Digital Signal Processing with Field Programmable Gate Arrays

Jack Martin, Walter Behaylo, Raul Gerhardus

What is an FPGA?

(Field Programmable Gate Array)

- Array of configurable logic blocks
- Programmable with VHDL, Verilog
- Programmed to implement custom hardware
- Can outperform processors due to
 - o application specific logic
 - o parallel nature
- Complex hardware like ALUs, filters, and processors can even be implemented

Project Goals

- Develop computer engineering abilities
- Gain understanding of FPGA uses and system design
- Fast, real-time processing
- High-performance capabilities
- Intelligible I/O

Our Implementation

FPGA Operations

15 vhdl files

11 unique components

4 test benches

15 IPs

21/100 DSP Slices

4 tcl files - configures simulations

1 xdc file - maps pins

Analog To Digital Converter

 Programmed a counter/comparator pair to FPGA

- Activates trigger
 - Tells ADC when to take samples (20 kHz)

Filter Implementation

- Filters have 16 bit input and output data
- FPGA Block Ram to store filter coefficients and data inputs
- DSP Slices to do intricate multiplication and addition
- 3 1000 Order filters, each with a 48 bit coefficient width
- Total of 21 DSP Slices and 9 blocks of Bram

Figure 1-1: Conventional Tapped Delay Line FIR Filter Representation

Low Pass Filter: f < 250 Hz

300 Hz

240 Hz

Bandpass Filter: 250 Hz < f < 1500 Hz

1400 Hz

300 Hz

High Pass Filter: f > 1500 Hz

1400 Hz

1800 Hz

Digital to Analog Converter

- Digital Values to PWM waveform
 - o 50 MHz clock rate
 - Max 10-bit resolution
 - ~50 kHz PWM frequency
- LPF to cut out PWM frequency
 - Analog Filter
 - 7th Order Chebyshev

Debugging

- Used simulation to debug code
- Used an oscilloscope to verify output after programing

Untitled 2*

Name

• ceneral

₩ sample[15:0 iii an7606convst ₩ an7606cs ₩ an7606rd iii an7606rese # an7606busy

Ma1(15:0) ₩q2[15:0] ₩ q3[15:0] egwm.

™ aff

QBQXX W N H N T T F F F F X H

Value

Live Demo

60 Hz tone: https://www.youtube.com/watch?v=GqwFimG3X3w

1 kHz tone: https://www.youtube.com/watch?v=PyD9cMarVJk

2 kHz tone: https://www.youtube.com/watch?v=0voTVFmpVjY

Bohemian Rhapsody: https://www.youtube.com/watch?v=fJ9rUzIMcZQ

Mo Bamba: https://www.youtube.com/watch?v=cf45ZeUe2vg

Timmy Trumpet: https://www.youtube.com/watch?v=r1dquH KOQc

Sidewalks and Skeletons: https://www.youtube.com/watch?v=EVLaJtg8xIU 1:20

Questions?

Sources

https://docs.amd.com/v/u/en-US/ug479 7Series DSP48E1

https://www.rapidwright.io/docs/FPGA Architecture.html#dsp-blocks

https://support.xilinx.com/s/question/0D52E00006hpUT2SAM/understanding-parallelism-in-fpgas?language=en_US

https://tools.analog.com/en/filterwizard/

https://www.xilinx.com/support/documents/ip documentation/fir compiler/v7 2/pg149-fir-compiler.pdf

https://www.researchgate.net/figure/High-performance-digital-signal-processing-system fig3 225639474

https://www.youtube.com/watch?v=yS5MsFkwzyU

https://www.analog.com/media/en/technical-documentation/data-sheets/ad7606 7606-6 7606-4.pdf

https://www.xilinx.com/products/silicon-devices/soc/zyng-7000.html#documentation