Аннотация

В данной работе рассматриваются классические кубические сплайны и обобщенные сплайны, а также их приложение в задачах дифференцирования и интегрирования. Описываются сплайны, их построение, формулы для численного дифференцирования и интегрирования, включая частные случаи. А также проводятся вычислительные эксперименты интерполирования, дифференцирования и интегрирования различных функций с разными параметрами сетки.

Может быть использована для проведения лекций и практических занятий по дисциплинам «Методы сплайн-функций», «Вычислительная математика».

Содержание

Введение	5
1 Классические кубические сплайны класса С2	(
1.1 Построение	<i>(</i>
2 Обобщенные сплайны	10
2.1 Построение	10
3 Численное дифференцирование	
3.1 Асимптотические формулы	13
4 Численное интегрирование	15
4.1 Интегрирование сильно осциллирующих функций	16
5 Численные эксперименты	19
Заключение	31
Список литературы	32

Введение

В результате научных и инженерных расчетов часто приходится сталкиваться с дискретными данными, полученным опытным путем, на основании которых необходимо построить функцию. Одним из решением такой задачи является интерполяция, когда по заданным значения неизвестной функции f(x) в точках x_i , $i=0\dots N$, называемым узлами интерполяции, необходимо построить функцию, которая приближала бы искомую функцию с той или иной точностью и совпадала с f(x) в узлах интерполяции.

Классический метод решения задачи интерполяции состоит в построении интерполяционного многочлена Лагранжа. [1] Но он не всегда может гарантировать хорошее приближение интерполируемой функцией. Увеличение числа узлов приводит к увеличению степени многочлена и, следовательно, к появлению колебаний. На практике, вместо построения интерполяционного многочлена используют интерполяции кусочными многочленами. Такая функция с гладким сопряжением многочленов на соседних промежутках называется сплайном.

В настоящее время отсутствуют методические пособия, которые демонстрировали бы свойства поведения различных сплайнов в задачах дифференцирования и интегрирования. Для ее решения необходимо провести исследование поведения сплайнов на различных функция, сравнить полученные результаты и на основе этого создать методическую разработку для обучения студентов по численному интегрированию и дифференцированию сплайнами, которую можно будет применить в учебном процессе.

Целью работы является исследование кубических сплайнов, а также их приложение в задачах численного дифференцирования и интегрирования.

Для достижения поставленной цели необходимо:

- изучить теорию интерполяции сплайнами и их применение в численном дифференцировании и интегрировании;
- реализовать алгоритмы интерполяции, дифференцирования и интегрирования;
 - провести тестирование и анализ полученных результатов.

1 Классические кубические сплайны класса \mathbb{C}^2

Пусть на отрезке [a,b] задано разбиение Δ : $a=x_0 < x_1 < \cdots < x_n = b$. Функция S называется кубическим сплайном, если [2]:

- а) На каждом отрезке $[x_i, x_{i+1}]$ S является кубическим многочленом $S(x) \equiv S_i(x) = a_{i,0} + a_{i,1}(x x_i) + a_{i,2}(x x_i)^2 + a_{i,3}(x x_i)^3$
- б) Соседние многочлены гладко состыкованы между собой

$$S_{i-1}^r(x_i-0) = S_{i-1}^r(x_i+0), i = 1, ..., N-1, r = 0,1,2$$

Кубический сплайн называется интерполяционным, если выполняются условия

$$S(x_i) = f_i, i = 0, ..., N$$

Сплайн S на каждом из отрезков $[x_i, x_{i+1}]$ определяется четырьмя коэффициентами, и поэтому для его построения на всем промежутке [a,b] необходимо определить 4N коэффициентов. Условия гладкости во всех внутренних узлах сетки дают 3(N-1) равенств. Таким образом вместе с (N+1) условиями интерполяции получается 4N-2 соотношений. Два дополнительных условия задаются в виде ограничений на значения сплайна и его производных на концах промежутка [a,b] и называется краевыми условиями. Существует несколько различных видов краевых условий, из которых наиболее употребительными считаются следующие типы [1]:

I.
$$S'(a) = f'(a)$$
, $S'(b) = f'(b)$
II. $S''(a) = f''(a)$, $S''(b) = f''(b)$
III. $S^{(r)}(a) = S^{(r)}(b)$, $r = 1,2$

Условия типа III называются периодическими. Рассматривая эти условия в дальнейшем, будем подразумевать, что f(x) – периодическая функция с периодом b-a.

1.1 Построение

Введем обозначение

$$S'(x) = m_i, i = 0, ..., N$$
 (1)

Учитывая условия интерполяции и (1), для вычисления $a_{i\alpha}$, $\alpha = 0,1,2,3$, при каждом i имеем систему уравнений.

$$S(x_i) = f_i$$
, $S(x_{i+1}) = f_{i+1}$, $S'(x_i) = m_i$, $S'(x_{i+1}) = m_{i+1}$

Решив эту систему, получаем на $[x_i, x_{i+1}]$

$$S(x)=f_i(1-t^2)(1+2t)+f_{i+1}t^2(3-2t)+m_ih_it(1-t^2)-m_{i+1}h_it^2(1-t)$$
 (2) , где $h_i=x_{i+1}-x_i$, $t=(x-x_i)/h_i$.

Отсюда получаем

$$S'(x) = 6t(1-t)\frac{f_{i+1} - f_i}{h_i} + (1-4t+3t^2)m_i - (2t-3t^2)m_{i+1}$$
 (3)

$$S''(x) = (f_{i+1} - f_i)(6 - 12t)/h_i^2 + m_i(-4 + 6t)/h_i + m_{i+1}(-2 + 6t)/h_i$$
 (4)

Кубический сплайн, представленный в таком виде на каждом из промежутков, непрерывен вместе со своей первой производной на [a,b]. Необходимо выбрать величины m_i , так чтобы была непрерывна и вторая производная. Так как

$$S''(x_i + 0) = 6\frac{f_{i+1} - f_i}{h_i^2} - 4m_i/h_i - 2m_{i+1}/h_i$$

$$S''(x - 0) = 6\frac{f_i - f_{i-1}}{h_{i-1}^2} + 2m_{i-1}/h_{i-1} + 4m_i/h_{i-1}$$

то условие непрерывности второй производной S''(f;x+0)=S''(f;x-0) в точках $x_i, i=1,\dots,N-1$, принимает вид

$$\lambda_i m_{i-1} + 2m_i + \mu_i m_{i+1} = 3 \left(\mu_i \frac{f_{i+1} - f_i}{h_i} + \lambda_i \frac{f_i - f_{i+1}}{h_{i-1}} \right)$$

Здесь $\mu_i = h_{i-1}(h_{i-1} + h_i)^{-1}$, $\lambda_i = 1 - \mu_i$.

