T.D. V - Variables aléatoires discrètes finies

I - Lois usuelles

Exercice 1. Une urne contient 4 boules, indistinguables au toucher, numérotées de 1 à 4. On tire aléatoirement une boule dans l'urne et on note X son numéro.

Reconnaître la loi de la variable aléatoire X puis donner l'espérance et la variance de X.

Exercice 2. On dispose d'un dé équilibré à 20 faces numérotées de 1 à 20. Le dé est lancé et on note X la valeur du nombre obtenu.

Reconnaître la loi de la variable aléatoire X puis donner l'espérance et la variance de X.

Exercice 3. On dispose d'un jeton à 2 faces. Sur l'une des faces est inscrit un 0 et sur l'autre face est inscrit un 1. La probabilité que, lors d'un lancer, la face contenant 1 soit visible est égale à $\frac{2}{3}$. On note X le nombre qui apparaît quand on lance le jeton.

- 1. Reconnaître la loi de X puis donner l'espérance et la variance de X. Le jeton est lancé successivement 5 fois. On note Y le nombre de 1 qui sont apparus au cours de ces lancers.
- ${f 2.}\;\;$ Reconnaître la loi de Y puis donner l'espérance et la variance de $Y.\;\;$

Exercice 4. Une entreprise fabrique en série des ampoules. 5% des ampoules présentent un défaut et sont inutilisables. On prélève une ampoule du stock et on note X son état : 0 si elle est défectueuse, 1 si elle fonctionne.

- 1. Reconnaître la loi de X puis donner l'espérance et la variance de X. On prélève maintenant 30 ampoules du stock. On note Y le nombre d'ampoules défectueuses.
- **2.** Reconnaître la loi de Y puis donner l'espérance et la variance de Y.

Exercice 5. Une urne contient 3 boules rouges et 5 boules noires, indistinguables au toucher. On tire, successivement et avec remise, 4 boules de l'urne. On note X le nombre de boules noires tirées.

Reconnaître la loi de X puis donner l'espérance et la variance de X.

Exercice 6. Une urne contient 7 boules rouges et 3 boules noires, indistinguables au toucher. On tire, successivement et avec remise, 5 boules de l'urne. On note X le nombre de boules rouges tirées.

Reconnaître la loi de X puis donner l'espérance et la variance de X.

Exercice 7. Une urne contient 3 boules numérotées 1, 2 et 2, indistinguables au toucher. On tire successivement et avec remise 2 boules de l'urne. On note X le nombre de boules numérotées 1 obtenues.

Reconnaître la loi de X puis donner l'espérance et la variance de X.

Exercice 8. Un dé équilibré à 12 faces est lancé successivement 5 fois. On note X le nombre de 1 obtenus au cours de ces lancers.

Reconnaître la loi de X puis donner l'espérance et la variance de X.

II - Calculs de lois

Exercice 9. Une urne contient 3 boules numérotées 1, 2 et 4, indistinguables au toucher. On tire successivement et sans remise 2 boules de l'urne. On note X la somme des numéros des boules obtenues.

Déterminer la loi de X puis calculer l'espérance et la variance de X.

Exercice 10. Une pièce de monnaie renvoie Pile avec probabilité $\frac{1}{3}$ et Face avec probabilité $\frac{2}{3}$. Un joueur joue contre son banquier. Si le lancer renvoie Face, le joueur gagne $10 \in$. Si le lancer renvoie Pile, il perd $5 \in$. On note S la somme que le joueur a remportée au cours de 3 lancers successifs (cette somme peut être négative).

- 1. Déterminer la loi de S.
- **2.** Calculer l'espérance et la variance de S.

Exercice 11. On considère la variable aléatoire X dont la loi est donnée par :

On pose $Y = X^2$.

- 1. Déterminer la loi de Y.
- **2.** Déterminer l'espérance et la variance de X.
- 3. Déterminer l'espérance et la variance de Y.

Exercice 12. On considère la variable aléatoire X dont la loi est donnée par :

On pose $Y = \sqrt{X}$.

- 1. Déterminer la loi de Y.
- **2.** Déterminer l'espérance et la variance de X.
- 3. Déterminer l'espérance et la variance de Y.

Exercice 13. On considère la variable aléatoire X dont la loi est donnée par :

On pose Y = |X - 3|.

- 1. Déterminer la loi de Y puis l'espérance de Y.
- ${\bf 2.}\,$ Calculer directement l'espérance de Y à l'aide du théorème de transfert.

Exercice 14. On considère la variable aléatoire X dont la loi est donnée par :

On pose Y = |X - 1|.

- 1. Déterminer la loi de Y puis l'espérance de Y.
- ${\bf 2.}\,$ Calculer directement l'espérance de Y à l'aide du théorème de transfert.

III - Espérance & Variance sans calcul de loi

Exercice 15. Un dé équilibré à 12 faces est lancé successivement 30 fois. Les lancers sont supposés indépendants. On note X_i le résultat obtenu lors du i^e lancer, $S = \sum\limits_{i=1}^{30} X_i$ la somme des valeurs obtenues et $P = X_1 \times X_2 \times \cdots \times X_{30}$ leur produit.

- 1. Calculer l'espérance et la variance de S.
- **2.** Calculer l'espérance de P.

Exercice 16. Une pièce de monnaie renvoie Pile avec probabilité $\frac{1}{3}$ et Face avec probabilité $\frac{2}{3}$. Un joueur joue contre son banquier. Si le lancer renvoie Face, le joueur gagne $10 \in \mathbb{N}$. Si le lancer renvoie Pile, il perd $5 \in \mathbb{N}$. La pièce est lancée successivement 50 fois. On note X_i la somme (éventuellement négative) empochée par le joueur lors du i^e lancer, $S = \sum_{i=1}^{50} X_i$ la somme finalement accumulée par le joueur et $P = X_1 \times X_2 \times \cdots \times X_{50}$ leur produit.

