Constrained Linear Model Predictive Control

with Kalman filter for state and disturbance estimation

EBO780

Constrained MPC

- The optimization problem can treat constraints on:
 - Manipulated variables (MV's)
 - Eg. $u_{min} \le u(t) \le u_{max}$
 - If a control valve is fully open/closed, the flow-rate is constrained at its max/min value.
 - Controlled variables (CV's)
 - Eg. $y_{min} \le y(t) \le y_{max}$
 - In the case of cruise control, the car speed cannot be below 0 or above e.g. 120 km/h.
 - · Associated variables (formula)
 - Eg. $\sqrt{u^2(t) y^2(t)} \le 3^2$
 - For the case above, the input and output must be within a circle with radius 3.
 - Internal states (based on estimation)
 - Eg. $x_{min} \le x(t) \le x_{max}$

Constrained MPC

- Constraint handling in MPC is not "magic".
 - There are many algorithms to minimize a cost function subject to constraints:
 - · Interior point
 - · Trust region reflective
 - Sequential Quadratic Programming
 - Active Set
 - (https://www.mathworks.com/help/optim/ug/choosing-the-algorithm.html)
 - MPC exploits the degrees of freedom available when an MV or CV is at a constraint.
 - If there are no degrees of freedom available, MPC compromises based on variable weightings in the cost function.

Problem Description (1)

Constrained optimization problem:

$$\min_{x \in V} V(u, x_0)$$

Subject to: $x \in \mathcal{X}$

 $u\in \mathcal{U}$

where:

 $x_0 \triangleq \text{initial state}$ $u \in \mathbb{R}^{N_C \times N_U}$

$$\begin{split} \mathcal{X} &\triangleq \{x \in \mathbb{R}^{N_X} | x_l \leq x \leq x_u\} \\ \mathcal{U} &\triangleq \{u \in \mathbb{R}^{N_U} | u_l \leq u \leq u_u\} \end{split}$$

Problem Description (2)

$$V(u, x_0) = \sum_{i=1}^{N_P} (Y_{SP} - h(x, u))^T Q(Y_{SP} - h(x, u)) + \sum_{i=1}^{N_C} \Delta u^T R \Delta u$$

where:

 $\dot{x} = f(x, u)$

y = h(x, u)

 $Y_{SP} \triangleq \text{set point}$

 N_P = Prediction samples

 $N_C = \text{Control moves}$

Q, R = Weights on outputs and inputs

Constraints in Matlab (1)

• Use *fmincon* for non-linear constrained optimization:

$$\min_{u} f(u) \text{ such that } \begin{cases} c(u) < 0 \\ c_{eq}(u) = 0 \\ Au \leq b \\ A_{eq}u = b_{eq} \\ low \leq u < high \end{cases}$$

• See Matlab for general use of *fmincon* as minimisation function: https://www.mathworks.com/help/optim/ug/fmincon.html

Constraints in Matlab (2)

• For MPC we can formulate the problem as:

$$\min_{u} V(x, u) \text{ such that } \begin{cases} c(x, u) < 0 \\ c_{eq}(x, u) = 0 \end{cases}$$

• Linear and nonlinear inequality constraints captured by:

$$c(x,u) \leq 0$$

• Linear and nonlinear equality constraints captured by:

$$c_{eq}(x,u)=0$$

• The nonlcon constraint function allows for advanced constraints. For fmincon, define *nonlcon* to include c(x, u) and $c_{eq}(x, u)$ in optimisation problem:

Constraints in Matlab (3)

• Example:

For MPC problem, constraints are: $|u_1| \le 5$ and $-10 \le u_2 \le 3$:

Problem formulation:

$$\min_{u} V(x, u)$$
 such that $c(u) < 0$

$$c(u) = \begin{bmatrix} u_1 - 5 \\ -u_1 - 5 \\ u_2 - 3 \\ -u_2 - 10 \end{bmatrix} \le \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

(We can easily include inequality constraints on x in this function.)

Constraints in Matlab (3)

Example:

A tank of 15 m³ in an industrial process contains three entities:

$$x_1, x_2, x_3 \text{ [m}^3\text{]}$$

The total volume of material in the tank is: $V = x_1 + x_2 + x_3$

During operation the volume is constrained: $20\% \le V \le 85\%$.

Therefore, the constraint function is:

$$c(x) = \begin{bmatrix} \frac{x_1 + x_2 + x_3}{15} - 0.85 \\ -\frac{x_1 + x_2 + x_3}{15} - 0.20 \end{bmatrix} \le 0$$

MPC Feedback (1)

- In ideal world:
 - Models are 100% accurate.
 - All disturbances are measured.
 - Measurements are perfect.
 - There is full state-feedback, i.e. all states are measured directly:

Consider the process described by:

$$\dot{x} = f(x, u)$$

 $y = h(x, u)$

$$y = h(x,u)$$
 where y is a measurable. The control objective is that y should follow the setpoint Y_{SP} :
$$V(u,x_0) = \sum_{i=1}^{N_P} \left(Y_{SP} - h(x,u)\right)^T Q\left(Y_{SP} - h(x,u)\right) + \sum_{i=1}^{N_C} \Delta u^T R \Delta u$$

The measurement model h(x, u) is in the objective function and not y directly.

Full state feedback assumes we measure x directly to calculate h(x, u).

Measurement of x ensures there is closed-loop feedback and integral action.

MPC Feedback (2)

- In real world:
 - Models are not 100% accurate.
 - There can be unmodelled dynamics (e.g. linear model of nonlinear systems)
 - Not all disturbances can be measured.
 - · Measurements are noisy.
 - Not all states can be measured.
 - Since y and u can be measured, create a state estimator to estimate x.
 - Estimate of x is used as feedback to objective function to calculate h(x, u).
 - The estimate of x provides closed-loop feedback to ensure integral action.

MPC Feedback: Kalman Filter (2)

- Kalman Filter (KF):
 - In real world the true state x cannot be measured directly.
 - KF takes measurements of y and u to calculate \hat{x} .
 - \hat{x} is an estimate of the true state x.
 - Measurements of y includes noise v_y .
- The process model for the KF is:

$$x_{k+1} = Ax_k + Bu_k + Gw_k$$
$$y_k = Cx_k + v_k$$

where

- w_k is the process noise with covariance: $E(w_k w_k^T) = Q$
- v_k is the measurement noise with covariance: $E\left(v_k v_k^T\right) = R$

The noise covariance matrices are important for designing the filter.

MPC Feedback: Kalman Filter (3) Algorithm

• Step 1: Measurement update

Use measurement at time k to produce estimate $\hat{x}_{k|k}$:

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + M(y_{v_k} - C\hat{x}_{k|k-1})$$

where $y_v = y + v$ is the output measurement with noise.

 $\hat{x}_{k|k-1}$ is the estimate of x at time k given information until k-1.

 $\hat{x}_{k|k}$ is the updated estimate based on last measurement y_{v_k} .

 $y_{v_k} - C\hat{x}_{k|k-1}$ is the innovation function

M is the Kalman gain

- The innovation function gives the difference between the measured and predicted values of y based on the estimate $\hat{x}_{k|k-1}$.
- Kalman gain M is chosen to minimize the steady-state covariances of the estimation error based on the noise covariances Q and R.

MPC Feedback: Kalman Filter (4) Algorithm

• Step 1: Measurement update

Use measurement at time k to produce estimate $\hat{x}_{k|k}$: $\hat{x}_{k|k} = \hat{x}_{k|k-1} + M(y_{v_k} - C\hat{x}_{k|k-1})$

• Step 2: Time update

Predict next $\hat{x}_{k+1|k}$ with model used by KF: $\hat{x}_{k+1|k} = A\hat{x}_{k|k} + Bu_k$

• Step 3: Do steps 1 and 2 at each time stamp k.

