Algorithmique Probabiliste

Philippe Duchon

LaBRI - ENSEIRB-Matméca - Université de Bordeaux

2014-15

Le sujet

▶ Utilisation *explicite* de tirages aléatoires dans des algorithmes

Le sujet

- ▶ Utilisation *explicite* de tirages aléatoires dans des algorithmes
- Analyse des complexités des algorithmes

Le sujet

- ▶ Utilisation *explicite* de tirages aléatoires dans des algorithmes
- Analyse des complexités des algorithmes
- Quelques principes de conception d'algorithmes

Bibliographie expresse

- R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995.
- M. Mitzenmacher, E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis -Cambridge University Press, 2002.

▶ Un algorithme "classique" est totalement déterministe

- ▶ Un algorithme "classique" est totalement déterministe
- Étant donnés un algorithme A et une donnée x,

- ▶ Un algorithme "classique" est totalement déterministe
- ▶ Étant donnés un algorithme A et une donnée x,
 - ▶ le résultat *A*(*x*) est entièrement déterminé;

- ▶ Un algorithme "classique" est totalement déterministe
- Étant donnés un algorithme A et une donnée x,
 - ▶ le résultat A(x) est entièrement déterminé;
 - la séquence de calculs aussi;

- Un algorithme "classique" est totalement déterministe
- Étant donnés un algorithme A et une donnée x,
 - ▶ le résultat A(x) est entièrement déterminé;
 - la séquence de calculs aussi;
 - ▶ en particulier, il n'y a aucun intérêt à relancer le même calcul.

(Synonyme : algorithme randomisé)

L'algorithme "tire à pile ou face" et peut agir différemment en fonction du résultat

- ▶ L'algorithme "tire à pile ou face" et peut agir différemment en fonction du résultat
- ► En conséquence, pour un algorithme et une donnée fixés,

- L'algorithme "tire à pile ou face" et peut agir différemment en fonction du résultat
- ► En conséquence, pour un algorithme et une donnée fixés,
 - ▶ le résultat A(x) est une variable aléatoire

- L'algorithme "tire à pile ou face" et peut agir différemment en fonction du résultat
- ► En conséquence, pour un algorithme et une donnée fixés,
 - le résultat A(x) est une variable aléatoire
 - de même que la séquence de calculs, et toutes les grandeurs associées (temps, mémoire, etc)

- L'algorithme "tire à pile ou face" et peut agir différemment en fonction du résultat
- En conséquence, pour un algorithme et une donnée fixés,
 - le résultat A(x) est une variable aléatoire
 - de même que la séquence de calculs, et toutes les grandeurs associées (temps, mémoire, etc)
 - en particulier, il peut être intéressant de lancer plusieurs fois le même algorithme sur les mêmes données (et de "prendre le meilleur résultat")

Comment décrire des algorithmes probabilistes? quel est le modèle?

- Comment décrire des algorithmes probabilistes? quel est le modèle?
- Comment raisonner sur de tels algorithmes?

- Comment décrire des algorithmes probabilistes? quel est le modèle?
- Comment raisonner sur de tels algorithmes?
- C'est quoi, un "bon" algorithme probabiliste?

- Comment décrire des algorithmes probabilistes? quel est le modèle?
- Comment raisonner sur de tels algorithmes?
- C'est quoi, un "bon" algorithme probabiliste?
- Quelles sont les "bonnes" grandeurs à évaluer?

- Comment décrire des algorithmes probabilistes? quel est le modèle?
- Comment raisonner sur de tels algorithmes?
- C'est quoi, un "bon" algorithme probabiliste?
- Quelles sont les "bonnes" grandeurs à évaluer?
- (par l'exemple)

- Comment décrire des algorithmes probabilistes? quel est le modèle?
- Comment raisonner sur de tels algorithmes?
- C'est quoi, un "bon" algorithme probabiliste?
- Quelles sont les "bonnes" grandeurs à évaluer?
- (par l'exemple)
- (ce qui implique de refaire un peu de probabilités)

Un exemple frappant : égalité de deux chaînes

▶ Deux machines M et M' détiennent chacune une chaîne binaire, s et s', de même longueur n; on souhaite déterminer si oui ou non on a s = s'

