80818 Intuitionistic Logic - Solutions to Exercise Sheet 1

September 6, 2021

1. (a) $\frac{\varphi, \psi \vdash \varphi \qquad \varphi, \psi \vdash \psi}{\varphi, \psi \vdash \varphi \land \psi} \land I \\ \frac{\varphi, \psi \vdash \varphi \land \psi}{\varphi \vdash \psi \rightarrow (\varphi \land \psi)} \rightarrow I \\ \frac{\varphi \vdash \psi \rightarrow (\varphi \land \psi)}{\vdash \varphi \rightarrow (\psi \rightarrow (\varphi \land \psi))} \rightarrow I$

(b) $\frac{\varphi, \psi \vdash \varphi}{\varphi \vdash \psi \to \varphi} \to I \\ \frac{\varphi \vdash \psi \to \varphi}{\vdash \varphi \to (\psi \to \varphi)} \to I$

(c) In the below, we write Γ for the context $\varphi \to (\psi \to \chi), \varphi \to \psi, \varphi$.

$$\frac{\frac{\Gamma \vdash \varphi \to (\psi \to \chi) \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi \to \chi} \quad \frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} \to E}{\frac{\Gamma \vdash \chi}{\varphi \to (\psi \to \chi), \varphi \to \psi \vdash \varphi \to \chi}} \to I$$

$$\frac{\varphi \to (\psi \to \chi), \varphi \to \psi \vdash \varphi \to \chi}{\varphi \to (\psi \to \chi) \vdash (\varphi \to \psi) \to (\varphi \to \chi)} \to I$$

$$\vdash (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

2. This is an instance of a standard result in first order logic. For example, you can see Lemma 3.10.2 in Van Dalen, *Logic and Structure* for a textbook proof.

Throughout this question, it is useful to note that given a proof of a formula φ , we can derive a proof of $\varphi[z/s]$ for any free variable z and term s, as follows:

$$\frac{\frac{\Gamma \vdash \varphi}{\Gamma \vdash \forall z \, \varphi} \forall I}{\frac{\Gamma \vdash \varphi[z/s]}{\Gamma \vdash \varphi[z/s]} \forall E}$$

We first show the implication (a) \Rightarrow (b):

Since the only relation symbol is E, every atomic formula is of the form Est for terms s and t.

We first show, by induction on terms, that for all terms s, we have $Exy \to Es[z/x]s[z/y]$.

First suppose that s is a free variable. This divides into two subcases: either s = z, or s = v for some free variable v such that $v \neq z$.

If s=z, then E s[z/x] s[z/y] = Exy. We can show $Exy \to Exy$ directly by $I \to \infty$.

If $s = v \neq z$, then E s[z/x] s[z/y] = Evv. We can prove Evv by reflexivity Exx.

Finally, consider the case s = Ot. By substituting t[z/x] for x and t[z/y] for y in the axiom $Exy \to E(Ox)(Oy)$ we can derive $Et[z/x]t[z/y] \to E(Ot[z/x])(Ot[z/y])$. From this together with the induction hypothesis, $Exy \to Et[z/x]t[z/y]$, and $\to E$, we can derive $Exy \to E(Ot[z/x])(Ot[z/y])$. However, Es[z/x]s[z/y] is equal to E(Ot[z/x])(Ot[z/y]) and so we are done.

We now use this to show $Exy \to (Es[z/x]t[z/x] \to Es[z/y]t[z/y])$. By applying the above claim to the terms s and t, we can show $Exy \to Es[z/x]s[z/y]$ and $Exy \to Et[z/x]t[z/y]$. By substitution, we can derive $Eyx \to Es[z/y]s[z/x]$. Combining this with the symmetry axiom $Exy \to Eyx$ and $\to E$, we can show $Exy \to Es[z/y]s[z/x]$. We can now see that in context Exy, Es[z/x]t[z/x] we can derive Es[z/y]s[z/x], Es[z/x]t[z/x] and Et[z/x]t[z/y]. By applying these with suitable substitutions of the transitivity axiom and $\to E$ we can derive Exy, Es[z/x]t[z/x] + Es[z/y]t[z/y] and so $\to Exy \to Es[z/x]t[z/x] \to Es[z/y]t[z/y]$ by two instances of $\to I$.

