第 4 章 b: 相似矩阵与矩阵对角化

数学系 梁卓滨

2019-2020 学年 I

定义 设 A, B 是 n 阶方阵。若存在 n 阶可逆矩阵 P,满足

$$P^{-1}AP = B$$
.

则称 A 与 B 相似,记为 $A \sim B$ 。

 \mathbf{c} 义 设 A, B 是 n 阶方阵。若存在 n 阶可逆矩阵 P,满足

$$P^{-1}AP = B.$$

则称 A 与 B 相似,记为 $A \sim B$ 。

定义 设 A, B 是 n 阶方阵。若存在 n 阶可逆矩阵 P,满足

$$P^{-1}AP = B$$
.

则称 A = B 相似,记为 $A \sim B$ 。

这是:

$$A \sim B \Rightarrow P^{-1}AP = B \Rightarrow$$

$$Q^{-1}BQ = A \Rightarrow B \sim A$$

定义 设 A, B 是 n 阶方阵。若存在 n 阶可逆矩阵 P,满足

$$P^{-1}AP = B$$
.

则称 A = B 相似,记为 $A \sim B$ 。

这是:

$$A \sim B \Rightarrow P^{-1}AP = B \Rightarrow A = PBP^{-1}$$

$$O^{-1}BO = A \Rightarrow B \sim A$$

定义 设 A, B 是 n 阶方阵。若存在 n 阶可逆矩阵 P,满足

$$P^{-1}AP = B$$
.

则称 A = B 相似,记为 $A \sim B$ 。

$$\stackrel{\cdot}{\not\equiv} A \sim B \iff B \sim A$$

这是:

$$A \sim B \Rightarrow P^{-1}AP = B \Rightarrow A = PBP^{-1} \xrightarrow{Q:=P^{-1}} Q^{-1}BQ = A \Rightarrow B \sim A$$

相似与对角化

$$\underbrace{\begin{pmatrix} 19 & 45 \\ -7 & -17 \end{pmatrix}}_{A} \qquad \underbrace{\begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}}_{B}$$

$$\left(\begin{array}{cc}1&2\\2&5\end{array}\right)^{-1}\underbrace{\left(\begin{array}{cc}19&45\\-7&-17\end{array}\right)}_{A}\left(\begin{array}{cc}1&2\\2&5\end{array}\right)\quad\underbrace{\left(\begin{array}{cc}3&1\\5&-1\end{array}\right)}_{B}$$

$$\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}^{-1} \underbrace{\begin{pmatrix} 19 & 45 \\ -7 & -17 \end{pmatrix}}_{A} \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} = \underbrace{\begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}}_{B}$$

$$\underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)^{-1}}_{P^{-1}} \underbrace{\left(\begin{array}{ccc} 19 & 45 \\ -7 & -17 \end{array}\right)}_{A} \underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)}_{P} = \underbrace{\left(\begin{array}{ccc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

$$\underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)^{-1}}_{P^{-1}} \underbrace{\left(\begin{array}{ccc} 19 & 45 \\ -7 & -17 \end{array}\right)}_{A} \underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)}_{P} = \underbrace{\left(\begin{array}{ccc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

所以 $A \sim B$

$$\underbrace{\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}^{-1}}_{P^{-1}} \underbrace{\begin{pmatrix} 19 & 45 \\ -7 & -17 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}}_{P} = \underbrace{\begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}}_{B}$$

所以 $A \sim B$

$$\underbrace{\left(\begin{array}{cc} 19 & 45 \\ -7 & -17 \end{array}\right)}_{A}$$

$$\underbrace{\left(\begin{array}{cc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

所以 $A \sim B$

$$\underbrace{\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}^{-1}}_{P^{-1}} \underbrace{\begin{pmatrix} 19 & 45 \\ -7 & -17 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}}_{P} = \underbrace{\begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}}_{B}$$

所以 $A \sim B$

$$\underbrace{\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}^{-1}}_{P^{-1}} \underbrace{\begin{pmatrix} 19 & 45 \\ -7 & -17 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}}_{P} = \underbrace{\begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}}_{B}$$

所以 $A \sim B$

- 1. " λ 矩阵"的方法,但并不简单的。。。
- 2. 下面只给出两个矩阵相似的必要条件

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

证明 存在可逆矩阵 P,满足

$$P^{-1}AP = B$$

1. $|\lambda I - B| =$

 $|\lambda I - A|$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

1.
$$|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| = |\lambda I - A|$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

1.
$$|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| = |P^{-1}(\lambda I - A)P| = |\lambda I - A|$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

证明 存在可逆矩阵 P,满足

$$P^{-1}AP = B$$

1. $|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| = |P^{-1}(\lambda I - A)P| = |P^{-1}| \cdot |\lambda I - A| \cdot |P| \quad |\lambda I - A|$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