Un exemple frappant : égalité de deux chaînes

- ▶ Deux machines M et M' détiennent chacune une chaîne binaire, s et s', de même longueur n; on souhaite déterminer si oui ou non on a s = s'
- On s'intéresse à la complexité de communication : le temps de calcul n'importe pas, seule compte la longueur des messages envoyés

Un exemple frappant : égalité de deux chaînes

- ▶ Deux machines M et M' détiennent chacune une chaîne binaire, s et s', de même longueur n; on souhaite déterminer si oui ou non on a s = s'
- On s'intéresse à la complexité de communication : le temps de calcul n'importe pas, seule compte la longueur des messages envoyés
- ▶ Pour simplifier, on suppose un protocole à 1 message :
 - M calcule : m = f(s), et envoie m à M'
 - M' calcule : r = g(m, s')
 - ▶ le résultat est correct si r vaut [s==s']
 - la complexité de communication du protocole est la longueur du message envoyé, $C = \ell(m)$

▶ Un protocole (un choix de fonctions f et g) est correct si, pour tout n, et pour toutes chaînes s, s' de longueur n, le résultat r obtenu est correct

- ▶ Un protocole (un choix de fonctions f et g) est correct si, pour tout n, et pour toutes chaînes s, s' de longueur n, le résultat r obtenu est correct
- ▶ **Théorème**: pour tout protocole correct, pour tout n, il existe une instance (s, s') pour laquelle M envoie au moins n bits.

- ▶ Un protocole (un choix de fonctions f et g) est correct si, pour tout n, et pour toutes chaînes s, s' de longueur n, le résultat r obtenu est correct
- ▶ **Théorème**: pour tout protocole correct, pour tout n, il existe une instance (s, s') pour laquelle M envoie au moins n bits.
- Preuve?

- ▶ Un protocole (un choix de fonctions f et g) est correct si, pour tout n, et pour toutes chaînes s, s' de longueur n, le résultat r obtenu est correct
- ▶ **Théorème**: pour tout protocole correct, pour tout n, il existe une instance (s, s') pour laquelle M envoie au moins n bits.
- Preuve?
- ► En d'autres termes : en déterministe, il n'y a pas de solution intrinsèquement plus intelligente que de demander à M d'envoyer sa chaîne s tout entière à M'

Solution probabiliste : description

(On interprète les chaînes s et s' comme de grands entiers, de l'ordre de 2^n)

- ► M choisit aléatoirement et uniformément un nombre entier p, premier, compris entre n²/2 et n²
- ▶ M calcule $x = s \mod p$, et envoie m = (x, p) à M'
- ► M' calcule $x' = s' \mod p$, et répond x = x'

▶ x et p sont des entiers au plus égaux à n², donc de longueur au plus 2 log₂(n): la complexité de communication est de 4 log₂(n)

- x et p sont des entiers au plus égaux à n², donc de longueur au plus 2 log₂(n) : la complexité de communication est de 4 log₂(n)
- ▶ On peut parfois avoir un résultat incorrect : cela arrive exactement si $s \neq s'$, mais que le nombre entier p choisi est un diviseur de |s s'|

- x et p sont des entiers au plus égaux à n², donc de longueur au plus 2 log₂(n) : la complexité de communication est de 4 log₂(n)
- ▶ On peut parfois avoir un résultat incorrect : cela arrive exactement si $s \neq s'$, mais que le nombre entier p choisi est un diviseur de |s s'|
- Si s = s', la probabilité de résultat incorrect est d'exactement 0;

- x et p sont des entiers au plus égaux à n², donc de longueur au plus 2 log₂(n) : la complexité de communication est de 4 log₂(n)
- ▶ On peut parfois avoir un résultat incorrect : cela arrive exactement si $s \neq s'$, mais que le nombre entier p choisi est un diviseur de |s s'|
- Si s = s', la probabilité de résultat incorrect est d'exactement 0;
- Si $s \neq s'$, la probabilité de résultat incorrect est exactement : $p_{s,s'} = \frac{\text{nombre de diviseurs premiers, entre } n^2/2 \text{ et } n^2, \text{ de } |s-s'|}{\text{nombre d'entiers premiers entre } n^2/2 \text{ et } n^2}$

