

NHẬP MÔN XỬ LÝ ẢNH

TS. ĐOÀN THỊ HƯƠNG GIANG

Email: giangdth@epu.edu.vn

Mobil: 0372630593

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Chương 2: Tăng cường ảnh qua xử lý lược đồ

- 2.1. Giới thiệu
- 2.2. Lược đồ của ảnh
- 2.3. Cân bằng lược đồ ảnh
- 2.4. Xử lý điểm
- 2.5. Biên đổi cường độ
- 2.6. Mặt phẳng bít

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Cải thiện chất lượng ảnh

- Tăng cường các đặc điểm của ảnh về mặt cảm nhận hoặc cục bộ như các đường nét, đường biên, hay độ tương phản, màu sắc, ..., lọc nhiễu.
- Tăng cường có hiệu quả cho các bước xử lý tiếp theo như hiển thị ảnh hoặc phân tích ảnh.
- Xử lý cải thiện ảnh chất lượng ảnh không làm tăng thông tin vốn có chứa trong dữ liệu.
- Làm tăng dải động của các thuộc tính của ảnh. Những thuộc tính này giúp cho phân biệt dễ dàng các chi tiết trên ảnh.
- Xử lý ảnh để đầu ra tốt hơn đầu vào cho mục đích nhất định.
- · Cải thiện ảnh rất phụ thuộc vào từng ứng dụng cụ thể.

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Phương pháp cải thiện chất lượng ảnh

09/02/2023 TS. ĐOẢN THỊ HƯƠNG GIANG - EPU 4

Xử lý trên miền không gian

• Spatial Domain process: Origin g(x,y) = T(f(x,y))Trong đó: 3×3 neighborhood of (x, y)• f(x, y) ảnh gốc • g(x, y) ảnh sau biến đổi • T: phép biến đổi ảnh Image f Spatial domain TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Xử lý trên miền không gian

- Nếu xét cửa sổ lân cân: 1 x 1
 - Phép xử lý trên điểm ảnh
 - Giá trị đầu ra tại một điểm ảnh chỉ phụ thuộc điểm đó, không phụ thuộc vào các điểm khác
- Nếu xét cửa sổ lân cân w x w
 - Cửa sổ lân cận còn gọi là: mặt nạ (mask), nhân (kernel), Cửa sổ (window), bộ loc (filter), template
 - Giá trị đầu ra tại một điểm phụ thuộc vào các điểm lân cận của nó

09/02/2023

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Các phép biến đổi ảnh dựa trên điểm ảnh

- Phép biến đổi âm bản ảnh
- Biến đổi dùng hàm logarit
- Biến đổi dùng hàm mũ
- Biến đổi dựa trên histogram
- Biến đổi dựa trên các phép số học/logic

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

7

Phép biến đổi âm bản ảnh

- · Chuyển đổi dương bản thành âm bản
- Dùng để tăng cường các chi tiết trắng hoặc xám trên nền tối
- Công thức:

import cv2

img_gray = cv2.imread("images\\1_gray.png")
img_neg = 255-img_gray

cv2.imshow('anh am ban',img_neg)

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Phép biến đổi log

• Công thức:

$$img2 = c * log(1 + img1)$$

• Tác dụng:

Kéo giãn các giá trị ở vùng tối, thu hẹp các giá trị ở vùng sáng

- 1. import cv2
- 2. import numpy as np
- 3. img = cv2.imread("images\\1_gray.png")
- 4. c = 255 / np.log(1 + np.max(img))
- 5. $img_log = c * (np.log(img + 1))$
- 6. img_log = np.array(img_log, dtype = np.uint8)
- 7. cv2.imshow('anh bien doi log',img_log)

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

9

Phép biến đổi log

Kéo giãn các giá trị ở vùng tối, thu hẹp các giá trị ở vùng sáng

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 10

Phép biến đổi hàm mũ

• Công thức:

$$img2 = c * (img1 + \varepsilon)^{\gamma}$$

import cv2
import numpy as np
img = cv2.imread("images\\1_gray.png")
c, e, gamma = 0.5, 0.01, 0.2
img_exp = c*(255*(img/255+e)**gamma
img_exp = np.array(img_exp, dtype = np.uint8)
cv2.imshow('anh bien doi ham mu',img_exp)

.....

