

What Do Self-Supervised Speech Models Know About Words?

Ankita Pasad, Chung-Ming Chien, Shane Settle, Karen Livescu

In a nutshell

Self-supervised speech models (S3Ms) leverage unlabeled data to improve performance and data efficiency on a supervised downstream task.

A self-supervised speech model (S3M) pre-trained with a pretext task

Strong empirical evidence^[1] /// w/o S3M w/ S3M Different backbone S3M Different adaptation strategies

speaker

speaker

BUT...

- Slower progress on fundamental understanding.
- Most prior analysis work has focused on phonetic and sub-word units.

In our work...

- ✓ Lightweight analytical tools for quick discovery and evaluation.
- ✓ Analysis of ten S3Ms varying in size, pre-training objective, and modality.
- ✓ Frame-wise and layer-wise analysis word-level knowledge.

Bob: So, what do you find from the analysis of ten S3Ms?

Alice: We use canonical correlation analysis (CCA) to study word-level pronunciation, syntax, and find that intermediate layers typically encode the most linguistic content.

Bob: Which intermediate layers?

Alice: That depends on the form of the pre-training objective. S3Ms that share pre-training objectives have similar trends, even if their pre-training data and model sizes are different.

Bob: And what about frame-wise analysis?

Alice: We find that central frames in a word segment encode the most word-identifying content, whereas edge frames contain little to none. We also propose a simple peak-detection algorithm using frame-level representations, which is effective at unsupervised word segmentation, surpassing more complex baselines.

Bob: Got it, and in that case, is mean-pooling still an optimal choice?

Alice: Thanks for asking! We study that by evaluating acoustic word discrimination on S3M representations and find that different S3Ms vary in their robustness to mean-pooling.

Bob: Interesting, I am excited to read the paper! What else will I find?

Alice: You'll find our study of utterance-level representations and how they encode non-trivial semantic content. You'll find the effects of the data domain on the outcome of taskbased evaluations and how the layer-wise trends from task-based studies agree with those from our task-agnostic CCA studies. You'll find many plots studying these various phenomena and maybe you can spot some interesting takeaways we might have missed!

Canonical Correlation Analysis^[2,3] Layer L $(L \in \{12, 24\})$ Transformer layers Layer *l* Layer 7 CNN layers Yes I do agree

- ➤ Similarity as maximum correlation between linear projections.
- > Closed-form solution.
- ➤ Compare S3M representations with external word vectors.

$$CCA(X,Y) = \sum_{i} \rho_{i}; \rho_{i} = corr(v_{i}^{T}X, w_{i}^{T}Y)$$

$$v_{1}, w_{1} = argmax_{v,w} \ corr(v^{T}X, w^{T}Y)$$

$$v_{i}, w_{i} = argmax_{v,w} \ corr(v^{T}X, w^{T}Y) \ \forall i \in [2, k] \ s. \ t.$$

$$corr(v_{i}^{T}X, v_{i}^{T}X) = 0 \ \forall j < i, corr(w_{i}^{T}Y, w_{i}^{T}Y) = 0 \ \forall j < i$$

Self-supervised speech models

Linguistic features

WORD	NN.GROUP	NN.ACT	 NN.ARTIFACT	VB.CHANGE
family	0.96	0.04	 0.00	0.00
mix	0.00	0.00	 0.00	0.91
industry	0.79	0.21	 0.00	0.00

Layer-wise linguistic content -▼- wav2vec2 — HuBERT -■- VG-HuBERT Word pronunciation (AGWE) 0 1 2 3 4 5 6 7 8 9 10 11 12 Word meaning (SemCor) 10 12 14 16 18 20 22 24 4 5 6 7 8 9 10 11 12 Transformer layer number Transformer layer number

Distribution across frames Mean-pool Single frame middle frame - last frame wav2vec2-Base 5 6 7 8 9 10 11 12 Transformer layer number

Results on LibriSpeech dev-clean wav2vec2 -▲- HuBERT --- WavLM CCA-word Do X_1 and X_2 correspond to 0 1 2 3 4 5 6 7 8 9 10 11 12 the same word? pool-AWD pool-AWD Q 0.50 ⋅ Cosine similarity of mean-pooled representations DTW-AWD **∀** 0.50 · Dynamic time warping between 0.25frame-level representations

Acoustic word discrimination

- ➤ All three models have similarly high CCA scores.
- > AWD has similar trends as CCA.
- pool-AWD has drastic differences in relative AWD scores.
- DTW-AWD closes the performance gap with improved scores.

0 1 2 3 4 5 6 7 8 9 10 11 12

Transformer layer number

Unsupervised word segmentation

	Method	Precision	Recall	F1	R-val	
	DPDP ^[12]	35.3	37.7	36.4	44.3	
Results on	VG-HuBERT ^[6]	36.2	32.2	34.1	45.6	
Buckeye test	Ours (Best Layer)					
	HuBERT-Base	33.8	46.6	39.2	34.9	
	(L9)					
	VG-HuBERT (L10)	36.0	47.6	41.0	39.5	

- [1] S. Yang et al., "SUPERB: Speech processing universal performance benchmark", Interspeech, 2021
- [2] Hotelling, "Relations between two sets of variates. Biometrika", 1936. [3] Morcos et al., "Insights on representational similarity in neural networks
- with canonical correlation," NeurIPS 2018
- [4] Baevski et al., "wav2vec 2.0: A Framework for self-supervised learning of speech representations", NeurIPS, 2020
- [5] Hsu et al., "Hubert: Self-supervised speech representation learning by masked prediction of hidden units", TASLP, 2021
- [6] Peng and Harwath, "Word discovery in visually grounded, self-supervised speech models", Interspeech, 2022
- [7] Peng and Harwath, "Fast-slow transformer for visually grounding speech", ICASSP, 2022
- [8] Chen et al., "WavLM: Large-scale self-supervised pre-training for full stack speech processing", JSTSP, 2022
- [9] Shi et al., Learning audio-visual speech representation by masked multimodal cluster prediction, ICLR, 2022

[10] Shi et al., "Whole-word segmental speech recognition with acoustic word

- embeddings," SLT 2021. [11] Tsvetkov et al., "Evaluation of word vector representations by subspace alignment." EMNLP 2015.
- [12] Kamper, "Word segmentation on discovered phone units with dynamic programming and self-supervised scoring", TASLP, 2022. [13] Merkx et al., "Semantic sentence similarity: size does not always matter",

Interspeech, 2021

