NAIVE BAYES ON AMAZON FINE FOOD REVIEWS DATASET

Data Source https://www.kaggle.com/snap/amazon-fine-food-reviews

The Amazon Fine Food Reviews dataset consists of reviews of fine foods from Amazon. It consist of data collected from past many years. This dataset consist of approx 550k reviews.

SNIPPET

- 1. Converted the reviews using NLP techniques i.e BOW, tf-IDF, Word2Vec and tf-IDF Word2Vec.
- 2. Applied Naive Bayes on the dataset with both techniques i.e Bernaulli Naive Bayes and Multinomial Naive Bayes.
- 3. Calculated Train Error, CV Error and Test Error to determine the performance and to ensure best fit.
- 4. Compared performance of each model using accuracy, f1-score, recall, precision.
- 5. Made confusion matrix between predicted and tested data.
- 6. Conclusion based on the obtained results.

DATA INFORMATION

Number of reviews: 568,454Number of users: 256,059Number of products: 74,258

Timespan: Oct 1999 - Oct 2012

• Number of Attributes/Columns in data: 10

ATTRIBUTE INFORMATION

- 1. Id
- 2. ProductId unique identifier for the product
- 3. Userld ungiue identifier for the user

- 4. ProfileName
- 5. HelpfulnessNumerator number of users who found the review helpful
- 6. HelpfulnessDenominator number of users who indicated whether they found the review helpful or not
- 7. Score rating between 1 and 5
- 8. Time timestamp for the review
- 9. Summary brief summary of the review
- 10. Text text of the review

OBJECTIVE

Predict the polarity of the review using Naive Bayes and Compare both models i.e Bernaulli and Multinomial to find the best one and ensure that the model is neither overfitting nor underfitting.

LOADING

```
In [1]:
```

```
import sqlite3
import pandas as pd
```

In [2]:

```
conn=sqlite3.connect('./final.sqlite') # making a connection with sqlite
Data=pd.read_sql_query("""SELECT * FROM Reviews""",conn)
```

In [3]:

```
Data.head(3)
```

Out[3]:

1	706	150524	0006641040	ACITT7DI6IDDL	shari zychinski	0	0	positive
	688	150506	0006641040	A2IW4PEEKO2R0U	Tracy	1	1	positive
1386	689	150507	0006641040	A1S4A3IQ2MU7V4	sally sue "sally sue"	1	1	positive

MAPPING

```
In [4]:
```

```
# function to map the polarity as 0 or 1
def sign(x):
```

```
if x=='positive':
    return 1
    else:
        return 0

Data['Score']=Data['Score'].map(sign)
In [5]:
```

```
# Dimension
print(Data.shape)

(364171, 12)

In [6]:

Data['Score'].value_counts()

Out[6]:
```

SORTING

307061 57110

Name: Score, dtype: int64

```
In [7]:
```

```
# Sorting the data according to Time.
Data.sort_values('Time',inplace=True)
```

IMPORTING

```
In [93]:
```

```
import re
import gensim
import pickle
import numpy as np
import time
import seaborn as sns
from scipy import sparse
from prettytable import PrettyTable
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
import statistics as s
from sklearn.naive_bayes import BernoulliNB
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import preprocessing
from sklearn.model_selection import TimeSeriesSplit
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import confusion matrix
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
import matplotlib.pyplot as plt
from gensim.models import Word2Vec
from gensim.models import KeyedVectors
```

FUNCTIONS

1. Split Function

```
In [9]:
```

```
This function is used to split that data into train and test.

It uses the function to split it into 70-30 %.

It does not shuffle so the data is distributed sequentially.

'''

def Split(d1,d2):

a,b,c,d= train_test_split(d1,d2,test_size=0.3,shuffle=False) # Splitting it in 70-30 without shuffling.

return a,b,c,d
```

2. Naive Bayes With Grid Search CV

```
In [10]:
```

```
. . .
This function takes training data and algorithm as input and gives execution time, accuracy and th
e optimal value of alpha
on that data.
It uses GridSearch CV.
def NB(X,Y,s):
    start = time.time()
   tscv = TimeSeriesSplit(n_splits=10)
   parameters = {'alpha':[0.00001,0.0001,0.001,0.01,0.02,0.08,0.1,0.2,0.25,0.3,0.35,0.4,0.45,0.5,1
,5,10,20,50,100,500,1000,10000]}
   if s=='B':
       clf = BernoulliNB()
    else:
       clf = MultinomialNB()
   g = GridSearchCV(clf,parameters,cv=tscv,return train score=True,n jobs=-1)
    g.fit(X,Y)
    end = time.time()
    t=end-start
   return t, g
```

