

INFORME TÉCNICO OFICIAL

N°
Fecha 08/07/08

Páginas 18 DIRECCIÓN: Pesquerías Demersales

PROGRAMA / GABINETE: Pesquerías de Peces Demersales

Australes y Subantárticos

ACTIVIDAD: Evaluación de la abundancia y estimación de la captura biológicamente aceptable de la polaca

EVALUACIÓN DE LA ABUNDANCIA DE POLACA (Micromesistius australis) EN EL ATLÁNTICO SUDOCCIDENTAL. PERÍODO 1987-2007

Citar Indicando la fuente. El contenido no debe ser reproducido total o parcialmente sin la expresa conformidad del INIDEP

PREPARADO POR:	SOLICITADO POR:
	INSTITUCION:
FIRMA: / /día/mes/año	CARGO:
NOMBRE: Giussi, Analía R.	APROBADO POR:
FIRMA: / /día/mes/año	
NOMBRE: Wöhler, Otto C.	JEFE DE PROGRAMA / GABINETE
FIRMA: / /día/mes/año NOMBRE:	DIRECTOR DE ÁREA
FIRMA: / /día/mes/año NOMBRE:	DIRECTOR NACIONAL DE INVESTIGACIÓN
FIRMA: / /	
NOMBRE:	DIRECTOR INIDEP

EVALUACIÓN DE LA ABUNDANCIA DE POLACA (Micromesistius australis) EN EL ATLÁNTICO SUDOCCIDENTAL. PERÍODO 1987-2007

por

Analía R. Giussi y Otto C. Wöhler

INIDEP. Paseo V. Ocampo Nº 1. (7600) Mar del Plata, Argentina

Resumen Ejecutivo

Se diagnosticó el estado del efectivo de polaca (*Micromesistius australis*) en el Atlántico Sudoccidental, suponiendo la existencia de un único efectivo pesquero en el área y considerando las capturas del período 1987-2007, tanto de la flota argentina como de aquella que operó alrededor de las Islas Malvinas. Se estimó la abundancia y el nivel actual de mortalidad por pesca, proyectándose la evolución de la biomasa en el largo plazo bajo el supuesto de aplicar estrategias de explotación basadas en distintos objetivos de manejo. Para ello, se efectuó un análisis de cohortes, considerando la estructura de edades de los peces capturados por las flotas nacionales y extranjeras que actúan sobre el recurso y empleando dos índices de abundancia (capturas anuales por unidad de esfuerzo) para su calibración. El índice de CPUE construido con datos de la flota argentina comprendió el período 1982-2007, mientras que el correspondiente a la flota extranjera que operó alrededor de las Islas Malvinas abarcó los años 1992-2004.

Los resultados evidenciaron una tendencia declinante de la biomasa de polaca, más pronunciada hasta el año 2002, y una mayor estabilidad de la abundancia en los últimos años del análisis. La biomasa total del efectivo de polaca del Atlántico Sudoccidental a inicios de 2007 se estimó en unas 560 mil toneladas y la biomasa de reproductores en alrededor de 468 mil t. La tasa de explotación actual se estimó en 0,51, similar a los valores del año anterior y producto de la semejanza de las capturas totales anuales.

Se realizaron proyecciones de la evolución de las biomasas total y reproductiva bajo cuatro posibles objetivos de manejo y puntos biológicos de referencia, con la finalidad de estimar niveles de Capturas Biológicamente Aceptable (CBA) correspondientes a 2008. Los objetivos de manejo y las CBA asociadas resultantes del análisis se indican a continuación:

- I.- Mantenimiento de una abundancia de reproductores superior a la Biomasa Reproductiva Límite (BRL), la cual se juzga necesaria para producir reclutamientos mayores que el promedio observado durante los últimos años. CBA = 13.886 t.
- II.- Mantenimiento de una abundancia de reproductores de la población equivalente al nivel observado durante el año 2007. CBA = 41.469 t.
- III.- Límite aceptable de la abundancia de reproductores fijado en el 30% de la biomasa reproductiva virgen (BRV= 1.515.000 toneladas). CBA = 30.511 t.
- IV.- Límite aceptable de la abundancia de reproductores fijado en el 20% de dicha biomasa reproductiva virgen. CBA = 65.664 t.

En base a estos resultados y a la estabilidad que se observada en la evolución de las biomasas proyectadas surgido del objetivo II, puede recomendarse un nivel de captura para el año 2008 contenido en el rango de 41,5 mil a 48 mil toneladas. El valor mayor del intervalo indicado es similar al sugerido para el año 2007, juzgándose adecuado debido a que la disminución de la CBA estimada en este trabajo para el mismo objetivo de manejo, se relaciona con un particular comportamiento de la flota argentina durante el año 2007, que afectó la estimación de la CPUE, disminuyéndola considerablemente (Giussi y Wöhler, 2008). Dado que puede asumirse que este cambio en la CPUE no corresponde a una real disminución de la abundancia, el nivel de captura sugerido para 2007 podría resultar adecuado para el año en curso.

1.- INTRODUCCIÓN

El manejo de la pesquería de polaca (*Micromesistius australis*) por parte de la administración pesquera argentina se realiza, desde el año 1993, estableciendo una cuota anual global de captura máxima, que surge a partir de las recomendaciones del INIDEP basadas en la abundancia y potencial pesquero del efectivo. La polaca es un recurso pesquero de relevancia para la flota argentina, ocupando el tercer lugar en importancia dentro de los peces óseos por el volumen de su captura. Es también objeto de explotación por embarcaciones de distintas banderas que operan alrededor de las Islas Malvinas. El destino principal de la captura de polaca es la obtención de materia prima para la elaboración de pasta de pescado o *surimi* (Wöhler y Marí, 1999).

