Homework 1

Walker Bagley

September 6, 2024

Section 1.2

1.2.1

Prove $||x| - |y|| \le |x - y|$ for $x, y \in \mathbb{R}$

Proof.

$$|x - y + y| \le |x - y| + |y| \Rightarrow |x| - |y| \le |x - y|$$

 $|y - x + x| \le |y - x| + |x| \Rightarrow |y| - |x| \le |y - x|$

We know that |x - y| = |y - x| and |y| - |x| = -(|x| - |y|) so

$$|x| - |y| \le |x - y|$$

- $(|x| - |y|) \le |x - y|$

Thus, we know by definition of absolute value that $||x| - |y|| \le |x - y|$.

1.2.2

Prove $2ab \le a^2 + b^2$ for $a, b \in \mathbb{N}$

Proof.

$$2ab \le a^2 + b^2 \Rightarrow 0 \le a^2 - 2ab + b^2$$
$$\Rightarrow 0 \le (a - b)^2$$

Due to the square, we will always have $0 \le n$ for some n positive number.

1.2.3

Prove $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$ for $a,b,c,d \in \mathbb{N}$ where ad < bc

Proof.

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d} \Rightarrow a + \frac{ad}{b} < a+c < \frac{bc}{d} + c$$

Then we want to show the following two inequalities:

$$a + \frac{ad}{b} < a + c \Rightarrow \frac{ad}{b} < c$$

$$\Rightarrow ad < bc$$

$$a + c < \frac{bc}{d} + c \Rightarrow a < \frac{bc}{d}$$

$$\Rightarrow ad < bc$$

It was given that ad < bc so both inequalities hold.

1.2.4

Prove $1^2 + 2^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$ for all $n \in \mathbb{N}$

Proof. By induction. Base case: n = 1

$$1^2 = 1 = \frac{1}{6} \cdot 2 \cdot 3 = \frac{1}{6} (1)(1+1)(2 \cdot 1 + 1)$$

Inductive Hypothesis: assume that for $k \in \mathbb{N}$, $1^2 + 2^2 + \cdots + k^2 = \frac{1}{6}k(k+1)(2k+1)$.

$$1^{2} + 2^{2} + \dots + (k+1)^{2} = 1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2}$$

$$= \frac{1}{6}k(k+1)(2k+1) + (k+1)^{2} \quad \text{by IH}$$

$$= \frac{1}{6}(k+1)[k(2k+1) + 6(k+1)]$$

$$= \frac{1}{6}(k+1)(2k^{2} + 7k + 6)$$

$$= \frac{1}{6}(k+1)(k+2)(2k+3)$$

This is what we would expect for k + 1.

Section 2.1

2.1.1

(a)

Prove $\lim_{n\to\infty} \frac{\sin n}{\sqrt{n}} = 0$

Proof.

$$\left| \frac{\sin n}{\sqrt{n}} - 0 \right| < \epsilon \Rightarrow \left| \frac{\sin n}{\sqrt{n}} \right| < \epsilon$$

$$\Rightarrow \frac{\left| \sin n \right|}{\left| \sqrt{n} \right|} < \epsilon$$

$$\Rightarrow \left| \sin n \right| < \epsilon \cdot \sqrt{n}$$

$$\Rightarrow \left| \sin n \right| \le 1 < \epsilon \cdot \sqrt{n}$$

$$\Rightarrow \frac{1}{\epsilon} < \sqrt{n}$$

$$\Rightarrow \frac{1}{\epsilon^2} < n$$

Take $N > \frac{1}{\epsilon^2}$.

