MATH 323: Calculus III MATERIALS			
· WebAssign (will irrlyde textbook) - around \$120			
" Gradesupe (for assignment submission) - free	**************************************		
- SECTION 12.1 = Coordinates in 3-space - IDEA of Calculus II = Extend Calculus I, II to functions of several variables Some Geometry in 3-Space			
		R2 Yn (x,y) R3 (x,0,2)4-	(x_1y_12) y y (x_1y_12) (x_1y_10) y
		R ²	p shodow of (xiyiz) in 122
		, ×	CXIYIU where 7 is set to 0
I. Coordinate Planes			
· A coordinate plane is a set of points in which a	specified coordinate is O.		
· · · · · · · · · · · · · · · · · · ·			
Ex#1: The xy-plane (ata the 7.0 plane) in \$3;	•		
Ex#1: The xy-plane (axa the 7.0 plane) in R3 i	•		
	S N = { P = (x, y, \frac{1}{2}) \in R3 : \frac{1}{2} = 0?		
Ex#1: The xy-plane (ata the 2.0 plane) in R3;	$S = \{P: (x, y, z) \in \mathbb{R}^3 : z = 0\}$ $E = \text{"in"}$		
# 1 # 2 = 0	S N = {P: (x, y, z) & R3: z = 0} E = "în" : = "sun the		
# 1 # 2 = 0	S N = {P: (x, y, z) & R3: z = 0} E = "în" : = "sun the		
# 1 # 2 = 0	S N = {P: (x, y, z) & R3: z = 0} E = "în" : = "sun the		
	S N = {P: (x, y, z) & R3: z = 0} E = "în" : = "sun the		
Ex #2: The y2-plane in \mathbb{R}^3 is $\{P \cdot (x_1y_12) \in \mathbb{R}^2\}$	$S = \{P: (x, y, z) \in \mathbb{R}^3 : z = 0\}$ $E = \text{"in"}$ $E = \text{"such that}$ $E = \text{"such that}$ $E = \text{"such that}$		
# 1 # 2 = 0	$S = \{P: (x, y, z) \in \mathbb{R}^3 : z = 0\}$ $E = \text{"in"}$ $E = \text{"such that}$ $E = \text{"such that}$ $E = \text{"such that}$		
Ex #2: The yz-plane in 1R3 is { P. (x,y,z) & R 21-x=0 1	$S = \{P: (x, y, z) \in \mathbb{R}^3 : z = 0\}$ $E = \text{"in"}$ $E = \text{"such that}$ $E = \text{"such that}$ $E = \text{"such that}$		
Ex #2: The y2-plane in 183 is 2 P. (x,y,2) & 8 * Try to turn multivariable problems into single variable on ASIDE: Distances	$S = \{P: (x, y, z) \in \mathbb{R}^3 : z = 0\}$ $E = \text{"in"}$ $E = \text{"such that}$ $E = \text{"such that}$ $E = \text{"such that}$		
Ex #2: The y2-plane in 183 is 1 P. (x,y,2) & 8 * Try to the multivariable problems into single variable on ASIDE: Distances	$S = \{P: (x, y, z) \in \mathbb{R}^3 : z = 0\}$ $E = \text{"in"}$ $E = \text{"such that}$ $E = \text{"such that}$ $E = \text{"such that}$		
Ex #2: The y2-plane in \mathbb{R}^3 is $\{P_{\cdot}(x_1y_12) \in \mathbb{R}^2\}$ * Try to the multivariable problems into single variable of \mathbb{R}^3 ASIDE: Distances $\mathbb{R}^3 = \{(x_1, y_1, z_1) \in \mathbb{R}^3\}$	$ \begin{array}{c} $		

THM (Distance formula) = For P = (x_0, y_0, z_0) and Q = (x_1, y_1, z_1) in 3-space, the distance between P and Q is $d(P, Q) = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2}$.

I. Spheres

• Let r>0 and let $P \in \mathbb{R}^3$. The sphere of radius r centered at P is S=1 $Q \in \mathbb{R}^3$: d(P,Q)=r

If P has coordinates P= (x, yo, 20), then S= {Q+ R3: d(P,Q) = 1}

Sphercs are "surfaces of a hollow ball" (NOT SOLID)

A solid ball is defined by $(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2 \le r^2$.

NB: "notabene or "note neil"

* Eventhing ne have done so far has analogs in higher dimensions as rell.

Ex: 18 (4-space) = {(x,y,7, w): x,y, 7, w & R3 has distance formula.

- SECTION 12.2: Vectors -

· A vector in R3 is a directed line segment, where two vectors are equivalent when they are linear shifts.

