Uxrna Electrónica

Universidad de Xalapa

"Till now, madness has been thought a small island in an ocean of sanity. I am beginning to suspect that it is not an island at all but a continent." -- Machado de Assis, *The Psychiatrist*.

Integrantes:

- Ávarez Castillo Miguel
- Jarquin Morales Natalia
- Jiménez Ponce Norma Ines
- Morales Martínez Zain Aziel
- Reyes Vázquez Brenda
- Aguilar Justo Adan Enrique (Disque el maestro responsable)
- Aguas con Yaser (Invitado Especial)

Introducción

Algunos de los aspectos fundamentales del voto dentro de las democracias y en espacial en nuestro país, es que sea libre y secreto. El proceso de votación le permite al ciudadano mexicano ejercer su máximo derecho de participación en la vida política, cívica y comunitaria del país. Sin embargo, las jornadas electorales son muy complejas y requieren de un especial cuidado durante cada momento del proceso, para lograr cumplir con los aspectos característicos del voto, por lo tanto estas jornadas exigen mucho tiempo. Dado que la tecnología es una herramienta que facilita muchas actividades ayudándonos a realizarlas de manera optima y eficaz, la tecnología se ha agregado en el proceso de votación y de esta manera se ha pensado en implementar una urna electrónica que permita el registro de los votos durante las jornadas electorales.

La urna electrónica es un dispositivo que permite recibir los votos emitidos por los ciudadanos y los contabiliza de manera automática [1]. De este modo la urna elimina el conteo manual de votos y consigo los posibles errores que se pudieran generar en este conteo manual, aumentar la participación de la ciudadanía, ademas de que contribuye a la conservación del medio ambiente ya que esta urna es reusable.

En la actualidad con el avance de las tecnologías muchos países están en proceso de implementar nuevos mecanismos para dicho proceso, como la creación de urnas electrónicas. Algunos países como Estados Unidos, Gran Bretaña, Suiza, Holanda, Estonia, Venezuela, Brasil, India, y Francia entre otros han implementado diversos mecanismos para que de esta forma los ciudadanos tengan mas confianza respecto a los procesos electorales, el término "e-voting" hace referencia a todo tipo de votación que implique el uso de medios electrónicos. En Alemania las urnas electrónicas han sido utilizadas por más de diez años pero todo esto termino cuando la corte dicto que el uso de las urnas electrónicas queda prohibido ya que en 2005 los equipos presentaron problemas, el mas importante fue que los equipos no le ofrecían al ciudadano un comprobante que verificara que su voto había sido emitido lo que esto hizo que los ciudadanos desconfiaran totalmente en la máquina.

Como resultado en este trabajo se obtiene el diseño de un prototipo detallado de una urna electrónica funcional y segura. Se muestran las especificaciones de todos los componentes que conformarían el hardware de la urna, así mismo se mencionan los detalles del software, por consiguiente es posible ensamblar y programar la urna electrónica que se propone en este documento.

Esta urna electrónica diseñada por alumnos de la Universidad de Xalapa toma como base la cuarta generación de la urna electrónica de Jalisco, sin embargo las tecnologías utilizadas y planteadas para el prototipo son actuales y con un gran margen de escalamiento:

Para el sofware se eligieron las siguientes tecnologías, que son usadas por las FANG (Facebook, Amazon, Netflix, Google):

- Lenguaje de programación python, que es de propósito general y permite desarrollar aplicaciones de manera rápida y eficiente.
- Manejador de base de datos postgres, que es robusto y escalable.
- Diseño del sistema utilizando modelos UML, que permiten una documentación rápida y descriptiva del proyecto.

El hardware utilizado es ...

• MUY BREVE DESCRIPCIÓN DEL HARWARE

Objetivos

Objetivo General:

 Desarrollar un prototipo eficaz de urna electrónica innovador y funcional, para que los ciudadanos puedan votar de una manera fácil, eficiente y segura. Enfocado para distintos tipos de elecciones, además de generar confianza en la ciudadanía.

Objetivos específicos:

- Proceso de votación fácil de comprender y realizar para el usuario.
- Acortar el tiempo del proceso de votación.
- Eliminar el conteo manual de votos.
- Disminuir los costos que son generados por las boletas de papel utilizadas en las votaciones convencionales.

