Algebraic Definitions of Number Theory Functions

Eli Ruminer

Table of Contents

1 Introduction

This paper seeks to show a method of defining a floor function in algebraic terms and thus defining other number theory functions algebraicly from knowing floor.

2 Floor

We start by defining the fractional operator, which gets the decimal part of x, and removes any whole part to be

{*x*}

Where

$$0 \le \{x\} \le 1$$

From this we can define the floor function, |x| as

$$|x| = x - \{x\}$$

To define this algebraically we first must find a function which finds $\{x\}$ to be able to subtract it. This can be found by using the function

$$a(x) = \tan^{-1}(\tan(x))$$

This creates a periodic function increasing linearly from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$ over $[n\pi - \frac{\pi}{2}, n\pi + \frac{\pi}{2}]$ where $n \in \mathbb{Z}$. We must first decrease the period from π to 1, and range from π to 1, giving us

$$b(x) = \frac{a(x\pi)}{\pi} = \frac{\tan^{-1}(\tan(x\pi))}{\pi}$$

The function then must be phase shifted 0.5 to "start" each period at an integer, and shifted up so that it is always positive giving us

$$\{x\} = b(x - \frac{1}{2}) + \frac{1}{2} = \frac{\tan^{-1}(\tan(x\pi - \frac{\pi}{2}))}{\pi} + \frac{1}{2}$$
$$= \frac{\cot^{-1}(\cot(x\pi))}{\pi}$$

We then plug the new definition of $\{x\}$ into the original floor equation to find that

$$\lfloor x \rfloor = x - \frac{\cot^{-1}(\cot(x\pi))}{\pi}$$

Due to using tangent, there are undefined asymptotes at the whole numbers, thus floor cannot be defined truly algebraically, but must still have a piecewise definition of

$$\lfloor x \rfloor = \begin{cases} x & \text{if } x \in \mathbb{Z} \\ x - \frac{\cot^{-1}(\cot(x\pi))}{\pi} & \text{if } x \in \mathbb{R} \setminus \mathbb{Z} \end{cases}$$

Unless explicitly stated the non-piecewise definition will be used for the rest of the paper.

3 Ceiling and Round

From floor, we can define the other 2 types of rounding functions: Ceiling and Round.

3.1 Ceiling

Ceiling (ceil) always rounds up and can be defined as

$$\lceil x \rceil = \begin{cases} x & \text{if } x \in \mathbb{Z} \\ x - \{x\} + 1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Z} \end{cases}$$

which one will notices shares $x - \{x\}$ with $\lfloor x \rfloor$ and thus

$$\lceil x \rceil = \begin{cases} x & \text{if } x \in \mathbb{Z} \\ \lfloor x \rfloor + 1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Z} \end{cases} \\
= \begin{cases} x & \text{if } x \in \mathbb{Z} \\ x - \frac{\cot^{-1}(\cot(x\pi))}{\pi} & \text{if } x \in \mathbb{R} \setminus \mathbb{Z} \end{cases}$$

3.2 Round

Round is defined as

$$|x| = \begin{cases} x - \{x\} & \text{if } \{x\} < 0.5\\ x - \{x\} + 1 & \text{if } \{x\} \ge 0.5 \end{cases}$$
$$= \begin{cases} |x| & \text{if } \{x\} < 0.5\\ |x| & \text{if } \{x\} \ge 0.5 \end{cases}$$

One notices that $\lfloor x \rceil = \lfloor x + 0.5 \rfloor$ thus

$$\lfloor x \rceil = x - \frac{\tan^{-1}(\tan(x\pi))}{\pi} = \begin{cases} x & \text{if } x \in \mathbb{Z} \\ x - \frac{\tan^{-1}(\tan(x\pi))}{\pi} & \text{if } x \in \mathbb{R} \setminus \mathbb{Z} \end{cases}$$

4 Mod

We start by defining the function $a \mod b$ as

$$a \mod b = n \text{ where } a \equiv n(\mod b)$$

= $a - b \left\lfloor \frac{a}{b} \right\rfloor$

which substituting the previously defined definition of floor results in

$$a \bmod b = a - b\left(\frac{a}{b} - \frac{\cot^{-1}(\cot(\frac{a\pi}{b}))}{\pi}\right)$$
$$= \frac{b}{\pi}\cot^{-1}(\cot(\frac{a\pi}{b}))$$

5 Proof

$$\frac{d}{dx}\lfloor x\rfloor = \frac{d}{dx}\left(x - \frac{\cot^{-1}(\cot(x\pi))}{\pi}\right) = 1 - 1 = 0\tag{1}$$

By the definition of $\lfloor x \rfloor$, when $x \in \mathbb{Z}$, $\lfloor x \rfloor = x$, and that $\frac{d}{dx} \lfloor x \rfloor = 0$, $\lfloor x \rfloor$ is constant between integers, and jumps to each integer at that integer \blacksquare