Introdução às Redes de Comunicação

FEUP MPR

Intro 2

Introdução

- Redes de Comunicação mais usadas
- ♦ Modelo de comunicação em camadas
- IP sobre WDM

Modelo de um Sistema de Comunicação

- » Fonte gera a informação (dados) a transmitir
- » *Emissor* converte os dados em *sinais* adequados ao sistema de transmissão
- » Sistema de transmissão transporta os dados sob a forma de sinais
- » Receptor converte os sinais em dados
- » **Destino** consome os dados

Intro 4

Interligação de Computadores/Terminais

- » A ligação directa entre pares de computadores inviável quando
 - Número de computadores muito elevado
 - Computadores geograficamente afastados e dispersos
 - Requisitos de conectividade desconhecidos com antecedência
 - Padrão de tráfego irregular e com débito variável
- » Comunicação através de uma rede
 - constituída por elementos (nós) de comutação interligados
 - Em malha, estrela, árvore, barramento, anel
- » Tipos de rede
 - Locais, metropolitanas, Wide Area
 - Acesso, core
 - Acesso, regionais, nacionais, internacionais
 - Operadores internet, operadores de telecomunicações
- » Comutação de circuitos, comutação de pacotes ...

Comutação de Circuitos

- Recursos da rede reservados antecipadamente para a duração da chamada
- Fases da chamada: estabelecimento, transferência de informação, terminação
- Estabelecimento da chamada
 - ♦ definido percurso da informação
 - ◆ reservados os recursos necessários (nós de comutação e canais de comunicação

Rede telefónica

reserva estática (fixa) de recursos

inadequada para suporte de dados bursty entre computadores

Intro 6

Comutação de Pacotes

- Modelo semelhante ao do serviço postal:
 - ♦ cartas / pacotes, centros de distribuição / nós de comutação
- A informação enviada em unidades de dados pacotes que competem pelos recursos da rede (partilha dinâmica)
- Cada pacote contém informação (endereços) que permite o seu encaminhamento pela rede
- Os pacotes são comutados individualmente e enviados de nó para nó entre a origem e o destino (store and forward)
- A sequência de pacotes pode ser alterada (se percursos diferentes)

Packet-Switching Network

Circuitos Virtuais

- » Igual a Comutação de Pacotes
 - mas com conceito de chamada
 - sem reserva de recursos para a comunicação
- » Chamada Virtual
 - relação entre pacotes de um mesmo fluxo (chamada)
 - relação conhecida pela rede
- » Pacotes de Chamada Virtual → identificador comum
 - reconhecimento dos pacotes pelos nós da rede
 - Tratamento idêntico (encaminhamento, QoS)
- » Chamada Virtual suportada por Circuito Virtual

Intro 8

Comutação de Circuitos Virtuais

Os Circuitos Virtuais podem ser de dois tipos

- » Comutados (SVC Switched Virtual Circuits) estabelecidos e terminados por meio de procedimentos de sinalização
- » **Permanentes** (PVC *Permanent Virtual Circuits*) estabelecidos por meio de procedimentos de gestão e mantidos durante um período contratual

Circuitos, Circuitos Virtuais, Datagramas

Intro 10

Comparação entre Tecnologias de Comutação

ltem	Circuit-switched	Packet-switched
Call setup	Required	Not needed
Dedicated physical path	Yes	No
Each packet follows the same route	Yes	No
Packets arrive in order	Yes	No
Is a switch crash fatal	Yes	No
Bandwidth available	Fixed	Dynamic
When can congestion occur	At setup time	On every packet
Potentially wasted bandwidth	Yes	No
Store-and-forward transmission	No	Yes
Transparency	Yes	No
Charging	Per minute	Per packet

Redes - Possível Classificação

- Redes
 - » Modo de circuito circuito básico = 64 kbit/s
 - PDH
 - SDH
 - **DWDM**
 - » Modo de pacote
 - Orientado às ligações
 - ♦ ATM
 - ♦ X.25
 - Não orintado às ligações
 - ♦ Ethernet, Token Ring, FDDI
 - ◆ IP → interligação de redes de pacotes
- Nem sempre funciona bem. Redes são cada vez mais complexas
 - » Em GPRS e UMTS: IP/Tunel GPRS /IP/ATM (em GPRS e UMTS)
 - Em redes ópticas: IP/ATM/SDH/óptico
 - Redes embebidas ...

