CONVEX OPTIMIZATION

MINSEOK SONG

SOME FACTS IN CONVEX OPTIMIZATION

• We have recurring theme, specifically certain inequalities, arising in convex optimization.

Fact 1. Let S be an open convex set. A function $f: S \to \mathbb{R}$ is convex iff for every $w \in S$, there exists v such that

$$\forall u \in S, f(u) \geqslant f(w) + \langle u - w, v \rangle$$

Definition 1. A function f is strongly convex on S, if $\exists m > 0$ such that $\nabla^2 f \geq mI$. In case f is not differentiable, more general definition gives, $\forall w, u$, and $\forall \alpha \in (0,1)$

$$f(\alpha w + (1 - \alpha)u) \leqslant \alpha f(w) + (1 - \alpha)f(u) - \frac{\lambda}{2}\alpha(1 - \alpha)\|w - u\|^2.$$

- This is a function that grows as fast as quadratic function.
- We can view ||w-u|| as a "penalty" of the distance between w and u.

Fact 2. If f is λ -strongly convex then

$$\forall w, u, \exists v \in \partial f(w), \langle w - u, v \rangle \geqslant f(w) - f(u) + \frac{\lambda}{2} ||w - u||^2$$

Proof. $f(y) = f(x) + \nabla f(x)^T (y-x) + \frac{1}{2} (y-x)^T \nabla^2 f(z) (y-x)$ for some z on the segment [x,y]. By the definition of strong convexity, we have $\nabla^2 f(z) \geq mI$.

GRADIENT DESCENT, STOCHASTIC GRADIENT DESCENT

Fact 3. If f is λ -strongly convex then $\forall w, u, \text{ and } v \in \partial f(w), \text{ we have}$

$$\langle w - u, v \rangle \geqslant f(w) - f(u) + \frac{\lambda}{2} ||w - u||^2$$

Proof. Use the definition of strong convexity, along with subgradient.

• For this type of inequality in general, we use 1) the definition of convexity/strong convexity & limiting argument as $\alpha \to 0$ 2) mean value theorem

Fact 4. Let v_i 's i = 1, ..., T be arbitrary sequence of vectors (think of it as the direction of update). Any algorithm with $w^{(1)} = 0$ and the update rule of the form $w^{(t+1)} = w^{(t)} - \eta v_t$ satisfies

$$\sum_{t=1}^{T} \langle w^{(t)} - w^*, v_t \rangle \leqslant \frac{\|w^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2.$$

- (1) GD: appropriate for when the function is differentiable.
- (2) SGD: even if the function is not differentiable, we can use subgradient. With certain condition, convergence holds.
- (3) Two-step SGD: resolve the concern that the norm of w might increase by using projection.
- (4) As a generalization, we could make η depend on t, or in error analysis instead of using the average of w^t , we can use the last few elements (other variants exist as well).

- (5) Strong convexity: might achieve faster convergence.
- (6) β -smooth: when we use loss function, instead of using Lipschitz function, we can impose the condition of β -smoothness and have different convergence.
 - (a) Assume that $(\cdot, z)l$ is convex, β -smooth, and nonnegative. Then

$$\mathbb{E}[\mathcal{L}_{\mathcal{D}}(\bar{w})] \leqslant \frac{1}{1 - \eta \beta} (\mathcal{L}_{\mathcal{D}}(w^*) + \frac{\|w^*\|^2}{2\eta T}).$$

- (b) Note that we have a specific choice of $\eta = \frac{1}{\beta(1+3/\epsilon)}$ in order to achieve ϵ error (specifically, $T \ge 12B^2\beta/\epsilon^2$).
- (c) The point of β -smooth property of the function is the self-boundedness, i.e. $\|\nabla f(w)\|^2 \leq 2\beta f(w)$, with the additional condition that l is nonnegative and convex: here, we prove it by first observing that

$$f(v) \le f(w) + \nabla f(w)^T (v - w) + \frac{\beta}{2} ||v - w||^2.$$

- Some confusing notation and points:
 - (1) $f_t(\cdot) = l(\cdot, w^{(t)}).$
 - (2) $f(w) = \mathcal{L}_{\mathcal{D}}(w) = \mathbb{E}_{z \sim \mathcal{D}}[l(w, z)]$. l is a loss function and \mathcal{L} is an expected loss.
 - (3) $f_t(w)$ is still a random variable since w is random.

