习题

1.(2) x = -1为第二类间断点.x = 0为跳跃间断点.x = 1为可去间断点.

(3) x = 0为可去间断点. $x = k\pi(k \in \mathbb{Z})$ 为无穷间断点.

(5) x = 0为可去间断点.

(6) x = 0为无穷间断点.x = 1为跳跃间断点.

(7) x = 0为无穷间断点.

(9) x = 0为可去间断点. $x = k\pi(k \in Z)$ 为无穷间断点.

2. (3) $\frac{1}{2}$ ° (4) 1° (6) $e^{-\frac{4}{3}}$. (7) \sqrt{ab} °

 $3.a = \frac{\sqrt{2}}{2}, b = -1.$

6. (1) g(0) = -1 < 0, g(1) = 1 > 0, g(0)g(1) < 0方程在(0,1)内至少有一个实根.

(3) 在 $(0,+\infty)$ 和 $(-\infty,0)$ 内各有一个实根。

8.略

P88 8.切线方程为 $6y + 3x - 3\sqrt{3} - 2\pi = 0$,法线方程为 $6y - 12x - 3\sqrt{3} + 8\pi = 0$

 $10.(1)(\alpha + \beta)f'(x_0)$

 $(2)6f'(x_0)f(x_0) \cdot x_0^{\frac{2}{3}}$

11. (2) $\frac{\sqrt{3}}{2}x^{-\frac{1}{2}} - \frac{3}{2}x^{\sqrt{12}} + 2$

 $(4) \frac{1-\cos x - x \sin x}{(1-\cos x)^2}$

 $(6) \frac{1-\ln x}{x^2}$

(8) $\frac{t\sin t}{1+\cos t}$

12 (2) $\frac{3\sqrt{2}}{4} - \frac{\sqrt{2}\pi}{8}$

15f'(x) = (x+1)g'(x) + g(x),且f(x)在R上连续.

 $16.(\frac{1}{2}, 1 - e^{-1})$