Statistics for Data Science Lecture 1

Dennis Fok (Econometric Institute)

September - October, 2024

Who am I

Dennis Fok

- PhD in Econometrics
- Professor of Econometrics and Data Science
- Director of Econometric Institute, Erasmus School of Economics
- Research interests:
 - Modeling individual behavior
 - Marketing models
 - Panel data models
 - Simulation-based estimation methods
 - High-dimensional data
- Publications:
 - Marketing (Marketing Science, Journal of Marketing Research, International Journal of Research in Marketing)
 - Econometrics (Journal of Econometrics, Journal of Applied Econometrics)

Course setup

Background of this course

Statistics:

- Most scary course –or– exiting and fun?
- Basis for many courses to follow!

Goals:

- (Re-)introduce statistics
- Apply everything in Python (or R)
- Not just know how to do things: also understand why!
- Critical thinking!

Setup of course

People involved

- Me!
- + (technical) assistant

Material

- Handouts of slides (most important)
- Book: Bruce, Bruce, and Gedeck, "Practical Statistics for Data Scientists" (we do chapters 1 – 5)
- Additional exercises

Study advice

Steps to take:

- Preparation: read book
- 2 Lectures
 - Theory
 - In-class practice
- **3** After lecture:
 - Reread book (try out code examples in book)
 - Practice
 - ▶ Weekly assignment
 - ► Apply methods in own work environment!
- "Final" assignment is to be submitted in parts
- Questions and discussions
 - During class
 - Through *Discussions* on Canvas

Erofus

Outline of course

- Basics of statistics and inference
- ② Distributions, descriptive statistics and hypothesis testing
- 3 Testing for differences
- 4 Linear regression model
- **6** Diagnostics for multiple regression + model selection
- Generalized linear models (logistical regression)
- Bayesian statistics

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Statistics

Goal of statistics

Goals:

- Summarize properties of data
- Make statements on (differences across) datasets
 - → Statistical hypothesis testing
- Estimate properties of (assumed) data generating process

Descriptive statistics

Inferential statistics

Sample

Descriptive statistics

Inference/Inferential statistics

Usually statements on the **population** are the target!

Two important things to keep in mind:

- How good are these statements?
- Estimation uncertainty will always be present
- All methods have associated assumptions (also ML/Al methods)!
 - Properties of methods derived under these assumptions
 - What if assumptions are not correct?

Slide 8 of 3

Some key concepts in statistics

- Data and variables
- Samples and population
- Wariation and uncertainty
- 4 Models

Key concept 1: Data

Key starting point is always: data or dataset \rightarrow collection of observed variables or features

Classification of data/variables

- Role in the analysis
 - Dependent/Response/Outcome variable
 - Independent/Explanatory variable
- Measurement type
- Numeric
 - ► Continuous (eg. temperature)
 - ► Discrete (eg. a count)
 - Categorical (aka: factor with levels)
 - ► Binary (eg. yes/no)
 - Nominal (no ordering: eg. color)
 - Ordinal (with ordering: eg. disagree/neutral/agree)

Notes:

- ullet No clear dependent variable o Exploratory statistics
- ullet Measurement type (dependent) variable o Determines type of statistical analysis
- In R/Python: data type may determine "actions" by functions

Data sets

Terminology

- Data frame: PataFrame objects
 - \rightarrow Data like a spreadsheet
 - \rightarrow Structured, rectangular data
- Other data shapes: possible, but more advanced material

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Key concept 2: samples and population

- Source of data
 - Experimental
 - Observational
- Independent observations?
 - Repeated observations?
 - Hierarchical clustering? (eg. Children within a Class within a School)
- Random sample from population?
 - What is the population of interest?
 - What effects to control for?

Beware of selective sampling/sampling bias

Question

How (not) to get random sample for political survey?

