PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A1

(11) International Publication Number:

WO 97/38567

H05K 13/04

(43) International Publication Date:

16 October 1997 (16.10.97)

(21) International Application Number:

PCT/IB97/00167

(22) International Filing Date:

26 February 1997 (26.02.97)

(30) Priority Data:

96200829.8

27 March 1996 (27.03.96)

EP

(34) Countries for which the regional or international application was filed:

NL et al.

(71) Applicant: PHILIPS ELECTRONICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

(71) Applicant (for SE only): PHILIPS NORDEN AB [SE/SE]; Kottbygatan 7, Kista, S-164 85 Stockholm (SE).

(72) Inventor: OTTEN, Joseph, Gertrudis, Leonardus; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).

(74) Agent: BOS, Kornelis, Sjoerd; Internationaal Octrooibureau B.V., P.O. Box 220, NL-5600 AE Eindhoven (NL).

(81) Designated States: JP, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHOD OF PLACING A COMPONENT ON A SUBSTRATE AND COMPONENT PLACEMENT MACHINE FOR CARRYING OUT THE METHOD

(57) Abstract

The invention relates to a method of and a component placement machine for placing a component (10) onto a substrate (7), in which, after a component has been picked up by a placement head (6) secured to an arm (5) of a robot (2), the component is moved into an image field (18) of a stationary first imaging device (12) and the component is imaged, after which a second imaging device (13), which is also secured to said arm (5) of the robot, images a mark (21) of the substrate (7), subsequently the positions of the component and the position where the component is to be placed onto the substrate are calculated from the resulting image data, and finally the placement head places the component onto the substrate at the desired position. During imaging of the component (10), in order to compensate for inaccuracies in the distance between the placement head and the second imaging device, the first imaging device (12) also images at least one mark (16) situated on a reference plate (14) and at the same time the second imaging device (13) images a second mark (17) on the reference plate, after which the position of the component (10) relative to the second imaging device (13) is calculated from the resulting image data.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
. AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AU .	Australia Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
AZ	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BA		GH	Ghana	MG	Madagascar	TJ	Tajikistan
BB	Barbados	GN -	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BE	Belgium Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BF		HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BG	Bulgaria	IE	Ireland	MN	Mongolia	UA	Ukraine
BJ	Benin		Israel	MR	Mauritania	UG	Uganda
BR	Brazil	IL		MW	Malawi	US	United States of America
BY	Belarus	IS	Iceland	MX	Mexico	UZ	Uzbekistan
CA	Canada	IT	Italy	NE	Niger	VN	Viet Nam
CF	Central African Republic	JP	Japan	NL	Netherlands	YU	Yugoslavia
CG	Congo	KĖ	Kenya	NO NO	Norway	zw	Zimbabwe
СН	Switzerland	KG	Kyrgyzstan	NZ	New Zealand		
CI	Côte d'Ivoire	KP	Democratic People's				
CM	Cameroon		Republic of Korea	PL.	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		* _
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 97/38567 PCT/IB97/00167

Method of placing a component on a substrate and component placement machine for carrying out the method.

The invention relates to a method of placing a component onto a substrate, in which, after a component has been picked up by a placement head secured to an arm of a robot, the component is moved into an image field of a stationary first imaging device and the component is imaged, a second imaging device, which is also secured to said arm of the robot, images a mark of the substrate, after which the position of the component and the position where the component is to be placed onto the substrate are calculated from the resulting image data and the placement head subsequently places the component onto the substrate at the desired position.

10

15

20

Such a method is known from US-A-5,084,959. In this known method the position of the component relative to the second imaging device is calculated after an image of the component has been made by means of the first imaging device. This is possible since a reference point of the placement head is always moved to a fixed position in the image field of the first imaging device and the distance between the reference point of the placement head and a reference point of the second imaging device is known. However, in practice this distance is not always found to be constant, which gives rise to an inaccuracy in the placement of the component on the substrate. The fact that this distance is not constant is caused in particular by temperature differences. However, other influences, such as undesired vibrations, may also give rise to erroneous measurements.

It is an object of the invention to place a component at the desired position on a substrate with a high accuracy.

To this end, the invention is characterized in that during imaging of the component the first imaging device also images at least one mark situated on a reference plate and at the same time the second imaging device images at least one other mark on the reference plate, after which the position of the component relative to the second imaging device is calculated from the resulting image data.

The advantage of this method is that the position of the component picked up by the placement head relative to the second imaging device can be determined during the placement process of each component on the substrate. The desired position where the component is to be placed on the substrate is determined by means of the second imaging device. By means of the data of these two positions the robot can direct the placement head with the component exactly to the desired position in order to place the component.

Preferably, for imaging the component the component is positioned at substantially the same image distance as the first mark.

