COMS21103: Linear Programming - cont.

Dima Damen

Dima.Damen@bristol.ac.uk

Bristol University, Department of Computer Science Bristol BS8 1UB, UK

December 8, 2015

Eg.

$$\begin{array}{ll} \text{maximise} & 2x_1-x_2\\ \text{subject to} & 2x_1-x_2 \leq 2\\ & x_1-5x_2 \leq -4\\ & x_1,x_2 \geq 0 \end{array}$$

Eg.

$$\begin{array}{ll} \text{maximise} & 2x_1-x_2\\ \text{subject to} & 2x_1-x_2 \leq 2\\ & x_1-5x_2 \leq -4\\ & x_1,x_2 \geq 0 \end{array}$$

Slack form:

$$Z = 2x_1 - x_2$$

 $x_3 = 2 - 2x_1 + x_2$
 $x_4 = -4 - x_1 + 5x_2$

Eg.

$$\begin{array}{ll} \text{maximise} & 2x_1-x_2\\ \text{subject to} & 2x_1-x_2 \leq 2\\ & x_1-5x_2 \leq -4\\ & x_1,x_2 \geq 0 \end{array}$$

Slack form:

$$Z = 2x_1 - x_2$$

 $x_3 = 2 - 2x_1 + x_2$
 $x_4 = -4 - x_1 + 5x_2$

Initial solution (x_1, x_2, x_3, x_4) equals (0, 0, 2, -4) is infeasible

▶ The Simplex Algorithm assumes the initial solution is feasible,

- ► The Simplex Algorithm assumes the initial solution is feasible,
- We need to convert the linear program to slack form where the basic solution would be feasible

change the linear program L

maximise
$$\sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ for $i=1,2,..m$
 $x_j \ge 0$ for $j=1,2,..n$

to an auxiliary linear program L_{aux}

maximise
$$-x_0$$
 subject to $\sum_{j=1}^n a_{ij}x_j - x_0 \le b_i$ for $i=1,2,..m$ $x_j \ge 0$ for $j=0,1,..n$

change the linear program L

maximise
$$\sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ for $i=1,2,..m$
 $x_j \ge 0$ for $j=1,2,..n$

to an auxiliary linear program L_{aux}

maximise
$$-x_0$$
 subject to $\sum\limits_{j=1}^n a_{ij}x_j-x_0\leq b_i$ for $i=1,2,..m$ $x_j\geq 0$ for $j=0,1,..n$

L is feasible if and only if the optimal objective value of L_{aux} is 0

Basic solution for L is infeasible

$$\begin{array}{ll} \text{maximise} & 2x_1-x_2\\ \text{subject to} & 2x_1-x_2 \leq 2\\ & x_1-5x_2 \leq -4\\ & x_1,x_2 \geq 0 \end{array}$$

Basic solution for L is infeasible

maximise
$$2x_1 - x_2$$

subject to $2x_1 - x_2 \le 2$
 $x_1 - 5x_2 \le -4$
 $x_1, x_2 \ge 0$

Change to L_{aux} :

$$\begin{array}{ll} \text{maximise} & -x_0 \\ \text{subject to} & 2x_1 - x_2 - x_0 \leq 2 \\ & x_1 - 5x_2 - x_0 \leq -4 \\ & x_0, x_1, x_2 \geq 0 \end{array}$$

 L_{aux} :

maximise
$$-x_0$$

subject to $2x_1 - x_2 - x_0 \le 2$
 $x_1 - 5x_2 - x_0 \le -4$
 $x_0, x_1, x_2 \ge 0$

Laux:

$$\begin{array}{ll} \text{maximise} & -x_0 \\ \text{subject to} & 2x_1 - x_2 - x_0 \leq 2 \\ & x_1 - 5x_2 - x_0 \leq -4 \\ & x_0, x_1, x_2 \geq 0 \end{array}$$

Slack form:

$$Z = -x_0$$

 $X_3 = 2 - 2x_1 + x_2 + x_0$
 $X_4 = -4 - x_1 + 5x_2 + x_0$

 L_{aux} :

$$\begin{array}{ll} \text{maximise} & -x_0 \\ \text{subject to} & 2x_1 - x_2 - x_0 \leq 2 \\ & x_1 - 5x_2 - x_0 \leq -4 \\ & x_0, x_1, x_2 \geq 0 \end{array}$$

Slack form:

$$Z = -x_0$$

 $X_3 = 2 - 2x_1 + x_2 + x_0$
 $X_4 = -4 - x_1 + 5x_2 + x_0$

Initial solution $(x_0, x_1, x_2, x_3, x_4)$ equals (0, 0, 0, 2, -4) is **still** infeasible

Switch x_0 with x_4 (constraint causing solution to be infeasbile)

$$Z = -x_0$$

 $X_3 = 2 - 2x_1 + x_2 + x_0$
 $X_4 = -4 - x_1 + 5x_2 + x_0$

Switch x_0 with x_4 (constraint causing solution to be infeasbile)

$$x_0 = 4 + x_1 - 5x_2 + x_4$$

Switch x_0 with x_4 (constraint causing solution to be infeasbile)

$$z = -4$$
 - x_1 + $5x_2$ - x_4
 $x_3 = 6$ - x_1 - $4x_2$ + x_4
 $x_0 = 4$ + x_1 - $5x_2$ + x_4

Basic solution $(x_0, x_1, x_2, x_3, x_4)$ is now feasible (4, 0, 0, 6, 0) for L_{aux} - but not yet for L

Solve the auxiliary linear program L_{aux}

Solve the auxiliary linear program L_{aux}

$$Z = -4 - x_1 + 5x_2 - x_4$$

 $x_3 = 6 - x_1 - 4x_2 + x_4$
 $x_0 = 4 + x_1 - 5x_2 + x_4$

Switch x_2 with x_0

Solve the auxiliary linear program L_{aux}

$$Z = -4 - x_1 + 5x_2 - x_4$$

 $x_3 = 6 - x_1 - 4x_2 + x_4$
 $x_0 = 4 + x_1 - 5x_2 + x_4$

Switch x_2 with x_0

$$x_2 = \frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

Solve the auxiliary linear program L_{aux}

$$Z = -4 - x_1 + 5x_2 - x_4$$

 $x_3 = 6 - x_1 - 4x_2 + x_4$
 $x_0 = 4 + x_1 - 5x_2 + x_4$

Switch x_2 with x_0

$$Z = -X_0$$

$$X_3 = \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

$$X_2 = \frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

Solve the auxiliary linear program L_{aux}

$$Z = -4 - x_1 + 5x_2 - x_4$$

 $x_3 = 6 - x_1 - 4x_2 + x_4$
 $x_0 = 4 + x_1 - 5x_2 + x_4$

Switch x_2 with x_0

$$Z = -X_0$$

$$X_3 = \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

$$X_2 = \frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

Final solution to L_{aux} is $(0, 0, \frac{4}{5}, \frac{14}{5})$, and objective function is 0

Final solution to L_{aux} is $(0, 0, \frac{4}{5}, \frac{14}{5})$, and objective function is 0

Final solution to L_{aux} is $(0, 0, \frac{4}{5}, \frac{14}{5})$, and objective function is 0 $(x_1, x_2) = (0, \frac{4}{5})$ is also a feasible solution for L

$$\begin{array}{ll} \text{maximise} & 2x_1 - x_2 \\ \text{subject to} & 2x_1 - x_2 \leq 2 \\ & x_1 - 5x_2 \leq -4 \\ & x_1, x_2 \geq 0 \end{array}$$

Final solution to L_{aux} is $(0, 0, \frac{4}{5}, \frac{14}{5})$, and objective function is 0 $(x_1, x_2) = (0, \frac{4}{5})$ is also a feasible solution for L

$$\begin{array}{ll} \text{maximise} & 2x_1 - x_2 \\ \text{subject to} & 2x_1 - x_2 \leq 2 \\ & x_1 - 5x_2 \leq -4 \\ & x_1, x_2 \geq 0 \end{array}$$

As we found a solution for L_{aux} with objective 0, we also know that the initial linear program L is feasible, and we have found a vertex on the convex hull of feasible explanations.

