Laborato 3 Correspondecias Simples y Multiples

Grupo 6

Integrantes

- Edwin Sanchez
- Stephanie Tamayo
- Andres Felipe Torres
- Fredy Urrea
- Sergio Velasquez
- Manuel Espitia

Introduccion

Carga de achivos y organizaicon de los datos ylibrerias

```
library("FactoMineR")
library("dplyr")
library(readxl)
library(FactoMineR)
library(factoextra)
library(kableExtra)
library(kableExtra)
library(readr)
library(tidyr)
library(tidyr)
library(dplyr)
library(tibble)
encuesta <- read_csv2("ECC_completa_19426.csv")
ecc<- read_csv2("ECC_completa_19426.csv")</pre>
```

Capitulo 5 Análisis de correspondencias simples (ACS)

Punto 1

Con la metodologia del ejemplo 5.4 hacer un ACS para la tabla de contigencias p17b x p21 con las preguntas "p17_b" (en las filas) sobre la facilidad para cumplir la ley y la preferencia por hacer acuerdos p21. Identificar patrones o tendencias si los hat comentar los resultados.

1. Carga y Preparación de Datos

```
datos_completos <- read.csv2("ECC_completa_19426.csv", header = TRUE, sep = ";")
datos_quito <- subset(datos_completos, ciudad2 == "Quito")</pre>
```

2. Tablas de Frecuencias y Perfiles

Tabla de Contingencia

Table 1: Tabla de Contingencia: Facilidad Ley vs. Preferencia Acuerdos

	Preferencia por hacer Acuerdos				
	Nunca Acuerdo	Casi Nunca	Casi Siempre	Siempre Acuerdo	Sum
Muy difícil	4	10	15	16	45
Difícil	13	57	82	88	240
Fácil	38	127	306	258	729
Muy fácil	29	92	213	239	573
Sum	84	286	616	601	1587

Tabla de Perfiles Fila

Table 2: Perfiles Fila (%): Distribución de Preferencia por cada nivel de Dificultad

	Preferencia por hacer Acuerdos				
	Nunca Acuerdo	Casi Nunca	Casi Siempre	Siempre Acuerdo	Sum
Muy difícil	8.89	22.22	33.33	35.56	100
Difícil	5.42	23.75	34.17	36.67	100
Fácil	5.21	17.42	41.98	35.39	100

Muy fácil 5.06 16.06 37.17 **41.71** 100

Tabla de Perfiles Columna

Table 3: Perfiles Columna (%): Distribución de Dificultad por cada tipo de Preferencia

	Preferencia por hacer Acuerdos				
	Nunca Acuerdo	Casi Nunca	Casi Siempre	Siempre Acuerdo	
Muy difícil	4.76	3.50	2.44	2.66	
Difícil	15.48	19.93	13.31	14.64	
Fácil	45.24	44.41	49.68	42.93	
Muy fácil	34.52	32.17	34.58	39.77	
Sum	100.00	100.00	100.00	100.00	

3. Análisis de Correspondencias Simples (ACS)

Resumen de Autovalores

```
acs_quito <- CA(tabla_quito, graph = FALSE)
eig_tabla <- as.data.frame(acs_quito$eig)
colnames(eig_tabla) <- c("Valor Propio", "% de Varianza", "% Varianza Acumulada")

kable(eig_tabla, digits = 3, caption = "Resumen de Autovalores del ACS", booktabs = TRUE) %>%
    kable_styling(latex_options = "hold_position", bootstrap_options = c("striped", "hover"))
```

Table 4: Resumen de Autovalores del ACS

	Valor Propio	% de Varianza	% Varianza Acumulada
dim 1	0.005	56.057	56.057
$\dim 2$	0.004	37.710	93.767
dim 3	0.001	6.233	100.000

Indicadores de Calidad del Análisis

```
resultados_filas <- cbind(
  acs_quito$row$coord,
  acs_quito$row$contrib,</pre>
```

Table 5: Indicadores para el Análisis por Filas (Facilidad Ley)

	Coordenadas		Contrib	Contribuciones		$Cosenos^2$	
	Coord.1	Coord.2	Ctr.1	Ctr.2	Cos2.1	Cos2.2	
Muy difícil	0.162	-0.007	14.135	0.044	0.604	0.001	
Difícil	0.153	-0.012	67.237	0.653	0.967	0.006	
Fácil	-0.027	0.061	6.528	47.535	0.170	0.830	
Muy fácil	-0.042	-0.071	12.101	51.768	0.258	0.742	

Table 6: Indicadores para el Análisis por Columnas (Preferencia Acuerdos)

	Coord	Coordenadas		Contribuciones		$Cosenos^2$	
	Coord.1	Coord.2	Ctr.1	Ctr.2	Cos2.1	Cos2.2	
Nunca Acuerdo	0.062	0.009	3.900	0.114	0.277	0.005	
Casi Nunca	0.145	0.021	71.744	2.200	0.968	0.020	
Casi Siempre	-0.052	0.061	20.255	40.296	0.427	0.571	
Siempre Acuerdo	-0.024	-0.073	4.101	57.391	0.096	0.902	

```
# Configurar layout para 4 gráficos (2x2) con espacio para título
par(mfrow = c(2, 2), # 2 filas, 2 columnas
    oma = c(0, 0, 2, 0), # Espacio superior para título general
    mar = c(7, 4, 3, 1)) # Márgenes individuales (abajo, izq, arriba, der)
# Paleta de colores (misma para todos los gráficos)
```

```
mi_paleta <- c("#4E79A7", "#F28E2B", "#E15759", "#76B7B2")
# Iterar sobre cada nivel de dificultad
for (j in 1:nrow(perfiles_fila)) {
  # Crear gráfico de barras
  bp <- barplot(</pre>
   perfiles_fila[j, ],
   main = rownames(perfiles_fila)[j],
   col = mi_paleta,
   ylim = c(0, 50),
   las = 2, # Etiquetas eje X verticales
   cex.names = 0.9, # Tamaño nombres ejes
   border = NA, # Sin bordes
    ylab = "Porcentaje (%)"
  # Añadir valores
  text(
   x = bp,
    y = perfiles_fila[j, ] + 1.5,
   labels = paste0(round(perfiles_fila[j, ], 1), "%"),
   cex = 0.9,
   font = 2 # Texto en negrita
  )
}
# Título general
title ("Distribución de Preferencia por Acuerdos según Facilidad para Entender Leyes",
      outer = TRUE,
     cex.main = 1.3,
    font.main = 2)
```

istribución de Preferencia por Acuerdos según Facilidad para Entender Leye

4. Visualización Gráfica del ACS

```
# PRIMERO: Calcular var exp antes de usarlo en labs()
var_exp <- round(acs_quito$eig[, 2][1:2], 1) # Extraer % varianza explicada</pre>
# SEGUNDO: Crear el gráfico con var_exp ya definido
fviz_ca_biplot(acs_quito,
               repel = TRUE,
               label = "all",
               col.row = "#1F78B4",
               col.col = "#E31A1C",
               addlabels = TRUE,
               arrows = c(TRUE, TRUE), # Flechas para ambos (filas y columnas)
               title = "Facilidad para entender leyes vs. Preferencia por acuerdos",
               ggtheme = theme_classic()) +
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
  labs(x = paste0("Dimensión 1 (", var_exp[1], "%)"),
       y = paste0("Dimensión 2 (", var_exp[2], "%)")) +
  scale_x_continuous(expand = expansion(mult = 0.2)) +
  scale_y_continuous(expand = expansion(mult = 0.2))
```


Punto 2

Construir la tabla de contigencias p $17b \times ciudad$ que le correspondio al frupo y las ciudades de Asuncion y Montevideo. Yuxtaponerla a la tabla p $17b \times p21$ del ejerciio $1 \times p21$ d

Table 7: Tabla de contingencia

	21-Nunca	21-Casi Nunca	21-Casi siempre	21-Siempre
17b-Nunca	70	57	134	91
17b-Casi Nunca	252	124	528	255
17b-Casi siempre	872	524	2532	1345
17b-Siempre	1140	667	2294	2244
Belo Horizonte	202	188	481	507
Bogota	502	344	1141	1431
Caracas	465	274	937	424
La Paz	519	161	957	421
Medellin	311	128	956	820
Monterrey	363	300	1067	355

Ejecucion del analisis de correspondencias Simples

```
# 4. Análisis de Correspondencias Simples
ACSCiudades <- CA(TablaContingencia, graph = FALSE, row.sup = 5:10)
```

