Question	1:	
----------	----	--

Consider the CFG given be	low:
---------------------------	------

S -> ASA | aB

A -> B | S

B -> b | ε

How many non-terminals need to be added to convert the above grammar into CNF? (1 mark)

- A) 1
- B) 4
- C) 2
- D) 3

We have added 3 new non-terminals.

Question 2:

Consider the CFG given below:

 $S \rightarrow xSy|V$

 $V \rightarrow Vz | \epsilon$

How many non-terminals should be added to convert the CFG into CNF?

- A) 2
- B) 4
- C) 5
- D) 3

We have added 5 new non-terminals

Question 3:

In the above Q. 2) How many different numbers of Null productions in the CFG to CNF converted form?

- A) 0
- B) 1
- C) 2
- D) 3
- B) 1 null prod.

Question 4:

$S \rightarrow NN VP$	0.50	$S \rightarrow VP NN$	0.50
$NP \rightarrow NN PB$	0.40	$PB \rightarrow PPNN$	0.30
$VP \rightarrow VB NN$	0.30	$VP \rightarrow VB NP$	0.20
$VP \rightarrow NN VB$	0.25	$VP \rightarrow NNPB$	0.15
$PP \rightarrow with$	0.10	$PP \rightarrow without$	0.10
<i>VB</i> → play	0.30	$VB \rightarrow enjoy$	0.20
VB → watch	0.25	NN → children	0.15
NN → cricket	0.15	NN → friends	0.20
NN → football	0.10	NN → music	0.12

For a sentence S = w1w2w3w4, assume that the cells in the table are indexed as follows:

	1	2	3	4	
w_1	11	12	13	14	1
	w_2	22	23	24	2
		w_3	33	34	3
			w_4	44	4

Using CKY algorithm, find the probability score for the most probable tree for the sentence S_1 = "children play cricket with friends".

- A) 5.06×10^{-4}
- B) 2.73×10^{-3}
- C) 1.62×10^{-6}
- D) None of the above

Question 5

Using CKY algorithm, find the number of parse trees for the sentence S_2 = **children enjoy music** and the probability score for the most probable tree.

- A) $1, 4.95 \times 10^{-3}$
- B) 2, 0.36×10^{-3}
- C) 3, 0.99×10^{-3}
- D) 2, 0.54×10^{-3}

Question 6:

Which of the following grammars are valid CNF?

- 1. A \rightarrow B 2. A \rightarrow BCD 3. A \rightarrow BC
 - $B \rightarrow CD B \rightarrow b B \rightarrow \epsilon$
 - $C \,\to\, c \,\, C \,\,\to\, c \,\, C \,\,\to\, c$
 - $D \,\to\, d\,\, D \,\to\, d$
 - A) 1.
 - B) 2.
 - C) 3.
 - D) None of the above

Option D) None of them are valid

- 1. $A \rightarrow B \quad (X \rightarrow YZ, X \rightarrow a)$
- 2. A -> BCD
- 3. A -> BC

B -> CD | b | epsilon

- C -> c
- D -> d

Question 7:

Which of the following are true?

- A) Given a CFG and its corresponding CNF, they produce different languages.
- B) It requires '2n-1' productions or steps in CNF to generate a string w of length 'n'.
- C) For a given grammar, there can be more than one CNF.
- D) None of the above

Multi choice multi correct

B), C)