- x et p sont des entiers au plus égaux à n², donc de longueur au plus 2 log₂(n) : la complexité de communication est de 4 log₂(n)
- ▶ On peut parfois avoir un résultat incorrect : cela arrive exactement si $s \neq s'$, mais que le nombre entier p choisi est un diviseur de |s s'|
- Si s = s', la probabilité de résultat incorrect est d'exactement 0;
- Si $s \neq s'$, la probabilité de résultat incorrect est exactement : $p_{s,s'} = \frac{\text{nombre de diviseurs premiers, entre } n^2/2 \text{ et } n^2, \text{ de } |s-s'|}{\text{nombre d'entiers premiers entre } n^2/2 \text{ et } n^2}$
- Le numérateur est trivialement inférieur à n (et même à $n/2\log_2(n)$)

- x et p sont des entiers au plus égaux à n², donc de longueur au plus 2 log₂(n) : la complexité de communication est de 4 log₂(n)
- ▶ On peut parfois avoir un résultat incorrect : cela arrive exactement si $s \neq s'$, mais que le nombre entier p choisi est un diviseur de |s s'|
- Si s = s', la probabilité de résultat incorrect est d'exactement 0;
- Si $s \neq s'$, la probabilité de résultat incorrect est exactement : $p_{s,s'} = \frac{\text{nombre de diviseurs premiers, entre } n^2/2 \text{ et } n^2, \text{ de } |s-s'|}{\text{nombre d'entiers premiers entre } n^2/2 \text{ et } n^2}$
- Le numérateur est trivialement inférieur à n (et même à $n/2\log_2(n)$)
- ► Le dénominateur est (d'après le théorème des nombres premiers) de l'ordre de $\frac{n^2}{4 \ln(n)}$

- x et p sont des entiers au plus égaux à n², donc de longueur au plus 2 log₂(n) : la complexité de communication est de 4 log₂(n)
- ▶ On peut parfois avoir un résultat incorrect : cela arrive exactement si $s \neq s'$, mais que le nombre entier p choisi est un diviseur de |s s'|
- Si s = s', la probabilité de résultat incorrect est d'exactement 0;
- ightharpoonup Si s
 eq s', la probabilité de résultat incorrect est exactement :

$$p_{s,s'} = \frac{\text{nombre de diviseurs premiers, entre } n^2/2 \text{ et } n^2, \text{ de } |s-s'|}{\text{nombre d'entiers premiers entre } n^2/2 \text{ et } n^2}$$

- Le numérateur est trivialement inférieur à n (et même à $n/2\log_2(n)$)
- ▶ Le dénominateur est (d'après le théorème des nombres premiers) de l'ordre de $\frac{n^2}{4\ln(n)}$
- ► Conclusion : le protocole probabiliste a, pour toute instance (s, s'), une probabilité inférieure à $2 \ln(2)/n$ de se tromper.

On prend le cas $n=10^9\sim 2^{30}$: un gigabit

▶ **Déterministe** : on est absolument certain du résultat ; M doit envoyer 1 gigabit à M'.

On prend le cas $n=10^9\sim 2^{30}$: un gigabit

- ▶ Déterministe : on est absolument certain du résultat ; M doit envoyer 1 gigabit à M'.
- ▶ **Probabiliste**: M envoie 120 bits à M'; en contrepartie, on accepte une probabilité d'erreur d'environ 1.4×10^{-9} (une chance sur 700 millions; soit la probabilité d'être choisi si une personne résidant en Europe est choisie au hasard)

On prend le cas $n=10^9\sim 2^{30}$: un gigabit

- ▶ **Déterministe** : on est absolument certain du résultat ; *M* doit envoyer 1 gigabit à *M'*.
- ▶ **Probabiliste**: M envoie 120 bits à M'; en contrepartie, on accepte une probabilité d'erreur d'environ 1.4×10^{-9} (une chance sur 700 millions; soit la probabilité d'être choisi si une personne résidant en Europe est choisie au hasard)
- ► En répétant deux fois le protocole probabiliste : M envoie 240 bits à M', la probabilité d'erreur tombe à 2 × 10⁻¹⁸ (probabilité que le choix de deux personnes au hasard en Europe, vous désigne, vous et votre voisin de gauche)

