OPERATING INSTRUCTIONS & SERVICE MANUAL

SOLID-STATE AM/FM STEREO TUNER

SANSUI TU-555

SANSUI ELECTRIC COMPANY LIMITED

Congratulations, you are now the owner of the new Sansui TU-555 FET AM-FM Stereo Tuner, an attractive and compact receiver built for exceptional performance by the world's foremost audio-only specialist. Designed especially for FM enthusiasts, the TU-555 will pull in an increasing number of FM stations more clearly in either strong signal areas or fringe locations. Its highly sensitive FET front end shows a new degree of selectivity by permitting weak signals to be tuned without being blanketed by adjacent strong signals. The functional black face front panel design will be an outstanding component in any audio system. Finally, the extreme care used in fabricating the TU-555 promises the extra values of added reliability, higher performance and longer life.

This manual has been prepared to guide you in operating and caring for the TU-555 correctly. Please read it carefully before operating the tuner and retain it for future reference.

CONTENTS

OPERATING INSTRUCTIONS
Switches and Controls
Connection
Operation/Maintenance 7, 8
Specifications/Characteristics 9
SERVICE MANUAL
Block Diagram 10
General Troubleshooting Chart 11, 12
Disassembly Procedure
Custom Mounting 14
Alignment
Printed Circuit Sheets and
Parts List 19, 20, 21, 22, 23, 24
Other Parts and Their Position on Chessis 25, 26

SWITCHES AND CONTROLS

Selector Switch

AM—Use this position for all AM programs. FM MONO—Use this position for all FM monophonic programs.

FM AUTO—Use this position for automatic FM stereo/mono switching.

MPX Noise Canceler Switch

This switch is used to eliminate annoying noise on FM multiplex programs transmitted by distant or weak stations without weakening the treble tones in the music being played. When this switch is on, the TU-555's stereo separation may be slightly reduced. Unless such noise is heard, this switch should not be used.

Power Switch Push this switch to turn the power of

Push this switch to turn the power on; push again to turn the power off.

FM AUTO

SELECTOR

POWER

Muting Switch

This switch is used to eliminate interstation noise for quiet FM station selection. When this switch is on, weak or distant stations may also be suppressed. To tune weak or distant stations, keep this switch in the OFF position.

upward position (but not necessarily to "5"), the

station is correctly tuned.

CONNECTION

ANTENNA CONNECTION

The quality of reception that can be expected from the TU-555 depends largely on the correct positioning and use of antennas. To pull in more stations more clearly, the following procedures are recommended:

Built-in AM Ferrite Antenna

This highly sensitive antenna, located on the rear panel of the tuner, is usually adequate for AM reception in many areas. To use, pull it down and away from the back of the tuner until the best reception is obtained.

Outdoor AM Antenna

In ferroconcrete buildings or in fringe areas, the built-in ferrite antenna may be inadequate for reception of weak or distant stations. An outdoor antenna then becomes necessary. This can be accomplished by connecting the PVC wire supplied with the set to the antenna terminal marked AMA on the rear panel. Run this wire to an antenna that has been placed outside a window or mounted on a roof. At the same time, the unit should be grounded. Position the outdoor antenna where reception is strongest while actually receiving a broadcast. And, for reasons of safety, be sure to attach a lightning arrester to the outdoor antenna.

Indoor FM Antenna

In urban or strong signal areas, satisfactory FM reception can be obtained by using the folded dipole antenna (300 ohm) supplied with the TU-555. Connect the two leads from the dipole to the terminals marked FM 300Ω A₁ and A₂ on the rear panel and tack the dipole up on the wall in the form a T. Be sure to position the dipole for best signal reception before the antenna is permanently tacked up on the wall.

Outdoor FM Antennas

In ferroconcrete buildings or in fringe areas, the indoor dipole antenna may be inadequate for recep-

tion of weak or distant FM stations. An outdoor antenna designed specifically for FM should then be installed.

Either a balanced 300 ohm or unbalanced 75 ohm antenna can be used with the TU-555. If the 300 ohm twin-lead is used, connect it to the terminals marked FM 300Ω A₁ and A₂ on the rear panel just like the indoor dipole antenna connection. If the 75 ohm coaxial cable is used, connect the center conductor to the FM 75Ω terminal and the shielding wire to the G terminal.

Note: FM sensitivity cannot be raised simply by lengthening the antenna. Adjust the antenna's height and direction while actually listening to a broadcast for best reception.

AMPLIFIER CONNECTION

To connect a control amplifier to the TU-555, use the two cables supplied with the tuner. Connect the R output on the rear panel of the tuner to the right channel input marked TUNER or AUX on the rear of the amplifier. The left channel connection are made between the L output of the tuner and the left TUNER or AUX input of the amplifier.

OPERATION MAINTENANCE

To Listen to an AM Program

- 1. Set the SELECTOR switch to the AM position.
- 2. Select your desired station on the AM band of the tuning dial with the TUNING knob. The station is properly tuned when the needle in the tuning meter swings to the maximum upward position.

Note: While the scale of the tuning meter is graduated from 1 to 5, the needle need not move all the way to "5" to indicate optimum reception.

To Listen to a FM Program

- 1. Set the SELECTOR switch to the FM AUTO position. If too much noise or interference accompanies a stereo program with the SELECTOR switch in the FM AUTO position, turn it to the FM MONO position and listen to the program monophonically.
- 2. Set the MUTING switch to the ON position.
- 3. Select your desired position on the FM band of the tuning dial with the TUNING knob. The station is properly tuned when the needle in the tuning meter swings to the maximum upward position.
- 4. Set the MPX NOISE CANCELER to the ON position if annoying noise accompanies the FM stereo program.
- 5. For FM stereo reception, the mode switch of the control amplifier must be in the STEREO position.

For your convenience, adjust the amplifier's rear level control to the output of a record player or other components connected to the amplifier. This level control saves readjustment of the volume control of the amplifier when the programs are switched between tuner and components.

MAINTENANCE FM MPX Separation

If the channel separation during the FM stereo reception becomes inadequate or excessive, turn the screw marked MPX SEPARATION on the rear panel of the tuner for natural proportions. Never attempt to turn it without reason as it has been properly adjusted prior to leaving our factory.

Local-Distant Antenna Switch

This switch is used to attenuate very strong signals to avoid overloading. In strong signal areas, this switch should be set to LOC. In other locations, this switch should be set to DIST.

Ventilation

Adequate air circulation is absolutely essential for proper operation. The enclosure should be open at the rear, and should provide at least $1\frac{1}{2}$ in. of free space above the TU-555 for air circulation. Nothing must be placed directly on the top of the tuner

AC Outlet

One AC outlet on the rear panel is used to serve as power supply source for a tape recorder or other components. This outlet has a maximum rating of 150 VA.

Power Fuse

Should the tuner fail to operate when the POWER switch is pushed on, the probable cause is either a power stoppage or a blown fuse. To check, remove the TU-555's power cord from its outlet, turn the fuse holder on the rear panel counterclockwise, and remove the fuse. If it is blown, replace it with a new glass-tubed fuse of the same capacity (1 ampere) after determining and eliminating the trouble source that caused the fuse to blow. Using wire or a fuse of a different capacity as a stop-gap measure is dangerous and should be avoided.

Output Level Switch

This switch is used to adjust the output level of FM and AM programs. To raise the output, set this switch to HIGH; to reduce, set it to LOW. If this switch is adjusted to the output of a record player or other components connected to the control amplifier, it saves readjustment of the volume control of the amplifier when the programs are switched between tuner and components.

Grounding

Connect a vinyl or enameled wire from the terminal screw marked GND or AM-G to a copper plate buried underground or to a water pipe. Whenever an outdoor AM antenna is used, grounding becomes necessary.

SPECIFICATIONS CHARACTERISTICS

FM SECTION

FREQUENCY RANGE: from 88 to 108 MHz

SENSITIVITY:

2.0 / V (20dB quieting)

2.5 µV (IHF)

HARMONIC DISTORTION:

less than 0.8%

SIGNAL TO NOISE RATIO:

better than 60dB

SELECTIVITY:

better than 45dB

IMAGE FREQUENCY REJECTION: better than 50dB

IF REJECTION:

better than 60dB

CAPTURE RATIO:

3.0dB (IHF)

SPURIOUS RESPONSE REJECTION: better than 60dB

FM STEREO SEPARATION:

better than 35dB

SPURIOUS RADIATION:

less than 34dB

LOCAL/DISTANT SWITCH:

Local; attenuate

20dB, Distant;

direct.

AM SECTION

FREQUENCY RANGE: from 535 to 1,605 kHz

SENSITIVITY:

 $20\mu V$ at 1,000 kHz

IMAGE FREQUENCY REJECTION:

better than 40dB at 1,000 kHz

IF REJECTION:

better than 60dB at 1,000 kHz

SELECTIVITY:

better than 20dB at 1,000 kHz

AUDIO OUTPUT

RATED OUTPUT VOLTAGE: greater than 1.5V

LOAD IMPEDANCE:

over 10 k ohms

INDICATORS

Signal Strength (meter)

Stereo Indicator (lamp)

OTHER SPECIAL FEATURES

FM Antenna input 300 ohms balanced/75 ohms unbalanced. AM Ferrite bar antenna. FM Muting. MPX Noise canceler, Output Adjustor. Meter Tuning. Heavy Fly-wheel Tuning.

SEMICONDUCTORS

TRANSISTOR AND FET:

DIODE, VARISTOR AND ZENER DIODE: 21

POWER REQUIREMENTS

POWER VOLTAGE:

117, 220 \sim 240V, 50 and 60Hz

POWER CONSUMPTION: 10VA

DIMENSIONS (without knobs, rubber stands and bar antenna)

WIDTH:

111/2"

HIGHT:

DEPTH:

101/2"

WEIGHT:

85/8 lbs

^{*} All rights reserve specifications subject to change without notice

BLOCK DIAGRAM

GENERAL TROUBLESHOOTING CHART

In some instances, the amplifier which is operating satisfactorily develops hum or noise as listed on this page. In this case, eliminate the trouble source as indicated in the column under WHAT TO DO.

If you are confronted with a trouble not covered here or if you have any questions concerning the operation and maintenance of this amplifier, please contact our Customer Service Department.

If your AM and/or FM stereo listening isn't all you'd expected, it is in many cases that the tuner is not at fault. The trouble may attributed to the following:

1. Incorrect component connection or loose terminal contact;

- 2. Incorrect or improper operation of runer and/or other components;
- 3. Improper location of components;
- 4. Other component or components defective. Other probable causes are listed below:

PROGRAM	SYMPTOM	PROBABLE CAUSE	WHAT TO DO
AM, FM mono or FM stereo	A. Constant or intermittent noise heard at times or in a certain area	* Discharge or oscillation caused by electrical appliances, such as fluorescent lamp, TV set, D.C. motor, rectifier and oscillator * Natural phenomena, such as atmospherics, statics, strays and thunderbolt * Insufficient antenna input due to thick reinforced concrete wall of a building or long distance from the station * Wave interference from other electrical appliances	* Attach a noise limiter to the electrical appliance that causes the noise, or attach it to the power source of the amplifier. * Install an outdoor antenna and ground the amplifier to raise the signal-to-noise ratio. * Reverse the power cord plugreceptacle connections. * If the noise occurs at a certain frequency, attach a wave trap to the ANT. input. * Keep the set in proper distance from other electrical appliances.
	B. The needle of the tuning meter does not move well.	The movement of the needle is one thing, the sensitivity of the amplifier is another.	Turn the set for maximum signal strength.
	C. The zero point of the meter diverges much.	Regional difference in field intensity	The unit is not at fault.
AM	A. Noise heard at a particular time of a day, in a certain area or over part of dial	This results from the nature of AM broadcast.	* Install the antenna for maximum antenna efficiency. See page 6. * In some cases, the noise can be eliminated by grounding the amplifier or reversing the power cord plug-receptacle connections.
	B. High-frequency noise	* Adjacent-channel interference or beat interference	* Although such noise cannot be eliminated it is advisable to switch on the noise filter of the amplifier.

PROGRAM	SYMPTOM	PROBABLE CAUSE	WHAT TO DO
(Continued)		* TV set too close to the audio system	* Keep the TV set in proper distance from the audio system.
FM	tions of transmission by efficiency. As a result, y	* Poor noise limiter effect or to low S/N ratio due to in- sufficient antenna input sted considerably by the condi- stations: power and antenna ou may receive one station quite	 * Install the antenna (attached) for maximum signal strength. * If this does not prove effective, use an outdoor antenna designed exclusively for FM. When you use a TV antenna for both TV and FM with the help of a divider, make sure the
	well while having difficu	TV reception is not affedted. * Excessive long antenna may rather cause a noise.	
	B. Noise heard like "scratch noise"	* Ignition noise caused by the starting of an automobile engine	* Install the antenna and its lead-in wire in proper distance from the road or raise the antenna input as described above.
	C. Distortion or no sound during the reception	* Drift of tuning resulted from the nature of FM	* Retune the signal with the tuning knob.
	D. Tuning noise between stations	This noise results from the nature of the FM reception. As the station signal becomes weak, the noise limiter effect is also decreased. The amplification of the limiter, in turn, is enlarged and thus a big noise is generated.	* Turn the MUTING switch on.
FM stereo	A. Noise heard during FM-MPX reception while not heard during FM mono reception	* The servise area of the FM-MPX broadcast is only half as much as that of the FM mono broadcast.	* Install the antenna for maximum antenna input. * Switch on the NOISE CANCELER.
	B. Clearness of channel separation is decreased during the reception.	* Excess heat	* Circulation of air is important to the amplifier. Make sure that air can flow underneath.
	C. The stereo indicator goes on and off.	* Interference	* The indicator is not at fault. * Readjust VR ₄₀₁ .
	D. The stereo indicator goes on and off even though a stereo station is not received.	* Interference	* The indicator is not at fault. * Readjust VR ₄₀₁ .
	E. The BALANCE control of the amplifier used is not at the midpoint when equal sound comes from left and right channels	* The BALANCE control should not be always set to the midpoint	* Set the control to the position where equal sound comes from both channels * Check for unequal program loudness

DISASSEMBLY PROCEDURE

REMOVING THE FRONT PANEL, BONNET AND BOTTOM PLATE

CUSTON MOUNTING

This diagram shows the size and dimensions required for mounitng the TU-555 into a custommade cabined.

Note: That ample space is provided for complete air circulation above and below the tuner.

- 1. Be sure the cabinet window measures $11^{7}/_{64}" \times 4^{1}/_{16}"$ as indicated in the diagram.
- 2. Place two boards on the floor of the cabinet as illustrated. Board should measure ${}^{25}/{}_{32}'' \times {}^{25}/{}_{32}'' \times {}^{77}/{}_{8}''$.

 3. Drill two holes $({}^{25}/{}_{64}''\phi)$ in the bottom of the cabinet at points cor-
- responding to holes in the bottom of the tuner.
- 4. Remove the four rubber feet from the TU-555. (Retain for future
- 5. Insert the TU-555 into the cabinet through the window until the edges of its front panel are flush with the cabinet, and secure both and cabinet with washers and butterfly bolts provided.

ALIGNMENT

Alignment procedures are summarized in this section. Proper alignment requires use of precision instruments as given below:

- 1. Sweep generator; 2. Oscilloscope; 3. FM signal generator; 4. Multiplex stereo generator;
- 5. AC vacuum-tube voltmeter; 6. Audio signal generator; 7. AM signal generator

AM TUNER ALIGNMENT PROCEDURE

STEP	ALIGN	GENERATOR	FEED SIGNAL TO	CONNECT	DIAL SETTING	ADJUST	ADJUST FOR
1.	IF transformer	455 kHz ±30 kHz sweep generator	Antenna terminals	Oscilloscope to TP _{3F}		I.F.T. $(T_{302} \sim T_{305})$ coil	Best IF wave form
2.	OSC.	AM signal generator 535 kHz 400 Hz 30% modulation	Antenna terminals	Oscilloscope & V.T.V.M. to output load	535 kHz	OSC. coil (T ₃₀₁)	Maximum
3.	OSC. (2)	1600 kHz 400 Hz 30% modulation	Antenna terminals	Oscilloscope & V.T.V.M. to output load	1600 kHz	OSC. trimmer (TC ₃₀₂)	Maximum
4.	Reiterate 2,3						
5.	Antenna circuit (1)	600 kHz 400 Hz 30% modulation	Antenna terminals	Oscilloscope & V.T.V.M. to output load	600 kHz	Ferrite antenna coil (L ₃₀₁)	Maximum
6.	Antenna circuit (2)	1400 kHz 400 Hz 30% modulation	Antenna terminals	Oscilloscope & V.T.V.M. to output load	1400 kHz	Trimmer (TC ₃₀₁)	Maximum
7.	Reiterate 5,6						

ALIGNMENT

FM TUNER ALIGNMENT PROCEDURE

STEP	ALIGN	SIGNAL GENERATOR	FEED SIGNAL TO	CONNECT	DIAL SETTING	ADJUST	ADJUST FOR
1.	IF transformer	10.7 MHz ±200 kHz sweep generator	TP ₁₀₁	Oscilloscope to TP ₂₀₃ through 0.02µF ceramic capacitor		Primary and secondary of IF transformer $(T_{103}, T_{201}, T_{202}, T_{203})$	Best IF wave form Place $0.02\mu F$ ceramic capacitor between collector and ground of TR_{204}
2.	Discrimi- nator	10.7 MHz ±200 kHz sweep generator	TP ₁₀₁	Oscilloscope to 2D through 0.02µF ceramic capacitor		Primary and secondary of discriminator transformer (T ₂₀₄)	S curve
3.	Local oscillator (1)	FM signal generator 88MHz, 400 Hz, 100% modulation	Antenna terminals	Oscilloscope and V.T.V.M. to load terminal	88 MHz	Local oscillator coil (L_0)	Maximum
4.	Local oscillator (2)	FM signal generator 108 MHz, 400 Hz, 100% modulation	Antenna terminals	Oscilloscope and V.T.V.M. to load terminal	108 MHz	Local oscillator trimmer (TC ₀)	Maximum
5.	Reiterate 3, 4						
6,	High- frequency amp. circuit (1)	FM signal generator 90 MHz, 400 Hz, 100% modulation	Antenna terminals	Oscilloscope and V.T.V.M. to load terminal	90 MHz	Antenna coil (L _A , L _R)	Maximum
7.	High- frequency amp. circuit (2)	FM signal generator 106 MHz, 400 Hz, 100% modulation	Antenna terminals	Oscilloscope and V.T.V.M. to load terminal	106 MHz	Trimmer (TCA, TCR)	Maximum
8.	Reiterate 6, 7						

FM DISCRIMINATOR CHARACTERISTIC

FM IF CHARACTERISTIC

FM MULTIPLEX ALIGNMENT PROCEDURE

STEP	ALIGN	SIGNAL GENERATOR	FEED SIGNAL TO	CONNECT	DIAL SETTING	ADJUST	ADJUST FOR
1.	67 kHz trap	Audio signal generator, 68 kHz 200 mV r.m.s.	4A	V.T.V.M. to 4H		T ₄₀₄	Minimum
2.	19 kHz tuning coil	 FM signal generator, 98 MHz, 60 dB Stereo signal generator, 30% modulation of composite signal (L or R) including pilot signal 	Antenna terminals	V.T.V.M. to 4G	98 MHz	L ₄₀₁ , L ₄₀₂	Maximum Set VR ₄₀₁ to max. clockwise position.
3.	38 kHz tuning coil	 FM signal generator, 98 MHz, 60 dB Stereo signal generator, 30% modulation of composite signal (L or R) including pilot signal 	Antenna terminals	V.T.V.M. to 4G	98 MHz	T ₄₀₁ , T ₄₀₂	Maximum Set VR ₄₀₁ to max. clockwise position.
4.	38 kHz tuning coil Separation VR	 FM signal generator, 98 MHz, 60 dB Stereo signal generator including pilot signal Composite signal L-channel 30% modulation 	Antenna terminals	Oscilloscope and V.T.V.M. to load terminals	98 MHz	T ₄₀₃ , VR ₀₀₁	 Observe the wave from of the L channel output and adjust T₄₀₁ to maximum output. Adjust the separation VR₀₀₁ for optimum separation

PRINTED CIRCUIT SHEETS AND PARTS LIST

X: Parts No. Y: Parts Name Z: Position of Parts (Co-ordinate number and letter in printed circuit)

FM Multiplex and Indicator (F-1099K)

141 141	ultiplex and Indicator < F	וכפטו
х	Y	Z
R401	1kΩ ±10% ¼W Carbon Resistor	2 C
R402	22kΩ ±10% ¼W Carbon Resistor	1 C
R403	$22k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 C
R404	$8.2k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 C
R405	270Ω ±10% ¼W Carbon Resistor	1 C
R406	$3.3k\Omega \pm 10\% \%$ W Carbon Resistor	2 B
R407	330k Ω ±10% $\frac{1}{4}$ W Carbon Resistor	1 B
R408	$47k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 B
R409	1.2kΩ ±10% ¼W Carbon Resistor	2 B
R410	47Ω ±10% ¼W Carbon Resistor	1 B
R411	220kΩ ±10% ¼W Carbon Resistor	1 A
R412	$10 \mathrm{k}\Omega$ $\pm 10\%$ $^{1}\!\!/_4$ W Carbon Resistor	1 A
R413	$10k\Omega \pm 10\%$ $\frac{1}{4}W$ Carbon Resistor	2 A
R414	220k Ω \pm 10% ${}^{1}\!\!/_{4}$ W Carbon Resistor	1 A
R415	220kΩ ±10% ¼W Carbon Resistor	1 A
R416	$10k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 A
R417	$10k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 A
R418	$220k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 A
R419	$47k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 A
R420	$47k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 A
R421	$47k\Omega \pm 10\% $	1 A
R422	$47k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 A
TH401	33D26 (0320070)	2 B
C401	100 pF ±10% 50 WV Ceramic Capacitor	1 C
C402	10 μF 10 WV Electrolytic Capacitor	2C
C403	33μF 6.3 WV Electrolytic Capacitor	1 C
C404	1000 pF ± 5 % 50 WV Mica Capacitor	2 C
C405	270 pF ± 5 % 50 WV Styrol Capacitor	2 C
C406	10 μF 10 WV Electrolytic Capacitor	2 A
C407	3300 pF ± 5 % 50 WV Styrol Capacitor	1 C
C408	330 pF ± 5 % 50 WV Mica Capacitor	1B, C
C409	3300 pF ± 5 % 50 WV Styrol Capacitor	1, 2 B
C410	1500 pF ± 5 % 50 WV Styrol Capacitor	1 B
C411	100μF 16 WV Electrolytic Capacitor	1 B
C412	560 pF ± 5 % 50 WV Styrol Capacitor	1 A
C413	560 pF ± 5 % 50 WV Styrol Capacitor	2 A
C414	0.0033 pF ±10% 50 WV Mylar Capacitor	1 A
C415	0.0033 µF ±10% 50 WV Mylar Capacitor	2 A
C416	0.1 μF 25 WV Alum. Electrolytic Capacitor	1 A
C417	0.1 µF 25 WV Alum.	2 A
C418	$0.02\mu\text{F}$ $\frac{+80}{-20}\%$ 25 WV Ceramic Capacitor	2 B
TR401	2SC828T (0305270)	1 C
TR402	2SC828T (0305270)	1, 2 B
TR403	2SC828T (0305270)	2 B
TR404	2SD178R (0308140)	2 B
D401	IN34A (0310400)	1 B
D402	IN34A (0310400)	1 B

X	Υ		Z
D403	IN34A(Y)	(0310401)	1 A
D404	IN34A(Y)	(0310401)	2 A
D405	IN34A(Y)	(0310401)	1 A
D406	IN34A(Y)	(0310401)	2 A
T401	MPX Coil	(4240300)	1B, C
T402	MPX Coil	(4240300)	2 B , C
T 403	MPX Coil	(4240310)	1, 2 B
T404	MPX Coil	(4240400)	2 C
L 401	Ferri Inductor	(4900031)	2 C
VR401	200kΩ(B) Indicator Adj.	(1030350)	2C

PRINTED CIRCUIT SHEETS AND PARTS LIST

X: Parts No. Y: Parts Name Z: Position of Parts (Co-ordinate number and letter in printed circuit)

FM IF Amplifier Section (F-1087)

X	Y	Z
R201	4.7kΩ ±10% ¼W Carbon Resistor	2 A
R202	180kΩ ±10% ¼W Carbon Resistor	1 A
R203	390Ω ±10% ¼W Carbon Resistor	2 A
R204	560Ω ±10% ¼W Carbon Resistor	1 A
R205	22Ω ±10% ¼W Carbon Resistor	1 A
R206	12kΩ ±10% ¼W Carbon Resistor	1 B
R207	6.8kΩ ±10% ¼W Carbon Resistor	1 A
R208	1kΩ ±10% ¼W Carbon Resistor	2 B
R209	$820\Omega~\pm10\%~rac{1}{4}$ W Carbon Resistor	1 B
R 210	22Ω ±10% ¼W Carbon Resistor	1 B
R211	6.8kΩ ±10% ¼W Carbon Resistor	2 B
R212	10kΩ ±10% ¼W Carbon Resistor	1 B
R 213	$1k\Omega \pm 10\% \ \frac{1}{4}$ W Carbon Resistor	2 B
R214	680Ω ±10% ¼W Carbon Resistor	1 B
R 215	22Ω ±10% ¼W Carbon Resistor	1 C
R216	10kΩ ±10% ¼W Carbon Resistor	1 C
R217	6.8kΩ ±10% ¼W Carbon Resistor	2 C
R 218	1kΩ ±10% ¼W Carbon Resistor	1 C
R219	$680\Omega \pm 10\% \frac{1}{4} W$ Carbon Resistor	1 C
R220	1.5 k Ω $\pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	10
R221	1kΩ ±10% ¼W Carbon Resistor	1 D
R222	$10k\Omega \pm 10\% \ \frac{1}{4}W$ Carbon Resistor	1 D
R223	$10k\Omega \pm 10\% \ \frac{1}{4}W$ Carbon Resistor	1 D
R224	$68\Omega~\pm10\%~rac{1}{4}$ W Carbon Resistor	1 D
R225	$22\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	1 C
R226	$100 \mathrm{k}\Omega \pm 10\%$ ¼W Carbon Resistor	2 B
R227	$12k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 B
R228	$1k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 A
R229	22kΩ ±10% ¼W Carbon Resistor	2 B
R230	39kΩ ±10% ¼W Carbon Resistor	2 A
R231	$22k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2C
R232	10kΩ ±10% ¼W Carbon Resistor	2 B
R233	$1k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 C
R234	$22\Omega \pm 10\%$ ½W Carbon Resistor	2 C
R235	$47k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 D
R236	$39k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor $12k\Omega \pm 10\% \frac{1}{4}W$ Carbon Resistor	2 D
R237	12k22 10% /4 W Carbon Resistor	2 D
C201	$1000 \mathrm{pF} \pm 10\% 50 \mathrm{WV}$ Ceramic Capacitor	1A
C202	0.02μ F $^{+100}_{-0}\%$ 25 WV Ceramic Capacitor	2 A
C203	0.02μ F $^{+100}_{-0}\%$ 25 WV Ceramic Capacitor	1 B
C204	0.02μ F $^{+100}_{-0}\%$ 25 WV Ceramic Capacitor	1 A
C205	0.02μ F $^{+100}_{-0}\%$ 25 WV Ceramic Capacitor	2 B
C206	0.02μ F $^{+100}_{-0}\%$ 25 WV Ceramic Capacitor	1 B
C207	$0.02\mu\mathrm{F} {}^{+100}_{-0}\%$ 25 WV Ceramic Capacitor	1 B
C208	0.02μ F $^{+100}_{-0}\%$ 25 WV Ceramic Capacitor	2 B
C209	0.02μ F $^{+100}_{-0}\%$ 25 WV Ceramic Capacitor	10
C ₂₁₀	0.02μ F $^{+100}_{-0}\%$ 25 WV Ceramic Capacitor	10
C ₂₁₁	0.04μ F $^{+100}_{-0}\%$ 25 WV Ceramic Capacitor	10
		1

X	Υ		Z
C212	220 pF ±20% 50 WV C	eramic Capacitor	1 D
C213	220 pF ±20% 50 WV C	eramic Capacitor	1 D
214	$10 \mu F$ 10 WV $_{EI}^{RI}$	B ectrolytic Capacitor	10
C215		eramic Capacitor	1 D
C216		eramic Capacitor	2 A
C217	$3.3 \mu F$ 25 WV $_{EI}^{RI}$	B ectrolytic Capacitor	2 A
C218	$0.02\mu F + \frac{100}{0}\%$ 25 WV C	eramic Capacitor	2 A
C219		eramic Capacitor	2 B
C220	1000 pF ±20% 50 WV C	eramic Capacitor	2 B
C221	•	luminum Solid Capacitor	2 A
C222	$0.04 \mu F + \frac{100}{0}\%$ 25 WV C	Ceramic Capacitor	2 A
C223	$2.2\mu F \pm 0.5 pF 50 WV C$	Ceramic Capacitor	2 B
C224	. — 0	Ceramic Capacitor	2 C
C225	, – 0	Ceramic Capacitor	2 D
C226	$0.02\mu F + \frac{100}{0}\%$ 25 WV C	Ceramic Capacitor	2 D
C227	1.100	Ceramic Capacitor	2 D
C228	1.100	Ceramic Capacitor	2 C
C229	1.100	Ceramic Capacitor	1 C
C230	1.100	Ceramic Capacitor	2 D
C231	1.100	Ceramic Capacitor	2 D
C232	0	Ceramic Capacitor	2 D
C233	1μ F 50 WV $_{\rm E}^{ m R}$	B lectrolytic Capacitor	2 C
C234		Ceramic Capacitor	2 B
C235	4.7 pF ±20% 50 WV C	•	2 B
C236	47 pF ±10% 50 WV C	Ceramic Capacitor	2 B
TR201	2SC829(C)	(030546-1)	1 A
TR202	2SC829(B)	(030546)	1 B
TR203	2SC829(B)	(030546)	1 B
TR204	2SC829(B)	(030546)	1 C
TR205	2SC829(C)	(030546-1)	2 C
TR206	2SC828(T)	(030527)	2 D
T201	FM IFT	(423532)	1 A
T202	FM IFT	(423533)	1 B
T203	FM IFT	(423533)	10
T204	FM Discriminator Trans	(423518)	10
T205	FM Meter Trans	(423529)	2 C
D201	IN60	(031033)	2 A
D ₂₀₂	IN60	(031033)	2 B
D203	IN60	(031033)	2 C
D204	IN60	(031033)	
VD201	DS410	(031046)	2 B
VD 202	DS410	(031046)	2 C
VR201	Meter Control 50k	Q(B) (103020)	2 C
VR202	Muting Control 200ks	Ω(B) (103035)	2 D

Meter <F-1220>

Х	Υ	
R323	680 k Ω \pm 10% $\frac{1}{4}$ W Carbo	n Resistor 1 B
R 324	2.2 k Ω \pm 10% $\frac{1}{4}$ W Carbo	n Resistor 2 B
R325	4.7k Ω \pm 10% $\frac{1}{4}$ W Carbo	n Resistor 1 B
VR302	V101KR-B 50kΩ	(103049,-1) 1 A
C332	100 pF ±10% 25WV Cerd	amic Capacitor 1C
C333	$0.02\mu F + \frac{80}{20}\% 25WV Cerd$	amic Capacitor 2 B
C334	0.68 µF 25WV Alumi	inum Solid Capacitor 1 B
C335	1μF 50WV Elect	rolytic Capacitor 1 A
TR305	2SC460 B, C	(030535,-1) 2 B
D306	IN60	(031033) 2 B

PRINTED CIRCUIT SHEETS AND PARTS LIST

AM IF Amplifier Section (TRAM-4A)

X	Y	Z
R301	82kΩ ±10% ¼W Carbon Resistor	2 A
R302	4.7k Ω \pm 10% $\frac{1}{4}$ W Carbon Resistor	1 A
R303	1.8 k Ω \pm 10% ${}^{1}\!\!{}_4$ W Carbon Resistor	1 A
R304	$120\Omega~\pm10\%~rac{1}{4}$ W Carbon Res stor	1 B
R305	68k Ω \pm 10% ${}^1\!\!4$ W Carbon Resistor	2 A
R306	68k Ω \pm 10% ${}^{1}\!\!4$ W Carbon Resistor	1 B
R307	$56 \mathrm{k}\Omega~\pm$ 10% $^{1}\!\!/_4$ W Carbon Resistor	2 C
R308	2.2 k Ω \pm 10% ${}^{1}\!\!{}_{4}$ W Carbon Resistor	2 B
R309	1k Ω \pm 10% ${}^1\!\!/_4$ W Carbon Resistor	1 B
R 310	$330\Omega~\pm 10\%~rac{1}{4}$ W Carbon Resistor	1 C
R312	5.6k Ω \pm 10% ${}^{1}\!\!{}_{4}$ W Carbon Resistor	1 D
R313	1kΩ ±10% ¼W Carbon Resistor	1 C
R314	4.7k Ω \pm 10% ${}^{1}\!\!{}_{4}$ W Carbon Resistor	1 C
R315	470 Ω \pm 10% ${}^{1}\!\!{}_{4}$ W Carbon Resistor	1 D
R 316	4.7k Ω \pm 10% ${}^{1}\!\!{}_4$ W Carbon Resistor	2 D
R 317	27kΩ ±10% ¼W Carbon Resistor	2 D
R029	4.7k Ω \pm 10% ${}^{1}\!\!{}_{4}$ W Carbon Resistor	1 B
C302	$0.02\mu F \stackrel{+100}{-} \%$ 50 WV Ceramic Capacitor	1 A
C303	47μF 10 WV RB Electrolytic Capacitor	1 B
C304	0.02μ F $^{+100}_{-0}\%$ 50 WV Ceramic Capacitor	2 A
C305	0.005μF ±20% 50 WV Ceramic Capacitor	2 A
C306	15 pF ±10% 50 WV Ceramic Capacitor	2 A
C307	430 pF ±10% 25 WV Mica Capacitor	2 A
C308	1μF 50 WV Ceramic Capacitor	2 B

Х	Y		Z
C309	$0.02\mu F \stackrel{+100}{-0}\%$ 50 WV Cer	amic Capacitor	2 B
C310	$0.02 \mu F \stackrel{+100}{-} \%$ 50 WV Cer	amic Capacitor	2 C
C311	$0.02 \mu F + \frac{100}{0}\%$ 50 WV Cer	amic Capacitor	1 C
C312	$220 \mu F$ 10 WV $_{ m Elec}^{ m RB}$	trolytic Capacitor	1 C
C313	$0.01 \mu F \pm 10\%$ 50 WV My	lar Capacitor	1 D
C314	$0.01 \mu \text{F} \pm 10\%$ 50 WV My		1 D
C315	0.47μF 25 WV ^{Alum}	ninum Solid Capacitor	1 D
C317	$0.1 \mu F \pm 10\%$ 50 WV My	lar Capacitor	1 D
C318	2 pF ±0.5 pF 50 WV Cer	amic Capacitor	2 C
C319	1 pF ±0.5pF 50 WV Cer		2 C
C321	$0.02\mu F - 0\%$ 50 WV Cer	amic Capacitor	1 B
TR301	2SA 102	(030004)	2 A
TR302	2SA101(X)	(030005)	2 B
TR303	2SA101(Y)	(030005-1)	2 C
T301	AM Locol Oscilator Coil	(422006)	2 A
T302	AM IFT	(423007)	1 B
T303	AM IFT	(423008)	1 B
T304	AM IFT	(423009)	2 C
T305	AM IFT	(423010)	2 D
D301	IN60	(031033)	2 B
D302	IN60	(031033)	1 D

Audio Amplifier Section (F-1086)

X		Y	Z
R501	1kΩ ±10%	1/4 W Carbon Resistor	2 A
R502	1kΩ ±10%	1/4 W Carbon Resistor	1 A
R503		1/4 W Carbon Resistor	2 A
R504		1/4 W Carbon Resistor	1 A
R 505	100kΩ ±10%	1/4 W Carbon Resistor	2 B
R506	100 k $\Omega \pm 10\%$	1/4 W Carbon Resistor	1 B
R507	$1k\Omega \pm 10\%$	1/4W Carbon Resistor	2 A
R508	1kΩ ±10%	1/4 W Carbon Resistor	1 A
R509	150kΩ ±10%	1/4 W Carbon Resistor	2 B
R510	150 k Ω $\pm 10\%$	1/4 W Carbon Resistor	1 B
R511	5.6 k Ω $\pm 10\%$	1/4W Carbon Resistor	2 C
R512	5.6kΩ ±10%	1/4 W Carbon Resistor	1 C
R513	$820\Omega \pm 10\%$	1/4 W Carbon Resistor	2 C
R514	820Ω ±10%	1/4W Carbon Resistor	1 C
R515	33kΩ ±10%	1/4 W Carbon Resistor	2 B
R516	33kΩ ±10%	4W Carbon Resistor	1 B
C501	1μΕ	50 WV RB Electrolytic Capacitor	2 A
C502	1μF	50 WV RB Electrolytic Capacitor	1 A

Х			Υ		Z
C503	100 pF ±20%	25	WV	Ceramic Capacitor	2 B
C504	100 pF ±20%	25	W٧	Ceramic Capacitor	1 B
C505	10 <i>μ</i> F		W۷	clectrolytic Capacitor	2 C
C506	10μF	25	WV	RB Electrolytic Capacitor	1 C
C507	100 pF ±20%	25	W۷	Ceramic Capacitor	2 B
C508	100 pF ±20%	25	W٧	Ceramic Capacitor	1 C
C509	100μF	6.3	WV	RB Electrolytic Capacitor	2 C
C510	100μF	6.3	WV	RB Electrolytic Capacitor	1C
C511	10μF	25	WV	RB Electrolytic Capacitor	2 B
C512	10μF	25	WV	RB Electrolytic Capacitor	1 B
TR501	2SC871(D)			(030547)	2 A
TR502	2SC871(D)			(030547)	1 A
TR503	2SC458(B) or	(C)	(030	511-1 or 2)	2 B
TR504	2SC458(B) or	(C)	(030	511-1 or 2)	1 B

OTHER PARTS AND THEIR POSITION ON CHASSIS

X: Parts No. Y: Parts Name

Others

X	Y	
R 001	$470\Omega \pm 10\%$ 3W Cement Resistor	
R002	$330\Omega \pm 10\%$ ½W Carbon Resistor	
R004	2.7 k Ω $\pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	
R005	1.8 k Ω \pm 10% $^{1}\!\!/_4$ W Carbon Resistor	
R007	180kΩ ±10% ¼W Carbon Resistor	
R008	180 k Ω $\pm 10\%$ $\frac{1}{4}$ W Carbon Resistor	
R009	1k Ω \pm 10% ${}^{1}\!\!/_4$ W Carbon Resistor	
R010	100k Ω \pm 10% ${}^1\!\!/_4$ W Carbon Resistor	
R012	$680\Omega~\pm10\%~rac{1}{4}$ W Carbon Resistor	
R013	$68\Omega~\pm10\%~rac{1}{4}$ W Carbon Resistor	
R014	47k Ω \pm 10% $1/4$ W Carbon Resistor	
R015	12 k Ω \pm 10% ${}^{1}\!\!{}_4$ W Carbon Resistor	
R016	47k Ω \pm 10% ${}^{1}\!\!{}_4$ W Carbon Resistor	
R017	12k Ω \pm 10% ${}^1\!\!/_4$ W Carbon Resistor	
R018	$1 M\Omega \pm 10\% \ {}^1_4 W$ Carbon Resistor	
R019	10 k Ω \pm 10% ${}^{1}\!\!{}_4$ W Carbon Resistor	
R021	4.7k Ω \pm 10% ${}^{1}\!\!{}_4$ W Carbon Resistor	
R431	47k Ω \pm 10% ${}^{1}\!\!{}_4$ W Carbon Resistor	
R432	47k Ω \pm 10% ${}^{1}\!\!{}_4$ W Carbon Resistor	
R433	6.8k Ω \pm 10% ${}^1\!\!/_4$ W Carbon Resistor	
C001	2000/1F 35 WV Lug Electrolyt	ic Capacitor
C002	470μF 16 WV RA Electrolyti	c Capacitor
C003	33μF 16 WV RA Electrolyti	c Capacitor
C004	220µF 25 WV RA Electrolyti	c Capacitor
C005	100μF 16 WV RA Electrolyti	c Capacitor
C006	220μF 10 WV RA Electrolyti	
C007	$0.033 \mu F \pm 20\%$ 600WV Oil Capacitor	
C008	0.0047μ F $\pm 20\%$ 600WV Oil Capacitor	
C009	0.0012µF ±10% 50 WV Mylar Capaci	
C010	$0.0022 \mu F \pm 10\%$ 50 WV Mylar Capacitor	
C011	0.02μ F $^{+100}_{-0}\%$ 50 WV Ceramic Capacitor	
C ₀₁₂	$0.02\mu F \stackrel{+100}{-} \%$ 50 WV Ceramic Capacitor	
C013	0.22µF ±10% 50 WV Mylar Capacitor	
C014	$0.0033 \mu extsf{F} \pm 10\%$ 50 WV Mylar Capacitor	
T 101	$300\Omega:75\Omega$ FM Antenna Trans	
Looi	3.5 µH High-frequency Choke	(429001-1)
L301	Ferrite Bar Antenna	(420010)
L302	3.5µH Choke Coil	(429001-1)
T ₀₀₁	Power Trans	(400030-1)
M001	$200 \mu extsf{A}$ $1.2 extsf{k} \Omega$ Tuning Meter	(090025)
∨ R001	10k Ω (B) 16 ϕ Separation Control	(100502)
S1	Antenna Switch	(111004)
\$2 (a∼d)	Y-2-4-3 Rotary Switch	(110209)
S ₃	Noise Canceler Switch	(117006)
S ₄	Power Switch	(113009)
S ₅	Output Level adjusting Switch	(111004)

X	Υ		
S6	Muting Switch	(117006)	
S7	Voltage Selector Switch	(111008)	
F001	Fuse Holder (1-ampere fuse)	(230002)	
CO001	AC Outlet	(245001)	
D001	SW-05-01 Si Diode	(031051)	
D002	SW-05-01 Si Diode	(031051)	
D003	SM-150-01 Si Diode	(031028)	
ZD001	ZR212 Zener Diode	(031041	

