© Springer-Verlag 1991

Graded modules over G-sets II

Constantin Năstăsescu¹, Liu Shaoxue², and F. Van Oystaeyen

- ¹ Facultatea de Matematică, Str. Academiei 14, RO-70109 Bucharest 1, Romania
- ² Mathematics, Beijing Normal University, Beijing, P.R. China
- ³ Universiteit Antwerpen, Department of Mathematics, B-2610 Wilrijk, Belgium

Received June 10, 1989; in final form May 15, 1990

Introduction

Let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a G-graded ring and A a left G-set. In the paper [8] the

category of A-graded R-modules. (G, A, R)-gr was introduced and studied. An object of this category is a left R-module M together with a direct sum decomposition $M = \bigoplus_{x \in A} M_x$, where $\{M_x | x \in A\}$ is a family of subgroups of the additive

group of M such that $R_{\sigma}M_x\subseteq M_{\sigma x}$ for all $\sigma\in G$ and $x\in A$. When A is the G-set G (G acts on itself by left translation) then (G, A, R)-gr is exactly the category R-gr of all graded R-modules (extensively studied in [6] and other works). An important example of G-set is A=G/H, where H<G is a subgroup and G/H denotes the cosets of H in G (G acts on G/H by left translation). In this case, (G, A, R)-gr is denoted by (G/H, R)-gr. This category was studied for the first time by E. Dade in [2].

In the case of the category R-gr, a powerful tool for the study of this category is the ring denoted by $R \# G^*$, called the smash product of R by G. This ring was introduced for the case where G is a finite group by M. Cohen and S. Montgomery in [1], and extended for the general case by G. Quinn in [9]. The utility of this ring has been emphasized, in [5] and [7] and other recent publications.

In the paper [8] the smash product R # A is defined in case R is a G-graded ring and A is a finite G-set. In the first section of the present paper, we introduce the ring R # A in case A is an arbitrary G.set and R is a G-graded ring. When A is the G-set G, one obtains the smash product $\widetilde{R} \# G^*$.

If the ring $\tilde{R} \# G^*$ proved to be a powerful tool for studying the category R-gr, in the case of the category (G, A, R)-gr, unfortunately, the smash product R # A is not a satisfactory tool. This happens mainly because in this generality one does not obtain a duality theorem of the Cohen-Montgomery type.

The main purpose of this paper is to show that a good tool for studying the category (G/H, R)-gr is provided by the ring $R\{H\} = (\tilde{R} \# G^*) \bar{H}$ which is obtained by adjoining to the smash product $\tilde{R} \# G^*$ a group of invertible ele-

342 C. Nåståsescu et al.

ments of the matrix ring $M_G(R)$ isomorphic to the subgroup H of G. The idea for using this ring was provided by the constructions performed in [5], as well as by the Corollary 2.17 of [8], which stated that if G is a finite group, then the rings $\{R \# G/H\}$ and $R\{H\}$ are Morita equivalent.

The paper contains four sections. In the first section we define the smash product R # A for an arbitrary G-set. The construction follows the one given by D. Quinn for the smash product $\tilde{R} \# G^*$ in [9]. The section ends with an example showing that in this case the Cohen-Montgomery Duality Theorem does not function in general.

In Sect. 2 we introduce the ring $R\{H\}$ (which was introduced in fact by D. Quinn in [9]) and we define the functor $(-)^{\#,H}$: (G/H, R)-gr $\to R\{H\}$ – mod. A series of properties of this functor is given.

In Sect. 3 we construct a right adjoint for the functor $(-)^{\#,H}$ and we show that the category (G/H, R)-gr is equivalent with a certain localizing subcategory of $R\{H\}$ -mod. The main result of this section is Theorem 3.1. The constructions in Sects. 2 and 3 are inspired from the paper $\lceil 5 \rceil$.

Section 4 contains a series of applications of Theorem 3.1. The main results of this section are Theorems 4.1 and 4.2.

1 Preliminaries and remarks on the smash product

All rings considered in this paper will be unitary. If R is a ring, by an R-module we will mean a left R-module, and we will denote the category of R-modules by R-mod. Let G be a multiplicative group with identity "1". A G-graded ring is a ring with identity 1, together with a direct sum decomposition (as additive subgroups) $R = \bigoplus_{\sigma \in G} R_{\sigma}$ such that $R_{\sigma} R_{\tau} \subseteq R_{\sigma\tau}$ for all $\sigma, \tau \in G$. If A is a left G-set

by an A-graded module we will mean an R-module M together with a direct sum decomposition $M = \bigoplus M_x$ such that $R_{\sigma} M_x \subseteq M_{\sigma x}$ for all $\sigma \in G$ and $x \in A$.

If
$$M = \bigoplus_{x \in A} M_x$$
 and $N = \bigoplus_{x \in A} N_x$ are A-graded R-modules, then a morphism

 $f: M \to N$ is an R-linear map such that $f(M_x) \subseteq N_x$ for all $x \in A$. The category (G, A, R)-gr consists of left A-graded R-modules with the morphisms defined as above. It is known [8] that (G, A, R)-gr is a Grothendieck catagory.

If A = G with the natural left action of G on itself, then the category (G, A, R)gr is exactly the category R-gr of all left G-graded R-modules. If H is a subgroup
of G and A = G/H is the set of all left H-cosets in G with the usual G-action
on it (left translation), then we write (G/H, R)-gr for the category (G, G/H, R)-gr.

If A is a singleton with G acting trivially on it, then the category (G, A, R)-gr is exactly the category R-mod.

We note that if A is a left G-set, then the category (G, A, R)-gr is a direct product of categories of the form (G/H, R)-gr, where H is some subgroup of G, [8].

Let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a G-graded ring an A a left G-set. Following the construc-

tion given by D. Quinn in [9] for the case where A = G, we define now the smash product of the ring R by the G-set A (the construction in the case where A is finite was done in [8]).

We denote by $M_A(R)$ the set of row and column finite matrices over R, with rows and columns indexed by the elements of A.

 $M_A^*(R)$ is the ideal of $M_A(R)$ consisting of the matrices with only finitely many non-zero entries. Clearly, if A is finite, then $M_A^*(R) = M_A(R)$. If $\alpha \in M_A(R)$, then we write $\alpha(x, y)$ for the entry in the (x, y) position of α . For $\alpha, \beta \in M_A(R)$, the matrix product is given by

$$(\alpha \beta)(x, y) = \sum_{z \in A} \alpha(x, z) \beta(z, y).$$

If $x, y \in A$, then we let $e_{x,y}$ denote the matrix with 1 in the (x, y)-position and zero elswhere. Let $p_x = e_{x,x}$. Define $\eta: R \to M_A(R)$ ba $\eta(r) = \tilde{r}$, where $\tilde{r} = \sum_{\sigma \in G} \sum_{x \in A} r_{\sigma} e_{\sigma x, x}, r = \sum_{\sigma \in G} r_{\sigma}, r_{\sigma} \in R_{\sigma}$ for any $\sigma \in G$.

We show that η is a ring homomorphism. Indeed, if $r_{\sigma} \in R_{\sigma}$, $r_{\tau} \in R_{\tau}$, then we have $\eta(r_{\sigma}r_{\tau}) = r_{\sigma}r_{\tau} \sum_{x \in A} e_{\sigma\tau x, x}$. But $\eta(r_{\sigma}) \eta(r_{\tau}) = r_{\sigma}r_{\tau} \sum_{x \in A} e_{\sigma x, x} \sum_{y \in A} e_{\tau y, y} = r_{\sigma}r_{\tau} \sum_{x \in A} \sum_{y \in A} e_{\sigma x, x} \sum_{y \in A$

$$G_{v,x} = \{ \sigma \in G \mid \sigma x = y \}.$$

We have for $x \neq x'$ that $G_{y,\,x'} = \phi$ and $G = \bigcup_{x \in A} G_{y,\,x}$. Since $\eta(r) = \eta(s)$, then for any $x \in A$ we obtain that $\sum_{\sigma \in G_{y,\,x}} r_{\sigma} = \sum_{\sigma \in G_{y,\,x}} s_{\sigma}$ (the equality holds even if $G_{x,\,y} = \phi$ if we agree that a sum indexed by an empty family is zero). Since $r = \sum_{x \in A} \sum_{\sigma \in G_{y,\,x}} r_{\sigma}$, then r = s.

We denote by $\tilde{R} = \eta(R)$ and by R # A the subring of $M_A(R)$ generated by \tilde{R} and the set $\{p_x \mid x \in A\}$.

If, $r, s \in R$, we have the equality:

$$(\tilde{r} p_x)(\tilde{s} p) = \begin{cases} (\sum_{\substack{\sigma \in G \\ \sigma y = x}} r s_{\sigma}) p_y = r(\sum_{\substack{\sigma \in G \\ \sigma y = x}} s_{\sigma}) p_y \\ o \text{ if there is no } \sigma \text{ such that } \sigma y = x \end{cases}$$

Indeed, it is sufficient to prove that

$$p_{x}(\tilde{s}\,p_{y}) = (\sum_{\substack{\sigma \in G \\ \sigma\,y = x}} s_{\sigma})\,p_{y}.$$

Suppose there exists $\sigma \in G$ such that $\sigma y = x$. Then

$$\begin{aligned} p_{x}(\tilde{s}\,p_{y}) &= p_{x} \left(\sum_{\sigma \in G} \sum_{x \in A} s_{\sigma} e_{\sigma x'\,x} \right) p_{y} \\ &= e_{x,\,x} \left(\sum_{\sigma \in G} \sum_{z \in A} s_{\sigma} e_{\sigma z,\,z} \right) p_{y} \\ &= \left(\sum_{\sigma \in G} s_{\sigma} \sum_{z \in A} e_{x,\,x} e_{\sigma z,\,z} \right) p_{y} \\ &= \left(\sum_{\sigma \in G} s_{\sigma} e_{x,\,\sigma^{-1}\,x} \right) e_{y,\,y} \\ &= \left(\sum_{\substack{\sigma \in G \\ \sigma \neq x = x}} s_{\sigma} \right) p_{y}. \end{aligned}$$

In particular, if $r_{\sigma} \in R_{\sigma}$, $x \in A$, we have

$$p_{x}\tilde{r}_{\sigma} = \tilde{r}_{\sigma}p_{\sigma^{-1}x}$$

If $r \in R$ such that $\tilde{r}p_x = 0$ or $p_x \tilde{r} = 0$, then r = 0. Indeed, if $\tilde{r}p_x = 0$, then $(\sum_{\sigma \in G} \sum_{y \in A} r_{\sigma} e_{\sigma y, y}) e_{x, x} = 0$, and therefore $\sum_{\sigma \in G} r_{\sigma} e_{\sigma x, x} = 0$.

Thus $\sum_{\sigma \in G_{y, x}} r_{\sigma} = 0$ for all $y \in A$, and hence $r = \sum_{y \in A} \sum_{\sigma \in G_{y, x}} r_{\sigma} = 0$. We have that

 $G_{x,y} \cap G_{y',x} = 0$ for $y \neq y'$, and $G = \bigcup_{y \in A} G_{y,x}$.

Now if $p_x \tilde{r} = 0$, then we obtain $0 = p_x \sum_{\sigma \in G} \sum_{z \in A} r_\sigma e_{\sigma z, z} = \sum_{\sigma \in G} r_\sigma e_{x, \sigma^{-1} x}$, and hence $\sum_{\sigma \in G} r_\sigma e_{\sigma z, z} = \sum_{\sigma \in G} r_\sigma e_{\sigma z, z} = \sum$

Thus the set of orthogonal idempotents $\{p_x | x \in A\}$ is a free set on the left and on the right over the ring \tilde{R} . Hence, if A is an infinite set, then

$$R \# A = \widetilde{R} \oplus (\bigoplus_{x \in A} \widetilde{R} p_x).$$

We denote by $Aut_G(A)$ the group of G-automorphisms of the G-set A. If $\varphi \in \operatorname{Aut}_G(A)$ we define $\overline{\varphi} \in M_A(R)$ by $\overline{\varphi} = \sum_{x \in A} e_{x, \varphi(x)}$. If $\varphi \in \operatorname{Aut}_G(A)$ and $\alpha \in M_A(R)$, then for any $x, y \in A$ we have

$$(\bar{\varphi}^{-1} \alpha \bar{\varphi})(x, y) = \alpha(\bar{\varphi}^{-1}(x), \bar{\varphi}^{-1}(y)).$$

Indeed, if $\beta = \alpha \bar{\phi}$, then

$$\beta = \sum_{\mathbf{v} \in \mathbf{A}} \alpha \, e_{\mathbf{v}, \, \boldsymbol{\varphi}(\mathbf{v})},$$

and therefore

$$\beta(x, y) = \sum_{v \in A} \sum_{z \in A} \alpha(x, v) e_{v, \varphi(v)}(z, y) = \alpha(x, z) \quad \text{with } y = \varphi(z),$$

and hence $\beta(x, y) = \alpha(x, \tilde{\varphi}^{-1}(y))$.

Now

$$\begin{split} (\bar{\varphi}^{-1} \, \alpha \, \bar{\varphi})(x, \, y) &= \sum_{u \in A} \sum_{z \in A} e_{u, \, \varphi^{-1}(u)}(x, \, z) \, \beta(z, \, y) \\ &= \sum_{u \in A} \sum_{z \in A} e_{u, \, \varphi^{-1}(u)}(x, \, z) \, \alpha(z, \, \bar{\varphi}^{-1}(y)) \\ &= \sum_{z \in A} \sum_{u \in A} e_{u, \, \varphi^{-1}(u)}(x, \, z) \, \alpha(z, \, \bar{\varphi}^{-1}(y)) \\ &= \alpha(\varphi^{-1}(x), \, \varphi^{-1}(y)). \end{split}$$

If we denote by $R\{\operatorname{Aut}_G(A)\}$ the subring of $M_A(R)$ generated by R # A and the set $\{\bar{\varphi} \mid \varphi \in \operatorname{Aut}_G(A)\}$, then $R\{\operatorname{Aut}_G(A)\} = \sum_{\varphi \in \operatorname{Aut}_G(A)} (R \# A) \bar{\varphi}$, and the set

 $\{\bar{\varphi} \mid \varphi \in Aut_G(A)\}\$ is a set of normalizing elements for the ring R # A.

Unfortunately, we do not have a Duality Theorem in the sense of Cohen-Montgomery over the ring $R \neq A$, i.e. in general

$$R\{\operatorname{Aut}_G(A)\} \neq M_A(R).$$

For example, if H < G is a subgroup of G such that N(H) = H(N(H)) is the normalizer of H in G) then by [8] we have $\operatorname{Aut}_G(G/H) \simeq N(H)/H = \{e\}$. Thus $R \{ \operatorname{Aut}_G(A) \} = R \# A$, but $R \# A \# M_A(R)$.

Using the same arguments as in [5] it may be shown that if A is an arbitrary G-set, then (G, A, R)-gr is isomorphic to some localizing subcategory of R # A-mod. If A is finite, then (G, A, R)-gr is isomorphic to R # A-mod (this result was obtained using different methods in [8]).

2 The functor $(.)^{*,H}$

Let $R = \sum_{\sigma \in G} R_{\sigma}$ be a G-graded ring and H is a subgroup of G. Let $\tilde{R} \# G^*$ denote

the smash product associated to the graded ring R, i.e. the smash product when the G-set A is the group G with the natural left action on itself.

 $\tilde{R} \# G^*$ is a subring of $M_G(R)$. For any $g \in G$ we consider the element $\bar{g} \in M_G(R)$, $\bar{g} = \sum_{x \in G} e_{x,xg}$. Then \bar{g} is a unit in $M_G(R)$, and $\bar{G} = \{\bar{g} \mid g \in G\}$ is a group

isomorphic to G.

We denote by $R\{H\}$ the subring of $M_G(R)$ defined by the equality

$$R\{H\} = (\tilde{R} \# G^*) \bar{H} = \sum_{h \in H} (\tilde{R} \# G^*) \bar{h}.$$

It is well known from [9] that

$$R\{H\} = \sum_{h \in H} \widetilde{R} \widetilde{h} \oplus R^*\{H\}$$

where $R^*\{H\} = \{\alpha \in M_G^*(R) \mid \alpha(x, y) \in R \langle xHy^{-1} \rangle \}$ (if X is a subset of G, then $R \langle X \rangle$ denotes the set $R \langle X \rangle = \bigoplus R_x$).

We have the inclusions $x \in X$

$$\widetilde{R} \# G^* \subset R\{H\} \subset R\{G\} \subset M_G(R)$$
.

When G is a finite group, we have $R\{G\} = M_G(R)$, which is exactly the Duality Theorem of Cohen and Montgomery.

We have the functor

$$Col_G(-)$$
: R -mod $\rightarrow R\{G\}$ -mod

which is defined as follows: if $M \in R$ -mod, then $\operatorname{Col}_G(M)$ is the set of column matrices over M with elements indexed by G and with finitely many non-zero entries. In fact, $\operatorname{Col}_G(M)$ is a left $M_G(R)$ -module, and by restriction of scalars it is a left $R\{G\}$ -module. This functor is exact. By [5] we have the functor

$$(-)^{\#}$$
: R -gr $\rightarrow \tilde{R} \# G^{*}$ - mod

which is defined as follows: if $M \in R$ -gr, then M has a natural structure of on $\tilde{R} \# G^*$ -module (see [5]) if for $m \in M$, $m = \sum_{x \in G} m_x (m_x \in M_x)$ are the homogeneous

components of m) and $\tilde{r} \in \tilde{R}$ we put $\tilde{r}m = rm$ and $p_x m = m_x$. We denote the module M considered with this structure by $M^{\#}$. The correspondence $M \to M^{\#}$ defines an exact functor $(-)^{\#}$: R-gr $\to \tilde{R} \# G^*$ -mod.

