21. Transformada de Laplace

21.1. Definición

La transformada de Laplace convierte una función f(t) en la variable t, en una función F(s) en la variable s:

$$F(s) = \mathcal{L}(f(t))(s) = \int_0^\infty f(t)e^{-st}dt$$

Al estar definida mediante una integral impropia se imponen ciertas condiciones para asegurar la convergencia:

- *f* debe estar definida para todos los valores positivos. Los valores de *f* en la parte negativa del eje no se consideran en la integral.
- **Normalmente debe ocurrir que** *s* > *a* **para que la integral sea convergente**, puesto que para número negativos exp(-*st*) es una función con un gran crecimiento y se tienen serias posibilidades de no convergencia.

Ejercicios

Calcula la transformada de Laplace del seno utilizando la definición:

$$\mathcal{L}(f(t))(s) = \int_0^\infty f(t)e^{-st}dt$$

21.2. El comando LaplaceTransform.

Se utiliza **LaplaceTransform**[f,t,s] para efectuar la transformada, donde f es la función en la primera variable, t es la variable de la función sin transformar y s es el variable de la función transformada.

En el manejo habitual de la transformada de Laplace se parte de una serie de transformadas de funciones elementales que suelen venir tabuladas.

Ejercicios

Calcula las siguientes transformadas de Laplace:

$$a)\mathcal{L}(\sin(\omega t))$$
 $b)\mathcal{L}(\cos(\omega t))$ $c)\mathcal{L}(e^{\omega t})$

Calcula la transformada de la delta de Dirac.

Nuevas funciones

 ${\bf Laplace Transform, Dirac Delta.}$

21.3. La transformada como aplicación lineal

La transformada de Laplace es una aplicación lineal. Para conocer la transformada de un polinomio basta con conocer las transformadas de las potencias.

Ejercicios

Calcula transformadas de constantes, potencias y de polinomios.

21.4. Algunas propiedades

Las propiedades de la transformada de Laplace son la que hacen tan útil a este mecanismo. Como muestra enumeramos algunas:

•
$$\mathcal{L}(f+g) = F(s) + G(s)$$

$$\mathscr{L}(f') = s \cdot F(s) - f(0)$$

Ejercicios

- Comprueba las propiedades anteriores.
- Calcula, paso a paso, la transformada de Laplace de:

$$t^3e^{-5t}\cos(2t)$$

21.5. La transformada inversa

Bajo ciertas condiciones, la transformada de Laplace se puede invertir y dada una función F(s) se puede encontrar la función f(t). Para ello se utiliza **InverseLaplaceTransform**[F,s,t]

Ejercicios

Calcula la siguiente transformada inversa de Laplace:

$$\mathcal{L}^{-1}\left(\frac{1}{(s+1)^2(s+2)}\right)$$

Nuevas funciones

 ${\bf Inverse Laplace Transform.}$