Quantum exponential Orlicz space in information geometry

Anna Jenčová Mathematical Institute, Slovak Academy of Sciences

September 28, 2021

1 Introduction - information geometry

2 Quantum relative entropy and exponential families

2.1 Basic setting and notations

- \mathcal{M} a von Neumann algebra (σ -finite),
- $\mathcal{M}^s = \{h = h^* \in \mathcal{M}\}$ self-adjoint part,
- \mathcal{M}_* the predual, \mathcal{M}_*^+ the positive cone in \mathcal{M}_* ,
- $\mathfrak{S}_*(\mathcal{M})$ the set of normal states,
- $\mathcal{M}_*^s = \{\psi(a) \in \mathbb{R}, \ \forall a \in \mathcal{M}^s\}$ hermitian normal functionals.

We will also fix a faithful normal state $\rho \in \mathfrak{S}_*(\mathcal{M})$.

Haagerup L_p -spaces: $L_p(\mathcal{M})$, $1 \le p \le \infty$, the norm: $\|\cdot\|_p$

- $\mathcal{M} \simeq L_{\infty}(\mathcal{M})$,
- $\mathcal{M}_* \simeq L_1(\mathcal{M})$:

$$\psi \mapsto h_{\psi}, \qquad \operatorname{Tr}\left[h_{\psi}\right] = \psi(1),$$

• $L_2(\mathcal{M})$ a Hilbert space

$$(\xi, \eta) = \operatorname{Tr} [\xi^* \eta], \qquad \xi, \eta \in L_2(\mathcal{M})$$

(In the case $\mathcal{M} = B(\mathcal{H})$, isomorphic to Schatten classes)

Standard form: $(\lambda, L_2(\mathcal{M}), J, L_2(\mathcal{M})^+)$

$$\lambda(x)\xi = x\xi, \quad J\xi = \xi^*, \qquad x \in \mathcal{M}, \ \xi \in L_2(\mathcal{M}).$$

 $h_{\omega}^{1/2}$ - (unique) vector representative of $\omega \in \mathcal{M}_*^+$ in $L_2(\mathcal{M})^+$.

Kosaki L_p -spaces: with respect to ρ , $\eta \in [0, 1]$

$$L_p^{\eta}(\mathcal{M}, \rho) = \{h_\rho^{\eta/q} k h_\rho^{(1-\eta)/q}, \ k \in L_p(\mathcal{M})\} \subseteq L_1(\mathcal{M}),$$

the norm: $\|h_{\rho}^{\eta/q}kh_{\rho}^{(1-\eta)/q}\|_{p,\sigma}^{\eta} = \|k\|_{p}$

Symmetric L_p -spaces: $L_p(\mathcal{M}, \rho) := L_p^{1/2}(\mathcal{M}, \rho)$

2.2 Relative entropy

Araki relative entropy: for $\omega \in \mathcal{M}_*^+$:

$$S(\omega \| \rho) = -\langle \log(\Delta_{\rho, \xi_{\omega}}) \xi_{\omega}, \xi_{\omega} \rangle$$

in finite dimensions, this is the same as the **Umegaki relative entropy**: ω, ρ density operators,

$$S(\omega || \rho) = \operatorname{Tr} \omega(\log \omega - \log \rho)$$

Properties of the relative entropy

- The map $\omega \mapsto S(\omega \| \rho)$ is strictly convex, lower semicontinuous,
- $S(\omega \| \rho) \ge \omega(1) \log \omega(1)$, with equality iff $\omega = \lambda \rho$, $\lambda \ge 0$,
- For a positive unital normal map $T: \mathcal{M} \to \mathcal{N}$, with predual $T_*: \mathcal{N}_* \to \mathcal{M}_*$,

$$S(T_*(\omega)||T_*(\rho)) \le S(\omega||\rho), \qquad \omega \in \mathcal{M}_*^+$$

