ECON3096 - Causal Inference Problem Set 1 (Lectures 1-3)

Due Date: 10 October before class (15:30 pm)

- 1. Consider the following three causal questions:
 - Many firms, particularly in southern European countries, are small, and owned and run by families. Are family owned firms growing more slowly than firms with a dispersed ownership?
 - What is the effect of taking a job in a finance position compared to a human resources position on the salary earned by an economics graduate?
 - What is the effect of mortgage interest rates on the number of new housing starts?

For each of these questions answer the following:

- (a) What is the outcome variable and what is the treatment?
- (b) Define the counterfactual outcomes Y_{01} and Y_{1i} .
- (c) What plausible causal channel(s) runs directly from the treatment to the outcome?
- (d) What are possible sources of selection bias in the raw comparison of outcomes by treatment status? Which way would you expect the bias to go and why?
- 2. Coming back to this example we had discussed in class:

Suppose the population for variable Y_i consists of

unit 1 2 3 4 5 6 7 8 9 10 Y_i 4 2 5 5 3 1 2 5 4 5 Population mean: 3.6

Samples:

Sample 1					Sa	Sample 2			
unit	1	2	4	8	unit	2	5	9	
Y_i	4	2	5	5	Y_i	2	3	4	
Sample avg: 4					Samı	Sample avg: 3			

- (a) What are the variance and standard deviation of the population mean $\overline{Y_i}$?
- (b) What is the standard error of the means of Samples 1 and Sample 2?
- (c) Suppose now we want to examine if the sample means of Sample 1 and Sample 2 are significant different from each other, what kind of test we shall use?

- (d) What is the exact statistics number and what does it tell us about the difference?
- 3. Suppose we are interested in find out whether increasing the availability of computer for student could help to improve their test scores. We start from two variables: the number of computers per student and test scores for 5th graders, comp_stu and testscr.

Download the data set caschool.dta and read it into **R**. You could use the code in "ps2.R" to read in the dta dataset to **R**. It contains observations on 420 California school districts in 1999 on 14 variables. Description on these variables is as the following:

- district: District code.
- school: School name.
- county: County name.
- gr_span: Grade span of district.
- enrl_tot: Total enrollment.
- teachers: Number of teachers.
- calw_pct: Percent qualifying for CalWorks (income assistance).
- meal_pct: Percent qualifying for free lunch.
- computer: Number of computers.
- testscr: Average test scores.
- comp_stu: Number of computers per student.
- expn_stu: Number of expenditure per student.
- str: Student-teacher ratio.
- avginc: Average income.
- el_pct: Percent of English learners.
- read_scr: Average reading score.
- math_scr: Average math score.
- (a) Draw a scatterplot of test scores versus number of computers per student. Describe in words what you see.
- (b) Draw a scatterplot of test scores versus number of computers per student. Describe in words what you see.