

Relazione di laboratorio del corso di Sperimentazione nei Propulsori

AA 2023-2024

Autore	Codice Persona	Matricola	Indirizzo Email
Andrea Bassi			

Professore: Giulio Angelo Guido Solero

Abstract

Questo documento raccoglie i report delle varie attività laboratoriali svolte nell'ambito del corso di Sperimentazione nei Propulsori. Per ciascuna attività è presentata una sintesi di richieste, metodi risolutivi e risultati criticamente valutati.

Indice

A۱	bstract	1
\mathbf{E} l	enco delle tabelle	3
El	lenco delle figure	4
El	enco dei simboli	5
1	Misure di temperatura mediante termocoppia 1.1 Risoluzione e analisi statistica	7
2	Individuazione legge calibrazione statica e stima dell'errore sistematico 2.1 Risoluzione per serie corta	10 12 14
3	Stima dell'errore di quantizzazione e totale	17
4	Perdite per irraggiamento della misura di temperatura 4.1 Introduzione, dati e richieste	20 20 21
5	Misura di portata mediante diaframma 5.1 Presentazione del banco prova, dati e richieste	26 26 27
6	Misura di C _D al banco prova 6.1 Presentazione del banco prova, dati e richieste	30 30 31 34
A	Risultati aggiuntivi dell'analisi statistica delle serie di dati A.1 Classi, frequenze relative e frequenze cumulate normalizzate	36
Bi	ibliografia	38

Elenco delle tabelle

1.1	Valori estremi di temperatura
1.2	Indici statistici delle due distribuzioni
1.3	Errore statistico delle due distribuzioni
2.1	Tabella di calibrazione statica
2.2	Risultati serie corta
2.3	Coefficienti della legge di calibrazione
2.4	Risultati serie lunga
2.5	Coefficienti della legge di calibrazione
3.1	Valori significativi e risultati
3.2	Errore totale legato alle due misure
3.3	Risultati della procedura alternativa
4.1	Dati del problema
4.2	Risultati per la serie corta
4.3	Calcoli per la serie corta
4.4	Risultati per la serie lunga
4.5	Calcoli per la serie corta
4.6	Risultati per la serie lunga
4.7	Valori di h nei 4 casi
4.8	Indici della correlazione per vari Re
5.1	Valori numerici delle quantità di Eq. (5.5)
6.1	Grandezze misurate e conversioni
6.2	Calcoli intermedi
6.3	Valori di C_D per ciascuna misura
A.1	Risultati relativi alla serie corta
A.2	Risultati relativi alla serie lunga

Elenco delle figure

1.1	Istogrammi delle due serie	7
1.2	Frequenze relative per entrambe le serie	8
1.3	Frequenze cumulate normalizzate per entrambe le serie	9
2.1	Serie di dati della tabella di calibrazione statica	11
2.2	Risultati del processo di ottimizzazione	12
2.3	Curva di calibrazione statica	13
2.4	Errore sistematico della soluzione ottimale per vari ordini di regressione	14
2.5	Confronto errori per la serie 950-1200 °C	14
2.6	Risultati del processo di ottimizzazione	15
2.7	Curva di calibrazione statica	15
3.1	Confronto tra gradiente e legge di calibrazione	19
4.1	Variazione di ε	24
4.2	Variazione di V_G	25
5.1	Schema del banco prova	26
5.2	Schema del diaframma (Fonte: UNI EN ISO 5167-1 Figura 5)	26
5.3	Scheda tecnica del manometro	29
6.1	Dipendenza di C_D da q_M	33
6.2	Dipendenza di C_D da Δp	33
6.3	Dipendenza di C_D da T	33
6.4		34
6.5	Dipendenza di C_D da Ma	34

Elenco dei simboli

Variabile	Descrizione	Unità
β	Rapporto dei diametri	_
C	Coefficiente di efflusso	_
D	Diametro interno del condotto a monte	m
d	Diametro dell'orifizio	m
ϵ_{STAT}	Errore statistico	$^{ m o}{ m C}$
F	Frequenza cumulata normalizzata	_
f	Frequenza relativa	_
γ	Rapporto dei calori specifici	_
κ	Esponente isoentropico	_
L	Distanza relativa di una presa di pressione	_
μ	Viscosità dinamica	Pas
N	Numero di campioni	_
ν	Gradi di libertà	_
p	Pressione statica del fluido	Pa
Re_D	Numero di Reynolds riferito a D	_
ho	Densità	${ m kg/m^3}$
σ_T	Deviazione standard della temperatura	$^{ m o}{ m C}$
$\sigma_{\overline{T}}$	Deviazione standard della temperatura media	$^{ m o}{ m C}$
SK	Coefficiente di skewness	_
T	Temperatura	$^{ m o}{ m C}$
t_{95}	Parametro t per intervallo di confidenza al 95%	_
\overline{T}	Temperatura media	$^{ m o}{ m C}$
$T_{MEDIANA}$	Temperatura mediana	$^{ m o}{ m C}$

1 Misure di temperatura mediante termocoppia

Dati e richieste Vengono fornite due serie di misure di temperatura allo scarico di una camera di combustione, eseguite mediante termocoppia di tipo B. La prima è costituita da 1599 valori ("Serie corta"), la seconda da 9999 ("Serie lunga"). Entrambe le serie sono campionate con una frequenza di campionamento di 100 Hz e vengono fornite mediante file testuale (.txt). Si chiede di svolgere l'analisi statistica dei dati.

1.1 Risoluzione e analisi statistica

Si riportano i risultati emersi dall'elaborazione dei dati sperimentali. I calcoli sono stati svolti mediante il software *Matlab* e le funzioni built-in.

Suddivisione in classi e istogramma Entrambe le serie sono divise in 10 classi, di uguale ampiezza, costruite affinché non ci possa essere ambiguità nell'attribuzione dei valori: poiché le misure hanno 6 cifre decimali, gli estremi di classe sono definiti con 7 cifre decimali. L'estremo della prima classe viene scelto come il minimo valore di T a cui viene sottratto 0.5e-7 °C. Analogamente, l'estremo superiore dell'ultima classe viene calcolato sommando la stessa quantità al massimo valore di T nella serie. I valori estremi delle due serie sono mostrati in Tab.1.1, riportati integralmente per mettere in evidenza il numero di cifre decimali.

