ST1 Capstone Programming Project

This project will be analysing the attributes of a medical insurance dataset to create a model for prediction of incurred charges.

My approach to this task will be incorporating the Python libraries **tkinter**, **pandas**, **seaborn**, and **matplotlib**.

Therefore, before we move on we shall import these libraries:

```
import tkinter as tk
from tkinter import filedialog, messagebox
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Step 1.

Reading the Dataset

```
# Load dataset
data = pd.read_csv('medical_insurance.csv')

# Display first few rows of the dataset in consoel
print(data.head())

# Display general information and basic statistics in console
print(data.info())
print(data.describe())
```

```
>>> print(data.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2772 entries, 0 to 2771
Data columns (total 7 columns):
# Column Non-Null Count Dtype
            _____
0 age 2772 non-null int64
           2772 non-null object
   sex
1
2 bmi 2772 non-null float64
3 children 2772 non-null int64
4 smoker 2772 non-null object
5 region 2772 non-null object
6 charges 2772 non-null float64
dtypes: float64(2), int64(2), object(3)
memory usage: 151.7+ KB
None
```

>>> print(data.describe())						
age	bmi	children	charges			
2772.000000	2772.000000	2772.000000	2772.000000			
39.109668	30.701349	1.101732	13261.369959			
14.081459	6.129449	1.214806	12151.768945			
18.000000	15.960000	0.000000	1121.873900			
26.000000	26.220000	0.000000	4687.797000			
39.000000	30.447500	1.000000	9333.014350			
51.000000	34.770000	2.000000	16577.779500			
64.000000	53.130000	5.000000	63770.428010			
	age 2772.000000 39.109668 14.081459 18.000000 26.000000 39.000000 51.0000000	age bmi 2772.000000 2772.000000 39.109668 30.701349 14.081459 6.129449 18.000000 15.960000 26.000000 26.220000 39.000000 30.447500 51.000000 34.770000	age bmi children 2772.000000 2772.000000 2772.000000 39.109668 30.701349 1.101732 14.081459 6.129449 1.214806 18.000000 15.960000 0.000000 26.000000 26.220000 0.000000 39.000000 30.447500 1.000000 51.000000 34.770000 2.000000			

Key observations from Step 1

- The dataset is a sample of 2772 people with medical insurance
- The attributes include age, bmi, number of children, charges, gender, smoker, and region.
- Gender, smoker and region attributes are functionally Booleans, being True or False. For example, sex_male = False would indicate a female.

Step 2.

Problem Statement Definition

 Creating a prediction model in order to predict the price of medical insurance based on given attributes.

Step 3.

Target Variable Identification

• Target Variable: Charges (Affected by: Age, Sex, Smoker, Region, etc)

Step 4.

Choosing appropriate Algorithm for Data Analysis

• The target variable is Continuous, and we shall be proceeding with a Ridge regression model as we expect a linear relationship.

Visualising the distribution of Target Variable

```
# Pair plot to examine relationships among numerical features
sns.pairplot(data)
plt.show()
```

- We can see that the data has a relatively linear relationship, with most charges being weighted towards the lower end.
- We shall proceed and investigate how the other variables affect this.

Step 5.

Data Exploration at the Basic Level

As per Step 1.

```
# Display first few rows of the dataset in consoel
print(data.head())
```

Display general information and basic statistics in console
print(data.info())
print(data.describe())

>>> print(data.describe())						
	age	bmi	children	charges		
count	2772.000000	2772.000000	2772.000000	2772.000000		
mean	39.109668	30.701349	1.101732	13261.369959		
std	14.081459	6.129449	1.214806	12151.768945		
min	18.000000	15.960000	0.000000	1121.873900		
25%	26.000000	26.220000	0.000000	4687.797000		
50%	39.000000	30.447500	1.000000	9333.014350		
75%	51.000000	34.770000	2.000000	16577.779500		
max	64.000000	53.130000	5.000000	63770.428010		

- We expect that the target variable will be affected by number of *children*, *sex*, whether they are a *smoker*, and their *region*. BMI could be a potential factor.
- Age Continuous
- BMI Continuous
- Children Continuous
- Charges Continuous
- Sex Categorical
- Smoker Categorical
- Region Categorical

Step 6.

Identifying and Rejecting unwanted columns

- Given our variables, there should be no need to remove any columns
- I suspect they shall all have some effect

Step 7.Visual Exploratory Data Analysis

Pair plot to examine relationships among numerical features
sns.pairplot(data)
plt.show()

Observations from Step 7.

- The pairplot shows the noncategorical data from the dataset.
- The variables are represented on both X and Y axis
- We can see how some variables such as BMI form a nice bell curve indicating a sufficient and diverse sample of people

- Some charts are less relevant although still do have features that indicate a relationship.
- As for the bar charts, I noticed by far the most difference between whether a person smoked or not. If they did, they had to pay a substantial amount more than a non-smoker, which makes sense.
- Males cost more on average along with greater standard deviation
- Some regions have larger standard deviations and extremes although all had a similar median

Step 8.

Feature Selection based on data distribution

- Despite some graphs being rather dense due to the dataset density, all show signs of being relevant to the target variable.
- Therefore we shall move on and analyse further

Step 9.

Outliers and Missing Values