On prend le cas $n=10^9\sim 2^{30}$: un gigabit

- ▶ **Déterministe** : on est absolument certain du résultat ; *M* doit envoyer 1 gigabit à *M'*.
- ▶ **Probabiliste**: M envoie 120 bits à M'; en contrepartie, on accepte une probabilité d'erreur d'environ 1.4×10^{-9} (une chance sur 700 millions; soit la probabilité d'être choisi si une personne résidant en Europe est choisie au hasard)
- ► En répétant deux fois le protocole probabiliste : M envoie 240 bits à M', la probabilité d'erreur tombe à 2 × 10⁻¹⁸ (probabilité que le choix de deux personnes au hasard en Europe, vous désigne, vous et votre voisin de gauche)
- (ce n'est rien d'autre qu'un schéma de hachage, explicitement aléatoire; la propriété importante étant que, la fonction de hachage étant aléatoire, on ne peut pas choisir deux chaînes différentes en sachant qu'elles ont la même valeur de hachage)

L'exemple de QuickSort

Pour trier un tableau de *n* valeurs :

- ▶ Si $n \le 1$, il est déjà trié
- Sinon:
 - choisir un pivot (premier élément du tableau) x
 - comparer x à chaque autre élément, et réordonner le tableau en "les plus petits que x", puis x, puis "les plus grands que x"
 - ► Trier récursivement "les plus petits que x" et "les plus grands que x" avec QuickSort

QuickSort en Python

```
def Partitionne(L,a,b,k):
    p = L[k]
    Echange (L, k, b)
    st = a
    for i in range(a,b):
         if L[i]<p:
             Echange (L, i, st)
             st = st+1
    Echange (L, st, b)
    return (st)
def QuickSortRec(L,a,b):
    if (a<b):
         k=Partitionne(L,a,b,a)
         QuickSortRec(L, a, k-1)
         QuickSortRec(L,k+1,b)
```

► On regarde le nombre de comparaisons de clés

- ► On regarde le nombre de comparaisons de clés
- ► "En moyenne" (si le tableau initial est dans un ordre aléatoire uniforme), on fait $2n \ln(n) + O(n)$ comparaisons

- ► On regarde le nombre de comparaisons de clés
- ▶ "En moyenne" (si le tableau initial est dans un ordre aléatoire uniforme), on fait $2n \ln(n) + O(n)$ comparaisons
- Mais le cas le pire est quadratique

- ► On regarde le nombre de comparaisons de clés
- ► "En moyenne" (si **le tableau initial est dans un ordre aléatoire uniforme**), on fait $2n \ln(n) + O(n)$ comparaisons
- Mais le cas le pire est quadratique
- La mauvaise nouvelle : un tableau déjà trié (ou "presque" déjà trié) est trié par QuickSort en temps quadratique

Quelques expériences

- Le code Python présenté (ou presque)
- On compte exactement les comparaisons
- Trois jeux de tests :
 - Liste triée par ordre croissant
 - Liste dans un ordre aléatoire
 - Liste croissante, "mal" mélangée (n/10 échanges de paires prises au hasard)

▶ Sur des listes aléatoires, l'algorithme a vraiment l'air de se comporter souvent en $\Theta(n \ln(n))$

- ▶ Sur des listes aléatoires, l'algorithme a vraiment l'air de se comporter souvent en $\Theta(n \ln(n))$
- Sur des listes croissantes, il est catastrophique

- ▶ Sur des listes aléatoires, l'algorithme a vraiment l'air de se comporter souvent en $\Theta(n \ln(n))$
- Sur des listes croissantes, il est catastrophique
- Sur des listes "un peu mal mélangées", les performances se dégradent assez vite, et semblent assez aléatoires (grosse incertitude)

- ▶ Sur des listes aléatoires, l'algorithme a vraiment l'air de se comporter souvent en $\Theta(n \ln(n))$
- Sur des listes croissantes, il est catastrophique
- Sur des listes "un peu mal mélangées", les performances se dégradent assez vite, et semblent assez aléatoires (grosse incertitude)
- Malheureusement, on ne peut pas faire confiance à l'utilisateur de l'algorithme pour ne nous faire trier que des listes aléatoires

▶ Idée toute bête : et si au lieu de choisir un pivot déterministe, on le choisissait au hasard dans le tableau ?