10

15

20

25

30

The invention also relates to a component placement machine comprising a frame, a robot, a transport system for the transport of substrates, a placement head for placing components onto the substrate, which placement head is secured to an arm of the robot, a first imaging device, which is fixedly connected to the frame, for determining the position of the component, and a second imaging device, which moves along with the placement head, for detecting a mark of the substrate.

In order to place a component at the desired position on the substrate with a higher accuracy, the placement machine is characterized in that the placement machine comprises a reference plate having at least a first mark and a second mark, which marks are situated at a fixed distance from one another and which first mark is situated within the image field of the first imaging device during imaging of the component, while at the same time the second mark is situated within the image field of the second imaging device. The marks on the reference plate have been applied with a very high accuracy. Their exact position relative to one another is stored in an image processor, which calculates the instantaneous position of the component with the aid of the image data.

Preferably, the reference plate has an opening which allows a component picked up by the placement head to pass through and the reference plate has at least one first mark adjacent the opening. This enables the component to be positioned in the opening in such a manner that the component, particularly contact faces or pins thereof, are disposed in the same image plane of the imaging device as that in which the mark of the reference plate is situated.

Moreover, the reference plate is preferably disposed at substantially the same level as the substrate. This raises the imaging accuracy and hence the placement accuracy of the component.

The invention will now be described in more detail with reference to an exemplary embodiment shown in the drawings, in which

Fig. 1 shows a component placement machine for carrying out the method,

Fig. 2 is a plan view showing a reference plate and a substrate, and Fig. 3 is a side view of the placement head and the imaging devices in a position for imaging.

10 The component placement machine in Fig. 1 comprises a machine frame 1 carrying an X-Y robot 2. The robot is formed by a slide 3, which is movable in the Ydirection over two parallel guide members 4 of the frame and which is movable along the slide 3 in the X direction by means of an arm 5. The arm carries a component placement head 6. The machine has a transport mechanism for the transport of substrates, for example 15 printed circuit boards, through the machine. Of this transport mechanism only the conveyor belt 8 is shown. The component placement head 6 comprises a suction nozzle 9 by means of which components 10 are picked up from a component feeder 11, which are subsequently placed onto the substrate 7. The suction nozzle can be driven in a Z direction and a ϕ direction. In the ϕ direction means that the nozzle can perform an angular rotation ϕ about 20 its longitudinal axis. In order to place the components very accurately at the desired position on a substrate, the machine comprises a first imaging device 12, which is fixedly secured to the frame, and a second imaging device 13, which is secured to the arm 4 of the robot, adjacent the placement head. The machine further comprises a reference plate 14. The reference plate has an opening 15. This opening is so large that the component can pass through the opening. Near the opening the reference plate has first marks 16, in then present example four. The reference plate has a second mark 17 at some distance from the opening. The second mark has a very accurate and known position relative to the first marks. The stationary first imaging device 12 is disposed underneath the opening 15 of the reference plate. Both the opening 15 and the first marks 16 surrounding this opening are situated within the image field 18 of the imaging device. The reference plate is preferably made of a transparent material. The method of placing a component onto a substrate will be described hereinafter with reference to Figures 2 and 3.

The robot is first directed to the component feeder 11, where the suction nozzle 9 of the placement head 4 picks up a component 10 with the aid of a partial vacuum.

5

The placement head 4 is then positioned above the reference plate 14 and the component is moved into the opening 15 of the reference plate. At this instant the second mark 17 is within the image field 19 of the second imaging device 13. The first imaging device 12 now images the component 10 and the marks 16 surrounding it and the second imaging device 13 images the second mark 17. Preferably, these images are made at the same time. The image data is applied to an image processor 20, which calculates the instantaneous position of the component relative to the second imaging device. Subsequently, the robot positions the second imaging device 13 above a mark 21 of the substrate 7. The position of this mark 21 relative to the position where the component is to be placed onto the substrate is know accurately and is stored in the image processor. Now the second imaging device 13 images the second mark 21 on the substrate and applies the resulting image data to the image processor. The image processor calculates the position of the second imaging device 13 relative to the position where the component is to be placed onto the substrate. Since the position of the component relative to the second imaging device is also known, the relative 15 position of the component with respect to the position where the component is to be mounted on the substrate is now also known accurately, in the X, Y and Z directions and in the ϕ direction. By means of this data the placement head 6 can be directed accurately to the desired position in order to place the component 10 onto the substrate 7. In practice, the position of the component is generally defined by the positions of the contact pins 22 and the position of the substrate, with which the contact pins should make contact, is defined by the positions of the contact pads 23. For determining the position relative to the second imaging device this device has a reference point 24.

The reference plate does not require an opening in order to image the component. However, the advantage of an opening is that the component can be positioned in the opening, as a result of which the component and the mark of the reference plate are disposed at substantially the same level and, consequently, at the same image distance from the imaging device. This results in an increased accuracy of the measurement. Preferably, the reference plate is disposed at the same level as the substrate.

