福宁古五校教学联合体 2024-2025 学年第一学期期中质量监测

高三数学参考答案

一、单选题

1	2	3	4	5	6	7	8
A	С	D	C	С	D	В	D

8.
$$\mathbb{M}$$
: $\therefore f(x) \ge 1$, $\therefore e^{2x + \ln x} - (2x + \ln x) + x - |a| x \ge 1$, \mathbb{M}

|
$$a$$
 | $-1 \le \frac{e^{2x+\ln x} - (2x+\ln x) - 1}{x}$, 易知 $e^x \ge x+1$, ∴ $e^{2x+\ln x} - (2x+\ln x) - 1 \ge 0$, 又

$$\because x > 0$$
, $\therefore \frac{e^{2x + \ln x} - (2x + \ln x) - 1}{x} \ge 0$, 当且仅当 $2x + \ln x = 0$ 时, 等号成立.

∴
$$\left(\frac{e^{2x+\ln x}-(2x+\ln x)-1}{x}\right)_{\min}=0$$
, ∴ $a\mid -1=0$, ∴ $-1\leq a\leq 1$.故选 D.

二、多选题

9	10	11
ACD	ABD	BD

$$$$ $$

∴
$$f(-1) = 0$$
, $\exists f(x-1) = 0$, $\exists f(x-1) = f(x) \cdot f(-1) = x$, ∴ $\exists f(x-1) = x$,

 $\therefore f(x) = x+1$, $\therefore f(x)$ 的图象关于 (-1,0) 中心对称, 故 B 正确;

由 B 得 f(x) = x+1, 当 x = 0 时, $e^x = x+1$, 故 C 错误;

由 B 得 f(x) = x+1, $y = -xf(x) = -x^2 - x$, 在 $x = -\frac{1}{2}$ 时取到最大值,故 D 正确.

三、填空题

12. 1; 13.
$$4+2\sqrt{3}$$
; 14. $(1,\frac{e}{2})$

14. 解: 设g(x)=t,则f(t)=a,

$$g'(x) = e \cdot \frac{1 - \ln x}{x^2} = 0$$
, $\# x = e$,

当
$$x \in (0,e)$$
, $g'(x) > 0$, $g(x)$ 单调递增,

当
$$x \in (e, +\infty)$$
, $g'(x) < 0$, $g(x)$ 单调递减,

当x = e时,函数g(x)取得最大值 1,

如图 1, 画出函数 t = g(x) 的图象,

由
$$f(t) = a$$
 ,即 $e^t - at = a$,则 $e^t = a(t+1)$, $y = a(t+1)$ 恒过点 $(-1,0)$,

如图,画出函数 y=e' 的图象,设过点 $\left(-1,0\right)$ 的切线与 y=e' 相切于点 $\left(t_0,e'^{\circ}\right)$,

则
$$\frac{e^{t_0}}{t_0+1} = e^{t_0}$$
, 得 $t_0 = 0$, 即切点(0,1), 所以切线方程为 $y = x+1$, 如图 2,

则
$$y = a(t+1)$$
 与 $y = e^t$ 有 2 个交点, $a > 1$,

如图可知, 若函数 y = f(g(x)) + a 恰有三个零点, 则 $-1 < t_1 < 0$,

 $0 < t_2 < 1$,

则
$$e^1 > a(1+1)$$
,所以 $a < \frac{e}{2}$,

综上可知, $1 < a < \frac{e}{2}$.

故答案为: $(1,\frac{e}{2})$

四、解答题

15. (1) 因为函数
$$f(x) = \frac{1}{e^x + 1} + a$$
 为 **R** 上的奇函数,

此时
$$f(x) = \frac{1-e^x}{2(e^x+1)}$$
, 显然为奇函数.......4 分

(2) 由 (1) 得:
$$g(x) = 2(e^x + 1)f(x) + 2x = 2x - e^x + 1$$
, $g(x)$ 定义域为 R,6 分

由
$$g'(x) > 0$$
 得 $x < \ln 2$; 由 $g'(x) < 0$ 得 $x > \ln 2$,

 $\therefore g(x)$ 在 $(-\infty, \ln 2)$ 上单调递增, g(x)在 $(\ln 2, +\infty)$ 上单调递减,10 分

所以g(x)在 $x = \ln 2$ 处取得极大值,

$$f(x)_{\text{极大值}} = f(\ln 2) = 2 \ln 2 - 1$$
; 无极小值...........13 分

(不写无极小值扣1分)