Serie	$\mid T_{MIN} \ [^{ m o}{ m C}]$	$\mid T_{MAX} \ [^{ m o}{ m C}]$
Corta	953.745910	1193.110960
Lunga	931.352290	1449.917970

Tabella 1.1: Valori estremi di temperatura

Gli istogrammi relativi alle due serie sono mostrati in Fig.1.1.

Figura 1.1: Istogrammi delle due serie

Figura 1.2: Frequenze relative per entrambe le serie

Si osserva come entrambe le distribuzioni di dati siano simili alla distribuzione gaussiana, mostrando tuttavia una evidente asimmetria. Quest'ultima è quantificabile dal coefficiente di skewness, riportato in Tab.1.2.

Calcolo delle frequenze relative e cumulate Successivamente vengono riportate delle rappresentazioni grafiche delle frequenze relative (f), in Fig.1.2, e delle frequenze cumulate normalizzate(F) delle varie classi, in Fig. 1.3. I risultati numerici sono riportati in Appendice A.

Calcolo degli indici statistici L'analisi statistica dei dati viene svolta mediante il calcolo degli indici statistici relativi alle due serie di dati. In particolare, si riportano media (\overline{T}) e mediana $(T_{MEDIANA})$ delle due serie, nonché deviazione standard (σ_T) e skewness (SK) delle distribuzioni. I risultati sono presentati in Tab.1.2.

Indice	Serie corta	Serie lunga
\overline{T} [°C]	1082.8	1159.2
$T_{MEDIANA}$ [°C]	1085.7	1152.4
σ_T [°C]	39.147	77.841
SK	-0.27	0.40

Tabella 1.2: Indici statistici delle due distribuzioni

Stima dell'errore statistico Lo studio statistico delle due serie di dati si conclude con la stima dell'errore statistico (ϵ_{STAT}). Risulta necessario calcolare la deviazione standard del valore medio

Figura 1.3: Frequenze cumulate normalizzate per entrambe le serie

di temperatura $(\sigma_{\overline{T}})$ secondo:

$$\sigma_{\overline{T}} = \frac{\sigma_T}{\sqrt{N}} \tag{1.1}$$

dove N è il numero di campioni di ciascuna serie. Infine, il valore di ϵ_{STAT} si ottiene con:

$$\epsilon_{STAT} = \sigma_{\overline{T}} t_{95\%} \tag{1.2}$$

dove t_{95} è ricavato dalla distribuzione t per un intervallo di confidenza al 95% (dove $\nu = N$ - 1, dove 1 rappresenta il numero di gradi di libertà persi a seguito dell'introduzione di \overline{T}).

Indice	Serie corta	Serie lunga
$t_{95\%}$	1.9614	1.9602
ν	1598	9998
ϵ_{STAT} [°C]	± 1.9202	± 1.5259

Tabella 1.3: Errore statistico delle due distribuzioni

Da Tab.1.3 si nota come un numero elevato di campioni garantisca un errore statistico molto contenuto, che risulta minore di σ_T di un ordine di grandezza. Questo risultato deriva dalla presenza di \sqrt{N} in Eq.(1.1), il cui valore ammonta a ~ 40 per la prima serie, a ~ 100 per la seconda. Per quanto riguarda il valore di t_{95} , si osserva che tende al valore asintotico ($\nu \to \infty$) di 1.960 in entrambi i casi, quindi l'influenza di tale parametro sull'errore statistico è pari per le due serie.

2 Individuazione legge calibrazione statica e stima dell'errore sistematico

Dati e richieste Viene fornita la tabella di calibrazione statica di una termocoppia di tipo B, riportata in Tab. 2.1. Si chiede di ricavare la relazione temperatura misurata-tensione mediante analisi di regressione, di determinare l'errore associato a tale processo, nonché il grado di adattamento del modello ai dati sperimentali. Infine si richiede di determinare l'errore totale associato alle misure di temperatura delle due serie di Sez.1.

Tensione [mV]	Temperatura [°C]
0.786	400
1.791	600
2.431	700
2.784	750
3.158	800
3.551	850
3.963	900
4.395	950
4.844	1000
5.311	1050
5.793	1100
6.290	1150
6.800	1200
7.326	1250
7.866	1300
8.418	1350
8.979	1400
9.549	1450
10.124	1500
10.704	1550
11.286	1600

Tabella 2.1: Tabella di calibrazione statica

Introduzione alla risoluzione Dalla rappresentazione di Fig.2.1 si nota che i dati sono caratterizzati da un andamento non lineare sull'intero campo di misura, mentre a partire da circa 6 mV si ha un andamento quasi lineare. Di conseguenza, l'adozione di una legge di regressione non lineare

Figura 2.1: Serie di dati della tabella di calibrazione statica

appare ottimale per fornire un errore ridotto. Tuttavia la scelta del campo di misura è impattata da altri fattori, pertanto è opportuno delineare una strategia risolutiva che valuti più aspetti al fine di trovare la migliore soluzione.

Si consideri la quantità σ_{ε} , ossia l'errore di regressione, definita come:

$$\sigma_{\varepsilon}^2 = \frac{\sum_{i=1}^{N} (y_i - \tilde{y}_i)^2}{N - G} \tag{2.1}$$

dove:

- y_i è l'i-esimo valore misurato di T;
- $\tilde{y_i}$ indica la stima di T ottenuta a ogni valore di tensione mediante la legge di regressione;
- N indica il numero di coppie di dati usati per determinare i coefficienti di regressione.
- G indica il numero di coefficienti di regressione (vale G = O + 1, dove con O si indica l'ordine del modello di regressione).

Utilizzare un numero elevato di punti permette di ridurre questo errore (aumento di N), così come un modello di ordine superiore (G maggiore) riduce la somma degli scarti quadratici (numeratore della frazione), ma a parità di N provoca la riduzione del denominatore con conseguente aumento dell'errore.

Si evidenzia anche che il calcolo dell'errore sistematico (ϵ_{SIST}) prevede di moltiplicare σ_{ε} per la t_{95} relativa al numero di gradi di libertà ν , ottenibile mediante $\nu = N - G$ (il numero di gradi di libertà persi è pari al numero di coefficienti di regressione). A seguito di questa operazione si nota che la scelta di un numero limitato di punti per la regressione (N basso), associata a un modello di ordine alto, porta a ν molto bassi che comportano un significativo aumento di ϵ_{SIST} .

