Application of Particle Swarm Optimization in minimax D-optimal Design

Park, Sungmin

Department of Statistics Seoul National University

10 MAY 19

Outline

- Introduction
- Minimax D-optimal Design
- 3 PSO in Minimax Optimization
- Examples and Discussions

Outline

- Introduction
- 2 Minimax D-optimal Design
- PSO in Minimax Optimization
- 4 Examples and Discussions

Optimal design for nonlinear model is an optimization problem where analytical formula for the design is rarely available.

In this session,

- Locally D-optimal design is generalized to minimax D-optimal design.
- Particle swarm optimization is applied to minimax D-optimal design.
- Limitations of particle swarm optimization are discussed.

Outline

- Introduction
- Minimax D-optimal Design
- PSO in Minimax Optimization
- 4 Examples and Discussions

Review

Given

- $\mathcal{P}(\cdot)$: model
- θ : parameter
- k: # of distinct design points

find

- x_i: design points
- w_i : proportion of subjects assigned to design point x_i i.e. $\xi = \{(x_i, w_i) : i = 1, ..., k\}$: k-point approximate design

s.t. minimizes

$$\left| Var \left(\hat{ heta}(\xi)
ight)
ight| \quad (D ext{-optimality criterion})$$

Review

More specifically using MLE,

- $\mathcal{P}(\cdot)$: model
- θ : parameter
- k: # of distinct design points

find

- x_i: design points
- w_i: proportion of subjects assigned to design point x_i
 i.e. ξ = {(x_i, w_i) : i = 1,...,k}: k-point approximate design

s.t. minimizes

 $-log \ det (\mathcal{I}(\xi,\theta)), \ \mathcal{I}(\xi,\theta)$: Fisher information

Minimax D-optimal design

In locally D-optimal design, nominal value of θ_0 is given.

$$\xi^* = \underset{\xi}{\operatorname{argmin}} \left\{ -log \ det \left(\mathcal{I} \left(\xi, \theta_0 \right) \right) \right\} \text{ for some fixed } \theta_0$$

In minimax D-optimal design, parameter space Θ is given.

Corresponding optimality criterion is defined as,

$$\xi^{*} = \operatorname*{argmin}_{\xi} \max_{\theta \in \Theta} \big\{ -log \ det \left(\mathcal{I} \left(\xi, \theta \right) \right) \big\}$$

Equivalence Theorem

Theorem (Berger et al., 2000)

[Notation]

- \mathcal{X} : design space, $\xi = \{(x_i, w_i) : i = 1, ..., k\}, x_i \in \mathcal{X}$
- Θ : parameter space, $\theta \in \Theta$
- $\mathcal{I}(x,\theta)$: Fisher information at observation point x
- $\mathcal{I}(\xi,\theta) = \int \mathcal{I}(x,\theta)\xi(dx)$: Fisher information of design ξ
 - * Recall: design ξ is a probability measure.

Equivalence Theorem

Theorem (Berger et al., 2000)

Suppose the design space \mathcal{X} and parameter space Θ are known compact spaces and q is the number of parameters in the model. The following statements are equivalent:

$$1. \ \xi^{*} = \operatorname*{argmin}_{\xi} \max_{\theta \in \Theta} \left\{ -\log \ \det \left(\mathcal{I} \left(\xi, \theta \right) \right) \right\}$$

2.
$$\forall \xi \in \mathcal{X}, \min_{\theta \in A(\xi^*)} \int_{\Theta} tr \, \mathcal{I}^{-1}(\xi^*, \theta) \mathcal{I}(x, \theta) \xi(dx) - q \leq 0$$
, where

$$A(\xi) = \left\{ \theta^* \in \Theta : -log \ det \left(\mathcal{I} \left(\xi, \theta^* \right) \right) = \max_{\theta \in \Theta} \left\{ -log \ det \left(\mathcal{I} \left(\xi, \theta \right) \right) \right\} \right\}$$

3. \exists probability measure γ^* on $A(\xi^*)$ s.t.

$$\int_{A(\xi^*)} tr \, \mathcal{I}^{-1}(\xi^*, \theta) \mathcal{I}(x, \theta) \gamma^*(d\theta) - q \leq 0, \forall \theta \in \Theta$$

Equivalence Theorem

Although equivalence theorem provides an alternative to check the optimality of the design, $A(\xi)$ and γ^* defined on $A(\xi^*)$ are unknown.

Verifying the inequality in equivalence theorem requires solving yet another optimization problem.