Now rewrite the objective function to be $2x_1 - x_2$ for L_{aux} :

$$Z = -X_0$$

$$X_3 = \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

$$X_2 = \frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

Now rewrite the objective function to be $2x_1 - x_2$ for L_{aux} :

$$Z = -X_0$$

$$X_3 = \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

$$X_2 = \frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

objective function
$$2x_1 - x_2 = 2x_1 - (\frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5})$$

Now rewrite the objective function to be $2x_1 - x_2$ for L_{aux} :

$$Z = -X_0$$

$$X_3 = \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

$$X_2 = \frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

objective function
$$2x_1 - x_2 = 2x_1 - (\frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5})$$

Set
$$x_0 = 0$$
 and simplify to be $-\frac{4}{5} + \frac{9x_1}{5} - \frac{x_4}{5}$

Now rewrite the objective function to be $2x_1 - x_2$ for L_{aux} :

$$Z = -X_0$$

$$X_3 = \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

$$X_2 = \frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

objective function
$$2x_1 - x_2 = 2x_1 - (\frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5})$$

Set
$$x_0=0$$
 and simplify to be $-\frac{4}{5}+\frac{9x_1}{5}-\frac{x_4}{5}$

The Slack form will accordingly be

$$Z = -\frac{4}{5} + \frac{9x_1}{5} - \frac{x_4}{5}$$

$$X_3 = \frac{14}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

$$X_2 = \frac{4}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

Now rewrite the objective function to be $2x_1 - x_2$ for L_{aux} :

$$Z = -X_0$$

$$X_3 = \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

$$X_2 = \frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

objective function
$$2x_1 - x_2 = 2x_1 - (\frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5})$$

Set
$$x_0=0$$
 and simplify to be $-\frac{4}{5}+\frac{9x_1}{5}-\frac{x_4}{5}$

The Slack form will accordingly be

$$Z = -\frac{4}{5} + \frac{9x_1}{5} - \frac{x_4}{5}$$

$$X_3 = \frac{14}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

$$X_2 = \frac{4}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

Initial feasible solution is $(x_1, x_2, x_3, x_4) = (0, \frac{4}{5}, \frac{14}{5}, 0)$

(N',B',A',b',c',v') = INITIALISE-SIMPLEX (A,b,c);

returns modified slack form

```
(N',B',A',b',c',v') = INITIALISE-SIMPLEX (A,b,c);
Let k be the index of minimum b_i;
if b_k \ge 0 then
return (\{1,2,...,n\},\{n+1,...,n+m\},A,b,c,0)
```

end

- returns modified slack form
- is initial solution feasible?

(N',B',A',b',c',v') = INITIALISE-SIMPLEX (A,b,c);Let k be the index of minimum b_i ;

if
$$b_k \geq 0$$
 then return ({1,2,..,n},{n+1,..,n+m},A,b,c,0)

end

form Laux

- returns modified slack form
- is initial solution feasible?
- ▶ add $-x_0$ to each constraint and set objective to $-x_0$

(N',B',A',b',c',v') = INITIALISE-SIMPLEX (A,b,c);Let k be the index of minimum b_i ;

if
$$b_k \ge 0$$
 then return ({1,2,..,n},{n+1,..,n+m},A,b,c,0)

end

form Laux

$$I = n + k$$

- returns modified slack form
- is initial solution feasible?
- ▶ add $-x_0$ to each constraint and set objective to $-x_0$
- decide on basic variable with minimum b_i

