Komputerowe systemy rozpoznawania

2019/2020

Prowadzący: dr inż. Marcin Kacprowicz

poniedziałek, 12:00

Radosław Grela 216769 Jakub Wąchała 216914

Zadanie 2: Lingwistyczne podsumowania baz danych

1. Cel

2. Wprowadzenie

2.1. Funkcja trapezoidalna

Funkcja trapezoidalna przyjmuje 4 parametry a, b, c, d, dla których spełniony jest warunek a \leq b \leq c \leq d. Jej wzór jest następujący [1]:

$$\mu_A(x) = \begin{cases} \frac{x-a}{b-a} & \text{gdy } x \in (a, b), \\ 1 & \text{gdy } x \in [b, c], \\ \frac{d-x}{d-c} & \text{gdy } x \in (c, d), \\ 0 & \text{w przeciwnym razie.} \end{cases}$$
 (1)

2.2. Funkcja trójkątna

Funkcja trójkątna jest szczególnym przypadkiem funkcji trapezoidalnej. Przyjmuje ona trzy parametry a, b, c, dla których zachodzi warunek a \leq b

 \leq c. Te parametry określają punkty "załamania" tej funkcji. Jej wzór jest następujący [4]:

$$\mu_{A}(x) = \begin{cases} \frac{x-a}{b-a} & \text{gdy } x \in (a, b), \\ 1 & \text{gdy } x = b, \\ \frac{c-x}{c-b} & \text{gdy } x \in (b, c), \\ 0 & \text{w przeciwnym razie.} \end{cases}$$
 (2)

2.3. Funkcja Gaussowska

Funkcja Gaussowska jest definiowana przez 2 parametry które określają środek funkcji oraz jej szerokość. Wzór jest następujący [3]:

$$\mu_A(x) = e^{(-(\frac{x-\bar{x}}{\sigma})^2)}$$
 (3)

gdzie

- \bar{x} jest środkiem funkcji,
- σ określa szerokość krzywej Gaussowskiej.

3. Opis implementacji

Program został stworzony w języku C#. Graficzny interfejs użytkownika został stworzony przy wykorzystaniu Windows Presentation Foundation. W programie wykorzystaliśmy bibliotekę AForge. Poniżej przedstawiamy uproszczony diagram UML naszego programu.

Rysunek 1. Diagram UML.

- Klasy Atrybut i dziedziczące po niej reprezentują poszczególne kolumny w bazie danych
- CSVReader odpowiada za wczytanie pliku csv z danymi do programu
- FifaDatabse odpowiada za bazę danych, czyli przechowywanie wszystkich rekordów
- FuzzySet to klasa odpowiadająca za zbiór rozmyty
- Klasy TrapezoidFunction, GaussianFunction, TriangularFunction odpowiadają za odpowiednie funkcje przynależności
- FifaPlayer to klasa, która reprezentuje krotkę bazy danych.

4. Materially i metody

4.1. Baza danych

Do przeprowadzania badań oraz do generowania podsumowań wykorzystaliśmy bazę danych dotyczącą piłkarzy z gry FIFA 20. Pochodzi ona ze źródła [2]. Składa się ona z 18278 rekordów posiadających 104 atrybuty. Do naszego projektu skorzystamy z 11. Są to następujące atrybuty:

- 1. Wiek age wartość z przedziału [16, 42]
- 2. Wzrost (w cm) height_cm wartość z przedziału [156, 205]
- 3. Waga (w kg) weight_kg wartość z przedziału [50, 110]
- 4. Ocena ogólna overall wartość z przedziału [48, 94]
- 5. Wykończenie attacking finishing wartość z przedziału [2, 95]
- 6. Dribbling skill dribbling wartość z przedziału [4, 97]
- 7. Podkręcenie piłki skill curve wartość z przedziału [6, 94]
- 8. Długie podania skill_long_passing wartość z przedziału [8, 92]
- 9. Sprint movement sprint speed wartość z przedziału [11, 96]
- 10. Siła strzału power_shot_power wartość z przedziału [14, 95]

Każda z kolumn jest typu całkowitego.

4.2. Zmienne lingwistyczne

4.2.1. Wiek

Należy zauważyć, że wiek w przypadku zawodnika piłki nożnej oceniany jest w inny sposób niż wiek przeciętnego człowieka.

- (16-21) bardzo młody
- (20-25) młody
- (24-32) średni
- (31-42) stary

Etykieta	a	b	С	d
bardzo młody	16	16	18	21
mlody	20	22	24	25
${ m \acute{s}redni}$	24	26	29	32
stary	31	34	42	42

Tabela 1. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Wiek.

Rysunek 2. Funkcja przynależności (trapezoidalna) dla atrybutu Wiek.

4.2.2. Wzrost

- (156-166) niski
- (164-177) średni
- (175-188) wysoki
- (186-205) bardzo wysoki

Etykieta	a	b	c
niski	156	156	166
średni	164	170	177
wysoki	175	182	188
bardzo wysoki	186	205	205

Tabela 2. Przyporządkowane parametry funkcji trójkątnej dla atrybutu Wzrost.

Rysunek 3. Funkcja przynależności (trapezoidalna) dla atrybutu Wzrost.

