Janvier 2019

Introduction

C'est dans l'air du temps.

C'est dans l'air du temps.

Variables nominales / à domaines finis / NON continues / $\in \mathbf{N}$

 \Rightarrow pas de dérivées partielles, pas de calcul matriciel, ...

C'est dans l'air du temps.

Variables nominales / à domaines finis / NON continues / $\in N$

⇒ pas de dérivées partielles, pas de calcul matriciel, ...

On veut une garantie de qualité des solutions

⇒ pas de métaheuristiques.

C'est dans l'air du temps.

Variables nominales / à domaines finis / NON continues / $\in N$

⇒ pas de dérivées partielles, pas de calcul matriciel, ...

On veut une garantie de qualité des solutions

 \Rightarrow pas de métaheuristiques.

Problèmes pour lesquels

pas d'algorithme complet connu qui s'exécute en temps polynomial

C'est dans l'air du temps.

Variables nominales / à domaines finis / NON continues / $\in \mathbf{N}$

⇒ pas de dérivées partielles, pas de calcul matriciel, ...

On veut une garantie de qualité des solutions

⇒ pas de métaheuristiques.

Problèmes pour lesquels

pas d'algorithme complet connu qui s'exécute en temps polynomial

⇒ pas de calcul de flot, plus difficile que prog. linéaire ...

C'est dans l'air du temps.

Variables nominales / à domaines finis / NON continues / $\in \mathbf{N}$

⇒ pas de dérivées partielles, pas de calcul matriciel, ...

On veut une garantie de qualité des solutions

⇒ pas de métaheuristiques.

Problèmes pour lesquels

pas d'algorithme complet connu qui s'exécute en temps polynomial

⇒ pas de calcul de flot, plus difficile que prog. linéaire ...

Nombreux domaines d'application :

- ► Recherche opérationnelle
- ► Systèmes embarqués
- ► Machine learning

- ► Intelligence Artificielle
 -

- ▶ Des clients à livrer à certaines heures
- ▶ Des livreurs et des camions, de capacités limitées
- ► Un dépôt

- ► Des clients à livrer à certaines heures
- ▶ Des livreurs et des camions, de capacités limitées
- ► Un dépôt
- ⇒ minimiser carburant / temps transport / nb. camions / retards...

- ▶ Des clients à livrer à certaines heures
- ▶ Des livreurs et des camions, de capacités limitées
- ► Un dépôt
- ⇒ minimiser carburant / temps transport / nb. camions / retards...

Un peu plus formellement :

- ightharpoonup n points de livraisons, numérotés $1, \ldots, n$
- p camions initialement au dépôt, numéroté 0
- ▶ matrice de distances / coûts d(i,j)

- ▶ Des clients à livrer à certaines heures
- ▶ Des livreurs et des camions, de capacités limitées
- ► Un dépôt
- ⇒ minimiser carburant / temps transport / nb. camions / retards...

Un peu plus formellement :

- ightharpoonup n points de livraisons, numérotés $1, \ldots, n$
- p camions initialement au dépôt, numéroté 0
- ▶ matrice de distances / coûts d(i,j)
- contraintes horaires :
 - ▶ livraison i dure t_i , à faire entre h_i et H_i
 - ▶ heures de départ et de retour max. h_0 et H_0
- contraintes de capacité :
 - ► chaque livraison nécessite capacité C_i
 - ► camions capacité totale *C*

- ▶ Des clients à livrer à certaines heures
- ▶ Des livreurs et des camions, de capacités limitées
- ▶ Un dépôt
- ⇒ minimiser carburant / temps transport / nb. camions / retards...

Un peu plus formellement :

- \blacktriangleright n points de livraisons, numérotés $1, \ldots, n$
- p camions initialement au dépôt, numéroté 0
- \blacktriangleright matrice de distances / coûts d(i, j)
- contraintes horaires :
 - ▶ livraison i dure t_i , à faire entre h_i et H_i
 - ▶ heures de départ et de retour max. h_0 et H_0
- ► contraintes de capacité :
 - ► chaque livraison nécessite capacité *Ci*
 - ► camions capacité totale C

Une solution =

permutation de l'ensemble des n points de livraisons, +p marqueurs indiquant les limites de chaque camion :

A priori de l'ordre de .n! . \times (n±1)/p solutions potentielles à explorer (mais nombreuses symétries). p est le nombre de camions

La plupart ne vérifient pas les contraintes.

