Algebra Lineare Ingegneria Chimica e Civile - A. A. 2023/24

Caboara

Esame scritto 24 Giugno

PRIMA PARTE Punteggio: risposta corretta = 2 pt

SCRIVERE I RISULTATI DELLA PRIMA PARTE SU QUESTO FOGLIO

Nome e cognome IN STAMPATELLO LEGGIBILE

Cognome: Nome:

1. Semplificare $\frac{(2+2i)^5}{(1-i)^3}$

Soluzione: 64

2. Dare una rappresentazione cartesiana del sottospazio vettoriale W di \mathbb{R}^4 con vettore generico (a, a+b, a+b+c, a-b).

Soluzione: $B = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x - y - t = 0\}$

3. Determinare al variare di $a, b, c \in \mathbb{R}$ il rango della matrice

$$A = \begin{pmatrix} a & 1 & a+b & 2 \\ b & 0 & c & 1 \\ a+b & 1 & a+b+c & 3 \end{pmatrix}$$

Soluzione: $\forall a, b, c \in \mathbb{R} \ rk(A) = 2$

4. Al variare di $a \in \mathbb{R}$ determinare l'inversa della matrice $M = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}$

Soluzione: $M^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -a \\ 0 & 0 & 1 \end{pmatrix}$

5. Dato un polinomio $f(x) \in \mathbb{R}[x]$ e sapendo che $\gcd(f(x), f'(x)) = (x-1)^2$ determinare il numero di fattori primi di molteplicità 3 di f(x).

Soluzione: 1, solo x - 1

SECONDA PARTE

I risultati devono essere giustificati attraverso calcoli e spiegazioni e scritti su fogli vostri.

Esercizio 1 (8pt). Al variare di $a \in \mathbb{R}$ discutere le soluzioni del sistema con tre incognite x, y, z, quattro equazioni ed il parametro a.

$$\begin{pmatrix} 0 & a-1 & 2 \\ 2a & a^2 & 0 \\ a & a & 2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ a-1 \\ 1 \end{pmatrix}$$

Dimostrazione. Riduciamo la matrice associata al sistema con Gauss.

```
Use R::=Q[a];
M:=Mat([[0, a-1, 2, 1],
        [2a, a^2, 0, a-1],
        [a, a, 2,
                    1]]);
Scambio la 1^a e la 3^a riga
Adesso la matrice e'
M:=Mat([[a, a,
                  2.
                         1],
        [0, a - 1, 2,
                        1],
        [2a, a<sup>2</sup>, 0, a - 1]]);
RiduciScalaVerbose(M);
Ho trovato il pivot in posizione A[1, 1]=a
Cancello la 1^a colonna, sotto il pivot
----- [a, a, 2, 1]
  0 sotto pivot[0, a - 1, 2, 1]
     3^a-2*1^a [0, a^2 - 2a, -4, a - 3]
Suppongo a<>1, trattero' a parte il caso a=1
Ho trovato il pivot in posizione A[2, 2]=a-1
Cancello la 2^a colonna, sotto il pivot
_____
                                                                         1]
                          [0, a - 1,
_____
3^a(-a^2 + 2a)/(a - 1)*2^a [0, 0, (-2a^2 + 4)/(a - 1), (-2a + 3)/(a - 1)]
```

Dato che $a \neq 1$ moltiplico la terza riga per a-1 ottenendo la matrice

$$\begin{pmatrix} a & a & 2 & 1 \\ 0 & a-1 & 2 & 1 \\ 0 & 0 & -2a^2+4 & -2a+3 \end{pmatrix}$$

Consideriamo le varie possibilità

- 1. $a \neq 1$.
 - (a) $a \neq 0, \pm \sqrt{2}$. Abbiamo tre pivot, esiste unica soluzione.

(b) a = 0. Sostituiamo nella matrice

$$\left(\begin{array}{cccc}
2a & a^2 & 0 & a-1 \\
0 & a-1 & 2 & 1 \\
0 & 0 & a^2-2 & a-3/2
\end{array}\right)$$

Otteniamo

$$\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & -1 & 2 & 1 \\
0 & 0 & -2 & -3/2
\end{array}\right)$$

La prima riga ci dice che non esistono soluzioni.

