Dr. Saurabh Bhaskar Shaw

Translational neuroscientist at the intersection of Brain & AI, passionate about improving Human-Computer Interactions (HCIs) for better quality-of-life

- in linkedin.com/in/saurabh-shaw-19166844
- github.com/saurabhshaw
- % https://drsaurabhshaw.com

TECHNICAL SKILLS

Interfaces (BCIs)

10 Years of Experimental Design & Executing User Studies
Analyzing neuroscientific data

with cutting-edge ML techniques to develop biomarkers & novel user interaction opportunities.

Cross-functional Communication of Research Findings

24 Conferences & 15 publications in high-impact journals like Nature Mental Health, Neuroimage: Clinical & Frontiers in Human Neuroscience

EXPERIENCE

Senior Data Scientist

♥ Cognixion Inc.

- Leveraged foundational expertise in neuroscience at the intersection of brain-computer interfaces, ML theory, selective visual attention, & decision-making to develop & optimize the flagship Brain Computer Interface (BCI) in Augmented Reality (AR) Cognizion One.
- Conceptualized, designed & led studies to investigate the impact of technological & spatial factors (e.g. shape/design of stimuli), user fatigue/comfort, prior user expertise, & noise sources in naturalistic user environments (e.g. ventilators for those with Amyotrophic Lateral Sclerosis ALS) on the visual attention-based BCI performance.
- Investigated neural & behavioural correlates of visual attention affecting BCI performance in healthy users & those with ALS using Python/MATLAB-based ML tools.
- Designed customized signal-processing pipelines & AI algorithms that optimized BCI performance under different user states.
- Collaborated cross-functionally with engineering teams to translate research insights into production, transformative technology prototypes, & demonstrations (e.g. novel BCI paradigms).
- $\bullet \ \ \textbf{Drove collaborations with academic research partners} \ to \ secure \ funding \ \& \ test \ novel \ applications.$

Adjunct Research Professor

Western University

2022 - Ongoing

- Leveraged foundational expertise in neuroscience & designed studies to study altered sensory
 processing (touch, visual, auditory) in those with PTSD & its subtype.
- Investigated neural & behavioural correlates of altered sensory processing in those with PTSD using Python/MATLAB-based ML tools for use as clinical biomarkers.
- Effectively communicated research results through presentations at international conferences & publications in high-impact journals (e.g. Nature Mental Health, Neuroimage: Clinical see [1], [2], [3]) as first author, contributing author & senior author.
- Supervised, mentored & collaborated with clinicians, researchers & engineers, including 2 graduate students (PhD).

MITACS Industrial Post-doctoral Fellow

♥ Homewood Research Institute

- Designed & executed research/clinical studies to identify neural biomarkers of PTSD & affordable BCI-based therapy for vulnerable populations in naturalistic environments (e.g. Indigenous peoples).
- Identified novel neural & behavioural correlates of PTSD subtypes using cutting-edge machine learning tools (Python/MATLAB/HPC) & tested affordable BCI-based therapy (neurofeedback).
- Acquired 1.2M\$ in funding through effective cross-functional partnerships & stakeholder meetings.
- Effectively communicated research results to stakeholders including publications in high-impact journals (e.g. Nature Mental Health, Neuroimage: Clinical see [1], [4], [5]) & presentations at international conferences.

NOTABLE ACHIEVEMENTS

Designed novel AI algorithms for detecting neural correlates of brain networks & mental states

using effective multimodal data fusion (EEG-fMRI, EMG, ECG) to allow the use of EEG-based cost-effective biomarkers in psychiatry & BCIs in AR.

Deep understanding & applied experience of AI/ML tools

such as classifiers, deep-learning models, transformers, Large Language Models (LLMs) and other generative AI models, implemented through Python, MATLAB, & C-based tools such as TensorFlow, Pytorch to pull out actionable insights from complex multimodal datasets.

Validated clinical applications through numerous user studies

testing identified biomarkers & neurofeedback therapy in youth, indigenous communities & PTSD patients, using gold-standard randomized controlled trial (RCT)

Great written & oral interdisciplinary communication skills

honed through supervising 21 research & engineering students, hosting neurotech events & delivering conference talks.

