Problem 1, 3, 6a, 11, 22 (Notability)

Problem 1.
$$\hat{x} = 11$$
, $\hat{y}_i = 2 \cdot x_i - 5$.

Scaling & shift: $\hat{y}_i = 2 \cdot x_i = 2 \cdot x_i = 2 \cdot x_i$

$$\hat{y}_i = 2i - 5 = 3 \cdot x_i = 2 \cdot x_i$$

$$\hat{y}_i = 2i - 5 = 2 \cdot 11 - 5 = 1$$

.
$$y_i = a \cdot x_i + b$$
, $a_i b$ are constants, for all $i = 1, 2, \dots, n$.

$$(=) y = a \cdot x + b \cdot (scaling & shift, linear transform)$$

$$(=) sd(y) = a \cdot sd(x) .$$

we could try to prove it by definition.
Suppose Sample size =
$$n$$
. $(x_i) = (x_1, x_2, x_3, ..., n)$
 $\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$;
 $\overline{y} = \frac{1}{n} \cdot \sum_{i=1}^{n} y_i = \frac{1}{n} \cdot \sum_{i=1}^{n} (2 \cdot x_i - 5)$

$$=\frac{1}{n}\cdot\left(2\sum_{i=1}^{n}x_{i}-5n\right)$$

$$=2\cdot\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)-5$$

$$=2\bar{x}-5$$

Problem 3 suppose lock week's average temperature is
$$\overline{x}^{\circ}F$$
 $\overline{x} = 65$.

2. sample

2. $(x_1, x_2, x_3, ..., x_n)$.

 $n = 7$, w.r.t. daily temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 $n = 7 \times 24$, w.r.t. hourly temp.

 n

Problem 6a)

- · relative area.
- · area of a (circular) sector is

$$A = \frac{\theta}{2} \cdot r^2 \qquad \text{(for a circle,} \\ A = \pi \cdot r^2 = \frac{(2\pi)}{2} \cdot r^2 \text{)}$$

 θ : angle, $\Gamma = \text{radius}$. hence, if $\theta = 40^\circ = \frac{2}{9}, \pi$, then $A = \frac{(2\pi/9)}{2} \cdot r^2$ $= (\pi/9) \cdot r^2$.

- The country A,

 percentage of men = $\frac{\# \text{ men in country } A}{\# \text{ all people in country } A}$ $= \frac{(\# 4) \cdot 4^2}{(\# 47) \cdot 8^2} = \frac{16}{64} = 25\%.$
- · In country B, $p \text{ ercentage of men} = \frac{(\pi + 9) \cdot 6^2}{(\pi + 9) \cdot 10^2} = \frac{36}{100} = 36\%$

Squarer. Area: $A = h^2$, $h = height$. (Area of) ones: fives: tem: twenties: hundreds = 78%: 10%: 7%: 4%: 19%. (height of);;; = $\sqrt{78}$: $\sqrt{10}$: $\sqrt{7}$: $\sqrt{1}$: $\sqrt{1}$. this is not the unique solution; the proportions Could be multiplied by any constants.	Problem 11.							
(Area of) ones: fives: tens: twenties: hundreds = 78%: 10%: 7%: 4%: 1% (height of): ": ": ": ": ": ": ": ": ": ": ": ": ":	squares. Area: $A = h^2$ $h = height$.							
= 78%: 10%: 7%: 4%: 1% (height of) ": ": ": ": ": ": ": ": ": ": ": ": ":	,							
(height of) ": ": ": ": ": ": ": ": ": ": ": ": ":								
this is not the unique solution, the proportions	(height of) : " : " :							
this is not the unique solution, the proportions								
this is not the unique solution; the proportions Could be multiplied by any constants.	• • • • • • • • • • • • • • • • • • • •							
Could be multiplied by any constants.	this is not the unique solution, the proportions							
	could be multiplied by any constants.							

standard deviation: (sample size n)

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}$$
 (1)

sample variance

$$=\frac{1}{n-1}\left(\left(x_{1}-\overline{X}\right)^{2}+\cdots+\left(x_{n}-\overline{X}\right)^{2}\right)$$

$$s^2 = \frac{1}{n-1} \left((\chi_1^2 + \dots + \chi_n^2) - \frac{1}{n} (\chi_1 + \dots + \chi_n)^2 \right)$$

$$=\frac{1}{n-1}\left(\sum_{i=1}^{n}x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n}x_{i}\right)^{2}\right)$$

$$=\frac{1}{n-1}\left(\sum_{i=1}^{n}x_{i}^{2}-n\cdot\bar{x}\right)$$

Sample size = $10+1=11=\tilde{N}$

Sample
$$(\chi_1, \chi_2, -\cdots, \chi_{10}, y)$$
, $y = 9$.

new data point

$$s^{2} = \frac{1}{\|-1|} \left(\left(x_{1}^{2} + \dots + x_{10}^{2} + y^{2} \right) - \frac{1}{\|} \left(x_{1} + \dots + x_{10} + y^{2} \right) \right)$$

$$=\frac{1}{11-1}\left((100+9^2)-\frac{1}{11}\left(5+9\right)^2\right)$$

$$=\frac{1}{10}\left(181-\frac{1}{11}\cdot196\right)$$

$$=) s = 4.04$$

Noter	for real	number	21,, nn.	
inequali-				
		(z_i^2)	$\frac{1}{n} \cdot \left(\sum_{i=1}^{n} \chi_{i} \right)$	
Con	itradict f	the se	Hings in this	sproblem).