

"МАТЕМАТИКА БЕЗ ГРАНИЦИ" - 2014 г. ФИНАЛ

21 юни 2014 г., гр. Несебър ШЕСТИ КЛАС

Задача 1. Ако А е д	вуцифрено число и $\frac{5}{14}$	$<\frac{A}{21}<\frac{1}{2}$, тогава A е:	
A) 13	Б) 12	B) 11	Γ) 10
Задача 2. Нека а и в	о са цели числа, такива	$_{\text{qe}} a \le 1 _{\text{M}} b < 2.$	
Тогава броят на въз	можните стойности на	израза 20.a+14.b e:	
A) 9	Б) 10	B) 11	Γ) 12
Задача 3. Коя е най	й-малката стойност на	отношението на едно	двуцифрено число към
сбора от цифрите м	y?		
A) 1	Б) 1, 9	B) 2	Γ) 2,9
Задача 4. На колко	нули завършва числото	о, равно на 2014 ²⁰¹⁴ .20	15 ²⁰¹⁵ ?
A) 2014	Б) 2015	B) 1007	Γ) 1008
Задача 5. Дадени	са п числа $a_1, a_2,,$	a_n , всяко от които	е или 1, или (-1), и
$a_1.a_2 + a_2.a_3 + + a_n$	a_{n-1} . $a_n + a_n$. $a_1 = 0$. Число	ото п НЕ може да бъде	:
A) 2014	Б) 2 012	B) 2 008	Γ) 4 028
	лограма краставици съ краставици намаляла д		
А) намалява с 2 кг	Б) намалява 2 пъти	В) намалява с 4 кг	Г) намалява 4 пъти
Задача 7. Две деца	а имат по няколко ябъ	лки. Ако едното дете	е даде на другото една
ябълка, те ще имат	по равен брой ябълки. А	Ако второто дете даде	на първото две ябълки
то ще има четири п	ьти по-малко ябълки. К	олко ябълки имат обц	цо двете деца?
A) 14	Б) 12	B) 10	Γ) 8

Задача 8. От три метални кубчета с ръбове 3 см, 4 см и 5 см след разтопяване са отлели ново кубче. Ръбът на новото кубче е:

A) 6 cm

Б) 7 см

В) 5,5 см

Г) 6,5 см

Задача 9. Том и Джери имали общо 18 еднакви парчета сирене. Том изял третинката от своите парчета сирене и му останали с три парчета по-малко, отколкото имал Джери? Колко парчета сирене има Джери?

A) 4

Б) 5

B) 9

Γ) 10

Задача 10. Пръчка с дължина 156 см е разрязана на няколко пръчки, всяка с дължина 24 см, и няколко пръчки, всяка с дължина 30 см. Колко е броят на получените пръчки?

A) 6

Б) 8

B) 10

Γ) 12

Задача 11. Ако $\pi < x < 2\pi$, намерете стойността на израза

$$|x-2|+|x-3|+|x-7|+|x-8|$$
.

Задача 12. Ако двуцифреното число x има за цифра на единиците 5, намерете цифрата на десетиците на числото x^2 .

Задача 13. На един кораб има 31 моряци, чиято средна възраст е 31 години. Ако се прибавят и годините на капитана, средната възраст ще се промени на 32. На колко години е капитанът?

Задача 14. Правоъгълник е разделен чрез две пресичащи се прави, успоредни на страните му, на 4 по-малки правоъгълника, три от които имат лица 3 кв. см, 4 кв. см и 5 кв. см (виж чертежа). Да се намери лицето на четвъртия правоъгълник.

x	$3 cm^2$
$5 cm^2$	$4 cm^2$

Задача 15. Ако n и k са естествени числа, а $(-1)^{n+1}+n$ и $(-1)^k+2k$ са реципрочни, тогава n.k е

Задача 16. В ребуса

$$AAAA - BBB + CC - D = 3456$$

на еднаквите букви съответстват еднакви цифри, а на различните букви – различни цифри. Колко е A+B+C+D?

Задача 17. Дребосъчето и Карлсон си купили бонбони и Карлсон взел 80% от бонбоните. Карлсон набързо изял 16 от своите бонбони и се оказало, че бонбоните на Дребосъчето са вече 25% от всички останали бонбони. Колко бонбона си купили Дребосъчето и Карлсон?

Задача 18. Имам 13 квадратни картончета, на всяко от които е записано по едно число. На 4 картончета е записано числото 1, на 5 картончета е записано числото 3, на 2 картончета е записано числото 5 и на две картончета е записано числото 7. Дванадесет от картончетата са подредени така, че образуват показаната таблица. Ако сборът от числата във всеки ред на таблицата е равен на A, а сборът от числата във всеки стълб на таблицата е равен на B, кое число е записано на неизползваното картонче?

Задача 19. Спускам се с ескалатор. Ако извървя 10 стъпала надолу, ще сляза за 1 минута. Ако извървя 16 стъпала надолу, ще сляза за 48 секунди. За колко секунди ще сляза с ескалатора, ако стоя на едно и също стъпало?

Задача 20. В квадрата *АВСD* е рзположен квадрат със страна 1 см, както е показано на чертежа. Сборът от обиколките на всички правоъгълници на чертежа, които НЕ съдържат оцветения квадрат, е 392 см. Колко сантиметра е страната на квадрата?

