Trabajo Final ANOVA

Introducción

El conjunto de datos sleepstudy registra el tiempo de reacción de 18 participantes evaluados durante 10 días consecutivos de privación de sueño. Contiene las variables Reaction (milisegundos), Days (0 a 9) y Subject (identificador). Corresponde a un diseño de medidas repetidas que permite analizar los efectos acumulativos de la privación sobre el rendimiento.

```
data("sleepstudy")
sleepstudy
```

	Reaction	Days	Subject
1	249.5600	0	308
2	258.7047	1	308
3	250.8006	2	308
4	321.4398	3	308
5	356.8519	4	308
6	414.6901	5	308
7	382.2038	6	308
8	290.1486	7	308
9	430.5853	8	308
10	466.3535	9	308
11	222.7339	0	309
12	205.2658	1	309
13	202.9778	2	309
14	204.7070	3	309
15	207.7161	4	309
16	215.9618	5	309
17	213.6303	6	309
18	217.7272	7	309
19	224.2957	8	309
20	237.3142	9	309

21	199.0539	0	310
22	194.3322	1	310
23	234.3200	2	310
24	232.8416	3	310
25	229.3074	4	310
26	220.4579	5	310
27	235.4208	6	310
28	255.7511	7	310
29	261.0125	8	310
30	247.5153	9	310
31	321.5426	0	330
32	300.4002	1	330
33	283.8565	2	330
34	285.1330	3	330
35	285.7973	4	330
36	297.5855	5	330
37	280.2396	6	330
38	318.2613	7	330
39	305.3495	8	330
40	354.0487	9	330
41	287.6079	0	331
42	285.0000	1	331
43	301.8206	2	331
44	320.1153	3	331
45	316.2773	4	331
46	293.3187	5	331
47	290.0750	6	331
48	334.8177	7	331
49	293.7469	8	331
50	371.5811	9	331
51	234.8606	0	332
52	242.8118	1	332
53	272.9613	2	332
54	309.7688	3	332
55	317.4629	4	332
56	309.9976	5	332
57	454.1619	6	332
58	346.8311	7	332
59	330.3003	8	332
60	253.8644	9	332
61	283.8424	0	333
62	289.5550	1	333
63	276.7693	2	333

64	299.8097	3	333
65	297.1710	4	333
66	338.1665	5	333
67	332.0265	6	333
68	348.8399	7	333
69	333.3600	8	333
70	362.0428	9	333
71	265.4731	0	334
72	276.2012	1	334
73	243.3647	2	334
74	254.6723	3	334
75	279.0244	4	334
76	284.1912	5	334
77	305.5248	6	334
78	331.5229	7	334
79	335.7469	8	334
80	377.2990	9	334
81	241.6083	0	335
82	273.9472	1	335
83	254.4907	2	335
84	270.8021	3	335
85	251.4519	4	335
86	254.6362	5	335
87	245.4523	6	335
88	235.3110	7	335
89	235.7541	. 8	335
90	237.2466	9	335
91	312.3666	0	337
92	313.8058	1	337
93	291.6112	2	337
94	346.1222	3	337
95	365.7324	4	337
96	391.8385	5	337
97	404.2601	6	337
98	416.6923	7	337
99	455.8643	8	337
100	458.9167	9	337
101	236.1032	0	349
102	230.3167	1	349
103	238.9256	2	349
104	254.9220	3	349
105	250.7103	4	349
106	269.7744	5	349

