# **Homework 2**

Instructor: Lijun Zhang Name: 方盛俊, StudentId: 201300035

### **Notice**

- The submission email is: zhangzhenyao@lamda.nju.edu.cn.
- Please use the provided Latex file as a template.
- If you are not familiar with LaTeX, you can also use Word to generate a PDF file.

#### **Problem 1: Convex functions**

(a)

令 
$$g(x)=-\log x$$
,求导可得  $g'(x)=-rac{1}{x}, g''(x)=rac{1}{x^2}>0$ 

所以  $g(x) = -\log x$  是严格凸的.

而  $f_i(x) = -\log x_i = -\log A_i^T x = g(A_i^T x)$ , 其中  $A_i$  第 i 分量为 1, 其他分量为 0, 可以看出  $f_i(x)$  是凸函数的仿射映射函数, 也是严格凸函数.

因此  $f(x) = \sum_{i=1}^n f_i(x)$  为严格凸函数的和, 结果也是严格凸的.

(b)

 $\Rightarrow$ :

因为 f 是一个二阶可微的凸函数, 因此  $\forall x,y$  有

$$f(y)\geqslant f(x)+
abla f(x)^T(y-x)$$

$$f(x) \geqslant f(y) + \nabla f(y)^T (x - y)$$

两式相加可得

$$\nabla f(x)^T (x-y) \geqslant \nabla f(y)^T (x-y)$$

最后有 
$$(\nabla f(x) - \nabla f(y))^T (x - y) \geqslant 0$$
 成立

因为我们有 
$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0$$

$$\Rightarrow g(t) = f(tx + (1-t)y), \ \mathbb{M} \ g'(t) = \nabla f(tx + (1-t)y)^T(x-y)$$

即证 
$$g'(t)\geqslant g'(0)$$
,即  $[\nabla f(tx+(1-t)y)^T-\nabla f(y)](x-y)\geqslant 0$ 

经过观察, 计算 tx+(1-t)y-y=tx-ty=t(x-y), 那么我们只需将 tx+(1-t)y 带入 x 的位置, 根据  $(\nabla f(x)-\nabla f(y))^T(x-y)\geqslant 0$  有

$$(
abla f(x) - 
abla f(y))^T t(x-y) \geqslant 0$$
 成立, 因为  $t \geqslant 0$ , 可知  $g'(t) \geqslant g'(0)$ 

最后有 
$$f(x) = g(1) = g(0) + \int_0^1 g'(t) \mathrm{d}t \geqslant g(0) + g'(0) = g(y) + \nabla f(y)(x-y)$$

(c)

因为 
$$f$$
 是凸函数,因此我们有  $f(\frac{\theta x_1+(1-\theta)x_2}{\theta t_1+(1-\theta)t_2})\leqslant \theta f(\frac{x_1}{t_1})+(1-\theta)f(\frac{x_2}{t_2})$ 

$$g(\theta x_{1} + (1 - \theta)x_{2}, \theta t_{1} + (1 - \theta)t_{2})$$

$$= (\theta t_{1} + (1 - \theta)t_{2})f(\frac{\theta x_{1} + (1 - \theta)x_{2}}{\theta t_{1} + (1 - \theta)t_{2}})$$

$$= \theta t_{1}f(\frac{\theta x_{1} + (1 - \theta)x_{2}}{\theta t_{1} + (1 - \theta)t_{2}}) + (1 - \theta)t_{2}f(\frac{\theta x_{1} + (1 - \theta)x_{2}}{\theta t_{1} + (1 - \theta)t_{2}})$$

$$\leq \theta t_{1}[\theta f(\frac{x_{1}}{t_{1}}) + (1 - \theta)f(\frac{x_{2}}{t_{2}})] + (1 - \theta)t_{2}[\theta f(\frac{x_{1}}{t_{1}}) + (1 - \theta)f(\frac{x_{2}}{t_{2}})]$$

$$= \theta t_{1}f(\frac{x_{1}}{t_{1}}) + (1 - \theta)t_{2}f(\frac{x_{2}}{t_{2}})$$

$$= \theta g(x_{1}, t_{1}) + (1 - \theta)g(x_{2}, t_{2})$$

因此 g 也是凸函数.

