

Points de vue UML

+

13 Diagrammes pour 3 points de vue complémentaires

Statique Dynamique Fonctionnel

Diagramme de package	Diagramme de séquence	Diagramme de cas d'utilisation
Diagramme de classes	Diagramme de communication	
Diagramme d'objet	Diagramme de Timing	
Diagramme de déploiement	Diagramme d'activités	
Diagramme de composants	Diagramme d'états-transitions	
Diagramme de structure composite	Diagramme de vue générale d'interactions	

présenté par I.Sarr Introduction à l'UML

USE CASE

Objectifs Pourquoi conceptualiser

Concepts de base : Acteurs

Concepts de base : Cas d'utilisation

ACTEUR

C'est quoi?

- utilisateur humain, dispositif matériel ou autre système qui interagit directement avec le système étudié
- Consulter/Modifier l'état du système en émettant/recevant un message

Comment les identifier?

- les utilisateurs humains directs : identifier tous les profils possibles, sans oublier l'administrateur, l'opérateur de maintenance, etc. ;
- tout autre système qui interagit directement avec le système étudié

Objectifs Pourquoi conceptualiser

Concepts de base : Acteurs

Concepts de base : Cas d'utilisation

ACTEUR

Comment les représenter?

RÙle de l'acteur

<acteur>>
Nom de l'acteur

Objectifs
Pourquoi conceptualiser
Concepts de base : Acteurs

CAS D'UTILISATION

Concepts de base : Cas d'utilisation

C'est quoi?

-Représente une séquence d'actions qui sont réalisées par le système et qui produisent un résultat intéressant pour un acteur particulier.

-un cas d'utilisation spécifie un comportement attendu du système

Comment les identifier?

- -Se placer du point de vue de chaque acteur identifié et identifier les différentes intentions métier avec lesquelles il utilise le système
- -Nommez les cas d'utilisation par un verbe à l'infinitif suivi d'un complément

Objectifs Pourquoi conceptualiser Concepts de base : Acteurs

■ CAS D'UTILISATION

Concepts de base : Cas d'utilisation

Comment les représenter?

Nom du cas Liste de propriÈtÈs

Nom du cas

Liste de propriÈtÈs

Porteur de carte non client

+Acteur secondaire

- Un acteur peut être:
 - **Principal** : Il initie le cas d'utilisation par ses sollicitations et obtient un résultat observable du système.
 - Secondaire : Il est sollicité pour des informations complémentaires.

Relations entre acteurs

- Une seule relation possible entre 2 acteurs : **généralisation**.
- Un acteur A est une généralisation d'un acteur B si A peut être substitué par B.

Dans ce cas, tous les cas d'utilisation accessibles à A le sont aussi à B, mais
 l'inverse n'est pas vrai.

Logiciel de gestion de candidats

■ Exemple:

Secrétaire généralise Responsable filière

Relations entre cas d'utilisation

- Les cas d'utilisations peuvent comporter les relations suivantes:
 - Une relation d'inclusion : formalisée par une flèche pointillée stéréotypée par « include»
 - Une relation d'extension : formalisée par une flèche pointillée stéréotypée par « extend »
 - Une relation de généralisation/spécialisation: formalisée par une flèche à trait plein dont la pointe est un triangle fermé.

Relation d'inclusion

■ Relation d'inclusion:

permet de factoriser une partie de la description d'un cas d'utilisation qui serait commune à d'autres cas d'utilisations.

- Un cas A inclut (utilise) un cas B si :
 - A contient aussi le comportement décrit dans le cas B
 - une instance de A va engendrer une instance de B et l'exécuter,
 - A dépend de B,
 - B n' existe pas tout seul et A n' existe pas sans B

Exemple

Relation d'extension

- précise qu'un cas d'utilisation peut dans certains cas inclure optionnellement le comportement d'un autre cas.
- L'extension peut intervenir à un point précis du cas étendu appelé "point d'extension" ;
- Une extension est souvent soumise à une condition.
- Le cas B étend le cas A signifie que:
 - Une instance de A peut engendrer une instance de B et l'exécuter sous certaines conditions.
 - · B dépend de A.
 - B n'existe pas tout seul et A existe sans B.

Exemple

exemple d'une banque ou la vérification du solde n'intervient que si la demande de retrait d'argent dépasse 20 euros.

+

Généralisation/Spécialisation

précise qu'un cas d'utilisation est un cas particulier d'un autre cas plus particulier.

+

Quelques détails supplémentaires

Identification des acteur

■ Pour trouver les acteurs d'un système, il faut identifier les différents rôles que vont devoir jouer ses utilisateurs.

- Il faut se poser les questions suivantes:
 - qui utilisera les fonctionnalités principales du système?
 - qui aura besoin du système pour achever les tâches qui lui sont dédiées ?
 - qui aura besoin de maintenir, administrer et laisser le système fonctionner?
 - Avec quels systèmes le système interagit ?
 - qui est intéressé par les résultats retournés par le système?

Comment identifier les cas d'utilisation

- Pour identifier les cas d'utilisation, il faut
 - se placer du point de vue de chaque acteur
 - et déterminer comment et surtout pourquoi il se sert du système.
 - Pour chaque acteur identifié, on pose les questions suivantes :
 - Quelles sont les fonctions principales que l'acteur exige du système? (trouver les cas d'utilisation de base).
 - Si le cas d'utilisation de base est complexe, on peut se questionner sur les sousfonctionnalités. Cette question permet d'identifier les cas d'utilisation associés à ceux de base par les relations «include» ou «extend»

Ressources additionnelles

https://openclassrooms.com/en/courses/2035826-debutez-lanalyselogicielle-avec-uml

■ https://openclassrooms.com/en/courses/4055451-modelisez-implementez-et-requetez-une-base-de-donnees-relationnelle-avec-uml-et-sql/4457193-apprehendez-les-objets-et-le-modele-relationnel

présenté par I.Sarr Introduction à l'UML

QUESTIONS ??