CS 6410: Compilers

Fall 2023

Tamara Bonaci t.bonaci@northeastern.edu

Thank you to UW faculty Hal Perkins for all the help and inspiration in preparing these course materials and assignments.

CS 6410 – Compilers, Fall 2023

- Time: Wednesdays from 10:00 1:00pm PT online, using NEU Zoom
- Instructor: Tamara Bonaci (t.bonaci@northeastern.edu)
 - Office hours: TBD
 - Virtual office hours: by appointment
- Course material: Canvas
- Homework assignment submission: Canvas
- Project assignment submission: Through Khoury GitHub
- Course discussion board: Canvas
- Assignment grades: Canvas

What is CS 6410, Fall 2023?

- Graduate-level introductory compilers course
- Focus: Principles and practice of building efficient implementations of modern programming languages
- Course goals:
 - Understand a structure of a modern compiler
 - Analyze the major algorithms used to translate code from highlevel to machine language
- Learning mechanism: building a simplified compiler

CS 6410 - Prerequisites

- Nominal prerequisites for a compiler course:
 - Data structures and algorithms
 - Formal languages and automata
 - Machine organization
- But we will review these topics as we need them
- If you're missing one of the background courses, it is normally possible to work around it (but you may have to fill some of the gaps on your own)
- So, an eagerness to learn is the most important (and expected ©

CS 6410 – Expected Course Progression

Week 1 (September 6): Course overview. Introduction to compilers

Week 2 (September 13): Languages, automata and regular expressions

Week 3 (September 20): Scanners

Week 4 (September 27): Grammars and LR parsing

Week 5 (October 4): LR construction, LL parsing, AST/visitor

Week 6 (October 11): Static semantics, type checkers, and symbol tables

Week 7 (October 28): x86-64. Runtime organization

Week 8 (October 25): Code shape

Week 9 (November 1): Optimization and transformation

Week 10 (November 8): Value numbering and data flow

Week 11 (November 18): Loops and SSA

Week 12 (November 22): No class – Thanksgiving week.

Week 13 (November 29): Code generation. Instruction selection and scheduling.

Week 14 (December 6): Registers allocation. Inlining and dynamic languages

Finals week (December 13): Memory models. Garbage collection (optional lecture)

CS 6410 – Course Logistics

- Course will be graded based upon:
 - Quizzes 10%
 - Homework 30%
 - Project 60%

Course Logistics – In-Class Quizzes

- Quizzes simple quizzes (activities) occasionally done after the class
- Purpose:
 - To review class material
 - To facilitate discussion
- Grading scale 0-2, where:
 - 0 missed or irrelevant answer
 - 1 relevant answers submitted
 - 2 good and interesting answers
- There may theoretically be an in-class activity every week, but we will take best scores when determining your grade five

Course Logistics – Homework

- Homework six assignments, consisting of written problems, intended to reinforce the understanding of concepts and ideas presented in class
- Expected topics for homework assignments:

HW1 – Regular expressions

HW2 – LR grammars

HW3 – LL grammars

HW4 – Static semantic

HW6 – Assembly, code shape

HW6 – SSA, Value numbering and dataflow

Course Logistics – Project

- Project the biggest component of this course
- Goal: to give you a deeper understanding of concepts relevant to modern-day compilers
- The project will be due in steps, to:
 - Keep you on schedule,
 - Give you an early feedback at crucial points
- Some project steps:
 - Setting up the environment
 - Building your own scanner
 - Building your own parses and AST
 - Code generation
 - Compiler addition
 - Project report

Course Logistics – Project

- Project the biggest component of this course
- Goal: to give you a deeper understanding of concepts relevant to modern-day compilers
- Suggestion for the project: work in groups of two! (While it is possible to work alone, some past experiences indicate that that may just be too much work for an individual.)

Northeastern University

ENGINEERING A COMPILER THE PROPERTY OF THE PR

Course Material

Four good books:

- 1.Cooper & Torczon, Engineering a Compiler (our official text book)
 - 2.Appel, Modern Compiler Implementation in Java, 2nd ed. (MiniJava is from here)
- 3)Aho, Lam, Sethi, Ullman, "Dragon Book"
- 4. Fischer, Cytron, LeBlanc, Crafting a Compiler

Course Material

- If you can, try to <u>attend lectures</u> because:
 - Lectures will likely cover more than provided in lecture notes, and the provided references
 - Lectures will focus on "big-picture" principles and ideas
 - Your colleagues will likely start interesting discussions during lectures
 - In-class activities and discussions they will start

Late Turn In Policy

- All assignments are due by 11:59pm on the assigned date
 - Homework submission through Northeastern Canvas
 - Project steps through Khoury GitHub
- Late assignments will (generally) be dropped 10% per calendar day, and no submissions will be accepted after 7 days
- If you have a meaningful reason for delay (e.g., illness) come
 and talk to me
- Exception to the late turn in policy: final project report should to be turned in on time

Academic Integrity

- We want a collegial group helping each other succeed!
- But you must never misrepresent work done by someone else as your own, without proper credit if appropriate, or assist others to do the same
- You may want to familiarize yourselves with the Northeastern University Office of Student Conduct and Conflict Resolution (OSCCR), at http://www.northeastern.edu/osccr/academicintegrity/ind

ex.html.

Academic Integrity

In conclusion:

We trust you to behave ethically because honest work is the most important feature of a university (or engineering or business)

Credits For Course Material and Assignment

- UW CSE faculty member, Hal Perkins
- Some direct ancestors of this course:
 - UW CSE 401 (Chambers, Snyder, Notkin, Perkins, Ringenburg, Henry, ...)
 - UW CSE PMP 582/501 (Perkins)
 - Cornell CS 412-3 (Teitelbaum, Perkins)
 - Rice CS 412 (Cooper, Kennedy, Torczon)
 - Many books (Appel; Cooper/Torczon; Aho, [[Lam,] Sethi,] Ullman [Dragon Book], Fischer, [Cytron,] LeBlanc; Muchnick, ...)

Your Questions

[Picture credit: quickmeme.com]