চতুর্থ অধ্যায়

বীজগণিতীয় রাশির গুণ ও ভাগ

গণিতের চারটি মৌলিক প্রক্রিয়া হলো যোগ, বিয়োগ, গুণ ও ভাগ। বিয়োগ হচ্ছে যোগের বিপরীত প্রক্রিয়া আর ভাগ হচ্ছে গুণের বিপরীত প্রক্রিয়া। পাটিগণিতে কেবল ধনাত্মক চিহ্নযুক্ত সংখ্যা ব্যবহার করা হয়। কিন্তু বীজগণিতে ধনাত্মক ও ঋণাত্মক উভয় চিহ্নযুক্ত সংখ্যা এবং সংখ্যাস্চক প্রতীকও ব্যবহার করা হয়। আমরা ষষ্ঠ শ্রেণিতে চিহ্নযুক্ত রাশির যোগ-বিয়োগ এবং বীজগণিতীয় রাশির যোগ ও বিয়োগ সম্বন্ধে ধারণা পেয়েছি। এ অধ্যায়ে চিহ্নযুক্ত রাশির গুণ ও ভাগ এবং বীজগণিতীয় রাশির গুণ ও ভাগ প্রক্রিয়া সম্বন্ধে আলোচনা করা হয়েছে।

অধ্যায় শেষে শিক্ষার্থীরা —

- বীজগণিতীয় রাশির গুণ ও ভাগ করতে পারবে।
- বন্ধনী ব্যবহারের মাধ্যমে বীজগণিতীয় রাশির যোগ, বিয়োগ, গুণ ও ভাগ সংক্রান্ত দৈনন্দিন জীবনের সমস্যার সমাধান করতে পারবে।

8.১ বীজগণিতীয় রাশির গুণ

গুণের বিনিময়বিধি

আমরা জানি, $2 \times 3 = 6$, আবার $3 \times 2 = 6$

∴ 2×3 = 3×2, যা গুণের বিনিময়বিধি।

a,b যেকোনো দুটি বীজগণিতীয় রাশি হলে, $a \times b = b \times a$ অর্থাৎ, গুণ্য ও গুণকের স্থান বিনিময় করলে, গুণফলের কোনো পরিবর্তন হয় না। যা সাধারণ বিনিময়বিধি।

গুণের সংযোগবিধি

$$(2\times3)\times4=6\times4=24$$
; আবার, $2\times(3\times4)=2\times12=24$

∴
$$(2\times3)\times4=2\times(3\times4)$$
, যা গুণের সংযোগবিধি।

a,b,c যেকোনো তিনটি বীজগণিতীয় রাশির জন্য $(a \times b) \times c = a \times (b \times c)$, যা গুণের সংযোগবিধি।

গুণের সূচকবিধি

আমরা জানি, $a \times a = a^2$, $a \times a \times a = a^3$, $a \times a \times a \times a = a^4$ $\therefore a^2 \times a^4 = (a \times a) \times (a \times a \times a \times a) = a \times a \times a \times a \times a \times a = a^6 = a^{2+4}$ সাধারণভাবে, $a^m \times a^n = a^{m+n}$ যেখানে m, n যেকোনো স্বাভাবিক সংখ্যা। এই প্রক্রিয়াকে গুণের সূচকবিধি বলা হয়। আবার, $(a^3)^2 = a^3 \times a^3 = a^6 = a^{3 \times 2} = a^6$ সাধারণভাবে, $(a^m)^n = a^{mn}$

গুণের বন্টন বিধি

আমরা জানি,
$$2(a+b) = (a+b) + (a+b)$$
 [:: $2x = x + x$]
= $(a+a) + (b+b)$
= $2a + 2b$

আবার পাশের চিত্র হতে পাই,

ABEF আয়তক্ষেত্রটির ক্ষেত্রফল

$$=$$
 দৈর্ঘ্য $imes$ প্রস্থ $=$ $BE imes AB = a imes 2 = 2 imes a = 2a$

আবার, ECDF আয়তক্ষেত্রটির ক্ষেত্রফল = দৈর্ঘ্য × প্রস্থ

$$= EC \times CD = b \times 2 = 2 \times b = 2b$$

:. ABCD আয়তক্ষেত্রটির ক্ষেত্রফল

= ABEF আয়তক্ষেত্রের ক্ষেত্রফল + ECDF আয়তক্ষেত্রের ক্ষেত্রফল

$$= 2a + 2b$$

আবার, ABCD আয়তক্ষেত্রের ক্ষেত্রফল

$$= BC \times AB$$

$$= AB \times (BE + EC)$$
 [:: BC=BE+EC]

$$= 2 \times (a+b) = 2(a+b)$$

$$\therefore 2(a+b)=2a+2b.$$

$$m(a+b+c+.....)=ma+mb+mc+.....$$
এই নিয়মকে গুণের বন্টনবিধি বলা হয়।

৪-২ চিহ্নযুক্ত রাশির গুণ

আমরা জানি, 2 কে 4 বার নিলে $2+2+2+2=8=2\times 4$ হয়। এখানে বলা যায় যে, 2 কে 4 ছারা গুণ করা হয়েছে।

অর্থাৎ,
$$2 \times 4 = 2 + 2 + 2 + 2 = 8$$

যেকোনো বীজগণিতীয় রাশি a ও b এর জন্য

$$a \times b = ab$$
(i)

৪-৩ একপদী রাশিকে একপদী রাশি দ্বারা গুণ

* বিপরীত চিহ্নযুক্ত দুটি রাশির গুণফল (—) চিহ্নযুক্ত হবে।

দুটি একপদী রাশির গুণের ক্ষেত্রে তাদের সাংখ্যিক সহগদ্বয়কে চিহ্নযুক্ত সংখ্যার গুণের নিয়মে গুণ করতে হয়। উভয়পদে বিদ্যমান বীজগণিতীয় প্রতীকগুলোকে সূচক নিয়মে গুণ করে গুণফলে লিখতে হয়। অন্যান্য প্রতীকগুলো অপরিবর্তিত অবস্থায় গুণফলে নেওয়া হয়।

 $(-1)\times(+1) = -1$

উদাহরণ ১ ।
$$5x^2y^4$$
 কে $3x^2y^3$ দ্বারা গুণ কর । উদাহরণ ২ । $12a^2xy^2$ কে $-6ax^3b$ দ্বারা গুণ কর । সমাধান : $5x^2y^4\times 3x^2y^3$ কর ।
$$= (5\times3)\times(x^2\times x^2)\times(y^4\times y^3)$$
 সমাধান : $12a^2xy^2\times(-6ax^3b)$
$$= 15x^4y^7$$
 [সূচক নিয়ম অনুযায়ী]
$$= 15x^4y^7$$
 [সূচক নিয়ম অনুযায়ী]
$$= -72a^3bx^4y^2$$
 নির্ণেয় গুণফল $-72a^3bx^4y^2$

বীজগণিতীয় রাশির গুণ ও ভাগ ৫৩

উদাহরণ ৩।
$$-7a^2b^4c$$
 কে $4a^2c^3d$ দ্বারা
গুণ কর।

সমাধান : $(-7a^2b^4c) \times 4a^2c^3d$ = $(-7\times4)\times(a^2\times a^2)\times b^4\times(c\times c^3)\times d$ = $-28a^4b^4c^4d$ নিৰ্ণেয় গুণফল $-28a^4b^4c^4d$ উদাহরণ 8 । $-5a^3bc^5$ কে $-4ab^5c^2$ ছারা গুণ কর ।

সমাধান : $(-5a^3bc^5) \times (-4ab^5c^2)$ = $(-5)\times(-4)\times(a^3\times a)\times(b\times b^5)\times(c^5\times c^2)$ = $20a^4b^6c^7$ নির্ণেয় গুণফল $20a^4b^6c^7$

কাজ: ১। গুণ কর।

(ক) $7a^2b^5$ কে $8a^5b^2$ দ্বারা

(খ) $-10x^3y^4z$ কে $3x^2y^5$ দ্বারা

(গ) $9ab^2x^3y$ কে $-5xy^2$ ছারা

(ঘ) $-8a^3x^4by^2$ কে -4abxy ছারা

8.8 বহুপদী রাশিকে একপদী রাশি দ্বারা গুণ

একের অধিক পদযুক্ত বীজগণিতীয় রাশিই বহুপদী রাশি। যেমন, $5x^2y + 7xy^2$ একটি বহুপদী রাশি। বহুপদী রাশিকে একপদী রাশি দ্বারা গুণ করতে হলে গুণ্যের (প্রথম রাশি) প্রত্যেক পদকে গুণক (দ্বিতীয় রাশি) দ্বারা গুণ করতে হয়।

উদাহরণ ৫। $(5x^2y + 7xy^2)$ কে $5x^3y^3$ দ্বারা গুণ কর।

সমাধান :
$$(5x^2y + 7xy^2) \times 5x^3y^3$$
 $= (5x^2y \times 5x^3y^3) + (7xy^2 \times 5x^3y^3)$ [বন্টনবিধি অনুসারে] $= (5 \times 5) \times (x^2 \times x^3) \times (y \times y^3) + (7 \times 5) \times (x \times x^3) \times (y^2 \times y^3)$ $= 25x^5y^4 + 35x^4y^5$ নির্ণেয় গুণফল $25x^5y^4 + 35x^4y^5$ নির্ণেয় গুণফল $25x^5y^4 + 35x^4y^5$

উদাহরণ ৬। $2a^3 - b^3 + 3abc$ কে a^4b^2 দ্বারা গুণ কর।

সমাধান :
$$(2a^3 - b^3 + 3abc) \times a^4b^2$$

= $(2a^3 \times a^4b^2) - (b^3 \times a^4b^2) + (3abc \times a^4b^2)$
= $2a^7b^2 - a^4b^5 + 3a^5b^3c$

৫৪

বিকল্প পদ্ধতি :
$$2a^3 - b^3 + 3abc$$

$$\frac{\times a^4 b^2}{2a^7 b^2 - a^4 b^5 + 3a^5 b^3 c}$$

নির্ণেয় গুণফল $2a^7b^2 - a^4b^5 + 3a^5b^3c$

উদাহরণ ৭।
$$-3x^2zy^3 + 4z^3xy^2 - 5y^4x^3z^2$$
 কে $-6x^2y^2z$ দ্বারা গুণ কর।

সমাধান :
$$(-3x^2zy^3+4z^3xy^2-5y^4x^3z^2)\times(-6x^2y^2z)$$

 $=(-3x^2zy^3)\times(-6x^2y^2z)+(4z^3xy^2)\times(-6x^2y^2z)-(5y^4x^3z^2)\times(-6x^2y^2z)$
 $=\{(-3)\times(-6)\times x^2\times x^2\times y^3\times y^2\times z\times z\}+\{4\times(-6)\times x\times x^2\times y^2\times y^2\times z^3\times z\}$
 $-\{5\times(-6)\times x^3\times x^2\times y^4\times y^2\times z^2\times z\}$
 $=18x^4y^5z^2+(-24x^3y^4z^4)-(-30x^5y^6z^3)$
 $=18x^4y^5z^2-24x^3y^4z^4+30x^5y^6z^3$
নির্ণেয় গুণফল $18x^4y^5z^2-24x^3y^4z^4+30x^5y^6z^3$

