Stochastic Simulation

- Idea: probabilities ↔ samples
- Get probabilities from samples:

X	count		Χ	probability
<i>x</i> ₁	n_1		<i>X</i> 1	n_1/m
:	:	\leftrightarrow	:	:
x_k	n_k		:	: n./m
total	m		X _k	n_k/m

 If we could sample from a variable's (posterior) probability, we could estimate its (posterior) probability.

Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.
- Generate the cumulative probability distribution: $f(x) = P(X \le x)$.
- Select a value y uniformly in the range [0, 1].
- Select the x such that f(x) = y.

Cumulative Distribution

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$P(|s-p|>\epsilon)\leq 2e^{-2n\epsilon^2}.$$

Guarantees a probably approximately correct estimate of probability.

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$P(|s-p|>\epsilon)\leq 2e^{-2n\epsilon^2}.$$

Guarantees a probably approximately correct estimate of probability.

If you are willing to have an error greater than ϵ in δ of the cases, solve $2e^{-2n\epsilon^2}<\delta$ for n, which gives

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$P(|s-p|>\epsilon)\leq 2e^{-2n\epsilon^2}.$$

Guarantees a probably approximately correct estimate of probability.

If you are willing to have an error greater than ϵ in δ of the cases, solve $2e^{-2n\epsilon^2}<\delta$ for n, which gives

$$n>\frac{-\ln\frac{\delta}{2}}{2\epsilon^2}.$$

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$P(|s-p|>\epsilon)\leq 2e^{-2n\epsilon^2}.$$

Guarantees a probably approximately correct estimate of probability.

If you are willing to have an error greater than ϵ in δ of the cases, solve $2e^{-2n\epsilon^2}<\delta$ for n, which gives

$$n > \frac{-\ln\frac{\delta}{2}}{2\epsilon^2}.$$

ϵ	δ	n
0.1	0.05	185
0.01	0.05	18,445
0.1	0.01	265

Forward sampling in a belief network

- Sample the variables one at a time; sample parents of X before sampling X.
- Given values for the parents of X, sample from the probability of X given its parents.

Rejection Sampling

- To estimate a posterior probability given evidence $Y_1 = v_1 \wedge ... \wedge Y_i = v_i$:
- Reject any sample that assigns Y_i to a value other than v_i .
- The non-rejected samples are distributed according to the posterior probability:

$$P(lpha \mid ext{evidence}) pprox rac{\sum_{ ext{sample}} 1}{\sum_{ ext{sample}} 1}$$

where we consider only samples consistent with evidence.

	Ta	Fi	ΑI	Sm	Le	Re	
s_1	false	true	false	true	false	false	

	Ta	Fi	ΑI	Sm	Le	Re	
<i>s</i> ₁	false	true	false	true	false	false	X
<i>s</i> ₂	false	true	true	true	true	true	

	Ta	Fi	Αl	Sm	Le	Re	
s_1	false	true	false	true	false	false	×
<i>s</i> ₂	false	true	true	true	true	true	~
s 3	true	false	true	false			

	Ta	Fi	Αl	Sm	Le	Re	
s_1	false	true	false	true	false	false	×
<i>s</i> ₂	false	true	true	true	true	true	~
s 3	true	false	true	false			×
<i>S</i> ₄	true	true	true	true	true	true	~
 s ₁₀₀₀	false	false	false	false	_	_	×

$$P(sm) = 0.02$$

 $P(re \mid sm) = 0.32$
How many samples are rejected?
How many samples are used?

Importance Sampling

- Samples have weights: a real number associated with each sample that takes the evidence into account.
- Probability of a proposition is weighted average of samples:

$$P(\alpha \mid evidence) \approx \frac{\sum_{sample \models \alpha} weight(sample)}{\sum_{sample} weight(sample)}$$

 Mix exact inference with sampling: don't sample all of the variables, but weight each sample according to P(evidence | sample).

