PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (P International Bureau

(51) International Patent Classification 6: A01N 37/18, 43/04, C12Q 1/00, 1/02, 1/68, C12N 5/00, 5/06, 15/00, 15/06, 15/09, 15/10, 15/11, G01N 33/53

number:

(43) International Publication Date:

10 December 1998 (10.12.98)

(21) International Application Number:

PCT/US98/11422

A2

(22) International Filing Date:

4 June 1998 (04.06.98)

(30) Priority Data:

60/048,915

6 June 1997 (06.06.97)

US

60/048,882

6 June 1997 (06.06.97)

US

(Continued on the following page)

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): YOUNG, Paul [US/US]; 122 Beckwith Street, Gaithersburg, MD 20878 (US). GREENE, John, M. [US/US]; 872 Diamond Drive, Gaithersburg, MD 20878 (US). FERRIE, Ann, M. [US/US]; 13203 L Astoria Hill Court, Germantown, MD 20874 (US). RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). HU, Jing-Shan [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). OLSEN, Henrik, S. [DK/US]; 182 Kendrick Place #24, Gaithersburg, MD 20878 (US). EBNER, Reinhard [DE/US]; 9906 Shelburne Terrace #316,

Gaithersburg, MD 20878 (US). BREWER, Laurie, A. [US/US]; 14920 Mt. Nebo Road, Poolesville, MD 20837 (US). MOORE, Paul, A. [GB/US]; Apartment 104, 1908 Holly Ridge Drive, McLean, VA 22102 (US). SHI, Yanggu [CN/US]; 437 West Side Drive, Gaithersburg, MD 20878 (US). FLORENCE, Charles [US/US]; (US). FLORENCE, Kimberly [US/US]; 12805 Atlantic Avenue, Rockville, MD 20851 (US). LAFLEUR, David, W. [US/US]; 1615 Q Street, N.W. #807, Washington, DC 20009 (US). NI, Jian [CN/US]; 5502 Manorfield Road, Rockville, MD 20853 (US). FAN, Ping [CN/US]; Apartment 302, 335 West Side Drive, Gaithesburg, MD 20878 (US). WEI, Ying-Fei [CN/US]; 13524 Straw Bale Lane, Darnestown, MD 20878 (US). FISCHER, Carrie, L. [US/US]; 5810 Hall Street, Burke, VA 22015 (US). SOPPET, Daniel, R. [US/US]; 15050 Stillfield Place, Centreville, VA 22020 (US). LI, Yi [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). ZENG, Zhizhen [CN/US]; 13950 Saddleview Drive, Gaithersburg, MD 20878 (US). KYAW, Hla [MM/US]; 520 Sugarbush Circle, Frederick, MD 21703 (US). YU, Guo-Liang [CN/US]; 13524 Straw Bale Lane, Darnestown, MD 20878 (US). FENG, Ping [CN/US]; 4 Relda Court, Gaithersburg, MD 20878 (US), DILLON, Patrick, J. [US/US]; 1055 Snipe Court, Carlsback CA 92009 (US). ENDRESS, Gregory, A. [US/US]; 9770 lagett Farm Drive, Potomac, MD 20854 (US). CART [US/US]; 11601 Brandy Hall Lane, No 20878 (US).

(74) Agents: HOOVER Kenley Kerlay Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville MD 10850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority.

(54) Title: 207 HUMAN SECRETED PROTEINS

(Continued) US 5 September 1997 (05.09.97) 60/057,651 60/048,892 ÙS 6 June 1997 (06.06.97) 5 September 1997 (05.09.97) US 60/057,769 60/048,901 6 June 1997 (06.06.97) US US' 5 September 1997 (05.09.97) 60/057,643 60/048,900 6 June 1997 (06.06.97)₄ US 5 September 1997 (05.09.97) US 60/057,645 6 June 1997 (06.06.97) 60/048,893 US 5 September 1997 (05.09.97) US 60/057,668 60/057,635 6 June 1997 (06.06.97) 60/048,964 5 September 1997 (05.09.97) US US 60/048.884 6 June 1997 (06.00.2) 5 September 1997 (05.09.97) 60/057,627 US 6 June 1997 (06.06.97) US 60/048,894 5 September 1997 (05.09.97) US 60/057,667 6 June 1997 (06.06.97) US 60/048,971 5 September 1997 (05.09.97) 60/057,666 US 6 June 1997 (06.06.97) US 60/048,885 US 60/057,764 5 September 1997 (05.09.97) 6 June 1997 (06.06.97) US 60/049,375 US 60/057,644 5 September 1997 (05.09.97) 6 June 1997 (06.06.97) US 60/048,881 60/057,765 5 September 1997 (05.09.97) US US 6 June 1997 (06.06.97) 60/048,880 US 60/057,762 5 September 1997 (05.09.97) US 6 June 1997 (06.06.97) 60/048,896 5 September 1997 (05.09.97) US 60/057,775 US 6 June 1997 (06.06.97) 60/049,020 5 September 1997 (05.09.97) 60/057,634 US US 6 June 1997 (06.06.97) 60/048.876 60/057,777 5 September 1997 (05.09.97) US US 60/048,895 6 June 1997 (06.06.97) 60/057,628 5 September 1997 (05.09.97) US 6 June 1997 (06.06.97) US 60/049,019 60/057,776 5 September 1997 (05.09.97) US US 60/048,916 6 June 1997 (06.06.97) 60/057,760 5 September 1997 (05.09.97) US US 6 June 1997 (06.06.97) 60/048,970 60/057,761 5 September 1997 (05.09.97) US US 6 June 1997 (06.06.97) 60/048,972 60/057,771 5 September 1997 (05.09.97) US 60/048,949 6 June 1997 (06.06.97) US 60/057,770 5 September 1997 (05.09.97) US 6 June 1997 (06.06.97) US 60/048,974 60/057,649 5 September 1997 (05.09.97) US 6 June 1997 (06.06.97) US 60/048.883 60/057,774 5 September 1997 (05.09.97) US 60/048,897 6 June 1997 (06.06.97) US US 60/057,648 5 September 1997 (05.09.97) US 6 June 1997 (06.06.97) 60/048,898 60/057,642 5 September 1997 (05.09.97) US 60/049,373 6 June 1997 (06.06.97) US 60/057,629 5 September 1997 (05.09.97) US 6 June 1997 (06.06.97) 6 June 1997 (06.06.97) 60/048,917 US 60/057,778 5 September 1997 (05.09.97) US US 60/048,962 60/057,763 5 September 1997 (05.09.97) US 6 June 1997 (06.06.97) 60/048,878 US 5 September 1997 (05.09.97) 60/057,584 US 60/049,374 6 June 1997 (06.06.97) US 60/057,654 5 September 1997 (05.09.97) US US 6 June 1997 (06.06.97) 60/048.875 60/057,646 60/067,662 5 September 1997 (05.09.97) US 6 June 1997 (06.06.97) US 60/048,899 US 5 September 1997 (05.09.97) 60/04**8,87**7 60/0 **9,96**3 6 June 1997 (06.06.97) US 60/057,650 5 September 1997 (05.09.97) US US 6 June 1997 (06.06.97) 60/057,661 5 September 1997 (05.09.97) US 60/057,647 5 September 1997 (05.09.97) US 60/070,923 18 December 1997 (18.12.97) US etholog Are

FOR THE PURPOSES OF INFORMATION ONLY

EK,

Estonia

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	\mathbf{n}	israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	lceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
Cυ	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	rc	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	ŁK	Sri Lanka	SE	Sweden		
į							

Singapore

Liberia

WO 98/54963 PCT/US98/11422

1

207 Human Secreted Proteins

Field of the Invention

This invention relates to newly identified polynucleotides and the polypeptides encoded by these polynucleotides, uses of such polynucleotides and polypeptides, and their production.

5

10

15

20

25

30

en e a a a a a a a a a

Background of the Invention

Unlike bacterium, which exist as a single compartment surrounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Despite the great progress made in recent years, only a small number of genes encoding human secreted proteins have been identified. These secreted proteins include the commercially valuable human insulin, interferon, Factor VIII, human growth hormone, tissue plasminogen activator, and erythropoeitin. Thus, in light of the pervasive role of secreted proteins in human physiology, a need exists for identifying

Cated proteins of the earnes that one edgineral

Summary of the Invention

The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and polynucleotides. Also provided are diagnostic methods for detecting disorders related to the polypeptides, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying binding partners of the polypeptides.

Detailed Description

Definitions

5

10

15

20

25

30

The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.

In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X or the cDNA contained within the clone deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.

In the present invention, the full length sequence identified as SEQID NO:X was often generated by overlapping sequences contained in multiple clones (contig

WO 98/54963 PCT/US98/11422

3

analysis). A representative clone containing all or most of the sequence for SEQ ID NO:X was deposited with the American Type Culture Collection ("ATCC"). As shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the ATCC Deposit Number. The ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.

5

10

15

20

25

30

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 μg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking

the company prodymic world by the first parties of company to the post of the more consti-

as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a

WO 98/54963 PCT/US98/11422

4

complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single-and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA: thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

The polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine,

5

10

15

20

25

30

35

20

30

formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

"SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NO:Y" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.

"A polypeptide having biological activity" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention.)

25 Polynucleotides and Polypeptides of the Invention

FEATURES OF PROTEIN ENCODED BY GENE NO: 1

This gene is expressed primarily in melanocytes and, to a lesser extent, in testes, ovary, kidney and other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer, disorders of neural crest derived cells including pigmentation

a number of disorders of the above tissues or cells, particularly of the skin,

10

15

20

25

30

35

reproductive, and renal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating disorders that arise from alterations in the number or fate of neural crest derived cells including cancers such as melanoma and defects of the developing reproductive system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 2

This gene is expressed primarily in infant brain and fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental disorders of the brain or lung. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and pulmonary systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating or diagnosing disorders associated with abnormal proliferation of cells in the Central nervous system and developing lung.

FEATURES OF PROTEIN ENCODED BY GENE NO: 3

This gene is expressed primarily in breast lymph node and to a lesser extent in ovarian cancer and chondrosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune responses such as inflammation or immune surveillance for

WO 98/54963

5

10

15

20

25

30

PCT/US98/11422

tumors. This gene may be important for inflammatory responses associated with tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 236 as residues: Lys-45 to Val-50, Lys-69 to Arg-76.

7

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of immune responses including those associated with tumor-induced inflammation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 4

This gene is expressed primarily in T-cells and T-cell lymphomas.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunilogical diseases involving T-cells such as inflammation, autoimmunity, and cancers including T-cell lymphomas. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of T-cells and other cells of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing and treating T-cell based disorders

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 5

This gene is expressed primarily in activated monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation, autoimmunity, infection, or disorders involving activation of monocytes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 238 as residues: Asp-19 to Arg-31.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing or treating diseases that result in activation of monocytes including infections, inflammatory responses or autoimmune diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 6

The translation product of this gene shares sequence homology with terminal deoxynucleotidyltransferase which is thought to be important in catalyzing the elongation of oligo- or polydeoxynucleotide chains.

This gene is expressed primarily in activated human neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer, particularly those of the blood such as leukemia and deficiencies in neutrophils such as neutropenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having

10

15

20

25

30

such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to terminal deoxynucleotidyltransferase indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and differential diagnosis of acute leukemia's. Alternatively, this gene may function in the proliferation of neutrophils and be useful as a treatment for neutropenia, for example, following neutropenia as a result of chemotherapy.

FEATURES OF PROTEIN ENCODED BY GENE NO: 7

The contig exhibits a reasonable homology to the human chorionic gonadotropic (HCG) analogue-GT beta-subunit as disclosed in U.S. Patent No. 5,508,261 and PCT Publication No. WO 92/22568. There is a high degree of conservation of the structurally important cysteine residues in these identities.

This gene is expressed primarily in IL-1 and LPS induced neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system, including inflammatory diseases and allergies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of diseases of the immune system since expression is primarily in neutrophils, and may be useful as a growth factor for the differentiation or proliferation of neutrophils for the treatment of neutropenia following chemotherapy.

FFATURES OF PROTEIN EXCODED BY CONTING O

reagents for differential identification of the tissue(s) or cell type(s) present in a

10

15

20

25

30

35

biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system, including inflammatory diseases and allergies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 241 as residues: Ser-14 to Pro-22, Leu-43 to Val-53.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases of the immune system since expression is primarily in neutrophils, and may be useful as a growth factor for the differentiation or proliferation of neutrophils for the treatment of neutropenia following chemotherapy.

FEATURES OF PROTEIN ENCODED BY GENE NO: 9

This gene is expressed primarily in IL-1 and LPS induced neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system, including inflammatory diseases and allergies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 242 as residues: Tyr-22 to His-35.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of diseases of the immune system since expression is primarily in neutrophils, and may be useful as a growth

10

15

20

25

30

factor for the differentiation or proliferation of neutrophils for the treatment of neutropenia following chemotherapy.

FEATURES OF PROTEIN ENCODED BY GENE NO: 10

This gene is expressed primarily in activated T-cells and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune dysfunctions including cancer of the T lymphocytes and autoimmune disorders and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of immune disorders particularly of T-cell origin and may act as a growth factor for particular subsets of T-cells such as CD4 positive cells which would make this a useful therapeutic for the treatment of HIV and other immune compromising illnesses.

FEATURES OF PROTEIN ENCODED BY GENE NO: 11

This gene is expressed primarily in fetal tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of many developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing fetus, expression of this general distributed to the developing fetus,

an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a growth factor or differentiation factor for particular cell types in the developing fetus and may be useful in replacement or other types of therapy in cases where the gene is expressed aberrantly.

FEATURES OF PROTEIN ENCODED BY GENE NO: 12

This gene is expressed primarily in T-cells and to a lesser extent in tumor tissue including glioblastoma, meningioma, and Wilm's tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system including autoimmune conditions such as rheumatoid arthritis, inflammatory disorders and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 245 as residues: Thr-9 to Ser-14.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis/ modulation of immune function disorders, including rheumatoid arthritis and inflammatory responses.

FEATURES OF PROTEIN ENCODED BY GENE NO: 13

This gene is expressed primarily in placenta and to a lesser extent in fetal liver and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of hematological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of

10

15

20

25

30

disorders of the above tissues or cells, particularly of the hematological and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a growth factor for hematapoietic stem cells or progenitor cells in the treatment of chemotherapy patients or kidney disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 14

This gene is expressed primarily in stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of hematapoietic disorders including cancer, neutropenia, anemia, and thrombocytopenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematapoietic and immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a growth factor for hematapoietic stem cells or progenitor cells, in particular following chemotherapy treatment.

FEATURES OF PROTEIN ENCODED BY GENE NO: 15

The translation product of this gene shares sequence homology with epsilon-COP from Bos taurus which is thought to be important as a component of coatomer, a complex of seven proteins, that is the major complex of the seven proteins.

MAPPAPGPASGGSGEVDELFDVKNAFYIGSYQQCINEAXXVKLSSPERDVERD

10

VFLYRAYLAQRKFGVVLDEIKPSSAPELQAVRMFADYLAHESRRDSIVAELDRE MSRSXDVTNTTFLLMAASIYLHDQNPDAALRALHQGDSLECTAMTVQILLKLD RLDLARKELKRMQDLDEDATLTQLATAWVSLATGGEKLQDAYYIFQEMADKCS PTLLLLNGQAACHMAQGRWEAAEGLLQEALDKDSGYPETLVNLIVLSQHLGKP PEVTNRYLSQLKDAHRSHPFIKEYQAKENDFDRLVLQYAPSAEAGPELSGP (SEQ ID NO:458); or RDVERDVFLYRAYLAQRKFGVVLDEIKPSSAPELQAVRMF ADYLAHESRRDSIVAELDREMSRSXDVTNTTFLLMAASIYLHDQNPDAALRALH QGDSLECTAMTVQILLKLDRLDLARKELKRMQDLDEDATLTQLATAWVSLATG GEKLQDAYYIFQEMADKCSPTLLLLNGQAACHMAQGRWEAAEGLLQEALDKD SGYPETLVNLIVLSQHLGKPPEVTNRYLSQLKDAHRSHPFIKEYQAKENDFDRL VLQYAPSA (SEQ ID NO:459).

This gene is expressed primarily in activated monocytes and T-cells, and to a lesser extent in multiple other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as 15 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunomodulation, specifically relating to transport problems in these cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the 20 immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an 25 individual not having the disorder.

The tissue distribution and homology to epsilon-COP indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating /diagnosing problems with the cellular transport of proteins that may result in immunologic dysfunction.

FEATURES OF PROTEIN ENCODED BY GENE NO: 16

The translation product of this gene shares sequence homology with an RNA helicase which is thought to be important in polynucleotide metabolism. The translation product of this contig exhibits good homology to the LbeIF4A antigen of Leishmania braziliensis. The LbeIF4A antigen, or immunogenic portions of it, can be used to induce protective immunity against leishmaniasis, specifically L. donovani, L. chagasi,

30

35

10

15

20

25

30

L. infantum, L. major, L. braziliensis, L. panamensis, L. tropica and L. guyanensis. It can also be used diagnostically to detect Leishmania infection or to stimulate a cellular and/or humoral immune response or to stimulate the production of interleukin-12.

This gene is expressed primarily in colon cancer and to a lesser extent in pituitary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of cancers particularly of the colon. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the gastrointestinal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 249 as residues: Glu-93 to Ala-98, Gln-150 to Leu-156, Leu-220 to Leu-231, Leu-268 to Arg-273, Val-324 to Pro-341, Arg-372 to Asn-380, Ser-405 to Gly-410, Phe-426 to Ala-433, Glu-458 to Asp-470, Arg-506 to Ser-547.

The tissue distribution and homology to RNA helicase indicates that polynucleotides and polypeptides corresponding to this gene are useful for development of diagnostic tests for colon cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 17

The translation product of this contig has sequence homology to a cytoplasmic protein that binds specifically to JNK designated the JNK interacting protein-1 or JIP-1 in mice. JIP-1 caused cytoplasmic retention of JNK and inhibition of JNK-regulated gene expression.

This gene is expressed primarily in brain including pituitary cerebellum frontal cortex, fetal brain and to a lesser extent in the kidney cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reasonts for differential damification of the first section of

and antibodies directed to these polypeptides are useful in providing immunological

probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Furthermore, the translation product of this contig may suppress the effects of the JNK signaling pathway on cellular proliferation, including transformation by the Bcr-Abl oncogene. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 250 as residues: Pro-6 to Ser-26, Ala-30 to Asp-41, Gly-55 to Ser-61, Gly-74 to Thr-80, Tyr-117 to Ala-123, Tyr-167 to Asp-172, Ala-212 to Cys-223, Pro-239 to Tyr-244.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for enhanced survival and/or differentiation of neurons as a treatment for neurodegenerative disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 18

The translation product of this gene shares sequence homology with a liver stage antigen from a protozoan parasite.

This gene is expressed primarily in fetal tissue and to a lesser extent in activated T-cells and other immune cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities and diseases of immune function. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

5

10

15

20

25

30

35

15

20

25

30

The tissue distribution and homology to a protozoan antigen indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/immune modulation of parasitic infections.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 19

Preferred polypeptide encoded by this gene comprise the following polypeptide sequences:

MKAIGIEPSLATYHHIIRLFDQPGDPLKRSSFIIYDIMNELMGKRFSPKD PDDDKFFQSAMSICSSLRDLELAYQVHGLLKTGDNWKFIGPDQHRNFYYSKFF DLICLMEQIDVTLKWYEDLIPSAYFPHSQTMIHLLQALDVANRLEVIPKIWER (SEQ ID NO:460); and/or KDSKEYGHTFRSDLREEILMLMARDKHPPELQVAF ADCAADIKSAYESQPIRQTAQDWPATSLNCIAILFLRAGRTQEAWKMLGLFRKH NKIPRSELLNELMDSAKVSNSPSQAIEVVELASAFSLPICEGLTQRVMSDFAINQ EQKEALSNLTALTSDSDTDSSSDSDSDTSEGK (SEQ ID NO:461). Polynucleotides encoding such polypeptides are also provided.

This gene is expressed primarily in stromal and CD34 depleted bone marrow cells and to a lesser extent in tissues of embryonic origin.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of hematologic origin including cancers and immune dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematapoietic and immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 252 as residues: Scr-28 to Gln-34.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a growth factor for hematopoietic stem cells or progenitor cells which pare to a feet in the context of the context of

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 20

Preferred polypeptide fragments can be found in an alternative open reading frame. These preferred polypeptides comprise the amino acid sequence: MSSDNESDIEDEDLKLELRRLRDKHLKEIQDLQSRQKHEIESLYTKLGKVPPAVI IPPAAPLSGRRRRPTKSKGSKSSRSSSLGNKSPQLSGNLSGQSAASVLHPQQTLHPPGNIPESGQNQLLQPLKPSPSSDNLYSAFTSDGAISVPSLSAPGQGTSSTNTVGATVNSQAAQAQPPAMTSSRKGTFTDDLHKLVDNWARDAMNLSGRRGSKGH MNYEGPGMARKFSAPGQLCISMTSNLGGSAPISAASATSLGHFTKSMCPPQQYGFPATPFGAQWSGTGGPAPQPLGQFQPVGTASLQNFNISNLQKSISNPPGSNL RTT (SEQ ID NO:462); IQDLQSRQKHEIESLYTKLGKVPPAVIIPPAAPLSGRRRR PTKSKGSKSSRSSSLGNKSPQLSGNLSGQSAASVLHPQQTLHPPGNIPESGQN QLLQPLKPSPSSDNLYSAFTSDGAISVPSLSAPGQGTSST (SEQ ID NO:463); TSDGAISVPSLSAPGQGTSSTNTVGATVNSQAAQAQPPAMTSSRKGTFTDDLH (SEQ ID NO:464); KGHMNYEGPGMARKFSAPGQLCISMTSNLGGSAPISAAS ATSLGHFTK (SEQ ID NO:465); QPLKPSPSSDNLYSAFTSDGAISVPSLSAPG (SEQ ID NO:466). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed in fetal liver and tissues associated with the CNS.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, liver and CNS diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver and CNS, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 253 as residues: Gln-26 to Lys-34.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for liver diseases such as hepatocellular carcinomas and diseases of the CNS.

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 21

In an alternative reading frame, this gene shows sequence homology to two recently cloned genes, karyopherin beta 3 and Ran_GTP binding protein 5. (See Accession Nos. gil2102696 and gnllPIDle328731.) The Ran_GTP binding protein is related to importin-beta, the key mediator of nuclear localization signal (NLS)-dependent nuclear transport. Based on homology, it is likely that this gene may activity similar to the RAN_GTP binding protein. Preferred polypeptide fragments comprise the amino acid sequence: VRVAAAESMXLLLECAXVRGPEYLTQMWHFMCDALIKA IGTEPDSDVLSEIMHSFAK (SEQ ID NO:467). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed in thymus tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 22

This gene is expressed primarily in prostate and osteoclastoma tissues. Preferred polypeptide fragments also comprise the amino acid sequence: MEINNQNCFIVIDLVRTVMENGVEGLLIFGAFLPESWLIGVRCSSEPPKALLLIL AHSQKRRLDGWSFIRHLRVHYCVSLTIHFS (SEQ ID NO:468). Also preferred are polynucleotide sequences encoding this polypeptide fragment.

Therefore, polynucleotides and polypeptides of the invention are useful as remonts for differential identification and account of the control of the control

prostate. Similarly, polypeptides and antibodies directed to these polypeptides are

10

15

20

25

30

35

useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone and prostate systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 255 as residues: Met-1 to Ser-11.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for bone and prostate disorders, especially cancers of those systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 23

This gene shares sequence homology with the FK506-binding protein (FKBP-13) family, a known cytosolic receptor for the immunosuppressants. Recently, another group has cloned a very similar gene, recognizing the homology to FK506-binding protein family, calling their gene FKBP23. (See Accession No. 2827255.)

This gene is expressed primarily in lymphoid tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample, especially for those susceptible to immune suppressant therapies and for diagnosis of diseases and conditions, which include, but are not limited to, immune suppressant disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 256 as residues: Ala-19 to Val-31, Arg-38 to Gly-49, Ala-61 to Lys-66, Tyr-68 to Pro-78, Gly-116 to Ala-121, Asp-154 to Ser-162, Glu-173 to Gln-186, Phe-194 to Gly-203, Pro-207 to Val-212.

15

20

25

30

The tissue distribution and homology to FKBP-12 and -13 indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for immune suppressant disorders.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 24

This gene is expressed primarily in the brain and in the retina. This gene maps to chromosome 8, and therefore can be used in linkage analysis as a marker for chromosome 8.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological and ocular associated disease states. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the disorders of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 257 as residues: Cys-34 to Asp-40.

The tissue distribution in retina indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or detection of eye disorders including blindness, color blindness, impaired vision, short and long sightedness, retinitis pigmentosa, retinitis proliferans, and retinoblastoma. Expression in the brain indicates a role in the is useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 25

This gene shows sequence homology to a newly identified class of proteins expressed in the nervous system walls to rather in the Secretary of the Secretary system.

acreatable phosphoprotein involved as a telay ritegrating various intracellular signaling pathways. These pathways affect cell proliferation and differentiation.

10

15

20

30

35

Preferred polypeptide fragments comprise the amino acid sequence: QDKHAEEVRKNKELKEEASR (SEQ ID NO:469); QQDLSPWAAPVGCPLXXASX TCHXLPLSGCLRRQSXSLPVVAXLCFWFSCPLASLFVPGQPCVTCPFPSLPFQD KHAEEVRKNKELKEEASR (SEQ ID NO:470). Also preferred are the polypucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntintons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 26

The polynucleotide sequence of this gene contains a domain similar to a Flt3 ligand peptide. Preferred polypeptide fragments comprise the amino acid sequence: PTRCCTTQPCRSSARRPCWVPMVPSPEGREXQPTCPS (SEQ ID NO:471). Thus, this gene may have activity as binding to Flt3 receptors, a process known to promote angiogenesis and/or lymphangiogenesis.

This gene is expressed in human tonsil, and to a lesser extent in teratocarcinoma, placenta, colon carcinoma, and fetal kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the tonsil, as well as cancers, such as colon, reproductive, and kidney cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful

10

15

in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tonsils, colon, reproductive organs, and kidneys, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 259 as residues: Pro-22 to Glu-33.

The tissue distribution in tonsil and several cancers and fetal tissues indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases of the tonsil or colon, such as tonsillitis, inflammatory diseases involving nose and paranasal sinuses, especially during the infection of influenza, adenoviruses, parainfluenza, rhinoviruses. The gene may also be useful in the diagnosis and treatment of neoplasms of nasopharynx or colon origins.

In an alternative reading frame exists a large open reading frame that encodes a

FEATURES OF PROTEIN ENCODED BY GENE NO: 27

preferred polypeptide. Preferred polypeptide fragments comprise the amino acid 20 sequence: MKRSLNENSARSTAGCLPVPLFNQKKRNRQPLTSNPLKDDSGISTPSDNYDFP PLPTDWAWEAVNPEXAPVMKTVDTGQIPHSVSRPLRSQDSVFNSIQSNTGRSQ GGWSYRDGNKNTSLKTWXKNDFKPQCKRTNLVANDGKNSCPMSSGAQQQK QLRTPEPPNLSRNKETELLRQTHSSKISGCTMRGLDKNSALQTLKPNFQQNQY 25 KXQMLDDIPEDNTLKETSLYQLQFKEKASSLRIISAVIESMKYWREHAQKTVLL FEVLAVLDSAVTPGPYYSKTFLMRDGKNTLPCVFYEIDRELPRLIRGRVHRCVG NYDQKKNIFQCVSVRPASVSEQKTFQAFVKIADVEMQYYINVMNET (SEQ ID NO:472); SQDSVFNSIQSNTGRSQGGWSYRDGNKNTSLKTWXKNDFKPQCKR (SEQ ID NO:473); NKETELLRQTHSSKISGCTMRGLDKNSALQTLKPNF (SEQ ID 30 NO:474):SSLRIISAVIESMKYWREHAQKTVLLFEVLAVLDSAVTPGPYYSKTFLM (SEQ ID NO:475); and PRLIRGRVHRCVGNYDQKKNIFQCVSVRPASVSEQKT FQAFV (SEQ ID NO:476).

This comp is expressed refinemity at the contract

biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

not limited to, male reproductive disorders, including cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a hormone with reproductive or other systemic functions; contraceptive development; male infertility of testicular causes, such as Kleinfelterís syndrome, varicocele, orchitis; male sexual dysfunctions; testicular neoplasms; and inflammatory disorders such as epididymitis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 28

This gene is expressed primarily in apoptotic T-cell.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases relating to T cells, as well as cancer in general. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the disorders of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for immune disorders. Moreover, since the gene was isolated from an apoptotic cell and based on the understanding of the relationship of apoptosis and cancer, it is likely that this gene may play a role in the genesis of cancer.

10

15

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 29

This gene is expressed primarily in human tonsils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, gastrointestinal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the gastrointestinal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of gastrointestinal diseases.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 30

The translation product of this gene shares sequence homology with C44C1.2 gene product of Caenorhabditis elegans with unknown function. Preferred polypeptide fragments comprise the amino acid sequence:

GVFRPCVCGRPASLTCSPLDPEVGPYCDTPTMRTLFNLLWLALACSPVHTTLSK SDAKKAASKTLLEKSQFSDKPVQDRGLVVTDLKAESVVLEHRSYCSAKARDRH FAGDVLGYVTPWNSHGYDVTKVFGSKFTQISPVWLQLKRRGREMFEVTGLHD VDQGWMRAVRKHAKGLHIVPRLLFEDWTYDDFRNVLDSEDEIEELSKTVVQVA KNQHFDGFVVEVWNQLLSQKRVGLIHMLTHLAEALHQARLLALLVIPPAITPGT DQLGMFTHKEFEQLAPVLDGFSLMTYDYSTAHQPGPNAPLSWVRACVQVLDP KXKWRTKSSWGSTSMXWTXRXPXDARXPVVGXRXIQXLKDHXPRMVLDSK PQ (SEQ ID NO:477); TCSPLDPEVGPYCDTPTMRTLFNLLWLALACSPVHTTLS (SEQ ID NO:478); LVVTDLKAESVVLEHRSYCSAKARDRHFAGDVLGYVTPW NSHGYDVTKVFGSKF (SEQ ID NO:479); REMFEVTGLHDVDQGWMRAVRK HAKGLHIVPRLLFEDWTYDDFRNVLDSEDE (SEQ ID NO:480, MICDOLD SED.

GST (SEQ ID NO:482). Also preferred are polynucleotide fragments encoding these

10

15

20

polypeptide fragments. This gene maps to human chromosome 11, and therefore is useful in linkage analysis as a marker for chromosome 11.

This gene is expressed primarily in human T cells and to a lesser extent in human colon carcinoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and gastrointestinal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 263 as residues: Leu-21 to Ala-30, Ser-38 to Asp-47, Pro-87 to Asp-94, Leu-197 to Thr-204, Pro-256 to Ser-262, Thr-277 to Arg-282, Thr-293 to Trp-303.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of immune disorders and gastrointestinal diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 31

The translation product of this gene shares sequence homology with Ribosomal protein L11 of Caenorhabditis elegans. (See Accession No. 156201.) Preferred polypeptide fragments comprise the amino acid sequence:

ERGVSINQFCKEFNERTKDIKEGIPLPTKILVKPDRTFEIKIGQPTVSYFLKAAAG IEKGARQTGKEVAGLVTLKHVYEIARIKAQDEAFALQDVPLSSVVRSIIGSARSL

GIRVVKDLSSEELAAF QKERAIFLAAQKEADLAAQEEAAKK (SEQ ID NO:483). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed in human embryo tissue and to a lesser extent in human epithelioid sarcoma and other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, development disorders and epithelial cell cancer. Similarly, polypeptides and antibodies

35

10

20

25

30

directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the embryonic and epithelial cell systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 264 as residues: Lys-34 to Gly-40.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of developmental disorders and epithelial cancer.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 32

This gene is expressed primarily in resting T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory and general immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of disorders of immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 33

This gene is believed to reside on abropos and the state of the state

brain, human umbilical vein endothelial cells, and amniotic cells.

10

1.5

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, prostate-related disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the urinary system and nervous system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for the diagnosis and treatment of disorders of the urinary and nervous systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 34

This gene shares sequence homology with R05G6.4 gene product. (See Accession No. gill326338.) This gene also shares sequence homology with the cyclophilin-like protein 20 CyP-60. (See Accession No. 1199598, see also Biochem. J. 314 (1), 313-319 (1996).) Preferred polypeptide fragments comprise the amino acid sequence: AVYTYHEKKKDTAASGYGTQNIRLSRDAVKDFDCCCLSLQPCHDPVVTPDGYL YEREAILEYILHQKKEIARQMKAYEKQRGTRREEQKELQRAASQDHVRGFLEKE SAIVSRP LNPFTAKALSGTSPDDVQPGPSVGPPSKDKDKVLPSFWIPSLTPEAK ATKLEKPSRTVTCPMSGKPLRMSDLTPVHFTPLDSSVDRVGLITRSERYVCAVT RDSLSNATPCAVLRPSGAVVTLECVEKLIRKDMVDPVTGDKLTDRDIIVLQRGT (SEQ ID NO:484); YLYEREAILEYILHQKKEIARQMKAYEKQRGTRREEQKELQ RAASQDHVRGFLE (SEQ ID NO:485); and FTAKALSGTSPDDVQPGPSVGPP SKDKDKVLPSFWIPSLTPEAKATKLEKPSRTVTCPMSGKPL (SEQ ID NO:486). Also preferred are polynucleotide fragments that encode these polypeptide fragments.

This gene is expressed primarily in human testis and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male reproductive disorders and in particular testicular cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing

10

15

20

25

30

immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system. Expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders of the male reproductive system and in particular of testicular cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 35

The translation product of this gene shares sequence homology with Lpe5p of Saccharomyces cerevisiae which is thought to be important in the metabolism of phospholipids.

This gene is expressed primarily in liver and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, metabolic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the metabolic and nervous systems expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., scrum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 268 as residues: Pro-14 to Leu-20, Lys-28 to Asn-38, Arg-109 to Arg-114, Lys-119 to Asn-124, Glu-152 to Leu-157, Pro-172 to Val-180.

The tissue distribution and homology to Lpe5p of Saccharomyces cerevisiae indicates that polynocleotides and polynocleotides.

FEATURES OF PROTEIN ENCODED BY GENE NO: 36

This gene shares sequence homology with the nuclear ribonucleoprotein U (HNRNP U), encoded by *C. elegans* (See Accession gil1703576.) Preferred polypeptide fragments comprise the amino acid sequence:

5 MDTSENRPENDVPEPPMPIADQVSNDDRPEGSVEDEEKKESSLPKSFKRKISVV SATKGVPAGNSDTEGGQPGRKRRWGASTATTQKKPSISITTESLKSLIPDIKPL AGQEAVVDLHADDSRISEDETERNGDDGTHDKGLKICRTVTQVVPAEGQENGQ REEEEEEKEPEAEPPVPPQVSVEVALPPPAEHEVKKVTLGDTLTRRSISQQKSGV SITIDDPVRTAQVPSPPRGKISNIVHISNLVRPFTLGQLKELLGRTGTLVEEAFWI DKIKSHCFVTYSTVEEAVATRTALHGVKWPQSNPKFLCADYAEQDELDYHRGL LVDRPSETKTEEQGIPRPLHPPPPPVQPPQHPRAEQREQERAVREQWAERERE MERRERTRSEREWDRDKVREGPRSRSRSRXRRRKERAKSKEKKSEKKEKAQE EPPAKLLDDLFRKTKAAPCIYWLPLTDSQIVQKEAERAERAKEREKRRKEQEEE EQKEREKEAERRNRQLEREKRREHSRERDRERERERDRGDRDRDRERDRE RGRERDRRDTKRHSRSRSRSTPVRDRGGR (SEQ ID NO:488). Also preferred are the polynucleotide fragments encoding this polypeptide fragments.

This gene is expressed primarily in epididymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the male reproductive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of male reproductive disorders.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 37

This gene is expressed primarily in amygdala.

20

25

30

10

15

20

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory diseases and reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the amygdala, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of inflammatory diseases and reproductive disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 38

This gene shares sequence homology with human opsonin protein P35 fragment. (See Accession No. R94181.) The opsonin protein activates the phagocytosis of pathogenic microbes by phagocytic cells. Preferred polypeptide fragments comprise the amino acid sequence: GCDSCPPHLPREAFAQDTQAEGECSSRAERADMCPDAP PSQEVPEGPGAAP (SEQ ID NO:489). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed in immune-related tissues such as thymus, macrophage, T cells and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders and infectious disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and infectious disease, expression of this gene at significantly higher or lower lovely and the second content of the second c

an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 271 as residues: Lys-9 to Arg-14, Met-38 to Asp-51.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders, as well as the treatment and/or diagnosis of infectious disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 39

The translation product of this gene shares sequence homology with alpha-2 type I collagen which is thought to be important in tissue repair. (See, e.g., 211607.) Preferred polypeptide fragments comprise the amino acid sequence: PQLPSCGRPW PGTASVFQSHTQGPREDPDPCRAQGSAGTHCPISLSPPRQ (SEQ ID NO:490). Also preferred are the polynucleotide sequences encoding these polypeptide sequences.

This gene is expressed primarily in the brain and to a lesser extent in the kidney and thymus

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, brain, kidney, and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, kidney, and immune disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to alpha-2 type I collagen indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tissue repair, and brain, kidney, immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 40

The translation product of this gene shares sequence homology with minicollagen which is thought to be important in tissue repair tumor metastasis. (See Accession No. gnllPIDld1006976.) Preferred polypeptide fragments comprise the amino acid sequence: PGFRGPSGSLGCSFFPRSLGRVLPPGCQRPGAHAD

10

15

20

SSPPPTP (SEQ ID NO:491). Also preferred are polynucleotides encoding this polypeptide fragment.

This gene is expressed in ovarian cancer and to a lesser extent in dedritic cells and smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumor metastasis and tissue repair. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tumor metastasis and tissue repair, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (c.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 273 as residues: Asn-2 to His-11.

The tissue distribution and homology to mini-collegen gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tumor metastasis and tissue repair.

FEATURES OF PROTEIN ENCODED BY GENE NO: 41

This gene shares sequence homology with the HIV TAT protein. (See

25 Accession No. 328416.) Preferred polypeptide fragments comprise the amino acid sequence: EDLKKPDPASLRAASCGEGKKRKACKNCTCGLAEELEKEK SREQMSSQPKSACGNCYLGDAFRCASCPYLGMPAFKPGEKVLLS (SEQ ID NO:492); EDLKKPDPASLRAASCGEGKKRKACKNCTCGLAEELEKEK SREQMSSQPKSACGNCYLGDAFRCASCPYLGMPAFKPGEKVLLSDSNLHD

30 (SEQ ID NO:493); CGNCYLGDAFRCASCPYLGMPAFKPGEKVLLSDS (SEQ ID NO:494); SCGEGKKRKACKNCTCGLAEELEKE (SEQ ID NO:495); SQPKSAC GNCYLGDAFRCASC (SEQ ID NO:496); and REAGQNSERQYVS LSRD (SEQ ID NO:497). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

as a state admin to stes

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, brain, testes and breast disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, testes and breast disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 274 as residues: Pro-7 to Val-15.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of brain, testes and breast, and other related disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 42

This gene is expressed primarily in the infant brain, human cerebellum, and to a lesser extent in medulloblastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, brain related disorders and medulloblastoma and other brain cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain related disorders and brain cancers, including medulloblastoma, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 275 as residues: Thr-41 to Glu-47.

15

20

25

30

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of human brain related disorders, brain cancers, and medulloblastoma.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 43

The translation product of this gene shares sequence homology with a phosphotyrosine-independent ligand for the lck SH2 domain which is thought to be important in signal transduction related to phosphotyrosine-independent ligand for the lck SH2 domain. (See Accession No. gill 184951.) Preferred polypeptide fragments comprise the amino acid sequence: ESSGQARTLADPGPGWPRQQGMCFGSLT GLSTTPHGFLTVSAEADPRLIESLSQMLSMGFSDEGGWLTRLLQTKNYDIGAAL DTIQYSKH (SEQ ID NO:498). Also preferred are polynucleotide fragments encoding this polypeptide fragment. It is likely that this gene is a new member of a family of phosphotyrosine-independent ligands for the lck SH2 domains.

This gene is expressed primarily in the placenta and to a lesser extent in endothelial cells and neutrophil.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, reproductive, cardiovascular, immune, and infectious diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular, reproductive, and immune system, and infectious diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to a phosphotyrosine-independent ligand for the lck SH2 domain indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cardiovascular, reproductive, and immune system diseases, as well as infections. The real

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 44

This gene is expressed primarily in the fetal brain, cerebellum and to a lesser extent in the placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neuronal cell related disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuronal cell related disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 277 as residues: Thr-20 to Gly-28.

The tissue distribution and homology to proline-rich protein genes indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal cell related disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 45

The translation product of this gene shares sequence homology with precerebellin of human, which is thought to be important in synaptic physiology. (See Accession No. gil180251.) It has been observed that cerebellin-like immunoreactivity is associated with Purkinje cell postsynaptic structures. Thus, it is likely that this gene also have synaptic activity. Preferred polypeptide fragments comprise the amino acid sequence: QEGSEPVLLEGECLVVCEPGRAAAGGPGGAALGEAPPGRVAFXAV RSHHHEPAGETGNGTSGAIYFDQVLVNEGGGFDRASGSFVAPVRGVYSFRFH VVKVYNRQTVQVSLMLNTWPVISAFANDPDVTREAATSSVLLPLDPGDRVSLR LRRGXSTGW (SEQ ID NO:499). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in cerebellum and infant brain. By Northern analysis, a single transcript of 2.4 kb was observed in brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

20

25

30

not limited to, neuronal cell signal transduction and synaptic physiology. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuronal cell signal transduction and synaptic physiology expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to gene or gene family indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal cell related disorders.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 46

This gene is expressed in fetal liver and spleen, and to a lesser extent in bone marrow, umbilical vein, and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders of the immune system, particularly hematopoiesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoiesis and immune disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 279 as residues: Asp-30 to Glu-57.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hematopieotic and immune disorders

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 47

The translation product of this gene shares sequence homology with a 12 kD nucleic acid binding protein of Feline calcivirus which is thought to be important in viral replication. (See Accession No. 59264)

This gene is expressed primarily in human cardiomyopathy and to a lesser extent in T helper cells, fetal brain and synovial sarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cardiomyopathy as well as viral infection. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 280 as residues: Trp-20 to Cys-26.

The tissue distribution in cardiomyopathy and homology to viral 12 kD nucleic acid binding protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of cardiomyopathy, including those caused by ischemic, hypertensive, congenital, valvular, or pericardial abnormalities. The gene expression pattern may be the consequence or the cause for these conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 48

The translation product of this gene shares sequence homology with tumor necrosis factor related gene product which is thought to be important in tumor necrosis, bacterial and viral infection, immune diseases and immunoreactions.

This gene is expressed primarily in colon and to a lesser extent in ovarian and breast cancers.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumors of colon, ovary or breast origins. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

10

15

20

25

30

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the colon, ovary and breast, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Tumor necrosis factors indicates that polynucleotides and polypeptides corresponding to this gene are useful for intervention of cancers of colon, ovary and breast origins, because TNF family members are known to be involved in the tumor development.

FEATURES OF PROTEIN ENCODED BY GENE NO: 49

The translation product of this gene shares sequence homology with mucins, such as epithelial mucin, which is thought to be important in extracellular matrix functions such as protection, lubrication and cell adhesion (See for example Accession No. R68002). Preferred polypeptide fragments comprise the following amino acid sequence: PRSRPALRPGRQRPPSHSATSGVLRPRKKPDP (SEQ ID NO:500). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

Also preferred are polynucleotide fragments encoding these polypeptide fragments. Moreover, this gene maps to chromosome 22q11.2-qter, and therefore, can be used as a marker in linkage analysis for chromosome 22.

This gene is expressed primarily in corpus colosum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumors, especially of corpus colosum, as well as metastatic lesions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the corpus colosum and other solid tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from a first total.

services and associated in a limitation of the office fall to

The tissue distribution and homology to mucins indicates that polynucleotides and polypeptides corresponding to this gene are useful for serum tumor markers or immunotherapy targets because tumor cells have greatly elevated level of mucin expression and shed the molecules into the epithelial tissues.

5

Ю

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 50

This gene is expressed primarily in CD34 depleted buffy coat cord blood and primary dendritic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematopoietic disorders and immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in CD34 depleted buffy coat cord blood and primary dendritic cells indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hematopoietic and immune disorders. Secreted or cell surface proteins in the above tissue distribution often are involved in cell activation (e.g. cytokines) or molecules involved in cell surface activation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 51

The translation product of this gene shares sequence homology with Interferon induced 1-8 gene encoded polypeptide which is thought to be important in binding to retroviral rev responsive element. Preferred polypeptide fragment comprise the following amino acid sequences: MTLITPSXKLTFXKGNKSWSSRACSSTLVDP (SEQ ID NO:501). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in CD34 positive cells and neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

10

15

30

biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, retroviral infection, such as AIDS, and other immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 284 as residues: Gln-51 to Trp-62.

The tissue distribution and homology to interferon induced gene 1-8 indicates that polynucleotides and polypeptides corresponding to this gene are useful for intervention of retroviral infection including HIV. The factor may be involved in viral stability or viral entry into the cells. Alternatively, the virus/factor complex may elicit the cellular immune reaction.

FEATURES OF PROTEIN ENCODED BY GENE NO: 52

This gene shares sequence homology to immunoglobulin lambda chain (See Accession No. 2865484). Therefore it is likely that this gene has activity similar to an immunoglobulin lambda chain. Preferred polypeptide fragments comprise the following amino acid sequence: GHPSPALSIAPSDGSQLPCDEVPYGEAHVTRYCKKPLTNS HLETEAQSSSL (SEQ ID NO:502). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in Hodgkin's lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, Hodgkin's lymphoma and other immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly biological to the disorders.

an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 285 as residues: Pro-27 to Thr-32.

The tissue distribution in Hodgkin's lymphoma and the sequence homology indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of Hodgkin's lymphoma, since the elevated expression and secretion by the tumor mass may be indicative of tumors of this type. Additionally the gene product may be used as a target in the immunotherapy of the cancer. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 53

This gene has extensive homology to cDNA for Homo sapiens mRNA for the ISLR gene(See Accession No. AB003184). This protein is considered to be a new member of the Ig superfamily and contains a leucine-rich repeat (LRR) with conserved flanking sequences and a C2-type immunoglobulin (Ig)-like domain. These domains are important for protein-protein interaction or cell adhesion, and therefore it is possible that the novel protein ISLR may also interact with other proteins or cells. The ISLR gene was mapped on human chromosome 15q23-q24 by fluorescence in situ hybridization (See Medline Article No. 97468140). Homology to the ISLR gene has been confirmed by another independent group as well (See Accession No. Hs.102171)

This gene is expressed in a number of tissues including human retina, heart, skeletal muscle, prostate, ovary, small intestine, thyroid, adrenal cortex, testis, stomach, spinal cord, fetal lung and fetal kidney tissues, colon, tonsil and stomach cancer, and to a lesser extent in endometrial stromal cells treated with estradiol, breast tissue, synovium, lymphoma, and number of other tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumors of colon, ovary and breast origins. However, due to the wide range of expression in various tissues, protein may play a vital role in the development of cancer in other tissues as well, not just those mentioned above. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the colon, ovary and breast, expression of this gene at significantly higher or lower levels may be routinely

10

15

20

25

30

detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Additionally, this gene maps to chromosome 15q23-q24, and therefore, can be used as a marker in linkage analysis for chromosome 15.

The tissue distribution in tumors of colon, ovary, and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 54

This gene is expressed primarily in lung, esophagus, leukemia (Jurkat cells) and breast cancers and to a lesser extent in macrophages treated with GM-CSF fetal tissues and wide range of tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer of wide range of origins. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the solid tumors, lung and leukemia, expression of this gene at significantly higher or large 1 and 1 a

an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Furthermore, due to the high expression level in lung tissue and the proposed function of the multidrug resistance protein 1 gene as the efflux pump responsible for low-drug accumulation in multidrug-resistant cells, protein as well mutants thereof, may also be beneficial as a target for gene therapy, particularly for the chronic patient. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 287 as residues: Met-1 to Lys-16.

The tissue distribution in wide range of cancers and fetal tissues indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection of cells in active proliferation, such as cancers. The gene products may be used for cancer markers or immunotherapy target.

FEATURES OF PROTEIN ENCODED BY GENE NO: 55

This gene maps to the X chromosome.

This gene is expressed primarily in the brain and to a lesser extent in the developing embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative disease states and developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders, including sex-linked disorders, of the above tissues or cells, particularly of the neurological, developmental systems, and cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Moreover, this gene maps to the X chromosome, and therefore, may be used as a marker in linkage analysis for this chromosome.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Klinefelter's, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental

10

15

20

25

30

No. of the state of the state of

disorders associated with the developing embryo, sexually-linked disorders, or disorders of the cardiovascular system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 56

The translation product of this gene shares sequence homology with paxillin which is thought to be important in mediating signal transduction from growth factor receptors to the cytoskeleton. Preferred polynucleotide fragments comprise the following sequence: TGGCTCACTGTCTTACAATCACTGCTGTGGAATCATGA TACCACTITTAGCTCTTTGCATCTTCCTTCAGTGTATTTTTGTTTTTCAAGAGG GGCTTGTGGTTTCAA (SEQ ID NO:506). Also preferred are polypeptide fragments encoded by these polynucleotide fragments. More preferably, polypeptide fragments comprise the amino acid sequence: LDELMAHLTEMQAKVAVRAD AGKKHLPDKQDHKASLDSMLGGLEQELQDLGIATVPKGHCASCQKPIAGKVIHALGQSWHPEHFVCTHCKEEIGSSPFFERSGLXYCPNDYHQLFSPRCAYCAAP ILDKVLTAMNQTWHPEHFFCSHCGEVFGAEGFHEKDKKPYCRKDFLAMFSPK CGGCNRPVLENYLSAMDTVWHPECFVCGDCFTSFSTGSFFELDGRPFCELHYH HRRGTLCHGCGQPITGRCISAMGYKFHPEHFVCAFCLTQLSKGIFREQNDKTYCQPCFNKLF (SEQ ID NO:507); KASLDSMLGGLEQELQDLGIATVPKGHC ASCQKPIAGKVIHAL (SEQ ID NO:508); CPNDYHQLFSPRCAYCAAPILDKVL TAMNQTWHPEHFFCSHCGEVFGAEG (SEQ ID NO:509); DKKPYCRKDFLAM FSPKCGGCNRPVLENYLSAMDTVWHPECFVCGDCFTSFSTGSFFELDGRPFCE L (SEQ ID NO:510); CGQPITGRCISAMGYKFHPEHFVCAFCLTQLSKGIFRE QNDKTYCQ (SEQ ID NO:511). Polynucleotide fragments encoding these preferred polypeptide fragments are also contemplated.

This gene is expressed primarily in brain, and to a lesser extent in the developing embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disease states and developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above times and the conditions of the invention of the tissue(s) and the conditions of the tissue(s) or cell type(s).

fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or

10

20

25

30

35

cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Moreover, since this gene shares homology with a gene that maps to chromosome 11, (See Accession No.T87404), gene as well as its translated product may be used for linkage analysis on chromosome 11.

The tissue distribution and homology to paxillin indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and or detection of disease states associated with abnormal signal transduction in brain and/or the developing embryo. This would include treatment or detection of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder and also in the treatment and or detection of embryonic development defects.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 57

This gene is expressed primarily in fetal spleen, brain, and to a lesser extent in six week old embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders, neurological disorders, and developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and developmental systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 290 as residues: Arg-28 to Gly-34.

The expression of this gene in fetal spleen indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/detection of immune disorders such as arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. In addition the expression of this gene in the early embryo, indicates a key role in embryo development and hence the gene or gene product could be used in the treatment and or detection of embryonic development defects. This would include

treatment or detection of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntintons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder and also in the treatment and or detection of embryonic development defects.

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 58

The translation product of this gene shares sequence homology with the gene disrupted in the neurodegenerative disease dentatorubal-pallidoluysian atrophy. Moreover a long open reading fame exists in an alternative frame. Preferred polypeptide fragments comprise the following:

MGSSQSVEIPGGGTEGYHVLRVQENSPGHRAGLEPFFDFIVSINGSRLNKDND TLKDLLKXNVEKPVKMLIYSSKTLELRETSVTPSNLWGGQGLLGVSIRFCSFD GANENVWHVLEVESNSPAALAGLRPIISDYIIGADTVMNESEDLFSLIETHEAKP LKLYVYNTDTDNCREVIITPNSAWGGEGSLGCGIGYGYLHRIPTRPFEEGKKIS LPGQMAGTPITPLKDGFTEVQLSSVNPPSLSPPGTTGIEQSLTGLSISSTPPAVSS VLSTGVPTVPLLPPQVNQSLTSVPPMNPATTLPGLMPLPAGLPNLPNLNLNLPA PHIMPGVGLPELVNPGLPPLPSMPPRNLPGIAPLPLPSEFLPSFPLVPESSSAASS GELLSSLPPTSNAPSDPATTTAKADAASSLTVDVTPPTAKAPTTVEDRVGDSTPV SEKPVSAAVDANASESP (SEQ ID NO:512); SVEIPGGGTEGYHVLRVQENSPGH RAGI EPFEDEIVSINGSPLNKDNDTLKDLLKVNWEKDWAMLIVSSKTLELRETS

20 RAGLEPFFDFIVSINGSRLNKDNDTLKDLLKXNVEKPVKMLIYSSKTLELRETS VTPSNLWGGQGLLGVSIRFCSFDGANENVWH (SEQ ID NO:513); ESNSPAA LAGLRPHSDYIIGADTVMNESEDLFSLIETHEAKPLKLYVYNTDTDNCREVIITP NSAWGGEGSLGCGIGYGYLHRIPTRPFEEGKKISLPGQMAGTPITPLKDGFTEV QLSSVNPPSLSPPGTTGIEQSLTG LSISS (SEQ ID NO:514); RIPTRPFEEGKKI

25 SLPGQMAGTPITPLKDGFTEVQLSSVNPPSLSPPGTTGIEQSLTGLSISSTPPAVS SVLSTGVPTVPLLPPQVNQSLTSVPPMNPATTLPGLMPLPAGLPNLPNLNLNLP APHIMPGVGLPELVNPGLPPLPSMPPRN (SEQ ID NO:516); PGLPPLPSMPPRN LPGIAPLPLPSEFLPSFPLVPESSSAASSGELLSSLPPTSNAPSDPATTTAKADAA SSLTVDVTPPTAKAPTTVEDRVGDSTPVSEKPVSAAVDAN (SEQ ID NO:517).

This gene is expressed primarily in prostate cancer, and to a lesser extent in the pineal glands and in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of discussional contribution of the contribution

unmunological probes for differential identification of the tissue(s) or cell type(s). For

10

15

20

25

30

35

a number of disorders of the above tissues or cells, particularly of the nervous, pulmonary, and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 291 as residues: Asn-9 to Leu-14.

The abundance of this gene in the pineal gland and its homology to a gene disrupted in the neurodegenerative disease state Dentatorubral-pallidoluysian atrophy indicates that this gene may be useful in the treatment and/or detection of other neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. The abundance of this gene in fetal lung would suggest that misregulation of the expression of this protein product in the adult could lead to lymphoma or sarcoma formation, particularly in the lung; that it may also be involved in predisposition to certain pulmonary defects such as pulmonary edema and embolism, bronchitis and cystic fibrosis; and thus the gen or the gene protein encoded by the gene could be used in the detection and/or treatment of these pulmonary disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 59

This gene is expressed primarily in the developing embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developmental system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene primarily in the embryo, indicates the gene plays a key role in embryo development and that the gene or the protein encoded by the gene could be used in the treatment and or detection of developmental defects in the embryo or in infants.

5

10

15

20

25

3()

FEATURES OF PROTEIN ENCODED BY GENE NO: 60

This gene displays homology to nestin, an intermediate filament protein, the expression of which correlates with the proliferation of Central Nervous System progenitor cells and that is useful in the identification of brain tumors. This gene maps to chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1 (See Accession No. AA527348).

This gene is expressed primarily in kidney and to a lesser extent in brain.

Therefore polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, renal disorders and neurodegenerative conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the excretory and nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 293 as residues: Thr-128 to Asn-135.

The tissue distribution and homology to nestin indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and/or treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, its abundance in kidney indicates that it is useful in the treatment and detection of acute renal failure and other disease states associated with the kidney.

the calcium independent alpha-latrotoxin receptor. Preferred polypeptide fragments

10

15

20

25

comprise the following amino acid sequence:

IYKVFRHTAGLKPEVSCFENIRSCARXXXXXXXXXXXXXXXXWIFGVLHVVHASVV TAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNVPCC (SEQ ID NO:518); WIFGVLHVVHASVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNVPC C (SEQ ID NO:519). Also preferred are polynucleotide fragments encoding these polypeptide fragments. (See Accession No. 2213659) The translation product of this gene shares sequence homology with CD 97, a seven transmembrane bound receptor.

This gene is expressed primarily in infant brain and in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders and hematopoeitic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neurological and hematopoeitic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 294 as residues: Lys-13 to Leu-21.

The tissue distribution of this gene suggest that it may be useful in the detection and/or treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder, while its expression in hematopoietic cell types indicates that the gene could be important for the treatment or detection of immune or hematopoietic disorders including arthritis, asthma and immunodeficiency diseases.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 62

This gene is expressed primarily in fetal liver and fetal spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematological and immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

WO 98/54963 PCT/US98/11422

51

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoetic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 295 as residues: Ser-91 to Lys-98.

The tissue distribution of this gene fetal liver and spleen indicates that the gene could be important for the treatment or detection of immune or hematopoietic disorders including arthritis, leukemia, asthma and immunodeficiency diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 63

5

10

25

30

Gene shares homology with human serum amyloid protein. Preferred polypeptide fragments comprise the following amino acid sequence:
 ALTRIPPGDWVINVTAVSFAGKTTARFFHSSPPSLGDQARTDPGHQRRD (SEQ ID NO:520) (See Accession No. W13671). Also preferred are polynucleotide fragments encoding these polypeptide fragments This gene maps to chromosome 9, and therefore, may be used as a marker in linkage analysis for chromosome 9 (See Accession No. AA004342).

This gene is expressed primarily in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematopoietic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid flored in the standard gene expression level, i.e.,

15

20

25

30

35

The tissue distribution of this gene in fetal liver-spleen indicates that the gene could be important for the treatment or detection of immune or hematopoietic disorders including arthritis, leukemia, asthma, and immunodeficiency diseases.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 64

This gene maps to chromosome 3, and therefore, may be used as a marker in linkage analysis for chromosome 3 (See Accession No. AA219669).

This gene is expressed specifically in the brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative disease states. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neurological systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntintons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 65

Gene shares homology with a yeast protein. Preferred polypeptide fragments comprise the following amino acid sequence: LQEVNITLPENSVWYERYKFDIP VFHL (SEQ ID NO:521). Also preferred are polynucleotide fragments encoding these polypeptide fragments. (See Accession No. 1332638)

This gene is expressed primarily in fetal tissue (fetus and fetal liver).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, liver disorders and cancers (e.g. hepatoblastoma). Similarly,

10

15

polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 298 as residues: Asn-59 to Glu-64.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities, fetal deficiencies, pre-natal disorders and various would-healing models and/or tissue trauma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 66

20 Gene has homology with a B-cell surface antigen which may indicate gene plays a role in the immune response, including, but not limited to disorders and infections of the immune system. Preferred polynucleotide fragments comprise the following sequence: TAGCATGTAGCCAGTCGAATAACNTATAAGGACAAAGTGGAGTC CACGCGTGCGGCCGTCTAGACTAGTGGATCCCCCGGCTGCAGGATTCGGC ACGAG (SEQ ID NO:523). Also preferred are polypeptide fragments encoded by 25 these polynucleotide fragments (See Accession No.T94535). Additionally, this gene shares homology with an interferon-gamma receptor. Preferred polypeptide fragments also comprise the following amino acid sequence: MQGSGSQFRACLLCLCFSCPC SPGGPRWNSRQGGRRFPKTCRAISQNLVFKYKTFCPVRYMQPHRSSLCLHFTS YVFILSTWGSLRTYSTDLKKKKKNSRGGPVPIRPKS (SEQ ID NO:522); 30 MQGSGSQFRACLLCLCFSCPCSPGGPRWNSRQGGRRFPKTCRAISQNLVFK (SEQ ID NO:524); PVRYMQPHRSSLCLHFTSYVFILSTWGSLRTYSTDLKKKKK NSRGGPVPIRPKS (SEQ ID NO:525); and GEEQRDCSLGWRGVGMRATHCQAA RMEVLESLPKYAGL (SEO ID NO:526) Al anno an a

A SECTION OF THE PROPERTY OF T

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological disorders and conditions (immunodeficiencies, cancer, leukemia, hematopoeisis). Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and digestive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 299 as residues: Thr-41 to Gly-52.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of immune disorders including: leukemias, lymphomas, auto-immune disorders, immuno-supressive (transplantation) and immunodeficiencies (e.g. AIDS), inflammation and hematopoeitic disorders. The expression of this gene in gall bladder would suggest a possible role for this gene product in digestive disorders, particularly of the pancreas.

FEATURES OF PROTEIN ENCODED BY GENE NO: 67

This gene maps to chromosome 11, and therefore, may be used as a marker in linkage analysis for chromosome 11 (See Accession No. AA011622).

This gene is expressed primarily in a variety of fetal and developmental tissues (e.g. fetal spleen, infant brain).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental, immune or neurological abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing immune and central nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or

10

20

25

30

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 300 as residues: Ser-38 to Ser-43.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for developmental abnormalities or fetal deficiencies. The detection in infant brain would suggest a role in neurological disorders (both developmental and neurodegenerative conditions of the brain and nervous system, behavioral disorders, depression, schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, mania, dementia). In addition, the detection in spleen would similarly suggest a role in detection and treatment of immunologically mediated disorders (e.g. immunodeficiency, inflammation, cancer, wound healing, tissue repair, hematopoeisis).

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 68

This gene is expressed primarily in spleen, T-cells, and fetal heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological deficiencies, including AIDSand cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and cardiovascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of immune disorders including: leukemias, lymphomas, autoimmune disorders, immunodeficiencies (e.g. AIDS), immuno-suppressive conditions (transplantation) and hematopoeitic disorders. The expression is to the conditions.

thrombosis).

FEATURES OF PROTEIN ENCODED BY GENE NO: 69

Gene shares homology with a human collagen protein. Preferred polypeptide fragments comprise the following amino acid sequence:

5 MPRKTSKCRQLLCSGASRNADTAARQSTCSSHRPPGKIPSLGPRRXPGCXSVP SSRGEQSTGSPAAPRCGRRDAHRGLPGGAAMTPGDTWASFNPRAGHSKSQGE GQESSGASRQDRHPVSHWVERQREAWGAPRSSSAGGVKVAATTEREPEFKIK TGKA (SEQ ID NO:527); CSGASRNADTAARQSTCSSHRPPGKIPSLGPRRXPG CXSVPSSRGEQSTGSPAAPRCGRRDAHRGLPGGAAMTPGDTWASFNPRAGHS (SEQ ID NO:528); QGEGQESSGASRQDRHPVSHWVERQREAWGAPRSSSAGG VKVAATTEREPEFKIKTGKA (SEQ ID NO:529) (See Accession No. 124886). Also preferred are polynucleotide fragments encoding these polypeptide fragments

This gene is expressed primarily in fetal heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 302 as residues: Pro-32 to Ser-39.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of cadiovascular disorders (e.g. heart disease, restenosis, atherosclerosis, stroke, angina, thrombosis).

FEATURES OF PROTEIN ENCODED BY GENE NO: 70

The translation product of this gene shares sequence homology with a chicken single-strand DNA-binding protein. Preferred polypeptide fragments comprise the following amino acid sequence:

MSPRYPGGPRPPLRIPNQALGGVPGSQPLLPSGMDPTRQQGHPNMGGPMQRM TPPRGMVPLGPQNYGGAMRPPLNALGGPGMPGMNMGPGGGRPWPNPTNAN

15

20

25

30

35

10

15

20

25

30

SIPYSSASPGNYVGPPGGGGPPGTPIMPSPADSTNSGDNMYTLMNAVPPGPNR PNFPMGPGSDGPMGGLGGMESHHMNGSLGSGDMDSISKNSPNNMSLSNQP GTPRDDGEMGGNFLNPFQSESYSPSMTMSV (SEQ ID NO:530); MSPRYPGG PRPPLRIPNQALGGVPGSQPLLPSGMDPTRQQGHPNMGGPMQRMTPPRGMVP LGPQNYGGAMRPPLNALGGPGMPGMNMGPGGGRPWPNPTNANSIPYSSASP GNY (SEQ ID. NO:531); LNALGGPGMPGMNMGPGGGRPWPNPTNANSIPYSS ASPGNYVGPPGGGGPPGTPIMPSPADSTNSGDNMYTLMNAVPPGPN (SEQ ID NO:532); GPMGGLGGMESHHMNGSLGSGDMDSISKNSPNNMSLSNQPGTPR DDGEMGGNFLNPFQSESYSPSMTMSV (SEQ ID NO:533); TCEHSSEAKAFHDY (SEQ ID NO:534). Also preferred are polynucleotide fragments encoding these polypeptide fragments. (See Accession No. 1562534)

This gene is expressed primarily in placenta and to a lesser extent in the fetal heart and a variety of other tissues and cell types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities, fetal deficiencies, and particularly of the cardiovascular system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of developmental abnormalities or fetal deficiencies, ovarian and other endometrial cancers, reproductive dysfunction, cardiovascular disorders, and pre-natal disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 71

This gene is expressed primarily in fetal liver and to a lesser extent in the breast and testes.

to an actional mention of the tissues, of early types, present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

25

30

35

not limited to, liver disorders (including hepatoblastomas) and reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). The expression in testes and breast indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of endocrine and reproductive disorders (e.g. sperm maturation, milk production, testicular and breast cancers).

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 72

This gene maps to chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1 (See Accession No. W93595).

This gene is expressed primarily in smooth muscle and to a lesser extent in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cardiovascular and neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular and central nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of restenosis, atherosclerosis, stroke, angina, thrombosis, wound healing and other conditions of heart disease. In addition, the expression in brain would suggest that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of developmental, degenerative and behavioral conditions of the brain and nervous system (e.g. schizophrenia, depression, Alzheimer's disease, Parkinson's disease. Huntington's disease, mania, dementia, paranoia, addictive behavior and sleep disorders).

10

15

20

25

30

- 4 e A

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 73

Gene shares homology with human stromalin-2. Preferred polypeptide fragments comprise the following amino acid sequence:

QAFVLLSDLLLIFSPQMIVGGRDFLRPLVFFPEATLQSELASFLMDHVFIQPGDL GSGA (SEQ ID NO:535); ACSYLLCNPEFTFFSRADFARSQLVDLLTDRFQQE LEELLQVG (SEQ ID NO:536),QKQLSSLRDRMVAFCELCQSCLSDVDTEIQEQV ST (SEQ ID NO:537); QVILPALTLVYFSILWTLTHISKSDAS (SEQ ID NO:538); STHDLTRWELYEPCCQLLQKAVDTGXVPHQV (SEQ ID NO:539). Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No.R65208) This gene maps to chromosome 7, and therefore, may be used as a marker in linkage analysis for chromosome 7 (See Accession No. D52585).

This gene is expressed primarily in the brain (infant brain, adult brain, pituitary, cerebellum, hippocampus, schizophrenic hypothalmus, amygdala).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental and neurodegenerative diseases of the brain and nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an in fivi head to account the sample taken from an in fivi head to account the sample taken from an in fivi head to account the sample taken from an in fivi head to account the sample taken from an in fivi head to account the sample taken from an in fivi head to account the sample taken from an in fivi head to account the sample taken from an in fivi head to account the sample taken from an in fivi head to account the sample taken from an in fivi head to account the sample taken from an in fivi head to account the sample taken from an in fivi head to account the sample taken from an infinite taken from an infinite

er i er an enakalan is eraksing the Tisonder Einforder opdopes deplete those

10

15

20

25

comprising a sequence shown in SEQ ID NO: 306 as residues: Thr-25 to Lys-36, Lys-55 to Ser-63.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of developmental, degenerative and behavioral conditions of the brain and nervous system (e.g. schizophrenia, depression, Alzheimer's disease, Parkinson's disease, Huntington's disease, mania, dementia, paranoia, addictive behavior and sleep disorders).

FEATURES OF PROTEIN ENCODED BY GENE NO: 74

This gene is expressed primarily in the hypothalamus of a human suffering from schizophrenia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders of the CNS particularly schizophrenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS, such as schizophrenia expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 307 as residues: Gly-38 to Ala-44.

The tissue distribution indicates that the protein products of this gene are useful for the study, diagnosis and treatment of schizophrenia and other disorders involving the CNS.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 75

Preferred polypeptides of the invention comprise the following amino acid sequence encoded by this gene:

LAVSTSFICCADISTALPLGSSRPAPAPRHREHEHGHQARPPRLLXTSLMPLSTP AAAQLLWTQLTPMGGRPGGRHSPPTLHTGPRALPPGPPHPSLHVAALSLLR (SEQ ID NO:540). Polynucleotides encoding such polypeptides are also provided.

This gene is expressed primarily in endometrial tumor and to a lesser extent in amniotic cells.

35

10

15

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, reproductive and immune disorders particularly cancers of those systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 308 as residues: Ser-3 to Arg-9.

The tissue distribution indicates that the protein products of this gene are useful for study and treatment of immune and reproductive disorders particularly cancers of those systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 76

This gene is expressed primarily in kidney cortex and to a lesser extent in early stage human brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, renal disorders such as renal cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the kidney expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence where in SU(3) II SU

Tot study, treatment and diagnosis of renal diseases such as cancer of the kidney.

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 77

This gene is expressed primarily in kidney medulla.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, metabolic and renal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the metabolic and renal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for study, treatment and diagnosis of metabolic and renal diseases and disorders.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 78

This gene is expressed in chronic synovitis and microvascular endothelium.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, arthritis and atherosclerosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular and skeletal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for study, diagnosis and treatment of arthritic and other inflammatory diseases as well as cardiovascular diseases.

10

15

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 79

This gene is expressed in resting T-cells and activated monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for the study and treatment of immune diseases such as inflammatory conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 80

This gene is expressed in a variety of immune system tissues, e.g., neutrophils, T-cells, and TNF induced epithelial and endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, infectious and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and vascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a contract of the contract of the disorder.

for study and treatment of infectious diseases, immune and vascular disorders.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 81

This gene is expressed in activated neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and other immune conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for study and treatment of immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 82

This gene is expressed in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory and other immune conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 315 as residues: Ala-83 to Thr-91.

The tissue distribution indicates that the protein products of this gene are useful for study and treatment of immune disorders.

10

15

25

30

The State of the A

FEATURES OF PROTEIN ENCODED BY GENE NO: 83

This gene is expressed in human neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and inflammatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of disorders of the inflammatory and immune systems.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 84

This gene is expressed in human neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders of the inflammatory and immune systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the inflammatory and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

and the second second and the second second

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 85

This gene is expressed in activated neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and immune system diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and inflammatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of diseases of the inflammatory and immune systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 86

This gene is expressed in activated neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and immune system disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the inflammatory and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 319 as residues: Met-1 to Gly-6, Gly-32 to Pro-43, Leu-55 to Gln-60.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of disorders of the immune and inflammatory system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 87

In specific embodiments, polypeptides of the invention comprise the sequence: EQVLALLWPRFELILEMNVQSVRSTDPQRLGGLDTRPHYITRRYAEFSSALVSIN QTIPNERTMQLLGQLQVEVENFVLRVAAEFSSRKEQLVFLINNYDMMLGVLME 5 RAADDSKEVESFQQLLNARTQEFIEELLSPPFGGLVAFVKEAEALIERGQAERLR GEEARVTQLIRGFGSSWKSSVESLSQDVMRSFTNFRNGTSIIQG (SEQ ID NO:541),ALLKYRFFYQFLLGNERATAKEIRDEYVETLSKIYLSYYRSYLGRLMK VQYEEVAEKDDLMGVEDTAKKGFXSKPSRSRNTIFTLGTRGSVISPTELEAPILV PHTAQR (SEQ ID NO: 542); EQRYPFEALFRSQHYXLLDNSCREYLFICEFFVVS 10 GPXAHDLFHAVMGRTLSMTLKHLDSYLADCYDAIAVFLCIHIVLRFRNIAAKRD VPALDRYW (SEQ ID NO:543),GGLDTRPHYITRRYAEFSSALVSINQ (SEQ ID NO:544); SRKEQLVFLINNYDMMLGVL (SEQ ID NO: 545) and/or ALLKYRFFY QFLLGNERATAKEIRDEYVETLSKIYLSYYRSYLGRLMKVQYEEVAEKDDLMG VEDTAKKGFXSKPSLRSRNTIFTLGTRGSVISPTELEAPILVPHTAQRXEQRYPF 15 EALFRSQHYXLLDNSCREYLFICEFFVVSGPXAHDLFHAVMGRTLSMTLKHLD SYLADCYDAIAVFLCIHIVLRFRNIAAKRDVPALDRYWEQVLALLWPRFELILEM NVQSVRSTDPQRLGGLDTRPHYITRRYAEFSSALVSINQTIPNERTMQLLGQLQV EVENFVLRVAAEFSSRKEQLVFLINNYDMMLGVLMERAADDSKEVESFQQLLN ARTQEFIEELLSPPFGGLVAFVKEAEALIERGQAERLRGEEARVTQLIRGFGSSW 20 KSSVESLSQDVMRSFTNFRNGTS (SEQ ID NO:546). Polynucleotides encoding these polypeptides are also encompassed by the invention. The translation product of this gene shares sequence homology with suppressor of actin mutation which is thought to be important in mutation suppression. 25

This gene is expressed primarily in fetal liver and to a lesser extent in a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, liver and mutations. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver or cancer, expression of this gene at significantly higher or lower levels may be continued.

30

such a disorder, relative to the standard gene expression level, i.e., the expression level

10

15

in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 320 as residues: Val-53 to Arg-60, Thr-88 to Thr-94, Ala-142 to Ser-150, Gly-188 to Glu-196, Gly-208 to Ser-214, Thr-227 to Gly-232, Lys-279 to Phe-285.

The tissue distribution and homology to suppressor of actin mutation suggest that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and of liver disorder or cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 88

This gene maps to chromosome 9, and therefore can be used in linkage analysis as a marker for chromosome 9. In specific embodiments, polypeptides of the invention comprise the sequence:

YEGKEFDYVFSIDVNEGGPSYKLPYNTSDDPWLTAYNFLQKNDLNPMFLDQVA KFIIDNTKGQMLGLGNPSFSDPFTGGGRYVPGSSGSSNTLPTADPFTGAGRYV PGSASMGTTMAGVDPFTGNSAYRSAASKTMNIYFPKKEAVTFDQANPTQILGK LKELNGTAPEEKKLTEDDLILLEKILSLICNSSSEKPTVQQLQILWKAINCPEDIV FPALDILRLSIKHPSVNENFCNEKEGAQFSSHLINLLNPKGKPANQLLALRTFC NCFVGQAGQKLMMSQRESLMSHAIELKSGSNKNI (SEQ ID NO: 547); HIALATLALNYSVCFHKD (SEQ ID NO: 548); HNIEGKAQCLSLISTILEVVQ

- DLEATFRLLVALGTLISDDSNAVQLAKS (SEQ ID NO:549); LGVDSQIKKYSS VSEPAKVSECCRFILNLL (SEQ ID NO:550); and/or YEGKEFDYVFSIDVNEGGPS YKLPYNTSDDPWLTAYNFLQKNDLNPMFLDQVAKFIIDNTKGQMLGLGNPSFS DPFTGGGRYVPGSSGSSNTLPTADPFTGAGRYVPGSASMGTTMAGVDPFTGN SAYRSAASKTMNIYFPKKEAVTFDQANPTQILGKLKELNGTAPEEKKLTEDDLI
- 25 LLEKILSLICNSSSEKPTVQQLQILWKAINCPEDIVFPALDILRLSIKHPSVNENFC NEKEGAQFSSHLINLLNPKGKPANQLLALRTFCNCFVGQAGQKLMMSQRESL MSHAIELKSGSNKNIHIALATLALNYSVCFHKDHNIEGKAQCLSLISTILEVVQD LEATFRLLVALGTLISDDSNAVQLAKSLGVDSQIKKYSSVSEPAKVSECCRFILN LL (SEQ ID NO:551). Polynucleotides encoding these polypeptides are also
- encompassed by the invention. These polypeptides share significant homology with phospholipase A2 activating protein which is thought to be important in signal transduction (see, e.g., Wang et al., Gene 161(2):237-241 (1995)).

This gene is expressed primarily in endothelial cells, to a less extent in placenta, endometrial stromal cells, osteosarcoma, testis tumor, muscle, and infant brain that are likely to be rich in blood vessles.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

35

10

15

biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders in vascular system, aberrent angiogenesis, tumor angiogenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system or tumors, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene in endothelial cells and several potential highly vascularized tissues and its homology to phosphotipase A2 activating protein suggest that this gene may be involved in transducing signals for endothelial cells in angiogenesis or vasculogenesis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 89

In specific embodiments, polypeptides of the invention comprise the sequence: YPNQDGDILRDQVLHEHIQRLSKVVTANHRALQIPEVYLREAPWPSAQSEIRTIS 20 AYKTPRDKVQCILRMCSTIMNLLSLANEDSVPGADDFVPVLVFVLIKANPPCLL STVQYISSFYASCLSGEESYWWMQFTAAVE (SEQ ID NO:552); YPNQDGDILR DQVLHEHIQRLSKVVTANHRALQIPEVYLREAPWPSAQSEIRTISAYKTPRDKVQ CILRMCSTIMNLLSLANEDSVPGADDFVPVLVFVLIKANPPCLLSTVQYISSFYA SCLSGEESYWWMQFTAAVEFIKTI (SEQ ID NO:553); YPNQDGDILRDQVL (SEQ ID NO:554); EAPWPSAQSEI (SEQ ID NO:555); PVLVFVLIKANP (SEQ ID 25 NO:560); SGEESYWWMQFTAAVEFIKTI (SEQ ID NO:556); ADDFVPVLVF VLIKANPP (SEQ ID NO:557); YKTPRDKVQCIL (SEQ ID NO:558); and/or GADDFVPVLVFVLIK (SEQ ID NO:559). The translation product of this gene shares sequence homology with human ras inhibitor and yeast VPS9p which is thought to be 30 important in golgi vacuole transport.

This gene is expressed primarily in T cells and melanocytes and to a lesser extent in a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the identific

polypeptides and antibodies directed to these polypeptides are useful in providing

10

15

20

25

30

35

immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ras inhibitor indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating signal transduction; diagnosis and treatment of disorders involving T cells and melanocytes.

FEATURES OF PROTEIN ENCODED BY GENE NO: 90

This gene maps to chromosome 9 and therefore polypeptides of the invention can be used in linkage analysis as a marker for chromosome 9. The translation product of this gene shares sequence homology with neuronal olfactomedin-related ER localized protein which is thought to be important in influence the maintenance, growth, or differentiation of chemosensory cilia on the apical dendrites of olfactory neurons. In specific embodiments, polypeptides of the invention comprise the sequence: SARASTQPPAGQHPGPC (SEQ ID NO:561); MPGRWRWQRDMHPARKLLSLL FLILMGTELTQD (SEQ ID NO:562); SAAPDSLLRSSKGSTRGSL (SEQ ID NO:563); AAIVIWRGKSESRIAKTPGI (SEQ ID NO:564); FRGGGTLVLPPTHT PEWLIL (SEQ ID NO:567); PLGITLPLGAPETGGGD (SEQ ID NO:565); and/or CAAETWKGSQRAGQLCALLA (SEQ ID NO:566).

This gene is expressed in pineal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological and endocrinological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neurological or endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 323 as residues: Leu-20 to Ala-26, Arg-32 to Arg-39, Thr-104 to Gly-112.

The tissue distribution and homology to olfactomedin-related protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for maintenance, growth, or differentiation of neuron cells in pineal gland, therefore, may be useful for diagnosis and treatment of neurological disorders in pineal gland.

FEATURES OF PROTEIN ENCODED BY GENE NO: 91

This gene is expressed primarily in prostate and apoptotic T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, prostate disease and T cell dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate cancer, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detect abnormal activity in prostate and T cells or probably treatment of this abnormality.

FEATURES OF PROTEIN ENCODED BY GENE NO: 92

This gene is expressed primarily in prostate and to a lesser extent in smooth muscle cells, fibroblasts, and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders in prostate or vascular system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in proximitations.

of this gene at significantly higher or lower levels may be routinely detected in certain

15

20

25

30

35

tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating function of prostate or highly vascularized tissues, e.g. placenta.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 93

This gene is expressed primarily in embryos and fetal tissues stage human and to a lesser extent in a wide variety of other proliferative tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders in embryonic development and cell proliferation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the embryonic tissues and proliferative cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of abnormalities in developing and proliferative cells and organs.

FEATURES OF PROTEIN ENCODED BY GENE NO: 94

The translation product of this gene shares sequence homology with transformation related protein which is thought to be important in transformation.

This gene is expressed primarily in female reproductive tissues, i.e., breast cancer cells, placenta, and ovary and to a lesser extent in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

1()

15

20

25

3()

not limited to, cancer or dysfunction of reproductive tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproduction system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 327 as residues: Ser-50 to Pro-61.

The tissue distribution and homology to transformation related protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of conditions caused by transformation, i.e. tumorigenesis in reproductive organs, e.g. breast, placenta, and ovary.

FEATURES OF PROTEIN ENCODED BY GENE NO: 95

This gene is expressed primarily in testes, rhabdomyosarcoma, infant brain and to a lesser extent in some tumors and highly vascularized tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumorigenesis, abnormal angiogenesis, and/or neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tumor tissues or vascular tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 328 as residues: Arg-46 to Trp-54, Pro-60 to Ile-69. Asn 116 to Ala-122 Arg-147 to Ly-153 S - 158 to Ch. 120 H.

corresponding to this gene are useful for a range of disease states including treatment of

15

20

25

30

35

tumor or vascular disorders and the treatment of neurological disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 96

This gene maps to chromosome 7 and therefore polynucleotides of the present invention can be used in linkage analysis as a marker for chromosome 7. The translation product of this gene is homologous to the Clostridium perfringens enterotoxin (CPE) receptor gene product and shares sequence homology with a human ORF specific to prostate and a glycoprotein specific to oligodendrocytes both of which are tissue specific proteins.(See e.g., Katahira et al., J Cell Biol. 136(6):1239-1247 (1997). PMID: 9087440; UI: 97242441.

This gene is expressed primarily in pancreas tumor and ulcerative colitis and to a lesser extent in several tumors and normal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, pancreatic disorder, ulcerative colitis, tumors and food poisoning. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system or tumorigenic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 329 as residues: Gly-147 to Met-152, Cys-177 to Lys-188.

The tissue distribution and homology to prostate and oligodendrocyte-specific protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for marker of diagnosis or treatment of disorder in pancreas, ulcerative colitis, and tumors. Furthermore, identity to the human receptor for Clostridium perfringenes entertoxin indicates that the soluble portion of this receptor could be used in the treatment of food poisoning associated with Clostridia perfringens by blocking the activity of perfringens enterotoxin.

10

15

20

30

A STATE OF STATE A

FEATURES OF PROTEIN ENCODED BY GENE NO: 97

The translation product of this gene shares sequence homology with ATPase which is thought to be important in metabolism.

This gene is expressed primarily in testes and several hematopoietic cells and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, leukemia and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 330 as residues: Leu-37 to Ala-42.

The tissue distribution and homology to ATPase indicates that polynucleotides and polypeptides corresponding to this gene are useful for marker of diagnosis and treatment of leukemia and other hematopoietic disorders.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 98

In specific embodiments, polypeptides of the invention comprise the sequence: MRSARPSLGCLPSWAFSQALNI (SEQ ID NO:568); LLGLKGLAPAEISAVCE KGNFN (SEQ ID NO:569); VAHGLAWSYYIGYLRLILPELQARIR (SEQ ID NO:570); TYNQHYNNLLRGAVSQRC (SEQ ID NO:571); ILLPLDCGVPDNLSM ADPNIRFLDKLPQQTGDRAGIKDRVYSN (SEQ ID NO:572); SIYELLENGQRAGT CVLEYATPLQTLFAMSQYSQAGFSGEDRLEQ (SEQ ID NO:573); AKLFCRTLE DILADAPESQNNCRLIAYQEPADDSSFSLSQEVLRHLRQEEKEEVTVGSLKTSAV PSTSTMSQEPELLISGMEKPLPLRTDFS (SEQ ID NO:574); and/or LLGLKGLA PAEISAVCEKGNFNVAHGLAWSYYIGYLRLILPEL SEQ ID NO:57

services as a smaller in prostate BPH and to selesser extent in bond

marrow

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, benign prostatic hypertrophy or prostate cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male urinary system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 331 as residues: Ile-60 to Asn-69, Leu-106 to Asp-112, Glu-130 to Gly-136, Phe-160 to Glu-167, Pro-184 to Cys-190, Glu-197 to Ser-202, Arg-215 to Glu-221, Thr-237 to Pro-242.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of benign prostatic hypertrophy or prostate cancer.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 99

This gene is expressed primarily in salivary gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders or injuries of the salivary gland. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of glandular tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of disorders of, or injuries to the salivary gland or other glandular tissue.

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 100

This gene maps to chromosome 15, accordingly, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 15. The translation product of this gene shares sequence homology with a *C.elegans* gene of unknown function. In specific embodiments, polypeptides of the invention comprise the sequence: DPRVRLNSLTCKHIFISLTQ (SEQ ID NO:583); TMKLLKLRRNIV KLSLYRHFTN (SEQ ID NO:576); TLILAVAASIVFIIWTTMKFRI (SEQ ID NO:577); VTCQSDWRELWVDDAIWRLLFSMILFVI (SEQ ID NO:578); MVLWR PSANNQRFAFSPLSEEEEEDEQ (SEQ ID NO:580); KEPMLKESFEGMKMRS TKQEPNGNSKVNKAQEDDL (SEQ ID NO:584); and/or KWVEENVPSSVTDVALP ALLDSDEERMITHFERSKME (SEQ ID NO:582). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in thyroid and to a lesser extent in osteoclastoma, kidney medulla, and lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, thyroid dysfunction or cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 333 as residues: Lys 107 to Leu-124, Glu-150 to Thr-159, Pro-173 to Asp-179, Ser-192 to Ser-201.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of thyroid dysfunction or cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO. 101

consolinates, polypeptides of the invention comprise the sequence:

10

15

20

IRHELTVLRDTRPACA (SEQ ID NO:585): and/or MDFXMALIYD (SEQ ID NO:586). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in kidney cortex and to a lesser extent in adult brain, corpus colosum, hippocampus, and frontal cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of neurological disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 102

In specific embodiments, polypeptides of the invention comprise the sequence: MQEMMRNQDRALSNLESIPGGYNA (SEQ ID NO:587); LRRMYTDIQEPMLSA AQEQF GGNPF (SEQ ID NO:588); ASLVSNTSSGEGSQPSRTENRDPLPNPWAP 25 QT (SEQ ID NO:589); SQSSSASSGTASTVGGTTGSTASGTSGQSTTAPNLVPGV GASMFNTPG MQSLLQQITENPQLMQNMLSAPY (SEQ ID NO:590); $MRSMMQSLSQNPDLAAQMMLNNPLFAGNPQLQEQMRQQLPTFLQQ \ (SEQ\ ID$ NO:591); MQNPDTLSAMSNPRAMQALLQIQQGLQTLATEAPGLIPGFTPGLG ALGSTGGSSGTNGSNATPSENTSPTAGT (SEQ ID NO:592); TEPGHQQFI 30 QQMLQALAGVNPQLQNPEVRFQQQLEQLSAMGFLNREANLQALIATGGDINAA IERLLGSQPS (SEQ ID NO:593); RNPAMMQEMMRNQDRALSNLESIPGGY NALRRMYTDIQEPMLSAA (SEQ ID NO:594); GNPFASLVSNTSS (SEQ ID NO:595); ENRDPLPNPWA (SEQ ID NO:595); GKILKDQDTLSQHGIHD (SEQ ID NO:597); GLTVHLVIKTQNRP (SEQ ID NO:598); SELQSQMQRQLLSNPEMM 35 (SEQ ID NO:599); PEISHMLNNPDIMR (SEQ ID NO:600); and/or RQLIMANPQMQQLIQRNP (SEQ ID NO:601). Polynucleotides encoding these

10

15

30

polypeptides are also encompassed by the invention.

This gene is expressed primarily in breast.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of tumor systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of some types of breast cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 103

The translation product of this gene shares sequence homology with secreted serine proteases and lysozyme C precursor, which is thought to be important in bacteriolytic function. In specific embodiments, polypeptides of the invention comprise the sequence: NLCHVDCQDLLNPNLLAGIHCAKRIVS (SEQ ID NO:602); LDGFEGYSLSDWLCLAFVESKFN (SEQ ID NO:603);

NENADGSFDYGLFQINSHYWCN (SEQ ID NO:604); and/or NLCHVDCQDLLNPNLLAGIHCAKRIVS (SEQ ID NO:605). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, infection. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of the state of

tissues) of bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or

10

15

20

25

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 336 as residues: Ile-62 to Phe-70, Asn-78 to Asn-84.

The tissue distribution and homology to lysozyme C precursor indicates that polynucleotides and polypeptides corresponding to this gene are useful for boosting the moncyte-macrophage system and enhance the activity of immunoagents.

FEATURES OF PROTEIN ENCODED BY GENE NO: 104

This gene is expressed primarily in apoptotic T-cell.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of some immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 105

The translation product of this gene shares sequence homology with ARI

protein of Drosophila (accession 2058299; EMBL: locus DMARIADNE, accession X98309), which is thought to be important in axonal path-finding in the central nervous system. In specific embodiments, polypeptides of the invention comprise the sequence IREVNEVIQNPAT (SEQ ID NO:606); ITRILLSHFNWDKEKLMERYF DGNLEKLFA (SEQ ID NO:607); NTRSSAQDMPCQICYLNYPNSYF (SEQ ID NO:608); TGLECGHKFCMQCWSEYLTTKIMEEGMGQTISCPAHG (SEQ ID NO:614); CDILVDDNTVMRLITDSKVKLKYQHLITNSFVECNRLLKWCPAPD CHHVVKVQYPDAKPV (SEQ ID NO:609); CDILVDDNTVMRLITDSK

10

15

20

25

30

VKLKYQHLITNSFVECNRLLKWCPAPDCHHVVKV (SEQ ID NO:610);
GCNHMVCRNQNCKAEFCWVCLGPWEPHGSAWYNCNRYNEDDAKAARDAQE
RSRAALQRYL (SEQ ID NO:611); FYCNRYMNHMQSLRFEHKLYAQVKQ
KMEEMQQHNMSWIEVQFLKKAVDVLCQCRATLMYT (SEQ ID NO: 612);
YVFAFYLKKNNQSIIFENNQADLENATEVLSGYLERDISQDSLQDIKQKVQDKY
RYCESR (SEQ ID NO:613) Polynucleotides encoding these polypeptides are also
encompassed by the invention.

This gene is expressed primarily in adult brain, and to a lesser extent in endometrial tumor, melanocytes, and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases or injuries involving axonal path development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ARI protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of disease states or injuries involving axonal path development, including neurodegenerative diseases and nerve injury.

FEATURES OF PROTEIN ENCODED BY GENE NO: 106

The translation product of this gene shares sequence homology with cytochrome b561 [Sus scrofa] which is thought to be an integral membrane protein of neuroendocrine storage vesicles of neurotransmitters and peptide hormones.

This gene is expressed primarily in frontal cortex and to a lesser extent in rhabdomyosarcoma.

Therefore, polynucleotides and polypoprides of the feet of the second

not aimited to, neurological disorders. Similarly, polypeptides and antibodies directed to

10

15

20

25

30

35

these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 339 as residues: Ser-18 to Pro-24.

The tissue distribution and homology to cytochrome b561 [Sus scrofa] indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of neurological disorders. This gene may also be important in regulation of some types of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 107

In specific embodiments, polypeptides of the invention comprise the sequence: MWGYLFVDAAWNFLGCLICGW (SEQ ID NO:615); MHFISSGNVSAIRSSILLL RXSLSYLGNCLRVSAIFVYFLLFLLLS (SEQ ID NO:616); and/or MDQALRGSPSE GFSTDPSPPQVGRQIPSFPPWRRLVLPKASGCFLEREWWLCVFKLRTRPGAEA HAYNSSILGGRGKGIT (SEQ ID NO:617). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in pancreas tumor and to a lesser extent in cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, pancreatic tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred

epitopes include those comprising a sequence shown in SEQ ID NO: 340 as residues: Pro-22 to Phe-33.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of pancreatic tumors.

5

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 108

This gene maps to chromosome 17 and therefore polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 17. In specific embodiments, polypeptides of the invention comprise the sequence:

MLPALASCCHFSPPEQAARLKKLQEQEKQQKVEFRKRMEKEVSDFIQDSGQIK KKFQPMNKIERSILHDVVEVAGLTSFSFGEDDDCRYVMIFKKEFAPSDEELDSY RRGEEWDPQKAEEKRNXKELAQRQ (SEQ ID NO:618); EEEAAQQGPVVV SPASDYKDKYSHLIGKGAAKDAAHMLQANKTYGCXPVANKRDTRSIEEAMNE IRAKKRLRQSGE (SEQ ID NO:619); PPRRPAQLPLTPGAGQGAGRDKAAAIRA HPGAPPLNHLLP (SEQ IDNO:620); AVPQAGGKQVFDLSPLELGYVRGMCVCV (SEQ ID NO:621) and/or MLPALASCCHFSPPEQAARLKKLQEQEKQQKVEFRK RMEKEVSDFIQDSGQIKKKFQPMNKIERSILHDVVEVAGLTSFSFGEDDDCRYV MIFKKEFAPSDEELDSYRRGEEWDPQKAEEKRNXKELAQRQEEEAAQQGPVVV SPASDYKDKYSHLIGKGAAKDAAHMLQANKTYGCXPVANKRDTRSIEEAMNE IRAKKRLRQSGE (SEQ ID NO:622). Polynucleotides encoding these polyneptides

IRAKKRLRQSGE (SEQ ID NO:622). Polynucleotides encoding these polypeptides are also encompassed by the invention. The translation product of this gene shares sequence homology with FSA-1 which may play a role as a structural protein component of the acrosome.

This gene is expressed primarily in fetal kidney and sperm.

25

3()

No. of the American

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male reproductive disorders, especially involving acrosomal disfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine_synovial fluid or point fluid.

and the second of the second because the second points of the second sec

10

15

20

25

30

35

individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 341 as residues: Glu-8 to Asn-35.

The tissue distribution and homology to FSA-1 indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of infertility due to acrosomal disfunction of sperm.

FEATURES OF PROTEIN ENCODED BY GENE NO: 109

This gene is expressed primarily in pituitary and to a lesser extent in epididymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 342 as residues: Met-1 to Trp-6.

Because the gene is found in both pituitary and epididymus, this indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of male reproductive disorders. This may involve a secreted peptide produced in the pituitary targeting the epididymus.

FEATURES OF PROTEIN ENCODED BY GENE NO: 110

In specific embodiments, polypeptides of the invention comprise the sequence: LLCPVLNSGXSWNFPHPSQPEYSFHGFHSTRLWI (SEQ ID NO:623); and/or PSTPWFLFLLGLTCPFSTSHPRWDSIPP (SEQ ID NO:624). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in resting T-cells. .

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

not limited to, T-cell disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of certain immune disorders, especially those involving T-cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 111

This gene is expressed primarily in cerebellum and whole brain and to a lesser extent in infant brain and fetal kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 344 as residues: Asp-48 to Gly-55.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological disorders.

untochondrial ribosomal protein homologous to ribosomal protein \$15 of E.coli which

10

15

20

25

is thought to be important in the early assembly of ribosomes (See Accession No. M38016). This gene maps to chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1.

This gene is expressed primarily in developmental tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, development of cancers and tumors in addition to healing wounds. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and developmental expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ribosomalprotein s15 of E. coli indicates that polynucleotides and polypeptides corresponding to this gene are useful for diseases related to the assembly of ribosomes in the mitochondria which is important in the translation of RNA into protein. Therefore, this indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of multiple tumors as well as in healing wounds which are thought to be under similar regulation as developmental tissues. Protein, as well as, antibodies directed against the protein have utility as tumor markers, in addition to immunotherapy targets, for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 113

The translation product of this gene shares sequence homology with human poliovirus receptor precursors which are thought to be important in viral binding and uptake. Preferred polypeptide fragments comprise the following amino acid sequence: ELSISISNVALADEGEYTCSIFTMPVRTAKSLVTVLGIPQKPIITGYKSSLREKDT ATLNCQSSGSKPAARLTWRKGDQELHGEPTRIQEDPNGKTFTVSSSVTFQVTR EDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPDPPHPREGQKLLLHC EGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKSDSGTYGCTATSNMGS YKAYYTLNVND (SEQ ID NO:625). Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No. gnllPIDld1002627).

This gene is expressed almost exclusively in human brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, susceptibility to viral disease and diseases of the CNS especially cancers of that system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 346 as residues: Leu-26 to Asp-37, Lys-53 to Ser-59.

The tissue distribution and homology to poliovirus receptor precursors indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and prevention of diseases that involve the binding and uptake of virus particles for infection. It might also be helpful in genetic therapy where the goal is to insert foreign DNA into infected cells. With the help of this protein, the binding and uptake of this foreign DNA might be aided. In addition, it is expected that over expression of this gene will indicate abnormalities involving the CNS, particularly cancers of that system.

25

3()

5

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 114

The translation product of this gene shares sequence homology with YO87_CAEFL hypothetical 28.5 KD protein ZK1236.7 in chromosome III of Caenorhabditis elegans in addition to alpha-1 collagen type III (See Accession No. gil537432). One embodiment for this gene is the polypeptide fragment(s) comprising the following amino acid sequence: VPELPDRVHQLHQAVQGCALGRPGFPGGPTH SGHHKSHPGPAGGDYNRCDRPGQVHLHNPRGTGRRGQLHPTAGPGVHRRA CPSQQLPHRLGPGVPCPSPSLTPVLPSWTQSWCG LPGYTSSS (SEQ ID NO:630). An additional embodiment is the polyproduction for the formula of the formula of the college o

 $[\]alpha = -8.00$, so considered to Drame collisiand for a new approximation and Equilibrium ().

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegeneration and imunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 347 as residues: Glu-34 to Glu-39, Gly-51 to Ser-72, Ala-88 to Glu-93, Gln-100 to Val-105.

The tissue distribution and homology to YO87_CAEEL hypothetical 28.5 KD protein ZK1236.7 in chromosome III of Caenorhabditis elegans as well as to a conserved alpha-1 collagen type III protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons' Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorders. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 115

The translation product of this gene shares sequence homology with alpha 3 type IX collagen which is thought to be important in hyaline cartilage formation via its ability to uptake inorganic sulfate by cells (See Accession No. gil975657). One embodiment of this gene is the polypeptide fragment comprising the following amino acid sequence: SLRRPRSAAXQTLTTFLSSVSSASSSALPGSREPCDPRAPPPPR SGSAASCCSCCCSCPRRRAPLRSPRGSKRRIRQREVVDLYNGMCLQGPAGVPG RDGSPGANGIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNY GIDLGKIAECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGP LPIEAIIYLDQGSPEMNSTINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKG DASTGWNSVSRHIEELPK (SEQ ID NO:634). An additional embodiment are the

10

15

20

25

30

polynucleotide fragments encoding this polypeptide fragment.

This gene is expressed primarily in smooth muscle and to a lesser extent in synovial tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, dwarfism, spinal deformation, and specific joint abnormalities as well as chondrodysplasias i.e., spondyloepiphyseal dysplasia congenita, familial osteoarthritis, Atelosteogenesis type II, metaphyseal chondrodysplasia type Schmid and autoimmune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to alpha 3 type IX collagen indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of diseases associated with the mutation in this gene which leads to the many different types of chondrodysplasias. By the use of this product, the abnormal growth and development of bones of the limbs and spine could be routinely detected or treated in utero since the protein or muteins thereof could affect epithelial cells early in development and later the chondrocytes of the developing craniofacial structure.

FEATURES OF PROTEIN ENCODED BY GENE NO: 116

The translation product of this gene shares sequence homology with retrovirus-related reverse transcriptase which is thought to be important in viral replication. One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: TKKENCRPASLMNIDTKILNKILMNQ (SEQ ID NO:640). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments (See Accession No. pirlA25313IGNHUL1).

This gene is expressed primarily in human monin im-

s and a common of the most extraction of a Mypersuppresent in

motogical sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

not limited to, retroviral diseases such as AIDS, and possibly certain cancers due to transactivation of latent cell division genes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to retrovirus-related reverse transcriptase indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of diseases and maladies associated with retroviral infection since a functional reverse transcriptase (RT) or RT-like molecule is an integral component of the retroviral life cycle.

FEATURES OF PROTEIN ENCODED BY GENE NO: 117

The translation product of this gene shares sequence homology with an unknown gene from *C. elegans*, as well as weak homolog with mammalian metaxin, a gene contiguous to both thrombospondin 3 and glucocerebrosidase, is known to be required for embryonic development. Preferred polypeptide fragments comprise the following amino acid sequence: MCNLPIKVVCRANAEYMSPSGKVPXXHVGNQ VVSELGPIVQFVKAKGHSLSDGLEEVQKAEMKAYMELVNNMLLTAELYLQWC DEATVGXITHXRYGSPYPWPLXHILAYQKQWEVKRKXKAIGWGKKTLDQVLE DVDQCCQALSQRLGTQPYFFNKQPTELDALVFGHLYTILTTQLTNDELSEKVKN YSNLLAFCRRI EQHYFEDRGKGRLS (SEQ ID NO:641); MCNLPIKVVCRANAE YMSPSGKVPXXHVGNQVVSELGPIVQFVK (SEQ ID NO:642).. Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No. gil1326108).

This gene is expressed primarily in fetal tissues and to a lesser extent in hematopoietic cells and tissues, including spleen, monocytes, and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer; lymphoproliferative disorders; inflammation; chondrosarcoma, and Gaucher disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification

10

15

20

25

30

of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and embryonic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of cancer and other proliferative disorders. Expression in embryonic tissue and other cellular sources marked by proliferating cells indicates that this protein may play a role in the regulation or cellular division. Additionally, the expression in hematopoietic cells and tissues indicates that this protein may play a role in the proliferation, differentiation, and survival of hematopoietic cell lineages. Thus, this gene may be useful in the treatment of lymphoproliferative disorders, and in the maintenance and differentiation of various hematopoietic lineages from early hematopoietic stem and committed progenitor cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 118

The translation product of this gene shares sequence homology with reverse transcriptase which is important in the synthesis of a cDNA chain from an RNA molecule, and is a method whereby the infecting RNA chains of retroviruses are transcribed into their DNA complements. One embodiment for this gene is the polypeptide fragment comprising the following amino acid sequence:

MXXXNSHITIFTLNVNGLNAPNERHRLANWIQSQDQVCCIQETHLTGRDTHRL KIKGWRKIYQANGKQKK (SEQ ID NO:647). An additional embodiment is the

polynucleotide fragments comprising polynucleotides encoding these polypeptide fragments (See Accession No. gil2072964).

This gene is expressed primarily in skin and to a lesser extent in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer, hematopoietic disorders; inflammation; disorders of immune surveillance. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identifications.

higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and

WO 98/54963 PCT/US98/11422

92

wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to reverse transcriptase indicates that polynucleotides and polypeptides corresponding to this gene are useful for cancer therapy. Expression in the skin also indicates that this gene is useful in wound healing and fibrosis. Expression by neutrophils also indicates that this gene product plays a role in inflammation and the control of immune surveillance (i.e. recognition of viral pathogens). Reverse transcriptase family members are also useful in the detection and treatment of AIDS.

FEATURES OF PROTEIN ENCODED BY GENE NO: 119

The translation product of this gene shares sequence homology with reverse transcriptase which is important in the synthesis of a cDNA copy of an RNA molecule, and is a method whereby a retrovirus reverse-transcribes its genome into an inheritable DNA copy.

This gene is expressed primarily in the frontal cortex of brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer and neurodegenerative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS and peripheral nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to reverse transcriptase suggest that this is useful in the treatment of cancer and AIDS. The expression in brain indicates that it plays a role in neurodegenerative disorders and in neural degeneration.

5

10

15

20

25

30

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 120

One embodiment of this gene has homology to a hypothetical protein in Schizosaccharomyces pombe (See Accession No. 2281980). Another embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: IYHLHSWIFFHFKRAFCMCFITMKVIHAHCSKLRKCXNAQISVFCTTLTASYPT (SEQ ID NO:651). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments. This gene maps to chromosome 18, and therefore, may be used as a marker in linkage analysis for chromosome 18.

This gene is expressed primarily in adult hypothalamus and to a lesser extent in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative disorders; endocrine function; and vertigo. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, CNS and peripheral nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of neurodegenerative disorders; diagnosis of tumors of a brain or neuronal origin; treatments involving hormonal control of the entire body and of homeostasis, behavioral disorders, such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo.

FEATURES OF PROTEIN ENCODED BY CENE NO. 121

and thus regulating its transcription (See Accession No. gil33969). This gene maps to

10

15

chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1.

This gene is expressed primarily in brain and breast and to a lesser extent in a variety of hematopoietic tissues and cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer of the brain and breast; lymphoproliferative disorders; neurodegenerative diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS, breast, and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of cancer of the brain, breast, and hematopoietic system. In addition, it may be useful for the treatment of neurodegenerative disorders, as well as disorders of the hematopoietic system, including defects in immune competency and inflammation. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

25

30

35

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 122

The translation product of this gene shares sequence homology with an ATP synthase, a key component of the proton channel that is thought to be important in the translocation of protons across the membrane.

This gene is expressed primarily in T cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, T cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or

10

20

25

30

lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ATP synthase indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of defects in proton transport, homeostasis, and metabolism, as well as the diagnosis and treatment of lymphoma. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia

FEATURES OF PROTEIN ENCODED BY GENE NO: 123

This gene maps to chromosome 15, and therefore, may be used as a marker in linkage analysis for chromosome 15.

This gene is expressed primarily in a variety of fetal tissues, including fetal liver, lung, and spleen, and to a lesser extent in a variety of blood cells, including eosinophils and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer (abnormal cell proliferation); T cell lymphomas; and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetus and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment at 14 cm. The state of the treatment at 14 cm.

prointeration, apoptosis; or cell survival. Thus it may be useful in the management and

treatment of a variety of cancers and malignancies. In addition, its expression in blood cells suggest that it may play additional roles in hematopoietic disorders and conditions, and could be useful in treating diseases involving autoimmunity, immune modulation, immune surveillance, and inflammation..

5

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 124

This gene is expressed primarily in placenta and to a lesser extent in pineal gland and rhabdomyosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental, endocrine, and female reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the [insert system where a related disease state is likely, e.g., immune], expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 357 as residues: Leu-69 to Val-76.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders in development. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 125

This gene is expressed primarily in benign prostatic hyperplasia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of benign prostatic hyperplasia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive

WO 98/54963 PCT/US98/11422

97

system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of benign prostatic hyperplasia. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 126

5

10

15

20

25

30

This gene is expressed primarily in apoptotic T-cells and to a lesser extent in suppressor T cells and ulcerative colitis.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases involving premature apoptosis, and immunological and gastrointestinal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of disorders involving inappropriate levels of apoptosis, especially in immune cell lineages. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases (such as AIDS), and leukemia

1.5

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 127

This gene is expressed primarily in Raji cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and T cell autoimmune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 360 as residues: Asp-23 to Gly-29.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of inflammation and T cell autoimmune disorders. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases (such as AIDS), and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 128

The translation product of this gene shares sequence homology with an *C. elegans* coding region C47D12.2 of unknown function (See Accession No. gnllPIDle348986). One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: EDDGFNRSIHEVILKNITWY SERVLTEISLGSLLILVVIRTIQYNMTRTRDKYLHTNCLAALANMSAQFRSLHQY AAQRIISLFSLLSKKHNKVLEQATQSLRGSLSSNDVPLPDYAQDLNVIEEVIRMM LEIINSCLTNSLHHNPNLVALLYKRDLFEQFRTHPSFQDIMQNIDLVISFFSSRLL QAGS (SEQ ID NO:657); EDDGFNRSIHEVILKNITWYSERVLTEISLGSLLILVV (SEQ ID NO:658); RTIQYNMTRTRDKYLHTNCLAALANMSAQFRSLHQYAAQ RIISLFSLLSKKHN (SEQ ID NO:659); KKHNKVLEQATQSLRGSLSSNDVPLPDY AQD (SEQ ID NO:661); SCLTNSLHHNPNLVYALLYKRDLFEQFRTHPSFQD IMQNIDLVISFFSSRLLQAGS (SEQ ID NO:660). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments. This gene maps to

10

15

20

25

30 5

chromosome 18, and therefore, may be used as a marker in linkage analysis for chromosome 18.

This gene is expressed primarily in smooth muscle and to a lesser extent in fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, atherosclerosis and other cardiovascular and hepatic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of circulatory system disorders such as atherosclerosis, hypertension, and thrombosis. In addition, the tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities, fetal deficiencies, pre-natal disorders and various would-healing models and/or tissue trauma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 129

The translation product of this gene shares sequence homology with a ribosomal protein which is thought to be important in cellular metabolism, in addition to the *C.elegans* protein F40F11.1 which does not have a known function at the current time (See Accession No. gnllPIDle244552). Preferred polypeptide fragments comprise the following amino acid sequence:

PLREAPQEHVCTPVPL LQGRPDR (SEQ ID NO:662); MKMQRTIVIRRDYLH

10

15

20

25

30

35

YIRKYNRFEKRHKNMSVHLSPCFRDVQIGDIVTVGECRPLSKTVRFNVLKVTK AAGTKKQFQKF (SEQ ID NO:663); MADIQTERAYQKQPTIFQNKKRVLLGET GK (SEQ ID NO:664); HCHPPRLSALHPQVQPLREAPQEHVCTPVPL LQGRPDR (SEQ ID NO:666); NIGLGFKDTPRRLLRGTYIDKKCPFTGNVSIRGRILSGVVTQ (SEQ ID NO:669); MKMQRTIVIRRDYLHYIRKYNRFEKRHKNMSVHLSP (SEQ ID NO:667); CFRDVQIGDIVTVGECRPLSKTVRFNVLKVTKAAGTKKQFQKF (SEQ ID NO:668). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in Wilm's tumor and to a lesser extent in thymus and stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases affecting RNA translation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Wilm's tumors, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 362 as residues: Thr-11 to Asp-20.

The tissue distribution and homology to a ribosomal protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diseases affecting RNA translation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 130

The translation product of this gene shares sequence homology with a yeast DNA helicase which is thought to be important in global transcriptional regulation (See Accession No. gnllPIDle243594). One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: IFYDSDWNPTVDQQA MDRAHRLGQTKQVTVYRLICKGTIEERILQRAKEKSEIQRMVISG (SEQ ID NO:670); TRMIDLLEEYMVYRKHTYXRLDGSSKISERRDMVADFQNRNDI FVFLLSTRAGGLGINLTAXDTVHF (SEQ ID NO:671); TRMIDLLEEYMVYRK HTYXRLDGSSKISERRDM (SEQ ID NO:674); RRDMVADFQNRNDIFVFLL

10

15

20

25

30

STRAGGLGINLTAXDTVHF (SEQ ID NO:675), IFYDSDWNPTVDQQAMD RAHRLGQTKQVTVYRLICKG (SEQ ID NO:676); RLICKGTIEERILQRAK EKSEIQRMVISG (SEQ ID NO:678). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in amygdala.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases and disorders of the brain. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to a DNA helicase indicates that polynucleotides and polypeptides corresponding to this gene are useful for diseases affecting RNA transcription, particularly developmental disorders and healing wounds since the later are though to approximate developmental transcriptional regulation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 131

This gene is expressed primarily in prostate and to a lesser extent in amygdala and pancreatic tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, prostate enlargement and gastrointestinal disorders, particularly of the pancreas and gall bladder. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system expression of this general intelligence.

another tissue or cell sample taken from an individual having such a disorder, relative to

WO 98/54963 PCT/US98/11422

102

the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of prostate diseases, including benign prostatic hyperplasia and prostate cancer. In addition, the tissue distribution in tumors of the pancreas indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tissues where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 132

5

10

15

20

25

30

35

BNSDUCID - WO 9854963A2 1 >

This gene is expressed primarily in adult lung and to a lesser extent in hypothalamus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, pulmonary diseases and neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pulmonary and respiratory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of pulmonary and respiratory disorders such as emphysema, pneumonia, and pulmonary edema and emboli. In addition, the tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental

10

15

20

30

See down A

disorders associated with the developing embryo, sexually-linked disorders, or disorders of the cardiovascular system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 133

This gene is expressed primarily in human liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cirrhosis of the liver and other hepatic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of liver disorders such as cirrhosis, jaundice, and Hepatitus. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 134

This gene is expressed primarily in fetal kidney and to a lesser extent in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, development and regeneration of liver and kidney and immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the disorders are the second of the s

tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or

10

15

20

25

30

35

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 367 as residues: Pro-70 to Arg-77, Tyr-102 to Thr-107.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases of the kidney and liver, such as cirrhosis, kidney failure, kidney stones, and liver failure, hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells. In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities, fetal deficiencies, pre-natal disorders and various would-healing models and/or tissue trauma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 135

This gene is expressed primarily in brain, bone marrow, and to a lesser extent in placenta, T cell, testis and neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative and immunological diseases and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 368 as residues: Met-1 to His-6.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also

25

3()

play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 136

Translatation product of this gene is homologous to the human WD repeat protein HAN11. Preferred polypeptide fragments comprise the following amino acid sequence:

MSLHGKRKEIYKYEAPWTVYAMNWSVRPDKRFRLALGSFVEEYNNKVQLVG LDEESSEFICRNTFDHPYPTTKLMWIPDTKGVYPDLLATSGDYLRVWRVGETET RLECLLNNNKNSDFCAPLTSFDWNEVDPYLLGTSSIDTTCTIWGLETGQVLGRV NLVSGHVKTQLIAHDKEVYDIAFSRAGGGRDMFASVGADGSVRMFDLRHLEH STIIYEDPQHHPLLRLCWNKQDPNYLATMAMDGMEVVILDVRVPAHLXPGTTIE HVSMALLGPHIHPATSALQRMTTRLSSGTSSKCPEPLRTLSWPTQLXGEINNVQ WASTQPELSPSATTTAWRYSECSVGGAVPTRQGLLYFLPLPHPQS (SEQ ID

15 NO:679); MSLHGKRKEIYKYEAPWTVYAMNWSVRPDKRFRLALGSFV
EEYNNKVQLVGLDEESSEFICRNTFDHPYPTTKLMWIPDTKGVYPDLLATSGDY
LRVWRVGETETRLECLLNNNKNSDFCAPLTSFDWNEVDPYLL (SEQ ID
NO:680); SFDWNEVDPYLLGTSSIDTTCTIWGLETGQVLGRVNLVSGHVK
TQLIAHDKEVYDIAFSRAGGGRDMFASVGADGSVRMFDLRHLEHSTIIYEDPQH
20 HPLLRLCWNKQDPNYLATMAMDGMEVVILDVRVPAHLXPGTTI (SEQ ID
NO:681); VGADGSVRMFDLRHLEHSTIIYEDPQHHPLLRLCWNKQDPNYLA
TMAMDGMEVVILDVRVPAHLXPGTTIEHVSMALLGPHIHPATSALQRMTTRLS
SGTSSKCPEPLRTLSWPTQLXGEINNVQWASTQPELSPSATTTAWRYSECSVG
GAVPTRQGLLYFLPLPHPQS (SEQ ID NO:682). Also preferred are polynucleotide

This gene is expressed primarily in placenta, embryo, T cell and fetal lung and to a lesser extent in endothelial, tonsil and bone marrow.

fragments encoding these polypeptide fragments.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological and developmental diseases in addition to cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissue (s. 2).

thirds (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or

WO 98/54963 PCT/US98/11422

106

cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 369 as residues: Gly-19 to Gln-28, Pro-36 to Phe-42.

The tissue distribution in tumors of colon, ovary, and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 137

This gene is expressed primarily in TNF and INF induced epithelial cells, T cells and kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory conditions particularly inflammatory reactions in the kidney. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 370 as residues: Thr-67 to Gly-72, Gln-132 to Ala-145, Arg-150 to Pro-157.

The tissue distribution indicates that the protein products of this gene are useful for treating the damage caused by inflammation of the kidney.

35

5

10

15

20

25

30

10

1.5

20

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 138

This gene maps to chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1 (See Accession No. D63485).

This gene is expressed primarily in breast cancer and colon cancer and to a lesser extent in thymus and fetal spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers, especially of the breast and colon tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in tumors of colon and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 139

This gene maps to chromosome 17, and therefore, can be used as a marker for linkage analysis from chromosome 17.

This gene is expressed primarily in CD34 positive cells, and to lesser extent in activated T-cells and neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunologically related diseases and hematopoietic disorders. Similarly, polypeptides are largely at the state of the

and hematopoietic system, expression of this gene at significantly higher or lower levels

10

15

may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in CD34, T-cell and neutrophils indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of hematopoietic disorders and immunologically related diseases, such as anemia, leukemia, inflammation, infection, allergy, immunodeficiency disorders, arthritis, asthma, immune deficiency diseases such as AIDS.

FEATURES OF PROTEIN ENCODED BY GENE NO: 140

This gene was recently cloned by another group, who called the gene KIAA0313 gene. (See Accession No. d1021609.) Preferred polypeptide fragments comprise the amino acid sequence:

LYATATVISSPSTEXLSQDQGDRASLDAADSGRGSWTSCSSGSHDNIQTIQ HQRSWETLPFGHTHFDYSGDPAGLWASSSHMDQIMFSDHSTKYNRQNQSRES LEQAQSRASWASSTGYWGEDSEGDTGTIKRRGGKDVSIEAESSSLTSVTTEETK PVPMPAHIAVASSTTKGLIARKEGRYREPPPTPPGYIGIPITDFPEGHSHPARKP

- 20 PDYNVALQRSRMVARSSDTAGPSSVQQPHGHPTSSRPVNKPQWHKXNESDPR LAPYQSQGFSTEEDEDEQVSAV (SEQ ID NO:683); HMDQIMFSDHSTKYNRQ NQSRESLEQAQSRASWASSTGYWGE (SEQ ID NO:684); SVTTEETKPVPMP AHIAVASSTTKGLIARKEGRYREPPPTPPGYIGIPITD (SEQ ID NO:685); and VALQRSRMVARSSDTAGPSSVQQPHGHPTSSRPVNKPQW
- 25 HKXNESDPRLAPYQSQGF (SEQ ID NO:686). Also preferred are polynucleotide fragments encoding these polypeptide fragments. This gene maps to chromosome 4, and therefore, may be used as a marker in linkage analysis for chromosome 4 (See Accession No. AB002311).

This gene is expressed primarily in ovarian cancer, tumors of the Testis, brain, and colon.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, ovarian, testicle, brain and colon cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male and female reproductive systems.

30

35

WO 98/54963

5

10

15

20

25

3()

expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in tumors of colon, ovary, testis, and brain origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 141

This gene is expressed primarily in spleen and colon cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, colon cancer and immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the gastrointestinal trace and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in tumors of colon, ovary, and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 142

Translation product is homologous to T cell translocation protein, a putative zinc finger factor (See Accession No. 340454), as well as to the G-protein coupled receptor TM5 consensus polypeptide (See Accession No. R50734). Preferred polypeptide fragments comprise the following amino acid sequence:

CLLFVFVSLGMRCLFWTIVYNVLYLKHKCNTVLLCYHLCSI (SEQ ID NO:687); ACSKLIPAFEMVMRAKDNVYHLDCFACQLCNQRXCVGDKFFLKNNXXLCQT DYEEGLMKEGYAPXVR (SEQ ID NO:688). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in fetal brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders including brain cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Central Nervous System, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo.

FEATURES OF PROTEIN ENCODED BY GENE NO: 143

Translation product for this gene has significant homology to the Fas ligand, which is a cysteine-rich type II transmembrane protein/tumor necrosis factor receptor homolog. Mutations within this protein have been shown to result in generalized lymphoproliferative disease leading to the development of lymphadenopathy and autoimmune disease (See Medline Article No. 94185175). Preferred polypeptide

10

15

20

25

30

fragments comprise the following amino acid sequence:

SALSEPGAPDRRRPCPESVPRRPDDEQWPPPTALCLDVAPLPPSS (SEQ ID NO:689). Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No. 473565).

This gene is expressed primarily in osteoblasts, lung, and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoblast-related, pulmonary, neurological, and immunological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal and nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 376 as residues: Trp-33 to Thr-40, Lys-45 to Ile-63.

The tissue distribution in osteoblasts, lung, and brain combined with its homology to the Fas ligand indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues. Because the Fas ligand gene is known to be expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including asthma, immune deficiency diseases such as AIDS and leukemia, and various autoimmune disorders including lupus and arthritis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 144

This gene shares sequence homology with a 21.5 KD transmembrane protein in the SEC15-SAP4 intergenic region of yeast (See Appendix N = 1722071 pm).

SGPGGGSRGRSDRGSGQGDSLYPVGYLDKQVPDTSVQETDRILVEKRCWDIAL

GPLKQIPMNLFIMYMAGNTISIFPTMMVCMMAWRPIQALMAISATFKMLESSSQ KFLQGLVYLIGNLMGLALAVYKCQSMGLLPTHASDWLAFIEPPERMEFSGG GLLL (SEQ ID NO:691); PVGYLDKQVPDTSVQETDRILVEKRCWDIALGPLKQ IPMNLFI (SEQ ID NO:693); and ATFKMLESSSQKFLQGLVYLIGNLMGLALAV YKCQSMGLLPTHASD (SEQ ID NO:692). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in osteoclastoma, hemangiopericytoma, liver, lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoclastoma, hemangiopericytoma, liver and lung tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the above tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the lung and liver systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing osteoclastoma, hemangiopericytoma, liver and lung tumors.

25

30

35

5

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 145

Translation product of this gene shares homology with the glucagon-69 gene which may indicate this gene plays a role in regulating metabolism. (See Accession No. A60318) One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

PTTKLDIMEKKKHIQIRFPSFYHKLVDSGRMRSKRETRREDSDTKHNL (SEQ ID NO:694). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in brain, kidney, colon, and testis.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

not limited to, brain, kidney, colon, and testicular cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, neurological, circulatory, and gastrointestinal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in tumors of brain, kidney, colon, and testis origins, indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues. The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, sexually-linked disorders, or disorders of the cardiovascular system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 146

The translation product of this gene shares sequence homology with goliath protein which is thought to be important in the regulation of gene expression during development. Protein may serve as a transcription factor. One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: TEHIIAVMITELRGKDILSYLEKNISVQMTIAVGTRMPPKNFSRGSLVFVSISFIV LMIISSAWLIFYFIQKIRYTNARDRNQRRLGDAAKKAISKLTTRTVKKGDKETD PDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDPWLSEHCTCPMCKLNILKA LGIV (SEQ ID NO:695); TEHIIAVMITELRGKDILSYLEKNISVQMTIAVGTRMP PKNFSRGSLVFVSISFIVEM JISSAWLIFYF (SEQ ID NO :007 - SISFINIAMISCO

THE SECURE OF THE PROPERTY OF THE STRUCK OF THE SECURITION OF THE SECURITIES OF THE SECURITION OF THE

WO 98/54963

WLSEHCTCPMCKLNILKALGIV (SEQ ID NO:699). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments (See Accession No. 157535). Moreover, another embodiment is the polynucleotide fragments encoding these polypeptide fragments:

- 5 MTHPGTEHIIAVMITELRGKDILSYLEKNISVQMTIAVGTRMPPKNFSRGS LVFVSISFIVLMIISSAWLIFYFIQKIRYTNARDRNQRRLGDAAKKAISKLTTRTV KKGDKETDPDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDPWLSEHCTCP MCKLNILKALGIVPNLPCTDNVAFDMERLTRTQAVNRRSALGDLAGDNSLGLE PLRTSGISPLPQDGELTPRTGEINIAVTKEWFIIASFGLLSALTLCYMIIRATASLN
- 10 ANEVEWF (SEQ ID NO:696):MTHPGTEHIIAVMITELRGKDILSYLEKNISVQM TIAVGTRMPPKNFSRGSLVFVSISFIVLMIISSAWLIFYFIQKIRYTNARDRNQRR LGDAAKKAISKLTTRT (SEQ ID NO:700); AAKKAISKLTTRTVKKGDKE TDPDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDPWLSEHCTCPMCKLNIL KALGIVPNLPC (SEQ ID NO:701); TQAVNRRSALGDLAGDNSLGLEPLRTSGI
- 15 SPLPQDGELTPRTGEINIAVTKEWFIIASFGLLSALTLCYMIIRATASLNANEVEW F (SEQ ID NO:702); PLHGVADHLGCDPQTRFFVPPNIKQWIALLQRGNCTF KEKISRAAFHNAVAVVIYNNKSKEEPVTMTHPGTEHIIAVMITELRGKDILSYLE KNISVQMTIAVGTRMPPKNFSRGSLVFVSISFIVLMIISSAWLIFYFIQKIRYTNA RDRNQRRLGDAAKKAISKLTTRTVKKGDKETDPDFDHCAVCIESYKQNDVVRI
- 20 LPCKHVFHKSCVDPWLSEHCTCPMCKLNILKALGIVPNLPCTDNVAFDMERLT RTQAVNRRSALGDLAGDNSLGLEPLRTSGISPLPQDGELTPRTGEINIAVTKEW FIIASFGLLSALTLCYMIIRATASLNANEVEWF(SEQ ID NO:703); and HGVADHLGCDPQTRFFVPPNIKQWIALLQRGNCTFKEKISRAAFHNAVAVVIY NNKSKEE (SEQ ID NO:704). An additional embodiment is the polynucleotide
- fragments encoding these polypeptide fragments. When tested against Jurkat cell lines, supernatants removed from cells containing this gene activated the GAS pathway. Thus, it is likely that this gene activates immune cells through the JAKS/STAT signal transduction pathway.

This gene is expressed primarily in macrophage, breast, kidney and to a lesser extent in synovium, hypothalamus and rhabdomyosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, schizophrenia and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and neural system, expression of this gene at

30

35

10

15

30

significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to zinc finger protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of schizophrenia, kidney disease and other cancers. The tissue distribution in macrophage, breast, and kidney origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of tumors within these tissues, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 147

20 The translation product of this gene shares sequence homology with HNP36 protein, an equilibrative nucleoside transporter, which is thought to be important in gene transcription as well as serving as an important component of the nucleoside transport apparatus (See Accession No. 1845345). One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

MSGOGLAGEFASVAMICALASGSELSESAEGYELTAGAVILLTHGYLGLIPPLEES

MSGQGLAGFFASVAMICAIASGSELSESAFGYFITACAVIILTIICYLGLPRLEFYR YYQQLKLEGPGEQETKLDLISKGEEPRAGKEESGVSVSNSQPTNESHSIKAILK NISVLAFSVCFIFTITIGMFPAVTVEVKSSIAGSSTWERYFIPVSCFLTFNIFDWLG RSLTAVFMWPGKDSRWLPSWXLARLVFVPLLLLCNIKPRRYLTVVFEHDAWFI FFMAAFAFSNGYLASLCMCFGPKKVKPAEAETAEPSWPSSCVWVWHWGLFS

PSCSGQLCDKGWTEGLPASLPVCLLPLPSARGDPEWSGGFFF (SEQ ID NO:705); MSGQGLAGFFASVAMICAIASGSELSESAFGYFITACAVIILTIIC YLGLPRLEFYRYYQQLKLE GPGEQETKLDLISKGEEPRAGKEESGVSVSNSQ PTNESHSI (SEQ ID NO:706); SGVSVSNSQPTNESHSIKAILKNISVLAFSVCFI FTITIGMFPAVTVEVKSSIAGSSTWFRYFIPVSCFI TFNIFDWI GRS (SEQ ID NO:706)

NO. 708), FGPKKVKPAEAETAEPSWPSSCVWVWHWGLFSPSCSGQLCDK

10

15

20

25

30

35

GWTEGLPASLPVCLLPLPSARGDPEWSGGFFF (SEQ ID NO:709). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in eosinophils and aortic endothelium and to a lesser extent in umbilical vein endothelial cell and thymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematopoietic disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to HNP36 protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of blood neoplasias and other hematopoietic disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 148

This gene is expressed primarily in breast cancer cell lines, thymus stromal cells, and ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, endocrine and female reproductive system diseases including breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of endocrine disorders. In addition, the tissue distribution in tumors of thymus, ovary, and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 149

This gene is expressed primarily in retina and ovary and to a lesser extent in brreast cancer cell, epididymus and osteosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neuronal growth disorders, cancer and reproductive system disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual baseing and the level of the series and the level of the sample taken from an individual baseing and the level of the level o

comprising a sequence shown in SEQ ID NO: 382 as residues: Met-1 to Gly-7.

25

30

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis or treatment of reproductive system disease and cancers.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 150

One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

MIKDKGRARTALTSSQPAHLCPENPLLHLKAAVKEKKRNKKKKTIGSPKRIQS PLNNKLLNSPAKTLPGACGSPQKLIDGFLKHEGPPAEKPLEELSASTSGVPGLS SLQSDPAGCVRPPAPNLAGAVEFNDVKTLLREWITTISDPMEEDILQVVKYCTD LIEEKDLEKLDLVIKYMKRLMQQSVESVWNMAFDFILDNVQVVLQQTYGSTLK VT (SEQ ID NO:713); MIKDKGRARTALTSSQPAHLCPENPLLHLKAAVKE KKRNKKKKTIGSPKRIQ (SEQ ID NO:714): KRIQSPLNNKLLNSPAKT LPGACGSPQKLIDGFLKHEGPPAEKPLEELSASTSGVPGLSSLQSDPAGCVRPP

APNLAGAVEFNDVKTLLREWITTISDPM (SEQ ID NO:715);
TISDPMEEDILQVVKYCTDLIEEKDLEKLDLVIKYMKRLMQQSVE
SVWNMAFDFILDNVQVVLQQTYGSTLKVT (SEQ ID NO:716). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in 12 week embryo and to a lesser extent in hemangiopericytoma and frontal cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, growth disorders and hemangiopericytoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circular and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 383 as residues: Leu-4 to Lys-11.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of growth disorders, hemangiopericytoma and other soft tissue tumors.