(c) $a = \pm \sqrt{2}$. Sostituiamo nella matrice

$$\left(\begin{array}{cccc}
2a & a^2 & 0 & a-1 \\
0 & a-1 & 2 & 1 \\
0 & 0 & a^2-2 & a-3/2
\end{array}\right)$$

Otteniamo

$$\begin{pmatrix}
\pm 2\sqrt{2} & 2 & 0 & \pm \sqrt{2} - 1 \\
0 & \pm \sqrt{2} - 1 & 2 & 1 \\
0 & 0 & 0 & \pm \sqrt{2} - 3/2
\end{pmatrix}$$

L'incompleta ha rango 2, la completa 3 e quindi non esistono soluzioni.

2. a = 1. Sostituiamo nella matrice precedente alla divisione per a - 1,

$$\left(\begin{array}{ccccc}
2a & a^2 & 0 & a-1 \\
0 & a-1 & 2 & 1 \\
0 & -1/2a^2 + a & 2 & -1/2a + 3/2
\end{array}\right)$$

Otteniamo

$$\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 1/2 & 2 & 1
\end{array}\right)$$

L'incompleta ha rango massimo e quindi esiste un unica soluzione.

Riassumendo, il sistema non ha soluzioni per $a=0,\pm\sqrt{2}$, ha un unica soluzione altrimenti.

Г

Esercizio 2 (8pt). Sia $a \in \mathbb{R}$ ed un morfismo $F : \mathbb{R}^2 \to \mathbb{R}^2$ che soddisfi le condizioni

$$F((a,1)) = (1,a)$$
 $F((1,a)) = (a,1)$

Determinare per quali a esista un endomorfismo che soddisfi le condizioni date. In questi casi,

- 1. determinare $(M_F)_B^B$ per una opportuna base B;
- 2. determinare per quali a l'endomorfismo F sia surgettivo;
- 3. trovare almeno un $a \in \mathbb{R}$ tale che l'endomorfismo F non sia sia diagonalizzabile.

Dimostrazione. Vediamo per quali a i vettori (a, 1), (1, a) formano una base B di \mathbb{R}^2 .

$$\det \left(\begin{array}{cc} a & 1 \\ 1 & a \end{array} \right) = a^2 - 1$$

• Se $a^2 - 1 \neq 0 \Leftrightarrow a \neq \pm 1$ la matrice è non singolare ed i due vettori (a, 1), (1, a) sono indipendenti e formano quindi una base B di \mathbb{R}^2 . Il morfismo è ben definito e

$$(M_F)_B^B = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

Dato che questa matrice è non singolare, il morfismo è un isomorfismo, e quindi surgettivo. Calcoliamo il polinomio caratteristico

$$p_F(\lambda) = \det \begin{pmatrix} -\lambda & 1\\ 1 & -\lambda \end{pmatrix} = \lambda^2 + 1$$

Dato che non ci sono radici nel campo F non è diagonalizzabile.

- Se $a^2 1 = 0 \Leftrightarrow a = \pm 1$ le condizioni divengono
 - 1. Se a=1 F((1,1))=(1,1). Scegliamo la base B=(1,1),(1,0). Non abbiamo condizioni sull'immagine del secondo vettore, quindi prendiamo F((1,0))=(x,y) considerando il vettore (x,y) in base B con $x,y\in\mathbb{R}$. La matrice associata al morfismo rispetto alla base B è

$$(M_F)_B^B = \left(\begin{array}{cc} 1 & x \\ 0 & y \end{array}\right)$$

Il morfismo è surgettivo se e solo se $(M_F)_B^B$ è non singolare, ovvero se e solo se $y \neq 0$.

