

DUDLEY KNOX LIBEARY NAVAL POSTGRADUATE SCHOOL MONTERFY, CALIFORNIA 93943

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

MULTIPLE SENSOR TRACKING IN THE INTERIM BATTLE GROUP TACTICAL TRAINER

Ъу

Keith N. Spangenberg
March 1985

Thesis Advisor:

Rex H. Shudde

Approved for public release; distribution is unlimited

T223270

REPORT DOCUMENTATION F	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Substitle) Multiple Sensor Tracking in		5. TYPE OF REPORT & PERIOD COVERED Master's Thesis March 1985
Interim Battle Group Tactica	al Trainer	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(#)
Keith N. Spangenberg		
		The second state of the se
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Postgraduate School Monterey, California 93943		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Postgraduate School		March 1985
Monterey, California 93943		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(if different	from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/ DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		

Approved for public release; distribution is unlimited

- 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)
- 18. SUPPLEMENTARY NOTES
- 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Kalman Filter, Tracking Model, Interim Battle Group Tactical Trainer, Naval Warfare Interactive Simulation

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The thesis provides two subroutines for the Interim Battle Group Tactical Trainer (IBGTT). The first subroutine is a single sensor tracking model using the Kalman filter. This subroutine is part of the Passive Sonar Model. The second subroutine is a multiple sensor tracking model using the Kalman filter to correlate all sensor contacts on a specific target. This subroutine is a separate entity and can be turned

	20.	Continued						
		on or off at objectives.	simulation	initiation	as	required	by	training
	`							
								- 1

Approved for public release; distribution is unlimited.

Multiple Sensor Tracking in the Interim Battle Group Tactical Trainer

bу

Keith N. Spangenberg
Lieutenant, United States Navy
B.S., United States Naval Academy, 1977

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEM TECHNOLOGY (ANTISUBMARINE WARFARE)

from the

NAVAL POSTGRADUATE SCHOOL March 1985

ABSTRACT

The thesis provides two subroutines for the Interim Battle Group Tactical Trainer (IBGTT). The first subroutine is a single sensor tracking model using the Kalman filter. This subroutine is part of the Passive Sonar Model. The second subroutine is a multiple sensor tracking model using the Kalman filter to correlate all sonar contacts on a specific target. This subroutine is a separate entity and can be turned on or off at simulation initiation as required by training objectives.

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made, within the time available, to ensure that the programs are free of computational and logic errors, they cannot be considered validated. Any application of these programs without additional verification is at the risk of the user.

TABLE OF CCNTENTS

I.	INTE	RODU	CT	IOI	N .	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
II.	SING	LE	SE	NS	OR	TI	RAC	KI	N	G .	•	•	•	•	•	•	•	•	•	•	•	•		•	11
	Α.	TAR	GE	T !	10	TIC	NC	AN	A.	LY.	SI	S	(TM.	A)	MC	DE	L	•	•	•	•	•	-	11
	В.	KAL	MA	N I	FI	LTI	ER	IM	P	RO	V I	EM I	EN!	ΓS	•	•	•	•	•	•	•	•	•	•	14
	C.	KAL	MA	N]	FI	LTI	ER	MO	D.	EL		•	•	•	•	•	•	•	•	•	•	•	•	•	15
	D.	TRA	CK	QĮ	JA	LI	Υ	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
	E.	CHA	NG	ES	T	0 (ЭТН	ER		S U	ΒF	RO	UT.	I N	ES	•	•	•	•		•	•	•	•	19
		1.	S	ubı	0	uti	ine	W	A.	RC	Y (2	•	•	•	•	•	•	•	•	•	•	•	•	19
		2.	S	ubı	0	uti	ine	L	C	LP	S 1	N	•	•	•	•	•	•	•	•	•	•	•	•	20
III.	MULI	IPL	E .	SEI	NS.	OR	TB	AC	K	IN	G	•	•	•	•	•			•		•	•		•	21
	Α.	SON	ΑR	C	OR:	RE	LAT	IO	N	M	O I	Œ	L	•	•	•	•	•	•	•	•	•	•	•	21
	В.	KAL	MA	N J	FI	LTI	ER	RE	P:	LA	CI	EMI	EN!	Γ	•	•	•	•	•	•	•	•	•	•	21
	C.	KAL	M A	N I	FI	LTI	ER	MO	D.	EL		•	•	•	•	•	•	•	•	•	•	•	•	•	22
	D.	СНА	NG	ES	T	0 (ТН	ER		SU	ΒE	ROI	UT.	IN	ES	•	•	•	•	•	•	•	•	•	23
IV.	TEST	RE	SU	LT:	5	•		•	,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24
APPENDI	X A:	s S	IN	GLI	Ξ	SEI	NS C	R	M	OD:	ΕI	_	(R.	AT.	IOI	IAL	F	OF	TR	AN)	•	•	•	25
APPENDI	X B:	S	IN	GL	Ξ.	SEI	NSC	R	M	OD:	E1	<u> </u>	(5)	U C	RC	E C	OD	E)		•	•	•	•	•	3 1
APPENDI	X C:	: M	ÜĽ	TII	PL	E S	SEN	IS0	R	M	0 I	ŒJ	L	(R	AΤ	ION	AL	. F	'0 R	TR	A N)	•	•	37
APPENDI	X D:	М	U L	TI	PL:	E 5	SEN	IS0	R	M	0 I	Œ	L	(S	O U I	RCE	: c	:01	E)		•	•	•	•	48
BIBLIOG	SRAPH	Υ	•	•		•		•		•	•		•	•	•	•	•	•	•	•	•			•	60
INITIAL	DIS	TRI	BU	TI	O N	L	ISI			•	•	•		•		•			•	•	•	•	•		61

LIST OF TABLES

I	TMA	Error	Para	me	tei	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
II	TMA	Qualit	у .		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		13

I. INTRODUCTION

The Naval Ocean Systems Center has developed the Interim Battle Group Tactical Trainer/Computer Support Facility (IBGTT/CSF) as a computer-based tactical simulation system to provide a training device for senior naval officers to practice tactical decision making until such time as the Enhanced Naval Warfare Gaming System becomes available. The trainer is intended to provide interactive, multithreat, multiplatform operational situations in a simulated yet realistic operational environment so that selected officers can study, practice, and be evaluated in force-level tactical decision making.

The IBGTT training capability is implemented as a real-time, man-interactive, computer-aided (discrete event, time step) simulation of the naval warfare environment. In operation, the IBGTT supports a two-sided (BLUE vs. ORANGE) interactive scenario in which opposing sides can define, structure, and dynamically control forces ranging in size from one or more battle groups and associated aircraft, down to a single air or surface unit. Force elements and their associated characteristics, sensors, weapons, and communication systems may be derived from real, proposed, or conceptualized units or systems.

The utilization of IBGTT involves the use of the four major Naval Warfare Interactive Simulation System (NWISS) processes; BUILD, FORCE, WARGAME, and POST-GAME ANALYSIS. The BUILD process is a stand alone interactive program used to create and maintain platform, sensor, communication, and weapon characteristics in the IBGTT Characteristic Data Base. The FORCE process is a stand alone interactive program used to create and maintain an exercise scenario using the

data base created by the BUILD process. The WARGAME process is an interactive program used to accept and execute user orders; control platform motion, detections, and communications; determine engagement and other event outcomes; and display status information and tactical situations. The POST-GAME ANALYSIS process analyzes and lists critical data recorded during the exercise; supports exercise reconstruction; and tentatively evaluates some Measures of Effectiveness.

A global data area in NWISS, called the blackboard, is shared by all the major modules functioning during the exercise. It is the area where these modules interface with each other through the application of uniform naming conventions and the efficient use of memory. The blackboard is essentially comprised of numerous tables and subtables. Each table is assigned specific pointers while each subtable is assigned specific indices. The tables and subtables contain the fields (data) that are unique to that particular table or subtable. Each data item in the blackboard is referred to as a field and includes both whole words and specific bits. The field names are structured to provide the identity of the associated pointers and indices as well as the data type in the field.

Effective training at this level requires models of naval warfare interactions which provide realistic results based on an emulation of the actual warfare system. NWISS uses a wide variety of models to simulate the behavior of platforms, weapons, sensors, and communication systems. However, many of these models do not emulate the actual warfare system nor do they provide realistic results. Therefore, it is necessary to improve or replace these deficient models in order to obtain effective training and meet the objectives for which IBGTT was designed.

This thesis will address two models in particular. The first model is the Target Motion Analysis (TMA) Model which processes passive sonar contacts. The current model will be examined, followed by a presentation of a Kalman filter improvement to the model. Secondly, the Sonar Correlation Model will be examined, followed by a presentation of a Kalman filter to replace the current model.

The reader should be advised that the TMA Kalman Filter Model is in actuality equivalent to the Sonar Correlation Kalman Filter Model, as will become evident in the presentation of the two Kalman Filter Models. This thesis further presupposes that the reader is familiar with the Kalman filter.

II. SINGLE SENSOR TRACKING

A. TARGET MOTION ANALYSIS (TMA) MODEL

The current model will monitor the number of game minutes for which passive contact has been held on each target by each detecting passive sonar (i.e., submarine, surface sonar, towed array, or sonobuoy). When this time exceeds the TMA time defined by the user at simulation initiation a target motion analysis report will be displayed or the Passive Sonar Status Board. The TMA range, course, and speed displayed are derived as follows:

The FACTOR is the product of a random number drawn from a uniform distribution and a derived parameter.

These parameters, which are indicated in Table I, cause increasingly accurate solutions to be developed as Signal Excess (SE) increases and as the target's true bearin, changes (*B=delta B) from the true bearing of its initial detection. This latter factor simulates improved solutions derived from higher bearing rate targets and longer tracking times. The solution quality displayed will be selected from Table II as a function of SE and *B.