La abundancia de la polaca en el Atlántico Sudoccidental se evalúa por medio de análisis secuenciales de la población, el primero de los cuales fue realizado por Csirke (1987). Los resultados de los sucesivos análisis de este tipo han indicado una tendencia decreciente del efectivo (Cordo, 1997; Agnew et al., 1999; SAFC, 1999; Wöhler y Hansen, 2004; Giussi et al., 2006, 2007). El presente trabajo constituye una actualización de la evaluación de polaca en el Atlántico Sudoccidental, bajo la hipótesis de una única población de la especie presente en el área. Se exponen los resultados de incorporar los datos correspondientes al año 2007 de la flota argentina y de la que actúa alrededor de las Islas Malvinas. Se realiza un análisis de cohortes ajustado con los índices de abundancia derivados de las dos principales flotas comerciales (buques surimeros) que explotan el recurso. Finalmente, se establecen cuatro posibles objetivos de manejo, en función de los cuales se proyectan las abundancias y rendimientos futuros, con la finalidad de establecer niveles de captura biológicamente aceptables (CBA) para el año 2008.

2.- FUENTES DE INFORMACION Y METODOLOGIA

2.1.- Capturas totales anuales

Las capturas totales anuales correspondientes al período 1987-2007 (Tabla 1) han sido tomadas de las estadísticas pesqueras de Argentina, del Reino Unido y de la FAO, y actualizadas considerando las estimaciones de Gorini *et al.* (2003, 2007). Del mismo modo ha sido incluida la información respecto de la subdeclaración y el descarte producido por los buques de la flota argentina, estimado para los últimos años (Sánchez, 2001, 2004, 2006, 2007; Sánchez y Giussi, 2005; Sánchez y Wöhler, 2000, 2002).

Tabla 1. Capturas totales anuales (en toneladas) de polaca en el Atlántico Sudoccidental durante el período 1987-2007.

Año	Flota Argentina	Aguas circundantes	Otras flotas	Total
Allo		a las Islas Malvinas		
1987	491	47985	42000	90476
1988	1307	47583	30000	78890
1989	5000	43468	92000	140468
1990	32836	72326	63000	168162
1991	44143	50491	55000	149634
1992	85549	34078	20000	139627
1993	114048	24900	2500	141448
1994	86642	38659		125301
1995	102369	38975		141344
1996	85039	23766		108805
1997	79945	26646		106591
1998	71643	31676		103319
1999	53496	28629		82125
2000	61322	23309		84631
2001	53968	25692		79660
2002	42448	24116		66564
2003	44584	20564		65148
2004	50176	28523		78699
2005	34735	17008		51743
2006	32819	20533		53353
2007	17367	22155		39522

2.2.- Captura por edad

En la Tabla 2 y en la Figura 1 se indican las capturas anuales por edad obtenidas durante el período de 1987 a 2006. Los datos correspondientes a la flota argentina durante el período 1987-2002 fueron tomados de Wöhler y Hansen (2004), completándose con las estimaciones realizadas por Cassia *et al.* (2004, 2005, 2007, 2008) para los años 2003 a 2007. La distribución de frecuencias de longitudes de las capturas comerciales, a partir de las que se realizaron dichas estimaciones, provino del Proyecto de Observadores a bordo de la flota comercial (Giussi, datos sin publicar).

Tabla 2. Capturas anuales por edad de polaca (en miles de ejemplares) correspondientes a la flotas argentina y extranjera que operaron sobre el recurso en el Atlántico Sudoccidental. Dichos valores fueron corregidos por la razón entre las capturas nominales anuales y las capturas teóricas derivadas de los pesos medios por edad.

Edad	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996
1	938	3180	1016	12561	4588	11237	5586	816	1933	2744
2	9067	15343	26868	40622	26574	24215	8587	5552	6337	7429
3	12718	18906	54479	36174	40212	21390	15018	35737	19021	7744
4	11420	21622	97110	72052	35422	21011	23885	15129	37938	7998
5	11972	11316	25208	42269	42681	12265	22746	33592	29897	7052
6	10791	13860	19425	42703	27141	28409	24117	22101	23313	11577
7	10864	7054	8995	15833	22423	18070	22625	20054	16181	12732
8	11037	8811	9807	16767	12199	13608	17982	24406	16211	9268
9	7834	6099	7452	9655	11026	10804	16331	16784	20383	13011
10	3792	3253	4795	4414	8479	9813	12808	9820	15253	17708
11	3313	2785	3375	3882	6181	10370	5698	6330	8530	11803
12	4708	5251	5665	7246	6863	8040	5911	4291	5781	11626
13	4419	3463	3918	4517	4906	5755	4847	2146	4671	6278
14	2489	3276	3841	4135	4212	6419	4727	1140	2462	3432
15	2297	3006	3506	3740	3236	3813	4949	915	2250	1654
16	1438	1324	1631	1652	2652	4419	4841	550	1361	2117
17	1150	803	937	977	1651	1899	1028	402	1355	1347
18	2237	1190	1260	1554	807	1804	940	204	658	606
19	6842	505	643	602	665	774	877	207	693	1171
20	4012	883	946	969	360	1258	834	64	310	393
21+	1596	1004	1377	1224	469	2250	1221	79	370	938

Edad	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
1	14	0	359	851	269	7	108	880	133	194	339
2	965	980	158	1129	1499	201	240	3020	463	501	66
3	2997	6458	4748	951	6143	851	3154	2884	3328	2126	723
4	3840	10830	14262	4204	10061	5687	15893	7061	6141	9294	3770
5	4844	14142	17263	10388	4013	6247	15611	12096	5709	10193	5225
6	8382	12133	13047	8822	7709	3960	6743	18409	7186	5811	6643
7	9744	11142	11079	6761	5502	3644	4009	8222	7985	5487	5202
8	10573	10483	8243	6370	4885	4320	4911	4906	7154	3693	2015
9	13619	13672	6610	6754	4278	4037	3801	5577	6167	3971	2504
10	17029	13487	6942	6872	6154	3894	3848	5180	3840	4635	2796
11	17745	11487	6327	7894	7050	4320	3156	3427	2746	3183	2359
12	10430	9872	5975	6204	6565	3333	3842	3476	1889	2285	2271
13	6361	7366	6705	7993	6765	4529	4213	4609	1949	1939	1635
14	4402	4142	4256	9120	6809	5762	4734	4483	2779	2533	2178
15	3820	2001	2311	5746	4577	5316	3425	4472	2389	2218	1309
16	1440	1188	1050	2864	4620	4163	3248	3968	2025	2475	2167
17	783	307	549	1992	2690	4351	2733	2619	1276	2807	1480
18	591	214	275	964	1923	3262	1353	3173	1093	1577	1699
19	642	155	160	495	1002	1454	576	1438	1048	1764	2296
20	489	49	40	132	663	1306	298	486	702	1175	1015
21+	928	121	37	160	761	1098	149	1157	385	675	205

Figura 1. Capturas por edad de la flota argentina y de la flota que operó alrededor de las Islas Malvinas durante el período 1987-2007.