3. Hyperparameter vs Accuracy Plot

```
In [11]:
```

```
This function takes Object of gridsearch cv and plots the graph for accuracy vs alpha's.

'''

def Accplot(h,nlp,algo):
    acu = h.cv_results_['mean_test_score']
    alp = [0.00001,0.0001,0.001,0.01,0.02,0.08,0.1,0.2,0.25,0.3,0.35,0.4,0.45,0.5,1,5,10,20,50,100,500,1000,10000]
    sns.set_style("darkgrid")
    plt.plot(alp,acu,'b--')
    plt.xlabel("Alpha's",fontsize=15, color='black')
    plt.ylabel("Accuracy",fontsize=15, color='black')
    plt.title("Accuracy -" + nlp + algo,fontsize=15, color='black')
    plt.show()
```

4. Hyperparameter vs Error Plot

```
In [12]:
```

```
This function takes the grid cv object and calculates CV accuracy and Training accuracy.

Output is train error and CV error.

It also plots the graph between Hyperparameters vs Errors.

'''

def Errorplot(h):
    alp = [0.00001,0.0001,0.001,0.01,0.02,0.08,0.1,0.2,0.25,0.3,0.35,0.4,0.45,0.5,1,5,10,20,50,100,500,1000,10000]
```

```
cv_acc = list(h.cv_results_['mean_test_score'])
train_acc = list(h.cv_results_['mean_train_score'])
a = [1 - x for x in cv_acc]
b = [1 - x for x in train_acc]
plt.plot(alp, a, '-b', label='CV Error')
plt.plot(alp, b, '-r', label='Train Error')
plt.legend(loc='lower right')
plt.xlabel("Hyperparameters", fontsize=15, color='black')
plt.ylabel("Train Error & Cv Error", fontsize=15, color='black')
plt.title("Train vs CV Error on Hyperparameters" , fontsize=15, color='black')
plt.show()
print("The Train Error is -: ",round(s.mean(b),3)*100,"%\n")
print("The CV Error is -: ",round(s.mean(a),3)*100,"%\n")
```

5. Predicting On Best Hyperparameter

```
In [13]:
```

```
It runs the desired algorithm on the optimal value of Alpha we get from training part.
It also returns predicted values.
'''

def predict(s,a,xtrain,ytrain,xtest):
    if s=='B':
        clf = BernoulliNB(alpha = a)
    else:
        clf = MultinomialNB(alpha = a)
    clf.fit(xtrain,ytrain)
    pred=clf.predict(xtest)
    return clf,pred
```

6. Performance Measurement

```
In [14]:
```

```
It gives the performance in terms of accuracy, F1 Score, recall, precision and test error also.

def Measure(test,pre):
    print("Accuracy on Test Data -: ",round(((accuracy_score(test,pre))*100),3),"% \n")
    print("F1 Score -: ",round(((f1_score(test,pre))),3),"\n")
    print("Precision Score -: ",round(((precision_score(test,pre))),3),"\n")
    print("Recall Score -: ",round((recall_score(test,pre)),3),"\n")
    print("Test Error -: ",100-round(((accuracy_score(test,pre))*100),3))
```

7. Confusion Matrix

```
In [15]:
```

```
It gives confusion matrix between actual and predicted values.

ividef CF(test,pre):
    cf = confusion_matrix(test,pre)
    df =pd.DataFrame(cf,index=[0,1],columns=[0,1])
    sns.set(font_scale=1.5)
    sns.heatmap(df,annot=True,annot_kws={"size" :20},fmt='g')
    return plt.show()
```

8. Informative Features

```
In [16]:
```

```
This functions draws a pretty table of important features among positive and negative classes each according to the probabilities.
```

```
def IF(c,co):
    a = c.feature_log_prob_
    f = co.get_feature_names()
    l1 = list(zip(a[0],f))
    l1 = sorted(l1,reverse=True)
    l2 = list(zip(a[1],f))
    l2 = sorted(l2,reverse=True)
    x = PrettyTable()
    x.field_names = ["Top Negative Features", "Probability_neg", "Top Positive Features",
"Probability_pos"]
    n=1
    for i in range(25):
        x.add_row([l1[i][1],l1[i][0],l2[i][1],l2[i][0]])
        n+=2
    print(x)
```

9. Using Pickle - File Handling

```
In [17]:
```

```
These functions are used to save and retrieve the information and use it afterwards for future ref
erence.

"""

# Method to Save the data.

def save(o,f):
    op=open(f+".p","wb")
    pickle.dump(o,op)

# Method to retrieve the data.

def retrieve(f):
    op=open(f+".p","rb")
    ret=pickle.load(op)
    return ret
```

10. List Of Words

```
In [18]:
```

```
This function takes sentences as input and it splits the sentence into words and makes list of wor
for each and every review.
def cleanpunc (sentence): #function to clean the word of any punctuation or special characters
   cleaned = re.sub(r'[?|!|\'|"|#]',r'',sentence)
   cleaned = re.sub(r'[.|,|)|(|||/|)',r'',cleaned)
   return cleaned
def LOW(1):
   i=0
   list of sent=[] # list to store all the lists.
   for sent in 1:
       filtered sentence=[] # list to store each review.
       for w in sent.split():
           for cleaned_words in cleanpunc(w).split():
               if(cleaned words.isalpha()):
                   filtered sentence.append(cleaned words.lower())
                else:
                   continue
       list of sent.append(filtered sentence)
   return list of sent
```

NAIVE BAYES MODEL ON BAG OF WORDS (BOW)

SPLITTING INTO TRAIN AND TEST

```
In [19]:
```

```
x_train, x_test, y_train, y_test = Split(Data['CleanedText'].values,Data['Score'].values)
```

In [20]:

```
print("-----")
print(x_train.shape)
print(y_train.shape)
print("-----")
print("\n-----")
print(x_test.shape)
print(y_test.shape)
```

CONVERTING REVIEWS INTO VECTORS USING BOW

In [21]:

```
count = CountVectorizer(ngram_range=(1,2))
x_train = count.fit_transform(x_train)
x_test = count.transform(x_test)
```

In [22]:

```
print("Train Dataset Shape -: ",x_train.shape)
print("Test Dataset Shape -: ",x_test.shape)

Train Dataset Shape -: (254919, 2290079)
Test Dataset Shape -: (109252, 2290079)
```

NORMALIZING THE DATA

```
In [23]:
```

```
x_train = preprocessing.normalize(x_train)
x_test = preprocessing.normalize(x_test)
```

BERNAULLI NAIVE BAYES

Naïve Bayes for text

classification - Bernoulli model

Calling NB Function with training dataset

```
In [24]:
```

```
t, g = NB(x_train, y_train, 'B')
```

In [24]:

```
print("Time taken to complete -: ",t,"sec\n")
print("Best Hyperparameter -: ",g.best_params_,"\n")
print("Accuracy -: ",round(g.best_score_*100,3),"%")
```

Time taken to complete -: 229.48659324645996 sec

Best Hyperparameter -: {'alpha': 0.001}

Alpha vs Accuracy Plot

Accuracy -: 89.718 %

In [25]:

```
Accplot(g, 'BOW', 'Bernaulli-NB')
```


Hyperparameters vs Error Plot

In [26]:

```
Errorplot(g)
```


Hyperparameters

```
The Train Error is -: 7.3 %
The CV Error is -: 14.3 %
```

Predicting on Best Hyperparameter

```
In [27]:
```

```
clf, pred = predict('B', 0.001, x_train, y_train, x_test)
```

Measuring Performance

In [28]:

```
Measure (y_test,pred)

Accuracy on Test Data -: 88.871 %

F1 Score -: 0.936

Precision Score -: 0.889

Recall Score -: 0.988

Test Error -: 11.129
```

Confusion Matrix

In [29]:

CF(y_test,pred)

Top Informative Features With Probabilities

In [30]:

IF(clf,count)

+		_+		+		. + -		1
Top No	egative Features	İ	Probability_neg	Top	Positive Features	İ	Probability_pos	
	not		-0.591495978586		not		-1.143502781	
	tast		-0.978229341871	1	like		-1.18976586811	I
	like		-1.00029217837	1	tast		-1.20777610866	I
	product		-1.20966002121	1	love		-1.27277138223	I
	one		-1.35423340058	1	good		-1.27701143801	I

1	would	-1.42066838439	great		-1.29398558433
	veri	-1.46121372351	flavor		-1.42895460263
	tri	-1.46621430161	one		-1.47244014142
	flavor	-1.53763527983	veri		-1.48742715634
	good	-1.54512779078	use		-1.49067686533
	buy	-1.60967452302	tri		-1.53436216381
	get	-1.66774617814	product		-1.56418661232
1	use	-1.70958494361	make	1	-1.64635042798
	dont	-1.75203714136	get		-1.69610144085
	even	-1.82744062758	buy		-1.90621339099
	order	-1.84675612379	time		-1.90972461953
	much	-1.96368519443	amazon		-1.94814878644
	make	-1.9729087875	would		-1.95812887643
1	realli	-2.02352549552	best	- 1	-1.95845564177
	time	-2.02471976294	find		-1.97842626735
1	amazon	-2.03051224777	realli	- 1	-1.98494901107
	love	-2.05587114284	price		-2.01631022762
1	look	-2.08632822577	much		-2.03264909073
	eat	-2.09933341643	also	- 1	-2.04063584528
	box	-2.10126661391	eat		-2.05001119211

MULTINOMIAL NAIVE BAYES

Calling NB Function with training dataset

```
In [31]:
```

```
t, g = NB(x_train, y_train, 'M')
```

```
In [32]:
```

```
print("Time taken to complete -: ",t,"sec\n")
print("Best Hyperparameter -: ",g.best_params_,"\n")
print("Accuracy -: ",round(g.best_score_*100,3),"%")

Time taken to complete -: 195.02917623519897 sec
```

```
Best Hyperparameter -: {'alpha': 0.001}
Accuracy -: 90.289 %
```

Alpha vs Accuracy Plot

In [33]:

```
Accplot(g, 'BOW', 'Multinomial-NB')
```


Urramanamatana va Errar Diat

myperparameters vs Error Piot

In [34]:

Errorplot(g)


```
The Train Error is -: 9.9 %
The CV Error is -: 14.1 %
```

Predicting on Best Hyperparameter

In [35]:

```
clf, pred = predict('M', 0.001, x_train, y_train, x_test)
```

Measuring Performance

In [36]:

```
Measure(y_test,pred)

Accuracy on Test Data -: 88.916 %

F1 Score -: 0.937

Precision Score -: 0.886

Recall Score -: 0.993
```

Confusion Matrix

Test Error -: 11.084

In [38]:

CF(y_test,pred)

0

Top Informative Features With Probabilities

In [37]:

F(clf,count)			
Top Negative Features	+ Probability_neg	Top Positive Features	+ Probability_pos
not	-4.39456968128	not	-5.08733210663
tast	-4.80287504633	like	-5.11363424438
like	-4.93626209316	tast	-5.11587401159
product	-5.10272224388	love	-5.13784997904
flavor	-5.42163426918	great	-5.15135938134
one	-5.4258532145	good	-5.18779629708
veri	-5.50994836331	flavor	-5.30372976915
would	-5.54822196322	use	-5.41323068891
tri	-5.56735853717	veri	-5.42123614647
good	-5.66619844568	product	-5.42865616484
buy	-5.71337557934	one	-5.48721364629
coffe	-5.727499484	tri	-5.58453138364
order	-5.78450913137	tea	-5.59431023374
use	-5.80529900633	coffe	-5.63981788723
get	-5.82406096746	make	-5.69706371871
dont	-5.93893546279	get	-5.76234754565
box	-5.99473797207	buy	-5.91909748435
tea	-6.02787327741	best	-5.9521302228
even	-6.0611099655	amazon	-5.96719037773
amazon	-6.07515141709	price	-5.9747697241
food	-6.09507522235	time	-5.99674540941
much	-6.16233428554	find	-6.00644244085
realli	-6.18321642592	food	-6.01131130938
eat	-6.18853519616	realli	-6.03888192929
bag	-6.20366272502	order	-6.05820905687

tf-IDF

TF-IDF: Term Frequency Inverse Document Frequency

SPLITTING INTO TRAIN AND TEST

```
In [39]:
```

```
x_train, x_test, y_train, y_test = Split(Data['CleanedText'].values,Data['Score'].values)
```

```
In [40]:
```

```
print("-----")
print(x_train.shape)
print(y_train.shape)
print("------")
print("\n-----TEST DATA----")
print(x_test.shape)
print(y_test.shape)
```

CONVERTING REVIEWS INTO VECTORS USING tf-IDF

```
In [41]:
```

```
tf_idf_vect = TfidfVectorizer(ngram_range=(1,2))
x_train = tf_idf_vect.fit_transform(x_train)
x_test = tf_idf_vect.transform(x_test)
```

In [42]:

```
print("Train Dataset Shape -: ",x_train.shape)
print("Test Dataset Shape -: ",x_test.shape)

Train Dataset Shape -: (254919, 2290079)
Test Dataset Shape -: (109252, 2290079)
```

NORMALIZING THE DATA

```
In [43]:
```

```
x_train = preprocessing.normalize(x_train)
x_test = preprocessing.normalize(x_test)
```

BERNAULLI NAIVE BAYES

Naïve Bayes for text classification - Bernoulli model

Calling NB Function with training dataset

```
In [44]:
```

```
t, g = NB(x_train, y_train, 'B')
```

In [45]:

```
print("Time taken to complete -: ",t,"sec\n")
print("Best Hyperparameter -: ",g.best_params_,"\n")
print("Accuracy -: ",round(g.best_score_*100,3),"%")
Time taken to complete -: 264.5981376171112 sec
```

```
Time taken to complete -: 264.59813761711

Best Hyperparameter -: {'alpha': 0.001}

Accuracy -: 89.718 %
```

Alpha vs Accuracy Plot

In [46]:

```
Accplot(g, 'tf-IDF', 'Bernaulli-NB')
```


Hyperparameters vs Error Plot

In [47]:

Errorplot(g)

The Train Error is -: 7.3 %
The CV Error is -: 14.3 %

Predicting on Best Hyperparameter

```
In [48]:
```

```
clf, pred = predict('B', 0.001, x_train, y_train, x_test)
```

Measuring Performance

In [49]:

```
Measure(y_test,pred)

Accuracy on Test Data -: 88.871 %

F1 Score -: 0.936

Precision Score -: 0.889
```

Recall Score -: 0.988

Test Error -: 11.129

Confusion Matrix

In [50]:

CF(y_test,pred)

Top Informative Features With Probabilities

In [51]:

IF(clf,tf_idf_vect)

