Aprendizado de Máquina 2

Aula 3

Professora: Patrícia Pampanelli

patricia.pampanelli@usp.br

Dúvidas da última aula?

Aula de Hoje

- XGBoost
- Balanceamento de Datasets
- Exercícios

XGBoost

XGBoost

- O modelo XGBoost foi desenhado para trabalhar com datasets de alta complexidade
- Assim como o Gradient Boosting, ele é um modelo sequencial
- Normalmente, as árvores são limitadas a 6 níveis

XGBoost

- O XGBoost introduz alguns conceitos fundamentais para evitar o overfitting e tornar o modelo mais eficiente:
 - Prune (poda)
 - Regularização

XGBoost - Prune

- São utilizadas técnicas de prune (poda) para tornar as árvores mais eficientes. O hiperparâmetro utilizado para o limiar de poda se chama gama
- A poda de uma árvore é decidida com base no ganho obtido com um determinado split.
- Se **ganho gamma < 0**:
 - A sub-árvore é <u>removida</u>
- Se **ganho gamma >= 0**:
 - A sub-árvore é mantida

XGBoost - Regularização

- Além da técnica de prune, é utilizada a técnica de regularização
- A variável de regularização, chamada lambda, é utilizada para tornar o modelo menos sensível a observações específicas
- Isso previne que o modelo tenha overfitting em relação aos dados de treinamento

XGBoost - Regularização

 A variável de regularização, chamada lambda é utilizada no denominador ao calcularmos a medida de similaridade em uma folha:

$$similaridade = \frac{\sum residuos\ da\ folha}{numero\ de\ amostras\ na\ folha + lambda}$$

- Quanto maior o valor de lambda, menor a medida de similaridade
- Isso faz com que uma determinada sub-árvore tenha uma chance maior de ser podada

XGBoost - Learning rate (eta)

- Assim como no Gradient
 Boosting, as contribuições de
 cada árvore são multiplicadas
 pelo learning rate.
- No contexto do XGBoost, este valor se chama **eta**
- O valor padrão para *eta* é de 0.3

Balanceamento de Datasets

Detecção de fraude

Problema: Detecção de fraude em transações é uma aplicação bastante importante e essencial em diversas indústrias (mercado financeiro, seguros, etc).

Dataset

Vamos utilizar os seguintes dados com 10.000 amostras, sendo:

- 337 de transações fraudulentas
- 9663 de transações legítimas

3% das transações são fraude!

Este dataset é bastante desbalanceado, mas nos aproxima de situações reais.

Baseline

Antes de avaliarmos as estratégias de balanceamentos vamos um modelo sem nenhuma estratégia de balanceamento. O modelos "mais simples" que podemos obter.

Nós temos com este baseline:

- 36 fraudes identificadas corretamente (total de 116)
- 3169 transações normais identificadas corretamente (total de 3184)

Em outras palavras:

- 31% das fraudes foram identificadas
- 71% das fraudes identificadas eram realmente fraudes

```
1 logreg baseline = LogisticRegression(max iter=200)
           2 logreg baseline.fit(X train, y train)
          LogisticRegression(C=1.0, class_weight=None, dual=False, fit intercept=True,
                             intercept scaling=1, l1 ratio=None, max iter=200,
                             multi class='auto', n jobs=None, penalty='12',
                             random state=None, solver='lbfgs', tol=0.0001, verbose=0,
                             warm start=False)
                   1 y pred baseline = logreg baseline.predict(X test)
                    1 from sklearn.metrics import confusion matrix
                    2 confusion matrix(v test, v pred baseline)
                   array([[ 36, 80],
                             15, 316911)
 1 from sklearn.metrics import classification_report
 2 print(classification report(y test, y pred baseline, target names=['Fraud', 'Not Fraud']))
             precision
                          recall f1-score
                                            support
                                      0.43
                                                116
                                      0.99
                                                3184
                                      0.97
                                                3300
    accuracy
                  0.84
                            0.65
                                      0.71
                                                3300
   macro avg
weighted avg
                  0.97
                            0.97
                                      0.97
                                                3300
```

Modelos

Es	tratégia	Acurácia	Precision	Recall	F₁ Score	AUC
Baselin	ne	0.97	0.71	0.31	0.43	0.92

Pesos entre as classes

No sklearn nós temos duas possibilidades para fazer esse ajuste de pesos através do parâmetro class_weight.

- 'balanced'
- Customizada (dicionário)

class_weight : dict or 'balanced', default=None

Weights associated with classes in the form {class_label: weight}. If not given, all classes are supposed to have weight one.

The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)).

Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified.

New in version 0.17: class_weight='balanced'

Show me the code!

