Introduzione

biettivo:

- Introduzione alle reti di · Introduzione telecomunicazioni
- approccio:
 - descrittivo
 - uso di Internet come esempio

Sommario:

- Cos'è Internet
- Cos'è un protocollo?
- network edge
- network core
- Reti di accesso, mezzi trasmissivi
- backbones (dorsali), NAP, ISP

Reti di computer: Esempi

· Condivisione risorse:

Non è economico comprare 1 stampante laser (o uno scanner) per ogni personal

Condivisione di programmi e dati da parte di utenti

Base di dati a cui molti utenti (da diversi computer) posso accedere:

sistema di prenotazioni e assegnamento posti

di una compagnia aerea

sistema informativo di una banca

Reti di computer: Esempi

- Comunicazione tra utenti in locazioni fisiche differenti (scambio di messaggi e dati)
 - comunicazioni in ambito di ricerca
 - utilizzo di basi di dati in locazioni remote
 - lavoro cooperativo
 - possibilità di svolgere attività di lavoro a casa (tele-lavoro)
 - accesso a informazioni di varia natura

Reti di computer

- · È possibile identificare due tipologie di reti di computer
 - reti locali che collegano elaboratori vicini tra di loro
 - reti geografiche che collegano elaboratori in località remote

Le reti di computer: hardware

- Per avere una rete è indispensabile il collegamento fisico tra diversi computer
 - Meccanismi in grado di trasmettere informazioni (canali di comunicazione)
 - · cavi elettrici
 - cavi a fibre ottiche
 - linee telefoniche
 - trasmissioni via satellite
 - trasmissione via onde radio
 - Meccanismi in grado connettere i computer con i vari canali di comunicazione
 - interfacce
 - · modem

Le reti di computer: il software

- Sono inoltre necessari meccanismi software per permettere ai vari computer di dialogare e di gestire la comunicazione
 - protocolli (convenzioni) di comunicazione
 - invio e ricezione di messaggi
 - meccanismi di indirizzamento (come identificare un computer)
 - spedizione sulle connessioni opportune
 - verifica correttezza dei messaggi durante la trasmissione
 - protezione dei messaggi (per evitare intercettazione)
 - ottimizzazione della comunicazione
 - gestione del traffico sulla rete

Cos'è Internet?

- Milioni di dispositivi di calcolo tra loro interconnessi: host, end-systems (principalmente computer)
 - Pc, workstation, server
 - PDA's phones, toasters

Che eseguono applicazioni di rete

- Canali di comunicazione
 - fibra, rame, radio, satellite
- Router: instradano pacchetti di dati attraverso la rete

- protocolli: controllano la spedizione e la ricezione di messaggi
 - e.g., TCP, IP, HTTP, FTP, PPP
- Internet: "rete di reti"
 - Debolmente gerarchica
 - Internet pubblica vs intranet private
- Standard di Internet
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

- Infrastruttura di comunicazione che consente ad applicazioni distribuite lo scambio di dati:
 - WWW, email, giochi, e-commerce, database, file (MP3) sharing

4

Cos'è un protocollo?

Un protocollo umano e un protocollo di reti di computer:

Cos'è un protocollo?

Protocolli umani:

- · "Che ora è?"
- · "Ho una domanda"
- Presentazioni...
- ... messaggi specifici vengono spediti
- ... azioni specifiche sono compiute quando i messaggi sono ricevuti, o in seguito ad altri eventi

Protocolli di rete:

- macchine invece di esseri umani
- Tutte le attività di comunicazione in Internet sono governate da protocolli
- I protocolli definiscono formato e ordine dei messaggi spediti e ricevuti tra entità della rete, e le azioni da compiere in seguito alla ricezione e/o trasmissione dei messaggi o di altri eventi

Struttura della rete

- network edge: applicazioni ed host
- network core:
 - router
 - rete di reti
- reti di accesso, mezzi trasmissivi: canali di comunicazione

La edge network:

end systems (host):

- Eseguono programmi applicativi
- e.g., WWW, email
- al "bordo della rete"

modello client/server

- il client richiede, riceve servizio dal server
- e.g., WWW client (browser)/ server;
 email client/server

modello peer-peer:

- interazione tra host simmetrica
- e.g.: Gnutella, KaZaA

La edge Network: TCP

Obiettivo: trasferimento Servizio TCP [RFC 793] dati tra host

- di fase handshaking: preparazione antecedente al trasferimento dati
 - Ciao Ciao nel protocollo umano
 - Stabilire uno "stato" nei due host comunicanti
- TCP Transmission Control Protocol
 - Servizio di scambio dati di tipo connection-oriented Internet

- Trasferimento affidabile ed ordinato di byte di un flusso dati
 - perdite: conferma di ricezione (acknowledgement) ritrasmissione
- Controllo di flusso
 - Il mittente non sovraccaricherà il ricevitore
- Controllo di congestione:
 - I mittenti diminuiscono la loro velocità di spedizione quando la rete si congestiona

La edge Network: UDP

Obiettivo: trasferimento dati tra host

- Esattamente lo stesso!
- UDP User Datagram Protocol [RFC 768]: Servizio connectionless di Internet
 - Senza handshaking
 - Trasferimento dati nonaffidabile
 - senza controllo di flusso
 - senza controllo congestione

<u>Applicazioni che usano</u> <u>TCP:</u>

 HTTP (WWW), FTP (trasferimento file), Telnet (login remoto), SMTP (email)

<u>Applicazioni che usano</u> <u>UDP:</u>

 streaming media, teleconferencing, Internet telephony

La Core Network

- Maglia di router interconnessi
- <u>Domanda fondamentale</u>: come vengono trasferiti i dati attraverso la rete?
 - Commutazione di pacchetto: i dati sono spediti attraverso la rete in quantità discrete chiamate pacchetti

La core Network: commutazione di pacchetto

Ogni flusso dati viene diviso in pacchetti

- I pacchetti degli utenti A e B condividono risorse di rete
- Ogni pacchetto usa tutta la larghezza di banda (capacità di trasmissione in bit al secondo) del canale
- Risorse usate quando sono necessarie

Contesa delle risorse:

- La richiesta aggregata di risorse può eccedere l'ammontare disponibile
- congestione: i pacchetti si accodano ed attendono l'uso del canale
- store and forward: pacchetti ricevuti interamente prima di essere spediti

Reti a commutazione di pacchetto: routing

- Obiettivo: spostare pacchetti tra router, dal host sorgente all' host destinatario
- Caratteristiche:
 - L'indirizzo destinazione determina il prossimo passo
 - Le strade (route) possono variare durante le sessioni
 - I router NON mantengono informazioni sullo stato delle connessioni