KKT THEOREM

Theorem 1. Assume that functions $f_0, \ldots, f_m, h_1, \ldots, h_p$ are differentiable. We are trying to solve the optimization problem

Minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0$, $i = 1, 2, ..., m$,
 $h_j(x) = 0$, $j = 1, 2, ..., p$.

 x^* is a solution of this problem and the strong duality holds if and only if x^* satisfies

$$f_{i}(x^{*}) \leq 0, \quad i = 1, ..., m$$

 $h_{i}(x^{*}) = 0, \quad i = 1, ..., p$
 $\lambda_{i}^{*}(x) \geq 0, i = 1, ..., m$
 $\lambda_{i}^{*}f_{i}(x^{*}) = 0, i = 1, ..., m$

$$\nabla f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} \nabla h_{i}(x^{*}) = 0$$
for some $\lambda^{*} \geq 0$

Proof. (\Leftarrow) The key here is to notice that $\lambda \ge 0$ because this makes L, a duality function, convex. It follows that x^* gives a minimum solution of L by the last condition. Using the fourth and the second condition, we can see that $f_0(x^*) = g(\lambda^*, \nu^*)$

- (\Rightarrow) This holds by strong duality.
 - $\lambda^T f_i(x) = 0$ is called complementary slackness. The term complementary comes from the idea of either or that, and slackness means "leftover." This condition is hard to verify in practice.

• Caveat: if the strong duality condition does not hold, then KKT condition might not hold. Further, of course, by no means do we have existence and uniqueness.

• Some of variants exist, one of which includes when f is not convex, given below.

Lemma 2. Consider now the equality constrained problem, adding the condition

$$h_i(x) = 0, i = 1, 2, \dots, p$$

from the previous setup. Assume all functions are continuously differentiable. Let x^* be the global minimum of a problem. Assume that the gradients of $h_i(x)$, i = 1, 2, ..., p are linearly independent at x^* . There exist $\nu_1, \nu_2, ..., \nu_p \in \mathbb{R}$ (the Lagrange multipliers) such that $\nabla f(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$.

Remark 1.

Note that complementary slackness and linearity of h_i are compensated by independence, with a simpler setup here - in a way, independence is a pretty strong condition here.

Proof. It follows by observing that $\nabla f(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0$. By independence, we also have a uniqueness.

Theorem 3. Assume further that we have continuously differentiable functions $g_i(x) \leq 0, i = 1, 2, ..., m$.

Let us assume that the vector set composed of $\nabla h_i(x)$ and the gradients of all active inequality constraints form a linear independent set. At x^* , the KKT condition holds.

Remark 2.

Gradient is the steepest direction, and independence signifies the well-behavedness of the constraint, in the sense that whenever x^* is in the 'edge' of the inequality constraint, this direction should give a new information. The theorem says that this well-behavedness is sufficient condition for KKT.

- *Proof.* (1) It is enough to show for the case g_i 's are all active at x^* , because $\mu_i = 0$ whenever $g_i \neq 0$ since $\mu_i \geq 0$ (otherwise we do not have minimum at x^*).
 - (2) Since $g_i \leq 0$, we can also assume that inequality is equality, and use the previous theorem to show the existence of Lagrangian constants that satisfy $\nabla L = \nabla_x f(x^*) + \sum_{i=1}^m \mu_i \nabla_x g_i(x^*) + \sum_{i=1}^p \nu_i \nabla_x h_i(x^*) = 0$.
 - (3) Now it suffices to prove $\mu_i \geq 0$ for all i's. Assume, to the contrary, that $\mu_i < 0$ for some i. First note that $\sum_{i=1}^m \mu_i \nabla_x g_i(x^*) + \sum_{i=1}^p \nu_i \nabla_x h_i(x^*) = -\nabla_x f(x^*) = 0$ since x^* achieves minimum. Use constant rank theorem on $F(t,x) = (g_1(x), \dots t + g_i(x), \dots, g_m(x), h_1(x), \dots, h_p(x))$ (we may need additional condition, such as independence of gradients). We can derive the contradiction by having $\nabla_x f(x^*) = -\sum_{i=1}^m \mu_i \nabla_x g_i(x^*) \sum_{i=1}^p \nu_i \nabla_x h_i(x^*) \neq 0$.

Remark 3.

Dual is not necessarily symmetric in mathematics in general. For example the dual of L^1 is L^{∞} but the dual of L^{∞} is not L^1 .

Under certain condition, it is; for example if f is convex and closed, (epigraph is a closed set) then $f^{**} = f$.

Another relevant concept for convex analysis (in particular, for function) is Legendre transform.