2.3.- Pesos medios por edad

Las estimaciones de pesos medios por edad empleadas para la aplicación del análisis se obtuvieron sobre la base de los parámetros de dos relaciones longitud – peso y crecimiento en longitud, correspondientes, la primera, al período 1994 – 2004 (Wöhler y Hansen, 2004), y la segunda a partir del año 2005 (Cassia *et al.*, 2004). Se consideraron los pesos medios por edad estimados al inicio y a mitad del año, así como en el momento de la reproducción (1° octubre), los cuales se asumieron constantes durante todo el período (Tabla 3).

Tabla 3. Pesos medios por edad a inicios y a mediados de año, y al momento de la reproducción (kg).

		1987-2003			2004-2007	
Edad	Inicios de año	Mediados de año	Época de reproducción	Inicios de año	Mediados de año	Época de reproducción
1	0,048	0,081	0,100	0,057	0,093	0,113
2	0,122	0,170	0,195	0,136	0,185	0,211
3	0,223	0,280	0,308	0,239	0,295	0,323
4	0,339	0,399	0,428	0,353	0,411	0,438
5	0,459	0,517	0,545	0,468	0,524	0,550
6	0,575	0,630	0,655	0,578	0,629	0,653
7	0,682	0,732	0,755	0,678	0,724	0,745
8	0,778	0,822	0,842	0,767	0,807	0,826
9	0,863	0,900	0,917	0,845	0,879	0,894
10	0,935	0,967	0,981	0,910	0,939	0,952
11	0,996	1,023	1,035	0,966	0,990	1,001
12	1,047	1,069	1,079	1,012	1,032	1,041
13	1,089	1,108	1,116	1,051	1,067	1,074
14	1,124	1,140	1,146	1,082	1,096	1,102
15	1,153	1,165	1,171	1,108	1,119	1,124
16	1,177	1,187	1,191	1,129	1,138	1,142
17	1,196	1,204	1,208	1,146	1,153	1,157
18	1,211	1,218	1,221	1,160	1,166	1,169
19	1,224	1,229	1,232	1,171	1,176	1,178
20	1,234	1,238	1,240	1,180	1,184	1,186
21+	1,242	1,246	1,247	1,188	1,191	1,192

2.4.- Curva de madurez sexual

La ojiva de madurez adoptada (Tabla 4) fue aquella propuesta por Wöhler *et al.* (2000). La edad de primera madurez quedó definida en 3,3 años y se consideró constante en el período analizado.

Tabla 4. Proporción de individuos sexualmente maduros en función de la edad.

Edad	1	2	3	4	5	6-21+
Proporción de Maduros	0,00	0,09	0,41	0,71	0,89	1,00

2.5.- Mortalidad natural

Siguiendo el mismo criterio empleado en evaluaciones previas (Giussi *et al.*, 2007), se aplicó una tasa instantánea de mortalidad natural M=0,15. Considerando la época en que ocurre la reproducción (setiembre - octubre), se fijó en 0,75 la proporción de mortalidad natural prereproductiva.

2.6.- Patrón de selección y mortalidad por pesca previa a la reproducción

Para el ajuste del modelo se aplicó al último año de la serie el patrón de selección propuesto por Wöhler y Hansen (2003), que asume a la edad 14 como primera edad totalmente reclutada (Tabla 5).

Debido a que en promedio el 80% de las capturas anuales se producen antes del período de reproducción, se aplicó la proporción de 0,8 a la mortalidad por pesca previa a la puesta.

Tabla 5. Patrón de selección aplicado al último año del análisis.

Edad	Patrón selección
1	0,02
2	0,03
3	0,06
4	0,14
5	0,23
6	0,36
7	0,52
8	0,58
9	0,62
10	0,66
11	0,66
12	0,81
13	0,87
14-21+	1,00

2.7.- Índices de abundancia

Para el ajuste del modelo se utilizaron las dos series de abundancia relativa (CPUE) indicadas en la Tabla 6. La primera correspondió a las capturas anuales por unidad de esfuerzo de los *surimeros* argentinos entre 1992 y 2007, previamente estandarizada (Giussi y Wöhler, 2008). El segundo índice resultó de la estandarización de los rendimientos de pesca de los buques *surimeros* que operaron en aguas circundantes a las Islas Malvinas en el período 1994 – 2004.

El valor anual de cada uno de los índices fue asociado a un factor de ponderación particular, ω^{i}_{y} , que fue función de la inversa del coeficiente de variación de la CPUE respectiva. Tratándose los promedios anuales de la CPUE de valores recalculados a partir de transformaciones logarítmicas, cada coeficiente fue aproximado a su vez por el error estándar de los logaritmos naturales de las CPUE (Darby y Flatman, 1994) de manera que:

C.V. [CPUE].
$$\approx$$
 s e. [ln(CPUE)] => $\omega_{v_x}^i = 1 / \text{C.V.} [\text{CPUE}_{v_y}^i]$ (1)

Los factores anuales fueron luego expresados como proporciones, de modo que la suma de éstas en cada índice fue igual a la unidad (Tabla 6). Los factores de ponderación anuales (y el peso relativo de cada serie) se utilizaron en el proceso de ajuste, aunque no en la estimación de las desviaciones de los valores observados de los índices respecto de aquellos predichos por el modelo.

Tabla 6. Índices de abundancia de polaca y Peso relativo (**Pr**) asignado a cada año, utilizados para el ajuste del modelo, estimados a partir de las embarcaciones comerciales surimeras que han operado sobre el recurso. Nótese que la suma de los valores anuales de **Pr** de cada serie totaliza 1,00. Flota Surimera 1: buques que operan en la plataforma patagónica; Flota Surimera 2: buques que operan alrededor de las Islas Malvinas.

