Foundation Calculus & Mathematical Techniques

CELEN037

Weekly Worksheet-3

Topics: Parametric Differentiation, Maclaurin's series, Equations of tangent and normal lines, Newton-Raphson Method, Increasing and Decreasing functions.

Type 1: Parametric Differentiation

- 1. Use the method of parametric differentiation to find $\frac{dy}{dx}$.
 - (i) $x=a\cos\theta$ and $y=b\sin\theta$; $\theta\in[\,0,2\pi\,].$ Also find $\frac{dy}{dx}\Big|_{\theta=\frac{\pi}{4}}.$
 - (ii) $x = 3\sin\theta \cos\theta$ and $y = 3\cos\theta \sin\theta$. Also find $\frac{dy}{dx}\Big|_{\theta = \frac{\pi}{4}}$.
 - (iii) $x = a \left(t \sin t \right)$ and $y = a \left(1 \cos t \right)$ (a is constant). Also find $\frac{dy}{dx} \Big|_{t=\frac{\pi}{2}}$.
 - (iv) $x = \cos^{-1}(\sin \theta)$ and $y = \sin^{-1}(\cos \theta)$; $\frac{\pi}{2} < \theta < \pi$.
 - (v) $x=v_0\,t\,\cos\alpha$ and $y=v_0\,t\,\sin\alpha-\frac{1}{2}\,g\,t^2$ (v_0 , α and g are constant).

(vi)
$$x = \frac{2t}{1+t^2}$$
 and $y = \frac{1-t^2}{1+t^2}$.

 $\mathbf{Hint:} \quad \frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}.$

Type 2: Maclaurin's series

- 2. Obtain the Maclaurin's series expansions of the following functions:
 - (i) $f(x) = \cos x$.
 - (ii) $f(x) = \frac{1}{1-x}$; $x \neq 1$.
 - (iii) $f(x) = \sqrt{1-x}$; x < 1.
 - (iv) $f(x) = \sin x + \cos x$.
 - (v) $f(x) = \tan x$ Note: Differentiate up to the fifth order.
 - (vi) Obtain Maclaurin's series expansion of $f(x) = e^x$.

Also show that
$$\frac{1}{2} \left(e^x - e^{-x}\right) = \sum_1^\infty \, \frac{x^{2k-1}}{(2k-1)\,!}\,.$$

(vii) Obtain Maclaurin's series expansion of $f(x) = \ln(1+x)$.

Hence show that
$$\ln\left(\frac{1+x}{1-x}\right) = 2\sum_{1}^{\infty} \frac{x^{2k-1}}{(2k-1)}$$

(viii) Given
$$f(x) = x e^{-x}$$
, show that $f(x) = x - x^2 + \frac{x^3}{2} - \frac{x^4}{6} + \frac{x^5}{24} - \frac{x^6}{120} + \cdots$

Type 3: Equations of tangent and normal lines

- 3. Obtain the equations of tangent and normal lines to the following curves at given points:
 - (i) $y = \frac{1}{x}$ at (-1, -1).
 - (ii) $y = x^2 2$ at (1, -1).
 - (iii) $e^x y^2 + x^2 = 9$ at (0,3).

Type 4: Newton-Raphson Method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2,)$

- 4. Use the Newton-Raphson method to approximate the root of:
 - (i) $\sin x = x 1$, correct to 5 d.p, starting with $x_0 = 1$.
 - (ii) $2\sin x x = 0$, correct to 6 d.p, starting with $x_0 = 2$.
 - (iii) $2\cos x x^2 = 0$, correct to 6 d.p, starting with $x_0 = 1$.
 - (iv) $x^4 x^2 = 1$, correct to 6 d.p, starting with $x_0 = -1.5$.
 - (v) $x^4 \sin x = 1$, correct to 7 d.p, starting with $x_0 = 1.5$.
 - (vi) $x^3 2x 5 = 0$, correct to 8 d.p, starting with $x_0 = 2$.
 - (vii) $x^3 2x 5 = 0$, correct to 8 d.p, starting with $x_0 = 2$.
 - (viii) Use the Newton-Raphson method to approximate the value of $\sqrt[3]{2}$, correct to 8 d.p., by starting with $x_0 = 1$.

Type 5: Increasing and Decreasing functions

- 5. (i) Show that $f(x) = \tan x$ is increasing $\forall x \in D_f$.
 - (ii) Show that $f(x) = \cos x$ is increasing in the fourth quadrant.
 - (iii) Show that $f(x) = e^{-2x} + 1$ is always decreasing.
 - (iv) Show that $f(x) = x^2 + 2x 3$ is decreasing when x < -1.
 - (v) Given $f(x) = x^3 5x + 1$. Determine the intervals in which the function f is increasing and the intervals in which it is decreasing.
 - (vi) Given $f(x) = 2x^4 + 3x^3 9x^2 + 7$. Determine the intervals in which the function f is increasing and the intervals in which it is decreasing. Also draw a rough sketch for the curve y = f(x).