Next we check (b) \Rightarrow (a)

Reflexivity, Exx is listed as an axiom in (b).

For symmetry $Exy \to Eyx$, we take φ to be Ezx, to prove the formula $Exy \to (Exx \to Eyx)$. By reflexivity, we can deduce $Exy \to Eyx$.

For transitivity, first note that by substitution, it suffices to show $Exy \to (Eyw \to Exw)$, where $w \neq z$. We apply the assumption in (b) with $\varphi = Ezw$, noting that again by substitution we can swap round x and y, to obtain $Eyx \to (Eyw \to Exw)$. Combining with symmetry (which we have already shown above) gives us $Exy \to (Eyw \to Exw)$ as we needed.

Finally we show (b) \Rightarrow (c) (it is already clear that (c) \Rightarrow (b)). We already know (b) \Rightarrow (a) from above, so we can assume both (a) and (b).

We show by induction on formulas φ that for all free variables x and y, we have $Exy \to (\varphi[z/x] \to \varphi[z/y])$.

¹Technically this would be done as a series of three substitutions - first replace x with a new variable v not occurring in s, then replace y with x, then replace v with y.

If φ is atomic, then we apply the assumption (b).

If $\varphi = \bot$, then it does not have any free variables, so $\bot[z/x] = \bot[z/y] = \bot$. We just apply $\to I$ to show $Exy \to (\bot \to \bot)$.

If $\varphi = \psi \wedge \chi$, then by the inductive hypothesis we can assume $Exy \rightarrow (\psi[z/x] \rightarrow \psi[z/y])$ and $Exy \rightarrow (\chi[z/x] \rightarrow \chi[z/y])$. By $\wedge E$ and repeatedly applying $\rightarrow E$, Exy, $\psi[z/x] \wedge \chi[z/x] \vdash \psi[z/y]$ and Exy, $\psi[z/x] \wedge \chi[z/x] \vdash \chi[z/y]$. It follows by $\wedge I$ and repeatedly applying $\rightarrow I$ that $\vdash Exy \rightarrow ((\psi[z/x] \wedge \chi[z/x]) \rightarrow (\psi[z/x] \wedge \chi[z/x]))$, as required.

The case of disjunction is very similar to conjunction, so we omit it.

If $\varphi = \psi \to \chi$, we note that we choose the statement we are proving by induction so that x and y can be any free variables. In particular, by the induction hypothesis, we may assume $Eyx \to (\psi[z/y] \to \psi[z/x])$. Together with symmetry and $\to E$, we deduce $Exy \to (\psi[z/y] \to \psi[z/x])$. We also have by the induction hypothesis that $Exy \to (\chi[z/x] \to \chi[z/y])$. We can now deduce by $\to E$ that $Exy \to (\psi[z/x] \to \chi[z/x]) \to (\psi[z/y] \to \chi[z/y])$.

For existential quantifiers $\exists x \varphi$ we use the elimination followed by the introduction rule in a similar way to disjunction, and the case of universal quantifiers is again similar.

- 3. (a) We wish to prove the formula $\varphi(x) := x = 0 \lor \exists y \, x = Sy$ for all x. By induction, it suffices to prove $\varphi(0)$ and $\varphi(x) \to \varphi(Sx)$. For $\varphi(0)$ we use $\forall I_l$ and reflexivity. For $\varphi(x) \to \varphi(Sx)$, we note that we do not need to use the assumption $\varphi(x)$ and just deduce this from $\varphi(Sx)$. Namely, by reflexivity, we have Sx = Sx and so can deduce $\exists y \, x = Sy$ by $\exists I$, and applying $\forall I_r$ we get $\varphi(Sx)$.
 - (b) We show this by induction on x. We first show $0 = y \lor (0 \neq y)$. By part (a) and $\lor E$, it suffices to derive this from y = 0 and $\exists z \ y = Sz$. In the former case, we apply $\lor I_l$ and reflexivity. In the latter case we apply $\lor I_r$, noting that 0 = y and $\exists z \ y = Sz$ contradict the axiom of \mathbf{HA} , $\neg(Sx = 0)$.