Índice	Origen	Factor	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
1	CPUE Flota Surimera 1 (t/h)	1,00	6,75	4,22	3,77	4,94	3,74	3,57	3,51	2,91	2,42	3,12	2,22
	Peso relativo		0,046	0,071	0,068	0,066	0,071	0,068	0,063	0,059	0,067	0,061	0,057
	CDVIII C												
2	CPUE flota Surimera 2 (t/h)	1,00			10,08	12,54	9,48	10,21	11,86	8,46	6,19	6,59	8,59
	Peso relativo				0,086	0,087	0,099	0,099	0,096	0,098	0,099	0,097	0,081

Tabla 6. (Continuación). Índices de abundancia de polaca y Peso relativo (**Pr**) asignado a cada año, utilizados para el ajuste del modelo, estimados a partir de las embarcaciones comerciales surimeras que han operado sobre el recurso. Nótese que la suma de los valores anuales de **Pr** de cada serie totaliza 1,00. Flota Surimera 1: buques que operan en la plataforma patagónica; Flota Surimera 2: buques que operan alrededor de las Islas Malvinas..

Índice	Origen	Factor	2003	2004	2005	2006	2007
1	CPUE Flota Surimera 1 (t/h)	1,00	3,32	3,20	2,80	2,33	1,05
	Peso relativo		0,065	0,060	0,060	0,060	0,057
2	CPUE flota Surimera 2 (t/h)	1,00	8,02	4,29			
	Peso relativo		0,095	0,061			

2.8.- Ajuste del modelo y estimaciones de abundancia

Como en ocasiones anteriores, se utilizó el modelo de análisis de cohortes (Pope, 1972) cuya formulación, detallada por Wöhler *et al.* (2000), se desarrolló en una hoja de cálculo *Microsoft Excel* para *Windows XP*. Con los índices de abundancia mencionados precedentemente, se ajustó el modelo según el marco conceptual denominado "ADAPT", propuesto por Gavaris (1988).

El modelo se calibró con los índices de abundancia indicados precedentemente (i= 1, 2), asumiéndose una relación lineal entre el valor de cada uno de éstos y el estimado del modelo, de la forma:

$$I_{y}^{i} = \hat{I}_{y}^{i} e^{\varepsilon_{y}^{i}}$$
donde $\varepsilon_{y}^{i} \sim N(0; (\sigma^{i})^{2})$
(2)

Cuando I_y^i se refirió a la CPUE media de la flota argentina en el año y, \hat{I}_y^i resultó proporcional a la biomasa explotable media estimada por el modelo para ese año, siendo estimado como:

$$\hat{I}_{y}^{1} = q^{1} \sum_{t=1}^{21} (W_{t2,y} S_{t} N_{t,y} (1 - e^{(-Z_{t,y}^{*})}) / Z_{t,y})$$
(3)

Cuando I_y^i se refirió a la CPUE media de la flota que operó alrededor de las Islas Malvinas en el año y, \hat{I}_y^i resultó proporcional a la biomasa explotable estimada por el modelo a inicios de ese año, debido a que dicha serie de abundancia relativa se estimó agrupando a los rendimientos desde el 1° de julio de cada año hasta el 30 de junio del año siguiente. De esa forma, el valor medio de la CPUE correspondiente al año 1994 fue calculado con la información del período julio 1993 – junio 1994. El valor estimado del índice correspondió a la expresión:

$$\hat{I}_{y}^{2} = q^{2} \sum_{t=1}^{21} (W_{tl,y} S_{t} N_{t,y})$$
(4)

donde:

 $NB_{t,y}$: número de ejemplares de edad t al comienzo del año y;

 $W_{tl,y}$: peso medio a inicios del año;

 $W_{t2,y}$: peso medio a la mitad del año;

 S_t : factor de selección medio de la edad t en todo el periodo (excluyendo el último año);

 $Z_{t,y}$: tasa de mortalidad para la edad t en el año y; y

 q^{l} y q^{2} coeficientes de proporcionalidad propios de cada índice, resueltos analíticamente siguiendo a Polachek *et al.* (1993), de la forma:

$$q^{i} = 1/n^{i} \sum_{y=1}^{n} \ln \left(I_{y}^{i} / \hat{I}_{y}^{i} \right)$$
 (5)

siendo n^i el número de años con valores disponibles del índice de abundancia i.

La calibración se realizó en forma simultánea con los dos índices y variando la F actuante el último año sobre la edad más joven considerada como totalmente reclutada ($F_{14,2007}$), quedando el resto de las F terminales definidas por el patrón de selección aplicado.

El ajuste fue realizado minimizando el menos logaritmo de la función de máxima verosimilitud (L) de acuerdo a la expresión:

$$-\ln L = \sum_{i=1}^{3} \left\{ \left[\frac{1}{2} (\sigma^{i})^{2} \right] \sum_{i=1}^{3} \left[\left(\ln (I_{y}^{i}) - \ln (\hat{I}_{y}^{i}) \right)^{2} \omega^{i}_{y} \right] + n^{i} \ln \sigma^{i} \right\} H^{i}$$
 (6)

donde:

 ω^{i}_{y} : factor de ponderación correspondiente al índice i en el año y;

Hⁱ: Peso relativo de cada serie de abundancia; y

 σ^i : desviación estándar residual de la serie de abundancia i, definida por la función:

$$\sigma^{i} = \sqrt{\frac{1}{n^{i}} \sum_{y} (\ln \left(I_{y}^{i}\right) - \ln \left(\hat{I}_{y}^{i}\right))^{2} \boldsymbol{\omega}^{i}_{y}}$$
 (7)

2.9.- Cálculo de la varianza y los intervalos de confianza

Mediante un proceso de *bootstrap* paramétrico se estimaron las varianzas y los intervalos de confianza de algunos de los parámetros obtenidos. La técnica, aplicada siguiendo a Punt (1994) y Punt *et al.* (1995), consiste en calcular un conjunto de valores del parámetro de interés Q mediante la generación de un número grande de muestras al azar a partir del *bootstrap* ($UB_{máx}$, donde $U=1,..., UB_{max}$). Así es estimado el correspondiente conjunto ($\hat{Q}_1, \hat{Q}_2, ..., \hat{Q}_{Umáx}$).

