Relatório 2º projecto ASA 2020/2021

Grupo: al030

Aluno(s): Mara Alves (95625) e Margarida Rodrigues (95627)

Descrição do Problema e da Solução

Este problema consiste em encontrar a atribuição de processos de um programa a processadores tal que o custo total de execução do programa seja mínimo, sendo que para além do custo de executar um certo processo num dos processadores, temos também de ter em conta o custo de comunicação entre processos executados em processadores diferentes.

Interpretámos este problema como um problema de fluxo máximo, e representámos o grafo como uma matriz de adjacências. Definimos como *source* da rede de fluxo um vértice X, que representa o processador X; e como *sink* o vértice Y, ou seja, o processador Y. Os restantes vértices são os *n* processos. Na rede de fluxo há arestas de X para cada processo, sendo a capacidade o custo de executar esse processo no processador X; e do processo para Y, com capacidade correspondente ao custo de executar o processo em Y. Por fim, existem também arestas entre processos, com capacidade igual ao custo de comunicação entre os dois processos. Se há aresta do processo i para o processo j com custo c, então também há uma aresta de j para i com o mesmo custo na nossa representação. Atualizamos as capacidades das arestas após calcularmos o valor do fluxo de cada caminho de aumento, subtraíndo ao valor que está na matriz o valor do fluxo e somando esse mesmo valor à capacidade da aresta em sentido inverso.

Fontes:

- https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
- https://www.sanfoundry.com/cpp-program-implement-edmonds-karp-algorithm/

Análise Teórica

 Leitura dos dados de entrada, e simultânea construção da matriz representativa do grafo:

Valor de *n* e *k*: leitura de apenas uma linha.

Capacidades de X para processos e de processos para Y: leitura de n linhas. Capacidades entre processos: leitura de k linhas.

Logo, O(n+k)

Aplicação do algoritmo de Edmonds-Karp para encontrar valor do fluxo máximo:
Ford-Fulkerson, com o caminho de aumento dado pela BFS.

A complexidade da BFS é $\mathrm{O}(V^2)$, e como V = n+2, $\mathrm{O}(n^2)$, porque o ciclo while executa no máximo V vezes e o ciclo for interior executa também V vezes em cada iteração, por termos representado o grafo como uma matriz.

O algoritmo de Edmonds Karp pode encontrar no máximo EV caminhos de aumento.

Logo, $O(EV^3)$, o que é $O(n^4)$ pois E = 2(k+n)

Apresentação do valor do fluxo máximo. Logo, O(1)

Complexidade global da solução: $O(n^4)$

Relatório 2º projecto ASA 2020/2021

Grupo: al030

Aluno(s): Mara Alves (95625) e Margarida Rodrigues (95627)

Avaliação Experimental dos Resultados

Corremos o nosso programa com o comando time, e como input utilizámos grafos gerados pelo gerador de instâncias fornecido. Testámo-lo com vários n diferentes e obtivemos os seguintes resultados:

n	Tempo (s)
1000	0,114
2000	0,830
3000	3,468
4000	7,499
5000	16,243
6000	33,347
7000	56,051
8000	130,345
9000	233,265

Sabendo que a complexidade desta solução é $\mathrm{O}(n^4)$, o comportamento assintótico predominante deste algoritmo em função ao tamanho do conjunto de dados a ser processado é polinomial de grau 4. Sendo assim, o gráfico previsto para esta função, nos eixos positivos, é crescente. Analisando o gráfico gerado com os nossos valores obtidos...

Observamos que o gráfico está de acordo com a nossa previsão, pois comporta-se como uma função polinomial de grau 4.