

Análisis de Señales

SLIT's DISCRETOS

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP
Director Semillero TRIAC
Ingenieria Electronica
Universidad Popular del Cesar

Definición

Un sistema discreto es un sistema que opera sobre señales discretas.

Propiedades

Linealidad

Superposición
$$L[x_n + y_n] = L[x_n] + L[y_n]$$

Homogeneidad $L[ax_n] = aL[x_n]$

Sistema lineal

Invarianza temporal (IT)

Un sistema es IT si

Un desplazamiento temporal de la entrada sólo implica un desplazamiento temporal igual en la salida.

SLIT: sistema lineal e invariante en el tiempo

Ejemplo 1. Modulación

$$L\{a_1x_1[n] + a_2x_2[n]\} = (a_1x_1[n] + a_2x_2[n])\cos(\omega_0 n)$$

$$= a_1x_1[n]\cos(\omega_0 n) + a_2x_2[n]\cos(\omega_0 n) = a_1y_1[n] + a_2y_2[n]$$

El sistema es lineal.

$$L\{x[n-n_0]\} = x[n-n_0]\cos(\omega_0 n) \neq y[n-n_0] = x[n-n_0]\cos[\omega_0 (n-n_0)]$$

El sistema no es invariante en el tiempo.

Ejemplo 2.

$$L\{a_1x_1[n] + a_2x_2[n]\} = a_1^2x_1^2[n] + a_2^2x_2^2[n] + 2a_1a_2x_1[n]x_2[n]$$

El sistema no cumple con superposición ni con homogeneidad.

$$L\{x[n-n_0]\} = x^2[n-n_0] = y[n-n_0]$$

El sistema es invariante en el tiempo.

Ejemplo 3. Diezmado

$$x[n] \qquad y[n] = x[2n]$$

$$L \qquad \longrightarrow$$

$$L\{a_1x_1[n] + a_2x_2[n]\} = a_1x_1[2n] + a_2x_2[2n] = a_1y_1[n] + a_2y_2[n]$$

El sistema es lineal.

$$L\{x[n-n_0]\} = x[2n-n_0] = x[2(n-n_0/2)] = y[n-(n_0/2)] \neq y[n-n_0]$$

El sistema no es invariante en el tiempo.

Ejemplo 4. Retardo unitario

$$x[n] \qquad y[n] = x[n-1]$$

$$L \qquad b$$

$$L\{a_1x_1[n] + a_2x_2[n]\} = a_1x_1[n-1] + a_2x_2[n-1] = a_1y_1[n-1] + a_2y_2[n-1]$$

El sistema es lineal.

$$L\{x[n-n_0]\} = x[(n-1)-n_0] = y[n-n_0]$$

El sistema es invariante en el tiempo.

Definición

Un sistema discreto es un sistema que opera sobre señales discretas.

$$\begin{array}{c} x_n \\ \hline \end{array}$$
 Sistema
$$\begin{array}{c} y_n = L[x_n] \\ \hline \end{array}$$

SLIT: sistema lineal e invariante en el tiempo

Análisis de un SLIT

Si se multiplica un señal por un impulso ubicado en $n\!=\!n_{\!\scriptscriptstyle 0}$ se tiene

$$x_n \delta_{n-n_0} = x_{n_0} \delta_{n-n_0}$$

Por tal motivo, toda señal discreta puede escribirse como una suma de impulsos, de acuerdo a

$$x_n = \dots + x_{-1}\delta_{n+1} + x_0\delta_n + x_1\delta_{n-1} + x_2\delta_{n-2} + \dots$$

$$x_n = \sum_{k=-\infty}^{\infty} x_k \delta_{n-k} = x_n * \delta_n$$

Suponga que la señal x_n es aplicada a un SLIT, entonces conociendo que el sistema es **lineal** la salida se encuentra como

$$y_n = L[x_n] = L\left[\sum_{k=-\infty}^{\infty} x_k \delta_{n-k}\right] = \sum_{k=-\infty}^{\infty} L[x_k \delta_{n-k}] = \sum_{k=-\infty}^{\infty} x_k L[\delta_{n-k}]$$

Definamos la señal h_n como la respuesta a un impulso discreto del SLIT, es decir

$$\xrightarrow{\delta_n}$$
 L $\xrightarrow{h_n}$

Dado que el sistema es **invariante en el tiempo** entonces $L[\delta_{n-k}] = h_{n-k}$ y la respuesta del sistema se puede escribir como

$$y_n = \sum_{k=-\infty}^{\infty} x_k h_{n-k} = x_n * h_n$$

La respuesta de un SLIT a una señal corresponde a la **convolución** entre la señal de entrada x_n y la respuesta al impulso del sistema h_n .

$$\begin{array}{c} x_n \\ \hline \\ h_n \end{array} \longrightarrow \begin{array}{c} y_n = x_n * h_n \\ \hline \end{array}$$

Que es la convolución?

Es una función que indica la **cantidad de traslape** (suma del producto) entre una señal **fija** y la versión **reflejada y desplazada** de otra señal.

$$y_n = x_n * h_n = \sum_{k=-\infty}^{\infty} x_k h_{n-k}$$

Propiedades de la convolución: conmutatividad (serie), asociatividad y distribuye la suma (paralelo).

