Chapitre 4: Arithmétique

1 Diviseurs et multiples

1.1 Définitions

Définition 4.1

Soit a et b deux entiers.

a est **multiple** de b si et seulement si il existe un entier k tel que $a = k \times b$.

Définition 4.2

Soit a et b deux entiers avec b non nul.

b est *diviseur* de a si et seulement si il existe un entier k tel que $a = k \times b$.

Exemples

- 1)
- 2)
- 3)
- 4)

1.2 Algorithme qui affiche les diviseurs ou les multiples d'un entier

Algorithme 4.1

LISTE DES PREMIERS MULTIPLES POSITIFS D'UN ENTIERS Créer une fonction liste_20_premiers_multiples(n) qui :

- Prend en argument un entier n
- Renvoie la liste des 20 premiers multiples positifs de n.

>>> liste_20_premiers_multiples(8)

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152

Algorithme 4.2

On souhaite créer une fonction qui donne tous les diviseurs d'un entiers.

1. Dans le langage Python, on a la commande a//b qui donne le quotient de a par b, et la commande a%b qui donne le reste de a par b. Calculer à la main et vérifier avec la console Python :

- Le quotient dans la division euclidienne de 20 par 3
- Le quotient dans la division euclidienne de 120 par 6
- Le reste dans la division euclidienne de 120 par 5
- Le reste dans la division euclidienne de 127 par 3
- 2. Créer une fonction **liste_diviseur(a)** qui prend en paramètre un entier a non nul et qui affiche les diviseurs positifs de a.

1.3 Montrer qu'un entier est multiple ou diviseur

Savoir-Faire 4.1

SAVOIR MONTRER QU'UN NOMBRE DÉPENDANT DE n EST UN MULTIPLE Montrer que la somme de trois entiers consécutifs est un multiples de 3.

• Exercice 4.1

Soit a = 10k et b = 6k où $k \in \mathbb{N}$.

- 1. Montrer que a est divisible par 2 et par 5.
- 2. Montrer que b est un multiple de 3
- 3. Est-ce que 8 divise a + b?

Exercice 4.2

Montrer que la somme de deux nombres consécutifs est un nombre impair.

Exercice 4.3

Montrer que la somme de deux nombres pairs est un nombre pair.

Exercice 4.4

Montrer que la somme de deux nombres impairs est un nombre pair.

Exercice 4.5

Montrer que si n est pair, alors l'entier $a = n^2(n+20)$ est un multiple de 8.

2 Les nombres premiers

2.1 Définition

Définition 4.3

Un *nombre premier* est un entier naturel qui a exactement deux diviseurs positifs distincts.

Exemples

Parmi les entiers suivants, lesquels sont des nombres premiers, et pourquoi?

- 1:
- 2:
- 3:
- 4:
- 5:
- 6:
- 7:
- 8:

2.2 Liste des nombres premiers entre 0 et 100

nous allons utiliser une méthode afin de trouver facilement tous les nombres premiers entre 1 et 100; cette méthode s'appelle le crible d'Erathostène.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

2.3 Algorithme avec les nombres premiers

Algorithme 4.3

En vous inspirant des algorithmes précédents, créer une fonction **premier(n)** qui prend en argument un entier positif et qui renvoie true si n est premier, False sinon.

Savoir-Faire 4.2

Savoir démontrer qu'un nombre n'est pas premier Soit p=(n+1)(n+3). Montrer que p n'est pas premier.

• Exercice 4.6

Soit n un entier naturel non nul. Soit a = (n+4)(n+2). Montrer que a n'est pas premier.

2.4 Décomposition en produit de nombres premiers

Propriété 4.1

Tout entier naturel n, avec $n \ge 2$ est premier ou produit de nombres premiers. Cette décomposition en produit de facteurs premiers est unique, à l'ordre près.

Savoir-Faire 4.3

SAVOIR DÉCOMPOSER UN ENTIER EN PRODUITS DE NOMBRES PREMIERS Déterminer la décomposition en produit de facteurs premiers de 207900.

• Exercice 4.7

Déterminer la décomposition en produit de facteurs premiers de 112;360;490;495;1140