

Termodinâmica de Soluções

Professor: Ricardo Pires

OBJETIVOS

- Entender e ordenar conceitos vistos em TQ- I para aplicação na termodinâmica de soluções, ou seja, sistemas com composição variável.
- Apresentar os fundamentos dos equilíbrios de fases.
- Definir as propriedades parciais, o conceito de fugacidade e suas peculiaridades.
- Definir as propriedades em excesso, o conceito de solução ideal e suas aplicações.

Introdução

Soluções: O que são?

→Misturas homogêneas

Podem ser formadas na natureza ou em processos.

Processos de Engenharia Química

Misturas, separações de componentes, transferência de massa de uma fase para outra, reações químicas.

Necessidade de entendimento destes processos = conhecimento de variáveis chaves: T, P e composição $(n_i \text{ ou } x_i)$

TERMODINÂMICA DE SOLUÇÕES.

Relações entre propriedades

Para um sistema fechado sem reação e com composição constante:

$$d(nG) = (nV)dP-(nS)dT (1)$$

$$\left[\frac{\partial(nG)}{\partial P}\right]_{T,n} = nV \quad (2) \qquad \left[\frac{\partial(nG)}{\partial T}\right]_{P,n} = -nS \quad (3)$$

Para um caso mais geral: Sistema monofásico e aberto(matéria pode entrar e sair deste):

$$nG = g(P, T, n1, n2, ..., ni, ...)$$

$$d(nG) = \left[\frac{\partial(nG)}{\partial P}\right]_{T,n} dP + \left[\frac{\partial(nG)}{\partial T}\right]_{P,n} dT + \sum_{i} \left[\frac{\partial(nG)}{\partial n_{i}}\right]_{P,T,n_{i}} dn_{i}$$

Definição de Potencial Químico

Medida de quanto uma espécie "deseja" sofrer
$$\Rightarrow \mu_i \equiv \left[\frac{\partial (nG)}{\partial n_i}\right]_{P,T,n_j}$$
 (4) uma transformação.

Relação fundamental entre propriedades para sistemas de fluidos monofásicos com massa e composição variáveis.

$$d(nG) = (nV)dP - (nS)dT + \sum_{i} \mu_{i} dn_{i}$$
 (5)

Se
$$n = 1 e n_i = x_i$$

$$dG = VdP - SdT + \sum \mu_i dx_i$$
 (6)

Relação funcional da energia de Gibbs molar com suas variáveis canônicas T, P e x_i.

$$G = g(P, T, x1, x2, ..., xi, ...)$$

$$\left[\frac{\partial G}{\partial P}\right]_{T,x} = V \qquad -\left[\frac{\partial G}{\partial T}\right]_{P,x} = S$$

Quando a energia de Gibbs é representada por suas variáveis canônicas, ela assume o papel de função de geração, fornecendo os meios para os cálculos de todas as outras propriedades termodinâmicas através de operações matemáticas simples.

2) Equilíbrio de fases e o Potencial Químico

Sistema fechado constituído por 2 fases, senda cada uma considerada um sistema aberto:

$$d(nG)^{\alpha} = (nV)^{\alpha} dP - (nS)^{\alpha} dT + \sum_{i} \mu_{i}^{\alpha} dn_{i}^{\alpha}$$
$$d(nG)^{\beta} = (nV)^{\beta} dP - (nS)^{\beta} dT + \sum_{i} \mu_{i}^{\beta} dn_{i}^{\beta}$$

A variação da energia de Gibbs total do sistema deve ser o somatório das variações da mesma em cada fase. Esta observação pode e deve ser estendida para as outras propriedades. Assim, como exemplo:

$$nG = (nG)^{\alpha} + (nG)^{\beta}$$

Somando-se, então, as variações de energia livre de Gibbs para cada fase:

$$d(nG) = (nV)dP - (nS)dT + \sum_{i} \mu_{i}^{\alpha} dn_{i}^{\alpha} + \sum_{i} \mu_{i}^{\beta} dn_{i}^{\beta}$$

Sendo o <u>sistema fechado</u>, a Equação d(nG) = (nV)dP-(nS)dT também é válida. Ao compará-la com a Equação acima surge:

$$dn_i^\alpha = -dn_i^\beta \longleftarrow \text{ Hipótese para } \underline{\text{sistema fechado}}$$

$$\sum_i \mu_i^\alpha dn_i^\alpha + \sum_i \mu_i^\beta dn_i^\beta = 0$$

$$\sum_i \mu_i^\alpha dn_i^\alpha - \sum_i \mu_i^\beta dn_i^\alpha = 0$$

$$\sum_i (\mu_i^\alpha - \mu_i^\beta) dn_i^\alpha = 0$$

A igualdade dos potenciais químicos de uma espécie i nas fases que constituem um sistema fechado é um critério para o equilíbrio destas fases a dadas T e P.

O critério para equilíbrio de fases é utilizado na solução de problemas específicos do equilíbrio de fases. Tais problemas requerem o uso de modelos (que expressem G e μ_i como função de T, P e composição) para o comportamento das soluções.

PROPRIEDADES PARCIAIS MOLARES

$$\bar{M}_{i} \equiv \left[\frac{\partial(nM)}{\partial n_{i}}\right]_{P,T,n_{j}} \tag{8}$$

A propriedade parcial molar corresponde a uma <u>função resposta</u>. Ela mede a resposta da propriedade total da solução nM à adição a T, P e n_j constantes de uma quantidade infinitesimal da espécie i a uma quantia finita de solução.

Convenção.

