

Sebastian Jost

Chair of economics and transportation

Reinforcement Learning for Traffic Signal Control Moving closer to responsible real-world deployment

Research project at TU Dresden 2023

Overview

- Problem description
- Research questions
- Experiment setup
- Noise model
- Results
- Power consumption

Problem description

- Minimize average travel time

Research questions

RQ1: Impact of different sensor failure modes on RL TSC agent performance

RQ2: Impact of different sensor noise levels on RL TSC agent performance

RQ3: Does training on noisy data improve robustness?

Dataset - Network

Dataset - Vehicle arrival rate

State & Action space

State space

- Vehicles on each incoming lane
- Vehicles on each outgoing lane
- One-hot phase

Action space

- Phase:

Rewards & PressLight agent

Reward

reward = - pressure of intersection

$$r_i = -P_i = -\left(\sum_{l_{in} \in A_i} x(l_{in}) - \sum_{l_{in} \in B_i} x(l_{out})\right)$$

Agent

Noise model

1. Sensor failure \rightarrow failure chance

Parameter settings

Training parameters

- *n episodes:* 50/ 100

- Loss: MSE

- *Optimizer:* RMSProp

- Learning rate: 0.001

- *y:* 0.95

- ε: 0.1

- ε decay: 0.995

- *min ε:* 0.01

- Replay buffer size: 5000

- Batch size: 64

Simulation

- *n vehicles:* 2856

- Yellow length: 5s

- Simulation steps: 3600

- Action interval: 10s

- Sensor reads per episode: 360

Agents

FixedTime 30s

MaxPressure

PressLight undisturbed

PressLight disturbed

Noise parameters

- failure chances:

0, 0.05, 0.1, 0.15

- True positive rates:

1, 0.95, 0.8, 0.6

- False positive rates:

0, 0.15, 0.3, 0.65

Results – training time – travel time

Results – training time – rewards

Results – travel time vs. failure chance

Results – travel time vs. true positive rate (detection rate)

Results – travel time vs. false positive rate (misdetection rate)

Results – throughput vs. failure chance

Results – throughput vs. true positive rate (detection rate)

Results – throughput vs. false positive rate (misdetection rate)

Results – comparison

Research questions – answered

RQ1: Impact of different sensor failure modes on RL TSC agent performance

-> varies by agent

RQ2: Impact of different sensor noise levels on RL TSC agent performance

-> varies by agent

RQ3: Does training on noisy data improve robustness?

-> yes, quite significantly!

Noise impact on agents

Noise Agent	Failure chance	TPR	FPR
MaxPressure	high	low	low
Undisturbed	low	moderate	high
Disturbed	low	low	low

Power consumption

10 - 20 W

~12-20 / intersection

1 – 2 W

Raspberry Pi 4

<6 W

~1 / 20 intersections

Traffic camera

1-10 W solar powered

~4-8 / intersection

Traffic lights 1 and 2: <a href="https://www.semanticscholar.org/paper/Safety-Evaluation-of-Converting-Traffic-Signals-to-Srinivasan-of-Converting-Traffic <u>Carter/844679009108df4458a571b5da4c9511b975024d/figure/0</u> (removed frame)

1W traffic light: https://assets.new.siemens.com/siemens/assets/api/uuid:6a00415b-7e0f-4158-8d26-cf5941888ac0/width:4320/im2016040420mo_300dpi.jpeg Raspberry Pi 4: https://www.berrybase.de/media/image/9a/6a/c8/ID 76878 orig 600x600@2x.jpg

Traffic camera: https://www.milesight.com/security/product/4g-solar-powered-traffic-sensing-camera

