Massive Data Processing Final Assignment

Group **Shoppe**La Gia Hiep, Nguyen Duy Anh, Pham Long Duy Tien, Pham
Quang Tung, Pham Tuyen

Ton Duc Thang University

May 8, 2023

Student List

Name	Student ID	Task(s) Assigned	Contribution%
La Gia Hiep	521K0133	Task 2, Task 1	100%
Nguyen Duy Anh	521K0126	Task 3 and code refinements	100%
Pham Long Duy Tien	520K0220	Slides, Task 2 refinements, Task 5	100%
Pham Quang Tung	520K0265	Task 4	100%
Pham Tuyen	520K0337	Task 2 and code refactors	100%

Table: Student List

Note

Appending **@student.tdtu.edu.vn** will give you the email.

Outline

Intro

Task 1: Clustering

Task 2: Dimensional Reduce

Task 3: Recommendations with Collabarative Filtering

Task 4: Stock Price Regression

Task 5: Multi-class Classification

End

Outline

Intro

Task 1: Clustering

Task 2: Dimensional Reduce

Task 3: Recommendations with Collabarative Filtering

Task 4: Stock Price Regression

Task 5: Multi-class Classification

End

Illustration: What did we do?

- ▶ Using PySpark.sql and matplotlib.pylot libraries, we are able to construct a dataframe.
- With this dataframe, we are able to illustrate the MNIST dataset visually.

Illustration: How the program worked

Illustration: Results

Clustering: What did we do?

- ► We training three models for K-means, each for K-values of 15, 10 and 5.
- ▶ After training, we used these models to place a centroid.
- Using the points to form the centroid, we used the summation of distance to the centroid.

K-means advantages

- Simple and widely used.
- Computationally efficient.
- ► Flexible.

K-means disadvantages

- ▶ *K* needs to be specified in advance.
- Sensitive to initial placement of centroid.
- Perceptible to outliers.

Clustering: How the program worked

Note: k = 15 shown, similar work done for k = 10, k = 5.

Clustering: Results

Outline

Intro

Task 1: Clustering

Task 2: Dimensional Reduce

Task 3: Recommendations with Collabarative Filtering

Task 4: Stock Price Regression

Task 5: Multi-class Classification

End

Dimensionality Reduction: What did we do?

- We utilized SVD operations to compute the matices U, S and V.
- PySpark was used for additional computation methods.

Dimensional Reduction Advantages

- ► Allows to evaluate how a model generalizes to new, unseen data.
- ► Helps selecting the best model.
- Prevents overfitting.
- Easier benchmarking.

Dimensional Reduction Disadvantages

- Limited data use.
- Likely to overfit.
- Influence of data distribution.

Dimensionality Reduction: How the program worked

Showing training set, the same methods were conducted for the test set.

Dimensionality Reduction: Results for Training Set

	Θ	1	2	3	4	5	6	7
0	7.0	-1055.005321	248.244718	-598.132258	-0.717797	385.242274	572.808262	267.941212
1	2.0	-1393.004031	-133.681947	1018.332204	81.291235	-277.464165	-392.264988	293.510614
2	1.0	-648.809758	549.281895	487.342624	288.599795	-79.728968	224.800368	188.461602
3	0.0	-2246.001287	-900.448759	-35.891545	188.103162	617.892539	-212.266997	548.128325
4	4.0	-1106.075886	-451.020604	-814.494302	40.166073	-410.897242	8.945943	-268.763500
6995	4.0	-1361.527432	301.652469	-394.134595	607.092674	98.815843	-175.863989	-576.632165
6996	9.0	-1326.202228	712.617455	-506.453987	183.673109	316.255873	35.445115	7.813972
6997	4.0	-1368.608628	804.714173	110.261574	187.989534	226.395297	43.804819	-280.780714
6998	9.0	-1661.566897	547.111909	-643.050432	385.335951	574.413094	22.622496	-210.931038
6999	4.0	-1284.795657	781.550433	-131.658866	391.221679	66.947658	-42.162357	-406.627145

7000 rows × 197 columns

Dimensionality Reduction: Results for Test Set

3000 rows × 197 columns

0 1.0 -719.336823 -517.676027 -560.968574 -244.345334 211.322198 107.687917 379.441332 1 2.0 -1705.390328 -266.338804 -332.129837 -623.960334 -2.108565 28.689877 19.115734 2 2.0 -2218.073320 47.072433 -21.154111 -184.794019 -117.336745 -264.275664 -170.836506 3 5.0 -1752.024057 169.540720 -629.262360 702.153920 148.800581 630.382267 -371.175394 4 8.0 -1591.575614 -676.191137 -423.445397 443.421250 -306.867662 100.827341 -172.311313	7
2 2.0 -2218.073320 47.072433 -21.154111 -184.794019 -117.336745 -264.275664 -170.836506 3 5.0 -1752.024057 169.540720 -629.262360 702.153920 148.800581 630.382267 -371.175394	2
3 5.0 -1752.024057 169.540720 -629.262360 702.153920 148.800581 630.382267 -371.175394	ļ
5 510 17521021057 1051510720 0251202500 7021155520 1101000501 0501502207 5711175551	j
4 8.0 -1591.575614 -676.191137 -423.445397 443.421250 -306.867662 100.827341 -172.311313	ļ
	3
	