 \bar{M}_i Propriedade parcial da solução;

M Propriedade da solução;

 M_i Propriedade da espécie pura.

$$\bar{V}_i \equiv \left[\frac{\partial (nV)}{\partial n_i}\right]_{P,T,n_j}$$

Equações relacionando Propriedades molares e Parcias molares

Qualquer propriedade M, genérica, de um sistema pode ser escrita e termos de T, P e n.

Aplicando a diferencial total a *nM*:

$$d(nM) = \frac{\partial(nM)}{\partial P} \bigg|_{T,n} dP + \frac{\partial(nM)}{\partial T} \bigg|_{P,n} dT + \sum_{i} \frac{\partial(nM)}{\partial n_{i}} \bigg|_{P,T,nj} dn_{i}$$
(9)

Sendo constantes o número de moles totais (n) e todos os outros j números de moles que não do componente i.

$$d(nM) = n\frac{\partial M}{\partial P}\bigg|_{T,n} dP + n\frac{\partial M}{\partial T}\bigg|_{P,n} dT + \sum_{i} \overline{M}_{i} d\eta_{i}$$
 10

Transformando para fração molar do componente *i*, temos:

$$n_i = x_i n;$$

 $dn_i = x_i \cdot dn + n \cdot dx_i$
 $d(nM) = ndM + Mdn$

Substituindo dn_i e d(nM) na Equação 10, agrupando os termos acompanhados de n e os acompanhados de dn:

$$\begin{bmatrix}
dM - \frac{\partial M}{\partial P} \Big|_{T,n} dP - \frac{\partial M}{\partial T} \Big|_{P,n} dT - \sum_{i} \overline{M_{i}} dx_{i} \end{bmatrix} n + \left[M - \sum_{i} x_{i} \overline{M_{i}} \right] dn = 0$$

$$dM = \frac{\partial M}{\partial P} \Big|_{T,x} dP + \frac{\partial M}{\partial T} \Big|_{P,x} dT + \sum_{i} \overline{M_{i}} dx_{i}$$
11

$$M = \sum_{i} x_{i} \overline{M_{i}} \quad (12) \qquad nM = \sum n_{i} \overline{M_{i}} \quad (13)$$

Derivando a Equação 12, obteremos uma expressão para dM que deve ser igual à Equação 11. Para que esta igualdade ocorra, chegamos a:

$$\frac{\partial M}{\partial P}\bigg|_{T,x} dP + \frac{\partial M}{\partial T}\bigg|_{P,x} dT - \sum_{i} x_{i} d\overline{M}_{i} = 0 \quad (14)$$

Equação de consistência de Gibbs/Duhen

T e P ctes
$$\sum_{i} x_{i} d\overline{M}_{i} = 0 \quad (15)$$

ANALISANDO O CASO DE UMA MISTURA BINÁRIA.

Aplicando a Equação 12 e em seguida diferenciando, temos:

$$\overline{M_1} = M + x_2 \frac{dM}{dx_1}$$
 (16) $\overline{M_2} = M - x_1 \frac{dM}{dx_1}$ (17)

Qualquer propriedade molar de uma solução deve seguir estas 3 condições.

$$1)\lim_{x_i\to 1}\overline{M_i}=M_i$$

$$2)\lim_{x_i\to 0}\overline{M_i}=\overline{M_i^{\infty}}$$

$$3)M = \sum x_i \, \overline{M}_i$$

3)
$$M = \sum x_i \overline{M}_i$$

$$\sum x_i d\overline{M}_i = 0 \quad (T,P)$$

Exercício:

11.13 Smith Van Ness

Exercício:

Há a necessidade de 2000 cm³ de solução anticongelante num laboratório. Esta solução nada mais é que uma mistura 30% molar de metanol em água. Quais os volumes de metanol puro e água pura a 25°C devem ser misturados para formar os 2000 cm³ de anticongelante a 25°C? São dados a 25°C:

Volume parcial molar Volume molar da espécie pura

Metanol(1): 38,632 cm³.mol⁻¹ 40,727 cm³.mol⁻¹

Água(2): 17,765 cm³.mol⁻¹ 18,068 cm³.mol⁻¹

Relações entre propriedades parciais molares

Como as propriedades parciais se relacionam entre si:

$$d(nG) = (nV)dP - (nS)dT + \sum_{i} G_{i} dn_{i}$$
 (18)

Aplicando o critério de exatidão: $\left(\frac{\partial V}{\partial T}\right)_{P,n} = -\left(\frac{\partial S}{\partial P}\right)_{T,n}$

Surgem mais 2 relações adicionais:

$$\left(\frac{\partial \overline{G}_{i}}{\partial P}\right)_{T,n} = \left[\frac{\partial(nV)}{\partial n_{i}}\right]_{T,P,n_{j}} \longrightarrow \left(\frac{\partial \overline{G}_{i}}{\partial P}\right)_{T,x} = \overline{V}_{i} \qquad (19)$$

$$\left(\frac{\partial \overline{G}_{i}}{\partial T}\right)_{P,n} = -\left[\frac{\partial(nS)}{\partial n_{i}}\right]_{T,P,n_{j}} \longrightarrow \left(\frac{\partial \overline{G}_{i}}{\partial T}\right)_{P,x} = -\overline{S}_{i} \qquad (20)$$

Cada equação que relaciona as propriedades termodinâmicas de uma solução com composição constante tem uma equação correlata que relaciona as propriedades parciais correspondentes de cada espécie na solução.

Como exemplo:
$$H = U + PV$$

$$\overline{\mathbf{H}}_i = \overline{\mathbf{U}}_i + P \overline{\mathbf{V}}_i$$

E assim por diante.

$$d\overline{G}_i = \overline{V}_i dP - \overline{S}_i dT$$

Nota-se um paralelismo entre as equações para fluidos ou soluções com composição constante e as equações para as propriedades parciais das espécies em solução.

