Summarizing Documents with Topic Networks

Bob Flagg

)

I. Introduction

A UTOMATIC text summarization is a challenging problem whose solution would allow users to browse large document collections and quickly view highlights and drill down for details. In this project we attempt to bring the power of social network analysis to bear on this problem by developing a new approach to summarizing document collections, using topic models and bipartite graphs.

Our method first builds a topic model for a document collection using Latent Dirichlet allocation[3]. This topic model naturally defines a bipartite graph[1] between documents and the topics that appear in them. The bipartite graph is converted into a network of topics by linking topics if they appear in the same document. By analyzing a simple sample corpus, we explore properties of this topic network in hopes that they will provide insights useful in summarizing the underlying document collection.

II. A SIMPLE EXAMPLE

To demonstrate topic networks we will use a simple example consisting of texts of 102 speeches given by Barack Obama prior to his 2009 Inauguration scraped from obamaspeeches.com[5] on April 12, 2013. We'll use the R programming language[6] for this demo. All the steps are reproduced below and in an R source file available on GitHub[2]. We have borrowed a lot of ideas from Solomon Messing's blog post[4] on working with bipartitie/affiliation networks in R.

A. Build the Document-Term Matrix

If the path to the directory containing the texts of Obama speeches is in the variable corpus.source, then we can build the corpus and document-term matrix with the following commands:

```
# Load the text mining package
require(tm, quietly=TRUE)
# Build the corpus.
corpus.source <- DirSource(corpus.directory,</pre>
  encoding="UTF-8")
corpus <- Corpus(corpus.source)</pre>
corpus.copy <-corpus
# Build the document term matrix.
corpus.dtm <- DocumentTermMatrix(</pre>
  corpus,
  control = list(
    stemming = TRUE,
    stopwords = TRUE,
    minWordLength = 3,
    removeNumbers = TRUE,
    removePunctuation = TRUE
  )
```

B. Visualize Frequent Words

To gain some preliminary insight into this corpus, we'll look at a bar chart of most frequent words and a word cloud.

```
# Load required packages:
require(RColorBrewer, quietly=TRUE)
# Sort terms by frequency:
word.freq <- sort(col_sums(corpus.dtm),</pre>
  decreasing=TRUE)
# barplot with the top 20 most frequent terms
top.terms <- head(word.freq, n=20)
# complete the stems and fix missing values and errors:
completions <- stemCompletion(names(top.terms),</pre>
  dictionary=corpus.copy, type="prevalent")
completions<-ifelse(completions == "", names(top.terms),</pre>
  completions)
names(top.terms) <-completions</pre>
names(top.terms)[10] <-"every"</pre>
pdf("mostfreq.pdf")
op \leftarrow par(mar = c(4,6.1,.1,.2))
barplot(top.terms, las=2, horiz=TRUE)
dev.off()
# wordcloud
pal2 <- brewer.pal(8,"Dark2")</pre>
top.terms <- head(word.freq, n=1200)
completions <- stemCompletion(names(top.terms),</pre>
  dictionary=corpus.copy, type="prevalent")
completions<-ifelse(completions == "", names(top.terms),</pre>
  completions)
names(top.terms) <-completions</pre>
pdf("wordcloud.pdf")
par(mar = c(0,0,0,0))
wordcloud(
  words=names(top.terms),
  freq=top.terms,
  min.freq=20,
  random.order=F,
  colors=pal2,
  rot.per=.15
)
dev.off()
```

C. Build the Topic Model

BEFORE building a topic model, we want to filter out "unimportant" words from the corpus. For this we will use the tf-idf matrix.

```
# Build the tf-idf matrix:
term.tfidf <- tapply(</pre>
```


textbooks of the provided home power promise true immigrants true and born hearissue standbillionidea begin letter with the provided home power promise true immigrants true and born hearissue standbillionidea begin letter immigrants true and born hearissue standbillionidea begin plan little and public finally preside in stories veterans decision programs and public finally preside become avian standbillionidea begin program built sense save stories and public finally preside floor program built sense save stop, limps minded values later moral woman industries streets statements bearing the program built sense save stop, limps minded values later moral woman industries streets statements bearing the program built sense save stop, limps minded values later moral woman industries streets statements Fig. 2

search common possible join service move amendment free freedom adership det efforts moment parents of responsibility investite tunding threat own complete meet democratic increase truggle create learn methods and the parents of th

rtprotect iraqi president

Companies kids senator odure government past complement work senator odure government past set of odure government work work asset work of the complement of

schools Decause jobs talk

were life wev

Emanipulate political million and an amillion and amillion and an amillion and an amillion and an amillion and amillion amillion and amillion and amillion amillion and amillion amil

