集论公理的简约与基数的方幂

莫 绍 揆 (南京大学)

提 要

如命 $\operatorname{tran}_R m$ 指 $\forall u \forall v (uRv \wedge vsm \rightarrow \cdot usm)$,而 xR_*y 指 $\forall m (\operatorname{tran}_R m \wedge ysm \rightarrow \cdot xsm)$,则 集论的六条公理(对偶、联集、幂集、分出、替换、无穷)可合并为一条: $\forall x \exists ! y \phi(x,y) \rightarrow \exists s \forall y (yss \leftrightarrow \exists x (xs_*a \lor xp_*b \cdot \wedge \phi(x,y))$,这里" $\exists ! y$ " 指"最多只有一个 y",而 xpb 指" $x \ni b$ 的幂集".

给定无穷基数 α 后,可定义: $f_0(\alpha) = \mu \beta(\alpha^{\beta} > \alpha)$, $\sigma_0(\alpha) = \mu \gamma(\gamma^{f_0(\alpha)} > \alpha)$; $f_{k+1}(\alpha) = \mu \beta(\exists \gamma < \sigma_k(\alpha))\gamma^{\beta} > \alpha$, $\sigma_{k+1}(\alpha) = \mu \gamma(\gamma^{f_{k+1}(\alpha)} > \alpha)$. 则有定理: 当 $1 \le \beta < f_0(\alpha)$ 时 $\alpha^{\beta} = \alpha$; 当 $f_k(\alpha) \le \beta < f_{k+1}(\alpha)$ 时, $\alpha^{\beta} = \$(\sigma_k(\alpha)) = \alpha^{f_k(k)}$; 当 $f_*(\alpha) \le \beta$ 而 $\sigma_*(\alpha) = 2$ 时, $\alpha^{\beta} = 2^{\beta}$.

给定无穷基数 β 后,可定义: g(0)=2, $g(\alpha)=\mu\gamma(\forall\delta<\alpha)g(\delta)^{\beta}<\gamma\wedge\gamma^{\beta}>\gamma$, 则有: 当 $g(\delta)\leqslant \alpha\leqslant g(\delta)^{\beta}$ 时 $\alpha^{\beta}=g(\delta)^{\beta}$, 对此外的 α , 则必 $\alpha^{\beta}=\alpha$.

本文分成两个彼此无关的部分.

第一部分是文[1]的继续,进一步把集论公理加以简约,结果是:集论中的对偶、联集、幂集、分出、替换与无穷公理(共六条)都可以极自然地合并成为一条,于是整个 ZFC 系统可只由这条公理与外延、正规、选择公理而组成,可算归约到最简的了.

第二部分讨论基数的方幂运算,在只使用选择公理但不使用 Gimel 数假设及广义连续统假设的情况下,将方幂详细讨论了。 对将基底当作常数(指数函数)或将指数作为常数(幂函数)两情况都作了探讨。 对以前讨论时含糊不清的地方都给以澄清,从而初步对方幂运算作了系统的总结。文中最重要的结果是引入两有限数列 σ_k 与 f_k ,由它们刻划了方幂运算的本质。

§1. 集论公理的简约

现在集论公理一般以 ZFC 为准. 这公理系统共有九条公理. 对(对偶公理)联(联集公理)幂(幂集公理)分(分出公理)替(替代公理)无穷(无穷公理)正(正规公理)选(选择公理)与延(外延公理)、我们将证明前六条公理可以很简易地归约为一条公理(叫做强替代公理、简写为替*). 为此,先引入下列记号.

定义 trangm(m 为 R 遗传)指

 $\forall u \forall v (uRv \land vem \cdot \rightarrow uem)$.

 xR_*y 指: $\forall m(\operatorname{tran}_R m \land y \in m \cdot \to x \in m)$

本文1984年10月15日收到。

在直觉上可以说: $\alpha R_* y$ 当且仅当有一个有限序列 a_1 , …, a_n 使得 $\alpha = a_1$, $\alpha = a_2$ 是 $\nabla_{\alpha}(a_1 R a_{k+1})$ 。 这个关系是罗素用以发展自然数论时的最重要的概念. 有关 $\alpha = a_1$ 的最重要性质是.

