Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Techniques like Code refactoring can enhance readability. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. There are many approaches to the Software development process. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Programming languages are essential for software development. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Also, specific user environment and usage history can make it difficult to reproduce the problem. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA).