CONVERSION FACTORS FOR IONIZING RADIATION

CONVERSION BETWEEN SI AND OTHER UNITS

Quantity	Symbol for quantity	Expression in SI units	Expression in symbols for SI units	Special name for SI units	Symbols using special names	Conventional units	Symbol for conventional unit	Value of conventional unit in SI units
Activity	A	1 per second	s^{-1}	becquerel	Bq	curie	Ci	$3.7 \times 10^{10} \text{ Bq}$
Absorbed dose	D	joule per kilogram	$ m J~kg^{-1}$	gray	Gy	rad	rad	0.01 Gy
Absorbed dose rate	Ď	joule per kilogram second	$\rm J \ kg^{-1} \ s^{-1}$		Gy s ⁻¹	rad	rad s ⁻¹	$0.01~{ m Gy}~{ m s}^{-1}$
Average energy per ion pair	W	joule	J			electronvolt	eV	$1.602 \times 10^{-19} \mathrm{J}$
Dose equivalent	H	joule per kilogram	$ m J~kg^{-1}$	sievert	Sv	rem	rem	0.01 Sv
Dose equivalent rate	Ĥ	joule per kilogram second	$\mathrm{J}~\mathrm{kg}^{-1}~\mathrm{s}^{-1}$		$\mathrm{Sv}\ \mathrm{s}^{-1}$	rem per second	rem s ⁻¹	$0.01~{ m Sy~s^{-1}}$
Electric current	I	ampere	A			ampere	A	1.0 A
Electric potential difference	U, V	watt per ampere	$ m W~A^{-1}$	volt	V	volt	V	1.0 A
Exposure	X	coulomb per kilogram	$C kg^{-1}$			roentgen	R	$2.58 \times 10^{-4} \mathrm{C\ kg^{-1}}$
Exposure rate	Χ̈́	coulomb per kilogram second	$\mathrm{C}\;\mathrm{kg^{-1}}\;\mathrm{s^{-1}}$			roentgen	R s ⁻¹	$2.58 \times 10^{-4} \mathrm{C\ kg^{-1}\ s^{-1}}$
Fluence	ф	1 per meter squared	m ⁻²			1 per centimeter squared	cm ⁻²	$1.0 \times 10^4 \text{ m}^{-2}$
Fluence rate	Φ	1 per meter squared second	$m^{-2} s^{-1}$			1 per centimeter squared second	cm ⁻² s ⁻¹	$1.0 \times 10^4 \text{ m}^{-2} \text{ s}^{-1}$
Kerma	K	joule per kilogram	$ m J~kg^{-1}$	gray	Gy	rad	rad	0.01 Gy
Kerma rate	K	joule per kilogram second	$\mathrm{J}\ \mathrm{kg}^{-1}\ \mathrm{s}^{-1}$		Gy s ⁻¹	rad per second	rad s ⁻¹	0.01 Gy s ⁻¹
Lineal energy	у	joule per meter	J m ⁻¹			kiloelectron volt per micrometer	keV μm ⁻¹	$1.602 \times 10^{-10} \mathrm{J}\;\mathrm{m}^{-1}$
Linear energy transfer	L	joule per meter	J m ⁻¹			kiloelectron volt per micrometer	keV μm ⁻¹	$1.602 \times 10^{-10} \ \mathrm{J} \ \mathrm{m}^{-1}$
Mass attenuation coefficient	μ/ρ	meter squared per kilogram	$\mathrm{m}^2~\mathrm{kg}^{-1}$			centimeter squared per gram	cm ² g ⁻¹	$0.1 \text{ m}^2 \text{ kg}^{-1}$
Mass energy transfer coefficient	$\mu_{tr}\!/\rho$	meter squared per kilogram	$\mathrm{m}^2~\mathrm{kg}^{-1}$			centimeter squared per gram	cm ² g ⁻¹	$0.1 \text{ m}^2 \text{ kg}^{-1}$
Mass energy absorption coefficient	$\mu_{en}\!/\rho$	meter squared per kilogram	$\mathrm{m}^2~\mathrm{kg}^{-1}$			centimeter squared per gram	cm ² g ⁻¹	$0.1 \text{ m}^2 \text{ kg}^{-1}$
Mass stopping power	S/p	joule meter squared per kilogram	$\mathrm{J}~\mathrm{m}^2~\mathrm{kg}^{-1}$			MeV centimeter squared per gram	MeV cm ² g ⁻¹	$1.602 \times 10^{-14} \mathrm{J} \;\mathrm{m}^2 \;\mathrm{kg}^{-1}$
Power	P	joule per second	$\mathrm{J}~\mathrm{s}^{-1}$	watt	W	watt	W	1.0 W
Pressure	p	newton per meter squared	N m ⁻²	pascal	Pa	torr	torr	(101325/760)Pa
Radiation chemical yield	G	mole per joule	mol J⁻¹			molecules per 100 electron volts	molecules (100 eV) ⁻¹	$1.04 \times 10^{-7} \text{ mol J}^{-1}$
Specific energy	z	joule per kilogram	$ m J~kg^{-1}$	gray	Gy	rad	rad	0.01 Gy

