

INTRODUÇÃO

- As Queimadas podem ser causadas por fatores naturais, como raios (denominados tecnicamente incêndios florestais), ou por atividades humanas, como queimas controladas que saem do controle, fogueiras mal apagadas e até mesmo atos criminosos. Com o aumento das temperaturas globais e a ocorrência de secas prolongadas, a frequência e a intensidade dos incêndios florestais e das queimadas têm crescido, afetando significativamente o meio ambiente e a saúde pública.
- Esses incêndios não apenas destroem a vegetação, afetando a fauna e a flora, mas também emitem grandes quantidades de fumaça e partículas tóxicas na atmosfera. Isso representa uma ameaça à saúde das comunidades próximas e até mesmo de áreas distantes. Isso ocorre porque, dependendo das condições meteorológicas e das correntes de ar, a dispersão desses poluentes pode afetar regiões urbanas e rurais a grandes distâncias, além do foco inicial do incêndio, resultando em impactos de saúde em uma área ainda maior. Os impactos dos incêndios florestais na saúde são amplos e podem ser imediatos ou de longo prazo:
- Problemas respiratórios:
- Efeitos cardiovasculares:
- Saúde mental:
- Deslocamento populacional:

PAPEL DA TECNOLOGIA NO COMBATE A QUEIMADAS

- Monitoramento e detecção: Drones com câmeras térmicas e sistemas de IA podem identificar focos de incêndio em tempo real, mesmo em áreas de difícil acesso.
- Resposta imediata: Sistemas de detecção e resposta automatizados podem enviar drones para combater as chamas, diminuindo o tempo de reação e prevenindo grandes desastres.
- Previsão: A análise de dados, incluindo históricos de queimadas, previsão meteorológica e tipo de vegetação, pode ajudar a prever a probabilidade de incêndios.
- Fiscalização: A tecnologia pode identificar com precisão áreas de desmatamento, facilitando a fiscalização e interrupção do desmatamento.
- Combate a incêndios: Drones podem ser equipados com sistemas de lançamento de água ou outros agentes extintores, contribuindo para a contenção das chamas.

REGRAS GERAIS

- De 27/05 a 06/06: seguiremos o horário normal de aulas (disciplinas presenciais permanecem presenciais; disciplinas remotas continuam via Teams)
- Não haverá chamada neste período; serão realizados plantões de dúvidas referentes à GS
- Todas as entregas serão em formato de projeto, conforme orientações dos professores
- As orientações serão divulgadas no Portal do Aluno (em Trabalhos) e no Teams (canal Geral) através de documento enviado pelos Scrum Masters
- A data limite para as entregas é 06/06/2025 até as 23h55(verifique os locais de entrega com os professores ou na documentação disponibilizada)
- A GS pode ser feita em até 3 alunos (pode fazer individual, em dupla ou trio) da mesma turma.
- Não serão aceitas entregas de trios ou duplas formados por alunos de turmas diferentes.
- Para as semanas seguintes, fiquem atentos ao calendário acadêmico no Portal do Aluno e às datas de entregas do Challenge
- Cuidado com plagio

ENTREGAS POR DISCIPLINA

AGILE METHODOLOGY WITH SQUAD FRAMEWORK

- Entrega 1 (70 pontos) Documento de apresentação da solução idealizada para a GS contendo:
- "1. Apresentação do nome do projeto, da composição da equipe (nome e RM) e descrição de qual o desafio/problema
- (sub tema) escolhido para ser resolvido, além de uma apresentação sumarizada e formal da solução proposta."10
- 2. Definição do público alvo que usará e se beneficiará da sua solução, com estimativas sobre o impacto da solução/produto para o público alvo, fundamentado em estudos de dados de mercado/estatísticas. 10
- 3. Persona e Mapa de Empatia dos principais usuários incluindo texto detalhado para cada item do Mapa. 20
- "4. Documentação de Especificação de Requisitos Funcionais, Não-Funcionais, Técnicos e Regras de Negócios. Mínimo
- de 7 requisitos para cada categoria."15
- "5. Construção do Product Backlog contendo os Épicos, Histórias de Usuários e seus respectivos critérios de aceite "
- "Forma de entrega:
- A entrega deverá ser feita em documento único contendo os itens descritos na Entrega 1, em formato PDF, em Tarefa que será criada no Teams"