Resultadosd de ACS

##

Coordenadas de las categorías

Table 8: Varianza explicada por cada dimensión

	eigenvalue	percentage of variance	cumulative percentage of variance
dim 1	0.0166	85.9645	85.9645
$\dim 2$	0.0021	11.1087	97.0732
$\dim 3$	0.0006	2.9268	100.0000

cat("\n#### Preguntas\n\n")

##

Preguntas

	Dim 1	Dim 2	Dim 3
17b-Nunca	-0.0064	0.1747	0.1118
17b-Casi Nunca	-0.1428	0.1038	-0.0481
17b-Casi siempre	-0.1266	-0.0305	0.0072
17b-Siempre	0.1317	-0.0033	-0.0034

cat("\n#### Respuestas\n\n")

##

Respuestas

	Dim 1	Dim 2	Dim 3
21-Nunca	0.0108	0.0742	-0.0341
21-Casi Nunca	0.0192	0.0730	0.0586
21-Casi siempre	-0.1340	-0.0259	0.0003
21-Siempre	0.1738	-0.0334	-0.0006

```
# Contribuciones
cat("\n### Contribuciones a los ejes\n\n")
```

##

Contribuciones a los ejes

```
cat("\n#### Preguntas\n\n")
```

##

Preguntas

	Dim 1	Dim 2	Dim 3
17b-Nunca	0.0066	38.1019	59.2104
17b-Casi Nunca	10.8300	44.2814	36.0609
17b-Casi siempre	38.7488	17.3679	3.7203
17b-Siempre	50.4147	0.2488	1.0084

```
cat("\n#### Respuestas\n\n")
```

##

Respuestas

	Dim 1	Dim 2	Dim 3
21-Nunca	0.1252	45.5121	36.5853
21-Casi Nunca	0.2325	25.9327	63.3846
21-Casi siempre	45.1742	13.0171	0.0080
21-Siempre	54.4681	15.5380	0.0221

```
# 6. Visualización
cat("\n### Gráfico de correspondencias\n")
```

##

Gráfico de correspondencias

Punto 4

Apilar como ilustrativa la tabla ciudades (filas) vs preferencias para hacer acuerdors p21 para investigar si hay algun patron o tendencia en las ciuades respecto a las tendencias de la ciudad que le correspondio al grupo

El mapa de factores del Análisis de Correspondencia (CA) nos permite visualizar las relaciones y patrones de asociación entre las diferentes ciudades (puntos azules) y las categorías de "preferencia para hacer acuerdos p21" (triángulos rojos). La ciudad de Quito ha sido tratada como un punto suplementario o ilustrativo, lo que significa que su posición se proyecta en el mapa sin influir en la construcción de los ejes principales, permitiéndonos observar su tendencia en relación con las variables activas y las demás ciudades.

El análisis de correspondencias muestra que las dos primeras dimensiones capturan un 91,10 % de la inercia total: la Dimensión 1 (eje horizontal) aporta un 55,43 % y la Dimensión 2 (eje vertical) un 35,67 %.

En la Dimensión 1, el extremo derecho se asocia con la categoría **p21_HACACU = 1** ("nunca"), donde se agrupan Monterrey, Caracas y La Paz; el izquierdo, con **p21_HACACU = 3** ("casi siempre"), muy cerca de Bogotá, Medellín, Asunción y la ciudad suplementaria, Quito. Así, esta dimensión distingue claramente el polo "nunca" del polo "casi siempre".

La Dimensión 2, por su parte, separa en su parte superior la preferencia **p21_HACACU = 2** ("casi nunca"), representada especialmente por Ciudad de México y Montevideo, mientras que en la zona inferior no emerge un vínculo fuerte con ninguna categoría, aunque Medellín, Asunción y La Paz se extienden ligeramente hacia ese lado.

Si observamos los grupos de ciudades, se distinguen tres patrones:

- "Siempre": Quito, Bogotá y Belo Horizonte se ubican en el cuadrante superior-izquierdo, muy próximos a la categoría 4 ("siempre"), lo que indica que en estas urbes predomina la preferencia por formalizar acuerdos de forma invariable.
- "Casi nunca / Nunca": Monterrey, Caracas y La Paz aparecen juntos en el cuadrante inferior-derecho, alineados con "nunca" y "casi nunca", lo que revela su reticencia a hacer acuerdos.
- "Intermedio": Ciudad de México y Montevideo se sitúan en una posición media, entre "casi nunca" y "casi siempre", mostrando un patrón de respuestas más equilibrado.