- 88% das fraudes foram identificadas
- 17% das fraudes identificadas eram realmente fraudes

Quantas transações normais foram identificadas como fraudes?

```
1 logreg = LogisticRegression(class_weight='balanced')
2 logreg.fit(X_train, y_train)
3 y_pred = logreg.predict(X_test)
```

```
1 from sklearn.metrics import classification_report
     2 print(classification report(y test, y pred, target names=['Fraud', 'Not Fraud']))
                               recall f1-score
₽
                  precision
                                                  support
           Fraud
                       0.17
                                 0.88
                                           0.28
                                                      116
       Not Fraud
                       0.99
                                 0.84
                                           0.91
                                                     3184
                                           0.84
                                                     3300
        accuracy
                       0.58
                                 0.86
                                           0.60
                                                     3300
       macro avg
    weighted avg
                       0.97
                                 0.84
                                           0.89
                                                     3300
```

Modelos

Estratégia	Acurácia	Precision	Recall	F₁ Score	AUC
Baseline	0.97	0.71	0.31	0.43	0.92
Balanced classes	0.84	0.17	0.88	0.28	0.92

O balanceamento forçado das classes não teve uma performance muito boa. Observamos uma piora nas métricas de avaliação do modelo.

A quantidade de **Falsos Positivos** faz com que o **volume de transações bloqueadas seja muito alto**. Isso prejudica muito a experiência dos usuários e, portanto, também não resolve o problema de detecção de fraude.

Show me the code!

Vamos experimentar o rebalanceamento manual, com ele obtemos:

- 65% das fraudes foram identificadas
- 44% das fraudes identificadas eram realmente fraudes

```
1 logreg = LogisticRegression(class_weight={0: 0.85,1: 0.15})
2 logreg.fit(X_train, y_train)
3 y_pred = logreg.predict(X_test)
```

```
1 from sklearn.metrics import classification report
 2 print(classification report(y test, y pred, target names=['Fraud', 'Not Fraud'])
              precision
                           recall f1-score
                                             support
       Fraud
                   0.44
                             0.65
                                       0.53
                                                  116
                   0.99
                             0.97
                                       0.98
  Not Fraud
                                                 3184
                                       0.96
                                                 3300
    accuracy
                   0.72
                             0.81
                                       0.75
                                                 3300
   macro avg
weighted avg
                   0.97
                             0.96
                                       0.96
                                                 3300
```

Modelos

Estratégia	Acurácia	Precision	Recall	F₁ Score	AUC
Baseline	0.97	0.71	0.31	0.43	0.92
Balanced classes	0.84	0.17	0.88	0.28	0.92
Custom balance	0.96	0.44	0.65	0.53	0.92

Curva ROC - Baselline x Classes Balanced (Custom)

Imbalanced learn

Para fazer o processo de balanceamento dos datasets de treinamento, nós vamos utilizar um pacote do Python bastante parecido com o Scikit Learn.

O Imbalanced learn implementa diversas metodologias para balanceamento de datasets. Além disso, ele implementa alguns métodos que encapsulam o balanceamento e a classificação.

Por fim, ele também tem integração com outros Frameworks como Tensorflow e Keras.

Over-sampling

A abordagem de *over-sampling* consiste em duplicar de forma randômica as amostras mais raras no dataset. Uma outra forma bastante popular é utilizando um algoritmo de geração sintética de dados (Ex: Smote, ADASYN, etc).

No caso da detecção de fraude, duplicar as amostras que representam transações fraudadas.

Over-sampling - SMOTE

O algoritmo **Smote** (*Synthetic Minority Over-sampling*) gera novas amostras através de interpolação linear a partir das amostras já existentes no dataset. Esta operação é feita selecionando os vizinhos mais próximos de uma amostras e criando novos pontos entre elas.

Over-sampling - ADASYN

Já o algoritmo ADASYN (Adaptive Synthetic (ADASYN) algorithm) funciona de forma similar ao Smote com a diferença de que ele gera novas amostras no dataset levando em consideração a distribuição da classe minoritária.

SMOTE x ADASYN

A principal diferença entre estes dois algoritmos é que o ADASYN leva em consideração as amostras da classe minoritária que foram mais difíceis de aprender. Essa análise é feita através do classificador K-Nearest Neighbors.

Ponto de atenção: quando os dados da classe minoritária são esparsos.

