PSALTer results panel

 $S = \iiint (\frac{1}{6} \left(6 \, \mathcal{R}^{\alpha\beta\chi} \, \sigma_{\alpha\beta\chi} + 6 \, f^{\alpha\beta} \, \tau \left(\Delta + \mathcal{K}\right)_{\alpha\beta} - 6 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{,\,\, \theta}^{\,\, \theta} \, \partial^{i} \mathcal{R}_{\,\, \alpha}^{\,\, \alpha\beta} - 6 \, r_{,\,\, \partial_{\alpha}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \theta\beta} \, \partial_{\beta} \mathcal{R}_{,\,\, \beta}^{\,\, \theta} + 12 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \theta\beta} + 8 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\alpha\beta}^{\,\, \alpha\beta} - 4 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\alpha\theta}^{\,\, \alpha\beta} \, \partial^{\theta} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \alpha\beta} + 12 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \theta\beta} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} + 12 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \theta\beta} + 12 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \theta\beta} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} + 12 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \theta\beta} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} + 12 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \theta\beta} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} + 12 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} + 12 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} + 12 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} + 12 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} + 12 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} + 12 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} + 12 \, r_{,\,\, \partial_{\beta}} \mathcal{R}_{\,\, \alpha\beta}^{\,\, \beta\beta} \mathcal$

Wave operator

 $0^{+}\mathcal{A}^{\parallel \ 0^{+}}f^{\parallel \ 0^{+}}f^{\perp} \qquad 0^{-}\mathcal{A}^{\parallel}$

		,	•											
${}^{0^+}\mathcal{A}^{\parallel}$ †	0	0	0	0										
$0.^{+}f^{\parallel}$ †		0	0	0										
$0.^{+}f^{\perp}$ †	0	0	0	0										
^{0.} ' <i>Я</i> "†	0	0	0	$k^2 r_{.} + t_{.}$		$\overset{1^+}{\cdot} \mathscr{F}^{\scriptscriptstyle \perp}{}_{\alpha\beta}$			$^{1}\mathcal{A}^{\perp}{}_{lpha}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$^{1}f_{a}^{\perp}$			
				$\overset{1^{+}}{\cdot} \mathcal{A}^{\parallel} \dagger^{\alpha\beta}$	$\frac{1}{6} (9 k^2 r_{.} + 4 t_{.})$			0	0	0	0			
				$^{1.}^{+}\mathcal{F}^{\perp}\dagger^{lphaeta}$	$\frac{\sqrt{2} t_{2}}{3}$	t. 2/3	$\frac{i kt.}{2}$	0	0	0	0			
				$1.^+f^{\parallel} \uparrow^{\alpha\beta}$			$\frac{k^2 t}{3}$	0	0	0	0			
				$^{1}\mathcal{A}^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$^{1}\mathcal{H}^{\scriptscriptstyle \perp}\dagger^{\scriptscriptstyle lpha}$	0	0	0	0	0	0	0			
				$f^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$^{1}f^{\perp}\dagger^{\alpha}$	0	0	0	0	0	0	0	$^{2,+}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$2.^+f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{H}^{\parallel}_{\alpha\beta\chi}$
											$^{2.}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$-\frac{3k^2r}{2}$	0	0
											$\overset{2}{\cdot}f^{\parallel}\uparrow^{\alpha\beta}$	0	0	0
											$2^{-}\mathcal{A}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	0

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0^{+}_{\cdot}\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$O^+_{\cdot} \tau^{\parallel} == O$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1
0^+ $\sigma^{\parallel} == 0$	$\partial_{\beta}\sigma^{\alpha}_{\alpha}{}^{\beta} == 0$	1
$1 \tau^{\perp} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
1. _τ " == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$1 \sigma^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}=0$	3
$1 \cdot \sigma^{\parallel^{\alpha}} == 0$	$\partial_{\delta}\partial^{\alpha}\sigma_{\chi}^{\chi}{}^{\delta} + \partial_{\delta}\partial^{\delta}\sigma_{\chi}^{\chi\alpha}{}_{\chi} == \partial_{\delta}\partial_{\chi}\sigma^{\chi\alpha\delta}$	3
$i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} =$	$= 0 \ \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 2 \ \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \ \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\chi \alpha \beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$2^{-}\sigma^{\parallel^{\alpha\beta\chi}}=0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta \alpha \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \alpha \delta} +$	5
	$4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\beta\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\alpha}_{\delta} = =$	
	$3\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\chi\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\alpha\beta\delta} + 2\partial_{\epsilon}\partial^{\alpha}\partial_{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^$	
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\beta\alpha\chi} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\beta}\sigma^{\delta}_{\delta}{}^{\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\beta}_{\delta}$	
$2^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi}$	
Total expected gau	ge generators:	28

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{\cdot 2}} > 0$
Square mass:	$-\frac{\frac{t}{2}}{\frac{r}{2}} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

r. < 0 && t. > 0