Considere o circuito magnético a seguir:

Considere que:

- O comprimento angular dos polos do rotor e do estator $\alpha=\beta=60^\circ=\pi/3$ rad.
- Comprimento do entreferro g = 2,0 mm;
- Raio do rotor=4,0 cm
- Comprimento D =15 cm (profundidade em relação a tela);
- Cada enrolamento tem 90 espiras;
- Adote como referência de fase o ponto em que a rotor está alinhado com a fase 1;
- O comprimento total do núcleo é de 25 cm;
- Pode se considerar que a densidade de fluxo magnético é a mesma em todos os pontos do núcleo.

A característica BxH do material é dada por:

H [A/m]	B[T]	H [A/m]	B[T]
0	0	1100	1,689
68	0,733	1500	1,703
135	1,205	2500	1,724
203	1,424	4000	1,731
271	1,517	5000	1,738
338	1,560	9000	1,761
406	1,588	12000	1,770
474	1,617	20000	1,80
542	1,631	25000	1,816
609	1,646		

Utilize os pontos fornecidos para obter uma função BxH utilizando uma interpolação *spline*.

Observações

Considere que exista um sensor de posição, de modo que a posição do rotor é sempre conhecida pelo sistema que controla a corrente dos enrolamentos;

Considere que a velocidade com a qual o sistema opera é suficientemente lenta de modo que o tempo necessário para a corrente sair de 0 até seu valor máximo pode ser desprezado.

Considere que o controlador do sistema aplica corrente em apenas uma bobina de cada vez.

- Apresente um gráfico do fluxo concatenado na bobina 1 em função da corrente aplicada nessa bobina considerando a posição do rotor variando da posição 0° até 60°.
 - Observação: seu gráfico terá uma curva de fluxo em função da corrente para cada posição. Se você fizer o plot para todas as posições que calcular, a figura fica sobre carregada. Sugiro fazer o plot com cerca de 10 posições diferentes (ou seja, 0, 6, 12... 60°).
- Determine qual deve ser a corrente aplicada na bobina de modo a obter uma densidade de fluxo de 1,8 T quando o rotor estiver na posição zero graus.

Considere que a corrente calculada no item anterior é aplicada na bobina 1.

 Apresente um gráfico do Torque produzido pela bobina 1 em função da posição do rotor considerando que o núcleo seja ideal;

 Apresente um gráfico do Torque produzido pela bobina 1 em função da posição do rotor considerando a característica real do núcleo; Considere que a máquina está girando com uma velocidade constante em sentido anti-horário.

 Apresente um gráfico do valor eficaz do torque produzido pela máquina em função da corrente aplicada nas bobinas considerando o núcleo ideal;

 Apresente um gráfico do valor eficaz do torque produzido pela máquina em função da corrente aplicada nas bobinas considerando a característica real do núcleo;

- Deseja-se que o sistema opere com uma velocidade constante de 100 RPM em sentido anti-horário. Descreva como o controlador deverá aplicar corrente nas bobinas de modo a alcançar essa velocidade.
- Nessas condições, considerando o núcleo como sendo ideal, determine a razão entre a potência mecânica desenvolvida pelo motor e a potência necessária para o sistema de acionamento.
- Nessas condições, considerando a característica real do núcleo, determine a razão entre a potência mecânica desenvolvida pelo motor e a potência necessária para o sistema de acionamento.