Cada una de las muestras originadas por el *bootstrap* establece nuevas series de abundancia. Estas son generadas a partir de los valores obtenidos del mejor ajuste del modelo a los datos, adicionando un término de error de acuerdo a la ecuación:

$$\tilde{I}_{y}^{i,U} = \hat{I}_{y}^{i} e^{\varepsilon_{y}^{i,U}} \tag{8}$$

donde $\varepsilon_y^{i,U} \sim N(0;(\boldsymbol{\sigma}^{*^i})^2)$

siendo $T_y^{i,U}$ el índice de abundancia i reestimado para el año y por la serie de *bootstrap U*, mientras que \hat{I}_y^i es la estimación de la misma serie de abundancia obtenida por el mejor ajuste del modelo a los datos observados, $y \sigma^{*^i}$ representa el desvío estándar residual para la serie de abundancia i cuando no se aplican factores de ponderación anuales a los distintos índices, lo que equivale a considerar $\omega_y^i = 1,00$ en (6), para todo índice y año.

La varianza de \hat{Q} se estimó de acuerdo a:

$$Var(\hat{Q}) = 1/(U_{m\acute{a}x} - 1) \sum_{U=1}^{Um\acute{a}x} (\hat{Q}^U - \overline{\hat{Q}}^U)^2$$
 (9)

donde $\overline{Q}^{\,U}$ es la media aritmética de los ${\it Q}^{\,U}$.

Los intervalos de confianza fueron estimados por el método de los percentiles (Efron, 1981). Para ello se ordenaron las estimaciones (Q^U) producto del proceso de *bootstrap*, y los percentiles del 5% y del 95% fueron seleccionados para estimar el intervalo de confianza al 90%.

2.10.- Objetivos de manejo y puntos biológicos de referencia

En las proyecciones que simularon la evolución futura de la abundancia y de los rendimientos se establecieron cuatro posibles objetivos de manejo en el largo plazo:

- I.- Mantenimiento en el largo plazo de una abundancia de reproductores superior a la Biomasa Reproductiva Límite (BRL), la cual se juzga necesaria para producir reclutamientos mayores que el promedio observado durante los últimos años.
- II.- Mantenimiento en el largo plazo de una abundancia de reproductores de la población equivalente al nivel observado durante el año 2007.
- III.- Límite aceptable de la abundancia de reproductores fijado en el 30% de la biomasa reproductiva virgen (BRV= 1.515.000 toneladas, según Agnew *et al.*, 1999).
- IV.- Límite aceptable de la abundancia de reproductores fijado en el 20% de dicha biomasa reproductiva virgen.

El objeto del análisis fue determinar las estrategias de explotación, en términos de valores de mortalidad por pesca (F), que tendiesen en el largo plazo a mantener a la población en niveles tales que el riesgo de no alcanzar dichos objetivos fuera inferior al 10%. Para el caso del objetivo II, se consideró como nivel crítico una probabilidad (riesgo) del 50%. Los valores de las F de referencia así determinados, aplicados a una biomasa del recurso igual a la estimada al inicio del año 2007, producirían las "Capturas Biológicamente Aceptables" (CBA) correspondientes a ese año.

2.11.- Proyecciones de la abundancia y análisis de riesgo.

Las simulaciones, llevadas a cabo para proyectar el estado de la población y medir la probabilidad de cumplir cada uno de los objetivos de manejo, se realizaron partiendo de la condición del efectivo en el año 2007 calculada por el modelo. Las ecuaciones empleadas han sido descriptas por Wöhler *et al.* (2000).

Las simulaciones se realizaron proyectando la estrategia de explotación por 25 años a partir de 2006. El procedimiento se repitió 250 veces obteniéndose, para cada año, las medias aritméticas y los desvíos estándares de la biomasa total, de reproductores, y de las capturas.

La incertidumbre en el análisis fue introducida sobre la base de la obtenida en la estimación de la biomasa total a comienzos de 2007, calculada mediante *bootstrap* paramétrico (Efron, 1981), y también en la magnitud del reclutamiento. Los valores de biomasa inicial se generaron al azar, bajo el supuesto de una distribución normal con su correspondiente valor medio (B_{2007}) y desvío estándar. En el caso del reclutamiento (R) se supuso una distribución *log*-normal.

El riesgo se consideró como la probabilidad de no alcanzar los objetivos previamente definidos.

3.- RESULTADOS Y DISCUSIÓN

Se observó una tendencia declinante de las estimaciones de las abundancias de la polaca en el período analizado, como consecuencia del ajuste del modelo a los índices de abundancia de la flota que opera sobre este recurso (Tabla 7, 8, Figura 2).

Tabla 7. Estimados de los desvíos estándares residuales de los índices de abundancia (σ^{*i}) y del menos logaritmo natural de la función de verosimilitud (-log L) correspondientes al proceso de ajuste del modelo a los valores observados.

Índice	σ^{*i}	-log L
1	0,064	-35,895
2	0,055	-26,360
Total		-62,255

Tabla 8. Estimados del factor de proporcionalidad (q^i) .

Parámetro	Valor
$q^{I} \\ q^{2}$	$5,75e^{-06} 2,99e^{-05}$

Figura 2. Ajuste del modelo a los índices de abundancia de polaca. Índice 1: CPUE (t/h) proveniente de la flota surimera argentina. Índice 2: CPUE (t/h) de buques surimeros que operaron alrededor de las Islas Malvinas.

La biomasa total a inicios del 2007 fue estimada en 560 mil toneladas (Tabla 9, Figura 3), valor claramente menor (15%) a los estimados en las últimas evaluaciones de abundancia de la polaca. Esto puede estar relacionado con un valor significativamente inferior de la CPUE estimado para el año 2007 correspondiente a la flota argentina (Giussi y Wöhler, 2008). La evolución observada evidenció una notoria declinación a partir del año 1994, siendo el comienzo de un período de máxima disminución que culminó el año 2002, para evolucionar más establemente en los últimos años.

