Rethinking Exchange Rate Exposure in Equity Markets Through International Trade Networks

Seo Ha Kim

Yonsei University/Economics

Sungjune Pyun

Yonsei Business School

SKKU Seminar April 2025 •0000

How do currency fluctuations affect stock returns?

How do currency fluctuations affect stock returns?

- A classical question of interest
- ▶ The traditional goods market theory:
 - Firms are net exporters, so stock returns should generally be positive when local currency depreciates.
 - Limited empirical evidence
- ▶ Recent studies highlight the role of international capital flows.
 - e.g., Hau and Rey (2006), Camanho, Hau, and Rey (2022), Rey, Stavrakeva, and Tang (2024).
 - Portfolio rebalancing in the equity market

Challenging the Trade-Based View of Currency Effects

"The empirical literature has unambiguously shown that goods market variables do not explain exchange rate movements at short- to medium-run frequencies."

▷ Cenedese, Payne, Sarno, and Valente (2016, RF):

"We find that exchange rate movements are, in fact, unrelated to differentials in country-level equity returns."

Data

Conclusion

Literature: Hau and Rey (2006)

Introduction & Motivation

00000

Table 2 Daily correlations of excha	nge rate and foreign stock	market eccess returns orr $\left[-dE_{t}, \left(dR_{t}^{f^{*}} - dR_{t}^{h}\right)\right]$	reciation relative to USD Equity return of US
		$\operatorname{prr}[-aE_t,(aR_t-aR_t^*)]$	<u>"] </u>
	(a) January 1, 1980– December 31, 2001	(b) January 1, 1990– December 31, 2001	(c) January 1, 1995– December 31, 2001
Australia	0.0558***	0.0304*	0.0242
Austria	-0.0186	-0.0291	-0.0201
Belgium-Luxembourg	-0.0438***	-0.0388**	-0.0226
Denmark	-0.0368***	-0.0495***	-0.0452*
Finland	-0.0954***	-0.1263***	-0.1847***
France	-0.1026***	-0.1638***	-0.1760***
Germany	-0.0805***	-0.1021***	-0.1448***
Ireland	-0.1003***	-0.0883***	-0.0739***
Italy	-0.0385***	-0.0353**	-0.0539**
Japan	0.0636***	0.0723***	0.0587**
Netherlands	-0.1674***	-0.2194***	-0.2052***
Norway	-0.0629***	-0.0956***	-0.0128
Portugal	-0.0253	-0.0339^*	-0.0140
Spain	-0.0645***	-0.1301***	-0.1116***
Sweden	-0.0677***	-0.0510***	-0.0163
Switzerland	-0.1240***	-0.1632***	-0.1655***
U.K.	-0.0173	-0.1024***	-0.1042***
Mean	-0.0545	-0.0780	-0.0746
SD	0.0586	0.0728	0.0792
Pooled data	-0.0530***	-0.0761***	-0.0735***

- ▶ Hau and Rey (2006, RFS): Exchange rate movements are driven by capital flows, not goods-market fundamentals.
- Cho, Choi, Kim, and Kim (2016, JBF): This relationship is positive for emerging markets, suggesting stronger portfolio flow effects.

Lilley and Rindali (2020)

(a) Exchange rates bilaterally with the US dollar

Research Questions

Building on the literature, we ask two central questions:

- ▶ Is there a relationship between currency returns and stock returns, as implied by standard international trade theory?
 - Traditional benchmark: exchange rates relative to the USD/trade weight
 - Our approach: trade-weighted exchange rates computed separately for export and import partners.
 - ✓ Different from using trade-weights for currency returns
- ▷ Is this form of currency risk priced in the equity market?

