Exercices d'algorithmique du texte

Préfixes, suffixes et facteurs

Exercice 1. – Facteurs, préfixes et suffixes d'un mot.

Un mot u est un facteur d'un mot v si il existe deux mots w_1 et w_2 tels que $v = w_1 u w_2$. Un mot u est un préfixe d'un mot v si il existe w tel que v = u w. De même, un mot u est un suffixe d'un mot v si il existe w tel que v = w u.

Attention : ne pas oublier que w, w_1 et w_2 peuvent être égal au mot vide ε . Ainsi, un mot u est un facteur (ainsi qu'un préfixe et un suffixe) de lui-même.

- a) Donner tous les facteurs du mot abbbaaa.
- b) Donner la liste des préfixes de abbaa.
- c) Donner la liste des suffixes de abcd.
- d) Combien de préfixes a un mot de longueur n?
- e) Combien de facteurs (distincts) possède le mot a^n ?
- f) Combien de facteurs (distincts) possède le mot $a^m b^n$?

Autres définitions et propriétés de base

- Exercice 1.2 1. Compter les occurrences des lettres a et b dans les mots suivants : a^3cbbca , aabgjdd, titi, babc.
 - 2. Donner l'ensemble des couples (u, v) tels que uv = abaac.
 - 3. Calculer *LM* pour les ensembles suivants :
 - $-L = \{a, ab, bb\} \text{ et } M = \{\varepsilon, b, a^2\};$
 - $-L = \emptyset$ et $M = \{a, ba, bb\}$;
 - $-L = \{\varepsilon\} \text{ et } M = \{a, ba, bb\};$
 - $-L = \{aa, ab, ba\} \text{ et } M = \{a, b\}^*.$
 - ▶ Exercice 2 ◀ Soit $L = \{ab, ba\}$. Parmi les mots suivants, lesquels sont dans L^* : abba, ababa, ababab, ababa, ababa, ababa, ababa, ababa, ababa, ababab, abababab, ababab, ababab

Exercice 1.6 Montrer que:

- 1. Il n'existe pas de mot $x \in \{a, b\}^*$ tel que ax = xb.
- 2. Il n'existe pas de mots $x, y \in \{a, b\}^*$ tel que xay = ybx.

Palindromes

- ▶ Exercice 5 Soit \mathcal{P} l'ensemble des langages ne contenant que des palindromes sur l'alphabet $A = \{a, b, c\}$. Est-ce que les langages suivants sont dans \mathcal{P} ?
 - $L_1 = \{a^n \mid n \in \mathbb{N}\}$
 - $L_2 = \{a^n b^n \mid n \in \mathbb{N}\}$
 - $L_3 = \{a^nba^m \mid n, m \in \mathbb{N}\}$
 - $L_4 = \{ca^nba^nc \mid n \in \mathbb{N}\}$

Est ce que \mathcal{P} est stable pour l'union, l'intersection, la concaténation et le passage au carré $(L \cdot L)$?

Conjugaison

Exercice 1.9 Deux mots u et v sont dits conjugués s'il existe deux mots w_1 et w_2 tels que $u = w_1w_2$ et $v = w_2w_1$. En d'autres termes, v s'obtient à partir de u par permutation cyclique de ses lettres.

- 1. Montrer que la conjugaison est une relation d'équivalence, c'est-à-dire :
 - tout mot *u* est conjugué à lui-même ;
 - si u est conjugué à v, alors v est conjugué à u;
 - $-\sin u$ est conjugué à v et v est conjugué à w, alors u est conjugué à w.
- 2. Montrer que u et v sont conjugués si et seulement s'il existe un mot w tel que uw = wv.

Mots de Fibonacci

Exercice 12 Donner les mots de Fibonacci jusqu'à n = 8.

Exercice 13 Montrer que pour $n \geq 2$, Fib_n est un préfixe de Fib_{n+1} .

Exercice 15 Pour n > 2, on note g_n le préfixe de Fib_n de longueur $|Fib_n| - 2$. Montrer que pour tout n > 5, g_n est un préfixe de Fib_{n-1}² et de Fib_{n-2}³.

Codes

Exercice 6. – Codes.

Un langage C est appelé un code si et seulement si tout mot de C^* se décompose de manière unique comme une concaténation d'éléments de C.

```
a) Soit \Sigma = \{a, b\}. Les langages suivants sont-ils des codes ? - C_1 = \{ab, ba, a\}, - C_2 = \{aa, ab, ba, b\}, - C_3 = \{ab, baa, abba, aabaa\}.
```

- b) Donner un exemple de code sur l'alphabet $\{a, b\}$ possédant au moins 6 mots.
- c) Montrer que si C est un code, alors $\varepsilon \notin C$.
- d) On suppose $\varepsilon \notin C$. Montrer que si C n'est pas un code, alors il existe $u, v, x, y \in C$ tels que u est un préfixe propre de v et x est un suffixe propre de y (on rappelle qu'un préfixe propre de u est un préfixe de u différent du mot vide ε et de u lui-même; on définit de même la notion de suffixe propre).
- e) La réciproque à la question d) est-elle vraie?
- f) Existe-t-il un algorithme qui, étant donné un code C composé d'un nombre fini de mots, répond oui si C est un code et non sinon?

