TD6: Valeurs singulières, moindres carrés

Exercice 1 (Cours). Soit $A \in \mathcal{M}_{m,n}(\mathbb{R})$ de rang $r \leq p = \min(m,n)$. On considère la décomposition en valeurs singulières de A

$$U^t A V = \operatorname{diag}(\nu_1, \dots, \nu_p)$$

où les ν_i sont les valeurs singulières de A. On note $(U_i)_{1 \leq i \leq m}$ les vecteurs colonnes de U et $(V_i)_{1 \leq i \leq n}$ ceux de V.

- 1. Quel sens donne-t-on ici à la notation $\operatorname{diag}(\nu_1, \dots, \nu_p)$? Quelle conséquence a l'hypothèse rangA = r sur les valeurs singulières? (On pourra ordonner les valeurs singulières de telle façon que les premières soient non nulles).
- 2. Montrer que : $A = \sum_{i=1}^r \nu_i U_i V_i^t$ et que : $A^t A = \sum_{i=1}^r \nu_i^2 V_i V_i^t$.
- 3. Montrer que $\operatorname{Im}(A) = \operatorname{Vect}\{U_1, U_2, \dots, U_r\}$ et $\operatorname{Ker}(A) = \operatorname{Vect}\{V_{r+1}, \dots, V_n\}$.
- 4. Montrer que $\operatorname{Im}(A^t) = \operatorname{Vect}\{V_1, V_2, \cdots, V_r\}$ et $\operatorname{Ker}(A^t) = \operatorname{Vect}\{U_{r+1}, \cdots, U_m\}$.
- 5. Déterminer les matrices des projections orthogonales sur Im(A), Ker(A), $\text{Im}(A^t)$, $\text{Ker}(A^t)$ à l'aide de U et V.

Exercice 2. Soit

$$A = \begin{pmatrix} 1 & -1 \\ 0 & -1 \\ -1 & 0 \end{pmatrix} \quad \text{et} \quad b = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix}.$$

- 1. Calculer les valeurs singulières de A.
- 2. Quel est le rang de A?
- 3. Déterminer la décomposition en valeurs singulières de A.
- 4. Calculer la pseudo-inverse A^{\dagger} .
- 5. Déterminer les matrices des projections orthogonales sur Im(A) et Ker(A).
- 6. Déterminer une solution au sens des moindres carrés du système Ax = b.
- 7. Cette solution est-elle unique?
- 8. [Matlab] Étant donnée une matrice A, écrire un code qui renvoie les valeurs singulières non nulles de A ordonnées par ordre décroissant.

Exercice 3.

- 1. Soit $v = (v_1, \ldots, v_n)$ un vecteur ligne. On considère v comme une matrice $1 \times n$. Calculer ses valeurs singulières et son pseudo-inverse. Quel est le rang de v?
- 2. Soit

$$A = \begin{pmatrix} 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Calculer A^{\dagger} , B^{\dagger} , $(AB)^{\dagger}$ et $B^{\dagger}A^{\dagger}$.

3. [Matlab] Soit v un vecteur. Écrire un code qui renvoie son pseudo-inverse.

Exercice 4. Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$ une matrice rectangulaire avec $p \leq n$. On considère le système linéaire AX = b, noté dans la suite (S).

- 1. Déterminer dans quels espaces sont situés l'inconnue X et le second membre b.
- 2. Déterminer dans quel cas (S) n'a pas de solution.
- 3. Déterminer dans quel cas (S) admet au moins une solution et dans quel cas cette solution est unique.
- 4. On suppose que X est solution de (S). Vérifier que X est alors solution de $A^tAX = A^tb$, système noté (S').
- 5. Démontrer que le système (S') admet toujours une solution et préciser dans quel cas elle est unique.
- 6. On suppose maintenant rang(A) = p et on note X_0 la solution de (S'). Démontrer que $b AX_0$ est orthogonal à l'espace vectoriel Im(A). En déduire que X_0 est la solution au sens des moindres carrés du système (S).

Exercice 5. On dispose de la fonction suivante :

- 1. Quelle est la nature des variables d'entrée et des variables de sortie?
- 2. Commenter le code (ligne par ligne).
- 3. Que rend en sortie la fonction d?
- 4. Si la valeur retournée est 0, que peut on dire de b par rapport à A?
- 5. Et si d(A',b) == norm(b) est vrai, que peut on dire de b par rapport à A?