

Consider Va Adjacent to	Vq	; V	'10 <i>,</i>	V ₅										
mstSet > E	V1, V4	, V81	V9}											
VERTEX VI	V ₂ 32	V3 ()	17	V ₅	V _ι	V ₄	V ₈	V ₉	12					
We don't en than the	upda	ite vrent	Vs, val	as ue	the	val	ue	while	e conne	cling	via	Vq	is	high.
consider 1 Adjacent to	/s	S -	V6, V	9, 14										
mstSet > E	V1, V4	, V8 ₁	V9, V5	}										
VERTEX VI	V ₂	V3	V4 17	V ₅	VL 28	V ₇	V ₈	V9	12					
Consider V10 Adjacent to motSet > £				. V107										
VERTEX VI KEY O		V ₃	V4 17	V _s	٧ <u>ر</u>	V ₇	V ₈	V9	V ₁₀					
consider V Adjacent	(Ho V6	_ 1	vs & v	10										
mstSet > {					V63									
VERTEX VI	V ₂	V ₃	V4 17	V ₅	V L 6	V ₄	V ₈	Vq 4	12_					
considu V; Adjacent to	- د۷	Vц	& V =	f										
mstSet > E					V6, V	',}								
VERTEX VI	V ₂	V ₃	V4 17	V s	V <u>L</u>	V ₇	V ₈	Vq 4	V16 12					
Consider V Adjacent	∓ to	VŦ	- V3	2 Vy										
mstSet > {	V1, V4	, V8,	V9, V5	, V, o .	٧, ١	V ₃ , V	1}							
VERTEX VI KEY O	V ₂	V ₃	V4 17	10	V L 6	V ≠ 5	V ₈	V9	12					

Consider 1/2 muset = { V1, V4, V9, V9, V5, V10, V1, V3, V7, V2) 6 VERTEX VI VZ Vg V10 10 32 5 12 Final graph V2 18 10 5

Q7) KRUSKAL'S ALGORITHM

geaph it may be observed that there are:

① No parallel edges
② No loops

het us initialise the edge table

Edge V4 V9	Vs Va	V3 VI	V6V10	V4V5	VaVio	VaVi	VuV3	Ve Va	Vs Vc	V1 V2	v2 V5	Y1 V8
weight 3	4	ζ	6	lσ	12	17	18	25	28	32	45	59

the edge with least weight - V4 V8 We start with

WE CANNOT CONSIDER EDGE V_5V_9 AS IT WOULD CREATE A CYCLE $\begin{cases} V_4 - V_5 - V_9 - V_8 - V_4 \end{cases}$ WE CANNOT CONSIDER EDGE V_5V_6 AS IT WOULD CREATE A CYLCE $\begin{cases} V_4 - V_5 - V_6 - V_{10} - V_9 - V_8 - V_4 \end{cases}$

Next we choose Vive

As we have (n-1) vertices we can stop the algorithm
FINAL GRAPH

918) USE	INDU	CTION	TO	PR	OVE	DJI	KSTRA	A'S	ALGO	RITH	M				
S-	- inpu - source !uv) -	ie ve	itex	ar	edg	e fe	øm V	to	V						
V 2	(v) - se	t Vo	l ha	vections.	es in	the to	graph								
K	- su	t of de sh	allould	nodi be	es u dete	nose	final	she	vtest	path	wig	hts t	from	the	Soute
VHAT AR	E WE	TRY	ING	TD P	RDVE	?									
→ For w	vry	vertex	· V	→	comp	ited	dis	tance	d	(v)	= 5	hortest	diste	ance	8cv)
EMMA :	For	every	ver tex	of cx.	in) = {	R S(x)									
Base Case :	IRI=	= 1													
IR1:	= 1	only	when	r R	= {s]	i - i.e	. the	only	node s	in th	e gro	yph J	s the	source	
When	the _	only	node	being	g con	rsiden	cel is	the	sow	ice r	rode-	the	dis	tance	from
5 t0	8 -		d(s) = 8(s)	= D	3	; T	he ba	use ca	ue In	olds					
Inductive L. Ne	consid	er H	rat	the	algor	ithm	ha	s com	rputed	a	nun	rber	of ver	tices :	that
La We	stores wart	to	add	a	new	vert	ex 1	ı t	0 R						
La By	the not	induc u,	tive the	hyps lemm	atheris a h	, we olds	true	asu	me th	at	for a	ll ve	tice.	in R	that
			χeR	>	ol(x) = :	8 (x)	whe	ne X	≠u					
To Prove	That	· d	(u) =	8(u)											
CONTRAD	ICTION there	- l be	a	shorte	n pa	th	from	. 6	to	u -	· call	ed A			
	th of														

