Représentation des nombres

Représentation des entiers Représentation des réels Opérations arithmétiques

Représentation des entiers

- La notion mathématique d'entier n'est pas équivalente à la notion de type entier en informatique
- En maths, tout entier à un successeur qui est aussi un entier, mais les entiers codés en machine ont une valeur maximale

L'addition n'est pas associative

a, b, c sont trois entiers naturels, en maths (a+b)-c = a+(b-c)

a,b,c sont de type integer, il est possible que $(a+b)-c \neq a+(b-c)$

Si a+b est trop grand!

Même problème avec la distributivité
a(b-c) ≠ ab-ac si ab est trop grand

Systèmes additifs 529

En egyptien ancien (troisième millenaire avant JC)

DXXIX

En chiffres romains

Nécessite un symbole pour chaque puissance de 10

Ecriture positionnelle

 Nécessite un symbole pour 0 (marqueur de position). Inventé indépendamment par les babyloniens (-1000), les mayas (premier millénaire) et les indiens (troisième siècle)

 Ecriture décimale positionnelle arrive en Europe au Xième siècle et mets plusieurs siècles à s'imposer

Représentation des entiers en base dix

En base dix, l'écriture

$$\pm d_{m}d_{m-1}....d_{0}$$
 où $\forall i: d_{i} \in \{ '0', '1', '2', '3, '4', '5', '6', '7', '8', '9' \}$ représente l'entier dont la valeur est

$$\pm \sum_{0}^{+m} val(d_i) 10^i$$

Ajouter un '0' à la fin, c'est multiplier par 10!

0	စ	ெ	ന	હ	હ	<i>و</i>	ബ	ಜ	๙
0	1	2	3	4	5	6	7	8	9

Représentation des entiers en base B

En base B, le mot

±d_md_{m-1}.....d₀ avec les d_i dans un ensemble de B symboles associés aux valeurs 0,1,2,....,B-1

représente l'entier dont la valeur est

$$\pm \sum_{0}^{+m} val(di)Bi$$

Ajouter le symbole qui vaut 0 en fin c'est multiplier par B

Exemples

- Ecriture binaire (en base 2): Deux symboles 0
 et 1 auxquels on attribue les valeurs 0 et 1
- Octal (base 8): Huit symboles 0,1,2,3,4,5,6,7
- Hexadécimal (base 16): 16 symboles
 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F auxquels on attribue les valeurs de zéro à quinze.

Conversion de la base 2 vers la base dix

 On fait le calcul de la valeur et comme la base dix est notre base usuelle, on a fini

- Exemple 11001
- \bullet 1x2⁴+1x2³+0x2²+0x2¹+1x2⁰
- $(16)_{dix}+(8)_{dix}+(1)_{dix}=(25)_{dix}$

Conversion de la base dix vers la base deux

On procède par division par 2 successives

• Exemple $(28)_{dix} = (11100)_{deux}$

	/2	reste
28	14	0
	7	0
	3	1
	1	1
	0	1

Entiers représentables

- Si on dispose de n bits pour coder un entier naturel, on peut représenter 2ⁿ entiers.
- Par exemple :

les entiers compris entre 0 et 2ⁿ -1.

Dans la suite, par défaut toutes les écritures d'entiers sont en base dix

- Pour n=16 0 à 65 535
- Pour n=32 0 à 4 294 967 295
- Pour n=64 0 à environ 1.8 10¹⁹

Sauf que... il y a aussi les négatifs

• 4 solutions:

- Signe Grandeur
- Complément à 1
- Complément à 2
- Excentrement

Signe Grandeur sur 8 bits

- 1 bit pour le signe, les autres pour la valeur :
 - 24 est codé 00011000
 - -24 est codé 10011000

- Pas pratique, parce que ça additionne pas bien
- Deux codages possibles pour zéro

Complément à 1 sur 8 bits

- Pour les entiers négatifs on prend le complément à 1 bit à bit
 - 24 est codé 00011000
 - -24 est codé 11100111

- Pas pratique, parce que ça additionne toujours pas bien!
- 24 + (-1) = 00011000 + 111111110 = (0)00010110
- Deux codages possibles pour zéro

Complément à 2 sur 8 bits

- Pour les entiers négatifs on prend le complément à 1 bit à bit auquel on ajoute 1
- 24 est codé 00011000
- -24 est codé 11101000

