WHAT'S COOKING

SIYU CHEN

ABSTRACT. Asks you to predict the category of a dish's cuisine given a list of its ingredients. Test and submit the results to see the experimental score.

Contents

1.	INTRODUCTIONS	3
2.	DATA ANALYSIS	3
3.	NLP ANALYSIS	3
4.	MODELING	4
5.	SUMMARY	4

Date: (None).

1. INTRODUCTIONS

Asks you to predict the category of a dish's cuisine given a list of its ingredients. Test and submit the results to see the experimental score.

1					
ID	Cuisine	Ingredients			
10259	greek	romaine lettuce, black olives, grape tomatoes			
25693	southernus	plain flour, ground pepper, salt, tomatoes, g			
20130	filipino	eggs, pepper, salt, mayonaise, cooking oil, g			
22213	indian	water, vegetable oil, wheat, salt]			
13162	indian	black pepper, shallots, cornflour, cayenne pe			

2. DATA ANALYSIS

To better process the data, we need to do the following:

1 Count the total data of training set and test set.

train shape: 39774 test shape: 9944

- 2 Maximum Number of Ingredients in a Dish: 65
- 3 Minimum Number of Ingredients in a Dish: 1

train: 8529 test: 3310

3. NLP ANALYSIS

1 Model of TF-IDF algorithm:

$$TF - IDF(d, w) = TF(d, w) * IDF(w)$$

- (a) $TF(d,w) \Leftrightarrow$ Frequency of occurrence of w in document d. (b) $IDF(w) = \log \frac{N}{N(w)}$
- (c) N \Leftrightarrow The total number of documents in a corpuss.
- (d) $N(w) \Leftrightarrow How many documents does the wappear in.$
- 2 The counting matrix of words is converted to TF-IDF representation, and then normalized.
- 3 Scikit-learn provides a TfidfVectorizer class, which has the ability to remove common stop words (like a, the, and, or).
- 4 TF-IDF tends to filter out common words and retain important words.

4. MODELING

1 Logistic Regressio:

Random seeds are not fixed and generate random sequences.

Use the logistic regression model in sklearn.

Score: 0.787711182622687.

2 Ensemble Model:

Ensemble in Sklearn is called to integrate the two classifiers, logistic regression and SVM

in the way of soft voting, to show the accuracy.

Score: 0.8119469026548672.

By comparing the accuracy of the two models, we found that the integrated accuracy is higher than that of a single classifier.

5. SUMMARY

1 Output Dataframe:

	ID	Cuisine
0	18009	british
1	28583	southern_us
2	41580	italian
3	29752	cajun_creole
4	35687	italian
5	38527	southern_us

- 1 Dishes can contain a variety of ingredients, and the same ingredients may vary in number and number, so the integredients need to be filtered.
- 2 KNN mainly depends on the surrounding limited adjacent samples, rather than on the method of discriminating class domain to determine the category.
- 3 KNN basically does not learn, resulting in a slower prediction speed than logistic regression and other algorithms.

(A. 1) School of Computer Science,, Xi'an Shiyou University, Shaanxi 710065, China $\it Email\ address,\ A.\ 1:\ 785987165@qq.com$