Once a TMA solution has been displayed, only the range is updated on the display. The range only update continues until the signal excess and/or change in true bearing cause a new parameter to be developed from the table (e.g., SE changes from -6 to -5 or •B changes from 5 to 6). When a new parameter is selected, a new TMA range, course, and quality

TABLE I
TMA Error Parameters

RELAT	IVE RA	NGE ERRO		
SIGNAL CHANGE IN DEGREES (SE) DEGREES (*B)	• B≤ 5	5<•B≤ 1 5	15<•B≤45	45< •B
SE ≤ -12	R	.8R	. 7 R	.4R
-12 < SE ≤ -6	.8R	.7R	.4R	.25R
-6 < SE ≤ 0	. 7R	.4R	.25R	.1R
0 < SE	4R	.2R	. 1R	.05R
COURSE H	ERROR	IN DEGREE	ES	
SIGNAL BEARING CHANGE IN EXCESS (SE) DEGREES IN dB (•B)	• B≤5	5<•B≤15	15<•B≤45	45<•B
SE ≤ -12	120	90	45	30
-12 < SE ≤ -6	90	45	30	15
-6 < SE ≤ 0	45	30	15	7
0 < SE	30	15	7	5
RELATI	EVE SP	FED ERROR	R	
SIGNAL BEARING CHANGE IN EXCESS (SE) DEGREES IN dB (•B)	•3≤5	5<•B≤15	15<•B≤45	45< •B
SE ≤ -12	. 5S	.45	.3S	.2S
-12 < SE ≤ -6	. 45	.35	. 2S	.1s
-6 ≤ SE ≤ 0	.3s	.2S	. 15	.05S

0 < SE	.2S .1S .05S 0
R = Actual Range S = Actual Speed	

	TABLE A Quai			
BEARING SIGNAL CHANGE IN EXCESS (SE) DEGREES IN dB (•E)	•B<5	5<•B≤15	15<•B≤45	45< •B
SE ≤ -12	POOR	POOR	FAIR	FAIR
-12 ≤ SE ≤ -6	POOR	FAIR	FAIR	FAIR
-6 ≤ SE ≤ 0	FAIR	FAIR	FAIR	GOOD
0 < SE	FAIR	FAIR	GOOD	GOOD

will be calculated and displayed. Between TMA changes, the displayed range is updated each simulation cycle to show the range of the target estimated from the TMA course and speed.

If contact is lost for a time greater than the user-defined track loss time, the TMA solution will no longer be displayed. At any subsequent redetection of the same target, a new solution will be generated after the appropriate time interval has passed.

B. KALMAN FILTER IMPROVEMENTS

The model does not begin to compute a track until the TMA time defined by the user at simulation initiation is exceeded. This implies that all sensors and operators are equal, which is not realistic. Furthermore, this does not allow for accurate information to be used at time of detection unless the TMA time has already been exceeded. For instance, a passive sonobuoy dropped in front of a contact, producing a CPA (closest point cf approach) for its initial detection, would have good track information that would not be utilized by the model; for only information after the TMA time is used in determining the FACTOR.

This TMA initiation time was included in the model because use of actual target information provided too accurate of a fix, even with bad sensor information, for a player to experience a realistic prosecution. The Kalman Filter Mcdel eliminates the need for this waiting time since the model receives information as an operator would see it (that is, appparent bearing resulting from apparent position, including navigation error, and sensor bearing error). Thus, the Kalman Filter Model allows use of all sensor information with appropriate errors to provide realistic prosecution.

The TMA model attempts to simulate a changing area of probability (AOP) with improved solutions taken from the table as SE increases and true hearing changes. The problem of using true information instead of apparent has already been discussed. In addition, the improved AOP is heavily dependent upon the drawing of a random number. It has been observed in actual trainers that the AOP fluctuates as randomly as the random number generator, regardless of sensor information; providing confusing information to the player. Again, the Kalman Filter Model eliminates this

problem since the computed AOF updates smoothly with the sensor information.

C. KALMAN FILTER MODEL

First of all, it is assumed that during an encounter, the target's course and speed remain constant. The model updates the position of the fix since the last observation based on the previous estimate. This is based on the system model:

$$X(t) = PHI(t-1) * X(t-1) + W(t-1)$$

Thus, movement is:

State Extrapolation: X\$hat(t) = PHI(t-1)*X\$hat(t-1)

and

Error Covariance Extrapolation:

$$P(t) = PHI(t-1)*P(t-1)*PHI$transpose(t-1) + Q(t-1)$$

where

X\$hat is the estimated state vector. It is assumed to be multivariate normal with mean zero.

PHI is the transition matrix. It describes how the state vector changes from X(t) to X(t+1).

P is the error covariance matrix.

$$P(t) = E[\{X(t)-X\$hat(t)\}*\{X(t)-X\$hat(t)\}\$transpose]$$

W(t) is the plant noise. It describes the randomness of the system as it moves from state X(t) to X(t+1). W(t) is approximately N(0,Q(t)). For this model, Q is taken to be zero.

Next, a new fix is computed based on an observation. This is determined from the measurement model:

$$Z(t) = H(t)*X(t) + V(t)$$

Thus, measurement is:

Kalman Gain: K(t)=

State Update:

$$X$$$
hat(t) := $X$$ hat(t) + $K(t) * [Z(t) - H(t) * X$$ hat(t)],

and

Error Covariance Update:

$$P(t) := P(t) - K(t) * [P(t) * H$transpose(t)] $transpose$$

where

- := indicates that the right hand side is computed and replaces the value on the left hand side of the symbol.
- Z(t) is the actual measurement. The measurements are assumed to be linearly related to the system state X(t) by the observation matrix H(t). Note: H(t)*X\$hat(t) is the predicted outcome of the measurement. The difference, Z(t)-H(t)*X\$hat(t), is the measurement residual or shock.

- V(t) is the measurement noise. It is approximately N(0,R(t)). For this model, all bearings are \pm .5 degrees.
- K(t) is the Kalman gain. The update from X\$hat(t) just before the measurement to X\$hat(t) just after the measurement is proportional to the shcck; the Kalman gain is the proportionality constant.

It was stated earlier that the measurements are assumed to be linearly related to the system state. Since the measurement is in polar coordinates, h(x) is in fact nonlinear. Therefore, a transformation must be made on h(x) to give a linearly related H.

In this model, the observation will be made from a platform at (u,w) to a target at (x,y), where x is north and y is east. So,

$$h(X) = theta = tan^{-1}[(y-w)/(x-u)]$$

or,

evaluated at X = X\$hat. Hence,

 $H = [-\sin(\tanh \alpha)/range \cos(\tanh \alpha)/range 0 0]$

This model was built upon two initial conditions and two important assumptions. The initial conditions are:

$$E[X(0)] = X$hat(0)$$

and

E[{X(0) -X \$hat (0)} * {X(0) -X \$hat (0)} \$transpose]= P(0)

where

 Xhat(0) = [32cos\theta_o 32sin\theta_o 0 0]$transpose$

 $heta_{\!\scriptscriptstyle o}$ is the initial observation

and

$$P(0) = \begin{bmatrix} 1000 & 0 & 0 & 0 \\ 0 & 1000 & 0 & 0 \\ 0 & 0 & 1000 & 0 \\ 0 & 0 & 0 & 1000 \end{bmatrix}$$

Note: 1000 was chosen since it is approximately equal to \pm one convergence zone (32 nm) and \pm 32 knots.

The first assumption is that

$$E[W(k)*V(j)$transpose] = 0$$
 for all j and k.

This means that the plant noise and the measurement noise are uncorrelated. Secondly, recall that the assumption is that during an encounter, the target's course and speed remain constant.

D. TRACK QUALITY

In order to reduce the number of changes required to the overall program, the TMA quality currently used from Table II will be utilized but based on different criteria. This will eliminate he need to change the blackboard; and more importantly, will not change the Status Tableau seen by the player, which is already full.

The track quality is based on the semi-major axis of the AOP. This is determined from the error covariance matrix as follows:

 $(\text{semi-major axis})^2 = (p11+p22)/2+SQRT[(p11-p22)^2/4+p12^2]$

where pij are the elements of the P(t) matrix. A 2-sigma semi-major axis is used to insure a probability of 0.8647. The track quality is then determined as follows:

- If the 2-sigma axis is less than or equal to 500 yards, then the track receives a guality of GOOD. The criteria of 500 yards is used because the Engagement Model employs a 500 yard kill radius for a torpedo.
- If the 2-sigma axis is greater than 500 yards but less than or equal to 1000 yards, then the track receives a quality of FAIR. The criteria of 1000 yards was chosen simply because it is twice the GOOD criteria.
- If the 2-sigma axis is greater than 1000 yards, then the track receives a quality of POOR.

E. CHANGES TO OTHER SUBROUTINES

Implementation of this subroutine (LCLTMA, rational FORTRAN and source code listing are contained in Appendix A and B, respectively) will require some changes to other subroutines and additions to the blackboard. These changes and/or additions include:

1. Subroutine WARCYC

Each target needs a P(0) matrix in the blackboard; therefore, add:

REAL PBB (4,4)

REAL I_LCL\$PMATRIX(4,4),I_RMT\$PMATRIX(4,4)

DO 50000 J=1,4

DO 50001 K=1,4

IF(.NOT.(J.EQ.K))GOTC 50001

PBB(J,K) = 1000.

GOTO 50000

50001 PBB (J,K) = 0.

50000 CONTINUE

 I_LCLPMATRIX = PBB$

I RMT\$PMATRIX = PBB

2. Subroutine LCLPSN

• Change line 9 to read:

EQUIVALENCE (IBB, FBB, CBB, IBBW, IBBB, PBB)

This includes the blackboard of the P matrix.

• After line 113 add:

i_LCL\$LASTTMATIME= (IAND (ISHFT (IBB (KPOINT_LCL
*+1),-0),65535)

This time is used in Subroutine LCLTMA.

• Change line 262 to read:

IF(.NOT.(I_ICL\$OMNIFLAG.NE.1))GOTO 23269

This removes the TMA exceed time criteria.

