

Daffodil International University

Department of Computer Science & Engineering Faculty of Science and Information Technology Final Examination, Semester: Fall' 2017

Course Code: MAT 121

Course Title: Mathematics-II

Section: ALL

Course Teacher: ALL

Time: 2 Hours

Full Marks: 40

Answer any 4 Questions from the following Questions

Question no. 1(any 10)	1×10
a. If $A = (\frac{7}{2} 0 -1 4)$, then find the RREF of A.	
$T: \mathbb{R}^8 \longrightarrow \mathbb{R}^5$ is a linear transformation. $T(0,0,0,0,0,0,0) = ?$	
If $T: \mathbb{R}^{15} \to \mathbb{R}^{15}$ is a linear transformation then T^{-1} exists: True or False?	
a. What the range of $arphi$ in spherical system ?	
If M has an spectrum { 1, 0, -1, 3,5 } then M ⁻¹ does not exist: True or False?	
What is the spherical form of the Cartesian equation $x^2 + y^2 + z^2 = 625$?	
M has eigenvalues 1,-1, 2,-3. What is an spectrum of M ⁴ . How many eigenvalues do belong to a 9×5 matrix?	
Find θ when (2, -5) is converted into polar system.	
What is the angle between 2 straight lines represented by $x^2 - y^2 = 0$?	
**R. What is the standard matrix for the orthogonal projection on Y-axis?	2
How many eigenvalues do belong to a 9×9 matrix?	
Odestion no. 2	-
(a). Check the followings for linear transformations: (i). $S(a,b,c,d) = (-b,c+3d,-b+2a)$	7
(ii). $T(p,q,r,s,t) = (s-t,0,5q,p+q+rt)$; (iii) $R(x,y) = (x-y,-2x+3y)$	4
(iv). $U(k, l, m) = (k + l + m, l - m - k)$	
(b). Find R^{-1} and U^{-1} if they exist. If it does not exist give reason. Also verify the inverse for	2
a nonzero vector .	
(c). Find $U \circ S$.	
Question no. 3	
$S = \{(0,0,-7,1), (-1,0,1,1), (-3,-1,0,2), (-1,1,2,1), (6,0,1,0), (-4,1,3,0)\}$	2
(a). Check S for linear dependency.	5
(b). Find 2 LDRs.	2
(c). Describe the 1 st and 4 th vectors of S with the help of others.	3
Mestion no. 4 $M = \begin{pmatrix} 1 & 2 & -5 \\ -2 & 0 & 1 \\ 4 & -1 & 5 \end{pmatrix}$	
$M = \begin{pmatrix} 1 & 2 & 3 \\ -2 & 0 & 1 \end{pmatrix}$	
$\begin{pmatrix} 2 & 0 & 1 \\ 4 & -1 & 5 \end{pmatrix}$	4
(a).Find an spectrum of M.	2
(b). Find eigenvalues of M^5 , M^{-2}	4
(c). Find M^{-1} by using Cayley-Hamilton theorem.	
Question no. 5	
(i) $5x^2 - 2x - 4y + 2xy = 0.$	
(ii) $2x^2 - 5xy + 3y^2 - 3x + 5y - 2 = 0.$	
(iii) $.11 x^2 - 11y^2 + 5xy - 13y + 2x - 33 = 0.$	i
(a). What is represented by each of above equations?	4.5
(b). In case of straight lines, find the angle between the lines.	1
(c). In case of straight lines, find the eqn of each line.	2.5
(d). Find the angle of rotation that will eliminate 'xy' (any one).	2

Question no. 6

(i). Change the followings to the indicated systems:

(a). $(-5, 0, -9) \rightarrow SS$. (b). $(9, 130^0, 327^0) \rightarrow RS$

(ii). If $x^2 + y^2 + z^2 = 5$ $z\sqrt{(x^2 + y^2)}$. then show that $\tan \varphi + \cot \varphi = 5$.

(iii). V = (9, -5) and T is reflection about the line y = -x, then find T(v).

(iv). w = (5,10,63) is sheared along Y-axis by factor $\frac{1}{3}$ then find T(w).