- 1.1) $xRy \rightarrow xR_*y$,
- 1.2) $xR_*y \wedge yR_*z \rightarrow xR_*z(R_*$ 是可传的).

下文用到的是 s_* 以及 p_* , 这里 xpy 指: $x=\mathscr{P}y$ 而 $\mathscr{S}y$ 表 示 y 的 幂 集. xp_*y 实 际 上是: $\exists n(x=\mathscr{P}^*y)$.

暂时将 $xs_a \lor xp_b$ 记为 $\langle a, b, x \rangle$.

由定义易证得

- 1.3) $x \in a \rightarrow x \in a$,
- 1.4) $x = a \rightarrow x \varepsilon_{*} a$,
- 1.5) $x \subseteq a \rightarrow \exists y (x \in y \land y p_* a)$.
- 1.6) $\exists y(xey \land yea) \rightarrow xe_*a(须利用(1.2)而证明). 此外,如众所周知,我们有:$
- 1.7) 如 $p \rightarrow q$ 则 $p \leftrightarrow \cdot p \land q$.

定理 1 公理对、联、幂、分、替、无穷(在谓词演算之上)与下列的公理相等价:

替*: $\forall x \exists ! y \phi(x, y) \rightarrow \exists z \forall y (y \in z \leftrightarrow \exists x (\langle a, b, x \rangle \land \phi(x, y))$. 这里" $\exists ! y$ " 指"至多有一个 y".

证 必要性 已有上述六条公理,正如通常的集合论那样,可以发展自然数论,从而易证(比较详细些的集合论均本质上给了证明):

$$xs_*a \leftrightarrow xs \bigcup_{n \in \omega} U^n a(U^n 指 UU \cdots Ua(n \uparrow U)),$$

 $xp_*a \leftrightarrow xs \bigcup_{n \in \omega} \mathscr{P}^n a(\mathscr{P}^n 指 \mathscr{P}\mathscr{P} \cdots \mathscr{P}a(n \uparrow \mathscr{P})).$

故得

$$\langle a, b, x \rangle \leftrightarrow xs \bigcup_{n \in \mathbb{N}} U^n a \cup \bigcup_{n \in \mathbb{N}} \mathscr{P}^n b$$
(暂记为 $x \in B$).

由原来的替换定理知替*成立(因 $\langle a, b, x \rangle \leftrightarrow x \in B$)而必要性得证。

充分性 设替*公理成立,有

$$xsa \rightarrow xs_*a \rightarrow xs_*a \lor xp_*b \rightarrow \langle a, b, x \rangle$$
。
$$xsa \leftrightarrow \cdot \langle a, b, x \rangle \land xsa$$
.
(甲)

此外显然有

$$\forall x \exists ! y \phi(x, y) \rightarrow \forall x \exists ! y (\phi(x, y) \land x \varepsilon a). \tag{Z}$$

今由替*公理先得

$$\forall x \exists ! y (\phi(x, y) \land x \in a) \rightarrow \exists z \forall y (y \in z \leftrightarrow \cdot \exists x (\langle a, b, x \rangle \land \phi(x, y) \land x \in a)).$$
 (丙)根据(甲)(乙)对(丙)作替换即得

 $\forall x \exists ! y \phi(x, y) \rightarrow \exists z \forall y (y s z \leftrightarrow \exists x (x s a \land \phi(x, y)))$

这便是通常的替换公理, 由通常的替换公理即得通常的分出公理,

在替*公理中,如命 $\phi(x, y)$ 为 x=y. 显然有 $\forall x \exists ! y(x=y)$, 故替*公理这时变成 $\exists z \forall y (y \in x \leftrightarrow \exists x (\langle a, b, x \rangle \land , x=y)$.

