Задание 3. «Сила и импульс»

3.1 Небольшой упругий шарик массы m быстро движется со скоростью v_0 по гладкой горизонтальной поверхности, ограниченной двумя стенками, находящимися на расстоянии l

друг от друга. Найдите среднюю силу давления шарика на одну из стенок, считая все удары шарика о стенки абсолютно упругими.

Пояснение. Сила давления возникает из-за ударов шарика о стенку. В соответствии со вторым законом Ньютона средняя сила равна отношению импульса, полученного стенкой ко времени, в течение которого этот импульс был получен $F = \frac{\Delta p}{\Delta t}$. В данном случае усреднение должно проводиться за промежуток времени Δt , значительно превышающий время между ударами шарика о стенку.

3.2 Два упругих тела движутся вдоль оси Ox: тело массы m_1 со скоростью u_0 , тело массы m_2 со скоростью v_0 . Тела сталкиваются абсолютно упруго.

- 3.1.1 Найдите скорости тел после столкновения.
- **3.1.2** Допустим, масса второго тела пренебрежимо мала. Чему будут равны скорости тел после столкновения в этом случае.
- **3.3** Рассмотрим движение тяжелого поршня и легкого шарика массы m, (который можно считать материальной точкой) по гладкой горизонтальной

поверхности, ограниченной вертикальной стенкой. Столкновения шарика с поршнем и стенкой абсолютно упругие. Поршень движется с малой постоянной скоростью u_0 по направлению к стенке. Первоначально шарик находится на расстоянии l_0 от стенки.

- **3.3.1** Чему будет равна скорость шарика v_1 после его столкновения с поршнем?
- **3.3.2** На каком расстоянии l_1 от стенки шарик столкнется с поршнем следующий раз? Через какой промежуток времени τ_1 произойдет это столкновение?
- **3.3.3** Найдите скорость шарика v_k после k-того столкновения с поршнем (k номер удара шарика о поршень). На каком расстоянии l_k произойдет следующее столкновение? Через какой промежуток времени τ_k оно произойдет?

Выразите величины v_{k} , l_{k} , τ_{k} в явном виде через заданные значения l_{0} и u_{0} .

3.3.4 Покажите, что средняя сила давления шарика на стенку F , зависит от расстояния поршня до стенки l по закону

$$F = Al^{\gamma}$$
,

где A и γ - постоянные величины. Найдите, чему они равны.

По-прежнему считайте, что промежуток времени, за который происходит усреднение, значительно больше времени между ударами шарика о стенку. Также можно считать, что число столкновений шарика с поршнем очень велико.