证明 存在可逆矩阵 P,满足

$$P^{-1}AP = B$$

1. $|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| = |P^{-1}(\lambda I - A)P| = |P^{-1}| \cdot |\lambda I - A| \cdot |P| = |\lambda I - A|$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

1.
$$|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| = |P^{-1}(\lambda I - A)P| = |P^{-1}| \cdot |\lambda I - A| \cdot |P| = |\lambda I - A|$$

2.
$$r(B) = r(P^{-1}AP) = r(A)$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

1.
$$|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| = |P^{-1}(\lambda I - A)P| = |P^{-1}| \cdot |\lambda I - A| \cdot |P| = |\lambda I - A|$$

2.
$$r(B) = r(P^{-1}AP) = r(A)$$

3.
$$|B| = |A|$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

1.
$$|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| = |P^{-1}(\lambda I - A)P| = |P^{-1}| \cdot |\lambda I - A| \cdot |P| = |\lambda I - A|$$

2.
$$r(B) = r(P^{-1}AP) = r(A)$$

3.
$$|B| = |P^{-1}AP| = |A|$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

- 1. $|\lambda I B| = |\lambda P^{-1}IP P^{-1}AP| = |P^{-1}(\lambda I A)P| = |P^{-1}| \cdot |\lambda I A| \cdot |P| = |\lambda I A|$
- 2. $r(B) = r(P^{-1}AP) = r(A)$
- 3. $|B| = |P^{-1}AP| = |P^{-1}| \cdot |A| \cdot |P|$ |A|

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

- 1. $|\lambda I B| = |\lambda P^{-1}IP P^{-1}AP| = |P^{-1}(\lambda I A)P| = |P^{-1}| \cdot |\lambda I A| \cdot |P| = |\lambda I A|$
- 2. $r(B) = r(P^{-1}AP) = r(A)$
- 3. $|B| = |P^{-1}AP| = |P^{-1}| \cdot |A| \cdot |P| = |A|$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda$

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\underbrace{(\alpha_1,\,\alpha_2,\,\ldots,\,\alpha_n)}_{P}$$

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{N}$$

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (, , \dots,) = (, , \dots,)$$

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, \dots, \dots, \dots) = (\dots, \dots, \dots)$$

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, \alpha_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)$$

相似与对角化 4/14 < ▶ △ ▼

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \dots, \alpha_n)$$

相似与对角化 4/14 < ▶ △ ▼

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \lambda_2 \alpha_2, \dots, \lambda_n)$$

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \lambda_2 \alpha_2, \dots, \lambda_n \alpha_n)$$

相似与对角化 4/14 ▽ △ ▽

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \lambda_2 \alpha_2, \dots, \lambda_n \alpha_n)$$

$$\Rightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1\alpha_1, \lambda_2\alpha_2, \dots, \lambda_n\alpha_n)$$

$$\Leftrightarrow A\alpha_i = \lambda_i \alpha_i$$

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1\alpha_1, \lambda_2\alpha_2, \dots, \lambda_n\alpha_n)$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1\alpha_1, \lambda_2\alpha_2, \dots, \lambda_n\alpha_n)$$

$$\Leftrightarrow A\alpha_i = \lambda_i\alpha_i$$
 (λ_i 是特征值, α_i 是特征向量)

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$ $\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & \ddots \\ & & \lambda_n \end{pmatrix}$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1\alpha_1, \lambda_2\alpha_2, \dots, \lambda_n\alpha_n)$$

$$\Leftrightarrow A\alpha_i = \lambda_i\alpha_i$$
 (λ_i 是特征值, α_i 是特征向量)

定理 A 可对角化 ⇔ A 有 n 个线性无关的特征向量

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \lambda_2 \alpha_2, \dots, \lambda_n \alpha_n)$$

$$\Leftrightarrow A\alpha_i = \lambda_i\alpha_i$$
 (λ_i 是特征值, α_i 是特征向量)

定理 A 可对角化 $\Leftrightarrow A$ 有 n 个线性无关的特征向量 **推论** 若方阵 $A_{n\times n}$ 有 n 不同特征值,则 A 可对角化。

相似与对角化 4/14 ◁ ▷ △ ▽

步骤

1. 求出 A 的所有特征值,及相应特征向量

步骤

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化; 否则,不能对角化

步骤

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 α_1 , α_2 , ..., α_n , 记对应特征值为 λ_1 , λ_2 , ..., λ_n

步骤

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 *n* 个线性无关特征向量,则 *A* 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 $\alpha_1, \alpha_2, \ldots, \alpha_n$,记对应特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$

$$\underbrace{(\alpha_1,\,\alpha_2,\,\ldots,\,\alpha_n)}_{P}$$

步骤

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 α_1 , α_2 , ..., α_n , 记对应特征值为 λ_1 , λ_2 , ..., λ_n

$$\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P}$$

步骤

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 α_1 , α_2 , ..., α_n , 记对应特征值为 λ_1 , λ_2 , ..., λ_n

$$\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P}$$

$$\underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Rightarrow P^{-1}AP = \Lambda$$

