

Setup

Given a time series x_t , we conceptually split it into two parts:

Decomposition: $x_t = f(t) + e_t$

- "Signal": f(t)
 - The "interesting part"
- "Noise": e_t
 - "Everything else"
 - $_{\circ}$ Usually, want e_{t} to be white noise

Purpose of many time series models is to decompose the time series to understand the underlying trend.

Signal-to-noise ratio (SNR): Ratio of amplitude of the signal to error The larger the SNR, the easier it is to detect the signal

Seasonality

If the signal f(t) repeats itself after some time d, we say it is seasonal with period d.

- Important: Signal might have both a non-seasonal and seasonal components:
 - f(t) = m(t) + s(t) | signal = non-seasonal + seasonal
- Examples of seasonality:
 - Weather patterns
 - Sleep cycles
 - Sound waves

Seasonality (cont.)

Here's an actual time series that strongly exhibits seasonality

Air Passenger numbers from 1949 to 1961

Monthly Air Passengers Boxplot from 1949 to 1961

Indicator Variables

If our signal is (partly) seasonal, how to we incorporate this into our model?

- Fix: use indicator variables to capture seasonal effects
 - An indicator variable I_A is a binary variable associated with a statement A .
 - I_A = 1 when A is true
 - $I_A = 0$ when A is false
 - ex. If A= "today is August", then $I_A=$ 1 only on August and is 0 all other days.

Indicator Variable Example

Ex. Modeling number of air passengers by month.

Setup:

•
$$x_t = m(t) + s(t) + e_t$$

- m(t): non-seasonal component. Includes effects from factors like increase in demand for flight travel, commercialization of airlines.
- s(t): seasonal component. Flight volume spikes around holidays and other seasonal events.
- e_t : noise

Indicator Variable Example (cont.)

Model:
$$f(t) \approx \beta_0 + \beta_1 t + \alpha_{Feb} I_{Feb} + \ldots + \alpha_{Dec} I_{Dec}$$

- Non-seasonal component: model this as a linear trend
- Seasonal component: linear function of the indicator variables.

- Regress on all month indicators, omitting the intercept.
- Regress on an intercept and the month indicators, omitting one.
- α_{Feb} represents the difference in #passengers in February and β_0 (which can be interpreted as the seasonality in the omitted month).

2 Sinusoids

Stationarity

Sinusoid Parameters

Sine and cosine are the two sinusoidal functions we'll be considering.

$$g(t) = A \sin\left(\frac{2\pi F(t-S)}{D}\right)$$

- \bullet A is the amplitude
- S is the phase shift
- $oldsymbol{\cdot}$ D is the period
- F is the frequency
 - This sine wave will repeat after ${\it D}$ time, its period. However, within a period it will repeat ${\it F}$ times.

Sinusoid Application

If our signal is (partly) seasonal, how to we incorporate this into our model?

Fix: Use sinusoids to model the season part

$$s(t) \approx \sum_{i} a_{i} \sin\left(\frac{2\pi F_{i}t}{D}\right) + b_{i} \cos\left(\frac{2\pi F_{i}t}{D}\right)$$

Considerations

- Need to figure out the (approximately) correct $oldsymbol{D}$
- Which frequencies F_i to use?

Combining Indicator Variable and Sinusoid

We can use both sinusoid and indicator variable to capture seasonality:

$$f(t) \approx \beta_0 + \beta_1 t + \sum_i a_i \sin\left(\frac{2\pi F_i t}{D}\right) + b_i \cos\left(\frac{2\pi F_i t}{D}\right) + \alpha_{Holiday} I_{Holiday}$$

Discrete Fourier Transform

 What is it?: Loosely, decomposes the input into a weighted sum of different frequency waves

$$input = \alpha_0 Wave_0 + \dots + \alpha_{n-1} Wave_{n-1}$$

*Note each wave has its own coefficient α_i

DFT

$$input = \alpha_0 Wave_0 + \dots + \alpha_{n-1} Wave_{n-1}$$

- \bullet Is an invertible linear map: $\mathbb{C}^n \to \mathbb{C}^n$.
 - Can think of it as a orthogonal change of basis
 - Input: some vector in C^n
 - \circ Output: the coefficients $\alpha_0, \cdots, \alpha_{n-1}$
- Fourier waves: $w_j(t) = e^{\frac{i2\pi jt}{n}}$ for $j = 0,1,\cdots,n-1$
 - o Above formula gives the t^{th} entry for the j^{th} wave vector.
 - Using Euler's identity, $e^{ix} = \cos(x) + i \sin(x)$, can think of Fourier waves as ordinary sinusoids in the real/imaginary part

Properties

- If the input is dominated by a single (or a few) frequency, then the magnitude of its coefficient will be the largest relatively.
- The periodogram plots the <u>magnitude</u> of the Fourier coefficients
 - Hence, periodogram will "detect the dominant frequencies" in the input
- Periodogram: we stop plotting at frequency $\frac{n}{2}$ because, for real inputs, the Fourier coefficients will come in conjugate pairs
 - Conjugates have the same magnitude.
 - The full periodogram will be symmetric about $\frac{n}{2}$, so no need to plot past that