Wordcloud: frequency ≥ 20

Troops for treat her part Serious Seri

thankfamilies for verification militarily

uys leadershi

```
corpus.dtm$v/row_sums(corpus.dtm)[corpus.dtm$i],
 corpus.dtm$j, mean) *
 log2(nDocs(corpus.dtm)/col_sums(corpus.dtm > 0))
# Filter out "unimportant" terms:
dtm <- corpus.dtm[,term.tfidf >= 0.01]
dtm <- dtm[row_sums(dtm) > 0,]
```

Most frequent words

Now we build the topic model and collect collect relevant data in a data frame.

```
require(topicmodels, quietly=TRUE)
# Build a topic model:
corpus.tm <- LDA(dtm, k = 22)
corpus.tm.terms <- terms(corpus.tm, 3)</pre>
corpus.tm.topics <- topics(corpus.tm, 4)</pre>
topic.labels <- apply(corpus.tm.terms, 2,
  function(x) paste(x, collapse=", "))
document.labels <- colnames(corpus.tm.topics)</pre>
dt.df <- data.frame(</pre>
  document=rep(document.labels, each=4),
  topic=as.vector(corpus.tm.topics)
# Replace doucment labels with numbers:
dt.df$document <- as.numeric(gsub(".txt","",</pre>
  dt.df$document))
# Order the data according to document number:
dt.df <- dt.df[order(dt.df$document),]</pre>
```

D. Build the Document-Topic Network

THE first network we'll consider has two modes: doc-▲ uments and topics. The igraph package allows us to construct a network from an incidence matrix as follows.

```
require(igraph, quietly=TRUE)
# Build the incidence matrix:
dt.matrix <- as.matrix(table(dt.df))</pre>
# Build the document-topic network:
dt.network <- graph.incidence(dt.matrix)</pre>
corpus.tm <- LDA(dtm, k = 22)
corpus.tm.terms <- terms(corpus.tm, 3)</pre>
corpus.tm.topics <- topics(corpus.tm, 4)</pre>
topic.labels <- apply(corpus.tm.terms, 2,
  function(x) paste(x, collapse=", "))
document.labels <- colnames(corpus.tm.topics)</pre>
dt.df <- data.frame(</pre>
  document=rep(document.labels, each=4),
  topic=as.vector(corpus.tm.topics)
# Replace doucment labels with numbers:
dt.df$document <- as.numeric(gsub(".txt","",</pre>
  dt.df$document))
# Order the data according to document number:
dt.df <- dt.df[order(dt.df$document),]</pre>
```

Figure 3, which was generated with the code below, shows the document-topic network, with topic nodes displayed as large green dots to distinguish them from document nodes.

```
n.docs <- nrow(dt.matrix)</pre>
n.topics <- ncol(dt.matrix)</pre>
n.vertices <- n.docs + n.topics</pre>
V(dt.network)$color[1:n.docs] <- rgb(1,0,0,.4)
```


Fig. 3 DOCUMENT-TOPIC NETWORK

Fig. 4 Topic Network

```
V(dt.network)$color[(n.docs+1):n.vertices] <- rgb(V,(tpp)id5)network)$color <- rgb(0,1,0,.6)
V(dt.network)$label <- NA
                                                      # Set edge gamma according to edge weight
V(dt.network)$size[1:n.docs] <- 2</pre>
                                                      egam <- (log(E(topic.network)$weight)+.3)/</pre>
V(dt.network)$size[(n.docs+1):n.vertices] <- 6</pre>
                                                        max(log(E(topic.network)$weight)+.3)
E(dt.network)$width <- .5</pre>
                                                      E(topic.network)$color <- rgb(.5,.5,0,egam)</pre>
E(dt.network)$color <- rgb(.5,.5,0,.4)
                                                      pdf("topic-network.pdf")
pdf("dtn.pdf")
                                                      plot(topic.network, layout=layout.kamada.kawai)
plot(dt.network, layout=layout.fruchterman.reingolddev.off()
dev.off()
```

E. Build the Topic Network

THE topic network is the one of most interest to us. To build it we create its adjancy matrix by multiplying the transpose of the document-topic matrix with itself.

```
# Create the topic network:
```

```
topic.network.matrix <- t(dt.matrix) %*% dt.matrix</pre>
topic.network <- graph.adjacency(topic.network.matmixerlap.network <- graph.adjacency(
  mode = "undirected")
```