Importance Sampling (Likelihood Weighting)

```
procedure likelihood_weighting(Bn, e, Q, n):
   ans[1:k] := 0 where k is size of dom(Q)
   repeat n times:
        weight := 1
        for each variable X_i in order:
             if X_i = o_i is observed
                   weight := weight \times P(X_i = o_i \mid parents(X_i))
             else assign X_i a random sample of P(X_i \mid parents(X_i))
        if Q has value v:
             ans[v] := ans[v] + weight
   return ans/\sum_{v} ans[v]
```

Importance Sampling Example: $P(ta \mid sm, re)$

	Ta	Fi	Al	Le	Weight
s_1	true	false	true	false	
<i>s</i> ₂	false	true	false	false	
<i>s</i> ₃	false	true	true	true	
<i>S</i> ₄	true	true	true	true	
 s ₁₀₀₀	false	false	true	true	
P(sm P(re	fi) = $ \neg fi) = $ fi) = fi) = fi) =	= 0.01 0.75			

Importance Sampling Example: $P(ta \mid sm, re)$

	Ta	Fi	ΑI	Le	Weight			
s_1	true	false	true	false	0.01×0.01			
<i>s</i> ₂	false	true	false	false	0.9×0.01			
s 3	false	true	true	true	0.9×0.75			
<i>S</i> ₄	true	true	true	true	0.9×0.75			
 s ₁₀₀₀	false	false	true	true	0.01×0.75			
P(sm	$P(sm \mid fi) = 0.9$ $P(sm \mid \neg fi) = 0.01$ $P(ro \mid lo) = 0.75$							

$$P(sm | fi) = 0.9$$

 $P(sm | \neg fi) = 0.01$
 $P(re | le) = 0.75$
 $P(re | \neg le) = 0.01$

Importance Sampling Example: $P(le \mid sm, ta, \neg re)$

$$P(ta) = 0.02$$

 $P(fi) = 0.01$
 $P(al | fi \land ta) = 0.5$
 $P(al | fi \land \neg ta) = 0.99$
 $P(al | \neg fi \land ta) = 0.85$
 $P(al | \neg fi \land \neg ta) = 0.0001$
 $P(sm | fi) = 0.9$
 $P(sm | \neg fi) = 0.01$
 $P(le | al) = 0.88$
 $P(le | \neg al) = 0.001$
 $P(re | le) = 0.75$
 $P(re | \neg le) = 0.01$

Expected value of f with respect to distribution P:

$$\mathcal{E}_P(f) = \sum_w f(w) * P(w)$$

Expected value of f with respect to distribution P:

$$\mathcal{E}_{P}(f) = \sum_{w} f(w) * P(w)$$

$$\approx \frac{1}{n} \sum_{s} f(s)$$

s is sampled with probability P. There are n samples.

Expected value of *f* with respect to distribution *P*:

$$\mathcal{E}_{P}(f) = \sum_{w} f(w) * P(w)$$

$$\approx \frac{1}{n} \sum_{s} f(s)$$

s is sampled with probability P. There are n samples.

$$\mathcal{E}_P(f) = \sum_{w} f(w) * P(w)/Q(w) * Q(w)$$

Expected value of *f* with respect to distribution *P*:

$$\mathcal{E}_{P}(f) = \sum_{w} f(w) * P(w)$$

$$\approx \frac{1}{n} \sum_{s} f(s)$$

s is sampled with probability P. There are n samples.

$$\mathcal{E}_{P}(f) = \sum_{w} f(w) * P(w)/Q(w) * Q(w)$$

$$\approx \frac{1}{n} \sum_{s} f(s) * P(s)/Q(s)$$

s is selected according the distribution Q.

The distribution ${\it Q}$ is called a proposal distribution.

$$P(c) > 0$$
 then $Q(c) > 0$.

