Logic gates

- Last lecture
 - Boolean algebra
 - ∠ Axioms
 - **∠** Useful laws and theorems
 - **∠** Simplifying Boolean expressions
- ◆ Today's lecture
 - Logic gates and truth tables
 - Implementing logic functions
 - CMOS switches

CSE370, Lecture 4

ecture 4

Logic gates and truth tables

♦ NOT
$$\overline{X}$$
 X' $X \longrightarrow Y$ $Y \longrightarrow Y$ $X \mid Y$

• Buffer X
$$X \longrightarrow Y$$
 $X \mid Y$ $0 \mid 0$

CSE370, Lecture 4

2

1

Logic gates and truth tables (con't)

- ♦ NAND $\overline{X} \bullet \overline{Y}$ $\overline{X}\overline{Y}$ X = z

- ◆ XNOR $\overline{X \oplus Y}$ \xrightarrow{X} \xrightarrow{X} \xrightarrow{X} \xrightarrow{Y} \xrightarrow{Z} \xrightarrow{X} \xrightarrow{X} \xrightarrow{Y} \xrightarrow{Z} \xrightarrow{X} $\xrightarrow{$

CSE370, Lecture 4

3

Definitions

- Schematic: A drawing of interconnected gates
- Net: Wires at the same voltage (electrically connected)
- Netlist: A list of all the devices and connections in a schematic
- ◆ Fan-in: The # of inputs to a gate
- ◆ Fan-out: The # of loads the gate drives

Mapping Boolean expressions to logic gates

◆ Example: F = (A•B)' + C•D

◆ Example: F = C•(A+B)'

CSE370, Lecture 4

5

Example: A binary full adder

- 1-bit binary adder
 - Inputs: A, B, Carry-in
 - Outputs: Sum, Carry-out

$A \longrightarrow B \longrightarrow$ Cin \longrightarrow	Adder	→ Sum → Cout
---	-------	-----------------

Α_	В	Cin	ာ	COL
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
	0 0 0 0 1 1	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1	N D S 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0

$$Sum = A'B'Cin + A'BCin' + AB'Cin' + ABCin$$

$$Cout = A'BCin + AB'Cin + ABCin' + ABCin$$

CSE370, Lecture 4

6

Mapping truth tables to logic gates

- Given a truth table
 - Write the Boolean expression
 - Minimize the Boolean expression
 - Draw as gates

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

F = A'BC'+A'BC+AB'C+ABC= A'B(C'+C)+AC(B'+B)= A'B+AC

CSE370, Lecture 4

10

Many possible mappings

- Many ways to map expressions to gates
 - Example: $Z = A \bullet B \bullet (C + D) = A \bullet B \bullet (C + D)$

CSE370, Lecture 4

11

12

What is the optimal gate realization?

- We use the axioms and theorems of Boolean algebra to "optimize" our designs
- Design goals vary
 - Reduce the number of inputs?
 - Reduce the number of gates?
 - Reduce number of gate levels?
- How do we explore the tradeoffs?
 - CAD tools
 - Logic minimization: Reduce number of gates and complexity
 - Logic optimization: Maximize speed and/or minimize power

CSE370, Lecture 4

Minimal set

- ◆ We can implement any logic function from NOT, NOR, and NAND
 - Example: (X and Y) = not (X nand Y)
- ◆ In fact, we can do it with only NOR or only NAND
 - NOT is just NAND or NOR with two identical inputs

X	Υ	X nor Y	X	Υ	X nand Y
0	0	1	0	0	1
1	1	0	1	1	0

- NAND and NOR are duals: Can implement one from the other ∠ X nand Y = not ((not X) nor (not Y))
 - ∠ X nor Y = not ((not X) nand (not Y))

CSE370, Lecture 4 13

Most digital logic is CMOS

- CMOS technology
 - Complementary Metal-Oxide Semiconductor
 - Transistors act as voltagecontrolled switches

٥V

Mark Bohr Intel

CSE370, Lecture 4

Multi-input logic gates

- CMOS logic gates are invertingGet NAND, NOR, NOT

 - Don't get AND, OR, Buffer