If we denote by

$$(R\text{-gr})^* = \{M \in \widetilde{R} \# G^* \mid M = \bigoplus_{x \in G} p_x M\}$$

then by [5], $(R-gr)^*$ is a localizing subcategory of $\tilde{R} \# G^*$ -mod (i.e. it is closed under subobjects, quotient objects, extensions and arbitrary direct sums). Since $(R-gr)^*$ is a localizing subcategory, then for any $\tilde{R} \# G^*$ -module N there exists a largest $\tilde{R} \# G^*$ -submodule $t_\# N$ of N such that $t_\# N \in (R-gr)^*$. In fact $t_\# N \in (R-gr)^*$, then N has a natural structure of a graded R- $\int_{x\in G} p_x N$. Now if $N\in (R-gr)^*$, then N has a natural structure of a

module if we consider N as an R-module via the morphism

$$\eta: R \to \tilde{R} \# G^*$$

and with the grading $N_x = p_x N$.

Thus we obtain a new functor

$$(-)_{gr}$$
: $\tilde{R} \# G^* - \text{mod} \rightarrow R\text{-gr}$

which sends $N \in \tilde{R} \# G^*$ -mod to $t_* N$ considered as a graded R-module.

It is showed in [5] that the functor $(-)_{gr}$ is a right adjoint of the functor $(-)^*$. Moreover, the functors $(-)^*$ and $(-)_{gr}$ define an equivalence (in fact an isomorphism) between the categories R-gr and (R-gr)*.

We define now the functor

$$(-)^{\#,H}$$
: $(G/H, R)$ -gr $\rightarrow R\{H\}$ -mod

as follows: if $M = \bigoplus_{C \in G/H} M_C \in (G/H, R)$ -gr, then $M^{\#,H}$ is the subset of $Col_G(M)$

such that the entries in the x-position belong to M_C if $x \in C$.

Lemma 2.1 With the above notation, $M^{\#,H}$ is an $R\{H\}$ -submodule of $Col_G(M)$.

Proof. Let $v \in M^{\#,H}$ and $\alpha \in R\{H\}$. We must prove that $\alpha v \in M^{\#,H}$. We can assume that $v_x \in M_C$, where $x \in C(v_x \text{ in the entry in the } x\text{-position of } v)$, and $v_y = 0$ for $y \neq x$. Now if $\alpha = p_v$, we have

$$p_y v = \begin{cases} 0 & \text{if } y \neq x \\ v & \text{if } y = x \end{cases}$$

and therefore $p_v v \in M^{\#, H}$.

If $\alpha = \tilde{r}_{\sigma}$, $r_{\sigma} \in R_{\sigma}$, then we have

$$(\tilde{r}_{\sigma} v_t) = \sum_{y \in G} \tilde{r}_{\sigma}(t, y) v_y = \tilde{r}_{\sigma}(t, x) v_x.$$

But $\tilde{r}_{\sigma}(t, x) = r_{\sigma}$ if $\sigma = t x^{-1}$ and $\tilde{r}_{\sigma}(t, x) = 0$ if $\sigma + t x^{-1}$. Hence $(\tilde{r}_{\sigma}v)_t = r_{\sigma}v_x$ if $t = \sigma x$ and $(\tilde{r}_{\sigma}v)_t = 0$ if $t \neq \sigma x$. But $r_{\sigma}v_x \in M_{\sigma C}$, $\sigma x \in \sigma C$ and $\sigma C \in G/H$, therefore $\tilde{r}_{\sigma} v \in M^{\#, H}$.

Let now $\alpha = \overline{h}$, $h \in H$. Then we have $(\overline{h}v)_t = \sum_{y \in G} \overline{h}(t, y) v_y = \overline{h}(t, x) v_x$. Since $\overline{h} = \sum_{z \in G} e_{z, zh}$, we have $\overline{h}(t, x) = 1$ if $t = xh^{-1}$ and h(t, x) = 0 of $t \neq xh^{-1}$.

Hence
$$(\overline{h}v)_t = \begin{cases} v_x & \text{if } t = x h^{-1} \\ 0 & \text{if } t \neq x h^{-1} \end{cases}$$

and thus $(\bar{h}v)_{xh^{-1}} = v_x$ and $(\bar{h}v)_t = 0$ if $t + xh^{-1}$, since $x \in C$, then C = xH, and we note that $xh^{-1}H = xH = C$, i.e. $xh^{-1} \in C$. Hence $\bar{h}v \in M^{\#,H}$, and therefore $M^{\#,H}$ is an $R\{H\}$ -submodule of $Col_{G}(M)$.

Remark 2.1 If $H = \{1\}$, then $M^{\#,H}$ is exactly the $\tilde{R} \# G^*$ -module $M^{\#}$. If H = G, then $M^{\#,G}$ is exactly the $R\{G\}$ -module $Col_G(M)$.

Lemma 2.2 The correspondence $M \rightarrow M^{*,H}$ defines an exact functor $(-)^{\#,H}: (G/H, R)-gr \to R\{H\}-mod.$

Proof. If $M, N \in (G/H, R)$ -gr and $f \in \operatorname{Hom}_{(G/H, R)\text{-gr}}(M, N)$, then it is obvious that $\operatorname{Col}_G(f)(M^{\#, H}) \subseteq N^{\#, H}$, and hence the correspondence $M \to M^{\#, H}$ defines a covariant functor. It is obvious that this functor is exact.

Let now $\varphi: G \to G/H$ be the canonical map $\varphi(g) = gH$ for $g \in G$, which is a morphism of G-sets. By [8] we can associate to the map the canonical functor

$$(-)_{\varphi} \colon R\text{-gr} \to (G/H, R)\text{-gr}$$

defined as follows: if $M \in R$ -gr, $M = \bigoplus_{x \in G} M_x$, then $M_{\varphi} = M$ as R-modules, and

 M_{φ} has the G/H-grading $M = \bigoplus_{C \in G/H} M_C$ where $M_C = \bigoplus_{x \in C} M_x$.

By Theorem 3.1 of [8] we have that $(-)_{\varphi}$ has a right adjoint. This right adjoint may be constructed using the functor $(-)^{\#,H}$ as follows:

Proposition 2.1 The functor $(-)_{\operatorname{gr}} \circ i_* \circ (-)^{\#,H} \colon (G/H,R)\operatorname{-gr} \to R\operatorname{-gr}$ is a right adjoint of the functor $(-)_{\varphi}$. (Here i_* denotes the restriction of scalars functor associated to the inclusion morphism $i\colon \widetilde{R} \# G^* \hookrightarrow R\{H\}$).

Proof. By the construction of the right adjoint of the functor $(-)_{\varphi}$ given in Theorem 3.1 of [8] it is easy to see that this is exactly the functor $(-)_{gr} \circ i_{*} \circ (-)^{\#,H}$. Assume now that H is a finite subgroup of G. If $M = \bigoplus_{C \in G/H} M_C$ is an object of (G/H, R)-gr, then these exists a canonical map

$$\alpha_M: M \to M^{\#,H}$$

defined as follows: if $m \in M_C$, then $\alpha_M(m)$ is the column matrix such that for any $x \in C$ the entry in the x-position is m and the other entries are zero. Since C is a finite set then α_M is well defined.

Lemma 2.3 Assume that H is a finite subgroup of G. Then $\alpha_M: M \to M^{*,H}$ is an R-monomorphism (here $M^{*,H}$ is considered as an R-module via the morphisms of rings $R \xrightarrow{\eta} \tilde{R} \# G^* \xrightarrow{i} R\{H\}$).

Proof. Let $m \in M_C$ and $a_{\sigma} \in R_{\sigma}$. If C = xH, then $\sigma C = \sigma xH$ and thus if we denote by $v = \alpha_M(a_{\sigma}m)$, then for any $y \in \sigma C$ we have $v_y = a_{\sigma}m$ and if $y \notin \sigma C$, then $v_y = 0$.

On the other hand, $a_{\sigma}\alpha_M(m) = \tilde{a}_{\sigma}(..., m, ...)^t \to x(x \in C)$. But $\tilde{a}_{\sigma}(..., m, ...)^t = x = (a_{\sigma}m)^{-1} = a_{\sigma}m$, and therefore $\alpha_{\sigma}(a_{\sigma}m) = a_{\sigma}m$. It is obvious that

On the other hand, $a_{\sigma}\alpha_{M}(m) = a_{\sigma}(..., m, ...) \rightarrow x(x \in C)$. But $a_{\sigma}(..., m, ...) - x = (..., a_{\sigma}m, ...)^{t} - \sigma x$, and therefore $\alpha_{M}(a_{\sigma}m) = a_{\sigma}\alpha_{M}(m)$. It is obvious that α_{M} is injective.

Remark 2.2 In fact α_M is morphism in the category (G/H, R)-gr, of we consider $M^{\#,H}$ as an object of (G/H, R)-gr via the functors $R\{H\}$ -mod $\xrightarrow{i_*} \widetilde{R} \# G^*$ — mod $\xrightarrow{(-)_{g_{\Gamma}}} R$ -gr $\xrightarrow{(-)_{\varphi}} (G/H, R)$ -gr where $\varphi \colon G \to G/H$ is the canonical map of G-sets.

Lemma 2.4 Let K < H < G be subgroups, $\phi \colon G/K \to G/H$ the canonical morphism of G-sets $(\phi(\sigma K) = \sigma H, \ \sigma \in G)$. If $M \in (G/K, R)$ -gr, then M may be viewed as on object from (G/H, R)-gr via the canonical functor $(-)_{\phi} \colon (G/K, R)$ -gr $\to (G/H, R)$ -gr. We have that

$$M^{\#,H} \simeq R\{H\} \bigotimes_{R(K)} M^{\#,K}$$
 as $R\{H\}$ -modules.

Proof. We define the map

$$\gamma: R\{H\} \bigotimes_{R\{K\}} M^{\#,K} \to \operatorname{Col}_G(M)$$

by the equality $\gamma(\alpha \otimes v) = \alpha v$, $\alpha \in R\{H\}$, $v \in M^{\#,K}$. First we mut prove that $\gamma(\alpha \otimes v) \in M^{\#,H}$. It is obvious that we may assume that the entry of v in the x-position is $v_x \in M_{xK}$ and all the other entries of v are zero. If $\alpha = p_v$, then

$$\alpha v = \begin{cases} v & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

and $v \in M^{\#,H}$, since $M_{xK} \subseteq M_{xH}$ by the definition of the functor $(-)_{\phi}$. If $\alpha = \tilde{a}_{\sigma}$, then the entry in the *t*-position of $\tilde{a}_{\sigma}v$ is

$$(\tilde{a}_{\sigma}v)_{t} = \begin{cases} a_{\sigma}v_{x} & \text{if } t = \sigma x \\ 0 & \text{if } t \neq \sigma x. \end{cases}$$

But $a_{\sigma}v_{x} \in M_{\sigma x K} \subseteq M_{\sigma x H}$, hence $\tilde{a}_{\sigma}v \in M^{\#, H}$. Now if $\alpha = \overline{h}$, $h \in H$, then the entry in the *t*-position of $\overline{h}v$ is

$$(\overline{h}v)_t = \begin{cases} v_x & \text{if } t = xh^{-1} \\ 0 & \text{if } t \neq xh^{-1}. \end{cases}$$

But $v_x \in M_{xK} \subseteq M_{xH} = M_{xh^{-1}H}$ because $h \in H$, so $hv \in M^{\#,H}$. In conclusion, $\gamma(\alpha \otimes v) \in M^{\#,H}$, and so γ may be considered as a map from $R\{H\} \bigotimes_{R(K)} M^{\#,K}$

to $M^{\#,H}$, which is clearly a morphism of $R\{H\}$ -modules.

We prove now that γ is bijective. In order to show that γ is injective, let us remark first that if $\{\sigma_i\}_{i\in I}$ is a set of representatives for the left cosets of K in H, then clearly we have that $R\{H\} = \sum_{i\in I} \bar{\sigma}_i R\{K\}$. Now if $\sum_{i\in I} \bar{\sigma}_i a_i = 0$, where

 $a_i \in R\{K\}$, then we can write $a_i = \sum_{j \in I_i} \overline{k_{ij}} a_{ij}$, where $k_{ij} \in K$, $k_{ij} \neq k_{ij}$, for $j \neq j'$, and $a_{ij} \in \widetilde{R} \# G^*$. But $0 = \sum_{i \in I} \overline{\sigma_i} a_i = \sum_{i \in I} \sum_{j \in I_i} \overline{\sigma_i} \overline{k_{ij}} a_{ij}$. For $i \neq i'$ we have that $\sigma_i k \neq \sigma_i k'$

for any $k, k' \in K$, and for $j \neq j'$ we have that $\sigma_i k_{ij'}$. Since the set $\{\bar{g} \mid g \in G\}$ is free over $\tilde{R} \neq G^*$, then $a_{ij} = 0$ for any $i \in I$, $j \in I_i$. Hence $a_i = 0$ for any $i \in I$. So $R\{H\} = \bigoplus_{i \in I} \bar{\sigma}_i R\{K\}$. Therefore every element from $R\{H\} \bigotimes_{R\{K\}} M^{\#,H}$ has the form

 $u = \sum_{i \in I} \bar{\sigma}_i \otimes v_i$, where $v_i \in M^{\#, K}$.

Assume that $\gamma(u) = 0$. Then $\sum_{i \in I} \bar{\sigma}_i v_i = 0$. If $x \in G$, then the entry of $\sum_{i \in I} \bar{\sigma}_i v_i$ in

the x-position is the sum (indexed $byi \in I$) of the entries in the x-position of $\sigma_i v_i$. The entry in the x-position of $\bar{\sigma_i} v_i$ is equal to the entry in the $x\sigma_i$ -position of v_i . Since for $i \neq j$ we have $x\sigma_i \neq x\sigma_j$, we obtain that the entry of v_i in the $x\sigma_i$ -position is zero for any $i \in I$. It follows that if we fix $i \in I$, then the entry of v_i in the $x\sigma_i$ -position is zero for all $x \in G$. If $y \in G$, then there exists $x \in G$ such that $y = x\sigma_i$, so the entry of v_i in the y-position is zero. It follows that $v_i = 0$, and so u = 0, i.e. γ is injective. We prove now that γ is surjective. Let $v \in M^{*,H}$. We can assume that the entry of v in the x-position $(x \in G)$ is $m \in M_{xH}$ and all the other entries of v are zero. Now we have that $m \in M_{xH} = \bigoplus_{i \in I} M_{x\sigma_i K}$,

so $m = \sum_{i \in I} m_i$, where $m_i \in M_{x \sigma_i K}$. We put $v_i \in M^{\#, K}$ as follows: the entry of v_i

in the $x\sigma_i$ position is m_i , and all the other entries are zero. Then $\gamma(u) = \sum_i \bar{\sigma}_i v_i$. We let $u = \sum_{i=1}^{n} \bar{\sigma}_i \otimes v_i$. If we denote for each $w \in M^{\#,H}$ and $t \in G$ by w_t the entry of W in the t-position, then $\gamma(u)_x = (\sum_{i \in I} \bar{\sigma}_i v_i)_x = \sum_{i \in I} (\bar{\sigma}_i v_i)_x = \sum_{i \in I} (v_i)_{x\sigma_i} = \sum_{i \in I} m_i = m$, and $\gamma(u)_y = \sum_{i \in I} (v_i)_{y\sigma_i} = 0$ for $y \neq x$. So $\gamma(u) = v$ and hence γ is surjective too.

Remarks 2.3 a) By Lemma 2.4, if K < H < G are subgroups, $\phi: G/K \to G/H$ is the canonical map of G-sets, $(-)_{\phi}: (G/K, R)$ -gr $\rightarrow (G/H, R)$ -gr is the associated functor, then we have the following commutative diagram of functors:

$$(G/K, R)\text{-gr} \xrightarrow{(-)_{\phi}} (G/H, R)\text{-gr}$$

$$(-)^{* \cdot K} \downarrow \qquad \qquad \downarrow \qquad (-)^{* \cdot H}$$

$$R\{K\}\text{-mod} \xrightarrow{R(K)} R\{H\}\text{-mod}$$

b) Taking H = G we obtain that for any $M \in (G/K, R)$ -gr-mod we have $R\{G\} \bigotimes M^{\#,K} \simeq \operatorname{Col}_G(M)$ as $R\{G\}$ -modules, so the following diagram of func-

tors is commutative

$$(G/K, R)\text{-gr} \xrightarrow{U} R\text{-mod}$$

$$(-)^{*.K} \downarrow \qquad \qquad \downarrow \qquad \stackrel{\text{Col}}{G}(-)$$

$$R\{K\}\text{-mod} \xrightarrow{R(K)} R\{G\}\text{-mod}$$

where U is the forgetful functor.

ere U is the forgettul functor. c) Taking $K = \{1\}$ we obtain that for any $M \in R$ -gr we have $R\{H\} \bigotimes_{\tilde{R} \# G^*} M^*$ $\simeq M^{\#,H}$ as $R\{H\}$ -modules, so the following diagram of functors is commutative:

$$\begin{array}{ccc}
R \text{-gr} & \xrightarrow{(-)_{\phi}} & (G/H, R) \text{-gr} \\
 & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow \\
 & \uparrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow \\$$

where $\varphi: G \to G/H$ denotes the canonical map.

d) If $\{\sigma_i\}_{i\in I}$ denotes as in the proof of Lemma 2.4 a set of representatives for the left cosets of K in H, then from the proof of the Lemma 2.4 we get that $R\{H\} \bigotimes_{R\{K\}} M^{\#,K} \simeq \bigoplus_{i \in I} \tilde{\sigma}_i \otimes M^{\#,K}$ as $R\{K\}$ -modules whenever K is a normal

subgroup of H. Indeed, if $K \triangleleft H$, then $R\{K\} \bar{\sigma}_i = \bar{\sigma}_i R\{K\}$, and so $\bar{\sigma}_i \otimes M^{*,K}$ is an $R\{K\}$ -module for each $i \in I$.

