# Regulation of the SCOLE Configuration

Gregory A. Norris
Emmanuel G. Collins
Robert E. Skelton
Purdue University

I CCHTL-TPR

# REGULATION OF

# THE SCOLE CONFIGURATION

### INVESTIGATORS

Gregory A. Norris

Emmanuel G. Collins

Robert E. Skelton

# PERFORMANCE REQUIREMENTS

- (I) MAINTAIN RMS OF THE STEADY STATE LINE-OF-SIGHT (LOS) ERROR WITHIN A SPECIFIED BOUND.
- (II) MAINTAIN STEADY STATE ACTUATOR VARIANCES AS CLOSE AS POSSIBLE TO SPECIFIED BOUNDS.

# ORIGINAL SCOLE CONFIGURATION

- LOCATION OF 2 PROOF MASS ACTUATORS NOT SPECIFIED.
- 42 SENSORS PROVIDED.

### **OBJECTIVES**

- (I) DETERMINE LOCATIONS FOR PROOF MASS ACTUATORS.
- (II) DETERMINE A REDUCED SET OF SENSORS.
- (III) DESIGN A CONTROL LAW TO MEET PERFORMANCE REQUIREMENTS FOR LOS ERROR AND ACTUATORS.
  - SOLUTIONS TO THE 3 PROBLEMS ARE INTERDEPENDENT.
  - CHOICE OF ACTUATORS AND SENSORS INFLUENCES CONTROL LAW.
  - CHOICE OF CONTROL LAW INFLUENCES SENSOR AND ACTUATOR SELECTION.

### LINEARIZED DYNAMICAL MODEL

### VECTOR SECOND ORDER MODAL FORM

$$\eta + D\eta + \Omega^2 \eta = \overline{B}(u+w)$$

output vector y

$$y_1 = LOS_x$$
,  $y_2 = LOS_y$ ,  $y_3 = LOS_z$   
 $E(LOS error)^2 = (Ey_1^2 + Ey_2^2 + Ey_3^2)^{1/2}$   
 $y = C_p \eta$ 

$$z_{p,r}$$
 = position & rate measurement vector  
=  $P_{p}\eta + P_{v}\eta + v_{p,r}$   
 $z_{a}$  = acceleration measurement vector  
=  $Q\eta + v_{a}$   
=  $Q(-\Omega_{\eta}^{2} - D\eta + \overline{B}u + \overline{B}w) + v_{a}$   
 $z_{a}$  =  $z_{p,r}$  =  $z_{a}$ 

where

$$M_{\mathbf{p}} = \begin{bmatrix} P_{\mathbf{p}} & 0 \\ 0 & -Q\Omega^{2} \end{bmatrix}$$

$$M_{\mathbf{v}} = \begin{bmatrix} P_{\mathbf{v}} & 0 \\ 0 & -QD \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{\mathbf{p},\mathbf{r}} \\ \mathbf{v}_{\mathbf{a}} + Q\overline{B}\mathbf{w} \end{bmatrix}$$

=> ASSOCIATED SENSOR NOISE (v) & ACTUATOR NOISE (w) ARE CORRELATED

- MODEL OBTAINED USING CUBIC BEAM ELEMENT SHAPE FUNCTIONS FOR BEAM BENDING AND LINEAR SHAPE FUNCTION FOR BEAM TWIST.
- 32 MODES IN ORIGINAL MODEL.
- MODAL COST ANALYSIS USED TO REDUCE TO 23 MODE DESIGN AND EVALUATION MODEL.

# MODAL COST ANALYSIS

|             |      | HOUSE COST ANALISIS |                   |                 |
|-------------|------|---------------------|-------------------|-----------------|
| moda1       | mode |                     |                   | nod€            |
| cost rank   | no.  | modal cost          | freq. (hz)        | type            |
|             |      |                     |                   |                 |
| 1           | 1    | infinite            | 0                 | Tigid body      |
| 2           | 2    | infinite            | 0                 | rigid body      |
| 3           | 3    | infinite            | 0                 | rigid body      |
| 4           | 5    | ,911e+07            | .2996+00          | bending (roll)  |
| 5           | 7    | . 3636+07           | .118e+01          | bending         |
| 6           | 4    | ,336e+07            | . 276e+00         | bending (pitch) |
| 7           | 6    | . 138e+07           | .811e+00          | bending         |
| 8           | 8    | ,955e+06            | .205e+01          | bending         |
| 9           | 10   | 673+04              | .551e+01          | bending         |
| 10          | 9    | . <b>5</b> 55€+04   | .478e+01          | bending         |
| 11          | 11   | . 246e+02           | .123e+02          | bending         |
| 12          | 14   | . 365e+01           | .243e+02          | bending         |
| 13          | 17   | .245e+01            | ,395e+02          | twist           |
| 14          | 12   | .305e+00            | .129e+02          | bending         |
| 15          | 61   | .116e+00            | .390e+02          | bending         |
| 16          | 15   | . 349e-01           | . 256e+02         | bending         |
| 17          | 26   | ,99 <b>5e-</b> 02   | .109e+ <b>0</b> 3 | bending         |
| 18          | 25   | .377e-02            | .103e+03          | bending         |
| 19          | 13   | ,376€02             | ,237ен О2         | bendina         |
| <b>2</b> :0 | 29   | .174e-02            | .140e+03          | bendino         |
| 51          | 35   | .8366-03            | .215e+03          | tending         |
| 55          | 20   | .597∈−03            | ,586e+02          | tencing         |
| 53          | 58   | .370e-03            | .1396403          | bending         |
| 24          | 23   | .i25e-03            | .017e+02          | bending         |
| 25          | 19   | .310e-04            | .581e+02          | bending         |
| 5.9         | 34   | . 275€-04           | .215e+03          | bending         |
| 27          | 35   | .617e-05            | .175e+03          | bending         |
| 28          | 31   | .274€-05            | ,175e+03          | bending         |
| 29          | 27   | .131e-05            | .135e+03          | twist           |
| 30          | 24   | .140e-07            | .106e403          | twist           |
| 31          | 30   | .134e-07            | .1676+03          | twist           |
| 32          | 33   | .413€-08            | ,200e+03          | twist           |
| 33          | 22   | .298e-10            | .811e+02          | bending         |
| 34          | 18   | .340e-11            | .515e402          | twist           |
| 35          | 21   | , 226e-13           | .782e+02          | twist           |