O Modelo de Mistura de Gases Ideais

Modelo de capacidade limitada para descrição de sistemas reais mas que fornece uma base conceitual sobre a qual pode-se desenvolver a estrutura da termodinâmica de soluções:

- Tem base molecular;
- Aproxima da realidade no limite quando a pressão tende a zero;
- Analiticamente simples.

O Volume molar (V^{GI}) de um GI, seja ele uma mistura ou um puro depende apenas de P e T \rightarrow V^{GI} =RT/P.

Calculando o volume parcial molar:

$$\bar{V}_{i}^{GI} \equiv \left[\frac{\partial (nV^{GI})}{\partial n_{i}}\right]_{P,T,n_{j}} = \frac{RT}{P} \left(\frac{\partial n}{\partial n_{i}}\right)_{n_{j}} = RT/P$$

$$\overline{V}_{i}^{GI} = V^{GI} = RT/P$$

Definindo pressão parcial:
$$p_i = \frac{y_i RT}{V^{GI}} = y_i P$$

<u>Teorema de Gibbs</u>: Uma propriedade parcial molar (que não seja o volume) de uma mistura de gases ideais é igual à propriedade molar da espécie como um gás ideal puro na mesma T e uma P igual a pressão parcial na mistura/solução.

Genericamente:
$$\overline{M}_{i}^{GI}(T,P) = M_{i}^{GI}(T,p_{i})$$
 (21)

- Isto pode ser estendido para outras propriedades de GI que independam da P. Ex. U
- Para a entropia de um GI (Lembrando que a entropia neste caso independe da T que é uma constante):

$$dS_i^{GI} = -Rd \ln P$$

Surgindo:
$$S_i^{GI}(T, p_i) = S_i^{GI}(T, P) - R \ln y_i$$

Aplicando a Eq 21:
$$\overline{S}_i^{GI}(T,P) = \overline{S}_i^{GI}(T,P) - R \ln y_i$$
 (23)

Valor da propriedade de GI da espécie pura nas mesmas T e P da mistura.

• Para a **energia livre de Gibbs** de uma mistura de GI:

$$G^{GI} = H^{GI} - TS^{GI}$$

Podendo-se escrever: $\overline{G}_{i}^{GI} = \overline{H}_{i}^{GI} - T \overline{S}_{i}^{GI}$

Substituindo as Eqs 22 e 23:

$$\overline{G}_{i}^{GI} = H_{i}^{GI} - TS_{i}^{GI} + RT \ln y_{i} = G_{i}^{GI} + RT \ln y_{i} \equiv \mu_{i}^{GI}$$
(24)

Da Eq 12 vem:

$$H^{GI} = \sum_{i} y_{i} H_{i}^{GI} \quad (25-1)$$

$$S^{GI} = \sum_{i} y_{i} S_{i}^{GI} - R \sum_{i} y_{i} \ln y_{i} \quad (25-2)$$

$$G^{GI} = \sum_{i} y_{i} G_{i}^{GI} + RT \sum_{i} y_{i} \ln y_{i} \quad (26)$$

Rearranjando a Eq. 25-1:

$$H^{GI} - \sum_{i} y_i H_i^{GI} = 0$$

Variação de entalpia do processo de mistura:

Para um GI este é zero.

Rearranjando a Eq. 25-2:

$$S^{GI} - \sum_{i} y_{i} S_{i}^{GI} = -R \sum_{i} y_{i} \ln y_{i}$$

Variação de entropia do processo de mistura:

Para um GI este é dado pela equação dada.

Exercício:

11.1 e 11.2 Smith Van Ness

Fugacidade e Coeficiente de fugacidade: Espécies Puras

Para um sistema puro, temos:

$$dG_i = V_i dP - S_i dT$$

Para um GI:
$$dG_i^{GI} = \frac{RT}{P}dP = RTd\ln P$$

Constante de integração e que depende apenas de T (também é função da espécie).

$$G_i^{GI} \equiv \Gamma_i(T) + RT \ln P \quad (27)$$

$$\mu_i^{GI} \equiv \bar{G}_i^{GI} + RT \ln y_i = \Gamma_i(T) + RT \ln(y_i P)$$

O potencial químico fornece um critério para o Equilíbrio de Fases mas exibe algumas características indesejáveis que desencorajam o seu uso. Sendo assim um novo conceito passa a ser introduzido: **a Fugacidade** (?)

$$G_i \equiv \Gamma_i(T) + RT \ln f_i \quad \text{ou} \quad dG_i = RTd \ln f_i$$
 (28)

De certo modo, é difícil trabalhar com a fugacidade, uma vez que se trata de uma abstração do potencial químico, ou seja, uma (abstração)². Além disso, ela parece ser definida quase que arbitrariamente; isto é, há indubitavelmente vários outros tipos de "transformações matemáticas" que também funcionariam. Estes fatos nos deixam pouco à vontade com a fugacidade. Nós nos sentimos incomodados porque não a entendemos plenamente. Minha sugestão é considerar a fugacidade uma transformação matemática do potencial químico, que usamos para obter uma propriedade que se comporta matematicamente melhor que o potencial químico. Partindo desse princípio, vamos nos concentrar apenas em como aplicar o conceito de fugacidade para resolver problemas. Embora seja um conceito muito abstrato e misterioso, a fugacidade funciona!

Texto extraído do "Koretsky"

A fugacidade tem unidades de pressão e se presta para utilização no equacionamento termodinâmico para fluidos reais e mesmo para GIs.