- 1. Calculer l'espérance et la variance de S.
- **2.** Calculer l'espérance de P.

IV - Lois de couple

Exercice 17. Soit X et Y deux variables aléatoires dont la loi conjointe est donnée par

x y	1	2	3	4
0	$\frac{1}{2}$	$\frac{1}{8}$	$\frac{1}{8}$	0
1		0	$\frac{1}{8}$	$\frac{1}{8}$

- 1. Compléter la case vide.
- **2.** Déterminer les lois marginales du couple (X,Y). En déduire $\mathbf{E}[X]$ et $\mathbf{E}[Y]$.
- 3. Déterminer la loi conditionnelle de Y sachant [X=1].

4. Les variables aléatoires X et Y sont-elles indépendantes?

5. Calculer $P([X = 0] \cup [Y = 1])$.

6. Calculer la covariance de X et de Y.

7. Calculer $\mathbf{V}(X)$ et $\mathbf{V}(Y)$. En déduire $\rho(X,Y)$.

8. Calculer Cov(X + Y, X), Cov(X, X + Y) et Cov(2X, X).

Exercice 18. Soit X et Y deux variables aléatoires dont la loi conjointe est donnée par

x y	1	2	3
0	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{3}{8}$
1		0	$\frac{1}{8}$

1. Compléter la case vide.

2. Déterminer les lois marginales du couple (X,Y). En déduire $\mathbf{E}[X]$ et $\mathbf{E}[Y]$.

3. Déterminer la loi conditionnelle de X sachant [Y=3].

4. Les variables aléatoires X et Y sont-elles indépendantes ?

5. Calculer $P([X = 1] \cup [Y = 1])$.

6. Calculer la covariance de X et de Y.

7. Calculer $\mathbf{V}(X)$ et $\mathbf{V}(Y)$. En déduire $\rho(X,Y)$.

8. Calculer Cov (X + Y, X), Cov (X, X + Y) et Cov (2X, X).

Exercice 19. On lance 2 fois un dé équilibré à 6 faces. On note X le plus grand des résultats obtenus et Y le plus petit.

1. Décrire l'ensemble des valeurs prises par (X, Y).

2. Décrire l'événement [X=1] puis calculer $\mathbf{P}([X=1])$.

3. Décrire l'événement [Y=1] puis calculer $\mathbf{P}([Y=1])$.

4. Décrire l'événement $[X=1]\cap [Y=1]$ puis calculer $\mathbf{P}([X=1]\cap [Y=1]).$

5. Les variables aléatoires X et Y sont-elles indépendantes?

Exercice 20. Une grenouille est sur la première marche d'un escalier comportant 5 marches :

* si la grenouille est sur la marche du bas, elle saute sur la deuxième marche.

* si la grenouille est sur la marche du haut, elle se repose.

* si la grenouille est sur une marche intermédiaire, elle tente de gober une mouche. Elle a une probabilité égale à $\frac{1}{3}$ de réussir. Si elle gobe la mouche, elle monte 2 marches d'un coup (si c'est possible)! Sinon, elle ne monte qu'une seule marche.

On note X le nombre de sauts nécessaires pour arriver en haut de l'escalier et Y le nombre de fois où elle n'a sauté qu'une seule marche.

1. Décrire, à l'aide d'un arbre, l'ensemble des expériences possibles.

2. Décrire l'événement [X = 4] puis calculer $\mathbf{P}([X = 4])$.

3. Décrire l'événement [Y=2] puis calculer $\mathbf{P}([Y=2])$.

4. Décrire l'événement $[X=4]\cap [Y=2]$ puis calculer $\mathbf{P}([X=4]\cap [Y=2])$.

5. Les variables aléatoires X et Y sont-elles indépendantes?

Exercice 21. On lance sucessivement une pièce équilibrée 4 fois. On note X le nombre de changements de résultats de la pièce. Par exemple, si les lancers renvoient...

... PPFP, alors X(PPFP) = 2.

... FFFF, alors X(FFFF) = 0.

... PFPF, alors X(PFPF) = 3.

On note Y le nombre de Pile obtenus au cours des 4 lancers.

1. Donner la loi de X, son espérance et sa variance.

2. Donner la loi de Y, son espérance et sa variance.

3. Calculer la covariance de X et de Y.

4. Les variables aléatoires X et Y sont-elles indépendantes?

5. Calculer $\rho(X,Y)$.

6. Calculer **E** [X + Y], **V** (X + Y) et **V** (X - Y).

Exercice 22. On considère une urne contenant 3 boules numérotées 1, 1 et 2. On réalise successivement et sans remise 2 tirages dans l'urne. On note X la variable aléatoire égale au numéro obtenu lors du premier

T.D. V - Variables aléatoires discrètes finies

tirage et Y la variable aléatoire égale au numéro obtenu lors du second tirage.

- 1. Déterminer la loi de (X, Y).
- 2. Déterminer les lois de X et de Y.
- **3.** Calculer $\mathbf{E}[X]$ et $\mathbf{E}[Y]$.
- **4.** Calculer $\mathbf{E}[XY]$ et en déduire la covariance de X et de Y.
- 5. Les variables aléatoires X et Y sont-elles indépendantes?
- **6.** Calculer $\rho(X,Y)$.
- 7. Calculer $\mathbf{E}[X+Y]$, $\mathbf{V}(X+Y)$ et $\mathbf{V}(X-Y)$.