

असाधारण

EXTRAORDINARY

भाग II—खण्ड 3—उप-खण्ड (i) PART II—Section 3—Sub-section (i) प्राधिकार से प्रकाशित PUBLISHED BY AUTHORITY

सं. 310]

नई दिल्ली, सोमवार, जून 13, 2011/ज्येष्ठ 23, 1933

No. 310]

NEW DELHI, MONDAY, JUNE 13, 2011/JYAISTHA 23, 1933

पर्यावरण और वन मंत्रालय

अधिसूचना

नई दिल्ली, 13 जून, 2011

सा.का.नि. 446(अ),—केन्द्रीय सरकार, पर्यावरण (संरक्षण) अधिनियम, 1986 (1986 का 29) की धारा 6 और धारा 25 द्वारा प्रदत्त शिक्तयों का प्रयोग करते हुए, पर्यावरण (संरक्षण) नियम, 1986 का और संशोधन करने के लिए निम्नलिखित नियम बनाती है. अर्थात:—

- 1. (1) इन नियमों का संक्षिप्त नाम पर्यावरण (संरक्षण) (पाचवां संशोधन) नियम 2011 है ।
 - (2) ये राजपत्र में उनके प्रकाशन की तारीख से प्रवृत्त होंगे।
- 2. पर्यावरण (संरक्षण) नियम, 1986 की अनुसूची I में,
 - (i) क्रम संख्या 71, 'नाशकजीवमार उद्योग' के संबंध में तथा उससे संबंधित प्रविष्टियों का लोप किया जाएगा ।
 - (ii) क्रम संख्या 101, 'नाशकजीवमार उद्योग के लिए भस्मित्र संयंत्र' के संबंध में तथा उससे संबंधित प्रविष्टियों का लोप किया जाएगा; और
 - (iii) क्रम संख्या 40, 'नाशकजीवमार विनिर्माण और सूत्रण उद्योग' और उससे संबंधित प्रविष्टियों के स्थान पर निम्नलिखित संख्यांक और प्रविष्टियां रखी जाएंगी, अर्थात् :—

क्र. स.	उद्योग	पैरामीटर	मानक
(1)	(2)	(3)	(4)
"40	नाशकजीवमार उद्योग	क, उत्स	र्जन मानक
			सान्द्रण सीमा मि.ग्रा./नार्मल घनमीटर
		HCI	20
		Cl ₂	5
		H₂S	5
		P ₂ O ₅ , H ₃ PO₄ के रुप में	10
		NH ₃	30

1)	(2)	(3)		(4)
		विविक्त कणों के रूप में नाशकजीवमार यौगिक		20
	į	CH₃Cl		20
	<u> </u>	HBr		5
		ख. ब	हिस्राव मानक	,
				pH और जैव निर्धारण
				परीक्षण को सीमा छोडकर
				सान्द्रण मि.ग्रा./ली. में
		(1) आ	नेवार्य पैरामीट	•
		рН		6.5-8.5
		BOD, 3 दिन, 27 ⁰	विनिर्मिति	30
		सेल्सियस पर	इकाई	
			तकनीकी	100
			इकाई	
		तेल और ग्रीस		10
		निलम्बित ठोस कण	······	100
		जैव निर्धारण परीक्षण		100 प्रतिशत बहिस्राव में
				96 घंटे के बाद 90 प्रतिशत
				मछलियां जीवित
		(2) अतिरिक्त पैरामी		ス
		आर्सेनिक (As के रुप में)		0.2
		ताँबा		1.0
		मैं ग्निज		1.0
		पारद		0.01
		एन्टीमनी (Sb के रुप में)		0.1
		जस्ता		1.0
		निकिल, इत्यादि (व्यष्टिक रुप में भारी धातुएं)		भारतीय मानक ब्यूरों के
İ				पेयजल मानकों के अनुसार
ļ				वैयक्तिक रुप से पाँच बार
				से अधिक नहीं
		साइनाइड (CN के रुप में)		0.2
		नाइट्रेट (NO₃ के रुप में)		50
		फास्फेट (P के रुप में)		5.0
		फिनॉल एवं फिनॉलिक योगिक Ce रुप में	,H₅ UH क	1.0