Tabla 9. Estimaciones de los valores anuales de la biomasa total de polaca al comienzo de cada año y del *stock* reproductor al momento de la reproducción. En ambos casos se indican los límites inferior y superior del intervalo de confianza estimados como los percentiles de 5% y 95% respectivamente.

Año	Biomasa Total (t)	Percentil 5%	Percentil 95%	Biomasa de Reproductores (t)	Percentil 5%	Percentil 95%
1987	1130964	1116709	1149728	798675	785942	815384
1988	1236525	1221280	1256594	887313	875150	903299
1989	1373541	1353444	1400004	982184	969868	998361
1990	1444773	1417139	1481167	1047643	1032580	1067443
1991	1464900	1427845	1513707	1109868	1086805	1140227
1992	1478241	1430278	1541422	1161573	1126763	1207367
1993	1465689	1407960	1541740	1178558	1132002	1239854
1994	1420880	1353769	1509295	1177255	1119706	1253061
1995	1360932	1285714	1460027	1123667	1057420	1210922
1996	1257307	1175647	1364891	1053226	980488	1149026
1997	1166231	1079876	1280000	970356	893072	1072142
1998	1067459	977613	1185829	881448	801376	986921
1999	967498	875035	1089315	803389	721135	911738
2000	882972	789013	1006759	719726	636085	829898
2001	797879	701808	924446	644002	559566	755202
2002	728271	627666	860802	579492	494888	690901
2003	685409	576928	828305	527847	441152	642017
2004	659229	537712	819276	471387	378843	593179
2005	617195	483986	792626	460474	355891	598146
2006	593001	450990	780011	465132	345220	622947
2007	559840	411565	755088	468549	336496	642371

Figura 3. Estimación de las biomasa total y de reproductores en el período de estudio, con sus respectivos intervalos de confianza para α = 0,05.

La biomasa de reproductores fue estimada en 468 mil toneladas (Tabla 9, Figura 3) evidenciando una estabilización durante los últimos años (Wöhler y Hansen, 2004; Wöhler y Cassia, 2005; Giussi *et al.*, 2007). Los intervalos de confianza de ambas biomasas, obtenidos mediante la técnica de remuestreo paramétrico, fueron mayores en la última parte del período analizado, probablemente debido a las características del modelo empleado.

El reclutamiento a la edad de 1 año (Figura 4) mostró una fuerte disminución en todo el período analizado. Entre 1987 y 1992 se detectaron los mayores valores, superiores a los 500 millones individuos. A continuación, y hasta el año 2001, un período de relativa estabilidad situó los valores alrededor de los 250 millones de individuos. Cierta recuperación se detectó entre 2002 y 2004, para disminuir nuevamente durante los últimos años a valores notoriamente bajos. Como se ha visto en anteriores análisis (Giussi *et al.*, 2006, 2007), el número de reclutas de los últimos años evidenció alta variabilidad, posiblemente debido a limitaciones propias del

modelo empleado, por lo tanto, las estimaciones obtenidas deben ser consideradas con precaución.

Figura 4. Estimación del número de reclutas a la edad de 1 año.

La relación que se establece entre el tamaño del efectivo reproductor y el número de reclutas (Figura 4), evidenció que a partir del año 1991, distintos volúmenes de BR han aportado relativamente bajos reclutamientos, observándose durante la última parte del período niveles sumamente bajos. Los años 2000 a 2002 aportaron valores medios de reclutas, sin embargo, disminuciones de pocas toneladas de la BR han aportado notoriamente menores aportes de reclutas. Se ha observado que la incorporación de reclutas nunca ha mantenido una clara relación respecto del tamaño del efectivo reproductor. Sin embargo, se estableció la Biomasa Reproductiva Límite (BRL) en unas 600 mil toneladas. Durante los últimos años el tamaño del stock reproductor se encontró bajo este nivel y el aporte de reclutas se halló entre los mínimos valores.

Figura 5. Relación estimada entre la biomasa del efectivo reproductor y el número de reclutas. El año indicado en cada punto corresponde a la clase anual que dio origen a ese número de reclutas.

La tasa instantánea de mortalidad por pesca estimada para el promedio de las edades 7 a 21+ (Figura 6) y la tasa de explotación se mantuvieron relativamente estables en el período analizado, con una ligera tendencia creciente. La evolución de la mortalidad por pesca no guardó relación con la trayectoria de la captura anual (Figura 6) cuyos valores han disminuido notoriamente situándose en porcentajes cercanos al 25% de los mayores registros históricos (Gorini *et al.*, 2003).

Figura 6. Tasas anuales de mortalidad por pesca estimadas por el modelo, como promedio de las edades 7 a 21+, tasas de explotación (F/Z) y capturas totales anuales.

Las proyecciones de biomasa y el cálculo de Capturas Biológicamente Aceptables (CBA), fueron realizadas considerando los valores medios de reclutamiento (número de ejemplares de edad 1) resultantes del ADAPT que correspondieron al período comprendido entre los años 1992 y 2005 (Tablas 9 y 10). En esta serie se han excluido los grandes reclutamientos que se habrían producido en momentos tempranos de la explotación del recurso. Los límites para la simulación aleatoria de reclutamientos se establecieron considerando el valor máximo y el mínimo estimados por el modelo para el mismo período (Tabla 10). A partir de dichas simulaciones, que consideran la incorporación aleatoria de nuevos individuos a la pesquería, se estimaron las mortalidades por pesca de referencia (Tabla 11) correspondientes a cada uno de los objetivos de manejo evaluados.

Tabla 10. Valores medios, mínimos y máximos empleados para la generación aleatoria de reclutamientos (edad 1) con distribución *log*-normal.

