Segunda entrega

Diego Cubides, Larry castro, Tomas Mendez y Jersson avila

2023-04-20

Contents

Introducción	1
Materiales	1
Software	1
Procedimiento	1
1.1 adquisision de datos	1
1.2 Modelo lineal y regresion multilineal	3

Introducción

El presente reporte está basado en la implementación de un aprendizaje de máquina para poder predecir tres tipos de obstáculos mediante el algoritmo de Knn y la distancia bajo un modelo lineal y otro multilíneal de dos sensores incorporados en un carro a control remoto. Este robot fue implementado en Arduino y una app móvil con el fin de obtener datos de un sensor infrarrojo y un ultrasónico a distancias y obstáculos diferentes.

Materiales

- Sensor ultrasónico US-016
- Sensor Infrarrojo 2Y0A21 F
- Modulo puente h l298n
- Carro a control remoto
- bluetooth hc-05
- Arduino UNO

Software

- RStudio
- Arduino
- App inventor
- Excel
- PLX-DAQ

Procedimiento

1.1 adquisision de datos

Se programo un carro a control remoto vía bluetooth capaz de moverse a diferentes velocidades y en cualquier dirección, este fue controlado con una app creada en app inventor la cual permitio controlar el movimiento del carro y enviar la acción para que envié el dato censado en ese momento.

Figure 1: App

Figure 2: Carro

Usando la comunicación Serial entre el Arduino y el módulo bluetooth se pudieron captar los datos de los sensores en Excel, para poder comunicar Excel con el Arduino se usó el software PLZ-DAQ

Figure 3: PLX-DAQ

1.2 Modelo lineal y regresion multilineal

Luego de tener el dataset de los datos tomados se carga la libreria tidyverse y el dataset

```
library(tidyverse)
folder <- dirname(rstudioapi::getSourceEditorContext()$path )
wall.distance <-read_csv(paste0(folder,"/dataset_wall_distance.csv"))</pre>
```

Se hace el analisis exploratorio de datos para el dataset

kable(summary(wall.distance))

INFRARED	ULTRASONIC	DISTANCE(cm)
Min. :113.0	Min.: 35.0	Min. :10
1st Qu.:133.8 Median :169.0	1st Qu.: 71.0 Median :120.0	1st Qu.:20 Median :35
Mean :207.5	Mean :119.9	Mean :35
3rd Qu.:258.8 Max. :461.0	3rd Qu.:168.5 Max. :209.0	3rd Qu.:50 Max. :60

De la tabla se puede identificar los valores maximos y minimos que se captaron con los sensores, de igual manera los valores por el primer quartil y el tercer cuartil

```
hist(wall.distance$INFRARED,breaks = 10)
```

Histogram of wall.distance\$INFRARED

hist(wall.distance\$ULTRASONIC,breaks = 10)

Histogram of wall.distance\$ULTRASONIC

Debido a que la variable predictora es la distancia se tiene que pasar como factor, Graficando cada dato del sensor con la función hist se puede ver que los datos están distribuidos y que son viables para hacer aprendizaje de maquina

```
wall.distance$`DISTANCE(cm)` <-as.factor(wall.distance$`DISTANCE(cm)`)
pairs(wall.distance[c("INFRARED","ULTRASONIC")]
,pch=25
,bg=c("green","blue3","gray","yellow","green3","pink","brown","black","red","orange")[unclass(wall.dist</pre>
```


Cuando se captaron los datos se identificó que un sensor crece inversamente al otro, graficando todos los datos en función a la distancia se notó que tienen una buena distribución y que se logran identificar grupos en todos los datos

En esta grafica se ve mejor la relacion de las varibales y se ve que tiene una relacion negativa de -0.9, siendo esto un factor muy importante para poder hacer el aprendizaje de maquina

kable(prop.table(table(wall.distance\$`DISTANCE(cm)`)))

Var1	Freq
10	0.0909091
15	0.0909091
20	0.0909091
25	0.0909091
30	0.0909091
35	0.0909091
40	0.0909091
45	0.0909091
50	0.0909091
55	0.0909091
60	0.0909091

de los 110 datos que se obtuvieron hay la misma cantidad en cada distancia identificada - regresion lineal para sensor infrarojo

```
x <- dataset$INFRARED
y <- dataset$`DISTANCE(cm)`
b=cov(x,y)/var(x)
a=mean(y)-b*mean(x)
a+b*121</pre>
```

[1] 47.46267

• regresion lineal para sensor infrarojo

#2.1 Adquisición de datos Para el modelo multilineal se obtuvieron nuevas medidas y una nueva variable la cual es el tipo de obstaculo, de las 4 variables se obtuvieron 198 muestras.

kable(head(type.wall.distance))

INFRARED	ULTRASONIC	DISTANCE(cm)	TYPE
452	37	10	PLANA
343	59	15	PLANA
270	67	20	PLANA
220	88	25	PLANA
203	104	30	PLANA
169	119	35	PLANA

hist(type.wall.distance\$INFRARED,breaks = 50)

Histogram of type.wall.distance\$INFRARED

hist(type.wall.distance\$ULTRASONIC,breaks = 50)

Histogram of type.wall.distance\$ULTRASONIC

A diferencia del primer dataset, en este se obtuvieron valores por fuera del rango normal como lo muestra la grafica del sensor ultrasonico.

kable(summary(type.wall.distance))

INFRARED	ULTRASONIC	${\rm DISTANCE}({\rm cm})$	TYPE
Min. :109.0	Min.: 35.0	Min. :10	Length:198
1st Qu.:141.0	1st Qu.: 101.0	1st Qu.:20	Class :character
Median $:174.0$	Median: 152.0	Median $:35$	Mode :character
Mean $:213.5$	Mean: 158.8	Mean $:35$	NA
3rd Qu.:259.0	3rd Qu.: 179.0	3rd Qu.:50	NA
Max. $:479.0$	Max. $:1023.0$	Max. :60	NA

Con la funcion summary se puede ver una division de los datos tanto del infrarojo como el del ultrasonido y cuales fueron sus valores maximos y minimos.

```
type.wall.distance$TYPE <-as.factor(type.wall.distance$TYPE)</pre>
```

Debido a que la variable predictora es el tipo de obstaculo se tiene que pasar como factor, de cada

```
plot(type.wall.distance[1:2]
    ,main=c("yellow = plano,blue=concavo,green=convexo")
    ,pch=21,bg=c("green","blue3","yellow")[unclass(type.wall.distance$TYPE)])
```

yellow = plano,blue=concavo,green=convexo

yellow = plano,blue=concavo,green=convexo

