Znaleźć minimum funkcji

$$f(x)=(x^2-4)^2/8-1$$

Metoda złotego podziału:

- optymalizacja bez ograniczeń, poszukiwanie minimum w znanym przedziale [a,b].
- funkcja celu jest unimodalna w przedziale:
 - o znak pochodnej funkcji celu zmienia sie co najmniej raz w [a,b] zatem funkcja rośnie lub maleje dla $[a, x^0]/[x^0, b]$
- x^0 jest poszukiwanym rozwiązaniem

Krok 1. Należy wybrać dwa punkty c = a + (1 - r)h oraz d = a + rh w przedziale [a, b], gdzie $r = (\sqrt{5} - 1)/2$ i h = b - a.

Krok 2. Jeśli wartości f(x) w dwóch punktach są prawie równe tj. $f(a) \approx f(b)$ i przedział jest wystarczająco mały (tj., $h \approx 0$), zatrzymać iterację i zadeklarować $x^0 = c$ lub $x^0 = d$ zależnie od tego czy f(c) < f(d) lub nie. W innym wypadku przejść do kroku 3.

Krok 3. Jeśli f(c) < f(d), niech nowa górna granicy przedziału $b \leftarrow d$; w przeciwnym razie niech nowa dolna granica $a \leftarrow c$. Następnie przejść do kroku 1.

Wykorzystując metodę złotego podziału wykonaj kilka pierwszych kroków lokalizacji minimum funkcji e^x-x w przedziałe [-1,1]

W metodzie złotego podziału iteracyjnie dzielimy przedział $(x \in [x_a, x_b])$, w którym znajduje się minimum wartości funkcji na trzy części, tj. wyznaczamy dodatkowe dwa punkty wewnątrz przedziału: $x_1 = x_a + r^2(x_b - x_a)$ i $x_2 = x_a + r(x_b - x_a)$, gdzie: $r = (\sqrt{5} - 1)/2$ i odpowiednio zawężamy przedział. Obliczenia kończymy jeśli zachodzi warunek:

$$|x_1 - x_2| < \varepsilon \tag{1}$$

i przyjmujemy że minimum znajduje się w punkcie:

$$x_{min} = \frac{x_1 + x_2}{2} \tag{2}$$

Zadania do wykonania:

- 1. Zaprogramować metodę złotego podziału do poszukiwania minimum wartości funkcji.
- 2. Znaleźć minimum wartości funkcji

$$f(x) = \ln\left(x^5 + 3x^2 + x + 9\right) \tag{3}$$

przy użyciu swojego programu. Do pliku zapisać proszę numer iteracji, położenie aktualnego przybliżenia minimum oraz moduł różnicy rozwiązania dokładnego ($x_{dok}=-0.1665540$) i aktualnego przybliżenia. Jako krańce przedziału startowego proszę przyjąć: $x_a=-0.5, x_b=1.0$. Do warunku stopu przyjąć wartość parametru $\varepsilon=10^{-6}$.

3. Powtórzyć całą procedurę poszukiwania minimum f(x) stosując podział na 3 równe odcinki tj. przyjąć r = 1/3.

- 4. Na jednym rysunku proszę narysować moduł różnicy rozwiązania dokładnego i przybliżonego w funkcji numeru iteracji dla obu powyższych przypadków tj. dla $r=(\sqrt{5}-1)/2$ i r=1/3. Skala y ma być logarytmiczna (w gnuplocie ustawiamy ją komedą "set logscale y").
- Minimalizację złotego podziału i z podziałem na trzy równe części proszę zastosować do znalezienia minimum funkcji

$$g(x) = x^6 (4)$$

Jako punkty startowe proszę przyjąć: $x_a=-4.0,\,x_b=1.0.$ Do warunku stopu przyjąć $\varepsilon=10^{-6}$ ($x_{min}=0$). Jak poprzednio wyprowadzić dane do pliku i sporządzić rysunek modułu różnicy rozwiązania dokładnego i przybliżonego w funkcji numeru iteracji dla $r=(\sqrt{5}-1)/2$ i r=1/3. Skala y ma być logarytmiczna.