12.520 Lecture Notes 12

Elasticity

So far:

Stress \rightarrow angle of repose vs accretionary wedge

Strain \rightarrow reaction to stress \rightarrow but how?

Constitutive relations

$$\tau_{ij} = \tau_{ij} \left(\varepsilon_{kl} \right); \quad \varepsilon_{ij} = \varepsilon_{ij} \left(\tau_{kl} \right)$$

For example,

Elasticity

Isotropic

Anisotropic

Viscous flow

Isotropic

Anisotropic

Power law creep

Viscoelasticity

Trade offs:

simplicity	\leftrightarrow	realism
constant		variable
isotropic		anisotropic
elastic, viscous		viscoelastic
history		history dependent
independent		

Tensors

Most physical quantities that are important in continuum mechanics like temperature, force, and stress can be represented by a tensor. Temperature can be specified by stating a single numerical value called a scalar and is called a zeroth-order tensor. A force, however, must be specified by stating both a magnitude and direction. It is an example of a first-order tensor. Specifying a stress is even more complicated and requires stating a magnitude and two directions—the direction of a force vector and the direction of the normal vector to the plane on which the force acts. Stresses are represented by second-order tensors.

Tensors are quantities independent of coordinate system.

Figure 12.1
Figure by MIT OCW.

$$\alpha_{ij} = \cos \phi_{ij}$$

where ϕ_{ij} is the angle of primed to original.

$$x_{i}' = \alpha_{ij} x_{j}$$

$$x_{i} = \alpha_{ji} x_{j}'$$

$$\alpha_{ij} = \frac{\partial x_{i}'}{\partial x_{j}} = \frac{\partial x_{j}}{\partial x_{i}'}$$

Tensors:

- a. 0th order (scalar) quantity dependent only on position
- b. 1^{st} order (3^1 components) $A_i' = \alpha_{ij} A_j$
- c. 2^{nd} order ($3^2 = 9$ components) $A_{ij}' = \alpha_{is} \alpha_{jk} A_{sk}$
- d. 3^{rd} order ($3^3 = 27$ components) $A_{ijk}' = \alpha_{is} \alpha_{jt} \alpha_{kp} A_{stp}$
- e. 4^{th} order ($3^4 = 81$ components) $A_{ijkl}' = \alpha_{is} \alpha_{jt} \alpha_{kp} \alpha_{lq} A_{stpq}$

Conventional moduli:

1. Hydrostatic comp.

Figure 12.2

Figure by MIT OCW.

$$\tau_{ij} = -p\delta_{ij}$$

$$\tau_{ii} = -p\delta_{ii} = 3\lambda e_{kk} + 2\mu e_{ii}$$

$$= -3p = (3\lambda + 2\mu)e_{ii}$$

$$-\frac{p}{e_{ii}} = -\frac{VP}{\Delta V} \equiv K$$

where $K = \lambda + 2/3\mu$ is bulk modulus.

2. Uniaxial stress

$$\tau_{11} = T$$
other $\tau_{ij} = 0$

$$2\mu e_1 = T - \frac{\lambda}{2\mu + 3\lambda}T$$

$$\frac{T}{e_1} \equiv E \text{ (sometimes } Y\text{)}$$

where
$$E = \frac{\mu(2\mu + 3\lambda)}{\mu + \lambda}$$
 is Young's modulus

Hook's law:

$$T = Ee$$

$$\frac{e_{22}}{e_{11}} = \frac{e_{33}}{e_{11}} \equiv -v \quad \text{This is called Poisson's ratio.}$$

$$2\mu e_{22} = -\frac{\lambda}{2\mu + 3\lambda} \tau_{11} \implies v = \frac{\lambda}{2(\mu + \lambda)}$$

$$\theta = e_{11} + e_{22} + e_{33} = e_{11}(1 - 2v)$$
fluid: $\mu \to 0 \implies v \to \frac{1}{2}$
most material: $v = 0.2 - 0.3$

$$v = \frac{1}{4} \implies \lambda = \mu \quad \text{It is Poisson solid.}$$

steel:
$$v$$
; 0.3 – 0.33

seismically measured

$$v_p = \sqrt{\frac{\lambda + 2\mu}{\rho}} \qquad v_s = \sqrt{\frac{\mu}{\rho}}$$

compare $v_p, v_s \rightarrow v \rightarrow$ discriminate rock types

3. Simple shear

$$\tau_{12} = \tau_{21} = \tau$$
$$\tau_{12} = 2\mu e_{12} = 2Ge_{12}$$

where G is shear modulus.

Note: Among λ , μ , K, ν , E, G only two are independent.