Recall: the ex-Gaussian model combines a



## Three parameters:

\* µ = mean of normal component

\* or = 5d of normal component

\* T = mean of "tail" component

## Do these parameters have psychological interpretation?

Table 2
Cognitive Interpretations Attributed to the Ex-Gaussian Parameters

| Authors                                                                                                       | $\mu$                                                                                                | τ                                                                    |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Balota and Spieler (1999)                                                                                     | stimulus driven automatic<br>(nonanalytic) processes                                                 | central attention demanding (analytic) processes                     |
| Blough (1988, 1989)                                                                                           | component of RT unrelated to<br>stimulus variables (e.g., neural<br>transmission and motor response) | momentary probability of target detection/<br>search component of RT |
| Epstein et al. (2006), Leth-Steensen et al. (2000)                                                            | _                                                                                                    | attentional lapses                                                   |
| Gholson and Hohle (1968a, 1968b)                                                                              | _                                                                                                    | response choice latency/response competition                         |
| Gordon and Carson (1990), Hohle (1965), Madden et al. (1999), Possamaï (1991), Rotello and Zeng (2008)        | duration of residual processes (e.g., sensory and motor processes)                                   | durations of the decisional phase of RT                              |
| Kieffaber et al. (2006)                                                                                       | attentional cognitive processes                                                                      | intentional cognitive processes                                      |
| Penner-Wilger, Leth-Steensen, and Lefevre (2002)                                                              | retrieval processes                                                                                  | nonretrieval/procedure use                                           |
| Rohrer (1996, 2002), Rohrer and Wixted (1994), Wixted,<br>Ghadisha, and Vera (1997), Wixted and Rohrer (1993) | initial pause preceding the retrieval of the first response                                          | mean recall latency/ongoing memory search                            |
| Schmiedek, Oberauer, Wilhelm, Süß, and Wittmann (2007)                                                        | _                                                                                                    | higher cognitive functioning (e.g., working memory and reasoning)    |
| Spieler, Balota, and Faust (1996)                                                                             | _                                                                                                    | more central processing component                                    |

Note—A dash indicates that the parameter is not given any cognitive interpretation.

4 from Matzke & Wagenmekers (2009)

4 showed that ex-Gaussian model parameters do not uniquely reflect cognitive processes

4 descriptive model only

What about the sequential sampling models we touched on in Lecture 6?

by drift rate

by response threshold ) cognitive interpretations?

Wald model: sequential sampling model us one boundary



Density function:

$$f(x|d,r) = \frac{d}{\sqrt{2\pi x^3}} \exp \left[-\frac{(d-rx)^2}{2x}\right]$$

Parameters and their cognitive interpretations

\* Drift rate r = task difficulty

by participant ability

or task demands

\* Response threshold & = response caution
4 influenced by task instructions

## titting the Wald model in R

## Leti fit the Schwarz (2001) data from Lecture 7.

```
11 # density for shifted Wald
12 - dwald = function(x, alpha, gamma){
        \frac{\text{return}((\text{alpha}/(\text{sqrt}(2*\text{pi}*\text{x}^3)))*\text{exp}(-(\text{alpha}-\text{gamma}*\text{x})^2/(2*\text{x})))}{\text{return}((\text{alpha}/(\text{sqrt}(2*\text{pi}*\text{x}^3)))*\text{exp}(-(\text{alpha}-\text{gamma}*\text{x})^2/(2*\text{x})))}
13
14 - }
15
    # Step 1: define NLL for shifted wald
16
17 → nll.wald = function(data, pars){
        alpha = pars[1] # response threshold
        gamma = pars[2] # drift rate
19
20
        return(-sum(log(dwald(data,alpha,gamma))))
21 - }
22
23
    # Step 2: create function to give initial parameter estimate
     # from Heathcote (2004)
25 \rightarrow waldInit = function(x, p = 0.9) {
        theta = p*min(x)
26
27
        gamma = sqrt(mean(x)/var(x))
28
        alpha = gamma*mean(x)
29
        return(c(alpha,gamma))
30 - }
31
32
     initPar = waldInit(X$RT)
33
34
     # Step 3: perform optimization
     model = optim(par = initPar,
36
                         fn = nll.wald,
37
                          data = X\$RT)
```

Just like ex-Gaussian, - hard-code the Wald density

- objective function

\_ function to estimate initial parameters

- optimization.

```
39
    # extract parameters
    alpha = model$par[1]
40
41
    gamma = model$par[2]
42
43
   # plot model against raw data
   hist(X\$RT, breaks = 30, probability = T)
44
45
    x = seq(from = 0, to = 600, length.out=200)
    lines(x, dwald(x, alpha, gamma))
46
47
   # compute BIC
48
    k = 3 \# two parameters
49
50
    N = length(X\$RT)
    BIC1 = k*log(N) + 2*model$value
51
52
```



How does it compare to ex-Gaussian?

Is from Lecture 7, BIC = 21,989.92

Is here, we have BIC = 21,967.62

Weld (better fit!)