Álgebra Linear I

Professora Kelly Karina

Matriz

Chamamos de matriz a uma tabela cujos elementos estão dispostos numa certa quantidade de linhas e de colunas.

Veja por exemplo esta tabela:

2016 Summer Olympics medal table

Rank +	NOC ÷	Gold ≑	Silver +	Bronze +	Total ♦
1	United States (USA)	46	37	38	121
2	Great Britain (GBR)	27	23	17	67
3	China (CHN)	26	18	26	70
4	Russia (RUS)	19	17	20	56
5	Germany (GER)	17	10	15	42
6	Japan (JPN)	12	8	21	41
7	France (FRA)	10	18	14	42
8	South Korea (KOR)	9	3	9	21
9	Italy (ITA)	8	12	8	28
10	Australia (AUS)	8	11	10	29
11	Netherlands (NED)	8	7	4	19
12	Hungary (HUN)	8	3	4	15
13	Brazil (BRA)*	7	6	6	19

```
121
46
    37
         38
    23
               67
27
         17
    18
         26
               70
26
19
     17
         20
               56
               42
17
     10
         15
12
     8
         21
               41
10
     18
         14
               42
9
     3
          9
               21
8
    12
          8
               28
8
     11
               29
         10
8
               19
8
7
     3
          4
               15
     6
               19
          6
```

Notação:

- $M_{m \times n}(\mathbb{R})$: conjunto das matrizes de ordem $m \times n$, cujos elementos são números reais.
- Representaremos uma matriz por uma letra latina maiúscula.

Exemplo:

Se
$$A \in M_{m imes n}(\mathbb{R})$$
 então

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{mn} & a_{m2} & \dots & a_{mn} \end{bmatrix} = [a_{ij}]_{m \times n}$$

• Para representar uma matriz podemos usar colchetes como acima, parêntesis ou até mesmo dois traços verticais de cada lado.

Matrizes iguais

Duas matrizes $A_{m \times n} = [a_{ij}]_{m \times n}$ e $B_{k \times l} = [b_{ij}]_{k \times l}$ são iguais (e escrevemos A = B) se m = k, n = l e $a_{ij} = b_{ij}$, ou seja se possuem a mesma ordem e se todos os elementos são iguais nas suas respectivas posições.

Tipos especiais de matrizes

Nome	Descrição		
Matriz Quadrada	o número de linha é igual ao número		
	de colunas		
Matriz Nula	todos os seus elementos são zero		
Matriz Coluna	possui apenas uma coluna		
Matriz Linha	possui apeas uma linha		
Matriz Diagonal	matriz quadrada tal que $a_{ij} = 0$ sempre		
	que $i \neq j$		
Matriz identidade	matriz quadrada tal que $a_{ij} = 0$ se $i \neq j$		
	e $a_{ij} = 1$ se $i = j$		
Matriz Triangular Superior	matriz quadrada tal que $a_{ij} = 0$ se $i > j$		
Matriz Triangular Inferior	matriz quadrada tal que $a_{ij} = 0$ se $i < j$		
Matriz Simétrica	matriz quadrada tal que $a_{ij} = a_{ji}$		

Exemplo:

$$\bullet \quad A = \left(\begin{array}{cc} 2 & 0 \\ 0 & -1 \end{array} \right) \qquad \text{\'e uma matriz diagonal;}$$

$$\bullet \quad B = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & 5 \end{array}\right)$$

é uma matriz triangular superior;

$$C = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 6 & 8 \\ 2 & 8 & 3 \end{pmatrix}$$

é uma matriz simétrica.

Adição

Dadas duas matrizes de mesma ordem $A_{m \times n} = [a_{ij}]$ e $B_{m \times n} = [b_{ij}]$, definimos a soma de A e B e denotamos por A + B como a matriz de ordem $m \times n$ dada por:

$$A + B = [a_{ij} + b_{ij}]_{m \times n}$$

$$\left[\begin{array}{ccc} 1 & 0 & 4 \\ 2 & -3 & 1 \end{array}\right] + \left[\begin{array}{ccc} 6 & 2 & -1 \\ 0 & 4 & 1 \end{array}\right] = \left[\begin{array}{ccc} 7 & 2 & 3 \\ 2 & 1 & 2 \end{array}\right]$$

Propriedades:

Dadas as matrizes $A, B \in C$ de mesma ordem $m \times n$, temos:

i)
$$A + B = B + A$$
 (comutatividade)

ii)
$$A + (B + C) = (A + B) + C$$
 (associatividade)

iii)
$$A + 0 = A$$
, onde 0 denota a matriz nula de ordem $m \times n$

Multiplicação por escalar

Seja $A = [a_{ij}]_{m \times n}$ e K um escalar (ou seja, um número real ou complexo), então definimos o produto de k por A como sendo a matriz dada por:

$$kA = [ka_{ij}]_{m \times n}$$

$$2\left[\begin{array}{cc}1 & 7\\0 & 3\end{array}\right] = \left[\begin{array}{cc}2 & 14\\0 & 6\end{array}\right]$$

Transposição

Dada uma matriz $A = [a_{ij}]_{m \times n}$ definimos A^t (e lemos "A transposta") da seguinte forma:

$$A^t = [b_{ij}]_{n \times m}$$
, onde $b_{ij} = a_{ji}$

Se
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -4 & 8 \end{bmatrix}$$
 então $A^t = \begin{bmatrix} 1 & 3 \\ 2 & -4 \\ 0 & 8 \end{bmatrix}$

Propriedades:

- Uma matriz é simétrica se e somente se ela é igual à sua transposta;
- ii) $(A^t)^t = A$, ou seja, a transposta da transposta de uma matriz é ela mesma;
- iii) $(A+B)^t = A^t + B^t$
- iv) $(kA)^t = kA^t$, onde k é um escalar.

Multiplicação de matrizes

Sejam $A = [a_{ij}]_{m \times n}$ e $B = [b_{ij}]_{n \times p}$. O produto de A e B é a matriz $C = AB = [c_{ij}]_{m \times p}$ onde:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + \cdots + a_{in} b_{nj}$$

$$\begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 5 \end{bmatrix} \cdot \begin{bmatrix} -2 & 2 \\ 1 & 0 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-2) + 3 \cdot 1 + (-1) \cdot 3 & 1 \cdot 2 + 3 \cdot 0 + (-1) \cdot 5 \\ 0 \cdot (-2) + 2 \cdot 1 + 5 \cdot 3 & 0 \cdot 2 + 2 \cdot 0 + 5 \cdot 5 \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ 17 & 25 \end{bmatrix}$$

Propriedades:

- i) Em geral $AB \neq BA$;
- ii) AI = IA = A onde I denota uma matriz identidade (onde I é uma matriz identidade com ordem tal que faça sentido a multiplicação);

iii)
$$A(B+C) = AB + AC$$

iv)
$$(A+B)C = AC + BC$$

$$\mathsf{v)} \qquad (AB)C = A(BC)$$

$$(AB)^t = B^t A^t$$

vii)
$$0 \cdot A = 0 e A \cdot 0 = 0$$