Relation to Kosaki (symmetric) L_p -spaces

Let $h_{\omega} \in L_p(\mathcal{M}, \rho), p > 1$, and put

$$f(\alpha) = \frac{1}{\alpha - 1} \log \frac{\|h_{\omega}\|_{\alpha, \rho}}{\omega(1)}, \quad \alpha \in (0, p].$$

(the Sandwiched Rényi relative entropy $D_{\alpha}(\omega \| \rho)$)

- the function f is nondecreasing on (0,p]
- $\lim_{\alpha \downarrow 1} f(\alpha) = \frac{S(\omega \parallel \rho)}{\omega(1)}$

In particular, $S(\omega \| \rho) < \infty$.

Sets with finite relative entropy

We define

$$\mathcal{P}_{\rho} = \{ \omega \in \mathcal{M}_{*}^{+}, \ S(\omega \| \rho) < \infty \}$$

$$\begin{array}{l} \mathcal{S}_{\rho} = \{\omega \in \mathfrak{S}_{*}(\mathcal{M}), \ S(\omega \| \rho) < \infty\} \\ K_{\rho} = \{\omega \in \mathfrak{S}_{*}(\mathcal{M}), \ S(\omega \| \rho) \leq 1\} \\ \textbf{Donald's identity} : \ \text{for} \ \omega_{i} \in \mathcal{M}_{*}^{+}, \ \omega = \sum_{i} \omega_{i} \end{array}$$

$$S(\omega \| \rho) + \sum_{i} S(\omega_i \| \omega) = \sum_{i} S(\omega_i \| \rho)$$

- \mathcal{P}_{ρ} is a convex cone, face of \mathcal{M}_{*}^{+} ,
- $L_p(\mathcal{M}, \rho)^+ \subseteq \mathcal{P}_\rho$ for p > 1,
- S_{ρ} is a base of \mathcal{P}_{ρ} ,
- K_{ρ} is convex and weakly compact, generating \mathcal{P}_{ρ} .

Perturbation of states and relative entropy

Let $h \in \mathcal{M}^s$ and

$$c_{\rho}(h) = \sup_{\omega \in \mathfrak{S}_{*}(\mathcal{M})} \omega(h) - S(\omega \| \rho)$$

- $c_{\rho}(h) < \infty$ for all $h \in \mathcal{M}^s$,
- c_{ρ} is convex and continuous.

The perturbed state is the unique state $[\rho^h] \in \mathcal{S}_{\rho}$ such that the supremum is attained:

$$c_{\rho}(h) = [\rho^h](h) - S([\rho^h] \| \rho).$$

For all $\omega \in \mathfrak{S}_*(\mathcal{M})$, we have

$$\omega(h) - S(\omega \| \rho) = c_{\rho}(h) - S(\omega \| [\rho^h])$$

h defines an affine function on S_{ρ} :

$$h(\omega) = S(\omega || \rho) - S(\omega || [\rho^h]) + c_\rho(h).$$

In finite dimensions, we have

$$[\rho^h] = \exp(\log \rho + h - c_\rho(h)), \quad c_\rho(h) = \log \operatorname{Tr} [\exp(\log \rho + h)].$$

Quantum exponential family: $\{[\rho^{th}], t \in I \subseteq \mathbb{R}\}$

3 The quantum exponential Orlicz space

3.1The exponential Young function and its dual

The exponential Young function

For the dual pair, we choose $X = \mathcal{M}^s$, $V = \mathcal{M}^s_*$. For $h \in \mathcal{M}^s$, put

$$\Phi_{\rho}(h) := \frac{\exp(c_{\rho}(h)) + \exp(c_{\rho}(-h))}{2} - 1$$

- Φ_{ρ} is a Young function $X \to [0, \infty)$,
- (X, V) and Φ_{ρ} satisfy the additional assumptions.