Rede Telecomunicações Comutada

Pares de cobre até às casas

connecting

- » Analógico, RDIS, ADSL
- » Linhas agregadas nos RT ou COTs

intertoll

connecting

Sistema E1

- Sistema E1 (2 Mbit/s)
 - » sistema básico de transporte de informação numa rede digital
 - » suporta 30 canais de 64 kbit/s para comunicação de utilizador
 - » Slot 0 para gestão
 - » Slot 16 para sinalização estabelecimento, terminação de chamada em slot x
 - » Slot x: voz,8 bits lei A / canal B RDIS / canal GSM / octeto de pacote IP/PPP, ...)

Intro 14

Matrizes de Comutação de Circuitos

- Comutação de circuitos digital
 - » as entradas e saídas são ligações multiplexadas TDM por exemplo E1
 - » a comutação consiste na troca de intervalos de tempo (espacial e temporal)
 - » exige que todas as entradas estejam sincronizadas entre si

Matriz de comutação digital temporal e espacial de três andares (T-S-T)

Plesiochronous Digital Hierarchy (PDH)

- Canais podem ser multiplexados
- Sistema de Multiplexagem PDH (Plesiochronous Digital Hierarchy)
 - » define vários níveis de multiplexagem a partir do sinal básico E1
 - » hierarquia digital plesiócrona (plesiócrono = quase síncrono)

Cadeia de multiplexagem / desmultiplexagem da Hierarquia Digital Plesiócrona

Hierarquia Digital Síncrona (SDH)

	Nível	Débito (Mbit/s)
	STM-1	155,52
-	STM-4	622,08
	STM-16	2 488,32
	STM-64	9 953,28

Trama STM -1

Características da trama STM-1

- período: 125 μs / frequência: 8 kHz
- overhead de transporte
 - apontadores dinâmicos para unidades de informação (Contentores Virtuais de Ordem Alta) overhead de secção de regenerador (RSOH, Regenerator Section Overhead) overhead de secção de multiplex (MSOH, Multiplex Section Overhead)
- carga de transporte: 9 × 261 octetos (mais até 3 octetos no caso de justificação negativa)
 apontadores dinâmicos para unidades de informação (Contentores Virtuais de Ordem Baixa)
 unidades de informação de utilizador (Contentores Virtuais)
 overhead de caminho (POH, Path Overhead)

Redes SDH - Elementos de Rede

Intro 18

Rede SDH - Arquitectura

Sistemas SDH

• Rede nacional

- » ligações de muito alta capacidade e nós de transmissão constituídos por DXCs
- » rede emalhada, garantindo adaptação a tráfego variável e elevada fiabilidade

Rede regional

- » DXCs emalhados nas áreas urbanas de grande tráfego
- » anéis de alta capacidade constituídos por ADMs nas áreas de tráfego moderado

Rede local de acesso

- » Acesso de utilizadores
 - grande capacidade: acesso directo à rede SDH ao nível STM-1
 - média dimensão: ligações E1 com acesso anéis com ADMs
 - baixa capacidade (linhas analógicas, digitais e RDIS): multiplexadores
 - flexíveis agregam tráfego em ligações E1, que, por sua vez acedem a anéis
- » interligação
 - anéis com ADMs agregam o tráfego destinado ao nível da rede regional

Intro 20

Protecção no SDH

- Protecção conseguida usando redundância
- Excelente Recuperação muito rápida
- Caso de um anel com falha ...

SONET (Americano) versus SDH (Europeu)

SON	ET	SDH	Data rate (Mbps)		ps)
Electrical	Optical	Optical	Gross	SPE	User
STS-1	OC-1		51.84	50.112	49.536
STS-3	OC-3	STM-1	155.52	150.336	148.608
STS-9	OC-9	STM-3	466.56	451.008	445.824
STS-12	OC-12	STM-4	622.08	601.344	594.432
STS-18	OC-18	STM-6	933.12	902.016	891.648
STS-24	OC-24	STM-8	1244.16	1202.688	1188.864
STS-36	OC-36	STM-12	1866.24	1804.032	1783.296
STS-48	OC-48	STM-16	2488.32	2405.376	2377.728
STS-192	OC-192	STM-64	9953.28	9621.504	9510.912