Para um GI:
$$f_i^{gi} = P$$
 (29)

Trabalhando com propriedades residuais: $G_i - G_i^{gi} = RT \ln \frac{f_i}{P}$

ENERGIA LIVRE DE GIBBS RESIDUAL

$$G_i^R = RT \ln \phi_i \qquad (30)$$

$$\phi_i \equiv \frac{f_i}{P} \qquad \qquad \underline{ \begin{array}{c} \text{Definição de coeficiente de fugacidade} \\ \text{de um puro}: Razão adimensional} \end{array} }$$

EQUAÇÕES VALIDAS PARA ESPECIES PURAS EM QUALQUER FASE SOB QUALQUER CONDIÇÃO.

Como avaliar o Coeficiente de Fugacidade de uma espéc pura?

Definição de energia de Gibbs Residual: $\frac{G_i^R}{RT} = \int_0^P (Z_i - 1) \frac{dP}{P}$ (T cte) Do Cap. 6

$$\frac{G_i^R}{RT} = \int_0^P (Z_i - 1) \frac{dP}{P} \quad \text{(T cte)}$$

De acordo com a Eq. 30:
$$\ln \phi_i = \int_0^P (Z_i - 1) \frac{dP}{P}$$
 (32)

Pode-se avaliar o coeficiente de fugacidade:

Por meio de informações de $Z_i=f(T,P)$

- *Dados experimentais (P,V,T)
- *Correlações generalizadas;
- *Equações de estado.

Correlações de Pitzer para o 2º Coef. Virial

Recordando

$$Z_i = 1 + \frac{B_{ii}P}{RT}$$

$$Z_i - 1 = \frac{B_{ii}P}{RT}$$

$$\ln \phi_i = \frac{B_{ii}}{RT} \int_0^P dP \qquad (T \text{ const.})$$

$$B^0 = 0.083 - \frac{0.422}{T^{1.6}}$$

$$\frac{BP_c}{RT_c} = B^0 + \omega B^1$$

$$B^0 = 0.083 - \frac{0.422}{T_r^{1.6}}$$

$$B^1 = 0.139 - \frac{0.172}{T_r^{4.2}}$$

Fornece estimativas para o coeficiente de fugacidade para pressões baixas ou moderadas e para moléculas não/ou fracamente polares.

Coeficiente de Fugacidade de uma espécie pura por mei de Equações Cúbicas.

Do capitulo 6, temos:

$$\frac{G^{R}}{RT} = Z - 1 - \ln(Z - \beta) - qI$$

$$\ln \phi_i = Z_i - 1 - \ln(Z_i - \beta_i) - q_i I_i$$
 (34)

$$I = \frac{1}{\sigma - \varepsilon} ln \left(\frac{Z + \sigma \beta}{Z + \varepsilon \beta} \right)$$

...RECORDANDO...

PROCEDIMENTO ITERATIVO

Raízes com características do Vapor da equação de estado cúbica genérica

$$V = \frac{RT}{P} + b - \frac{a(T)}{P} \frac{V - b}{(V + \varepsilon b)(V + \sigma b)}$$

Primeiro chute: Z=1
$$Z = 1 + \beta - q\beta \frac{Z - \beta}{(Z + \epsilon \beta)(Z + \sigma \beta)}$$

$$q = \frac{\Psi \alpha(T_r)}{\Omega T_r}$$

$$\beta = \Omega \frac{P_r}{T_r}$$

Raízes com características do Liquido da equação de estado cúbica genérica

$$V = b + (V + \varepsilon b)(V + \sigma b) \left\lceil \frac{RT + bP - VP}{a(T)} \right\rceil$$

Primeiro chute: Z=
$$\beta$$
 $Z = \beta + (Z + \epsilon \beta)(Z + \sigma \beta) \left(\frac{1 + \beta - Z}{q\beta}\right)$

...RECORDANDO...

Eq. of State	$\alpha(T_r)$	σ	ϵ	Ω	Ψ	Z_c
vdW (1873)	1	0	0	1/8	27/64	3/8
RK (1949)	$T_r^{-1/2}$	1	0	0.08664	0.42748	1/3
SRK (1972)	$\alpha_{\mathrm{SRK}}(T_r;\omega)^{\dagger}$	1	0	0.08664	0.42748	1/3
PR (1976)	$\alpha_{\mathrm{PR}}(T_r;\omega)^{\ddagger}$	$1 + \sqrt{2}$	$1 - \sqrt{2}$	0.07780	0.45724	0.30740

$$^{\dagger}\alpha_{\text{SRK}}(T_r;\ \omega) = \left[1 + (0.480 + 1.574\ \omega - 0.176\ \omega^2)\left(1 - T_r^{1/2}\right)\right]^2$$

$$^{\ddagger}\alpha_{\text{PR}}(T_r;\;\omega) = \left[1 + (0.37464 + 1.54226\,\omega - 0.26992\,\omega^2)\left(1 - T_r^{1/2}\right)\right]^2$$

Correlações generalizadas de Lee e Kesler

$$\ln \phi = \ln \phi^0 + \omega \ln \phi^1 \qquad (35)$$

$$\phi = (\phi^0)(\phi^1)^{\omega} \qquad (36)$$
Tabelas E.13 a E.16

Critério de Equilíbrio Liquido/Vapor para Espécies Puras.

Em se tendo um sistema em que uma espécie pura i esteja nas fases liquido e vapor saturados e em **equilíbrio** a T e P^{sat}.

$$G_i^v = \Gamma_i(T) + RT \ln f_i^v$$
 $G_i^l = \Gamma_i(T) + RT \ln f_i^l$

Se o sistema está em equilíbrio a energia de GIBBS SERÁ A MESMA EM TODAS AS FASES. Sendo assim, a diferença entre elas é 0.

$$G_i^v - G_i^l = RT \ln \frac{f_i^v}{f_i^l}$$

$$f_i^v = f_i^l = f_i^{\text{sat}}$$
 (37)

$$\phi_i^{\text{sat}} = \frac{f_i^{\text{sat}}}{P_i^{\text{sat}}} \tag{38}$$

$$\phi_i^v = \phi_i^l = \phi_i^{\text{sat}} \tag{39}$$

Para uma espécie pura, fases liquida e vapor coexistem em equilíbrio quando têm as mesmas temperatura, pressão e <u>fugacidade</u>.

