

ECE 5831 Pattern Recognition And Neural Networks

Name: Kshitij Dhannoda Srishti Kachhara

Problem Statement:

Generate realistic images of birds from textual descriptions using a Generative Adversarial Network (GAN).

What is Text-to-Image Generation?

- Bridging the gap between visual and natural language data.
- Example: "A small yellow bird with black wings" \rightarrow Realistic Image.

Motivation:

- Applications: Content generation, AI art, and accessibility tools.
- Challenges: Understanding and integrating text and image data.

Dataset

Dataset Used: CUB-200-2011 Birds Dataset

• **Total Images**: 11,788

• Classes: 200 bird species

Text Descriptions: 10 descriptions per image

Preprocessing:

- Images resized to 64x64 pixels
- Text descriptions converted to text embeddings
- Stored efficiently in HDF5 format for fast loading

GAN Training Pipeline

GAN Architecture:

- 1. Generator:
 - Inputs: Text embeddings + Random noise
 - Output: 64x64 realistic bird images
- 2. Discriminator:
 - Inputs: Image + Text embedding
 - Output: Real or Fake
- Loss Functions:
 - 1. Adversarial Loss: Binary Cross-Entropy Loss for training GANs.
 - 2. L1 Loss and L2 Loss
- Training Pipeline:
 - 1. Train the **Discriminator** to classify real and fake images.
 - 2. Train the **Generator** to produce images that fool the Discriminator.

GAN Training Pipeline

Training Steps

- 1. **Load Data**: Images and text embeddings from the dataset.
- 2. Train Discriminator:
 - \circ Real image + text \rightarrow Real label
 - \circ Generated image + text \rightarrow Fake label
- 3. Train Generator:
 - Input: Noise + Text embeddings
 - Output: Fake image to fool the Discriminator.
- 4. **Update Parameters**: Use **Adam Optimizer** to update both networks.

Tools and Frameworks:

- **PyTorch**: Model training and optimization
- **DataLoader**: Efficient batching of data
- Loss Functions: Adversarial Loss, L1, and L2

Implementation

Tools and Libraries:

- Framework: PyTorch
- **Data Handling**: h5py for HDF5 files, NumPy
- **Image Processing**: PIL (Pillow)
- Text Embeddings: Precomputed text embeddings for conditioning

Tools and Libraries:

Module	Description
txt2image_dataset.py	Handles data loading and preprocessing
gan_cls.py	Defines Generator and Discriminator
trainer.py	Implements the training pipeline
utils.py	Utility functions (e.g., save checkpoints)
runtime.py	Entry point for training and inference

Results

Training Progress:

- Discriminator Loss: Reduced over epochs (better at distinguishing real/fake).
- **Generator Loss**: Improved over time (producing better images).

Results

Observations:

- a. Early images were noisy and lacked structure.
- b. Over time, the GAN started learning basic features like **colors** and **shapes** of birds.

Challenges and Limitations

Hardware Constraints:

- MPS backend on MacBook Air M1 has limited support compared to CUDA.
- Training speed was slower due to hardware limitations.

Training Instability:

- GAN training is inherently unstable.
- Loss oscillations and mode collapse observed during early epochs.

Challenges and Limitations:

Low Image Resolution:

- Generated images are limited to **64x64 pixels**.
- Higher resolution requires more advanced architectures like StackGAN.

Dataset Variability:

• Text descriptions vary in length and detail, affecting model performance.

Limited Training Time:

• Due to time constraints, the model did not fully converge.

Future Work:

1. Train for More Epochs:

a. Extended training will help the Generator produce sharper and more detailed images.

2. **2.** Higher Resolution Outputs:

- a. Implement advanced GAN architectures like:
 - i. **StackGAN**: Two-stage refinement process for 256x256 images.
 - ii. AttnGAN: Attention mechanisms to focus on specific text details.

3. **3. Improved Text Embeddings**:

a. Use pre-trained models like **BERT** or **CLIP** for better text representations.

Future Work:

1. Stabilize Training:

a. Techniques like **Wasserstein GAN (WGAN)** and **Gradient Penalty** to reduce loss oscillations and mode collapse.

2. Quantitative Evaluation:

- a. Include metrics like:
 - i. Inception Score (IS)
 - ii. Fréchet Inception Distance (FID)

3. Hardware Upgrades:

a. Use **NVIDIA GPUs** or cloud-based platforms like **Google Colab** or **AWS** for faster training.

Conclusion:

- Summary of Achievements:
 - Successfully implemented a GAN for text-to-image generation.
 - Demonstrated the ability to generate images conditioned on text descriptions.
 - Set up a robust training pipeline using PyTorch and the CUB-200-2011 dataset.
- Key Challenges:
 - Hardware limitations and training instability.
 - Limited resolution (64x64) and time constraints.

Conclusion:

- Future Directions:
 - Train longer for convergence and improve resolution using advanced GANs.
 - Integrate pre-trained text embeddings and evaluation metrics.
- Final Remarks:
 - The project serves as a foundation for further exploration in **text-to-image synthesis**.

