Stat 134: Section 22

Adam Lucas

November 26th, 2018

Conceptual Review

- a. Suppose I know $\mathbb{E}(X) = \mu$ and $Var(X) = \sigma^2$. With minimal computation, find $\mathbb{E}(X^2)$.
- b. What is the computational formula for Cov(X, Y)?
- c. If two variables X, Y are independent, what is Cov(X,Y)?

Problem 1: Success Runs

I toss a coin which lands heads with probability p. Let W_H be the number of tosses until I get one head in a row (i.e., one head), and W_{HH} be the number of tosses until I get two heads in a row. Find:

- a. $\mathbb{E}(W_H)$;
- b. $\mathbb{E}(W_{HH})$.

Ex 6.rev.21 in Pitman's Probability

Problem 2

Let *X* have uniform distribution on $\{-1,0,1\}$ and $Y = X^2$.

- a. Are *X*, *Y* uncorrelated?
- b. Are *X*, *Y* independent? Explain carefully.

Ex 6.4.5 in Pitman's Probability

Problem 3

Let A and B be possible results of a trial, not necessarily mutually exclusive. Let N_A , N_B be the number of times A, B each occur in n independent trials, respectively. Show that N_A and N_B are uncorrelated if and only if the events A and B are independent. Ex 6.4.13 in Pitman's Probability