DES - History

- The Data Encryption Standard (DES) was developed in the 1970s by the National Bureau of Standards (NBS) with the help of the National Security Agency (NSA).
- Its purpose is to provide a standard method for protecting sensitive commercial and unclassified data.
- IBM created the first draft of the algorithm, calling it LUCIFER
- DES officially became a federal standard in November of 1976.

 DES uses the two basic properties of ciphers confusion and diffusion.

Internal Structure of Each Iteration

Permuted Choice 1 — PC-1

```
57 49 41 33 25 17 9 1 58 50 42 34 26 18
10 2 59 51 43 35 27 19 11 3 60 52 44 36
63 55 47 39 31 23 15 7 62 54 46 38 30 22
14 6 61 53 45 37 29 21 13 5 28 20 12 4
```


AES(Advanced Encryption standard)

General design of AES encryption cipher

Block-to-state and state-to-block transformation

Continue

Changing plaintext to state

Text	A	Е	S	U	S	Е	S	A	M	A	T	R	I	X	Z	Z
Hexadecimal	00	04	12	14	12	04	12	00	0C	00	13	11	08	23	19	19
							Гоо	12	0C	08						
							04					_				
							12		13	19	Stat	e				
							<u>_</u> 14	00	11	19						

Structure of each round at the encryption site

SubBytes transformation

Table 7.1 SubBytes transformation table

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0	63	7C	77	7в	F2	6B	6F	С5	30	01	67	2В	FE	D7	AB	76
1	CA	82	С9	7D	FA	59	47	FO	AD	D4	A2	AF	9C	A4	72	С0
2	в7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3	04	С7	23	С3	18	96	05	9A	07	12	80	E2	EB	27	В2	75
4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
5	53	D1	00	ED	20	FC	В1	5B	6A	СВ	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8

Table 7.1 SubBytes transformation table (continued)

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
7	51	А3	40	8F	92	9D	38	F5	ВС	В6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	С4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	0В	DB
A	ΕO	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	СВ	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
C	ВА	78	25	2E	1C	A6	В4	С6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3 E	В5	66	48	03	F6	ΟE	61	35	57	В9	86	С1	1D	9E
E	E1	F8	98	11	69	D9	8E	94	9В	1E	87	E9	CE	55	28	DF
F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	В0	54	ВВ	16

InvSubBytes

Table 7.2 InvSubBytes transformation table

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0	52	09	6A	D5	30	36	A5	38	BF	40	А3	9E	81	F3	D7	FB
1	7C	E3	39	82	9В	2F	FF	87	34	8E	43	44	C4	DE	E9	СВ
2	54	7в	94	32	A6	C2	23	3D	EE	4C	95	0В	42	FA	С3	4E
3	8 0	2E	A1	66	28	D9	24	В2	76	5B	A2	49	6D	8B	D1	25
4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	В6	92
5	6C	70	48	50	FD	ED	В9	DA	5E	15	46	57	Α7	8D	9D	84
6	90	D8	AB	00	8C	ВС	D3	0A	F7	E4	58	05	В8	В3	45	06
7	D0	2C	1E	8F	CA	3F	OF	02	C1	AF	BD	03	01	13	8A	6В

InvSubBytes (Continued)

8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	FO	В4	E6	73
9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
A	47	F1	1A	71	1D	29	C5	89	6F	в7	62	ΟE	AA	18	BE	1B
В	FC	56	3E	4B	С6	D2	79	20	9A	DB	С0	FE	78	CD	5A	F4
C	1F	DD	A8	33	88	07	С7	31	В1	12	10	59	27	80	EC	5F
D	60	51	7F	A9	19	В5	4A	0D	2D	E5	7A	9F	93	C9	9	EF
E	A0	ΕO	3B	4D	ΑE	2A	F5	В0	С8	EB	ВВ	3C	83	53	99	61
F	17	2B	04	7E	ВА	77	D6	26	E1	69	14	63	55	21	0C	7D

Continue Example 7.2

Figure 7.7 shows how a state is transformed using the SubBytes transformation. The figure also shows that the InvSubBytes transformation creates the original one. Note that if the two bytes have the same values, their transformation is also the same.

Pe

Permutation

Another transformation found in a round is shifting, which permutes the bytes.

ShiftRows

In the encryption, the transformation is called ShiftRows.

Figure 7.9 ShiftRows transformation

InvShiftRows

In the decryption, the transformation is called InvShiftRows and the shifting is to the right.

Figure shows how a state is transformed using ShiftRows transformation. The figure also shows that InvShiftRows transformation creates the original state.

ShiftRows transformation in Example 7.4

We need an interbyte transformation that changes the bits inside a byte, based on the bits inside the neighboring bytes. We need to mix bytes to provide diffusion at the bit level.

Figure 7.11 Mixing bytes using matrix multiplication

$$a\mathbf{x} + b\mathbf{y} + c\mathbf{z} + d\mathbf{t}$$

$$e\mathbf{x} + f\mathbf{y} + g\mathbf{z} + h\mathbf{t}$$

$$i\mathbf{x} + f\mathbf{y} + k\mathbf{z} + h\mathbf{t}$$

$$m\mathbf{x} + n\mathbf{y} + o\mathbf{z} + p\mathbf{t}$$

$$= \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix} \times \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{t} \end{bmatrix}$$
New matrix
$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{t} \end{bmatrix}$$
Old matrix

Constant matrices used by MixColumns and InvMixColumns

MixColumns

The MixColumns transformation operates at the column level; it transforms each column of the state to a new column.

