Reconocimiento de Emociones en Habla Utilizando SVM

Lia Natalia Chicue Garcia.

Machine Learning
Maestría en Ingeniería de Sistemas y Computación
Universidad Tecnológica de Pereira

Noviembre 21 / 2021

Motivación

Desarrollo de HCIs:

- Asistentes virtuales.
- Sistemas de vigilancia sanitaria.
- Marketing y Publicidad

El SER y sus Desafíos

Modelo oculto de Markov (HMM)

Clasificar emociones en habla a partir de la
 extracción de un grupo de características de sonido utilizando máquinas de soporte
 vectorial

Materiales

Base de Datos Características	Etiquetas	Features
1. Ravdess2. Crema3. Tess4. Savee	 Happy Fear Sad Surprise Disgust Neutral Angry 	 Energía Vector Chroma Espectrograma de Mel Coeficientes Cepstrales en las Frecuencias de Mel Raíz del error cuadrático medio Velocidad de cruce cero Centroide Espectral Ancho de Banda Espectral Contraste Espectral Coeficiente de Tonalidad o Planitud Espectral Frecuencia Espectral Rolloff Tonnez

Métodos

Extracción de Features	Método SVM
Se creó una <u>función</u> que extrae las características anteriormente nombradas.	Se utilizará el toolkit de sklearn llamado SVC, el cual es capaz de clasificar bases de datos multi-clase apoyado en métodos de aprendizaje supervisado como lo son las máquinas de soporte vectorial.

Energía

Vector Croma

```
stft = np.abs(librosa.stft(data))
chroma_stft = np.mean(librosa.feature.chroma_stft(S=stft,
sr=sample_rate).T, axis=0)
```

Espectrograma de Mel

Coeficientes Cepstrales en las Frecuencias de Mel

```
mfcc = np.mean(librosa.feature.mfcc(y=data, sr=sample_rate).T,
axis=0)
```

Raíz del error cuadrático medio

```
rms = np.mean(librosa.feature.rms(y=data).T, axis=0)
```

Velocidad de cruce cero

```
zcr = np.mean(librosa.feature.zero_crossing_rate(y=data).T,
axis=0)
```

Centroide Espectral

```
cent = np.mean(librosa.feature.spectral_centroid(y=data,
sr=sample rate).T,axis=0)
```

Ancho de Banda Espectral

```
spec_bw = np.mean(librosa.feature.spectral_bandwidth(y=data, sr=sample_rate).T,
axis=0)
```

Contraste Espectral

```
S_c = np.abs(librosa.stft(data))
contrast = np.mean(librosa.feature.spectral_contrast(S=S_c,
sr=sample rate).T, axis=0)
```

Coeficiente de Tonalidad o Planitud Espectral

```
flatness = np.mean(librosa.feature.spectral_flatness(y=data).T,
axis=0)
```

Frecuencia Espectral de Desplazamiento

```
rolloff=np.mean(librosa.feature.spectral_rolloff(y=data,
sr=sample rate).T,axis=0)
```

Tonnez

```
y1 = librosa.effects.harmonic(data)

tonnetz = np.mean(librosa.feature.tonnetz(y=y1,
sr=sample_rate).T,axis=0)
```

Clasificación en SVM

- Hiperplano separador
- 2. Hiperplano de Margen Máximo
- 3. Margen
- 4. Kernel

Resultados y Discusiones

Precisión de la clasificación

Accuracy Test (%)						
[Regularización C=0,01]						
test_size 0,2 0,3 0,5						
linear		56,568	55,492	53,792		
Kernel	rbf	32,007	26,847	25,304		
	poly	24,604	22,368	22,428		
	sigmoid	29,937	24,508	21,640		

Accuracy Test (%)						
[Regularización C = 1]						
test_	test_size 0,2 0,3 0,5					
linear		58,280	56,662	55,966		
Kernel	rbf	58,708	56,091	56,309		
	poly	45,528	43,823	42,390		
	sigmoid	37,484	38,088	40,370		

Accuracy Test (%)						
[Regularización C = 10]						
test_size 0,2 0,3 0,5						
Kernel	linear	57,938	56,234	54,888		
	rbf	62,730	61,170	60,043		
	poly	55,413	53,210	52,542		
	sigmoid	32,092	32,354	32,649		

Accuracy Test (%)						
[Regularización C = 100]						
test	size	0,2	0,3	0,5		
	rbf	64,014	62,767	61,701		
Kernel	poly	42,747	41,940	41,089		
	sigmoid	30,894	31,583	31,056		

Accuracy Test (%)						
[Regularización C = 1000]						
test	test_size 0,2 0,3 0,5					
	rbf	61,575	60,114	58,534		
Kernel	poly	50,107	49,443	49,375		
	sigmoid	30,809	31,583	31,552		

Accuracy Test (%)						
[Regularización C = 1x10 ⁶]						
test_	test_size 0,2 0,3 0,5					
	rbf	60,419	59,087	57,730		
Kernel	poly	59,264	58,060	55,384		
	sigmoid	30,766	31,555	31,450		

Accuracy Test (%) [test_size = 0,3]							
Regular	Regularización 0,01 1 10 100 1000 1x10 6						
	3 22,368 43,823 53,210 41,940 49,443 58,06						58,060
deg	6	21,789	31,783	36,119	41,94	49,444	54,236
	10	21,74	27,389	30,442	32,781	35,521	45,221

Classification Report

	precision	recall	f1-score	support
happy	0,67	0,71	0,69	567
fear	0,54	0,57	0,55	560
sad	0,63	0,55	0,59	566
surprise	0,57	0,55	0,56	539
disgust	0,65	0,66	0,66	560
neutral	0,62	0,66	0,6	535
angy	0,91	0,84	0,87	178

	precision	recall	f1-score	support
macro avg	0,66	0,65	0,65	3505
weigthed av	0,63	0,63	0,63	3505

Conclusiones

El kernel de función de base radial resulta óptimo para el proceso de clasificación de grandes números de datos, como lo es la base de datos empleada en el presente proyecto, debido a que almacena los vectores de soporte únicamente durante el entrenamiento y no todo el conjunto de datos acelerando el proceso de ejecución y aumentando porcentaje de precisión. Esto último corresponde a que nuestra base de datos es un conjunto no linealmente separable.

Trabajos Futuros

- La mayoría de las bases de datos en el estado del arte están en inglés. Se recomienda crear una base de datos en diferentes idiomas con el fin de verificar los valores de las características extraídas con las emociones de etiquetado.
- Se plantea utilizar otros medios de procesamiento de datos como Big data con el fin aumentar los tiempos de ejecución.

Bibliografía

- Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.
- Oppenheim, A. (1975). V. and Schafer, Ronald W. Discrete-Time Signal Processing.
- Lieskovská, E., Jakubec, M., Jarina, R., & Chmulík, M. (2021). A Review on Speech Emotion Recognition Using Deep Learning and Attention Mechanism. Electronics, 10(10), 1163.
- Selvaraj, Mahalakshmi & Bhuvana, R. & Karthik, S Padmaja. (2016). Human speech emotion recognition. 8. 311-323.

Bibliografía

- Ramakrishnan, S., & El Emary, I. M. (2013). Speech emotion recognition approaches in human computer interaction. Telecommunication Systems, 52(3), 1467-1478.
- Karg, M. (2012). Pattern recognition algorithms for gait analysis with application to affective computing (Doctoral dissertation, Technische Universität München).