Fizyka układów złożonych Zjawiska emergentne — dynamika epidemii

Krzysztof Malarz

Ewolucję epidemii można modelować na wiele sposobów. Skupimy się na modelu szufladkowym (kompartmentowym) SIR implementowanym w postaci klasycznego synchronicznego automatu komórkowego. Reguły automatu zdefiniujemy na sieci kwadratowej z otoczeniem Moore'a. Stan pojedyńczej komórki przyjmuje wartości 0, 1 albo 2, odpowiadające stanom \mathcal{S} (podatni, susceptible), \mathcal{I} (zarażeni, infected) albo \mathcal{R} (ozdrowieńcy, recovered).

W chwili początkowej wszystkie komórki są w stanie S, z wyjątkiem jednego agenta (umieszczonego na środku sieci) w stanie I (to nasz "pacjent zero").

Reguły automatu obrazują propagacje choroby zakaźnej:

- Każdy z podatnych agentów (w stanie S), może się zarazić od każdego ze swoich ośmiu sąsiadów (o ile są już zarażeni, w stanie I). Zarażenie odbywa się z prawdopodobieństwem α .
- Każdy z zarażonych agentów (w stanie \mathcal{I}) może spontanicznie ozdrowieć (przebyć chorobę i przejść w stan \mathcal{R}) co mu się przydaża z prawdopodobieństwem β .

Przyjmijmy siatkę kwadratową o rozmiarze liniowym N=60 oraz periodycznymi warunkami brzegowymi.

Zadanie 1 (30 pkt.): Robimy "zdjęcia" stanów układu w chwilach t = 0, 1, 2, 5, 10, 50, 100 dla $\alpha = 0, 1; 0, 2; 0, 3$ przy $\beta = 0, 1$.

Zadanie 2 (40 pkt.): Badamy ewolucję układu mierząc liczbę agentów w stanach \mathcal{S} , \mathcal{I} i \mathcal{R} w kolejnych stu krokach czasowych. Na wspólnym wykresie pokazujemy liczbę agentów w stanie \mathcal{I} dla ustalonego $\beta=0,1$ oraz wartości $\alpha=0,1;0,2;\cdots;0,9$. Identyfikujemy przybliżoną krytyczną wartość stosunku tempa zarażania do tempa zdrowienia (na osobnika)

$$\lambda_c = \frac{\alpha/8}{\beta},\tag{1}$$

poniżej której epidemia się nie rozwiaja. Takie same wykresy preparujemy dla liczby agentów w stanach $\mathcal S$ i $\mathcal R$.

Zadanie 3 (30 pkt.): Powtarzamy punkt 2 z $\beta = 0.2$ ale tylko dla liczby agentów w stanie \mathcal{R} . Identyfikujemy przybliżoną krytyczną wartość współczynnika λ_c [wg. równania (1)].