```
# Calculates the Interquartile Range for charges
Q1 = data['charges'].quantile(0.25)
Q3 = data['charges'].quantile(0.75)
IQR = Q3 - Q1

# Define bounds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

# Filter the dataset to remove outliers
filtered_data = data[(data['charges'] >= lower_bound) & (data['charges'] <= upper_bound)]

# Check the size of the filtered dataset compared to the original dataset
print("Original dataset size:", len(data))
print("Filtered dataset size:", len(filtered_data))</pre>
```

 After running this code, we have trimmed down the dataset from 2772 to 2476, which is a moderate amount of "outliers" given the total and suggests that the data is relatively consistent.

Step 10.

Visualising data after outlier removal

```
# Pair plot to examine relationships among numerical features
sns.pairplot(filtered_data)
plt.show()

# Analyse categorical variables using boxplots
for column in ['sex', 'smoker', 'region']:
```

```
sns.boxplot(x=column, y='charges', data=filtered_data)
plt.title(f"Charges vs {column}")
plt.show()
```

• Data has been changed to filtered data for analysis

Observations from Step 10.

- There is little visible difference in the pairplot although certainly present
- Greatest change can be seen in the target variable 'charges'
- The Interquartile Range filtering may have adverse effects on the overall data as now it potentially may be too consistent
- We no longer have charges approaching 20K
- Tail is still fairly linear

Step 11.

Data Conversion to numeric values for machine learning

```
# Convert categorical variables to one-hot encoded format
data = pd.get_dummies(data, columns=['sex', 'smoker', 'region'],
drop_first=True)
```

- Convert categorical data into pandas dummy variables
- drop_first=True to filter out 'Unknown' gender
- Picked these variables as they seemed to be the best features

Step 12.

Training/Testing

```
from sklearn.model_selection import train_test_split

# Define features and target variable
X = data.drop('charges', axis=1)
y = data['charges']

# Split into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error, r2_score

# Create and train the Ridge regression model
model = Ridge(alpha=1.0) # Default alpha 1.0 as per Ridge documentation
model.fit(X_train, y_train)

# Make predictions on the test set
y_pred = model.predict(X_test)
```

```
# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Mean Squared Error:", mse)
print("R-squared:", r2)
```

- Uses fairly default parameters based on documentation
- Trains science kit Ridge regression model

Step 13.

Selection of the best model

- Ridge regression was the only one that worked during my scope of the project
- However, it's a good general use model that still allows us to analyse the data.

Step 14.

Deployment of the Model

```
# Scatter plot of actual vs predicted charges
plt.scatter(y_test, y_pred)
plt.xlabel("Actual Charges")
plt.ylabel("Predicted Charges")
plt.title("Actual vs Predicted Charges")
plt.show()
```

 Together with the previous code, this presents us with a scatter plot of the actual vs predicted charges.

Observations from Step 14.

- Given our chosen categorical variables of Sex, Smoker and Region, we can see that there is a moderate relationship between the variables.
- As expected of a defined linear relationship, the path is dense
- Actual charges align fairly closely to the predicted charges, although with more variation.

Step 16.

GUI Deployment

```
# Root window for the Tkinter GUI
root = tk.Tk()
root.title("Insurance Analysis")
# Generic file loading for flexibility
def load_data():
    # Open a file dialog to select the CSV file
    file_path = filedialog.askopenfilename(title="Select CSV File",
filetypes=[("CSV Files", "*.csv")])
    if not file_path:
        messagebox.showwarning("No File Selected", "Please select a CSV
file.")
       return None
    # Loads data
    data = pd.read_csv(file_path)
    return data
# Displays data information
def display_data_info():
   data = load data()
    if data is not None:
        # Display basic info
        info = data.info()
        print(info) # For console output
        # Show basic stats in a new window
        new window = tk.Toplevel(root)
        new_window.title("Data Information")
        info_label = tk.Label(new_window, text=str(data.describe()),
justify=tk.LEFT)
        info_label.pack()
# Create scatter plots
def create_scatter_plot():
   data = load_data()
    if data is not None:
        plt.scatter(data['age'], data['charges'])
```

```
plt.xlabel("Age")
        plt.ylabel("Charges")
        plt.title("Age vs Charges")
        plt.show()
# Define a function to create box plots for categorical data
def create_box_plots():
    data = load_data()
    if data is not None:
        for column in ['sex', 'smoker', 'region']:
            sns.boxplot(x=column, y='charges', data=data)
            plt.title(f"Charges vs {column}")
            plt.show()
# Create buttons
info_button = tk.Button(root, text="Display Data Information",
command=display_data_info)
scatter_button = tk.Button(root, text="Create Scatter Plot",
command=create_scatter_plot)
box_plot_button = tk.Button(root, text="Create Box Plots",
command=create_box_plots)
# Place the buttons in the GUI
info_button.pack(pady=10, padx=10)
scatter_button.pack(pady=10, padx=10)
box_plot_button.pack(pady=10, padx=10)
# Start the Tkinter event loop
root.mainloop()
```

- Creates a Tkinter GUI interface
- Made generic to use on any CSV file
- Is able to display basic data from the file
- Can present the scatter plot from earlier
- Can go through the sequence of box plots from earlier