En definitiva, existe un claro agrupamiento según la propensión a pactar acuerdos: Quito forma parte del grupo "siempre", mientras que La Paz, Caracas y Monterrey constituyen el polo opuesto, y México DF y Montevideo ocupan un punto intermedio.

```
#TABLA
nuevos_nombres_p21 <- c("SIEMPRE", "CASI SIEMPRE", "NUNCA", "CASI NUNCA")
colnames(tab_ciud_p21) <- nuevos_nombres_p21
# Generar la tabla en formato kable para LaTeX
kable(
   tab_ciud_p21, # Tu tabla de contingencia de ciudades vs. p21
   "latex",
   booktabs = TRUE,
   caption = "Tabla de Contingencia: Ciudades vs. Preferencia para hacer acuerdos (p21)",
   label = "tab_ciud_p21_contingency" # Un label descriptivo para la tabla
) %>%
   kable_styling(latex_options = c("striped", "hold_position"))
```

Table 9: Tabla de Contingencia: Ciudades vs. Preferencia para hacer acuerdos (p21)

	SIEMPRE	CASI SIEMPRE	NUNCA	CASI NUNCA
Asuncion	55	12	299	215
Belo Horizonte	202	188	481	507
Bogota	502	344	1141	1431
Caracas	465	274	937	424
La Paz	519	161	957	421
Medellin	311	128	956	820
Mexico DF	230	534	970	749
Monterrey	363	300	1067	355
Montevideo	216	248	516	290
Quito	87	287	618	602

Para ilustrar cómo se agrupan las ciudades según su propensión a pactar acuerdos, proyectamos la tabla de frecuencias de cada ciudad frente a las cuatro categorías de p21 ("siempre", "casi siempre", "nunca" y "casi nunca") en el plano factorial definido por las dos primeras dimensiones, que explican en conjunto el 91,10 % de la inercia (55,43 % en el eje 1 y 35,67 % en el eje 2).

El panorama tras proyectar las ciudades revela tres zonas bien diferenciadas:

- 1. **Grupo "Siempre"** Asunción, Bogotá y Belo Horizonte se sitúan en el extremo izquierdo del eje 1, muy cerca de la modalidad **"siempre"**. Esto indica que en estas urbes una proporción notable de encuestados prefiere hacer acuerdos de forma invariable.
- 2. **Grupo "Nunca / Casi nunca"** En el cuadrante inferior-derecho aparecen con claridad La Paz, Caracas y Monterrey, muy alineadas con **"nunca"** y **"casi nunca"**. Aquí predomina la reticencia a formalizar acuerdos o se tiende a evitarlos casi siempre.
- 3. **Posición intermedia** Ciudad de México y Montevideo ocupan una posición central, equidistante de "casi nunca" y "casi siempre", lo que sugiere un patrón de respuestas más equilibrado o mixto.

La ciudad suplementaria **Quito**, proyectada sobre el mismo plano, queda próxima al clúster "casi siempre" y "siempre", reforzando su afinidad con Asunción, Bogotá y Belo Horizonte.

En definitiva, el análisis confirma un claro agrupamiento: un polo "siempre" (Asunción, Bogotá, Belo Horizonte y Quito), otro polo "nunca/casi nunca" (La Paz, Caracas, Monterrey) y un segmento intermedio (Ciudad de México y Montevideo), lo que evidencia la variedad de tendencias al hacer acuerdos en las diferentes ciudades estudiadas.

