Enrichment Course in Biology

Molecular Biology

Dr Joanna Ho

Email: joannaho@hku.hk

Learning Outcomes

- Describe the process of gene expression and protein synthesis
- List and define the different types of mutation

Talking Glossary of Genetic Terms

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

NATIONAL INSTITUTES OF HEALTH | genome.gov

Illustration by Darryl Leja, NHGRI

Nucleic acids

- Nucleic acid is a polymer
- Formed by linking nucleotides through phosphodiester bonds

Nucleotides

- 1. A nitrogen containing base
- 2. A pentose (sugar)
- 3. 1-3 phosphate groups

There are five different bases

A = adenine

G = guanine

C = cytosine

T = thymine

U = uracil

Ribonucleic acid (RNA)

Talking Glossary of Genetic Terms
NATIONAL HUMAN GENOME RESEARCH INSTITUT

NATIONAL INSTITUTES OF HEALTH | genome.gov

Illustration by Darryl Leja, NHGRI

Structure of bases

Purines

For your reference only!

N₁

thymine

cytosine

Phosphodiester bond

• For your reference only!

Phosphodiester Bond

Phosphodiester Bond

Characteristics of DNA

- DNA is double-stranded aligned in anti-parallel fashion
- Two strands held together by hydrogen bonds formed between the bases
- Complementary base pairing
 - A must pair up with T (2 hydrogen bonds)
 - G must par up with C (3 hydrogen bonds)
- Forms helical structure
- Sugar phosphate backbone on surface Base-pair in the center
 - → accounts for stability of DNA
- Major grooves and minor grooves
 - For protein binding
- Wraps around histone proteins
 - For condensation

Characteristics of DNA

- Complementary base pairing
 - A must pair up with T (2 hydrogen bonds)
 - G must par up with C (3 hydrogen bonds)

Talking Glossary of Genetic Terms
NATIONAL HUMAN GENOME RESEARCH INSTITUTION

NATIONAL INSTITUTES OF HEALTH | genome.gov

Illustration by Darryl Leja, NHGRI

Major grooves and minor grooves

For protein binding

http://www.nature.com/nrd/journal/v2/n5/fig_tab/nrd1087_F1.html

From DNA to chromosome

http://www.carolguze.com/text/1 02-7-eukaryoticcells.shtml

Talking Glossary of Genetic Terms

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

NATIONAL INSTITUTES OF HEALTH | genome.gov

Illustration by Darryl Leja, NHGRI

Please watch this:

https://www.youtube.com/watch?v=TNKWgcFPHqw

Talking Glossary of Genetic Terms
NATIONAL HUMAN GENOME RESEARCH INSTITUTE

NATIONAL INSTITUTES OF HEALTH | genome.gov

Illustration by Darryl Leja, NHGRI

Replication: duplication of DNA

- Occurs in nucleus during cell division
 - a. Mitosis
 - b. Meiosis
- DNA unwinds
- Each strand serves as a template
 - By complementary base pairing,

Another new strand is added by DNA polymerase

Semi-conservative DNA replication

http://www.tokresource.org/tok_classes/biobiobio/biomenu/dna_replication/index.htm

Characteristics of RNA

5' AGGCUUAGCC 3'

- Contains uracil instead of thymine
- 2. 3 types of RNA
 - a. Messenger RNA (mRNA)
 - b. Ribosomal RNA (rRNA)
 - c. Transfer RNA (tRNA)
- Made from DNA through transcription
- 4. All involved in protein biosynthesis
- Single-stranded (less stable than DNA)
- 6. Forms secondary structure
 - a. Hairpin loops
 - b. Has 3D sturcture

DNA is the code of life

- What does DNA used for coding?
 - A
 - T
 - G
 - C
- What does DNA code for and how?

RNA codon table

2nd position 3rd 1st G position position Ser Phe Tyr Cys Phe Ser Tyr Cys U Ser stop stop _eu G Ser stop Trp _eu U Leu Arg His Pro Arg Pro His Leu Arg Pro Gln Leu Pro Arg GIn Leu U Thr Ser lle Asn lle Ser Thr Asn A Arg lle Thr Lys Met Thr Arg Lys G Val Ala Asp Gly Glý Val Ala Asp G Gly Val Ala Glu Ala Glu Gly Val Amino Acids

Stop codons:

UAA UAG UGA

Talking Glossary of Genetic Terms

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

NATIONAL INSTITUTES OF HEALTH | genome.gov

Illustration by Darryl Leja, NHGRI

Ala: Alanine

Arg: Arginine

Cys:Cysteine

Gly: Glycine

His: Histidine

lle: Isoleucine

Leu: Leucine

Met: Methionine

Phe: Phenylalanine

Lys: Lysine

Pro: Proline Ser: Serine

Thr: Threonine

Tyr: Tyrosisne

Val: Valine

Trp: Tryptophane

Gln: Glutamine

Glu: Glutamic acid

Asn: Asparagine

Asp:Aspartic acid

The universal genetic code

- 1. 64 codons
- 20 amino acids
- Most amino acids have more than one codon
 - a. Codon degeneracy
 - b. Synonym
- A common start codon (AUG)

Serves as start signal for protein synthesis

5. 3 stop codons serve to signal the end of protein synthesis.

How does DNA transfer its information to make protein?