• Change line 264 to read:

LCLTMA (KPOINT_LCL, ROBLAT, RORLON, LBEAR, *I LCL\$PMATRIX, I LCL\$IASTTMATIME)

III. MULTIPLE SENSOR TRACKING

A. SONAR CORRELATION MODEL

The Sonar Correlation Model would be more appropriately described as a procedure instead of a model. This routine determines the correlation of bearings between two detecting units at a specific target and performs two functions. First, the two detecting units (with an intersection angle of at least 60 degrees, or else the largest available angle) to a common target will display bearing lines. Second, multiple targets detected within a certain maximum arc will display only one line; and will set the composition field set (i.e., one, few, or many). All other passive sonar lines will not be displayed.

The Sonar Correlation Model can be turned on or off. This allows for the flexibility of being utilized for Battle Group Commanders and their staff when the "big picture" is the main concern and not the individual unit prosecution; and yet, be turned off when the trainer is being utilized for a single unit or group of units practicing coordinated operations.

B. KALMAN FILTER REPLACEMENT

The current procedure has many drawbacks. Only passive sonar lines are considered; active information is displayed separately and is not correlated with the passive information.

The routine searches through the Remote Table until it finds two bearing lines that meet the 60 degree criteria. These are displayed and the routine ceases to search; thus, not necessarily choosing the optimum solution. In addition,

no fix or track is sociated with the correlation. As a result, each game inute two bearing lines are displayed (they may not be the same two from the previous minute nor necessarily an improvement) that jump around the screen, providing no useful information to the user.

The Kalman Filter Model permits all the information available, both active and passive, to be correlated on a specific target and be displayed as a fix with an updated track. In addition, the track quality associated with the fix provides the user with the added information about the relative size of the AOP. The on and off ability of the Sonar Correlation Model will be incorporated into the Kalman Filter Model for the previously stated reasons concerning its flexibility.

C. KALMAN FILTER MODEL

As mentioned in the introduction, the single sensor tracking model is in actuality equivalent to the multiple sensor tracking model. The difference being the scope of the information being processed. The single sensor model is a subset of the Passive Sonar Model; whereas, the Multiple sensor model is a separate entity correlating all available information. The basics of the models, including assumptions and initial conditions, are the same. Therefore, only the differences from the single sensor tracking model, presented in Chapter Two, will be discussed here.

The model will handle bearing and range measurements as well as bearing only measurements. The bearings are ±.5 degrees and the ranges are ±.5 nautical miles. For the bearing only measurement, the H matrix will be the same as for the single sensor tracking model. For the bearing and range measurement, the following H matrix will be utilized:

$$H = \begin{bmatrix} -\sin(theta)/range & \cos(theta)/range & 0 & 0 \\ \cos(theta) & \sin(theta) & 0 & 0 \end{bmatrix}$$

The track quality will be the same as that presented in Chapter Two.

D. CHANGES TO OTHER SUBROUTINES

The rational FORTRAN and scurce code listing for this model are contained in Appendix C and D, respectively. The changes presented in Chapter Two for Subroutine WARCYC are also applicable to this model. The only other change that will be necessary is that all active information needs to be added to the Remote Table.

IV. TEST RESULTS

The single sensor and multiple sensor models have been tested on a limited basis. Each subroutine has been tested independently to insure that the models perform as designed. However, the subroutines have not been tested for integration into the overall NWISS program or other subroutines.

Due to time constraints and computer availability, integration tests were not possible. The added blackboard space required has not been made but should not pose any problems. Inherent with any new subroutine is the unforeseeable affect it may have on unrelated subroutines. This aspect of testing has not been performed.

APPENDIX A

SINGLE SENSOR MODEL (RATIONAL FORTRAN)

Subroutine LCLTMA (LCL Pointer,	#LCL Table Pointer	LCL 000 10
RORLAT	#LAT of BRG-line ORIGIN	LCL00020
RORLON,	#LON of BRG-line ORIGIN	TCT 00030
LBEAR,	#integer SONAR TGT BRG	TCT 000#0
	# with Heading error	TCT 00050
I_ICL\$PMATRIX,	#Kalman P matrix	TCT 000060
I_LCL\$LASTIMATIME)	#Game minute of last fix update	TCT 00070
***************************************	######################################	#LCL 00080
#		TCT 000000
# Purpose:LCLTMA determines TMA soluti	TMA solutions for a detector, using a Kalman	TCT 00 100
# filter, and stores data (for the	the Passive Sonar ASTAB) in the	LCL00110
# LCL Table.		LCL00120
#		LCL 00130
# Called by: LCLPSN		LCL 00 140
#		LCL 00150
# Calls: MUL4X4 RRB2IL		TCL 00160
##		LCL 00170
*******************************	######################################	#LCL 00 180
		LCL00190
BBcommon		TLCL00200

		LCL 00210
real XEST(4), X(4)	#System Model State Vector	LCL 00220
PHI (4°4)	#System Model Transition Matrix	LCL 00230
PHIT (4,4)	#Transpose of Transition Matrix	ICL 00240
P (4,4), I_LCL\$PMATKIX (4,4)	#Error Covariance Matrix	LCL00250
Н (4)	#Measurement Model Observation Matrix	: LCL00260
K (4)	#Kalman Gain	LCL 00270
2	#Measurement Vector	LCL00280
		LCL 00290
lcl\$TMALAT\$F=xlcl\$TMALAT\$F	#Estimated LAT/LON	TCL00300
lcl&TMALON&F=xlcl&TMALON&F	# of TGT	LCL 00310
lcl\$TMACSE\$F=xlcl\$TMACSE\$F	#Estimated COURSE and	LCL 00320
lc1\$TMASPD\$F=xlc1\$TMASPD\$F	# SPEED of TGT	LCL00330
		ICI 00340
#MOVEMENT:		LCL 00350
	#State Extrapolation:	ICI 00360
$X \to ST (1) = X$	#Distance in north-south direction	LCL00370
ANGPI (DELLON)	#Insure shortway around earth	TCL 00380
XEST(2) = Y	#Distance in east-west direction	TCT 00390
XEST(3) = X\$dot	#Speed vector in north-south directionLCL00400	onLCL 00400
XEST (4) = Y \$ dot	#Speed vector in east-west direction	TCT 004 10
		TCT 00420
#Initialize PHI Matrix		TCT 00430
PHI (1,3)=PHI (2,4)=\$delta\$time	.me #Movement time in hrs since last LCL00440	: TCT 00440

	#update	ICI 00450
		TCT 00460
#X\$hat=PHI*X\$hat	#State Extrapolation Vector	TCT 00470
		TCT 00480
#PHI\$transpose		TCT 004 90
#P=PHI*P*PHI\$transpose	#Error Covariance Extrapolation	LCL 00500
		LCL 00510
#MEASUREMENT:		LCL 00520
		LCL00530
#Estimated bearing		TCT 002#0
#Estimated range		LCL 00550
		TCT 00560
	#Measurement Observation Matrix	LCL 00570
H(1) =-SIN(THETA\$hat)/RNG\$hat	#H\$transpose=H	TCT 00580
H (2) = COS (THETA \$hat) /RNG\$hat		LCL00590
H(3) = H(4) = 0.		TCT 00000
		LCL 00610
#P*H\$transpose	= (P*H\$transpose) \$transpose	LCL 00620
#H*P*H\$transpose		LCL 00630
#H*P*H\$transpose+R	R=BRG measurement error=±.5 degrees	TCT 0 0 0 4 0
#Kalman Gain		LCL00650
#H*X\$hat		TCT 00660
ZHX=Z-HX	#Measurement Residual	TCT 00670
#K* (Z-H*X\$hat)		TCT 00680

#X\$hat=X\$hat	#X\$hat=X\$hat+K*(Z-H*X\$hat)	State Update	TCT00690
			TCT00700
#K* (P*H\$tran	#K* (P*H\$transpose) \$transpose		LCL00710
#P=P-K* (P*H\$	*P=P-K* (P*H\$transpose) \$transpose	se #Error Covariance Update	LCL00720
			TCT00730
#New estimated bo	bearing		TCT 00140
#New estimated ra	range		TCT00750
			TCT 00760
#Compute LAT/LON	of BRG/RNG from	ORIGIN	LCL00770
CALL RRBZLL (T(_	#Get LAT/LON	TCT 00780
	F_LCL \$T MAL AT,	#ORIGIN LAT -> FIX LAT (input/output)	TCT 00790
	F_LCL\$TMALON,	#ORIGIN LON -> FIX LON (input/output)	TCT 00800
	RNG,	#Range from ORIGIN to TGT	LCL 30810
	THETA,	#Bearing from ORIGIN to TGT	LCL 00820
	0.0	#Pass zero	TCT 00830
	COSI)	#Cosine of LAT (input/output)	TCT 00840
			TCT00850
putlcl\$TMALAT\$f	#New	FIX position	TCT 00860
putlcl\$ TMALON\$ f			LCL 00870
			TCT 00880
#New estimated co	course		TCT 00830
#New estimated s	Speed		TCT 00300

		LCL 00910
putlCl\$TMACSE\$f	#New FIX course	LCL00920
putlCl\$TMASPD\$f	# and speed	LCL 00930
		TCT 00040
#Determine semi-major axis	r axis of area of probability	LCL 00950
#SIGMA\$squared=(P11+P22	P11+P22) /2+ SQRT { ((P11-P22)+ (P11-P22)) /4+P12*P12}	TCT 00960
#2SIGMA=2*SIGMA/2025 yds	51	LCL 00970
		LCL00980
if (2SIGMA <= 500 yds) then		TCT 008 90
TMA\$Quality=2	# G C O D	LCL 01000
else if (2SIGMA > 500 yds &	<= 1000 yds) then	LCL 01010
TMA\$Quality=1	#FAIR	LCL 0 10 20
else (2SIGMA > 1000 yds)		LCL 01030
TMA\$Quality=0	#PCOR	LCL 01040
		LCL 0 1050
return		LCL 01060
end #End lclTMA		LCL 01070
****	:#####################################	# #LCL01080
Subroutine MUL4X4 (A,	#4X4 matrix (input)	LCL 0 1090
В,	#4X4 matrix (input)	LCL01100
(5)	#4%4 matrix (output)	LCL01110
# # # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # # #	###LCL01120
я і ÷		LCL 01130

