10/21/22, 1:35 PM Quiz: Quiz 3

Quiz 3

Started: Oct 21 at 1:35pm

Quiz Instructions

Question 1	1 pts
About gradient descent (GD) and stochastic gradient descent (SGD) for logistic regression, which of the following statement(s) are true?	С
In GD, we use the same data to compute the gradient in every epoch, so every epoch get the same gradient.	ı we will
☐ In SGD, we pick a random example from the dataset to approximate the gradient. In expectation, the approximated gradient direction is the same as the true gradient.	
☐ In GD, we need to use the whole dataset to compute the gradient.	
☐ The computation cost of each iteration in SGD is much less than GD as it only needs compute the gradient with respect to one data point.	to

Question 2 1 pts

Suppose we have a binary classification dataset with 10 examples. Given the ground-truth labels and predictions by 4 different models, which model has the best F1 score?

Ground-truth	0	0	0	1	1	1	1	1	1	1
Model A	0	0	0	0	0	0	0	0	0	0
Model B	1	1	1	1	1	1	1	1	1	1
Model C	0	1	1	0	1	1	1	1	1	1
Model D	0	0	1	0	1	1	1	1	1	1

	N 1 I - I	\sim
()	Model	ι.
\ /	WICACI	$\overline{}$

Question 3

1 pts

Suppose we have two Boolean variables $x_1, x_2 \in \{0, 1\}$. We define an activation function $ReLU(x) = \max\{0, x\}$. Which of the following function(s) can successfully classify XOR? Note that $XOR(x_1, x_2) = (x_1 \wedge \neg x_2) \vee (\neg x_2 \wedge x_1)$.

(A)
$$y = 2|x_1 + x_2 - 1| - 1$$

(B)
$$y = |x_2 - x_1 - 1| - 1.5$$

(C)
$$y = \text{ReLU}(x_1 - x_2) + \text{ReLU}(x_2 - x_1) - 0.5$$

(D)
$$y = \text{ReLU}(x_1 + x_2) + \text{ReLU}(x_2 - x_1) - 0.5$$

□ A

 \Box B

□ C

□ D

Question 4

1 pts

Given variables a,b,c,d,e,f, where they satisfy the followings:

$$c = \sigma(w_1 a + w_2 b),$$

$$d = \sigma(w_3 a + w_4 b),$$

$$e = \sigma(w_5 a + w_6 b),$$

$$f = \sigma(w_7d + w_8e),$$

$$g = \sigma(w_9c + w_{10}f),$$

where w_i are constants and $\sigma(\cdot)$ denotes sigmoid function. Which of the following statement(s) are true? (Hint: it would be helpful to draw a computational graph.)

$$\frac{\partial g}{\partial b} = \frac{\partial g}{\partial c} \cdot \frac{\partial c}{\partial b} + \frac{\partial g}{\partial f} \cdot \frac{\partial f}{\partial b}$$

$$\frac{\partial g}{\partial b} = \frac{\partial g}{\partial c} \cdot \frac{\partial c}{\partial b} + \frac{\partial g}{\partial f} \cdot \frac{\partial f}{\partial d} \cdot \frac{\partial d}{\partial b}$$

$$\frac{\partial g}{\partial a} = \frac{\partial g}{\partial c} \cdot \frac{\partial c}{\partial a}$$

$$\frac{\partial f}{\partial a} = \frac{\partial d}{\partial a} + \frac{\partial e}{\partial a}$$

□ A

 \Box B

□ C

 \Box D

Question 5

1 pts

10/21/22, 1:35 PM Quiz: Quiz 3

What is the total number of parameters in the following neural network:

Layer 1 Layer 2 Layer 3 (Input Layer) (Hidden Layer) (Output Layer)

- O 9
- O 12
- 16
- O 25

Not saved

Submit Quiz