Point de vue «informatique» : une solution = p listes disjointes d'éléments de $\{1, \ldots, n\}$

- ▶ Parallélisme
- ▶ Plusieurs mémoires / cœurs basse-fréquence
- = basse consommation

- Parallélisme
- ▶ Plusieurs mémoires / cœurs basse-fréquence
- = basse consommation
- ► Nombreuses tâches, avec temps d'exécution, mémoire nécessaire,... avec contraintes de précédence

- ▶ Parallélisme
- ▶ Plusieurs mémoires / cœurs basse-fréquence
- = basse consommation
- ► Nombreuses tâches, avec temps d'exécution, mémoire nécessaire,... avec contraintes de précédence
- ⇒ optimiser l'utilisation des ressources : temps de calcul, consommation énergétique,...

		ex	Completion time				
PROC	To	T ₁	T ₅	T ₅		capacity = 1 t	
PROC		T ₂	T ₃	T ₄	T ₆	capacity = 1 t	
МЕМ	MEM T ₀			↑ re	quireme	nt capacity = size t	
МЕМ		T ₂	Т3	Т4	Т ₆	capacity = size t	

- ▶ Parallélisme
- ► Plusieurs mémoires / cœurs basse-fréquence
- = basse consommation
- ► Nombreuses tâches, avec temps d'exécution, mémoire nécessaire,... avec contraintes de précédence
- ⇒ optimiser l'utilisation des ressources : temps de calcul, consommation énergétique,...

Plus formellement:

 \blacktriangleright n tâches numérotées de 1 à n, p cœurs identiques, q mémoires

- ▶ Parallélisme
- ► Plusieurs mémoires / cœurs basse-fréquence
- = basse consommation
- ► Nombreuses tâches, avec temps d'exécution, mémoire nécessaire,... avec contraintes de précédence
- ⇒ optimiser l'utilisation des ressources : temps de calcul, consommation énergétique,...

Plus formellement:

- \blacktriangleright n tâches numérotées de 1 à n, p cœurs identiques, q mémoires
- ▶ contraintes de précédences $i \prec j$: tâche i doit être finie avant que tâche j commence
- contraintes de ressources
 - ▶ chaque tâche i: durée d_i , mémoire nécessaire m_i
 - mémoire $j \Rightarrow$ capacité C_j

- ► Parallélisme
- ▶ Plusieurs mémoires / cœurs basse-fréquence
- = basse consommation
- ► Nombreuses tâches, avec temps d'exécution, mémoire nécessaire,... avec contraintes de précédence
- ⇒ optimiser l'utilisation des ressources : temps de calcul, consommation énergétique,...

Plus formellement:

- ▶ *n* tâches numérotées de 1 à *n*, *p* cœurs identiques, *q* mémoires
- ► contraintes de précédences $i \prec j$: tâche i doit être finie avant que tâche j commence
- contraintes de ressources
 - ▶ chaque tâche i: durée d_i , mémoire nécessaire m_i
 - mémoire $j \Rightarrow$ capacité C_i

o^n * q^n

Un ensemble fini $\mathcal{X} = \text{objets} / \text{éléments} / \text{variables} / \dots$

Un ensemble fini $\mathcal{X} = \text{objets}$ / éléments / variables / ...

Un ensemble de paramètres

- chaque objet peut avoir un poids, une durée, ...
- il peut y avoir des paramètres globaux : capacité des camions, nombre de processeurs, ...

Un ensemble fini $\mathcal{X} = \text{objets}$ / éléments / variables / ...

Un ensemble de paramètres

- ► chaque objet peut avoir un poids, une durée, ...
- il peut y avoir des paramètres globaux : capacité des camions, nombre de processeurs, ...

```
\Rightarrow trouver un groupement / un ordre / une affectation / ... des éléments de \mathcal X
```

Un ensemble fini $\mathcal{X} = \text{objets} / \text{éléments} / \text{variables} / \dots$

Un ensemble de paramètres

- ► chaque objet peut avoir un poids, une durée, ...
- il peut y avoir des paramètres globaux : capacité des camions, nombre de processeurs, ...
- \Rightarrow trouver un groupement / un ordre / une affectation / ... des éléments de $\mathcal X$

$$\mathcal{E} = l'espace de ces groupements / ordres / affectations / ...$$

${\cal E}$ est très grand!!!

