LaPIS Diagnostic Test Workbook - Mathematics

Name : Dhikanth R

Class: 7

Section : A

School : AKV Public School

Login ID : AKV104

Dhikanth R's Performance Report

Score: 16/40 Percentage: 40.0%

Dhikanth R's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Data handling

,	Topics to be Improved	
Chance of probability	Basis of probability	
Hi, here in this video you	will learn Basics of probability	
Question: 1		
Identify the sure events and im	possible events	
(i) The sun rises in the west.		
(ii) Water is colourless.		
(iii) Clock rotates in clock wis	e direction.	
(iv) Ball is square in shape.		
Answer:		
Events that cannot occur are callere, The sun rises in the west event.	alled (sure/ impossible) events. alled (sure/ impossible) events. is event. Water is colourless is ction is event. Ball is square in shape is	
$Question: 2 \cdots \cdots$		
Probability of sure events is	(greater / smaller) than probability of	impossible events.
$\underline{Answer:}$		
	= $(0/1/ any number).$ $=$ $(0/1/ any number).$ $=$ $=$ Probability of impossible event.	
Question: 3		
Raju has pencil, an eraser, a sc probability of getting a pen from	ale, sharpener, colour pencil and protractor in his m his box.	box. What is the
Answer:		
Things Raju have Does Raju have pen in his box, Then probability of getting pen	(Yes/ No).	

Geometry

Topics to be Improved		
Faces vertex and edges	Idenfication of faces, edges and vertices	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Types of triangle	Basics of types of triangle (sides)	
Transversal angle made by transversal	Basics of Transversal angle	
Right angle triangle and pythagoras property	Basics of Pythagoras property	

Hi, here in this video you will learn Basics of 3D model

Question: 4	
-------------	--

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

$\underline{Answer:}$

has two end point (line/line segment/ray).

A ______ is a point where two or more line segments meet(Vertex/ edges/ faces).

Mark the vertices in the diagram,

Question: 5

Mark and find the number of vertices, edges and faces in a cube.

Mark the vertex, edges and faces in a cube.

Count the number of vertex, edges and faces in a cube.
Cube have vertices, edges and faces.
Question: 6
How many vertices, edges and faces does dices have?

Answer: The shape of dice is ______. Dices have _____ vertices, _____ edges and ______ faces. Hi, here in this video you will learn Sum of the length of sides of the triangle Question: 7

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

Side AC = ____

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 8

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 9

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

.....

Answer:

1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____

	e of the tv	vo sides of a triangle is $_{-}$	than the	e third side of the
triangle. Therefore, the	e third sid	e should be	(less/ greater) than	sum of other two sides.
		two sides =		
Therefore, the	e length o	f the third side is greater	: than	
Therefore, length o	f the third	l side is greater than	but less th	nan
Hi, here in this	s video y	ou will learn Criter	ia of congruence	
Question: 10				
Circle the groups to	hat contai	n congruent images.		
(identical/non-iden Example: Square a	tical) in sl nd Rectar	aid to be congruent if the napes and size. Igle are	(congruent/not congrue	
		gle are equal to the correct (SSS/A		other triangle, then two
Answer:	delle dilde			
		(congruent/not congangles are SSS,		
		eria - $(2/3/5)$ side corresponding sides of the		(equal/
		teria - $\underline{\qquad}(2/3/5)$ sides orresponding sides and t		
		teria - $ (2/3/5) $ ang l to the corresponding an		
	SSS	sides and	angles are equal	
-	SAS	sides and		
	ASA	sides and	angles are equal	

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Types of triangle

Question: 13

Polygon with three sides is called as _____.

Answer:

A polygon is a simple _____ (open / closed) curve made up of only line segments. Polygon with three sides is called _____. Draw a diagram of polygon with three sides :

Question: 14

Identify the types of triangles.

Triangle has _____ sides.

- Triangle with all sides are equal is called _____ triangle.
- Triangle with two sides of equal length is called ______ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question: 15

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft, then the possible length of third side of park can be ______.

.....

.....

Answer:

The shape of the park is ______.

The shapes has ______ sides and this shape has _____ sides of equal length.

Given: length of sides of park is _____.

The possible length of third side is ______.

Hi, here in this video you will learn Basics of Transversal angle

Question: 16

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 17

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
\angle a and \angle g, \angle b and \angle h,	$\angle a$ and $\angle e$, $\angle b$ and $\angle f$,

......

