Explainable Network Intrusion Detection Using External Memory Models Jack Hutchison, Duc-Son Pham, Sie Teng Soh and Huo Chong Ling

Curtin University

Contributions

This paper makes network intrusion detection through augmenting an autoencoder-neural network model with external memory more explainable:

- Explores the effect of the memory size and the addressing scheme
- Explores which memory slots are strongly matched with what classes
- Measures how much external memory each class takes to be properly encoded
- Demonstrates that memory contents can help identify seen and unseen classes, potentially addressing zero-day attacks.

External Memory Models

Figure. DNC architecture [1]

- Part of Neural Turing Machine
- Memory can be examined externally
- Reading and writing of external memory can be tracked and provide valuable insight
- External memory has been used in recent NIDS work, but explanaibility was not explored
- We aim to bridge the knowledge gap
- We provide a more thorough study using latest large datasets
 - CIC-IDS2017
 - CSE-CIC-IDS2018

Proposed Method

- Auto-encoder is trained with attack samples to generate memory contents
- Classification module for detection
- Hard shrinkage to reduce memory slots
- Max memory size=250 was suitable for the datasets
- Fine-tuned hyperparameters: layers, units, classification network, optimization

Memory Activations

Figure. Sorted memory activations of CIC2017

Memory Contents

Figure. PCA graph with all memory contents, top 15 infiltration, and top 15 DoS Golden Eye - CIC2017

CIC-IDS2018

Memory size	15	250	1500
Benign	0.993	0.993	0.993
Bot	0.998	0.998	0.999
Brute Force -Web	0.339	0.474	0.445
Brute Force -XSS	0.603	0.606	0.597
DDOS attack-HOIC	0.999	0.999	0.999
DDOS attack-LOIC-UDP	0.831	0.817	0.842
DDoS attacks-LOIC-HTTP	0.993	0.994	0.995
DoS attacks-GoldenEye	0.989	0.994	0.966
DoS attacks-Hulk	0.999	0.999	0.997
DoS attacks-SlowHTTPTest	0.600	0.580	0.597
DoS attacks-Slowloris	0.957	0.967	0.964
FTP-BruteForce	0.782	0.775	0.782
Infilteration	0.010	0.018	0.021
SQL Injection	0.1	0.228	0.306
SSH-Bruteforce	0.999	0.999	0.999
macro avg	0.746	0.763	0.767
weighted avg	0.978	0.978	0.978

Unseen Attacks CICIDS2017

References & Github

[1] Graves, A., Wayne, G., and Reynolds, M. Hybrid computing using a neural network with dynamic external memory Nature, 7626:471–476,2016.

Github repository

https://github.com/dsphamgithub/explainids