Analyzing Top Largest Companies in the United States by Revenue

Collecting Data Using BeautifulSoup

```
In [2]:
      ▶ | url = "https://en.wikipedia.org/wiki/List_of_largest_companies_in_the_Uni
         page = requests.get(url)
         soup = BeautifulSoup(page.text, 'html')
In [3]: N soup.find('table',class = 'wikitable sortable')
  Out[3]: 
         <caption>
         </caption>
         Rank
         Name
         Industry
         Revenue <br/> (USD millions)
         Revenue growth
         Employees
         Headquarters
         .__.
In [4]:
       table = soup.find_all('table')[1]
       world_titles=table.find_all('th')
In [5]:
```

```
['1', 'Walmart', 'Retail', '611,289', '6.7%', '2,100,000', 'Bentonville,
Arkansas']
['2', 'Amazon', 'Retail and cloud computing', '513,983', '9.4%', '1,540,
000', 'Seattle, Washington']
['3', 'ExxonMobil', 'Petroleum industry', '413,680', '44.8%', '62,000',
'Spring, Texas']
['4', 'Apple', 'Electronics industry', '394,328', '7.8%', '164,000', 'Cu
pertino, California']
['5', 'UnitedHealth Group', 'Healthcare', '324,162', '12.7%', '400,000',
'Minnetonka, Minnesota']
['6', 'CVS Health', 'Healthcare', '322,467', '10.4%', '259,500', 'Woonso
cket, Rhode Island']
['7', 'Berkshire Hathaway', 'Conglomerate', '302,089', '9.4%', '383,00
0', 'Omaha, Nebraska']
['8', 'Alphabet', 'Technology and cloud computing', '282,836', '9.8%',
'156,000', 'Mountain View, California']
['9', 'McKesson Corporation', 'Health', '276,711', '4.8%', '48,500', 'Ir
ving, Texas']
['10', 'Chevron Corporation', 'Petroleum industry', '246,252', '51.6%',
'43,846', 'San Ramon, California']
['11', 'Cencora', 'Pharmacy wholesale', '238,587', '11.5%', '41,500', 'C
hesterbrook, Pennsylvania']
['12', 'Costco', 'Retail', '226,954', '15.8%', '304,000', 'Issaquah, Was
hington']
['13', 'Microsoft', 'Technology and cloud computing', '198,270', '18.
0%', '221,000', 'Redmond, Washington']
['14', 'Cardinal Health', 'Healthcare', '181,364', '11.6%', '46,035', 'D
ublin, Ohio']
['15', 'Cigna', 'Health insurance', '180,516', '3.7%', '70,231', 'Bloomf
ield, Connecticut']
['16', 'Marathon Petroleum', 'Petroleum industry', '180,012', '27.6%',
'17,800', 'Findlay, Ohio']
['17', 'Phillips 66', 'Petroleum industry', '175,702', '53.0%', '13,00
0', 'Houston, Texas']
['18', 'Valero Energy', 'Petroleum industry', '171,189', '58.0%', '9,74
3', 'San Antonio, Texas']
['19', 'Ford Motor Company', 'Automotive industry', '158,057', '15.9%',
'173,000', 'Dearborn, Michigan']
['20', 'The Home Depot', 'Retail', '157,403', '4.1%', '471,600', 'Atlant
a, Georgia']
['21', 'General Motors', 'Automotive industry', '156,735', '23.4%', '16
7,000', 'Detroit, Michigan']
['22', 'Elevance Health', 'Healthcare', '156,595', '13.0%', '102,200',
'Indianapolis, Indiana']
['23', 'JPMorgan Chase', 'Financial services', '154,792', '21.7%', '293,
723', 'New York City, New York']
['24', 'Kroger', 'Retail', '148,258', '7.5%', '430,000', 'Cincinnati, Oh
io']
['25', 'Centene', 'Healthcare', '144,547', '14.7%', '74,300', 'St. Loui
s, Missouri']
['26', 'Verizon Communications', 'Telecommunications', '136,835', '2.
4%', '117,100', 'New York City, New York']
['27', 'Walgreens Boots Alliance', 'Pharmaceutical industry', '132,703',
'10.7%', '262,500', 'Deerfield, Illinois']
['28', 'Fannie Mae', 'Financials', '121,596', '19.7%', '8,000', 'Washing
ton, D.C.']
['29', 'Comcast', 'Telecommunications', '121,427', '4.3%', '186,000', 'P
```

```
hiladelphia, Pennsylvania']
['30', 'AT&T', 'Conglomerate and telecomunications', '120,741', '28.5%',
'160,700', 'Dallas, Texas']
['31', 'Meta Platforms', 'Technology', '116,609', '1.1%', '86,482', 'Men
lo Park, California']
['32', 'Bank of America', 'Financials', '115,053', '22.6%', '216,823',
'Charlotte, North Carolina']
['33', 'Target Corporation', 'Retail', '109,120', '2.9%', '440,000', 'Mi
nneapolis, Minnesota']
['34', 'Dell Technologies', 'Technology', '102,301', '4.4%', '133,000',
'Round Rock, Texas']
['35', 'Archer Daniels Midland', 'Food industry', '101,556', '19.1%', '4
1,181', 'Chicago, Illinois'
['36', 'Citigroup', 'Financials', '101,078', '26.6%', '238,104', 'New Yo
rk City, New York']
['37', 'United Parcel Service', 'Transportation', '100,338', '3.1%', '40
4,700', 'Atlanta, Georgia']
['38', 'Pfizer', 'Pharmaceutical industry', '100,330', '23.4%', '83,00
0', 'New York City, New York']
['39', "Lowe's", 'Retail', '97,059', '0.8%', '244,500', 'Mooresville, No
rth Carolina']
['40', 'Johnson & Johnson', 'Pharmaceutical industry', '94,943', '1.2%',
'152,700', 'New Brunswick, New Jersey']
['41', 'FedEx', 'Transportation', '93,512', '11.4%', '518,249', 'Memphi
s, Tennessee']
['42', 'Humana', 'Health insurance', '92,870', '11.8%', '67,100', 'Louis
ville, Kentucky']
['43', 'Energy Transfer Partners', 'Petroleum industry', '89,876', '33.
3%', '12,565', 'Dallas, Texas']
['44', 'State Farm', 'Financials', '89,328', '8.6%', '60,519', 'Blooming
ton, Illinois']
['45', 'Freddie Mac', 'Financials', '86,717', '31.6%', '7,819', 'McLean,
Virginia']
['46', 'PepsiCo', 'Beverage', '86,859', '8.7%', '315,000', 'Purchase, Ne
w York']
['47', 'Wells Fargo', 'Financials', '82,859', '0.5%', '238,000', 'San Fr
