13 Axiom of Infinity and Natural Numbers

Axiom 13.1 (Zermelo's Axiom of Infinity). There exists a set X such that $\emptyset \in X$ and $\forall x \in X$. $\{x\} \in X$.

Definition 13.2. A set X is inductive iff $\emptyset \in X$ and $\forall x \in X$. $\{x\} \in X$. (Axiom of Infinity specifies the existence of a inductive set.)

Definition 13.3. A sequential system consists of:

- a set *X*
- an element $x_0 \in X$
- a map $T: X \to X$. In set $X: x_0 \to T(x_0) \to T(T(x_0)) \to \dots$

Axiom 13.4 (Peano Axioms). A system of natural numbers is a sequential system:

- 1. a set \mathbb{N}
- 2. an element $0 \in \mathbb{N}$
- 3. a map $S: \mathbb{N} \to \mathbb{N}$ (succ function) satisfying:
 - (i) $\forall n \in \mathbb{N}. \ 0 \neq S(n)$

(0 is not a succ to any \mathbb{N})

- (ii) S is injective, $\forall n, m \in \mathbb{N}. \ n \neq m \implies S(n) \neq S(m).$
- (iii) for any subset $M \subseteq \mathbb{N}$ if M has the properties

(induction property)

- $0 \in M$
- $\forall n \in M. \ S(n) \in M$

then $M = \mathbb{N}$.

Lemma 13.5. If C is any non-empty collection of inductive sets, then $\bigcap C$ is also a inductive set.

Reminder: Inductive set X means $\emptyset \in X$ and $\forall x \in X$. $\{x\} \in X$. (Definition 13.2) Proof.

- 1. $\forall X \in \mathcal{C}$. X is inductive.
- 2. $\forall X \in \mathcal{C}. \emptyset \in X$.
- 3. Take an arbitary $x \in \bigcap \mathcal{C}$, then $\forall X \in \mathcal{C}$. $x \in X$
- 4. X is inductive, so $x \in X \implies \{x\} \in X$.
- 5. then $\forall X \in \mathcal{C}$. $\{x\} \in X$, so $\{x\} \in \bigcap \mathcal{C}$.
- 6. $\bigcap \mathcal{C}$ is inductive is shown.

Definition 13.6. \mathbb{N} is the intersection of all subsets from A which are inductive.

- 1. Take the inductive set A given by Axiom of Infinity
- 2. Let $\mathcal{C} := \{ X \in \mathcal{P}(A) : X \text{ is inductive } \}$. \mathcal{C} consists of all subsets of A which are inductive.
- 3. Since A itself is inductive, and $A \in \mathcal{P}(A)$, so $A \in \mathcal{C}$.
- 4. Hence \mathcal{C} is non-empty.
- 5. By Lemma 13.5, define $\mathbb{N} := \bigcap \mathcal{C}$ and \mathbb{N} is an inductive set. (satisfies Axiom 13.4.1)

Lemma 13.7. For any inductive set X, one has $\mathbb{N} \subseteq X$.

Proof.

1. X and A are inductive sets, by Lemma 13.5, $\bigcap \{X, A\}$ is an inductive set

$$X \cap A \subseteq A$$
$$X \cap A \in \mathcal{P}(A)$$
$$X \cap A \in \mathcal{C}$$

2. So \mathbb{N} , being $\cap \mathcal{C}$, is the subset of any element in \mathcal{C} , so $\mathbb{N} \subseteq X \cap A$. (by $\forall F \in \mathcal{F}$. $a \in \cap \mathcal{F} \implies a \in F$)

Lemma 13.8. \mathbb{N} is the <u>unique</u> inductive set such that \forall inductive set X, one has $\mathbb{N} \subseteq X$. *Proof.*

1. \mathbb{N} is inductive.

(by Definition 13.6)

2. for all inductive set X, $\mathbb{N} \subseteq X$.

(by Lemma 13.7)

- 3. Take a competitor set \mathbb{N}' is also inductive (1') and for all inductive set $X, \mathbb{N}' \subseteq X(2')$.
- 4. Apply (1) to (2'), for inductive set $\mathbb{N}, \mathbb{N}' \subseteq \mathbb{N}$.
- 5. Apply (1') to (2), for inductive set \mathbb{N}' , $\mathbb{N} \subseteq \mathbb{N}'$.
- 6. Any set with properties (1) and (2) $\mathbb{N}' = \mathbb{N}$, uniqueness proven.