In particular, if $K = \{1\}$, then we obtain that $R\{H\} \bigotimes_{\tilde{R} \# G^*} M^* \simeq \bigoplus_{h \in H} \tilde{h} \otimes M^*$ as $\tilde{R} \# G^*$ -modules.

We recall now that if $M = \bigoplus_{x \in G} M_x$ is an object of the category R-gr and $\sigma \in G$, then $M(\sigma)$ denotes the graded module obtained from M putting $M(\sigma)$,

 $=M_{\lambda\sigma}$. The graded module $M(\sigma)$ is called the σ -suspension of M.

Lemma 2.5 Assume that $M \in R$ -gr and H < G. Then

$$M^{\#,H} \simeq \bigoplus_{h \in H} M(h)^{\#}$$
 as $\tilde{R} \# G^*$ -modules

Proof. By Lemma 2.4 and Remarks 2.3, c), d) we have that

$$M^{\#,H} \simeq R\{H\} \bigotimes_{\tilde{R} \# G^*} M^{\#} \simeq \bigoplus_{h \in H} \bar{h} \otimes M^{\#}$$
, as $\tilde{R} \# G^*$ -modules

(each $h \otimes M^*$ is an $\tilde{R} \# G^*$ -module). We show that for any $h \in H$ we have that $\overline{h} \otimes M^{\sharp} \simeq M(h)^{\sharp}$.

Indeed, we define the map $\delta: \overline{h} \otimes M^{\#} \to \operatorname{Col}_{G}(M)$ by

$$\delta(\bar{h} \otimes v) = \bar{h}v$$
 for any $v \in M^{\#}$.

It is easy to see that $\delta(\overline{h} \otimes M^{\#}) \subseteq M(h)^{\#}$ and that δ is bijective. We prove that δ is an $\tilde{R} \# G^*$ -morphism. Indeed, we have $\delta(p_x(\bar{h} \otimes v)) = \delta(p_x \bar{h} \otimes v)$ $= \delta(\overline{h} p_{xh} \otimes v) = \delta(\overline{h} \otimes p_{xh} v) = \overline{h} p_{xh} v = p_x h v = p_x \delta(\overline{h} \otimes v), \quad \text{and} \quad$ $= \delta(\tilde{a}_{\sigma} \stackrel{\leftarrow}{h} \otimes v) = \delta(\tilde{h} \stackrel{\leftarrow}{a}_{\sigma} \otimes v) = \delta(\tilde{h} \otimes \tilde{a}_{\sigma} v) = \tilde{h}(\tilde{a}_{\sigma} v) = \tilde{a}_{\sigma} \stackrel{\leftarrow}{h} v = \tilde{a}_{\sigma} \delta(\tilde{h} \otimes v).$

3 The construction of a right adjoint functor of the functor $(-)^{\#,H}$

In this section we show that the functor $(-)^{\#,H}$ has a right adjoint and that the category (G/H, R)-gr is equivalent, via the functor $(-)^{\#, H}$ with some subcategory of $R\{H\}$ -mod.

We denote by

$$\mathscr{C}^{\#,H} = \{ M \in R \{ H \} \text{-mod} \mid M = \sum_{x \in G} p_x M \}.$$

It is easy to see that $\mathscr{C}^{\#,H}$ is a localizing subcategory of $R\{H\}$ -mod. In particular, if $H = \{1\}$, then we obtain the localizing subcategory $\mathscr{C}^{\#}$ of $\widetilde{R} \# G^*$ -mod which is studied in [5]. In fact $\mathscr{C}^{\#}$ is exactly $(R\text{-gr})^{\#}$ defined in § 2. Since $\widetilde{R} \# G^{*} \subseteq R \{H\}$ we have the canonical functors between the categories \mathscr{C}^* and $\mathscr{C}^{*,H}$

$$\mathscr{C}^{\#} \xrightarrow{R \notin G^{*}} \mathscr{C}^{\#}, H$$

where i_* is the functor "restriction of scalars". Indeed if $M \in \mathscr{C}^{\#,H}$, then it is obvious that $i_*(M) \in \mathscr{C}^{\#}$. Now if $N \in \mathscr{C}^{\#}$, we denote $M = R\{H\} \bigotimes_{\tilde{R} \# G^*} N$. If $m \in M$, then $m = \sum_{i \in I} h_i \otimes n_i$, where h_i , where $h_i \in H, n_i \in N.$

Thus $p_x m = \sum_{i \in I} p_x \bar{h}_i \otimes n_i = \sum_{i \in I} \bar{h}_i p_{xh_i} \otimes n_i = \sum_{i \in I} \bar{h}_i \otimes p_{xh_i} n_i$, and therefore $\sum_{x \in G} p_x m$ $= \sum_{i \in I} \overline{h_i} \otimes \sum_{x \in G} p_{xh_i} n_i.$ Since $N \in \mathscr{C}^*$, then $n_i = \sum_{x \in G} p_{xh_i} n_i$ and therefore $\sum_{x \in G} p_x m = \sum_{i \in I} \overline{h_i} \otimes n_i = m$. Hence

 $M \in \mathscr{C}^{\#,H}$. The following result will be very useful in the sequel:

Lemma 3.1 Let $M \in \mathcal{C}^{\#,H}$, $x \in G$ and $h \in H$. Then there exists a canonical isomorphism

$$\varphi_{x,h}: p_x M \to p_{xh} M$$
.

Proof. If $m \in M$ we define $\varphi_{x,h}(p_x m) = p_{xh} \bar{h}^{-1} m$. We check that $\varphi_{x,h}$ is well defined. Indeed, if $p_x m = p_x m'$, then $\bar{h}^{-1} p_x m = \bar{h}^{-1} p_x m'$. Since $\bar{h}^{-1} p_x = p_{xh} \bar{h}^{-1}$, then we obtain that $p_{xh} \bar{h}^{-1} m = p_{xh} \bar{h}^{-1} m'$.

Now it is easy to see that $\varphi_{x,h}$ is bijective. We have that $\varphi_{x,h}^{-1}: p_{xh}M \to p_xM$ is the map given by $\varphi_{x,h}^{-1}(p_{xh}m) = p_x h m$. Let now $\{\sigma_i\}_{i \in I}$ be a left transversal for H in G. If $M \in \mathscr{C}^{\#,H}$. We define the abelian group $M_0 = \bigoplus p_{\sigma i} M$. We intro-

duce now an R-module structure on M_0 . Let $a_{\lambda} \in R_{\lambda}$, $m \in M$. Then we have $\tilde{a}_{\lambda} p_{\sigma_i} m = p_{\lambda \sigma_i} \tilde{a}_{\lambda} m$. Since $\lambda \sigma_i = \sigma_j h$ where $h \in H$ and σ_j is uniquely determined by σ_i and λ , we have that $\tilde{a}_{\lambda}p_{\sigma_i}m=p_{\sigma_i}h\tilde{a}_{\lambda}m$. By Lemma 3.1 we have the isomorphism $\varphi_{\sigma_1,n}^{-1} : p_{\sigma_1} M \to p_{\sigma_1} M$. Hence we can define the product

$$a_{\lambda} * p_{\sigma_i} m = \varphi_{\sigma_{j,h}}^{-1}(p_{\sigma_{jh}} \tilde{a}_{\lambda} m) = p_{\sigma_j} \bar{h} \tilde{a}_{\lambda} m.$$

Now if $a_{\mu} \in R_{\mu}$ and $a_{\lambda} \in R_{\lambda}$, then $a_{\mu} * (a_{\lambda} * p_{\sigma_i} m) = a_{\mu} * (p_{\sigma_i} h \tilde{a}_{\lambda} m)$ if $\lambda \sigma_i = \sigma_i h$. Hence $a_{\mu} * (p_{\sigma_j} h \tilde{a}_{\lambda} m) = p_{\sigma_k} h \tilde{a}_{\lambda} m$ if $\mu \sigma_j = \sigma_k h$, so $a_{\mu} * (a_{\lambda} * p_{\sigma_i} m) = p_{\sigma_k} \tilde{a}_{\mu} \tilde{a}_{\lambda} h \tilde{h}_{\mu} m$ $=p_{\sigma_k} h' h \tilde{a}_u \tilde{a}_{\lambda} m$. Since $\lambda \sigma_i = \sigma_i h$, then $\mu \lambda \sigma_i = \mu \sigma_i h = \sigma_k h' h$, and so we have $(a_{\mu} a_{\lambda}) * (p_{\sigma}, m) = p_{\sigma \nu} h' h \tilde{a}_{\mu} \tilde{a}_{\lambda} m.$

Hence $a_{\mu} * (a_{\lambda} * p_{\sigma_i} m) = (a_{\mu} a_{\lambda}) * p_{\sigma_i} m$.