Queste osservazioni motivano uno studio di ottimizzazione, con lo scopo di trovare l'ordine e il numero di coppie di dati di calibrazione che minimizzano globalmente l'errore sistematico. Poiché le due serie di dati presentano estremi differenti, lo studio viene proposto separatamente per entrambe.

2.1 Risoluzione per serie corta

Si presenta lo studio di ottimo per la prima serie di dati, svolto con le stesse modalità anche per la seconda. Il punto di partenza sono gli estremi della serie di dati, ossia la minima e massima T misurata, che assumono rispettivamente il valore di 953 °C e di 1193 °C. Da Tab.2.1 si ricava che il minimo intervallo di dati su cui svolgere la regressione va da 950 °C a 1200 °C. A ogni iterazione questo secondo intervallo viene ampliato di un valore a sinistra dell'estremo inferiore e a destra dell'estremo superiore. Il più ampio intervallo possibile va da 400 °C a 1550 °C.

Per ogni intervallo di dati di calibrazione sono determinati i coefficienti di regressione dal primo al quarto ordine (mediante funzione polyfit di Matlab), poi vengono calcolate le stime $\tilde{y_i}$ per tutti gli ordini; successivamente si calcolano i σ_{ε} e, infine, i valori di ϵ_{SIST} . Per ogni iterazione viene selezionato l'ordine del polinomio interpolante che garantisce il minimo ϵ_{SIST} ; dopo aver ripetuto l'analisi per tutti gli intervalli si individua il miglior errore sistematico globale.

L'analisi si conclude con l'indicazione del valore di R^2 , che rappresenta il grado di adattamento del modello ai dati sperimentali; segue la stima dell'errore totale (ϵ_{TOT}) del processo di misura, ottenuta mediante:

$$\epsilon_{TOT} = \sqrt{\epsilon_{STAT}^2 + \epsilon_{SIST}^2} \tag{2.2}$$

Lo svolgimento del processo porta a determinare i seguenti errori sistematici, rappresentati in Fig.2.2: tra di essi viene indicato il minimo errore globale.

Figura 2.2: Risultati del processo di ottimizzazione

In Tab.2.2 si riportano i risultati associati alla migliore soluzione; segue la rappresentazione della legge di calibrazione del quarto ordine (Fig.2.3) e i coefficienti (Tab.2.3). La legge è nella forma:

$$y = ax^4 + bx^3 + cx^2 + dx + e (2.3)$$

Risultato	Valore
ϵ_{SIST}	0.1134 °C
ϵ_{SIST} come % F.S.	0.0087 %
Ordine	4
Intervallo	850-1300 °C
R^2	~ 1
ϵ_{STAT} serie	1.9202 °C
ϵ_{TOT}	1.9236 °C

Tabella 2.2: Risultati serie corta

Figura 2.3: Curva di calibrazione statica

Coefficiente	Valore
a	-0.0715
b	1.9853
С	-23.2057
d	226.6665
e	260.2018

Tabella 2.3: Coefficienti della legge di calibrazione

Da questi risultati si osserva che l'errore sistematico è molto ridotto grazie all'adozione di un modello di ordine elevato. Si sottolinea, inoltre, come l'adozione di un campo di dati di calibrazione più ampio sia deleterio per l'errore sistematico anche con modelli di ordine elevato a causa dell'aumento dell'errore di interpolazione.

Infine, si riporta una rappresentazione (Fig.2.4) dell'errore sistematico per i vari ordini di modello usando l'intervallo ottimale di dati di calibrazione. Questa rappresentazione è particolarmente

significativa in quanto si riscontra che, nonostante il lieve incremento del valore di t_{95} , la soluzione migliore resta quella del quarto ordine.

Figura 2.4: Errore sistematico della soluzione ottimale per vari ordini di regressione

Questo effetto è determinante nella penalizzazione della soluzione con intervallo 950-1200 °C, il cui errore di regressione è molto basso, ma viene moltiplicato per t_{95} elevato, con un risultato molto deleterio sull'errore sistematico.

Figura 2.5: Confronto errori per la serie 950-1200 °C

2.2 Risoluzione per la serie lunga

Si impiega una strategia analoga per caratterizzare la serie lunga. Quest'ultima presenta una limitata possibilità di ottimizzazione in quanto l'intervallo di temperatura da misurare è da 931 °C a 1449 °C: questi valori comportano l'utilizzo di gran parte della tabella di calibrazione statica. Poiché l'analisi svolta è analoga alla precedente, vengono riportati soltanto i risultati. Analogamente a prima, si osserva che l'errore sistematico ha un impatto molto limitato sull'errore totale, dominato ancora una volta dall'errore statistico. Andando a paragonare gli errori sistematici si nota che non è raggiunto il livello di ottimalità del campo di misura adottato per la serie corta di dati. La legge di regressione che fornisce il miglior risultato è ancora quella del quarto ordine.

Figura 2.6: Risultati del processo di ottimizzazione

Figura 2.7: Curva di calibrazione statica

Risultato	Valore
ϵ_{SIST}	0.2436 °C
ϵ_{SIST} come % F.S.	0.017 %
Ordine	4
Intervallo	900-1450 °C
R^2	~ 1
ϵ_{STAT} serie	1.5259 °C
ϵ_{TOT}	1.5452 °C

Tabella 2.4: Risultati serie lunga

Coefficiente	Valore
a	-0.0120
b	0.5696
С	-10.8105
d	179.4108
e	326.3550

Tabella 2.5: Coefficienti della legge di calibrazione

3 Stima dell'errore di quantizzazione e totale

Sono fornite informazioni riguardanti l'unità di acquisizione dati utilizzata per le due serie di misure di temperatura. Si richiede di valutare l'errore di quantizzazione e di stimare l'errore totale (statistico-sistematico-quantizzazione).

Il sistema di acquisizione dati prevede che il segnale in tensione in uscita dalla termocoppia venga amplificato di 100 volte e sia acquisito con un convertitore A/D a 12 bit, campo 0-10 V.

Risoluzione Per un convertitore A/D a 12 bit (n_{bit}) con campo di misura 0-10 V (ΔV) l'errore di quantizzazione (in V) può essere stimato con:

$$\epsilon_{QUANT,V} = \frac{1}{2} \frac{\Delta V}{2n_{bit}} \tag{3.1}$$

Utilizzando questa espressione e passando alla tensione (V) in mV si ottiene un valore di $\epsilon_{QUANT,V}$ pari a 1.221 mV.