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 151

The translation product of this gene has been found to have homology to a human DNA mismatch repair protein PMS3. Preferred polypeptide fragments comprise the following amino acid sequence: FCHDCKFPEASPAMNCEP (SEQ ID NO:717). Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No. R95250).

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, lymphoma, immunodeficiency diseases, and cancers resulting from genetic instability. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 384 as residues: Met-1 to Lys-6.

The tissue distribution in neutrophils and the sequence homology indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of Hodgkin's lymphoma, since the elevated expression and secretion by the tumor mass may be indicative of tumors of this type. Additionally the gene product may be used as a target in the immunotherapy of the cancer. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Furthermore, its homology to a known DNA repair protein would suggest gene may be useful in establishing cancer predisposition and prevention in gene therapy applications.

FFATURES OF PROTEIN ENCODED BY CENTING 153

chetefore, polynucheotides and polypeproles of the mountion are specifical reagents for differential identification of the tissue(s) or cell type(s) present in a

10

20

25

30

35

biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, infectious diseases and lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of inflammation and infectious diseases.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 153

One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

MASSVPAGGHTRAGGIFLIGKLDLEASLFKSFQWLPFVLRKKC
NFFCWDSSAHSLPLHPLSASCSAPACHASDTHLLYPSTRALCPSIFAWLVAPHS
VFRTNAPGPTPSSQSSPVFPVFPVSFMALIVCXLVCC (SEQ ID NO:720);
MASSVPAGGHTRAGGIFLIGKLDLEASLFKSFQWLPFVLRKKCNFFCWDSSAH
SLPLHPLSASCSAPACHA (SEQ ID NO:721):FAWLVAPHSVFRTNAPGPTPS
SQSSPVFPVFPVSFMALIVCXLVCC (SEQ ID NO:722). An additional embodiment
is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and infectious disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred

10

15

20

25

30

cpitopes include those comprising a sequence shown in SEQ ID NO: 386 as residues: Ser-11 to Pro-17.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of infectious diseases and inflammation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 154

This gene is expressed in multiple tissues including ovary, uterus, adipose tissue, brain, and the liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, uterine, ovarian, brain, and liver cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the female reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnostic or therapeutic uses in the treatment of the female reproductive system, obesity, and liver disorders, particularly cancer in the above tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 155

This gene maps to chromosome 3, and therefore, may be used as a marker in linkage analysis for chromosome 3 (See Accession No. D87452).

This gene is expressed in multiple tissues including brain, aortic endothelial cells, smooth muscle, pituitary, testis, melancytes, spleen, nertrophils, and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the risk material and the research of the control of

brain and the temale reproductive system, as well as cardiovascular disorders, such as

WO 98/54963

atherosclerosis and stroke. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution suggest that polynucleotides and polypeptides corresponding to this gene are useful in treatment/detection of disorders in the nervous system, including schizophrenia, neurodegeneration, neoplasia, brain cancer as well as cardiovascular and female reproductive disorders including cancer within the above tissues.

15

20

25

30

35

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 156

The translation product of this gene shares sequence homology with the human gene encoding cytochrome b561 (See Accession No. P10897). Cytochrome b561 is a transmembrane electron transport protein that is specific to a subset of secretory vesicles containing catecholamines and amidated peptides. This protein is thought to supply reducing equivalents to the intravesicular enzymes dopamine-beta-hydroxylase and alpha-peptide amidase. Preferred polypeptides of the invention comprise the amino acid sequence:

MAMEGYWRFLALLGSALLVGFLSVIFALVWVLHYREGLGWDGSALEFNWHP VLMVTGFVFIQGIAIIVYRLPWTWKCSKLLMKSIHAGLNAVAAILAIISVVAVFE NHNVNNIANMYSLHSWVGLIAVICYLLQLLSGFSVFLLPWAPLSLRAFLMPIHV YSGIVIFGTVIATALMGLTEKLIFSLRDPAYSTFPPEGVFVNTLGLLILVFGALIF WIVTRPQWKRPKEPNSTILHPNGGTEQGARGSMPAYSGNNMDKSDSEL NSEVAARKRNLALDEAGQRSTM (SEQ ID NO:724); as well as antigenic fragments of at least 20 amino acids of this gene and/or biologically active fragments. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in anergic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune system and metabolism related diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological

15

20

25

30

probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product or RNA of this gene is useful for treatment or diagnosis of immune system and metabolic diseases or conditions including Tay-Sachs disease, phenylketonuria, galactosemia, various porphyrias, and Hurler's syndrome.

FEATURES OF PROTEIN ENCODED BY GENE NO: 157

The translation product of this gene shares sequence homology with collagen which is important in mammalian development. This gene also shows sequence homology with bcl-2. (See Accession No. P80988.) Preferred polypeptide fragments comprise the amino acid sequence: PGRAGPSPGLSLQLPAEPGHPAGNLAPL TSRPQPLCRIPAVPG (SEQ ID NO:725). Also preferred are polynucleotide sequences encoding this polypeptide fragment.

This gene is expressed primarily in HL-60 tissue culture cells and to a lesser extent in liver, breast, and uterus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological diseases, hereditary disorders involving the MHC class of immune molecules, as well as developmental disorders and reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and reproductive system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., scrum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample toleration for the control fluid of the control fluid or spinal fluid) or

and the communication of the control of the control

10

15

20

25

30

35

comprising a sequence shown in SEQ ID NO: 390 as residues: Ser-39 to Gly-46, Leu-49 to Ala-62.

The tissue distribution and homology to collagen indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hereditary MHC disorders and particularly autoimmune disorders including rheumatoid arthritis, lupus, scleroderma, and dermatomyositis, as well as many reproductive disorders, including cancer of the uterus, and breast tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 158

This gene is expressed primarily in the amygdala region of the brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, a variety of brain disorders, particularly those effecting mood and personality. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and/or diagnosis of a variety of brain disorders, particularly bipolar disorder, unipolar depression, and dementia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 159

This gene is expressed in a variety of tissues and cell types including brain, smooth muscle, kidney, salivary gland and T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers of a variety of organs including brain, smooth muscle, kidney, salivary gland and T-cells and cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders

10

15

20

25

30

of the above tissues or cells, particularly of the central nervous, urinary, salivary, digestive, and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in brain, smooth muscle, and T-cells indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of various neurological, and cardiovascular disorders, but not limited to cancer within the above tissues. Additionally the gene product may be used as a target in the immunotherapy of the cancer. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 160

The translation product of this gene shares sequence homology with collagen which is thought to be important in cellular interactions, extracellular matrix formation, and has been found to be an identifying determinant in autoimmune disorders. Moreover, this gene shows sequence homology with the yeast protein, Sls1p, an endoplasmic reticulum component, involved in the protein translocation process in Yeast Yarrowia lipolytica. (See Accession No. 1052828; see also J. Biol. Chem. 271, 11668-11675 (1996).) With mouse, this same region shows sequence homology with the heavy chain of kinesin. (See Accession No. 2062607.) Recently, suppression of the heavy chain of kinesin was shown to inhibits insulin secretion from primary cultures of mouse beta-cells. (See Endocrinology 138 (5), 1979-1987 (1997).) Moreover, kinesin was found associated with drug resistance and cell immortalization. (See 468355.) Thus, it is likely that this gene also act as a genetic suppressor elements.

This gene is expressed primarily in the greater omentum and to a lesser extent in a variety of organs and cell types including gall bladder, stromal bone marrow cells, lymph node, liver, testes, pituitary, and thymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the risspectation of the risspectation.

the function of the control of the c

10

15

20

30

35

Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and gastrointestinal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 393 as residues: Asn-27 to Leu-47, Gln-81 to Lys-88, Asp-93 to Lys-102, Asn-107 to Leu-116, Met-129 to Glu-141, Glu-150 to Asp-157, Lys-176 to Glu-185, Glu-333 to Tyr-349, Cys-393 to Leu-403, Gln-423 to Gly-429.

The tissue distribution in within various endocrine and immunological tissues combined with the sequence homology to a conserved collagen motif indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis of various autoimmune disorders including, but not limited to, rheumatoid arthritis, lupus erthyematosus, scleroderma, dermatomyositis Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 161

This gene has homology to the tissue inhibitor of metalloproteinase 2. Such inhibitors are vital to proper regulation of metalloproteins such as collagenases (See Accession No. P16368). In addition, this gene maps to chromosome 17, and therefore, may be used as a marker in linkage analysis for chromosome 17 (See Accession No. P16368).

This gene is expressed primarily in several types of cancer including osteoclastoma, chondrosarcoma, and rhabdomyosarcoma and to a lesser extent in several non-malignant tissues including synovium, amygdala, testes, placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, various types of cancer, particularly cancers of bone and cartilage, as well as various autoimmune disorders. Similarly, polypeptides and antibodies directed

to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the musculoskeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in various cancers and the sequence homology to a collagenase inhibitor indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection of various autoimmune disorders such as rheumatoid arthritis, lupus, scleroderma, and dermatomyositis. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia

15

20

25

30

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 162

This gene is homologous to the mitochondrial ATP6 gene and therefore is likely a homolog of this gene family (See Accession No. X76197).

This gene is expressed primarily in brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, a variety of brain disorders, including Down's syndrome, depression, Schizophrenia, and epilepsy. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in brain tissue indicates this gene is useful for diagnosis of various neurological disorders including them. The tissue is useful for diagnosis

disease, phenylketonuria and Hurler's Syndrome.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 163

This gene is expressed primarily in placenta, neutrophils, and microvascular endothelial cells and to a lesser extent in multiple tissues including brain, prostate, spleen, thymus, and bone.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neutropenea and other diseases of the immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in placenta indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis various female reproductive disorders. Additionally the gene product may be used as a target in the immunotherapy of various cancers. Because the gene is expressed in some cells of lymphoid and endocrine origin, the natural gene product may be involved in immune functions and metabolism regulation, respectively. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 164

This gene is expressed primarily in neutrophils, monocytes, bone marrow, and fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune system disorders including, but not limited to, autoimmune disorders such as lupus, and immunodeficiency disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders

10

40 d 4 4A

of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in various immune system tissue indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis of various immunological disorders such as Hodgkin's lymphoma, arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 165

The translation product of this gene shares sequence homology with dystrophin which is thought to be defective in both Duchene and Becker Muscular Dystrophy. Preferred polypeptide fragments comprise the following amino acid sequence: 15 MKLLGECSSSIDSVKRLEHKLKEEEESLPGFVNLHSTETQTAGVIDRWELLQAQ ALSKELRMKQNLQKWQQFNSDLNSIWAWLGDTEEELEQLQRLELSTDIQTIELQ IKKLKELQKAVDHRKAIILSINLCSPEFTQADSKESRDLQDRLXQMNGRWDRVCSLLEEWRGLLQDALMQCQGFHEMSHGLLLMLENIDRRKNEIVPIDSNLDAEIL QDHHKQLMQIKHELLESQLRVASLQDMSCQLLVNAEGTDCLEAKEKVHVIGNR 20 LKLLLKEVSRHIKELEKLLDVSSSQQDLSSWSSADELDTSGSVSPXSGRSTPNR QKTPRGKCSLSQPGPSVSSPHSRSTKGGSDSSLSEPXPGRSGRGFLFRVLRAA LPLQLLLLLIGLACLVPMSEEDYSCALSNNFARSFHPMLRYTNGPPPL (SEQ ID NO:726); MKLLGECSSSIDSVKRLEHKLKEEEESLPGFVNLHSTETQTAGVIDR WELLQAQALSKELRMKQNLQKWQQFNSDLNSIWAWLGDTEEELEQLQRLELS 25 TDIQTIELQIK (SEQ ID NO:727); KLKELQKAVDHRKAIILSINLCSPEFTQADSK ESRDLQDRLXQMNGRWDRVCSLLEEWRGLLQDALMQCQGFHEMSHGLLLML ENIDRRKNEIVPIDSNLDAEILQDHHKQLMQIKHELLESQLRVASLQDMSCQL (SEQ ID NO:728); QDMSCQLLVNAEGTDCLEAKEKVHVIGNRLKLLLKEVS RHIKELEKLLDVSSSQQDLSSWSSADELDTSGSVSPXSGRSTPNRQKTPRGKCS 30 LSQPGPSVSSPHS (SEQ ID NO:729); DSSLSEPXPGRSGRGFLFRVLRAAL PLQLLLLLIGLACLVPMSEEDYSCALSNNFARSFHPMLRYTNGPPPL (SEQ ID NO:730). Also preferred are polynucleotide fragments encoding these polypeptide fragments Furthermore this gene percent these sources the per-

 $[\]sim 8.24\,\mathrm{km}^{-1}$, surfessed in numerous cooks the fidding the best Elemey , in the brain.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, musculoskeletal disorders including Muscular Dystrophy and cardiovascular diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the muscle tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to dystrophin indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of Muscular Dystrophy and other muscle disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 166

This gene is expressed primarily in human cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the central nervous system, including Alzheimer's Disease, Parkinson's Disease, ALS, and mental illnesses. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 399 as residues: Pro-20 to Gly-26, Leu-37 to Pro-42, His-57 to Gly-63.

The tissue distribution indicates that the protein products of this gene are useful for treatment/diagnosis of diseases of the central nervous system and may protect or

15

20

25

30

enhance survival of neuronal cells by slowing progression of neurodegenerative diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 167

5 Preferred polypeptides encoded by this gene comprise the following amino acid sequence:

MKLLICGNYLAPSHSESSRRCCLLCFYPLCLEINFGMKVFLSMPFLVLFQ SLIQED (SEQ ID NO:731). Polynucleotides encoding such polypeptides are also provided. This gene is believed to reside on chromosome 15. Therefore polynucleotides derived from this gene are useful in linkage analysis as chromosome 15 markers.

This gene is expressed primarily in human testes tumor and to a lesser extent in normal human testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the testes, particularly cancer, and other reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for treatment/diagnosis of testicular diseases including cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 168

This gene is expressed primarily in fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to conditions affecting here days sixting the advances of the invention and the same and the sa

type(s). For a number of disorders of the above tissues or cells, particularly of the

10

15

20

25

30

35

hepatic system, and fetal hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 401 as residues: His-7 to Trp-17, Leu-19 to Lys-27, Pro-33 to Gly-44, Lys-68 to Gly-74, Lys-85 to Cys-95.

The tissue distribution indicates that the protein products of this gene are useful for treatment/diagnosis of diseases of the developing liver and hematopoietic system, and act as a growth differentiation factor for hematopoietic stem cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 169

The polypeptide encoded by this gene is believed to be a membrane bound receptor. The extracellular domain of which is expected to consist of the following amino acid sequence:

RILLVKYSANEENKYDYLPTTVNVCSELVKLVFCVLVSFCVIKKDHQSRNLKY ASWKEFSDFMKWSIPAFLYFLDNLIVFYVLSYLQPAMAVIFSNFSIITTALLFRIV LKXRLNWIQWASLLTLFLSIVALTAGTKTLQHNLAGRGFHHDAFFSPSNSCLL FRNECPRKDNCTAKEWTFPEAKWNTTARVFSHIRLGMGHVLIIVQCFISSMANI YNEKILKEGNQLTEXIFIQNSKLYFFGILFNGLTLGLQRSNRDQIKNCGFFYGH S (SEQ ID NO:732). Thus, preferred polypeptides encoded by this gene comprise the extracellular domain as shown above. It will be recognized, however, that deletions of either end of the extracellular domain up to the first cysteine from the N-terminus and the first cysteine of the C-terminus, is expected to retain the biological functions of the full-length extracellular domain because the cysteines are thought to be responsible for providing secondary structure to the molecule. Thus, deletions of one or more amino acids from either end (or both ends) of the extracellular domain are contemplated. Of course, further deletions including the cysteines are also contemplated as useful as such polypeptides is expected to have immunological properties such as the ability to evoke and immune response. Polynucleotides encoding all of the foregoing polypeptides are provided.

This gene is expressed primarily in human osteoclastoma and to a lesser extent in hippocampus and chondrosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

not limited to, cancers, particularly those of the bone and connective tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 402 as residues: Met-1 to Cys-6, Ala-41 to Tyr-49, Lys-76 to Lys-84.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis of cancers of the bone and connective tissues, and may act as growth factors for cells involved in bone or connective tissue growth.

FEATURES OF PROTEIN ENCODED BY GENE NO: 170

Preferred polypeptides encoded by this gene comprising the following amino acid sequence:

NSVPNLQTLAVLTEAIGPEPAIPRXPREPPVATSTPATPSAGPQPLPTGTV LVPGGPAPPCLGEAWALLLPPCRPSLTSCFWSPRPSPWKETGV (SEQ ID NO:733). Polynucleotides encoding such polypeptides are also provided herein.

This gene is expressed primarily in hematopoietic progenitor cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the blood including cancer and autoimmune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the blood/circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the

⁻elliptisme a sequence shown in SEQ ID NO. However to addice the Fig. 10. Proto His-32.

10

15

20

25

30

35

The tissue distribution indicates that the protein products of this gene are useful for diagnosis of diseases involving growth differentiation of hematopoietic cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 171

Preferred polypeptides encoded by this gene comprise the following amino acid sequences: ALQLAFYPDAVEEWLEENVHPSLQRLQXLLQDLSEVSAPP (SEQ ID NO:734); and/or CHPPALAGTLLRTPEGRAHARGLLLEAGGA (SEQ ID NO:735). Polynucleotides encoding such polypeptides are also provided. The protein product of this gene shares sequence homology with metallothionines. Thus, polypeptide encoded by this gene are expected to have metallothionine activity, such activities are known in the art and described elsewhere herein.

This gene is expressed primarily in kidney cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the kidney including cancer and renal dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 404 as residues: Ser-47 to Gln-52.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of diseases of the kidney including kidney failure.

FEATURES OF PROTEIN ENCODED BY GENE NO: 172

This gene is expressed primarily in 12 week old early stage human.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for

10

20

25

30

1 a A

differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing embryo, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 405 as residues: Gln-31 to Thr-43, Gly-51 to Ser-58, Pro-65 to Pro-72.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of developmental problems with fetal tissue. The gene may be involved in vital organ development in the early stage, especially hematopoiesis, cardiovascular system, and neural development.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 173

The translation product of this gene shares sequence homology with TGN38, an integral membrane protein previously shown to be predominantly localized to the trans-Golgi network (TGN) of cells.

This gene is expressed primarily in developing embryo and to a lesser extent in cancer tissues including lymphoma, endometrial, protate and colon.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing fetus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID

that polynucleotides and polypeptides corresponding to this gene are useful for

10

15

20

25

30

35

diagnosis of cancers and developmental abnormalities where aberrant expression relates to an abnormality.

FEATURES OF PROTEIN ENCODED BY GENE NO: 174

The translation product of this gene shares sequence homology with a dnaJ heat shock protein from E. coli which is allelic to sec63, a gene that affects transit of nascent secretory proteins across the endoplasmic reticulum in yeast.

This gene is expressed primarily in Hodgkin's lymphoma and to a lesser extent in testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 407 as residues: Thr-13 to Trp-21, Arg-74 to Asp-81.

The tissue distribution and homology to dnaJ indicates that polynucleotides and polypeptides corresponding to this gene are useful as a diagnostic for cancer including Hodgkin's lymphoma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 175

This gene is expressed primarily in endothelial cells and to a lesser extent in bone marrow stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases involving angiogenic abnormalities including diabetic retinopathy, macular degeneration, and other diseases including arteriosclerosis and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

10

15

20

25

30

type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for treating diseases where an increase or decrease in angiogenesis is indicated and as a factor in the wound healing process.

FEATURES OF PROTEIN ENCODED BY GENE NO: 176

The translation product of this gene shares sequence homology with MAT8 (mouse) which is thought to be important in regulating chloride conductance in cells (particularly in the breast) by modulating the response mediated by cAMP and protein kinase C to extracellular signals.

This gene is expressed primarily in amniotic cells and hematopoeitic cells including macrophages, Neutrophils, T cells, TNF induced aortic endothelium and to a lesser extent in testes, TNF induced epithelial cells, and smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory responses mediated by T cells, macrophages, and/or neutrophils particularly those involving TNF, and also cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 409 as residues. Thr. 19 to Ala 33 Law 51 to Ala 82 Dec 800 of the cell time and the comprising a sequence shown in SEQ ID

polypeptides corresponding to this gene are useful for modifying inflammatory

15

20

responses to cytokines such as TNF and thus modifying the duration and/or severity of inflammation. Polynucleotides and polypeptides derived from this gene are thought to be useful in the diagnosis and treatment of cancer.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 177

This gene is expressed primarily in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, vascular restenosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases associated with vascular response to injury such as vascular restenosis following angioplasty..

FEATURES OF PROTEIN ENCODED BY GENE NO: 178

One embodiment of the claimed invention comprises:

- MRPDWKAGAGPGGPPQKPAPSSQRKPPARPSAAAAAIAVAAAEEERRLRQRN RLRLEEDKPAVERCLEELVFGDVENDEDALLRRLRGPRVQEHEDSGDSEVENEA KGNFPPQKKPVWVDEEDEDEEMVDMMNNRFRKDMMKNASESKLSKDNLKK RLKEEFQHAMGGVPAWAETTKRKTSSDDESEEDEDDLLQRTGNFISTSTSLPRG ILKMKNCQHANAERPTVARISICAVPSRCTDCDGCWD (SEQ ID NO:737); or
 CLEELVFGDVENDEDALLRRLRGPRVQEHEDSGDSEVENEAKGNFPPQKKPV WVDEEDEDEEMVDMMNNRFRKDMMKNASESKI SKDNLKKRLKFEFGHAMG
 - WVDEEDEDEEMVDMMNNRFRKDMMKNASESKLSKDNLKKRLKEEFQHAMG GVPAWAETTKRKTSSDDESEEDEDDLLQRTGNFISTSTSLPRGILKMKNCQHA NAERPTVARISICAVPSRCTDCDGC (SEQ ID NO: 738). LKEKIVRSFEVSPDGS FLLINGIAGYLHLLAMKTKELIGSMKINGRVAASTFSSDSKKVYASSGDGEVYV
- 35 WDVNSRKCLNRFVDEGSLYGLSIATSRNGQYVACGSNCGVVNIYNQDSCLQE TNPKPIKAIMNLVTGVTSLTFNPTTEILAIASEKMKEAVRLVHLPSCTVFSNFPVI KNKNISHVHTMDFSPRSGYFALGNEKGKALMYRLHHYSDF (SEQ ID NO:739);

10

15

20

30

and/or KINGRVAASTFSSDSKKVYASSGDGEVYVWDVNSRKCLNRFVDEGSL YGLSIATSRNGQYVACGSNCGVVNIYNQDSCLQETNPKPIKAIMNLVTGVTSLT FNPTTEILAIASEKMKEAVRLVHLPSCTVFSNFPVIKNKNISHVHTMDFSPRSG YFALGNEKGKAL (SEQ ID NO:740).

This gene is expressed primarily in epidydimus and endometrial tumors and to a lesser extent in T cell lymphoma and cell lines derived from colon cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumors of the reproductive organs including testis and endometrial cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 411 as residues: Ser-67 to Lys-72, Val-87 to Leu-93, Tyr-128 to Pro-141, Asp-204 to Gly-210.

The tissue distribution indicates that the protein products of this gene are useful for treating tumors of the endometrium or epithelial tumors of the reproductive system.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 179

Preferred polypeptides encoded by this gene comprise the following amino acid sequence:

MRILQLILLALATGLVGGETRIIKGFECKLHSQPWQAALFEKTRLLCGATLIAPR WLLTAAHCLKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNNSLPNKDH RNDIMLVKMASPVSITWAVRPLTLSSRCVTAGTSCSFPAGAARPDPSYACLTPC DAPTSPSLSTRSVRTPTPATSQTPWCVPACRKGARTPARVTPGALWSVTSLFKA LSPGARIRVRSPESLVSTRKSANMWTGSRRR (SEQ ID NO:741): ETRIIKGFEC KLHSQPWQAALFEKTRLLCGATLIAPRWLLTAAHCLKPRYIVHLGQHNLQKEE GCFQTRTATESFPHPGFNNSLPNKDHRNDIMLVKALASPVETTWANDDELLEGED

THE STATE OF STATE OF WAS A STATE OF A STATE OF STATE OF

10

15

20

25

30

SRRR (SEQ ID NO:742); or CKLHSQPWQAALFEKTRLLCGATLIAPRWLLT AAHCLKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNS

(SEQ ID NO:743). The translation product of this gene shares sequence homology with neuropsin a novel serine protease which is thought to be important in modulating extracellular signaling pathways in the brain. Owing to the structural similarity to other serine proteases the protein products of this gene are expected to have serine protease activity which may be assayed by methods known in the art and described elsewhere herein.

This gene is expressed primarily in endometrial tumor and to a lesser extent in colon cancer, benign hypertrophic prostate, and thymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers of the endometrium or colon and benign hypertrophy of the prostate. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the urogenital or reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 412 as residues: Gly-12 to Ser-22, Pro-34 to Ser-53.

The tissue distribution and homology to serine proteases indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing or treating hyperpoliferative disorders such as cancer of the endometrium or colon and hyperplasia of the prostate.

FEATURES OF PROTEIN ENCODED BY GENE NO: 180

Preferred polypeptide encoded by this gene comprise the following amino acid sequence: VLQGRYFSPILEMRRLRPEGXXNLPGGSRAQKEPRQDLTLVLWPHC PHFAMTRSYVPTKQCMVQGSFYCIFIFKGPVQNWC (SEQ ID NO:744).

Polynucleotides encoding such polypeptide are also provided.

This gene is expressed primarily in fetal brain

10

15

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, identifying and expanding stem cells in the CNS. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for detecting and expanding stem cell populations in the (or of the) central nervous system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 181

This gene is expressed primarily in early stage human brain and a stromal cell line.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities of the CNS. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 414 as residues: Gln 42 to Gln 47 Gln 51 to Pro 60

and the second of the second section is a second of the se

10

15

20

25

30

35

are useful for diagnosing or treating developmental abnormalities of the central nervous system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 182

Preferred polypeptides encoded by this gene comprise the following amino acid sequence:

MPIIDQVNPELHDFMQSAEVGTIFALSWLITWFGHVLSDFRHVVRLYDF FLACHPLMPIYFAAVIVLYREQEVLDCDCDMASVHHLLSQIPQDLPYETLISRXE TFLFSFPHPNLLGRPLPNSKLRGRQPLLSKTLSWHQPSRGLIWCCGSGXRGLL RPEDRTKDVLTKPRTNRFVKLAVMGLTVALGAAALAVVKSALEWAPKFQLQL FP (SEQ ID NO:745); or CPEFFIPATLPCPFVFAFTSEASSRAYLTQRGPGGLAQ NLMPLPVGFWMGSLPPPWCWRKWVSEACSCFC (SEQ ID NO:746) These polypeptides are structurally similar to various TGF-beta family members. Thus, this polypeptide is expected to have a variety of activities in the modulation of cell growth and proliferation.

This gene is expressed primarily in osteoclastoma, microvascular endothelium, and bone marrow derived cell lines.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematological diseases particularly involving aberrant proliferation of stem cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 415 as residues: Ser-33 to Ala-39.

The tissue distribution indicates that the protein products of this gene is useful for treating disorders of the progenitors of the immune system. Applications include in vivo expansion of progenitor cells, ex vivo expansion of progenitor cells, or the treatment of tumors of the circulatory system, such as lymphomas.

FEATURES OF PROTEIN ENCODED BY GENE NO: 183

This gene maps to chromosome 17 and therefore, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 17. In specific embodiments, polypeptides of the invention comprise the sequence:

5 GFGSVSAAGRRSGGTWQPVQ (SEQ ID NO:747): PGGLAVGSRWWSRSLT (SEQ ID NO:748): LEPSRQRRPRRRGGTSRPETDQRAKCWRQL (SEQ ID NO:749); and/or VCLRCQNRMEN (SEQ ID NO:750). In further specific embodiments, polypeptides of the invention comprise the sequence: MAACTARRPGR GQPLVVPVADXGPVAKAALCAAXAGAFSPASTTTTRRHLSSRNRPEGKVLETV GVFEVPKQNGKYETGQLFLHSIFGYRGVVLFPWQARLXDRDVASAAPEKAEN PAGHGSKEVKGKTHTYYQVLIDARDCPHISQRSQTEAVTFLANHDDSRALYAIP GLDYVSHEDILPYTSTDQVPIQHELFERFLLYDQTKAPPFVARETLRAWQEKNH PWLELSDVHRETTENIRVTVIPFYMGMREAQNSHVYWWRYCIRLENLDSDVVQ LRERHWRIFSLSGTLETVRGRGVVGREPVLSKEQPAFQYSSHVSLQASSGHMW

GTFRFERPDGSHFDVRIPPFSLESNKDEKTPPSGLHW (SEQ ID NO:751);
 MAACTARRPGRGQPLVVPVADXGPVAKAALCAA (SEQ ID NO:752);
 VLETVGVFEVPKQNGKYETGQLFLHSIFGYRGVVL (SEQ ID NO:757);
 GLDYVSHEDILPYTST (SEQ ID NO:758); DVHRETTENIRVTVIPFYM (SEQ ID NO:759); WWRYCIRLENLDSDVVQLRER (SEQ ID NO:760); and/or PAFQYSS
 HVSLQASSGHMWGTFRFER (SEQ ID NO:761). Polynucleotides encoding these

HVSLQASSGHMWGTFRFER (SEQ ID NO:761). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in gall bladder, prostate, and fetal brain, and to a lesser extent in a few tumor and fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as
reagents for differential identification of the tissue(s) or cell type(s) present in a
biological sample and for diagnosis of diseases and conditions, which include, but are
not limited to, growth related disorders such as cancers. Similarly, polypeptides and
antibodies directed to these polypeptides are useful in providing immunological probes
for differential identification of the tissue(s) or cell type(s). For a number of disorders
of the above tissues or cells, particularly of the prostate, gall bladder, and fetal brain,
expression of this gene at significantly higher or lower levels may be routinely detected
in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum,
plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from

disorder

15

20

25

30

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of growth-related disorders, such cancers.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 184

In specific embodiments, polypeptides of the invention comprise the sequence:SLCCPEGAEGC (SEQ ID NO:762) and/or QLKKTHYDRPCP (SEQ ID NO:763). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in stromal cell, tonsil, and glioblastoma and to a lesser extent in some other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune and inflammatory disorders and glioblastoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the stromal cells, tonsil, and glioblastoma expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Additionally, it is believed that the product of this gene regulates pancreatic cell differentiation into beta cells. Accordingly, polynucleotides and polypeptides of the invention are useful in the treatment of insulindependent diabetes mellitus and associated conditions e.g. pancreatic hypofunction and the prevention, as well as the treatment of undifferentiated type pancreatic cancers. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 417 as residues: Pro-27 to Ala-32.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune and inflammatory disorders and glioblastoma.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 185

This gene is expressed primarily in hepatocellular carcinoma and to a lesser extent in other tissues.

WO 98/54963

5

10

15

20

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, liver diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 418 as residues: Gly-32 to Lys-39.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of liver diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 186

This gene is expressed primarily in hippocampus and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neutronal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hippocampus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal disorders.

lesser extent in osteoclastoma and other tissues.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, bone-related disorders and neuronal diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, ostoeclast, and hippocampus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of bone-related disorders and neuronal diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 188

This gene maps to chromosome 4 and therefore polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 4.

This gene is expressed primarily in neuronal tissues such as hippocampus, spinal cord, and hypothalamus and to a lesser extent in a few other tissues such as ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neuronal diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuronal tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal disorders.

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 189

This gene maps to chromosome 10, therefore, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 10.

This gene is expressed primarily in neuronal tissues and immune tissues, and to a lesser extent in a few other tissues such as skin tumor, lung etc.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neuronal and immune-related disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuronal and immune-related tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 422 as residues: Pro-19 to Asp-25.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal and immune-related disorders.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 190

The translation product of this gene shares sequence homology with human N33, a gene located in a homozygously deleted region of human metastatic prostate cancer which is thought to be important in prevention of prostate cancer. In specific embodiments, polypeptides of the invention comprise the sequence:

AQRKKEMVLSEKVSQLMEWTNKRPVIRMNGDKFRRLVKAPPRNYSVIVMFTA LQLHRQCVVCKQADEEFQILANSWRYSSAFTNRIFFAMVDFDEGSDVFQMLNM NSAPTFINFPAKGKPKRGDTYELQVRGFSAEQIARWIADRTDVNIRVIRPPNMA ARWRFWCVSVT (SEQ ID NO:765); MVVALLIVCDVPSAS (SEQ ID NO:766); AQRKKEMVI SEKVSQL (SEQ ID NO:767) MEWTNKRPVIRANGDED SEG

GKP (SEQ ID NO;770); KRGDTYELQVRGFSAEQIARWIADRTDVNIRVIRPPN

10

15

20

25

30

35

(SEQ ID NO:771); and/or YAGPLMLGLLLAVIGGLVYLRRVIWNFSLIKLDGLLQL CVLCLL (SEQ ID NO:772). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in infant adrenal gland prostate cell line and to a lesser extent in a few other tissues like liver, smooth muscle etc.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, prostate cancer and endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate and adrenal gland, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 423 as residues: Pro-34 to Gly-43, Arg-113 to Pro-120.

The tissue distribution and homology to N33 indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for prostate cancer and endocrine disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 191

This gene is expressed primarily in T cell and to a lesser extent in fetal lung. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue

or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 424 as residues: Trp-3 to Phe-9.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders.

5

10

15

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 192

This gene maps to chromosome 6, therefore, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 6. Neural activity and neurotrophins induce synaptic remodeling in part by altering gene expression. This gene is believed to be a glycosylphoshatidylinositol-anchored protein encoded by a hippocampal gene and to possess neural activity. This molecule is believed to be expressed in postmitotic-differentiating neurons of the developing nervous system and neuronal structures associated with plasticity in the adult. Message of this gene is believed to be induced by neuronal activity and by the activity-regulated neurotrophins BDNF and NT-3. The product of this gene is believed to stimulate neurite outgrowth and arborization in primary embryonic hippocampal and cortical cultures and to act as a downstream effector of activity-induced neurite outgrowth. In specific embodiments, polypeptides of the invention comprise the sequence: DAVFKGFSDCLLKLGDS (SEQ ID NO:773); CQEGAKDMWDKLRKESKNLN (SEQ ID NO:774);

VLLVSLSAALATWLSF (SEQ ID NO:775); MGLKLNGRYISLILAVQIAYLVQAVR AAGKCDAVFKGFSDCLLKLGDS (SEQ ID NO:776): PAAWDDKTNIKTVCTYW EDFHSCTVTALTDCQEGAKDMWDKLRKESKNLNIQGSLFELCGSGNGAAGSL LPAFPVLLVSLSAALATWLSF (SEQ ID NO:777); and/or MGLKLNGRYISLILA VQIAYLVQAVRAAGKCDAVFKGFSDCLLKLGDSXXXXXPAAWDDKTNIKTVC
 TYWEDFHSCTVTALTDCQEGAKDMWDKLRKESKNLNIQGSLFELCGSGNGAA GSLLPAFPVLLVSLSAALATWLSF (SEQ ID NO:778). Polynucleotides encoding this polypeptide are also encompassed by the invention.

This gene is expressed primarily in human placenta, endometrial tumor and tissues of the central nervous system (CNS).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, relating to reproductive disorders, cancers and neurological diseases. Similarly, polypeptides and antibodies directed to the conditional diseases.

reproductive and neurological disorders, expression of this gene at significantly higher

10

20

25

30

35

or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 425 as residues: Asp-47 to Asp-63, His-75 to Tyr-80, Pro-83 to Tyr-89.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of reproductive disorders such as endometrial tumors. Expression of this gene in tissues of the CNS and its strong homology to Neuritin suggest that the protein product from this gene may also be used in the treatment and diagnosis of neurological disorders and in the regeneration of neural tissues, e.g., following injury.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 193

The translation product of this gene shares sequence homology with tenascin which is thought to be important in development. The translation product of this gene is believed to be a ligand of the fibroblast growth factor family. FGF ligand activity is known in the art and can be assayed by methods known in the art and disclosed elsewhere herein.

This gene is expressed primarily in endometrial tumors, and other types of tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cancer tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 426 as residues: Gly-29 to Glu-34, Arg-71 to Arg-76, Thr-176 to Cys-182, Gly-184 to Glu-199.

10

15

20

25

30

The tissue distribution and homology to tenascin indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 194

In specific embodiments, polypeptides of the invention comprise the sequence: MNSAAGFSHLDRRERVLKLGESFEKQPRCASTLC (SEQ ID NO:779). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in fetal human lung and neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, lung development and respiratory disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the respiratory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in fetal lung and neutrophils indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of lung and immunity related diseases, for example, lung cancer, viral, fungal or bacterial infections (e.g. lesions caused by tuberculosis), inflammation (e.g. pneumonia), metabolic lesions etc.

FEATURES OF PROTEIN ENCODED BY GENE NO: 195

This gene is expressed primarily in breast lymph node.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunal disorders. Similarly, polypeptides and antibo lies, ties to the

tissues or cells, particularly of the immune system, expression of this gene at

15

20

30

35

significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of immunal disorders.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 196

This gene maps to chromosome 5 and accordingly, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 5. The translation product of this gene shares sequence homology with human M-phase phosphoprotein 4 which is thought to be important in phosphorylation and signal transduction processes. In specific embodiments, polypeptides of the invention comprise the sequence:

TIYPTEEELQAVQKIVSITERALKLVSD (SEQ ID NO:780); RALKGVLRV

GVLAKGLLLRGDRNVNLVLLC (SEQ ID NO:781); ALAALRHAKWFQARAN

GLQSCVIIIRILRDLCQRVPTWS (SEQ ID NO:782); GDALRRVFECISSGIIL (SEQ ID NO:783); LAFRQIHKVLGMDPLP (SEQ ID NO:784); and/or TIYPTEEELQAVQ KIVSITERALKLVSDSLSEHEKNKNKEGDDKKEGGKDRALKGVLRVGVLAKG LLLRGDRNVNLVLLCSEKPSKTLLSRIAENLPKQLAVISPEKYDIKCAVSEAAIIL NSCVEPKMQVTITLTSPIIREENMREGDVTSGMVKDPPDVLDRQKCLDALAALR HAKWFQARANGLQSCVIIIRILRDLCQRVPTWSDFPSWAMELLVEKAISSASSP QSPGDALRRVFECISSGIILKGSPGLLDPCEKDPFDTLATMTDQQREDITSSAQFA

25 LRLLAFRQIHKVLGMDPLPQMSQRFNIHNNRKRRRDSDGVDGFEAEGKKDKK DYDNF (SEQ ID NO:785). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in Human Hippocampus and to a lesser extent in Prostate, Human Frontal Cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders related to reproductive system and nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system and nervous system, expression of this gene at significantly higher or lower

20

25

30

levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to human M-phase phosphoprotein 4 indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of reproductive and nervous system disorders.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 197

In specific embodiments, polypeptides of the invention comprise the sequence: MGSQHSAAARPSSCRRKQEDDRDG (SEQ ID NO:786);

LLAEREQEEAIAQFPYVEFTGRDSITCLTC (SEQ ID NO.787); and/or QGTGYIPTEQVNELVALIPHSDQRLRPQRTKQYV (SEQ ID NO:788).

15 Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in Human Primary Breast Cancer and to a lesser extent in Human Adult Spleen, Hodgkin's Lymphoma I, Salivary Gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer and immunal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cancer and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 430 as residues: Ser-126 to Gly-138.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of cancer and immunal disorders

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 198

This gene is expressed primarily in monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, blood cell disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of blood cell disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 199

This gene is expressed primarily in Human Ovary and Synovia and to a lesser extent in Human 8 Week Whole Embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, reproductive and developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and developmental system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of reproductive and developmental disorders.

10

15

20

30

Note that the second

FEATURES OF PROTEIN ENCODED BY GENE NO: 200

This gene maps to chromosome 8 and therefore polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 8. The translation product of this gene shares limited sequence homology with collagen proline rich domain.

This gene is expressed primarily in CNS.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 433 as residues: Pro-35 to Asp-41.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological diseases.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 201

Translation product of this gene shares homology with a mammalian histone H1a protein. One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: ARLNVGRESLKREMLKSQGVKVSESPMGAR HSSWPEGAAFCKKVQGAQMQFPPRR (SEQ ID NO:789); ARLNVGRESLKR EML (SEQ ID NO:790); LKSQGVKVSESPMGARHSSW (SEQ ID NO:791); AFCKKVQGAQMQFPPRR (SEQ ID NO:792). An additional embodiment is the polynucleotide fragments encoding these polypeptide (See Accession No. pirlS24178) fragments.

This gene is expressed primarily in neutrophils

biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders. Since the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in vital immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 202

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders. Since the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 203

This gene is expressed primarily in Neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, infectious disorders, immune disorders, and cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 436 as residues: Thr-31 to Lys-36.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of infectious disorders, immune disorders, and cancers. Since the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 204

This gene maps to chromosome 16 and therefore polynucleotides of the invention can be used in linkage analysis as markers for chromosome 16. The translation product of this gene shares sequence homology with lactate dehydrogenase which is thought to be important in lactate metabolism.

This gene is expressed primarily in human tonsils and to a lesser extent in Spleen, and Neutrophils.

Therefore, polynucleotides and polypeptides of the invanious account of

not limited to, immune disorders, intectious disorders, and cancers. Similarly,

10

15

20

25

30

35

polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune disorders, infectious disorders, and cancers, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 437 as residues: Gly-7 to Ser-12.

The tissue distribution and homology to lactate dehydrogenase gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders, infectious disorders, and cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 205

The translation product of this gene shares sequence homology with Gcap1 protein which is developmentally regulated in brain.

This gene is expressed primarily in placenta and endometrial tumor and to a lesser extent in several other tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, vasculogenesis/angiogenesis and tumorigenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system and tumors, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Gcap1 protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorder or dysfunction of vascular system of tumorigenesis.

10

15

20

25

8 4 8 A

FEATURES OF PROTEIN ENCODED BY GENE NO: 206

In specific embodiments, polypeptides of the invention comprise the sequence MPYAQWLAENDRFEEAQKAFHKAGRQREA (SEQ ID NO:799); VQVLEQLTNNAVAESRFNDAAYYYWMLSMQCLDIAQD (SEQ ID NO:794); PAQKDTMLGKFYHFQRLAELYHGYHAIHRHTEDP (SEQ ID NO: 795); FSVHRPETLFNISRFLLHSLPKDTPSGISKVKILFT (SEQ ID NO:800); LAKQSKALGAYRLARHAYDKLRGLYIP (SEQ ID NO:796); ARFQKSIELG TLTIRAKPFHDSEELVPLCYRCSTNN (SEQ ID NO: 797); and/or PLLNNLGNVC INCRQPFIFSASSYDVLHLVEFYLEEGITDEEAISLIDLEVLRPKRDDRQLEICKQQ LPDSCG (SEQ ID NO:798). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male reproductive and endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of male reproductive and endocrine disorders.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 207

This gene is expressed in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and the title and the latest and the sample and the diagnosis of diseases and the title and the latest and the

to differential identification of the tissue(s) or cell type(s). For a number of disorders

WO 98/54963 PCT/US98/11422

160

of the above tissues or cells, particularly of the respiratory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 440 as residues: Tyr-49 to Cys-54.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of disorders associated with developing lungs particularly in premature infants where the lungs are the last tissues to develop. The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of lung tumors since the gene may be involved in the regulation of cell division, particularly since it is expressed in fetal tissue. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

5

10

15

	T	I	<u> </u>	T	1	T	г—		· · · · ·		r —			
=	5	9	~	7	2	5,	-	ىر،	ىرى	د1	_	Gene No.	}	
HOUDL69	HOUBE18	HNHGO09	HNHGC82	HNHDX07	HNFED65	HMSJX24	HLTEI25	HLMMJ13	HLMMJ13	HLHDZ58	HLHDS67	cDNA Clone ID		
97979 03/27/97		97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	Nr and Date	Deposit	ATCC
Uni-ZAP XR	Uni-ZAP XR	97979 Uni-ZAP XR 03/27/97	Uni-ZAP XR	Lambda ZAP II	Larabda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Vector						
1,2	20	19	18	17	16	15	14	218	13	12	- 1	XO:	E/C	SE NT
1471	1446	656	869	553	661	8101	843	941	941	1131	2526	NT Seq.	Total	
570	1	I	1	1			_	39	39	——————————————————————————————————————	427	Seq.	Clone	5' NI
091	9++1	656	698	553	661	1018	843	146	941	1131	2526	Seq. Seq.	Clone Clone	5' NT 3' NT
692	101	176	101	106	76	90	155	245	62	129	85†	Start Codon	of: 21	<u>^</u>
692	101	176	101	106	76	90	155	245	62	129	458	Signal NO:	AA of	
244	243	242	142	010	239	238	237	11	236	235	234	⊀.Ö		AA
	-	_	_		-	_	-				_	Sig Pep	으 }	First
31	27	21	12	23	28	18	19	35	14	1	30	Sig Pep	of }	Last
322	128	13	7.2	Į.	95	19	20	36	7.	15	31	Secreted Portion	of of	

 $\{(\lambda_{k})^{(1)}: k \in \mathbb{N} : \lambda_{k} \in \mathbb{N} : \text{ and } k \in \mathbb{N}\}$

21	20	19	19	18	17	16	lσ	150	<u></u>	13	12	Gene No.	
HSDGP60	HSDFW61	HSAVU34	HSAVU34	HRGCZ46	HPTWC08	HPTWA66	HPTWA66	HРТВВ03	HPQAC69	HPMGQ55	HPMFI71	cDNA Clone ID	
97974 04/04/97	97974 04/04/97 209080 05/29/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	Nr and Date	ATCC
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript	pBluescript	pBluescript	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Vector	
31	L	220	29	28	27	219	26	25	24	23	22	×0.	NT
1408	1667	3018	3735	3989	1951	575	1922	1208	066	1047	1402	NT Seq.	3
_	<u> </u>	220 3018 1929 3018	2966	2635	27 1951 1422		1381	350	_	_	242	Clone Seq.	of NT
1408	1625	3018	3735	3989	1874	575	1922	1173	886	1047	1402	Clone Clone Seq. Seq.	of of of
285	138	26	272		519	148	24	398	82	164	401	of Start Codon	
285	138	26	272	2748	617	148	24	868	82	164	401	AA of ID Signal NO: Pep Y	5' NT of First
254	253	443	252	251	250	442	249	24x	247	246	245	≺ <u>N</u> E	_
_			-		-	_	1	-		_	-	ot Sig Pep	
	32	_	30	16	61	22	33	29	20	26		ot Sig Pep	Last AA
	33	2	31	17	20	23	34	30	21	27	υ U	of Secreted Portion	First AA
20	130	156	594	39	299	65	547	210	37	35	60	ORF A	

	T				1			T
27	26	25	1	2 5	ti ti	22		Gene No.
HTEGQ64			HSXAMUS	HSQE084	HSQE084	HSOAJ55		cDNA Clone ID
97974	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	9/9/4 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	209080 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	pSport1	Uni-ZAP XR		Vector				
37	36	35	34	221	33	32		NT SEQ ID NO
1382	912	896	1792	968	971	2031		Total NT Seq.
67	<u></u>		369	∞	5	1273		5' NT of Clone Seq.
1382	912	968	1792	968	971	2031		5' NT 3' NT of of Clone Clone Seq. Seq.
271	38	96	470	86	91	1285		5' NT of Start Codon
271	38	96	470	86	91	1285		5' NI of First AA of Signal Pep
260	259	258	257	444	256	255		AA SEQ ID NO.
-	-							First AA of Sig Pep
	22	32	26	20	19	29		Last AA of Sig Pep
	23	33	27	12	20	30		First AA of Secreted Portion
. !	ŗ	1	· ·	,	1	1	1	_

ent kin a w

55	32	31	30	30	29	28		Gene No.
HTWC146	HTWBY48	HJPCD40	HTSEV09	HTPBW79	HTOAM21	HTGEU09		e cDNA Clone ID
97974	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	209511 12/03/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	04/04/97 209080 05/29/97	ATCC Deposit Nr and Date
pSport1	pSport1	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector
43	42	41	222	40	39	38	-	NT SEQ ID NO X
1821	1094	704	1404	1515	812	872		Total NT Seq.
892		22		811	-			5' NT of Clone Seq.
1647	1094	704	1265	1507	812	872		5' NT 3' NT of of Clone Clone Seq. Seq.
56	32		92	302	<u> </u>	74		5' NT of Start Codon
56	32	117	92	302	4-	74		5' NT of AA First SEQ AA of ID Signal NO: Pep Y
266	265	264	445	263	262	261		NO. BQ
	<u>-</u>	-		_		_		First AA of Sig Pep
26	34	18	9	4	30	18		Last AA of Sig Pep
27	35	19	20	25	31	19		First AA of Secreted Portion
28	53	127	7 7	362	43	28		Last AA of ORF

39	38	37	36	35	35	ري 1		Gene No.	
HBMSN25	HATEF60	HAGFB60	HADAE74	HWTBF59	HWTBF59	HTXGI75		cDNA Clone ID	
97974	97974 04/04/97 209080 05/29/97	04/04/97 080(20/20 080(20/20 080(20/20/20	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	209080 05/29/97	Deposit Nr and Date	ATCC
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector	
49	48	47	46	223	45	44		×ÖĦ	SEQ
1742	2432	840	2421	707	983	1024		Total NT Seq.	
1165	1193	_	664	488	779	30		Clone Clone Seq. Seq.	5' NT 3' NT of
1742	2246	840	1587	707	983	1024		Clone Seq.	of OT
1207	1	97	710	514	85			of Start Codor	5' NT
1207		97	710	514	25	167		AA of ID Signal NO: Pep Y	of First
12/12	271	270	269	446	268	26/		≺ N E	AA SEQ
		_			_	,		of Sig Pep	First AA
13		30		+	, i	20		of Sig Pep	Last AA
1,4	2 ~	<u>.</u>		į.	3	1~		of Secreted Portion	First AA

45	44	43	42	<u>+</u>	40		Gene No.
HCESF40	HCEEC15	HCECA49	HMDAN54	НСЕЗЈ79	HCDAR68		cDNA Clone ID
97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	04/04/97 209080 05/29/97	ATCC Deposit Nr and Date
pBluescript	Uni-ZAP XR		Vector				
55	54	53	52	51	50		SEQ ID NO.
000	948	1558	1856	1328	1487		Total NT Seq.
99	-	310	725	251	181		5' N7 of Clone Seq.
066	948	1408	1853	1328	1455		S' NT 3' NT of of Clone Clone Seq. Seq.
193	9	393	928	525	325		5' NT of Start Codon
193	9	393	928	525	325		5' NT of AA First SEQ AA of ID Signal NO: Pep Y
278	277	276	275	274	273		AA SEQ NO.
_	-	_	<u>-</u>	P	_		First AA of Sig Pep
32	23		33		35		Last AA of Sig Pep
33	رم 4		34		36		First AA of Secreted Portion
256	65		50	21	56		Last AA of ORF

			T	г			
51	50	49	48	47	46	£.	Gene No.
HCWBB42	HCUDC07	HCRAF32	HCNAP62	HCMSX86	HCFMV39	HCESF40	cDNA Clone ID
9797 <u>5</u> 04/04/97 209081	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	ATCC Deposit Nr and Date
ZAP Express	ZAP Express	Uni-ZAP XR	Lambda ZAP II	Uni ZAP XR	pSport1	pBluescript	Vector
61	60	59	58	57	56	224	NT SEQ D NO:
618	478	1215 257	814	1052	1603	1384	Total NT Seq.
	—		<u> </u>	5	,	99	5' N7 of Clone Seq.
618	478	1215	558	786	1296	1384	Total Clone Clone Seq. Seq.
212	147		93	17	96	193	of Start
212	147	356	93	12	96	193	of AA of SEQ AA of ID Signal NO: Pep Y
284	283	282	281	280	279	117	AA SEQ ID Y
_	-		_	-	-		First AA of Sig Pep
35	36	19	22	28	29	ა 12	Last AA of Sig Pep
36	37	20	23	29	30	33 33	First AA of Secreted Portion

					 		T -	Υ
58	57	56	S.	54	<u>ن</u> ن	5.2		Gene No.
НЕ9НU17	HE6EU50	HE2OF09	HE2GS36	HE2AY71	HE2AV74	HDTAB05		cDNA Clone ID
97975	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 2.0		Vector
68	67	99	65	64	63	62		NT SEQ ID NO:
2483	1152	1866	774	588	780	751		Total NT Seq.
1577	117	1313	272	21	283	-		5' NT of Clone Seq.
2448	686	1866	774	588	780	751		5' NT 3' NT of of Clone Clone Seq. Seq.
1620	237	1596	445	169		257		5' NT of Start Codon
1620	237	1596	445	169	433	257		5' NT of First AA of Signal Pep
291	290	289	288	287	286	285	ļ	YO. BEQ
-	_	_		_	_	,		First AA of Sig Pep
	20					21		Last AA of Sig Pep
	21					13		First AA of Secreted Portion
4	34		37	16	16	32		Last AA of ORF

	T	·	,			· · · · · · · · · · · · · · · · · · ·		
65	2	63	62	61	60	59		Gene No.
HFVHY45	HFGAB89	HFEBA88	HEMAE80	HELDY74	HEBBWII	HE9ND48		cDNA Clone ID
97975	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	209081 05/29/97	ATCC Deposit Nr and Date
pBluescript	Uni-ZAP XR		Vector					
75	74	73	72	71	70	69		NT SEQ ID NO:
831	1069	785	900	932	598	536		Tota NT Seq.
_	196	464	1		647			5' NT of Clone Seq.
831	1047	785	945	932	&65	536		3' NT of Clone Seq.
	295	356	12	201		83		5' N' of Start Codo
89	295	356	12	201	388	83		of AA For SEQ AA of ID Signal NO: 1 Pep Y I
298	297	967	295	294	293	292		AA SEQ ID NO:
	_	-	-)	-			First AA of Sig Pep
30	32	29	24	17	30	36		Last AA of Sig Pep
31	33	30	33	18	<u></u>	37		First AA of Secreted Portion
	ļ	ļ						

71	70	69	68	67	66		Gene No.
HHGCN69	HHFHR32	ннғнл59	HHFCF08	HGBBQ69	HGBAJ93		cDNA Clone ID
97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	04/04/97 209081 05/29/97	ATCC Deposit Nr and Date
Lambda ZAP II	Uni-ZAP XR		Vector				
8.1	80	79	78	77	76		NT SEQ ID NO:
1440	1378	661	1133	1274	590		Total NT Seq.
298	Ļ		4				5' N7 of Clone Seq.
1440	1378	661	1042	1273	590	-	5' NT 3' NT of of Clone Clone Seq. Seq.
532		192	175	105	233		Co St Co
532	358	192	175	105	233 333		of AA First I of SEQ AA of AA of ID of art Signal NO: Sig don Pep Y Pep I
304	303	302	301	300	299		AA SEQ ID NO:
-	-		-	_	-		First AA of Sig Pep
23		29	23	24	38		Last AA Of Sig
24		30	24	25	39		First AA of Secreted Portion
34	13	112	30	43	94		Last AA of ORF

	τ		т —	1					т	,	
80	28	80	79	78	77	76	75	7.4	73	72	Gene No.
HNGBT31	HNFJH45	HNFAE54	HMSKS35	HMEJE31	HKMNC43	HKIXL73	HJPAV06	HHSEG23	HHPFD63	HHGDO13	cDNA Clone ID
97976	97976 04/04/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	ATCC Deposit Nr and Date							
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	pBluescript	pBLiescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Vector
92	91	90	89	88	87	86	85	84	83	82	NT SEQ ID NO:
639	575	1533	1102	655	908	1036	684	573	1706	1381	Total NT Seq.
		665	-		-	591	199	-	182	766	
639	575	1518	1102	655	908	1036	684	573	1644	1371	5' NT 3' NT of of Clone Clone Seq. Seq.
224	275	347	228	165	139	690	323	160	257	E66	5' NT of Start Codor
224	275	347	228	165	139	690	323	160	257	666	
315	314	313	312	311	310	309	308	307	306	305	AA SEQ ID NO: Y
	_	_			_	-	_	-	<u>—</u>	-	First AA of Sig Pep
22.82	30	26	26	33	18	32	27	18	1.5		Last AA of Sig Pep
29	31	27	27	بن 4-	19	33	28	19). 13	12	First AA of Secreted Portion
		,									

			<u> </u>	Τ	T	1				
91	90	89	88	87	86	85	\$4	83	Gene No.	
HPCAL49	HPBCU51	HOSDI92	HOSBZ55	HOGAR52	HNHFL57	HNHDW42	HNGJG84	HNGIN60	cDNA Clone ID	
97977 04/04/97 209082	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97976 04/04/97	97976 04/04/97	97976 04/04/97	97976 04/04/97	Nr and Date	ATCC
Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 2.0	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Vector	
101	100	99	98	97	96	95	94	93	XO:	SEQ
784	599	1935	1416	1985	844	426	526	744	l'otal NT Seq.	
	—	141	69	453	-	_			Clone Seq.	of Of
784	599	772	1416	5861	844	426	526	744	Clone Seq.	5' NT 3' NT of
	86		246	533	98	168	268	225	of Start Codor	5' NT
280	86	274	246	533	98	168	268	225	AA of ID Signal NO: Pep Y	S' NT of First
324	323	322	321	320	319	318	317	316	≺Ö.E	AA SEQ
_			,	_	-			_	of Sig Pep	
18	27	20	32	17	25	28	29	43	of Sig Pep	Last AA
19	28	7-	33	18	26	29	30	44	of Secreted Portion	First AA
43	119	58	54	285	19	71	38		$\overline{}$	Last

No second with the second

			 			т —	_	
9/	96	95	95	140	93	92		Gene No.
HRGBR28	HRDFB85	HPWAN23	HPWAN23	нРМВQ32	НРНАС83	HPFCR13		cDNA Clone ID
97977		97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector
107	106	226	105	104	103	102		NO. SEQ NT
1167	1705	2057	2066	1351	2218	1035		Total NT Seq.
611	23	—	51	—	840	602		5' NT of Clone Seq.
1167	1697	1954	2052	1351	2182	1035		5' NT 3' NT of Of Clone Clone Seq. Seq.
53	233	220	270	18	1035	859		5' NT of Start Codon
53	233	220	270	18	1035	859		5' NT of First AA of Signal Pep
330	329	449	328	327	326	325	1	SEQ NO D
-		-			-	-	-	First AA of Sig
	12	29	29	23	17	32		Last AA of Sig
2	22	30	30	24	<u>x</u>	33		First AA of Secreted

102	101	100	100	99	86	98		Gene No.	
HTEFU09	HSXCS62	HSXBT86	HE8EU04	HSPAH56	HSKGN81	HSKGN81		cDNA Clone ID	
97977 04/04/97 209082	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	209746 04/07/98	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	209082 05/29/97	ATCC Deposit Nr and Date	
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport1	pBluescript	pBluescript		Vector	
112		228	011	601	227	801		XO. SEQ SEQ NO.	•
2198	2249	2143	2632	611	2084	1907		Total NT Seq.	
228	-	53	294	_	335	151		5' NT of Clone Seq.	
2158	1953	1096	2632	576	2084	1432		of of Of Clone Seq. Seq.	
100	90	235	337	229	537	383		5' NT of Start Codor	
400	90	235	337	229	537	353		of AA First SEQ AA of ID Signal NO: Pep Y	5 N.I
335	334	451	333	332	450	331		SEQ NO.	
-		-	-		-	-		First AA of Sig Pep	
	8		25	25	19	23		Last AA of Sig Pep	
	19		26	26	20	24		First AA of Secreted Portion	
23	199	9	333	47	23	260		Last AA of ORF	

		<u> </u>	r	, ——			T
109	108	107	106	105	104	103	Gene No.
HTSHE40	HTSGM54	HTPCN79	HTOEY16	HTGEW91	HTGEP89	HTEKM35	cDNA Clone ID
97977 04/04/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	ATCC Deposit Nr and Date 05/29/97
pBluescript	pBluescript	Uni-ZAP XR	Vector				
611	118	117	116	115	114	113	SEQ NO:
1101	1133	503	1965	3684	703	1043	Total NT Seq.
118	316	-	127	526	_	40	5' NT of Clone Seq.
956	1069	503	1915	1338	703	1043	5' NT 3' NT of Of Clone Clone Seq. Seq.
218			202	584	285	320	5' NT of Start Codon
218	423	•	202	584	285	320	of AA First SEQ AA of ID Signal NO: Pep Y
342	341	340	339	338	337	336	AA SEQ ID Y
_			_	_		-	First AA of Sig Pep
31	12	7	27	24	29	20	Last AA of Sig Pep
32	13	x	28	25	30	12	First AA of Secreted Portion

THE STATE OF THE STATE AS

		r		 				· · · · · · · · · · · · · · · · · · ·	
116	115		113	112	=	110		Gene No.	
HE6EL90	HDTAW95	HCEVR60	HCE3Q10	HUKFC71	HTWBY29	HTWAF58		cDNA Clone ID	
209007	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	209082 05/29/97	Deposit Nr and Date	ATCC
Uni-ZAP XR	pCMVSport 2.0	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	pSport1	Lambda ZAP II		Vector	
126	125	124	123	122	121	120		× O D,	NT SEO
1517	1288	1390	1542	994	2635	282		Total NT Seq.	
-	412	82		1	1593			Clone Seq.	of IN 'S
1452	1288	1390	1542	932	2489	282		Clone Clone Seq. Seq.	5' NT 3' NT
243	571	127	143		1654	137		of Start Codor	5' NT
243	571	127	143	272	1654	137		AA of ID Signal NO: Pep Y	5' NT of First
349	348	347	346	345	344	343		YO,∃,	AA SEO
-				—·	-			of Sig Pep	First
		3 12	25	15	25	25		of Sig Pep	Last
		33	26	16	26	26		of Secreted Portion	First AA
9	16	153	63	221	55	48		ORF ORF	Last

 $N^{-1} = \{ (-1)^{k} A^{-1} \} \quad \text{and} \quad A^{-1}$

		T			1		
12	12	120	119		117		Gene No.
HLTERÖ3	HIBED17	HHPTD20	HFXBW82	HERAH36	HELBU29		cDNA Clone ID
209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	04/28/97 209083 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Other	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR		Vector
132	131	130	129	128	127		NT SEQ ID NO: X
990	1950	472	1275	300	1073		Total NT Seq.
_	284	51		155	198		S' N' of Clone Seq.
990	1927	472	1275	300	1073		5' NT 3' NT of of Clone Clone Seq. Seq.
78	395		56	202			5' NT of Start
78	395	243	56	202	776		5' NT AA of SEQ AA of ID Signal NO:
355	354	353	352	351	350		AA SEQ ID Y
-		_	_	-	-		First AA of Sig Pep
22	72		23				Last AA of Sig Pep
23	73		12				First AA of Secreted Portion

		1	T	r			
129	128	127	126	125	124	123	Gene No.
H6EAA53	HUKC064	HSUBW <u>0</u> 9	HRGBR18	HPWAZ95	HPMCJ92	HOABL56	cDNA Clone ID
209007 04/28/97 209083	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 04/29083 209083 05/29/97	209007 04/28/97 209083 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Vector
139	138	137	136	135	134	133	NT SEQ ID NO:
643	1777	1021	582	323	705	1720	Total NT Seq.
303	439		<u>-</u>	_	28	565	5' N7 of Clone Seq.
643	1777	1021	582	323	705	1720	3' NT of Clone Seq.
		153		88	106	660	NT of tart
313	521	153	16	88	106	660	5' NT AA of First SEQ AA of ID Signal NO: Pep Y
362	361	360	359	358	357	356	AA SEQ ID Y
		-					First AA of Sig Pep
7		32	17	27	28	18	Last AA of Sig Pep
∞		ω ω		دع دع	29	19	First AA of Secreted Portion
31	ررا	56	30	78	98	2]	Last AA of ORF

	<u> </u>	Γ	<u> </u>		T	,		
135	34	134	153	132	1.31	130		Gene No.
HBMTD81	HBGCB91		HALSQ59	HALSK07	HAGAO39	HAGAIII		cDNA Clone ID
209008 04/28/97 209084 05/29/97	209007 04/28/97 209083 05/29/97	unknown 05/18/98	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	unknown Uni-ZAP XR 05/18/98	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector
145	229	144	143	142	141	140		SEQ NO.
1082	1025	144 2243	300	1468	721	1220		Total NT Seq.
163	409	173	4	125		⊢		5' NT of Clone Seq.
1082	1025	2243	300	1468	721	1220		5' NT 3' NT of of Clone Clone Seq. Seq.
357	624	311	101	210				5' N7 of Start Codor
357	624	311	101	210	415	127		of AA I of SEQ AA of ID Signal NO: 1 Pep Y
368	452	367	366	365	364	363		Y SEC AA
-				_	-	_	1	First) AA of Sig Pep
	20	27	22	29		16		Last AA of Sig Pep
	21	28	23	30		17		First AA of Secreted
							1	

SS CONTRACTOR

142	4	140	139	138	137	136	Gene No.
HFCEB37	HE8EY43	HE2GT20	HCWHZ24	HCQAI40	HFKFJ07	HBXGK12	
209008 04/28/97 209084	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209010 04/28/97 04/29/95 209085 05/29/97	209008 04/28/97 209084 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Lamhda ZAP II	Uni-ZAP XR	ZAP Express	Vector
152	151	150	149	148	147	146	SEQ ID NO:
802	2399	2890	1405	734	1183	4313	Total NT Seq.
352	181	1178		_			5' NT of Clone Seq.
802	2300	2890	1405	734	1183	1153 4313	5' NT 3' NT of of Clone Clone Seq. Seq.
	1265	1178	108	285	149		5' NT of Start Codon
487	1265	1178	108	285	149	1313	5' NT of AA First SEQ AA of ID Signal NO: Pep Y
375	374	373	372	371	370	369	SEQ ID VO.
		h		-	-		First AA of Sig Pep
	30	31	34		4		Last AA of Sig Pep
	31	32	35		42	ĵο	First AA of Secreted Portion
10	ω 42	39	63	19	254	42	Last AA of ORF

			T	Γ	<u> </u>	T	T
149	14. 5	147	146	145	‡	143	Gene No.
HLMMU76	HKLAB16	0†TISUH	HJAAU36	HHGBR15	HGLAM46	HFTCT67	cDNA Clone ID
209008 04/28/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	ATCC Deposit Nr and Date 05/29/97
Lambda ZAP II	Lambda ZAP II	pSport1	pBluescript SK-	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Vector
159	158	157	156	155	154	153	NO. BEQ
1687	1625	2127	1251	642	2388	461	Total NT Seq.
1307	817	247	583	322	818	24	
1687	1625	2127	1251	642	2388	461	5' NT 3' NT of of Clone Clone Seq. Seq.
1296	1012	383		400	648	145	5' NT of Start Codon
1296	1012	383	933	400	648	145	of AA First SEQ AA of ID Signal NO: Pep Y
382	381	380	379	378	377	376	AA SEQ ID
						-	First Of Sig Pep
28		47	16			37	Last AA of Sig Pep
29	19	48	17			38	First AA of Secreted Portion

TENNETH SERVICE HERBOOK,

	T .			Γ		T		r	r	T
157	156	156	155	154	153	152	151	150		Gene No.
H6EAE26	HSKCP69	HSKCP69	HPTRC15	HOECU83	HNHFQ63	HNHEJ88	HNHED86	HMSKQ35		cDNA Clone ID
209009	209009 04/28/97	209009 04/28/97	209009 04/28/97	209009 04/28/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 04/28/97 209084 05/29/97	209084 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector
167	230	166	165	164	163	162	161	160		NT SEQ ID X
882	1250	1251	2153	1400	753	61§	770	1842		Total NT Seq.
48	223	219	594	681	_		 _	172		5' N7 of Clone Seq.
882	1250	1120	2153	1400	753	519	770	1463	_	5' NT 3' NT of of Clone Clone Seq. Seq.
155	393				164	242	30	319		5' NT of Start Codon
155	393		119	508	164	24 12	30	319		of AA First SEC AA of ID Signal NO: Pep Y
390	453	389	388	387	386	385	384	383		AA SEQ ID NO:
			-	-			-	_		First AA of Sig Pep
33	32			22	17	17	31	30		Last AA of Sig Pep
34	33			23	8	18	32	ယ		First AA of Secreted Portion
153	171		13	33	67	24	46	33		Last AA of ORF

]	Τ	Τ	Γ						,			
168	167	166	165	164	163	162	2	160	159	158		No.	Cana	
HCFNF11	HCEZS40	HCEQA68	HCDDB78	HBMVP04	HBMTY28	HBHAD12	HAUAE83	HAICP19	HAGDQ47	HAGBX03		Clone ID		
209010	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209009 04/28/97	04/28/97	Date	Deposit	ATCC							
pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector		
178	177	176	175	174	173	172	171	170	169	168		×Ċ		SENT NT
1637	1502	1348	2379	888	1758	786	2003	1624	1307	1208		Seq.		
26	178	-	750	330	962	-	889	89	-	-	1	Seq.		2, Z
1607	1502	1348	2379	862	1758	786	2003	1483	1307	1208		Seq.	Clone Clone	5' NT 3' NT
152	315	13	106		1184		1080	128	44	182		Start Codon	of 12	
152	315	12	106	546	1184	176	1080	128	44	182	-		AA of	
401	400	399	398	397	396	395	394	393	392	391	1	- <u>-</u> NO		AA
	-			-	_	-	-				1	Sig		
1		28	~		27	17			122			Sig	of A	Last
45		29	19		28	18		19	23		1 0111011	Secreted	First AA	
11 7		1	1	1	,	ı	1	,	Ì	ļ	1 .	-		-

		i	г	Γ		· · · · · · ·	
173	172	171	170	169	169		Gene No.
HE8MG65	HE2CT29	HDSAP81	HCUBL62	HCRBL20	HCRBL20		cDNA Clone ID
209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	04/28/97 209085 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Uni-ZAP XR	l¹ni-ZAP XR		Vector
183	182	181	180	231	179		NO.
2276	1128	968	519	1811	2911		Total NT Seq.
48	 -	320		20	1103		5' NT of Clone Seq.
2276	1128	968	519	181	2858		5' NT 3' NT of of Clone Clone Seq. Seq.
88	=	476	57	93	192		5' NT of Start Codon
88		476	57	93	192		of AA First SEQ AA of ID Signal NO: Pep Y
406	405	404	403	454	402		AA SEQ VO.
-			-	_	_		First AA of Sig Pep
37	26	27	28	36	32		Last AA of Sig Pep
38	27	28	29	37	33		First AA of Secreted Portion
257	94	79	32	95	124		Last AA of ORF

		Γ			r		
178	177	176	175	175	174	173	Gene No.
HET AR54	HEMDX17	HEMCV19	HEMAM41	HEMAM41	HE9FB42	HE8MG65	cDNA Clone ID
209010 04/28/97 209085	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	ATCC Deposit Nr and Date
209010 Uni-ZAP XR 04/28/97 209085	Uni-ZAP XR	209010 Uni-ZAP XR 04/28/97 209085 05/29/97	Uni-ZAP XR	Uni-ZAP XR	('nı-ZAP XR	Uni-ZAP XR	Vector
	187	186	233	185	184	232	X D SEQ
1848	654	116	1338	1337	2500	2271	Total NT Seq.
151		33	ربر، برر	60	76	56	5' NT of Clone Seq.
1848	159	931	1327	1328	1693	2232	Total Clone Clone of Start Seq. Seq. Codon
948	137	79	175	175	518	79	of Star
948	137	79	175	175	518	79	of First AA of Signal Pep
1-	011	409	456	408	407	455	SEQ ID NO:
		-			•		First Pep
- -		23	32	39	_	£‡.	Last AA of Sig Pep
15		24	33	40	2	+	First AA of Secreted Portion
•	ļ			1	'	•	-

 $\mathcal{A}_{\mathbf{v}} = \{\mathbf{v}_{i}, \dots, \mathbf{v}_{i}\}_{i=1}^{N} \cdot \mathbf{v}_{i} \in \mathcal{A}_{i} \text{ such that } \mathbf{v}_{i} \in \mathcal{A}_{i}$

	_	_							Г		
87	186	185	184	183	182	181	80	179		Gene No.	
HHPSD37	HHPDW05	HHLBA89	HGLAM56	HGBF079	HFXHN68	HFKF140	HFGAB48	HETBX14		cDNA Clone ID	
D37	W05	A89	M56	(079	IN68	F140	\B48	3X14		NA e ID	
209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	05/29/97	Deposit Nr and Date	ATCC
pBluescript	Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR	Uni-Z/	Lambd I	Uni-Z.	Uni-Z			Ve	
script	\P XR	script {-	AP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector	
197	196	195	194	193	192	191	190	189		× Ö 🖰	SEQ
1282	1443	1001	1098	1538	2118	1941	906	1146		Total NT Seq.	
99	-		68	259	777	120	156	157			of LN 'S
1282	1443	1001	8601	1538	2118	1002	906	1146			5' NT 3' NT of
171	246	324		273	966	213	245			of Start Codon	5' NT
171	246	324	185	273	966	213	245	74			5' NT of First
420	419	418	417	416	415	414	413	412		≺ö₽ Nö B	AA SEO
-	-					—	_	<u> </u>	ļ	of Sig Pep	First
19	12]	25	28	23	23	18	30	14		of Sig Pep	Last
20	12	26	29	24	24	19	ω.	15		of Secreted Portion	First AA
37	21	39	69	49	50	218	32	53		AA of ORF	Last

	I	Τ	T^-	T	Т-			r	Τ-	т	T	, —			
200	199	198	19/	196	195	194	193	192	191	190	189	188	No.	Gene	
HNFAH08	HMSHQ24	HMSHM43	HLTDB65	HLTCY93	HLMIW92	HLHTC70	HLHSK94	нлРВВ39	HJABZ65	HIASB53	HHSAK25	HHPSF/0	Clone ID		
209011 04/28/97	209011	Date	Deposit	ATCC											
Uni-ZAP XR	Lambda ZAP II	pBluescript	pBluescript	Uni-ZAP XR	pBluescript SK-	pBluescript	Uni-ZAP XR	pBluescript	Vector						
210	209	208	207	206	205	204	203	202	201	200	199	198	×C	j e j	SFO
2110 592	1779	872	207 1480	2465	721	1057	1974	1617	779	1707	1740	951	Seq.		
592	16	_	_	988	-	229	_	188	-	401	1390	26	Seq.	_	5, N
2110	1779	872	1480	2465	721	1057	1794	1605	779	1195	1740	951	Seq.	e Clone	5' NT 3' NT
119	148	35		1225	244	365	112	182	23	652	1534		Start Codon		<u>,</u> な Z
119	148	35	371	1225	244	365	112	182	23	652	1534		Signal Pep	AA of	
433	432	±31	430	429	428	427	426	425	424	123	422	121	۲0 N		SEO AA
				-			-			-			Sig Pep		
	12	- 18	15		25	23	26	28	26	26	19		Sig		
19	25	19	16		26	24	27	29	27	27	20		Secreted Portion		

e i e li e Al Illiania i A

207	206	205	204	203	202	201	Gene No.	1	
HCDE095	НРНАС88	HOSFN122	HNHCM59	HNHAZ16	HNGBE45	HNGAOIO	cDNA Clone ID		
209007 04/28/97 209083 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	Nr and Date	ATCC Deposit	
Uni-ZAP XR	Uni-ZAP XR 216 1705	Uni-ZAP XR	Uni-ZAP XR	209011 Uni-ZAP XR 04/28/97	Uni-ZAP XR 212 1551	Uni-ZAP XR	Vector		
217	216	215	214	213	212	211	×C	SEQ	TN
999	1705	1308	1496	997	1551	938	Seq.	Total	
608	384	501	<u></u>	-		-	Seq.	of Clone	5' NT
909	1705	1308	1132	997	1551	938	seq.	of Clone	3' NT
2.73	549			202		107	Codon	O Total Clone Clone of AA of ID Clone Clone of AA of ID Clone Clone of AA of ID Clone Clon	
273	549	809	165	202	114	107	Pep	First AA of	5' NT
440	439	438	437	436	435		۲.	SEQ	AA
_				_	_		Pep	AA of	First
22	23		28	124	21	27	Pep	e of A	Last
23	₽.0 44		29	25	2:2	28	Portion	First AA	
54	, t.		41	36	100		ORF	Last AA	

10

15

20

25

30

Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.

"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." and the "3' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

The translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

The first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID NO:Y of the last amino acid in the open reading frame is identified as "Last AA of ORF."

SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby, and bline and the sufficient samples.

by the cDNA clones identified in Table 1.

10

15

20

25

30

35

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1. The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

The present invention also relates to the genes corresponding to SEQ ID NO:X. SEQ ID NO:Y, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

Also provided in the present invention are species homologs. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.

The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below).

It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies of the invention raised against the secreted protein in methods which are well known in the art.

Signal Sequences

5

10

15

20

25

30

Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1.

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO-Y which have an N terminal to disadle and the second sequence.

and the second state of the Chall sections of formal activitied protons a not entirely

15

20

25

30

35

uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

10 Polynucleotide and Polypeptide Variants

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire sequence shown in Table 1, the ORF (open reading frame), or any fragement specified as described herein.

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are:

Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization

10

15

20

25

30

Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignement of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypertic in the amino acid.

to obtain a polypeptide having an amino acid sequence at least 95% identical to a query

5

10

15

20

25

30

35

amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequences shown in Table 1 or to the amino acid sequence encoded by deposited DNA clone can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or Cterminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N- and Cterminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.

10

15

20

25

30

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the Nterminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or Ctermini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequnce are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. Use in the characteristics of the

^{(1993),} reported variant KGF proteins having heparin binding activity even after

10

15

20

25

30

35

deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.

Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

5

10

15

20

25

30

10 A 10 A

197

PCT/US98/11422

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).

10

15

20

25

30

35

Polynucleotide and Polypeptide Fragments

In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clone or shown in SEQ ID NO:X. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in the deposited clone or the nucleotide sequence shown in SEQ ID NO:X. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.

Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, 701-750, 751-800, 800-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951-2000, or 2001 to the end of SEQ ID NO:X or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has biological activity. More preferably, these polynucleotides can be used as probes or primers as discussed herein.

In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:Y or encoded by the cDNA contained in the deposited clone. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, or 161 to the end of the coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the

10

15

20

25

30

carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Particularly, N-terminal deletions of the polypeptide of the present invention can be described by the general formula m-p, where p is the total number of amino acids in the polypeptide and m is an integer from 2 to (p-1), and where both of these integers (m & p) correspond to the position of the amino acid residue identified in SEQ ID NO:Y.

Moreover, C-terminal deletions of the polypeptide of the present invention can also be described by the general formula 1-n, where n is an integer from 2 to (p-1), and again where these integers (n & p) correspond to the position of the amino acid residue identified in SEQ ID NO:Y.

The invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini, which may be described generally as having residues m-n of SEQ ID NO:Y, where m and n are integers as described above.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide fragments encoding these domains are also contemplated.

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

Epitopes & Antibodies

embodiment of the present invention relates to a polypeptide fragment comprising an

10

1.5

20

25

30

epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).)

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these fragments are preferred; as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

Fusion Proteins

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the

10

15

20

25

30

No. 10 April 1994 April 2004 Apri

polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified,

purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D.

5

10

20

25

30

35

Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the present invention.

15 Vectors, Host Cells, and Protein Production

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance

10

15

20

25

30

See division A

genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may be glycosylated.

translation initiation codon generally is removed with high efficiency from any protein

after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

5

Uses of the Polynucleotides

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

10

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

15

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

20

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

30

25

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

35

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are

10

15

20

25

30

more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple belix formation positionally and the second control gene expression.

and the standard control of the properties of the control of the c

5

10

15

20

25

30

35

206

PCT/US98/11422

systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of

10

15

20

25

30

unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

Uses of the Polypeptides

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell. Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (1251, 1211), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant bybridoma.

H2In, 99mTc), a radio opaque substance, or a material detectable by nuclear magnetic

10

15

20

25

30

35

resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

10

15

20

25

30

20 1 4 A

Biological Activities

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

Immune Activity

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoicsis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

A polynucleotide or polypeptide of the present invention may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or polynucleotide of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat the control.

causes. Alternatively, a polynucleotide or polypeptide of the present invention that can

5

10

15

20

25

30

35

decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic

10

15

20

25

30

shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

Hyperproliferative Disorders

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, a polypeptide or polynucleotide of the present invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia. lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

Infectious Disease

increasing the proliferation and differentiation of B and/or T cells, infectious diseases

10

20

25

may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes

Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g.,

Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps,

Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium). Bacteroidaceae, Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter,

Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, Salmonella, Serratia, Yersinia). Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal). Pasteurellacea Infections (e.g., Actinobacillus, Heamophilus, Pasteurella). Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis.

and Staphylococcal. These bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS

related infections), paronychia, prosthesis-related infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria, Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas.

These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

25

30

No company of the A

A polynucleotide or polypeptide of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal lighter than the factor of the content of the

cosacs that costact is regenerated as not the present to outless make a gain (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal

10

15

20

25

30

35

BNSDCCID - WO 9854963A2 L >

or cardiac), vascular (including vascular endothelium), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

Chemotaxis

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

WO 98/54963 PCT/US98/11422

215

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

5

10

15

Binding Activity

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

20

25

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

3()

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide magazine as the second to be a solution of the containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing a polypeptide magazine as the second to be a solution containing as the sec

10

15

20

25

30

35

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

Other Activities

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

10

15

20

25

30

Activities to the contract of the contract of

Other Preferred Embodiments

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SFQ ID NO:X in

10

15

20

25

30

35

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame sequence encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method

WO 98/54963

5

10

15

20

25

30

comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1

two nucleotide sequences, wherein at least one sequence in said panel is at least 95%

10

15

20

25

30

35

identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

10

15

20

25

30

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above peathed a hopolice of the control of t

polypeptides in said sample to an antibody which binds specifically to a polypeptide

WO 98/54963

5

10

15

20

25

30

35

comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

WO 98/54963

5

10

15

20

25

30

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone I benefice at Table 1.

hatically superplaced educated the mathematical subscriptions.

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

10

15

20

25

30

35

5

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

Vector Used to Construct Library	Corresponding Deposited Plasmid
Lambda Zap	pBluescript (pBS)
Uni-Zap XR	pBluescript (pBS)
Zap Express	pBK
lafmid BA	plafmid BA
pSport1	pSport1
pCMVSport 2.0	pCMVSport 2.0
pCMVSport 3.0	pCMVSport 3.0
pCR [®] 2.1	pCR ⁽⁶⁾ 2.1

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1

10

15

20

25

30

* A

6 A 6 A

Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR[®]2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported.

The Micron desert is the destrict of the second of the second of

Sump - Viraberatory Manual, Colo Spring Harbor russ, Cold Spring, NY (1982).

WO 98/54963

5

10

15

20

25

30

35

BNSDOCID < WO 9854963A2 L >

The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

15

20

25

30

State State And State And America

10

5

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

Example 3: Tissue Distribution of Polypeptide

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P³² using the rediprimeTM DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100TM column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PT1100. L. F. Marcia et et al. (1994) and the state of the st

California procedures

10

15

20

25

30

35

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

Example 5: Bacterial Expression of a Polypeptide

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^r). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG

10

15

20

25

30

essa in the contract of the same and

(Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., *supra*).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number 209645, deposited on February 25, 1998.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

the larger tragment (the stuffer fragment should be about 310 base pairs). The DNA

10

15

20

25

30

insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and Xbal, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

Example 6: Purification of a Polypeptide from an Inclusion Body

The following alternative method can be used to purify a polypeptide expressed in $E\ coli$ when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with $0.16\,\mu m$ membrane filter with appropriate surface area

10

15

20

A A A A A A

(e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 μg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ηg /ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The

offices the cooked porvaried conde

10

15

20

25

30

35

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. *E. coli* HB101 or other suitable *E. coli* hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGold™ virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm

tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

5

10

15

20

25

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μ Ci of ³⁵S-methionine and 5 μ Ci ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

de la companya de la

established and the state of th

15

20

25

30

35

the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No. 209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the

10

15

20

25

30

 $\cdots \quad \exists \quad \alpha \quad \ \Delta$

polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five μg of the expression plasmid pC6 is cotransfected with 0.5 μg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 μM , 2 μM , 5 μM , 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 -200 μM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blocking become and the HDLO

10

15

20

25

30

35

Example 9: Protein Fusions

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

Human IgG Fc region:

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCC CAGCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCAAAACC CAAGGACACCCTCATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTGGT GGACGTAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC

10

15

20

25

30

A A A A A

AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG
AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAACCCCC
ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT
GTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT
GACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGGA
GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG
ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA
GGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC
ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGC
GACGGCCGCGACTCTAGAGGAT (SEQ ID NO:1)

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the

lecusely maintained in 11.34 medium, and then cioned by limiting dilution as

10

15

20

25

30

35

described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

Example 11: Production Of Secreted Protein For High-Throughput Screening Assays

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a

10

25

N + SA SEA

working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (116.6 mg/L of CaCl2 (anhyd); 0.00130 mg/L 30 CuSO₄-5H₂O; 0.050 mg/L of Fe(NO₃)₃-9H₂O; 0.417 mg/L of FeSO₄-7H₂O; 311.80 mg/L of Kcl; 28.64 mg/L of MgCl₂; 48.84 mg/L of MgSO₄; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHCO₃; 62.50 mg/L of NaH₂PO₄-H₂O; 71.02 mg/L of Na₃HPO₄; .4320 mg/L of ZnSO₄-7H₂O; .002 mg/L of Arachidonic Acid; 1.022 mg/L of

Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L- Alanine; 147.50 mg/ml of L-Arginine-HCL; 7.50 mg/ml of L-Asparagine-H₂0; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H₂0; 31.29 mg/ml of L-Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-H,0; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L-Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalainine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tryrosine-2Na-2H,0; 99.65 mg/ml of L-Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg/L of 10 Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319 mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; and 0.680 mg/L of Vitamin B₁₂; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of 15 Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; and 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock 20 solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

25

30

35

10

15

20

25

30

Example 12: Construction of GAS Reporter Construct

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proxial region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the

defined in the foregoing and the first set of the forest set of th

	Ligand	tyk2	<u>JAKs</u> <u>Jak l</u>	<u>Jak2</u>	Jak3	<u>STATS</u>	GAS(elements) or ISRE
5	IFN family IFN-a/B IFN-g Il-10	+	+ + ?	- + ?	-	1.2.3 1 1.3	ISRE GAS (IRF1>Lys6>IFP)
10	gp130 family IL-6 (Pleiotrohic) Il-11(Pleiotrohic) OnM(Pleiotrohic)	+ ? ? ? ?	++++++	+ ? +	9 9 	1,3 1,3 1,3	GAS (IRF1>Lys6>IFP)
15	LIF(Pleiotrohic) CNTF(Pleiotrohic) G-CSF(Pleiotrohic) IL-12(Pleiotrohic)	? -/+ ? +	+ + +	+ + ? +	? ? ? +	1.3 1.3 1.3 1.3	
20	g-C family IL-2 (lymphocytes) IL-4 (lymph/myeloid) IL-7 (lymphocytes) IL-9 (lymphocytes) IL-13 (lymphocyte) IL-15		+ + + + +	- - - ? ?	+ + + + + ?	1,3,5 6 5 6 5 6 5	GAS GAS (IRF1 = IFP >>Ly6)(IgH) GAS GAS GAS GAS GAS
30	gp140 family IL-3 (myeloid) IL-5 (myeloid) GM-CSF (myeloid)	- - -	- -	+ + +	-	5 5 5	GAS (IRF1>IFP>>Ly6) GAS GAS
35	Growth hormone fami GH PRL EPO	? ? ?	- +/- -	+ + +	- - -	5 1,3,5 5	GAS(B-CAS>IRF1=IFP>>Ly6)
40	Receptor Tyrosine Kir EGF PDGF CSF-1	<u>1ases</u> ? ? ?	++++++	+ + +	-	1,3 1,3 1,3	GAS (IRF1) GAS (not IRF1)

10

15

20

25

30

The second second

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an Xhol site. The sequence of the 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTC

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

5':CTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATG ATTTCCCCGAAATATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCC CTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGC CCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGC CTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTT TGCAAAAAGCTT:3' (SEQ ID NO:5)

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and VhoL offectively resolve in the SV to a constraint of the confirmation of the second production of the second production

with two in its sistance generated therefore γ is a referred for undiministic expression systems.

10

15

20

25

30

35

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using Sall and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

Example 13: High-Throughput Screening Assay for T-cell Activity.

The following protocol is used to assess T-cell activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies)

WO 98/54963

5

10

15

20

25

30

PCT/US98/11422

with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

245

During the incubation period, count cell concentration, spin down the required number of cells (10^7 per transfection), and resuspend in OPTI-MEM to a final concentration of 10^7 cells/ml. Then add 1ml of 1 x 10^7 cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at - 20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

10

15

20

25

30

Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest $2x10e^7$ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heatinactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37° C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

These cells are tested by harvesting $1x10^8$ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of $5x10^5$ cells/ml. Plate 200 ul cells per well in the 96-well plate (or $1x10^5$ cells/well).

Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.

Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

5

10

15

20

2**5**

30

35

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

- 5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6)
- 5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO:7)

Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes Xhol/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by

10

15

20

25

30

growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as $5x10^5$ cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to 1×10^5 cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

Example 16: High-Throughput Screening Assay for T-cell Activity

NF-kB (Nuclear Factor kB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-kB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF-kB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF- κB is retained in the cytoplasm with I- κB (Inhibitor κB). However, upon stimulation, I- κB is phosphorylated and degraded, causing NF- κB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- κB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-κB promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF-kB would be useful in treating

10

15

20

Note that was a second of the

diseases. For example, inhibitors of NF-κB could be used to treat those diseases related to the acute or chronic activation of NF-kB, such as rheumatoid arthritis.

To construct a vector containing the NF-κB promoter element, a PCR based strategy is employed. The upstream primer contains four tandem copies of the NF-κB binding site (GGGGACTTTCCC) (SEQ ID NO:8), 18 bp of sequence complementary to the 5' end of the SV40 early promoter sequence, and is flanked with an XhoI site: 5':GCGGCCTCGAGGGGACTTTCCCGGGGACTTTCCGGGGACTTTCCATCTGCATCTCAATTAG:3' (SEQ ID NO:9)

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene)
Sequencing with the T7 and T3 primers confirms the insert contains the following

Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:

Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF-κB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF-κB/SV40/SEAP

cassette is removed from the above NF-κB/SEAP vector using restriction enzymes Sall and NotL and inserted into a vector containing neomycin resistance. Particularly, the

Bullion after testing mer prof. Proceedings and gent Source

10

15

20

25

Once NF-κB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 17: Assay for SEAP Activity

As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 μ l of 2.5x dilution buffer into Optiplates containing 35 μ l of a supernatant. Seal the plates with a plastic sealer and incubate at 65°C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 µl Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 µl Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Buffer Formulation:

Reaction Butter Politication.							
# of plates	Rxn buffer diluent (ml)	CSPD (ml)					
10	60	3					
11	65	3.25					
12	70	3.5					
13	75	3.75					
14	80	4					
15	85	4.25					
16	90	4.5					
17	95	4.75					
18	100	5					
19	105	5.25					
20	110	5.5					
21	115	5.75					
22	120	6					

23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.5
41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12
47	245	12.25
48	250	12.5
49	255	12.75
50	260	13

Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-3, used here.

For adherent cells, seed the cells at 10,000 (20,000 cells/well in a Co star black)

(Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

5

10

A stock solution of 1 mg/ml fluo-3 is made in 10% pluronic acid DMSO. To load the cells with fluo-3, 50 ul of 12 ug/ml fluo-3 is added to each well. The plate is incubated at 37°C in a CO₂ incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10° cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-3 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37°C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10° cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-3. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling event which has resulted in an increase in the intracellular Ca⁺⁺ concentration.

20

25

30

35

5

10

15

Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

10

15

20

25

30

 $N_{\rm tot} = 0.000 \, {\rm kpc}^{-1}$, which is the $1/\Delta$

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in scrum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

Test the filtered extracts for levels of tyrosine kinase activity. Although many

determining its abinity to phosphorviate a tyrosine residue on a specific substrate (a

10

15

20

25

biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg₂₊ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 19, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other

10

15

20

25

30

phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (1ug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4°C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds: 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C using buffer

polynucleotide kmase, employing SequiTherm Polymerase. (Epicentre Technologies).

10

15

20

25

30

35

The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4.6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10.

10

15

20

25

30

The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate I hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 23: Formulating a Polypeptide

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1 µg/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 µg/kg/hour to about 50 µg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes

Pharmaceutical compositions comaining the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally,

10

15

20

25

30

35

intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52.322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

10

15

20

25

30

35

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

5

10

15

20

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37°C for approximately one week.

WO 98/54963 PCT/US98/11422

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIH and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

5

10

15

20

25

30

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligasc. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to conflict the second of the second o

10

15

20

25

30

35

Example 27: Method of Treatment Using Gene Therapy - In Vivo

Another aspect of the present invention is using *in vivo* gene therapy methods to treat disorders, diseases and conditions. The gene therapy method relates to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or decrease the expression of the polypeptide of the present invention. A polynucleotide of the present invention may be operatively linked to a promoter or any other genetic elements necessary for the expression of the encoded polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known in the art, see, for example, WO90/11092, WO98/11779; U.S. Patent NO. 5693622, 5705151, 5580859; Tabata H. et al. (1997) Cardiovasc. Res. 35(3):470-479, Chao J et al. (1997) Pharmacol. Res. 35(6):517-522, Wolff J.A. (1997) Neuromuscul. Disord. 7(5):314-318, Schwartz B. et al. (1996) Gene Ther. 3(5):405-411, Tsurumi Y. et al. (1996) Circulation 94(12):3281-3290 (incorporated herein by reference).

The polynucleotide constructs of the present invention may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). These polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotides may also be delivered in liposome formulations (such as those taught in Felgner P.L. et al. (1995) Ann. NY Acad. Sci. 772:126-139 and Abdallah B. et al. (1995) Biol. Cell 85(1):1-7) which can be prepared by methods well known to those skilled in the art.

The polynucleotide vector constructs of the present invention used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapies techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

10

15

20

25

30

The polynucleotide construct of the present invention can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides.

For the naked polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 g/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked polynucleotide constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

The dose response effects of injected polynucleotide in muscle *in vivo* is

either circular or linear, is either used as naked DNA or complexed with

WO 98/54963 PCT/US98/11422

264

liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA.

Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about 0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.

After an appropriate incubation time (e.g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section of the individual quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice. The results of the above experimentation in mice can be use to extrapolate proper dosages and other treatment parameters in humans and other animals using naked DNA of the present invention.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference.

5

10

15

20

Sequence Listing

(1) GENERAL INFORMATION: (i) APPLICANT: Human Genome Sciences, Inc., et al. 5 (ii) TITLE OF INVENTION: 207 Human Secreted Proteins 10 (iii) NUMBER OF SEQUENCES: 800 (iv) CORRESPONDENCE ADDRESS: 15 (A) ADDRESSEE: Human Genome Sciences, Inc. (B) STREET: 9410 Key West Avenue 20 (C) CITY: Rockville (D) STATE: Maryland (E) COUNTRY: USA 25 (F) ZIP: 20850 30 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage (B) COMPUTER: HP Vectra 486/33 35 (C) OPERATING SYSTEM: MSDOS version 6.2 (D) SOFTWARE: ASCII Text 40 (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: 45 (B) FILING DATE: (C) CLASSIFICATION: 50

/--- O TRICR APPLICATION DATA:

esta e la composición de la electrica de la composición del composición de la compos

	(viii) ATTORNEY/AGENT INFORMATION:	
ح	(A) NAME: Kenley K. Hoover	
5	(B) REGISTRATION NUMBER: 40,302	
	(C) REFERENCE/DOCKET NUMBER: PZ007PCT	
10		
	(vi) TELECOMMUNICATION INFORMATION:	
15	(A) TELEPHONE: (301) 309-8504	
13	(B) TELEFAX: (301) 309-8439	
20	(2) INFORMATION FOR SEQ ID NO: 1:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 733 base pairs (B) TYPE: nucleic acid	
4 9	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
30	GGGATCCGGA GCCCAAATCT TCTGACAAAA CTCACACATG CCCACCGTGC CCAGCACCTG	60
	AATTOBAGGG TGCACCGTCA GTCTTCCTCT TCCCCCCAAA ACCCAAGGAC ACCCTCATGA	
35	TCTCCCGGAC TCCTGAGGTC ACATGCGTGG TGGTGGACGT AAGCCACGAA GACCCTGAGG	
	TCAAGTTCAA CTGGTACGTG GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG	240
	AGGAGCAGTA CAACAGCACG TACCGTGTGG TCAGCGTCCT CACCGTCCTG CACCAGGACT	
40	GGCTGAATEG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGCCCTCCCA ACCCCCATCG	
	AGAAAACCAT CTCCAAAGCC AAAGGGCAGC CCCGAGAACC ACAGGTGTAC ACCCTGCCCC	420
45	CATCCCGGGA TGAGCTGACC AAGAACCAGG TCAGCCTGAC CTGCCTGGTC AAAGGCTTCT	480
	ATCCAAGCGA CATCGCCGTG GAGTGGGAGA GCAATGGGCA GCCGGAGAAC AACTACAAGA	540
	CCACGCCTCC CGTGCTGGAC TCCGACGGCT CCTTCTTCCT CTACAGCAAG CTCACCGTGG	600
50	ACAAGAGCAG GTGGCAGCAG GGGAACGTCT TCTCATGCTC CGTGATGCAT GAGGCTCTGC	660
	ACAACCACTA CACGCAGAAG AGCCTCTCCC TGTCTCCGGG TAAATGAGTG CGACGGCCGC	
55	GACTCTAGAG GAT	733
		·

 $60\,$ (2) information for SEQ ID No: 2:

	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 5 amino acids	
	(B) TYPE: amino acid	
5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
	Trp Ser Xaa Trp Ser	
10	1 5	
15	(2) INFORMATION FOR SEQ ID NO: 3:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 86 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
25	GCGCCTCGAG ATTTCCCCGA AATCTAGATT TCCCCGAAAT GATTTCCCCG AAATGATTTC	60
	CCCGAAATAT CTGCCATCTC AATTAG	86
30		
50		
	(2) INFORMATION FOR SEQ ID NO: 4:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 27 base pairs	
55	(E) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOFOLOGY, linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
	GCGGCAAGCT TTTTGCAAAG CCTAGGC	27
	Secondary Tristrand Services	
45		
	(2) INFORMATION FOR SEQ ID NO: 5:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 271 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	

AAATATOESS STATOTSAATT ASTUAGKAAG KATASTOOS (UNIGTAASTEL ISKUDATIO) 110

	GOCCCTAACT CCGCCCAGTT CCGCCCCATTC TCCGCCCCAT GGCTGACTAA TYTTTTTTAT	180
	TTATGCAGAG GCCGAGGCCG CCTGGGCCTC TGAGCTATTC CAGAAGTAGT GAGGAGGCTT	240
5	TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT T	271
10	(2) INFORMATION FOR SEQ ID NO: 6:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 32 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
• •	(D) TCPOLOGY: linear	
	(xi) SEQUENCE LESCRIPTION: SEQ ID NO: 6:	
20	GCGCTCGAGG GATGACAGCG ATAGAACCCC GG	32
25	(2) INFORMATION FOR SEQ ID NO: 7:	
		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPCLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
35	COOLAGOUNG COCAGNOTOCOC COATTOCOCCT C	31
	GCGAAGCTTC GCGACTCCCC GGATCCGCCT C	31
40		
	(2) INFORMATION FOR SEQ ID NO: 8:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs	
45	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
50	GGGGACTTTC CC	12
55	(2) INFORMATION FOR SEQ ID NO: 9:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 base pairs	
60	(B) TYPE: nucleic acid	

	(C) STRANDEDNESS: double (D) TOPOLOGY linear	
	$(\mathrm{x}\mathrm{i})$ SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
5	GCGGCCTCGA CGGGACTTTC CCGGGGACTT TCCCGGGGACT TTCCGGGGACT TTCCATCCTG	60
	CCATCTCAAT TAG	73
10		
	(2) INFORMATION FOR SEQ ID NO. 10:	
15	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 256 base pairs (E) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
	CTCGAGGG3A CTTTCCCGGG GACTTTCCG GGACTTTCCA TCTGCCATCT	60
25	CAATTAGTOA GCAACCATAG TOCCOCCOCT AACTCCGCCC ATCCCGCCCO TAACTCCGCC	120
	CASTICCOCC CATTOTOCSC COCATGSCIS ACTAATITIT TITATITATS CAGASSCCGA	180
30	GGCCGCCTCG CCCTCTGAGC TATTCCAGAA GTACTGAGGA GGCTTTTTTG GACGCCTAGG	240
30	CTTTTGCAAA AAGCTT	256
35	(2) INFORMATION FOR SEQ ID NO: 11:	
40	(:) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2526 base pairs (B) TYPE: nucleic acid (C) STRANDELNESS: double	
	(D) TOPOLOGY: linear	
45	(mi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
*+.)	GACAGGCTAT CCGAGAATCT GAGAGCTGGG CCCGGCAATT CCTCCAGYTA CCCTTGTGAC	6(
	CTAAGTCCAG TCACACATTT COCAAAGTTT CTCTTTGTCA TAACCCTGGT CTGGCTGGTT	120
50	TTGROGRETT GAGAATOOGT CAGGGACTEC AGGCCAAGTC CAACAGAGAC CCCAAACCCA	18
	CCACACACCA CCACCCACAA CCPCACCACC AACAAAGAGG ACTTTTGTGG CGCCACAAGT	24
	and the second of the second o	
	AAA ahtaka - Indina Angela Pina da awasa ka maa ay ah ah mara awa ay ka	ε.
60	GUIDGUTCANT CATCUTUUTUU TGACCAACAT TUTGACTANT CUTAGTAGTA (AACAACAACAACAACAACAACAACAACAACAACAACAAC	49

	GGCCAGGCCC CCAGCGACTO TTOTTGGCCT GATGTTYGTC CTCACAGGCA TGCCACGTGG	3 4 0
5	CCTGAGATGA TTCAGAACAA ATCATGCTAA CTTTGAATCC ATCCAGCCAC TTGCAAATGA	600
	TAATCAGAAG TCAGCTTGTT CAGTGTTAGA AAGAAACTAA CAAAAGAGAA CCCAGAGCAA	660
	THTAGAATOT TTGAGTGCTT GGCTTTCCAA GGATACTGCG GAGANTCTGG CCAAGCTGAT	720
10	GAMCTTITGA ARTGTCACTG GCACCATATG CAACAAGAAC CACCATTCAC TGAGTAGCTA	730
	ATGGGTTTEG GGCCTEGGAC ATTCCATCTG AGGTCCTTCC TGAACATETC ACTCCACAGC	840
	AGAGGATOGG TTGTAGCTTA CCCAGAACCA CTCCTCCAGG AGAGTTGGAT GTTTTGCGTG	900
15	CAACACOTTG AGCACTGACT GCTATTGTTC AAAAAAAAGCC TTTGCTGCAT TCGGAGGACT	960
	GCCCUGTGCC CTGAGGTGAC TTCCTAACTA TGTGGTTTCA TTAGGGAATT TATTTTTTGT	1020
20	GCTGGGTGGA CATTTGTAIT TTGTTAGGTT GCTGTTTAAG CTCAAGTTTG CTGTGCTCTC	1080
	TGCAGCTACA AAACATCTTG GCATATTTAA GAKTGGCTTT TATAAATAGC TTTATTCTGA	114)
25	TATTAATCAG ATTCCCAACT TYACTGAGAA TYAAGGACTG GGGTACTTTA AAGAAATGCA	1200
25	AATAGCAATT GAAGAACCAC TOCTOCAGGT GGTAGCCCTG GCTAGACTGA ATTACACTAG	1260
	AAATCAGCCA GAAGGAAGCG TCCTTGGGAT CCCAGATCAC TCTTTTTTTT TTTTTTTTA	1320
30	AAAGEGEGAG COUTTGATS GCTCATCTCT CTGAATAACA GTTACGTCTT CATATCSATA	1380
	CCAGATGCCT TCTTCATCAT GCCACTGAAG CCACTCACCA CCTTCAAGAA CATGCCAAGC	1440
25	TOTGTCAGAT TCACTTACCC ACAAACAAGG AGGCACGTTT GGCACAAAGT GTTGTCCTCC	1500
35	AGSTCCAAGT GGACTCTACA GAGTGCTTGA CCTCAACACA CTGGATTCCA GGTGGASTGG	15:0
	ACCANGAGCA GGCAAAGACA COGGAACTGA AAAACTCCAC AGGGTTTGGA GAATAGAAAT	1620
40	GAAAAGCCAC GTCATATAAC TCAAGAATAA ATGGTGTTTT GGAAATTTTA AAATTATCAT	1630
	CGAAGGTEGT GAAACTATTT CAGGCCCAAA TGAAAGGAAA TCGCCAGTTG GGGATGAAAT	1740
15	CACAGAGICT GTGTPTTATG ATATGGTTGG ATGTCCACTG ATGAAATTTT AAAGGAGTTT	1800
45	CATTITIAAA AGIGCGCAIG AITCIACAIA IGAGAAITCI ITAGGCCAAG AAACIGICCI	1860
	TGGCTCAGAG GTGTTGGGAA TTAAAGCAGA GAGAAGCCAT TCGTGATGCT TAGAACCAAG	1920
50	GATGSTCATG TACACAAAGA CCATCSAGAC GGCCATTCTT GTTTACAAAA CACTTACCAA	1980
	GAAAGCACTT TGTAGGGGAA CTTTAGTAAG TYCTTCTCAT TYCAYTATGT TYCTTCCAAG	2040
e =	GAAACAGGAG AGACTGAATT AATAATTCTC TCTTTCCTCT TAAGCACTTT TAAAATAATA	2100
55	AAGTACATCT TGAAATTTGG GGGGGCATCT CTGATTTAAA AAAAGAAAAA GGCTGCTTGA	2160
	TGTATSTTAT GCAGAGACAC TCTSCCTCTG GTGGCTGCAG AGCAATACCC AAGCCTCATT	2220
60	TGGAAGGCTC AACATTTGGA ATTSCACTTT AATTGATTAA TCCTCAATTC ATGTGCCCTT	2280

	ACGGGATGGT GGGTCTGGGA CCCCAATTCA TTCTTATCTG CCAAAGAATT ATCTAGAAGC	2340
5	ACATCAAATA CCAGCACCCC ACCTGCACAA TGGGGGTUGA AAACTTTTGT ATCCCTAAGC	2400
3	ATATTATTTT ATAGTGTCTG CCATGCCATG TGGAAATACT TTATTTTTAA CCTCAGGATT	2460
	TANATAANGT AAACACTATG ACATTTAAAA AAAAAAAAAA AAAACTCGAG GGGGGCCCGG	2520
10	TACCCA	2526
15	(2) INFORMATION FOR SEQ ID NO: 12:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1131 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
2.5		
25	CACTGCACCA GCTTTGTTAT CTGTAAAATG ATGATAATAC CAACACCTTC TTCTTGGGGT	60
	ACTGAAGATG AGAGAACATG ATATGTGTAA AGTGCCTTCC ACAATACCCA GAACATAGCA	120
30	AACATSTAAT GAATGTAGTA ATAGTAATTA TTTTATTTTC TTTTGATTCA GTTGGGACTA	180
	TSTTCAGCTG TAACAGAATA CCCAAAATAA CTGTTTTAAA CAAATTAAAG TTTWGTTGTG	240
	AAGTTTTGTT ACGAATTCAG ACAATCCAGG GCTTTTATAG ATGCACCAGG ATCAGCAGGT	300
35	ACAAAGGCAT CTTTCCTGAT TTCTGCCAGT CTCAATGCAT GGGTTGCAAT CCAGARTCCA	360
	RBATBBCAGT TCCAGCCCTB GTTACGCCCA TATTAGCACA CAGAAAGAAA GAGAAAGGBA	420
40	TETGESTSTT CASTITAATS ATAGCTCCCA STAGATGCAS CCASTASTIS TESTEATAST	4 30
10	CCATTAGCTA ATGCTTGCTT ACATGGTCAC ACTTAGTTTC CAGAGAGACA TGTCTGGACA	540
	GTCATGTGCT CAATTAATAT CCAAGTGTCC AATTACTGAG AAAAAAAGAA ACTAGCACCT	600
45	TEGOTTOWN GCATTOCTCT TAGCATAAGC CACATTCTTT TTATGAAGTT GTCCTCAGTT	550
	ACTTOGATGC CTCAGTYGTC CTTTCAWITA GAAAWGCYCC TKGGACAYCC TSAAWCTGAC	720
50	TTCTTTTGTC ATCAGCACCA TCACTACCAC TGCCYTCTTC AAAGCCACCA CGTTCTGTCC	780
50	CCAGGATGGT TGCAACAACC ACCATAGGGA CTFTTTGCCT TCTACTTGCA CACAATAGNC	840
	CAGAGTAAGC TTTTGAAAAT GTAGGTCAGA TCATGTCTCT CTCTTCCTCT TCAAAACCCT	900

THE STATE OF THE PROPERTY OF THE PARTY OF TH

HA HA A HA HA A HA A HA A HA A A

	TATTTGCACT TAAAATAGAA AAAAAAAAA AAAAAAAACT CGAGGGGGGC C	1131
5	(2) INFORMATION FOR SEQ ID NO: 13:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 941 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
	GGCACGAGTA GCATTTCATT TAATCTGCAG GTATATTCTC CCAACAGTTT ATTGTCATGT	60
	GATGTCCTUA GUCAAGATYG TRABGCAGAG AGGAGCTBTC CCAACCTACT ATACCACCGA	120
20	GGCTGGAGAG ATUATATITT TGGTATTAAA CTGGAGTETC TCCATCCTTC ACATTGTTGA	130
	TGTCCTCTGT ARRAACCGG AAAAGTCAGT GACAGAAGAT GCCGCTAGCG GTTTGAGCCA	240
25	GAGAATGACA GCTCTGGTTT GGAGAAAAGG GCCGGATGGT GGCTCTAGAA AGCCCATCCT	300
دي	TOTGOPOTIC TIMITTOTOC COOTTATATY STGCTFTCAT TOATTCATTC ATTCATCAAA	360
	CATTIGITGA GCACCIATTA TSISICAAGC ICTSIGCIAG CCICTGGAAA ACCIGCCCIC	420
30	ATGTAGCTCA CTGTGGAGTA GGAGAAACAA TGACTACACT ATGATAAGCA CGGGTTGTCA	480
	GGGTCTCACA GAGCAGTYGGC CICTCATCCA GACCGATGAG GTCAAAGAAG GCATCCAGGC	540
	GAGGATGGTG TCAGAGCTAA CTGAAGAATG AGAGGGAGCT GCACCASCAG GGGTTGGAAC	600
35	TGAAGGT99C AGTGCCT93GA STCTTGATTC CAGCAGAG99 AGAGCAGTCT GTGAAAAGGC	660
	ACCAAGGGTG GGAGAGGGCA GAGCACATGG AGGAACTTCA GGTAGTTCTG GATGGCSCTG	720
40	GGGCAAAGCT AGAGAGGTAA GAAGAATCTA CAAATGTTOO TOGAGTTACA TGAACTTOCA	780
	TOCCAATAAA COCATTGGAA ACGAAAAATT TAAGTCAGAA GTGCATTTAA GGCTGGTOOG	840
	AGTAGAATGA TITTIACAAC GAATTGATCA CAACCAGTTA CAGATGTCTT TGTTCCTTCT	900
45	CCACTCCCAC TECTTCACCT GACTAECCTT TAAAAAAAAA A	941
50	(2) INFORMATION FOR SEQ ID NO: 14:	
55	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 843 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOSY: linear	· , -
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	

	CNAGGGATAA CCCCAAAGNT GGGAAATAAA CCCTCAATTA AAGGGGGAAC CAAAAAACCTG	60
	GGAAGTTCCC CCCCCCGTTG GCGGCCNGNT CTAGGAACTA GTGGAATCCC CCGGGGCTCC	120
5	AGGGAATTCS GCACEGASTG GGAATGTTGT TTSTATGATA CTATTTCCAC AAWATGCATT	130
	GAGACTYSGT KYSYNGCCTA GGACATGSTC AAIYCTTYYY AAATATYCCG TGAATYTCTY	240
1.0	TAGTGCATAT TOPOCGATEG EGGETTETEGG GACAGAGTTO TAAATATGCC CATTAGATTA	300
10	AATOTOTTOA TTOTSITGOT CACATOTTOT ATATOOTTAT TAATOTGTGA ATOTOTTOAA	360
	GAGAGGTGTT ATTAAAATCT CTCACTGTAT GTGTCACTTT GCCCTTAAAA TTCTGATGAT	420
15	TTGCTTTATA AATGGTTATA ACCATTTTCC AGGAAGAACA TTAAAGAACT TTCCATTGGC	430
	ATTATCCAGT TICCCTCAAA ATACTGGTTT TITITATTIT GGCTNCTAAG CAGCTATGAA	540
20	TODAGTTTOT CAGAAGOOOT TSTOTCAAGG CATTTGTTTO CAGATTACCT TGTTAGCATC	500
20	CACACTATGG GCTATTITAG AAAAACAAAA AAAGTATCAA AATCATATAG CTATGATTTT	560
	CCTGTGCTTG AAGGAGCCTT AAAGCTCATC TAGTCCAGCC AGTATTTGTT CATCCAAATT	720
25	CTBCCAAGAA ATCTCTATTG TCAAGATATT CTTTACCATC TTTGGGACAT TCTCATTATT	780
	AGAAACAAAT CCTAABAAGA AATTCTGCCA TAKACAACCC ATCCGTTCTT TAAAAAAAAAA	340
30	AAA	343
30		
	(2) INFORMATION FOR SEQ ID NO: 15:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENSTH: 1018 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	CIGIAATTIT TAATTITUAT ATACCGIGCT TIGATICIAA TITTATTITI TSAGTICICI	60
45		0.0
		100
	GAAGGITACA TATACAGAGI GCTPCAGGAA IGATCATTII GTTATTATIC ATGCTICTIA	
50	GAAGGITAGA TATACAGAGT GCTPCAGGAA TGATCATTIT GTTATTATTU ATGCTTCTTA ACAATGTTGT TITACTGCAA GAAGATAATT GCCAGAGAAA GAATACAGTG CAGGAAAGAA	100
50	GAAGGITAGA TATACAGAGI GETINAGGAA TGATCATITT GITATTATIC ATGUITCITA ACAANGITGI TITACINGAA GAAGATAATI GODAGAGAAA GAATACAGIG CAGGAAAGAA GARGCIGGAG CCAGIGGIGA AGARGGAITG AGARGACAGA CATIGIGGA ATGAAATCAI	100 180
50	GAAGGITAGA TATACAGAGT GCTPCAGGAA TGATCATTIT GTTATTATTU ATGCTTCTTA ACAATGTTGT TITACTGCAA GAAGATAATT GCCAGAGAAA GAATACAGTG CAGGAAAGAA	100 180 240
50	GAAGGITACA TATACAGAGI GCTECAGGAA TGATCATTET GTTATTATTC ATGCTTCTTA ACAATGITGI TITACTCCAA GAAGATAATT GCCAGAGAAA GAATACAGIG CAGGAAAGAA GARGCIGGAG CCAGIGGIGA AGARGGAITG AGARGACAGA CATIGIGGAG AIGAAATCAT GAATAATCGI GITTITGAAT TGICCAAAAA CITCIACAAA CCAIGAAATG TIGGAGITTA	100 180 240 300

60 TOTOATOOTT AUSTRAGAA A REKIAGAN OOTAARAAR OOTTOTOOTARAAN AGADAAT 50 541

	TGGCTATCTA ATTTGGTGCC AAATACTTAA TGTGCTTGAA TTTAAAAACA CCAAACATGT	6(-0
5	AGAAACKITAA TTATAATTAT GAGGC JAGTT CTTTAAGCTA GCTYYTTTTC CCCTCTCAAA	550
5	CAGCATATIG GETTEGATET CAGCAEGAGA AAGTETTTTT TECAATACAC ATAATECATA	720
	TATBUTCCTG TTAGCAATCT ATAGAAAATA GATATTGCTC ATTAAGGTAA ATATTTTGT	780
10	TGATGAATGA TOTEGAATES TOTEGACTTG TTETGTGAAC AGGAAATTGC TOTGTAGGCT	840
	TIGACTTUIG AGGTAAAGAG TGAGGGTGGT AAGATTAATT AAAGTAAATA CTGTGACAAT	900
15	AGGATGTCAA AACCAAAAAC GTGTTTCTGA AACTCAAGGA ATTAATGACA CATAGGGAAG	960
13	TITTTOCUAT ATTAAGCATA GAGTAGGAGA GGCAAGTCAA GAATAAAAAA AAAAAAAA	1018
20	(1) INFORMATION FOR SEQ ID NO: 16:	
	(1) DECUENCE CHARACTERISTICS:	
25	(A) LENGTH: 561 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOUCGY: linear	
	(x1) SUQUENCE DESCRIPTION: SEQ ID NO: 16:	
30	TTTAAGAMAT TAGTGAATOO CCGGNTGCAG GGAATTCGGC ACGAGGAGGA GGCCGTCAGC	60
	TOGGREGAGO GONOGATYSO AGCTYNTOOC COGGGTTGCA CCCCCCCAGY TCTGCTGGAC	120
35	ATAAGYTYST TAACAGAGAS CCTBUGAGCT GUGCAGCCTS TACCTGTGGA GTGCCGGCAC	180
	CGCCTGGAGG TGGGTGGGCC AAGGAAGGGG CCTCTGAGCC CAGCATGGAT GCCTGCCTAT	240
40	GCCTGCCAGC GCCCTACGC CCTCACACAC CACAACACTG GCCTMTCCGA GCTGCTGGAG	300
40	CATGGAGTGT GTGAGGAGGT GGAGAGAGTT CGGCGCTCAG AGAGGTACCA GACCATGAAG	360
	GTGJGCAGGG JAGGGCTJGG ACCTACCCCA GGAATGTCCT GCCCTGGGAA TGACAACACA	420
45	GTCCACACCA TECACOGESA GGCAAACAGG GECAGCTGAC CCAGCCCAGG GGTCAGANGA	480
	GGTCTTCCCG ADBAAGTBBC AGCTAAGCTG ATACCTGATA TGCACWAGKC AGCCARGYGG	540
50	AGACAGGCAA GJAAGAAGCT TGTTTTGAGG ACAGAATTTT CTAGATCACT CAGCACCATC	500
30	TGGCTTTTGG GGCTTTTTGT TTTATTTTGT TTTTGAGACG GGGTCTCGCT CTGTCGCCCA	560
	N	661
55		

(2) INFORMATION FOR SEQ ID NO: 17:

60 (i) SEQUENCE CHARACTERISTICS:

WO 98/54963 PCT/US98/11422

275

	(A) LENGTH: 553 base pairs (B) TYPE: nucleic acid	
	(C) STRANZELNESS: double	
_	(D) TOPOLCGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ IL NO: 17:	
	GGCACAGGGC TATTTGCCCC TCTCTCCACA TGACAGAACT GCTCTAAGTT TCTTTGCTGC	60
10	TOTTOTCAGO TGTCAGACOG CTTGCTGCTT GTTTTCCACA CCACCATGTC TATTCTTTGC	120
	TOTOCTTWAC TOTOCCTSIT TTTTCCTTT TGTATTCCTT CTGGCTCTTG TCCCTTTTCC	180
1.5	CACGTGTCWO AGCTTTCOTT TATTGCCACT TTOAGTCAGA GCAGTCCTGT GCTTCTGGTG	240
15	CUGBUATACA ATACTTACTT GAGTTTCTTG GCTTTTCTTG ACTGTGEATC TCTTACTTCA	300
	ACATAGGANT AGCCTGTCAT AGAATTTCTC CASTTCCAGG GCTCAAGAGG GAGAGTGCCA	360
20	GAAAATTGAG ACTGTTTTCC CYGTCITGGA TIGAATTCAT AAAGCAAAAC CACTCTTTGT	420
	GYGAGGGTTT GOTGTGTCAT GCCTATAGGT TGTTTGGGTG CAAACCTATA GAATCCAGCC	480
25	TGCGAAAAGA AAGRAACCAG AGAATANCAG CATCAGAACA ATGCTTGACA TCATTTCTCA	540
25	ATCAAGCA 3T CCA	553
30		
50	(2) INFORMATION FOR SEQ ID NO: 18:	
	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 869 base pairs	
35	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: dcuble (D) TOPOLOGY linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
40	GGCACGAGOT GCCAACACTG AGGTCTTCGT GGCTTCTCAC ATOTAGATGT ATCCCTCTCA	60
	AATCTATUUT UTATCCAGGC ACCAGATTGA OGTATUTAAA ATGTCAACTT TCCAGTTACT	120
45	AATCTATUUT UTATCCAGGC AOCAGATTGA GGTATUTAAA ATGTCAACTT TCCAGTTACT COTTOTTATA CTAGCCCAAT CAACTTACAA GATAAAGTCC AAGCCCCTTC ATATGACAAA	120 180
45		180
	COTTOTTATA CTAGOCCAAT CAACTTACAA GATAAAGTOO AMGCCCCTTO ATATGACAAA	180
45 50	CONTONTATA CHACCOCAAT CAACUTACAA GATAAAGTOO AAGCOCCTTO ATATGACAAA CCACACOUTG CHTAACTOTO CAGGITTGAA TOOTTOATOT COTACTITAA ACTITAAAAC	180 240
	CONTOUTATA CHACCOCAAT CAACUTACAA GATAAAGTOO AAGCOCCTTO ATATGACAAA CCACACOUTG CUTAACTOTO HABGITTGAA TOOTTOATCT COTACTUTAA ACTUTAAAAC CCAGCAGCAC GAAAGTGTOT COTATGCATG TIGCCATATG CGTYCTCTCC ATCATGCATT	180 240 300 360

CONTRACTOR OF THE PART AND A STUDY OF THE PART ARE STUDY OF THE PART AND A STU

	CAAGGCTGCA GTGAACCATG ATCAGAACAT TGCANIPDDAG CTTGRATAAC AGAGTGAGAC	660
	CTTAGGTCAG AAAAATGAAT AAATAAGCAT AAAATTTTAA AAACTTAGCC MGGCATGGTG	72¢
5	GCACACATCT GTGGTCCCTG CTACTTARGA GGCTGAGGTG AGASGATCCT TGAGCCCAGG	780
	AGGTEAACAC TACAGTGAGC TATGATTSTG CCACTAAACT CCAACCTGGG TGAAAAAGCA	840
10	AAACCCTGCC AAAAAAAAAA AAAAAAACT	869
15	(2) INFORMATION FOR SEQ ID NO: 19:	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 95 + base pairs	
	(B) TYPE: nucleric acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
25	GGCGAGCCGA GATCGTGCCA TTGCACTCCA GCCTGGCCAA CAAGAGTGAA ACTCTGTCTC	60
23	AAAAAAAAA AATTATAATA CTATATCCCA TAAAATGACA TTTCATATTT AAAGAGTTTT	120
	TTAAAACTCT TGTATTCACA TGCCATAATT TGAAACCCTA TTTCACTGAA TGAGAATGGT	180
30	ATCTGTTGTC CTCATTTTTT CATTTTTATC CTTAACAATT TCCACCACAG CCAGTGCATA	240
	TAATGGCAAT GACACCCAGG GATGGAATGA TAAGTTCCAT CRCMGCTCAG TCAAGACGCA	300
35	GACTTGATGT GGCCCCAACA ACAGTCAATA ATGGAGTCTC CAAAATAAAG CTCTATAGGA	360
	AAGGTAAATA JOOGGTGCAC AAGAAAJCAC AGGATCTAGG TTCTAACCCC ATCTCTATGA	420
	AGAGCTTGCT GGGAGAGTTT TGACATTWAA CAATCTGTCT GATKGCCAAT TITYTTCTTC	480
40	TATAAAATGA TAATGTTKGA YTCAAAJATC CAAAGTCAAT TCATGGTCTA AAACTTAATG	540 600
	ATTITITAG GITTITGKGAC ATTICAGIGT ACACTGTAGI AATTIATATC TIATTIICCC ACTAATITAG AAAAATATYI AAATGATCCI TAATIGGCAA TGGGTCCTAA GAATTITGIT	660
45	TTAAATCCCT GTTACCCAAA AGAGCCCTTT TTTGTATCTC GCAGTAGTTA CAAGGATCTT	720
	TCTAAATCTT AAAAAAAAA AAAAAAGAAA GAAAGAAAAG AAAAGAAAAA AAGTCAGCCG	780
50	GGCGTGGTGG CTCATGCCTG TAATCUUAGC ACTTTGGGAU CAAGGTGGAC AGATCACGAG	840
	GTCAGGAGAT GGAGACCATC CCGGCCAACA TGGAGAAACC CTGTCTCTAC TAAAAAAAAAA	900
55	AAAAACTCGA GGGGGCCCG GTACCCAATN CGCCGGCTAG TGGTCGTAAA ACAATCAAA	959
1 3		

⁽²⁾ INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1446 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNEUS, double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

10	CGGGGCAGGG CTDTGTBGCA CCGDCCAGGGA GCGGGCCCAG CTGAGTCACT TTATTGGGTT	60
10	CAGTCAACAC THTCTTGCTC CCTGTTTTCT CTTCTGTGGG ATGATCTCAG ATGCAGGGGC	120
	TOGETYTTYGGG GYTTTCCTYGC TTGTYGCCAAG OGCTGGACAC TGCTGGGGGG CTGGAAAGCC	180
15	COTOCOTIFE TOTOCTTOTE TORCETCIAT COCCTCATGE GTGCTGCCAT COTTCCTEGA	240
	GAGAGGGAGG TOANAGCTYG TOTGAGCOCA GIGGGTTCOO GCCCACTCAC CCAGGAGCTG	300
20	GCTGGGCCAS GACCUGGAGA GGGAGCWCTG CTGCCCTCCT GGCCCTGCTC CTTCCGCAGT	360
20	TAGGGGTECA CUGARICCTOG CTTTCCOCCAC TCTTCTCGAG CCAAGGGGAA CGAGGGGGTC	420
	TTCAGGCTCG AUCCACGCTG GCCGTGCTGG GTGGAGAGAT GAGATTTAGG GGGTGCCTCA	430
25	TOGGGTGGCC ACCCCTGGGG TGAAATRAGA AAGGCCCAGA ACGTGCAGGT CTGCGGAGGG	540
	GAAGTGTTCT GACTGAAGGA GGGGACTCUC ATCCTGGGGG ATGCTGGGAG TGAGTJAGTG	600
30	AGATEGOTGA GTGACRETTA TOGGGASCOT GAGGTTTTAT GGGCCTGTGT ATCCCCTTCT	560
	COCEGOUCHA GOURSCOTTOC OTTOMISSIONS COTTOGECCAL ASSISTMENCET CITOSITUCOIS	720
	TECCTOTECT CETTEREGGAT EGACOGECAG CAAGEGGTOT AATGGGEETTG GGTTCTCTCT	780
35	TITACACAGO ADCCOBAGGI DITCAGIGGI IESCIDAGA GICGGADGO GCICTOAGG	840
	GSTACACHTT GROTTERGCCI TECCTGARRE TETRGGGTUA GSCTTTRGCT CTGCTGCCTC	900
40	TOAGTCADUA ABPEAUCTCO CTCTGAAAAT COAGTCCCTT OTTTGGATGT CCTTGTGAGT	960
	CACTOTOGGO CTGGCTGTGG TCCCTCCTCA GCTTCTTGTT CCTGGGACAA GGGTCAAGCC	1020
	AGGATURATO CASSUTTESG ATTOCCCOACC COAGGACCCC CAGGCCCCCT CC/CT9CTSC	1080
45	TTIGCORRERO GENACCICADA AATIGAMOTOO TITTIGGGTOO COGAGGTAAG GTUCCEMEEC	1140
	AGCCCT/SCAT COTYCCGTSCC STAGACCTCC TOCCCAGAGG AGGGGCCTTR ACCCCACAGAGA	1200
50	CGTGTGTTGG ::33:CTGGTAC TIAGGHANICE CCAUCTGTC CAGCCCTGGT CTCTGGGTGTA	1260
20	TOTOTTICOT STTGTCCCGA AGATCTGCGC CTCTAGTGCC TTTTGAGGGG TTCCCATCAT	1320
	SCCTCCSTGA TATTGTATTG AAAATATTAT GCASASTGTT CATGCTTCTA CTAATGAATA	1380

on a mark A

(2) INFORMATION	FOR SEQ	ID	NC:	21:
-----------------	---------	----	-----	-----

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1471 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS, double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	CAAAAAATAA TAATGATAAT TTAAAATAAA TAAGTAACTA ATAAAAAGAT TTTATATCCC	60
15	AGTCTTATGA TGTTEGTTEG CAAGCCTAGA TAAAAAGATG TTAGAATGAA AGAACATATT	120
13	TTTAGTGATA TGTAAATGAA GGATTCTACA ATAGTCATAT ATTTTTATAT GAATGAATGT	180
	TGGGTTGGGC TGGABAGGTA TGTGTGTGTA AATATAAAGG TCTCACATTC AGAGTATAGC	240
20	TOTGAAATAA TOGMACTOAT OTOTACAATT CAACATGIAT CTGTATAGTT ACATOTCATG	300
	TAAATATACA CAGACATATT ITGCAGCCAG TAATTGACAG TTAATGTCCA AAACAGGTGA	360
25	TTGATAGGTA ACAGAAATTA GATAACCACC AATTTT93CC AAGAGAAAGA CTAGAAGGAC	420
23	TAAAAGCAGT TGAATGTATG STACTGACAT TGTCATAAGC AGTCTSATAA CCAGTTTATT	480
	GAAACGTGTG CATTAACAGA GAATTTAATT TTAAACCCAT AATTTCTCCT ATCCATTAAA	540
30	ATATTATAAT TGTIAGTAGT ATGAAACCAA CAGGAAATGT TTTTTAATCA TTTAGTGAGG	600
	TGATTCATTT GTTTCATGE CAAACACTAT CCAEGAAAAG CCTTGCTTGC CTGTTTCCCA	660
35	AAGAGETETA AGAAATAGAA TCAAGTGTAA AATGGTTCAG ACCATTCAGG ATTTCTTGTC	72)
32	ACTOTTOTOA ACCOCGATOT TOOTSTTATT ACTGATGTTT GAAACCCTGT CATTAGECCC	780
	GOCCTOGITA AAGCCCCTCA GAGTCACCTC TCATTCATAG CAATAGAATT CAACCCCAAG	840
40	TEGTTEATGG TETCCCCAEC ACAGCCGAGA GACCTGATCT CTGGATTCAG TECTTTTAGC	900
	TCTTCGAGTT TACCCTAAGA TACCTTCGGG CAATATTTTT AACCAACCCA AAAGCTCTTC	960
45	AGGTCATTTC TGAAGAGGAC AAGGTGAATC TTGGCTTGGA ACACCATTTT TGGGCTCTTG	1020
,,,	CTACTGAATG AATCAGAAAG GAATTTTTTC TGAAGAGCAT TAGAAAGTAA AGGAGATGTT	1080
	AAAATAAGTT CTTGAAGTAT GTTTTATATT TATCTAAAAC ACTGATTTTA AAAGTTTACA	1140
50	TTCAAATGTG TATTCAAAAG AAGTACTGAT TTGTAATTAT TATAGTTTGT GTGTATCATC	1200
	CCCTTTTAAC CGTGCCTAAC AACTGTACTT AAATTTTGTT TTCCTAGTGT AACAAATGTT	1260
55	TCCCATAAGA TTTTCTAGAG CCAAATAATG GGAGTGAAAA ATTCCTTAAG TGTTATATAA	1320
55	GAAAATATAT TAGAAAATCA GCTTTGGATT ATACGATTTC TAAAATATAC TAATACAGAA	1380
	TCCTCAGTAA TATGTTTTGA ATTGGATTTT TTCTCAGAAC TGTTACATAA TAAATAATAC	1440
60	ATCAACCAGA AAAAAAAAA AAAAAAATTN C	1471

5	(2)	INFORMATION	EOD	CEC.	TD	NO.	22.
`	(2)	INFORMATION	FOR	SEC	11	NOT	26:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1402 base pairs

(B) TYPE: nucleic acid

(C) STRAIDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

15	AGGGACGTCT	TGCCTGAGGA	GATGGCCATT	TCTGTCCTGG	RTTACCCTCA	CTGCGTGGTG	60
	CATGAGCTGC	CAGAGCTGAG	GGCGGAGAGT	TTGCAAGCAG	GTGACAGTAA	CCAATTTTCC	120
20	TGGAGGAACC	TCTTTTCTTG	TATCAATCTG	CTTCGGATCT	TGAACAAGCT	GACAAAGTOG	180
20	AAGCATTCAA	CKIACAATGAT	GETERTEGTG	TTCAAGTCAG	CCCCCATCTT	GAAGCGGGGCC	240
	CTAAAGGTGA	AACAAGCCAT	GATGJAGCTC	TATGTGCTGA	AGCTGCTCAA	GGTACAGACC	300
25	AAATACTTGG	GGJGGJAGTG	GCGAAAGAGC	AACATGAAGA	CCATGTCTGC	CATCTACCAG	360
	AAGGTGCG-3C	AASCEDDOOTA	GGACGACTGG	GCATACGGCA	ATGATCTTGA	TGCCCGGCCT	420
20	TGGGACTTCC	AGGCAGAGCA	GTGTGCCCTT	CGTGCCAACA	TTGAACGCTT	CAACGCCCGG	480
30	CGCTATGACC	GGGCCUA DAG	CAACCCTGAC	TTCCTGCCAG	TGGACAACTG	CCTGCAGAGT	540
	GTCCTGGGGG	AACGGGTEKA	CCTCCCTGAG	GACTTTCAGA	TGAACTATGA	CCTCTGGTTA	600
35	GAAAGGGAGG	TOTTOTODAA	BOOCATTTOO	TOGGAAGAGC	TGCT3CAGTG	AGGCTGTTGG	650
	TTAGJGGACT	GAAATGGAGA	GAAAAAGATGA	TCTGAAGGTA	CCTGTGGGAC	TGTCCTAGTT	720
40	CATTGCTGCA	GTGCT-CCCAT	CCCCCACCAG	GTOUCAGCAC	AGCCCCACTG	TGTCTTCCGC	730
40	AGTCTGTCCT	· GOGCTTGGGT	GAGCCCAGCT	TGACCTCCCC	TTGGTTCCCA	. GGGTCCTGCT	840
	CCGAAGCACI	CATCTCTGCC	TGAGATCCAI	TOTTOOTITA	MITCCCCCAM	CCTCCTCT	900
45	TGGATATOKA	n inggrunder	TCATTTCACA	ATCAGCCCAA	. GGYTGGGAAA	COTGGAATGG	960
	GATGGGAACG	COTCOGGGGT	CUATOTEAAC	TTCACGGGT	: ATGCTGATGC	CTCTCGAGAC	1000
50	ATACAAATCO	TICCCTTIG	CAGCTTGCA	A AGGAGGAGAC	TTTAGGATTA	GGGCCAGGGC	1080
50	CAGAAAGTCC	GTATCTTGGI	TGTGCTCTG	GGTGGGGGT(GGGTGTTTCT	GATGTTATTC	1140
	CAGCCTCCTC	G CTACATTATA	TOUAGAAGTA	A ATTGCGGACC	GTCCTTCACK	TGCCTCAGCA	1200

mear for \$40 comportants of aim specal of orgental activanancia a realizable — 100

60

 $\{ \hat{A}_{n} = 0 \} = \{ \hat{A}_{n} = 0 \} = \{ \hat{A}_{n} \in A_{n} \}$

	ATAAAAAAA AAAAAAAAA CT	1403
5	(2) INFOFMATION FOR SEQ ID NO: 23:	
10	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1047 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
	GGCACAGGGG ACTACAGGACA CCCACGACCA TACCCAGCTA ATTTTTGTAT TTTTTTGTAG	60
	AGATGGGGTT TUACGATSTU GOUCAGGUNG GTONTGAACT COTGGGCTTG AGCGATOTTO	120
20	CCATCTTCC ATCTTGROT CCTAAAGTGC TGGGACTGUA GGCATGAGC ACCATGCCA	180
	GCCAAGATTC TTATPBATTA BEATGTTFT TCAAGAAGOO AAGCCAGTTT CCAATATTCC	240
25	CCATTTGCT3 GAGTCTTD33T ACTTT3G3TA GAAGCAACT3 GTAAATTGTT AATTGGAACA	300
	ATOATTAACA OTOGGATOTA ENABATCOAA ACOGGTATOO ACOAATACAT ETOGTGOTTTAA	360
	TCCTGACTT3 ATAACAAGT3 TTCTGATATT AACCTGAAAA TGGGAAATAAT GGCAAATCTG	420
30	TGTAACTTAA CATCTATATA CACAGTGGGG AGAACTGAAG TTATTAAACC TGGAATCTCT	480
	GTGATCAAGG CTAACAGTAG TTATCTAAGA AGCAAAGGAC CTACAATTCT TAGACTTGGA	540
35	GTCATATTOT TTANGRACST GTTCTGAAAC TATATCAAGC ATCTGGTTTC CACGTATTTC	600
33	TCCCTCAGAA ATTATGAAGT ACAAGTAAAA ATGAAGGTAC AGGGTAAGAC ACATGCTGCT	650
	TTCTTGCTCT TGAGT:GAGA CAGTTTTCCA GCCATCTTAA CCCCTTWACA CAAAACAATT	720
40	TGTGTTTTAT AGCAAATAAG TGACTCAACA TAATTTCAAT ATGATGTTTA TCCACCAGTA	790
	CTTTCCTTTC AGCTTCTAST CCCATAARTG GTTTGTGAAG TCATCGGTTA CATTAGCCAA	840
	GATAGGEETA GAETYSAAST ETAGAATGIT TYTEECACTA TATGECAAAG TAGAATGTGG	900
45	GTATCTCAGG GTCATTTTTG TTGTTCAATT TCCCACCTGT ACAGTTGTTA TGATTCACTT	960
	TCCTTATGTG TCTAATAAAT CTTGTTCCAT GAAATGATCA AAAAAAAAA AAAAAAAACT	1020
50	CGAGGGGGG CCCGGTACCC AAATCGC	1047
55	(2) INFORMATION FOR SEQ ID NO: 24:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 990 base pairs	
60	(B) TYPE: nucleic acid	
$\circ \circ$	(C) STRANDEDNESS: double	

 $(-+ \frac{\lambda_{k}}{2})^{2} = e^{-\frac{\lambda_{k}}{2}} + e^{-\frac{\lambda$

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
5	TTGGAAAGGG TCTAGCTCTT TCTCATTCAC CAACTATATT AGAAGCACTT GAGGGAAATT	60
	TACCACTCCA AATCCAAAGC AATGAACAGT CTTTTCTGGA TGATFTTATT GCCTGTGTCC	120
10	CAGGATCAAG TOGTEGAAGG CTTCCAAGGT GGCTTCAGCC AGATTCATAT GCGGATCCTC	180
10	AGAAAACAYO TITGATOOYS GAATAAGSAT GATATTOGTT GTGGTTGGCC TACCACCATA	240
	ACTSTYCAAA CAAAASACCA GTATGGGGAT GTGGTACATG TTCCCAATAT GAAGGTAATT	300
15	ATAACTEGAT TAAATTAELA GACATCTATA TACTGECTGC AATGACTEAT AAAATTTTAG	360
	AAATGCCAAG TGCTGAGRGT OCATTTGTTC TACCCTCTTT ATATAAACKG TGATGCTGAA	4 20
20	AGTTTGTTTA AATGACTTGT TTATATTAAT TAGTCCCCAA GTGTCCAAGT TACACCTGTT	480
20	TTTTTTGTGA GTTTGTTCTT TACATTTTGC TACCTGTTAC GCGGGACTCAA AGGAGGGATA	540
	AGAAAGTATO CATOTAAAGA GIBOTAGACA CATACAGTGA AGCCOOTCAA TATGTATTGA	600
25	TTGAATAAAT GCATGAAABA ATACATTTTT AAATTTTGTG TATAGTTTTG AAAGACTCAA	660
	GTACGTTCTG TGTTTGGTAT TACTGAAACC ACATTTTAAA AATAACACTC ATTAAGTTAG	720
30	AAATATATGA GTTTAGATTG TAAAAGAATG AGGAATTGAA ATAGTTGTAT ACCATATTGA	780
50	TGAATATAGA GTTTTTAGGA TACCTCTTAC CTGAAATATT AATAATAATG TTTNCAGAGC	840
	ATATTATACA TAATTATTIG TGATTTAATC TGTTAATATG AATATCTCAT TTAAAACTTT	900
35	TATTTCTGAA AAAATTATAT TGAATAAAAF TTTATATAGG CAGTCCCCAG CCCTTTCCTC	950
	CTTCAAAGTT GTCTTATAGA GTGATTGGTT	990
40		
,,	(2) INFORMATION FOR SEQ ID NO: 25:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LEMSTH: 1208 base pairs	
	(8) TYPE: nucleic acid (3) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25.	
	TAATCGCTAC TATAGGGAAA GCTGGTCGCT GCAGGTACCG GTCCGGAATT CCGGGTCGAC	60
	and mandanan ist and the publication of the second second second second in the second	100
60	CONTRATAÇA DE STANCORS (CECAGAGGAA OTOURSTEGE) (CONTRATADA AGATEAACO	300

	CTCCTCGGCC	CCTGAGCTCC	AGGCCGTGCG	CATGTTTGCT	GACTACCTCG	CCCACGAGAG	360
_	TCGGAGGGAC	AGCATCGTGG	CCGAGCTGGA	CCGAGAGATG	AGCAGGAGCK	TGGACGTGAC	420
5	CAACACCACC	TTCCTGCTCA	TGGCCCCTC	CATCTATCTC	CADGA DCAGA	ACCCGGATGC	480
	CGCCCTGCGT	GOGOTGCACO	AGGGGGACAG	CCTGGAGTGU	ACAGCCAT GA	CASTRICAGAT	540
10	CCTGCTGAAG	CTBGACCGCC	TGGACCTCGC	CCGGAAGGAG	CTGAAGAGAA	TGCAGGACCT	600
	GGACGAGGAT	GCCACCCTCA	CCCAGCTCGC	CACTGCCTG3	GTCAGCCTGG	CCACGGGTGG	660
. ~	T'GA'GAAGCTG	CAGGATGCCT	ACTACATOTT	CCAGGAGATG	GCTGACAAGT	GCTCGCCCAC	720
15	COTGOTGOTG	CTCAATGGGC	AGGCGCCTG	CCACATGGCC	CARGRECGCT	GGGAGGCCCC	730
	TGAGGGCCTG	CTGCAGGAGG	COSTAGASAA	-DEATAGTGGE	TACCCRGAGA	CGCTGGTCAA	840
20	CCTCATCGTC	CTGTCCCAGC	ACCTKGGCAA	-3:00000TGA/G	GTGACAAACC	GATACCTGTC	900
	CCAGCTGAAG	GATGCCCACA	GGTCCCATCC	CTTCATCAA3	GASTACCAGS	CCAAGGAGAA	960
2.5	CGACTTTGAC	AGGCTGGTGC	TACAGTACGC	TCCCAGCGCT	GAGGCTGGCC	CAGAGCTGTC	1020
25	AGGACCATGA	. AGTCAGGACA	GAGGCCAGGA	GCCAGCCCTG	CAGCCCTCCC	CACCCGGCAT	1030
	CCACCTGCAT	CCCTCTGGGG	CACGAGCCCA	CCCCCAGCAC	CCCCATCTGT	TAATAAATAT	1140
30	CTCAACTCCA	ROGTGTTCCA	CCTGAAAAAA	AAAAAAAA .	AAAAAAAA	AAAAAAAA	1200
	AAAAAAA						1208
35							
رر							

(2) ILFOFMATION FOR SEQ ID NO: 26:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1922 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

	GTGCTGCGCT	ACTGAGCAGC	GCATGGAGG	ACTITGAAGC	ACTGGGCTTC	GAACACATGG	60
50	GCCTCGATCC	CCGGCTCCTT	CAGGCTGTCA	CCGATCTGGG	CTGGTCGCGA	CCTACGCTGA	120
50	TCCAGGAGAA	GGCCATCCCA	CTGGCCCTAG	AAGGGAAGGA	CCTCCTGGCT	OGOGOCOGCA	180
	CGGGCTCCGG	GAAGACGGCC	GCTTATGCTA	TTCCGATGCT	GCAGCTGTTG	CTCCATAGGA	240
55	AGGCGACAGG	TCCGGTGGTA	GAACAGGCAG	TGAGAGGCCT	TGTTCTTGTT	CCTACCAAGG	300
	AGCTGGCACG	GCAAGCACAG	TCCATGATTC	AGCAGCTGGC	TACCTACTGT	GCTCGGGATG	360
60	TCCGAGTGGC	CAATGTCTCA	GCTGCTGAAG	ACTCAGTCTC	TCAGAGAGCT	GTGCTGATGG	420
00							

	AGAAGCCAGA	TGTGGTAGTA	GGGACCCCAT	CTCGCATATT	AAGCCACTTG	CAGCAAGACA	486
	GCTGAAACT	TOGTGACTOD	CTGGAGCTTT	TGGTGGTGGA	CGAAGCTGAC	CTTCTTTTTT	540
5	COTTIGGCTT	TGAAGAAGAG	CTCAAGAGTC	TOOTOTGTCA	CTTGCCCCG3	ATTTACCAGG	600
	CTTTTCTCAT	GTCAGCTACT	TTTAACGAG3	ACCTACAAGC	ACTCAAGGAG	CTGATATTAC	660
1.0	ATAACC DGGT	TACCETTAAG	TTACAGGAGT	CCCAGCTGCC	TOGGUCAGAO	CAGTTACAGC	720
10	AGTTTCAGGT	GGTCTGTGAG	ACTGAGGAAG	ACAAATTCCT	CCTGCTGTAI	GCCCTGCTCA	780
	AGCTGTCATT	GATTOGGGGC	AAGTCTCTGC	TOTTIGTONA	CACTITAGAA	CGGAGTTACC	840
15	GGCTAC GCCT	GTTC PTGGAA	CAGTTCAGCA	TOCCCACCTG	TGTGCTCAAT	GGAGAGCTIC	9(10)
	CAUTGUBUTO	CAGGTGCCAC	ATCATCTCAC	AGTTCAACCA	AGGOTTOTAC	GACTGTGTCA	960
20	TAGCAACTGA	TGCTGAAGTC	CTGGGGGGCC	CAGTCAAGGG	CAAGEGICGG	GGTCGAGGG3	100
2()	CNAAAGBBGA	CAAGGCCTCT	GATCCGGAAG	CACGTGTSAC	COGGGGGATA	GACTTCCACC	1080
	ATGTGT CTGC	TGTGCTCAAG	TTTGATCTTC	CCCCAACCCC	TGAGGCCTAC	ATCCATCGAG	1140
25	CTGGCAGGAC	AGCACGCGCT	AACAACCCAG	GCATAGTCTT	AACCTTTGTG	CTTCCCACGG	1200
	AGCACTTCCA	CTTAGGCAAG	ATTGAGGAGG	TTTTAGIGG	AGAGAACACG	GGCCCCATTC	1251
30	TGCTCCCCTA	CCAGTTCCGG	ATGGAGGAGA	TOGAGGGCTT	CCGCTATCGC	TGCAGGGATG	1320
	CCATGCGCTC	AGTGACTAAG	CAGGCCATTC	GGGAGGCAAG	ATTGAAGGAG	ATCAAGGAAG	1330
	AGCTTCTGCA	TTCTGAGAAG	CTTAAGACAT	ACTTTGAAGA	CAACCCTAGG	GACCTCCAGC	1440
35	TGCTGCGGCA	TUACCTACCT	TTGCACCCC	CASTESTGAA	GCCCCACCTG	GGCCATGTTC	1500
	CTGACTACCT	GETTEETEET	GCTCTCCGTG	GOOTGGTECG	COCTCACAAG	AAGCGDAAGA	1560
40	AGCTGTCTTC	CICTTGTAGG	AAGGCCAAGA	GAGCAAAGTC	CCAGAACCCA	CT SCGCAGCT	1620
	TCAAGCACAA	AGGAAAGAAA	TTCAGACCCA	. CAGCCAAGCC	CTCCTGAGGT	TOTTGGGCCT	168)
	CTCT3GAGCT	GAGCACATTG	TCGAGCACAG	CCCATADACCC	TTOOTGGACA	OTO69400000	1740
45	TGGTGCTTAC	TOCACACOCCT	GAACAGACAC	: TI CIGGGGCC	CTOK TO KODO	GOCCCTTAG	1800
	CTCCTTGGCA	. CTTP://AAAPPT	GGCATCTIGG	CCTTTGACAA	CAGAATAAA	ATTTMBCTG	1860
50	CCCCAAAAAA	AAAAAAAAA	. АААААААСТО	CCCCCAD	CCGTACICAA	TTCGCCCTAT	1920
20	AA						1903

. (A) LEPSTE: 1251 raise pairs (A) TYPE: nucleic acid (C) STRANDEDMESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

(D) TOPOLOGY: linear

-	(XI) SEQUENCE DESCRIPTION, SEQ ID NO. 3.1	
5	TOSTCOCIA: AGORGRATIGA GCCOMACOMO SAGGGTORMO GRARAGECTO GRARAGECCTO	60
	CGCCACCTCC ACGCCCCCCC CTGAGCTCGG ACACCAGCGC CCTGTCCTAT GACTCTCTCA	120
10	AGTACACGCT GGTCGTAGAT GAGCATGCAC AGCTGGACKCT GGTGAGCCTG CGCCGTGCTT	130
	OBTAGACTAC ACTGACGAGA GTGACTCTOT CACCGTCTAT GACAACTGTG CCTGCGTCTC	240
15	CTCGCCCTAT GAGTCGGCA TCGGA WAGGA ATATGAGGAG GCCCCGCGC CCCAGCCCC	3-) ()
13	TRICTGCCTC TOCHARGAAC TOCACROTTS ATGAACCORA ORTCHATTTC TOCAAGAAAT	360
	TOOTGAACGT YTTOATSAGT GGCCBOTCOO GCTCOTCOAG TOOTGAGTCO TTOGGGBOTGT	420
20	TETTOTTGCAT CATCAAEGGG GAGGAGCAGG AGCAGACECA CEGGGGCCATA TIEAGGITTG	480
	TOTOTOGACA OGANGANGAA CITGARTOG ANGTREGATGA CONTOTROTA GIRNAROTO	54)
25	AGGCTGAAGA CTAGTGJTAG GAGGCGTAGA AGATGCGGAG TGGTGGUCGG GGTGTGTTTC	600
23	CTOCCTATTA COCUATUGAS GTCACCAACG AGCCCGAGCA CATGGCAGCC CIGCCTAAAA	660
	ACAGTGACTG GGTGGA:CAG TYCCGGGTGA ASTTCCTGGG CTCAGISCAG CTTCCCTATC	720
30	ACAAGGGCAA TGAGGTICTC TGTGITGCTG TGCGAAAAGAT TGGCAGGACIACC CGCCGGGCCCA	780
	CCCTGCACTT TAAACCCCCC TCCAGCTGTG TCCTGGAGAT (AGCGTGCGG GGTGTGAAGA	840
35	TAGGCGTCAA GGCCGATGAC TCCCACGACG CCAAGGGGAA TAAATGTAGC CACTTTTTCC	900
55	AGITAAAAAA CATCICITTO TGCGGATATC ATCCAAAGAA CAACAAGTAC TTIKKITCA	960
	TOAGOAGON GOUNGOORD CARDODADO STITISTODADO CARDONICION ASSANDANTICA	1020
40	CCAAAGCCCT GGTAGAGTCC GTGGGGAGAG CATTCCAGGA GTFTTACAAG CACTTTGTGG	1080
	AGTACACCTG COCCACAGAA GATATCTACC TGGAGTAGCT GTGCAGCCCC GCCCTCTGCG	1140
45	TECCCCAGEC CTEAGROOMS TGCCAGGACA GCTGGCTGCT GACAGGATGT GGCACTGCTT	1200
	GERGATICA DO TORROSE ESTERADAAS DAEGAGAGADO DO ADRENEMA DA GREGAGIGA DE GERGAGIGA DE GERGAGIA DE GERGAGIGA DE GERCAGIGA DE	12€0
	GAGGGTEGGG CAATGOEGAG AGGCAAATEC AGTTTATTGT AATATATGES ATTACATTCA	1320
50	TOTATBEAGG GCAGAGTBGG CTGCCTGRGG ATTGGGAGGG ACAGGCCTTG BEGAGCAGGT	1380
	OTOTOGCAGA GAAGGATSTO COTTUCAGGA GCAGAGGGOO CTGCCCCATO OTGGGOOTTA	1440
. 55	COTCCCTGC CAGGGCTCGG GOGCTGTGGCCTTG ATGAAGCCCG TGTCCTGCCT	1500
	TGATGAAGCC TGTGCCACCT GCAAGTGCCC GCCCTGCCCC TGCCCCAACC CCCACCGAAG	1560
	AGCCCTGAGC TCAGGCTGAG CCCAGCCACC TCCCAAGGAC TTTCCAGTGA GGAAATGGCA	1620
60	ACACGTGGAG GTGAAGTCCC TGTTCTCAGC TCCGTCATCT GCGGGGCTTC TGGGTGGCTC	1680

	CTRCCACTEA CCTCACCEGO ATECTEGETOT GTGGCAGROC TAGRACCTCA GGCGGRARGG	1740
5	AGGAGCTGCC GCAAGGCCCT GTCCCAGCAG AAGAGGGAGG CTTCCTGACT GACACAGGCC	1804
J	AGRECCATET TRETTOUTSTE ACCETTGREEC CAACTATTAA AGTOCCATTT CCTGTCAAAA	1860
	AAAAAAAAA AAAATOGGGG GGGGCCCGGA ANCCAATTTC CCCCAAAAAAG CCGGGCTTATA	1926
10	AAAATTOOON GOONGTETTT TIAAAAAITO G	1951
15	(2) INFORMATION FOR SEQ ID NO: 28:	
	(i) SEQUENCE CHARACTERISTICS:	
	(2) LENGTH: 3989 base pairs	
20	(E) TYPE: nucleic acid (C) STRANIFINESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
25	GGCACA9300 GCA933NACO TATA9GGCGCA TATA3GTTGT AATGAAACTG TAGTCTCAGT	60
	TGGAAGGCTA GACATGAAAT GGGTCAGTGA GCAAGGCTCT ATTCCTAGTC TCCAGCCATG	120
30	CCTGTGGANI CTGARCCCRC TCTCAGCACA TTGGACCCAG GCAGATGYAA AAAATDCACA	180
	GAACTAPSAT TRESACTIAA GEETTTETAG ATTTCCTCCT TCATTCTAAT TECAGTSTCT	240
	AAAATTOTTIG CAIPCORTSAA CGAGOTGGGG ATTIGARGAG ACAGGGCYGA ATACTGCAGT	300
35	TTTCCTCCTA GAAATCATCT 0999CAPTTT CTTTGAACTS ARGGGAACAA TAAGGCATAA	361
	CTSTTTBEAU AAACTTGBBA TAARTGATTT TGGGATAACG ATCTACCAGA ATGGGGGATAT	42)
40	TTCAUCCTTG STTCTGAGAT GCAAACCAAA GAATATCATS ACCAGCTTTC AGGCCTCCTG	480
	AASTATATOT OTDACATTGT CUTSTTCTCA TGCTGAGGAG CCTGAGATCC CTGTGTGGGG	54.
	ATTABADAGT GGACTOTTAT BEGTOTTAGGT GAATTGGCTT ATTTTGTCTG TKCCCTSTCTG	60
45	AATGTATTUT AGJAAYTAAA AAGGAUCAAG AAGAGAAGA AGACTAAGRI CUACTATKO	66
	CCARRIENAS CARRIGARITE STRUMENTAS TAGARCOTES ASTUTERCAS GASTINATES	72
50	ATAGATETTA TTOAACTOOT TOOAGTTETO TTOAACAGOO TGACTCCTEC CAGCOCTATG	73:
	GAAGTICCTT TIATGCATTG GAGGAAAAAC AFSTTOGCTT TECTOTTGAC GTGGGASAAA	84
	TTGAAAAGAA GGGGAAGGGG AAGAAAAJAA GGGGAAGAAG ATCAAAGAAG GAAAGAAGAA.	900

CONTRACTOR OF CONTRACTOR CONTRACTOR CONTRACTOR ASSESSMENT OF CONTRACTOR CONTR

	OGAGCAACAG CATGTTGGCT TGGCTGTTGA CATGGATGAA ATTGAAAAGT ACCAAGAAGT	1140
	GGAAGAAGAC CAAGAUUCAT CATGCCCCAG GCTCAGCAGG GAGCTGCTGG ATGAGAAAGA	1200
5	GECTGAAGTC TTGEAGGACT CACTGGATAG ATGTTATTCG ACTECTTCAG GTTATCTTGA	1260
	AUTGOOTGAG TTA KGOOAGO COTACAGCAG TGCKGTTTAO TCATTGGAGG AMCAKTACOT	1320
10	TEGCTTKKCT CTTEACGTGG ASAAATTGAA AAGAAGEGGA AGGEGAAFAA AAGAAGGEGA	1330
	AGAAGATCAA AGAAGGAAAG AAGAAGGGGA AGAAAAGAAG GGGAAGAA	1447
	CUATGCCCCA GGCTTAGCAG GGAGCTGTTG GATGAGAAAG GGTCTGAAGT CTTGCAGGAT	15:00
15	TCACTGGATA GATGTTATTC AACTCCTTCA GGTTGTCTTG AACTGACTGA CTCATGCCAG	1560
	COCTACAGAA GTOCCTTTTA YRTATTGGAG CAACAGYGTG TTGGCTTXGC TGTYGACATG	1520
20	CATGAAATTG AAAASTACCA AGAAGTESAA GAAGACCAAG ACCCATCAIG CCCCAGGCTT	1580
	AGRAGOGAGO TOCTOGATOA GAAAGARROT GAARTOTTGO AGRACTONOT GGATARATGT	1740
	TATTOGACTO CTTCAGGTIA TOTTGAACTG COTGACTTAG GOCAGCOCTA CAGONGTGCT	1300
25	CTTTACTCAT TOGACGAACA STACCTTSGC TTGGCTCTIG ACSTGGACAG AATTAAAAAS	1350
	GACCAAGAAG ACKAAGAAGA UCAAGGOTCA CCATGCCCCA GGCTCAGCAG GGAGCTGCTS	1920
30	GAGGTAGTAG AKKCTGAAGT CTTGCAGGAC TJACTCGATA GATGTTATTC AACTCCTTCC	1980
	AGTTGTCTTG AACAGCCTGA CTCCTGCCAG CCCTATGGAA GTTCCTTTTA TGCATTGGAG	2040
	GAAAAACATG TYVKKITYTTO TOTTGAIGTG GBAGAAATTG AAAAGAACKG GAAGREGAAG	2100
35	AAAAGAAGGG GAAGAAGATC AAMBAAGRAA AGAAGAAGGG GAAGAAAAGA AGGGGAAGAA	2160
	SATCAAAACC CACCATGCCC CAGGCTCAAC GGCGTGCTGA TCGAAGTVJA AGADCSTGAA	2220
40	GTCTFACAGG ACTUACTGGA TAGATGTTAT TCGACTCCGT CAATGTACTT TGAACTACCT	2280
	GACTCATTCC AGDACTACAG AAGTGTGTTT TACTCATTTG AGGAACAGCA CATCAGCTTC	2340
45 50	GCCCTTTACS TEGACAATAG GTTTTTTACT TTGACGGTGA CAAGTCTCCA CCTCGTGTTC	2400
	CAGATGOGAS TOATATTOOC ACAATAAGOA GCCCTTASTA AKOOGAGAGA TSTCATTOOT	2460
	GCAGGCAGGA CCLATAGGCA MGTGAAGATT TGAATGAAAG TACAGTTCCA TTTGGAAGCC	2520
	CAGACATAGG ATMOGTCAGT GGGCATMGCT CTATTCCTAT TCTCAAAACCA TGCCAGTBGC	2580
	AACCTGTGCT CAGTCTGAAG ACAATGGACC CACGTTAGGT GTGACACGTT CAGATAACTG	2640
	TGCAGCACAT GCCGGGAGTG ATCAGTCRGA CATTTTAATT TGAACCAGGT ATCTCTGGGT	2700
55	AGCTACAAAA TYGGTCAGGG ATTYCATTYT GCAGGCATGT CYCTGAGGYT CYATACCTGC	2760
	TEAAGGTCAK TGTCATCTYT GTGTTTAGCT CATCEAAAGG TGTTACCCTG GTTTCAATGA	2824
60	ACCTAACCTC ATTCTTGTG TCTTCAGTGT TGGCTTGTTT TAGCTGATCC ATCTGTAACA	2880
0.0		

	CAGGAGGGAT CCTTGGCTGA GGATTGTATT TCAGAACCAC CAACTGCTCT TGACAATTGT	2940
	TAACCCGCTA GRCTDCTTTG GTTAGAGAAG CCACAGTCCT TCAGCCTCCA ATTGGTGTCA	3000
5	GTACTTAGGA AGACCACAGO TAGATGGACA AACAGCATTG GGAGGCCTTA GCCCTGCTCC	3060
	TOTORATTOO ATCOMSTAGA GAACAGGAGT CAGGAGCCGC TGGCAGGAGA CAGGATGTGA	3120
10	CCCAGGACTC TECCGETGCA GAATATGAAC AAYGCCATGT TCTTGCAGAA AACGCTTAGC	3180
10	CTGASTTTCA TAGGASSTAA TCACCAGACA ACTGEAGAAT STRGARCACT GAGCAGGACA	3240
	GOTGACCTGT CTCCTTCACA TAGTCCATRT CACCACAAAT CACACAACAA AAACXAGARG	3300
15	AGATATTTTG GGTTCAAAAA AAGTAAAAAG ATAATCTAGC TOCATTTCTT TAGTTATTTT	3360
	GARCCCCAAA TATTTCCTCA TCTTTTTGTT GTTGTCATKG ATGGTGGTUA CATUGACTTG	3420
	TYTATAGAGG ACAGSTCAGC TGTCTGGCTC AGTGATCTAC ATTCTGAAGT TGTCTGAAAA	3480
20	TGTCTTCATG ATTAAATTCA GCCTAAACGT TTTGCCGGGA ACACTGCAGA GACAATCCTG	3540
	TGAGTTTCCA ACCTYAGCCC ATCTGCGGGC AGAGAAGGTC TAGTTTGTCC ATCASCATTA	3600
25	TCATGATATC AGGACTGGTT ACTTGGTTAA GGAGGGTCT AGGAGATCTG TCCCTTTTAG	3650
	AGACACCITA CITATAATSA ASTATTTSGG ASGSTGGITT TCAAAATTAG AAATGTCCTG	3720
20	TATTCCRATG ATCATCCTGT AAACATTTTA TCATTTATTA ATCATCCCTG CCTGTGTCTA	3730
30	TTATTATATT CATATCTCTA CGCTGGAAAC TTTCTGCCTC AATGTTTACT GTGCCTTTGT	384)
	TTTTGCTAGT GTGTGTTGTT GAAAAAAAAA ACATTCTCTG CCTGAGTTTT AATTTTTCTC	3900
35	CAMAGTTATT TTAMTOTATA CAATTAAAAG CTTTTGCCTA TCAAAAAAAAA AAAAAAAAA	3960
	AAAAAAAAAA AAAAAGCGGA CCCGTGGGC	3989
40		
40		
	(2) INFORMATION FOR SEQ ID NO: 29:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3735 base pairs	
-) _)	(A) LENGIH: 3735 base parts (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TGPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
	CTRCTGTTUG CTGRCTGRGC TCCRCAGCAG GCTTGGCCAG CRCCTGACGG GTCRGCGRGC	60
	ya membenyin seje abasasa sa sasi yantuka a Samundajin aliji. Galija ilijasa ali sacatato AAA	• ? ^

 $\{(X_{i+1}, \ldots, X_{i+1}) \in \mathcal{M}_{i+1}, \ldots, (M_{i+1}, \ldots, M_{i+1}, \ldots, M_{i+1})\}$

	ATTTTTACTG GCAAAGAAAT CCGGGGAGAA TGTGGCCAAG TITATTATTA ATTCATACCC	351.
-	CAAATATMT CAGAAGGACA TAGCTGAACC TCATATACCG TGTTTAATGC CTGAGTACTT	420
5	TGAACCTCAG ATCAAAGACA TAAGTGAAGC CGCCCTGAAG GAACGAATTG AGCTGAGAAA	480
	AGTCAAAGCO TOTGTB3ACA TGTTTSATCA GOTTTTGCAA GCAGGAACCA CTGTGTCTCT	540
10	TGAAACAACA AATAGTITIT TOGATTTWIT GTGTTACTAT GGTGACCAGG AGCCCTCAAC	60
	TEATTACCAT TTTUAACAAA CTEGACAGTC ABAAGCATTE GAAGAGGAAA ATGATEAGAC	660
15	ATCTAGGAGG AAAGCTGGTC ATCAGTTTGG ASTTACATGG CGAGCAAAAA ACAACGCTGA	720
13	GAGAATCTTT TOTUTAATGC CAGAGAAAAA TGAACATTOO TATTGCACAA TGATOOGAGG	780
	AATGGTGAAG CACUGAGCTT ATGAGCAGGC ATTAAACTTG TACACTGAGT TACTAAACAA	340
20	CAGACTCCAT GCTGATGTAT ACACATTTAA TGCATTGATT GAAGCAACAG TATGTGCGAT	9.).1
	AAATGAGAAA TTTBAGBAAA AATGGAGTAA AATACTGGAG CTGCTAAGAC ACATGGTTGC	960
25	ACAGAAGGTG AAA:CCAAATC TTCAGACTTT TAATACCATT CTGAAATGTC TCCGAAGATT	1020
۷.	TCATGTGTTT CCAAGATCGC CAGCCTTACA CGTTTTACGT GAAATGAAAG CCATTGGAAT	1080
	AGAACCCTCG CTT3CAACAT ATCACCATAT TATTCGCCTG TTTGATCAAC CTGGAGACCC	1140
30	TTTAAAGAGA TCATCCTTCA TCATTTATGA TATAATGAAT GAATTAATGG GAAAGAGATT	1200
	TTCTCCAAAG GACICGGATG ATGATAAGTT TTTTCAGTCA GCCATGAGCA TATGCTCATC	1260
35	TCTCAGAGAT CTAGAACTTG CCTACCAAGT ACATGGCCTT TTAAAAACCG GAGACAACTG	1320
55	GAAATTCATT GGACCTGATC AACATCGTAA TTTCTATTAT TCCAAGTTCT TCGATTTGAT	1380
	TTGTCTAATG GAACAAATTG ATGTTACCTT GAAGTGGTAT GAGGACCTGA TACCTTCAGC	1440
40	CTACTTTCCC CACTCCCAAA CAATGATACA TCTTCTCCAA GCATTGGATG TGGCCAATCG	1500
	GCTAGAAGTG ATTCCTAAAA TTTGGAAAGA TAGTAAAGAA TATGGTCATA CTTTCCGCAG	1560
45	TGACCTGAGA GAAGAGATCC TGATGCTCAT GGCAAGGGAC AAGCACCCAC CAGAGCTTCA	1620
73	GGTGGCATTT GCTGACTGTG CTGCTGATAT CAAATCTGCG TATGAAAGCC AACCCATCAG	1€80
	ACAGACTGCT CAGGATTGGC CAGCCACCTC TCTCAACTGT ATAGCTATCC TCTTTTTAAG	1740
50	GGCTGGGAGA ACTCAGGAAG CCTGGAAAAT GTTGGGGCTT TTCAGGAAGC ATAATAAGAT	1800
	TCCTAGAAST GAGTPSCTGA ATGAGCTTAT GGACAGTGCA AAAGTGTCTA ACAGCCCTTC	1860
55	CCAGGCCATT GAAGTAGTAG AGCTGGCAAG TGCCTTCAGC TTACCTATTT GTGAGGGCCT	1920
55	CACCCAGAGA GTAATGAGTG ATTTTGCAAT CAACCAGGAA CAAAAGGAAG CCCTAAGTAA	1980
	TCTAACTGCA TTGACCAGTG ACAGTGATAC TGACAGCAGC AGTGACAGCG ACAGTGACAC	2040
60	CAGTGAAGGC AAATGAAAGT GGAGATTCAG GAGCAGCAAT GGTCTCACGA TAGCTGCTGG	2100

	AATCACACCT GAGAACTGAG ATATACCAAT ATTTAACATT GTTACAAACA AGAAAAGATA	2160
_	CAGATTTGGT GAATTTGTTA CTGTGAGGTA CAGTCAGTAC ACAGCTGACT TATGTAGATT	2220
5	TAAGCTGCTA ATATGCTACT TAACCATCTA TTAATGCACC ATTAAAGGCT TAGCATTTAA	2280
	GTAGCAACAT TGCGGTTITC AGACACATGG TGAGGTCCAT GGCTCTTUTC ATCAGGATAA	2340
10	GCCTGCACAC CTAGAGTGTC GGTGAGCTGA CGTCAGGAIG CTGTCCTCGT GGGATTGCCC	2400
	TOTOCTGCTG CTSGACITCT GCCTTTGTTG GCCTSATGTG CTGCTGTSAT GCTGGTCLTT	2469
15	CATCTTAGGT GTTCATGCAG TTCTAACACA GTTGGGGTTG GGTCAATAGT TTCCCCAATTT	252)
13	CAGGATATTT CGATGTCAGA AATAADGCAT CTTAGGAATG ACTAAACAAG ATAATGGCAG	258-)
	TITAGGCTGC ACAACTGGTA AAATGACTGT AGATAAATGT TGTAAATTAGT GTACACGTTT	2640
20	GTATTTTTTT TAATATAGCC CCTCCCNTAG TTTTCTAACT TGAACAGCCA TGAATGTTTC	2700
	ATGTCTCCCT TTTTTTTTTG TCTATAGCTG TTACCTATTT TAGTCGTTGA AATGAGAGCT	2760
25	AGTGATGACA GAAGGATGTG GAATGTCTTC TTGACATCAT TSTGTATTGC TGGTAATCAA	2820
23	GTTGGTAACG ACTACTTCTA GCAGCTCTTA CCACTATGAC TTAAGTGGTC CTGGAACGCA	2380
	GTAAGTGGAG GYTTGCAGCA TTCCTGCCTT CATGAGGGCT TCTACCACTG ACCACTITEC	2940
30	ACCTACCTGG CTCCCAGATT TACTTAGGTA CCCCACGAGT CGTCCACATA AGCAGCTTCA	3000
	TOTTTACCTT GOCAGAGTTG ACAATTATGG GATACTCTAG TOTACTTATA CTTGTCTTCC	3060
35	CATCTGTCTG CCATCCTCTG AAGGCCAGGGA CCCAGTCATA CATCCTTAGA AACCAAAGTA	3120
55	TOGTTTTTGT TTTCTCTTGG AATGTJAGGT CTTAAGGJAT TTAATTGAGG GACAAAAAAA	318)
	AAAAAAAGCC GATATAGTAG CTAGCTACTT AAGCATCCAT GGGTATTGCT CCATATCAAA	324)
40	GCASATTIGC AGGACAGAAA GAGTAAATTA GCCTTCAGTC TIGGITTACA GCTTCCAAGG	3300
	AGAGCCTTOG CCACCTGAAA TGTTAACTCG GTCCCTTCCT GTCTCTAGTT CATCAGCAC	3340
45	THEAGATGCC TEACTCTFOT TAGGOTTACT ATTEAATACA GTCCTTAGAT FCACGFTATG	340
, ,	CUTOTTOCTA TOCAGGUADO TATIUTGAAT CAUDAFOTTO CECTGUAGOT AGAGERGATA	3430
	GGAGAAAATC CATTTGGGTA GATGGCCTAT GAATTTGTAG TAGACTTTCA AAATGAGTGA	3540
50	TTTGTTAGCT TOGTACTTTT AAGTTYGTUG TACAGATCCT CCAAACCCAT ACTCTGAGCA	3600
	ATTAACTGCC TTGAACATAG AGAAAATTAA GGCCTCACAG GATGAGTCTG CATTCTCTGT	3660
	and the second of the second o	3001

 $\{(X_i, Y_i)_{i \in I} \mid i \in \Delta_i\} = \{(i, X_i)_{i \in I} \mid i \in \Delta_i\}$

(i) SEQUENCE CHARACTEFICTICS:

(A) LENGTH: 1667 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) POPOLOGY linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

TAGTAATICA TITAACTECT CITACATGAG TAGCGACAAT GAGTCAGATA TEGAAGATGA

60 AGACTTAAAG TTAGACCTGC GACGACTACG AGATAAACAT CTCAAAGAGA TTCAGGACCT 120 GCAGAGTCGC CAGAAGCATG AAATTGAATC TTTGTATACC AAACTGGGCA AGGTGCCCCC 180 15 TGCTGTTATT ATTCCCCCCAG CTGCTCCCCT TTCAGGGAGA AGACGACGAC CCACTAAAAG 240 CAAAGGCAGC AAATCINGTE GAAGCAGTTC CTTGGGGAAT AAAAGCCCCC AGCTTTCAGG 300 20 TANCETGTOT GGTCA FASTE CASETTCAST CTTSCACCOE CAGCAGACEC TCCACCCTCE 3.50 TOGGMACATO COAGABTECG GOCABAATOA GOTGTTACAG COCOTTAAGO CATOTOCOTO 4.10 CAGTEACAAC CTCTATTCAG CCTTCACCAG TGATGGTGCC ATTTCAGTAC CAAGCCTTTC 430 25 TOCTCCAGGT CAAGGAACCA GCAGCACAAA CACTGTTGGG GCAACAGTGA ACAGCCAAGC 540 CGCCCAAGCT CAGCCCCTG CCATGACCTC CAGCAGGAAG GGCACATTCA CAGATGACTT 600 30 GCACAAGTTG GTAGACAATT GGGCCCGAGA TGCCATGAAT CTCTCAGGCA GGAGAGGAAG 660 CAAAGGCCAC ATGAATTATG AGGGCCCTGG AATGCCAAGG AAGTTCTCTG CACCTGGGCA 720 ACTOTECATO TOCATGACCT CGAACCTVEG TGCCTCTGCC CCCATCTCTG CAGCATCAGC 780 35 TACCTETCTA GGTCACTTCA CCAAGTCTAT GTGCCCCCCA CAGCAGTATG GCTTTCCAGC 840 TACCCCATTT GGCGCTCAAT GGAGTGGGAC GGGTGGCCCA GCACCACAGC CACTTGGCCA 900 40 GITTIAACCT GTGGGAACTG CCTCCTTGCA GAATTTCAAC ATCAGCAATT TGCAGAAATC 960 CATCAGCAAC COCCCAGGCT CCAACCTGCG GACCACTTAG ACCTAGAGAC ATTAACTGAA 1020 1080 TMGATCTGGG GGCAGGAGAT GGAATGCTGA GGGGGTGGGT GGGGGTGGGA AGTAGCCTAT 45 ATACTAACTA CTAGTGCTGC ATTTAACTGG TTATTTCTTG CCAGAGGGGA ATGTTTTTAA 1140 TACTGCATTG AGCCCTCAGA ATGGAGAGTC TCCCCCGCTC CAGTTATTGG AATGGGAGAG 1200 50 GAAGGAAAGA ACAGCTTTTT TSTCAAGGGG CAGCTTCAGA CCATGCTTTC CTGTTTATCT 1260 ATACTCAGTA ATGAGGATGA GGGCTAGGAA AGTCTTGTTC ATAAGGAAGC TGGAGAACTC 1320 AATGTAAAAT CAAAJCCATC TGTAATTTCG AGTGGGT3GA GCTCTTGCTT TTGGTACATG 1380 55 CCCTGAATCC CTCACTCCCT CAAGAATCCG AACCACAGGA CAAAAACCAC CTACTGGGCT 1440 1500 CTCTCCTACC CTGCCCTCCT CCCTTTTTTT TACCCCTCTC TTTTTTATTT TTTCTTTGCT

	CTTTAGAACC CAGTGAAAAA TACCAGGGTA CTGGGGTGCA ACTCTTTCTF ATGATAGGTC	1560
	ATTAGTGCTT TAAGCAAAAG ATATTAGCAG CTTTGACTGC AGCATTAGCA ATTAGGRAAA	1620
5	AAAAAAANWA AAAACTCGAG GGGGGGCCCG GTTACCCAAT TCGCCCT	1667
10	(2) INFORMATION FOR SEÇ ID NO: 31:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1408 base pairs

(B) TYPE nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

20	ATTACACACC	TGAGCACTGT	GCCTGGCAAG	ACCTGTCTTA	ATAGATTAGA	GAACCACTGA	60
	TAGATGGTCA	GCTTTCTGTA	GCAGTGAGAA	CCCTACATTT	CAAATGTGGA	TAGCACCTTT	120
25	GCGGGGAAAC	ATCACTTGGC	ACATOTGCAT	TCTTTTTTGA	CACAGGGTCT	CACTCTGTTG	180
23	CCCAGGCTAG	AGTGCATGGC	ACGATOTTAG	CTCACTGCAA	CCTCCACCTC	CCAAGTTCAA	240
	GCGATTCTTC	TGCCTCAGCC	TOOTGAGCAG	CTGGGATCAC	AGACATGOGC	TACCATGCCC	300
30	AGCTAATTTT	TTGTATTTT	TGTKTGTTTG	TTTTTGTTTK	TAAGTAGAGA	CGGGCTTTCA	360
	CCACGTTGGS	CAGGCAGGTC	TOGAACTOOT	GAMCTCAGGT	GATECACCCA	CATCTGCGTT	420
35	CCAATATCTT	TCTCAACATA	ATGATAGCCG	TATTAATTAAT	TTTCCAGTAC	ATTTTTATGC	480
55	CTTTACACAC	GAGAGTGGTA	GACAGACACA	AACCCAGATC	TGTCTGACTC	CAAAGCCCGT	540
	TTGTCATCAT	TCCTTTTACG	GTATCCTATA	GTGGTATCCT	TTACAGAAAG	ACAGCTTTTA	500
40	CCCAACAAAG	ACTTAACTTC	CCAGGATGCC	AGAAGGACAA	AGCGGGATTG	CTTTTAAGRA	660
	GFAAGTTATC	AAGAMCTTAT	TTTATAAATG	AGATTAGATA	GGGAAAGGCA	ATTTATCTTT	720
45	ATTAAAAACT	GAAAAGGCCA	. GCATAGGGAA	. GGAGGTOCTT	CGATCGTTT	TTTCAGGGAA	720
÷+_)	ATACTTCACT	TGCTTTTATT	AGAAACAGAT	AGTACCTAAG	GTTTTGAGGT	AGGWACAGCT	840
	TAAGGCATGC	TAATGKTCAT	GGGTCCTTCC	ATAGTCATTT	TKSTATTTG	GTTWACATTT	900
50	GAGCAATAGG	CAGCCCTTCA	CTSCTSCTSG	AYTCATTCCT	GCCAYT A TTA	CAGGTGACAG	960
	AGGAGACAGG	aggtatgtit	TITCTAITTI	TAWACATGCT	TTATATTTAA	CACAAGCTCT	1020
	a gradayacaa	· AGATAAACAG	دئىت كىئىد كالألاء	الملكات المالات	TACTOMATES	AACCCCTTTTAA	108/

60 TOT AMARAS ATGRICULATE TRATGEGEGA CONTUTAMEN ANGRICATED STAGAGANE. 1280

Note that we have a second

	AGATTCAGAC STOCTOTCAS AAATAATGCA TTCTFTTGCA AAGGTGAATA TTTTTCTCTT	1320
_	ARABANTATS TATAARSTGG TATSTYCATE TATEAGYCTE GCTAAAAAAA AARAAAAAAA	1380
5	ACTINIGAÇOS GGGGNICOGOT ACCCAATT	1408
10		
	(3) IMPORPATION FOR SEQ ID NO: 32:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2031 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
20	AGGATATOCA TGATTOTTAA CERGGCTATA TGTTAAAAAA AAATTGGAAA ATGCAATACA	60
	INTERPRETA TACAAACTAC AGAATGAGTA TGCAAGTTTT ATTTATCAAA ATGTAATGGA	120
25	TYPTTAARGG CTGRGAAATT TUCCTTATAC CTACCTTTTC AGTTATTTTA ATTATACCAA	180
	ATTATCAACT AGAATAGCTT CATCCATATG AAATATAAAA TGAAGAGACA CCTAGGCTCT	240
30	ATCAGGCTTA GGATFCTTTG AACTTATTTC CACTTTAATT TCTCAGTGGA AGTTAAGAGG	300
30	GGTGAGADAA CAAAGAAGGG GAAAAACTGA CAACTAACAA AACCAGCACC ACATCGCTAG	360
	GTGGTGCTTA CTAATTACCT TCTCAGGATT TTCCTCAGAT TGAAAAGCTT ATGAGGATTT	420
35	OTTOGGASTO TTAATAACST GOOTGTTAGT ACAGAGCTYT COTGATGATA TYTACTCYTG	480
	ACCACATOTO GTTGTAAAAC CTTAACTTTC TTTCTCCAGG AGGGTGGTGA TAGAAACAGA	540
40	TOGTAGTATT TATGAACTGA TOTTCTCGTG AAATGTTGAG OGTGGGGAGA AAAGACTTTA	600
40	AGGGAGGAGA GCCATCTATT TTGTTCCTAA AGCCACCTCT CAGCAGAATC GTCATGTTTT	660
	TOTGATGCAC CGCTOTGCTT CATGCCCAAG ATGACTTGCG AGGCAATCTC AGGAGCTGTG	720
45	GACTTAACCR TTGCAAAGCA CACTGTCTTT CTCAGCGTTC TCTGCAAGTC AGTAGGTGTT	780
	ASTATOSTIG CAAASTICAS ISTSTCASSA AASTIGAAST GGGSTASSIC ISTACAGSIG	840
50	TITCCTCAGA GOGAAAAATC TIGAGACCAG ATGGTGGAGC TCTGGAGTCA GAGGAAATGG	900
30	GTGTCTTCAG CACAAAGCTG CTGCTTTTAC TTCAGCCACT TCTGACATTT TTACATACCG	960
	AGCCTGAGAT TRIGIGATTA TCTCAAATCA AATCACTTTG ATGGAGATAA ATAATCAAAA	1020
55	CTGTTTTATA GTCATTGATT TGGTGAGAAC AGTAATGGAA AATGGTGTTG AAGGACTTCT	103
	CATTITITIGGA GCTTTCCTTC CAGAGTCCTG GCTGATTGGT GTTCGCTGTT CATCTGAGCC	114
60	CCCAAAAGCA TTATTACTGA TACTTGCACA CAGTCAAAAG CGCAGACTGG ATGGATGGTC	120
1 21 /		

	TTTTATAAGG	CATTTAAGGG	TACACTACTG	TGTTTCACTG	ACCATACATT	TTTCTTAGCC	1260
	CCTCAAGTAA '	TATAGCACAG	AGTTATGAAT	GACAATTOOC	CTAACCATTC	CTCTTCATAT	1320
5	C'IGCCTCTTC (CCCTTACCAT	CGTAATTOTO	CAAACTGGTC	ATAAAGGCAC	TCTGTGAAGA	1386
	TATTOGGGAT'	TGACATETTA	AGCTCTCACC	TGGCTGCAGT	AGGAAAGGCC	AAACTGACGA	1440
0	CAAAAAAAAA .	ATTCTTTATA	AAGATGATAT	GGTAACATGT	ATCTTTGCCC	TGGGTCTGGG	150
	TROGGTROCAGT (CAGTCTCAGA	TTFACAAGCA	TTTAGGAGOC	TAGGTAAAAG	CTGCTAGTAT	156
	TOTTTTAAAA	GTTACATTTA	TGACTTGCAA	TGATAGAAAA	CTCCTTCCAA	TTAAATGGCA	162
15	TTTTATAATA	TTATGTGTGT	ACTTCACAGT	GTTAAAAATA	CCCTCATACG	TTATTGCATT	168:
	TGATCTTCAC .	AGAAAGTIGCA	TTTTAACCAG	TACTCTGGGT	GCAATAAATA	ATATGTAGAA	1740
20	ATTTAAGTGC '	TOCAATTOCA	GCATATOCAG	TGAGTTTTSA	CAGTGTGTTT	ATGTGGAATG	1800
-0	TTTAAGGATA '	TACAATTGTA	CTTTATATAA	ATTGGTTCTT	GTTCTTCTTA	AATGTGACAT	1860
	GAAATAATTS	TOCTOCTACA	ТТАТАСТЭЗА	AATTAACAGG	GGAAAAGGGA	AGAGCTCTTG	192
25	GCTCCCTTGA	GGTTCTGCTA	GTGGTGTTAG	GAGTGGTTAG	AACTGAGCTT	TTAGTAACCA	1983
	TTTAACOGTA	TGTAAACTTG	GTTTCTAATT	TAAAAAAAA	TYCTTTTTCC	A	203
30							
30	(2) INFORMA	TION FOR SE	EQ ID NO: 33	3 :			
30 35		SEQUENCE CI (A) LEN (B) TYP (C) STR	BQ ID NO: 3: HARACTERIST GTH: 971 ba E: nucleic ANLEDNESS: OLCGY: line	ICS: se pairs acid double			
	(i)	SEQUENCE CI (A) LEN (B) TYP (C) STR (L) TOP	HARACTERIST GTH: 971 ba E: nucleic ANLEDNESS: OLCGY: line	ICS: se pairs acid double	: 33:		
35	(i)	SEQUENCE CI (A) LEN (B) TYP (C) STR (L) TOP SEQUENCE	HARACTERIST GTH: 971 ba E: nucleic ANLEDNESS: OLCGY: line DESCRIPTION	ICS: se pairs acid double ar : SEQ ID NO		GAGGGAGG	6
35	(i)	SEQUENCE CI (A) LEN (B) TYP (C) STR (L) TOP SEQUENCE :	HARACTERIST GTH: 971 ba E: nucleic ANLEDNESS: CLCGY: line DESCRIPTION GGACATCCAC	ICS: se pairs acid double ar : SEQ ID NO	TSACACGCGG		6: 12:
35	(i) (xi) CGCGTCGGAA AGTGTTCIGC	SEQUENCE CI (A) LEN (B) TYP (C) STR (D) TOP SEQUENCE CTCGGCCGCG	HARACTERIST GTH: 971 ba E: nucleic ANLEDNESS: CLCGY: line DESCRIPTION GGACATOCAC BOCCAAAAAACC	ICS: se pairs acid double ar : SEQ ID NO GGGGGGCGAG ATGGATTGT	TGACACGTGG TATTCAGATT		12:
35	(i) (xi) CGCGTCGGAA AGTGTTCIGC TTTTATCTGT	SEQUENCE CI (A) LEN (B) TYP (C) STR (E) TOP SEQUENCE CTCGGCCGCG TGGAGCCGAT	HARACTERIST GTH: 971 ba E: nucleic ANLEDNESS: CLCGY: line DESCRIPTION GGACATCCAC GCCAAAAAACC TACTGCPCAG	ICS: se pairs acid double ar : SEQ ID NO GGGGGGGGAG ATGGATTTGT AGAGAAAAGA	TSACACGTGG TATTCAGATT AAGAGGAGAG	CATTGTTTTC	12 18
35	(i) (xi) CGCGTCGGAA AGTGTTCIGC TYTTATCIGI GTGAAAATAG	SEQUENCE CI (A) LEN (B) TYP (C) STR (E) TOP SEQUENCE CTCGGCCGCG TGGAGCCGAT GGGGCCGAT GGGGCCTTTT	HARACTERIST GTH: 971 ba E: nucleic ANLEDNESS: CALCGY: line DESCRIPTION GGACATCCAC BODDAAAAAACC TACTGCTCAG	ICS: se pairs acid double ar : SEQ ID NO GGGGGGGGAG ATGGATTTGT AGAGAAAAGA AACTGCTCTA	TSACACGTGG TATTCAGATT AAGAGGASAG AGACAAGSAA	CACCGAAGAA	12 18 24
35 40	(xi) CGCGTCGGAA AGTGTTCTGC TTTTATCTGT GTGAAAATAG CTACTAAATG	SEQUENCE CI (A) LEN (B) TYP (C) STR (L) TOP SEQUENCE CTCGGCCGCG TGGAGCCGAT GGGGCCTTTT AAGTTTTGCA	HARACTERIST GTH: 971 ba E: nucleic ANLEDNESS: CLCGY: line DESCRIPTION GGACATCCAC DESCAAAAAACC TACTGCTCAG TOSTCCAGAA	ICS: se pairs acid double ar : SEQ ID NO GGGGGGGGAG ATGCATTCT AGACAAAAGA AACTGCTCTA GCTAAAGACG	TSACACGTGG TATTCAGATT AAGAGGASAG ASACAAGSAA GCTCGAAATT	CATTSTTTTC CACCSAAGAA GAAGSGAGAC	12 18 24
35 40	(xi) CGCGTCGGAA AGTGTTCTGC TTTTATCTGT GTGAAAATAG CTACTAAATG CGGACACAAA	SEQUENCE CI (A) LEN (B) TYP (C) STR (E) TOP SEQUENCE CTCGGCCGCG TGGAGCCGAT GGGGCCGAT GGGGCCTTTT AAGTTTTGCA CCCATTATGA	HARACTERIST GTH: 971 ba E: nucleic ANLEDNESS: CLCGY: line DESCRIPTION GGACATCCAC DESCAAAAACC TACTGCTCAG TOSTCCAGAA CGGCTACCTG	ICS: se pairs acid double ar : SEQ ID NO GGGGGGGGAG ATGEATTET AGAEAAAAGA AACTGCTCTA GCTAAAGACG TTTGTTCTTG	TSACACGTGG TATTCAGATT AAGAGGACAG AGACAAGCAA GCTCGAAATT GTGTTGGGCA	CATTETTTTC CACCEAAGAA GAAGEGAGAC CTACTGCAGC	12:

 60° maa maatab acategacaa paa mackiab etototaaa ee mabataaa cuitotactee e°

Service Annual Control of the America

	CAAAGGGAAT TTOAAAAAGA TOAGAAGCON COTOACAAGT CATATCAGGA TGCAGTTTTA	660
5	GAAGATATTT TTAAGAAGAA TSACCATSAT GSTSATGGCT TCATTTCTCC CAAGGAATAC	720
J	AATGTATACC AACACGATGA ACTATAGCMT ATTTGTATTT CTACTTTTT TTTTTAGCTA	780
	TTTACTGTAC TTTAIGTATA AAACAAAGTC ACTITTCTCC AAGTTGTATT TGCTATTTTT	840
10	CCCCTATGAS AASATATTTT GATCTCCCCA ATACATTGAT TTTGGTATAA TAAATGTGAG	900
	GCTSTTTTGC AAACTTAAAA AAAAAWWAAA AAAACTSGAG GGGGGCCCGT ACCCAANTCG	960
15	CCGNATATGA T	971
• • •		
	(2) INFORMATION FOR SEQ ID NO: 34:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1792 base pairs (B) TYPE nucleic acid	
25	(C) STRANDEDNESS. double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
30	GAACCCCCTT TCTCCTGGTA AAGGGTAAGG GGCGGGATAA TGTTTACCAC AGGTACGAAA	60
30	TAGTCACTTT AACATTGAGA CCTCTGCCTC ATTGAATTCA GGTTTTTTTAA GTACTTGAAA	120
	CTCTTCAGAT TCTCCTTATT TTAGTTTCTT TTTACATTTA TGAAGTAGAA AGCATTGTTT	190
35	TGTAAACTGT TTTGAAAATA AATAGCCTAG TCTCTTATCC TCTTTAGCGT GGATTAAAGG	240
	TGAAGTTCTG CAAATGGGAG AGTGTTCACA GTAGATAGCT CAGATTGATT GAACACATTT	300
40	GAGGAABAGA CTCCTBCATG AGATACCAGC ATTTTTACAA ATACTTTTTA TGTACATTCT	360
	TTATTTTGTC ATTTTGTCAA CCCTCTCCCC AAGCACATCT TCTTTCCTTT TACTATGTCT	420
	ATGTAGGGAA AAACAAAACA AAAAATTGCA CTTACGTTAC ACTCCCAAAA TGTGGGTAAT	480
45	CCGTGTCTTT CAAAAAACAT TTCTGTTTTT TGTTTTGTTT	540
	TGACAAGTTT GGGTGCTTGT GGCACGTATG TATGAAGCGG GAGGGGGATG ASAATTGCCT	
50	GTCCTTCAGT ARGCTGTAAA AGTAATTTAC ATGTAAGTAA AAAGGGAAAA TAGAATAGAT	660
	GCCAAAGTCA TTTATTCAGT CCTTAGTTTT CTTATGTGGC ATTACTGCAT CTGCTAGTTA	720
55	GTGAGAAAGC ACCCTCAGCT TTTACTGCTC CCCTCCCTGC CTGCCAACAC ACTTGATGTG	780 8 4 0
55	TGCAAACAGC COTCAAGTAT OTGTCAGATG ACCTATATAA GGTATTGAAT AAGGTATTCT TGTCAGTTTA GAAATGGACT GGATAAAACT TACTTGGTTG TCATTATTTT ATCTCATTTG	
	TOOTGTTACA TOOCCCTATGT TAAGATAATT ATATTGCCAC TAATAATCAA GATGCTAAAT	960
60	ICCIGITACA PACCENTOT TAMONIANTE ATATIOCCAC TANIANTONA GATOCIAMAT	200

	GAGTATTACA	ACTGGCTAAT	ATCATTTTT	ATATACAAGG	GTATGTGTAT	ATTTGGAATT	1000
	GRTATGAGAA	ACTCATTIGT	ACCCATTIGA	GTGATATTGC	ACAACAAACA	CAGATAYCTA	1080
5	CAGACTOCGT	TTTCATTTTC	TCSTGTTCTT	TATGATAATG	ATCTTTGTAG	A'MYGGTTATT	114
	TCTGTACTTT	A'FCTGTAATA	AAUTTTGTAG	ATCCTGTGAA	CCATTACTTT	GCCTAAATCA	1200
.0	CTTGAGACTT	GAGTETTTAA	TAACAAAGCA	TCAATATTCA	CTAAAGTCAA	TCTCTTTTGA	1250
. 0	GTTTCTGTGA	CTTGGCTAGA	AGCTCTTGAC	ACTAAGGGAT	TAGTGTTAAT	TTTCCCTGGG	1320
	GGTGTTOCAC	TAGGGCATTA	CTSTATAATG	ACTTGATGTT	GCCACATAGA	CTTCAAGATA	1380
5	TATAATATTT	TGAGGATTTT	GTTGAT173GC	CTATGTTTTA	TTGCATAGTG	TGAAAOGTGT	1446
	AAAGCTTUGT	TAACCTGTAT	ATAGATAGCT	TATTSTTSAC	TAGTTATAGT	GTATTTAGGG	150
20	TPOCCIGIAA	TATTTAAGCT	TCTTTACTGA	TSTGTGTSCT	GGTAGGAACA	TATAATITT	1563
-()	STACATTATA	TTTA ITGAGA	TGTTGCCTTT	TTTATTTAC	AAATACTTTG	GAATTCCAAT	1624
	GTGTTTTTG	CTTCCGTGAG	GATTAATTTG	GAAAGGTTTT	TAATSACATT	CCACTGATIT	1631
25	CAGATITTGC	TTGAGATTGA	CTTCAATAAA	TTGTCCTGTA	TGTTCCAAAA	AAAATTAAA	174
	AAACTCGAAGS	GGGGGGT	ACCCAANNOG	COGGATATGA	TOGTAAACAA	T'C	179.
30							
	(2) INFORMA	ATION FOR SE	S :CM CI C	5:			
35	(i)	:B) TYP :C) STR	HARACTERIST STH: 896 ba E: nucleic ANLEUNESS: CLOGY: line	se pairs acid double			
40	(xi)) SEÇUENCE I	DESCRIPTION	: SEQ ID NO	: 35:		
	AGTTGNANAC	AACAGGACCT	GAGTICTTGG	GCAGCACCAG	TAGGTTGCCC	CYTGCYTCYT	ń
15	GCCAGCYTCA	CYTGOCACYT	TYTGCCCCTY	TOGGGATGOO	TTCGCAGACA	GAGYTYTT OG	12
* - '	AT BOURSTEG	TUGGCCAYTOT	TECTTTES	PRYTOTIGUE	COTTGGCCTC	CCTTTTTGTC	13
	CCCGGGGCAGC	CTTGTGTGAC	CIGCCCTTTT	COCTOCOTTC	CTTTCCAGGA	CAAGCACGCC	2.4
50	GAGGAGGTGC	GGAAAAACAA	GGAGCTGAAG	GAAGAGGCT	CCAGGTAAAG	CCTAGAGGCC	3)
	AAAGAACTTT	CCAGGTCAGC	CGGACAGCTC	CAGCAGITCC	ACGTTCCACG	CAGCCTCGMC	36.
	بالمشائد فالماثات	SUMPLICACIV	د المنشاد و داملات	304444444	(AULECULY)	ىدىئىلىلىدىكىك سىئىلىلىدىكىكى	421
50	*********		i jakana da katangan pangan ang ang ang ang ang ang ang ang an	er som stamminger	ATTITICADAT	Contraction of the Contraction o	63

No. of the State o

	ACATTGAGCC TCCCAGGCAC	CATGTTGAGG	AGAGATGAAA	ACCAGGGGGG	TAGAACTTCA	660
5	GGGTGAAGGA CAGAGTGCTG	GGTGGGGCAG	CGGCTGCAGG	GCGCACCAGA	GAACCCAGCC	720
J	AGAGGGGTG TGAGTAGCAG	TEGTGTTGCT	TCCACCCTGC	AGCAGGTGGG	ATGAGGTCTG	780
	TGTGTGTGTG TGAACCATCA	TTTTTTGATC	ATCATGACCA	ATGAAACATT	GAAAAAAAA	840
10	AAAAAAACTG GAGGGGGCC	CGTACCCAAN	TCGCCGNATA	GTGATCGTAA	ACAATO	896
15	(2) INFORMATION FOR SI	EQ ID NO: 36	6 :			
	(1) SEQUENCE C					
20	(B) TYP (C) STR	GTH: 912 ba E: nuclei: ANDEDNESS: OLOGY: line	acid double			
	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 36:		
25	TCGACCCACO CGTCCGGTCA	GCCAGTCGCA	TCCAGCCATG	ACAGCCTTCT	GETGEETGET	60
	CCTGCAAGOG CAGAGCCTCC	TACCCAGGAC	CATIGGCAGCIC	CCCCAGGACA	GECTEAGACC	120
30	AGGGGAGGAA GACGAAGGGA	TGCAGCTGCT	ACA/3A/3AAA/3	GACTCCATGG	CCAAGGGAGC	180
	TAGGCCC393 GCCAKCCGCG	GCAGGGCTCG	CTG3GGTCTG	GCCTACACGC	TGCTGCACAA	240
	CCCAACCOTS CAGGTCTTCC	GCAAGACGGC	CCTGTTGGGT	GCCAATGGTG	CCCAGCCCTG	300
35	ARGGCAGGGA AKGTCAACCC	ACCTGCCCAT	CTG'IGCTGAG	GCATGTTCCT	GCCTACCATC	360
	CTCCTCCTTC DCC3GCTCTC	CTCCCAGCAT	CACACOAGOO	ATGCAGCCA3	CAGGTCCTCC	420
40	GGATCACYGT GGTTKGGTGG	AGGTCTGTCT	GCASTGGGAG	CCTCARGARG	GOTOTGOTOG	480
	ACCCACTTGG CTATGGGAGA	GCCAGCAGGG	GTTCTGGAGA	AAAAAACTG3	TGGGTTAGGG	540
	CCTTGGTCCA GGAGCCAGTT	GAGCCAGGGC	AGCCACATCC	AGGCGTCTCC	CTACCCTGGC	600
45	TCTGCCATCA GCCTTGAAGG	GCCTCGATGA	AGCCTTCTCT	GGAACCACTO	CAGCCCAGCT	650
	CCACCTCAGC CTTCGCCTTC	ACGCTGTGGA	AGCAGCCAAG	GCACTTCCTC	ACCCCYTCAG	720
50	CGCCACGGAC CTYTYTGGGG	AGTGGCCGGA	AAGCTCCCSG	3CCTYTGGCC	TGCAGGGCAG	780
J 5	CCCAAGTCAT GACTCAGACC	AGGTCCCACA	CTGAGCTGCC	CACACTCGAG	AGCCAGATAT	840
	TTTTGTAGTT TTTATKCCTT	TGGCTATTAT	GAAAGAGGTT	AGTGTGTTCC	CTGCAATAAA	900
55	CTTGTTCCTG AG					912

60 (2) INFC-MATION FOR SEQ ID NO: 37:

297

(i) S	FOUENCE	CHAPACTERISTICS
----	-----	---------	-----------------

(A) LENGTH: 1382 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY, linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

10	AATTCGGCAC GAGCHGAGHC GAGGGAAACT RAGCGCGAAA GTTGTGTGTC GTGTTGGCAG	60
	GAGGGCCTAG AAGBCAAAGA CTGTCTAGTG GGACAATGTC ATATTATAAA TTTGGAATGC	120
	TGAATAGAAA ATTATAGATT TTGATATTGA AGGAAATGAA GCGAAGCYTA AATGAAAATT	180
15	CAGCTOBAAG TACAGCAGGC TGTTTGCCTG TTCCGTTGTT CAATCAGAAA AAGAGGAACA	240
	GACAGOCATT AACTTOTAAT CCACTTAAAS ATGATTCAGS TATCAGTACC CCTTCTGACA	300
20	ATTATBATTT TOOTFOUTUTA COTACAGATT GGGCCTBGGA AGCTGTGAAT CCACACTTKG	360
	CTCCTGTAAT GAAAACASTS GACACCGSGC AAATACCACA TTCAGTTTCT CGTCCTCTGA	420
	GAAGTCAAGA TTCTGTCTTT AACTCTATTC AATCAAATAC TGGAAGAAGC CAGGGTGGTT	480
25	GGAGCTACAG AGATEGTAAC AAAAATACCA GCTTGAAAAC TTEGRATAAA AATGATTITA	540
	AGCCTCAATG TAAACGAACA AACTTAGTGG CAAATGATGG AAAAAATTCT TGTCCAATGA	600
30	GTTCGGGAGC TCAACAAGAA AAACAATTAA GAACACCTGA ACCTCCTAAC TTATCTCGCA	660
	ACAAAGAAAC CGAGCTACTC AGACAAACAC ATTCATCAAA AATATCTGGC TGCACAATGA	720
	GAGGUCTAGA CAAAAACAGT GCACTACAGA CACTTAAGCC CAATTTTCAA CAAAATCAAT	780
35	ATAAGANACA AATETTGSAT GATATICCAG AAGACAACAC CCTGAAGGAA ACCTCATTGT	840
	ATCASTTACA STTTAASSAA AAASCTASTT CTTTAASAAT TATTTCTSCA STTATTSAAA	900
40	GCAT-BAAGTA TNEECGTEAA CATECACAGA AAACTETACT TCTTTTTGAA GTATTAGCTG	960
	TTCTTGATTC AGGINGTTACA CCTGGCCCAT ATTATTCGAA GACTTTTCTT ATGAGGGATG	1020
	GGAAAAATAC TOTGOOTTYGT GTOTTYTATG AAATOGATOG TGAACTTOOG AGACTGATTA	1080
45	GAGGJOGAGT TUATAGATGT GTTGGCAAGT ATGACCAGAA AAAGAACATT TICCAATGTG	1140
	TITCTGTCAG ACCGGCGTCT GTTTCTGAGC AAAAAACTTT CUACGCATTT GTCAAAATTG	1200
50	CAGATGTTGA GATBOAGTAT TATATTAATG TGATGAATGA AACTTAAGTA GTGATAAAAG	1260
	GAAGTTTAGC ATAAATTATA GEAGTTTTCT GTTATYGCTT AATTTAGCAT CTGCATAGTT	1320
		1320

 $(\partial X_{i}) = (\partial X$

	(2) INFORMATION FOR SEQ ID NO: 38:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 872 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
10	GGGCTACTTO AAAGCCCTGG GCCTTATTTC TYCAGGTAAA AAAATATAAA GTCAGATCTC	60
	ATCCCGGCTG GCCATGCTGT TAGACCCTTT CATCCTTCTC TTCTGCCTCT TCTCAACAGC	120
15	TGCCCAGTOC TOTTTGGAAT TOATATACAT ACAGTTCTAA TACTGATGTA TTTACCCTCA	180
	TANGCCACTO ANGICAGAAT CITATTTBAA TTATAATCCA GAAACATGAG GTGACGTGTG	240
20	AGACTACTGT ATGAGAAAGA GACAGTTTAA GGGTCAGTCC AATGGAAAAA AGAGTTCTCA	300
20	GAGOTTTOTT TAGOTTATIO DIATCAAAGA GOTTTOTOTG CAGAAGGAAC CTACTGGTTO	360
	CTOCTTTCCA GTCCTAGAAA TOCTSACCTA GAGTGGCTTA ATCCTGCTAG CACCTCTCTC	420
25	TOGENOTOTS GTOCCADATS ACTOCAGSAN CTGGOCCATS ATGTGGTGGS NATGACCTTA	480
	COCTGAGCAT STCACTCATS CATTSAACAA CAGCTAAGAG CAGAGCTTAG AGCTTAGAGC	540
30	TERESCUCTOT AMOSTERIAS GAMTUACATO CIGCAGAAST CIGTOCIGAG AAGCAGGTAC	600
30	TCCTGTCACA GCAGAGACAC AGTGGATACC TGAGTAACAA TAATACAAGA CAGGACGTGG	660
	CMACAGCAAA AGATTYGGGT GTCAGAAGAR CCCGAGAACA CTTYCAGGCA GGAACATTCA	720
35	RARTTOTTOT TOGACGAART AGGCMCSAAG GOTGGGCAGG ATTTCMCGGG GCAGAGATGG	730
	AGCAAGCAAT TSAAATGAAA GCCATGGCAT GGGAAAAGGA GCACTGGCCA CAGGGAGTGC	840
40	AACGTTGTGA TGCAAGGCCA CTGTGGAGCC AT	872
45	(2) INFORMATION FOR SEQ ID NO: 39	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 812 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
55	GGCAGAGGCT CACCCCAGCA GAGATTGAGG GGGAACCGTG ATGAAATTIT TAAGTATTCT	60
	GCTTGATGAT AATAATTTTY CTCTTATGTT AATGTTGGCT COGTTTGGGT GTTTAGCTTT	120
	TGAAAGGAGT ATGAAAATGC GGAATGGGGC TTTGGGGCTT GAGGAGGTGT GATCTCTAGT	180
60	CHARACAN THE ANTICAC CAAATAGAAA TAATTCACCC ACATTATTGA ACCCCACTAA	240

	AGCATATOCT TTTTGTOCAT ATTCCTTTCC TGCTGCCCTC GTGTGTACCA TTATTACTCA	300
5	GTTGTGATTT GAGCTCSTTC CACTTAAAST CATTUATAGA TACTTTTGCG TCGTCTTKGA	360
3	ATATTPATTG AATTTCTATT CUGTGTTTTA CTTAATTACT TTATTATGGA ACCTTTACAC	420
	AGGTCTGGTG TACTTGTTCT TTGAAAAGTC TTATGTTGAC CACCATCAGT GAGCATATAG	480
10	CTYPTTCCTT ATTTCCTPGG GATAATTACC CGAAGTGGAA ATACCGAATC AAACTTCTGT	540
	TTTCTTTCTT TGGCACTATT ATATAAATTG TTTTCCAAAC AAGGCATGTT TACAATAGAC	60.)
15	ATTTTCAAA ATCIGGGTAT TICTCCTATT TTGCTCTGTG TATGCAGAAT TCAGCGGGGT	660
13	GCCAAGTCGT TTTCTGTGTG GGTTGAGAGA CAGGCTGTGC AGCCCACTGT TGCATAGGAC	720
	TAACTACTAC AAATCATSCT SAGACCGASC TATTTTTSCT GCTTAGARSC TITGCAGCCT	780
20	TGAGTAAGTT TCGNCATUTG GAAAUNTTGN AA	812
25	(2) INFORMATION FOR SEQ ID NO: 40:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 1515 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
35	AATTCGCCAC GAGGGAAATT CAAGCACTTT TCCTAAAAGA AGGGGGAAATG GATGCTGAAA	60
	CAACAGOTNI CCGACAAAGG GAGGAGACAC TRESCUTTOTG AAGCTROCCC ATAGGTTCCC	120
40	CACAGAACTG GGSTCCGGCC TCCCTGACAT GCAGATTTCC ACCCAGAAGA CAGAGAAGGA	185
40	GCCAGTEGTE ATEGAATGGG C'PEGGGTCAA AGACTGGGTG CCTGGEAGCT GAGECAGCCA	240
	CCGTTTCAGC CTRRCCAGCC CTCTGGACCC CGAGGTTGGA CCCTACTGTG ACACACCTAC	300
45	CATGOGGACA CTOTTCANCO TOOTCTGGOT TGCCCTGGCC TGCAGCCCTG TTCACACTAC	360
	COTGTCAAAG TCABATGCCA AAAAAGCCGC UTCAAAGACG CTGCTGGAGA AGAGTCAGTT	41(
50	COTGTCAAAG TOAGATGOCA AAAAAGOOGU UTCAAAGACG CTGCTGGAGA AGAGTCAGTT TTCAGATAAG COGGTGCAAG ACCGGGTTT GGTGGTGACG GACCTCAAAG CTGAGAGTGT	
50		
50	TTCAGATAAG COGGTGCAAG ACCGGGGTTT GGTGGTGACG GACCTCAAAG CTGAGAGTGT	49(
50	TTCAGATAAG COGSTSCAAG ACCGSGSTTT GGTGGTGACG GACCTCAAAG CTGAGAGTGT GGTTCTTGAG CATCGCAGCT ACTGCTCGGC AAAAGGCCCGG GACAGACACT TTGCTGGGGA	48(54(

TORN TARGET CTOLAGATAR I RECTORNOT CONTENTATO GAZAGATE ACHARACTY (2000)

	CCGGAACGTC TTAGACAGTG AGGATGAGAT AGAGGAGCTG AGUAAGACGG TGGTCCAGGT	840
	GOCAAAGAAC CAGCATTTCG ATGGCTTCGT GGTGGAAGGTC TGGAACCAGC TCCTAAGCCA	900
5	GAAGCGOSTG ACCGACCAGC TGGGSATGTT CACGCACAAG GAGTTTGAGC AGCTGGCCCC	960
	OSTBOTESAT GOTTTOAGOO TOATBAOOTA OGAOTACTOT ACACCOCATO AGCOTOGOOO	1020
10	TAATGCACCO CTGTCUNGGG TTCGAGCCTG CGTCCAGGTC CTGGACCCGA ACTCCAAGTG	1080
10	GOGAAGEAAA ATOUTUUTUG GEOPEAACTT OTATEGTATG CAUTAUECGA COTOCAAGEA	1140
	TOCOCOTAG COTOTAGA GOGCCAGATA CATOCAGACA CTUAAGGACO ACAGROCCO	1200
15	GATBUTTETES GATAGETINES YETCAGASCA TITETTCGAG TATAAGAAGA CCCGCAGTES	1260
	GAGGCACETC GTCTTCTACC CAACCCTGAA GTCCCTGCAG GTGCGGCTGG AGCTGGCCCG	1320
20	GGAGCTGGGC GTTGGGCTCT CTATCTGGGA GCTGGGCCAG GGCCTGGACT ACTTCTACGA	1380
_0	CCTOCTCTAG GTGCGCATTG CGGCCTCCGC GGTGGACGTG MTCTTTTCTA ACCCATGGAG	1440
	TGASTGAGCA GGTGTGAAAT ACAGGCCTTC ACTCCGTTAA AAAAAAAAA AAAAAAAAA	1500
25	AAAAAAAAA AAAAA	1515
30 35	(2) INFORMATION FOR SEQ ID NO: 41: (i) SEQUENCE CHAFACTERISTICS: (A) LENGTH: 704 base pairs (B) TYPE. nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
• •	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
40	AAGATYGTGG CGCCCAGAGC TTCGCTCTAT GCTGCTCCCC TGAGAGAGGGC GTTTGCATCA	60
	ACCAGUITTG CAAGGAGTTC AATGAGAGGA CAAAGGACAT CAAGGAAGGC ATTCCTCTGC	120
45	CTACCAAGAT TTTAGTGAAG CCTGACAGGA CATTTGAAAT TAAGATTGGA CAGGCCACTG	180
	TTTCCTACTT CCTGAAGGCA GCAGCTGGGAA TTGAAAAGGG GGCCCGGCAA ACAGGGAAAG	240
50	AGGTOSCAGG CCTGGTSACC TTGAAGCATS TGTATGAGAT TSCCCGCATC AAAGSTCAGG	300
50	ATGAGGCATT TGCCCTGCAG GATGTACCCC TGTCGTCTGT TGTCCGCTCC ATCAFCGGGT	360
	CTOCCCGTTC TCTGCGCATT CGCGTGCTGA AGGACCTGAG TTCAGAAGAG CTTGCAGCTT	420
55	TOCAGAAGGA ACGAGOCATO TTOCTYGGOTYG CTCAGAAGGA GGCAGATTTG GCTYCCCAAG	480
	AAGAAGCTGC CAAGAAGTGA CCCTTGCCCC ACCAACTCCC AGATTTCAAA GGAGGTAGTT	540
	GCAAAAGCTG TGCCCAAGGG GAGGAAGGAG GTCACACCAA TATGATGATG GTTTTCATGA	600
60	CTTTGAATGA TATATTTTTG TACATCTAGC TGTATCGAGG CATCAGGCCT GAATAAACAT	560

	CCTTTCTTAA AAAAAAAAA AAAAAAAAA AAAAAAAAA	704
5		
	(2) INFORMATION FOR SEQ ID NO: 42.	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1094 base pairs (B) TYPE: nucleid acid (C) STRANDEDNESS: double (D) TOPOLCGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
	GGCAGCTTTC TTACAAACCC ATCCTTCTGA AATGTTGCTT CAAATTCATC CTCTGCTCCC	60
(34)	CASTOCCACT ATTOCACACA TACTOTTACT STITCTITAT CCTACTITCT CAATTTOGA	120
20	ACATAGTIGE AGTIACTGCA TIGAATACCI GIGGGIITGC CIGITGITET GICTETETE	130
	GTESTTCTTG TAATANTGGA TCCCAGAGAT AAAATGGACA GTTGTNATCC ACAGTTAATT	240
25	CAGAAACTAG ACCTTACTTG CTGTGTGAAA TACCAACTAA ATTCTCAGTG AACTCAGCTG	300
	ANSTTTATOT COTTTTGTTT COCCAATTTA TAATTTCAGT TCAGGCCCAG AAAGATGGAA	360
•	TCCCAGCTAA GAAATACAAG TTACACCCTG TACTAGCAGC CCATGTGTGC ATGTTCTTTA	420
30	ASTECTOTTE CAGCTATGTC ATTTATATTG ATTTCCCTST ATTATTATAA GCAAAGCAAA	480
	TTTGAGGAAA AAAACCCATA ATAGCACACG TCATTTTTTT CAAGTAATAG GGTCATAAGT	546
35	CTCATYCTYC ATATAATATG TTGAGTATGT AGTATATTAT GTGTTAGGCT CTGGANAGGC	600
	AGASGTTAGA TCATGTWACA GATQATATSK GATTAGGCAG ATAAACAGTA TTTTAACCTT	660
	TICCTTATIA TATGTAACIT GCTTTCAGGI TTTTTAATGI TACTAITATG TCTTTAATAT	720
40	ATTATCTTTA TTTGTACTTT TGTATACAGA GTGATTTTCC TTTTTTAAAA AAAATTGTGT	780
	CTTTAGGATU GATTCCAAAG AYGTGGAAYC AGTAGGTITA AGGAATATYG ATATTTYGCC	84)
45	TOGCAAGGTG CCTCACACCT GTAATCCCAG CACTTTOGGA GGCTGAGGTY GGTGGATCAC	90.)
	CTGAAGTCAG GAGTYCGAGA GCAGCCTGAC CAACATGGGG AAAGCCTGTT TNTAGTAAAG	95)
	ACACACWWAA AATTRGCCAG TEGTEGTGEC ATGTGCTTGT AGTCCCACTT AGCTACTCGA	102)
50	GAGGCTGAGG CAGGAGAATC DETTGAACCC GGGAGGCAGA GGTTGCAGTG AGGCAAGATG	1080
	GCACCTCTAC ACTC	1094

Lo IMBORMACION POR LEGIS IN NO. 400

60 (i) SEQUENCE CHARACTERISTICS:

WO 98/54963

302

(A) LENGTH: 1321 base pairs

(3) TFFE: nucleic acid (C) STFANDEDNESS: double ID) TOPOLOGY: linear 5 xi, sequence description: seq id No: 43: TYGGCTTAGGG CATCACCCTT CCCTTGGCTG GAACTACTGG ACAGACCCTT TTGAGATGTG 60 10 COTGTGGTGC TGTGGAGATG TGTGTAGTGG TCTTAGCTCT TTGTTGAGCT TGTGTGTGTG 120 TYGTGTAGTC TTAGCTGTAT GCTGAAATTG GGGGTGTGTT GGAGGGGTTC TTAGCTCTTT 180 GGTGAGATTG TATTTCTATG TGTTTGTATC ASCTGAATGT TGCTGGAAAT AAAACCTTGG 240 15 TTTGTMAAGG CTCXTTTTTG DEGGAAGTAA GTAGGGGAAAA AGGTCTTTGA GGGTTCCTAG 3(4) GCTCCTTTGT ACAACAGGAA AATGCCTCAA AGCCTTGCTT CCCAGCAACC TGGGGCTGGT 360 20 TOCCASTGOC TGGTCCTOCC COTTCCTGGT TCTTATCTCA AGGCAGAGCT TCTGAATTTC 420 AGGCCTTCAT TCCRGAGCCC TCTTGTGGCC AGGCCTTCCT TTGCTGGAGG AAGGTACACA 480 GESTGARGET GATGETSTAC TYPERSGATE TECTIFFECET GTTCCARGAA GTGAGAGAAG 5.40 25 GTACTTACTO TTGTACCTCC TSTTCAGCCA GGTGCATTAA CAGACCTCCC TACAGCTGTA 600 OGAACTACTG TOTCAGACCT GAGGCAAGGG GATTTCTCAG GTCATTTGGA GAACAAGTGC 66.0 30 TYTASTACTA STUTAAASTA STAACTSCTA CYSTATYTAG TGGGGTGGAA TYCAGAAGAA 720 780 ATTTGAAGAC CAGATCATGG CTGGTCTGCA TGTGAATGAA CAGGAATGAG CCGGACAGCC TGGCTGTCAT TGCTTTCTTC CTCCCCATTT GGACCCTTCT CTGCCCTTAC ATTTTTTTT 840 35 CTOCATCTAC CACCATCCAC CAGTCTATTY ATTAACTTAG CAAGAGGACA AGTAAAGGGC 900 CONTITION TO TOTAL TOTAL TOTAL TOTAL TOTAL AGAIN ATACTA AGAIN COACTITION 950 40 CTATCCTATT TOGAAATCCC TAACAGAATT GAGTTTTCTA TTAAGGATCC AAAAAGAAAA 1020 ACAAAATSCT AATSAAGCCA TCAGTCAAGG GTCACATGCC AATAAACAAT AAATTTTCCA 1080 GAAGAAATGA AATOCAACTA GACAAATAAA GTAGAGCTTA TGAAATGGTT CAGTAAGGAT 1140 45 GAGTITGITG ITTITTGITT TGTTTTGTTT TGKTTTTTTA AAGAJGGAGT CTCGCTCTGT 1200 CACTCAGGCT GGAGTGGAGT GGTATGATCT TGGCTCACTG TAACCTCCCC CTCCCGGGTT 1260 50 CAAGCCATTC TOCTGCCTCA GTCTCCTGAG TAGCTGGGAT TACAGGTGGG TGCCACCATG 1320 1380 CCTGCTAAT TTTTGTGTTT TTAGTAGAGA CAGGGTTTCA CCATGTTGGT CGGGCTGGTC TCAAACTCCT GACCTCTTGA TCCGCCTGCC TTGGCCTCCC AAAGTGATGG GATTACAGAT 1440 55 1500 GTGAGCCACC CGTGCCCTAG CCAAGGATGA GATTTTTAAA GTATGTTTCA GTTCTGTGTC ATGGTTGGAA GACAGAGTAG GAAGGATATG GAAAAGGTCA TGGGGGAAAGCA GAGGTGATTC 1560 60 ATGGCTYTTGT GAATTTGAGG TGAATGGTTC CTTATTGTTT AGGCCACTTG TGAAGAATAT 1620 WO 98/54963 PCT/US98/11422

303

	GASTCAGTTA TYGGGAGGGT TOGAATYTAG TYGYCTAGGT TAGAATGGAG CYTYYTGAACT	1680
_	GGAAAACACC TYGTTTGCAT TCACTTTAAA ATSTCAAAAC TAATTTYTAT AATAAATCTT	1740
5	TATTTTUACA TTGAAAAAA AAAAAATTT AAAAACYCGG GGGGGGCCCS GMACCCCATT	1800
	NGCCCCTAAG GCGGCGCCTT T	1821
10		
	(?) INFORMATION FOR SEQ ID NO: 44:	
15	(i) SHOUTHCE CHARACTERISTICS (A) LENGTH: 1024 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
~0	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
	GGGGCACAGT TGAAGAAGCG ACCGAGGGAC TUGGAGTYGT TAGTGAGGAT GACGCCGCAT	60
25	GGCAAGAACT GCACCGCAGG GCCGTCTACA CCTACCACGA GAAGAACAAG GACACAGCGG	120
	CCTCGGGCTA TGGGACCCA; AACATTCGAC TGAGCCGGGA TCCCGTGAAG CACTTCGACT	180
30	GCTGTTGTCT CTCCCTVCAG CCTTGCCACG ATCCTGTTGT CACCCCAGAT CCCTACCTGT	240
50	ATGAGOGTGA GGCCATCOT; GAGTACATTC TECACCAGAA GAAGGAGATT GCCCGGCAGA	300
	THAAGGCCTA CGAGAAGGAS CGBEGTACCC GBIGGCGAGGA GUAGAAGGAG CTTCAGCGGG	360
35	CEGCCTCGCA GEACCATETE CGEGCCTTCC TERRAGAAGGA GTCEGCTATC GTGAECCGGC	420
	COCTCAACCC TTTCACAGCC AAGGCCCTCT CGGGCACCAG CCCAGATGAT GTCCAACCTG	480
40	GGCCCAGTGT GGGTCCTCCA AGTAAGGACA AGGACAAAGT GCTGCCCAGC TTCTGGATCC	540
40	CETCECTGAC GCCCGAAGCC AAGGCCACCA AGCTGGAGAA GCCCTCCCGC ACGGTGACCT	600
	GEOCCATGTO AGGGAAGOCT CTGCGANTGT CAGACCTGAC GCECGTGCAC TYFEACACEGE	660
45	TAGACAGOTC -:GTGGA TOCC -STGGGGGTCA -TCACCOCCAG -CSACCOCTAG -(FTGTGT-SCCC	720
	TBACCOSCOA CAGCCTIAGO AACSCCACUC COTGCGCTGT GCTGUGGTCC POTGGGGCTG	780
50	TOGTCACCCT CGAATGCGTG GAGAAGCTGA TTCGGAAGGA CATGGTGGAC CCTGTGACTG	840
50	GAGACAAACT CACAGACCGC GACATCATCS TGCTGCACCG GGGCCGTACC GSTTCGCGGG	900
	CTCCCCARTE AAGCTECAAR CGGAGAAATC ACGGCCGGTG ATGCAGGCCT GAGTGTGTGC	960

 $S_{\mathbf{k}} = \{ (\mathbf{k}_{\mathbf{k}}, \mathbf{k}_{\mathbf{k}}) \mid \mathbf{k} \in \mathcal{K} \mid \mathbf{k} \in \mathcal{K} \}$

(2) INFORMATION FOR SEQ ID NO: 45:

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 983 base pairs (B) TYPE: nucleic acid (C) STRANDELNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
	CGACACUGET GOSAGAAGAC GACAGAAGGG CCCGACCGGG AGCOSTOCAG GTCTCAGTGC	60
15	TGTGCCCCC CCAGAGCCTA GAGGATGTTT CATGGGATCC CAGCCACGCC GGGCATAGGA	120
13	GEOCOCTO A ACAAGOO KA GETTOTATANA GAAGTGAAGT TETA CAAGAA CGCCCOSSAG	180
	AGGGAGAAST AGGACAACAT GCCAGAGAGCTG TTTGCGGTTGG TGAAGACAAT GCCAAGCCCTG	240
20	GAGAAGGOOT AGATCAAGGA CTOTOTOTOG COCAGGGAGT AGAGTGGAGO CTGGTOOGGG	300
	CTOCTRIFIC AATACAAAGC TGCCTTCARG CAGGTCCAGG GCTCAGAAAT CAGCTCTATT	36(
25	GAOGAATPOT GOOGCAAGIT COGCOTGOAC TOCCOGCTOG CCATGGAGGG GATCAAGGAG	420
- 2	GACCGGCCCA TCACCATCAA GGACGACAAG GGCAAGCTCA ACCGCTGCAT CGCAGAGGTG	480
	GTCTOGCTCT TCATCACUGT CATGGACAAG CTGCGCCTGG AGATCCGCGC CATGGATGAG	540
30	ATCCAGODOS ACOTOCGAGA GOTGATEGAS ACCATEGACO GOATGAGOCA COTOCCACOO	600
	GACTTTGAGG GCCCCCAGAC GGTCAGCCAG TGGCTGCAGA CCCTGAGGGG CATGTCGGCG	660
35	TCAGA PGAGO TOGACCAGOTO ACAGOTOCOT CAGATOCTOT TOGACCTOGA STCAGCCTAC	720
33	AACGCCTTCA ACCCCTTOCT GCATGCCTGA GCCCGGGGGCA CTAGCCCTTG CACAGAAGGG	780
	CAGAGTOTGA GGOGATGGOT COTÔGTOCOC TSTCCGCCAC ACAGGCCGTG GTCATCCACA	840
40	CAACTCACTG TOTOCAGOTG CCTGTCTGGT GTCTGTCTTT GGTGTCAGAA OTTYTGGGGO	900
	GGGCCCTCC CCACATAAA GATGCTCTCC GACCTTCAAA AAAAAAAAA AAAAAAAAAA	960
45	KGSGGCCGT CCCCANTCCC CCC	983
50 55	(2) INFORMATION FOR SEQ ID NO: 46: (i) SEQUENCE CHAFACTERISTICS: (A) LENGTH: 2421 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	,
	CCGGCTGATC GCTGCCGCTC CGCCAATACA ATAGAGCCAK CCACTACCAG CAGCCTGGCC	60

WO 98/54963 PCT/US98/11422

305

	CTCTTIITCC	TTCTCCAGAG	AGACCAATCC	AGCCGAACTC	GGGGTTTGCC	TYJAGGAGAAG	120
	GAGGAAGTGA	CCATGGACAC	AAGTGAAAAC	AGACCTGAAA	ATGATGTTCC	AGAACCTCCC	130
5	ATGCCTATTG	CAGACCAAGT	CAGCAATGAT	GACCGC DOGG	AGGGCAGTGT	TOARGATOAG	240
	GAGNAGAAAG	AGAGCTCGCT	GCCCAAATCA	TTCAAGAGGA	AGATTTCCGT	TGTCTCAGTT	300
10	ACCAAGGGGG	TGCCAGCTGG	AAACAGTGAC	ACAGAGGGGG	GCCAGCCTGG	TOGGAAAOGA	360
10	CGCTGGGGAG	CCAGCACACC	CACCACACAG	AAGAAACCTT	CCATCAGTAT	CACCACTGAA	41(
	TCACTAAAGA	GCCTCATCCC	CGACATCAAA	CCCCTGGCSG	GUCAGGAGGC	TETTETGEAT	481
15	CTTCATGCTG	ANGACTOTOG	CATCTCTGAG	GATGAGACAG	ACCTAATOS	CGATGATGGG	5,41
	ACCCATGACA	A 93GGCTGAA	AATATGCCGG	ACAGTCACTC	AGGTAGTAGG	TSCAGAGGGC	(.())
20	CAGGAGAATG	GGTAGAGGGA	AGAAGAGSAA	GAAGAGAACG	AACCTGAAGC	AGAACCTCCT	661
2.0	GTACCTCCCC	AGETETCAET	AGAGGTGGCC	TTGCCCCCAC	CTGTAGAGCA	DAAATFAACT	72
	AAAGTGACTT	TAGGAGATAC	CTTAACTCGA	CGTTCCATTA	GCCAGUAGAA	GTCC:kGAGTT	781
25	TCCATTACCA	TTSATGACCC	AGTCCGAACT	GCCCAGGTGC	CCTCCCCACC	CCGCCGCAAG	84
	ATTAGCAACA	TIGTCCATAT	CTCCAATTIG	GTCCGTCCTT	TCACTTTAGG	CCACCTAAAG	è()•
30	GAGTTGTTYGG	GGCGCACAG3	AACCTTGGTG	GAAGAGGCCT	TCTGGATTGA	CAAGATCAAA	မှုရှိ၊
30	TCTCXTTGCT	TTGTAACGTA	CTCAACAGTA	GAGGAAGCTG	TTGCCACCCG	TACAGCTCTG	102
	CACGGGGTCA	. AATGGCCCA	GTCCAATCCC	AAATTCCTTT	GTGCTGACTA	TGCCGAGCAA	103
35	GATGAGCTGG	ATTATCACCS	AGGECTETTG	GTOUACOGTO	COTOTGAAAC	TAAGACAGAG	114
	GAGCAGGGAA	TACCATEST	OCTGCACCCC	CCACCCCCA	COCCGGTCCA	. DOCACCACAG	120
40	CACCCCCGGG	CAGAGCAGCG	GCAGCAGGAA	. CGGGCAGTG0	G GGAACASTG	GGCAGAACG F	1.26
70	GAACGGGAAA	TGGAGCGGCG	GGAGCGGACT	'CGATCAGAGI	GTGAATGGGA	TOGGGACAAA	132
	GTTGGAGAAG	GGCCCCGTTC	CCGATCAAGG	TOTOGGTRACT	GCCGCCGCAA	CODTOCAAGC	138
45	AAGTCTAAA	DACAARAKAA E	TYGAGAA DAAA	CGAGAAAGCCC	DILAGOANEK I	EAADDETDEA :	144
	CTCCTGGATC	ACCTTTTCCC	: AAAGACCAAC	GCAGCTCCCI	CONTETATIO	S GOTOOCACTS	150
50	ACTGACAGCO	C AGATOSTTCA	GAAAGAGGCE	GAGCGGGCC	AACGGGCCAA	A GGAGCGGGAG	15€
20	AAGC33CGAA	A AGGAGCAAGA	AGAAGAAGAC	G CAAAAGGAAG	OGGAGAAGGA	A GOOGAGOGG	162
	GAACGGAACG	C GACAGUTGGA	GCGAGAGAAA	A CGTEGGEAK	E ACAGTEGGGA	A GAGGGAGAGG	158

or praeciaciae operium basa or prepintare como recitar o prepinada ya ota pasterno de la PTD (1990). The

AND A LANGUAGE

WO 98/54963

	ADSTACCAGC CACTOSSCOC CAGGGGGGTTA TGGCCACAGA GGGATAGGLA CAGT TCCAC	-340
	CACCCTGGAG CCAAGGGTCT TTCACATCAC CTATUCCTAC ATACATACCA AATGGAAAAG	1930
5	TOGGCCATCCT TTTCCCCCCCA AACACACCCC CTTAACCTAT CTCTTGGGAC TTAGCCCGAC	2046
	COTCOCTOTO ATTROCCATT AASTOTSASA GGCAASAGCT ASGTTAGSCA ASGASGTGGT	2100
10	TOGGCAGAGA TOGGGAACAG CCAGGTGCCC CAGTCCTCTG ATTITTCCTC CATCCTGCTT	2160
W	ACCACCTCCC TOGGTACTTA CAGCCTTCTC TTGGGAACAG CCGGGGGCCAG GACTGGGTCA	2220
	COTATGAGOT GAATCAGCAT CTOCTCOTGA GTCCCAGGGC CCCTGCAGTT CCCAGTCTCT	2280
15	TETOTOCTOC AGCECTTOCC TETTTCCCAC AGGTTCCACT TTATATCCAC CTTTTCCTTT	2340
	TOTTCAATTT TTATTTTAT TITTTTATT ATTAAATGAT STOGTCTATG GAAAAAAAAA	2400
20	TAAAAATOTG ACTTAGTTTT A	2421
20		
	(3) AMPORTATION TO GET AN AS AS	
25	(2) INFORMATION FOR SEQ ID NO: 47:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENCTH: 840 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDEENESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE LESCRIPTION: SEQ ID NO: 47:	
35	CTCAAACTCC TGAGCTGAAG CGATCTACCT GCCTCAGCTA GGATTACAGG TCTGAGCCAC	50
	CGCACCCAAC CTCAATAAGC KTATTTGATA AAAKATATGC AAGCTCCCTT TATKCACTTT	120
10	TEATTCAGAA TETTTAGTAA TTTGTATTET TTTTCAGATT TTCAGCCCAA TATATCTCCY	130
40	TECCCACTET GTEACTGTAT TCTACCTAWA CATCATCACG TGTTTCTGCT ATTERETTERA	
	TGATGGAACA CT3CGGCTCA TTTTCCTGAA AACTGCCGAT AGTGCATAGA RTGCT3GGAT	300
45	GGAAACCAGA ARCTITGAAT TCAAGCCTTG GTTCTGCCTT GTTTTTGCTT GGGTGGCCTT	350
	GAGTCAGCIA CATACCTTTT AAAATIICAA TTTATTAGAA ATTATTICAA ATCAAAATCA	420
50	AATGAGAAGG TATATACAAA AGTGCTTTAT CCCACAATAA ACTATTCAAG AGAGAGCAAA	÷80
50	GGAGAGGACA TITACTCAAC ACCTCCTAAA AGGCAGCCAG TGAAATTAGG CATTITATIT	540
	AATCCTCCTG GCAACTCTGA GAGTAAAGCA TTATTAATCC CATTTTGGCT GTTTAAAGAA	500
55	ATTATTTGCA CTAGATTCCA GCTGTAGTTT AGYTTCAGAA AAAAAAATCC TGAGATGTGA	<u> ნ</u> ნ 0
	ATTCACAGCT TTCTGGGTTT AAAGCCCAAG CTCTATCACA TCATGCTATT ATTGTTACAT	720
	TACTGCTAGT TCTATGAAAA GAAATACTAA TTTATGAAAT ACATCTTATC CAAAAAAAAA	780
60	AAAAAAAAC TGGGAGGGG GGCCCTTACC CAAATCGCCG GATAGTGATC GTAAACAATC	340

5	(2)	INFORMATION	$F \bigcirc R$	SEQ	ID	$N\bigcirc:$	48:

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2432 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

15	GGCACGAGGC	CCCGAACGCT	GAGGAAGGGC	CCGTCCCGCC	TTCCCCGGGG	CGCCATGGAG	60
	0000336036	TTOCAGAAGC	CCTGGAGACG	GGTGAGGAGG	ATGTGATTAT	GGAAGCTCTG	120
20	CGGTTATACA	ACCAGGAGGA	CTCCCAGAGG	TTCACGTTTG	ATGATGCCCA	ACAGGAGGAC	180
20	GGGAAGAGAC	TGGGGGAJTG	CTOGTCTCOG	TCCTGGAACA	GGGCTTGCCA	CCCTCCCACC	240
	GTGTCATCTG	GCTGCAGAGT	GTOCGAATOC	TOTOC COGGA	CCCCAACCOC	CTGGACCCGT	3)(
25	TCACCAGCCG	COAGAGOCTG	CAGGCAYTAG	COTGYTATCY	TGACATCTCT	GTCTCTGAGG	350
	SGTCCGTCCC	AGAGTO NGCA	GATATGGATG	TTGTACTGGA	GTOCCT DAAG	TGCCTGTGCA	420
30	ACCTCCTSCT	CAGCAGCCT	STEGCACAGA	TGCTGGCAGC	A GAGGC CCGC	CTAGTGGTGA	430
30	AGCTCACAGA	GCCTCT-JGGC	CTSTACCGTS	AGAGGAGCTT	COCCACGAT	GTCCAGTTCT	54
	TTGA ETTYGEG	SCTECT ITTO	CTOCTAACGO	CA CTC COCAC	COATSTSCOO	CANACCICTT	60-1
35	TCAGGAGCTG	AAAGGAGTGC	GOCTGOTAAC	TGACACACTG	GAGCTGACGC	TGGGGGTGAC	660
	TCCTGAAGG3	AACCCCCCAC	OCACGUTCCT	TOOTTOOTA	GAGACTGAGC	GGGCCATGGA	720
40	GATCCTCAAA	. GTECTC ITCA	ACATCACCCT	GGACTCCATC	AA.GGGGG A GG	TGGACGAGGA	78:)
40	AGACGCTGCI	CTTTACCGAC	ACCTGGGGAC	COTTOTOGGG	CACTGTGTGA	TGATCGCTAC	840
	TGCTGGAGAC	: CGTACAGAGG	ACTICCACCO	COACCACTA	. ALCOTOOIG	GGAACITGCC	300
45	CCTCAAGIGT	CTGGATTTC	TOCTCACCO	TACHEDORAFRO S	CK AGACTCCA	TASTTCAGCS .	9n)
	GGGAGTGAA.I	ATEGATET SA	. TICGIGCCCI	CUTCATUTE	CIAGAGAAGC	GTTTCCACAA	1020
50	GACACACAG	G CTGAAC-GAGA	GTGTAGCTCC	COTOTTGASC	OF CASCASSING	AATGTGCCCG	1089
20	GATGCACCGC	CCAGCCAGGA	. AGTTCCTGA	A OFFICERALIGITE	; (19000001)	TGCGGGATGT	1140
	CAGGACACGG	: citgaectte	: CKGGAGATGCT	r oggandaan	: CTTGTCCGIC	TOATGACACA	1200

BARCUTUARS AVARAGA SI BELLEMANAN MUTMUUN SA PRANSAMI AVASA WAS 💎 🗈 ER

	ATGAGTACAA	GGAAGCCAAA	GCCAGCATAA	ACCCTGTGAC	CGGGAGXGTG	GAGGAGAAGC	1440
	CGCCTAACCC	TAT EGAGGGC	ATGACAGAGG	AGCAGAAGGA	GCACGADGC I	ATGAAGCTGG	15¢0
5	'?GACCATGTT	TGACAAGCTC	TCCAGGAACA	GAGTCATCCA	GCCAAT/3G/33	ATGAGTCCCC	1560
	GGEGTCATCT	TACCTCOCTG	CAGGATGCCA	TGTGCGAGAC	TATEGAECAE	CAGCTCTCCT	1620
10	CGGACCCTGA	CTCGGADCCT	GACTGAGGAT	GGCAGCTCTT	CTGCTCCCCC	AMBAGGACTYS	1€80
10	GTFCTGCTTC	CAGAGACTTC	CTTGGGGTTG	CAACCTGGG3	AAGCCA CATC	CCACTGGATC	1740
	CACACCCGCC	CCCACTITTC	CATCTTAGAA	ACCCCTTCTC	TTGACTCCCG	TTCTGTTCAT	1800
15	GATTTGCCTC	TGGTCCAGTT	TOTCATOTOT	GGACTGCAAC	GGTCTTCTTG	TGITAGAACT	1860
	CAGGETEAGE	CTCGAATTCC	A/LAGACGAAG	TACTTTCTTT	TSTCTGOGCC	AA DAGGAATG	1920
20	TGTT CAGAAG	CTGCTGCCT3	A/33GCAG33C	CTACCTGGGC	ACACAGAAGA	GCATATGGGA	1980
20	GGGCAGGGGT	TTGGGTGTGG	GTGCACACAA	AGCAAGCACC	ATTTGGGATT	GECACACTGG	2040
	CAGAGEMANT	GTKTTGGGGT	ATGTGCTGCA	CTTCCCAGGG	AGAAAACCTG	TCAGAACTTT	2100
25	CCATACGAGT	ATATCAGAAC	A CACCOTTOO	AAGGTATGTA	TGITCTGTTG	TTOOTGTCOT	2150
	GTCTTCACTG	AGCGCAGGGC	TGGAGGCCTC	TTAGACATTC	TOSTTGGTCC	TOGTTCAGET	2220
30	GCCCACTGTA	GTATCCACAG	TGCCCGAGTT	CTCGCTGGTT	TTGGCAATTA	AACCTCCTTC	2280
50	CTACTGGTTT	AGACTACACT	TACAACAAGG	AAAATGCCCC	TOSTGTGACC	ATAGATTGAG	2340
	ATTTATACCA	. CATACCACAC	ATAGCCACAG	AAACATCATC	TTGAAATAAA	GAAGAGTTTT	2400
35	GGACAAAAAA	AAAAAAAA .	AAAAAAAAA	. AA			2432
40	(2) INFORM	ATION FOR S	EO ID NO: 4	9 :			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1742 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

50	GTCCTGCAGG	AGCTGCACGC	GGCCGAGGTG	CGCANGAACA	AGGAGCAGCG	AGAAGAGATG	60
	TCGGCCTAAG	GGCCCGGSAC	GRGSGGGGC	CATCCTGCGA	CGGAACACGT	TCGGGTTTTG	120
55	GTTTTGTTTC	GTTCACCTCT	GTCTAGATGC	AACTTTTGTT	CCTCCTCCCC	CACCCCAGCC	180
33	CCCACCTTCA	TGCTTCTCTT	CCGCACTCAG	CCGCCCTGCC	CTGTCCTCGT	GGTGAGTCGC	240
	TGACCACGGG	TTCCCCTGCA	GGAGCCGCCG	GGCGTGRAGA	CGCGGTCCCT	CGGTGCAGAC	300
60	ACCAGGCCGG	GOSCOGCTOG	GTCCCCCGGG	GGCCCTGTGA	GAGAGGTGGY	GGTGACCGTG	360

	GTAAACCCAG	GGCGGT GGCG	TGGGATCRCG	GGTCCTTACG	CTGGGCTGTC	TGGTCAGCAC	420
5	GTGCA FGTCA	GGGCAGGTCC	TOTGAGOOGG	DECOCETICA	CAGCAGGCGA	GGCTACAGTA	480
<i>-</i>	OCTSOTSTOT	TTCCAGGGGG	AAGGGGGTTOO	CCATSAGGRA	GGGGGGACGG	COCCCOACCC	540
	TGATGGTGCC	TODGAAGCCT	GCKTGTGCAN	COGGTGCTTG	TTGAACTGGC	AGGOGGGTOG	600
O	GTGGGGTG	CAGCTTTCCT	TAATGTGGTT	GCACAGGGGT	COTOTRAGAO	CACCIGGGGT	660
	GAGGPGGACA	COCTGGGGCT	TOOTSGAAGO	CTGCAGTTGG	OPPOCTGOOD	PGAGTETGET	726
5	SCEPTOAEECE	CAPPOTOTGO	CAGGGACCCA	TGAGCAGGCT	GCATGGTCTA	GAGGTTGTGG	780
	GCAGCATGGA	CASPUDSSCA	CTCAGAAGTG	CAAGAGTTOO	AAAGAGGCTC	TGGCCCAGGC	840
	CUCTOCCTOS	GACAGCCCCG	COGOCOCTOC	CCACCAGGGC	TTTGCAGATG	FOOTTGAAAG	900
20	ACCCACCTA	GAGCCIMTTG	GAGTGCTGGG	ENCIPONDO	COCTOTGCC	TGAAGCTTGGT	960
	(992ASCA)CAA	GTCCTCCTCA	GGGGGGGA	AGGGGGATTT	TKTGGGACCG	CINGOO CAIDAG	1020
25	ATCCAGGTGT	ACCCCAACCT	GCGGGTAAGG	TIPOCCAAGOO	AGCCCCAACA	CASSSTTDEE	1080
	TTGGCACCCA	GAGGGGGGTG	SE/AE/C/TE/EE/T	COTGACTOCA	GGCCTCTCCI	GOODACAGOO	1140
	TCTGGGGTGA	GTTGGTTGTT	TOOOTTGGAO	TOGTEAC DEE	GGCCTTGGAG	-BACGGTCAGC	1200
30	TGGAGGATGG	-0 93T93333 A	GECTGTCTTT	GTACCACTGC	AGCATODOCO	ACTICTOCAC	1260
	GGAAGCCCCA	TOCAAAGOT	GCTGCCTGGC	CCCTTGCTGT	AAAGTGTGAA	999999937I	1320
35	GASTTOTOTT	AGGADDCAGA	GCCAGGGCCC	TCAACTTCCA	rootsosssa	GGCCTTGGCC	1380
	GGGCACTGCC	AGTGTCTTCC	AGAGCCACAC	OCAGGGACCA	CGGGAGGATC	CTGACCCCTG	1440
	CAGGGGTCAG	GOGTCA GUAG	GEACCCACTG	COCCATCTCC	CTCTCCCCAC	CAAGACAGCC	1500
10	CCAGAAGGAG	CAGCCAGCTG	GGATGGGAAC	CCAAGGCTGT	CCACATOTGG	CTTTTGTGGG	156)
	ACTCAGAAAG	GGAAGCAGAA	CTGAGGGCTG	GGATATTOOT	CATGGTGGCA	GOGCTCATAG	1620
15	CGAAAGCCTA	CTSTAATATS	CACCCATCTC	ATCCACGTAG	TAAAGTGAAC	TTAAAAATTC	1580
	AATCAAAFGA	ACAATTAAAT	AAAGAC DTYT	STSITTAAGA	АААЛАААЛАА	AAAAAAACTG	1740
	CG						1742

(2) INFORMATION FOR SEQ ID NO: 50:

	(xí)	SEQUENCE I	DESCRIPTION:	SEQ ID NO:	: 50:		
	GGCACGAGGC	TOOGGGAACT	GTGGAGTCGG	TGGAGGGCTG	GAATCAGCGT	GGGCTCCAGG	60
5	TOGOTGGCAG	CCGGGTGGCA	GAACTCTTCC	GAGGCTCCTT	GGGAAGAAGC	TACACCCGAG	120
	GGAGCCGGAT	GGGCCTCGAA	AACCTGGCCC	GCT STGGTTC	TGTACCATTG	CAAGGGGAAC	186
10	CGTAAACTGA	GCTTTTCTAA	CGTGGGTTTC	TGCCAAGTAC	TTTTCCAGCT	GCCCCCTTCC	240
	OCCCAGCA/CA	CAGGAGA FCC	TCTGTGTAGC	CAGOGOTTGA	CAGTOGTTAG	GTAGGTTGTA	30%
	CTGTGTAGGG	AGGAGCTCAA	GATCATGAAT	GGTTGTCACA	GGAGAAAGCG	GTTGCATCTT	36.)
15	TCCAAAACTA	TATACCTBCT	GTGGTTTGTG	TTTTCTTTTC	TGCTGAGTAA	TGAAGTTGTA	42)
	AGTTCACACT	GGCACATTCT	CAGGGCTGTG	CAGATTATIT	GCACTTTATT	TCATAGGTGR	480
20	ATAAGTGCTT	TTTAGGTTTC	TTTGTATATT	GAGTIGCTTT	TGAATTGCTT	CCCATATTTT	540
	TATTTCATAC	AAACTGAACA	ATTGTGGCCC	CTCTATITTA	TTTATAAAGG	TTCAGTGTAT	600
	CITTGGGGTGG	CTACATCAAT	CTGCAAGGGA	GTTGCAGAAA	GCCTCATGTT	CATCGAGCCG	660
25	TGAGTCACAA	CCAATTTCTA	A/GCT/GTTA/TA	ACAAAAAAGT	STITGCTTTT	TTTCACAAGT	720
	AACTTTAAAA	GTSTAGTTTA	GAAAGAAAAC	ATTTTCAATA	AAAAGACACT	COTAATTADA	780
30	TOGATECTTS	CAAATICTAA	AATMTATTCC	TOOTSTAGEG	TTGCACAGCT	CTGTGTTGTA	840
-	TACACAGACT	AGCTTTAAAA	TTTGTCACAT	ACCACTTTAC	CTTTACTTTT	ATGTATCATT	900
	CCCCCGACTT	CCTTACTGCA	GGTGTGGGCA	AGAAAACTTT	TOOTTTAACA	CTTTTCAACA	960
35	GDGGGCATAA	AATTCTGCAG	CTGAGGTOTT	GAAGAATGCA	GATGGGTACA	GTATGTGTTG	1020
	GAGCTCACAG	TGTGTATTGA	CTAACCTAGT	TCCTTTTTTG	CTTTTTTTGG	TATTGTCTTG	1089
40	TTAAAAGTGA	CTCCCAGGTA	GCAACTCTCT	TTTTTAAGGG	TGGGAACGAA	AGGGACGTAG	1140
	GAAGAATAGA	TCTAGATTAT	TTAACAGTCT	TCGATAGAGT	TTGAAAGCTT	TOTTCTTCAT	1200
	TCAATTTTGG	GCAAAATACT	GCCTCTGCAT	TTGTTCATAA	CAAAAAGATT	AGATTAATAA	1260
45	GTAGCTTTTG	TTGGTGGAAA	TTACCAGCTC	TATAAGTCAC	CCTTGGTGGT	TCATGGACCT	1320
	CTGATTAGET	TGGGTTTTGC	AGTCTCATTG	CCACATGTAT	ATGTGGAGCC	AATGGCCTTT	1380
50	TGGTGCTCAG	CTGTTTACGT	CTGACTCCTT	GACTTCTTTG	GTACAGTGAT	GGAGTCAGAT	1440
	CTCATTAAGT	GTGATTCTCC	ATGGATATAA	CCAGCCCCAA	AAAAANG		1487

(2) INFORMATION FOR SEQ ID NO: 51:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1328 base pairs

(B) TYPE: nucleic acid

55

(C) STRANDELNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

(D) TOPOLOGY: linear

)							
	GGCACGAGCT	CGTGCCGAAT	TOBBUACHAG	AGAAGATTTG	AAGAAGCCAG	ATCCAGCTTC	60
	CCTGCGGGCT	GUTTUTTETE	AACEC/AACEC	AAAGAGGAAA	GCCTGTAAGA	ACTGCACCTG	120
0	TGGCCTTGCC	GAAGAACTGG	AAAAAGAGAA	GTCAAGGGAA	CAGATGAGCT	COCANDOCAA	180
	GTCAGCTTGT	GGAAACTGCT	ACCTGGGGGA	TGCCTTCCGC	TOTGCCAGCT	GCCCCTACCT	240
15	TOGGATOCCA	GCCTTCAAAC	CTGGGGAAAA	GSTGCTTCTG	AGTGATAGCA	ATCTTCATGA	300
()	TGCCTAGGAG	GTTCCTGACA	TOGGACOCAT	CTGCTCCTCC	AGCCAACTCC	'NGTOOCTCAC	360
	ATCCCACCAT	GSTGGCTCCT	CCCACCTCCT	CTGGATTTGT	TOACTOTGAG	A'PCTCTCTTGC	420
20	AGAGIGGGTG	CTTAGCAGAC	AGAGTGAAGC	TGGGTGGGG	GCACAGTGGT	GTGTAGTGCT	48.
	GORGTGTATC	AAAAGAGCAA	GGTATTATGG	GACCTGGTTT	CAGAATOOGA	TGRETTTTT	54%
25	CADOTCATGT	TAAGAGAAGG	GAGTGTGTCC	TGAAGAAGCI	CTTCTTCTGA	TGTTAAAATIG	600
-0	CTSACCAGAA	CGCTCTTGAG	CCCAGGCATC	GTTGAGCATT	AACACTCTGT	GACAGAGCTG	660
	CAGACCCCTG	COMPGAGTOR	CATCTCAGCA	ATGCTGCCAC	COTOTOTOT	TECAGAGTEG	720
30	TTAGTTTACT	CCATTCTTTG	TEACACGAGT	CAAGTGGCTC	ACAACCTCCT	CAGGGGACCA	780
	GAGGACTCAC	TCACTGGTTG	CTSTGATGAT	ATCCAGTGTC	COTOTGCCCC	CTTCCATCCC	847
35	CAACCACATT	TGACTGTAGC	ATTGCATCTG	TSTCCTSTTS	TCATTTATGT	TAAGGTTCAG	907
, ,	GTATTAAACT	TGCTGCATAT	CTTGACATAT	CTTGAGATTC	TGCATGTCTT	GTAAABAGAG	960
	GGGATGTGCA	TTTGTGTGTG	ATGTTGGATA	GTCATCCACG	GTGAGTTTGG	ACCAPT DGAG	102
1 0	GAACTTAGTG	TCACGCACAA	ATOGGGGCTAT	TOCTACGCTT	AGAATAGGGC	TTGTCTGCCC	1080
	ACTTTAGAAG	AGTOCOAGOT	TGGTGAGCAT	TTAGAGGGAA	GCAGGGCAGA	ACTCTCAACG	1140
15	ACAA TACGTO	TOTOTGAGGA	GAGACCCETT	TSTTSTTSTT	ATCCACCCAT	ANGGACTTGG	120
T .J	AATCAATCT	GCCAAATATT	TGGAGAGATY	GTGTGGATTT	AAGAGACCTG	SATITTITATA	1260
	TTTTACCAGT	AAATAAAAGT	TTTCATTGAT	ATCTGTCCTT	ЗАЛАААААЛА	AAAAAAAAA	1320
50	AAACTCGA						1328

بعاد والأنفاء المنافية الأفييات والمتا

⁽R) TYPE: nucleus word

⁽⁰⁾ STEANDEDNESS: double

(D) TOPOLOGY. linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

5	GAATTCGGCA	CGASCTTTGC	aacattiscaa.	ATGALOTTOGE	AGTCQAGGGT	TCCGCTGCCC	60
	CCTAGATTAA	ATTITICOGGG	CTGANACTGA	GTTGGLGATT	TACAATATCA	TATTTTAAAT	120
10	TGCTGTCTTC	AATTAAACCA	TYPATGACCA	TAACTAACTT	TCLGGATGTC	GATGTATGCT	180
10	TTTC CAGGCC	TTCCTTCTTT	GTACABARGT	AUATGTOCAT	ALLECGMITC	ACTIATATIC	240
	TTCAAACATG	ATGCTAATTT	ALTTARTTA	CTTCCTATCA	TATTTTATTA	TTCCTATGAT	3 Ú C
15	TTTGCCACTG	TTATTAGTTC	TOTCAAAAAT	ACATOTAGGG	ARRAGGATTA	TTTTAAGTFA	360
	TTTGATTATC	TTTCTATCTC	THINATURE	matchinin	CTTAAGAAA?	TESTFECATT	420
20	GGTTGGCATT	GATACAGTAA	ATTTGTAAAT	GAGGAGACAA	TATAAAAART	CTAAATTACT	480
20	TYFTGETTAAT	GACTGTAGCA	GAATSCOTTT	TOTOTALATO	AGAITGTCIP	TCTTGCAGTT	54()
	TAGTTTGATA	GATTTGCAAG	CTATGCTGCT	TOCATCLARGE	TARTICOST	GGTADBAACG	600
25	CAGGCTTCTT	TGTGTGTG33T	TGTAGCTTGC	ATCATOGCCI	CATTAGGAG	ACAACGTAGC	660
	CGGAGATCAC	AAATCAGGIC	CTTGGTGTAG	TTGGTAGTGT	TOTAL GOT CO	AGAGAGGTTG	720
30	GERGAAACTG	ACCTCACTGG	GCAAGGTTGG	CORTGERCOT	GATTOTTTAA	TGCASTCTAT	780
•	GTGTTCAGGA	AGCCACAGGC	CATAITTGAC	TOTGRGRAAG	AAAACAAGAG	GAAAAACCCC	840
	ACAAAGTATA	ACARCCCCTT	AAGATACATO	TATTTTAAAG	TGAAATTAAT	TTTTCAGTTT	900
35	ATACCATTGG	CCANTTACAA	GATAAAAATS	MCFFLLLCI	TTRAGRATCC	TTTGTTGAGT	960
	TGTCTTTTCA	TOTOTTGUTA	TTTATATTTG	TOLOTOTTAG	TOLACAAOT	CITATITGIT	1020
40	GAGGAAGGAC	TITECTGEAC	TTACTGTACC	ACATCAAACA	CT19993AGGG	TGGTGTTTAA	1080
	СТТТТТАААА	AATGTTATTC	TGATTATAAO	AATAATATTG	GCTTTTTCA	TGAAAAGAGC	1140
	GCCACCTTGC	AAGGTTTAGT	GAGATTIATG	GAAGTTGAAI	ACTTAAGCAG	GAATTGCTGC	1200
45	TAGCTCCAAA	AATTTGCGAA	GCAAAASCTA	GCCCCAATTS	GTTTGGAAGT	TTGAAACTGA	1260
	TTAACAGATT	TGCATTTGAA	STGACTICAS	ACATTAGGTO	CAGALATTAG	TTAAAAATAG	1320
50	AAAGAGGAAT	AAAGACATCT	ALLCIGICIY	GAAAAGATAA	CACCECAATT	AATAATCCTT	1380
	CCCACTITICA	. TTGAGATCAG	CITIGICIGAT	AACCTGATAT	GAGTGTGATA	ATGATAAACA	1440
	TGATAATAGT	GGTACTTTTG	TAATTTIGCT	GGTGCATTTA	TEATAGARGA	AAAHGATGAG	1500
55	TTCAYCTTTT	' CTYCGAACAT	YCCTATYCCT	AGATGIAGTI	TACCTCAAAT	TGGGAATTAT	1560
	AACTGTCCTA	ATTTTTGTTG	TGTACCUTGA	. TGCCCCTTTT	GOTTTAATAC	CCACAGTGTA	1620
60	ACAATTAAAT	' ATCACACTAT	GACATAIGAT	TTAAGTAGGA	TATTTTAAAG	ATAAATTTTA	1680

WO 98/54963

PCT/US98/11422

313

	GROSTAAATS TYTACTYCAA AATGACTCCA TATTTCAAAT ATSTYTTTAS ASTGTGAAGS	1740
	CCAAATAATT TITAAGAAAA CATTTGAAGA GTAGTGTGTT TOCATTTGTG AATAATCTTA	1800
5	CTCACAGCAA GTAAACGTAA TAAAAGCCAA CATTTAAGCC AAAAAAAAAA	1856
10	(1) INFORMATION FOR SEQ ID NO: 53:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1558 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
20	TOGGTATOCA TECCEGNAAT TACTETACTE AGGATAATGG CCTCCAGCTC CGTCCAAGTE	60
	GCTGCAAAAG GTAITATTTC GTTTCTTTTT GTGGCTGAGT AGTATTOCAT GGTGTATATA	120
25	TACCACATTT TCTTTATCCA CTCATTCCTT GATGGGCAGT TAGGTTGGTT CCACATCTTT	180
23	GCAATTGTGA STIGTGCTGC TCCAGATATC ATCTTTAACT CCTPTGCCTT CTCCACATAC	240
	ATTTCCAAGT COTGTTCATT CTACCTCCAA AATGTATCTT GTATCCAFTC ATCTCTCTCC	300
30	ATCTTCAATC TATTTCAATS COCCATCATC TCTTCCATSG AGGACTGTAA TAATTGGCTA	360
	ACTOGECTOT TOTTACATIT TAAAATCAAA AGATGTGACA GETGAAATGC CTATTTCAGT	420
35	GTCCATTGAT GGTTCTGCTT ACADACDACC TGGCTGCCTG GTGTCGCAGT GCCAGAGTTG	480
33	AGCAGTGTGA AAAAGACTGC TTGGCCTTTT ACAGGGAAAG CAGGTCCACT GTGGCCTGTG	540
	AGGACGAGAG CTCTCGGCAG GCTCCGGACAC TCGCAGACCC TGGTCCTGGC TGGCCAAGGC	600
40	AGCAGGGTAT GTGTTTCGGG TCACTCACAG GGCTCACCAC CACTCCTCAT GGCTTCCTTA	660
	CTSTTTCGGC AGAGGCTGAC CCGCCGGCTGA TTGAGTCCCT CTCCCAGATG CTGTCCATGG	720
	CUTTOTOTOA TYAAGGUGGO TOCCTOADUA GOCTDOTYGOA GACCAARAAC TATGACATOR	780
.15	SANGEGETT GGACACCATC CACTATTCAA ASCATCOCC CCCTTTGC CCACTTTTGC	840
	CCACCTCTC TGUSTGCCCC TCTTCTGTCT CATACTTGTG TTAAGCTTGC GTAGAATTGC	900
50	ACCTOTOTO ACCRECCAGT TTCTCTGCCT TCTTCCAGGA TCACCGGTTA GGGTGCAAGA	960
	ACCENTITIAS COCAGCAANA CANGIGACAT GNACOGAGOS INCCIGIGIGES TOTOTOTOCT	1000
	i konan kon ili aktioni mitkati maani wali waake na ka ama	
()()	THE ATTACTO OF A STAGAS AS SECRETADA. TO PATETO A MUZAA SIA ARE TASSO :	12-

North All Control of the All

	Tronumatano aominina anamandemona monaratro de de desembera de Panandame	1329
5	TCACGAAGGG CATCCGCAAT STTGGTTTCA CTGAGAGGGTG CCTCCTCGTC TCTTCACCAC	1380
	TOTAGTTOTO TOATITOOAA ACCATOAGOT GOTTTTAAAA TAAGATOTOT TISTAGOOAT	1440
	OCTOTTAAAT TIGTAAACAA TOTAATTAAA INGCAIDCAGO ACTTTAACCA AAAAAAAAA	1500
10	AAAAAAAAA AAANAAAAAA AAAAAAAAAA AAAAAAAA	1558
15	(2) INFORMATION FOR SEQ ID NO: 54:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGIH: 94% Ease pairs (E) TYPE: nucleic acid	
20	(C) STRANTEINESS: double (I) TOPCICGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	
25	TAAAAATCAT GCTCTGTACC ATCCTCACCG TAGTCATCAT CATCGCCGCC CAGACCACGA	60
	GAACTACTEG GATECCTAAA AACGOOCCTS GREEDBEECCC ACTETECEGO COTOGATETE	120
30	CCAGCTCTT TCTGCAGWCA TACCGCGGGGAC CCAATGGGCG CCCTGCACAC CCGTTTCTGG	180
	GROSTILAGA CITEGRATACA TOSTARACTO ORCOTOCACS GARDSTOTOS COTREGERAGO	240
	AAGMTCBGAA TOCAGTTCCT CAGGAAACCCC TCCAAAACCC ACAGCGGCAG GGAGGGGGT	300
35	TTOCOGGATO COGGGACAAC GOOGGACOOF CAGTOGOFOO AGGCOCCCTO ACCOTCAAAG	360
	TSTAGEGOE FEAREFEAGE ANDUTEGETT TESTECOTAN ANGOEDISCET COTETATANS	420
40	CACUSCOCCA GCTCTGACAA AACCCCGCCT CCAGGTCGGC AGGCTCCGCT TCTTTTCTTC	480
	TOOGGGGGT GATTCASTOR ASTGATTEGGS TETSTGGGTT CAGGGCTCGC CCACAGACGG	540
	ACAGACCOCT CCCTTTCTTC CBGCAAAAGG ACCGAGCCCT GBGGTAGTAA GBSCCCCACA	600
45	CTECTGFTTT TEGGAAGTAC APTITEGEC YECCTCCACE CAGGTATCTS CCTATTTTCT	660
	TECTAATOOO AGAACCTITC CTITTECTTT TTTTAAGGAO ATTTEGGAAG TTCCTEGTST	720
50	AGGACCCTTC TCCCTGGGAT AAGAAACCTG CCTGTAAACG CTCTGTAAAT ACTCCCTTCC	780
	ACCCATOCCA GCCCCT93GC AGCCGGGGCAG AAGGGGAATCC AGGCTATGGA CCTCCCAAGT	840
	COCCECTORS OGSTCOCCTC GESCHOOCGE COTTETTETE ATCIGITGTET GAGTGTGTGT	900
55	GAACTTCTGA AAGACAATAT TAAAGAGACT TAGTTGAAAA AAAAAAAA	948

60 (2) INFORMATION FOR SEQ ID NO: 55:

WO 98/54963 PCT/US98/11422

315

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 490 base pairs (B) TYPE: nutleid acid (C) STRANDEDNESS double (D) TOPOLOGY linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
10	COGGAACTOC AGTGACAGCA GGAGTAAGAG TOGGAGGCAG GACAGAGCTG GGACACAGGT	60
	ATNOGAGAGGG GGTTCAOCGA COSTAGAGAG GGCAGACTAT CAGGGTGCCG GCGGTGAGAA	120
1 =	TOCAGGGAGA GGAGCGGAAA CAJAAGAGGG GCAGAAGACC OGGGCACTTG TGGGTTGCAG	180
15	ACCOCCTCAG CTATISTYSCA AGRICIA CACTOCCA CACTOCCA CACCOTCCCC	240
	GODETSCOOT TESTTUTSGI GOTTOTOSCI OTGEBBECCOS SGIGGGCICA GGAGGGGTCA	300
20	GAGCCCTCC TCCCGAGAGAGAGACCCCCCCCCCCCCCAGCCTGGAGCCTGGAGCCTGGAGCCTGGAGAGACCCCAGAGAGAG	360
	GGGGGGGCCCC GGGGGGCAGCCCCCCCCCCCCCCCCCC	420
25	GTCCGAAGCC ACCACCATGA GCCAGCAGGG BAAACTGGCA ATGGCACCAG TGGGGGCCATU	480
25	TACTICGADE AGGTOUTOGT GAACGAGGGE DETEGETTIG ACCGGGCCTC TEGETCCTTC	540
	GTAGCCCCTG TECGGGGGTGT CTACAGCTTC CGGTTCCATG TGGTGAAGGT GTACAACCGC	600
30	CAAACTGTOO AGGTGAGGOT GATGCTGAAG ACGTGGGCCTG TCATCTCAGC CTTTGCCAAT	660
	GATCCTGACG TGACCCCGGA GGCABUCACO AGCTCTGTGC TACTGCCCTT GGACCCTGGG	720
25	GACCGACTGT CTCTXCCCCT GCGTCGGGGGG NAATCTACTG GGTGGTTGGA AATACTCAAG	780
35	TTTCTCTGGC TTCCTCATIT TCCCTCTCT3 AACGACCCAA GTCTTTCAAG CACAAGAATC	840
	CAGCCCCTGA CAACTTTCTT CTGCCCTCTC TTGCCCCCANA AACAGCANAA GCAGGANANA	900
40	NACTOCCICI GGCTCCTATC CCACCITCTIT GCATGGGAAC CTGTGCCAAA CACCCAAGTI	960
	TAAGAAAAA ATAAAACTOT GCCATOTGCA	990
15		
45		
	(1) INFORMATION FOR SEQ II NO: 58:	
50	(1) SEQUENCE CHARACTERISTICS: (A) LENSTH: 1603 base pairs	

(B) TYPE: mudleid adid

(T) STRANDEDNESS: double

(D) TOPOLOGY linear

TO BE A CODE OF A RANK ROW AS CALL WAS INVOICED A CARD WAS A RECOVER WHAT A CONTRACT RANK AND CONTRACT RANK AS

 $\Theta()$

A. A. A. A. A.

	CCGCCGTCCT	AGCCGCTGCT	GTATTCGTGG	GAGCCGCCGT	GAGTICCCCG	CTCGTGGCTC	180
	CGGACAATGG	GAGCAGCCGC	ACATTGCACT	CCAGAAGAGA	GACGACCCCG	TCCCCCAGCA	240
5	ACGATACTCG	GAATGGACAC	CCAGAATATA	TTGCATACGC	GCTTGTCCCT	GTGTTCTTTA	300
	TCATGOSTET	CTTTGGGTTC	CTCATTMOC	CAMUTINGCTT	NAAGAAGAAA	CGCTATCGTT	3€0
10	GTACAA/CA/JA	AGCAGAGCAA	GATATOGAAG	AAGAAAAAGG	TTGAAAAGWT	AGEATTGAAT	420
	GACAGTGTGA	ATGAAANCAG	TGACACIGTT	GBBCAAATCB	TOCACTACAT	CATGAAAAAT	4 80
	GAAGCGAATG	CTGATGTTT	AAAGGC SATG	GTACKAGATA	acagocitgita	TGATCCTGAA	540
15	AGCCCCGTGA	COCCCAGCAC	ACCAG JEAGC	COGCCAGTGA	GTOOT KKKET	TTGTCACCAG	6(0)
	GGGGGA/GGCC	AGGGAAGCAC	Greterscoe	ATCATCTGCA	TACGGTOGGC	GTGTWGTCG	664)
20	AGAGGGATGT	GTGTCATCG3	TGTAGGEACA	AGCOGTOGCA	CTTTATAAAG	CCCACTAACA	720
	AGTCCAGAGA	GAGCAGACCA	00000000000	GCGAGGTCAC	GUTCUTTTCT	GTTGGCAGAT	780
	TTAGAGTNAC	AAAAGTGGA 3	CACAAGTCAA	ACCAGAAGGA	ADEGAGAAGD	CTGATGTCTG	840
25	TTAGTG3G3C	TGAAACCSTS	AATGGGGAGG	TGCCGGCAAC	ACCTGTGAAG	AGAGAACGCA	900
	GTGGCACAGA	GTAGCARGTG	A ROOGTBITT	TTGGTGACAT	TEEGGECAGA	GTGGTGCAGG	960
30	GTGAGGAGAA	GGTACTTGGA	GCCCCCAGG	TGCTGTGGCA	GCATAGGAAT	GGTATTTGAC	1020
	AGGGAAGTGG	GAGAGCITTC	CITGAGGGAG	GAAGACTGAG	GGGGACTGAA	CATGATTACT	1030
	TGTCTGCCTA	GAGCTTCTTG	TAAAGAAGTC	ACAAACTTAG	TGCCTCCAGG	GGCTTGGCTG	1140
35	TGTGATAATG	AGGATAGAGG	ATTACTTGTG	AGGCAATGTG	GCATGGTGGG	GATTGTGGCA	1200
	AACTAGAATT	CACATCACCC	AUCATATAGG	GCT'IGCATTA	CCACGAGGCA	GAAAGCACCT	1260
40	AGTGTTGCTG	CATCTTCTTA	CECAAAAAAAG	ACAAAATCCA	GACTTCTAAA	ATGTAAAATC	1320
	ACTGATTTC	GATATTOGCA	GCTTACTTTT	TTTTTTAAA	CAACCATGCA	GGCCAAATGA	1380
	CTTGTAATCT	TGTCACCATT	TTTAGGTAAA	CTGTGACTTG	AAAAAGTCTG	GAGCAAACAA	1440
45	ACCAATGCTT	TTTCCTTTTA	TTCTGTTGGR	AACCAGTTTT	CTTTGTGTCA	CAGTTYTGAA	1500
	ACCTCAATAC	GAATATTTCT	CTTCCCACCA	AATATTTTGA	GGCAATTGAA	AAGCCACAGT	1560
50	GATTTATTTC	TTGATTIGGC	AATTTTAATT	TTGCAAGACA	ATT		1603

(2) INFOFMATION FOR SEQ ID NO: 57:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1052 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

 $((\Delta_{\mathbf{v}})^{(1)}, (\mathbf{v})^{(1)}) + \Delta_{\mathbf{v}} = (((\partial_{\mathbf{v}})^{2} \Delta_{\mathbf{v}}) + \Delta_{\mathbf{v}})$

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
5	TACAGOTCAG GATGOCTSTA ADATTGTCAT CTCTGGCTT CTGGGTCCTG CTTAGCCTGC	60
J	TYPTTOCCTG GABBACTBAC CAGGGATBCG BCCCABCAAR ATGTTACTAA ATCATACTCT	120
	CONSCITASO TYPODOASAS CYCYCACYSS YSSCYPSCYGY TOCAACOCGY TOYGYGSCCA	180
10	GAGTATACAT TTTGGAADOT CTTGGAGGGC AFCCTGCAGT TCCAGATGAA CCATAGOSTG	240
	CPTCAGCAGN AAGGCCCGAG ACATGTAIGC AGAGGAGGGGG AAGAGGCAGC AGCTGGAGAG	300
15	PGACCAGGCT ACAGTGACAG AGCAGCTGCT GCGAGAGGGG CTCCAAGCCA GTGGGGGACGC	360
	CCAGCTCCGA AGGACACGCT TGCACAAACT CTCGGCCAGA CGGGAAGAGC GAGTCCAAGG	420
	CTTOCTGCAG GCCTTGGAAC TCAAGCGAGC TGACTGGCTG GCCCGTCTGG GCACTGCATC	430
20	AGRETSAATS AGRETSGERE CETTSCEART TECCETESCE TETTSCETCOA SEGETCEMET	540
	MYSSTPOSTT TPSTPSSTSA AASPSAASSTS STTPSSTBAY AATSAATSGI STTSSSTTTS	600
25	CTTGGCTGGG GAGCCCCCA GCCLAGGTTT GCTGCCCATA GATACCTTTG GCCTGCCTGR	660
	GACAGGCTCC TGAGGAGGAT TGAGGGTGAA AGTCTCCCAC GAGTACACTA AACCTAGGTC	720
	TGGTEACCAA TAGGGTTTTGG AGAGCAAAGG GCCACAACTC ATCAGCTGCC TSTCTCTTAG	780
30	ATGCACTITC TTTTTCCACC AGCACATOCT TCAACACACA GAATITCAGG GAAGAGTTCT	840
	COCCAAAACC CTAGCTCTTT ACCCTTCCAT TTTAGCCTTU CACCAGAGCTT CCACAAAAGA	900
35	TTP9DSTCTA CCTTBSATSE GSPASTAAAT AACTAATAGG CAGGCAGTTA TTPGGGTAAG	960
	GAAAAAAGGG GTGGGAGAGA CAGAAAATTT GCCCACTGCT GCTCCTCCCC TTGGSTYTCC	1020
	ACCTGGGATT TGCTATTGAA TCTCTACCCT NN	1052
40		
	(2) INFORMATION FOR SEQ ID NO: 58:	
45	(i) SEQUENCE CHAPACTERISTICS:	
	(A) LENGTH: 814 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPCLOGY: linear	
50	(xi) SEÇUENCE DESCRIPTION: SEQ 10 NO: 58:	
	ACNOGNINGGO GGCCGCTCTA GAACTAGGGG ANCCCCCCCCG CTGCAGGAAT TCGCCCACGAG	50

	ACTGCAACCT GGGAGGCAGA GGTTGCAGTG AGTCGAGATG GTGCCATTGC TCTCGTTTGG	300
	GCAACAAGAG TGAAACTCTT GTCTCAAAAA AAAAAAAAAA	350
5	GTCATTACTG GTGGGATCTG GTGACACAAG ATAGGATTAA ACGTGACATG GGACATAAAA	420
	TTGGTTAAAA AAFTTTGTTT TTTAATTACG TAATGTAAAA GCCCAACAAA CACTTTATGC	430
10	AAGATTGGAA TGTATCTTCA AATTCAGATT TAATAAACAT GTAAAGATCC TCTGTATATA	540
10	AAAGTTGTAT TTAATCCCTT GTGCCCAAG AATGCTATAA AAGATCCCAA GAATGTTATC	600
	TATGAAAAGA TAGCAATAGG GAATGGTGAA CAAATAATTT AATTTGCCAA TICTAAAAAA	650
15	CATGGACTTA AAGGCCATGA AAACTTGGTT CCATAGTTTT AAGTGTTTTA TGGTTCCAAT	720
	ACAAAACCAG AGT3GTTTAC ATTCCACAAT NACCAAATTT GCATGCAATN TTGCGGTAAT	730
20	TTTNGGTATT TGCCATGGGA TACTATTCAT TTTT	814
	(2) INFORMATION FOR SEQ ID NO: 59:	
25	(i) SEQUENCE CHARACTERISTICS:	
	:A) LENGTH: 1215 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
	AGAGGAAGTC TITTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA	÷0
35	GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG	1::0
	ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACOG	180
40	ATTATCTATA TITGTTCCCA TITTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA	240
	GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC	300
	CTCTGCCTAC CCACRTGCCT GCTTACCTGC CAGATAACCA AGTGNAGATG TETGEGAGTG	360
15	GCTAGTTTTC ACATTCTTAC TAGTGTTTGG YTCACCTTTG GGCAAAGGCC CICTCTAGGC	420
	CTTGCCCCAC CTCCATCAAA CGCAGACACT GTAGTCAGAC CTCAGYAATA TAGGAGGCAA	480
50	TAATCTTTTA ACAGTGTTTT GCAAACAAAG AAAAAGAGAA AAATCCCAGG CAGGGGAACT	540
	CGCCACCTGC CCACGCTAGT TCCATCCACG CTCAAGACCC GCCCTTAGAC CAGGCAGGCA	600
: 5	AAGGCCCCCA TCACACTOGG CCACTAGTGG GGTCCTGAGG CCAAGAAAGA AACCAGACCC	660
55	TGTATGACAA GTTGGGKTCT TTCCAGAACA CGACAGAAAC AGGGGGGGCC CCTTGTTAAT	72Q .
	GCCACTCCAT ACTCCAGAAG CATTATTCCT TATTTGGGAC AGCCAAGGGC AGATTCACAG	780

CCCACCAGGA ATGCCGTTTU CTTTTTATGS ATCTGTTGGG AACCAGAGA ANTCAACAGA TCAATSACAT AGGATCCGAA GTGCAATCAT AGTTTGGCAT TTCACAAACT CTGNACAGCA AGGTATTGGT AGGTTACTCA ATTTCAAAAG GGCCCCATGG CCAAATATGT 108: TTAGGAACGG CTCTTTCNAT TTCTTTTTTT GGAGACCCAT TGTATATAAT ATATGTCAAA GGCTTTCGGA ATTCCT CAG GAAAGAAATU AGCTTTGTTA AATCCNAAAA AAAAAAAAAA 120: AAAAAAATAG ACTCG (1) GEQUENCE CHAPACTERISTICS: (A) LENGTH: 478 base pairs (E) TTPE: nucleic acid (C) STRANDENNESS: dcuble (E) TOPOLCGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60: ATTCTTATGA ACATGA CGT TTGAATTGGT TGGCAAATGT TTAATTTTAA TATCCATAAT CAGTGAGGTC CTGCTGGCTG TAATCATTAA TTGTGAAATC TAAGGACCTT AGTTCATGGC TCTAGAATTT CACAGAAAAR TGYCNTATGA TACGAGCATT AAGTTTATTT CTTCTGATCT TTGATGGAGC TTGTTCAGT TAATCATTTA TTGTGAAATC TAAGGACCTT CTTCCCATGC CAAAAGGGAC TGGTCTACAT ACCTCCGTTA AACCCCTGAT CAAATCACTA AAAGAAAAATC TGTTACCTCT AATGAATTAT CCTGATTGTA AGTTAAAAAA AAAAAAAAAA			
TCAATSACAT AGGATCOGAA GTGCAATCAT AGTCACTCT AGTTTGCAT TICACAAACT CTONACAGCA AGGATATTAT AGGTTACTCA ATTTCAAAAG GGCCCCATGG CCAAATATGT TTAGGAACCG CTCTTTCHAT TICTTTTTTT GGAGACGGAT TGTATATAAA AAAAAAAAA GGCTTTCGGA ATTCCT RCAG GAAAGAAAT' AGCTTTGTTA AATCCLAAAA AAAAAAAAA 1200 AAAAAAATAG ACTCG (2) INFORMATION FOR SEQ ID NO: 60: (1) SEQUENCE CHAFACTERISTICS: (A) LEMOTH: 478 base pairs (B) TYPE: nucleic acid (C) STRANECHESS: dcuble (E) TOPOLGGY: linear (X1) SECUENCE DESCRIPTION: SEQ ID NO: 60: ATTTCTTATG ACAYGGEGT TGAATTGGT TGGCAAATCT TTAATTTTAA TATCCATAAT CAGTGAGGTC CTCCTGGCTG TAATCATTGA TACGGAGATT AAGTTATTT CTTCTGATCT 35 TGGATCAGG TTTGTTCAGT TATCCTGTT TGTGATTATT TGGTCATCTA CTTCCCATGG CAAAAGGGAC TGGTCTACAT AGCTGCGTA AACACCTGAT GAAATCACTA AAAGAAAAAG 40 TGTTACCAGC TTTGTTCAGT TACCTGTT TGTGAATCAT CAAAACACGA GGGAAAAAGGA AGCAAGCGAC TGGTCTACAT AGCTGCGTA AACACCTGAT GAAATCACTA AAAGAAAAAGA AGCAAGCTCA AGCACTTGAG CTAAACAAAA AAAAAAAAAA		AAGGTCAGGT TAGGGCTCCT GTACCCATTC TGTTCCACCA CTGTTTGATC TCTCTGGCCT	900
TCAMPACAT AGGATOUGAA OTECAMENT AGTECATET AGTETOGCAT TICACAAACT CTONACAGCA AGGTATEGT AGGTEACTCA ATTECAAAG GOCCCCATEG CCAAATATGT 108: TTAGGAACCG CTGTTTONAT TICTTTTTT GAGGACGCAT TGTATATAAT ATATGTCAAA 114: GOCTTTCGGA AUTOCT MAG GAAAGAATM AGCTTTGTA AATCCMAAAA AAAAAAAAAA 120: AAAAAAATAG ACTCG (2) INFORMATION FOR SEQ ID NO: 60: (1) DEQUENCE CHAFACTERISTICS: (A) LEMMTH: 478 base pairs (B) TYPE: nucleic acid (C) STRANGENESS: deuble (C) TOPOLOGY: linear (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 60: ATTCTTAGGA ACATGGACGT TAATCATTGT TOGCAAATGT TAATTTTAA TATCCATAAF 30 ATTCTTAGG ACATGGACGT TAATCATTGT TOGCAAATGT TAATTTTAA TATCCATAAF CAGTGAGGTE CTOCTGGGTG TAATCATTGT TAGGACATT AGGTTATTT CTTCTGATCT 186 35 TDGATGCAGC TTTGTTCAGT TAATCATTTT TOGTCAAATCAT AAAGAAAAATG 40 GTTGCCTTA AATGAATTAT CUTGATTGTA AGCACCTGAT CAAATCACTA AAAGAAAATG AGGAAAGGGAC TOGTCTACAT AGCTGCGCTA AACACCTGAT CAAATCACTA AAAGAAAATG 40 GTTGCCTTT AATGAATTAT CUTGATTGTA AGTTAAAAAA AAAAAAAAA AAACGACTTAT AGGAAAAGG AGGAAAGCTCA GGTAAAGAAA KCTTAAAAAA AAAAAAAAA AAACGACTTAT AGGAAAAGCA 426 436 447 (3) INFORMATION FUR SEQ ID NO: 61: (4) SEQUENCE CHARACTERISTICS: (A) LENGTH: 618 base pairs (B) TTE: nucleic acid (C) STRANGENESS: double	5	CCCACCAGGA ATGCCGTTTC CTTTTTATGG ATCTGTTGGG AACCAGAGAG AATCAACAGA	960
10 THAGGAACCG CTCHTCHAT THOTTTTTT GRAGACGCAT TGTATATAAT ATATGTCAAA GGCTTTCOGA ATTCCT XCAG GAAAGAAATA ASCTTTGTTA AATCCHAAAA AAAAAAAAAA 1206 AAAAAAATAG ACTCG (2) INFORMATION FOR SEQ ID NO: 60: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 478 base pairs (B) TYPE: nucleic acid (C) STRAINBERNESS: dcuble (C) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60: ATTTCTTATG ACATGGCGT TEGAATTGGT TOGCAAATGT TTAATTTTAA TATCCATAAT CAGTGAGGTC CTGCTGGCG TAATCATTAA TTGTGAAATC TAAGGAGGTT AGTTCATGGC 120 TCTAGAATT CACAGAAAAR TGYCHTATGA TACGAGCATT AAGTTTATTT CTTCTGATCT 180 35 TEGATGCACC TTTGTTCAGT TTATCTTTTT TTGTATTTAT TGGTCAATCAC CAAAAAAAAAA	J	TCAATGACAT AGGATOOGAA OTGCAATGAT AGTCACTTCT AGTTTGGCAT TTCACAAACT	102
GOCTITICOGA ATTICIT MAG GAAASAAATM ASCITITOTTA AATCOMAAA AAAAAAAAAA 1206 (2) INFORMATION FOR SEQ ID NO: 60: (3) LENGIH: 478 base pairs (4) LENGIH: 478 base pairs (5) TYPE: nucleic acid (C) STRANLENNESS: double (C) STRANLENNESS: double (E) TOPOLOGY: linear (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 60: ATTICITADS ACAPSS XGT THEAATTEST TEGCAAATCT THAATTITAA TATCCATAAT CAGTGACGTC CTOCTGSCTG TAATCATTAA TEGTGAAATC TAAGGASCTT AGTTCATOGC 120 TCTAGAATTI CACAGAAAAR TGYCHTATGA TACGAGCATT AAGTTATTT CTTCTGATCT 180 CAAAAGGGAC TETGTTCAGT THATCTSTTT TEGTATTAT TOGTCATCTA CTTCCCATGC CAAAAGGGAC TOGTCTACAT ACCTGCGCTA AACACCTGAT CAAATCACTA AAAGAAAAACG TGTTACCTCT AATGAATTAT CCTGATTCTA AGTTAAAAAA CAAAACCACA AAAGAAAAAGGA 40 GTTTGCTTTT TAAAAAGAAK KCTTAAAAAA AAAAAAAAA AAACGACTTT AAGAAAAAGGA 420 ACCAAAGCTCA GGTAAGGTGC ACACATTCGC CTAAGGAAGC TAGACCCTGT COAGAACC 478 (C) INFORMATION FOR SEQ ID NO: 61: (C) INFORMATION FOR SEQ ID NO: 61: (D) TYPE: nucleic acid (E) TYPE: nucleic acid (E) TYPE: nucleic acid (E) TYPE: nucleic acid		CTGNACAGCA AGGTATTGGT AGGTTACTCA ATTICAAAAG OGCCCCATGG CCAAATATGT	108)
20 (2) INFORMATION FOR SEQ ID NO: 60: (3) SEQUENCE CHARACTERISTICS: (A) LENGTH: 478 base pairs (B) TYPE: nucleic acid (C) STRANLEINESS: detable (E) TOPOLCGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60: ATTICITATE ACANAGEMENT TREATTERST TOGGARATOT TRANTITIAN TARCCATANT (A) CAGTGROSTE CROCTESCTS TARTENTERA TRIGGRAPH AGTICATION 120 TOTAGRAPTIC CACAGARAR TOYENTATERA TRIGGRAPITA TOGTCAPOTA CTTCCCATEG 240 CAAAAGGGAC TETGTPEAGT TRATECTSTET TESTATTAT TOGTCAPCTA CTTCCCATEG 240 CAAAAGGGAC TEGTTACAT ACCTECCTA AACACCTGAT CAAATCACTA AAASAAAATC 360 GTTTGCTTTT TAAAAAGAAK KOTTAAAAAA AAAAAAAAA AAACGACTTN AAGAAAAGGA 420 ACCAAAGGTCA GGTAACGTGC ACACATTCGG CTAACGAACC TAGACCCTCT COMMANC 478 45 (2) INFORMATION FOR SEQ ID NO: 61: (3) SEQUENCE CHARACTERISTICS: (4) LENGTH: 618 base pairs (B) TYPE: nucleic acid (C) STRANDENESS: double	10	TTAGGAACCG CTGTTTSNAT TTCTTTTTT GGAGACGCAT TGTATATAAT ATATGTCAAA	1140
(2) INFORMATION FOR SEQ ID NO: 60: (1) SEQUENCE CHAPACTERISTICS: (A) LENGTH: 478 base pairs (E) Type: nucleic acid (C) STRANLEINESS: deuble (E) Topology: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60: ATTITCTIATOS ACATGS/SEGT TESAATTSET TOSCAAATOT TEAATTTTAA TATCCATAAF (CAGTGAGGTC CTOCTOSCTG TAATCATTAA TETGGAAATOT TAAGGA/SCTT AGTTCATGGC TCTAGAATTT CACASAAAAR TGYCMTATGA TACGAGCATT AAGTTTATT CTTCTGATCT 180 CAAAAGGGAC TEGGTCAGT TEATCTSTIT TEGTATTTAT TOGTCAACTA CTTCCCATGC CAAAAGGGAC TGGTCTACAT ASCTECSCTA AACACCTGAT CAAATCACTA AAAGAAAATS TGTTACCTCT AATGAATTAT CCTGATTSTA AGTTAAAAAA CAAATCACTA AAAGAAAATS GTTTGCTTTT TAAAAAGAAK KCTTAAAAAA AAAAAAAAAA AAACSAJTTN AAGAAAAGGA AGCAAGGTCA GGTAAGSTGC ACACATTCGG CTAAGGAACC TAGACCCTGT GGAGAACC 478 (2) INFORMATION FOR SEQ ID NO: 61: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 518 base pairs (B) TTPE: nucleic acid (C) STRANDECNESS: double		GGCTTTCGGA ATTCCT XCAG GAAAGAAATC AGCTTTGTTA AATCCNAAAA AAAAAAAAAAA	1200
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 478 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: deuble (E) TOPOLGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60: ATTICITATE ACATESEED TERANTESET TOSCAAATOT TIANTITIAN TATECATAAT CAGTGACGTC CTOCTESECT TATACATTAA TIGTGAAATC TAAGGASCTT AGTTCATGGC 126 TCTAGAATTT CACAGAAAAR TGYCMTATGA TACGAGCATT AAGTTCATTCT CTCTCGATCT 180 CAAAAGCGAC TITTGTTCAGT TTATCTSTTT TTGTATTTAT TCGTCATCTA CTTCCCATGG 240 CAAAAGCGAC TGGTCTACAT ASCTSCSCTA AACACCTGAT CAAATCACTA AAAGAAAATS 300 GTTTGCTTTT TAAAAACAAK KCTTAAAAAA AAAAAAAAA AAAACGACTTA AAGAAAAGGA 420 AGCAAGCTCA GGTAACGTGC ACACATTCGG CTAAGGAAGC TAGACCTGT CAAGAAACGA 420 AGCAAGCTCA GGTAACGTGC ACACATTCGG CTAAGGAAGC TAGACCTGT CAAGAAACGA 420 (C) INFORMATION FOR SEQ ID NO: 61: (a) LENGTH: 518 base pairs (b) TYPE: nucleic acid (c) STRANDENNESS: double	15	AAAAAATAG ACTCG	1215
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60: ATTICITATE ACATESESCE TERANTEST TESCARATE TRACTITA TARECATANT 60 CAGTGACCTE CTGCTGSCTG TARTCATTA TTGTGAAATC TAAGGASCTT ACTTCATGGC 120 TCTAGAATTI CACAGAAAAR TGYCMTATGA TACGACCATT AAGTTTATT CTTCTGATCT 180 35 TTSATGCAGC TTTGTTCAGT TTATCTSTTT TTGTATTTAT TGGTCAPCTA CTTCCCATGC 240 CAAAAGGGAC TGGTCTACAT ASCTSCSCTA AACACCTGAT CAAATCACTA AAAGAAAATG 300 GTTTGCTTT TAAAAAGAAK KCTTAAAAAA AAAAAAAAA AAACGASTTI AAGAAAAGGA 420 AGCAAGCTCA GGTAAGGTGC ACACATTGGG CTAAGGAAGC TAGAGCCTGT GGAGAAGC 478 45 (2) INFORMATION FOR SEQ ID NO: 61: (3) SEQUENCE CHARACTERISTICS: (A) LENGTH: 618 base pairs (B) TYPE: nucleic acid (C) STRANDEINESS: double	20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 478 base pairs (B) TYPE: nucleic acid	
ATTTCTTATE ACATEGREG TEGRATEGE TOGCAAATCE TEAATTTAA TATCCATAAF 600 CAGTGAGGTE CTGCTGGCTG TAATCATTAA TEGTGAAATC TAAGGAGCTT AGTTCATGGC 1200 TCTAGAATTE CACAGAAAAR TGYCMTATGA TACGAGCATT AAGTTTATTT CTTTTGATCT 1800 CAAAAGGGAC TTTGTTCAGT TTATCTGTTT TTGTATTTAT TOGTCATCTA CTTCCCATGC 2400 CAAAAGGGAC TGGTCTACAT AGCTGCGCTA AACACCTGAT CAAATCACTA AAAGAAAATG 3000 GTTTGCTTT AATGAATTAT CCTGATTGTA AGTTAAAAAT CAATATTTCC CCGTAGTGAG 3600 GTTTGCTTT TAAAAAGAAK KCTTAAAAAA AAAAAAAAA AAACGAGTTA AAGAAAAGGA 4200 AGCAAGCTCA GGTAAGGTGC ACACATTGGG CTAACGAAGC TAGAGCCTGT GGAGAACC 478 (2) INFORMATION FOR SEQ ID NO: 61: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 618 base pairs (B) TTPE: nucleic acid (C) STRANDEDNESS: double	25		
CAGTGAGGTC CTGCTGGCTG TAATCATTAA TTGTGAAATC TAAGGAGCTT AGTTCATGGC 120 TCTAGAATTT CACAGAAAAR TGYCMTATGA TACGAGCATT AAGTTTATTT CTTCTGATCT 180 35 TTGATGCAGC TTTGTTCAGT TTATCTGTTT TTGTATTTAT TOGTCATCTA CTTCCCATGC 240 CAAAAGGGAC TGGTCTACAT AGCTGCGCTA AACACCTGAT CAAATCACTA AAAGAAAATG 300 TGTTACCTCT AATGAATTAT CCTGATTGTA AGTTAAAAAT CAATATTTCC CCGTAGTGAG 360 GTTTGCTTTT TAAAAAGAAK KCTTAAAAAA AAAAAAAAAA AAACGAGTTA AAGAAAAGGA 420 AGCAAGCTCA GGTAAGGTGC ACACATTGGG CTAAGGAAGC TAGAGCCTGT GGAGAACC 478 (2) INFORMATION FOR SEQ ID NO: 61: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 618 base pairs (B) TTPE: nucleic acid (C) STRANDEDNESS: double		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
TCTAGAATTT CACAGAAAAR TGYGMTATGA TACGAGCATT AAGTTTATTT CTTCTGATCT 180 35 TTGATGCAGG TTTGTTCAGT TTATCTGTTT TTGTATTTAT TGGTCATCTA CTTCCCATGC 240 CAAAAAGGGAC TGGTCTACAT ACCTGGCTTA AACACCTGAT CAAATCACTA AAAGAAAATG 300 TGTTACCTCT AATGAATTAT CCTGATTCTA AGTTAAAAAT CAATATTTCC CCGTAGTGAG 360 GTTTGCTTTT TAAAAAAGAAK KCTTAAAAAA AAAAAAAAAA AAACGAGTTN AAGAAAAGGA 420 AGCAAGCTCA GGTAAGGTGC ACACATTGGG CTAAGGAAGC TAGAGCCTGT GGAGANGC 478 45 (2) INFORMATION FOR SEQ ID NO: 61: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 618 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	30	TAATADSTAT TOTAAADBET TEETTAAETT TEETTAASTADA ETATTOTTTA	60
THE TOTAL CONTROL OF THE TOTAL TOTAL TOTAL CONTROL CONTROL CAAAAGGGAC TOTAL CAAAAGGGAC TOTAL ABCTECOTA AACACCTGAT CAAATCACTA AAAGAAAATS 3000 TOTAL AATGAATTAT COTGATTETA AGTTAAAAAT CAATATITCC COGTAGTGAG 3600 GTTTGCTTTT TAAAAAGAAK KOTTAAAAAA AAAAAAAAAA AAACGAGTTA AAGAAAAGGA 4200 AGCAAGCTCA GGTAAGGTGC ACACATTGGG CTAAGGAAGC TAGAGGCTGT GGAGAAGC 478 45 (2) INFORMATION FOR SEQ ID NO: 61: (3) SEQUENCE CHARACTERISTICS: (A) LENGTH: 618 base pairs (B) TIPE: nucleic acid (C) STRANDEDNESS: double		CAGTGAGGTC CTGCTGGCTG TAATCATTAA TTGTGAAATC TAAGGAGCTT AGTTCATGGC	120
CAAAAGGGAC TGGTCTACAT ABCTGCGCTA AACACCTGAT CAAATCACTA AAAGAAAATG TGTTACCTCT AATGAATTAT CCTGATTGTA AGTTAAAAAT CAATATTTCC CCGTAGTGAG GTTTGCTTTT TAAAAAGGAAK KCTTAAAAAA AAAAAAAAAA AAACGAGTTA AAGAAAAGGA AGCAAGCTCA GGTAAGGTGC ACACATTGGG CTAAGGAAGC TAGAGCCTGT GGAGAACC 478 (2) INFORMATION FOR SEQ ID NO: 61: (3) SEQUENCE CHARACTERISTICS: (A) LENGTH: 618 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double		TCTAGAATTI CACAGAAAAR TGYGMTATGA TACGAGCATT AAGTTTATTT CTTGTGATGT	180
40 TGTTACCTCT AATGAATTAT CCTGATTOTA AGTTAAAAAT CAATATTTCC CCGTAGTGAG GTTTGCTTTT TAAAAAGAAK KCTTAAAAAAA AAAAAAAAAA AAACGAGTTN AAGAAAAGGA AGCAAGCTCA GGTAAGGTGC ACACATTGGG CTAAGGAAGC TAGAGCCTGT GGAGANCC 478 (2) INFORMATION FOR SEQ ID NO: 61: (a) LENGTH: 618 base pairs (b) TYPE: nucleic acid (c) STRANDEDNESS: double	35	TTSATGCAGO TTTGTTDAGT TTATOTETTT TTGTATTTAT TXGTCATOTA CTTCCCATGC	240
GTTTGCTTTT TAAAAAGAK KCTTAAAAAA AAAAAAAAA AAAGAGTTN AAGAAAAGGA 420 AGCAAGCTCA GGTAAGGTGC ACACATTGGG CTAAGGAAGC TAGAGCCTGT GGAGANGC 478 45 (2) INFORMATION FOR SEQ ID NO: 61: (A) LENGTH: 618 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double		CAAAAGGGAC TGGTCTACAT AGCTGCGCTA AACACCTGAT CAAATCACTA AAAGAAAAATG	300
AGCAAGCTCA GGTAAGGTGC ACACATTGGG CTAAGGAAGC TAGAGCCTGT GGAGANGC 478 (2) INFORMATION FOR SEQ ID NO: 61: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 618 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	40	TGTTACCTCT AATGAATTAT CCTGATTCTA AGTTAAAAAT CAATATTTCC CCSTAGTGAG	3611
(2) INFORMATION FOR SEQ ID NO: 61: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 618 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double		GTTTGCTTTT TAAAAAGAAK KCTTAAAAAA AAAAAAAAAA AAACGAGTTN AAGAAAAAGGA	420
(2) INFORMATION FOR SEQ ID NO: 61: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 618 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: double		AGCAAGCTCA GGTAAGGTGC ACACATTGGG CTAAGGAAGC TAGAGCCTGT GGAGANGC	478
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 618 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	45		
(A) LENGTH: 618 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: double		(2) INFORMATION FOR SEQ ID NO: 61:	
	50	(A) LENGTH: 618 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	

60 Theoretical focasitysia fusicaaasaa tiyaanaa ahaataatsaa 100

 $(\partial_{X_{i}})^{2} = (\mathbf{x}_{i})^{-1} + (\partial_{X_{i}})^{2} + (\partial_{X_{i}}$

	GCTACTAGGT AAGJCTTCTG GGACTTTCAG ATATTTTGGG GAAGATTGAT TTTTGTTCTT	130
5	ACATOCTOTG GACCCTTCGC CATCAAANGG TATGGGGAAG CTCATCCGTC TGTCTGTGAT	240
	GSTCATGTCA GTCAGGCSTC TTTTTAGTAT TTACTSSSTS CTCAGTACTG TGCCAGATGC	300
	TSTEGGGAGE EGT-GT95TA TGGAGGAGJA STGETELAGA GGAETETSET GTGTSSCAGG	360
10	CCAGCATAAA CAAGCCAAGG GGAAAAGGCA GGCATBSAAT AAAGBGGGAG AATACCAGTG	420
	TSTGACTTAC TGCTGACTGT GTGGATTAGC CTATCAGCAG TAATCAAGCA GGGCBGAGCG	480
15	CATTATUTTT GAGUCAGAAG AGTBAGCAUT OGSCOBAGGU TUGAGCATCA AGAGBUGGTG	540
	TAGGACENCA AGGETTETTN ENGGGGAGAC AACGTEAATA AGENGTEAGT AGTEACEGAE	600
	ASTITISCGA ASSAAGGG	618
20		
	(2) INFORMATION FOR SEQ ID NO: 62:	
25 30	(i) SEIVENCE CHARACTERISTICS: (A) LENGTH: 751 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
	TOGACCOACG COTOCOAGGA GCTGGACTTC TOAGACAGCC ATTCTCCTTG CATAGCACTO	60
35,	TOTGOTGOTA CAGOTCATAG AAGTCAACAA TITTOTTCAA CACTGGTAGG CAGOOTCTAA	120
	ATGGCCCTGA TEACCCTCAC CTCCTGCCAT TCACACCNNT GTAAAATTCC ACCCCTGGAC	180
40	CTAGTGACTO ACTTOTAACA ANGAGAATAC AGCAAAAGTA ACATCGCTTO TGAGGTGAGG	240
	CTACAAGGAG ACTACGATGC CTGCCTTGGT CACCCTTCTC CTGCTCTTTC CATTGCTCCC	300
	TUTGATGGAA GUCAGTTGUC ATGTGATGAG GTGCCCTATG GAGAGGCCCA CGTGACAAGG	360
45	TATTSTAAAA AGCSTCTGAC CAATAGCCAT CTAGAAACGG AGGCCCAGTC CAGCAGCCTC	420
	TGAGATGAAT COTECCAACO TGAGOTTEGA GACAGATTOT CTOCCTATCO TGCCTTEGA	480
50	TGATCACAGO CADCACCAAC ACCTTCACTS CCTSSTGAGA GGCCAAGCCA GTGAACCCAA	540
	GGTAAACTGG ACAGAATCCT GACCCACAGA AACTGAGATA ATGTTTGTTA TTTTAAGCTG	600
	CTCAGTTTGT TAGAGAGGAA TAGATAAGTA ACTGAAAGAG CATAAAATTC TAATATTTTA	660
55	TTCTATCACA CAAACCAGGT AATACCAAGT AAATGCCATT ACTATACACA TATTTTTGTA	720

	(1) Theorem. In rok Sey in No. 60.	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 780 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPCLOGY: linear	
10	(M1) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
	CNERCAGTCA CRETCOCCCA TECCCCCCTC CACCCACCCC TCCCCGTTTGG CAACTCCTGA	60
15	GCCCTGCATG SYSYSACTTCA CATTITCCTA CCTCTCCTTC TAATCTCTTC TAGAGCACCT	120
13	GCTATTIBICA ACTINITAGAC CIGCTCCAAA CTATTGACTA GGATAGAATT TGATOCCCTA	180
	ACTUACTOTO TOCOGREGOTO ATTIGUTOCTA ACANCAPTAN CIPOTOCTO CTUTAGOGO	240
20	CACCATOCTA ACGGGGGGGAC GTCCTAATCC AACTGGGAGA AGCCTCAGTG GTGGAATTCC	300
	AGGCACTYCTO ACTYTCAAGGC TGGCAAGGGC CAGGATYCKG GGAATGGAGC TGGGGCTTAG	360
25	CTCCCAAGCTG GTCTGAAGCA CACAGGGAAT GGGAGAGGAG GATGGGAAGT AGACAGTGGC	420
رخ	TOSTALIBOST CTSASSSTCS CTSGGGGGGGTG CTCAAGCTCC TCCTGCTCCT TGSTGTTTTC	480
	TEXTEXTITE ESSECTIVES ASTECCTITE TESTCATETS AGASTSAAAT GIVEGSATCS	540
30	AGGATGSCCT TOUTTOCTOT TACCCTTCCT COUTCAGOUT GCAACCTCTA TOUTGJAACC	500
	TWICTFORM THOMSOCAA CTATGCATOT GTTGTCTGIT CCTCTGCAAA GGCCAGCCAG	560
35	CTTGGGAGGA GCAGAGAAAT AAACAGCATT TCTGATGCCA AAAAAAAAAA	720
21.27	GCGGCCGALL GCTTLCTNCC CTTTAAGTAA GGGJTTAATT TTTAGCTTGG GCACTNGGCC	7 80
40	(2) EGFORMATION FOR SEQ ID NO: 64:	
	(1) CELUMICE CHAPACTERISTICS: (A) LENGTH: 583 base pairs	
45	(S) TYPE: nucleic acid (C) STPAITEDNESS: double	
	(E) TOPOLOGY: linear	
50	(N1) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
50	TICCGARITA ATOGACTOAC TATAGGAAWI GCOCTOCCCA TGACCCGCGG TAACCAGCGT	60
	GAGGTTOGOC COCACAAGAA TATGAAAAAAG CAGAGGGACT CGGTTAAGGG AAAAGCCGAGAGAGAGAGCGA CT CGGTTAAGGGG AAAAAGCCGAAAAAAG CAGAGGGACT CGGTTAAGGGGAAAAAAG CAGAGAGGGACT CGGTTAAGGGGAAAAAAG CAGAGGGGACT CGGTTAAGGGGAAAAAAG CAGAGGGGACT CGGTTAAGGGGAAAAAAG CAGAGGGGACT CGGTTAAGGGGAAAAAAG CAGAGGGGACT CGGTTAAGGGGAAAAAAAG CAGAGGGGACT CGGTTAAGGGGAAAAAAAAG CAGAGGGAACT CGGTTAAGGGGAAAAAAAG CAGAGGGAACT CGGTTAAAGGGAAAAAAAAG CAGAGAGGAACT CGGTTAAAGGGAAAAAAAAAA	120

trings of the section 60

WO 98/54963

PCT/US98/11422

	AGTOCTCACA GGTCCCAGCA CCGATGGCCAT TCCCTTTAGC CTGAGTCTGC AGCGGGTCCC	360
	TTTTGTGCTT CCTTCCCCTC AGGTAGCCTC TCTCCCCCTG GGCCACTCCC GGGCGTGAGG	420
5	GGGTTACCCC TTCCCAGTGT TTTTTATTCC TGTGGGGCTC ACCCCAAAGT ATTAAAAGTA	480
	GCTTTGTAAT TCCAAAAAAA AAAAAAAAA AAAAAAAAA AAAAAAAA	540
10	DDDDDDDD DDDDEEDDED EDDDMMAAAA AAAAAAAAA AAAAAAAAA	588
15	(2) INFORMATION FOR SEQ ID NO: 65:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 774 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
25	TTTAAAGATG AAGAAATUAC AAGGGAGGGA GATGAGATGG AAAGGTGTTT GGAAGAGATA	60
	AGGGGTCTRA GAAAGAAATT TAGGGCTCTG CATTCTAACC ATAGGCATTC TCGGGACCGT	120
	CCTTATICCA TYLAATIAAT ITCTCTGAGA ATTGAATTAT TTTCTGTTAT TAATGTTGIC	180
30	ACTGCTTTCT GTTTGTCTGC ACTTTCTTGA TAAATATTTG CTATCGTTTT ACTCCAGTCA	240
	TTCGATGTTG CTGAGATITA CATATGAETC TTGTCAACAT CTCATETTTT GACCCAATCT	300
35	TATTCATTTA ATAAGAGJUC TCATTCATTT GCATGGAAAA ATGCTCATTG TATATT3CAA	360
	AGTGAAAATA ACGAGTTECA AAACAGTETA TACATATATG TGTGTATATA TGTACACTTT	420
	ATTTGTACAT TTCTATGTSA CATAATGCAA AGGAAAGTGT CTGATTTTAT TATACACCAA	480
40	AGGTTAACAG TGAATCTCTG TGTGATCTCT TTTTTTTTCT TTTTGCCTAT CTGCATCTTC	540
	TCACTTGCCA AAAAATGAAT ATATGTTTAT GTGTGTATAT TACTTGTGTC ACAAAAAACC	500
45	CTAAAGTAGA CAGTAAAASA ACTTGTCAAT CGCCTTTGGA AGGCAATGAA ACACTTAATA	560
	AACTCTCAAT AACAGAAGCG TAAAAATGAA ATGTAAACCT CCAATTACCT CTGGATCTCT	720
	TAGCCAGAGT AATAAACTGG TAATTATTAC AGATAAAAAA AAAAAAAAAA	774
50		
	(2) INFORMATION FOR SEQ ID NO: 66:	
55 60	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1866 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	· . •
υU		

(X1)	25%CF740F	DESCRIPTION.	200	11	146.	50.	

	ACCCACGCGT CONSTRUCTOR TOTTCAGCAC ATGCCAAAGC TGTTCCTCAC GGCCTGTGAG	60
5	ACAAGABCAT CTTBGATBTA GGACAATGGA AGAGTTAGAT GCCTTATTGB ABGAABTGGA	120
	ADGOTOCACO CTYCAGGACA GTGATGAATA TICCAACOCA GCTCCTCTTO COCTGGATCA	180
10	GCATTCCAGA AAGGAGACTA ACCTTGATGA GACTTCGGAG ATCCTTTCTA TTCACGATAA	240
10	CACAAGTOOO TTGCCOGCGC ANTCGTGTAT ACTACCAATA TOCAGGAGCT CAATATCTAC	300
	AGTGAAGCCC AAGACCCAAA GGAATCACCA CCACCTTCTA AAACCTCAGC ACCTTCTCAG	360
15	TYGGATGAGO TOATGGOTCA COTGACTGAG ATGCAGOCCA AGGTTGCAGT GAGAGCAGAT	420
	GCTOBCAAGA AGCACTTACC AGACAABCAG GATCACAAGG CCTCCCCTBGA CGCAATGUTT	480
20	COCCUTTOS ACCACCAATT GEAGGAECTT GCCATTOCCA CASTGCCCAA GCGCCATTGT	540
20	CCATCCTGCC AGAAACCCAT TGCTGGCAAG GTGATCCATG CTCTAGGGCA ATCATGGCAT	600
	COTSACCATT TISTITSTAC TEATTSCAAA SAAGAGATTG SCTCCASTCC CTTCTTT.AG	66J
25	CGGAGTGGCT TGSNNTACTG CCCCAACGAC TACCACCAAC TTTTTTCTCC ACGCTGTCCT	720
	TACTGCGCT: CTCC::ATCCT GGATAAAGTG CTGACACCAA TGAACCAGAC CTGGCAACCA	780
30	GAGCACTTCT TCTGCTCTCA CTGCGGAGAG GTGTTTGGTG CAGAAGGCTT TCATGAGAAG	840
	GACAAGAAGI CAIMITGCCG AAAGGAITTC TTAGCCAIGT TCTCACCCAA GTGT93T93C	900
	TGCAATCGCC CAGTCTTUGA AAACTACCTT TCAGCCATGG ACACTGTCTG GCACCCAUAG	960
35	TECTTIGITI GIGGGGAUTG CIFCACCAGI TITICTAUTG GCTOUTICIT TSAACICGAI	102)
	GGACGTCCAT TCTGTGAGCT CCATTACCAT CACCGCCGGG GAACGCTCTG CCATGGGTGT	1080
40	GGECAECCCA TCACTUGECG TIGITATUAGI GCCATEREST ACAASTICCA TECTGAGRAC	1140
	TTTGTGTGTG CTTTCTGCCT GACACAGTTG TCGAAGGGCA TTTTCAGGGA GCAGAATGAC	1200
	AAGACITATT GUNAANOTIG CITCAATAAG CICTTONCAC IGTAATGOOA ACTVATOOAT	1260
45	AGOCTOTTOA GANTOCTTAT AAAANTITAAA SOCAAGAGAG AGAGGAAAAG STAAATITTO	1320
	IGTIMOTOMO CITOTYBUTTA ATACTOTIMT AGAAMAAKKA AACGIGATGA KOAAATAAAG	1380
50	GAACITCTAG ACTITACATG ACTACACTGA TAATCTTATT TITTAGGCTT CTATACAGTT	1440
	AATTOTATAA ATTOTTTTO TOOCTOTOTT STOCAATGAA GCACTTGGAG TIAGATOTAG	1500
	GIGETTETAT STEETECETE TACAGATGTA TTTTCCAETT GCATAATTCA TOCEAACACT	1560

WO 98/54963

PCT/US98/11422

324

	TTTTGTTTT CAAGAGGAAG TAGATTTTAA CTGGACAACT ITGAGTACTG ACATCATTGA	1800
	TAAATAAACT GGCTTGTGGT TTCAATAAAA AAAAAAAAAA	1860
5	AAAAA	1866
10	(2) INFORMATION FOR SEQ ID NO: 67:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1152 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUEENCE DESCRIPTION: SEQ ID NO: 67:	
20	CTCAAGGATS TAAAGGCTCT GCAGATTTCG GGAGGCCTGT CTCCCAGCAC CTGATGGGAC	ъ́С
	ACTITITOCC CONCISTIANA TICTGOGTGT ATCCTCONCT GTATGCTGTC ACCCCAAGGG	120
25	CAAGCACTGC ATCTCCTTAG TGAAGGATTT ATTGTTCGGA AGATACATTT TCCCCTTKAG	130
23	CAGAGACTOG CGTATCCTOG CAGTCTTCCG TCAGCCAGTT GTACCAGGAT TATGAAATGC	240
	AGATGTTTAC TGTGTCATTG TTGCTGTCAT TGCTACTGAG GAGTACTGAC CAGAATCATC	300
30	TGCAACTYTT AGTTKGCADA GAGGACCACT ATGGCGGGTA GCTCTTTTCT TTCCTGCCAT	360
	TSTGGGGATS ATTCCACGCC AAAGATGATG GARAAGTATG GAAATCATCT GAAAGGTTSA	420
35	AGCTTGGCAC GTGAAGCCAT TCATGACTTT GTAAGGCAGT TTTGCTGAAG GCCAGTTCTG	480
22	CCCTGGGAGG GACGGAGGTG AATTCCTCCTG AGTACCTGTG GTTTTCTTAC TICCTGCTGA	540
	ATTTACCTAA GTGCCTGTTG TTTGCTTCCT GTGGAGGCTT TCTGGTATTT CATTTCAGGT	600
40	GCAGATOCCT TCACTTYCCC ACCRAAAAAA CCCCMACCAA ACCTAAGACC TTACTGCAAC	660
	TAAGTYTNCC AAGTACTTTT TAACCCAATG GGATGAACAG CCTGTGGTCT GCTCAGATCA	720
45	CCCTGAGTOC GTGTGAGAAG GEMTNGGCTT TGCCAGGAAA TCCAGGAAGG CAGGGCCGGG	780
43	CTGTGTTGGA AGCTGGCTTA GCTGGTGGGG CAGCCTTATT TCAATTAAAA GGGCATTGAC	84)
	TGGGAGCAGC AGTCCTGGAG TTTGTTGCAT TTCCTATTGC CCTCAAAATG AGAAACCAGG	900
50	AAAATAGCAG ATTGGAGCCT TCGAGAAGGC AGTAAATGGC TGTTTTTATT GACAAAAGGA	960
	AAACATTITA CIBCCATCIC ACTGATGGCA TCTCACTGAC TIAAAATGAA GGCANGTIGI	1020
55	AGTAAAAAA AAAGTCTACA TTTTTCCACC GCCACGTTCT TATATCUTGT TTGTCAGUCA	1080
55	CTGCTCANAA GGGCATGTTG TETTGCGGAN TANAGGCGCT CTCCTTCCCT CGTTTTCCCT	1140
	ATAGGTTGGG TG	1152

PCT/US98/11422

121	INFORMATION	FOE	SEO	TTI	NCC	68:

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2433 base pairs (B) TYPE: nucleic acid (C) STRANCEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:	
	AGCAGGOGGT GCGCTGGGGG CGGGAGCAGC GCGKAGCCCG GCTCGGCCAC ACCGATCGCC	60
15	CHICGOCOATG GGCTCCTTCGC AAAGCGTCGA GATCCCGGGC GGGGGGCACCG AGGGCTACCA	120
	CETTCTECEG GTACAAGAAA ATTCCCCCAGG ACACAGAGCT GGTTTGGAGC CTTTCTTTGA	180
20	TPTTATTGTT TCTATTAATG GTFCAAGATT AAATAAAGAC AATGACACTC TTAAGGATCT	240
20	GOTGAAASCA AACGTTBAAA ACCOTGTAAA GATBOTTATO TATAGCAGCA AAACATTBGA	300
	ACTGCGAGAG ACCTCAGTCA CACCAAGTAA CCTGTGGGGG GGCCAGGGCT TATTCGGAGT	350
25	GAGCATTOGT TTCTGCAGCT TTCATG3GGC AAATGAAAAT GTTTG3CATG TGCTGGAGGT	420
	GGAATCAAAT TCTCCTGCAG CACTGGCAG3 TCTTAGACCA CACAGTGATT ATATAATTGG	430
30	AGCAGATACA GTCATGAATS AGTCTGAAGA TCTATTCAGC CTTATCGAAA CACATGAAGC	540
30	AAAACCATTG AAACTGTATS TGTACAACAC AGACACTGAT AACTGTCGAG AAGTGATTAT	600
	TACACCAAAT TCTGCATGGG GTGGAAAGG CAGCCTAGGA TGTGGCATTG GATATGCTTA	660
35	TTTGCATCGA ATACCTACAC GCCCATTTGA GGAAGGAAAG AAAATTTCTT TTTCAGGACA	720
	ANTGGCTGGT NUNCCUATTA CAUGTCTTAA AGATGGGTTT ACAGAGGTCU AGGTGTCCTC	780
40	AGTIVATOCC CEGTOTTIGT CARCACCAGG AACTACAGGA ATTGAACAGA GTCTGACTGG	840
70	ACTITICIATI AGCICAACIC CACCAGCISI CAGIAGIGIT CICAGIACAG GIGIACCAAC	900
	AGTACCETTA TYPECONCEA AASTAAACEA GTCCCTCACT TCTGTGCCAC CAATGAATGA	960
45	AGCTACTACA TYACIAGGTC TGATGGCTTT ACCAGCAGGA CTGCCCAAGC TCCCCAACCT	1020
	CAACCTCAAC CTOCCAGCAC CACACATCAT GCCAGGGGTT GGCTTACCAG AACTTGTAAA	1080
50	COCAGGROUPS COMPONITION OFFICIATIONS TOUCOGGAAAC TRACCTGGGA TYGCACCTCT	1140
50	CCCCCTGCCA TCCCATTCC TCCCCTCATT CCCCTTGGTT CCAGAGAGCT CTTCTGCAGC	1200
	AARCICAGGA GAGGIFFCIKUI CIITOCCITCCC GCCCACCAGC AACGCACCCIT CIGACCCTOC	1260

DESTRUCTURE RESPONDED AT RECARDS: TO TRADUCT CONTRACTOR CANCELLY

	TTGGAATTGG CUTGGTATAT TTAACCACGG GAGCGTGTCT GGAAACGCAA ACTATCATTA	1500
	ATTTCATACT ASTITIGACC GTATCTGTAG GCATCCTGTA AATAATTCCA AGGGGAAAAC	1560
5	TAAACGAGGA CET XESTTGT ATCCTGCCAG GTTSAGTREG GCTCACACSC TAGEGTGAGA	1620
	TGTCAGAAAG CUCMMSTATT TTAAACAAC AAAAAGAATT GTAAGASTG CTTDCCCA	1680
10	GGCTTGCACT GCCCTTCCTC GGGGTGTGCA TCTTCGGGGAA AGGTGGTGGC GGGGGGTCCA	1740
10	CTAGGTTTCC TGTGCCCTGG TGCTCCTTCC GTAAGAAAAT GAAATATTCT ATGCCTAATA	1800
	CTCACACGCA ACATTTCTTG TACTTTGTAA GTCGTTTDGG AGAATGCAGA CCACCTCACT	1860
15	AAACTGTAAA ORGTAAAGAG AMTTTTACTT TTGGTCTCCG TGAGTCGCAT CTCTACTAAG	1920
	GTTTACACAG GAATTCCACC TGAAGACTTG TGTTAAAGTT CTACAGOGCG CACTGTTAAC	1980
20	TGAACGTCTT TTT:TTCAGG :TTATACGCGG ATCTTTGTTT TGAGCTCTCA GAATCACTCA	2040
20	GACAACATIT TUTAACITGCT DOTGTIGCTI TCTACATACA CCTTATAAAG TGACATITCA	2100
	AAAGAAATAA BETERCOACAS TITTAAACCA GAAGGTGECA CTCTGTGGCT CCTTGTAGTA	2160
25	TTATAGCTAT ACTEGGAAAG CATAGATACA GCAATAAAGT ACAGTAATTT TACITTTTTT	2220
	CTTGTGTTAC ATCTAAATTA CAACCCTTAA TIGCCACGTG TGCACTTACT ACTCTCCAGT	2280
30	ATGTCTTATT ACTCTCCAGT ATGTCACGCA TCTTTAACTT TFCACGTCCT ATGTTTGCTT	2340
30	TCTCCCATTT TTAAGAGATG GTAAGTTAAC TGGAATTGAT TTACTGAATG AAATTAAATG	2400
	CAGATATCCC TUTTTTGAA ATAAAAAAAA AAAAAAAAA AAAAAAAAAA	2460
35	AAA KAAAAAAAA AKAAAAAAAAAAAAAAAAAAAAAA	2483
40	(2) INFORMATION FOR SEQ ID NO: 69:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 536 base pairs (E) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:	
50	GAGAAATGGA GCTTTGTTAG ATAAAAATTT TTTCAACGCA AACAGTCATT TTCCAGTGAA	60
	AGGAGAGCGT ATCCGCCGTA GGATGGACTT AGATCGTGTA AAAGCTGAGG CCACCGAGGA	120
55	TATAACCTCC GOGGTCCTTT GCCTCCTTTT CCTTAGACTC CCTCCAAACT CGTGTATCTT	180
دد	TCCTTCAGCA GTACTGGGCT CCACGCGAAC CTAGTCCTTT GTCTTTACCC TATTACCTTT	240
	CATAACATCC TAGTTGAAAA GTARTTATTC AACCGCGTTT GAAAATGAGA ACAGGTTCAC	300

60 AGARGOTAGG TTACTTGCGA AGGTCGTTCA ATTAGTAACC AGTAACGCCA GGACTGCCAG

	TTTCTTGCTT CCGAATTCTC ATGGTAGCTT TCACCARGCT CCCCGTCMAA TGCTAACGTC	420
5	AACTACTGAA CTAGATTAGC AAAAAGGTCT TTTAACAGAA TTCCTGGTTT TCACAGAGAG	480
)	TTTCTTTCAT GAAGCGCCCC ATTTCTACAG AGGAAAATAA ACTCCAAGCA CCCAGT	536
10	(2) INFORMATION FOR SEQ ID NO: 70:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 865 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPCLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	
20	CCACGCGTCC GCCCTTTCTT XXCCAGAGGC GCCGGTTGGA CTCACGGGCG GXXCATGATG	60
	GGTAACAGGA COGGTGGGGT CCCCAGGAAG TCCTAGAGGG GGTCGGGGGTT TAGGTGGACA	120
25	AGCTTTCCTC GTCCTCCCC GACAGAGCTG ACGTGTCCTG GGTTCCACCG GGAGCGGGCA	180
	TTTCCACCGG ACGGGGGT TCGGGGGTGTC CGGGGCTGGG GAATACGTAG GGGTTGCCGC	240
30	GCGGTGTF3GG GAGTTF3GGGC GTGTF3GCTGC AGTCCCGGGA GTTCTTGGAG GAGGTCGGCC	300
50	CACCGAGCTT COGGACCGGC TGATCTGCCC GTAGCTTGCC GGANGGARGG C'GAGCTGAC	360
	TOTCOGTOGO TTCTCCCATC COSTCCAGTS GTGGGTACBS GCACCTCGCT 93C 9STCTCC	420
35	TOCOTOCTOT COCTOCTOT CTTTGCTGGG ATGCAGATGT ACAGCCGTCA GCTGGCCTCC	480
	ACCGAGTGGC TCACCATOCA GGGGGGCTG CTTGGTTCGG GTCTCTTCGT CTTCTCGCTC	540
40	ACTGCCTTCA ATAATCTGGA GAATCTTGTC TTTGGCAAAG GATTCCAAGC AAAGATCTTC	600
10	COTGAGATTC TCCTGTGCCT CCTGTTGGCT CTCTTTGCAT CTGGCCTCAT CCACCGAGTC	660
	TSTGTCACCA COTGOTTCAT OTTOTOCATG GTTCGTCTGT ACTACATCAA CAAGATCTCC	720
45	TOCACCCTGT ACCAGGCAGC AGCTCCAGTC CTCACACCAG CCAAGGTCAC AGGCAAGAGC	780
	AAGAAGAGAA ACTGACCCTG AATGITCAAT AAAGTTGATT CTTTTSTAAAA AAAAAAAAAAA	840
50	AAAAA AAAAAAAAA AAAAAAAAA	865

orange and a same and a

⁽B) TYPE: Ditter third (T) STRANMEDNECS: double (D) TOPOLOSY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
5	TCATCATATA CAAAGTTTTT CGTCACACTG CAGGGTTGAA ACCAGAAGTT AGTTGCTTTG	60
3	AGAACATAAG GTCTTGTGCA AGAGGAGCCC TCGCTCTTCT GTTCCTTCTC GGCACCACCT	120
	GGATCTTTGG GGTTCTCTAT GTTGTGCACG CATCAGTGGT TACAGCTTAC CTCTTCACAG	180
10	TOAGCAATOC TITOCAGOG ATGITCATIT TITTATICCT GIGIGITITA TOTAGAAAGA	240
	TTCAAGAAGA ATATTACAGA TTGTTCAAAA ATGTCCCCTG TTGTTTTGGA TGTTTAAGGT	300
15	AAACATAGAG AATGGTGGAT AATTAGAAGT GCACAAAAAT AAAAATTCCA AGCTGTGGAT	360
13	GACCAATGTA TAAAAAAPSAC TCATCAAATT ATCCAATTAT TAACTACTAG ACAAAAAAGTA	420
	TTTTAAATCA GYPTTTCTGT TTATGCTATA GGAACTGTAG ATAATAAGGT AAAATTATGT	480
20	ATCATATAGA TATACTATGT TITTCTATGT GAAATAGTTC TGTCAAAAAT AGTATTGCAG	540
	ATATTTGGAA AGTAATTEGT TTCTCAGEAG TGATATCACT GCACCCAAEG AAAGATTTTE	600
25	TTTCTAACAC GAGAAGTATA TGAATGTCCT GAAGGAAACC ACTGGCTTGA TATTTCTGTG	6 60
23	ACTOGTGTTG CCTTTGAAAC TAGTCCCCTA CCACCTCGGT AATGAGCTCC ATTACAGAAA	720
	GTOGAACATA AGAGAATGAA GGGGCAGAAT ATCAAACAGT GAAAAGGGAA TGATAAGATG	780
30	TATTITGAAT GAACTGTTTT TICTGTAGAC TAGCTGAGAA ATTGTTGACA TAAAATAAAG	840
	AATTGAAGAA ACACATTTTA CCATTTAAAA AAAAAAAAAA	900
35	CCAAATCGCC GCATAGTGAT CGTAAACAAT CT	932
55		
	(2) INFORMATION FOR SEQ ID NO: 72:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 996 base pairs (B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
,5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:	
	CGCCTGCCAC CATGAGGACG CCTGGGCCTC TGCCTGTGCT GCTGCTGCTC CTGGCGGGAG	60
50	CCCCCGCCGC GCGGCCCACT CCCCCGACCT GCTACTCCCG CATGCGGGCC CTGAGCCAGG	120
	AGATCACCCG CGACTTCAAC CTCCTGCAGG TCTCGGAGCC CTCGGAGCCA TGTGTGAGAT	180
55	ACCTGCCCAG GCTGTACCTG GACATACACA ATTACTGTGT GCTGGACAAG CTGCGGGACT	
=	TTGTGGCCTC GCCCCGTGT TGGAAAGTGG CCCAGGTAGA TTCCTTGAAG GACAAAGCAC	300
	GGAAGCTGTA CACCATCATG AACTCGTTCT GCAGGAGAGA TTTGGTATTC CTGTT3GATG	360
60	Satisfies Section of the Control of	300

329

	ACTGCAATGC CTTGGAATAC CCAATCCCAG TGACTACGGT CCTGCCAGAT CGTCAGCGCT	420
	AAGGGAACTG AGACCAGAGA AAGAACCCAA GAGAACTAAA GTTATGTCAG CTACCCAGAC	480
5	TTAATGGGCC AGAGCCATGA CCCTCACAGG TETTGTGTTA GITGTATETG AAACTGTTAT	54(
	GTATCTCT: ACCTPCTXGA AAACAGRSCT GSTATTCCTA CICNGGAACC TOCTTTGAGC	600
10	ATAGAGTTAG CAACCATGCT TCTCATTCCC TTGACTCATG TCTTGCCACG ATGGTTAGAT	660
	ACACAGCATG TTGATTT3GT CAGCTAAAAA GAAGAAAAGG AGTAACAAGG TFGACTFTTA	720
	TGAACAACTA TTTTSAGAAC ATGCACAATA GTATSTTTTT ATTACTGGTT TAATGGAGTA	78u
15	ATGGTACTTT TATTCTTTCT TGATAGAAAC CTGCTTACAT TTAACCAAGC TTCTATTATG	840
	COTTTTTCTA ACACAGACIT TOTTCACTGT CTTTCATTTA AAAAGAAATT AATGCTCTTA	900
20	AGATATATAT TYTAYGTAGT GCTGACAGGA CCCACTCTTT CATTGAAAGG TGATGAAAAT	960
20	CAAATAAAGA ATCTCTTCAC ATGARAAAAA AAAAAA	995
25 30	(2) INFORMATION FOR SEQ ID NO: 73: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 785 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:	
	GGCACGAGGG GCTMTGCGTA CACAATAGCT GCTAGGAGTA OCCAAAGCCT GARTACARCC	6.0
	TGCTGGTGTC ATBRCCACGT GTGAGCAGGC CAGCGTCAMA CORCTCBCTG TGACCCGTCC	120
40	CGRAGACTEA AATEGGECTG GETCTTCTCC TKGTCCTGTG ATWAAAETCC TETCTTGAAA	180
	GTGGAGABCA AABBCACAAG GABGTGCBCG CTCACAAGAA TYDCTCODGG TBACTGBGTA	240
45	ATCAATGITA CTSCTGTTTC CTTTSCAGGA AAGACCACAG CAAGATTCTT TCAITCGTCT	300
	CCTCCTAGCC TGGGGACCA GGCTCGAACT GACCCTGGAC ATCAAAGGAG GGATTATGTG	3-5
	GCTGCTAAAG CCATCGGCCC ACAGCCCTGT TCACRTCTTG GTGCTTCTCT TTCCCAGAGG	420
50	CTGGTCCCAG CCAGGCACAC ACAAAAGGCA GATTCTCGTA AACSCAGGCT CCCTCCCTGG	48
	AGGCTGCCTC CTCCCCTCGA TCTGGAGTGG AGCTGCTCTG AGATTTYGAG TTCTTCTGCA	54
	grande de la companya	

STATERARA SE ARTIFERRA E ADMINARASA A ARRADAR SA SER CARE AL SER DA AMAMA

60 талатсталт скілтіттітт тітсталала алалалала алалалала алалалала алалалала

The second secon

	AAAAA	785
5		
	(2) INFORMATION FOR SEQ ID NO: 74:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1069 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:	
	TCCTCACCAT TCCCCTAGGN CAGGTCCCTG CAGGTCCCAC ACTTCTCCCA GGTCCCTAAA	60
20	CTTGGGTUGG TUCTTTCCCT GGAGTAGCTG GNTCCTCCAG TCGAGGTCCC TGTTCAGTCG	120
20	GTTCTTAGGC TCCTGCACAT GAAGGTGTGT GCCTGTGGTG TGTGGGCTGC TCTAGGAGCA	180
	GATACAGGET GETATAGAGE ATGCAGAAAG GTAGGGCAGT ATGTTTAAGT CCAGACTTGG	240
25	CACATGGCTA GGGATACTGC TCACTAGCTG TGGAGGTCCT CAGGAGTGGA GAGAATGAGT	300
	AGGAGGGCAG AAGCTTCCAT TYTTGTCCTT CCTAAGACCC TGTTATTTGT GTTATTTCCT	360
30	GCCTTTCCBA GTCCTGCAGT GGGCTGCCCT GTACCCTGAA CCTCATGAGC CTCTAAGGGA	420
50	ANGGAGGAAC AATTAGGACG TGGCAATGAG ACCTGGCAGG GCAGARTACA AGCCCAGCAC	480
	CASTSTOCCA GOOTTACTGG GTOOTTACCO TGGGCCAAAC AGGGAGGGCT GATACCTCCT	540
35	TGCTCTTTCT AGATGCCCAC CTCCTACAAT CTCAGCCCAC AAGTCCTCTC CACCCTAGGG	600
	GGCTTGCT3C AT3GCAATAA CTCATAATCT GATTTGGAGG TTTGCCCTTT ACAGGGGCAG	660
40	ATMITCIBET CABITCAACA ATGAAATGAA GAGGAACTCC CTCTTTCTAB AGCTCACTTC	720
10	TATCAGAGGC CCAGGTGCCT CAGAGCCACA TTGAGTTGCT TTTTCTGGGA TGAGGAAGTA	780
	GGGTTAAACT CCCCAGTTTC CTGAGGGAGG CTCCTGACAG GTGCCCTTTG TCAGACCCTA	840
45	CCACAGCCTG GATAGGCAGC CACATTGGTC CTCGCCCTTG CTCGGNACTC CGTGGTGGTC	900
	CTGCCCTTCT CCCTGCATGC CTGTGGGTCT GCTCTGGTGT GTGAAGGTCG GTGGGTTAAC	960
50	TGTGTGCCTA CTGAACCTGG CAAATAAACA TCACCCTGCA AAGCCAAAAA AAAAAAAAAA	1020
50	AAAAAAAA AAAAAAAAA AAAAAAAAA AAAAAAAAA	1069
55	(2) INFORMATION FOR SEQ ID NO: 75:	• •

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 831 base pairs

(B) TYPE: nucleic acid

(C) STRANDEENESS: double

331

	(D) TOPCLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:	
٠,	GGACATTAGA TCACTGT3GA CCTAAAACAA ACAAACAACT ATAAGGAAAA TGGCATTAGA	60
	AATOSTCTOG OGATCAGTTT ATCACTGCAG CTGTTACATC ACCCCATGGT CTAAAATACA	120
10	GAGCTTTAGT CTGTCTCTGT TTCAGTTCAT TTTACAGGAG GTGAACATCA CACTTCCAGA	180
	AANOTOTOTO TEGTATGAAA EGTATAAATT TGATATTOOT GTCTTTCACT TGAATGGCCA	240
15	GTTTCTGATG ATGCATCGAG TAAACAGCTC AAAACTTGAA AAACAGCTCC TGAAACTTGA	300
13	GCAGCAAAGT ACTGGARGCT GACTGATGCC CTCATGATTT TCCACCCTCT CTTCCCATAA	360
	AGRIATOTTOS TAAGGAAATG AMCATGGOOT GATASTCATT TTGTCASTTG TAGAGAGOOG	420
20	TAAGGATGTT CTGAATTCAG TGGTGCCAAA TAAATGTTGA CATTCCCCTT TTGGTTGATG	480
	GAAGTATENS TOTSOBAACT STTTSCTIAA TOSCATTTTA TAAAATAAKA AKAKCATATT	540
25	ABCABBGAGE GAGATBATTEG AGEGAGEGAS AAGTCCATTT GTCTTATTTA TCCTTTTTTTT	600
	ATTAATAGAS AAGCACTTCA CAGTCACTGG CAATGCCATT TATAGGAAGA AGGTTCTGCA	660
	TTECTSCTER TORCGSAGG CTTAACTTT TAATSAAAGA ATAAATSCTC TTECACTCAG	720
30	TABATAAABT GAAATBTSAA TTSTTAATAA CTGTBCACGG TCAATAAABC GATGTTTTAA	780
	GGAATACAAA AAAAAAAAA AAAAAAAAAA AAAAAAAAAA	831
35		
	(2) INFORMATION FOR SEQ ID NO: 76:	
40	(i) SEQUENCE CHAPACTERISTICS: (A) LENGTH: 590 base pairs (B) TYPE: nucleic acid (C) STRANTEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:	
	TATATATAGA CNOTTAATAG TOGTGANTGN TOTGNACGAA CATTAACGGA AGTAGCATGT	50
50	AGRICAGTORA ATAACNTATA AGRACAAAGT RGARTCCACG CGTGCGGCCG TCTAGACTAG	120
50	TG3ATCCCCC G3CTGCAGGA TTCGGCACGA GCT3CCAGGT GAGGAGCAGA GAGACTGTTC	180
	CONTIGUETUS ASAGGITETUS GEATISAGAGE CACCENTIGO CAAGCAGCAA GAATETICGI	240

60

erka kalangka and anak

	CTTTTTGTCC TGTAAGATAT ATGCAGCCTC ACAGAAGCAG CUTCTGCCTC CACTTTACCA	45-0
	GCTACGTTT TATCTTAAGC ACATGGGGCT CCCTTAGAAC TTACTCCACT GATTTAAAAA	54(-
5	AAAAAAAAA AAACTCGAGG GGGGGCCCG TACCCATTCG CCCTAAAAACT	590
10	(2) INFORMATION FOR SEQ ID NO: 77:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1274 base pairs (P) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TCPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEO ID ND: 77:	
20	GAGOCACCAC ACCINGGOCING GAAGGAACCT CTTAAAATCA GITTACGTCT TGTATTTTGT	50
	TCTGTGATGG AGGACACTGG AGAGAGTTGC TATTCAGTI AATCATGTG AGTCACTGGA	120
	CTCTGAAAAT CETATTBGTT DCTTTATTT ATTTBAGTT AGAGTTCCCT TCTBGGTTKG	130
25	TATTATETCT (GECAAATSAE CINGGITTATC ACTITITCCT) CAGGITTAGA TCATAGATCT	240
	TGGAAACTCC TTAGAGAGACA TPPPRGCTCCT ACCAAGGATC AGATACTYGA GCCCCACATA	300
30	ATAGATIPCA TIPLACTERA GIOTACATAG ASCITITOTST INSCRINT INSCRINTAGAC	360
	PRSP9C9GPG ATTACACACIT TGACAGTACC AGSAGACAAA PGACTTACAG ATCCCCCGAC	420
	ATSCCTCTTC CCCTTSSCAA GCTCASTTGC CCTGATAGTA GCATGTTTCT GTTTCTGATG	480
35	TACCTTTTT CTCTTCTTCT TWGCATCAGC CAATTOCCAG AATTTCCCCA GGCAATTTGT	540
	AGAGGACCTT TTTREGGETTC TATATISAGEC ATSTECTICAA AGETTTTAAA GETCCTTGCT	600
40	CTCCTACAAT ATPCAGTACA TGAGCACTGT CATCCTAGAA GGCTTCTGAA AAGAGGGGCA	650
	AGAGCCACTO TGCGCCACAA AGGTTGGGGT COATOTTOTO TOUGAGGTTG TGAAAGTTTT	720
	CAAATTGTAC TAATAGGSTG GGGCCCTGAC TYGGCTGTGG GCTTTGGGAG GGGTAAGCTG	730
45	CTTTCTAGAT CTCTCCCAGT GAGGCATGGA GGTGTTTCTG AATTTTGTCT ACCTCACAGG	840
	GATGTTGTGA GGCTTGAAAA GGTCAAAAAA TGATGGCCCC TTGAGCTCTT TGTAAGAAAG	900
50	GTAGATGAAA TATCGGATGT AATCTGAAAA AAAGATAAAA TGTGACTTCC CCTGCTCTGT	950
	GCAGCAGTEG GGETGGATBE TETETGGEET TTETTGGETE CTEATGCCAC CECACAGCTC	1020
<i>-</i> -	CCAGGAACCT TGAAGCCAAT CTGGGGGACT TTCAGATGTT TGACAAAGAG GTACCAGGCA	1030
55	AACTTCCTGC TACACATGGC CTGAATGAAT TGCTAAATTT CAAAGGAAAT GGACCCTGCT	1140
	TTTAAGGATG TACAAAAGTA TSTCTGCATC GATGTCTGTA CTGTAAATTT CTAATTTATC	1200
60	ACTGTACAAA GAAAACCCIT TGCTATTTAA TTTTGTATTA AAGGAAAATA AAGTTYTGTT	1250

333

TGTTAAAAAA	AAAA		1274

5

10

(2) INFORMATION FOR SEQ ID NO: 78:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1133 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:

	AGGATTTTTC CITITUAAC CAAAATCTGA GCATTCTTC TATGTTGAAA ACACTGAAAA.	60
20	ACTAATTTWA GTTAATGAAC TAGAAAGAAT ATTGATTTTW AAGAAACAGA AAAATACTAC	120
20	TTATTTTCCT TCT:AAATAA CGTTTCTTTC AAAAACTTCT GGCTGAAGTA TAACATGCTG	180
	GTAGTTAACA TAAATCTTGT CTTTCTCTTG TTCTTTATCT TTCTTTGTTA TTTAGATGCT	240
25	TSTATAAATG TCTTTTTTT TTATTAAGTG CCTAATTGAC AGAGCTTAAT TTGAAGAAGT	300
	GOCCTAATTT ATTGACCACT TAAGAATTGC CTTTATTGGG GTATTTTATT TGTTCCTGCG	360
30	TOTTTTTTGAT STITUTTCAGT CTACTCATCO CTGTGAGTAT GTGTGGGGGA CAGCTGATAG	420
30	AAGOGAGGAG AGTGTGTGTA TGCTCAGGAT TGCCCTTTAG CCACTCAGCC AGAGATCCAC	480
	ABBGAGGAAC AAGBACAGTT TCACATGCTT ABACTTTCTT GBAAGAAACA GTBAGGAGGA	540
35	GTAAGTCGTC AGTAGTCTCA AGCTGGATGT AGAATTGTCC TAAGGCAGTT GACCCCACCT	600
	TODAACATOT TITCACTITA TITGOCCOTO COTACATITS GETTAGGITC CATTIGGATT	660
40	TGCAGCAATA ATGACTTTAT TTCTCTCTTG GTCAGGATTT GGCACATAAA ATCCTTTTAT	720
40	TATAGAACTA GCTATTTIAG TTACATAGTA ATGTAACTAA TGGAGAGATT TATAGAGAAT	730
	TTTGKTTTTG CT: TCATATA TGTCCATTTT GGAGAGAGAT ATGATAGAAC TAGAAATTAA	340
45	STIBCATUTE ISCAASTOCE AUTISAAIGA ACUTEAAGIA TETICITAAT TATTAAATIT	€00
	TOTGATGAAG GUNTYUTAAC AAATATATAG TATTATTAAA TOTAATTAAT ATTTGGAAAT	950
<i>E</i> ()	ATTAATAAAT AGGTATTTTA TYTACTGTAA AAAGTCAAAC TYCATTATGT AGATAAATCT	1020
50	TATTCTTTTC ATTCTTTCCC CTGTTLACAT CCTTTTTACA AACCTTAGTC ACCAATTAAA	1030
	CONTICCTAT CANANAAAAA AAAAAAAAAAAAA ACTCGAGACT AGTYCTCTCT CCT	1133

5	(A) LENGTH: 661 base pairs (B) TYPE: nucleic acid (C) STRANLEDNESS: double (D) TCPOLCGY: linear	
2	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:	
	GAATTOGCA CGAGGGGAAA AGGATGCTCA ACGAGAGCAG AAAGCCTCTT TCCTTTGCTT	60
10	CACGCOTTEC CAGRETTAT THEAACTCG GOTTCCCTT CTGTGGTCGC AGCAACCTTT	120
	ACTICACUTS CACTESTISCT CUTSGRESSCT COCCAGECCT COCTUTGOCT TTOTACOCAS	130
15	FORTODACTO SCREETSTOR : POTACCASC SACETSCENT STREETAND CREETSCENT	240
	CTTTT3CTST (9000TP3CTCT (9339TT3AAG (0TB3G00CATG TP3TC00CCO(3) AGTCAT933CT	300
	GCTCCTCCTC GEAGGCCTCT GEGTGCGTCA DEFCTTCCAC ACCTGGGGGC AGCTGGCGAC	360
20	CCCCTP3CPCT GTP: 000CTCG GCTP3CTP33C ACAGAGYFGC AGCCT3GGAY TCTCCGT3GA	420
	CCCAGACDS GENTERGE ASSESSED ADSEGNATION OF THE COTAGE ASSESSED ASS	480
25	GTGTCTGCAT TTCTGGGCCCCCAGAGCAC AGAAGTTGCCCGGGCACTTTAG GGTCTTCCTC	540
	GGCATFIBEC AGATTACATG AGTGACGGCT GGGAATATGT TTTCTTTTTT GTAATGGAGG	600
	CGTGTTPCAC ATATAGTAAA GCTCACCAAA AAGTAAAAAA AAAAAAAA AAAAAACTCG	650
30	A	661
35 40	(2) INFORMATION FOR SEQ ID NO: 80: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1378 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: dcuble (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:	
45	ATTGGGTACC GGGCCCCCC TCGAAGTTTT TTTTTTTTT TTTTAATGAA AGCTCTCAAA	60
	TAAGCGATTT TATTCCTATC CATGATTGCA GACATTTACA AAACCATAAC ATCTGAGTTC	120
50	ACCTTAAAAA ATAACTTATA TAAAGCAGTG ATATACACAG CACAAAATAG TTCAGGGAGG	180
	GGGCAGGAGC AACTTGTAAT AATTAAAATG TAAACGTGAA AAAAAGGATG GAATAAAAGT	240
	COCTACTTAT TYCTACTTAA GATGTCATGT GATAATATTT FACAATGTOO TGT93GTCAA	300
55	TGTATGTATG TGTATATGTC TGTATAACAT ACACATATAC AGTACATTCT CTTTCCCACA	360
	CATATACATA CACACATAAT TATTTGCAST TCAGTTTAGG GCAATTCTAA TATGCCACTC	420-
	CGTACAGTTG TYTGAATCAC ATTTGGACCC GCTTTCTTCA CAAAAGAGAGG GAGAGAGCAG	480

	GAAATAAAAA GCTTGCTTTG GTGTGACTGA GATTCCTTTG TTTAACTGTA CACTGTGATG	540
	AATAATTTTC TTCCGTAGTA GTTCTGTGAA GGGCTGACTC ACTGTGGTTT TCATGAGGAG	600
5	ACTTGGTAAT GGATCACAC CTCATTGTCA TOCTAGGGGA GTAACTCTCA CTCTGAAAAG	660
	GATTIAAGAA ATTTOUCCCC ATTICSUCAT CAICCCTTGG AGTGCCCGGT TGATTACTCA	720
1.0	GECTCATATT ATTGEGRAGA TTCTTGGAAA TACTGTCCAT ATCTCCTGAG CCTAAAGAGI	780
10	CATTCATGTG ATGTGACTCC ATTCCTCCTA ATCCACCCAT GGGACCATCT GACCCAGGRC	840
	CCATTGGAAA ATTAGGTCTG TTAGGTCCAG GAGGTACTGC ATTCATTAAA GTATACATGT	900
15	TATCACCAGA GITGGTIGAA TCTGCT3GAC TAGGCATGAT GGGTGTTCCT GGTGGCCCT3	960
	CACCTCCTGG AGGACCTACA TAATTCCCAG GAGATGCTGA GGAGTATGGT ATTGAATTGG	1020
20	CATITUTING GITTIGGCAA GETCIACCAC CACCIGGACC CATETICATI CCAGGCATTC	1080
20	CAGGGCCACC TAAAARATTC AGTGGGGGTC TCATTGCACC TCCATAGTTC TGTGGTCCTA	1140
	AGGGCACCAT TCCTCTYGGA GGAGTCATTC TCTCCATTGG CCCACCCATA TTTGGATGTC	1200
25	CTTSTYGTOG AGTYRGATOC ATTCCACTGG GGAGTAATGG CTGACTTCCT GGGACACCTC	1260
	CAAGTGCCTG ATTAGGTATC CTCAATGGGG GCCTTGGACC TCCAGGGTAC CGAGGTGACA	1320
30	TAAAACGGTA ATCATCGAAG GCTTPTCCTT CACTTGAGTG TTCACATGTT TCACGTCT	1378
2.5	(2) INFORMATION FOR SEQ ID NO: 81:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1440 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (E) TOPOLCGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:	
4.5	ACTITICICA AATERSIKSTS ICAGAIGTAS ICAGCIGNAS NAATITAAAA IGAATIGOGA	60
45	AGTGAAGAGT CTGTEBBATTA AMTEBCCGTT ANTTAACACG CTTTATCAAT GTETCCTEAA	120
	GGGAGAGGGCC CAACCCTAAT TAAGGAGCTA AACTTCCTGA GTGAGGGGCT GTGAGGATGG	130
50	AGETERAGIA DECATORES GREETERE RECESCOS DASATGERES DESTRICTANDA AGENTANDA DE PROPERTIES	240
	GAGCTGCCCG CACCGCCAGT TCCCTCATTT CCACTCAGGA AGGCAGAGAA GGCAGAGTGA	300
	and the second of the second o	3,5

60 PYNTTOUAAT CHRUSTOGTG CTTCTTTAGT AAATACTGTA CRGAITTTAC CATGGACAA : 340

DA CONTRACTOR OF THE A

	TTTTTTTTTA GTTTTTACCT TTTCTTAATT ACCCTTATTC OGAATGGACG AACACTTTCT	600
5	ACCACTOCTG ACCATTGTAA AATACCGTGT NIATAAATCG CATTGAAATA ATGCCCTGGA	660
5	ATAGAACATC TCAAATGCTG CTTAATTACA GACTCAGGTC GATTACTTGT ATTTCATGTA	72C
	AUSTICCTCC AASTIASACA TOIGSIGCAA GACCAACCGG GAGACCAIGS AATUSICAAA	750
10	AGTACAAACT GACAGTGTGT ATATTTAATT TAAAGACTTA TITAAAAACT CACAAGCTCT	240
	CACUTAGACT TPEGAGAGCA GTCTSTTTTC TGTAATSTCT GATACTAGAA ACTAATTTGC	900
, ~	TTATUPTAGT TETATTCAAG ATTPUAAGAT UTAUTTATA GACAAGTTOT GTTPTTGAAC	960
15	TTTGTBGAAC TETTCCAATC AATCAATTTG GCAGTTATGA TGAGTAFTTA CAFTATGAAT	1020
	GTATAACCCA GACAIGATTI GTAAAGCCGA CAGUAFGTII CTATTAGAGA ACACTITIIG	1080
20	ATACAGOGTO TOTTSTOTTO ACTGARACTS GASTOTCOST TGTOTDENER GTCCOTTOGA	1140
	GTT:CTASTT ACAGACACAA TOATAUTGTS ATTTIATTTT TAATATSGAT ATSUTATUAA	1200
0.5	ACTSTSATAC ACTTATAATT CACTSSTCCT SCATSASGAG ATSGAGTSSS GAAAACTSTA	1260
25	TTTAATACAG TTTGTATCTG AATAATCTGT ATGGTTTATA CAGTTTGTGT TGTTUAGAGA	1320
	TGTTTAAAGT TTGATCTTTG TTTTTCTAAA GATTAAAAAA GCACTTGCCC CACTGTAAAT	1380
30	ATACASCATG TAAAATTTCT RTAGTATATA AATGGCAGCA AATCACAAAA AAAAAAAAAN	1440
2.5		
35	(2) INFOFMATION FOR SEQ ID NO: 82:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1381 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:	
45	CCCGGGCTGC AGGAATTYCGK YACGAGGCCA GCAGTTGCTC CCAGTTCAGG AGGTGCTCCT	60
	GTACCCTGGC CACAGCCCAA TCCTGCCACT GCTGACATCT GGGGAGACTT TACCAAATCT	120
50	ACAGGATCAA CTTCCAGGCA GACCCAGGCA GGCACAGGCT GGGTCCAGTI CTGACCTGAG	130
50	CACGETTTTT CCTCATGTGA CTTCTGGGAA GGCGCTCCCT CATCTGGGCC AAAGGAAGGA	240
	GGACGAAGCC CTCCTCAGCT GGCCTGTGTT TGGGGCATGA ATCTCTCCTC TCCTCCTTGT	300
55	CTGGCTCTGT TGACAAACCG GGCATGTTTG GCAGTAAATT GGCACCGTGT CACACTGTTT	350
	CCTGGGATTC AAGTATGCAA CCAGAACACA GGAGAAGAAA AGCTCCAGGA TCCCTGTCCC	420
	CATCTGTCCT CTTGATGTGA GAGAGACTCT GAGACTTCTT CCATCGCAAT GACCTGTATT	480

	AAACACAAGC CCCCCAAGCA AAAGAAGAGG TTGAGTTTGC TGCCAGGATT CAGATCAGCC	540
	CTTCCCAGGG TCTGCAGGTG TCACATGATC ACAGTTCAGC G3GAGGCTTT CCGTACCCAC	600
5	ACTOGOTOTA GCACTTCAGT CCATCTGUCC TCCAGAGGAG GTTTCTTCC TGATTTTAG	660
	CAGSTTTAGA GECTSCAGCT TGAGCTACAA TEAGSAGGGA AATTGGAAGG ATTAGEAGCT	720
0	TYTAAAAATS TYTAAATATT TTGCTTTGCT AATGTGCTGA TOCGCACTAA CTCATCTTTG	780
0	CAAAAGGAAC TECTCCCTCG GEGTGEEEEA GETERGECCT CTEAAGGGAT TCCTCACTGT	840
	GGGCAGCTGC CCTGAGCTTC AGGCAGCAGT GTTCATCTCT GGCCAGTTGT CTGGTTTCCA	900
15	TGTATTUTAG GCCACCTAGG CAACACAGAG CCCAAGGCCCC TGCTGGAAGC CAGACGGAAC	960
	AGTGTT900G CAGGAAG3T5 GATGCTGTTG TCATGGAGCT GF3G3AGTTG GCACTCTGTC	1020
20	TECTOGTECT CCTCTCBECT CACATETTCA CAGTGCAGCT CCTGGCAGAC TTGGGTTTTC	1080
20	TOTTTGGTGG TTTTTAAAGT GCCTTATCTG CAAACAACTT CTTTTCTCCT TCAGGAACTG	1140
	TGAATGGCTA GAAGAAGGAG CTCAGTAAAC TAGAAGTCCA GGGTTGCTTG GTTTACTGGT	1200
25	TTATAAGAAA TCTGAAAGCA CCTCTGAGAT TCCTTTTATT AACTCACCTC TCAGTTGAAA	1260
	GATTTCTTCT TTGAAAGSTC AAGACCGTGA ACTGAAAAAA GTSTTGGCCT TTTTGCG3GA	1320
30	CCAGATTTTT AAGATAAAAT AAATATTTTT ACTTCTGTCA AAAAAAAAAA	1380
30	С	1381
35	(2) INFORMATION FOR SEQ ID NO: 83:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1706 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:	
12/	ACTGCACCAC TOCCCACCTC TCCCCGCTCG ATGAAGACGT GGTCCATGAG GAAGCTCGCT	€.(
	AGCTCAGACT GGAGAGTAGC TTCACGAAAA AAGACAAGTG GCCTAAGGAA ATCACGCCCC	120
50	CCAACTATCA TCTGAGGGCT AAAGATGAGA AGTAGATCAC TTAATAAGAC AAAAGCCTGT	180
	AGGGGGAAAA GAAAGGATGT TTAAAAGGAC AGAATGTTTC CCAAGGTAGA AATGACACTG	24(
	and the second of the second o	
	and the second section of the second	

	CCTGGGGAAG CATCTGATTT AGAAATGTGG GTTAGTGTCC AGAGAATGGA AAAATAGACA	540
5	AGAGTUAAGG CTGGCAGGAT AACCTGTAAU AACAAAGGGT TIGAAAAAATG AGGTTTGGGT	600
3	TAGGAGAGGG AGAGACAGAT AGGCAGAAAG ACACCAGTGA AGAGGAGAGA AAATGAGTAA	660
	AGGGAGAGCT AATTICTTTT CCAGTGGAAA ATGAGTGATA TTCTGGACAT TCTTCAGAGG	720
10	CATCTACACG AAGTAGAAAT GTCACCGCTC CCTAATTTAC TCTACGTCTT CTAGAATCCC	780
	TCAATATTAT CCTTBSCTTT CAGSAAATCT AAGAAGACCC TGGAAGTAGA GTCCACCTTC	840
15	TAAGAGAGAA ATGTAAGAGG TGACCCCCAC CCACCTGATC TTCCTCGCTT TGTCCACTCC	900
13	ACGCACTGAG ACTTGAGAGA CCTAGTGGCG ACCTAGAACG TAGGTGCTTA AAATYTAGGC	960
	CCCCA 30000 CAACOCATET CTAGCETGTO CACTCACCTG GTGAGGAACY TYTCETGTGT	1020
20	CCACAGCYTT CTGCAGGAGT TORGAACATG GCTCATAGAG CTCCCAGCGA GTCAGGTCAT	1080
	GAGTGCTTTS GGGGAGAAA3 GAAATGTTA TACT9GAAAA GAACAGAGGG AACCAACTCC	1140
25	ACAGAJACJA GTAAAAACJA JATOGAGAAA AGGAGGAAAA CCACTCACTT GTAGAAGGAA	1200
20	GAGAGECTT TOAGAGTEES FESCHARATTA TATA SOTOAT COTOATCTAS GAAGGACGAC	1260
	TGAGAAGGAA AGAAGATOCA CAATAGCATT TCCCCCAGAA CTCATCAGTC CACATCCCCC	1320
30	GTCTP3CAGC CCCTCCCACC CTTGTTTSGG GTGTCCCATT GTCCAGCCCC AGCTCCTACC	1380
	TGTAACAGCT CTTCAAGCTC CTGCTGGAAR CGGTCAGTCA GCAAATCTAC TAGCTGGCTG	1440
35	CGGGCAAAGT CCGCCCGGCT GAAGAAAGTG AATTCGGGAT TACAGAGCAG GTAAGAGCAT	1500
	GEGEGEGAGE CTCAAGEACE SETGGCTETS CATGCTTCAC CACCACCTCE TGSAGTTGCT	1560
	GENGENACNS CTCCAGSTGC TENGANGANA NGGCAGANGN TGGTGTSCTS TGEGGATGGS	1620
40	ASGASGACAC TCTTCTGGCG SEAAGTGGAA CGGGGTTAAA AGCATTAAAC TTCAAGGATA	1680
	AGATGCCTAA RAAAAAAAA AAAAAA	1706
45		
	(2) INFCFMATION FOR SEQ ID NO: 84:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 573 base pairs (B) T(PE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOTY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:	
	GAATTCGGCA CGAGCTTGGT AGCCTTAGAA CTGCATGAGC TGCTTTACCA CTGCGAAACA	· · 60
	CGAGCACAGC CTAGCTTGAT TYTGTATGTG GTATCAGATC TAAGGTGGAT GGAATTCAGG	120
60		

ACTTCCTGTC TACTCTTGA TITTGTTTTA TITTTAGAAA TGTTTTATTT TGTTTTATTC 180

	ATTTATTCAT CTYPLAGAGAC ATRETCTEGG: TCTGTTGCCC AUGATGGAGT GCATGGTGTG	240
5	ATCATAGGGG ACTGGAGTGT TGAGCTCCCGG CCCTCAGGGG ATCCTCCTGG CTCAGCTYCC	300
	TTAGTAGGIG GGACTATAGG CACATGCCCT ACCATGCCTG GCTTTGTCTA CTTTTTGAAT	3€0
10	GATGTCYCAA ACTAGAAGGT CTATTAATTT AAAAAATTAA GGATAGCATG CCATAATTAA	420
10	AAATAATAAC AGTGGGAAAA GGCACCTTUC AATGATTCAG ACATCAACTT GTGATTTAAA	480
	AAAACGAAAA ATAAATAATA GGAAAAAANG GXGAAAAAGT TAAATAAAAA TAAAATTAAA	540
15	AAAAAAAA AAAAACTCGA GGGGGGCCCG GTA	573
20	(0) INTEGRANGION FOR CEO III MG. DE.	
20	(2) INFORMATION FOR SEQ ID NO: 35:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 684 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: JEQ ID NO: 85:	
30	CTCTTTGGCT GTGTCTACCT CCTTCATCTG CTCCGCCGAC ATAAGCACCG CCCTGCCCCT	60
	AGGCTCCAGC CCTCCCGCAC CAGCCCCCAG GCACCGAGAG CACGAGCATG GGCACCAACC	120
35	CAGGCCTCCC ACGCTGCTCT YCACGTCCCT TATGCCACTA ICAACACCAG CTGCYGGCCA	190
	GCTACTTTGG ACACAGCTCA CCCCCATGGG GGGCCGTCCT GGTGGGCGTC ACTCCCCACC	2.10
	CACACICACA ACCIOCACA GEOCOCOCO DESCRICTO DESCRICTO ACCIOCACA COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	300
40	GGCAGCTTTG TUTCTGTTGA GAATASACTU TADGCTCAUG CAGGGGGAGAR GUUTDUTCAU	360
	ACTREPECCO GUCTCACTET TITOSETRAC CUPORRECCO COARGRECAT GRAARRACE	420
45	PTAGSAGTTU GATGAGAGAG ACDARGAGGC CALIPSGGGTT TECCECUTECO AGGCCTCCTG	420
	GOTGICATOO COTTACTTIA ATICTTOSCO CTOCAATAAG TOTOCOATAG GIGTOTGSCO	540
	AGGCCCACCT GCTGCGGATG TGGTCTGTGT GCGTGTGTGG GCACAGGTGT GAGTGTGTGA	600
50	GIGACASTIA CCCCATTICA GICATTICCI GCISCAACIA ASICAGCAAC ACAGITICIC	660
	TGAAAAAA AAAAAAAAA AAAC	684

(B) TYPE: nucleic acid

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:	
	TGBABBCAGA TBBACABGAB AAAGBTTCCC GTCCGCACCC TUTCAGACCT GAGGCTGAGC	60
1.0	TTBCAGTSAG GREPPOTOOT CORCECTOG COORCECCA GAGCTGCCAT COOTSCTGTT	120
10	ACAAGCAGA GGAGCCCGGA TUTSAGGCCC CAGATTACCT CCAGGGACTT GGGGTTCCCA	180
	TOTGAAATOO TTTATTMTTG TAGGARGGGG TSGGCCCCGG GCTGAGAAGG AAGAAGCACC	240
15	CTCTCCCCCG CCTCCTCTCT CTGCACCCCT GGGGCTTGTGA CTTACTCCTG CCTCCAGGGG	300
	COSSSCESS COCCUNSES COTOTTAAGS COCAASSTSS (SCCCAGSAC CTYTESGCAS	360
30	AGRGGAYTGO TCA'RGGCAGA TGTGTGGCAA TGTGTGGGTG WGTGTTTCGG GCAMCTGCGT	420
20	YOUR FYRENCE GREYROLDER GETSCHIRGET GEATSTEUTE ETTEUTFREED COGTCACATT	430
	GCCTCCTTGA CCCTTAGPCC AGGGGGTTGC TYCTCCCACC CCACCTACCT CACAGGGTTG	5.40
25	TTFTEAGEST (SCACAGAGA)	600
	COCACCTTCA (SCTSCOCTS) GATEGGAAGE ACCCAGCCC ACCCCTGGGC ATAACACTGT	660
30	GTTT9CAAAT (GSAGATTCAG GTATT9GGGA TSCAGGTTGT GGGGGAGCT9G CCTGGCAGAG	720
30	TAGGGGTAGT TGGCTTGGCC PPCTCTTTGG TGATCCCACC CCCAGCCATT TGCATTGCTG	780
	GCCCAGCGCC TGGCCTGGGGGGGGAGA GGCAGCAGAA GGGGCTTGGCC AGGGGCGGTG	840
35	GAGGACTCAG GAACTGCCCG GYGAGACTGG GTATGCCGGC TGAGCCAGGG GCCCTCCTGT	900
	GTTTGACTTC CCGGGATGGG TCCTTGCTTC TCAGCTGTGT CCGACCCCAC CATGTAATAA	960
40	AACCCAAAGS AACAGCAAAA AAAAAAAAAA AAAAAAAAAA	1020
40	CCCNG3GGG3 GNCCC3	1036
45		
13	(2) INFORMATION FOR SEQ ID NO: 87:	
50	(i) SEQUENCE CHAPACTERISTICS: (A) LENGTH 908 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
c	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:	
55	TTAAACAAAT GGAATCATGC AATATGTGAC CTTTTGCGTC TGGCTTATTT TATTTAGCAT	ნ 0
	AATGTTTTTG AGGTTCATCC AAGCTGTAGC ATGTATCAGC ACCTCATTTC TTTTTCTGGC	120
60	TGAATATTAT TCCATTATAT GJATTTACCA CAATTCATTT ACCTATTCAT CTTTTGTTTC	180

	TOCTGTCTGG CTATTGTGAA TAATGCTTCG ATAAACATTC ATATACAAGT T	TCTATGTGG 2	:40
5	CTTTATGTTT TCATTTCTCT TGGCTATCTA CATGGGAGTA GAATTCTAGG T	CATAATATA 3	01
3	APPTTATGTT TAACTTCTCA AAGAATTGCC AAAAGGTTTT TCATAGTGGC T	GCATCATTT 3	.51
	ACATTOCCAC CGGCAATGTA CAAGGATTTC TATTTTTCCA TATCCTTBCA C	TTACCAACA 4	12r
10	CTTCTTTTTK GTWATWATTT TSTTTTTTCA TTATTSCCAC CCTAGTGGAT G	TGAAATGGC 4	81
	ATCTTATTGT TTTGATTTGC ATTTCTTAA TGACAAATGA TATCATACTT T	TTTTATGIG 5	41
15	CTTACGGATC AAAGGTATTT CCTTAGAGAA ATGTCCCTTC AAGTCCTFFG C	CATTICAAA 6	:0+
13	ATTEGGTEAT TTGTCTFTTA TTATECAGTT TTAAGAAATT CTGGCCAGGC G	CAGTGGCIC 6	i61.
	ACCTSTAATC MTAGCACTTT GOGADGCCAA OGCGOGCAGA TCACTTGAGK T	CAGGACTTC 7	721
20	GAGACCAGOC TOGOCAACAT OGTGAAACCC CATCTTACTA AAAATACAAA A	ATTAGGTGG 7	8:
	GCGT93T39C AGGT3CATGT AATCNTATCT ACTCA 3GAGG CTGA3GCACG A	GAATOGOTT 8	34
25	GAACCCAGGA GGCGGAGGCT GCAGTGAGCC AAGATCACGC CATTGCACTC T.	AGCCTGGGT 9) () (
23	GACACAGA	ā) O =
30 35	(2) INFORMATION FOR SEQ ID NO: 88: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 655 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TCPGLCGY: linear		
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:		
	TGCACTGGTT COTTCTCCCC AGCAAATACT GCCTTCTTGT TTTTCTCTGA T	GTGGCA3GT	6.
	GACTACAAAA TOOGOOTTGG TATTCTTCAA ATGCATATAT ATTCCTTTCT T	STCASCTCC 1	12
45	CPCTOTTCCT AGATHAGAAA ACTGCOTUAT TEPCTOCTCA CEOGATGTUC A	GTCCCART 1	18
	TOPOTTOCTO TECTOSCENCE CTSTTSCARS TOTTOTTTT TTTTTTCTPC T	TOTH COURT 2) .
50	GGGCAGCAAA AGTIGITICCA CAGTGGAAAN TTAGGCATCC TCAAGTTTIY T	CCCAGCTTC 3	30
	TGCTGTGTTT TCTTAGAGTA AATTGCCAAT TTCTGTTTTT ACACGAAATC C	TTTTTAAA 3	361
	AATGGAATCA GTGTGGTCCC CATCTACTCT GCAAAAATTG CATTTTTCTC T	'ATTTTCAAA 4	1 2
	THE CONTROL OF THE OWN OF THE CONTROL OF THE CONTRO	region of the region of the last	

No. of the second second

	AAAAAAAAA AAAAAAAACY GRACGGGGGC CCCGTACCAA TTCGCCCTAT AATGA	655
5		
	(2) INFOFMATION FOR SEQ ID NO: 89:	
10	(1) SEQUENCE CHARACTERISTICS.(A) LENGTH: 1102 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:	
1/	TTTTTTTTT ACCATTTAAA ATAAAATGAA AGTGACCTTC TGTTTATAAA AATCTTTGTC	60
	TGCATCTCTG CTTATTTCCT TAGAAGAGAT TCCAAGAAGA GGTGAGTGAT TTCACGGCAG	120
20	CAGAGGGTTG GGACATATTA CGGGGGGGGGA TCCCTCTTGG AGTGAGATGA CTCTCCGGAG	180
	AGATTTAGTC GTCACCCTCG CGTGTGAGGC TGCGTCACAC CCCAGGGATG TGTUTATCAA	240
25	GATGGAAGAT CTTTTACACG CTCTTSATTT TGTTTGSCTY TTTTTCTATT ACTAGTGAGA	300
23	AKGAAACTTT TTATATGATT ATTATUCATU ATAATUCAAU ACAAATTACT GUTTUATUTT	360
	CTTTTACTTT CCTGTGAAGG TTTTWSTGCC TTTTAAAAAT TGCTATATAT TAAGCTTGTT	420
30	AATACTTCCA TSCTSTATTT GTSGSCATCA RTTTCCCCGG GNACASGCNT GCNCATTTNS	430
	CCTTCACACG CTGGGTGGTT TTTCATTTTC AMMTCTATTT CTCGTTCTTC TATCGTTTTA	540
35	TGTTCAGACG GTTTTCTCCG TGTAGAAAGC AGTTTATGAA GATTTACTTT CGACAGTCTT	600
55	CTCTCTACTT TCTACAGTGA ATTCTCTGAT GTGTCTGGGA GTTTGGGGGT CTGCGTAAGA	ဂ်ဂ ်(
	RTCCTCCTCT CACCCTATTC TCTATTACGA TCCACAGCCT CATGCTTTAT GARATTGGTG	720
40	SCCGGGARCG 333GAGATTT GCGGATCCCC CAAGCCAGAC TTTATCCCCC TATCCCTGCC	730
	TOTGGATICOC ACSTACAGGO CTGGGAACTO COTGTGGGTA GGGGCCAATG GTCTCGCACT	840
45	CTCACCTGTA CCCCAGGGCT GGCACAGGAT GGTCAAGGAG AGAGGCTGCC CAAGCGCATC	900
40	CYTCTGGTGT COCCCTGACA CGCCTCCAAA GTGAGCAGGT AGGTTTCAAC AGCCCCACGT	960
	TGCAGGT33G AGATGAAGCT CAGOGT3GAG ACCAGTATCT CACAGTTCTC TTT3CATGGC	1020
50	CGGGTACTTG TTAGTCAACT GATCAAGTGA AAATTCTAGC CCCAGAGGCA GGAGAATCCG	1080
	GAACAAAATT AAACCAGCCA GG	1102
55		
	(2) INFCPMATION FOR SEQ ID NO: 90:	÷

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1533 base pairs

(E) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

5	(xi) SEQUENCE	LESCFIPTION	: SEQ ID NO	: 90:		
	GGCACGAGCC	GNCACGGGCA	GCGCCCCATA	GCGCCAGGGA	CCCCCTGGCA	GCGGGAGCCG	61
10	CGGGTCGAGG	TTATGGATCC	AGCGGGGGG	CCCCGGGGGCG	TOCTOCOGOG	GCCCTGCCGG	12:
10	TGNUTGGTGC	TGCTGAACCC	G0G0330330	AAGGGCAAGG	COTTGCAGGT	CTTCCCGGAGT	18.
	CACGINGCAGC	CCCTTTT33C	TGAGGCTGAA	ATOTOGTTCA	CGCTGATGCT	CACTGAGGGG	24:
15	CGGAACCACG	OGOGOGAROT	GGTGCGGTGG	GAGGAGCTGG	GCCGCTGGRA	OGOTOTGGTG	30
	STCAPSTYTS	GAGAGGGGGT	GATGCACGAG	GTGGTGAACC	GOOTTCA NGG	AGDGGCTGA	36.
20	CTGGGAGACC	GCCATCCAGA	AGCCCCTGTG	TAGOCTOCCA	GCAGGCTCTG	GCAACGCSCI	420
	990A90FF00	TTRAACCATT	ATGGTGGGTA	TRAGCAGGTO	CARCTARCCA.	ACCTOSTGAS	48
	CAACTGCACG	CTATTGCTGT	GCCGCCGGCT	GCTGTCACCC	APGAACCTGC	PSTCTCTGCA	540
25	CACGGCTTCG	GGGCTGCGCC	TOPFOTOFGT	GOTICAGOSTG	GOORGEREET	TCATTGCTGA	60/
	TOTOGGACOTA	GAGAGTGAGA	AGTATOGGGG	тстэээээлэ	ATGOGGTT CA	CTCTGGGCAC	660
30	CTTCCTGCGT	CTOGCAGCCC	PGCGCACCTA	COGOGGCOGA	CTGGCCTACC	TOCOTOTAGG	720
	AAGAGTGGGT	TOCAAGACAC	CTGCCTCCCC	CTEETETEO	CAGCAGGGC	CGGTAGATGC	780
	ACAC CTTGTG	CCA CTGGAGG	AGCCAGTGCC	CTCTCACTGG	ACAGTGGTGC	CCGACGAGGA	840
35	CTTTGTGCTA	GTCCTGGCAC	TGCTGCACTC	GCACCTGGGC	AGTGAGATOT	TTGCTGCACC	90).
	CATGGGCCGC	TGTGCAGCTG	GOGTOATSCA	TOTGTTCTAC	GTGDGGGGGG	GAGTGTCTCG	960
10	TECCATECTE	CTGCGCCTCT	TOCTESCOAT	GGAGAAGGGC	AGGCATATGG	AGTATGAATG	1020
	CCCCTACTTG	GTATATGTGC	COGTIGGTCGC	CTTCCGCTT3	GAGCCCAAGG	ATGGGAAAGG	1080
	TGTGTTTGCA	GTGGATGGGG	AATTGATGGT	TAGGGAGGG	GIRGCAGGGGG	ADUTGCACCC	1140
45	AAACTACTTO	TG3A'P33TCA	GOGGTTGOGT	0GA9000003	CCCAPCTCBA	AGCCCCAGCA	1201
	CATGOCACOG	CCAGAA BAGG	COTTATGACO	00109990090	GETGTGEETT	AGTGTCTACT	1260
50	TGCAGGACCC	TYPOTOCTTO	OCTA GGGCT G	CAGGGCCTGT	CCACAGCTCC	TSTSGSGTS	1320
	GAGGAGACTC	CTCTGGAGAA	GGGTGAGAAG	GTGGAGGCTA	TGCTTTGGGG	GGA:CA/GGCCA	1380
	GAATGAAGTC	CTGGGTCAGG	AGCCCAGCTG	GOTGGGGGGA	GOTGOOTATG	TAAGGCCTTC	144(

 $(\partial A_{k})^{-1} = e^{-i t} = (\partial_{k} - i t) + (\partial_{k} - i t) +$

	(2) INFORMATION FOR SEQ ID NO: 91:	
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 575 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: dcuble(D) TOPCLCGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	
	ATCCTCTGGA ATCTAGGTGG AAGCCACCAA GCCTTCTTCA CACTTGCGTT CTGAGCATCT	6(
15	GCAGACTTAA CCCCATGTGG CAATCACCAA GGCTTATGGC TTGTGTCCTC CAGAACTGTG	120
13	GCCAGAGCTG TACCTGGGCC CCTTTGAGCT GAGGCTGAAG CCAGAGTCTG AAGCTCAGCA	180
	G99CAGTARG GCCCTGGGCC TGGCCCCTGA AACCATTCTT TTCTCCTAAG CCTCTGGGCC	240
20	TTTGATGGGA RGGGCTGTOU TOAAGATTTT TGAAATGCCT TTGGAGGGTT TTTGCCTTGT	300
	CITGSATATT GGCTTCCTTT TAGTTATGGT CATCTCTCTA GCAAGTGAAT GTTTCACAAC	360
25	CTGCTTGGAT TCTTTCTCTA CCACAGARCC AGGCTGCAAA TTTTACAAAC TTTTACACTC	420
	TSTTTCCCTT TTAAATATAA ATTTCAATST TAAGTCACTT CTTTGCTCCC ATATCTSATT	480
	TAGGTTGCTG GAAGTAGCCA AGTCACCTCT TGAATGCTTT GCTGCTTAGA AATTTCCTCT	540
30	ACTAGGTAGC CTGGGTCATC ACACTTAAGT TCAAA	575
35	(2) INFORMATION FOR SEQ ID NO: 92:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 639 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:	
45	TOOTTTCATC TTAAGCACCA COCGACAGGG CAGGTACTAT TACCATOTOC GTTTGACAGA	5 (
	TNAGGAACCT GGCACAGGAA GCATTTAAGT GGATTCCCCA GGATCGCCCC ACTGTCAGGA	120
50	GCAGANTCAG AATGGGCCTC AGCATCAGGC TCCCAATCCT GGCTTCTAAC TGCTGCGCTC	130
2.0	TSCCCTTCYC TCWCCCCACC TOCCCACTOC AGTGCCTTTG GTCATGCCAC TGCAGCTTTC	240
	AGGCCAATAC TGGATTAGCC TCTTAGTGTT CTTGTCCCTG CAGCCATTTC DCCAGGCAGC	300
55	AATTCCATGT GCCCTCACTG ATGTAGGTGG CTCTTGTGTC ATTTGTCACA TCCTATTGAA	350
	TTGTTTATGC ATCTTGTTCA CACTCACAGC ACCCTCCCTC TCACACGTCC TCCTTATAAA	420
60 ·	AATGTCCCTC AGTGTCTGCT ATGAGCCAGG TGCAGACTTA AGTGACAGGG CTGCTACGGG	480

345

	AAATAAAAAA TTAACAAGGA GCACCTGCCT CTTAATGCAC AGTAACAAAC TATGTTAAGT	540
	GTCAGGAAGG AAAGGTTAAG GATGCCAGGA AGGCTTTTAA TAAATAACCT GACTTAGATG	600
5	GGCAGGTGGT GCTGARGATT AAGAACGTGT TCTTCTCGA	639
10	.21 INFORMATION FOR CEO ID MO. 92.	
10	(2) INFORMATION FOR SEQ ID NO: 93:	
15	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 744 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (L) TOPOLOGY: linear	
	(xi) SEQUENCE LESCRIPTION: SEQ ID NO: 93:	
20	GAATTOGGCA CGAGACTOCC TYBAGTCTGG CTGCAGAGGG AAGACATCAG CAGGGAGGGA	60
	GCCAGGGCCT GTCACATCTT TECTCTGGCC ANTGTCCTGG TCTTTGTAAG CCCAGAATCT	120
25	COCCTTCCCT GAAGGGAGGC CAGCACCOCA GGAGGGCAGC AGGTGTGCTG TGAGGGTTTGG	180
23	AGTAGRETGA GAGETCAEGG TACACTAGAA REGCCATGEA CACCATGEG GGGTECTCTS	240
	GGCTGGGCCA CAGAACASTG TOCTTCCTPSC TSCTCCTCDC (TPGCAGCTTC CCCCGACCTT	300
30	STNGTITATT TEGTTIGATA CCANTCAGIA SACCCTGCAA SETEGAAGCT CCCAGGCTCT	360
	CAGTOCCACS ACTOTCATGT GCCAGTCAIC INTACTGTAA CTGCCCAATG AGTACTTCTT	420
2.5	PERCARTEGO AAGATNGAGO CASTITACIA AGACAGGGA AFTGCAGTAG AGAAAGAGIT	480
35	GAATATACAT AGACCDAGCT AAATGGGAGA GTGGAGTTTT CTTATTACTT AAATCAGCCT	5-10
	UCCYTAAAAT TOAGABSTGA GAATTTITOA ABGACASTTT GSTGGSCAGG CCTAGBGAAT	6)0
40	GGATGCTGCT GATTGGCTAG GGATGCAATC ATAGGGGTGT AGAAAAGTWC CTTGTGCACT	660
	GASTOUACTT TWESTSAGAG CTACCAAGSA GSTGCTGGTC TECTWGTCCC GSTAGASCCA	700
	TCTGGTGTCA DGAATGCAAA AGTG	744
45		
50	(2) INFORMATION FOR SEÇ ID NO: 94:	

(i) SEQUENCE CHAPACTERISTICS:

(A) LEMSTH: 526 base pairs

(b) TYPE- models wild

GUARRAMAT TUURKUGADUS ASSASSITETA AGAGRETUUR IPRGGRIGA GUDRUABAGADA

on an A

	AAGCCCATAA GTBCTGGCCT GTTGGGACAA ATGAGAGAAA TCCCCATAGGG TBGTGATGAC	120
	AGEGCAYTCA GCEATCYTAY TEETGEGGAA AATGAAACTT GTGCTCCTAT CAAATGCTCA	13)
5	GTTGTAAAAC TGGAAAAAAA TTTTAGAAGA CATCTTGTCC AGCATCTGTG TTTATGTCTA	240
	TAAAATGTAG AAAACTAAAG CACAGAGATG TTAAATGTTT TGTCCAAGGT CCAACAGCTG	3:):)
10	GTTAGCARGO TTBGTCTBGT GAGCTTTCTA CTSAACCACA GTGCCGCTGG GGGAAGTCCT	350
10	CAGCACAGAT GGCTGCTGCT ATAGCTGCGG TATGGGCAGT ATTAGTAGTT AACCAGTCAA	420
	CCCAASTTCC CATAGTCTAG GTTCTDETTC AGCTGGAGGT TAGGGAAAAA CACAAGAAAA	430
15	TOCCTTACCA CTCTACCAGT GCT3G33GAT GTACTAAGAG ATCCCC	526
20	(2) DIFORMATION FOR SEQ ID NO: 95:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 426 base pairs	
25	(B) TYPE: nucleic acid (C) STRANLEDNESS: double	
	(D) TOPCLCGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:	
30	GGCACAGGGC AGGAGAGACT TGGTCCATGG GGAGAAGCCT CCAGTATAGA TGGGACCTCC	60
	AGGAGCCCAA GTAGCATAGA CCCTGCTGAT CCGGGGCCAT TGAGCCAGAG GATTTGGGCT	120
35	GAATSTCCCC AGAGACAAAA GSSAAAGGTA GATCCTTYCC CTTAAAGATS AAAGCCATCG	180
	CCCGGGGCTTG CTTATTGCTC TCTCTCCTGG TCCTTCCACA TGTTGTTTCT GAACATTTGT	240
	TOTESCATCA CAATOCOOGT CATCOTGTCA TOTGGCCCTT CCCACCTTTC CACCTTATCT	300
40	CTNSCAGTST CTCCGCGTCG ACCTGGCACC TGGGTGAARG CTTGCTCTNS CTGGTGCCCA	360
	TAGGCCCCAG TGTATGGTCT TGAMCTCCCC AGCCATATGG ARACCCACCT CAGGAGGGCC	420
45	CCTCGA	426
7.5		
	(2) TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL TOTAL TO THE	
50	(2) INFORMATION FOR SEQ ID NO: 96:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 844 base pairs	
	(B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:	- , -
	GGCACAGCGG CACGAGATAG GAAGCTTGGC AGGGGCAGCT CCCCCAGTGC GCATTGCCCT	60
60	- SHOULDHING STREETTONS MOODENOCT CCCCCNSTSC SCATTOCCCT	9()

	GTAACTCGAG CGCCTGGGAG TGGGGAGAGG CTTGGAAATG GAGCAGGGTG GTGGACCTCG	120
	TOTTOTOCTS OFFCATOCIAS GOOTCOTOUR TRACACOTRO CTAGGROSEC CTGGGGACTT	180
5	COCAGCODAA GGAACAACTS AGAATACTGA GTGCOAGGGT AGCCCCTAGCC CCATTTCACA	240
	CCTGGGCAAA STGAGGTCAC TGGATTCAAA CASTCAGATT TAAACCTCCT CTGTGTCTGC	300
	AGCACCTOTA TATAACTSCC AGCCTCTSCT GCCCCTCTCC AAAAAGTCTC TGCCCTTGTC	360
10	TTTGGCACCT GTCTCTGTCC TCCCCATTCT CTGCTCCTCC TTTCTCCAAC TCAGANTCAC	420
	COTGTTAGTT CAGCAAATGT TOATCGAGCT COALAATGTA GCAGGACAGG NOTGTCTAAC	480
15	AGATTOTOGN CTTGCAAGGG TGAGACAAGT ACTCTCCATC TTTCTCTCAT CTTCAGAGAT	540
	GGTCTGCTCA ACAACTTTGC ACTGAATTGT AAATAATTGA TAUTGCATAA AACATTGATG	600
•	TTCTTTAAGG GTAG.CCAGC AAGSTGGCAA GTCTTATAAT GATAACTCCT CAAGGATCTC	660
20	TCAGTGAAGC ATTTGGTGTT GCTAGCTTTG CCTATGGTTG AGSTCAGCTA TCTCACGCCA	720
	TOTACTTOCA CNIGGO LOGO CATGOCAGGO TOAGCCTGAG CIGAGATGCO IGAGCAGGTG	780
25	GCAGAAAGGA GCCACCTGGT TTATGCTTCG GGACCACAAA CTCCTCTATC CAGANGACAG	840
	TTTT	844
30		
50		
	(2) INFORMATION FOR SEC ID NO: 97:	
35	(2) INFORMATION FOR SEC ID NO: 97: (i) SEQUENCE CHARACTERISTICS (A) LENGTH: 1935 base pairs (B) TYPE: nucleic acid (C) STRANCEMNESS: double (D) TOPOLOGY: linear	
35 40	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 1935 base pairs (B) TYPE: nucleic acid (C) STRANCEENESS: double	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1935 base pairs (B) TYPE: nucleic acid (C) STRANCEENESS: double (D) TOPOLOGY: linear	60
40	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 1935 base pairs (B) TYPE: nucleic acid (C) STRANCEMESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1935 base pairs (B) TYPE: nucleic acid (C) STRANCEMESS: double (D) TOPOLOGY: linear (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 97: AGRICUTGOTG AAGTARAGGT TOTTOTATICA OTTTOTATIG GGCAATGAAC GAGCAACAGC	
40	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 1935 base pairs (B) TYPE: nucleic acid (C) STRANCERNESS: double (D) TOPOLOGY: linear (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 97: AGCCCTGCTG AAGTACAGGT TCTTCTATCA CTTTCTGTTG GGCAATGAAC GAGCAACAGC AAAGGAGATC ACCGATGAAT ATGTCGAGAC COTTGAG CAAG ATTTACCTGT CTTACTACCG	120
40	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 1935 base pairs (B) TYPE: nucleic acid (C) STRANCERNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97: AGRICOTOGUIG AAGTACAGGT TOTTOTATICA GITTOTETTG GECAATGAAC GAGCAACAGC AAAGGAGATI ACCGARGAAT AUGTOGAGAC GETGAG LAAG AUTTACETGT CUTACTACCG CTOUTACCTG GGCAGGACT TOAAGGTGCA GITATGA XGAA CITCGUTGAGA AAGATGATCT AATGGGTGTG GAAGATACAG CAAAGAAAGG AUTCTYCTCA AAGCCATCGC TOCGCAGGAG GAACACCATT TICACCCTAG GAACCCGCGG CUCTGUTCATC TCCCCCACUG AACTTGAGGC	120 180 240 300
40	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 1935 base pairs (B) TYPE: nucleic acid (C) STRANCERNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97: AGRICOTGOTG AAGTACAGGT TOTTOTATCA GTTTCTGTTG GGCAATGAAC GAGCAACAGC AAAGGAGATT AGGGATGAAT ATGTCGAGAC GOTTGAG DAAG ATTTACCTGT CTTACTACCG CTCTTACCTG GGCAGGGCTCA TOAAGGTGCA GTATGA XGAA CTCGCTGAGA AAGATGATCT AATGGGTGTG GAAGATACAG CAAAGAAAGG ATTCTYCTCA AAGCCATCGC TCCGCAGGAG	120 180 240
40	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 1935 base pairs (B) TYPE: nucleic acid (C) STRANTENIESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97: AGRICOTECTG AAGTARAGGT TOTTCTATEA GTTTCTTTTG GGCAATGAAC GAGCAACAGC AAAGGAGATT AGGGATGAAT ATGTXGAGAC OCTGAGRAAG ATTTACCTGT CUTACTACCG CTCTTACCTG GGCGGGCTCA TOAAGGTGCA GTATGA XAA CTCGCTGARA AAGATGATCT AATGGGTGTG GAARACAG CAAAGAAAGG ATTTYCTCA AAGCCATCGC TCCGCAGGAG GAACACCATT TTCACCCTAG GAACCCGGG CTCTGCATC TCCCCCACTG AACTTGAGGC CCCCATCCTG GTXCCTCACA CAGCGCAGGG GNAGACCAGA COTATCCATT TGAGGCCCTC	120 180 240 300 260
40	(A) LENGTH: 1935 base pairs (B) TYPE: nucleic acid (C) STRANCEMESS: double (D) TOPOLOGY: linear (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 97: AGRICOTIGN AAGTAMAGET TOTTOTATEA OTTTOTATEG GACAATGAAC GAGGAACAGE AAAGGAGATT AGGAATGAAT ATSTOGAGAC ONTGAGIAAG AATTACCTGT CHTACTACCG CTOTTACCTG SGCOBSOTCA TOAAWNITSCA OTATGAINGA CTCGCTGAIA AAGATGATCT AATSGSTGTG GAAINTACAG CAAAGAAAGG ATTOTYOTCA AAGCCATCGC TOCGCAGGAG GAACACCATT TTCACCCTAG GAACCCGCG CTCTGTCATC TCCCCCACTG AACTTGAGGC CCCCATCCTG GTWCCTCACA CAGCGCAGCG SNAGACCAGA GOTATCCATT TGACCCCTC	120 180 240 300

	GTTCCTGCCC	TGGACAGGTA	CTGGGGAACA	GGTGCTTGCC	TTGCTATGGC	CACGGTTTGA	660
5	ACTGATCCTG	GAGATGAATG	TTCAGAGOGT	CCGAAGCACT	GACCCCCAGC	GESTAGGGG	720
3	GTTFGGATACT	CGGCCCACT	ATATCACACG	COGOTATGOA	GAGTTCTCCT	COGERETICT	730
	CAGTATCANC	CAGAGAATTC	CTAATGAAGG	GACCATGCAA	TTGCTGGGAC	AGCTGCAGGT	840
10	OGAGGTGGAG	AATTTTGTGG	TOOGAGTGGO	AGCIPGAGTIC	TOOTCAAGGA	AGGAGCAGCT	900
	TETETTETE	ATCAACAACT	A'PGA'CA'PGA'T	GOTGGGTGTG	C'PGATGGAGT	GGGCTGCAGA	950
15	'PGACAGCAAA	GA/GGTT/GA/GA	GCTTOCAGCA	GCTGCTCAAT	GOTOGGACAO	AGGAATTCAT	1020
1.7	TGAAGAGTTG	CECCTETETTO	CTTTTGGGGG	TTTAGTGGGA	TTTGTGAAGG	AGGCTGAGGC	1030
	TTPGATTGAG	CGTGGACAGG	CTGAGOGACT	TOGAGGGGAA	3AAG0000933	TAACT CAGCT	1140
20	GATTOTTTGGT	TTPGGTAGTT	COTGGAAATC	ATCAGTGGAA	TOTOTGAGIC	AGGATGTAAT	1200
	GOGGAGTTTO	ACCAACTICA	GAAATGGCAC	CAGTATCATT	CAGGGAGGGG	TGACCCAGCT	1260
25	GATO DAGOTO	TATCATOGOT	TOCACCOGGT	GCTGTCCCAG	COGCAGOTOC	GAGCCCTCCC	1320
-2	TGCCCCCCT	GAGETCATCA	ACATTCACCA	COTTATGGTG	GAGGTCAAGA	AGCATAAGOC	1380
	CAACTTCTGA	TGTGCCAGAA	ACCGCCCTGA	GATCTGCCGG	TCATCTCCAT	GGACTTCTGC	1440
30	ACCCCATTCC	ATACCCTTCT	TCACCTGGGG	TACCCCTTCC	AGTITTOCOC	TTGCTTCCCA	1500
	BBCCCTPGAC	ATGGGTTAGG	TGCCTTCACT	CCCAGCACCT	TGCCCAACAG	GATAAGCTGG	1560
35	ATCOCOTTOS	SSPTSTBAAT	ATCCCAGTGT	CTTCAGGTTT	CCCAAGACCA	CTTOCCTGTG	1620
	3 90TT00AAA	ATGGCCTTTA	TEATTTCTCC	AGTCTGTCAC	CCTCCTTTCC	TECTCCCATA	1680
	CACOCAAGG	TTGTTTCTTC	CCCTGTAAAA	ACCACTGCCT	CAATCTCTGG	TTCACTCAAC	1740
40	FAG FCACCAT	GTCCTGAGGC	ATGAAGCCTC	CTCAGCTCTT	GGAATTGCTG	GCAAGGGGTG	1300
	ACTGCCTCTG	AGTCATTGTG	TTTTTCAAAG	TGATTTCTTT	TOTGTAGCTT	TTTGACCTAA	1860
45	GATCTCAGCA	ATTIGAACAC	TAACCTCTCC	CCTCCTGGCT	CAAGAATTAC	TCCGAAGTCA	1920
	GTCTGCAGAA	AATAAATATT	TAGTATGACA	TGAAAAAAA	AAAAAAAA	AAAAAAAA	1980
	AAAAA						1985
50							
	(2) INFORM	ATION FOR SE	FO ID NO: 98	ą .			
55		SEQUENCE CI		ICS: ase pairs			- .