Fugacidade de um Liquido Puro.

$$f_i^l(P) = \underbrace{\frac{f_i^v(P_i^{\text{ sat}})}{P_i^{\text{ sat}}}}_{(A)} \underbrace{\frac{f_i^l(P_i^{\text{ sat}})}{f_i^v(P_i^{\text{ sat}})}}_{(B)} \underbrace{\frac{f_i^l(P)}{f_i^l(P_i^{\text{ sat}})}}_{(C)} P_i^{\text{ sat}}$$

$$f_i = \phi_i^{\text{sat}} P_i^{\text{sat}} \exp \frac{1}{RT} \int_{P_i^{\text{sat}}}^P V_i^l dP$$
(40)

$$f_i = \phi_i^{\text{ sat}} P_i^{\text{ sat}} \exp \frac{V_i^l (P - P_i^{\text{ sat}})}{RT}$$
(41)

Se Z for expresso pela Eq do virial, então: $Z_i^v - 1 = \frac{B_{ii}P}{RT}$

Da Eq (33):
$$\phi_i^{\text{sat}} = \exp \frac{B_{ii} P_i^{\text{sat}}}{RT}$$

$$f_i = P_i^{\text{sat}} \exp \frac{B_{ii} P_i^{\text{sat}} + V_i^l (P - P_i^{\text{sat}})}{RT}$$
(42)

Fugacidade e coeficiente de fugacidade de espécies em solução.

Para uma espécie pura, temos: $G_i \equiv \Gamma_i(T) + RT \ln f_i$

Para uma espécie numa mistura, seja liquida, gasosa, etc:

$$\mu_i \equiv \Gamma_i(T) + RT \ln \hat{f_i} \quad (43)$$

 \hat{f}_i Fugacidade para uma espécie (i) em solução.

 f_i Fugacidade para uma espécie (i) pura.

Critério de equilíbrio de fases para espécies em solução.

$$\hat{f}_i^{\alpha} = \hat{f}_i^{\beta} = \dots = \hat{f}_i^{\pi}$$
 $(i = 1, 2, \dots, N)$ (44)

Para espécies em solução, múltiplas fases estão em equilíbrio nas mesmas T e P se a <u>fugacidade</u> de cada espécie for a mesma em todas as fases.

Exercício:

Exemplo 11.5 pag 298 Smith Van Ness.

Como exemplo temos o ELV: $\hat{f}_i^v = \hat{f}_i^l$ (i = 1, 2, ..., N) (45)

$$\hat{f}_i^v = \hat{f}_i^l$$

$$(i = 1, 2, ..., N)$$
 (45)

Relembrando Propriedades Residuais

propriedade termodinâmica.

Valor molar (ou em base material) de uma propriedade
$$M^R \equiv M - M^{gi}$$

$$nM^R = nM - nM^{gi}$$

Se diferenciarmos em relação a n_i mantendo T, P e n₁ constantes, temos:

$$\left[\frac{\partial (nM^R)}{\partial n_i}\right]_{P,T,n_j} = \left[\frac{\partial (nM)}{\partial n_i}\right]_{P,T,n_j} - \left[\frac{\partial (nM^{gi})}{\partial n_i}\right]_{P,T,n_j}$$

$$\bar{M}_i^R = \bar{M}_i - \bar{M}_i^{gi} \quad (46)$$

Propriedades residuais medem o afastamento dos valores de gás ideal e neste sentido seu principal uso seria para a fase gasosa. No entanto elas podem também ter utilização nas propriedades de fases liquidas (mas isso não é usual).

Para energia de Gibbs parcial residual: $ar{G}_i^R = ar{G}_i - ar{G}_i^{gi}$

$$\bar{G}_i^R = \bar{G}_i - \bar{G}_i^{gi} \quad | \quad (47)$$

$$\mu_i \equiv \Gamma_i(T) + RT \ln \hat{f}_i$$

$$\mu_i^{GI} \equiv \Gamma_i(T) + RT \ln(y_i P)$$

Subtraindo
$$\mu_i - \mu_i^{gi} = RT \ln \frac{\hat{f_i}}{y_i P}$$

Combinando a equação acima com a Eq. (47)

$$\bar{G}_i^R = RT \ln \hat{\phi}_i \tag{48}$$

Definição do Coeficiente de fugacidade de uma espécie em solução.

$$\hat{\phi}_i \equiv \frac{\hat{f}_i}{y_i P} \quad (49)$$

No caso de a solução gasosa convenciona-se usar y_i. No caso de a solução ser liquida convencionase usar x_i.

$$\hat{f}_i^{gi} = y_i P \quad (50)$$

Logo para uma mistura de GI a fugacidade de uma espécie é igual a sua pressão parcial e o coeficiente de fugacidade vale 1.

RELAÇÃO FUNDAMENTAL ENTRE PROPRIEDADES RESIDUAIS

$$d\left(\frac{nG}{RT}\right) = \frac{nV}{RT}dP - \frac{nH}{RT^2}dT + \sum_{i} \frac{\bar{G}_i}{RT}dn_i$$
 (51)

Relação geral representando nG/RT por suas variáveis canônicas (T, P e n).

