switch (fork()) { case 0: printe("Alm"); > F1
break; -> F1 default: printf("BIN"); >> P

wait(NULL) >> P

print ("CIN") >> P y →P+F return c; >P+F a) P > processo zai FI > processo filho C) processo - é um programa em

processo - é um proprama em execução; o seu estado é definido pela atividade no momento; pode estar em vários estados; tem uma estrutura de so associado; pode ter vários

fluxos de execução - threads W. thread - unidade basica do cru constituido por threadid, stack, registers, As threads partilham data, ficheiros e coidigo; A' erlação de processos envol-ve a coipia desses ficheiros (e data e (código) mas nã a sua partina. O que os destinaue: - 19 processo contém tureads mas uma thread now pode conter um processo - a processo demora a tempo a 2 terminar, eriar e mudar de contexto que as tureads. E O epiciente e pasta & recursos. - As threads usam meanairia partilhada e os processos não. d) <u>diagrama</u> de estados interrupt exit terminated (Ready) scheduler Krunning event event waiting

Q) Todas as linhas poderon estar no estado ready a running. Chamadas ao sistema 3,5,7 enhas I/o 4,8 -) podem estar em wait Quando o programa termino, esta em terminated I a) int left(in+4) } int right (int f) / int f-left = f; int & - right = return & - Out = (\$ +1) %N; Return & right c) Para earrieir a problema temnos que negar unna das condições de deadlock - texclusão mutua - espera c/retenção - n libertação - espera uriular ⇒ repar a espera virular filasofes 1 a 4 executam a de mode a popar 1º no earpo dado.

b) fn thunk(1); ->corks[left(f)] down(); f2 thunk(1); (>51 = 0) fcorks[left(f)].down(); L> Sz = c

Toual para \$3,54 a \$5

\$3 = 6

\$4 = 0

\$5 = 0

Deadlick (bloqueig) pois todos os semaifaros estad a zero.

se todos os preciso por peramo 1º no parto da esquerda quando alpum tentar popour no da album tentar popour no da sua direita vai ficar bloqueado

void fresofo (m++)?

while (true)?

thunk();

forks [newto i (qual

o resto i (qual

o resto dado

a)
$$RR = 20 \text{ ms}$$

$$P_1 = 30 + 20 + 10 = 60$$

$$\frac{1}{60} = \frac{60 + 70 + 40}{3} = \frac{170}{3} \approx 56,7 \text{ ms}$$

RR > prolessos sad executados por durante

FCFS = exelutado o 1º processo que chega; ñ preemptivo

Vantagens do RR em relação ao FCFJ · livre de inanição, que seja, como i um algoritmo preemptivo, não ha o risco do algum processo à ner exem- tado por causa do processos com maior prioridade · larante um tempo do resposta (+) Raipido (e amonor tempo do espera) vantagens do FCFS · e (+) simples par ser não preemptivo (menos compano) escalanar aplicações > RR calculo intensivo > FCFS									
a) underesc	eonteudo	endereso	contendo						
0	G	8	D						
1	B	9	E	5					
2		10		2					
3	C	11	Н	2					
_ 4	F	()		2					
5	A	13		8					
6		14							
7		(3)							

0 so carante que a tabela de pajoina nos e alterada por outros processos. Para isso ha um base register e um limit register. O CPU compara todos os enderesos perados por um processo com asses repistes. Caso estejam tora do limite, o so emite uma ____ |?? Estes valores soi podern ser alterados pelo so. O SO mantém uma corpia da tabola de tendoreços paisina de cada processo. Para evitar acessos invaleidos à me-mairia tem se pade usar o rapid-- invalid bit na passe table. c) objetivos da anaguina virtual · escuencia - partilha; manter na memoiria apenas o necessairio · seaurança -> impedir a atribuição de contendo de memoria de outros processos transparência > acesso a met memoiria lhe pertencesse acedem à mesma zen a de memoria de porma controlada · partilha de memoria > valvios processos

 $\overline{\mathbb{I}}$

Recursos disponivers

Estado des processos

١	Reu	1505 GW1	gas	rewrous a pedir		
	RA	R2	R3	Rn	RZ	H3
-	2	1	4	2	0	0
17	13	1	0	0	2	1
1/2	12	1	0	3	1	0
Y3	1	l		1		

a) Sim, os processos podem termunar

Disponireis =
$$\begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$
 R3 = D

Adquirides =
$$\begin{bmatrix} 3 & 1 & 4 \\ z & 1 & 0 \\ z & 1 & 0 \end{bmatrix} = A$$

Need =
$$\begin{bmatrix} 200\\ 021\\ 310 \end{bmatrix} = N$$

Para o processo ser executado, os recursos necessários têm que ser « aus disponíveis

$$\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \leqslant \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} \Leftrightarrow N \leqslant D$$

$$\begin{bmatrix} z \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{z}{3} \\ 1 \end{bmatrix}$$

$$D = \begin{bmatrix} 2 \\ 3 \\ R2 \\ R3 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \\ 4 \end{bmatrix}$$

$$D = \begin{bmatrix} 5 \\ 4 \\ 7 \end{bmatrix} \begin{bmatrix} 81 \\ R2 \\ R3 \end{bmatrix}$$

scbraram

$$\begin{bmatrix} 3 \\ 1 \\ 6 \end{bmatrix} \leqslant \begin{bmatrix} 5 \\ 4 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 7 \\ 5 \\ 7 \end{bmatrix}$$

P3 pede
$$\begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \checkmark \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} \checkmark \rightarrow \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \checkmark \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 2 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$$

E

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Need =
$$\begin{bmatrix} 200\\ 021\\ 300 \end{bmatrix}$$

Para os processos serem executados, o n: de recuersos pedidos term que ser « acs dispaniveis deadlock void print_avoil_resources (void) S_mutex.down(); of printf(">din" info-avail-ra); printf (">. d\n", info. avoul - 12); printf ("Y.din", infc. avail - 13); s-mutex up();

00