ACE Tutorial 4

Question 1: Stacks and Queues

Consider an array-based queue, where the underlying array of size N is used in a circular fashion. We keep track of two variables: f referring to the index of the front element and sz referring to the number of stored elements. When the queue has *fewer than* N elements, the array index $r = (f + sz) \mod N$ is the first empty slot past the rear of the queue.

Consider a queue that has an underlying array A of size 5. Fill in the following f, sz and r values, and show the state of the array A after each operation.

- f (front): 指向队列的前端 (即最先插入但尚未删除的元素)。
- sz (size): 存储的元素数量。
- \cdot r (rear): 指向队列的下一个空槽,计算方式为 r = (f + sz) mod N,其中 N = 5 (数组 的大小)。
- Initial State of A

Index	0	1	2	3	4
Element					

	value
f	0
SZ	0
r	0

- Enqueue 4

Index	0	1	2	3	4
Element	4				

	value
f	0

SZ	1
r	1

- Dequeue

Index	0	1	2	3	4
Element					

	value
f	1
SZ	0
r	1

- Enqueue 7

Index	0	1	2	3	4
Element		7			

	value
f	1
SZ	1
r	2

- Enqueue 10

Index	0	1		2	3	4
Element			7	10)	

	value
f	1
SZ	2
r	3

- Enqueue 13

Index	0	1		2		3		4
Element			7		10		13	

	value
f	1
SZ	3
r	4

- Enqueue 16

Index	0	1	2	3	4
Element		7	10	13	16

	value
f	1
SZ	4
r	0

- Dequeue

Index	0	1	2		3	4
Element				10	13	16

	value
f	2
SZ	3
r	0

- Dequeue

Index	0	1	2	3	4
Element				13	16

	value
f	3
SZ	2
r	0

- Enqueue 19

Index	0	1	2	3	4
Element	19			13	16

	value
f	3
SZ	3
r	1

- Enqueue 22

Index	0	1	2	3	4
Element	19	22		13	16

	value
f	3
SZ	4
r	2

- Enqueue 25

Index	0	1	2	3	4
Element	19	22	25	13	16

	value
f	3
SZ	5
r	3

What happens here? Is *r* referring to an empty cell? Can we add more elements to the array?

- ・当 sz == N 时,队列已满,无法继续 enqueue 操作,必须 dequeue 才能腾出空间。
- ・r的值指向 f, 意味着 r 不再指向空单元格, 而是循环回到 f。
- · 这是 基于数组的循环队列 在存满后的行为。

Question 2: Lists

Consider a growable array-based array list. Let push(o) be the operation that adds an element o at the end of the list. For the pseudocode of the push(o) algorithm, see Slide 13 in Lists.pdf. When the array is full, we replace the array with a larger one. There are two commonly used strategies which determine the size of the new array.

Incremental strategy: when an array of size n is full, we replace it with a new array of size (n+c), where c is a constant.

Doubling strategy: when an array of size n is full, we replace it with a new array of size 2n.

Assume that when the array is not full, adding an element into it takes a constant time 1. Fill in the two tables below, which illustrate the process of performing a series of n push(o) operations over an initial array which is empty and of size 1, using the incremental strategy and the doubling strategy, respectively. For the incremental strategy, we set c=3.

规则:

• 初始数组大小 1

• 当数组满时, 新数组大小 = 旧大小 + 3

· 插入元素的时间:

· 直接插入: 时间 1

· 扩容 (复制元素): 需要 旧数组大小 的时间

Incremental strategy, c=3

Array size	Push <i>i</i> -th element	Time for adding elements	Time for copying elements
1	1	1	0
1+3=4	2	1	1=c-2
4	3	1	0
4	4	1	0
4+3=7	5	1	4=2c-2
7	6	1	0
7	7	1	0
7+3=10	8	1	7=3c-2
10	9	1	0
10	10	1	0

10+3=13	11	1	10=4c-2
13	12	1	0

Let m denote the total number of push operations in the series, k denote the number of times of increasing the array size. Can you express the relationship between m and k using c?

$$m = ck$$

k=m/c

Let T(m) denote the total time for performing these m push operations. How to express T(m) using m, k and c? Which big-Oh class does T(m) belong to? Which big-Oh class does T(m)/m belong to?

规则:

- 初始数组大小1
- · 当数组满时, 新数组大小 = 旧大小 × 2
- · 插入元素的时间:
 - · 直接插入: 时间 1
 - · 扩容 (复制元素): 需要 旧数组大小 的时间

Doubling strategy

Array size	Push <i>i</i> -th element	Time for adding elements	Time for copying elements
1	1	1	0
1*2=2	2	1	1
2*2=4	3	1	2
4	4	1	0
4*2=8	5	1	4
8	6	1	0
8	7	1	0
8	8	1	0
8*2=16	9	1	8
16	10	1	0
16	11	1	0
16	12	1	0
16	13	1	0
16	14	1	0
16	15	1	0
16	16	1	0

Let m denote the total number of push operations in the series, k denote the number of times of increasing the array size. Can you express the relationship between m and k?

$$m=2^k$$

k = log(2)m

Let T(m) denote the total time for performing these m push operations. How to express T(m) using m and k? Which big-Oh class does T(m) belong to? Which big-Oh class does T(m)/m belong to?

$$T(m)=m+1+2+...+2^{k-1}=m+2^{k-1}=2m-1$$
 or $T(m)=m+1+2+...+2^{k}=m+2^{k}=m+2^{k}=2m-1$

T(m) is in O(m)

T(m)/m is in O(1)