# UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM ECONOMIA Microeconometria – 2015/3

Microeconometrics: Lecture Notes

Autor: Paulo Ferreira Naibert Professor: Hudson Torrent

Porto Alegre 30/06/2020 Revisão: July 7, 2020

# 1 Regressão MQO Clássico

Wooldridge (2010, C.4 – The Single-Equation Linear Model and OLS Estimation, p.49–76)

# 1.1 Modelo de equações lineares

O modelo populacional que estudamos é linear em seus parâmetros,

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + u \tag{1.1}$$

onde:

 $y, x_1, \ldots, x_K$  são escalares aleatórios e observáveis (i.e., conseguimos observá-los em uma amostra aleatória da população);

u é o random disturbance não observável, ou erro;

 $\beta_0, \beta_1, \dots, \beta_K$  são parâmetros (constantes) que gostaríamos de estimar.

# Notação Vetorial

Wooldridge (2010, Sec. 4.2 – Asymptotic Properties of OLS; p.51)

Por conveniência, escrevemos a equação populacional em forma de vetor:

$$y = x\beta + u \tag{1.2}$$

onde,

 $x \equiv (x_1, \dots, x_K)$  é um vetor  $1 \times K$  de regressores;  $\beta \equiv (\beta_1, \dots, \beta_K)'$  é um vetor  $K \times 1$ .

Uma vez que a maioria das equações contém um intercepto, assumiremos que  $x_1 \equiv 1$ , visto que essa hipótese deixa a interpretação mais fácil.

# Amostra Aleatória

Assumimos que conseguimos obter uma amostra aleatória de tamanho N da população para estimarmos  $\beta$ . Dessa forma,  $\{(\boldsymbol{x}_i,y_i); i=1,2,\ldots,N\}$  são tratados como variáveis aleatória independentes, identicamente distribuídas, onde  $\boldsymbol{x}_i$  é  $1 \times K$  e  $y_i$  é escalar. Para cada observação i, temos:

$$y_i = \mathbf{x}_i \mathbf{\beta} + u_i. \tag{1.3}$$

onde  $x_i$  é um vetor  $1 \times K$  de regressores.

## 1.2 Hipóteses

**OLS.1** 
$$y_i = x_i \beta + u_i$$
,  $i = 1, ..., N$ ;

OLS.2 X é não estocástica;

**OLS.3**  $\{u_i\}_{i=1}^N$  é *iid* com e para cada  $i=1,\ldots,N$ :

$$E(u_i) = 0$$
$$Var(u_i) = E(u_i^2) = \sigma^2$$

# OLS.2' X é estocástica;

OLS.3

$$E(u_i|\mathbf{X}) = 0,$$

$$Var(u_i|\mathbf{X}) = E\left\{ [u_i - E(u_i|\mathbf{X})]^2 | \mathbf{X} \right\} = E(u_i^2|\mathbf{X}) = \sigma^2.$$

Remark.  $E(u_i|\mathbf{X}) = 0$  implica que  $u_i$  é não correlacionado com todos os regressores  $x_k$  para k = 1, ..., K. Exogeneidade estrita.

# 1.3 Estimação

Usando OLS.1:

$$y_i = \mathbf{x}_i \mathbf{\beta} + u_i$$
  
$$\mathbf{x}_i' y_i = \mathbf{x}_i' \mathbf{x}_i \mathbf{\beta} + \mathbf{x}_i' u_i$$
  
$$E(\mathbf{x}_i' y_i) = E(\mathbf{x}_i' \mathbf{x}_i) \mathbf{\beta} + E(\mathbf{x}_i' u_i)$$

Usando  $\boxed{\mathrm{E}(\boldsymbol{x}_i'u_i)=0}$  [Qual seria essa hipótese?]

$$E(\mathbf{x}_i'y_i) = E(\mathbf{x}_i'\mathbf{x}_i)\boldsymbol{\beta}$$
$$\boldsymbol{\beta} = [E(\mathbf{x}_i'\mathbf{x}_i)]^{-1}E(\mathbf{x}_i'y_i). \tag{1.4}$$

Agora, usando o princípio da analogia e utilizando estimadores amostrais:

$$\left| \widehat{\boldsymbol{\beta}} = \left( N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i} \right)^{-1} \left( N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' y_{i} \right) \right|.$$
 (1.5)

Podemos desenvolver essa equação para:

$$\widehat{\boldsymbol{\beta}} = \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' (\boldsymbol{x}_{i} \boldsymbol{\beta} + \boldsymbol{u}_{i})\right)$$

$$= \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i} \boldsymbol{\beta}\right) + \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{u}_{i}\right)$$

$$\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta} + \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{u}_{i}\right).$$
(1.6)

# 1.3.1 Notação Matricial

Empilhando as N observações, obtemos a **Notação Matricial**:

$$y = X\beta + u \tag{1.7}$$

y é um vetor  $N \times 1$ ;

**X** é uma matriz  $N \times K$  de regressores, com N vetores,  $x_i$ , de dimensão  $1 \times K$  empilhados;

 $\boldsymbol{\beta}$  é um vetor  $K \times 1$ ;

 $\boldsymbol{u}$  é um vetor  $N \times 1$ ;

$$m{y} = egin{bmatrix} y_1 \ dots \ y_N \end{bmatrix}; \quad \mathbf{X} = egin{bmatrix} m{x}_1 \ dots \ m{x}_N \end{bmatrix} = egin{bmatrix} x_{11} & x_{12} & \dots & x_{1K} \ dots & dots & \ddots & dots \ x_{N1} & x_{N2} & \dots & x_{NK} \end{bmatrix}; \quad m{u} = egin{bmatrix} u_1 \ dots \ u_N \end{bmatrix}.$$

As somas de vetores viram simples multiplicações de matrizes e a equação (1.5), vira:

$$\widehat{\boldsymbol{\beta}} = (N^{-1}\mathbf{X}'\mathbf{X})^{-1}(N^{-1}\mathbf{X}'\boldsymbol{y}) \implies \widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\boldsymbol{y})$$
(1.8)

# 1.4 Valor Esperado

$$E(\widehat{\boldsymbol{\beta}}) = E\left[ (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{y} \right] = E\left[ (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{u}) \right] = E\left[ (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{u} \right]$$

$$= E(\boldsymbol{\beta}) + E[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{u}] \implies \boxed{E(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta} + E[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{u}]}$$

# 1.4.1 Viés

$$B(\widehat{\boldsymbol{\beta}}) = E(\widehat{\boldsymbol{\beta}}) - \boldsymbol{\beta} \implies B(\widehat{\boldsymbol{\beta}}) = E[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{u}]$$

Remark. Sob OLS.2' e OLS.3':

$$E[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{u}] = E\left\{E\left[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{u}|\mathbf{X}\right]\right\} = E\left\{(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\underbrace{E(\boldsymbol{u}|\mathbf{X})}_{=0}\right\} = 0$$

ou seja,  $B(\widehat{\beta}) = 0$ , logo  $\widehat{\beta}$  é **não-viciado**. O que também é equivalente a  $E(\widehat{\beta}) = \beta$ .

## 1.5 Variância

Supondo OLS.2' e OLS.3':

$$Var(\widehat{\boldsymbol{\beta}}|\mathbf{X}) = E\left\{ \left[ \widehat{\boldsymbol{\beta}} - E(\widehat{\boldsymbol{\beta}}|\mathbf{X}) \right]^{2} |\mathbf{X} \right\}$$

$$= E\left\{ \left[ \widehat{\boldsymbol{\beta}} - E(\widehat{\boldsymbol{\beta}}|\mathbf{X}) \right] \left[ \widehat{\boldsymbol{\beta}} - E(\widehat{\boldsymbol{\beta}}|\mathbf{X}) \right]' |\mathbf{X} \right\}$$

$$= E\left\{ \left[ (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{u} \right] \left[ (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{u} \right]' |\mathbf{X} \right\}$$

$$= E\left[ (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{u}\boldsymbol{u}'\mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} |\mathbf{X} \right]$$

$$Var(\widehat{\boldsymbol{\beta}}|\mathbf{X}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E\left[\boldsymbol{u}\boldsymbol{u}'|\mathbf{X}\right] \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}$$

# 1.5.1 Homocedasticidade

Supondo homocedasticidade e ausência de correlação serial:  $\mathbb{E}\left[\boldsymbol{u}\boldsymbol{u}'|\mathbf{X}\right] = \sigma^2 I_N$ . Assim,

$$\operatorname{Var}(\widehat{\boldsymbol{\beta}}|\mathbf{X}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'I_N\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \implies \boxed{\operatorname{Var}(\widehat{\boldsymbol{\beta}}|\mathbf{X}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}}.$$

# 2 Ausência de Exogeneidade Estrita

Nem sempre poderemos supor **exogeneidade estrita**. Por exemplo, no modelo com variável defasada mostrado abaixo:

$$y_{t} = \beta_{0} + \beta_{1}y_{t-1} + \beta_{2}x_{1t} + u_{t}$$

$$y_{t-1} = \beta_{0} + \beta_{1}y_{t-2} + \beta_{2}x_{1t-1} + u_{t-1}$$

$$y_{t} = \beta_{0}(1 + \beta_{1}) + \beta_{1}^{2}y_{t-2} + \beta_{1}\beta_{2}x_{1t-1} + \beta_{2}x_{1t} + u_{t} + \beta_{1}u_{t-1},$$

o erro é correlacionado com o regressor  $y_{t-1}$ . Nesse caso, tentaremos obter apenas **consistência** e **variância assintótica** do estimador. Para tanto, utilizaremos a equação (1.6):

$$\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta} + \left(N^{-1}\sum_{i=1}^N \boldsymbol{x}_i' \boldsymbol{x}_i\right)^{-1} \left(N^{-1}\sum_{i=1}^N \boldsymbol{x}_i' \boldsymbol{u}_i\right).$$

Aqui comeceçaria a seção 16.

## 2.1 Consistência

Vamos definir a matriz  $K \times K$ ,  $\mathbf{A} \equiv \mathrm{E}(\mathbf{x}_i'\mathbf{x}_i)$ . Supondo  $\mathbf{A}$ , finita e positiva definida, posto $(\mathbf{A}) = K$ . Usando **LGN matricial** (Definição 16.7 na página 37), temos: [lembrar que as dimensões dos vetores estão invertidas:  $1 \times K$  e não  $K \times 1$ ]

$$N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i} \xrightarrow{p} \mathbf{A} \implies \left( N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i} \right)^{-1} \xrightarrow{p} \mathbf{A}^{-1}. \tag{2.1}$$

Além disso, vamos supor  $E(\mathbf{x}_i'u_i) = 0$ , o que corresponde a  $Cov(\mathbf{x}_i, u_i) = 0$ , ou seja, o erro  $u_i$  não é correlacionado com os regressores da própria equação. Isso é bem menos que exogeneidade estrita. Então,

$$N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' u_{i} \stackrel{p}{\longrightarrow} \mathrm{E}(\boldsymbol{x}_{i}' u_{i}) = \mathbf{0}_{K}.$$

Logo,

$$\widehat{oldsymbol{eta}} = oldsymbol{eta} + \left( \sum_{i=1}^N oldsymbol{x}_i' oldsymbol{x}_i 
ight)^{-1} \left( \sum_{i=1}^N oldsymbol{x}_i' u_i 
ight)^{-1}$$

Então,  $(\widehat{\beta} - \beta) \stackrel{p}{\longrightarrow} 0$  que é equivalente a  $\widehat{\beta} \stackrel{p}{\longrightarrow} \beta$  e plim  $\widehat{\beta} = \beta$ , ou seja,  $\widehat{\beta}$  é **consistente** para  $\beta$ .