步骤

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 α_1 , α_2 , ..., α_n , 记对应特征值为 λ_1 , λ_2 , ..., λ_n (即: $A\alpha_i = \lambda_i \alpha_i$)则

$$\underbrace{(\alpha_1,\,\alpha_2,\,\ldots,\,\alpha_n)}_{P}$$

$$\underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Rightarrow P^{-1}AP = \Lambda$$

步骤

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化; 否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 α_1 , α_2 , ..., α_n , 记对应特征值为 λ_1 , λ_2 , ..., λ_n (即: $A\alpha_i = \lambda_i \alpha_i$)则

$$A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{\wedge}$$

$$\Rightarrow P^{-1}AP = \Lambda$$

步骤

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 α_1 , α_2 , ..., α_n , 记对应特征值为 λ_1 , λ_2 , ..., λ_n (即: $A\alpha_i = \lambda_i \alpha_i$)则

$$A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Rightarrow AP = P\Lambda \Rightarrow P^{-1}AP = \Lambda$$

例 **1**
$$A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

例 **1**
$$A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

• 特征方程: $0 = |\lambda I - A| = (\lambda + 2)(\lambda - 4)$

例 1
$$A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 λ₁ = 4,
- 特征值 λ₂ = −2,

例
$$A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 λ₂ = −2,

例
$$\mathbf{1} A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: 0 = |λI A| = (λ + 2)(λ 4)
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

例 1
$$A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

例 **1**
$$A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: 0 = |λI A| = (λ + 2)(λ 4)
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

$$P = ($$
) , $\wedge = ($

$$P^{-1}AP = \Lambda$$

例 **1**
$$A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

$$P = (\alpha_1, \alpha_2)$$
 , $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$

$$P^{-1}AP = \Lambda$$
.

例 **1**
$$A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

$$P = (\alpha_1, \alpha_2) = \begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$$

$$P^{-1}AP = \Lambda$$
.

例 **1**
$$A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

$$P = (\alpha_1, \alpha_2) = \begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix},$$

$$P^{-1}AP = \Lambda$$
.

例 2 判断 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

例 2 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

特征方程: 0 = |λI − A|

例 2 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

• 特征方程: $0 = |\lambda I - A| = (\lambda - 2)^2 (\lambda - 6)$

例 2 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 λ₁ = 2 (二重)
- 特征值 λ₂ = 6

例 2 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 $\lambda_1 = 2$ (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- 特征值 λ₂ = 6

例 2 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 $\lambda_1 = 2$ (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = 6$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。 所以 A 可以对角化。

例 2 判断 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

• 特征方程:
$$0 = |\lambda I - A| = (\lambda - 2)^2 (\lambda - 6)$$

• 特征值
$$\lambda_1 = 2$$
 (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

• 特征值
$$\lambda_2 = 6$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。所以 A 可以对角化。 \Rightarrow

$$P = ($$
 , $\wedge = ($

$$P^{-1}AP = \Lambda$$
.

例 2 判断 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 $\lambda_1 = 2$ (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = 6$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。所以 A 可以对角化。 \Rightarrow

$$P = (\alpha_1, \alpha_2, \alpha_3)$$
 , $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$

则

$$P^{-1}AP = \Lambda$$
.

例 2 判断 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 $\lambda_1 = 2$ (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = 6$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。所以 A 可以对角化。 \Rightarrow

$$P = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$$

$$P^{-1}AP = \Lambda$$

例 2 判断 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

• 特征方程:
$$0 = |\lambda I - A| = (\lambda - 2)^2 (\lambda - 6)$$

• 特征值
$$\lambda_1 = 2$$
 (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

• 特征值
$$\lambda_2 = 6$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。所以 A 可以对角化。

$$P^{-1}AP = \Lambda$$
.

例 3 判断 $A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

例 3 判断
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 1)(\lambda 2)^2$ Details
- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det

例 3 判断
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 1)(\lambda 2)^2$ Details
- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det

例 3 判断 $A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 1)(\lambda 2)^2$ Details
- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det

可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。所以 A 可以对角化。

$$P = ($$
 , $\wedge = ($

则

$$P^{-1}AP = \Lambda$$

例 3 判断 $A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 1)(\lambda 2)^2$ Details
- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det

可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。所以 A 可以对角化。

$$P = (\alpha_1, \alpha_2, \alpha_3)$$
 , $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$

$$P^{-1}AP = \Lambda$$

例 3 判断
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 1)(\lambda 2)^2$ Details
- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det

$$P = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 \end{pmatrix}$$

则

$$P^{-1}AP = \Lambda$$

例 3 判断
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 1)(\lambda 2)^2$ Details
- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det

$$P = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 \end{pmatrix},$$

$$P^{-1}AP = \Lambda$$
.