Data

Sandwich shop example

Setup of the Model

- One French baguette producer and a single Sandwich shop in UK.
- Profit function for the British shop in GBP:

$$\Pi_{GB} = P_S \cdot Q_S - Q_S \cdot \frac{P_B}{e_P}$$

▶ Profit function for the French Baguette shop in EUR:

$$\Pi_{FR} = \frac{P_B}{e_E} \cdot Q_S - w \cdot Q_S$$

- Demand for the sandwich in the UK: $P_S = a bQ_S$
- Exchange rates: e_P , e_E = GBP and EUR per invoicing currency (e.g., USD)

Optimization Problem

- \triangleright The British sandwich shop chooses quantity Q to maximize profits:
 - Optimal output and price:

$$Q_S^* = rac{1}{2b}\left(a - rac{P_B}{e_P}
ight), \quad P_S^* = rac{1}{2}\left(a + rac{P_B}{e_P}
ight)$$

- \triangleright The French bakery sets the baguette price (P_B) :
 - Optimal baguette price:

$$P_B^* = \frac{1}{2}(a \cdot e_P + w \cdot e_E)$$

Equilibrium Profits

Introduction & Motivation

▶ Long-run profits solved by plugging in into the objective function:

$$\Pi_{FR}^* = \frac{1}{8b} \left(a \frac{e_P}{e_E} - w \right) \left(a - w \frac{e_E}{e_P} \right)$$

$$\Pi_{GB}^* = \frac{1}{16b} \left(a - w \frac{e_E}{e_P} \right)^2$$

- Stock prices determined as the present value of expected profits.
- ▷ Increase in e_P relative to e_E :
 - French bakery profits ↑ and British sandwich shop profits ↓
 - Exchange rate changes against USD alone irrelevant if e_P/e_E unchanged.
- ▶ The volatility of the relative currency value affects the variability of firms' profit.

Sticky Prices and Trade Invoicing

- ▶ When prices are sticky (e.g., Taylor, 1980), contracted prices adjust slowly.
- A substantial share of global trade is invoiced in US dollars (e.g., Goldberg and Tille, 2008, 2009).
- ▷ In the short run:
 - Nominal prices remain fixed in the invoicing currency.
 - Bilateral exchange rates play a smaller role in determining real profits.

Profit Functions Under Sticky Prices

▶ Under sticky prices, firm-level profits reflect fixed invoicing prices:

$$\Pi_{GB} = \bar{P}_S \cdot Q - Q \cdot \frac{P_B}{e_P}$$

$$\Pi_{FR} = \frac{\bar{P}_B}{e_E} \cdot Q - w \cdot Q$$

- USD invoicing weakens the link between bilateral exchange rates and firm profits.
- Dominant currency pricing (e.g., invoicing in USD) reduces the relevance of bilateral FX movements for firms' short-run profit.

(consistent with recent literature, e.g., Gopinath, et. al. 2020 AER)

Main Empirical Predictions and Findings

▶ Export vs. Import Currency Effects:

- Appreciation relative to export partners ⇒ lower stock returns.
- Appreciation relative to import partners ⇒ higher stock returns.
- Inconsistent results relative to USD.

▶ Heterogeneity Across Sectors and Countries:

- Effects are stronger in tradable sectors (e.g., manufacturing).
- USD-invoiced trade reduces sensitivity to bilateral exchange rate movements.

Currency Volatility and Risk Premia:

 Higher export/import-based exchange rate volatility ⇒ higher expected returns.

Data Overview

- ▶ Trade Data:
 - OECD Input-Output Tables (1995–2020)
 - IMF Direction of Trade Statistics (1990–2023)
- ▶ Currency Returns: Datastream and Compustat
- - Firm-level: Datastream (1996–2021)
 - Country-level: MSCI indices (1991–2024)
- ▶ Sample:
 - 40 countries, aggregated to industry level (ISIC classification)
 - 189,750 unique country-industry-year observations

Introduction & Motivation

- A positive currency return indicates an appreciation of the focal country's currency.
- \triangleright For each country-industry pair (c, i), we construct export- and import-weighted currency returns:

$$FX_{c,i,t}^{\mathsf{EX}} = FX_{c,t}^{\mathsf{USD}} - \sum_{d} w_{c,i,d}^{\mathsf{EX}} FX_{d,t}^{\mathsf{USD}}$$

Data

$$FX_{c,i,t}^{\mathsf{IM}} = FX_{c,t}^{\mathsf{USD}} - \sum_{d} w_{c,i,d}^{\mathsf{IM}} FX_{d,t}^{\mathsf{USD}}$$

 \triangleright FX^{USD} is the return of each currency relative to the USD. Weights w^{EX} and w^{IM} are based on export and import shares between country c and partner d at the industry level.