Para um GI

$$d\left(\frac{nG^{gi}}{RT}\right) = \frac{nV^{gi}}{RT}dP - \frac{nH^{gi}}{RT^2}dT + \sum_i \frac{\bar{G}_i^{gi}}{RT}dn_i$$

Em propriedades residuais.

$$d\left(\frac{nG^R}{RT}\right) = \frac{nV^R}{RT}dP - \frac{nH^R}{RT^2}dT + \sum_i \frac{\bar{G}_i^R}{RT}dn_i$$
 (52)

Relação fundamental das propriedades residuais.

$$d\left(\frac{nG^R}{RT}\right) = \frac{nV^R}{RT}dP - \frac{nH^R}{RT^2}dT + \sum_i \ln \hat{\phi}_i \, dn_i$$
 (53)

Eqs. 52 e 53 são úteis apenas em suas formas restritas (depois de aplicado o critério de exatidão).

$$nG/RT = g(P, T, n1, n2, ..., ni, ...)$$

1 mol de fluido com composição cte

$$\frac{V^{R}}{RT} = \left[\frac{\partial (G^{R}/RT)}{\partial P}\right]_{T,x} (54) \qquad \frac{H^{R}}{RT} = -T \left[\frac{\partial (G^{R}/RT)}{\partial T}\right]_{P,x} (55)$$

$$\left(\ln \hat{\phi}_{i}\right) = \left[\frac{\partial (nG^{R}/RT)}{\partial n_{i}}\right]_{P,T,n_{j}} (56)$$

Essa equação mostra que o logaritmo do coeficiente de fugacidade é uma propriedade parcial em relação a G^R/RT .

Calculando o coeficiente de fugacidade de espécies em solução a partir de dados do fator de compressibilidade.

$$\frac{G^R}{RT} = \int_0^P (Z-1) \frac{dP}{P} \qquad \frac{\mathbf{x} \text{ (n mol)}}{RT} = \int_0^P (nZ-n) \frac{dP}{P}$$

Derivo em relação a n_i, com T, P e n_i ctes.

$$\ln \hat{\phi}_i = \int_0^P \left[\frac{\partial (nZ - n)}{\partial n_i} \right]_{P,T,n_j} \frac{dP}{P}$$

Equação análoga à (32). Permite o calculo do valores do coeficiente de fugacidade de espécies em solução gasosa a partir de dados PVT.

Se
$$\frac{\partial (nZ)}{\partial n_i} = \overline{Z}_i$$
 e $\frac{\partial n}{\partial n_i} = 1$

$$\rightarrow \ln \hat{\phi}_i = \int_0^P (\bar{Z}_i - 1) \frac{dP}{P} \quad (57)$$

Coeficiente de fugacidade de espécies em solução a partir da equação do virial.

$$Z = 1 + RT$$

(58)
$$B = \sum_{i} \sum_{j} y_{i} y_{j} B_{ij}$$
 REGRAS DE MISTURA PARA GASES A BAIXAS OU

MODERADAS Ps.

Exemplificando para 1 binário.

$$B = y_1 y_1 B_{11} + y_1 y_2 B_{12} + y_2 y_1 B_{21} + y_2 y_2 B_{22}$$

$$B = y_1^2 B_{11} + 2y_1 y_2 B_{12} + y_2^2 B_{22}$$
(59)

$$nZ = n + \frac{nBP}{RT}$$

Derivando em relação a n₁.

$$\bar{Z}_1 \equiv \left[\frac{\partial (nZ)}{\partial n_1}\right]_{P,T,n_2} = 1 + \frac{P}{RT} \left[\frac{\partial (nB)}{\partial n_1}\right]_{T,n_2}$$

Substituindo na Eq. (57).

$$\ln \hat{\phi}_1 = \frac{1}{RT} \int_0^P \left[\frac{\partial (nB)}{\partial n_1} \right]_{T,n_2} dP = \frac{P}{RT} \left[\frac{\partial (nB)}{\partial n_1} \right]_{T,n_2}$$

Depois de algumas operações matemáticas chega-se às expressões dos coeficientes de fugacidade das espécies para um binário.

$$\ln \hat{\phi}_1 = \frac{P}{RT} (B_{11} + y_2^2 \delta_{12}) (60) \qquad \delta_{12} \equiv 2B_{12} - B_{11} - B_{22}$$

$$\ln \hat{\phi}_2 = \frac{P}{RT} (B_{22} + y_1^2 \delta_{12}) (61)$$

ESTENDENDO-SE AS EQS. (60) E (61) PARA UMA MISTURA GASOSA MULTICOMPONENTE.

$$\ln \hat{\phi}_k = \frac{P}{RT} \left[B_{kk} + \frac{1}{2} \sum_i \sum_j y_i y_j (2\delta_{ik} - \delta_{ij}) \right]$$
(62)

Sendo:

$$\delta_{ik} \equiv 2B_{ik} - B_{ii} - B_{kk}$$
 $\delta_{ij} \equiv 2B_{ij} - B_{ii} - B_{jj}$
 $\delta_{ii} = 0, \, \delta_{kk} = 0, \, \text{etc.},$ $\delta_{ki} = \delta_{ik}, \, \text{etc.}$

Cálculos do coeficiente de fugacidade a partir da correlação generalizada para a Equação do Virial usando o 2º coeficiente para misturas gasosas multicomponentes.