例 4 判断 $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

例 4 判断
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: 0 = |λI A| = (λ + 1)²(λ 5)
- 特征值 $\lambda_1=-1$ (二重),特征向量 $\alpha_1=\begin{pmatrix} -1\\1\\0\end{pmatrix}$, $\alpha_2=\begin{pmatrix} -1\\0\\1\end{pmatrix}$ Det
- 特征值 $\lambda_2 = 5$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ Det

例 4 判断
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: 0 = |λI A| = (λ + 1)²(λ 5)
- 特征值 $\lambda_1 = -1$ (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det
- 特征值 $\lambda_2 = 5$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ Det

例 4 判断 $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$ 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda + 1)^2 (\lambda 5)$ Details
- 特征值 $\lambda_1 = -1$ (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det
- 特征值 $\lambda_2 = 5$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ Det

可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。所以 A 可以对角化。

$$\Lambda = \begin{pmatrix} & & \\ & & \end{pmatrix}$$

$$P^{-1}AP = \Lambda$$
.

例 4 判断
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda + 1)^2 (\lambda 5)$ Details
- 特征值 $\lambda_1 = -1$ (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det
- 特征值 $\lambda_2 = 5$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ Det

$$P = (\alpha_1, \alpha_2, \alpha_3)$$
 , $\Lambda = \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_2 \end{pmatrix}$

$$P^{-1}AP = \Lambda$$

例 4 判断
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
是否能对角化?若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda + 1)^2 (\lambda 5)$ Details
- 特征值 $\lambda_1 = -1$ (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det
- 特征值 $\lambda_2 = 5$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ Det

$$P = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$$

$$P^{-1}AP = \Lambda$$
.

例 4 判断
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda + 1)^2 (\lambda 5)$ Details
- 特征值 $\lambda_1 = -1$ (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det
- 特征值 $\lambda_2 = 5$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ Det

$$P = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 & \\ & \lambda_2 & \\ & & \lambda_3 \end{pmatrix} = \begin{pmatrix} -1 & \\ & -1 & \\ & & 5 \end{pmatrix},$$

$$P^{-1}AP = \Lambda$$
.

定理 n 阶方阵 A 可对角化的充分必要条件是:每个 n_i 重的特征值 λ_i ,矩

阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

图解如下:

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系 $/$ 线性无关特征向量
λ_1	n ₁	
λ_2	n ₂	
:	÷	
λ_{s}	ns	
	共n	

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

图解如下:

不同 特征值	重 数		$(\lambda_i I - A)x = 0$ 基础解系 /线性无关特征向量
λ_1	n_1	$r(\lambda_1 I - A) = n - n_1$	
λ_2	n ₂		
÷	:		

共加

 n_{s}

 λ_s

$$|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$$

图解如下:

不同 特征值	重 数		($\lambda_i I - A$) $x = 0$ 基础解系 /线性无关特征向量
λ_1	n_1	$r(\lambda_1 I - A) = n - n_1$	⇒	$\alpha_1^{(1)}, \alpha_2^{(1)}, \cdots, \alpha_{n_1}^{(1)}$
λ_2	n ₂			
:	÷			
λ_{s}	ns			
	共n			

图解如下:

不同 特征值	重 数			$(\lambda_i I - A)x = 0$ 基础解系 /线性无关特征向量
λ_1	n_1	$r(\lambda_1 I - A) = n - n_1$	⇒	$\alpha_1^{(1)}, \alpha_2^{(1)}, \cdots, \alpha_{n_1}^{(1)}$
λ_2	n ₂	$r(\lambda_2 I - A) = n - n_2$		
÷	÷			
λ_{s}	ns			
	共n			

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

图解如下:

不同 特征值	重 数		($\lambda_i I - A$) $x = 0$ 基础解系 /线性无关特征向量
λ_1	n ₁	$r(\lambda_1 I - A) = n - n_1$	⇒	$\alpha_1^{(1)}, \alpha_2^{(1)}, \cdots, \alpha_{n_1}^{(1)}$
λ_2	n ₂	$r(\lambda_2 I - A) = n - n_2$	⇒	$\alpha_1^{(2)}, \alpha_2^{(2)}, \cdots, \alpha_{n_2}^{(2)}$
:	÷			
λ_{s}	ns			

相似与对角化

共n

图解如下:

不同 特征值	重 数			$(\lambda_i I - A)x = 0$ 基础解系 /线性无关特征向量
λ_1	n_1	$r(\lambda_1 I - A) = n - n_1$	⇒	$\alpha_1^{(1)}, \alpha_2^{(1)}, \cdots, \alpha_{n_1}^{(1)}$
λ_2	n ₂	$r(\lambda_2 I - A) = n - n_2$	⇒	$\alpha_1^{(2)}, \alpha_2^{(2)}, \cdots, \alpha_{n_2}^{(2)}$
:	÷	:		:
λ_s	ns	$r(\lambda_s I - A) = n - n_s$		
	共n			

图解如下:

不同 特征值	重 数		($(\lambda_i I - A)x = 0$ 基础解系 /线性无关特征向量
λ_1	n_1	$r(\lambda_1 I - A) = n - n_1$	⇒	$\alpha_1^{(1)}, \alpha_2^{(1)}, \cdots, \alpha_{n_1}^{(1)}$
λ_2	n ₂	$r(\lambda_2 I - A) = n - n_2$	⇒	$\alpha_1^{(2)}, \alpha_2^{(2)}, \cdots, \alpha_{n_2}^{(2)}$
÷	:	:		:
λ_{s}	ns	$r(\lambda_s I - A) = n - n_s$	⇒	$\alpha_1^{(s)}, \alpha_2^{(s)}, \cdots, \alpha_{n_s}^{(s)}$
	共n			

图解如下:

-	不同 特征值	重 数			$(\lambda_i I - A)x = 0$ 基础解系 /线性无关特征向量
-	λ_1	n_1	$r(\lambda_1 I - A) = n - n_1$	⇒	$\alpha_1^{(1)}, \alpha_2^{(1)}, \cdots, \alpha_{n_1}^{(1)}$
	λ_2	n ₂	$r(\lambda_2 I - A) = n - n_2$	⇒	$\alpha_1^{(2)}, \alpha_2^{(2)}, \cdots, \alpha_{n_2}^{(2)}$
	:	÷	:		:
	λ_{s}	ns	$r(\lambda_s I - A) = n - n_s$	\Rightarrow	$\alpha_1^{(s)}, \alpha_2^{(s)}, \cdots, \alpha_{n_s}^{(s)}$
-		共n			共 n 个无关特征向量

例 矩阵 $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ 能否对角化?

例 矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
能否对角化?

提示
$$A$$
 可对角化 \iff $r(\lambda I - A) = n - (\lambda 重数)$

例 矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
能否对角化?

解

• 特征方程
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ 0 & \lambda - 2 & -1 \\ 0 & 0 & \lambda - 1 \end{vmatrix}$$

例 矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
能否对角化?

解

• 特征方程
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ 0 & \lambda - 2 & -1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2)$$

例 矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
能否对角化?

解

• 特征方程
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ 0 & \lambda - 2 & -1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2)$$

特征值 λ₁ = 1

特征值 λ₂ = 2

例 矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
能否对角化?

解

• 特征方程
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ 0 & \lambda - 2 & -1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2)$$

特征值 λ₁ = 1 (2 重根)

例 矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
能否对角化?

解

• 特征方程
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ 0 & \lambda - 2 & -1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2)$$

特征值 λ₁ = 1 (2 重根)

$$\lambda_1 I - A = \begin{pmatrix} 0 - 1 & 0 \\ 0 - 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

例 矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
能否对角化?

解

• 特征方程
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ 0 & \lambda - 2 & -1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2)$$

特征值 λ₁ = 1 (2 重根)

$$\lambda_1 I - A = \begin{pmatrix} 0 & -1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

例 矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
能否对角化?

解

• 特征方程
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ 0 & \lambda - 2 & -1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2)$$

特征值 λ₁ = 1 (2 重根)

$$\lambda_1 I - A = \begin{pmatrix} 0 & -1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow r(\lambda_1 I - A) = 2$$

特征值 λ₂ = 2 (1 重根)

例 矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 能否对角化?

提示 A 可对角化 \iff $r(\lambda I - A) = n - (\lambda 重数)$

解

• 特征方程
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ 0 & \lambda - 2 & -1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2)$$

特征值 λ₁ = 1 (2 重根)

$$\lambda_1 I - A = \begin{pmatrix} 0 & -1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow r(\lambda_1 I - A) = 2 \neq 3 - \text{\text{med}}$$

例 矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 能否对角化?