Question: 18

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of ∠a is and its value is Corresponding angle of ∠a is and its value is	
what he value is	网络彩画
Hi, here in this video you will learn Pythagoras property	
Question: 19	
In a right angled triangle, square of the = sum of the legs.	squares of the
Answer:	
Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides (hypotenuse/ legs).	
Pythagoras theorem states that	·
Question: 20	
Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.	
Answer:	
m	
Pythagoras theorem states that square of the = sum of the squares of	of its
Given: Base =, Altitude =, Base and altitude are (hypotenuse/ legs) of the triangle.	
By Pythagoras theorem, $()^2 = ()^2 + ()^2$ = +	
Therefore, hypotenuse of the triangle is	
Question: 21	
Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.	
Answer:	

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = ______, length of diagonal = _____

Therefore, diagonal of the rectangle is _____

Number system

Topics to be Improved		
Positive and negative rational numbers	Identification of positive rational numbers	
Integers	Basics of integers	
Decimals	Multiplication and division of decimals	
Properties of integers	Associative property	
Exponents	Solving exponents	
Fractions	Multiplication of fractions, Division of fraction	
Operations on rational numbers	Division of rational numbers, Subtraction of rational numbers	

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 22

Segregate positive and negative rational number.

- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are	_ and negative rational numbers are
Question: 23	
$\frac{-3}{-4}$ is a (positive /negative / neither positive no	
Answer:	
-3 is a number, -4 is a number	er.
-3 is a number, -4 is a number Division of $\frac{-3}{-4} = \boxed{}$ and this rational number.	ımber.
(Positive / Negative / Neither positive nor negative	rational number)
Question: 24	
The product of a positive rational number and a negative rational number. (Positive/ Negative/ neither positive nor negative negative/ neither positive negative/	
Answer:	
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = rational number	× = and this is
Hi, here in this video you will learn Basics of integorial Question: 25	
Highlight the ring that contains whole numbers.	
This might the ring that contains whole numbers.	
0 1, 2, 3,	
$\underline{Answer:}$	
The numbers inside the inner ring $(1, 2, 3,)$ are number The numbers inside the middle ring are number The numbers inside the outer ring are negative numbers, positicalled as	ers.
Question: 26	

Colour the frame of the box which contains the number 1, 4 and -10 Whole Negative Naturals Integers numbers numbers numbers Answer: Whole number consists of 0,1,2,3,4,... Negative number consists of ______. Natural numbers consists of ______. Integers consists of _____. Now, 1, 4, -10 are in ______. Question: 27 State whether the statement is true or false. Every positive number is an integer. Answer: Positive numbers are ______. Integers consists of ______ Therefore, positive numbers are _____ (in/not in) integers. Hi, here in this video you will learn Basics of decimals Question: 28 Shade 0.4 part of the given shape. Answer: There are _____ boxes. 0.4 can be expressed as _____ in fraction This fraction represents _____ parts out of ____equal parts. So, we need to shade ______boxes out of ____boxes. Question: 29 Solve the following. (i) 0.4×1.2 (ii) 0.48×1.2

1	(i)	0.4	Y	1 2	,
١	(I)	0.4		1.4	

Multiplication of 0.4×1.2 assuming there is no decimal point is _____. The number of digits after decimal point in 0.4 is _____ and 1.2 is _____. Total digits after decimal point in the product of two numbers is _____. Count that digits from the right towards left and place the decimal point, the result is

(ii) 0.48×1.2 :

Multiplication of 0.48×1.2 assuming there is no decimal point is _____. The number of digits after decimal point in 0.48 is _____ and 1.2 is _____. Total digits after decimal point in the product of two numbers is _____. Count that digits from the right towards left and place the decimal point, the result is _____.

.....

Question: 30

One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?

Answer:

One box contains _____ chocolates. The cost of one box is _____ Then cost of one chocolate = $_{----}$ ÷ ____ = ___

- (i) Total digits after decimal point in decimal number = _____
- (ii) Divide the two numbers assuming there is no decimal point.

$$\frac{2010}{15} =$$

......

(iii) Place the decimal point after _____ digits counting from the right in the quotient after division.

Then the cost of one chocolate is _____ . The cost of 15 chocolates = cost of one chocolate \times ____ = ___ x ___ = ____

Hi, here in this video you will learn **Properties of integers**

Question: 31

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
c	15 + 17 = 32
d	1 + 99 = 99 + 1

(i)	Closure property : The sum of integers is always Therefore, + = From the given option		
(ii)	Associative property:	ts) (does not/ does) chan	ge the sum.
(iii)	Commutative property:	(does not/ does) change the sum.	
(iv)	Identity property : The sum of Therefore, a + = a From the given option	and any number always returns same r _ satisfies the Identity property.	number.
		property holds true for any two integers.	
vicerii.	Addition Subtract	D	
Ansi	<u>wer:</u>		
For a Γhe o	mmutative property, changing the (does not/ does) change the ny two integers, commutative property for addition is _commutative property for multiplication	y holds true for	ands
Que	stion: 33		
Are a	dditive identity and multiplicative ide	ntity the same? (Yes or No)	
Ansi	<u>ver:</u>		
Γhe l		and additive identity is and multiplicative identit	
Γhere	efore, additive identity is (equ	ual / not equal) to multiplicative identity.	
Hi,	here in this video you will learn	Exponents and power	
Que	stion: 34		

Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself
to get the desired result.
Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ ×
10 is raised to the power of $\underline{\hspace{1cm}} = (10)^{\underline{\hspace{1cm}}}$
Question: 35
Find the value of $(-2)^3$.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself
to get the desired result.
In this are a soldier (2)3 have
In this exponential form $(-2)^3$, base =, power = $(-2)^3 = \underline{\qquad} \times \underline{\qquad} \times \underline{\qquad} = \underline{\qquad}$.
(2) —
Question: 36
(i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
(ii) k is raised to the power of 5 is $\underline{\hspace{1cm}}$ $((k)^5 \text{ or } (5)^k)$.
(ii) κ is raised to the power of δ is $\underline{\hspace{1cm}}$ ((κ) of (δ)).
Answer:
Exponential form = $(Base)$ —
Exponential form $= (Buse)$
(i) Tenth power of 100: Base =, Power/Exponents =, exponential form =
(ii) k is raised to the power of 5 : Base =, Power/Exponent =,
exponential form $=$
日本の
Hi, here in this video you will learn Multiplication on fractions
O II ON
<i>Question:</i> 37
Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as ____ in fraction.

4 can be written as _____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 38

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

.....

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls = \times = = =

$Question:\ 39$

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}})+\text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{\qquad} \times \frac{2}{3} = \boxed{\qquad}$$

Hi, here in this video you will learn **Operation on rational numbers**

Question: 40

Fill in the boxes to make the given expression correct.

.....

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

When any fraction is divided by a fraction, we multiply the dividend by the ______(same/reciprocal) of the divisor.

Here, dividend = and divisor = =

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\boxed{}} \times \boxed{\boxed{}} = \boxed{\boxed{}}$$

Question: 41

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of 0.6 =______,

when any fraction is divided by a fraction, we multiply the dividend by the $___$ (same/reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{18}{7} \div \boxed{ } = \frac{18}{7} \times \boxed{ } = \boxed{ }$$

Question: 42

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \square$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side,	the result is
-------------------------------	---------------

Hi, here in this video you will learn **Operation on rational numbers**

Question: 43

Solve:
$$\frac{-3}{3} + \frac{1}{3}$$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{}{} =$$

Question: 44

Find the addition of shaded part of box A and shaded part of box B.

.....

......

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$.

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$ = $___$

Question: 45

Find the missing values in the given figure.

$$= \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}$$

......

One litre = $_$ ml $\frac{7}{10}$ of one liter $=\frac{7}{10}$ x ___ ml = __ ml

Given: $1 = \frac{7}{10} +$ ____ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} =$ _____

Therefore, result is $_$

Hi, here in this video you will learn Division on fractions

Question: 46

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

.....

.....

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is _____ , 2 is _____ and 7 is _____

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{Denominator}$

$$5\frac{2}{7} = \frac{(---\times ---) + -----}{7} = \frac{\Box}{\Box}$$

Question: 47

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by _____ (same / reciprocal) of the divisor. Here, dividend = _____ and divisor = ____.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

Question: 48

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{\underline{}} = \underline{\underline{}}$$

Then the answer is _____

Comparing Quantities

Topics to be Improved				
Conversion of fraction into percentage Conversion of fraction into percentage				
Percentage	Basic of percentage			
Simple interest	Calculation of simple interest			

Hi,	here	in	this	video	you	will	learn	${\bf Converting}$	${\bf fraction}$	into
per	cent	age	е							

Question:	49
Question.	40

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____.

Therefore, 5% can be expressed as _____

......

Question: 50

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %. Therefore, correct conversion form is _____

Question: 51

Find the percentage of shaded part of square.

A	nsı	1101	r

The square shape is divided into ______ parts.

Number of shaded part of square is _____.

Shaded part of square in fraction is _____.