Definition 13.9. 0 and succ function for \mathbb{N}

- 1. $0 := \emptyset \in \mathbb{N}$ (: \mathbb{N} is inductive, by Definition 13.2) (satisfies Axiom 13.4.2)
- 2. $S: \mathbb{N} \to \mathbb{N}$ is defined as $\forall x \in \mathbb{N}$. $S(x) := \{x\}$.

- S is defined for all $x \in \mathbb{N}$, S is totally-defined.
- $S(x) = \{x\} \neq x$, S is well-defined.
- Given $x \in \mathbb{N}$, $\{x\} \in \mathbb{N}$.

 $(: \mathbb{N} \text{ is inductive, by Definition } 13.2)$

Theorem 13.10. The sequential system \mathbb{N} and S we defined satisfies property (i), (ii), (iii) in Axiom 13.4.3.

Property (i): $\forall n \in \mathbb{N}. \ 0 \neq S(n)$

Proof.

- 1. take an arbitary $n \in \mathbb{N}$, then $S(n) = \{n\}$
- 2. $0 = \emptyset$ by definition, and for all $n, n \notin \emptyset$,

3. so
$$\emptyset \neq \{n\}$$

Property (ii): S is injective, $\forall m, n \in \mathbb{N}$. $S(m) = S(n) \implies m = n$.

Proof.

- 1. take $m, n \in \mathbb{N}$, if S(m) = S(n), then
- 2. $\{m\} = \{n\}$
- 3. by Axiom of Extentionality: $m \in \{m\} \implies m \in \{n\}$, so m = n
- 4. S is injective.

Property (iii): For any subset $M \subseteq \mathbb{N}$, if

- $0 \in M$
- $\forall n \in M. \ S(n) \in M$

then $M = \mathbb{N}$.

Proof.

- 1. Let $M \subseteq \mathbb{N}$,
- 2. Then M is an inductive set (by properties above).
- 3. Then by Lemma 13.8, $\mathbb{N} \subseteq M$.
- 4. Assumed $M \subseteq \mathbb{N}$, therefore $M = \mathbb{N}$.

Conclusion. The sequential system \mathbb{N} and successor function S we defined above satisfies Axiom 13.4.

14 Axiom of Infinity

Principle of Induction. Suppose P(-) is a statement about natural numbers. $\forall n \in \mathbb{N}$, P(n) is a proposition with truth value.

By axiom of specification, define $M := \{ n \in \mathbb{N} : P(n) \text{ is true } \}$ Suppose we show

- (1) Base case: P(0) is true
- (2) Induction step: $\forall k \in \mathbb{N}, P(k) \implies P(k+1)$

Then we know $0 \in M$ and $\forall k \in \mathbb{N}, k \in M \implies S(k) \in M$. Then by property (iii) of Peano Axiom 13.4.3, $M = \mathbb{N}$. (induction property)

Definition 14.1. If $f: A \to B$ is a map, then the *f-image of A* (or the range of *f*) is

$$f(A) := \{ b \in B : \exists a \in A. \ b = f(a) \}$$

Example: $S(\mathbb{N}) = \{ n \in \mathbb{N} : \exists k \in \mathbb{N}. \ n = S(k) \}$

Lemma 14.2. $S(\mathbb{N}) = \mathbb{N} \setminus \{0\}$

Proof.

- 1. Let $P(n) := (n = 0) \lor (\exists k \in \mathbb{N}. \ n = S(k)).$
- 2. P(0) is trivially true.
- 3. Suppose $n \in \mathbb{N}$ such that P(n) is true, either n = 0 or $\exists k \in \mathbb{N}$. n = S(k)
 - case n = 0, then S(n) = S(0) which is $\in S(\mathbb{N})$
 - case $\exists k \in \mathbb{N}$. n = S(k), then S(n) = S(S(k)) which is $\in S(\mathbb{N})$

- 4. so P(S(n)) is true.
- 5. By Principle of Induction, $\forall n \in \mathbb{N}$. P(n) is true.

n is either 0 or a successor of some $k \in \mathbb{N}$.