ancisco, California']
['48', 'The Walt Disney Company', 'Media', '82,722', '22.7%', '195,800',
'Burbank, California']
['49', 'ConocoPhillips', 'Petroleum industry', '82,156', '69.9%', '9,50
0', 'Houston, Texas']
['50', 'Tesla', 'Automotive and energy', '81,462', '51.4%', '127,855',
'Austin, Texas']
['51', 'Procter & Gamble', 'Consumer products manufacturing', '80,187',
'5.3%', '106,000', 'Cincinnati, Ohio']
['52', 'United States Postal Service', 'Logistics', '78,620', '2.0%', '5
76,000', 'Washington, D.C.']
['53', 'Albertsons', 'Retail', '77,650', '8.0%', '198,650', 'Boise, Idah
['54', 'General Electric', 'Conglomerate', '76,555', '3.2%', '172,000',
'Boston, Massachusetts']
['55', 'MetLife', 'Financials', '69,898', '1.7%', '45,000', 'New York Ci
ty, New York']
['56', 'Goldman Sachs', 'Financials', '68,711', '5.7%', '48,500', 'New Y
ork City, New York']
['57', 'Sysco', 'Food service', '68,636', '33.8%', '70,510', 'Houston, T
exas']
```

```
['58', 'Bunge Limited', 'Food industry', '67,232', '13.7%', '23,000', 'W
hite Plains, New York']
['59', 'RTX Corporation', 'Conglomerate', '67,074', '4.2%', '182,000',
'Arlington County, Virginia']
['60', 'Boeing', 'Aerospace and defense', '66,608', '6.9%', '156,000',
'Arlington County, Virginia']
['61', 'StoneX Group', 'Financials', '66,036', '55.3%', '4,000[2]', 'New
York City, New York']
['62', 'Lockheed Martin', 'Aerospace and defense', '65,984', '1.6%', '11
6,000', 'Bethesda, Maryland']
['63', 'Morgan Stanley', 'Financials', '65,936', '7.9%', '82,427', 'New
York City, New York']
['64', 'Intel', 'Technology', '63,054', '20.1%', '131,900', 'Santa Clar
a, California'
['65', 'HP', 'Technology', '62,983', '0.8%', '58,000', 'Palo Alto, Calif
ornia']
['66', 'TD Synnex', 'Infotech', '62,344', '97.2%', '28,500', 'Clearwate
r, Florida']
['67', 'IBM', 'Technology and cloud computing', '60,530', '16.3%', '303,
100', 'Armonk, New York']
['68', 'HCA Healthcare', 'Healthcare', '60,233', '2.5%', '250,500', 'Nas
hville, Tennessee']
['69', 'Prudential Financial', 'Financials', '60,050', '15.3%', '39,58
3', 'Newark, New Jersey']
['70', 'Caterpillar', 'Machinery', '59,427', '16.6%', '109,100', 'Deerfi
eld, Illinois']
['71', 'Merck & Co.', 'Pharmaceutical industry', '59,283', '15.8%', '68,
000', 'Kenilworth, New Jersey']
['72', 'World Fuel Services', 'Petroleum industry and logistics', '59,04
3', '88.4%', '5,214', 'Miami, Florida']
['73', 'New York Life Insurance Company', 'Insurance', '58,445', '14.
2%', '15,050', 'New York City, New York']
['74', 'Enterprise Products', 'Petroleum industry', '58,186', '42.6%',
'7,300', 'Houston, Texas']
['75', 'AbbVie', 'Pharmaceutical industry', '58,054', '3.3%', '50,000',
'Lake Bluff, Illinois']
['76', 'Plains All American Pipeline', 'Petroleum industry', '57,342',
'36.3%', '4,100', 'Houston, Texas']
['77', 'Dow Chemical Company', 'Chemical industry', '56,902', '3.5%', '3
7,800', 'Midland, Michigan']
['78', 'AIG', 'Insurance', '56,437', '8.4%', '26,200', 'New York City, N
ew York']
['79', 'American Express', 'Financial', '55,625', '27.3%', '77,300', 'Ne
w York City, New York']
['80', 'Publix', 'Retail', '54,942', '13.5%', '242,000', 'Lakeland, Flor
ida']
['81', 'Charter Communications', 'Telecommunications', '54,022', '4.5%',
'101,700', 'Stamford, Connecticut']
['82', 'Tyson Foods', 'Food processing', '53,282', '13.2%', '142,000',
'Springdale, Arkansas']
['83', 'John Deere', 'Agriculture manufacturing', '52,577', '19.4%', '8
2,239', 'Moline, Illinois']
['84', 'Cisco', 'Telecom hardware manufacturing', '51,557', '3.5%', '83,
300', 'San Jose, California']
      'Nationwide Mutual Insurance Company', 'Financial', '51,450', '8.
6%', '24,791', 'Columbus, Ohio']
['86', 'Allstate', 'Insurance', '51,412', '3.4%', '54,250', 'Northfield
```

```
Township, Cook County, Illinois']
['87', 'Delta Air Lines', 'Airline', '50,582', '69.2%', '95,000', 'Atlan
ta, Georgia']
['88', 'Liberty Mutual', 'Insurance', '49,956', '3.6%', '50,000', 'Bosto
n, Massachusetts']
['89', 'TJX', 'Retail', '49,936', '2.9%', '329,000', 'Framingham, Massac
husetts']
['90', 'Progressive Corporation', 'Insurance', '49,611', '4.0%', '55,06
3', 'Mayfield Village, Ohio']
['91', 'American Airlines', 'Airline', '48,971', '63.9%', '129,700', 'Fo
rt Worth, Texas']
['92', 'CHS', 'Agriculture cooperative', '47,194', '24.3%', '10,014', 'I
nver Grove Heights, Minnesota']
['93', 'Performance Food Group', 'Food processing', '47,194', '61.6%',
'34,825', 'Richmond, Virginia']
['94', 'PBF Energy', 'Petroleum industry', '46,830', '71.8%', '3,616',
'Parsippany-Troy Hills, New Jersey']
['95', 'Nike', 'Apparel', '46,710', '4.9%', '79,100', 'Beaverton, Orego
n']
['96', 'Best Buy', 'Retail', '46,298', '10.6%', '71,100', 'Richfield, Mi
nnesota']
['97', 'Bristol-Myers Squibb', 'Pharmaceutical industry', '46,159', '0.
5%', '34,300', 'New York City, New York']
['98', 'United Airlines', 'Airline', '44,955', '82.5%', '92,795', 'Chica
go, Illinois']
['99', 'Thermo Fisher Scientific', 'Laboratory instruments', '44,915',
'14.5%', '130,000', 'Waltham, Massachusetts']
['100', 'Qualcomm', 'Technology', '44,200', '31.7%', '51,000', 'San Dieg
o, California']
```

Collected Data in DataFrame

```
In [10]: ► d
```

Out[10]:

	Rank	Name	Industry	Revenue (USD millions)	Revenue growth	Employees	Headquarters
0	1	Walmart	Retail	611,289	6.7%	2,100,000	Bentonville, Arkansas
1	2	Amazon	Retail and cloud computing	513,983	9.4%	1,540,000	Seattle, Washington
2	3	ExxonMobil	Petroleum industry	413,680	44.8%	62,000	Spring, Texas
3	4	Apple	Electronics industry	394,328	7.8%	164,000	Cupertino, California
4	5	UnitedHealth Group	Healthcare	324,162	12.7%	400,000	Minnetonka, Minnesota
95	96	Best Buy	Retail	46,298	10.6%	71,100	Richfield, Minnesota
96	97	Bristol-Myers Squibb	Pharmaceutical industry	46,159	0.5%	34,300	New York City, New York
97	98	United Airlines	Airline	44,955	82.5%	92,795	Chicago, Illinois
98	99	Thermo Fisher Scientific	Laboratory instruments	44,915	14.5%	130,000	Waltham, Massachusetts
99	100	Qualcomm	Technology	44,200	31.7%	51,000	San Diego, California

100 rows × 7 columns

Data Transformation

```
In [11]: # Convert the values in the 'Revenue (USD millions)' column to string fir
d['Revenue (USD millions)'] = d['Revenue (USD millions)'].astype(str)
# Remove commas from the strings and convert to float
d['Revenue (USD millions)'] = d['Revenue (USD millions)'].str.replace(','
```

```
In [12]: # Convert the values in the 'Revenue growth' column to string first
d['Revenue growth'] = d['Revenue growth'].astype(str)
# Remove percentage sign from the strings and convert to float
d['Revenue growth'] = d['Revenue growth'].str.rstrip('%').astype(float)
```

```
In [14]:  # Create empty columns for City and State
    d['City'] = ''
    d['State'] = ''

# Split the 'Headquarters' column into separate columns for city and stat
    headquarters_split = d['Headquarters'].str.split(', ', n=1, expand=True)

# Assign values to City and State columns based on split results
    d['City'] = headquarters_split[0]
    d['State'] = headquarters_split[1].fillna('') # Fill NaN values with emp
```

