

Topics to be

- Covered
- Bayes Classifler Classification-Naive Bayes.

In Bayes classifier >> ifany new test point is(xi) then we find P(xi/yj)Pyj P(Xi/y1)Pyi P(Xi/y2)Pyz P(Xi/Ym)Pym

a No of values/dimension data χ^{4} χ^{2} χ^{3} - χ^{D} Class Py; = Noof Points of classy; Total Noof Points in

Bayes Classifier

- ⇒ Work on MAP Rule
- \Rightarrow For any point x_i it find $P(x_ic_j)Pc_j$
- \Rightarrow For all class we find $P(x_ic_i)Pc_i$
- \Rightarrow So, whichever class max $P(x_ic_j)Pc_j$ that class will be assigned to x_i

$$\Rightarrow Pc_j = \frac{Number \text{ of points in Class } c_j}{Total \text{ number of points in training data}} \Rightarrow M \text{ probable}$$

Bayes Classifier

- P(x_ic_i) = calculated from + training data
- M: Number of classes, D: Number of dimensions, each dimension can take a values,

$$P(x_i^1, x_i^2, ... x_i^X / c_j) \Rightarrow (a^D \times M)$$

 Total parameters = (a^D M + M) ⇒These parameters are used by the hypothesis to find class of the point.

Bayes Classifier

• @time of testing we get a point $(x_j) \Rightarrow P\left(x_i^1, x_i^2, ... x_i^x / c_j^D\right)$ for this we need find $P\left(x_j / c_k\right) P_{ck}$ since x_j will be a combination of D dimensions thus $P\left(x_j / c_k\right)$ will be available So, find max $P\left(x_j / c_k\right) P_{ck}$ \Rightarrow The class with max $(px_j / c_k) p_{ck}$ is assigned.

Bayes Optimum Classifier

- Similar to bayes classifier but here we have more than one hypothesis
- For each hypothesis we need to find $P(x_i/c_k)P_{c_i} \Rightarrow (a^DM+M)$
- For each hypothesis \rightarrow ($a^D M + M$) parameters
- At time of testing $\sum_{i=1}^{H} P(h_i / D) P(c_j / h_i)$
- ⇒ H no of hypothesis
- ⇒ All these parameters are used by each hypothesis to find class for given point i.e P(c_i/h_i)
- ⇒ For any given point this is calculated for each class which ever class has max value that is assigned.

Bayes Classification

 $\max[P(x_i/c_j)Pcj]$

- Dimension are ind
- All dimension have equal contribution

$$\max P\left(x_i^1/c_j\right)P\left(x_i^2/c_j\right)$$

$$P(x_i^D/c_j)Pc_j$$

Number of parameters

Naïve Bayes Classifier

Bayes Class	Naive Bayes
$P(x_j/c_j)Pc_j$	$P(x_i^1/c_j)P(x_i^2/c_j)$
Probable for all combined available	$P(x_i^D/c_j)Pc_j$

Naïve Bayes Classifier

Here also we have to find P(xe/y;)Py;

P(xi/yi) Since xi° is data

Point, this has

many climension

we assume all dimension are Independent

Naïve Bayes Classifier

> we have D dimension of Avalues

> M Noof dasses.

For each dimension (AM) For whole data (DAM) Problem in Naïve Bayes
Algorithm..

Test point ⇒ (over cast, mild, normal, weak)

Outlook	Temperature	Humidity	Wind	Play tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes ·
Rain	Mild	High	Weak	Yes ·
Rain	Cool	Normal	Weak	Yes ·
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes ·
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes .
Rain	Mild	Normal	Strong	Yes .
Sunny	Mild	Normal	Strong	Yes .
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes .
Rain	Mild	High	Strong	No

we have to find class of this test point

P [Test point/Yes] Ryes

and P[Testpoint/No]PNo

Test point ⇒ (over cast, mild, normal, weak)

In Maive Bayes we assume all dimension are Independent

Proveicant, mild, normal, weak yes

P(weak1Yes)

from Training data

we have to find class of this test point

P [Test point/Yes] Ryes

and P[Testpoint/No]PNo

Test point ⇒ (over cast, mild, normal, weak) 3

Outlook	Temperature	Humidity	Wind	Play tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

3X2.	Outlook	P(P/Yes)	P(0/No)
ς.	Sunny	2/9(P(S Y)	3/5 P(S/No)
\figstyrear	Overcast	4/9P(0 Y)	0 POIND
	Rain	3/9 P(RIY)	2/5 D/OINS

240 =	Temperature	P(T/Yes)	P(T/No)
3x 12 5.	Hot	2/9 P(H/Y)	2/5 P(H/No) 2/5 P(M)NO) 1/5 P(C/NO)
	Mild	4/9 P(M)Y)	2/5 P(M)NA
 	Cold	3/9 (P(C Y)	1/5 PCCINO