MPC Feedback: Kalman Filter (5) Algorithm Summary

• The measurement and time updates can be combined into a state-space model of the KF with matrices A_{KF} , B_{KF} , C_{KF} , D_{KF} :

$$\begin{split} \hat{x}_{k+1|k} &= A_{KF} \hat{x}_{k|k-1} + B_{KF} \begin{bmatrix} u_k \\ y_{v_k} \end{bmatrix} = A(I - MC) \hat{x}_{k|k-1} + \begin{bmatrix} B & AM \end{bmatrix} \begin{bmatrix} u_k \\ y_{v_k} \end{bmatrix} \\ \hat{y}_{k|k} &= C_{KF} \hat{x}_{k|k-1} + D_{KF} y_{v_k} = C(I - MC) \hat{x}_{k|k-1} + CM y_{v_k} \end{split}$$

where $\hat{y}_{k|k}$ is the EKF estimate of y_k .

Note, the filter receives u_k and y_{v_k} as input information.

Use command kalman in MATLAB to design the KF.

Exponential Filter

• Measurement noise can be reduced with a simple recursive exponential filter:

$$\bar{y}_k = \alpha y_{v_k} + (1 - \alpha)\bar{y}_{k-1}$$

where

 $\bar{y}_k = \text{ filtered value at time } k$

 α = fraction between 0 and 1 to control amount of filtering

 $y_{v_k} = \text{current noisy measurement}$

Kalman Filter (1) State and Disturbance Estimation

- KF can also estimate process disturbances.
- The disturbance estimate combine:
 - Unmodelled dynamics
 - Model mismatch
 - Unmeasured disturbances (both input and output)
- The MPC can use the disturbance estimate to improve disturbance rejection.

Kalman Filter (2) State and Disturbance Estimation

- Formulation of KF for state and disturbance estimation:
 - Define a variable for the unknown process disturbances: d_k
 - The unknown process disturbance is assumed to follow a random walk:

$$d_{k+1} = d_k + w_k$$

- For the random walk model above,
 - The disturbance variable is modelled as an integrating process.
 - The process noise influences the disturbance.

Kalman Filter (3) State and Disturbance Estimation

- Formulation of KF for state and disturbance estimation:
 - Define the process model as:

$$x_{k+1} = Ax_k + B(u_k + d_k)$$
$$d_{k+1} = d_k + w_k$$
$$y_k = Cx_k$$

- For the definition above, d_k is added to the input. This formulation makes it easier if an MPC needs to reject disturbances. The KF estimate of d_k can easily be added to the input in the MPC algorithm.
- (It is possible to define the system as:

$$x_{k+1} = Ax_k + Bu_k + \bar{d}_k$$

This is similar to the case above, such that $\bar{d}_k = Bd_k$.

This formulation can be less amenable for use with MPC.)

Kalman Filter (4) State and Disturbance Estimation

- Formulation of KF for state and disturbance estimation:
 - Define the process model as:

$$x_{k+1} = Ax_k + B(u_k + d_k)$$
$$d_{k+1} = d_k + w_k$$
$$y_k = Cx_k$$

• This can be written as:

• Use augmented model above to create KF.

References

- Rawlings, J.B. (2000). Tutorial overview of Model Predictive Control. IEEE Control Systems Magazine, Volume 20, Issue 3, Pages 38--52.
- Qin, S. J. and T. A. Badgwell (2003). A survey of industrial model predictive control technology. Control Engineering Practice. Volume 11, Pages 733--764.
- Mayne, D. Q., J. B. Rawlings, C. V. Rao and P. O. M. Scokaert. (2000). Constrained model predictive control: Stability and optimality. Automatica. Volume 36, Pages 789--814.
- Mathworks (2020), Kalman Filtering, Control Systems Toolbox, [Online] Available: https://www.mathworks.com/help/control/ug/kalman-filtering.html, Accessed April 2020.
- Mathworks (2020), fmincon, Control Systems Toolbox, [Online] Available: https://www.mathworks.com/help/optim/ug/fmincon.html, Accessed April 2020.
- Mathworks (2020), Choosing the Algorithm, Control Systems Toolbox, [Online] Available: https://www.mathworks.com/help/optim/ug/choosing-the-algorithm.html#bsbwxm7, Accessed April 2020.