Shivaji University , Kolhapur

Question Bank For Mar 2022 (Summer) Examination

Subject Code: 79141 Subject Name: Computer Organization & Architecture

QUESTION NO	QUESTION TEXT	OPTION1	OPTION2	OPTION3	OPTION4	ANS
1	The second generation of computers were using	transistors	vacuum tubes	ICs	None of these	Α
2	The third generation of computers were using	transistors	vacuum tubes	ICs	None of these	С
3	C & C++ languages were invented in generation of computer.	second	third	fourth	fifth	С
4	ULSI technology was invented in generation of computer.	second	third	fourth	fifth	D
5	Most of the today's processors consists of	RISC	CISC	Both RISC & CISC	None of these	С
6	In RISC, complexity lies within	compiler	microprogram	assembler	None of these	Α
7	is not a type of instruction	One Address Instruction	Two Address Instruction	Three Address Instruction	Four Address Instruction	D
8	In a single bus structure, IO device is assigned multiple set of addresses.	TRUE	FALSE			В
9	In an IO interface, SOUT holds register.	serial	parallel	status	output	С
10	DMA transfers are performed by a control circuit associated with the IO device known as	reigisters	counters	DMA controller	ICs	С
11	UART is an example of port.	serial	parallel	both serial & parallel	None of these	А

12	In Serial port, bits are shifted out of the output shift register and sent out to the I/O device	two bits at a time	one bit at a time	all bits at once	None of these	В
13	Keyboards & printers are examples of port.	serial	parallel	both serial & parallel	None of these	В
14	Idle signal exist in port.	serial	parallel	both serial & parallel	None of these	В
15	1's complement of 0110 is	1111	1011	1001	1110	С
16	Octal equivalent of Hexadecimal number ABCD is	3775	7557	125715	121557	С
17	Floating point numbers allow	larger range of values	small range of values	both large & small range of values	None of these	А
18	In fixed point format, digits to the right of decimal point represents	integer	fraction	both integer & fraction	None of these	В
19	In signed binary numbers, 1 & 0 are used to denote plus and minus respectively	TRUE	FALSE			В
20	Floating point numbers can not be presented as binary.	TRUE	FALSE			В
21	has memory unit.	RISC	CISC	DISC	None of these	В
22	In an IO interface, SIN holds register	serial	parallel	status	output	С
23	In interface circuits, parallel port transfers data in the form of a number of bits normally	8 or 16	16 or 32	32 or 64	64 or 128	А
24	Serial port is used to connect the processor to IO device that require transmission at a time	1 bit	10 bits	100 bits	1000 bits	А
25	is not example of standard IO device.	HARD DISC	PCI	SCSI	USB	А

26	Carry Look Ahead Adder is an example of fast adder.	TRUE	FALSE			А
27	is an exmple of fast multiplication.	Carry-save subtraction of summands	Carry-save addition of summands	both of these	none of these	В
28	IEEE 754 floating point format contains bit mantissa.	21	22	23	24	С
29	Unit that executes program instructions that communicate with other subsystems within the computer is known as	processor	CPU	RAM	program counter	В
30	CPU keeps track of the address of memory location using	RAM	program counter	CPU	disc	В
31	MFC stands for	Memory First Computer	Memory Function Computer	Memory Function Completed	None of these	C
32	In microprogammed control unit, control signals are generated by	program & hardware	hardware	program only	None of these	С
33	Hardwired control unit is slower than microprogrammed control unit.	TRUE	FALSE			В
34	Instruction fetched by the fetch unit is deposited in	intermediate storage buffer	main memory	RAM	external device	А
35	Cache memory solves memory access problem.	TRUE	FALSE			А

SUBJECT: COMPUTER ORGANIZATION & ARCHITECTURE SUBJECT CODE: 79141

QUESTION BANK

Unit 1: Computer Evolution & Performance

- 1. Explain Babbage's Difference Engine with example.
- 2. Explain Babbage's Analytical Engine with neat diagram.
- 3. Differentiate between mechanical computer & electronic computer.
- 4. Explain First generation of computers.
- 5. Draw & explain structure of an IAS Computer.
- 6. Explain following types of instructions:
 - a. Data Transfer
 - b. Data Processing
 - c. Program Control
- 7. Explain Second generation of computers.
- 8. Explain Third generation of computers.
- 9. Explain fourth generation of computers.
- 10. Explain fifth generation of computers.
- 11. Explain structure of a pipelined processor.
- 12. Explain following types of instructions:
 - a. Zero Address Instruction
 - b. One Address Instruction
 - c. Two Address Instruction
 - d. Three Address Instruction
- 13. Differentiate between RISC & CISC.

