

基于边界曲线的拟可展曲面构造方法及在船体造型中的应用

郑玉健 伯彭波 哈尔滨工业大学(威海)

- Research Background
- System Overview
- Algorithm
- Result
- Contribution and Limitation

- Research Background
 - Developable Surface Construction
 - Developable Surface in Ship Hull Design
- System Overview
- Algorithm
- Result
- Contribution and Limitation

Research Background

Single and double curvature [Pérez et al. 2007]

[Wayne's Blog]

Walt Disney Concert Hall [Jerry's Motel]

[Chen and Tang. 2010]

Developable Surface Construction

[Aumann G. 1991]

[Pottmann and Wallner. 1999]

[Tang et al. 2016]

Developable Surface Construction

[Chen and Tang. 2013]

Developable Surface in Ship Hull Design

[Konesky B. 2005]

[Pérez and Suárez. 2007]

- Research Background
- System Overview
 - Key Idea
- Algorithm
- Result
- Contribution and Limitation

System Overview

Input Output

Key Idea

How to get good Parameterization?

Optimization

Approximation Result

Interpolation

Interpolation Result

- Research Background
- System Overview
- Algorithm
 - 1 Boundary Construction
 - 2 Initial Ruled Surface Construction
 - 3 Quasi-developable Surface Construction
- Result
- Contribution and Limitation

Algorithm Overview

Algorithm Overview

Algorithm Overview

1 Boundary Construction

2 Initial Ruled Surface Construction

3 Quasi-developable Surface Construction

Parameterization of boundary curves driven by developability

Optimization

$$\min_{P,N} F_{dist} + \lambda F_{dvlp} + \beta F_{fair} + \gamma F_{regular}$$

Optimization-Boundary Distance

$$F_{dist} = \sum_{D_1, D_2} \sum_{i=0}^{n} \left(\alpha_i (d_i^*)^2 + (1 - \alpha_i) (d_i^1)^2 \right)$$

$$\alpha_i = |\cos\theta|$$

$$d_i = \alpha_i (d_i^*)^2 + (1 - \alpha_i) (d_i^1)^2$$

Optimization-Developability Constraint

$$F_{develop} = \sum_{j=0}^{K} \left((L(u_j) \cdot N_j)^2 + (T_1(u_j) \cdot N_j)^2 + (T_2(u_j) \cdot N_j)^2 \right)$$

$$N_{i}(u_{j}) = \frac{L(u_{j}) \times T_{i}(u_{j})}{|L(u_{j}) \times T_{i}(u_{j})|}, i = 1,2$$

$$N_1(u_j) - N_2(u_j) = 0$$

Single complex Constraint

$$\begin{cases} N(u_j) \cdot T_1(u_j) = 0 \\ N(u_j) \cdot T_2(u_j) = 0 \\ N(u_j) \cdot L_1(u_j) = 0 \end{cases}$$

Multiple simple Constraint

Optimization-Smoothness

$$F_{\text{fair}} = \sum_{i=1,2} \omega \int |D'_i(u)|^2 du + \int |D''_i(u)|^2 du$$

Optimization-Normal Regular

$$F_{\text{regular}} = \sum_{j=0}^{K} (|N_j|^2 - 1)^2$$

- Research Background
- System Overview
- Algorithm
- Result
 - Hard Chine
 - UBC Fishing Vessel
- Contribution and Limitation

Result-Hard Chine

Result-UBC Fishing Vessel

Error

Ave_error	Max_error	Modif_dist
0.52°	5.60°	0.04%

Error Controllable Data Point Modification

- Research Background
- System Overview
- Algorithm
- Result
- Contribution and Limitation
 - Continuous Mapping
 - Limitation

Continuous Mapping

Finite Rulings

Discrete Mapping

[Pérez and Suárez. 2007]

Traditional

Infinite Rulings

Continuous Mapping

Limitation

	Surface	Time
Hard chine	2	7.65s
UBC fishing vessel	4	66.4s

Efficiency

Thank you