A questo valore è possibile applicare una prima correzione legata al fattore di amplificazione 100. Poi risulta necessario andare a trasformare questo valore in un errore in temperatura al fine di combinarlo con le altre sorgenti di errore. Per svolgere questi passaggi è necessario utilizzare la propagazione degli errori. Sia dato un errore e_x associato a una misura x^* . Si abbia una legge del tipo y = f(x). Allora è possibile determinare e_y come:

$$e_y = \frac{dy}{dx} \bigg|_{x = r^*} e_x \tag{3.2}$$

Per quanto concerne l'amplificazione, la legge è lineare nella forma:

$$V_{A/D} = 100 \, V_{OUT}$$
 (3.3)

Dove $V_{A/D}$ è la tensione post amplificazione, mentre V_{OUT} è la tensione in uscita dalla termocoppia. Invertendo la relazione e applicando la propagazione si trova che:

$$\epsilon_V = \frac{\epsilon_{QUANT}}{100} \tag{3.4}$$

L'errore ϵ_V ammonta a 1.221e-2 mV.

Nel caso in esame la relazione che lega temperatura e tensione è la legge di calibrazione statica, determinata separatamente per le due serie di dati in Sez.2. Poiché tale legge è non lineare, la derivata presenta una dipendenza dal valore puntuale di tensione. La legge di calibrazione è:

$$T = aV^4 + bV^3 + cV^2 + dV + e (3.5)$$

la cui derivata è:

$$\frac{dT}{dV} = 4aV^3 + 3bV^2 + 2cV + d (3.6)$$

Esistono vari approcci per individuare un valore di tensione atto a propagare l'errore da V a T. In prima analisi si sceglie di utilizzare un metodo conservativo: pertanto si assume come tensione il fondo scala inferiore (in tensione) delle due diverse leggi di calibrazione. Osservando l'andamento del gradiente di entrambe le leggi di calibrazione statica, si nota che questo è massimo nel fondo scala inferiore. Si osservi Fig.3.1 per la rappresentazione del gradiente confrontato con la legge di calibrazione statica. I valori utilizzati e i risultati sono riportati in Tab.3.1.

Grandezza	Valore
F.S. inferiore per serie corta associato a T	3.551 mV 850 °C
Fattore di propagazione	\mid 124.2 °C/mV
ϵ_{QUANT}	$ m 1.516~^{o}C$
F.S. inferiore per serie lunga associato a T	3.963 mV 900 °C
Fattore di propagazione	\mid 117.6 °C/mV
ϵ_{QUANT}	1.435 °C

Tabella 3.1: Valori significativi e risultati

Per concludere l'analisi dell'errore di misura è possibile stimare l'errore totale per le due serie mediante:

$$\epsilon_{TOT} = \sqrt{\epsilon_{STAT}^2 + \epsilon_{SIST}^2 + \epsilon_{QUANT}^2} \tag{3.7}$$

I risultati sono riportati in Tab.3.2, corredati dai risultati senza errore di quantizzazione per confronto, nonché dal valore di ϵ_{TOT} relativo al fondo scala (indicato in Tab.3.1).

	Serie corta	Serie lunga
ϵ_{TOT} [°C]	2.449	2.109
ϵ_{TOT} senza ϵ_{QUANT} [°C]	1.924	1.545
$\epsilon_{TOT\%F.S.}$	0.2 %	0.15 %

Tabella 3.2: Errore totale legato alle due misure

Da queste stime si osserva che ancora una volta la sorgente principale di errore è rappresentata da ϵ_{STAT} . L'errore di quantizzazione assume un impatto significativo, portando a un aumento di circa 0.6 °C.

Risulta necessario osservare che questo risultato è ottenuto con una ipotesi conservativa, pertanto una migliore scelta del valore di tensione, utilizzato per la stima dell'errore di quantizzazione, porta a una stima più accurata dell'errore totale. Per esempio, se fossero noti i valori di tensione misurata per le due serie, sarebbe possibile utilizzare la tensione associata alla temperatura media delle due serie.

Al fine di valutare questa possibile soluzione si procede come indicato:

- la legge di calibrazione statica viene utilizzata come un'equazione per ottenere la tensione associata al valore medio di temperatura (mediante inversione numerica con fsolve);
- il fattore di propagazione viene calcolato con questo valore di tensione.

Si riportano in Tab.3.3 i risultati di questa procedura. Il valore di $\Delta \epsilon_{TOT,\%}$ è riferito alla stima precedente (Tab.3.2).

Figura 3.1: Confronto tra gradiente e legge di calibrazione

	Serie corta	Serie lunga
\overline{T} [°C]	1082.8	1159.2
$V_{\overline{T}} [\text{mV}]$	5.626	6.382
ϵ_{QUANT} [°C]	1.259	1.203
ϵ_{TOT} [°C]	2.299	1.958
$\Delta\epsilon_{TOT,\%}$	- 6 %	- 7 %

Tabella 3.3: Risultati della procedura alternativa

La procedura illustrata permette di osservare che l'utilizzo del valore di tensione corrispondente a \overline{T} diminuisce l'errore totale. Questo accade perché il gradiente di T(V) è maggiore in corrispondenza di $V_{\overline{T}}$. Si riporta in grafico (Fig.3.1) l'andamento di tale funzione per la serie corta. Lo stesso fenomeno accade per la serie lunga.

In conclusione, il massimo errore di quantizzazione si ha quando la tensione è al fondo scala inferiore. L'utilizzo di un valore corrispondente a $V_{\overline{T}}$ permette di avere una stima più realistica dell'errore totale. In proporzione al fondo scala superiore (delle leggi di calibrazione statica) l'errore totale risulta molto ridotto con entrambi i metodi.

4 Perdite per irraggiamento della misura di temperatura

4.1 Introduzione, dati e richieste

La misura di temperatura del gas combusto è affetta da varie sorgenti di errore, tra cui spiccano le perdite per irraggiamento. Infatti il giunto caldo, essendo a temperatura significativamente più alta dell'ambiente circostante, irradia molto calore. Pertanto la temperatura misurata al giunto caldo non è quella effettiva del gas. Al fine di stimare tali perdite è possibile scrivere un bilancio energetico, che uguaglia il calore scambiato per irraggiamento a quello trasferito per convezione:

$$h\left(T_{GAS} - T_G\right) = \sigma\varepsilon(T_G^4 - T_A^4) \tag{4.1}$$

dove compaiono le seguenti quantità:

- h coefficiente di scambio termico convettivo $[W/m^2]$;
- T_{GAS} , T_G , T_A temperature del gas, del giunto e dell'ambiente [K];
- σ costante di Stefan-Boltzmann [W/(m²K⁴)];
- ε emissività della termocoppia.