再变成

$$\exists z \forall y (y s z \leftrightarrow \langle a, b, y \rangle), \tag{T}$$

这集合暂记为[a, b]。由(1.4)(1.5)(1.6)可知

$$x=a \lor x=b \cdot \rightarrow x\varepsilon [a, b],$$

 $x\subseteq a \rightarrow x\varepsilon [[a, a], b],$
 $\exists y(x\varepsilon y \land y\varepsilon a) \rightarrow x\varepsilon [a, b].$

因此根据已得出的分出原理即可保证对、联、幂三公理的成立.

最后由[a, b]可以保证 $\bigcup_{n \in \omega} \mathcal{P}^n b (\equiv O)$ 的存在。由于 $m = n \leftrightarrow \mathcal{P}^m b = \mathcal{P}^n b$,显见 O 为 无穷集而且是 \mathcal{P} 归纳集(即 $xeC \to \mathcal{P}xeO$)。只要有一个无穷集的存在便足以尽无穷公理的作用了。同时还可以很快地推出无穷公理如下。

试命 Sx 表 $\{x\}$ (Zermelo 方式)或表 $x \cup \{x\}$ (von Neumann 方式), 再用 $\phi(x, y)$ 表 $\exists n(x=\mathcal{P}^nb \land y=S^n\phi)$ (这里方幂表示迭置次数).

这时显然有 $\forall x \exists ! y \phi(x, y)$,于是由集合 O 及推出的替换公理立即得出无穷公理 所要 求的集合存在.

这样一来,整个集论公理系统(ZFC)可仅由下列公理组成: 替*,正,选,延. 通常很多书中不提正规公理,认为不用它亦可推出全部数学,那末只使用替*、选、延也就够了. 一般还认为选择公理疑问极多,大家争论得极厉害,凡用到选择公理之处都应标明作为前提,至于选择公理本身则不必假定,那末只使用替*、延也就够了. 替*是肯定某些集合必然存在,肯定集合至少应该有些什么,而外延性公理则肯定在什么场合之下两集合应该看作一个,不能多算,是从广的方面加以限制,两者性质不同,看来无法再归约为一了. 可见在一定意义上,本公理系统已简到无可再简了.

但是一般人又往往想将公理尽量的分析,以便详细地讨论"当我们不承认某某公理时会有什么结果",从而把集合论彼此的联系分析得更清楚. 在这种讨论之下,使用这里的公理系统也极有好处.

不用选择公理的系统叫做 ZF, 不用正规公理的系统记为 ZF+(ZFO+等), 由于我们的公理系统没有改动选与正, 所以这时可同法讨论.

如讨论不用无穷公理的系统,可把 $\langle a, b, a \rangle$ 改为

$$x \varepsilon_* a \vee x \subseteq b$$
.

如讨论不用替换公理(只使用分出公理)的系统,则可改用

$$\exists z \forall x (x \in z \leftrightarrow \cdot \langle a, b, x \rangle \land \phi(x)).$$

如不想在无穷公理之前讨论 ε_* (这是讨论正规 公 理 的 推 广 时 必 须 讨 论 的),可 把 $\langle a, b, x \rangle$ 改为

$$\exists y(x \in y \land y \in a) \lor x \subseteq b$$
.

这时要证明对偶集公理,比较麻烦一些. 须先证么元集 {b} 的存在,然后根据

$$x = a \lor x = b \rightarrow \cdot \exists y (x \in y \land y \in \{\{a\}\}) \lor x \subseteq b$$

证明对偶集的存在.

总之,集论公理可有种种归约,随各人的使用情况而异.以前人们只知道由替换公理与幂集公理推出(分出公理与)对偶公理,其实归约的办法是很多的,它们都比后面这个方法好.

§ 2. 基数的方幂

这里我们永远使用选择公理(否则成果极少),但不使用(广义)连续统假设或 Gimel 假设.

对于基数的方幂,现在已有相当深入的讨论(见[2, 8]等书),但目前的研究基本上基于共尾数理论,从而未能得出完整的结果而且亦没有系统.现在从头讨论这个问题,根本撤开共尾数的讨论而把整个问题解决了.

定义 对于一个已给的无穷基数 α , 我们(联立)递归地定义两个数列如下, 其中 $\mu\beta$ 为最小数运算.

$$f_0(\alpha) = \mu \beta(\alpha^{\beta} > \alpha); \quad \sigma_0(\alpha) = \mu \gamma(\gamma^{f_0(\alpha)} > \alpha);$$

设 $f_k(\alpha)$ 与 $\sigma_k(\alpha)$ 已经定义,则

$$f_{k+1}(\alpha) = \mu \beta(\exists \gamma < \sigma_k(\alpha)) \gamma^{\beta} > \alpha; \quad \sigma_{k+1}(\alpha) = \mu \gamma(\gamma^{f_{k+1}}(\alpha) > \alpha).$$

根据定义,有下列的简单性质:

- (2.1) 当 $\sigma_k(\alpha) > 2$ 时, $f_{k+1}(\alpha)$, $\sigma_{k+1}(\alpha)$ 永有定义, 当 $\sigma_k(\alpha) \leq 2$ 时, $f_{k+1}(\alpha)$ 与 $\sigma_{k+1}(\alpha)$ 必无定义.
 - (2.2) σ_k 对 k 严格下降, f_k 对 k 严格上升, 即

$$\sigma_{k+1}(\alpha) < \sigma_k(\alpha), f_{k+1}(\alpha) > f_k(\alpha),$$

要看出最后一点只须注意 2α>α 即可.

- (2.8) 从而, 任给无穷基数 α , 只能有有穷多项 σ 与 f, 即只能有 $\sigma_0(\alpha)$, $\sigma_1(\alpha)$, …, $\sigma_{\bullet}(\alpha)$ 及 $f_0(\alpha)$, $f_1(\alpha)$, …, $f_{\bullet}(\alpha)$, 而且最后一个 σ 必满足 $\sigma_{\bullet}(\alpha) = 2$.
 - $(2.4) \ \sigma_k(\alpha)^{f_k(\alpha)} > \alpha(- \mathfrak{V} k).$
 - (2.5) 如果 $\beta > f_k(\alpha)$ 则有 $\alpha^{\beta} = (\sigma_k(\alpha))^{\beta}$.
 - 证 因为 $\alpha^{\beta} \geqslant (\sigma_k(\alpha))^{\beta} \geqslant (\sigma_k(\alpha))^{\beta \cdot \beta} \geqslant (\sigma_k(\alpha))^{f_k(\alpha) \cdot \beta} \geqslant \alpha^{\beta}$.
 - (2.6) 如果 $\beta < f_{k+1}(\alpha)$, 则 $\forall \gamma < \sigma_k(\alpha) (\gamma^{\beta} \leqslant \sigma_k(\alpha))$.

证 根据 $f_{k+1}(\alpha)$ 的定义,可知对任何 β , 只要 $\beta < f_{k+1}(\alpha)$ 便有门($\exists \gamma < \sigma_k(\alpha)$) $(\gamma^{\beta} > \alpha)$,即($\forall \gamma < \sigma_k(\alpha)$) $\gamma^{\beta} \leq \alpha$ (甲).

反设本性质不成立,则应有 β_0 使得 $\beta_0 < f_{k+1}(\alpha)$ 且 $\exists \gamma < \sigma_k(\alpha) (\gamma^{\beta_0} > \sigma_k(\alpha))$. 取最小的这样的 γ 记为 δ ,则应有 $\delta < \sigma_k(\alpha)$ 且 $\delta^{\beta_0} > \sigma_k(\alpha)$,这时

$$\delta^{\beta_{\bullet}\cdot f_{\lambda}(\alpha)} = (\delta^{\beta_{\bullet}})^{f_{\lambda}(\alpha)} \geqslant (\sigma_{k}(\alpha))^{f_{k}(\alpha)} \geqslant \alpha,$$

但因 $\beta_0 \cdot f_k(\alpha) = \max(\beta_0, f_k(\alpha)) < f_{k+1}(\alpha)$, 这与(甲)式冲突. 故知反设不成立.

定义 设有 β 项的序列 $\{\tau_{\mu}\}_{\mu<\theta}$,如果各项均小于 γ ,则叫做 (β,γ) 序列.

(2.7) 必有 $(f_k(\alpha), \sigma_k(\alpha))$ 序列 $\{\tau_\mu\}$ 使得 $\sum_{\mu \in f_k(\alpha)} \tau_\mu = \sigma_k(\alpha)$. 亦即,有一个 $f_k(\alpha)$ 项的序列其各项均小于 $\sigma_k(\alpha)$,但各项之和为 $\sigma_k(\alpha)$.

证 用反证法. 设任何($f_k(\alpha)$, $\sigma_k(\alpha)$)序列其各项的和均小于 $\sigma_k(\alpha)$. (下文将 $f_k(\alpha)$, $\sigma_k(\alpha)$ 省写为 β 及 γ). 那末由 β 射入 γ 内的函数必是由 β 射入某个 $\kappa(k<\gamma)$ 内的函数、换言之、如用[γ^β]表示由 β 射入 γ 内的全体函数的集合(故[γ^β]== γ^β)、则有

 $[\gamma^{\beta}] = \bigcup_{\varkappa \in \gamma} [\varkappa^{\beta}], \text{ 故 } \partial [\gamma^{\beta}] = (\bigcup_{\varkappa \in \gamma} [\varkappa^{\beta}]) = \text{此外由}(2.6) \text{知}[\varkappa^{\beta}] = \langle \sigma_{k} \text{ 即 } \gamma, \text{ 故} \rangle$ $\gamma^{\beta} \leqslant \sum_{\varkappa \in \gamma} [\varkappa^{\beta}] = \langle \sum_{\varkappa \in \gamma} \gamma \leqslant \gamma \cdot \gamma = \gamma,$

但由(2.4)我们有 $\gamma^{\beta} = (\sigma_k(\alpha))^{f_k(\alpha)} > \alpha > \gamma$ 两者互相冲突.故(2.7)得证.

注意. 当 α , β 均有穷基数时 α^{β} 性质已熟知. 故下文假定 α , β 至少有一为无穷, 而且 $\alpha^{0}(-1)$, $0^{\beta}(-1)$, $1^{\beta}(-1)$ 又均已知. 故还假定 $\beta>0$, $\alpha>1$.

定理 3 设 $\beta > 0$, $\alpha > 1$ 且 α , β 至少有一为无穷,则有:

- (1) 当 1 $\leq \beta < f_0(\alpha)$ 时, $\alpha^{\beta} = \alpha$,
- (3) 当 $f_s(\alpha) \leq \beta$ (且 $\sigma_s(\alpha) = 2$)时, $\alpha^{\beta} = 2^{\beta}$.

因此,基数的方幂已彻底算出,

证 由方幂函数的单调性与 $f_0(\alpha)$ 的定义立即得(1)。

要证(2),设 $f_k \leq \beta < f_{k+1}$. 任取满足下条件的 η : $\forall \mu \in \eta(\tau_{\mu} < \sigma_k)(a)$ 且 $\sum_{\mu \in \eta} \tau_{\mu} = \sigma_k(b)$,

根据(2.7)这样的 η 是存在的, f_k 便是其一. 由(a) 及(2.6) 可知有 $\forall \mu \in \eta((\tau_\mu)^\beta < \sigma_k)(c)$,故有, (取最小的 η)

$$\alpha^{\beta} = (2.5)\sigma_k^{\beta} = (b)\left(\sum_{\mu \in \eta} \tau_{\mu}\right)^{\beta} \leqslant \prod_{\mu \in \eta} (\tau_{\mu})^{\beta} \leqslant (c)\prod_{\mu \in \eta} \sigma_k = \sigma_k^{\eta} \leqslant \sigma_k'^{s} \leqslant \alpha'^{s} \leqslant \alpha'$$

故得 $\alpha^{\beta} = \sigma_k^{\eta} = \sigma_k^{f*} = \alpha^{f*}$. 故(2)得证.