# 2.2 Normalidade Assintótica

$$\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta} + \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' u_{i}\right)$$

$$(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' u_{i}\right)$$

$$\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i}\right)^{-1} \left(N^{-1/2} \sum_{i=1}^{N} \boldsymbol{x}_{i}' u_{i}\right)$$

Supondo  $E(x_{ik}^2u_i^2) < +\infty$ , k = 1, ..., K, e definindo  $\mathbf{B} = E[\mathbf{x}_i'u_i'u_i\mathbf{x}_i] = E[u_i^2\mathbf{x}_i'\mathbf{x}_i]$ . Temos, pela Definição 16.16 (TCL), que

$$N^{-1/2} \sum_{i=1}^{N} \mathbf{x}_{i}' u_{i} \stackrel{d}{\longrightarrow} N(\mathbf{0}, \mathbf{B}) \implies N^{-1/2} \sum_{i=1}^{N} \mathbf{x}_{i}' u_{i} = O_{p}(1)$$

$$(2.2)$$

Além disso, vamos utilizar a matriz **simétrica** e não **singular** A da equação (2.1) Assim, temos

$$\begin{split} \sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) &= \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i}\right)^{-1} \left(N^{-1/2} \sum_{i=1}^{N} \boldsymbol{x}_{i}' u_{i}\right) \\ &= \left[\left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i}\right)^{-1} + \mathbf{A}^{-1} - \mathbf{A}^{-1}\right] \left(N^{-1/2} \sum_{i=1}^{N} \boldsymbol{x}_{i}' u_{i}\right) \\ &= \left[\left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i}\right)^{-1} - \mathbf{A}^{-1}\right] \left(N^{-1/2} \sum_{i=1}^{N} \boldsymbol{x}_{i}' u_{i}\right) + \mathbf{A}^{-1} \left(N^{-1/2} \sum_{i=1}^{N} \boldsymbol{x}_{i}' u_{i}\right), \end{split}$$

Podemos inverter  $\mathbf{A}$  porque ela tem posto completo (não singular). Pelas propriedades de  $\mathbf{A}$ , temos:

$$N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i} \stackrel{p}{\longrightarrow} \mathbf{A} \implies \left( N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i} \right)^{-1} - \mathbf{A}^{-1} = o_{p}(1).$$

Então,

$$\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = o_p(1)O_p(1) + \mathbf{A}^{-1} \left( N^{-1/2} \sum_{i=1}^{N} \boldsymbol{x}_i' u_i \right),$$

Usando (2.2) e a Definição 16.13.

$$\mathbf{A}^{-1}\left(N^{-1/2}\sum_{i=1}^N \boldsymbol{x}_i'u_i\right) \stackrel{d}{\longrightarrow} N(\mathbf{0},\mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1}).$$

Lembrando que  $o_p(1)O_p(1) = o_p(1)$ , temos:

$$\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{d}{\longrightarrow} \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1}) \implies \sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{a}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1})$$

## 2.3 Variância

$$\mathbf{V} = \mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1}$$

$$\mathbf{V} = \mathbf{E}[(\mathbf{x}_i'\mathbf{x}_i)]^{-1}\mathbf{E}[(\mathbf{x}_i'u_i'u_i\mathbf{x}_i)]\mathbf{E}[(\mathbf{x}_i'\mathbf{x}_i)]^{-1}$$

$$\mathbf{V} = \mathbf{E}[(\mathbf{x}_i'\mathbf{x}_i)]^{-1}\mathbf{E}[(u_i^2\mathbf{x}_i'\mathbf{x}_i)]\mathbf{E}[(\mathbf{x}_i'\mathbf{x}_i)]^{-1}.$$

# 2.3.1 Homocedasticidade

Sob **Homocedasticidade**, temos 
$$\mathbf{B} = \mathbb{E}(u_i^2 \mathbf{x}_i' \mathbf{x}_i) = \sigma^2 \mathbb{E}(\mathbf{x}_i' \mathbf{x}_i)$$
, logo

$$\boxed{\mathbf{V} = \sigma^2 \mathbf{E}[(\boldsymbol{x}_i' \boldsymbol{x}_i)]^{-1}}$$

## 2.3.2 Estimador Amostral

$$\widehat{\mathbf{V}} = \left(N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} u_{i}^{2} \mathbf{x}_{i}' \mathbf{x}_{i}\right) \left(N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1}$$

$$= N \left(\sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1} \left(\sum_{i=1}^{N} u_{i}^{2} \mathbf{x}_{i}' \mathbf{x}_{i}\right) \left(\sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1}$$

$$\widehat{\mathbf{V}} = N \left(\mathbf{X}' \mathbf{X}\right)^{-1} \left(\sum_{i=1}^{N} u_{i}^{2} \mathbf{x}_{i}' \mathbf{x}_{i}\right) \left(\mathbf{X}' \mathbf{X}\right)^{-1}.$$

# 2.3.3 Variância do estimador de OLS

$$\operatorname{Var}(\sqrt{N}\widehat{\boldsymbol{\beta}}) = \mathbf{V}$$

$$\operatorname{Var}(\widehat{\boldsymbol{\beta}}) = N^{-1}\mathbf{V}$$

$$\operatorname{Var}(\widehat{\boldsymbol{\beta}}) = (\mathbf{X}'\mathbf{X})^{-1} \left(\sum_{i=1}^{N} u_i^2 \boldsymbol{x}_i' \boldsymbol{x}_i\right) (\mathbf{X}'\mathbf{X})^{-1}$$

A variância **Robusta** é:

$$\widehat{\operatorname{Var}}(\widehat{\boldsymbol{\beta}}) = (\mathbf{X}'\mathbf{X})^{-1} \left( \sum_{i=1}^{N} \widehat{u}_{i}^{2} \boldsymbol{x}_{i}' \boldsymbol{x}_{i} \right) (\mathbf{X}'\mathbf{X})^{-1}$$

A variância sob **Homocedasticidade** é:

$$\widehat{\operatorname{Var}}(\widehat{\boldsymbol{\beta}}) = \widehat{\sigma}^2 (\mathbf{X}'\mathbf{X})^{-1}$$

#### System OLS (SOLS) 3

Wooldridge (2010, C.7 – Estimating Systems of Equations by OLS and GLS, p.143–179) Wooldridge (2010, Sec. 7.3 – System OLS Estimation of a Multivariate Linear System, p.147)

#### 3.1Modelo Linear

Assumimos que temos as seguintes observações cross section iid:  $\{(\mathbf{X}_i, \mathbf{y}_i) : i = 1, \dots, N\}$ ,

 $\mathbf{X}_i$  é uma matriz  $G \times K$  e contém as variáveis explicativas que aparecem em qualquer lugar do sistema.

 $y_i$  é um vetor  $G \times 1$ , que contém as variáveis dependentes para todas as equações G (ou períodos de tempo, no caso de dados de painel).

O modelo linear multivariado para uma observação (draw) aleatória da população pode ser expresso como:

$$\begin{bmatrix}
\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{u}_i, & i = 1, \dots, N, \\
\text{onde:} \\
\boldsymbol{\beta} \text{ é um vetor } K \times 1 \text{ de parâmetros de interesse; e}
\end{cases}$$
(3.1)

A equação (3.1) explica as G variáveis  $y_{i1}, \ldots, y_{iG}$  em termos de  $\mathbf{X}_i$  e das não observáveis  $u_i$ . Por causa da hipótese de amostra aleatória podemos escrever tudo em temos de uma observação genérica.

#### 3.2 Hipóteses

Wooldridge (2010, Sec. 7.3.1)

SOLS.1 
$$E(\mathbf{X}_i'\mathbf{u}_i) = \mathbf{0}_{K\times 1}$$
.

**SOLS.2**  $\mathbf{A} \equiv \mathbf{E}(\mathbf{X}_i'\mathbf{X}_i)$  é não singular (tem posto pleno, posto igual a K).

#### Estimação 3.3

Note que, sob **SOLS.1**, temos:

$$\mathrm{E}[\mathbf{X}_i'(\boldsymbol{y}_i - \mathbf{X}_i\boldsymbol{eta})] = \mathbf{0}$$

$$E(\mathbf{X}_{i}'\mathbf{X}_{i})\boldsymbol{\beta} = E(\mathbf{X}_{i}'\boldsymbol{y}_{i})$$

$$\boldsymbol{\beta} = \left[E(\mathbf{X}_{i}'\mathbf{X}_{i})\right]^{-1}E(\mathbf{X}_{i}'\boldsymbol{y}_{i})$$
(3.2)

Usando estimadores amostrais:

$$\widehat{\boldsymbol{\beta}}^{SOLS} = \left( N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i} \right)^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{y}_{i} \right)$$
(3.3)

Para computar  $\hat{\beta}$  usando linguagem de computação é mais fácil utilizar a notação matricial. Para tanto, cortamos os  $N^{-1}$  e substituímos os somatórios por multiplicações de matrizes.

$$\widehat{\boldsymbol{\beta}}^{SOLS} = (\mathbf{X}'\mathbf{X})^{-1} (\mathbf{X}'\boldsymbol{y})$$
(3.4)

 $\mathbf{X} \equiv (\mathbf{X}'_1, \dots, \mathbf{X}'_N)$  é uma matriz  $NG \times K$  dos  $\mathbf{X}_i$  empilhados.  $\mathbf{y} \equiv (\mathbf{y}_1', \dots, \mathbf{y}_N')$  é um vetor  $NG \times 1$  das observações  $\mathbf{y}_i$  empilhadas.

# 3.4 Consistência

Para provarmos a **consistência** do estimador, usamos as equações (3.3) e (3.1):

$$\begin{split} \widehat{\boldsymbol{\beta}}^{SOLS} &= \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \boldsymbol{y}_{i}\right) \\ &= \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left[N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' (\mathbf{X}_{i} \boldsymbol{\beta} + \boldsymbol{u}_{i})\right] \\ &= \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i} \boldsymbol{\beta}\right) + \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \boldsymbol{u}_{i}\right). \end{split}$$

E chegamos em:

$$\widehat{\boldsymbol{\beta}}^{SOLS} = \boldsymbol{\beta} + \left( N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i} \right)^{-1} \left( N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \boldsymbol{u}_{i} \right).$$
(3.5)

Por SOLS.1:

$$N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \boldsymbol{u}_{i} \stackrel{p}{\longrightarrow} \mathbf{0};$$

e por SOLS.2

$$\left(N^{-1}\sum_{i=1}^{N}\mathbf{X}_{i}'\mathbf{X}_{i}\right)^{-1} \stackrel{p}{\longrightarrow} \mathbf{A}^{-1}.$$

Resumimos esse resultado pelo seguinte Teorema:

Theorem 3.1 (Consistência do SOLS). Sob Hipóteses SOLS.1 e SOLS.2, temos

$$\widehat{m{eta}}^{SOLS} \stackrel{p}{\longrightarrow} m{eta}$$
 .

# 3.5 Normalidade Assintótica

De (3.5):

$$\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta} + \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \boldsymbol{u}_{i}\right)$$
$$(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \boldsymbol{u}_{i}\right).$$

E chegamos em:

$$\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1/2} \sum_{i=1}^{N} \mathbf{X}_{i}' \boldsymbol{u}_{i}\right).$$
(3.6)

Uma vez que  $E(\mathbf{X}_i'\mathbf{u}_i) = 0$ , sob a hipótese **SOLS.1**, a definição 16.16 (**TCL**) implica que:

$$N^{-1/2} \sum_{i=1}^{N} \mathbf{X}_{i} \boldsymbol{u}_{i} \stackrel{d}{\longrightarrow} N(\mathbf{0}, \mathbf{B}),$$

onde

$$\mathbf{B} \equiv \mathrm{E}(\mathbf{X}_i' \mathbf{u}_i \mathbf{u}_i' \mathbf{X}_i) \equiv \mathrm{Var}(\mathbf{X}_i \mathbf{u}_i).$$

Em particular,

$$N^{-1/2} \sum_{i=1}^{N} \mathbf{X}_i \boldsymbol{u}_i = \mathcal{O}_p(1).$$

Porém,

$$\left(N^{-1}\sum_{i=1}^{N} \mathbf{X}_{i}'\mathbf{X}_{i}\right)^{-1} = (\mathbf{X}'\mathbf{X}/N)^{-1} = \mathbf{A}^{-1} + o_{p}(1).$$

Sendo assim,

$$\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \left[ \mathbf{A}^{-1} + \left( N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i} \right)^{-1} - \mathbf{A}^{-1} \right] \left( N^{-1/2} \sum_{i=1}^{N} \mathbf{X}_{i}' \boldsymbol{u}_{i} \right) 
= \mathbf{A}^{-1} \left( N^{-1/2} \sum_{i=1}^{N} \mathbf{X}_{i}' \boldsymbol{u}_{i} \right) + \left[ (\mathbf{X}' \mathbf{X}/N)^{-1} - \mathbf{A}^{-1} \right] \left( N^{-1/2} \sum_{i=1}^{N} \mathbf{X}_{i}' \boldsymbol{u}_{i} \right) 
= \mathbf{A}^{-1} \left( N^{-1/2} \sum_{i=1}^{N} \mathbf{X}_{i}' \boldsymbol{u}_{i} \right) + o_{p}(1) O_{p}(1) 
= \mathbf{A}^{-1} \left( N^{-1/2} \sum_{i=1}^{N} \mathbf{X}_{i}' \boldsymbol{u}_{i} \right) + o_{p}(1)$$

$$\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \xrightarrow{d} N(\mathbf{0}, \mathbf{A}^{-1} \mathbf{B} \mathbf{A}^{-1})$$
(3.7)

# 3.6 Variância Assintótica

SOLS.3: Homocedasticidade  $E(\mathbf{X}_i'\mathbf{u}_i\mathbf{u}_i'\mathbf{X}_i) = \sigma^2 E(\mathbf{X}_i'\mathbf{X}_i)$ .

De (3.7), vamos definir  $\mathbf{V} = \mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1}$ . Sob **SOLS.3**,  $\mathbf{V} = \sigma^2 \left[ \mathbf{E}(\mathbf{X}_i'\mathbf{X}_i) \right]^{-1}$ . Estimando:

$$\hat{\sigma}^2 = \frac{1}{NG - K} \sum_{i=1}^{N} \sum_{g=1}^{G} \hat{u}_{ig}^2$$

onde 
$$\hat{u}_{ig} = y_{ig} - \boldsymbol{x}_{ig} \widehat{\boldsymbol{\beta}}^{SOLS}$$

# 3.6.1 A Matriz Robusta

$$\widehat{\mathbf{V}} = \left(\mathbf{X}'\mathbf{X}\right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}' \widehat{\mathbf{u}}_{i}' \widehat{\mathbf{u}}_{i} \mathbf{X}\right) \left(\mathbf{X}'\mathbf{X}\right)^{-1}$$

$$\sum_{i=1}^{N} \mathbf{X}_{i}' \widehat{\Omega} \mathbf{X}_{i} \xrightarrow{p} \mathrm{E}(\mathbf{X}_{i} \Omega \mathbf{X}_{i})$$

Mas **não** é verdade que  $\widehat{\Omega} \stackrel{p}{\longrightarrow} \Omega$ .

- Havendo constante, SOLS.1  $\Longrightarrow$   $E(u_i) = 0$
- Ausência de correlação entre os regressores de uma equação e o erro da própria equação
   SOLS.1.

# 3.6.2 Variância Asstintótica

## REVER

$$Avar(\widehat{\boldsymbol{\beta}}^{SOLS}) = \mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1}/N. \tag{3.8}$$

Assim, Avar $(\widehat{\boldsymbol{\beta}}^{SOLS})$  tende a zero a uma taxa 1/N, como esperado. Estimação consistente de  ${\bf A}$  é:

$$\widehat{\mathbf{A}} \equiv \mathbf{X}'\mathbf{X}/N = N^{-1}\sum_{i=1}^{N}\mathbf{X}_i'\mathbf{X}_i$$

Um estimador consistente para B pode ser achado usando o princípio da analogia.

$$\mathbf{B} = \mathrm{E}(\mathbf{X}_i' \mathbf{u}_i \mathbf{u}_i' \mathbf{X}_i), \quad N^{-1} \sum_{i=1}^N \mathbf{X}_i' \mathbf{u}_i \mathbf{u}_i' \mathbf{X}_i \stackrel{p}{\longrightarrow} \mathbf{B}.$$

Uma vez que não podemos observar  $u_i$ , usamos os resíduos da estimação de SOLS:

$$\widehat{\boldsymbol{u}}_i \equiv \boldsymbol{y}_i - \mathbf{X}_i \widehat{\boldsymbol{\beta}} = \boldsymbol{u}_i - \mathbf{X}_i (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}).$$

Assim, definimos  $\hat{\mathbf{B}}$  e usando LGN, podemos mostrar que:

$$\widehat{\mathbf{B}} \equiv N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \widehat{\mathbf{u}}_{i} \widehat{\mathbf{u}}_{i}' \mathbf{X}_{i} \stackrel{p}{\longrightarrow} \mathbf{B}.$$

onde supomos que certos momentos envolvendo  $\mathbf{X}_i$  e  $\boldsymbol{u}_i$  são finitos.

Portanto, Avar $[\sqrt{N}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})]$  é **consistentemente** estimado por  $\widehat{\mathbf{A}}^{-1}\widehat{\mathbf{B}}\widehat{\mathbf{A}}^{-1}$ , e Avar $(\widehat{\boldsymbol{\beta}})$  é estimado como:

$$\widehat{\mathbf{V}} \equiv \left(\sum_{i=1}^{N} \mathbf{X}_i' \mathbf{X}_i\right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_i' \widehat{\boldsymbol{u}}_i \widehat{\boldsymbol{u}}_i' \mathbf{X}_i\right) \left(\sum_{i=1}^{N} \mathbf{X}_i' \mathbf{X}_i\right)^{-1}.$$

Sob as hipóteses **SOLS.1** e **SOLS.2**, nós fazemos inferência em  $\beta$  como  $\hat{\beta}$  fosse normalmente distribuído com média  $\beta$  e variância  $\hat{\mathbf{V}}$ .

# 4 Dados de Painel (POLS)

Wooldridge (2010, Sec. 7.8 – The Linear Panel Data Model, Revisited. p.169)

# 4.1 Modelo Linear para Dados de Painel

No caso de dados de painel, temos a seguinte amostra aleatória:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + u_{it}, \quad i = 1, \dots, N, \quad t = 1, \dots, T.$$
 (4.1)

onde

 $y_{it}$  é um escalar.

 $\boldsymbol{\beta}$  é um vetor  $K \times 1$ .

 $\boldsymbol{x}_{it}$  é um vetor  $K \times 1$ .

 $u_{it}$  é um escalar.

Em notação vetorial:

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{u}_i, \quad i = 1, \dots, N,$$

onde

 $\mathbf{y}_i$  é um vetor  $T \times 1$ .

 $\boldsymbol{\beta}$  é um vetor  $K \times 1$ .

 $\mathbf{X}_i$  é uma matriz  $K \times T$ .

 $\boldsymbol{u}_{it}$  é um vetor  $T \times 1$ .

Em notação matricial:

$$y = X\beta + u$$

onde

 $\boldsymbol{y}$  é um vetor  $NT \times 1$ .

 $\boldsymbol{\beta}$  é um vetor  $K \times 1$ .

**X** é uma matriz  $NT \times K$ .

 $\boldsymbol{u}$  é um vetor  $NT \times 1$ .

Remark.

$$\sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i} = \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it}' \mathbf{x}_{it}; \quad \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{y}_{i} = \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it}' \mathbf{y}_{it}.$$

Portanto, podemos escrever  $\hat{\beta}$  como:

$$\widehat{\boldsymbol{\beta}}^{POLS} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \boldsymbol{x}_{it}' \boldsymbol{x}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \boldsymbol{x}_{it}' y_{it}\right). \tag{4.2}$$

Este estimador é chamado **estimador de Mínimos Quadrados Agrupados (POLS)** porque ele corresponde a rodar uma regressão OLS nas observações agrupadas através de i e t. O estimador da equação (4.2) é o mesmo para unidades de  $cross\ section$  amostradas em diferentes pontos do tempo.

### 4.2 Hipóteses

**POLS.1**  $E(\mathbf{X}_i' \mathbf{u}_i) = E(\mathbf{x}_{it}' \mathbf{u}_{it}) = \mathbf{0}_{K \times 1}$ , para cada  $i = 1, \dots, N$  e  $t = 1, \dots, T$ . De fato, **POLS.1**  $\Longrightarrow$  **SOLS.1**.

Remark. O modelo (4.1) permite  $y_{i,t-1}$  como regressor, se satisfeita POLS.1.

# 4.3 Presença de Efeito Individual

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}$$
$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + v_{it}$$

onde  $c_i + u_{it} = v_{it}$ . Estamos supondo  $c_i$  não observável.

Considerando  $y_{i,t-1}$  como regressor:

$$y_{it} = \alpha y_{i,t-1} + x_{it} \beta + v_{it} y_{it-1} = \alpha y_{i,t-2} + x_{i,t-1} \beta + v_{i,t-1}$$
 Cov $(y_{i,t-1}, v_{it}) \neq 0$ .

# 4.4 Estimação I

REVER

$$egin{aligned} egin{aligned} oldsymbol{y}_{it} &= \mathbf{X}_i'oldsymbol{eta} + \mathbf{v}_i \ \mathbf{X}_i'oldsymbol{y}_{it} &= \mathbf{X}_i'\mathbf{X}_ioldsymbol{eta} + \mathbf{X}_i'\mathbf{v}_i. \end{aligned}$$

Tirando Valores Esperados:

$$E(\mathbf{X}_{i}'\mathbf{y}_{it}) = E(\mathbf{X}_{i}'\mathbf{X}_{i})\boldsymbol{\beta} + E(\mathbf{X}_{i}'\mathbf{v}_{i}) \implies \boldsymbol{\beta} = \left[E(\mathbf{X}_{i}'\mathbf{X}_{i})\right]^{-1}E(\mathbf{X}_{i}'\mathbf{y}_{i}) - \left[E(\mathbf{X}_{i}'\mathbf{X}_{i})\right]^{-1}E(\mathbf{X}_{i}'\mathbf{v}_{i}).$$

Usando estimadores amostrais:

$$\widehat{\boldsymbol{\beta}} = \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_i' \mathbf{X}_i\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_i' \mathbf{y}_i\right) - \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_i' \mathbf{X}_i\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_i' \mathbf{v}_i\right),$$

usando  $\mathbf{y}_{it} = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{v}_i$ 

$$\widehat{\boldsymbol{\beta}} = \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left[N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' (\mathbf{X} \boldsymbol{\beta} + \mathbf{v}_{i})\right] - \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{v}_{i}\right)$$

$$= \boldsymbol{\beta} + \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{v}_{i}\right) - \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{v}_{i}\right)$$

# 4.5 Estimação II

REVER

$$y_{it} = \mathbf{X}_i \boldsymbol{\beta} + c_i \mathbf{1} + \boldsymbol{u}_i$$
$$\mathbf{X}_i' y_{it} = \mathbf{X}_i' \mathbf{X}_i \boldsymbol{\beta} + c_i \mathbf{X}_i' \mathbf{1} + \mathbf{X}_i' \boldsymbol{u}_i$$

onde  $\mathbf 1$  é um vetor  $T \times 1$  de uns. Tirando Valores Esperados:

$$E(\mathbf{X}_{i}'\mathbf{y}_{it}) = E(\mathbf{X}_{i}'\mathbf{X}_{i})\boldsymbol{\beta} + E(c_{i}\mathbf{X}_{i}'\mathbf{1}) + E(\mathbf{X}_{i}'\mathbf{u}_{i})$$

por **POLS.1**,  $E(\mathbf{X}_i \mathbf{u}_i) = 0$ .

$$E(\mathbf{X}_{i}'\mathbf{X}_{i})\boldsymbol{\beta} = E(\mathbf{X}_{i}'\boldsymbol{y}_{i}) - E(c_{i}\mathbf{X}_{i}'\mathbf{1})$$
$$\boldsymbol{\beta} = \left[E(\mathbf{X}_{i}'\mathbf{X}_{i})\right]^{-1}E(\mathbf{X}_{i}'\boldsymbol{y}_{i}) - \left[E(\mathbf{X}_{i}'\mathbf{X}_{i})\right]^{-1}E(c_{i}\mathbf{X}_{i}'\mathbf{1})$$

Usando estimadores amostrais:

$$\widehat{\boldsymbol{\beta}} = \left(N^{-1}\sum_{i=1}^{N}\mathbf{X}_i'\mathbf{X}_i\right)^{-1}\left(N^{-1}\sum_{i=1}^{N}\mathbf{X}_i'\boldsymbol{y}_i\right) - \left(N^{-1}\sum_{i=1}^{N}\mathbf{X}_i'\mathbf{X}_i\right)^{-1}\left(N^{-1}\sum_{i=1}^{N}c_i\mathbf{X}_i'\mathbf{1}\right)$$

usando  $\mathbf{y}_{it} = \mathbf{X}_i \boldsymbol{\beta} + c_i \mathbf{1} + \boldsymbol{u}_i$ 

$$\widehat{\boldsymbol{\beta}} = \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left\{ \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i} \boldsymbol{\beta}\right) + \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' c_{i} \mathbf{1}\right) + \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' u_{i}\right) \right\}$$
$$- \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} c_{i} \mathbf{X}_{i}' \mathbf{1}\right)$$

$$\widehat{\boldsymbol{\beta}} = \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i} \boldsymbol{\beta}\right) + \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' c_{i} \mathbf{1}\right)$$

$$+ \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{u}_{i}\right) - \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i}' \mathbf{X}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} c_{i} \mathbf{X}_{i}' \mathbf{1}\right)$$

$$\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta} + \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_i' \mathbf{X}_i\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_i' \boldsymbol{u}_i\right)$$

- Se  $c_i$  é **não** correlacionado com os regressores, então o POLS é consistente (mas não é eficiente).
- O estimador eficiente, neste caso, é o GLS (Modelo de **Efeitos Aleatórios**).
- Se  $c_i$  é correlacionado com **pelo menos** um regressor, o POLS é **inconsistente**. Nesse caso, usaremos o Modelo de **Efeitos Fixos** ou **Primeira Diferença**.

# 5 Alguns Testes

- 5.1 Autocorrelação dos Resíduos
- 5.2 Heterocedasticidade
- 5.3 Teste de Wald

# 6 Fixed Effects (EF, FE)

## Aula 3

# 6.1 Modelo

O modelo linear de efeitos não observados:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it},\tag{6.1}$$

onde 
$$t = 1, ..., T$$
 e  $i = 1, ..., N$ .

O modelo contém explicitamente um componente não observado que não varia no tempo  $c_i$ . Abordamos esse componente como parte do erro, não como parâmetro a não observado. No caso da análise de **Efeitos Fixos (EF, FE)**, permitimos que esse componente  $c_i$  seja correlacionado com  $x_{it}$ . Assim, se decidíssemos estimar o modelo (6.1) por POLS, ignorando  $c_i$ , teríamos problemas de inconsistência devido a **endogeneidade**.

As T equações do modelo (6.1) podem ser reescritas como:

$$\mathbf{y}_i = X_i \boldsymbol{\beta} + c_1 \mathbf{1}_T + \mathbf{u}_i, \tag{6.2}$$

com  $v_i = c_i \mathbf{1}_T + u_i$  sendo os erros compostos.

# Matriz $M^0$

Definimos a matriz  $M^0$  como:

$$M^{0} = I_{T} - T^{-1} \mathbf{1}_{T} \mathbf{1}_{T}' = I_{T} - \mathbf{1}_{T} (\mathbf{1}_{T}' \mathbf{1}_{T})^{-1} \mathbf{1}_{T}'.$$

A matriz  $M^0$  é idempotente e simétrica.

$$M^0 \boldsymbol{x} = \boldsymbol{x} - \overline{\boldsymbol{x}} \mathbf{1}_T = \ddot{\boldsymbol{x}}.$$

Podemos transformar o modelo (6.3) ao premultiplicarmos todo o modelo por  $M^0$ .

$$M^0 y_i = M^0 X_i \beta + M^0 (c_1 \mathbf{1}_T) + M^0 u_i, \quad i = 1, ..., N.$$

$$M^{0}(c_{1}\mathbf{1}_{T}) = (I_{T} - T^{-1}\mathbf{1}_{T}\mathbf{1}_{T}')c_{i}\mathbf{1}_{T} = c_{i}\mathbf{1}_{T} - T^{-1}c_{i}\mathbf{1}_{T}\mathbf{1}_{T}'\mathbf{1}_{T} = c_{i}\mathbf{1}_{T} - c_{i}\mathbf{1}_{T} \implies \boxed{M^{0}(c_{1}\mathbf{1}_{T}) = 0}$$

$$\ddot{\boldsymbol{y}}_i = \ddot{X}_i \boldsymbol{\beta} + \ddot{\boldsymbol{u}}_i, \quad i = 1, \dots, N. \tag{6.3}$$

# Estimação POLS

Aplicando POLS no modelo (6.3)

$$\beta^{FE} = \left[ \sum_{i=1}^{N} \ddot{X}_i' \ddot{X}_i \right]^{-1} \left[ \sum_{i=1}^{N} \ddot{X}_i' \ddot{\boldsymbol{y}}_i \right]$$
(6.4)

## Hipóteses

As Hipóteses que usamos para  $\widehat{\beta}^{FE}$  são:

**FE.1:** Exogeneidade Estrita:  $E(u_{it} | \boldsymbol{x}_{i1}, \dots, \boldsymbol{x}_{iT}, c_i) = 0$ , para  $t = 1, \dots, T$  e  $i = 1, \dots, N$ .

**FE.2:** Posto completo de  $E(X_i'\Omega^{-1}X_i)$  (para inverter a matriz).  $posto[E(X_i'\Omega^{-1}X_i)] = K$ .

**FE.3:** Homoscedasticidade:  $E(\boldsymbol{u}_i \boldsymbol{u}_i' | X_i, c_i) = \sigma_u^2 I_T$ .

# Valor Esperado

Usando FE.1 e FE.2, apenas.

$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left[\left(\sum_{i=1}^{N} \ddot{X}_{i}'\ddot{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \ddot{X}_{i}'\ddot{\boldsymbol{u}}_{i}\right)\right]$$
$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left[(\ddot{X}'\ddot{X})^{-1}(\ddot{X}'\ddot{\boldsymbol{u}})\right]$$

Sabendo que  $\ddot{X}=(I_N\otimes M^0)X$  e  $\ddot{\boldsymbol{u}}=(I_N\otimes M^0)\boldsymbol{u},$  definimos:

$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left\{ \left[ X'(I_N \otimes M^0)(I_N \otimes M^0)X \right]^{-1} \left[ X'(I_N \otimes M^0)(I_N \otimes M^0)\boldsymbol{u} \right] \right\}$$
$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left\{ \left[ X'(I_N \otimes M^0)X \right]^{-1} \left[ X'(I_N \otimes M^0)\boldsymbol{u} \right] \right\}$$

# Variância

Usamos a variância do estimador para inferência. Usando FE.1 e FE.2, apenas:

$$\operatorname{Var}(\boldsymbol{\beta}^{FE}) = \operatorname{E}\left[ (\ddot{X}'\ddot{X})^{-1} (\ddot{X}'\ddot{\boldsymbol{u}}) (\ddot{\boldsymbol{u}}'\ddot{X}) (\ddot{X}'\ddot{X})^{-1} \right]$$

Pão:

$$E\left[(\ddot{X}'\ddot{X})^{-1}\right] = E\left\{\left[X'(I_N \otimes M^0)(I_N \otimes M^0)X\right]^{-1}\right\}$$
$$= E\left\{\left[X'(I_N \otimes M^0)X\right]^{-1}\right\}$$

Recheio:

$$E\left[(\ddot{X}'\ddot{\boldsymbol{u}})(\ddot{\boldsymbol{u}}'\ddot{X})\right] = E\left[X'(I_N \otimes M^0)(I_N \otimes M^0)\boldsymbol{u}\boldsymbol{u}'(I_N \otimes M^0)(I_N \otimes M^0)X\right]$$
$$= E\left[X'(I_N \otimes M^0)\boldsymbol{u}\boldsymbol{u}'(I_N \otimes M^0)X\right]$$

 $Var(\boldsymbol{\beta}^{FE}) = P\tilde{a}o$  Recheio P $\tilde{a}o$ 

$$\operatorname{Var}(\boldsymbol{\beta}^{FE}) = \operatorname{E}\left\{ \left[ X'(I_N \otimes M^0) X \right]^{-1} \right\} \operatorname{E}\left[ X'(I_N \otimes M^0) \boldsymbol{u} \boldsymbol{u}'(I_N \otimes M^0) X \right] \operatorname{E}\left\{ \left[ X'(I_N \otimes M^0) X \right]^{-1} \right\}$$

# Variância sob Homocedasticidade

Usando FE.3, temos

## Recheio':

$$\mathbb{E}\left[X'(I_N \otimes M^0)\right] \sigma_u^2 I_{NT} \mathbb{E}\left[(I_N \otimes M^0)X\right] = \sigma_u^2 \mathbb{E}\left[X'(I_N \otimes M^0)X\right]$$

$$\begin{split} &(I_N \otimes M^0) \text{ \'e uma matrix de dimens\~ao } NT \times NT, \text{ visto que } I_N \text{ \'e } N \times N \text{ e } M^0 \text{ \'e } T \times T. \\ & \text{Var}(\boldsymbol{\beta}^{FE}) = \text{P\~ao Recheio' P\~ao} \\ & = \text{E} \left\{ \left[ X'(I_N \otimes M^0) X \right]^{-1} \right\} \sigma_u^2 \text{E} \left[ X'(I_N \otimes M^0) X \right] \text{E} \left\{ \left[ X'(I_N \otimes M^0) X \right]^{-1} \right\} \\ & = \text{E} \left\{ \left[ X'(I_N \otimes M^0) X \right]^{-1} \right\} \sigma_u^2 I_{NT} \\ & \boxed{\text{Var}(\boldsymbol{\beta}^{FE}) = \sigma_u^2 \cdot \text{E} \left[ X'(I_N \otimes M^0) X \right]} \end{split}$$

# 7 First Difference (FD, PD)

# 7.1 Modelo

O modelo linear de **efeitos não observados**:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}, \tag{7.1}$$

para t = 1, ..., T e i = 1, ..., N.

O modelo contém explicitamente um componente não observado,  $c_i$ , que não varia no tempo. Tratamos o componente não observado como parte do erro, não como parâmetro a ser estimado. Aqui permitimos que  $c_i$  seja correlacionado com  $x_{it}$ . Deste modo, não podemos ignorar a sua presença e estimar (7.1) por POLS, visto que isso resultaria num estimador inconsistente devido a **endogeneidade**.

Assim, transformamos o modelo para eliminar  $c_i$  e conseguirmos fazer uma estimação consistente de  $\beta$ . A trasnformação a ser feita é a primeira diferença. Para tanto, seguimos os seguintes passos:

• Reescrevemos (7.1) defasado:

$$y_{it-1} = x_{it-1}\beta + c_i + u_{it-1} \tag{7.2}$$

• Tiramos a diferença entre (7.2) e (7.1):

$$y_{it} - y_{it-1} = (\boldsymbol{x}_{it} - \boldsymbol{x}_{it-1})\boldsymbol{\beta} + c_i - c_i + u_{it} - u_{it-1}$$
  
$$\Delta y_{it} = \Delta \boldsymbol{x}_{it}\boldsymbol{\beta} + \Delta u_{it}.$$
 (7.3)

para t = 2, ..., T e i = 1, ..., N.

Reescrevendo (7.3) no formato matricial empilhando T:

$$\Delta y_i = \Delta X_i \beta + e_i \tag{7.4}$$

 $com e_{it} = \Delta u_{it}.$ 

- $\Delta y_i$  vetor  $(T-1) \times 1$
- $\Delta X_i$  matriz  $(T-1) \times K$
- $\beta$  vetor  $K \times 1$
- $e_i$  vetor  $(T-1) \times 1$

# 7.2 Estimação POLS

O estimador  $\hat{\beta}^{FD}$  é o POLS da regressão no modelo (7.4), assim:

$$\boldsymbol{\beta}^{FD} = \left[ \sum_{i=1}^{N} \Delta X_i' \Delta X_i \right]^{-1} \left[ \sum_{i=1}^{N} \Delta X_i' \Delta \boldsymbol{y}_i \right]$$
 (7.5)

# 7.3 Hipóteses

As Hipóteses que usamos para  $\widehat{\boldsymbol{\beta}}^{FD}$  são:

**FD.1:** Exogeneidade Estrita:  $E(u_{it} | \boldsymbol{x}_{i1}, \dots, \boldsymbol{x}_{iT}, c_i) = 0$ , para  $t = 1, \dots, T$  e  $i = 1, \dots, N$ .

**FD.2:** Posto completo de  $E(\Delta X_i' \Delta X_i)$  (para inverter a matriz).  $posto[E(\Delta X_i' \Delta X_i)] = K$ .

**FD.3:** Homoscedasticidade:  $E(e_i e'_i | X_i, c_i) = \sigma_e^2 I_{T-1}$ .

# 7.4 Valor Esperado

Usando apenas FD.1 e FD.2:

$$E(\boldsymbol{\beta}^{FD}) = \boldsymbol{\beta} + E\left[\left(\sum_{i=1}^{N} \Delta X_i' \Delta X_i\right)^{-1} \left(\sum_{i=1}^{N} \Delta X_i' \boldsymbol{e}_i\right)\right]$$
$$E(\boldsymbol{\beta}^{FD}) = \boldsymbol{\beta} + E\left[(\Delta X' \Delta X)^{-1} (\Delta X' \boldsymbol{e})\right]$$

# Variância

Usando apenas FD.1 e FD.2:

$$\boxed{ \operatorname{Var}(\boldsymbol{\beta}^{FD}) = \operatorname{E}\left[ (\Delta X' \Delta X)^{-1} (\Delta X' \boldsymbol{e} \boldsymbol{e}' \Delta X) (\Delta X' \Delta X)^{-1} \right] }$$

# Variância sob Homocedasticidade

Usando FD.3, temos

$$\operatorname{Var}(\boldsymbol{\beta}^{FD}) = \sigma_e^2 \operatorname{E}\left[ (\Delta X' \Delta X)^{-1} (\Delta X' \Delta X) (\Delta X' \Delta X)^{-1} \right]$$
$$\operatorname{Var}(\boldsymbol{\beta}^{FD}) = \sigma_e^2 \operatorname{E}\left[ (\Delta X' \Delta X)^{-1} \right]$$

com

$$\sigma_e^2 = [N(T-1) - K]^{-1} \left[ \sum_{i=1}^N \sum_{t=1}^T \hat{e}_{it}^2 \right],$$

que é a média de todos  $\hat{e}^2_{it}$  contando K regressores.

# 8 System GLS (SGLS)

Wooldridge (2010, Sec. 7.4 – Consistency and Asymptotic Normality of Generalized Least Squares, p.153)

## 8.1 Modelo Linear

# 8.2 Hipóteses

Para implementarmos o estimador de GLS precisamos das seguintes hipótese:

- 1.  $E(\mathbf{X}_i \otimes \mathbf{u}_i) = 0$ . Para SGLS ser consistente, precisamos que  $\mathbf{u}_i$  não seja correlacionada com nenhum elemento de  $\mathbf{X}_i$ .
- 2.  $\Omega$  é positiva definida (para ter inversa).  $E(\mathbf{X}_i'\Omega^{-1}\mathbf{X}_i)$  é **não** singular (para ter invesa). Onde,  $\Omega$  é a seguinte matriz **simétrica**, positiva-definida:

$$\Omega = \mathrm{E}(\boldsymbol{u}_i \boldsymbol{u}_i').$$

# Estimação

Agora, transformamos o sistema de equações ao realizarmos a pré-multiplicação do sistema por  $\Omega^{-1/2}$ :

$$\Omega^{-1/2} \boldsymbol{y}_i = \Omega^{-1/2} \mathbf{X}_i \boldsymbol{\beta} + \Omega^{-1/2} \boldsymbol{u}_i$$
$$\boldsymbol{y}_i^* = \mathbf{X}_i^* \boldsymbol{\beta} + \boldsymbol{u}_i^*$$

Estimando a equação acima por SOLS:

$$\begin{split} \boldsymbol{\beta}^{SOLS} &= \left(\sum_{i=1}^{N} \mathbf{X}_{i}^{*'} \mathbf{X}_{i}^{*}\right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}^{*'} \boldsymbol{y}_{i}^{*}\right) \\ &= \left(\sum_{i=1}^{N} \mathbf{X}_{i}^{'} \Omega^{-1/2} \Omega^{-1/2} \mathbf{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}^{'} \Omega^{-1/2} \Omega^{-1/2} \boldsymbol{y}_{i}\right) \\ &= \left(\sum_{i=1}^{N} \mathbf{X}_{i}^{'} \Omega^{-1} \mathbf{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}^{'} \Omega^{-1} \boldsymbol{y}_{i}\right) \end{split}$$

# 9 GLS Factivel

Wooldridge (2010, Sec. 7.5 – Feasible GLS, p.153)

# FSGLS: SGLS Factivel

Para obtermos  $\beta^{SGLS}$  precisamos conhecer  $\Omega$ , o que não ocorre na prática. Então, precisamos estimar  $\Omega$  com um estimador consistente. Para tanto usamos um procedimento de dois passos:

- 1. Estimar  $y_i = \mathbf{X}_i \boldsymbol{\beta} + u_i$  via **SOLS** e guardar o resíduo estimado  $\hat{u}_i$ .
- 2. Estimar  $\Omega$  com o seguinte estimador  $\widehat{\Omega}$ :

$$\widehat{\Omega} = N^{-1} \sum_{i=1}^{N} \boldsymbol{u}_{i} \boldsymbol{u}_{i}'$$

Com a estimativa  $\widehat{\Omega}$  feita, podemos obter  $\beta^{FSGLS}$  pela fórmula do  $\beta^{SGLS}$ :

$$\beta^{FGLS} = \left[\sum_{i} \mathbf{X}_{i}' \widehat{\Omega}^{-1} \mathbf{X}_{i}\right]^{-1} \left[\sum_{i} \mathbf{X}_{i}' \widehat{\Omega}^{-1} \boldsymbol{y}_{i}\right]$$

Empilhando as N observações:

$$\beta^{FGLS} = \left[ \mathbf{X} \left( I_N \otimes \widehat{\Omega}^{-1} \right) \mathbf{X} \right]^{-1} \left[ \mathbf{X}' \left( I_N \otimes \widehat{\Omega}^{-1} \right) \mathbf{y} \right]$$

Reescrevendo a equação acima:

$$\beta^{FGLS} = \left[ \mathbf{X} \left( I_N \otimes \widehat{\Omega}^{-1} \right) \mathbf{X} \right]^{-1} \left[ \mathbf{X}' \left( I_N \otimes \widehat{\Omega}^{-1} \right) (\mathbf{X}\beta + u) \right]$$

$$= \left[ \mathbf{X} \left( I_N \otimes \widehat{\Omega}^{-1} \right) \mathbf{X} \right]^{-1} \left\{ \left[ \mathbf{X}' \left( I_N \otimes \widehat{\Omega}^{-1} \right) \mathbf{X}\beta \right] + \left[ \mathbf{X}' \left( I_N \otimes \widehat{\Omega}^{-1} \right) u \right] \right\}$$

$$= \beta + \left[ \mathbf{X} \left( I_N \otimes \widehat{\Omega}^{-1} \right) \mathbf{X} \right]^{-1} \left[ \mathbf{X}' \left( I_N \otimes \widehat{\Omega}^{-1} \right) u \right]$$

## Valor Esperado

$$E(\beta^{FGLS}) = \beta + \left[ \mathbf{X} \left( I_N \otimes \widehat{\Omega}^{-1} \right) \mathbf{X} \right]^{-1} \left[ \mathbf{X}' \left( I_N \otimes \widehat{\Omega}^{-1} \right) u \right]$$

Concluímos que, se  $\widehat{\Omega} \xrightarrow{\ p \ } \Omega,$ então,  $\beta^{FSGLS} \xrightarrow{\ p \ } \beta,$ 

# Variância

$$\operatorname{Var}(\beta^{FGLS}) = \left[ \mathbf{X} \left( I_N \otimes \widehat{\Omega}^{-1} \right) \mathbf{X} \right]^{-1} \left[ \mathbf{X}' \left( I_N \otimes \widehat{\Omega}^{-1} \right) u \right] \left\{ \left[ \mathbf{X} \left( I_N \otimes \widehat{\Omega}^{-1} \right) \mathbf{X} \right]^{-1} \left[ \mathbf{X}' \left( I_N \otimes \widehat{\Omega}^{-1} \right) u \right] \right\}'$$

$$= \left[ \mathbf{X} \left( I_N \otimes \widehat{\Omega}^{-1} \right) \mathbf{X} \right]^{-1} \left[ \mathbf{X}' \left( I_N \otimes \widehat{\Omega}^{-1} \right) u u' \left( I_N \otimes \widehat{\Omega}^{-1} \right) \mathbf{X} \right] \left[ \mathbf{X} \left( I_N \otimes \widehat{\Omega}^{-1} \right) \mathbf{X} \right]^{-1}$$

Tirando o valor Esperado e supondo que:

$$E(\mathbf{X}_i \Omega^{-1} u_i u_i' \mathbf{X}_i) = E(\mathbf{X}_i \Omega^{-1})$$

temos:

$$\mathrm{E}\left[\mathbf{X}'\left(I_N\otimes\widehat{\Omega}^{-1}\right)uu'\left(I_N\otimes\widehat{\Omega}^{-1}\right)'\mathbf{X}\right]=\mathrm{E}(\mathbf{X}'\Omega^{-1}\mathbf{X})$$

e temos:

$$\operatorname{Var}(\beta^{FSGLS}) = \left[ \operatorname{E}(\mathbf{X}'\Omega^{-1}\mathbf{X}) \right]^{-1}.$$

# 10 Random Effects (RE, EA)

# Modelo

O modelo linear de **efeitos não observados**:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}, \tag{10.1}$$

onde t = 1, ..., T e i = 1, ..., N.

O modelo contém explicitamente um componente não observado que não varia no tempo  $c_i$ . Abordamos esse componente como parte do erro, não como parâmetro a ser estimado. Para a análise de **Efeitos Aleatórios**, (**EA**) ou (**RE**), supomos que os regressões  $x_{it}$  são não correlacionados com  $c_i$ , mas fazemos hipóteses mais restritas que o **POLS**; pois assim exploramos a presença de **correlação serial** do erro composto por GLS e garantimos a consitência do estimador de FGLS.

Podemos reescrever (10.1) como:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + v_{it}, \tag{10.2}$$

onde t = 1, ..., T, i = 1, ..., N e  $v_{it} = c_i + u_{it}$  é o erro composto. Agora, vamos empilhar os t's e reescrever (10.2) como:

$$\mathbf{y}_i = X_i \mathbf{\beta} + \mathbf{v}_i, \tag{10.3}$$

onde 
$$i = 1, \ldots, N$$
 e  $v_i = c_i \mathbf{1}_T + u_i$ 

# Hipóteses de $\widehat{\boldsymbol{\beta}}^{RE}$

As Hipóteses que usamos para  $\hat{\beta}^{RE}$  são:

- 1. Usamos o modelo correto e  $c_i$  não é endógeno.
  - a)  $E(u_{it} | x_{i1}, \dots, x_{iT}, c_i) = 0, i = 1, \dots, N.$
  - b)  $E(c_{it} | x_{i1}, \dots, x_{iT}) = E(c_i) = 0, i = 1, \dots, N.$
- 2. Posto completo de  $E(X_i'\Omega^{-1}X_i)$ .

Definindo a matriz  $T \times T$ ,  $\Omega \equiv E(\mathbf{v}_i \mathbf{v}_i')$ , queremos que  $E(X_i \Omega^{-1} X_i)$  tenha posto completo (posto = K).

A matriz  $\Omega$  é simétrica  $\Omega' = \Omega$  e positiva definida  $\det(\Omega) > 0$ . Assim podemos achar  $\Omega^{1/2}$  e  $\Omega^{-1/2}$  com  $\Omega = \Omega^{1/2}\Omega^{1/2}$  e  $\Omega^{-1} = \Omega^{-1/2}\Omega^{-1/2}$ .

# Estimação

Premultiplicando (10.3) port  $\Omega^{-1/2}$  do dois lados, temos:

$$\Omega^{-1/2} \mathbf{y}_i = \Omega^{-1/2} X_i \boldsymbol{\beta} + \Omega^{-1/2} \mathbf{v}_i$$
  
$$\mathbf{y}_i^* = X_i^* \boldsymbol{\beta} + \mathbf{v}_i^*,$$
 (10.4)

Estimando o modelo acima por POLS:

$$\boldsymbol{\beta}^{POLS} = \left(\sum_{i=1}^{N} X_i^{*\prime} X_i^*\right)^{-1} \left(\sum_{i=1}^{N} X_i^{*\prime} \boldsymbol{y}_i^*\right)$$

$$= \left(\sum_{i=1}^{N} X_i^{\prime} \Omega^{-1} X_i\right)^{-1} \left(\sum_{i=1}^{N} X_i^{\prime} \Omega^{-1} \boldsymbol{y}_i\right)$$

$$= \left(X^{\prime} (I_N \otimes \Omega^{-1}) X\right)^{-1} \left(X^{\prime} (I_N \otimes \Omega^{-1}) \boldsymbol{y}\right). \tag{10.5}$$

O problema, agora, é estimar  $\Omega$ . Supondo:

- $E(u_{it}u_{it}) = \sigma_u^2$ ;
- $E(u_{it}u_{is})=0.$

Como  $\Omega = E(\boldsymbol{v}_i \boldsymbol{v}_i') = E[(c_i \boldsymbol{1}_T + \boldsymbol{u}_i)(c_i \boldsymbol{1}_T + \boldsymbol{u}_i)']$ , temos que:

$$E(v_{it}v_{it}) = E(c_i^2 + 2c_iu_{it} + u_{it}^2) = \sigma_c^2 + \sigma_u^2$$
  

$$E(v_{it}v_{is}) = E[(c_i + u_{it})(c_i + u_{is})] = E(c_i^2 + c_iu_{is} + u_{it}c_i + u_{it}u_{is}) = \sigma_c^2.$$

Assim,

$$\Omega = \mathrm{E}(\boldsymbol{v}_i \boldsymbol{v}_i') = \sigma_u^2 I_T + \sigma_c^2 \mathbf{1}_T \mathbf{1}_T'$$

onde  $\sigma_u^2 I_T$  é uma matriz diagonal, e  $\sigma_c^2 \mathbf{1}_T \mathbf{1}_T'$  é uma matriz com todos os elementos iguais a  $\sigma_c^2$ . Agora, rodando POLS em (10.3) e guardando os resíduos, temos:

$$\hat{v}_{it}^{POLS} = \hat{y}_{it}^{POLS} - \boldsymbol{x}_{it} \hat{\boldsymbol{\beta}}^{POLS}$$

e conseguimos estima<br/>r $\sigma_v^2$ e  $\sigma_c^2$ por estimadores amostrais:

• como  $\sigma_v^2 = \mathcal{E}(v_{it}^2)$ :

$$\hat{\sigma}_v^2 = (NT - K)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \hat{v}_{it}^2$$

• como  $\sigma_c^2 = E(v_{it}v_{is})$ :

$$\hat{\sigma}_c^2 = \left[ N \frac{T(T-1)}{2} - K \right]^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T-1} \sum_{c=t+1}^{T} \hat{v}_{it} \hat{v}_{is}$$

- N indivíduos;
- $\bullet$  T elementos da diagonal principal de  $\Omega$
- $\bullet$   $\frac{T(T-1)}{2}$  elementos da matriz triangular superior dos elementos fora da diagonal.
- K regressores.

Agora que temos  $\hat{\sigma}_v^2$  e  $\hat{\sigma}_c^2$  podemos achar  $\hat{\sigma}_u^2$  pela equação  $\hat{\sigma}_u^2 = \hat{\sigma}_v^2 - \hat{\sigma}_c^2$ . Dessa forma achamos os  $T^2$  elementos de  $\hat{\Omega}$ , e podemos escrever:

$$\widehat{\Omega} = \widehat{\sigma}_u^2 I_T + \widehat{\sigma}_c^2 \mathbf{1}_T \mathbf{1}_T'$$

Com  $\widehat{\Omega}$  estimado, reescrevemos (10.5) como:

$$\boldsymbol{\beta}^{RE} = \left[ X'(I_N \otimes \widehat{\Omega}^{-1}) X \right]^{-1} \left[ X'(I_N \otimes \widehat{\Omega}^{-1}) \boldsymbol{y} \right]. \tag{10.6}$$

# Valor Esperado

$$\mathrm{E}(\boldsymbol{\beta}^{RE}) = \boldsymbol{\beta} + \left[ X'(I_N \otimes \widehat{\Omega}^{-1}) X \right]^{-1} \left[ X'(I_N \otimes \widehat{\Omega}^{-1}) \boldsymbol{v} \right].$$

# Variância

$$\operatorname{Var}(\boldsymbol{\beta}^{RE}) = E\left\{ \left[ X'(I_N \otimes \widehat{\Omega}^{-1})X \right]^{-1} \left[ X'(I_N \otimes \widehat{\Omega}^{-1})\boldsymbol{v}\boldsymbol{v}'(I_N \otimes \widehat{\Omega}^{-1})'X \right] \left[ X'(I_N \otimes \widehat{\Omega}^{-1})X \right] \right\},$$
como  $\operatorname{E}(\boldsymbol{v}_i\boldsymbol{v}_i') = \Omega,$ 

$$Var(\boldsymbol{\beta}^{RE}) = E\left[X'(I_N \otimes \widehat{\Omega}^{-1})X\right].$$

# 11 Modelo de Efeitos Não Observados

Wooldridge (2010, C.10 – Basic Linear Unobserved Effects Panel Data Models)

# 12 Endogeneity and GMM

# Modelo

No seguinte modelo cross-section:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i \; ; \quad i = 1, \dots, N.$$
 (12.1)

A variável explicativa  $x_k$  é dita **endógena** se ela for correlacionada com erro. Se  $x_k$  for não correlacionada com o erro, então  $x_k$  é dita **exógena**.