Mediante tale equazione è immediato individuare le perdite radiative della termocoppia come:

$$\Delta T_{RAD} = T_{GAS} - T_G = \sigma \varepsilon (T_G^4 - T_A^4)/h \tag{4.2}$$

L'utilizzo di questa formula richiede la stima di ε e h: per la prima si fornisce un valore, mentre per la seconda viene fornita una correlazione semi-empirica nella forma:

$$Nu = hD/k = CRe^n Pr^m (4.3)$$

funzione di:

- k conducibilità termica [W/(mK)];
- D_T diametro della termocoppia (modellata come un filo immerso in flusso ortogonale ad esso) [m];
- Re numero di Reynolds definito come $Re = D_T V_G / \nu$, dove ν è la viscosità cinematica dell'aria $[m^2/s]$;
- Pr numero di Prandtl;
- C, n, m sono dei coefficienti che variano con $Re \ e \ Pr$.

Vengono forniti i seguenti dati, riportati in Tab.4.1.

Dato	Valore
T_A	300 K
T_G serie corta	1356 K
T_G serie lunga	1432 K
D_T	3.5e-4 m
σ	$5.67e-8 \text{ W/(m}^2\text{K}^4)$
arepsilon	0.2
Correlazione valida per	
\overline{C}	0.8
n	0.384
\overline{m}	0

Tabella 4.1: Dati del problema

Ipotesi Si adottano le seguenti ipotesi:

- Utilizzare aria calda al posto dei gas combusti.
- V_G pari a 1 m/s.
- le perdite conduttive sono trascurabili.
- T_G è pari alla temperatura media misurata nelle due serie di campioni.

Richieste Si chiede di stimare le perdite radiative alla velocità fornita e quindi la temperatura del gas. Si ripeta la stima per V_G pari a 50 m/s.

4.2 Risoluzione

La risoluzione del problema prevede di utilizzare Eq.(4.2) per calcolare T_{GAS} , da cui poi si ricava ΔT_{RAD} . Poiché h dipende da T_{GAS} attraverso Re, Pr e altre grandezze, si risolve il problema iterativamente a partire da un valore ragionevole di T_{GAS} . Con tale valore si determinano le proprietà dell'aria e si trova un valore di h, che a sua volta permette di determinare il valore aggiornato di T_{GAS} . Si arresta il processo quando due iterazioni successive differiscono di meno di 1 K. Tale processo viene ripetuto analogamente per serie corta e serie lunga di dati. Le proprietà dell'aria vengono ottenute per interpolazione lineare dei dati nella tabella fornita.

Risultati a 1 m/s In Tab.4.2 si riportano integralmente i calcoli impiegati per raggiungere il risultato relativo alla serie corta con una velocità di 1 m/s.

Iterazione	$\mid T_{GAS} \left[\mathrm{K} ight]$	k [W/(mK)]	$\nu [m^2/s]$	Re	$\mid C \mid$	n	$h [\mathrm{W/m^2}]$	$\mid oldsymbol{\Delta T_{ITER}}\%$
0	1500	0.0946	2.29e-4	1.53	0.8	0.384	254.44	-
1	1506	0.0949	2.31e-4	1.52	0.8	0.384	254.67	0.41 %
2	1506							-0.009 %

Tabella 4.2: Risultati per la serie corta

In Tab.4.3 vengono riportati sinteticamente i risultati relativi alla serie lunga di dati, sempre a 1 m/s.

	T [K]
T_G	1356
T_{GAS}	1506
ΔT_{RAD}	150

Tabella 4.3: Calcoli per la serie corta

In Tab.4.4 vengono riportati sinteticamente i risultati relativi alla serie lunga di dati, sempre a 1 m/s.

	T [K]
T_G	1432
T_{GAS}	1616
ΔT_{RAD}	184

Tabella 4.4: Risultati per la serie lunga

Si osserva che in entrambi i casi non si esce dall'intervallo di Re per cui è valida la correlazione fornita. Inoltre si nota che le perdite radiative sono più significative quando la temperatura del giunto caldo è più alta. Si pone l'attenzione sull'elevato errore dovuto alle ingenti perdite per radiazione, che è di due ordini di grandezza superiore all'errore totale legato alla misura.

Risultati a 50 m/s. Lo stesso procedimento è seguito per individuare T_{GAS} nel flusso a 50 m/s. Andando a utilizzare un valore iniziale di 1400 K, scelto inferiore al risultato a 1 m/s di 1506 K in quanto ci si attende che la convezione forzata sia agevolata dal flusso ad alta velocità. Utilizzando tale temperatura è calcolato un valore di Re di 87 per la serie corta. La correlazione utilizzata inizialmente non è più valida. Un risultato analogo si ottiene con la serie lunga, in cui la temperatura iniziale è imposta a 1470 K e il Re è pari a 80.

Si sceglie di sostituirla con la seguente correlazione (Hilpert), valida per cilindri immersi in flussi (in direzione ortogonale al corpo) con Re da 40 a 4000:

$$Nu = 0.68Re^{0.466}Pr^{1/3} (4.4)$$

A ogni iterazione è necessario verificare che si rimanga nel campo di validità della correlazione. Quest'ultima richiede di individuare la temperatura di film (T_F) , ottenuta mediante la relazione:

$$T_F = \frac{T_G + T_{GAS}}{2} \tag{4.5}$$

Si riportano soltanto i risultati ottenuti per la serie corta, in Tab.4.5, e per la serie lunga, in Tab.4.6. La validità della correlazione è verificata in tutti i casi.

	T [K]
T_G	1356
T_{GAS}	1387
ΔT_{RAD}	31

Tabella 4.5: Calcoli per la serie corta

	T [K]
T_G	1432
T_{GAS}	1471
ΔT_{RAD}	39

Tabella 4.6: Risultati per la serie lunga

Come predetto, l'aumento della velocità del flusso porta a un significativo aumento dello scambio termico convettivo, con conseguente riduzione delle perdite per irraggiamento. Questo fenomeno è confermato dall'aumento di h, i cui valori sono riportati per i 4 casi in Tab.4.7.