Ejemplo. Halle la respuesta de un SLIT a un exponencial complejo

$$\frac{e^{j\omega_0 n}}{h_n} \longrightarrow h_n$$

$$y_n = e^{j\omega_0 n} * h_n = \sum_{k=-\infty}^{\infty} e^{j\omega_0 (n-k)} h_k$$

$$= e^{j\omega_0 n} \sum_{k=-\infty}^{\infty} h_k e^{-j\omega_0 k} = e^{j\omega_0 n} H(\omega_0)$$

La respuesta a un exponencial complejo de frecuencia ω_0 es el mismo exponencial multiplicado por una función H que depende de ω_0 .

Ejemplo. Demuestre que un SLIT es **causal** si su respuesta impulso cumple $h_n = 0$ para n < 0.

$$y_n = \sum_{k=-\infty}^{k=\infty} x_{n-k} h_k = \sum_{k=0}^{k=\infty} x_{n-k} h_k = x_n h_0 + x_{n-1} h_1 + x_{n-2} h_2 + \dots$$

Estabilidad

Un sistema es **estable** en sentido EASA si a toda entrada acotada le corresponde una salida acotada.

¿Cuándo un SLIT discreto es estable?

$$|y_n| = \left| \sum_{k=-\infty}^{\infty} x_k h_{n-k} \right| \le \sum_{k=-\infty}^{\infty} |x_k| |h_{n-k}|$$

Si x_n es acotada entonces $\exists M \in \mathbf{R}^+$ tal que $\left|x_n\right| \leq M$ y podemos escribir

$$|y_n| \le M \sum_{k=-\infty}^{\infty} |h_k|$$

Por tal motivo, un SLIT es estable si su respuesta impulso $h_n \in l_1$.

Clasificación de un SLIT

Los SLIT's discretos puede clasificarse de acuerdo a su respuesta impulsos en sistemas **FIR** o **IIR**.

Sistemas FIR

Si h_n tiene soporte compacto entonces el sistema es de **respuesta** impulso finita (FIR).

Ejemplo. Un sistema causal cuya respuesta impulso es $h_n = 0$ para $n \ge M$ (soporte compacto de longitud M) tiene salida dada por

$$\boldsymbol{y}_n = \sum_{k=0}^{M-1} \boldsymbol{x}_{n-k} \boldsymbol{h}_k$$

$$y_n = x_n h_0 + x_{n-1} h_1 + \dots + x_{n-(M-1)} h_{M-1}$$

La salida es una combinación lineal de las M entradas más recientes de la señal!

Por ejemplo, si $h_n = 1/M$ para $0 \le n < M$, entonces

$$y_n = \frac{x_n + x_{n-1} + \dots + x_{n-(M-1)}}{M}$$
 Promedio móvil

Fácil de implementar!

Sistemas IIR

Si h_n no tiene soporte acotado entonces el sistema es de respuesta impulso infinita (IIR).

Ejemplo. Un sistema causal cuya respuesta impulso es $h_n = \alpha^n u_n$, con $\alpha \in \mathbb{R}^+$ (soporte no acotado), tiene salida dada por

$$y_n = \sum_{k=0}^{\infty} x_{n-k} \alpha^n$$
$$y_n = x_n + x_{n-1} \alpha + x_{n-2} \alpha^2 + x_{n-3} \alpha^3 + \dots$$

Combinación lineal de todas las entradas anteriores de la señal!

La implementación de un sistema IIR utilizando convolución requiere:

- infinitas posiciones de memoria
- · infinitas sumas
- infinitas multiplicaciones

No es posible en la practica!

Solución: Implementar los sistemas IIR con otro modelo que no sea la convolución, por ejemplo, en ecuaciones en diferencias.

Sistemas en ecuaciones en diferencias

Todo sistema SLIT discreto causal puede escribirse como

$$y_{n} = \sum_{k=0}^{M} b_{k} x_{n-k} - \sum_{k=1}^{N} a_{k} y_{n-k}$$

En este modelo, la salida del sistema en un tiempo $n\,$ es función de

- de la entrada actual x_n
- de las M entradas anteriores $\{x_{n-1},....,x_{n-M}\}$
- de las N salidas anteriores $\left\{ y_{\mathbf{n-1}},...,y_{\mathbf{n-M}}\right\}$

N es el **orden** de la ecuación en diferencias.

Los coeficientes b_k ponderan las **entradas anteriores** y los coeficientes a_k ponderan las **salidas anteriores**.

Por tal motivo, el sistema se caracteriza por:

- Los M+1 coeficientes $\left\{b_{\scriptscriptstyle 0},b_{\scriptscriptstyle 1},...,b_{\scriptscriptstyle M}\right\}$
- Los N coeficientes $\left\{a_{\!\scriptscriptstyle 1},...,a_{\!\scriptscriptstyle M}\right\}$

Este modelo es fácilmente implementado!

Sistema recursivo: la salida y_n depende de salidas anteriores (por lo menos algún coeficiente $a_k \neq 0$).

Sistema no recursivo: la salida y_n depende sólo de las entradas anteriores (todos los coeficientes a_k son cero).

Un sistema no recursivo puedes expresarse como

$$y_n = \sum_{k=0}^{M} b_k x_{n-k}$$
 Equivalente a la convolución!

Los coeficientes corresponden a los valores de la respuesta impulso

$$b_k = h_k$$
 para $k = 0, 1, ..., M$