- Pratique, parce que ça additionne bien!
- 24+(-1) = 00011000+111111111=(0)00010111
- Un seul codage pour zéro

Remarque

- On dit complément à 2, mais en fait c'est plutôt un complément à 2ⁿ
- Ce qu'on fait c'est que pour représenter en complément à deux sur n bits (dont un bit de signe) l'entier négatif -m compris entre en -2ⁿ⁻¹ et -1, on code 2ⁿ-m (compris entre 2ⁿ⁻¹ et 2ⁿ 1) sur n bits (le premier bit sera forcement à un

Types entiers en java, codés en complément à deux

	Codés sur	Min	Max
short	8 bits	-2 ¹⁵ =-32768	2 ¹⁵ -1=32767
int	16 bits	-2 ³¹ =-2 147 483 648	2 ³¹ -1=2 147 483 647
long	32 bits	-2 ⁶³ = -9 223 372 036 854 775 808	2 ⁶³ -1=9 223 372 036 854 775 807

Excentrement

On passe de l'intervalle [0, 2k+1] à l'intervalle [-k-1,k] par une translation de k+1

On verra cela dans quelques slides...

Addition sur les entiers signés

Addition de deux entiers naturels (codés en complément à deux sur 8 hits)

```
0\ 1111010 positif
+ 0\ 1101111 + positif
= 1\ 1100101 = négatif
```

Le résultat n'est égal que sur un bit de plus!

Addition de deux entiers négatifs (codés en complément à deux sur 8 bits)

Même problème, le résultat est faux si la valeur absolue de la somme est trop grande

Dans les deux cas le résultat serait correct sur n+1 bit

Dans les deux cas, le résultat est faux si et seulement si le bit de signe est modifié

Addition de deux entiers de signes contraires

```
  \begin{array}{rcl}
    & 1 & 1 & 1 & 1 & 1 \\
    + & 0 & 0 & 0 & 1 & 0 & 0 \\
    = & (1) & 0 & 0 & 0 & 0 & 0 & 1 & 1
  \end{array}
```

Résultat toujours correct, (mais faux sur n+1 bits)

Soustraction

• Soustraire n, c'est ajouter -n

Multiplication

- On détermine le signe en fonction du signe des opérandes
- On calcule la multiplication des valeurs absolues, en utilisant le fait que la multiplication par B est un décalage à gauche

Représentation des réels

- En virgule fixe
- En virgule flottante

Représentation des nombres réels

En base dix, un nombre réel qui s'écrit $\pm d_m d_{m-1}....d_1 d_0, d_{-1} d_{-2}...d_{-n}$

Représente la valeur

$$\pm \sum_{-n}^{+m} d_i 10^i$$

En conséquence, en base dix on ne peut représenter exactement que des nombres fractionnaires de la forme X/10^k

Par exemple impossible de donner une écriture finie exacte de 1/3 (0.333333[3]*)

En base deux, un nombre réel qui s'écrit $\pm b_m b_{m-1}....b_1 b_0, b_{-1} b_{-2}...b_n$

représente la valeur

$$\pm \sum_{-n}^{+m} b_i 2^i$$

En conséquence, en base deux on ne peut représenter exactement que des nombres fractionnaires de la forme X/2^k

Par exemple impossible de donner une écriture finie exacte de un tiers :

0,01(01)(01)(01)(01) ...

ou de un dixième :

0,0(0011)(0011)(0011)(0011) ...

ce qui risque de générer des problèmes d'arrondis!

Virgule fixe

- 1 bit de signe
- m bits pour la partie entière
- n bits pour la partie fractionnaire

En complément à deux pour les négatifs

Résolution et dynamique

- La plus petite valeur que l'on peut coder : -2^m
- La plus grande 2^m-2⁻ⁿ
- Dynamique = différence entre ces deux valeurs

 Résolution : écart minimum entre deux réels représentés : 2⁻ⁿ

Représentation en virgule flottante

- Un nombre réel est représenté par:
 - Son signe s(sur 1 bit, 0 positif, 1 négatif)
 - une mantisse (en base b) m
 - Un exposant $(-1)^s m.b^e$

 π -10.0,031.10²
-10.3,142.10⁰
-10.31,42.10⁻¹
-10.0,003.10³

Plusieurs représentations approchées Pas la même précision

Représentation normalisée

Une représentation est normalisée si elle est sous la forme

$$(-1)^s x M x b^e$$

Avec M qui ne doit pas commencer par 0.

