Signature Forgery Detection

Rimas Sirag (Preprocessing)

Tasneem Hany (Modeling)

Noor Hussam (Deployment)

Problem Statement

Signature forgery is a serious threat to document authentication.

Manual verification is slow, prone to human error, and difficult to scale.

There is a need for automated signature verification systems using Al.

Project Goal

Dataset Overview

Project Steps

Dataset Overview

Forged

Genuine

Steps of Data Preprocessing

EDA

Steps of CNN Model

ம

Build Architecture

Define CNN layers (Conv2D, MaxPooling, Flatten, Dense) for feature extraction and final classification.

Train Model

Train on preprocessed data, applying EarlyStopping and Data Augmentation for robust learning.

Make Predictions

Generate classifications for test images and produce a detailed report on genuine and forged signatures.

Compile Model

Configure with Binary Crossentropy loss, Adam optimizer, and Accuracy as the primary metric.

Evaluate Model

Assess performance on both training and unseen test sets to confirm accuracy and generalization.

Save Model

Store the trained model for future use in real-time signature verification applications.

CNN Model Architecture

Layer (type)	Output Shape	Param #
conv2d_10 (Conv2D)	(None, 126, 126, 32)	320
max_pooling2d_10 (MaxPooling2D)	(None, 63, 63, 32)	0
conv2d_11 (Conv2D)	(None, 61, 61, 64)	18,496
max_pooling2d_11 (MaxPooling2D)	(None, 30, 30, 64)	0
flatten_5 (Flatten)	(None, 57600)	0
dense_10 (Dense)	(None, 64)	3,686,464
dropout_5 (Dropout)	(None, 64)	0
dense_11 (Dense)	(None, 1)	65

Total params: 3,705,345 (14.13 MB)

Trainable params: 3,705,345 (14.13 MB)

Non-trainable params: 0 (0.00 B)

Training Process

model.fit()

patience= 5

Batch size = 32

Epochs = 30

Optimizer: Adam

EarlyStopping: enabled

Model Performance

Evaluation Metrics

Train Accuracy

How well the model learns from training data.

Test Accuracy

How well it performs on new, unseen data.

Confusion Matrix

Shows correct and incorrect predictions (Genuine vs Forged).

Classification Report

Provides precision, recall, and F1-score for each class.

Prediction Score

A value between 0 and 1 indicating the model's confidence.

Evaluation Metrics

Test Accuracy: 87%

recall = 0.93

Prediction Samples from Test Set

Real-Time Signature Prediction

What We Did

Trained a Model

Utilized a robust machine learning model capable of accurately recognizing original and forged signatures.

Built a Web App

Developed an intuitive web interface using Streamlit, allowing users to easily upload signature images for verification.

Tested the App Locally

Conducted thorough local testing of the application to ensure functionality and performance.

Deployed the App Online

Published the application to Streamlit Cloud via GitHub, making it publicly available from any device.

Tools Used

Python

Primary programming language for development.

Streamlit

Framework for building the interactive web application.

Keras

Library used for building and training the machine learning model.

Streamlit Cloud

Platform for deploying and hosting the web application.

Real-Time Signature Prediction

Thank You for Listening