Endogeneidade surge, normalmente, de três maneiras diferentes:

- 1. Variável Omitida;
- 2. Simultaneidade;
- 3. Erro de Medida.

No modelo (12.1) vamos supor:

- $x_1$  é exógena.
- $x_2$  é endógena.

# Hipóteses

Assim, precisamos encontrar um instrumento  $z_i$  para  $x_2$ , uma vez que queremos estimar  $\beta_0$ ,  $\beta_1$  e  $\beta_2$  de maneira consistente. Para  $z_i$  ser um bom instrumento precisamos que z tenha:

- 1.  $Cov(z, \varepsilon) = 0 \implies z$  é exógena em (12.1).
- 2.  $Cov(z, x_2) \neq 0 \implies$  correlação com  $x_2$  após controlar para outras vaariáveis.

# Estimação

Indo para o problema de dados de painel, temos:

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{u}_i \; ; \quad i = 1, \dots, N. \tag{12.2}$$

onde  $\mathbf{y}_i$  é um vetor  $T \times 1$ ,  $\mathbf{X}_i$  é uma matriz  $T \times K$ ,  $\boldsymbol{\beta}$  é o vetor de coeficientes  $K \times 1$ ,  $\mathbf{u}_i$  é o vetor de erros  $T \times 1$ .

Se é verdade que há endogeneidade em (12.2), então:

$$E(\mathbf{X}_i'\mathbf{u}_i) \neq 0$$

Definimos  $Z_i$  como uma matriz  $T \times L$  com  $L \geq K$  de variáveis exógenas (incluindo o instrumento). Queremos acabar com a endogeneidade, ou seja:

$$E(Z_i'\boldsymbol{u}_i) = 0$$

Supondo L = K (apenas substituímos a variável endógena por um instrumento).

$$E[Z'_{i}(\mathbf{y}_{i} - \mathbf{X}_{i}\boldsymbol{\beta})] = 0$$

$$E(Z'_{i}\mathbf{y}_{i}) - E(Z'_{i}\mathbf{X}_{i})\boldsymbol{\beta} = 0$$

$$E(Z'_{i}\mathbf{y}_{i}) = E(Z'_{i}\mathbf{X}_{i})\boldsymbol{\beta}$$

$$\boldsymbol{\beta} = \left[E(Z'_{i}\mathbf{X}_{i})\right]^{-1}\left[E(Z'_{i}\mathbf{y}_{i})\right]$$

Se Usarmos estimadores amostrais:

$$\hat{\boldsymbol{\beta}} = \left[ N^{-1} \sum_{i=1}^{N} Z_i' \mathbf{X}_i \right]^{-1} \left[ N^{-1} \sum_{i=1}^{N} Z_i' \boldsymbol{y}_i \right]$$
$$\hat{\boldsymbol{\beta}} = (Z' \mathbf{X})^{-1} (Z' \boldsymbol{y})$$

Se L > K, vamos considerar:

$$\min_{\boldsymbol{\beta}} E(Z_i \boldsymbol{u}_i)^2$$

onde:

$$E(Z_i u_i)^2 = E[(Z_i u_i)'(Z_i u_i)] = (Z'y - Z'X\beta)'(Z'y - Z'X\beta)$$
  
=  $y'ZZ'y - y'ZZ'X\beta - \beta'X'ZZ'y + \beta'X'ZZ'X\beta$ 

Derivando em relação em  $\boldsymbol{\beta}$  e igualando a zero:

$$-2\mathbf{y}'ZZ'\mathbf{X} + 2\mathbf{\beta}'\mathbf{X}'ZZ'\mathbf{X} = 0$$
$$\mathbf{\beta}'\mathbf{X}'ZZ'\mathbf{X} = \mathbf{y}'ZZ'\mathbf{X}$$
$$\mathbf{\beta}' = (\mathbf{y}'ZZ'\mathbf{X})(\mathbf{X}'ZZ'\mathbf{X})^{-1}$$
$$\mathbf{\beta} = (\mathbf{X}'ZZ'\mathbf{X})^{-1}(\mathbf{X}'ZZ'\mathbf{y})$$

Um estimador mais eficiente pode ser encontrado fazendo:

$$\min_{\boldsymbol{\beta}} E[(Z_i'\boldsymbol{y} - Z'\mathbf{X}\boldsymbol{\beta})'W(Z_i'\boldsymbol{y} - Z'\mathbf{X}\boldsymbol{\beta})].$$

Escolhendo  $\widehat{W}$ , a priori, temos:

$$\underset{\boldsymbol{\beta}}{\operatorname{Min}} \ \left\{ \boldsymbol{y}' Z \widehat{\boldsymbol{W}} Z' \boldsymbol{y} - \boldsymbol{y}' Z \widehat{\boldsymbol{W}} Z' \mathbf{X} \boldsymbol{\beta} - \boldsymbol{\beta}' \mathbf{X}' Z \widehat{\boldsymbol{W}} Z' \boldsymbol{y} + \boldsymbol{\beta}' \mathbf{X}' Z \widehat{\boldsymbol{W}} Z' \mathbf{X} \boldsymbol{\beta} \right\}$$

Derivando em relação em  $\boldsymbol{\beta}$  e igualando a zero:

$$-2\mathbf{y}'Z\widehat{W}Z'\mathbf{X} + 2\mathbf{\beta}'\mathbf{X}'Z\widehat{W}Z'\mathbf{X} = 0$$

$$\mathbf{\beta}'\mathbf{X}'Z\widehat{W}Z'\mathbf{X} = \mathbf{y}'Z\widehat{W}Z'\mathbf{X}$$

$$\mathbf{\beta}' = (\mathbf{y}'Z\widehat{W}Z'\mathbf{X})(\mathbf{X}'Z\widehat{W}Z'\mathbf{X})^{-1}$$

$$\mathbf{\beta}^{GMM} = (\mathbf{X}'Z\widehat{W}'Z'\mathbf{X})^{-1}(\mathbf{X}'Z\widehat{W}'Z'\mathbf{y})$$

# Valor Esperado

$$E(\boldsymbol{\beta}^{GMM}) = \boldsymbol{\beta} + E[(\mathbf{X}'Z\widehat{W}'Z'\mathbf{X})^{-1}(\mathbf{X}'Z\widehat{W}'Z'\boldsymbol{u})]$$

# Variância

$$\operatorname{Var}(\boldsymbol{\beta}^{GMM}) = \operatorname{E}\left\{ \left[ (X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'\boldsymbol{u}) \right] \left[ (X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'\boldsymbol{u}) \right]' \right\}$$
$$= \operatorname{E}\left\{ (X'Z\widehat{W}'Z'X)^{-1}X'Z\widehat{W}'Z'\boldsymbol{u}\boldsymbol{u}'Z\widehat{W}Z'X(X'Z\widehat{W}Z'X)^{-1} \right\}.$$

Definindo  $\Delta = E(Z'uu'Z)$  com  $\Delta = W^{-1}$ :

$$\operatorname{Var}(\boldsymbol{\beta}^{GMM}) = \operatorname{E}\left\{ (X'Z\widehat{W}'Z'X)^{-1}X'Z\widehat{W}'W^{-1}\widehat{W}Z'X(X'Z\widehat{W}Z'X)^{-1} \right\}$$
$$= \operatorname{E}\left\{ (X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'X)(X'Z\widehat{W}Z'X)^{-1} \right\}.$$
$$\operatorname{Var}(\boldsymbol{\beta}^{GMM}) = \operatorname{E}\left[ (X'Z\widehat{W}Z'X)^{-1} \right].$$

Se tivéssemos definido  $W=(Z'Z)^{-1},$  teríamos  $\beta^{2SLS}.$ 

# 13 Exogeneidade Estrita e FDIV

# Modelo

No seguinte modelo

 $y_{it} = \boldsymbol{x}_{it}\boldsymbol{\beta} + u_{it},$ 

para t = 1, ..., T e i = 1, ..., N.

- $y_{it}$  escalar;
- $\boldsymbol{x}_{it}$  vetor  $1 \times K$ ;
- $\beta$  vetor  $K \times 1$ ;
- $u_{it}$  escalar.

 $\{x_{it}\}$  é estritamente **exógeno** se valer:

$$E(u_{it} \mid \boldsymbol{x}_{i1}, \dots, \boldsymbol{x}_{iT}) = 0, \qquad t = 1, \dots, T$$

ou seja:

$$E(y_{it} | \boldsymbol{x}_{i1}, \dots, \boldsymbol{x}_{iT}) = \boldsymbol{x}_{it}\boldsymbol{\beta}, \qquad t = 1, \dots, T$$

o que é equivalente a hipótese de que utilizamos o modelo linear correto.

Para o seguinte modelo:

$$y_{it} = \mathbf{z}_{it}\boldsymbol{\gamma} + \rho y_{it-1} + c_i + u_{it}., \qquad t = 2, \dots, T$$

é **impossível** termos exogeneidade estrita. Isso porque, nesse modelo, de efeitos não observados temos:

$$E(y_{it} | \mathbf{z}_{i1}, \dots, \mathbf{z}_{iT}, y_{it-1}, c_i) \neq 0.$$

Isso ocorre porque,  $y_{it}$  é afetado por  $y_{it-1}$  que contribui para  $y_{it}$  com, pelo menos,  $\rho c_i$ .

$$\begin{cases} y_{it} = z_{it}\gamma + \rho y_{it-1} + c_i + u_{it} \\ y_{it-1} = z_{it-1}\gamma + \rho y_{it-2} + c_i + u_{it-1} \end{cases} \implies y_{it} = z_{it}\gamma + \rho(z_{it-1}\gamma + \rho y_{it-2} + c_i + u_{it-1}) + c_i + u_{it}.$$

Para eliminarmos este efeito, podemos tirar a primeira diferença do modelo:

$$y_{it} - y_{it-1} = (\mathbf{z}_{it} - \mathbf{z}_{it-1})\gamma + \rho(y_{it-1} - y_{it-2}) + (c_i - c_i) + (u_{it} - u_{it-1})$$

$$\Delta y_{it} = \Delta \mathbf{z}_{it}\gamma + \rho \Delta y_{it-1} + \Delta u_{it}, \qquad t = 3, \dots, T$$
(13.1)

## Estimação

Não podemos estimar o modelo (13.1) por POLS, uma vez que  $Cov(\Delta y_{it-1}, \Delta u_{it}) \neq 0$ . Como saída, podemos estimar por P2SLS, usando instrumentos para  $\Delta y_{it-1}$  (alguns intrumentos para  $\Delta y_{it-1}$  são  $y_{it-2}, y_{it-3}, \dots, y_{i1}$ ).

# P2SLS

$$y_{it} = \boldsymbol{x}_{it}'\boldsymbol{\beta} + u_{it}$$

- $i = 1, \ldots, N$
- t = 1, ..., T
- $y_{it}$  escalar;
- $\boldsymbol{x}_{it}$  vetor  $K \times 1$ ;
- $\beta$  vetor  $K \times 1$ ;
- $u_{it}$  escalar.

$$\boldsymbol{\beta}^{P2SLS} = (X'P_ZX)^{-1}(X'P_Z\boldsymbol{y})$$

com

$$P_Z = Z'(Z'Z)^{-1}Z$$

onde  $P_Z$  é a matriz de projeção em Z.