Empirical Specification

Introduction & Motivation

Pooled panel regression specification:

$$R_{c,i,t} = \alpha_{c,i} + \beta \mathit{FX}^{\mathit{EX}}_{c,i,t} + \gamma \mathit{FX}^{\mathit{IM}}_{c,i,t} + \delta \mathit{FX}^{\mathit{USD}}_{c,t} + \mathsf{Controls}_{c,i,t} + \epsilon_{c,i,t}$$

- \triangleright *FX^{EX}*: Export-weighted currency return (expect $\beta < 0$)
- \triangleright *FX* ^{IM}: Import-weighted currency return (expect $\gamma > 0$)
- \triangleright FX^{USD}: Currency return relative to USD

Controls:

- ⊳ Global stock returns (MSCI World, S&P 500)

FX exposure of country industries

				R	c,i,t			
$FX_{c,t}^{USD}$	0.425	-0.072				-0.026	0.003	0.016
·	(73.02) ((-12.59)				(-4.36)	(0.03)	(1.64)
$FX_{c,t}^{EX}$			-0.335	-0.246	-0.197	-0.196	-0.278	-0.214
,			(-4.85)	(-4.43)	(-3.96)	(-3.94)	(-4.32)	(-4.38)
$FX_{c,t}^{IM}$			2.649	0.457	0.198	0.377	0.551	0.242
-,-			(36.10)	(7.76)	(3.56)	(5.46)	(5.83)	(3.07)
$R_{WLD,t}$		0.839		0.814				
		(231.40)		(241.91)				
$R_{US,t}$								
$R_{c,t}$					0.668	0.668		0.673
·					(242.39)	(242.62)		(225.92)
$R_{i,t}^{USD}$					0.276	0.279		0.464
-,-					(71.23)	(70.43)		(52.90)
$Ctr. \times Ind. FE$	N	N	N	N	N	N	N	Y
Month FE	N	N	N	N	N	N	Y	Y
${ m Adj} ext{-}{ m R}^2$	0.031	0.245	0.011	0.244	0.483	0.483	0.013	0.264
N	189,750	189,750	189,750	189,750	189,748	189,748	189,750	189,748

FX exposure of country industries

Panel A. Using value-weighted country-industry returns

	8	~		ū				
				R	c,i,t			
$FX_{c,t}^{USD}$	0.425	-0.072				-0.026	0.003	0.016
	(73.02)	(-12.59)				(-4.36)	(0.03)	(1.64)
$FX_{c,t}^{EX}$, ,	` ′	-0.335	-0.246	-0.197	-0.196	-0.278	-0.214
			(-4.85)	(-4.43)	(-3.96)	(-3.94)	(-4.32)	(-4.38)
$FX_{c,t}^{IM}$			2.649	0.457	0.198	0.377	0.551	0.242
C, <i>t</i>			(36.10)	(7.76)	(3.56)	(5.46)	(5.83)	(3.07)
$R_{WLD,t}$		0.839	` ′	0.814				
== ,-		(231.40)		(241.91)				
$R_{US,t}$,		, ,				
$R_{c,t}$					0.668	0.668		0.673
					(242.39)	(242.62)		(225.92)
$R_{i,t}^{USD}$					0.276	0.279		0.464
ι,ι					(71.23)	(70.43)		(52.90)
Ctr. \times Ind. FE	N	N	N	N	N	N	N	Y
Month FE	N	N	N	N	N	N	Y	Y
$Adj-R^2$	0.031	0.245	0.011	0.244	0.483	0.483	0.013	0.264
N	189,750	189,750	189,750				189,750	189,748

Tradable vs. Non-Tradable Sectors

- ▷ Effects possibly stronger in manufacturing (tradable sector).
- > Service sectors may show weaker or insignificant effects.