К уравнениям следует добавить уравнения, вытекающие из краевых условий. Таким образом, получается система для определения N+1 неизвестных $m_i, i=0,\dots,N$.

В случае

1) краевых условий І типа получаем

$$\begin{aligned} m_0 &= f_0' \\ \lambda_i m_{i-1} + 2 m_i + \mu_i m_{i+1} &= 3 \left(\mu_i \frac{f_{i+1} - f_i}{h_i} + \lambda_i \frac{f_i - f_{i+1}}{h_{i-1}} \right), i = 1 \dots N - 1 \\ m_N &= f_N' \end{aligned}$$

2) краевых условий II типа получаем

$$2m_0 + m_1 = 3\frac{f_1 - f_0}{h_0} - \frac{h_0}{2}f_0^{\prime\prime}$$

$$\lambda_{i}m_{i-1} + 2m_{i} + \mu_{i}m_{i+1} = 3\left(\mu_{i}\frac{f_{i+1} - f_{i}}{h_{i}} + \lambda_{i}\frac{f_{i} - f_{i+1}}{h_{i-1}}\right), i = 1 \dots N - 1$$

$$m_{N-1} + 2m_{N} = 3\frac{f_{N} - f_{N-1}}{f_{N-1}} + \frac{h_{N-1}}{2}f_{N}^{"}$$

3) краевых условий III типа продолжаем периодическим образом сетку Δ и, полагая

$$f_0=f_N,\; f_1=f_{N+1},\; m_0=m_N,\; m_1=m_{N+1},\; h_0=h_N,$$
 получаем

$$\begin{split} 2m_1 + \mu_1 m_2 + \lambda_1 m_N &= 3 \left(\mu_1 \frac{f_2 - f_1}{h_1} + \lambda_1 \frac{f_1 - f_0}{h_0} \right) \\ \lambda_i m_{i-1} + 2m_i + \mu_i m_{i+1} &= 3 \left(\mu_i \frac{f_{i+1} - f_i}{h_i} + \lambda_i \frac{f_i - f_{i+1}}{h_{i-1}} \right), i = 2 \dots N \\ \mu_N m_1 + \lambda_N m_{N-1} + 2m_N &= 3 \left(\mu_N \frac{f_1 - f_0}{h_0} + \lambda_N \frac{f_0 - f_{N-1}}{h_{N-1}} \right) \end{split}$$

Существует другое представление кубического сплайна, в котором вместо величин m_i присутствуют $M_i = S''(x_i), i = 0, ..., N$.

Используя то, что на каждом промежутке сплайн представляет собой кубический многочлен, а также условия

$$S(x) = f_i,$$
 $S(x_i) = f_{i+1},$ $S''(x_i) = M_i,$ $S''(x_{i+1}) = M_{i+1}$

получим для S(x) следующую формулу:

$$S(x) = f_i(1-t) + f_{i+1}t - \frac{h_i^2}{6}t(1-t)[(2-t)M_i + (1+t)M_{i+1}],$$

$$x \in [x_i, x_{i+1}],$$

$$i = 0, 1, \dots, N_1$$

$$(5)$$

Отсюда

$$S'(x) = \frac{f_{i+1} - f_i}{h_i} - \frac{h_i}{6} [(2 - 6t + 3t^2)M_i + (1 - 3t^2)M_{i+1}], \tag{6}$$

$$S''(x) = M_i(1-t) + M_{i+1}t$$
(7)

Из (5) следует непрерывность функции, из (7) непрерывность её второй производной. Согласно (6)

$$S'(x_i + 0) = \frac{f_{i+1} - f_i}{h_i} - \frac{h_i}{6} (2M_i + M_{i+1})$$

$$S'(x_i - 0) = \frac{f_i - f_{i-1}}{h_{i-1}} + \frac{h_{i-1}}{6} (M_{i-1} + 2M_i)$$

Следовательно, чтобы была непрерывна первая производная сплайна необходимо выполнение условий:

$$\mu_i M_{i-1} + 2M_i + \lambda_i M_{i+1} = \frac{6}{h_{i-1} + h_i} \left(\frac{f_{i+1} - f_i}{h_i} - \frac{f_i - f_{i-1}}{h_{i-1}} \right), \qquad i = 1, \dots, N-1$$

Эти уравнения вместе с краевыми условиями образуют систему относительно неизвестным M_i .

В случае

1) краевых условий І рода получаем

$$\begin{split} 2M_0 + M_1 &= \frac{6}{h_0} \Big(\frac{f_1 - f_0}{h_0} - f_0' \Big) \\ \mu_i M_{i-1} + 2M_i + \lambda_i \, M_{i+1} &= \frac{6}{h_{i-1} + h_i} \Big(\frac{f_{i+1} - f_i}{h_i} - \frac{f_i - f_{i-1}}{h_{i-1}} \Big), \qquad i = 1, \dots, N-1 \\ M_{N-1} + 2M_N &= \frac{6}{h_{N-1}} \Big(f_N' - \frac{f_N - f_{N-1}}{h_{N-1}} \Big) \end{split}$$

2) краевых условий ІІ рода

$$M_0 = f_0^{\prime\prime}$$

$$\mu_i M_{i-1} + 2M_i + \lambda_i M_{i+1} = \frac{6}{h_{i-1} + h_i} \left(\frac{f_{i+1} - f_i}{h_i} - \frac{f_i - f_{i-1}}{h_{i-1}} \right), \qquad i = 1, \dots, N-1$$

$$M_N = f_N^{\prime\prime}$$

3) краевых условий III рода

$$\begin{split} 2M_1 + \lambda_1 M_2 + \mu_1 M_N &= \frac{6}{h_0 + h_1} \Big(\frac{f_2 - f_1}{h_1} - \frac{f_1 - f_0}{h_0} \Big) \\ \mu_i M_{i-1} + 2M_i + \lambda_i \, M_{i+1} &= \frac{6}{h_{i-1} + h_i} \Big(\frac{f_{i+1} - f_i}{h_i} - \frac{f_i - f_{i-1}}{h_{i-1}} \Big), \qquad i = 2, \dots, N-1 \\ \lambda_N M_1 + \mu_N M_{N-1} + 2M_N &= \frac{6}{h_{N-1} + h_0} \Big(\frac{f_1 - f_0}{h_0} - \frac{f_0 - f_{N-1}}{h_{N-1}} \Big) \end{split}$$

В дальнейшем сплайн вида (2) будем называть сплайном по наклонам, а сплайн вида (5) – сплайном по моментам.

2 Обобщенные сплайны

Если кубический сплайн не сохраняет качественные свойства, то можно воспользоваться обобщенными сплайнами.

На отрезке [a, b] введем сетку Δ : $a=x_0 < x_1 < \cdots < x_N = b$. Свяжем с сеткой систему функций $1, x, \Phi_i, \Psi_i, i=0, \ldots, N-1$, которые определены и непрерывные в R и для заданного i непрерывны на отрезке $[x_i, x_{i+1}]$. Потребуем, чтобы функции Φ_i и Ψ_i удовлетворяли условиям

$$\Phi_i^r(x_{i+1}) = \Psi_i^r(x_i) = 0, \qquad r = 0,1,2; \qquad \Phi_i''(x_i) = \Psi_i''(x_{i+1}) = 1$$

Всякий элемент S_i пространства Υ_i , образованного линейными комбинациями функций $1, x, \Phi_i, \Psi_i$, может быть единственным образом записан в виде

$$S_i(x) = [S_i(x_i) - \Phi_i(x_i)M_i](1-t) + [S_i(x_{i+1}) - \Psi_i(x_{i+1})M_{i+1}]t + \Phi_i(x)M_i + \Psi_i(x)M_{i+1}$$

Функция S называется обобщенным сплайном, если [2]:

- а) Для всякого целого $i, 0 \le i \le N$, существует единственная функция S_i из Y_i , такая что $S(x) \equiv S_i(x), x \in [x_i, x_{i+1}]$
- b) $S \in C^2[a,b]$

Функции Φ_i , Ψ_i называются определяющими функциями и зависят от параметров контроля формы. На практике полагается:

$$\Phi_{i}(x) = \phi_{i}(t)h_{i}^{2} = \psi(p_{i}, 1 - t)h_{i}^{2}$$

$$\Psi_{i(x)} = \psi_{i}(t)h_{i}^{2} = \psi(q_{i}, t)h_{i}^{2}, \qquad 0 \le p_{i}, q_{i} < \infty$$

При p_i и $q_i \to \infty$ требуется, чтобы функция S переходила в линейную функцию. Кроме того, при $p_i = q_i = 0$ требуется, чтобы мы получали стандартный кубический сплайн.

2.1 Построение

По аналогии с кубическим сплайном получаем:

$$S'(x) = \frac{f_{i+1} - f_i}{h_i} + \frac{M_i}{h_{i-1}} \left(\Phi_i(x_i) + h_{i-1} \Phi_i'(x) \right) - \frac{M_{i+1}}{h_i} \left(\Psi_i(x_{i+1}) - h_i \Psi_i'(x_{i+1}) \right)$$
$$S''(x) = \Phi_i''(x) M_i + \Psi_i''(x) M_{i+1}$$

Условие непрерывности первой производной приводит нас к:

$$\Phi_{i-1}(x_{i-1}) \frac{M_{i-1}}{h_{i-1}} - (A_i + B_i) M_i + \Psi_i(x_{i+1}) \frac{M_{i+1}}{h_i} = \left(\frac{f_{i+1} - f_i}{h_i} - \frac{f_i - f_{i-1}}{h_{i-1}}\right), i$$

$$= 1, \dots, N - 1$$

где

$$A_i = \Phi_i(x_i)/h_i + \Phi_i'(x_i), B_i = \Psi_{i-1}(x_i)/h_{i-1} - \Psi_{i-1}'(x_i)$$

В случае

1) краевых условий І типа получаем

$$\begin{split} \mathsf{M}_0\,A_0 - \frac{M_1}{h_0} \Psi_0(x_1) &= f_0' - \frac{f_1 - f_0}{h_0} \\ \Phi_{i-1}(x_{i-1}) \frac{M_{i-1}}{h_{i-1}} - (A_i + B_i) \mathsf{M}_i + \Psi_i(x_{i+1}) \frac{M_{i+1}}{h_i} &= \left(\frac{f_{i+1} - f_i}{h_i} - \frac{f_i - f_{i-1}}{h_{i-1}}\right), i \\ &= 1, \dots, N-1 \\ \frac{M_{N-1}}{h_{N-1}} \Phi_{N-1}(x_{N-1}) - M_N B_N &= f_N' - \frac{f_N - f_{N-1}}{h_{N-1}} \end{split}$$

2) краевых условий ІІ типа

$$M_{0} = f_{0}^{"}$$

$$\Phi_{i-1}(x_{i-1}) \frac{M_{i-1}}{h_{i-1}} - (A_{i} + B_{i}) M_{i} + \Psi_{i}(x_{i+1}) \frac{M_{i+1}}{h_{i}} = \left(\frac{f_{i+1} - f_{i}}{h_{i}} - \frac{f_{i} - f_{i-1}}{h_{i-1}}\right), i$$

$$= 1, \dots, N - 1$$

$$M_{N} = f_{N}^{"}$$

3) краевых условий III типа

$$(A_{1} + B_{1}) \frac{M_{1}}{h_{0}} + \Psi_{1}(x_{2}) \frac{M_{2}}{h_{1}} + \Phi_{i-1}(x_{i-1}) \frac{M_{N}}{h_{0}} = \left(\frac{f_{2} - f_{1}}{h_{1}} - \frac{f_{1} - f_{0}}{h_{0}}\right)$$

$$\Phi_{i-1}(x_{i-1}) \frac{M_{i-1}}{h_{i-1}} - (A_{i} + B_{i})M_{i} + \Psi_{i}(x_{i+1}) \frac{M_{i+1}}{h_{i}} = \left(\frac{f_{i+1} - f_{i}}{h_{i}} - \frac{f_{i} - f_{i-1}}{h_{i-1}}\right),$$

$$i = 2, \dots, N - 1$$

$$\Phi_{N-1}(x_{N-1}) \frac{M_{N-1}}{h_{N-1}} + (A_{N} + B_{N})M_{N} + \Psi_{0}(x_{1}) \frac{M_{1}}{h_{0}} = \left(\frac{f_{1} - f_{0}}{h_{0}} - \frac{f_{0} - f_{N-1}}{h_{N-1}}\right)$$