Intro 22

ATM - Princípio de funcionamento

» Asynchronous Transfer Mode – ATM

tecnologia rápida de comutação de pacotes, orientada à conexão

» Célula

- unidade de transmissão e comutação
- pacote de comprimento fixo e pequeno
- Transportada em circuitos virtuais
- Células do mesmo circuito têm identificador igual

ATM – Multiplexagem e Comutação

Intro 24

Comutador de Paths e de Circuitos

WDM

- Arquitectura de rede semelhante a SDH
- Lambdas em vez de tributários
- Tópico central da disciplina ...

Intro 26

Local Area Network (LAN)

- » Redes de pequena dimensão (edifício, campus)
- » Redes privada, controladas pela mesma organização que detém os computadores
- » Débitos elevados (Mbit/s, Gbit/s)
- » Inicialmente, a transmissão era feita usando técnicas de difusão (broadcast) em meios partilhados e, mais tarde, recorrendo a repetidores multiporta (hubs) e comutadores

Trama Ethernet

SFD = Start of frame delimiter
DA = Destination address
SA = Source address
FCS = Frame check sequence

- Preamble
 - 7 octetos de 0s e 1s alternados
 - Usado pelo receptor para sincronização de bit
- Start of Frame Delimiter campo 10101011 que indica o início da trama
- Destination Address (DA), Source Address (SA)
- Length Comprimento do campo de dados (substitui o campo Type da Ethernet)
- LLC Data Campo de dados (LLC PDU)
- Pad (padding) octetos adicionados para garantir um comprimento mínimo da trama, que permita detecção de colisão durante a transmissão
- comprimento mínimo da trama (excluindo Preâmbulo e SFD) 512 bits (64 octetos)
 - comprimento máximo do campo de dados 1500 octetos (trama 1518 octetos)
- FCS CRC de 32 bits

Intro 28

Comutador Ethernet

- Pode construir tabelas de encaminhamento de forma automática e dinâmica;
 adapta-se a alterações topológicas
 - » Aprendizagem de endereços (learning)
 - Quando uma trama é recebida numa porta, o respectivo endereço MAC de origem (SA) é lido e associado a essa porta numa tabela (forwarding table), significando que essa estação é alcançável através dessa porta (actualiza informação anterior, se presente)
 - As entradas da tabela são mantidas temporariamente, sendo eliminadas após um intervalo de tempo pré-definido em que não seja observada actividade da estação correspondente (ageing)
 - » Encaminhamento de tramas (forwarding)
 - Quando uma trama é recebida numa porta, o respectivo endereço MAC de destino (DA) é lido e consultada a tabela de *forwarding* de todas as portas
 - Se não for encontrada qualquer porta com o endereço DA associado, a trama é enviada por todas as portas no estado forwarding, com excepção da porta de entrada
 - Se for encontrada uma porta com o endereço DA associado, a trama é enviada por essa porta, desde que esteja no estado forwarding e não seja a porta de entrada

Rede IP

- » Recursos de transmissão podem ser dedicados ou partilhados
- » Múltplas tecnologias de transporte
 - Comutação de circuitos → rede telefónica
 - Comutação de células (ATM Asynchronous Transfer Mode)
 - LANs
- » Pacotes IP não têm info de início ou fim de trama precisam de trama MAC ou PPP

Intro 30

Interligação de Redes

- Redes de diferentes organizações e usando variadas tecnologias de acesso devem poder comunicar
- Internet → rede única, virtual
 - » End-Systems → computadores (hosts)
 - \gg Intermediate-Systems \rightarrow routers
 - » Comunicação global
 - » Interligação de redes com *routers*
 - Um router tem uma interface por cada rede que interliga
- Comunicação protocolar
 - » Camadas de Aplicação e Transporte
 - Extremo-a-extremo (entre hosts)
 - » Camada de Rede
 - entre máquinas adjacentes (routers e hosts)