# Purpose: Multipli	ltiplies two 4X4 matrices together.	LCL01140
#=		LCL01150
# Called by: LCLTMA	LCLTMA CORSNR	LCL01160
₩		LCL 01170
############	# # # # # # # # # # # # # # # # # # #	###LCL01180
		LCL01190
C=A*B		LCL01200
		LCL 01210
return		LCL01220
end	#End Multx4	LCL 01230

APPENDIX B

SINGLE SENSOR MODEL (SOURCE CODE)

SUBROUTINE LCLIMA (KPOINT_ICL, RORLAT, RORLON, LBEAR, I_LCL\$PMATRIX, I_LLCL00010	_LLCL 00010
*CL\$LASTT MATIME)	TCT 00020
IMPLICIT REAL*8 (A,C)	TCT 00030
INTEGER IBB(1025), IBBP (6, 85)	TCT 000#0
INTEGER*2 IBBW (2, 1025)	TCT00020
BYTE IBBB (4, 1025)	TCT 00060
REAL*8 CBB (512)	TCT 00070
REAL FBB (1025), I_LCL\$PMATFIX (4,4), P (4,4), KPHTT (4,4), H (4), PHT (4)	TCT 00080
REAL K(4), HPHT, HPHTR, HX, PROD(4), XEST(4), X(4), PHI(4,4), PHIT(4,4)	TCT 000 30
REAL PBB (4,1025)	TCT 00100
EQUIVALENCE (IBE, FBB, CBB, IBBW, IBBB, PBB)	ICI 00110
EQUIVALENCE (IBB(513), IBBF)	LCL 00120
COMMON/B BO ARD/IEB	LCL00130
F_LCL\$TMALAT= (IAND (ISHFT (IBB (KPOINT_LCL+8),-0),65535) *1.*.0001-3.2LCL00140	.2LCL00140
(*	LCL00150
F_LCL\$TMALON=(IAND(ISHFT(IBB(KPOINT_LCL+8),-16),65535)*1.*.0001-3.LCL0016C	3.LCL 0016
*2)	LCL 00170
F_LCL\$TMACSE=(IAND(ISHFT(IBB(KPOINT_LCL+5),-0),511))	LCL00180
F_LCL\$TMASPD=(IAND(ISHFT(IBB(KPOINT_LCL+44),-16),4095))	LCL 00190
XEST (1) = F_LCL\$TMALAT-RORL AT	LCL 00200
DELLON=F_L CL \$T MALON-RORL ON	LCL 00210

000000000000000000

	ANGPI (DELLON)	LCL 00220
	COST=COS (F_LCL \$TMALAT)	LCL 00230
	COSL=COS (RORLA I)	LCL 00240
	XEST (2) = .5 * (COSI+COST) *DELLON	LCL 00250
	$XEST(3) = F_LCL$TMASPD*COS(F_LCL$TMACSE)$	LCL 00260
	XEST (4) = F_LCL\$IMA SPD*SIN (F_LCL\$IMACSE)	LCL 00270
	DO 50002 J=1,4	LCL 00280
	DO 50002 K=1, 4	LCL 00290
	IF (. NOT. (J. EQ. K)) GOTO 50003	TCT 00300
	PHI $(J, K) = 1$.	LCL 00310
	GOTO 50002	LCL 00320
50003	PHI $(J_{\bullet}K) = 0$.	TCT 00330
50002	CONTINUE	TCT 003#0
	PHI (1, 3) = (IBB (103) -I_LCL \$IASTTMATIME) /60.	TCT 00350
	PHI (2, 4) = PHI (1, 3)	TCT 00360
	DO 50004 J=1,4	LCL 00370
	X(J) = 0	LCL 00380
	DO 50004 K=1,4	TCT00390
5000	$50004 \times (J) = X(J) + PHI(J,K) *XEST(K)$	TCT 00400
	DO 50005 J=1,4	LCL 004 10
	DO 50005 K=1,4	LCL00420
50005	PHIT $(J,K) = PHI(K,J)$	TCT 00430
	CALL MUL4X4 (PHI,I_LCL\$PMATRIX,P)	TCT 00440
	CALL MUL 4X4 (P, PHIT, I_LCL \$PMATRIX)	ICI 00450

	THETA=FATAN2 (X (2), X (1))	TCT00460
	THETA=INT (THETA* (180./3.141592654) +.5)	TCT00470
	RNG = SQRT(X(1) * X(1) + X(2) * X(2))	TCT 00480
	H (1) = -SIN (THET A)/RNG	ICI 00490
	H (2) = COS (THETA) /RNG	TCT 00500
	H(3) = 0.	LCL 00510
	$H(\mu) = 0$.	LCL00520
	DO 50006 J=1,4	LCL00530
	PHT (J) = 0.	TCT 002 #0
	DO 50006 K=1,4	TCT 00550
20006	50006 PHT(J) =PHT(J) + I_LCL\$PMATRIX(J,K) *H(K)	TCT00260
	HPHT=0.	LCL 00570
	DO 50007 J=1,4	TCT 00580
50007	50007 HPHT=HPHT+H(J) *PHT(J)	TCT 00290
	HPHTR=HPHT+.25	TCT 00600
	DO 50008 J=1,4	LCL 006 10
50008	50008 K (J) = PHT (J) /HPHTR	LCL 006 20
	Z = FLOAT (LBEAR)	TCT00630
	HX = 0.	TCT00640
	DO 50009 J=1,4	TCT00650
50003	HX = HX + H(J) *X(J)	TCT 00660
	ZHX = Z - HX	TCT 00670

DO 50010 J=1,4	TCT00680
50010 PROD (J) = K (J) * Z HX	TCT 00690
DO 50011 J=1,4	TCT 00700
50011 XEST (J) = X (J) + PROD (J)	LCL 00710
DO 50012 J=1,4	LCL 00720
DO 50012 L=1,4	LCL 00730
50012 KPHTT (J, L) =K (J) *PHT (L)	TCT 00740
DO 50013 J=1,4	LCL00750
DO 50013 K=1,4	TCT 00760
50013 I_LCL \$PMATRIX (J,K) =I_LCL \$FMATRIX (J,K) -KPHTT (J,K)	TCT 00770
THETA=FATAN2 (XEST (2), XEST (1))	LCL 00780
THETA=INT (THETA* (180./3.141592654)+.5)	TCT00790
RNG=SQRT (XEST (1) *XEST (1) + XEST (2) *XEST (2))	TCT 00800
F_LCL\$TMALAT=ROFLAT	LCL 00810
F_LCL \$TMA LON=RORLON	LCL00820
COSL=COS (F_LCL \$TMALAT)	LCL 00830
CALL RRB2LL (F_LCL\$TMALAT, F_LCL\$TMALON, RNG, THETA, 0., COSL)	LCL00840
IBB (KPOINT_LCL+8) = IOR (IAND (IBB (KPOINT_LCL+8), NOT (ISHFT (65535, 0))), LCL00850)),LCL00850
*ISHFT (IAND (INT (.5+ (F_LCL \$TMALAT3.2) /.0001),65535),0))	TCT 00860
IBB (KPOINT_LCL+8) = IOR (IAND (IBB (KPOINT_LCL+8), NOT (ISHFT (65535, 16))) LCL 00870	5)))LCL00870
*, ISHFT (IAND(INT (.5+ (F_LCL \$TMALON3.2) /.0001), 65535), 16))	TCT 00880
CSE=FATAN2 (XEST (4), XEST (3))	TCT 008 30
CSE=INT(CSE* (180./3.141592654) +.5)	TCT 00800
SPD=SQRT (XEST(3)*XEST(3)+XEST(4)*XEST(4))	LCL 009 10

```
TCT 00960
IBB (KPOINT_LCL +5) = IOR (IAND(IBB (KPOINT_LCL+5), NOT (ISHFT (511, 0))), ISLCL00920
                                      LCL 00930
                                                                    IBB (KPOINT_LCL +4) = IOR (IAN L (IBB (KPOINT_LCL + 4), NOT (ISHFT (4095, 16))), LCL 00940
                                                                                                             LCL 00950
                                                                                                                                                                                     LCL00970
                                                                                                                                                                                                                         LCL 00980
                                                                                                                                                                                                                                                           LCL00990
                                                                                                                                                                                                                                                                                                                                   LCL 0 10 10
                                                                                                                                                                                                                                                                                                                                                                     LCL01020
                                                                                                                                                                                                                                                                                                                                                                                                          LCL 01030
                                                                                                                                                                                                                                                                                                                                                                                                                                              LCL 0 1040
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   LCL 0 1050
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     LCL 01060
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        LCL 01070
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               LCL 0 1090
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   LCL 01100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        LCL01110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           LCL 01120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               LCL 01130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  LCL 01140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      LCL 01150
                                                                                                                                                                                                                                                                                              LCL01000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IBB (KPOINT_LCL +9) = IOR (IANE(IBB (KPOINT_LCL+9), NOT (ISHFT (3,4))), ISHFLCL 01080
                                                                                                                                                                                                                                                         I_ICL$SIGMASQR= (I_LCL$PMATRIX (1,1) +I_LCL$PMATRIX (2,2)) /2.+CONST
                                                                                                                                                                                                                                                                                                                                                                                                       ELSE IF(I_LCL$2SIGMA.GT.500.AND.I_LCL$2SIGMA.LE.1000) THEN
                                                                                                                                             CONST1=I_LCL$PMATRIX (1, 1) -I_LCL$PMATRIX (2, 2)
                                                                                                                                                                                 CONST2=I_LCL$PMATRIX(1,2) *I_LCL$PMATRIX(1,2)
                                                                                                                                                                                                                                                                                             I_LCL$2SIGMA=SQRT(I_LCL$SIGMASQR) *2./2025.
                                                                                                                                                                                                                    CONST=SQRT (CONST1*CONST1/4.+CONST2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 *T (IAND ((I_LCL $TMAQUALITY),3),4))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DIMENSION A (4,4), B (4,4), C (4,4)
                                                                                                                                                                                                                                                                                                                                  IF (I_LCL$2SIGMA.LE.500) THEN
                                                                                                          *ISHFT (IAND ((SPD), 4095), 16))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           SUBROUTINE MUL4X4 (A,B,C)
                                  *HFT (IAND ( (CSE) ,511),0))
                                                                                                                                                                                                                                                                                                                                                                  I_LCL$TMAQUALITY=2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  I_LCL$TM AQUALITY=0
                                                                                                                                                                                                                                                                                                                                                                                                                                              I_LCL$TMAQUALITY=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DO 60000 I=1,4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DO 60001 J=1,4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          END IF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         END
```

L011	CL011	LCL 01180	CL 011	CL012	L012	CL 012
------	-------	-----------	--------	-------	------	--------

60002 S=S+A(I,K)*B(K,J) 60001 C(I,J)=S DO 60002 K=1,4 60000 CONTINUE RETURN END

S=0.

APPENDIX C MULTIPLE SENSOR NODEL (RATIONAL FORTRAN)

Subroutine CORSNR	CORSNR	SNR000 10
############	# # # # # # # # # # # # # # # # # # #	#SNR00020
#		SNR 00030
# Purpose:	(1) Correlate all sonar contacts (active and passive) and	SNR00040
##:	store the updated FIX (Posit, CSE, SPD).	SNR 00050
#	(2) Determine a TMA quality based on the criteria:	SNR 00060
##	If the semi-major axis of the area of probability is:	SNR 00070
#	(a) <= 500 yds	SNR 00080
#	TMA quality is GOOD	SNR00090
#	(b) > 500 yds & <= 1000 yds	SNR 00100
#	TMA quality is FAIR	SNR 00 110
**	(c) > 1000 yds	SNR00120
##:	TMA quality is POOR	SNR00133
啡		SNR 00 140
# Called by:	: WARCYC	SNR 00150
#		SNR 00160
# Calls: CC	CORR_SORT MUL4X4 FRB2LL	SNR 00 170
#		SNR00180
#########	######################################	#SNR00190

		SNR00200
BBcommon		SNR 00210
CORR\$ccmmon		SNR 00220
		SNR 00230
real XESI(4), X(4)	#System Model State Vector	SNR00240
EHI (4°4)	#System Model Transition Matrix	SNR00250
PHII (4,4)	#Transpose of Transition Matrix	SNR 00260
P(4,4),I_LCL\$PMATRIX(4,4)	#Error Covariance Matrix	SNR00270
H(4)	#Measurement Model Observation Matrix	SNR 00280
KG (4), KGAIN (4,2)	#Kalman Gain	SNR 00290
2(2)	#Measurement Vector	SNR00300
R (2,2)	#Measurement Noise	SNR 00310
		SNR 00320
	#Loop thru Remote Table	SNR 00330
for (RMT\$Pointer\$First; RMT\$Point	RMT\$Pointer\$Valid; RMT\$Pointer\$Next)	SNR 00340
فيب		SNR 00350
if (xRMT\$InUse\$I==\$no) next	#Finf the right slots	SNR 00360
RMT\$DetectionType\$i=xRMT\$DetectionType\$i	sctionTypefi	SNR 00370
if (RMT\$DetectionType\$i=\$Sonar\$Code)	:\$Code) #If sonar, set composition	SNR 00380
<pre>putRMT\$Composition\$1(1)</pre>	# to 1	SNR 00390
~		SNR 00400
		SNR 004 10
if (Correlate\$Sonar== \$no) return		SNR 00420

	SNR 00430
#	SNR 00440
#Loop for each BLUE/ORANGE View	SNR 00450
	SNR 00460
for (iview=\$firstBLUE\$view; iview<=\$lastORANGE\$view; iview=iview+1)	SNR 004 70
	SNR 00480
VUE\$Pointer\$To iview #Get to the right view	SNR 00490
	SNR 00500
RMT\$Pointer\$To xVUE\$FirstRmtIndx\$i #Set first and last	SNR 005 10
istart=RMT\$Pointer # RMT Index as	SNR00520
RMI\$Pointer\$To xVUE\$LastRmtIndx\$i # limits for loop	SNR 00530
iend=RMT\$Pointer	SNR00540
	SNR 00550
kore=0 #Initialize counter	SNR 00560
#Loop for each RMT slot in View	SNR 00570
for (RMT\$Pointer=istart; RMT\$Fointer<=iend; RMT\$Pointer\$next)	SNR 00580
	SNR 00590
if (XRMT\$InUse\$i==\$no) next #Skip if not in use	SNR 00600
RMT\$DetectionType\$i=xRMT\$LetectionType\$i #Get Detection Type	SNR00610
	SNR 00620
<pre>if (Correlate\$Sonar==\$yes & RMT\$DetectionType\$i==\$Sonar\$Code)</pre>	SNR00630
*continue	SNR00640
else next	SNR 00650
	SNR00660

<pre>if (kore>= \$Max\$Corr) break</pre>	#Make sure that there are enough	SNR 00670
	# slots for the array	SNR00680
kore=kore+1	#Add to array counter	SNR 00690
irmtp(kore)=RMT\$Pointer	#Save RMT Pointer	SNR 00700
idtor(kore) =xRMT\$Detector\$I	#Save Detector	SNR00710
idtee (kore) = xRMT\$Detectee\$I	#Save Detectee	SNR 00720
<pre>ilast (kore) = xR MT\$La stDetTime\$I</pre>	e\$I #Save time of detection update	SNR 00730
ibear (kore) = xRMT\$Bearing\$I	#Save the bearing	SNR 00740
irnge(kore)=xRMT\$Range\$I	#Save the range	SNR00750
ipnt (kore) =kore	#Initialize sort index	SNR00760
~		SNR 00770
		SNR 00780
if (kore==0) return	#Quit if no tracks	SNR00790
		SNR 00800
CAIL CORR_SORT	#Sort arrays by Detectee/Last-Det-TimeSNR 00810	eSNR 008 10
		SNR 00820
for $(k=1; k < kore; k=j)$		SNR 00830
•••		SNR 00840
k = i pn t (k)		SNR 00850
		SNR 00860
KPCINT_RMT=irmtp(k1)	#Set pointer	SNR 00870
		SNR 00880
R MT\$TMALAT \$F=x RMT\$TMALAT\$F	#Get posit, CSE, SPD	SNR 00890
RMT\$TMALON\$F=xRMT\$TMALON\$F	# of last TMA estimate	SNR 00900

RMISTMACSESF=xRMISTMACSESF		SNR 00910
RMISTMAS PD. SF=x R MT \$T MAS PD \$ F		SNR 009 20
		SNR 00930
POS1\$LAT %F=xPOS1\$LAT\$F	#Get posit of Detector	SNR00940
POS1\$LON\$F=xPOS1\$LON\$F		SNR 00950
POS1\$COSLAT\$F=xPOS1\$COSLAT\$F	Ŧ	SNR00960
		SNR 00970
#MOVEMENT:		SNR00980
#St2	#State Extrapolation	SNR 00990
XEST(1) = X	#Distance in north-south direction	SNR0 1000
ANGPI (DELLON)	#Insure shortway around earth	SNR01010
XEST(2) = Y	#Distance in east-west direction	SNR 01020
XEST(3)=X\$dot	#Speed vector in north-south directionSNR01030	onSNR 01030
XEST (4) = Y\$dot	#Speed vector in east-west direction	SNR 01040
		SNR 01050
#Initialize the PHI matrix		SNR 01060
PHI (1, 3) = PHI (2, 4) = \$delta \$t	#Movement time in hrs since	SNR 0 10 70
	# last update	SNR 01080
		SNR 01090
#X\$hat=PHI *X\$hat	State Extrapolation Vector	SNR01100
		SNR 01110
#PHI\$transpose		SNR 01120
#P=PHI*P*PHI\$transpose	Error Covariance Extrapolation	SNR01130

#MEASUREMENT:

SNR 01150

SNR 01140

	SNR 01160
for $(j=k; j \le kore; j=j+1)$	SNR 01170
	SNR 01180
j1=ipnt(j)	SNR 01190
	SNR 0 1200
<pre>if (idtee(k1) != idtee(j1)) break</pre>	SNR 01210
	SNR 01220
KPOINT_RMT=irmtp(j1) #Set pointer	SNR01230
	SNR 01240
RMT\$DetectionType=xRMT\$DetectionType #Get Detection Type	SNR 01250
	SNR 01260
#Estimated bearing	SNR 01270
#Estimated range	SNR 0 1280
	SNR01290
<pre>if (k= j) #ORIGIN platform</pre>	SNR 01300
POS2 \$LAT\$F=xPOS2 \$LAT\$F #Get posit of next detector	SNR 0 13 10
POS2 \$LON\$F=xPOS2 \$LON\$F	SNR 0 1320
POS2\$COSLAT\$F=xPOS2\$COSLAT\$F	SNR 01330
	SNR 0 1340
#Adjust contact bearing to ORIGIN	SNR01350
#X=north-south distance from ORIGIN to DETECTOR	SNR 01360
#Y=east-west distance from ORIGIN to DETECTOR	SNR01370

