

Computer System- B Security

Introduction to OS Security Memory Protection

Sanjay Rawat

bristol.ac.uk

We know that...

- Modern systems allow multiple processes to run concurrently.
- Virtual memory address space is used to facilitate this
- We need to make sure that
 - A process does not access memory not allocate to it.
 - One process (malicious) does not affect the other processes, including OS.

What we do

Segmentation

refers to dividing a computer's memory into segments (code, date, ...) with specific access rights

Virtual memory

- Illusion that a process has full access to the entire memory address space
- Abstracting the memory as VM and then dividing VM into blocks
- Page table is used to translate virtual address to physical address

Intel x86 32/64

Segmentation and Paging mechanism

Fig from: Intel 64 & IA-32 Manual Vol. 3, sec 3.1

Segment based protection

Segmentation Registers

	Visible Part	Hidden Part	_
	Segment Selector	Base Address, Limit, Access Information	cs
			ss
Segment descriptor Descriptor privilege level (DPL) Current privilege level (CPL) Privilege ring 0 - 3			DS
			ES
			FS
			GS
		1	

Paging Based Protection

- Paging provides finer mapping of linear address to physical address → finer protection at page level
- Apart from mapping and swapping in/out, page entries also provide protection

32-bit page entries

Bit Position(s)	Contents			
0 (P)	Present; must be 1 to map a 4-KByte page			
1 (R/W)	Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)			
2 (U/S)	User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section 4.6)			
3 (PWT)	Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9)			
4 (PCD)	Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9)			
5 (A)	Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)			
6 (D)	Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)			
7 (PAT)	If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved (must be 0) ¹			
8 (G)	Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise			
11:9	Ignored			
31:12	Physical address of the 4-KByte page referenced by this entry			

Page level protection Summary

- Page-level protection can be used alone or with segments.
- When combined, page-level read/write protection allows more protection granularity within segments.
- The processor performs two page-level protection checks:
 - Restriction of addressable domain (supervisor and user modes).
 - Page type (read only or read/write)
- An Intel 64 or IA-32 processor with the execute-disable bit capability can
 prevent data pages from being used by malicious software to execute code
 - If the execute-disable bit of a memory page is set, that page can be used only as data.

TLB Level Protection

 The access control bits are almost same as we have for PTE.

Virtual	Phy.	valid	prot
100	250	1	r