Outline

- Introduction
- 2 Minimax D-optimal Design
- 3 PSO in Minimax Optimization
- 4 Examples and Discussions

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a nature-inspired algorithm originating from research in fish and swarm movement behavior.

Benefits of PSO include the ability to find the optimal solution to a complex problem or get close to the optimal solution quickly **without** requiring any assumption on the objective function. \Rightarrow flexible

However, the method still lacks a firm theoretical justification to date and is under-utilized in statistical literature. (Qui et al., 2014)

The idea of PSO is as follows,

- A number of particles are scattered onto the search domain.
- 2 Each particle investigates the search domain and shares knowledge with the group.
- 3 Possible solution is obtained from the group's aggregated knowledge.

PSO Algorithm

Update Equation:

$$v_i^{t+1} = \tau_t v_i^t + \gamma_1 \beta_1 \odot (\rho_i^t - z_i^t) + \gamma_2 \beta_2 \odot (\rho_g^t - z_i^t), \tag{1}$$

$$z_i^{t+1} = z_i^t + v_i^{t+1}. (2)$$

- $h(\cdot)$: objective function (fitness) to minimize
- z_i^t : position of the *i*th particle at time t
- v_i^t : velocity of the *i*th particle at time t
- p_i^t : argmin_{$z_i^s,1\leq s\leq t$} { $h(z_i^s)$ }, personal best position
- p_g^t : $\operatorname{argmin}_{z_m^s, 1 \leq m \leq n, 1 \leq s \leq t} \{h(z_m^s)\}$, global best position
- ⊙: Hadamard product operator

PSO Algorithm

Update Equation:

$$v_i^{t+1} = \tau_t v_i^t + \gamma_1 \beta_1 \odot (p_i^t - z_i^t) + \gamma_2 \beta_2 \odot (p_g^t - z_i^t),$$

$$z_i^{t+1} = z_i^t + v_i^{t+1}.$$

- τ_t : inertia wieght at time t, const. or decreasing between (0,1)
- γ_1 : cognitive learning parameter
- γ_2 : social learning parameter
- β_1, β_2 : random vector

In this paper, learning parameter was $\gamma_1=\gamma_2=2$ fixed and components of β_1,β_2 was sampled i.i.d from U(0,1) at each iteration and particle.

PSO Algorithm (1) - Simple PSO

PSO pseudo-code for flock size n (i.e. n particles in the swarm)

- (1) Initialize particles
 - (1.1) Initiate position x_i^0 and velocities v_i^0 for i = 1, ..., n
 - (1.2) Calculate the fitness values $h(x_i^0)$ for i = 1, ..., n
 - (1.3) Determine the personal best positions $p_i^0 = x_i^0$ and the global position p_g^0 for i = 1, ..., n
- (2) Repeat until stopping criteria are satisfied,
 - (2.1) Calculate particle velocity according to Eq. (1)
 - (2.2) Update particle position according to Eq. (2)
 - (2.3) Project particle back to the design space
 - (2.4) Calculate the fitness values $h(x_i)$ for v_i for $i = 1, \ldots, n$
 - (2.5) Update personal and global best positions $p_i, (1 \leq i \leq n)$ and p_g
- (3) Output $p_g = \underset{x}{\operatorname{argmin}} \{h(x)\} \text{ with } gbest = h(p_g)$

Minimax Optimization Problem

Let g(u, v) be a given function defined on two compact spaces $\mathcal U$ and $\mathcal V.$

Minimax optimization probelms have the form:

$$\begin{aligned} & \min_{u \in \mathcal{U}} \max_{v \in \mathcal{V}} g(u, v) = \min_{u \in \mathcal{U}} f_{outer}(u) = \min_{u \in \mathcal{U}} \left[\max_{v \in \mathcal{V}} f_{inner}(v; u) \right] \\ & \text{where } f_{outer}(u) = \max_{v \in \mathcal{V}} f_{inner}(v; u) \\ & \text{and, for fixed } u, f_{inner}(v; u) = g(u, v) \end{aligned}$$

Minimax Optimization Problem

Let g(u, v) be a given function defined on two compact spaces $\mathcal U$ and $\mathcal V$.

Minimax optimization probelms have the form:

$$\min_{u \in \mathcal{U}} \max_{v \in \mathcal{V}} g(u, v) = \min_{u \in \mathcal{U}} f_{outer}(u) = \min_{u \in \mathcal{U}} \left[\max_{v \in \mathcal{V}} f_{inner}(v; u) \right]$$
(3)

where

$$f_{outer}(u) = \max_{v \in \mathcal{V}} f_{inner}(v; u)$$
 (4)

and, for fixed u,

$$f_{inner}(v; u) = g(u, v) \tag{5}$$

PSO Algorithm (2) - Nested PSO

Nested PSO pseudo-code for flock size *n*

- (1) Initialize particles
 - (1.1) Initiate position x_i^0 and velocities v_i^0 for i = 1, ..., n
 - (1.2) Calculate $f_{outer}(x_i)$ via Algorithm (1) (Inner loop)
 - (1.3) Determine personal and global best positions p_i, p_g
- (2) Repeat until stopping criteria are satisfied, (Outer loop)
 - (2.1) Calculate particle velocity with Eq. (1)
 - (2.2) Update particle position with Eq. (2)
 - (2.3) Project particle back to design space
 - (2.4) Calculate $f_{outer}(x_i)$ via Algorithm (1) (Inner loop)
 - (2.5) Update personal and global best positions p_i, p_g
- (3) Output $p_g = \underset{u \in \mathcal{U}}{\operatorname{argmin}} \{f_{outer}(u)\} \text{ with } gbest = f_{outer}(p_g)$

Outline

- Introduction
- 2 Minimax D-optimal Design
- PSO in Minimax Optimization
- 4 Examples and Discussions

Compartment Model, locally D-optimal design

Example 1: Compartment Model, locally D-optimal design (revisited)

Drug concentration(Y) is modeled as a function($\eta(\cdot,\theta)$) of time(x) with independent normal errors($\varepsilon \sim \mathcal{N}(0,\sigma^2)$).

$$Y \sim \mathcal{N}\left(\eta(x,\theta), \sigma^2\right), \sigma^2$$
: known
 $\eta(x,\theta) = \theta_3 \left\{ \exp(-\theta_2 x) - \exp(-\theta_1 x) \right\}, x > 0$

Compartment Model, locally D-optimal design

- $\theta_0 = (0.05884, 4.298, 21.8)$
- *n* (flock size) = 100
- max iteration = 100
- k = 3
- $\xi = \{(x_i, w_i) : i = 1, ..., k\},\ x_i \in [0, 30], w_i \ge 0, \forall i \text{ and } \sum_{i=1}^k w_i = 1$

 $\Rightarrow \xi^* = (0.228773, 1.38858, 18.4168, 0.333335, 0.333332, 0.333333)$

Compartment Model, locally D-optimal design

Equivalence plot for *D*-optimal design:

$$\left(\frac{\partial \eta(x;\theta)}{\partial \theta} \Big|_{\theta=\theta_0} \right)^{\mathcal{T}} I(\xi^*;\theta_0)^{-1} \left(\frac{\partial \eta(x;\theta)}{\partial \theta} \Big|_{\theta=\theta_0} \right) - 3 \le 0, \forall x \in [0,30]$$

Stability

 $-log \ det \left(\mathcal{I}\left(\xi, \theta_{0}\right)\right)$ from 1000 simulation arranged in ascending order

- Relative Efficiency : $RE(\xi) = \frac{|Cov(\hat{\beta}(\xi^*))|}{|Cov(\hat{\beta}(\xi))|}$
- 20% of simulation failed
- RE (failed case) = 0.71

Example 2: Two-parameter Logistic Regression Model Minimax D-optimal design

$$Y \sim Ber(p(x,\theta))$$

 $logit(p(x,\theta)) = -b(x-a), \quad \theta = (a,b)^T$

$$\mathsf{Find} \quad \ \boldsymbol{\xi}^* = \operatorname*{argmin} \max_{\boldsymbol{\xi} \in \mathcal{X}} \big\{ - log \ det \left(\mathcal{I} \left(\boldsymbol{\xi}, \boldsymbol{\theta} \right) \right) \big\}$$

$$\begin{split} \mathcal{I}(\xi,\theta) &= \int \binom{b^2}{-b(x-a)} \frac{-b(x-a)}{(x-a)^2} p(x,\theta) (1-p(x,\theta)) d\xi(x) \\ |\mathcal{I}(\xi,\theta)| &= \sum_{i=1}^k w_i p(x_i,\theta) (1-p(x_i,\theta)) \\ &\times \sum_{i=1}^k w_i \left\{ b(x_i-a) \right\}^2 p(x_i,\theta) (1-p(x_i,\theta)) \\ &- \left\{ \sum_{i=1}^k w_i b(x_i-a)^2 p(x_i,\theta) (1-p(x_i,\theta)) \right\} \\ *p(x_i,\theta) &= 1-p(2a-x_i,\theta) \end{split}$$

Above equations have useful implications when $\Theta = [a_L, a_U] \times [b_L, b_U]$.

