

## Type Ia Supernovae and the Expansion of the Universe

The constant brightness of Type Ia supernovae means that they can be used as standard candles to determine distance. By observing these supernovae in galaxies, we can measure the expansion rate of the universe as a function of distance, further out in the universe than ever before.

- STEP 1: Plot the data in the table on Page 2 on the graph on Page 3
- STEP 2: Use this plot to answer the following questions:
- **1.** Are the furthest-away galaxies above or below the dashed line representing Hubble's law and a constant expansion rate for the universe?

**2.** Does this mean that they are moving away from us faster or slower than Hubble's Law would predict?

**3.** What could cause this to happen? Can we explain it with any forces we have discussed in class?

## **Supernova Data**

| Supernova Name | Redshift | Distance (Megaparsecs) |
|----------------|----------|------------------------|
| 1996C          | 0.03     | 150                    |
| 1990af         | 0.05     | 220                    |
| 1992bs         | 0.08     | 390                    |
| 1992aq         | 0.1      | 460                    |
| 1996ab         | 0.12     | 660                    |
| 1996J          | 0.3      | 1600                   |
| 1996K          | 0.38     | 2800                   |
| 1996U          | 0.43     | 2900                   |
| 1995K          | 0.48     | 3100                   |
| 1997cj         | 0.5      | 3500                   |
| 1996I          | 0.57     | 3700                   |
| 1996H          | 0.62     | 4000                   |
| 1997ck         | 0.97     | 7200                   |

1 **Megaparsec** = 1 million parsecs

1 **parsec** = 3.3 lightyears

**Redshift** is a type of Doppler Shift: it is a change in the color of the light we detect from an object moving away from us