- (Definition of Done). Mínimo de 12 Histórias de Usuários "15
- Entrega 2 Vídeo Pitch (30 pontos)
- 6. O grupo deverá entregar um vídeo Pitch de no máximo 5 minutos contendo a descrição do problema a ser trabalhado, a oportunidade a ser explorada pela equipe e a descrição da solução proposta de forma ilustrada (mostrando esboços de telas ou outras ilustrações), com narração feita por elemento(s) do grupo. 30
- TOTAL 100
- "OBS: O Vídeo Pitch deverá ser postado de forma privada no Youtube e o link para acesso deverá ser inserido ao final do documento único de entrega (lembrem-se de testar se o link do vídeo funciona e permite acesso pelos professores. Caso o link esteja "quebrado" ou bloqueado isso acarretará perda de pontos)

AR-VR MODELLING AND SIMULATION

- Tema: Clima Extremo Queimadas
- Data de Entrega: 06/06 até as 23h55
- Formato de Entrega: Arquivo .PDF (com as capturas de TELA) ou arquivo com link de Video no Youtube (demonstrando e explicando o projeto)
- Objetivo da Atividade
- Nesta atividade, os estudantes deverão desenvolver um cenário 3D completo utilizando o Autodesk Maya, com o tema central "Queimadas como evento climático extremo". O objetivo é representar visualmente os impactos ambientais, sociais ou urbanos causados por esse fenômeno, por meio de uma composição de cenário expressiva, coerente e tecnicamente bem executada.
- Requisitos Técnicos da Atividade
- A composição final deve ser feita no Autodesk Maya;
- É permitido o uso de ASSETS complementares de bibliotecas online e Inteligência Artificial (ex: Sketchfab, TurboSquid, I.A.), desde que estejam devidamente integrados ao projeto;
- O cenário deve conter, obrigatoriamente, no mínimo 3 objetos modelados pelos próprios alunos (não baixados da internet);
- · Valorizar a proposta visual e narrativa do cenário;
- Os objetos que compõem o cenário devem estar organizados nos seus devidos Layers;
- A apresentação (.PDF ou arquivo com o link do Vídeo Youtube) deverá ser enviado até a data limite 06/06 23:55 horas;
- *certifiquem-se que o vídeo está acessível a todos no público (não listado) do Youtube.
- Entrega individual ou em TRIOS.

Critério

Descrição

Pontuação

Modelagem Própria (3 objetos)

• Qualidade técnica e complexidade dos objetos modelados pelos alunos. 30 pts

Boas Práticas/Organização

• Organização espacial, integração de elementos e coerência visual do cenário, Layers. 20 pts

Aplicação de Tema

• Clareza na representação do tema "Queimadas" e seus impactos. 25 pts

Uso Criativo de Assets

• Integração inteligente e estética de elementos importados com os modelados. 25 pts

DATA SCIENCE AND STATISTICAL COMPUTING

• Objetivos Gerais:

Analisar dados históricos de incêndios florestais para identificar padrões relacionados às causas, épocas do ano, localização e tamanho dos incêndios, utilizando tecnologia para sugerir métodos de prevenção e combate mais eficazes.

Documentação

- Análise, limpeza e formatação dos dados: Remoção de duplicatas, padronização de campos de datas ou categorias, identificação e tratamento de valores nulos e outliers; 10 Pontos
- Análise descritiva: Estatísticas descritivas das variáveis, tendências temporais para a ocorrência de incêndios e suas causas principais e estados onde ocorreram com maior e menor frequência; 30 Pontos
- Gráficos: pelo menos 4 gráficos, focando na distribuição temporal dos incêndios, principais causas, relação entre causas (humanas/naturais) e tamanho do incêndio ou localização geográfica 10 Pontos
- Organização: Códigos bem estruturados e comentados e separação clara entre etapas de análise. 10 Pontos

Apresentação

- Resumo do Projeto (10 pts): Objetivo, contexto da análise e variáveis da base de dados; 10 Pontos
- Visualizações e Estatísticas-Chave: Comentários claros sobre os gráficos e insights extraídos; 10 Pontos
- Conclusões e Recomendações: Discuta como os resultados da análise dos dados poderiam ser usados por drones e sistemas de fiscalização para prevenir incêndios
- provocados por desmatamento ou ações humanas ilegais. Sintetize os principais padrões identificados sobre a ocorrência de incêndios florestais no dataset analisado.
- Apresente recomendações práticas para gestores públicos sobre como prevenir e combater incêndios florestais utilizando análise de dados e tecnologia 20 Pontos