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

349

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:	
	ATATGAAGGG AAAGAATTTG ATTATGTTTT CTCAATTGAT GTCAATGAAG GTGGACCATC	60
5	ATATAAATTG CCATATAATA CCAGTGATGA CCCTTGGTTA ACTGCATACA ACTTCTTACA	120
	GAAGAATGAT TIGAATCCTA TGTTTCTGGA TCAAGTAGCT AAATTTATTA TIGATAACAC	180
10	AAAAGGTCAA ATGTTGGGAC TTGGGAATCC CAGCTTTTCA GATCCATTTA CAGGTGGTGG	240
10	TOGGTATGTT COGGGCTCTT CGGGGATCTTC TAACACACTA CCCACAGCAG ATCCTTTTAC	300
	AGSTOCTOGT CGTTATGTAC CAGGTTCTSC AAGTATGGGA ACTAECATCG CCGGAGTTGA	360
15	TCUATTTACA GOGAATAGTG CCTACCGATC AGCTGCATCT AAAACAATGA ATATTTATTT	420
	COCTAAAAA GAGGCTGTCA CATTTGACCA AGCAAACCCT ACACAAATAT TAGGTAAACT	480
20	CAMCCAMOTT AATGGAACTG CACCTGAAGA GAAGAAGTTA ACTGAGGATG ACTTGATACT	540
20	TITTGAGAAG ATACTGTCTC TAATATGTAA TAGTTCTTCA GAAAAACCCA CAGTCCAGCA	600
	AUTTCAGATT TTGT9GAAAG CTATTAACTG TCCTGAAGAT AUTGTCTTTC CTGCACTTGA	650
25	CATTOTTOGG TIGTCAATTA AACACCCCAG TGTGAATGAG AACTTOTGCA ATGAAAAGGA	720
	AGGGGCTCAG TTCAGCAGTC ATCTTATUAA TCTTCTGAAC CCTAAAGGAA AGCCAGCAAA	780
30	CCAGCTGITT GCTCTCAGGA CTTTTTGCAA TIGTTTYGTT GGCCAGGIAG GACAAAAACT	840
30	CATGATGTCC CAGAGGGAAT CACTGATGTC CCATGCAATA GAACTGAAAT CAGGGAGCAA	900
	TAAGAACATT CACATTGCTC TGGCTACATT GGCCCTGAAC TATTCTGTTT GTTTTCATAA	960
35	NGA JOATAAC ATTGAAGGGA AAGCCCAATG TTTGTCACTA ATTAGCACAA TCTTGGAAGT	1020
	ASTACAAGAC CTAGAABCCA CTITTAGACT TCTTGTGGCT CTTSGAACAC TTATCAGTGA	1080
40	TBATTCAAAT GCTGTACAAT TAGCCAABTC TTTAGGTGTT GATTCTCAAA TAAAAAAGTA	1140
	TTCCTCAGTA TEAGAACCAG CTAAAGTAAG TGAATGCTGT AGATTTATCC TAAATTTGCT	1200
	JTAGCAGTGG GJAAGAGGGA CGGATATTTT TAATTGATTA GTGTTTTTTT CCTCACATTT	126
45	BACATGACTG ATAACAGATA ATTAAAAAAA GAGAATACGB TOGATTAAGT AAAATTTTAC	132
	ATCTTGTAAA GTGSTGGGGA GGGGAAACAG AAATAAAATT TTTGCACTGC TGAAAAAAA	138
50	AAAAAAAAA AAAAGGAAAC TCGAGGGGG CCCCGG	141

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

 $(\mathcal{S}_{q_{i}})_{i,j} = q_{i,j} = (\mathcal{S}_{q_{i}})_{i,j} = (\mathcal{S}_{q_{i}})_{i,j} \in \Delta_{i}.$

	(xi)	SECUENCE	LESCRIPTION:	SEO	TID :	10:	99
--	------	----------	--------------	-----	-------	-----	----

5	MTCTACCCTA	ATCAA SATEG	GGACATACTT	CGOGACCAGG	TTCTTCATGA	ACATATCCAG	60
יב	AGATTG FCTA	AAGTAGTGAC	TGCAAATCAC	AGAGCTCTTC	AGATACCAGA	GSTTTATCTT	120
	DGAGAA BOAC	CATGGCCATC	TGCACAATCA	GAAATCAGGA	CAATAAGTGC	TTATAAAACC	130
10	CCCCGGGGACA	AAGT3CAGT3	CATCCTGAGA	APSTECTCTA	CGATTATGAA	COTOCTGAGO	240
	CTGGCCAATG	AGGACTCTGT	COCTGGAGG	GATGACTTIG	TTCCTGTGTT	GSTSTTTGTG	300
15	TTGATAAAGG	CAAATCCACC	CTSTTTSCTG	TOTACTGTGO	AGTATATCAG	TAGCTTTTAT	360
1.2/	GCTAGCTGTC	TGTCT 3GAGA	GGAGTCCTAT	TOSTSSATOS	AGTTCACAGO	AGCAGTAGAA	420
	'F FCA'PFAAAA	CCATCGATGA	CCGAAAGTGA	CCAAGA CCAA	GGCCACCAA	GGCAGAG	480
20	TGTTAATCAG	ACAAA CAGAT	CTCTGAGAAG	GTGCATCAGC	TGCTTTGAAG	GCTGAAGATT	540
	GTTTTTTATG	ATACTGCACA	GCATCAGGCA	TTTTAAAGCA	GATCTTTACT	AAACAGGTTA	600
25	ATGAGCTAAC	AAGCA GCTTC	TCTCGTCTTT	GGGCTCTTTC	CTTTCTGAGT	TGCATATTCT	660
	APPTTTTTTGT	COCCAAGTAG	AGACTAGTAG	TA CAAAAAA93	GACCACATTT	TTCAAGTATT	720
	TICTAA STATA	AAAAACAAAA	CAAAAATCTC	TTAGGAAATG	TOTAGACOTO	CATTCTTGGA	780
30	'PTCCCTTTCT	TTOOTTTTAT	TTTAAAAAAG	AACAGTACCC	CTCTTTTAAG	ATGCTGTCTT	840
	ACATTAATGA	GEATETAATG	GAAAGAAGGT	ATGAGTTGGA	CTGAGGATTA	GAATAGTGGT	900
35	GOGTTAGTEG	CATTATOTAT	AAATACACTC	ACCTAAATIG	AAAGCTAAGA	AGGAAATGTA	960
55	AATATAATAT	ATATTTATAT	TYGATGTAAT	ATGGACATOT	GCAGATTCTA	ATAAACAAGG	1020
	ACTA PPGCTG	ATAGTAGGCT	GTGACATACT	GTCTTGTGAA	ATGGTTTOCT	TGACAAAATT	1080
40	TAAGCTGAGC	TTAAAAGCAA	AAAAACAAAA	AGTACACAGA	AATATTTA'I'I	AAAATGTAAT	1140
	ACAGTTTATT	GAACTTTCTA	GGTATGGAGT	TTGATGGACA	GGGCTGCCTY	TAATGAGTGT	1200
45	GAAGGTCACT	AAGTCACTTA	GACATOTICAC	CGTGGAAGTT	TGTGAGCCTG	CATTAGGAGA	1260
,,,	TAGACTGATT	ACCATACATG	ACATAAAAAG	GAACAGTGGA	TAGCTCATAC	TTTATGGTGG	1320
	TROTROTOOT	COGAAATAAT	ATACTGCAGA	AATOCOAGAC	AGAGCTCCTT	ACAAACCTTT	1380
50	AATTGTAATA	TATTTTTGAT	GATTATTCAC	ATTGAA/DGCA	CAGACCAAGA	ATTCAGTGAA	1440
	TGTCATTTTT	TAAAAAACTA	ATTTGTATTG	TOTGOTOTAG	TGATACAAGT	TTTACTAGTG	1500
55	ATAAAGTATT	TTAATCAACC	ATACTATTCT	ТАТЭЗААААА	AATATCTATT	TTGGCAGGTT	1560
	TOTGTGOCTT	TATTTCCCTC	TTCTGAAAAA	AAGTCTGTGT	TTTCATAG'IT	TGGTTTGCAT	1630
	TGTATATCAA	TAATTAATCA	GGAATGGGTT	TTGGTGCCTG	AAAAATTGGC	CATGGAGGCA	1680
60	CACCAAAGCT	TCAAGCACAA	GTCTTGTACA	TGGGCATCA	CTSTCTGGTT	TCACTTCGTG	1740

PCT/US98/11422

	TSPTTOCTAA ACACATTTAG CTGCTTTTTT AACAAACTCA GCCCCATACT TGAGTCCCTT	1800
5	GTTSTTGGGA GCATTTCCAG GCATCTTTTA AGGGAACTGT GACAAACAGC CTCGGGCAGA	1860
-	TSAACACSGA GOOTOTOTOT TGTOTGTOTO TGAGATOTTT GTGTOTGGGA ATGCCTAAAG	1920
	NIPTESHITT TITTE	1935
10		
	(3) INFORMATION FOR SEQ ID NO: 100:	
15 20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 599 base pairs (B) TYPE: nucleic acid (C) STRANLEDNESS: double (D) TOPOLOGY: linear	
2(,	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:	
	GAATTOGGCA OGAGGGTCCA CGCAGCCGCC GGCCGGCCAG CACCCAGGGC CCTGCATGCC	50
25	AGGTCGTTPG AGGTGGCAGC GAGACATGCA OCCGGCCCGG AAGGTCCTCA GCCTCCTCTT	120
	COTCATOOTS ATRAGGCACTS AACTCACTCA AGACTCOGGCT GCCCCGGACT CCCTGCTGAG	130
30	AAGTTOAAAG GECAGCACEA GGEGGGTCTTT GECTGCTATT GTCATCTEEA GGEGSAAGAE	240
	TEAGAGEEGG ATAGCCAAGA COCCAGGEAT TTTCAGAGGT GGCGGGGACCT TAGTCCTACC	3.00
	GCCAACACAC ACCCCCBAGT GGCTCATCCT CCCTTTGGGC ATAACGCTGC CCTTGGGGGC	360
35	TECAGAAACA GƏCƏGTƏGGG ATRETECOSC TSAGACCTƏS AAGƏGCAƏCC AGCETGCCGS	420
	CONSCRIPTION GENTRACTOR STRANDARD ASSOCITED GROUP GACATISCOCCS	430
40	GCAGGAGETE ACTEAGGAGC COTGTGGCST GCTGGTGTGG GGATCGTGGG CATTTCAAAC	540
	GEGCTPETCE TACCCTEAAC AATGTATCAA TAGAGAAAAA AAAAAAAAAA AAAACTCGA	599
45		
	(3) INFORMATION FOR SEP ID NO: 101:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 784 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPCLOGY: linear	
	and the state of the first constant Mark explicitly and the Anna Angelon (1994). The constant of the state of	
60	TOTATA CONTRACTOR ACCIONAL ACCIONAL CATALATAC CONTACTA CONTRACTOR CONTRACTOR	19.,

	CACTITOCAC ATCCACTTOT CACCAAATCK RGTTCATTCT GCATCCTAAG TAAGTCCTTT	24
5	GATTCCTCCA CTTGTTCATT AGTAATGTCT CAARTGTAAT TTTTTCTAGT AGTTTTCAGC	30
	CTGTCTTTUC KGCCTTCACT CTTAACTTCT CCAGTACATA KGCCACATTG TYGTCAGCAK	36.
	GATCAWATTT TATTTAAAAA TASTTTAGAW AKGTTTATEG CCAAATATTA GRAAATACAG	43)
10	ATTCATGGAA AGAAAAATCA CTSTUCCAAG GAGGTCACTG GCATGGTUAG GTTAAGGGGT	480
	GATTTTAATT TYTAAAAATG TATATTTYTT CCTGTGTAGA GTAGTAACAC CCTTGAAAAC	54
15	ACAMTCCCTT GTAAAGTCTC TAATTCTGTA CTCCGCATCT AGSTGRTCTC TTCTTTCTCA	601
	GATATTITAC AATITCATIT ATGAGGAGGT TICTCTAGGG TITTACCGGTG TGTTCAATAT	661
	TWACATATEC AGAAGTTTET CUTAACAAAC ACCTGCCTCT GCCTCAGTTC TGCTACCACC	720
20	CTGTTGCTTT CTTTCCCTTC ACAATCAAAT TTAAGACTGT CAAAAAAAAAA	780
	TCGA	784
25		
	(2) INFORMATION FOR SEQ ID NO: 102:	
	(1) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 1035 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(D) TOPOLOSY linear	
33	(xi) SEQUENCF DESCRIPTION: SEQ ID NO: 102:	
	AGA-3GCCTG-3 CTGCGTTGC-2 CTATCTCCGT CTCCGCCACC CACTTAGCGT TTTAGGCATC	60
40	AATTACCAGO AGTTTCTCCG CCACTATCTG GAAAATTACC CGATTGCTCC CGGCAGAATA	120
	CAAGAGCTTG AAGAACGCCG CAGTTGCGTG GAAGCCTGCA GAGCAAGGGA AGCAGCGTTT	180
	GATGCCGAAT ATCAGCGAAA TCCTCACAGG GTGGACCTCG ATATTTTAAC CTTTACGATA	240
45	GCTCTGACT3 CCTCTGAAGI TATCAACCCT CTGAIAGAAG AACTTGGTTG CGATAAGTTT	300
	ATCAATAGAG AATAGTTAGS TGSTGACACT ACTTCAAGAG AACCTCTGCA TTCCAGTCAT	360
50	ACCAATCCTG CAACTTGATT TTCAGAAGTC AAGAGTATAT CGCGATAAGA CAGTGCACAG	420
	GTGGAGGGGA AAAAAAGGGG GAGGGGGAAAAG CTTATCTIGA AAAAGCATCA CAGAAGTAGA	480
	AAAAAATGTC GAAAGCATTA TAACTGTAAC GTTCTTTGAG TYTGTGATTG ATCCACATTT	540
55	TTCCCCCTGC ATTATGGAAA ATGTCTCTCA GCATTGCTTT ATTACAAAGT AAAGGATGGT	600
	TTTATAAAAT TGAGACTGAT GAAACATCAA TACTAGAGCC CATGAGGATG AAAGAAATTA	660
60	TCAAATAGTG CTGAACAGAA TAAGATGTTA ACGCTGAGTT ATTAGGACTG GAAGGCTATG	720

353

	AAAAGAACTT GAAATTGTCG GAATATGTGC TCTCTTCATG TCATATTCAA TAGAAGTTTC	780
	TAGTTTAAGA TTGATTTTGT GTTTTCTTAG GCATTTCAAG TGACAAGCAA AGTAAATGTA	840
5	TATATTATGT GATAAATCAT GTTTTCAAGA ACGTCAAATT TCTGGACTTT TTTCTTTCAA	900
	TTYTTAATTT TTAAAGTTTT TTTGGTATTA AAAAATCYAT TCACAAGCCA AAAAATWTWT	960
. 0	WAAATWIWCM GCGAAAAGCC AAAAAAAAAA AAAAMMAGCG GGGGCCGGGC CCCATCCCCC	1020
10	CAAGGGGGTC CNGNT	1035
15	(2) INFOFMATION FOR SEQ ID NO: 103:	
20	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH. 2218 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:	
	AGGTATTAGG COUNTITGIS GGAGCCCCAT GITTITGITTI TCTGAGITGG TGGGGAGGGA	60
	SGGAGGERGA GEGETGAATT GTTTTGCAGA GGAAGATGCC ATCTGTGCTT TAAATTTCTC	120
30	ATTACTEGGT TAGAAAACAA AGAGGGAKTG CCCTGCACAT TTTCTTTTGT GCTTTTAAAT	180
	GTTTCTTAAG TTXGAACAGG TTTCCTCGGG CCTGTTTTCA CTGATTGCTG GAGTGCATTT	240
35	GATAGTTAAA AATTACTAAT TEGTTTTATT TEGTTTCAUA CTCTSCCTEC CCACTTCTCC	300
55	CCCCGTTACT GAAAAATAAC CATTTAGTG TCAGGCTAGA AATTGAATTG	360
	TSTATCCTTT AAATTAAAAA COACAAGTGT TTATTGTAGT GGTTAAACTG TAGCATCTCA	420
40	GCATCTGGGT GGAAGCTGCC TATATTTCTT CCCAGTTTAA CTGGGGACCA TCTGTGAAAT	480
	TAATTYTOGA TOCAGACACC TGTTGTGAGC AAATGAACAT AAATGCTCGC TGGAAATTTA	540
45	CTAACCAGTT TYPATATTGA CCTGCAGTGT AAAAAGCACTA TTTAATTATA AACAATATAT	600
~ † .)	TOAAAATGGG CAAATTYYAT TYPCAAATGC AGTGTAGAGC TAGATTAAAA GCAACTCTTT	660
	GCCACCTACT CTGCCCTTTT GGCAAAGTTA CCTTGAACAA AGAATCTTAA GGGTPTATTA	720
50	AGAACTCTTT ATTITCTTCA TACCCTGTTC TCTGCAGT3C TTTCTAACAG STTCTGGGTG	780
	CAGATTITCT TORGOATCOT TITGCACTCA SCTTATTACA SGTAGGTAGT GCTTAAGAAA	840
	aatittuut oo dalii koosito aa toagaa yab qada 8892 ya dha Ababbid — ABAAb	
60	CTTCUNANTO TYATATGOGA CTATTAMITT TTATGCTOTT AATYGTATT OMTCACAAT	1080

 $\mathcal{S}_{\mathbf{q}} = \{ \mathbf{r} \in \mathcal{S}_{\mathbf{q}} \mid \mathbf{r} \in \mathcal{S}_{\mathbf{q}} \mid \mathbf{r} \in \mathcal{S}_{\mathbf{q}} \mid \mathbf{r} \in \mathcal{S}_{\mathbf{q}} \}$

TGTAAGATET ATACTCGAGG TTTTGTTTC CTTTM GTTTCTGAGG GCTTCTGAAA GTATGATTCA ATCTC AAGCTGAAAT ATATGCATGT AAAAACTTTG ACATC ATGGTAGGCA CTTCTCTTTT TGTCCCCCCC CCATC ATGGTAGGCA CAGAAGAAAC ATGGCAAACT GCTCT CCAACCCCAA ATTTGTCTAA GCACTGGCCA GTCTG AATTCTGGAT TTTTTTCTTC TTTCTTTAAA CATAG CTCTCTCGAA GCTCTTGAAA GCATCTGTTT GAGGG AATTCCAAAC CTCAAAAACT ATTATGGCCT GAGCA TCTTCTGCT CCATGTCTGT CACTTATAAT TCAGG	ECAACA TACAGGTAGG TCTTCAGCAT 1260 ETTTT TTTTAATTT CCACTTTCTT 1720 ETTACA GAAGTTGAGG CCAABGGAGA 1280 ESTECT TTCAAACCAA AGTGTTCCCC 1440 ETTTG GGCATTGTTT TCTACAACCA 1500 EAGGTA CCACCACAAG GBATGCCCTA 1560 AAAGG TCTCTGGGCA ABCAAGTBGT 1620 ACATT GYAATCATAA AATAACAGTA 1680 CAGCT GAAATCTAGC AGAGTTTAAC 1740 ETCTG CTGTTGGCTT CAGAACATGA 1800 ETGGTT GAAACTCAAC TTAGGGAAAAG 1860
AAGCTGAAAT ATATGCATGT AAAAACTTTG ACATC CTTAACTTTA CTTCTCTTTT TGTCCCCCCC CCATC ATGGTAGGCA CAGAAGAAAC ATGGCAAACT GCTCT CCAACCCCAA ATTTGTCTAA GCACTGGCCA GTCTG AATTCTGGAT TTTTTTCTTC TTTCTTTAAA CATAG CTCTCTT.GCA GCTCTTGAAA GCATCTGTTT GAGGG AATTCCAAAC CTCAAAAACT ATTATGGCCT GAGCA TCTTCTGCCT CCATGTCTGT CACTGATAAT TGCCC	TTTTT TTTTAATTT CCACTTTCTT 1720 TTACA GAAGTTGAGG CCAAGGGAGA 1380 PSTECT TTCAAACCAA AGTGTTCCCC 1440 TTTTG GGCATTGTTT TCTACAACCA 1500 AGGTA CCACCACAAG GGATGCCCTA 1560 AAAGG TCTCTGGGCA AGCAAGTGGT 1620 ACATT GYAATCATAA AATAACAGTA 1680 CAGCT GAAATCTAGC AGAGTTTAAC 1740 TTCTG CTGTTGCCTT CAGAACATGA 1800 TGGTT GAAACTCAAC TTAGGGAAAG
ATGGTAGGCA CAGAAGAAAC ATGGCAAACT GCTCT CCAACCCCAA ATTTGTCTAA GCACTGGCCA GTCTG AATTCTGGGT TITTTTCTTC TTTCTTTAAA CATAG CTCTCTT.GCA GCTCTTGAAA GCATCTGTTT GAGGG AATTCCAAAC CTCAAAAAACT ATTATGGCCT GAGCA TCTTCTGCCT CCATGTCTGT CACTGATAAT TCACGG	TTACA GAAGTTGAGG CJAAGGGAGA 1380 PSTECT TTCAAACCAA AGTGTTCCCC 1440 PSTECT TTCAAACCAA AGTGTTCCCC 1440 PSTECT GGCATTGTTT TCTACAACCA 1500 PAGGTA CCACCACAAG GGATGCCCTA 1560 PAAAGG TCTCTGGGCA AGCAAGTGGT 1620 PACATT GYAATCATAA AATAACAGTA 1680 PAGGCT GAAATCTAGC AGAGTTTAAC 1740 PTCTG CTGTTGGCTT CAGAACAGAG 1800 PTGGTT GAAACTCAAC TTAGGGAAAAG 1860
ATGGTAGGCA CAGAAGAAAC ATGGCAAACT GCTCT CCAACCCCAA ATTTGTCTAA GCACTGGCCA GTCTG AATTCTGGGT TTTTTTCTTC TTTCTTTAAA CATAG CTCTCT-GCA GCTCTTGAAA GCATCTGTTT GAGGG AATTCCAAAC CTCAAAAAACT ATTATGGCCT GAGCA TCTTCTGCCT CCATGTCTGT CACTGATAAT TCACGG	PSTSCT TTCAAACCAA AGTGTTCCCC 1440 ETTSTG SGCATTGTTT TCTACAACCA 1500 AGGTA CCACCACAAG GSATGCCCTA 1560 AAAGG TCTCTGGGCA AGCAAGT3GT 1620 ACATT GYAATCATAA AATAACAGTA 1680 CAGCT GAAATCTAGC AGAGTTTAAC 1740 TTCTG CTGTTGGCTT CAGAACATGA 1800 TGGTT GAAACTCAAC TTAGGGAAAAG 1860
20 CCAAGGCCAA ATTTGTCTAA GCACTGGCCA GTGTG AATTGTGGGT TITTTTCTTC L'ITCTTTAAA GATAG CTCTGT:GGA GCICTTGAAA GCATCTGTTT GAGGG AATTGGATT GCTTGGTTCC CTTTTTCCAC CTGGG AATTGCAAAC CTGAAAAACT ATTATGGCCT GAGGA TCTTCTGCCT CGATGTCTGT CACTGATAAT TGGCG	TTETE SECATTETIT TETACAACIA 1500 AGGTA CCACCACAAG GEATGCCCTA 1560 AAAGE TCTCTGGGCA AGCAAGTEGT 1620 ACATT GYAATCATAA AATAACAGTA 1680 CAGCT GAAATCTAGC AGAGTTTAAC 1740 TTCTG CTGTTGCCTT CAGAACATGA 1800 TGGTT GAAACTCAAC TTAGGGAAAAG 1860
AATTOTOGGT TITTITICTTC LITCTTTAAA GATAG CTCTCT:GCA GCICTTGAAA GCATCTGTTT GAGGG 20 TATTTGGATT GCTTGCTTCC CTTTITICCAC CTGGG AATTCCAAAC CTCAAAAACT ATTATGGCCT GAGCA TCTTCTCCCT CCATGTCTGT CACTUATAAT TCACG	AAAGG TCTCTGGGCA AGCAAGTIGGT 1620 ACATT GYAATCATAA AATAACAGTA 1680 CAGCT GAAATCTAGC AGAGTTTAAC 1740 TTCTG CTGTTGGCTT CAGAACAGTA 1800 TGGTT GAAACTCAAC TTAGGGAAAAG 1860
20 TATTICGAN GETETTGANA GENTETGITT GAGGG ANTICCANAC CICANANACT ATTATGGCCT GAGGA TETTCTHECT CONTGITTE CACTUMANT TORSE	AAAGG TCTCTGGGCA AGCAAGTGGT 1620 ACATT GYAATCATAA AATAACAGTA 1680 CAGCT GAAATCTAGC AGAGTTTAAC 1740 TTCTG CTGTTGGCTT CAGAACATGA 1800 TGGTT GAAACTCAAC TTAGGGAAAAG 1860
20 TATTIGGATT GUTTGUTTCC CITTITTCCAC CTGGG AATTICCAAAC CITCAAAAACT ATTATGGCCT GAGCA TUTTCTGCCT CCATGTCTGT CACTUATAAT TGGCG	ACATT GYAATCATAA AATAACAGTA 1680 CAGCT GAAATCTAGC AGAGTTTAAC 1740 TTCTG CTGTTGGCTT CAGAACATGA 1800 TGGTT GAAACTCAAC TTAGGGAAAAG 1860
AATTCCAAAC CTCAAAAACT ATTATGGCCT GAGCA TCTTCTECCT CCATGTCTGT CACTUATAAT TYGCG	CAGCT GAAATCTAGC AGAGTTTAAC 1740 TTCTG CTGTTGGCTT CAGAACATGA 1800 TGGTT GAAACTCAAC TTAGGGAAAAG 1860
TOTTOT: COT COATGTCTGT CACTUATIANT TYPACG	TTCTG CTGTTGGCTT CAGAACATGA 1800 TGGTT GAAACTCAAC TTAGGGAAAAG 1860
TOTTOTHOOT CONTGTCTGT CACTUATANT TOAGG	TGGTT GAAACTCAAC TTAGGGAAAG 1860
25	
GCAGAAGAAT CGTTTTATGC TAGTTATTGC ATTCA	
GSTTCCAATG TATTAAGCAA TOGGCTGCTT CTCCC	CAATC CTCCCTAACA ATTCGTTGTG 1920
30 TEGACTICTO ATCTAAAAGG TEAGTEGCTT TEGCT	TGGGA TCAGTGCTCT CTATTGATGT 1980
TOTTGOTGOT CTOCAGACAC ATTCCTGTTG CATTA	AGAST TGAAAGACTT GTAGATGTGT 2040
GATGTTCAGG CACACGATGC TGAAAGCTAT CTTACC	TATTC TTAGTTTGTA AATTGTCCTT 2110
TTGATACCAT CATCTTGTTT TCTTTTTGTA (XCTATA	AAATA AAAA.CACTGT TGACAATAAA 2160
MARAK ARKARARA ARRAKARA ARRAKARA	AAA AA AAAAAAAA 2218
40	
(2) INFOFMATION FOR SEQ ID NO: 104:	
4.5	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1351 base pa	ıre
(B) TYPE nucleic acid	112
(C) STRANDEDNESS: double (D) TOPOLCGY: linear	
50	
(xi) SEQUENCE DESCRIPTION: SEQ 1	ID NO: 104:
CTTCACAGAC TGACAGAATG GTTTTGTTTT GTTTTG	ETTIT GTTTTGTTTT GTTTTTGAGA 60
55 TOGACTOTAG CTCTGTCACC CAGGCTGGAG TGCAGT	PEGTG CGATCTCGGC TCACTGCAAG 120
CTCCGCCTCC CGGGTTCTCA CCATTCTCCT GCCTCA	GCCT CCCGAGTAGC TG3GACTACA 180
GGCGCCCACC ACCACGCCCG GCTAATTTTT TGTATT	TTIT AGTAGAGACG GGGTTTCACC 240

	ATGTTAGCCA GGATGGTCTC GATCTCCTGA CCTCGTGATC CGCCCGCYTC GGCCTCCCAA	300
	AGTGCTGGGA TTACAGGCGT GAGCCACCGT GCCTGCCCCA GAATGGTTTT TAAAGCCACA	360
5	GTTGAGARGE CACCEATTEC CEGEOGECTG SACAGTGATE ATETTETTCA TETTGTTCAG	420
	TOCTITICITE TETESATITESA ATTATICATO COOTTITESAA CATESGAAGE TIGAGAIGCA	480
10	AAGAGTCTAC CTTTCCAAGT TCTCACTGCT GGAAAGARCT AGAAGCACAG TTCAAAGTTC	540
• 0	TEGNITICIGG ACTOTOCAST CCASSITYTOS CITIYITOCCAS ITGOSTAJOS ICAATGOCAC	600
	ACTGTTTTTG AAGTGGCCCA TAACTTGAAG GRAAAGTTTA AAGACAGTTD AATTTAATCA	660
15	TCAGRATGCA TTCTTTTTT TTTC3GARAC GGAKTTTCAC TCTT3CTGCC CASGCTGGAG	720
	TGCAATGGTG CAATGATCTC COCTCACTGC AACCTATGCC TCCTGGGGTTC AAGNGATTAT	780
20	CCAGCCTCAG CCTCCCGACT ACCTGCGATT ATGGGCCCCC ACCACCATGC CCAGCTAATT	840
	TTTGTATTTT TTTTTTAGT AGAGATGGGG TTTGGCCAGG TTGGCCAGGC TGKTCTTGTG	900
	AAYTOOTGGO YTCAGGTGAT YTGOOCACYT CATCYTCCAA AAGTOOTGGG ATTACAGGCA	960
25	TGAGCCACTG COCCTGGCYT CAGAATGCAT TCTTACACAT CTATCCTAGA CATTTATAAG	1020
	CACTOTAATG GATAACAATO CAAGAATAAA TGATTGTAAA AGATGATGCO GAAGAGTTGA	1080
30	TGTCAATCTT TTTTTCCTAA GAAAAAAAGT CCGCGAGTAT TAAATATTTA GATCAATGTT	1140
	TATAAAATGA TTACTTTGTA TATCTCATTA TTCCTATTTT GGAATAAAAA CTGACCTTCT	1200
	TTAATCATAT ACTISTCTTT TSTAAATAGC AGCTTTTGTG TCATTCTCCC CACTTTATTA	1260
35	GITANTITAA ATTOGAAAAA ACCCTCAAAC TAATATTCTT GTCTGTTCCA GTCTTATAAA	1320
	TAAAACTTAT AATGGATGTA AAAAAAAAA A	1351
10		
	(2) INFORMATION FOR SEQ ID NO: 105	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20%6 base pairs (B) TYPE: nucleic acid (C) STRANTEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:	
	GGCACGAGGC GGCGGAGGGC CAMAATCACA GCTCCGGGCA TTGCGGGGAAAC CCGAGCCGGC	60
		90
	18 18 18 18 18 18 18 18 18 18 18 18 18 1	1
.()	CAAAAATGGG TOFFFCANTT ATNIAAAANA THABCALLAA GAAGCTGTGG ATTOTTGGTG	300
	TO THE TERM TO THE	200

	- StaATTCTSUT	CGT FITTCUAA	ATUATOGCT	TICIBIIGG	AGGCTTGATT	GTTCCAGGGC	360
5	CCACAACGGC	AGTGTCCTAC	ATSTCGSTBA	AATGTGTGGA	TGCCCGTAAG	AACCATCACA	400
	AGACAAAATG	GTTCGTGCCT	TGGGGACCCA	ATCATIGTGA	CAAGATCCCA	GACA'TTG A AG	480
	AGGCAATTOO	AAGGGAAATT	GAAGCCAA FG	ACATO STSTT	TTCTGTTCAC	ATTCCCCTCC	540
10	CCCACATGGA	GATGAGTCCT	TGGTTCCAAT	TCATSCTSTT	TATOCTGCAG	CTGGACATTG	60()
	CCTTCAAGCT	AAACAACCAA	ATCAGAGAAA	ATGCAGAAGT	CTCCATGGAC	GTTTCCCTGG	660
15	CTTACOGITGA	TGACCCATT	GOTGAGTGGA	CTGAAAT90C	CCA PGAAAGA	GTACCACGGA	720
• 5	AACTCAAATG	CACCTTCACA	TOTOTOAAGA	CTCCAGAGCA	TGAGGGGGGT	TACTATGAAT	780
	GTSATGTCTT	TOOTTTEATG	GAAATTGGGT	CTGTGGCCCA	TAAGFTFFAC	CITTITAAACA	840
20	TOTESTADO	TGTGAATGAG	AAGAAGAAAA	TCAATGTGGG	AATTGGGGAG	ATAAAGGATA	900
	TOOGGTTGGT	GACCTACCEC	CAAAATGGAG	GCTTCACCAA	GGTGTGGTTT	GCCATGAAGA	960
25	COTTOCTTAC	(3000A(30AT)	TTCATCATTA	TGGTGGTA	TTGGAGGAGG	ATCACCATGA	1000
	TGPCCCGACC	COCAGTGOTT	©TGGAAAAAG	TCATCTTTGC	CCTTGGGATT	TODATGACCT	1089
	TTATCAATAT	COCAGTGGAA	PROTTTTOCA	TOGGGTTTGA	CTG3ACCTGG	APSCTSTT	1140
30	TTGGTGAGAT	CCGA/CA/933C	ATCTTCTATG	OGATECTTCT	GTCCTTCTG3	ATCA'PCTTC'P	1200
	GTGGGGGGGA	CATGATGGAT	CAGCACGAGC	GGAA CCACAT	TOCAGOGTAT	TGGAAGCAAG	1250
35	TOGGACCCAT	TGCCGTTGGC	TOCTPOTGCC	TOPPOATATT	TGACAT STOT	CERDERENADAD	1320
	TACAACTCAC	GAATCCCTTC	TACAGTATCT	GGACTACAGA	CATTIGGAACA	GAGCTGGCCA	1380
	TACTTOCEET	CATOGTGGCT	BEAATICTISCO	TOTGOOTOTA	CTTCCTGTTT	CTATGCTTCA	1440
40	TGGTATTTCA	GGTGTTTCGG	AACATCAGTG	GGAAGCAGTC	CAGCCTGCCA	GCTATGAGCA	1500
	AAGTOOGGCG	GCTACACTAT	GAGGGGCTAA	TTTTTAGGTT	CAAGTTCCTC	ATGCTTATCA	1560
45	COTTGGCCTG	CGCTGCCATG	ACTGTCATCT	TCTTCATCGT	TAGTCAGGTA	ACGGAAGGCC	1620
	ATTIGGAAATG	GGGGGGGGTC	ACAGTO CAAG	TGAACAGTGC	CTTTTTCACA	GOCATCTATG	16%6
	GGATGTGGAA	TCTGTATGTC	TTTGCTCTGA	TGTTCTTGTA	TECACCATCC	CATAAAAACT	1740
50	ATGGAGAAGA	CCAGTCCAAT	GGAATGCAAC	TOCCATGTAA	ATCGAGGGAA	GATTGTGCTT	1800
	TETTTETTTC	GGAACTTTAT	CAAGAATIGT	TCAGCGCTTC	GAAATATTOO	TTCATCAATG	1860
55	ACAACGCAGC	TTCTGGTATT	TGAGTCAACA	AGGCAACACA	TSTTTATCAG	CTTTGCATTT	1920
	GCAGTTGTCA	CAGTCACATT	GATTGTACTT	GTATACGCA:	ACAAATACAC	TCATTTAGGG	1980
	TTTATCTCAA	AATGTTAAAT	ATAAGGAAAA	AAGCGTCAAG	AATAAATATT	CTTGAGTATA	2040
60	АААААААА	AAAAAAAAA	AAAAA				2066

357

_							
5	(2)	INFORMATION	FOR	SEO	ID	NO:	106:

10

-i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1705 base pairs

(E) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

15	AATTC3GCAF	AGGCCACCTG	TCGGCTGGAA	GGAACTGGTC	TGCTCACACT	TGCTGGCTTG	60
	CGCATCAGGA	CTGGCTTTAT	CTCCTGACTC	ACGGTGCAAA	GGTGCACTCT	GCGAACGTTA	120
20	AGTCCGTCCC	CACCGCTTGG	ANTOCTACOG	CCCCCACAGC	CGGATCCCUT	CAGCCTTCCA	180
20	GGTCCTCAAC	TOTOGYGGAC	GCTGAACAAT	GGCCTCCATG	GBBCTACA/3G	TAATGGGCAT	240
	CSCGCTGGGC	GTCCIGGGGCT	GROTGROCCT	CATCCTGTGC	TGCGCGCTUC	CCATGTGGCG	300
25	CETGACGCC	TTCATCGGCA	GCAACATTGT	CACUTOGCAG	ACCATCTG3G	NEGGCCTATG	360
	GATGAACTG:	OT KITODAGA	GCACCGGCCA	CATCCAGTGC	AA GGTGTAOG	ACTOGOTGCT	420
30	GGCACTGCCG	DETTOCASCAS	AGGGGGGGG	CGCCCTCGTC	ATCATCAGCA	TEATOSTGGC	480
50	TGCT ITGGG:	: stectetet	COGTGGTGG	GGGCAAGTGT	ACCAACTGCC	TEGAGGATGA	540
	AAGCGCCAAG	GCUAAGACUA	TGATOGTGGC	GGGCGTGGTG	TTCCTGTT 3G	COGGOOTTAT	60°C
35	GGTGATAGTG	OC POTSTSCT	GGACGGCCCA	CAACATCAID	CAAGACTTCT	ACAATCCGCT	660
	GGTGGGTTC	DOGAGAGAGC	GGGĄGATYGGG	TGC TCCCT	TACGTCGGTT	GGGGGGCTC	71:0
40	CGGNCTGCTG	CTTCTTGGCG	GGGGGCTGCI	TTGCTGCAAC	TGTCCACCTC	CCACAGACAA	780
40	GCCTTACTCC	CCCAAGTATT	CTGCTGCCCG	CTCTGCTGCT	GCCAGCAACT	ACGTGTAAGG	840
	TGCCACGGCT	r ccactetgti	COTUTOROU	LEGITURICO	CTGGACTGAG	CTCACCGCAG	90)(
45	GCTUTGACCC	D PRAGRAGOGOO	CTOLOACIGG	GCACTGGCTG	CTOCOGACTS	GGGACTGGGC	950
	AGAGACTGAG	G CCAGGCAGGA	AGGCAGCAGC	CTTCAGCCIC	TOTGGOCCAC	TOGGACAACT	1030
50	TCCCAAGGC	GCCTTCCTGCT	AGCAAGAACA	GAGTCCACCC	TOOTOTEGAI	`ATTGGGGAGG	1030
30	GACCGAAGT	G ACAGGGTGTC	GTGGTGGAGT	r ogggagetes	CTTCTGCTCC	CCAGGATGGC	114
	TTAACCCTC:	A CUMPUSAGATO	TOCCTOCATO	GGTCTTGGUC	ACTOTOCCOA	TTTACATTTT	120

TRUTTAKANA UTRUALALITA DADIKIA SPAR TYTWOACKPO ARAPEKO SAAD. IT KITOTAAA 1390

60

 $\exists \ ^{\bullet} A, \qquad \forall \ \ \neg A,$

	CAGGTTTGGG CAGTGGTGGG GGAGGGGGCC AGAGAGGGGG CTCAGGTTGC CCAGUTCTGT	1440
	GGCCTCAGGA CTCTCTGCCT CACCCGCTTC AGCCCAGGGC CCCTGGAGAC TGATCCCCTC	1500
5	TGAGTCCTCT GCCCCTTCCA AGGACACTAA TGAGCCTGGG AGGGTGGCAG GGAGGAGGGG	1550
	ACAGCTTUAC CCTTGGAAGT CCTGGGGTTT TTCCTCTTCC TTCTTTGTGG TTTCTTGTTTT	1620
10	GTAATTTAAG AAGAGCTATT CATCACTGTA ATTATTATTA TITTCTACAA TAAATGGGAC	1630
• •	CTGTGCACAG GRAAAAAAA AAAAG	1705
15	(2) INFORMATION FOR SEQ ID NO: 107:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 1167 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDELNESS: double	
	(L) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:	
	TECAGGAATI COGCAGAGGT TYTOCHTIAG ACTOTOGCAG TYBGTGAGCA TCATEGCAAC	50
	GSTTACAGCI ACAACCAAAS TOODBSAGAT COSTSATGTA ACAAGGATTG AGOGAATOGG	120
30	TBCCCACTCC CACATCCBGB GACTBBBBBCT GBACGATGCC TTBBBAGCCTC GBCABBCTTC	180
	GCAAGGCATG GTGGGTCAGC TGGCGGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGG	240
35	COGREGAÇÃO GEOGREGA CONTRINATIVO DE CARROS GOARDES GOA	300
	GACGGCCATC GCCATGGGCCA TGGGCGCCAT TCACAGCCAT	350
	GROOFGCAGT GAAATCTTCT COCTAGAGAGT GAGCAAGACC GAGGCGCTGA CGCAGGCCTT	420
40	COGGOGOTOC ATOGGOGOTOC GCATCAAGGA GGAGACGGAG ATOATOGAAG GGGAGGTGGT	430
	GGAGATCCAG ATTGATCGAC CAGCAACAGG GACGGGGTTCC AAGGTGGGCA AACTGACCCT	540
45	CAAGACCACA GAGATGAAGA CCATCTACGA CCTGGGCACC AAGATGATTG AKTCCCTGAC	600
	CAAGGACAAG GTOCAGGOOG GGGACGTGAT CACCATOGAC AAGGOGACGG GCAAGATCTO	660
	CAAGCIGGGC CGCTCCTTCA CACGCGCCCC CGAACTACGA CGCTATGGGC TCCCAGACCA	720
50	ASTICSIBLE GISCOCAGAI GGGGAGCICC AGAAACGCAA GGAGGIGGIG CACACCGIST	787
	OCCTGCAUGA GATOGAUGTU ATCAACTUTU GUACCCAGGG CTTDOTTGGGG CTCTTCTCAG	840
55	GTGACACAGG GGAGATCAAG TCAGAAGTCC GTGAGCAGAT CAATGCCAAG GTGGCTGAGT	ē00
	GGCGCGAGGA GGGCAAGGCG GAGATCATCC CTGGAGTGCT GTTCATCGAG GAGGTCCACA	960
	TGCTG3ACAT CGAGAGCTTC TCCTTCCTCA ACCGGGCCCT GGAGAGTGAC ATGGCGCCTG	1020
50	TCCAGCAGGT CTATGGGGAT GCCGTGAGGG CTCTGGTAGG TGGTGCCCCG GATTCGCGTG	1080

	ATGCCACGGT TGGTGGCCTC GTGCCGAATT CCTGCACCCC GGGGGATCCA CTAGTTCTAG	1140
5	AGOGGCCCC ACCGCGCTGG ANCTCCN	1167
10	(2) INFORMATION FOR SEQ ID NO: 108:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1907 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:	
20	GGCACAGGGG AATCATCGTG TGATGTGTGT GCTGCCTTTG TGAGTGTGTG GAGTCCTGCT	60
20	CASSTSTUAG STACASTSIS TYPGATISSUS STEESTIGAS GEGAASSIST STEEAGAGCT	120
	GTBACTOUGG CTUCACTUAG AGAACCTGOD CTTGGCTGCT OSTAGODIOG GGCCTTCTCT	180
25	CCTCSTCATC ATCCAGAGCA GCCAGTSTCC GGGAGGCAGA AGGTA20GGG GCAGCTACTG	240
	GASGACTVITS COGGGCUTSCC TOGGGTGCCC CCTCCGCCCT GROCCCTGT TRCTGCTGTC	300
30	CATCTATMTC TACTACTOOC TOCCAAATGC GGTCGGGCCG COOTTGACTT GGATGCTTGC	360
50	COTCOTTUGGO CTCTCGCAGG CACTGAACAT COTCOTGGGC CTCAAGGGCC TGGCCCCAGC	420
	TGAGATUTOT SCAGTSTSTG AAAAAGGSAA TTTCAAUGTG GOOGATGGGC TGGCATGGTC	480
35	ATATTACATO REATATETEO GEOTGATECT GOCAGASCTO CAEGOCCEGA TTOGAACTTA	540
	CAATCAGCAT TAJAAGAAGC TGCTACGGGG TGCAGTGAGC CAGCGGCTGT ATAITCTCCT	600
40	CCCATTOGAC TOTOGOST BC CTGATAACCT GAGTATGGCT GACCCCAACA TTCGCTTCCT	650
10	GGATAAACTG CCCCAGCAGA CCGGTGACCG TGCTGGCATC AAGGATCGGG TTTACAGCAA	720
	CAGCATCINT GABCTTCIBG AGAACGGBCACA GCGGGCBCBC ACCTCTCTCT TGGAGTACBC	780
45	CACCCCCTTS CAGACITTUT ITSCCATGTC ACAATACAGT CAACKTGGCT ITAGCGGGGA	840
	REALEMENT GARCAROCCA AACTETTOTO COORGACACTI GAGRACATUR TORCARATEC	900
50	COCTGAGTOT CAGAACAACT COCGCCTCAT TGCCTACCAG GAACCTGCAG ATGACAGCAG	960
50	CTTCTCTCTG TCCCAGGAGG TTCTCTGGCA CTTGCGGCAG GAGGAAAAGG AAGAGGTTAC	1020
	TOTOGGCAGO TYGAAGACCT CAGCOGTGCC CAGTACCTCC MONATGTOCC AAGAGCCTGA	1080
60	ADMINIO PARTO PER ETENTA DE ERENADO E ELECTRICADA AS ARGADONS DAN MANTE.	1260

540

600

611

360

	GGACTTGACA TOTTAAGATE CETCTTETIC COTTGEGCCA GTCATTTICC CTCTGTGAGC	1320
	CTERCACTE TOAGOTTE AAATERSTAN ATAATCACTE COTTAGETCE CTCACGETCE	1380
5	TPSTSAGGAC TGAGTGTGTG GAAGTTTTTC ATAAACTTTG GATGCTAGTG TACTTAGGGG	1440
	GTSTROCARG TETETITEAT REGERENTER AGACCARTIC RECARDETTS TRUBUTTORT	15(0)
10	TTROPOSSIG ACCOCCAACT CTCTCAATRI TATCAACAGG CTCCTTOBCC CTCTRESCTCC	1560
LO	TGSTCATCTT CCATTATTGS GGAGCCCCAG CAGAAGAATG GAGAGGAGGA GGAGGCTGAG	1620
	TTTD X935TAT TGAATCCCCC GGCTCCCACC CTGCAGCATC AAGGTTGCTA TGGACTCTCC	1680
15	TGDDGGGGA CTCTTGCGTA ATCATGACTA TCTCTAGGAT TCTGGCACCA CTTCCTTCCC	1740
	TGGC POOTTA AGROTAGOTS TSTATOGGCA COCCCACCOC ACTAGAGTAC TOCCTOTCAC	1800
20	TTRERTTTE CTTATACTOR ACCOCTTTET CAARGETECT TTTTTAAAGR ACATETCAGA	1860
20)	TTAAAAAAAA AAAAAAAAA AAAAAAAAAA AAAAAAAA	1907
25	(2) INFORMATION FOR SEQ ID NO: 109:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENCTH: 611 base pairs (B) TYPE: nucleic acid (C) STRANDELNESS: double (D) TCPOLCGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:	
5.7	ATSAATTAAC GOCAAGCINT NAATAGGGAC TCACTATGGG GGAAAGNTGG GTAACGCCTG	ehr)
	CAPSTACCST TOOSGAATTO CORRESTOGAC CCACGCGTCC GATGGGGCTT TAGTAAATCA	2290
40	GGCTTSCAGG CTCAAAGCT3 CAATCTGCCC ACTCTCAGGT ACTGAGACTT IGTGGGCCTC	180
	AGACACCAGG AAGAAAGTTG GGATACAGTC ATTTGAGTTA AAAAGGGAAT GACCCCTCAG	240
45	AAACCCGCAT TAGCAGTSTT ACTCTTGGAA GTGCCTTTAC TTTTAACGCT CTCTGTTCTG	300
7.)	AAAAAGAGGT GTTTGGTTAG GTGTGAGCCA ACATCACGTT TTGTTAGCTG TGAITTACCT	360

TTGTCCGTTT AAAAGACTTC ACGGAGCCAT TCTGTATACA AGGTGTGCTC TTTCCAATGT

AGAAGGGTT ATGGAAAAGG GTGCGATCCT TTGCTGTAAA CTGGAGAGAC CAGTCCCAAA

CAGAGGGGAA TTTTAAGCCC TTCTCATCAC CCAATTGGAT GTTTTTGCTT ATAGCAAATT

60

50

55

GGGGGGNCCN C

361

(2) INFORMATION FOR SEQ ID NO: 110:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2632 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:	
10	TCCCAGCTCT CACGACAAGG GCCCTGGGCG ATCTTTTAAA AAAGCCGATT GGGTGTCTTT	50
	CTAAAANTAC AACCAGTACT TCATCGTCAA GTTTCTGGGA AGGGAGTCCC CTCCAGATTC	120
15	TCATGGAGTG ACAAATCTTG ACTCTTGCTC CTGGAATTTT TCAGGCCCAA ACTAGCGTTT	130
	CTACAATGAT TTATTTOOCA AATTTGTCTT GATTATGGGT GGCTGATGAG GAACGTGCTT	240
20	TIGTTAGGAA CCGAAACTGG GCGGCGGTGA GGGCGTGTAC GCAATGAGTC CGGAAGAGGG	300
20	TGAAATGCTT TCGGTAGGCA CTCCACGGCT GTGAAGATGG CGGCGGCTGC GTGGCTTCAG	360
	GTGTTGCCTG TCATTCTTCT GCTTCTGGGA GCTCACCCGT CACCACTGTC GTTTTTCAGT	420
25	GCGGGACCGG CAACCGTAGC TGCTGCCGAC CGGTCCAAAT GGCACATTCC GATACCGTCG	480
	GGGAAAAATT ATTTTAGTTT TGGAAAGATC CTCTTCAGAA ATACCACTAT CTTCCTGAAG	540
30	TTTGATGGAG AACCTTGTGA CCTGTCTTTG AATATAACCT GGTATCTGAA AAGCGCTGAT	600
30	TGTTACAAT3 AAATCTATAA CTTCAAGGCA GAAGAAGTAG AGTTGTATTT 3GAAAAACTT	660
	AAGGAAAAAA GAGGCTTGTC TOOGAAATAT CAAAACATCAT CAAAATTGTT OCAGAACTGC	720
35	AGTGAACTCT TTAAAACACA GACCTTTTCT GGAGATTTTA TGCATCGACT GCCTCTTTTA	780
	GGABAAAAC AGGAGGCTAA (GGAGAATGGA ACAAACCTTA CCTTTATTGG AGACAAAACC	840
40	GCAATGCATG AACCATTGCA AACTTGGCAA GATGCACCAT ACATTTTAT TSTACATATT	900
40	GGCATTTCAT CCTCAAAOGA ATCATCAAAA GAAAATTCAC TGAGTAATCT TTTTACCATG	960
	ACTGTTGAAG TGAAGGGTCC CTATGAATAC CTCACACTTG AAGACTATCC CTTGATGATT	1020
45	TYPTTYCATOG TGATGTGTAT TGTATATETC CTGTMTGGTG TYCTGTGGET GGCATGGTCT	1080
	GCCTGCTACT GGAGAGATET ECTGAGANTT CAGITTTGGA ITGGTGCTST CAICTTCCTG	1140
50	GGAATGCTTG AGAAAGCTST CTTCTATSCG GAATTTCAGA ATATCCGATA CAAAGGARAA	1200
50	TOTOTOCAGG GTGCTTTGAT COTTGCAGAR CTGCTTTCAG CAGTGAAACG CTCACTGGCT	1260
	CGAACCCTGG TCATCATAGT CAGTCTGGGA TATGGCATCG TCAAGCCACG CCTGGAGTCA	1320

POUTAGALAS DEVOTTOROS TOMOGRATAT TEMENANTO GAUTYAMAGA APGAGOTAT (1800)

No. of the American States

	TAAAACTTOG GAGGAACATT GTAAAACTOT CTTTGTATOG GCATTTCACO AACAOGCTTA	1560
	TTTTGGCAGT GGCAGCATCC ATTGTGTTTA TCATCTGGAC AACCATGAAG TICAGAATAG	1620
5	TGACATGTCA GTOGGACTGG CGGGAGCTGT GGGTAGACGA TGCCATCTGG CGCTTGCTGT	1680
	TOTOCATGAT COTOTTTTGTO ATCATGGTTC TOTGGGGACO ATCTGCAAAC AACCAGAGGT	1740
10	TTGCCTTTC ACCATTGTCT GAGGAAGAGG AGGAGGATSA ACAAAAGGAG CCTATGCTGA	1800
10	AAGAAAGCTT TGAAGGAATG AAAATGAGAA GTAGCAAAGA AGAACCCAAT GGAAATAGTA	1860
	AASTTAACAA ABCACABBAA GATBATTTBA ABTBGBTABA ABAGAATGTT CCTTCTTCTB	1920
15	TGACAGATET AFRIA ETTECA GCCCTTCTEG ATTCAGATGA GGAACGAATG ATCACACACT	1980
	TTGAAAGGTC CAAAATSSAG TAAGGAATSG GAAGATTTSC AGTTAAAGAT GGCTACCATC	2040
20	AGGGAAGAGA TCAGCATCTG TGTCAGTCTT CTGTACOGCT CCATGGGATT AAAGGAAGCA	2100
20	ATGACATOCT GATCTGTTOC TTGATCTTTG GCCATTCGAG TTGGCGAGAG GTCTCAGAAC	2160
	AAAGAGAACA TOTTACTGAA AACAAGTTCA TAAGATGAGA AAAATOTACG AGCTTCTTAT	2224
25	TTACAACACT GCTGCCCCCT TTCCTCCCAG ACTCTGACAT GGATGTTCAT GCAACTTAAG	2280
	TGTSTTGTTC CTGAACTTTC TSTAATGTTT CATTTTTTAA ATCTSACAAA CTAAAAAGTT	2340
30	TAACGTCTTC TAAAAGATTG TCATCAACAC CATAATATGT AATCTCCAGG AGCAACTGCC	2400
50	TGTAATTTT ATTTATTTAG GGAGTTACAT AGGTGATGGG GGAAATTGTT AACTACCTTT	2460
	CATTTTCCTG GGAAGTCAAG GTTACATCTT GCAGAGGTTG TTTTGAGAAA AAAGGGCCCT	2520
35	TCTSAGTTAA GGAGCCATAG TTCTATCAAT GATCAAAAGA AAAAAAAAAA	2580
	GCACGAGGG3 GGGCCCGGTA CCCAATTCGC CCTATGGGAN TCGAATGAGA CC	2632
40		
10	(2) INFORMATION FOR SEQ ID NO: 111:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2249 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:	
	GAATTCGGCA CGAGCTCACC GTGCTGCGTG ACACAAGGCC AGCCTGCGCC TACGAGCCCA	60
55	TGGACTTIKT RATGGCCCTC ATCTACGACA TGGTACTGSW TGTGGTCACC CTG3GGCTGG	120
	CCCTCTTCAC TCTGTGCGGC AAGTTCAAGA GGTGGAAGCT GAACGGGGCC TTCCTCCTCA	180
	TCACAGCCTT CCTCTCTGTG CTCATCTGGG TGGCCTGGAT GACCATGTAC CTCTTCGGCA	240
60	ATTOTICA ACCTI COACOACOCO GATTOCOTTOCA ACCACOCOAC CTITOCOCATO ACCOTTOCOCA	300

	CCAGCGCTGG	GTCTTCGTCA	TCTTCCACGC	CATCCCTGAG	ATCCACTGCA	CCCTTCTGCC	360
5	AGCCCTGCAG	GAGAACACGC	CCAACTACTT	CGACACGTCG	CAGCCCAGGA	TGCGGGAGAC	420
3	GGCCTTCGAG	GAGGACGTGC	AGCTGCCGCG	GECCTATATG	GAGAACAAGG	CCTTCTCCAT	480
	GGATGAACAC	AATGCAGCTC	TCCGAACAGC	AGGATTTCCC	AACGGCAGCT	TYGGGAAAAAG	540
10	ACCCAGTGGC	AGCTTGGGGA	AAAGACCCAG	CGCTCCGTTT	AGAAGCAAGG	TGTATCAGCC	€00
	AACTGAGATG	GCCGTCGTGC	TCAACGGTGG	GACCATCCCA	ACTGCTCCGC	CAAGTCACAC	660
15	A-DGAAGAMA-C	CTTTGGTGAA	AGA:CTTTAAG	TTOCAGAGAA	TCAGAATTTC	TOTTACOGAT	720
13	TIBECTCOCT	GGCTGTGTCT	TTCTTGAGGG	AGAAATCGGT	AACAGTTGCC	GAACCAGGCC	780
	GCCTCACAGO	CAGGAAATIT	GGAAATCCTA	GCCAAGGGGA	TTTCGTGTAA	ATGTGAACAC	840
20	TGACGAACTG	AAAAGCTAAC	ACCGACTGCC	COCCCCCCC	CTGCCACACA	CACAGACACG	900
	TAATACCAGA	CCAACCTCAA	TCCCCGCAAA	CTAAAGCAAA	GCTAATTGCA	AATAGTATTA	960
25	GGCTCACTGG	AAAATGTGGC	TGGGAAGACT	GTTTCATCCT	CTGGGGGTAG	AACAGAACCA	1020
23	AATTCACAGC	TEGTGGGCCA	GACTOGTGTT	GGTTGGAGGT	GGGGGGCTCC	CACTOTTATO	1080
	ACCTCTCCCC	AGCAAGTGCT	GGACCCCAGG	TAGCCTCTTG	GAGATGACCG	TTGCGTTGAG	1140
30	GACAAATGGG	GACTTTGCCA	CCGGCTTTGC	CTEGTGGTTT	GCACATTTCA	GGGGGGTCAG	1200
	GAGAGTTAAG	GAGGTTGT GG	GTGGGATTCC	AA-JETGAGGC	CCAACTGAAT	CGTGGGGTGA	126)
35	GCTTTATAGC	CAGTAGAGGT	CGAGGGACCC	TGGCATGTGC	CAAAGAAGAG	GCCCTCTGGG	1320
55	TGATGAAGTG	ACCATCACAT	TTGGAAAGTG	ATCAACCACT	GTTCCTTCTA	TYSGSGSCTCTT	1380
	GCTCTAGTGT	CTATGGTCAG	AACACAGGCC	CCGCCCCTTC	CCTTGTAGAG	CCATAGAAAT	1440
40	ATTCTGGCTT	GGGGCAGCAG	TCCCTTCTTC	CCTTGATCAT	CTCGCCCTCT	TICTACACTT	1500
	ACGGGTGTAT	CTCCAAATCC	TOTOGCAATI	TTATTCCCTT	ATTCATTCA	AGAGCTCCAA	1560
45	TGGGGTCTCC	: AGCTGAAANS	COOTOCGGGA	, GERCAGETTGG	AAGGCAGGCA	CCACGCAGG	1621
12	TTTTCCGCGA	TGATGTCACC	TAGCAGGGCT	TOAGGESTTC	CCACTAGGAT	GUAGAGATGA	1680
	CCTCTCGCTG	CCTCACAAGC	AGTGACACCI	OGGGT DOTTT	CCGTTGCTAT	GGTGAAAATT	1740
50	CCTGGATGGA	ATGGATCACA	TGAGGGTTTC	TTGTTGCTT	TGGAGGGTCT	GGGGGATATT	1800
	TAGALALCCA	TTTTCTGCAG	GTTCCATGAA	ANCAGCCCTT	TTCCAAGCCC	ATTGTTTCTG	1860
	MICAMAGON.	ARTTTONA .	0,809990	: BURTATA	CALSARBIT E	11 113	;

60 AGATACTUTA ATCACTACAT TOSTTYTTUT ATAAAACTAC CCATAAGGCT TTVACUTYVA 2100

	AAGAAAAATG AAAAAGGTTA SYSTYTYSGGG GCCGGGGGGAG GACTGACCGC TTCATAAGCC	2160
5	AGTACGTCTG AGCTGAGTAT GTTTCAATAA ACCTMMTGAT ATTTCTCAAA AAAAAAAAAA	2220
٠,	AAAAANCCCG GGGGGGGGCC CGRACCTGG	2249
10	(2) INFORMATION FOR SEQ ID NO: 112:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2193 base pairs	
1'	(3) TYPE: nucleic acid (C) STRAIDENESS: double	
	(D) TOPCLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:	
	GATACTATAA GGCAAGTGAC FCACGGGTGAC GCCGTTAGAC TAGTPGATCC CGGGTGCAGG	60
	AATTOGGCAG AGGGGGGGG GAGGGGAAGT GGTGGGGGGGG CGGGGGGGGGG	120
25	GANCCIAAAA TOATGAAAST CACCSTGAAG ACCCCSAAGA AAAGSAGSAA TNOSCOGTGC	180
	COGAGRATES CHOOGTOORS CROTTTARGS ARGARATOTO TARROSTMIN ARATORDATA	240
30	CTBACBACT TSTGTTEADA DIVESTEGRA ALATITTEGAA AGAICAAGAT ACCTEGAGTE	300
50	AGCATEGRAT TOATGATEGRA CITTACTECTTO ROCTTSTOAT TAAAACACAA AACAEGGOTO	360
	AGGATCATTC AGCTCAGCAA ACCHATACAG CTGGAAGCAA TGTTACTACA TCATCAACTC	420
35	CTAATAGTAA CYCTACATCT GCTTCTGCTA CTAGCAACCC TTTYGGTYTA GGYGGCTYG	480
	GGGGACTTGC AGGTCTMAGT AGGTTGGGGTC TEAATACTAC CAACTTCTCT GAACTACAGA	540
40	CTCAGATGCA GCGALGACTT TTGTCTAACC CTGAAATGAT GGTCCAGATO ATGGAAAAWC	600
40	CCYTTGTTCA GABCATGCTC INCLAATCCT GACCTBATGN AGACAGTTAA TTATBGCCAA	660
	TYCCACAAATG CAGCAGTTGA TACAGAGAAA TOCCAGAAAT TAGTCATATG TYGAATAATC	720
45	CAGATATAAT GAGACAAACG TTGGAACTTG COCAGGAATC CAGGAATGAT GOAGGAGATG	780
	ATGAGGAACO AGGACCGAGC TITGAGCAAC CTAGAAAGCA TCCCAGGGGG ATATAATGCT	840
50	TTAAGGCGCA TGTACACAGA TATTCAGGAA CCAATGINGA GTGITGCACA AGAGCAGTTT	900
30	GGTGGTAATS CATTIGGTIC CITGGTGAGC AATACATOOT CTGGTGAAGG TAGTCAACCT	960
	POCCGTACAG ARARTAGRIA TOCRETAGOS ARTOCATEGG CTOCACAGAS TEGOSAGAGAT	1020
55	TCATCACCTT CCAGCGCAC TGCCAGCACT GTGGGT95CA CTACTGGTAG TACTGCCAGT	1080
	GGCACTTCTG GGCAGAGTAC TACTGCGCCA AATTTGGTGC CTGGAGTAGG AGCTAGTATG	1140
60	TTCAACACAC CAGGAATSCA GAGSTTGTTG CAACAAATAA CTGAAAAACCC ACAAGTTATG	1200
60		

	CAAAACATGT TGTCTGCCCC CTACATGAGA AGCATGATGC AGTCACTAAG CCAGAATCCT	1260
	GACCTTGCTG CACAGAT3AT GCT3AATAAT CCCCTATTTG CTGGAAATCC TCAGCTTCAA	1320
5	GAACAAATGA GACAACAGCT CCCAACTTTC CTCCAACAAA TGCAGAATCC TGATACACTA	1380
	TCAGCAATET CAAACCCTAG AGCAATGCAS GCCTTGTTAC AGATTCAGCA GGGTTTACAG	1440
10	ACATTAGCAA CGGAAGOCCC DEGCCTCATC OCAGGGTTTA CTCCTDECTT GGGGGCATTA	1500
10	GGAAGCACTG GAGGCTGTTC GGGAAGTAAT GGATCTAACG CGACACGTAG TGAAAACACA	1560
	AGTECCACAG CAGGAACCAC TGAACCTGGA CATCAGCAGT TTATTCAGCA GATGCTGCAG	1620
15	GCTOTTGCTG GAGTAAATOO TCAGCTACAG AATCCAGAAG TOAGATTTCA GCAACAAOTG	1680
	GAACAACTCA GTGCAATSSS ATTTTTGAAC CGTGAAGCAA ACTTGCAAGC TCTAATASCA	1740
20	ACAGGAGGTG ATATCAATGT AGCTATTGAA AGGTTACTGG GCTCCCAGCC ATCATAGCAG	1800
20	CATTTCTGTA TCTKGAAAAA ATGTAA'TTTA TITTTGATAA CGGCTCTTAA ACTTTAAAAT	1860
	ACCTGCTTTA TTTCATTTT3 ACTCTTGGAA TTCTGTGCTG ITATAAACAA ACCCAATATG	1920
25	ATGCATTTTA AGGTGGAGTA CAGTAAGATG TGTGGGTTTT TCTGTATTTT TCTTTTCTGG	1930
	AACAGTGGGA ATTAAGCCTA CTGCATGCAT CACTTCTGCA TTTATTGTAA TTTTTTAAAA	2040
30	ACATCACCTT TTATAGTTGG GTGACCAGAT TTTGTCCTGC ATCTGTCCAG TTTATTTGCT	2100
30	TTTTAAACAT TAGCCTATGG TAGTAATITA TGTAGAATAA AAGCATTAAA AAGAAGCAAA	2160
	AAAAAAAAA AAAAATYOOT GOGCCCGGGA ATTCTTCT	2198
35		
	(2) INFORMATION FOR SEQ ID NO: 113	
40	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 1043 base pairs (B) TYPE: nucleic acid	
	(C) STRANIEDNESS: double	
45	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:	
	CTGAAGTSTA TSTSSTSAGG AAGAAGAGGC TCCTACTGTA GACAGCCTTG TTCTACAGAT	5(
50	CCTCCCAGAA ATCTCTGCGC CAGGTGGAAC CCAGGGTCAG AGAGGGATGG GAGAGAGGGTT	120
50		
	TAATTITTOOA TGATAAATAA AAATOTATAA AATAATAAAC AAGAGAAAAG AGATTGGAAA	13
7.0	CAPTION AND CONTROL OF A CARACACTER OF A CARACACTER OF CARCACTER OF CONTROL OF CONTROL OF CONTROL OF CARCACTER OF CARCACTER OF CONTROL OF CARCACTER	3.1
60	TOCCOTAAAT CAGGCCAGCO TOATCAGTOG CTGTGACTTG GCCCAGGTYC TOCAGCTYGA	43

	RGACTTGGAT GGGTTTGAGG GTTACTCCCT GAGTGACTGG CTGTGCCTGG CTTTTGTGGA	480
5	AAGCAAGTTC AACATATCAA AGATWAATGA AAATGCAGAT GGAAGCTTTG ACTATGGSCT	540
)	CTTCCAGATC AACAGCCACT ACTGGTGCAA CRATTATAAG AGTTACTCGG AAAACCTTTG	600
	CCACCTAGAC TGTCAAGATC TGCTSAATCC CAACCTTCTT GCAGGCATCC ACTGCGCAAA	660
10	AAGGATTGTG TCCGGAGCAC GGGGGATGAA CAACTGGGTT AGAATGGAAG KTTGCACTGT	720
	TCAGGCCGGC CACTCTTCTA CTGGCTGACA GGATGCGGCC TGAGATKAAA CARGGTGCGG	780
15	GTGCACOGTS GARTCATTCC AAGACTCCTG TOCTCACTCA RGGATTCTTC ATTTCTTCTT	840
15	CCTACTGCCT CCACTTCATG TTATTTTCTT CCCTTCCCAT TTACAACTAA AACTGACCAG	900
	AGUCCCAGGA ATAAATGGTT TTCTTGGCTT CCTCCTTACT CCCATCTG1A CCCAGTCCCC	960
20	TOSTICCIST CISTIATITG TANACISAGS ACCACAATAA AGAAATCITT ATATITATOS	1020
	AAAAAAAAA AAAAAAAACT CGA	1043
25		
25		
	(2) INFORMATION FOR SEQ ID NO: 114:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 703 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:	
	GAATTODGCA CGAGTGCGCG GGCACCACGG CGCTTTTTCG ACGCTGGCGG T9GACGCAGG	50
40	CAGCATGGAC CACGGTTGCT GGGCGGATGG GGAGCGTCTA TGGTCAGTTG CCTTAGAAGT	120
40	GGTGAGATGG GAAGCTGCAG TTGGAAGACC CTGGAGGATG CCTGACAAGG GGATGTCTGA	130
	CACATGATTG GAGCTCTTTT TGAAATGTTT CTTGCCCTTC CTGGAGCAGA GGAGCCATTA	240
45	TTTATGCAGG TACATCGAAG TCTTTTGAGC TOCATACAGT GATTATGCTT GTCATCGCTG	300
	GTGGTATCCT GGCGGCCTP3 CTCCTGCTGA TAGTTGTCGT GCTCTGTCTT TACTTCAAAA	350
50	TACACAACGC GCTAAAAGCT GCAAAGGAAC CTGAAGCTGT GGCTGTAAAA AATCACAACC	420
50	CAGACAAGGT GTGGTGGGCC AAGAACAGCC AGGCCAAAAC CATTGCCACG GAGTCTTGTC	430
	CTGCCCTGCA GTGCTGTGAA GGATATAGAA TGTGTGCCAG TTTTGATTCC CTGCCACCTT	540
55	GCTGTTGCGA CATAAATGAG GCCCTCTGAG TTAGGAAAGG TGGGCACAAA AATCTTCATG	600
	AGCAATACTT CTTAGTAGAT TGTTTTGTTA TTCAAATCAA GTTCTAGTGT TTTTATGTGA	660
	GATTATATAA TITACAGTGT TGTTITATAT ACTTTTGAAT AAA	703

(2) INFORMATION FOR SEQ ID NO: 115:

10	(1)	(A) LEN (B) TYE (C) STE	HARACTERIST IGTH: 3684 b PE: nucleic NANDEDNESS: POLOGY line	pase pairs acid double			
	(xi)	SEQUENCE	DESCRIFTION	: SEQ ID NO	: 115:		
15	GGCAGAGGGG	GCATGAGCAG	GAGGAGGATT	ACCGCTACGA	GGTGCTCAIG	GCCGAGCAGA	ố0
13	TTCTACAACA	CATGGTGGNA	ATGTATCCGG	GAGGTCAACG	AGGTCATC CA	GAATCCAGCA	120
	ACTATCACAA	GAATACTCCT	TAGCCACTTC	AATTGGGAT.A	AAGAGAAGCT	AATGGAAAGG	130
20	TACTTTGATG	GAAACCTGGA	GAAGCTCTTT	GCTGAGTGTC	ATGTAATTAA	TCCAAGTAAA	240
	AAGTCTCGAA	CACGCCAGAT	GAATACAAGG	TCATCAGCA:	AGGATATGCC	TTGTCAGATC	300
25	TGCTACTTGA	ACTACCCTAA	CTCGTATTTC	ACTGGCCTTG	AATGTGGA:2A	TAAGTTTTGT	350
20	ATGCAGTGCT	GGAGTGAATA	TTTAACTACC	AAAATAATGG	AAGAAGGCAT	GGGTCAGACT	420
	ATTTCGTGTC	CTGCTCATGG	TTGTGATATC	TTAGTGGATG	ACAACACAGT	TATGCGCCTG	480
30	ATCACAGATT	CAAAAGTTAA	ATTAAAGTAT	CAGCATTTAA	TAACAAATAG	CTTTGTAGAG	540
	TGCAATCGAC	TGTTAAAGTG	GTGTCCTGCC	CCAGATTGCC	ACCATGTTGT	TAAAGTCCAA	ისი
35	TATCCTGATG	CTAAACCTGT	TOGOTGCAAA	TGTGGGCGCC	AATTTTGCTT	TAACTGTGGA	650
	GAAAATTGGC	ATGATCCTGT	ТАААТЭТААЭ	TGGTTAAAGA	AATGGATTAA	AAAGTGTGAT	720
	GATGACAGTG	AAACCTCCAA	TTGĞATTGCA	GCCAACACAA	AGGAATGTCC	CAAATGCCAT	780
40	GTCACAATTG	AGAAGGAT/3G	TGGTTGTAAT	CACATGGTCT	GTCGTAACCA	GAATTGTAAA	840
	GCAGAGTTTT	GCTG3GT3TG	TCTTGGCCCA	TGGGAACCA:	ATGGATCTGC	CTGGTACAAC	900
45	TGTAACCGCT	ATAATGA/3GA	TGATGCAAAG	GCAGCAAGA/3	ATGCACAGGA	GCGATCTAGG	960
45	GCAGCCCTGC .	AGAGGTACCT	GITCTACTGT	AATCGCTA'IA	TGAACCACAT	GCAGAGCCTG	1020
	CGCTTTGAGE .	ACAAACTATA	TECTCAGETE	AAACAGAAAA	TGGAGGAGAT	GCAGCAGCAC	1080
50	AACATGTCCT (GGATTGAGGT	GCAGTTCCTG	AAGAAGGCAG	TTGATGTCCT	CTGCCAGTGT	1140
	CGTGCCACAC	TCATGTACAC	TTATGTCTTC	GCTTTCTACC	TCAAAAAGAA	TAACCAGTCC	1200
	IA ABADUT	(Thisey DAN FIT THE	A WASSITT	mama ak	ACGRUMAL A	AGRITANIAN	144,
60	AAAGATCTGT (GGGAGTACAT	TGAGGACTGA	TODOGOTAGO	GCATAAAATG	AACTCTGAAA	1440

	ACTITACCAT	CIMGAGIUCI	CATGCAATTA	AAACAAAACA	AACACAAACA	AGGAGGCACT	1500
5	AAGCCTATTC	TGACACCACT	GGTCTGTAGT	' ACCAGAATTG	TTTTGTTAAT	GGAAAGTTTA	1560
J	AGTAAATT AT	` ATTGTAATAA	AAAGGTAGAT	' AAACCATTGT	ACAACAGTAT	TCTAGGCCGC	1620
	CAACAAAAGT	GTGACAGACA	CACTAAAAGC	CCTCCAACTT	TAACTTGTAA	OGTAGCTTCA	1680
10	TTCTCAAAGC	TGACTCITTT	TTTTTCTTT	TCCTTTTCCT	GAGTGTAGTA	CAGTTAAAAT	1740
	TTCAAACAGG	TCCTTGACAC	TGC'ITTTCAT	GTTCAAACCA	GCCATTTTGT	TGTACTTTGG	1800
15	TAAAGGACCT	CTTCCCCTTC	CTCCCCTACA	CATACAGATA	CACCCACACA	CAGACTGACT	1360
• •	CTCTTTCTCT	CATACCCCAA	GGTCATGAGT	GAATGATGCT	TAGTTCCTTG	TAAAGAAAAT	1920
	CTTGGGAT 33	GGAAAGGGCT	AGGCAGCAAG	AGGATTCAAC	AAACGAAAAA	CATAAAAACT	1980
20	TTGTATATGA	CTTTTAAAAC	AAGAGGACAA	CACAGTATTT	TTCAAAATTG	TATATAGCGC	2040
	ATAT/3CAT/3G	ACAAAGCAAG	CGTGGCACGT	GTTTGCATAA	TGTTTAATTA	СААААААТА	2100
25	TTTATTCTTT	AAAAATCTTC	AAGATTATGT	CTATTTGCTG	TGCATTTTCT	TTCAGTTTGC	2160
	TTATCTTTCC	CGGGTTGGG	TTGGGATAAA	GGTGTGTCGG	TTTAGCACCT	CTGGAAGACC	2220
	TATCTAGAGC	TCTTTCACTT	TCCTGAGGTT	ATTTTGCCCY	TTCTGGTGTT	GGTATGTCTG	2280
30	TTGCCGGCCA	TGGGCTNCAY	GCCTTGAATT	CCTGCTCTTG	ATCAGGGACA	AGGGAGGTCA	2340
	AGCTCTGACT	AATGCCATGA	CCTGATTAAG	GGGTACAGCA	GGGAGTTTTG	TTGCTACAGC	2400
35	TCATGAATTA	ACCTGTCCCA	ACCTAATCCC	CCTCCATGGC	ATCATGCCTC	TACCCAAGCC	2460
	TITGTGTGCC	CATGTTATGC	ACACAGCTGT	AGGCATTCTT	AAGTCCCCT3	TCGCATCCAG	2520
	TGGAAGCATT	TTAAAATTTC	TTTTACTTTT	TGGTTTTCCC	TTAATTGCTG	CTTTTCAGAT	2580
40	TTTAGTTATG	GCTCGTCTGC	TCACCCCTTC	TCTACATTAG	GGTGTCAAAG	AGAATGTTTT	2640
	GCTTTAAATA	TAAATAGCCA	TTCATTTAGT	CTCAGATTGT	GAATTTAAAA	TGGTGGATAC	2700
45	CGAAATTGCT	TGTGTGTGTT	GCTGTGGGTT	TGGTTTGAAG	GCAAACACCC	CTAGAACATG	2760
	ATATTCCCAT	CTAGTGCATT	TAAATAGAAA	TCACTGAGTT	TGCTGCTYYT	TTATTGTCAG	2820
	CAGATAGGAG	AATTAATAAT	GCATTTTAGC	TGTGATGTCC	ATTTTTATGA	AATTCCTACT	2880
50	AAGAGCTATG	TTAAAAGTAA	AGGATGGTGG	TGGTTGTATT	AACTATATAC	CTGTTTAGGC	2940
	CATTCTGGCT	GTGGTATTTT	TCAATAGGTC	AGCATCTGTA	AATCTGTCAG	TTTTATACAG	3000
55	GAGTGCAGAG	TGAACTAGGC	AACTAGATTA	AGAGGTCTAA	ATATGAAATA	CCAGTTGAGG	3060
	CTGAGGACCT	CTTCGTCTTC	CTTTAAATGT	CTTTTGCCTA	GGGAGTGTTT	ACCATTTGTG	3120_
	AGGCAGCTTT	GTCTGCTCTT	ACACTGTACA	TCCTATTACT	CCATTGGGAA	GTAGGTTCAC	3180
60	TTTCCTCTGG	CCTTTTGCCT	AAGTTAGGCT	TTGCTGAATC	AACCCTACTT	TTCCTTTTAG	3240

	AAAAGGTTET TACAEGAEAT TTACTEECAA CTETTCTTTT ECCATCAAAA ATCAGTEAAT	3300					
5	GTTTGCTGAG TATAAATGCT GCTTCCTTAA ACCACTTGTC GCTTTAGGAT CAACTTTACC	3360					
	TGTACCTTTT CTCCTTTOCT CCCTTGCCAC CTCAGGTGCA AATCTGAACT CAGTGTCTGC	3420					
	TTCTTCCATT TTCTCGTCTC TCTCCCCTCT TCCCCCATTA TCCATATGAC ATTATTTTAC	3480					
10	TICAAATGAC AGCATCAATO TIAAAAAGAT ATACATTAAA ACTAAGGAGT TITTIITAAAG	3540					
	AAAGCCTGAA TAAGTTCUTT TCCCTGGTAA CTTTGAAAAG CAGTCAGAGT TGCTATATAG	3600					
15	ATATATGTOG CTCCTTTAAA ATGCTTTCTG TATGTGTGGT GTTTAAAAAA AAAAAAAAAA	3660					
	TTCGCGCGCCG GGCCCGGTTWC CCAT	3684					
20	(2) INFORMATION FOR SEQ ID NO: 116:						
	(1) SEQUENCE CHARACTERISTICS						
25	(A) LENGTH: 1965 base pairs (B) TYPE: nucleic acid						
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear						
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:						
30	AAGAAAGGCT ATTAAAATTC TAGATCACAT ATGGACCCGG GAAGGTTTTT NACCCTCTCT	60					
	TAGTGACATO GASTOTOCCA CTAGACAAAA TAGGTGGAAA AATOTOTOGA GGGCTCACAT	120					
35	TGTTTTGTCA TCTTCAGGAA AAACACCACC AGGCCATACC ACAGCCTGCC CAGTGAGGCC	180					
	GTCTTTGCCA ACAGCACCGG GATGCTGGTG GTCGCCTTTG GGCTGCTGGT GCTCTACATC	240					
40	CTTCTGGCTT CATCTTGGAA GCGCCCAGAG CCGGGGATCC TGACCGACAG ACAGCCCCTG	300					
	CTGCATGATG GGGAGTGAAG CAGCAGGAAG GGGCTCCCAA GAGGTCCTGG TGGTGCAGCC	360					
	TGTGCT0700 TCAGAAGOTC TGCTCTTCOO AGGGCTOCOG GCTGGTTTCA GCAGGCGACT	420					
45	TROTTOCAAN GUTGGGOOGA GACTTOTTGC CTGGGTGCTG GCCTGGCCCTC TCCGGNCCGC	480					
	TYGETGEETS TETGETYTEE ITGGTGGYTT TGGTGGGTGG TGGGCTGGC CTCTCGGGCC	540					
50	GCTTGCTGCC TGTCTGCTTT CCTTGGTGGC TTTGCTGGGT GCTGGGCCTG CCTTGTGTGG	600					
	CTGCTTGCTG CCTGTCTGCT TTCCTTGGTG GCTTTGGCTT CTGCACTCCT TGGCGTCASC	660					
	TCTCAGGTC1 TCCATTCAGA CGAGGTCCTC CTCGCTCTGG CCGCTCTTGC TGCTCCTGTC	720					
60	AAGGESTSCA TYPCACTIAG GUTGCCCCCC CACAGAGCAG GUTTCATCTYS CTUTYS CAT :	96.0					

	CAGCCCCATC TOGATGTGAG GTGGGGTGGA GACATCATGG GGTGATTGCA GAAAGGGGGA	960
	GTGGCGGCC ACGCATC TOUTGAGGAG CTGACCCTC TGACCTGTTC TCTTTCGTAT	1020
5	TGCTGCTCTG TSTCTGCATG TATTGTGACC GTGCGGCTCC ACCTCTTCCA GCTGCTGCTA	1080
	CASCIPAGGO CIPGATOCOS GOCTITOCOS GIGACITACO TOTOTOTOAC COGCANGOAG	1140
10	COSTAGAAAT SOMEGTGAGO PROTOTOGOA AGAASAGAGO OTGTOGOAG ATGTOGOAGT	1200
•	AGCGATGAST AACAGAGSTS GCTSTGGACT TCCTCTACTT CTCCTTGCTG GATGAGGGCC	1260
	TREETGEETE CESCTOGSCA GETETGSCET TSETETTTS GCAGGGCCCC AGCCCETTTS	1320
15	AUCASTSTBS AGSTSASSAT GENGSTSATS CSANAGTTGT GGTGTSSNGT GTGCNGCNGS	1335
	COP993AGCO ACTOCCACCT TEAGAGGGT TOCTTSCTGA GACCCACATT GOTTCACCTG	1440
20	GCCCCACCAT GGCTGCTTGC CTGGCCAAC CTAGCSTTCT GTGCCATGCT AGAGCTTGAG	1500
20	CIPSTTGCTON TOPPOAGES ABBAAATABB GTEBAGABES OGAAGESTOT TSCTOONAG	1560
	TGTTGCTGCT GTGGCTTTTTT TGGCCTTCTCC AAAGACGCAC TGCCAGGTCC CAAGCTTCAG	1620
25	ACTOCTSTUC TRAGTAAGCA AGRGAGAAGC CTGGGGTTTG GAGCCCACCT ACTCTCTGGGC	1630
	AGCATCAGCA TOUTACTOCT GGCAACATCA GGCCAACGTC CACCCCAGCC TCACATNGCC	174
30	AGAIPSTT990 AGAAGGOTA ATAIPPGACOO TOTT9ACT93 OTBGAGOOTT CAAAGOCACT	1900
., 0	GOGATGTOOT COAGGOACOT GOGTOCCATS ADCADOTOCO COTOCOCATA GOGGTAGOCA	1860
	TITCACTOST TRANSAMENT OGAGPPICAT TAAATATOTT AAGAATCAAA GOTGPOTPIG	1920
35	TPCAGGCTGC TATAACAAAA ATATAATAGC CFGGGTGGCT TAAAC	1165
40	(2) INFORMATION FOR SEQ ID NO: 117:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 503 base pairs	
1 5	(B) TYPE: nucleic acid (C) STRANLEENESS: dcuble	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:	
50	AGTGATOCOC TYGCOTOGGO CTCCCAAAAT GCTGGAATTG TAAGCGTGGG CCTCTGCACC	60
	CGGCCTGGTC CGCAATTTAA AAACGCACAG CCACCATTOU CTYTCCAGAA AGCACCCAGA	120
55	TSCCTTP393 AGAACCASCC TCCTCCATG3 AGGAAAGCTT GGGATCTGCC TTCCCACCTG	180
- ~	GGGAGGAGAG GRATCTGTGG AAAATCCTTC TGACGGACTT OCCCTCAGTG OCTGATCCAT	240
	ACTCAATAGT AGAAAAAGTA AGAAATATAC AAAGATAGCA GATACACGGA GACAGTTCCC	300
50	CAAATAGETG AGEGAWTAGE GEAGAAGEAA TATTGAAGAE ETAATAGETG AGACATTTEE	360

371

	AGAACTGATA AAGTGCATCC AGCCACAGAT CAAGCAGCCC AGAAAATTCC AGGCAGCATC	420
5	AACAAATAAA TAGOOOCACA TOCACCOGTG AAAATGCAGA AGACCAAACA AAAAAGTCOG	480
ر	GTCAACAGCC AGAGTTAAAG AGG	503
10		
	(2) INFORMATION FOR SEQ ID NO: 113:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1133 base pairs(B) TYPE: nucleic acid(C) STRANDELNESS: double(D) TCPOLCGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:	
20	GGCACAGCTT GGAATGAACC CCTGTGGATA AGGGGGACTA TTAGATAGAA TAAACATCAA	60
	TAAATGCTTG ATGAATAAAC GCTAATCCTA CCTTOOCAGC CTGACACCTC CCAGTGGACA	170
25	OCACACTTCA CTTGAAGOOT TAGAAAOOTT TOOCACOCAT GOTTOCAGOO CTGGCTTCAT	180
	GTTGCCATTT CTCACCCCA GAACAGGCCG CCCGGCCTGAA GAAACTACAA GAGCAAGAGA	240
30	AACAACAGAA AGTIGGAGTTT OGTAAAAGGA TIGGAGAAGGA GGTGTCAGAT TIGATTCAAG	300
30	ACAGINGGCA GATICAAGAAA AAGITINDAGO CAATIGAACAA GATICGAGAGG AGCATACTAD	360
	APGAPGPGT GGAAGTGGCT GGCCTGACAT CCTTCTCCTT TCGGGAAGAT GATGACTGTC	420
35	GCTATGTCAT GATCTTCAAA AAGGAGTTTG CACCCTCAGA TGAAGAGCTA GACTCTTACC	480
	GTOGTGGAGA GGAATGGGAC COCCAGAAGG CTGAGGAGAA GCGGAACNTG AAGGAGCTGG	540
40	CCCAGAGGCA ANGAGGAGGA GOCAGCCAG CAGGGGCCTC TGCTGCTAGC CCCTGCCAGC	600
40	GACTACAAGG ACAAGTACAG CCACCTCATC GGCAAGGRAG CAGCCAAAGA OGCAGCCCAC	660
	AMBETACABS CCANTAAGAC CMACBBCTST KMBCDCSTGS CCAATAAGAG GGACACACGC	720
45	TODAPPSAAS ADGOTAPSAA PJAGAPDAGA GUCAAGAAGA STOTOOOGJA GAGYGGGGAA	780
	GAGITGOOGO DAADOTOOTA GGOGOOGOO DOAGOTOOUT TIGAUOUDING GGGCAGGGCA	340
50	GGGGGGGGGGGAGAGAGGGCTGCTGCTAT TAGAGCCCAT CCTGGAGCCC CACCTCTGAA	900
50	CCACCTOCTA CCACCTOTCC CTCACCCTCG GGGAAAACAG GTGTTTGATT TGTCACCGTT	960
	GGAGCTTRGGA TATGTGCGTG GCATGTGTGT GTGTGTGTGA GAGTGTGAAT GCACAGGTGG	1020

 $(\partial A_{i})^{2} = \delta = -i (\partial B_{i}) = -i \partial_{i} d_{i} \partial_{i} (A_{i})$

(2)	INFORMATION FOR SEQ ID NO: 119:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1101 base pai	r

(B) TYPE nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:

• •	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: II9:	
	GGGCACAGOT GAAGCTGCAG ACCTCCCCAG GGGATGGCTC CTCTCCCCCA GGAGCCCCGA	60
15	GGCAGGGGAG GCAGAAAGGC TPGGCTCTGG GGGGTGGCCT GCGGACAGCT GTGCTGTGGG	120
	CCGGGGGCTG GGCCTGTCCC ACAGCGNCGT GGAGCTCGTG GTTCTGAGCA GCCAGCTGGG	180
	INSTRUCTES GGATACCTES GARGIACASC CRETRECATS TECGACTESC ACTEGACTES	240
20	TODOTGGTOT TGGCCICTGT GGCTGAGGCT TGCTGGTC TGCCTGAGTG CAGGGGCCAA	300
	GGGGCACAGG GCTAGTGAGG CTGGGCCACPC INGGGCCCTC ACCTGTGAGA TGGGGTCGGA	360
25	APPTEACACA GOCTANOGOT PRITTETTES TEGINGAMOG TOGACTYCIE AGAACGGGAG	420
	TECTOGTOCT GAAAEGCOTG STIGGAGACC ASCIGCITIT CICGCIGITI ITCTCTTAGG	480
	ABATTAAACA AAAACAGAAA GCACAAGACB AACTCAGTAG CAGACCCCAG ACTCTCCCCT	540
30	TGCCAGACGT GGTTCCAGAC GGGGAGAGGC ACCTCGTCCA GAACGGGATT CAGCTGCTCA	600
	ACREGONIEC GEOGRAPHECU ETECCAAAVOL TUGCAGGGCT CCAGDAGGCC AACCGGCACC	660
35	ACBGACTCCT GGGTBECGGC CTBGCBAACT TETTTGTGAT AGTTBEGTTT GUAGCCTTTG	720
	CTTACACGGT CAAGTACGTC CTSAGGAGCA TIGCGCAGGA GTGAGGCCCA GGCGCCGAGA	780
	CCCAAGGCGC CACTGAGGGC ACCGCGCACC AGAGCGTGAC CTCGGCAGGC TYGACACACT	840
40	GCCCAGCACA GGCAGACCCA CCAGGCTCCT AGGTTTAGCT TTTAAAAAACC TGAAAAGGGGA	900
	ASCAAAAACC AAAATGTSTG ACTGGGCTTT GCAGGAGACT GGAGCCTCAG CCCTGTCCTG	960
45	GCCACGGGCC GCT33GGCTG GTGTGGCTGG GCCTTGTGTG CTGGATTTGT AGCTTATCTT	1020
	CCGTGTTGTC TTTG3ACCTG TTTTAGTAAA CCCGTTTTTC ATTTTAAAAA AAAAAAAAAA	1080
	AAACTTTGGG GGGGGGCCC 11	1101
50		

(2) INFORMATION FOR SEQ ID NO: 120.

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 282 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

373

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:	
	AGETTOTOTG TOCAGTOTTG AACTOTGGGS TETOTTGGAA CTTTCCTCAC CCCTCTCAGC	60
5	CTGAATATYO CTTOCATGGA TTOCACTOAA COAGACTTTG GATOTGTGCO TACTTAATCA	120
	ACCTRATCTT TGCAATATST TCCGGCCCAC CTTCCACTCC TTGSTTCTTG TTCCTCCTTG	180
10	GCCTAACTTG TCCCTTCTGC ACTTCACATC CCCGGTGGGA CAGCATTCCT CCTTCCTCCC	240
10	AACCTCCCTC CGTCTCARAA AAAAAAAAA AAAAAAAAA TT	282
15	(2) INFORMATION FOR GEO VE NO. 10)	
	(2) INFORMATION FOR SEQ ID NO: 121:	
• •	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2635 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:	
	TAAGSSGTS TGTGTTCACC TOCTOCTSAC CCTTAACACT CCTGTCCTSC CCAGACCAAC	50
	AGAGAGAGET GTEDETSAGA DECEMBAGAG AAGCAGETGE ESAAAGCTGE AGECTTEEGG	120
30	CAUTOTGAGA ÓCATGATOTT COTCOTGOCA GOGGAGAGOO ACCCACAGGO CATGTOCAGO	180
	CCCACTTCCC TCAGCCCCA GGGYTTCCTT CTGGCCCCTC TGAGGATTCC CTAGGGCTGC	240
35	CCCGCAGAGE GGYTTOCCCA AGCTCTGTTT TGAAGCCTGC AATGTGGAAA AGTGAGAAGT	300
	CAGAGGGAAC AGGACAGGTG CAGCCGGCCCCCCCCCACACCACCACCCCCCCCCC	360
	CCAACATOOC CTGAGJASTG TGAGGTCATC TCACCAGATG AGAAGAGGGC CTGTGCATTT	420
40	YTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	480
	CCTTAACACC TTTGGTGGAG AATTTCTTAC CCAGACTTGG GGCTGTAATG CCCTTCAGTG	540
45	CGTGGTGAFT GCAGDETETS TGCETETTEC TETETETSAA COTGGEGGGC ATCOTGGTGG	600
	CCTGGGAGIG TGAGGAGAGG CCCCITGTGT GCTGGGTGAG TGGTGGGTGT GGGGTCAATG	660
	CASTGAGGOT OTOPEGGPEA GEOTOCICAAO OTOGCASTOO OCAGOOTOCO AEGATOTOTO	720
50	AGCGTCTGTT GGACTTTACA GAAGAGCCTC ATCCYGTCTG CCCCTCACTC TGCCCTGGAA	780
	TCAACATCTT COGAGTCCTT CTTGGGGGAA ATAGCAGAGC CCCACTTAAC TUCATAAACT	840
	a Para Baranca de memora, granda al ora o la promotre la establicado la caribada.	* = **
60	COCACCTACT TEAMACTICE GOTOTINGOTA GUATTOGACT CHACCTATOT CITECOATMY:	1080

on the second of the second

	TOCCAGITEC	G AGTTCTGGAA	CTTTCCTCCT	° CGGGGTGGGG	areseestic	FITHAGGATGS	1140
5	TGGGGGGGGT	r Geggaaggaa	GGAGTTCAGA	. GGANGGGTGT	, cocatatea	, anternance	1200
	COCTCOCCTC	CIGGGACACG	TECTCTCTCT	GTCTTTGGGT	. CITCIPGGIC	TGCACGTTTG	1260
	TGTGTDCTTC	TAAATATGTT	TTAGGAAGAA	. AGCANAAGKK	ACTGAAGTAG	COLUECUM	1320
10	GATTGJAGGS	GTCCAGCCTT	GCCTGTTTCC	GAAGDDDDDA	CACTGOTITE	, cecocoayana	1380
	AGACTGGTCC	CCTCAAAAGG	TAGACAAAAG	AGCAGCTOCC	TGTGGAGTTG	2433333 33 0	1440
15	TCAAAGTGGC	'I'I'I'ITGITAG	ACAAGGTTAA	GGTTTUTTCA	TGAGCARBOT	TYPEREATOGG	1500
	TOSTTOSTCA	GCTCCTTGAT	TTGTGACCTT	GACCAAGGGG	COTGCCADO	AGGGCCTCCA	1560
	GTGCCTTTC	CTCGATCCCT	CGCTCCTTCC	TGCCCCCACT	cccalecata	AGGIRGGTAG	1620
20	GGGAATTAGG	- FOCATOCTOG	AAGAAGCTTA	ACCATGIGIT	CAAAGAAIGG	MILCHICCIT	1680
	GCTTGGT 2CT	PJAACTCCCC	TTGGCTGCCC	CAGGCCTCCT	TGGCCCATGG	CINTICGOCC	1740
25	AGGTGGATGT	CAGATCTGGT	AGUTTGCAGC	AGAGAAAATA	AATGTGCCTT	GARAGACCAC	1800
	TCAGAGAGEG	TODAAGGTG	ATGAGAAGG	AAGCAIGGCC	TGGGAGTITG	GALGGGARGG	1860
	GTKTK4ITG	GOGGCATOTT	GACTGCCCC	TGTTCTCCCA	CACGIGGRAG	GTGGTCACCC	1920
30	CYCTTCACTC	CAGCCCGCCT	GCCTTCAGCC	TTCCLTGAGG	TTCACCTGCT	TODALOTTOL	1930
	CTTTG3AGGG	GFTGGGGTCC	G'PPGGCATCA	ACACGGGGAT	CCTCTGGTTG	ACCAAAGCCC	2040
35	GACCCCTUAG	CTCCT/GGGGA	GAACAAATGG	CTGACCTTTG	ATACCTGGGG	TOSTOGAGAG	2100
	GCTGDGGGGT	GGCGGCAGTC	CCAGGGGAGA	GACACCACAG	AAGGAGACC	AGACATOCCG	2160
	AGGAAGTTCC	CAGCAGAGCA	AACTGCTTTC	CAGCCTGRAG	CCTGCTTAPA	CLAIGLGYLG	2220
40	TGCAATAACT	GAGCTTAGAG	TTAGGAATTG	TGTTCAASTG	CTTGGATTTC	CGTCTGTACA	2280
	TTTAAUTGCT	GAAATTGTAT	CTCTCAGTAA	TTTTAGATGT	CTTTTAAAA	ATTGAAAAAC	2340
45	AAAGTGTTAG	ACTGTGTGCG	TGTGCGTTGA	TGGGCACTCA	AGAGTCCCGT	GASTCATCCA	2400
	GCCCTGCUTT	TCCCCTG:GC	CCCCATCCTC	TCACGTTCCG	0301000130	ACTTGGGGAC	2460
	CCTGCCTCGT	GTCGTCTTTA	TCTCCCTATT	ACTCAGCCTA	AGGAAACAAG	TACACTCCAC	2520
50	ACATGCATAA	AGGAAATCAA	ATGTTATTTT	TAAGAAAATG	CAAAATAAAA	ACTITATALA	2580
	CACCAAAAAA	AAAAAAAAA	ACCINGGGGG	GGGGCCGGTA	ACCCATTTCG	CCTAA	2635

(2) INFORMATION FOR SEQ ID NO: 122:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 994 base pairs

55

	(E) TYPE: nucleic acid (C) STRANDEDNESS: double (E) TCPGLCGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:	
	GAATTOGGCA GAGGTTOGGO GAAGATAGGG AATAAGGAAG CACAGGAGTA GGGGAGAAGG	50
0	AAGCACAGGA GTAGGGGAGA TATACAGCOG TOAGGATAAG GGGGAAAAGGG CGGTGGTTGC	120
	SCAAGAGGTG AAACAAGATG TGAGAGACAA GOOGTAGOGA AGAAATGGGG CAGCGGTTAG	130
	GTTCAGAAGC GCATAGACCG TGCCCGACCG GCAATGCGAG GGCCACAGAA AGGAACTGAG	240
5	GGGTGGGCTA TTTTAARGGA GATGGTCCTT CAGCCCTCTT YTTTPTCTGCG TAGTTCCTT	2.)0
	CCTCCAGGCC GCGCGCGCAT ATGTCCTCCG GAAACCAGCC CAGTCTAGGC TAGATGATGA	360
20	OCCACCITOCT TOTACGOTOC TCAAAGACTA OCAGAATGTO OCTGGGAATTG AGAAGGTTGA	420
-19	TSATGTOGTG AAAAGACTCT TGTCTTTAGA AATXQCCAAC AAGAAGGAGA TGCTAAAAAT	430
	CAAGCAAGAA CAGTTTATGA AGAAGATTGT TECAAACOCA GAGGACACCA GATOOCTEGA	540
25	GGCTCGAATT ATTGCCTTGT CTGTCAAGAT CCGCAGTTAT GAAGAACACT TGGAGAAACA	€00
	TOGAAAGGAC AAAGOOCACA AAOGCTATCT GCTAATGAGC ATTGACCAGA GGAAAAAAGAT	€:50
80	GCTCAAAAAC CTCCGTAACA CCAACTATGA TSTCTTTGAG AAGATATGCT GGGGGGCTGGG	720
, ,	AATTGAGTAC ACCTTCCCCC CTCTGTATTA COGAAGAGCC CACCGCCGAT TOGTGACCAA	780
	GAAGGCTCTG TGCATTCCGG TTTTCCCAGGA GACTCAAAAG CTGAAGAAGC GAAGAAGAGC	840
35	CTTAAAGGCT GCAGCAGCAG CCCAAAAACA AGCAAAGCGG AGGAACCCAG ACAGCCCTGC	91)0
	CAAAGCCATA CCAAAGACAC TCAAAGACAG CCAATAAATT CTGTTCAATC ATTTAAAAAA	960
10	DODO AECODALALA AAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA	994
15	(2) INFORMATION FOR SEC ID NO: 123:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1542 base pairs (B) TYPE: nucleic acid (C) STRANTEDNESS: double (D) TOPOLCGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:	
	and the second of the second o	
5()	GOTSTTCGCU TOUTSCYG FF CGCCGGCGGGGGGGGGGGGGGGGGGGGGGGGGG	240

	CTC-GACATCT GATGAAACAG TGGTGGCTGG TGGCACCGTG GTGCTCAAGT GCCAAGTGAA	300
5	AGATCACGAG GACTCATCCC IGCAATGGTC TTAACCCTGC TCAGCAGACT CTCTACTTTG	360
	GGGAGAAGAG AGCCCTTCGA CATAATCGAA TTCAGCTGGT TAMCTCTACG CCCCACGAGC	420
	TCAGCATCAS CATCAGCAAT GTGGCCCTGS CAGAOGAGGG CGAGTACACC TOCTCAATCT	480
10	TOACTATGOO TOTGOGAACT GOCAAGTOOO TOSTCACTGT GOTAGGAATT COACAGAAGO	540
	CCATCATCAC TGGTTATAAA TCTTCATTAC GG3AAAAAGA CACAGCCACC CTAAACTGTC	600
15	ASTETTETSS GARCAAGEST BUARRECOGES TEACCTOGAG AAAGOSTRAC CAAGAACTES	ნნმ
	ACGGAGAACC AACCCGCATA CAGGAAGATC CCAATGGTAA AACCTTCACT GTCAGCAGCT	720
	COSTGACATT CCAGSTTACC COSSACISATS ATGGGGCGAG CATCGTSTGC TCTGTGAACC	780
20	A'PSAATCTCT AAAGGGGGCT GACAGATGCA OCTCTCAACG CATTGAAGTT TTATACACAC	840
	CAASTEGGAT GATTAGESCA GASCCTCCSC ATCCTCGTGA GGGCCAGAAG CTGTTGCTAC	900
25	ACTSTSAGGG TCGOGGLAAT CCAGTICCIC AGCAGTACCT ATGGGAGAAG GAGGGCAGTG	960
	TECCACCECT GAMGATGACE CAGGAGAGTG CECTGATETT CECTTTEETT AACAAGAGTG	1020
	ACABTRECAC CTARRECTER ACAGCICACIA GICAACATREG CAGITACAAG GICTACTACA	1080
30	COCTONATGE TAXPSACCOO AGEOCOGETSC COCTOCTOC CAGGACCETAG CACGCCATCA	1140
	TUGGTEGAT CGUGECTTTC ATTGTCTTCC TGCTGCTCAT CATGCTCATC TTCCTTGGCC	1200
35	ACTACTPRAT CCCRRONCAAA GRAACUTACC TRACACATRA GRCAAAAGGC TCCCACGATR	1260
	CTOCAGACGC GGACACGGCC ATCATCAATG CAGAAGGCGG GCAGTCAGGA GGGGACGACA	1320
	AGAAGGAATA PITCAPUTAG AGGGGGTGC CCACTPCCTG GGCCCCCAG GGCCCTGTGG	1380
40	GRACTIVOETS GEGRECOTOAC CAACCOGGAC TIGITACAGAG CAACCOCAGG GGROGSCCCT	1440
	CUCGNITETT CCCCAGCCCA CCCACCCCCT TGTTACAGAA TGTYTKGTTT GGGGTGCGGT	1500
45	TITGTWATTG GTTTNGGATN GGGGAAGGGGA GGGANGGCGG GG	1542
	(L) INFORMATION FOR SEQ ID NO: 124:	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1390 base pairs (B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:	
	CAAGCTCTAA TACGACTCAC TATAGGGAAA GCTGGTACGC CTGCAGGTAC CGGTCCGGAA	~~
60	AND CONTROL CO	60

377

	TTCCCGGGTC	GACCCACGCG	терезресте	ACCCTCGACC	CATGGTTCTG	CACTGAGGCC	120
	CTCGTCATGG	TOGOGOCTOT	GT9GTACTTG	GTAGCGGCGG	CTCTGCTAGT	CGGCTTTATC	180
5	CTCTTCCTGA	CTCFACFCTC	993999999	GCATCAGOOG	GCCAAGAGCC	ACTGCACAAT	240
	GAGGAGCTGG	CAGGAGCAGG	aasaanssaa	CAGOCTOGGO	CCCTGGAGCC	TENEGRECOG	30 :
16)	AGAGCTCGAGA	GCAGGCTCG	(90900(90A)93	GACCTGGGCA	GCCGCCTACA	GGCCCAGCGT	360
10	CORACCCARC	GGCTGGCTCG	GGCAGAAGCA	GATGAGAACG	AGGAGGAAGC	TGTCATCCTA	42)
	GCCCAGGAGG	AGGAAGGTGT	CGAGAAGCCA	GCGGAAAYTC	ACCTGTCGCG	GAAAATTGGA	480
15	GCTAAGAAAC	TGCGGAANNT	GGAGGAGAAA	CAAGCGCGAA	AGGCCCAGCK	TSAGGCAGAG	549
	GAGGETGAAC	GTGARGWGDG	GAAAGGACTC	GAGTOCCAGO	GOGAATIGAGT	GGAAGAAGA	60،0
26	GGAGGAGGG	CTTCDCCT93	AGGAGGAGCA	GAAGGAGGAG	GAGGAGAGGA	AGGCCCGCGA	660
20	-GGAGCAGGCC	CAGCGGGAGC	ATGA 3GAGTA	CCTGAAACTG	AAGGAGGCCT	TTGTGGTGGA	720
	GGAGGAAGGC	GTAGGAGAGA	CCATGACTGA	GGAACAGTCC	CAGAGETFOC	TGACAGAGIT	789
25	CATCAACTAC	ATCAAGCAGT	OCAAGGTTGT	GETETTGGAA	GACCTGGCT	CCCAGGTGGG	840
	COTADGOACT	CAGGACACCA	TAAATOGCAT	CCAGGACCTG	CTGCCTGAGG	GGACTATAAC	900
20	AGGT GTGATT	GADGACCGGG	GCAAGTTCAT	CTACATAACC	CCAGAGAAAC	TOGOCOCOGT	960
30	GGCCAACTTC	ATCCGA/QA/GC	GGGGGGGT	GTOCATOGOO	GAGCTTGCCC	AAGOCAGCAA	1020
	OTE COTEATE	GCCTGGGGGC	-993A3TCCCC	T9000AA900	CCAGCCTGAC	COCAGTOCTT	1030
35	COCTOTTGGA	CTCAGAGTTG	GTGTGGGGTA	CCTGGCTATA	CATCTTCATC	COTCOCCACO	1140
	ATCCTGGGGA	AGTGATGGTG	TGGQCAGGCA	GTTATAGATT	AAAGGCCTGT	GAGTACTECT	120-1
4.65	GAGCTPGGTG	TGGCTTGGTG	TGGCAGAAGG	CCTGGCCTAG	GATCCTAGAT	AAGCAGGTGA	1260
4()	AATTTAGGCT	TCAGAATATA	TCCGAGAGGT	GGGGAGGGTC	CCTTGGAAGC	TGGTGAAGTC	1320
	CTGTTCTTAT	PATGAATCCA	TTCATTCAAG	AAAATAGCCT	GTTGCAAAAA	AAAAAAAAAA	1381
45	AAAAACTCGA						1390

50 (2) INFORMATION FOR SEQ ID NO: 125:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1288 base pairs

and a transfer of the first the transfer of the same

60 - archive fig. tharaked a typatecas cotleged by cutoffar is currenged by

	GACGCTGACC ACCTTCCTCT CCTCGGTCTC CTCCGCCTCC AGCTCCGCCC TGCCCGCCAG	120
5	CCGGGAGCCA TGCGACCCCA GGGCCCCGCC GCCTCCGCA AGCGCCTCCG CGGCCTCCTG	180
)	C'DRETCCTHE TGETGRAGET GREENSBEECH TERANDERET CTGANATECC CAAGEGGAAG	240
	CAAAAGGCUR ATOOGGCAGA GOGAGGTGGT GGACOTGTAT AATOGAATGT GCTTACAAGG	300
10	GUCAGCAGGA GTGCUTGGTU GAGACGGGAG CUUTGGGGCU AATGGCATTU UGGGTACACU	350
	TEGGATCCUA GGTCGGGATG GATTCAAAGS AGAAAAGGGG GAATETCTGA GGGAAAGCTT	420
15	TUAGGACTUD TGGACACCCA ADTACAAGCA GTGTTCATGG AGTTCATTGA ATTATGCCAT	480
13	AGATCTTGGG AAAATTGCGG AGTGTACATT TACAAAGATG CGTTCAAATA GTGCTCTAAG	540
	ASTITTOTIC AGTISCOCIAC TICSGCTAAA ATSCAGAAAT GCADSCTGTC AGCSTTGGTA	600
20	TTPCACATTC AATGGAGCTG AATGTTCAGG ACCTCTTCCC ATTGAAGCTA TAATTTATTT	660
	GGACCAAGGA AGCCCTGAAA TGAATTCAAC AATTAATATT CATCGGACTT CTTCTGTGGA	720
25	ABGACTITET GAAGGAATTE GTGETGGATT AGTGGATGTT GCTATCTGGG TTGGCACTTG	780
<i>_</i> J	TTCAGATTAC CCAAAAGGAG ATGCTTCTAC TGGATGGAAT TCAGTTTCTC GCATCATTAT	840
	TGAAGAACTA CCAAAATAAA TOOTTTAATT TTOATTTGCT ACCTCTTTTT TTATTATGCC	900
30	TTEGRATGET TOACTTAAAT GACATTITAA ATAAGTTTAT GTATACATCT GAATGAAAAG	960
	CAAAGCTAAA TATSTTTACA GACCAAAGTG TGATTTCACA TGTTTTTAAA TCTAGCATTA	1020
35	TYPEATTYTEC TYCAATCAAA AGTEGTTYCA ATATTYTYTT TAGTTEGTTA GAATACTTYC	1030
55	TTCATAGTCA CATTCTCTCA ACCTATAATT TGGGAATATT GTTGTGGTCT TTTGTTTTTT	1140
	CTCTTAGTAT AGCATTYTTA AAAAAATATA AAAGCTACCA ATCTTTGTAC AATITGTAAA	1200
40	TGTTAAGAAT TTTTTTTATA TCTGTTAAAT AAAAATTATT TCCMACAACC TTAAAAAAAA	1260
	AAIAAAAA AAAAAAAA AAAAAAAA	1288
45		
7.5	(2) INFORMATION FOR SEQ ID NO: 126:	
	(i) SEQUENCE CHAPACTERISTICS:	
50	(A) LENGTH: 1517 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
در	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:	· 6 0
	AGTGGCTTAA AGGCATCGTT TTAGGGATTA CTGGGAAGTA TCTTCAAAGT AATACATGAG	
	AAACATTCCT TCCTAAATCC TTTATTATAT TGAATATCGT ATTAATTGGT TTTCAGAGGT	120

379

	TAAATTAACC ATGTATTCCT GCAATAAATG TCACTTGTNT CTTGTATATA ATCTTTTTTA	180
	TATATTACCG GATTGATTCA TTAGTATTTT GTTGAGGATT TTTGTGTCTA TATTCATAAG	240
5	AGATGCT95T CT3CAGTTTT CTTTTTTTGT GATAATCT5G TTTTTGTATC AGTAATACAG	300
	GCCCCATGAA ACGAGTTGGG AAGTGTTCAC CTCTCTTGTA TTTTTTCAAG AGTTTGTGAA	360
10	GAATTECTAT TAATTCTTTA AATGTTTGGT AGAATCTACC ATTGAAATCA TETGTCCTGG	420
10	GCTTTTTTTT GAGGGAAGTG TTCTGATAAC TAATTCAGTA TCTACTTTTT ATAGCTCTGT	480
	TOAGATTITG CITCTTCCTG AGTTAGTTTT GGTAATTTGT GTATCTCTAG GARTTTGTCC	540
15	AUTTCATUTA TCTCATUTGT TGGCATAAAT TAAACTAAAT TTGGCCTGAG CCTACCTGTA	600
	TATCTTGAGT CCCTCTGTAA GGAACTGTAG CCTAACTTGT ACATAAACAA ACTGAAATCC	660
20	TARATTAGGA ATGTAGTTTT TSTARCAGCT CCTGAGTCTC AGGCAGTCAC AGCAGYCAAG	720
20	TCTGTCAATT GCAGGCTGCT AACTAAGCAG CCCATGSTCA AATGAGGGAA AAACCTTTCC	781)
	TITTAACACA TAGTATAGCT TTGTAATCCT TTTCTTGCAC ACTCGGGTAA ITTCTTCCTT	340
25	ITTCATTCCC KGWATTTTCC AKGAATATGA RTCTYCCTTT TTTCCCCTCC TGTCAGTCTA	900
	CCTAATGGTT TGTCAATTTT GITGATCTTT TGAARAACAA ACCTTTGGTT CCAGTTTCTT	960
30	CTTGCATATG CTGARTATTC TCATAATTGG AGTGGAAAGC TGATCTTTGA TTACTTATTT	1020
50	TACTTAGGGC TGAGGAGTTC ATGGACTTCG CAAAACCTCC TTGAATCTAA ATTGCATCTT	1080
	CTTTCCTGGT TTCTGGGCTG AAACATGTTT TTTCCCATCT WANAWAJCCT TGGTCTTTTC	1140
35	ATEGRICATT AAGACTAGAS AAAGTTCTAG ATMCCTTGTC CTTTTATGCT GTCATTTTGT	1230
	TTAAAGGCTT TCTATGTAGT AAAACTATCT ATATAGACAA AATAGAGCCT TGAGTTGTGG	1260
40	TOTTSAATTT GATCAACATS ATTTACCASA TTOTGTASTG GATATTTOTT CACCTGCTSC	1320
40	TACTGTAAAC CATTTTATTO TTGGATCTTC TGTAGAGTAT ATTATCACAG GTACTTTTTA	1380
	CARGOGTOTO TAATOTTTTE GOTTOOCTOG GCACATTGAA AGAAGAAGAA TTGTCTTGGG	1440
45	CCACACATCA NATACGCTNA CACTNATAAT AGTTGATGAG CTANNAANAA AAAAANAAAG	1500
	GCAAAAAGN CCCAAAA	1517

50

(2) INFOPMATION FOR SEC ID NO: 127:

and the second of the second of the second of

e da de Cara d

60 (x1) SEQUENCE RECORPTION: DEQ ID NO: 127:

	TGAATCTATT (CTTTGAACAT	TCTACAACAA	GAATTACATT	ATACTGTTAT	ACCAG AGT AC	60
5	TTOTOGOAGTG T	rgaaatacat	TGGTTTGGAA	AATGAACCTG	GCTTTGCTAT	AAATTACATT	120
<i>ن</i>	CACAGGCCTT '	MTGTAAATG	TGTAACTTGC	CTATCAAAGT	AGTTTGTAGG	GCAAATGCAG	180
	RATATATGTG (rccatct3gt	AAAGTACITT	WIAYICATGT	GGGAAATUAA	GTAGTATCAG	240
10	AACTTGGTCC A	AATAGTCCAA	TTT'STTAAAG	CCAAGGGCCA	TTCTCTTAGT	GA/IGGGCTGJ	300
	AGGAAGTCCA A	AAAAGCAGAA	ATGAAAGCTT	ACATGGAATT	AGTCAACAAT	ATGCTGTTGA	360
15	CTGCAGAGCT (STATCTFCAG	TOUTGTGATG	AAGCTACAGT	AGGGRMGATC	ACTCATGMTA	420
10	GGTATEGWIE /	POCTFACCCT	TGGCCTCTGW	WTCATATTT	GGCCTATCAA	AAACAGTGGG	480
	AAGTCAAACG '	TAAGNTGAAA	GCTATTGGAT	GGGAAAGAA	GACTCTGGAC	CA BETETTAG	54û
20	AGGATGTAGA	CCAGTGCTGT	CAAGCTCTCT	CTCAAAGACT	GGGAACACAA	COGTATTTCT	600
	TEAATAAGCA	BOCTACTGAA	CTTGACGCAC	TGGTATTTGG	CCATCTATAC	ACCATTCTTA	660
25	CCACACAATT	GACAAATGAT	GAACTTTCTG	AGAAGGTGAA	AAACTATAGO	AACCTCCTTYG	720
<i>_</i> 2.7	CTTTCTGTAG ·	GAGAATTGAA	CAGCACTATT	TTGAAGATCG	TGCTAAAGGC	AGGCTGTCAT	780
	AGAGTTATGT	GTTAGTCTCA	GGAGTCTTAA	CTTTTGAAAT	ATGTTTTACT	TGAATGTTAC	840
30	ATTAGATATT	GGTGTCAGAA	TTTTAAAACC	AAATTACTGC	TTTTTGAAAC	CTCAAATTAT	900
	ATAATGTATC	TTATGTATGT	GCTTTATATT	GTTATTTGTG	TATACATTAA	AATAATTCTG	960
35	AATTATTTAA	TCTGATATGT	TGTATTCTGT	ATCTTGAAAT	TTTTGTTTCC	TTGAAACATG	1020
<i>9.</i> '	CATGCATTTA .	AAAATAAAGC	TTAAACAACT	GTAAAAAAAA	AAAAAAAA	CTC	1073
40	(2) INFORMA	TION FOR S	EÇ ID NO: 1	28:			
45	(i)	(A) LEN (B) TYP (C) STR	HARACTERIST GTH: 300 ba E: nucleic ANDEDNESS: OLCGY: line	se pairs acid double			
50	(xi)	SEQUENCE	DESCRIPTION	: SEQ ID NO): 128:		
30	CAACCCCTGC	CTTTTTTTTG	TTTTCCATTT	GCTTGGTAGA	TCTTCCTCCA	TCCCTTTATT	60
	TTGAGCCTAT	GTGTGTCTCT	GCCCGTGAGA	TGAGTCTCCT	GAATACAGCA	CACTTACTGG	120
55	TCTTGACTCT	GTATCCAATT	TGCCAGTCTG	TSTCTTTCAT	TTGGAGCATT	TAGCCCATTT	180
	ACATITAAGG	TKAATATTGT	TATGTGTGAA	TTTRATCYTR	TCATTATGWI	GTTAGCTGGT	240
60	TATTITIGCTT	GTTAGTTGAT	GCAGTTTCTT	CONGGCATCA	ATGGTCTTA	CAANTTGGCA	300
\sim							

381

(2) INFORMATION	$F \cup R$	SEQ	ID	NO:	129:
-----------------	------------	-----	----	-----	------

5

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1275 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

10

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:

60 GGCASAGCCT GTCCCTGCTG CCCCTGCAAA AAAAACCCCC TCTGGTGTGA GCAGGATGGT 15 TGBABGTTAT GTGAGCTCCT TCD2CTTD2C TCCAGTTTCC TCTTCCCTTC TCCT2CCTBC CTOTTTTSCT TTTOCCTTTO TTOCTGGTAC COCCTGCCCA TTCCTGTAIT TTOTOCCATO 180 GECATTOREC COTOTOCOAS TOTOSCOTARO COSTTOARAS TOTTTCCTOT TARATGSTTS 240 20 ABATTTTOTO TOACCAAGCA CACCOCAGTA TTAATTAAAC TAGCTGCAAA CAGGCAGCAA 300 GTGGTCTACC ATGACAGATG GGTTTTGTGT GTGTGTGTGT GTGTGTAATT GTAATAAAAC 360 25 ATATTGARTC ACTCAATAAA CACAGAGTGT CTACTACATG TATCARGCAC TATCATAGAT 420 GCTAATTAAC GAAACTGAAA TOGCCAGGOO CTCACAGTGG CTCATGCOTA TAATCCCAGC 480 ACTITGGGAG GATGACGCAG GAGGATCACT TGACGCCGGG AGTTCAAGAC CAGCCTGGGC 30 540 AACATAGTAA GACTCCATCT CTACAAAAAA AAAATTTTT TTATTATACT TTAAGTTTTG 600 GGTTACATGT GCAGAACGTG TAGTTTTGTT ACATAGGTAT ATACGTGCCC TGGTAGTTTG 660 35 CTGCACCCAT CAACCCATCA CCTACATTAG GTATTTCTCC TAATGTTACC CCTCTCCTAG 720 CCCCCCACCC CGTGACAGGC CCCCGTGTGT GATGTTCCCC TCCCTGTGTC CATGTGTTCT 780 CATTGGTCAA CTCTCACCTA TGGAGTGAGA ACATGTGGTA TTTGGTTTTC TGATCTTGTG 40 840 ATABOTTOCT GAGAATOTKS GTTYCCAGOT TTATCCACOT COCTGCAAAG GGCATAAACT 900 960 CATCCCTTTT TATCGCTGCA TAGTCTCCA TGGTGTATAC GTGCCACATT TTCTTAATCT 45 1020 ATCATTGATG GACAASTTTT GCTATTGTGA ATAGTGCCAC AATAAACATA CGTGTGCGTG TETETTTATA GCAGCATGAT TTATAATCOT TTOGGTATAT ACCCAGTAAT GGGATCACTG 1080 AGTICAAATGG TATTTCTCGT TITAGATIIG TAAGGAATTG CCACACTGTC TTCIACAATG 1140 50 TTYGAACTAA TNTACACTOO CAOCAACAOT GTAAAAGTGT TTCTATTYYT CURCAACCTC 1200

 $N_{\rm s} = 1 - 4$, which is the second of the $\Delta \Delta$

WO 98/54963

	(2) INFORMATION FOR SEQ ID NO: 130:	
5	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 472 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:	
10	CNGAAACCCC GTGAACCCTC CCCGGGTTAA AAAGCCCCCC CTAAATGGGG GGAACGCYTC	50
	ACACGTTATA AAAAAGCACT ABAATGTTTT GAAAGCGAGA AACAACAGCT GTGTAGGGTA	120
15	GCTAGCAGTT AGTGTTSTAC AGAAGACAGA TATTTGTGCA TTTYTGCATT TTCTAAGTTT	130
	GCTGCAATGA GCATGTATTA CTTTCATAGT TATAAAACAC ATGCAAAAT3 CCCTTTTAAA	240
20	ATGAAAAAAA ATCCATSAGT GTAAGTGATA TATATGCTTT GGAAAGCCT3 GSACGGTCAT	300
20	TGTTTACTCT CAATAGTATG TGTTTTGCCTT TGTCTTTTTG AGACATTTTG TTTTAATCTG	350
	TTGATGACAA TAWOCTGTTG ATAWTATAAC TTGATAACAA ATAAAATGAO TTATGATTGA	420
25	NN ASASASASA AAAAAAAA AAAAAAAAA AAAAAAAA	472
30	(2) INFORMATION FOR SEQ ID NO: 131: (i) SEQUENCE CHAFACTERISTICS (A) LENGTH: 1950 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TCPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:	
40	ACCTOTOAGA ATOTTOTOTO AGCAACOTGA GTOTTOGOOG TTCCTCAGAG CGCCTCAGTG	60
	ACACCCCTGG ATCCTTCCAG TCACCTTCCC TGGAAATTCT GCTGTCCAGC TGCTCCCTGT	120
45	GCCGTGCCTG TNATTCGCTG GTGTATGATG AGGAAATCAT GGCTGGCTGG GCACCTGATG	180
	ACTOTAACOT CAACACAACO TGOTCCTTCT GOGTCTGCCC CTTTNTGCCC CTGCTCAGTG	240
	TOCAGACCNIT TGATTCCCGG CCCAGTGTCC CCAGCCCCAA ATCTGCTGGT GCCAGTGGCA	300
50	GCAAAGATGC TOOTGTCCCT GGTGGTCCTG GCCCTGTGCT CAGTGACCGA AGCTCTGCCT	360
	TECTOTGEAT GAGOCOCAGO TOTECAACGG EXLACATGGGG GGAGCOTOCO GEOGEGTTGA	420
55	GAGTOGGECA TGEGCATACC TGAECCCCCT SGTGCTGCGT AAGGAGCTGG AGTOGCTGGT	480
	AGAGAACGAG GGCAGTGAGG TGCTGGCGTT GCCTGAACTG CCCTCTGCCC ACCCCATCAT .	. 540.
	CTTCTGGAAC CTTTTGTGGT ATTTCCAACG GCTACGNCTG CCCAGTATTC TACCAGGCCT	600
60	GETSCTGGCC TCCTGTGATG GGCCTTCGMA CTCCCAGGCC CCATCTCCTT GGCTAACCCC	660

383

	TGATCCAGCC	TCTGTTCAGG	TACGGCTGUT	GTGGGATGTA	CTGACCCCTG	ACCCCAATAG	720
z	CTGCCCACCI	CTCTATGTGC	TCTGGAGGGT	COACAGCCAG	ATCCCCCAGC	GEGTESTATS	780
5	GCCAGGCCCT	GTACCT3CAT	CCCTTAGTTT	GGCACTGTTG	GAGTCAGTGC	TGCGCCATGT	840
	TOGACTCAAT	GAAGTGCACA	AGGCTGTGGG	GETECTSCTS	GAAACTCI AG	GGCCCCCACC	900
10	CACTGGCCTG	CACCTGCAGA	GEGGAATCTA	CCGTGAGATA	TTATTCCTGA	CAATGGCTGC	960
	TCTGGGCAAG	GACCACCTGG	ACATAGTGGG	CTTCGATAAG	AAGTACAAGT	CTGCCTTTAA	1020
15	CAAGCTGGCC	AGCAGCATGG	GCAAGGAGGA	GCTGAGGCAC	CGGCCGGCGC	AGATGCCCAC	1080
1.3	1000044600	ATTGACTGCC	GAAAATGTTT	TIGGAGCACCT	CCAGAATGCT	AGAGACCTTA	1140
	AGCTICCCIC	TCCAGCCTAG	GOTGGGGAAG	TGAGGAAGAA	GGGATTCTAG	AGTTAAACTG	1200
20	CITCCCICT	GCCTTCATCG	AGTTGGGAAG	AGGCTGGGAA	GGATGCCCAG	TCAAAGGCTC	1260
	CAAGCGAGGA	. CAACACGAAG	AGGGATCCAC	TOTTACCAAA	AGTCCTGATT	CCCCCATCAC	1320
25	CAACCTACCC	AGTTTGTTCG	TGCTGATGTT	GGGGAGATC	TGGGGGGGAGT	TGGTACAGCT	1380
20	CTGTTCTTCC	CTTGTCCTAT	ACCGGGAACT	CCCCTCCAGG	GTACCCACAG	ATCTGCATTG	1440
	CCCTGGTCAT	TTTAGAAGTT	TTTGTTTAA	. AAAACAACTG	GAAAGATGCA	GAGCTACTGA	1500
30	GCCTTCCCC	TGAATGGGAG	GTAGGGATGT	CATTCTCCAC	CAATAATGGT	CCCTCTTCCC	1560
	TGACGTTGCT	GAAGGAGCCE	AAGGCTCTCC	ATGCCTTTCT	ACCTAAGTGT	TIGTATTTTA	1620
35	TTTTAAATTT	TTTATTCTG3	G AGCCACAGEC	: CCCTTGCTTA	TGAGGTT CTI	ATGGAGAGTG	1630
	а зааас хзаг	a GGGAAATAGG	GCACCATGGT	CCGGTGGTTI	GTAGTTCCTI	° CAAAGTCAGG	1740
	CACTOGRAGO	TAGAGGAGTC	TCAAGCTOOG	CTTAGGAAGA	ACTOSTOCCO	COTCCAGTCC	1800
40	TAATTITTOT	TGCCTGCCC	GCCTTGGGG	ATGCCTCACC	CACCOAGGTO	CTGACCTGTG	1860
	CAATAAGGA	TSTTCCCTGG	GANGTTTTG:	TGGATGTAAA	A TATAGTAAA	A GCTGCTTCTG	1920
45	TCTTTTTTA	AAMAAAAAA	AAAAAAAAC	r.			1950

(2) INFORMATION FOR SEQ ID NO: 132:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 990 base pairs

(B) TYPE: nucleic acid

eta en la esta en la

WO 98/54963

	CITICACTOCT TATTATTATG AVAITHMICCT TATTATMICT ACCAATGCTT CITATATMAA	120
	AGCCTCRUCT TYTTCRINTT ACTAUNTGTA CATTAGCTGC CTGTGGATTA ACATTTCCAT	130
5	GARANGUATU UTUGCANUGU TUGATCUMAA ACTUTTUGIG TCTUTATATA AGGTATGCTY	240
	CTYTTAAGGA TGATATTTTT AACCACAATA GTTGAAAGAC AATCTYCACC TTYTACTTGT	33)
10	ATAITTACAT GTAATGTAAT TYTTGATGCA TATTACGTCT TATTATTTAA CCAACCTATT	360
10	THATTYMIATO TAGGGGGATFT TICAGAAAGC CTFATTTTCT TGTATTAATC AAATATYMT	420
	AYCAITGTAT TYTGGYGTAT TASTTAGKAA TAGGKTAGYG YAAATATATA TYGYGGSTAT	430
15	TYTCAGAATT GCAATATGCC TCCTTAATTT ATTAGAGGCT AACCTAAATT ATTACTTTTA	540
	CCACTTACTT SAAAATTCTG GAACTTTAGA ACATTTATTG TTTTATGCAT TTTAATTCTA	600
20	CTTGTATTTT TACTACTCCT AAACATTATT ATTGTTTTAG ACAAGCCAAA ATATATNITG	660
-0	TTATTATOTT ATYCTCUATT TOTTTOTGTA TTTTTATGCC ACTATGTATG CTCAATTTCC	720
	PROTATORNA INAACCUAAT TEAGTACTIT TOTTTTTAA TETOTSCAGO TAGEETEKEE	780
25	ATTRAATTTT TATUTTIGGT TIGGTGAAAA AATTGTGTTT ATTTGTATAT GCATACTTAT	840
	GCATATAGAA TMCTAGGING ACATATIYIT AGTATTIATA AATGTAAAGT CATTWATTKG	900
30	GOTTOTTATCA TYTCKGIKGA GARATCAATT GTCAGCCCAA TAGTTYTTTCA TTTTAAATTA	960
2.0	CNGRATTIVIT TORTSTOTOT GOTTTYFAGGA	990
35	(2) INFORMATION FOR SEQ ID NO: 133:	
	(i) SEQUENCE CHAFACTERISTICS:	
40	(A) LENGTH: 1720 base pairs	
40	(3) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:	
43	GTCTGATAAG CGACTGTGGT TATTCCCCCTA AAGTTTACTT CAGCACTAAC ACTAGTGCTT	60
	CCCCTGGAGT TTGCAGTTTT CCAGCTTTAT ACAGGATTTT CCTTTGACTG GAAGAGTCAA	120
50	GGATATAGAG ACTYCALCAGT GACATTTATT GTACAACATC AAGGGGAATA GGATACTYCAT	180
	CARACTOGGA TTATTYTTAT CARAACATOG TCTTCTTTGA ATAAGAAAAA TACATAGTTG	240
55	GTIATTATGG ACTTAAAACT GIGTTAAATG GATATTCTGA TAAAATAITT GCTGCTCTGT	300
JJ	AGASTGTGSA ANATOMAGA ATATTAGOTT TACTCATOTT GAGOTTTGAG GATGTTOTOT	360
	GTADECCGAT CGTTTCATAT THACTAAAAA AGCTGGGTAT TGTAAAATCT CATTTATAAA	420
60	AACTCAGATS AGAAGAAAAT TITCTTTGAT GGTGAGACTG TTGTCTTAGT TCAGGAAATT	480

PCT/US98/11422 WO 98/54963

385

	ATTTAATAAT CCTTTGTTAC CTSTGAATGA AGGAACTTTG TAATTCTGAT TTATCGTAAA	540
5	ACATGAGCCT TTCCAGAGTC AGCTTAGACA CTGTTGTCGC AAATAGCCAT GCTTTGCCTT	600
	ATGCCAAGGA GGCCCAGAGG GAGGGCCTAG TCTTCCTCTG TTGCTGTACA TATATTGAAA	660
	TOCTTPTTTT TTTTATTTTG CATTTGTTAT CTATAATGAG CTTTCTGAGC CCTGATATTA	720
0	TSTGAGACAA ACAGGAGTTA TTSATGTTAT ACACTCCCTT CCATTCAGGA TTTTCT3CTT	780
	GGAGGGAAAT ATGTTGACCT TAGAGAATTG TGAATATTGT TGCAATTCTT GAATATATTA	840
	CCATGIGAAT AATAGAGACT GTETTGCTCT CTAGTATAAG CTATATTTAT TTTTGATTCA	900
15	TTTGAATTAC TAGTTATAAC TGGAGAAATT TTGTTACCTC TATCCTGGCT TGCCTGACTG	960
	GCTGTATAAT AGCAGCAGCC TCTTTTAGAG CATCTTAATG AAAACATGGA TGAAAGGAAT	1020
20	TAATGATGAT ATCTGCAGAC TCCCTAGAAA ATGCCTTTG TTCCCAGCT TAACATTTTC	1080
	TTCTCAATCA CATTTCAATG TTTGTGGAGA GTCGCAGATT CACACCAGAA ACACTAGGTG	1140
2.5	TTCATATCCA TAGCATGGAT GCAGAATAAG CAGTTGGGAG AGAAGCTTCT TCCTACCTGG	1200
25	TACTOCTOCC ATTOACCTCA GCCCAGCCCC AGACAGGCGT TAGCATTCAG TGTGGGCCCT	1260
	CAGGCAGCCC TGAAGCCTGG CTGGGTCATC AGATGGGGGC AGCCTGTGAC GGGCACCAGC	1320
30	GGCCTBATTC CAGGGAAGAG TICCTGGAGG GTGTTGGCTG TTTTTGTTAG CTCAGTTTTT	1380
	TTCTGGGCTC CACCATTCCT AACTCCAGGT AGACAAGATA GATGTCACAC ACAACAATTT	1440
25	TAAAGTATTT TECTTAGTEC ATTITETTTA TEATTGCAET GTTTETTTCT TATTAATAG	1500
35	GCTTTTTACT TCATTCTATT AAATTTTAGT GTTTAGAAGA GGCGGGTACT GTCACTGTGT	1560
	AAAATATGTA ATATTTTATA TGTTATACCA FGTCATATAT ACTTGCAATA TCAGAGCTTG	1620
40	CATTCAATAT ACAATGCAAT TGACTCTTTG CAGACCTGCA TTTTTCAGTG AACAATAAAA	1680
	AGATTGTCTG GCACTCCAAA AAAAAAAAAA AAAAAAAAAA	1720

45

50

(2) INFORMATION FOR SEQ ID NO: 134:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 705 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

Section 4.

