Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)



#### НАУЧНО-КВАЛИФИКАЦИОННАЯ РАБОТА

«Роль дальнодействия притяжения в фазовых диаграммах и диффузии в двумерных системах с регулируемыми взаимодействиями»

Студент: Дмитрюк Никита Руководитель: Юрченко Станислав Олегович

гр. ФН4-81Б

#### Актуальность

Знание зависимости внешних параметров системы от потенциала взаимодействия, является открытым вопросом в физике мягкой материи. Точное прогнозирование, или хотя бы качественная их оценка, термодинамических параметров вещества, для которого известен состав и внешние условия (например, внешние электрические или магнитные поля), позволят избежать дорогостоящих исследований поведения каждого отдельного вещества.

Также это открывает возможности для создания новых веществ, удовлетворяющих потребности в определенном фазовом поведении, с нужными температурами плавления или скорости звука в веществе, а также сжимаемости.

#### Цель работы

**Цель работы** – установить связь между дальнодействием притяжения в двумерной системе частиц, взаимодействующих посредством обобщенного потенциала Леннарда-Джонса, с фазовой диаграммой, и параметрами переноса.

# Задачи работы

- 1. Разработка программного комплекса для расчета явлений переноса в 2D системах.
- 2. Разработка методов определения термодинамических свойств системы по распределениям плотностей.
- 3. Усовершенствование метода распознавание фаз и построения фазовых диаграмм.
- 4. Применение разработанных методов на различных потенциалах взаимодействия.
- Применение наработок для изучения влияния потенциала взаимодействия на различные термодинамические параметры.

«ВЛИЯНИЕ ДАЛЬНОДЕЙСТВИЯ ПРИТЯЖЕНИЯ НА

ФАЗОВЫЕ ДИАГРАММЫ»



Триангуляция Делоне



Триангуляция Делоне



Проведение перпендикуляров



Триангуляция Делоне



Проведение перпендикуляров



Ячейки Вороного





- ► Найти соседей каждой частицы
- Плотности
- ▶ Параметры порядка
- Эффективные потенциалы
- Радиусы инерции сечения
- ▶ И т.д.

# Параметр иррегулярности R



а) Кристалл б) Газ.

#### Параметр иррегулярности R



а) Кристалл б) Газ.

$$R_{0i} = \sqrt{\frac{\pi}{2S_i N_{ni}^2} \sum_{i < k}^{N_{ni}} (r_{ij} - r_{ik})^2}, r_{ij} = |r_i - r_j|$$

$$R_i = \frac{1}{N_{ni} + 1} \left( R_{0i} + \sum_{j=1}^{N_{ni}} R_{0j} \right)$$
(1)

где  $S_i$  - площадь ячейки,  $N_{ni}$  - количество соседей,  $r_{ij}$  - расстояние от рассматриваемой частицы до соседней.

## Параметр иррегулярности R



а) Кристалл б) Газ.

$$\begin{split} R_{0i} &= \sqrt{\frac{\pi}{2S_i N_{ni}^2} \sum_{i < k}^{N_{ni}} (r_{ij} - r_{ik})^2}, r_{ij} = |r_i - r_j| \\ R_i &= \frac{1}{N_{ni} + 1} \left( R_{0i} + \sum_{j=1}^{N_{ni}} R_{0j} \right) \end{split}$$

(1)

где  $S_i$  - площадь ячейки,  $N_{ni}$  - количество соседей,  $r_{ij}$  - расстояние от рассматриваемой частицы до соседней.



Распределение параметра  ${\it R}.$ 

# Корректировка фаз



Полный алгоритм классификации частиц в системе.

#### Корректировка фаз



Полный алгоритм классификации частиц в

Корректировка фаз включает в себя следующие условия:

- частица конденсата, не имеющая среди своих соседей частиц того же типа, является поверхностью.
- частица конденсата, которая имеет среди соседних частиц, газовую частицу, является поверхностью.
- газовая частица, не имеющая соседних частиц того же класса, является поверхностью.
- частица поверхности, все соседи которой принадлежат к классу "конденсат"или "газ так же принадлежат к этому классу.