107	281.5648	6	349
108			349
109	336.2806	8	349
110	351.6451	9	349
111	256.2968	0	350
112	243.4543	1	350
113	256.2046	2	350
114	255.5271	3	350
115	268.9165	4	350
116	329.7247	5	350
117	379.4445	6	350
118	362.9184	7	350
119	394.4872	8	350
120	389.0527	9	350
121	250.5265	0	351
122	300.0576	1	351
123	269.8939	2	351
124	280.5891	3	351
125	271.8274	4	351
126	304.6336	5	351
127	287.7466	6	351
128			351
129	321.5418	8	351
130	347.5655	9	351
131	221.6771	0	352
132			352
133	326.8785		352
134	346.8555		352
135			352
136		5	352
137			352
	360.4326		352
139	375.6406	8	352
140	388.5417	9	352
141	271.9235	0	369
142			369
143	257.2424	2	369
144	277.6566	3	369
145	314.8222	4	369
146	317.2135	5	369
147	298.1353	6	369
148		7	369
149	340.2800	8	369

```
150 366.5131
                        369
151 225.2640
                 0
                       370
152 234.5235
                       370
                 1
153 238.9008
                 2
                       370
154 240.4730
                       370
                 3
155 267.5373
                 4
                       370
156 344.1937
                 5
                       370
157 281.1481
                 6
                       370
158 347.5855
                 7
                       370
159 365.1630
                       370
                 8
160 372.2288
                 9
                       370
161 269.8804
                 0
                       371
162 272.4428
                       371
                 1
163 277.8989
                 2
                       371
164 281.7895
                 3
                       371
165 279.1705
                 4
                       371
166 284.5120
                 5
                       371
167 259.2658
                 6
                       371
168 304.6306
                 7
                       371
169 350.7807
                       371
170 369.4692
                 9
                       371
171 269.4117
                 0
                       372
172 273.4740
                 1
                       372
173 297.5968
                 2
                       372
174 310.6316
                 3
                       372
175 287.1726
                 4
                       372
176 329.6076
                       372
177 334.4818
                       372
                 6
                 7
178 343.2199
                       372
179 369.1417
                 8
                       372
180 364.1236
                       372
```

df <- sleepstudy

Exploratory Data analysis

glimpse(df)

Rows: 180 Columns: 3

summary(df)

```
Reaction
                   Days
                               Subject
      :194.3
              Min. :0.0
Min.
                            308
                                 : 10
1st Qu.:255.4
              1st Qu.:2.0
                            309
                                   : 10
Median :288.7
              Median:4.5
                            310
                                 : 10
      :298.5
Mean
               Mean
                    :4.5
                            330
                                  : 10
3rd Qu.:336.8
                                  : 10
               3rd Qu.:7.0
                            331
Max.
      :466.4
              Max. :9.0
                            332
                                  : 10
                            (Other):120
```

df\$Days <- as.factor(df\$Days)</pre>

describeBy(sleepstudy, group = sleepstudy\$Days)

Descriptive statistics by group

group: 0

vars n mean sd median trimmed \mathtt{mad} min max range skew 1 18 256.65 32.13 253.41 256.2 27.47 199.05 321.54 122.49 0.3 Reaction 2 18 0.00 0.00 0.00 0.0 0.00 0.00 0.00 Days 0.00 NaN 9.50 5.34 9.50 9.5 6.67 1.00 18.00 17.00 0.0 Subject 3 18 kurtosis Reaction -0.77.57NaN 0.00 Days Subject -1.4 1.26

group: 1

sd median trimmed vars n mean \mathtt{mad} ${\tt min}$ max range skew 1 18 264.5 33.43 272.96 265.8 38.80 194.33 313.81 119.47 -0.54 Reaction 1.00 Days 2 18 1.0 0.00 1.00 1.0 0.00 1.00 0.00 Subject 3 18 9.5 5.34 9.50 9.5 6.67 1.00 18.00 17.00 0.00 kurtosis se