DATABASE DESIGN

Orientações:

Como base no objetivo proposto para o desafio:

A disciplina de Database Design foca na estruturação e organização dos dados essenciais para o desafio de monitoramento e combate às queimadas. Esse desafio envolve a detecção de focos de incêndio, análise de dados históricos de queimadas, previsão meteorológica, identificação do tipo de vegetação, além do suporte à fiscalização e ações de combate aos incêndios.

• Documentação e Requisitos Técnicos:

Abaixo os itens necessários no projeto e suas respectivas pontuações. A soma dos itens totalizará 100 pontos.

1. Descritivo explicando o projeto, contendo uma justificativa/objetivos para compreensão do contexto. 10 Pontos

2. Identifique todos as entidades (mínimo de 5) do seu modelo e explique o significado de cada Entidade no mundo real. 10 Pontos

3. Identifique os atributos de cada entidade e: 20 Pontos

Explique o significado de cada atributo no mundo real

• Escolha entre os atributos aquele(s) que serão usados como identificadores de cada entidade.

• 4. Identifique os relacionamentos entre as entidades e: 20 pontos

• Explique o significado de cada Relacionamento

• Defina e justifique as cardinalidades de cada Relacionamento

- 5. Elaboração do Diagrama Entidade-Relacionamento do Modelo Conceitual, utilizando o software Data Modeler. 20 Pontos
- Todas as entidades, relacionamentos, atributos e atributos identificadores mencionados nos itens 2 a 4 devem ser representados no DER.
- 6. Diagrama do Modelo Lógico feito no Data Modeler 20 Pontos
- Todas as tabelas, chaves primárias, chaves estrangeiras, relacionamentos e suas cardinalidades devem estar representados no diagrama.
- Entrega: Formato de arquivo PDF contendo a parte textual e as imagens dos diagramas referentes aos Modelos Conceitual e Lógico.
- OBS: Não inclua links para diagramas em nuvem.

DOMAIN DRIVEN DESIGN

- 1. Com no mínimo 10 e no máximo 20 linhas, descreva a solução proposta na Global Solution e as principais funcionalidades do sistema. (1 ponto)
- 2. Desenvolva o diagrama de classes para as classes do modelo UML, com todos os atributos e métodos. (Não é necessário adicionar os getters & setters no diagrama). Utilize os conceitos de encapsulamento e herança. (2 pontos)
- 3. Crie um projeto Java e implemente todas as classes, conforme o diagrama de classes desenvolvido no tópico anterior. (4 pontos)
- 4. Desenvolva no mínimo três métodos operacionais (diferentes dos getters & setters) que recebam algum parâmetro e retorne algum valor. Adicione Javadoc acima dos métodos para descrever a sua função, seus parâmetros e retorno. Desenvolva pelo menos um método com sobrecarga e outro com sobrescrita. (2 pontos)
- 5. Implemente uma classe com o método main para o usuário informar os valores para os objetos criados e depois exiba os valores dos atributos. Pode utilizar o Scanner ou JOptionPane. (1 ponto)
- Entrega: Arquivo .PDF com as questões 1 e 2. Arquivo .ZIP contendo o Projeto Java com as questões 3, 4 e 5

DYNAMIC PROGRAMMING

OBJETIVO:

Desenvolver uma aplicação em Python que aborde temas relacionados ao desafio proposto (Queimadas e seus Efeitos).

Código Fonte

Código em Python, desenvolvido em conformidade com as boas práticas de programação, incluindo comentários explicativos e estruturação lógica do código.

A solução será avaliada em relação à sua funcionalidade e adequação ao problema apresentado.

Será observada a qualidade do código-fonte e aplicação das estruturas de programação vistas na disciplina.

Desafio: Simulador de Resposta a Queimadas

Contexto:

Queimadas são eventos críticos que exigem uma resposta rápida. Imagine que você está desenvolvendo um sistema para coordenar equipes de combate a incêndios florestais.