Caso	h [W/m ²]
Serie corta, 1 m/s	255
Serie corta, 50 m/s	1226
Serie lunga, 1 m/s	259
Serie lunga, 50 m/s	1233

Tabella 4.7: Valori di h nei 4 casi

Sensitività alla variazione di ε Si presenta il risultato di uno studio di sensitività alla variazione di ε . Questa è una delle grandezze la cui misura è complessa e affetta da errore. Lo studio è proposto per la serie corta a 1 m/s in 5 valori di ε .

Figura 4.1: Variazione di ε

Si osserva come una variazione modesta di ε porti a grandi variazioni di ΔT_{RAD} . Si sottolinea quindi la necessità di caratterizzare il suo valore con elevata precisione.

Sensitività a variazione di V_G Si riportano i risultati ottenuti a varie velocità del gas. A ognuna è associata la correlazione opportuna nella forma:

$$Nu = CRe^n Pr^{1/3} (4.6)$$

Si riportano i valori di C e n per vari intervalli di Re. Per il caso a 1 m/s si utilizza una correlazione diversa da quella iniziale. Come in precedenza, si utilizza T_F per il calcolo delle proprietà dell'aria.

Intervallo	$\mid C \mid$	n
0.4 - 4	0.989	0.33
4 - 40	0.911	0.385
40 - 4000	0.683	0.466
4000 - 40000	0.193	0.618

Tabella 4.8: Indici della correlazione per vari Re

Figura 4.2: Variazione di V_G

5 Misura di portata mediante diaframma

5.1 Presentazione del banco prova, dati e richieste

Viene assegnato un banco prova per misure di portata mediante diaframma normalizzato, rappresentato schematicamente in Fig.5.1.

Figura 5.1: Schema del banco prova

In particolare, il separatore a ciclone opera nelle seguenti condizioni nominali:

- fluido di lavoro (fase gas): aria;
- portata di aria nelle condizioni operative nominali: 96 Nm³/h;
- pressione di lavoro: 4 bar;
- temperatura di lavoro (ambiente): 300 K.

Al fine di misurare la portata d'aria si sceglie di utilizzare un diaframma normalizzato conforme alla Norma UNI EN ISO 5167-1, rappresentato in Fig.5.2 e con le seguenti caratteristiche:

- D = 42 mm;
- d = 9.94 mm;
- Prese di pressione sulle flange.

Figura 5.2: Schema del diaframma (Fonte: UNI EN ISO 5167-1 Figura 5)

Richieste Si chiede di valutare la pressione minima di esercizio nel serbatoio di alimentazione e di indicare il trasduttore di pressione differenziale da usare sul banco prova per la misura di portata.

5.2 Risoluzione

Facendo riferimento a Fig.5.1, si denotino con p_1 e p_2 le pressioni (in Pa) a monte e a valle del diaframma. Si indichi con T la temperatura di esercizio (in K).

Ipotesi risolutive

- Le perdite di carico lungo il condotto e nelle valvole sono trascurate per mancanza di informazioni sull'impianto: di conseguenza p_1 è la pressione incognita del serbatoio di alimentazione, p_2 è la pressione operativa del separatore a ciclone.
- L'aria viene considerata come un gas perfetto, per cui $\gamma = \kappa = 1.4$, come indicato dalla Norma.
- Tutti i requisiti della Norma sono soddisfatti (Es. scabrosità del condotto, deformazione del diaframma, configurazione dello strumento).

Riassunto dei dati e conversioni Si riporta un riassunto sintetico dei dati del problema, convertiti in unità del Sistema Internazionale dove necessario.

Dato	Valore		
D	4.2e-2 m		
d	9.94e-3 m		
p_2	4.053e5 Pa		
T_2	300 K		
γ	1.4		
q_{vN}	$96 \text{ Nm}^3/\text{h}$		
q_m	0.0344 kg/s		

Al fine di convertire la portata volumetrica normalizzata in una portata massica si adotta la seguente espressione:

$$q_m = q_{vN} \rho_N / 3600 \tag{5.1}$$

con $\rho_{\rm N}=1.293~{\rm kg/m^3}$ la densità dell'aria a 273.15 K e 101325 Pa.

Svolgimento La Norma fornisce una serie di equazioni da utilizzare per la misura di portata massica, al cui interno sono definite delle quantità calcolate secondo la Norma stessa. Le equazioni risolventi del problema sono le seguenti:

$$q_m = \frac{C}{\sqrt{1-\beta^4}} \epsilon_2 \frac{\pi}{4} d^2 \sqrt{2\Delta p \rho_2}$$
 (5.2)

$$\epsilon_1 = 1 - (0.41 + 0.35\beta^4) \frac{\Delta p}{\kappa p_1}$$
(5.3)

$$\epsilon_2 = \epsilon_1 \sqrt{1 + \frac{\Delta p}{p_2}} \tag{5.4}$$

Le quantità qui presenti, il cui valore calcolato è riportato in Tab.5.1, sono definite come:

- $\Delta p = p_1 p_2$;
- C ottenuto mediante Eq.(5.5);
- $\beta = d/D$;
- $\rho_2 = p_2/(RT_2)$, entrambe note, con R = 287 J/(kgK) per l'aria secca;
- $\kappa = \gamma = 1.4$.

C viene calcolato con la seguente espressione:

$$C = 0.5959 + 0.0312\beta^{2.1} - 0.1840\beta^8 + 0.0029\beta^{2.5}(10^6/Re_D)^{0.75} + 0.0390L_1\beta^4(1-\beta^4)^{-1} - 0.0337L_2'\beta^3$$
 (5.5)

dove:

- le quantità L sono calcolate in base alla Norma (per prese di pressione sulle flange vale $L_1 = L_2' = 25.4/D$, con D in mm);
- il coefficiente di $L_1\beta^4(1-\beta^4)^{-1}$ è modificato in quanto $D \leq 58.62$ mm;
- $Re_D = 4q_m/(\pi\mu D)$;
- μ a 300 K ottenuta mediante interpolazione dei dati tabulati da Ref.[1].

