} = -ln(0.9) \cdot 1.0ms$$

$$t_{10} = 0.105ms$$
(25)

$$t_{90} = -ln(0.1) \cdot \tau_{10}$$

$$t_{90} = -ln(0.1) \cdot 1.0ms$$

$$t_{90} = 2.303ms$$
(26)

$$tr_{10} = t_{90} - t_{10}$$

$$tr_{10} = 2.303ms - 0.105ms$$

$$tr_{10} = 2.167ms$$
(27)

Ved $100k\Omega$:

!!!!!MANGLER BEGRUNDELSE FOR AT BRUGE LOGEITMEN!!!!

$$t_{10} = -ln(0.9) \cdot \tau_{100}$$

$$t_{10} = -ln(0.9) \cdot 1.0ms$$

$$t_{10} = 1.054ms$$
(28)

$$t_{90} = -ln(0.1) \cdot \tau_{100}$$

$$t_{90} = -ln(0.1) \cdot 1.0ms$$

$$t_{90} = 23.026ms \tag{29}$$

$$tr_{100} = t_{90} - t_{10}$$

$$tr_{100} = 23.026ms - 1.054ms$$

$$tr_{100} = 21.972ms$$
(30)

7. Forklar

Forklar hvordan tidskonstanten og stigetiden kan findes ud fra grafen for Vout, og opstil en ligning til bestemmelse af C, når tidskonstanten og modstanden R er kendte.

8. Indfør resultatur i Tabel 1

Resultaterne indføres i Tabel 1. Et eller andet bullshit Tabel 1: Multirow table.

	An	alyse		Simulering				Måling					
R	τ	t_r	V_{Max}	R	au	t_r	V_{Max}	R	τ	t_r	V_{Max}		
$k\Omega$	[msek]	[msek]	[V]	$[\mathrm{k}\Omega]$	[msek]	[msek]	[V]	$[\mathrm{k}\Omega]$	[msek]	[msek]	[V]		
1. ordens lavpas filter													
10	1.0	2.197	5	10	1	2.08	4.97	10	1.01	2.18	5.06		
10	(19)	(27)	(23)										
100	10	21.972	4.966	100	10.04	19.72	4.96	100	9.87	21.053	4.65		
100	(20)	(30)	(24)										
2. ordens lavpas filter													
1		x1	x2	1		x3	x4	1		x5	x6		
						·			·				
10		x7	x8	10		x9	x10	10		x11	x12		

3 Simularing

Resultaterne fra analysen simuleres med diagrammerne vist i Figur og Figur .

3.1 Simularing af 1. ordens lavpasfilter

3.1.1 Simularing af 10 k Ω

Figur 5 viser simuleringen af 1. ordens lavpasfilter. På oscilloskopet vises kurveformen for V_{out} og heraf bestemmes tidskonstan for $R=10~k\Omega$ og $R=100k\Omega$. I de to tilfælde bestemmes den maksimale værdi af V_{out} Resultaterne indføres i tabel 1.

Figur 5: Simularing af 1. ordens lavpasfilter

tidskonstanten(τ) bestemmes ved at først at beregne $V_m ax \cdot 0.63 = V_{\tau}$ Herefter måles tidsforskellen fra $t_0 V$ til V_{τ} $V_m ax$ er ud fra figur 6 målt til 4.97 V 4.97 $V \cdot 0.63 = 3.131V$ tidsforskellen fra $t_0 V$ til V_{τ} måles til 1.01 ms

Figur 6: måling af τ

stigetiden(τ) bestemmes ved formlen: $\tau_{90} - \tau_{10} = \delta_{stigetid}$ Ud fra målinger af figur 7 er stigetiden blevet beregnet til $\tau_{10} = 4.97V \cdot 0.1 = 0.497V \ \tau_{90} = 4.97V \cdot 0.9 = 4.473V$ Herefter måles afstanden mellem τ_{10} til τ_{90} som via figur 7 bliver målt til 2.08 ms

Figur 7: stigetid

Maksimal spænding bliver målt med formlen $V_{max} - V_{min}$ Afstanden mellem V_{max} og V_{min} som via figur 8 måles til 4.97 V

Figur 8: Maksimal spænding

3.1.2 Simularing af 100 k Ω

tidskonstanten(τ) bestemmes ved at først at beregne $V_m ax \cdot 0.63 = V_{\tau}$ Herefter måles tidsforskellen fra $t_0 V$ til V_{τ} $V_m ax$ er ud fra figur 9 målt til 4.96 V 4.96 $V \cdot 0.63 = 3.125V$ tidsforskellen fra $t_0 V$ til V_{τ} måles til 10.04 ms stigetiden(τ) bestemmes ved formlen: $\tau_{90} - \tau_{10} = \delta_{stigetid}$ Ud fra målinger af figur 10 er stigetiden blevet beregnet til $\tau_{10} = 4.96V \cdot 0.1 = 0.496V \ \tau_{90} = 4.96V \cdot 0.9 = 4.464V$ Herefter måles afstanden mellem $\tau_{10} til\tau$ 90 som via figur 10 bliver målt til 19.72 ms Maksimal spænding bliver målt med formlen $V_{max} - V_{min}$ Afstanden mellem V_{max} og V_{min} som via figur 11 måles til 4.96 V

Figur 9: måling af τ

Figur 10: stigetid

Figur 11: Maksimal spænding