提示
$$A$$
 可对角化 \Leftrightarrow $r(\lambda I - A) = n - (\lambda \mathbb{1} + A)$

解

• 特征方程
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ 0 & \lambda - 2 & -1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2)$$

特征值 λ₁ = 1 (2 重根)

$$\lambda_1 I - A = \begin{pmatrix} 0 & -1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow r(\lambda_1 I - A) = 2 \neq 3 - \text{\text{med}}$$

所以不能对角化

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ⇔

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ⇔ A 可对角化

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若
$$A \subseteq \Lambda$$
 相似 $\Leftrightarrow A \supseteq A$ 可对角化, $\lambda_1 = 1$ $\lambda_2 = 2$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A \subseteq \Lambda$ 相似 $\iff A$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A \subseteq \Lambda$ 相似 $\iff A$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若
$$A = \Lambda$$
 相似 \Leftrightarrow $A = \Lambda$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)
$$\Leftrightarrow r(I - A) = \qquad \qquad \exists r(2I - A) =$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若
$$A \subseteq \Lambda$$
 相似 \Leftrightarrow $A \subseteq \Lambda$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)
 \Leftrightarrow $r(I-A) = 3 - 2 = 1$ 且 $r(2I-A) =$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若
$$A = \Lambda$$
 相似 \Leftrightarrow A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) \Leftrightarrow $r(I-A) = 3-2 = 1$ 且 $r(2I-A) = 3-1 = 2$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A = \Lambda$ 相似 \iff $A = \Lambda$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\iff r(I - A) = 3 - 2 = 1 \text{ L} r(2I - A) = 3 - 1 = 2$

解

$$A_1$$
 A_2 A_3 A_4

I - A

r(I-A)

2I - A

r(2I-A)

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A \subseteq \Lambda$ 相似 $\iff A$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\Leftrightarrow r(I-A) = 3-2 = 1 \exists r(2I-A) = 3-1 = 2$

解

$$\begin{array}{c|cccc}
A_1 & A_2 & A_3 & A_4 \\
\hline
I-A & \begin{pmatrix} 0-1 & 0 \\ 0-1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \\
r(I-A) & & & & \\
2I-A & & & & \\
\end{array}$$

r(2I-A)

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A \subseteq \Lambda$ 相似 $\iff A$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\Leftrightarrow r(I-A) = 3-2 = 1 \exists r(2I-A) = 3-1 = 2$

解

2I - A

r(2I-A)

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A ext{ 与 } \wedge$ 相似 \Leftrightarrow $A ext{ 可对角化}, \lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\Leftrightarrow r(I - A) = 3 - 2 = 1 ext{ 且 } r(2I - A) = 3 - 1 = 2$

解

$$r(2I-A)$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A = \Lambda$ 相似 \iff $A = \Lambda$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\iff r(I - A) = 3 - 2 = 1 \text{ L} r(2I - A) = 3 - 1 = 2$

解

$$r(2I-A)$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A = \Lambda$ 相似 \Leftrightarrow A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) \Leftrightarrow r(I - A) = 3 - 2 = 1 且 r(2I - A) = 3 - 1 = 2

解

$$r(2I-A)$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A \subseteq \Lambda$ 相似 $\Leftrightarrow A \supseteq A$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\Leftrightarrow r(I-A) = 3-2 = 1$ 且 r(2I-A) = 3-1 = 2

解

	A_1	A ₂	A ₃	A_4
I – A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 - 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$
r(I-A)	2	2		

$$r(2I-A)$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A = \Lambda$ 相似 \Leftrightarrow $A = \Lambda$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) \Leftrightarrow r(I - A) = 3 - 2 = 1 且 r(2I - A) = 3 - 1 = 2

解

	A_1	A ₂	A ₃	A_4
I – A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 - 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$
r(I-A)	2	2	1	

$$r(2I-A)$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A = \Lambda$ 相似 \Leftrightarrow $A = \Lambda$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) \Leftrightarrow r(I - A) = 3 - 2 = 1 且 r(2I - A) = 3 - 1 = 2

解

	A_1	A ₂	A ₃	A_4
I – A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$
r(I-A)	2	2	1	2

$$r(2I-A)$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A = \Lambda$ 相似 \Leftrightarrow $A = \Lambda$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\Leftrightarrow r(I - A) = 3 - 2 = 1 \perp I = 2$

	A_1	A ₂	A ₃	A_4
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$
r(I-A)	2	2	1	2
2 <i>I</i> – <i>A</i>			$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
r(2I-A)				

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A ext{ 与 } \wedge$ 相似 \Leftrightarrow $A ext{ 可对角化}, \lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\Leftrightarrow r(I - A) = 3 - 2 = 1 ext{ 且 } r(2I - A) = 3 - 1 = 2$

	A_1	A ₂	A ₃	A_4
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$
r(I-A)	2	2	1	2
2 <i>I</i> – <i>A</i>			$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
r(2I-A)			2	

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A = \Lambda$ 相似 \Leftrightarrow $A = \Lambda$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\Leftrightarrow r(I - A) = 3 - 2 = 1 \perp I = 2$

	A_1	A ₂	A ₃	A_4
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$
r(I-A)	2	2	1	2
2 <i>I</i> – <i>A</i>	$\left(\begin{smallmatrix}1&-1&0\\0&0&-1\\0&0&1\end{smallmatrix}\right)$	$\begin{pmatrix}1-1&0\\0&1&0\\0&0&0\end{pmatrix}$	$\left(\begin{smallmatrix}1&0&-1\\0&1&0\\0&0&0\end{smallmatrix}\right)$	$\left(\begin{smallmatrix}1&0&-1\\0&0&-1\\0&0&1\end{smallmatrix}\right)$
r(2I-A)			2	

