Ve492: Introduction to Artificial Intelligence

Hidden Markov Models II

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, AIMA, UM, CMU

Today

- Quick Review of (H)MM
- Particle Filtering
- Viterbi Algorithm for Most Likely Explanation
- * Dynamic Bayesian Network

Markov Chain

$$(X_1)$$
 \longrightarrow (X_2) \longrightarrow (X_3) \longrightarrow (X_4) \longrightarrow (X_4)

- * You know transition probabilities, $P(X_t \mid X_{t-1})$, and $P(X_4)$.
- * Write an equation to compute $P(X_5)$.

$$P(X_5) = \sum_{x_4} P(x_4, X_5)$$

$$= \sum_{x_4} P(X_5 \mid x_4) P(x_4)$$

- * More generally: $P_{t+1} = T^{\mathsf{T}} P_t$ where $P_t = P(X_t)$
- * Stationary distribution: $P_{\infty} = T^{\dagger}P_{\infty}$

HMM, Filtering, Forward Algorithm

Filtering: What is the current state, given all evidence?

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t})$$
Normalize Update Predict
$$f_{1:t+1} = \text{FORWARD}(f_{1:t}, e_{t+1})$$

Query: What is the current state, given all of the current and past evidence?

Query: What is the current state, given all of the current and past evidence?

Query: What is the current state, given all of the current and past evidence?

Query: What is the current state, given all of the current and past evidence?

Particle Filtering

Quiz: Algorithms for Filtering

- Which algorithms can be applied to the filtering task?
 - Variable elimination
 - Prior sampling
 - Rejection sampling
 - Likelihood weighting
 - Gibbs sampling

Limitations of Current Algorithms

- Exact inference infeasible if state space is large or continuous
 - * e.g., when |X| is more than 10° or so (tracking 3 ghosts in a 10x20 world)
 - e.g., robot localization
- Previous sampling methods do not exploit the temporal structure of an HMM

Particle Filtering

* PF = approximate inference for filtering task

- Principle of Particle Filtering
 - * Track samples of X_{t} , not all values
 - * Samples are called particles
 - Time per step is linear in the number of samples
 - * But: number needed may be large
 - In memory: list of particles, not states

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- * Our representation of P(X) is now a list of N particles (samples)
 - * Generally, N << |X|
 - * Storing map from X to counts would defeat the point
- * P(x) approximated by number of particles with value x
 - * So, many x may have P(x) = 0!
 - More particles, more accuracy
- * For now, all particles have a weight of 1
- * In PF, a set of samples approximates $f_{1:t}(X_t) = P(X_t | e_{1:t})$

Particles:

(3,3)

(2,3)

(3,3)

(3,2)

(3,3)

(3,2)

(1,2)

(3,3)

(3,3)

(2,3)

Particle Filtering: Elapse Time

- * This first step captures the passage of time
- * Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- * This is like prior sampling samples' frequencies reflect the transition probabilities
- * Here, most samples move clockwise, but some move in another direction or stay in place
- * New particles approximates: $\sum_{x_t} P(X_{t+1} | x_t) f_{1:t}(x_t)$
- Consistency: If enough samples, close to exact values before and after

(3,2)

(2,2)

Particle Filtering: Observe

* Slightly trickier:

- Don't sample observation, fix it
- * Similar to likelihood weighting, weight samples based on the evidence

$$w(x) = P(e | x)$$
 $f_{1:t+1}(X) \propto w(X) \sum_{x_t} P(X | x_t) f_{1:t}(x_t)$

- * As before, the probabilities don't sum to one, since all have been weighted
- * What do they sum to?

