Relationship between Amount Spent on Wine and Other Aspects - Checkpoint 3

2021/12/7

**This document is made for displaying the code we used, and the formal final report is the other file.

##		Var1	Var2	value
##	1	Year_Birth	${\tt Year_Birth}$	1.00
##	2	Income	${\tt Year_Birth}$	NA
##	3	Recency	${\tt Year_Birth}$	-0.02
##	4	MntWines	${\tt Year_Birth}$	-0.16
##	5	${ t MntFruits}$	${\tt Year_Birth}$	-0.02
##	6	${\tt MntMeatProducts}$	Year_Birth	-0.03

## ##	Stepwise Selection Summary								
## ## ##	Step	Variable	Added/ Removed			C(p)	AIC	RMSE	
## ##	1	Income	addition	0.335	0.335	782.3200	31189.1438	275.1787	
##	2	MntMeatProducts	addition	0.416	0.415	420.7530	30904.2891	257.9906	
##	3	Kidhome	addition	0.460	0.459	224.5120	30732.6756	248.1359	
##	4	Education	addition	0.481	0.479	131.0650	30651.9723	243.4392	
##	5	MntGoldProds	addition	0.501	0.499	42.8000	30566.6858	238.7457	
##	6	NumDealsPurchases	addition	0.511	0.509	1.4850	30525.5484	236.4868	
##	7	MntSweetProducts	addition	0.511	0.509	0.0260	30524.0667	236.3547	

It seems like "MntSweetProducts" has the smallest risk.

We apply best subsets regression method, and focus on Cp and AIC, and temporarily ignore the other columns in the output , also the off-screen part.

```
##
## Call:
## randomForest(formula = MntWines ~ ., data = newwine, ntree = ntrees, type = classification, na
## Type of random forest: regression
## Number of trees: 200
## No. of variables tried at each split: 3
```

Mean of squared residuals: 35427.01 ## % Var explained: 68.85

Variable Importance plot

IncNodePurity

##	Best Subsets Regression										
## ## ##		Index	Predict	tors							
##	1	 L	Income								
##	2	2	Income	MntMeatP	roducts						
##	3	3	Income	MntMeatP	roducts	Kidhome					
##	4	1	Income	MntMeatP	roducts	Kidhome	Education				
##	5	5	Income	MntMeatF	roducts	Kidhome	Education	${\tt MntGoldProds}$			
##	6	5	Income	MntMeatF	roducts	Kidhome	Education	${\tt MntGoldProds}$	NumDealsPurcha	ases	
##	7	7	Income	MntMeatF	roducts	Kidhome	Education	${\tt MntGoldProds}$	NumDealsPurcha	ases MntSweetP	rodu
##											
##											
##									Regression Sun		
##											
##				•	Pre						
								AIC	SBIC	SBC	
##	1	0.3	3348	0.3345	0.3	2447 '	789.0891	31189.1438	24899.2249	31206.2541	1
##	2	0.4	1156	0.4151	0.3	3264	426.7002	30904.2891	24614.5453	30927.1030	1
##	3	0.4	1596	0.4589	0.3	3881	230.0115	30732.6756	24443.1949	30761.1929	1
##	4	0.4	1808	0.4792	0	.413	136.3489	30651.9723	24356.6915	30703.3035	1
##	5	0.5	5009	0.4991	0.4	4399	47.8790	30566.6858	24271.7585	30623.7204	1:
##	6	0.5	5105	0.5085	0.4	4462	6.4671	30525.5484	24230.8605	30588.2864	1:
##	7	0.5	5113	0.5091	0.4	1447	5.0000	30524.0667	24229.4109	30592.5083	11

```
## AIC: Akaike Information Criteria
```

SBIC: Sawa's Bayesian Information Criteria

SBC: Schwarz Bayesian Criteria

MSEP: Estimated error of prediction, assuming multivariate normality

FPE: Final Prediction Error

HSP: Hocking's Sp

APC: Amemiya Prediction Criteria

Next, we plot risk against different possible models (in the table above) as follows:

We conclude that a combination of "Income", "MntMeatProducts", "Kidhome", "Education", "MntGold-Prods", "NumDealsPurchases", and "MntSweetProducts", is the best choice due to its lowest Cp and AIC.

Below, we use the selected variables above to fit a ordinary linear model, and analyze it by shrinkage methods Ridge and Lasso.