Punto 5

Seleccionar un pregunta del "Formulario Generico ECC" que el rupo considere de interes para realizar un ACS de la tabla de contigencia de esa pregunta con las ciudades e identificar tendencias o patrones por ciudades con respecto a esa pregunta

```
# TABLA DE CONTINGENCIA -----
tab <- ecc %>%
  select(ciudad = ciudad2, transp = p9) %>%
  filter(!is.na(ciudad) & !is.na(transp)) %>%
  table()
# Convertir tabla a data.frame
tab_df <- as.data.frame.matrix(tab)</pre>
# Limpiar nombres: convertir a UTF-8 válido
colnames(tab_df) <- iconv(colnames(tab_df), from = "", to = "UTF-8", sub = "o")</pre>
rownames(tab_df) <- iconv(rownames(tab_df), from = "", to = "UTF-8", sub = "ASCII")
# Escapar símbolos LaTeX como
colnames(tab_df) <- gsub("_", "\\\\_", colnames(tab_df))</pre>
rownames(tab_df) <- gsub("_", "\\\_", rownames(tab_df))</pre>
kable(tab_df,
      format = "latex",
      caption = "Tabla de Contingencia: Ciudad vs. Medio de Transporte (p9)",
      booktabs = TRUE,
      escape = FALSE,
      longtable = TRUE) %>%
  kable_styling(latex_options = c("striped", "hold_position", "scale_down")) %>%
  column_spec(1, width = "1.2cm")%>%
  column_spec(2, width = "1.2cm")%>%
  column_spec(3, width = "1.2cm")%>%
  column_spec(4, width = "1.2cm")%>%
  column_spec(5, width = "1.2cm")%>%
  column_spec(6, width = "1.2cm")%>%
  column_spec(7, width = "1.7cm")%>%
  column_spec(8, width = "1.5cm")%>%
  column_spec(9, width = "1.2cm")
```

Table 10: Tabla de Contingencia: Ciudad vs. Medio de Transporte $(\mathrm{p}9)$

	A pie	Autobus, colec- tivo	Bicicleta	Motociclet	a Otros	Automovil particular	Sistema de transport	Taxi
Asuncion	45	0	1	38	4	158	325	9
Belo Hori- zonte	129	824	6	34	14	345	16	16
Bogota	485	1765	94	60	5	344	530	129
Caracas	121	765	0	56	107	635	361	55

La Paz	309	1538	2	4	122	63	0	62
Medellin	296	1205	22	196	5	215	132	147
Mexico DF	60	1309	13	21	32	621	355	83
Monterrey	47	1357	11	37	0	635	29	102
Montevid	290	51	15	0	2	155	274	500
Quito	86	282	755	43	10	118	9	249

Tabla Resumen

```
# TABLA DE RESUMEN -
df_resumen <- data.frame(</pre>
 Ciudad = rownames(tab),
Grupo = cutree(hc, k),
 Descripcion = labs_hex[ pal_hex[ cutree(hc, k) ] ],
 row.names = NULL
kable(df_resumen,
      format = "latex",
      booktabs = TRUE,
      caption = "Resumen de Agrupación de Ciudades según Patrón de Transporte",
      col.names = c("Ciudad", "Grupo", "Descripción"),
      escape = TRUE) %>%
 kable_styling(latex_options = c("striped", "hold_position"),
                bootstrap_options = c("striped", "hover"))
library(stringi)
# Limpiar nombres de las ciudades en el dendrograma
hc$labels <- hc$labels %>%
```

Table 11: Resumen de Agrupación de Ciudades según Patrón de Transporte

Ciudad	Grupo	Descripción
Asuncion	1	Transporte masivo + taxi
Belo Horizonte	2	Bus dominante
Bogota	2	Bus dominante
Caracas	2	Bus dominante
La Paz	2	Bus dominante
Medellin	2	Bus dominante
Mexico DF	2	Bus dominante
Monterrey	2	Bus dominante
Montevideo	1	Transporte masivo + taxi
Quito	3	Bicicleta dominante

```
iconv(from = "", to = "UTF-8", sub = "") %>%
  stri_trans_general("Latin-ASCII")
# Limpiar etiquetas de la leyenda (si las usas)
names(labs_hex) <- names(labs_hex) %>%
  iconv(from = "", to = "UTF-8", sub = "") %>%
  stri_trans_general("Latin-ASCII")
labs_hex <- labs_hex %>%
  iconv(from = "", to = "UTF-8", sub = "") %>%
  stri_trans_general("Latin-ASCII")
# DENDOGRAMA -----
p <- fviz_dend(</pre>
 hc,
  k
            = k
 k_colors = pal_hex,
 rect = TRUE,
 rect_fill = TRUE,
 cex = 0.85,
main = "Agrupaciones de ciudades latinoamericanas según patrón de transporte (p9)",
xlab = "Ciudades latinoamericanas",
            = "Altura"
 ylab
) +
  #COLOR TIPO HEX?(?)
  scale_color_identity(
   name = "Dominant pattern",
   breaks = names(labs_hex),
   labels = labs_hex
  ) +
  guides(colour = guide_legend(override.aes = list(size = 2))) +
  theme(
```

```
legend.position = "top",
legend.title = element_text(face = "bold")
)
print(p)
```