- Reducir el tiempo destinado a las capacitaciones de funcionarios de casilla.
- Satisfacción en la ciudadanía al realizar el voto electrónico
- Prototipo dentro del presupuesto dado.
- Fomentar el voto electrónico.

Glosario

- E-voting: voto a distancia a través de internet
- Partido político: son grupos de ciudadan@s que comparten una ideología política y la promueven
- Presidente: Es la persona designada para dirigir un gobierno, tribunal, asamblea, consejo, etc.
- Framework:

Especificaciones técnicas del prototipo

Hardware

SALUDOS Y BRENDA

Software

Lenguajes de programación

- Java: Es un lenguaje de programación ampliamente utilizado para codificar aplicaciones web. Java es
 un lenguaje multiplataforma, orientado a objetos y centrado en la red que se puede utilizar como
 una plataforma en sí mismo. Es un lenguaje de programación rápido, seguro y fiable para codificar
 todo, desde aplicaciones móviles y software empresarial hasta aplicaciones de macrodatos y
 tecnologías del lado del servidor.
- PHP: Es un lenguaje de programación que permite el desarrollo web o aplicaciones web dinámicas, el
 cual es apto para incrustar el lenguaje HTML, ahora bien, siempre siguiendo algunas reglas
 establecidas. Además, el lenguaje PHP favorece a la conexión entre el servidor y a la interfaz del
 usuario.
- Python: Es un lenguaje de programación de proposito general comúnmente utilizado para el
 desarrollo de aplicaciones web, investigación científica, aprendizaje automático y FinTech. Además,
 su código repetible y sus capacidades de automatización promueven procesos de construcción
 simplificados.
- **C#**: Es un lenguaje de programación orientado a objetos orientado a componentes. C# proporciona construcciones de lenguaje para admitir directamente estos conceptos, por lo que se trata de un lenguaje natural en el que crear y usar componentes de software. C# permite a los desarrolladores crear muchos tipos de aplicaciones seguras y sólidas que se ejecutan en .NET.

	Java	PHP	Python	C#
Ventajas	Curva de aprendizaje alta	Lenguaje libre	Baja curva de aprendizaje	Un Lenguaje Seguro

	Java	PHP	Python	C#
	Está orientado a los objetos	Dispone de una sintaxis muy limpia	Polivalente y de paradigmas	Orientado a Objetos
	Es multiplataforma	Se integra de una manera muy simple en la base de datos	Amplia colección de bibliotecas y frameworks	Más Sencillo que C++
	Cuenta con liberación de memoria		Portabilidad	Seguro pero flexible
			Gratis y de código abierto	Mejor Manejo de Memoria
Desventajas	Es de lenguaje Interpretado	Brechas de seguridad que puede haber en el servidor	Lentitud	Se debe conseguir una versión reciente de Visual Studio .NET
	Requiere de experiencia en programación	El código fuente no se puede ocultar con facilidad	Consumo de memoria	Alta curva de aprendizaje
	Es de sintaxis compleja	Para su ejecución, es necesario un servidor	Desarrollo móvil	Requisitos de computo altos
	Se ejecuta solo en dispositivos y equipos aptos			

Para el proyecto de la urna electronica se propone utilizar **python** como lenguaje base. En los últimos años python ha evolucionado para ser uno de los lenguajes preferidos en la industria de desarrollo de software e investigación en inteligencia artificial. Por lo cúal se han desarrollado multiples franworks que permiten trabajar desde aplicaciones de escritorio hasta aplicaciones web para el backend de estas. Dentro de los frameworks explorados encontramos:

- Flask: es un framework minimalista para el desarrollo de aplicaciones web de manera rapida y con muy pocas lineas de codigo.
- **Django**: es un framework web de alto nivel que fomenta un desarrollo rápido y un diseño limpio y pragmático. Este es mas avanzado que flask.
- Kivy: es un framework Python gratuito y de código abierto para desarrollar aplicaciones móviles y otro software de aplicación multitáctil con una interfaz de usuario natural. Se distribuye bajo los términos de la licencia MIT y puede ejecutarse en Android, iOS, Linux, macOS y Windows.

Para el servidor web se eligío utilizar DJANGO, mientras que para la aplicación que vivira en la urna sera desarrollada con KIVY para la interfaz gráfica, permitiendo incluso crear urnas portatiles en dispositivos moviles como tabletas electronicas.

