01) Определение алгебры кватернионов. Векторное произведение. Сопряжённый кватернион. Норма кватерниона. Мультипликативность нормы. Сумма четырёх квадратов.

 $uv = -\langle u, v \rangle + [u, v]; ||x|| = \sqrt{\det x}; n_1 n_2 = ||a||^2 ||b||^2 = ||ab||^2.$

- 02) Свойства сопряжения и векторного произведения. Определение \overline{x} . Важные выражения: [v, v], [v, u] + [u, v], для чисто мнимых: $u^2, u[u, v], ||[u, v]||$.
 - 03) Кватернионы и вращения R^3

 $H_1; t = a + bu$, условия на $u, a^2 + b^2; xy = [x, y]; x^{-1}, \overline{x}; x^2, ||x||; ||a + bx||$. Определение угла, поворота.

- 04) Максимум квадратичной формы на сфере. Теорема Куранта-Фишера. Норма и матанализ. Собственные числа. Подпространства размерности k.
 - 05) Оценка на собственные числа ограничения. Оценка на след.
- 1. С.ч. операторов A и B. По К Φ , мин/макс для μ_i берется по подпр. внутри соотв. подпр. для λ (NB: λ_{i+n-m}). 2. Это след: взять матрицу A в ортонорм. базисе u_i . $v_i = (0, \dots, 1, \dots, 0)^T$ $A_{i,i} = v_i^T A v_i = q(u_i)$. Оценка: почленные нер-ва из 1.
 - 06) Метод главных компонент.

$$a_0 = \frac{1}{s} \sum x_i$$
: $\langle u_1, \dots, u_k \rangle = L_0$, ортонорм, доп. до базиса, $\sum_j ||pr_{L_0^\perp}(x_j - a)||^2 = \sum_j (\sum_{i=k+1}^n (x_{j,i} - a_i)^2)$, произв. L_0 : $S = \sum_j (\sum_{i=k+1}^n (x_{j,i} - a_i)^2)$

$$\sum_{i=1}^{s} ||pr_{L_0}(x_i)||^2 \to \max; \ X = (x_1, \dots, x_s)^T. \ S = \sum_{i=1}^{k} q(u_i) = Tr \ q(x)|_{L_0}, \ q(u) = u^T X^T X u. \ \text{Макс. по K} \Phi \ \text{на} \ \langle v_1, \dots, v_k \rangle$$

07) Сингулярные значения и SVD-разложение.

$$X^* = X^\top, \langle X^*e_i, e_j \rangle = \langle e_i, Xe_j \rangle, \sigma_i = \sqrt{d_i} > 0$$
 с.ч. A^*A . SVD $A \colon U \to V \exists$ о/н $u_i, v_j \colon$ матр $A = \Sigma(\sigma_{1..r}$ на диаг) $(X = L\Sigma R)$. e_i – о/н с.в. $\langle Ae_i, Ae_j \rangle = \langle A^*Ae_i, e_j \rangle = \langle d_ie_i, e_j \rangle, f_i = \frac{Ae_i}{\sqrt{d_i}}$ доп до базиса. $R = C^{-1} = C^\top, C$ столбцы e_i .

08) Приближение матрицей указанного ранга и SVD-разложение. Возможность применения к сжатию изображе-

рг из Б6
$$\Leftrightarrow$$
 ближ по $||X||_F = \sqrt{\text{Tr}\,X^\top X}$. $X = L\Sigma R$. рг на $\left\langle v_1^\top..v_k^\top \right\rangle$. v_i базис $X^\top X$ и строки R . рг a на $V^{(k)} = \sum a v_i v_i^\top$. $X^{(k)} = L\Sigma \left(\sum R v_i v_i^\top \right) = L\Sigma R^{(k)} = L\Sigma^{(k)} R$. Сж $L^{(k)}\Sigma^{(k)}R^{(k)}$. $2kn + k \to 2kn$ при $k < \frac{n}{2}$. Минор $k^2 + 2k(n-k) + 2k$.

