Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA)

Univariate Analysis

```
# Load the dataset
data <- read.csv("../data/study_performance_cleaned.csv")
head(data)

## gender race_ethnicity parental_level_of_education lunch
## 1 female group B bachelor's degree standard</pre>
```

```
## 2 female
                   group C
                                           some college
                                                             standard
## 3 female
                   group B
                                        master's degree
                                                             standard
## 4
       male
                   group A
                                     associate's degree free/reduced
## 5
       male
                   group C
                                           some college
                                                             standard
                   group B
## 6 female
                                     associate's degree
                                                             standard
     test_preparation_course math_score reading_score writing_score
## 1
                                      72
                                                     72
                        none
## 2
                                                     90
                   completed
                                      69
                                                                   88
## 3
                        none
                                      90
                                                     95
                                                                   93
## 4
                                      47
                                                    57
                                                                   44
                        none
## 5
                                      76
                                                    78
                                                                   75
                        none
## 6
                                      71
                                                     83
                                                                   78
                        none
```

Explore distributions of numerical variables

Create bar plots for categorical variables

Distribution of Gender

Distribution of Race/Ethnicity

Distribution of Parental Level of Education

Parental Level of Education

Distribution of Lunch

Distribution of Test Preparation Course

Bivariate Analysis ### Scatter plots for numerical variables

Math Score vs Reading Score

Math Score vs Writing Score

Reading Score vs Writing Score

Box plots for comparing numerical variable across different categories

Math Scores by Gender

Reading Scores by Gender

Writing Scores by Gender

Math Scores by Race/Ethnicity

Reading Scores by Race/Ethnicity

Writing Scores by Race/Ethnicity


```
# Calculate correlation matrix
correlation matrix <- cor(data[c("math score", "reading score", "writing score")])</pre>
# Print correlation matrix
print(correlation_matrix)
                 math_score reading_score writing_score
## math_score
                  1.0000000
                                0.7988810
                                              0.7806676
## reading_score 0.7988810
                                1.0000000
                                              0.9498439
                                0.9498439
## writing_score 0.7806676
                                              1.0000000
# Visualize correlation matrix using a heatmap
ggplot(data = melt(correlation_matrix), aes(x = Var1, y = Var2, fill = value)) +
 geom_tile() +
  scale_fill_gradient2(low = "blue", mid = "white", high = "red", midpoint = 0, limits = c(-1,1)) +
 theme_minimal() +
 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  labs(title = "Correlation Heatmap",
      x = "Variables",
       y = "Variables",
       fill = "Correlation")
```


Compare distributions across different groups

Math Scores Distribution by Gender

Reading Scores Distribution by Gender

Writing Scores Distribution by Gender

Math Scores Distribution by Race/Ethnicity

Reading Scores Distribution by Race/Ethnicity

