Algoritmos e Fundamentos da Teoria de Computação

Lista de Exercícios 06

- 1 Construa uma DTM R que reduz a linguagem $L = \{a^i(bb)^i \mid i > 0\}$ para a linguagem $Q = \{a^ib^i \mid i > 0\}$ em tempo polinomial. Usando a notação de Big Oh, apresente a complexidade de tempo de R.
- **2** A máquina R abaixo computa uma função de $\{a,b\}^*$ para $\{c,d\}^*$.

- a. Faça o trace da computação de R para a entrada abba.
- b. Descreva a string de tamanho n para a qual a computação de R requer o número máximo de transições.
- c. Apresente a função tc_R .
- d. A máquina R reduz a linguagem $L = abb(a \cup b)^*$ para a linguagem $Q = (c \cup d)cdd^*$? Se sim, prove que a função computada por R é uma redução. Se não, apresente uma *string* que demonstra que o mapeamento da função não é uma redução entre essas duas linguagens.
- **3** Para resolver ambos os itens abaixo, assuma que $\mathcal{P} = \mathcal{NP}$.
 - a. Seja L uma linguagem em \mathcal{NP} com L $\neq \emptyset$ e $\bar{L} \neq \emptyset$. Isto é, tanto L quando o seu complemento \bar{L} são linguagens não-vazias e o problema de decidir se uma *string* pertence a L está na classe \mathcal{NP} . Prove que esse problema de decisão para L é NP-completo.
 - b. Por que \mathcal{NPC} (a classe de complexidade que contém os problemas NP-completos) é um subconjunto próprio de \mathcal{NP} ?
- 4 Construa uma DTM R que reduz a linguagem $L = aa(a \cup b)^*$ para a linguagem $Q = ccc(c \cup d)^*$ em tempo polinomial. Usando a notação de Big Oh, apresente a complexidade de tempo assintótica para R.
- 5 Três alunos $(A, B \in C)$ tentaram encontrar a classe de complexidade de um problema de decisão X. O aluno A construiu uma DTM M_A que decide X com complexidade assintótica de tempo O(n!) e concluiu que $X \notin \mathcal{P}$. O aluno B construiu uma outra DTM M_B (diferente de M_A) com complexidade assintótica de tempo $O(2^n)$ e concluiu que $X \in \mathcal{NP}$. Por fim, o aluno C construiu uma redução polinomial (determinística) de SAT para X e concluiu que $X \in \mathcal{NPC}$.

Assumindo que as máquinas e a redução construídas estão corretas, bem como a determinação da complexidade assintótica, explique por que as conclusões dos três alunos estão *erradas*, **justificando adequadamente todas as respostas**. A seguir, explique o quê pode ser concluído sobre a complexidade de X a partir das informações acima.