Particles:

(3,2)

(2,3)

(3,2)

(3,1)

(3,3)

(3,2)

(1,3)

(2,3)

(3,2)

(2,2)

Particles:

(3,2) w=.9

(2,3) w=.2

(3,2) w=.9

(3,1) w=.4

(3,3) w=.4

(3,2) w=.9

(1,3) w=.1

(2,3) w=.2 (3,2) w=.9

(2,2) w=.4

Particle Filtering: Resample

- * Rather than tracking weighted samples, we resample
- * N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particles:

- (3,2) w=.9
- (2,3) w=.2
- (3,2) w=.9
- (3,1) w=.4
- (3,3) w=.4
- (3,2) w=.9
- (1,3) w=.1
- (2,3) w=.2
- (3,2) w=.9
- (2,2) w=.4

(New)

Particles:

- (3,2)
- (2,2)
- (3,2)
- (2,3)
- (3,3)
- (3,2)
- (1,3)
- (2,3)
- (3,2)
- (3,2)

Summary: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Video of Demo – Moderate Number of Particles

Video of Demo – One Particle

Video of Demo – Huge Number of Particles

Robot Localization

In robot localization:

- * We know the map, but not the robot's position
- * Observations may be vectors of range finder readings
- State space and readings are typically continuous
- * Particle filtering is a main technique

Particle Filter Localization (Laser)

[Dieter Fox, et al.]

Most Likely Explanation

Inference tasks

- * *Filtering*: $P(X_t|e_{1:t})$
 - * belief state—input to the decision process of a rational agent
- **Prediction**: $P(X_{t+k}|e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- * Smoothing: $P(X_k | e_{1:t})$ for $0 \le k < t$
 - better estimate of past states, essential for learning
- * Most likely explanation: $arg max_{X_{1:t}} P(x_{1:t} | e_{1:t})$
 - * speech recognition, decoding with a noisy channel

HMMs: MLE Queries

- HMMs defined by
 - * States X
 - * Observations *E*
 - * Initial distribution: $P(X_1)$
 - * Transitions: $P(X_t | X_{t-1})$
 - * Emissions: P(E|X)

- * New query: most likely explanation: $arg \max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
- * New method: the Viterbi algorithm

State Trellis

State trellis: graph of states and transitions over time

- * Each arc represents some transition $x_{t-1} \rightarrow x_t$
- * Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- Product of weights on a path = sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

Forward / Viterbi algorithms

Forward Algorithm (sum)

For each state at time *t*, keep track of the *total probability of all paths* to it

$$\mathbf{f}_{1:t+1} = \text{FORWARD}(\mathbf{f}_{1:t}, e_{t+1})$$

= $\alpha P(e_{t+1}|X_{t+1}) \sum_{x_t} P(X_{t+1}|x_t) \mathbf{f}_{1:t}$

Viterbi Algorithm (max)

For each state at time *t*, keep track of the *maximum probability of any path* to it

$$m_{1:t+1} = VITERBI(m_{1:t}, e_{t+1})$$

= $P(e_{t+1}|X_{t+1}) \max_{x_t} P(X_{t+1}|x_t) m_{1:t}$

Why is This True?

$$m_1[x_1] = P(e_1|x_1)P(x_1)$$

probability of best path 1: t that ends at x_t

$$m_2[x_2] = \max\{P(e_2|x_2)P(x_2|x_1 = \text{rain})m_1[x_1 = \text{rain}], P(e_2|x_2)P(x_2|x_1 = \text{sun})m_1[x_1 = \text{sun}]\}$$

= $\max_{x_1} P(e_2|x_2)P(x_2|x_1)m_1[x_1]$

$$m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})$$
$$= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

Now What?

 $m_N[x_N]$

probability of best path 1:N that ends at x_N

what is the last state on the most likely path?

$$\arg\max_{x_N} m_N[x_N]$$

what is the *second to last* state on the most likely path?