To Convert	into percentage,	x 100

Hi, here in this video you will learn Basics of percentage

Question: 52

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

Question: 53

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for ______ marks. He got _____ marks. 75 % can be written in fraction form _____

Then the	mar	k scored by Arun =	Total mark	×	75% = ×	. =
Question	n: 5	<u>4</u>				
There are apples.	25 ε	apples in a basket in	which 10 of t	them	are rotten. Find the percent	age of rotten
Answer:						
		apples in a bask ten apples are				
Fraction	form	n of rotten apples in	a basket $=$ $\frac{1}{1}$		-	
Convert i	t int	o a percent=	x	_% =	:	awa
Hi, her	e in	this video you w	ill learn Si	mp]	le Interest	
Question	n: 5	5				
Match the		_				
Γ		Column A			Column B	
	i	Principle(P)			Interest calculated based or	this
	ii	Amount (A)		b	Total sum you borrow	
	iii	Rate (R)		c	Number of years	
	iv	Time period (T)		d	Total sum with interest	
L		1 (/				
Answer:						
Interest ca Total sum	alcul 1 you	alculating simple interated based on borrow is known as ars is	· · · · · · · · · · · · · · · · · · ·		interest is	
Question	n: 5	<i>6</i>				
-		_			, she received Rs.1320. Find	
Answer:						
Given:	-					
	=	, Princ	iple =		, Time period =	·
					alculating interest is	

Principal x _____

Rate of interest = ____

Therefore, the rate of interest is _____ %

Algebra

Topics to be Improved				
subtraction of algebraic expressions	subtraction of algebraic expressions			
Addition and subtraction of algebraic expressions	Like terms and Unlike terms			
Basics of simple equation	Formating of simple equation, Solving of simple equation			
Terms of an expression	Identification of terms in an expression			

Hi,	here in	this	video	you	will	learn	Subtraction	on	expression
,		01110	. 20200	.,					01-P- 022101

Question: 58
Find the sum of two expressions $a + b + c$ and $b + c + d$
Answer:
The given two expressions are and The two terms will get added only if they are (Like/ Unlike) terms. The sum of two expressions = + The answer is

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (ii) Total number of students in school B is $___$
- (iii) How many more teachers are there in school B than school A? _____

Answer:

Question: 59

(i) Number of boys in school A = _____,

Number of boys in school B = _____.

Total number of boys in school A and school B is _____ + ___ = ____

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$,

Number of girls in school B = _____

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$.

Question: 60

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Hi, here in this video you will learn **Addition on expression**

Question: 61

Shade the like terms.

Answer:

Given terms are ______.

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 62

Complete the expression $7r^2 + r \square - 2 \square = \underline{r^2}$

(Like	/ Unlike) terms	can	be a	dded	or	subtracte	d.
,			,						

$$_{7r^2+ r} \square_{-2} \square = (_{7} + \underline{ } - 2)_{r^2} = \underline{ }$$

Question: 63

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

- (i) Total chocolates Ram and Sam have: ____
- (ii) How many icecreams Sam have more than Ram: ______.

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have:

Ram's chocolate + Sam's chocolates = $___$ + $___$ = $_$

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = _

Hi, here in this video you will learn Solving an equation using application

Question: 64

......

Box B contains _____ times the number of chocolates in Box A

Answer:

Box A contains _____ chocolates. Box B contains ____ chocolates.

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$

Question: 65

Write the equation for the following statement. Subtracting four times of m from 4 is n

Answer:

Four times of $m = \underline{\hspace{1cm}}$ Subtracting four times of m from $4 = \underline{\hspace{1cm}}$ The equation is _____ Question: 66 Compare the given two statements (<,>,=)Sum of 2a and 9 | Add 9 to the product of a and 2Answer: Sum of 2a and $9 = \underline{\hspace{1cm}}$ Product of a and $2 = \underline{\hspace{1cm}}$ Add 9 to the product of a and 2 =Therefore, sum of 2a and 9 Add 9 to the product of a and 2Hi, here in this video you will learn **Solving an equation** Question: 67 If ©=5, then 5 © +5 =Answer: The value of the given smiley © is _____ Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$. Question: 68 Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, $\boxed{+3 = -4}$ Answer: The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle, 7× ____+3= ____ $7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$ $7 \times$ ____+3 = ____ $7 \times$ ____+3 = ____ $7 \times __+3 = __$

Therefore,	is the number that o	can be placed	l in a box to mak	e the equation con	rrect.
Question: 69					
	in the descending ord $x+3$ $2x-4$		e value of x is 2.		
$\underline{Answer:}$					
The given expression The value of x is _ substituting value of					
2:	x = 2× =		$2x - 4 = 2 \times \bot$	4 =	

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____.

Hi, here in this video you will learn Terms of an expression

Question: 70 Separate the variables and constants for all the terms given in the box

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

$\underline{Question: 71}$

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

The terms in the expression 3x + 5 is/are _____

The terms in the expression 12a is/are _____.

The terms in the expression 4xy is/are _____.

The terms in the expression 12a + b + 1 is/are _____.

The terms in the expression 7m + 0 is/are _____.

Question: 72

Shade the outline of circle that contains the term of the given expression.

$$6m^2 - 7mn + nl$$

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

Here, _____, are the terms of the given expression.