ORDER-D ($D \ge 4$) **T-SVD ALGEBRAIC FRAMEWORK**

Wenjin Qin¹, Hailin Wang², Jianjun Wang^{1,3,*}

School of Mathematics and Statistics, Southwest University, China
 School of Mathematics and Statistics, Xi'an Jiaotong University, China
 Research Institute of Intelligent Finance and Digital Economics, Southwest University, China

1. BASIC ALGEBRAIC FRAMEWORK

The main notions and preliminaries for order-*d* tensor are listed in Table 1, some of which originate from [1–5].

Definition 1.1. (Order-d t-product) Let $A \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ and $B \in \mathbb{R}^{n_2 \times l \times n_3 \times \cdots \times n_d}$, then their tensor-tensor product (t-product) is defined as follows:

$$C = A * B = bfold(bcirc(A) \times bunfold(B)).$$
 (1)

The order-d t-product in (1) can be converted to the matrix-matrix multiplication in the transform domain. That is,

$$\mathcal{C} = \mathcal{A} *_{L} \mathcal{B} = L^{-1} (\mathcal{A}_{L} \triangle \mathcal{B}_{L}). \tag{2}$$

Definition 1.2. (Order-d conjugate transpose) The conjugate transpose of a tensor $\mathcal{A} \in \mathbb{C}^{n_1 \times n_2 \times n_3 \times \cdots \times n_d}$ is the tensor $\mathcal{A}^* \in \mathbb{C}^{n_2 \times n_1 \times n_3 \times \cdots \times n_d}$ if $\mathcal{A}^*_L(:,:,i_3,\cdots,i_d) = (\mathcal{A}_L(:,:,i_3,\cdots,i_d))^*$, for $i_j \in \{1,\cdots,n_j\}$, $j \in \{3,\cdots,d\}$.

Definition 1.3. (order-d identity tensor) The order-d identity tensor $\mathcal{I} \in \mathbb{R}^{n \times n \times n_3 \times \cdots \times n_d}$ is the tensor such that $\mathcal{I}_L(:,:,i_3,\cdots,i_d) = I_n$ for $i_3 \in \{1,\cdots,n_3\},\cdots,i_d \in \{1,\cdots,n_d\}$, where I_n denotes a $n \times n$ sized identity matrix.

Definition 1.4. (Order-d orthogonal tensor) An order-d tensor $Q \in \mathbb{C}^{n \times n \times n_3 \times \cdots \times n_d}$ is orthogonal if it satisfies $Q^* *_L Q = Q *_L Q^* = \mathcal{I}$.

Definition 1.5. (Order-d f-diagonal tensor) An order-d tensor $\mathcal{A} \in \mathbb{R}^{n \times n \times n_3 \times \cdots \times n_d}$ is called f-diagonal if $\mathcal{A}(:,:,i_3,\cdots,i_d)$ is a diagonal matrix for any $i_j \in \{1,\cdots,n_j\}, j \in \{3,\cdots,d\}$.

Definition 1.6. (Order-d Gaussian random tensor) $A \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ is called a Gaussian random tensor, if all $A_L(:,:,i_3,\cdots,i_d)$ satisfy the standard normal distribution for any $i_3 \in \{1,\cdots,n_3\},\cdots,i_d \in \{1,\cdots,n_d\}.$

Definition 1.7. (*Order-d t-QR*) Let $A \in \mathbb{R}^{n_1 \times n_2 \times n_3 \times \cdots \times n_d}$, then it can be decomposed as

$$\mathcal{A} = \mathcal{Q} *_L \mathcal{R}, \tag{3}$$

where $Q \in \mathbb{R}^{n_1 \times n_1 \times n_3 \times \cdots \times n_d}$ is an order-d orthogonal tensor, $\mathcal{R} \in \mathbb{R}^{n_2 \times n_2 \times n_3 \times \cdots \times n_d}$ is f-upper triangular tensor.