(b)

Prove $\lim_{n\to\infty} \frac{2^n}{n!} = 0$

Proof.

$$\left| \frac{2^n}{n!} - 0 \right| < \epsilon \Rightarrow \left| \frac{2^n}{n!} \right| < \epsilon$$
$$\Rightarrow \frac{2^n}{n!} < \epsilon$$

If we expand $a_n = \frac{2^n}{n!}$, we can see

$$\frac{2^n}{n!} = \frac{2 \cdot 2 \cdot \dots \cdot 2 \cdot 2}{1 \cdot 2 \cdot \dots \cdot (n-1) \cdot n}$$
$$= \frac{2}{1} \cdot \frac{2}{2} \cdot \frac{2}{3} \cdot \dots \cdot \frac{2}{n-2} \cdot \frac{2}{n-1} \cdot \frac{2}{n}$$

Observe that $a_n = a_{n-1} \cdot \frac{2}{n}$ and $a_{n-1} < 1$ for n > 5. So we can say that when n > 5, $a_n < \frac{2}{n}$. Working with this...

$$\frac{2^n}{n!} < \epsilon \Rightarrow \frac{2^n}{n!} < \frac{2}{n} < \epsilon$$
$$\Rightarrow \frac{2}{\epsilon} < n$$

Take $N > \frac{2}{\epsilon}$.

(c)

Prove $\lim_{n\to\infty} (\sqrt{n+4} - \sqrt{n}) = 0$

Proof. Because $\sqrt{n+4} > \sqrt{n}$

$$|\sqrt{n+4} - \sqrt{n} - 0| < \epsilon \Rightarrow |\sqrt{n+4} - \sqrt{n}| < \epsilon$$

$$\Rightarrow \sqrt{n+4} - \sqrt{n} < \epsilon$$

$$\Rightarrow \frac{4}{\sqrt{n+4} + \sqrt{n}} < \epsilon$$

$$\Rightarrow \frac{4}{\sqrt{n+4} + \sqrt{n}} < \frac{2}{\sqrt{n}} < \epsilon$$

$$\Rightarrow \frac{2}{\epsilon} < \sqrt{n}$$

$$\Rightarrow \frac{4}{\epsilon^2} < n$$

Take $N > \frac{4}{\epsilon^2}$.

2.1.2

Prove $|a_n| \to |a|$ given $a_n \to a$

Proof. Given $a_n \to a$, we have that for any ϵ , $|a_n - a| < \epsilon$ for n > N. $|a_n| \to |a|$ implies that for any ϵ' , $||a_n| - |a|| < \epsilon'$ for n > N'. By the reverse triangle inequality proved in (1.2.1), we know that $||a_n| - |a|| \le |a_n - a| < \epsilon$. So we take $\epsilon' = \epsilon$ and N' = N.

2.1.3

Prove $a_n b_n \to 0$ given a_n is bounded and $b_n \to 0$

Proof. Since a_n is bounded, we know that $\exists B \text{ s.t. } |a_n| \leq B$ for all n. Additionally, since $b_n \to 0$, we have that for any ϵ , $|b_n| < \epsilon$ for n > N. Then

$$|a_n b_n - 0| < \epsilon' \Rightarrow |a_n b_n| < \epsilon'$$
$$\Rightarrow |a_n| |b_n| < \epsilon'$$
$$\Rightarrow |a_n| |b_n| < B\epsilon$$

Since ϵ is very small, we can take $\epsilon' = B\epsilon$ for n > N.

2.1.4

Prove $\sqrt{a_n} \to \sqrt{a}$ given a_n is positive and $a_n \to a$

Proof. Since $a_n \to a$, we know that for any ϵ , $|a_n - a| < \epsilon$ when n > N. So

$$\left|\sqrt{a_n} - \sqrt{a}\right| < \epsilon' \Rightarrow \left|\frac{a_n - a}{\sqrt{a_n} + \sqrt{a}}\right| < \epsilon'$$

$$\Rightarrow \left|\frac{a_n - a}{\sqrt{a_n} + \sqrt{a}}\right| < \left|\frac{a_n - a}{\sqrt{a}}\right| < \epsilon'$$

$$\left|a_n - a\right| < \epsilon' \sqrt{a}$$

Since $|a_n - a| < \epsilon$, we take $\epsilon' = \frac{\epsilon}{\sqrt{a}}$ for n > N' = N.