Наиболее употребительные на практике следующие определяющие функции [2]:

1) Рациональный сплайны

$$\phi_i(t) = \frac{t^3}{1 + q_i(1 - t)} \cdot \frac{1}{2(1 + q_i)(3 + q_i)}$$

2) Экспоненциальный сплайны

$$\phi_i(t) = \frac{t^3 e^{q_i(t-1)}}{6 + 6q_i + q_i^2}$$

3) Гиперболические сплайны

$$\phi_i(t) = \frac{\sinh q_i t - q_i t}{q_i^2 \sinh q_i}$$

4) Сплайны переменного порядка

$$\phi_i(t) = \frac{t^{k_i}}{k_i(k_i - 1)}, \qquad k_i = q_i + 3$$

3 ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ

Самый простой способ приближенного вычисления производной функции f(x) состоит в замене их производными интерполяционного сплайна, построенного по значениям $f_i = f(x_i)$, i = 0, ..., N, заданным на сетке Δ : $a = x_0 < x_1 < \cdots < x_N = b$.

Из представления кубического сплайна по наклонам вытекают следующие формулы численного дифференцирования:

$$S'(x) = 6t(1-t)\frac{f_{i+1} - f_i}{h_i} + (1-4t+3t^2)m_i - (2t-3t^2)m_{i+1}$$

$$S''(x) = (f_{i+1} - f_i)(6-12t)/h_i^2 + m_i(-4+6t)/h_i + m_{i+1}(-2+6t)/h_i$$

$$S'''(x) = \frac{6}{h_i^2} \left(m_{i+1} + m_i - 2\frac{f_{i+1} - f_i}{h_i} \right)$$

Из представления кубического сплайна по моментам:

$$S'(x) = \frac{f_{i+1} - f_i}{h_i} - \frac{h_i}{6} [(2 - 6t + 3t^2)M_i + (1 - 3t^2)M_{i+1}]$$

$$S''(x) = M_i(1 - t) + M_{i+1}t$$

$$S'''(x) = \frac{M_{i+1} - M_i}{h_i}$$

Теорема 1. Если S(x) интерполирует $f(x) \in C^2W^4_{\Delta,\infty}[a,b]$ и удовлетворяет краевым условиям I, II, III, тогда имеют место оценки [1]

$$\left| \left| S^{(r)}(x) - f^{(r)}(x) \right| \right|_{\infty} = O\left(\overline{h}^{4-r}\right), \qquad r = 0,1,2,3,$$

где $\overline{h} = \max_{i} h_{i}$

С практической точки зрения формулы, вытекающие из представления кубического сплайна по моментам, предпочтительные, так как они требует меньшего количества арифметических операций.

Если использовать обобщенный сплайн, то

$$S'(x) = \frac{f_{i+1} - f_i}{h_i} + \frac{M_i}{h_{i-1}} \left(\Phi_i(x_i) + h_{i-1} \Phi_i'(x) \right) - \frac{M_{i+1}}{h_i} \left(\Psi_i(x_{i+1}) - h_i \Psi_i'(x_{i+1}) \right)$$

$$S''(x) = \Phi_i''(x) M_i + \Psi_i''(x) M_{i+1}$$

$$S'''(x) = \Phi_i'''(x) M_i + \Psi_i'''(x) M_{i+1}$$

3.1 АСИМПТОТИЧЕСКИЕ ФОРМУЛЫ

Пусть кубический сплайн S(x) интерполирует периодическую функцию с периодом b-a на равномерной сетке Δ : $a=x_i=a+ih, i=0,...,N, x_N=b$. Для величин M_i имеем систему:

$$M_{i-1} + 4M_i + M_i = \frac{6}{h^2} (f_{i-1} - f_i + f_{i+1}), \qquad i = 0, ..., N$$

 $M_k = M_{N+k}, f_k = f_{N+k}, k = 0, 1$

Будем искать решение системы в виде

$$M_i = f_i^{\prime\prime} + \alpha_i h^2 f_i^{IV}.$$

Подставляя и разлагая обе части i-го уравнения по формуле Тейлора в точке x_i , находим

$$6f_i^{\prime\prime} + h^2 f_i^{IV} + (\alpha_{i-1} + 4\alpha_i + \alpha_{i+1})h^2 f_i^{IV} = 6f_i^{\prime\prime} + \frac{6}{h^2} f_i^{IV} + O(h^4)$$

Сравнивая коэффициенты при одинаковых по порядку производных, получаем следующую систему уравнений для нахождения α_i

$$\begin{array}{c} 4\alpha_1 + \alpha_2 + \alpha_N = -1/2 \\ \alpha_{i-1} + 4\alpha_i o + \alpha_{i+1} = -1/2, \quad i = 2, \dots N-1 \\ \alpha_1 + \alpha_{N-1} + 4\alpha_N = -1/2 \end{array}$$

, которая имеет единственное решение $a_i = -1/12, i = 1, ..., N$.

При таких α_i величины M_i удовлетворяют системе с точностью $O(h^4)$.

$$M_i = f_i^{"} - \frac{1}{12}h^2 f_i^{IV} + O(h^4), i = 0, ..., N$$
 (8)

Использую представление сплайна по моментам, (8) и разложение Тейлора в точке $x=x_i+th_i$, находим

$$S(x) = f(x) - \frac{u^2 h^4}{24} f^{IV}(x) + O(h^6),$$

где u = t(1 - t).

Дифференцируя, имеем

$$S'(x) = f'(x) - \frac{u(1-2t)}{12}h^3 f^{IV}(x) + O(h^5)$$

$$S''(x) = f''(x) - \frac{1-6u}{12}h^2 f^{IV}(x) + O(h^4)$$

$$S'''(x) = f'''(x) - \frac{1-2t}{2}h f^{IV}(x) + O(h^3)$$

Эти формулы дают исчерпывающую характеристику погрешности приближения кубическим периодическим сплайном [1].

Все полученные формулы могут быть распространены на случай, когда f(x) непериодическая. Для этого достаточно краевые условия для сплайна задавать в асимптотическом виде [4].

