

Análise de Redes Biológicas com a Linguagem Python

Prof. Dr. Gilderlanio Santana de Araújo Arthur Ribeiro dos Santos PPGBM0102 – Tópicos Avançados III – T01

- Desafio contemporâneo
- É possível atravessar todas pontes da cidade sem repetições?

- Resolução do problema por Leonhard Euler (1736):
 - Comprovou matematicamente a solução negativa do problema
 - Simplificação do problema em pontos e linhas

- Resolução do problema por Leonhard Euler (1736):
 - Comprovou matematicamente a solução negativa do problema
 - Simplificação do problema em pontos e linhas

- Resolução do problema por Leonhard Euler (1736):
 - Comprovou matematicamente a solução negativa do problema
 - Simplificação do problema em pontos e linhas

Motivações

Maior integração de dados

 Possibilitam análise a nível sistêmico

Motivações

- Grande volume de dados
 biológicos públicos
- Transformam problemas biológicos como questões de redes

Exemplos de redes biológicas

A Guide to Conquer the Biological Network Era Using Graph Theory

Evangelos Karatzas^{1,2†} Pavid Paez-Espino³ Georgios A. Pavlopoulos^{1*}

Rede proteína-proteína

Vias metabólicas do KEGG

Rede de similaridade de sequência

Exemplos de redes biológicas

Exemplos de redes biológicas

A Guide to Conquer the Biological Network Era Using Graph Theory

- ¹ Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
- ² Department of Informatics and Telecommunications, University of Athens, Athens, Greece
- 3 Lawrence Berkeley National Laboratory, Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States

77

Abstract
The ETE (transforming growth factor \$1 (TGF\$1) injection with treadmilt running) model of murine [88th injury was used to examine effects of intra-articular bysauronas (A-HA) on the metabolism of subchondral bone. HA was injected 24 h after TGF\$1 injection and its effects on the mRNA of 80 genes in the NNA pathway, and bone remodeling genes, REGS. N802 and REGT. In femoral and 88th epityses/metaphyses of injected and contralateral less was assessed. Structural bone parameters at those sixts were determined by Micro-comparety (micro-CT) and bone remodeling cells identified with histochemistry for **Extractive states were determined by Micro-comparety (micro-CT) and bone remodeling cells identified with histochemistry for **Extractive states and phosphatical and immodels and the states of the sta

Cadeia alimentar

Co-ocorrências

Rede PPI de múltiplas arestas

= Tipos de grafos

= Tipos de grafos

Estrutura básica de grafos

Conectividade

- Conceito relacionado a ligação entre elementos de uma rede
- Mede a robustez de um sistema

Conectividade

- Conceito relacionado a ligação entre elementos de uma rede
- Mede a robustez de um sistema

= Conectividade

- Fortemente ligado a teoria dos problemas de fluxo
 - Medições de distância e caminho

= Centralidade

- Conceito que mede a influência das conexões de uma rede
- Permite a estimação de importância de um elemento dentro de um sistema

Centralidade de grau

- Mede o número de ligações associados a cada elemento de uma rede
 - Aumento da chance de um elemento receber informações do sistema

— Centralidade de proximidade

- Mede a menor distância entre todos pares de elementos de uma rede
 - Identifica o elemento com maior facilidade de transmitir informações

— Centralidade de intermediação

- Mede o número de menores caminhos que atravessam um elemento/conexão
 - Identifica as estruturas principais envolvidas na transmissão de informação

$$c_B(v) = \sum_{s,t \in V} \frac{\sigma(s,t|v)}{\sigma(s,t)}$$

— Centralidade de intermediação

Coeficientes de intermediação não-normalizados

$$Gn = G*2/((N-1)(N-2))$$

— Centralidade de intermediação

Coeficientes de intermediação não-normalizados

$$Gn = G*2/(N*(N-1))$$

i\j	1	2	3	4	5
1	0	1	0	1	1
2	1	0	1	1	1
3	0	1	0	0	0
4	1	1	0	0	1
5	1	1	0	1	0

Origem	Destino	Valor
1	2	1
1	3	0
1	4	1
1	5	1
2	3	1
2	4	1
2	5	1
3	4	0
3	5	0
4	5	1

Origem	Destino	Valor
1	2	1
1	3	0
1	4	1
1	5	1
2	3	1
2	4	1
2	5	1
3	4	0
3	5	0
4	5	1

i\j	1	2	3	4	5	6
1	0	1	0	1	1	0
2	1	0	1	1	1	1
3	0	1	0	0	0	1
4	1	1	0	0	1	0
5	1	1	0	1	0	1
6	0	1	1	0	1	0

i\j	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	0	0
3	0	1	0	0	0	1
4	0	1	0	0	1	0
5	1	1	0	1	0	1
6	0	1	0	0	0	0

i\j	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	0	0
3	0	1	0	0	0	1
4	0	1	0	0	1	0
5	1	1	0	1	0	1
6	0	1	0	0	0	0

