Kompleksne mreže

5. Predavanje

Realne mreže

- Kratak najkraći put
- Puno trokuta, što rezultira visokim koeficijentom klasteriranja
- Heterogene distribucije varijabli čvora i veza poput stupnja i težina
- Od kuda nam ta svojstva MODEL za izgradnju mreža

Slučajne mreže

- Krenemo sa skupinom nepovezanih čvorova
- Dodamo veze između slučajno odabranih parova čvorova
- Slučajna ili Erdos-Renyi mreža

Slučajne mreže

- Gilbertov model nasuprot Erdos-Reny model
 - Erdos-Reny broj čvorova i veza fiskan
 - Gilbert model broj čvorova fiksan, broj veza varira
- Gilbertov model:
 - Zadan je broj čvorova N i vjerojatnost veze p
 - 1. Odaberemo par čvorova *i* i *j*
 - 2. Generiramo slučajan broj *r* između 0 I 1. Ako je *r<p*, dodamo vezu između *i* i *j*
 - 3. Ponavljamo (1) i (2) za sve parove čvorova

Rast mreže

- Zamislimo velik broj čvorova, bez veza
- Sustav je razlomljen u singletone (izolirane čvorove)
- Dodajemo veze, jednu u svakom vremenskom trenutku
- Sve više čvorova parova čvorova se povezuje
- Nastanak povezanih podmreža
- Mreža postaje povezana
- Tranzicija od puno malih povezanih komponenti u jednu veliku (većina grafa)
- Suprotno očekivanju, tranzicija je nagla za $\langle k \rangle = 1$

Evolucija Erdos-Renyi grafa za različiti srednji stupanj

Gustoća

- Očekivani broj veza u slučajnoj mreži proporcionalan vjerojatnosti veze i broju parova čvorova
- Broj mogućih parova čvorova $\binom{N}{2} = \frac{N(N-1)}{2}$
- Očekivani broj veza u slučajnom grafu $\langle L \rangle = p {N \choose 2} = \frac{pN(N-1)}{2}$
- Očekivani prosječni stupanj $\langle k \rangle = \frac{2\langle L \rangle}{N} = p(N-1)$
- Gustoća $d=\frac{\langle k \rangle}{N-1}$ -> očekivana gustoća $\langle d \rangle = p$
- Realne mreže rijetke (mali $\langle k \rangle$ u odnosu na ukupan broj čvorova i mala gustoća) -> p treba biti mali

Distribucija stupnja

- Distribucija stupnja slučajne mreže vjerojatnost da čvor ima k susjeda
- Niti jedan čvor nema posebnu ulogu u ovom modelu
- Kolika je vjerojatnost da čvor i ima nula, jednog, dva ili više susjeda
- Svaki od preostalih N-1 čvorova može biti susjed od i
- Svaki par koji uključuje i ima vjerojatnost p da bude spojen, neovisno o ostatku mreže

Distribucija stupnja

- Ekvivalentan problem broj glava u N-1 bacanja (vjerojatnost glave p)
- Binomna distribucija $P(k) = \binom{N-1}{k} p^k (1-p)^{N-1-k}$
- Za veliki N, $pN \approx \langle k \rangle$ pri čemu binomna distribucija se dobro aproksimira Poissonovom sa srednjom vrijednošću i varijancom $\langle k \rangle$

Distribucija stupnja

 Usporedba Erdos-Renyi slučajnoj grafa s mrežom avionskih letova istoga broja čvorova i veza

Kratki putevi

- Pretpostavimo da je mreža povezana i svi čvorovi imaju stupanj k
- Unutar jednog koraka l=1 dosežemo k čvorova
- Svaki od njih ima k-1 susjeda -> nakon dva koraka smo dosegli k(k-1) čvorova
- Unutar tri koraka dosižemo $k(k-1)^2$ čvorova
- Možemo zaključiti da na udaljenosti l od korijena možemo naći $k(k-1)^{l-1}$ čvorova
- ullet Za veliki k u l koraka dosižemo k^l čvorova

Kratki putevi

- $k^{lmax} = N$
- $l_{max} = \log_k N = \frac{\log N}{\log k}$
- Aproksimacija diametra mreže ako uzmemo u obzir preklapanja i fluktuacije u stupnju oko $\langle k \rangle$
- udaljenosti su male čak i kada je mreža jako velika