	GTGGAATCAC AGACACTCET AGAGGAGAAT GCTGTTCAAG GAACAGAACG TACTCTTGGA	180
	TTAAATATAG CACCTTTSAT TAASCASTTT CAGGTASCTA TACGTGTATT TTTSGACCTA	240
5	TCCTCATTGC CCTGTATACC TTTAAGCAAG CCAGTGSAAC TCTTAAGACT AGATTTAATG	300
	ACTCCGTATT TGAACACTC TAACAGAGAA GTAAAGGTAT ACGTTTGTNA AATCTGGGAA	360
1.0	GACTTGACTG CTATTCCATT TTGGGTATCA TATGTACCTT GATGAAGANG ATTAGGTTGG	420
10	GATACTTCAA GTGAAGOOTC CCACTOGAAA CAAGCTGCAG TTGTTTTAGA TAATCCCATC	480
	CAGGTTGAAA TGGGAGAGGA ACTTGTACTC AGCATTCAGC ATCACAAAAG CAATGTCAGC	540
15	ATCACASTAA AGCAATSAAG ASCAGTTTTC CAATGAAAAS TGTGTAAATA GAGCATSAAS	600
	AAGTACAAAA TTCTTGTCTT AATTAGTGGG GGTATATAAA AATTCCTTGT AATGGTCAAA	660
20	TATTTTTAA AATTGACATT AATAAAGCAT ATTTTAAAAG TTTCT	705
20		
25	(2) INFORMATION FOR SEQ ID NO: 135:	
	(i) SEQUENCE CHAFACTERISTICS: (A) LENGTH: 323 base pairs	
20	(B) TYPE. nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135: AGCACACAC TOOTTMOT GOTOCTAAGG TOATGUTCAA CATTOGTGGA GTGCATTTC	60
35		120
	TGCTCAGGGA GCTTTCCCAG ACCCGGAATG TTTGGTGCTC ACAGACYCTG GCAAGGATCG	180
40	GTATTCCTGT TCCTCAGTTT TGCCTGGGGA AATGGAGGST CAGTGACGTT CAGTGACGTG	240
40	CCCAGAGTCA TGCCATTGC GGGTGGCCCA GKGMTCCAGG TCTCCAGCAC CCCTCGGCCC	300
	CCTCCTCACC AGGTCACATC ATCTCCTGGA TTAGAATCTG CTCACATAGT CTGTCCTGAA	323
45	ACGAAAAAA AAAAAAAAAA AAC	343
50	(2) INFORMATION FOR SEQ ID NO: 136:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 582 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:	
60	GGACGGAATG GTGCAACCCT CCTWAMTTT CTKGKGCTGT TGACAACAGA GGGAGGGAGG	60

WO 98/54963

on the second of the

	GAAAACATTT TTYGTGGGAG AATCCTACYT CTGCAGSGGA GCCCTTAAGC GATKGATTTT	120
	GAATCTKGAD CCTTTACCAA CTAATTTIGA AGGAAGATAC CTTGGAAATA TTTGGCAITC	180
5	AGTGGGTTA: TGAAACAGGA TTAGTGAATT CATGTAGAGA ACTCTTTCAT TTATTCAGGC	240
	ANCARUTGTA CAROTTGGAA ACCTTSTTAD AGTOCAGTTG TGATTTTGGG AARGTATCAA	300
10	CTCTACACTS CAAAGCAGAC AATATTAGGS AGSAGTGTGT ACTATTTSTC CATTATGTTA	360
10	AAGTYPTTOAT CTTCAGGTAT CTGAAAAGTAC AGAATGCTGA GAGTCATGTT CCTGTCCATC	420
	CTTATGAYSUC TTTGGAGGCT CAGCTTCCCT CAGTGTTGAT TGATGAGCTT CATGGATTAC	480
15	TOTTGTATAT TOGACACCTA TOTSAACTTO COAGTGTTAA TATAGGASCA TTTGTAAATO	540
	AAAACCAGAT TAAGOTTTGA CTOSTTTCAT TTSATTTTTA AG	532
20		
20		
	(2) INFOFMATION FOR SEÇ ID NO: 137:	
25	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1021 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:	
	TTCGGCAGAG CCCTTGCGCG CTCTTGAATA CCTGCKTTCT GTAGCGCTAG TTCTCTTCAA	60
35	GATTTGCTTA GTGTCATFTC ATMTCGGTTT CMTTTCTCGG CATGTTTMTC TGTCGGAATT	120
20	ACGGITCGIT TROGTICTAT GTACTCICTA AAAIGITATO GITTITCAIT TGTCTACTAA	180
	TTTTCGTCCA TTTGTTACTA CTGAGTTTCT TAATATCTGA CTGGCCTCCG CCCACGGGCT	240
40	CTGCAGANIA TAAAATACTO AGGCTGATGG TAGTGCAGAG ACTCTCCCTC CTTGATCAGC	300
	SCAAACSTIG GTTTAAGECT TGAGEGATEG AFTAACATTT TCTTGGTTGT GTGAAGCGGG	360
45	CTPBOGATTO OGRAGAGETG GREKCRAGAGO GREAGCOTCO ACCTATTETG AGTTCAGAAG	420
72/	APPENDAGO GPEGGOTTE CETTEGIATO CASTACIAGO AGAGIACITA CIGUACAGOI	480
	GTGATTTG93 ACTGCTTTCC AGCCCTTGCT G300GCTGCC COGAGTCTAC TOGCAAAACG	540
50	GACTOTOTOO TGBAGTOCAG AGCACOTTGG ANDCAAGTAC AGCGAAGCCC ACTBAGTTCA	600
	GTTGGCCCGG GACACAGAAG CAGCAAGARG CAGCCGTAGA AKARGTGGGG CAGGCAGAAGA	650
		75.5
	I CAR CORE OF A CONTROL OF SERVICE AND A CONTR	,
60	Treotrita ko decontenet graciteta kao mentento adesatatutat eksas taabo	90

	AGCCTTAGAT AGCAGCAGAA GSCTTTTTGG ATTCTCCTCC TTGAAAAGAT TCTCAGTTAC	960
5	CAAACGTCTC CACCTAGAAA ATAAAAATAC ATTAAGATGT TGAMAAAAA AAAMAAAAAA	1020
5	A	1021
10		
	(2) INFORMATION FOR SEQ ID NO: 138:	
15	(:) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1777 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:	
	CGGAAGATGA TGGCTTCAAC AGATCCATTC ATGAAGTGAT ACTAAAAAAT ATTACTTGGT	60
	ATTCAGAACG AGTTTTAACT GAAATCTCCT TGGGGAGTCT CCTGATCCTG GTGGTAATAA	120
25	GAACCATTCA ATACAACATG ACTAGGACAC GAGACAAGTA CCTTCACACA AATTGTTTGG	180
	CAGCTTTAGC AAATATGTOG GCACAGTTTC GTTCTCTCCA TCAGTATGCT GCCCAGAGGA	240
30	TCATCAGTTT ATTTTCTTTG CTGTCTAAAA AACACAACAA ASTTCTGGAA CAAGCCACAC	300
50	AGTOCTTGAS AGSTTOCCTS AGTTCTAATG ATGTTCCTCT ACCAGATTAT GCACAAGACC	360
	TAAADSTCAT TGAAGAAGTS ATTCGAATGA TGTTAGAGAT CATCAACTCC TGCCTGACAA	420
35	ATTCCCTTCA CCACAACCA AACTTGGTAT ACGCCCTGCT TTACAAACCC GATCTCTTTG	480
	AACAATTTGG AAGTGATGGT TCATTTCAGG ATATAATGGA AAATATTGAT CTGGTGATCT	540
40	CCTTCTTTAG CTCAAGGTTG CTGCAAGCTG GGAGCTGAGC TGTCAGTGGA ACGGGTCCTG	6(H)
40	GAAATCATTA AGCAAGGCGT CGTTGCGCTG CCCAAAGACA GACTGAAGAA ATTTCCAGAA	660
	TTGAAATTCA AATATGT33A AGAGGAGCAG CCCGAGGAGT TTTTTATCCC CTATGTCTGG	720
45	TOTOTTGTOT ACAACTCAGC AGTCGGCCTG TACTGGAATO CACAGGACAT COAGCTGTTC	780
	ACCATGGATT CCGACTGAGG GCAGGATGCT CTCCCACCGG GACCGCCCA GCCAAGCAGC	840
50	CCTTCAAGTT CTTTTATTTC TGGGTAACAG AAGTAGACAG ACAGGTTACT TGGTGTATCT	900
30	TCTGTTAAAG AGGATTGCAC GAGTGTGTTT TCCTCACACA CTTTGATTTG GAGAATTGGT	960
	GITAGTTGGI AATAGATAAC TCAGCGTAGA TAGTATTGCA AAAAGGGGAG GAAATACACA	1020
55	ACAATAATAA ATGTAAAAAC CTGCTATTCA ACATGCAGTT TTATTTCGAR GCCAAAAATC	1080
	TAGAGCTTTO CCAAGATCOT GTTGCCTTAG GCACATNCAC ACTTCAACAG TGCACACTAT	1140
(0	CCAACAGTGC ACACTATTCA ACAGTGCACA CTATTCAAAA GCGTAGACTA TTTTTTTGCA	1200
60		

389

	TGTTCANGAT ATTTGTTTTG GTGTTATGTG TGTGTGAGAG AGAGAGATTC CTTTGACATT	1260
	AAGGAGCATC AATGAGAAAA GATGATCAGG CAGGAATTAA TAAAGAAATG AAGTCGTGTG	1320
5	TGTTTGGTTG CCTGTGAGAG GGCACACAAT TTCATAAACA CCATGCCTGG ACAATTTGAT	1380
	ATTAATATTT AACACCTCTG CATCTTTTTC TTAAAAAAAGA ATATGGGCCA GATACAGTGG	1440
	CTCACATTTG TAATCCCAGC ACTTTGGGGA GCCAAGTTAG CAGAATCCCT TGAGCACAGG	1500
10	AATOTGAAAO CAGOTTGGGO AACATAGTGA GATOCCATOT NIACAAAAAA CITAAAAATT	1560
	AGCCAGGCAT GATGGCACAT TCCTGTAGTC CTAGCTACTC AGGACGCTAA GGTAGGAGGA	1620
15	TYGCCTEAGC CUAGGAGTTC AAGGCTGCAG TGAGCTAAGN ACGTGCCAGT ACACTCCAGC	1680
	CTSAGCSACA AAGTSAGACC CTSTCTGGCA AAAAAAAAAN TTAAAAAASTC GGGGGGGG	1740
20	CCBGTACCCA AATCCCCGGA TATGATCGTA AACAATC	1777
25	(2) INFORMATION FOR SEQ ID NO: 139: (i) SEQUENCE CHAPACTERISTICS (A) LENGTH: 643 base pairs	
30	(B) TYFE: nucleic acid (C) STFANDEDNESS: double (D) TOFOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:	
26	THTTTTTPP TTTTTTTT TTTTTTTTTTTTTTTGG AATGAGAAAA TAACTTTATT	60
35	TICATTGTGG GGAGCGGGCC GATGTCCAGC CTCAGAACTT CTGGAACTGC TTCTTGGTGC	120
	COSCAGOOTT GGTGACCTTG AGCACGTTGA AGCGCACTGT CTTGCTCAGA GCCCGGCACT	180
40	CGCCCACTGT GACBATGTCA CCGATCTGGA CGTCCCTGAA GCAGGGGGAC AGGTGTACAG	240
	ADATGTTOTT GTBBCGCTTC TOCAAGCGGT TGTACTTGCG GATGTAGTGC AGATAGTCTC	300

45 GGCGGATGAC AATBGTCCTC TGCATCITCA TCTTXGGTCA CCACGCCAGA GAGGATCCGC 360

CCTCGAATGG ACACATTACC AGTGAAGGGG CATTTCTTX.T CAATGTAGGT GCCCCTCAAT 420

AGCCTCCTTG GCGTGTCTTT GAAGGCCAGA CCGATGTTCT TGTTAGTAAC CCGCGGGAGC 480

TTCTCCTTGC CAGTTTCTCC CAGCAGGACC CTCTTCTTGT TTTGAAAGAT GGTCGGCTGC 540

TTTTGGTAGG CACGCTCAGT CTGAATGTCC GCCATCTTCT CGTGTCCGAAY TCCTGCAGCC 600

Note that the second second

· . - .

390

151	CECTEMOE	CHARACTERISTICS:
(1)	SECUELVE	CHARACIERISTICS.

(A) LENGTH: 1220 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:

10	GGCACGAGGA	TGATAGACCT	ACTGGAGGAA	TACATGGTTT	ACAGGAAGCA	TACCTACATE.	60
10	AGGCTTGATG	GCTCATCCAA	GATCTCGGAG	AGGC/3AGACA	TGGTTGCTGA	TTTTCAGAAC	120
	AGGAATGACA	TCTITGTGTT	CCTGTTAAGC	ACACGAGCTG	GAGGACTGGG	TATCAATCTC	180
15	ACTGCTGMAG	ACACAGTGCA	TTTTCTATGA	TAGCGACTGG	AACCCCACTG	TGGACCAGCA	240
	GGCCATGGAC	AGGGCC TACC	GCTTAGGGCA	GACAAA/3CA/3	CTTACTGTGT	ACCGGCTCAT	300
20	CTGTAAAGGC	ACCATTGAAG	AACGCATTCT	GCAAAGAGII	AAGGAGAAGA	GTGAGATTCA	360
20	GCGGAT GGTG	ATTTCAGGTG	GGAACTICAA	ACCAGATACC	TTGAAACCCA	AAGAGGTGGT	47.0
	TAGTCTTCTT	CTAGACGACG	AAGAUTTGGA	TEDAVADAAL	ATGTACTCTA	AACCTCTATA	400
25	CACTCCCCTC	ACGTATCTGA	GAATGGAAGA	GGTACTTGG3	TGTGTGCCAA	GGGTTAGGCA	540
	AAGCCAGAGG	CTGTATTTAG	GGAAAGTATT	TTTTTTCTCA	TATTTTTAT	AAAAACCCAA	6(II)
30	ACAAGAATGT	GTTTGTAGGC	CAGGCGTGGT	GGCTCGCGCC	TCTAGTCTCA	GCATTTCGGG	661)
30	AFGCCAAAGT	GGGCAGATCA	CCTGARGTCA	GGAFTTTGAG	TTTGARACCA	GCCTGGCCMA	720
	CGTTGTGAAA	CCCCACCTOT	ACTARGAFTA	CSGAAAATTG	GTTGGGCATG	GTGGCGGGCA	780
35	COTGTAATIC	CAGCACTITG	GGAGGC'TGGG	GCAGAANAAT	TGCTTGAGCC	CAGGAGGTGG	840
	AGATTGCGGT	'GAGCCGAGAT	YGTÇCCATTG	CAMTCCAGCC	SGGGCAATAA	GAGTGAAAYT	900
40	CCATCTTTTA	. AAAACAAACA	AAAACAAAAA	. ACACAAGACG	GCTCACACCT	GTAATCCCAG	960
40	CACTTTGGGA	FGCCGARGCA	GGTGGATCAC	GARGTCAGGA	GTTCCAAGAC	TAGCCTGGCC	1020
	AACCTCGTGA	AGCCCCGTCT	CTACTAAAAA	TACMAATATT	AGT/CGGGCGT	GGTGGTGGGC	1030
45	ACGTGTAATC	CCAGCTACTC	GGGAGGCTGA	GGCAGGAGAA	TCCCTTGAAG	CTAGGAGGCA	1140
	GAGGTTGCAG	TGAGCCAGGA	TCGTGCCATT	GCACTCCAGC	CTGGACAACA	AGAGCAAGAT	1200
50	TCCATCTCA	AAAAAAAAA					1220

(2) INFORMATION FOR SEQ ID NO: 141:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 721 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

60 (D) TOPOLOGY: linear

	(x1) SEQUENCE DESCRIPTION: SEQ ID M. 141.	
_	AATTCGGCAC GAGCCAGGTT AGCCGGAACG GCAGCTCTCC AGGCCCTGCC CACCCCACAG	60
5	GGGGCTCCTT ATGCACAGCG GGGTGTCTCC TTGTGGCCAT ACAAACGGAA CTGGCTCTTT	120
	TCAACAGTGC TGCAAGAGGA TGGTTATTTA ACGCTGGCCC CCAAGGAGGA AAGGCACAGA	180
10	CYTTCCTCCC TCCTGGAACA TCCAAGGGCA CTGSATCCTC TGTGTCCCTC TGASATGGGG	240
	TGCCACTCCA GCAAGAGCAC CACGGTGGCA GCTGAGTCCC AGAAGCTTGA AGAAGAGYGC	300
1.5	GAGGGAAGAG AGCCAGUTCT GGAGACCGGC ACCCAGGCAG CAGACTGCAA GGATGCCCCG	360
15	CTGAAGGATG GAACCCUTGA GCCAAAGAGC TSAAATGCCT CTCTCCAGAG TCGGACCCTC	420
	ACCTCYTTCT TGGAACTGCC TTTGGCCCTA GAACCATGAG ACAATCCCCA CCCTGAGAAG	490
20	CTCCGATCAC TGCGAGGAGA GAGAAAGCCT CCAGCTTTGG GATTCAGGCT TCAGAAGTTT	540
	TTAGCAGCCT TYGCTCATYG GAGAGGTYDDG GAAAGGATAA ADTTCTTATA ADGAAATCCC	600
25	TAATTTCCCC CAGCTCETEC CCNOENGAAG AAGGAACNAA AGAAAGTTCC TTCCACACGT	660
23	TTTGTTGGAA ACTTTTCCTT TGCCAACTTT CCTTGGATTE CCAGAACAAA GCCCTCCAGA	720
	A	721
30		
	(2) INFORMATION FOR SEQ ID NO: 142:	
35	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1463 base pairs (B) TYPE: nucleic acid	
	(C) STRANGEDNESS: double (D) TOPOLAGY: linear	
40		
40	(D) TOPOLAGY: linear	60
45	(M) TOPOLAGY: linear (Mi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:	60 120
	(M) TOPOLAGY: linear (Mi) SEQUENCE DESCRIPTION: SEQ ID NO: 142: ATGAATTAAT GITTATAAAT GACTGTACTG AATTTAAAAC CGTACAGTTT CATTTGCATT	
45	(MI) SEQUENCE DESCRIPTION: SEQ ID NO: 142: ATGAATTAAT GITTATAAAT GACTGTACTG AATTTAAAAG CGTACAGTTT CATTTGCATT TIGACATTAC TITATTATAC ATTTTGCATT TAAAAGOCTG CACCAGTTGG CTTTTTCTTCT	120
	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 142: ATGAATTAAT GITTATAAAT GACTGTACTG AATTTAAAAG CGTACAGTTT CATTTGCATT TIGACATTAC TITATTATAC ATTITGCATT TAAAAGOCTG CACCAGTTGG CTTTTCTTCT GTTTTATTCT CAAAATATAG AGAITCTGTG ATTTATTTGC CCTGTTTATG LATTAAAAAG	120 180
45	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 142: ATGAATTAAT GITTATAAAT GACTGTACTG AATTTAAAAG CGTACAGTTT CATTTGCATT TIGACATTAC TITATTATAC ATTITGCATT TAAAAGGCTG CACCAGTTGG CTTTTCTTCT GITTTATTCT CAAAATATAG AGAITCTGTG ATTTATTTGC CCTGTTTATG LATTAAAAAG AAAATTCTAA TATAAAGCAT TICAATAGGA TGCATAGGTA TATTACGTTT TITAAATGCT	120 180 240
45	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 142: ATGAATTAAT GITTATAAAT GACTGTACTG AATTTAAAAG GGTACAGTTT CATTTGCATT TIGACATTAG TITATEATAG ATTITGCATT TAAAAGGCTG CACCAGTTGG CTTTTCTT GITTTATTCT CAAAATATAG AGATTCTGTG ATTTATTTGC CCTGTTTATG CATTAAAAAG AAAATTCTAA TATAAAGCAT TICAATAGGA TGCATAGGTA TATTACGTTT TITAAATGCT TITAGATCTGT GATTCTTGAC TEACTATTTA TITTATCCCC TITAAGTCAG CGATGCTTTA	120 180 240 300
45	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 142: ATGAATTAAT GITTATAAAT GACTGTACTG AATTTAAAAG GGTACAGTTT CATTTGCATT TIGACATTAG TITATEATAG ATTITGCATT TAAAAGGCTG CACCAGTTGG CTTTTCTT GITTTATTCT CAAAATATAG AGATTCTGTG ATTTATTTGC CCTGTTTATG CATTAAAAAG AAAATTCTAA TATAAAGCAT TICAATAGGA TGCATAGGTA TATTACGTTT TITAAATGCT TITAGATCTGT GATTCTTGAC TEACTATTTA TITTATCCCC TITAAGTCAG CGATGCTTTA	120 180 240 300

	GAAAAAAA TTCTCATTAT TTGCAAAGAA TGAACAAGTT AATGAACAAA CAAACTAGAT	600
	TEGGTATGTT TUCAGCTETT GTATCATGTT TAATTGTTTA MENIGGTTGA AAAACTGCAG	660
5	TTGAGAAATC AGATAGCAAT ATAGACATTC ACAGCAGCTC TGTGGATACC ATGTAATTGT	720
	CAGGTAATTT CAGAATGTTG AAAATTATTC AGTGCAGCCC TCATAGTATC ATACTTGAAG	780
10	AAATTGATTA CAGTTCCACT AAATTGTTGA AGATAAATTA TTTTTAAAGG TTATGAAAAC	84(
10	TAAGTTATAT TAATTCATAT GTTTGATTTT TAAATCCCAC CTCCTCAAGC TATCCAATTT	90(
	NCTGACTITG AAAATAACCA TGAGAGATGC CACATTTCTC TCTGGGAAAC TACCACTCAA	960
15	AGAATAATTG TTAAAAAATTA AGCTTTTAGG TATTAGAAGC TGTTATAAAG TATAAAAATTA	1020
	AGATATAAGC AGATCACATG TAAATCATTC CTAAAGCACA AGAAAAGAAT GTGCCTTGAT	1080
20	GTACATATAT TACTAAGTTG COTCTCCCAG TTTACTTTAA AAATGGOTTT AAGGATAAAG	1140
20	AATAAATGT3 ATAGCTGTGC ATGCATTATA TATTTGCATT TGCAAATTTC GCATTGTTTT	1200
	AACAGUTETE TOOCTGACTT TCAATTITAA GACGTGAATT GACATACAGE CUATAACTTT	1260
25	ATAATGGCT3 CTCATTTATC TTATCTTTCA GTTAGTGGAA AAACATTTCA ACCTGACTAA	1320
	AATTTGGAAT TGTGTCTTTT ATGTTCCATC CTCTGTTGTT ACTAGATTTA GTTTAAAAAT	1380
30	TGTGTATSAC CATTAATGTA TGTCATAAAC ATGTAAATAA AAGATGTTGA ATCTTGTTGA	1440
50	AAAGCAWRAA AAAAAAAAA AAACTCGA	1468
35	(2) INFORMATION FOR SEQ ID NO: 143:	
	(i) SECUENCE CHARACTERISTICS:	
40	(A) LENGTH: 300 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPCLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:	
45	TGAATTITT GCCAAACTTA STAACTCTGT TAAATATTTG GAGGATTTAA AGAACATCCC	61
	AGTITGAATT CATTICAAAC TITITAAATT TTTTTGTACT ATGTTTGGTT TTATTTTCCT	12
50	TOTGTTAATO TYTTGTATTO ROTTATGCTO TOGTACATTG AGTACTTTTA TTCCAAAACT	180
	AGTGGGTTTT CTCTACTGGA AATTTTCAAT AAACCTGTCA TTATTGCTTA CTTTGATTAA	24
	AAAAAAAAA AAAAAAAAA AAACCCCNAG GGGGGGCCG GGTNCCCAAT CCCCCCCAAA	
55		
		• • •

(2) INFORMATION FOR SEQ ID NO: 144:

393

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2243 base pairs

(E) TYPE: nucleic acid

(C) STRANDEDNESS double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

10	TECCTCCCTT CCTGCAGATT GTGGACAGTA GTTGCTCAGC CTGCAGCCTG GATTCCT	rct 60
	THEOCETTHET AGENTEDATYS GACTOSCOOR AAGACTSTSS CTTCAAGGAC CACCASCO	ccc 120
	TTACTOTTCA AGREETGACT GTGGAGTTGG TAGATGCCTC TGATCCTCAG TATTCTC	rcr 130
15	GBCAATOTTC CAUDECTTOT COTTCCTGGG AGCTGGCTCC ATAACTPSAT TTTCCCC	AAA 240
	CETETTECAA TOUUTSCTBO CUUTTAGOON CUCAGGGTOT TETGTEGETA TGAGTET	AGA 300
20	GRATGGCORT ATRICAGGES TORGCCGTCS CAGGCAGGES COCTOGASCS TGATGST	ACT 350
	COTATECACT GCCATGIAGG GTGCCCATGC CCCATTGCT3 GCACTGTGCC ATGTGGA	CCG 420
	COGAGTOCOO TTYUGGOOCT COTCAGCOGT GCTCCTGACT GAGCTGACCA AGCTACT	STT 430
25	ATGOSCOTTO TOCCTTOTOS TAGGOTGGCA ASCATGGCOC CAGGGGCOCO CACCCTG	GCG 54·)
	CCAGGCTGCT CCCTTCGCAC TATCAGCCCT GCTCTATGGC CCTAACAACA ACCTGGT	GAT 60°)
30	CTATCTTCAG CGTTACATRG ACCCCAGCAC CTACCAGGTS CTGAGTAATC TCAAGAT	TGG 660
	AAGCACAGCT GTGCTCTACT GCCTCTGCCT CCGCCACCG: CTCTCTGTCC GTCAGGG	GTT 72:)
	AGCSCTCCTG CTNCTNATEG CTNCCGGAGC CTGCTATGCA GCAGGGGGC TTCAAGT	TCC 780
35	CGGGAACACC CTTCCCAGTC CCCCTCCAGC AGCTGCTGCC AGCCCCATGC CCCTGCA	C43 TAT.
	CACTCCGCTA GGDSTECTGC TOSTCATTCT GTACTGCCFS ATSTCAGGCT TGTCSTC	AGT 900
40	GTACACAGAS CTECTCATGA AGCEACAGNG GCTGCCCCTE GCACTTCAGA ACUTCT	CCT 960
	CTACACTITT GGTGTGCTTC TGAATCTAGG TCTGCATGCT GGCGGGGGGCT CTGGCCC	'A-3G 1020
	SCTCOTEGAA GGTMTOTCAG GATGGGCAGC ACTEGTGGTG CTGAGCCAGG CACTAAR	T33 1680
45	ACTOCTUATG TOTOXITGTCA TGAAGCATGG CAGUAGCAIC ACACGCCTOT TTOTGG	7370 1140
	CTSCTCSCTG GTGJTCAACG CUGTSCTCTC AGCASTCCTG (TACGGCTGC AGCTCAC	1900 - 1900
50	COCCTTOTTC CTGGCCACAT TOCTCATTGG CCTGGCCATG CGCCTGTACT ATGGCAC	SCCG 1260
	CTAGTOCCTG ACAACTTOCA COCTSATTOC GGACCCTGTA GATTOGGCGC CACCACC	MAGA 1320
	TOCCCCTCCC AGRICTTCCT CCCTCTCCCA TCAGCAGCCC TGTAACAAGT GCCTTG	rgag 1380

AUCARGITOTO TO MUNUTAR AGAMITARGE TRACRICARIO A TOTAGRICITO DA GRANTARIO (1996)

60

DA CONTRACTOR

	CCCATCCTTG TYRGGCAGCT CCCTGCTTTG TCCTGCATGA ACAGAGTTGA TGAAAGTGG;	1620
	GTGTGGGCAA CAAGTGGCTT TOCTTGCCTA CTTTAGTCAC CCAGCAGAGC CACTGGAGCT	1680
5	GGCTAGTCCA GCCCAGCCAT GGTGCATGAC TCTTCCATAA GGGATCCTCA CCCTTCCACT	1740
	TTCATGCAAG AAGGCCCAGT TGCCACAGAT TATACAACCA TTACCCAAAC CACTCTGACA	1300
10	GTCTCCTCCA GTTCCAGCAA TGCCTAGAGA CATGCTCCCT GCCCTCCCA CAGTGCTGCT	1860
	ODECACACCT AGUETTTSTT ETBGAAADDE CAGAGAGGGC TBGGCTTGAC PEATCTCAGG	1920
	GAATGTAGOS COTAGGCCT GGCTTAAGCC GACACTCCTG ACCTCTCTGT TCACCCTGAG	1980
15	GGCTGTCTTG AAGCCCGCTA COCACTCTGA GGCTCCTAGG AGGTACCATG CTTCCCACTC	2040
	TBBGGCCTGC CCCTBCCTAG CAGTCTCCCA GCCCCAACA GCCTGGGGAA GCTCTGCACA	2100
20	GAGTGACCTG AGACCAGGTA CAGGGAAACCT GTAGCTCAAT CAGTGTCTCT WTAACTGCAT	2160
	AAGCAATAAG ATCTTAATAA AGTCTTCTAG GCTGTAGGGT GGTTCCTACA AGCACAGCCA	2220
	AAAAAAAAA AAAAAAACTC GAG	2243
25		
	(2) INFORMATION FOR SEQ ID NO: 145:	
30		
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1082 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(E) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:	
	GCCAAGCTCT AATACGACTC AUTATAGGGA AAGCTGGTAC GCCTGCAGKT ACCGGTTCCG	60
40	GGAATTCCCG GGTCGACCCA CGCGTCCGCT TCCGTGTGTC AAAATCCTCA CCTCCTTCAT	120
	AACCATCTCC CACAATTAAT TCTTGACTAT ATAAATTTAT GGTTTGATAA TATTATCAAT	180
45	TTGTAATCAA TTGAGATYYY TTTAGTGCTY GCTTTTCTGT GACTCAACTG CCCAGACACC	240
	TCATTETACT TGAAAACTGG AACANCTTEG GAATGCCATG GGETTTGATA ATCTGCCAGG	300
	GACATBAGA GGCTCAGCTT CUTGGGACCA TGACTTTGGC TCAGCTGATC CTGNACATGG	360
50	GAGAACAACC ACATTTTCT TTGTGTGTGC TTCTAGCAGC TGTTCGGGAG GACCKTGACC	420
	CAAYAGTGTT CCCATGCTGT TYCTTGTGAA ATGCTCTCGG CTATGTAGCA GCTTTTGATT	430
55	COCTSCATAC CCTAGGCTGC TSCCCCTATC CTGTCCCTTG TTTATAACAT TGAGAGGTTT	540
	TOTAGGCAC ATACTGACTG AGAGCAGTGT TGAGAAGTCG GGGAAAATGG TGACTACTTT	600
	TAGAGCAAGG CTGGGCATCA GCACCTGTCC AGCTCTACTT GTGTGATGTT TCAGGAACTC	650
60	ASCOCCTTTT TOTGCCTAGG ATAAGGAGCT GAAAGATTAA CTTGGATCTY CTAATGGTCC	720

PCT/US98/11422 WO 98/54963

395

	AAATCTTTTG GTCACAATAA AGAGTCTCCA AATTAGAGAC TGCATGTTAG TTCTGGATGG	780
	ATTIGGTEGG CTGACATGAT AUGCTGCCAG CTGTGAGGGG ACCUCGITTI TAAGATGCAT	840
5	GGCCAAGCTC TCTGCAAATG GAAATGCTTA CACTGGGTGT TGGGGATGTT TGGTACCTCC	900
		960
	TGCTATTTT GTGGTTTTGG TTCTCCACT ATGGTAGGAC CCCTGGGCGAG CATTGTGGCT	
10	TGTCATGTCA GCCCCATTGA CTACCTTCTC ATGCTCTGAG GTACTACTGC CTCTGCAGCA	1020
	CAAATTTCTA TTTCTGTCAA TAAAAGGAGA TGAAAATAAA AAANAAAAAAA AAAAAACTCG	1080
15	NG	1082
20	(2) INFORMATION FOR SEQ ID NO: 146:	
25	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4313 base pairs (B) TYPE: nucleic acid (C) STRANDELNESS: double (D) TOPOLOFY: linear	
	(X1) SEQUENCE DESCRIPTION: SEQ ID NO: 146:	
	CAAGCTYGTT TGAAACTAGG GGTCGGGTTC GGCCGTCGTT GTTGTTTTTC GCCGCATCCC	60
30	CGCTTCCGGG TTAGGCCGTT CCTGCCGGCC CCCTCCTCT1 CTCCCTTCGG ACCCATAGAT	120
	CTCAGGGTCG GETCCCCGGC CGGCGGCAGGCC CAGTGTTGAG CGGGGCGGTA CTGCGGCCCC	180
35	GTGGCCACCA TGTCCCTGCA CERRIAAACGG AAGGAGATCT ACAAGTATGA AGCGCCCTGG	240
	ACAGTOTACG CGATGAACTG GAGTGTGCGG CCCGATAAGC GCTTTCGCTT GGCCCTGGGC	300
	AGCTTCGTCG AGGAGTACAA TAACAAGGTT CAGCTTGTTG GTTTAGATGA GGAGAGTTCA	3.50
40	GAGTITATIT GCAGAAACAC CTTTGACCAC CCATACCCCA CCACAAAGCT CATGTGGATC	420
	CCTGACACAA AAGGCGTCTA TCCAGACCTA CTGGCAACAA GCGGTGACTA TUTCCGTGTG	430
45	TOGACCOTTO GTGAAACAGA GACCACGOTO GAGTGTTTOC TAAACAATAA TAAGAACTCT	540
	GATTTCTCTG CTUUCCTGAU CTCCTTTGAG TGGAATGAGG TEGATCCTTA TCTTTTAGGT	500
	ACCTCAAGCA TTGATACGAC ATGCACCATC TGGGGGCTGG AGACAGGGCA GGTGTTAGGG	560
50	CGAGTGAATC TCGTGTCTGG CCACGNAAAG ACCCAGCTGA TCGCCCATGA CAAAGAGGTC	720
	TATGATATTS CATTINGCCG GGCCGGGGGT GGCAGGGACA IGTTIGCCTC IGTGGCIGCT	730

DA CONTRACTOR SECTION AS

	CTGTSGCCAG	GTTAAACAAC	CATCGAGCAT	GTGTCAATGG	CATTGCTTCG	GCCCCACATT	1020
	CATCCTGCCA	CATCTGCACT	GCAGCGGATG	ACCACCAGGC	TOTCATOTGG	GACATOCAGO	1080
5	AAATGCCCCG	AGCCATIGAG	GACCCTATCC	TGGCCTACAC	AGCTGNAAGG	WGA/GATC A AC	1140
	AATGTGCAGT	GGGCAT CAAC	TCAGCCCGAA	YTGTCGCCAT	CTGCTACAAC	AACTGCCTGG	1200
0	AGATACTIAG	AGTGTAGTGT	TGGTGGCGCT	GTGCCCACGA	GGCAGGGGCT	TTTGTATTTC	1260
ı O	CTGCCTCTGC	CCCACCCCCA	AAGTAAGAAG	AAACATGITT	CCAGTGGCCA	GTATGTCTTT	1320
	CATTGCTTTG	CACCCACTGT	TACCAGAAGC	TGCTCTAGGA	GTTCCTGGCC	AGTCACCCCA	1380
15	TESCECTETS	TGGCAGACTC	AGTGCTGTGT	GGGGGGTGCT	CAGCCCAGGG	CTGAGTTTTA	1440
	AGATTTTCTC	TOOTTTOOTO	TTCTCCTTTG	GTTCCTCAAT	TAAAAAATGT	GTGTATATTT	1500
20	GTTTGTCAGG	CGTTGTGTTG	AGGAGCAGTT	CACGCA/IT IG	CTGTGTCTAT	TCCTCTGCCC	1560
20	AGGTGTCTCT	GTTTGCTGCC	CAAKGYWKKT	TTTCATGTGT	CGTCCATGTC	CATGTTCGTG	1520
	TTAGCACTWA	CGTGGGAACA	AATACCAATT	TGTCTTTTTT	CCTAGTATCA	GTGTGTTTAA	1580
25	CAAATTTTAA	CTTTGTATAT	TTGTTATCTA	TCAGGCTAAT	TTTTTTATGA	AAAGAATTTT	1/40
	ACTCTCCTCC	TTCATTTCTT	TGTCTTATAG	TCCTCCCTCT	TTGCACCITYC	TTCTCTTCCC	1300
30	TCAGTGCCTG	GAGCTGGTAC	TGGGCCCCTG	GCCCCATGAG	CAGTTTCCCT	TCTTSAGTCA	1360
50	CTGCCTGTGT	AGTACATACC	TGACCCGGAG	TCCAAACCAC	CTTGGTGCTC	TGAAGTCCAC	1920
	TGACTCATCA	CACCTTTCTT	AGCCTGGCTC	CTCTCAAGGG	CATTCTCGGC	TTCTAAACAG	1980
35	ACATAGGAAG	CCTCTGTTTA	CCCTGAAGCA	CCACTGTCCA	GCCCATIVGI	TOCCACTOGO	2040
	AGCATGGTAG	AGCTGAGAGA	AACAGGCTCI	CAGGGTACCT	GACTTGAGGG	GAATCITTC	2100
40	ATGAAGCTGA	ACTTCAAGCA	TATTICCAGI	ACATTCTITC	AGAGTCTGTT	TTTCCATCCA	2160
-10	AATATAAGCC	CCAGGCCATT	CCACTTAGTO	TCTTTTCAAT	GATAGGCAAG	AATGATATCT	2220
	GAGTTGAACT	TCGGTGCTTC	TGTTGTTTGA	A GTTTACTGTG	CCTGGTGGTA	TATTGGGCAT	2280
45	TCTTTGGATT	GAGTGTTCTG	, AGGTGAGAGA	A GTCTTCCCGA	GGCATCCTGT	CTGTGCTTCC	2340
	AACCCTGAAC	AAGACCTTAC	: ATGAGAGATO	GACTGATGGA	CTGCGGCAAT	CCTGGGCTGT	2400
50	CAAGTGGATA	. GATAGTTAAA	AAGCATTATA	A CTGTGGGTAA	TGAAAAGGGA	GGAAAAAAAA	2460
50	AGAAGGAAAA	GGAATTATAC	ACCCCCAGG(G TCAGCCAGTI	AAGAGCTOTA	OCCACACCTG	2520
	TCAACCCCTC	TCTCCCCCAC	TTTAGGTTC	r gagcagtati	GGACTTGTAC	CONGCAGTIG	2580
55	TOAETTTOT	TGCAGGCCGC	AGTGTCTTT	C TGTTATGTGA	A ATGAGTTOC	A TEGAGEGECA	2640
	TATGTGTGAT	TCCACCGTT	A GATGAGCCC	TEGGECAGGC	AGTTTGGGA	C GTFCTCTTGG	- 2700
60	GGGAAAGTTO	GCTGTTTCC1	r tecectete	C TOOTAGGOG	A AGTTTTAAC	TCCCTCTGAA	2760

	TTGCTCATCT GAGATTAGTA GAGTNGCAGG CCTGAAGGAT GATGGTTPTG TCCTCTTTGG	2829
	TTCTCACCTG CTTGAGAAGT AAAACAGTAA CTTTGTTCTT CTGGGCCCTT AAGCTTTTTT	2880
5	GGTTAAGTET TECTTTTEAG AAGTAGATGT CATTATATGE CAAAAGTETA GETETTTGET	2940
	TTACCATACA GGGACCTOTO CCANAGANA AGGCTCTTTT TMTAGCCAGC ATATTTOCCC	3000
	TTCTACCCTT TTACTTTGTT GTTCTGATTT TAGGACTCTG GCTGGCCATG TGCTTGTGGT	3050
10	TGCCTCTCCT GCATTTGCCA CTGGATTTGC ACTGCATCGT TTGGAGATAC AAAGCGAGCA	3120
	GTTCTTGGTC AGAACCCTIC TCTGCTTTTC ATTGTGTTTG ATAAICGTTA CTCGGTCCTT	3180
15	CTCTCAAGGG TAGCAAGGCC AAGCTGATGG CTGCTTGTTT AGGAGGCCAT CAGTTCCTTC	3240
	CTGTGGAGAA GGGTCTCAAA TGGAAGTCAG TGGTAGAAGG GGCTGGTCTG CTCGGCAGGG	3300
2.0	CTTACATCCA CTGAGTTOTA AGATTCCTTT COTGATCTGC ACCTAGGUOT GGTOTGTATG	3360
20	GTGGAATTTG TCAGCTXGAA CTCAGAAACA ACAACTTGAA AAAAAAATAA TAATTAGAAC	3410
	ATATTTGCAT AAGATAGCTA TTTACTCTGG AAACCAACAA CTTTTGAGAT TTCCCCTTGCC	3480
25	CTGTGGACGC CCACCTCCTG TCATCCTTCC TTAGGTCCTG CACTACAGTC TTCCCCTGAA	3540
	TGCCACCEGE GACCIAIXFE GACTICACCC CCCTAAGCAA GCACACACAT ACTCAIAGTT	3600
20	GATGASTIGO IGGITTINGA GICCOAGCIC ICTIACCCIC CCINTACICO ACCAGOCCGA	3650
30	CGACCCATGA CTGAGDAGGG GATTICTACA GTCTCAGGAT TTAGAAAGTC TGTAAGCCAT	3720
	CCATGCICCA GAAAGCACCG ATCTGTTGTA CTTGCAAAAA CAACTCTGTA ATTTGTTGAG	3780
35	GTTCTCAAAC TGACACCCAG CGAGACTGGG TGGGAGGCCC TGGATCTGTT CTCCCTGACT	3840
	GCGBGAGGAG CAGCCACTAG GACTTTAGCA GGAAGCCCAC ATGGAGGCTC CGCCAGGCTG	3900
40	TOGCCCAGCT GGTWAYBGCC CTTTTGCTCC TOGCAGCCTG AGGCACAGCT GCCTGTATTG	3960
40	TECTEATETG TTETGACTGA AGGATGGAGG TSETGAATAA ATTAGGSETT AGGENTETAC	4020
	CACCAGAGAG CTGGAGAATG GGTCCACGTC ATTCAAGGAC CTGAATTTTT TAFGCTCAGG	4080
45	AGCNITIGGAA TOUTUUTT OCA GGGAGGA ATTAGOOTIGO AAGGITAGGA CTITGAAGACG	4140
	GAAGGTATIT ANTAACIBGG CGAGGATGGG TGTGGTGGCT CACACCTGTA ATCCCAGCAT	4000
	TTTGGGAGGC TGAGGTGGCC AGATCCCAAG GTCAGAAGAT CGAGACCATC CTGGCTAACA	4260
50	TGGTGAAACC CCATCTCTAC TAAAAATACA AAATTAAATT	4313

. CE,UMINE CHARACTERICIN (A) LEMOTH: 1193 base pairs (B) TYPE: nucleur acid 60

(C)	STRANDEDNESS: double
(17)	TOPOLOGY: Linear

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:	
3	GRICAGROCCT CARGCTGRIT TORRITATION FORTCCCTURA ATCTROUGRIC ACRTGCRGGA	60
	GRASTTOCOG GOCOGOTTAG AGARGACCAA ATCTCAGROT CCCCTGACTG TRESCTGCTTA	120
10	TOAKWYCKE AGTETOTACT CAGETGCTAT (KSTCACAGCC CTCACCCTGT TERCCTTCCC	180
	ACTICIPATION TOTALAGORA AGORATICAS (CETTETETT) CTECTTUTET TETTELAGAS	240
15	CUTOSTTUTO CTAVATOTES TERRITORES GATACCOSTS ACCACESCES GESCTTERAS	300
13	TGTGCCATGG CAGGCAGTCT CGGCTTTGGGC CCTCATGGCC ACACAGACCT TCTACTCCAC	360
	A-KROCACONG COTSTOTTE CARROCATOCA TERROCATRON GOOTFORTRY GATTOCCAGA	420
20	GROTCATERS TOOTSTACTE GROTPSCOTES TEPSCOTAGTS GGARCIAACA COTTESCOTE	480
	CCACCTCCTC TTTGCAGTAG GTTGCCCACT GCTCCTGCTC TGGCCCTTTCC TGTGTGAGAG	540
25	TCANGGOCTG COGGAAGAGAC AGCAGCCCCC AGGGAAATGAA GCTGATGCCA GAGTCAGACC	600
	CGACGAGGAA GAGGAAGCCAC TGATGGAGAT GCGGCTCCGG GATGCGCCTC AGCACTTCTA	5 60
	TOCAGONOUS OTSCADORSS SCOTCAAGTA COTOTTTATO CTTSSTATTO AGATTOTSGO	720
30	CTSTSCOTTS GCASCOTOCA TOCTTCGCAG GCATCTCATS GTCTSGAAAS TETTTGCCCC	780
	TAAGTTCATA TTYSASGCTG TSGGCTTCAT TSTGAGCASC GTGSGACTTC TCCTGGGCAT	340
35	ABSTITIONTS ATSASASTES ATSGRESTET GASCITOCIES TICASEAGO TATTICIPESO	901)
	CCAGCAGAGG TAGCCTAGTC TGTGATTACT GGCACTTGGC TACAGAGAGT GCTGGAGAAC	967
	AGTGTAGGGT GGGCGTGTAGA GGTAGTGGAT GATGTGGAAG ACAGGCTCAG CCATACTCTT	1020
40	ACTATICATIC AGGCAGGGGC GGCTGACATC TANGACTTCA TTATTCWATR ATTCAGGACG	1080
	ACAGTOGAGT ATGATCCCTA ACTCCTGATT TGGATGCATC TGAGGGACAA GGGGGKCOGT	1140
45	STCCGAACTG GAATAAAATA GGCGGGCGTG GTGACTTGCA CCT	1183
	(2) INFORMATION FOR SEQ ID NO: 148:	
50	(i) SECUENCE CHARACTERISTICS:	
	(A) LENGTH. 734 base pairs (B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:	·

GAATTCGGCA GAGTGAAGCA TTAGAATGAT TCCAACACTG CTCTTCTGCA CCATGAGACC 60

399

	AACCCAGGGC AAGATCCCAT CCCATCACAT CAGCCTACCT CCCTCCTGGC TGCTGGCCAK	120
	GATGTCGCCA GCATTACCTT CCACTGCCTT TCTCCCTGGG AAGCAGCACA GCTGACACTG	180
5	GGCACCAGGC CACCTCTGTT GGGACCCACA GGAAAGAGTG TGGCACCAAC TGCMTGGCTG	240
	ACCITICIAT CITCICIAGG CICAGGIACT GCICCACCAT GCCCATGGYI GGGCCGIGGG	300
10	GAGAAGAAGC TCTCATACGC CTTCCCACTC CCTCTGGTTT ATAGGACTTC ACTCCCTAGC	360
10	CAACAGGAGA GGAGGCCTCI TGGGGTTTCC CCRRGGCAGT AGGTCAAACG ACCTCATCAC	420
	AGTOTTOCTT COTOTTCAAG CGTTTCATGT TGAACACAGC TOTCTCCRCT CCCTTGTGAT	480
15	TTCTGAGKIT CACCACTGC: ARCITEAGG: AACATAGAGA GUCTCUTGTT CTTTCTATGU	540
	TINGTOTERAC TGAGCOTAAA GTTGAGAAAA TGGGTGCCAA GECCAGTECC AGTGTCTTGG	60.0
20	GGUCCCTTTG GCTCTCCCTC ACTCTCTGAG GCTCCAGCTG GTCCTUGGAC ATGCAGCCAG	660
20	GACTGTGAGT CTGGGCASGT CCAAGGCCTG CACCTTCAAG AAGTGGAATA AATGTGGCCT	720
	TTSCTTCTAT TTAA	734
25		
	(2) INFORMATION FOR SEQ ID NO: 149:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1405 base pairs (B) TYPE: nucleic acid (C) STRANCEDNESS: double (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:	
	CHARACTEG ACTOCAGAST CONTINUESC CTYPTOTOTEC STORGAGAC COASTGTGTG	50
40	CATGGCATCA CTBACTCCIA TACCTCTGGC TATCAAACGT TTCTGCCATG GCCACCCTGG	120
	AAGSAAACCA GAGGSAGGTA GACAGGGAGA TCAGGTCCCT TOTACTCTGG TTCCTGCTCT	180
	GIGAAAITGI CICAGGCIGG CIGITGICCAG ARGGICCCIG GITGICICAR GGATGCCAAA	240
45	TOTACAAGAA TOTOTOOTOT ICCAGTTOOT ATAACCTOIC CTICITITTG TOTTTTAGA	300
	CONTIGUASTA GTAGCAGODA GENTOTITOT ATOTOTOGGT TAGTSCATTA TOTOTOGTEG	360
50	UTCCCTTACC CAGGACTITG GGAATGGTCT TTTTGTAATA CATTCTCCTC AAATAATTCA	420
	ATTITGAGTS ITCIGTATGT ATCCTGCTCG GAGGTTCTTA TATACAAATC ACTUTGCCCG	480

or, we want to the affect the safales of the location of the contract of

60 AATCAATAAA TOTTEKKITGA TGACAAAGAT GTUTTUTUT TOUMTAGIT ATAGTGATTA 100

. .

4()()

	TGTTCTAAAT AACTCCMACA AGGAARTIAG CACATTTGGA ATATCAWTAT CTTTCCATGA	780
5	TAATATCTTT CCMYGGAAAG AWAAGGATAT TOCMAACTGG GAGTGTCCCW AGCARATCTG	840
J	ANTOTGTGTA TTV3-3000TG-3 GGTGC-300AG CCCCTTAGAC TCTATGGTCT CATTCTCTTT	900
	GITTACAAAA TIGAGATAA3 GOOTWATTOT CTOCOCACCO CACCCATUCA TATTOTTITG	950
10	AGAATAAAAT GAGAGGATGT GTGTCAAGGG TGTATTTTDG CAATAGTCTC TGAGCCATTT	1020
	TETGAGCACC TOCATACTGT TGACACTGAA GTAATATTTC ATCAGCATTC CATTCAGGNT	1080
15	CUTCCCTTAA TGABGTGTGU GATGTACAAG AGTYBTGABB TGBCAAAGGA TGGGCTCCTG	1140
13	AGGAAACACT TAGGAAACTG GGCTTTGTGC CATTAAAAGA GAGAAACCTT TGTGGTGACC	1200
	TAATTAAAGT TTTTAAAATT CAATTTGGAA AGTTAGCAAG CTAGCTCCTK TCCACGWAAA	1260
20	ATAAGGAGTC AGTBCATGAC CTAACCBGTC CCGGGCTGCT TGCCATTCCA AACAACTGCA	1320
	GTAAGTTTAT CACNITCTIT CAGGGGACTCA GGTTTCCAGG CACAGACTTG GATAAGGAAG	1380
25	GATGTCCTAT GUGGTCACAT TGATU	1405
	(2) INFORMATION FOR SEQ ID NO: 150:	
30	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2890 base pairs (E) TYPE: nucleic acid	
35	(C) STRANDEINESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150	
10	TTATATGCTA CAGCTACAGT AATTTCTTCT CCAAGCACAG AGGANCTTTC CCAGGATCAG	60
40	GGGSATCGCG CGTCACTTUA TGCTSCTGAC AGTGGTCGTG GGAGCTGGAC GTCATGCTCA	120
	AGTEGOTOGO ATEATAATAT ACAGACGATO CAGCACCAGA GAAGCTGGGA GACTOTTOCA	180
45	TTCGGGCATA CTCACTTTSA TTATTCAGK GATCCTSCAG CTTTATGGGC ATCAAGCAGC	240
	CATATGGAGG AAATTATGTT TTCTYJATGAT AGCACAAAGT ATAACAGGCA AAATCAAAGT	300
50	AGAGAGAGII TYGAACAAGC CCAGYCCOGA GCAAGCYGGG CGYCTYCCAC AGGYYACYGG	360
50	GGAGAAGACT CAGAAGGTGA CACAGGCACA ATAAAGCGGA GGGGTGGAAA GGATGTTTCC	420
	ATTGAAGCOG AAAGCAGTAG CCTAACGTOT GTGACTACGG AAGAAACCAA GCCTGTCCCC	480
55	ATGCCTGCCC ACATAGCTGT GGCATCAAGT ACTACAAAGG GGCTCATTGC ACGAAAGGAG	540
	GGCAGGTATO GAGAGCOOCC GCOCACCCCT CCCGGCTACA TIGGAATICO CATTACIGAO	· · 600
60	TTTCCAGAAG GGCACTCCCA TCCAGCCAGG AAACCGCCGG ACTACAACGT GGCCCTTCAG	660
1 11 /		

401

	AGATIOCOGGA TOGTCOCACO ATCCTCOGAC ACACCTOGGC CTTCATCCGT ACAGCAGCCA	720
	CATGGGCATC CCACCAGCAG CAGGCCTGTG AACAAACCTC AGTGGCATAA AYCGAACGAG	780
5	TOTGAGOOGO GOOTGGOOGO YTATGAGTOO CAAGGGTTTT CCACCGAGGA GGATGAAGAT	840
	GAACAAGTTT CTGCTGTTTG AGGCACAGAC TTTTCTCGAA GCAGAGCGAG CCACCTGAAA	900
10	GGAGAGCACA AGAAGACSTC CTSAGCATTG GAGCCTTGGA ACTCACATTC TGAGGACGGT	960
10	GGACCAGTIT GCCTCCTTCC CTGCCTTAAA AGCABCATGG GGSTTCTTCT CCCCTTCTTC	1020
	CTTMCCCCTT TGCATGTGAA ATACTGTGAA GAAATTGCCC TGGCACTTTT CAGACTTTGT	1080
15	TGCTTUANAT GCACAGTGUA GCAATCTTCG AGCTCCCACT GTMGCTCCCT GCCACATCAC	114)
	ACAGTATOAT TOCAAATTOO AAGATOATOA CAACAAGATG ATTOACTOTG GOTGCACTTO	1200
20	TCAATSCCTG GAAGGATTIT TTTTAATCIT CCTTTTAGAT TTCAATCCAG TCCTAGGACT	1260
20	TGATCTCATT GGGATAATGA GAAAAGCTAG CCATTGAACT ACTTGGGGCC TYTAACCCAC	1320
	CAAGGAAGAC AAAGAAAAAC AATGAAATCC TTTGAGTACA GTGCTTGTCC ACTTGTTTAC	1380
25	AATSTCCTCC TTTTAAAAAA AAAAAAATGA GTTTAAAGAT TTTSTTCAGA GAGTAAATAT	1440
	ATATOCATTT AATGATTACA GTATTATTTT AAACCTTAAG TAGGGTNGCC AGCCTOGTTT	1500
30	CTGAAAAACC AAATATGCCG GACAGGGTGT CGGCCACACCA AGAAGACGGG AAGACCTGGC	1560
50	TTGTGACCCT CCCTTCCCAT GTCCTTCTCG TCTCACCCCC GAAGTGCCCT ATCCTGGAAG	1620
	TATGAAATGT TAGCCAATTA ATAGCAAGAC ACTTCATCTG CTCCTTCCCC AGTGGATGGG	1680
35	GTTCTTCTGT AAAACTGTTT GCACATGGCC AGGGGAGGGA ACTAGGACCC TTGTGTCCTG	1740
	TOT BAGCOTT AUGGAGORAG GAROSTOTCA TUGGORGATG TOTOCOTOCOTO CATUGAGATG	1800
40	GATOBCANAC COCATTITTA AGTIVATANTI CITTOATITI TGITAATITA GAGGTGTAGG	1860
40	TTTTGTTTT TGTTTTTTG TTTTTTTTA AGAGAAACAT TTATAACTGG ATAGCATTGC	193
	AGTGAAAGCA GETTGGGATG TTCGGAGCTAA TCCCAGCTGT TTATACTGET CTTTCAAGAC	193
45	AGUSTOSITT TATTIGAATIG GSATTAGGGA ATAAASAGAGS STTAAASST GATAAAAGAT	201
	CAAAAACCTG GTTAGACATG CCAGCCTTTG CAAGGCAGGT TAGTCACCAA AGACTAACCT	210
50	CCAAGTGGCT TTATGGACGC TGCATATAGA GAAGGGCTAA GTGTAGCAAC CATCTGCTCA	216
50	CAGCTGCTAT TAACCCTATA ATGACTGAAA TGACCCCTCC ACTUTATTTT TGTGTTGTTT	222
	TOCACAGACT COGGAAAAGT GAAGGCTGCC AATCTGAGTA GTACTGAAAT GTGAGGAACT	238

DAGT SOTTING THEAGRAND OF THE INITAL TOATS SEAT TOTOL ACTES CETATIAGAT 246.60

	TGTCAATTAT GCATTTGTAA TTTTACATGT AATATGCATT ATCTGCCAGT TTTATTATAT	2520
	AGGCTATGGA CCTCATGTGC ATATAGAAAG ACAGAAATCT AGCTCTACCA CAAGTTGCAC	2580
5	AAATGTTATC TAAGCATTAA GTAATTGTAG AACATAGGAC TGCTAATCTC AGTTCGCTCT	2640
	GTGATGTCAA GTGCAGAATS TACAATTAAC TOGTGATTTC CTCATACTTT TGATACTACT	2700
10	TGTACCTGTA TGTCTTTTAG AAAGACATTG GTGGAGTCTG TATCCCTTTT GTATTTTTAA	2760
Ю	TACAATAATT GTACATATTG GTTATATTTT TGTTGAAGAT GGTAGAAATG TACTATGTTT	2820
	ATGCTTCTAC ATGCAGTTTS TAGAAGCTGS AAAATAAATA AATATAACAT AAAAAAAAAA	2880
15	AAAAAAAAA	2890
20		
20	(2) INFORMATION FOR SEQ ID NO: 151:	
25	(i) SEQUENCE CHAPACTERISTICS: (A) LENGTH 2399 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) T)POLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:	
30	GAACTTTTCC ATCYGGCAAA COGGAAACTC CATCCCCATT AAACCAACTC CCCCTTTTGG	€٥
	TTTCCCCCCC AGNGGAATAG AATTTGGACN CCCATATAAA TCCAGGAAAC CACCTAAATT	11.0
35	CTTTAGTNGT TTGTGTTTCC AAGATCTAAJ GTCATGGTAA ACATTAAGTT CTTAAAATTT	130
55	TTGGGAGGGA CCAGTGCACC TCTCCCTCTG AATTGTTCNC CAATTTAAAA TTGGAGTAAG	240
	GTTTTAAAAT GTCTNATTCC ATTGGAAGGG TNTGTTATTT CATTTTGAGC CCAGAGGGGA	300
40	GAGGCACATT TTAAATATCA GAATTAGATT AGCTTTGAGT TTGTACAATT GGGAACATAA	3€0
	TAGATTTTCA TAAATTATGT GTGCCTTGTT GGAAGTGTCA ACTGTCTTTA TGTCTGCTTG	420
45	TAAAAGTIIC AAAATATGII TICCCICAAA AAGGCAACGI TACIICATII GCIIGAATAI	480
,,	TATGATAGGA ATGCTTACTG ATATTACTTG ATAGTCATAT ATAGCCTAGG AAATTTAACA	540
	TATATATAAC TATAGCAGTA TTAATAATGA TAGTTGTACT TCTTTAAAAC ATTAAATTTG	600
50	AGGAAACTTT AATGCTGTST CGTGTACATT GCTTTACTAC AGTGAGGGGG AATATCCTTT	660
	AGATTGAGCC TCAATTTACT GGTTAGTAGT ATGTGAACTC TGGTATAAAA ACGTAAACTA	720
55	GACAGTAGAG CCGATGAATT AAAATTGTAA ATTGCTACAT TGGCATTTTC TACCTCCTTT	780
55	TCTGTCAGAG TATTACTTTT TCCAGCATTT ATTCTTATTT GTGAGTAAAG AGGAAATGGG	840
	AACCTGAGGT TAAAATTGAC ATTTTTGTTT CATTGAGAAT TTAAGCAGTA GGTACAGGAG	900
60	AAGTGACTTG TCACATTAAT TTGGTGCCTA AATCTGTAAC TACAAGTTGT GATCGACATG	960

403

	TACAAAATGT	CTAAGAAAGG	TCATATGCTG	DATTITITAG	TTTTCCTGTA	TAGTCTGCAT	1020
5	GATTIGTITC	ATAAACCCAG	CTTATTTCCT	CCAAAAAGCA	AAATGGTCCT	GTAATTTTTA	1080
3	AAGTAAAATA	AACGTGCCAT	TTTGTCTGUA	ATCTATAATT	TCAGGAAGTT	ATTGRAAGTT	1140
	CTGACTCAGG	GCTTTTTAAC	AGTTCAAGCA	ATTGTCAGTT	ATATTTTGGA	AACTCCATCT	1200
10	GTGTAATTCT	CCAGTGCCTT	GAAAGAATTA	TTAACTTGGC	AACACTATTA	AAACTTTATA	1260
	AAAGATGGTC	TTTAGTGCAC	GTGTATCATT	ATATACACGT	TTTAAAGTCA	TATTGCTTAG	1320
15	CTTGTTAATA	ATGATTCTGC	ATGTGTGCTG	GGTTTGGGTA	ATTCTTTAAA	GGAAGTTTTC	1380
1.)	TAGATTTGCA	CTTGATGTTT	CAATTTTTTC	AACTGATTAT	TTATGGCCGT	GACACTGTTA	1440
	CCAGAAAAGT	AATTCTAATT	AAGTTATTAT	GCAAAGTCAT	CTATAAGTAG	CATCTGGGAA	1500
20	GAGGAGATSG	AGGCCACACT	TTGCTATTTT	AGTATGAAAG	GAGGATCTGT	TTGGGAAACA	1550
	TAGATTGTCT	TCCCCTCAAA	TGAGGGGAAA	AAAAAAGACC	CTTTGTTCAA	ATGGATTCTG	1620
25	TTGTAAAAA	AATTTTTATT	AGGAAATCAC	AAATTGTATG	TCATTCTTAA	TGCTAGTCTT	1630
	ATAGAATAAA	TCCATAAAAT	TGTTTTATG	TTCAGTATGT	TTATGTCATT	CTAAATGCAG	1740
	CAAATTCAAT	GATAGCAGTT	CAATTGACTC	ATAGCAGTGT	TTTGTATTT	TTOTAATTCT	1800
30	TTAGETTTCA	. ATATTGGATT	AAAGTCTTGT	TTGTGAATAT	AGTTTCCGTA	TGGCAAATGA	1860
	TTTCTTGCTT	ATTAGCTTTT	GTTAAAGAAT	GCTTAGTAAG	AGCTAAGCTT	TTAAAAGTAA	1920
35	TGCAAACATT	TATCGTTAAT	AAAACCTATG	GTGTAATATC	ATATAATGCT	TTTCTTTGAT	1980
	CTTTGGAGAA	TTATTCTTTT	ÀTAGTAGTAI	' ACATGAATTI	TGATTTTAA	AGCATTTAAA	2040
	AACAAATCTC	AATACATTAA	AAAACCTGTT	ATTGTTAAAA	RGGAAATTAC	CATGCCTTTA	2100
40						GGCTCTCATT	2160
						TCATAYTTTA	2220
45	ACACCTCACA	A TTCTTTCAGG	ATTAAGACAT	r atgaaaatac	TCTGAATAGG	; ATAAATTTGG	2280
	ATAGGAAGTA	A ACTTANICAC	TCTGGGAAGA	A TTCAGGCTTT	TTCTATKAAA	A AAGCTTATTC	2340
	CTCTTCACA	A CTCNGG IGGI	AGGNITTICA	r tyttcaagac	GGTAGATAT1	TTAAAGCCA	2399
50							

(2) INFORMATION FOR SEQ ID NO: 152:

"HANDEDNOOD DE LO (II) T. POLONY : Amear

	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 152:	
	CGTGCCTGTA GTAAGCTCAT CCCTGCCTTT GAGATGGTGA TGCGTGCCAA GGACAATGTT	60
5	TACCACCTGG ACTGCTTTCC ATCTCACCTT TGTAATCAGA GALTITGTGT TGGAGACAAA	120
	TYPTTC TAA AGAAFAAJWE GAYCCTTEGC CARACGGACE ACGAGGAAGG TETAATGAAA	189
• •	GAAGGTTATG CACCOUMGST TOSCTGATOT ATCAACATCA COCCATTAAG AATACAAAGC	240
10	ACTACATTCT THTATCTTTT TTGCTCCACA TGTACATAAG AATTGACACA GGAACCTACT	300
	GAATAGOGTA GATATAGGAA GOCAGGATGG TTATATGGAA TAAAAGGOGG ACTGOATCTG	360
15	TATGTAGTGA AATTGCCCCA GTTCAGAGIT GAATGTTTAT TATTAAAGAA AAAAGTAATG	420
	TACATAIGGC TOGATMMITT TOCTPOCTAT TCGTMTTTGT GTCACTPOGC ATGAGATGTT	480
20	TATTTTOGAC TATTGTATAT AATGTATTGT AATATTTGAA GCACAAATGT AATACAGTTT	540
20	TATTCTSTTA CCATTTGTT TCCATTTGCT YCTTTGTATT GTTGCATTTA GTACAATCAG	600
	TOTTTAAACT TACTOTATAT TTATGCTTTC TGTATTTACC AGCTATTTTA AATGAGCTGT	660
25	AACTTTCTAG TAAAGAATTG AAAAGCAAAT CCTCACTAAA GGATACACAG GATAGGATAA	720
	AGCCAAGTON CATCAACATT AAAAAATACT AAAANANAAA ACACAAAAAA AAAAAANCCC	789
30	GGGGGGGCC CGGAACCCAT TC	802
50		
	(3) INTORMATION FOR CEO ID NO. 153.	
35	(2) INFORMATION FOR SEQ ID NO: 153: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH:-461 base pairs	
10	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:	
45	CTAGGAGCAC CGAGCAGCTT GGCTAAAAGT AAGGGTGTCG TGCTGATGGC CCTGTGCGCA	60
	CTGACCCGCG CTCTGCNCTC TCTGAACCTG GCGCCCCGGA CCGTCGCCGC CCCTGCCCCG	120
	AGTOTOTTOC COGCOCCOCA GATGATGAAC AATGGCCTCC TCCAACAGCC CTCTGCCTTG	180
50	ATSTTSCTCC CCTSCCGCC ASTTCTTACT TCTGTGGCCC TTAATGCCAA CTTTGTGTCC	240
	TGJAAGAGTC GTACJAAGTA CACCATTACA CCAGTGAAGA TGAGGAAGTC TGGGGGCCGA	300
55	GACCNCACAG GTGGGAAACAA GGACAGGGGG ATTTAAGCAG TCAAAAGGAA AAACATGTTA	360
	AGACCCTAGA CTTGTATATT GACACACTTG TACCTTGTAA GGCAGAGGAA TGTAATTAAA	420
	AAGCACTTAT TTGGCWNAAA AAAAAAAAAAAAAA AAAAAAAAAAA C	461
60		

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2388 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:	
	GCCCACGCGT CCGAAAGCGG AGAACGCTGG TGGGGCCTGTT GTGGAGTACG CTTTGGACTG	60
15	AGAAGCATCG AGGCTATAGG ACGCAGCTGT TGCCATGACG GCCCAGGGGG GCTGGTGGCT	120
	AACCGAGGCC GGCCCTTCAA GTGCGCCATT GAGCTAAGCG GGCCTGGAGG AGGCAGCAGG	180
20	GGTCGAAGTG ACCGGGGGAG TGGCCAGGGA GACTCGCTCT ACCCAGTCGG TTACTTGGAC	240
20	AAGCAAGTGC CTGATACCAG CGTGCAAGAG ACAGACCGGA TCCTGGTGGA GAAGCGCTGC	300
	TOBBRACATION COTTESCETOC COTCRAGACAG ATTECCATGA ATETOTTCAT CATETACATS	360
25	GCAGGCAATA STATSTICAT CTTCCCTACT ATGATGGTGT GTATGATGGC CTGGCGACCS	420
	ATTOAGGCAC TTATEGCCAT TTCAGCCACT TTCAAGATST TAGAAAGTTC AAGCCAGAAG	480
2.0	TTTTTTCAGG GTTTGGTCTA TCTCATTGGG AACCTGATGG GTTTGGCATT GGCTGTTTAC	540
30	ANGTGCCAGT CCATGGACT GTTACCTACA CATGCATCGG ATTGGTTAGC CTTCATTGAG	600
	CCCCCTGAGA GAATGGAGTT CAGTGGTGGA GGACTGCTTT TGTGAACATG AGAAAGCAGC	650
35	GCCTGGTCCC PATGTATTTG GGTCTTATTT ACATCCTPCT TTAAGCCCAG TGGCTCCTCA	720
	GUATACTOTT AAACTAATCA CITATGITAA AAAGAACCAA AAGACTOTTI TOTOCATOGI	730
40	GUGGTBACAG GTCCTAGAAG GACAATGTGC ATATTACGAC AAACAAAAG AAACTATACC	840
40	ATAACICAAG GCTGAAAATA ATGTAGAAAA CTTTATTTT GTTTCCAGTA CAGAGCAAAA	900
	CARCARCARA ARRACATRAC TATGTARRCA AGAGRATRAC TGCTGCTRAR TCRAGRACTG	960
45	TYGCAGCATC TCCTTTCAAT AAATTAAATG GTTGAGAACA ATGCATAAAA AAAGTTGCAC	1020
	AAGTTOOTTA TTTTOOTTAA TATTTOACTT OTATTTAATA CAAGOTGGGA CATAAAAATT	1080
	CTGTTGGGGA TACCTGGGGG AAGATGTGAG AAACTAATGC TGAATTCAGC TTATACATGA	1140
50	TGAAAASAAA AACCABACAA AAGGAGCACA TAAATATSCA TACAGTGTAA CTGTTATTAT	1200
	TITAATAOOO AOOATAAGAS ATTITUTGTTA GOATGUUSAS OSGGAACGAS GATTGGOGG	1260

	GTCATAGGTA AGACTCAAAA GCGGGATCTT ATTCAAAAGG CAGGTATTTC CITTGTTTTC	1500
	TGTCTTGAAA TAGGGGCTTG CCCTAAGGTG CATTCTCTCA AGTTTTCAGT ATTGCTTTAT	1560
5	TTGCAGTGAT TAAAAGAGAT GAGAGACTTT GGAGACAGAC AACGTAAGCA ACACATACAC	1620
	ACATGAAATA CTETAGACAG AGATGAATAT AAATCTGGCC TAATAACCAG TYTTCCATGT	1680
10	AACAGTGATT TTGTTGTTTCG GGCTGAAGCA GTGGTTATAT TAAAAGCCAC TAATTCCCTT	1740
10	ATCCCTTTAA AAGATTTTTA CAATTCTCCA ACCACAAACA GCACTTCTAA AACTAACTTT	1800
	ACTITCTSCC CATAATTIGT TCTACATGGA AAAAAAAAAT ATTACTTIGS CCAGGGGTGT	1860
15	GTGTAAATST GGCAGAATTC CTAGGCAGGC TGACCTTTAC AGTATGGGCC TTTAAGATAC	1920
	TGGATCCTGG TTGGGCAACA AGTGTCACGC CTGAAGTTTC TGAAAACAAA TTAGAAGACT	1980
20	GTTGGCTTGG CTAATCTCGT AGTTCAGGGC CAAGTTTCTG TAGTCAGAAT GAAGAATAAA	2040
20	ATTGAAAGAA AAAGGGGGAA ATGCTTATAC TTGGCATTAA GTTGAATGCC TCAAGTCTTA	2100
	ACTATGGCTT TGTAJATGAG GCAAAAGATT TCTTAGTGGT AAAATTTCTT CAACAGGTCA	2160
25	ATGCCAATCT GTAYGCCATT TTAGTAAAGT AGGTAAGGAG AGTAGCCGCT CAGTAACTTT	2220
	GGCACTAAAG AAAGAGTSTG GETCTAGAAC TTECAATCCC ATTGCTAGAT GTGCCCTTTA	2230
30	AAAGATGGTC CAGTGCTTTC AGGGAAGGAT GTTTAGCCAG TTTTCCTAGT ATTTGTTCCT	2340
50	TAAGATTTTT TGACCTGTGC TTAATAAGAC GGACGCGTGG GTCGACCC	2388
35	(2) INFORMATION FOR SEQ ID NO: 155:	
	(1) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 642 base pairs (B) TYPE: nucleic acid	
70	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155:	
	AAAACAGACC ATTTAAAAAC TCAGACAAGA TTATATTTAA TATATTAATT ACTAAAAAGG	60
	CACAAGATTA CACTGAACAT ATTAGCTACT AAAAAGGCAC TGCTAAGACA TTCAAGCAAA	120
50	TAGCTATTAC ACACTACTGC AGATTTTACA GGTTTCTAAT TCTAACATAT GTTTGAAAAA	180
	TCOGTGAGTA TTOCAAAATA TATTTAATAA TGGAATATCT GCATTAATAT ACCATCCATG	240
55	TGTTTTTACC ATTIGCCTTA ATATTGAATA TACTGTTTAC CTCACACTAA AAAGAAAACC	300
	AGAAGCCTTA TYTGTGATTT TGGGAGTGGA AGGTTCCATT TYTGTGTCAA AAATGAATCC	, 360
	TGATTCTTAT GGAAATCTCT GTTATTAAGA TATTTCAAGA TGAGACAACA CTGAAGATCA	.420

60 AATTGTGTT AGTATCACTA TCTTCTCTC TCGTTTCTCT CTTACTCCTC ATCCTCCCAG

407

	AATCTACCAG TTTATGGTAG AAAGATGGGA ACCTTATTTG AATGTGTTTT TTTTTTTCCA	540
-	TGATGTCCAA TTTTGTTGTG GGAAAGGATT TGGATAAAAT TTTTGTTTAA ATTTTCGTAG	600
5	ATTTTTATCT ATACAAATT AAATAAAATT ATGTTTTGTA AG	642
10	(2) INFORMATION FOR SEQ ID NO: 156:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1851 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:	
20	GCCGCTGCCC CTCCACGGAG TTGCTGATCA TCTGGGGCTGT CATCCACAAA CCCGGTTCTT	60
	TGTCCCTCCT AATATCAAAC AGTGGATTGC CTTGCTGCAG AGGGGAAAACT GCACGTTTAA	120
25	AGAGAAAATA TCACGGGGG CTTTCCACAA TGCAGTTGCT GTAGTCATCT ACAATAATAA	180
	ATCCAAAGAG GACCCACTTA CCATGACTCA TCCAGGCACT GAGCATATTA TTGCTGTCAT	240
20	GATAACAGAA TTOACGGGTA AGGATATTIT GAGITATCTG GAGAAAAACA TCTCTGTACA	300
30	AATBACAATA OCTOTTOBAAA OTOGAATBOO ACCGAAGAAC TTOACCCGTG GCTCTCTAGT	360
	CTTCGTGTCA ATATCCTTTA TTGTTTTSAT GATTATTTCT TCACCATGGC TCATATTCTA	420
35	CTTCATTCAS AAGATCAGGT ACACAAATGS ACGCGACAGG AACSAGCGTS GTCTCGGAGA	480
	TGCAGCCAAG AAAGHCATCA GTAAATTSAC AACCAGGACA GTAAAGAAG3 GTGACAAGGA	540
40	AACTGACCCA GACTTTGATC ATTGTGCAGT CTGCATAGAG AGCTATAAGC AGAATGATGT	600
40	CGTCCGAATT CTCCCCTGCA AGCATGTTTT CCACAAATCC TGCGTGGATC CCTGGCTTAG	650
	TBAACATTGT ACCIDITCCTA TGTBCAAACT TAATATATTE AAGGCCCTGG GAATTGTGCC	720
45	GANTYMOGCA TOTA INGATA ACGIASCATI CSATATOGAA AGGCTCACCA GAACCCAAGC	730
	TGTTAACCGA AGATIAGCCC TCGGCGACCT CDCCGGCGAC AACTCCCTIG GCCTIGAGCC	84
- 0	ACTICGAACT TOGGEGATOT CACCICTUTO TOAGGATGGG GAGGICACTO OGAGAACAGG	90
50	AGAAATCAAC ATTOJAGTAA CAAAAGAATS GTTTATTATT GCCAGTTTTS GCCTCCTCAG	96
	TGCCCTCACA CTCTGCTACA TGATCATCAG ACCCACAGCT ACCTTGAATG CTAATGAGGT	102
60	TPTATETTT TAAAAATAAT AATOTTTOTAT AATAAATAAAT AAATAATAAA	2.2

April 1 Carlo San A

	ATAAAAAAA AAAAACCCCG GOGGGGGCCC GGTCCCCAAT TGGCCCTATG G	1251
5	(2) INFORMATION FOR SEQ ID NO: 157:	
10	(i) SEQUENCE CHARACTEFISTICS: (A) LENGTH: 2107 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: dcuble (D) TOPOLOGY: linear	
15	(x) SEQUENCE DESCRIPTION: SEQ ID NO: 157:	
15	CCCGCGGGAG AGGGAAGCTG CAGIGAGAGG CGCGGATCTC AGCGIGGGAG CAGTGCTTCT	60
	UCGGCAGGCC CCTGAGGGAG GGAGCTGTCA GCCAGGGAAA ACCGAGAACA CCATCACCAT	126
20	GACAACCAGT CACCAGCCTC AGGACAGATA CAAAGCTGTC TGGCTTATCT TCTTCATGCT	180
	GOGTCTGGGA ACGCTGCTCC CGTGGAATTT TTTCATGACG CCCACTCAGT ATTTCACAAA	240
25	COGCOTGGA: ATGICCCAGA ATGICCOTT GGTCACTGCT GAACTGAGCA AGGACGCCCA	3:00
43	GGCGTCAGCG CNCCCTGCAG CACCCTTGCC TGAGCGGAAC TCTCTCAGTK; CCATCTTCAA	360
	CAAIGTCATS ACCOTATETS COATGOTGCC COTGOTETTA TICACOTACO TCAACTCOTT	420
30	CCTGCATCA3 AG3ATCCCCC AGTCCGTACG GATCCTGGGC AGCCTGGTGG CCATCCTGCT	430
	GGTGTTTCT3 ATCACTGCCA TECTEGTGAA GGTGCASETG GATGCTCTGE CCTTCTTTGT	540
35	DATCACCATG ATDAAGATCG TECTCATTAA TTCATTEET GCDATCCTGD AGGGCAGCCT	500
33	CTITIGGTOTS GUTGGCCTTC TOCCTGCCAG CTRACACGGC CCCCATCATG AGTGGCCAGG	650
	GCCTAGCAGG C'MTCTMTGCC TCCGTGCCCA TGATCTGCGC TATTGCCAGT GGCTCGGAGC	720
40	TATCAGAAAG TECCTTCGGC TACTTTATCA CAGCCTGTGC TGTKATCATT TTGACCATCA	780
	TOTOTTACOT GROCOTOCCO COCCTOGAAT TOTACCOCTA CTACCAGCAG CTCAAGCTTG	840
45	AAGGACCCGG GGAGCAGGAG ACCAAGTTGG ACCTCATTAG CAAAGGAGAG GAGCCAAGAG	900
43	CAGGCAAAGA BBAATCTGGA GTYTCABTCT CCAACTCTCA GCCCAGCAAT GAAABCCACT	960
	CTATCAAAGC CATCCTGAAA AATATCTCAG TCCTGGCTTT CTCTGTCTGC TTCATCTTCA	1020
50	CTATUACCAT TOGGATGTTT CCAGCCGTGA CTGTTGAGGT CAAGTCCAGC ATCGCAGGCA	1080
	GCAGLACCTG GGAACGTTAC TYCATTCCTG TGTCCTGTTT CTT3ACTTTC AATATCTTTG	1140
5 5	ACTGGTTGGG CCGGAGCCTC ACAGCTGTAT TCATGTGGCC TGGGAAGGAC AGCCGCTGGC	1200
55	TGCCAAGCTG GNTGCTGGCC CHRCTGGTGT TTGTRCCACT GCTRCTGCTG TGCAACATTA	1260
	AGCCCCGCCG CTACCTGACT GTOGTCTTCG AGCACGATGC CTGGTTCATC TTCTTCATGG	1320
60	CIGCOTITICO CITOTICAAO GGOTACOTOG COAGCOTOTG CATGTGOTTO GGGOCCAAGA	1380

409

	AASTGAADEC AGCTGAGGCA GAGACCECAG AGCEATCATG GCCTTCTTCC TGTGTCTGGG	1440
	TOTOGOCACIS GOGGOTOTTI POTOCOTICOT GITOCOGGOCA ATTGTGTGAC AAAGGATGGA	1500
5	CAGAAGGACT GECTGECTEE STEECTGTET GECTTETTSCE CETTECTTET GECAGGGGTG	1560)
	ATCOTGAGTG GTCTGGCGGT TTTTTCTTCT AACTGACITC TGCTTTCCAC GGCGTGTGCT	1620
10	GOGCCCGGAT CTCCAGGCCC TGGGGAGGGA GCCTCTGGAC GGACAGTGGG GACATTGTGG	1680
	GTTTGGGGCT CAGAGTCGAG GGACGGGGTG TAGCCTCGGC ATTTGCTTGA GTTTCTCCAC	1740
	TCTTGGCTCT GACTGATCCC TGCTTCTGCA GGCCAGTGGA GGCTCTTGGG CTTGGAGAAC	1800
15	ACCTOTOTOT CTGTGTAIGT GTCTGTGTGT CTGCGTCCGT GTCTGTCAGA CTGTCTGCCT	1860
	GTCCTGGGGT GGCTACGAGC TGGGTCTGAC CGTTGTATGG TTTGACCTGA TATACTCCAT	1920
20	TITCCCITCC GCCTCCTCCT CTGTGTTCTC TCCATGTCCC CCTCCCAACT CCCCATGCCC	1980
	AGTICTIAGO CATCATOCAC COTGTACAGT TGCCACGTTA CTGCCTTTTT TAAAAATATA	2040
25	TITGACAGAA ACCAGGTGCC TTCAGAGGCT CTCTGATITA AATAAACCTT TCTTGTTITT	2100
23	TTCTCCATGG AAAAAAAAA AAAAAAA	2127
30	(2) INFORMATION FOR SEQ ID NO: 158:	
	:1) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 1625 base pairs (B) TYPE: nucleic acid	
	(C) STRANDELNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158:	
40	CAAAASATCT ATAATCAGGA CATTGTTTAT GTAAGTT3GA CAANAAAAAT TCTTCCCCTT	60
	TATGTICAGO CTTOSTANGA TNGCAAGACA AAATTTOSCT COTYTACCTO ATGGCTATAA	120
45	CATGGGAGGC TGAGAAAAAT GAGGGGAGAT GGAACCAGAT AGAAGGAGAT CCAATAAGAG	180
	AAGCTTATTT AAATATTGTG AAATAAAGGA AGAMCCAAAG CATTTTTTTA AGTGGGGAAT	240
	CCTTTTGAAC AGTTATTATT TATCCATATT ATTAAYAACA TCTTTTCTGA CAAAATCCAT	300
50	CAGATGAAGT GTAAATGGAT AATCTTTTAA TGGATCTAAA CCTAGAAAGT TTCACTTACT	360
	management of the second of th	420
	20 WARAN SANSAN MARKATAN MENERALAH MENERAKAH MENERAKAH MENERAKAH MENERAKAH MENERAKAH MENERAKAH M	
	TTATATTGAA GCCAACTYR O TTTAATTCTT SYGGUUTCTT ADADTTUTAA GCCAAAAT	•.50

60

 $\forall (k_k) = (k_{k+1} - 1) (A_k) \qquad \forall m \in L(m)(A_k)$

	TTGAAGTCTC AGTCACCAGA CACAGGTTCT ATACAATTAA TGATGAGCTG GAGAAGTAAT	660
	ATSTAGCTAA TITITSAAAA GCATTGAATA TACTITTCCGS AAAGAAAACA GAAATTAAAT	730
5	ATTGCCACAT CTTP3CCAGAA TOUCATCTGA CACCTTAACT TTGTCAGGTT TOCTACAACT	780
	TOSTAATSAA STTTTATASA TYSTAAATSI OOSSAGTTYS TYYPBBBBCTB GAAGADBSAA	840
10	CTTCCATTTA ATAGAAACTT TGAAATCTTG GGGTAAGGGA GCAGTGGGGG GACTAGGGAG	900
10	AAGGATAAGA AATAGAATTA TTBAAAAGCC CCCACCAGGG ACCTTCCTGG CCAGAATATG	9ธิก
	CAGAGTAATT UCTPUTEGCT TEACHTTEA AAGTOOMTO AAAGTATECA GATGAAAHTG	1020
15	AGTOTGTTTT TGATATTGTC AGATGTATTC TACTTTGGAA GTOCCNACAC CTAAACTGGA	1080
	ATTCTTFFFAT TTALEATOTOC TOCACTFFCC COCACACCAC CCCTCAATTC CTGCTFCCCC	1140
20	TGCTAADSTT AAGCATMTT CTCTDGTTAT CATCAGGTTC ACATTAAAAM CAGRTACTTA	1200
20	CAAACDBACT TBAAGACAG ATACTTTTAC GAATGTGATA AAATATTTTI TTAAGAAAAG	1260
	GAAAGAGGAT OTOODTCAAA TAAAACAOOG CATGGATSTT GATUSGUSAA TACTGGTGTA	1320
25	AGAAAABGA GCTCAGGAAT TTTTATTACT STATTTGTAA ATGAGTTTGA AGGAATTTGT	1380
	AAATGOCACT GGTACATTTT TAAGGTGACA CATTTGCTCC TTATAAAGTT ATTAAAAATT	1440
30	ACAGGGTAAG CTTAAATGAC GTTTGCCAGT AGTTTTACTT TATATAATCA ATATTGATAT	1500
270	TGTTGCTGAA CTATGTAACT TTATGATGCA TTTTCAGTC CCTTTTCAGA GCAAATGCTT	1560
	TTGCAATGGT AGTAATGTT AGTTTAAATT GACTTAATAA ATTMTTACCT GAGCAAAAAA	1620
35	AAAAA	1625
40	(2) INFORMATION FOR SEQ ID NO: 159:	
-10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1687 base pairs	
45	(B) TYPE: nucleic acid	
7.5	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159:	
50	CGGGGTCACE AGTTATTAGA GGAAGTAACA CAAGGGGATA TGAGTGCAGE AGACACATTT	50
	CTGTCCGATC TCCCAAGGGA TGATATCTAT GTGTCAGATG TTGAGGACGA CGGTGATGAC	120
5 5	ACATOTOTOS ATAGTGACOT GGATOCAGAG GAGCTGGCAG GAGTCAGGGG ACATCAGGGT	130
55	CTAAGGGACC AAAAGCGTAT GCGACTTACT GAAGTGCAAG ATGATAAAGA GGAGGAGGAG	240
	GAGGAGAATC CACTGCTGGT ACCACTGGAG GAAAAGGCAG TACTGCAGGA AGAACAAGCC	300

AACCTGTGGT TCTCAAAGGG CAGCTTTGCT GGGNATCGAG GACGATGCCG ATGAAGGCCC

411

	TGGAGATCAG	TCAGGCCCAG	CTGTTATTT3	AGAACCOGYG	GAAGGGACG3	CAGCAGCAGC	420
5	AGAA/3CAGCA	GCTGCCACAG	ACACCCCCTT	CCTGTTTGAA	GACTGAGATA	ATGTCTCCCC	480
٠,	TGTACCAAGA	TGAAGCCCCT	AAGGNAACAG	AGGCTTCTTC	GGGGACAGAA	GCTGCCACTG	540
	CCCTTGAAGG	GGAAGAAAAG	GATGGCATCT	CAGACAGTGA	TAGCAGTACT	AGCAKTGAGG	500
10	AAGAAGAGAG	CTGGGAACCC	TCC GTGGTAA	GAAGCGAASC	GTGGGCCTAA	AGTCAGATGA	550
	TGACGGGTTT	JAGATAGTGC	CTATTGAGGA	CCCAGCGAAA	CATCGGATAC	TGGACCCCGA	720
15	AGGCCTTGCT	CTARGTGCTG	TTATIGCCTC	TTCCAAAAAG	GCCAAGAGAG	ACCTCATAGA	780
1-7	TAACTCCTTC	AACCGGTACA	CATTTAATGA	GGATGAGGG	GAGCTTCCGG	AGTGGTTTGT	340
	CCAAGACGAA	AAGCAGCAGC	GGATACGACA	STTGCCTGTT	GGTAAGAAGG	AGGTGGAGCA	900
20	TTACCGGAAA	. CGCTGGCG3G	AAATCAATGC	ACGTCCCATC	AAGAAOGTOG	CTGAGGCTAA	960
	CCTAGAAAG	- AAAAGGAGGA	TGCTGAAGAG	GCTGGAGCAG	ACCAGGAAGA	AGGCAGAAGC	1020
25	CGTGGTGAAC	ACAGTGGACA	TCTNCAGAAC	GAGAGAAAGT	GGCACAGCTG	CGAAGTCTCT	1080
	ACAAGAAGGC	TGCCCTTGGC	AAGGAGAAAC	GCCATGTCAC	CTACGTTGTA	GCCAAAAAAG	1140
	GTGTGGGCCG	CAAAGTGCGC	CGGCCAGCTG	GAGTCAGAGG	TCATTTCAAG	GTGGTGGACT	1200
30	CAAGGATGAA	GAAGGACCAA	AGAGCACAGC	AACGTAAGGA	ACAAAAGAAA	. AAACACAAAC	1260
	GGAAGTAAGG	AGAGCTGCCA	GGCTCCCAGG	: AGAGCATGGG	GACTAGGAGG	AAGGGTGTCG	1320
35	CATGGCTCAC	F TOTOGOCOCC	TTGATTACCC	GCCTAGCCCC	TGCTCACATO	ACAGCTGTCT	1380
	GAAGAACAGT	r gaggtggagt	GCCTAGAACI	CCCGTGGTGG	; TOCTGAGCAG	AGAGGAGGAT	1440
	GTCCTCCTG	CTGCCTGAAG	GTCTCCCATC	AAAACACTGO	TGAACTGTGT	TGACACTCAT	1500
40	GACCCTTTT	TTAAACCGTT	`AAAGGGAASI	r mosgrgmag	AGCGATACTC	AATGTAGTCA	1560
	GTCTACACC:	r GCACGTGTGC	GCIACTTAAG	GCCTCCCCAC	CCCCATCCT	A TTCCTRAATA	1620
45	AAACCAGGA1	r aarugaaraa	AAAAAAAA	AAAAAAAA	; GGGGGGGCC	I TAAAGGOONCC	1680
+)	CANNITIT						1687

50

(2) INFOFMATION FOR SEQ ID NO: 160:

(1) SEQUENCE CHARACTERISTICS:

exi) SEQUENCE LECTRIFIED: UBQ ID NO: 160:

60

Like the state of the state of

	odmonensa	MINDAEDELL	GATTIGIGAC	COLICERGO	GAACTTCAGA	GGGAGCTGAA	50
	ANCAGCGTAT	GATCAAAGAC	AAAGGCAGGG	CGAGAACAGC	ACTCACCAGC	AGTCAGCCAG	120
5	CGCATCTGTG	CCCCGAGAAT	CCTTTACTTC	АТСТАААЭЭС	AGCAGTGAAA	GAAAAGAAAA	180
	GAAACAAGAA	CAAAAAAACC	ATTGGTTCAC	CAAAAAGGAT	TCAGAGTCCT	TTGAATAACA	240
10	AGCTGCTTAA	CAGTCCTGCA	AAAACTCTGC	CAGGGGCCTG	TEGCAGTCCC	CAGAAGTTAA	300
•	TTGATGGTT	TCTAAAACAT	GAAGGACCTC	CTGCAGAGAA	ACCCCTGGAA	GAACTOTOTG	360
	CTTCTACTTC	AGGTGTGCCA	GCCTTTCTA	GTTTGCAGTC	TGACCCAGCT	GGCTGTGTGA	420
15	GACCTOCAGC	ACCCAATCTA	GCTGGAGCTG	TTGAATTCAA	TGATGTGAAG	ACCTTGCTCA	430
	GAGAATЭЗАТ	AACTACAATT	TCAGATCCAA	TYGGAAGAAGA	CATTCTCCAA	GTTGTGAAAT	540
20	ACTGTACTGA	TCTAATAGAA	SAAAAAGATT	TGGAAAAACT	GGATCTAGTT	ATAAAATACA	600
	TGAAAAGGCT	GATGCAGCAA	TCGGTGGAAT	CGGTTTGGAA	TATGGCATTT	GACTTTATTC	650
	TTGACAATGT	CCAGGTGGTT	TTACAACAAA	CITATGGAAG	CACATTAAAA	GTTACATAAA	720
25	TATTACCAGA	GAGCCT SATIG	CTCTCTGATA	GCTGTGCCAT	AAGTGCTTGT	GAGGTATTTG	780
	CAAAGTGCAT	GATAGTAATG	CTCGGAGTTT	TTTTAATATT	AAATITCTTT	TAAAGTAAGT	840
30	GTTTTSTACA	TTTCTTTTCA	AAAAGTGCCA	AATTTGTCAG	TATTGCATGT	AAATAATTGT	900
	GTTAATTATT	TTACTGTAGG	ATAGATTCTA	TTTACAAAAT	GTTTGTTTAT	AAAGTTTTAT	960
	GGATTTTTAC	AGTGAAGTGT	TTACAGTTGT	TTAATAAAGA	ACTGTATGTA	TATTTGGTAC	1020
35	RGGCTCCTTT	TRGTGAAYOO	TTAAAAACTC	AACTCTAGGA	RGCAACTACT	GTTTATTATA	1080
	CTAAARGGCT	GAAAAMCCTC	CAGÇCCAGAC	TGCTAAGCTC	TGAAATYOOT	GAGAGGTCTC	1140
40	AGACCGGGAT	TCTACTTGTT	CCAAGAAAGG	GTAAAGCTTC	TAAACCATCT	TATTOTTGTC	1200
	TCCAAGCATG	AACACAGGAG	CATGTYAAGA	AAATCTTTAC	TACTTTCTYC	CATGCGGAGA	1260
				CACACCCACT			1320
4 5	ACATTATGTC	CCGTAGATCA	GAGGTGGTGT	TGTCTTTTTG	CTTCTACTGG	CCATTGAGAA	1380
						ATTTTTATGT	
50						AGTGGATATT	
						AAAACTAGCT	1560
5 5				TTTTGTGTCT			1620
55						AGATCAAGAT	
						TEAAGGATTA	1740
50	AAACAGGATC	AAGGATTAAT	GGTATAAAAA	TCTCTACTGG	TTACCGGGTG	GCNGGGCCAT	1800

413

	ACAGGGTAGT GGTGGATGGA TAGTTTAGTT TGGNAACGGT AA	1842
5	(2) INFORMATION FOR SEQ ID NC: 161:	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 770 base pairs(B) TYPE: nucleit acid(C) STRANDEDNEJS: double(D) TOPOLCGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:	
15	GGCACGAGCC CTATECTGTT CTTGTGATAA TGAGTGAGTC TCACAAGATC TEGTEGTGTT	60
	ATAGGCATCT GGCATTTCCC CTGCTGACGC TCATTCTCTA TCCTGCCACC CTGGGAAGAA	120
20	GTGTCTTCTG TCATGATTGT AAGTTTUCTG AGGCCTCCCC AGCTATGTAG AACTGTGAGC	180
	CAATTAAACC TCTTTCTCT ATAAATTATC CAGTCTTATA TATTTCTTCA TAGCAGTGTG	240
	AGAACAGATA ATACCGTAAA TIGGTATCAC AGAGAGTGGG GTGTTGCTAT AAACACATCT	300
25	GAAAATGTTA AAGCAAATTT GGAACTEGGT AACAGGCAAA GGCTGGAACA GTTKGAAGAA	360
	CAGTTAAGAA GAAGACAGGA AAATATGAGA AATCTTGAAA CTTCCTAGAG TCTTAAAGGT	420
30	CTCAGAAGAC ATGAAGATGT GGGAAGCTTT GGAACTTCCT AGAGACTTGT TTGAATGGCT	480
	TTGACCAAAA TGCTGATAGT GATATGGACA ATGAAGTCCA GGCTGAGCTT ATCCAGACAG	540
	ACATAAGAAG CTEGCTGGGA ACTTGAGTAA AGATCACTCT TGCTAGGEAA AGAGACTGGT	600
35	GGCCTTTTT CCTCTGCCCT AGAGATCTGT GGAAATCTGA ACCTGAGAGA GATGATTTAG	660
	GGTATCTGGC AGAAGAAATA TETAAGCGGC AAAACCTTCM AGAGGAAGCA GAGCATAAAC	720
40	GTTTGAAAAA TTTGCAGCCT GACNATGGGA GACCAAAGTT AAAGCCAATT	770
45	(3) INFORMATION FOR SEQ ID NO: 162:	
50	(i) SEQUENCE CHARACTEFISTICS:(A) LENGTH: 519 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162:	

DOOD ERGACA AGREETET TOTANGOOTS AGT AGASAS TROUTIAA SEGEDRAROTTS 190

 $(i_{N_{k+1}}^{N_{k+1}}, i_{N_{k+1}}^{N_{k+1}}, i_{N_{k+1}}^{N_{k+1}}) = (i_{N_{k+1}}^{N_{k+1}}, i_{N_{k+1}}^{N_{k+1}}, i_{N_{k+1}}^{N_{k+1}})$

	ATGGAGCTET TTGTEAAGGT TAAATGEGAA GACATAAAGC ACTTAGCCCA GAGCCAAGGA	240
	DATECTEAAT AGEATAATES TEGECCTECTT TEGECGETETE UTGETEGEGG TETECCGAEG	300
5	AAYTGGGCAG GGGTGACAGA TACCTCTTCT AACCTAGTTC CTTTCCAAGA ACCTAATTGG	360
	FGTCTCTCCC TCCCCAGGC AATTGGAAGG AGGAGGCTGG GCCCCAGGCCC CAGAATACGG	420
10	GAGGITTCTC ACCEPTEGIAG GGAAATTECT GGGITGGEES TETEFECAAC CACAGIGATC	480
10	STOTOTOTOO AGGADGGATG AGGOTTTGOT GACAGAGGG	519
15	(2) INFORMATION FOR SEQ ID NO: 163:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 753 hase pairs (B) TYPE: nucleic acid (C) STRANDEINESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:	
23	GGCACGAGGG GCACGAGCAG CCAGTTGCTG ACTGGCACAT GGCCTCCAGG GTCCCGGCTG	60
	GTGGGCACAC TAGAGCCGGA GGGATCTTCT TAATTGGTAA ATTGGATCTT GAAGCTTCAC	120
30	TGTTTAAATC TTTTCAGT9G CTTCCCTTTG TACTTAGAAA AAAATGCAAC TTCTTCTGCT	180
	GGGACTIATE CIGITACAGE CTTCCCCTCC ACCCTCTCTC TGCCTCATGC TCTGCCCCTG	240
35	CCTGCCATGC CTCCGATACT CACCTTTTGT ACCCCAGCAC CCGTGCCCTC TGCCCCCTCGA	300
22	TOTTTSCOPS GOTGSTTGCT COTCACTOAS TGTTCAGGAC AAATSCTCCT GGCCCTACCC	360
	CATCTAGCCA GUCTAGCCCG GTCTTCCCTG TCTTCCCTGT TTCATTCATA GCTCTTATTAG	420
40	TITGTIWACT TETGTGCTGT TGACTTTTAA CTCTCTCAGT CCCCACTGGA ATGCAAGCGA	480
	TCTCCCAAGC TCCTAGAATT GTTCCTGCCT CTTCACAGGC CCTTACGCTG TGTGTGCTCG	540
45	TGCCGAATTC GGCACGAGGG TATGTGCACT TGCTGGTATG TATGTAGGTG TTTGCTAACA	600
43	CATACGTGCA CACGCAGAAT GETTCCAGGG GACTGCACAG CCTCTAGTTC GCAGCCCCCA	660
	CCCCTCCCTT T3SCCCTGCA CTCTCCCCTC TCTGAGCTGC ATTCGCATGA AAGGGTGCAN	720
50	GGTTCCTGAN CCCGCNAGCG NCACCTCCTG GGA	753
55	(2) INFORMATION FOR SEQ ID NO: 164:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1400 base pairs	
60	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	

PCT/US98/11422 WO 98/54963

415

(D) TOPCLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:

5	GGCACAGITT ATTAATACCT ATTATGGGAA AGTCACTITG GTTGGCATTG AAAATTACAT	60
	CATCTTTAAA GCAGTATTTG TCCCCAGATG GACTCATCAC TAGCAAAGAC TAGGTTCATT	120
	GGAAGGCATA GGGTYAGAGA ATGGGAAGAT GRAGTGGAGG CGGGTTGTTA AAGTGCTGTC	180
10	AGTGAGTGAT TYTGTCTACT TGAATAATGG TCCATGTTTG GGGGCATATT GTGTTTCATA	24.)
	AGAAGTGAAA GGTATTTGCA AAGTAAGCTA CAAATGACCC ATAAATCTGT TAACAACAGT	300
15	CCTTAATATG CAAAGATGAA AAACAAGCAT TACTGCTACC CAAAGGGAAC TGGTGCTTGG	360
	TGATGTGCAG ATGGGGGTGT TGGTTAAGAG AGCTATTACA GGTTTTCTCT CTTAGGTTTC	420
20	ATAGGAGGTA GTTACTGAGA TGAGATTGTT TTATCTTTYT GAATACAGAT CTCTTGTCTT	430
20	GAGTTAGTTC TGAGGATGGG AGTAATAAAG GAGTTTTYYG TTTTTTTTTT	540
	TTTTGGCTCC TTAGTAATAC TCCTCTGACA TTTATTTCTA TTATTCTTCA AAGAAAGGAA	600
25	ACCAACTGAA ATGTTTGCTT TAACAAACAT TTTAATAAGT TCTCTGGGTT TTTTTTTCCC	66.0
	CTTTTAAAAA AATTAGCATA TACCATAGCA ATAAAAGAAC TAATGTTAAC TATTGTATGC	710
30	TACAACTTAA GTGATTTTTC TAAAGAAGCA CAATGTCATT GRAAGTATTA TTGAAAAGGA	780
30	TCATAGTCAC ATTGAATTTG TGAAGGCCAA AGAAATTGAA GGGAGTGATA TTTTCATTTT	840
	ATGATATTCA CATATTTAGT AAATTTTGTG TACAAGAATA CCAGGCAGAG TGTTTTACCC	ā.10
35	ATGGAAACAG GTTTCAGATT ACTTTGTTTT TACTGTTAGA GTCTCAAGTT TAGAAATGCT	950
	AACACTTAAA TCASTTTTTT TCTCACTATA CTTGAAGATT GTTAATATTT TSATATCTTC	1020
40	CTAGCTTGAT GGAATTTAAA CATATCTTCA GATCTGTGAC AGTGACAGCC AATAGGACTG	1030
40	ATAATATTAG CTTCAAACCA ATAATATCCA GGGTTAAAAT AAAAATCATA GTGAAAGTAC	1140
	GATTGTAAAA TTATGCTATA TTAACTTTTA AGTCTGTAAT AACTTGACAT CAAAATGTTA	1200
45	TGTAATTACC ATAAATAATG GCTAGCGAGA ACATCTTIGG AAATTGTGAA ATTACCTTTC	1260
	TTACTACACT GTTTGCAGAA TGAATGTAGA AATGATCCTG TTAGCTTTCT GAATGTTCTG	1520
50	TOGTTGAATG TGTTTTTGCT TAAATAAAGC TTTTSGTATT TGTTTAAATW ACAAAAAAAAA	1380
50	AAAAAAAAA AAAAACTCGA	1400

n Deptembe (HARASTERLETIS) (A) Denvin Diss base pairs (B) TYPE, nucleus asid

(C) STRANDELNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:

(D) TOPOLOGY: linear

5	177	/ DECOMICE	DESCRIPTION	: SEQ IL NO	: 100:		
	CAGGCCTCAG	GGCCTCTGGT	GGCTCTGGCC	CAGACAGTAT	TTGCAGTTCT	TGTGCTATGG	60
	GTGGGAGTCT	TOTTCOTCAA	GTTTCGGCAG	CTCTCCTCTG	NCTGGATGGG	CTGCTCCTCC	120
10	CAGGGCTCAA	GGGCTGTGGT	CCGCTCAGGG	TCTCATTTCC	CCAGGCCAAG	TTCAAGGCAG	180
	CAGCCCTTTG	TGAGGCGCTC	TTGGCCCT33	GCTGGAGGGA	GAACTTTAAG	CTTTTTTGCT	240
15	CACAGGGACG	TGGTATGGGC	CCTGGGTGCA	GGTGCCCACA	TTCTGCTAAT	GAGAGCTTTG	300
	TCTGATCAGT	COT BOSTCCA	TCAGTTTGTC	CATGTGTCCG	GCTGCCAGCC	CGTCCCTTGG	360
	GATOCTTCCC	CTGGGGTGTA	GCCTTGTTCA	TTAGTATATA	CTCATTCCTT	CATGCTTTCC	400
20	TCAGCAGAAC	ACTTCCACTT	CTGAGGTGAG	CITTIGOCCC	RTGUCETTCC	TCCACAGGTG	480
	TTGCCTTTTT	ATAAAGACCT	GATAGCAGAA	TAAATTIGGTIG	TTTCCCTGTT	GACCCAGCAC	540
25	CATTTCTGTG	GGCCTAGAAT	ATGCCCCTCA	ACCOTTAGAG	ТЭЭСЭСАСТЭ	AGGGCTTGAG	600
	GAGTGACCCT	TOCTTTCTCA	TGGTTTTAGT	CATTTTGGCT	GCCAGCCCTT	AATGGCACAG	6r ()
	ATCTGCTGCT	TCTAACAGAT	GGCCAGGAG3	TGACACCGAT	TTCAGCCATT	GCCAAGGTTA	720
30	GCACCCTCTC	CTTTGAGCCT	AGGGCCACAC	TGTTCATTGT	CACTTTAGGC	AAGTGCCTGT	730
	TTGGCTTTAA	AGGTAAGCCT	GCCAGCTYGTG	AGAAGCCTTG	GTAACTGATG	GACTCATTTC	8.10
35	CTGGTCCTTA	AAGATGCAGC	CTCTTAAGGG	CTCCTTGATG	GATGCCATCT	CTCCTAGCCC	900
	CCAGCCCTGG	TGCCACTGGT	GGGCAGGTTC	CCATTCTTTG	GGGCTGGGAG	GGACAGCTTG	960
	CCTGTTTCTG	GTCACAAATT	ACAGTCTTCT	CTCCTGTACC	ATTCTGTGGC	TTCAGCATG3	1020
40	GGGCAGTAGC	CTTTCATTAG	TGTAGATAGT	CATTCCCTGG	TAGGGTGGAG	GGTAAGACAT	1080
	AGGGTCTGGA	ACTGTTTGGG	ACCTTTT933	GATGTCCTGT	GCCTCCCAGA	TTCCTMGATT	1140
45	CTGGGAGGAG	AGGCTGCCGC	ATTCTGCTGC	TCCTCACAGO	GAGCAAAGCT	GCACCCACTT	1200
	ACATTCAGTA	TTTTCCTGGC	ACTACAAAGA	GTGGGAAGGC	CTGGGATTTG	CTGCTGCTCC	1260
	CTTAGAGCAG	GGCCCCT/TT	TTCAGCACTT	TGGACACCTG	GAGACCCAGC	CCTGTTATTT	1320
50	AATGGTAGTG	GGCAAGTGTG	TGTGCATACT	GTCTGCCACT	GCTTTCTCCC	TGCCCCATGC	1380
	CAGAGAGCCC	TGTCCCTGCC	AGGCCCAGCC	TTCTTAGCCC	CAACTTGGGA	ACAAAGTGCA	1440
55	ACATGGGATC	ATGGGTTGGG	GTGCTCAGGT	GAGCCCTCTC	TATAGTGCTT	CCCTGGGCCA	1500
	AGCTGACACC	AGCCCCTGAG	GGTGGGGTGG	GACGGGTGGT	GCTTAAAAGA	GGAAGGGGAC	1560
	CAGTGTAGCA	ACTTGCCAGG	GACCCCACCC	CTCCCTCTCT	GGGCCTGTGC	AGTGAGCATG	1620
60	GGGATTCCCA	TCAAGGGGCC	TGGCACCTGT	GCTAGTTACG	TAGCCGCTGN	TCACGCGCTC	1680

417

	ACTOCTGACC	ACATGCACGT	TCCCTAGATG	CAGACTGCTT	TGAACTTTAA	AGCTGTACAA	1740
5	TITGGTTATG	TTTGTGCTGA	CTTAAAATAT	ATTTTAATGA	GGAAAAAATA	ATGGAGAACC	1800
)	CTGGGAAGGA	CCTGGTTCTT	TTGCTTCTC3	GGGAACTGTA	AGCCCTCGCG	TTCTGGGAAT	1860
	OGCICTCTGC	TGCTCTTTCC	TGGAAGETAA	GCCTGTCTCC	ACCGCCCGAG	GCCTGCGCCG	1920
10	GTGCTCCCGC	CGCAGTTGCG	TTTGCTTTGG	ACCTTGCGTG	CEGGGGAGGG	GCTGCTCGGT	1980
	COGA BOOOFF	TCCTTTCTGT	ACACCTAGOG	CIRCOCRECE	CGCTTGTGTC	TGAGGTCGTG	2040
15	ТАГЭТСАААА	ATAAAGCCCC	TAGAAACGGA	AAAAAAAA	AAAAAAAAA	AAAAAAAA	2100
1.7	AAACTCGAGG	GGGGGGGGT	ACCCAATTAA	CCCNNTATGA	ТСТАТАЛАЭС	GTC	2153

20

25

30

(2) INFCFMATION FOF SEQ ID NO: 166:

(1) SEQUENCE CHAFACTERISTICS:

(A) LENGTH: 1251 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:

30							
	GCCCACGCGT	CCGCCCACGC	GTCCGGCGGT	GCGGAGTATG	GGGCGCTGAT	GCCATGGAG	60
	COCTACTOCC	GCTTCCTGGC	GCTGCTGGGG	TOGGCACTGC	TCGTCGGCTT	CCTGTCGGTG	120
35	ATCTTCGCCC	TTGTCTGGGT	CCTCCACTAC	CGAGAGGGGC	TTGGCTG3GA	THGGAGCGCA	180
	CTAGAGTTTA	ACTGGCACCC	AGTGCTCATG	GTCACCGGCT	TCGTCTTCAT	CCAGGGCATC	240
40	GCCATCATCG	TCTACAGACT	GCCGTGGACC	TGGAAATGCA	GCAAGCTCCT	GATGAAATCC	300
40	ATCCATGCAG	GGTTAAAT3C	AGTTGCTGCC	ATTCTTGCAA	TTATCTCTGT	GGTGGCCGTG	360
	TTT/GAGAA.CC	ACAATGTTAA	CAATATAGCC	AATAT STACA	GTCTGCACAG	CTGGGTTGGA	420
45	CINSATAGITG	TCATATOCTA	TTTGTTACAG	CTTCT TTCAG	STTTTTCAGT	CLLLCL3CLL	430
	d da reged ne	CRITTOTOT	CCBACCATTT	-CTCAT DCCCA	FACATGTTTA	TICIGGAATT	540
50	STOATOTTIG	GAACAGTGAT	TGCAACAGCA	. CTTATGEGAT	TGACAGABAA	ACTGATTTTT	600
50	TOCCTGAGAG	ATCCTGCATA	CAGTACATTO	: CCGCCAGAAG	GTGTTTTCGT	AAATACGCTT	660
	GGCCTTCTGA	TOOTGGTGTT	· caaggggggt	ATTITTTGA	TAGTCACCAG	ACCGCAATGG	720

2 0 TOTALAGAGE PETOGRAPTA GETETEGATE PAAGEAAAAR BAASPAIRAE BAASPAGAGA

60

A section A

	ACCATGTAAA ATGTTGTAGA GATAGAGCCA TATAACGTCA CGTTTCAAAA CTAGCTCTAC	960
	AGTTTTGCTT CTCCTATTAG CCATATGATA ATTGGGCTAT GTAGTATCAA TATTTACTTT	1020
5	AATCACAAAG GATGGTTTCT TGAAATAATT TGTATTGATT GAGGCCTATG AACTGACCTG	1080
	AATTGGAAAG GATGTGATTA ATATAAATAA TAGCAGATAT AAATTGTGGT TATGTTACCT	1140
10	TTATCTTGTT GARGACCACA ACATTAGCAC GGTGCCTTGT GCAKAATAGA TACTCAATAT	1200
	GTGAATATGP GTGTACTAGT AGTTAATTGG ATAAACTGGC AGCATGCCTG A	1251
15	(2) INFORMATION FOR SEQ ID NO: 167:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 882 base pairs (B) TYPE: nucleic acid (C) STRANDEINESS: double (D) TOPCLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:	
	GACSMTCTA: AACTATGGTC COUCGGGACT GCAGGAATTC GGCACAGCGG CTGCGGGGCGC	60
	GAGGTGAGGG GCGCGAGGTT CCCAGCAGGA TGCCCCGGCT CTGCAGGAAG CTGAAGTGAG	120
30	AGGCCCGGA3 AG3GCCCAGC CCGCCCGGGG CAGGATGACC AAGGCCCGGC TSTTCCGGCT	180
	GTGGCTGGT3 CT3GGGTCGG TGTTCAT5AT CCT3CTGATC ATC3T3TACT G3GACAGCGC	240
35	ABGOGOOGO CACTTOTACT TECACACOSTO CTTCTCTAGG COGCACACGG GGCCGCCGCT	300
	GCCCACGCCC GGGCCGGACA GGGACAGGGA GCTCACGGCC GAYTCCGATG ICGACGAKTT	360
	TCTGGACAAK TTTCTCAGTG CTGGCGTGAA GCAGAGTGAC YTTCCCAGAA AGGAGACGGA	420
40	GCAGCCGCCT GCGCCGGGGA GCATGGAGGA GAGCGTGAGA RGCTACGACT GGTCCCCGCG	480
	CGAMGCCCGG CGCACCCAGA CCAGGGCCGG CAGCARGCGG ANCGGAGGAR CGTGCTGCGG	540
45	GGCTTOTEOS OCAAYTOOAG COTGGCCTTC CCCACCAAGG AGCGCGCATT CRACGACATC	600
	CCCAACTOGG AGCTGAGCCA CCTGATCGTG GACGACCGGC ACGGGGGCCAT CTACTGCTAC	650
	GTGCCCAAGS TGGCCTGCAC CAACTGGAAG CGCGTRATGA TCGTGCTGAG CGGAAGCTGT	720
50	GCACCGCGTG CGCCTACCGC GACCCGYTGG GNTCCCGCGC GAGCACGTGC ACAACGCCAG	730
	CGCGCACTGA CTTCAACAAT TCTGGCGCCG CTACGGGAAG TCTCCCCCAC CTCATGAAGT	840
55	CAAGCTCAAG AATACACCAA TTCTTTCTGC GCGACCCTTC TG	832

(2) INFORMATION FOR SEQ ID NO: 168:

60 -

PCT/US98/11422 WO 98/54963

419

	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 1208 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEENESS: double
5	(D) TGPOLCGY: linear
	(VI) SECUENCE DESCRIPTION: SEO ID N

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:

GOGAAACTCA AAAGGATGAT GGAATGGTTG ATGGAGCCAG AGCCTAGAAG TRAAGGGATA 10 CAGAGTGAAG ATAGAGGTAT TTACGTATAT TIWAATATTA GOTTTGGAAT TACGTAGGGA 120 TTCTTAAGAA AAGATCATGA CABGACAGUC ACATTTGGTA AAATGTCAGG GCAGCCAGTG 130 15 CATGGTCCTC CIGGGGCTCC ICAGTTGACG GGTTTAAATC ATTTCCTGAT CCCCCTGCCC 240 TOGTTTGAGG AATOCATACA GTACGTGAAA TGCCTGTGGT ATGAGTTGCA ATGGGCAATC 300 AACCTGGGTA AATCCAAGAT TAATGATTAG TTCTAAAGAT CCAGTTGAAG TTCTAGAGTG 360 20 GGAATTITCC GTCAAGCAEC TCAGCACAGO TTTATGCCTG TICCTCTAAT AACGATAGGT 420 AACAAATAGC TOTGTKTWCA CAGCTAGGAR GATAACCAAA TOTAGAGTTC TTGARTCTCA 490 TTTAATAAAT AAKTATTATG AGTACCAACT GCATATTTCA GGCACTGCAT TTGACTCTGT 540 25 TAAATACTGA TYOOTTAKGA CMSCCACWTC AGAWAACMTT AATCTGTCTG ATCAATAAAC 600 AGCTTGACTT AGAGRGGTAA AATAGCTTGC CACAGGTWAC CCAATTAGTA GGTAACAGCG 660 30 ACAGAATAAC AGTGCAGTTA AAATCTTAGA CTGGAGACTA ATTGCATAAG TTTGAATTTC 720 AGTTCTCCTA TGTAAATTTG (XGTGAGTACC TTAATTYACC TGAGTCTCGG TCTTTATATC 780 TGTAGAATGG AGCTAATGAT ATTACTTAAT TTGCTTTATG TGAGATTAAA TGTACTAATA 240 35 TATGTAAATC ACTTACAACA GCATTTGACA TATTTGACAT ACTTAATATA TTTGCTACTA 900 ATACTATTAG CAACAGCATT CTGATTTTCC AAGTTGAAAT TCAGTGTTTT CTTTTTTACT 960 40 TTGCCATAAT TTACAATGTT STGCTCTGTA AACCATAAAT TTCCCTGAGG TGTTGTCAGG 1020 TTAAAAAAAA ATCACTATGG CCCCCARNMA CTTGCAAAAT AGAAATGAGA CCAGCTTCAT 1080 CTATATTCTT TACTGCAAAT AACTTAGAAT TGTAATAGGC TAATATGTAC TYGGGACTTCC 45 1140 AATTT96GAA TATGACAAAA ATAATACTAT TYAGCTAAAA CATATACAAA ACTTATTYYT 1000 1208 CCTCTGAA 50

> The substitutes a mask. / : OTRANDEDNESS: double

60 (L) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169:	
5	GCCACGAGAG AAAAGAGGTT GAGAATGTTT TCTAGCAGGC AGAATGTGCA TACATGTTTT	6(
	CATGARTGTC CTTTGGGTGC TGTTTCTTTT AAATCCTCTG TGCACAGGGC TCTGGCCTTT	120
	ARTAAACTGT TTTTCTGTCT TACGTCATGC TGACTGGGTG CTAGGGGGCTG ATTACAAAGG	180
10	GGAAGAGTTG AACAGACATC AGGGGCCGAT GAAACCAAAG GACTAGGACT CAGGAGAACA	240
	AGTCAGGGAT TAGGAGACAG CESTTTGGTT TATTGTTATC CAGCTEGASG ACTCCTAGGG	300
15	GCAGCAGCAG GAGGAATACC AGGGCCACGG AGGGGCAGGA GTCTCACAGT GGAGGGCAGA	360
	CTCTAACAGA TSCCAGCTGA ACSCTCGCTS GCCCTGGATG TCATACGAGT TGGGGACCAG	420
	AAATCTBBGC TCAGAGAACC CGTCCAGGGA GATTTGAAGC CATGGGTTAT CITCTAGAGT	480
20	TGATACTGAT AATATTTT AATTTTTATT GATGTTTAAT ACCTTCTGAA ACAGGAGGGT	540
	AAGATCAGAT GEGAAGCCCY TCTGTTGAAG GATCTTGGGA ACETTGGTGG TTTTTTTTTT	600
25	TIGGTIPPIT TPTPTPTSAT CGAGCTGTGG ACATCCTTCT TAATTCGATT NIGAGGATTT	660
	GTTTAACTAA AAAGTTCCCA AACACAGAAA GGGCCTCCCC ACCTGCTTTG GGGAGCTGTC	720
	TGTSCTGGGA GTGCCAGGCA TCCSATGGGA CCCATCACTG CCAGTGTCTG TGCCTCCCAG	780
30	AGGTCAGCCC TGTGTCTGCC CTGGCTCTGT CTCCTCTGTG ACAGGGCAGA GCATTTCTGG	840
	TCAGTITCTC CATGGTGCCT CCCACCCCTT TGTAAAGTGG ATGGACATGA TGGAATTCAG	900
35	TIGICICACC CIGATABOCT GGGTGTTGAT ATTCACTITA CCCGCACTCA GACACAGGCG	960
	ACCTTGAAGC AGTTCTCGGT GTGTAGAGTC CACGTGACAG TCCCCACAGC CTCCCCAGAT	1020
	AGCTGTGTGC CTGTGCGCTA CTGCTGTGCC ATTTTCCCAA CTTNGGCGTT TCACTAAATG	1080
40	CASCTGATCT CTCTCTCTGT GCACTCGTGA TCCATGTTGA ACAATACATG TAGGTTCTTT	1140
	TTCCACGCAA TGTAAGAACA TGATATACTG TACGTTGGAA AGCATTTACC TTATTTATAT	1200
45	ACCTGAATGT TCCTACTACA CAAATAAACA TATATTAAAT WCTAAAAAAA AAAAAAAAAA	1260
	CTGGAGGGG GGCCCGGTAC CCAAATCGCC GGATAGTGAT CGTAAAC	1307
50	(2) INFOFMATION FOR SEQ ID NO: 170:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1624 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170:

	GGCACGAGGT CGCCGCCGCG GCCGCTGGA ATTGTGGGAG TTGTGTCTGC CACTCGGCTG	60
	CCGGAGGEGA AGGTCCCTGA CTATGGCTCC CCAGAGGCTG CCTTCATCTA GGATGGCTCC	120
5	TOTGGGGCATG CTGCTT939C TGCT9ATG9C CGCCTGCTTC ACCTTCT9CC TCAGTCATCA	180
	GAACCTGAAG GAGTTTGCCC TGACCACCA AGAGAAGAGC AGCACCAAAG AAACFGAGAG	240
10	AAAAGAAACC AAAGCCGAGG AGGAGCTGGA TECCGAAGTC CTGGAGGTGT TCCACCCGAC	300
10	GCATGAGTGG CAGGCCTTTC AGCCAGGGTA GGCTGTCCCT GCAGGATCCC ACGTACGGCT	360
	GAATCTTCAG ACTGEGGAAA GAGAGECAAA ACTCCAATAT GAEGACAAGT TCCGAAATAA	420
15	TTTGAAAGGC AAAAGGCTGG ATATCAACAC CAACACCTAC ACATCTCAGG ATCTCAAGAG	480
	TOCACTOGCA AAATTOAGG AGGODOCAGA GATGGAGGGT TOAAAGGAAG ACAAGGCAAG	540
20	GCAGGCTGAG GTAAAGOOGG TCTTCCGCCC CATTGAGGAA CTGAAGAAAG ACTTTGATGA	600
<i>۵</i> 0	GCTGAATGTT GTCATTGAGA CTGACATCCA GATCATGGTA CGGCTGATCA ACAAGTTCAA	660
	TAGTTCCAGC TOUAGTTTGG AAGAGAAGAT TGCTGCGCTC TTTGATCTTG AATATTATCT	720
25	CCATCAGATG GACAATGCGC AGGACCTGCT TTCCTTTGGT GGTCTTCAAG TGGTCATCAA	780
	TGGGCTGAAC AGJACAGAGI CCITTGTGAA GGAGTATGCT CCGTTTGTGI TGGGTGCTCC	840
30	CTTTTCCAGC AACCCCAAGG TCCAGGTGGA GGCCATCGAA GCGGGAGCCC TGCAGAAGCT	900
50	GCTGGTCATC CTECCACGG AGEAGCCGCT CACTGCAAAG AAGAAGGTCC TGTTTGCACT	960
	GTGCTCCCTG CTGCGCGAUT TCCCCTATGC CCAGCGGCAG TTCCTGAAGC TCGGGGGGGCT	1020
35	GCAGGTCCTG ACSACCCTUG TRUNGGAGAA GGGCACGGAG CTGCTCGCCG TGCGCGTGGT	1080
	CACACTGCTC TACGACCTGG TUACGGGAGAA GATGTTCGCC GAGGAGGAGG CTGAGCTGAC	1140
40	CCAGGAGATG TOCCCAGAGA ACCTGCAGGA GTATCGCCAG GTACACCTCC TGCCAGGCCT	1200
,0	GTGGGAACAG GOOTGGTGCG AGATCACGGC CCACOTCCTG GCGCTGCCCG AGCATGATGC	1260
	COGTGAGAAG GTGCTGCAGA CASTGGGGGT COTGCTGACC AUCTGCGGG ACCUSTASIG	1320
45	TRAGGARROCC RAGRITRIGGRA GRACARITGER RAGRICTERAS STITGARTARE ARGITECTESC	1380
	CAGCCTGGAG CTGCAGGATG GTGAGGACGA GGGCTACTTC CAGGAGCTGC TGGCCTCTGT	1440
50	CAACAGCTTG CTGAAGGAGC TGAGATGAGG CCCCAGACCA GGACTGGACT	1500
50	TAGTGAGGCT GAGGGGTGCC AGCGTGGGTG GGCTTCTCAG GCAGGAGGAC ATCTTGGCAG	1560
	TOCTOSCITG GCCATTAAAT GAAAACCIGA AGGCCAAAAA AAAAAAAAAA AAAAAAAAAA	162

^{60 (2)} INFOFMATION FOR SEQ II NO: 171:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2003 base pairs

(E) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

	***			. 552 15			
10	GBCACGABCC	AGCTTGCAGG	AGGAATCGGT	GAGGTCCTGT	CCTGAGGCTG	CTGTCCGGGG	60
	COGGTGGCTG	COCTCAAGGT	COCTTCCCTA	GCTGCTGCGG	TTGCCATTGC	TTCTTGCCTG	120
15	TTCTGGCATC	AGGCACCTGG	ATTGAGTTGC	ACAGCTTTGC	TTTATCOGGG	CTTGTGTGCA	180
13	G330003337	-999000000A	TOTGOACATO	CTGAGGACAG	AAAAAGCTGG	GTCTTGCTGT	240
	GCCCTCCCAG	GOMNAGNGIM	COCTOCOTOA	AAGACTGACA	GCCATCGTTC	TGCACGGGG	300
20	TTPCTFCATG	TGACGCCAGC	TAAGCATAGT	AAGAAGTCCA	GCCTAGGAAG	GGAAGGATTT	360
	TGGAGGTAGG	TESTTTEST	GACACACTCA	CTTCTTTCTC	AGCCTCCAGG	ACACTATGGC	420
25	CTGTTTTAAS	AGACATOFIA	TTTTTCTAAA	GGTGAATTCT	CAGATGATAG	GTGAACCTGA	480
20	GTTGCAGATA	TACCAACTPC	TGCTTGTATT	TCTTAAATGA	CAAAGATTAC	CTAGCTAAGA	540
	AACTTOOTAG	GEDATC AASE	AACCTATGTG	TTCCCTCAGT	GTGGTTTCCT	GAAGCCAGIIG	600
30	ATATGGGGGT	TAGGATAGGA	AGAACTTTCT	CGGTAATGAT	AAGGAGAATG	TCTTGTTTCC	660
	TCCCACCTGT	GTTGTAAAGA	TAAACTGACG	ATATACAGGC	ACATTATGTA	AACATACACA	720
35	CGCAATGAAA	COGAAGCTIG	GCGGCCTGGG	CGTGGTCTTG	CAAAATGETT	CCAAAGCCAC	780
	CTTAGCCTGT	TOTATTCAGO	GGCAACGCCA	AAGCACCTGT	TAAGACTCCT	GACCCCCAAG	840
	TGGCATGCAG	CCCCATACC	CACCGGGACC	TGGTCAGCAC	AGATCTTGAT	GACTTOUCTT	900
40	TCTAGGGCAG	ACTGGGAGGG	TATCCAGGAA	TCGGCCCCTG	CCCCACGGGC	GTTTTCATGC	960
	TGTACAGTGA	CCTAAAGTTG	GTAAGATGTC	ATAATGGACC	AGTOCATGTG	ATTTCAGTAT	1020
45	ATACAACTCO	ACCAGACCCC	TCCAACCCAT	ATAACACCCC	ACCCCTGTTC	GCTTCCTGTA	1080
	TGGTGATATC	ATATGTAACA	TTTACTCCTG	TTTCTGCTGA	TIGTITITIT	AATGTTTTGG	1140
	TTTGTTTTTG	ACATCAGCTG	TAATCATTCC	TGTGCTGTGT	TTTTTATTAC	CCTTGGTAGG	1200
50	TATTAGACTT	GCACTTTTTT	AAAAAAAGGT	TTCTGCATCG	TGGAAGCATT	TGACCCAGAG	1260
	TGGAACGCGT	GGCCTATGCA	GGTGGATTCC	TTCAGGTCTT	TCCTTTGGTT	CTTTGAGCAT	1320
55	CTTTGCTTTC	ATTOGTOTOG	CGTCTTTGGT	TCTCCAGTTC	COTTATTAAA	AAAGTAAAGG	1380
	ATCTTTGAGT	AGGTTCGGTC	TGAAAGGTGT	GGCCTTTATA	TTTGATCCAC	ACACGTTGGT	1440
	CTTTTAACCG	TGCTGAGCAG	AAAACAAAAC	AGGTTAAGAA	GAGCCGGGTG	GCAGCTGACA	1500
60	GAGGAAGCCG	CTCAAATAGG	TTCACAATAA	ATAGTGGCAA	татататата	GTTTAAGAAG	1560

423

	GCTCTCCATT	TGGCATCGTT	TAATTTATAT	GTTATGTTCT	AAGCACAGCT	CTCTTCTCCT	1620
5	ATTTTCATCC	TGCAAGCAAC	TCAAAATATT	TAAAATAAAG	TTTACATTGT	AGTTATTTTC	1680
J	AAATCTTTGC	TTGATAAGTA	TTAAGAAATA	TTGGACTTGC	TGCCGTAATT	TAAAGCTCTG	1740
	TTGATTTTGT	TTCCGTTTGG	ATTTTTGGGG	GAGGGGAGCA	CTGTGTTTAT	CCTGGAATAT	1800
10	GAAGTCTGAG	ACCTTCCGGT	GCTGGGAACA	CACAAGAGTT	GTTGAAAGTT	GACAAGCAGA	1860
	CTGCGCATGT	CTCTGATGCT	TTGTATCATT	CTTGAGCAAT	CECTOGGTCC	GTGGACAATA	1920
15	AACAGTATTA	TCAAAGAGAA	АААААААА	AAAAAACTCG	NEESEGGCC	CGSTACCCAA	1980
13	TTCGCCCTAT	AGTGAGCCNA	TTC				2003

20

25

30

35

40

45

50

(2) INFORMATION FOR SEQ ID NO: 172:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 786 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:

GGCACAGCGG CACGAGAAGA CTTTGGTGTT TAAGAGATTA ATGTGTTAGC CAGAACAACT €0 CATTTCTCTA CCMGTGTGTA GTCCATTTAT CTTTAAAGAT TTTCTATTGG AATAATTTTG 120 AAATTACTTT CTTAGTTTTC TTCATTAAAA ACTAAGAAAA TGCTTTGTTT ATTATGAATT 180 GCTATTTCTC TTGATTATTA TTCTTGGAGA AAGTCTATCA GACGTAATTC TTCTGATTTG 240 CTTCTAGGCT AGAGGAAAAT GTGAAAGATG ACAAATGAAA ATTTCAAAGG TTGTCAGTAG 300 TATGACTTCT TTTATCGTTT GTCATTATCA CAAATATATC AACATAGGAC TTTTAAAAGA 360 4.10 4 = () CAGAGAGAAA GAGCAAAGAA ATAACCAAGG GTGATGTACT GGTATTGAAG GTTTACCAAA TAAGGACTOC TTTTATTATG AACTATAGTC TATATTCTAA GTAAATCAAT TTTTCTATTA 540 TETETTTTTT GTTCCTECAG GCAAGATCTC TGAACTTTAT GCAGAGGGTT CTTTTAAAAA 600 AACAAAGTTG AATTTTTTTA TITCTTGGAA TATTTTTTT CATIGATTTC TECCAAGTAG 650 AGCAGATTCA AATCTCCTTT GTACCCTATG TCTTTTTTGT TTTGCTATTA GCTCAGTATT 720

Like the Like the All

WO 98/54963

1500

(2) INFORMATION FOR SEQ ID NO: 173:

	•	
5	(i) SEQUENCE CHARACTERISTICS: (A) LEIGTH: 1758 base pairs (B) TYPE: nucleic acid (C) STRANTELNESS: double (D) TOPCLOST: linear	
10		
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:	
	GGGACGAGCC CTGCCCACCT CCTCCAGCCT CCTGCGCCCC GCCGAGCTGG CGGATGGAGC	60
15	TECGCACGGG GAGCETGGGE AGCCAGGCGG TEGGCEGGAG GATGGATEGG GACAGCCGAG	120
13	ATGGCGGCGG CGGCAAGGAC GCCACCGGCT CGGAGGACCTA CGAGAACCTC CCGACTAGCG	180
	OUTCOSTST CARDOACATS ACARGAGAS CGATGGGGG GATGCTGGAG CACTCGGTCA	240
20	TSTACCCGCT GGACTCCGTG AAGACACGAA TGCAGAGTTT GAGTCCAGAT CCCAAAGTCC	300
	AGTACACAAG TATCTACGGA GOCCTCAAGA AAATCATGGG GACCGAAGCT TCTGGAGGCC	360
25	CTTG:GAGG: GT:AACGT:A TGATCATGG TGCAGGGCCR GCCCATGCCA TGTATTTTG:	420
23	CTECTATGAA AACATEAAAA GEACTTTAAA TGACGTTTTE CACCACCAAG GAAACAGECA	480
	CCTAGCCAAC GGTATTTTGA AAGGTTTGT CTGGAGTTAG AAAGTTCTCT TCTTCAACAC	540
30	GTCCCTCCCC AGGGTGTTCC TCCCTGTGAC CCAGCCGCCT CGACTTCGGC CCGCTTGCTC	601)
	ACGAATAAAG AACTCAGAGT TGTGTGCA ATGCACACCC AGACACACGC ACGCACACAC	660
35	AGGEGEGEGE ACACACATGE THTTTCTGT TECCETTEGE TTTCTGAAGE CTGGGGAGAA	720
55	ATCAGTGACA GAGGTGTTTT GGTTTTATTG TTATGTGGGT TTTCTTTTGT ATTTTTTTTTG	780
	TTTGTTTTGT TTTTAAACAT TCAAAAGCAA TTAATGATCA GACATAGGAG AAACCCTGAA	840
40	TAGAAACAAA ACTTTTGAAT GCTGGATTCA AAAAAAAAAA	900
	TTTGAGACTA TTTAAAAACT GGTACAACAG GTCTCTACAA CGCCAAGATC TAACTAAGCT	960
45	TTAAAAGGT: AAGAAGTTTT ATGGCTGACA AAGGACTCGC GCAACGCAGA AGGCCTTTCC	1020
45	CACCTTAAGC TTCCGGGGAT CTGGGAATTT TACCCCCATT CTCTTCTGTT TGTCTGAGTC	1080
	TCATCTCTCT GCAAGCAAGG GCTGAAATCA TTTTGTTTGG TTGTTTTGAG GGAGAGAGAGGC	1140
50	GEGGTGGGGG GGTGCAAATC TOCCAGCAEC TCTTACGTAA GGCATGTTTT ATTGGEGGAGG	1200
	GOTGAGCTTT TATTTTCTCC TCTCCAGTGG GGTTGGCTTT TATTGTTTCT TGTTTGGGTT	1260
55	TGGAATGGAA ATATGGATAG CAGCATAAAG TACTTTTATT TTGACAAAAT TCATTTTTT	1320
55	CAACAATGGA GACATAGATT TGACCCACAA TAACTTCTCC CCCTCTCTTT TTACTCTGCT	1380
	CAAAAAGCAT CTCTCCTCCT ATTACCCAAC CTTGGTCATA AGTGTGCCTG GCTGGTTTGC	1440

AGATATTIGT TCTGCTTTGT AAAAATTGGC CATTAGTGCA TTTATTGAGA TGATCTCTAA

	AGAGCTAT3C CCTGACCTAC CCCTGATTCT ATGACATTGG GGCCCTTCTT TTGCTGAAAC	1560
_	TECCTTACET AATGETTTTA CIRCCTTGAAA GASATTTGAC GGAATCCATT TTATGCCAAG	1620
5	THOTGODITG CACTGTTTCT GRAATATSTR GTHTATGCTH TGGTRATCTT GCTGGGAATG	1680
	ATTATAASTS TGTGTGTGGT GECGGAGTGE GTATTACATS CATTGCTGAA GAGTCAAAAA	1740
10	AAAAAAAAA AAACTCGA	1758
15	(2) INFORMATION FOR SEQ ID NO: 174:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 883 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESIRIPTION: SEQ ID NO: 174:	
25	C'IGITAGAAT GCCCAGTTTA CC'IGGATGGC AACCCAACAG TGCTCCTGCC CACCTGCCCC	60
	TCAATCCTCC TAGAATTCAG COCCCAATTG CCCAGTTACC AATAAAAACT TGTACACCAG	120
30	CCCCAGGGAC AGTCTCAAAT GCAAATCCAC AGAGTGASMC ACCACCTCGG GTAGAATTTG	180
50	ATGACAACAA TCCCTTTAGT GAAAGTTTTC AAGAACGGGA ACGTAAGGAA CGTTTACGAG	240
	AACAGCAAGA GAGACAAGGG ATGCAACTCA TGCAGGAGGT AGATAGACAA AGAGCTTTGC	300
35	AGCAGAGAAT GGAAATGAAG CAGCATGGTA TGGTGGGCTC TGAGATAAGT AGTAGTAGGA	360
	CATCTGTGTC CCAGATTCCC TTCTACAGTT CCGACTTACC TTGTGATTTT ATGCAACCTC	420
40	TAGGAGGGCT TCAGCAGTCT CCACAACACC AACAGCAAAT GGGGCAGGTT TTACAGCAGC	480
40	AGAATATACA ACAAGGATCA ATTAATTCAC CCTCCACCCA AACTITCATS CAGACTAATG	540
	AGOGAGGOAG GTAGGCCCTC CITCATMINT TOOTGATTCA CCATCAATCC CTGTTGGAAG	600
45	ICCAAATTTT TOTTOTGTGA AGCAGGGACA TGGAAATCTT TOTGKGACCA GOTTOCAGCA	660
	STOCOCAGTS AGRICTTOTT TTACACCTGC TTTACCAGCA GCACCTCCAG TAGCTAATAG	720
50	CAGTOTOCCA TGTBGCCAAG ATTOTACTAT AACCCATGGA CACAGTTATO CGGGATCAAC	780
50	CCAATCGCTC ATTCAGTTGT ATTCTGATAT AATCCCAGAG GAAAAAGCGN AAAAAAAAARA	840
	AMAARAAARA ARAAAGGAGA TGATGATCCA GAATTCCACC AAGGCTCC	888

HOLDER BENTTO BY BORNEL TO THE COLUMN

60 (i) SEQUENCE CHARACTERICTICS:

WO 98/54963

426

(A) LENGTH: 2379 base pairs
(B) TYPE: nucleic acid
(C) STRAIDEDNESS: double
(D) TOPCLOSY: linear

3	(xi) SEÇUENCE PESCRIPTION: SEÇ ID NO: 175:	
	GGCAGAGCIA GTGTDGACTC CATCCCCCTG GAGTGGGATC ACGNCTATGA CCTCAGTCGG	60
10	GACCTGGAGT CTGCAATGTC CAGAGCTCTG CCCTCTGAGG ATGAAGAAGG TCAGGATGAC	120
	AAAGATTTOT ACCTOOGGG AGCTGTTGSC TTATCAGGGG ACCACAGTGC CCTAGAGTCA	130
15	CAGATOCSAC AACTSOGCAA ACCOTSGATS ATAGCOCCTT TOAGATACAG CAAACCSAAA	240
13	ATATCATTOG CAGCAAAACT CUCACGGGGC CGGAGCTAGA CAUCAGCTAC AAAGGCTACA	300
	TGAAACTSCT 30003AATGC ACTAGCAGTA TAGACTCCST GAAGAGACTS GAGCACAAAC	350
20	TGAAGGAFSA AGAGSAGAGC CTTCCTFSCT TTSTTAACCT GCATAGTACC GAAACCCAAA	420
	DGGCTGGTGT GATTSACCGA TOGGGGCTTC TOCAGGCCCA GGCATTGAGC AAGGAGTTGA	430
25	GSATSAAGOA GAACCTCCAG AAGTGGCAGO AGTTTAACTC AGACTTGAAC AGCATCTGGG	540
	OCTG92T9G3 GGACAC9GAG GAGGAGTTGG AACAGCTCCA GCGTCTGGAA CTCAGCACTG	600
	ACATOCAGAC CATOCAGOCTO CAGATCAAAA AGCTCAAGGA GCTCCAGAAA GCTGTGGAGACC	ธ์กับ)
30	ACCGCAAAGO CATCATCCTC TCCATCAATC TCTGCAGCCC TGAGTTCACC CAGGCTGACA	720
	GCAAGSAGAG CCGGGACCTG CAGGATCGCT TSTSGCAGAT GAATGGGCCC TGGGACCGAG	730
35	PRICETURE CTARTERS (TORRESPORT CORRESPORT) PAREAGE TOTOTOTORY	840
	GTTTCCAT3A AAT3AGCCAT GGTTT3CTTC TTATGCT3GA GAACATTGAC AGAAGGAAAA	900
	ATGAAATPGT CCCTATTGAT TCTAACCTTG ATGCAGAGAT ACTTCAGGAC CATCACAAAC	950
40	AGCTTATGCA AATAAAGCAT GAGCTGTTGG AATGCCAAGT CAGAGTAGGC TCTTTGCAAG	1020
	ACATGTCTTG CCAACTACTG GTBAATGCTG AAGGAACAGA CTGTTTAGAA GCCAAAGAAA	1080
45	AASTCCATST TATTSGAAAT CGGCTCAAAC TTCTCTTSAA GGAGGTCAST CGTCATATCA	1140
	AGGAACTGGA GAAGTTATTA GACGTGTCAA GTAGTCAGCA GGATTTGTCT TCCTGGTCTT	1200
	CTSCTGATSA ACTSGACACC TCAGGGTCTG TGAGTCCCAY ATCAGGAAGS AGCACCCCAA	1260
50	ACAGACAGAA AACGCCACGA GGCAAGTGTA GTCTCTCACA GCCTGGACCI TCTGTCAGCA	1320
	GTCCACATAG CAGGTCCACA AAAGGTGGCT COGATTCCTC COTTTCTGAG CCARGGCCAG	1380
55	GTIGGTCCGG CCGIGGCTTC CTGTTCAGAG TCCTCCGAGC AGCTCTTCCG CTTCAGCTTC	1440
	TOSTGCTOUT CCTCATCGGG CTTGCCTGCC TTGTACCAAT GTCAGAGGAA GACTACAGCT	1500
	GTGCCCTCTC CAACAACTTT GCCCGGTCAT TCCACCCCAT GCTCAGATAC ACGAATGGCC	1560
60	CTCCTCCACT CTGAACTAAG CAGATGCCAT CTGCAGAAGT GCTGGTAGCA TAAGGAGGAT	1620

427

	CGGGTCATAA GCAATCCCAA ACTACCAACA AGAGGACCTT GATCTTGGCG AAAGCCMTCG	1630
_	GTGTGGCAGC TTTAGECTCC TECAGATCAC ATGTGTGCAA ATTATGGCTT CAGAGGTGGA	1740
5	AGATAAACAG TGACGGGGGA AJAAACAGAC AACAAGAAGG TTTGGAAGAA ATCTGGTTIG	1800
	AGACTOTGAA COTTAGDADT AAGGADATTG AGTAAGGACO TOCAAAGTTO COOGGACTCA	1860
10	TGAATTCTGG GCCCTT3GCC NATTCTGTGC ACAGCCAAGG ACTTCAGTAG ACCATCTGGG	1920
	CAGCTTTCCC ATGGTGCTGC TCCAACCATC AGATAAATGA CCCTCCCAAG CACCATGTCA	1980
. ~	GTGTCSTACA ATCTACCAAC CAACCAUTGU TGAAGAGATT TTAGAACCTT GTAACATACA	2040
15	ATTTTTAABA GCTTATATGG CAGCTTBCTT TTTACCTTGT TTTCBTTTGG GGCATGATGT	2100
	TTTAACCTTT GCTTAGAA3 CACAAGCTUT AAATCTAAAA GGCACTTTTT TTTAGAGGTA	2160
20	TAAAGAAAAA CTAGATGTAA TAAATAAGAT CATGGAAGGC TTTATGTGAA AAAAGTTGAA	2220
	TGTTATAGTA AAAAAAAAG ATATTTATST ATGTACAGTT TGCTAAAGCC AAGTTTTGTT	2280
25	TSTATTGATT TCTTTGCATT TATTATAGAT ATTATAAAAT AAAAAAAAA AAAAAAAA	2340
25	TEGACGGGG GECCOUTACE CAATTCGCCC TATAGTGAG	2379
30	(2) INFORMATION FOR SEQ ID NO: 176: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1343 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (E) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:	
	GCGCCTTCAC GATGCCGGCG GTCAGTGCTC CAGGTCCCTT ATTCTGCCTT CTCCTCCTGC	60
	TECTISTATIC COADA SCOT GAGACKSIGT GTITTCCTCT ACGRAGGTIT GAGTACAAGC	130
45	TYCAGOTTCAA AOGOCCAAGG CTGGCATTGC CTGGGGCTGG AATACCCTTY TGGAGCCATY	180
	ATGGAGGTGA GG33CAGG3G TG3GGA3CGC TAT3CCCAGG GTCCCTCAAA G1G3TGGAGG	240
50	GGCTGTRACT TG3TY93GAG TGGGTCTGTC ACA33CATGC TCTGTCCAGG GTGGGGCAAG	3(1)
50	CCCTGGGACA GTCCCAGGCA CCCCAGGACC CCTTCCAGGC TTGTCTCCTK; CTCCACCGCC	36
	TONYCHOOO OOFGCOOLO CONYCEARTA ACACCICICACC CACACINILLA CECARCECY	42
	A STATE STORY OF THE STATE OF T	en ")

 $(i,k_{\mathbf{q}})^{(1)} = i_{\mathbf{q}} \cdot (i_{\mathbf{q}} \cdot i_{\mathbf{q}}) \cdot (i_{\mathbf{q}} \cdot i_{\mathbf{q}}) = (i_{\mathbf{q}} \cdot i_{\mathbf{q}} \cdot i_{\mathbf{q}}) \cdot (i_{\mathbf{q}} \cdot i_{\mathbf{q}} \cdot i_{\mathbf{q}})$

	CTGGGGGCTA CCTGGAGGGA AGRATICOTCA TUCCAGGTGA GTGGHCACCA GCCCTTCCCT	660
	STATGTGTGT TGTGGGTGGA AGTAGGCATG AGAGCATCTT AGCCCATAGG TITGTATTCA	720
5	GGGACTTOCA AACCCAGACC TALAAAGAGT GTGTCTTCTA CCAGATCTTG TTCAAAAAAG	78:1
	DGTTTGTGAT GATGGAACTA CACGATAGAG GGAGTGAGCA AGAACAATGA GGATTAGAGT	841
10	GGAGCENGAA ANAGTETAGG AGEATEGETT OEAAAACATA TECTETEAGG TETGIOCACC	900
10	PGAGAGTTOG GOCATOGATT FANTTOTGAG COTOTTAGGA GOCAAAGGAA AGACAGAAAG	960
	CAGATOGGOT GTGGATTTCT GTGTATAAAA TETSAGTTCT TEGGGGEETT COGTEGGTEA	1020
15	DESCRIPTANT COORDINGT TRANSPORCE QUECUMANT GROUND CARRAGETTS	108.
	GARACCATCO TEGCOEGGAT GGIGAAGCOE TSACTCTACT AGAAGTGCAA AGAITGGCTG	1140
20	GETERORS CONCERNS GARAGETT COLORS TO TO TO TO THE CONTRACT OF	1200
_0	TGGGCCTGGG AGGCCGAGGT TGCGGTGAGC TGAGATCCTG CCATTGCACT TCAGCCTGGG	1260
	CACAGAGCCA GACTCTGGCT CAAAAAAAAA AAAAAAAAAA	132)
25	CAATTOGCCG NATATGATCG TAAACAAT	1343
30 35	(2) INFORMATION FOR SEQ ID NO: 177: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1502 base pairs (B) TYPE: nucleic acid (C) STRANDELNESS: double (C) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177:	
40	CTCAAAATAA ATAAATAAAT AAAAATTTGT ATTCCATTGA TTTCGGTAGA CACCAGGAAT	60
	GTGCATTTCT AACAAGCTTT CCAGGCGATC CTATAGTAAG TCATCTGTGG ACTACTTTAA	120
45	GAAACTCTTC TATAGAGAAT GGAGTTGGAT TAATAATAGG TGATTTTTTA CACTGGACTG	180
	ATTCACAAGA ACCTAAACAG TAGTCCATGA AGCTGCTCAT CTGTGCTAAC TATTTGCCCC	240
	CGTCTCACTC TGAAAGCAGC AGGAGATGTT GTTTACTTTG TTTCTATCCC CTPTGTCTGG	300
50	AGATTAATTI TOGAATGAAA GITTITCTCT CTATGCCATT CCTOGTTCTT TTCCAAAGCC	360
	TCATACAAGA GGATTAGGTC ACAATGCATG CATTACCTTT TAAAAGAATG CGATATTGAT	420
55	ACCGATGCTT ACTITITITT TITTINACTA CTTGTTTTAT TCCTTCCAGN AAAGTATAGC	480
	CCGCCTTTCT ATAGCATAGT TETETTTAGG TGGAATGATT CCTATAAGAT TTCTCATTAT	540
	TAAATCATGC ATTTTCAAG ATGGAATCAA TMTTTGATTT AATCTAAGCT GATATTCTCA	600
60	TTTCTTAGAA GAACAACCTA CATCCTAGAG ACACCAGG AAATATAGCC ACCCCACAC	660

429

	AGCCAGTTAG TATCCAGTTG GTOCTGGACT CCAGCCAGGT GTCCTGCCTC ATGGTAGTTA	720
5	AATGATATAT AGAAAAGGTA AATTTTTAAA GAAATATTTA TTAATATATT CCTATAAAAC	780
	ATTTTAAAGG TAACCACATA AAAATGGTTA ATTTTTCCAT TCCAAAGTAA ATGCTAAGCA	840
	TGTTTATTAA TGAAGCAGTA CTTCTGATTA STATATGACA TTCTGAAGTT AATTAAACTC	900
10	ATTGCACTAA ATGTGTCTTC CTTGGTATAG TGGAGGATTT GAGGATTGGA ATATAGAGTA	960
	GAGTGCTTGC TTAAGCTGG GAGCCCATCT TTATAGCTAT TTGATGTAAG AAAAGAGACA	1020
15	TGSNCCATTT CTAAACTATA TAAGGTGAGT GTSTCTATTC CCAGCAGATA TAAAGGAAAA	1080
	AGBAAACTTT TTTGAUTCOC ACUTTOCCAG CCTCACCTAG CCATCTTCTA CCCTCAAATA	1140
	TAGAGATGTT AGTGCAAGGT CCTGGGCTCT AGGTGATCAT TTCATAAGTC CTTTACAGAT	1200
20	AAAGAAAAAG TAGTETTET ATETTETET TIAAGTAACC CCAAAACAA TITATATTGT	1260
	ATTCAGCAAA ATTGGAATTC AGGTGTTAA TTTTAGAACA TGAAGTGCCT GCTGTTTAA	1320
25	GCATTGACTT GTATAAAAA3 AATTGCATGT CICCAGTAAG CTTATGCGTT TTCTCATTTT	1380
25	TAGGTATATG GCTTTTAATC ATSTAAAGTG AAACATTAGT TITCTTGCAT TTTATTACAG	1440
	GTTCTTTGTT GCAATAAAGA TGETGCTGAA ATTAATTGAA AAAAAAAAAA AAAAAAAACTC	1500
30	GA	1 502
35	(2) INFORMATION FOR SEQ ID NO: 178	
35	(2) INFORMATICH FOR SEQ ID NO: 178 (i) SEQUENCE CHAPACTERISTICS:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1637 base pairs	
35	(i) SEQUENCE CHARACTERISTICS:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1637 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	 (i) SEQUENCE CHAPACTERISTICS: (A) LENGTH: 1637 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (X1) SEQUENCE DESCRIPTION: SEQ ID NO: 178: 	60
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1637 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	60 100
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1637 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (X1) SEQUENCE DESCRIPTION: SEQ ID NO: 178: ATTITICTAGE CCACAAAGGAC TGAAUTTCAG ATCCAAAAGT TEACTDGFTA ATTATETICA	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1637 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (X1) SEQUENCE DESCRIPTION: SEQ ID NO: 178: ATTITICTAGE CEADAAGGME TGAAUTTEAG ATCEAAAAGT TEACTDGOTA ATTATETTEA CAAAAATGGA GAGACTTETE TTAAGCCAGA AGATTTTGAT TTTACTGTAC TETETAAAAGG	120
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1637 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (X1) SEQUENCE DESCRIPTION: SEQ ID NO: 178: ATTITICTAGE CEALAAGGME TGAAUTTEAG ATCEAAAAGT TEACTDGOTA ATTATETTEA CAAAAATGGA GAGACTTETE TTAAGCCAGA AGATTTTGAT TETTACTGTAE TETTETAAAAG OUGTATCAAG TCAAGATATA AAGACTGGAG CATGGGAGGC CTGACATGCC ATCTACAAAA	120 180 240
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1637 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (X1) SEQUENCE DESCRIPTION: SEQ ID NO: 178: ATHTHETAGE CCALAAGGAE TGAAUTTEAG ATCEAAAAGT TEACTEGETA ATTATETTECA CAAAAATGGA GAGACTTETE TTAAGCCAGA AGATTTTGAT TYTACTGTAE TTTETAAAAG GEGTATCAAG TCAAGATATA AAGACTGCAG CATGGCAGGE CTGACATECE ATCTACAAAA CCAAAAGTAAC AATTCAAACT GGAACCTEAG GACCCGAAGC AAGTGCAAAA AGGATGTGTT	120 180 240
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1637 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (X1) SEQUENCE DESCRIPTION: SEQ ID NO: 178: ATHTHETAGE CCALAAGGAE TGAAUTTEAG ATCEAAAAGT TEACTEGETA ATTATETTECA CAAAAATGGA GAGACTTETE TTAAGCCAGA AGATTTTGAT TYTACTGTAE TTTETAAAAG GEGTATCAAG TCAAGATATA AAGACTGCAG CATGGCAGGE CTGACATECE ATCTACAAAA CCAAAAGTAAC AATTCAAACT GGAACCTEAG GACCCGAAGC AAGTGCAAAA AGGATGTGTT	120 180 240
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1637 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (X1) SEQUENCE DESCRIPTION: SEQ ID NO: 178: ATTITICTAGE CEALAAGGAE TGAAGTTEAG ATCHAAAAGT TEACTTGETA ATTATETTEA CAAAAATGGA GAGACTTETE TTAAGCEAGA AGATTTTGAT TITTACTGTAE TTTETAAAAG GOGTATCAAG TEAAGGATATA AAGACTGGAG CATGGCAGCE CTGACATGCE ATCTACAAAA CEAAAGTAAC AATTCAAACT GGAAGCTGAG GACCCGAAGC AAGTGCAAAA AGGATGTGTT TATOCCGCCA AGTAGTASTT CAGAGTTGCA GGAGAGCAGA GGACTCTCTA ACTTTACTTC	120 180 240

 $\{(A_{k})_{k}: k \in \mathbb{R}^{k}, \forall k \in \mathbb{R}^{k}, k \in \mathbb{R}^{k}$

	TAAAGCAGAT GCTGAAAAGTG AACCTGTTGC ACAAAAAAGT CAGCTTGATA GAACTGTCTG	540
	CNTTTCTGAT OCTOGRAGUAT GTGGTGAGAC CCTCAGTGTG ACCAGTGAAG AAAACAGCCT	600
5	TOTAAAAAAA AAAGAAAGAT CATTGAGTTC AGGATCAAAT TTTTGTTCTG AACAAAAAAC	660
	TTCTGGCATC ATAAACAAAT TTTGTTCAGC CAAAGACTCA GAACACAACG AGAAGTATGA	720
10	GSATACCTIT TTAGAATCTG AAGAAATCGG AACAAAAGTA GAAGTTGTGG AAAGGAAAGA	780
10	ACATTTOCAT ACTEACATT TAAAACGTGG CTUTGAAATG GACAACAACT GCTCACCAAC	840
	CAGGAAAGAC TTCACTGAAG ATACGATCCC ACGGAACAGA GATAGAAAGA AGGAAAACAA	900
15	GCCTGTATTT TTCCAGCAAA TATAACAAAG AAGCTCTTAG CCCCCCACGA CGTAAAGCCT	960
	TEAAGAAAPS GACACCTOCT CGSTCACCTT TTAATCTOST TCAAGAAACA CTTTTTCATG	1020
20	ATCCATGGAA GCTTCTCATC GCTACTATAT TTCTCAATCG GACCTCAGGC AAAATGGCAA	1080
20	TACCTGTGTT TTGGAAGTTT TTGGAGAAGT ATTCTTCAGC TGAGGTAGGA AGAACCGCAG	1140
	ACTGGAGAGA TYPETCAGAA CTTCTTAAAC CTCTTGGTCT CTACGATCTT CCGGCAAAAA	1200
25	CCATTGTCAA GTTCTCAGAT GAATACCTGA CAAAGCAGTG GAAGTATCCA ATTGAGCTTC	1260
	ATOGGATING TODACCUIGA AGACCACAAA TTAAATAAAT ATCATGACTG GCTTTGGGAA	1320
30	AATCATGAAA AATTAAGTCT ATCTTAAACT CTGCAGCTTT CAAGCTCATC TGTTATGCAT	1380
50	AGCTTTGCAC TTOAAAAAAG CTTAATTAAG TACAACCAAC CACCTTTCCA GCCATAGAGA	1440
	TTTTAATTAS CCCAACTAGA ASCCIAGTST STSTGCTTTC TTAATSTSTG TGCCAATGGT	1500
35	GGATCTTTGC TACTGAATGT GTTTGAACAT GTTTTGAGAT TTTTTTTAAAA TAAATTATTA	1560
	TTTGACAACA ATCCAAAAAA AAAAAAAAAA AAAAAAAAA AAAAAAAA	1620
40	AAAAAAAA AAAAAAA	1637
45	(2) INFORMATION FOR SEQ ID NO: 179: (i) SEQUENCE CHAFACTERISTICS:	
	(A) LENGTH: 2911 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179:	
55	GGTGGTTYTT GTTCTGCAAT AGGCGGCTTA GAGGGAGGGG CTTTTTCGCC TATACCTACT	60
	GTAGCTTCTC CACGTATGGA CCCTAAAGGC TACTGCTGCT ACTACGGGGC TAGACAGTTA	120
	CTGTCTCAGC TCTAGGATGT GCGTTCTTCC ACTAGAAGCT CTTCTGAGGG AGGTAATTAA	180
60	AAAACAGTGG AATGGAAAAA CAGTGCTGTA GTCATCCTGT AATATGCTCC TTGTCAACAA	240

431

	TGTATACATT CCTGCTAGGT GCCATATTCA TTGCTTTAAG CTCAAGTCGC ATCTTACTAG	300
-	TGAAGTATTC TGCCAATGAA GAAAACAAGT ATGATTATCT TCCAACTACT GTGAATGTGT	360
5	GCTCAGAACT GGTGAAGCTA GTTTTCTGTG TGCTTGTGTC ATTCTGTGT ATAAAGAAAG	420
	ATCATCAAAG TAGAAATTTG AAATATGCTT CCTGGAAGGA ATTCTCTGAT TTCATGAAGT	480
10	GGTCCATTCC TGCCTTTCTT TATTTCCTGG ATAACTTGAT TGTCTTCTAT GTCCTGTCCT	540
	ATCTTCAAGC AGGCATGGCT GTTATCTICI CAAATTTTAG CATTATAACA ACAGCTCTTC	600
	TATTCAGGAT AGTGCTGAAG ANGCGTCTAA ACTGGATCCA GTGGGCTTCC CTCCTGACTT	660
15	TATTTTTGTC TATTGTGGCC TTGACTGCCG GGACTAAAAC TTTACAGCAC AACTTGGCAG	720
	GACGTEGATT TOATCACGAT GCCTTTTTCA GCCCTTCCAA TTCCTGCCTT CTTTTCAGAA	780
20	ATGAGTGTCC CAGAAAAGAC AATTGTACAG CAAAGGAATG GACTTTTCCT GAAGCTAAAT	84ú
	GGAACACCAC AGCCAGAGTT TTCACTCACA TCCGTCTTGG CATGGGCCAT GTTCTTATTA	900
2.5	TAGTICAGTG TTTTATTTCT TCAATGGCTA ATATCTATAA TGAAAAGATA CTGAAGGAAG	960
25	GBAACCAGCT CACTGAARGC ATCTTCATAC AGAACAGCAA ACTCTATTTC TTTGGCATTC	1020
	TSTITAATGG GUTGACTOTS GGCCTTCAGA GSAGTAACCG TSATCAGATT AAGAACTGTG	1080
30	GATTTTTTTA TERROCACAGT GCATTTTCAG TAGCCCTTAT TTTTSTAACT GCATTCCAGG	1140
	GCCTTTCAGT GRETTTCATT CTGAAGTTCC TGGATAACAT GTTCCATGTC TTGATGGCCC	1200
25	AGGTTACCAC TETELATTATE ACAACAGTET CTGTCCTGGT CTTTGACTTE AGGCCCTCCC	1260
35	TGGAATTITT CTD3GAAGCC CCATCAGTCC TTCTCTCTAT ATTTATTTAT AATGCCAGCA	1320
	AGCCTCAAGT TCC/GAATAC GCACCTAGGC AAGAAAGGAT CCGAGATCTA AGTGGCAATC	1380
40	TTTGGGAGCG TTCCAGTGGG GATCGAGAAG AACTAGAAAG ACTTACCAAA CCCAAGAGTG	1440
	ATGAUTCAGA TGAAGATACT TTCTAACTGG TACCCACATA GTTTGCAGCT CTCTTGAACC	1500
15	THATTITICAC ATTITICACTS TITESTAATAT TIATCTITIC ACTITICATAA ACCAGAAATG	1560
45	TYPETAAATO CTAATATTOT TYGCATATAT CTAGCTACTO COTAAATGGT TOCATCCAAG	1620
	GCTTAGAGTA CCCAAAGGCT AAGAAATTCT AAAGAACTGA TACAGGAGTA ACAATATGAA	1680
50	GAATTCATTA ATATCTCAGT ACTTGATAAA TCAGAAAGTT ATATGTGCAG ATTATTTTCC	1740
	TYGGCCTTCA AGCTTCCAAA AAACTYGTAA TANYCAYGYY AGCTATAGGY TGTAYATACA	1800
		• 5 1 4

TOATTTTANA A STAAABA EE AAN KEELE STEELTAAAAA SEED KEELE A A KAN SEAA SAA SEED SAA 60 SEED

	GCAGTTTCTC AGACACAACA TCTCAGAATT TTAATTTTTA GAAATTCATG GGAAATTGGA	2109
5	TTTTTTTTAAT AATUTTTTTTTTTTTTAAAC ATTGGTTCCC TAGTCACCAT AGTTACCACT	2160
3	TSTATTTTAA GTCATTTAAA CAAGCCACGG TGGGGCTTTT TTCTCCTCAG TTTGAGGAGA	2220
	AAAATCTTGA TGTCATTACT CCTGAATTAT TACATTTTGG AGAATAAGAG GGCATTTTAT	2280
10	TIMATTAGTT ACTAATTCAA GCTSTSACTA TTSTATATCT TTCCAAGAGT TGAAATSCTG	2340
	GOTTCAGAAT CATACUAGAT TOTCAGTGAA GOTGATGCCT AGGAACTTTT AAAGGGATCC	2400
15	TTFCAAAAGG ATCAUTTAGC AAACACATGT TGACTTTTAA CTGATGTATG AATATTAATA	2460
1 5	CTCTAAAAAT AGAAAGACCA GTAATATATA AGTCACTTTA CAGTGCTACT TCACACTTAA	2520
	AAGTOCATEG TATTTTTCAT GGTATTTTGC ATGCAGCCAG TTAACTCTCG TAGATAGAGA	2580
20	AGRICAGGTGA TAGATGATAT TAAAAATTAG CAAACAAAAG TGACTTGCTC AGGGTCATGC	2640
	AGCTC/GGTBA TGATA/BAAGA GTGGGCTTTA ACTGGCAGGC CTGTATGTTT ACAGACTACC	2700
25	ATACTSTAAA TATGASCTTT ATGGTGTCAT TCTCAGAAAS TTATACATTT CTGCTCTCCT	2760
20,	TTETCCTAAG TTTEATGCAG ATGAATATAA GGTAATATAE TATTATAA TICATTTGTG	2820
	ATATCCACAA TAATATGACT GGCAAGAATT GGTGGAAATT TGTAATTAAA ATAATTATTA	2880
30	ANCCTAANAA AAAAAAAAAA AAAAACTCGA G	2911
35	(2) INFCEMATION FOR SEQ ID NO: 180:	
	(L) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 519 base pairs (B) TYPE: nucleic acid	
40	(1) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180:	
45	GGCACGACCC CCACCCCAGC CAGCGCCAGG CCTACTTTGG CCACCCTTAA ATTAGAATGT	60
	GGGGTCAGGG GTCAGAGAAA AGGCATTTCT CTGACCTAGT GTTTGGCGTC CGGGAACTCT	120
50	GTROCCAACO TYCAGACOOT GGCAGTOOTO ACTGAGGCCA TTGGCCCAGA GCCCGCCATC	180
30	COCCEARACE COCCEGAGGE GESTETTOCE ASSTECACAE CTGCCACAC CTCTGCCGGG	240
	CCCCAGCCC TCCCAACCGG GACCGTGCTG GTCCCTGGGG GTCCTGCCCC ACCTTGCCTT	300
55	GGGGAGGCAT GGGGCTCCT CCTCCCACCC TGCCGGCCGT CACTCACCTC TTGCTTCTGG	360
	TCCCCCAGGC CTAGGCCTTG GAAGGAGACA GGAGTCTAGG GAGGCTGAAG CCCACTCCCG	420

	TTCATGGCTC TAATAAAAAA AAAAAAAAAA AAAACTCGA	519
5	(2) INFORMATION FOR SEQ ID NO: 181:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 968 base pairs (E) TYPE: nucleic acid (C) STRANLEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENUE DESCRIPTION: SEQ ID NO: 181:	
13	TUCCUTTOUG GUUGGAAAAA GUGGGUTGG CUTGNUCATT GETTNTUCAT GUUGGUUGGU	60
	CATHROCOLAG TACTAGORTG CAGTORCAAT GIARROCOTT CETTYFECMA GAERROCYTCM	120
20	AACCRICICG STMANTTSTG ATTICAGGAG GATITGATGA AGATGTTAAA GUGAAAGTGG	180
	AGAADOTTOT CDESATTTOC ACCOTEGAAA AAACEGACCO TOTTAGECAA GCACCOTEA	240
2.5	GOICTICCTG TOUCCITCTT CCICTOCCT TCYDOCGCIC GTGGAGACAG CTGTTYTCAG	300
25	CARGGETETT CHIAGGEAGG GEGEEGRETE CTTERETGGE AGEAACATEC TTGECETTGT	360
	CACACAAGTO AGUCTCCATO TOOGCAGOTO TGTGGATGCG CTGCTGGAGG GCAACAGGTA	420
30	TGTCACTGGC TGGTTCAGCC CCTACCACCG CCAGCGGAAG CTCATCCACC CGGTCATGGT	430
	TCAGCACATC CAGCCCCCAG CGCTCAGCCT CCTGGCACAG TGGAGCACCC TCGTGCAGGA	540
	GCTGCAGGCT GCCCTGCAGC TGGCTTTCTA CCCCGATCCC GTGGAGCAGT GGCTGGAGGA	600
35	AAACGTGCAC CCCAGCCTGC AGCGGCTGCA ARCTCTGCTG CAGGACCTCA GCGAGGTGTC	660
	TGJCCCCCCC CTYCCACCCA CCAGCCCTGG CAGGGACGTT GCTCAGGACC CCTGAGGGGA	720
40	GARRICATION CARREGISTIC CITECTISCAGE CITEGESEGREC TOTGOWYTKY CWWWINESCOT	780
	COSCANTACO GUUCACITOS GUITIGTOCO CTUTGROUCA RAGITETOTI BUCCACACTO	840
	AGTTUCTGAG GGCCCTGGGC AGCCCTGGG GGAGAGACTA GAAAALACAG AAGGAAGCAG	900
45	CACACOGAGA OCCOCTITGI GATOIGCAIG ISTGACACIG ATTSITINGGA AATAAAGAGI	960
	OTOE AADO	968

(C) INFORMATION FOR SEQ ID NO: 182:

, o jurancelnel e e è lo Do topologio lineat

 $(\frac{1}{2} \delta_{\mathbf{k}}) = (\delta_{\mathbf{k}} - \delta_{\mathbf{k}}) + (\delta_{\mathbf{k}} \Delta_{\mathbf{k}}) = (\delta_{\mathbf{k}} \delta_{\mathbf{k}} \Delta_{\mathbf{k}} + \Delta_{\mathbf{k}})$

	(x1) SEQUENCE DESCRIPTION: SEQ 1D NO: 182:	
	TGTAAAAGTT ATCAGTAATC CTAATTCTTT TOOTGAGTTT TCCTTTTTGTC ACTTATTAAT	£(
5	CAGTTTTTGA AAGGACGAAT GAATTTAGAG ATGTACTCTG GAGCAGTATC ATGTTAAACC	120
	AUGGGTATAT TAGAAAANTO ATCCTCATAA TCATTCTGGG AAGTTTTTCC TCCCCAAAAA	180
10	AAGCCATCCT GATHGGTTTT CAAAACCAGA AAAAAGCTCT TAATGAGGAA CAGACCACTG	240
10	GNUTACCCAT GAGCATCTCA GGAAAACTGA GACCCTCGAG AAGCCTTGAT TTCGTGCAAC	300
	CCCCAAGGTT TCAGAGGCAG CAGCCCAGTG CTGTGGTTGA CAGACGTGGT TTTKTGGRGA	360
15	AAUCAGUCAG AGGCCARSAA TTTTCAGAGT CGTGAGTCAC GRTYPCCCAC CCAAGATTAG	426
	AGCAMASATT AGCILATACTG AGATTIBGTA AAATCATTCI GTCTAAGCAA TGGAGGTGTS	480
20	TOCAMACOTS CAGTECOTET TOACAGGGGA TECAGGCAGA TOSYGGGTTT AGGATEGGGR	540
20	AGGCCACCGC ACCCCCTTTC AYTGCTCTGC ACCTGCTCCC TCACGTGGAC ACTGTCCACA	6.):)
	ACTSTGSCTC TCACASSALA GTTSCCCAAG GASCTCATAT CTTATTGGAG ATAGGGGGTC	650
25	GTACASSTGA CATTCATGAS CAGTGIGAGS CGGGTGACAT GGGGGTGTCA ACCCAGCATC	720
	TGTCCAGGAG CTCCTCCTGC AGCCGCTCTC GCAGGTGGCC TGAGGCTCCT TTTTGAGAGA	730
30	GAACTGITTG SCCTTCCTGT CTCCTCTCCT CTGATCTGTT CTTTCTTGGA ACACCACCCA	84:)
50	AGAACCICAC CTCCTCCATC AGATTGTGAG CTCCTGGACG GCAGGAGCTG TGTCCTTCTA	900
	TTCATCTTCC TATCCCLAGA ACCTTGCACA GATCCTGGAA TGTGGTAGGT GCTLAGTAAA	960
35	TOTGTCTTGA ATAAATGAAT GAATGAATGA ACAAATGAAT GAATTTGCTT ACTTCAAGCC	1020
	AAAAGAACCA TGAAACTGTA TTTTGAGTTT CTATGTTATA GCAGTCAGCA AATCCTATTA	1080
40	AATACTTYGT GTYTCCAAGC AAAAAAAAAA AAAAAAAAA AAACTCGA	1128
45	(2) INFORMATION FOR SEQ ID NO: 183: (i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 2276 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:	
	CCGCGGCGTC TGACCTCATG GCGTAGAGCC TAGCAACAGC GCAGGCTCCC AGCCGAGTCC	6.0
55	GTTATGGCCG CTGCCGTCCC GAAGAGGATG AGGGGGCCAG CACAAGCGAA ACTGCTGCCC	1.00
	GOGTOBBOCA TOCAABDOCT TGTGGGGTTG BEGGBBOCGC TGGTETTBGC GCTCETGCTT	130
60	GTGTCCGCCG CTCTATCCAG TGTTGTATCA CGGACTGATT CACCGAGCCC AACCGTACTC	240

CALL CONTRACT OF A ROAD

	AACTCACATA TTTCTACCCC AAATGTGAAT GCTTTAACAC ATGAAAACCA AACCAAACCT	300
	TOTATTTOCC AAATCAGCAC CACCCTCCCT CUCACGACGA GTACCAAGAA AAGTGGAGGA	360
5	GCATCTGTGG TCCCTCATCC CTCGCCTACT CCTCTGTCTC AAGAGGAAGC TGATAACAAT	420
	GAAGATCCTA GTATAGAGGA GGAGGATCTT CTCATGCTGA ACAGTTCTCC ATCCACAGCC	480
10	AAAGACACTO TAGACAATGG CGATTATGGA GAACCAGACT ATGACTGGAC CACGGGCCCC	540
	AGGGACCACG ACGACTCTGA TGACACCTTG GAAGAAAACA GGGGTTACAT GGAAATTGAA	600
	CAGTCAGTGA AATCTTTTAA GATXCCATCC TCAAATATAG AAGAGGAAGA CAGCCATTTC	660
15	TUTTUTCATO TTATTATTTT TOCTTTTIGC ATTOCTGTTG TTTACATTAC ATATCACAAC	720
	AAAAGGAAGA TTTTTCTTCT GGTTCAAAGC AGGAAATGGC GTGATGGCCT TTGTTCCAAA	780
20	ACAGTGGAAT ACCATCGCCT AGATCAGAAT GTTAATGAGG CAATGCCTTC TTTGAAGATT	840
	ACCAATGATT ATATTTTTTA AAGCACTGTG ATTTGAATTT GCTTATGTAA TTTTATTTGC	900
2.5	TTGACTTTTT ATATGATATT GTGCAAATGT TTGCCATAGG CAATTGGTAC TTAAATGAGA	960
25	GGTGACTCTC TCTTTTBCCT TGGTGCTTTG GAAATTAAAT GTCACAAACG AGTATATAAT	1020
	TTTTTATCTG TACTTTTAGA GCTGAGTTTA ATCAGGTGTC CAAAATGTGA GTTAAACATT	1080
30	ACCTTATATT TACACTGTTA GTTTTTATTG TTTTAGATTT ATTATGCTTC TTCTGGAAGT	1140
	ATTAGTGATG CTACTITTAA AAGATCCCAA ACTIGTAACT AAATTCTGAC ATATCTGTTA	1200
25	CTSCTGACTC ACATTCATTC TCCCCCTTC AAATACTATT TTTTATCTAC ATTTTTTTT	1260
35	GTTCCCAAAC TGTAATGTAC AAGGATATGT GTGATAATGC TTTGGATTTG AGTAATATTT	1320
	TITTITCTTC CAAGAAAACT GCTTTGJATA TTTTTAGATA ATTTAAACAT AATTTAGGAT	1380
40	AATGATATTG CTCAATCTGA CCACAATTTT AGGTAAAACA TTAAATGTGT CAGAAATCTT	1440
	GCCAACAGAG ACTCTGCAGC TTGCAGTGGA CATAGATAAA ATGTTACAGA GATACTATTT	1500
	TYPYCGTTUG AATPACTATA TTAAATTTAG AAGCAGAAAC TOGTAAAATG TTAAATACAT	1560
45	GTACAATTGC TYTTAGTTAG CAATTCATTS TAGCATGGGT TOOTCCAAGG TYTCAAGCAA	1620
	TGGGCAGAST TTAAAATFAT ATCAGATTOG TTTACTTCGT TTATTATTTT ACAGTAAATT	1680
50	TGAATAAATO TIAGGGGTCA TTATCACTTA AATAATACTG TACCTAGGTC TTTCAAATTA	1740
	AAATTATACO TGAATGAAGT TGTTTGTATA CATAAAGGAT ATTYGTGTAC AATTACOTTT	1800

TITUSAATIAT GUTTU VATTA MAASTUTIAN TANASTITTI EA SAAAANA ABUTUTAATA 1.660 TATUTTAANN ABSACCOGOS TAAGCCASTS GOCTTGOGOT TTATUTAGAS CTOGAAGAAS 2.2040

WO 98/54963

	GCCGTCCATC CTGTCTCTTG GGCGGACAGT GTACTTTCCT AATAGGGAAG GGAAGCACAA	2100
-	TOGANATACC CCTGANCCGT TTTNTTGCAG TANTTTTTT CATATCTGAN ACTATTATTT	2160
5	AATATTTTGA ATAAGATTTT AAAAAATAAA TGGCAAAGAT ATAAATCTAA AAAAAAAAAA	2220
	AAAAAA AAAAAAAA AAAAAAAAA AAAAAAAA AAAAA	2276
10		
	(2) INFORMATION FOR SEQ ID NO: 184:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2500 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184:	
	TCCAAGCTAC GCCACTCGGG CTGGGGGCGTT GGGAGCGGGA GTGCAGAGCG TGGTCGTGGC	60
25	GGCGGCGGTG AGAAGAGCGA GGCGKAGGAG GGGGTGCCAT GGCCGGGCAG CAGTTCCAGT	120
	ACGATGACAG TOGGAACACC TTCTTCTACT TCCTCACCTC CTTCGTGGGG CTCATCGTGA	130
30	TCCCGGCGAC ATACTACCTC TGGCCCCGAG ATCAGAATGC CGAGCAAATT CGATTAAAGA	240
50	ATATCAGAAA ASTATATGGA AGSTGTATGT SGTASGTTTA CSGTTATTAA AACCCCAGCC	300
	AAATATTATT CCTACAGTAA AGAAAATAGT TCTGCTT3CA GSATGGGCAT TGTTCTTATT	360
35	CCTTGCATAT AAAGTTTCCA AAACAGACEG AGAATACEAA GAATACAATC CTTATGAAGT	420
	ATTAAATTIG GATCCTGGAG CCAÇAGTAGC AGAAATTAAA AAACAATATC GTTTGCTGTC	480
40	ACTTAAATAT CATCCAGATA AAGGAGGTGA TGAGGTTATG TTCATGAGGA TAGCAAAAGC	540
40	TTATGCTGCT TTAACGGATG AAGAGTCCCG GAAAAATTGG GAAGAATTTG GAAATCCAGA	600
	TOGGCCTCAA GCCACAAGCT TTGGAATTGC CCTGCCAGCT TGGATAGTTG ACCAGAAAAA	660
45	TTCAATTCTG GTTTTACTTG TATATGGATT GGCATTTATG GTTATCCTTC CAGTTGTTGT	720
	GGGCTCTTGG TGGTATCGCT CAATACGCTA TAGTGGAGAC CAGATTCTAA TACGSACAAC	780
50	ACAGATTTAT ACATACTTTG TITATAAAAC CCGAAATATG GATATGAAAC GTCTTATCAT	840
50	GGTTTTOGST GGAGCTTCTG AATTTGATCC TCAGTATAAT AAAGATGCCA CAAGCAGACC	900
	AACGGATAAT ATTCTAATAC CACAGCTAAT CAGAGAAATT GGCAGCATTA ATTTAAAGAA	960
55	GAATGAGCCT CCACTTACCT GCCCATATAG CCTGAAGGCC AGAGTTCTTT TACTGTCTCA	1020
	TCTTGCTAGA ATGAAAATTC CTGAGACCCT TGAAGAAGAT CAGCAATTCA TGCTAAAAAA	1080
60	GTGTCCTGCC CTACTTCAAG AAATGGTTAA TSTAATCTGC CAACTAATAG TAATGGCCCG	1140

	GAACOSTGAA GAAAGGGAGT TTCGTGUTCG AACTTTGGCA TCCCTAGAAA ACTGCATGAA	1200
	GCTTTSTCAG ATSGCCGTTC AGSGACTTCA GCAATTTAAG TCTCCCCTTC TGCAGCTCCC	1260
5	TCATATTGAA GAGGACAATC TTAGACOGGT TTCTAATCAT AAGAAGTATA AAATTAAAAC	1320
	TATCCAGGAT TIGGTGAGTI TAAAAAGAATC AGATCGTCAC ACTCTACTGC ACTTCCTTGA	1380
	AGATGAAAAA TATGAAGAGG TTATGGCTGT COTTGGGAGT TTTCCATATG TGACCATGGA	1440
10	TATAAAATCA CAGGTGTTAG ATGATGAACA TAGCAACAAC ATCACAGTAG GATCCTTAGT	1500
	TACACTGTTG GTTAAGTTCA CAAGGINAAC AATGGCTGAA GTATTTGAAA AGGAGCAGTC	1560
15	CATCTGTGET GUAGAGGAAC AGCCAGCAGA AGATGGGCAG GGTGAAACTA ACAAGAACAG	1620
	GACAMANGBA GUATBGCAAC AGAAGAGTAA AGGACCCAAG AAAACTGCTA AATCAAAAAA	1680
20	AAAGAAAACT TTAAAAAAAA AACCTACACC TGTGCTATTA CCACAGTCAA AGCAACAGAA	1740
20	ACAAAAGIAG GIAAATGGAG TIGTTIGAGAA TIGAAGITIKKA GTAAAGGAAG ATGAAGAAGA	1890
	AGTTTCAGAT AAGGCAGTG ATTCTGAAGA AGAAGAAACC AATAGAGATT CCCAAAGTGA	1860
25	GAAAGATGAT GETAGTGACA GAGACTCTEA TAGAGAGCAA GATGAAAAAAC AAAACAAAGA	1920
	TGATGAAGCA GAGTGGCAAG AATTACAACA AAGCATACAG CGAAAAGAGA GAGCTCTATT	1930
30	GGAAACCAAA TCAAAAATAA CACATCCTGT GTATAGCCTT TACTTTCCTG AGGAAAAACA	2040
50	AGAATGGTGG TGGCTTTACA TTGCAGATAG BAAGGAGCAG ACATTAATAT CCATGCCATA	2100
	TCATGTGTGT ACGCTGAAAG ATACAGAGGA GGTAGAGCTG AAGTTTCCTG CACCAGGCAA	2160
35	GCCTGGAAAT TATCAGTATA CTGTSTTTCT SAGATCAGAC TCCTATATGS GTTTGGATCA	2110
	GATTAAACCA TTGGAAGTTK GGAAGTTCAT GAGGCTGAAG CCTGTGCCAG AAAATCACCC	2280
40	ACAGTG-3SAT ACAGCAATAG AGGGGGATGA AGACCAGGAG GACAGTGAGG SCTTTGAAGA	2340
, 0	TAGCTTTGAG GGAGGAAGAG GGACGGAGGA AGGAAGGTGG TGGACTTAAG GCAGTTACTC	2400
	TOGANTOGGA CCCACAGTGT TITGCACCAT ATTITGGCAA TITTTTITGC CCGTTTTTNG	2460
45	GAAGTOTTYT CCNTNAANCO CAGGAACCAT TACAGAACCG	2500

50 (2) INFORMATION FOR SEQ ID NO: 135:

Section 1.

(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 1337 base pairs

The contract of the second second

60 — отпрофите профинации профинации от этанители и палитности ${}^{+2}$

	TCTCCCTGGC GTTTGGTCAC CTCTGCTTCA TTCTCCACCG CGCCTATGGT CCCTCTTGGA	120
_	GCCAGCGT9G C9GGCCTGGC GGCTCCCGGG TGGTGAGAGA GCGGTCC3GG AACGATGAAG	180
5	GCCTCGCAGT GCTGCTGCTG TCTCAGCCAC CTCTTGGCTT CCGTCCTCCT CCTGCTGTTG	240
	CTGCCTGAAC TAAGOGGGYC CCTXSMAGTC CTGCTGCAGG CAGCCGAGGC CGCGCCAGGT	30)
10	CTTG-XGCCTC CTGACTCTAG ACCACGGACA TTACCGCCGC TGCCACCGGG CCCTACCCCT	360
	GCCCAGCAGC CGGGCCGTGG TETERGCTGAA GCTGCGGGGC CGAGGGGGTC CGAGGAAGGC	420
15	AATGBCAGCA ACCCTGTGGC CBGBCTTGAG ACGGACGATC ACBGAGGAA GGCCGBGGAA	480
13	GGCT DGGTGG GTGGCGGCCT TGCTGTGAGC CCCAACCCTG GCGACAAGCC CATGACCCAG	540
	CGGGGCCTGA CCGTGTTYGAT GGTGGTGAGC CGCCCGGTGC TGGTGTACTT CGTGGTCAGG	600
20	ACGGTCAGGA TGAGAAGAAG AAACCGAAAG ACTAGGAGAT ATGGAGTTTT GGACACTAAC	66)
	ATAGAAAATA TGGAATTGAC ACCTTTAGAA CAGGATGATG AGGATGATGA CAACACGTTG	720
25	TTTGATGCCA ATCATCCTCG AAGATAAGAA TGTGCCTTTT GATGAAAGAA CTTTATCTTT	780
2 3	CTACAATGAA GAGTGGAATT TCTATGTTTA AGGAATAAGA AGCCACTATA TCAATGTTGG	840
	GGGCGTATTT AAGTTACATA TATTTTAACA ACCTTTAATT TGCTGTIGCA ATAAATACCG	900
30	TATCCTTYTA TTATATCTTT ATATGTATAG AAGTACTCTR TTAATGCGCT CAGAGATGTT	960
	GCGCATAAAG TATACTGTAA TAATTTATCT GTTTGAAAAT TACTATAAAA CGGTGTTTTC	1020
35	TGATCGGTTT TYGTTTCCTG CTTACCATAT GATTGTAAAT TGTTTTATGT ATTAATCAGT	1080
	TAATGCTAAT TATTTTTGCT GATGTCATAT GTTAAAGAGC TATAAATTCC AACAACCAAC	1140
	TGGTGTGTAA AAATAATTTA AAATTTCCTT TACTGAAAGG TATTTCCCAT TTTTGTGGGG	1200
40	AAAAGAAGCC AAATTTATTA CTTTGTSTTG GGGTTTTTAA AATATTAAGA AATGTCTAAG	1260
	TTATTGTTTG CAAAACAATA AATATGATTT TAAATTCTCT TAAAAAAAAA AAAAAAAACC	1320
45	ccasagagag acccagn	1337
50	(2) INFORMATION FOR SEQ ID NO: 186:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 941 base pairs (B) TYPE: nucleic acid	
55	(C) STRANLEDNESS: double (D) TOPGLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186:	·

GGCACGAGGC TGGACGCAGC AGCCACCGCC GCGTCCCTCT CTCCACGAGG CTGCCGGCTT 60

	AGGACCCCCA GCTCCGACAT GTCGCCCTCT GGTLGCCTGT GTCTTCTCAC CATCGTTGGC	120
	CTGATTCTIC CCACCAGAGG ACAGACGTTG AAAGATACCA CGTICAGTTC TTCAGCAGAC	180
5	TCAACTATCA TGGACATTCA GGTCCCGACA CGAGCCCCAG ATGCAGTCTA CACAGAACTC	240
	CAGCCCACCT CTCCAACCCC AACCTGGCCT GCTGATGAAA CACCACAACC CCAGACCCAG	300
	ACCCAGCAAC TGGAAGGAAC GGATGGGCCT CTAGTGACAG ATCCAGAGAC ACACAAGAGC	360
10	ACCAAAGCAG CTCATCCCAC TGATGACACC ACGACGCTCT CTGAGAGACC ATCCCCAAGC	420
	ACAGACGTCC AGACABACCC CCAGACCCTC AACCCATCTG STTTTCATGA GGATGACCCC	480
15	TTCTTCTATG ATGAACACAC CCTCCGGAAA CGCGCGCTGT TGGTCGCAGC TGTGCTGTTC	540
	ATCACAGGCA TCATCATCCT CACCAGTGGC AAGTGCAGGC AGCTGTCCCG GTTATGCCGG	690
	AATCATTECA GETEAGTCCA TCAGAAACAG GAECTEACAA CCYGCTGGGC ACCCGAAGAC	660
20	CAAGCCCCCT GCCAGCTCAC CGTGCCCAGC CTCCTGCATC CCCTCGAAGA GCCTGGCCAG	720
	AGAGGGAAGA CACAGATGAT GAAGCTGGAG CCAGGGCTGC CGGTCCGAGT CTCCTACCTC	780
25	CCCCAACCCT GCCCGCCCCT GAAGGCTACC TGGCGCCTTG GGGGCTGTCC CTCAAGTTAT	840
	CTCCTCTGYT AAGACAAAAA GTAAAGCACT GTGGTCTTTG CAAAAAAAAA AAAAAAAAAA	900
	AAAAAAAAA AAAAAAAAA AAAAAAAAA AAAAAACTOG A	941
30		
35	(2) INFORMATION FOR SEQ ID NO: 187:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 654 base pairs	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 654 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35 40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 654 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 654 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 654 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (XI) JEQUENCE DESCRIPTION: SEQ ID NO: 187: GAATTOGGCA CHARGCAGCT TOTGCTTTAA AGGAGGTGTT CAAAGCATGT CTGARCAGAG	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 654 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) JEQUENCE DESCRIPTION: SEQ ID NO: 187: GAATTCOBCA CHARGCAGCT TOTGCTTTAA ABGAGGTGTT CAAAGCATGT CTGARCAGAG ACTTMOSGC TETSTTTTAA TTAATACTTT AAAATAATTC ATATTTAAAA TATCARATGT	120
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 654 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) JEQUENCE DESCRIPTION: SEQ ID NO: 187: GAATTCOBCA CHARGCAGCT TOTGCTTTAA ABGAGGTGTT CAAAGCATGT CTGARCAGAG ACTTTMOBGC TEMSTTTTAA TTAATACTTT AAAATAATTC ATAMTAAAA TATCARATGT TTCCATAAAG AGGAGGATGT TTAAATGCCT CCAGACTACA TTCCTTTTTA TTSCTTGATT	120 130
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 654 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) JEQUENCE DESCRIPTION: SEQ ID NO: 187: GAATTCOGCA CHARGCAGCT TOTGCTTTAA AGGAGGTGTT CAAAGCATGT CTGAGCAGAG ACTTTHOGGC TETSTTTTAA TTAATACTTT AAAATAATTC ATAITTAAAA TATCAFATGT TTCCATAAAG AGGAGGATGT TTAAATGCCT CCAGACTACA TTCCTTTTTA TTSCTTGATT TTACCTOGGA GTCCAAAGTT CAATTCCCAT AAAGCAAGCG TTTTATTTGT CACTTYCAAT	120 130 240
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 654 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) JEQUENCE DESCRIPTION: SEQ ID NO: 187: GAATTCOGCA CHARGCAGCT TOTGCTTTAA AGGAGGTGTT CAAAGCATGT CTGAGCAGAG ACTTTHOGGC TOTGTTTTAA TTAATACTTT AAAATAATTC ATATTTAAAA TATCAFATGT TTCCATAAAG AGGAGGATGT TTAAAATGCCT CCAGACTACA TTCCTTTTTA TTSCTTGATT TTACCTGGGA GTCCAAAGTT CAATTCCCAT AAAGCAAGCG TTTTATTTGT CACTTTCAAT ATACATCCGA TTGCCATGCT TAAGATGCAA TATGGGCTGC GGAAATAGGT TAACCCACAG	120 180 240 300
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 654 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) JEQUENCE DESCRIPTION: SEQ ID NO: 187: GAATTCOGCA CHARGCAGCT TOTGCTTTAA AGGAGGTGTT CAAAGCATGT CTGAGCAGAG ACTTTHOGGC TETSTTTTAA TTAATACTTT AAAATAATTC ATAITTAAAA TATCAFATGT TTCCATAAAG AGGAGGATGT TTAAATGCCT CCAGACTACA TTCCTTTTTA TTSCTTGATT TTACCTOGGA GTCCAAAGTT CAATTCCCAT AAAGCAAGCG TTTTATTTGT CACTTYCAAT	120 130 240
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 654 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) JEQUENCE DESCRIPTION: SEQ ID NO: 187: GAATTCOGCA CHARGCAGCT TOTGCTTTAA AGGAGGTGTT CAAAGCATGT CTGAGCAGAG ACTTTHOGGC TOTGTTTTAA TTAATACTTT AAAATAATTC ATATTTAAAA TATCAFATGT TTCCATAAAG AGGAGGATGT TTAAAATGCCT CCAGACTACA TTCCTTTTTA TTSCTTGATT TTACCTGGGA GTCCAAAGTT CAATTCCCAT AAAGCAAGCG TTTTATTTGT CACTTTCAAT ATACATCCGA TTGCCATGCT TAAGATGCAA TATGGGCTGC GGAAATAGGT TAACCCACAG	120 180 240 300
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 654 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) JEQUENCE DESCRIPTION: SEQ ID NO: 187: GAATTCOGCA CHARGCAGCT TOTGCTTTAA AGGAGGTGTT CAAAGCATGT CTGAGCAGAG ACTTTHOGGC TOTGTTTTAA TTAATACTTT AAAATAATTC ATATTTAAAA TATCAFATGT TTCCATAAAG AGGAGGATGT TTAAAATGCCT CCAGACTACA TTCCTTTTTA TTSCTTGATT TTACCTGGGA GTCCAAAGTT CAATTCCCAT AAAGCAAGCG TTTTATTTGT CACTTTCAAT ATACATCCGA TTGCCATGCT TAAGATGCAA TATGGGCTGC GGAAATAGGT TAACCCACAG	120 180 240 300

	GGAGGCTGAG GCAGGAGAAT CGTTTGAATC TGGGAGTTGG ACGTTGTCAG TGAGCTGAGA	600
5	TOSUGCUACA GCACTOCAGO CTGGGTGACA GGGTGAGACT CTGTCTCAAA NAGA	654
10	(2) INFORMATION FOR SEQ ID NO: 188:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1848 base pairs (B) TYPE: nucleic acid (C) STRANDELNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:	
20	GAAACTGGAC CGGAGAACCG GAGCGAAGGG AAGCGGAACC CCGGAATGAG GCCGGACTGG	60
20	AAAGCCGGGAG CGGGGCCAGG CGGGGCCTCCC CAAAAGCCTG CCCCTTCATC CCAGUGGAAA	120
	CCGCCGGCCGC GECCGAGCGC GECGGCCGCT GCGATTGCAG TCGCGGCGGC GGAGEAAGAG	180
25	AGACOSCTOS GOSAGCOGAA COSCCTGAGG CTGGAGGAGG ACAAACCGGC CGTGGAGCGG	240
	TGCTTGGAGG ACCTGGTCTT CGGCGACGTC GAGAACGACG AGGACGCGTT GCTGCGGGGT	300
20	CTGCGAGGCC CCACGGTTCA AGAACATGAA GACTCGGGT3 ACTCAGAAGT GGAGAATGAA	360
30	GCAAAAGGTA ATTTTCCACC TCAAAAGAAG CCAGTTTGGG TCGATGAAGA AGATGAAGAT	420
	GAGGAAATGG TYCACATGAT GAACAATCGG TYTCGGAAGG ATATGATGAA AAATGCTAGT	480
35	GAAAGTAAAC TITCGAAAGA CAACCTTAAA AAGAGACTTA AAGAAGAATT CCAACATGCC	540
	ATGGGAGGAG TACCTGCCTG GGCAGAGACT ACTAAGCG3A AAACATCTTC AGATGATGAA	600
40	AGTGAAGAG3 ATGAAGATGA TTTGTTGCAA AGGACTGGJA ATTTCATATC CACATCAACT	660
40	TCTCTTCCAA GAGGCATCTT GAAGATGAAG AACTGCCAGC ATGCGAATGC TGAACGTCCT	72 Ó
	ACTGTTGCTC GGATCTCCAT CTGTGCAGTT CCATCCCGFT GCACAGATTG TGATGGTTGC	780
45	TEGGATTAGA TAATGCTGTA TCACTATTTC AEGTTGATCG GAAAACAAAT CCTAAAATTC	840
	AGAGCATCTA TYTGGAAAGG TYTCCAATCT TYAAGGCTYG TYTTAGTGCT AATGGGGAAG	900
	AAGTTTTAGC CACGAGTACC CACAGCAAGG TTCTTTATGT CTATGACATG CTGGCTGGAA	960
50	AGTTANTTCC TETGCATCAA GTGAGAGGTT TEAAAGAGAA GATAGTGAGG AGCTTTGAAG	1020
	TCTCCCCAGA TGGGTCCTTC TTGCTCATAA ATGGCATTGC TGGATATTTG CATTTGCTAG	1080
55	CAATGAAGAC CAAAGAACTG ATTGGAAGCA TGAAAATTAA TGGAAGGGTT GCAGCATCCA	1140
	CATTCTCTTC AGATAGTAAG AAAGTATACG CCTCTTCGGG GGATGGAGAA GTTTATGTTT	1200
	GGGATGTGAA CTCAAGGAAG TGCCTTAACA GATTTGTTGA TGAAGGCAGT TTATATGGAT	1260
60		

441

	TAAGCATTSC CACATCTAGG AATGSACAGT ATGTTGCTTG TGGTTCTAAT TGTGGAGTGG	1320
	TAAATATATA CAATCAAGAT TOTTGTCTCC AAGAAACAAA CCCAAAGGCA ATAAAAGCTA	1380
c	TAATGAACTT GGTTACAGGT GTTACTTCTC TGACCTTCAA TCCTACTACA GAAATCTTGG	1440
5	CAATTGCTTC AGAAAAAATG AAAGAAGCAG TCAGATTGGT TCATCTTCCT TCCTGTACAG	1500
	CAATTGCITC AGAAAAAATG AAAAAAATA AGAATATTTC TCATGTTCAT ACCATGGATT	1560
10		1620
	TTTCTCCGAG AAGTGGATAC TTTCCCTTCG GGAATGAAAA GGGCAAGGCC CTGATGTATA	1680
	GGTTGCACCA TTACTCAGAC TTCTAAAGAG ACTATTTGAA GTCCAGTTGA GTCACAAGAG	1740
15	AAGCCTGTCT TGATATATCA TCTCAGAAAC TTTCCTGAAAT ATGTGATAAT ATATCGAAAA	
	TGATTTATAG ATCCAGCTGT GCTIAAGAGC CAGTAATGTC TTAATAAACA TGTGGCAGCT	1800
20	TYTGTTIGAA AAAAAAAAAA AAAAAAAAA AAACTCGA	1848
20		
	(2) INFORMATION FOR SEQ ID NO: 189:	
25		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1145 base pairs	
	(B) TYPE: nucl⊕ic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:	
35	AAAAAAACC CAGGGAACN TTSSSGSCCG CTTTNNNTTC CCCCTCCAGG CCATTGGSGA	60
33	ATTCTTCAAG TTAATCCTGC TTTGCTCTTG GCCAACAGGG CTTGTAGGGG GGAGAGACCC	120
	AGGATCATCA AGGGGTTCSA GTGCAAGGCT CACTCCCAGC CCTGGCAGGC AGCCCTGTTC	180
40	GAGAAGACGC GGCTACTCTG TCGGGCGACG CTCATCGCCC CCAGATGGCT CCTGACAGCA	240
	GCCCACTGCC TCAAGCCCCG CTACATAGTT CACCTGGGGC AGCACAACCT CCAGAAGGAG	300
	GAGBBOTSTG AGCAGACCCG GACAGUCACT GAGTCCTTCC CCCACCCCGG CTTCAACAAC	360
45	ACCCTECCA ACAAAGACCA CEGEAATGAC ATCAFCCTGG TGAAGATGGC ATCGCCAGTC	420
	TOCATCADET GEGOTETGOS ACCEPTANCO CTOTOCTOAC GOTGTGTCAC TGCTGGEACO	480
50	AGCTGYCTCA TYTCCGGCTG GGGCAGMACG TCCAGCCCCC AGTTACGCCT GCCTCALACC	540
	TTGSGATGCG CCAACATCAC CATCATTBAG CACCAGAAGT GTGAGAACGC CTACCCCGGC	600
	TACOCATION IN THE PROPERTY OF	660
	A CARLO CONTRA A CONTRA CO	

60 PACTOGATOR AGGAGACHAT GAAGAACAAT TAGACTOGAC OCACTUADIA HAGCOTATUA

orbania in the second of A

- .906 -

	CCCTCCATTT CCACTTGGTG TITGGTTCCT GTTCACTCTG TTAATAAGAA ACCCTAAGCC	900
-	AAGACCCTCT ACGAACATTC TTTGGGCCTC CTGGACTACA GGAGATGCTG TCACTTAATA	960
5	ATCAACCTGG GGTTCGAAAT CAGTGAGACC TGGATTCAAA TTCTGCCTTG AAATATTGTG	1020
	ACTOTOGOGAA TGACAACACO TOGTTTGTTC TCTGTTGTAT CCCCAGCCCC AAAGACAGCT	1080
10	CCTBGCCATA TATCAAGGIT TCAATAAATA TTTGCTAAAT GAAAAAARAAA AAAAAAAAAA	1140
	ACTIGA	1146
15		
	(2) INFORMATION FOR SEQ ID NO: 190:	
20	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 905 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:	
	ACTICCCTUAC CCAGGTCCUA GCCCTGGGAA CCACCTACCG TGAGCCCTTT TSCAGATATA	60
30	GACTCATYTC ATCCTCAGAT GGTCCTTCAA GGTAGGTACT TTAGTCCCAT TTTAGAGATG	120
30	AGACGATTGA GGCCAGACK; GTGNNGTAAC TTGCCTGGGG GCTCACGACC ACAAAACGAG	180
	CCGAGGCAGG ATCTGACCCT TGTTCTCTGG CCTCACTGCC CTCACTTTGC CATGACCCGA	240
35	AGTTATGTCC CTACAAAGCA ATGCATGGTC CAAGGYTCTT TTTATTGTAT TTTTATTTTT	300
	AAGGGTCCTG TTCAAAACTS GTGTGAGCTC TGAGGAGTCC TGAACCCTGG GTGCAGCATC	360
40	CTAGCATICT GGGAGTCCTT TTCTGCCCAC ACTGAGCTGG GCTCCTCGAG GGGTGGGGCT	420
40	GCTGTCCCTG GAAGCCTGGC AGCAGCACTG TATCGGGTTG GCTGAAGCTG ARCGCCGTGG	480
	GGTGCAGGGC TCCMGGAATC CCCGTTTGGC TGAAGGGGTT CCCTGTAGCC MGGGATGTTT	540
45	ATGAGGTCTC TCTGATGCCC CAGGCGCAGG ACATGTGTGC GGGTGGAGAA AAGCAGGCCC	600
	TTTCAGTECC AGCTCCACTC AATTTCTATG TGGACCAAGA ACGATAAACT TAAAAAAATTT	660
50	TYTYTECTAA GGTATCTTCA GAATATGGTG TATTTTTATG TGGAAAAGAA AAGTTATGAA	720
50	GECAGCTETT ACTITAAGAG AAAATTCATT AAAAGTCCTC GAGGTATGAA GATGACGGCG	780
	TGCTTCTCAA TCATTTTGGC ATAACTTGAT TGTGGCTGTA ATTTTTTTT TTTTTTTTGT	840
55	CAAGCATGTC AGACAATAAA GTCTTTGTAA AAAGRGAAAA AAAAAAAAA AAAAAAAAA	900

60

ACTCGA

(2)	INFOPMATION	FOR	SEÇ	ID	110:	191	:
-----	-------------	-----	-----	----	------	-----	---

5	(1) SEQUENCE CHARACTERISTICS. (A) LENGTH: 1941 base pairs (B) TYPE: nucleic acid (C) STRANUEINESS: double (D) TOPOLIGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:	
	CTTCAGCTGA AGCCTAGGGA CCCCTTTCC ACCCTGGGCC CCAATGCCGT CCTTTCCCCG	60
	CAGAGACTGG TCTTGGAAAC CUTCAGCAAA CTCAGCATCC AGGACAACAA TGTGGACCTG	120
15	ATTOTOGOCA CACCOCCCTT CAGCOGCCTG GAGAAGTTGT ATAGCACTAT GGTGCGCTTC	180
	CTCAGTGACC GAAAGAACCC GGTGTGCCGG AGATGGCTGT GGTACTGCTG GCCAACCTGG	240
20	CTUAGGURGA CAGCOTGGCA GOTCGTGCCA TICCACTGCA GAAGGGCAGT ATCGGCAACC	300
	TCCTGGGCTT CCTAGAGGAC AGCCTTGCCG CCACACAGTT CCAGCAGAGC CAGGCCAGGC	360
~ ~	TCCTCCACAT GCAGAACCCA CCCTTTGAGC CAAYTAGTGT GGACATGATG CGGCGGGCTG	420
25	CCCGCGCGCCT GOTTGCCTTG GOCAAGGTGG ACGAGAACCA CTCAGAGTTT ACTCTGTACG	480
	AATCACGGET GTTOGACATC TEGGTATCAE CGTTGATGAA CTCAKTGGTT TCACAAGTCA	540
30	TITGTGATGT ACTITTTTG NATTEGOONG TOATGACAGO CGTGGGACAC CTCCCCCCC	600
	CUTGTGTGTG TGCSTGTGTG GAGAACTTAG AAACTGACT3 TTGCCCTTTA TTTATGCAAA	660
2.5	ACCACCTIAG AATICAGTTT ACCCTGTGCT GTICAGCTTC TCCCTTGGGA AAAAGTCTCT	720
35	COTOTTEC TENDETECTT COACCTCOOC TECCTCCATE ACCTCACGEC TYPOTGTTCC	730
	TTSTCCTCAC CTTACTCCCC TCAGGACCCT ACCCCACCCT CTTTGAAAAG ACAAAGCTCT	840
40	GECTACATAG AAGACTYTTT TTATTTTAAC CAAAGTTACT GTTGTTTACA GTGAGTTTGG	900
	GGAAAAAAA TAAAATAAAA ATGGCTTTCC CASTCCTTCC ATCAACGGGA TSCCACATTT	960
	CATAACTETT TITAATEGTA AAAAAAAAA AAAAAAATAC AAAAAAAAAT TOIGAAGGAC	1020
45	AAAAAAGGTG ACTGCTGAAC TGTGTGTGGT TTATTGTTGT ACATTCACAA TCTTGCAGGA	1080
	GCCAAGAAGT TCGCAGTTGT GAACAGACCC TGTTCACTGG AGAGGCCTGT GCAGTAGAGT	1140
50	GTAGACCCTT TCATGTACTG TACTGTACAC CTGATACTGT AAACATACTG TAATAATAAT	1200
	GTCTCACATG GAAACAGAAA ACGCTGGGTC AGCAGCAAGC TSTAGTTTTT AAAAATGTTT	1260
	THE TAXABLE PARTY OF THE PROPERTY OF THE PROPE	1320
	. LABAT E MITA E L'ABBETT BELLE E E L'EST TE L'EST E	
60		1530

WO 98/54963

	CTTTATAGTA	TGACGAGTTA	ACAAGTTGGT	GACCTGCACA	AAGCGAGACA	CAGCTATTTA	1560
_	ATCTCTTGCC	CAGATATCGC	CCCTCTTGGT	GCGATGCTGT	ACAGGTCTCT	GTAAAAAGTC	1620
3	CTTGCTGTCT	CAGCAGCCAA	TCAACTTATA	GTTTATTTT	TTCTGGGTTT	TTGTTTGTT	1680
	TTGTTTTCTT	TCTAATCGAG	GTGTGAAAAA	GTTCTAGGTT	CAGTTGAAGT	TCTGATGAAG	1740
10	AAACACAATT	GAGATTTTTT	CAGTGATAAA	ATCTGCATAT	TTGTATTTCA	ACAATGTAGC	1800
	TAAAACTTGA	TGTAAATTCC	TCCTTTTTT	CCTTTTTTGG	CTTAATGAAT	ATCATTTATT	1860
15	CAGTATGAAA	TCTTTATACT	ATATGTTCCA	CGTGTTAAGA	ATAAATGTAC	ATTAAATCTT	1920
13	GGTAAGACTT	TAAAAAAAAA	А				1941

20

25

30

(2) INFORMATION FOR SEQ ID NO: 192:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2118 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132

AAATAATAAT AANAATAAAT AAAAATWAAG TGCTTAKTGT AACTCAGCGG ACAGGGCTCC 60 CAGCTGCTCT GGCACGTGGG ACACCYTCCA CCCTGCACAC AACAGGCATG CAAAJAGGAC 120 TOGATATGGT GOGGTAGAGT GCTTCTGGTG TGTTCACTTT AAGAAAACAT CTGCCAAGAG 180 35 AGAAGAGTGC CCAGGAAAGA CCAGGAAAAT ACAAGTACAT GGCTGCTTCA TACCATATAC 240 CCCAATTCTT TAAAGCAGCA AAAGGCACTT TTTTTTTCAG GCCAGAGTGA ATCTAAAACA 40 AACCTGGCTT TGCTTACAGG GAAGCTGTCC CAGAAGGACT GAGTGATGCC TCTTGTTCCC 360 TAAGGTCTGG AGAGTCTTTG CAAGTTTCCA ACGACATTTC CAACCAGGTG GGAGAGACCA 420 GCAGTTGACG AGACAAGTCA GACCCAAAAA ACGACGCCAA GGTAGTGAGT GGGTGCCTAT 45 480 TTGGGAGTAG GATGATTTGA GGAAAACAGG AAGAAAAACC GGTCAGAAAG TGGCACTTTG 540 600 GAAGTGGAAA GCTGTTTGCA AATAGCAACT CTGGCTAAAG CGAAAATGTT AATCAAGTAG 50 AAAGTAAAAT TCAGGATCTT AGAAGCTCAT CCTTCTGATG AGAACTATTT TTTTTTCCGT 660 GAAGGAACTA TTATTACTTT AAAAGTGAGG GTAATTTACA TATGGGGTGT ATATATTCTA 720 AAAATAGTAA TAAAAGTACC TTTTATAAGC AATGTTGTGT GGCTTGTAGA AGAAAGCAGG 780 55 GAGGAAAAAA AGGCAGGCAA AACTAGTCTA GGTCTAGGCC CTAAAAAATGA GCTTCCTTCC - . 840 CACTIGACTG GAAACGCCCA TGTGATTICT AGGCTGAAAA TAGGTAGGAT TTAACGAGTA 900 60

	ACCTAGTTCC CTTCTGTCTC TGATTTCTGA TCAGCTGATG GAGCTGCTAG TAAGAGGGGC	960
	CGATCATGCT CCCAGACGAG TCCTTTGGCC TCTTGCTCTC CATCCCAAGC CTGACTCCTT	1020
5	CAGCAGCAGC CCCCTCCTTC TGTGTCCATC TGATGCAGGC AAGCAGGAGC AGTAAGAGGG	1080
5	CATCCCATGT TCCAGTTCAC CITCTATGGG GTGACTARGA GGTTCCCGGT AACTAGGGCA	1140
	GCCCARGOCC AGCAGGTTGC AFAAGCAGCT GCAAGCTTCA GAAACCCACT TCCTCCAACA	1200
10	CCAGGGAGET GGCAGAGAGC CCATCCAAAA GCCCACTEGG AGAGGCATAA GATTCTGTGC	1260
	CAGRECCUCA GETECCUTET GIGICAUGIA GGETETGUTA CIGGECTETG AAGIAAAGGE	1320
15	AAANACAAAC GOGCAGGGCA GGGTGGCAGG AATAAAAAAC TCTCGACAGA AACCCTTTTA	1380
	ATAAAGGAAA TTCCACCCT CICAATCCTT CCATGGAAGG GTGAGACCTT AATGTGATGT	1440
	AAGAGGAAGG TOTTOTOTOG CTTTCAGGGA AACAGCTGCA GCTGAAACTT AGGGGCCCAT	1500
20	TOCAGGGORAC TITTCACCAC AGCCAGTGCA GCCGCTCCAA GTGCRACTGT CAGCCCCATC	1560
	ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTCGATCT	1620
25	TCAGGCCGCA GAAGTCCCCG AANACCGCTG CCGCAGCACC ATATCAGGCC TCTGCTGGGC	1630
	TGATGCCAGC TCAAAGTCTT TGAAAGTAGA GGCTGCCGTC CTCTCAGCTT GCTGTTGGGC	1740
	AGDEGUTUU UGAGCAAGTT UGGATGGGGG AAACTGAACA AAAAGGTUTU UTETUTGUTG	1800
30	ATCAGTOTOT CATAGGGCAA GTOOTGAGGG ATCTGGGACA ACAGGTGGTG GACCGAGGCO	1860
	AUGTCACAGT CACAGTCCAG GACTTCCTGC TCGCGATACA ACACAATCAC GGCTGCAAAG	1920
35	THE TOTAL OF THE TOTAL ATTACCECAC GACGTOCCTS	1980
	AAGTCAGACA GGACATGGCC AAAGCAGGTG ATGAGGCAGC TGAGGGCAAA GATGGTCCCT	2040
	ACCTCAGCAC TCTGCATGAA GTCATGGAGC TCTGGATTCA CCTGGTCAAT GATGGGCATC	2100
40		2118

50

(2) INFORMATION FOR SEQ 1D NO: 193:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1538 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLCGY: linear

The second secon

ARCCIMAR OF RELIGIOUS REACH TO CONTROL OF STATE

		0.40
	GACGCGGAGG CACCTCTCGT CCCGAAACCG ACCAGAGGGC AAAGTGTTGG AGACAGTTGG	240
ح	TGTGTTTGAG GTGCCAAAAC AGAATGGAAA ATATGAGACC GGGCAGCTTT TCCTTCATAG	300
5	CATTTTTGGC TACCGAGGTG TCGTCCTGTT TCCCTGGCAG GCCAGACTGT RTGACCGGGA	360
	TGTGGCTTCT GCAGCTCCAG AAAAAGCAGA GAACCCTGCT GGCCATGGCT CCAAGGAGGT	420
10	GAAAGGCAAA ACTCACACTT ACTATCAGGT GCTGATTGAT GCTCGTGACT GCCCACATAT	480
	ATCTCAGAGA TCTCAGAGAG AAGCTGTGAC CTTCTTGGCT AACCATGATG ACAGTCGGGC	540
. ~	COTOTATGOO ATOCCAGGOT TOGACTATGT CAGOCATGAA GACATCOTCO COTACACOTO	600
15	CACTGATCAG GTTCCCATCC AACATGAACT CTTTGAAAGA TTTCTTCTGT ATGACCAGAC	661)
	AAAAGCACCI CCTTTTGT9G CTCGCGAGAC GCTAAGGGCC TG9CAAGAGA AGAATCACCC	720
20	CTOGCTOWAS CTCTCCGATS TTCATCGOGA AACAACTGAG AACATACGTG TCACTSTCAT	780
	CCCCTTCTAC ATGGGCATGA GGGAAGCCCA GAATTCCCAC GTGTACTGGT GGCGCTACTG	840
	TATCCGTTIG GAGAACCTTG ACAGTGATGT GGTACAGCTC CGGGAGCGGC ACTGGAGGAT	900
25	ATTCAGTCTC TCTGGCACCT TGGAGACAGT GCGAGGCCGA GGGGTAGTGG GCAGGGAACC	960
	AGTGTTATUC AAGGAGCAGC CTGCGTTCUA GTATAGCAGC CACGTCTCGC TGCAGGCTTC	1020
30	CAGTGGGCAC ATGTGGGGCA CGTTCCGCTT TGAAAGACCT GATGGCTCCC ACTTTGATGT	1080
	TOGGATTOOT COOTTOTOOC TOGAAAGOAA TAAAGATGAG AAGACACCAC COTCAGGCCT	1140
a =	TCACTGGTAG GCCAGCTGAG GCCCCAACTG CCCAGGCTTG GTCACCGGGA AGAACAACTC	1200
35	TOATOGOAGA ATTGOTGOAG AACTOTTOTO TOOCCATCAT GGGCCACAGT GGGTCTCTTA	1260
	ATTIGATIST GGGGTTCTTT TIGTGGGGAG GGGTGGTATA ACTITICTIC AGAAGACCCA	1320
40	TGTGGGACAC CTCCAAGGCT GGCCTCCTCA TAAGCCCTGC CTACACCATG TTCCAGTAAA	1380
	CCTCTCCAIC AAGGAACTGT GTTCAGCTGC CACAGGCCTG GAGGAGTTTC CTGGCCTGTC	1440
4 ~	ACGTGAGGIT TGATCAGTAA ACCAGTGCAS GYTYGGCCAA AAAAAAAAAAA AAAAAAAAAA	1500
45	ALAMANAMA AMMAMAMA AMAMAMAMA AMACTOGA	1538
50		

(2) INFORMATION FOR SEQ ID NO: 194:

(i) SEQUENCE CHARACTERISTICS.

(A) LENGTH: 1098 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194:

60

	AGACCCTGTC TCAAATAATA ATAATAATAA TAATCTTATT TTGGAGAATA AAGAGACCTS	60
	TOGATTTGAG GTGCCATTTG GGTAGAAAGA AAAGACGTTT ACACCGAGAA ATAGTCTGTG	120
5	TIGCCCTGAA GBAGCAGAGG GATGCATCGC IGGAGGTGAC CTACAGITGA AGAAGACTCA	180
	TTATGACAGA COTTGTOOTT CTTCCTTGTG GAAAGTGTTT CCTCTGCTGC TACICCTCAT	240
	GAGACTOTTO COCCTOCCTG TOCCAGGGAA CCAAAGGGCT TINCTACCAC ACCOTTCTT	300
10	NGCCCCCCGC (TCCCATGTC TGCTGTGCCT TTGTACTCAG CAATTCTTNG TTTGCTCCCA	360
	TTATCTTECA GCCGGATACA GAGTGAATAG TTAACCACAC TTAGGTCAAA TAGGATCTAA	420
15	ATTITITETTO CTOCTOCNOT GTAAAGAGGO CAGTGTTTGT GTGTTCCAAG CACCCTTGGA	480
	ATAGTAACTO TTOTOATTTS TTTGGGATOT GGELAMCAAG TTGCAGAATG ATACAEGGAT	540
	CAGTGCAGAA GTTCATCAGG CTCTCGGACC TTAGGGCTGT TGGAGAAGGC TTCAGCAGCA	600
20	GAACTGATGG TKAWKGYTCG TGTTCTCCAT CCTCAACTTT CTTTGCTTCG AFCATACACA	660
	AGAATACATT TGGAAGGGCA AAAAATGAAC ACTGTTGTTC ATTGGAGCCG TGTTTTGTGA	720
25	CACAGATGCA CAGTCTGCTG TYAAGACUTT CTCTCAAGTG GSATYTGGGA GTCCATGCCA	780
	GATCATGGTG CTTCATGAGA GACTGACAGC TATCAGGGGT TGTGGCACTT ACTGAGGACT	840
	CTCCTCCCCC AGTGTGTGCT GATGACACAT ACACACCTGA CAATAGCTTG AGTCTTCTCT	900
30	GTTCCTTTTA CTCTGTAGGC AACATACACA TGATTTAAAA CCCTTTCTAA ATATGTATCA	960
	TEGTTCATC: TTGTCCAAAT GCAGAGTCAG AGCTATTTGT ACTTCATTAT TATTTCCAAG	1020
35	GCGAATAGTT GGCTTTCTTT TTGCAAAAAT AATTAAAGTT TTTGTATGTT GCAAAAAAAA	1080
	AAAAAAAAA CTACGTAG	1098
40		
	(2) INFORMATION FOR SEC ID: NO: 195	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1001 base pairs	
43	(B) TYPE: nucleic acid (C) SIRANDEDNESS: dcuble	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 195:	
	GAATTOGGCA CGAGATAGOT TOGATOTGAT CCCAGTAAAA CCNUTTATTT ATAACATATO	60
	ga koma ja o atom kostogo a komo oto poje, komkenko og 120 kkm, og og segme	
6	- WARRESTET CTAGAGACA	300

	AGGCCAGGCC TGATCCCTGA GGGATGCATG AGAAGGCTTG GAATCTCATT CTGCTATGGT	360
5	GGCTCTCTCT TEATCTTETT GGAGTAGEAA AAACAGCAAT GTGGECCCAA TEGTETEECC	420
	TAAATGATCA CAAAGGTAAA TGAGTAAAGG GCTCAGCAGA TGAGTAAGGA GCCITGTCCT	430
	GABAAATTAG CACTOGGETC TOCATTCAGA AACATETGAT AAGCATTGCC CATTGEACAT	540
0	TGCCTTTATT GPGTAAGGAC ATGAAATTCC AGTTTTGCAT AGCTAGTGAT GAATACCTGA	6.)(.
	NERSANTISC AGACATATIT TATTITATIT TITAATIGACA GAIGGAATIG TATATATITA	650
ı <i>5</i>	TEATSTACAT AATCATSCTT TAAAATATST ACATTATSGA ATSGCTAAAT CAAACTAACC	720
15	TAGACATTAT CTCATATAAT TGTCATTTTT GTGGCGAGAA GACTAAAAAT CTACCCTTTC	730
	AGCATTTTA AAGAATACAA TOTOTTTAT TAACAACAGT CACCATTTGG TACACTAGAT	840
20	CTUTTGAACT TUTTCCTUTT ATCTAACTGA GATUTTUTAA CCTTTGATAA CAGCTCCCAA	900
	GCCCTTCCCC AACCACTSCT CCACCOSTGG TAACCACCAT TCTATTCTCA ACTICCTGCT	960
2.5	AATCACCATT CTAGACAGAG GGAAGACTCT CTAGCCTCTG A	1001
25		
30	(2) INPCRMATION FOR SEQ ID NO: 196:	
	i) SEQUERCE CHARACTERISTICS: (A: LENGTH: 1443 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:	
10	ATAAACTGAA ATAGGTCATG CAAATATAAA ATATTATTT TAAATTATTT GTCATAAGAA	60
40	ACGATGGTGG CCATATTTTG CTTTAATAAT GGAAAAAATG TGGTTAGCAT TCTKTGGAAG	120
	GTGGTCATCA GATAGTAGAC ATTITCTAGG ATTTATITCT ACCTGCATAT GTGGAAATGT	180
45	GTACTACTIT AGATTTATWI AATGGCAGCT AACTVAGAGG CATCAAAATG TGCTAATGGT	240
	GTAATATGGC CTTTGTCTTG CTGTYCTGTT TTUTARGCCT TCAATCAAGC ARGGGCAGGG	300
	COSTACAGTS AACTTSTCCT TTGSCAGACG CCAGCGTUTG CCCCTGACCC CGTUTCCACT	360
50	CTCTGTGTCC TGGAGGAGGA GCCCCTTGAT GCYTACCCTG ATTCACCTTC TGCGTGCCTT	420
	GTACTGAACT GGGAAGAGCC GTGCAATAAC GGATCTGAAA TCCTTGCTTA CACCATTGAT	480
55	CTAGGAGACA CTAGCATTAC CGTGGGCAAC ACCACCATGC ATGTTATGAA AGATCTCCTT	540
	OCAGAAACCA OCTAODGGTG AGTSCAAGGG AGTAGAAATC TGCATCAGCA CATCAGCACT	600
	TEGGGATCTA AGTAAACCTC TCGGGGAAAA TGACCAAGTG GATGTCATCT CCCAGCTGTT	650
	TOTOPOLICIA MILIMATE STORMUNDEL MANAGODOLI JEJIMANTOR MILIMANDEL	050

	TOTAAGAGOO CAGATGTOOA GAGTATTGTO TOACTITGAT COOTGAGGOO AGAAGACOTG	720
	TGAAAAAGCC ACACTGGTTC AGGGACTCAC TGGACGGTTT TGTGTCCACT YTAACHTGCA	730
5	COSTCTCTAC CCCAGAGTGG ACTCARATCO TCARSTCATO CTCTGARGAT TCFFCTCAGA	340
	AATTATAAAA GGGCTTTGGC AATATGTTAG CCCAAGAATT TGGCTTTTTC CAGAATTGC	900
	GCCGACMITA ACAGTGGCTT AAATGATGGT AAAACTITITA AGATTITITAA AAAGTETCGGCA	960
10	TYGGAGATAC GTYGACTTYT ATTAAACMAC CTATAGTYGY TYAATGAFTY CTAGAAAA	1020
	ATCTGGAGCT CAGGGGTTCA ACTGAGGGAA CACATGTTGA GRATCATIGT TIAITAATTA	1030
15	AATSCCARGT AACCCGTTGA AATTATCAAA ARCATUTTUU ACGTACCAGA AAGURCCTCA	1110
	GAGGATACTT CTGTTATGGA GAAGATGAAA TGGTTTAJTA GTGTAGGAAC TATGGAAACG	1200
	TGAGCTTAGA TTTGGATAGT AAAACCTCAA GACCCTATTT AAAAAGTATT TUATGAATGC	1250
20	AGCATAAATA ATTTAATTOA GTGTTAANAT GCCAAGGCTA GTATATTGAG CTCAATGTGA	1320
	AAAGAAACTO ACATTGOGAG AATGOCACOT TITTOOTTATA AGATAGOTIT GAAGATACCA	1380
25	TTTTAGACAG ATGGAAATTG AATAGCTTTA GAAAAGGCAA ATGTTTGATC TTCGGGAAAA	1440
	AAA	1443
30		
	(2) INFORMATION FOR SEQ ID NO: 197:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1282 base pairs (B) TYFE: nucleic acid	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1282 base pairs	
35 40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1282 base pairs (B) TYFE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1282 base pairs (B) TYFE: nucleic solid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1282 base pairs (B) TYFE: nucleic soid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197: GAAAAAAAAA AGTATGACCC AGTAGCTAGG CACCTGTGGC CCCGCCAAGT TOACACATAA	60 120
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1282 base pairs (B) TYFE: nucleic soid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 197: GAAAAAAAAA AGTATGACCC AGTAGCTAGG CACCTGTGGC CCCGCCAAGT TGACACATAA AATTAACTGT CACAGTATCA TCTTAGAAGT GAAAGAAGCC CCTCTATGCT GGAGTGCCCC	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1282 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197: GAAAAAAAA AGTATGACCC AGTAGCTAGG CACCTGTGGC CCCGCCAAGT TGAGACATAA AATTAACTGT CACAGTATCA TCTTAGAAGT GAAAGAAGCC CCTTTATCTT GGAGTGCCCC	120
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1282 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197: GAAAAAAAA AGTATGACCC AGTAGCTAGG CACCTGTGGC CCCGCCAAGT TOACAACATAA AATTAACTGT CACAGTATCA TCTTAGAAGT GAAAGAAGCC CCTTTATCTT GTAGTGCCCC TCTACAACA CCTACTGACA AAGAACATGG TGCTATCTGG CATGAGAGAA ATCTTCAGTT TCCTACGACCA CCTACTGACA CCCCCCAAATT CAACTGTTGC CAATGTGACA GCATCAAGAG	120 180
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1282 base pairs (B) TYFE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197: GAAAAAAAAA AGTATGACCC AGTAGCTAGG CACCTGTGGC COCGCCAAGT TOACACATAA AATTAACTGT CACAGTATCA TCTTAGAAGT GAAGAAGGC CCTTTATCTT GTATTGCCCC TCTACAGCA CCTACTGACA AAGAACATGG TSCTATCTGG CATGGGAGAA ATCTTCAGTT TCCTACGCT TGTATGTGTC CCCTCAAATT CAAGTGTTGC CAATGTGACA GCATCAAGAG	120 180 240
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1282 base pairs (B) TYFE: nucleic solid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 197: GAAAAAAAA AGTATGACCC AGTAGCTAGG CACCTGTGGC COCGCCAAGT TOACACATAA AATTAACTGT CACAGTATCA TCTTAGAAGT GAAAGAAGCC CCTTTATCTT GTATTGCCCC TCTACLACCA CCTACTGACA AAGAACATGG TGCTATCTGG CATGGGAGAA ATCTTCAGTT TGCTATGGCT TGTATGTGTC CCCTCAAATT CAAGTGTTGC CAATGTGACA GCATCAAGAG GTGGGGTCTT TAAGAGATCA CTAGGCCATG AGGGATTCTC TTAGGACTGG GATGAAGGCC	120 180 240 300 360
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1282 base pairs (B) TYFE: nucleic soid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 197: GAAAAAAAA AGTATGACCC AGTAGCTAGG CACCTGTGGC CCCGCCAAGT TOACACATAA AATTAACTGT CACAGTATCA TCTTAGAAGT GAAAGAAGCC CCTTTATCTT GTAGTGCCCC TCTACAGCA CCTACTGACA AAGAACATGA TGCTATCTGG CATGGGAGAA ATCTTCAGTT TGCTATGGCT TGTATGTGTC CCCTCAAATT CAAGTGTTGC CAATGTGACA GCATCAAGAG GTGGGGTCTT TAAGAGATCA CTAGGCCATG AGGGATTCTC TTAGGACTGG GATGAAGGCC CATAATAAAA GAGGTTTCAG GGAGCATCCT CCTAGCTTGC CTTCTGTATG TCAGAACACA	120 180 240 360

60 PACT SCTTTA TECTOSTOTO AGTATESTOT SCTTANINAG SMANESAGAA RESSENTATO SE S

	AGGGCATAGG ATGAACAAGT TACTGCTAGA CCTCTCACAA TGCCACTAAT DGATAAGATT	660
	GTATMMCAT CAMMOTTGT CTCTTCCGAA GCTAACACCA TCCTATAATA GGUALTAAAC	720
5	AGATGTOTAA AAAGAGOTTA AGTATYYGTO TAGAAATUTG GTGCATTOTO GAGAAAGAAG	780
	CAAAATTCMA AATAATTTCA AAGGGCCTAA AGGACTAKUT AATGAAAATT CATTAGTTUT	840
10	TAATOGTACT ACCACTOTCA AATTTAAAAT GTIATOTIAI GYFOUTUUG CICULATUGG	900
	ATTTATTGCT ARANGOTGST ARACACTTTA ATGGTTTICA ATGGCATTAG GRGTGSTGTT	960
	GTCCAGAATT ACTCGCAGAC TAATAGTCAC CTGACTYUTT CUCCTGCATC CCGATTTGCT	1020
15	GTGTAATTGT GGTTACAAAT AAGTAACTGC CAAAGTAATG TITGTAAAAA GGAAGACTGA	1080
	TOTOSTCACT COMMUNICA ACAATGTAAA AGGTGGGATT GTGTGGGAJA TAARAGGAGG	1140
20	THROCACTST GTATACAATA CATCCATGAT CTGTATCCAG CATCATTIIG TATCKGCTCA	1200
	CTMTATACAC CACCCCCCAT GCCACATCAA ATTAAATTAT CCTGATAAAT GCAACTGCAA	1260
25	ААААААААА АААААААСТС GA	1283
23		
	(2) INFORMATION FOR SEQ ID NO: 198	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 951 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193.	
	ATTTOGGNAC GAUGACTGAA GTGGGAGGGG CEGGAGGGTA GLAGAELLIA GGGGGATCTA	50
40	TGTGGTAACT AAAGAATSTT TCTGTTTTGT TAATTATTGT GTGTGTGTGG TYTTATTGTT	120
	TOCTTAAGAG AATCAAAAAC TGAAAAAAAT GAGAATACAS GAAATGGCTC TYGTTTATTT	180
45	TYPYGCTGTG TYPACAGCTT GTTAATGCTC TACTGTCTTT STYTCAAGAG AGATTCGTTC	240
	ACTOCCCAGO TOGITATOTO TOCTGAGCCO TATOCCCAGO COACOTTATA AATOATGCCT	300
	GTTTAGATGT TTGATTTTGT TCTGTTTGCT ATTGTTATCT TAAAGGTGTA TAACTCTGAC	360
50	ATGCCAGACA TCAAATTAAG CTCAAATTAA GCTCTCGTTT AAATGTTTAA ACACCTAATT	420
	TATATTCTAA TTGATCCCAG CCACTGATGC ATGTACTTTA GCTACTTTIG CTAAATAAGC	430
55	ATATTAATTT TCCACATCAG GCCATCAGAT CTTGAGAACC AACAGTTATC TAGAATTCCG	540
	TGTCTACTAA TGTTTCACCT GCATGCAGCC TYCATTAATT TTGTAGCAAA ATATAAAGTG	600
60	ATCATTATGT AGTITCTGGA TTAAAAAAAT TTGTGTGTGA AGTTGCTTTG TAAASTGCAT	660

.1	5	١

	GTOGAATTAA TGGGACAGTG TGCCCTTTGT GTTAGATGTT AGAGCAAAAG AAAGGGCTTA	720
	TAGTGTTAST ATTGGAGGAC TTTGAAGATA SATATTTTCA GAAAASATGT AGSATTTAAA	780
5	AGTTAAATTT TAAATTTTAG AAAAAGATAT GATGGCAATT GGAAATAGIC ACAATGAAGT	840
	TOTTCATCCA GTAGGTGTTT AACAGTGTTA TTTTGCCACT GGTAATGTCT AAACTGTGAG	900
	TGATTTACAA TAAATGATTA TGAATTCAAA AAAAAAAAA AAAAAACTCG A	951
10		
15	(2) INFORMATION FOR SEQ ID NO: 199:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1740 base pairs	
	(B) TYPE: nucleic acid (C) STRANDELNESS: double	
20	(D) TOPOLCGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19° :	
~ ~	TTATTATAAT AATGATGATG ATTCCAAGGA AAAAACCTAC AGCGAATGTT CCATTTCTAC	60
25	CCCGCACGCA GACAITCTCI CTAACACTGA TAACCTGAGU CCCUAGCACT GGACGGAAGA	120
	ATGCTCHCGT CTCCGTGTGT ACTGGTTCAG GGTTCTGGCC CCAHCCTTGT CAGGACCCCC	180
30	TGGTGTCCAG AGCCCCCACC CCTCCCGCAA CAAGCAGCTG ATGCCCCAGT GATTCTCTAT	240
	ACATTTTTCA CCTCGGCCAA TATGTCCAGG AAAACTGCTT ACTTCTCTTT TCTTGCCTGG	300
2.5	AGCCTTCATT GTTCACCCTT ACGTTGCAAT ATAGGAATTA ATCCTACAAA ATAAAAGTAA	360
35	AGCTTACCTG AAAAGTGCAT AGTTTGGGGC AATGGTATCT ACATCTCCCA CTGTGGGAAA	420
	ACCAGCAAAG CATCAAAACT CTCAATTCTC CTGTTACCFA ATGCAGATCT GAATTATAAG	480
40		540
	GAAACICTCA GTTTTACTGT TTACATTATT AGGAAAACAG GGATATITTT TGAATCTAAA	600
	AATTTGATGT ACAGCATGTG ATTTTTGAAG TTTACATGTA AAGTCACAGT ATAGGTGAAA	660
45	TAACSTTTGT CATATTITGA GAGGTATCCT GCAGCGATGT TTTTACGIGA GIGITITAG	720
	CAAASTACAT GGTAGACAGT CTTTCACAAT AAAAGGAAAA GGATTTYTTT TCCTCCAAAT	780
50		840
	ATGAAAGTTC ATTGCCCTAA ACTGTGCTGA TTGTTTTTAA TCAAGTTATA AATTTCCAAC	900
	Control of the second of the s	1.5
	TYPSPYTAAA AJATJATATS ATVYTYST 2. 3 AJTOLA CIARASAAJA (2000. 1990. 1994.)	
6	0 - AAATOGAGGO TITAATTAAT ACTIGGAAGA GAAGAGATUT GOGAGGGGGAAGA 0	114%

 $X_{k} = \{ x_{k} \in \mathbb{N} \mid x_{k} \in \mathbb{N} \mid x_{k} \in A_{k} : x_{k} \in A_{k} \}$

	CAGGAACTIT ACTICAGEGO ISTOCAGATI GCAGTIGIGO COOGIGIAIG IGGATCIAGI	1200
5	TCACAGAGTC TTTGGAAGCC AGCAGTCGTG CCCTYCCGTAT ACTGTCCACT CATTTTATGT	1260
5	AGATIYOGTA TOOTCAGCAG CCAGTGTTAA CA CACTGTC ACCTAGTTAN CAGATTCATC	1320
	TTTTATGTAT TTAAAGTAAT CHATACTATS MTTTGSTTTT TOCCTGCACC ATTAATTCTG	1380
10	GCATCAGATC AGTITTTETG TTGTGAAGTT CTAETETGGT TTGACCCAAG ACCACAAGCA	1440
	TGAGACCCTG AAGTAAASAT AAGGTACACA TACATTATTT GAGTAACTGT TTCCTTGGCG	1500
15	GCCAATCTGT GTATGCTTTT AGAAGTTTAC AGAATGCTTT TATTTTTGTC TATAACAAAC	1560
15	AGTCTGTCAT TTATTTCTGT TGATAAACCA TTTTGAGAGA GTGAGGACGT TTGCCCTGTT	1620
	ATCTCCTAGT GCTAACAATA CACTCCAGTS ATSAGCCGUG CTTTACAAAT AAAGCAUTTT	1680
20	TGATGACTCA MAAAAAAAAA AAAAAAAANS YOODDOODOO CCCGGTAACC CATTINICCC	1740
25	(2) INFORMATION FOR SEQUID NO: 200:	
	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 1707 bas÷ pairs	
30	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPCLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200:	
35	GCTTATAGAA GGGAGAGAGGG GGAACATGGC AGCGCGTTGG CGGTTTTGGT GTGTCTCTGT	60
	GACCATGGTG GTGGCGCTGC TCATCGTTTG CGACGTTCCC TCAGCCTCTG CCCAAAGAAA	120
40	GAAGGAGATG GTGTTATCTG AAAAGCTTAG TCWGCTGATG GAATGGACTA ACAAAAGACC	180
40	TGTAATAAGA ATSAATGGAG ACAAGTTCCG TOSUCTTGTG AAAGCCCCAC CGAGAAATTA	240
	CTCCGTTATC GTCATGTTCA CTGCTCTCCA ACTGCATAGA CAGTGTGTCG TTTGCAAGCA	300
45	AGCTGATGAA GAATTCCAGA TCCTGGCAAA CTCCTGGCGA TACTCCAGTG CATTCACCAA	350
	CAGGATATTT TITGCCATGG TGGATTTTGA TSAAGGCTCT GATGTATTTC AGATGCTAAA	420
50	CATGAATTCA GCTCCAACTT TCATCAACTT TCCTGCAAAA GGGAAACCCA AACGGGGTGA	480
50	TACATATGAG TTACAGGTGC GGGGTTTTTC AGCTGAGCAG ATTGCCCGGT GGATCGCCGA	540
	CAGAACTGAT GTCAATATTA GAGTGATTAG ACCCCCAAAT TATGCTGGTC CCCTTATGTT	600
55	GGGATTGCTT TTGGCTGTTA TTGGTGGACT TGTGTATCTT CGAAGAGTAA TATGGAATTT	660
	COMMISSION AND AND COMMISSION COMMISSION OF THE THEORY THE THE THEORY THEORY THE THEORY THE	72

GGTCAAATGT GGAACCATAT AAGAGGACCA CCATATGCCC ATAAGAATCC CCACACGGGA 780

WO 98/54963

Section 18 Section 18

	CATSTGAATT ATATCCATGG AAGCAGTCAA GCCCAGTTTG TAGCTGAAAC ASACATTGTT	840
	CATGIGAATT ATATCCATOS TOTAL CATGIGAATT TATCCATOS TOTAL CATGIGAATT	900
-	GACATGGATA TTOGANAGOG ANAGATANTG TGTGTGCCTS GTATTGGACT TGTTGTATTA	960
5		1020
	TTCTTCAGTT GGATGUTCTC TATTTTTMGGT TO THE CONTROL OF	1080
10	CTGATGAGTT AAAAAGGTCC CAGAGATATT TOTAL ATTTTGTATT ACCTCTTTTT GAAAATCGTG TGTGTTTGAA AAGAAGAATG CAACTTGTAT ATTTTGTATT ACCTCTTTTT	1140
	GAAAATCGTG TGTGTTTGAA AAGAAGAATG CAACTTOTATTTTTTTTTTTTTTACCAAGC	1200
	TTCAAGTGAT TTAAATAGTT AATCATTTAA CCAAAGAAGA TGTGTAGTCC CTTAACAAGC	1260
15	AATCCTCTCT CAAAATCTGA GGTATTTGAA AATAATTATC CTCTTAACCT TCTCTTCCCA	1320
	GTGAACTTTA TGGAACATTT AATTTAGTAC AATTAAGTAT ATTATAAAAA TTGTAAAACT	1380
20	ACTACTTTCT TTTACTTAGA ACAANCETCA AARCTACTTT AGTTAACTTG GTCATCTGAT	
20	TTTATATTGC CTTATCCAAA GATGGGGAAA GTAACTCCTG ACCAGGTGTT CCCACATATG	1440
	CCTGTTACAG ATAACTACAT TAGAAATTCA TTCTTAGCTT CTTCATCTTT GTGTGGATGT	1500
25	GTATACTITA COCATCTTTC CITTTGAGTA GAGAAATTAT GTGTGTCATG TGGTCTTCTG	1560
	AAAATEGAAC ACCATTCTTC AGAGCACACG TCTAGCCCTC AGCAAGACAG TTGTTTCTCC	1620
	TOCTCCTTGC ATATTTCCTA CTGAAATACA GTGCTGTCTA TGATTGTTTT TGTTTTGTTG	1680
30	TTTTTTYGAG ATCACGYTAC TGGGCTC	1707
35		
33	(2) INFORMATION FOR SEQ ID NO: 201:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 779 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 201:	
4:		60
	CTGTCCCCAG TGTTTCCAGG TAATGACTTS STATES TGTGGTGGCT CCAAGCCAAG CACCTGGCAT GCAGGTCAGC CCTTCTCAGC GGGCGTGGCG TGTGGTGGCT CCAAGCCAAG CACCTGGCAT GCAGGTCAGC CCTTCTCAGC GGGCGTGGCG	120
	TGTGGTGGCT CCAAGCCAAG CACCTGGCAT SCAAGCCCT CACCATTTTG CGTTTTTAG	180
5	O TEGRECITETT CACAGATGCS ACGITGCAGS COSAAGGCCT CACCATTITG CGTTTTTTAG	240
	AAACCCATTT TCTTCGTCAT TTATAAAGCT GCTTTATAGA TATCTTTGAT CCTGGCATGC	
	A DE ALTEREN EL CARA A SARTANTE SETTO OFFICIATION DE SARTANTANTE ESPACTATION DE LA CARACTANTE DE LA CARACTANTE	•
	60- postabotat officialistor cacabasico beografiaci (cuertatat inacabatini	497

	TAGGTGTCAT AAATTTTAAG AAAGGTGCTT TTAAGTACTA TTTATAGGTT TTTCTGTTAT	540
_	ACTTGIAACU TAGTTTTAAA ATAIATGAGG ATTTTATGAA AGCTTTATAC AGACATTTAT	600
5	AGGAAACTIA TEITFIGATI TIABETBICA TETABATIGA TAACACTIAC ETTATAAAAA	660
	GATGCTMTT GTCTGGATAG AGCCTTATAG TTTAAAATAT CTTCATATAT TGCCATTTGA	720
10	TCAAATAAAT TTCTTACTTA GAAAAAAAAA AAAAAAAAA AAAAAAAAA AAAACTCGA	779
15	(2) INFORMATION FOR SEQ 15 NO: 202:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1817 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLO3Y: linear	
	(a) 100 mm.	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202:	
25	GOCACAGCTT TOTGTOTOTT COTOGCTOCC TOTOTTTOTO TOOTCOCTOT GOOTTCCCAG	60
	TGCATAAAGT CTCTGTCGCT CCCGGAACTT GTTGGCAATG CCTATTTTTT GGCTTTCCCC	120
30	CGCGTTCTCT AAACTAACTA TTTAAACGTC TGCGGTCGCA AATGGTTTGA CTAAACGTAG	180
30	GATGEGACTT AAGTTGAACG GCAEATATAT TYCAUTEATC CTCGCGETGC AAATAGCGTA	240
	TCTGSTGSAG GCCCTGAGAG CASCGGGCAA GTGCGATGCG GTCTTCAAGG GCTTTTCGGA	300
35	CTGTTTGUTC AAGCTGGGCG ACACATGGCC AACTACCCGC AGCCTGGGAC GACAAGACGA	360
	ACATCAAGAC CGTGTGCACA TACTGGGAGG ATTTCCACAG CTGCACGGTC ACAGCCCTTA	420
40	CGGATTGCCA GGAAGGGGCG AAAGATATGT GGGATAAACT GAGAAAAGAA TCCAAAAACC	480
40	TCAACATCCA AGGCAGCTTA TTCGAACTCT GCGGCAGCGG CAACGGGGGC GCGGGGTCCC	540
	TGCTCCCGGC GTTCCCGGTG CTCCTGGTGT CTCTCTCGGC AGCTTAGCG ACCTGGCTTT	600
45	CCTTCTGAGC GTGGGGCCAG CTCCCCCCGC GCGCCCACCC ACACTCACTC CATGCTCCCG	660
	GAAATCGAGA GGAAGATCCA TTAGTTCTTT GGGGACGTTG TGATTCTCTG TGATGCTGAA	720
50	AACACTCATA TAGGATTGTG GGAAATCCTG ATT TCTTTT TTATTTCGTT TGATTTCTTG	780
50	TGTTTTATTT GCCAAATGTT ACCAATCAGT GAGCAAGCAA GCACAGCCAA AATCGGACCT	840
	CAGCITTAGT CCGTCTTCAC ACACAAATAA GAAAACGGCA AACCCACCCC ATTTTTTAAT	900
55	TTTATTATTA TTAATTTTT TTGTTGGCAA AAGAATGTCA GGAACGGCCC TGGGCACCTA	960
	CTATATTAAT CATGCTAGTA ACATGAAAAA TGATGGGCTC CTCCTAATAG GAAGGCGAGG	1020
	AGAGGAGAAG GCCAGGGGAA TGAATTCAAG AGAGATGTCC ACGGACGAAA CATACGGTGA	1080

	ATAATTCAGS CTCAGGTOGT TCTTGGACAG TATCTTGTTT TGATCATITG CAGTGCACAT	1140
	TTCTCCTCAA GAAAAGCGAA AGGACAGACT GTTCGCTTTG TCTTTGGACG ATAGGAGGGA	1200
5	GAGAGGGAAG GGGCTGAGGA AATCTCTGGG GTAAGAGTAA AGGCTTCCAG AAGACATGCT	1260
	GCTATGGTCA CTSAGSGSTT AGCTTTATCT GCTGTTGTTG ATGCATCCGT CCAAGTTCAC	1320
	TGCCTTTATT FTCCCTCCTC CCTCTTGTTT TAGCTGTTAC ACACACAGTA ATACCTGAAT	1380
10	ATCCANCONT ATAGATCACA AGGGGGGGAT GTTAAATGTT AATCTAAAAT ATAGCTAAAA	1440
	AAAGATTTTG ACATAAAAGA GOOTTGATTT TAAAAAAAAA AGAGAGAGAG ATGTAATTTA	1500
15	AAAAGTYYYAT TATAAATTAA ATTCAGGAAA AAAAGATTTG CTAGAAAGTA TAGAGAAGTA	1560
	TAANATANNA GTIACTGTTT GAANAAANAA AAAAAAAAAW CTCGACCGCA AGGGAAT	1617
20		
	(2) INFORMATION FOR SEQ ID NO: 203:	
25	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1974 base pairs	
-5	B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203:	:50
	GAATTUGBCA CGAGGCTGAG GGADCTGCAG CGCABCAGAG TATCTGAECG CGCCAGGTTG	60
35	CGTACCTECC CCACGAGGAG TTTTCCCGGC AGCCAGGAGG TCCTGAGCAG CATGGCCCGG	120
33	AGGAGERICT TECETOCOGO COCEGOTOTOS CTOTOGAGOA TECTOCTOTO CETTOCTOGOA	180
	CTGCGGGGCGGCC GCCGCAGGAG GAGAGCCTGT ACCTATGGAT CGATGCTCAC	240
40	CAGGCAAGAG TACTCATAGG ATTTGAAGAA GATATCCTGA TTGTTTCAGA GGGGAAAATG	300
	GCACCTTTTA CACATGATTT CAGAAAAGCG CAACAGAGAA TGCCAGCTAT TCCTGTCAAT	360
15	ATCCATTCCA TGAACTTTAC CYGGCAAGCT GCA XGGCAGG CAGAATACIT CTATGAATTC	420
45	CTOTCCTTGC GOTCCCTGGA TAAAGGCATC ATGOCAGATC CAACCGCCAA TGTCCCTCTG	480
	CTGGGAACAG TGCCTCACAA GGCATCAGTT GTPEAAGTTG GTTTCCCATG TCTTGGAAAA	540
50	CAGGAT/GGG TGGCAGCATT TGAAGTGGAT GTGATTGTTA TGAATTCTGA AGGCAACACC	600
	ATTOTOCARA CACCTCARRA ISCTATCITO TITARRACAT CICARCARGO TGRGTGCCCR	660
	and the second of the second o	
	paras aled organization at the languagement in alking was like a ask	1
4.0		301
60	· Of MANGET CAMPOUNCE FOR THE COMPANY OF THE COMPAN	

	TSCCCTCCAG GACTAGAGGG AGAGCAGTST GAAATCAGCA AATGCCCACA ACCCTSTCGA	960
_	AATGGAGGTA AATGCATTGG TAAAAGCAAA TGTAAGTKTT CCAAAGGTTA CCAGGGAGAC	1020
5	CTSTGTTCAA AGCSTGTSTG CSAGSSTGGC TGTGGTGCAS ATGGAACCTG SCATSAACCS	1080
	AACAAATGCC AATGTCAAGA AKGTTGGCAT GGAAGACACT GCAATAAAAG GTACSAAGCC	1140
10	AGCCTCATAC ATGCCCTGAG GCCAGCAGGCC GCCCAGCTCA GGCAGCACAC GCCTTCACTT	1200
	AAAAAGGCCG AGGAGCGGCG GJATCCACCT GAATCCAATT ACATCTGGTG AACTCCGACA	1260
1.5	TCTGAAACGT TTTAAGTTAC ACCAAGTTCA TAGCCTTTGT TAACCTTTCA TGTGTTGAAT	1320
15	GTTUAAATAA TGTTCATTAC ACTTAAGAAT ACTGGCCTGA ATTTTATTAG CTTCATTATA	1380
	AATCACTGAG CTGATATTTA CTCTTCCTTT TAAGTTTTCT AAGTACGTCT GTAGCATGAT	1440
20	GGTATAGATT TICTIGTITC AGTGCTTTGG GACAGATTIT ATAITATGTC AATTGATCAG	1500
	GTTAAAATTT TCAGTGTGTA GTTGGCAGAT ATTTCAAAA TTACAATGCA TTTATGGTGT	1560
25	CTGGGGGCAG GEGAACATCA GAAAGETTAA ATTGEGEAAA AATECGTAAG TEACAAGAAT	1620
25	TTEGATESTS CASTIAATST TGAAGTTACA GCATTTCAGA TTTTATTSTC AGATATTTAG	1680
	ATSTITGTTA CATITTTAAA AATTGCTCTT AATTTTAAA CTCTCAATAC AATATATTT	1740
30	GACCTTACCA TTATTCCAGA GATTCAGTAT TAAAAAAAAA AAAATTACAC TGTGGTAGTG	1300
	GCATTTAAAC AATATAATAT ATTCTAAACA CAATGAAATA GGGAATATAA TGTATGAACT	1860
35	TTTTGCATTG GCTTGAAGCA ATATAATATA TTGTAAACAA AACACAGCTC TTACCTAATA	1920
33	AACATTTAT ACTGTTTGTA TGTATAAAAT AAAGGTGCTG CTTTAGTTTT CTGA	1974
40	(2) INFORMATION FOR SEQ ID NO: 204:	
	(i) SEQUENCE CHARACTERISTICS:	
4.5	(A) LENGTH: 1057 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPCLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204:	
	CGGCCTTCCG GGGCAACCGT TCGTCCCAAC NCGGGAAAGG GTCCTGGAGN CGGGAACTAG	60
	GAGCCTCGGA AGTCCAAGGG OGGAGCGCCC TTTGCTAATA AGCCAATCAG AACGTGAGAC	120
55	GCTCCGGTGG GNCGGTGCCG TCGAGCGCGG GGTGGAGTCT GGGTGACTTG GCTGGCGGGA	180
	TCAAGTGCAG CTGCTTCAGG CTGAGGTEGC AGATAETGAG CGCTGGTEGC GGAGTTAAAG	240
	TYAAAGCAGG AGAGTAATWA TGAATAGCGC AGCGGGATTC TCACACCTAG ACCGTCGCGA	300