2x

2	Humidity	P(H/Yes)	P(H/No)
4.	High	3/9	4/5
	Normal ·	6/9	1/5

2		Wind	P(W/Yes)	P(W/No)
7	•	Weak	6/9	2/5
	•	Strong	3/9	3/5

Sunny Count -> 3 No 3 p(s/y) = 2/9 2 yes p(s/No) = 3/5

Test point ⇒ (over cast, mild, normal, weak)

Outlook	Temperature	Humidity	Wind	Play tennis
Sunny 🗸	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast.	Hot	High	Weak	Yes •
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast•	Cool	Normal	Weak	Yes •
Sunny 🗸	Mild	High	Weak	No
Sunny 🗸	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny 🗸	Mild	Normal	Strong	Yes
Overcast •	Mild	High	Strong	Yes •
Overcast •	Hot	Normal	Weak	Yes •
Rain	Mild	High	Strong	No

Outlook	P(P/Yes)	P(O/No)
Sunny -	2/9 P(S Y)	3/5 .
Overcast	4/9P(0 Y)	0 .
Rain .	3/9 P(R Y) .	2/5

Temperature	P(T/Yes)	P(T/No)
Hot	2/9	2/5
Mild	4/9	2/5
Cold	3/9	1/5

Humidity	P(H/Yes)	P(H/No)
High ·	3/9	4/5
Normal ·	6/9	1/5

Wind	P(W/Yes)	P(W/No)
Weak	6/9	2/5
Strong	3/9	3/5

OverCast: 4 Yes \ \P(0/Y) = \frac{4}{9} \\ \text{O NO} \ \P(0/NO) = \frac{0}{5}

Test point ⇒ (over cast, mild, normal, weak)

Outlook	Temperature	Humidity	Wind	Play tennis
Sunny 🗸	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast.	Hot	High	Weak	Yes •
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast•	Cool	Normal	Weak	Yes •
Sunny 🗸	Mild	High	Weak	No
Sunny 🗸	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny 🗸	Mild	Normal	Strong	Yes
Overcast •	Mild	High	Strong	Yes
Overcast •	Hot	Normal	Weak	Yes •
Rain	Mild	High	Strong	No

Outlook	P(P/Yes)	P(0/No)
Sunny •	2/9 P(S Y)	3/5
Overcast	4/9P(0 Y)	0
Rain .	3/9 P(R Y) .	2/5

Temperature	P(T/Yes)	P(T/No)
Hot	2/9	2/5
Mild	4/9	2/5
Cold	3/9	1/5

Humidity	P(H/Yes)	P(H/No)
High	3/9	4/5
Normal ·	6/9	1/5

Wind	P(W/Yes)	P(W/No)
Weak	6/9	2/5
Strong	3/9	3/5

Test point ⇒ (over cast, mild, normal, weak)

Outlook	Temperature	Humidity	Wind	Play tennis
Sunny 🗸	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast.	Hot	High	Weak	Yes •
Rain •	Mild	High	Weak	Yes 🗸
Rain	Cool	Normal	Weak	Yes 🗸
Rain o	Cool	Normal	Strong	No 🎾
Overcast•	Cool	Normal	Weak	Yes •
Sunny 🗸	Mild	High	Weak	No
Sunny 🗸	Cool	Normal	Weak	Yes
Rain 💡	Mild	Normal	Strong	Yes
Sunny 🗸	Mild	Normal	Strong	Yes
Overcast •	Mild	High	Strong	Yes •
Overcast •	Hot	Normal	Weak	Yes •
Rain •	Mild	High	Strong	No 💆

Rain= 3Yes (P(R/Y)=3/9 2 No P(R/No)=2/5

Outlook	P(P/Yes)	P(0/No)
Sunny -	2/9 P(S Y)	3/5
Overcast	4/9P(O Y)	0
Rain •	3/9 P(R Y) .	2/5

Temperature	P(T/Yes)	P(T/No)
Hot	2/9	2/5
Mild	4/9	2/5
Cold	3/9	1/5

Humidity	P(H/Yes)	P(H/No)
High	3/9	4/5
Normal •	6/9	1/5

Wind	P(W/Yes)	P(W/No)
Weak	6/9	2/5
Strong	3/9	3/5

High P(H/Y)=3/9 | Normal P(H/NO)= 4/5 | P(N/Y)=6/9

	Test point ⇒ (over cast	, mild, normal,	weak)
--	----------------	-----------	-----------------	-------