কাজ: ১। প্রথম রাশিকে দ্বিতীয় রাশি দ্বারা গুণ কর:

$$(\Phi) 5a^2 + 8b^2, 4ab$$

$$(4)$$
 $3p^2q + 6pq^3 + 10p^3q^5$, $8p^3q^2$

$$(4)$$
 $-2c^2d + 3d^3c - 5cd^2, -7c^3d^5$

8-৫ বহুপদী রাশিকে বহুপদী রাশি দ্বারা গুণ

- বহুপদী রাশিকে বহুপদী রাশি দ্বারা গুণ করতে হলে গুণ্যের প্রত্যেক পদকে গুণকের প্রত্যেক পদ দ্বারা আলাদা আলাদাভাবে গুণ করে সদৃশ পদগুলোকে নিচে নিচে সাজিয়ে লিখতে হয়।
- চিহ্নযুক্ত রাশির যোগের নিয়মে যোগ করতে হয়।
- বিসদৃশ পদ থাকলে সেগুলোকে পৃথকভাবে লিখতে হয়় এবং গুণফলে বসাতে হয়।

উদাহরণ ৮। 3x + 2y কে x + y দারা গুণ কর।

$$3x 2y$$

$$x 3x^2 2xy$$

$$y 3xy 2y^2$$

$$(3x+2y)\times(x+y)$$

$$= 3x^2 + 5xy + 2y^2$$

ব্যাখ্যা:

30 SG

গুণের নিয়ম:

- প্রথমে গুণ্যের প্রত্যেক পদকে গুণকের প্রথম পদ দ্বারা গুণ করে গুণফল লিখতে হবে।
- এরপর গুণ্যের প্রত্যেক পদকে গুণকের দ্বিতীয় পদ দ্বারা গুণ করে গুণফল বের করতে হবে। এ
 গুণফলকে এমনভাবে সাজিয়ে লিখতে হবে যেন উভয় গুণফলের সদৃশ পদগুলো নিচে নিচে পড়ে।
- প্রাপ্ত দৃটি গুণফলের বীজগণিতীয় সমষ্টিই হলো নির্ণেয় গুণফল।

উদাহরণ ৯। $a^2 - 2ab + b^2$ কে a - b দারা গুণ কর।

সমাধান :
$$a^2-2ab+b^2$$
 ৩ণ্য
$$a-b$$
 ৩ণ্য
$$a^3-2a^2b+ab^2$$
 a দ্বারা গুণ
$$-a^2b+2ab^2-b^3$$
 $-b$ দ্বারা গুণ
$$a^3-3a^2b+3ab^2-b^3$$
 গুণফল
নির্ণেয় গুণফল $a^3-3a^2b+3ab^2-b^3$

উদাহরণ ১০। $2x^2 + 3x - 4$ কে $3x^2 - 4x - 5$ দ্বারা গুণ কর।

নির্ণেয় গুণফল $6x^4 + x^3 - 34x^2 + x + 20$

কাজ : ১ম রাশিকে ২য় রাশি দারা গুণ কর।

(ক)
$$x+7$$
, $x+9$

(খ) a^2-ab+b^2 , $3a+4b$

(গ) x^2-x+1 , $1+x+x^2$

১০ (১) ।
$$A = x^2 - xy + y^2$$
, $B = x^2 + xy + y^2$ এবং $C = x^4 + x^2y^2 + y^4$

- ক) A-B= কত?
- খ) A ও B এর গুণফল নির্ণয় কর।
- গ) দেখাও যে, (C+A)/B=1

উত্তর: ক)
$$A - B$$

$$= (x^2 - xy + y^2) - (x^2 + xy + y^2)$$

$$= x^2 - xy + y^2 - x^2 - xy - y^2$$

$$= -2xy \quad Ans.$$

খ)
$$A \subseteq B \subseteq \mathbb{Q} = A \times B$$

$$= (x^2 - xy + y^2) \times (x^2 + xy + y^2)$$

$$= (x^2 + y^2 - xy)(x^2 + y^2 + xy)$$

$$= (x^2 + y^2)^2 - (xy)^2$$

$$= (x^2)^2 + 2x^2 \cdot y^2 + (y^2)^2 - x^2 y^2$$

$$= x^4 + 2x^2 y^2 + y^4 - x^2 y^2$$

$$= x^4 + x^2 y^2 + y^4 - Ans.$$

গ) বামপক্ষ
$$(C \div A)/B$$

$$= \{(x^4 + x^2y^2 + y^4) \div (x^2 - xy + y^2)\}/(x^2 + xy + y^2)$$

$$= \frac{x^4 + x^2y^2 + y^4}{x^2 - xy + y^2} \times \frac{1}{(x^2 + xy + y^2)}$$

$$= \frac{(x^2 + xy + y^2)(x^2 - xy + y^2)}{(x^2 - xy + y^2)} \times \frac{1}{(x^2 + xy + y^2)} \quad [খ খেকে প্রাপ্ত]$$

$$= 1$$

অতএব, বামপক্ষ = ডানপক্ষ (দেখানো হলো)