Разложив M_{i-1} и M_{i+1} по формуле Тейлора в точке x_i , заметим следующие соотношения для численного дифференцирования

$$\frac{M_{i+1} + 10M_i + M_{i-1}}{12} = f_i^2 + O(h^4)$$

$$\frac{M_{i+1} - M_{i-1}}{2h} = f_i^3 + O(h^3)$$

$$\frac{M_{i+1} - 2M_i + M_{i+1}}{h^2} = f_i^{IV} + O(h^4)$$

, которые позволяют найти производные f_i^2 , f_i^3 с повышенной точностью. Неожиданным является последний результат, мы получили аппроксимацию четвертой производной с очень высокой точностью, несмотря на то что $S^{IV}(x)=0$ почти всюду на [a,b].

4 ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ

Наиболее простой способ получения формул численного интегрирования для интеграла

$$\int_{a}^{b} f(x) dx$$

основан на аппарате интерполирования. При этом функция f(x) заменяется некоторым интерполяционным сплайном S(x) и в качестве приближенного значения интеграла берется величина

$$\int_a^b S(x)dx.$$

Если для S(x) используется представление через наклоны, то получаем

$$\int_{a}^{b} S(x)dx = \frac{1}{2} \sum_{i=0}^{N-1} h_{i}(f_{i} + f_{i+1}) + \frac{1}{12} \sum_{i=0}^{N-1} (m_{i} - m_{i+1})h_{i}^{2}.$$

На равномерной сетке сумма в правой части упрощается, и формула приобретает вид

$$\int_{a}^{b} S(x)dx = \frac{h}{2}f_{0} + h\sum_{i=0}^{N-1} f_{i} + \frac{h}{2}f_{N} + \frac{h^{2}}{12}(m_{0} - m_{N}).$$

Если же f(x) – периодическая с периодом b-a, то формула выглядит следующим образом:

$$\int_a^b S(x)dx = h \sum_{i=0}^{N-1} f_i.$$

Эта формула совпадает с формулой трапеций.

Если для S(x) используется представление через моменты, то

$$\int_{a}^{b} S(x)dx = \frac{1}{2} \sum_{i=0}^{N-1} h_{i}(f_{i} + f_{i+1}) - \frac{1}{24} \sum_{i=0}^{N-1} h_{i}^{3}(M_{i} + M_{i+1})$$

На равномерной сетке имеем:

$$\int_{a}^{b} S(x)dx = \frac{5h}{12}(f_0 + f_N) + \frac{13}{12}h(f_1 + f_{N-1})z + h\sum_{i=2}^{N-2} f_i$$
$$-\frac{h^3}{72}(2M_0 + M_1 + M_{N-1} + 2M + N)$$

Если f(x) интерполируется обобщенными сплайнами, получаем

$$\int_{a}^{b} S(x)dx = \frac{1}{2} \sum_{i=0}^{N-1} h_{i} (f_{i} - \Phi_{i}(x_{i})) + \frac{1}{2} \sum_{i=0}^{N-1} h_{i} (f_{i+1} - \Psi_{i}(x_{i})) - \sum_{i=0}^{N-1} \Phi_{i}(x_{i}) M_{i} + \sum_{i=0}^{N-1} \Psi_{i}(x_{i+1}) M_{i+1}$$

Погрешность вычисления интеграла можно оценить следующим образом:

$$\left| \int_{a}^{b} f(x) dx - \int_{a}^{b} S(x) dx \right| \le \int_{a}^{b} |S(x) - f(x)| dx \le (b - a) \left| |S(x) - f(x)| \right|_{c}$$

Следовательно, достаточно иметь оценку погрешности приближения функции f(x) сплайном S(x). Более точные оценки можно получить, если привлечь поточечные оценки для погрешности |S(x) - f(x)|.

4.1 Интегрирование сильно осциллирующих функций.

Если необходимо вычислить интегралы вида

$$\int_{a}^{b} \cos \alpha x \, f(x) dx,\tag{9}$$

или

$$\int_{a}^{b} \sin \alpha x \, f(x) dx,\tag{10}$$

при больших значения α , то применение квадратурных формул, основанных на замене сплайном всей подынтегральной функции, потребует большого числа узлов. Более удобные формулы получаются, когда функции $\cos \alpha x$, $\sin \alpha x$ рассматривать как весовые, а сплайном приближать только f(x) [1]. Используя для S(x) представление через моменты, получаем

$$\int_{a}^{b} e^{i\alpha x} S(x) dx
= \frac{i e^{i\alpha x_{0}}}{\alpha} \left(f_{0} - \frac{1}{\alpha^{2}} M_{0} \right) - \frac{i e^{i\alpha x_{n}}}{\alpha} \left(f_{N} - \frac{1}{\alpha^{2}} M_{N} \right) + \frac{1}{\alpha^{2}} (\Sigma_{1} + \Sigma_{2})
- \frac{1}{\alpha^{4}} \sum_{k=0}^{N-1} \frac{e^{i\alpha x_{k+1} - e^{i\alpha x_{k}}}}{h_{k}} (M_{k+1} - M_{k}),$$

где

$$\Sigma_{1} = \frac{1}{6} \sum_{k=0}^{N-1} h_{k} \left[e^{iax_{k}} (2M_{k} + M_{k+1}) + e^{iax_{k+1}} (M_{k} + 2M_{k+1}) \right]$$

$$\Sigma_{2} = \sum_{k=0}^{N-1} \frac{f_{k+1} - f_{k}}{h_{k}} \left(e^{iax_{k+1}} - e^{iax_{k}} \right)$$

Так как

$$\sum_{k=0}^{N-1} h_k e^{iax_{k+1}} (M_k + 2M_{k+1}) = \sum_{k=1}^{N-1} h_{k-1} e^{iax_k} (M_{k-1} + 2M_k) + h_{N-1} e^{iax_N} (M_{N-1} + 2M_N),$$

$$\sum_{k=0}^{N-1} \frac{f_{k+1} - f_k}{h_k} e^{iax_{k+1}} = \sum_{k=1}^{N-1} \frac{f_k - f_{k-1}}{h_{k-1}} e^{iax_k} + \frac{f_N - f_{N-1}}{h_{N-1}} e^{iax_N},$$

