Producing and evaluating machine learning models

John Mount Nina Zumel

All examples: http://winvector.github.io/DS/ModelTesting/

Own-Vector LLC ►

"Essentially, all models are wrong, but some are useful."

- George Box

Goal

- Learn about tools that allow you to produce, evaluate, and deploy powerful state of the art predictive models.
 - · Data scientists become expert in all these steps.
 - Managers need to be expert in at least model evaluation.

. .

What is a Good Model?
Performance metrics for classifiers / decision procedures.

How do you measure model

Which Metrics Are Appropriate? Question Metric Example

Question	Metric	Example
ls it important that a positive classification is correct?	Precision	If the test comes back positive, is the patient really diabetic?
Is it important we find all positive cases?	Recall Sensitivity	Do we miss any diabetics through this test?
Are false positives expensive?	Precision Specificity	Diagnoses that lead to costly treatment
Are false negatives expensive?	Recall Sensitivity	Diagnosing conditions that are costly if untreated
Is it important to get everything right?	Accuracy	

Technical Metrics

- · AUC (ROC), deviance, and others.
- Good metrics for data scientists and between data scientists
- Useful proxy measures for comparing candidate models
- · Not always easily translatable to business goals

ROC/AUC

- Graph of trade-off between true positive and false positive rates as labeling threshold T is varied.
- AUC: area under the curve
 - Probability that a randomly chosen positive example will score higher than a randomly chosen negative example (with appropriate tiebreaking).
- Invariant to monotonic transformations of scoring function
- Independent of target class prevalence

Win-Vector LLC

Predictive modeling schematic

- Define a useful business goal.
- Choose a convincing performance measure.
- · Collect input ("independent") variables.
- · Build a model.
- · Confirm you have a decisive model.
- · Refine/repeat.

Big risks

- Not being able to produce a good model ("under fit").
- · Not being able to falsify a bad model ("over fit").
- Model depending on variables that are really only available after the outcome is known ("data leakage").

Example: KDD2009

- · KDD conference 2009 contest data.
- Predict from a few hundred features which credit accounts will "churn" or cancel.
- Training data: measurements from past accounts known to have cancelled or not cancelled in a fixed time interval.

Assume we have our data ready to go

- Data acquisition, documentation, cleaning, and preparation is by far the largest most critical part of real world data science.
- For this demo we are going to assume this is done and move on to the part people always want to hear about: model construction.

Own-Vector LLC

Pre-packaged software

- You don't need a Ph.D. to perform machine learning, because people with Ph.D.s have already implemented and shared very powerful methods:
 - · Gradient boosted trees.
 - · Random forests.
 - · Deep learning.
- For this demonstration we will exhibit R, decision trees, gradient boosting, and h2o deep learning.

₩in-Wester LLC

• Party like it is 1984. • Classification and Regression Trees

Try more powerful modeling techniques ppmPred test data chum - gomPred del da

Is it *really* a Good Model? Estimating *out of sample* performance

Own-Wester LLC►

Now give the models new data:

Best on train ≠ Best in future Performance on Test Data Decision Tree 0.71 0.70 Gradient Boosting 0.73 0.73 Neural Net 0.76 0.69

The problem • Performance measures on training data tend to be upwardly biased or optimistic. • We want a model that works well on future or new application data.

Question #2: How do you tune the modeling algorithm?

• How many trees for gradient boosting? How deep?

• What's the best learning rate for NN?

• How many iterations before you stop updating the NN?

Cross-validation Less biased estimate of out-of-sample performance "Peeking" issue slowed down Statistically efficient Largest possible validation set for a given training set size Final model is trained on ALL the training data Computationally inefficient Fit N models for every possible parameter Evaluates modeling procedure — NOT the performance of the final model.

Data Science: Data-rich

- · Generally, we will prefer train-validation-test split
 - · Lots of data to spare for holdout
 - Large data sets make computational efficiency attractive
 - Possible exception: very rare target class

Win-Wester LLC

0

When to Consider Cross-val

- Data sets too small for train-validation-test split
- · Lots of modeling parameters
- · Rare target or rare features of interest

O_{Wo-Wester LLC}►

Cross validation and existing packages

- Many modeling procedures have cross-validation or validation set use baked in
 - · Picking parameters, stopping criteria, etc.
 - gradient boosting with gbm, h2o neural nets....
- · Reduces upward bias, but doesn't eliminate it
 - · Still need a holdout set

Holdout: No peeking! (Or not too much)

- In practice: fit model->evaluate->tweak model ...
 - Too many iterations and performance estimates are upwardly biased again
 - · Especially if the holdout (or validation) set is small
- Recent differential-privacy related results to alleviate this
 - http://www.win-vector.com/blog/2015/10/a-simplerexplanation-of-differential-privacy/

Takeaways

- Knowing how a model will perform in the field is critical
- Data used in model construction may not be suitable for estimating this
- Train-Val-Test split and Cross-validation techniques can be used to fix some of the issues.

Thank you

All examples: http://winvector.github.io/DS/ModelTesting/