▶
$$|\mathcal{E}| = p^{|\mathcal{X}|}$$
 si partition

$$\blacktriangleright$$
 $|\mathcal{E}| = |\mathcal{X}|!$ si permutations

Un ensemble fini $\mathcal{X}=$ objets / éléments / variables / . . .

Un ensemble de paramètres

- ► chaque objet peut avoir un poids, une durée, ...
- ▶ il peut y avoir des paramètres globaux : capacité des camions, nombre de processeurs, . . .

3.6 s 77 millénaires

$$\Rightarrow$$
 trouver un groupement / un ordre / une affectation / . . . des éléments de $\mathcal X$

$$\mathcal{E}=$$
 l'espace de ces groupements / ordres / affectations / . . .

Temps pour énumérer $\mathcal E$ en fonction de $|\mathcal X|$ si on met 1us par élément

. cpo pou.	0		o ao 10 o	oµo pa.	0.00
$ \mathcal{X} $	10	20	30	40	50
$ \mathcal{E} = 2^{ \mathcal{X} }$	1 ms	1 s	18 mn	13 jours	36 ans
$ \mathcal{E} = 3^{ \mathcal{X} }$	59 ms	58 mn	65 années	385 millénaires	

On a aussi souvent des contraintes

 \Rightarrow on parle de *solution faisable* : groupement / ordre / affectation / ... de $\mathcal E$ qui satisfait les contraintes

S = l'ensemble des solutions faisables

(Si pas de contrainte : $S = \mathcal{E}$.)

On a aussi souvent des contraintes

 \Rightarrow on parle de *solution faisable* : groupement / ordre / affectation / ... de $\mathcal E$ qui satisfait les contraintes

 $\mathcal{S} = l$ 'ensemble des solutions faisables

(Si pas de contrainte : $S = \mathcal{E}$.)

Remarque

En général, $|\mathcal{S}| < |\mathcal{E}|$, et même $|\mathcal{S}| \ll |\mathcal{E}|$. Mais

- énumérer S reste souvent infaisable;
- ▶ tester si $S \neq \emptyset$ est même souvent difficile!

 $v: \mathcal{E} \longrightarrow \mathbf{R}$: fonction de coût / valeur

\Rightarrow On cherche une solution faisable S^* de valeur optimale :

```
S^* \in \underset{S \in \mathcal{S}}{\operatorname{argmax}} \{v(S)\} ou S^* \in \underset{S \in \mathcal{S}}{\operatorname{argmin}} \{v(S)\}

\uparrow \uparrow maximisation minimisation
```

(On cherche un $S \in \mathcal{S}$ qui maximise | minimise l'«argument» v(S).)

Une *instance I* d'un Pb. d'Optim. Comb. est donc caractérisée par

- ightharpoonup ensemble d'objets / variables ${\mathcal X}$
- des paramètres

Une *instance I* d'un Pb. d'Optim. Comb. est donc caractérisée par

- ightharpoonup ensemble d'objets / variables ${\cal X}$
- des paramètres

taille d'une instance 1 :

|I|= taille de l'espace nécessaire pour stocker $\mathcal X$ et les paramètres

Une *instance I* d'un Pb. d'Optim. Comb. est donc caractérisée par

- ightharpoonup ensemble d'objets / variables ${\cal X}$
- des paramètres

taille d'une instance 1 :

|I|= taille de l'espace nécessaire pour stocker $\mathcal X$ et les paramètres

Un problème d'optimisation combinatoire est défini par :

- ▶ un ensemble d'instances *I*
 - ▶ pour chaque $I \in \mathcal{I}$: un ensemble $\mathcal{S}(I)$ de solutions faisables
 - ▶ fonction de coùt / valeur pour chaque I, chaque solution faisable $S: v(I, S) \in \mathbb{R}$

(Après sat)

suite! (Après sat)