### **Problem 2: Concave function**

先证明不等式 
$$\left(\sum_{i=1}^n (x_i+y_i)^p
ight)^{rac{1}{p}}\geqslant \left(\sum_{i=1}^n x_i^p
ight)^{rac{1}{p}}+\left(\sum_{i=1}^n y_i^p
ight)^{rac{1}{p}}$$

令 
$$a_i=x_i^p, b_i=y_i^p$$
, 则  $x_i=a_i^{rac{1}{p}}, y_i=b_i^{rac{1}{p}}$ , 且  $x_i,y_i\geqslant 0$ 

原式两边乘p次方可转化为

$$\sum_{i=1}^n (a_i^{rac{1}{p}}+b_i^{rac{1}{p}})^p\geqslant \left(\left(\sum_{i=1}^n a_i
ight)^{rac{1}{p}}+\left(\sum_{i=1}^n b_i
ight)^{rac{1}{p}}
ight)^p$$

用  $\frac{1}{p}$  - Norm 范数表示该不等式即为

$$\sum_{i=1}^n \left\| inom{a_i}{b_i} 
ight\|_{rac{1}{p}} \geqslant \left\| \sum_{i=1}^n inom{a_i}{b_i} 
ight\|_{rac{1}{p}}$$

由范数的三角不等式  $\|x+y\|_{\frac{1}{p}} \leqslant \|x\|_{\frac{1}{p}} + \|y\|_{\frac{1}{p}}$  即可知该式成立.

因此我们带入  $\theta x + (1-\theta)y$  即可知

$$\left(\sum_{i=1}^n ( heta x_i + (1- heta) y_i)^p
ight)^{rac{1}{p}}\geqslant \left(\sum_{i=1}^n ( heta x_i)^p
ight)^{rac{1}{p}} + \left(\sum_{i=1}^n ((1- heta) y_i)^p
ight)^{rac{1}{p}} = \ heta\left(\sum_{i=1}^n x_i^p
ight)^{rac{1}{p}} + (1- heta)\left(\sum_{i=1}^n y_i^p
ight)^{rac{1}{p}}$$

即  $f(\theta x + (1 - \theta)y) \geqslant \theta f(x) + (1 - \theta)f(y)$  成立.

因此 
$$f(x) = \left(\sum_{i=1}^n x_i^p\right)^{rac{1}{p}}$$
 在  $\mathrm{dom}(f) = \mathbb{R}_{++}$  时是一个凹函数.

## **Problem 3: Convexity**

(a)

首先对  $x \neq y$  的情况进行分析.

因为  $\psi$  是一个严格凸函数, 根据定义有  $\psi(\theta x + (1-\theta)y) < \theta \psi(x) + (1-\theta)\psi(y)$ 

我们考虑过 x,y 两点的函数  $g(t)=\psi(ty+(1-t)x), t\in[0,1]$ 

我们求导可得  $g'(t) = 
abla \psi(ty + (1-t)x)^T(y-x)$ 

因为  $\psi$  是严格凸函数, 因此 g 也是严格凸函数, 我们有  $g(0)>g(1)+g'(1)\cdot(0-1)$ 

即 
$$\psi(x) > \psi(y) - \nabla \psi(y)^T (y-x) = \psi(y) + \nabla \psi(y)^T (x-y)$$

即有 
$$\Delta_{\psi}(x,y) = \psi(x) - \psi(y) - \langle \nabla \psi(y), x - y \rangle > 0$$

对于 x = y 的情况, 带入即可知

$$\Delta_{\psi}(x,y) = \psi(x) - \psi(x) - \langle 
abla \psi(y), x - x 
angle = 0$$

综上我们有  $\psi(x,y) \geqslant 0, \forall x,y \in \Omega$  且当且仅当 x=y 时取到等号.

(b)

要证 
$$L(y) + \Delta_{\psi}(y,x_0) \geqslant L(x^*) + \Delta_{\psi}(x^*,x_0) + \Delta_{\psi}(y,x^*)$$

即证 
$$L(y) + \psi(y) - \psi(x_0) - \nabla \psi(x_0)^T (y - x_0) \geqslant L(x^*) + \psi(x^*) - \psi(x_0) - \nabla \psi(x_0)^T (x^* - x_0) + \psi(y) - \psi(x^*) - \nabla \psi(x^*)^T (y - x^*)$$

即证 
$$L(y)\geqslant L(x^*)+[
abla\psi(x_0)-
abla\psi(x^*)]^T(y-x^*)$$

由 
$$L(y)$$
 是凸函数可知  $L(y) \geqslant L(x^*) + \nabla L(x^*)^T (y-x^*)$ 

令 
$$f(x) = L(x) + \Delta_{\psi}(x, x_0) = L(x) + \psi(x) - \psi(x_0) - \nabla \psi(x_0)^T (x - x_0)$$
, 因为其是数个凸函数相加, 结果仍然是凸函数

求梯度得  $\nabla f(x)=\nabla L(x)+\nabla \psi(x)-\nabla \psi(x_0)$ ,因为在  $x=x^*$  处取得最小值,因此有  $\nabla f(x^*)=\nabla L(x^*)+\nabla \psi(x^*)-\nabla \psi(x_0)=0$ 

因此 
$$abla L(x^*) = 
abla \psi(x_0) - 
abla \psi(x^*)$$
,带入  $abla L(y) \geqslant L(x^*) + 
abla L(x^*)^T (y - x^*)$ 

可知 
$$L(y)\geqslant L(x^*)+[
abla\psi(x_0)-
abla\psi(x^*)]^T(y-x^*)$$
 成立

因此原式成立.

