MAT240 Assignment 1

Nicolas Coballe

September 16, 2021

1. a) $|Map(X_n, X_n)| = n^n$ if n > 0 or $|Map(X_n, X_n)| = 1$ if n = 0.

Proof.

Consider the finite, non-empty set $X_n = \{x_1, x_2, ..., x_n\}$ consisting of n elements and the map $f: X_n \to X_n$. $\forall x_i \in X_n, \exists f(x_i) \in X_n$, and because X_n has a cardinality of n, there are only n different values for $f(x_i)$. Then, there is a choice of n, n different times; thus, there are $\underbrace{n \cdot n \cdots n}$ different possible maps $f: X_n \to X_n$. Thus the

cardinality of $Map(X_n, X_n)$ is $\underbrace{n \cdot n \cdot n}_{n \text{ times}}$, or simply n^n . Considering the case where $n = 0, X_n$ is empty, and thus we can

Considering the case where n = 0, X_n is empty, and thus we can easily say that there is one trivial map between the empty set and the empty set, so $|Map(\emptyset, \emptyset)| = 1$.

b) $|Bij(X_n, X_n)| = n!$

Proof.

Consider the finite, non-empty set $X_n = \{x_1, x_2, ..., x_n\}$ consisting of n elements and the bijection $f: X_n \to X_n$. Suppose $f(x_1) \in X_n$, because f is bijective $f(x_2) \in X_n \setminus \{f(x_1)\}$. Thus if we continue this process for n iterations we get:

 $\forall x_i, i > 1, x_i \in X_n \setminus \{f(x_{i-1})\} \setminus \cdots \setminus \{f(x_1)\}$

Thus, there is a choice of (n-i+1), n different times (i ranges from 1 to n). This leaves us with $n \cdot (n-1) \cdots 2 \cdot 1$ different possible bijections $f: X_n \to X_n$. Therefore, the cardinality of $Bij(X_n, X_n)$ is $n \cdot (n-1) \cdots 2 \cdot 1$, or more concisely, n!! (This last "!" is an exclamation mark and not a second factorial.)

Taking into the consideration when n=0 and $X_n=\emptyset$, there is only one bijection, the identity function. Thus $Bij(\emptyset,\emptyset)=1=0!$

2. a)

Proof.

3. a)

Proof.

Consider g and g' are both inverses of f.

$$\forall x \in X, \ g(f(x)) = x = g'(f(x))$$

Since x was chosen arbitrarily, f(x) is just an arbitrary object in Y. Thus, $\forall y \in Y, \ g(y) = g'(y)$, and therefore g = g'

b) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ is not invertible because it is not a bijection. This is because $1 \neq -1$ but f(1) = f(-1) (This is shown by the problem below.)

c)

Proof.

 \Rightarrow

We will first prove that f is a surjection.

By assumption $\forall y \in Y$, f(g(y)) = y and because g(y) is just an arbitrary element of X, this shows that $\forall y \in Y$, $\exists x \in X$ st f(x) = y

We will now show that f is an injection.

Assume that f is not an injection.

Thus, $\exists x, x' \in X \text{ st } x \neq x' \text{ and } f(x) = f(x')$

Then g(f(x)) = g(f(x')) = x = x' and thus we have reached a contradiction.

Thus we have proven that f is bijective.

 \leftarrow

Because $f: X \to Y$ is a bijective function, then

$$\forall y \in Y, \exists ! x \in X \text{ st } f(x) = y$$

Thus we can construct a function $g: Y \to X$ that maps all $y \in Y$ to the unique $x \in X$ st f(x) = y

Thus, by construction g(f(x)) = x and f(g(y)) = y

d) It does not follow that $f \circ g = I_Y$

Proof.

Consider the function $f: \{a\} \to \{1,2\}$ such that f(a) = 1 and the function $g: \{1,2\} \to \{a\}$ such that g(1) = a and g(2) = aThus $(g \circ f)(a) = a$ and $(g \circ f) = I_X$ But $(f \circ g)(2) = 1$ so $(f \circ g) \neq I_Y$

Thus, we have constructed a counterexample.

e) It does follow that $f \circ g = I_Y$ now.

Proof.

If $g \circ f = I_X$ then f is injective because if we assume f is not injective, then we result in the contradiction where g(f(x)) = g(f(x')) = x = x' when $x \neq x'$

Thus f is injective and surjective, making it a bijection, and by part c, this implies that it is invertible and there exists a g st $f \circ g = I_Y$