A Tricky Counter-Example

$$P(e_{1}|x_{1})P(x_{1}) \qquad P(e_{2}|x_{2})P(x_{2}|x_{1})$$

$$0.7 \qquad \text{sun} \qquad 0.01 \qquad \text{sun} \qquad \text{arg } \max_{x_{1}} m_{1}[x_{1}] = ? \qquad \text{sun}!$$

$$0.1 \qquad \text{rain} \qquad 0.5 \qquad \text{rain} \qquad m_{2}[x_{2}] = \max_{x_{1}} P(e_{2}|x_{2})P(x_{2}|x_{1})m_{1}[x_{1}]$$

$$m_{2}[x_{2} = \text{sun}] = \max\{0.7 \times 0.01, 0.1 \times 0.5\} = 0.05$$

$$m_{2}[x_{2} = \text{rain}] = \max\{0.7 \times 0.01, 0.1 \times 0.8\} = 0.08$$

$$\arg\max_{x_{2}} m_{2}[x_{2}] = \min$$

$$P(x_{1} = \text{sun}, x_{2} = \text{rain}, e_{1}, e_{2}) = 0.7 \times 0.01 = 0.007$$

best path 1: t that ends at $x_t \neq \text{best path 1}: N$ that goes through x_t

What do We Do?

$$P(e_{1}|x_{1})P(x_{1}) \quad P(e_{2}|x_{2})P(x_{2}|x_{1})$$

$$0.7 \quad \text{sun} \quad 0.01 \quad \text{sun} \quad \text{sun}$$

$$0.1 \quad \text{rain} \quad 0.5 \quad \text{rain}$$

$$X_{1} \quad X_{2} \quad m_{2}[x_{2}] = \max_{x_{1}} P(e_{2}|x_{2})P(x_{2}|x_{1})m_{1}[x_{1}]$$

$$m_{2}[x_{2} = \text{sun}] = \max\{0.7 \times 0.01, 0.1 \times 0.5\} = 0.05$$

$$m_{2}[x_{2} = \text{rain}] = \max\{0.7 \times 0.01, 0.1 \times 0.8\} = 0.08$$

$$\arg\max_{x_{2}} m_{2}[x_{2}] = \text{rain}$$
this path starts at rain this path starts at rain

idea: what if we also save where the best path came from?

$$m_t[x_t] = \max_{x_{t-1}} P(e_t|x_t) P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

$$a_t[x_t] = \arg\max_{x_{t-1}} P(e_t|x_t) P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

Follow the Breadcrumbs...

for t = 1 to N:

$$m_t[x_t] = \max_{x_{t-1}} P(e_t|x_t) P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

$$a_t[x_t] = \arg\max_{x_{t-1}} P(e_t|x_t) P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

last state on most likely path: $x_N^* = \arg\max_{x_N} m_N[x_N]$ second to last state on most likely path: $x_{N-1}^* = a_N[x_N^*]$ third to last state on most likely path: $x_{N-2}^* = a_{N-1}[x_{N-1}^*]$

Follow the Breadcrumbs...

for
$$t = 1$$
 to N :
$$m_{t}[x_{t}] = \max_{x_{t-1}} P(e_{t}|x_{t}) P(x_{t}|x_{t-1}) m_{t-1}[x_{t-1}]$$

$$a_{t}[x_{t}] = \arg\max_{x_{t-1}} P(e_{t}|x_{t}) P(x_{t}|x_{t-1}) m_{t-1}[x_{t-1}]$$

$$x_{N}^{\star} = \arg\max_{x_{N}} m_{N}[x_{N}]$$
for $t = N$ to 2:
$$x_{t-1}^{\star} = a_{t}[x_{t}^{\star}]$$

Viterbi Algorithm

W _{t-1}	P(W _t W _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Time complexity?
O(|X|²T)

Space complexity?
O(|X| T)

Number of paths?
O(|X|T)

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- * Variables from time *t* can condition on those from *t-1*

Dynamic Bayes nets are a generalization of HMMs

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- * **Procedure**: "unroll" the network for T time steps, then eliminate variables until $P(X_T | e_{1:T})$ is computed

 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- * A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - * Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - * Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - * Likelihood: $P(\mathbf{E_1^a} \mid \mathbf{G_1^a}) * P(\mathbf{E_1^b} \mid \mathbf{G_1^b})$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood