## **Lossy Audio Compression Report**

## Wnioski:

Metody A-law i mu-law polegają na kompresji dynamicznego zakresu amplitudy sygnału przy użyciu przekształceń logarytmicznych. Dzięki temu, różnice między małymi amplitudami są uwypuklane, a duże wartości są ściskane. Kompresja zmniejsza ilość danych zachowując rozpoznawalność sygnału nawet przy ograniczonej liczbie bitów.

MPCM działa na różnicy między kolejnymi próbkami, a wersja z predykcją przewiduje kolejną próbki na podstawie średniej kilku poprzednich.

Podczas odsłuchu zauważyłem, że:

A-law i μ-law zachowują dobrą jakość dźwięku do około 6 bitów. Poniżej tej granicy dźwięk staje się słyszalnie zniekształcony, ale nadal rozpoznawalny (aż do 2–3 bitów, gdzie szum staje się poważny).

DPCM generuje słyszalne szumy nawet przy 8 bitach, a użycie predykcji nie zawsze poprawia jakość. Przy 3–4 bitach pojawia się pisk, który staje się nieznośny przy 2 bitach (co ciekawe, zwłaszcza przy predykcji). W jednym przypadku, przy 3 bitach (i tylko wtedy), dźwięk zamienił się w cichy pisk.

Warto też zauważyć, że na poziomie 2–3 bitów w przypadku A-law i μ-law dźwięk staje się bardziej cichy niż destrukcyjnie zniekształcony, co było subiektywnie bardziej znośne niż hałas generowany przez DPCM.

Również zauważyłem znaczną różnicę w czasie działania algorytmów. A-law i μ-law wykonywały się bardzo szybko, w około 0,004 sekundy, podczas gdy DPCM potrzebował od 0,5 do 2 sekund, a DPCM z predykcją nawet trzy razy więcej. Wynika to z konieczności użycia pętli oraz dodatkowych obliczeń w przypadku DPCM.

Podsumowując, w przypadku tego zadania i dobranych plików audio, metody A-law i μ-law zapewniały lepszą stabilność i szybkość kompresji w szerokim zakresie bitów. Prawdopodobnie może to być związane z tym, że sygnały o stałym tonie są wrażliwe na kumulację błędów. W metodach logarytmicznych każda próbka była przetwarzana niezależnie, w DPCM natomiast nawet małe błędy w różnicach szybko się akumulowały, co mogło prowadzić do silnych zniekształceń i szybkiej degradacji jakości.

## Fala synusowa zaimplementowanych metod – przykład



## Tabela odsłuchów

| Plik/Bitów kw. | 8                       | 7                                 | 6                                           | 5                                             | 4                                                     | 3                            | 2                                                       |
|----------------|-------------------------|-----------------------------------|---------------------------------------------|-----------------------------------------------|-------------------------------------------------------|------------------------------|---------------------------------------------------------|
| sing_high1     | OK                      | bardzo<br>lekki<br>pisk w<br>DPCM | odczuw<br>alny<br>pisk w<br>DPCM            | pisk<br>pojawił<br>się też w<br>a- mu-<br>law | gorzej                                                | gorzej                       | hałas i skoki<br>głośności we<br>wszystkich<br>metodach |
| sing_medium1   | OK                      | OK                                | bardzo<br>mały<br>szum w<br>DPCM            | szum w<br>DPCM<br>robi się<br>głośniej        | DPCM<br>piskliwy,<br>A- i mu-<br>law<br>jeszcze<br>OK | stało<br>się<br>głosni<br>ej | a- mu-law –<br>ciszej, DPCM<br>- głosniej               |
| sing_low1      | w DPCM<br>lekki<br>szum | szum<br>mocniej<br>szy w<br>DPCM  | w DPCM<br>hałas,<br>reszta<br>jeszcze<br>OK | w DPCM<br>trudne<br>do<br>słuchani<br>a       | DPCM zaczyna piszczeć, reszta lekko zniekształ cona   | gorsze                       | mocne<br>zniekształce<br>nia, pisk                      |