Koeficijent klasteriranja

- Udio trokuta kojima je središte u promatranom čvoru
- Slučajna mreža vjerojatnost da je par susjeda čvora povezan je p
- Koeficijent klasteriranja pojedinog čvora može razlikovati od p, no srednja vrijednost kroz sve čvorove se može aproksimirati s p
- Zahtjev za realne mreže je mali p -> mali očekivani koeficijent klasteriranja

Usporedba realne i slučajne mreže

Svojstvo	Realna	Slučajna
Rijetka mreža	DA	DA, ako je <i>p</i> mali
Distribucija stupnja	Opadajuća s otežanim repom	Zvonolika
Najkraći srednji put	Kratak	Kratak
Koeficijent grupiranja	Velik	Malen za mali <i>p</i>

Mali svijet

- Slučajne mreže različite od realnih
- Watts-Strogatz model (1998)
- Kratak najkraći put i visok koeficijent klasteriranja

Model malog svijeta

- Krenemo od rešetke (svaki čvor ima isti broj susjeda)
- Visok stupanj klasteriranja svaki par uzastopnih susjeda povezan

•
$$C = 6/\binom{6}{2} = \frac{2}{5}$$

- za rubne čvorove klastering i veći
- Dugačak najkraći put

Model malog svijeta

- Smanjenje udaljenosti između čvorova kreiranje prečica među čvorovima
- Odabir početnih veza na slučajan način, sačuvamo jedan čvor, a drugi zamjenom sa slučajno odabranim
- Vjerojatnost premošćivanja pojedine veze p
- Broj premoštenih veza proporcionalan vjerojatnosti premošćivanja

Model malog svijeta

- Premošćivanje rijetko malo se toga dogodi
- Premošćivanje često slučajna mreža
- Ako je p niti velik ni mali -> moguće postići mali najkraći put sa sačuvanim visokim koeficijentom klasteriranja

Originalan rad Wattsa i Strogatza

- Kratki putevi i veliki koeficijent klasteriranja
- Model ne može proizvesti hubove
- Za bilo koju vjerojatnost premošćivanja broj čvorova i veza ostaje isti
- Distribucija stupnja zvonolika

Konfiguracijski model

- Cilj proizvesti mrežu čiji čvorovi imaju proizvoljan slijed stupnjeva (npr. prvi čvor ima stupanj k_1 , drugi čvor ima stupanj k_2 i tako redom)
- Slijed stupnjeva
 - Željena distribucija
 - Iz realne mreže

Konfiguracijski model

- Dodjela svakom čvoru izdanka s kojim može kreirati vezu
- Suma izdanaka mora biti paran broj
- Različite mreže kreirane ovisno o broju kombinacija parova izdanaka
- Pojedini rezultati su neželjeni (npr. Višestruke veze između dva čvora)

Konfiguracijski model

- Za danu mrežu, možemo istražiti je li specifično svojstvo definirano distribucijom stupnja
- Kreiramo po volji nove mreže s istom distribucijom
- Provjerimo jesu li nove mreže zadržale promatrano svojstvo
- Ako ne, postoje drugi faktori u pozadini
- Primjer koeficijent klasteriranja
- Eksponencijalni slučajni grafovi

Eksponencijalni slučajni modeli

- Proučavanje slučajno proizvedenih mreža koje dijele zajednička kvantitativna svojstva, s razlikom u detaljnoj strukturi
- Potencijalna alternativa specifičnim mrežnim konfiguracijama koje srećom u realnom svijetu
- Omogućeno istraživanje međudjelovanja različitih strukturnih svojstava
- Primjer koje vrijednosti koeficijenta klasteriranja su kompatibilne specifičnoj vrijednosti gustoće

Eksponencijalni slučajni grafovi

- Klasa slučajnih mreža s ograničenjima
- Definiramo klasu mreža na osnovu skupa M mrežnih mjera x_m , m=1,...,M
- Unosimo ograničenje za svaku mjeru x_m : srednja vrijednost kroz sve mreže unutar klase mora biti specificirana vrijednost $\langle x_m \rangle = x_m^*$
- Eksponencijalni slučajni grafovi mreže koje zadovoljavaju ograničenje dok maksimiziraju nasumičnost