IP Header

Pacotes IP encapsulado em Trama – Tipos de Trama mais Frequentes

Intro 32

Bit stuffing - 5 1s seguidos → emissor introduz 0

Comutação de Pacotes IP

Intro 34

Arquitectura da Internet

Modelo de Comunicação em Camadas

Intro 36

Regras de Comunicação - Protocolos

» Protocolo

- Regras que regulam comunicação entre entidades homólogas (peer entities) que residem (normalmente) em sistemas diferentes
 - Entidades (programas)
 - ♦ Sistemas (computadores)

» Elementos de um protocolo

- Sintaxe (formato dos dados, níveis de sinal, etc.)
- Semântica (informação de controlo, tratamento de erros) procedimentos
- Temporizações (adaptação de velocidades, sincronização, ordenação dos dados)

Funções de cada Camada

» Acesso à rede

- Troca de dados entre o computador e a rede (acesso ao serviço disponibilizado pela rede)
- O computador origem fornece à rede o endereço do computador de destino (ou informação equivalente),
 o que permite à rede encaminhar os pacotes até ao nó de destino
- As funções dependem do tipo de rede (LAN, WAN), da tecnologia de comutação e do serviço oferecido pela rede

» Transporte

- Transferência de dados extremo-a-extremo (pretende-se em muitos casos que seja ordenada e fiável)
- Independente da rede e da aplicação

» Aplicação

- Exemplo: transferência de ficheiros, correio electrónico, acesso a computador remoto

Intro 38

Analogia

Arquitectura filósofo/tradutor/secretária

Protocol Data Units (PDU)

- » *Protocol Data Unit* (Unidade Protocolar de Dados) informação trocada entre entidades protocolares da mesma camada
 - ficheiros, pacotes, tramas e células são exemplos de PDUs
- » Um PDU é transportado usando os serviços da camada inferior
- » Cada camada adiciona informação de controlo ao PDU da camada superior (encapsulamento)

Intro 40

Endereçamento

- Cada computador precisa de um endereço que o identifique numa rede ou subrede
 - » Exemplo endereço IP (192.35.246.18)
- Cada aplicação precisa de um "endereço" (identificador) dentro do computador
 - » Exemplo servidor de HTTP (porta 80)

Pilha Protocolar TCP/IP

- ♦ Acesso à rede (subrede)
 - » Interface ao meio físico,
 - » carta de rede, device driver
- Rede (*internetworking*)
 - » Transferência de pacotes entre redes diferentes
 - » IP Internet Protocol
- ◆ Transporte
 - » Multiplexagem de fluxos de dados entre duas máquinas
 - TCP Transmission Control Protocol
 - UDP User Datagram Protocol
- ◆ Aplicação
 - » Aplicações de rede
 - Telnet, FTP, SMTP, SNMP, etc.
 - » Modelo cliente-servidor

Intro 42

Encapsulamento

Cabeçalho do TCP

TCP Header

Intro 44

Cabeçalho IP

IP Header

Encapsulamento Ethernet

Intro 46

Arquitectura TCP/IP

- ◆ TCP
 - » Orientado às ligações
 - » Transporte fiável entre máquinas
- ◆ UDP
 - » Envia / recebe datagramas das aplicações
 - » Transporte não fiável
- IP
 - » Protocolo central da pilha
 - » Encaminha datagramas
- ICMP
 - » Auxiliar do IP
 - » Envia mensagens de erro
- IGMP
 - » Gere grupos de multicasting
- ARP, RARP
 - » Resolução de endereços IP em endereços físicos

Desmultiplexagem

- » Cabeçalho TCP/UDP (porta)
 - FTP → 21
 - Telnet → 23
 - ...
- » Cabeçalho IP (protocolo)
 - ICMP → 1
 - IGMP \rightarrow 2
 - TCP → 6
 - UDP → 17
- » Cabeçalho Ethernet (tipo)
 - IP \rightarrow 0x0800
 - ARP \rightarrow 0x0806
 - RARP → 0x8035

IP Sobre WDM

Intro 50

IP sobre WDM – O Problema

- A predominância do IP
 - » Tecnologia de convergência (serviços elásticos e de tempo real)
- WDM: maduro, redes de banda muito elevada
 - » WDM Wavelength Division Multiplexing
 - » 30 canais x 100 GHz/canal
- Como transportar IP sobre WDM?
 - » Encapsulamento de datagramas
 - » Protecção
 - » GMPLS