4.2.3. Waga

- (50-65) bardzo chudy
- (55-85) chudy
- (75-105) średni
- (95-110) gruby

Etykieta	\bar{x}	σ
bardzo chudy	50	8
chudy	70	8
$\acute{ m s}{ m redni}$	90	8
gruby	110	8

Tabela 3. Przyporządkowane parametry funkcji gaussowskiej dla atrybutu Waga.

Rysunek 4. Funkcja przynależności (gaussowska) dla atrybutu Waga.

4.2.4. Ocena ogólna

- (48-65) słaby
- (60-75) średni
- (70-87) dobry
- (85-94) bardzo dobry

Etykieta	a	b	С	d
słaby	48	48	59	65
$\acute{ m s}{ m redni}$	60	65	70	75
dobry	70	78	85	87
bardzo dobry	85	90	94	94

Tabela 4. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Ocena ogólna.

Rysunek 5. Funkcja przynależności (trapezoidalna) dla atrybutu Ocena ogólna.

4.2.5. Wykończenie

- (2-35) bardzo słabe
- (30-60) słabe
- (50-80) średnie
- (75-87) dobre
- (85-95) bardzo dobre

Etykieta	a	b	С	d
bardzo słabe	2	2	25	35
slabe	30	35	50	60
$\acute{ m s}{ m rednie}$	50	55	75	80
dobre	75	80	85	87
bardzo dobre	85	90	95	95

Tabela 5. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Wykończenie.

Rysunek 6. Funkcja przynależności (trapezoidalna) dla atrybutu Wykończenie.

4.2.6. Dribbling

- (4-35) bardzo słaby
- (30-60) słaby
- (50-70) średni
- (68-87) dobry
- (85-97) bardzo dobry

Etykieta	a	b	С	d
bardzo słaby	4	4	25	35
slaby	30	35	50	60
$\acute{ m s}{ m redni}$	50	55	68	70
dobry	68	73	85	87
bardzo dobry	85	90	97	97

Tabela 6. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Dribbling.

Rysunek 7. Funkcja przynależności (trapezoidalna) dla atrybutu Dribbling.

4.2.7. Podkręcenie piłki

- (6-35) bardzo słabe
- (30-60) słabe
- (50-70) średnie
- (68-87) dobre
- (85-94) bardzo dobre

Etykieta	a	b	c
bardzo słabe	6	6	35
${ m slabe}$	20	35	60
$\acute{ m s}{ m rednie}$	50	60	70
dobre	68	75	87
bardzo dobre	85	94	94

Tabela 7. Przyporządkowane parametry funkcji trójkątnej dla atrybutu Podkręcenie piłki.

Rysunek 8. Funkcja przynależności (trójkątna) dla atrybutu Podkręcenie piłki.

4.2.8. Długie podania

- (8-35) bardzo słabe
- (30-60) słabe
- (50-70) średnie
- (68-85) dobre
- (82-92) bardzo dobre

Etykieta	a	b	С	d
bardzo słabe	8	8	25	35
slabe	30	35	50	60
$\acute{ m s}{ m rednie}$	50	55	68	70
dobre	68	73	80	85
bardzo dobre	82	85	92	92

Tabela 8. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Długie podania.

Rysunek 9. Funkcja przynależności (trapezoidalna) dla atrybutu Długie podania.

4.2.9. Sprint

- (11-30) bardzo wolny
- (31-55) wolny
- (56-70) średni
- (71-85) szybki
- (86-96) bardzo szybki

Etykieta	a	b	С	d
bardzo wolny	11	11	25	35
wolny	30	35	48	55
$\acute{ m s}{ m redni}$	50	55	68	70
szybki	68	73	80	86
bardzo szybki	84	90	96	96

Tabela 9. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Sprint.

Rysunek 10. Funkcja przynależności (trapezoidalna) dla atrybutu Sprint.

4.2.10. Siła strzału

- (31-55) słaba
- (56-70) średnia
- (71-85) duża
- (86-95) bardzo duża

Etykieta	a	b	c	d
słaba	14	14	45	50
$\acute{ m s}{ m rednia}$	45	50	60	65
$du\dot{z}a$	62	68	80	82
bardzo duża	80	88	95	95

Tabela 10. Przyporządkowane parametry funkcji trapezoidalnej dla atrybutu Siła strzału.

Rysunek 11. Funkcja przynależności (trapezoidalna) dla atrybutu Siła strzału.

5. Wyniki

6. Dyskusja

7. Wnioski

Literatura

[1] Niewiadomski, Adam. Methods for the Linguistic Summarization of Data: Applications of Fuzzy Sets and Their Extensions. Akademicka Oficyna Wydawnicza EXIT. Warszawa, 2008. ISBN 978-83-60434-40-6

- $[2] \ https://www.kaggle.com/stefanoleone992/fifa-20-complete-player-dataset$
- [3] https://pracownik.kul.pl/files/31717/public/Funkcje_przynaleznosci.pdf [do-stęp 07.05.2020]
- [4] http://ii.uwb.edu.pl/rudnicki/wp-content/uploads/2016/02/P07.pdf [dostęp 08.05.2020]