- Modeli koje smo do sada istraživali
 - Statični
 - Nema hubova ili znamo veličinu od početka ne znamo zašto nastaju
- Broj čvorova poznat od početka, dodajemo veze
- Realne mreže su obično dinamičke
- Popularne mreže: Internet, Twitter, LinkedIn
- Veličina stvarnih mreža raste
- Čvorovi mogu nestajati
- Veća vjerojatnost pojave novih čvorova u mreži
- Dinamički modeli rasta

- Krećemo od inicijalne konfiguracije
 (npr. jako mala klika)
- Dodajemo čvor po čvor
- Novi čvor dodajemo na neki broj postojećih čvorova na osnovu pravila – karakteristika modela

- Slučajne mreže i mreže malog svijeta bez hubova
- Jednakost čvorovi biraju susjede totalno slučajno
- Niti jedan čvor nema prednost pred ostalima
- Mehanizam koji favorizira pojedine čvorove – preferencijalno pridruživanje
- Veći stupanj > više novih veza

Primjer Weba

- Bilijuni stranica
- Većina stranica kojih smo svjesni popularne s velikim brojem veza
- Nova stranica favoriziramo povezivanje na popularne, visoko povezane stranice
- Sličan primjer sa citatima citiramo one citirane od strane drugih autora
- Čvorovi s visokim stupnjem veća vjerojatnost povezivanja

Albert – Barabasi model

- Model preferencijalnog povezivanja
- Dodavanje novog čvora na postojeći je proporcionalno stupnju postojećeg
- Evanđelje po Mateju (Matthew):

"Tko ima, dat će mu se još pa će obilovati, a onome tko nema oduzet će se i ono što ima"

- Bogati postaju još bogatiji
- Siromašniji postaju siromašniji
- Dodatni nazivi
 - Matthew efekt
 - Kumulativna prednost

- Preferencijalno pridruživanje se koristi za objašnjenje otežanog repa distribucije
 - Broj vrsta biljaka u pojedinom genusu
 - Broj riječi u tekstu
 - Populacija gradova
 - Individualno bogatstvo
 - Znanstvena produkcija
 - Statistika citiranosti

- Krećemo s potpunim grafom s m_0 čvorova. Svaka iteracija se sastoji od dva koraka:
 - 1. Novi čvor se dodaje u mrežu s $m \leq m_0$ novih veza povezanih na njega. Parametar m prosječan stupanj
 - 2. Svaka nova veza s povezuje s postojećim čvorom j s vjerojatnošću $\Pi(i \leftrightarrow j) = \frac{k_j}{\sum_l k_l}$
- Ponavljamo dok ne dođemo do željenog broja čvorova

- Na početku svi čvorovi imaju isti stupanj
- Dodavanjem novih čvorova i veza raste stupanj čvorova
- Najstariji čvorovi mogu dobiti nove veze u bilo koje trenutku – prednost pred onim koji su kasnije dodani
- Stupanj starijih prelazi onaj novih -> raste vjerojatnost povezivanja
- Bogati postaju bogatiji
- Najstariji čvorovi postaju hubovi

Preferential attachment
No preferential attachment
No preferential attachment

10⁻³
10⁰
Node degree k

- a) Mreža generirana Albert-Barabasi modelom
- b) sličan model rasta sa slučajnim odabirom umjesto preferencijalnog
- c) kumulativne distribucije

Drugi preferencijalni modeli

- Albert-Barabasi model linearno pridruživanje
- Pridruživanje s potencijom stupnja nelinearno pridruživanje

•
$$\Pi_{\alpha}(i \leftrightarrow j) = \frac{k_j^{\alpha}}{\sum_l k_l^{\alpha}}$$

