

Introdução aos Nanossatélites e Cubesats

Introdução à Engenharia Espacial

Lázaro Aparecido Pires de Camargo Divisão de Pequenos Satélites - DIPST Instituto Nacional de Pesquisas Espaciais — INPE São José dos Campos - SP

SATÉLITES

CUBESATS

- Miniaturização
- Experiência em Eng.
 Espacial
 - Educacional
- Teste de tecnologias
- Experimentos Científicos

CUBESATS É UM DOS "MODELOS" DE PEQUENOS SATÉLITES

Tube 5at with Sample Ejection Cylinder

FAZER UM CUBESAT EXIGE UM GRANDE PLANEJAMENTO ...

Сопсерçãо	Viabilidade	Projeto		Execução	Operação	Descarte
FASE 0	FASE A	FASE B	FASE C	FASE D	FASE E	FASE F
Análise de Missão	Análise de viabilidade	Definição Preliminar do Projeto	Definição Detalhada do Projeto	Produção e Qualificação	Operação	Descarte
DRUM, DOM (+ PGP.	ORP + Plance V		Modelo de C	DR	Lancament to de Voo	R
		(SRR)		QR OR	LRR	

... E DIFERENTES DISCIPLINAS...

OFICINA DE CUBESATS

CICLO DE VIDA

mockup de um cubesat !!! É bem simples !!!

FASE 0/A — ANÁLISE DE MISSÃO E VIABILIDADE

Dê um nome para sua missão e para o seu satélite

FASE B - DEFINIÇÃO PRELIMINAR DO PROJETO

FASE C – DEFINIÇÃO DETALHADA DO PROJETO

FASE D — PRODUÇÃO, QUALIFICAÇÃO, INTEGRAÇÃO E TESTES

Laboratório de Integração e Testes

www.tinkercad.com

FASE D — ETAPAS DE MONTAGEM E INTEGRAÇÃO

1. MONTAR LED INDICADOR DE SOL

Led Indicador de Sol

Pino 11

 $led_indicador_sol.ino$

1. MONTAR LED INDICADOR DE SOL

```
// Teste do Led indicador de Sol
int led indicador sol = 11;
void setup()
 pinMode(led indicador sol,OUTPUT);
void loop()
  digitalWrite(led indicador sol, HIGH);
 delay(1000);
 digitalWrite(led indicador sol, LOW);
 delay(1000);
```

Led Indicador de Sol

Pino 11

led_indicador_sol.ino

2. MONTAGEM DO SENSOR DE SOL

2. MONTAGEM DO SENSOR DE SOL

```
// Teste do Sensor Solar
int sensor_solar = 0;
int valor;
void setup()
 Serial.begin(9600);
void loop()
 valor = analogRead(sensor_solar);
 Serial.println(valor);
 delay(500);
```

3. MONTAGEM DA RODA DE REAÇÃO

3. MONTAGEM DA RODA DE REAÇÃO

```
// Teste da Roda de Reação
int roda_reacao = 3;
void setup()
   pinMode(roda_reacao, OUTPUT);
void loop()
  digitalWrite(roda_reacao, HIGH);
  delay(2000);
  digitalWrite(roda_reacao, LOW);
  delay(1000);
```

Roda de Reação Pino 3

4. MONTAGEM DO SENSOR DE TEMPERATURA

4. MONTAGEM DO SENSOR DE TEMPERATURA

```
// Teste do sensor de temperatura
int sensor temperatura = 1;
void setup()
 Serial.begin(9600);
void loop()
int valor = analogRead(sensor temperatura);
float voltagem = valor * 5.0;
voltagem = voltagem / 1024.0;
float temperatura = (voltagem - 0.5) * 100;
Serial.println(temperatura);
delay(500);
```

https://github.com/lazarocamargo/Oficina_de_Cubesats/

Sensor Temperatura Pino A1

TESTE DO SATÉLITE INTEGRADO

INTEGRAÇÃO À ESTRUTURA

 AIT – Coloque os equipamentos na estrutura

TESTE DE VIBRAÇÃO

• Sacudir de leve!!!

TESTE DO MODELO DE VOO

Ainda está tudo funcionando???

FASE E - LANÇAMENTO

FASE E - OPERAÇÃO

FASE F - DESCARTE

Vamos desmontar o Cubesat

- 1. Pilhas nos saquinhos
- Componentes dentro da caixa de plástico
- 1º lado da estrutura fica com o Arduino e pilhas
- 2º lado fica com a caixa de plástico e porta pilhas
- 5. Acomodar a lupa
- 6. Fechar tudo

O QUE APRENDEMOS...

- Introdução à Engenharia Espacial.
- Possibilidades ("baixo custo") → aprendizado / testes de tecnologia.
- Super Rápido Ciclo de Vida:
 - \bullet 0 \rightarrow F
 - Montagem laboratorial eletrônica / lúdica
- Sensibilizar quanto a Engenharia Espacial
- E quem sabe nos encontramos:
 - iniciação científica,
 - mestrado,
 - e/ou doutorado.

Obrigado!!!!

lazaro.camargo@inpe.br