Embedding Deep Learning in Inverse Scattering Solutions

Yash Sanghvi¹, Yaswanth Kalepu¹, and Uday Khankhoje¹

¹Department of Electrical Engineering Indian Institute of Technology Madras

Asia Pacific Radio Science Conference (AP-RASC), March 2019

Inverse Scattering Measurement Setup

$$E_{scat}(r) = \int G(r, r') E_{total}(r') \chi(r') dr'$$

Inverse Scattering Measurement Setup

$$E_{scat}(r) = \int G(r, r') E_{total}(r') \chi(r') dr'$$

Knowns: Scattered Fields (s_v) and **Unknowns**: Contrast (x) and

Contrast Source (w_v) where $(w_v)_i = (x_i \cdot d_i)$

Inverse Scattering Measurement Setup

$$E_{scat}(r) = \int G(r, r') E_{total}(r') \chi(r') dr'$$

Knowns: Scattered Fields (s_v) and **Unknowns**: Contrast (x) and

Contrast Source (w_v) where $(w_v)_i = (x_i \cdot d_i)$

$$s_{v} = G_{S} w_{v}$$
 (Data Equation)
 $w_{v} = x \cdot e_{v} + x \cdot (G_{D}w_{v})$ (Current Equation)

Inverse Scattering Measurement Setup

¹V. Berg, et al. "Contrast source inversion method: State of art." <2001 < ≥ > < ≥ > > ≥ < > < ○

Austria $Profile^1$, Contrast = 4

Austria $Profile^1$, Contrast = 4

Reconstruction using SOM

Austria Profile¹, Contrast = 4

Reconstruction using SOM

Proposed Method

¹V. Berg, et al. "Contrast source inversion method: State of art." 2001 € € € € ♦ ♦

Contrast Source Inversion (CSI)

²X.Chen "Subspace-based optimization method for solving inverse-scattering problems." 2010

Contrast Source Inversion (CSI)

$$\arg\min_{\mathbf{x}, \mathbf{w}_{v}} \sum_{v=1}^{V} \frac{||s_{v} - G_{S} \ \mathbf{w}_{v} \ ||^{2}}{\eta_{S, v}} + \frac{|| \ \mathbf{w}_{v} - \mathbf{x} * e_{v} - \mathbf{x} * (G_{D} \mathbf{w}_{v})||^{2}}{\eta_{D, v}}$$

 $\eta_{S,v}, \eta_{D,v}$: Normalization Constants

²X.Chen "Subspace-based optimization method for solving inverse-scattering problems," 2010

Contrast Source Inversion (CSI)

$$\arg\min_{\mathbf{x}, \mathbf{w}_{v}} \sum_{v=1}^{V} \frac{||s_{v} - G_{S} \ w_{v} \ ||^{2}}{\eta_{S, v}} + \frac{|| \ w_{v} - \mathbf{x} * e_{v} - \mathbf{x} * (G_{D} w_{v})||^{2}}{\eta_{D, v}}$$

 $\eta_{S,v}, \eta_{D,v}$: Normalization Constants

• Subspace Optimization Method (SOM)²: Partition w_{ν} to signal and noise subspace

²X.Chen "Subspace-based optimization method for solving inverse-scattering problems." 2010

Contrast Source Inversion (CSI)

$$\arg\min_{\mathbf{x}, w_{v}} \sum_{v=1}^{V} \frac{||s_{v} - G_{S} w_{v}||^{2}}{\eta_{S, v}} + \frac{||w_{v} - \mathbf{x} * e_{v} - \mathbf{x} * (G_{D} w_{v})||^{2}}{\eta_{D, v}}$$

 $\eta_{S,v}, \eta_{D,v}$: Normalization Constants

• Subspace Optimization Method (SOM)²: Partition w_v to signal and noise subspace

$$w_{v} = w_{v}^{(s)} + w_{v}^{(n)}$$

 $s_{v} = G_{s}(w_{v}^{(s)} + w_{v}^{(n)})$

²X.Chen "Subspace-based optimization method for solving inverse-scattering problems." 2010