In [15]: ▶ d

Out[15]:

	Rank	Name	Industry	Revenue (USD millions)	Revenue growth	Employees	es Headquarters	
0	1	Walmart	Retail	611289.0	6.7	2100000.0	Bentonville, Arkansas	Ber
1	2	Amazon	Retail and cloud computing	513983.0	9.4	1540000.0	Seattle, Washington	
2	3	ExxonMobil	Petroleum industry	413680.0	44.8	62000.0	Spring, Texas	
3	4	Apple	Electronics industry	394328.0	7.8	164000.0	Cupertino, California	Сι
4	5	UnitedHealth Group	Healthcare	324162.0	12.7	400000.0	Minnetonka, Minnesota	Minı
		•••						
95	96	Best Buy	Retail	46298.0	10.6	71100.0	Richfield, Minnesota	F
96	97	Bristol- Myers Squibb	Pharmaceutical industry	46159.0	0.5	34300.0	New York City, New York	N
97	98	United Airlines	Airline	44955.0	82.5	92795.0	Chicago, Illinois	(
98	99	Thermo Fisher Scientific	Laboratory instruments	44915.0	14.5	130000.0	Waltham, Massachusetts	٧
99	100	Qualcomm	Technology	44200.0	31.7	51000.0	San Diego, California	Sa

100 rows × 9 columns

In [16]: M d['City'].isnull().value_counts()

Out[16]: False 100

Name: City, dtype: int64

```
In [17]:  # Get unique values from the 'Industry' column
unique_categories = d['Industry'].unique()

# Split combined categories if necessary
categories = set() # Using a set to ensure uniqueness
for category in unique_categories:
    if ' and ' in category:
        # Split combined categories
        split_categories = category.split(' and ')
        categories.update(split_categories)
    else:
        categories.add(category)

# Convert set to list for easier handling
categories_list = list(categories)
print(categories_list)
```

['Transportation', 'Laboratory instruments', 'Financials', 'Telecom hard ware manufacturing', 'telecomunications', 'defense', 'Media', 'logistic s', 'Food processing', 'Apparel', 'Financial', 'Telecommunications', 'Ma chinery', 'Agriculture cooperative', 'Automotive industry', 'Electronics industry', 'Conglomerate', 'Healthcare', 'Automotive', 'Agriculture manu facturing', 'Insurance', 'Logistics', 'cloud computing', 'Pharmacy whole sale', 'Infotech', 'Food service', 'Petroleum industry', 'Health', 'Aero space', 'Financial services', 'Beverage', 'Retail', 'Consumer products m anufacturing', 'Health insurance', 'Chemical industry', 'energy', 'Food industry', 'Airline', 'Pharmaceutical industry', 'Technology']

```
In [18]: ▶ split_categories
```

Out[18]: ['Petroleum industry', 'logistics']

Out[19]:

	Rank	Name Industry		Revenue (USD millions)	Revenue growth	Employees	Headquarters	
0	1	Walmart	Retail	611289.0	6.7	2100000.0	Bentonville, Arkansas	Ber
1	2	Amazon	Retail and cloud computing	513983.0	9.4	1540000.0	Seattle, Washington	
2	3	ExxonMobil	Petroleum industry	413680.0	44.8	62000.0	Spring, Texas	
3	4	Apple	Apple Electronics industry		7.8	164000.0	Cupertino, California	Сι
4	5	UnitedHealth Group	Healthcare		12.7	400000.0	Minnetonka, Minnesota	Minı
95	96	Best Buy	Retail	46298.0	10.6	71100.0	Richfield, Minnesota	F
96	97	Bristol- Myers Squibb	Pharmaceutical industry	46159.0	0.5	34300.0	New York City, New York	N
97	98	United Airlines	Airline		82.5	92795.0	Chicago, Illinois	(
98	99	Thermo Fisher Scientific	Laboratory instruments	44915.0	14.5	130000.0	Waltham, Massachusetts	٧
99	100	Qualcomm	Technology	44200.0	31.7	51000.0	San Diego, California	Sa

100 rows × 9 columns

In [21]: ▶ split_categories

Out[21]:

0	1
Retail	None
Retail	cloud computing
Petroleum industry	None
Electronics industry	None
Healthcare	None
Retail	None
Pharmaceutical industry	None
Airline	None
Laboratory instruments	None
Technology	None
	Retail Retail Petroleum industry Electronics industry Healthcare Retail Pharmaceutical industry Airline Laboratory instruments

100 rows × 2 columns

```
▶ | split_categories[0].value_counts()
In [22]:
   Out[22]: Retail
                                                  11
             Petroleum industry
                                                  11
             Financials
                                                  11
             Technology
                                                   8
             Pharmaceutical industry
                                                   6
             Healthcare
                                                   6
                                                   5
             Insurance
                                                   4
             Conglomerate
             Telecommunications
                                                   3
                                                   3
             Airline
                                                   2
             Automotive industry
             Health insurance
                                                   2
                                                   2
             Food industry
             Transportation
                                                   2
                                                   2
             Food processing
             Financial
                                                   2
                                                   2
             Aerospace
             Telecom hardware manufacturing
                                                   1
             Machinery
                                                   1
             Agriculture manufacturing
                                                   1
             Agriculture cooperative
                                                   1
             Chemical industry
                                                   1
             Apparel
                                                   1
             Media
                                                   1
             Infotech
                                                   1
                                                   1
             Food service
                                                   1
             Logistics
             Consumer products manufacturing
                                                   1
             Automotive
                                                   1
                                                   1
             Beverage
             Financial services
                                                   1
             Pharmacy wholesale
                                                   1
             Health
                                                   1
             Electronics industry
                                                   1
             Laboratory instruments
                                                   1
             Name: 0, dtype: int64
          ▶ | split_categories[1].value_counts()
In [23]:
   Out[23]: cloud computing
                                   4
                                   2
             defense
             telecomunications
                                   1
             energy
                                   1
             logistics
                                   1
```

Name: 1, dtype: int64

In [24]: # Concatenate the split categories with the original DataFrame
d = pd.concat([d, split_categories], axis=1)

In [25]: ► d

Out[25]:

	Headquarters	Revenue Revenue Employees Headquarters millions)		Industry	Name	Rank		
Ber	Bentonville, Arkansas	2100000.0	6.7	611289.0	Retail	Walmart	1	0
	Seattle, Washington	1540000.0	9.4	513983.0	Retail and cloud computing	Amazon	2	1
	Spring, Texas	62000.0	44.8	413680.0	Petroleum industry	ExxonMobil	3	2
Сι	Cupertino, California	164000.0	7.8	394328.0	Electronics industry	Apple	4	3
Minı	Minnetonka, Minnesota	400000.0	12.7	324162.0	nitedHealth Group Healthcare		5	4
F	Richfield, Minnesota	71100.0	10.6	46298.0	Retail	Best Buy	96	95
N	New York City, New York	34300.0	0.5	46159.0	Pharmaceutical industry	Bristol- Myers Squibb	97	96
(Chicago, Illinois	92795.0	82.5	44955.0	Airline	United Airlines	98	97
V	Waltham, Massachusetts	130000.0	14.5	44915.0	Laboratory instruments	Thermo Fisher Scientific	99	98
Sa	San Diego, California	51000.0	31.7	44200.0	Technology	Qualcomm	100	99

100 rows × 11 columns

```
In [26]: # Get dummies for each split category
dummies = pd.get_dummies(d[[0, 1]], prefix='', prefix_sep='')
```

```
In [27]: # Concatenate the dummies with the original DataFrame
d = pd.concat([d, dummies], axis=1)
```

Out[28]:

	Rank	Name	Revenue Revenue Name Industry (USD resouth Employees Headqu		Headquarters			
			•	millions)	growth	. ,	·	
0	1	Walmart	Retail	611289.0	6.7	2100000.0	Bentonville, Arkansas	Ber
1	2	Amazon	Retail and cloud computing	513983.0	9.4	1540000.0	Seattle, Washington	
2	3	ExxonMobil	Petroleum industry	413680.0	44.8	62000.0	Spring, Texas	
3	4	Apple	Electronics industry	394328.0	7.8	164000.0	Cupertino, California	Сι
4	5	UnitedHealth Group	Healthcare	324162.0	12.7	400000.0	Minnetonka, Minnesota	Minı
95	96	Best Buy	Retail 46298.0 10.6		71100.0	Richfield, Minnesota	F	
96	97	Bristol- Myers Squibb	Pharmaceutical industry	46159.0	0.5	34300.0	New York City, New York	N
97	98	United Airlines	Airline	44955.0	82.5	92795.0	Chicago, Illinois	(
98	99	Thermo Fisher Scientific	Laboratory instruments	44915.0	14.5	130000.0	Waltham, Massachusetts	٧
99	100	Qualcomm	Technology	44200.0	31.7	51000.0	San Diego, California	Sa
100	rows ×	51 columns						
4								

Transfromed Data

Out[30]:

	Rank	Name	Revenue (USD millions)	Revenue growth	Employees	City	State	Aerospa
0	1	Walmart	611289.0	6.7	2100000.0	Bentonville	Arkansas	
1	2	Amazon	513983.0	9.4	1540000.0	Seattle	Washington	
2	3	ExxonMobil	413680.0	44.8	62000.0	Spring	Texas	
3	4	Apple	394328.0	7.8	164000.0	Cupertino	California	
4	5	UnitedHealth Group	324162.0	12.7	400000.0	Minnetonka	Minnesota	
•••								
95	96	Best Buy	46298.0	10.6	71100.0	Richfield	Minnesota	
96	97	Bristol- Myers Squibb	46159.0	0.5	34300.0	New York City	New York	
97	98	United Airlines	44955.0	82.5	92795.0	Chicago	Illinois	
98	99	Thermo Fisher Scientific	44915.0	14.5	130000.0	Waltham	Massachusetts	
99	100	Qualcomm	44200.0	31.7	51000.0	San Diego	California	

100 rows × 47 columns

Analyzing Data

```
In [31]: # Plotting revenue for top 10 industries
    top_industries = d1.iloc[:, 7:].sum().sort_values(ascending=False).head(1
    plt.figure(figsize=(10, 6))
    top_industries.plot(kind='bar', color='skyblue')
    plt.title('Top 10 Industries by Revenue')
    plt.xlabel('Industry')
    plt.ylabel('Number of Companies')
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
```