## Недостатки метода распознавания фаз



Результат алгоритма классификации.

#### Недостатки метода распознавания фаз



Результат алгоритма классификации.

#### Недостатки метода распознавания фаз:

- распознавание пустот внутри конденсированного кластера, как его часть.
- скопления поверхностных частиц, которые могут быть небольшими кластерами.
- нерегулярная граница кластера из поверхностных частиц.
- частицы на поверхности кластера с низкой плотностью, распознанные как конденсат а не поверхность, вносят ошибку в вычисления мат. ожидания плотности.

## Изменения в корректировке фаз

Дополнительные условия в корректировки фаз:

- частица поверхности, не имеющая среди соседей частиц газа, является конденсатом.
- поверхностная частица, не имеющая среди соседей частиц конденсата, является газом.
- частицы конденсата, плотность которых сопоставима с плотностью поверхностных частиц, являются поверхностью. Данная проверка делается дважды (перед всеми остальными и после).
- частица конденсата, которая имеет меньше 3 соседних частиц, так же принадлежащих к конденсату, является поверхностью.

# Изменения в корректировке фаз

Дополнительные условия в корректировки фаз:

- частица поверхности, не имеющая среди соседей частиц газа, является конденсатом.
- поверхностная частица, не имеющая среди соседей частиц конденсата, является газом.
- частицы конденсата, плотность которых сопоставима с плотностью поверхностных частиц, являются поверхностью. Данная проверка делается дважды (перед всеми остальными и после).
- частица конденсата, которая имеет меньше 3 соседних частиц, так же принадлежащих к конденсату, является поверхностью.



Результат обновленного алгоритма классификации.

# Нахождение точек на фазовой диаграмме



# Нахождение точек на фазовой диаграмме





## Изменения в определении плотности газа



#### Изменения в определении плотности газа



Плотность газа в системе вычисляется косвенно по формуле:

$$\rho_{gas} = \frac{N_g}{S - (N_b + N_c)/\mathbb{M}\rho_c}, \quad (2)$$

где S - суммарная площадь всех рассматриваемых кадров,  $N_g$  ,  $N_b$  ,  $N_c$  - суммарное число частиц газа, поверхности и конденсата соответственно на всех рассматриваемых кадрах моделирования,  $\mathbb{M} \rho_c$  - мат. ожидание плотности частиц конденсата на всех рассматриваемых кадрах.

#### Описание смоделированных систем



Система LJ 12-6 при  $T/T_{cp} = 0.95$ .

$$U(r) = 4\varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^{m} \right], m = 3, 4, 5, 6.$$
(3)

Каждое моделирование проводилось при постоянной температуре и плотности. Статистика собрана по 150 кадрам моделирования, на каждом из которых примерно по 3600 частиц. Все величины на графиках являются обезразмеренными с помощью  $\varepsilon=1,\sigma=1,m=1,k_B=1.$ 

|            | LJ12-3 | LJ12-4 | LJ12-5 | LJ12-6 |
|------------|--------|--------|--------|--------|
| m          | 3      | 4      | 5      | 6      |
| $\Delta T$ | 0.03   | 0.03   | 0.02   | 0.02   |
| $\rho_0$   | 0.28   | 0.4    | 0.4    | 0.4    |

Параметры моделирования исследуемых систем. m - степень слагаемого в уравнении 3,  $\Delta T$  - шаг по температуре,  $\rho_0$  - плотность системы в целом.

## Применение метода ячеек Вороного



Разбиение на ячейки Вороного различной температуре исследуемой в данной работе системы на примере потенциала Леннарда-Джонса.

# Применение метода ячеек Вороного



Разбиение на ячейки Вороного различной температуре исследуемой в данной работе системы на примере потенциала Леннарда-Джонса.

Параметр иррегулярности R в исследуемой системе, на примере потенциала взаимодействия Леннарда-Джонса при различной температуре.

#### Построение фазовых диаграмм для различных потенциалов взаимодействия



Классификация частиц в исследуемой системы на примере системы с потенциалом взаимодействия Леннарда-Джонса при различной температуре.