Conceitos a Trabalhar:

Diante da diversidade de conceitos possíveis de explorar, você pode usar em seu trabalho um ou mais dos seguintes conjuntos de conceitos

- * Conjunto 1: Fila, Pilha. Lista ligada, Árvore, Heap
- * Conjunto 2: Funções recursivas e memorização
- * Conjunto 3: Analise de algoritmos/notação O grande, Busca binária, dicionários
- * Conjunto 4: Modelagens usando grafos

Tenha certeza de exibir no trabalho todos os items de um dos 4 conjuntos, e você *pode* usar alguns outros itens de algum outro conjunto, mas não *precisa*

Exemplo de tarefa:

Inserir nova ocorrência

Atender próxima ocorrência com maior prioridade

Registrar ações realizadas

Listar histórico da equipe

Atualizar status

Gerar relatório de atendimento por região

Simular chamadas aleatórias com severidade crescente.

Pontuação

- 30 qualidade de código (uso de funções, comentários)
- 30 uso de todos os conceitos do conjunto escolhido
 - 10 otimização/eficiência do código
 - 30 adequação à tarefa

NETWORK ARCHITECT SOLUTIONS

- Desenvolver uma infraestrutura de rede resiliente, com foco em prevenção, redundância e resposta rápida a desastres naturais. A atividade envolve a simulação de servidores e redes, com roteamento, além da produção de um Memorial Descritivo com um estudo de caso (cenário hipotético), a ser descrito pelo grupo.
- Contexto
- Eventos extremos como as queimadas que causam danos não só ambientais, mas também à infraestrutura digital (como data centers, redes de monitoramento e comunicação). O desafio é propor soluções técnicas que ajudem a monitorar, prevenir e responder a esses eventos.
- 🗯 Etapas e Entregas
- Parte Técnica (Simulação no Packet Tracer)
- 1. Simulação de um site:
- * Estrutura com Servidor DNS e HTTP.
- 2. Montagem de duas redes distintas, com:
- * Switch, Notebook, Computador e Servidor
- * Cada rede pode simular uma região de risco

- 3. Dois roteadores interligando as redes (roteamento básico, apenas para representar comunicação e redundância entre zonas).
- 4. Representar pontos de falha possíveis e alternativas de redundância (roteador backup, segundo servidor, etc).
- Memorial Descritivo (Documento em PDF)
- O documento deve conter os seguintes itens:
- 1. Título e Integrantes do Grupo
- 2. Resumo Executivo = 10 pontos
- * Apresentar de forma breve o cenário escolhido e a proposta da solução.
- 3. Contexto do Problema = 20 pontos
- * Usar como base um evento histórico real de queimadas ou incêndio estrutural (temos exemplos recentes, como as queimadas em Los Angeles em Janeiro de 2025, ou o Data Center da OVHCloud na França em Março de 2021, bem como o Data Center SP4 da Equinix no Brasil em Março de 2025):
- * Os detalhes como o local, impacto e lições aprendidas podem servir de base na pesquisa.
- 4. Plano de Prevenção e Redundância = 20 pontos
- * Como o grupo pretende prevenir danos físicos e de infraestrutura?
- * Como manter a continuidade da rede e dos dados em caso de desastre?

- * Propor monitoramento em tempo real e alarmes.
- 5. Topologia da Rede = 30 pontos
- * Imagem da simulação feita no Packet Tracer (dois sites, com os equipamentos necessários interconectados em cada localidade)
- * Descrição dos dispositivos utilizados e interconexão
- 6. Conclusão = 20 pontos
- * Reflexão crítica sobre o impacto das queimadas e a importância de pensar infraestrutura tecnológica com foco em resiliência e sustentabilidade.
- P Recomendações:
- * Utilize referências reais e confiáveis para contextualizar o desastre escolhido como base.
- * Pense como um analista de infraestrutura: como proteger equipamentos e conexões críticas?
- * Simule soluções simples, mas funcionais. O foco não é configurar tudo, e sim demonstrar entendimento de rede e prevenção de riscos.
 - 1. Título e Integrantes do Grupo
 - 2. Resumo Executivo = 10 pontos
 - 3. Contexto do Problema = 10 pontos
 - 4. Plano de Prevenção e Redundância = 20 pontos
 - 5. Topologia da Rede = 40 pontos
 - 6. Conclusão = 20 pontos