Reaction -0.77 7.88

Days NaN 0.00

Subject -1.40 1.26

```
group: 2
      vars n mean sd median trimmed mad
                                         min max range skew
Reaction 1 18 265.36 29.47 263.57 265.42 30.02 202.98 326.88 123.9 0.04
Days
        2 18  2.00  0.00  2.00  2.00  0.00
                                         2.00
                                              2.00
                                                    0.0 NaN
        3 18 9.50 5.34 9.50 9.50 6.67 1.00 18.00 17.0 0.00
Subject
      kurtosis
               se
Reaction
        -0.41 6.95
Days
          NaN 0.00
         -1.40 1.26
Subject
_____
group: 3
      vars n mean
                    sd median trimmed mad
                                         min
                                               max range skew
         1 18 282.99 38.86 281.19 283.89 40.84 204.71 346.86 142.15 -0.08
         2 18 3.00 0.00 3.00 3.00 0.00 3.00 3.00 0.00
         3 18 9.50 5.34 9.50 9.50 6.67 1.00 18.00 17.00 0.00
Subject
      kurtosis se
Reaction -0.89 9.16
Davs
         NaN 0.00
       -1.40 1.26
Subject
_____
group: 4
      vars n mean sd median trimmed mad min max range skew
Reaction 1 18 288.65 42.54 282.48 288.89 46.56 207.72 365.73 158.02 0.13
        2 18 4.00 0.00 4.00 4.00 0.00 4.00 4.00
                                                    0.00 NaN
Subject
       3 18 9.50 5.34 9.50 9.50 6.67 1.00 18.00 17.00 0.00
      kurtosis
                se
       -0.77 10.03
Reaction
Days
          NaN 0.00
         -1.40 1.26
Subject
_____
group: 5
      vars n mean
                     sd median trimmed mad min max range skew
         1 18 308.52 51.77 307.32 307.67 40.01 215.96 414.69 198.73 0.09
Reaction
         2 18 5.00 0.00 5.00 5.00 0.00 5.00 5.00
                                                    0.00 NaN
Days
        3 18 9.50 5.34 9.50
                              9.50 6.67 1.00 18.00 17.00 0.00
Subject
      kurtosis
                se
Reaction -0.47 12.20
Days
          NaN 0.00
       -1.40 1.26
Subject
group: 6
       vars n mean sd median trimmed mad
                                          min max range skew
Reaction 1 18 312.18 63.17 294.11 309.46 58.04 213.63 454.16 240.53 0.53
```

```
6.00
                               6.00 0.00
                                         6.00
Davs
     2 18 6.00 0.00
                                              6.00 0.00 NaN
                        9.50 9.50 6.67 1.00 18.00 17.00 0.00
        3 18 9.50 5.34
Subject
      kurtosis
                se
         -0.61 14.89
Reaction
         NaN 0.00
Days
Subject
         -1.40 1.26
group: 7
      vars n mean sd median trimmed mad min
                                               max range skew
         1 18 318.75 50.10 333.17 318.94 38.79 217.73 416.69 198.97 -0.36
Reaction
         2 18 7.00 0.00 7.00 7.00 0.00 7.00 7.00 0.00
Days
                                                         NaN
         3 18 9.50 5.34 9.50 9.50 6.67 1.00 18.00 17.00 0.00
Subject
      kurtosis se
Reaction -0.54 11.81
         NaN 0.00
Days
Subject
        -1.40 1.26
_____
group: 8
                     sd median trimmed mad min
      vars n mean
                                              max range skew
Reaction 1 18 336.63 60.20 336.01 336.2 47.29 224.3 455.86 231.57 -0.04
        2 18 8.00 0.00 8.00
                              8.0 0.00 8.0
                                             8.00
                                                   0.00
Subject 3 18 9.50 5.34 9.50 9.5 6.67 1.0 18.00 17.00 0.00
      kurtosis
                se
Reaction
         -0.48 14.19
         NaN 0.00
Days
         -1.40 1.26
Subject
_____
group: 9
       vars n mean
                     sd median trimmed mad
                                          min
                                               max range skew
         1 18 350.85 66.99 365.32 350.73 23.30 237.25 466.35 229.11 -0.37
         2 18 9.00 0.00
                        9.00 9.00 0.00 9.00
                                              9.00
                                                    0.00
                                                         NaN
Days
Subject
         3 18 9.50 5.34 9.50 9.50 6.67 1.00 18.00 17.00 0.00
      kurtosis se
Reaction -0.64 15.79
         NaN 0.00
Days
Subject -1.40 1.26
```


Distribución del tiempo de reacción por día

Objetivo

Evaluar el efecto de la privación de sueño progresiva sobre el rendimiento cognitivo, medido a través del tiempo de reacción, en participantes sometidos a restricción del sueño durante un período de 10 días consecutivos.

Hipotesis

El tiempo de reacción de los participantes aumenta progresivamente a medida que se acumulan los días de privación de sueño, reflejando un deterioro en el rendimiento cognitivo.

