```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline

df= pd.read_csv('/content/drive/MyDrive/Titanic.csv')
df.head()
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000
4				,						-

statistical info
df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	0.363636	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.481622	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	0.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	0.000000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	0.000000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	1.000000	3.000000	39.000000	1.000000	0.000000	31.500000
may (1300 000000	1 000000	3 000000	76 000000	8 000000	a nnnnnn	512 320200 •

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 12 columns):
                Non-Null Count Dtype
# Column
---
                 -----
0
    PassengerId 418 non-null
                                int64
    Survived
                418 non-null
                                int64
    Pclass
                418 non-null
                                int64
2
3
    Name
                 418 non-null
                                object
                 418 non-null
                                object
    Sex
                332 non-null
                                float64
    Age
6
    SibSp
                418 non-null
                                int64
    Parch
                418 non-null
                                int64
8
    Ticket
                418 non-null
                                object
                417 non-null
                                float64
    Fare
10 Cabin
                 91 non-null
                                object
11 Embarked
                418 non-null
                                object
dtypes: float64(2), int64(5), object(5)
memory usage: 39.3+ KB
```

```
## categorical attributes
# sns.countplot(df['Survived'])

# sns.countplot(df['Pclass'])

# sns.countplot(train['Sex'])

# sns.countplot(train['SibSp'])
```

```
# sns.countplot(train['Parch'])

# sns.countplot(train['Embarked'])

## numerical attributes
sns.distplot(df['Age'])
```


sns.distplot(df['Fare'])


```
class_fare = df.pivot_table(index='Pclass', values='Fare')
class_fare.plot(kind='bar')
plt.xlabel('Pclass')
plt.ylabel('Avg. Fare')
plt.xticks(rotation=0)
plt.show()
```



```
class_fare = df.pivot_table(index='Pclass', values='Fare', aggfunc=np.sum)
class_fare.plot(kind='bar')
plt.xlabel('Pclass')
plt.ylabel('Total Fare')
plt.xticks(rotation=0)
plt.show()
```


sns.barplot(data=df, x='Pclass', y='Fare', hue='Survived')

sns.barplot(data=df, x='Survived', y='Fare', hue='Pclass')

<Axes: xlabel='Survived', ylabel='Fare'>


```
## find the null values
df.isnull().sum()
```

PassengerId	6
Survived	6
Pclass	6
Name	6
Sex	6
Age	86
SibSp	6
Parch	6
Ticket	6
Fare	1
Cabin	327
Embarked	6
dtype: int64	

drop or delete the column
df = df.drop(columns=['Cabin'], axis=1)

df['Age'].mean()

30.272590361445783

```
# fill missing values using mean of the numerical column
df['Age'] = df['Age'].fillna(df['Age'].mean())
df['Fare'] = df['Fare'].fillna(df['Fare'].mean())

df['Embarked'].mode()[0]
    'S'

# fill missing values using mode of the categorical column
df['Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])

sns.distplot(df['Fare'])
    <Axes: xlabel='Fare', ylabel='Density'>
```



```
df['Fare'] = np.log(df['Fare']+1)
```

sns.distplot(df['Fare'])


```
corr = df.corr()
plt.figure(figsize=(15, 9))
sns.heatmap(corr, annot=True, cmap='coolwarm')
```


drop unnecessary columns df = df.drop(columns=['Name', 'Ticket'], axis=1) df.head()

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	892	0	3	male	34.5	0	0	2.178064	Q
1	893	1	3	female	47.0	1	0	2.079442	S
2	894	0	2	male	62.0	0	0	2.369075	Q
3	895	0	3	male	27.0	0	0	2.268252	S
4	896	1	3	female	22.0	1	1	2.586824	S

from sklearn.preprocessing import LabelEncoder cols = ['Sex', 'Embarked'] le = LabelEncoder()

for col in cols: df[col] = le.fit_transform(df[col]) df.head()

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	892	0	3	1	34.5	0	0	2.178064	1
1	893	1	3	0	47.0	1	0	2.079442	2
2	894	0	2	1	62.0	0	0	2.369075	1
3	895	0	3	1	27.0	0	0	2.268252	2
4	896	1	3	0	22.0	1	1	2.586824	2

```
# input split
X = df.drop(columns=['PassengerId', 'Survived'], axis=1)
y = df['Survived']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train,y_train)
     ▼ LogisticRegression
     LogisticRegression()
print('Accuracy:', model.score(X_test, y_test))
     Accuracy: 1.0
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(X_train,y_train)
     ▼ DecisionTreeClassifier
     DecisionTreeClassifier()
print('Accuracy:', model.score(X_test, y_test))
     Accuracy: 1.0
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(X_train,y_train)
     ▼ RandomForestClassifier
     RandomForestClassifier()
print('Accuracy:', model.score(X_test, y_test))
     Accuracy: 1.0
from sklearn.ensemble import ExtraTreesClassifier
model = ExtraTreesClassifier()
model.fit(X_train,y_train)
     ▼ ExtraTreesClassifier
     ExtraTreesClassifier()
print('Accuracy:', model.score(X_test, y_test))
     Accuracy: 1.0
from xgboost import XGBClassifier
model = XGBClassifier()
classify(model)
     Accuracy: 1.0
     CV Score: 1.0
```

from lightgbm import LGBMClassifier
model = LGBMClassifier()
classify(model)

```
[LightGBM] [Info] Number of positive: 116, number of negative: 197
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000331 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 136
[LightGBM] [Info] Number of data points in the train set: 313, number of used features: 7
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.370607 -> initscore=-0.529614
[LightGBM] [Info] Start training from score -0.529614
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

model = LGBMClassifier()
model.fit(X, y)

```
[LightGBM] [Info] Number of positive: 152, number of negative: 266
     [LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000084 seconds.
     You can set `force row wise=true` to remove the overhead.
     And if memory is not enough, you can set `force_col_wise=true`.
     [LightGBM] [Info] Total Bins 157
     [LightGBM] [Info] Number of data points in the train set: 418, number of used features: 7
     [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.363636 -> initscore=-0.559616
     [LightGBM] [Info] Start training from score -0.559616
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain. best gain: -inf
X_test = df.drop(columns=['PassengerId', 'Survived'], axis=1)
     [lightGBM] [Warning] No further splits with positive gain, best gain: -inf
pred = model.predict(X_test)
pred
     array([0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0,
            1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
            1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1,
            1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
            1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
            0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0,
            1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
            0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
            1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
            0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0,
            1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
            0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1,
            0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0,
            0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
            0,\ 1,\ 0,\ 0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,\ 0,\ 0,
            1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 1. 0. 1. 0.
```