Examples of non-random samples

- Survey on "random" people at the local market
- Response to a (e)mail/or online survey (response rate matters)
- ..
- → Compare "population" to "sample" to spot (potentially big) problems

Key concept 3: Variation and uncertainty

- Variation across samples is always expected
 - measurement error
 - different respondents
 - random variation
 - ...
 - \rightarrow When is variation larger than expected?
- Comparing (assumed) truth (=unobserved) versus measurement/estimation (=observed)
 - Expectations vs. (sample) means
- Statistical concept: significance
 - A difference (assumed truth observed) is significant:
 - \rightarrow Size of found difference is *unlikely* under the assumed truth
 - Not significant:
 - \rightarrow The found difference is not larger than what can be expected by chance alone
 - Not significant does not mean no true difference! (and other way around?)

Ezafus,

Key concept 4: Models

Statistical/Econometric models:

- Set of assumptions made about the data generating process
- Allow for description and prediction (and sometimes prescription)
- Important for all statistical procedures (even for "just testing")
- "All models are wrong, but some are useful" (Box & Draper, 1987)
- Know which assumptions are crucial!
- Model choice and testing of assumptions are important
- How to fix things?

Models in Python (sneak preview)

Many models are available in Python packages (eg in statsmodels), examples:

- Linear model m = smf.ols(..)
- Generalized linear model m = smf.glm(..)
- Linear mixed effects m = smf.mixedlm(...)
- etc.

Most models allow for a large range of functions/results

- * r = m.fit(): fit the model to data and get result named r
 - r.summary(): print summary
 - r.predict(): give fitted values
 - r.params: give coefficients
 - # sm.stats.anova_lm(r): analysis of variance of fitted model
 - etc

(after dimport statsmodels.api as sm and

Organization of (statistical) analysis in Python

Steps to take:

- Import data (using pandas DataFrame: 🙋 import pandas as pd)
 - Create a data frame directly: data = pd.DataFrame(..)
 - Load from file, eg. 🤚 data = pd.read_csv("file.csv")
- Select and transform data (if necessary)
- Explore data (spot & fix errors)
 - data.plot(title="Title text", ..)
 - data.describe()
- Perform statistical calculations
- Present results

Organize all of this in a script, such that the results can be replicated!

 \rightarrow See programming course for more info

In-class assignment

Assignment

- See the file Day-1-AssignmentPython.pdf on canvas.
- Do exercise 1.1

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Descriptive statistics

Explore data

Use descriptive statistics to understand your data

Graphical:

- various plots: dataname.plot.scatter(..),
 for example dataname.plot.scatter('xvar', 'yvar')
- histograms: 🤌 dataname.seriesname.plot.hist()
- density: dataname.seriesname.plot.density()
- boxplots: dataname.boxplot('varname')

where dataname refers to a dataframe and seriesname to a variable within the data)

Things to look for

- Degree of variation in variables
- Shape of distributions
- Signs of relations between variables (eg. correlation)

- Crafins

Strange observations: Outliers!

Summary statistics

- Graphical summaries of data are useful
- ullet Numerical summaries o basis for further analysis

Consider *n* observations on a variable: X_1, X_2, \ldots, X_n

Measures of location/central tendency

- Mode (dataname.seriesname.mode()): most frequently observed value
- Mean (mean() or np.mean(..) from import numpy as np)
 (note dataname.seriesname should come before the . or instead of the ..)

$$\frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\sum_{i=1}^n X_i}{n} = \bar{X}$$

Median=50%quantile (.median()): 50% of observations is smaller (median is much less sensitive to outliers than mean)

Measures of variation

Possible measures of variation

- Range (max-min): use ? .min() and ? .max()
- Inter-quantile range
 - 75% quantile 25% quantile or
 - 3rd quartile 1st quartile)
 - • .quantile(0.75) .quantile(0.25)
 - Also useful to detect outliers
 - ightarrow Common definition of outlier: obs. more than 1.5×IQR below 1st or above 3rd quartile

Crapus

Putting some things together: Boxplots

Ezafus

Other measures of variation

- ullet Mean deviation from mean? o will always be zero
- Mean absolute deviation from mean?
 - Very useful (robust to outliers) but
 - Absolute values are mathematically difficult
- \rightarrow Use mean *squared* deviation from mean

Mean squared deviation & Degrees of freedom

The mean squared deviation is a crucial tool in statistics!