#THETAK=bearing from ORIGIN to DETECTOR	SNR01380
#DK=distance from ORIGIN to DETECTOR	SNR 01390
	SNR 01400
ibear(j1)=DK*SIN(OBS BRG - BRG from ORIGIN) #Observed bearing	SNR 01410
#adjusted to	SNR 01420
#ORIGIN platform	SNR 01430
	SNR 01440
if (RMT\$DetectionType != \$Passive\$Sonar) check for \$Active\$SonarSNR01450	rsnr 0 1450
	SNR01460
#Weasurement Observation Matrix	SNR 01470
H(1) = -SIN (THETA\$ hat) /RNG\$ hat #H=H\$transpose	S NR 01480
H(2) = COS (THETA \$hat) / FNG \$hat	SNR 01490
H(3) = H(4) = 0	SNR 01500
	SNR 015 10
#P*H\$transpose = (P*H\$transpose) \$transpose	SNR01520
#H*P*H\$transpose	SNR 01530
#H*P*H\$transpose+R R=BRG measurement error=±.5 degrees	SNR 0 1540
#Kalman Gain	SNR 01550
	SNR 01560
#Z(1) =measured bearing	SNR 01570
#H*X\$hat	SNR01580
#ZHX=Z(bearing)-H*X\$hat Measurement Residual	SNR 01590
#K*(Z-H*X \$hat)	SNR 01600
#X\$hat=X\$hat+K*(Z-H*X\$hat) State Update	SNR01610

	SNR 0 16 20
#K* (P*H\$transpose) \$transpose	SNR 01630
#P=P-K*(P*H\$transpose) \$transpose Error Covariance	Covariance UpdateSNR01640
	SNR01650
<pre>if (RMT\$DetectionType != \$Active\$Sonar) break</pre>	SNR01660
	SNR 01670
#irnge(j1) = observed range adjusted to ORIGIN platform	SNR 01680
	SNR 01690
#Measurement Observation P	Matrix SNR01700
HH (2, 1) = COS (THETA\$hat)	SNR01710
HH(2,2) = SIN(THFTA\$hat)	SNR 01720
HH (1, 1) = -SIN (THETA\$hat) /RNG\$hat	SNR 0 1730
HH (1, 2) = COS (THETA\$hat) /RNG\$hat	SNR01740
HH(1,3) = HH(1,4) = HH(2,3) = HH(2,4) = 0	SNR 01750
	SNR01760
#H\$transpose	SNR01770
#P*H\$transpose	SNR 01780
#H*P*H\$transpose	SNR 01790
#H*P*H\$transpose+R R=BRG measurement error=±.5 deg	degrees SNR01800
# =RNG measurement error=1.5 naut.	. mi.SNR01810
# (H*P*H\$transpose+R) \$inverse	SNR 01820
#Kalman Gain	SNR01830
	SNR 01840
#Z(1)=measured bearing	SNR01850

#Z(2)=measured ranye		SNR01860
#H*X\$hat		SNR01870
#Z-H*X\$hat	Measurement Residual	SNR 01880
#K*(Z-H*X \$hat)		SNR 01890
#X\$hat=X\$hat+K*(Z-H*X\$hat)	lat) State Update	SNR 01900
		SNR 0 19 10
# (P*H\$transpose) \$ transpose	ose	SNR 01920
#K* (P*H\$transpose) \$transpose	Spose	SNR 0 1930
#P=P-K*(P*H\$transpose) \$transpose	transpose Error Covariance	UpdateSNR01940
		SNR01950
		SNR01960
#New estimated bearing		SNR 01970
#New estimated range		SNR 01980
		SNR 01990
#Compute LAT/LON of BRG/RNG	from ORIGIN	SNR 02000
CALL RRB2LL (_	#Get LAT/LON	SNR 02010
F_RMT\$TMALAT	#ORIGIW LAT->FIX LAT (input/output)	1t) SNR02020
F_RMT\$TMALON	#ORIGIN LON->FIX LON (input/output)	1t) SNR 0 20 30
RNG	#Range from ORIGIN to TARGET	SNR 02040
THETA	#Bearing from ORIGIN to TARGET	SNR 02050
0.0	#Pass zero	SNR 02060
COSL	#Cosine of latitude (input/output)	:) SNR 02070
		SNR 02080
putrmisi malaisi	#New FIX position	SNR02090

		SNR0Z110
New estimated course		SNR 02120
#New estimated speed		SNR 02130
		SNR 02140
putrmisimacsesf	#New FIX Course	SNR 02150
putrmistmasposf	# and speed	SNR02160
		SNR 02170
#Determine semi-major	axis of area of probability	SNR 02180
#SIGMA\$ squared= (P11+	SIGMA\$squared=(P11+P22)/2+SQRT {((P11-P22)+(P11-P22))/4+P12*P12}SNR02190	P22))/4+P12*P12}SNR02190
#2SIGMA=2*SIGMA/2025 yds	yds	SNR 0 2200
		SNR 0 22 10
if (2SIGMA <= 500 yds) then	hen	SNR 02220
TMA \$Quality=2	#GOOD	SNR 0 2 2 3 0
else if (2SIGMA > 500 yds	ds 8 <= 1000 yds)then	SNR 02240
TMA\$Quality=1	#FAIR	S NR 02250
else(2SIGMA > 1000 yds)		SNR 02260
TMA\$Quality=0	# POOR	SNR 02270
		SNR 02280
} k= j	#Set pointer to next detectee	etectee SNR 02293
		SNR 02300
		SNR 023 10

#End CORSNR

return end

APPENDIX D NULTIPLE SENSOR MODEL (SECRICE CODE)

SUBROUTINE CORSNR		COR 000 13
IMPLICIT REAL*8 (A,C)		COROPPO
INTEGER IBB(1025)		COR 00030
INTEGER*2 IBBW (2, 1025), IDTOR (800), IDTEE (883), ILAST (800), IBEAR (800) COR 00040	100), IBEAR (800)	COR 00040
INTEGER*2 IRNGE (800), IPNT (800), KORE		COR 00050
INTEGER*4 IRMTP (800)		COR00060
BYTE IBBB (4, 1025)		COR 000 70
REAL*8 CBB (512)		COR 00080
REAL FBB (1025), PBB (4, 1025), H(4), PHT (4), KG (4), HPHT, HPHTR, HX, PROD (4) COR 00090	HTR, HX, PROD (4)	COR 00090
REAL KGAIN (4,2), I_RMT\$PMATRIX (4,4), KPHTT (4,4), KKPHTT (4,4), R (2,2)	(4,4), R (2,2)	COR00100
REAL HH (2,4), HHT (4,2), PPHT (4,2), HHPHT (2,2), SUM (2,2), ADJ (2,2)	ADJ (2,2)	COR00110
REAL INVSUM (2, 2), PHI (4, 4), PHIT (4, 4), P (4, 4), HHX (2), PPHTT (2, 4), X (4)	HTT (2, 4), X (4)	COR 00120
REAL XEST(4), Z(2), KZHX(4)		COR00130
EQUIVALENCE (IBB, FBB, CBB, IBBW, IBBB, PBB)		COR 00140
EQUIVALENCE (IBB (513), IBBF)		COR 00150
CCMMON/B BO ARD/IEB		COR 00160
COMMON/SCRPAD/IRMTP, ID TOR, IDTEE, ILAST, IBEAR, IRNGE, IPNT, KORE	NT, KORE	COR00170
DATA E/.25,0.,0.,.25/		COR 00 180
KPOINT_RMT=IBBP(1,56)		COR00190
70000 IF (.NOT. ((KPOINT_RMT.GE.IEBP(1,56).AND.KPOINT_RMT.LT. (IBBP(1,56)+ICOR00200	. (IBBP (1,56) +.	ICOR00200
*BBF(2,56)))) GOTO 70001		COR 00210

```
COR 00430
 COR 00220
                                                                                              COR 00240
                                                                                                                                          IBB (KPOINT_RMT+10) = IOR (IAND (IBB (KPOINT_RMT+10), NOT (ISHFT (1,28))), ICOR00250
                                                                                                                                                                                       COR 00260
                                                                                                                                                                                                                                                                                       COR 00280
                                                                                                                                                                                                                                                                                                                                                                                                                                  IBB (KPOINT_RMT + 10) = IOR (I AND (I BB (KPOINT_RMT + 10), NOT (ISHFT (3, 23))), ICOR 00310
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                COR 00320
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               COR 00340
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             COR 00350
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           COR 00360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         COR 0 0370
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      COR 00400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    COR 004 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               COR 00440
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           KPOINT_RMT=IBBP (1,56)-15+15* (IAND (ISHFT (IBB (KPOINT_VUE+1),-14), 163COR 30450
                                            IBB (KPOINT_RMT+10) = IOR (IAND (IBB (KPOINT_RMT+10), NOT (ISHFT (1,29))), ICOR00230
                                                                                                                                                                                                                                           COR 00270
                                                                                                                                                                                                                                                                                                                                     IF (.NOT. (I_RMI$DETECTIONT YPE.EQ.2.OR.I_RMI $DETECTIONTYPE.EQ.24)) GOCOR00290
                                                                                                                                                                                                                                                                                                                                                                                       COR 00300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IBB (KPOINT_RMT + 10) = IOR (IAND (IBB (KPOINT_RMT + 10), NOT (ISHFT (1, 28))), ICOR 00330
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          COR 00380
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 KPOINT_RMT=IBBP (1,56) - 15 + 15 * (IAND (ISHFT (IBB (KPOINT_VUE+1), -0), 1638COR00420
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      COR 00390
                                                                                                                                                                                                                                                                                       I_RMI$DETECTIONTYPE=(IAND (ISHFT (IBB (KPOINT_RMT+8),-29),3))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF (.NOT. (IVIEW.LE.IBB (132))) GOTO 70099
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  KPCINT_VUE=IBBP(1,06)-1540+1540*IVIEW
IF (IBB (KPOINT_RMT+8).EQ.0)GOTO 70002
                                                                                                                                                                                         *SHFT (IAND (('00000001'X), 1), 28))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             *SHFT (IAND (('00000001'X), 1), 28))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF (IBB(256).EQ.0) GOTO 70099
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           KPOINT_RMT=KPOINT_RMT+15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  *SHFT (IAND ((1), 3), 23))
                                                                                              *SHFT (IAND ( (0), 1), 29))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ISTART=KPOINT_RMT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        IVIEW=IBB (129)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GOTO 70006
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IBB (111) =1
                                                                                                                                                                                                                                         IBB (111) =1
                                                                                                                                                                                                                                                                                                                                                                                    *TO 70002
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          70001
```

