Fiche TD5: Grammaires algébriques

Exercice 1 (*) Du langage à la grammaire

Dans chacun des cas suivants, on demande d'écrire une grammaire engendrant le langage proposé.

- $1. L_1 = a^*bc^*.$
- 2. L_2 est le langage sur $\{a,b\}$ des mots ayant autant de a que de b.
- 3. L_3 est le langage sur $\{a, =, +\}$ des mots représentant une addition correcte de deux suites de caractères a. Par exemple, $aa + aaa = aaaaa \in L_3$ mais a + a = a ou a + a + a = aaa n'en font pas partie.
- 4. L_4 est le langage dont les mots sont les listes de chiffres bien formées en Ocaml. Par exemple, [], [0; 1] et [5; 4; 1; 1; 2] sont des mots de L_4 mais [10; 1], [1;] ou [-1; 5] n'en font pas partie.
- $5.~L_5$ est le langage dont les mots sont les objets que l'on peut construire à l'aide du type récursif suivant :

```
type arbre_binaire = Vide | Feuille | Noeud of arbre_binaire * arbre_binaire.
```

Par exemple, Vide et Noeud(Noeud(Feuille, Vide), Feuille) sont des mots de L_5 alors que Noeud(Noeud,Noeud) ou (Noeud(Feuille, Vide)) n'en font pas partie.

6. L_6 est le langage des formules du calcul propositionnel sur l'ensemble de variables $\{p,q,r\}$.

Exercice 2 (*) De la grammaire au langage

- 1. On considère la grammaire G_1 d'axiome S et dont les règles sont $S \to aSa \mid bSb \mid \varepsilon$. Montrer que $L(G_1)$ est exactement l'ensemble des palindromes de longueur paire sur $\{a,b\}$.
- 2. On considère la grammaire G_2 d'axiome S et dont les règles sont $S \to aSS \mid b$. Montrer que $L(G_2)$ est l'ensemble des mots u tels que $|u|_a = |u|_b 1$ et pour tout préfixe strict v de u (c'est-à-dire, $v \neq u$), $|v|_b \leq |v|_a$. Indication: S'inspirer de la question 3 de l'exercice 3 du TD2.

Culture générale : Le langage de la deuxième question est le langage de Łukasiewicz, généralement noté L. C'est le langage des expressions préfixes à un opérateur bianire (ici noté a). Il entretient des rapports étroits avec le langage de Dyck.

Exercice 3 (**) Grammaires et langues naturelles

On considère deux grammaires dont l'axiome est P dans les deux cas : G_1 permet de produire quelques phrases en anglais et G_2 fait de même en français. Les règles de ces grammaires sont données par les règles suivantes (les majuscules correspondent aux non terminaux et les minuscules aux terminaux) :

	Régles de G_2
Règles de G_1	P o SVC
P o NV	S o N NC
$N \to NP$	$C \to \operatorname{avec} N \mid \varepsilon$
$N \to \text{the dog} \mid \text{the stick} \mid \text{the fire}$	V o WN
$V \to \text{burned} \mid \text{bit} \mid \text{beat}$	$N \rightarrow$ elle une femme un téléscope
	$W \rightarrow \text{voit}$

1. Donner un arbre syntaxique pour le mot suivant engendré par la grammaire G_1 :

the dog the stick the fire burned beat bit

Comment traduirait-on cette phrase en français?

2. On considère le mot suivant engendré par la grammaire G_2 :

elle voit une femme avec un téléscope

Donner deux sens possibles à cette phrase. Montrer que G_2 est une grammaire ambiguë.

Remarque: De manière générale, les grammaires algébriques ne sont pas tout à fait adaptées à la description d'une langue naturelle. Chomsky lui-même convenait de cette limite et proposa pour la lever la notion de grammaire transformationnelle. Aujourd'hui, cette notion est généralement remplacée par celle de grammaire faiblement contextuelle.

Exercice 4 (**) Ambiguité et langages rationnels

1. On considère la grammaire G d'axiome S et dont les règles sont

$$S \to abA \mid AbA \text{ et } A \to \varepsilon \mid aA$$

- a) Quel est le langage engendré par G?
- b) Montrer que G est ambiguë.
- c) Exhiber une grammaire non ambiguë qui engendre le langage L(G).
- 2. Montrer de manière générale qu'un langage rationnel n'est jammais inhéremment ambigu, autrement dit, montrer que pour tout langage rationnel, il existe une grammaire non ambiguë qui l'engendre.