	GCGGGTTCTC AAGTTAGGGG AGAGTTTCGA GAAGCAGCCG CGCTGCGCTT CCACACTGTG	360
	COCTATGACT TCAAACCTGC TTCTATTGAC ACTTCTTCTG AAGGATACCT TGAGKTTGGC	420
5	GAAGKTGAAC AGKTBACCAT WACTSTGECM AATATAGAAA GTTGAAGGAA GCAGTAAAAT	489
5/	TCAGTATCGT AAAGAACAAC AGCAACAACA ATGTGGAATT CASCCAGGAC TCCCAATCTT	540
	GTAAAACATT CTUCATCTGA AGATAAGATG TCCCCAGCAT CTCCAATAGA TGATATCGAA	600
10	AGAGAACTGA AGGCAGAAGC TAGTCTAATG GACCAGATGA GTAGTTGTGA TAGTTCATCA	660
	GATTCCAALA GTTCATCATC TTCAAGTAGT GAGGATAGTT CTAGTGACTC AGAAGATGAA	720
15	GATTGCAAAT CCTCTAUTTC TGATACAGGG NAATTGTGTC TCAGGACATC CTACCATGAC	780
15	ACAGTACAGG ATTUCTGATA TAGATGCCAG TCATAATAGA TTTCGAGACA ACAGTGGCCT	840
	TCTGATGAAT ACTTTAAGAA ATGATTTGCA GCTGAGTGAA TCAGGAAGTG ACAGTGATGA	900
20	CTGAAGAAAT AUTTAGETAT AAATAAAAAT TTATAEAGCA TGTATAATTT ATTTTGTATT	960
	AACAATAWAA ATTOOTAWGA CIGAGGGAAA TATGTOTTAA CTTTTGATGA TAAAAGAAAT	1020
25	TAAATTTGAT TCAGAAAAAA AAAAAAAAA AACTCGA	1057
20		
30	(2) INFIRMATION FOR SEQ ID NO: 205:	
	(i) CEQUENCE CHARACTERISTICS: (A) LENGTH: 721 base pairs	
25	(E) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(f) TOPOLOGY linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205:	
40	GAATYCOGCA CGAGTCATCC CTCTCCCTCT TTCACTCCCT TACTCTTACT CTGTTTTTTG	60
	THETTOCKING AGAINGMENT TATTOCKTOTOTT GETTETTITT TETTTOTTIG TITTGAGATG	120
	GAGTGTUBET CITURTIGUUC AGGCTGGAGT GCAGTGGCGC AATCTCGGGT CACCACAACC	180
45	TOTGOOTOOO GOOTTOAAGO AATTOTOOTG COTCAGOOTO COGAGAAGOT GGGGATTACA	240
	GGCATGCGCC ACCACACCCA CCTNAATTT ATATITTTAG TAGAGATGGT GTTTCTCCAT	300
50	GITGGTCAGG CTGCCCAA ACTCCCAACC TCACGTGATN CCGCCTGCTT TGGCCTCCCC	360
	AAAGTGCTGG GAMTACAGGC ITGAGCCACT GCCCCCAGCC TCTTTTGCTC CTTTATACTC	420
		100
	ATAMAMITTA AMAR PREFERINGRAA - FAT BELA LILI AR LILIKA ARA	
60	TOANGTOCHA GGATCATTGA GCCCACGAST TUAGCTYKJA TOAGCCATS ATCATFTCAC	$\sim r_1 \odot$

	TACACTCAGC CTGGGCAATA GAGGGACATG TTGTCTCTAA AAAAAAAAAA	720
5	A	721
10	(2) INFORMATION FOR SEQ ID NO: 206:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2465 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(N1) SEQUENCE DESCRIPTION: SEQ ID NO: 206:	
20	CCACCATITA TOCAACTGAA GAGGAGTTAC AGGCAGTTCA GAAAATTGTT TCTATTACTG	60
20	AACGIGCITT AAAACTCGIT TCAGACAGTT TGTCTGAACA TGAGAAGAAC AAGAACAAAG	120
	AGGGAGATGA TAAGAAAGAG GGAGGTAAAG ACAGAGCTTT GAAAGGAGTT TTGCGAGTGG	180
25	GAGTATTGGC AAAAGGATTA CTTCTCCGAG GAGATAGAAA TGTCAACCTT GTTITGCTGT	240
	GCTCAGAGAA ACCTTCAAAG ACATTATTAA GCCGTATTGC AGAAAACCTA CCCAAACAGC	300
30	TTOUTSTIAT AAGCCCTGAG AAGTATGACA TAAAATGTGC TGTATCTGAA GCGGCAATAA	360
30	TTTTGAATTC ATSTSTSGAA CCCAAAATGC AAGTCACTAT CACACTGACA TCTCCAATTA	420
	TTCGAGAAGA GAACATGAGG GAACGAGATG TAACCTCGGG TATGGTGAAA GACCCACCGG	480
35	ACGTCTYGGA CAGGCAAAAA TGCCTYGACG CTCTGGCTGC TCTACGCCAC GCTAAGTCGT	540
	TCCAGGCTAG ACCTAATGGT CTGCAGTCCT GTGTGATTAT CATACGCATT CTTCGAGACC	600
40	TCTGTCAGCG AGTTCCAACT TGGTCTGATT TTCCAAGCTG GGCTATGGAG TTACTAGTAG	660
40	AGAAAGCAAT CAGCAGTGCT TCTAGCCCTC AGAGCCCTGG GGATGCACTG AGAAGAGTTT	720
	TTGAATGCAT TTCTTCAGGG ATTATTCTTA AAGGTAGTCC TGGACTTCTG GATCCTTGTG	780
45	AAAAGGATCC CTTTGATACC TTGGCAACAA TGACTGACCA GCAGCGTGAA GACATCACAT	840
	CCAGTGCACA GTTTGCATTG AGACTCCTTG CATTCCGCCA GATACACAAA GTTCTAGGCA	900
50	TGGATCCATT ACCGCAAATG AGCCAACGTT TTAACATCCA CAACAACAGG AAACGAAGAA	960
50	GAGATAGTGA TEGAGTTGAT GGATTTGAAG CTGAGGGGAA AAAAGACAAA AAAGATTATG	1020
	ATAACTITTA AAAAGTGTCT GTAAATCTTC AGTGTTAAAA AAACAGATGC CCATTTGTTG	1080
55	GCTGTTTTTC ATTCATAATA ATGTCTACAT TGAAAAATTT ATCAAGAATT TAAAGGATTT	1140
	CATGGAAGAA CCAAGTTTT CTATGATATT AAAAAATGTA CAGTGTTAGG TATTATTTGA	1200
60	ATOGAAAGAC ACCCAAAAAA AAAAATGTGC TCCGACTAGG GGGAAAACAG TAGTTCCGAT	1260
011		

	TTTTTCCCAT TATTTTATT TTATTTCTG GTTGCCCTAG CTTCCCCCCC TATTTTTGTG	1320
	TCTTTTATTA ACTAGTECAT TGTCTTATTA AATCTTCACT GTATTTAATG CAGGATGTGT	1380
5	GCTTCAGTTG CTCTGTGTAT TTTGATATTT TAATTTAGAG GTTTTGTTTG	144)
	CTAGTTGTAA GTTACTTTGT TATAGATGGT ATCCTTTACC CCTTCTTAAT ATTTTACAGC	1500
	AGTACGTTTT TTTGTAACGT GAGACTGCAG AGTTTGTTTT TCTATATGTG AAGGATTACA	1560
10	ACACAAAAAG TTATCCTGCC ATTCGAGTGC TCAGAACTGA ATGTTTCTGC AGATCTTGTG	1620
	GCATTTGTCT CTAGTGTGAT ATATAAAGGT GTAATTAAGA CAGAGTTCTG TTAATCTAAT	1680
15	CAAGTMYGCT GTTAGTTGTG CATTAGCAGT ATAAAAGCTA ATATATACTA TATGGTCTTG	1740
	CAACAGTTTT AAAGCCTCTG CATAATTGAT AATAAAAATG CATGACATTC TTGTTTTTAA	1800
20	TAGACTTTTA AAATCATAAT TTTAGGTTTA ACACGTAGAT CTTTGTACAG TTGACTTTTT	1860
20	GACATAGCAA GGCCAAAAAT AACTTTITGA ATATTTTTTT CTTGTGTATA AGTGGAAAGG	1930
	GCATTTTCA CATATAAGTG GGCTAAGCAA TATTTTCAAA AGAACTTCAT CATTGTACAA	1980
25	CTAACAACAG TAACTAGECC TTAATTATEG TGACAGTTCC TTATTGGTGT GTGTGAGATT	2040
	ACTCTAGCAA CTATTACAGT ATAACACAGA TGATCTTCTC CACACACCCC ATCACCCAGA	2100
30	TAATTTACAG TTCTGTTAAC AGTGAGGTTG ATAAAGTATT ACTGATAAAA AATTATCTAA	2160
50	GGAAAAAAC AGAAAATTAT TTGGTGTGGC CATCTTACCT GCTTATGTCT CCTACACAAA	2220
	GCTAAATATT CTAGCACTGA TGTAATGAAA AATTACATCT TACTGTTGAT ATATGTATGC	2340
35	TCTGGTACAC AGATGTCATT TTGTTGTCAC AGCACTACAG TGAAATACAC AAAAAATGAA	2340
	ATTCATATAA TGACTTAAAT GTATTATATG TTAGAATTGA CAACATAAAC TACTTTTGCT	2460
40	TTBAAATGAT GTATGCTTCA GTAAAATCAT ATTCAAATTT AAAAAAAAAA	2465
-10	CTCGA	

50

- (1) INFORMATION FOR SEQ ID NO: 207:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1480 base pairs
 - (P) TYPE: nucleic acid
 - (C) STRANDELNESS: double
 - (D) TOPOLOGY: linear

in the second programmer and a second programmer of the second programm

60 ITCCOURSCI GCTCGCCCCT CCTCCTGCAG GCGAAAGCAA GAAGATGACA 988A GGTTT

	GCTGGCTGAA CGAGAGCAGG AAGAAGCCAT TGCTCAGTTC CCATATGTGG AATTCACCGG	240
5	GAGAGATAGC ATCACCTGTC TCACGTGCCA GGGGACAGGC TACATTCCAA CAGAGCAAGT	300
5	AAATGAGTTG GTGGCTTTGA TCCCACACAG TGATCAGACA TTGCGCCCTC AGCGAACTAA	360
	GCAATATGTC CTCCTGTCCA TCCTGCTTTG TCTCCTGGCA TCTGGTTTGG TGGTTTCTT	420
10	COTGTTTCCG CATTCAGTCC TTCTCGATGA TGACGCCATC AAAGTGGTGA AAGTCACATT	480
	TAATAAGCAA GACTCCCTTG TAATTCTCAC CATCATGGCC ACCCTGAAAA TCAGGAACTC	540
1.5	CAACTTCTAC ACGGTGGCAG TGACCAGCCT GTCCAGCCAG ATTLAGTACA TGAACACAGT	600
15	GGTGAATTT ACCGGGAAGG CCGAGATGGG AGGACCGTTT TCCTATGTGT ACTTCTTCTG	660
	CACCGTACCT GAGATCCTGG TICACAACAT AGTGATCTTC ATGCGAACTT CAGTGAAGAT	720
20	TTCATACATT GGCCTCATGA CCCAGAGCTC CTTGGAGACA CATCACTATG TGGATTGTGG	780
	AGGAAATTCC ACACCTATTT AACAACTGCT ATTGGTTCTT CCACACAGCG CCTGTAGAAG	840
25	AGAGCACAGC ATATGTTCCC AAGGCCTGAG TTCTGGACCT ACCCCCACGT GGTGTAAGCA	900
25	GAGGACGAAT TOGTTCACTT AACTDICAGO AAACATCCTC CTGCCACTTA GGAGGAAACA	960
	CCTCCCTATG GTACCATTTA TGTTTCTCAG AACCAGCAGA ATCAGTGCCT AGCCTGTGCC	1020
30	CAGCAAATAG TTOGCACTCA ATAAAGATTT GCAGAATTTA ATACAGATCT TTTCAGCTGT	1080
	TCTTAGGGCA TTATAAATGG AAATCATAAC GTGGTTCTAG GTTATCAAAC CATGGAGTGA	1140
35	TGTGGAGCTA GGATTGTGAG TEACCTGCAG GCCATTATCA GTCCCTCATC TGTGCAGAAG	1200
55	TCGCAGCAGA GAGGGACIAT CEAAATACCT AAGAGAAAAC AGACCTAGTC AGGATATGAA	1260
	TITGTTTCAG CTGTTCCCAA AGGCCTGGGA GCTTITTGAA AAGAAAGAAA AAAGTGTGTT	1320
40	GCCTTTTTTT TTTTTAGAA AGTTAGAATT GTTTTTACCA AGAGTCTATG TGCGGCTTGA	1380
	TICACCCTTC ATCCATTGGC TGGAACATGG ATTGGGGATT TGATAGAAAA ATAAACCCTG	1440
45	CTTTTGATTC AAAAAAAAA AAAAAWAAA AAAAACTCGA	1480
50	(2) INFORMATION FOR SEQ ID NO: 208:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 872 base pairs	
55	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 208:	·
	(114) CONTOUR ADDITION OF THE TO	

CAGTATTTCC CTCAGTACTG TAAGCAAAAG TGGTATGTTT TTCTTTCTTT ATGTCTACTC

WO 98/54963

	TGTCCTCTGT GGCCTTCTGG TGTACCCCTC TCTTCCTAGC CATTCAGTCT CTCTAGTCAC	120
		180
	CTCCCTAGTA GCTAGTGCTC TCTAACTTT TATTTAATIA GAACAACTCC ATTTCCATTT	
5	CAAGGTAGGT CAATGGGGG AAAAGCCTCA TGATTTAAAC TGAAGTTAAC AACACAGCTT	240
	TTAAAATGAA AACTCATACT CCAACTTCTA AAGTATATTT GAGCTGATTT GTTTCCAAAA	300
	CAAAGATATG CTGTACCTAA AACTGCTAAA ACAAAAATAT AAAGACAAGG ACTAGGTGAT	360
10	TAACGGGAGA GAAAAATCAT YTCTTTTCCA GGAAACCTTT OCTAAAATAA GCAAAACTTG	420
	ANTICTATOCT TOATGGAAAC TGACACAAAG AAAAGAAACT GATGGATTGC ACAGGCCTTG	480
15	TTATAGANAT AGATCTATNA ANAGATCTGT CCACAGGANA TATAGACCTT CTCCTGGTTC	540
	TGAACTTCAA TGGGGATTTG TCAGCTAGGT CTCCATCTAT AGGAATAGGT TCACATACCT	600
	ATCTATTCAT GCALATATTC TGAAAACAGG TACATACAAA ATTACAACAA AGGAAAAAAA	660
20	TTCTATTGAA CACTTAAA4A TAGAAACAGG CCAGGCACGG TGGCTCATGC TGTAATCCCA	720
	ACAATTTGGG AGGCTGAGGC TOGTGGATCA CCTGAGGTCA GGACTGTGAG ACCAGCTTGG	780
25	CCAACATGGT GAAACCCCGT CACTACTAAA AATACAAAAA AAATTAGCCT GTGTGGTGGC	840
	ACACTONIAC AATOONGGOT GACTOGGGAA AN	872
30		
	(2) INFORMATION FOR SEQ ID NO: 209:	
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1779 base pairs(E) TYPE: nucleic acid(C) STRANDEENESS: double(D) TOPCLCGY: linear	
40	(xi) SEQUENCE LEGCRIPTION: SEQ ID NO: 209:	
	ANTICCCARG ACTGCACARA ATTACAGTGC TANTGTATAT GETTGCAGTT CACATARAGA	60
	CAAAAGCATC TSTTAYCAAA TGAGTAGTAA TATTGGGTGG TTGATTYGYT CTTAGCAGAC	120
45	TYGGCTYCAT WYTGGTCTTG AGATAAAATG GCCAGCATAA AYGCTGYTTA TATYCACGTT	130
	TTCCTAGGTG TGTGTGTGCA GGCCACAGCA GCATGCCCTT GGTGTAGTCA GTGCCGAAAS	240
50) GGGTCTGTTC CTTCTTYAGC CTGCCTGCAG GGATGGTCTC CTTTTAAAGC AGGTTGTGTG	300
	CAGCATTCAG TACACTBAAB GTAAGCTAAA CCATCAACAT CTCTGGTGTT TTAAGATBTF	360
		* ". "
	gritor piato ja attutara. Atturbara sa jorgo kojetu, o le oralia se objekto se la	
6	The state of the s	\$50

	TITGTTAAAT ATAGTTCCTA GTGACATAGA AACGATGCGT AGTTTTCATT TACTAATTAC	660
5	AAATGTTGAG GCCTAATTCT GAAAGTCCTC ATATTTAAAG GCTAGACAAC GTAATGAAAT	720
5	TTTTAACTAT TTGTATGTCA TTTTGAAAGT GTACTGCTTT ATGGTAAAAG TGTTTTTCAT	780
	TTGTTCATTG THTTCATTAT TTGTSATCAT GTTGTCTTTC AATACAGGCA TAAACCTTCC	840
10	ACTOTTGAAC AAAGCAGOTG CTTTTTAAAA GOGGTAATTG CTTCTTTACC TTTTATTTCT	900
	TTIGTAAATG AAGCTTITCT TTAAGAATGT GACTTTAAAG TGTTGTCTAT TGCATAAAAC	960
15	AGTTGACACT CACTTATTGT AAAGTGAAGA TPGTTCTACT GCATGTGAAG TGGACCATGC	1020
13	AGATTTCTGT ATGTTCTEAG TATECATCAC TAGATAATAA AGTCTTTTGT GAACAAGGCA	1080
	TTTGTAGCCA TTTTTAAAAG TTTTTGTCTT CAGTGCTGGT AAGTCAGGTA AACCATAAAT	1140
20	AGTTAAAAAGU AACCTTTTGT TTTTTTCCTJ AAAGTTTTTA ATTGAAAGTA TTATTAGTTA	1200
	AAGATSTAAA CCTAGCCAAA ATTACCAGTT TATTAATAAT TAGGATCCTA ATTATTTCAA	1260
25	AAAATCCTAC AAATATTGTC AGCTTTCAGT GTAGTGAGAT TATTCCTGTA GGTTATGGGG	1320
23	TATAATTCAG GATTTAACTA ATGTTTCTGC TATTTTCTCA CTTTTCCTTT TGATGGTGCG	1380
	GAAAGAGAAA AACGAAAACG GGGCACAGGC CATTCGACGC CTTCTCCAAG GGGTCTGATT	1440
30	TOCTGAGACA CCAGCTTCAC CTTUTTAACA AGGCACCTAA TTACAACAAG CATGUACATT	1500
	TTGGTGCATT CAAGAATGGA AAATCAGAAT AGCAGCATTG ATTCTTCTGG TGCAGCTCAG	1560
35	TOBAAGATGA TGACAACCAS AAGACATGAB CTAAGGGTAA GGGACTGTTC TGAAGAACCT	1620
55	TTCCATTTAG TGATCAAGAT ATGGAAGCTG ATTTCTGAAA ATGCTCAGTG TGTACTCTAA	1680
	TTATTTATGG TACCATTTGA ATTGTAACTT GCATTTTAGC AGTGCATGTT TCTAATTGAC	1740
40	TTACTGGGAA ACTGAATAAA ATATGCCTCT TATTATCAA	1779
45	(2) INFORMATION FOR SEQ ID NO: 210:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2110 base pairs (B) TYPE: nucleic acid (C) STRANDELNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210:	

55 GCGGCCGCTG CAGCCCGGAG CTSAGCTAGC CSTCCGAGCC GAGCCGTCCG AGCCGGGGAA 60

GTCCTGTCCC GACGCCTTGG AAAGCGGTCC CTCCTGGGAG CCCGGGTGTT GGGACCCAGT 180

463

	GOOTCGGAGG GGCCTCGGOT GCCCCACCCT CGGAGCCACT GCTAGAAGGG GCCGCTCCCC	240
	AGCCTTTUAC CACCTCTGAT GACACCCCT GCCAGGAGCA GCCCAAGGAA GTCCTTAAGG	300
5	CTCCCAGCAC CTCGGGGGCCTT CAGCAGGGGG CCTTTMAGCC TGGGCAGAAG GTTTATGTGT	360
	GSTA:GGGGG TCAASASTG: ACAGGASTGS TGGWGCAGCA CAGCTGSATG GAGGGT/CAGG	420
	TGACCGTCTG GCTGCTGGAG CACAAGCTGC AGGTCTGCTG CAGGGTGGAG GAGGTGTCGC	480
10	TOBORGAGOT GORGGOOOD TOTOOCORDS CRICACCOOT GGAGOOOGGA GOOCAGGOOO	540
	TOGUCTACAG GUCUGUCTOU ACCAACATOU ATETCOCAAA GAGGAAGTOG GACGCATGGA	600
15	AATBGATUAG AYGATGDOGG CUATGGYWCY GADGYCCCYG TCDYGCAGCC CYGTYGYACA	660
	GAGTESTICS GGGACCAGG CCAACTTSTS TOSTTSSCG GCGGCCTGCG ACCEATGGAA	720
	COACASTECT CACATOTOG ACAGOOGIAN CASCACTACO ACCOSTCACT GOAGTGGGAG	780
20	CAGTOGTGTC TCCACCCCT CGCCCCCCA CCCCCAGGCC AGCCCCAAGT ATTTGGGGGA	840
	TOCTTTUSST TCTCCCCCAAA CTSATCATCG CTTTSAGACC GATCCTGACC CTTTCCTSCT	900
25	GUACCIANCCA GOTOCANCAA AAAGAAAGAA OTOTSTAAAG GTGATGTACA AGTGOOTSTG	960
	GOCAAAJTST GGJAAASTTC TGGGGTCSAT TGTGGGGATC AAACGACACG TSAAAGCCCT	1020
20	CCATCT.XGGG GACACAGTGG ACTCTGATCA GTTCAAGCGG GAGGAGGATT TLTACTACAC	1080
30	AGAGGTGCAG CTGAAGGAGG AATCIGCTGC TGCTGCTGCT GCTGCTGCCG CAGACCCCCA	1140
	GTCCTTVGGA CTCCCACCTC CGACCCAGTT CCCACCCCCA GTATGACTGG CTTGCCTCTG	1200
35	TOTOCTOTTO CACCACCTOT CONCADARGO CAGTOCTOCG GOCCAGAACA TOCTGGCCCG	1260
	GAGTCCTCCC TGCCCTCAGG GGCTCTCAGC AAGTCAGCTC CTGGGTCCTT CTGGCACATT	1320
40	CARGEAGATO ATGCATACCA GGCTCTGCCA TECTTCCAGA TECCAGTCTC ACEACACATC	1380
40	TACATCAGTG TOAGGTGGGC TGCTGCCCCC TCCGCCGCCT GCTCTCTMTC TCCGGTCCGG	1440
	AGCCBCTCGC TAABBITCAG CGAAGCCCCA (KCAGCCAGCA CCTBCGATGA AATCTCATCT	1500
45	GATTOGTRIACT TRITICIACROS GEGOCCAGAG TGGTGTCAEG AAAGCCOGAG GGGAGGCTAA	1560
	GAAGTFFFGG AAGTFTATGG CATURA KIAD URGGADCAST GETBCACCOC TTGCCCGGTGG	1520
50	AAGAAGGCT GOCAGCCCTT TCTGGACTGA CCTGTGCTGC AGGTTCTACT CTGTTCCTGG	1680
20	COCTOCOGO AGCONOTIGAC AAGAGGGCAG TGTGTCACCA GCCCTCAGCA GAAACCGAAA	1740
	GAGAAAGAAC GGAAACMCG AGTTTGGGCT CTGTTGGCTA AGGTGTAACA CTTAAAGCAA	1800

SPATIANTIA DUCTOCUTIT DUCACATO IO CANTOTOTAS PRONTABUT TURBUUTUUD. 1986

	AAAAGAAGGA ACAGCTCGTT CTGCTTCCTG CTGAGTCGGT GAATTCTTTG CTTTCTAAAC	2040
	TCTTCCAGAA AGGACTGTGA GCAAGATGAA TTTACTTTTC TTAAAAAAAA AAAAAAAAAA	2100
5	AAAAACTOGA	2110
10	(2) INFORMATION FOR SEQ ID NO: 211:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 938 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:	
20	GGCACAGGAA AAAAAAGAAA AAAGAAAAAA GAAAAAAGTI TTTGTACCCA CAGATTAGCA	60
	TTTTCTWAT GTTTGAAAAA AGTTTAAGCT ATGTCCTAAT TTAAAAATGA GCACAAACTA	120
25	CTTAACAGAT GTCTGTTCCC TCTTCTCTTA CTTAAATTAT CTTTATTTTC ACCATCACCT	180
25	CCCAGTGCCG AACACCTGAN CTCTGTGTTT TGTGGTTGGA TCCTGGGTTG CCAAGTTCCT	240
	ATTTGGTOAG TOOCTGGCCT GTBGGGCGBT CTCAGGAAGT GGCATGCTCT TCAMGRAGGA	300
30	TCGTTCATYT CCAGTATAAC CAWITTGTTA ATAATAGTTG ATAATTCCCA GCTTTTACCA	360
	GATGARTITT GACTIATITT TCCTCCTTTG ACCTGTTCAA AGCTAACATA TCTCGGTCAG	420
2.5	TTCGGAGAGG GTGGGGGATT TGAGAATGTG AGGAGGAGTG GGGTTAGAAT GGGTTTGCCT	420
35	ATCTGGGCAA GGAAAGAGTT CCTAGTCGAT TGGGCACAAT GACAAAATGA TTCCATGGAT	540
	AGAATCGTCC CATGTTGCTG GAACACCTCA CGTGTTGTGA ACGCCTTAAA TTCCTGCCAT	600
40	CCCTTCTCTG ATTCCCCACC TCCCTGTAGT TTCCACAGGA TTTATCTCTC TGTACCCCCG	660
	TECTECAACT CTACTETGTE AGCETETECT CCATECETTA CTTECETTET AAATTECAGG	720
	AGATGACCTC ACTYTGCAAA GCAAATTGGA GCCACCAAAT TGTAGCTCTC CTCGGTGGAA	780
45	ACTGCATCTG TGCTCATCCC TGCACCTTCT TGCAGAAAGC CGCCCCCTCA GGCCAAGATG	840
	AGTGCCTGCC CCCCATGGGA GACTCAGACA CTTTGACCCC TTGTGACTTC AGCATCTCCC	900
50	TCTYTAAAGA TYCTCTCCCA ACATICAGTC GTGCTCGA	938
55	(2) INFORMATION FOR SEQ ID NO: 212:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1551 base pairs	·
60	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	

465

(E) TOPOLOGY: linear

(xi) SEÇUENCE DESCRIPTION: SEQ ID NO: 212:

	(XI) SE, OLIVED DECI	
5	AGGCTGGACT AAGCATAGAG AACCAGGAGA GAAAGAAAGA TTTAAGAGAC TGAGTAATAT	60
	TTTTTGACAG ATCATTTAAG AAACTGAGTA ATTTTTTTT TCTCCAAAAG GGCATGGGTT	120
10	TTTTTTTTTT TTTGTTTTTT CTCTATTTGG CACTTTCTAG GGATTGGTCT ATALATTTTT	130
	TCAAAGATCA TAGAATAAAT TTCTTTGTAG CAACTTCCTA TTTTAGTGTT TATGTTAGGG	240
	GARCCCCARG TGTDCCTGCT GATACGCCAT TAGGGCCACT TCTCAGCCTC TGGCTACATC	300
15	ATAATGETTT TTTTTCTATC TIGCCAAAGT TTECMGAAAA TIKAKGITTT CTAATTITAA	360
	AAAAATTGGT TGTGGAGATG GGATGGGACC TCTTTATAAG CCCTGAAAAT AAGTGATTTN	420
20 25	TITTAAGTGC TATTCTGCTA TAAACCTGAT TCTCACTTTT TTCTGTAGAC AACAGTTTT	430
	TATAATATAT CTATTTTGTG TGGACATTAT TTCCTTTTAA CCAATACTGA AATTCCATAG	540
	TGTAWACTTT CTCCACATTT TCTTTGATTA ATACTTYCTT AAAATAGACA CTCCGATTGG	600
	CACCAGCTGT CACCAATAAA GCTGCCCTGA ACATTGTCAA TCAATCCTGT TAACCAATTT	650
	GAGAATTTT CTGGAATGCT TAGTTAGGGA TGAAATTGCT GGGTTATAGG TATGAGTATG	720
30	CTTGATATAC TITTCTCCAG AATGTCTACA CCTGTGTGTA CACCACATCT CCAGAGATAG	730
	GGGAATCTTA TGTCCCTGCT AACTGCTCTC GTTATTTAAT TTTCTGACAT TTGCCGCCGC	0∔8
	CGCCGCCCCC TGCCCCCAAC ACACACATGJ TATAAAGTGG TAGTTTCTTG TTTTAAATTG	900
	THE THE PROPERTY CHITGHATCE TOAGHTATHE TECTIFICEG	960
	TTATGTGAAT ATCCTTTTCC TATGCTTTAA CTACTTTTCT AATTTGTCCC TTTTTTNGGT	1020
40	TATCANATTO CAGGCCATTG TOTATTOCAT CGTCACTTTT GGGTATTGGA NACATOTTTC	1030
		1140
	TTACGGTTAT GTTCTTGGAA TTTTATTTAA GAAATCTTTT TCTATCCTGA GACCACAAAA	1230
45	TATGTTIAAT COTTAAGGC	1260
F	ATGTGTAGTT CATTTATAT GGTGTGAAAT AGTTCTTATT CATTTATTCA ACACATATTG	1320
50	GTGGAGTGCC TGCTGATGGT AGTACTCTTC AGAGTACTTT GTATATATTT GTGAACACAT	1330
		1440
	TITTETTE ACCEPTATION CONTRACTOR GARTICOACA ATTITACACA TAGCACCAGT TAAGGAATAG	1500

60 (2) INFOFMATION FOR SEQ ID NO: 213:

, $\mathbf{s}_{\mathbf{v}} = (\mathbf{v}_{\mathbf{v}})^{T} + (\mathbf{p}_{\mathbf{v}})^{T} = (\mathrm{over} \mathbf{d}) \boldsymbol{\sigma} \cdot \mathbf{A}$.

	(1) DEQUERCE CHARACTERISIUS:	
	(A) LENGTH: 997 base pairs (B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 213:	
10	AGAGAGTOCT CAACAGAACC TAATCATGCT GGCACCCTAA TOTCATATOT STAGCCTCTA	60
	GAACTBAGAG AACATAAACT CCAGTTOTTE AAGCTACCCA CZCTATGGTA TETGTTATTA	120
15	TACCCCAAGC TAASTCAGGT GGAAAGGCAG AAATATTTYG ASRACRECCA TTTCTACHAA	130
	AACAGAGTTG TTCTAAATJA AATGGCCAGA TATTTCATCT TCTTCATACT AGTATTTATG	240
	AAAGTTTCAT TAAACAGCAC TTGGCCAGCA GCCAGGGCTG CCACCTTCAG AACGGCAAAC	300
20	AAAAGCAAAT GATTTGAGGA ACAAAAGAGT GGACACAGAG CTTVTCAGAA GATGGGTYCA	360
	TOTTOTGAGA TGATOTTOTT AGATCATCAA TMYTOTGCAO CUGALGUOOT ACTOCAATUG	420
25	TAGTAGATAA GAGCAAAGAO ACTTOCTGAT CCTGTGGAAA ATGTTGGAAG DOTGGTGATG	430
	GAGAGGCTGA CACTGGGACO AACAGAAGGC CGGACATYTA TITGCTGCAG CCCTTCTGCA	540
20	COTGGGCCCT CTICAGGCT TGTACCTICA ACTOCCCATG CCATTGTAGC ACCTGGTAAG	600
30	CTGAAGTTAG GTATTTGAAG AGATAATTTG CCCCCAACAA AGAATTACTT AAAAGAAAAA	550 720
	GGAAACCACT AAATTCCACT TGACAAACCA GTTTGTTCAG TYTTGACTTT IGCAAATTTG AAACTTTCTC TTTGGCACCA TATGATTCTG TTACATTAGG GTTCATCAAI GCTAAGATAC	780
35	ACAGCTAGGT UTACCACCTG CCAGTGGTCA AGAATGAAAG AACCTCTCAG AGAGAGATCA	240
	GTTTCTAATA ACCTAACAGT TTTCCTTGGS TATTACMAAA AAAAAAAAAA TTAGAATAAA	900
40	ATGTCAGTGC CATGCAGGCA AGTACAGATA TGGAAATGAA AGCTCTGTCT ACAACTGCAA	960
.0	GATTIGTITG TTAATAAAAT TGATTGGGAT CACICGA	997
45		
	(2) INFORMATION FOR SEQ ID NO: 214:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1496 base pairs	
	(B) TYPE: nucleic acid	
	(3) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 214:	
	GAATTOGGCA OGAGTGAOCA CAGATATOTT TGGCTYTCAG OCYCLOCACA ATGCTGTOCA	<i>. €</i> 0.
	CTATGTTTTT TTTAATGGAT TGACATGTCA TGAATCCACA AATTTAGCG CTFFTCCATC	120
60	CIMIDITITI INIMATCHAL THANKINICA PHARCON PARA CONTROLLAR	120

	TITTCCATCT TTGTCATAGC TTCATCACGC ACGATGGAGG TCACTTCAGC ACTATCCGGA	130
		240
	GCGGCCTCAC GGACAGATCR GTGAATTTCC TTTTCCTTTT TCTTGATGTA CCGGATTGTD	
5	GACTOSTIAA CATIGAGOTO ATGGOCAADA GCACTSTAAC TOATGGOTGA TIGGAGOTIA	300
	TOGAACAOGO GGAITTYTCTO COTAAGGSAN ATCAMGGTOT TOTTTOGCTT AGGAACAOTG	360
	GGCARARCTT AARCACTAGS CTTGGGGGGC ATTTTAGAAA GCAAAACCAC CCACAAAAAAG	420
10	CAGAAAAAA AGTITCAGTA AACAGACTIN NGANAGGACT CTTTETTTAC AGCACAGGAG	480
	CYCCGACTAG AAGGCGGGG TTCTCCCCCAG TTCAAACTIC AGGTXGGAAC CTTAAGTEGG	540
15	CCAACTCCAA ATTITCACCC ICTCCGCAT3 CCCGCGAAAS AAACDCCCAG AACAGTACCG	60()
	TGATGATTGA TTITAGCCTT ACAAATACAT TTTAGCAAGT AAGTGAATTT CGCATTACGA .	661)
	AMENATGATE ANTGANCORC ACCEPTATET CONTAGNENT GENATETERS TEMAGCAGOE	720
20	TTATTATATT AAGGOGOGA GGCAGCGOCG AAGACTACAA GTTCCAGCAT GCACCGCGTC	780
	COGGOOGSTT CGGGGTCCUA GCGADGGCTT CAGGGACGCC AGCUTGGAGG TATCGGCCGG	840
25	AAGTSTOGTA GGGCAACTAC GTASTACTCT CTGCGCATGT GCAAAGCGCT GTCGGGGCCCC	900
	GCCCTAGCTG CCSTCGCCGC CCCCGGCGCT CTATGCTCTC TCCCTAGAGC TTTGCCGTIG	960
	CAGGCGGCTG CTGCGGTCIT GTGAGTTTGA CCAGCGTCGA GCCGCAGCAA CATGGAGGAA	1020
30	TTCGACTCCG AAGACTTCTC TACGTCGGAG GAGCACGAGG ACTACGTGCC GTCCGGTGAG	1080
	CGATTCCGCC TCACGCGAGA AGCGAATIGC CCCGCCCCAC GCCTCACGTG ACGCCCGCTC	1140
35	TOTOCOCOGO GUCUTOTUCO OTOTOGOCOA GOTUGTICAG OGOGGOTOCT GITOTOGAGO	1200
	GTOCGCTCCC TUAUGUOUCT CATQCTCGGC CGCTCCGGCC CGAGGGGTGT GCGCGTCKICG	1260
	GITCTGTGCT CCCCTCCCGT TGCGCAGCTC CGGCCGCCCCCCTTCTTGC AGCGCGGAA	1320
40	COGCACATGG ACACGGCCCC TTGTUGCTAG GGACGCTCGT CGUTCAGCCC CGAACGACAA	1380
	COCTOCTICA GAAGTOGESG OGGCAGTICG AGCOTTEGAA OTTITYTTICA COCCTOGEOO	1440
45	AND THE PROPERTY OF THE PROPER	1496

50 (2) INFORMATION FOR SEQ ID NO: 215:

 $S_{\mathbf{v}} = \{v_{i}, \dots, v_{i}, \Delta_{i}\} = \{v_{i}, \dots, v_{i}, \dots, \Delta_{i}\}$

(i) SEQUENCE CHARACTERISTICS:

(A) LEMGTH: 1308 base pairs

ali di Maria di Balanca di Albanda di Albanda

60 TEGRICANTES GONGARDONAN AFACGARGAN ATBORGETTIS ACCARCINATES OFTA YOUTE

55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1705 base pairs (B) TYPE nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(2) INFORMATION FOR SEQ ID NO: 216:	
45		
	TAATACTOGT WCCAACAMAG GEGTTCTGGA TGTACACMAG GTTATCTT	1308
40	GCCATAACCC TTTTTTACTT CCATTAGGCC GTATAACTGG NGGGACNGCT GGTCGGTATA	1260
	CTAAATGATT ATTCTTTTCT CCCTGTTTTC TGGTATTTTC TAGGCATCCT TCTCACCACA	1200
35	ATGTCAGAAT GGGAACTITC CTCGAAGTTC TCCCAAACTC AGAGACAGCA CTGCCTTCTC	1140
	ATGTATGACC TTCATTTTCC AAGAAATAGA ACTCTAGCTT AGAATTATGG ATGCTCTAAA	1080
30	TGCAATGCGA ACAGGTAGGT ATCTGTTTCT AAATAAAACT GTTTACATTG ATTATGGGGT	1020
30	AGCTCTCTTG AATTTGGATA TTGGTTATTT TTTATAGAGT GTAAACCAAG TTTTATATTC	96)
	ATCAAGCCTS AGGCIGGTGA ACASTAGCTA CACACCCATA TTGTGTGTTS TGTGAATGCT	900
25	AGGCTTATG TTAAAATCAT GCATTTGAAA AGCAAACCTT AATCTGCAAA GACAGCAGCA AGCATTATAC GGTCATCTTG AATGATCCCT TTGAAATTTT TTTTTTGTTT GTTTGTTTAA	84.)
	AGGCCTTATG TTAAAATCAT GCACTTGAAA AGCAAACCTT AATCTGCAAA GACAGCAGCA	78 n
20	AASTSAGAST GTGAACTGTG TOGCAAGAGA GCCTCACACC TCACTAGSTS CAGAGAGCCC	72:)
20	TACTOTTTTA AGTITAGGOG CAATATAGGG TAATGGAAAT ITOUTGGOGG CTGGGTTCCC CATTTTTACT ATTAAGAAGA CCAGTGATAA TTTAATAATG CCAGCAACTO TGGGTTAGTT	660
	AAAAGCCAGG TATAATGTAA CTTCACCCCA GCCTTTGTAC TAAGCTCTTG ATAGTGGATA	. 600
15	AACCTAGGTA TATCCTTTGG TCTTCCACAG TCATGTTGAG GTGGGCTCCC TGGTATGGTA	540
	TATTGCTATA TCTTTSTSGA TAATACATTC AGGTGGTGCT GGGTGATTTA TTATAATCTG	480
10		420
10	GTATTCCACS TTTTTAGCCC TCAGGTTACC AAGATAAATA TATGTATATA TAACCTTTAT	360
	ACACAAACA: TGTCCTTTTG GGTCCCTTTC TTACAGATGG ACCTCTTGAG AAGAATTATC	300
5	TGGAAAGAG TAAAGAAACC ACCCTTGTT CCCAACTCCA CTTTACCCAT ATTTTATGCA	240
	AAAAAAAAGG AAACGTTTAT CATGAATCAA CAGGGTTTCA GTCCTTATCA AAGAGAGATG	180
	CTGCCTTTGA CCCATCACAC CCCATTTCCT CCTCTTTCCC TCTCCCCCCT GCCAAAAAAA	120

CTGGAGACCC CAAAGAAACA AAGATGCTAA TCACCAAACA GGCTGACTGG GCCAGAAATA 120

469

	A CONCINCIA DE LA CONCINCIA CONCINCI	180
	TCAAGGAJCC CAAAGCCGCC GTGGAGATGT ACATCTCAGC AGGAGAGCAC GTCAAGGCCA	
	TOGAGATOTS TOGTGACCAT GGOTOGGTTG ACATGTTGAT CGACATCGCO CGCAAACTGG	240
5	ADAAGGCTGA GCGCGAGCOO CTGCTGCTGT GCGCTACCTA CCTCAAGAAG CTGGACAGCC	300
	CTGGCTATGC TOCTGAGACC TACCTGAAGA TGGGTGACCT CAAGTCCCTG GTGCAGCTGC	360
	ASTGGAGACO CAGCGOTGGG ATGAGGCCTT TGCTTTGCGT GAGAAGCATO CTGAGTTTAA	420
10	CGATGACATO TACATGCCGT ATGCTCAGTG GCTAGCAGAG AACGATCOCT TPGAGGAAGC	480
	COAGMAAGOS TTCOAOAAGG CTGRGCGACA GAGAGAAGGG GTCOAGCTRC TREAGCAGCT	540
15	CACANACANT GCCGTCGCCG AGALCAGGTT TAATGATGCT GCCTATTATT ACTGGATGCT	600
	GTCCATGCAG TGCCTCGATA TAGCTCAAGA TCCTGCCAG AAGGACACAA TCCTTGGCAA	660
	STTCTACCAC TTCCAGCGTT TCCCAGAGCT GTACCATGGT TACCATCCCA TCCATCGCA	720
20	CACGRARRY CONTRAGTS TOCATORICS THARACTOTT TTCARCATOT CORSSTTOCT	780
	POTBURACA KO CTROCORANGO ARACERCOTO GEGGATOTOT ARACTGARARA TROTOTTORO	840
25	OTTOGGCCAAG CAGAGOAAGG COCTCGGTGG CTACAGGCTG GCCCGGCACG COTAYGACAA	900
	SCTSCOTGSC CTSTACATCC CTSSCAGATT CCAAAAGTCC ATTGASCTSG GTACCCTGAC	960
	CATCOBOGGO AAGCOCTTOO ACGACAGTGA GGAGTIGGTG COCTTSTGCT ACCGCTGCTC	1020
30	CACCAACAAC COSCIGCICA ACAACCITGGG CAACGITCIGC ATCAACITGCC OCCAGCCCIT	1080
	CATCITIONSC GESTETTEST ACHASTICT ACASCINGTI GAGITETACS ISGAGGAAGG	1140
35	GATCACTGAT GAAGAAGCCA TCTCCCTCAT GGACCTGGAG GTGCTGAGAC CCAAGCGGGA	1200
	TGACAGACAG CIAGAGATTI GONAACAACA GOTOCCAGAT TOTTOCCGCT AGTGGGAGAGAC	1260
	CAAGGGAUTC CATCGGAGAT NAGGAUCCGT TCACAGUTAA GCTRAGUTTI GAGCAAGGTG	1320
40	GCTCARAUTT CUTSICASTG GTBGTGAGCC GGCTGGTGCT GCGCTCCATG AGCCGCCGGG	1380
	ATSTOCTOAT CAASEGAIGG DEEDCACOOC TEAGGIGGCA ATACTICEGE ICACTGCIGC	1440
45	CHANGGETT CATTACCATG TESTICOTOCT GCTTCCAGAT GTTCCANTTCT GAGGACTAIG	1500
	ACTICCIOST CLITEACENT GECTECTECE CCTACTECCE CAGGISCAAS EATGACCCTG	156
	GOTCATGACO AGCATOCTOG GGACGGCCTG CACCOTOTGC COGCCTIGGG GTCTGCTGGG	162
50	CTOTGANOGA GAATAAAGAG TTAAACTGTC AAAAAAAAA AAAAAAAAAA	168
	ANAAA AAAAAAAAA AANA	170

60 SECURICE CHAPACTERISTICS:

(A) LENGTH: 999 base pairs

	(F) TYPE: nucleic acid (C) STRANDEDNESS: double	
-	(E) TOPOLOGY linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217:	
	AGCAAATCAC CTTAACGATC TGGAATGAAA CTGTGACCAG TG:CGCCCTG GGTGGTTCTG	60
10	GAGAGACTOC COTOTTOTTO TTTGGCCATA GGTGCTGGGG CCCCGGGTTC AGTCACTGTC	120
	TCAGACAGKA GTCCCGATAA GCAGATCACC AGTCCTCCAC TGTCCTTCCT GTCGGCCTTG	130
15	CTGCATGAGA AGATAGCTGC TTCCTCCCTC TTTTCCTACA CTGTAAATTA TTGTTTTACA	240
15	ATTGAGTGYC TTAATAATAG TYTACAAATA CTATGTATTT AIGCAAAACT GTTAAAGTTC	300
	TCATCTGTTA TGATTGGATA CTINGTCTTG TCAGTAGTCG TCAGCATTCG GTTGTGAGCT	360
20	TGTCCTACTC CATACGTGTT TATCCTGCTA TGCATTTTAC ATTGTGTGTT CACATCTATT	420
	CCAAGGAGCT TYSCTAGAAA CAACATTGGC GGTTCCTGCA GGCCAGGCAG GCATTGCCCC	480
25	ATGCTGTGT: CCATAGGAGC CAATGGAAAG AACGTAGCTT GGTCTGCTAG CCAGCCGTGG	540
-3	GGTGGCGCA3 GCCAGGCAGC CTCTGCACCA GAGTCCAGCA CCTGCCCATT CCCCAGTCAC	600
	ACAATCATAC TCTTCTTTCA TAGAGATTTT ATTACCACCT AGACCACCCT AGTTTTCCTC	660
30	TCTGTTAGTG TCCT3AGCTC TTTTGCAACA AAATGTAGT ACAGACCAAT CCCTGTCCCT	720
	TCCCCAATCA GGABCTCCAC ACCATGAGTT GTTTGGTTTT CCAGAAGCTG CCAGTGGGTT	780
35	CCCGTGAATT GOG MTAAGAT ATCGATGATK TYTMTATTG TYTMTCTTCT TGTTTTTTTA	840
55	AATAATATAT TTAAAGGCAG TATCTTTTGT ACTGTGAATT TECAGTAGAA GATECAGAAT	900
	GCACTITITIT TITACTTCTG TIGGTGTGTA TIGTATATAG TETGTGTGCT TCTTGTGATG	960
40	CAAAAAAA AAAAAAAA TATTTTTTTTTTTTTAAAA	999
45	(2) INFORMATION FOR SEQ ID NO: 218:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 941 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDELNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218:	
55	GGCACGAGTA GCATTTCATT TAATCTGCAG GTATATTCTC CCAACAGTTT ATTGTCATGT	60
	GATGTCCTCA GCCAAGATTG TRAGGCAGAG AGGAGCTGTC CCAACCTACT ATACCACCGA	- 129
60	GGCTGGAGAG ATCATATTT TGGTATTAAA CTGGAGTCTC TCCATCCTTC ACATTGTTGA	180

471

	TGTCCTCTGT AGCAAACCGG AAAAGTCAGT GACAGAAGAT GCCGCCTAGCG GTTTGAGCCA	240
	GAGAATGACA GCTCTGGTTT GGAGAAAAGG SCCGGATGGT SECTCTAGAA AGCCCATCCT	300
5	TOTSCTOTTO TITTTTCTCC CCCTTATATT GTGCTTTCAT TOATTCATTC ATTCATCAAA	360
	CATTTOTTGA GCACCTATTA TGTGTCAAGC TCTGTGCTAG CCTCTGGAAA ACCTGCCCTC	420
	ATGTAGCTCA CTGTGGAGTA GGAGAAACAA TGACTACACT ATGATAAGCA CGGGTTGTCA	480
10	GGGTCTCACA GAGCAGTGGE CCCTCATCCA GACCGATGAG GTTAAAGAAG GCATCCAGGC	540
	GAGGATGGTG TCAGAGCTAA CTGAAGAATG AGAGGGAGCT GCACCASCAG GGGTTGGAAC	600
15	TGAAGGTGGC AGTICCTGGA GTCTTGATTC CAGIAGAGGG AGAGCAGTCT GTGAAAAGGI	660
	ACCAAGGTG GGAGAGGGCA GAGCACATGG AGGAACTTCA GGTAGTTCTG GATGGCSCTG.	720
	GESCAAASCT AGAGAESTAA GAAGAATSTA CAAATSTTCC TIEGASTTACA TGAACTTCCA	780
20	TCCCAATAAA CCCATTGGAA ACGAAAAATT TAAGTCAGAA GTGCATTTAA GGCTGGTCCG	840
	AGTAGAATGA TTTTTACAAC SAATTGATCA CAACCAGTTA CAGATGTCTT TGTTCCTTCT	900
25	CCACTCCCAC TGCTTCACCT GACTAGCCTT TAAAAAAAAAA	941

30 (2) INFORMATION FOR SEQ ID NO: 219:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 575 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219:

TAAGTGGAAT COOCCGGGGT TGCAGGGAAT TCGGCACGAG GCATTCTGAG AAGCTTAAGA 60 CATACTYTGA AGACAACCCT AGGGACCTCC AGCTGCTGCG GCATGACCTA CCTTTGCACC 120 COGCAGTOST GAAGOOCAC CTGGGCCATG TTCCTGACTA CCTGGTTCCT CCTGCTCTCC 180 GYGGCCTGGT REGCCCTCAC AAGAAGCGGA AGAAGCTGTC TYCCTCTTGT AGGAAGGCCA 240 AGAGAGCAAA GICCCAGAAC CCACTGCGCA GCTTCAAGCA CAAAGGAAAG AAATTCAGAC 300 CCACAGCCAA GCCCTCCTGA GGTTGTTGGG CCTCTCTGGA GCTGAGCACA TTGTGGAGCA 360 CAGGCTTACA CCCTTCGTGG ACAGGCGAGG CTCTGGTGCT TACTGCACAG CCTGAACAGA 420 480

The state of the s

Section of the second

35

40

45

(2)	INFORMATION	EOD	CES	TD	NIO.	222

5	(i) SEQUENCE CHARACTERISTICS: (A) LENCTH: 3018 base pairs (B) TYPE: nucleic acid (C) STRANDELNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE LESCRIPTION: SEQ ID NO: 220:	
	GCCAGCCTTA CAGGTTTTAC GTGAAATGAA AGCCATTGGA ATAGAACCCT CGCTTGCAAC	60
15	ATATCACCAT ATTATTCGCC TSTTTGATCA ACCTGGAGAC CCTTTAAAGA GATCATCCTT	120
	CATCATTTAT GATATAATGA ATSAATTAAT GGGAAAGAGA TTTTCTCCAA AGGACCCGGA	180
20	TGATSATAAG TTTTTCAGT CAGCCATGAG CATATGCTCA TCTCTCAGAG ATCTAGAACT	240
	TGCCTACCAA GTACATGGCC TTTTAAAAAC CGGAGACAAC TGGAAATTCA TTGGACCTGA	300
	TCAACATCGT AATTTCTATT ATTCCAAGTT CTTCGATTTG ATTTGTCTAA TGGAACAAAT	360
25	TRATGTTACC TTRANSTRET ATRANGACCT RATACCTTCA RECTACTTTC RECACTCCCA	420
	AACAATGATA CATCTTCTCC AAGCATTGGC TSTGGCCAAT CGGCTAGAAG TGATTCCTAA	480
30	AATTTDGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	540
	TOOTSATGOT CATGGCAAGG GACAAGCACC CACCAGAGCT TOAGGTGGCA TTTGCTSACT	600
	GTGCTGCTGA TATCAAATCT GCGTATGAAA GCCAACCCAT CAGACAGACT GCTCAGGATT	660
35	GGCCAGCCAC CTCTCTCAAC TGTATAGCTA TCCTCTTTTTT AAGGGCTGGG AGAACTCAGG	720
	AAGCCTGGAA AATGTTGGGG CUTTTCAGGA AGCATAATAA GATTCCTAGA AGTGAGTPGC	786
40	TGAATBAGTT TATBGACABT BEAAAAGTGT CTAACAGCCC TTCCCABBCC ATTBAAGTAG	840
	TAGAGCT3GC AAGTGCCTTC AGCTTACCTA TTTGTGAGGG CCTCACCCA3 AGAGTAATGA	900
	GTGATTTTGC AATCAACCAG GAACAAAAGG AAGCCCTAAG TAATCTAACT GCATTGACCA	96(1
45	GTBACAGTGA TACTBACAGO AGCAGTGACA GCGACAGTGA CACCAGTGAA GBCAAATGAA	1020
	AGTEGAGATT CAGEGAGAGC AATGGTCTCA COATABCTGC TEGAAATCACA COTGAGAACT	1080
50	GAGATATACC AATATTTAAC ATTGTTACAA AGAAGAAAAG ATACAGATTT GGTGAATTTG	1140
	TTACTGTGAG GTACAGTCAG TACACAGCTG ACTTATGTAG ATTTAAGCTG CTAATATGCT	1200
	ACTTAACCAT CTATTAATEC ACCATTAAAG GCTTAGCATT TAAGTAGCAA CATTGCGGTT	1260
55	TTCAGACACA TGGTGAGGTC CATGGCTCTT GTCATCAGGA TAAGCCTGCA CACCTAGAGT	1320
	GTOGGTGAGG TGAGGTCAGG ATGCTGTGGT CGTGGGATTG GGGTGTGGTG CTGCTGGACT	1330-
60	TCTGCCTTTG TYGGCCTGAT GTGCTGCTGT GATGCTGGTC CTTCATCTTA GGTGTTCATG	1440

	CASTICIAAC ACAGITGGGG TIGGETCAAT AGITTICCAA TITCAGGATA TITTIGATGTC	1500
	AGAAATAACG CATCTTAGGA ATGACTAAAC AAGATAATGG CAGTTTAGGC TGCACAACTG	1560
5	GTAAAATGAC TGTAGATAAA TGTTGTAATT AGTGTACACG TTTGTATTTT TGTTAATATA	1620
	GCCGCTGCUA TAGTTTTCTA ACTTGAACAG CDATGAATGT TTDATGTCTD CDITTTTTT	1680
	TTGTCTATAG CTGTTACCTA TTTTAGTGGT TGAAATGAGA GCTAGTGATG ACAGAAGGA?	1740
10	GTGGAATGTC TTCTTGACAT CATTGTGTAT TGCTGGTAAT CAAGFTGGTA ACGACTACTT	1300
	CTAGCAGCTC TTACCACTAT GACTTAAGTG GTCCTGGAAG GCAGTAAGTG GACGTTTGCA	1860
15	GCATTCCTGC CTTCATCAGG GCTTCTACCA CTGACCACTT TSCACGTACC TGGCTCCCAG	1920
	ATTTACTTAG GTACCCCACG AGTCGTCCAC ATAAGCACCT TCATCTTTAC CTTGCCAGAG	1980
20	TYGACAATTA TGGGGATAGTG TAGTGTACTT ATACTTGTGT TGCCATCTGT CTGCCATCCT	2040
20	CTCAAGGCCA GGACCCAGTC ATACATCCTT AGAAACCAAA GTATGGTTTT TGTPPTCTCT	2100
	TGBAATGTBA GGTCTTAAGG CATTTAATTG AGGGACAAAA AAAAAAAAAA	2160
25	TAGCTAGCTA CTTAAGCATC CATGGGTATT GCTCCATATC AAACCAGATT TCCAGGACAG	2220
	AAAGAGTAAA TTAGCCTTCA GTCTTGGTTT ACAGCTTCCA AGGAGAGCCT TGGSCACCTG	2230
20	AAATGITAAC TOGGTOOCIT CCTSTCTCTA GTTCATCAGC ACCIGCAGAT GCCTGACTCT	2340
30	TETTAGCCTT ACTATTCAAT ACASTCCTTA GATTCACGGT ATGCCTCTTC CTATCCAGGC	2400
	ACCTATTCTG AATCACCATG TTGCTCTGCA GCTAMAGTTG ATAGGAGAAA ATCCATTTOG	2460
35	GTAGATGRCC TATGAATTTG TAGTAGACTT TCAAAATGAG TGATTTGTTA GCTTGGTACT	2520
	TTTAAGTTTG TOSTACAGAT CCTÇCAAACC CATACTCTGA GCAATTAACT GCCTTGAACA	2580
4.0	TAGAGAAAAA TTAAGGCCTC ACAGGATGAG TUTCCATTCT CTGTAAATGC TTATTTTATC	2640
40	ATAGTOTITA GCCTCTAACT ATGAGTAAAA TSTTCTCTTC GGCCGGGTGT GGTGACTCAC	2700
	ACCTSTANCC TCAGCACTT GGGAGGCAGA GSTGGGAGGA TCACTAGGT CCAGGAGTTC	2760
45	CASACTAGOC TYPEGCAACAT AGTGAGACAC CEGATCTACA AAAAAATAAA AAGCCAGACT	2820
	OSTGSTATST ATSTOTCTSS CASSTAATTS GSAGSGTGAG ATGSGAGSAT TSTTTGASCS	2880
	TAGGAGAGAG AGGTTGLAGT GAGGGGTGAT CECAGGCAGTG CACTCCAEGC TGGECAACAG	2940
50	AGCAAGACCC TGTCTT93AG AAACCAGAAT TTT9GAAGAG CAAATGG3GC TGA3T9CAGT	3000
	GOCTCATGCC TGTAATCC	3)18

SACTOR STATE

60 :/ PEQUENCE PHARACTERISTICS:

	(A) LENGTH: 968 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPCLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221:	
		60
1.0	GGCACGAGGG CCGCGGGACA TCCACGGGGGC GCGAGTGACA CGCGGGGAGGG AGAGCAGTGT	60
10	TOTGOTGGAG COGATGOCAA AAACCA'PECA TTTCTTATIC AGATTOATTE TTTTCTTTPA	120
	TOTGTBBBBC CTTTTTACTG CPBAGAGADA AAAGAAAGAG GAGAGCADES AAGAAGTGAA	180
15	AATAGAAGTT TIPSCATOSTC CAGAAAACIIG CTCTAAGACA AGCAAGAAGG GAGACCTACT	240
	NAAATBOCCA TTATGACGGC TACCTGGCTA AAGACGGCTC GAAATTCTAC TGCAGCCGGA	300
	CACAAAATGA AGGOCACCOC AAATGGTTTG TTCTTGGTGT TGGGCAAGTC ATAAAAGGCC	360
20	TAGACATTEC TATGACAGAT ATETRECETS GASAAAAGOG AAAAGTAGTE ATACCCCCTT	420
	CATTESCATA OSGAAASSAA GSCTATSCAG AASGCAAGAT TOCACCOGAT GCTACATEGA	480
25	TTTTTGAGAT TGAACTTTAT GCTGTGACCA AAGGACCACG GAGCATTGAG ACATTTAAAC	540
29	AAATAGACAT GGACAATGAC AGGCAGCTCT CTAAAGCCCGA GATAAACCTC TACTTGCAAA	€00
	GGGAATTTGA AAAAGATGAG AAGCCACGTG ACAAGTCATA TCAGGATGCA GTTTTAGAAG	€60
30	ATATTITTAA GAAGAATSAC CATSATGSTS ATSGCTTCAT TICTCCCAAS GAATACAATG	720
	TATACCAACA CBATGAACTA TABCATATTT GTATTTCTAC TTTTTTTTTT TABCTATFTA	780
2 -	CTSTACTTA TGTATWAAAC AAAGTCMCTT TTCTCCMAGT TGKATTTGCT ATTTTTCCCC	840
35	TATGAGAAGA TATTTTGATU FOOCCAATAC ATTGATTTTG GTATAATAAA TGTGAGGCTG	900
	TTTTGCAAAC TTAAAAAAAA ATTTAAAAAA ACTGGAGGGG GGCCCGTACC CAANTCGCCG	960
40	NATATGAT	968
45	(2) INFORMATION FCR SEQ ID NO: 222:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 1404 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 222:	
55	CGTTTTCCGG CCGTGCGTTT GTGGCCGTCC GGCCTCCCTG ACATGCAGCC CTCTGGACCC	60
	CGAGGTTGGA CCCTACTGTG ACACACCTAC CATGCGGACA CTCTTCAACC TCCTCTGGCT	120_
	TGCCCTGGCC TGCAGCCCTG TTCACACTAC CCTGTCAAAG TCAGATGCCA AAAAAGCCGC	180
60		

	CTCAAAGACG	CTGCTGGAGA	AGAGTCAGTT	TTCAGATAAG	CCGGTC-CAAG	ACCGGGGTTT	240
	GGTGGTGACG	GACCTCAAAG	CTGAGAGTGT	GGTTCTTGAG	CATCGCAGCT	ACTGCTCGGC	300
5	AAAGGCCCGG	GACAGACACT	TTGCTGGGGA	TGTACTGCGC	TATGTUACTO	CATIGGAACAG	360
	CCATGGCTAG	GATGTCACCA	AGGTCTTTGG	GAGCAAGTTC	ACACAGATCT	CACCCGTCTG	420
10	GCTGCAGCTG	AAGAGAEGTG	GCCGTGAGAT	GTTTGAGGT 3	ACGGGGCTCC	ACGACGTGGA	480
10	CCAAGGTGG	ATGCGAGCTG	TCAGGAAGCA	TGCCAAGGGC	CTGUAGATAG	TGCCTCGGCT	540
	CCTGTTTGAG	GACTGGACTT	ACGATGATTT	CCGGAACGTC	TTAGAJAGTG	AGGATGAGAT	6(16
15	AGAGGAGCTG	AGCAAGACCG	TGGTCCAGGT	GGCAAAGAAC	CAGCATTTC3	ATGGCTTOGT	660
	GETEGAGETE	TGGAACCAGC	TIGOTAAGCCA	GAAGCGCGTG	GGCUTCATCC	ACATGCTCAC	720
20	CCACTTGGCC	GAGGCTCTGC	ACCAGGCCCG	GCTGCTGGCC	CTCCTGGTCA	TOCOGOCTOC	780
20	CATCACCCC	GGGACCGACC	AGETGGGCAT	GTTCACGCAC	AAGGA FTTTG	AGCAGCTGGC	840
	CCCCGTGCT3	GATGGTTTCA	GUUTUATGAC	CTACGACTAC	TCTACAGCGC	ATCA 3CCTG3	900
25	CCCTAATGCA	CCCCTGTCCT	GGGTTCGAGC	CTGCGTCCAG	GTCCT-XGACC	CGAAGTCCAA	960
	GTGGCGAAGC	AAAATCCTCC	TGGGGCTCAA	CTTCTATGGT	ATG3ACTACG	CGACCTCCAA	1020
30	GGATGCCCGT	GAGCCTGTTG	TOGGGGCCAG	GTACATCCAG	ACACT GAARG	ACCACAGGCC	1080
30	CCGGATGGTG	TGGGACAGCC	AGGYCTCAGA	GCACTTCTTC	GAGTACAAGA	AGAGCCGCAG	1140
	TGGGAGGCAC	GTCGTCTTCT	ACCCAACCCI	GAAGTCCCTG	CAPGTGCGGC	TGGAGCTGG?	1200
35	CCGGGAGCTG	GCCTTCCCC	TITCTATCTO	GGAGCTGGCC	: AGGGCCTGGA	CTACTTCTA:	1260
	GACCTGCTCT	' AGGTGGGCAI	. rocéeccico	GCGGTGGACG	; TGTTCTTTTC	TAAGCCATG3	1320
40	AGTGAGTGAG	GAGGTGTGAA	ATACAGGCCT	NCACTCCGTI	TGCTGTGAAA	AAAAAAAAAA	1380
40	AAAAAAAA	AAAAAAAAA	AAAA .				1404

50

- (2) INFORMATION FOR SEQ ID NO: 223:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 707 base pairs
 - (P) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) POPOLOGY: linear

 ~ 8.00 argumnium phinabl $\mathrm{PHI}(\mathrm{OH})$ SFO ID $\mathrm{MO} \in \mathrm{MMS}(\mathrm{C})$

and water the control of the control

60 CATOGAGGG AFGAAGGAG AGGIGGCCAT CAGGATGAAG GAGGAGAAGG GGAAGGTGAA 186

	COSCIPSCATO GCAGACGIBG TOTOSCITOTI CADCACCATO ADSGACAADU TOCCCCTOQA	24)
5	GATHOGRORO ATRIGATISAGA TORARCONGA COTTGORAGAS CTRATIGEROA CTRATIGEROA	300
_	CATGAGGCAC CTCCCACCCG ACTITCAGGG CCGCCACACG GTCAGGTAGT GCCTSCAGAC	360
	OCTGAGEDGE ATSTEGGEST CARAFGAGET GRACIACTEA CARSTGCTC AGATECTSTT	41)
10	CGACCTRGAG TCAGCCTACA ACGCCTTCAA CCGCTTCCTG CAFGCCTGAG CCCGGGGCAC	480
	TARROCCTTOR ACAGAAGRGC AGARTICEAR RECEATEGETT (TREFTEETET GTCCROCACA	540
15	CARRECTER TOATOGRADAG ARCTOROTHET TEGCRECTER TETETOTERTS TOTEROTHING	60)
15	GTGTCAGAAC TTTTYGGGCCG GGCCCCTTCCC CACAATAAAG ATGCTCTCCG ACCTTCAAAA	660
	AAAAAAAAA AAAAACTORG GGGGGGGCCCCG STCCCCAATOCC CCCCCDCI	797
20		
	(2) INFORMATION FOR SEQ ID NO: 224:	
25		
2 3	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1384 base pairs	
	(B) TYPE: nucleic acid (C) STFANDEDNESS: double	
30	(E) TOPCLOGY: linear	
.50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224:	
	GGGGAACTYG AGTGACAGCA GGAGTAAGAG TGGGGAGGCAG GACAGAGGCTG GGACACAGGT	6 ·)
35	ATGGAGAGGG GGTTCAGGGA GGCTAGAGAG CGCAGAGTAI CAGGGTGCCG GCGGTGAGAA	12:0
	TOCAGGGAGA GGAGGGGAAA CAGAAGAGGGG GCAGAAGACC GGGGCALTTG TGGGTTGCAG	180
40	AGCCCCTCAG CCATGTTGGG AGCCAAGCCA CACTGGCTAC CAGGTCCCCT ACACAGTCCC	240
. •	GRACTRICCT TOGITCTOST GCTTCTGRCC CTGRGGGGCCG GGTGGGGCCCA GGRGGGGTCA	300
	SASCOCITCO TYCTYGGARGG GGARTYSCOTE GTOSTYCTGTG AGCOTGGCCG AGCTROTYSCA	360
45	999990000 GOGGAGCASC DUTGGGAGAS GCACCCCCTS GGGGAGTGGC ATTTOUTGCG	420
	GTCCGAAGCC AMCACCATGA GCCAGCAGGG GARACCGGCA ATGGCALCAK TGGGGCCATC	430
50	TACTTCGACC AGGTCCTGGT GAACGAGGGC GGTGCCTTTG ACCGGGCCTC TGGCTCCTTC	540
	GTAGCCCCTG TCCGGGGTGT CTACAGCTTC CGGTTCCATG TGGTGAAGGT GTACAACCGC	500
	CAAACTGTGG AGGTGAGCCT GATGCTGAAC ACGTGGCCTG TCATCTCAGC CTTTGCCAAT	660
55	GATCCTGACG TGACCCGGGA GGCAGCCACC AGCTCTGTGC TACTGCCCTT GGACCCTGGG	720
	GACCGAGTST CTCTGCGCCT GCGTCGGGGG AATCTACTGG GTGGTTGGAA ATACTCAAGT	. 780
60	TTCTCTGGCT TCCTCATCTT CCCTCTGTGA GGACCCAAGT YTTTCAAGCA CAAGAATCCA	840

477

	GCCCCTGACA ACTITICITET GCCCTCTCTT CCCCCAGAAA CAGCAGAGGC AGGAGAGACA	900
	CTOCCTOTGG YTCCTATCOC ACYTCTTTGC ATGGGAMCCT GTGCCAAACA CCCAAGTTTA	960
5	AGARAARARY ARARCTGWEG CAGGTATACA GAGCTGGAAG TGGACCATGG AAAACATSGA	1020
	TAACCATGCA TCYTCTTGCT TGGCCACCTC CTGAAACTGT CCACCTTTGA AGTTTGAACT	1080
	TIAGTCCCTI CAMAITCTGA CTGCTGCCTC CTTCCTCCCA GCTCTCTCAC TGAGITATYT	1140
10	TCACTGTACO TGTTCCAGCA TATCCCCACT ATCTCTCTTT CTCCTGATCT GTGCTGTCTT	1200
	ANTETECTE TRAGGETICS TATTACETYS GATTCCATGA TTCATTCCTT CAGACCCTET	1260
15	CCTGCCAGTA TGCTAAACCC TCCCTCTCT TTTCTTATCC CGCTGTCCCA TTGGCCCAGC	1320
	CTGGATGAAT CTATCAATAA AACAACTAGA GAATGGTGGT CAAAAAAAAA AAAAAAAAAC	1380
20	TCGA	1384
20		
25 30	(2) INFORMATION FOR SEQ ID NO: 225: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 760 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:	
35	GGGTCGADEC ACBEGTEEGC TGACCAGTOE GTTATAGATA CTTCTTCCTA TACCAAAACT	60
33	GTTTAAACAG GTBCCACCAC AAGGGATGTC GTCCTTACTC TCTGCGGGETC TTCAAGCATC	120
	CCTTTGTGGG AAARSTOTOT GGGCAAGCAC GTGGTATTTG GTCTGCTGCT TOCTTCCUIT	180
40	TTTCCACCAG GGATGTTGTG ATCATAAGTC AAAACAACAG TATATTCCAA ATCTCAAAAG	240
	CTATTGTGGC CTGAGCACAA TTGAAATCTA GCAGAGTTTT TCCTATGTAG CTTTAGAGTA	300
45	ACTOTPONGO THOUGHGE CHTACAATTO AGGITOTGOO TUTGOOTAAG AGCATGAGCA	360
43	GAAGAGTOOT CANGTGACGO TYAGTTOTAT TGCAGTCONG GGTGAAACTA TYNAAGGWAT	420
	GOGGUTGCTK CTCCCCANWT CCTCCCTAAC AATTCGTTGT GTGGACTTCT CATCTAAAAG	430

GTTAGTGGCT TTTGCTTGGG ATCAGTGCTC TCTATTGATG TTCTTGCTGG TCTCCAGACA

CATTOCTGTT GCATTAAGAC TTGAAAGACT TGTAGATGTG TGATGTTCAG GCACAGGATG

west standard and west standards and the standards of the standards and standards of the st

540

600 660

60

or and a

(2)	INFORMATION	FOR	SEO	TD	NIC)	226

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH. 2057 base pairs (B) TYPE nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226:	
	CCGAGCCGGC TGCGCCGGGG GAATCCGTGC GGGCGCCTTC CGTCCCRGTC CCATCCTCGC	60
15	OGCGCTCCAS CACCTCTGAA GTTTTGCAGC GCCCAGAAAG GAGGCGAGGA AGGAGGGAGT	120
	G'IGTGAGAGA AGGGAGCAAA AAGCTCACCC TAAAACATTT ATTTCAAGGA GAAAAGAAAA	180
20	AGGGGGGGGG CAAAAATGG TGGGGCAATT ATAGAAAACA TGAGCACCAA GAAGCTGTGC	240
	ATTGTTGGTG GGATTCTGGT CGTGTTCCAA ATCATCGCCT TTCTGGTGGG AGGCTTGATT	300
	GCTCCAGCGC CCACAACGGC AGTGTCCTAC ATGTCCGTGA AATGTCTGGA TGCCCGTAAG	360
25	AACCATCACA AGACAAAATG GTTCGTGCCT TGGGGACCCA ATCATTGTGA CAAGATCCGA	420
	GACATTGAAG AGGCAATTCO AAGGGAAATT GAAGCCAATG ACATCGTGTT TTCTGTTCAC	480
30	ATTICCCTCI CICACATEGA GATEAGTCCT TOSTTCCAAT TCATGMTGTT TATCCTGIAG	54¢
	CTGGACATTG CCTTCAAGCT AAACAACCAA ATCAGRGAAA ATGCAGAAGT CTCCATGGAC	5 00
	GTTTCCCTG; CTTACCGTGA TGACECGTTT GCTGAGTGGA CTGAAATGEC CCATGAAAGA	560
35	STACCACGGA AACTCAAATG CACITTCACA TCTCCCAAGA CTCCAGAGAA TGGAGGGCCG	720
	GTTACTATGA ATGTGATGTU CTTQCTTTCA TGGAAATPGG GTCTGTGGCC CATGAAGTTT	780
40	TACCTTTAA ACATCCGGCT GCCTGTGAAT GAGAAGAAGA AAATCAATGT GGGAATTGGG	340
10	GAGATAAAGG ATATCCGGTT GGTGGGGATC CACCAAAATG GAGGCTTCAC CAAGGTGTGG	900
	TTTGCCATGA AGACCTTCCT TACGCCAGC ATCTTCATCA TTATGGTGTG GTATTGGAGG	960
45	AGGATCACIA TGATGTCCCG ACCUCCAGT3 CTTCTGGAAA AAGTCATCTT TGCCCTTG33	1020
	ATTTCCATGA CCTTTATCAA TATCCCAGTG GAATGGTTTT CCATCGGGTT TGACTGGACC	1080
50	TGGATGCT3C TGTTTGGTGA CATCCGACAG GCATCTTCTA TGCRATGCTT CTKTCCTTCT	1140
50	GGATCATCTT CTGTGGCGAG CACATGATGG ATCAGCACGA GCGGAACCAC ATCGCAGGGT	1200
	ATTGGAAGCA AGTCGGACCC ATTGCCGTTG GTCCTTCTGC CTCTTCATAT TTGACATGTG	1260
55	TGAGAGAGGG GTACAACTCA CGAATCCCTT CTACAGTATC TGGACTACAG ACATTGGGAA	1320
	CAGAGCTGGC CATGGCTTTC ATCATCGTGG CTGGAATCTG CCTCTGCCTC TAACTTCCTG	1380 .
60	TITCTATGCT TCATGGTATT TCAGGTGTTT CGGAACATCA GTGGGAAGCA GTCCAGCCTG	1440

479

	CCASCTATGA GCHARGTOUG GUGGTTACAU TATGREGERG TRATTTTTAG GTTCAAGTTC	1500
	CTENTSCTTA TENECTTAGE STECCHOOC ATGASTISTER TOTTOTTCAT COTTAGTCAG	1560
5	GTAACSGAAG SCEATIGGGA AATGSGGGGG CGTCACAGTC CCAAGTGAAC AGTGCCTTTT	1620
	TOACAGGCAT CTATGGGATG TEGAATCTGT AUGUSTITIGG TOTGATGTTG TTGTATGGAG	1680
	CATCOCATAA AAACTATGGA GAAGACCAGT UCAATGGAAT GCAACTCCCA TGTAAATCGA	1740
10	GGGAAGANYS TSCHYTGYTT STITCGGAAC TYTATCAAGA ATTGTTCAGO GCTYCGAAAT	1800
	ATTOCTITOAT CAATGACAAD GCAGGTTOTG STATTIGGAGT CAACAAGGCA ACACATGTTT	1860
15	ATCAGCITIG CALITIGOAGT TOTCACAGTO ACATTOATIG TACTTGTATA COCACACAAA	1920
	TACACTICATT TADOCTITAT TICAAAATST TAAATATAAG GAAAAAAGCG TCAACAATAA	
	ATAITOTTTO AUTAITOTOT TACTTOTOTT AAAAAAAAAAAAAAAAACTO GTOCOGAATT	
20	CGGCCCCCCACCA	2657
25		
-5	(2) INFORMATION FOR MEQ ID NO: 227:	
	(1. SEQUENCE CHUPACTERISTICS: (A: LENGTH: 2084 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDENNESS: double	
	(D) TOPCLOGY: linear	
35	(ME) SEQUENCE DESCRIPTION: SEQ ID NO: 227:	
دد	GGCAGAGGGG CAUTTOGTIGG AAAGAGGCAA ACCCCCAUTC CTCTTGTGCC CTCCTCTCCC	60
	ACCRAGIGGI TIRIRARARI RECITTUTTI ACCCCRARITA ACTOTICATI TITCACTCCI	120
40	COSTOCTAGO TERERETTT CREARARGA ATOTOCRICO TEGRANACOAG ANGANANATA	180
	TOAGACOCCC ARTERIOSTS TEATGTSTST SCIENCITIS COTGAGTGTS TOGAGTCOTG	240
1	CTCACCTOTT ADSTACACTS TSTTTGATCS TSSTSGCTTS AURGGAACCS CTTCTTCAGA	300
45	GOTSTRAKTR JODITGOAKT SCAGAGAAGO TSSSSTTEGS TEKTOGTAGO GOGGGGGSTT	360
	CTCTCCTCGT CATCATCCAG ACCAGCCAGT GTCCSGGAGG CAGAAGGTAC CGGGGCAGCT	420
50	ACTOCARCEL TETROCOCCE TECCTOCCET COSCOCCTOCC COSTGGGGCC CRETTGCTGC	480
	TOTOCHTOTA TITOTACTAS ISSOCIOSSAA ATGOGGTOGG COOGCOCTTO ACTIGGATGO	540
	THE STATE OF THE S	გიე
60	ACTIACARUS AGGATTAGRA (DAGGIPRITA GRESOTEGRE) PRAGGOARGE STOTATATAT	77 3 3

 $((a, b_{\alpha}), (a, b_{\alpha}), (a, b_{\alpha})) = (a, b_{\alpha}) \cdot (a,$

	CTCCTCCCAT	TGGACTGTGG	GGTGCCTGAT	AACCTGAGTA	TGGCTGACCC	CAACATTCGC	840
5	TTCCTGGATA	AACTGCCCCA	GCAGACCGGT	GACCGTGCTG	GCATCAAGEA	TOGGGTTTAC	900
J	AGCAACAGCA	TOTATGAGOT	TCTGGAGAAC	GGGCAGCGG	CGGGCACCTG	TYGT/OCT/GGAG	960
	TACGCCACCC	CCTTGCAGAC	TTTGTTTGCC	ATGTCACAAT	ACAGTCAAGC	TGGCTTTAGC	1020
10	GGGGAGGATA	GOCTTGAGCA	GECCAAACTC	TTOT 30003GA	CACTINGAGGA	CATOCTGGCA	1080
	GATGCCCCTG	AGTCTCAGAA	CAACTGCCGC	CTCATTGCCT	ACCAGGAACC	TGCAGATGAC	1140
15	AGCAGOTTOT	ASSOCITETIONS.	GGAGGTTCTC	CGGCACCTGC	GBCAGGAGGA	SASYAACC AAA.	1200
1.0	GTTACTGTGG	GCAGCTTGAA	GACCTCAGCG	GTGCCAFIA	OCTOCACGAT	GTCCCAAGAG	12:50
	OCTGAGGTCC	PEATERATOG	AAT XGAAAAG	CCCCTCCCTC	ADEC ALECCO	TTTCTCTTGA	1320
20	GACORAGEST	CACCAGGOCA	GAGCCTCCAG	TGGTCTCCAA	GUCTCTGGAC	TYPRESECTION	1380
	CTTCAGT993	TGAATGTCCA	GCAGAGCTAT	TTCCTTCCAC	ABBBBBBBTT	GCAGG GAA GG	1440
25	GTCCAGGACT	TGACATCTTA	AGATGOGTOT	TGTCCCCTTG	GGCCAGTCAT	TIBOSCICTC	15/00
	TGAGCCTCGG	TGTCTTCAAC	CTGTGAAATG	GGATCATAAT	CACTGCCTTA	CADTECETED	1550
	GGTTGTTGTG	AGGACTGAGT	GTGTGGAAGT	TTTTCATAAA	CTTTGGATGC	TAGTGTACTT	1620
30	AGGGGGTGTG	CCAGGTGTCT	TTCATGGGGC	CTTCCAGACC	CACTCCCCAC	CCITCTCCCC	1630
	TTCCTTT300	CGGGGACGCC	GAACTOTOTO	AATGGTATCA	ACAGGCTCCT	TOBOCOTOTG	1740
35	GOTOOTGGTO	AUGTICCATT	ATTGGGGAGC	CCCAGCAGAA	GAATGGAGAG	GAGGAGGAGG	1800
	CTGAGTTT33	GGTAITGAAT	00000330T0 ~	CCACICTGCA	GCATCAAGGT	TGCTATGGAC	1850
	TOTOCTGOOG	GGCAACTCTT	GCGTAATCAT	GACTATCTCI	AGGATTCTGG	CACCACTTCC	1920
40	TTCCCTGGCC	CCTTAAGCCT	AGCTGTGTAT	CGGCACCCCC	ACCCCACTAG	AGTACTCCCT	1980
	CTCACTTGCG	GTTTCCTTAT	ACTCCACCCC	TTTCTCAAGG	GTCCTTTTTT	AAAGCACATC	2040
45	TCAGATTAAA	AAAAAAAAA	АААААААА	AGGGGGGGCN	GCNT		2084
	(2) INFORM	ATION FOR S	EQ ID NO: 2	28:			
50	(i)	SEQUENCE C	HARACTERIST	ICS:			
			IGTH: 2143 b E: nucleic	_			
55			RANDEDNESS: POLOGY: line				
	(xi) SEQUENCE	DESCRIPTION	: SEO ID NO	: 228:		÷ .

TCGACCCACG CGTCCGGTTG AATTCCTTGA CCTGCAAACA CATATTTATT AGCCTGACTC 60

481

	AAACAATGAA GCTATTAAAA CTTCGGAGGA ACATTGTAAA ACTCTCTTTG TATCGGCATT	120
	TCACCAACAC GCTTATTTTG GCAGTGGCAG CATCCATTGT GTTTATCATC TGGACAACCA	180
5	TGAASTTSAG AATAGTGACA TGTSAGTSGG ASTGGGGGGA GSTGTGGGTA GASGATGSSA	24.)
	TOTGGOGGETT GOTSTTCTCC ATGATECTCT TTGTCATCAT GSTTCTCTVG CGACCATCTG	300
	CANACAACCA GAGSTTYGCC TYYTCACCAT TGTCTSAGGA AGAGGAGSAG GATGAACAAA	360
10	AGGAGCCTAT GCTGAAAGAA AGCTTTGAAG GAATGAAAAT GAGAAGTATC AAACAAGAAC	420
	CCANTGGAAA TAGTAAAGTT AACAAAGGAC AGGAAGATGA TTTGAAGTGG GTAGAAGAGA	430
15	ATGITCCTTC TTCTGTGACA GATGTAGCAC TTCC/GCCCT TCTGGATTCA GATGAGGAAC	540
	GAATGATCAC ACACTITGAA AGGICCAAAA IGGAGIAAGG AATGGGAAGA ITTGCAGITA	600
	AAGATGGCTA CCATCAGGGA ACAGATCAGC ATCTUTGTCA GTCTTCTGTA GGGCTCCATG	660
20	GGATTAAAGG AACCAATBAC ATCCTGATCT GTTCLTTGAT CTTTGBCCAT TBGAGTTBGI	720
	GAGAGGTGTC AGAACAAAGA GAACATCTTA CTGAAAACAA GTTCATAAGA TGAGAAAAAT	780
25	CTACGAGCTT CTTATTACA ACACTUCTGC CCCCTTTCCT CCCAGACTCT GACATGGATS	840
	TTCATGRANC TRANSFERST TOTTCCTGAA CTTTCTGTAA TSTTTCATTT TYTAAATCTS	900
	ACAAACTAAA AAGTTTAACG TCTTCTAAAA GATTSTCATC AACACCATAA TATGTAATCT	960
30	CCAGGAGCAA CTGCCTGTAA TTTTTATTTA TITAGGAGT TACATAGGTG ATGGCGGAAA	1020
	TTGTTAACTA CCTTTCATTT TCCTCGGAAG TCAAGGTTAC ATCTTGCAGA GGTTGTTTTG	1030
35	AGAAAAAGG GCCCTTCTGA GTTAAGGAGC CATAGTTCTA TCAATGATCA AAAGAAAAAA	1140
	AAAAAAAAA GAAACTGTTA CAGTATGATI CAGATCATTI AAAAAAGCAA AATCAAGTGC	1200
	AATTTIGTTT ACAAATGGTG TATATTAAAG ATTTITCTAT TTCAGATGTA CTTTAAAGAG	1260
40	AAATATTAGG TTAAGTETTT TGAGATGTGG TATTGTGAGA CATCCGATTG CTGGCAATGT	1320
	GGTGCACACT CCGAAACTTT TAACTACTGT TUTGTAAGUC TCCAAGCGTG GCATTGUAGG	1380
45	GTCCTTAGGC AATGTTTTGT TTGCCTTTAT GCA JAGAGCT GCTCCAAGTG CTGTGAIT JA	1440
	GCACCGTGCT AGAGGAACTG TAATGCTTCA GAAGTTGTAG CTTATACAAA GGAAACAGGT	1500
	CCTGCTGGCT TAATTTAAAC AGTTATTGCA TGAAGTAGCG TGGAGGCTCT GGACTGCTGC	1560
50	TEGTTETTTA SCATGSACTG TICTGSTATE TEGTATIGGT TIAGAGACTG TIAATAAGGG	1620
		1686
	ALALAT MALL CAMALLER CASACTT CONTINUES OF A SECTION OF A S	
	dispositional services and services and appropriate for a material with the contract of contract disposition of	136

and the second second

482

	TGTTAAAAGC AATGACCACA TGACCACAAT CTTCACTAAC TCATACTGCA GTGAAAGTGT	1920
	TAACCCTTAG GTAGTTTCTC TACAACTCTT TGCTATGGTG ATTTTTAAAA AAGITTCCTA	1980
5	GGGAAGTATC TCTGAGGGAA CAGGCAATCT GAAGGAACTG ACTATATTCT CCATGGCTAA	2040
	GTCCATTAGG CCAAAAGNCT GGGTGGGTAT TGGTTGTGAN GCTGTCTATT GGCATATTAA	2100
10	AAACGTAGGC CGGANGSAAT AATTAGGTTG TNATSCCSGC GGG	2143
10		
15	(2) INFORMATION FOR SEQ ID NO: 229:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1025 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 229:	
25	COTGCCCCAC ATTRETTEAT TEXECOTOGCC ATGCCCCTGT ACTATGCCAG CCCCTAGTIC	60
25	CTGACAACTT CCACCCTGAT TCC5GACCCT GTAGATTG3G CGCCACCACC AGATCCCCT	120
	CCCAGGCCTT (CTCCCCTCTC CCATCAGIAG CCCTGTAACA AGTGCCTTGT GAGAAAAGIT	180
30	GGAGAAGTGA GGGCAGCCAG CTTATTCTCT GGAGGTTGGT GGATGAAGGG GTACCCTAGG	240
	AGATOTGAAG TOT RECTITG GTTAAGGAAA TECTTACCAT CCCCCACCCC CAACCAAGTT	300
25	CTTCCAGACT AAAGAATTAA GGTAACATCA ATACCTAGGC DTGAGAAATA ACUDDATTCT	360
35	TOTTOGGIAG CTC:CTCCTT TATCCTGIAT GAACAGAGTT DATGAAACTG GGGTTTGGGC	420
	AACAAGTEGE TITTUCTYGEC TACTTTASTC ACCAGCAGA GCCACTGEAC CTERRETAGTC	430
40	CAGCCCAGCC ATG/TGCATG ACTCTTCCAT AAGGGATCCT CA/CCTTCCA CTTTCATGCA	540
	AGAAGGCCCA GTTGCCACAG ATTATACAAC CATTACCCAA ACCACTCTGA CAGTCTCCTC	600
45	CAGTTCCAGC AATGCCTAGA GACATGCTCC CTGCCCTCTC CACAGTGCTG CTCCCCACAC	660
43	CTAGCCTTTG TTCTGGAAAC CCCAGAGAGG GCTGGGCTTG ACTCATCTCA GGGAATGTAG	720
	CCCCTGGGCC CTGGCTTAAG CCGACACTCC TGACCTCTCT CTTCACCCTG AGGCCTGTCT	780
50	TGAAGCCCCC TACCCACTCT GAGGCTCCTA GGAGGTACCA TGCTTCCCAC TCTGGGGCCT	840
	GCCCCTGCCT AGCAGTCTCC CAGCTCCCAA CAGCCTGGGG AAGCTCTGCA CAGAGTGACC	900
55	TGAGACCAGG TACAGGAAAC CTGTAGCTCA ATCAGTGTCT CTTTAACTGC ATAAGCAATA	960
	AGATCTTAAT AAAGTCTTCT AGGCTGTAGG GTGGTTCCTA CAACCACAGC CAAAAAAAAA	- 1020
	AAAAA	1025

2) INFORMATION	FOR SEQ	ID NO:	230:
----------------	---------	--------	------

5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1250 base pairs (B) TYFE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230: GCCCACGCGT CCCCCACGC GTCCGGCGT GCCGAGTATG GGGCGCTGAT GGCCATGGAG 60 GESTACTIGEC GOTTCOTTESC GOTESCTIGGG TOGGCACTES TOGTCGGCTT COTGTCGGTG 120 15 ATSTTCGCCC TCGTCTOGCT CCTCCACTAC CGAGAGGGGC TTGGCTGGGA TGGGAGCGCA 180 240 CTAGAGTTPA ACTOGCACOC AGTOCTSATG GTCACCGGCT TCGTCTTCAT CCAGGGCATC 20 300 GCATCATGGT CTACAGAGTG COGTGGAGCT GGAAATGCAG CAAGCTCCTG ATGAAATCCA TCCATGCAGG GTTAAATGCA GTTGCTGCCA TTCTTGCAAT TATCTCTGTG GTGGCGTGT 360 TTGAGAACCA CAATGTTAAC AATATAGCCA ATATGTACAG TCTGCACAGC TGGGTTGGAC 420 25 TOATAGCTGT CATATGCTAT TTGTTACAGC TTCTTTCAGG TTTTTCAGTC TTTCTGCTTC 430 CATGGGCTCC GCTTTCTCTC CGAGCATTTC TCATGCCCAT ACATGTTTAT TCTGGAATTG 540 30 TCATCTTTCG AACACTGATT GCAACACCAC TTATGCGATT GACAGAGAAA CTGATTTTTT 600 CCCTGAGAGA TCCTGCATAC AGTACATTCC CGCCAGAAGG TGTTTTCGTA AATACGCTTG 650 OCCTTOTGAT COTOGTGTTO GOGGCOCTCA TTTTTGGAT AGTCACCAGA CCGCAATGGA 720 35 AACGTCCTAA GGAGCCAAAT TCTACCATTC TTCATCCAAA TGGAGGCACT GAACAGGGAG 780 CAAGAGGTTC CATGUCAGCC TACTCTGGCA ACAACATGGA CAAATCAGAT TCAGAGTTAA 840 40 900 ACARTGAAGT AGCAGCAAGG AAAAGAAACT TAGCTCTGGA TGAGGCTGGG CAGAGATCTA CCATGUAAAA UGUTGUAGAG ATAGAGCCAT AYAACGUDAC GTUTCAAAAC TAGCUCTACA 960 CHTTTGCTTC FCCTATTAGC CATATGATAA TTGCCCTATG TAGTATCAAT ATTTACTTTA 1000 45 ATCACAAAGG ATGGTTTCTT GAAATAATTT STATTGATTG AGGCCTATGA ACTGACCTGA 1080 ATTOGAAAGG ATGTGATTAA TATAAATAAT AGCAGATATA AATTGTGGTT ATGTTACCTT 1140 50 TATCTTGTTG AGGACCACAA CATTAGCACG GTGCCTTGTG CAKAATAGAT ACTCAATATG 1200 1250 TAAAATTATA TAAAATTA ATTAATTA ATTAAATTAAAAATTAAAA AAAATTAAAA

OLOMPORMATION SOR OR. NOTES 27.0

^{60 (}i) SEQUENCE CHARACTERISTICS:

5	(A) LENGTH: 1811 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
3	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:	
	CNGNCAGTAC COGTCNGATT CCCGGGTCGA CCCACGCGTC C3CTGCATTC CAGGGCCTTT	
10	CAGTOGCTTT CATTCTGAAG TTCCTGGATA ACATGTTCCA TSTCTTGATG GCCCAGGTTA	
	CCASTGTCAT TATCACAACA GTGTCTGTCC TGGTCTTTGA CTTCAGACCC TCCCTGGAAT	
15	TTTTCTTGGA AGCCSCATCA GTCSTYCTCT CTATATTTAT TTATAATGCC AGCAAGCCTC	
1.0	AAGTTCOGGA ATACGCACCT AGGCAAGAAA GGATCCGAGA TCTAAGTGGC AATCTTTGGG	
	AGOSTTOCAG TOGGOGATGGA GAAGAACTAG AAAGACTTAC CAAACCGAAG AGTGATGAGT	
20	CAGATGAAGA TACTITICTAA CIGGTACCCA CATASTITIGO ASCITETITI AACCITATIT	
	TCACATTITC AGTGTTTGTA ATAITTATCT TTTCACTTTG ATAAACCAGA AATGTTTCTA	
25	AATOCTAATA TITCTITGCAT ATATCTAGCT ACTOCCTAAA TGGTTCCATC CAAGGCTTAG	
<u>-</u> J	AGTACCCAAA GGCTAAGAAA TYCTAAAGAA CTGATACAGG AGTAACAATA TGAAGAATTC	
	ATTAATATCT CAGTACTIGA TAAATCAGAA AGTTATATGT CCAGATTATT TTCCTTGGCC	

TTCAAGCTTC CAAAAAACTT GTAATAATCA TGTTAGCTAT AGCTTGTATA TACACATAGA

485

	TAAATATGAG CTTTATGGTG TCATTCTCAG AAACTTATAC ATTTCTCCTC TCCTTTCTCC	1680
_	TAAGTTTCAT GCAGATGAAT ATAAGGTAAT ATACTATTAT ATAATTCATT TGTGATATCC	1740
5	ACAATAATAT GACTEGCAAG AATTEETGCA AATTTGTAAT TAAAATAATT ATTAAACCTA	1800
	AAAAAAAAN N	1811
10		
	(2) INFORMATION FOR SEQ ID NO: 232:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2271 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOFOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:	
	CTGACCTCAT GGCGTAGAGC CTAGEAACAG CGCAGGCTCC CAGCCGAGTC CGTTATGGCC	60
25	GCTGCCGTCC CGAAGAGAT GAGGGGGCCA GCACAAGCGA AACTGCTGCC CGGGTCGGCC	120
	ATCCAAGCCC TTGTGGGGTT GGCGCGGCCG CTGGTCTTGG CGCTCCTGCT TGTGTCCGCC	180
20	GCTCTATCCA GTGTTGTATC ACGGACTGAT TCACCGAGGC CAACCGTACT CAACTCACAT	240
30	ATTTCTACIC CAAATGTGAA TGCTTTAACA CATGAAAACC AAACCAAACC	300
	CAAATCAGCA CCACCCTCCC TCCCACGACG AGTACCAAGA AAAGTGGAGG AGCATCTGTG	360
35	GTCCCTCATC CCTCGCCTAC TCCTCTCTCT CAAGAGGAAG CTGATAACAA TGAAGATCCT	420
	AGTATAGAGG AGGACGATCT TCTUATURTG AACAGTTCTC CATCCACAGC CAAAGACACT	480
40	CTAGACAATG GCGATTATG3 AGAACCAGAC TATGACTGGA CCACGGGCCC CAGGGACGAC	540
40	GACGAGTOTG ATNGACACOT TOGAAGAAAA CAGGGGTTAC ATGGAAATTG AACAGTCAGT	600
	GAAATETTTT AAGATGCCAT CCT BAAATAT AGAAGAGGAA GACAGCCATT TCTTTTTTCA	660
45	TOTTATTATT TITGOTTTTT GCAPTGCIGT TGTTTACATT ACATATCACA ACAAAAGGAA	720
	GATTTTTTT CTGGTTCAAA GCAGGAAATG GCGTGATGGC CTTTGTTCCA AAACAGTGGA	730
50	ATACCATOGC CTAGATCAGA ATGTTAATGA GGCAATGCOT TCTTTGAAGA TTACCAATGA	840
50	THATATUMT TAAAGCACTG TOATHTGAAT TEGCTTATUT AATHTTATUE GOTTGACTUT	900
	CONTRACTOR CONCURS AND CONTRACTOR CONTRACTOR ACCURATEGA GARGOTGAGTO	960
	en de la companya de La companya de la co	
60	TYTACACTOT TAGMITTAT TOTTTTAGAT TTAMINDGCT CCTICTIGAA STATTAGTOA)	114(

 $- (A_{k}) = (k - 1) \cdot (A_{k}) \qquad \text{ and } k \in A_{k}$

300

	TGCTACTTT	AAAAGATCCC	AAACTTGTAA	CTAAATTCTG	ACATATCTGT	TACTGCTGAC	1200
	TCACATTCAT	TOTOOGCCAT	TCAAATACTA	TTTTTTATCC	ACATTTTTT	TYGTTCCCAA	1260
5	ACTGTAATGT	ACAAGGATAT	GTGTGATAAT	GCTTTGGATT	TGAGTAATAT	TTTTTTTCT	1320
	TOCAAGAAAA	CTGCTTTGGA	TATTTTTAGA	TAATTTAAAC	ATAATTTAGG	ATAATGATAT	1380
10	TGCTCAATCT	GACCACAATT	TTAGGTAAAA	CATTAAATGT	GTCAAGAAAT	CTTGGCAACA	144)
1()	GAGACTCTGC	AGCTTGCAGT	GGACATAGAT	AAAATGTTAC	AGAGATACTA	TTTTTTTGGT	15(0)
	TEGATTACT	ATATTAAATT	TAGAAGCAGA	AACTGGTAAA	ATGTTAAATA	CATGTACAAT	1560
15	TGETTTTAGT	TAGCAATIGA	TTGTAGCATG	-3GTTCCTCCA	AGGTTTCAAG	CAATGGGCAG	1620
	AGTTTAAAAT	TATATCAGAT	TCGTTTACTT	CGTTTATTAT	TTTACAGTAA	ATTTGAATAA	1680
20	ATCTTAGGGG	TCATTATCAC	ТТАААТААТА	CTSTACCTAG	GTCTTTCAAA	TTAAAATTAT	1740
20	ACCTGAATSA	AGTTSTTTGT	ATACATAAAG	SATATTTGTG	TACAATTACC	TTTTT CCC	1800
	CACACTIGIT	TTCTTTGTTT	TTGTTTTTA	TGGCAACTGG	AAAGTATTTA	CTATGGGATT	1860
25	CATTTATGTC	TGTCTTTTTA	TCATAAAGAA	TTGATCAATA	TGTAAATATG	TGATTTGAAC	1920
	CATGGTTGAC	TTACAAGTGT	CACTACAGCT	PTTTAGAAAA	CATAGCCCTA	ATATATGTTA	1980
30	AGCAGGACCC	COCCACYTODO	GTGGGCTTGC	GCTTTATGTA	GAGCTGGAAG	AAGGCCGTCC	2040
50	ATCCTGTCTC	TTGGGGGGAC	AGTGTACTTT	CCTAATAGGG	AAGGGAAGCA	CAATGGAAAT	2100
	ACCCCTGAAC	CGTTTTATTS	CAGTAATTTT	TTTCATATCT	GAAACTATTA	TTTAATATTT	2160
35	TGAATAAGAT	TAAAAAATT	AAATGGCAAA	GATATAAATC	TAAAAAAAAA	AAAAAAAA	2220
	AAAAAAAA	AAAAAAAAA	AAAAAAAA .	AAAAAAAA	AAAAAANANA	. 11	2271
40							
	(2) INFORM	MATION FOR S	EQ ID NO: 2	33:			
45	(i)		NGTH: 1338 b	base pairs			
		(C) ST	PE: nucleic RANDEDNESS: POLOGY: line	double			
50	(x:	i) SEQUENCE	DESCRIPTION	1: SEQ ID NO); 233;		
	CTTCCGGTTC	TCCGGGCAGC	TGCCACTGCT	GTAGCTTCTG	CCACCTGCCA	CGACCGGGCC	60
55	TCTCCCTGG	C GTTTGGTCAC	CTCTGCTTC.	YTCTCCACCG	GCCTATGGI	CCCTCTTGGA	120

GCCAGCGTGG CGNGCCTGGC GGCTCCCGGG TGGTGAGAGA GCGGTCCGGG AACGATGAAG 180

GCCTCGCAGT GCTGCTGCTG TCTCAGCCAC CTCTTGGCTT CCGTCCTCCT CCTGCTGTTG

60 CTGCCTGAAC TAAGCGGSYC CCTGGMAGTC CTGCTGCAGG CAGCCGAGGC CGCGCCAGGT

	YTYGGGCCTC CTGACCCTAG ACCAGGACAT TACCGCCGCT GCCACCGGGC CCTWACCCCT	360
_	GCCCAGCAGC COGGCCGT/3G TCTGGCTGAA GCTGCGGGGG CCGCGGGGGT CCGAGGGAGG	420
5	CAATGGCAGC AACCCTGTGG CCGGGCTTGA GACGGAGGAT CACGGAGGGA AGGCCGGGGA	430
	ARGCTCGGTG OGTGGCCGCC TTGCTGTGAG CCCCAACCCT GGCGACAAGC CCATGACCCA	540
10	GCGGGCCCTS ACCGTGTTSA TGGTGGTGAG CGGCGGGGTG CTGGTGTACT TCGTGGTCAG	600
	GACGGTCAGG ATGAGAAGAA GAAACCGAAA GACTAGGAGA TATCGAGTTT TGGACACTAA	660
1.5	CATAGAAAAT ATEGAATTGA CACCTTTAGA ACAGGATGAT GAGGATGATG ACAACACGTT	720
15	GTTTGATGCC AATCATCITC GAAGATAAGA ATGTGCCTTT TGATGAAAGA ACTITATCTT	780
	TCTACAATGA AGACTGGAAT TTCTATGTTT AAGGAATAAG AAGCCACTAT ATCAATGTTG	840
20	GGGGGGTATT TAAGTTACAT ATATTTIAAC AACCTTTAAT TTGCTGTTGC AATAAATACC	900
	GTATCCTTT ATTATATCTT TATATGTATA GAAGTACTCT GTTAATGGGC TCAGAGATGT	960
25	TGGGGATAAA GTATACTGTA ATAATTTATC TGTTTGAAAA TTACTATAAA ACGGTGTTTT	1020
23	CTGRTCGGTT TTTGTTTCCT GCTTACCATA TGATTGTAAA TTGTTTATG TATTAATCAG	1080
	TTAATGCTAA TTATTTTTGC TGATGTCATA TGTTAAAGAG CTATAAATTC CAACAACCAA	1140
30	CTGGTGTGTA AAAATAATTT AAAATYTCCT TTACTGAAAG GTATTTCCCA TTTTTGTGGG	1200
	GAAAAGAAGC CAAATTTATT ACTTTGTGTT GGGGTTTTTA AAATATTAAG AAATGTCTAA	1260
35	STTATTGTTT GCAAAACAAT AAATATGATT TTAAAATTCTC TTAAAAAAAA AAAAAAAAAC	132
55	CCCGGGGGGG GGCCCGIN	133

45

(2) INFORMATION FOR SEQ ID NO: 234:

(i) SEQUENCE CHARACTERISTICS:

(A LENGTH: 31 amino acids

(B) TYPE: amino acid

(D: TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:

Met Leu Ser Thr Gly Ile Glu Val Ala Arg Pro Pro Ala Thr Leu Leu 50 1 5 10 15

Gly Leu Met Phe Val Leu Thr Gly Met Pro Arg Gly Leu Arg Kaa 20 25 30

. .

HIE DEQUENCE CHAPACTERICTICS.

(A) LEMOTH: 118 amino aci is

						rPE:										
			(xi)			DPOLO E DEC				EO II	ON C	: 235	5 :			
				2 2/20	J • C.				~-	- Z						
5	Met l	Asn	Val	Val	Ile 5	Val	Ile	Ile	Leu	Phe 10	Ser	Phe	Asp	Ser	Val 15	Gly
10	Thr	Met	Phe	Ser 20	Cys	Asn	Arg	Ile	Pro 25	Lys	Ile	Thr	Val	Leu 30	Asn	Lys
10	Leu	Lys	Phe 35	Xaa	Cys	Glu	Val	Leu 40	Leu	Arg	Ile	Gln	Thr 45	Ile	Gln	Gly
15	Phe	Tyr 50	Arg	Cys	Thr	Arg	Ile 55	Ser	Arg	Tyr	Lys	Gly 60	Ile	Phe	Pro	Asp
	Phe 65	Cys	Gln	Ser	Gln	Cys 70	Met	Gly	Cys	Asn	Pro 75	Glu	Ser	Xaa	Met	Ala 80
20	Va1	Pro	Ala	Leu	Val 85	Thr	Pro	Ile	Leu	Ala 90	His	Arg	Lys	Lys	Glu 95	Lys
25	Gly	Met	Cys	Leu 100	Phe	Thr	Leu	Ile	Ile 105	Ala	Pro	Thr	Arg	Cys 110	Thr	His
2 3	Tyr	Phe	Cys 115	Xaa												
30	(2)	711I	ORMA'	noin	FOR	SEQ	ID I	10: í	236:							
35				(A) L B) T D) T	CHA ENGT YPE: YOPOL E DE	H: 1 ami OGY:	03 a no a lin	mino cid ear	aci		: 23	6 :			
40	Met 1		Ser	Ala	Lys 5	Ile	Val	Arg	Gln	Arg 10	Gly	Ala	Val	Pro	Thr 15	Tyr
	Tyr	Thr	Thr	Glu 20	Ala	Gly	Glu	Ile	Ile 25	Phe	Leu	Val	Leu	Asn 30	Trp	Ser
45	Leu	. Ser	Ile 35		His	Ile	Val	Asp 40	Val	Leu	Cys	Ser	Lys 45	Pro	Glu	Lys
50	Ser	: Val	Thr	Glu	Asp	Ala	Ala 55	Ser	Gly	Leu	Ser	Gln 60	Arg	Met	Thr	Ala
20	Let 65		Trp	Arg	Lys	Gly 70	Pro	Asp	Gly	Gly	Ser 75		Lys	Pro	Ile	Leu 80
55	Let	ı Lev	ı Phe	Phe	Phe 85		Pro	Leu	Ile	Leu 90		Phe	His	Ser	Phe 95	Ile
	His	s Sei	s Ser	Asn 100		Cys	Xaa									

WO 98/54963

	(2) INFORMATION FOR SEQ ID NO: 237:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237:
10	Met Ile Leu Phe Pro Gln Xaa Ala Leu Arg Leu Gly Xaa Trp Pro Arg 1 5 10 15
15	Thr Trp Ser Ile Leu Xaa Lys Tyr Ser Val Asn Phe Phe Ser Ala Tyr 20 25 30 Ser Pro Met Gly Ala Val Gly Thr Glu Phe
	35 40
20	(2) INFORMATION FOR SEQ ID NO: 238:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 amino acids (E) TYPE: amino acid (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238:
30	Met Ile Ile Leu Leu Phe Met Leu Leu Asn Asn Val Val Leu Val 1 5 10
	Gln Glu Asp Asn Cys Glr. Arg Lys Asn Thr Val Gln Glu Arg Arg Xaa 20 25 30
35	Trp Ser Gln Trp Xaa 35
40	(2) INFORMATION FOR SEQ ID NO: 239:
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239:
	Met Ala Ala Xaa Pro Pro Gly Cys Thr Pro Pro Xaa Leu Leu Asp Ile 1 5 10 15
50	Ser Trp Leu Thr Glu Ser Leu Gly Ala Gly Gln Pro Val Pro Val Glu 26 25 30
	en e

60 . His His Arm Thr Gly Leu Ser Glu Leu Leu Glu His Gly Val Cys Glu

A matter was a section A.

	65					70					75					80	
	Glu	Val	Glu	Arg	Val 85	Arg	Arg	Ser	Glu	Arg 90	Tyr	Gln	Thr	Met	Lys 95	Val	
5	Arg	Arg	Ala	Gly 100		Gly	Pro	Thr	Pro 105		Met	Ser	CAR	Pro 110		Asn	
10	Asp	Asn	Thr 115	Val	His	Thr	Met	His 120	Gly	Glu	Ala	Asn	Arg 125	Gly	Ser	Xaa	
15	(2)	INFO	DEMAC	rion	FOR	SEQ	ı dı	10 :	240:								
20			(1) :	(A) L B) T D) T	ENGT YPE: CPOL	H: 6 ami OGY:	7 am no a lin	ino cid ear	acid		: 24	O :				
25	Met 1		Ile	Leu	Cys 5	Cys	Pro	Xaa	Leu	Cys 10	Leu	Phe	Phe	Ser	Phe 15	Cys	
30	Ile	Ser	Ser	Gly 20	Ser	Суѕ	Pro	Phe	Ser 25		Val	Ser	Gln	Leu 30	Ser	Phe	
	Ile	Ala	Thr 35	Phe	Ser	Gln	Ser	Ser 40	Pro	Val	Leu	Leu	Val 45	Pro	Ala	Tyr	
35	Asn	Thr 50	Tyr	Leu	Ser	Phe	Leu 55	Ala	Phe	Leu	Asp	Cys 60	Ala	Ser	Leu	Thr	
	Ser 65	Thr	Xaa														
40	(2)	INF	OR MA	TION	FOR	SEQ	ID:	NO:	241:								
45				(((A) I (B) T (D) T	CHA LENGT TYPE: TOPOL CE DE	H: 6 ami OGY:	9 am no a lir	mino acid near	acio): 24	1:				
50	Met 1		Thr	Phe	Gln 5		Leu	Leu	Leu	Ile 10		Ala	Gln	Ser	Thr 15		
55			Lys	20					25	,				30			
	Ser	Pro	35		. Asn	Pro	Ser	Ser 40		Thr	· Leu	Asn	Phe 45		Thr	Gln	 -
60	Gln	His	Glu	Ser	· Val	Ser	Tyr 55		Суз	Cys	His	Met 60		Ser	Leu	His	

WO 98/54963

491

```
His Ala Phe Ala Xaa
     65
5
     (2) INFORMATION FOR SEQ ID NO: 242:
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 44 amino acids
10
                 (E) TYPE: amino acid
                 (D) TOPOLOGY: linear
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242:
     Met Val Ser Val Val Leu fle Phe Ser Phe Leu Ser Leu Thr Ile Ser
15
     1 5
     Thr Thr Ala Ser Ala Tyr Asn Gly Asn Asp Thr Gln Gly Trp Asn Asp
                            25
             20
20
     Lys Phe His Kaa Kaa Ser Val Lys Thr Gln Thr Kaa
         35 40
25
     (2) INFORMATION FOR SEC ID NO: 243:
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 51 amino acids
                  (P) TYPE: amino acid
30
                  (D) TOPOLOGY: linear
            (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 243:
      Met Ile Ser Asp Ala Gly Ala Gly Phe Gly Val Phe Leu Leu Val Pro
                              10
 35
      1
      Arg Ala Gly His Cys Trp Gly Ala Gly Lys Pro Leu Pro Ser Cys Pro
      Ser Val Ala Ser Ile Pro Ser Trp Val Leu Pro Ser Phe Leu Glu Arg
 40
                     40 45
      Gly Arg Xaa
        50
 45
       (2) INFORMATION FOR SEQ ID NO: 244:
            (i) SEQUENCE CHAPACTERISTICS:
 50
                   (A) LENGTH: 43 amino acids
                   (E) TYPE: amino acid
                   ID) TOPOLOGY: linear
      Phe Lon Lon Lon Lon Mot the Gin Inn Len Jer Lon Ala Pro Ala Tr;
```

25

20

60

A CONTRACTOR AND A SECOND

```
Leu Lys Pro Leu Arg Val Thr Ser His Ser Waa
5
     (2) INFORMATION FOR SEQ ID NO: 248:
            (i) SEQUENCE CHRACTERISTICS:
10
                   (A) LEWIH: 61 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245:
     Met Ile Leu Met Pro Gly Leu Gly Thr Ser Arg Gln Arg Ser Val Pro
15
      1
      Phe Val Pro Thr Leu Ast Ala Ser Thr Pro Gly Ala Met Thr Gly Pro
20
      Thr Ala Thr Leu Thr Ser Dys Glit Trp Thr Thr Ala Cys Arg Val Ser
      Trp Ala Ash Gly Trp Thr Ser Leu Arg Thr Phe Arg Maa
25
      (2) INFORMATION FOR SEQ ID NO: 246:
30
             (i) SECURNCE CERPACTERISTICS:
                  (A) LEWIH: 36 amuno acids
                   (B) TIFE: amino acid
                   (D) TOPOLOGY: linear
35
             (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 246:
      Met Ser His His Ala Gln Pro Arg Phe Leu Leu Ile Thr Met Leu Leu
40
      Gln Glu Ala Lys Pro Val Ser Asn Ile Pro His Leu Leu Glu Ser Trp
                                    25
      Tyr Phe Gly Xaa
          35
45
      (2) INFORMATION FOR SEQ ID NO: 247:
50
             (i) SEQUENCE CERRACTERISTICS:
                   (A) LEWTH: 33 amino acids
                    (B) TYFE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247:
55
      Met Asn Ser Leu Phe Trp Met Ile Leu Pro Val Ser Gln Asp Gln
                                        10
      Val Val Glu Gly Leu Glm Gly Gly Phe Ser Glm Ile His Met Arg Ile
60
                                     2.5
        20
```

PCT/US98/11422 WO 98/54963

493

Leu Arg Lys His Leu Xaa : 5 5 (2) INFORMATION FOR SEQ ID NO: 248: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 211 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248: Met Ser Arg Ser Xaa Asp Val Thr Asn Thr Thr Phe Leu Leu Met Ala 15 10 15 1 5 Ala Ser Ile Tyr Leu His Asp Gln Asn Pro Asp Ala Ala Leu Arg Ala 20 Leu His Gln Gly Asp Ser Leu Glu Cys Thr Ala Met Thr Val Gln Ile Leu Leu Lys Leu Asp Arg Leu Asp Leu Ala Arg Lys Glu Leu Lys Arg 25 Met Gln Asp Leu Asp Glu Asp Ala Thr Leu Thr Gln Leu Ala Thr Ala 70 Trp Val Ser Leu Ala Thr Gly Gly Glu Lys Leu Gln Asp Ala Tyr Tyr 30 90 lie Phe Gin Glu Met Ala Asp Lys Cys Ser Pro Thr Leu Leu Leu Leu 105 35 Asn Gly Sin Ala Ala Cys His Met Ala Gln Gly Arg Trp Glu Ala Ala 120 125 Glu Gly Leu Leu Gln Glu Ala Leu Asp Lys Asp Ser Gly Tyr Pro Glu 40 135 Thr Leu Val Asn Leu Ile Val Leu Ser Gln His Leu Gly Lys Pro Pro 150 155 160 Glu Val Thr Asn Arg Tyr Leu Ser Gln Leu Lys Asp Ala His Arg Ser 45 170 1.55 His Pro Phe Ile Lys Glu Tyr Gln Ala Lys Glu Asn Asp Phe Asp Arg 180 185 50

Leu Val Leu Gln Tyr Ala Pro Ser Ala Glu Ala Gly Pro Glu Leu Ser

200

205

(3) RECEMBATION FOR SEL ID NOT 249:

60

ong a samata an a

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 548 amino acids (B) TWEE: amino acid															
	(A) LENGTH: 548 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear															
5			(253.)	([) T(POL	ŒΥ:	line	ear	יד רי	רעון ר	- 249	.			
ی								40I TY								
	Met 1	Glu	Asp	Ser	Glu 5	Ala	Leu	Glγ	Phe	Glu 10	His	Met	Gly	Leu	App 15	Pro
10	Arg	Leu	Leu	Gln 20	Ala	Val	Thr	Asp	Leu 25	Gly	Trp	Ser	Arg	Pro 30	Thr	Leu
15	Ile	Gln	Glu 35	Lys	Ala	Ile	Pro	Leu 40	Ala	Leu	Glu	Gly	Lys 45	Asp	Leu	Leu
13	Ala	Azg 50	Ala	Arg	Thr	Gly	Ser 55	Gly	Lys	Thr	Ala	Ala 60	Tyr	Ala	Ile	Pro
20	Met 65	Leu	Gln	Leu	Leu	Leu 70	His	Arg	Lys	Ala	Thr 75	Gly	Pro	Val	Val	Glu 80
	Gln	Ala	Val	Arg	Gly 85	Leu	Val	Leu	Val	Pro 90	Thr	Lys	Glu	Leu	Ala 95	Arg
25	Gln	Ala	Gln	Ser 100	Met	Ile	Gln	Gln	Leu 105	Ala	Thr	Tyr	Суз	Ala 110	Arg	Asp
30	Val	Arg	Val 115	Ala	Asn	Val	Ser	Ala 120	Ala	Glu	Asp	Ser	Val 125	Ser	Gln	Arg
50	Ala	Val 130	Leu	Met	Glu	Lys	Pro 135	Asp	Val	Val	Val	Gly 140	Thr	Pro	Ser	Arg
35	Ile 145		Ser	Hıs	Leu	Gln 150	Gln	Asp	Ser	Leu	Lys 155		Arg	Asp	Ser	Leu 160
	Glu	Leu	Leu	Val	Val 165		Glu	Ala	Asp	Leu 170		Phe	Ser	Phe	Gly 175	Phe
40	Glu	Glu	Glu	Leu 180		Ser	Leu	Leu	Cys 185		Leu	. Pro	Arg	Ile 190		Gln
45	Ala	Phe	Leu 195	Met	Ser	Ala	Thr	Phe 200		Glu	Asp	Val	Gln 205		Leu	Lys
40	Glu	Leu 210		Leu	His	Asn	Pro 215		Thr	Leu	. Lys	220		Glu	. Ser	Gln
50	Leu 225		Gly	Pro	Asp	Gln 230		Gln	Glr.	Phe	e Glr 235		Val	. Cys	Glu	Thr 240
	Glu	ı Glu	ı Asp	lys	Phe 245		Leu	ı Leu	тут	250		ı Leu	Lys	: Leu	Ser 255	Leu
55	Ile	e Arg	g Gly	. Lys 260		. Leu	Lev	ı Phe	e Val 265		n Thr	. Leu	ı Glu	270		Tyr
60	Arg	j Let	1 Arg 275		ı Phe	e Lei	ı Glu	1 Glr 280		e Sei	c Ile	e Pro	285		; Val	. Leu

495

		Gly 290	Glu	Leu	Pro	Leu	Arg 295	Ser	Arg	Cys	His	11e 300	Ile	Ser (Gln	Phe
5	Asn 305	Gln	Gly	Phe	Tyr	Asp 310	Cys	Val	Ile	Ala	Thr 315	Asp	Ala	Glu	Val	Leu 320
	Gly	Ala	Pro	Val	Lys 325	Gly	Lys	Arg	Arg	Gly 330	Arg	Gly	Pro	Lys	Gly 335	Asp
10	Lys	Ala	Ser	Asp 340	Pro	Glu	Ala	Gly	Val 345	Ala	Arg	Gly	Ile	Asp 350	Phe	His
1.5	His	Val	Ser 355	Ala	Val	Leu	Asn	Phe 360	Asp	Leu	Pro	Pro	Thr 365	Pro	Glu	Ala
15	Тут	11e 370		Arg	Ala	Gly	Arg 375	Thr	Ala	Arg	Ala	Asn 380	Asn	Pro	Gly	Ile
20	Val 385		Thr	Phe	Val	Leu 390	Pro	Thr	Glu	Gln	Phe 395	His	Leu	Gly	Lys	11e 400
	Glu	Glu	Leu	Leu	Ser 405		Glu	Asn	Arg	Gly 410	Pro	Ile	Leu	Leu	Pro 415	Tyr
25	Gln	. Phe	Arg	Met 420		Glu	Ile	Glu	Gly 425		Arg	Tyr	Arg	Cys 430	Arg	Asp
30	Ala	. Met	435		- Val	Thr	Lys	Gln 440		Ile	Arg	Glu	Ala 445	Arg	Leu	Lys
20	Glu	11e 450		s Glu	ı Glu	Leu	Let 455	His	Ser	Glu	ı Ly⊆	460	Lys)	Thr	Tyr	Phe
35	Glv 469		o Asr	n Pro	o Arg	470		ı Glr	ı Lev	ı Lev	475	g His	a Asp	Leu	Pro	480
	His	s Pro	o Ala	a Val	1 Val 489		Pro	o His	s Lev	490	y His O	s Val	l Pro	Asp	495	Leu
40	Va:	l Pro	o Pr	o Ala		ı Arg	g Gl	y Lei	ı Val 509	l Arg	g Pro	o His	s Lys	510	s Arg	g Lys
45	Ly	s Le	u Se 51		r Se	r Cy:	s Ar	g Ly: 52:	s Ala	a Ly:	s Ar	g Al	a Lys 525	s Sei	r Gl:	n Asn
***	Pr	o Le 53		g Se	r Ph	e Ly	s Hi 53		s Gl	y Ly	s Ly	s Ph 54	e Arq O	g Pro	o Th	r Ala
50	Ly 54		o Se	r Xa	a											

h) TYPE: suinc anil (h) TyPELOGY: linear

60 (x1) SEQUENCE EBSCRIPTION: SEQ ID NO. 050:

 $(\mathcal{A}_{\mathbf{v}})^{-1} = (\mathcal{A}_{\mathbf{v}})^{-1} = (\mathcal{A}_{$

	Met 1	Thr	Thr	Val	Pro 5	Pro	3er	Pro	Arg	Pro 10	Met	Ser	Arg	Pro	Ser 15	Glu
5	Arg	Asn	Met	Arg 20	Arg	Pro	Arg	Gly	Pro 25	Ser	Pro	Leu	Pro	Ala 30	Ser	Pro
10	Arg	Asn	Ser 35	Thr	Pro	Asp	Glu	Pro 40	Asp	Val	His	Phe	Ser 45	Lys	Lys	Phe
	Leu	Asn 50	Val	Phe	Met	Ser	Gly 55	Arg	Ser	Arg	Ser	Ser 60	Ser	Ala	Glu	Ser
15	Phe 65	Gly	Leu	Phe	Ser	Cys 70	Ile	Ile	Asn	Gly	Glu 75	Glu	Gln	Glu	Gln	Thr 80
	His	Arg	Ala	Ile	Phe 85	Arg	Phe	Val	Pro	Arg 90	His	Glu	qzA	Glu	Leu 95	Glu
20	Leu	Glu	Val	Asp 100	Asp	Pro	Leu	Leu	Val 105	Glu	Leu	Gln	Ala	Glu 110	Asp	Τγτ
25	Trp	Tyr	Glu 115	Ala	Tyr	Asn	Met	Arg 120	Thr	Gly	Ala	Arg	Gly 125	Val	Phe	Pro
	Ala	Tyr 130	Тут	Ala	Ile	Glu	Val 135	Thr	Lys	Glu	Pro	Glu 140	His	Met	Ala	Ala
30	Leu 145	Ala	Lys	Asn	Ser	Asp 150	ű,tb	Val	Asp	Gln	Phe 155	Arg	Val	Lys	Phe	Leu 160
	Gly	Ser	Val	Gln	Val 165	Pro	Tyr	His	Lys	Gly 170	Asn	Asp	Val	Leu	Cys 175	Ala
35	Ala	Met	Gln	Lys 180	Ile	Ala	Thr	Thr	Arg 185	Arg	Leu	Thr	Val	His 190	Phe	Asn
40	Pro	Pro	Ser 195	Ser	Cys	Val	Leu	Glu 200	Ile	Ser	Val	Arg	Gly 205	Val	Lys	Ile
	Gly	Val 210	Lys	Ala	qzA	Asp	Ser 215	Gln	Glu	Ala	Lys	Gly 220	Asn	Lys	Cys	Ser
4 5	His 225	Phe	Phe	Gln	Leu	Lys 230	Asn	Ile	Ser	Phe	Cys 235	Gly	Tyr	His	Pro	Lys 240
	Asn	Asn	Lys	Tyr	Phe 245	Gly	Phe	Ile	Thr	Lys 250	His	Pro	Ala	Asp	His 255	Arg
50	Phe	Ala	Cys	His 260	Val	Phe	Val	Ser	Glu 265	Asp	Ser	Thr	Lys	Ala 270	Leu	Ala
55	Glu	Ser	Val 275	Gly	Arg	Ala	Phe	Gln 280	Gln	Phe	Tyr	Lys	Gln 285	Phe	Val	Glu
	Tyr	Thr 290	Cys	Pro	Thr	Glu	Asp 295	Ile	Tyr	Leu	Glu					

	(2)	INFO	RMAT	1011	FOR	SEQ	ID N	0: 2	51:							
5			(i) S (xi)	(Z (E (I	A) LI B) T D) T	ENGTI YPE: OPOLO	H: 40 amir DGY:) ami no ac line	ino a cid ear	acids		251	. :			
10	Leu 1	Leu	Tyr	Leu	Leu 5	Lys	Val	Xaa	Val	Ile 10	Phe	Val	Phe	Ser	Ser 15	Ser
	Lys	Gly	Val	Thr 20	Leu	Val	Ser	Met	Asn 25	Leu	Thr	Ser	Phe	Phe 30	Val	Ser
15	Ser	Val	Leu 35	Ala	Cys	Phe	Ser	Xaa 40								
20	(2)	INFO	ORMAT	CION	FOR	SEQ	ID N	JO: 2	252:							
25			(i) S (xi)	(; ()	A) L B) T D) T	ENGT YPE : OPOL	H: 5 ami: OGY:	94 a no a lin	mino cid ear	aci		: 25:	2 :			
30	Met 1	Pro	Ala	Ser	Ser 5	Leu	Glu	Ser	Arg	Ser 10	Phe	Leu	Leu	Ala	Lys 15	Lys
30	Ser	Gly	Glu	Asn 20	Val	Ala	Lys	Phe	Ile 25	Ile	Asn	Ser	Tyr	Pro 30	Lys	Tyr
35	Phe	Gln	Lys 35	Asp	Ile	Ala	Glu	Pro 40	His	Ile	Pro	Cys	Leu 45	Met	Pro	Glu
	Tyr	Phe 50	Glu	Pro	Gln	Ile	Lys 55	Asp	Ile	Ser	Glu	Ala 60	Ala	Leu	Lys	Glu
40	Arg 65		Glu	Leu	Arg	Lys 70	Val	Lys	Ala	Ser	Val 75	Asp	Met	Phe	Asp	Gln 80
45			Gln		85					90					95	
	Leu	Asp	- Xaa	Leu 100	Cys	Tyr	Tyr	Gly	Asp 105		Glu	Pro	Ser	Thr 110		Tyr
50	His	Phe	Gln 115		Thr	Gly	Gln	Ser 120		Ala	Leu	Glu	Glu 125		. Asn	Asr
	Glu	Thr 130	Ser	Arg	Arg	Lys	Ala 135		His	Gln	Phe	Gly 140		Thr	Trp	Arg
60	. :		k i ed	17:12	77.1 163		24 . +	», » °	At i	17					 175	

AND A STATE OF A

	Tyr	Glu	Gln	Ala 180	Leu	Asn	Leu	Tyr	Thr 185	Glu	Leu	Leu	Asn	Asn 190	Arg	Leu
5	His	Ala	Asp 195	Val	Tyr	Thr	Phe	Asn 200	Ala	Leu	Ile	Glu	Ala 205	Thr	Val	Cys
	Ala	Ile 210	Asn	Glu	Lys	Phe	Glu 215	Glu	Lys	Trp	Ser	Lys 220	Ile	Leu	Glu	Leu
10	Leu 225	Arg	His	Met	Val	Ala 230	Gln	Lys	Val	Lys	Pro 235	Asn	Leu	Gln	Thr	Phe 240
15	Asn	Thr	Ile	Leu	Lys 245	Cys	Leu	Arg	Arg	Phe 250	His	Val	Phe	Ala	Arg 255	Ser
	Pro	Ala	Leu	Gln 260	Val	Lêu	Arg	Glu	Met 265	Lys	Ala	Ile	Gly	Ile 270	Glu	Pro
20	Ser	Leu	Ala 275	Thr	Tyr	His	His	11e 280	Ile	Arg	Leu	Phe	Asp 285	Gln	Pro	Gly
	Asp	Pro 290	Leu	Lys	Arg	Ser	Ser 295	Phe	Ile	Ile	Τγτ	Asp 300	Ile	Met	Asn	Glu
25	Leu 305	Met	Gly	Lys	Arg	Phe 310	Ser	Pro	Lys	Asp	Pro 315	Asp	Asp	Asp	Lys	Phe 320
30	Phe	Gln	Ser	Ala	Met 325	Ser	Ile	Cys	Ser	Ser 330	Leu	Arg	Asp	Leu	Glu 335	Leu
	Ala	Tyr	Gln	Val 340	His	Gly	Leu	Leu	Lys 345	Thr	Gly	Asp	Asn	Trp 350	Lys	Phe
35			355					360					365	Phe		
		370					375					380		Trp		
40	A sp 385		Ile	Pro	Ser	Ala 390	Tyr	Phe	Pro	His	Ser 395	Gln	Thr	Met	Ile	His 400
45	Leu	Leu	Gln			Asp			Asn	_				Ile	Pro 415	Lys
				420				_	425					430		Leu
50	Arg	Glu	Glu 435	Ile	Leu	Met	Leu	Met 440		Arg	Asp	Lys	His 445		Pro	Glu
	Leu	Gln 450		Ala	Phe	Ala	Asp 455		Ala	Ala	Asp	Ile 460		Ser	Ala	Tyr
55	Glu 465		Gln	Pro	Ile	Arg 470		Thr	Ala	Gln	Asp 475		Pro	Ala	Thr	Ser 480
60	Leu	Asn	Cys	Ile	Ala 485		Leu	Phe	Leu	Arg 490	Ala	. Gly	Arg	Thr	Gln 495	Glu.