Quiz-02

Name: Morrow Mofiz Arman

ID: 1921079642

Cause: MAT130,

Section: 09

Date: 12-04-2021.

1+6= (1-)-B=10:00

Am to the ONO-3

Rodius, $\pi = y - (-1) = y + 1$. Height, H = 2 - 3Ty, Inderval, I = [0, 8]: Area of the cross section, $A = 2\pi\pi H$. $= 2\pi(y+1)(2-3Ty)$.

: The volumn of the solid, using cylindrical Shells is.

$$V = \int_{0}^{8} \left[2\pi (y+1) \left(2^{-2} \sqrt{y} \right) \right] dy$$

$$= 2\pi \int_{0}^{8} \left[2y + 2 - y^{\frac{5}{2}} - y^{\frac{3}{2}} \right] dy$$

$$= 2\pi \left[y^{2} + 2y - \frac{2}{7} y^{\frac{7}{2}} - \frac{2}{5} y^{\frac{5}{2}} \right]^{3}$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(9)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(9)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(9)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{7}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{5}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{5}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{5}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{5}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{5}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{5}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{5}{2}} - \frac{2}{5} (8)^{\frac{5}{2}} \right] - [0]$$

$$= 2\pi \left[(8)^{2} + 2(8) - \frac{2}{7} (8)^{\frac{5}{2}} - \frac{2}{5$$

Am to the ONO:02

Foliano $Area = \pi \pi^2$ $= \pi (\pi^2)$

: Area =
$$\int \pi x^2$$

= $\int \pi (n^2)^2 - \int \pi n^4$

$$= \pi \left[\frac{45}{5} \right]^{2}$$

$$= \pi \left[\frac{45}{5} \right]^{2} - 10$$

$$= \frac{1}{5} \pi \text{ unit}^{2}.$$
And

And to the ano: 03

$$n^2 = \sqrt{n}$$
 N_{ev} , C_{ev} ,

 N_{ev} , C_{ev} ,

 N_{ev} ,

$$= \pi \int_{0}^{1} (n^{4} - n) dn.$$

$$= \pi \left[\frac{n^{2}}{5} - \frac{n^{2}}{2} \right]_{0}^{1}$$

$$= \pi \left[\frac{(1)^{2}}{5} - \frac{(1)^{4}}{2} \right] - \left[\frac{(1)^{4}}{5} \right]_{0}^{1}$$

Q 1 1 5 $= \times \left[\frac{1}{2} - \frac{1}{5} \right]$ $=\frac{3\sqrt{10}}{10}$