Show me the code: The imbalanced-learn package

```
1 from imblearn.over_sampling import ADASYN
2 |
3 sm = ADASYN(random_state=42, sampling_strategy=0.22)
4 X_over, y_over = sm.fit_resample(X_train, y_train)
5 print('Resultado após o oversampling %s' % Counter(y_over))
Resultado após o oversampling Counter({1: 6479, 0: 1399})
```

```
1 from sklearn.metrics import confusion matrix [126] 1 from sklearn.metrics import classification_report
[125]
                                                                      2 print(classification report(y test, y pred, target names=['Fraud', 'Not Fraud'])
       2 confusion matrix(y test, y pred)
                                                                                              recall f1-score
                                                                                  precision
                                                                                                               support
      array([[ 77, 39],
               [ 102, 3082]])
                                                                                      0.43
                                                                           Fraud
                                                                                                0.66
                                                                                                         0.52
                                                                                                                   116
                                                                                      0.99
                                                                       Not Fraud
                                                                                                0.97
                                                                                                         0.98
                                                                                                                  3184
                                                                                                         0.96
                                                                                                                  3300
                                                                        accuracy
                                                                                      0.71
                                                                                                         0.75
                                                                                                                  3300
                                                                                                0.82
                                                                        macro avg
                                                                                      0.97
                                                                     weighted avg
                                                                                                0.96
                                                                                                         0.96
                                                                                                                  3300
```

https://imbelenced_learn.org/stable/references/generated/imbleam-over_sampling_ADAS)/N-html//imbleam-over_sampling_ADAS)

Modelos

Estratégia	Acurácia	Precision	Recall	F₁ Score	AUC
Baseline	0.97	0.71	0.31	0.43	0.92
Balanced classes	0.84	0.17	0.88	0.28	0.92
Custom balance	0.96	0.44	0.65	0.53	0.92
Over sampling ADASYN (22:100)	0.95	0.43	0.66	0.52	0.92

Under-sample ou Down-

A abordagem de under-sampling consiste em remover as amostras abundantes no dataset. Uma das abordagens é fazer isso de forma randômica. Nós podemos também fazer isso utilizando um algoritmo de reamostragem baseado no K-means (algoritmo de clusterização).

No caso da detecção de fraude, **remover** as amostras que representam **transações legítimas**.

Show me the code: The imbalanced-learn package

```
[947] 1 from imblearn.under_sampling import ClusterCentroids
2
3 cc = ClusterCentroids(random_state=42, sampling_strategy=0.35)
4 X_under, y_under = cc.fit_resample(X_train, y_train)
5 print('Resultado após o under sampling %s' % Counter(y_under))

/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py
    warnings.warn(msg, category=FutureWarning)
Resultado após o under sampling Counter({1: 631, 0: 221})
```

	precision	recall	f1-score	support
Fraud	0.39	0.58	0.47	116
Not Fraud	0.98	0.97	0.98	3184
accuracy			0.95	3300
macro avg	0.69	0.77	0.72	3300
weighted avg	0.96	0.95	0.96	3300

Modelos

Estratégia	Acurácia	Precision	Recall	F₁ Score	AUC
Baseline	0.97	0.71	0.31	0.43	0.92
Balanced classes	0.84	0.17	0.88	0.28	0.92
Custom balance	0.96	0.44	0.65	0.53	0.92
Over sampling ADASYN (22:100)	0.95	0.43	0.66	0.52	0.92
Under sampling	0.95	0.39	0.58	0.47	0.91

*Under sampling + Over-sampling*Proporção de 1:10

Nós podemos também utilizar estas duas técnicas combinadas para obtermos um dataset de treinamento mais balanceado.

Nesta estratégia combinada são reamostradas ambas as classes (fraudes e não fraudes).

Modelos

Estratégia	Acurácia	Precision	Recall	F₁ Score	AUC
Baseline	0.97	0.71	0.31	0.43	0.92
Balanced classes	0.84	0.17	0.88	0.28	0.92
Custom balance	0.96	0.44	0.65	0.53	0.92
Over sampling ADASYN (22:100)	0.95	0.43	0.66	0.52	0.92
Under sampling	0.95	0.39	0.58	0.47	0.91
Over sampling e Under sampling (1:10)	0.95	0.51	0.59	0.55	0.92

Exercícios

Exercícios

- Exercício em sala:
 - **Tópicos:** Árvores de Decisão, Random Forest, XGBoost, Gini Impurity, Inferência e Deploy de modelos
 - Objetivos:
 - Treinamento de modelos (Decision Tree Classifier e Random Forest)
 - Visualizar as árvores que foram construídas
 - Métricas de classificação (matriz de confusão)
 - Verificar o cálculo do da medida de impureza
 - **Dataset:** MNIST

Trabalho

- Exercício: XGboost
- Tópicos:
 - XGBoost
 - Deploy e Inferência
- **Dataset:** livre escolha
- **Entrega:** 13/08 até 11:59

Resumo da Aula de Hoj

- XGBoost
- Balanceamento de Datasets
- Exercícios

Dúvidas?

Obrigada!