BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION

SECOND SEMESTER 2019-2020

Course Handout Part II

Date: 06/01/2020

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : BITS F464

Course Title : Machine Learning

Instructor-in-charge: NAVNEET GOYAL (goel@)
Lab. Instructor: Stuti Chugh (p20170407@)

Catalog Description

Machine Learning is an exciting sub-area of Artificial Intelligence which deals with designing machines which can learn and improve their performance from examples/experience. This course introduces the student to the key algorithms and theory that forms the core of machine learning. The course will cover all major approaches to learning namely, supervised, unsupervised, semi-supervised, and reinforcement leaning. The course emphasizes various techniques, which have become feasible with increased computational power and our ability to produce and capture huge volumes of data. The topics covered in the course include regression, decision trees, support vector machines, artificial neural networks, Bayesian techniques, Hidden Markov models etc. Some advanced topics like active, deep, & topological learning will also be covered.

Text Books:

Tom M. Mitchell, Machine Learning, The McGraw-Hill Companies, Inc. International Edition 1997.

Reference Books:

- 1. Christopher M. Bhisop, Pattern Recognition & Machine Learning, Springer, 2006.
- 2. Marsland Stephen, Machine Learning An Algorithmic Perspective, 2e, CRC Press, 2015.
- 3. Alpaydin Ethem. Introduction to Machine Learning, 3e, PHI, 2014.
- 4. Andrew Ng, Machine Learning Yearning, Draft Version.
- 5. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press, 2016.

PREREQUISITES*

1.	Probability theory	Self Study	Ch.2, Appendix C
2.	Decision theory		-R1
3.	Information theory		
4.	Linear Algebra		
5.	Optimization & Search		

^{*} A good understanding of these topics is essential

LECTURE PLAN

Topic	Topic Details	Number	Chapter
		of	Reference
		Lectures	
Overview	Introduction to Machine Learning	1	Ch. 1 - TB
	1. Motivation/course objectives		Ch.1 - R1,R2,R3
	2. Machine Learning and curve fitting		Ch. 5 – R5
Types of Learning	Quick Introduction to different types of	2	Ch.1 - R2, R3
	Learning:		+ Class Notes
	1. Supervised, semi-supervised, and		
	unsupervised learning		
	2. Bayesian learning		
	3. Instance-based learning		
	4. Reinforcement learning		
	5. Active learning		
	6. Deep learning		
	7. Federated learning		
High-dimensional data	Characteristics of High-dimensional data,	2	Ch.1 – R1
& Curse of	Curse of Dimensionality (CoD) problem		
Dimensionality	and dimensionality reduction techniques		
Supervised Learning	Regression	2	1. Ch. 3 – R1
	1. Polynomial regression		
	a. Model flexibility/selection		
	b. Overfitting/underfitting		
	c. Regularization		
	2. Linear basis function regression		
	Classification		
	1. Discriminant Functions (two class and	3	1. Ch. 4 – R1
	multiclass)		Ch. 10 – R3
	a. Least Square		2. Ch. 4 – R1
	b. Fisher's Linear Discriminant		3. Ch. 4 – R1
	c. Perceptron Algorithm		4. Ch. 3 - TB
	2. Probabilistic Generative Classifiers	1	Ch. 12 – R2
	a. Bayes' classifier		Ch. 9 – R3
	3. Probabilistic Discriminative Classifiers	2	5. Ch. 4 – TB
	a. Logistic Regression		Ch. 5 – R1
	4. Decision Tree Learning	2	Chs. 3,4 – R2
	5. Artificial Neural Networks	4	Ch. 11 – R3
	a. McCulloch & Pitts Model		6. Ch. 13 – R2
	b. Perceptrons		Ch. 17 – R3
	c. Multilayer Perceptrons (MLP)		7. Ch. 8 – R2
	d. Network training		Ch. 13 – R3
	e. Error back-propagation		
	6. Ensemble Learning	2	
	a. Boosting		