(1)	(2)	(3)	(4)
		गन्धक	0.03
	,	बेन्जीन हेक्साक्लोराइड (BHC)	0.01
		कारबोनाइल	0.01
1		कॉपर सल्फेट	0.05
		कॉपर ऑक्सीक्लोराइड	9.6
		डी.डी.टी.	0.01
		डाइमेथोएट	0.45
		2,4 डी	0.4
		एन्डोसल्फान	0.01
		फेनिटोथ्रीऑन	0.01
		मैलाथियान	0.01
		मिथाइल पेराधियन	0.01
		पैराक्वाइट	2.3
		फेनाथोएट	0.01
		फोरेट	0.01
		प्रोपेनिल	7.3
		पायरीथ्रमस	0.01
		जीरम	1.0
		अन्य नाशकजीवमार (व्यष्टिक रूप में)	0.10
		जैव निर्धारण परीक्षण IS: 6582-1971 के अनुसार	संचालित किया जाएगा ।

जैव निर्धारण परक्षिण IS: 6582-1971 के अनुसार संचालित किया जाएगा ।

टिप्पण:

- 1. संबंधित राज्य प्रदूषण नियंत्रण बोर्ड/प्रदूषण नियंत्रण समिति प्राप्य जल निकायों की उर्ध्वप्रवाह धारा जिसमें बहिसाव का निपटान किया जाएगा, में जल उपयोग के आधार पर कुल घुलनशील ठोस (TDS), सल्फेट और क्लोराइड की सीमा निर्धारित कर सकती हैं ।
- रासायनिक आक्सीजन मांग (COD) की कोई सीमा विहित नहीं है, किन्तु उपचारकृत बिहसाव में इसको मॉनीटर किया जाएगा । यिद शोधित बिहसाव में COD का स्तर 250 मि.ग्रा./लीटर से अधिक अवस्थित है, तो ऐसे बिहसाव का प्रवाह करने वाली औद्योगिक इकाइयों से 250 मिली ग्राम/ लीटर COD कारित करने वाले रसायनों की पहचान करना अपेक्षित है । यिद ये कारक परिसंकटमय रसायन विनिर्माण, संग्रहण और आयात नियम, 1989 की अनुसूची-। में निर्धारित की गई विषालुता की क्षेणी में पाये जाते हैं, तो संबंधित राज्य बोर्ड /प्रदूषण नियंत्रण समिति ऐसे मामलों में उद्योगों को 31 दिसम्बर, 2012 तक तृतीयक अवजल

(1)	(2)	(3)		(4)
		उपचार प्रणाली स्थापित करने का निर्देश दे सकते हैं ।			
		3. "अतिरिक्त पैराम	रीटरों" के रुप में सूर्च	ोबद्घ पैरामीटरों को	मामला दर
	<u> </u>	मामला आधार पर प्रक्रिया और उत्पाद के आधार पर विहित			किया जाएगा ।
			ग. भस्मित्र के उर्त्सज	न मानक	
	\ 			जब तक कथित	जब तक
				न हो सान्द्रण	कथित न हो,
				सीमा मि.ग्रा./	सेम्पलिंग
				नार्मल घन	अवधि मिनटों
				मीटर तक	में
		·		समिति	
		विविक्त	कण	50	30 अथवा
					अधिक
					(लगभग ३००
					लीटर उर्त्सजन
					की सेम्पलिंग)
		HC		50	30
		SO		200	30
		CO		100	दैनिक औसत
		कुल जैविक कार्बन		20	30
		कुल डायक्सीन एवं	मौजूदा भरिमत्र	0.2 ng	८ घंटे
		फूरॉन्स*	संयंत्र	TEQ/Nm ³	
			नयू भस्मित्र संयंत्र	0.1 ng	8 घंटे
				TEQ/Nm³	
		Sb+As+Pb+Cr+Co	o+Cu+Mn+Ni	1.5	2 घंटे
		+V और उनके यौगिक			
		* विद्यमान भरिमत्र संयंत्र 18 अगस्त, 2013 से डायक्सीन और फूरॉन्स के लिए			
		0.1 ng TEQ/Nm³ के मानकों का अनुपालन करेंगे ।			
		टिप्पण:			
	•	1		·	
	ļ	1. सभी प्रबोधन किए गए मानो को शुष्क आधार पर 11 प्रतिशत आक्सीजन तक ठीक किया जाय ।			
		1	_	n z uSan - 	स्ता के स्ता पर् जी
		2. उत्साजत गस होगी	में CO₂ की सान्द्रत	n / भावशव सा (क्रम स कम नहा
		Held			