	+		+
Top Negative Features	Probability_neg	Top Positive Features	Probability_pos
not	-0.591495978586	not	-1.143502781
tast	-0.978229341871	like	-1.18976586811
like	-1.00029217837	tast	-1.20777610866
product	-1.20966002121	love	-1.27277138223
one	-1.35423340058	good	-1.27701143801
would	-1.42066838439	great	-1.29398558433
veri	-1.46121372351	flavor	-1.42895460263
tri	-1.46621430161	one	-1.47244014142
flavor	-1.53763527983	veri	-1.48742715634
good	-1.54512779078	use	-1.49067686533
buy	-1.60967452302	tri	-1.53436216381
get	-1.66774617814	product	-1.56418661232
use	-1.70958494361	make	-1.64635042798
dont	-1.75203714136	get	-1.69610144085
even	-1.82744062758	buy	-1.90621339099
order	-1.84675612379	time	-1.90972461953
much	-1.96368519443	amazon	-1.94814878644
make	-1.9729087875	would	-1.95812887643
realli	-2.02352549552	best	-1.95845564177
time	-2.02471976294	find	-1.97842626735
amazon	-2.03051224777	realli	-1.98494901107
love	-2.05587114284	price	-2.01631022762
look	-2.08632822577	much	-2.03264909073
eat	-2.09933341643	also	-2.04063584528
box	-2.10126661391	eat	-2.05001119211

MULTINOMIAL NAIVE BAYES

Calling NB Function with training dataset

```
t, g = NB(x_train, y_train, 'M')

In [53]:

print("Time taken to complete -: ",t,"sec\n")
print("Best Hyperparameter -: ",g.best_params_,"\n")
print("Accuracy -: ",round(g.best_score_*100,3),"%")

Time taken to complete -: 213.79974484443665 sec

Best Hyperparameter -: {'alpha': 0.02}

Accuracy -: 89.227 %
```

Alpha vs Accuracy Plot

In [54]:

```
Accplot(g, 'tf-IDF', 'Multinomial-NB')
```


Hyperparameters vs Error Plot

In [55]:

Errorplot(g)


```
The Train Error is -: 9.1 %
The CV Error is -: 14.1 %
```

Predicting on Best Hyperparameter

```
In [56]:
```

```
clf, pred = predict('M', 0.02, x_train, y_train, x_test)
```

Measuring Performance

```
In [57]:
```

```
Measure (y_test,pred)

Accuracy on Test Data -: 89.811 %

F1 Score -: 0.941

Precision Score -: 0.897

Recall Score -: 0.99
```

Confusion Matrix

Test Error -: 10.189

In [58]:

CF(y_test,pred)

Top Informative Features With Probabilities

In [59]:

IF(clf,tf_idf_vect)

Top Negative Features	+ Probability_neg +	Top Positive Features	 Probability_pos
not	-5.80290394131	great	-6.2561340553
tast	-6.13678432729	love	-6.26498470791
like	-6.2789461342	tast	-6.31363447518
product	-6.32403385514	l tea	-6.31801850573
would	-6.62441282194	like	-6.32230202326
flavor	-6.63971618579	l good	-6.32603250711
coffe	-6.64264841499	l not	-6.36144060994
l one	-6.6625209448	flavor	-6.38468385105
veri	-6.72495979549	coffe	-6.4092940944
tri	-6.76714461039	veri	-6.48825821735
l buy	-6.79400411565	l use	-6.48859090922
order	-6.79790750356	product	-6.49926836251
l pox	-6.87928820739	l one	-6.57928118858
tea	-6.88746923392	tri	-6.64481473256
1 2000	I −6 Q175Q122312	l maka	I _6 7N5/17//5688 I

1	good	-U. 94/J9422J12	шале	1	-0.1000
1	disappoint	-6.95062363452	get		-6.77367362275
	dont	-6.96643949338	best		-6.82138424462
1	get	-6.97742975786	price		-6.83058465018
1	use	-7.02383678788	food		-6.84868322585
1	even	-7.05586053304	buy		-6.85485392068
1	food	-7.07524851254	amazon		-6.86820317722
1	bag	-7.10177839986	find		-6.88254392257
1	bad	-7.10984888918	time		-6.91831772624
1	amazon	-7.13414135393	realli		-6.92455002247
1	purchas	-7.17455665139	order		-6.92501155692
+		+		+-	+

Avg Word2Vec

SPLIT DATA INTO TRAIN AND TEST

MAKING LIST OF WORDS

```
In [26]:
Train = LOW(14)
Test = LOW(15)
```

```
In [27]:
print("Length of Train Dataset -: ",len(Train))
print("Length of Test Dataset -: ",len(Test))
Length of Train Dataset -: 254919
Length of Test Dataset -: 109252
In [28]:
                           TRAINING DATA
print("
print(Data['CleanedText'].values[3])
# First Review with breaking into words.
print(Train[3])
#-----
----")
print(Data['CleanedText'].values[-1])
# First Review with breaking into words.
print(Test[-1])
4
                     ____ TRAINING DATA
b'twist rumplestiskin captur film star michael keaton geena davi prime tim burton masterpiec rumbl
absurd wonder pace point not dull moment'
['btwist', 'rumplestiskin', 'captur', 'film', 'star', 'michael', 'keaton', 'geena', 'davi',
'prime', 'tim', 'burton', 'masterpiec', 'rumbl', 'absurd', 'wonder', 'pace', 'point', 'not', 'dull
', 'moment']
______
                        TEST DATA
b'mix make good bread also use make pop over near made wheat wife celiac use bread popov pizza cru
st'
['bmix', 'make', 'good', 'bread', 'also', 'use', 'make', 'pop', 'over', 'near', 'made', 'wheat', '
wife', 'celiac', 'use', 'bread', 'popov', 'pizza', 'crust']
TRAINING THE MODEL ON TRAIN DATA
In [29]:
w2v model=gensim.models.Word2Vec(Train,min count=2,size=100, workers=4)
```

CONVERTING REVIEWS INTO VECTORS USING AVG WORD2VEC

```
In [30]:

Converting the reviews into vectors by using the above trained model.
```

```
sent vectors = []; # the avq-w2v for each sentence/review is stored in this list
for sent in Train: # for each review/sentence
    sent\_vec = np.zeros(100) \# as word vectors are of zero length
    cnt words =0; # num of words with a valid vector in the sentence/review
    for word in sent: # for each word in a review/sentence
            vec = w2v model.wv[word]
            sent_vec += vec
            cnt words += 1
        except:
           pass
    sent vec /= cnt words
    sent_vectors.append(sent_vec)
                             ----- TEST DATASET -----
. . .
Here we are converting reviews of test data using the vocabulary of training data to make the conc
ept of generalization
meaningful and fruitful.
sent_vectors1 = []; # the avg-w2v for each sentence/review is stored in this list
for sent in Test: # for each review/sentence
    sent_vec = np.zeros(100) # as word vectors are of zero length
    cnt_words =0; # num of words with a valid vector in the sentence/review
    for word in sent: # for each word in a review/sentence
        try:
            vec = w2v model.wv[word]
            sent vec += vec
           cnt words += 1
        except:
           pass
    sent vec /= cnt words
    sent vectors1.append(sent vec)
C:\Users\15-AU008TX\Anaconda3\lib\site-packages\ipykernel_launcher.py:35: RuntimeWarning: invalid
value encountered in true divide
CHECKING THE Nan VALUE
In [31]:
sent vectors=np.array(sent vectors)
print(np.isnan(sent vectors).any())
sent vectors1=np.array(sent vectors1)
print(np.isnan(sent vectors1).any())
False
True
In [32]:
Here we are checking that at which index or at which review Nan values are coming.
np.argwhere(np.isnan(sent vectors1))
Out[32]:
array([[3254,
                0],
       [3254,
                 1],
       [3254,
                 2],
       [3254,
                 3],
                4],
       [3254,
       [3254,
                 5],
       [3254,
                 6],
       [3254,
                 7],
                8],
       [3254,
       [3254,
                9],
       [3254,
               10],
```

----- TRAIN DATASET -----

```
[3254,
         12],
         13],
[3254,
[3254,
          14],
[3254,
          15],
[3254,
         16],
         17],
[3254,
[3254,
          18],
[3254,
          19],
[3254,
          20],
[3254,
          21],
          22],
[3254,
[3254,
          231,
[3254,
          24],
[3254,
         25],
         26],
[3254,
[3254,
          27],
[3254,
         28],
[3254,
          29],
[3254,
          30],
[3254,
         31],
[3254,
          32],
         33],
[3254,
          34],
[3254,
          35],
[3254,
[3254,
          36],
[3254,
          37],
[3254,
          38],
[3254,
          39],
[3254,
          40],
[3254,
          41],
[3254,
          42],
[3254,
          43],
         44],
[3254,
[3254,
          45],
[3254,
          46],
         47],
[3254,
[3254,
          48],
[3254,
          49],
          50],
[3254,
[3254,
          51],
[3254,
          52],
[3254,
          53],
[3254,
          54],
         55],
[3254,
[3254,
          56],
          57],
[3254,
         58],
[3254,
[3254,
          59],
[3254,
          60],
[3254,
          61],
[3254,
          62],
[3254,
          63],
[3254,
          64],
[3254,
          65],
[3254,
          66],
[3254,
          67],
[3254,
          68],
[3254,
          69],
[3254,
          70],
[3254,
          71],
[3254,
          72],
[3254,
          73],
[3254,
          74],
[3254,
          75],
[3254,
          76],
          77],
[3254,
[3254,
          78],
[3254,
          79],
[3254,
          80],
[3254,
          81],
[3254,
          82],
[3254,
          83],
[3254,
          84],
[3254,
          85],
          86],
[3254,
[3254,
          87],
```

