OSCILOSCOAPE

Cuprins

- □ Introducere
- Osciloscopul analogic de uz general
- Osciloscoape numerice
- □ Concluzii

Osciloscopul

- aparat indispensabil în practica electronică
- aplicaţia principală vizualizarea formei de variaţie în timp a unei tensiuni electrice (testare, analiză, diagnoză, depanare a circuitelor electrice şi electronice)
- arie de utilizare extrem de largă cu traductoare care transformă în tensiune mărimea de interes
- osciloscoapele moderne combină mai multe aparate de măsurat, fiind capabile să furnizeze o multitudine de informații asupra semnalelor analizate

Osciloscopul

- □ afișează pe un ecran dependența unei tensiuni U_y de o altă tensiune U_x (Observație: pentru vizualizarea formei de variație în timp a tensiunii U_y tensiunea U_x este o tensiune liniar variabilă)
- afişajul ecranul unui tub catodic sau un panou LCD/ LED/ TFT

Osciloscopul - caracteristicile cele mai importante

- □ banda de frecvenţe (35 MHz)
- □ sensibilitatea (!) (5 mV/div)
- \square impedanţa de intrare (1 M Ω // 20 pF)

Clasificare

Osciloscoape - două categorii mari: analogice și numerice

Osciloscoape analogice

de uz general

cu eşantionare

cu memorare pe tubul catodic

Osciloscoape numerice

Osciloscoape cu memorare numerică

(Digital Storage Oscilloscope - DSO)

Osciloscoape cu fosfor numeric

(Digital Phosphor Oscilloscope - DPO)

Osciloscoape numerice cu eșantionare

(Digital Sampling Oscilloscope)

Clasificare (cont.)

- Există osciloscoape care permit vizualizarea simultană a 2-4 semnale analogice şi a unui număr de semnale numerice (de obicei 16). Aceste osciloscoape sunt cunoscute sub denumirea MSO (Mixed Signal Oscilloscope).
- Există osciloscoape care permit vizualizarea simultană a aceluiași semnal în domeniul timp (forma de undă) și în domeniul frecvență (spectrul semnalului). Aceste osciloscoape sunt cunoscute sub denumirea MDO (Mixed Domain Oscilloscope).

Dispozitivul de afișare (ecranul) - caroiaj

Exemple de măsurări cu osciloscopul: amplitudinea și perioada

Noțiunea de pantă a unui semnal (S)

$$S = \frac{du}{dt}$$

Cuprins

- □ Introducere
- ☐ Osciloscopul analogic de uz general
- Osciloscoape numerice
- Concluzii

Osciloscop	ul anal	logic de	uz ae	eneral
O O O III O O O O P	ai aiiai	.09.0 00	4 – 9	,,, <u>,</u> ,,,

- destinat analizei semnalelor periodice
- osciloscop în timp real (corespondenţă biunivocă între punctele imaginii şi punctele de pe curba semnalului)

Schema bloc simplificată

Tubul catodic

Tubul catodic cu deflexie electrostatică

construcţia imaginii

Pentru a avea pe ecran o imagine stabilă este necesar ca spotul să "deseneze" în mod repetat aceeași curbă.

Construcția imaginii (sensibilitățile celor două axe - 10 V/div)

Construcția imaginii (sensibilitățile celor două axe - 10 V/div)

Diferența între K1 în poziția CC și K1 în poziția CA în cazul unui semnal cu componentă continuă

K1 în poziția CC

K1 în poziția CA

Comutatorul V/div în poziția 1 V/div. Nivelul de zero la mijlocul ecranului. Atenuatorul - divizor mixt *RC* compensat cu frecvenţa; atenuare în trepte (secvenţa 1-2-5)

Compensare cu frecvența = raport de divizare independent de frecvență

$$K_d = \frac{U_Y}{U_e} = 1 + \frac{R}{R_i}$$

Condiţia de compensare

$$RC_c = R_i C_i$$

Banda de frecvenţe a osciloscopului – sistem de ordinul I

Banda de frecvențe a osciloscopului

La frecvenţe apropiate de frecvenţele limită ale benzii, amplitudinea observată pe ecran este cu circa 3 dB mai mică decât cea reală !!!

Eroarea de măsurare în funcție de frecvența semnalului

Frecvența normalizată	f/fO	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
Amplitudinea normalizată	1/sqrt(1+(f/f0)2)	0.995	0.981	0.958	0.928	0.894	0.857	0.819	0.781	0.743	0.707	
Eroarea [%]		0.5	2	4	7	10	14	18	22	26	30	

Timpul de creştere al osciloscopului analogic (rise time)

Relaţia dintre banda de frecvenţe şi timpul de creştere al osciloscopului

$$t_r(\text{ns}) = \frac{350}{B(\text{MHz})}$$

Exemplu. Timpul de creștere al unui osciloscop cu banda de 50 MHz este de 7 ns.

Osciloscopul deformează fronturile!!!

$$t_{ro}^2 = t_{ri}^2 + t_r^2$$

Dacă $t_{ri}: t_r \ge 5$, atunci $t_{ro} \cong t_{ri}$ Dacă $t_r: t_{ri} \ge 5$, atunci $t_{ro} \cong t_r$

Sonda

elementul care permite aplicarea tensiunii de studiat la intrarea
 Y, fără ca acest semnal să fie influenţat de perturbaţiile
 exterioare

Sonda

Sonda (pasivă) fără atenuator (în capul de probă)

$$R_i = R_{in}$$

$$C_i = C_{in} + C_{cc}$$

Sonda (pasivă) cu atenuator (în capul de probă) – 10:1, 100:1

$$R_i = R + R_{in}$$

$$C_i = \frac{C_c \cdot (C_{in} + C_{cc})}{C_c + C_{in} + C_{cc}}$$

Sonde cu şi fără atenuator - comparaţie
Sonda fără atenuator
 avantaj - nu atenuează semnalul dezavantaje - rezistenţă de intrare mică (1 ΜΩ), capacitate de intrare mare (50 - 150 pF)
Sonda cu atenuator
 avantaje - rezistenţă de intrare mare (10 MΩ, 100 M Ω), capacitate de intrare mică (5 - 15 pF, 1-2 pF)
☐ dezavantaj - atenuează semnalul; ca urmare, valoarea citită pe ecran trebuie înmulţită cu raportul de atenuare (10, 100)

Sonde cu şi fără atenuator – aplicaţie

Un osciloscop are R_{in} =1 M Ω și C_{in} =30 pF. Cablul coaxial utilizat pentru sondă are o capacitate parazită de 50 pF/m. Să se calculeze elementele impedanței de intrare a osciloscopului în cazul unei sonde fără și cu atenuator 10:1, la o lungime ℓ =1,5 m a cablului coaxial.

Osciloscopul, conectat într-un circuit, încarcă circuitul ca o impedanță formată dintr-un rezistor în paralel cu un condensator.

- rezistenţa de intrare rezistenţa echivalentă a ansamblului sondăosciloscop
- capacitatea de intrare capacitatea echivalentă a ansamblului sondăosciloscop

Aplicație

Ansamblul sondă – osciloscop prezintă o rezistenţă de intrare de 1 MΩ şi o capacitate de intrare de 160 pF. Să se determine modulul impedanţei de intrare a ansamblului la frecvenţele de 10 Hz, respectiv 10 MHz.

Variația cu frecvența a modulului impedanței

Calibratorul intern

- furnizează una sau mai multe tensiuni dreptunghiulare cu valoarea vârf la vârf şi frecvenţa de repetiţie cunoscute cu precizie acceptabilă (sub 1%), pentru calibrarea celor două axe ale osciloscopului.
- ☐ de ce tensiune dreptunghiulară?

Măsurările cantitative cu osciloscopul se efectuează numai în regim calibrat !!!

Excepție: la măsurarea timpului de creștere, pentru a aduce amplitudinea (fixă) a semnalului între limitele 0 și 100% ale caroiajului poate fi chiar necesară decalibrarea axei verticale.

Osciloscopul analogic de uz general

Blocul de deflexie orizontală

cuprinde baza de timp şi amplificatorul X

Baza de timp generează o tensiune în formă de dinţi de fierăstrău, necesară vizualizării variaţiei în timp a tensiunii u_Y .

Baza de timp - funcţionarea în regim relaxat şi declanşat

Circuitul de sincronizare

- permite obţinerea unei imagini stabile pe ecranul tubului catodic
- în esență este un comparator care sesizează momentele în care semnalul de vizualizat depășește nivelul de sincronizare.

Condiția de sincronizare

$$T_{BT} = kT_Y$$

Perioada tensiunii bază de timp trebuie să fie un multiplu al perioadei tensiunii de vizualizat.

Diagrame de timp pentru circuitul de sincronizare

Osciloscopul analogic de uz general

Circuitul de sincronizare

Simulare în LabVIEW

Circuitul de sincronizare

- comutator pentru alegerea modului de sincronizare (intern, extern, cu reţeaua de alimentare, cu impulsurile de sincronizare TV)
- comutator pentru alegerea între regimul automat şi cel declanşat
- comutator pentru alegerea pantei pe care se face sincronizarea
- potenţiometru pentru stabilirea nivelului de sincronizare
- potenţiometru pentru « hold-off »

Osciloscopul analogic de uz general

Potenţiometrul « hold-off »

permite ajustarea timpului de aşteptare astfel încât să se poată obţine imagini corecte chiar şi în cazul unor semnale complexe. Exemplu. Semnalul din figură are perioada de 9 ms și amplitudinea de 5 V. Să se deseneze imaginea care apare pe ecranul unui osciloscop fără reglaj de hold-off, aflat în regim declanșat intern, pe front pozitiv, comutatoarele fiind poziționate pe 2 V/div, respectiv 1 ms/div. Ecranul osciloscopului are 10 diviziuni pe orizontală și 8 pe verticală. Durata cursei directe corespunde celor 10 diviziuni orizontale, iar a celei inverse unei diviziuni.