2. Se a = -1 le condizioni deventano

$$F((-1,1)) = (1,-1)$$
 e = $F((1,-1) = (-1,1)$

che sono compatibili dato che la combinazione linerare dei vettori del dominio è

$$(-1,1) + (1,-1) = \underline{0}$$

e le loro immagini soddifano la stessa combinazione linerare

$$F((-1,1)) + F((1,-1)) = (1,-1) + (-1,1) = 0$$

e quindi le condizioni si riducono per esempio a

$$F((-1,1)) = (1,-1) = -(-1,1)$$

Procediamo come sopra. Completiamo il vettore (-1,1) a base B=(-1,1),(1,0) di \mathbb{R}^2 . Non abbiamo condizioni sull'immagine del secondo vettore, quindi prendiamo F((1,0))=(x,y) considerando il vettore (x,y) in base B con $x,y\in\mathbb{R}$. dato che F((-1,1))=(1,-1)=-(-1,1), la matrice associata al morfismo rispetto alla base B è

$$(M_F)_B^B = \left(\begin{array}{cc} -1 & x \\ 0 & y \end{array}\right)$$

e quindi rimane tutto analogo a quanto abbiamo fatto nel caso a=1, sia per la surgettività sia per la diagonalizzabilità.

Ricapitoliamo:

- Esiste F morfismo che soddisfa le condizioni per ogni $a \in \mathbb{R}$.
- Se $a \neq \pm 1$ abbiamo che

$$(M_F)_B^B = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

ed F è surgettivo ma non diagonalizzabile.

• Se a=1 consideriamo la base $B=(1,1), \underline{v}$ con $\underline{v}=(x,y)_B$ (in coordinate B). In questo caso abbiamo che

$$(M_F)_B^B = \left(\begin{array}{cc} 1 & x \\ 0 & y \end{array}\right)$$

ed F è surgettivo se e solo se $y \neq 0$.

• Analogamente se a=-1 consideriamo la base $B=(-1,1),\underline{v}$ con $\underline{v}=(x,y)_B$ (in coordinate B). In questo caso abbiamo che

$$(M_F)_B^B = \left(\begin{array}{cc} -1 & x \\ 0 & y \end{array}\right)$$

ed F è surgettivo se e solo se $y \neq 0$.

Un altro approccio è considerare \underline{v} in coordinate E_2 , e trovare $(M_F)_B^B$ per un opportuna base B mediante la formula di cambiamento di base per morfismi, ma questo approccio porta calcoli più complessi.

Esercizio 3 (8pt). Date $a, b \in \mathbb{R}$ e l'endomorfismo $F : \mathbb{R}^2 \to \mathbb{R}^2$ associato dalle basi canoniche alla matrice

$$(M_F)_{E_2}^{E_2} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$$

Discutere la diagonalizzabilità di F al variare di a, b.

Dimostrazione. Calcoliamo il polinomio caratteristico

$$p_F(\lambda) = \det \begin{pmatrix} a - \lambda & b \\ 1 & -\lambda \end{pmatrix} = \lambda^2 - a\lambda - b$$

Risolviamo $\lambda^2 - a\lambda^2 - b$ con la formula risolutiva delle equazioni di secondo grado

$$\lambda_{1,2} = \frac{a \pm \sqrt{a^2 + 4b}}{2}$$

- 1. Se $a^2 + 4b < 0$ non abbiamo autovalori nel campo e quindi F non è diagonalizzabile.
- 2. Se $a^2 + 4b > 0$ abbiamo due autovalori distinti e quindi F è diagonalizzabile.
- 3. Se $a^2+4b=0$ abbiamo un unico autovalore $\lambda_0=\frac{a}{2}$ di molteplicità algebrica 2. Calcoliamo la molteplicità geometrica, ricordando che $a^2+4b=0$

$$\operatorname{mg}(\lambda_0) = 2 - rk \begin{pmatrix} a - \lambda & b \\ 1 & -\lambda \end{pmatrix}_{|\lambda = \frac{a}{2}} = 2 - rk \begin{pmatrix} \frac{a}{2} & b \\ 1 & -\frac{a}{2} \end{pmatrix} = 2 - rk(M)$$

Indicando la matrice come M. Dato che det $M=-\frac{a^2}{4}-b=-\left(\frac{a^2+4b}{4}\right)=0$, e che M ha l'entrata (2,1) non nulla, abbiamo che rk(M)=1 e quindi $mg(\lambda_0)=1\neq 2=ma(\lambda_0)$. L'endomorfismo F non è quindi diagonalizzabile.

Conclusioni: F è diagonalizzabile se e solo se $a^2 + 4b > 0$.