Bord et période

▶ Exercice 10 ◀ Soit u un mot sur l'alphabet A, un bord de u est un mot, différent de u lui-même, qui est à la fois préfixe et suffixe de u. Quels sont tous les bords de $u_1 = aabaaba$ et de $u_2 = baabaabab$? Montrer que la relation "est un bord de" est transitive.

Exercice 4

- 1. Soit x un mot non vide. Soit u le plus petit mot tel que x est préfixe de ux. Montrer que |u| = period(x).
- 2. Soit x un mot non vide. Montrer que les trois propositions suivantes sont équivalentes :
 - (a) $period(x^2) = |x|$,

- (b) x est primitif, c'est-à-dire ne peut être écrit sous la forme u^k pour k > 1,
- (c) x^2 contient seulement 2 occurrences de x.

Exercice 5

- 1. Montrer que tout mot non vide x peut être écrit de façon unique sous la forme u^k , où u est un mot primitif et k > 0. Le mot u est appelé la racine de x, et k son exposant.
- 2. On note $A = \{a, b\}$. Montrer que l'ensemble $\{y \in A^* : xy = yx\}$ est égal à u^* où u est la racine de x.

Exercice 6 On rappelle qu'un mot w est dit sans bord si ses seuls bords sont lui-même et le mot vide, c'est-à-dire si period(w) = |w|. On suppose qu'un mot x a un bord minimal non vide u. Montrer que u est sans bord et que soit x = u soit il existe un mot v tel que x = uvu.

Exercice 10 Soit Maxsuf(x) le suffixe maximal du mot non vide x, en considérant l'ordre lexico-graphique.

- 1. Donner Maxsuf(x) pour x = abacabbac.
- 2. Soit x un mot non vide, et a une lettre. Soit u = Maxsuf(x) et va = Maxsuf(xa). Montrer que v est un bord de u.

Exercice 11 Soit w un mot non vide, u un bord propre de w et v un bord propre de u. Montrer que |w| > |u| + |v| + 1.

Résultats du cours

Proposition

Soit x un mot non vide et p un entier tel que 0 . Chacune des conditions équivalentes suivantes définit une période :

- 0. p est une période de x
- 1. x est un facteur d'un mot y^k avec |y| = p et k > 0,
- 2. x peut être écrit sous la forme $(uv)^k u$ avec |uv| = p, v non vide et k > 0,
- 3. il existe des mots y, z et w tels que x = yw = wz et |y| = |z| = p.

Démonstration:

- 1. On suppose 0 vrai. Extraire un bord de x. En déduire que 0 => 3.
- 2. On suppose 3 vrai. « Découper » *w* en tronçons de longueur *p*. Prouver que ces tronçons sont identiques puis prouver 2.
- 3. Prouver 2 => 1.
- 4. On suppose 1 vrai. En considérant la périodicité de y^k , démontrer 0 (revenir à la définition).

Lemma (Périodicité)

Soient p et q deux périodes d'un mot x. Si $p + q - \operatorname{pgcd}(p, q) \le |x|$, alors $\operatorname{pgcd}(p, q)$ est aussi une période de x.

- 1. On procède par induction sur max(p,q). Expliciter la proposition à démontrer pour prouver le lemme.
- 2. Prouver la base de l'induction.
- 3. Hérédité:
 - a) Expliciter l'hypothèse d'induction et la proposition à démontrer pour prouver l'hérédité.
 - b) Pourquoi peut-on supposer p>q?
 - c) Démontrer que x peut s'écrire sous la forme x=uy avec |u|=p et x=vz avec |v|=q.
 - d) Démontrer que p-q est une période de z.
 - e) Démontrer que q≤|z| puis que q est une période de z.
 - f) Démontrer que pgcd(p,q) est une période de z.
 - g) Démontrer que q≤|x|/2 puis que v est un préfixe de z.
 - h) En appelant t le préfixe de x de longueur pgcd(p,q), démontrer que z est un préfixe d'une puissance de t.
 - i) En déduire que |t|=pgcd(p,q) est une période de x.

Retour sur Fibonacci

Soit β le morphisme qui à un mot associe le même mot dont les deux dernières lettres sont inversées. On rappelle la définition des mots de Fibonacci : $f_0=\epsilon$, $f_1=b$, $f_2=a$, $f_n=f_{n-1}f_{n-2}$ pour $n\geq 3$. On rappelle que la longueur de f_i est égale à F_i , terme de rang i de la suite de Fibonacci ($F_0=0$, $F_1=1$ et $F_n=F_{n-1}+F_{n-2}$ pour $n\geq 2$). Enfin, on appelle g_n le mot f_n privé de ses deux dernières lettres.

- 1. Démontrer que, pour tout $n\ge 3$, $\beta(f_n)=f_{n-2}f_{n-1}$
- 2. Démontrer que, pour tout $n \ge 6$, $g_n = f_{n-2}{}^2 g_{n-3}$.
- 3. Démontrer que, pour tout $n \ge 3$, g_n est un préfixe de f_{n-1}^2 et de f_{n-2}^3 .
- 4. Démontrer que, pour tout n≥5, F_{n-2} et F_{n-1} sont deux périodes de g_n.
- 5. Démontrer que, pour tout $n \ge 2$, F_{n-2} et F_{n-1} sont premiers entre eux (pgcd = 1).
- 6. En déduire que la condition « $p+q-pgcd(p,q) \le |x|$ » du lemme de périodicité est optimale pour des valeurs de p, q et x que l'on précisera.