

Pruebas de acceso a enseñanzas universitarias oficiales de grado

Castilla y León

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 2

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cuatro ejercicios de la misma en el orden que desee.

2.- CALCULADORA: Se permitirá el uso de **calculadoras no programables** (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Cada ejercicio se puntuará sobre un máximo de 2,5 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

OPCIÓN A

- **E1.- a)** Discutir, en función del valor de m, el sistema de ecuaciones lineales $\begin{cases} mx + y + z = 0 \\ my + mz = 2 \end{cases}$ y resolverlo para m = -1. (1,5 puntos)
 - **b**) Para m = 1 añadir una ecuación al sistema del apartado **a**) para obtener: en un caso un sistema compatible determinado y en otro caso un sistema incompatible. (1 punto)
- **E2.- a)** Determinar la posición relativa de la recta $r = \begin{cases} x 2y + z = 1 \\ 2x y + z = 2 \end{cases}$ y el plano $\pi = 5x y + 2z = 4$. (1 **punto**)
 - **b)** Dadas las rectas $r_1 = \frac{x-1}{2} = \frac{y}{-1} = \frac{z}{5}$ y $r_2 = \begin{cases} -x+2y-z=3\\ 2x-3y+z=1 \end{cases}$, calcular el plano que contiene a r_1 y es paralelo a r_2 . (1,5 puntos)
- E3.- Dada la función $f(x) = 2e^{-2|x|}$, estudiar: derivabilidad, crecimiento y decrecimiento, extremos relativos y asíntotas. (2,5 puntos)
- **E4.- a)** Calcular $\lim_{x\to 0^+} x(e^{1/x}-1)$. (1 punto)
 - **b)** Consideremos la función $f(x) = x^3 + mx^2 + 1$ con $m \ge 0$. Calcular el valor de m para que el área del recinto limitado por la gráfica de la función f(x), el eje OX y las rectas x = 0 y x = 2 sea 10. (1,5 puntos)

OPCIÓN B

- **E1.- a)** Sea A una matriz cuadrada de orden 3 y tal que |A| = 2. ¿Tiene inversa la matriz A^4 ? Calcular $|5A^{-1}|$ y $|(5A)^{-1}|$. (1,5 puntos)
 - **b**) ¿Para qué valores del parámetro a el rango de la matriz $\begin{pmatrix} a+1 & 6 \\ 2 & a \end{pmatrix}$ es 1? (1 punto)
- **E2.- a)** Hallar la ecuación del plano perpendicular al plano $\pi = 2x 2y + 4z 5 = 0$ y que contiene a los puntos (-2,0,0) y (0,1,0). (1,25 puntos)
 - **b)** Dos caras de un cubo están contenidas en los planos $\pi_1 = 2x 2y + z 1 = 0$ y $\pi_2 = 2x 2y + z + 5 = 0$. Calcular el volumen de dicho cubo. (1,25 puntos)
- E3.- Hallar la ecuación de la recta que pasa por el punto (1,1) y forma con los ejes coordenados un triángulo de área mínima en el primer cuadrante. (2,5 puntos)
- **E4.-** Se considera la parábola $y = -x^2 + 2x$.
 - a) Calcular las rectas tangentes a dicha parábola en sus puntos de intersección con el eje
 OX . (0,75 puntos)
 - b) Calcular el área delimitada por la gráfica de dicha parábola y las rectas tangentes obtenidas en el apartado a).
 (1,75 puntos)