Perfroming Clustering Algorithms

```
In [35]: # Applying K-means clustering
kmeans = KMeans(n_clusters=3, random_state=42)
d1['Cluster'] = kmeans.fit_predict(features_scaled)
```

C:\Users\amrap\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:14
16: FutureWarning: The default value of `n_init` will change from 10 to
'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warn
ing
 super()._check_params_vs_input(X, default_n_init=10)
C:\Users\amrap\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:14
40: UserWarning: KMeans is known to have a memory leak on Windows with M
KL, when there are less chunks than available threads. You can avoid it
by setting the environment variable OMP_NUM_THREADS=1.
 warnings.warn(

```
# Check the centroids of the clusters
In [36]:
             centroids = scaler.inverse transform(kmeans.cluster centers )
             print(pd.DataFrame(centroids, columns=['Revenue (USD millions)', 'Revenue
             # Count number of companies in each cluster
             print(d1['Cluster'].value_counts())
             # Plotting clusters
             import matplotlib.pyplot as plt
             from mpl_toolkits.mplot3d import Axes3D
             # Creating a 3D plot
             fig = plt.figure(figsize=(20, 7))
             ax = fig.add subplot(111, projection='3d')
             # Scatter plot of your data
             scatter = ax.scatter(d1['Revenue (USD millions)'],
                                  d1['Revenue growth'],
                                  d1['Employees'],
                                  c=d1['Cluster'], cmap='viridis', s=100)
             # Labels and title
             ax.set_xlabel('Revenue (USD millions)')
             ax.set_ylabel('Revenue Growth')
             ax.set_zlabel('Employees')
             plt.title('Kmean clustering')
             # Legend with cluster labels
             legend1 = ax.legend(*scatter.legend_elements(),
                                 loc="lower left", title="Clusters")
             ax.add artist(legend1)
             # Show the plot
             plt.show()
                Revenue (USD millions) Revenue growth
                                                           Employees
             0
                         106995.250000
                                             62.343750 4.418725e+04
                                             11.512195 1.523867e+05
             1
                         108773.780488
             2
                         562636.000000
                                             8.050000 1.820000e+06
```

1

0

2

82

16

2

Name: Cluster, dtype: int64

Kmean clustering

C:\Users\amrap\anaconda3\Lib\site-packages\sklearn\cluster_agglomerativ
e.py:1006: FutureWarning: Attribute `affinity` was deprecated in version
1.2 and will be removed in 1.4. Use `metric` instead
 warnings.warn(


```
In [39]:
          ▶ # Check how many companies fall into each cluster
             print(d1['Cluster'].value_counts())
             # Plotting clusters
             import matplotlib.pyplot as plt
             from mpl_toolkits.mplot3d import Axes3D
             # Creating a 3D plot
             fig = plt.figure(figsize=(20, 7))
             ax = fig.add_subplot(111, projection='3d')
             # Scatter plot of your data
             scatter = ax.scatter(d1['Revenue (USD millions)'],
                                  d1['Revenue growth'],
                                  d1['Employees'],
                                  c=d1['Cluster'], cmap='viridis', s=100)
             # Labels and title
             ax.set_xlabel('Revenue (USD millions)')
             ax.set_ylabel('Revenue Growth')
             ax.set zlabel('Employees')
             plt.title('Agglomerative clustering')
             # Legend with cluster labels
             legend1 = ax.legend(*scatter.legend_elements(),
                                 loc="lower left", title="Clusters")
             ax.add_artist(legend1)
             # Show the plot
             plt.show()
             0
                  88
             2
                  10
                   2
```

Name: Cluster, dtype: int64

Agglomerative clustering


```
In [41]: # Applying DBSCAN
dbscan = DBSCAN(eps=0.5, min_samples=5)
d1['Cluster'] = dbscan.fit_predict(features_scaled)
```

```
In [42]:
             import matplotlib.pyplot as plt
             from mpl_toolkits.mplot3d import Axes3D
             # Creating a 3D plot
             fig = plt.figure(figsize=(20, 7))
             ax = fig.add_subplot(111, projection='3d')
             # Scatter plot of your data
             scatter = ax.scatter(d1['Revenue (USD millions)'],
                                  d1['Revenue growth'],
                                  d1['Employees'],
                                  c=d1['Cluster'], cmap='viridis', s=100)
             # Labels and title
             ax.set_xlabel('Revenue (USD millions)')
             ax.set_ylabel('Revenue Growth')
             ax.set_zlabel('Employees')
             plt.title('DBSCAN clustering')
             # Legend with cluster labels
             legend1 = ax.legend(*scatter.legend_elements(),
                                 loc="lower left", title="Clusters")
             ax.add_artist(legend1)
             # Show the plot
             plt.show()
```

DBSCAN clustering

In []: ▶

DBSCAN Clustering Algorithm on Different features

In [45]: ► top_industries_df

Out[45]:

