CLAIMS

What is claimed is:

1	1.	An apparatus for determining azimuth of a remote formation boundary by in a
2		logging while drilling tool by measuring a transverse magnetic field in a down
3		hole tool comprising:
4		a downhole resistivity tool for traversing a well bore measuring a property of
5		interest in a formation adjacent to the well bore, the down hole tool having a body
6		with a longitudinal axis substantially aligned with a longitudinal axis of the well
7		bore, the body having a external surface;
8		a coil antenna placed near the external surface of the tool body;
9		a groove cut in the external surface tool body and oriented horizontally with
10	•	respect to the longitudinal axis of the tool body;
11		a transmitter comprising a transverse coil placed in the grooves for transmission
12		or reception of a transverse magnetic field; and
13		a receiver coil antenna near the external surface of the tool body for reception of a
14		magnetic field which is oriented substantially orthogonal with respect to the
15		transmitter; and
16		grooves cut in the external surface of the tool body and oriented substantially
17		perpendicularly with respect to the antenna wire.

1	2.	The apparatus of claim 2, further comprising:
2		a gap between the transverse coil and a bottom each groove in the plurality of
3		grooves; and
4		a ferrite material placed in the gap.
1	3.	The apparatus of claim 1 further comprising:
2		a plurality of receivers; and
3		a plurality of transmitters.
1	4.	The apparatus of claim 1, wherein the measurement further comprises:
2		an in phase and a quadrature component.
1	5.	The apparatus of claim 1, wherein the groovegroovemeasurement further
2		comprises:
3		a plurality of grooves.
1	6.	The apparatus of claim 1, further comprising:
2		a gap between the coil and the bottom of each groove under both transmitter and
3		receiver coils; and a ferrite material placed in the gap.
1	7.	The apparatus of claim 1, wherein the groove further comprises:
2		a flat shape at a bottom of the groove.
	414-28	3483 US - 2

- 1 8. The apparatus of claim 1, wherein the groove further comprises:
- a curved shape at a bottom of the groove.
- 1 9. A method for determining azimuth of a remote boundary by in a logging while
- drilling tool by measuring a transverse magnetic field in a down hole tool
- 3 comprising:
- 4 measuring a property of interest in a formation adjacent the well bore, while
- traversing a well bore with a down hole tool, the down hole tool having a body
- 6 with a longitudinal axis substantially aligned with a longitudinal axis of the well
- bore, the body having a external surface;
- 8 orienting horizontally with respect to the longitudinal axis of the tool body a
- groove cut in the external surface tool body and; and
- placing a transmitter comprising a transverse coil placed in the grooves for
- transmission or reception of a transverse magnetic field; and
- receiving a magnetic field in a receiver oriented orthogonal with respect to the
- 13 transmitter.
- 1 10. The method of claim 9, further comprising:
- 2 measuring a magnetic field with a single or plurality of receivers and a single or
- plurality of transmitters that are arranged substantially orthogonal with respect ot
- 4 the receiver(s);

- 5 providing a gap between the transverse coil and a bottom each groove in the
- 6 plurality of grooves; and
- 7 placing a ferrite material placed in the gap.
- 1 11. The method of claim 9 further comprising:
- 2 providing a plurality of receivers; and
- providing a plurality of transmitters.
- 1 12. The method of claim 9, further comprising:
- 2 measuring an in- phase and quadrature components of a magnetic field.
- 1 13. The method of claim 9, further comprising:
- 2 processing the magnetic field data downhole from a plurality of receivers; and
- processing the magnetic field data downhole from a plurality of transmitters; and
- 4 processing the magnetic field data downhole from a plurality of frequencies.
- 1 14. The method of claim 13, further comprising:
- 2 measuring the magnetic field at multiple tool azimuthal angles.

- 1 15. The method of claim 9, further comprising:
- transmitting the measured and downhole-processed data uphole via a downhole
- 3 data telemetry system;
- 4 measuring at a first frequency; and
- 5 measuring at a second frequency.
- 1 16. The method of claim 8, wherein the groove further comprises:
- 2 providing a flat shape at a bottom of the groove.
- 1 17. The method of claim 9, wherein the groove further comprises:
- 2 providing a curve shape at a bottom of the groove.
- 1 18. The method of claim 9, further comprising:
- 2 processing the magnetic field data from a formation;
- providing a plurality of receivers to reject tool- and borehole-related artifacts
- including but not limited to tool bending and tool eccentricity effects;
- 5 processing the magnetic field data from a plurality of transmitters to reject tool-
- and borehole-related artifacts including but not limited to borehole rugosity
- 7 effects; and
- processing the magnetic field data from a plurality of frequencies.

1	19.	A computer readable medium containing instructions that when executed by a
2		computer perform a method for determining azimuth of a remote boundary by a
3		measured amplitude or phase component of an amplitude and phase component in
4		a logging while drilling tool by measuring a cross-component transverse magnetic
5		field in a down hole tool comprising:
6		measuring a property of interest in a formation adjacent the well bore, while
7		traversing a well bore with a down hole tool, the down hole tool having a body
8		with a longitudinal axis substantially aligned with a longitudinal axis of the well
9		bore, the body having a external surface;
10		orienting horizontally with respect to the longitudinal axis of the tool body a
11		groove cut in the external surface tool body and; and
12		placing a transmitter comprising a transverse coil placed in the grooves for
13		transmission or reception of a transverse magnetic field; and
14		receiving a magnetic field in a receiver oriented orthogonal with respect to the
15		transmitter.

- 1 20. The medium of claim 19 further comprising:
- providing a gap between the transverse coil and a bottom each groove in the
- 3 plurality of grooves; and
- 4 placing a ferrite material placed in the gap.
- 21. The medium of claim 19 further comprising: 414-28483 US 2

- 2 providing a plurality of receivers; and
- providing a plurality of transmitters.
- 1 22. The medium of claim 19, further comprising:
- 2 measuring an in phase and quadrature component.
- 1 23. The medium of claim 19, further comprising:
- 2 measuring at a first frequency; and
- measuring at a second frequency.
- 1 24. The method of claim 19, wherein the groove further comprises:
- 2 providing a flat shape at a bottom of the groove.
- 1 25. The apparatus of claim 19, wherein the groove further comprises:
- 2 providing a curve shape at a bottom of the groove.
- 1 26. The method of claim 19, further comprising:
- 2 providing a plurality of grooves.