Given a sample
$$X_1, \ldots, X_n$$
. Define sum of squares $= \sum_i (X_i - \bar{X})^2$

Important detail: how to define "mean"?

- Naive definition: sum over all i (all observations) and divide by n
- However: we used the data to calculate $\bar{X}!$
- Here we know that $\sum_{i}(X_{i}-\bar{X})=0$
 - \rightarrow We "loose" the information of one observation, degrees of freedom becomes n-1
- Estimated variance of X (ℯ .var())

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

• In general: degrees of freedom = no. obs - no. estimated parameters

In-class assignment

Assignment

- See the file Day-1-AssignmentPython.pdf on canvas.
- Do exercise 1.2

Estimation uncertainty

Sample mean
$$\frac{1}{n}\sum_{i}X_{i}$$
 and sample variance $\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}$ are both estimates!

Therefore:

- $\bullet \ \, \mathsf{Different} \,\, \mathsf{sample} \, \to \, \mathsf{different} \,\, \mathsf{findings}$
- There is estimation uncertainty

Estimates of what?

- ightarrow Corresponding population concepts (remember the concept inferential statistics)
 - Expected value: E[X]
 - (Population) variance: $Var[X] = E[(X E[X])^2]$

© 2025 Erasmus University Rotterdam, All rights reserved. No text and datamining

Higher order moments

Until now:

- Central tendency (eg. mean)
- Measures of variation (eg. variance)

Moments of a random variable X

- First moment: $E[X] = \mu$
- Second (central) moment: $E[(X \mu)^2] = Var[X] = \sigma^2$
- Third (standardized) moment: $E[\frac{(X-\mu)^3}{\sigma^3}] = \text{skewness}$
- Fourth (standardized) moment: $E[\frac{(X-\mu)^4}{\sigma^4}] = \text{kurtosis}$
- ightarrow Can estimate all of these using data
- .skew() or .kurtosis()
- (do check exact definition of what is calculated!)

Ezafus

Moments for normal distribution

If
$$X \sim N(\mu, \sigma^2)$$

- mean= $E[X] = \mu$
 - \rightarrow location
- variance= $E[(X \mu)^2] = \sigma^2$
 - ightarrow spread/variation
- skewness= $E\left[\frac{(X-\mu)^3}{\sigma^3}\right] = 0$ \rightarrow skewed or symmetric?
- kurtosis= $E\left[\frac{(X-\mu)^4}{\sigma^4}\right] = 3$
 - \rightarrow "peakedness"

Notes

- Often we look at excess kurtosis = kurtosis 3
- Can test moments against values for normal distribution (more in later lectures)

Overview of descriptive statistics

Getting a quick overview

- 🔁 dataframename.describe() from pandas package
- Various packages will give you options for descriptive statistics
- If you do not have a package yet:
 - Install it first (see programming course). This is needed only once.
 - Next load it with import packagename (in each session where you use it)
 - Abbreviate the package name (for later use): use eg 🔁 import pandas as pd instead

Also possible: bivariate (or multivariate) descriptives

- scatter plot
- conditional boxplot
- correlation
- contingency table/cross table
- ..

Ezafus

Assignment

Before next time

Assignment for next week

- Read
 - Chapter 1 (this week's material)
 - Chapter 2 (next week)
- Try some examples in the book yourself (see here for data and code)
- Finish today's assignments (1.1 1.4)
- Continue to practice using own data (or the housing data)
 - Create simple plots
 - Calculate summary statistics
 - Inspect distributions of some variables (also consider transformations of variables)
 - Visualize relations between variables
- Optional: Exercise 2 (Volkswagen prices)

- Crafins