Transformers- Mathematical derivation.

From the paper Attention is all you need.

Input: X; ER. (Xi) 1 si sn.

(1) Multi-head attention

Attention vectors are computed from each input Xi, 1<i<1, and independently for each "head" h, 1 < h < H.

Keys: $k_h(x_i) = W_{h,k}^T X_i$ previes: $q_h(x_i) = W_{h,q}^T x_i$ values: $V_h(x_i) = W_{h,q}^T x_i$

Deighter Seighter For all 151, jen, 1545 H,

dh(i,j)= Softmax (19hki) K(xj)

where Softmax (\$\frac{1}{2},...,\frac{1}{n}) = \frac{1}{2!} e^{\frac{1}{2}i} (e^{\frac{1}{n}},...,e^{\frac{n}{n}}).

3 Mixture of Valuer

Define for all
$$1 \le i \le n$$
 $u_i = \sum_{h=i}^{H} W_{u,h}^{\top} \left(\sum_{j=i}^{h} \alpha_h(x_{i,j}) \nabla_h(x_{j}) \right)$

. Layer normalization of the (li). In head h.

(4) outputs.

. For all $1 \le i \le n$ $3i = W_{2,1}^T \circ (W_{2,2}^T \text{ li})$. Layer normalization of the (2i).

Zi < Layer norm (2;+ii).

N= Box (V-HV) + P2 empirical empirical std mean Layer normalization of a vector (5,...,5,)=v:

Steps 1 to 4 provide a Regression function $T_0: (\chi_{1,...},\chi_n) \longmapsto (21,...,2n)$. In practice, a Transformer network is given by: Too...oTo.

(5) Lositional encoding.

Inputs are considered as unordered vectors to compute and assign attention weights. If input data are sequential (i.e. i refers to a time index), several

additional positional en codings have been considered.

One-hot: $X_i \leftarrow (X_i, e_i)^T$ e_i , i-th canonical vector of R^T .

Sinusoidal: $p_{k,2i}$ - $sin(\frac{k}{3^{2i/4}})$; $p_{k,2i+1}$ $cos(\frac{k}{3^{2i/4}})$ $z = W^T \circ (W^T a) + p$.

(6) Connection to RNN - Time Devices.

Next Session!