	*83)) IEND=KPOINT_RMI	COR 00460 COR 00470
	KORE=0	COR 00480
	KPOINT_RMT=ISTART	COR00490
70004	70004 IF (.NOT. (KPOINT_RMT.LE.IEND)) GOTC 70005	COR 005 00
	IF (IBB (KPOINT_RMT+8). EQ. 0) GOTO 70006	COR 00510
	I_RMT\$DETECTIONTYPE= (I AND (ISHFT (IBB (KPOINT_RMT+8),-29),3))	COR 00520
	IF (IBB (256) . EQ. 1.AND. (I_RMT\$DETECTIONTYPE. EQ. 2.OR.I_RMT\$DETECTIONTCOR 00530	TCOR 00530
	*YPE.EQ.24)) GOTO 70007	COR 00540
	GOTO 70006	COR 00550
70007	IF (KORE. GE.800) GO TO 70005	COR 00560
	KORE=KORE+1	COR00570
	IRMTP (KORE) = KPOINT_RMT	COR 00580
	IDTOR (KORE) = (IAND (ISHFT (IBB (KPOINT_RMT+8), -10), 1023))	COR 00590
	IDTEE (KORE) = (I AND (ISHFT (IEB (KPOINT_RMT+7), -0), 1023))	COR 006 00
	ILAST (KORE) = (IAND (ISHFT (IEB (KPOINT_RMT+2), -0), 65535))	COR 006 10
	IBEAR (KORE) = (IAND (ISHFT (IEB (KPOINT_RMT+7),-10),511))	COR 00620
	IRNGE (KORE) = (I AND (ISHFT (I EB (KPOINT-RMT+7), -0), 511))	COR 00630
	IPNT (KORE) = KORE	COR 00640
20006	KPOI NT_RMT=KPOINT_RMT+15	COR00650
	GOTO 70004	COR 00660
70005	IF (KORE. EQ. 0) GOTO 70099	COR 00670
	CALL CORR_SORT	COR 00680
	K=1	COR 006 90

	J = K	COR00700
70009	70009 IF (.NOT. (K.LT.KORE)) GOTO 70010	COR 00710
	K1=IPNT(K)	COR 007 20
	KPOINT_RMT=IRMTP(K1)	COR 00730
	F_RMT\$TMALAT=(IAND(ISHFT(IBB(KPOINT_RMT+8),-0),65535)*1.*.0001-3.2COR00740	.2COR 00740
	(*	COR 00750
	F_RMT\$TMALON=(IAND (ISHFT (IBB (KPOINT_RMT+8), -16), 65535) *1.*.0001-3.COR00760	3.COR00760
	*2)	COR 00770
	F_RMT\$TMACSE= (IAND (ISHFT (IBB (KPOINT_RMT+5), -0),511))	COR 00780
	F_RMT\$TMASPD=(IAND (ISHFT (IBB (KPOINT_RMT+4),-16),4095))	COR 00790
	F_POS1\$LAT=FBB (KPOIONT_RMI)	COR00800
	F_POS1\$LON=FBB (KPOINT_RMT+1)	COR 008 10
	F_POS1\$COSLAT=FBB (KPOINT_FMT+13)	COR 00820
	XEST (1) = F_RMT\$TMALAT-F_POS1\$LAT	COR00830
	DELLON=F_RMT\$TMALON-F_POS 1\$LON	COR 00840
	ANGPI (DELLON)	COR 00850
	COSL=COS (F_R MT \$TMALAT)	COR00860
	XEST(2) = . 5 * (COSL+F_POS1\$CCSLAT) *DELLON	COR 00870
	XEST (3) = F_RMT\$TMASPD*COS (F_RMT\$TMACSE)	COR 00880
	XEST (4) = F_RMT\$TMASPD*SIN (F_RMT\$TMACSE)	COR 00890
	DO 70011 JJ=1, 4	COR 00900
	DO 70011 KK=1, 4	COR 009 10
	IF (.NOT. (JJ.EQ.KK)) GOTO 70012	COR 00920
	PHI (JJ, KK) = 1.	COR 0 09 30

	GOTO 70011	COR 00940
70012	PHI (JJ, KK) =0.	COR 00950
70011	70011 CONTINUE	COR 00960
	F_RMT\$DELTIME= (IBB (103)-ILAST (K1)) /60.	COR 00970
	PHI (1,3) = F_RMT \$DELTIME	COR00980
	PHI (2, 4) = F_RMT \$DELTIME	COR 00990
	DO 70013 JJ=1, 4	COR 0 1000
	X(JJ) = 0.	COR 01010
	DO 70013 KK=1, 4	COR 0 1020
70013	$X(J) = X(J) + PHI(JJ_{\bullet}KK) * X EST(KK)$	COR 0 10 30
	DO 70014 JJ=1, 4	COR01040
	DO 70014 KK=1, 4	COR 01050
70014	PHIT (JJ, KK) = PHT (KK, JJ)	COR01060
	CALL MUL 4X4 (PHI,I_RMT\$PMATRIX,P)	COR 01070
	CALL MUL4X4 (P, PHIT, I_RMT\$EMATRIX)	COR 0 1080
70015	IF (.NOT. (J. LE. KORE)) GOTO 70016	COR 01090
	J1=IPNT(J)	COR 01100
	IF (IDTEE (K1) . NE.IDTEE (J1)) GOTO 70017	COR 0 11 10
	KPOINT_RMT=IRMTP(J1)	COR01120
	I_RMT\$DETECTIONTYPE=(IAND (ISHFT (IBB (KPOINT_RMT+8),-29),3))	COR 0 1133
	THETA = FATAN2 (X (2), X (1))	COR 01140
	THETA=INT (THETA* (180./3.141592654)+.5)	COR 01150
	RNG=SQRT(X(1)*X(1)+X(2)*X(2))	COR 01160
	IF (K.EQ. J) GOTO 70008	COR 01170

	F_POS2\$LAT=FBB (KFOINT_RMT)	COR01180
	F_POS2\$LON=FBB (KPOINT_RMT+1)	COR 01190
	F_POS2\$COSLAT=FBB (KPOINT_FMT+13)	COR 01200
	X=F_POS2 \$L AT-F_FOS 1\$LAT	COR01210
	Y=F_POS2 \$LON-F_POS1\$LON	COR 0 1220
	ANGPI (Y)	COR01230
	COSL=COS (F_POS2\$LAT)	COR01240
	Y=.5*(F_POS2\$COSLAT+F_POS1\$COSLAT) *Y	COR01250
	THETAK=FATAN2 (Y,X)	COR01260
	THETAK=INT (THETAK* (180./3.141592654) +.5)	COR01270
	DK=SQRT (X*X+Y*Y)	COR 0 1280
	IBEAR (J1) = DK*SIN (IBEAR (J1)-THETAK)	COR01290
70008	IF (.NOT. (I_RMT\$DETECTIONTYPE.EQ.2)) GOTO 70018	COR01300
	H(1) = -SIN (THETA) / RNG	COR 0 1310
	H (2) = COS (THETA)/RNG	COR01320
	H(3) = 0.	COR 01330
	(h) = 0	COR 0 1340
	DO 70019 JJ=1, 4	COR01350
	PHI (JJ) = 0.	COR 01360
	DO 70019 KK=1,4	COR01370
70019	PHT (JJ) = PHT (JJ) +I_RMT\$ PMA TRIX (JJ,KK) *H (KK)	COR01380
	HPHT=0.	COR 01390

	μ. T=T. 0.000 on	COB0 1400
70020	HPHT=HPHT+H(COR01410
		COR 0 14 20
	DO 70021 JJ=1, 4	COR01430
70021	1 KG (JJ) =PHT (JJ) /HPHTR	COR 0 14 40
	Z(1) = FLOAT (IBEAR(J1))	COR 0 1450
	H X = 0 •	COR01460
	DO 70022 JJ=1, 4	COR 0 1470
7002	70022 HX=HX+H(JJ)*X(JJ)	COR 0 1480
	ZHX=Z (1)-HX	COR01490
	DO 70023 JJ=1, 4	COR01500
70023	3 PROD (JJ) = KG (JJ) *ZHX	COR01510
	DO 70024 JJ=1,4	COR 0 1520
7002	$70024 \times (JJ) = X(JJ) + PROD(JJ)$	COR 0 15 30
	DO 70025 JJ=1, 4	COR01540
	DO 70025 KK=1, 4	COR01550
70025	5 KPHTI (JJ, KK) = KG (JJ) *PHT (KK)	COR01560
	DO 70026 JJ=1, 4	COR01570
	DO 70026 KK=1, 4	COR01580
70026	6 I_RMT\$PMATRIX (JJ,KK) = I_RMT\$PMATRIX (JJ,KK) - KPHTT (JJ,KK)	COR01590
	GOTO 70027	COR01603
7001	70018 IF (.NOT. (I_RMT\$LETECTIONTYPE.EQ.24)) GOTO 70027	COR 01610
	IF (K.EQ.J) GOTO 70028	COR01620

	IRNGE (J1) = SQRT (DK*DK+IRNGE(J1) *IRNGE (J1))	COR 01630
70028	HH(2,1) = COS(THETA)	COR 0 1640
	HH(2,2) = SIN(THETA)	COR 01650
	HH (1, 1) =-H (2, 2) /RNG	COR 0 1660
	HH(1,2) = H(2,1) / ENG	COR 0 16 70
	HH $(1,3) = 0$.	COR 01680
	HH (1, μ) = 0.	COR 0 1690
	HH $(2,3)=0$.	COR 01700
	HH $(2, 4) = 0$.	COR 01710
	DO 70029 JJ=1, 4	COR 0 17 20
	DO 70029 KK=1, 4	COR01730
70029	HHT (JJ, KK) = HH (KK, JJ)	COR 0 1740
	DO 70030 JJ=1,4	COR 01750
	DO 70031 KK=1,2	COR 01760
	S=0.	COR 01770
	DO 70032 LL=1,4	COR01780
79032	S=S+I_RMT\$PMATRIX(JJ,LL) *HHT(LL,KK)	COR 01790
70031	PPHT (JJ, KK) = S	COR 01800
70030	CONTINUE	COR 01810
	Do 70033 JJ=1, 2	COR 0 1820
	DO 70034 KK=1,2	COR 0 18 30
	S=0.	COR 0 1840