Administrador de base de datos

- MYSQL
- MARIADB
- POSTGRESQL
- SQLite

POSTGRESQL y SQLite

Arquitecura Cliente-Servidor

La arquitectura cliente-servidor es un modelado de sistemas, donde las tareas se reparten entre proveedores de recursos o servicios, llamados servidores y los consumidores llamados clientes.

Para la urna electrónica se propone utilizar esta arquitectura, donde habrá un servidor que proveerá de la configuración inicial a las urnas electrónicas, y las urnas electrónicas que mantendrán una copia de la información requerida para su funcionamiento, la cual obtendrán del servidor central, a quien también le comunicaran los resultados finales, ya sea a través de internet o de una red local privada. El siguiente diagrama muestra la arquitectura y la comunicación de cada una de las partes.

Diagrama de estados

Diseño de datos

Urna:

- id urna: number <>
- public key: text <>>
- mac_address: text
- · uuid motherboard: uuid
- registered_at: datetime

• updated_at: datetime

Casilla generales{

• id_casilla: number

entidad:textmunicipio:textlocalidad:textdistrito:text

• seccion_electoral:text

• tipo_casilla: text

usuario{

• id_usuario: number <>

• id_funcionario:number <>

• identificador_tarjeta: text

• contraseña: text <>

permiso{

• id_permiso:number <>

nombre: textdescripcion: text

funcionario{

- id_funcionario:number <>
- id_tipo_funcionario: number <>

• clave_elector:text

• nombre:text

• apellido_paterno:text

• apellido_materno:text

• curp:text

• fecha_nacimiento:date

• sexo:text

• entidad:text

• municipio: text

• localidad: text

direccion: text

• calle:text

• numero:text

tipos_funcionario{

- id_tipo_funcionario:number <> --
- nombre: textdescription: text

eleccion

- id_eleccion: number <>
- id_tipo_eleccion:number <>
- nombre:text
- tipo:text
- fecha: date

tipos_eleccion{

- id_tipo_eleccion: number <> --
- nombre:text
- description: text

boleta{

- id_eleccion --
- cantidad_maxima: number
- votos_ejercidos: number
- entidad:text
- municipio: text
- localidad: text
- distrito:text
- seccion_electoral:text
- tipo_casilla: text

voto{

- id_voto:number <>
- candidato: number <>
- folio: number
- fecha_hora_inicio_votacion: datetime
- fecha_hora_voto: datetime
- fecha_hora_fin_votacion: datetime

candidato{

- id_candidato: number <>
- nombre:text
- · hipocoristico: text
- cargo:text
- · descripcion: text

partido{

• id_partido: number <>

nombre: texthipocoristico: texturi_imagen: text

log_actividad{

• id_log:number<>

• id_usuario:number <> --

actividad: text

• fecha_hora:datetime

Diseño de interfaz de usuario

[] X		
♥ CORAZÓN	* SOL	* SOL
Propietaria ó Propietario	Propietaria ó Propietario	Propietaria ó Propietario
Norma Inés	Norma Inés	Norma Inés
Suplente	Suplente	Suplente
Zain Moráles	Zain Moráles	Zain Moráles
♥ CORAZÓN	* SOL	* SOL
Propietaria ó Propietario	Propietaria ó Propietario	Propietaria ó Propietario
Norma Inés	Norma Inés	Norma Inés
Suplente	Suplente	Suplente
Zain Moráles	Zain Moráles	Zain Moráles

Diseño y modelado de la urna

VISTAS...

Anexos: documentación de diseño del sistema

Referencias

- [1] https://www.iepcjalisco.org.mx/urna-electrónica/que-es-la-urna-electronica
- [2] International IDEA resources on Electoral Processes, "Introducing Electronic Voting: Essential Considerations", International Institute finternational IDEA resources on Electoral Processesor Democracy and Electoral Assistance, Sweden, ISBN: 978-91-86565-21-3, 2011

• [3] Alfonso Ayala Sánchez, EL VOTO ELECTRÓNICO EN EL MUNDO,2012, Universidad Nacional Autónoma de México, Instituto de Investigaciones Jurídicas, LXII Legislatura, H. Congreso del Estado de Veracruz

• [4] Sokolov, Roman & Arefin, S M. (2014). E-Voting evaluation report.