Os parâmetros B^0 e B^1 são calculados como os de espécies puras mas usando a $Tr_{ij} = T/Tc_{ij}$

Quando em solução, todos os B devem ser calculados por meio dos \hat{B}

$$\hat{B}_{ij} = B^{0} + \omega_{ij} B^{1}$$

$$B^{0} = 0.083 - \underbrace{\frac{0.422}{T_{r}^{1.6}}}_{D_{cij}}$$

$$\hat{B}_{ij} = \frac{B_{ij} P_{cij}}{RT_{cij}}$$

$$B^{1} = 0.139 - \underbrace{\frac{0.172}{T_{r}^{1.6}}}_{D_{cij}}$$

$$Z_{Cij} = \underbrace{\frac{Z_{Cij} RT_{Cij}}{2}}_{D_{cij}} V_{Cij} = \underbrace{\left(\frac{V_{Ci}^{1/3} + V_{Cj}^{1/3}}{2}\right)^{3}}_{D_{cij}}$$

Exercício

Exemplo 11.9 pag 306 Smith Van Ness. Exercício 11.25 pag. 316 Smith Van Ness.

O MODELO DE SOLUÇÃO IDEAL

Numa mistura de gases ideais, temos o potencial químico de um componente i:

$$\mu_i^{gi} \equiv \bar{G}_i^{gi} = G_i^{gi}(T, P) + RT \ln y_i$$
 (24)

Numa mistura de líquidos ideal (sol. Ideal), temos o potencial químico de um componente i:

$$\mu_i^{id} \equiv \bar{G}_i^{id} = G_i(T, P) + RT \ln x_i$$
 (63)

Todas as outras propriedades termodinâmicas de uma solução ideal adveem da Eq (63):

$$\begin{pmatrix}
\frac{\partial}{\partial G_{i}} \\
\frac{\partial}{\partial P}
\end{pmatrix}_{T, i} = \bar{V}_{i}$$

$$\bar{V}_{i}^{id} = \left(\frac{\partial \bar{G}_{i}^{id}}{\partial P}\right)_{T, x} = \left(\frac{\partial G_{i}}{\partial P}\right)_{T}$$

$$\bar{V}_{i}^{id} = V_{i}$$
(64)

$$\left(\frac{\partial \bar{G}_{i}}{\partial T}\right)_{P,x} = -\bar{S}_{i} \qquad \bar{S}_{i}^{id} = -\left(\frac{\partial \bar{G}_{i}^{id}}{\partial T}\right)_{P,x} = -\left(\frac{\partial G_{i}}{\partial T}\right)_{P} - R \ln x_{i}$$

$$\bar{S}_i^{id} = S_i - R \ln x_i \tag{65}$$

 $\overline{G}_{i}^{id} = \overline{H}_{i}^{id} - T \overline{S}_{i}^{id}$ Sendo:

Substituindo as Eqs (63) e (65): $\bar{H}_i^{id} = G_i + RT \ln x_i + TS_i - RT \ln x_i$

$$\bar{H}_i^{id} = H_i \qquad (66)$$

Fazendo a relação de soma para uma solução ideal:

$$M^{id} = \sum_{i} x_i \bar{M}_i^{id}$$

Aplicando a relação nas Eqs de (63) a (66):

$$G^{id} = \sum_{i} x_{i} G_{i} + RT \sum_{i} x_{i} \ln x_{i} \quad (67) \qquad S^{id} = \sum_{i} x_{i} S_{i} - R \sum_{i} x_{i} \ln x_{i} \quad (68)$$

$$V^{id} = \sum_{i} x_i V_i$$
 (69) $H^{id} = \sum_{i} x_i H_i$ (70)

O modelo de solução ideal serve como base para descrever de forma aproximada o comportamento de uma solução real.

O modelo de solução ideal fornece a dependência da fugacidade dos componentes na solução com a composição.

A Regra de LEWIS/RANDALL

LEMBRANDO

$$\mu_i \equiv \Gamma_i(T) + RT \ln \hat{f_i}$$
 (43) $G_i \equiv \Gamma_i(T) + RT \ln f_i$ (28)

Subtraindo e aplicando a Eq (43) para uma solução ideal:

$$\mu_i^{id} \equiv \tilde{G}_i^{id} = G_i + RT \ln(\hat{f}_i^{id}/f_i)$$

Comparando com a Eq (63).

$$\hat{f}_i^{id} = x_i f_i$$
 (71)

REGRA DE LEWIS/RANDALL: A fugacidade de uma espécie numa solução ideal é proporcional à sua fração molar e a cte de proporcionalidade é a fugacidade da espécie pura i no mesmo estado físico da solução às mesmas T e P.

Dividindo a Eq. (71) por x_iP e comparando com as definições

$$\hat{\phi}_i \equiv \frac{\hat{f}_i}{y_i P}$$

$$\phi_i \equiv \frac{f_i}{P}$$

$$\hat{\phi}_i^{id} = \phi_i$$
 (72)

O coeficiente de fugacidade de uma espécie *i* numa solução ideal é igual ao coeficiente de fugacidade de uma espécie *i* pura no mesmo estado físico da solução nas mesmas T e P.

LEI DE RAOULT

Num sistema em equilíbrio liquido/vapor, <u>se este obedecer à Lei de Raoult</u>, as fases liquida e vapor são consideradas, respectivamente, solução ideal e gás ideal.

PROPRIEDADES EM EXCESSO

TÊM SIGNIFICADO APENAS PARA SOLUÇÕES.

DEFINIÇÃO:
$$M^E \equiv M - M^{id}$$
 (73)

Aplicando para algumas propriedades termodinâmicas:

$$G^E \equiv G - G^{id}$$
 $H^E \equiv H - H^{id}$ $S^E \equiv S - S^{id}$ $G^E = H^E - TS^E$

As propriedades em excesso estão para as soluções liquidas assim como as propriedades residuais estão para as soluções gasosas.

Em propriedades parciais, temos uma equação análoga à Eq (73).

$$\bar{M}_i^E = \bar{M}_i - \bar{M}_i^{id} \quad (74)$$

Relação entre as propriedades em excesso e propriedades residuais

$$M^{E} - M^{R} = -(M^{id} - M^{gi}) \longrightarrow M^{id} - M^{gi} = \sum_{i} x_{i} M_{i} - \sum_{i} x_{i} M_{i}^{gi} = \sum_{i} x_{i} M_{i}^{R}$$

$$M^E = M^R - \sum_i x_i M_i^R \quad (75)$$

Reescrevendo a Eq (53) (relação entre as propriedades residuais) para uma solução ideal, temos:

Relação fundamental das propriedades em excesso.

$$d\left(\frac{nG^E}{RT}\right) = \frac{nV^E}{RT}dP - \frac{nH^E}{RT^2}dT + \sum_i \frac{\bar{G}_i^E}{RT}dn_i$$
 (76)

. .

M em relação à G	M^R em relação à G^R	M^E em relação à G^E
$V = (\partial G/\partial P)_{T,x}$	$V^R = (\partial G^R / \partial P)_{T,x}$	$V^E = (\partial G^E/\partial P)_{T,x}$
$S = -(\partial G/\partial T)_{P,x}$	$S^R = -(\partial G^R/\partial T)_{P,x}$	$S^E = -(\partial G^E/\partial T)_{P,x}$
H = G + TS	$H^R = G^R + TS^R$	$H^E = G^E + TS^E$
$= G - T(\partial G/\partial T)_{P,x}$	$= G^R - T(\partial G^R/\partial T)_{P,x}$	$= G^E - T(\partial G^E / \partial T)_{P,x}$
$= -RT^2 \left[\frac{\partial (G/RT)}{\partial T} \right]_{P,x}$	$= -RT^2 \left[\frac{\partial (G^R/RT)}{\partial T} \right]_{P,x}$	$= -RT^2 \left[\frac{\partial (G^E/RT)}{\partial T} \right]_{P,x}$
$C_P = (\partial H/\partial T)_{P,x}$	$C_P^R = (\partial H^R / \partial T)_{P,x}$	$C_P^E = (\partial H^E/\partial T)_{P,x}$
$= -T(\partial^2 G/\partial T^2)_{P,x}$	$= -T(\partial^2 G^R/\partial T^2)_{P,x}$	$= -T(\partial^2 G^E/\partial T^2)_{P,x}$

O COEFICIENTE DE ATIVIDADE

Reescrevendo a Eq (43) para Reescrevendo a Eq (43) para energia de Gibbs em excesso: $\bar{G}_i = \Gamma_i(T) + RT \ln \hat{f}_i$

$$\bar{G}_i = \Gamma_i(T) + RT \ln \hat{f}_i$$

$$\bar{G}_i^{id} = \Gamma_i(T) + RT \ln x_i f_i$$

$$\bar{G}_i - \bar{G}_i^{id} = RT \ln \frac{\hat{f}_i}{x_i f_i}$$

definição de propriedades Da em excesso:

$$\bar{G}_i^E = RT \ln \gamma_i \qquad (77)$$

$$\gamma_i \equiv \frac{\hat{f_i}}{x_i f_i} \qquad (78)$$

Da Eq (77) :
$$RT \ln \gamma_i = \bar{G}_i - \bar{G}_i^{id}$$

$$\mu_i^{id} \equiv \widehat{G}_i^{id} = G_i + RT \ln(\widehat{f}_i^{id}/f_i)$$

$$\bar{G}_i \equiv \mu_i = G_i + RT \ln \gamma_i x_i \quad (79)$$

$$\mu_i^{gi} = G_i^{gi} + RT \ln y_i$$

$$\mu_i^{id} = G_i + RT \ln x_i$$

$$\mu_i = G_i + RT \ln \gamma_i x_i$$

Tem a capacidade de representar o comportamento real de soluções.

RELAÇÃO FUNDAMENTAL ENTRE PROPRIEDADES EM EXCESSO

Reescrevendo a Eq (76) levando em conta a definição do coeficiente de atividade:

$$d\left(\frac{nG^E}{RT}\right) = \frac{nV^E}{RT}dP - \frac{nH^E}{RT^2}dT + \sum_{i} \ln \gamma_i \, dn_i$$
 (80)

Eq. (80) é útil apenas em suas formas restritas.

Equações análogas às Eq. (54), (55) e (56).

1 mol de fluido com composição cte

$$\frac{V^E}{RT} = \left[\frac{\partial (G^E/RT)}{\partial P}\right]_{T,x} \qquad (81) \qquad \frac{H^E}{RT} = -T\left[\frac{\partial (G^E/RT)}{\partial T}\right]_{P,x} \qquad (82)$$

$$\ln \gamma_i = \left[\frac{\partial (nG^E/RT)}{\partial n_i} \right]_{P,T,n_j}$$
 (83)

A Eq. (83) demonstra que $ln(\gamma_i)$ é uma propriedade parcial em relação a G^E/RT .

$$\left(\frac{\partial \ln \gamma_i}{\partial P}\right)_{T,x} = \frac{\bar{V}_i^E}{RT} \qquad (84) \qquad \left(\frac{\partial \ln \gamma_i}{\partial T}\right)_{P,x} = -\frac{\bar{H}_i^E}{RT^2} \tag{85}$$

As Eq. (84) e (85) avaliam o efeito da pressão e temperatura no coeficiente de atividade.

Escrevendo a Equação de GIBBS/DUHEN e a relação de soma para G^E/RT .

$$\frac{G^E}{RT} = \sum_{i} x_i \ln \gamma_i \quad (86)$$

$$T e P ctes$$

$$\sum_{i} x_i d \ln \gamma_i = 0 \quad (87)$$