We now show that for all y, $Sx = y \lor Sx \neq y$, assuming that we already have $x = y \lor x \neq y$ for all y (the inductive hypothesis). As before, by part (a) and $\lor E$, it suffices to show this from y = 0, and from $\exists z \, y = Sz$. In the former case, we do not need to use the inductive hypothesis, and derive $Sx \neq 0$, from the axiom $\neg(Sx = 0)$ of **HA**. In the latter case, we may assume (by $\exists E$) that y = Sz. Applying the inductive hypothesis to z, we get $x = z \lor (x \neq z)$. By $\lor E$, we just need to derive $Sx = Sz \lor Sx \neq Sz$ from x = z and from $x \neq z$. For the former case we apply the axioms of equality to show Sx = Sz and apply $\lor I_l$. For the latter case, we use the axiom of **HA** $Sx = Sy \to x = y$ to show $x \neq z \to Sx \neq Sz$, and then deduce $Sx \neq Sz$ by $\to E$ and then $Sx = Sz \lor Sx \neq Sz$ from $\lor I_r$.

(c) We first show $(\varphi \vee \neg \varphi) \to \exists n ((n = 0 \to \varphi) \land (n \neq 0 \to \neg \varphi)).$

By $\vee E$ it suffices to derive the conclusion form φ and from $\neg \varphi$. We first assume φ . We clearly have $0 = 0 \to \varphi$, and by reflexivity and $\bot E$, we have $(0 \neq 0 \to \neg \varphi)$, and so we can take n = 0. Now assume $\neg \varphi$. By the axiom $\neg (Sx = 0)$ of **HA** and $\bot E$, we have $1 = 0 \to \varphi$, and by assumption we have $1 \neq 0 \to \neg \varphi$, and so we can take n = 1. Finally, we show the converse $\exists n \, ((n = 0 \to \varphi) \land (n \neq 0 \to \neg \varphi))$. By $\exists E$, we may assume $(n = 0 \to \varphi) \land (n \neq 0 \to \neg \varphi)$. By part (b) (for instance), we have $n = 0 \lor \neg (n = 0)$. By the elimination and introduction rules for disjunction, it suffices to show that n = 0 implies φ and that $n \neq 0$ implies $\neg \varphi$. In both cases we just apply $\to E$ together with $n = 0 \to \varphi$ for the former case, and $n \neq 0 \to \neg \varphi$ in the latter case.

4. (a) There are a few different ways to show this. Here is one: By $\exists E$, we may assume $\varphi(X)$ and $\neg \varphi(Y)$ for free set variables X and Y. We take Z to be the union of X and Y. Namely, by comprehension, we can assume there is a Z satisfying the following property.

$$\forall n \, n \in Z \iff (n \in X) \lor (n \in Y)$$

Note that we can show both $X \subseteq Z$ and $Y \subseteq Z$.

Now we apply the axiom $\forall X \ (\varphi \lor \neg \varphi)$ to Z (via $\forall E$). We consider the two cases $\varphi(Z)$ and $\neg \varphi(Z)$. In the former case, we take X' := Z and Y' := Y. We then have $\varphi(X')$, and $\neg \varphi(Y')$ and $Y' \subseteq X'$. Similarly, if we have $\neg \varphi(Z)$, we can take X' := X and Y' := Z.

(b) Again there are a few ways to do this (including some that don't use part (a)), but here is one way:

By part (a), we may assume we have X and Y such that $\varphi(X)$, $\neg \varphi(Y)$, and either $X \subseteq Y$ or $Y \subseteq X$. We just assume $X \subseteq Y$, since a very similar argument applies in the other case.

We define by comprehension a set Z satisfying the following.

$$\forall n \, n \in Z \, \leftrightarrow \, n \in X \vee (n \in Y \wedge \psi)$$

Note that if ψ is false, then we have Z=X by extensionality, and it follows by the axioms of equality that $\varphi(Z)$ is true. Similarly, if ψ is true, then Z=Y by extensionality, and so we have $\neg \varphi(Z)$.

By the axioms, we have either $\varphi(Z)$ or $\neg \varphi(Z)$. In the former case, $\varphi(Z)$ implies $Z \neq X$, which then implies $\neg \psi$. In the latter case $\neg \varphi(Z)$ implies $Z \neq Y$, which then implies $\neg \neg \psi$. In either case we then have $\neg \psi \lor \neg \neg \psi$, as required.