Московский физико-технический институт

Лабораторная работа 2.3.1 ПОЛУЧЕНИЕ И ИЗМЕРЕНИЕ ВАКУУМА

Отчёт студента группы Б02-303 Долговой Екатерины

Лабораторная работа 2.3.1

Получение и измерение вакуума

Цель работы: 1) измерение объемов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

Теоретические сведения

Предельное остаточное давление (предельный вакуум) $P_{\rm np}$ [$L^{-1}MT^{-2}$] — наименьшее давление газа, которое формируется в процессе откачки в рассматриваемом сечении вакуумпровода (рассматриваемой точке вакуумной системы). Обычно выделяют предельное давление в камере или на входе в насос.

Наибольшее выпускное давление $[L^{-1}MT^{-2}]$ — максимально допустимое давление газа на входе насоса.

Быстрота откачивающего действия (скорость откачки) вакуумной системы $S[L^3T^{-1}]$ — объем газа, проходящий через рассматриваемое сечение вакуумпровода в единицу времени при текущем давлении в данном сечении:

$$S = \frac{dV}{dt}. (1)$$

Пусть откачивается объем V_0 , а в насос поступает объем $V_{\rm H}$. Тогда быстродействие насоса определяется соотношением $S_{\rm H}=\frac{dV_{\rm H}}{dt}$, а эффективная скорость откачки камеры $S_0=\frac{dV_0}{dt}$.

Падение давления вдоль вакуумпровода $\Delta P = P_1 - P_2$ определяется его **пропускной** способностью (проводимостью) $U[L^3T^{-1}]$:

$$U = \frac{Q}{\Delta P},\tag{2}$$

где $Q[L^2MT^{-3}]$ — поток газа через вакуумпровод с соответствующими давлениями на концах, P_1 — давление откачиваемого объема V_0 , P_2 — давление закачиваемого в насос объема $V_{\rm H}$.

Величина $Z\left[L^{-3}T\right]$, обратная проводимости, называется **импедансом вакуумпрово-** да:

$$Z = \frac{1}{U}. (3)$$

Для стационарного режима можно записать условие непрерывности потока откачиваемого газа:

$$P_1 V_0 = P_2 V_{\rm H} = Q. (4)$$

Из уравнений (1)-(4) получим основное уравнение вакуумной техники, связывающее основные параметры вакуумной системы:

$$\frac{1}{S_0} = \frac{1}{S_H} + \frac{1}{U}. (5)$$

Количественной характеристикой течи, является **натекание** $Q_{\rm H}$ [L^2MT^{-3}], измеряемое при отключенных средствах откачки:

$$Q_{\rm H} = V \frac{P_{\rm K} - P_{\rm H}}{\Delta t} \tag{6}$$

где V — замкнутый исследуемый объем; $P_{\rm H}, P_{\rm K}$ — начальное и конечное давление в объеме соответственно; Δt — время между измерениями давления.

Для заданного давления P_1 в замкнутом исследуемом объеме допустимым считается натекание:

$$Q_{\rm H} \ll Q = P_1 S_0 = P_1 \frac{S_{\rm H} U}{S_{\rm H} + U}.$$
 (7)

На пропускную способность вакуумпровода существенно влияет режим течения газа, который характеризуется числом Кнудсена, равным отношению длины свободного пробега молекул в газе к характерному линейному размеру течения:

$$Kn = \frac{\lambda}{d}.\tag{8}$$

Данная величина характеризует степень разреженности газового потока:

- В **гидродинамическом (вязкостном) режиме** течения $(Kn \ll 1)$ различают ламинарные и турбулентные потоки.
- В молекулярном (кнудсеновском) режиме $(Kn \gg 1)$ течение газа сводится к независимому движению отдельных молекул по прямым линиям в периоды между соударениями главным образом со стенками вакуумпровода.
- В переходном режиме $(Kn \sim 1)$ в системе могут существовать все описанные выше виды течения.