16. (1) 因为
$$\tan A + \tan B = \frac{2\sqrt{3}c^2}{a^2 + c^2 - b^2}$$
,由余弦定理得

$$\tan A + \tan B = \frac{2\sqrt{3}c^2}{2ac\cos B} = \frac{\sqrt{3}c}{a\cos B} = \frac{\sqrt{3}\sin C}{\sin A\cos B}, \quad \dots \dots 2$$

由正弦定理得

$$\tan A + \tan B = \frac{\sin C}{\sin A \cos B} = \frac{\sin A}{\cos A} + \frac{\sin B}{\cos B} = \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B} = \frac{\sin (A + B)}{\cos A \cos B} = \frac{\sin C}{\cos A \cos B},$$
......4 \(\frac{1}{2}\)

又 $\triangle ABC$ 是锐角三角形,所以 $\sin C > 0$, $\cos B > 0$,

所以
$$\sin A = \sqrt{3}\cos A$$
,所以 $\tan A = \sqrt{3}$,

又
$$\overrightarrow{AD} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})$$
,所以

$$\overrightarrow{AD}^{2} = \frac{1}{4}(\overrightarrow{AB} + \overrightarrow{AC})^{2} = \frac{1}{4}(\overrightarrow{AB}^{2} + \overrightarrow{AC}^{2} + 2\overrightarrow{AB} \cdot \overrightarrow{AC}) = \frac{1}{4}(c^{2} + b^{2} + bc)$$

$$=\frac{1}{4}(3+2bc)=\frac{3}{4}+\frac{1}{2}bc$$
,9 $\%$

由正弦定理可得 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2$,所以 $b = 2\sin B$,

所以

$$bc = 4\left(\frac{\sqrt{3}}{2}\sin B\cos B + \frac{1}{2}\sin^2 B\right) = 4\left(\frac{\sqrt{3}}{4}\sin 2B + \frac{1}{2}\cdot\frac{1-\cos 2B}{2}\right) = 2\sin\left(2B - \frac{\pi}{6}\right) + 1, \dots 12$$

由题意得
$$\begin{cases} 0 < B < \frac{\pi}{2}, \\ 0 < \frac{2\pi}{3} - B < \frac{\pi}{2}, \end{cases}$$
解得 $\frac{\pi}{6} < B < \frac{\pi}{2}, \quad \text{则 } 2B - \frac{\pi}{6} \in \left(\frac{\pi}{6}, \frac{5\pi}{6}\right), \dots 13 分$

所以
$$\sin\left(2B-\frac{\pi}{6}\right)\in\left(\frac{1}{2},1\right]$$
,所以 $bc\in\left(2,3\right]$,………14分

所以
$$\overrightarrow{AD}^2 \in \left(\frac{7}{4}, \frac{9}{4}\right]$$
,所以线段 \overrightarrow{AD} 长的取值范围为 $\left(\frac{\sqrt{7}}{2}, \frac{3}{2}\right]$15分

17. (1) 解法一:连接 AM 交 BN 与点0,则 ∠MAC = ∠MCA,

从而 $\angle MAB + \angle ABN = \angle MAB + \angle MAC = 90^{\circ}$,从而 $AM \perp BN$,4 分

:: PM ⊥底面 ABC, BN ⊂底面 ABC, :: PM ⊥ BN,5 分

又 $AM \cap PM = M$,故 $BN \perp$ 平面APM6分

(1) 解法二:连接 AM,由 M,N 分别为 BC,AC 的中点,所以 $\overline{AM} = \frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC},$

又因为 $AB \perp AC$, AB=1, $AC=\sqrt{2}$, 所以

$$\overrightarrow{AM} \cdot \overrightarrow{BN} = (\frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}) \cdot (-\overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}) = 0$$
, $\overrightarrow{total} \overrightarrow{AM} \perp \overrightarrow{BN}$, $\overrightarrow{Mm} \overrightarrow{AM} \rightarrow \overrightarrow{BN}$

又 $AM \cap PM = M$,故 $BN \perp$ 平面APM6分

则
$$A(0,0,0)$$
, $C(0,\sqrt{2},0)$, $B(1,0,0)$, $P(\frac{1}{2},\frac{\sqrt{2}}{2},\frac{1}{2})$, $N(0,\frac{\sqrt{2}}{2},0)$,.......8 分

$$\text{IM} \overrightarrow{AC} = (0, \sqrt{2}, 0), \overrightarrow{BN} = (-1, \frac{\sqrt{2}}{2}, 0), \overrightarrow{AP} = (\frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{1}{2}), \dots 9 \text{ }$$

因为平面 EBN 上底面 ABC ,易得平面 EBN 的一个法向量为 $\overrightarrow{n_1}$ = $(1,\sqrt{2},0)$,设平面 PAC 的一个法向量为 $\overrightarrow{n_2}$ = (x,y,z) ,