[3254**,**

⊥⊥j,

```
[3254,
              89],
      [3254,
               90],
              91],
      [3254,
              92],
      [3254,
      [3254, 93],
      [3254,
              94],
               95],
      [3254,
      [3254,
               96],
              97],
      [3254,
      [3254, 98],
      [3254, 99]], dtype=int64)
In [33]:
Here we are putting a constant in place of Nan values but we can also use mean, median etc values.
or we can remove this review as it will not effect performance of model as the no. of reviews with
```

In [34]:

sent vectors1[3254]=0

[3254, 88],

```
# Again checking the Nan values.
print(np.isnan(sent_vectors).any())
print(np.isnan(sent_vectors1).any())
```

False False

SAVING

In [35]:

```
# Saving for future assignments.
save(sent_vectors, "Word2Vec-Train")
save(sent_vectors1, "Word2Vec-Test")
```

BERNAULLI NAIVE BAYES

values is 1 only that's why we can remove it also.

Naïve Bayes for text classification - Bernoulli model

Calling NB Function with training dataset

```
In [36]:
```

```
t, g = NB(sent_vectors, y_train, 'B')
```

In [37]:

```
print("Time taken to complete -: ",t,"sec\n")
print("Best Hyperparameter -: ",g.best_params_,"\n")
print("Accuracy -: ",round(g.best_score_*100,3),"%")

Time taken to complete -: 163.2255663871765 sec
```

Best Hyperparameter -: {'alpha': 10000}

```
Accuracy -: 83.629 %
```

Alpha vs Accuracy Plot

```
In [38]:
```

```
Accplot(g, 'Word2Vec', 'Bernaulli-NB')
```


Hyperparameters vs Error Plot

In [39]:

Errorplot(g)Errorplot(g)


```
The Train Error is -: 15.1 %
The CV Error is -: 16.6 %
```

Predicting on Best Hyperparameter

```
In [40]:
```

```
clf, pred = predict('B', 10000, sent_vectors, y_train, sent_vectors1)
```

Measuring Performance

```
In [41]:
```

```
Measure(y_test,pred)
```

```
Accuracy on Test Data -: 82.066 %
F1 Score -: 0.895
Precision Score -: 0.867
Recall Score -: 0.925
Test Error -: 17.934
```

Confusion Matrix

In [42]:

MULTINOMIAL NAIVE BAYES

Not possible, as multinomial naive bayes does not work with negative values.

tf-IDF Word2Vec

SPLITTING INTO TRAIN AND TEST

```
In [51]:
```

```
x_train, x_test, y_train, y_test = Split(Data['CleanedText'].values,Data['Score'].values)
```

CONVERTING REVIEWS INTO VECTORS USING tf-IDF

```
In [52]:
```

```
tf_idf_vect = TfidfVectorizer(ngram_range=(1,1))
x_train = tf_idf_vect.fit_transform(x_train)
x_test = tf_idf_vect.transform(x_test)
```

CONVERTING REVIEWS INTO VECTORS USING tf-IDF WORD2VEC

```
In [53]:
```

```
tfidf_feat = tf_idf_vect.get_feature_names()

tfidf_sent_vectors_train = []; # the tfidf-w2v for each sentence/review is stored in this list
row=0;
for sent in Train: # for each review/sentence
```

```
#print(row)
    sent vec = np.zeros(100) # as word vectors are of zero length
    weight sum =0; # num of words with a valid vector in the sentence/review
    for word in sent: # for each word in a review/sentence
        try:
            vec = w2v model.wv[word]
            # obtain the tf idfidf of a word in a sentence/review
            tf idf = x train[row, tfidf feat.index(word)]
            sent_vec += (vec * tf_idf)
            weight sum += tf idf
        except:
           pass
    sent vec /= weight sum
    tfidf_sent_vectors_train.append(sent_vec)
    row += 1
C:\Users\15-AU008TX\Anaconda3\lib\site-packages\ipykernel_launcher.py:18: RuntimeWarning: invalid
value encountered in true_divide
```

In [54]:

```
tfidf sent vectors test = []; # the tfidf-w2v for each sentence/review is stored in this list
for sent in Test: # for each review/sentence
   #print(row)
    sent vec = np.zeros(100) # as word vectors are of zero length
    weight sum =0; # num of words with a valid vector in the sentence/review
    for word in sent: # for each word in a review/sentence
            vec = w2v model.wv[word]
            # obtain the tf idfidf of a word in a sentence/review
            tf_idf = x_test[row, tfidf_feat.index(word)]
            sent vec += (vec * tf idf)
            weight sum += tf idf
        except:
           pass
    sent vec /= weight sum
    tfidf sent vectors test.append(sent vec)
    row += 1
C:\Users\15-AU008TX\Anaconda3\lib\site-packages\ipykernel_launcher.py:16: RuntimeWarning: invalid
value encountered in true divide
 app.launch new instance()
```

Checking NaN Values

```
In [55]:
```

```
train_data = np.array(tfidf_sent_vectors_train)
test_data = np.array(tfidf_sent_vectors_test)
print(np.isnan(train_data).any())
print(np.isnan(test_data).any())
True
```

