LU Factorization - Algorithm

2x2 LU Factorization (simple example)

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ L_{21} & 1 \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{pmatrix}$$

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} U_{11} & U_{12} \\ L_{21}U_{11} & L_{21}U_{12} + U_{22} \end{pmatrix}$$

LU Factorization

LU Factorization
$$a_{11}: scalar$$

$$a_{12}: row vector (1 \times (n-1))$$

$$a_{21}: column vector ((n-1) \times 1)$$

$$a_{11}$$

$$a_{12}: matrix ((n-1) \times (n-1))$$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} \\ u_{11} & l_{21} & l_{21}u_{12} + L_{22}U_{22} \end{pmatrix}$$

LU Factorization

 a_{12}

 a_{11} : scalar \boldsymbol{a}_{12} : row vector $(1 \times (n-1))$ a_{21} : column vector $((n-1)\times 1)$ A_{22} : matrix $((n-1)\times(n-1))$

$$\begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \end{pmatrix}$$

$$\begin{array}{ccc} \dots & A_{1n} \\ \dots & A_{2n} \\ \ddots & \vdots \\ \dots & A_{nn} \end{array}$$

$$\begin{vmatrix} a_{12} & \dots & A_{1n} \\ A_{22} & \dots & A_{2n} \\ \vdots & \ddots & \vdots \\ A_{n2} & \dots & A_{nn} \end{vmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{l}_{21} & \mathbf{l}_{22} \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} \\ \mathbf{0} & u_{22} \end{pmatrix}$$

1) First row of \boldsymbol{U} is the first row of \boldsymbol{A}

Known!

$$a_1 = \frac{1}{2} a_{21}$$

First column of \boldsymbol{L} is the first column of A/u_{11}

3) $M = L_{22}U_{22} = A_{22} - l_{21}u_{12}$

Need another factorization!

Example

$$\mathbf{M} = \begin{pmatrix} 2 & 8 & 4 & 1 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 6 & 2 \\ 1 & 3 & 4 & 2 \end{pmatrix}$$
 2) First column of \mathbf{L} is the first column of \mathbf{A}/u_{11}
3) $\mathbf{L}_{22}\mathbf{U}_{22} = \mathbf{A}_{22} - \mathbf{l}_{21}\mathbf{u}_{12}$

- 1) First row of \boldsymbol{U} is the first row of \boldsymbol{A}

3)
$$\boldsymbol{L}_{22}\boldsymbol{U}_{22} = \boldsymbol{A}_{22} - \boldsymbol{l}_{21}\boldsymbol{u}_{12}$$

$$\boldsymbol{L}_{22}\boldsymbol{U}_{22} = \boldsymbol{A}_{22} - \boldsymbol{l}_{21}\boldsymbol{u}_{12} = \begin{pmatrix} 2 & 3 & 3 \\ 2 & 6 & 2 \\ 3 & 4 & 2 \end{pmatrix} - \begin{pmatrix} 4 & 2 & 0.5 \\ 4 & 2 & 0.5 \\ 4 & 2 & 0.5 \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 2 & 8 & 4 & 1 \\ 1 & -2 & 1 & 2.5 \\ 1 & -2 & 4 & 1.5 \\ 1 & -1 & 2 & 1.5 \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 2 & 8 & 4 & 1 \\ 1 & -2 & 1 & 2.5 \\ 1 & -2 & 4 & 1.5 \\ 1 & -1 & 2 & 1.5 \end{pmatrix}$$

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.5 & 1 & 0 & 0 \\ 0.5 & 1 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \end{pmatrix} \quad U = \begin{pmatrix} 2 & 8 & 4 & 1 \\ 0 & -2 & 1 & 2.5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\boldsymbol{L}_{22}\boldsymbol{U}_{22} = \boldsymbol{A}_{22} - \boldsymbol{l}_{21}\boldsymbol{u}_{12} = \begin{pmatrix} 4 & 1.5 \\ 2 & 1.5 \end{pmatrix} - \begin{pmatrix} 1 & 2.5 \\ 0.5 & 1.25 \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 2 & 8 & 4 & 1 \\ 1 & -2 & 1 & 2.5 \\ 1 & -2 & 3 & -1 \\ 1 & -1 & 1.5 & 0.25 \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 2 & 8 & 4 & 1 \\ 1 & -2 & 1 & 2.5 \\ 1 & -2 & 3 & -1 \\ 1 & -1 & 1.5 & 0.25 \end{pmatrix}$$

$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.5 & 1 & 0 & 0 \\ 0.5 & 1 & 1 & 0 \\ 0.5 & 0.5 & 0.5 & 0 \end{pmatrix} \quad \boldsymbol{U} = \begin{pmatrix} 2 & 8 & 4 & 1 \\ 0 & -2 & 1 & 2.5 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\boldsymbol{L}_{22}\boldsymbol{U}_{22} = \boldsymbol{A}_{22} - \boldsymbol{l}_{21}\boldsymbol{u}_{12} = 0.25 - (-0.5) = 0.75$$

$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.5 & 1 & 0 & 0 \\ 0.5 & 1 & 1 & 0 \\ 0.5 & 0.5 & 0.5 & 1 \end{pmatrix} \qquad \boldsymbol{U} = \begin{pmatrix} 2 & 8 & 4 & 1 \\ 0 & -2 & 1 & 2.5 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 0.75 \end{pmatrix}$$