	Reclutamiento (N _* 10 ³)		
_			
Valor medio ($m{R}$)	275.930		
Valor mínimo ($R_{m in}$)	126.876		
Valor máximo ($R_{m\acute{a}x}$)	559.410		

Los niveles de extracción correspondientes al año 2008, de acuerdo con el punto biológico de referencia (CBA) y en relación con el análisis de riesgo realizado para cada uno de los objetivos de manejo, variaron entre unas 14 mil y 66 mil toneladas (Tabla 11, Figura 7), según el objetivo fuese tender a una recuperación del *stock*, considerando una probabilidad del 90% de que la biomasa de reproductores supere en el largo plazo a la BRL, o bien mantener la biomasa de reproductores en volúmenes cercanos al 20% de aquella existente al inicio de la explotación.

Figura 7. Curvas de riesgo derivadas de la aplicación de niveles crecientes de mortalidad por pesca a la población de polaca proyectada bajo los distintos objetivo de manejo, asumiendo el reclutamiento medio del período 1992-2005. Se indican las capturas biológicamente aceptables proyectadas para el año 2008.

Tabla 11. Estimaciones de las Capturas Biológicamente Aceptables (CBA) de polaca durante el año 2008 correspondientes a distintos objetivos de manejo. Se indican también los coeficientes de variación, las mortalidades por pesca de referencia y la variación porcentual de la biomasa en el largo plazo respecto de la estimada para 2007.

<u>Objetivo I:</u> Mantenimiento en el largo plazo de una abundancia de reproductores superior a la Biomasa límite (BR>BRL), la que se juzga necesaria para producir reclutamientos mayores que el promedio observado durante los últimos años.

Objetivo II: Mantenimiento en el largo plazo de una abundancia de reproductores de la población equivalente al nivel observado durante el año 2007.

<u>Objetivo III:</u> Límite aceptable de la abundancia de reproductores definido por el 30% de la biomasa reproductiva virgen (BRV).

<u>Objetivo IV:</u> Límite aceptable de la abundancia de reproductores definido por el 20% de la biomasa reproductiva virgen (BRV).

Objetivo de largo plazo	CBA ₂₀₀₈ (t)	CV (%) CBA	F de referencia	Variación biomasa total largo plazo (%) respecto de 2007	Variación biomasa de reproductores largo plazo (%)
I (Prob. $\leq 0,1 \Rightarrow BR < BRL$) II (Prob. $\leq 0,5 \Rightarrow BR < BRB_{2007B}$) III (Prob. $\leq 0,1 \Rightarrow BR/BRV < 0,3$) IV (Prob. $\leq 0,1 \Rightarrow BR/BRV < 0,2$)	13.886	19,74	0,050	38,64	51,84
	41.469	19,46	0,165	-0,25	2,31
	30.511	19,53	0,120	12,22	17,80
	65.664	17,89	0,250	-19,45	-20,77

Los objetivos planteados harían evolucionar de manera diferente tanto la biomasa total como la de reproductores (Figura 8) y serían alcanzados de distinta manera en función de la mortalidad por pesca de referencia. Si se decidiera optar por la estrategia de explotación

planteada en el Objetivo I, cuyas capturas serían las más bajas (13 mil toneladas), se produciría una recuperación del 38% en la BT y un 51% en la BR en el largo plazo, respecto de los valores estimados para el año 2007.

En el caso de elegir la estrategia resultante del Objetivo II, la disminución en ambos casos sería del orden del 0,25 al 2%, asociada a una captura de 41 mil toneladas en 2008. Igualmente, el Objetivo IV provocaría una disminución aun mayor de las biomasas en porcentajes superiores al 20 % en el largo plazo, estableciéndose una captura de 66 mil toneladas.

El Objetivo **III** posibilitaría un incremento del 12% de la BT y del 18% de la BR en el largo plazo, estimándose una CBA para el año 2008 de 30 mil toneladas

Figura 8. Variación de las biomasas total y de reproductores como consecuencia de la aplicación de los distintos objetivos de manejo analizados.

4.- CONCLUSIONES

El objetivo de manejo **II** prevé estabilización de las biomasas total y reproductiva en el largo plazo. De acuerdo a los resultados obtenidos, sería aconsejable que la captura máxima de polaca para el año 2008 en el Atlántico Sudoccidental se estableciera entre 41,5 y 48 mil toneladas.

Debe tenerse en cuenta que la disminución observada en el tamaño del efectivo puede estar influenciada por el bajo valor del índice de abundancia (CPUE) correspondiente al año 2007, en el cual la operatividad de la flota argentina fue particular (Giussi y Wöhler, 2008). Por tal razón, es posible que la CBA estimada para el año 2007, que ascendió a las 48 mil t, pudiera resultar adecuada para establecer la captura máxima de la polaca para el corriente año.