True

SAVING

```
In [75]:
```

```
# Saving for future assignments.
save(train_data,"tfidf-W2v-train")
save(test_data,"tf-idf-w2v-test")
```

In [76]:

```
# Creating new dataframes and putting array values in it.
train_d = pd.DataFrame(train_data)
test d = pd.DataFrame(test data)
```

In [79]:

```
replacing Nan values with constant in whole dataframes.
'''
train_d = train_d.fillna(0)
test_d = test_d.fillna(0)
```

In [80]:

```
print(train_d.shape)
print(test_d.shape)

(254919, 100)
(109252, 100)
```

BERNAULLI NAIVE BAYES

Naïve Bayes for text classification - Bernoulli model

Calling NB Function with training dataset

```
In [85]:
```

```
t, g = NB(train_d, y_train, 'B')
```

In [86]:

```
print("Time taken to complete -: ",t,"sec\n")
print("Best Hyperparameter -: ",g.best_params_,"\n")
print("Accuracy -: ",round(g.best_score_*100,3),"%")

Time taken to complete -: 138.74359464645386 sec
```

```
Best Hyperparameter -: {'alpha': 10}
Accuracy -: 83.369 %
```

Alpha vs Accuracy Plot

In [87]:

```
Accplot(g, 'tf-idf Word2Vec', 'Bernaulli-NB')
```



```
0 2000 4000 6000 8000 10000
Alpha's
```

Hyperparameters vs Error Plot

In [88]:

Errorplot(g)

The Train Error is -: 15.1 %
The CV Error is -: 16.7 %

Predicting on Best Hyperparameter

In [89]:

clf, pred = predict('B', 10, train_d, y_train, test_d)

Measuring Performance

In [90]:

```
Measure (y_test,pred)

Accuracy on Test Data -: 82.247 %

F1 Score -: 0.891

Precision Score -: 0.903

Recall Score -: 0.88

Test Error -: 17.753
```

Confusion Matrix

In [91]:

CF(y_test,pred)

75000 10543 8538 60000

In [92]:

```
x = PrettyTable()
x.field names = ["NLP Technique", "Algorithm", "Hyperparameter", "Accuracy(%)", "F1 Score", "Recall
Score", "Precision Score"]
x.add_row(["BOW", "Bernaulli NB", 0.001, 88.871, 0.936, 0.988, 0.889])
x.add row(["BOW", "Multinomial NB", 0.001, 88.916, 0.937, 0.993, 0.886])
x.add_row(["tf-IDF", "Bernaulli NB", 0.001, 88.871, 0.936, 0.988, 0.889])
x.add row(["tf-IDF", "Multinomial NB", 0.02, 89.811, 0.941, 0.990, 0.897])
x.add_row(["Avg Word2Vec", "Bernaulli NB", 10000, 82.066, 0.895, 0.925, 0.867])
x.add_row(["Avg Word2Vec", "Multinomial NB", "-", "-", "-", "-", "-"])
x.add_row(["tf-IDF Word2Vec", "Bernaulli NB", 10, 82.247, 0.891, 0.880, 0.903])
x.add row(["tf-IDF Word2Vec", "Multinomial NB", "-", "-", "-", "-"])
print(x)
+-----
| NLP Technique | Algorithm | Hyperparameter | Accuracy(%) | F1 Score | Recall Score |
Precision Score |
|
     BOW
              | Bernaulli NB |
                                   0.001 | 88.871 | 0.936 |
                                                                         0.988
.889
      - 1
|
      BOW
                                   0.001 | 88.916 | 0.937 | 0.993
              | Multinomial NB |
      tf-IDF
              | Bernaulli NB | 0.001
                                            | 88.871 | 0.936 | 0.988
.889
     - 1
```

tf-IDF Multinomial NB	0.02	1	89.811	I	0.941	1	0.99	1
.897 Avg Word2Vec Bernaulli NB .867	10000	I	82.066	I	0.895	1	0.925	I
Avg Word2Vec Multinomial NB	-	1	-	I	-	1	-	1
tf-IDF Word2Vec Bernaulli NB	10	1	82.247	I	0.891	1	0.88	I
tf-IDF Word2Vec Multinomial NB -	_	I	-		-	1	-	l
++ +		+		+-		+		+

- 1. The comparison shows that tf-IDF is a good technique on Naive Bayes for this dataset with an accuracy of 89.811 %.
- 2. Therefore the best hyperparameter is 0.02 with an F1 Score of 0.941, recall Score of 0.99 and a precision of 0.897
- 3. Multinomial Naive Bayes is giving better results as compared to Bernaulli Naive Bayes.
- 4. Multinomial Naive Bayes is not good for the data set having negative values as it does not work with negative values.
- 5. The basic assumption of naive bayes is that features are independent and i think this is the reason that it does not perform well with Word2Vec or tf-IDF Word2Vec.
- 6. Naive Bayes is better than Knn as it is very fast as compared to Knn so it will be useful if we want the result in less time.