Recall:

1) A basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ of a vector space V defines a coordinate system:

$$\mathbf{v} = c_1 \mathbf{b}_1 + \ldots + c_n \mathbf{b}_n$$

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

2) Different bases define different coordinate systems.

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$$

Note. Choosing a convenient basis can simplify computations.

Example. Graphene lattice.

Image of graphene taken with an atomic force microscope. © University of Augsburg, Experimental Physics IV.

Coordinates of atoms in the graphene lattice

In the standard basis $\mathcal{E} = \{e_1, e_2\}$:

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

In a more convenient basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$:

$$\mathbf{b}_1 = \begin{bmatrix} 1.21 \\ -0.7 \end{bmatrix}$$

$$\mathbf{b}_2 = \begin{bmatrix} 1.21 \\ 0.7 \end{bmatrix}$$

Problem Let

$$\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}, \quad \mathcal{D} = \{\mathbf{d}_1, \dots, \mathbf{d}_n\}$$

be two bases of a vector space V, and let $\mathbf{v} \in V$. Assume that we know $[\mathbf{v}]_{\mathcal{B}}$. What is $[\mathbf{v}]_{\mathcal{D}}$?

Definition

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{D} = \{\mathbf{d}_1, \dots, \mathbf{d}_n\}$ be two bases of a vector space V. The matrix

$$P_{\mathcal{D} \leftarrow \mathcal{B}} = \begin{bmatrix} \begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{D}} & \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{D}} & \dots & \begin{bmatrix} \mathbf{b}_n \end{bmatrix}_{\mathcal{D}} \end{bmatrix}$$

is called the *change of coordinates matrix* from the basis ${\cal B}$ to the basis ${\cal D}.$

Propostion

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{D} = \{\mathbf{d}_1, \dots, \mathbf{d}_1\}$ be two bases of a vector space V. For any vector $\mathbf{v} \in V$ we have

$$[\mathbf{v}]_{\mathcal{D}} = P_{\mathcal{D} \leftarrow \mathcal{B}} \cdot [\mathbf{v}]_{\mathcal{B}}$$

Example. Let \mathbb{P}_2 be the vector space of polynomials of degree ≤ 2 . Consider two bases of \mathbb{P}_2 :

$$\mathcal{B} = \{1, 1 + t, 1 + t + t^2\}$$

$$\mathcal{D} = \{1 + t, 1 - 5t, 2 + t^2\}$$

- 1) Compute the change of coordinates matrix $P_{\mathcal{D}\leftarrow\mathcal{B}}$.
- **2)** Let $p \in \mathbb{P}_2$ be a polynomial such that

$$[p]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$

Compute $[p]_{\mathcal{D}}$.

Proposition

If $\mathcal{B}, \mathcal{D}, \mathcal{E}$ are three bases of a vector space V then:

1)
$$P_{\mathcal{B}\leftarrow\mathcal{D}}=(P_{\mathcal{D}\leftarrow\mathcal{B}})^{-1}$$

2)
$$P_{\mathcal{E} \leftarrow \mathcal{B}} = P_{\mathcal{E} \leftarrow \mathcal{D}} \cdot P_{\mathcal{D} \leftarrow \mathcal{B}}$$