2995 2.0 -2209.420379 -390.750455 -614.307996 -8.128519 -650.550997 -780.804666 532.855222	2
2996 3.0 -1917.403906 241.552251 -699.503750 909.245345 -624.867327 303.093117 545.209046	j
2997 4.0 -1971.165299 -721.780966 690.089932 -212.919595 22.253756 5.356001 -356.491504	ŀ
2998 5.0 -1578.276037 -233.523411 -23.952617 -253.942674 575.375673 557.814322 61.171699)
2999 6.0 -2234.848065 1139.486930 -150.589793 -970.006129 -431.570655 406.721657 269.208301	

Outline

Intro

Task 1: Clustering

Task 2: Dimensional Reduce

Task 3: Recommendations with Collabarative Filtering

Task 4: Stock Price Regression

Task 5: Multi-class Classification

End

What did we do?

- Importing data into a DataFrame, sort them by userID.
- ► Copied data from user #71 and Item #401 to a new test DataFrame for evaluation.

Advantages

- Personalized Recommendations.
- Scalability and Flexibility.
- ► Solving the Cold Sart Problem.

Disadvantages

- Lack of diverse data.
- Computationally intense.
- Cold start for new users.

Examples

- ► Shopping recommendation systems (Shoppee).
- ► Content recommendation (YouTube, TikTok).
- ► Targeted ads and demographics.

How the program worked

Results

Mean Squared Error = 0.0076

+	+	+	++	+
index	user	item	rating	prediction
2208	72	451	4.0	4.050446
1898				
843	72	406	2.0	2.192101
1585	72	412	3.0	2.938842
1208	73	412	3.0	3.0924602
324	72	460	3.0	3.0378344
1788	72	417	2.0	2.012427
299	73	417	3.0	3.007647
157	72	444	3.0	3.0443978
41	72	435	4.0	4.0202446
694	72	440	3.0	3.2422335
1228	72	432	5.0	5.1234264
2043	72	452	4.0	3.949532
2132	72	425	3.0	3.0209284
200	72	447	4.0	4.050446
1897	72	462	4.0	3.9052527
1035	72	437	5.0	4.7810526
1701	72	456	5.0	4.81373
797	72	446	2.0	1.9957384
1587	72	453	4.0	4.050446
+	+	+	++	+

only showing top 20 rows

Outline

Intro

Task 1: Clustering

Task 2: Dimensional Reduce

Task 3: Recommendations with Collabarative Filtering

Task 4: Stock Price Regression

Task 5: Multi-class Classification

End

What did we do?

- DataFrames to read to he data in descending order.
- ▶ lead() to get stock price of the 5 previous dates and put them into a vector.
- Use a Linear Regression model to predict stock price.
- ▶ Mean Square Error (MSE) used for further evaluation.

Advantages

- ► Simple.
- ► Interpretable.
- Low computational overhead.

Disadvantages

- Limited Complexity
- Sensitive to outliers.
- ► Limited Feature Engineering.

Examples

- ► Stock price prediction.
- ▶ Predicting trends.
- Marketing research.

How the program worked

```
spark = SOLContext(SparkContext('local', 'CF'))
                       df = spark.read.option("header".True).csv('/content/ratings2k.csv')
                              df = df.withColumn('user',col("user").cast('integer'))
                              df = df.withColumn('item',col('item').cast('integer'))
                             df = df.withColumn('rating',col('rating').cast('float'))
                                        training = df.orderBy(col('user'))
                         test = training.filter((col('user') > 70) & (col('item') > 400))
                                                   Load and Prepare Data
als = ALS(maxIter=5, regParam=0.01, userCol="user", itemCol="item", ratingCol="rating", coldStartStrategy="drop")
                                             model = als.fit(training)
                                        predictions = model.transform(test)
     evaluator = RegressionEvaluator(metricName="mse", labelCol="rating", predictionCol="prediction")
                                           mse = evaluator.evaluate(predictions)
                                                  Train and Evaluate Model
                                          print('Mean Squared Error = {:.4f}'.format(mse))
                                                                                              predictions.show()
```


Display Results

Results

Outline

Intro

Task 1: Clustering

Task 2: Dimensional Reduce

Task 3: Recommendations with Collabarative Filtering

Task 4: Stock Price Regression

Task 5: Multi-class Classification

End

What did we do?

- ▶ Used Multi-Layer Perceptrons (MLP), Random Forest (RF), Linear Support Vector Machines (LSVM).
- Data was pre-processed.
- ► All models were trained with the same parameters and training conditions, all six models took an hour to train all together.

How the program worked

Note: Showing Multi-Layer Perceptron on MNIST 784-dimension dataset, RF and LSVM are not shown for brevity.

Advantages

- ▶ MLP: Flexible and usable in multiple input datatypes.
- RF: Accurate and robust.
- LSVM: Well-documented.

Disadvantages

- MLP: Prone to overfit.
- ▶ RF: Computationally expensive to train.
- ► LSVM: Sensitive to configuration settings.

Examples

- ► Natural Language Processing (NLP).
- ▶ Identifying disease biomarkers (cancer cells, tumors)
- Stock prediction.

Results

What did we learn?

- Collaboration
- Google Colab should not be Google Collab
 - Merge conflicts
 - Unable to see what the other person is doing.
- Learning more about Apache Spark and PySpark.
- How to use machine learning models.

End of slides.