Проводимость отверстия в стенке В кнудсеновском режиме проводимость отверстия радиусом R определяется средним числом молекул, сталкивающихся со стенкой:

$$\nu = \nu_2 - \nu_1 = \frac{1}{4} n_2 \bar{v} - \frac{1}{4} n_1 \bar{v} = \frac{1}{4} \frac{P_2}{kT} \bar{v} - \frac{1}{4} \frac{P_1}{kT} \bar{v} = \frac{1}{4} \frac{\bar{v}}{kT} (P_2 - P_1)$$

$$\nu = \frac{1}{A} \left(\frac{dN_2}{dt} - \frac{dN_1}{dt} \right) = \frac{1}{A} \left(\frac{d(n_2 V)}{dt} - \frac{d(n_1 V)}{dt} \right) =$$

$$(2a - v_1) dV_2 = 1 \cdot (P_1 - P_2) dV_3 = 1$$

$$(3b - v_1) dV_4 = 1 \cdot (P_1 - P_2) dV_3 = 1$$

$$= \frac{(n_2 - n_1)}{A} \frac{dV}{dt} = \frac{1}{A} \left(\frac{P_2}{kT} - \frac{P_1}{kT} \right) \frac{dV}{dt} = \frac{1}{AkT} (P_2 - P_1) U_{\text{otb}}, \tag{10}$$

где ν — число молекул пролетающих через единицу площади отверстия за единицу времени, A — площадь отверстия, n — концентрация молекул, \bar{v} — их средняя скорость, T — температура газа, k — постоянная Больцмана, индексы 2, 1 относятся к потокам молекул по разные стороны отверстия.

Из уравнений (9) и (10) получим выражение для проводимости отверстия:

$$U_{\text{\tiny OTB}} = \frac{1}{4} A \bar{v} = \frac{1}{4} \pi R^2 \sqrt{\frac{8kT}{\pi m}} \sim R^2 \sqrt{\frac{T}{m}},$$
 (11)

где R — радиус отвертия, m — масса молекулы газа.

Проводимость длинного трубопровода Проводимость длинного трубопровода ($L \gg R$) в гидродинамическом режиме определяется вязкостными характеристиками газа и может быть получена из формулы Пуазейля:

$$U_{\rm TP} = \frac{Q}{P_2 - P_1} = P \frac{\pi R^4}{8\eta L} \sim \frac{R^4}{L} \frac{P}{\sqrt{Tm}},\tag{12}$$

где P — давление в рассматриваемом сечении трубы (можно рассматривать как среднее по длине вакуумпровода давление $P = (P_1 + P_2)/2$), η — вязкость газа, L — длина трубопровода, R — его радиус.

В молекулярном режиме проводимость определяется взаимодействием молекул газа со стенками и может быть получена из формулы Кнудсена:

$$U_{\rm TP} = \frac{Q}{P_2 - P_1} = \frac{4}{3} \frac{R^3}{L} \sqrt{\frac{2\pi kT}{m}} \sim \frac{R^3}{L} \sqrt{\frac{T}{m}}.$$
 (13)

В случае последовательного соединения разных вакуумпроводов, что обычно бывает в реальных установках, их импедансы суммируются, а суммарная проводимость равна:

$$U_{\Sigma} = \frac{1}{Z_{\Sigma}} = \frac{1}{\sum_{i} Z_{i}},\tag{14}$$

где Z_i — импеданс i-го участка вакуумпровода, Z_Σ — суммарный импеданс вакуумпровода. Формулы (5), (11)-(14) показывают, что для эффективной откачки вакуумной камеры насосом с заданной скоростью откачки нужно выбирать вакуумпроводы как можно шире и как можно короче. В этом случае $U_\Sigma\gg S_{\rm H}$ и из (5) получим:

$$S_0 = \frac{S_{\text{H}} U_{\Sigma}}{S_{\text{H}} + U_{\Sigma}} = \frac{S_{\text{H}}}{\frac{S_{\text{H}}}{U_{\Sigma}} + 1} \approx S_{\text{H}}.$$
 (15)

С другой стороны выбирать насос с производительностью $U_{\Sigma} \ll S_{\rm H}$ не целесообразно, поскольку в этом случае скорость откачки будет определяться, в основном, проводимостью вакуумпровода:

$$S_0 = \frac{S_{\scriptscriptstyle H} U_{\scriptscriptstyle \Sigma}}{S_{\scriptscriptstyle H} + U_{\scriptscriptstyle \Sigma}} = \frac{U_{\scriptscriptstyle \Sigma}}{\frac{U_{\scriptscriptstyle \Sigma}}{S} + 1} \approx U_{\scriptscriptstyle \Sigma}. \tag{16}$$

Выполнение условия $U_{\Sigma} \gg S_{\rm H}$ особенно существенно в случае высоковакуумной откачки, или кнудсеновском режиме течения.

Время откачки Положим, что за промежуток времени dt давление в откачиваемом объёме V_0 снижается на dP_1 (рис. 2). Тогда за промежуток времени dt количество газа поступающего в трубку равно S_0P_1dt , а эта же убыль газа в объеме равна V_0dP_1 , следовательно:

$$S_0 P_1 dt = -V_0 dP_1. (17)$$

Перепишем уравнение (17) в виде:

$$dt = -\frac{V_0}{S_0} \frac{dP_1}{P_1}. (18)$$

С учетом уравнения (5) для изменения давления со временем получим:

$$dt = -V_0 \left(\frac{1}{S_{\rm H}} + \frac{1}{U}\right) \frac{dP_1}{P_1}.$$
 (19)

В случае $S_0 = const$, решение уравнения (17) существенно упрощается и зависимость давления от времени откачки:

$$P(t) = P_1 \exp\left(-\frac{S_0}{V_0}t\right). \tag{20}$$

Постоянная времени откачки $au = V_0/S_0$ является мерой эффективности откачной системы.

Экспериментальная установка

Установка изготовлена из стекла и состоит из форвакуумного баллона (ФБ), высоковакуумного диффузионного насоса (ВН), высоковакуумного баллона (ВБ), масляного (М) и ионизационного (И) манометров, термопарных манометров (М1 и М2), форвакуумного насоса (ФН) и соединительных кранов К1, К2, ..., К6 (рис. 1). Кроме того, в состав установки входят: вариатор (автотрансорматор с регулируемым выходным напряжением), или реостат, и амперметр для регулирования тока нагревателя диффузионного насоса. Все краны вакуумной установки стеклянные.

Рис. 1: Схема экспериментальной установки

О вакуумных установках

По степени разрежения вакуумные установки принято делить на три класса: 1) низковакуумные до $10^{-2}-10^{-3}$ торр; 2) высоковакуумные $10^{-4}-10^{-7}$ торр; 3) установки сверхвысокого вакуума $10^{-8}-10^{-11}$ торр. С физической точки зрения низкий вакуум переходит в высокий, когда длина свободного пробега молекул газа оказывается сравнима

с размерами установки (а течение газа становится сугубо молекулярным); сверхвысокий вакуум характерен крайней важностью процессов адсорбции и десорбции частиц на поверхности вакуумной камеры.

В данной работе изучаются традиционные методы откачки механическим форвакуумным насосом до давления 10^{-2} торр и диффузионным масляным насосом до давления 10^{-5} торр, а также методы измерения вакуума в этом диапазоне.