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Gama correction

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 12

Phép biến đổi hàm mũ

• c = 1; v1 = 2; v2 = 4; v3 = 6;

import cv2 import numpy as np img = cv2.imread("images\\1_gray.png") c, e, gamma = 1, 0, 3 img exp = c*(255*(img/255+e)**gammaimg_exp = np.array(img_exp, dtype = np.uint8) cv2.imshow('anh bien doi ham mu',img_exp)

Ảnh gốc

Gamma=2

Gamma=4

Gamma=6

09/02/2023

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Phép biến đổi tuyến tính từng khúc

 $Contrast = (I_max - I_min)/(I_max + I_min)$

transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian

THR.

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Phép biến đổi tuyến tính từng khúc - code

import cv2
import numpy as np
def changePixelVal(img, r1, s1, r2, s2):
 if (0 <= img and img <= r1):
 return (s1 / r1)*img
 elif (r1 < img and img <= r2):
 return ((s2 - s1)/(r2 - r1)) * (img - r1) + s1
 else:
 return ((255 - s2)/(255 - r2)) * (img - r2) + s2
img = cv2.imread('images\\1_gray.png')
r1, s1, r2, s2 = 70, 0, 140, 255
vec = np.vectorize(changePixelVal)
img1 = vec(img, r1, s1, r2, s2)
cv2.imshow('anh bien doi tung khuc',img1)</pre>

Ảnh biến đổi tuyến tính từng khúc

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Biến đổi tăng độ tương phản

import cv2
import numpy as np
gamma = 0.5
img = cv2.imread("images\\1_gray.png")
img_constr = np.power(img, gamma)
max_val = np.max(img_constr.ravel())
img_constr = img_constr/max_val * 255
img_constr = img_constr.astype(np.uint8)

Ånh gốc Gama=0.5 Gama=1.5

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 16

Gray level slicing

• Tăng cường mức xám ở một dải cố định [A, B]

$$\begin{split} & import\ cv2 \\ & import\ numpy\ as\ np \\ & img=cv2.imread('images\\1_gray.png',0) \\ & h,w=img.shape \\ & img_gls=img.copy() \\ & A,\ B=50,\ 150 \\ & for\ i\ in\ range(0,h): \\ & for\ j\ in\ range(0,w): \\ & if(img[i][j]>A\ and\ img[i][j]<B): \\ & img_gls[i][j]=255 \\ & cv2.imshow('gray\ level\ slicing',img_gls) \end{split}$$

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

17

Bit-plan slicing

- Với ảnh 8bit: mỗi pixel được biểu diễn bằng 8 bit
- Tưởng tượng mỗi ảnh là tổng hợp của 8 mặt phẳng 1 bit (1bit plan): từ plan 0 đến plan 7
 - Plan 0: chứa tất cả các bit thấp nhất trong các byte pixel trong ảnh
 - ...
 - Plan 7: chứa tất cả các bit cao nhất trong các byte pixel trong ảnh

09/02/2023 T.S. ĐOÀN THỊ HƯƠNG GIANG - EPU 18

Bit-plan slicing (tt)

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Bit-plan slicing (tt)

import cv2
import numpy as np
img=cv2.imread('images\\1_gray.png',0)
img = np.array(img)
for k in range(7):
 plane = np.full((img.shape[0], img.shape[1]), 2 ** k, np.uint8)
 res = cv2.bitwise_and(plane, img)
 img_bit_slice = (res * 255).astype(np.uint8)
 cv2.imshow(f'anh bien doi bit plan slicing {k}',img_bit_slice)
cv2.imshow('anh goc',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 20

Một số phép xử lý dựa trên điểm ảnh

• Bài tập: Cài đặt các phép biến đổi dựa trên điểm ảnh trên bằng Matlab/Python

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

22

11

Phép biến đổi dựa trên histogram

- Histogram là gì?
 - Phân bố các mức xám trong ảnh
 - Là đánh giá gần đúng hàm mật độ phân bố xác suất
 - Xác suất xuất hiện của một giá trị mức xám trên ảnh
- Histogram của ảnh đa mức xám: [0, L-1] là hàm rời rạc: $P_u(x_i) = \frac{h(x_i)}{\sum_{i=1}^{L-1} h(x_i)}$

$$P_u(x_i) = \frac{h(x_i)}{\sum_{i=1}^{L-1} h(x_i)}$$

Trong đó H(u) là số lượng điểm ảnh có mức xám bằng u

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 09/02/2023

Ví dụ ảnh với các Histogram tương ứng

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 2:

Các phương pháp cải thiện chất lượng ảnh dựa trên xử lý histogram

- Cân bằng histogram (histogram equalization)
- Biến đổi histogram (histogram modification)
- Đặc trưng hóa histogram (histogram specification)

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 24

Cân bằng histogram

 Ánh xạ độ chói của ảnh vào vùng giá trị mới sao cho histogram mới nhận được có dạng phân bố đều.

Hàm tính histogram trong python

• Cú pháp:

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])

- Trong đó:
 - images: ảnh đầu vào có ddinhnj dạng uint8 hoặc float32.
 - channels : Số kênh của ảnh. Ảnh xám (grayscale) thì đặt = [0]; Ảnh màu thì cần tính hist cho từng kênh màu [0], [1], [2] để tính cho kênh B, G, R
 - mask: anh mặt nạ. Khi muốn tính hist cho cả anh thì đặt = "None".
 - histSize: số BIN. Lớn nhất là 256.
 - ranges : Giải giá trị [0,256]

09/02/2023 TS. ĐOẢN THỊ HƯƠNG GIANG - EPU 2

Histogram của ảnh tối

09/02/2023 TS. ĐOẢN THỊ HƯ°ÔNG GIANG - EPU

Histogram của ảnh sáng

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 28

Histogram của ảnh có độ tương phản thấp

09/02/2023

Histogram của ảnh có độ tương phản cao

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 09/02/2023

Số bins?

• Mặc định trong ảnh đa mức xám: 256 bins

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

31

Phép cân bằng histogram

- Xét trên miền liên tục có:
 - r: $biến ngẫu nhiên thể hiện các giá trị cấp xám trong ảnh ban đầu <math>0 \le r \le 1$
 - s: biến ngẫu nhiên thể hiện giá trị cấp xám trong ảnh biến đổi
 - Cần tìm phép biến đổi:

$$s = T[r]$$

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 32

Phép cân bằng histogram

- Ảnh ban đầu U có u nhận các giá trị mức xám x_i , i = 0, 1, ..., L 1;
- Xác suất xuất hiện các mức xám trong ảnh ban đầu:

$$P_{u}(x_{i}) = \frac{h(x_{i})}{\sum_{i=1}^{L-1} h(x_{i})}$$

• Biến ngẫu nhiên phân bố đều v:

$$v = f(u) = \sum_{x_i}^{u} P_u(x_i)$$

• Giá trị điểm ảnh mới:

$$v^* = Int \left[\frac{v - v_{min}}{1 - v_{min}} (L - 1) + 0.5 \right]$$

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

33

Hàm cân bằng ảnh bằng histogram trong python

cv2.equalizeHist()

import cv2

import numpy as np

img = cv2.imread("images\\1_gray.png",0)

img_equ = cv2.equalizeHist(img)

cv2.imwrite("images\\anh_equalizeHist.png",img_equ)
cv2.imshow("Anh can bang histogram", img_equ)

Ånh gốc

Ảnh cân bằng histogram

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Histogram equalization (8)

- · So sánh:
 - Cân bằng histogram và phép biến đổi tăng độ tương phản bằng tuyến tính từng khúc
 - → Cân bằng histogram trường hợp nào cũng tốt?

09/02/2023 TS. ĐOẢN THỊ HƯƠNG GIANG - EPU 35

Histogram equalization (9)

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 36

Histogram equalization (10)

09/02/2023

Mở rộng phép cân bằng histogram

• Trong cân bằng histogram:

Trong các trường hợp khác: v = f(u), trong đó hàm f có thể là:

$$v = f(u) = log(1 + u), u \ge 0$$

 $v = f(u) = u^{1/n}, u = 2, 3, ...$

$$v = f(u) = \frac{\sum_{x_i=0}^{u} p_u^{1/n}(x_i)}{\sum_{x_i=1}^{x_{i-1}} p_u^{1/n}(x_i)}, \quad n = 2, 3, 4, \dots$$

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Histogram matching/specification

- Nhiều trường hợp: histogram phân bố đều không cho kết quả ảnh tốt nhất
- Chỉ định histogram có hình dạng tốt
- Biến đổi ảnh theo hình dạng histogram cho trước
- → Bài toán histogram matching hay histogram specification

09/02/2023 TS. ĐOÀN THỊ HƯỚNG GIANG - EPU 3

Histogram matching

Ứng dụng: Hiệu chỉnh các ảnh chụp cùng một cảnh, nhưng được chụp bởi các camera, sensor khác nhau

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Histogram matching (1)

Ý tưởng trên miền liên tục

$$p_{r}(r) \xrightarrow{?} p_{z}(z)$$

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw$$

$$\Rightarrow z = G^{-1} [T(r)] = G^{-1}[s]$$

$$G(z) = (L-1) \int_{0}^{z} p_{z}(t) dt = s$$

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

Histogram matching (2)

- Áp dụng trên miền rời rạc (ảnh số)
- Từ rk tính sk:

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_j)$$

= $\sum_{j=0}^k \frac{n_j}{n}$ $k = 0, 1, 2, ..., L - 1$

• Từ zk tính vk

$$v_k = G(z_k) = \sum_{i=0}^k p_i(z_i) = s_k \qquad k = 0, 1, 2, \dots, L - 1$$

• Từ đó tính zk

$$\begin{split} z_k &= G^{-1}\big[T(r_k)\big] \qquad k = 0, 1, 2, \dots, L-1 \\ \\ z_k &= G^{\text{STM}}(\mathbb{S}_k^{\text{AN}}) \text{ the HUKPING PAPS}, \text{Z-P.U.}, L-1. \end{split}$$

09/02/2023

21

Histogram matching (3)

Python code cho histogram matching ????

09/02/2023

Cải thiện ảnh dựa trên các con số thống kê của histogram (histogram statistic)

• Làm nổi vùng ảnh bên phải?

Python code: ????

FIGURE 3.24 SEM image of a tungsten filament and support, magnified approximately 1.30×. (Original image courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene).

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

4.4

Histogram statistic

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU

4

Histogram statistic (tt)

Kết quả chưa tốt

Python code: ????

09/02/2023 TS. ĐOÀN THỊ HƯ°O'NG GIANG - EPU

Histogram statistic (tt)

• Tính toán các thống kê toàn cục

$$\mu_{n}(r) = \sum_{i=0}^{L-1} (r_{i} - m)^{n} p(r_{i}) \approx \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} [f(x, y) - m]^{n}$$

$$m = \sum_{i=0}^{L-1} r_{i} p(r_{i}) \approx \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} f(x, y)$$

• Các thống kê cục bộ: Sxy: mặt nạ tâm (x,y)

$$m_{S_{xy}} = \sum_{(s,t) \in S_{xy}} r_{s,t} p(r_{s,t})$$

$$\sigma_{S_{xy}}^2 = \sum_{\text{TS. EQANYELSTUONG GIANG-EPU}} \left[r_{s,t} - m_{S_{xy}} \right]^2 p(r_{s,t}).$$

Histogram statistic (tt)

- Vấn đề: Làm sao để tăng độ tương phản trong một vùng ảnh mà không làm ảnh hưởng đến các vùng khác
- → Chỉ làm sáng, làm tối vùng cần thiết, các vùng còn lại giữ nguyên

$$g(x,y) = \begin{cases} E.f(x,y) & m_S(x,y) \le k_0 m_G \text{ and } k_1 \sigma_G \le \sigma_S(x,y) \le k_2 \sigma_G \\ f(x,y) & O.W \end{cases}$$

Với k0, k1, k2 là các hằng số

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 4

Histogram statistic (tt)

Python code: ????

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 49

Histogram statistic (tt)

09/02/2023 TS. ĐOÀN THỊ HƯƠNG GIANG - EPU 50

... To chapter 3

09/02/2023

TS. ĐOÀN THỊ HƯƠNG GIANG - EPU