Agrupaciones de ciudades latinoamericanas según patrón de transporte (ps

Punto 6

Explorar las posibles asociaciones de la pregunta seleccionada en el punto 5 con la pregunta sobre la facilidad 3para cumplir la ley "p17_b" adicionandola como varibale ilustrativa.

Este análisis busca explorar la asociación entre los patrones de transporte (p9) y la percepción de facilidad para cumplir la ley (p17_b). Se aplica un Análisis de Correspondencias Simples (ACS) a la tabla de contingencia Ciudad \times Transporte, y se proyecta p17_b como variable ilustrativa para identificar posibles asociaciones.

```
# TABLA DE CONTINGENCIA Ciudad × Transporte (p9) -----

tab_p9 <- ecc %>%
  select(ciudad = ciudad2, transporte = p9) %>%
  filter(!is.na(ciudad), !is.na(transporte)) %>%
  count(ciudad, transporte) %>%
  pivot_wider(names_from = transporte, values_from = n, values_fill = 0) %>%
  column_to_rownames("ciudad")
```

```
# Limpiar nombres de columnas y filas
colnames(tab_p9) <- iconv(colnames(tab_p9), from = "", to = "UTF-8", sub = "o")
rownames(tab_p9) <- iconv(rownames(tab_p9), from = "", to = "UTF-8", sub = "ASCII")

# Escapar guiones bajos para LaTeX
colnames(tab_p9) <- gsub("_", "\\\\_", colnames(tab_p9))
rownames(tab_p9) <- gsub("_", "\\\\_", rownames(tab_p9))

kable(tab_p9,
    format = "latex",
    booktabs = TRUE,
    escape = FALSE,
    caption = "Tabla de Contingencia: Ciudad vs. Medio de Transporte (p9)") %>%
    kable_styling(latex_options = c("striped", "hold_position", "scale_down")) %>%
    column_spec(1, width = "4cm")
```

Table 12: Tabla de Contingencia: Ciudad vs. Medio de Transporte (p9)

	A pie	Automovil particular	Bicicleta	Motocicleta	Otros	Sistema de transport	Taxi	Autobus, colectivo
Asuncion	45	158	1	38	4	325	9	0
Belo Horizonte	129	345	6	34	14	16	16	824
Bogota	485	344	94	60	5	530	129	1765
Caracas	121	635	0	56	107	361	55	765
La Paz	309	63	2	4	122	0	62	1538
Medellin	296	215	22	196	5	132	147	1205
Mexico DF	60	621	13	21	32	355	83	1309
Monterrey	47	635	11	37	0	29	102	1357
Montevideo	290	155	15	0	2	274	500	51
Quito	86	118	755	43	10	9	249	282

