Statement of Purpose

Shubham Agrawal 22110249

shubham.agrawal@iitgn.ac.in | IIT Gandhinagar

Preliminary Approach: OMR Sheet Bubble Detection

Tools and Technologies

- 1. **Programming Language**: Python
- 2. Libraries and Frameworks:
 - Al & Machine Learning: TensorFlow, PyTorch, or Scikit-learn
 - Image Processing: OpenCV, PIL
 - Data Handling: Pandas, NumPy
- 3. Visualization Tools: Matplotlib, Seaborn, Dash, Streamlit
- 4. **Mobile Integration**: TensorFlow Lite, Flutter/Dart for app development

Al Models and Methodologies

1. Data Preprocessing:

- Analyze datasets (e.g., OMR sheet images from the provided GitHub repository).
- Preprocess images (grayscale conversion, binarization, noise reduction).
- Identify and extract key regions like bubble sections and corner markers using image processing.

2. Bubble Detection:

- Develop a supervised learning model (e.g., CNN) to classify bubble presence.
- Use bounding box detection for precise bubble localization.
- Augment data by applying transformations like rotations or scaling to improve robustness.

3. Sheet Alignment and Marker Detection:

- Implement algorithms for corner marker detection using OpenCV.
- Develop alignment correction methods to handle misaligned or rotated sheets.

4. Error Handling and Feedback Loop:

- Introduce error correction mechanisms for incomplete or misaligned scans.
- Integrate a human-in-the-loop system for reviewing and correcting errors.

Integration and Customization

- Convert the trained model to TensorFlow Lite for efficient deployment.
- Build an app interface that:
 - Accepts scanned OMR sheet PDFs.
 - Detects bubbles and outputs responses in CSV format.

Visualization and Analysis

- Develop tools for error visualization:
 - Heatmaps for misdetected areas
 - Overlay bounding boxes on images to show bubble detections
- Create dashboards to display accuracy, error rates, and processing statistics.

Reporting and Metrics

- Evaluate and track:
 - Bubble detection accuracy
 - Alignment precision
 - Error rate
- Monitor system efficiency and robustness across diverse templates.