Exercice 5 (**) Désambiguïsation

- 1. On cherche à construire une grammaire destinée à écrire des expressions arithmétiques construites à partir de l'opérateur binaire de soustraction et dont les opérandes sont des entiers qu'on notera génériquement e (autrement dit, e peut être dérivé en n'importe quel entier). On propose les règles suivantes pour une telle grammaire : $S \to S S \mid e$.
 - a) A l'aide du mot m=10-2-3, montrer que cette grammaire est ambiguë. Pourquoi est-ce gênant?
 - b) On modifie alors les règles de la grammaire comme suit :

$$\begin{array}{l} S \rightarrow S - T \,|\, T \\ T \rightarrow e \end{array}$$

Dessiner l'arbre syntaxique du mot m. La grammaire obtenue est-elle ambiguë?

2. Dans cette question, on considère une grammaire décrivant les instructions d'un langage de programmation dont l'axiome est S, les non terminaux sont S et I et dont les règles sont :

$$S \to I$$

$$I \to \text{if } e \text{ then } I \mid \text{if } e \text{ then } I \text{ else } I \mid a$$

- a) Montrer que cette grammaire est ambiguë.
- b) Proposer une solution pour rendre cette grammaire non ambiguë. Est-il possible de rendre cette grammaire non ambiguë sans modifier le langage décrit ?

Exercice 6 (**) Théorème de lecture unique

Le but de cet exercice est de montrer le théorème de lecture unique :

Soit F une formule du calcul propositionnel sur un ensemble de variables V. Alors, on est dans un et un seul des cas suivants :

- F est égale à un et un seul des éléments de $V \cup \{\top, \bot\}$,
- Il existe une unique formule G telle que $F = \neg G$,
- Il existe un unique couple de formules (G, H) et un unique symbole $\alpha \in \{ \lor, \land \Rightarrow, \Leftrightarrow \}$ tel que $F = (G\alpha H)$

Considérons l'alphabet $\Sigma = V \cup \{(,), \neg, \wedge, \vee, \Rightarrow, \Leftrightarrow\}$ et notons \mathcal{F} l'ensemble des formules du calcul propositionnel sur l'ensemble de variable V. Remarquons qu'un élément de \mathcal{F} n'est rien d'autre qu'un mot de Σ^* .

- 1. Montrer que pour toute formule F, on a $|F|_{\ell} = |F|_{\ell}$.
- 2. Montrer que pour tout préfixe u d'une formule F, $|u|_{(\geq |u|)}$ et que l'inégalité est stricte si le premier symbole de F est (et que u est propre (non égal à F ni à ε).
- 3. Montrer qu'un préfixe propre d'une formule n'est pas une formule.

- 4. Montrer le théorème de lecture unique.
- 5. Le langage des formules du calcul propositionnel sur V est-il (intrinsèquement) ambigu ?

Remarque: On comprend mieux pourquoi on peut se permettre de parler de l'arbre syntaxique d'une formule du calcul propositionnel plutôt que d'UN arbre syntaxique: on vient de montrer qu'il n'y en a qu'un. Remarquez aussi que le vocabulaire est bien fait: l'arbre syntaxique d'une formule est un arbre syntaxique.

Exercice 7 (***) Lemme d'Ogden et applications

On admet dans cet exercice le lemme d'Ogden :

Soit $G = (\Sigma, V, S, \mathcal{R})$ une grammaire algébrique et $X \in V$. Alors il existe un entier N tel que tout mot $m \in L(G, X)$ ayant au moins N lettres marquées se factorise en m = xuyvz avec

- 1. $X \Longrightarrow^* xAz$, $A \Longrightarrow^* uAv$ et $A \Longrightarrow^* y$ avec $A \in V$
- 2. (x, u et y contiennent des lettres marquées) ou (y, v et z contiennent des lettres marquées).
- 3. uyv contient moins de N lettres marquées.
- 1. A l'aide du lemme d'Ogden, prouver le lemme d'itération vu en cours.
- 2. Considérons le langage $L = \{a^nb^nc^m \mid n, m \in \mathbb{N}\} \cup \{a^nb^mc^m \mid n, m \in \mathbb{N}\}.$
 - a) Montrer que L est algébrique.
 - b) A l'aide du lemme d'Ogden, montrer que L est intrinsèquement ambigu. Indication : Considérer le mot $a^Nb^Nc^{N+N!}$ avec N donné par le lemme d'Ogden et où tous les b sont marqués et montrer que $a^{N+N!}b^{N+N!}c^{N+N!}$ admet deux arbres de dérivation différents.

Remarques : Parfois, le terme "lemme d'itération" réfère au lemme d'Ogden et non à la version simplifiée que j'ai présentée en cours. La démonstration du lemme d'Ogden est non triviale, vous pourrez la trouver à la page 100 de Langages formels, calculabilité et complexité par Olivier Carton.