Project Process Book

Aditi Ravindra, Yash Kamoji, Sreevidya Bollineni

AIRPORT DELAY ANALYSIS

Links

Github

https://github.com/ykamoji/airport-delay-analysis

Website

https://ykamoji.github.io/airport-delay-analysis/

Initial Project Ideas - Motivation

After browsing through a variety of datasets online, we decided that we would like to work with a dataset with information on flight delays. Our group chose to do this project on Flight Delay Analysis because all three of us frequently take flights as a form of travel, as we are not from Massachusetts. Flight delays are a very frustrating and unfortunately, common experience, which made this topic relevant to us personally and thus, more meaningful. Taking a deeper look into the reason and patterns behind delays with flights felt like an interesting and practical way to apply data analysis to a real-world problem we all regularly face. This project combines both our personal experiences as well as our drive for data-driven exploration; by examining these patterns in delays, we are eager to gain insights that can hopefully help frequent fliers, such as ourselves, better anticipate delays and plan itineraries that go hand in hand with that.

Initial Project Ideas - Objectives

The goal of our project is to analyze flight delay data to identify common causes of delays based on factors such as location, time, and season. By visualizing this data, we want to answer key questions such as the most frequent reasons for delay, the percentage of delayed flights, any time or seasonal patterns that affect the punctuality of flight arrivals, and most dependable airline. Understanding these factors can help not only help passengers anticipate delays, but also allow airlines to be prepared and mitigate them more effectively. Overall, the insights we can gain through analyzing this flight data can help improve flight scheduling within airports, allow for better resource allocation, and enhance customer satisfaction among airlines, all of which contribute to a more efficient travel process.

Related Work

Data Source:

The primary data source and inspiration is the Bureau of Transportation Statistics (BTS), part of the U.S. Department of Transportation, which provides the "Airline On-Time Performance Data". This dataset includes detailed records on departure/arrival times and causes of delay reported by U.S. air carriers.

Data source link: https://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp

Initial Project Ideas - Visualizations Goals

After combing through a list of ideas that we came up with through our own experiences, we decided that these are the questions that we wanted to answer without our visualizations:

- Which states have the most delays with arriving and departing flights?
- What are the most common causes of delay from the list (5) given?
- What are the most/least efficient airports to travel from?
- What times/months during the year have the most delays? How much are flights delayed by, on average, during each time period throughout the year?
- Are there more delays on weekdays or weekends?

We reviewed the dataset and brainstormed several visualization ideas.

As we explored these options, we identified relevant data subsets tailored for each individual chart.

Trying out different ways for the 2nd & 3rd visualization.

We kept few possible options for later.

For Design #2, we explored control and interaction options, aiming for a balance between simplicity and functionality.

We ultimately selected the Nightingale chart to effectively represent the top and bottom airports.

Design #3 focuses on uncovering trends and detecting patterns in airport delays over time.

A key idea was to compare weekday and weekend delays to reveal insights into how flight activity and rush hours may impact delays.

Design Evolution

Important things we are keeping in mind as we work on implementing this design:

- Popup placement (when you hover on a airport) should not collide with map elements
- The gradient key should be shown, so users understand what they're seeing.
- Selection/filtering should grey out "irrelevant" regions (everything a user has not selected)
- Keep in mind considerations for visual impairments

- Each airport, whether having the most flight delays or least flight delays, is represented as a segment around the circle.
- **NEW**: The Area of each segment corresponds to the total delays at that airport.
- Airports with highest/lowest number of flight delays are represented.
- When a user selects a segment (airport), a breakdown of different types of delays is displayed as a percentage.

NEW: 46 data points, 1 for each month between 2023 January - 2024 December.

The visualization graphs a subset of data points, segmented by month. The line gets darker/thicker as the # of delays (y-axis) gets higher.

When you click on a segment (**NEW**: segment "lines" - separated by month, but not visible/is relatively clear), shows a bar graph with weekend/weekday delay info (Goal: help user visualize).

Milestone 1: Data Pre-processing

Pre-Processing Data

The data was obtained from a public source in monthly CSV chunks.

Our first step was to combine all the individual files into a single consolidated dataset.

This was accomplished using a Python preprocessing script that streamlined the next analysis and calculations for our visual designs.

Processing Data for Geo Map

Structured the data by grouping on following controls,

Year-Month

State

Airport

Airline

IsWeekday

For each group, taking average of,
5 delay types values
Congestion (derived)
Time deviation
Speed deviation
Recovery efficiency

We do this for both arrival and departure delays

2023-	AK	Adak Island, AK: Adak	Alaska Airlines Inc.	False	0	0	25	39	0	0.115584	0.043436	-0.036366	2.548913
		Anchorage, AK: Ted Stevens Anchorage International	Alaska	False	415	0	781	0	346	0.197400	0.087104	-0.066561	1.186857
			Airlines Inc.	True	1883	98	2131	0	1250	0.183852	0.080514	-0.064808	1.669687
1			American Airlines Inc.	True	494	0	25	0	130	0.111392	0.066489	-0.059524	0.040064
			Delta Air Lines Inc.	False	367	71	133	0	154	0.152717	0.041582	-0.033095	1.055420
•••			•••										•••
	WY	Riverton/Lander, WY: Central Wyoming Regional	SkyWest Airlines Inc.	True	376	5	59	0	321	0.442222	0.182804	-0.103294	2.891755
2024-		Rock Springs, WY: Southwest Wyoming Regional	SkyWest	False	77	0	3	0	0	0.44444	0.069767	-0.040000	0.038961
9			Airlines Inc.	True	238	0	26	0	125	0.430556	0.079018	-0.035855	0.003402
		Sheridan, WY:	SkyWest	False	426	0	0	0	0	0.375000	0.098631	-0.027512	0.482100
		Sheridan County	Airlines Inc.	True	403	0	17	0	0	0.329545	0.025039	-0.008123	-0.024050
82174 rows × 9 columns													

Processing Data for Airports

	Adak Island, AK: Adak	2	62	48	153	417	1255	
AK		0	20066	2194	8551	112	13182	
	Anchorage, AK: Ted Stevens Anchorage International	1	46023	17089	18917	2	21953	
		2	51432	9593	23404	126	60688	
		3	67601	1425	21930	117	54718	
							•••	
WY	Riverton/Lander, WY: Central Wyoming Regional	2	3334	497	1219	0	2548	
	Riverton, Lander, W. F. Gentral Wyonning Regional	3	0	0	0	0	46	
	Rock Springs, WY: Southwest Wyoming Regional	1	7894	602	767	0	2127	
	Rock Springs, W1. Southwest Wyoning Regional	2	2751	490	765	0	1588	
	Sheridan, WY: Sheridan County	1	8349	1704	963	4	4887	
1054 rows × 5 columns								

Structured the data by grouping on following controls,

State

Airport

Departure time slots (derived)

For each group, taking average of, 5 delay type values

We do this for both arrival and departure delays

Processing Data for Trends

2023-1	False	17926	1600	15023	212	13173	816998	110635	327826	4851	677415
	True	48996	5449	48997	424	44482	2239344	455288	1496820	12434	2599003
2023-10	False	17759	834	12815	179	15101	800227	54105	273550	4576	786557
	True	39881	2196	29955	377	34632	1688595	169396	592063	9174	1722730
2023-11	False	14088	773	11899	182	11874	611963	57185	251043	4292	614201
2023-11	True	32746	1821	27945	452	26270	1424486	129232	520815	9538	1252892
2023-12	False	17710	1677	16383	266	15664	777284	161787	370687	7367	880239
2023-12	True	34894	2020	30068	497	29960	1434672	232889	665890	11622	1540525
2023-2	False	15798	793	10839	167	11506	740413	60494	229056	5609	646875
2023-2	True	40102	4357	37566	282	34836	1820531	331944	930465	8833	1880013
2023-3	False	23674	1537	21156	303	21779	973430	106204	569799	8165	1159306
2023-3	True	54621	4867	52445	483	49774	2226673	339888	1337707	10580	2503455
2023-4	False	26708	2468	22501	310	24047	1182952	183412	703827	9641	1380688
2023-4	True	48994	4378	43130	435	45637	2025004	306990	1122716	9710	2386687
2023-5	False	16213	946	11218	177	12782	721679	60965	260901	5530	702018
2023-5	True	49740	3975	38527	434	43866	2076438	262934	903497	11688	2304147

Structured the data by grouping on following controls,
Year-Month
IsWeekday

For each group taking, average of 5 delay type values count of 5 delay types

We will use the average value to draw a trend line while counts for the volume (bars) on the same graph

03/19 (Aditi)

Milestone 2: Visualization GEOMAP

Designing Geo Map

As a starting point for visualizing airport delays across the U.S., I created a map of the United States with svg labeled with state names.

At this point, the focus is on scaling, sizing and positioning of the texts and Map on the window for the next steps.

Designing Geo Map

Building on the labeled U.S. map, I completed the shading of each state based on the average airport delays.

I also added the actual delay values directly onto the states to provide precise, at-a-glance information.

To support interpretation, I included a sequential legend that maps the color scale to delay durations, making the visualization both intuitive and informative.

Geo Map - Zoomed

Adding the hover feature for each airport marker. When a user hovers over an airport, it gets visually highlighted and a popup appears showing detailed information, including the total delay and key derived metrics.

To help users quickly interpret performance, I incorporated visual cues—using green to indicate improvements or lower delays, and red for increases or higher delays. This immediate color feedback, combined with contextual data, allows users to quickly assess the situation at each airport.

To enhance interactivity, implemented D3 zooming functionality, allowing users to click on a state and zoom in for a closer view. As the map zooms, dynamically adjust the text sizes to maintain readability at different scales.

I added airport locations within each state using accurate (x, y) coordinates sourced online. For each airport, I placed a location marker and overlaid a circle whose size represents the corresponding delay value. This layered approach provides a more detailed and interactive

way to explore delay patterns at both the country and state levels.

04/03 (Yash)

Geo Map Controls

Designed and integrated interactive controls for both the geo map and airport-level data. Based on the designs we outlined during the planning stage, I added input elements such as dropdowns, switches, dates etc. that allow users to filter and adjust the visualization dynamically.

When these inputs are changed, the map updates in real time to reflect the new delay distributions, enabling a more tailored and insightful exploration of the data. The goal was to keep the interaction intuitive while still offering powerful filtering options.

Milestone 3: Visualization Airports Pending

Milestone 4: Visualization Trends Pending