scm_presentation

Daniel Saggau

5/11/2021

Introduction

Causal assumptions differentiate causal models from association learning methods.

Association-based Concepts	Causal Concepts
Correlation	Randomization
Regression	Confounding
Conditional Independence	Disturbance
Likelihood	Error Terms
Odds Ratio	Structural Coefficients
Propensity Score	Spurious Correlation

Fundamental Differences to begin

SCM:

- is a nonparametric SEM
- has functional form rather than using probabilities
- entails features from the PO framework and graphical representation
- conflict whether to use graphs or not
- ▶ A SEM is a parametric specification used in applied sciences (parameters contested)
- A Bayesian causal network is another popular causal model using conditional probabilities and NO functions
- Differences in performance between BCN and SCM

Method	CBN	SCM
Prediction	UnstableVolatile to parameter changesRe-Estimate entire model	 Stable More Natural Specification Only estimate Δ CM
Intervention	 Costly for Non-Markovian Models Unstable(Nature CP) Only generic estimates(Δ CP) 	 Pot. Cyclic Representation Stable(Nature Eq.) Context specific(Invariance of Eq.)
Counterfactuals	Impossibleno information on	PossibleInclusion of latent

factors

latent factors(ϵ)

Graphical Illustration

Figure 1: Probabilistic Model

Figure 2: Structural Causal Model

Pearls Causal Hierachy

Table 3: Pearls Hierarchy of Causation (2009)

Method	Action	Example	Usage
Association $P(a b)$	Co- occurrence	What happened	(Un-)Supervised ML, BN, Reg.
Intervention $P(a do(b), c)$	Do- manipulation	What happens if	CBN,MDP,RL
Counterfactual $P(a_b a^i,b^i)$	Hypotheticals	What would have happened if	SCM ,PO