Definition 1.8. (Order-d t-SVD, Order-d tensor rank) Let $A \in \mathbb{R}^{n_1 \times n_2 \times n_3 \times \cdots \times n_d}$, then it can be factorized as

$$\mathcal{A} = \mathcal{U} *_L \mathcal{S} *_L \mathcal{V}^*, \tag{4}$$

where $\mathcal{U} \in \mathbb{R}^{n_1 \times n_1 \times n_3 \times \cdots \times n_d}$, $\mathcal{V} \in \mathbb{R}^{n_2 \times n_2 \times n_3 \times \cdots \times n_d}$ are order-d orthogonal tensors, $\mathcal{S} \in \mathbb{R}^{n_1 \times n_2 \times n_3 \times \cdots \times n_d}$ is an order-d f-diagonal tensor (also named singular value tensor). Further tensor rank of \mathcal{A} can be defined as

$$rank_{tr}(\mathbf{A}) = \#\{i : \mathbf{S}(i, i, i_3, \cdots, i_d) \neq \mathbf{0}\},\$$

for
$$i_3 \in \{1, \dots, n_3\}, \dots, i_d \in \{1, \dots, n_d\}.$$

Definition 1.9. (Order-d tensor spectral norm) The spectral norm of $A \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ is defined as

$$\|\mathcal{A}\| := \|\mathrm{bdiag}(\mathcal{A}_L)\|.$$

Definition 1.10. (Order-d TNN) Let A_L has the t-SVD $A_L = \mathcal{U}' *_L \mathcal{S}' *_L \mathcal{V}'^*$ for any $A \in \mathbb{R}^{n_1 \times \cdots \times n_d}$, then the tensor nuclear norm of A is defined as

$$\|\mathcal{A}\|_{\star,L} := \frac{1}{\rho} \|\operatorname{bdiag}(\mathcal{A}_L)\|_{\star} = \frac{1}{\rho} \sum_{i=1}^{m} \sum_{i_3=1}^{n_3} \cdots \sum_{i_d=1}^{n_d} \mathcal{S}'(i, i, i_3, \cdots, i_p),$$

where $\rho > 0$ is a constant, and $m = \min(n_1, n_2)$.

Definition 1.11. (Order-d WTSN) Let \mathcal{A}_L has the t-SVD $\mathcal{A}_L = \mathcal{U}' *_L \mathcal{S}' *_L \mathcal{V}'^*$ for any $\mathcal{A} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$, then the weighted tensor Schatten-p norm (WTSN) of \mathcal{A} is defined as

$$\|\mathcal{A}\|_{\mathcal{W},S_p} := \left(\frac{1}{\rho} \sum_{i=1}^m \sum_{i_3=1}^{n_3} \cdots \sum_{i_d=1}^{n_d} \mathcal{W}(i,i,i_3,\cdots,i_p)\right)$$
$$\left|\mathcal{S}'(i,i,i_3,\cdots,i_p)\right|^p, \tag{5}$$

where $\rho > 0$ is a constant, W denotes the order-d f-diagonal tensor (i.e., weight parameter), and $m = \min(n_1, n_2)$.

The WTSN defined in (5) can be equivalently reformulated as follows:

$$\|\mathcal{A}\|_{\mathcal{W},S_p}^p = \frac{1}{\rho} \sum_{i_3,\dots,i_d} \operatorname{tr} \left(\mathbf{W}^{(i_3,\dots,i_p)} \middle| \mathbf{S}^{'(i_3,\dots,i_p)} \middle|^p \right). \quad (6)$$

^{*⊠} wjj@swu.edu.cn.

Table 1: The main notions and preliminaries for order-d tensor.

Notations	Descriptions	Notations	Descriptions
$\mathbf{\mathcal{A}} \in \mathbb{C}^{n_1 imes \cdots imes n_d}$	order-d tensor	$\mathbf{\mathcal{A}}^* \in \mathbb{C}^{n_1 \times \cdots \times n_d}$	conjugate transpose
${\cal A}_{i_1\cdots i_d}$ or ${\cal A}(i_1,\cdots,i_d)$	(i_1,\cdots,i_d) -th entry	$\mathbf{A}_{(k)} \in \mathbb{C}^{n_k \times \prod_{j \neq k} n_j}$	mode- k matricization of ${\cal A}$
$\left\ \boldsymbol{\mathcal{A}} \right\ _{\infty} = \max_{i_1 \cdots i_d} \left \boldsymbol{\mathcal{A}}_{i_1 \cdots i_d} \right $	tensor infinity norm	$\mathcal{A}(i_1,\cdots,i_{k-1},:,i_{k+1},\cdots,i_d)$	fiber along mode- k
$\left\ oldsymbol{\mathcal{A}} ight\ _q = \left(\sum_{i_1 \cdots i_d} \left oldsymbol{\mathcal{A}}_{i_1 \cdots i_d} ight ^q ight)^{rac{1}{q}}$	tensor ℓ_q -norm	$\boldsymbol{\mathcal{A}}(:,:,i_3,\cdots,i_d)$ or $\mathrm{A}^{(i_3,\cdots,i_d)}$	slice along mode-1, mode-2
$\ {\bf {\cal A}}\ _F = (\sum_{i_1 \cdots i_d} {\bf {\cal A}}_{i_1 \cdots i_d} ^2)^{1/2}$	tensor Frobenius norm	$\langle \mathbf{A}, \mathbf{B} \rangle = \sum \langle \mathbf{A}^{(i_3, \dots, i_d)}, \mathbf{B}^{(i_3, \dots, i_d)} \rangle$	tensor inner product
$L(\cdot): \mathbb{C}^{n_1 \times \cdots \times n_d} \to \mathbb{C}^{n_1 \times \cdots \times n_d}$	invertible linear transforms	$\mathcal{A}*_{L}\mathcal{B}$	transforms L based t-product
$\bar{\mathcal{A}} = \mathrm{fft}(\mathcal{A}, [], i) \text{ for } i = 3, \cdots, d$	Fast Fourier Transform	$\mathcal{A} = \mathrm{ifft}(\bar{\mathcal{A}}, [], j) \text{ for } j = d, \cdots, 3$	inverse Fast Fourier Transform
$\mathcal{A}_i \in \mathbb{R}^{n_1 imes \cdots imes n_{d-1}}$	order- $(d-1)$ tensor constructed by keeping the d -th index of \mathcal{A} fixed at i , $\mathcal{A}_i := \mathcal{A}(:, \dots, :, i)$.		
$\mathbf{A}^j \in \mathbb{R}^{n_1 \times n_2}$	$A^{j} = \mathcal{A}(:,:,i_{3},\cdots,i_{d}), j = (i_{d}-1)n_{3}\cdots n_{d-1} + \cdots + (i_{d}-1)n_{3} + i_{3}, i_{d} \in \{1,\cdots,n_{d}\}.$		
$\mathcal{A} \times_n U$	the mode- n product of tensor \mathcal{A} with matrix $U, \mathcal{B} = \mathcal{A} \times_n U \Leftrightarrow B_{(n)} = U \cdot A_{(n)}$.		
$\mathcal{A}_L \triangleq L(\mathcal{A})$	$L(\mathcal{A}) = \mathcal{A} \times_3 U_{n_3} \times_4 U_{n_4} \cdots \times_d U_{n_d}$, $U_{n_i} \in \mathbb{C}^{n_i \times n_i}$ denotes an invertible transform matrix.		
$L^{-1}(\mathcal{A})$			
$\mathrm{circ}\left(\mathcal{A} ight)$	$\operatorname{circ}\left(\mathcal{A} ight) = egin{bmatrix} \mathcal{A}_1 & \mathcal{A}_{n_d} \ \mathcal{A}_2 & \mathcal{A}_1 \ dots & dots \ \mathcal{A}_{n_d} & \mathcal{A}_{n_d}. \end{bmatrix}$	$\begin{bmatrix} \mathbf{a}^{-1} & \mathbf{A} & \mathbf{A}_{1d} & \mathbf{A}_{1$	$n_{d-2}n_d imes n_{d-1}$.
$\mathrm{bcirc}(\mathcal{A})$	a $(n_1 n_3 \cdots n_d \times n_2 n_3 \cdots n_d)$ block circulant matrix at the base level of the operator circ(\mathcal{A}).		
$\operatorname{unfold}\left(\mathcal{A}\right)$	unfold $(\mathbf{A}) = [\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_{n_d-1}, \mathbf{A}_{n_d}]^{\mathrm{T}} \in \mathbb{R}^{n_1 n_d \times n_2 \times \cdots \times n_{d-1}}$.		
$\mathrm{bunfold}(\boldsymbol{\mathcal{A}})$	a $(n_1 n_3 \cdots n_d \times n_2)$ matrix formed by applying unfold (\cdot) repeatedly until a block matrix result.		
$\mathrm{bfold}(\mathcal{oldsymbol{\mathcal{A}}})$	the operation takes bunfold (A) back to order- d tensor form, i.e., bfold $(bunfold (A)) = A$.		
$\mathrm{bdiag}(\mathcal{A})$	$\operatorname{bdiag}(\mathbf{A}) = \operatorname{diag}(A^{1}, \dots, A^{j}, \dots, A^{J}), J = n_{3} \dots n_{d}, j \in \{1, \dots, J\}.$		
$\mathcal{A} igtriangleup \mathcal{B}$	face-wise product of two order- d tensor, $\mathcal{C} = \mathcal{A} \triangle \mathcal{B} \Leftrightarrow \mathrm{bdiag}(\mathcal{C}) = \mathrm{bdiag}(\mathcal{A}) \cdot \mathrm{bdiag}(\mathcal{B})$.		

Remark 1.1. Throughout the article, the constant ρ appeared in the key definition and theorem is the constant ρ obtained when corresponding matrices of the invertible linear transform L satisfy the equation:

$$(\mathbf{U}_{n_p} \otimes \mathbf{U}_{n_{p-1}} \otimes \cdots \otimes \mathbf{U}_{n_3})(\mathbf{U}_{n_p}^* \otimes \mathbf{U}_{n_{p-1}}^* \otimes \cdots \otimes \mathbf{U}_{n_3}^*)$$

$$= (\mathbf{U}_{n_p}^* \otimes \mathbf{U}_{n_{p-1}}^* \otimes \cdots \otimes \mathbf{U}_{n_3}^*)(\mathbf{U}_{n_p} \otimes \mathbf{U}_{n_{p-1}} \otimes \cdots \otimes \mathbf{U}_{n_3})$$

$$= \rho \mathbf{I}_{n_3 n_4 \cdots n_p}, \tag{7}$$

the constant ρ is related to the linear transforms. For instance, for a fifth-order tensor, if corresponding matrices of the invertible linear transform L satisfy: $U_{n_3} \cdot U_{n_3}^* = U_{n_3}^* \cdot U_{n_3} = n_3 I_{n_3}$, $U_{n_4} \cdot U_{n_4}^* = U_{n_4}^* \cdot U_{n_4} = n_4 I_{n_4}$ and $U_{n_5} \cdot U_{n_5}^* = U_{n_5}^* \cdot U_{n_5} = n_5 I_{n_5}$, then $\rho = n_3 \cdot n_4 \cdot n_5$.

Remark 1.2. Let $\mathcal{X} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ with $\operatorname{rank}_{tr}(\mathcal{X}) = r$, the skinny t-SVD of tensor \mathcal{X} is $\mathcal{X} = \mathcal{U} *_L \mathcal{S} *_L \mathcal{V}^*$, where $\mathcal{U} \in \mathbb{R}^{n_1 \times r \times n_3 \times \cdots \times n_d}$ and $\mathcal{V} \in \mathbb{R}^{n_2 \times r \times n_3 \times \cdots \times n_d}$ satisfy $\mathcal{U} *_L \mathcal{U} = \mathcal{I}$ and $\mathcal{V} *_L \mathcal{V} = \mathcal{I}$, and $\mathcal{S} \in \mathbb{R}^{r \times r \times n_3 \times \cdots \times n_d}$ is a f-diagonal tensor.

2. ORDER-D WTSN OPERATOR

Definition 2.1. (Order-d WTSN proximal operator) For any $A \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ with t-SVD that $A = \mathcal{U} *_L S *_L \mathcal{V}^*$, and any $\tau > 0$, the order-d WTSN proximal operator is defined as

Algorithm 1 Order-d t-product

Input: $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3 \times \cdots \times n_d}$, $\mathcal{B} \in \mathbb{R}^{n_2 \times l \times n_3 \times \cdots \times n_d}$, and invertible linear transform L.

Output: $C = A *_L B \in \mathbb{R}^{n_1 \times l \times n_3 \times \cdots \times n_d}$.

