

COMPTE RENDU

Algorithmique Avancée - TP4 - ABR 3e année Cybersécurité - École Supérieure d'Informatique et du Numérique (ESIN) Collège d'Ingénierie & d'Architecture (CIA)

Étudiant : HATHOUTI Mohammed taha

Filière: Cybersécurité

Année: 2025/2026

Enseignants: M.BAKHOUYA

Date: 26 octobre 2025

Table des matières

1	Rap 1.1	opel des objectifs du TP Arbre Équilibré vs Arbre Déséquilibré	2 2
2	Ana	alyse théorique des ABR	3
-	2.1	Propriété fondamentale des ABR	3
	2.2	Complexités théoriques	3
3	Mét	thodologie expérimentale	3
	3.1	Protocole de test	3
	3.2	Tailles testées	3
	3.3	Métriques mesurées	3
	3.4	Processus de mesure	3
4	Rés	ultats expérimentaux	4
	4.1	Comparaison des hauteurs	4
		4.1.1 Données décroissantes (pire cas)	4
		4.1.2 Données croissantes (pire cas)	5
		4.1.3 Données aléatoires	5
	4.2	Analyse des temps d'insertion	6
		4.2.1 Données décroissantes	6
		4.2.2 Données croissantes	6
		4.2.3 Données aléatoires	7
	4.3	Analyse des temps de recherche	7
		4.3.1 Données décroissantes	7
		4.3.2 Données croissantes	8
		4.3.3 Données aléatoires	8
	4.4	Graphiques en échelle log-log	9
		4.4.1 Données décroissantes	9
		4.4.2 Données croissantes	9
		4.4.3 Données aléatoires	10
	4.5	Comparaison globale tous types	10
5	Ana	alyse approfondie et interprétation	11
	5.1	Tableau récapitulatif des performances	11
	5.2	Vérification des complexités théoriques	11
		5.2.1 Arbre équilibré : $O(\log n)$	11
		5.2.2 Arbre déséquilibré : O(n) pour données triées	11
		5.2.3 Complexité des opérations de recherche	11
	5.3	Impact du type de données	12
6	Cor	nelusion	19

1 Rappel des objectifs du TP

Ce TP4 a pour objectif d'approfondir l'étude des **Arbres Binaires de Recherche** (**ABR**) en analysant expérimentalement l'impact de l'équilibrage sur les performances. L'objectif principal est d'implémenter et de comparer deux méthodes de construction d'arbres :

1.1 Arbre Équilibré vs Arbre Déséquilibré

Arbre équilibré : Construction par insertion du milieu du tableau, puis récursivement des sous-tableaux droits et gauches.

— **Principe :** On trie d'abord le tableau, puis on insère le milieu, ensuite récursivement le milieu de chaque moitié. Cela garantit une hauteur minimale;

— Complexité théorique :

- Hauteur : $O(\log n)$ - Insertion : $O(\log n)$ - Recherche : $O(\log n)$

— **Avantages**: Performances optimales, temps d'accès logarithmique;

Arbre déséquilibré (séquentiel) : Construction par insertion dans l'ordre d'arrivée des éléments.

— **Principe :** On insère les éléments dans l'ordre où ils apparaissent dans le tableau. Pour des données triées (croissant/décroissant), cela crée un arbre linéaire (liste chaînée);

— Complexité théorique (pire cas) :

— Hauteur : O(n)— Insertion : O(n)— Recherche : O(n)

— **Inconvénients**: Performances dégradées pour données ordonnées, génère une liste chaînée;

Les expérimentations visaient à :

- 1. Mesurer la hauteur des arbres pour différentes tailles de données;
- 2. Comparer les temps d'insertion et de recherche;
- 3. Vérifier expérimentalement les complexités théoriques $O(\log n)$ vs O(n);
- 4. Analyser l'impact du type de données (aléatoire, croissant, décroissant);

2 Analyse théorique des ABR

2.1 Propriété fondamentale des ABR

Un Arbre Binaire de Recherche est un arbre binaire où pour chaque nœud :

- Tous les éléments du sous-arbre gauche sont strictement inférieurs;
- Tous les éléments du sous-arbre **droit** sont **strictement supérieurs**;

Cette propriété permet des opérations de recherche, insertion et suppression efficaces.

2.2 Complexités théoriques

Opération	Arbre Équilibré	Arbre Déséquilibré (pire cas)
Hauteur	$O(\log n)$	O(n)
Insertion	$O(\log n)$	O(n)
Recherche	$O(\log n)$	O(n)
Suppression	$O(\log n)$	O(n)

Table 1 – Complexités théoriques selon l'équilibrage

3 Méthodologie expérimentale

3.1 Protocole de test

Les tests ont été effectués avec trois types de données différents :

- 1. Données aléatoires: Valeurs entre 0 et 99999 générées aléatoirement
- 2. **Données croissantes :** Valeurs 0, 1, 2, ..., n-1 (pire cas pour insertion séquentielle)
- 3. **Données décroissantes :** Valeurs n, n-1, n-2, ..., 1 (pire cas pour insertion séquentielle)

3.2 Tailles testées

Tests effectués sur 9 tailles différentes : 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000 éléments.

3.3 Métriques mesurées

Pour chaque configuration (type \times taille \times méthode), nous avons mesuré :

- **Hauteur de l'arbre** : Indicateur direct de l'équilibrage
- **Temps d'insertion total** : Temps pour construire l'arbre complet
- **Temps de recherche** : Temps pour rechercher tous les n éléments
- Validation ABR : Vérification que la propriété ABR est respectée

3.4 Processus de mesure

- 1. Génération du tableau selon le type de données
- 2. Pour l'arbre équilibré : tri du tableau + insertion récursive du milieu

- 3. Pour l'arbre séquentiel : insertion dans l'ordre d'arrivée
- 4. Mesure du temps avec clock() (précision en microsecondes)
- 5. Test de recherche de tous les éléments
- 6. Validation de la propriété ABR
- 7. Sauvegarde des résultats dans un fichier CSV

4 Résultats expérimentaux

4.1 Comparaison des hauteurs

Les graphiques suivants montrent la différence entre les deux méthodes de construction.

4.1.1 Données décroissantes (pire cas)

Figure 1 – Hauteurs pour données décroissantes - Pire cas pour l'arbre séquentiel

Observations:

- Arbre équilibré : hauteur reste très faible (15 pour 50000 éléments) suit parfaitement $O(\log n)$;
- Arbre séquentiel : hauteur catastrophique (50000 pour 50000 éléments) dégénère en liste chaînée O(n);
- Ratio : l'arbre déséquilibré est $\approx 3333 \times$ plus haut que l'arbre équilibré ;

4.1.2 Données croissantes (pire cas)

FIGURE 2 – Hauteurs pour données croissantes - Même comportement que décroissant

Observations:

- Résultats identiques au cas décroissant;
- Confirme que toute séquence ordonnée provoque le pire cas;
- L'équilibrage est **indispensable** pour des données triées;

4.1.3 Données aléatoires

FIGURE 3 – Hauteurs pour données aléatoires - Comportement intermédiaire

Observations:

- Arbre équilibré : hauteur optimale (15 pour 50000 éléments)
- Arbre séquentiel : hauteur modérée (40 pour 50000 éléments) bien meilleur que le pire cas
- Les données aléatoires créent naturellement un arbre "partiellement équilibré"
- Mais l'équilibrage explicite reste 2.7× meilleur

4.2 Analyse des temps d'insertion

4.2.1 Données décroissantes

Figure 4 – Temps d'insertion pour données décroissantes

Résultats pour n = 50000:

- Insertion équilibrée : 3683 μs;
- Insertion séquentielle : 2061773 μs (2 secondes!);
- Ratio : l'arbre équilibré est $\approx 560 \times$ plus rapide!;

La courbe rouge (séquentielle) montre une croissance **quadratique**, tandis que la courbe verte (équilibrée) reste presque plate.

4.2.2 Données croissantes

FIGURE 5 – Temps d'insertion pour données croissantes

Résultats identiques au cas décroissant - confirme que l'ordre (croissant ou décroissant) n'a pas d'importance, seul le fait d'être trié compte.

4.2.3 Données aléatoires

Figure 6 – Temps d'insertion pour données aléatoires

Résultats pour n = 50000:

- Insertion équilibrée : 3106 μs
- Insertion séquentielle : 8140 μs
- Ratio : $2.6 \times$ écart beaucoup plus faible que pour données triées

Les données aléatoires donnent des performances **acceptables** même sans équilibrage, mais l'équilibrage reste plus rapide.

4.3 Analyse des temps de recherche

4.3.1 Données décroissantes

FIGURE 7 – Temps de recherche pour données décroissantes

Résultats pour n = 50000:

- Recherche équilibrée : 2111 μs;
- Recherche séquentielle : 2108473 μs (2.1 secondes!);

— Ratio: 999× plus rapide avec équilibrage;

La différence est encore plus spectaculaire pour la recherche que pour l'insertion. L'arbre déséquilibré nécessite de parcourir jusqu'à 50000 nœuds pour certaines recherches (complexité $O(n^2)$ pour n recherches).

4.3.2 Données croissantes

FIGURE 8 – Temps de recherche pour données croissantes

Résultats identiques au cas décroissant.

4.3.3 Données aléatoires

FIGURE 9 – Temps de recherche pour données aléatoires

Résultats pour n = 50000:

- Recherche équilibrée : 4574 μs;
- Recherche séquentielle : 7082 μs;
- Ratio: $1.5 \times$ différence modeste;

Pour les données aléatoires, l'arbre séquentiel reste performant car la hauteur moyenne reste logarithmique.

4.4 Graphiques en échelle log-log

Les graphiques log-log permettent de visualiser directement les complexités.

4.4.1 Données décroissantes

FIGURE 10 – Analyse log-log pour données décroissantes

Analyse des pentes:

- Hauteur équilibrée : pente ≈ 0.2 (caractéristique de $\log n$)
- Hauteur séquentielle : pente ≈ 1.0 (caractéristique de n)
- Temps recherche équilibrée : pente ≈ 1.2 (proche de $n \log n$)
- Temps recherche séquentielle : pente ≈ 2.0 (caractéristique de n^2)

Les pentes confirment parfaitement les complexités théoriques!

4.4.2 Données croissantes

Figure 11 – Analyse log-log pour données croissantes

Même comportement que pour les données décroissantes.

4.4.3 Données aléatoires

Figure 12 – Analyse log-log pour données aléatoires

Observations:

- Les deux courbes de recherche sont presque parallèles
- Pentes similaires ≈ 1.5 comportement intermédiaire
- La hauteur séquentielle montre quelques irrégularités (dépend du hasard)

4.5 Comparaison globale tous types

FIGURE 13 – Comparaison des temps d'insertion pour tous types de données

Synthèse visuelle:

- Les 3 courbes équilibrées (vertes) sont quasi-identiques et plates
- Les courbes séquentielles croissant/décroissant (rouge foncé/orange) explosent
- La courbe séquentielle aléatoire (rouge) reste modérée
- L'équilibrage garantit des performances constantes quel que soit le type de données

5 Analyse approfondie et interprétation

5.1 Tableau récapitulatif des performances

Table 2 – Performances pour n = 50000 éléments

Type	H_Eq	H_Seq	T_Ins_Eq (μs)	$T_Is_Seq (\mu s)$
Aléatoire	15	40	3106	8140
Croissant	15	49999	3632	2061800
Décroissant	15	49999	3683	2061773

Table 3 – Temps de recherche pour n = 50000 éléments

Type	T_Rech_Eq (µs)	T_Rech_Seq (µs)	Ratio
Aléatoire	4574	7082	1.5×
Croissant	2111	2065376	978×
Décroissant	2111	2108473	999×

5.2 Vérification des complexités théoriques

5.2.1 Arbre équilibré : O(log n)

Testons la croissance de la hauteur :

- $-n = 100 \rightarrow h = 6 \rightarrow \log_2(100) = 6.64$;
- $-n = 1000 \rightarrow h = 9 \rightarrow \log_2(1000) = 9.97$;
- $-n = 10000 \rightarrow h = 13 \rightarrow \log_2(10000) = 13.29$;
- $-n = 50000 \rightarrow h = 15 \rightarrow \log_2(50000) = 15.61$;

5.2.2 Arbre déséquilibré : O(n) pour données triées

Pour données croissantes/décroissantes:

- $-n = 100 \rightarrow h = 99 \quad (attendu: 100 1);$
- $-n = 1000 \rightarrow h = 999$
- $-n = 10000 \rightarrow h = 9999$
- $-n = 50000 \rightarrow h = 49999$

5.2.3 Complexité des opérations de recherche

Arbre équilibré:

- Une recherche : $O(\log n)$
- n recherches : $O(n \log n)$

Vérification (données aléatoires):

- $-n = 100: 13s \to 100 \times \log_2(100) = 664 \text{ (facteur } \approx 0.02);$
- $-n = 50000 : 4574s \rightarrow 50000 \times \log_2(50000) = 780500 \text{ (facteur } \approx 0.006);$

```
Arbre déséquilibré (pire cas) :

— Une recherche : O(n)

— n recherches : O(n^2)

Vérification (données décroissantes) :

— n = 100 : 20s \rightarrow 100^2 = 10000 (facteur \approx 0.002);

— n = 50000 : 2108473s \rightarrow 50000^2 = 2.5 \times 10^9 (facteur \approx 0.0008);
La croissance quadratique est clairement visible!
```

5.3 Impact du type de données

Type	Ratio Hauteur	Ratio Insertion	Ratio Recherche
Aléatoire	$2.7 \times$	2.6×	1.5×
Croissant	3333×	568×	978×
Décroissant	3333×	560×	999×

Table 4 – Gain de performance de l'équilibrage selon le type de données (n = 50000)

Conclusions:

- Pour données triées : l'équilibrage est absolument indispensable
- Pour données aléatoires : l'équilibrage reste bénéfique mais moins critique
- **Dans tous les cas** : l'équilibrage garantit des performances prévisibles et optimales
- L'insertion séquentielle peut être acceptable uniquement pour :
 - Données garanties aléatoires
 - Petites tailles (n; 1000)
 - Applications non critiques

6 Conclusion

Ce TP4 a permis de démontrer expérimentalement l'importance cruciale de l'équilibrage des arbres binaires de recherche :

- Validation théorique : Les complexités expérimentales correspondent parfaitement aux complexités théoriques :
 - Arbre équilibré : $O(\log n)$ confirmé;
 - Arbre déséquilibré : O(n) pour données triées confirmé;
- Impact des données triées : Pour 50000 éléments avec données triées :
 - Hauteur 3333× supérieure;
 - Insertion $560 \times$ plus lente;
 - Recherche 999× plus lente;
- Robustesse de l'équilibrage : Performances stables et optimales indépendamment du type de données
- **Données aléatoires :** Comportement intermédiaire mais équilibrage toujours mieux