

Europe 2023 —

Be the Change Our Planet Seeks: How YOU Can Contribute to Running Environment-Friendly Workloads on Kubernetes

Kristina Devochko

whois Kris

- CNCF Ambassador
- Microsoft Azure MVP
- Kubernetes Unpacked Podcast Host
- •
- Preaching about K8s, green tech and cats

https://kristhecodingunicorn.com

Climate change:

Is it overrated?

What does it have to do with tech?

Technology:

Climate friend or Climate foe?

Over a third of CPUs for cloud native applications are never used

The State of Kubernetes Report: Overprovisioning in Real-Life Containerized Applications

cast.ai/the-state-of-kubernetes-overprovisioning

Green Kubernetes:

A myth or a reality YOU create?

It all starts with <u>awareness!</u>

Shared Responsibility Model

Supply chain && Location

- Data center type
- Energy source and efficiency
- Overall strategy and commitments
- Carbon offsetting/Greenwashing
- Region
 - Heat map
 - Consumer proximity

Hyperscale data centres are significantly more efficient than internal data centres

Category	Energy use	Computing workloads	Water intensity	Carbon intensity	Water intensity	Carbon intensity
	Million MWh	million	M ₃ MWh ₋₁	ton CO ₂ -eq MWh ₋₁	m ₃ /workload	Ton CO ₂ -eq /workload
Internal	26.90	16	7.20	0.45	12.15	0.75
Colocation	22.4	41	7.00	0.42	3.85	0.25
Hyperscale	22.85	76	7.00	0.44	2.10	0.15

Source: Siddik & Sehab 2021

Supply chain && Location

Interactive View

Node type && size

- VM type and size
 - VM series
 - Power-efficient processors (Ampere Altra Arm-based)
 - Oversizing <equation-block>
- Spot instances
- Proximity placement group

Fewer compute resources + highest utilization = C

Scaling

- Conscious scaling
- Sudden bursts vs. constant load
- Automatic vs. manual scaling
- Event-driven scaling

Emerging: Carbon-aware scaling

Eliminate zombies!

- Regular "Dugnad" :)
- Scale to zero
- Turn off policy
- On-demand usage
- Scheduling time frame
- Detect and alert upon "zombie" workloads

Applications

Lift and shift ≠ sustainable (by default)

- Application architecture
- CI/CD
- Deployment model
- Observability
- Best practices
 - Containerized applications
 - Green coding/Green Software Engineering
 - Lean coding

Define – Measure - Optimize

- Sustainability pillar of Well-Architected Framework
- Carbon emissions calculator && dashboards
- Cost management tools

Principles of Sustainable Software Engineering

OpenGitOps

ALL

12M

Cloud Carbon Footprint

RECOMMENDATIONS

Start Date

ightarrow End Date

1M

3M

Cloud Usage

Custom

Nodes •	10
Namespaces 1	23
Pods i	1302
Controllers	74

Total Cost	US\$623.40
Estimated Savings	US\$2,930.49
Efficiency 1	7%
Spending Trend	N/A

Savings

Estimated monthly savings available II

US\$2,336.45

Right-size your cluster nodes

Adjust the number and size of your cluster's nodes to stop over-spending on unused capacity.

Kubernetes Insight

Save up to

US\$2,452.21/mo~

Remedy abandoned workloads

Scale down, delete or resize pods that don't send or receive a meaningful rate of network traffic.

Kubernetes Insight

Save up to

US\$182.95 /mo~

Manage unclaimed volumes

Delete volumes that are unused by any pods or move them to a cheaper storage tier.

Kubernetes Insight

Explore savings

Manage underutilized nodes

Turn down or resize nodes with low memory and CPU utilization.

Kubernetes Insight

Save up to

US\$934.67 /mo ~

Europe 2023

		CURRENT			RECOMMENDATION: COMPLEX			RECOMMENDATION: SIMPLE		
^	Total cost	US\$2,850.79/mo			US\$421.50/mo			US\$398.58/mo		
	Savings				US\$2,429.29 (85.2%)			US\$2,452.21 (86%)		
	Node count	9			4			3		
^	CPU	64 VCPUs		14 VCPUs		12 VCPUs				
	CPU utilization	25.5% utilized			70.6% utilized			71.7% utilized		
^	RAM	424 GB		33 GB		48 GB				
	RAM utilization	5.9% utilized			44.8% utilized			26.6% utilized		
^	Instance breakdown	7 DS13 v2 (x86			2 B1ls (x86)			3 B4ms (x86)		
		VCPUs 8 VCPUs ea.	RAM 56 RAM (GB) ea.	Cost n/a	VCPUs 1 VCPUs ea.	RAM 0.5 RAM (GB) ea.	Cost US\$4.16/mo ea.	VCPUs 4 VCPUs ea.	RAM 16 RAM (GB) ea.	Cost US\$132.86/mo ea.
		2 D4s v3 (x86)		1 F8s v2 x88						
		VCPUs 4 VCPUs ea.	RAM 16 RAM (GB) ea.	Cost n/a	VCPUs 8 VCPUs ea.	RAM 16 RAM (GB) ea.	Cost US\$280.32/mo ea.			
					1) B4ms (x86)					

Nodes with underutilized CPU & memory

Nodes with low memory and CPU utilization are candidates for being turned down or resized. The following nodes have sustained usage below 25% in both categories. Your cluster has enough resource availability to support turning these nodes down.

Maximum CPU/RAM Request Utilization (60%)

Node	Node Checks	Pod Checks	Recommendation	
akswinpol00003o	Passed	Passed	Safe to drain. Save \$246.87 / mo.	Ψ
akswinpol00003i	Passed	Passed	Safe to drain. Save \$246.87 / mo.	\
akswinpol00003s	Passed	Passed	Safe to drain. Save \$246.87 / mo.	\
akswinpol00003n	Passed	Passed	Safe to drain. Save \$246.87 / mo.	\
aks-nodepool1-16599594-vmss000000	Failed	Failed	Do not drain	4
akswinpol00003p	Failed	Passed	Do not drain	\
akswinpol00003r	Failed	Passed	Do not drain	\

It's all about <u>balance</u>!

@kristhecodingu1

krisde

kristhecodingunicorn.com

Icons source: icons8.com GIF source: tenor.com

I appreciate YOUR feedback