	Retail	Petroleum industry	Financials	Technology	Healthcare	Pharmaceutical industry	Insurance	com
0	1	0	0	0	0	0	0	
1	1	0	0	0	0	0	0	
2	0	1	0	0	0	0	0	
3	0	0	0	0	0	0	0	
4	0	0	0	0	1	0	0	
95	1	0	0	0	0	0	0	
96	0	0	0	0	0	1	0	
97	0	0	0	0	0	0	0	
98	0	0	0	0	0	0	0	
99	0	0	0	1	0	0	0	

100 rows × 10 columns

```
In [46]:
          #CLUSTERING ON INDUSTRIES AND REVNEUES
             import matplotlib.pyplot as plt
             from sklearn.preprocessing import StandardScaler
             from sklearn.cluster import DBSCAN
             from mpl toolkits.mplot3d import Axes3D
             # Scaling the features
             scaler = StandardScaler()
             # Loop over each industry column in top_industries_df
             for industry_name in top_industries_df.columns:
                 # Prepare the feature matrix for clustering
                 X = pd.concat([d1[['Revenue (USD millions)', 'Employees']], top_indus
                 X scaled = scaler.fit transform(X)
                 # Apply DBSCAN
                 dbscan = DBSCAN(eps=0.5, min_samples=5)
                 clusters = dbscan.fit_predict(X_scaled)
                 # Setup for 3D plotting
                 fig = plt.figure(figsize=(10, 8))
                 ax = fig.add_subplot(111, projection='3d')
                 # Creating the scatter plot
                 scatter = ax.scatter(X['Revenue (USD millions)'], X[industry_name], X
                 # Labelling axes
                 ax.set_xlabel('Revenue (USD millions)')
                 ax.set_ylabel(f'Presence in {industry_name} Industry')
                 ax.set zlabel('Number of Employees')
                 # Adding a title
                 ax.set_title(f'3D DBSCAN Clustering of Companies by Revenue, {industr
                 # Adding a color bar
                 color bar = fig.colorbar(scatter, ax=ax)
                 color_bar.set_label('Cluster Label')
                 # Show plot
                 plt.show()
```