Thus M_0 has a canonical structure of a left R-module. Moreover, M_0 is an object of the category (G/H, R)-gr. Indeed, if $C \in G/H$, then there exists a unique σ_i such that $C = \sigma_i H$. We put $(M_0)_c = p_{\sigma_i} M$. Hence $M_0 = \bigoplus (M_0)_C$.

If $a_{\lambda} \in R_{\lambda}$ we have $a_{\lambda} * (M_0)_C = a_{\lambda} * p_{\sigma_i} M = p_{\lambda \sigma_i} \tilde{a}_{\lambda} M = p_{\sigma_i} \tilde{h} \tilde{a}_{\lambda} M$. Since $\lambda C = \lambda \sigma_i H = \sigma_j h H = \sigma_j H$, we have that $a_{\lambda} * (M_0)_C \subseteq (M_0)_{\lambda C}$, and therefore M is an object of (G/H, R)-gr.

Since $\mathscr{C}^{\#,H}$ is a localizing subcategory, if $M \in R\{H\}$ -mod, then there exists the largest $R\{H\}$ -submodule of M, $t_{*,H}(M)$, such that $t_{*,H}(M) \in \mathscr{C}^{*,H}$. It is obvious that $t_{*,H}(M) = \sum_{x \in G} p_x M = \bigoplus_{x \in G} p_x M$.

Now if $0 \to M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$ is an exact sequence in $R\{H\}$ -mod, then we have exact sequence

$$0 \to t_{\#,H}(M') \xrightarrow{u} t_{\#,H}(M) \xrightarrow{v} t_{\#,H}(M'') \to 0.$$

Indeed, let $m'' \in t_{\#,H}(M'')$. Then $m'' = \sum_{i=1}^{n} p_{x_i} m_i''$. If $m_i \in M$ such that $v(m_i) = m_i''$ (v is surjective), then we put $m = \sum_{i=1}^{n} p_{x_i} m_i$. We have clearly that $m \in t_{\#,H}(M)$ and v(m) = m''.

Now we can define the functor

$$(-)_{G/H}$$
: $R\{H\}$ -mod $\rightarrow (G/H, R)$ -gr

by $(M)_{G/H} = M_0$ defined as above. It is easy to see that the functor $(-)_{G/H}$ is exact. We have the main result of this section:

Theorem 3.1 With the above notation, $(-)_{G/H}$ is a right adjoint of the functor $(-)^{\#,H}$. Moreover, the functors $(-)^{\#,H}$ and $(-)_{G/H}$ define an equivalence between the categories (G/H, R)-gr and $\mathscr{C}^{\#,H}$.

Proof. We define the functorial morphisms

$$\operatorname{Hom}_{R\{H\}\text{-mod}}((-)^{\#,H},-) \underset{\beta}{\rightleftharpoons} \operatorname{Hom}_{(G/H,R)\text{-gr}}(-,(-)_{G/H})$$

as follows: if $M \in (G/H, R)$ -gr and $N \in R\{H\}$ -mod, then

$$\alpha(M, N)$$
: $\underset{R(H)\text{-mod}}{\text{Hom}}(M^{\#, H}, N) \rightarrow \underset{(G/H, R)\text{-gr}}{\text{Hom}}(M, N_{G/H})$

is defined in the following way: if $u \in \text{Hom } (M^{\#,H}, N)$, then $u(M^{\#,H}) \subseteq t_{\#,H}(N)$.

If $\{\sigma_i\}_{i\in I}$ is a left transversal of H in G, then $M = \bigoplus_{i\in I} M_i$, where $M_i = M_{\sigma_i H}$.

If $m \in M$, then $m = \sum_{i \in I} m_i$, $m_i \in M_i$. We put $\alpha(M, N)(u)(m) = \sum_{i \in I} u(\tilde{m}_i)$, where \tilde{m}_i

$$=(0, \ldots, 0, m_i, \ldots, 0)^t - \sigma_i.$$

We have that $\alpha(M, N)(u)(m) \in N_{G/H}$, since $u(\tilde{m}_i) = u(p_{\sigma_i} \tilde{m}_i) = p_{\sigma_i} u(\tilde{m}_i) \in p_{\sigma_i} N$.

We have that
$$a(M_i, N)(u)(m) \in N_{G/H}$$
, since $u(m_i) = u(p_{\sigma_i} m_i) = p_{\sigma_i} u(m_i) \in p_{\sigma_i} N$.
If $a_{\lambda} \in R_{\lambda}$, then $a_{\lambda} m_i \in M_{\lambda \sigma_i H} = M_{\sigma_j h H} = M_{\sigma_j h}$ if $\lambda \sigma_i = \sigma_j h$.
We have that $\tilde{a}_{\lambda} \tilde{m}_i = (0, \dots, 0, a_{\lambda} m_i, 0, \dots)^t - \lambda \sigma_i$ and do $h \tilde{a}_{\lambda} \tilde{m}_i$
 $= (0, \dots, 0, a_{\lambda} m_i, \dots, 0)^t - \sigma_j = \tilde{a_{\lambda}} \tilde{m}_i$. Now $\alpha(M, N)(u)(a_{\lambda} m) = \sum_{i \in I} u(\tilde{h} \tilde{a}_{\lambda} \tilde{m}_i) = \sum_{i \in I} h \tilde{a}_{\lambda} u(\tilde{m}_i) = \sum_{i \in I} p_{\sigma_j} h \tilde{a}_{\lambda} u(\tilde{m}_i) = \sum_{i \in I} a_{\lambda} * \alpha(M, N)(u)(m_i)$

$$\beta(M, N)$$
: $\underset{(G/H, R)\text{-gr}}{\text{Hom}}(M, N_{G/H}) \rightarrow \underset{R(H)\text{-mod}}{\text{Hom}}(M^{\#, H}, N)$

as follows:

if $v \in \text{Hom } (M, N_{G/H})$, then it will be sufficient to define $\beta(M, N)(v)$ on elements (G/H,R)-gr

of $M^{\#,H}$ of the form $\tilde{m} = (0, ..., 0, m_x, ..., 0)^t - x$ where $m_x \in M_C$, C = xH. There exists $i \in I$ such that $C = \sigma_i H$, i.e. $x = \sigma_i h$ for some $h \in H$. We have that $v(m_x) \in (N_{G/H})_C = p_{\sigma_i} N$. By Lemma 3.1 we have the canonical isomorphism $\varphi_{\sigma_{i,h}} : p_{\sigma_i} N \to p_x N$, so we put $\beta(M, N)(v)(\tilde{m}) = \varphi_{\sigma_{i,h}}(v(m_x)) = p_x \bar{h}^{-1} v(m_x)$.

We must prove that $\beta(M, N)(v) \in \text{Hom } (M^{\#, H}, N)$. If $\alpha \in R\{H\}$ and $\alpha = p_{\nu}$ $R\{H\}$ -mod then

$$p_y \tilde{m} = \begin{cases} \tilde{m} & \text{if } y = x \\ 0 & \text{if } y \neq x. \end{cases}$$

So for y = x, $\beta(M, N)(v)(p_v \tilde{m}) = \beta(M, N)(v)(\tilde{m}) = \varphi_{\sigma_{i,k}}(v(m_x))$. But $p_y \beta(M, N)(v)(\tilde{m}) = p_y \varphi_{\sigma_{i,h}}(v(m_x)) = \varphi_{\sigma_{i,h}}(v(m_x))$.

If $\alpha = \tilde{a}_{\lambda}$ then $\tilde{n} = \tilde{a}_{\lambda} \tilde{m} = (0, ..., 0, a_{\lambda} m_{x}, ..., 0)^{t} - \lambda x$. Since $\lambda x = \lambda \sigma_{i} h = \sigma_{j} h' h$, where $\lambda \sigma_{i} = \sigma_{j}h'$, then $\beta(M, N)(v)(\tilde{a}_{\lambda}\tilde{m}) = \varphi_{\sigma_{j'h'h}}(v(a_{\lambda}m_{x})) = \varphi_{\sigma_{j'h'h}}(a_{\lambda} * v(m_{x}))$ $= \varphi_{\sigma_{j'h'h}}(p_{\sigma_{j}}\tilde{h}'\tilde{a}_{\lambda}v(m)) = p_{\lambda x}\tilde{h}^{-1}\tilde{h}'^{-1}p_{\sigma_{j}}h'. \quad \tilde{a}_{\lambda}v(m_{x}) = p_{\lambda x}\tilde{h}^{-1}p_{\sigma_{j}h'}\tilde{a}_{\lambda}v(m_{x})$ $= p_{\lambda x}\tilde{h}^{-1}p_{\lambda\sigma_{i}}\tilde{a}_{\lambda}v(m_{x}) = p_{\lambda x}\tilde{h}^{-1}\tilde{a}_{\lambda}. \quad p_{\sigma_{i}}v(m_{x}) = p_{\lambda x}\tilde{a}_{\lambda}\tilde{h}^{-1}p_{\sigma_{i}}v(m_{x}) = \tilde{a}_{\lambda}p_{x}\tilde{h}^{-1}p_{\sigma_{i}}v(m_{x}).$ Since $v(m_{x}) \in (N_{G/H})_{C} = p_{\sigma_{i}}N$, then $p_{\sigma_{i}}v(m_{x}) = v(m_{x})$, and thus $\beta(M, N)(v)(\tilde{a}_{\lambda}\tilde{m})$ $=\tilde{a}_{\lambda}p_{x}\tilde{h}^{-1}v(m_{x})=\tilde{a}_{\lambda}\beta(M,N)(v)(\tilde{m}).$