The imaging sequence is not essential. For example, it is also possible that first a mark of the substrate is imaged and subsequently the component is imaged. 30

5

10

20

25

CLAIMS:

- A method of placing a component onto a substrate, in which, after a 1. component has been picked up by a placement head secured to an arm of a robot, the component is moved into an image field of a stationary first imaging device and the component is imaged, a second imaging device, which is also secured to said arm of the 5 robot, images a mark of the substrate, after which the position of the component and the position where the component is to be placed onto the substrate are calculated from the resulting image data and the placement head subsequently places the component onto the substrate at the desired position, characterized in that during imaging of the component the first imaging device also images at least one mark situated on a reference plate and at the same time the second imaging device images at least one other mark on the reference plate, after which the position of the component relative to the second imaging device is calculated from the resulting image data.
 - 2. A method of placing a component onto a substrate as claimed in Claim 1, characterized in that for imaging the component the component is positioned at substantially the same image distance as the first mark.
 - 3. A component placement machine comprising a frame, a robot, a transport system for the transport of substrates, a placement head for placing components onto the substrate, which placement head is secured to an arm of the robot, a first imaging device, which is fixedly connected to the frame, for determining the position of the component, and a second imaging device, which moves along with the placement head, for detecting a mark of the substrate, characterized in that the placement machine comprises a reference plate having at least a first mark and a second mark, which marks are situated at a fixed distance. from one another and which first mark is situated within the image field of the first imaging device during imaging of the component, while at the same time the second mark is situated within the image field of the second imaging device.
 - 4. A component placement machine as claimed in Claim 2, characterized in that the reference plate has an opening which allows a component picked up by the placement head to pass through and the reference plate has at least one first mark adjacent the opening.

10

15

20

5. A component placement machine as claimed in Claim 3, characterized in that reference plate is disposed at substantially the same level as the substrate.

FIG.1

INTERNATIONAL SEARCH REPORT

International application No. PCT/IB 97/00167

A. CLAS	SIFICATION OF SUBJECT MATTER		
IPC6: I	105K 13/04 o International Patent Classification (IPC) or to both na	ational classification and IPC	
	S SEARCHED		
Minimum d	ocumentation searched (classification system followed by	y classification symbols)	,
IPC6: I			
	tion searched other than minimum documentation to the	e extent that such documents are included in	h the fields searched
Electronic d	ata base consulted during the international search (name	e of data base and, where practicable, search	n terms used)
		*	*
	·		
C. DOCL	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
Y	US 5084959 A (T. ANDO ET AL), 4 (04.02.92), figure 1, abstra	February 1992 act	1,3
	- · · · · · · · · · · · · · · · · · · ·	*	
Y	US 4980971 A (M.K. BARTSCHAT ET 1 January 1991 (01.01.91), 1 abstract		1,3
			×
Α	US 4738025 A (A.L. ARNOLD), 19 / (19.04.88), figure 1, abstra	April 1988 act	1-5
	·		
	÷		
		** 4:	
Furth	er documents are listed in the continuation of Box	X C. X See patent family annex	K.
"A" docume	categories of cited documents: ant defining the general state of the art which is not considered	"T" later document published after the int date and not in conflict with the appli the principle or theory underlying the	cation but cited to understand
"E" erlier d	particular relevance ocument but published on or after the international filing date on which may throw doubts on priority claim(s) or which is	"X" document of particular relevance: the considered novel or cannot be considered step when the document is taken along	claimed invention cannot be tred to involve an inventive
special	establish the publication date of another citation or other reason (as specified) and training to an oral disclosure, use, exhibition or other	"Y" document of particular relevance: the considered to involve an inventive sterombined with one or more other suc	claimed invention cannot be p when the document is
"P" docume	ent published prior to the international filing date but later than city date claimed		ne art
Date of the	e actual completion of the international search	Date of mailing of the international	search report
16 Sept	. 1997	26 -09- 1997	
Name and	mailing address of the ISA/	Authorized officer	
	Patent Office S-102 42 STOCKHOLM	Vilho Juvonen	
1	No. +46 8 666 02 86	Telephone No. + 46 8 782 25 00	

INTERNATIONAL SEARCH REPORT Information on patent family members

01/09/97

International application No.
PCT/IB 97/00167

Patent document cited in search report			·L	Publication date	Patent family member(s)			Publication date	
, .	US	5084959	A.	04/02/92	JP	3104300	Α	01/05/91	
	US	4980971	A	01/01/91	JP JP	5299447 7009918		12/11/93 01/02/95	
	US	4738025	A	19/04/88	CA EP JP	1266761 0273561 63180111	A	20/03/90 06/07/88 25/07/88	