CONVERSION FACTORS FOR IONIZING RADIATION (continued)

CONVERSION OF RADIOACTIVITY UNITS FROM MBq TO mCi AND μCi

MBq	mСi	MBq	mCi	MBq	μCi	MBq	μCi
7000	189.	500	13.5	30	810	1	27
6000	162.	400	10.8	20	540	0.9	24
5000	135.	300	8.1	10	270	0.8	21.6
4000	108.	200	5.4	9	240	0.7	18.9
3000	81.	100	2.7	8	220	0.6	16.2
2000	54.	90	2.4	7	189	0.5	13.5
1000	27.	80	2.16	6	162	0.4	10.8
900	24.	70	1.89	5	135	0.3	8.1
800	21.6	60	1.62	4	108	0.2	5.4
700	18.9	50	1.35	3	81	0.1	2.7
600	16.2	40	1.08	2	54		
		1		1			

CONVERSION OF RADIOACTIVITY UNITS FROM mCi AND μ Ci TO MBq

nCi MBq
200 7400
5550
100 3700
90 3330
80 2960
70 2590
60 2220
50 1850
40 1480
30 1110
20 740
80 2960 70 2590 60 2220 50 1850 40 1480 30 1110

CONVERSION OF RADIOACTIVITY UNITS

100 TBq (10 ¹⁴ Bq)	=	$2.7 \text{ kCi} (2.7 \times 10^3 \text{ Ci})$
10 TBq (10 ¹³ Bq)	=	270 Ci $(2.7 \times 10^2 \text{ Ci})$
1 TBq (10 ¹² Bq)	=	27 Ci $(2.7 \times 10^{1} \text{ Ci})$
100 GBq (10 ¹¹ Bq)	=	$2.7 \text{ Ci } (2.7 \times 10^{0} \text{ Ci})$
10 GBq (10 ¹⁰ Bq)	=	270 mCi $(2.7 \times 10^{-1} \text{ Ci})$
1 GBq (10 ⁹ Bq)	=	27 mCi $(2.7 \times 10^{-2} \text{ Ci})$
100 MBq (108 Bq)	=	$2.7 \text{ mCi } (2.7 \times 10^{-3} \text{ Ci})$
$10 \text{ MBq} (10^7 \text{ Bq})$	=	270 μ Ci (2.7 × 10 ⁻⁴ Ci)
1 MBq (10 ⁶ Bq)	=	27 μ Ci (2.7 × 10 ⁻⁵ Ci)

100 kBq (10 ⁵ Bq)	=	$2.7 \mu\text{Ci} (2.7 \times 10^{-6}\text{Ci})$
$10 \text{ kBq} (10^4 \text{ Bq})$	=	270 nCi $(2.7 \times 10^{-7} \text{ Ci})$
$1 \text{ kBq } (10^3 \text{ Bq})$	=	27 nCi (2.7 × 10 ⁻⁸ Ci)
100 Bq (10 ² Bq)	=	$2.7 \text{ nCi } (2.7 \times 10^{-9} \text{ Ci})$
$10 \text{ Bq} (10^1 \text{ Bq})$	=	270 pCi $(2.7 \times 10^{-10} \text{ Ci})$
1 Bq (10 ⁰ Bq)	=	27 pCi $(2.7 \times 10^{-11} \text{ Ci})$
100 mBq (10 ⁻¹ Bq)	=	$2.7 \text{ pCi} (2.7 \times 10^{-12} \text{ Ci})$
10 mBq (10 ⁻² Bq)	=	270 fCi $(2.7 \times 10^{-13} \text{ Ci})$
1 mBq (10 ⁻³ Bq)	=	27 fCi $(2.7 \times 10^{-14} \text{ Ci})$

CONVERSION OF ABSORBED DOSE UNITS

CONVERSION OF DOSE EQUIVALENT UNITS

$100 \mathrm{Sv} (10^2 \mathrm{Sv})$	=	$10,000 \text{ rem } (10^4 \text{ rem})$
10 Sv (10 ¹ Sv)	=	1,000 rem (103 rem)
$1 \text{ Sv} (10^0 \text{ Sv})$	=	100 rem (10 ² rem)
100 mSv (10 ⁻¹ Sv)	=	10 rem (101 rem)
10 mSv (10 ⁻² Sv)	=	1 rem (10 ⁰ rem)
1 mSv (10 ⁻³ Sv)	=	100 mrem (10 ⁻¹ rem)
100 μSv (10 ⁻⁴ Sv)	=	10 mrem (10 ⁻² rem)
10 μSv (10 ⁻⁵ Sv)	=	1 mrem (10 ⁻³ rem)
$1 \mu Sv (10^{-6} Sv)$	=	100 μrem (10 ⁻⁴ rem)
100 nSv (10 ⁻⁷ Sv)	=	10 μrem (10 ⁻⁵ rem)
10 nSv (10 ⁻⁸ Sv)	=	1 μrem (10 ⁻⁶ rem)
1 nSv (10 ⁻⁹ Sv)	=	100 nrem (10 ⁻⁷ rem)