- On ne stocke que s, M et e . En Base 2 on impose
 M=1,M', et c'est M' la pseudo mantisse que l'on stocke
- Une seule représentation
- 0 n'a pas de représentation normalisée !
- Précision la meilleure possible pour ce réel

Le système IEEE 754

 Un standard pour la représentation des nombres à virgule flottante en binaire

1+8+23=32 simple précision utilisée par exemple pour le type float java

1+11+52=64 double précision utilisée par exemple pour le type double java

Codage de l'exposant

- Il faut qu'il puisse être négatif!
- Plutôt que le choix du complément à deux, translation par une constante d'excentrement (ou biais)
- On passe de $[0, 2^{N_e} 1]$ à $[-2^{N_e-1} + 1, 2^{N_e-1}]$ en translatant de $2^{N_e-1} 1$
- Translation de 127 en simple précision, de 1023 en double précision

Pour comprendre 8 bits suffiront!

1 bit pour le signe, 3bits pour l'exposant, 4 bits pour la pseudo mantisse

L'exposant pourra varier entre -3 [000] et +4 [1111] grâce à un excentrement de 3

Le bit de signe est à 0, c'est un nombre positif L'exposant vaut 3 (6-3) La pseudo mantisse est 1011 La mantisse est donc 1,1011 e t le réel représenté est

1101,1 donc treize et demi

Représenter le réel 3,125 (base dix)

- 11,001 [écrire en base 2]
- 1,1001 . 2¹ [normaliser]

Et le zéro

- Pas moyen d'utiliser une écriture normalisée pour 0
- Du coup on réserve le plus petit et le plus grand des exposant pour des écritures non normalisées

Codage de l'exposant, revisité pour inclure des nombres non normalisés

- On passe de $[0, 2^{N_e} 1]$ à $[-2^{N_e-1} + 1, 2^{N_e-1}]$ en translatant de $2^{N_e-1} 1$, mais on réserve
 - Le plus grand codé 1..1 pour représenter les valeurs spéciales
 - L'infini [pseudo mantisse à 00000000...00] le signe dira si positif ou négatif
 - NaN [NotANumber pseudo mantisse pas à 0]
 - Le plus petit codé 0..0 pour représenter:
 - Zéro [pseudo mantisse à 00000000...00] : deux codages en fait, positif ou négatif
 - Nombres dénormalisés avec mantisse non nulle
 - Les nombres normalisés ont donc un intervalle d'exposant possible un peu plus réduit

Nombre dénormalisés

Normalement, la valeur de l'exposant d'un nombre non normalisé devrait être :

0-excentrement

Toutefois, pour assurer une meilleure transition entre les nombres normalisés et les non normalisés, l'exposant est calculé dans ces cas comme 1-excentrement

Mini exemple, $N_e=3$ et $N_m=2$

- L'excentrement vaut 3
- Il y a 64 mots de longueur 1+3+2=6 dont
 - 8 valeurs spéciales (exposant 111)
 - 48 = 2.6.4 nombres normalisés, dont 24 sont strictement positifs et 24 strictement négatifs (6 exposant 001 à 110) mantisse possible (00,01,10,11)
 - 8 nombres non normalisés qui représentent 7 réels (dont zéro qui a deux écritures) (exposant 000) tous entre 0 et le plus petit nombre positif normalisé

Mini exemple, $N_e=3$ et $N_m=2$

• Les valeurs spéciales (exposant 111)

Nombres non normalisés	Valeurs spéciales
0 111 00	+ infini
0 111 01	NaN
0 111 10	NaN
0 111 11	NaN
1 111 00	- infini
1 111 01	NaN
1 111 10	NaN
1 111 11	NaN