则
$$\left\{ \overrightarrow{AP} \cdot \overrightarrow{n_2} = 0 \atop \overrightarrow{AC} \cdot \overrightarrow{n_2} = 0 \right\}$$
 可得 $\left\{ \frac{1}{2}x + \frac{\sqrt{2}}{2}y + \frac{1}{2}z = 0 \atop \sqrt{2}y = 0 \right\}$, $\Rightarrow x = 1$ 可得 $\overrightarrow{n_2} = (1, 0, -1)$, … … 12 分

设二面角
$$A-EN-B$$
 为 θ ,则 $\cos\theta$ = $\cos\langle \overrightarrow{n_1}, \overrightarrow{n_2} \rangle = \frac{1}{\sqrt{3} \times \sqrt{2}} = \frac{\sqrt{6}}{6}$,

.....14 分

故二面角 A-EN-B 的正弦值为 $\frac{\sqrt{30}}{6}$ 15 分

令
$$f'(x) > 0$$
 , 解得 $x < 0$, 令 $f'(x) < 0$, 解得 $x > 0$,3 分

所以 f(x) 在 $(-\infty,0)$ 单调递增, $(0,+\infty)$ 单调递减;………4 分

(2): 函数 f(x) 的图象是连续的,且在定义域上是单调函数,

$$\therefore f'(x) = \frac{3-x}{e^x} - 3a \ge 0$$
在定义域内恒成立,或 $f'(x) = \frac{3-x}{e^x} - 3a \le 0$,在定义域内恒成

立......5分

$$f''(x) = \frac{x-4}{e^x}$$
在 $\left(-\infty, 4\right)$ 为负, $\left(4, +\infty\right)$ 为正,

① 若
$$f'(x) = \frac{3-x}{e^x} - 3a \ge 0$$
 在定义域内恒成立,

只需
$$f'(x)_{\min} = f'(4) = -\frac{1}{e^4} - 3a \ge 0$$
,即 $a \le -\frac{1}{3e^4} \dots 8$ 分

② 若
$$f'(x) = \frac{3-x}{e^x} - 3a \le 0$$
 在定义域内恒成立,

$$x \to -\infty$$
 时, $f'(x) \to +\infty$, 故该情况 a 无解:

.....9分

综上:
$$a \le -\frac{1}{3e^4}$$
10 分

(3)若
$$f(x) \le 0$$
 恒成立,则 $\frac{x-2}{e^x} - a(3x-1) - b - 1 \le 0$,当 $x = 2$ 时, $-5a - b - 1 \le 0$,即 $5a + b \ge -1$,…………11 分

下证 5a+b=-1 成立,由 5a+1=-b 得, $\frac{x-2}{e^x}-a(3x-1)+5a\leq 0$ 恒成立,

即
$$\frac{x-2}{e^x} - a(3x-6) \le 0$$
,12 分

而
$$F'(x) = \frac{3-x}{e^x} - 3a$$
,则 $\frac{1}{e^2} - 3a = 0$,解得 $a = \frac{1}{3e^2}$,………14 分

只需证
$$F(x) = \frac{x-2}{e^x} - \frac{1}{3e^2} (3x-6) \le 0$$
 恒成立,

$$F'(x) = \frac{3-x}{e^x} - \frac{1}{e^2}$$
,由(2)得 $F'(x)$ 在($-\infty$,4)上单调递减,在(4,+ ∞)上单调递增,

又
$$F'(2) = 0$$
 , $\therefore F'(x)$ 在 $(-\infty, 2)$ 上为正, 在 $(2, 4)$ 上为负, 在 $(4, +\infty)$ 上为负,

$$\therefore F(x)$$
 在 $(-\infty,2)$ 上单调递增,在 $(2,+\infty)$ 上单调递减, $\therefore F(x)_{\max} = F(2) = 0$,

即 $F(x) \le 0$ 恒成立,16分

19.解: (1) :: f(x) 图象的相邻的两条对称轴间的距离为 $\frac{\pi}{2}$

$$\therefore f(x)$$
的最小正周期为T=2× $\frac{\pi}{2}$ = π $: \omega > 0$, $\therefore \omega = \frac{2\pi}{T} = 2$,1分

$$\therefore f(x) = \sin(2x + \varphi)$$
 又 $\therefore f(x)$ 的图象过点 $\left(0, \frac{\sqrt{3}}{2}\right), \quad \therefore f(0) = \sin \varphi = \frac{\sqrt{3}}{2}.$

$$\therefore |\varphi| < \frac{\pi}{2}, \therefore \varphi = \frac{\pi}{3}, \ f(x) = \sin(2x + \frac{\pi}{3}) \dots 2 \ \%$$

因为函数
$$y = f(x+m) = \sin(2x+2m+\frac{\pi}{3})$$
 是偶函数

∴
$$2m + \frac{\pi}{3} = k\pi + \frac{\pi}{2}(k \in \mathbb{Z})$$
, ∴ $m = \frac{\pi}{12} + \frac{k\pi}{2}(k \in \mathbb{Z})$ 3 分

$$\therefore$$
 |m|的最小值 $\frac{\pi}{12}$ 4 分

$$\therefore x \in \left[-\frac{17\pi}{12}, \frac{31\pi}{12} \right], \quad \therefore 2x + \frac{\pi}{3} \in \left[-\frac{5\pi}{2}, \frac{11\pi}{2} \right] \dots \dots 6 \ \%$$

设
$$2x_i + \frac{\pi}{3} = t_i$$
,由 $y = \sin t$ 与 $y = -\frac{1}{4}$ 图象可知在 $\left[-\frac{5\pi}{2}, \frac{11\pi}{2} \right]$ 共有 8 个交点........7 分

$$t_1 + t_8 = t_2 + t_7 = t_3 + t_6 = t_4 + t_5 = 3\pi \dots 8$$

$$\therefore 2x_1 + \frac{\pi}{3} + 2x_8 + \frac{\pi}{3} = 3\pi, \therefore x_1 + x_8 = \frac{7\pi}{6}, \quad \Box \mathbb{Z} 2x_2 + 2x_3 + 2x_4 + 2x_5 + 2x_6 + 2x_7 = 7\pi,$$
........9 分

$$\therefore x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 + 2x_6 + 2x_7 + x_8 = \frac{49\pi}{6} \dots 10 \, \text{ }$$

(3) :
$$f(x) = \sin(2x + \frac{\pi}{3})$$
, : $h(x) = \left(\frac{1}{2}\right)^x f(\lambda x - \frac{\pi}{6}) = \left(\frac{1}{2}\right)^x \sin(2\lambda x) \dots 11$ $\frac{1}{2}$

假设存在非零实数 λ ,使得函数 $h(x) = \left(\frac{1}{2}\right)^x \sin 2\lambda x$ 是**R**上的周期为T的T级周期函数,

即 $\forall x \in \mathbf{R}$, 恒有 $h(x+T) = T \cdot h(x)$,

则
$$\forall x \in \mathbf{R}$$
, 恒有 $\left(\frac{1}{2}\right)^{x+T} \sin\left(2\lambda x + 2\lambda T\right) = T \cdot \left(\frac{1}{2}\right)^x \sin 2\lambda x$ 成立,

则 $\forall x \in \mathbf{R}$, 恒有 $\sin(2\lambda x + 2\lambda T) = T \cdot 2^T \sin 2\lambda x$ 成立,13 分

当 $\lambda \neq 0$ 时, $\forall x \in \mathbf{R}$,则 $2\lambda x \in \mathbf{R}$, $2\lambda x + 2\lambda T \in \mathbf{R}$,

所以, $-1 \le \sin 2\lambda x \le 1$, $-1 \le \sin (2\lambda x + 2\lambda T) \le 1$,

要使得 $\sin(2\lambda x + 2\lambda T) = T \cdot 2^T \sin 2\lambda x$ 恒成立,则有 $T \cdot 2^T = \pm 1$14 分

当 $T \cdot 2^T = 1$ 时,则T > 0,即 $2^T = \frac{1}{T}$,令 $p(x) = 2^x - \frac{1}{x}$,其中x > 0,

$$\iiint p\left(\frac{1}{2}\right) = \sqrt{2} - 2 < 0 , \quad p(1) = 2 - 1 = 1 > 0 ,$$

且函数 p(x)在 $(0,+\infty)$ 上的图象是连续的,

由零点存在定理可知,函数p(x)在 $(0,+\infty)$ 上有唯一的零点,

此时, $\sin(2\lambda x + 2\lambda T) = \sin 2\lambda x$ 恒成立,则 $2\lambda T = 2m\pi(m \in \mathbb{Z})$,即

$$\lambda = \frac{m\pi}{T} (m \in \mathbf{Z}); \dots 15 \, \mathcal{T}$$

当 $T \cdot 2^T = -1$ 时,则 T < 0 ,即 $-T = 2^{-T}$,作出函数 y = -x 、

 $y = 2^{-x}$ 的图象如下图所示:

由图可知,函数y=-x、 $y=2^{-x}$ 的图象没有公共点,

故方程 $T \cdot 2^T = -1$ 无实数解......16分