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A = \Lambda$ 相似 \Leftrightarrow $A = \Lambda$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\Leftrightarrow r(I - A) = 3 - 2 = 1 \perp I = 2$

	A_1	A ₂	A ₃	A_4
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$
r(I-A)	2	2	1	2
2 <i>I</i> – A	$\left(\begin{smallmatrix}1&-1&0\\0&0&-1\\0&0&1\end{smallmatrix}\right)$	$\left(\begin{smallmatrix}1&-1&0\\0&1&0\\0&0&0\end{smallmatrix}\right)$	$\left(\begin{smallmatrix}1&0&-1\\0&1&0\\0&0&0\end{smallmatrix}\right)$	$\left(\begin{smallmatrix}1&0&-1\\0&0&-1\\0&0&1\end{smallmatrix}\right)$
r(2I-A)	2	2	2	2

例设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,求 A^n

例 设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,求 A^n

$$P^{-1}AP = \begin{pmatrix} 2 & & \\ & 2 & \\ & & 6 \end{pmatrix}$$

例设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,求 A^n

$$P^{-1}AP = \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} P^{-1}$$

例 设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,求 A^n

$$P^{-1}AP = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

例 设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,求 A^n

解

$$P^{-1}AP = \begin{pmatrix} 2 \\ 2 \\ 6 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 \\ 2 \\ 6 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

所以

$$A^n =$$

例设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,求 A^n

$$P^{-1}AP = \begin{pmatrix} 2 & 2 & \\ & 6 & \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 2 & \\ & 6 & \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

所以

$$A^{n} = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$

相似与对角化

例设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,求 A^n

解

$$P^{-1}AP = \begin{pmatrix} 2 & 2 & \\ & 6 & \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 2 & \\ & 6 & \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

所以

$$A^{n} = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$
$$= P \wedge \cdot \wedge \cdots \wedge P^{-1}$$

相似与对角化 13/14 ✓ ▷ △ ▽

例设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,求 A^n

解

$$P^{-1}AP = \begin{pmatrix} 2 & 2 & \\ & 6 & \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 2 & \\ & 6 & \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

所以

$$A^{n} = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$
$$= P \wedge \cdot \wedge \cdots \wedge P^{-1}$$
$$= P \wedge^{n} P^{-1}$$

_

相似与对角化

例设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,求 A^n

$$P^{-1}AP = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

所以

$$A^{n} = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$
$$= P \wedge \cdot \wedge \cdots \wedge P^{-1}$$
$$= P \wedge^{n} P^{-1}$$

 $= \begin{pmatrix} 2^n & & \\ & 2^n & \\ & & 6^n \end{pmatrix}$

例设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,求 A^n

$$P^{-1}AP = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

所以

$$A^{n} = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$

$$= P \wedge \cdot \wedge \cdots \wedge P^{-1}$$

$$= P \wedge^{n} P^{-1}$$

$$= \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} 2^{n} & & \\ & 2^{n} & \\ & & 6^{n} \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}^{-1}$$

相似与对角化 13/14 < ▷ △ ▽

-----The End-----

• 求解特征方程

$$0 = |\lambda I - A| =$$

• 求解特征方程

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

• 求解特征方程

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1\\ 2 & \lambda - 4 & 2\\ 2 & -2 & \lambda \end{vmatrix}$$

$$\frac{r_3 - r_2}{}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$
$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$
$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{c_2 + c_3}{=}$$

→ Back

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix} \xrightarrow{c_2 + c_3} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 2 & \lambda - 2 & 2 \\ 0 & 0 & 1 \end{vmatrix}$$

→ Back

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix} \frac{c_2 + c_3}{2} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 2 & \lambda - 2 & 2 \\ 0 & 1 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 \\ 2 & \lambda - 2 \end{vmatrix}$$

→ Back

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{c_2 + c_3}{=} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 2 & \lambda - 2 & 2 \\ 0 & 1 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 \\ 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 1)(\lambda - 2)^2$$

• $\exists \lambda_1 = 1$, \vec{x} \vec{x} \vec{x} \vec{x} \vec{y} \vec

$$(1I - A : 0) =$$

$$(1I-A:0) = \begin{pmatrix} 0 & -1 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 2 & -2 & 1 & | & 0 \end{pmatrix}$$

$$(1I-A:0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$(1I-A:0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1}$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2 - r_1} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2 - r_1} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2 - r_1} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(1I-A:0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \xrightarrow{r_3-r_2} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\text{MU}$$

$$(1I-A:0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \xrightarrow{r_3-r_2} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & -\frac{1}{2}x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

$$(1I-A:0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \xrightarrow{r_3-r_2} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & -\frac{1}{2}x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_2 = x_3 \end{cases}$$

$$(1I-A:0) = \begin{pmatrix} 0 & -1 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 2 & -2 & 1 & | & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 0 & -1 & 1 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \xrightarrow{r_3-r_2} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