Supuestos y modelo

```
qqnorm(residuals(model))
qqline(residuals(model), col = "red")
```

Normal Q-Q Plot

check_model(model)

Linearity

⊗ormality of Residuals

Reference line should be flat and horizontal oots should fall along the line

Normality of Residuals

Distribution should be close to the normal curve

shapiro_test <- shapiro.test(residuals(model))
print(shapiro_test)</pre>

Shapiro-Wilk normality test

data: residuals(model)
W = 0.98378, p-value = 0.03495

La prueba de Shapiro-Wilk fue significativa (W = 0.98, p = 0.035), lo que indica una **desviación de la normalidad** en los residuos

summary(model)

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

```
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Mauchly Tests for Sphericity
    Test statistic
                     p-value
Days
       0.00021902 5.1549e-08
Greenhouse-Geisser and Huynh-Feldt Corrections
for Departure from Sphericity
     GG eps Pr(>F[GG])
Days 0.36903 5.463e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
       HF eps
               Pr(>F[HF])
Days 0.4693648 7.076552e-11
eta_squared(model, partial = TRUE)
# Effect Size for ANOVA (Type III)
Parameter | Eta2 (partial) | 95% CI
_____
                  0.52 | [0.42, 1.00]
Days
- One-sided CIs: upper bound fixed at [1.00].
emmeans(model, pairwise ~ Days, adjust = "fdr")
$emmeans
Days emmean SE df lower.CL upper.CL
XΟ
        257 7.57 17
                        241
                                 273
Х1
        264 7.88 17
                        248
                                 281
X2
        265 6.95 17
                       251
                                280
```

13

302

334

344

310

ХЗ

Х4

Х5

Х6

283 9.16 17

289 10.00 17

309 12.20 17

312 14.90 17

264

267

283

281

X7	319	11.80	17	294	344
Х8	337	14.20	17	307	367
Х9	351	15.80	17	318	384

Confidence level used: 0.95

\$contrasts

\$CONCIAD OB							
contrast	${\tt estimate}$	SE	df	t.ratio	p.value		
XO - X1	-7.844	5.61	17	-1.397	0.2058		
X0 - X2	-8.710	7.50	17	-1.162	0.2867		
XO - X3	-26.340	8.77	17	-3.003	0.0120		
XO - X4	-31.998	9.47	17	-3.378	0.0067		
XO - X5	-51.867	11.70	17	-4.423	0.0010		
XO - X6	-55.526	15.10	17	-3.669	0.0041		
XO - X7	-62.099	10.40	17	-5.957	0.0002		
XO - X8	-79.978	13.70	17	-5.834	0.0002		
XO - X9	-94.199	13.50	17	-6.958	0.0001		
X1 - X2	-0.866	5.10	17	-0.170	0.8671		
X1 - X3	-18.496	6.24	17	-2.964	0.0126		
X1 - X4	-24.154	7.73	17	-3.125	0.0099		
X1 - X5	-44.023	10.50	17	-4.212	0.0016		
X1 - X6	-47.682	14.50	17	-3.291	0.0078		
X1 - X7	-54.255	10.60	17	-5.106	0.0004		
X1 - X8	-72.134	13.20	17	-5.452	0.0002		
X1 - X9	-86.355	13.20	17	-6.520	0.0001		
X2 - X3	-17.630	4.56	17	-3.867	0.0029		
X2 - X4	-23.288	7.22	17	-3.226	0.0086		
X2 - X5	-43.157	10.70	17	-4.047	0.0021		
X2 - X6	-46.816	13.30	17	-3.529	0.0053		
X2 - X7	-53.389	9.53	17	-5.601	0.0002		
X2 - X8	-71.268	13.00	17	-5.474	0.0002		
X2 - X9	-85.489	14.30	17	-5.975	0.0002		
X3 - X4	-5.657	4.07	17	-1.388	0.2058		
X3 - X5	-25.526	8.45	17	-3.021	0.0119		
X3 - X6	-29.186	11.00	17	-2.647	0.0231		
X3 - X7	-35.759	9.68	17	-3.695	0.0040		
X3 - X8	-53.637	11.40	17	-4.698	0.0007		
X3 - X9	-67.859	13.00	17	-5.211	0.0003		
X4 - X5	-19.869	6.36	17	-3.125	0.0099		
X4 - X6	-23.529	9.93	17	-2.371	0.0384		
X4 - X7	-30.101	8.69	17	-3.466	0.0058		
X4 - X8	-47.980	9.49	17	-5.057	0.0004		
X4 - X9	-62.202	11.10	17	-5.603	0.0002		

```
X5 - X6
           -3.660 10.00 17
                            -0.365
                                    0.7360
X5 - X7
                            -1.082
          -10.232 9.46 17
                                     0.3153
X5 - X8
          -28.111
                   6.18 17
                            -4.546
                                     0.0009
X5 - X9
          -42.333 8.68 17
                            -4.875
                                    0.0005
X6 - X7
           -6.572 10.70 17
                            -0.616
                                    0.5714
X6 - X8
          -24.451 10.70 17
                            -2.279
                                     0.0448
X6 - X9
          -38.673 16.00 17
                            -2.423
                                     0.0355
X7 - X8
          -17.879 9.25 17
                            -1.933
                                     0.0852
X7 - X9
                            -2.683
          -32.101 12.00 17
                                     0.0221
X8 - X9
          -14.222
                            -1.906
                  7.46 17
                                    0.0874
```

P value adjustment: fdr method for 45 tests

Se realizó un ANOVA de medidas repetidas para evaluar el efecto de la privación de sueño (Days) sobre el tiempo de reacción. El análisis reveló un efecto significativo del factor Days, F(9, 153) = 18.70, p < .001, lo que indica que el rendimiento cognitivo varió significativamente a lo largo del tiempo. La prueba de esfericidad de Mauchly fue significativa (p < .001), evidenciando una violación de este supuesto; en consecuencia, se aplicaron las correcciones de Greenhouse–Geisser y Huynh–Feldt, que confirmaron la significancia del efecto (p < .001). El tamaño del efecto fue grande, p parcial efecto de los días de privación.

Las comparaciones post hoc, corregidas por FDR, indicaron que los tiempos de reacción aumentan significativamente a partir del día 3 en adelante (p < .05), con diferencias particularmente marcadas entre los días iniciales (X0–X2) y los días finales (X7–X9). Estos resultados respaldan la hipótesis de un deterioro progresivo del rendimiento cognitivo con el aumento de los días de privación de sueño.

```
sleepstudy$Days <- as.numeric(sleepstudy$Days)
reg_model <- lmer(Reaction ~ Days + (1 | Subject), data = sleepstudy)
summary(reg_model)</pre>
```

```
Linear mixed model fit by REML. t-tests use Satterthwaite's method [lmerModLmerTest]
```

Formula: Reaction ~ Days + (1 | Subject)

Data: sleepstudy

REML criterion at convergence: 1786.5

Scaled residuals:

```
Min 1Q Median 3Q Max -3.2257 -0.5529 0.0109 0.5188 4.2506
```

Random effects:

Groups Name Variance Std.Dev.
Subject (Intercept) 1378.2 37.12
Residual 960.5 30.99
Number of obs: 180, groups: Subject, 18

Fixed effects:

Estimate Std. Error df t value Pr(>|t|) (Intercept) 251.4051 22.8102 25.79 9.7467 <2e-16 *** 10.4673 0.8042 161.0000 13.02 <2e-16 *** Days ---0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Signif. codes: Correlation of Fixed Effects: (Intr) Days -0.371

standardize_parameters(reg_model)

Standardization method: refit

r2(reg_model)

R2 for Mixed Models

Conditional R2: 0.704 Marginal R2: 0.280

Se ajustó un modelo lineal mixto para predecir el tiempo de reacción a partir del número de días de privación de sueño, incluyendo un intercepto aleatorio por sujeto. Los resultados mostraron que el tiempo de reacción aumentó significativamente con el paso de los días, = 10.47, SE = 0.80, t(161) = 13.02, p < .001, lo que indica un deterioro progresivo del rendimiento cognitivo asociado a la restricción del sueño. El coeficiente estandarizado fue = 10.47

0.54, IC 95% [0.45, 0.62], lo que representa un efecto moderado-alto. El modelo explicó el 28% de la varianza mediante efectos fijos (R^2 marginal = 0.28) y el 70% al considerar también los efectos aleatorios (R^2 condicional = 0.70).