## **Problem 4: Projection**

(a)

因为  $\Pi_X(x)$  是在凸集 X 上离 x 最近的点,因此与  $x-\Pi_X(x)$  垂直的,过点  $\Pi_X(x)$  的超平面  $S_x$  是 X 的一个支撑超平面,同理  $S_y$  也是 X 的一个支撑超平面.

过  $\Pi_X(x), \Pi_X(y), x$  三点作一个二维平面 P, 将  $y-\Pi_X(y)$  直线投影至 P 上得  $y'-\Pi_X(y)$ ,其中的 x-y' 与  $\Pi_X(x)-\Pi_X(y)$  平行. 并且 P 分别与  $S_x, S_y$  形成了两条切线  $l_x, l_y$ ,P 与 X 的交集形成了一个新的二维凸集 X'.

通过这种方式,根据点乘的几何意义即可将问题转化为  $\|\Pi_X(x)-\Pi_X(y)\|_2^2\leqslant [\Pi_X(x)-\Pi_X(y)]^T(x-y')$ 

对于  $x, y', \Pi_X(x), \Pi_X(y)$  在同一条直线上时易知成立.

对于不在同一条直线上的情况,设  $\Pi_X(x)$  和  $\Pi_X(y)$  的中点为 O,且以  $O - \Pi_X(y)$  为横坐标轴正方向建立坐标系,且凸集 X' 位于横坐标轴下方,x,y' 位于横坐标轴上方.接下来证明位于 O 左侧的过  $\Pi_X(x)$  的切线  $l_x$  斜率大于等于零, $l_y$  斜率小于等于零.

使用反证法,假设  $l_x$  斜率小于零,即  $l_x$  向右下方倾斜,那么 O 就会处于  $l_x$  的下方,再根据支撑超平面的性质可知,O 点不在凸集 X 上,这与  $O=\frac{\Pi_X(x)+\Pi_X(y)}{2}$  位于凸集 X 上矛盾.因此假设不成立, $l_x$  斜率大于等于零,同理  $l_y$  斜率小于等于零.

然后观察图像,我们可知  $\Pi_X(x)-\Pi_X(y)$ ,x-y' 同向,并且  $\Pi_X(x)-\Pi_X(y)$ ,x-y', $l_x$ , $l_y$  形成了一个梯形,因此我们有  $\|\Pi_X(x)-\Pi_X(y)\|_2 \leqslant \|x-y\|_2$ 

可知 
$$\|\Pi_X(x)-\Pi_X(y)\|_2^2\leqslant [\Pi_X(x)-\Pi_X(y)]^T(x-y')=\|\Pi_X(x)-\Pi_X(y)\|_2\|x-y\|_2$$
 成立.

综上可知,  $\|\Pi_X(x) - \Pi_X(y)\|_2^2 \leq \langle \Pi_X(x) - \Pi_X(y), x - y \rangle$  成立.

(b)

由 (a) 有 
$$\|\Pi_X(x)-\Pi_X(y)\|_2^2\leqslant \langle \Pi_X(x)-\Pi_X(y),x-y
angle$$

而由点乘的几何意义我们可知 $\langle\Pi_X(x)-\Pi_X(y),x-y\rangle=\|\Pi_X(x)-\Pi_X(y)\|_2\cdot\|x-y\|_2\cdot\cos\theta$ 

因此我们有  $\|\Pi_X(x) - \Pi_X(y)\|_2 \leqslant \|x - y\|_2 \cdot \cos \theta \leqslant \|x - y\|_2$ 

#### **Problem 5:**

(a)

$$f^*(y) = \sup_{x \in \mathrm{dom} f} (yx - \max\{0, 1-x\})$$

显然,  $f^*(y)$  的定义域为 [-1,0], 均为在 x=1 处取得最大值, 即

$$f^*(y) = y - \max\{0, 1 - 1\} = y$$

(b)

$$f(x) = \ln(1 + e^{-x})$$
 的图像如图所示



因为 
$$\lim_{x \to -\infty} rac{\ln(1+e^{-x})}{-x} = 1, \lim_{x \to +\infty} \ln(1+e^{-x}) = 0$$

所以 
$$y=-x$$
 和  $y=0$  是  $f(x)=\ln(1+e^{-x})$  的两条渐近线.

因此 
$$f^*(y)$$
 的定义域为  $(-1,0)$ ,  $(yx-\ln(1+e^{-x}))'=y+rac{e^{-x}}{1+e^{-x}}$ 

即 
$$y+(y+1)e^{-x}=0\Rightarrow x=-\lnrac{-y}{y+1}$$
 时有最大值

$$f^*(y) = y \cdot (-\ln \frac{-y}{y+1}) - \ln(1 + \frac{-y}{y+1}) = (y+1)\ln(y+1) - y\ln(-y)$$