Let
$$a_M = \frac{1}{2}(a_L + a_U)$$
.

Given a design $\xi = \{(x_i, w_i) : i = 1, ..., k\}$, consider a mirrored design $\xi^s = \{(2a_M - x_i, w_i) : i = 1, ..., k\}$.

$$|\mathcal{I}(\xi,\theta)| = |\mathcal{I}(\xi^s,\theta)|, \frac{1}{2}(\xi+\xi^s)$$
 is also optimal for minimax D-optimal ξ .

 \therefore Minimax D-optimal design ξ^* is symmetric about a_M .

Consider two cases,

(a)
$$\Theta = [0, 2.5] \times [1, 3], \mathcal{X} = [-1, 4], k = 4$$

(b)
$$\Theta = [0, 3.5] \times [1, 3.5], \mathcal{X} = [-5, 5], k = 6$$

Minimax D-optimal design are presented in King and Wong (2000).

- (a) support: -0.429, 0.629, 1.871, 2.929 weight: 0.245, 0.255, 0.255, 0.245
- (b) support: -0.35, 0.62, 1.39, 2.11, 2.88, 3.85 weight: 0.18, 0.21, 0.11, 0.11, 0.21, 0.18

Note the designs are symmetric.

Nested PSO for minimax D-optimal design

We use nested PSO to find minimax D-optimal design for these two cases.

For case (a),

- Outer loop # of particles: 32# of iterations: 100
- Inner loop # of particles: 64# of iterations: 50

Nested PSO for minimax D-optimal design

For case (b),

Outer loop # of particles: 512# of iterations: 200

Inner loop # of particles: 256# of iterations: 100

* Particle velocity, position and $-log~det(\cdot)$ is updated 2.6×10^9 times.

Nested PSO, case (a)

$$-log \; det \left(\mathcal{I}\left(\xi^{*}, \theta^{*}\right)\right) = \min_{\xi \in \mathcal{X}} \max_{\theta \in \Theta} \left\{ \; -log \; det \left(\mathcal{I}\left(\xi, \theta\right)\right) \; \right\}$$

Results, case (a):

- Outer loop support(ξ_i^*): -0.128, 1.126, 2.598, 4.0 weight(w_i^*): 0.235, 0.553, 0.212, 0
- Inner loop parameter(θ^*): 2.5, 1
- Optimum $-log \ det (\mathcal{I}(\xi^*, \theta^*)) = 4.014$

Design is not symmetric.

Nested PSO, case (a)

Plotting $-log \ det \left(\mathcal{I}\left(\xi^{*},\theta\right)\right)$ as a function of θ

Nested PSO, case (b)

$$-log \ det \left(\mathcal{I}\left(\xi^{*}, \theta^{*}\right)\right) = \min_{\xi \in \mathcal{X}} \max_{\theta \in \Theta} \left\{ \ -log \ det \left(\mathcal{I}\left(\xi, \theta\right)\right) \ \right\}$$

Results, case (b):

- Outer loop support(ξ_i^*): -0.28, 0.66, 1.93, 2.88, 3,79, 5 weight(w_i^*): 0.19, 0.25, 0.22, 0.18, 0.16, 0
- Inner loop parameter(θ^*): 0, 3.5
- Optimum $-log \ det \left(\mathcal{I}\left(\xi^*, \theta^*\right)\right) = 4.74$

Design is also not symmetric.

Nested PSO, case (b)

Plotting $-log \ det \left(\mathcal{I}\left(\xi^*,\theta\right)\right)$ as a function of θ

Symmetric Design Constraint, case (a)

Include symmetric design constraint in the PSO algorithm

Results, case (a):

- Outer loop support(ξ_i^*): -0.446282, 0.59195, 1.90805, 2.946282 weight(w_i^*): 0.249949, 0.250051, 0.250051, 0.249949
- Inner loop parameter(θ^*): 2.5, 3
- Optimum $-log \ det (\mathcal{I}(\xi^*, \theta^*)) = 4.225$

Symmetric Design Constraint, case (a)

Plotting $-log \ det \left(\mathcal{I}\left(\xi^*,\theta\right)\right)$ as a function of θ

Symmetric Design Constraint, case (a)

Relative efficiency against the worst case scenario:

$$RE(\xi) = \frac{\max_{\theta \in \Theta} \left\{ |Cov(\hat{\beta}(\xi^*, \theta))| \right\}}{\max_{\theta \in \Theta} \left\{ |Cov(\hat{\beta}(\xi, \theta))| \right\}}$$