- ▶ Idée toute bête : et si au lieu de choisir un pivot déterministe, on le choisissait au hasard dans le tableau ?
- On obtient une version randomisée de l'algorithme : à chaque exécution, on peut avoir un comportement différent

- ▶ Idée toute bête : et si au lieu de choisir un pivot déterministe, on le choisissait au hasard dans le tableau ?
- On obtient une version randomisée de l'algorithme : à chaque exécution, on peut avoir un comportement différent
- ► (Le résultat, lui, n'est pas aléatoire : on trie toujours dans l'ordre croissant)

- ▶ Idée toute bête : et si au lieu de choisir un pivot déterministe, on le choisissait au hasard dans le tableau ?
- On obtient une version randomisée de l'algorithme : à chaque exécution, on peut avoir un comportement différent
- ► (Le résultat, lui, n'est pas aléatoire : on trie toujours dans l'ordre croissant)
- Quelques lignes de code à changer

RandQuickSort en Python

```
def RandQuickSortRec(L,a,b):
    if (a<b):
        k=Partitionne(L,a,b,random.randint(a,b))
        RandQuickSortRec(L,a,k-1)
        RandQuickSortRec(L,k+1,b)</pre>
def RandQuickSort(L):
    RandQuickSortRec(L,0,len(L)-1)
```


Ré-intreprétons...

► RandQuickSort n'a pas l'air très sensible (statistiquement) au caractère plus ou moins bien mélangé de la liste de départ

Ré-intreprétons...

- RandQuickSort n'a pas l'air très sensible (statistiquement) au caractère plus ou moins bien mélangé de la liste de départ
- ► Il a l'air de toujours se comporter comme QuickSort sur des listes aléatoires

Ré-intreprétons...

- ▶ RandQuickSort n'a pas l'air très sensible (statistiquement) au caractère plus ou moins bien mélangé de la liste de départ
- ► Il a l'air de toujours se comporter comme QuickSort sur des listes aléatoires
- Les variations par rapport à la moyenne semblent assez faibles

Et maintenant?

- On va prouver ce qu'on vient d'observer
- Mais on a besoin de préciser ce qu'on suppose vrai des tirages aléatoires

La fonction randint(a,b) de Python (module random) est censée

▶ nous renvoyer un nombre entier aléatoire compris entre a et b (inclus), **uniforme** (chaque entier de [[a,b]] a probabilité 1/(b-a+1))

La fonction randint(a,b) de Python (module random) est censée

- ▶ nous renvoyer un nombre entier aléatoire compris entre a et b (inclus), **uniforme** (chaque entier de [[a,b]] a probabilité 1/(b-a+1))
- faire en sorte que le résultat de chaque appel soit indépendant de tous ceux qui l'ont précédé

La fonction randint(a,b) de Python (module random) est censée

- ▶ nous renvoyer un nombre entier aléatoire compris entre a et b (inclus), **uniforme** (chaque entier de [[a,b]] a probabilité 1/(b-a+1))
- faire en sorte que le résultat de chaque appel soit indépendant de tous ceux qui l'ont précédé

Variantes :

La fonction randint(a,b) de Python (module random) est censée

- ▶ nous renvoyer un nombre entier aléatoire compris entre a et b (inclus), **uniforme** (chaque entier de [[a,b]] a probabilité 1/(b-a+1))
- faire en sorte que le résultat de chaque appel soit indépendant de tous ceux qui l'ont précédé

Variantes:

flip(): équivalent à randint(0,1) ("pile ou face" avec une pièce équilibrée)

La fonction randint(a,b) de Python (module random) est censée

- ▶ nous renvoyer un nombre entier aléatoire compris entre a et b (inclus), **uniforme** (chaque entier de [[a,b]] a probabilité 1/(b-a+1))
- faire en sorte que le résultat de chaque appel soit indépendant de tous ceux qui l'ont précédé

Variantes:

- flip(): équivalent à randint(0,1) ("pile ou face" avec une pièce équilibrée)
- ▶ random() : renvoie un nombre réel uniforme sur [0,1]

