Housing Prices in King County, Washington

By: Andrew, Christopher, Nathaniel, Toufik

Data Source

- Data set was obtained from Kaggle.com under the CCO: Public Domain License
- 2. Dataset was originally posted for a Kaggle competition
- 3. Includes sale prices and descriptive fields for homes sold between May 2014 and May 2015
- 4. Covers King County USA, the county which includes Seattle

Data Set

Available fields for the analysis

- ID
- Date (yyyy/mm/dd)
- Price (\$US)
- Bedrooms
- Bathrooms
- Square Ft. of Living (Total)
- Square Ft. Lot Size
- Floors
- Waterfront (Y/N)
- Has Been Viewed (1-4)
- Condition
- Grade
- Square Ft. (Upstairs)
- Square Ft. (Basement)
- Year Built
- Year Renovated
- ZIP Code
- Latitude
- Longitude
- Square Ft. of Living in 2015
- Square Ft. of Lot in 2015

Background Research in Predicting Housing Prices

- Economic perspective (housing booms and busts)
 - Recovery phase, expansion phase, hyper supply phase and recession phase
- Current Housing Market Economy
 - Stable Economy (mortgage rates remain low)
 - Price appreciation, increase in 'millennial' families, high rent for building owners
 - o More Canadians
 - One top forecast market is Seattle (11% price appreciation)
- Multivariate regression model
 - Environmental info versus characteristics info
 - Hedonic Pricing model/regression

SMART Question: Can we develop a model that accurately (at the 5% level) predicts housing prices in King's County, Washington?

Exploratory Data Analysis

```
## Classes 'tbl_df', 'tbl' and 'data.frame': 21613 obs. of 21 variables:
## $ id
                    : chr "7129300520"
## $ date
                     : POSIXct. format: "2014-10-13"
## $ price
                    : num 221900
## $ bedrooms
                    : int 3
## $ bathrooms
                    : num 1
                     : int 1180
## $ sqft_living
                    : int 5650
## $ sqft lot
## $ floors
                     : num
                    : int 0
## $ waterfront
## $ view
                    : int 0
## $ condition
                    : int 3
## $ grade
                    : int 7
## $ sqft above
                    : int 1180
## $ sqft_basement : int 0
## $ yr_built
                     : int 1955
## $ yr renovated
                    : int 0
## $ zipcode
                     : int 98178
## $ lat
                     : num 47.5
## $ long
                    : num -122
## $ sqft_living15
                    : int 1340
```

: int 5650

\$ sqft lot15

Mean Sale Price Map

Exploratory Data Analysis

Variables	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	Month
price	1	0.31	0.53	0.7	0.09	0.26	0.27	0.4	0.04	0.67	0.61	0.32	-0.05	-0.11	-0.01
bedrooms	0.31	. 1	0.52	0.58	0.03	0.18	-0.01	0.08	0.03	0.36	0.48	0.3	-0.15	-0.17	0
bathrooms	0.53	0.52	1	0.75	0.09	0.5	0.06	0.19	-0.12	0.66	0.69	0.28	-0.51	-0.54	0.01
sqft_living	0.7	0.58	0.75	1	0.17	0.35	0.1	0.28	-0.06	0.76	0.88	0.44	-0.32	-0.34	0.01
sqft_lot	0.09	0.03	0.09	0.17	1	-0.01	0.02	0.07	-0.01	0.11	0.18	0.02	-0.05	-0.05	0
floors	0.26	0.18	0.5	0.35	-0.01	. 1	0.02	0.03	-0.26	0.46	0.52	-0.25	-0.49	-0.51	0.01
waterfront	0.27	-0.01	0.06	0.1	0.02	0.02	1	0.4	0.02	0.08	0.07	0.08	0.03	0	0.01
view	0.4	0.08	0.19	0.28	0.07	0.03	0.4	1	0.05	0.25	0.17	0.28	0.05	0.02	-0.01
condition	0.04	0.03	-0.12	-0.06	-0.01	-0.26	0.02	0.05	1	-0.14	-0.16	0.17	0.36	0.4	0.02
grade	0.67	0.36	0.66	0.76	0.11	0.46	0.08	0.25	-0.14	1 1	0.76	0.17	-0.45	-0.46	0.01
sqft_above	0.61	0.48	0.69	0.88	0.18	0.52	0.07	0.17	-0.16	0.76	1	-0.05	-0.42	-0.44	0.01
sqft_basemen	t 0.32	2 0.3	0.28	0.44	0.02	-0.25	0.08	0.28	0.17	7 0.17	-0.05	1	0.13	0.1	0.01
yr_built	-0.05	-0.15	-0.51	-0.32	-0.05	-0.49	0.03	0.05	0.36	6 -0.45	-0.42	0.13	1	0.91	-0.01
yr_renovated	-0.11	L -0.17	-0.54	-0.34	-0.05	-0.51	0	0.02	0.4	-0.46	-0.44	0.1	0.91	1	-0.01
Month	-0.01	L C	0.01	0.01	C	0.01	0.01	-0.01	0.02	0.01	0.01	0.01	-0.01	-0.01	1

Procedure

- 1. Random sample the dataset into a training set and a test set
- 2. Using Regsubsets method within the training set, select which factors have the best predictive power for home price.
- 3. Take the coefficients of the best model and assess its predictive power within the test set using a t-test.

Best Fit Model

Sequential Replacement Selection Method:

Factors - sqft_living, waterfront,grade,sqft_basement,and yr_renovated

Adjusted R squared at .65

Model Results

Final Model:

Price ~ sqft_living + sqft_living² + waterfront + grade + sqft_basement + sqft_basement² + yr_renovated

	Estimate	Std. Error	t value	Pr(> t)
poly(sqft_living, 2)1	15417850	400467	38.5	9.881e-309
poly(sqft_living, 2)2	5574465	302081	18.45	3.588e-75
waterfront	704314	20184	34.89	3.702e-256
grade3	-2046176	144100	-14.2	1.864e-45
grade4	-2020904	92185	-21.92	8.189e-105
grade5	-2055393	77418	-26.55	1.14e-151
grade6	-1996664	75794	-26.34	2.078e-149
grade7	-1891599	75681	-24.99	5.236e-135
grade8	-1763632	75632	-23.32	4.382e-118
grade9	-1610515	75323	-21.38	7.064e-100
grade10	-1426587	74761	-19.08	3.473e-80
grade11	-1209607	74172	-16.31	2.93e-59
grade12	-845735	75389	-11.22	4.379e-29
poly(sqft_basement, 2)1	2245974	260932	8.608	8.232e-18
poly(sqft_basement, 2)2	-1502258	264888	-5.671	1.444e-08
yr_renovated	2517	73.67	34.17	4.721e-246
(Intercept)	2220710	75405	29.45	3.66e-185

Correlation between predicted price and actual price = **0.82**; T-test statistics: (t=-1.503, df=7204, **p-value=.133**)

Conclusions

- 1. Housing sale prices can be predicted using intrinsic data points of the property
- 2. ZIP code needs to be removed from any generalized linear regression model
- 3. A second order model helps to reduce some non-linearity within the model