Ход работы

Определение объема форвакуумной и высоковакуумной частей установки

- 1. Проверим, что кран K4 открыт. Откроем все краны, кроме K1 и K2.
- 2. Впустим в установку атмосферный воздух через краны К1 и К2.
- 3. Закроем краны K5 и K6, в этих кранах и соединяющем их капилляре запирается 50 см³ воздуха при атмосферном давлении.
- 4. При закрытых кранах K1 и K2,
откачаем форвакуумный насос и установку до давления $1, 5 \cdot 10^{-2}$ торр.
- 5. Выключим форвакуумный насос.
- 6. Отделим высоковакуумную часть установки от форвакуумной.
- 7. Закрыв кран К4, приведем в готовность масляный манометр.
- 8. Откроем кран K5. Измерим давление выпущенного из капилляра и кранов K5 и K6 воздуха в форвакуумный насос масляным манометром.
- 9. Зная ускорение свободного падения, объем запертого воздуха (см. п. 3), давление в комнате $P_{out}=995,3$ гПа и плотность масла $\rho=0,885$ г/см³ (указана на установке), найдем давление в форвакуумной части, откуда легко найдем объем форвакуумной части $V_{\rm db}$ по закону Бойля-Мариотта.

h_1 , cm	h_2 , cm	Δh , cm	$V_{\Phi^{\mathrm{B}}}, \mathrm{cm}^3$
11,6	38,8	27,2	2108,1

Таблица 1: Определение объема форвакуумной установки

$$\varepsilon_{V_{\Phi B}} = \sqrt{(\varepsilon_{\Delta h})^2 + (P_{out})^2} = 0,011$$

$$\sigma_{V_{\Phi B}} = V_{\Phi B} \varepsilon_{V_{\Phi B}} \approx 20 \text{ см}^3$$

Окончательный результат:

$$V_{\Phi^{\mathrm{B}}} = (2110 \pm 20) \text{ cm}^3$$

10. Откроем кран K3, чтобы газ, занимавший до сих пор только форвакуумную часть установки, заполнил и ее высоковакуумную часть. Вновь измерим показания манометра. Аналогично п. 9 рассчитаем полный объем установки и объем высоковакуумной ее части $V_{\text{вв}}$.

h_1 , cm	h_2 , cm	Δh , cm	$V_{\Phi^{\mathrm{B}+\mathrm{BB}}}, \mathrm{cm}^3$	$V_{\text{bb}}, \text{cm}^3$
16,6	34,1	17,5	3276,6	1168,5

Таблица 2: Определение объема высоковакуумной установки

$$arepsilon_{V_{\Phi {
m B}+{
m BB}}} = \sqrt{(arepsilon_{\Delta h})^2 + (P_{out})^2} = 0,016$$

$$\sigma_{V_{\Phi {
m B}+{
m BB}}} = V_{\Phi {
m B}+{
m BB}} arepsilon_{V_{\Phi {
m B}+{
m BB}}} = 50 \ {
m cm}^3$$

$$\sigma_{V_{
m BB}} = \sqrt{(\sigma_{V_{\Phi {
m B}+{
m BB}}})^2 + (\sigma_{V_{\Phi {
m B}}})^2} = 50 \ {
m cm}^3$$

Окончательный результат:

$$V_{\text{\tiny BB}} = (1170 \pm 50) \text{ cm}^3$$

- 11. Откроем кран К4.
- 12. Измерения по пп. 11-10 повторим еще раз.

Получение высокого вакуума и измерение скорости откачки

- 13. Откачаем установку форвакуумным насосом. Убедимся в том, что краны в установке повернуты так, что в ней не осталось запертых объемов.
- 14. Термопарные вакуумметры будем держать включенными до конца работы. Установим токи в лампах по их паспортам (114,4 мА для М1 и 117,1 мА для М2). С помощью термовакууметров определим давление в системе.
- 15. После того, как давление упадет ниже $3\cdot 10^{-2}$ торр, закроем кран K6 и начнем высоковакуумную откачку.
- 16. Включим ионизационный манометр (относительная его погрешность -35%).
- 17. Измерим предельное давление в системе $P_{\rm np} = 8,9 \cdot 10^{-5}$ торр.
- 18. Найдем скорость откачки по улучшению вакуума во время откачки. Будем использовать высоковакуумный насос. Измерения по улучшению вакуума будем проводить дважды.