要证(3),设 $\beta > f_s$ 而 $\sigma_s = 2$. 注意 $\sigma_s' = (=2^{f_s}) > \alpha$, 故 $2^{\beta} < \alpha^{\beta} < (2^{f_s})^{\beta} < 2^{\beta \cdot \beta} = 2^{\beta}$, 故 $\alpha^{\beta} = 2^{\beta}$, (3)得证.

我们所区别的各情况是既穷尽又不可兼的,因此所给条件是既充分又必要的,即有

$$1 \leqslant \beta < f_0(\alpha) \Leftrightarrow \alpha^{\beta} = \alpha \coprod f_k(\alpha) \leqslant \beta < f_{k+1}(\alpha) \Leftrightarrow \alpha^{\beta} = \alpha^{f_k(\alpha)},$$

且

$$f_{\bullet}(\alpha) \leqslant \beta \land \sigma_{\bullet}(\alpha) = 2 \Leftrightarrow \alpha^{\beta} = 2^{\beta}.$$
 (*)

在上面讨论中,我们丝毫没有讨论到共尾数.如果引入共尾数,可把上面结果表述成另一形式.

给定 γ ,满足下列条件的最小的 β 叫做 γ 的共尾数,记为 $of(\gamma)$,即(对某一序列 $\{\tau_{a}\}$)

$$of(\gamma)$$
指 $\mu\beta(\forall\mu\in\beta(\tau_{\mu}<\gamma)_{\Lambda}(\sum_{\mu\in B}\tau_{\mu}=\gamma))$.

由这定义,可知在证明(2)时所引入的最小的 η 便是 of (σ_k) ,从而由(2.7)可知 $f_k >$ of (σ_k) .

定理 4 上定义中的 f_k 即 $of(\sigma_k)$,从而上定理中的(2)又可写成另一形式 当 $f_k(\alpha) \leq \beta < f_{k+1}(\alpha)$ (且 $\sigma_k(\alpha) \neq 2$)时, $\alpha^{\beta} = \sigma_k^{\alpha f(\sigma_k)} = \alpha^{\alpha f(\sigma_k)}$ 。

证 上面说过我们有

$$\alpha^{\beta} = \alpha^{f_k(\alpha)} \Leftrightarrow f_k(\alpha) \leqslant \beta < f_{k+1}(\alpha). \tag{\mathbb{P}}$$

但由上定理的证明知道对最小 η 而言 $(\eta=cf(\sigma_k))$ 有

$$\alpha^{\eta} \geqslant \sigma_k^{\eta} = \alpha^{f_k} \geqslant \alpha^{\eta}$$
 故有 $\alpha^{\eta} = \alpha^{f_k(\alpha)}$.

从而再由(甲)得 $f_k < \eta$ 。但 $f_k > \eta$ 故得 $\eta = f_k$ 即 $f_k(\alpha) = cf(\sigma_k)$ 。而定理得证、

一般把 $\alpha^{of(a)}$ 记为 $\mathfrak{T}(\alpha)$ 。 故知 α^0 的值共有: $1(-\alpha^\circ)$, $\alpha(-\alpha^1)$, $\mathfrak{T}(\sigma_0)$, $\mathfrak{T}(\sigma_1)$, ...,

 $S(\sigma_{s-1})$ 及 2^{s} 诸值. 值得强调指出,其中并不出现 $cf(\alpha)$ 或 $S(\alpha)$. 对此我们有:

定理 5 $\forall \alpha (cf(\alpha) = f_0(\alpha))$ 成立的充要条件是广义连续统假设 GCH 成立.

