

Information cascades

Information cascades

- People are connected by a network and one would influence the other's behavior and decision.
 - products they buy
 - political positions they support
 - activities they pursue
 - technologies they use
 - opinions they hold
- Why such influence occurs ?
- Networks serve to <u>aggregate</u> individual behavior and produce population-wide outcomes

Information Cascade (Herding)

- When you wonder which restaurant to go in a new area, you
- When you want to buy a new mobile phone,
 you

- When you arrive at a restaurant A recommended to you, you see no one is eating there.
- But restaurant B next door is nearly full.
- Choose between
 - Private information
 - Sequences or multiple independent but imperfect information

An experiment

one person stood on a street corner and stare up into the sky

- few passersby stopped
- five people were staring up
 - more passersby stopped
- fifteen people were staring up
 - 45% passersby stopped

- Reasons why individual might imitate the behavior of others
 - Informational effect :
 - The behavior of others conveys information about what they know
 - Peer pressure
 - Imitate what others (e.g. idols) are doing
 - Network effect (direct benefit effect): you incur an explicit benefit when you align behavior with the behavior of others.
 - Join the chat group when many of your friends have already joined.

examples of direct-benefit effects

Informational effect and direct benefit effect

- Many decisions exhibit both effects
 - social networks
 - enrolling in a course that many of your friends did
- In some cases, the two effects are in conflict
 - long queue in front of a popular restaurant

A game to guess the urn

Two urns

50%

majority – red urn 50%

majority – blue urn

A game to guess the urn

Each student

- comes forward and draw a marble
- looks at the color by himself only
- puts the marble back to the urn

15

Information cascade majorityblue majority majority blue red najority-blue majoritymajoritymajorityblue blue red majoritymajority-Majority-Majorityblue blue blue red

- Majority-red urn
 - $\frac{1}{3}$ chance that the first student draws a blue marble.
 - $\frac{1}{9}$ chance that both first and second student draw a blue marble.
 - All subsequent guesses will be blue.

Bayes rule

- Probability of an event based on given information
 - "What is the probability this is the better restaurant, given the reviews I've read and the crowds I see in each one?"
 - "What is the probability this urn is majority-red, given the marble I just drew and the guesses I've heard?"

Bayes' Rule

- A: event
- Pr[A]: probability of event A occurring
- Pr[A|B]: conditional probability of A given B

•
$$\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]}$$

•
$$\Pr[B|A] = \frac{\Pr[B \cap A]}{\Pr[A]}$$

•
$$Pr[A \cap B] = Pr[B \cap A]$$

= $Pr[A|B] Pr[B] = Pr[B|A] Pr[A]$

Bayes' Rule

- Pr[A|B] Pr[B] = Pr[B|A] Pr[A]
- $Pr[A|B] = \frac{Pr[A]Pr[B|A]}{Pr[B]}$
- Pr[A]: prior probability
- Pr[A|B]: posterior probability

Example 1: taxi cab

80% of taxi cabs are black and 20% are yellow

- Given a cab and report its color right = 80%
- If a witness claims he saw a yellow cab, what is the probability that the cab is yellow?

$$P[true=Y]$$
= 0.2

80% of taxi cabs are black and 20% are yellow

Given a cab and report its color right = 80%

$$P[report=Y|true=Y] = 0.8$$

$$P[report=B|true=B] = 0.8$$

 If a witness claims he saw a yellow cab, what is the probability that the cab is yellow?

$$P[true=Y|report=Y] = ?$$

- Prior probability = P[true = Y] = 0.2
- P[report=Y | true = Y] = 0.8

•
$$P[true = Y \mid report = Y]$$

$$= \frac{P[true = Y] \cdot P[report = Y \mid true = Y]}{P[report = Y]}$$

$$= \frac{0.2 \cdot 0.8}{P[report = Y]}$$

Pr[A|B]

• $\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]}$

- $Pr[B] = Pr[B \cap A] + Pr[B \cap A^c]$
- $Pr[B \cap A] = Pr[A] Pr[B|A]$
- $Pr[B \cap A^c] = Pr[A^c] Pr[B|A^c]$
- $Pr[B] = Pr[A] Pr[B|A] + Pr[A^c] Pr[B|A^c]$

•
$$P[true = Y \mid report = Y]$$

= $\frac{0.2 \cdot 0.8}{P[report = Y]} = \frac{0.2 \cdot 0.8}{0.32} = 0.5$

Example 2: spam filtering

- P[message is spam | subject contains "check this out"] =?
- P[spam] = 40%
- $P["check\ this\ out"|spam] = 1\%$
- $P["check\ this\ out"|not\ spam\]=0.4\%$
- *P*[*spam* |"check this out"]

$$= \frac{P[spam] \cdot P["check\ this\ out"|spam]}{P["check\ is\ out\ "]} = \frac{0.4 \cdot 0.01}{0.4 \cdot 0.01 + 0.6 \cdot 0.004}$$

= 0.625

Bayes' Rule in the Herding Experiment: Guess the Urn

- Pr[]=Pr[]=0.5
- $Pr[\bullet | \clubsuit] = Pr[\bullet | \clubsuit] = \frac{2}{3}$

• If student A draws ●, what is Pr[<!--]?

If student A draws •, what is Pr[•]?

