Московский авиационный институт (государственный технический университет)

Факультет «Прикладная математика и физика» Кафедра «Вычислительная математика и информатика»

Курсовой проект по

Языкам и методам программирования по теме: «Сортировка и поиск»

Выполнил: Щербаков А.А.

Студент гр. М8О-106Б

Преподаватель: Дубинин А.В.

Оценка:

Дата:

Введение

Человеку неудобно работать с информацией, расположенной в хаотичном порядке. Возможность представить эту информацию в сортированном виде позволяет ускорить работу с ними. В случае обработки информации компьютером такая возможность становится необходимостью. Такое представление предоставляет некоторые преимущества, например, более быстрый поиск необходимых кусочков информации. Также есть и большой минус – сортировка различных данных требует большого количества операций. Таким образом, необходимо учитывать, действительно ли сортировка данных принесет заметный результат при последующей работе с ними или нет.

Методы сортировки

Существует несколько основных наиболее часто используемых методов сортировки:

- 1. Линейный выбор с обменом O(n^2)
- 2. Линейный выбор с подсчетом O(n^2)
- 3. Метод пузырька O(n^2)
- 4. Шейкер сортировка О(n^2)
- 5. Метод простой вставки O(n^2)
- 6. Метод двоичной вставки O(n^2)
- 7. Метод Шелла O(n*log(n))
- 8. Турнирная сортировка O(n*log(n))
- 9. Пирамидальная сортировка с просеиванием O(n*log(n))
- 10. Простое двухпоточное слияние O(n*log(n))
- 11. Быстрая сортировка Хоара $O(n*log(n)\sim n^2)$
- 12. Четно-нечетная сортировка O(n^2)
- 13. Прямое слияние O(n*log(n))
- 14. Естественное слияние O(n*log(n))
- 15. Гладкая сортировка O(n*log(n))

Мой метод сортировки — сортировка Шелла.

Сортировка Шелла

При сортировке Шелла сначала сравниваются и сортируются между собой значения, стоящие один от другого на некотором расстоянии. После этого процедура повторяется для некоторых меньших значений, а завершается сортировка Шелла упорядочиванием элементов при (то есть обычной сортировкой вставками). Эффективность сортировки Шелла в определённых случаях обеспечивается тем, что элементы «быстрее» встают на свои места (в простых методах сортировки, например, пузырьковой, каждая перестановка двух элементов уменьшает количество инверсий в списке максимум на 1, а при сортировке Шелла это число может быть больше).

Невзирая на то, что сортировка Шелла во многих случаях медленнее, чем быстрая сортировка, она имеет ряд преимуществ:

- отсутствие потребности в памяти под стек;
- отсутствие деградации при неудачных наборах данных быстрая сортировка легко деградирует до O(n²), что хуже, чем худшее гарантированное время для сортировки Шелла.

В методе Шелла сравниваются элементы, расположенные на расстоянии d (где d — шаг между элементами, которые сравниваются). Если d = [n/2], то после каждого просмотра шаг d уменьшается вдвое. На последнем просмотре он сокращается до d=1.

Например, пусть дан список, в котором число элементов четно: $\{40, 11, 83, 57, 32, 21, 75, 64\}$. Список длины п разбивается на n/2 частей, т. е. d = [n/2] = 4, где [] — целая часть числа.

При первом просмотре сравниваются элементы, отстоящие друг от друга на d=4 (шаг d=4), т. е. K1 и k5, k2 и k6 и т.д. Если ki>ki+d, то происходит обмен между позициями i и (i+d).

Исходный массив	40	11	83	57	32	21	75	64
A A ACTOR	32			1.5	40			
War <i>d</i> = 4		11	t_ 75	L		21	83	١,
				57				6
Полученный массив	32	11	75	57	40	21	83	6

Перед вторым просмотром выбирается шаг d=[d/2]=2 (шаг d=2).

Исходный массив	32	11	75	57	40	21	83	64
Шаг <i>d</i> = 2	32	1	75					
		11	t	57	75			
			40	21	13	57		
					75		83	
	-	_		-	-	57	-	64
Полученный массив	32	11	40	21	75	57	83	6

Затем выбираем шагd=[d/2]=1 (рис 10- Метод Шелла (шаг d=1)), т.е. имеем аналогию с методом стандартного обмена.

Исходный список	32	11	40	21	75	57	83	64
War <i>d</i> = 1	11	32 32	40 21	40 40	75 t 57	75 75	83 64	83
Полученный список	11	32	21	40	57	75	64	(83

Сложность метода Шелла O(n*log(n)).

Заключение

Действительно, путем сортировки данных по некоторым ключам ощутимо меняется последующая скорость работы с ними. Например, если необходимо много раз искать подходящий элемент среди данных, то поддерживание этих данных в сортированном виде в среднем ускоряет этот процесс. Оптимальным алгоритмом для поиска заданного элемента в массиве является бинарный поиск, который в худшем случае работает за O(log(n)). По сравнению с линейным поиском в несортированном массиве скорость работы заметно отличается. В случае небольшого количества бинарных поисков(< n) алгоритм сортировки за O(n^2) теряет смысл. Таким образом, сортировка является важнейшим методом обработки информации. Правильный выбор метода сортировки (устойчивый, неустойчивый, зависимый от характера входных данных) позволяет добиться более быстрой работы программ.

Списки источников

- 1. ru.wikipedia.org/wiki/Алгоритм_сортировки Стандартные методы сортировки;
- 2. https://habrahabr.ru/post/133996/ Сортировки;
- 3. http://algol.adept-proekt.ru/algoritmi-sortirovri Алгоритмы сортировки.