Distributed Systems Assignment

s1140740

2.1

Proof: If V is a vector clock, prove that $a \to b \iff V(a) \le V(b)$.

$$a \to b \implies V(a) \le V(b)$$

There are three possibilities:

- 1. Event b was a local event of a process i, by definition V(b)[i] + = V(b)[i] + 1
- 2. Event b was a send message event of a process i.
- 3. Event b was a receive message event of a process i.

$$V(a) \le V(b) \implies a \to b$$

2.2

2.3

The weighted diameter of this graph is 7. The path realising this diameter is $A \to C \to E \to G \to H$.

If the graph was unweighted, the diameter would be 4 and the corresponding path would be $A \to C \to F \to G \to I$.

2.4

Figure 1: Prim's algorithm