## **FDIV**

$$y_{it} = \boldsymbol{x}'_{it}\boldsymbol{\beta} + c_i + u_{it}, \quad i = 1, \dots, N, \quad t = 1, \dots, T$$
  
$$\Delta y_{it} = \Delta \boldsymbol{x}'_{it}\boldsymbol{\beta} + \Delta u_{it}, \quad i = 1, \dots, N, \quad t = 2, \dots, T$$

Vamos supor  $\Delta x'_{it}$  tem variável endógena  $(y_{it}, \text{ no caso})$ .  $\boldsymbol{w}_{it}$  é um vetor  $1 \times L_t$  de instrumentos, onde  $L_t \geq K$ . Se os instrumentos forem diferentes:

$$W_i = diag(\boldsymbol{w}'_{i2}, \boldsymbol{w}'_{i3}, \dots, \boldsymbol{w}'_{iT})$$

onde  $W_i$  é uma matriz  $(T-1) \times L$ 

$$L = L_2 + L_3 + \dots + L_T$$

# Hipóteses

**FDIV.1:** 
$$E(w_{it}\Delta u'_{it})$$
 para  $i = 1, ..., N, t = 2, ..., T$ .

**FDIV.2:** Posto 
$$[E(W_i'W_i)] = L$$

**FDIV.3:** Posto  $[E(W_i'\Delta X_i)] = K$ 

# Estimação FDIV

$$\boldsymbol{\beta}^{FDIV} = \left(\Delta X' P_W \Delta X\right)^{-1} \left(\Delta X' P_W \Delta \boldsymbol{y}\right)$$
$$P_W = W(W'W)^{-1} W'$$

# Valor Esperado

$$E(\boldsymbol{\beta}^{FDIV}) = \beta + (\Delta X' P_W \Delta X)^{-1} (\Delta X' P_W \boldsymbol{e})$$

# Variância

$$Var(\boldsymbol{\beta}^{FDIV}) = E\left\{ \left[ E(\boldsymbol{\beta}^{FDIV}) - \beta \right] \left[ E(\boldsymbol{\beta}^{FDIV}) - \beta \right]' \right\}$$

$$= E\left\{ \left[ \Delta X' P_W \Delta X \right]^{-1} \left[ \Delta X' P_W \boldsymbol{e} \right] \left[ \Delta X' P_W \boldsymbol{e} \right]' \left[ \Delta X' P_W \Delta X \right]^{-1} \right\}$$

$$= E\left[ \left( \Delta X' P_W \Delta X \right)^{-1} \left( \Delta X' P_W \boldsymbol{e} \boldsymbol{e}' P_W \Delta X \right) \left( \Delta X' P_W \Delta X \right)^{-1} \right]$$

$$e_i = \Delta u_{it}.$$

# 14 Latent Variables, Probit and Logit

# Modelo

Suponha  $y^*$  não observável (latente) seguindo o seguinte modelo:

$$y_i^* = \mathbf{x}_i' \mathbf{\beta} + \varepsilon_i. \tag{14.1}$$

Defina y como:

$$y_i = \begin{cases} 1 \,, & y_i^* \ge 0 \\ 0 \,, & y_i^* < 0 \end{cases}$$

temos que:

$$P(y_i = 1|\mathbf{x}) = p(\mathbf{x})$$
  
 
$$P(y_i = 0|\mathbf{x}) = 1 - p(\mathbf{x}).$$

Além disso, pela definição de  $y_i$ , equação (14.1), temos:

$$P(y_i = 1 | \mathbf{x}) = P(y_i^* \ge 0 | \mathbf{x})$$
$$= P(\mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i \ge 0 | \mathbf{x})$$
$$= P(\varepsilon_i \ge -\mathbf{x}_i' \boldsymbol{\beta} | \mathbf{x}).$$

Agora, supondo que  $\varepsilon_i$  tem FDA, G, tal que G' = g é simétrica ao redor de zero:

$$P(y_i = 1 | \mathbf{x}) = 1 - P(\varepsilon_i < -\mathbf{x}_i' \boldsymbol{\beta} | \mathbf{x})$$
$$= 1 - G(-\mathbf{x}_i' \boldsymbol{\beta} | \mathbf{x})$$
$$= G(\mathbf{x}_i' \boldsymbol{\beta}).$$

Se  $G(\cdot)$  for uma distribuição:

Normal Padrão:  $\hat{\beta}$  é o estimador probit.

**Logística:**  $\hat{\beta}$  é o estimador **logit**.

Supondo  $y_i | x \sim Bernoulli(p(x))$ , sua fmp é dada por:

$$f(y_i | \boldsymbol{x}_i; \boldsymbol{\beta}) = [G(\boldsymbol{x}_i' \boldsymbol{\beta})]^{y_i} [1 - G(\boldsymbol{x}_i' \boldsymbol{\beta})]^{1 - y_i}, \quad y = 0, 1.$$

Para estimarmos  $\hat{\beta}$  por máxima verossimilhança, temos de encontrar  $\beta \in B$ , onde B é o espaço paramétrico, tal que  $\beta$  maximize o valor da distribuição conjunta de y, ou seja:

$$\max_{\boldsymbol{\beta} \in B} \prod_{i=1}^{N} f(y_i \,|\, \boldsymbol{x}_i; \boldsymbol{\beta}).$$

Tirando o logaritmo e dividindo tudo por N (podemos fazer isso pois são transformações monotônicas e não alteram o lugar onde  $\boldsymbol{\beta}$  ótimo irá parar):

$$\max_{\boldsymbol{\beta} \in B} \left\{ N^{-1} \sum_{i=1}^{N} \ln \left[ f(y_i \, | \, \boldsymbol{x}_i; \boldsymbol{\beta}) \right] \right\}.$$

Podemos definir  $\ell_i(\boldsymbol{\beta}) = \ln[f(y_i \mid \boldsymbol{x}_i; \boldsymbol{\beta})]$  como sendo a verossimilhança condicional da observação i:

$$\max_{\beta \in B} \left\{ N^{-1} \sum_{i=1}^{N} \ell_i(\beta) \right\}.$$

Dessa forma, podemos ver que o problema acima é a analogia amostral de:

 $\operatorname{Max}_{\boldsymbol{\beta} \in B} \operatorname{E} \left[ \ell_i(\boldsymbol{\beta}) \right].$ 

Definindo o  $vector\ score\ da\ observação\ i$ :

$$s_i(\boldsymbol{\beta}) = \left[\nabla_{\boldsymbol{\beta}} \ell_i(\boldsymbol{\beta})\right]' = \left[\frac{\partial \ell_i(\boldsymbol{\beta})}{\partial \beta_1}, \dots, \frac{\partial \ell_i(\boldsymbol{\beta})}{\partial \beta_K}\right]$$

Definindo a **Matriz Hessiana** da observação *i*:

$$H_i(\boldsymbol{\beta}) = \nabla_{\boldsymbol{\beta}} s_i(\boldsymbol{\beta}) = \nabla_{\boldsymbol{\beta}}^2 \ell_i(\boldsymbol{\beta})$$

Tendo essas definições, o **Teorema do Valor Médio** (TVM) nos diz que no intervalo [a, b], existe um número, c, tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

## FAZER DESENHO

Trocando  $f(\cdot)$  por  $s_i(\cdot)$ , a por  $\beta_0$ , b por  $\widehat{\beta}$  e c por  $\overline{\beta}$ , temos:

$$H_i(\bar{\boldsymbol{\beta}}) = \frac{s_i(\widehat{\boldsymbol{\beta}}) - s_i(\boldsymbol{\beta}_0)}{\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0},$$

tirando médias dos dois lados:

$$N^{-1}\sum_{i=1}^N H_i(\bar{\boldsymbol{\beta}}) = \frac{1}{\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0} N^{-1}\sum_{i=1}^N \left[ s_i(\widehat{\boldsymbol{\beta}}) - s_i(\boldsymbol{\beta}_0) \right]$$

Supondo que  $\widehat{\boldsymbol{\beta}}$  maximiza  $\ell(\boldsymbol{\beta} | \boldsymbol{y}, \boldsymbol{x})$ , temos que:  $N^{-1} \sum_{i=1}^{N} s_i(\widehat{\boldsymbol{\beta}}) = 0$ . E podemos reescrever a equação anterior como:

$$\widehat{\beta} - \beta_0 = (-1) \left[ N^{-1} \sum_{i=1}^{N} H_i(\bar{\beta}) \right]^{-1} N^{-1} \sum_{i=1}^{N} s_i(\beta_0)$$

$$\sqrt{N}(\widehat{\beta} - \beta_0) = \left[ -N^{-1} \sum_{i=1}^{N} H_i(\bar{\beta}) \right]^{-1} \sqrt{N} \cdot N^{-1} \sum_{i=1}^{N} s_i(\beta_0)$$

$$\sqrt{N}(\widehat{\beta} - \beta_0) = \left[ -N^{-1} \sum_{i=1}^{N} H_i(\bar{\beta}) \right]^{-1} N^{-1/2} \sum_{i=1}^{N} s_i(\beta_0)$$

Onde

$$\left[-N^{-1}\sum_{i=1}^{N}H_i(\bar{\boldsymbol{\beta}})\right]^{-1} \xrightarrow{p} A_0^{-1}, \qquad N^{-1/2}\sum_{i=1}^{N}s_i(\boldsymbol{\beta}_0) \xrightarrow{d} N(0, B_0).$$

Assim, temos que:

$$\sqrt{N}(\widehat{\beta} - \beta_0) \to N(0, A_0^{-1} B_0 A_0^{-1})$$
.

A forma mais simples de achar  $Var(\widehat{\beta})$  é:

$$\operatorname{Var}(\widehat{\boldsymbol{\beta}}) = -\operatorname{E}[H_i(\widehat{\boldsymbol{\beta}})]^{-1}$$

# 15 ATT, ATE, Propensity Score

# Modelo

- $y_1 \rightarrow$  variável de interesse com tratamento
- $\bullet \ y_0 \rightarrow \text{variável de interesse sem tratamento}$

$$w = \begin{cases} 1 & \text{se tratam} \\ 0 & \text{se não tratam} \end{cases}$$

Idealmente, para isolarmos completamente o efeito de w = 1, gostaríamos de pode calcular:

$$N^{-1} \sum_{i=1}^{N} (y_{i1} - y_{i0}).$$

Ou seja, o efeito que o tratamento causa sobre um indivíduo com todo o resto permanecendo constante. Em outras palavras, queríamos que houvesse dois mundos paralelos observáveis onde seria possível observar o que acontece com  $y_i$  com e sem tratamento. Infelizmente, para ccada indivíduo i, observamos apenas  $y_{i1}$  ou  $y_{i0}$ , nunca ambos.

Antes de continuarmos, faremos as seguintes definições:

**ATE:**  $E(y_1 - y_0)$ 

**ATT:**  $E(y_1 - y_0 | w = 1)$  (ATE no tratado).

ATE e ATT condicional a variáveis x

$$ATE(\mathbf{x}) = E(y_1 - y_0 | \mathbf{x})$$
$$ATT(\mathbf{x}) = E(y_1 - y_0 | \mathbf{x}, w = 1)$$

OBS:

$$E(y_1 - y_0) = E[E(y_1 - y_0 | w)]$$
  

$$E(y_1 - y_0 | w) = E(y_1 - y_0 | w = 0) \cdot P(w = 0) + E(y_1 - y_0 | w = 1) \cdot P(w = 1).$$

# Métodos Assumindo Ignorabilidade do Tratamento

ATE.1: Ignorabilidade.

 $w \in (y_1, y_0)$  são independentes condicionais a x.

ATE.1': Ignorabilidade da Média.

a) 
$$E(y_0 | w, x) = E(y_0 | x)$$

b) 
$$E(y_1 | w, x) = E(y_1 | x)$$

Vamos definir

$$E(y_0 \mid \boldsymbol{x}) = \mu_0(\boldsymbol{x})$$

$$E(y_1 \mid \boldsymbol{x}) = \mu_1(\boldsymbol{x}).$$

Sob ATE.1 e ATE.1':

$$ATE(\mathbf{x}) = E(y_1 - y_0 | \mathbf{x}) = \mu_1(\mathbf{x}) - \mu_0(\mathbf{x})$$
  

$$ATT(\mathbf{x}) = E(y_1 - y_0 | \mathbf{x}, w = 1) = \mu_1(\mathbf{x}) - \mu_0(\mathbf{x})$$

ATE.2: Overlap

Para todo 
$$x$$
,  $P(w = 1 | x) \in (0, 1)$ ,  $p(x) = p(w = 1 | x)$ .

 $p(\mathbf{x})$  é o *Propensity Score*, ele representa a probabilidade de  $y_i$  ser tratado dado o valor das covariáveis  $\mathbf{x}$ . Essa hipótese é importante visto que podemos expressar o ATE em função de  $p(\mathbf{x})$ .

Para o ATT vamos supor:

**ATT.1':** 
$$E(y_0 | x, w) = E(y_0 | x)$$

**ATT.2:** Overlap: Para todo x, P(w = 1|x) < 1.

# **Propensity Score**

Como foi dito anteriormente, apenas observamos ou  $y_1$  ou  $y_0$  para a mesma pessoa, mas não ambos. Mais precisamente, junto com w, o resultado observado é:

$$y = wy_1 + (1 - w)y_0$$

como w é binário,  $w^2 = w$ , assim, temos:

$$wy = w^{2}y_{1} + (w - w^{2})y_{0} \implies \boxed{wy = wy_{1}}$$
$$(1 - w)y = (w - w^{2})y_{1} + (w^{2} - 2w + 1)y_{0} \implies \boxed{(1 - w)y = (1 - w)y_{0}}.$$

Fazemos isso para tentar isolar  $\mu_0(\mathbf{x})$  e  $\mu_1(\mathbf{x})$ :

$$\mu_1(\boldsymbol{x})$$

$$E(wy|\mathbf{x}) = E[E(wy_1|\mathbf{x}, w) | \mathbf{x}]$$
$$= E[w\mu_1(\mathbf{x}) | \mathbf{x}]$$
$$= \mu_1(\mathbf{x}) E(w|\mathbf{x}).$$

Como w é binaria:  $E(w|\mathbf{x}) = P(w = 1|\mathbf{x}) = p(\mathbf{x})$ . Assim:

$$E(wy|\boldsymbol{x}) = \mu_1(\boldsymbol{x})p(\boldsymbol{x})$$

$$\boxed{\mu_1(\boldsymbol{x}) = \frac{\mathrm{E}(wy|\boldsymbol{x})}{p(\boldsymbol{x})}}$$

 $\mu_0(\boldsymbol{x})$ 

$$E[(1-w)y|\mathbf{x}] = E[E((1-w)y_0|\mathbf{x}, w)|\mathbf{x}]$$

$$= E[(1-w)\mu_0(\mathbf{x})|\mathbf{x}]$$

$$= \mu_0(\mathbf{x})E(w|\mathbf{x})$$

$$E[(1-w)y|\mathbf{x}] = \mu_0(\mathbf{x})[1-p(\mathbf{x})] \implies$$

$$\mu_0(\mathbf{x}) = \frac{E[(1-w)y|\mathbf{x}]}{1-p(\mathbf{x})}$$

# ATE:

$$\mu_1(\boldsymbol{x}) - \mu_0(\boldsymbol{x}) = \mathrm{E}\left[\frac{[w - p(\boldsymbol{x})]y}{p(\boldsymbol{x})[1 - p(\boldsymbol{x})]}|\boldsymbol{x}\right]$$

$$\widehat{ATE} = N^{-1} \sum_{i=1}^{N} \frac{[w_i - p(x_i)]y_i}{p(x_i)[1 - p(x_i)]}$$

# ATT:

$$E(y_1|\boldsymbol{x}, w = 1) - E(y_0|\boldsymbol{x}) = \frac{1}{\hat{P}(w = 1)} E\left[\frac{[w - \hat{p}(\boldsymbol{x})]y}{[1 - \hat{p}(\boldsymbol{x})]} | \boldsymbol{x}\right]$$

$$\hat{P}(w=1) = N^{-1} \sum_{i=1}^{N} w_i$$

$$\widehat{ATT} = \frac{N}{\sum_{i=1}^{N} w_i} N^{-1} \sum_{i=1}^{N} \frac{[w_i - \hat{p}(\boldsymbol{x}_i)]y_i}{[1 - \hat{p}(\boldsymbol{x}_i)]}$$

$$\widehat{ATT} = \frac{1}{\sum_{i=1}^{N} w_i} \sum_{i=1}^{N} \frac{[w_i - \hat{p}(x_i)]y_i}{[1 - \hat{p}(x_i)]}$$

# **Appêndice**

# **Sums of Values**

(Greene, 2012, p. 977, A.2.7)

$$\mathbf{1}'_{N}\mathbf{1}_{N}=N$$
 ;  $\mathbf{1}_{N}\mathbf{1}'_{N}=\begin{bmatrix}1&\dots&1\\ \vdots&\ddots&\vdots\\ 1&\dots&1\end{bmatrix}_{N\times N}$ 

Defining  $\boldsymbol{x}$  with dimension  $1 \times N$ :

$$oldsymbol{x} = egin{bmatrix} x_1 \ dots \ x_N \end{bmatrix}$$

$$x'\mathbf{1}_N = \mathbf{1}'_N x = (x'\mathbf{1}_N)' = \sum_{i=1}^N x_i$$

$$\mathbf{1}_N \boldsymbol{x}' = \begin{bmatrix} x_1 & \dots & x_N \\ \vdots & \ddots & \vdots \\ x_1 & \dots & x_N \end{bmatrix}_{N \times N} ; \qquad \boldsymbol{x} \mathbf{1}'_N = \begin{bmatrix} x_1 & \dots & x_1 \\ \vdots & \ddots & \vdots \\ x_N & \dots & x_N \end{bmatrix}_{N \times N}$$

$$E(\boldsymbol{x}) = \overline{\boldsymbol{x}} = N^{-1} \sum_{i=1}^{N} x_i = N^{-1} \boldsymbol{x}' \mathbf{1}_N$$

# Important Idempotent Matrices

(Greene, 2012, p. 978, A.28) Centering Matrix

$$M^0 = I_N - \mathbf{1}_N (\mathbf{1}_N' \mathbf{1}_N)^{-1} \mathbf{1}_N' = I_N - N^{-1} \mathbf{1}_N \mathbf{1}_N'$$

A Matriz  $M^0$  é idempotente e simétrica.

Idempotência: AA = A

Simetria: A' = A

$$M^{0}\boldsymbol{x} = (I_{N} - N^{-1}\mathbf{1}_{N}\mathbf{1}_{N}')\boldsymbol{x} = \boldsymbol{x} - N^{-1}\mathbf{1}_{N}(\mathbf{1}_{N}'\boldsymbol{x}) = \mathbf{1}_{N}\overline{\boldsymbol{x}} = \begin{bmatrix} \overline{\boldsymbol{x}} \\ \vdots \\ \overline{\boldsymbol{x}} \end{bmatrix}$$

$$M^{0}\mathbf{1} = (I_{N} - N^{-1}\mathbf{1}_{N}\mathbf{1}'_{N})\mathbf{1}_{N} = \mathbf{1}_{N} - N^{-1}\mathbf{1}_{N}(\mathbf{1}'_{N}\mathbf{1}_{N}) = \mathbf{0}_{N}$$

# 16 Conceitos Básicos de Convergência Estatística

**Definition 16.1** (Estimador Consistente). Um estimador  $\hat{\theta}$  é consistente para um parâmetro  $\theta$  se

$$\hat{\theta} \stackrel{p}{\longrightarrow} \theta$$
.

Definition 16.2 (Convergência em Probabilidade). Uma sequência de variáveis aleatórias:  $\{X_n\}_{n\geq 1}$  converge em probabilidade para uma variável aleatória X se, dado  $\varepsilon > 0$ ,

$$P(|X_n - X| > \varepsilon) \to 0$$

quando  $n \to +\infty$ . E denotamos

$$X_n \stackrel{p}{\longrightarrow} X$$
.

**Definition 16.3 (Desigualdade de Markov).** Seja  $\{X_n\}_{n\geq 1}$  uma sequência de variáveis aleatórias com  $E|X_n|^K<+\infty,\ K>0$ . Então, dado  $\varepsilon>0$ 

$$P(|X_n| > \varepsilon) \le \frac{E|X_n|^K}{\varepsilon^K}$$

Definition 16.4.

$$0 \le P(|\hat{\theta} - \theta| > \varepsilon) \le \frac{E|X_n|^2}{\varepsilon^2}$$

Definition 16.5 (Erro Quadrático Médio).

$$EQM(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^2\right] = \left[Bias(\hat{\theta})^2 + Var(\hat{\theta})\right]$$

Então, se  $Bias(\hat{\theta}) \to 0$  e  $Var(\hat{\theta}) \to 0$ , temos que  $EQM(\hat{\theta}) \to 0$ . Pelo **Teorema do Sanduíche**,  $P(|\hat{\theta} - \theta| > \varepsilon) \to 0$ ; logo,  $\hat{\theta} \stackrel{p}{\longrightarrow} \theta$ .

Definition 16.6 (LGN – Lei dos Grandes Números). Seja  $\{X_i\}_{i\geq 1}$  uma sequência de variáveis aleatórias iid com  $E(X_i) = \mu$ . Então,

$$N^{-1} \sum_{i=1}^{N} X_i \xrightarrow{p} \mu.$$

**Definition 16.7** (LGN – Caso Matricial). Seja  $\{x_i\}_{i=1}^N$ , uma sequência iid de vetores aleatórios  $K \times 1$  com  $\mathbb{E}(x_i x_i') = Q_{K \times K}$  finita. Então,

$$N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_i \boldsymbol{x}_i' \stackrel{p}{\longrightarrow} Q.$$

Se Q for positiva definida, Q terá inversa.

# Multiplicação de Matriz

$$A_{2\times 2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad B_{2\times 3} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

$$[AB]_{2\times 3} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \end{bmatrix} + \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix} \begin{bmatrix} b_{21} & b_{22} & b_{23} \end{bmatrix} \implies AB = \sum_{i=1}^{2} a_i b_i$$

onde  $a_i$  é a i-ésima **coluna** da matriz A.  $b_i$  é a i-ésima **linha** da matriz B.

# Definition 16.8.

$$P(|X_n - X| > \varepsilon) \to 0$$

$$X_n - X \xrightarrow{p} 0$$

$$X_n \xrightarrow{p} X$$

Definition 16.9  $(o_n)$ .

$$X_n = o_p(1) \implies X_n \stackrel{p}{\longrightarrow} 0$$

$$X_n = o_p(Y_n) \implies \frac{X_n}{Y_n} = o_p(1) \implies \frac{X_n}{Y_n} \stackrel{p}{\longrightarrow} 0$$

$$X_n = W_n + o_p(1) \implies (X_n - W_n) = o_p(1) \implies (X_n - W_n) \stackrel{p}{\longrightarrow} 0$$

**Definition 16.10** (Limitação em Probabilidade:  $O_p$ ). Dizemos que  $X_n$  é **limitado em probabilidade** e denotado por  $X_n = O_p(1)$ , se existe M maior que zero, tal que para todo  $\varepsilon$  maior que zero,  $P(|X_n| > 0) < \varepsilon$ .

$$X_n = O_n(1) \implies \exists M > 0; \ \forall \varepsilon > 0, \ P(|X_n| > 0) < \varepsilon.$$

**Definition 16.11.** Dizemos que  $X_n = O_p(Y_n)$  se existe M maior que zero, tal que para todo  $\varepsilon$  maior que zero,  $P(|X_n/Y_n| > 0) < \varepsilon$ .

$$X_n = O_p(Y_n) \implies \exists M > 0; \ \forall \varepsilon > 0, \ P(|X_n/Y_n| > 0) < \varepsilon.$$

**Definition 16.12.** Se  $X_n = O_p(1)$  e  $Y_n = o_p(1)$ , então

$$X_n Y_n = O_p(1)o_p(1) = o_p(1).$$

**Definition 16.13** (Equivalência Assintótica). Seja  $\{x_n\}$  e  $\{z_n\}$  sequências de vetores aleatórios  $K \times 1$ . Se  $z_n \stackrel{d}{\longrightarrow} z$  e  $x_n - z_n \stackrel{p}{\longrightarrow} \mathbf{0}_K$ . Então,

$$oldsymbol{x}_n \stackrel{d}{\longrightarrow} oldsymbol{z}.$$

**Definition 16.14** (Convergência em Distribuição). Seja  $\{X_n\}_{n\geq 1}$  uma sequência de variáveis aleatórias e X uma variável aleatória com  $F_n$  e F suas respectivas FDAs, então

$$X_n \xrightarrow{d} X$$
, se  $F_n(X) \to F(X)$ 

para todo X onde F é contínuo.

**Definition 16.15** (Convergência em Distribuição e Limitação em Probabilidade). Se  $X_n \stackrel{d}{\longrightarrow} X$ , X um variável aleatória qualquer; então  $X_n = O_p(1)$ .

**Definition 16.16** (TCL – Teorema Central do Limite). Seja  $\{X_n\}_{n=1}^N$  iid com  $E(X_n) = \mu$  e  $Var(X_n) = \sigma^2 < +\infty$ . Então, para  $S_N = \sum_{n=1}^N X_n$ :

$$\frac{S_N - N\mu}{\sqrt{N}\sigma} = \frac{N(\overline{X} - \mu)}{\sqrt{N}\sigma} = \frac{N(\overline{X} - \mu)}{\sqrt{N}\sigma} = \boxed{\frac{\sqrt{N}(\overline{X} - \mu)}{\sigma} \xrightarrow{d} Z \sim N(0, 1)}.$$

**Definition 16.17** (TCL – Caso Vetorial). Seja  $\{\boldsymbol{w}_i\}_{i=1}^n$  uma sequência iid de vetores aleatórios  $K \times 1$  com  $\mathrm{E}(w_{ik}^2) < +\infty, \ k=1,\ldots K$  e  $\mathrm{E}(\boldsymbol{w}_i) = \mathbf{0}_K$ . Então,

$$N^{-1/2} \sum_{i=1}^{N} \boldsymbol{w}_i \stackrel{d}{\longrightarrow} N(\mathbf{0}, B),$$

onde,  $B = Var(\boldsymbol{w}_i) = E(\boldsymbol{w}_i \boldsymbol{w}_i').$ 

Definition 16.18. Seja  $\{\boldsymbol{z}_n\}$ uma sequência de vetores  $K\times 1$ aleatórios com

$$z_n \stackrel{d}{\longrightarrow} N(\mathbf{0}, V).$$

Então, para qualquer matriz A de dimensão  $K \times M$  não estocástica,

$$A'z_n \stackrel{d}{\longrightarrow} N(\mathbf{0}, A'VA).$$

# TODO

- 1. Acabar Aula 2
- 2. Revisar Aula 1 com C.4
- 3. Revisar Conceitos Estatísticos com C.3
- 4. Fazer POLS com Sec $7.8\,$

# References

Greene, William H. 2012. Econometric Analysis. 7 edn. Boston: Prentice Hall.

WOOLDRIDGE, JEFFREY M. 2010. Econometric Analysis of Cross Section and Panel Data. 2 edn. Boston, Massachussetts: MIT Press.