Работа 3.2.4.

Свободные колебания в электрическом контуре

Свободные колебания в электрическом контуре

Цель работы: исследование свободных колебаний в колебательном контуре.

Оборудование: генератор импульсов, электронное реле, магазин сопротивлений, магазин ёмкостей, индуктивность, элекронный осциллограф, универсальный мост.

Исследуемый колебательный контур состоит из индуктивности L, емкости C и резистора R. Конденсатор заряжается короткими одиночными импульсами, после каждого из которых в контуре возникают свободные затухающие колебания. Снимая осциллографом напряжение с конденсатора, можно определить основые характеристики цепи. Схема установки для изучения затухающих колебаний изображена на рис. 1:

Рис. 1: Схема установки

Экспериментальная установка. На рис. 2 приведена схема для исследования свободных колебаний в RLC-контуре. Колебаний наблюдаются на экране осциллографа. Для периодического возбуждения колебаний в контуре используется генератор импульсов Γ 5-54. С выхода генератора по коаксиальному кабелю импульсы поступают через электронное реле, смонтированное в отдельном блоке. Реле содержит диодный тиристор D и ограничительный резистор R_1 .

Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\approx 1 \mathrm{MOm}$), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развертки с синхронизацией внешними импульсами, поступающими с выхода "синхроимпульсы" генератора.

Рис. 2: Схема установки

Ход работы.

0. Измерим индуктивность катушки и ее сопротивление в зависимости от частоты:

L , $M\Gamma$ H	R, Om	f, Гц
144	10.3	0.050
139	11.3	1000
140	13.0	5000

Откуда сразу получим, что $L=(141\pm 2)$ м Γ н, $R=(12\pm 1)$ Ом.

1. Установим значение сопротивления R=0 и емкости C=0.02 мк Φ , после чего прокалибруем осциллограф, зная частоту синхронизирующего сигнала $\nu=100\Gamma$ ц ($T_0=0.01{\rm c}$): в выбранном масштабе ему соответствует $x_0=50$ делений, то есть 1дел = $0.0002{\rm c}$. Теперь, зная цену деления, определим зависимость периодов колебаний от емкости C по осциллограмме. Формула, которой мы пользуемся, имеет вид

$$T_{\text{эксп}} = T_0 \frac{x}{nx_0},$$

где n - число полных периодов. Теоретическое же значение получим по формуле

$$T_{\text{reop}} = 2\pi\sqrt{LC},$$

зная, что L=140 м Γ н.

n	x, дел	С, мкФ	$T_{\text{эксп}}$, мс	σ , MC	T_{reop} , mc	σ , MC
30	50	0,02	0,33	0,02	0,33	0,00
14	50	0,10	0,71	0,04	0,74	0,01
9	48	0,20	1,07	0,06	1,05	0,01
8	50	0,30	1,25	0,08	1,29	0,02
7	50	0,40	1,43	0,09	1,49	0,02
5	42	0,50	1,68	0,08	1,66	0,02
5	46	0,60	1,84	0,11	1,82	0,03
4	40	0,70	2,00	0,12	1,97	0,03
4	43	0,80	2,15	0,13	2,10	0,03
4	46	0,90	2,30	0,14	2,23	0,03

Оценим погрешности: σ_x примем равной 1 дел, так как нельзя точно определить эту величину из-за толщины линии. Погрешность σ_{x_0} примем равной 2 дел из-за сложности определения начала и конца импульса. Погрешность n отсутствует, а погрешностью C можно пренебречь на фоне остальных погрешностей. Тогда погрешность величины $T_{\text{эксп}}$ определим по формуле

$$\sigma = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} \sigma_i\right)^2},$$

считая $T_{\text{эксп}} = f(x, x_0)$. Погрешность теоретического значения получим по этой же формуле, считая $T_{\text{теор}} = f(L)$.

Теперь можно построить график $T_{\text{эксп}} = f(T_{\text{теор}})$:

2. Рассчитаем значение C, для которого реализуется $\nu=5$ к Γ ц в предположении, что L=200м Γ н:

$$C = \frac{1}{(2\pi\nu)^2 L} = 0.005$$
MK Φ ,

чему соответствует $R=2\sqrt{L/C}=12650~{\rm Om}$. Экспериментально определим $R_{\rm kp}=8{\rm kOm}$. Определим логарифмический декрмемент затухания по формуле

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}},$$

где U_k и U_{k+n} - амплитуды k-го и k+n-го периода.

n	U_1 , дел	U_2 , дел	R, Om	R_{koht} , Om	Θ	σ_{Θ}
5	10	1	800	812	0,46	0,06
5	20	1	1000	1012	0,60	0,05
4	14	1	1200	1212	0,66	0,06
3	11	1	1400	1412	0,80	0,08
3	15	1	1600	1612	0,90	0,08
2	20	2	1800	1812	1,15	0,06
2	13	1	2000	2012	1,28	0,12
2	22	1	2200	2212	1,55	0,11
1	21	3	2400	2412	1,95	0,09

Для оценки погрешности воспользуемся тем, что магазин сопротивлений позволяет выставить R с высокой тоностью, поэтому погрешность $R_{\text{конт}}$ примем равной погрешности R_L , которая в свою очередь равна ± 1 Ом. Погрешность амплитуды U_1 будет $\sigma_{U_1}=0.5$ дел. Также примем погрешность σ_{U_2} равной 0.2 дел., оценив толщиной линии, так как очевидно, что в данном случае мы хорошо видим снимаемую величину на экране, а также при измерениях мы специально выбирали те колебания, чья амплитуда была наиболее точно попадавшей на деления. Отдельно стоит отметить, что из-за того, что изображение на экране осциллографа не было статичным, стоило выбирать удаленные амплитуды, чтобы минимизировать ошибку, вызванную случайными движениями. Погрешность σ_n равна 0. Погрешность σ_{Θ} определим по уже известной формуле, считая $\Theta = f(U_1, U_2)$.

Теперь построим зависимость $1/\Theta^2 = f(1/R_{\text{конт}}^2)$. Погрешность σ_{1/R^2} пренебрежимо мала, погрешность σ_{1/Θ^2} определим, зная, что $\varepsilon_{1/\Theta^2} = 2\varepsilon_{\Theta}$:

$1/R_{\text{KOHT}}^2$, $Om^2 2 \cdot 10^{-6}$	$1/\Theta^2$	σ_{1/Θ^2}
1,52	4.7	0,6
0,98	2,8	0,5
0,68	2,3	0,4
0,50	1,6	0,3
0,38	1,2	0,2
0,30	0,8	0,1
0,25	0,6	0,1
0,20	0,4	0,1
0,17	0,3	0,0

Теперь можно построить график $1/\Theta^2 = f(1/R_{\text{конт}}^2)$:

Из графика по МНК определим $(\Delta 1/\Theta^2)/(\Delta 1/R^2)$:

$$\frac{\Delta 1/\Theta^2}{\Delta 1/R^2} = 3.2 \cdot 10^6 \text{Om}^2$$

Также по МНК определим случайную погрешность $(\Delta 1/\Theta^2)/(\Delta 1/R^2)$:

$$\sigma_{\frac{\Delta 1/\Theta^2}{\Delta 1/R^2}_{\text{случ}}} = 0.4 \cdot 10^6 \text{Om}^2$$

Считая $\frac{\Delta 1/\Theta^2}{\Delta 1/R^2}=f(1/\Theta^2,1/R^2),$ определим приборную погрешность:

$$\sigma_{\frac{\Delta 1/\Theta^2}{\Delta 1/R^2}_{\rm приб}} = 0.5 \cdot 10^6 \rm Om^2$$

Теперь можно определить полную погрешность по формуле

$$\sigma_{ ext{полн}} = \sqrt{\sigma_{ ext{cлуч}}^2 + \sigma_{ ext{приб}}^2}$$

Откуда

$$\frac{\Delta 1/\Theta^2}{\Delta 1/R^2} = (3.2 \pm 0.6) \cdot 10^6 \text{Om}^2$$

Теперь можно определить $R_{\rm kp, \; rpa \varphi}$ по формуле

$$R_{\mathrm{\kappa p, rpa}} = 2\pi \sqrt{\frac{\Delta 1/\Theta^2}{\Delta 1/R^2}}$$
:

$$R_{\mathrm{кр, rpa}} = (11 \pm 1) \cdot 10^3 \mathrm{Ом}$$

Таким образом, мы видим следующую картину:

$$R_{
m kp, \; Teop} = 12$$
кОм, $R_{
m kp, \; rpaф} = 11$ кОм, $R_{
m kp, \; прак} = 8$ кОм

Как и ожидалось, теоретическое значение R совпадает с графическим в пределах погрешности, однако практическое значение оказалось несколько меньше, чем рассчетные, что связано в частности с тем, что предполагаемое значение L достаточно сильно отличается от реального.

3. Определим значения $Q_{\text{прак}}$ по формуле $Q_{\text{прак}}=\pi/\Theta,$ и $Q_{\text{теор}}$ по формуле $Q_{\text{теор}}=\frac{1}{R}\sqrt{\frac{L}{C}}$:

Θ	$Q_{ m npak}$	$Q_{ m Teop}$
0.46	6.83	6.52
1.95	1.61	2.19

Полученные экспериментально значения отличаются от теоретических, так как теоретическое значение получено в предположении малых затуханий, однако в нашем случае затухания таковыми считать можно не всегда. Видно, что при уменьшении активного сопротивления теоретическое значение приближается к полученному экспериментально.

4. Определим Θ по спирали:

n	U_1 , дел	U_2 , дел	R, Om	R_{koht} , Om	Θ
4	24	3	800	812	0,52
4	29	2	1000	1012	0,67
1	29	6	2200	2212	1,58
1	23	4	2400	2412	1,75

Сравнивая значения Θ с полученными экспериментально в пункте 3, получим, что они близки, чего и следовало ожидать.

Таким образом, в данной лабораторной работе мы изучили поведение колебательного RLC-контура в зависимости от величины активного сопротивления. Изучая затухающие колебания, периодически возбуждаемые в цепи импульсами, мы определили добротность контура и сравнили значения, полученные экспериментально, со значениями, полученными по рассчетным формулам. Из результатов видно, что результаты тем лучше описываются теоретически, чем меньше активное сопротивление цепи.