Quantità	Valore	
C	0.5979	
β	0.2367	
$ ho_2$	4.7073 kg/m^3	
L_1, L_2'	0.6048	
Re_D	5.362e+4	
μ	1.945e-5 Pa·s	

Tabella 5.1: Valori numerici delle quantità di Eq.(5.5)

Lo scopo dello svolgimento è determinare p_1 : a questo fine è possibile riscrivere le Eq.(5.2), (5.3) e (5.4) in funzione di p_1 , unica incognita del problema. Il risultato è:

$$q_m - C_2(1 - C_1 + C_1 \frac{p_2}{p_1})\sqrt{p_1^2 - p_1 p_2}$$
 (5.6)

dove C_1 , C_2 sono costanti ottenute rielaborando le equazioni e che assumono le seguenti espressioni:

$$C_1 = \frac{0.41 + 0.35\beta^4}{\gamma} \tag{5.7}$$

$$C_2 = \frac{C}{\sqrt{1-\beta^2}} \frac{\pi}{4} d^2 \sqrt{\frac{2\rho_2}{p_2}} \tag{5.8}$$

Definendo Eq.(5.6) come $\varepsilon(p_1)$, è possibile utilizzare il metodo di Newton-Raphson (implementato in fzero di Matlab) per trovare il valore di p_1 rende valida l'equazione $\varepsilon(p_1) = 0$. Sono utilizzate le tolleranze standard di Matlab. La condizione iniziale è $p_1 = 5e5$. Si osserva che il dominio della soluzione prevede $p_1 \ge p_2 \lor p_1 > 0$. Questo è coerente con la fisica del problema, che prevede una perdita di carico in corrispondenza del diaframma.

Risultati La risoluzione del problema numerico porta a determinare un valore di p_1 pari a 460340 Pa, mentre il valore di Δp a cavallo del diaframma ammonta a 55039 Pa.

Affinchè Eq.(5.3) sia valida è necessario che $p_2/p_1 \ge 0.75$: calcolando questo rapporto con la soluzione ottenuta si ottiene circa 0.87, quindi la condizione richiesta è verificata.

Per misurare la pressione a cavallo del diaframma è possibile utilizzare un manometro differenziale per gas. Una possibile scelta è il manometro differenziale digitale RS PRO RS DT, con campo di misura da -2 bar a 2 bar. Si riporta per completezza la scheda tecnica dello strumento.

	Campo Risoluzione	
psi	29.00	0.01
bar	2.000	0.001
kpa	199.9	0.1
inHg	59.05	0.01
mHg	1.500	0.001
inH ₂ O	802.9	0.1
ftH ₂ O	66.91	0.01
mH_2O	20.39	0.01
mbar	2000	1

Ampio display LCD Display **Precisione** ± (0,3% + 1d) FSO (25 °C) Ripetibilità ± 0,2% (max. + / -0,5% FS0) ± 0,29% FS0 Linearità / Isteresi Intervallo di pressione 29 psi / ± 2 bar Pressione massima 2bar Tempo di risposta 0,5 secondi tipici Indicatore di batteria scarica Sì Indicatore di over range OL Indicatore di portata inferiore -0L O Condizioni operative 0 a 50°C O Condizioni di conservazione -10 a 60°C Alimentazione elettrica 1 batteria da 9 V o esterna 9VDC

Figura 5.3: Scheda tecnica del manometro

6 Misura di C_D al banco prova

6.1 Presentazione del banco prova, dati e richieste

Viene realizzato un banco prova per misure di temperatura mediante termocoppia. Tale banco è alimentato da gas naturale, che passa per un misuratore di portata a galleggiante, raggiunge una camera di stanca dove se ne misura la temperatura, poi viene accelerato da un ugello in un eiettore, che fornisce la portata d'aria per permettere la combustione. Un misuratore di pressione differenziale è inserito tra camera di stanca e ambiente esterno. Infine la miscela è combusta in un bruciatore.

Si richiede di misurare il coefficiente di efflusso (C_D) dell'ugello utilizzando le misure a disposizione, di studiare l'andamento rispetto alla portata reale e al variare della pressione differenziale; infine, studiare l'andamento al variare di Ma e Re.

Gli strumenti di misura a disposizione sono i seguenti:

- Misuratore di portata a galleggiante con scala graduata in Nl/min (condizioni normali $T_N = 273 \text{ K}, P_N = 1 \text{ atm}$);
- Barometro differenziale digitale in mbar;
- Termometro digitale in °C.

Il diametro dell'ugello (D_U) è pari a 2.7 mm. La pressione ambiente (P_{AMB}) ammonta a 100600 Pa al momento della misura.

La procedura per definire C_D parte dalla definizione del coefficiente di efflusso:

$$C_D = \frac{\dot{m}_{REALE}}{\dot{m}_{TEORICA}} \tag{6.1}$$

dove $\dot{m}_{REALE} = q_M$, mentre $\dot{m}_{TEORICA}$ viene ottenuta mediante alcune assunzioni.

Per quanto riguarda q_M , essa è ottenuta dalla portata misurata mediante galleggiante usando $q_M = q_{MN}\rho_N$.

Per il calcolo di $\dot{m}_{TEORICA}$ è possibile utilizzare il teorema di Bernoulli e determinare $V_{TEORICA}$ mediante:

$$V_{TEORICA} = \sqrt{\frac{2\Delta p}{\rho}} \tag{6.2}$$

per poi trovare $\dot{m}_{TEORICA}$ mediante:

$$\dot{m}_{TEORICA} = \rho V_{TEORICA} A \tag{6.3}$$

Ipotesi Lo svolgimento della misura richiede l'assunzione di alcune ipotesi, alcune delle quali sono poi verificate a seguito della misura stessa.

- Assunzione di profilo di velocità uniforme nella sezione di efflusso.
- Effetti di viscosità trascurabili e flusso incomprimibile (per la validità del teorema di Bernoulli).
- Gas naturale considerabile come puro metano, nonché come gas perfetto.

6.2 Presentazione dei valori misurati

A seguito delle misure sono rilevati i valori riportati in Tab.6.1, a cui è associata la conversione nelle unità di misura opportune. In particolare, per convertire q_{NM} in q_M si utilizza la seguente relazione: $q_M = q_{NM}\rho_N/6e4$, dove 6e4 è un fattore di conversione per passare da Nl/min a kg/s, mentre ρ_N è ottenuto a 1 atm e 273 K tramite $\rho_N = p/(RT) = 0.7142$ kg/m³. Il valore di R è pari a quello per il metano, che ammonta a 520 J/(kgK).