- Za $\alpha=1$ –Albert-Barabasi (AB) model. Za $\alpha\neq 1$, imamo dva slučaja:
- 1. $\alpha < 1$, vjerojatnost veze raste sporije nego kod AB modela -> manja razlika u veličini čvorova, nema otežanog repa i nestanak hubova
- 2. $\alpha>1$, čvorovi visokog stupnja puno brže akumuliraju nove veze nego oni niskoga -> jedan od čvorova će biti povezan s velikim udjelom ostalih. Kada $\alpha>2$, pobjednik uzima sve jedan čvor povezan sa svima ostalima koji imaju sličan mali stupanj
- Nelinearno pridruživanje ne stvara hubove koje vidimo u stvarnim mrežama

Ograničenja AB modela

- Mora biti striktno linearno pridruživanje
- Nagib krivulje kumulativne distribucije neovisan o izboru parametara modela – stvarne distribucije mogu opadati brže ili sporije
- Hubovi su najstariji čvorovi, novi ne mogu postići veći stupanj
- Ne proizvodi trokute -> koeficijent klasteriranja manji nego u stvarnim mrežama
- Čvorovi i veze mogu se samo dodati, u stvarnim mrežama mogu nestati
- Jedna povezana komponenta. Stvarna mreža može imati više komponenti

Model privlačnosti

- Preferencijalno pridruživanje što ako čvor nema susjeda ? -> vjerojatnost dodijele veze je nula!
- Usmjerene mreže, vjerojatnost veze ovisi samo o ulaznom stupnju -> problem su novododani čvorovi koji svi imaju ulazni stupanj nula
- Rješenje
 - Intristična privlačnost
 - Vjerojatnost veze proporcionalna zbroju stupnja i konstantne privlačnosti

•
$$\Pi(i \leftrightarrow j) = \frac{A + k_j}{\sum_l (A + k_l)}$$

• Za *A=0* -> AB model

Model sposobnosti

- Primjer
 - Google (1998)
 - Prije njega milijuni stranica
 - Usprkos tome najpopularniji
 - Slično s novim znanstvenima radovima (citati)
- Individualno svojstvo svakog čvora (sposobnost)
- Svakom čvoru i dodijelimo sposobnost $\eta_i > 0$ iz distribucije $\rho(\eta)$
- $\Pi(i \leftrightarrow j) = \frac{\eta_j k_j}{\sum_l \eta_j k_l}$, ako su sve sposobnosti iste dolazimo do AB
 - $\rho(\eta)$ po volji velika vrijednosti -> pobjednik uzima sve efekt
 - $\rho(\eta)$ ograničen -> distribucija ima otežani rep
- Pojava više hubova
- Velika sposobnost omogućava novim čvorovima takmičenje bez obzira na starost i status

Model slučajne šetnje

- Mreže dobivene AB modelom imaju niski koeficijent klasteriranja
- U AB modelu vjerojatnost da čvor dobije vezu je proporcionalna stupnju bez obzira je li novi par susjeda ima zajedničkog susjeda
- Trokuti se rijetko formiraju
- Potrebno dodati mehanizam koji favorizira kreiranje veza između čvorova sa zajedničkim susjedima

Model slučajne šetnje

- Formiranje trokuta dodavanjem veze se naziva zatvaranje triade
- U praksi mnogo ljudi su upoznati preko zajedničkog poznanika

Model slučajne šetnje

- m > 1 novih veza
- Novi čvor i se dodaje na slučajno odabran čvor j
- Svaka dodatna veza na i se dodaje na susjeda od j s vjerojatnošću p što vodi kreiranju trokuta
- Inače je povezan sa slučajno odabranim čvorom

Princip jakog zatvaranja triada

- Osoba a ima jaku vezu s b i c -> b i c su prijatelji ili će to postati
- Ako b i c provode puno vremena s a, vrlo vjerojatno da će sresti preko
- S obzirom da je a dobar prijatelj s oba, b i c teže da vjeruju jedan drugome
- Ako b i c ignoriraju jedan drugog to može biti izvor stresa za grupu
- Princip jakog zatvaranja triada propisuje da mora biti veza između b i c
- "The strength of weak ties" Mark S. Granovetter (1973). Bliska veza između trokuta, težina veza i zajednica

Društvene zajednice

- Veze s velikom težinom signaliziraju čvrste veze unutar zajednice
- Slabe veze između zajednica
- Slabe veze su kritične za strukturu socijalnih mreža, zbog povezivanja zajednica i omogućuju prijenos informacija kroz mrežu