OS LAB 1

130050001 : Ghurye Sourabh Sunil

130050037: Utkarsh Mall

Q1.

Machine has 4 CPU cores. #Command used : cat cpuinfo | grep "cpu cores"

Total Memory : 8146916 kB. Fraction free : 0.334 #Command used : cat meminfo

Context switches : 3182071 #Command used : cat stat

No. of forks : 4825 #Command used : cat stat

Q2.

cpu1:

CPU is bottleneck resource

Command used: top

top command showed 100% CPU usage by this process.

PID	USER	PR	NI	VIRT	RES	SHR S	S %CPU	%MEM	TIME+	COMMAND
5590	utkarsh	20		4196	648	568 I	R 100.0	0.0	0:18.06	cpu1

Since the program uses only 4-5 variables in its execution, the execution requires solely the CPU.

cpu1print:

console buffer size is the bottleneck resource.

Experiment : compare with printing to file by restricting the loop to 10000 iterations. Time reduces significantly.

cpu2:

CPU is bottleneck resource

Command used: top

top command showed 100% CPU usage by this process.

PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
3839 sourabh	20	0	2020	284	228 R	100.0	0.0	0:25.78 cpu2

Even though it has "gettimeoftheday" syscall, he execution requires mostly the CPU.

disk:

Disk bandwidth is bottleneck resource

Command used: top, iostat

top command showed a mere 6.3% CPU usage by this process. iostat showed significant change in disk I/O bandwidth when program was running and stopped.

PID USER	PR NI	VIRT RES	SHR S %CPU	4.6 3:15.	E+ COMMAND
2870 utkarsh	20 0	643392 181552	28248 S 8.0		56 chrome
6037 utkarsh	20 0	4332 1312	1220 D 6.3		91 disk
Device:	tps	kB_read/s	kB_wrtn/s	kB_read	kB_wrtn
sda	228.00	16176.00	3860.00	16176	3860
Device:	tps	kB_read/s	kB_wrtn/s	kB_read	kB_wrtn
sda	5.00	168.00	0.00	168	0
Device:	tps	kB_read/s	kB_wrtn/s	kB_read	kB_wrtn
sda	17.00	16.00	104.00	16	104
Device:	tps	kB_read/s	kB_wrtn/s	kB_read	kB_wrtn
sda	0.00	0.00	0.00	0	0

In every iteration a new file is required to be read by the program hence the OS is not able to cache new information in each iteration, due to which a significant disk I/O bandwidth is required by **disk**.

disk1:

CPU is bottleneck resource Command used: top, iostat

top command showed 99.8% CPU usage by this process. iostat did not show significant change in disk I/O bandwidth when program was running and stopped.

PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
5760 utkarsh	20	0	4332	1320	1224 R	99.8	0.0	0:06.34 disk1

Device:	tps	kB_read/s	kB_wrtn/s	kB_read	kB_wrtn
sda	0.00	0.00	0.00	0	0
Device:	tps	kB_read/s	kB_wrtn/s	kB_read	kB_wrtn
sda	1.00	0.00	32.00	0	32
Device:	tps	kB_read/s	kB_wrtn/s	kB_read	kB_wrtn
sda	1.00	0.00	0.00	0	0

disk1 reads only 1 file "foo0.txt" which will be stored in main memory/cache after first iteration hence disk I/O is not the bottleneck in this case compared to **disk** program.

Q3.

cpu1 spends very small(approx 0) amount of time in kernel mode as there is no syscall to make

```
sourabh@VAIO:/proc/6943$ cat stat
6943 (cpu1) R 5799 6943 5799 34816 6943 4218880 155 0 0 0 <mark>1480 0</mark> 0 0 20 0 1 0 1223324 2068480 70 4294967295 134512640 134514056 3216226816 3210
26648 134513668 0 0 0 0 0 0 0 17 3 0 0 0 0 0 134520584 134520860 140595200 3216228972 3216228979 3216228979 3216232437 0
```

cpu2 spends more time in kernel mode because of the *syscall* corresponding to the "gettimeoftheday()"

```
sourabh@VAIO:/proc/6958$ cat stat
6958 (cpu2) R 5799 6958 5799 34816 6958 4218880 157 0 0 0 <mark>1360 5801</mark> 0 0 20 0 1 0 1234463 2068480 71 4294967295 134512640 134514128 3219456768 :
19456540 3078083624 0 0 0 0 0 0 0 17 1 0 0 0 0 0 134520584 134520864 137531392 3219464812 3219464819 3219464819 3219468277 0
```

cpu1print spends considerably more amount of time in kernel mode because the printf() has several *syscalls* corresponding to printing out, clearing a buffer, etc.

```
sourabh@VAIO:/proc/7037$ cat stat
7037 (cpulprint) S 5799 7037 5799 34816 7037 4218880 171 0 0 0 <mark>705 3045</mark> 0 0 20 0 1 0 1264229 2072576 70 4294967295 134512640 134514168 321392148
8 3213919720 3078169640 0 0 0 3241990677 0 0 17 3 0 0 0 0 0 134520584 134520864 151228416 3213927005 3213927017 3213927017 3213930480 0
```

Fraction of time spend in kernel mode cpu1print(~81%) > cpu2(~75%) > cpu1(~0%)

Q4.

Command used: cat /proc/<pid>/status

The ratio of voluntary to involuntary context switches is much higher for program **disk** compared to **cpu1**, in fact while running **disk** most of the context switches occurring are voluntary.

```
voluntary_ctxt_switches: 3
nonvoluntary_ctxt_switches: 4289
```

context switch data for program cpu1

```
voluntary_ctxt_switches: 18394
nonvoluntary_ctxt_switches: 40
```

context switch data for program disk

Since **disk** has a file read operation in every of its iteration, it has a lot of disk I/Os hence it is voluntarily switching the context. Contrary to this, **cpu1** only requires processor for the execution hence the number of voluntary switches are very less.