Panel B. non-tradable sectors (N=68,436) Panel A.: manufacturing sector (N=11,468) $R_{c,i,t}$ $R_{c.i.t}$ $FX_{c,t}^{USD}$ -0.165-0.315-0.088-0.253-0.254-0.319(-9.01)(-11.59) (-11.49)(-8.50)(-17.31) (-17.24) $FX_{c,t}^{EX}$ -1.903-0.954-0.991-1.960-1.447-1.113(-6.22)(-2.94)(-3.06)(-2.18)(-1.62)(-1.40) $FX_{c,t}^{IM}$ 1.734 2.224 2.290 0.5302.607 2.666 (5.31)(3.80)(13.90)(6.87)(7.08)(13.99)0.8330.8270.7890.846 0.8450.8640.8800.879 R_{WLD} t (70.70)(72.35)(71.18)(71.32)(132.55)(137.18)(133.82)(134.01) $Ctr \times Ind FE$ N N N Y N N N Month FE Ν Ν Ν Ν N Ν N Ν Adj-R² 0.3210.3270.326 0.2280.2270.2310.2290.319

Currency Return Volatility and Returns

- ▶ Firms are exposed to currency risk via both import and export channels.
- **Question:** Are these risks priced in the cross-section?
- ▶ We examine this using portfolio sorts based on:
 - Export volatility
 - Import volatility
 - USD volatility

▶ Portfolios sorted on trade-partner FX volatility show systematic return differences.

Panel A	Country	industries	sorted by	v evport	volatility

	Low	Port 2	Port 3	Port 4	Port 5	Port 6	Port 7	Port 8	Port 9	High	High-Low
$R_{c,i,t}^{USD,VW}$	0.51%	0.49%	0.44%	0.51%	0.56%	0.67%	0.70%	0.54%	0.68%	0.97%	0.45%
	(1.65)	(1.62)	(1.72)	(1.81)	(1.84)	(2.34)	(2.62)	(2.07)	(2.62)	(3.31)	(3.35)
$R_{c,i,t}^{USD,EW}$	0.97%	0.93%	1.08%	1.11%	1.00%	1.11%	1.13%	1.13%	1.18%	1.30%	0.33%
	(3.13)	(3.07)	(3.72)	(3.88)	(3.32)	(3.83)	(3.81)	(3.77)	(4.07)	(4.01)	(3.14)
ICAPM α^{VW}	-0.20%	-0.30%	-0.25%	-0.14%	-0.21%	-0.13%	0.07%	-0.20%	-0.02%	0.28%	0.47%
	(-1.01)	(-1.65)	(-1.58)	(-0.86)	(-1.15)	(-0.72)	(0.42)	(-1.36)	(-0.16)	(1.92)	(2.82)
ICAPM α^{EW}	0.06%	0.11%	0.21%	0.38%	0.17%	0.28%	0.26%	0.26%	0.35%	0.45%	0.38%
	(0.36)	(0.68)	(1.26)	(2.41)	(1.04)	(1.78)	(1.57)	(1.60)	(2.32)	(2.46)	(3.87)

Panel B. Country industries sorted by import volatility

	Low	Port 2	Port 3	Port 4	Port 5	Port 6	Port 7	Port 8	Port 9	High	High-Low
$R_{c,i,t}^{USD,VW}$	0.53%	0.56%	0.49%	0.43%	0.71%	0.74%	0.85%	0.86%	0.81%	0.93%	0.39%
	(1.64)	(1.95)	(1.76)	(1.63)	(2.58)	(2.75)	(3.11)	(3.19)	(2.89)	(2.84)	(1.65)
$R_{c,i,t}^{USD,EW}$	0.82%	1.01%	1.00%	0.97%	1.13%	1.12%	1.16%	1.19%	1.18%	1.35%	0.54%
	(2.64)	(3.30)	(3.37)	(3.39)	(3.84)	(3.83)	(3.93)	(3.95)	(3.71)	(3.88)	(2.68)
ICAPM α^{VW}	-0.40%	-0.18%	-0.26%	-0.29%	-0.01%	0.01%	0.20%	0.18%	0.08%	0.24%	0.65%
	(-1.70)	(-0.99)	(-1.52)	(-1.81)	(-0.06)	(0.06)	(1.38)	(1.28)	(0.59)	(1.39)	(2.63)
ICAPM α^{EW}	-0.02%	0.22%	0.24%	0.16%	0.29%	0.27%	0.35%	0.38%	0.31%	0.40%	0.42%
	(-0.09)	(1.17)	(1.40)	(1.04)	(1.83)	(1.74)	(2.15)	(2.26)	(1.74)	(1.95)	(2.15)