то $\Sigma_1 + \Sigma_2$ приводятся к виду

$$\begin{split} \Sigma_1 + \Sigma_2 &= e^{iax_0} \left[\frac{h_0}{6} (2M_0 + M_1) - \frac{f_1 - f_0}{h_0} \right] \\ &+ e^{iax_N} \left[\frac{h_{N-1}}{6} (M_{N-1} + 2M_N) + \frac{f_N - f_{N-1}}{h_{N-1}} \right] \end{split}$$

Витоге

$$\begin{split} \int_{a}^{b} e^{iax} S(x) dx \\ &= -\frac{1}{\alpha^{4}} \sum_{k=0}^{N-1} \frac{e^{iax_{k+1}} - e^{iax_{k}}}{h_{k}} (M_{k+1} - M_{k}) + e^{iax_{0}} (A + iC) \\ &+ e^{iax_{N}} (B + iD), \end{split}$$

где

$$A = \frac{1}{\alpha^2} \left[-\frac{f_1 - f_0}{h_0} + \frac{h_0}{6} (2M_0 + M - 1 - 1) \right], \qquad C = \frac{1}{\alpha} \left(f_0 - \frac{1}{\alpha^2} M_0 \right)$$

$$B = \frac{1}{\alpha^2} \left[\frac{f_N - f_{N-1}}{h_{N-1}} + \frac{h_{N-1}}{6} \left(2M_{N-1} + M_N - 1 \right) \right], \qquad D = \frac{1}{\alpha} \left(\frac{1}{\alpha^2} M_N - f_N \right)$$

Выделяя действительную и мнимую части, получим формулы

$$\int_{a}^{b} \cos \alpha x \, S(x) dx$$

$$= -\frac{1}{\alpha^{4}} \sum_{k=0}^{N-1} \frac{\cos \alpha x_{k+1} - \cos \alpha x_{k}}{h_{k}} (M_{k+1} - M_{k}) + A \cos \alpha x_{0} - C \sin \alpha x_{0}$$

$$+ B \cos \alpha x_{N} - D \sin \alpha x_{N}$$

$$\int_{a}^{b} \sin \alpha x \, S(x) dx$$

$$= \frac{1}{\alpha^{4}} \sum_{k=0}^{N-1} \frac{\sin \alpha x_{k+1} - \sin \alpha x_{k} \, h_{k}}{h_{k}} (M_{k+1} - M_{k}) + A \sin \alpha x_{0} + C \cos \alpha x_{0}$$

$$+ B \sin \alpha x_{N} + D \cos \alpha x_{N}$$

Оценим погрешность вычисления интегралов

$$\left| \int_{a}^{b} \cos \alpha x \, S(x) dx - \int_{a}^{b} \cos \alpha x \, f(x) dx \right| \le (b-a) \left| |S_{1}(x) - f(x)| \right|_{C}$$

Такая же оценка получается и для (10).

5 Численные эксперименты

В численных экспериментах мы будем интерполировать функцию с помощью сплайнов, затем дифференцировать и интегрировать их. Для каждого эксперимента будет представлена таблица с погрешностями в точках, представляющих наибольший интерес. Штриховой линией изображена интерполируемая функция, сплошной — интерполянт. В таблицах будут использоваться следующие обозначения:

- 1) S_3 кубический сплайн
- 2) S_R рациональный сплайн
- 3) S_e экспоненциальный сплайн
- 4) S_h гиперболический сплайн
- 5) S_{vp} сплайн переменного порядка
- 6) $S_{3_{\text{осц}}}$ интеграл от сплайна по формуле для сильно осциллирующих функций

Для начала рассмотрим функцию

$$f(x) = 2x^3 + 3x^2, x \in [-2,1]$$

Рисунок 1 – графики функции и кубического сплайна

Таблица 1 - погрешность интерполяции классическим кубическим сплайном

Точка	-1.9	-1.4	-1.1	-0.7	-0.2	0.3	0.7
Погрешность	1e-15	0	4.4e-16	4.4e-16	4.4e-16	8.8e-16	0

Рисунок 2 – графики производной функции и сплайна

Таблица 2 - погрешность производной классического кубического сплайна

Точка	-1.9	-1.4	-1.1	-0.7	-0.2	0.3	0.7
Погрешность	1e-15	3e-16	1e-16	0	2e-16	5e-17	0

Рисунок 3 – графики второй производной функции и сплайна

Таблица 3 - погрешность второй производной классического кубического сплайна

Точка	-1.9	-1.4	-1.1	-0.7	-0.2	0.3	0.7
Погрешность	3e-15	5e-15	8e-15	5e-15	3e-15	7e-15	9e-15

$$\int_{-2}^{1} f(x) \, dx = 1.5$$

Таблица 4 - Сравнительная таблица интеграла от функции и интеграла от кубического классического сплайна

	S_3
Значение	1.5
Погрешность	0

ыС данной функцией крайне хорошо справился классический кубический сплайн, поэтому нет смысла использовать обобщенные сплайны.

Рассмотрим функцию с большим градиентом в конце интервала

$$f(x) = 1 - \frac{e^{-100x} - e^{-100x}}{e^{100} - e^{-100}}, x \in [0,1]$$

на двух сетках с постоянным шагом. Δ_1 — первая сетка, 10 точек, Δ_2 — вторая сетка, 40 точек.

Рисунок 4 — графики функции и сплайнов на сетке Δ_1

Рисунок 5 — графики функции и кубического сплайна на сетке Δ_2 Графики остальных сплайнов в масштабе рисунка соответствуют экспоненциальному сплайну на сетке Δ_1 .