IP sobre ATM sobre SDH sobre WDM

- Datagramas IP
 - » segmentados em células ATM
 - » Atribuídos VCs, na carta do router
- Células ATM
 - » Enviadas em trama SDH, para
 - comutador ATM ou
 - transponder WDM
- ◆ STM16 2,5 Gbit/s

IP sobre ATM sobre SDH sobre WDM Pilha de Protocolos

Intro 52

IP	to be encapsulated, packets between 250 and 65535 Octets long
LLC/SNAP	Logical Link Control, RFC 1483. Adds 8 byte overhead to IP packet to form ATM "PDU" (Protocol Data Unit) up to 65535 octets long.
AAL5	ATM Adaptation Layer 5, ITU rec. I-363. Adds 8 overhead bytes (length field, and 4-octet CRC) plus a 0 to 47 octet padding field, to form an AAL5 PDU, which fits into an integral number of 48-octet ATM payloads.
ATM	Segments AAL5 PDU into 48 octet payloads then adds 5-octet overhead to every 48-octet payload to form 53 octet ATM cells.
SDH	Put ATM cells in SDH VC4 or concatenated VC4 payload (ITU rec. G.707). Adds the SDH section overhead (81 bytes including AU pointers), and a 9 VC4 byte Path overhead, to the 2340 byte SDH VC4 payload. For concatenated VC4s, a V4-Xc payload is X*2340 long. ATM cells may cross VC4 boundaries, and their payload is scrambled with a 1+x ⁴³ polynomial to provide sufficient transition density to allow for SDH clock recovery. The usual x ⁷ scrambling is used on top for the SDH payload. The SDH section and path overheads contain identifiers and error checking fields (BIP-n) for performance monitoring, as well as communication channels for managing the transport network.

Elementos de Rede SDH

IP sobre SDH sobre WDM (ou Pacote sobre SONET)

Intro 54

- SDH → protecção contra falhas de cabos
- Datagrama IP encapsulado em trama PPP
 - Funcionalidade para estabelecer e terminar ligações (LCP)
 - Flags de delimitação de tramas, campo CRC.
 - Bit stuffing

- Interfaces SDH
 - » VC4 (E4, 140 Mbit/s)
 - » Canais → STM16 óptico (2,5 Gbit/s), composto por 16 VC4
 - Separação de serviço por VC4
 - VC4 encaminhados por SDH para diferentes routers

IP sobre SDH sobre WDM Pilha de Protocolocos

IP	datagram with maximum length of 65535 octets
PPP	PPP encapsulation, RFC 1661. Adds 1 or 2 octets "protocol field" and optional padding. PPP also provides for a link establishment protocol, which is not a critical function for IP over SDH. Framing, RFC 1662. Adds a flag byte indicating frame start, 2 more overhead bytes, and a 2 byte frame check sequence (FCS), resulting in a frame up to 1500 octets long. Together it results in a 7 or 8 octet overhead being added to the IP packet.
SDH	Put PPP frames into a VC4 or concatenated VC4 payload, RFC 1619. Adds the SDH section overhead (81 bytes including AU pointers), and a 9 VC4 byte Path overhead, to the 2340 byte SDH VC4 payload. For concatenated VC4s, a V4-Xc payload is X*2340 long. The frames are allowed to cross VC4 boundaries. An internet draft [21] specifies using a scrambling 1+x ⁴³ polynomial, like ATM, to minimise the risk that a malicious user may send data which may cause SDH to loose synchronisation.

Intro 56

IP sobre Gigabit Ethernet sobre WDM

- Ethernet → 85% do tráfego de LANs
- Cartas Gigabit Ethernet para routers custam 1/5 de cartas SDH equivalentes
- Gigabit Ethernet (1000Base-X)
 - » Usado em full-duplex → funcionalidade CDMA-CD não é usada
 - » Encapsulamento e framing simples para pacotes IP
- Trama Ethernet usa código 8B/10B
 - » 1 Gbit/s de dados → 1.25 Gbit/s na linha

Comparação de Overheads

encapsulation/ framing	overhead	link capacity Mbit/s
IP/ATM/SDH	22%	1 944
IP/PPP/SDH	6%	2 338
IP/GbE	28%	902

Link STM 16