	DO 70035 LL=1, 4	COR 01850
70035	S=S+HH(JJ,LL) *PPHT(LL,KK)	COR 01860
70034	HHPHT (JJ, KK) = S	COR 01870
70033	CONTINUE	COR 0 1880
	DO 70036 JJ=1,2	COR01890
	DO 70036 KK=1, 2	COR 01900
70036	SUM (JJ, KK) = HHPHT (JJ, KK) + R (JJ, KK)	COR 01910
	DET=SUM (1, 1) *SUM (2, 2) - SUM (1,2) *SUM (2,1)	COR 01920
	ADJ (1, 1) = SUM (2, 2)	COR 01930
	ADJ(1,2) =-SUM(1,2)	COR 01940
	ADJ(2,1) = -SUM(2,1)	COR 01950
	ADJ (2,2) = SUM (1,1)	COR 01960
	DO 70037 JJ=1, 2	COR 01970
	DO 70037 KK=1,2	COR01980
70037	INVSUM (JJ, KK) = ADJ (JJ, KK) / DET	COR 01993
	DO 70038 JJ=1, 4	COR 0 2000
	DO 70039 KK=1,2	COR02010
	S = 0 •	COR 02020
	DO 70040 LL=1,2	COR 0 20 30
70040	S=S+PPHT (JJ, LL) *INVSUM (LL, KK)	COR 02040
70039	KGAIN (JJ, KK) = S	COR 02050
70038	CONTINUE	COR 02060
	Z(1) = FLOAT (IBEAF(J1))	COR 02070
	Z(2) = FLOAT (IRNGE (J1))	COR02080

	DO 70041 JJ=1, 2	COR 02090
	S=0.	COR 0 2100
	DO 70042 KK=1,4	COR 02110
70042	S=S+HH(JJ,KK)*X(KK)	COR02120
70041	HHX (JJ) = S	COR02130
	DO 70043 JJ=1,2	COR 02140
70043	HHX(JJ) = Z(JJ) - HHX(JJ)	COR 02150
	DO 70044 JJ=1,4	COR 02160
	S=0.	COR 02170
	DO 70045 KK=1,2	COR02180
70045	S=S+KGAIN(JJ,KK)*HHX(KK)	COR02190
70044	70044 KZHX (JJ) = S	COR 02200
	DO 70046 JJ=1,4	COR 0 22 10
20046	$70046 \times (JJ) = X(JJ) + KZHX(JJ)$	COR 02220
	DO 70047 JJ=1,2	COR 02230
	DO 70047 KK=1, 4	COR 02240
70047	PPHTT (JJ, KK) = PPHT (KK, JJ)	COR 02250
	DO 70048 JJ=1,4	COR 0 2260
	DO 70049 KK=1,4	COR 02270
	S=0.	COR 02280
	DO 70050 LL=1,2	COR 02290
70050	S=S+KGAIN (JJ,LL) *PPHTT (LL,KK)	COR 02300
20045	KKPHTT (JJ, KK) = S	COR 02310
70048	CONTINUE	COR 02320

```
COR 02340
                                                                                                                                                                                                                                                                                                                                              COR 024 10
                                                                                                                                                                                                                                                                                                                                                                                                                                   COR 02430
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  COR 024 50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IBB (KPOINT_RMT+8) = IOR (IAND(IBB (KPOINT_RMT+8), NOT (ISHFT (65535, 0))), COR 02460
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       COR 024 70
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IBB (KPOINT_RMT+8) = IOR (IANL(IBB (KPOINT_RMT+8), NOT (ISHFT (65535, 16))) COR 02480
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            COR 025 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          COR 02540
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             COR 02560
                                                                                    COR 02350
                                                                                                                               COR02360
                                                                                                                                                                                                                                                                                                     COR 02400
                                                                                                                                                                                                                                                                                                                                                                                        COR 02420
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          COR 02440
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        COR 02490
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    COR 02500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       COR 02520
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IBB (KPOINT_RMT+5) = IOR (IANE(IBB (KPOINT_RMT+5), NOT (ISHFT (511, 0))), ISCOR 02530
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IBB (KPOINT_RMT+4) = IOR (IAND(IBB (KPOINT_RMT+4), NOT (ISHFT (4095, 16))), COR 02550
                                                                                                                                                                       COR 02370
                                                                                                                                                                                                                  COR 02380
                                                                                                                                                                                                                                                           COR 02390
COR 02333
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         *, ISHFT (IAND (INT (.5+ (F_RMT$TMALON--3.2) /.0001), 65535), 16))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CALL RRB2LL (F_RMT$TMALAT, F_RMT$TMALON, RNG, THETA, 0., COSL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     *ISHFT (IAND (INT (.5+ (F_RMT $TMALAT--3.2) /.0001),65535),0))
                                                                                  70051 I_RMT$PMATRIX (JJ,KK) = I_RMT$PMATRIX (JJ,KK) - KKPHTT (JJ,KK)
                                                                                                                                                                                                                                                          THETA=INT (THETA* (180./3.141592654)+.5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CSE=INT (CSE* (180./3.141592654) +.5)
                                                                                                                                                                                                                                                                                                   RNG=SQRT(X(1)*X(1)+X(2)*X(2))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SPD=SQRT (X(3) * X(3) + X(4) * X(4))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           *ISHFT (IAND ( (SPD), 4095), 16))
                                                                                                                                                                                                                                                                                                                                                                                      F_RMT $T MALON = F_FOS 1 $LON
                                                                                                                                                                                                                                                                                                                                           F_RMT$TMALAT=F_POS1$LAT
                                                                                                                                                                                                                  THETA=FATAN2 (X (2), X (1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          *HFT (IAND ( (CSE), 511), 0))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CSE=FATAN2 (X (4), X (3))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  KPCINT_RMT=IRMT[(. 1)
                                                                                                                                                                                                                                                                                                                                                                                                                                 COSL=F_POS1$COSIAT
DO 70051 JJ=1,4
                                         DO 70051 KK=1,4
                                                                                                                                                                     GOTO 70015
                                                                                                                             J=J+1
                                                                                                                             70027
```

CONST1=I_RMT\$PMATRIX(1,1)-I_RMT\$PMATRIX(2,2)	COR 02573
CCNST2=I_RMT\$PMATRIX(1,2) *I_RMT\$PMATRIX(1,2)	COR 02580
CONST=SQRT (CONST1*CONST1/4. +CONST2)	COR 02590
I_RMT\$SIGNASQR= (I_RMT\$PMATRIX (1,1) +I_RMT\$PMATRIX (2,2)) /2.+CONST	COR02600
I_RMT\$2SIGMA=SQRT(I_RNT\$SIGMASQR) *2./2025.	COR02610
IF (I_RMT\$2SIGMA.LE.500) THEN	COR02620
I_RMT\$TMAQUALITY=2	COR 02630
ELSE IF (I_RMT\$2SIGMA.GT.500.AND.I_RMT\$2SIGMA.LE.1000) THEN	COR 02640
I_RMT\$TMAQUALITY=1	COR02650
ELSE	COR 02660
I_RMT\$TMAQUALITY=0	COR02670
END IF	COR 02680
IBB (KPOINT_RMT+9) = IOR (IAND(IBB (KPOINT_RMT+9), NOT (ISHFT (3,4))), ISHFCOR 02690	HFCOR02690
*T (IAND ((I_RMT\$TMAQUALITY),3),4))	COR02700
70016 K=J	COR 027 10
GOIO 70009	COR 02720
70010 IVIEW=IVIEW+1	COR 02730
GOTO 70003	COR 0 27 4 0
70099 RETURN	COR 027 50
END	COR 02760

BIBLIOGRAPHY

B-K Dynamics, Inc., Battle Group Training Computer Support Facility (BGTCSF) Passive Schar TEE Plan and Results, prepared for Naval Ocean Systems Center, San Diego, California, September 1983.

B-K Dynamics, Inc., <u>Battle Group Training Computer Support Facility (BGTCSF) Target Motion Analysis</u>, prepared for Naval Ocean Systems Center, San Diego, California, June 1983.

Pacer Systems, Inc., <u>Interim Fattle Group Tactical Trainer</u> (IBGTT) Instructor User's Guide, Volume I, prepared for Naval Ocean Systems Center, San Diego, California, 17 January 1983.

Shudde, Rex H., A Multiple Leg TMA Procedure with Programs for the Hewlett-Packard HP-41CV, the Hewlett-Packard HP-75C, the Sharp PC-1500 (TRS-80 PC-2), and the Radio Shack TRS-80 Model 100 Portable Computers, Naval Postgraduate School, Monterey, California, September 1983.

System Development Corp., NWISS Programmer/Analyst Guide, prepared for Naval Ocean Systems Center, San Diego, California, 31 May 1984.

INITIAL DISTRIBUTION LIST

1	Defense Technical Information Center Cameron Station Alexandria, VA 22314	No.	Copies
2.	Library, Code 0 142 Naval Postgraduate School Monterey, CA 93943		2
J.	Ccmmander Naval Ocean Systems Center ATTN: Code 41 San Diego, CA 92152		1
	LT. Keith N. Spangenberg Cruiser-Destroyer Group Five FPO, San Francisco 96601-4703		1

7 3150 E

Thesis S66636

s6663

Spangenberg

Multiple sensor tracking in the Interim Battle Group Tactical Trainer.

31 OCT 88

32447

7 950

Thesis S66636

c.1

Spangenberg

Multiple sensor tracking in the Interim Battle Group Tactical Trainer.

thesS66636
Multiple sensor tracking in the Interim
3 2768 000 61319 4
DUDLEY KNOX LIBRARY