

2023.02.05 비타민 10기 자율 | 복습 프로젝트 발표

# 목차

| PART 1.                              | PART 2.                  | PART 3.                                     | PART 4.                |
|--------------------------------------|--------------------------|---------------------------------------------|------------------------|
| 프로젝트 소개                              | 분석 방법 1                  | 분석 방법 2                                     | 결과 해석                  |
| 01 주제 선정 배경<br>02 데이터셋 소개<br>03 평가지표 | 01 교차 검증 방법 구축<br>02 전처리 | 01 모델 설계<br>02 하이퍼 파라미터 튜닝<br>03 모델 학습 및 전략 | 01 결과 해석<br>02 앞으로의 계획 |

# PART 1. 프로젝트 소개

01 주제 선정 배경

02 데이터셋 소개

03 평가지표

### Microbusiness Density Forecasting



지도학습모델
교차검증 / 그리드서치

이상치 탐지 / 특성공학

손실함수
/ 과대적합 제어 및 규제

시계열 데이터

지난 한 학기 동안 다룬 모든 내용의 응용 & 다루지 않은 시계열 데이터

П

시계열 데이터의 지도학습 예측 모델을 주제로 한 KAGGLE 경진대회 참가

### 변수 정의

row\_id

cfips

county\_name

state\_name

first\_day\_of\_month

active

Target -

microbusiness\_density

56045\_2021-11-01 | cfips + first\_day\_of\_month

56045 | 카운티 식별 번호, 앞 두자리는 주, 뒤 세자리는 카운티

CountyWyomin | 주(state)의 하위 행정구역 단위 : 3135개

Weston | 미국의 행정구역 단위 : 50개

2021-11-01 | train의 경우 2021-11-01 부터 2022-10-01 까지 존재

98.0 | 카운티에 존재하는 소기업 실제 빈도

1.760374 | 소기업 밀도(타겟 변수), 18세 이상 인구 100명당 소기업 \*\* 계산에 사용된 인구 정보는 2년 전 집계

# 시계열 데이터의 특성

시계열 변동 요인

추세 (trend)

계절성 (seasonality)

주기성 (cycle)



### 비용함수 SMAPE (Symmetric Mean Absolute Percentage Error)

$$SMAPE = \frac{100}{n} \times \sum_{i=1}^{n} \frac{\left| Y_i - \widehat{Y}_i \right|}{\left( \left| Y_i \right| + \left| \widehat{Y}_i \right| \right) / 2} \qquad MAPE = \frac{100}{n} \times \sum_{i=1}^{n} \left| \frac{Y_i - \widehat{Y}_i}{Y_i} \right|$$

#### 회귀 모델의 전체 예측에 대한 평가 지표로 사용되는 비용 함수 → 낮을수록 성능 우수

#### ☞ 장점

- + MAPE의 한계 : 실제 값이 0이면 계산 불가 → (완화) SMAPE는 실제 값과 예측 값이 동시에 0이면 계산 불가(단, 자명하게 0으로 정의 가능)
- + 공역이 [0,200] → 200으로 나눠서 확률 해석 가능
- ◆ 데이터포인트 단위의 손실(Absolute Error)에 대한 합리적인 가중 평균을 사용하는 효과 ex. 실제 무게가 각각 10000, 10인 사물 A, B에 대하여 예측한 무게가 9999, 9인 경우

#### 🤔 단점

- 실제 값 또는 예측 값 중 하나만 0인 경우 자동으로 손실의 최댓값(200)을 반환
- 실제 값과 예측 값의 차이가 같을 때 대소 관계에 따라 손실이 다름

|   | y_true | y_pred | AE | APE   |
|---|--------|--------|----|-------|
| Α | 10000  | 9999   | 1  | 0.01  |
| В | 10     | 9      | 1  | 10.00 |

# PART 2. 분석 방법 1

01 교차 검증 방법 구축02 전처리

## 일반적인 K-Fold 교차 검증 방법은...

[ex. 6-fold 교차 검증 ⇒ 하이퍼파라미터 결정]



▲ 훈련 폴드와 검증 폴드의 분할에 순서 관계가 없음

### 한편 시계열 데이터는...

#### 시계열 데이터 특성상

💱 전후 데이터 간 상관성(auto-correlation) 존재

──→ ⚠️ 순서 관계를 보존하는 것이 중요

- ✓ 훈련 폴드는 항상 검증 폴드의 과거 시기를 할당
- ✓ 그렇지 않을 경우 data leakage



한 단계(1-step) 미래를 예측하는 시계열 교차 검증



네 단계(4-step) 미래를 예측하는 시계열 교차 검증

# train, test를 한 데이터프레임에 합침

- 시계열 데이터 분석 과정에서 시차(lag)에 의해 파생되는 특성을 예측에 사용
  - → 훈련 세트와 테스트 세트의 출처가 표시된 concat 필요

|        | row_id           | cfips | county        | state   | first_day_of_month | microbusiness_density | active | ist | est |        |
|--------|------------------|-------|---------------|---------|--------------------|-----------------------|--------|-----|-----|--------|
| 147329 | 56045_2022-03-01 | 56045 | Weston County | Wyoming | 2022-03-01         | 1.767542              | 99.0   |     | 0   |        |
| 147330 | 56045_2022-04-01 | 56045 | Weston County | Wyoming | 2022-04-01         | 1.767542              | 99.0   |     | 0   | 훈련 세트  |
| 147331 | 56045_2022-05-01 | 56045 | Weston County | Wyoming | 2022-05-01         | 1.803249              | 101.0  |     | 0   |        |
|        |                  |       |               |         | •                  |                       |        |     |     |        |
| 147342 | 56045_2023-04-01 | 56045 | Weston County | Wyoming | 2023-04-01         | NaN                   | NaN    |     | 1   |        |
| 147343 | 56045_2023-05-01 | 56045 | Weston County | Wyoming | 2023-05-01         | NaN                   | NaN    |     | 1   | 테스트 세트 |
| 147344 | 56045_2023-06-01 | 56045 | Weston County | Wyoming | 2023-06-01         | NaN                   | NaN    |     | 1   |        |

train['istest'] = 0
test['istest'] = 1
raw = pd.concat((train, test)).sort\_values(['cfips','row\_id']).reset\_index(drop=True)

### 결측치 처리

- 훈련 세트와 테스트 세트의 concat 과정에서 스키마 불일치에 의해 결측치 발생
  - → 결측된 스키마의 식별자 정보인 cfips를 기준으로 그룹화 후 결측치를 앞쪽 정보로 입력
- 💡 앞서 정렬된 row\_id에 의해 cfips 그룹 내에서 시간 순으로 정렬되므로 가능



raw['county'] = raw.groupby('cfips')['county'].ffill()
raw['state'] = raw.groupby('cfips')['state'].ffill()

#### 기본적인 날짜 & 지역 관련 파생변수 생성

• EDA 및 분석의 전반에 걸쳐 필요한 인덱스 역할



```
raw['first_day_of_month'] = pd.to_datetime(raw['first_day_of_month'])
raw['year'] = raw['first_day_of_month'].dt.year
raw['month'] = raw['first_day_of_month'].dt.month
raw['dcount'] = raw.groupby(['cfips'])['row_id'].cumcount()
raw['county_i'] = (raw['county'] + raw['state']).factorize()[0]
raw['state_i'] = raw['state'].factorize()[0]
```

### 전반적인 추세가 변하지 않는 선에서 이상치 처리

- 이상치 탐지 방법 : 이번달 밀도와 지난달 밀도 차이가 특정 기준보다 크면 이상치로 판단
- 제한 조건 : 전반적인 추세(그래프의 모양)를 최대한 보존
- 상위권 솔루션의 기준을 사용했으며 남은 대회 기간 동안 다양한 방법을 시도해볼 계획