证 设 $cf(\alpha) = f_0(\alpha)$, 则只要 $\beta < cf(\alpha)$ 便有 $\alpha^{\beta} = \alpha$. 任取基数 β , 由于 $cf(\beta^+) = \beta^+ > \beta(\beta^+ 指 \beta)$ 的后继基数),故有 $(\beta^+)^{\beta} = \beta^+$ 。故 $2^{\beta} > \beta^+ = (\beta^+)^{\beta} > 2^{\beta}$,故 $2^{\beta} = \beta^+$ 即 GCH.

反之,在 GOH 的下应有: 只要 $\beta < cf(\alpha)$ 便有 $\alpha^{\theta} = \alpha$, 但 $\alpha^{of(\alpha)} > \alpha$, 故知 $cf(\alpha) = f_0(\alpha)$. 定理得证.

利用定理 3, 我们得出下列的结果.

如果固定 α 而得 α^{β} 看作 β 的函数时, α^{β} 的取值情况如下. $(M_k(\alpha) 表示(\sigma_k(\alpha))^{f_k(\alpha)}$ 或 $\alpha^{f_k(\alpha)}$ 或 $\mathbf{x}(\sigma_k)$),

这里取左闭区间,即在 $[f_k, f_{k+1})$ 内 α^{β} 取值 $M_k(\alpha)$.

其次,如果固定 β 而将 α^{β} 看作 α 的函数时。我们先定义一数列(依赖于 β)如下。

$$g(0) = 2$$
,
 $g(\eta) = \mu \gamma (\forall \delta < \eta (g(\delta))^{\beta} < \gamma \wedge \gamma^{\beta} > \gamma)$.

这是超穷递归式,易见:

 α 在[$g(\eta)$, $(g(\eta))^{\beta}$]内 α^{β} 取值($g(\eta)$) $^{\beta}$ (即右端点之值).

 α 在任何 $[g(\eta), (g(\eta))^{\beta}]$ 之外时 $\alpha^{\beta} = \alpha$.

在区间之外亦即在虚点处均有 $\alpha^{\beta}=\alpha$. 在特例, 当 $\alpha=0$, 1 时 $0^{\beta}=0$, $1^{\beta}=1$ 等等.

这两情形有一重大区别点如下. 当 α 固定时, α^{β} 的值可分成 s+3 段, 1, α , $M_0(\alpha)$, ..., $M_{s-1}(\alpha)$, 2^{β} . 前面的 s+2 段是常值, 最后一段 (2^{β}) 才与 β 有关.

在后面的情形(将 β 固定),则区间个数及区间外的变目个数都无上界(可以说与全体序数同个数). 因为对任何大于 β 的后继基数 α 而言, $\alpha^{\beta}=\alpha$,故区间外的变目无上界. 其次设 $g(\xi)$ 对 $\xi<\eta$ 已有定义,可作 $\bigcup_{\xi<\eta} (g(\xi))^{\beta}$,在其后第一个极限基数命为 δ ,显有 $cf(\delta)=\omega<\beta$ 且 $\forall\gamma<\delta(\gamma^{\beta}<\delta)$,故由已知定理有 $\delta^{\beta}\geq\delta^{\circ l(\delta)}>\delta$,且显然 $\forall\xi<\eta(g(\xi))^{\beta}<\delta)$,于是满足这条件的最小 δ 便是 $g(\eta)$. 因此 g 对每个序数 η 均有定义,即所讨论的区间的个数是没有上界的。故这里的情况与上面情况便有本质的区别。

参考文献

- [1] 莫绍揆,集合论的一些新公理系统,数学年刊,1:2(1980),309-3 16.
- [2] Levy, A., Basic Set Theory, Springer-Verlag, 1979.
- [3] Jech, T., Set Theory, Academic Press, 1978.