- Pr[\$] = Pr[\$] = 0.5
- $Pr[\bullet | \phi] = Pr[\bullet | \phi] = \frac{2}{3}$

•
$$Pr[] = \frac{Pr[]Pr[] - []}{Pr[]} = \frac{0.5 \times \frac{2}{3}}{\frac{1}{2}} = \frac{2}{3}$$

•
$$Pr[\bullet] = \{ If , Pr[\bullet | \bullet] \} + \{ If , Pr[\bullet | \bullet] \}$$

= $Pr[\bullet] Pr[\bullet | \bullet] + Pr[\bullet] Pr[\bullet | \bullet]$
= $0.5 \times \frac{2}{3} + 0.5 \times \frac{1}{3} = \frac{1}{2}$

- Pr[\$] = Pr[\$] = 0.5
- $Pr[\bullet | \$] = Pr[\bullet | \$] = \frac{2}{3}$

•
$$Pr[] = \frac{Pr[]Pr[\bullet \bullet \bullet |]}{Pr[\bullet \bullet \bullet]} = \frac{0.5 \times \frac{4}{27}}{\frac{1}{9}} = \frac{2}{3}$$

• Pr[• •] = Pr[•] Pr[• • | •]
+Pr[•] Pr[• • | •]
=0.5
$$x \frac{2}{3} \frac{2}{3} \frac{1}{3} + 0.5 x \frac{1}{3} \frac{1}{3} \frac{2}{3} = \frac{6}{54} = \frac{1}{9}$$

- The third student draws a red marble
 - he knows that the first and second both draw a blue marble
 - Pr[majority blue | blue, blue, red] = 2/3
 - he guesses majority-blue

A Simple General Cascade Model

States

- Good (G) with probability p
- Bad (B) with probability 1-p

- 0 if one rejects the option
- v_g if one accepts a good option
- $-v_b$ if one accepts a bad option
- Signals : a private signal
 - High (H) suggesting that accepting is a good idea
 - Low (L) suggesting that accepting is a bad idea

The recommendation!!

•
$$Pr[H|G] = q > \frac{1}{2}$$
, and

•
$$Pr[L|G] = 1 - q < \frac{1}{2}$$

		States	
		В	G
Signals	L	q	1-q
	Н	1-q	q

Restaurant example

- two possible states : restaurant A or B
- accepting : choosing restaurant A
- private information: the review you read of the restaurant A, high if it says A is better than B

Urn example

- two possible states: majority blue or majority red
- accepting: guessing majority blue or red
- private information: the color of the ball draws
 (e.g. "high" signal if it is blue)
- -p = prob[good] = prob[majority blue] = 0.5
- -q = P[blue|majority-blue]=2/3

Individual Decisions

- Suppose one receives a high signal
- Expected payoff is
 v_g Pr[G|H]+ v_b Pr[B|H]

Pr[G]=p Pr[H|G]=q

•
$$\Pr[G|H] = \frac{\Pr[G] \cdot \Pr[H|G]}{\Pr[H]}$$

 $= \frac{\Pr[G] \cdot \Pr[H|G]}{\Pr[G] \cdot \Pr[H|G]}$
 $= \frac{pq}{pq + (1-p)(1-q)} > \frac{pq}{pq + (1-p)q} = p$
 $|q>1/2|$
1-q < q

Multiple signals

- A sequence S of independently generated signals consisting of a high signals and b low signals, interleaved in some fashion.
 - the posterior probability Pr [G | S] is greater than the prior Pr [G] when a > b;
 - the posterior Pr [G | S] is less than the prior Pr [G] when a < b; and
 - the two probabilities Pr [G | S] and Pr [G] are equal when a = b.

Multiple signals

- $\Pr[S|G] = q^a (1-q)^b$
- Bayes rule

$$Pr[G|S] = \frac{Pr[G] \cdot Pr[S|G]}{Pr[G] \cdot Pr[S|G] + Pr[B] \cdot Pr[S|B]}$$

•
$$\Pr[G|S] = \frac{pq^a(1-q)^b}{p \cdot q^a(1-q)^b + (1-p) \cdot (1-q)^a q^b}$$

Compare Pr[G|S] with Pr[G]

$$\Pr[G|S] = \frac{pq^{a}(1-q)^{b}}{p \cdot q^{a}(1-q)^{b} + (1-p) \cdot (1-q)^{a}q^{b}}$$

Compare Pr[G|S] with Pr[G]

$$\Pr[G] = p = \frac{pq^{a}(1-q)^{b}}{q^{a}(1-q)^{b}} = \frac{pq^{a}(1-q)^{b}}{p \cdot q^{a}(1-q)^{b} + (1-p) \cdot q^{a}(1-q)^{b}}$$

• If a > b,
$$(1-q)^a q^b < q^a (1-q)^b$$
, so $Pr[G|S] > p$

• If a < b,
$$(1-q)^a q^b > q^a (1-q)^b$$
, so $Pr[G|S] < p$

• If a = b,
$$(1-q)^a q^b = q^a (1-q)^b$$
, so $Pr[G|S] = p$

1-q

Cascades can be wrong

- the wrong choice because of previous people happen to get high signals
- Cascades can be based on very little information
 - Once a cascade starts, people ignore their private information. only the pre-cascade information influences the behavior of the population. This means that if a cascade starts relatively quickly in a large population, most of the private information that is collectively available to the population (in the form of private signals to individuals) is not being used.
- Cascades are fragile
 - Easy to start and easy to stop as well as cascades can be based on relatively little information

signal

He will follow the private signal

- The first person's decision reveals his private signal
- If the second signal is the same, decision is also the same
- If the signal is different, he will follow his private signal

Accept/ reject

signal

Follow majority decision

If the first two people made the same decision, cascade begins

- A= no. of acceptances
- R = no. of rejections
- If A=R, will follow his signal.
- If |A-R|=1, will follow his signal.
- If |A-R| ≥ 2, will follow the majority

Aggregate behavior of people with limited information

- Group decision making, example hiring,
 - go around the table and ask people to express their support for option A or B.
 - who speaks first ?
- Marketing
 - induce an initial set of people to buy new product