

Compilation of Quantum Programs with Control Flow Primitives in Superposition

Master Thesis

05.02.25

Sascha Thiemann

Supervisors: apl. Prof. Dr. Thomas Noll

Prof. Dr. rer. nat. Dominique Unruh

Outline

Introduction

Background

Quantum Control Flow

Quantum Control Machine

Language

Overview

Syntax

Translation

Implementation

Code Generation

Optimization

Evaluation

Conclusion

Introduction

Introduction

test [Aaby, 2003]

Background

Quantum Control Flow

- The idea of Quantum Control Flow was first used by [Altenkirch and Grattage, 2005] to define function quantum programming language.
- For example, it was used to define the Hadamard gate as the function *had*:

```
had: Q \rightarrow Q
had: x \mapsto if^{\circ}x
then \{false \mid -true\}
else \{false \mid true\}
```

Later, the concept was formally defined by [Ying et al., 2012].

Background

Limitations

• Quantum control flow is mainly limited by two principles: reversibility and synchronization.

Background

Quantum Control Machine

Quantum Control Machine (QCM) [Yuan et al., 2024]

Language

Language Overview

Language

Syntax

Language

Translation

Implementation

Code Generation

. .

Implementation

Optimization

Evaluation

Evaluation

Conclusion

References

- Aaby, A. A. (2003).
 Compiler construction using flex and bison.
- Altenkirch, T. and Grattage, J. (2005).
 A functional quantum programming language.
 In 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05), pages 249–258. IEEE.
- Ying, M., Yu, N., and Feng, Y. (2012). Defining quantum control flow.
- Yuan, C., Villanyi, A., and Carbin, M. (2024).

 Quantum control machine: The limits of control flow in quantum programming.

 Proceedings of the ACM on Programming Languages, 8(OOPSLA1):1–28.