Origem	Destino	Valor
1	2	1
1	3	0
	•••	
2	1	0
2	3	0
	•••	
3	1	0
3	2	1
	•••	

= Isomorfismo entre grafos

- Problema de teoria de grafos
- Capacidade de isolar um grafo em componentes menores
 - Compartilhamento de características

- Problema de teoria de grafos
- Capacidade de isolar um grafo em componentes menores
 - Compartilhamento de características

i\j	1	2	3	4	5	6	7	8	9
1	0	1	1	0	1	0	0	0	0
2	1	0	1	1	1	1	1	0	0
3	1	1	0	1	1	0	0	0	1
4	0	1	1	0	1	0	0	1	0
5	1	1	1	1	0	0	0	0	0
6	0	1	0	0	0	0	0	0	0
7	0	1	0	0	0	0	0	0	0
8	0	0	0	1	0	0	0	0	0
9	0	0	1	0	0	0	0	0	0

i\j	1	2	3	4	5	6	7	8	9
1	0	1	1	0	1	0	0	0	0
2	1	0	1	1	1	1	1	0	0
3	1	1	0	1	1	0	0	0	1
4	0	1	1	0	1	0	0	1	0
5	1	1	1	1	0	0	0	0	0
6	0	1	0	0	0	0	0	0	0
7	0	1	0	0	0	0	0	0	0
8	0	0	0	1	0	0	0	0	0
9	0	0	1	0	0	0	0	0	0

NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.

- Algoritmos para análise de métricas de grafos
- Métodos de visualização e layouts para redes

NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.

\$ pip install networkx[default]

— Manipulação de grafos no NetworkX

- >>> import networkx as nx
- >>> G = nx.Graph()
- >>> G.add_edge(1, 3)
- >>> G.add_edge(2, 3)

•••

```
>>> G.edges()
EdgeView([(1, 3), (3, 2), (3, 4), (3, 5), (4, 5)])
```

>>> G.nodes()
NodeView((1, 3, 2, 4, 5))

>>> G.degree()
DegreeView({1: 1, 3: 4, 2: 1, 4: 2, 5: 2})

```
>>> nx.degree_centrality(G)
EdgeView([(1, 3), (3, 2), (3, 4), (3, 5), (4, 5)])
```

```
>>> nx.closeness_centrality(G)
```

{1: 0.5714285714285714,

3: 1.0,

2: 0.5714285714285714,

```
>>> nx.betweenness_centrality(G)
{1: 0.0, 3: 0.833333333333333, 2: 0.0, 4: 0.0, 5: 0.0}
```


>>> nx.is_isomorphic(C1, C2)

True

>>> H = G.subgraph([3, 4, 5])

- >>> D = nx.Graph()
- >>> D.add_edge(3, 5, weight = 0.4)
- >>> D.add_edge(4, 5, weight = 0.1)

•••

- >>> E = nx.DiGraph()
- >>> E.add_edge(3, 5)
- >>> E.add_edge(5, 3)

•••

- >>> F = nx.MultiGraph()
- >>> F.add_edge(1, 2, color = "gray")
- >>> F.add_edge(1, 2, color = "blue")

•••

- Armazenamento de atributos:
 - Dicionário

>>> nx.has_bridges(I)
True

>>> list(nx.bridges(I))
[(1, 6)]

$$c_u = \frac{2T(u)}{deg(u)(deg(u) - 1)}$$

$$c_u = \frac{2T(u)}{deg(u)(deg(u) - 1)}$$

>>> nx.clustering(I, 6)
0.5

- >>> from networkx.algorithms.community.centrality import girvan_newman
- >>> comp = girvan_newman(I)
- >>> tuple(sorted(c) for c in next(comp))

([1, 2, 3, 4, 5], [6, 7, 8, 9, 10])

Modelagem de grafos no NetworkX

- >>> nx.draw(G)
- >>> nx.draw_networkx_nodes(G, pos)
- >>> x.draw_networkx_edges(G, pos)
- >>> nx.draw_networkx_labels(G, pos)
- >>> nx.draw_networkx_edge_labels(G, pos)

Modelagem de grafos no NetworkX

Layout da rede

JOURNAL ARTICLE

PyWGCNA: a Python package for weighted gene coexpression network analysis 3

Narges Rezaie, Farilie Reese, Ali Mortazavi

Bioinformatics, Volume 39, Issue 7, July 2023, btad415,

https://doi.org/10.1093/bioinformatics/btad415

Published: 03 July 2023 Article history ▼

\$ pip install pyWGCNA