	1 70 1		Ţ
	b. Bagging		
	c. Random Forests		
	7. Support Vector Machines	2	
	a. Maximum margin hyperplanes		
	b. Structural risk minimization		
	c. VC dimension/Shattering		
	d. Duality		
	e. Kernels		
	f. Regression		
Kernel Methods	Kernel-based Machine Learning Algorithms	2	Ch. 6 – R1
	Tremer cused remaine Bearing ringertuning	-	Ch. 13 – R3
Bayesian Learning	1. Bayesian Probability	2	Ch. 6 – TB
Buyesian Ecarining	2. Bayesian linear regression	-	Ch. 16 – R3
	3. Bayes optimal classifier		
	4. Gibbs Algorithm		
	5. Naïve Bayes Learning Algorithm		
Instance-based	Naive Bayes Learning Argorithm Rote classifiers	2	Ch. 8 - TB
		\ \(^{\alpha}	
Learning	2. Case-based Reasoning		Ch. 8 – R3
D 1 100 4 G 24 2	3. K-NN		CI (TTD
Probabilistic Graphical	1. Bayesian Belief Networks (BBN)	3	Ch. 6 - TB
Models (PGM)	2. Markov Random Fields (MRF)		Ch. 8 – R1
	3. Hidden Markov Models (HMM)		Ch. 16 – R2
			Ch. 14,15 – R3
Unsupervised Learning	Clustering	3	Ch. 9 – R1
	1. <i>K</i> -means Clustering		Ch. 14 – R2
	2. Mixture of Gaussians		Ch. 7 – R3
	3. Expectation Maximization (EM)		
	Clustering		
	4. Self-organizing Maps (SOM)		
	Dimensionality Reduction	2	Ch. 6 – R2, R3
	1. LDA		
	2. PCA/SVD		
	3. ICA		
	4. Factor Analysis		
Reinforcement	Motivation	2	Ch. 13 – TB
Learning	2. Exploration vs. Exploitation	2	Ch. 11 – R2
Learning			Ch. 18 – R3
			CII. 10 – KJ
	*		
	5. Q Learning Algorithm		
	6. Sarsa Algorithm		
A ativo I as weign	1 Mativation, I coming the set of 1 0	2	Class Notes
Active Learning	1. Motivation: Learning threshold &	3	Class notes
	interval functions		
	2. Active Learning Scenarios		
	a. Membership query synthesis		
	b. Pool-based sampling		
	c. Stream-based sampling		
	3. Query Strategy Frameworks a. Uncertainty sampling		

	i. Least confident ii. Margin sampling iii. Entropy b. Query by committee (QBC) i. Version spaces ii. Vote entropy iii. KL divergence c. Diversity sampling 4. Empirical & Theoretical Analysis of Active Learning 5. Applications of Active Learning		
Introduction to Advanced Learning Techniques	Deep Learning	4 Extra Classes	1. R5 2. Class notes & research articles

Evaluation Scheme:

Component	Duration	Weightage	Date (Time)
Midsem Test (Closed Book)	90 Mins.	25%	
Quiz	45 Mins	10%	TBA
Assignments (02)	Take Home	25%	-
Comprehensive Exam (partly open)	3 Hours	40%	12/05 FN

Labs. on R: Supervised l-hour labs. will be conducted every week as per the time-table.

Notices: All notices will be displayed on NALANDA only.

Chamber Consultation Hour: M, W 5.45 to 6.30 pm (6121-K, NAB)

Makeup Policy: To be granted only in case of serious illness or emergency.

Email Policy: Communication through email is highly discouraged. If you want to discuss anything, you are most welcome to meet me during chamber consultation hours or immediately after the class. Academic queries/doubts can be posted on NALANDA.

NC Policy: Students securing 10% or less marks will get an NC grade. Students in the [10-15] bracket are also likely to get NC.

Instructor-in-charge BITS F464