Departamento de Ciência de Computadores Algoritmos (CC4010)

FCUP 2019/20

duração: 2h30 (+30')

Teste (18.12.2019)

	`															3				`	
Cota	ção: (0.5+2	+2), 2, 3	, (2.5	5+1),	(1,1	.5.1	5+1,	,1,1)													
N.º			N	ome																	
1. F	Recorde o pi	roblema	unit	task	sche	dulir	ıø da	ıdo n	as ai	ulas	. on	de c	ada t	aref	a tem	ı dı	ırac	ão 1.			
a) E	explique o cruição " $N_k(A)$ e não super	ritério de $(1) \leq k, p$	inde	epen	dênc	ia (o	u co	mpat	ibili	dad	e) p	ara ı	ım sı	ubco	njun	to 2	$A d\epsilon$	e tare	efas,		
	Considere a i		_				_			te p	ara	exec	cução	o da i	tarefa	a i s	sem	pen	aliza	ıção e	p_i o
mon	tante a paga	r se exec	utar	a tar		ipos	esse	praz	0.												
			$\frac{i}{J}$	5	4	3	2	5	6	7 3	8	9	10	11	9						
			$\frac{a_i}{p_i}$	10	15	$\frac{4}{17}$	20	20	25	5	2	$\frac{2}{20}$	3 25	3	1						
o cal	caso de emp lendário par tarde poss Escreva o al	ra execuç ível, à n	ção d nedic	las 1 la qu	2 tai	refas alg o	, coi	n pe 10 as	naliz vai Ir	zaçã pro ndiq	o moces	ssanc a per	do, s naliza	em a ção	ultraj	pas	sar	12 s	lots	a tare	mpo
caso		e no me					Poo		_			_			_				_	caso	_

então $h(n) \in \Omega(35 + 10n + 10n)$	(n^2) , qualquer que seja	a tunçao $h: \mathbb{Z}^{\scriptscriptstyle \top} \to \mathbb{K}_0^{\scriptscriptstyle \top}$ ".	
	timação 2 e a justificaç	de aproximação dado nas aulas para o probleão de que garante essa aproximação. Explique	
		em que os custos das operações de inserção e de c , sendo $c>0$ um inteiro (fixo).	remoção
a) Apresente (em pseudoc recorrência em que se baseia		por programação dinâmica, começando por	indicar
		11	

c) Considere o algoritmo apresentado à direita, em que
POSMIN(C, m) retorna o índice da primeira ocorrência
do mínimo do <i>array C</i> , fazendo pesquisa linear.

- 1. Justifique que se trata de um algoritmo polinomial e que implementa uma estratégia *greedy* para atribuição das tarefas às máquinas.
- 2. Comente a veracidade das afirmações, supondo que $P\neq NP$: (i) "O algoritmo não obtém uma solução ótima para alguma instância de Load Balancing"; (ii) "Qualquer que seja a instância dada, sendo L o valor obtido pelo algoritmo e L^* o seu valor ótimo, tem-se $L \geq \alpha L^*$, para algum $\alpha > 1$."

```
LOADBALANCING(d, n, m, S, C)
1.
     L \leftarrow 0;
2.
     Para i \leftarrow 1 até m fazer
3.
           C[i] \leftarrow 0;
4.
     Para j \leftarrow 1 até n fazer
5.
           k \leftarrow \text{PosMin}(C, m);
           S[j] \leftarrow k;
6.
          C[k] \leftarrow C[k] + d[j];
7.
           Se C[k] > L então L \leftarrow C[k];
8.
     retorna L;
```

d) Justifique que qualquer que seja a instância dada se tem $L^\star \geq \max_j d_j$ e $L^\star \geq \frac{1}{m} \sum_j d_j$.

e) Seja L o valor retornado pelo algoritmo. Seja k' uma máquina que fica com carga L na solução (ou seja, L=C[k']). Seja j' a última tarefa atribuída à máquina k'. Tendo em conta a estratégia que o algoritmo implementa, justifique que $L-d_{j'} \leq C[i]$, para todas as máquinas i, considerando as cargas no momento em que processou j' no algoritmo e as cargas finais. Usando esse facto, conclua que, na linha 9, se tem $L-d_{j'} \leq \frac{1}{m} \sum_i C[i] = \frac{1}{m} \sum_i d_i \leq L^\star$, e que o algoritmo apresentado produz uma aproximação de fator 2, pelo que $Load\ Balancing\ pertence\ à\ classe\ APX$.