(1)	(2)	(3)
		3. अपशिष्ट में हेलोजिनेटिड जैविक अपशिष्ट का भार एक प्रतिशत से कम
		होने की स्थिति में एकल चैम्बर अपशिष्ट का भार एक प्रतिशत से कम
_		होने की स्थिति में एकल चैम्बर भस्मीकरण की सभी सुविधाओं को
	<u> </u>	1100° सेंटीग्रेड के न्यूनतम तापमान को प्राप्त करने के लिए डिजाइन
		िकया जाएगा । फ्लूडाइजड बैड टेक्नालाजी भस्मित्र संयंत्र में तापमान 950° सेंटीग्रेड रखा जाएगा ।
		4. अपशिष्ट में हेलोजिनेटिज जैविक अपशिष्ट, वजन में 1% से अधिक
		होने पर केवल दो चैम्बर वाले भरिमत्र संयेत्र में अपशिष्ट का भरिमत्र
		किया जाएगा तथा प्राइमरी चैम्बर में 850 +25° सैंटीग्रेड और सेकेन्डरी
-		कम्बशन चैम्बर में 1100° सैंटीग्रेड न्यून्तम तापमान बनाए रखा जा सके
		जिसके लिये सेकेण्डरी कम्बशन चैम्बर मैं गैस अवरोध समय दो
		सेकेण्ड से कम नहीं रहेगा।
		5. भिस्मित्र संयंत्र के उत्सर्जन मार्जन के लिए जो मार्जक हैं, उनका उपयोग
1		क्वेन्चर के रूप में नहीं किया जाएगा।
ļ		 भिस्मित्र संयंत्र (कम्बशन चैम्बर्स) को ऐसे तापमान, अवरोधन समय
		और उथल-पुथल के साथ चलाया जाएगा ताकि अपशिष्ट और
		भस्मीकरण राख में कुल जैविक कार्बन (TOC) यौगिक 3% से कम
ļ		हो और इसकी भस्मीकरण क्षय की मात्रा शुष्क आधार पर 5% से कम
ļ		हो । गैर-अनुपालन के मामले में राख और अपशिष्ट का दुबारा
		भस्मीकरण किया जाएगा।
		7. भिरमित्र संयंत्र के लिए चिमनी कम से कम तीस मीटर उंची होगी।
		घ. भस्मित्र से बहिस्राव
		टिप्पण:
ļ	ļ	(1) अपजल (मार्जक और तल धुलाई) से उत्पन्न बहिस्राय ढकी हुई नाली
		या पाइप नेटवर्क के माध्यम से बहाया जाएगा और इसका शोधन
		पर्यावरण (संरक्षण) नियम, 1986 के अधीन अधिसूचित पर्यावरण
		प्रदूषकों के विसर्जन के लिए सामान्य मानक (भाग-क: बहिस्राव) के
		साथ ऊपर भाग 'ख' में उल्लिखित बहिस्राव मानकों के अनुरूप किया
		जाएगा।
		(2) तल धुलाई अपजल में कुल घुलित ठोस (TDS) की मात्रा अपरिष्कृत
		जल में TDS की मात्रा से 1000 मि.ग्रा./लीटर से अधिक नहीं होगी।

	ड. वर्षा जल
	टिप्पण:
1	(1) वर्षा जल को मार्जक जल और/अथवा तलधुलाई अपजल के
	साथ मिलाने के लिए अनुमति नहीं दी जाएगी।
	(2) उद्योग की अंतसीमा के वर्षा जल को वर्षा के 10 मिनट की
	संग्रहण क्षमता (घंटे का औसत) के एच.डी.पी.ई. परत वाले
	गर्त के माध्यम से अलग नाली के द्वारा बहाया जाएगा।"