Unit 2: Input & Output Organization

- 1. What is role of DATAIN & DATAOUT Instruction?
- 2. Draw & Explain IO interface for input device.
- 3. Explain basic idea of use of registers in an IO device.
- 4. What is DMA? Explain role of it.
- 5. Explain the role of DMA controller.
- 6. Differentiate between synchronous bus & asynchronous bus.
- 7. Explain interface circuits.
- 8. Explain working of parallel port in interface circuits.
- 9. Explain working of serial port in interface circuits.

- 10. What are different standard IO Interfaces?
- 11. What is SCSI? Explain in detail.

Unit 3: Arithmetic

- 1. What is the difference between signed & unsigned binary numbers? Give example.
- 2. Represent binary, signed integer, 1's complement & 2's complement forms of numbers ranging from +7 to -7.
- 3. How addition & subtraction of binary numbers is done using 2's complement?
- 4. Draw & explain an n-bit ripple carry adder.
- 5. Draw & explain carry Lookahead adder.
- 6. Explain algorithm for unsigned binary multiplication.
- 7. Explain Booth's algorithm for unsigned binary multiplication.
- 8. Explain technique of bit pair recording of multipliers for fast multiplication.
- 9. Explain technique of carry save addition of summands for fast multiplication.
- 10. Explain restoring division algorithm with example.
- 11. Explain non-restoring division algorithm with example.
- 12. What are floating point numbers? Explain IEEE 754 floating point number format.
- 13. What is normalization & biasing?
- 14. Convert following decimals to IEEE 754 Floating Point Format.
 - 1. 0.15625
 - 2. -2
 - 3. 0
 - 4. -0
 - 5. 3.1415927410
 - 6. -99.999
 - 7. 10.112
 - 8. 111.111
 - 9. -543.214

Unit 4: The Processing Unit

- 1. What are fundamental concepts in processing unit?
- 2. How execution of a complete instruction is performed?
- 3. What is role of MFCS?
- 4. Explain control sequence for execution of the instruction add (R3), R1.
- 5. What is single bus organization?
- 6. What is multiple bus organization?
- 7. What is Hardwired Control?

- 8. What is Microprogrammed Control?
- 9. Differentiate between Hardwired Control & Microprogrammed Control.
- 10. Explain control unit organization in Hardwired Control.
- 11. What is role of CW in Microprogrammed Control?
- 12. Explain significance if RISC & CISC in Hardwired Control & Microprogrammed Control.

Unit 5: Pipelining

- 1. What are basic concepts in pipelining?
- 2. Explain basic idea of instruction pipelining.
- 3. Explain 4 steps of instruction execution in pipelining.
- 4. What is role of a cache memory?
- 5. Draw & explain a 4-stage pipeline.
- 6. What is pipeline stall in case of cache miss?
- 7. Explain how performance of a pipeline is measured.
- 8. Explain basic structure of a linear pipeline processor.
- 9. What are data hazards in pipelining?
- 10. What is data dependency?
- 11. Explain how pipeline can be stalled by data dependency?
- 12. What is operand forwarding in data hazards?
- 13. Explain interruption of a pipeline caused by data dependency.
- 14. Explain instruction execution using operand forwarding.
- 15. How data hazards are handled in software?
- 16. What are side effects of data hazards in software?
- 17. What are instruction hazards?
- 18. Differentiate between conditional branch & unconditional branch.
- 19. What is branch prediction?

Unit 6: Computer Memory System

- 1. What are basic concepts in Computer Memory System?
- 2. What is memory access time & memory cycle time?
- 3. What is Semiconductor RAM?
- 4. Explain organization of bit cells in a memory chip.
- 5. What is role of CS in Semiconductor RAM?
- 6. Differentiate between Volatile memory & Non volatile memory.
- 7. Differentiate between Static RAM & Dynamic RAM.
- 8. Differentiate between ROM, EPROM & EEPROM.
- 9. What is a cache memory? Explain its use.

- 10. What is locality of reference?
- 11. What is mapping function?
- 12. Explain direct mapping.
- 13. Explain associative mapping.
- 14. Explain set associative mapping.
- 15. Explain following page replacement algorithm: LRU with example.