Core member of the global BCI & Al research communities

Affiliated with and have active collaborations with global BCI & AI research communities, such as the Vector Institute & NeurotechX (co-founder & lead of NeurotechHA).

EDUCATION

Ph.D - Neuroscience

McMaster University

2016 - 2020

M.A.Sc. - Biomedical Engineering

McMaster University

1 2014 - 2016

B.Eng. - Electrical & Biomed. Eng.

McMaster University

2010 - 2014

EXPERIENCE (CONTD...)

Doctoral Researcher

2016 - 2020

- Designed & executed 8 research studies, performing extensive data analysis to identify EEG-based biomarkers of brain networks [6] using complex multimodal datasets, validate them in healthy individuals [7], & use them to assess therapies [8].
- Supervised & operationally managed a large team of 21 researchers & engineers.

Founder

Serenity Systems

M September 2013

- Conceptualized & designed a tactile-based HCI for communicating navigation signals to visually
 impaired users.
- Performed validation study of device in visually impaired users, assessing efficacy against current
 competitors in a simulated naturalistic environment (see [9]).

NOTABLE GRANTS & AWARDS

Phase 1 & 2 IDEaS Grant - \$1.2M

Highly competitive national grant awarded by Defence Research and Development Canada to study problems faced by Canadian Armed Forces, & test possible solutions.

MITACS Elevate Post-doctoral Fellowship - \$100,000

Postdoctoral fellowship designed for collaborative projects bridging industry and academia.

Vector Postgraduate Affiliate Program Awardee - \$7000/year

Awarded by the Vector Postgraduate Affiliates Committee based on the strength of research contributions to the field of artificial intelligence (AI) and machine learning (ML).

NSERC Alliance Grant (via Cognixion) - \$20,000

Highly competitive national grant awarded for collaborations between industry and academia.

NSERC Discovery Grant - \$ 35,000/year

Competitive long-term national grant to support research in science & engineering.

NSERC Alexander Graham Bell Canada Graduate Scholarship Doctoral (CGS-D) - \$35,000/year Highly competitive national award, offered to the top-ranked applicants engaged in a doctoral program in the natural sciences or engineering.

SELECT PUBLICATIONS

Journal Articles

- [1] S. Shaw, B. Terpou, M. Densmore, *et al.*, "Large-scale functional hyperconnectivity patterns in trauma-related dissociation: An rs-fmri study of ptsd and its dissociative subtype," *Nature Mental Health*, 2023.
- [2] M. Chaposhloo, A. A. Nicholson, S. Becker, M. McKinnon, R. Lanius, and S. Shaw, "Investigating differential patterns of hippocampal connectivity in posttraumatic stress disorder (ptsd) via fmri," *Neuroimage: Clinical*, 2023.
- [3] B. Kearney, B. Terpou, M. Densmore, et al., "How the body remembers: Examining the default mode and sensorimotor networks during moral injury autobiographical memory retrieval in ptsd," Neuroimage: Clinical, 2023.
- [4] B. Terpou, S. B. Shaw, J. Theberge, M. McKinnon, R. Lanius, and T. Ros, "Eeg microstates in ptsd: Identifying resting-state dynamics and classifying ptsd using machine learning," *Neuroimage*: *Clinical*, 2022.
- [5] S. B. Shaw, A. A. Nicholson, T. Ros, et al., "Increased top-down control of emotions during symptom provocation working memory tasks following a rct of alpha-down neurofeedback in ptsd," Neuroimage: Clinical, 2023.
- [6] S. B. Shaw, M. C. McKinnon, J. J. Heisz, A. H. Harrison, J. F. Connolly, and S. Becker, "Tracking the brain's intrinsic connectivity networks in eeg," bioRxiv, 2021.
- [7] S. B. Shaw, M. C. McKinnon, J. Heisz, and S. Becker, "Dynamic task-linked switching between brain networks—a tri-network perspective," *Brain and cognition*, vol. 151, p. 105 725, 2021.
- [8] S. B. Shaw, Y. Levy, A. Mizzi, et al., "Combined aerobic exercise and neurofeedback lead to improved task-relevant intrinsic network synchrony," Frontiers in Human Neuroscience, vol. 16, 2022.
- [9] A. Bharadwaj, S. B. Shaw, and D. Goldreich, "Comparing tactile to auditory guidance for blind individuals," *Frontiers in human neuroscience*, vol. 13, p. 443, 2019.
- [12] S. B. Shaw, K. Dhindsa, J. P. Reilly, and S. Becker, "Capturing the forest but missing the trees: Microstates inadequate for characterizing shorter-scale eeg dynamics," *Neural computation*, vol. 31, no. 11, pp. 2177–2211, 2019.
- [13] D. Kumbhare, S. Shaw, L. Grosman-Rimon, and M. D. Noseworthy, "Quantitative ultrasound assessment of myofascial pain syndrome affecting the trapezius: A reliability study," *Journal of Ultrasound in Medicine*, vol. 36, no. 12, pp. 2559–2568, 2017.
- [14] D. Kumbhare, S. Shaw, S. Ahmed, and M. D. Noseworthy, "Quantitative ultrasound of trapezius muscle involvement in myofascial pain: Comparison of clinical and healthy population using texture analysis," *Journal of ultrasound*, vol. 23, no. 1, pp. 23–30, 2020.