MixColumns transformation

Figure 7.14 shows how a state is transformed using the MixColumns transformation. The figure also shows that the InvMixColumns transformation creates the original one.

Figure 7.14 The MixColumns transformation in Example 7.5

AddRoundKey transformation

KEY EXPANSION

To create round keys for each round, AES uses a key-expansion process. If the number of rounds is N_r , the key-expansion routine creates $N_r + 1$ 128-bit round keys from one single 128-bit cipher key.

Topics discussed in this section:

- 7.3.1 Key Expansion in AES-128
- 7.3.2 Key Expansion in AES-192 and AES-256
- 7.3.3 Key-Expansion Analysis

Continued

 Table 7.3
 Words for each round

Round		,	Words	
Pre-round	\mathbf{w}_0	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3
1	\mathbf{w}_4	\mathbf{w}_5	\mathbf{w}_6	\mathbf{w}_7
2	\mathbf{w}_8	\mathbf{w}_9	\mathbf{w}_{10}	\mathbf{w}_{11}
N_r	\mathbf{w}_{4N_r}	\mathbf{w}_{4N_r+1}	\mathbf{w}_{4N_r+2}	\mathbf{w}_{4N_r+3}

Figure 7.16 Key expansion in AES

 Table 7.4
 RCon constants

Round	Constant (RCon)	Round	Constant (RCon)
1	(01 00 00 00) ₁₆	6	(<u>20</u> 00 00 00) ₁₆
2	(<u>02</u> 00 00 00) ₁₆	7	(<u>40</u> 00 00 00) ₁₆
3	(<u>04</u> 00 00 00) ₁₆	8	(<u>80</u> 00 00 00) ₁₆
4	(<u>08</u> 00 00 00) ₁₆	9	(<u>1B</u> 00 00 00) ₁₆
5	(<u>10</u> 00 00 00) ₁₆	10	(<u>36</u> 00 00 00) ₁₆

Algorithm 7.5 *Pseudocode for key expansion in AES-128*

```
KeyExpansion ([key<sub>0</sub> to key<sub>15</sub>], [\mathbf{w_0} to \mathbf{w_{43}}])
        for (i = 0 \text{ to } 3)
              \mathbf{w}_i \leftarrow \text{key}_{4i} + \text{key}_{4i+1} + \text{key}_{4i+2} + \text{key}_{4i+3}
        for (i = 4 \text{ to } 43)
             if (i \mod 4 \neq 0) \mathbf{w}_i \leftarrow \mathbf{w}_{i-1} + \mathbf{w}_{i-4}
             else
                   \mathbf{t} \leftarrow \text{SubWord } (\text{RotWord } (\mathbf{w}_{i-1})) \oplus \text{RCon}_{i/4}
                                                                                                                           //t is a temporary word
                   \mathbf{w}_i \leftarrow \mathbf{t} + \mathbf{w}_{i-4}
```


Table 7.5 shows how the keys for each round are calculated assuming that the 128-bit cipher key agreed upon by Alice and Bob is (24 75 A2 B3 34 75 56 88 31 E2 12 00 13 AA 54 87)₁₆.

 Table 7.5
 Key expansion example

Round	Values of t 's	First word in the round	Second word in the round	Third word in the round	Fourth word in the round
_		$w_{00} = 2475 \text{A}2 \text{B}3$	w_{01} = 34755688	$w_{02} = 31E21200$	$w_{03} = 13AA5487$
1	AD20177D	w_{04} = 8955B5CE	$w_{05} = BD20E346$	$w_{06} = 8CC2F146$	$w_{07} = 9$ F68A5C1
2	470678DB	$w_{08} = \text{CE53CD15}$	$w_{09} = 73732E53$	$w_{10} = FFB1DF15$	$w_{11} = 60D97AD4$
3	31DA48D0	$w_{12} = FF8985C5$	$w_{13} = 8$ CFAAB96	$w_{14} = 734B7483$	$w_{15} = 2475$ A2B3
4	47AB5B7D	w_{16} = B822deb8	$w_{17} = 34D8752E$	$w_{18} = 479301$ AD	$w_{19} = 54010$ FFA
5	6C762D20	$w_{20} = D454F398$	$w_{21} = E08C86B6$	$w_{22} = A71F871B$	$w_{23} = F31E88E1$
6	52C4F80D	$w_{24} = 86900B95$	$w_{25} = 661$ C8D23	$w_{26} = C1030A38$	$w_{27} = 321D82D9$
7	E4133523	$w_{28} = 62833 \text{EB}6$	$w_{29} = 049$ FB395	$w_{30} = C59CB9AD$	$w_{31} = F7813B74$
8	8CE29268	$w_{32} = \text{EE61ACDE}$	$w_{33} = \text{EAFE1F4B}$	$w_{34} = 2F62A6E6$	$w_{35} = D8E39D92$
9	0A5E4F61	$w_{36} = E43FE3BF$	$w_{37} = 0$ EC1FCF4	$w_{38} = 21$ A35A12	$w_{39} = F940C780$
10	3FC6CD99	w_{40} = DBF92E26	$w_{41} = D538D2D2$	$w_{42} = F49B88C0$	$w_{43} = 0$ DDB4F40

7