# 이상치가 탐지되면 과거 관측값이 현재 추세를 반영하도록 보정

- t=i에서 이상치가 탐지되면 그 이전의 관측값을 i번째 값과 같은 수준으로 끌어올림
- 최근 관측값과 추세가 중요하기 때문에 이상치가 아닌 과거 관측값을 변경해 추세를 인위적으로 바꿔줌



### 이상치가 탐지되면 과거 관측값이 현재 추세를 반영하도록 보정



- 분산을 나름 균일하게 조정하는 스케일링 효과, 데이터의 일관성 높임
- 시계열 데이터에서 중요한 정상성 가정을 일정 부분 만족시키기 위함
- 이상치(outliers)이면서 "영향력 있는 관측값(influential points)"을 반영

# 250 - 140 - 120 - 120 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -

[지난달 대비 이번달 타깃값]



# 데이터 입력/수집 오류로 보이는 county 삭제

• mbd가 전부 NaN/0이거나 특정 값이 계속 반복되는 계단형인 경우 오류로 판단, 타깃 값에 0 대입





```
raw.loc[raw['cfips']==28055, 'target'] = 0.0
raw.loc[raw['cfips']==48269, 'target'] = 0.0
```

# 평가지표의 특성을 반영해 예측 대상을 '변화율'로 변경

• SMAPE는 상대적인 지표이므로 절대적인 값인 '밀도'보다 상대적인 값인 '밀도의 변화율' 예측이 평가지표와 부합





# 시계열 예측을 위해 시차값(lagged value) 생성

- 시차 변수, 지연 변수인 lag 1, lag 2, lag 3 생성
- 데이터 특성상 '밀도의 변화율'을 예측할 때 과거의 '소기업 밀도'와 '소기업 개수'가 영향을 주기 때문

| date    | county id | (TARGET)<br><b>mbd 변화율</b> | lag 1 | lag 2 | lag 3 |
|---------|-----------|----------------------------|-------|-------|-------|
| 2019-08 | Α         | a                          |       |       |       |
| 2019-09 | Α         | b                          | а     |       |       |
| 2019-10 | Α         | С                          | b     | а     |       |
| 2019-11 | Α         | d                          | С     | b     | a     |
| 2019-12 | Α         | е                          | d     | С     | b     |
| 2020-01 | Α         | f                          | е     | d     | С     |

## 시계열 예측을 위해 이동평균 변수 생성

- 일반적으로 시계열 데이터를 다룰 때 추세-주기를 측정하기 위해 이동평균 사용
- 이동평균: k 기간 안의 모든 관측값의 평균
- 평균이 데이터의 무작위성을 줄이고 매끄러운 추세-주기 성분만 남기는 효과

| date    | county id | mbd lag 1 |                  | 2-이동평균    | 4-이동평균 | 6-이동평균 |
|---------|-----------|-----------|------------------|-----------|--------|--------|
| 2019-08 | Α         | а         |                  |           |        |        |
| 2019-09 | A         | b         |                  | (a+b) / 2 |        |        |
| 2019-10 | Α         | С         |                  | (b+c) / 2 | a      |        |
| 2019-11 | A         | d         |                  | С         | b      | a      |
| 2019-12 | A         | е         | window<br>"이동"하며 | d         | С      | b      |
| 2020-01 | Α         | f         | "평균"             | е         | d      | С      |

# PART 3. 분석 방법 2

01 모델 설계

02 하이퍼 파라미터 튜닝

03 모델 학습 및 전략

# TimeSeriesSplit

항상 훈련 데이터가 검증 데이터보다 앞선 시간 값을 가지도록 교차검증 데이터 세트를 만든다.

for TS in range(29,38):



예측값



### Blacklist 설계 배경

#### 문제 상황

- 1. **적은 양의 데이터**에 비해 **많은 양을 예측**해야 한다. 38 step ──→
- 2. 많은 지역을 한꺼번에 예측해야 하므로, 모든 지역의 시계열적 특성을 고려할 수 없다. 따라서, 지역에 따라서 모델의 성능이 다 다를 수 있다.

