Kuliah 07: Fourier Transform (Teori Dasar)

Yeni Herdiyeni

Jean Baptiste Joseph Fourier 1768-1830

Jean Baptiste Joseph Fourier

Fourier was born in Auxerre, France in 1768

- Most famous for his work "La Théorie Analitique de la Chaleur" published in 1822
- Translated into English in 1878:"The Analytic Theory of Heat"

Nobody paid much attention when the work was first published

One of the most important mathematical theories in modern engineering

Input Image

Magnitude Spectrum

Input Image

Input Image

Magnitude Spectrum

Magnitude Spectrum

Gelombang

A: <u>amplitude</u> (length, m) T: <u>period</u> (time, s)

Periode dan Frequency

Amplitude: A

Period: T

Frequency: f = 1/T

Angular frequency: ω

$$\omega T = 2\pi$$

$$T = \frac{2\pi}{\omega} \,, \quad f = \frac{\omega}{2\pi}$$

Gelombang

a. A signal with a frequency of 12 Hz

b. A signal with a frequency of 6 Hz

$$f = \frac{1}{T}$$
 and $T = \frac{1}{f}$

Amplitude dan Phase

Phase

a. 0 degrees

b. 90 degrees

c. 180 degrees

Phases

Often a phase ϕ is included to shift the timing of the peak:

$$x = A\cos(\omega t - \phi)$$

$$= A\cos(\omega(t - t_0)) \quad \text{for peak at} \qquad t = t_0$$

Phase of 90-degrees changes cosine to sine

$$\cos\left(\omega t - \frac{\pi}{2}\right) = \sin(\omega t)$$

Fourier Transform

Frekuensi Domain

- ω, angular frequency in radians per unit distance, or
- f, rotational frequency in cycles per unit distance. $\omega = 2\pi f$
- The **period** of a signal, **T=1/f= 2\pi/\omega**

Examples:

The signal [0 1 0 1 0 1...] has frequency f=.5 (.5 cycles per sample)

Transformasi Fourier 1D

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi ux} dx \quad \text{where } j = \sqrt{-1}$$

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{j2\pi ux} du$$

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux} dx$$
Fungsi Basis

Faktor Skala

Note:
$$e^{ik} = \cos k + i \sin k$$
 $i = \sqrt{-1}$

$$e^{\pm ix} = \cos(x) \pm i \sin(x)$$

$$F(u) = \int_{-\infty}^{\infty} f(x)(\cos 2\pi ux - i\sin 2\pi ux) dx$$

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ix} dx = \int_{-\infty}^{\infty} f(x)\{\cos(2\pi ux) - i\sin(2\pi ux)\} dx$$

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi ux}du = \int_{-\infty}^{\infty} F(u)\{\cos(2\pi ux) + i\sin(2\pi ux)\}du$$

Spektrum dan Phase

$$F(u) = R(u) + iI(u) = |F(u)|e^{i\phi(u)}$$

$$F(u) = \sqrt{R^2(u) + I^2(u)}$$

$$\Theta(u) = \tan^{-1} \left[\frac{I(u)}{R(u)} \right]$$

Fungsi Diskret

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi ux} dx \quad \text{where } j = \sqrt{-1}$$

$$e^{j\theta} = \cos\theta + j\sin\theta$$

$$F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) e^{-j2\pi u x/M} \quad \text{for } u = 0, 1, 2, ..., M-1$$

$$\cos(-\theta) = \cos\theta$$

$$F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) [\cos 2\pi u x / M - j \sin 2\pi u x / M]$$

Transformasi Fourier

Transformasi Fourier 2D

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi(ux+vy)}dxdy$$

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v)e^{j2\pi(ux+vy)}dudv$$

Fungsi Diskret

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi(ux+vy)}dxdy$$

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

for
$$u = 0,1,2,...,M-1, v = 0,1,2,...,N-1$$

Spectrum dan Phase

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$

for
$$x = 0,1,2,...,M-1$$
, $y = 0,1,2,...,N-1$

$$|F(u,v)| = [R^2(u,v) + I^2(u,v)]^{\frac{1}{2}}$$
 (spectrum)

$$\phi(u, v) = \tan^{-1} \left| \frac{I(u, v)}{R(u, v)} \right|$$
 (phase angle)

$$P(u,v) = |F(u,v)|^2 = R^2(u,v) + I^2(u,v)$$
 (power spectrum)

Berikut pseudocode untuk transformasi Fourier:

```
/* Data type for N set of complex number */
Double fx[N][2];
Double fu[N][2];
/*Fourier transform to get F(0)....F(N-1) */
For (u=0; u<N; u++) {
     For (k=0; k<N; k++){
         P=2*PI*u*k/N;
         /*real */
          Fu[u][0] += fx[k][0]*cos(p) + fx[k][1] * sin (p);
         /*imaginary */
          Fu[u][1] += fx[k][1]*cos(p) - fk[k][0]*sin(p)
    /* multiply the result by 1/N */
     Fu[u][0] /= N;
     Fu[u][1] /= N;
```

Contoh

contoh:

Diketahui f(x,y) adalah sebagai berikut :

0	1	1	1	1	0
1	1	0	0	1	1
1	1	0	0	1	1
0	1	1	1	1	0

$$F(k_1, k_2) = \sum_{n_1=0}^{4} \sum_{n_2=0}^{6} f(n_1, n_2) \cdot e^{-j2\pi T(k_1 n_1/4 + k_2 n_2/6)}$$

Hasil dari DFT adalah sebagai berikut :

16	0	-2 - 3.46i	0	-2 + 3.46i	0
0	-1.27 - 4.73i	0	0	0	4.73 - 1.27i
0	0	0	0	0	0
0	-4.73+ 1.27i	0	0	0	1.27 + 4.73i

Bagian Real

Bagian Imaginer

DFT

$$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn} \qquad k = 0, \dots, N-1$$
$$X_k = x_0 w^0 + x_1 w^1 + x_2 w^2 + x_3 w^3 + \dots + x_{N-1} w^{N-1}$$

$$\begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ X_3 \\ \vdots \\ X_{k-1} \end{bmatrix} = \frac{1}{N} \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & w & w^2 & w^3 & \dots & w^{N-1} \\ 1 & w^2 & w^4 & w^6 & \dots & w^{2(N-1)} \\ 1 & w^3 & w^6 & w^9 & \dots & w^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & w^k & w^{2k} & w^{3k} & \dots & w^{(N-1)k} \\ \vdots & \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & w^{N-1} & w^{2(N-1)} & w^{3(N-1)} & \dots & w^{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_k \\ \vdots \\ x_{N-1} \end{bmatrix}$$

Fast Fourier Transform

This method allows us to find the DFT in O(NLogN), in sequential time, instead of (N^2)