Nombre normalisés positifs

Nombre normalisé			Base 10				Base 10
0.004.00	. 1 00 2 -2	. 0. 04	0.25	0.400.00	.1.00.2.1	10	2
0 001 00	+1,00. 2 ⁻²	+0,01	0,25	0 100 00	+1,00.2 1	10	2
0 001 01	+1,01. 2 -2	+0,0101	0,3125	0 100 01	+1,01.2 1	10,1	2,5
0 001 10	+1,10. 2 -2	+0,011	0,375	0 100 10	+1,10.2 1	11	3
0 001 11	+1,11. 2 -2	+0,0111	0,4375	0 100 11	+1,11.2 1	11,1	3 ,5
0 010 00	+1,00.2-1	+0,1	0,5	0 101 00	+1,00.22	100	4
0 010 01	+1,01.2-1	+0,101	0,625	0 101 01	+1,01.22	101	5
0 010 10	+1,10.2 ⁻¹	+0,11	0,75	0 101 10	+1,10.22	110	6
0 010 11	+1,11.2 ⁻¹	+0,111	0,875	0 101 11	+1,11.22	111	7
0 011 00	+1,00 .20	+1	1	0 110 00	+1,00 .2 ³	1000	8
0 011 01	+1,01 .20	+1,01	1,25	0 110 01	+1,01 .23	1010	10
0 011 10	+1,10 .20	+1,1	1,5	0 110 10	+1,10 .23	1100	12
0 011 11	+1,11 .20	+1,11	1,75	0 110 11	+1,11 .23	1110	14

Nombres non normalisés

• Les valeurs spéciales (exposant 111)

Nombres non normalisés			En base dix
0 000 00	0,00	0	0
0 000 01	+0,01 2-2	0,0001	0,0625
0 000 10	+0,10 2-2	0,001	0,125
0 000 11	+0,11 2-2	0,0011	0,1875
1 000 00	-0,00	0	0
1 000 01	-0,01 2 ⁻²	-0,0001	-0,0625
1 000 10	-0,10 2-2	-0,001	-0,125
1 000 11	-0,11 2 ⁻²	-0,0011	-0,1875

Arithmétique en virgule flottante

- On va avoir des problèmes d'arrondis
 - Soit parce qu'on veut utilisé un nombre qui a écriture finie en base dix mais pas en base deux, par exemple un dixième (et ça peut faire très mal!)
 - Soit parce qu'il y a bien une écriture finie mais en base deux, mais qu'il faudrait plus de bits pour pouvoir stocker le nombre exact :
 - 8+5= on peut espérer 12 ou 14 mais pas 13 !!

Addition de deux flottants positifs

- 1. Décaler à droite la mantisse (sans oublier le bit caché) du nombre possédant le plus petit exposant jusqu'à arriver à l'exposant de l'autre nombre
- 2. Additionner les mantisses
- 3. Normaliser le résultat
- 4. Arrondir

Exemple d'addition de flottant positifs

```
0 100 10 + 0 011 10 (trois plus trois demis) +1,10.2^{1+}+1,10.2^{0}
```

- 1. 11,10.2+0,11.2
- 2. 100,01
- $3. 1,0001.2^2$
- 4. 1,00. 2² (c'est-à-dire quatre !) le résultat est donc 0 101 00

Il n'y aurait pas eu d'erreur d'arrondi dans ce cas si on avait eu $N_m >= 4$

Et cinq et huit alors ?

- \bullet +1,01.2² +1,00.2³
- $0,101. 2^3+1,00.2^3$ alignement des exposants
- 1,101 . 2³ addition des mantisses
- pas de normalisation à faire
- 1,10 . 2³ arrondi
- Résultat 0 110 10 (douze donc)

Et huit et huit alors?

- \bullet +1,00.2³ +1,00.2³
- $0,10.2^3+1,00.2^3$ alignement des exposants
- 10,00 . 2³ addition des mantisses
- 1,0. 2⁴ on normalise
- pas d'arrondi
- Résultat 0 111 00 une valeur spéciale, normal on a dépassé la plus grande valeur qu'on pouvait représenter (overflow)

Arrondi

- L'arrondi se fait à la valeur la plus proche possible
- En cas d'équidistance on va vers la valeur paire

Addition de flottants de signe différents (ou soustraction)

 Même principe que l'addition, mais si les signes sont différents l'addition se fait en complément à deux

Multiplication de flottants

- On détermine le signe du résultat
- On calcule la somme des exposants (sans oublier de corriger l'excentrement)
- On multiplie les mantisses (virgule fixe!)
- On gère les arrondis
- Et les éventuels dépassement de capacité (overflow ou underflow)

Multiplier par B, c'est seulement ajouter un à l'exposant!

Avantages de la norme

- les nombres flottants sont portables d'un système à l'autre,
- les opérations sont uniquement définies,
- les programmes ont un comportement unique,
- les programmes numériques sont analysables