SELECT CONFERENCES

Conference Proceedings

- [15] S.B.Shaw, K. Dhindsa, C. Dematteo, J. Connolly, and M. Noseworthy, "Fractal dimensionality of bold signal as a measure of mild traumatic brain injury (mtbi)," in Book of Abstracts ESMRMB 2015, 28(1): MAGMA, 2015, S121–S122.
- [16] S.B.Shaw, J. Dhillon, D. Shah, E. Lesiuta, and B. Gavrilovic, "Serenity: Tactile navigation system for the visually impaired," in CNIB Conference 2014, 2014.
- [17] S.B.Shaw, A. Akbari, and M. Noseworthy, "Attenuation of contaminating pcr signal in human liver 31p mrs using ferromagnetic mats," in *Book of Abstracts ESMRMB* 2013, 26(1): MAGMA, 2013, pp. 272–273.
- [18] S.B.Shaw, "Real-time filtering of gradient artifacts from simultaneous eeg-fmri data," IEEE PRNI, 2017.
- [19] S.B.Shaw, M. McKinnon, J. Heisz, and S. Becker, "Characterization of eeg signatures of dmn, cen and sn network activity in simultaneously recorded eeg-fmri during multiple memory tasks," TAMEG Meeting, 2018.
- [20] S.B.Shaw, K. Dhindsa, J. Reilly, and S. Becker, "Capturing the forest but missing the trees: Microstates inadequate for characterizing shorter-scale eeg dynamics," Canadian Association for Neuroscience (CAN), 2019.
- [21] S.B.Shaw, J. Heisz, M. McKinnon, and S. Becker, "Dynamic switching between brain networks - a tri- network perspective," Organization of Human Brain Mapping (OHBM), 2020.
- [22] R. Ho, S.B.Shaw, G.Hall, C.DeMatteo, and N.Bock, "Hyperconnectivity of limbic and striatal networks in adolescents with concussion," Organization of Human Brain Mapping (OHBM), 2020.
- [23] S.B.Shaw, J. Heisz, M. McKinnon, and S. Becker, "Tracking the brain's intrinsic connectivity networks in eeg," Organization of Human Brain Mapping (OHBM), 2022.
- [24] R. Ho, S.B.Shaw, G.Hall, C.DeMatteo, and N.Bock, "The functional connectivity of the hippocampus in adolescents following concussion," Organization of Human Brain Mapping (OHBM), 2022.
- [25] R. Ho, S.B.Shaw, G.Hall, C.DeMatteo, and N.Bock, "Dynamic resting state connectivity of the default mode, salience and central executive networks in adolescents with concussion," International Society for Magnetic Resonance in Medicine (ISMRM), 2022.
- [26] B. Terpou, S.B.Shaw, J. Theberge, et al., "Eeg microstates in ptsd: Using machine learning to identify neuromarkers," 50 Years of Microstates, 2022.
- [27] B. Jenkins, S. Arbuckle, G. O'Leary, et al., "Development of a microcredential program in neurotechnology," Society for Neuroscience (SfN), 2022.
- [28] S.B.Shaw, P.Vickers, K.Ritchie, and R.Lanius, "Healing deep intergenerational wounds: Towards a culturally-integrative translational approach to collective recovery," Boston Trauma Conference, 2023.

REFERENCES