

Practica 6: Vectores y Números Complejos

1) a) Suponiendo que u ' y v ' se unen en el origen de coordenadas, encontrar sus componentes y realizar las siguientes operaciones. Graficarlas

$$2\overrightarrow{u}-\overrightarrow{v}, -\overrightarrow{u}+\overrightarrow{v}$$
 y $-\overrightarrow{u}+\frac{1}{2}\overrightarrow{v}$

b) Suponiendo que u 'y v 'se unen en el origen de coordenadas, encontrar sus componentes y realizar las siguientes operaciones. Graficarlas

$$-\overrightarrow{u}+2\overrightarrow{v}; \quad \overrightarrow{u}+\frac{1}{2}\overrightarrow{v}; \quad \overrightarrow{u}-2\overrightarrow{v}$$

c) escribir a los vectores de a)

y b) y

al resultado de hacer las operaciones en su forma polar (es decir encontrar el módulo y el ángulo que forman con el eje X)

- 2) para cada par de vectores hallar el valor de la (las) incógnitas para que cumplen la condición dada
 - a) $\vec{a} = (-1,4) \text{ y b} = (3,m) \text{ sean perpendiculares}$
 - b) $\vec{a} = (1,-3) \text{ y b} = (m,2) \text{ formen un ángulo de } 60^{\circ}$
 - c) $\vec{a} = (n,3) \text{ y } \vec{b} = (-1,m) \text{ sean perpendiculares y que } |\vec{a}| = 5$
 - d) x = (1, -5, 2), y = (3, 4, -1), z = (6, 3, -5), w = (24, -26, -6) Halla a, b, c para que se cumpla a x + b y + c z = w.
- 3) a) Halla el volumen del paralelepípedo definido por los siguientes vectores:

$$\vec{u}$$
 (3, -5, 1) \vec{v} (7, 4, 2) \vec{w} (0, 6, 1)

- b) Halla el valor de x para que los vectores \vec{u} (3, -5, 1), \vec{v} (7, 4, 2) y \vec{z} (1, 14, x) sean coplanarios (es decir, que el volumen del paralelepípedo que determinan sea cero).
- c) Dados los vectores a $\vec{}$ (1, 2, -1) y b $\vec{}$ (1, 3, 0), comprueba que el vector a \times b es perpendicular a (a $\vec{}$ + b $\vec{}$) y a (a $\vec{}$ b $\vec{}$)

4) a) Calcula y representa gráficamente la solución de.
$$\frac{(4-2i)i^5}{1+i}$$

- b) Expresar en forma binómica el número complejo $z=6_{210^{\circ}}$ Escribe el opuesto y el conjugado de z.
- c) Halla el módulo y el argumento de $\left(\frac{1-i}{1+i}\right)^4$ (Sugerencia: Expresar 1-i y 1+i en forma polar).

- d) Hallar y representar gráficamente: i) $\sqrt[5]{-1}$ ii) $\sqrt[3]{-1+3i}$ iii) $\sqrt[4]{-i+3}$
- 5) a) Escribir en forma binómica el complejo
- $z = \frac{2 + ai}{1 i}$ b) Hallar a para que z sea un imaginario puro.
- c) escribirlo en forma polar
- 5) Dados los números complejos siguiente:

$$z_1 = 3 - 3i$$

$$z_2 = -4 + 4\sqrt{3}i$$

$$z_3 = \frac{1}{2} - 3i$$

realiza las siguientes operaciones con ellos

a)
$$z_1 + z_2$$

b)
$$z_1 - z_2$$

c)
$$z_1 \cdot z_2$$

d)
$$z_1/z_2$$

e)
$$z_1 + z_3$$

f)
$$z_1 \cdot z_3 + z_2$$

g)
$$z_1^4$$

h)
$$z_3^{5}$$

i)
$$z_3$$

$$a + 6a$$

- 6) Determina el valor de "a" para que el complejo $\overline{2-i}$ sea
 - a) Un número real
 - b) Un imaginario puro
 - c) Esté situado en la bisectriz del segundo cuadrante