Figure 4, which was created with the code below, shows the topic network, with topic nodes labelled by the three most probable terms in the corresponding topic distribution.

```
E(topic.network)$weight <-</pre>
  count.multiple(topic.network)
topic.network <- simplify(topic.network)</pre>
# Set vertex attributes
V(topic.network) $label <- topic.labels
V(topic.network)$label.color <- rgb(0,0,0,1)
V(topic.network)$label.cex <- .75</pre>
V(topic.network)$size <- 8
```

F. Build the Overlap Network

NOTHER interesting view of this data takes into account the percent overlap between topics, which gives rise to a directed network. To create this graph, we divid each row by the diagonal to get the adjacency matrix.

```
overlap.matrix <- topic.network.matrix /</pre>
  diag(topic.network.matrix)
  overlap.matrix, weighted=T)
```

We use the density plot show in Figure 5 to choose a reasonable cut-off value for removing some noise in the edges before plotting this network.

```
pdf("density.pdf")
plot(density(overlap.matrix), main=NA, xlab=NA)
dev.off()
overlap.matrix[overlap.matrix < 0.2] <- 0
overlap.network <- graph.adjacency(overlap.matrix,</pre>
  weighted=T)
overlap.network <- simplify(overlap.network,</pre>
  remove.multiple=FALSE, remove.loops=TRUE)
overlap.network$layout <- layout.kamada.kawai(</pre>
```

```
overlap.network)
V(overlap.network)$label <- topic.labels
tkplot(overlap.network)
overlap.network$layout <- tkplot.getcoords(1)</pre>
```

The final step to display this network in a way to make the important properties visable requires a manual set. We'll use the tkplot gui tool to help us layout nodes so that labels are clearly visible. Once we're done arranging nodes, the layout can be saved using tkplot.getcoords(1):

```
overlap.network$layout <- layout.kamada.kawai(
  overlap.network)
V(overlap.network)$label <- topic.labels
tkplot(overlap.network)
overlap.network$layout <- tkplot.getcoords(1)</pre>
```

Finally, we set a number of properties to improve the visualization:

```
V(overlap.network)$label.color <- rgb(0,0,.2,.6)
V(overlap.network)$label.cex <- .75
V(overlap.network)$size <- 6
#V(topic.network)$frame.color <- NA
V(overlap.network)$color <- rgb(0,1,0,.6)</pre>
```

```
# Set edge gamma according to edge weight
egam <- (E(overlap.network)$weight+.1)/max(
   E(overlap.network)$weight+.1)
E(overlap.network)$color <- rgb(.5,.5,0,egam)
E(overlap.network)$arrow.size <- .3
V(overlap.network)$label.cex <-
   degree(overlap.network)/(max(degree(
      overlap.network)/2))+ .3
pdf("overlap-network.pdf")
plot(overlap.network)
dev.off()</pre>
```

Figure 6 shows the results.

III. CONCLUSIONS

UR simple example suggests that topic networks may be useful in analyzing document collections. However, we have only scratched the surface here and much more work is required to confirm this hypothesis as well as to investigate properties of topic networks and applications to document collection summarization.

REFERENCES

- [1] From Wikipedia, the free encyclopedia
 Bipartite graph,
 http://en.wikipedia.org/wiki/Bipartite_graph
 [2] Topic Networks GitHub repository
 https://github.com/bobflagg/Topic-Networks
- [3] From Wikipedia, the free encyclopedia Latent Dirichlet allocation, http://en.wikipedia.org/wiki/Latent_Dirichlet_ allocation
- [4] Solomon Messing, Working with Bipartite/Affiliation Network Data in R, http://solomonmessing.wordpress.com/2012/09/30/ working-with-bipartiteaffiliation-network-data-in-r/
- [5] Best Speeches of Barack Obama through his 2009 Inauguration http://obamaspeeches.com/

Fig. 5
Density Plot

Fig. 6
Topic Overlap Network

- [6] R Core Team (2012), R: A language and environment for statistical computing., http://www.R-project.org
 [7] Jorge L. Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca
- Oneto, Human Activity Recognition Using Smartphones Dataset., Smartlab Non Linear Complex Systems Laboratory [8] R Core Team (2012), R Markdown, http://www.rstudio.com/
- ide/docs/authoring/using_markdown Accessed 2/12/2013
 [9] Trevor Hastie, Robert Tibshirani, Jerome Friedman The Ele-
- ments of Statistical Learning, Springer, 2011.