M03 : Dynamique des fluides

Louis Heitz et Vincent Brémaud

Sommaire

Rapport du jury	3
Bibliographie	3
Introduction	4
I Viscosimètre à bille	4
II Écoulement de Poiseuille	4
III Écoulement à haut Re : mesure de C_x	4
Conclusion	4

Le code couleur utilisé dans ce document est le suivant :

- \bullet \to Pour des élements de correction / des questions posées par le correcteur
- Pour les renvois vers la bibliographie
- Pour des remarques diverses des auteurs
- \triangle Pour des points particulièrement délicats, des erreurs à ne pas commettre
- Pour des liens cliquables

Rapports du jury

Bibliographie

[1] Compte rendu de Remy et Manon

Introduction

Bas nb de Re -> haut nb de Re

Influence de la viscosité sur la dynamique d'un objet (1).

Influence de la viscosité sur l'écoulement en interaction avec les parois (2).

Influence de l'écoulement à haut nombre de reynolds sur la dynamique d'un objet (3).

I Viscosimètre à bille

relation vitesse - viscosité, voir ALD. On utilise la poussée d'archimède car vitesse faible. Nombre de Reynolds à vérifier pour la formule de Stokes (< 1).

II Écoulement de Poiseuille

Formule de Poiseuille, voir ALD.

Humidifier le bouchon à chaque fois, il faut que le niveau de l'air dans le tube soit au même niveau que le tube de Poiseuille.

III Écoulement à haut Re : mesure de C_x

On vérifie les frottements en 1/2 C_x rho S U^2 . Attention mesure de la force.

Conclusion

Le nombre de Reynolds permet de savoir quels types d'interaction on doit considérer pour étudier la dynamique d'un objet dans un écoulement.