La fonction randint(a,b) de Python (module random) est censée

- ▶ nous renvoyer un nombre entier aléatoire compris entre a et b (inclus), **uniforme** (chaque entier de [[a,b]] a probabilité 1/(b-a+1))
- faire en sorte que le résultat de chaque appel soit indépendant de tous ceux qui l'ont précédé

Variantes:

- flip(): équivalent à randint(0,1) ("pile ou face" avec une pièce équilibrée)
- ▶ random() : renvoie un nombre réel uniforme sur [0,1]
- ▶ Bernoulli(p) : renvoie 1 avec probabilité p, 0 avec probabilité 1 p (pour 0)

La fonction randint(a,b) de Python (module random) est censée

- ▶ nous renvoyer un nombre entier aléatoire compris entre a et b (inclus), **uniforme** (chaque entier de [[a,b]] a probabilité 1/(b-a+1))
- faire en sorte que le résultat de chaque appel soit indépendant de tous ceux qui l'ont précédé

Variantes:

- flip(): équivalent à randint(0,1) ("pile ou face" avec une pièce équilibrée)
- random() : renvoie un nombre réel uniforme sur [0,1]
- ▶ Bernoulli(p) : renvoie 1 avec probabilité p, 0 avec probabilité 1 p (pour 0)
- ▶ toujours en supposant que les appels sont indépendants

Analyse de [Rand]QuickSort

Théorème

Soit $n \ge 1$, $\sigma \in S_n$ une permutation quelconque de [[1, n]], et soit

- ▶ QS_n, la variable aléatoire qui décrit le nombre de comparaisons de clés dans une exécution de l'algorithme déterministe QuickSort sur un tableau de n valeurs distinctes, rangées initialement dans un ordre aléatoire uniforme;
- RQS_n(σ), la variable aléatoire qui décrit le nombre de comparaisons de clés dans une exécution de l'algorithme randomisé RandQuickSort sur un tableau de n valeurs distinctes, rangées initialement selon l'ordre σ.

Alors QS_n et $RQS_n(\sigma)$ ont la **même loi** : pour tout k,

$$\mathbb{P}(QS_n = k) = \mathbb{P}(RQS_n(\sigma) = k).$$

Analyse de [Rand]QuickSort

Théorème

Soit $n \ge 1$, $\sigma \in S_n$ une permutation quelconque de [[1, n]], et soit

- ▶ QS_n, la variable aléatoire qui décrit le nombre de comparaisons de clés dans une exécution de l'algorithme déterministe QuickSort sur un tableau de n valeurs distinctes, rangées initialement dans un ordre aléatoire uniforme;
- ▶ $RQS_n(\sigma)$, la variable aléatoire qui décrit le nombre de comparaisons de clés dans une exécution de l'algorithme randomisé **RandQuickSort** sur un tableau de n valeurs distinctes, rangées initialement selon l'ordre σ .

Alors QS_n et $RQS_n(\sigma)$ ont la **même loi** : pour tout k,

$$\mathbb{P}(QS_n = k) = \mathbb{P}(RQS_n(\sigma) = k).$$

Corollaire 1 : même espérance, même variance. . .

Analyse de [Rand]QuickSort

Théorème

Soit $n \ge 1$, $\sigma \in S_n$ une permutation quelconque de [[1, n]], et soit

- QS_n, la variable aléatoire qui décrit le nombre de comparaisons de clés dans une exécution de l'algorithme déterministe QuickSort sur un tableau de n valeurs distinctes, rangées initialement dans un ordre aléatoire uniforme;
- ▶ $RQS_n(\sigma)$, la variable aléatoire qui décrit le nombre de comparaisons de clés dans une exécution de l'algorithme randomisé **RandQuickSort** sur un tableau de n valeurs distinctes, rangées initialement selon l'ordre σ .

Alors QS_n et $RQS_n(\sigma)$ ont la **même loi** : pour tout k,

$$\mathbb{P}(QS_n = k) = \mathbb{P}(RQS_n(\sigma) = k).$$

Corollaire 1 : même espérance, même variance. . .

Corollaire 2 : pour RandQuickSort, il n'y a pas de tableau plus