Contrast Source Inversion (CSI)

$$\arg\min_{\mathbf{x}, \mathbf{w}_{v}} \sum_{v=1}^{V} \frac{||s_{v} - G_{S} \ w_{v} \ ||^{2}}{\eta_{S, v}} + \frac{|| \ w_{v} - \mathbf{x} * e_{v} - \mathbf{x} * (G_{D} w_{v})||^{2}}{\eta_{D, v}}$$

 $\eta_{S,v}, \eta_{D,v}$: Normalization Constants

• Subspace Optimization Method (SOM)²: Partition w_v to signal and noise subspace

$$w_{v} = w_{v}^{(s)} + w_{v}^{(n)}$$

 $s_{v} = G_{s}(w_{v}^{(s)} + w_{v}^{(n)})$

²X.Chen "Subspace-based optimization method for solving inverse-scattering problems." 2010

Contrast Source Inversion (CSI)

$$\arg\min_{\mathbf{x}, w_{v}} \sum_{v=1}^{V} \frac{||s_{v} - G_{S} w_{v}||^{2}}{\eta_{S, v}} + \frac{||w_{v} - \mathbf{x} * e_{v} - \mathbf{x} * (G_{D} w_{v})||^{2}}{\eta_{D, v}}$$

 $\eta_{S,v}, \eta_{D,v}$: Normalization Constants

• Subspace Optimization Method (SOM)²: Partition w_v to signal and noise subspace

$$w_{v} = w_{v}^{(s)} + w_{v}^{(n)}$$

 $s_{v} = G_{s}(w_{v}^{(s)} + w_{v}^{(n)})$

²X.Chen "Subspace-based optimization method for solving inverse-scattering problems 2010

Signal Subspace: Recovery using Spectral Analysis (Stage-I)

$$s_v = G_s(w_v^{(s)} + w_v^{(n)})$$

Signal Subspace: Recovery using Spectral Analysis (Stage-I)

$$s_v = G_s(w_v^{(s)} + w_v^{(n)})$$

Noise Subspace: Recovery by Iterative Refinement (Stage-II)

$$\mathbf{w}_{\mathsf{v}} = \mathbf{x} \cdot \mathbf{e}_{\mathsf{v}} + \mathbf{x} \cdot (\mathsf{G}_{\mathsf{D}} \mathbf{w}_{\mathsf{v}})$$

• Signal Subspace: Recovery using Spectral Analysis (Stage-I)

$$s_v = G_s(w_v^{(s)} + w_v^{(n)})$$

Noise Subspace: Recovery by Iterative Refinement (Stage-II)

$$\mathbf{w}_{\mathbf{v}} = \mathbf{x} \cdot \mathbf{e}_{\mathbf{v}} + \mathbf{x} \cdot (\mathbf{G}_{D} \mathbf{w}_{\mathbf{v}})$$

Reconstruction using Conventional SOM

 $\mathsf{Austria},\ \mathsf{Contrast} = 1$

Reconstruction using SOM

Reconstruction using Conventional SOM

Austria, Contrast = 1

Austria, Contrast = 2

Reconstruction using SOM

Reconstruction using SOM

Fraction of energy in noise and signal subspace with varying contrasts

Fraction of energy in noise and signal subspace with varying contrasts

• As contrast increases, a lot of energy shifts to noise-subspace.