Now if $\alpha = \overline{k}$, where $k \in H$, then $\overline{k}\tilde{m} = (0, ..., 0, m_x, ..., 0, ...)^t - xk^{-1}$. Since $x = \sigma_i h$, then $xk^{-1} = \sigma_i hk^{-1}$, and so $\beta(M, N)(v)(k\tilde{m}) = p_{xk^{-1}}(hk^{-1})^{-1}v(m_x)$ $= p_{xk} \bar{k} \bar{h}^{-1} v(m_x) = \bar{k} p_x \bar{h}^{-1} v(m_x) = \bar{k} \beta(M, N)(v)(\tilde{m}).$ Therefore $\beta(M, N)(v)$ \in Hom $(M^{\#, \bar{H}}, N)$. We prove now that $\beta(M, N)0\alpha(M, N) = 1$. Indeed, if

 $u \in \text{Hom } (M^{\#,H}, N) \text{ and } \tilde{m} = (0, \dots, 0, m_x, 0)^t - x \text{ where } m_x \in M_{\sigma,H}, \text{ and } h \in H \text{ is}$ $R\{H\}$ -mod

such that $x = \sigma_{ih}$, then

 $\beta(M, N)(\alpha(M, \tilde{N})(u))(\tilde{m}) = p_x \bar{h}^{-1} \alpha(M, N)(u)(m_x) = p_x \bar{h}^{-1} u(0, ..., 0, m_x, 0)^t - \sigma_i$ $= p_x \bar{h}^{-1} u(..., 0, m_x, 0, ...)^t - x h^{-1} = p_x u(\bar{h}^{-1}(..., 0, m_x, 0, ...)^t - x h^{-1})$ $= p_x u(..., 0, m_x, 0, ...)^t - x = u(p_x(..., 0, m_x, 0, ...)^t - x) = u(\tilde{m}).$

We prove now that $\alpha(M, N) \circ \beta(M, N) = 1$. Let $v \in \text{Hom } (M, N_{G/H})$, and (G/H,R)-gr

 $m \in M_{\sigma,H}$. $\alpha(M, N)(\beta(M, N)(v))(m) = \beta(M, N)(v)(..., 0, m, 0, ...)^{t} - \sigma_{t}$ $= p_{\sigma_i} \bar{l}^{-1} v(m) = p_{\sigma_i} v(m) = v(m)$, since $v(m) \in (N_{G/H})_{\sigma_i H} = p_{\sigma_i} N$.

We prove now the second part of the statement. The functorial morphisms α and β define the canonical functorial morphisms γ and δ as follows: for $M \in (G/I)$ H, R)-gr, $\gamma(M)$: $M \to (M^{*,H})_{G/H}$. If $m \in M_{\sigma H}$, then $\gamma(M)(m) = (..., 0, m, 0, ...)^{t}$ $-\sigma_{i} = p_{\sigma_{i}}(0, ..., 0, m, 0, ...)^{t} - \sigma_{i} \in [(M^{*,H})_{G/H}]_{\sigma_{i}H}$. For $N \in R\{H\}$ -mod $\delta(N)$: $(N_{G/H})^{*,H} \to N$. Let $\tilde{n} = (..., 0, n, 0, ...)^{t} - x$

 $\in (N_{G/H})^{\#,H}$, so $n \in (N_{G/H})_{\sigma_i H} = \rho_{\sigma_i} N$, $x = \sigma_i h$. Then $\delta(N)(\tilde{n}) = p_x \tilde{h}^{-1} n$.

It is easy to see that γ is a functorial isomorphism, and the if $N \in \mathscr{C}^{\#,H}$, then $\delta(N)$ is an isomorphism. Therefore (G/H, R)-gr is equivalent with the category & #, H.

Corollary 3.1 [8] Assume that G is a finite group. Then the category (G/H, R)-gr is equivalent with the category $R\{H\}$ -mod. In particular, it follows that the rings $\overline{R} \# G/H$ and $R\{H\}$ are Morita equivalent.

Proof. Since G is finite, then the set $\{p_x | x \in G\}$ is finite and therefore $\mathscr{C}^{\#,H}$ $=R\{H\}$ -mod. Now our assertion follows from Theorem 3.1.

Corollary 3.2 Assume that G is an infinite group. Then the quotient category $R\{H\}$ -mod/ $\mathscr{C}^{\#,H}$ is equivalent with the category R[H]-mod, where R[H] is the ordinary group ring associated to the ring R and to the group H.

Proof. The same as the Corollary 1.2 (assertion 2) of [5].

4 Applications

Using Theorem 3.1 we obtain some applications to the study of the objects of the category (G/H, R)-gr. Let $R = \bigoplus R_{\sigma}$ be a G-graded ring and H < G a

subgroup. In the paper [8] there is an example (Example 2.3) which shows that if $M \hookrightarrow N$ is an essential extension in the category (G/H, R)-gr, then it does not follow that $M \hookrightarrow N$ remains essential in R-mod. Now, using Theorem 3.1 we can give a sufficient condition for this result to hold:

Theorem 4.1 Let H be a finite subgroup of G with n=|H| and $M \hookrightarrow N$ be an essential extension in the category (G/H, R)-gr. If N is n-torsion free, then $M \hookrightarrow N$ is an essential extension in R-mod.

Proof. We have the commutative diagram

By Theorem 3.1 we have that $M^{\#,H} \hookrightarrow N^{\#,H}$ is an essential extension in the category $R\{H\}$ -mod. Since the ring $R\{H\}$ is a skew group ring $(\tilde{R} \# G^*) \bar{H}$, then by Maschke's Theorem (see [4]) it follows that $M^{\#,H} \hookrightarrow \hat{N}^{\#,H}$ is an essential extension in $\tilde{R} \# G^*$ -mod. Since the functor (-)-gr:(R-gr) $^* \to R$ -gr is an equivalence of categories, then $M^{\#,H} \hookrightarrow N^{\#,H}$ is an essential extension in the category R-gr. Let $n \in N$, $n \neq 0$. Since $\alpha_N(n) \in N^{\#,H}$ and $\alpha_N(n) \neq 0$, then by Lemma 3.3.18 [6] there exists $\lambda_0 \in R_\sigma$ such that $\lambda_\sigma \alpha_N(n) \in M^{\#,H}$ and $\lambda_\sigma \alpha_N(n) \neq 0$.

If $n = \sum_{C \in G/H} n_C$, where $n_C \in N_C$, then we have $\lambda_\sigma \alpha_N(n) = \sum_{C \in G/H} \alpha_N(\lambda_\sigma n_C)$. For

 $C, C' \in G/H, C \neq C'$, we have $\sigma C \neq \sigma C'$ and since $\lambda_{\sigma} \alpha_{N}(n) \in M^{\#, H}$, then for any $y \in \sigma C$ there exists $m_v \in M_{\sigma C}$ such that $\lambda_{\sigma} n_C = m_v$. If $y' \in \sigma C$ is another element, we obtain the element $m_y \in M_{\sigma C}$ such that $m_{y'} = \lambda_{\sigma} n_C$. Hence $m_y = m_{y'}$ for any $y, y' \in \sigma C$. We denote by $m_{\sigma C}$ this common element m_y . Thus $m_{\sigma C} \in M_{\sigma C}$. Since the map $C \mapsto \sigma C$ is bijective then we can define the element $m = \sum_{\sigma} m_{\sigma C}$. Thus

 $m \in M$ and $\alpha_M(m) = \alpha_N(\lambda_\sigma n)$. Since $\alpha_M(m) = \alpha_N(m)$ and α_N is injective, then $m = \lambda_\sigma n$. Hence $\lambda_{\sigma} n \in M$ and $\lambda_{\sigma} n \neq 0$. Therefore $M \hookrightarrow N$ is an essential extension in R-mod.

Theorem 4.2 Let H be a finite subgroup of G and $M \in (G/H, R)$ -gr. If M is a Noetherian (resp. Artinian, has Krull dimension, has Gabriel dimension, simple) object, then there exists an object $N \in R$ -gr with the same property such that M is isomorphic with a submodule of N.

Proof. Since M is a Noetherian (resp. Artinian, etc.) object of the category (G/I)H, R)-gr then $M^{\#,H}$ has the same property in $R\{H\}$ -mod. Since $R\{H\}$ is a finite normalizing extension of the ring $\tilde{R} \# G^*$, then $M^{\#,H}$ is Noetherian (resp. Artinian, etc.) in $\tilde{R} \# G^*$ -mod. Now since the functor (-)-gr: $(R-gr)^* \to R-gr$ is an equivalence, then $M^{\#,H}$ is gr-Noetherian (resp. Artinian, etc.). Since H is a finite subgroup, there exists a monomorphism $\alpha_M: M \to M^{*,H}$. Thus we can put $N = M^{\#, H}$.

