CI 2 : Étude du comportement des Systèmes Linéaires Continus Invariants

Secteur d'activité

Manutention de produits industriels

Support

Objectifs

Modéliser - Proposer un modèle - Mod-C2 - SLCI

Un système étant fourni, et les exigences définies, l'étudiant doit être capable de :

- proposer un modèle de comportement du système ou partie du système à partir des résultats expérimentaux.
- Mod-C2-S1 : Identifier le comportement d'un système pour l'assimiler à un modèle canonique, à partir d'une réponse temporelle ou fréquentielle
- Mod-C2-S2 : Établir un modèle de comportement à partir de relevés expérimentaux.
- Mod-C3-S3: On pourra étudier les systèmes du premier ordre présentant un retard pur.

Documents

À rendre

Documentation ressource sur l'axe Imericc (Fichier PPT)

Compte rendu oral au long de la séance – Conserver les courbes et noter les résultats

A. MISE EN SITUATION

1. L'AXE EMERICC

Les axes numériques sont utilisés lorsqu'on désire déplacer des charges avec une dynamique élevée. (Par exemple, les centres d'usinage à commande numérique 3 axes sont équipés de 3 axes numériques.). L'axe Emericc est un système didactisé ayant la même structure qu'un axe numérique industriel.

2. MISE EN ŒUVRE DU SYSTÈME

- À l'aide de la documentation, mettre en service le système.
- Réaliser des déplacements manuels en utilisant le pupitre.
- Q1. Faire le bilan des capteurs et des détecteurs utilisés par le système. Quel est l'actionneur utilisé ?
- Q2. Réaliser la chaîne fonctionnelle associée au système.

3. OBJECTIFS

- 1. Modéliser le fonctionnement de l'axe Emericc
- 2. Valider le modèle de l'axe Emericc

B. IDENTIFICATION DU COMPORTEMENT DU SYSTÈME

1. EXPÉRIMENTATION 1

On se positionne dans les conditions expérimentales suivantes :

- Asservissement en vitesse Boucle Fermée
- Gain proportionnel: 25
- Amplitude de l'échelon : 50 mm/s
- Mesure de 1500 ms
- 500 points
- Pas de masse

Effectuer la mesure.

À l'aide de la documentation, exporter les données sur Excel.

- Copier les données du relevé expérimental dans le fichier fourni TPEmericc.xls
- Tracer la courbe expérimentale.
- Q3. Mesurer l'écart statique et le temps de réponse à 5%. Vérifier si le cahier des charges est vérifié, ou non.
- Q4. Par quel type de système peut-on modéliser le comportement de l'axe Emericc ? Justifier.
- Q5. Identifier les caractéristiques du système.

2. EXPÉRIMENTATION 2

On se positionne dans les conditions expérimentales suivantes :

- Asservissement en position en Position B. Fermée
- Gain proportionnel: 25
- Amplitude de l'échelon : 50 mm

- Mesure de 1500 ms
- 500 points
- Pas de masse

Effectuer la mesure.

- Copier les données du relevé expérimental dans le fichier fourni TPEmericc.xls
- Tracer la courbe expérimentale.
- Mesurer l'écart statique et le temps de réponse à 5%. Mesurer l'écart statique et le temps de réponse à 5%. Vérifier si le cahier des charges est vérifié, ou non.
- Q7. Par quel type de système peut-on modéliser le comportement de l'axe Emericc ? Justifier.
- Identifier les caractéristiques du système. Q8.
- Ajouter les 8 masses sur le chariot et observer la réponse temporelle. Expliquer la 09. différence de comportement.

3. IDENTIFICATION DU COMPORTEMENT DU SYSTÈME

Pour t > 0, la réponse à un échelon d'un système du premier ordre est données par :

$$s(t) = KE_0 \left(1 - e^{-\frac{t}{\tau}} \right)$$

 $s(t)=KE_0\left(1-e^{-\frac{t}{\tau}}\right)$ Pour t>0, la réponse à un échelon d'un système du second ordre est donnée par :

$$s(t) = KE_0 \left(1 - e^{-\xi \omega_0 t} \cos \left(\omega_0 \sqrt{1 - \xi^2} \cdot t \right) - e^{-\xi \omega_0 t} \frac{\xi}{\sqrt{1 - \xi^2}} \sin \left(\omega_0 \sqrt{1 - \xi^2} \cdot t \right) \right)$$

EXPÉRIMENTATION 1

- Suite à l'expérimentation 1, renseigner les données nécessaires dans le fichier Excel et Q10. afficher la courbe modélisée.
- Quelles sont les différences entre la courbe modélisée et la courbe expérimentale ? Q11.

EXPÉRIMENTATION 2

- Q12. Suite à l'expérimentation 2, renseigner les données nécessaires dans le fichier Excel et afficher la courbe modélisée.
- Quelles sont les différences entre la courbe modélisée et la courbe expérimentale ? Q13.

C. COMPARAISON DU SYSTÈME RÉEL ET DU MODÈLE

Une modalisation plus complète du système a été réalisée en utilisant le module xcos de scilab. Le fichier AxeEmericc_Vitesse_BF.zcos permet de modéliser le comportement de la boucle fermée.

1. ANALYSE DU MODÈLE

- Q14. Existe-t-il des différences entre le système modélisé et le système réel. Comment la masse est-elle prise en compte?
- Q15. Modifier le modèle pour se mettre dans le même cas que lors des manipulations expérimentales.

- Q16. Réaliser une simulation. Exporter les résultats au format CSV. Copier les résultats dans le fichier Excel précédent.
- Q17. Comparer les résultats expérimentaux et ceux issus de la modélisation.

D. SYNTHÈSE

- Q18. Quelle est l'origine des écarts entre les courbes expérimentales et les courbes simulées.
- Q19. On désire transporter une masse plus importante grâce à l'axe Emericc. La modélisation est-elle encore valable ? Si non, que faut-il modifier ? Vérifier que la modélisation reste encore valide.

