R functions for exam 2

Chi-square

chisq.test(dataframe[,i:j], correct =FALSE)

McNemar test (two-tailed test)

x<-matrix(c(A,B,C,D),2,2) mcnemar.test(x, correct = FALSE)

Wilcoxon Signed-Rank Test

wilcox.test(Growth Value\\$'Growth', mu=5, alternative="greater")

Wilcoxon Signed-Rank Test for Matched-Pairs

wilcox.test(Growth Value\$'Growth', Growth Value\$'Value', alternative="two.sided", paired=TRUE)

Wilcoxon Rank-Sum Test for Independent Samples

wilcox.test(Undergrad_Salaries\$'Computer Science', Undergrad_Salaries\$'Finance', alternative="two.sided", paired=FALSE)

Kruskal-Wallis Rank Test

Stacked2<- melt(KWexample)
colnames(Stacked2)<- c("Major", "Size")
Stacked2
kruskal.test(Stacked2\$'Size',Stacked2\$'Major')

Calculate and interpret the correlation coefficient between debt payments and income.

cor(Debt_Payments\$'Income', Debt_Payments\$'Debt')
cor(Debt_Payments[2:4], use = "all.obs")

Create plot

install.packages("tidyverse")
library(tidyverse)
ggplot (data = Debt_Payments) + geom_point (mapping = aes (x = Income, y = Debt))

Simple Linear Regression

Simple <- lm(Debt~Income, data=Debt_Payments) summary(Simple) anova(Simple)

Multiple Linear Regression

 $\label{eq:multiple2} $$ Multiple2 <- lm(pie\$'pie sales'\sim pie\$'price (\$)'+pie\$'advertising (\$100s)') $$ summary(Multiple2) $$ MR1 <- lm(pie\$'pie sales'\sim 1) $$ anova(MR1, Multiple2) $$$

confint(Multiple2, 'pie\$"price (\$)"', level=0.95)

Model with dummy variable

```
GNV<- ifelse(GNV_JAX_Jan2022$city == "Gainesville, Florida", 1, 0) mlr2 <- lm(GNV_JAX_Jan2022$PRICE ~ GNV_JAX_Jan2022$`SQUARE FOOTAGE` + GNV) summary(mlr2)
```

Model with interaction variable

GNV_Int<- ifelse(GNV_JAX_Jan2022\$city == "Gainesville, Florida", GNV_JAX_Jan2022\$`SQUARE FOOTAGE`, 0)
mlr2_b <- lm(GNV_JAX_Jan2022\$PRICE ~ GNV_JAX_Jan2022\$`SQUARE FOOTAGE` +
GNV+GNV_Int)
summary(mlr2_b)

Create residual plot

plot(mlr2 b)

Calculate VIF

install.packages("car")
library(car)
lmobject1 <- lm(PRICE ~ BEDS+ SQFT + BEDSANDBATHS+ LOTSIZE, data = Tampa2022)
summary(lmobject1)
vif(lmobject1)</pre>

Logistic regression

logmod = glm(Purchase~Age, family = binomial, data = MacysPurchases) summary(logmod)

Build model using stepwise method

none <-lm(price ~1, data = GainesvilleHomes_Sp2019_Quant)
full <- lm(price ~ beds_baths + square_footage + lot_size+commute + year_built + es_dist + ms_dist + hs_dist, data = GainesvilleHomes_Sp2019_Quant)
MSE <- (summary(full)\$sigma)^2
step(none, scope=list(upper= full), scale=MSE) (#by default, it uses stepwise method)