We k	now that	the .	path A	starts	from	the source	e vertex av	d,
					www	were vi	em to ve to	
An	ray be o	r path	like st	his				
	A: s.	→ (vi) —	$\rightarrow V_1 \longrightarrow V_2$	3)> u				
9	n thù oxa	m nl e na	th. V1, V2	V3 ER				
ĬĬ	ris implies	that.	they have	already	been	pro cesse	d by the	algorithm
0	und have o	correctly	calculate	d distan	us.		V	
Vertex	u hous	not y	t been p	rocessed	and	hence d	pes not beli	rng to set R
Thus A	follows	a pal	h that	at som	re point	Jeaves s	et R to ree	ach
vertex	u '	1			1			
Ket She	e first e	dge tha	t leaves	set R	be calle	d cd		
	is preser	T I						
We kny	ow that	y a v	ertex belor	igs to set	R →	$d(x) = \delta($	(x)	
:. The	distance fro	om the	source to	vertex c	is com	veetly stor	red as	
			= 8(1)					
				1				
Becouse	d is	adjacent	to c [connected	by ed	ge cd]	so d was	processed
when		pharea						
	That	i						
		(dl	$(d) \leq a$	((c) + L	(cd)			
		→ D	ji kstra's a	lgorithm	attempt	u to mi	nimise the	distance
		of	vertices a	livetly co	nnected	to the	nimise the vertex being	processed
The al	goeithm p	icked 1	vertex u	a it	has the	smallest	known du	tance
			: dl	$u) \leq di$	(d)			
(D) d(c) 4 L	(A ₆) :	The induct	ive Resports	14.1.8 - U	d know th	at. 1(c) =	L(Ac) where
O V			Ac is st	r subpath	from	s to c	at d(c) =	
	d) \(\) \(d(c)							
	cu) \le d(d)							
Combine	ing in	riverse:	d(u)	$) \leq d(d)$) \(\) d(c)+ L(cd).	€ l(A)	

This prove that $d(u) \leq l(A)$ which goes against our initial contradiction :. The algorithm is correct

```
935) D.P. ALGORITHM FOR 0-1 KNAPSACK PROBLEM
  ALGORITHM: Memoization
  Input - values (list) - value of each item

weights (list) - weight of each item

capacity (irt) - how much weight can the brapack hold?

n(mt) - number of items
   Algorithm knapsack Memoication (Values [], weights [], capacity, n):
       create a 20 array memo[n+1][capacity+1].
         for i (0: 11) do:
                 memo[i][0] = 0
         for j (0: w) do:
                  memo [o]ci] = 0
              knapsack (capacity, n):
       def
            if capacity = = 0 OR n = = 0:
             if memo[n][capacity] != 0:
Return mimo [n] [capacity]
             is weights [n-1] > capacity:
                  result = knapsack (capacity, n-1)
                    Item = value[n-1] + knapsack (capacity - wights [n-1], n-1)
e-item = knapsack (capacity, n-1)
                    rusute = max ( item, e-item)
             memo [n][ capacity = result
             rdurn result
```

```
ALGORITHM: TABULATION
 Input - values (list) - value of each item

weights (list) - weight of each item

capacity (int) - how much weight can the brapack hold?

n (int) - number of items
Algorithm knapsack Tabulation (value [], weights [], capacity n):
         Initialise tab[n+1][ capacity + 1] = 0
         for i(1:n):
              for w(1: capacity):
if weights [i-1] < = w:
                     item = values [i-1] + tab[i-1] c w- weight [i-1]]
e-item = tab [i-1] c w]
                     tab [i][w] = max (item, e. item)
                  llse:
                    tab [i] [w] = tab [i-1] [w]
                 Return tab [ n] [ capacity]
```