С помощью графика $\ln(P-P_{\rm np})(t)$ расчитаем скорость откачки W системы. Используемая формула:

$$P - P_{\text{np}} = (P_0 - P_{\text{np}}) \cdot \exp\left(-\frac{W}{V_{\text{\tiny BB}}}t\right)$$

• Для первого опыта:

$$k = -0, 195 \text{ c}^{-1}$$

$$\varepsilon_W^{\text{MHK}} = \varepsilon_k = 0, 01$$

$$\varepsilon_W^{\text{KOCB}} = \sqrt{(\varepsilon_{V_{\text{BB}}})^2 + (\varepsilon_t)^2 + (\varepsilon_{\ln(P-P_{\text{IIP}})})^2} =$$

$$= \sqrt{(\varepsilon_{V_{\text{BB}}})^2 + (\varepsilon_t)^2 + \left(\frac{2\sigma_P}{\overline{(P-P_{\text{IIP}})}\ln\overline{(P-P_{\text{IIP}})}}\right)^2} = 0, 17$$

$$\varepsilon_W = \sqrt{(\varepsilon_W^{\text{MHK}})^2 + (\varepsilon_W^{\text{KOCB}})^2} = 0, 17$$

$$W = -kV_{\text{BB}} = 227, 3 \text{ cm}^3/\text{c}$$

$$\sigma_W = \varepsilon_W W \approx 40 \text{ cm}^3/\text{c}$$

Окончательный результат:

$$W_1 = (230 \pm 40) \text{ cm}^3/\text{c}$$

• Для второго опыта:

$$k = -0,178 \text{ c}^{-1}$$

$$\varepsilon_W^{\text{MHK}} = \varepsilon_k = 0,03$$

$$\varepsilon_W^{\text{ROCB}} = \sqrt{(\varepsilon_{V_{\text{BB}}})^2 + (\varepsilon_t)^2 + (\varepsilon_{\ln(P-P_{\text{IIP}})})^2} =$$

$$= \sqrt{(\varepsilon_{V_{\text{BB}}})^2 + (\varepsilon_t)^2 + \left(\frac{2\sigma_P}{\overline{(P-P_{\text{IIP}})}\ln\overline{(P-P_{\text{IIP}})}}\right)^2} = 0,18$$

$$\varepsilon_W = \sqrt{(\varepsilon_W^{\text{MHK}})^2 + (\varepsilon_W^{\text{ROCB}})^2} = 0,18$$

$$W = -kV_{\text{BB}} = 208,1 \text{ cm}^3/\text{c}$$

$$\sigma_W = \varepsilon_W W \approx 40 \text{ cm}^3/\text{c}$$

Окончательный результат:

$$W_2 = (210 \pm 40) \text{ cm}^3/\text{c}$$

Найдем среднее значение:

$$W = (220 \pm 30) \text{ cm}^3/\text{c}$$

19. Оценим величину потока $Q_{\rm H}$, используя значение W, найденное в п. 18, и учтя, что уравнение

$$-VdP = (PW - Q_{\scriptscriptstyle \rm H} - Q_{\scriptscriptstyle \rm H} - Q_{\scriptscriptstyle \rm H})$$

(для Q индексы значат обратное поступление, десорбцию и течь воздуха) для этого случая принимает вид $V_{\rm BB}dP=(Q_{\rm H}+Q_{\rm H})dt$.

Для предельного давления $\frac{dP}{dt}=0 \Rightarrow P_{\mathrm{np}}W=Q_{\mathrm{H}}+Q_{\mathrm{J}}+Q_{\mathrm{H}}$.