Symmetric Design Constraint, case (b)

$$-log \ det \left(\mathcal{I}\left(\xi^{*}, \theta^{*}\right)\right) = \min_{\xi \in \mathcal{X}} \max_{\theta \in \Theta} \left\{ \ -log \ det \left(\mathcal{I}\left(\xi, \theta\right)\right) \ \right\}$$

Results, case (b):

- Outer loop support(ξ_i^*): -0.28, 0.66, 1.93, 2.88, 3,79, 5 weight(w_i^*): 0.19, 0.25, 0.22, 0.18, 0.16, 0
- Inner loop parameter(θ^*): 0, 3.5
- Optimum $-log \ det \left(\mathcal{I}\left(\xi^*, \theta^*\right)\right) = 4.74$

Design is also not symmetric.

Symmetric Design Constraint, case (b)

Plotting $-log \ det (\mathcal{I}(\xi^*, \theta))$ as a function of θ

Learning Parameter

Fixed learning paramter $\gamma_1, \gamma_2 = 2$ might not fit every problem.

Compartment model example: $\mathcal{X} = [0, 30]$

Two-parameter logistic regression example: $\mathcal{X} = [-1, 4]$ and [-5, 5].

The scale of w in probability simplex does not vary.

Since γ determines the diameter of particle movement in each iteration, learning parameter should be chosen according to the design space.

Inadequately large γ will make the particles move only along the boundary.

False Positive Error

Example 1 showed PSO algorithm may fail to find the global optimum.

Suppose, inner loop PSO algorithm fails and returns false $f_{outer}(u^x)$.

If $f_{outer}(u^{x})$ is smaller than the current best position, u_{F} and $f_{outer}(u_{F})$ is saved in the solution path through the entire iteration.

The output we observe is a nonexistent minimax point.

Consider a simple setting where such failure occurs with probability p. Probability of a obtaining a solution free of $f_{outer}(u^x)$ after n iteration is $(1-(1-p)^n)$.

Large number of iteration in nested PSO guarantees failure.

Nested PSO algorithm is not suitable for minimax optimization problem.

Stability Inside the Inner Loop

Case (a): 1000 inner loop PSO simulation at ξ^*

Stability Inside the Inner Loop

Case (b): 1000 inner loop PSO simulation at ξ^*

- (1) global max. 4.989 [3.5, 3.5]
 - local max:
 4.740 [0, 3.5]
 - **PSO** Result
- (1) 99.8%
- (2) 0.2%

Modified Nested PSO

Since instability of simple PSO can raise a false alarm, nested PSO that double checks before solution update may perform better.

- (1) Initialize particles
- (2) Repeat until stopping criteria are satisfied,
 - (2.1) Calculate particle velocity with Eq. (1)
 - (2.2) Update particle position with Eq. (2)
 - (2.3) Project particle back to design space
 - (2.4) Calculate $f_{outer}(x_i)$ via Algorithm (1)
 - (2.5) Check for failure and update best positions p_i , p_g
- (3) Output $p_g = \underset{u \in \mathcal{U}}{\operatorname{argmin}} \{ f_{outer}(u) \}$ with $gbest = f_{outer}(p_g)$

Modified Nested PSO

Results, Example 2 case (a):

Double check before global update

- Outer loop support(ξ_i^*): -1, 0.51, 1.70, 3.22 weight(w_i^*): 0.21, 0.14, 0.54, 0.11
- Inner loop parameter(θ^*): 2.5, 1

Double check before personal and global update

- Outer loop support(ξ_i^*): -0.22, 0.52, 1.89, 2.82 weight(w_i^*): 0.31, 0.15, 0.32, 0.22
- Inner loop parameter(θ^*): 1.77, 3

As long as "double check" is stochastic, modified nested PSO also fails.

Reference

- Berger, M. P., & Wong, W. K. (2009). An introduction to optimal designs for social and biomedical research (Vol. 83). John Wiley & Sons.
- Chen, R. B., Chang, S. P., Wang, W., Tung, H. C., & Wong, W. K. (2015). Minimax optimal designs via particle swarm optimization methods. Statistics and Computing, 25(5), 975-988.
- Berger, M. P., King, C. J., & Wong, W. K. (2000). Minimax
 D-optimal designs for item response theory models. Psychometrika, 65(3), 377-390.
- King, J., & Wong, W. K. (2000). Minimax D-optimal designs for the logistic model. Biometrics, 56(4), 1263-1267.
- Qiu, J., Chen, R. B., Wang, W., & Wong, W. K. (2014). Using animal instincts to design efficient biomedical studies via particle swarm optimization. Swarm and evolutionary computation, 18, 1-10.