BST 140.752 Problem Set 3

Due: November 30, 2017

1 Variable Selection

1. The general formula for the Akaike Information Criterion (AIC) for some model of the data, denoted by the pdf $p(y|\theta)$, is given by

$$AIC = -2\log p(\mathbf{y}|\hat{\theta}) + 2d,$$

where $\hat{\theta}$ is the MLE of this model, for the vector of observations, \mathbf{y} . Use this result to compute the AIC for a standard linear model with normal error.

2 Ridge Regression

- 1. Let $\hat{\boldsymbol{\beta}}_{LS}$ be the least squares estimator and $\hat{\boldsymbol{\beta}}_{ridge}$ be the ridge regression estimator. Prove that $\operatorname{var}(\hat{\boldsymbol{\beta}}_{LS}) \geq \operatorname{var}(\hat{\boldsymbol{\beta}}_{ridge})$.
- 2. Let H_{λ} be the hat matrix for the ridge regression model. Derive an expression for H_{λ} and find its trace.

3 Principal Components

- 1. Formally prove that the population principal components explain the maximum variability subject to being linear combinations of the data and orthogonal to the others.
- 2. Assume that the columns of \mathbf{X} have been mean centered so that $\mathbf{J}_n'\mathbf{X} = (0\dots0)'$. Suppose further that $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}'$ where $\mathbf{U}'\mathbf{U} = \mathbf{V}'\mathbf{V} = I$ and \mathbf{D} is a diagonal matrix of singular values. Argue that the matrix $\mathbf{U} = \mathbf{X}\mathbf{V}'\mathbf{D}^{-1}$ results in an orthonormal basis for the same space as the column space of \mathbf{X} . Thus, the $\hat{\mathbf{y}}$ matrix treating \mathbf{X} as the outcome and treating \mathbf{U} as the outcome are the same and further $\hat{\mathbf{y}} = \sum_{j=1}^p \mathbf{u}_i < \mathbf{u}_i, \mathbf{y} >$ where \mathbf{u}_i are the columns of \mathbf{U} .

4 Time Series Analysis

- 1. Compute the autocorrelation function for an MA(1) process.
- 2. Consider a general AR(p) model. Find the Yule-Walker estimators for $\phi_1, \dots \phi_p$ and σ^2 .

5 Coding and data analysis exercises

- 1. Write an R function that performs ridge regression. It should be able to take a list of λ values as input and plot a ridge trace as an output. Use the mtcars dataset in R to try out your function. Let mpg be the response variable, and cyl, disp, hp, drat, and wt be the explanatory variables.
- 2. Write an R function that performs principal components regression. Use the mtcars dataset in R to try out your function. Let mpg be the response variable, and cyl, disp, hp, drat, and wt be the explanatory variables.