অনুশীলনী ৪-১

১ম রাশিকে ২য় রাশি দ্বারা গুণ কর (১ থেকে ২৪)।

$$\Rightarrow 1$$
 3ab, $4a^3$ $\Rightarrow 1$ 5xy, $6az$

$$\psi = -2abx^2$$
, $10b^3xyz$ $\psi = -3p^2q^3$, $-6p^5q^4$

91
$$-12m^2a^2x^3$$
, $-2ma^2x^2$ by $7a^3bx^5y^2$, $-3x^5y^3a^2b^2$

$$3 + 2x + 3y$$
, $5xy$ $30 + 5x^2 - 4xy$, $9x^2y^2$

$$2a^2 - 3b^2 + c^2$$
, a^3b^2 $38 + x^3 - y^3 + 3xyz$, x^4y

$$30 \mid 2a-3b, 3a+2b$$
 $38 \mid a+b, a-b \mid$

$$3a + x^2 + 1, x^2 - 1$$
 $36 + a^2 + b^2, a + b$

$$39 + a^2 - ab + b^2$$
, $a + b$ $3b + x^2 + 2xy + y^2$, $x + y$

$$x^2 - 2xy + y^2$$
, $x - y$ $x - y$ $x - y$ $x - y + 2x - 3$, $x + 3$

$$3 + a^2 + ab + b^2$$
, $b^2 - ab + a^2$ $3 + a + b + c$, $a + b + c$

$$x^2 + xy + y^2$$
, $x^2 - xy + y^2$ $x^2 - y + 1$, $1 + y + y^2$

২৫।
$$A=x^2+xy+y^2$$
 এবং $B=x-y$ হলে, প্রমাণ কর যে, $AB=x^3-y^3$

২৬।
$$A=a^2-ab+b^2$$
 এবং $B=a+b$ হলে, $AB=$ কত?

২৭। দেখাও যে,
$$(a+1)(a-1)(a^2+1)=a^4-1$$

২৮। দেখাও যে,
$$(x+y)(x-y)(x^2+y^2)=x^4-y^4$$

৪-৬ বীজগণিতীয় রাশির ভাগ

ভাগের সূচক বিধি

$$a^5\div a^2=rac{a^5}{a^2}=rac{a imes a imes a imes a imes a}{a imes a}=a imes a imes a$$
 [লব ও হর থেকে সাধারণ উৎপাদক বর্জন করে]।
$$=a^3=a^{5-2},\ a\neq 0$$

সাধারণভাবে, $a^m \div a^n = a^{m-n}$, যেখানে m ও n স্বাভাবিক সংখ্যা এবং $m>n, a\neq 0$. এই প্রক্রিয়াকে ভাগের সূচক বিধি বলা হয়।

লক্ষ করি: $a \neq 0$ হলে,

কর্মা নং-৮, গণিত-৭ম শ্রেণি

$$a^m \div a^m = \frac{a^m}{a^m} = a^{m-m} = a^0$$
আবার, $a^m \div a^m = \frac{a^m}{a^m} = 1$
 $\therefore a^0 = 1, \ (a \neq 0)$
অনুসিদ্ধান্ত: $a^0 = 1, \ a \neq 0$

8.৭ চিহ্নযুক্ত রাশির ভাগ

আমরা জানি,
$$a \times (-b) = (-a) \times b = -ab$$

সূতরাং, $-ab \div a = -b$
একইভাবে, $-ab \div b = -a$
 $-ab \div (-a) = b$
 $-ab \div (-b) = a$
 $-ab \div (-b) = a$

$$-\frac{ab}{a} = \frac{a \times (-b)}{a} = -b$$

$$-\frac{ab}{b} = \frac{(-a) \times b}{b} = -a$$

$$-\frac{ab}{-a} = \frac{(-a) \times b}{-a} = b$$

$$-\frac{ab}{-a} = \frac{a \times (-b)}{-a} = a$$

লক্ষ করি:

- একই চিহ্নযুক্ত দৃটি রাশির ভাগফল (+) চিহ্নযুক্ত হবে।
- বিপরীত চিহ্নযুক্ত দুটি রাশির ভাগফল (–) চিহ্নযুক্ত হবে।

$$\frac{+ 1}{+ 1} = + 1$$

$$\frac{- 1}{- 1} = + 1$$

$$\frac{- 1}{+ 1} = - 1$$

$$\frac{+ 1}{- 1} = - 1$$

৪-৮ একপদী রাশিকে একপদী রাশি দ্বারা ভাগ

একপদী রাশিকে একপদী রাশি দ্বারা ভাগ করতে হলে, সাংখ্যিক সহগকে পাটিগণিতীয় নিয়মে ভাগ এবং বীজগণিতীয় প্রতীককে সূচক নিয়মে ভাগ করতে হয়। উদাহরণ ১১। $10a^5b^7$ কে $5a^2b^3$ দ্বারা ভাগ কর।

সমাধান :
$$\frac{10a^5b^7}{5a^2b^3} = \frac{10}{5} \times \frac{a^5}{a^2} \times \frac{b^7}{b^3}$$
$$= 2 \times a^{5-2} \times b^{7-3} = 2a^3b^4$$

নির্ণেয় ভাগফল $2a^3b^4$

উদাহরণ ১২। $40x^8y^{10}z^5$ কে $-8x^4y^2z^4$ দ্বারা ভাগ কর।

সমাধান :
$$\frac{40x^8y^{10}z^5}{-8x^4y^2z^4} = \frac{40}{-8} \times \frac{x^8}{x^4} \times \frac{y^{10}}{y^2} \times \frac{z^5}{z^4}$$
$$= -5 \times x^{8-4} \times y^{10-2} \times z^{5-4} = -5x^4y^8z$$

নির্ণেয় ভাগফল $-5x^4y^8z$

উদাহরণ ১৩। $-45x^{13}y^9z^4$ কে $-5x^6y^3z^2$ দ্বারা ভাগ কর।

সমাধান :
$$\frac{-45x^{13}y^9z^4}{-5x^6y^3z^2} = \frac{-45}{-5} \times \frac{x^{13}}{x^6} \times \frac{y^9}{y^3} \times \frac{z^4}{z^2}$$
$$= 9 \times x^{13-6} \times y^{9-3} \times z^{4-2} = 9x^7y^6z^2$$

নির্ণেয় ভাগফল $9x^7y^6z^2$

কাজ: প্রথম রাশিকে দ্বিতীয় রাশি দ্বারা ভাগ কর।

$$(\overline{\Phi}) 12a^3b^5c$$
, $3ab^2$

$$(4) - 28p^3q^2r^5, 7p^2qr^3$$

(গ)
$$35x^5y^7$$
, $-5x^5y^2$

$$(4) - 40x^{10}y^5z^9, -8x^6y^2z^5$$

৪-৯ বহুপদী রাশিকে একপদী রাশি দ্বারা ভাগ

আমরা জানি, a+b+c একটি বহুপদী রাশি।

৬০

এখন
$$(a+b+c) \div d$$

$$= (a+b+c) \times \frac{1}{d}$$

$$= a \times \frac{1}{d} + b \times \frac{1}{d} + c \times \frac{1}{d}$$

$$= \frac{a}{d} + \frac{b}{d} + \frac{c}{d}$$

$$= \frac{a+b+c}{d} = \frac{a}{d} + \frac{b}{d} + \frac{c}{d}$$

উদাহরণ ১৪ । $10x^5y^3 - 12x^3y^8 + 6x^4y^7$ কে $2x^2y^2$ দ্বারা ভাগ কর।

সমাধান :
$$\frac{10x^5y^3 - 12x^3y^8 + 6x^4y^7}{2x^2y^2}$$

$$= \frac{10x^5y^3}{2x^2y^2} - \frac{12x^3y^8}{2x^2y^2} + \frac{6x^4y^7}{2x^2y^2}$$

$$= 5x^{5-2}y^{3-2} - 6x^{3-2}y^{8-2} + 3x^{4-2}y^{7-2}$$

$$= 5x^3y - 6xy^6 + 3x^2y^5$$

নির্ণেয় ভাগফল $5x^3y - 6xy^6 + 3x^2y^5$

উদাহরণ ১৫। $35a^5b^4c + 20a^6b^8c^3 - 40a^5b^6c^4$ কে $5a^2b^3c$ দারা ভাগ কর।

সমাধান :
$$\frac{35a^5b^4c + 20a^6b^8c^3 - 40a^5b^6c^4}{5a^2b^3c}$$

$$= \frac{35a^5b^4c}{5a^2b^3c} + \frac{20a^6b^8c^3}{5a^2b^3c} - \frac{40a^5b^6c^4}{5a^2b^3c}$$

$$= 7a^{5-2}b^{4-3}c^{1-1} + 4a^{6-2}b^{8-3}c^{3-1} - 8a^{5-2}b^{6-3}c^{4-1}$$

$$= 7a^3b + 4a^4b^5c^2 - 8a^3b^3c^3 \qquad [\because c^{1-1} = c^0 = 1]$$

নির্ণেয় ভাগফল $7a^3b + 4a^4b^5c^2 - 8a^3b^3c^3$

কাজ: ১।
$$9x^4y^5 + 12x^8y^5 + 21x^9y^6$$
 কে $3x^3y^2$ দ্বারা ভাগ কর। ২। $28a^5b^6 - 16a^6b^8 - 20a^7b^5$ কে $4a^4b^3$ দ্বারা ভাগ কর।

8-১০ বহুপদী রাশিকে বহুপদী রাশি দ্বারা ভাগ

বহুপদী রাশিকে বহুপদী রাশি দ্বারা ভাগ করার ক্ষেত্রে প্রথমে ভাজ্য ও ভাজক উভয়ের মধ্যে আছে এমন একটি বীজগণিতীয় প্রতীকের ঘাতের অধ্যক্রম অনুসারে রাশিদ্বয়কে সাজাতে হবে। যেমন $x^2+2x^4+110-48x$ একটি বহুপদী। একে x এর মানের অধ্যক্রম অনুসারে সাজালে আমরা পাই : $2x^4+\ x^2-48x+110$ । এরপর পাটিগণিতের ভাগ প্রক্রিয়ার মতো নিচের নিয়মে ধাপে ধাপে ভাগ করতে হবে।

- ভাজ্যের প্রথম পদটিকে ভাজকের প্রথম পদ দ্বারা ভাগ করলে যে ভাগফল হয় তা নির্ণেয় ভাগফলের প্রথম পদ।
- ভাগফলের ঐ প্রথম পদ দারা ভাজকের প্রত্যেক পদকে গুণ করে গুণফল সদৃশ পদ অনুযায়ী ভাজ্যের নিচে বসিয়ে ভাজ্য থেকে বিয়োগ করতে হয়।
- বিয়োগফল নতুন ভাজ্য হবে ৷ বিয়োগফল এমনভাবে লিখতে হবে যেন তা আগের মতো বিবেচ্য প্রতীকের অধ্যক্রম অনুসারে থাকে ৷
- নতুন ভাজ্যের প্রথম পদটিকে ভাজকের প্রথম পদ দ্বারা ভাগ করলে যে ভাগফল হয় তা নির্ণেয় ভাগফলের দ্বিতীয় পদ।
- এভাবে ক্রমান্বয়ে ভাগ করতে হয়।

উদাহরণ ১৬। $6x^2 + x - 2$ কে 2x - 1 দারা ভাগ কর।

সমাধান : এখানে ভাজ্য ও ভাজক উভয়েই x এর ঘাতের অধঃক্রম অনুসারে সাজানো আছে।

$$2x-1$$
) $6x^2+x-2$ ($3x+2$ এখানে, $6x^2\div 2x=3x$ এই $3x$ দ্বারা ভাজক $2x-1$ কে গুণ করে গুণফল ভাজ্যের সদৃশ পদের নিচে লিখে বিয়োগ করা হল : নতুন ভাজ্য $4x-2$ নতুন ভাজ্য $4x-2$ এর ক্ষেত্রে একই নিয়ম অনুসরণ করা হল

নির্ণেয় ভাগফল 3x + 2

উদাহরণ ১৭। $2x^2 - 7xy + 6y^2$ কে x - 2y দারা ভাগ কর।

সমাধান : এখানে রাশি দুইটি χ এর ঘাতের অধঃক্রম অনুসারে সাজানো আছে।

2505

নির্ণেয় ভাগফল 2x - 3y

উদাহরণ ১৮। $16x^4 + 36x^2 + 81$ কে $4x^2 - 6x + 9$ দ্বারা ভাগ কর। সমাধান: এখানে রাশি দুটি x এর ঘাতের অধঃক্রম অনুসারে সাজানো আছে।

নির্ণেয় ভাগফল $4x^2 + 6x + 9$

মন্তব্য : ২য় ধাপে নতুন ভাজ্যকেও 🗴 এর ঘাতের অধঃক্রম অনুসারে সাজিয়ে লেখা হয়েছে।

উদাহরণ ১৯ ।
$$2x^4 + 110 - 48x$$
 কে $4x + 11 + x^2$ দ্বারা ভাগ কর।

সমাধান : ভাজ্য ও ভাজক উভয়কে χ এর ঘাতের অধঃক্রম অনুসারে সাজিয়ে পাই,

ভাজ্য =
$$2x^4 + 110 - 48x = 2x^4 - 48x + 110$$
ভাজ্য = $4x + 11 + x^2 = x^2 + 4x + 11$
এখন, $x^2 + 4x + 11$) $2x^4 - 48x + 110$ ($2x^2 - 8x + 10$)
$$2x^4 + 8x^3 + 22x^2$$

$$-8x^3 - 22x^2 - 48x + 110$$

$$-8x^3 - 32x^2 - 88x$$

$$10x^2 + 40x + 110$$

$$-10x^2 + 40x + 110$$

নির্ণেয় ভাগফল $2x^2 - 8x + 10$

বীজগণিতীয় রাশির গুণ ও ভাগ

30

উদাহরণ ২০। x^4-1 কে x^2+1 দারা ভাগ কর।

সমাধান : এখানে রাশি দুটি χ এর ঘাতের অধঃক্রম অনুসারে সাজানো আছে।

$$x^2+1$$
) x^4-1 (x^2-1)
$$\frac{x^4+x^2}{-x^2-1}$$

$$\frac{-x^2-1}{0}$$
 নির্ণেয় ভাগফল x^2-1

কাজ : ১। $2m^2 - 5mn + 2n^2$ কে 2m - n দ্বারা ভাগ কর। ২। $a^4 + a^2b^2 + b^4$ কে $a^2 - ab + b^2$ দ্বারা ভাগ কর। ৩। $81p^4 + q^4 - 22p^2q^2$ কে $9p^2 + 2pq - q^2$ দ্বারা ভাগ কর।

जनूनीननी 8∙२

প্রথম রাশিকে দ্বিতীয় রাশি দ্বারা ভাগ কর:

$2 \mid -24a^5, 3a^2$
$8 + -28x^4y^3z^2, 4xy^2z$
$\Theta = -22x^3y^2z, -2xyz$
$b' = 36x^4y^3 + 9x^5y^2, 9xy$
$50 + 6a^5b^3 - 9a^3b^4$, $3a^2b^2$
$3 < 1 $ $6x^8y^6z - 4x^4y^3z^2 + 2x^2y^2z^2$, $2x^2y^2z$
$38 + a^3b^2 + 2a^2b^3, a+2b$
$36 + 6y^2 + 3x^2 - 11xy$, $3x - 2y$
$3b \mid a^2 + 4axyz + 4x^2y^2z^2, a + 2xyz$
$0 + 64 - a^3$, $a - 4$
$88 + x^4 + 8x^2 + 15, x^2 + 5$
$8 + 4a^4 + b^4 - 5a^2b^2$, $4a^2 - b^2$
$49 + x^4y^4 - 1, x^2y^2 + 1$
$8b + x^2 - 8abx + 15a^2b^2$, $x - 3ab$
$00 \mid a^2bc + b^2ca + c^2ab, \ a+b+c$
$0.0 \times 1.81x^4 + y^4 - 22x^2y^2, 9x^2 + 2xy - y^2$
$08 + x^4 + x^2y^2 + y^4$, $x^2 - xy + y^2$

৬৪

৪-১১ বন্ধনীর ব্যবহার

একটি স্কুলের ম্যানেজিং কমিটি তাদের স্কুলের 10 জন গরীব শিক্ষার্থীর জন্য দুঃস্থ কল্যাণ তহবিল থেকে a টাকা বরাদ্দ করল। সেই টাকা থেকে প্রত্যেক শিক্ষার্থীকে প্রতিটি b টাকা মূল্যের 2 টি করে খাতা ও প্রতিটি c টাকা মূল্যের 1টি করে কলম বিতরণ করা হলো। এতে কিছু টাকা উদ্বৃত্ত হলো। এই টাকার সাথে আরও d টাকা যোগ করে তা 2 জন প্রতিবন্ধী শিক্ষার্থীর মধ্যে সমানভাবে ভাগ করে দেওয়া হলো। উপরে বর্ণিত তথ্যগুলোকে বীজগণিতীয় রাশির মাধ্যমে প্রকাশ করতে পারি :

$$[{a-(2b+c)\times10}+d]\div2$$

এখানে, ১ম বন্ধনী (), ২য় বন্ধনী { }, ৩য় বন্ধনী [] ব্যবহার করা হয়েছে। বন্ধনী স্থাপনের নিয়ম হচ্ছে [{()}]। এ ছাড়াও রাশিটিতে প্রক্রিয়া চিহ্ন +, —, × ও ÷ ব্যবহার করা হয়েছে। এরূপ রাশির সরলীকরণে 'BEDMAS' (B for Braket, E for Exponent, D for Division, M for Multiplication, A for Addition, S for Subtraction) অনুসরণ করা হয়। আবার, বন্ধনীর ক্ষেত্রে পর্যায়ক্রমে ১ম, ২য় ও ৩য় বন্ধনীর কাজ করতে হয়।

বন্ধনী অপসারণ:

লক্ষ করি : b > c

বন্ধনীর আগে '+' চিহ্ন থাকলে, বন্ধনী অপসারণে বন্ধনীর ভিতরের পদগুলোর চিহ্নের পরিবর্তন হয় না।

আবার, লক্ষ করি : b > c, a > b - c

চিত্রে দেখা যায়, a - (b - c) = a - b + c

লক্ষ করি :
$$a - (b - c) + (b - c) = a$$

আবার,
$$a-b+c+(b-c)=a$$

সুতরাং,
$$a - (b - c) = a - b + c$$

[-(b-c) এর যোগাত্মক বিপরীত (b-c)]

বন্ধনীর আগে '—' চিহ্ন থাকলে, বন্ধনী অপসারণে বন্ধনীর ভিতরের পদগুলোর চিহ্নের পরিবর্তন হয়ে বিপরীত চিহ্নযুক্ত হয়।

বন্ধনীযুক্ত রাশি	বন্ধনীমুক্ত রাশি
3+(6-2)	
3-(6-2)	8-6+2
p+q+(r-s)	
p+q-(r-s)	

রাশি	বন্ধনীর আগের চিহ্ন	বন্ধনীর অবস্থান	বন্ধনীযুক্ত রাশি	
7+5-2	+	২য় ও ৩য় পদ ১ম বন্ধনীভুক্ত অর্থাৎ, (5 – 2)	7 + (5 – 2)	
7-5+2	-	২য় ও ৩য় পদ ১ম বন্ধনীভুক্ত অর্থাৎ (- 5 + 2)	7 - (5 - 2)	
a-b+c-d	+	৩য় ও ৪র্থ পদ ১ম বন্ধনীভূক্ত		
a-b-c-d	_	29. 19.		

উদাহরণ ২১। সরল কর :
$$6-2\{5-(8-3)+(5+2)\}$$

সমাধান :
$$6 - 2\{5 - (8 - 3) + (5 + 2)\}$$

= $6 - 2\{5 - 5 + 7\}$
= $6 - 2\{+7\}$
= $6 - 14$
= -8

উদাহরণ ২২। সরল কর : $a + \{b - (c - d)\}$

সমাধান:
$$a + \{b - (c - d)\}$$

= $a + \{b - c + d\}$
= $a + b - c + d$

উদাহরণ ২৩। সরল কর :
$$a - [b - \{c - (d - e)\} - f]$$

সমাধান:
$$a - [b - \{c - (d - e)\} - f]$$

= $a - [b - \{c - d + e\} - f]$
= $a - [b - c + d - e - f]$
= $a - b + c - d + e + f$

ফর্মা নং-৯, গণিত-৭ম শ্রেণি

উদাহরণ ২৪। সরল কর: $3x - [5y - \{10z - (5x - 10y + 3z)\}]$

সমাধান: $3x - [5y - \{10z - (5x - 10y + 3z)\}]$

$$=3x-[5y-\{10z-5x+10y-3z\}]$$

$$=3x-[5y-\{7z-5x+10y\}]$$

$$=3x-[5y-7z+5x-10y]$$

$$=3x-[5x-5y-7z]$$

$$=3x-5x+5y+7z$$

$$=-2x+5y+7z$$

$$=5y-2x+7z$$

উদাহরণ ২৫। 3x-4y-8z+5 এর তৃতীয় ও চতুর্থ পদ বন্ধনীর আগে (-) চিহ্ন দিয়ে প্রথম বন্ধনীভুক্ত কর। পরবর্তীতে দ্বিতীয় পদ ও প্রথম বন্ধনীভুক্ত রাশিকে দ্বিতীয় বন্ধনীভুক্ত কর যেন বন্ধনীর আগে (–) চিহ্ন থাকে।

সমাধান : 3x-4y-8z+5 রাশিটির তৃতীয় ও চতুর্থ পদ যথাক্রমে 8z ও 5

প্রশানুসারে, 3x-4y-(8z-5)

আবার, $3x - \{4y + (8z - 5)\}$

কাজ : সরল কর :

$$3 + x - \{2x - (3y - 4x + 2y)\}$$

$$2 | 8x + y - [7x - \{5x - (4x - 3x - y) + 2y\}]$$

অনুশীলনী ৪.৩

১। $3a^2h$ এবং $-4ah^2$ এর গুণফল নিচের কোনটি?

$$(\Phi) - 12a^2b^2$$

$$(\forall) -12a^3b^2$$

$$(9) - 12a^2b^3$$

(
$$\mathfrak{P}$$
) $-12a^2b^2$ (\mathfrak{P}) $-12a^3b^2$ (\mathfrak{P}) $-12a^2b^3$ (\mathfrak{P}) $-12a^3b^3$

২। $20a^6b^3$ কে $4a^3b$ দ্বারা ভাগ করলে ভাগফল নিচের কোনটি?

$$(\Phi) 5a^{3}b$$

(4)
$$5a^3b$$
 (4) $5a^6b^2$ (5) $5a^3b^2$ (5) $5a^3b^3$

(ঘ)
$$5a^3b^3$$

$$0 \mid \frac{-25x^3y}{5xy^3} = \overline{99}?$$

$$(\overline{\Phi}) - 5x^2y^2$$

$$(4) -5x^3y^4$$

(
$$\overline{\phi}$$
) $-5x^2y^2$ ($\overline{\psi}$) $-5x^3y^2$ ($\overline{\eta}$) $\frac{-5x^2}{y^3}$ ($\overline{\eta}$) $\frac{-5x^2}{y^2}$

$$(\forall) \frac{-5x^2}{v^2}$$

a = 3, b = 2 হলে, (8a - 2b) + (-7a + 4b) এর মান কত?