Recall that a group G is said to be polycyclic-by-finite if G has a subnormal series $\{1\} = G_0 \triangleleft G_1 \triangleleft ... \triangleleft G_n = G$, where $G_{i/G_{i-1}}$ is either finite a cyclic for all i=1, ..., n. The number of infinite cyclic factors which occur in this series is called the Hirsch number of G and is written G. Since any two series have isomorphic refinements, G is a well-defined non-negative integer invariant of G.

Corollary 4.1 Assume that G is polycyclic-by-finite group and H is a finite subgroup of G. If M is Noetherian in the category (G/H, R)-gr, then M is Noetherian in R-mod.

$$Moreover, \qquad K_{\bullet \atop (G/H, R)-\operatorname{gr}}(M) \leq K_{\bullet} \dim_R(M) \leq K_{\bullet \atop (G/H, R)-\operatorname{gr}}(M) + h(G) \qquad (where$$

 $K_{\bullet, G/H, R)-gr}$ (M) (resp. $K_{\bullet, G/H, R)-gr}$ (G/H, R)-gr (resp. R-mod)).

Proof. With the notation of Theorem 4.2 we have that N is Noetherian in R-gr and K_{\bullet} dim $M_{G/H,R)$ -gr $M_{\bullet}=K_{\bullet}$ dim $M_{\bullet}=M_{\bullet}$

in R-mod and
$$K_{\mathfrak{c}}\dim(N) \leq K_{\mathfrak{c}}\dim(N) + h(G)$$
.

Therefore M is Noetherian and $K_{\cdot}\dim(M) \leq K_{\cdot}\dim(M) + h(G)$. The inequality $K_{\cdot}\dim(M) \leq K_{\cdot}\dim(M)$ is obvious.

Let H < G be a subgroup. We say that G is polycyclic-by-finite with respect to H if there exists a subnormal series of the form

$$H = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G$$

such that G_i/G_{i-1} is finite cyclic for $i=1,\ldots,n$. We remark that for $H=\{1\}$ we obtain the notion of a polycyclic-by-finite group. We denote by $h_{G/H}$ the number of infinite cyclic factors in the series. The following result is a consequence of Theorem 3.1:

Corollary 4.2 Let K < H < G be subgroups of G such that H is polycyclic-by-finite with respect to K. If M is a Noetherian object of (G/K, R)-gr, then M is Noetherian in (G/H, R)-gr. Moreover, we have K dim $(M) \le K$ dim $(M) + h_{H/K}$.

Proof. By Lemma 2.4 we have the following commutative diagram.

$$(G/K, R)\text{-gr} \xrightarrow{(-)_{\phi}} (G/H, R)\text{-gr}$$

$$(-)^{* \cdot K} \downarrow \qquad \downarrow \qquad \qquad$$

Moreover, we remark that since $(-)_{G/H^0}()^{\#,H}$ is the identity functor of (G/H, R)-gr, then $M \simeq (R\{H\} \bigotimes_{R \in \mathcal{R}} M^{\#,H})_{G/H}$ in (G/H, R)-gr.

Now $M^{*,H}$ is Noetherian in $R\{K\}$ -mod by Theorem 3.1, and $K_{\bullet} \dim_{(G/K,R)\text{-gr}} (M) = K_{\bullet} \dim_{R\{K\}} (M^{*,H})$.

We now note that if $H_1 \triangleleft H_2 < G$, then $R\{H_2\}$ is a strongly graded ring of type H_2/H_1 . Indeed, if $C \in H_2/H_1$, i.e. $C = \sigma H_1 = H_1 \sigma$ for some $\sigma \in H_2$, then we define $R\{H_2\}_C = \sum_{\mathscr{C} \in G} R\{H_1\} \mathscr{C} = R\{H_1\} \widetilde{\sigma}$. Thus $R\{H_2\} = \bigoplus_{c \in G/H} R\{H_2\}_c$, and

 $R\{H_2\}_c R\{H_2\}_{c'} = R\{H_2\}_{cc'}$ for any $c, c' \in H_2/H_1$.

We proceed now by induction on the length of the series $K = H_0 \triangleleft H_1 \triangleleft ... \triangleleft H_n = H$, and using Theorem II.3.8 of [6] the result follows.

Corollary 4.3 If G is polycyclic-by-finite with respect to the subgroup H, and $M \in (G/H, R)$ -gr is a Noetherian object, then M is Noetherian in R-mod. Moreover, K. $\dim_{(G/H, R)$ -gr} (M) $\leq K$ $\dim_{(G/H, R)$ -gr} (M) + $h_{G/H}$.

Proof. Take K = H and H = G in Corollary 4.2.

Corollary 4.4 If H is a polycyclic-by-finite subgroup of the group G, and $M \in R$ -gr is gr-Noetherian, then M is Neotherian in (G/H, R)-gr. Moreover, gr-K.dim $(M) \le K$. dim $(M) \le \operatorname{gr-K.dim}(M) + h(H)$ (here $\operatorname{gr-K.dim}(M) = K$.dim(M).

Proof. Take $K = \{1\}$ in Corollary 4.2.

Corollary 4.5 Let $M \in R$ -gr be a graded module such that for each R-submodule $N \subseteq M$ there exists a polycyclic-by-finite subgroup H of G such that N is an object of (G/H, R)-gr. Then if M is gr-Noetherian it follows that M is Noetherian in R-mod.

Proof. If M is not Noetherian, let $N \le M$ be an R-submodule of M which is not finitely generated, and let H be a polycyclic-by-finite subgroup of G such that $N \in (G/H, R)$ -gr. It follows that N is not finitely generated as an object of (G/H, R)-gr. But M is a Noetherian object of (G/H, R)-gr by Corollary 4.4, and this is a contradiction.

Corollary 4.6 Let $K \triangleleft H < G$ be subgroups of G such that $n = |H/K| < \infty$. Suppose that $M \in (G/K, R)$ -gr is a semisimple object which has no n-torsion. Then M is a semisimple object in the category (G/H, R)-gr.

Proof. By Lemma 2.4 we have the commutative diagram.

$$(G/K, R)\text{-gr} \xrightarrow{(-)_{\phi}} (G/H, R)\text{-gr}$$

$$(-)^{*.K} \downarrow \qquad \qquad \downarrow \qquad \qquad (-)^{*.H}$$

$$R\{H\} \bigotimes - \qquad \qquad \downarrow \qquad \qquad (-)^{*.H}$$

$$R\{K\}\text{-mod} \xrightarrow{R(K)} R\{H\}\text{-mod}$$

It is clear that we may assume that M is a simple object of (G/K, R)-gr. By Theorem 3.1 $M^{*,H}$ is simple in $R\{K\}$ -mod and it is clear that n is invertible on $M^{*,H}$ (i.e. $M^{*,H} = nM^{*,H}$). By Remark 2.3.d) $M^{*,H}$ is semisimple over $R\{K\}$ and we can apply Proposition 2.1 of [4].

Corollary 4.7 Let H < G be a finite subgroup, n = |H|. Suppose that $M \in R$ -gr is a semisimple object and that it has no n-torsion. Then M is semisimple in (G/H, R-gr.

References

- 1. Cohen, M., Montgomery, S.: Group graded rings, smash product and group actions. Trans. Am. Math. Soc. 282, 237-258 (1984)
- 2. Dade, E.: Clifford theory for group graded rings. J. reine angew. Math. 369, 40-86 (1986)
- 3. Gabriel, P.: Des categories abeliennes. Bull. Soc. Math. France 90, 323-448 (1962)
- 4. Năstăsescu, C.: Strongly graded rings of finite groups. Comm. Algebra 11 (10), 1033-1071 (1983)
- 5. Năstăsescu, C.: Smash product and applications to finiteness conditions. Rev. Roum. Math. Pures Appl. 34, 825-839 (1989)
- 6. Năstăsescu, C., Van Oystaeyen, F.: Graded ring theory. New York: North Holland, Math. Library Vol. 28 (1982)
- 7. Năstăsescu, C., Van den Bergh, M., Van Oystaeyen, F.: Separable functors applied to graded rings. J. Algebra 123 (2), 397-413 (1989)
- 8. Năstăsescu, C., Raianu, S., Van Oystaeyen, F.: Graded modules over G-sets. Matz, Z. 203, 605-627 (1990)
- 9. Quinn, D.: Group-graded ring and duality. Trans. Am. Math. Soc. 292, 154-167 (1985)
- 10. Stenstrom, Bo: Rings of quotients. Berlin Heidelberg New York: Springer 1975
- Shaoxue, L., Van Oystaeyen, F.: Group graded rings smash products and additive categories.
 Van Oystaeyen, F., Le Bruyn, L., Reidel, D. (ed.) Perspectives in ring theory. Series C,
 Vol. 233, pp. 299-310, 1988