Outlook	Temperature	Humidity	Wind	Play tennis
Sunny	Hot	High •	Weak	No
Sunny	Hot	High •	Strong	No
Overcast	Hot	High •	Weak	Yes
Rain	Mild	High •	Weak	Yes 🗸
Rain	Cool	Normal	Weak	Yes •
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High •	Weak	No
Sunny	Cool	Normal	Weak	Yes •
Rain	Mild	Normal	Strong	Yes •
Sunny	Mild	Normal	Strong	Yes •
Overcast	Mild	High •	Strong	Yes V
Overcast	Hot	Normal	Weak	Yes •
Rain	Mild	High •	Strong	No

Outlook	P(P/Yes)	P(O/No)
Sunny •	2/9 P(S Y)	3/5
Overcast	4/9P(0 Y)	0
Rain •	3/9 P(R Y) .	2/5

Temperature	P(T/Yes)	P(T/No)
Hot	2/9	2/5
Mild	4/9	2/5
Cold	3/9	1/5

Humidity	P(H/Yes)	P(H/No)
High	3/9	4/5
Normal ·	6/9	1/5

Wind	P(W/Yes)	P(W/No)
Weak	6/9	2/5
Strong	3/9	3/5

$$P[O,m,N,\omega/Yeb] P_{Yeb}.$$

$$P[O,m,N,\omega/Yeb] P_{Yeb}.$$

$$P(O,m,N,\omega/Nb) P_{Nb}$$

$$P(O|Y) P(m|Y) P(N|Y) P(\omega/Y) P_{Y'}$$

$$P(O|N) P(m|N) P(N|Nb) P(\omega/Nb) P_{Nb}$$

$$\left(\frac{4}{9} \times \frac{4}{9} \times \frac{6}{9} \times \frac{6}{9} \times \frac{9}{14}\right)$$

2+0/9+30

Test point ⇒ (over cast, mild, normal, weak)

Outlook	Temperature	Humidity	Wind	Play tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Outlook	P(P/Yes)	P(0/No)
Sunny	2/9 P(S Y)	3/5
Overcast	4/9P(0 Y)	0
Rain	3/9 P(R Y)	2/5
V 4	tol/9+301	
Temperature	P(T/Yes)	P(T/No)
Hot	2/9	2/5
Mild	4/9	2/5
Cold	3/9	1/5
Humidity	P(H/Yes)	P(H/No)
High	3/9) 3td/9+2	4/5
Normal	6/9	1/5
Wind	P(W/Yes)	P(W/No)
Weak	6/9	2/5

3/9

Strong

3/5

 $P(0, M, N, w/yes) Pyes \Rightarrow P(0/Y) P(M/Y) P(N|Y) P(W/Y) P_Y$

$$= \left(\frac{4}{9} \times \frac{4}{9} \times \frac{6}{9} \times \frac{6}{9} \times \frac{9}{14}\right)$$

 $P(0, M, N, w/yes) Pyes \Rightarrow P(0/N) P(M/N) P(N|N) P(W/N) P_N$

- Since P(over cost no) = 0
- Thus, in naïve bayes if any test point has 1st dimension = over cost then P(x_i/No)PN_p 0 and test point → Yes class always

Navive Bayes Algorithm

- This is called zero probable problem
- Reason → Because in whole training data no data point with class no has dimension 1 = over cast

Navive Bayes Algorithm

Solution to zero probable problem ⇒

- 2 solutions
- 1. inc the data
- 2. add the arbitrary points → smoothening process ✓

Pw

Navive Bayes Algorithm

Solving the zero probability problem..

Smoothing techniques,
 adding virtual entries..

 Additional data...

0

SS 0000R

NO

$$P(S/N) = \frac{3}{5}$$

 $P(R/N) = 245$
 $P(O/N) = 0$

SSSS

Smoothening by &

$$P(S/N) = 3+d$$
 $5+3d$
 $P(R/N) = 2+d$
 $5+3d$
 $P(O/N) = 4/5+3d$

19 smoothening is done in any dimension

$$P(s/y) = \frac{2}{9} \longrightarrow \frac{2+\alpha}{9+3\alpha}$$

$$\Rightarrow 3: b cos d imension has a value s.$$

$$P(s/No) = 3/5 \longrightarrow \frac{3+\alpha}{5+3\alpha}$$

3rd dimension

N

N

After smoothing new probable $\Rightarrow \frac{Old \text{ value } \alpha}{Old \text{ value } k\alpha}$ K = number of values a dimension can take H
H
H
N
N
N
P(N|Y) = $\frac{3+\alpha}{9+2\alpha}$ P(N|Y) = $\frac{6+\alpha}{9+2\alpha}$

Test point ⇒ (over cast, mild, normal, weak)

Outlook	Temperature	Humidity	Wind	Play tennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Weak	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Strong	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild •	High	Strong	No

Outlook	P(O/Yes)	P(O/No)
Sunny	$2/9 \Rightarrow 2 + \alpha/9 + 3\alpha$	$3/5 \Rightarrow 3 + \alpha/5 + 3\alpha$
Overcast	$4/9 \Rightarrow 4 + \alpha/9 + 3\alpha$	$0 \Rightarrow 0 + \alpha/5 + 3\alpha$
Rain	$3/9 \Rightarrow 3 + \alpha/9 + 3\alpha$	$2/5 \Rightarrow 2 + \alpha/5 + 3\alpha$

Temperature	P(T/Yes)	P(T/No)
Hot	2/9)=Qtd	2/5 2+d
Mild	4/9 8+30	2/5 5+30
Cold	3/9	1/5

Humidity	P(H/Yes)	P(H/No)
High	$3/9 \Rightarrow \frac{3+\alpha}{9+2\alpha}$	$4/5 \Rightarrow \frac{4+\alpha}{5+2\alpha}$
Normal	$6/9 \Rightarrow \frac{6+\alpha}{9+2\alpha}$	$1/5 \Rightarrow \frac{1+\alpha}{5+2\alpha}$

Laplace Smoothing \Rightarrow Mean $\alpha = 1$

$\alpha = 0$	X=0	α ⇒ Very large	
Fitting ⇒	Overfit 🗸	Balance fit	Underfitting 🗸
Bias ⇒	Low	Low	High
Variance ⇒	High 🗸	Low	Low

How to solve for continuous dimension in naive bayes.
 In this case P(x_ic_j)Pc_j

$$\left(P\left(x_i^1/C_j\right)...P_{C_j}\right)$$

What if the dimension are continuous in nature

$$P(S|Y) = 2/9$$

$$P(0|Y) = 4/9$$

$$P(R|Y) = 3/9$$

$$P(S|N) = 3/5$$

$$P(0|Y) = 0$$

$$P(R|N) = 2/5$$

Naïve Bayes Algorithm

What if the dimension are continuous in nature

The numeric weather data with summary statistics
--

Outl	ook		Temperature				
	Yes	No	Yes	No			
· Sunny 🗸	2	3.	83	85			
Overcast	4	0.	70	80			
Rainy	3	2.	68	65			
			64	72			
			69	71			

P(3N)=2/9 $P(RN)=3/9$ $P(8N)=3/5$ $P(8N)=3/5$ $P(RN)=2/5$	P(T/Y)=N(70.8,41.36)
P(0/y)=4/9 (K/N)=2/5 P(0/N)=0	1(1/N)=N(74.6,49.8u)

Win	Play			
~	Yes	No	Yes	No
- False 🗸	. 6	.2.	9	5
. True 🗸	• 3	•3	R	/= 91

$$P(F/Y) = \frac{6}{9}$$

 $P(F/N) = \frac{2}{5}$
 $P(T/Y) = \frac{3}{9}$
 $P(T/N) = \frac{3}{5}$

Find class of (Sunny, 78, 55, true)

P[S, 78, 7/No] Ruo P(8/N)P(78/N)P(T/N)PNO

Naïve Bayes Algorithm

				The numerio	c weath	er data with summa	ry statistics				
Outlook			Temperature		Humidity		Windly			Play	
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	83	85	86	85	False	6	2	9	5
Overcast	4	0	70	80	96	90	True	3	3		
Rainy	3	2	68	65	80	70					
			64	72	65	95	$\rightarrow \Sigma = 86.2$				
			69	71	70	91	$\sigma^2 = 75.76$				
			75	1	80						
			75	Σ=74.6	70						
			72	$\sigma^2 = 49.84$	90	→ mean = 79.11					
			81		75	$\rightarrow \sigma^2 = 72.76$					

PDF of temp and Humidity ⇒

$$P(T/Y) \Rightarrow \frac{1}{\sqrt{2\pi \times 34.66}} e^{\frac{-(x73)^2}{2\times 34.66}}$$

$$P(T/N) \Rightarrow \frac{1}{\sqrt{2\pi \times 49.84}} e^{\frac{-(x-74.6)^2}{2\times 49.84}}$$

$$P(h/Y) \Rightarrow \frac{1}{\sqrt{2\pi \times 92.76}} e^{\frac{-(x-79.11)^2}{2\times 92.76}}$$

P(h/N)
$$\Rightarrow \frac{1}{\sqrt{2\pi \times 75.76}} e^{\frac{-(x-86.2)^2}{2\times 75.76}}$$

The numeric weather data with summary statistics											
Outlook			Temperature		Humidity		Windly			Play	
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	83	85	86	85	False	6	2	9	5
Overcast	4	0	70	80	96	90	True	3	3		
Rainy	3	2	68	65	80	70					
			64	72	65	95					
			69	71	70	91					
			75		80						
			75		70						
			72		90						
			81		75						