Misura	$\mid q_{ m MN} \; [m Nl/min]$	$ m q_M \ [kg/s]$	$\Delta p [mbar]$	Δp [Pa]	T [°C]	T [K]
1	7	8.33e-05	0.5	50	32.1	305.1
2	9	1.07e-04	1.8	180	32.1	305.1
3	10	1.19e-04	3.6	360	32.0	305.0
4	11	1.31e-04	4.4	440	31.9	304.9
5	12	1.43e-04	5.5	550	31.8	304.8
6	14	1.67e-04	7.8	780	31.7	304.7
7	15	1.79e-04	9.5	950	31.7	304.7
8	16	1.90e-04	11.3	1130	31.6	304.6
9	17	2.02e-04	12.8	1280	31.6	304.6
10	18	2.14e-04	14.2	1420	31.5	304.5
11	19	2.26e-04	15.9	1590	31.5	304.5
12	20	2.38e-04	17.5	1750	31.5	304.5

Tabella 6.1: Grandezze misurate e conversioni

Successivamente vengono calcolate le seguenti quantità:

- ρ mediante l'ipotesi di gas perfetto ($\rho = p/(RT)$); il valore di p è ottenuto tramite $p = p_{AMB} + \Delta p$, questa relazione è valida in quanto l'ugello scarica il flusso esattamente a pressione ambiente.
- $V_{TEORICA}$ mediante Eq.(6.2).
- $\dot{m}_{TEORICA}$ tramite Eq.(6.3).

Misura	$ ho \; [{ m kg/m^3}]$	$ ule{ V_{TEORICA} [m/s] }$	$\dot{m}~\mathrm{[kg/s]}$
1	0.635	12.6	4.56e-05
2	0.636	23.8	8.66e-05
3	0.637	33.6	1.23e-04
4	0.638	37.1	1.36e-04
5	0.639	41.5	1.52e-04
6	0.640	49.4	1.81e-04
7	0.641	54.4	2.00e-04
8	0.643	59.3	2.18e-04
9	0.644	63.1	2.32e-04
10	0.645	66.4	2.45e-04
11	0.646	70.2	2.59e-04
12	0.647	73.6	2.72e-04

Tabella 6.2: Calcoli intermedi

Da questi valori è possibile ottenere una stima del valore di C_D per ciascuna misura. Si presentano anche i grafici che rappresentano la dipendenza di C_D dalle tre misure al fine di evidenziare eventuali dipendenze ed errori.

Misura	$\mid \mathbf{C_D} \mid$
1	1.827
2	1.237
3	0.971
4	0.965
5	0.941
6	0.921
7	0.893
8	0.873
9	0.871
10	0.875
11	0.872
12	0.874

Tabella 6.3: Valori di $\mathcal{C}_{\mathcal{D}}$ per ciascuna misura

Figura 6.1: Dipendenza di \mathcal{C}_D da q_M

Figura 6.2: Dipendenza di C_D da Δp

Figura 6.3: Dipendenza di ${\cal C}_D$ da ${\cal T}$

Da Fig.6.1, così come da Fig.6.2, si osserva che le prime due misure risultano affette da errore significativo, il quale porta a ottenere valori di C_D maggiori di 1 che non hanno significato fisico. Si osserva anche che la stima di C_D si assesta attorno a 0.875 a partire dalla settima misura.

Si nota anche che l'utilizzo di una pressione ambiente non standard ha un impatto limitato in quanto non porta a variazioni significative di C_D : in media, avere P_{AMB} pari a 1 atm porta a un decremento di circa 0.35 %.

Infine, la variazione di T misurata non porta a variazioni significative di C_D . Gli unici valori anomali corrispondono alle prime due misure, affette da significativo errore.

6.3 Dipendenza da Reynolds e Mach

Si riportano dei grafici rappresentanti la dipendenza di C_D dal numero di Reynolds (Fig.6.4) e dal numero di Mach (Fig.6.5). Al fine di calcolare il valore di μ al variare di T viene utilizzata la legge di Sutherland nella forma:

$$\mu = \mu_{REF} \left(\frac{T}{T_{REF}}\right)^{1.5} \tag{6.4}$$

con $\mu_{REF} = 1.03$ e-5 Pas e $T_{REF} = 273$ K. La variazione di μ è molto limitata in quanto T mantiene approssimativamente lo stesso valore per tutte le misure.

Figura 6.4: Dipendenza di C_D da Re

Figura 6.5: Dipendenza di C_D da Ma

Dai grafici è possibile osservare che:

- $\bullet\,$ i primi valori di C_D non sono significativi;
- Re varia tra 3000 e 9000; ne deriva che il flusso nell'ugello è turbolento e valgono le ipotesi di profilo di velocità uniforme e di assenza di effetti viscosi significativi;
- $\bullet\,$ Ma è sempre ridotto, pertanto vale l'ipotesi di flusso incomprimibile.

A Risultati aggiuntivi dell'analisi statistica delle serie di dati

A.1 Classi, frequenze relative e frequenze cumulate normalizzate

Classe	Estremi	Occorrenze	f	F
1	953.74590995 977.68241496	12	0.007	0.007
2	977.68241496 1001.61891997	36	0.023	0.030
3	1001.61891997 1025.55542498	68	0.043	0.073
4	1025.55542498 1049.49192999	203	0.127	0.199
5	1049.49192999 1073.42843500	292	0.183	0.382
6	1073.42843500 1097.36494001	388	0.243	0.625
7	1097.36494001 1121.30144502	358	0.224	0.849
8	1121.30144502 1145.23795003	178	0.111	0.960
9	1145.23795003 1169.17445504	46	0.029	0.989
10	1169.17445504 1193.11096005	18	0.011	1.000

Tabella A.1: Risultati relativi alla serie corta

Classe	Estremi	Occorrenze	f	F
1	931.352289950 983.208857960	43	0.0043	0.0043
2	983.208857960 1035.06542597	347	0.0347	0.0390
3	1035.06542597 1086.92199398	1325	0.1325	0.1715
4	1086.92199398 1138.77856199	2645	0.2645	0.4360
5	1138.77856199 1190.63513000	2505	0.2505	0.6866
6	1190.63513000 1242.49169801	1530	0.1530	0.8396
7	1242.49169801 1294.34826602	1106	0.1106	0.9502
8	1294.34826602 1346.20483403	328	0.0328	0.9830
9	1346.20483403 1398.06140204	153	0.0153	0.9983
10	1398.06140204 1449.91797005	17	0.0017	1.0000

Tabella A.2: Risultati relativi alla serie lunga

${\bf Bibliografia}$

[1] Yunus A. Cengel. Termodinamica e trasmissione del calore. McGraw-Hill.