Построим графики зависимости P(t) для двух опытов при ухудшении вакуума. Тогда оценим $Q_{\rm H}$ по следующей формуле:

$$Q_{\rm H} = P_{\rm IID}W - kV_{\rm BB},$$

где k — угловой коэффициент наклона P(t)

• Для первого опыта:

$$k = 1,41 \cdot 10^{-5} \text{ Topp/c}$$

$$\varepsilon_{Q_{\rm H}}^{\rm MHK} = \varepsilon_k = 0,003$$

$$\varepsilon_{Q_{\rm H}}^{\rm Kocb} = \sqrt{(\varepsilon_{P_{\rm fip}})^2 + (\varepsilon_W)^2 + (\varepsilon_{V_{\rm BB}})^2 + (\varepsilon_P)^2 + (\varepsilon_t)^2} = 0,5$$

$$\varepsilon_{Q_{\rm H}} \approx \varepsilon_{Q_{\rm H}}^{\rm Kocb} = 0,5$$

$$Q_{\rm H} = 3,7 \cdot 10^{-3} \, \frac{\rm cm^3 \cdot Topp}{\rm c}$$

$$\sigma_{Q_{\rm H}} = \varepsilon_{Q_{\rm H}} Q_{\rm H} = 1,9 \cdot 10^{-3} \, \frac{\rm cm^3 \cdot Topp}{\rm c}$$

Окончательный результат:

$$Q_{\text{H}_1} = (3, 7 \pm 1, 9) \cdot 10^{-3} \frac{\text{cm}^3 \cdot \text{Topp}}{\text{c}}$$

• Для второго опыта:

$$k = 1,41 \cdot 10^{-5} \text{ Topp/c}$$

$$\varepsilon_{Q_{\rm H}}^{\rm MHK} = \varepsilon_k = 0,003$$

$$\varepsilon_{Q_{\rm H}}^{\rm kocb} = \sqrt{(\varepsilon_{P_{\rm Hp}})^2 + (\varepsilon_W)^2 + (\varepsilon_{V_{\rm BB}})^2 + (\varepsilon_P)^2 + (\varepsilon_t)^2} = 0,5$$

$$\varepsilon_{Q_{\rm H}} \approx \varepsilon_{Q_{\rm H}}^{\rm kocb} = 0,5$$

$$Q_{\rm H} = 2,2 \cdot 10^{-3} \, \frac{\rm cm^3 \cdot Topp}{\rm c}$$

$$\sigma_{Q_{\rm H}} = \varepsilon_{Q_{\rm H}} Q_{\rm H} = 1,1 \cdot 10^{-3} \, \frac{\rm cm^3 \cdot Topp}{\rm c}$$

Окончательный результат:

$$Q_{\text{H}_2} = (2, 2 \pm 1, 1) \cdot 10^{-3} \frac{\text{cm}^3 \cdot \text{Topp}}{\text{c}}$$

Видим, что значения не так далеки друг от друга. Найдем среднее:

$$Q_{\text{H}} = (2, 6 \pm 0, 8) \cdot 10^{-3} \frac{\text{cm}^3 \cdot \text{Topp}}{c}$$

20. Проведем повторные измерения по пунктам 18 и 19. Оценим пропускную способность

трубки от высоковакуумного баллона до насоса $U_{\rm rp}$ по формуле (13) и сравним ее с измеренной скоростью откачки W:

Температура в комнате $T=(25,8\pm0,1)^{\circ}\mathrm{C}=(298,8\pm0,1)$ K, диаметр трубы $d\sim1$ см, длина трубы $L\sim1$ м.

$$U_{\rm Tp} \sim \frac{d^3}{L} \sqrt{\frac{RT}{\mu}} \sim 10^2~{\rm cm}^3/{\rm c}$$

Видим, что по порядку величины $U_{\rm rp}$ и W сходятся, поэтому результаты будем считать достоверными.