5.- BIBLIOGRAFIA

- AGNEW, D.J., HILL, S., MARLOW, T. y PURCHASE, L. 1999. Revisiting the SBW assessment. B. Assessment of the SW Atlantic Southern Blue Whiting stock. Report presented to South Atlantic Fisheries Commission. Imperial College, London. 12 pp.
- CASSIA, M.C., MALASPINA, A.M. y PADILLA, A.E. 2004. Estructura y parámetros poblacionales de la polaca (*Micromesistius australis*) en la Zona Económica Exclusiva de Argentina y comparación con las áreas ubicadas al norte y sur del paralelo 54°S, durante el año 2003. INIDEP Informe Técnico N° 44/04, 10 pp.
- CASSIA, M.C., MALASPINA, A.M. y PADILLA, A.E. 2005. Captura de polaca (*Micromesistius australis*) por talla y edad efectuada por la flota comercial argentina durante el año 2004 y estimación de parámetros poblacionales. INIDEP Informe Técnico N° 83/05, 8 pp.
- CASSIA, M.C., MALASPINA, A.M. y PADILLA, A.E. 2006. Captura de polaca (*Micromesistius australis*) por talla y edad efectuada por la flota comercial argentina durante el año 2005 y estimación de parámetros poblacionales. INIDEP Informe Técnico N° 97/06, 14 pp.
- CASSIA, M.C., MALASPINA, A.M. y PADILLA, A.E. 2008. Captura de polaca (*Micromesistius australis*) por talla y edad efectuada por la flota comercial argentina durante el año 2007 y estimación de parámetros poblacionales. INIDEP Informe Técnico. En elaboración.
- CORDO, H.D. 1997. Actualización del modelo dinámico de la biomasa de la polaca y de la evolución del recurso en el corto plazo. INIDEP, DNI, Informe Interno N°145, 6 pp.
- CSIRKE, J. 1987. The Patagonian fisheries resources and the offshore fisheries in the South-West Atlantic. FAO Fish. Tech. Pap., 286, 75 pp.
- DARBY, C.D. y FLATMAN, S. 1994. Virtual Population Analysis: version 3.1. (Windows/DOS) user guide. Info. Tech. Ser., MAFF Direct. Fish. Res., Lowestoft, 1, 85 pp.
- EFRON, B. 1981. Nonparametric estimates of standard error: the jacknife, the bootstrap and other methods. *Biometrika*, 68(3): 589-599.
- GAVARIS, S. 1988. An adaptive framework for the estimation of population size. Can. Atl. Fish. Sci. Adv. Comm. (CAFSAC) Res. Doc. 88/29, 12 pp.
- GIUSSI, A.R. y WÖHLER, O.C. 2008. Estimación de los índices de abundancia de polaca (*Micromesistius australis*) a partir de la captura por unidad de esfuerzo de buques surimeros argentinos en el período 1992-2007. INIDEP, Informe Técnico 26/08, 10 pp.
- GIUSSI A.R., WÖHLER, O.C. y CASSIA, M.C. 2006. Evaluación el estado de explotación d la polaca (*Micromesistius australis*) en el Atlántico Sudoccidental. Período 1987-2005. INIDEP Informe Técnico N° 31/06, 19 pp.
- GIUSSI A.R., WÖHLER, O.C. y CASSIA, M.C. 2007. Evaluación el estado de explotación d la polaca (*Micromesistius australis*) en el Atlántico Sudoccidental. Período 1987-2006. INIDEP Informe Técnico N° 31/07, 19 pp. Incluir los datos verdaderos
- GORINI, F.L; DI MARCO, E.y WÖHLER, O.C. 2003. Estadística pesquera de peces demersales australes en el Atlántico Sudoccidental (Período 1980-2002). Informe Técnico INIDEP 108/03, 86 pp.
- GORÍNI, F.L; A.R. GIUSSI y O.C. WÖHLER. 2007. Estadística pesquera de peces demersales australes en el Atlántico Sudoccidental (Período 1995-2006). Informe Técnico INIDEP 50/07, 80 pp.
- POLACHEK T., HILBORN, R. y PUNT, A.E. 1993. Fitting surplus production models: comparing methods and measuring uncertainty. *Can. J. Fish. Aquat. Sci.*, 50: 2597-2607.
- POPE, J.G. 1972. An investigation of the accuracy of virtual population analysis using cohort analysis. *Res. Bull. ICNAF*, (9): 65-74.
- PUNT, A.E. 1994. Assessments of the stocks of cape hakes *Merluccius* spp. Off South Africa. *S. Afr. J. Mar. Sci.*, 14: 159-186.
- PUNT, A.E., BUTTERWORTH, D.S. y PENNEY, A.J. 1995. Stock Assessment and risk analysis for the South Atlantic population of Albacore *Thunnus alalunga* using an age-structured production model. *S. Afr. J. Mar. Sci.*, 16: 287-310.
- SAFC. 1999. South Atlantic Fisheries Commission. Report of the Argentine-UK Workshop on Southern Blue Whiting. Imperial College, London, June 10-11th 1999, 7 pp.
- SÁNCHEZ, F. 2001. Estimación de la captura total de merluza de cola obtenida por la flota argentina durante el 2000, a partir de la información derivada del programa observadores. INIDEP Informe Técnico N° 111/01, 10 pp.
- SÁNCHEZ, F. 2004 Estimación de la captura total de merluza de cola obtenida por la flota argentina durante 2003 a partir de la información derivada del programa observadores. INIDEP Informe Técnico N° 37/2004, 8pp.

- SÁNCHEZ, F. 2006. Estimación de la captura total de polaca obtenida por la flota argentina en el año 2005 a partir de la información derivada del proyecto observadores Informe Interno INIDEP Nº 47/06, 8 pp.
- SÁNCHEZ, F. 2007. Estimación de la captura total de polaca obtenida por la flota argentina en el año 2005 a partir de la información derivada del proyecto observadores Informe Interno INIDEP Nº 47/06, 8 pp. Incluir los datos verdaderos
- SANCHEZ, F. y A. R. GIUSSI. 2005. Estimación de la captura total de polaca obtenida por la flota argentina en el año 2004 a partir de la información derivada del proyecto observadores del INIDEP. INIDEP Informe Técnico N° 74/05, 7 pp.
- SÁNCHEZ, F. y WÖHLER, O.C. 2000. Estimación de la captura total de merluza de cola obtenida por la flota argentina durante 1998 y 1999 a partir de la información derivada del programa observadores. INIDEP Informe Técnico N° 24/2001, 6 pp.
- SÁNCHEZ, F. y WÖHLER, O.C. 2002. Estimación de la captura total de polaca obtenida por la flota argentina durante el 2000, a partir de la información derivada del programa observadores. INIDEP Informe Técnico N° 28/2002, 7 pp.
- WÖHLER, O.C. y MARÍ, N.R. 1999. Aspectos de la pesca de la polaca (*Micromesistius australis*) por parte de la flota argentina en el período 1989-1995. INIDEP Informe Técnico N° 25, 26 pp.
- WÖHLER, O.C.; CORDO, H.D.; CASSIA, M.C. y HANSEN, J.E. 2000. Evaluación de polaca (*Micromesistus australis*) en el Atlántico Sudoccidental. Período 1987-1999. INIDEP Informe Técnico N° 54/00, 21 pp.
- WÖHLER, O.C. y HANSEN, J.E. 2004. Evaluación de polaca (*Micromesistius australis*) en el Atlántico Sudoccidental. Período 1987 y 2003. INIDEP Informe Técnico N° 49/04, 19 pp
- WÖHLER, O.C. y CASSIA, J.E. 2005. Evaluación de polaca (*Micromesistius australis*) en el Atlántico Sudoccidental. Período 1987 y 2004. INIDEP Informe Técnico N° 49/04, 19 pp.