Таблица 5 - погрешности интерполяции функции различными сплайнами

Сетка	Функция				Значен	ие х		
CCIKa	Функция	0.91	0.96	0.97	0.98	0.99	0.995	0.997
-	f	0.99987	0.98168	0.95021	0.86466	0.63212	0.39346	0.25918
	$ f-S_3 $	0.83224	4.40780	4.15374	3.32932	1.90228	0.99090	0.60044
Λ	$ f-S_R $	0.00019	0.04672	0.07694	0.10578	0.10033	0.06455	0.04167
Δ_1	$ f - S_e $	0.00054	0.00041	0.00364	0.00718	0.00749	0.00477	0.00305
	$ f-S_h $	6e-6	6e-6	4e-6	2e-6	1e-6	6e-7	4e-7
	$ f - S_{vp} $	0.00197	0.00166	0.00942	0.02359	0.02689	0.01747	0.01121
	$ f-S_3 $	0.00043	0.01350	0.02498	0.02852	0.09256	0.06613	0.04303
Λ	$ f-S_R $	7e-5	0.00021	0.00052	0.00105	0.00190	0.00102	0.00062
Δ_2	$ f - S_e $	7e-5	0.00037	0.00043	0.00065	0.00699	0.00669	0.00469
	$ f-S_h $	7e-5	0.00072	6e-5	0.00155	0.00632	0.00471	0.00310
	$ f - S_{vp} $	7e-5	0.00061	0.00226	0.00182	0.00659	0.00840	0.00615

Рисунок 6 – графики производных функции и кубического сплайна на сетке Δ_1

Рисунок 7 — графики производных функции и кубического сплайна на сетке Δ_2 Таблица 6 - погрешности производной сплайнов

Сетка	Функция	Значение х						
CCIKa	Функции	0.91	0.96	0.97	0.98	0.99	0.995	0.997
-	f'	-0.0123	-1.8315	-4.97870	-13.53352	-36.78793	-60.65306	-74.08182
	$ f'-S'_3 $	91.649	0.32775	52.70951	112.85784	170.82532	192.26567	197.83541
4	$ f'-S'_R $	0.0005	2.67124	3.24071	2.01716	4.31479	10.21340	12.61579
Δ_1	$ f'-S'_e $	0.0703	0.25769	0.37222	0.27721	0.31399	0.77696	0.93935
	$ f'-S'_h $	0.0003	0.00012	0.00012	0.00012	0.00012	0.00012	0.00012
	$ f'-S'_{vp} $	0.2251	0.80183	1.38180	1.22233	0.98232	2.79663	3.43469
	$ f'-S'_3 $	0.1600	2.23108	0.90764	9.69886	0.47474	9.96663	12.98737
_	$ f'-S'_R $	0.0238	0.01827	0.01981	0.33075	0.13956	0.19426	0.20142
Δ_2	$ f'-S'_e $	0.0237	0.06335	0.04315	0.33578	0.47958	0.71627	1.27380
	$ f'-S'_h $	0.0237	0.05858	0.14610	0.61038	0.03354	0.67983	0.92157
	$ f'-S'_{vp} $	0.0237	0.17554	0.02456	0.28037	1.14297	0.66248	1.57289

Рисунок 7 — графики вторых производных функции и кубического сплайна на сетке Δ_1

Рисунок 8 — графики вторых производных функции и кубического сплайна на сетке Δ_2

Таблица 6 - погрешности второй производной сплайнов

Сетка	Функция		Значение х							
CCIKa	Функция	0.91	0.96	0.97	0.98	0.99	0.995	0.997		
-	f''	-1.2340	-183.156	-497.870	-1353.35	-3678.79	-6065.30	-7408.18		
	$ f''-S''_3 $	1268.09	4809.348	5746.507	6142.899	5069.3316	3308.7564	2216.2556		
_	$ f''-S''_R $	8.5178	86.5428	4.87704	306.16972	1020.1575	1259.5326	1097.1743		
Δ_1	$ f'' - S''_e $	1.76359	14.53158	5.37147	29.9008	87.62761	89.37523	70.21590		
	$ f''-S''_h $	0.04564	0.00030	0.00011	4e-5	1e-5	6e-6	4e-6		
	$\left f^{\prime\prime}-S^{\prime\prime}_{vp}\right $	3.38028	62.64633	40.67894	97.85091	340.94321	351.35573	275.60804		
	$ f^{\prime\prime}-S^{\prime\prime}_3 $	7.10430	45.1941	634.151	229.615	1883.07	1715.62	1260.37		
_	$ f''-S''_R $	1.23237	2.35370	12.4669	24.6464	24.6583	3.27877	4.43654		
Δ_2	$ f'' - S''_e $	1.23409	8.22580	5.87264	99.14774	155.5121	289.8989	254.2294		
	$ f''-S''_h $	1.23408	24.00067	5.07100	50.60015	134.96353	134.95504	102.80132		
	$ f'' - S''_{vp} $	1.23409	25.37412	76.86987	252.58117	189.50589	469.45333	417.35198		

Для экспериментов с асимптотическими формулами введем еще 2 сетки, на которых кубический сплайн не будет давать выбросов: Δ_3 – 50 точек, Δ_4 – 100 точек. Введем обозначения: S''_{la} – значение, полученное с помощью асимптотических формул, S''_i – значение сплайна, $\delta^2 f_i$ – вторая центральная разность.

Таблица 7 - норма второй производной сплайнов в узлах сетки

Сетка		Значения x			
Cerka		[0, 0.9]	[0.9, 1]		
	$ S_{i_a}^{\prime\prime} $	0.093853	137.94339		
Δ_3	$ S_i'' $	0.21112	515.75984		
	$ \delta^2 S_i $	0.0234150	239.87305		
Λ.	$ S_{i_a}^{\prime\prime} $	0.00049	14.7666		
Δ_4	$ S_i'' $	0.01439	287.43633		
	$ \delta^2 S_i $	0.0134	316.9695		

$$\int_0^1 f(x)dx = 0.99$$

Таблица 8 - погрешности интегралов от сплайнов

Сетка	S_3	S_R	S _e	S_h	S_{vp}
Δ_1	0.113975	0.00373	0.00013	1e-10	0.00072
Δ_2	0.00057	0.00003	0.00007	0.00008	0.00003

В этом эксперименте на первой сетке худший результат показал классический кубический сплайн, он дал неприемлемые осцилляции. Благодаря удачному выбору параметров контроля формы гиперболический сплайн приблизил функцию с малой погрешностью. При уменьшении шага не удалось сохранить такую же точность гиперболического сплайна, а остальные сплайны, за исключением рационального, практически не изменились.

Рассмотрим осциллирующую функцию $f(x) = cos(10x)x^2$ на отрезке [0, $\frac{9\pi}{20}$]. Проинтегрируем ее на трех сетках с равномерным шагом: Δ_2 - 9 точек, Δ_3 — 14 точек и сравним с формулой интегрирований сильно осциллирующих функций на сетке с 3 узлами.

