T = 1; t = .97; r = 0; μ = .01 + r; σ = .2; γ 1 = .001; γ = γ 1 Exp[-Tr]; d = Exp[-(T-t) r];

S1 = 600; op [S_] :=
$$\frac{\mu - r}{\chi \sigma^2 S}$$
 d

zeroRemainder [S_] :=
$$\frac{\mu - r}{\gamma} \left(\frac{T - t}{2} - \frac{Log[S]}{\sigma^2} \right)$$

Plot[op[S], {S, 1, S1}]

Table[{S, op[S]}, {S, 1, S1, S1 / 500}] // MatrixForm // N;

$$-(\mu-r)^2 \frac{T-t}{2\sigma^2 \gamma} d$$

 $a = \{54.040520140622995, 54.886134118350562\};$

op /@ a

zeroRemainder /@ a

-0.0375

{4.62616, 4.55488}

 $\{-997.284, -1001.17\}$

$$u[p_{-}, \gamma_{-}] := \frac{1}{\gamma} Log \left[p Exp \left[\frac{\gamma}{p} \right] + (1-p) Exp \left[\frac{-\gamma}{1-p} \right] \right]$$

Plot[u[.1, x], $\{x, .0001, 20\}$, PlotRange \rightarrow All]