Particle Filtering

```
Importance sampling can be seen as:

for each particle:
for each variable:
sample / absorb evidence / update query
where particle is one of the samples.
```

Particle Filtering

```
Importance sampling can be seen as:
   for each particle:
        for each variable:
            sample / absorb evidence / update query
where particle is one of the samples.
Instead we could do:
   for each variable:
        for each particle:
            sample / absorb evidence / update query
Why?
```

Particle Filtering

```
Importance sampling can be seen as:
   for each particle:
        for each variable.
            sample / absorb evidence / update query
where particle is one of the samples.
Instead we could do:
   for each variable.
        for each particle:
            sample / absorb evidence / update query
Why?
```

- We can have a new operation of resampling
- It works with infinitely many variables (e.g., HMM)

Particle Filtering for HMMs

- Start with random chosen particles (say 1000)
- Each particle represents a history.
- Initially, sample states in proportion to their probability.
- Repeat:
 - ► Absorb evidence: weight each particle by the probability of the evidence given the state of the particle.
 - Resample: select each particle at random, in proportion to the weight of the particle.
 - Some particles may be duplicated, some may be removed. All new particles have same weight.
 - ► Transition: sample the next state for each particle according to the transition probabilities.

To answer a query about the current state, use the set of particles as data.

- Create (ergodic and aperiodic) Markov chain with P as equilibrium distribution.
 - Let $T(S_{i+1} \mid S_i)$ be the transition probability.
- Given state s, sample state s' from $T(S \mid s)$

- Create (ergodic and aperiodic) Markov chain with P as equilibrium distribution.
- Let $T(S_{i+1} \mid S_i)$ be the transition probability.
- Given state s, sample state s' from $T(S \mid s)$
- After a while, the states sampled will be distributed according to P.

- Create (ergodic and aperiodic) Markov chain with P as equilibrium distribution. Let $T(S_{i+1} \mid S_i)$ be the transition probability.
- Given state s, sample state s' from $T(S \mid s)$
- After a while, the states sampled will be distributed according to P.
- Ignore the first samples "burn-in"
 use the remaining samples.
- Samples are not independent of each other "autocorrelation". Sometimes use subset (e.g., 1/1000) of them "thinning"

- Create (ergodic and aperiodic) Markov chain with P as equilibrium distribution. Let $T(S_{i+1} \mid S_i)$ be the transition probability.
- Given state s, sample state s' from $T(S \mid s)$
- After a while, the states sampled will be distributed according to P.
- Ignore the first samples "burn-in"
 use the remaining samples.
- Samples are not independent of each other "autocorrelation". Sometimes use subset (e.g., 1/1000) of them "thinning"
- Gibbs sampler: sample each non-observed variable from the distribution of the variable given the current (or observed) value of the variables in its Markov blanket.

Ta Fi Al Le s_1 true false false true Select Le. Sample from $P(Le \mid \neg al \land re)$ s_2 true false false false

Ta Fi Al Le s_1 true false false true Select Le. Sample from $P(Le \mid \neg al \land re)$ s_2 true false false false Select Fi.

Ta Fi Al Le s_1 true false false true

Select Le. Sample from $P(Le \mid \neg al \land re)$ s_2 true false false false

Select Fi. Sample from $P(Fi \mid ta \land \neg al \land sm)$ s_3 true true false false

Ta Fi Al Le s_1 true false false true Select Le. Sample from $P(Le \mid \neg al \land re)$ s_2 true false false false Select Fi. Sample from $P(Fi \mid ta \land \neg al \land sm)$ s_3 true true false false Select Al.

Ta Fi Al Le s_1 true false false true

Select Le. Sample from $P(Le \mid \neg al \land re)$ s_2 true false false false

Select Fi. Sample from $P(Fi \mid ta \land \neg al \land sm)$ s_3 true true false false

Select Al. Sample from $P(Al \mid ta \land fi \land \neg le)$

	Ta	Fi	ΑI	Le
s_1	true	false	false	true
Sele	ct <i>Le</i> .	Sample	from F	$P(Le \mid \neg al \land re)$
<i>s</i> ₂	true	false	false	false
Sele	ct <i>Fi</i> . :	Sample	from P	$P(Fi \mid ta \land \neg al \land sm)$
<i>s</i> ₃	true	true	false	false
Sele	ct <i>AI</i> .	Sample	from P	$P(AI \mid ta \land fi \land \neg le)$
<i>S</i> ₄	true	true	true	false