Рисунок 9 – графики функции и кубического сплайна на разных сетках

$$\int_{0}^{9\pi/20} f(x)dx = 0.19785$$

Таблица 9 - погрешности интеграла от сплайнов

Сетка	S_3	$\mathcal{S}_{3_{ m ocu}}$
Δ_1	0.36420	4e-16
Δ_2	0.02301	4e-16
Δ_3	0.00494	4e-16

Таблица 10 - норма второй производной сплайнов в узлах сетки

Сетка		Значения х
Cerka		$[0, 9\pi/20]$
	$ S_{i_a}^{\prime\prime} $	2.28468
Δ_2	$ S_i'' $	41.02431
	$ \delta^2 S_i $	28.56901
Δ	$ S_{i_a}^{\prime\prime} $	0.76964
Δ_3	$ S_i'' $	19.38434
	$ \delta^2 S_i $	17.84504

При использовании формулы для интегрирования сильно осциллирующих функций мы получили хорошее приближение интеграла функции, благодаря тому что приближаем x^2 , а cos(10x) считаем весовой. Даже при большом количестве точек не удалось достигнуть такой же точности при замене f(x) сплайном.

Рассмотрим теперь функцию

$$f(x) = |\cos 3x|, x \in \left[0, \frac{\pi}{3}\right]$$

и интерполируем ее с помощью сплайнов. Рассмотрим задачу на двух сетках: Δ_1 — 9 точек и Δ_2 — 21 точка с равномерным шагом.

Рисунок 10 – графики функции и сплайнов на сетке Δ_1

Рисунок 11 — графики функции и сплайнов на сетке Δ_2

Значение х Сетка Функция 0.5 0.3 0.350.42 0.45 0.47 0.48 0.62160 0.49757 0.30581 0.21900 0.16010 0.13042 0.07073 $|f - S_3|$ 0.01046 0.01758 0.02726 0.05687 0.066550.06596 0.05037 Δ_1 $|f - S_R|$ 0.00019 0.00330 0.00294 0.00340 0.00296 0.00174 0.00384 Δ_2 $|f - S_3|$ 0.00016 5e-5 0.003420.007340.004120.01479 0.029580.00029 $|f - S_R|$ 6e-6 0.00012 0.00027 0.00012 0.00029 2e-6

Таблица 11 – погрешности интерполяции функции различными сплайнами

Рисунок 12 — графики производных функции и сплайнов на сетке Δ_1

Рисунок 13 — графики производных функции и сплайнов на сетке Δ_2 Таблица 12 - погрешности производной функции

Сетка	Функция	Значение х							
		0.3	0.35	0.42	0.45	0.47	0.48	0.5	
-	f'	-2.3499	-2.60226	-2.85627	-2.92717	-2.96130	-2.97437	-2.99248	
Δ_1	$ f'-S'_3 $	0.28206	0.08305	1.09824	0.76041	0.15058	0.26966	1.34077	
	$ f'-S'_R $	0.05272	0.01519	0.06721	0.00368	0.03781	0.05088	0.06899	
Δ_2	$ f'-S'_3 $	0.02067	0.06079	0.29408	0.18974	0.98219	1.08792	0.13141	
	$ f'-S'_R $	0.00071	0.00229	0.01108	0.00714	0.02349	0.01041	0.00769	

Рисунок 14 — графики вторых производных функции и сплайнов на сетке Δ_1

Рисунок 15 — графики вторых производных функции и сплайнов на сетке Δ_2 Таблица 13 - погрешности второй производной функции

Сетка	Функция	Значение х							
CCIKa		0.3	0.35	0.42	0.45	0.47	0.48	0.5	
-	f''	-5.5944	-4.47813	-2.75235	-1.97106	-1.44093	-1.17381	-0.63663	
Δ_1	$ f''-S''_3 $	2.17297	12.45075	0.28244	22.8011	38.18096	45.86879	61.24155	
	$ f''-S''_R $	0.39809	2.33747	2.75235	1.97106	1.44093	1.17381	0.63663	
Δ_2	$ f''-S''_3 $	0.23481	3.18574	0.48261	31.77536	30.04008	8.89343	86.75754	
	$ f''-S''_R $	0.00546	0.13042	0.01876	1.19956	1.44093	1.17381	0.63663	

Таблица 14 - норма второй производной сплайнов в узлах сетки

Сетка		Значения х		
Cerka		[0, 0.4]	$[0.4, 9\pi/20]$	
	$ S_{i_a}^{\prime\prime} $	2.84282	10.63339	
Δ_1	$ S_i'' $	5.60428	21.3108	
	$ \delta^2 S_i $	0.10630	0.04403	
Δ_2	$ S_{i_a}^{\prime\prime} $	1.90915	26.5909	
Δ2	$ S_i'' $	3.82670	53.18484	
	$ \delta^2 S_i $	0.00839	0.00289	

Кубический сплайн не "уловил" разрыв первой производной, но с помощью рационального сплайна удалось увеличить точность на этом участке. Асимптотические формулы на всем промежутке дали значения производной в узлах хуже, чем конечная разность из-за разрыва производной.

ЗАКЛЮЧЕНИЕ

В данной работы было проведено исследование классического кубического и обобщенных сплайнов в задачах интерполирования, дифференцирования и интегрирования. На основании полученных результатов можно сделать вывод, что на функциях с большим градиентом кубический сплайн дает осцилляции при малом количестве точек. Чтобы избежать этого можно или увеличить количество точек сетки, или использовать обобщенные сплайны. При правильном подборе параметров контроля формы обобщенных сплайнов мы избавляемся от ненужных выбросов. При интегрировании сильно осциллирующих функций удобно использовать соответствующую формулу. Если нам необходимо получить значения производных в узлах сетки и важна точность, асимптотические формулы обладают преимуществом перед разностными формулами.

Список литературы

- 1. Завьялов, Ю. С. Методы сплайн-функций / Ю. С. Завьялов, Б. И. Квасов, В. Л. Мирошниченко М. : Наука. Главная редакция физико-математической литературы, 1980.-352 с.
- 2. Квасов, Б. И. Методы изогеометрической интерполяции М. : Физматлит. $2006.-360~\mathrm{c}.$
- 3. Богданов, В. В., Волков Ю. С. Выбор параметров обобщённых кубических сплайнов при выпуклой интерполяции // Сибирский журнал вычислительной математики / РАН. Сибирское отделение. Новосибирск, 2006. Т.9, №1. С. 5 22.
- 4. Киндалев Б.С., Асимтотические формулы для сплайна пятой степени и применение // Методы сплайн-функций (вычислительные системы). Новосибирск, 1981. № 87. С. 18 24.