Imaginea de pe ecran

fără hold-off (cu potențiometrul la minim)

cu potențiometrul reglat corespunzător

Cuprins

- □ Introducere
- ☐ Osciloscopul analogic de uz general
- ☐ Osciloscoape numerice
- Concluzii

Osciloscoape numerice

- eşantionează tensiunea de vizualizat
- eşantioanele sunt convertite în formă numerică, memorate şi prelucrate, pentru a fi aplicate dispozitivului de afişare al osciloscopului

Caracteristici

☐ sunt osciloscoape cu eşantionare

atenţie!

- posibilităţi extinse de măsurare, sincronizare şi prelucrare a semnalelor
- precizie superioară

Caracteristici

multe osciloscoape numerice au un răspuns în frecvenţă de tip maxim plat

Caracteristici

□ relaţia între timpul de creştere şi banda de frecvenţe

$$t_r(\text{ns}) = \frac{400 - 500}{B(\text{MHz})}$$

APLICAȚIE

Două osciloscoape numerice cu banda de frecvențe de 1 GHz eșantionează cu frecvența de 4 GHz. Răspunsul în frecvență este gaussian pentru primul și maxim plat pentru cel de-al doilea, conform caracteristicilor de frecvență prezentate. Să se precizeze cum este redat de către cele două osciloscoape un semnal sinusoidal cu amplitudinea de 2 V și frecvența de 2,4 GHz.

Tipuri de osciloscoape numerice

- Osciloscoape cu memorare numerică
 - (Digital Storage Oscilloscope DSO)
- Osciloscoape cu fosfor numeric
 - (Digital Phosphor Oscilloscope DPO)
- Osciloscoape numerice cu eșantionare

(Digital Sampling Oscilloscope)

Osciloscopul cu memorare numerică (Digital Storage Oscilloscope)

A – atenuator plus amplificator

ADC – convertor analog-numeric

M(ACH) – memorie pentru achiziție

μP – microprocesor

M(AF) – memorie pentru afișaj

AF – afişaj

Osciloscopul cu memorare numerică (Digital Storage Oscilloscope)

- A atenuator plus amplificator: acelaşi rol ca la osciloscopul analogic
- □ ADC convertor analog-numeric: eşantionează semnalul de vizualizat şi îl converteşte sub formă numerică
- ☐ M(ACH) memorie pentru achiziție: memorează eșantioanele
- μP microprocesor: prelucrează eşantioanele, comandă afişajul, gestionează comenzile de pe panoul frontal ş.a.
- M(AF) memorie pentru afişaj: memorează eşantioanele prelucrate
- □ AF afişaj: panou LCD/LED/TFT; afişează semnalul (reconstituit); comandă matricial fiecare pixel (x, y).

Osciloscopul cu memorare numerică (Digital Storage Oscilloscope)

Dezavantaje

- timp de hold-off inerent mare, datorat blocurilor de prelucrare numerică; ca urmare, viteză redusă de actualizare a imaginii
- luminozitate a imaginii insensibilă la frecvenţa de repetiţie

Osciloscopul cu fosfor numeric (Digital Phosphor Oscilloscope)

- A, ADC, μP, AF aceleaşi semnificaţii ca la DSO
- FN "Fosfor Numeric"; memorie care are celule de informaţie pentru fiecare pixel al afişajului; conţinutul memoriei este transferat afişajului o dată la circa 30 ms, realizându-se prin aceasta o actualizare rapidă a informaţiei.

Osciloscopul cu fosfor numeric (Digital Phosphor Oscilloscope)

deosebire esenţială faţă de DSO – "Fosforul Numeric" redă, prin intensitatea şi/sau culoarea trasei, frecvenţa de repetiţie a unui anumit fenomen

Facilități oferite de osciloscoapele numerice

- aparat de măsurat universal
- cursoare pe ecran, pentru determinarea simplă a valorilor de interes
- □ zoom
- predeclanşare
- □ bază de timp în salve
- eşantionare adaptivă, pentru economie de memorie
- ☐ FFT (analizor de spectru)
- posibilități de cuplare la un calculator sau la un înregistrator grafic

Cursoare pe ecran

Predeclanşare (PRETRIGGER)

Bază de timp în salve (BURST TIME BASE)

Cuprins

- □ (Introducere
- ☐ Osciloscopul analogic de uz general
- □ Osciloscoape numerice
- Concluzii

Concluzii

Criterii de alegere a unui osciloscop

□ analogic sau numeric

□ banda de frecvențe

□ rata de eșantionare

□ adâncimea memoriei

□ rata de împrospătare a afișajului

rezoluţia ecranului

posibilitățile de trigger

Concluzii

- osciloscopul aparat indispensabil în practica electronică
- măsurări cantitative asupra semnalelor numai în regim calibrat
- alegerea între analogic şi numeric în funcţie de cerinţele aplicaţiei