Fraction of energy in noise and signal subspace with varying contrasts

- As contrast increases, a lot of energy shifts to noise-subspace.
- Nullspace Initialization to origin in conventional SOM

Proposed Method

Proposed Method

Proposed Method

CS-Net: Novel Convolutional Neural Network

CS-Net: Novel Convolutional Neural Network

Training

ullet Using publicly available MNIST dataset 3

Training

- Using publicly available MNIST dataset ³
- Convert MNIST images to dielectric objects

Training - II

Training - II

CS-Net: After Training

True Contrasts

CS-Net: After Training

True Contrasts

Retrieved Contrasts

Multi-Resolution Strategy

Multi-resolution strategy

Multi-Resolution Strategy: Different Stages

High Contrast Reconstructions

Austria Profile, Contrast = 4

Reconstruction using SOM

Proposed Method

Convergence with and without CS-Net

Cost function vs. Iterations for plain SOM and proposed method

Convergence with and without CS-Net

Cost function vs. Iterations for plain SOM and proposed method

Convergence with and without CS-Net

Cost function vs. Iterations for plain SOM and proposed method

Inversion Times

Time (s) \rightarrow Experiment \downarrow	Total Time
x = 1,DL	199
x = 1,no DL	194
x = 4,DL	4697
x = 4,no DL	2791

Computational times for different experiments

Lossy Profile

Lossy Profile (Left) Real (Right) Imaginary part of contrast

Lossy Profile

Lossy Profile (Left) Real (Right) Imaginary part of contrast

Reconstruction with DL (Left) Real (Right) Imaginary part of contrast

Lossy Profile

Lossy Profile (Left) Real (Right) Imaginary part of contrast

Reconstruction with DL (Left) Real (Right) Imaginary part of contrast

Proposed Method (with CS-Net): Not a Black Box.

Validation using the Fresnel dataset⁴

⁴Geffrin et. al. "Free space experimental scattering database continuation: experimental set-up and measurement precision." 2005

- Validation using the Fresnel dataset⁴
- Reconstruction using scattered fields at 6GHz

18 / 19

⁴Geffrin et. al. "Free space experimental scattering database continuation: experimental set-up and measurement precision." 2005

- Validation using the Fresnel dataset⁴
- Reconstruction using scattered fields at 6GHz
- Very different imaging configuration, retrained entire CS-Net

⁴Geffrin et. al. "Free space experimental scattering database continuation: experimental set-up and measurement precision." 2005

- Validation using the Fresnel dataset⁴
- Reconstruction using scattered fields at 6GHz
- Very different imaging configuration, retrained entire CS-Net

(Left) True Profile

⁴Geffrin et. al. "Free space experimental scattering database continuation: experimental set-up and measurement precision." 2005

- Validation using the Fresnel dataset⁴
- Reconstruction using scattered fields at 6GHz
- Very different imaging configuration, retrained entire CS-Net

(Left) True Profile

⁴Geffrin et. al. "Free space experimental scattering database continuation: experimental set-up and measurement precision." 2005

- Validation using the Fresnel dataset⁴
- Reconstruction using scattered fields at 6GHz
- Very different imaging configuration, retrained entire CS-Net

(Left) True Profile (Middle) Using DL

⁴Geffrin et. al. "Free space experimental scattering database continuation: experimental set-up and measurement precision." 2005

- Validation using the Fresnel dataset⁴
- Reconstruction using scattered fields at 6GHz
- Very different imaging configuration, retrained entire CS-Net

(Left) True Profile (Middle) Using DL (Right) Without DL

⁴Geffrin et. al. "Free space experimental scattering database continuation: experimental set-up and measurement precision." 2005

• CS-Net for higher contrasts

- CS-Net for higher contrasts
- Higher resolution input for CS-Net

Contrast Source for Resolution (Left) 16 \times 16 (Right) 48 \times 48

- CS-Net for higher contrasts
- Higher resolution input for CS-Net

Contrast Source for Resolution (Left) 16×16 (Right) 48×48

• Less data-intensive variations, applications for 3D inverse scattering.

- CS-Net for higher contrasts
- Higher resolution input for CS-Net

Contrast Source for Resolution (Left) 16×16 (Right) 48×48

- Less data-intensive variations, applications for 3D inverse scattering.
- Presented work under revision as "Y. Sanghvi, Y. Kalepu, U.Khankhoje, *Embedding Deep Learning in Inverse Scattering Problems*, 2019".