Results of the spatial BYM model with our implementation

1 Implementation of the BYM model.

```
data {
 int<lower=0> N;
 int<lower=0> N edges;
 int<lower=1, upper=N> node1[N_edges]; // node1[i] adjacent to node2[i]
 int<lower=1, upper=N> node2[N_edges]; // and node1[i] < node2[i]
                             // count outcomes
 int<lower=0> y[N];
                               // predictor
// vector[N] x;
 vector<lower=0>[N] E; // exposure
}
transformed data {
 vector[N] log_E = log(E);
parameters {
                         // intercept
 real beta0;
// real beta1;
                           // slope
 real<lower=0> sigma_theta; // sd of heterogeneous effects
 real<lower=0> sigma_phi;  // sd of spatial effects
 vector[N] theta_std;  // standardized heterogeneous effects
 vector[N - 1] phi_std_raw; // raw, standardized spatial effects
transformed parameters {
// real<lower=0> sigma_theta = inv(sqrt(tau_theta)); // convert precision to sigma
 // real<lower=0> sigma_phi = inv(sqrt(tau_phi)); // convert precision to sigma
// vector[N] phi_std;
 vector[N] phi;
 phi[1:(N-1)] = phi_std_raw;
 phi[N] = -sum(phi_std_raw);
 // vector[N] phi;
 // phi = phi * sigma_phi; // non-centered parameterization
model {
// y ~ poisson_log(log_E + beta0 + beta1 * x + theta + phi);
 y ~ poisson_log(log_E + beta0 + theta + sigma_phi * phi);
 target += -0.5 * dot_self(phi[node1] - phi[node2]);
// beta0 ~ normal(0, 5);
// beta1 ~ normal(0, 5);
```

```
theta_std ~ normal(0, 1);
// tau_theta ~ gamma(3.2761, 1.81); // Carlin WinBUGS priors
// tau_phi ~ gamma(1, 1); // Carlin WinBUGS priors
}
generated quantities {
// vector[N] mu = exp(log_E + beta0 + beta1 * x + phi + theta);
    vector[N] mu = exp(log_E + beta0 + sigma_phi * phi + theta);
    vector[N] SMR = exp(beta0 + sigma_phi * phi + theta);
// real psi = sd(phi) / (sd(theta) + sd(phi)); // proportion spatial variation
}
```

2 Fitting the model to Spain's mortality data.

```
library(rstan)
library(spdep)
# options(mc.cores = parallel::detectCores())
options(mc.cores = 3)
source("mungeCARdata4stan.R")
load("../../Mortalidad nacional/DatosSinTemporal.Rdata")
Veci <- nb2WB(CartoMuniSinIslas.nb)</pre>
nbs = mungeCARdata4stan(Veci$adj, Veci$num)
N = nbs$N
node1 = nbs$node1
node2 = nbs node2
N_edges = nbs$N_edges
tcomp02 <- system.time(mod.BYM <- stan_model("BYM_Mitzi_NoPriors3.stan"))</pre>
# Compilation in 61 seconds
save(mod.BYM, file = "mod.Stan.BYM.NoPriors3.Rdata")
# load('mod.Stan.BYM.NoPriors3.Rdata')
Ejecuta.BYM.Stan <- function(Sexo, Causa) {</pre>
    y <- MorTabu[Sexo, Causa, ]
    E <- Esperados[Sexo, Causa, ]</pre>
    datos <- list(N, N_edges, node1, node2, y, E)</pre>
    param <- c("SMR", "mu", "beta0", "sigma_phi", "sigma_theta")</pre>
    Res.t <- system.time(Res <- sampling(object = mod.BYM, data = datos, chains = 3,
        iter = 4400, warmup = 400, thin = \max(1, floor(3 * (4400 - 400)/1000)),
        cores = 3, pars = param))
    Res.BYM[[Sexo]][[Causa]] <<- list()</pre>
    Res.BYM[[Sexo]][[Causa]]$tiempo <<- Res.t</pre>
    Res.BYM[[Sexo]][[Causa]]$summary <<- Res</pre>
    Res.BYM[[Sexo]][[Causa]]$RR <<- summary(Res)$summary[1:7907, 1]
    Res.BYM[[Sexo]][[Causa]]$P.RR <<- apply(extract(Res, pars = "SMR")$SMR,</pre>
        2, function(x) {
            mean(x > 1)
        })
```

```
Res.BYM <- list(Hombres = list(), Mujeres = list())

for (i in c(9:18, 22, 28, 30, 31, 33, 35:37, 41)) {
    Ejecuta.BYM.Stan(1, i)
    save(Res.BYM, file = "Res.BYM-StanMitzi.NoPriors3.Rdata")
}</pre>
```

3 Descriptive principals.

Cause	Time	sigma_phi	sigma_theta	max.Rhat	min.n_eff
(9) Mouth and pharynx	5419.7	2.564 [0.3077,4.6264]	0.2847 [0.0526,0.5988]	NaN	1.50
(10) Esophagus	9303.7	$0.5841 \ [0.2653, 1.1523]$	$0.1401 \ [0.0034, 0.3351]$	81.75	1.50
(11) Stomach	4824.7	0.6545 [0.301, 1.3293]	0.1178 [0.0015, 0.2997]	129.02	1.50
(12) Colon	9353.5	0.2406 [0.2141, 0.2671]	0.1009 [0.0826, 0.1177]	1.01	544.47
(13) Rectum	9282.1	0.2036 [0.1617, 0.245]	0.1209 [0.0934,0.1448]	1.01	202.03
(14) Liver	4937.7	0.3117 [0.2773, 0.349]	$0.146 \ [0.1212, 0.1696]$	1.01	431.36
(15) Pancreas	4927.4	$0.2141 \ [0.1835, 0.2441]$	$0.061 \ [0.0203, 0.0907]$	1.02	298.88
(16) Other digestives	5218.0	0.2037 [0.1572, 0.2527]	$0.0478 \ [0.0025, 0.1023]$	1.02	303.97
(17) Larynx	5479.5	$0.35 \ [0.305, 0.3914]$	0.0797 [0.0161, 0.1277]	1.02	246.02
(18) Lung	5157.0	0.3601 [0.3371, 0.383]	0.0837 [0.0631,0.1018]	1.01	350.67
(22) Other skin	4926.5	0.2387 [0.1816, 0.2969]	$0.0465 \ [0.0024, 0.1152]$	1.02	169.74
(28) Prostate	4782.3	1.2679 [0.1728, 3.425]	1.3599 [0.0252, 3.9608]	6073.42	1.50
(30) Kidney	4734.1	0.9631 [0.2474, 2.3225]	2.1043 [0.0039,6.2195]	32487.04	1.50
(31) Bladder	4695.2	0.3179 [0.2753, 0.3806]	$0.4226 \ [0.0462, 1.1115]$	156.29	1.50
(33) Brain	9016.7	$0.1486 \ [0.1102, 0.1915]$	0.087 [0.051, 0.1176]	1.04	116.98
(35) Poorly defined	4820.0	0.2242 [0.1979, 0.2519]	0.0978 [0.0758,0.1179]	1.02	382.89
(36) Other lymphatics	4928.4	0.1763 [0.1416,0.2098]	0.0748 [0.0458,0.0987]	1.01	350.81
(37) Leukemias	4961.9	0.1445 [0.1099,0.1833]	0.0683 [0.024,0.1024]	1.02	241.48
(41) Other tumors	4925.3	0.3019 [0.2581,0.3421]	0.0461 [0.0027,0.0941]	1.02	416.76
Median	4937.7	0.3	0.1	NA	241.48