Translation

Talking Glossary of Genetic Terms
NATIONAL HUMAN GENOME RESEARCH INSTITUTE

NATIONAL INSTITUTES OF HEALTH | genome.gov

Illustration by Darryl Leja, NHGRI

Talking Glossary of Genetic Terms
NATIONAL HUMAN GENOME RESEARCH INSTITUTE

NATIONAL INSTITUTES OF HEALTH | genome.gov

Illustration by Darryl Leja, NHGRI

Transcription: transfer information (code) from DNA to mRNA

- 1. Occurs in nucleus
- A controlled processe.g. controlled by hormones
- 3. DNA unwinds
- 4. One of the strand (coding strand) is used as template for RNA synthesis
 - By complementary base pairing, RNA is made by RNA polymerase
- 5. DNA rewinds at the other side as transcription continues

- Occurs in cytoplasm
- 2. Requires
 - a. mRNA (template)
 - b. tRNA (carry amino acids)
 - c. rRNA (part of ribosome)
 - d. Ribosome
 - Large subunit (P site, A site)
 - Small subunit

AGGCAUU AUG CCC AAA AGA GGU UAA UGGAAAAAAA

Please watch this:

https://www.youtube.com/watch?v=gG7uCskUOrA

Talking Glossary of Genetic Terms
NATIONAL HUMAN GENOME RESEARCH INSTITUTE

NATIONAL INSTITUTES OF HEALTH | genome.gov

Illustration by Darryl Leja, NHGRI

- The 3 steps of translation: initiation, chain elongation and termination
- Initiation: assembly of ribosome at the start site (AUG)
 - a. Small subunit and the initiator tRNA (Met-rRNA^{Met}) bind first
 - b. Then the large subunit binds
 - c. Initiator rRNA occupies P site

2. Chain elongation

Three stage reaction cycle that add amino acids to a growing peptide

- Binding of rRNA to A site
- Formation of peptide bond
 - Amino acid/peptide on P site tRNA attaches to the amino acid on the A site tRNA
- c. P site tRNA leaves and the ribosome moves down 3 nucleotides

3. Termination

Occurs at stop site (3 stop codons – UAA, UGA, UAG) as there is no tRNA for these codons

- a. A release factor binds to the empty A site
- b. The polypeptide is released from P site tRNA
- Ribosom dissembles

Missense mutation

Nonsense mutation

Insertion mutation

Deletion mutation

Frameshift mutation

Frameshift of one DNA base results in abnormal amino acid sequence.

Types of mutations

- 1. Missense: Change in amino acid
- 2. Nonsense: Change to a stop codon
- 3. Insertion: Extra base(s) inserted to the DNA
- 4. **Deletion:** Loss of base(s)
- 5. Frameshift: results from insertion/deletion

Normal

Missense Mutation

Partial DNA Sequence CCT GAG GAG of Beta Globin Gene: GGA CTC CTC

Partial RNA Sequence: CCU GAG GAG

Partial Amino Acid Sequence for Beta Globin: Pro — Glu — Glu

Hemoglobin Molecule:

Red Blood Cell:

Chromosome

- The somatic (2n) and gametic (n) chromosome numbers of a species ordinarily remain constant.
- This is due to the extremely precise mitotic and meiotic cell division.
- Somatic cells of a diploid species contain two copies of each chromosome, which are called homologous chromosome.
- Their gametes, therefore contain only one copy of each chromosome, that is they contain one chromosome complement or genome.
- Each chromosome of a genome contains a definite numbers and kinds of genes, which are arranged in a definite sequence.

Before translocation

After translocation

Chromosome 4

- Mutations in DNA can be caused by environmental agents, such as UV light and other ionizing radiations, chemicals, chemotherapeutic agents
- Variation in chromosomal number or structure do arise in nature by spontaneous mutations.

Chromosomal Aberrations

- Chromosomal aberration may be grouped into two broad classes:
 - 1. Structural
 - 2. Numerical

Chromosomal Aberrations

Structural Chromosomal Aberrations

- Chromosome structure variations result from chromosome breakage.
- Broken chromosomes tend to re-join; if there is more than one break, rejoining occurs at random and not necessarily with the correct ends.
- The result is structural changes in the chromosomes.
- Chromosome breakage is caused by X-rays, various chemicals, and can also occur spontaneously.

Structural aberrations of chromosomes

There are **four** common type of structural aberrations:

- (a) <u>Deletion</u> or Deficiency
- (b) <u>Duplication</u> or Repeat
- (c) <u>Inversion</u>
- (d) Translocation

A brief description (structural aberrations)

- **Deletion** occurs when a chromosome breaks at two sites and the segment between them gets lost.
- **Duplication** means that a chromosome segment appears in two (often sequentially inserted) copies on a single homolog.
- **Inversion** occurs when a chromosome segment between two breaks is rotated 180 degrees before reinsertion.
- **Translocation** involves the exchange of chromosome segments between two nonhomologous chromosomes.

• <u>Euploidy</u> - Organism with <u>one or more</u> than one more complete set of chromosomes(applies to haploid and diploid organisms).

Numerical variation in chromosome

• <u>Aneuploidy</u> - Variation in the number of individual chromosomes (but not the total number of sets of chromosomes).

Vocabulary

- Base pairing
- Genes
- Nucleic acids
- Genetic code
- Transcription
- Translation

- Semi conservative DNA replication
- Mutation

Suggested reading

Maartini, F. H., Nath, J. L., & Bartholomew, E.F. (2012). Fundamentals of anatomy and physiology. (9th Ed.). San Francisco: Pearson/Benjamin Cummings (Chapter 3-3 to 3-4)

Fox, S. I. (2011). Human Physiology. (12th Ed.) New York: McGraw-Hill (Chapter 3.3, - 3.4)

Silverthron, D. U. (2013). Human Physiology: an integrated approach. (6th Ed.). Upper Saddle River, N.J.; Harlow: Pearson Education. (Chapter 4, P117-123)

http://plato.stanford.edu/entries/molecular-biology/

http://www.genome.gov/Glossary/index.cfm?id=1