09) Положительные матрицы. Теорема Перрона.

Док-во Перрона: полож-ть $(A|x| \ge |x| \Rightarrow Ay > \varepsilon z, z = A|x| \Rightarrow A|x| < \frac{A^n}{(1+\varepsilon)^n}A|x| \to 0$ противореч.), ед-ть (сонапр. коорд. $v \Leftarrow \sum_j A_{kj}|v_j| = |\sum_i A_{kj}v_j|$) и некратность (Жорд. клетки; либо $\exists c,i: |x_1-cx_2|_i = 0$, либо $Ax_2 = x_2 + x_1$)

- 10) Единственность положительного собственного вектора. Применение к случайному блужданию. 1. См. $\lambda x^{\top} y$. 2. Знаем предел $\lim_{k \to \infty} A^k v$, если у A макс по модулю с. ч. $\lambda = 1$ кратности 1. P(G): $P_{\alpha}(G) = (1 - \alpha)P(G) + (1 - \alpha)P(G)$ $\alpha \frac{1}{n} J, \ \alpha \in (0,1), \ \forall i,j \ J_{ij} = 1 - \text{а}$ это норм, Перрон гарантирует (см $(1,\ldots,1)$).
- 12) Сильно регулярные графы. Граф Петерсона и его спектр. Двудольность и спектр. $A^2 + (\mu - \lambda)A + (\mu - k)E = \mu J$, $A^2_{|U} + (\mu - \lambda)A_{|U} + (\mu - k)E = 0$ для $U = <(1, \dots, 1) >^{\perp}$ След степени == количество циклов == сумма собственных чисел с учетом кратности. λ для $(v, w), -\lambda$ для (v, -w)
- 13) Две оценки на размер максимального независимого множества. Натянуть подпространство на множество, следствие из КФ, нулевая квадратичная форма Характеристический вектор множества, разложить по ортонорм. базису регулярного(!) графа с $u_1=(1,\cdots,1)\frac{1}{\sqrt{n}}$

 $\sum\limits_{i=1}^3 A_i = B$. Все рег \Rightarrow общий с.в. $(1,\dots,1)$ для P с.ч. 3, для полного с.ч. 9. Сузим. Для A_1 и A_2 подпр. порожд. с.в. с с.ч. 1 \cap . Распишем для u из \cap . Bu = -u (натянуто на с.в. с с.ч. -1). \Rightarrow с.в. для A_3 с с.ч. -3. Такого с.ч. нет.

- 15) Тензорное произведение. Существование.
- $\cong K \left\langle V_1 \times \cdots \times V_n \right\rangle / K\{(..\lambda v + u..) \lambda(..v..) (..u..)\} = T. \ \forall h \colon K \left\langle \times V_i \right\rangle \to U \ \exists ! \hat{h} \colon \otimes V_i \to U, \ \hat{h} \circ i = h, \ \hat{h}((v_1, ..)) = h(v_1, ..)$ однозначно и пропускается через T, т. к. все соотн в ядре (проверить). $\hat{h}(v_1 \otimes ..) = \hat{\hat{h}}((v_1,..))$. h – полилин, \hat{h} – лин.
- 16) Единственность тензорного произведения. Размерность тензорного произведения. Единств: рассм полилин отобр i_1 и i_2 для \otimes_1 и \otimes_2 из опр. $\exists ! \hat{i}_1, \hat{i}_2 \colon \hat{i}_1 \circ i_2 = i_1, \hat{i}_2 \circ i_1 = i_2$. Д-ть, что $\hat{i}_1 \hat{i}_2 = \operatorname{Id}$. Разм: $e_{1j_1}\otimes\cdots\otimes e_{1j_n}$ порожд (раскр по полилин). $\operatorname{Hom}(V_1,\ldots,V_n,K)\cong\operatorname{Hom}(V_1\otimes\cdots\otimes V_n,K)\cong V_1\otimes\cdots\otimes V_n$.

- 17) Тензорное произведение линейных отображений. Кронекерово произведение. Тензорное произведение операторов и его собственные числа. Категорное произведение графов.
- Единств: определено на тензорятах; \exists : отобразить $U_1 \times \dots \times U_k$ в $V_1 \otimes \dots \otimes V_K$ полилин. (композ полилин.) \Rightarrow (опр. тенз.) \exists !. Наше правило подходит. Матрица: расписать $(\sum_{k} A_{k,i} f_k) \otimes (\sum_{l} B_{l,j} f'_l)$. С.ч. $A \otimes B$: жорданов базис.
- 18) Канонические изоморфизмы для тензорного произведения. 3. $\operatorname{Hom}(U,V) \cong V \otimes U^* \colon v \times f \to (u \to f(u)v)$. 4. $\operatorname{Hom}(U \otimes V,W) \cong \operatorname{Hom}(U,\operatorname{Hom}(V,W)) \colon L_1 \colon L \to (u \to (v \to L(u \otimes v)))$, $L_2 \colon L \to (u \otimes v \to (L(u))(v))$, они обратны. 5. $U^* \otimes V^* \to (U \otimes V)^* \colon f \otimes g \to (u \otimes v \to f(u)g(v))$ базис в базис
- 19) Тензоры. Примеры. Координаты тензора. Замена переменной случай тензора валентности (1,0). $(p,0) = \text{полилин. форма, } (1,1) = \text{лин. оп-р, } (2,1) = \text{структ. алгебры. Переход: } x_{new} = Cx_{old}. \ e_i = \sum_{j=1}^n C_{ji} \hat{e}_j, \text{ хотим } D: e^i = \sum D_{ji} \hat{e}^j. \ e^k(e_i) = \delta_{ki} \Rightarrow \delta_{ki} = \sum_j C_{ji} \sum_l D_{lk} \hat{e}^l(\hat{e}_j) = \sum_{j,l} C_{ji} D_{lk} \cdot \delta_{lj} = \sum_j C_{ji} D_{jk} \ E_n = C^T D \Rightarrow D = (C^{-1})^T$ 20) Замена переменной общий случай.
- $T=\sum_{\substack{i_1',\ldots,i_q'\in\overline{1,n}\\j_1',\ldots,j_p'\in\overline{1,n}}}T_{j_1',\ldots,j_p'}^{i_1',\ldots,i_q'}e_{i_1',\ldots,i_q'}^{j_1',\ldots,j_p'}.$ $e_i=\sum_{j=1}^nC_{ji}\hat{e}_j$ и $e^i=\sum D_{ji}\hat{e}^j.$ Раскрыть скобки, поменять суммирование. Должно

получиться
$$\hat{T}^{i_1,\dots,i_q}_{j_1,\dots,j_p'} = \sum_{\substack{i_1',\dots,i_q' \in \overline{1,n} \\ j_1',\dots,j_p' \in \overline{1,n}}} \prod_{t \in \overline{1,p}} D_{j_t,j_t'} \prod_{s \in \overline{1,q}} C_{i_s,i_s'} \, T^{i_1',\dots,i_q'}_{j_1',\dots,j_p'}.$$

- 21) Тензорная алгебра. Свёртка и след.
- Для (1,1) $T=\sum_{i,j}T^i_je^j\otimes e_i$. Тогда $Conv(T)=\sum_{i,j}T^i_je^j(e_i)=\sum_iT^i_i$.. $V^*\otimes V\cong \mathrm{Hom}(V,V)\Rightarrow$ это след. 27) Лемма Гаусса. Содержание многочлена. Делимость в Q(R)[x] и в R[x].
- лемма гаусса. Содержание многочлена. Делимость в Q(R)[x] и в R[x]. Лемма: Пусть нет, возьмём $\min a_i, b_j \not/ p$, тогда $c_{i+j} \not/ p$. Содержание: поделим на $\cot g, h$, убедимся что $\cot f = 1$. Лемма про Q(R)[x]: d_1, d_2 НОК знаменателей, $c = \frac{d_1}{d_2}$.
- 28) Факториальность кольца многочленов над факториальным кольцом. R[x] факториально и простые в нём: $f=p\in R,\ f: \mathrm{cont}(f)=1$ непр. в Q(R)[x]. 1) Б27 2) в них раскладывается, посмотрим в $Q(R),\ g=\frac{a_1}{a_2}fq\Rightarrow \frac{a_1}{a_2}q\in R[x]$ (т.к. $\mathrm{cont}(q):a_2)$ 3) $f=a\prod g_i$
- 29) Редукционный признак неприводимости. Примеры. Признак Эйзенштейна. 1. $a_n \not / p$, f - неприводим в $R/p[x] \Rightarrow$ неприводим над Q(R). cont = 1 и непр-ть над $Q(R) \Rightarrow$ непр-ть над R (см. степени g и h). 2. $a_n \not / p$, все $a_i : p \ i < n$, но $a_0 \not / p^2$, то многочлен f(x) неприводим. Пусть $b_0 \not / p$, см. min $c_s \not / p$ и a_s .
- 30) Алгоритм Кронекера. Сведение для многочленов от нескольких переменных. 1) Перебираем наборы делителей $f(i), 0 \le i \le \frac{degf}{2}$, интерполируем, проверяем. 2) Различным разложениям $f(x_1, \dots, x_n)$ соответствуют различные разложения $f(x_1, \dots, x^{d^{n-1}})$ для d больших $\max_{i=1}^n \{\deg_{x_i} f\}$. Рассмотреть образ x^{α} .
- 31) Лемма Гензеля. Разложение на множители при помощи леммы Гензеля. Доказательство леммы: Индукция по k. Строим для k+1. Помним, что $\forall f:\ p^k f \equiv p^k \overline{f} \pmod{p^{k+1}}$. $\overline{h} \equiv \hat{h} + p^k a(x) \Rightarrow \overline{h} \overline{g} \equiv \hat{g} \hat{h} + p^k (a(x)g + b(x)h)$. С другой стороны $f \hat{g} \hat{h} = p^k c(x) \Rightarrow a,\ b$ берем из лп НОДа g и h
- 32) Степенные суммы. Тождество Ньютона. $0=(-1)^n n\sigma_n+\sum_{k=0}^{n-1}(-1)^k\sigma_k s_{n-k}$, в многочлен подставим корни, просуммируем по всем корням, отдельно случаи k< n добавим нулевые переменные, k> n занулим не входящие в моном переменные
- 33) Целые алгебраические элементы. Замкнутость относительно операций. а алгебраический $==\exists f\in\mathbb{Z}[x]:f(a)=0.$ Замкнуто: $\prod(x-(a_i+b_j))$ симметрично по i, тогда коэффициенты выражаются через симметрические, симметрический по b_i все коэффициенты целые.
- 34) Результант. Совпадение двух определений (без лемм). Общий множитель $\leftrightarrow fk_2 gk_1 = 0$, $\deg k_2$ меньше $\deg g$. Построить матрицу $(k(x), l(x)) \to k(x)f(x) + l(x)g(x)$. Оба опр. многочлены от коэф. \leftrightarrow симм. многочлены от корней. $DetS \stackrel{.}{:} a_n^m b_m^n$ и $(x_i y_j)$ (взимно просты). Применяем \downarrow
- 35) Леммы про результант. Дискриминант, его смысл. Вычисление через результант. $a_n^m b_m^n \prod_{i,j} (x_i y_j) = (-1)^{mn} b_m^n \prod f(y_j) = a_n^m \prod g(x_i)$., дает, что Res однородный многочлен степени m по a и n по b. $D(f) = a_n^{2n-2} \prod_{i < j} (x_i x_j)^2$. $Res(f, f') = (-1)^{\frac{n(n-1)}{2}} a_n D(f)$. (т.к. $f'(x_i) = a_n \prod_{j < i} (x_i x_j)$. + лемма).
- 36) Степень расширения. Теорема о башне полей. Степень расширения размерность L как вект. пр. над K. [M:K] = [M:L][L:K]. Взять базисы u_i и v_i : M над L и

L над K. Новый базис – $u_i v_i$.

- 37) Описание наименьшего подрасширения, содержащего данный элемент.
- $K(\alpha) \cong K[\alpha] \cong K[x]/p(\alpha)$, рассмотрим $K[x] \to L$, переводящий $x \to \alpha$ и $K[x]/p(x) \to L$. Следствия про равенство степеней расширения над К и изоморфность расширений для корней неприводимого многочлена.
- 38) Построение при помощи циркуля и линейки. Пример неразрешимого построения.
- x построимо \Rightarrow оно алгебраическое и лежит в расширении L/\mathbb{Q} степени 2^n . Докажем индукцией по числу построений, рассмотрим уравнение пересечения с новым объектом степени 2. $\cos\frac{\pi}{9}$ – корень уравнения $4x^3-3x=\frac{1}{2}$.
- 39) Конечные поля. Число элементов. Основное уравнение. Эндоморфизм Фробениуса. Корни $x^{p^n}-x$ образуют
- 1. Содержит Z/p 2. p^n эл-тов (см. как п/г по +) 3. См. на мультипл. группу. Теорема Ферма для групп. 4. Биномиальный коэф. делится на р почти всегда. 5. Аккуратно всё проверить.
 - 40) Основная теорема про конечные поля.

Поле разложения $x^{p^n}-x \to$ подполе из p^n элементов. Взять образующий группы, найти мин. многочлен, найти его корень в другом поле (через делимость). И проверить на изоморфизм "образующий группы в корень" - техника.

- 41) Подполя данного конечного поля. Описание автоморфизмов F_p^n . 1. $\mathbb{F}_{p^n} \in \mathbb{F}_{p^m}$: а) Башня б) см. $\{x \in \mathbb{F}_{p^m} | x^{p^n} x = 0\}$, это подполе, p^n эл-тов, т.к. $x^{p^m} x \vdots x^{p^n} x$ и первый раскладывается на лин. множители. 2. $\mathbb{F}_q = F_p[\alpha]$, где степень мин. f для α равна n, а авт-м задаётся образом корня.
- 42) Расширения поля F_q . Неприводимые многочлены как делители $x^{q^d}-x$. 1. $q^{[L:\mathbb{F}_q]}$, существ. по Б41. Изоморф-м L_1 и L_2 : знаем для \mathbb{F}_p (Б40), $\varphi(\mathbb{F}_q)=\mathbb{F}_q\Rightarrow$ это степень Frob, см. обратный к нему над L_2 . 2. а) $\mathbb{F}_q[\alpha]\in\mathbb{F}_{q^m}$ (т.к. есть корень), Башня. б) см. $\mathbb{F}_{q^{\deg f}}\cong\mathbb{F}_q[x]/f\Rightarrow$ общий α (NB: f неприводим).
 - 43) Лемма про производную. Лемма про эффективное извлечение корня степени p.
- 1. $f = \prod g_i^{n_i}$, смотрим $f = g_i^{n_i}g$, берём произв., см. на степень вхождения в f и f'. 2. $h' = 0 \Leftrightarrow h = g(x^p)$, коэфф. g: a_i , см. $b_i^p = a_i$ (можно, т.к. Frob), см. f с коэфф. b_i и распиши $f^p = g(x^p) = h$. Для извлечения см. обратный Frob.
 - 44) Лемма про разделение на сомножители, чьи неприводимые множители имеют одинаковую степень.

См. Б42 про критерий для степени. Инд-ция: пусть на шаге у f нет мн-лей степени < l. $g(x) = x^{q^l} - x$, HOД(g, f) состоит из мн-лей f степени = l, т.к. делит, а меньше нет. HOД(g, f) = HOД(r, f). Значит нужно $x^{q^l} \mod f$ (см. в $\mathbb{F}_q[x]/f$).

- 45) Алгоритм Берлекэмпа.
- $R = \mathbb{F}_q[x]/f \cong \prod \mathbb{F}_q[x]/h_i$. Хотим дел-ли 0. Смотрим на $\{y \in \mathbb{F}_q[x]/f|y^q-y=0\}$ (покомпонентно удовл-т). Это линейное \Rightarrow есть матрица, её решаем, получаем l-ку коэфф. Перебираем константы, обнуляем координату, см. на НОД с f.
 - 46) Вероятностный алгоритм Кантора-Цассенхауза.
- 1. Про кв-ты: $x^{\frac{q^d-1}{2}}=\pm 1.$ 2. Как в Б45, такое же R, оттуда случ-й $h\to h^{\frac{q^d-1}{2}}-1.$ Попадём в $\{0,-1,-2\}$. Худший случай: $\mathbb{F}_3\times\mathbb{F}_3$. Считаем вероятность получить среди первых двух комп-т квадрат и не квадрат $(p\geq \frac{4}{9})$.
- 48) Коды, исправляющие ошибки. Минимальное расстояние. Линейные коды. Вычисление минимального расстоя-

Хэмминг, код, кодовое расстояние, обнаруживает, исправляет, n-k-q-код, линейному соответствует матрица, систематический, проверочная матрица (образ – её ядро), мин. число ненулевых координат x = кол-во нез. столбцов.

- 49) Циклические коды. Эквивалентное описание. Коды БЧХ. Пример.
- $q=p^s,\,m,n$ такие, что $q^m-1.n,\,2\leq d\leq n,\,l_0\leq n.$ α образующая ${\mathbb F_{q^m}}^*,\,\beta=\alpha^{(q^m-1)/n}$ Пример: $q = 2, m = 4, l_0 = 1, n = 15, d = 5, f = x^4 + x^3 + 1.$
 - 50) Основная теорема про коды БЧХ.
- 1. Делится \Leftrightarrow обнуляется на корнях, определитель $p(x) \to p(\beta^i)$. 2. $d_{min} \ge d$. Пусть плохо \mathbb{F}_q , тогда плохо в \mathbb{F}_{q^m} , обнуляет $H \implies$ у неё есть d-1 зависимый столбец, выделим их, сведём к Вандермонду, не вырождено.
 - 51) Алгоритм декодирования Питерсона-Горенштейна-Цирлера.
- $e(x) = \sum e_{i_j} x^{i_j}$. Расписать через $Y_j X^{l_0+k-1}$. Хотим Y_j , значит нужны X. См. $\Lambda(x) = \prod (1-x\Lambda_i)$. Хотим Λ_i , тогда найдём корни и обратим. См. $0 = \Lambda(X_j^{-1})$, домножаем на $Y_j X_j^{\nu+t}$, суммируем $(l_0..l_0+t-1)$, меняем на $S_{t+1}..S_{2t}$.

- 54) Обратная функция относительно свёртки. Её мультипликативность. Функция Мёбиуса. Формула обращения. 1. f(1) обратимо, выкидываем n, см. $0 = \sum_{d|n} f(\frac{n}{d})g(d)$. 2. Инд-ция по (n,m): $g(nm) = -\sum_{d|nm,d < nm} \frac{nm}{d})g(d) = e(n)e(m) + g(n)g(m)$. 3. Пишем дзета-ф-цию, суммируем как БУГП, см. обратную. 4. $f = g*1 \Leftrightarrow g = f*1^{-1} = f\mu$.
- 55) Вероятность встретить два взаимно простых числа. Считаем $\sum \varphi(i), \varphi(n) = \sum \mu(d) \frac{n}{d}$. Дальше аккуратно считаем, разбиваем на две суммы (по $\mu(d)$ и d'), в конце $\frac{n^2}{2} \sum \frac{\mu(d)}{d^2} = \frac{3n^2}{\pi}$