La tabla de contingencia Ciudad × Transporte (p9) evidencia diferencias claras en los patrones de movilidad urbana: Bogotá, Medellín y Ciudad de México muestran una fuerte dependencia del autobús o colectivo, mientras que Montevideo destaca por un uso inusualmente alto del taxi y Quito por un notable predominio de la bicicleta, lo que sugiere la influencia de factores estructurales, culturales y de política pública en la elección del transporte. Estas disparidades justifican el uso del Análisis de Correspondencias Simples (ACS) para identificar agrupamientos y explorar cómo estos patrones se relacionan con variables como la percepción sobre el cumplimiento de la ley (p17_b), permitiendo así una comprensión más profunda y crítica de la movilidad urbana en cada contexto.

```
# ANÁLISIS DE CORRESPONDENCIAS (ACS)

res.ca <- CA(tab_p9, graph = FALSE)

# ASOCIAR p17_b A CADA CIUDAD ------

ley_ciudad <- ecc %>%
  filter(!is.na(ciudad2), !is.na(p17_b)) %>%
  group_by(ciudad2, p17_b) %>%
  summarise(n = n(), .groups = "drop") %>%
  group_by(ciudad2) %>%
  slice_max(n, n = 1, with_ties = FALSE) %>% # moda
  rename(ciudad = ciudad2, ley = p17_b)
```

```
# RECODIFICAR p17 b
ley_ciudad <- ley_ciudad %>%
  mutate(ley = case when(
   ley == "p17b_FACL=1_n" ~ "Nada",
   ley == "p17b_FACL=2_cn" ~ "Casi nada",
   ley == "p17b_FACL=3_cs" ~ "Casi sí",
   ley == "p17b FACL=4 s" ~ "Sí",
   TRUE ~ as.character(ley)
  ))
# EXTRAER COORDENADAS DEL CA Y UNIR CON p17_b -----
coord_ciudades <- as.data.frame(res.ca$row$coord)</pre>
colnames(coord_ciudades) <- gsub(" ", ".", colnames(coord_ciudades)) # Convertir "Dim 1" → "Dim.1"
coord_ciudades$ciudad <- rownames(coord_ciudades)</pre>
# Unimos coordenadas con la ley por ciudad
coords_df <- left_join(coord_ciudades, ley_ciudad, by = "ciudad")</pre>
library(stringi)
# Limpiar etiquetas conflictivas
coords_df$ciudad <- coords_df$ciudad %>%
  iconv(from = "", to = "UTF-8", sub = "") %>%
  stri_trans_general("Latin-ASCII")
coords_df$ley <- coords_df$ley %>%
  iconv(from = "", to = "UTF-8", sub = "") %>%
  stri_trans_general("Latin-ASCII")
# CALCULAR CENTROIDES DE CADA NIVEL DE p17_b -----
centroides <- coords_df %>%
  group_by(ley) %>%
  summarise(across(starts with("Dim"), \(x) mean(x, na.rm = TRUE)))
# Limpiar etiquetas para evitar errores LaTeX
coords_df$ciudad <- coords_df$ciudad %>%
  iconv(from = "", to = "UTF-8", sub = "") %>%
  stri_trans_general("Latin-ASCII")
coords_df$ley <- coords_df$ley %>%
  iconv(from = "", to = "UTF-8", sub = "") %>%
  stri_trans_general("Latin-ASCII")
centroides$ley <- centroides$ley %>%
  iconv(from = "", to = "UTF-8", sub = "") %>%
  stri_trans_general("Latin-ASCII")
```

ACS: Ciudad x Transporte (p9) con p17_b como variable ilustrativa

El análisis revela una asociación diferenciada entre la percepción sobre la facilidad para cumplir la ley (variable p17_b) y los patrones de movilidad urbana en distintas ciudades. La categoría "Sí", que indica una percepción favorable, se relaciona principalmente con ciudades como Asunción y Montevideo, sugiriendo que en estos contextos la movilidad y el cumplimiento normativo podrían estar más alineados. Por otro lado, la categoría "Casi sí" agrupa a ciudades como Bogotá, Medellín y Ciudad de México, ubicadas en el centro del gráfico, lo que indica una percepción intermedia sobre el cumplimiento de la ley en entornos urbanos con patrones de transporte más convencionales. Quito se destaca por su clara separación del resto, reflejando un patrón de transporte distinto, probablemente vinculado al uso masivo de la bicicleta, y sin una asociación directa con las categorías de percepción sobre la ley mencionadas. Esta desconexión sugiere que factores específicos de movilidad alternativa pueden influir en la percepción ciudadana de manera diferente. En conjunto, estos hallazgos apuntan a una posible relación entre ciertos patrones de movilidad urbana y

percepciones más favorables sobre el cumplimiento de la ley, lo que puede ser relevante para el diseño de políticas públicas que integren movilidad y gobernanza urbana de manera más efectiva y contextualizada.

Capítulo 6 Análisis de correspondencias Múltiples (ACM)

Punto 1

Utilizar el archivo ECC_completa_19426.csv y los datos de la ciudad que le correspondió al grupo para el laboratorio de ACS para realizar un ACM con las siguientes preguntas como variables activas : p_20_a a p_20_k , p_21 , p_27 y p_33_a a p_33_a .

Punto 2

Utilizar como variables ilustraticas el nivel socioeconomico (NSE), el sexo (p5) y el nivel educativo (p7_NEd) e identificar si hay alguna tendencias o patron de asociacion con las variables activas.