基础解系:
$$\alpha_1 = \begin{pmatrix} \\ 2 \end{pmatrix}$$

相似与对角化 14/14 < ▷ △ ▽

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \xrightarrow{r_3-r_2} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

基础解系:
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

相似与对角化

$$(2I - A : 0) =$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & | & 0 \\ 2 & -2 & 2 & | & 0 \\ 2 & -2 & 2 & | & 0 \end{pmatrix} \rightarrow$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 - x_2 + x_3 = 0$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 - x_2 + x_3 = 0 \implies x_1 = x_2 - x_3$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 - x_2 + x_3 = 0 \quad \Rightarrow \quad x_1 = x_2 - x_3$$

基础解系:
$$\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\alpha_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 - x_2 + x_3 = 0 \quad \Rightarrow \quad x_1 = x_2 - x_3$$

基础解系:
$$\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\alpha_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 - x_2 + x_3 = 0 \Rightarrow x_1 = x_2 - x_3$$

基础解系:
$$\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 - x_2 + x_3 = 0 \quad \Rightarrow \quad x_1 = x_2 - x_3$$

基础解系:
$$\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

$$0 = |\lambda I - A| =$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \frac{c_2 + c_3}{2}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{c_2 + c_3}{=} (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 & -2 \\ -2 & \lambda - 3 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \frac{c_2 + c_3}{2} (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 & -2 \\ -2 & \lambda - 3 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{c_2 + c_3}{=} (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 & -2 \\ -2 & \lambda - 3 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{vmatrix}$$

$$= (\lambda + 1)(\lambda^2 - 4\lambda - 5)$$

• 求解特征方程

 $=(\lambda+1)^2(\lambda-5)$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \xrightarrow{\frac{C_2 + C_3}{2}} (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 & -2 \\ -2 & \lambda - 3 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{vmatrix}$$

$$= (\lambda + 1)(\lambda^2 - 4\lambda - 5)$$

$$(-I - A : 0) =$$

$$(-I-A:0) = \begin{pmatrix} -2 & -2 & -2 & 0 \\ -2 & -2 & -2 & 0 \\ -2 & -2 & -2 & 0 \end{pmatrix} \rightarrow$$

$$(-I-A:0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

• $\exists \lambda_1 = -1$, $\forall M (\lambda_1 I - A)x = 0$:

$$(-I-A:0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0$$

$$(-I-A:0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0 \Rightarrow x_1 = -x_2 - x_3$$

$$(-I-A:0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0 \Rightarrow x_1 = -x_2 - x_3$$

基础解系:
$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0 \Rightarrow x_1 = -x_2 - x_3$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(-I-A:0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0 \Rightarrow x_1 = -x_2 - x_3$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

$$(5I - A : 0) =$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix}$$

$$(5I-A:0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$r_1 \leftrightarrow r_3$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array} \right)$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array}\right) \xrightarrow[r_3 - 2r_1]{r_2 - r_1} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{array}\right)$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array}\right) \xrightarrow[r_3 - 2r_1]{r_2 - r_1} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{array}\right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array}\right) \xrightarrow[r_3 - 2r_1]{r_2 - r_1} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{array}\right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \xrightarrow{r_1 - r_2} \left(\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 2 & -1 & -1 & | & 0 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & -3 & 3 & | & 0 \\ 0 & -3 & 3 & | & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\text{FIU}$$

相似与对角化

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 2 & -1 & -1 & | & 0 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & -3 & 3 & | & 0 \\ 0 & -3 & 3 & | & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$
所以
$$\begin{cases} x_1 & -x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 2 & -1 & -1 & | & 0 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & -3 & 3 & | & 0 \\ 0 & -3 & 3 & | & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$
所以
$$\begin{cases} x_1 & -x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = x_3 \end{cases}$$

$$(5I-A:0) = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & -2 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & -3 & 3 & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix}
1 & 1 & -2 & | & 0 \\
0 & 1 & -1 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix}
1 & 0 & -1 & | & 0 \\
0 & 1 & -1 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\begin{cases}
x_1 & -x_3 = 0 & \begin{cases}
x_1 = x_3
\end{cases}$$

所以
$$\begin{cases} x_1 & -x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = x_3 \end{cases}$$

基础解系:
$$\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$(5I-A:0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & -2 & 0 \\ 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
1 & 1 & -2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \\
(x_1 & -x_3 = 0 & (x_1 = x_3)$$

所以
$$\begin{cases} x_1 & -x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = x_3 \end{cases}$$

基础解系: $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$