(N',B',A',b',c',v') = INITIALISE-SIMPLEX (A,b,c);Let k be the index of minimum b_i :

if
$$b_k \ge 0$$
 then return ({1,2,..,n},{n+1,..,n+m},A,b,c,0)

end

form Laux

$$I = n + k$$

(N,B,A,b,c,v) = PIVOT(N,B,A,c,v,I,0)

- returns modified slack form
- is initial solution feasible?
- ▶ add $-x_0$ to each constraint and set objective to $-x_0$
- decide on basic variable with minimum b_i
- switch the roles of x₀ and x_l. Basic solution is now feasible

(N',B',A',b',c',v') = INITIALISE-SIMPLEX (A,b,c);Let k be the index of minimum b_i ;

if
$$b_k \geq 0$$
 then return ({1,2,..,n},{n+1,...,n+m},A,b,c,0)

end

form Laux

$$I = n + k$$

(N,B,A,b,c,v) = PIVOT(N,B,A,c,v,I,0)

Solve SIMPLEX for Laux

- returns modified slack form
- is initial solution feasible?
- ▶ add $-x_0$ to each constraint and set objective to $-x_0$
- decide on basic variable with minimum b_i
- switch the roles of x₀ and x_I. Basic solution is now feasible
- iterate lines 2-12 of SIMPLEX

(N',B',A',b',c',v') = INITIALISE-SIMPLEX (A,b,c);Let k be the index of minimum b_i :

if
$$b_k \ge 0$$
 then return ({1,2,..,n},{n+1,..,n+m},A,b,c,0)

end

form Laux

$$I = n + k$$

$$(N,B,A,b,c,v) = PIVOT(N,B,A,c,v,I,0)$$

Solve SIMPLEX for Laux

if optimal solution of L_{aux} sets x_0 to 0 then

- returns modified slack form
- is initial solution feasible?
- ▶ add $-x_0$ to each constraint and set objective to $-x_0$
- decide on basic variable with minimum b_i
- switch the roles of x₀ and x_I. Basic solution is now feasible
- ▶ iterate lines 2-12 of SIMPLEX
- L is feasible

else

return "infeasible"

end

The Initialise-Simplex Algorithm

```
(N',B',A',b',c',v') = INITIALISE-SIMPLEX (A,b,c);
Let k be the index of minimum b_i:
if b_k > 0 then
    return ({1,2,..,n},{n+1,..,n+m},A,b,c,0)
end
form Laux
I = n + k
(N,B,A,b,c,v) = PIVOT(N,B,A,c,v,I,0)
Solve SIMPLEX for Laux
if optimal solution of L_{aux} sets x_0 to 0 then
    if x_0 is basic then
        perform one PIVOT to make it nonbasic
    end
    remove x_0 from constraints and restore L
else
    return "infeasible"
```

- returns modified slack form
- is initial solution feasible?
- ▶ add $-x_0$ to each constraint and set objective to $-x_0$
- decide on basic variable with minimum b_i
- switch the roles of x₀ and x_I. Basic solution is now feasible
- iterate lines 2-12 of SIMPLEX
- L is feasible
- Restore original objective function

end

The Initialise-Simplex Algorithm

Lemma

Given a linear program (A,b,c), suppose that the call to INITIALISE-SIMPLEX returns a slack form for which the basic solution is feasible, then if SIMPLEX returns a solution, it is a feasible solution to the linear program. If it returns "unbounded", the linear program is unbounded.

Fundamental Theorem of Linear Programming

Theorem

Any linear program L, given in standard form, either

- 1. has an optimal solution with a finite objective value,
- 2. is infeasible, or
- 3. is unbounded.

If L is infeasible, SIMPELX returns "infeasble". If L is unbounded, SIMPLEX returns "unbounded". Otherwise SIMPLEX returns an optimal solution with a finite objective value.

► Klee and Minty [1972] and Avis and Chvatal [1978] found examples where the SIMPELX algorithm needs 2ⁿ iterations on L with n variables and 2n constraints.

- ► Klee and Minty [1972] and Avis and Chvatal [1978] found examples where the SIMPELX algorithm needs 2ⁿ iterations on L with n variables and 2n constraints.
- Simplex algorithm is not a polynomial-time algorithm.

- ► Klee and Minty [1972] and Avis and Chvatal [1978] found examples where the SIMPELX algorithm needs 2ⁿ iterations on L with n variables and 2n constraints.
- Simplex algorithm is not a polynomial-time algorithm.
- ▶ Not known whether there is a pivot rule that leads to polynomial time.

- ► Klee and Minty [1972] and Avis and Chvatal [1978] found examples where the SIMPELX algorithm needs 2ⁿ iterations on L with n variables and 2n constraints.
- Simplex algorithm is not a polynomial-time algorithm.
- Not known whether there is a pivot rule that leads to polynomial time.
- Borgwardt [1982] showed that average running time can be bounded by a polynomial.

- Klee and Minty [1972] and Avis and Chvatal [1978] found examples where the SIMPELX algorithm needs 2ⁿ iterations on L with n variables and 2n constraints.
- Simplex algorithm is not a polynomial-time algorithm.
- Not known whether there is a pivot rule that leads to polynomial time.
- Borgwardt [1982] showed that average running time can be bounded by a polynomial.
- The Simplex algorithm is very efficient in practice.

- ► Klee and Minty [1972] and Avis and Chvatal [1978] found examples where the SIMPELX algorithm needs 2ⁿ iterations on L with n variables and 2n constraints.
- Simplex algorithm is not a polynomial-time algorithm.
- ▶ Not known whether there is a pivot rule that leads to polynomial time.
- Borgwardt [1982] showed that average running time can be bounded by a polynomial.
- ► The Simplex algorithm is very efficient in practice.
- ► The Ellipsoid algorithm (ludin and Nemirovskii [1976] and Shor [1977]) is proven to be a polynomial-time algorithm.
- ► The Ellipsoid algorithm is though too inefficient in practice.

Linear Programs - Duality

Definition

Given a linear program L (also known as the **primal** L),

maximise
$$\sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ for $i=1,2,..m$
 $x_j \ge 0$ for $j=1,2,..n$

we define the **dual** *L* to be the linear program,

minimise
$$\sum_{j=1}^{m} b_{j}y_{j}$$
subject to
$$\sum_{j=1}^{n} a_{ji}y_{j} = c_{i} \text{ for } i = 1, 2, ...n$$

$$y_{j} \geq 0 \text{ for } j = 1, 2, ...m$$

Linear Programs - Duality Ex

$$\begin{array}{ll} \text{maximise} & 18x_1 + 12.5x_2 \\ \text{subject to} & x_1 + x_2 \leq 20 \\ & x_1 \leq 12 \\ & x_2 \leq 16 \\ & x_1, x_2 \geq 0 \end{array}$$

is equivalent to:

minimise
$$20y_1 + 12y_2 + 16y_3$$

subject to $y_1 + y_2 = 18$
 $y_1 + y_3 = 12.5$
 $y_1, y_2, y_3 \ge 0$

Linear Programs - Duality

Lemma

The dual of the dual of a linear program L is (equivalent to) the primal L.

Linear Programs - Duality

Lemma

If a primal linear program L is unbounded then its dual L is infeasible. If a primal linear program L has an optimum solution, then its dual also has an optimum solution.

Back to the Convex Hull...

Back to the Convex Hull...

► The solution at each iteration of the simplex algorithm represents a vertex in the space of feasible solutions.

Back to the Convex Hull...

For the linear program

maximise
$$-x + y$$

subject to $-5x - 2y \le -7$
 $-3x + y \le 4$
 $8x + y \le 24$

Back to the Convex Hull...