LU Factorization

 a_{12}

 a_{11} : scalar \boldsymbol{a}_{12} : row vector $(1 \times (n-1))$ a_{21} : column vector $((n-1)\times 1)$ A_{22} : matrix $((n-1)\times(n-1))$

$$\begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \end{pmatrix}$$

$$\begin{array}{ccc} \dots & A_{1n} \\ \dots & A_{2n} \\ \ddots & \vdots \\ \dots & A_{nn} \end{array}$$

$$\begin{vmatrix} a_{12} & \dots & A_{1n} \\ A_{22} & \dots & A_{2n} \\ \vdots & \ddots & \vdots \\ A_{n2} & \dots & A_{nn} \end{vmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{l}_{21} & \mathbf{l}_{22} \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} \\ \mathbf{0} & u_{22} \end{pmatrix}$$

1) First row of \boldsymbol{U} is the first row of \boldsymbol{A}

Known!

$$a_1 = \frac{1}{2} a_{21}$$

First column of \boldsymbol{L} is the first column of A/u_{11}

3) $M = L_{22}U_{22} = A_{22} - l_{21}u_{12}$

Need another factorization!

Cost of solving linear system of equations

Cost of solving triangular systems

$$x_n = b_n/U_{nn}$$
 $x_i = \frac{b_i - \sum_{j=i+1}^n U_{ij} x_j}{U_{ii}},$ $i = n-1, n-2, ..., 1$

Cost of solving triangular systems

$$x_n = b_n/U_{nn}$$

$$x_i = \frac{b_i - \sum_{j=i+1}^n U_{ij} x_j}{U_{ii}}, \qquad i = n-1, n-2, ..., 1$$

$$i = n - 1, n - 2, ..., 1$$

n divisions

$$n(n-1)/2$$
 subtractions/additions

$$n(n-1)/2$$
 multiplications

Computational complexity is $O(n^2)$

$$x_1 = b_1/L_{11}$$

$$x_i = \frac{b_i - \sum_{j=1}^{i-1} L_{ij} x_j}{L_{ii}},$$

$$i=2,3,\ldots,n$$

n divisions

$$n(n-1)/2$$
 subtractions/additions

Computational complexity is $O(n^2)$

Cost of LU factorization

```
## Algorithm 1
## Factorization using the block-format,
## creating new matrices L and U
## and not modifying A
print("LU factorization using Algorithm 1")
L = np.zeros((n,n))
U = np.zeros((n,n))
M = A.copy()
for i in range(n):
    U[i,i:] = M[i,i:]
    L[i:,i] = M[i:,i]/U[i,i]
    M[i+1:,i+1:] -= np.outer(L[i+1:,i],U[i,i+1:])
```

Side note:

$$\sum_{i=1}^{m} i = \frac{1}{2}m(m+1)$$

$$\sum_{i=1}^{m} i^2 = \frac{1}{6}m(m+1)(2m+1)$$

Solving linear systems

In general, we can solve a linear system of equations following the steps:

- 1) Factorize the matrix A: A = LU (complexity $O(n^3)$)
- 2) Solve $\boldsymbol{L} \boldsymbol{y} = \boldsymbol{b}$ (complexity $O(n^2)$)
- 3) Solve $\boldsymbol{U} \boldsymbol{x} = \boldsymbol{y}$ (complexity $O(n^2)$)

But why should we decouple the factorization from the actual solve? (Remember from Linear Algebra, Gaussian Elimination does not decouple these two steps...)

Example

Let's assume that when solving the system of equations $\boldsymbol{K} \boldsymbol{U} = \boldsymbol{F}$, we observe the following:

• When the matrix \mathbf{K} has dimensions (100,100), computing the LU factorization takes about 1 second and each solve (forward + backward substitution) takes about 0.01 seconds.

Estimate the total time it will take to find the response \boldsymbol{U} corresponding to 10 different vectors \boldsymbol{F} when the matrix \boldsymbol{K} has dimensions (1000,1000)?

- $A) \sim 10$ seconds
- $B) \sim 10^2 seconds$
- C) $\sim 10^3$ seconds
- $D) \sim 10^4 seconds$
- E) ~10⁵ seconds

LU Factorization with pivoting

What can go wrong with the previous algorithm for LU factorization?

$$\boldsymbol{l}_{21}\boldsymbol{u}_{12} = \begin{pmatrix} 4 & 2 & 0.5 \\ 4 & 2 & 0.5 \\ 4 & 2 & 0.5 \end{pmatrix} \qquad \boldsymbol{M} - \boldsymbol{l}_{21}\boldsymbol{u}_{12} = \begin{pmatrix} 2 & 8 & 4 & 1 \\ 1 & \mathbf{0} & 1 & 2.5 \\ 1 & -2 & 4 & 1.5 \\ 1 & -1 & 2 & 1.5 \end{pmatrix}$$

The next update for the lower triangular matrix will result in a division by zero! LU factorization fails.

What can we do to get something like an LU factorization?

Pivoting

Approach:

- 1. Swap rows if there is a zero entry in the diagonal
- 2. Even better idea: Find the largest entry (by absolute value) and swap it to the top row.

The entry we divide by is called the pivot.

Swapping rows to get a bigger pivot is called (partial) pivoting.

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} \\ u_{11} & l_{21} & l_{21}u_{12} + L_{22}U_{22} \end{pmatrix}$$

Find the largest entry (in magnitude)