- 1. Compute the result of linear transform on \mathcal{A} and \mathcal{B} $\mathcal{A}_L \leftarrow L(\mathcal{A}), \mathcal{B}_L \leftarrow L(\mathcal{B}).$
- 2. Compute each matrix slice of C_L by

for
$$i_3 \in \{1, \dots, n_3\}, \dots, i_d \in \{1, \dots, n_d\}$$
 do $\mathcal{C}_L(:, :, i_3, \dots, i_d) = \mathcal{A}_L(:, :, i_3, \dots, i_d) \cdot \mathcal{B}_L(:, :, i_3, \dots, i_d)$.

end for

3. Compute the result of inverse linear transform on \mathcal{C}_L $\mathcal{C} \leftarrow L^{-1}(\mathcal{C}_L)$.

follows

$$\mathcal{D}_{\mathbf{W}_{n,\tau}}(\mathcal{A}) = \mathcal{U} *_{L} \mathcal{S}_{\mathbf{W}_{n,\tau}} *_{L} \mathcal{V}^{*}, \tag{8}$$

where $\mathcal{S}_{\mathcal{W},p,\tau} = L^{-1}(GST(\mathcal{S}_L,\tau\mathcal{W},p,J))$, in which J is the number of GST iterations, p ($0) represents the adjustable parameters appeared in order-d WTSN, and <math>\mathcal{W} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ denotes an order-d f-diagonal tensor (i.e., weight parameter).

Algorithm 2 Order-d t-SVD

Input: $A \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ and invertible linear transform L.

Output: t-SVD components \mathcal{U} , \mathcal{S} and \mathcal{V} of \mathcal{A} .

1. Compute the result of linear transform on \mathcal{A}

$$\mathcal{A}_L \leftarrow L(\mathcal{A}).$$

2. Compute each slice of \mathcal{U}_L , \mathcal{S}_L and \mathcal{V}_L from \mathcal{A}_L by

$$\begin{aligned} &\textbf{for } i_3 \in \{1, \cdots, n_3\}, \cdots, i_d \in \{1, \cdots, n_d\} \textbf{ do} \\ &[\textbf{U}, \textbf{S}, \textbf{V}] = \text{svd}(\boldsymbol{\mathcal{A}}_L(:,:,i_3,\cdots,i_d)), \\ &\boldsymbol{\mathcal{U}}_L(:,:,i_3,\cdots,i_d) = \textbf{U}, \boldsymbol{\mathcal{S}}_L(:,:,i_3,\cdots,i_d) = \textbf{S}, \boldsymbol{\mathcal{V}}_L(:,:,i_3,\cdots,i_d) = \textbf{S}, \boldsymbol{\mathcal{V}}_L(:$$

end for

3. Compute the result of inverse linear transform on \mathcal{U}_L , \mathcal{S}_L and \mathcal{V}_L

$$\mathcal{U} \leftarrow L^{-1}(\mathcal{U}_L), \mathcal{S} \leftarrow L^{-1}(\mathcal{S}_L) \text{ and } \mathcal{V} \leftarrow L^{-1}(\mathcal{V}_L).$$

Algorithm 3 PowerMethod (Z, R, η) [6, 7].

```
Input: \mathbf{Z} \in \mathbb{R}^{m \times n}, \mathbf{R} \in \mathbb{R}^{n \times k}, and the number of power iterations \eta;
Initialize: \mathbf{Y}_1 = \mathbf{Z}\mathbf{R};
for j = 1, 2, \dots, \eta do
\mathbf{Q}_j = qr(\mathbf{Y}_j); /\!\!/ q\mathbf{r}(\cdot) is QR factorization
\mathbf{Y}_{j+1} = \mathbf{Z}(\mathbf{Z}^{\top}\mathbf{Q}_j);
end for return \mathbf{Q}_j.
```

Algorithm 4 GST (s, w, p, J) [8,9].

```
Input: s, w, p, J;

Output: \Gamma_p^{GST}(s; w);

\delta_p^{GST}(w) = [2w(1-p)]^{\frac{1}{2-p}} + wp[2w(1-p)]^{\frac{p-1}{2-p}};

if |s| \leq \delta_p^{GST}(w) then

\Gamma_p^{GST}(s; w) = 0;

else

j = 0, s^{(k)} = |s|;

for j = 0, 1, \cdots, J do

s^{(k+1)} = |s| - wp(s^{(j)})^{p-1};

j = j + 1;

end for

\Gamma_p^{GST}(s; w) = \mathrm{sgn}(s)s^{(k)};

end if
```

Lemma 2.1. [9] Let the SVD of $Y \in \mathbb{R}^{n_1 \times n_2}$ be $Y = U\Sigma V^{\top}$ with $\Sigma = \text{diag}\{\sigma_1, \ldots, \sigma_m\}$, for any $\tau \geq 0$ and $0 \leq w_1 \leq w_2 \leq \cdots \leq w_m$ $(m = \min\{n_1, n_2\})$, a global optimal solution to the optimization problem

$$\min_{\mathbf{X}} \tau \|\mathbf{X}\|_{w,S_p}^p + \frac{1}{2} \|\mathbf{X} - \mathbf{Y}\|_F^2$$

Algorithm 5 Order-d WTSN proximal operator

Input: $\mathcal{A} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$, $\tau > 0$, $0 , weight parameter: <math>\mathcal{W} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$, the number of GST iterations: J and invertible linear transform L.

Output: $\mathcal{D}_{W,p,\tau}(\mathcal{A}) = \mathcal{U} *_L \mathcal{S}_{W,p,\tau} *_L \mathcal{V}^*$.

1. Compute the result of linear transform on \mathcal{A} $\mathcal{A}_L \leftarrow L(\mathcal{A})$.

2. Compute each slice of A_L by

for
$$i_3 \in \{1, \dots, n_3\}, \dots, i_d \in \{1, \dots, n_d\}$$
 do
 $w = \operatorname{diag} (\mathcal{W}(:, :, i_3, \dots, i_d));$
 $[U, S, V] = \operatorname{svd} (\mathcal{A}_L(:, :, i_3, \dots, i_d));$
 $\operatorname{diag}SS = \operatorname{GST} (\operatorname{diag}(S), \tau w, p, J);$
 $\mathcal{A}_L(:, :, i_3, \dots, i_d) = \operatorname{U} \cdot \operatorname{diag}(\operatorname{diag}SS) \cdot \operatorname{V}^*;$

end for

3. Compute the result of inverse linear transform on \mathcal{A}_L $\mathcal{D}_{\mathcal{W},p,\tau}(\mathcal{A}) \leftarrow L^{-1}(\mathcal{A}_L)$.

is given by

$$\mathcal{D}_{\mathbf{w},\tau,p}(Y) = U \cdot S_{\mathbf{w},\tau,p}(X) \cdot V^{T},$$

where $S_{\mathbf{w},\tau,p}(X) = \text{diag}\{GST(\sigma_i(X), \tau w_i, p, J), i = 1, \cdots, m\}.$

Theorem 2.1. Let $m = \min(n_1, n_2)$, for any $\tau > 0$ and $\mathcal{Z} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$, then the order-d WTSN proximal operator (8) obeys

$$\mathcal{D}_{\mathcal{W},p,\tau}(\mathcal{Z}) = \arg\min_{\mathcal{X}} \tau \|\mathcal{X}\|_{\mathcal{W},S_p}^p + \frac{1}{2} \|\mathcal{X} - \mathcal{Z}\|_F^2, \quad (9)$$

if the weight parameter satisfies $0 \leq \mathcal{W}(1, 1, i_3, \dots, i_d) \leq \dots \leq \mathcal{W}(m, m, i_3, \dots, i_d)$, for any $i_3 \in \{1, \dots, n_3\}, \dots, i_d \in \{1, \dots, n_d\}$.

Proof. Based on the definition of order-d WTSN, on the one hand, we have

$$\tau \| \mathcal{X} \|_{\mathcal{W}, S_p}^p = \frac{1}{\rho} \sum_{i_3=1}^{n_3} \cdots \sum_{i_d=1}^{n_d} \tau \| \mathcal{X}_L(:,:,i_3,\cdots,i_d) \|_{W^{(i_3,\cdots,i_p)}, S_p}^p.$$
(10)

Utilizing the property (7), on the other hand, we have the following important equations:

$$\|\mathcal{A}\|_F = \frac{1}{\sqrt{\rho}} \|\operatorname{bdiag}(\mathcal{A}_L)\|_F,$$
 (11)

$$\langle \mathbf{A}, \mathbf{B} \rangle = \frac{1}{\rho} \langle \operatorname{bdiag}(\mathbf{A}_L), \operatorname{bdiag}(\mathbf{B}_L) \rangle,$$
 (12)

thus

$$\frac{1}{2} \| \boldsymbol{\mathcal{X}} - \boldsymbol{\mathcal{Z}} \|_F^2 = \frac{1}{2\rho} \| \operatorname{bdiag}(\boldsymbol{\mathcal{X}}_L) - \operatorname{bdiag}(\boldsymbol{\mathcal{Z}}_L) \|_F^2$$

$$= \frac{1}{2\rho} \sum_{i_3=1}^{n_3} \cdots \sum_{i_d=1}^{n_d} \| \boldsymbol{\mathcal{X}}_L(:,:,i_3,\cdots,i_d) - \boldsymbol{\mathcal{Z}}_L(:,:,i_3,\cdots,i_d) \|_F^2. \tag{13}$$

Then, the problem (9) is equivalent to

$$\arg\min_{\boldsymbol{\mathcal{X}}} \frac{1}{\rho} \sum_{i_{3}=1}^{n_{3}} \cdots \sum_{i_{d}=1}^{n_{d}} (\tau \| \boldsymbol{\mathcal{X}}_{L}(:,:,i_{3},\cdots,i_{d}) \|_{\mathbf{W}^{(i_{3},\cdots,i_{p})},S_{p}}^{p} + \frac{1}{2} \| \boldsymbol{\mathcal{X}}_{L}(:,:,i_{3},\cdots,i_{d}) - \boldsymbol{\mathcal{Z}}_{L}(:,:,i_{3},\cdots,i_{d}) \|_{F}^{2}).$$

$$(14)$$

Since $0 \leq \mathcal{W}(1, 1, i_3, \cdots, i_d) \leq \cdots \leq \mathcal{W}(m, m, i_3, \cdots, i_d)$, the (i_3, \cdots, i_d) -th matrix slice of $L(\mathcal{D}_{\mathcal{W}, p, \tau}(\mathcal{Z}))$ solves the (i_3, \cdots, i_d) -th subproblem of (14) through Lemma 2.1. Hence, $\mathcal{D}_{\mathcal{W}, p, \tau}(\mathcal{Z})$ solves the problem (9).

3. REFERENCES

- [1] T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," *SIAM Rev.*, vol. 51, no. 3, pp. 455–500, 2009.
- [2] M. E. Kilmer and C. D. Martin, "Factorization strategies for third-order tensors," *Linear Alg. Appl.*, vol. 435, no. 3, pp. 641–658, 2011.
- [3] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, "Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging," *SIAM J. Matrix Anal. Appl.*, vol. 34, no. 1, pp. 148–172, 2013.
- [4] C. D. Martin, R. Shafer, and B. LaRue, "An order-p tensor factorization with applications in imaging," *SIAM J. Sci. Comput.*, vol. 35, no. 1, pp. A474–A490, 2013.
- [5] E. Kernfeld, M. Kilmer, and S. Aeron, "Tensor–tensor products with invertible linear transforms," *Linear Alg. Appl.*, vol. 485, pp. 545–570, 2015.
- [6] N. Halko, P.-G. Martinsson, and J. A. Tropp, "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions," *SIAM Rev.*, vol. 53, no. 2, pp. 217–288, 2011.
- [7] Q. Yao and J. T. Kwok, "Accelerated and inexact softimpute for large-scale matrix and tensor completion," *IEEE Trans. Knowl. Data Eng.*, vol. 31, no. 9, pp. 1665– 1679, 2018.

- [8] W. Zuo, D. Meng, L. Zhang, X. Feng, and D. Zhang, "A generalized iterated shrinkage algorithm for non-convex sparse coding," in *Proc. IEEE Int. Conf. Comput. Vis. (IC-CV)*, 2013, pp. 217–224.
- [9] Y. Xie, S. Gu, Y. Liu, W. Zuo, W. Zhang, and L. Zhang, "Weighted schatten *p*-norm minimization for image denoising and background subtraction," *IEEE Trans. Image Process.*, vol. 25, no. 10, pp. 4842–4857, 2016.