For the linear program

And its slack form

maximise
$$-x + y$$

subject to $-5x - 2y \le -7$
 $-3x + y \le 4$
 $8x + y \le 24$

Back to the Convex Hull...

For the linear program

And its slack form

maximise
$$-x + y$$
subject to $-5x - 2y \le -7$ $-3x + y \le 4$ $8x + y \le 24$

$$Z = -x + y$$

 $X_2 = -7 + 5x + 2y$
 $X_3 = 4 + 3x - y$
 $X_4 = 24 - 8x - y$

Initial solution $(x, y, x_2, x_3, x_4) = (0, 0, -7, 4, 24)$ is not feasible.

Using Initialise-Simplex, the slack form can be re-written to be:

$$Z = \frac{7}{2} - \frac{7x}{2} + \frac{x_2}{2}$$

$$Y = \frac{7}{2} - \frac{5x}{2} + \frac{x_2}{2}$$

$$X_3 = \frac{1}{2} + \frac{11x}{2} - \frac{x_2}{2}$$

$$X_4 = \frac{41}{2} - \frac{17x}{2} - \frac{x_2}{2}$$

Using Initialise-Simplex, the slack form can be re-written to be:

$$Z = \frac{7}{2} - \frac{7x}{2} + \frac{x_2}{2}$$

$$y = \frac{7}{2} - \frac{5x}{2} + \frac{x_2}{2}$$

$$x_3 = \frac{1}{2} + \frac{11x}{2} - \frac{x_2}{2}$$

$$x_4 = \frac{41}{2} - \frac{11x}{2} - \frac{x_2}{2}$$

Initial solution is $(0, \frac{7}{2}, 0, \frac{1}{2}, \frac{41}{2})$ is feasible

Using Initialise-Simplex, the slack form can be re-written to be:

$$Z = \frac{7}{2} - \frac{7x}{2} + \frac{x_2}{2}$$

$$Y = \frac{7}{2} - \frac{5x}{2} + \frac{x_2}{2}$$

$$X_3 = \frac{1}{2} + \frac{11x}{2} - \frac{x_2}{2}$$

$$X_4 = \frac{41}{2} - \frac{11x}{2} - \frac{x_2}{2}$$

Initial solution is $(0, \frac{7}{2}, 0, \frac{1}{2}, \frac{41}{2})$ is feasible

A vertex

After one iteration of Simplex algorithm

```
z = 4 + 2x - x_3

y = 4 + 3x - x_3

x_2 = 1 + 11x - 2x_3

x_4 = 20 - 11x + x_3
```

After one iteration of Simplex algorithm

Current solution is (0,4,1,0,20) is feasible

After one iteration of Simplex algorithm

$$Z = 4 + 2x - x_3$$

 $Y = 4 + 3x - x_3$
 $X_2 = 1 + 11x - 2x_3$
 $X_4 = 20 - 11x + x_3$

► Current solution is (0,4,1,0,20) is feasible

After the second iteration of Simplex algorithm

```
z = 7.636 - 0.818x_3 - 0.183x_4

y = 9.455 - 0.727x_3 - 0.273x_4

x_2 = 21 - x_3 - x_4

x = 1.818 + 0.091x_3 - 0.091x_4
```

After the second iteration of Simplex algorithm

```
z = 7.636 - 0.818x_3 - 0.183x_4

y = 9.455 - 0.727x_3 - 0.273x_4

x_2 = 21 - x_3 - x_4

x = 1.818 + 0.091x_3 - 0.091x_4
```

```
Final solution is (1.818, 9.455, 21, 0, 0)
```

After the second iteration of Simplex algorithm

Further Reading

- Introduction to Algorithms
 T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein.
 MIT Press/McGraw-Hill. ISBN: 0-262-03293-7.
 - Chapter 27 Linear Programming
- Combinatorial Optimization, Theory and Algorithms
 B. Korte and J. Vygen.
 Springer, 4th edition.
 - Chapter 3 Linear Programming