	Ta	Fi	ΑI	Le
<i>s</i> ₁	true	false	false	true
Sele	ct <i>Le</i> .	Sample	from F	$P(Le \mid \neg al \land re)$
<i>s</i> ₂	true	false	false	false
Sele	ct Fi.	Sample	from P	$(Fi \mid ta \land \neg al \land sm)$
<i>s</i> ₃	true	true	false	false
Sele	ct AI.	Sample	from P	$P(AI \mid ta \land fi \land \neg le)$
<i>S</i> ₄	true	true	true	false
Sele	ct <i>Le</i> .			

Ta Fi Al Le true false false true **S**1 Select Le. Sample from $P(Le \mid \neg al \land re)$ true false false false Select Fi. Sample from $P(Fi \mid ta \land \neg al \land sm)$ true false false true Select A1. Sample from $P(AI \mid ta \land fi \land \neg le)$ true true true false Select Le. Sample from $P(Le \mid al \land re)$

	Ta	Fi	ΑI	Le
<i>s</i> ₁	true	false	false	true
Sele	ct Le.	Sample	from F	$P(Le \mid \neg al \land re)$
<i>s</i> ₂	true	false	false	false
Sele	ct Fi. S	Sample	from P	$P(Fi \mid ta \land \neg al \land sm)$
<i>s</i> ₃	true	true	false	false
Sele	ct Al.	Sample	from P	$P(AI \mid ta \land fi \land \neg le)$
<i>S</i> ₄	true	true	true	false
Sele	ct Le.	Sample	from F	$P(\textit{Le} \mid \textit{al} \land \textit{re})$
<i>S</i> 5	true	true	true	true

	Ta	Fi	ΑI	Le
<i>s</i> ₁	true	false	false	true
Sele	ct Le.	Sample	from P	$P(Le \mid \neg al \land re)$
<i>s</i> ₂	true	false	false	false
Sele	ct Fi. S	Sample	from P	$(Fi \mid ta \land \neg al \land sm)$
<i>s</i> ₃	true	true	false	false
Sele	ct AI.	Sample	from P	$P(AI \mid ta \land fi \land \neg le)$
<i>S</i> ₄	true	true	true	false
Sele	ct Le.	Sample	from P	$P(\textit{Le} \mid \textit{al} \land \textit{re})$
<i>S</i> 5	true	true	true	true
Sele	ct <i>Ta</i> .			

	Ta	Fi	ΑI	Le			
<i>s</i> ₁	true	false	false	true			
Select <i>Le</i> . Sample from $P(Le \mid \neg al \land re)$							
<i>s</i> ₂	true	false	false	false			
Select <i>Fi</i> . Sample from $P(Fi \mid ta \land \neg al \land sm)$							
<i>s</i> ₃	true	true	false	false			
Select AI. Sample from $P(AI \mid ta \land fi \land \neg le)$							
<i>S</i> ₄	true	true	true	false			
Select <i>Le</i> . Sample from $P(Le \mid al \land re)$							
<i>S</i> 5	true	true	true	true			
Select Ta . Sample from $P(Ta \mid al \land fi)$							

	Ta	Fi	ΑI	Le			
	true	false	false	true			
Select <i>Le</i> . Sample from $P(Le \mid \neg al \land re)$							
<i>s</i> ₂	true	false	false	false			
Select Fi . Sample from $P(Fi \mid ta \land \neg al \land sm)$							
<i>s</i> ₃	true	true	false	false			
Select AI. Sample from $P(AI \mid ta \land fi \land \neg le)$							
<i>S</i> ₄	true	true	true	false			
Select <i>Le</i> . Sample from $P(Le \mid al \land re)$							
<i>S</i> 5	true	true	true	true			
Select Ta . Sample from $P(Ta \mid al \land fi)$							
<i>s</i> ₆	false	true	true	true			