The quantum exponential Orlicz space

Assume that \mathcal{M} is commutative: $\mathcal{M} \simeq L_{\infty}(\Omega, \Sigma, \rho)$ a probability space. Then for $u \in \mathcal{M}^s$,

$$\Phi_{\rho}(u) = \int_{\Omega} (\cosh(|u|) - 1) d\rho$$

and $B_{\Phi_{\rho}}$ is the closure $E_{\exp}(\Omega, \Sigma, \rho)$ of L_{∞} in $L_{\exp}(\Omega, \Sigma, \rho)$. We have

- $u \in E_{\text{exp}}$ if and only if $\Phi_{\rho}(tu) < \infty$ for all $t \in \mathbb{R}$
- $E_{\exp}^{**} = L_{\exp}$.

We define: $E_{\exp}(\mathcal{M}, \rho) := B_{\Phi_{\rho}}$ and $L_{\exp}(\mathcal{M}, \rho) := B_{\Phi_{\rho}}^{**}$ - the quantum exponential Orlicz space. We will mostly work with E_{\exp} .

The dual space

The conjugate function: $\Phi_{\rho}^*: V \to [0, \infty]$

$$\Phi_{\rho}^{*}(v) = \frac{1}{2} \inf_{\substack{\omega_{1}, \omega_{2} \in \mathcal{M}_{+}^{+} \\ 2v = \omega_{1} - \omega_{2}}} [S(\omega_{1} \| \rho) - \omega_{1}(1) + S(\omega_{2} \| \rho) - \omega_{2}(1)] + 1$$

We know that $E_{\text{exp}}^*(\mathcal{M}, \rho) = B_{\Phi_{\rho}}^* \simeq B_{\Phi_{\rho}^*}$ and $B_{\Phi_{\rho}^*} \subseteq V = \mathcal{M}_*^s$

- $E_{\text{exp}}^* = \mathcal{P}_{\rho} \mathcal{P}_{\rho}, E_{\text{exp}}^* \cap \mathcal{M}_*^+ = \mathcal{P}_{\rho}$
- The unit ball in E_{exp}^* :

$$U_{\rho} := \{ v \in \mathcal{M}_{*}^{s}, \ v = \frac{1}{2}(\omega_{1} - \omega_{2}), \ S(\omega_{1} \| \rho) + S(\omega_{2} \| \rho) \le \omega_{1}(1) + \omega_{2}(1) \}$$

An alternative definition

Let $\tilde{K}_{\rho} = \{ \omega \in \mathcal{M}_{*}^{+}, \ S(\omega \| \rho) \leq \omega(1) \}$. Then $\tilde{K}_{\rho} \subset \mathcal{P}_{\rho}$ is convex and compact in the $\sigma(\mathcal{M}_{*}, \mathcal{M})$ topology. Indeed, since $S(\omega \| \rho)$ is weakly lsc, \tilde{K}_{ρ} is weakly closed. Moreover, let $\omega \in \tilde{K}_{\rho}$ and $\omega(1) = \lambda$, then

$$S(\omega \| \rho) = S(\lambda \omega_0 \| \rho) = \lambda S(\omega_0 \| \rho) + \lambda \log \lambda \le \lambda$$

for some $\omega_0 \in \mathcal{S}_{\rho}$ and this entails that $0 \leq S(\omega_0 \| \rho) \leq 1 - \log \lambda$, so that $\|\omega\|_1 = \omega(1)$ is bounded. Let $A(\tilde{K}_{\rho})$ be the set of continuous affine functions over \tilde{K}_{ρ} . Then $A(\tilde{K}_{\rho})$ is an order unit space, with the natural positive cone $A(\tilde{K}_{\rho})^+$ and the constant unit functional as order unit. The order unit norm coincides with the supremum norm. The set of states of $A(\tilde{K}_{\rho})$ (with its weak*-topology) is homeomorphic to \tilde{K}_{ρ} with the inherited $\sigma(\mathcal{M}_*, \mathcal{M})$ topology. The dual space $A(\tilde{K}_{\rho})^*$ is the real linear span of \tilde{K}_{ρ} in \mathcal{M}_* and the unit ball is

$$\tilde{U}_{\rho} = \operatorname{co}(\tilde{K}_{\rho} \cup -\tilde{K}_{\rho}).$$