- 21. Откроем кран K6 и введем таким образом в прибор искусственную течь. Измерим установившееся давление $P_{\text{уст}}=1,4\cdot 10^{-4}$ торр и давление со стороны форвакуумной части капилляра $P_{\text{фв}}=2,6\cdot 10^{-2}$ торр.
- 22. Рассчитаем производительность насоса по различию $P_{\text{уст}}$ и $P_{\text{пр}}$. Для этого найдем количество газа, протекающего через капилляр, по приведенной ниже формуле:

$$\frac{d(PV)}{dt} = \frac{1}{6}d^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_{\text{ycr}} - P_{\text{фB}}}{L}$$

Параметры капилляра:

$$d = (0, 8 \pm 0, 1)$$
 мм $L = (10, 8 \pm 0, 1)$ см

Запишем формулы для случаев, когда капилляр перекрыт и когда он открыт:

$$P_{\text{np}}W = Q_1, \quad P_{\text{ycr}}W = Q_1 + \frac{d(PV)}{dt}$$

Тогда найдем W как

$$W = \frac{1}{6} \frac{d^3}{L} \sqrt{\frac{2\pi RT}{\mu}} \frac{P_{\Phi B} - P_{ycr}}{P_{ycr} - P_{np}} = 294 \text{ cm}^3/\text{c}$$

$$\varepsilon_W = \sqrt{(3\varepsilon_d)^2 + (\varepsilon_L)^2 + (0, 5\varepsilon_T)^2 + (\varepsilon_{frac})^2} = 0, 5$$

$$\sigma_W = W \varepsilon_W = 147 \text{ cm}^3/\text{c} \approx 150 \text{ cm}^3/\text{c}$$

Получили $W=(300\pm150)~{\rm cm}^3/{\rm c}$. Видим, что полученное нами ранее значение полностью лежит в этом диапазоне. Точность последнего измерения связана с выбранной моделью, в которой основной вклад в погрешность вносят диаметр капилляра и давление манометра.

23. Выключим установку.

Вывод

Мы измерили объемы форвакуумной $V_{\phi B} = (2110 \pm 20) \text{ см}^3$ и высоковакуумной $V_{BB} = (1170 \pm 50) \text{ см}^3$ частей установки и определили скорости откачки системы по ухудшению $W = (300 \pm 150) \text{ см}^3/\text{с}$ и по улучшению вакуума $W = (220 \pm 30) \text{ см}^3/\text{с}$. Видим, что результаты для скорости откачки не противоречат друг другу, одни значения целиком попадают в область других значений, что говорит о достоверности результата. Также была проверена формула (13), справедливая в молекулярном режиме, что может свидетельствовать о правильности использования последующих формул для кнудсеновского режима.

$P, \cdot 10^{-5} \text{ Topp}$	t, c
78,0	0,0
77,0	0,6
76,0	1,4
75,0	1,8
72,0	2,4
68,0	3,2
64,0	3,8
60,0	4,0
55,0	4,4
51,0	5,0
46,0	5,4
42,0	5,8
39,0	6,4
36,0	6,8
33,0	7,4
30,0	7,8
28,0	8,4
26,0	8,8
25,0	9,2
23,0	9,8
22,0	10,4
21,0	10,8
20,0	11,2
19,0	11,8
18,0	12,4
17,0	13,0
16,0	13,2
15,0	14,2
14,0	15,4
13,0	16,2
12,0	17,8
11,0	19,8
10,0	23,8
9,9	27,8
9,8	29,4
9,7	30,8
9,6	32,0
9,5	35,8
9,4	39,8
9,3	45,8
9,2	54,2
9,1	65,8
9,0	83,2
0,0	00,2

$P, \cdot 10^{-5} \text{ ropp}$	t, c
75,0	0,0
74,0	1,2
72,0	1,8
70,0	2,2
67,0	2,8
63,0	3,2
58,0	3,6
54,0	4,2
49,0	4,6
45,0	5,2
41,0	5,6
38,0	6,2
35,0	6,6
32,0	7,2
30,0	7,6
28,0	8,2
26,0	8,6
24,0	9,2
23,0	9,8
21,0	10,2
20,0	10,8
19,0	11,2
18,0	11,6
17,0	12,2
16,0	13,2
15,0	13,8
14,0	14,8
13,0	15,6
12,0	17,2
11,0	19,2
10,0	23,0
9,9	27,6
9,8	28,8
9,7	30,2
9,6	32,2
9,5	34,8
9,4	38,2
9,3	42,8
9,2	49,6
9,1	56,2
9,0	69,2
8,9	80,6
4 D "	

