M2Det: Overview

Nikita Toroptsev, Evocargo, MIPT PSAMCS Moscow, Jan 2021

telegram: nikitatoropcev

Detection problem

my Ache and Pain: mAP

$$Precision = \frac{TP}{\text{total positive results}}$$

$$Recall = \frac{TP}{\text{total cancer cases}}$$

Rank	Correct?	Precision	Recall	
1	True	1.0	0.2	
2	True	1.0	0.4	3
3	False	0.67	0.4	
4	False	0.5	0.4	
5	False	0.4	0.4	
6	True	0.5	0.6	
7	True	0.57	0.8	
8	False	0.5	0.8	
9	False	0.44	0.8	
10	True	0.5	1.0	

Quick overview

- 2019
- One-pass algorithm
- Exploits FPN in a backbone and uses SSD head
- 41.0 mAP (YOLOv3 33)
- 11.8 FPS (YOLOv3 20)

SSD - Single Shot Detection

- 1. Backbone (fully conv)
- 2. N multi-level detection maps: S×S×N anchors×N classes
- 3. NMS

NMS - Non Maximum Suppression

- 1. Select the max-prob class, c_i confidence
- 2. Rank the confidence
- 3. Confidence threshold
- 4. For those with the same class label: if the IoU is higher than some constant threshold, remove the lower confidence one
- 5. Continue

SSD vs YOLO (v1)

Main Part - Feature Pyramids

Idea:

- shallow layers have large resolution but less informative representation
- deeper layers are the opposite

Where is the optima? We can let the network choose for us!

Architecture

- MLFPN Multi-Level Feature-Pyramid Network
- FFM Feature Fusion Module
- TUM Thinned U-shape Module
- SFAM Scale-wise Feature Aggregation Module

The Plus

- Upsample
- Element-wise sum
- 1x1 kernel convolution

Feature Fusion Module

Simple feature fusion module for two maps. Two versions are combined in the network

U-Net Thinned U-shaped Module

U-Shaped feature pyramid

Attention Scale-wise Feature Aggregation Module

Excitation: learn the weights to enhance or weaken features

$$\mathbf{s} = \mathbf{F}_{ex}(\mathbf{z}, \mathbf{W}) = \sigma(\mathbf{W}_2 \delta(\mathbf{W}_1 \mathbf{z})), \qquad \tilde{\mathbf{X}}_i^c = \mathbf{F}_{scale}(\mathbf{X}_i^c, s_c) = s_c \cdot \mathbf{X}_i^c,$$

in this case SFAM is an attention for

Summary