Theorem 14.3 (Recursion Theorem (universal property of \mathbb{N})). Let (X, x_0, T) be any sequential system where

- X is a set.
- $x_0 \in X$ is a given element.
- $T: X \to X$ is a map.

Then there exists a unique map

$$\varphi: \mathbb{N} \to X$$

such that

1.
$$\varphi(0) = x_0 \in X$$

2. The diagram commutes

$$\begin{array}{ccc}
\mathbb{N} & \xrightarrow{\varphi} & X \\
S \downarrow & & \downarrow T \\
\mathbb{N} & \xrightarrow{\varphi} & X
\end{array}$$

ie.
$$T \circ \varphi = \varphi \circ S : \mathbb{N} \to X$$
, $\forall n \in \mathbb{N}$. $T(\varphi(n)) = \varphi(S(n))$

Intuitively:

Proof. later

Consequence of Recursion Theorem

Theorem 14.4 (Uniqueness of Natural Number System). Let $(\mathbb{N}, 0, S)$ be our natural number system. Suppose $(\mathbb{N}', 0', S')$ is another natural number system satisfying Peano Axioms 13.4. Then there exists maps

$$\varphi: \mathbb{N} \to \mathbb{N}' \text{ and } \varphi': \mathbb{N}' \to \mathbb{N}$$

such that

- (i) $\varphi(0) = 0' \text{ and } \varphi'(0') = 0.$
- (ii) this diagram commutes,

(iii)
$$\varphi' \circ \varphi = id_{\mathbb{N}} \text{ and } \varphi \circ \varphi' = id_{\mathbb{N}'}.$$

Concretely:

Proof.

- 1. We have our natural number system $(\mathbb{N}, 0, S)$.
- 2. Given sequential system $(\mathbb{N}', 0', S')$, by recursion theorem, there exists a map

$$\varphi: \mathbb{N} \to \mathbb{N}'$$

such that

- (i) $\varphi(0) = 0'$, and
- (ii) this diagram commutes

$$\begin{array}{ccc} \mathbb{N} & \xrightarrow{\varphi} & \mathbb{N}' \\ S \downarrow & & \downarrow S' \\ \mathbb{N} & \xrightarrow{\varphi} & \mathbb{N}' \end{array}$$

- 3. Now we have natural number system $(\mathbb{N}', 0', S')$,
- 4. Given sequential system $(\mathbb{N}, 0, S)$, by recursion theorem, there exists a map

$$\varphi': \mathbb{N}' \to \mathbb{N}$$

such that

- (i) $\varphi'(0') = 0$, and
- (ii) this diagram commutes

$$\begin{array}{ccc}
\mathbb{N}' & \xrightarrow{\varphi'} & \mathbb{N} \\
S' \downarrow & & \downarrow S \\
\mathbb{N}' & \xrightarrow{\varphi'} & \mathbb{N}
\end{array}$$

- 5. for $\varphi' \circ \varphi : \mathbb{N} \to \mathbb{N}$,
 - note $(\varphi' \circ \varphi)(0) = \varphi'(\varphi(0)) = \varphi'(0') = 0$
 - and this commutes

ie.
$$S \circ (\varphi' \circ \varphi) = (\varphi' \circ \varphi) \circ S$$

- 6. But $id_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}$ also enjoys properties
 - $id_{\mathbb{N}}(0) = 0$
 - $S \circ id_{\mathbb{N}} = id_{\mathbb{N}} \circ S$
- 7. By applying Recursion Theorem of natural number system $(\mathbb{N}, 0, S)$ to the sequential system $(\mathbb{N}, 0, S)$ (itself), there exists a unique map

$$f: \mathbb{N} \to \mathbb{N}$$

such that

- f(0) = 0, and
- ullet this diagram commutes

$$\begin{array}{ccc} \mathbb{N} & \xrightarrow{f} & \mathbb{N} \\ S \Big\downarrow & & \Big\downarrow S \\ \mathbb{N} & \xrightarrow{f} & \mathbb{N} \end{array}$$

- 8. We just showed that $id_{\mathbb{N}}$ is unique and has the same properties as $\varphi' \circ \varphi$, so $\varphi' \circ \varphi = id_{\mathbb{N}}$.
- 9. Repeating from (5.), symmetrically, $\varphi \circ \varphi' = \mathrm{id}_{\mathbb{N}'}$