1 Лемма о крайних точках

Лемма 1. Допустимое решение $x = (x_1 x_2 \dots x_n)^T$ задачи линейного программирования в канонической форме является точкой множества допустимых решений тогда и только тогда, когда система всех столбцов матрицы A, отвечающих ненулевым значениям x_i , $i = \overline{1, n}$, линейно независима.

Доказательство. Докажем от противного. Можно считать, что вектор x имеет вид $x = (x_1 \ x_2 \ \dots \ x_r \ 0 \ \dots \ 0)^T, \ x_i \neq 0, \ i = \overline{1,r}.$

Если вектор x не является крайней точкой допустимого множества, то $\exists u \neq 0$ вектор и такое число $\delta > 0$, что вектор x + tu, $|t| < \delta$, принадлежит допустимому множеству.

Т.е. $A(x+tu)=b,\,x+tu\geq 0.$ Последнее неравенство можно записать в виде $x\geq -tu$, тогда имеем, что $\forall i=\overline{r+1,n},\,u_i=0$, т.к. при t>0 имеем $u_i\geq 0$, а при t<0 — $u_i\leq 0$.

Поскольку x принадлежит допустимому множеству, выполняется Ax=b. С учётом равенства A(x+tu)=b получаем, что Au=0. С учётом вышепоказанного это выражение записывается так:

$$a_1u_1 + a_2u_2 + \dots + a_ru_r = 0$$
 (*)

По условию $u \neq 0$, значит по критерию линейной зависимости столбцы a_1, a_2, \dots линейно зависимы.

Теперь пусть столбцы a_1, a_2, \ldots, a_r линейно зависимы. Тогда $\exists u_1, u_2, \ldots, u_r$ $(\sum_{i=0}^r |u_i| \neq 0)$, для которых выполняется равенство (*). Рассмотрим вектор $u = (u_1 \ldots u_r \ 0 \ldots 0)^T$. Равенство (*) означает, что Au = 0. Следовательно, A(x+tu) = Ax = b для любого t, т.е. вектор x+tu удовлетворяет ограничениям задачи ЛП. Покажем, что при малых значениях t этот вектор удовлетворяет и условию неотрицательности.

Пусть $\rho=\max_{i=\overline{1,r}}|u_i|>0$. Пусть $\delta=\min_{i=\overline{1,r}}\frac{|x_i|}{\rho}>0$. При этом при $|t|<\delta$ выполняется:

$$x_i + tu_i \ge x_i - |t||u_i| > x_i - \delta|u_i| \ge x_i - \delta\rho \ge 0$$

Следовательно, $x+u \ge 0$, и вектор x не является крайней точкой допустимого множества.