CSE 6324 Advanced Topics in Software Engineering Semantic Code Search

Iteration 2

Team 7

Fotios Lygerakis
Mohammad Rifat Arefin

GitHub Repository: https://github.com/rifatarefin/semantic-code-search

Project Plan

Features: Iteration 1

- Train a 1D-CNN model
 - Embed code and query in a joint vector space
 - Retrieve Code with the most similar vector with the vector representation of query
 - o Only on Python data of the CodeSearchNet [4] dataset
- Build a command-line code search tool
 - A Jupyter notebook to perform demo code search

Features: Iteration 2

- Use the state of the art ML model from iteration 1 Neural bag of words model
- Train on all available six programming languages Python, Javascript, Ruby, Go, Java, and PHP
- Command line code search tool for demo purpose Supports programming language selection with query

Features: Planned for Future Iterations (Iteration 3)

- Exploit State of the art language models for code search
 - Generative Pretrained Transformer(GPT) 2&3
 - Unsupervised technique
 - Transformer-based
 - Not used for semantic code search yet
 - GPT-3 Model not published yet
 - Code2Vec [11]
 - Promising for capturing code semantics

Features: Planned for Future Iterations (Iteration 3)

2. Develop a web app and host it online

Q read csv	file		Search
Python			
Javascript			
Ruby			
☐ Go			
✓ Java			
☐ PHP			

Features: Planned for Future Iterations (Final Iteration)

- 3. Comparison between the two approaches:
 - Code & Query Encoders developed <u>separately</u> [3]
 - Code Encoder -> Representation mapped to the vector space of the Natural language model
 - End-2-End training for Code & Query Encoders [4]
 - Loss function is being calculated jointly.
- 4. Least priority:
 - Train a language model with Stackoverflow [7] data

Competitors

- Information retrieval based approach:
 - Reformulate queries with natural language phrasal representations of method signatures [14]
 - Recommend reformulation strategy based on query properties: uses ML [15]
 - Extend a query with synonyms generated from WordNet [16]
- Considering data and evaluation metrics:
 - Leaderboard of Code Search Net Challenge [6]

Risks: Already Encountered

- 1. Insufficient Hardware Resources
- 2. Very Large size of data

Solution

Set up the project on TACC clusters: Maverick2 [12]

- Does not provide root privilege
- Migrated to Singularity [13] from Docker for containerized environment: additional 15 hours of work

Risks (Current)

- 3. Insufficient/Improper Data & Modelling Techniques
 - Redirect efforts towards improving the database retrieval system
 - Developing a good UI
 - o Probability: 50%, Risk effect: 40 hrs, Risk exposure: 20 hrs
- 4. Performance Deterioration when when adding more programming languages
 - Fine-tune models
 - o Probability: 40%, Risk effect: 30 hrs, Risk exposure: 12 hrs

Risks (Current)

- 5. Host a web app version online
 - Hosting service -> must have adequate resources
 - o Probability: 70%, Risk effect: 15 hrs, Risk exposure: 10.5 hrs
- 6. Adding additional packages in Singularity containers
 - Rebuild containers
 - o Probability: 50%, Risk effect: 6 hrs, Risk exposure: 2 hrs

Specifications & Design

Use-Case

- Query Token Sequence
- Code Snippet Token Sequence
- Cosine Distance
- Return Code Snippet
 - Smaller Distance from the Query

[4]

Method - Neural Bag Of Words (NBOW)

Optimization[4]:

- Max (QueryEmbedding * CodeEmbeddings)
- Min (CodeSnippetEmbedding * DistractorCodeEmbedding)

Testing

Testing - NBOW model (state-of-the-art)

Customers and Users

Customers & Users

- Code Hosting & Versioning services
 - Github, Gitlab, etc
- General Purpose Search Engines
 - Google, Bing, etc
- IDEs with integrated code search engines

Feedback

Feedback

- Initial User Experience Feedback (Iteration 1&2)
 - Team Members
- Future User Experience Feedback (Iteration 3)
 - Classmates
- Project Management Feedback
 - Project Mentor

- [1] Daniel Cer and Yinfei Yang and Sheng-yi Kong and Nan Hua and Nicole Limtiaco and Rhomni St. John and Noah Constant and Mario Guajardo-Cespedes and Steve Yuan and Chris Tar and Yun-Hsuan Sung and Brian Strope and Ray Kurzweil (2018). Universal Sentence EncoderCoRR, abs/1803.11175.
- [2] Stephen Merity and Nitish Shirish Keskar and Richard Socher (2017). Regularizing and Optimizing LSTM Language ModelsCoRR, abs/1708.02182.
- [3] https://github.blog/2018-09-18-towards-natural-language-semantic-code-search/
- [4] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, Marc Brockschmidt: CodeSearchNet Challenge: Evaluating the State of Semantic Code Search. CoRR abs/1909.09436 (2019)
- [5] Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D. & Sutskever, I. (2018), 'Language Models are Unsupervised Multitask Learners', OpenAI blog 1.8 (2019): 9.

```
[6] https://app.wandb.ai/github/codesearchnet/benchmark
   https://github.com/LittleYUYU/StackOverflow-Question-Code-Dataset
[8]
https://github.com/hamelsmu/code_search/blob/master/notebooks/2%20-%20Train%20Function%20Su
mmarizer%20With%20Keras%20%2B%20TF.ipvnb
[9]
https://github.com/hamelsmu/code search/blob/master/notebooks/3%20-%20Train%20Language%20Mo
del%20Using%20FastAI.ipynb
[10] https://github.com/spotify/annoy
[11] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. Code2vec: learning
distributed representations of code. Proc. ACM Program. Lang. 3, POPL, Article 40 (January
2019), 29 pages. DOI:https://doi.org/10.1145/3290353
```

[12] https://portal.tacc.utexas.edu/user-guides/maverick2

- [13] https://sylabs.io/guides/3.0/user-guide/quick_start.html
- [14] E. Hill, L. Pollock, and K. Vijay-Shanker. Improving source code search with nat-ural language phrasal representations of method signatures. InProceedings of the 2011 26th IEEE/ACM International Conference on Automated Software Engineering, pages 524–527. IEEE Computer Society, 2011.
- [15] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and T. Menzies. Au-tomatic query reformulations for text retrieval in software engineering. InProceedings of the 2013 International Conference on Software Engineering, pages842-851. IEEE Press, 2013.
- [16] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan. Query expansion via wordnet foreffective code search. In2015 IEEE 22nd International Conference on SoftwareAnalysis, Evolution, and Reengineering (SANER), pages 545–549. IEEE, 2015.

Thank you!

WHEN YOU HEAR THIS:

Tech Comics: "The Software Project, Pt. 1"