- FIRST 5 FLEXIBLE MODES DOMINATE MODAL COST
- BEAM BENDING DOMINATES MODAL COST

#### CONTROL LAW DESIGN VIA

### THE OUTPUT VARIANCE ASSIGNMENT ALGORITHM

- ITERATIVE ALGORITHM DEVELOPED BY SKELTON AND DELORENZO
- OBJECTIVE IS TO CHOOSE DIAGONAL Q AND R IN THE LQG COST FUNCTIONAL

$$v = E_{\infty}(y^{T}Qy + u^{T}Ru)$$

S.T. THE LQG CONTROL LAW SATISFIES

$$E_{\infty}y_{\mathbf{i}}^2 = \sigma_{\mathbf{i}}^2 \quad (\text{or } \leq \sigma_{\mathbf{i}}^2) \quad \forall \quad \mathbf{i} = 1 \rightarrow n_{\mathbf{v}}$$

WHILE MINIMIZING

$$\sum_{i=1}^{n} \frac{E_{\infty}u_{i}^{2}}{\mu_{i}^{2}}.$$

bounds on input variances

# SENSOR AND ACTUATOR SELECTION VIA INPUT/OUTPUT COST ANALYSIS

- SUBOPTIMAL APPROACH.
- BASED ON DECOMPOSING COST FUNCTION

$$v = E_{\infty}(y^{T}Qy + u^{T}Ru)$$

as

$$v = \sum_{i=1}^{n} v_{i}^{y} + \sum_{i=1}^{n} v_{i}^{u}$$

$$v = \sum_{i=1}^{n} v_{i}^{w} + \sum_{i=1}^{n} v_{i}^{v}$$

$$i = 1$$

• DEFINES ACTUATOR EFFECTIVENESS,

$$v_{i}^{act} = v_{i}^{u} - v_{i}^{w}$$

AND SENSOR EFFECTIVENESS

$$v_i^{\text{sen}} = v_i^{\text{v}}$$
.

• DELETES ACTUATOR(S) OR SENSOR(S) WITH LOWEST EFFECTIVENESS VALUES.

### SOLUTION PROCEDURE

• BEGIN WITH LARGE SET OF PROOF MASS ACTUATORS AT FIXED LOCATIONS



### SOME RESULTS

# ORIGINAL SCOLE PROPOSAL

rms(los error) ≤ .02 deg

### OUR FINDINGS

if noise through shuttle cmgs only:

rms(los error) > .045 deg

if equivalent noise through all actuators:

rms(los error) > .075 deg

### CONCLUSIONS

- ORIGINAL SPECS ON LOS ERROR ARE NOT ACHIEVABLE.
- MUST MODIFY LOS SPECS.

### ACTUATOR SELECTION

DEFINE

USUM = 
$$\sum_{i=1}^{n} \frac{Eu_{i}^{2}}{\mu_{i}^{2}} = \frac{\text{dimensionless measure of}}{\text{total control effort}}$$



### **FINDINGS**

• BY USING REDUCED SET OF ACTUATORS THERE IS A 50% SAVINGS IN CONTROL EFFORT (AS MEASURED BY USUM).



• PROOF MASS ACTUATORS NEAR TOP OF THE BEAM ARE MORE EFFECTIVE

# SENSOR SELECTION



• GOOD PERFORMANCE MAY BE ACHIEVED WITH A MUCH SMALLER SET OF SENSORS.

### CONCLUSIONS

(I) RMS(LOS ERROR) ≤ .02 DEG IS NOT ACHIEVABLE.

RMS(LOS ERROR)  $\leq$  .05 DEG IS ACHIEVABLE IF NOISE IS ONLY THROUGH SHUTTLE CMG'S.

RMS(LOS ERROR) ≤ .08 DEG IS ACHIEVABLE IF (EQUIVALENT) NOISE IS THROUGH ALL ACTUATORS.

- (II) PROOF MASS ACTUATORS SHOULD BE PLACED NEAR TOP OF MAST.
- (III) GOOD PERFORMANCE MAY BE ACHIEVED WITH A (SIGNIFICANTLY) REDUCED SET OF SENSORS.