

- Gravity: 1 m/s²
- Radiation pressure: 100 nm/s²

Radiation pressure for LRO Solar radiation Lunar albedo + thermal radiation HGA SA Body₹ Cannonball target Paneled target (symmetric) (asymmetric)

Albedo radiation: reflected sunlight

Thermal radiation: surface temperature

Orbit geometry for LRO

- Sun perpendicular to orbit plane
- Permanent sunlight
- LRO only passes above dark/cold regions

September

- Sun in orbit plane
- Longest eclipse duration
- LRO passes over subsolar point

Accelerations due to solar radiation

Accelerations due to lunar radiation

Difference in position due to radiation pressure

Conclusion

- Key findings:
 - Large variations in accelerations depending on Sun position
 - Only a paneled model can properly represent LRO throughout the seasons
 - Orbit determination requirements are not met if radiation pressure is neglected

Conclusion

- Key findings:
 - Large variations in accelerations depending on Sun position
 - Only a paneled model can properly represent LRO throughout the seasons
 - Orbit determination requirements are not met if radiation pressure is neglected
- Aspects I did not cover:
 - Mathematical modeling
 - Albedo distribution
 - Thermal reradiation
 - Sources of uncertainty
 - Performance impact

