

Centre for Metamaterial Research and Innovation

EPSRC Centre for Doctoral Training in Metamaterials

www.metamaterials.center

Continuous → Discrete

Purcell, E. M. and Pennypacker, C. R., "Scattering and absorption of light by nonspherical dielectric grains" Astrophysical Journal 186 705 (1973)

 $\delta \mathbf{E}(\mathbf{r}) = -\left[\xi^2 \mathbf{G}(\mathbf{r}, \mathbf{r}_n) \alpha_E \nabla \mathbf{E}(\mathbf{r}_n) + i \xi \nabla \times \mathbf{G}(\mathbf{r}, \mathbf{r}_n) \alpha_H \nabla \mathbf{H}(\mathbf{r}_n)\right] \delta \mathbf{r}_n$

 $\begin{pmatrix} \boldsymbol{p} \\ \boldsymbol{m} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\alpha}_E \\ 0 \end{pmatrix}$

**** 0

 $\begin{pmatrix} 0 \\ \boldsymbol{\alpha}_H \end{pmatrix} \begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix}$

0

 $\begin{pmatrix} \mathbf{E}(\mathbf{r}) \\ \mathbf{H}(\mathbf{r}) \end{pmatrix} = \begin{pmatrix} \mathbf{E}_{s}(\mathbf{r}) \\ \mathbf{H}_{s}(\mathbf{r}) \end{pmatrix} + \sum_{n} \begin{pmatrix} \xi^{2} \mathbf{G}(\mathbf{r}, \mathbf{r}_{n}) \boldsymbol{\alpha}_{E} & i \xi \nabla \times \mathbf{G}(\mathbf{r}, \mathbf{r}_{n}) \boldsymbol{\alpha}_{H} \\ -i \xi \nabla \times \mathbf{G}(\mathbf{r}, \mathbf{r}_{n}) \boldsymbol{\alpha}_{E} & \xi^{2} \mathbf{G}(\mathbf{r}, \mathbf{r}_{n}) \boldsymbol{\alpha}_{H} \end{pmatrix} \begin{pmatrix} \mathbf{E}(\mathbf{r}_{n}) \\ \mathbf{H}(\mathbf{r}_{n}) \end{pmatrix}$

ourd

Centre for Metamaterial Research and Innovation

EPSRC Centre for Doctoral Training in Metamaterials

www.metamaterials.center

Continuous → Discrete

$$kR \leq 1$$

$$\begin{pmatrix} \boldsymbol{p} \\ \boldsymbol{m} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\alpha}_E & 0 \\ 0 & \boldsymbol{\alpha}_H \end{pmatrix} \begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{E}(\mathbf{r}) \\ \mathbf{H}(\mathbf{r}) \end{pmatrix} = \begin{pmatrix} \mathbf{E}_{s}(\mathbf{r}) \\ \mathbf{H}_{s}(\mathbf{r}) \end{pmatrix} + \sum_{n} \begin{pmatrix} \xi^{2}\mathbf{G}(\mathbf{r}, \mathbf{r}_{n})\boldsymbol{\alpha}_{E} & i\xi\nabla\times\mathbf{G}(\mathbf{r}, \mathbf{r}_{n})\boldsymbol{\alpha}_{H} \\ -i\xi\nabla\times\mathbf{G}(\mathbf{r}, \mathbf{r}_{n})\boldsymbol{\alpha}_{E} & \xi^{2}\mathbf{G}(\mathbf{r}, \mathbf{r}_{n})\boldsymbol{\alpha}_{H} \end{pmatrix} \begin{pmatrix} \mathbf{E}(\mathbf{r}_{n}) \\ \mathbf{H}(\mathbf{r}_{n}) \end{pmatrix}$$

Scattered

$$\delta \mathbf{E}(\mathbf{r}) = -\left[\xi^2 \mathbf{G}(\mathbf{r}, \mathbf{r}_n) \alpha_E \nabla \mathbf{E}(\mathbf{r}_n) + i \xi \nabla \times \mathbf{G}(\mathbf{r}, \mathbf{r}_n) \alpha_H \nabla \mathbf{H}(\mathbf{r}_n)\right] \delta \mathbf{r}_n$$

Purcell, E. M. and Pennypacker, C. R., "Scattering and absorption of light by nonspherical dielectric grains" Astrophysical Journal 186 705 (1973)

Centre for Metamaterial Research and Innovation

PSRC Centre for Acctoral Training In Metamaterials

www.metamaterials.center

Continuous → Discrete

$$\delta P = \operatorname{Im} \left[\mathbf{E}_*(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) \right] \delta \varepsilon$$

$$\delta P = \operatorname{Im} \left\{ \mathbf{p}^* \cdot \left[\xi^2 \mathbf{G}(\mathbf{r}, \mathbf{r}_n) \alpha_E \nabla \mathbf{E}(\mathbf{r}_n) + i \xi \nabla \times \mathbf{G}(\mathbf{r}, \mathbf{r}_n) \alpha_H \nabla \mathbf{H}(\mathbf{r}_n) \right] \right\} \delta \mathbf{r}_n$$