[फा. सं. क्यू-15017/07/2008-सी.पी.डब्ल्यू.] रजनीश दुबे, संयुक्त सचिव

टिप्पण: - मूल नियम, भारत के राजपत्र में सं. का.आ. 844 (अ), 19 नवम्बर, 1986 द्वारा प्रकाशित किए गए थे; और तत्पश्चात सं.का.आ. 443(अ), तारीख 18 अप्रैल, 1987; और अभी हाल में सा.का.नि. 512 (अ), तारीख 9 जुलाई, 2009; सा.का.नि. 543(अ), तारीख 22 जुलाई, 2009; सा.का.नि. 595 (अ), तारीख 21 अगस्त, 2009; सा.का.नि. 794 (अ), तारीख 04 नवम्बर, 2009; सा.का.नि. 826 (अ), तारीख 16 नवम्बर, 2009; सा.का.नि. 01 (अ), तारीख 1 जनवरी, 2010; सा.का.नि. 61 (अ), तारीख 5 फरवरी, 2010; सा.का.नि. 485 (अ), तारीख 9 जून, 2010; सा.का.नि. 608 (अ), तारीख 21 जुलाई, 2010; सा.का.नि. 739 (अ), तारीख तारीख 9 सितम्बर, 2010; सा.का.नि. 809 (अ), तारीख 4 अक्टूबर, 2010; सा.का.नि. 215 (अ), तारीख 15 मार्च, 2011; सा.का.नि. 221 (अ), तारीख 18 मार्च, 2011; सा.का.नि. 354, तारीख 2 मई, 2011; और सा.का.नि. 424(अ)तारीख 1 जून, 2011 द्वारा किए गए।

MINISTRY OF ENVIRONMENT AND FORESTS NOTIFICATION

New Delhi, the 13th June, 2011

GS.R. 446(E).— In exercise of the powers conferred by sections 6 and 25 of the Environment (Protection) Act, 1986 (29 of 1986), the Central Government hereby makes the following rules further to amend the Environment (Protection) Rules, 1986, namely:-

- 1. (1) These rules may be called the Environment (Protection) (Fifth Amendment) Rules, 2011.
 - (2) They shall come into force on the date of their publication in the Official Gazette.
- 2. In the Environment (Protection) Rules, 1986, in Schedule I,
 - omitted;
 - (ii) serial number 101 relating to 'Incinerator for Pesticide Industry' and entries relating thereto shall be omitted; and
 - (iii) for serial number 40 relating to 'Pesticide Manufacturing and Formulation Industry' and entries relating thereto, the following serial number and entries shall be substituted, namely:-

S.No.	Industry	Parameter		Standard
(1)	(2)		(3)	(4)
			A. Emission	Standards
"40	Pesticide			Limiting concentration in
	Industry	<u> </u>		mg/Nm³
			HCI	20
	ļ		Cl ₂	5
	}		H ₂ S	5
			as H ₃ PO ₄	10
			NH ₃	30
		1	unds in the form of	20
		particulate matter		
		CH₃Cl		20
			HBr	5
' !		B. Effluent Star		andards
				Limiting concentration in mg/l,
'				except for pH and Bioassay test
			(i) Compulsory Pa	
}		рН		6.5-8.5
		BOD, 3days, Formulation unit		30
	27°C Technical grade unit Oil and Grease		100	
{			nded Solids	100
		Bioassay Test		90 percent survival of fish after
				96 hours in 100% effluent*

(1)	(2)	(3)	(4)
		(ii) Additional Parameters	
		Arsenic (as As)	0.2
	}	Copper	1.0
		Manganese	1.0
	1	Mercury	0.01
		Antimony (as Sb)	0.1
	1	Zinc	1.0
		Nickel, etc.(heavy metals individually)	Shall not exceed individually 5 times the drinking water standards as per Bureau of
}			Indian Standards
		Cyanide (as CN)	0.2
		Nitrate (as NO ₃)	50
		Phosphate (as P)	5.0
		Phenol & Phenolic Compounds as C ₆ H ₅ OH	1.0
1	}	Sulphur	0.03
		Benzene Hexachloride (BHC)	0.01
		Carbonyl	0.01
		Copper Sulphate	0.05
		Copper Oxychloride	9.6
		DDT	0.01
	\.	Dimethoate	0.45
		2,4D	0.4
		Endosulfan	0.01
		Fenitothrion	0.01
		Malathion	0.01
	j	Methyl Parathion	0.01
		Paraquat	2.3
		Phenathoate	0.01
1		Phorate	0.01
		Proponil	7.3
		Pyrethrums	0.01
		Ziram	1.0
		Other Pesticide (individually)	0.10

^{*}Bioassay Test shall be carried out as per IS: 6582-1971.

Note:

- 1. The concerned State Pollution Control Board / Pollution Control Committee shall prescribe limits of Total Dissolved Solids (TDS), Sulphates and Chlorides depending on the usages of recipient water body in down stream, in which effluent shall be disposed off.
- 2. No limit for Chemical Oxygen Demand (COD) is prescribed but, COD in the treated effluent shall be monitored. If COD is persistently reported more than 250 mg/l, the industrial units discharging such an effluent shall be required to identify chemicals

	1)	(2)		3)	(4)
			causing the same. In case, these are found to be toxic, as defined in Schedule I of the Manufacture, Storage and Import of Hazardous Chemicals Rules, 1989, the concerned State Pollution Control Board/ Pollution Control Committee in such cases shall direct the industries to install tertiary treatment system by 31 st March, 2012.			
				sted as "Additional on the process and pro		
{			C.	Emission Standards	s for Incinerator	
					Limiting concentration in mg/Nm³, unless stated	Sampling Duration in minutes, unless stated
			Particula	te Matter	50	30 or more
}	1 W		77 - 122 1C 3 24 - 200 1C 3		and the state of t	(for sampling of 300 litres
			He	CI	50	of emission)
			SC	<u> </u>	200	30
	: 		C	O	100	Daily average
	į		Total organic	Carbon	20	30
	į		Total Dioxins and Furans *	Existing Incinerator	0.2 ngTEQ/Nm ³	8 hours
				New Incinerator	0.1 ngTEQ/Nm ³	8 hours
			Sb +As + Pb + Cr + + V and their compo	ounds	1.5	2 hours
	į		* The existing plant shall comply with norms for Dioxins and Furans as 0.1 ngTEQ/Nm ³ by 18 th August, 2013.			ins and Furans
			Note : i. All monitored va	alues shall be correcte	ed to 11% oxygen	on dry basis.
			ii. The CO ₂ concen	tration in tail gas sha	ll not be less than	7%.
			designed so as incinerator. For	ated organic waste is facilities in single to achieve a minimular or fluidized bed Il be maintained at 95	chamber incinera im temperature of technology based	ators shall be 1100°C in the
			and all the factoring temperature of	ted organic waste is all be incinerated or cilities shall be de 850±25°C in prinustion chamber with	nly in twin chamb signed to achieve nary chamber an	er incinerators e a minimum d 1100°C in

(1)	(2)	(3)
		combustion chamber not less than two seconds.
		v. Scrubber meant for scrubbing emissions shall not be used as quencher.
		vi. Incineration plants shall be operated (combustion chambers) with such temperature, retention time and turbulence, as to achieve Total Organic Carbon (TOC) content in the incineration ash and residue less than 3%, and their loss on ignition is less than 5% of the dry weight. In case of non-conformity, ash and residue as the case may be, shall be re-incinerated.
		vii. The incinerator shall have a chimney of atleast thirty metres height.
		D. Effluent from Incinerator
		Note:
		(i) Effluent from scrubber (s) and floor washings shall flow through closed conduit or pipe network and be treated to comply with the effluent standards mentioned at 'B' above, read with Schedule VI: General Standards for Discharge of Environment Pollutions (Part A: Effluents) notified under the Environment (Protection) Rules, 1986.
		(ii) The built up in TDS in wastewater or floor washings shall not exceed 1000 mg/l over and above the TDS of raw water used.
		E. Stormwater
		Note:
		(i) Stormwater shall not be allowed to mix with scrubber water and/or floor washings.
		(ii) Stormwater shall be channelized through separate drains passing through a HDPE lined pit having holding capacity of 10 minutes (hourly average) of rainfall.".

[F. No. Q-15017/07/2008-CPW] RAJNEESH DUBE, Jt. Secy.

Note: The principal rules were published in the Gazette of India vide number S.O. 844 (E), 19th November, 1986; subsequently amended vide S.O. 433 (E), dated 18th April 1987; and recently amended vide G.S.R. 97(E), dated the 18th February, 2009; G.S.R. 149 (E), dated the 4th March, 2009; G.S.R. 512(E), dated the 9th July, 2009; G.S.R. 543 (E), dated the 22nd July, 2009; G.S.R. 595(E), dated the 21st August, 2009; G.S.R. 794 (E), dated the 4th November, 2009; G.S.R. 826 (E), dated the 16th November, 2009; G.S.R. 01 (E), dated the 1st January, 2010; G.S.R, 61(E), dated 5th February, 2010; G.S.R. 485 (E), dated 9th June, 2010; G.S.R 608 (E), dated 21st July, 2010; G.S.R 739 (E), dated the 9th September, 2010; G.S.R, 809 (E), dated, 4th October, 2010; G.S.R. 215(E), dated, the 15th March, 2011; G.S.R. 221(E), dated, the 18th March, 2011; G.S.R. 354 (E), dated, the 2nd May, 2011; and G.S.R. 42.4 (E), dated the 1st June, 2011.