A Dashboard to display analyzed data

```
import tkinter as tk
             from tkinter import ttk
             import pandas as pd
             import matplotlib.pyplot as plt
             from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
             from sklearn.preprocessing import StandardScaler
             from sklearn.cluster import KMeans, DBSCAN
             import seaborn as sns
             from mpl toolkits.mplot3d import Axes3D
             class IntegratedDataDashboard(tk.Tk):
                 def __init__(self, df):
                     super().__init__()
                     self.title("Integrated Data Visualization Dashboard")
                     self.geometry("1200x800")
                     self.data = df
                     self.top_industries_df = top_industries_df
                    # self.agglo = ['Agglo histo']
                     # Main title for the dashboard
                     self.main_title = tk.Label(self, text="Data Visualization Dashboa
                     self.main title.pack(pady=(10, 5))
                     # Subtitle for the dashboard
                     self.subtitle = tk.Label(self, text="Explore data visualizations
                     self.subtitle.pack(pady=(0, 20))
                     # Label for the plot dropdown
                     self.plot label = tk.Label(self, text="Select a Visualization or
                     self.plot_label.pack(pady=(10, 2))
                     # Dropdown to choose the plot type
                     self.plot options = [
                         'Top 10 Industries', 'Top 10 Revenue Growth', 'Top 10 Employe
                         'K-Means Clustering', 'Agglomerative Clustering', 'DBSCAN Clus
                     self.selected option = tk.StringVar(self)
                     self.plot dropdown = ttk.Combobox(self, textvariable=self.selecte
                     self.plot_dropdown.pack(pady=20)
                     self.plot_dropdown.bind('<<ComboboxSelected>>', self.update_plot)
                     # Dropdown for selecting industries if needed
                     self.industry_var = tk.StringVar(self)
                     self.industry dropdown = ttk.Combobox(self, textvariable=self.ind
                     self.industry dropdown.pack(pady=20)
                     self.industry_dropdown.bind("<<ComboboxSelected>>", self.plot_ind
                     # Dropdown for agglometric
                     #self.agglo_var = tk.StringVar(self)
                     #self.agglo dropdown = ttk.Combobox(self, textvariable=self.agglo
                     #self.agglo dropdown.pack(pady=20)
                     #self.agglo_dropdown.bind("<<ComboboxSelected>>", self.agglo_his)
                     # Prepare the figure and canvas for plotting
                     self.fig, self.ax = plt.subplots()
                     self.canvas = FigureCanvasTkAgg(self.fig, self)
```

```
self.canvas_widget = self.canvas.get_tk_widget()
    self.canvas widget.pack(fill=tk.BOTH, expand=True)
def update_plot(self, event=None):
    plot_type = self.selected_option.get()
    self.ax.clear()
    #self.fig.clf()
    if plot_type == 'Industry Specific DBSCAN':
        self.fig.clf()
        self.industry_dropdown['values'] = self.top_industries_df.col
        self.industry_dropdown.update()
    elif plot type == 'Top 10 Industries':
        self.plot top industries()
    elif plot type == 'Top 10 Revenue Growth':
        self.plot_revenue_growth()
    elif plot_type == 'Top 10 Employees':
        self.plot employees()
    elif plot_type == 'K-Means Clustering':
        self.fig.clf()
        self.plot kmeans()
    elif plot_type == 'Agglomerative Clustering':
        self.fig.clf()
        self.plot aggcl()
       # if plot type == 'Agglomerative Clustering':
          # self.agglo_dropdown['values'] = self.agglo.tolist()
          # self.aaqlo dropdown.update()
    elif plot_type == 'DBSCAN Clustering':
        self.fig.clf()
        self.plot dbscan()
    self.canvas.draw()
def plot_top_industries(self):
    data = self.data.iloc[:, 7:].sum().sort_values(ascending=False).h
    self.ax.bar(data.index, data.values, color='skyblue')
    self.ax.set_title('Top 10 Industries by Revenue')
    self.ax.set xlabel('Industry')
    self.ax.set_ylabel('Revenue (USD millions)')
def plot_revenue_growth(self):
    data = self.data[['Name', 'Revenue growth']].head(10)
    sns.barplot(ax=self.ax, x='Revenue growth', y='Name', data=data,
    self.ax.set title('Top 10 Companies by Revenue Growth')
def plot_employees(self):
    data = self.data[['Name', 'Employees']].head(10)
    sns.barplot(ax=self.ax, x='Employees', y='Name', data=data, palet
    self.ax.set_title('Top 10 Companies by Number of Employees')
def plot_kmeans(self):
    features = self.data[['Revenue (USD millions)', 'Revenue growth',
    scaler = StandardScaler()
    features_scaled = scaler.fit_transform(features)
    kmeans = KMeans(n_clusters=3, random_state=42)
    clusters = kmeans.fit predict(features scaled)
```

```
self.ax.clear()
    self.ax = self.fig.add_subplot(111, projection='3d')
    self.ax.scatter(features['Revenue (USD millions)'], features['Rev
    self.ax.set_title('K-Means Clustering')
    self.ax.set_xlabel('Revenue (USD millions)')
    self.ax.set_ylabel('Revenue Growth')
    self.ax.set_zlabel('Employees')
    self.canvas.draw()
def plot aggcl(self):
    features = self.data[['Revenue (USD millions)', 'Revenue growth',
    scaler = StandardScaler()
    features_scaled = scaler.fit_transform(features)
    agg_c = AgglomerativeClustering(n_clusters=3, affinity='euclidean
    clusters = agg_c.fit_predict(features_scaled)
    self.ax.clear()
    self.ax = self.fig.add_subplot(111, projection='3d')
    self.ax.scatter(features['Revenue (USD millions)'], features['Rev
    self.ax.set_title('K-Means Clustering')
    self.ax.set_xlabel('Revenue (USD millions)')
    self.ax.set_ylabel('Revenue Growth')
    self.ax.set_zlabel('Employees')
    self.canvas.draw()
def agglo_his(self):
    linked = linkage(features_scaled, 'ward')
    dendrogram(linked, orientation='top', labels=clusters.values, dis
    self.ax.set_title('Hierarchical Clustering Dendrogram')
    self.ax.set_xlabel('Index')
    self.ax.set_xlabel('Distance')
    self.canvas.draw()
def plot_dbscan(self):
    features = self.data[['Revenue (USD millions)', 'Revenue growth',
    scaler = StandardScaler()
    features_scaled = scaler.fit_transform(features)
    dbscan = DBSCAN(eps=0.5, min_samples=5)
    clusters = dbscan.fit_predict(features_scaled)
    self.ax.clear()
    self.ax = self.fig.add_subplot(111, projection='3d')
    self.ax.scatter(features['Revenue (USD millions)'], features['Rev
    self.ax.set_title('DBSCAN Clustering')
    self.ax.set_xlabel('Revenue (USD millions)')
    self.ax.set ylabel('Revenue Growth')
    self.ax.set_zlabel('Employees')
    self.canvas.draw()
def plot_industry_dbscan(self, event):
    industry_name = self.industry_var.get()
    X = pd.concat([self.data[['Revenue (USD millions)', 'Employees']]
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)
    dbscan = DBSCAN(eps=1.5, min_samples=2)
    clusters = dbscan.fit_predict(X_scaled)
    self.ax.clear()
```

```
self.ax = self.fig.add subplot(111, projection='3d')
        self.ax.scatter(X['Revenue (USD millions)'], X['Employees'], X[in
        self.ax.set_xlabel('Revenue (USD millions)')
        self.ax.set ylabel('Employees')
        self.ax.set_zlabel(f'Presence in {industry_name}')
        self.ax.set_title(f'3D DBSCAN Clustering in {industry_name}')
        self.canvas.draw()
if __name__ == '__main__':
    df = d1
    app = IntegratedDataDashboard(df)
    app.mainloop()
C:\Users\amrap\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:14
16: FutureWarning: The default value of `n init` will change from 10 to
'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warn
  super()._check_params_vs_input(X, default_n_init=10)
C:\Users\amrap\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:14
```

40: UserWarning: KMeans is known to have a memory leak on Windows with M KL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn(

C:\Users\amrap\anaconda3\Lib\site-packages\sklearn\cluster_agglomerativ e.py:1006: FutureWarning: Attribute `affinity` was deprecated in version 1.2 and will be removed in 1.4. Use `metric` instead warnings.warn(

DBSCAN Clustering

In []: **M**