Observe that any element $h \in \mathcal{M}^s$ defines an element of $A(\tilde{K}_{\rho})$ and since \mathcal{M}^s separates points of \tilde{K}_{ρ} and contains all the constats, we see that \mathcal{M}^s is a norm-dense subspace in $A(\tilde{K}_{\rho})$.

Now note that $\frac{1}{2}\tilde{K}_{\rho}$ and $-\frac{1}{2}\tilde{K}_{\rho}$ are included in the unit ball U_{ρ} in $E_{\rm exp}^*$, hence we have $\frac{1}{2}\tilde{U}_{\rho} \subseteq U_{\rho}$. Conversely, let $v = \frac{1}{2}(\omega_1 - \omega)$ such that $S(\omega_1 \| \rho) + S(\omega_2 \| \rho) \le \omega_1(1) + \omega_2(1)$. Note that then

$$S(\omega_1 \| \rho) \le \omega_1(1) + \omega_2(1) - S(\omega_2 \| \rho) \le \omega_1(1) + \omega_2(1) - \omega_2(1) \log \omega_2(1) \le \omega_1(1) + 1$$

and therefore by Donald's identity,

$$S(\omega_1 + \rho \| \rho) \le S(\omega_1 \| \rho) \le \omega_1(1) + 1 = (\omega_1 + \rho)(1),$$

so that $\omega_1 + \rho \in \tilde{K}_{\rho}$, similarly also $\omega_2 + \rho \in \tilde{K}_{\rho}$. It follows that

$$v = \frac{1}{2}(\omega_1 - \omega_2) = \frac{1}{2}(\omega_1 + \rho - (\omega_2 + \rho)) \in \tilde{U}_{\rho},$$

hence $\frac{1}{2}\tilde{U}_{\rho} \subseteq U_{\rho} \subseteq \tilde{U}_{\rho}$. Consequently, we the two norms are equivalent.

It follows that the two corresponding norms on \mathcal{M}^s are also equivalent and since \mathcal{M}^s is norm-dense in both $A(\tilde{K}_{\rho})$ and E_{exp} , we conclude that $A(\tilde{K}_{\rho}) = E_{\text{exp}}$, with equivalent norms. Note that the second dual is $A^{**}(\tilde{K}_{\rho}) = A_b(\tilde{K}_{\rho})$, the set of bounded affine functions $\tilde{K}_{\rho} \to \mathbb{R}$.

Properties of the quantum exponential Orlicz space

We have the following continuous inclusions: for p > p' > 1

$$\mathcal{M}^s \sqsubseteq E_{\text{exp}}(\mathcal{M}, \rho) \sqsubseteq L_{\text{exp}}(\mathcal{M}, \rho) \sqsubseteq L_p(\mathcal{M}, \rho) \sqsubseteq L_{p'}(\mathcal{M}, \rho) \sqsubseteq E_{\text{exp}}^*(\mathcal{M}, \rho) \sqsubseteq \mathcal{M}_*^s$$

Proof. We first note that Φ_{ρ}^* is finite valued on $L_p(\mathcal{M}, \rho)_s$ (the self-adjoint part). Indeed, we have $L_p(\mathcal{M}, \rho)_s = L_p(\mathcal{M}, \rho)^+ - L_p(\mathcal{M}, \rho)^+ \subseteq \mathcal{P}_{\rho} - \mathcal{P}_{\rho}$, so that for $v \in L_p(\mathcal{M}, \rho)_s$ there are some $\omega_i \in \mathcal{P}_{\rho}$ such that $v = \frac{1}{2}(\omega_1 - \omega_2)$. Therefore

$$\Phi_{\rho}^{*}(v) \le 1 + \frac{1}{2} (S(\omega_{1} \| \rho) - \omega_{1}(1) + S(\omega_{2} \| \rho) - \omega_{2}(1)) < \infty.$$

Since we have the continuous embedding $L_p(\mathcal{M}, \rho) \sqsubseteq L_1(\mathcal{M})$, the restriction of Φ_{ρ}^* to $L_p(\mathcal{M}, \rho)_s$ is convex and lsc. Since a finite valued convex lsc function on a Banach space is continuous, we conclude that Φ_{ρ}^* is continuous as a function on $L_p(\mathcal{M}, \rho)_s$. It follows that the Minkowski functional of $C_{\Phi_{\rho}^*}$ is continuous on $L_p(\mathcal{M}, \rho)_s$, hence the continuous embedding $L_p(\mathcal{M}, \rho)_s \sqsubseteq E_{\exp}^{\ell}$. By duality, $L_{\exp} = E_{\exp}^{**} \sqsubseteq L_p(\mathcal{M}, \rho)^* \simeq L_q(\mathcal{M}, \rho)$ for 1/p + 1/q = 1. The inclusion $\mathcal{M}^s \sqsubseteq E_{\exp}$ is by continuity of Φ_{ρ} , $E_{\exp} \sqsubseteq L_{\exp}$ is clear.

Positive unital normal maps

Let $T: \mathcal{N} \to \mathcal{M}$ be a positive unital normal map, $T_*: \mathcal{M}_* \to \mathcal{N}_*$ its predual. Since $S(\omega \| \rho)$ is monotone under such maps, we have for any $h \in \mathcal{N}^s$

$$c_{\rho}(Th) = \sup_{\omega \in \mathfrak{S}_{*}(\mathcal{M})} \omega(Th) - S(\omega \| \rho)$$

$$\leq \sup_{\omega \in \mathfrak{S}_{*}(\mathcal{M})} T_{*}\omega(h) - S(T_{*}\omega \| T_{*}\rho)$$

$$\leq \sup_{\sigma \in \mathfrak{S}_{*}(\mathcal{N})} \sigma(h) - S(\sigma \| T_{*}\rho) = c_{T_{*}\rho}(h).$$

It follows that $\Phi_{\rho}(Th) \leq \Phi_{T_*\rho}(h)$, so that $||Th||_{\exp,\rho} \leq ||h||_{\exp,T_*\rho}$. Hence T extends to a contraction $E_{\exp}(\mathcal{N}, T_*\rho) \to E_{\exp}(\mathcal{M}, \rho)$.

4 The quantum information manifold

The extended functional

For $h \in E_{\exp}(\mathcal{M}, \rho)$,

$$c_{\rho}(h) := \sup_{\omega \in \mathcal{S}_{\rho}} \omega(h) - S(\omega \| \rho)$$

is

- finite valued
- attained at a unique state $[\rho^h] \in \mathcal{S}_{\rho}$
- for all $h \in E_{\text{exp}}(\mathcal{M}, \rho)$:

$$\omega(h) - S(\omega \| \rho) = c_{\rho}(h) - S(\omega \| [\rho^h])$$

The chain rule

For $h, k \in E_{\text{exp}}(\mathcal{M}, \rho)$:

- $\mathcal{P}_{\rho} = \mathcal{P}_{[\rho^h]}$
- $E_{\text{exp}}(\mathcal{M}, \rho) = E_{\text{exp}}(\mathcal{M}, [\rho^h])$ (equivalent norms)
- $c_{\rho}(h+k) = c_{[\rho^h]}(k) + c_{\rho}(k)$
- $\bullet \ [\rho^{h+k}]=[[\rho^h]^k]$
- $[\rho^h] = [\rho^k]$ if and only if $h k = \rho(h k)$.

A C^{∞} -atlas on the set of all faithful normal states

definition construction parallel transport??