Таблица 3: Первый опыт по улучшению

Таблица 4: Второй опыт по улучшению

$P, \cdot 10^{-5} \text{ Topp}$	t, c	$P, \cdot 10^{-5} \text{ Topp}$	t, c
8,9	0,0	41,0	32,2
9,0	3,0	42,0	33,4
9,1	5,8	43,0	34,0
9,2	7,4	44,0	35,0
9,3	8,0	45,0	35,4
9,5	8,6	46,0	36,4
9,7	9,0	47,0	37,0
10,0	9,6	48,0	37,4
11,0	10,0	49,0	38,6
12,0	10,8	50,0	39,0
13,0	12,0	51,0	39,8
14,0	12,4	52,0	40,4
15,0	13,4	53,0	41,0
16,0	14,0	54,0	42,0
17,0	15,0	55,0	42,4
18,0	15,4	56,0	43,0
19,0	16,4	57,0	44,0
20,0	16,8	58,0	44,4
21,0	18,0	59,0	45,2
22,0	18,4	60,0	46,0
23,0	19,2	61,0	46,4
24,0	20,0	62,0	47,4
25,0	21,0	63,0	48,0
26,0	21,4	64,0	48,4
27,0	22,4	65,0	49,4
28,0	23,0	66,0	50,0
29,0	23,8	67,0	50,4
30,0	24,4	68,0	51,4
31,0	25,4	69,0	52,0
32,0	26,0	70,0	52,4
33,0	27,0	71,0	53,4
34,0	27,4	72,0	54,0
35,0	28,4	73,0	54,4
36,0	29,0	74,0	55,4
37,0	29,8	75,0	56,0
38,0	30,4	76,0	56,4
39,0	31,2	77,0	57,0
40,0	31,8	78,0	58,0

Таблица 5: Первый опыт по ухудшению

$P, \cdot 10^{-5} \text{ ropp}$	t, c	$P, \cdot 10^{-5} \text{ ropp}$	t, c
9,0	0,0	41,0	26,4
9,1	1,4	42,0	27,0
9,3	2,0	43,0	27,4
9,5	2,6	44,0	28,4
9,8	3,2	45,0	29,0
10,0	3,6	46,0	30,0
11,0	4,0	47,0	30,4
12,0	5,0	48,0	31,4
13,0	5,6	49,0	32,0
14,0	6,4	50,0	32,4
15,0	7,0	51,0	33,4
16,0	8,2	52,0	34,0
17,0	8,6	53,0	35,0
18,0	9,6	54,0	35,4
19,0	10,0	55,0	36,0
20,0	11,0	56,0	36,8
21,0	11,4	57,0	37,4
22,0	12,4	58,0	38,0
23,0	13,0	59,0	39,0
24,0	14,0	60,0	39,4
25,0	14,4	61,0	40,0
26,0	15,4	62,0	41,0
27,0	16,0	63,0	41,4
28,0	17,0	64,0	42,4
29,0	17,4	65,0	43,0
30,0	18,4	66,0	43,4
31,0	19,0	67,0	44,4
32,0	20,2	68,0	45,0
33,0	20,6	69,0	45,4
34,0	21,0	70,0	46,4
35,0	22,0	71,0	47,0
36,0	22,4	72,0	47,4
37,0	23,6	73,0	48,4
38,0	24,2	74,0	49,0
39,0	25,0	75,0	49,4
40,0	25,4		

Таблица 6: Второй опыт по ухудшению