#### Построение фазовых диаграмм для различных потенциалов взаимодействия



голасификация частиц в исследуемой системи на примере системы с потенциалом взаимодействия Леннарда-Джонса при различной температуре.

Распределение плотностей частиц конденсата и газа при различных температурах. Синим цветом обозначен конденсат, оранжевым - газ.

## Фазовые диаграммы при различном притяжении



#### Фазовые диаграммы при различном притяжении



$$\rho_l - \rho_g \simeq A(T_{CP} - T)^{\beta_C}$$

$$\frac{\rho_l + \rho_g}{2} \simeq \rho_{CP} + a(T_{CP} - T)$$
(4

где  $T_{CP}, \rho_{CP}$  - эффективная температура и плотность критической точки, A,a - варьируемые параметры,  $\rho_l, \rho_g$  - плотность жидкости и газа соответственно,  $\beta_c$  - критический индекс системы.

#### Фазовые диаграммы при различном притяжении



$$\rho_l - \rho_g \simeq A(T_{CP} - T)^{\beta_C}$$

$$\frac{\rho_l + \rho_g}{2} \simeq \rho_{CP} + a(T_{CP} - T)$$
(4)

где  $T_{CP}, \rho_{CP}$  - эффективная температура и плотность критической точки, A,a - варьируемые параметры,  $\rho_l, \rho_g$  - плотность жидкости и газа соответственно,  $\beta_c$  - критический индекс системы.

|        | $T_{TP}$ | $T_{CP}$ | $\rho_{CP}$ |
|--------|----------|----------|-------------|
| LJ12-3 | 1.09     | 2.69     | 0.28        |
| LJ12-4 | 0.68     | 1.13     | 0.35        |
| LJ12-5 | 0.51     | 0.76     | 0.36        |
| LJ12-6 | 0.40     | 0.51     | 0.39        |

Параметры фазовых диаграмм для различных потенциалов взаимодействия.  $T_{CP}$  - критическая температура,  $\rho_{CP}$  - критическая плотность системы,  $T_{TP}$  - температура тройной точки.

# Анализ гистограмм распределения плотностей

Равновесные колебания вблизи среднего значения объема определяются уравнением состояния системы, и соответствующая функция распределения вероятности p(V) равна:

$$p(V) \propto \exp \left[ rac{1}{2T} \left( rac{\partial P}{\partial V} 
ight) \left( V - V_0 
ight)^2 
ight],$$
 (5)

где P - давление,  $V_0$  - максимум распределения объема, V - объем. Сделав замену  $V=1/\rho$ , получим следующее уравнение для аппроксимации верхушки гистограмм:

$$p(\rho) \propto \exp\left[-K\left(\rho_{max} - \rho\right)^{2}\right]$$

$$K = \frac{1}{2T\rho_{max}^{2}}\left(\frac{\partial P}{\partial \rho}\right)$$
(6)

где  $ho_{max}$  - плотность максимума распределения.

#### Анализ гистограмм распределения плотностей

Равновесные колебания вблизи среднего значения объема определяются уравнением состояния системы, и соответствующая функция распределения вероятности p(V) равна:

$$p(V) \propto \exp \left[ rac{1}{2T} \left( rac{\partial P}{\partial V} 
ight) \left( V - V_0 
ight)^2 
ight],$$
 (5)

где P - давление,  $V_0$  - максимум распределения объема, V - объем. Сделав замену  $V=1/\rho$ , получим следующее уравнение для аппроксимации верхушки гистограмм:

$$p(\rho) \propto \exp\left[-K\left(\rho_{max} - \rho\right)^{2}\right]$$

$$K = \frac{1}{2T\rho_{max}^{2} - \pi} \left(\frac{\partial P}{\partial \rho}\right)$$
(6)

где  $\rho_{max}$  - плотность максимума распределения.



Аппроксимация пика распределения плотности при различной температуре на примере потенциала LJ12-6.



Температурная зависимость коэффициента K.



По коэффициенту K можно определить сжимаемость и адиабатическая скорость звука:

$$\beta = \frac{1}{\rho_0} \frac{\partial \rho}{\partial P}$$

$$C = \sqrt{\frac{\partial P}{\partial \rho}},$$
(7)

где  $\beta$  - сжимаемости, C - скорость звука в веществе.

Выразив данные величины через коэффициент K, получим следующие формулы:

$$\beta = \frac{1}{2T\rho_0\rho_{max}^2K}$$
 (8) 
$$C = \rho_{max}\sqrt{2TK}$$

Температурная зависимость коэффициента K.

#### Анализ гистограмм распределения плотностей



Температурная зависимость  $\beta$  при различных потенциалах.

#### Анализ гистограмм распределения плотностей



Температурная зависимость скорости звука при различных потенциалах.

#### Анализ гистограмм распределения плотностей



Температурная зависимость моментов величины  $\mu_i = \mathbb{M}\left[|\rho - \mathbb{M}\rho|^i
ight].$ 

## Влияние дальнодействия притяжения



Зависимость температур тройной, критической точки и линии Видома в зависимости от степени m.

# Влияние дальнодействия притяжения



Отношение температур критической точки и линии Видома к тройной в зависимости от степени m.

Анализ гистограмм распределения плотностей

## «ДИФФУЗИЯ ОТ ТРОЙНОЙ ДО КРИТИЧЕСКОЙ ТОЧКИ»

# Вычисление коэффициента диффузии методами МД



Смещение частиц от начального положения за 10 кадров моделирования. Цветом показана величина смещения в  $\sigma$  (единица измерения длинны).

Зная смещения всех частиц от их изначального положения в системе, с t=0, можно рассчитать среднеквадратичное смещение частиц с помощью уравнения:

$$\sigma^{2}(t) = \sum_{\alpha=1}^{N(t)} (r_{\alpha}(t) - r_{\alpha}(0))^{2} / N(t), \quad (9)$$

где  $\sigma^2(t)$  - среднеквадратичное смещение частиц, N(t) - количество частиц в данный момент времени в кадре,  $r_{\alpha}(t)$  - положение частицы в момент времени  $t, r_{\alpha}(0)$  - положение частицы в начальный момент времени t=0.

# Вычисление коэффициента диффузии методами МД



Временная зависимость среднеквадратичного смещения частиц для различных температур на примере потенциала Леннарда-Джонса. Так как для двумерной системы верно равенство  $\sigma^2(t)=4Dt$ , то коэффициент диффузии выражается следующей формулой:

$$D = \frac{\sigma^2(t)}{4t},\tag{10}$$

где D - коэффициент диффузии в веществе. Его можно получить путем аппроксимации среднеквадратичного смещения функцией  $\sigma^2(t)=4Dt+a$ , где a - подгоночный коэффициент.

Кроме диффузии можно вычислить мобильность частиц в системе, которая определяется следующим уравнением:

$$\mu = \frac{D}{T},\tag{11}$$

где  $\mu$  - мобильность частиц.

## Температурная зависимость диффузии и подвижности



Температурная зависимость коэффициента диффузии для различных потенциалов взаимодействия. Не доделана!

#### Температурная зависимость диффузии и подвижности



Температурная зависимость подвижности для различных потенциалов взаимодействия.

# Влияние дальнодействия притяжения на подвижность частиц



График зависимости параметров аппроксимации подвижности от тройной до критической точки линейной функцией.

## Взаимосвязь термодинамических параметров, и параметров переноса



Зависимость мобильности от сжимаемости для различных потенциалов.

### Взаимосвязь термодинамических параметров, и параметров переноса



Зависимость скорости звука от мобильности для различных потенциалов. Не доделана!

## Выводы работы

- 1. Проведена модернизация алгоритма классификации и определение плотностей фаз в системе.
- 2. Установлена роль притяжения на фазовые диаграммы систем с обобщенным потенциалом Леннарда Джонса.
- 3. Представлен способ определения сжимаемости и скорости звука в веществе, используя только распределение плотностей ячеек вороного, а так же способ определения линии Видома для плотности.
- 4. Исследована зависимость поведения мобильности частиц в зависимости от дальнодействия притяжения.
- 5. Рассмотрена связь термодинамических свойств системы с параметрами переноса в веществе, предложен способ классификации с помощью нейронной сети.

Спасибо за внимание!