#### 고안해 낸 해결 방안 | BlackList

• 회귀의 가장 베이스가 되는 예측은 평균으로 예측하는 것인데, 시계열 데이터의 특성상 오래된 데이터까지 고려한 평균은 비효율적, 가장 최근의 값으로 예측하는 방법인, Naive Forecasting을 할 지역들을 선별해야한다. →→ Blacklist

> 예시) 구글 주가 예· <sub>550</sub>.



모델

8 step

# Blacklist 생성을 위한 모델링



#### BlackList

#### 만약 모델의 예측값이 최근값을 그대로 사용하는 것보다 못하다면?





모델 예측값에 대한 error 값이 바로 이전 밀도값에 대한 error 값보다 크다면, 모델 예측값이 아닌 바로 이전 밀도값을 그대로 적용하는 것이 적절하다.

# TimeSeriesSplit 를 통해 BlackList 생성하기

[1] valid set 이 30 - 38 까지 총 9 fold 에 대하여 반복

[2] 10 fold 반복하며 y\_pred 와 lastval 도출

xgb\_pred lastval

총 9 fold

[3] 마지막 fold 에서 error 값과 error\_last 값을 비교

error error\_last

[4] error > error\_last 인 경우 blacklist 에 append



TimeStamp(dcount)

총 10번의 검증을 통해서 <mark>평균적</mark>으로 모델을 통한 error가 더 큰 지역들은 blacklist에 추가 후에 예측값도 최근값으로 대체

### 이외에도 lastval 을 적용하는 case



- 가장 최신의 소기업 빈도수와 밀도가 해당 임계치보다 낮은 경우 모델을 통한 예측의 정확도를 확신할 수 없다고 판단
- xgb\_pred 대신에 lastval 을 적용한다

### 훈련 시 간편한 인덱싱을 위해 임시변수 생성

- 시계열 데이터의 특성 상, 피쳐들 간에 시간 상 순서가 있고, 가장 최근의 특성 값을 적절히 탐색할 필요가 있다
- 따라서 타깃과 연관된 변수에 한하여 주어진 데이터 중 가장 최근 값을 저장하는 변수 생성했다

| date    | county id | active |   | last active |
|---------|-----------|--------|---|-------------|
| 2019-08 | Α         | 102    |   | 100         |
| 2019-09 | Α         | 99     | _ | 100         |
| •••     | •••       | •••    |   | •••         |
| 2022-09 | Α         | 104    |   | 100         |
| 2022-10 | Α         | 100    |   | 100         |

- 같은 county라면 같은 값을 저장
- last active: 우리가 알 수 있는 가장 최근 시기 active 값 (t=38, 2022-10 소기업 개수)
- last target: 첫번째 train 마지막 시기 target 값 (t=28, 2021-12 소기업 밀도 변화율)



# 하이퍼 파라미터 튜닝



하이퍼 파라미터 조합에 대한 시간 자원의 효율성을 위해 RandomSearchCV 적용



# 하이퍼 파라미터 튜닝 결과

```
from sklearn.model_selection import RandomizedSearchCV
import time
for TS in range(29, 38):
   print(TS)
   model = xgb.XGBRegressor(tree_method='gpu_hist', gpu_id=0,
       objective='reg:absoluteerror',
       eval_metric='mae',
       early_stopping_rounds=70)
                                                                               RandomizedSearchCV 사용
   param_grid = {
        'eta': [0.05, 0.1, 0.3],
        'max_depth': range(3,10),
        'subsample': np.arange(0.3,1,0.1),
        'colsample_bytree': np.arange(0.1,1,0.1),
        'n_estimators' : np.arange(100,5000,100),
        'learning_rate': np.arange(0.001,0.01,0.001)
   grid_xgb_cv = RandomizedSearchCV(model, return_train_score=True,
                             param_distributions = param_grid,
                             verbose=O,
                             |scoring = "neg_mean_absolute_percentage_error",
                             n_Jobs=-ij
   train_indices = (raw.istest==0) & (raw.dcount < TS) & (raw.dcount >= 1) & (raw.lastactive>ACT_THR) & (raw.lasttarget>ABS_THR)
    valid_indices = (raw.istest==0) & (raw.dcount == TS)
   grid_xgb_cv.fit(
       raw.loc[train_indices, features],
       raw.loc[train_indices, 'target'].clip(-0.0043, 0.0045),
       eval_set=[(raw.loc[valid_indices, features], raw.loc[valid_indices, 'target'])],
   -print('최적의 매개변수 조합: ', grid_xgb_cv.best_params_)
   print('최고의 교차 검증 점수: ', grid_xgb_cv.best_score_)
```

• scoring = 'neg\_mean\_absolute\_percentage\_error'
모델 성능 평가 지표로 smape 와 동일한 flow를 가지는 지표 사용

#### 교차검증 결과 TS=37에서의 최적 하이퍼 파라미터 도출

• subsample: 0.4

n\_estimators: 2200

max\_depth : 6

• learning\_rate: 0.001

• eta: 0.1

colsample\_bytree : 0.2

Last Value SMAPE: 1.101119095956366

XGB SMAPE: 1.0769803704614893

## 모델학습및결과값도출



### 모델전략

• Direct-recursive hyprid model(

주어진 time step이 총 39개인데 비해 8개의 step을 예측해야함 한꺼번에 예측하는 모델은 성능이 떨어질 위험이 있으므로, 다음의 모델을 사용하기로 결정



# PART 4. 결과 해석

01 결과 해석

02 앞으로의 계획

#### 결과 도출 flow



결측치 처리 | 이상치 탐지 및 보정

#### 파생변수 생성

단순 | 시차 변수 | 이동평균변수



#### 모델 활용 case 분류

blacklist | xgb\_pred vs lastval



#### 모델 학습 [1]

XGB+랜덤서치 | 하이퍼파라미터튜닝

#### 모델 학습 [2]

Direct- recursive hyprid 전략

#### 현재 랭킹



#### 결과 해석 (증가 추세 county)

#### Alabama state / Autauga County





- 최근 큰 사업 보조금을 받아 성장 가능성 O
- 인구수와 인구밀도, 개인 소득 또한 alabama state 내에서 상위권에 속함
- 앞으로 중소기업의 성장 가능성 매우 크다

#### **Arizona state / Pima County**





- 다양한 공장 및 산업이 활성화 되어 있는 county
- 인구수와 인구밀도, 개인 소득 또한 매우 높음
- 앞으로 중소기업의 성장 가능성 매우 크다

#### 도출된 결과를 통한 전반적 해석

#### [1] 코로나로 인한 타격

• 상당수의 county 는 중소 기업 밀도가 코로나 이전의 추세를 회복 / 오히려 상회하는 것으로 파악

#### [2] 타겟값에 영향을 미치는 다양한 요인

- 미국은 50개의 state, 3000개 이상의 county 로 구성되어 있다 즉, state 별, county 별로 매우 다양한 특성을 가지고 있다.
- 사업보조금, 활성화된 산업, 인구수, 인구밀도 등 다양한 요인들에 따라 중소기업 밀도가 영향을 받아 증가 또는 감소할 수 있다

# • 앞으로 시도해볼 것들

외부 데이터 활용

트리 기반 모델과 시계열 전용 모델 성능 비교

다양한 이상치 처리 방법 시도

블랙리스트 기준 설정

앙상블 시도



유의미한 성과 도출이 목표!