বীজগ	ণিতীয় রাশির গুণ ও ভ	াগ								
Œ 1	x = -1 হলে, x	$^{3}+2x^{2}-$	-1 এর মান নি	চের বে	গ্ৰনটি?					
	(季) −4	(학) -	2	(গ) 0		(ঘ) 2			
ঙ৷	$10x^6y^5z^4$ ক	$-5x^2y^2z$	² দ্বারা ভাগ ক	রলে ভ	গাফল কত হে	ব?				
	$(\overline{\Phi}) - 2x^4y^2z$	3 (খ) -	$2x^4y^3z^2$	(গ	$)-2x^3y^3z$.3	$(\triangledown) - 2x^4y^3z^3$			
٩١	$4a^4-6a^3+3a+14$ একটি বীজগণিতীয় রাশি।									
	(i) বহুপদী রাশিটি	র চলক <i>a</i>								
	(ii) বহুপদীটির মাত্রা 4									
	(iii) a^3 এর সহগ 6									
	নিচের কোনটি সঠিক?									
	(क) i ও ii	(₹) ii	e iii	(গ) i ଓ iii		(ঘ) i, ii ও iii			
b 1	x=3, y=2 হলে	$(m^x)^y$ এর	মান কত?							
	(Φ) m ²	(뉙) /	n^3	(গ)	m ⁵	(ঘ)	m^{δ}			
81	ে। $a \neq o$ হলে, a° এর মান কত?									
	(季) 0	(খ) ৫	7	(গ)	1	(ঘ)	$\frac{1}{a}$			
701	$x^7 + x^{-2} = \overline{\Phi} \overline{\Phi}$?									
	(季) χ ⁹	(খ) ু	r ⁵	(গ)	x^{-5}	(ঘ)	χ^{-9}			
	নিচের তথ্যের আলো দুটি বীজগণিতীয় রাশি	8	D. D. 200							

১১ ৷ দ্বিতীয় রাশির মান নিচের কোনটি?

(a)
$$x+y$$
 (d) $-x-y$ (d) $x-y$ (e) x^2-y^2

১২। রাশি দুটির গুণফল নিচের কোনটি?

$$(\overline{\Phi})$$
 $\chi^2 + y^2$

$$(\forall)$$
 $(x+y)$

(a)
$$x^2 + y^2$$
 (b) $(x + y)^2$ (c) $x - y$ (d) $x^2 - y^2$

১৩। $a^5 \times (-a^3) \times a^{-5} = \overline{\Phi}$ ত?

(v)
$$a^{ij}$$
 (v) a^{δ} (vi) a^{β} (vi) $-a^{\beta}$

১৪ ৷ [2-{(1+1)-2}] এর সরলফল কত?

সরল কর (১৫ থেকে ২৯):

$$3e + 7 + 2[-8 - \{-3 - (-2 - 3)\} - 4]$$

$$36 + -5 - [-8 - \{-4 - (-2 - 3)\} + 13]$$

$$39 \cdot 7 - 2[-6 + 3\{-5 + 2(4 - 3)\}]$$

$$3b + x - \{a + (v - b)\}\$$

$$3x + (4y - z) - \{a - b - (2c - 4a) - 5a\}$$

$$90 - a + [-5b - \{-9c + (-3a - 7b + 11c)\}]$$

$$83 + -a - [-3b - \{-2a - (-a - 4b)\}]$$

$$\{2a-(3b-5c)\}-[a-\{2b-(c-4a)\}-7c]$$

$$90 - a + [-6b - \{-15c + (-3a - 9b - 13c)\}]$$

$$81 - 2x - [-4y - \{-6z - (8x - 10y + 12z)\}]$$

$$\{x \in (3x-5y+[2+(3y-x)+\{2x-(x-2y)\}]\}$$

$$4x + [-5y - \{9z + (3x - 7y + x)\}]$$

$$91 \cdot 20 - [\{(6a+3b)-(5a-2b)\}+6]$$

$$4b + 15a + 2[3b + 3\{2a - 2(2a + b)\}]$$

$$8b - 3[2a - 3(2b + 5) - 5(b - 3)] - 3b$$

৩০ বন্ধনীর পূর্বে (–) চিহ্ন দিয়ে a-b+c-d এর ২য়, ৩য় ও ৪র্থ পদ প্রথম বন্ধনীর ভিতর স্থাপন কর।

৩১। a-b-c+d-m+n-x+y রাশিতে বন্ধনীর আগে (-) চিহ্ন দিয়ে ২য়, ৩য় ও ৪র্থ পদ ও (+) চিহ্ন দিয়ে ৬ষ্ঠ ও ৭ম পদ প্রথম বন্ধনীভুক্ত কর।

৩২। 7x - 5y + 8z - 9 এর তৃতীয় ও চতুর্থ পদ বন্ধনীর আগে (-) চিহ্ন দিয়ে প্রথম বন্ধনীভুক্ত কর। পরে দ্বিতীয় পদ ও প্রথম বন্ধনীভুক্ত রাশিকে দ্বিতীয় বন্ধনীভুক্ত কর যেন বন্ধনীর আগে (+) চিহ্ন থাকে।

৩৩।
$$15x^2 + 7x - 2$$
 এবং $5x - 1$ দুটি বীজগণিতীয় রাশি।

- ক. প্রথম রাশি থেকে দ্বিতীয় রাশি বিয়োগ কর।
- খ, রাশিদ্বয়ের গুণফল নির্ণয় কর।
- গ্রপ্রথম রাশিকে দ্বিতীয় রাশি দ্বারা ভাগ কর।

৩৪ ।
$$A = x^2 - xy + y^2$$
, $B = x^2 + xy + y^2$ এবং $C = x^4 + x^2y^2 + y^4$

খ) A ও B এর গুণফল নির্ণয় কর।

গ)
$$BC \div B^2 - A$$
 নির্ণয় কর।