Introduction & Motivation

> Portfolios sorted by USD-based volatility do not exhibit consistent return patterns.

Data

Devel C. Country industries control by UCD board actions collectives

Panel C. Country industries sorted by USD-based return volatility											
	Low	Port 2	Port 3	Port 4	Port 5	Port 6	Port 7	Port 8	Port 9	High	$_{ m High-Low}$
$R_{c,i,t}^{USD,VW}$	0.68%	0.67%	0.62%	1.05%	0.92%	0.87%	0.74%	0.74%	0.93%	1.08%	0.40%
	(2.00)	(2.10)	(1.99)	(3.20)	(2.78)	(2.71)	(2.38)	(2.28)	(2.60)	(2.70)	(1.14)
$R_{c,i,t}^{USD,EW}$	1.07%	1.01%	1.01%	1.01%	0.91%	1.26%	1.05%	1.08%	1.15%	1.37%	0.30%
	(3.56)	(3.07)	(3.12)	(3.12)	(2.77)	(3.77)	(3.24)	(3.27)	(3.49)	(3.35)	(0.93)
ICAPM α^{VW}	0.02%	0.03%	-0.11%	0.29%	0.21%	0.07%	-0.22%	-0.12%	0.02%	0.13%	0.10%
	(0.08)	(0.17)	(-0.58)	(1.39)	(0.83)	(0.34)	(-1.09)	(-0.53)	(0.09)	(0.48)	(0.27)
ICAPM α^{EW}	0.34%	0.35%	0.14%	0.29%	0.36%	0.33%	0.19%	0.26%	0.31%	0.18%	-0.16%
	(1.67)	(1.65)	(0.66)	(1.34)	(1.46)	(1.46)	(0.79)	(1.10)	(1.37)	(0.68)	(-0.54)

Volatility and Pricing

Introduction & Motivation

▶ We also consider a panel regression:

$$R_{c,i,t+1} = \alpha_{c,i} + \beta_{c,i}\sigma_{c,i,t}^{EX} + \gamma_{c,i}\sigma_{c,i,t}^{IM} + FE_{c,i,t} + \epsilon_{c,i,t+1}$$

		Leading	month rav	v returns			Leading	month rav	returns	
Export volatility	0.0004 (6.79)		0.0003 (4.62)	0.0002 (3.90)	0.0004 (4.03)	0.0005 (6.76)		0.0003 (4.44)	0.0003 (4.03)	0.0004
Import volatility		0.0015 (6.64)	0.0012 (4.74)	0.0017 (4.91)	0.0012 (4.20)		0.0019 (7.59)	0.0015 (5.64)	0.0019 (5.44)	0.0016 (5.61)
Month FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Country FE	N	N	N	Y	N	N	N	N	Y	N
Industry FE	N	N	N	N	Y	N	N	N	N	Y
$Adj-R^2$	-0.001	-0.001	-0.001	0.000	-0.001	-0.001	-0.001	-0.001	0.001	-0.001
N	189,750	189,750	189,750	189,750	189,750	189,750	189,750	189,750	189,750	189,750

From Industry to Country-Level Evidence

- ▷ So far, we've shown that stock returns respond to exchange rate movements when measured relative to a firm's trade partners.
- These effects were strongest at the country-industry level, particularly in tradable sectors.
- Next, we test whether similar relationships hold at the aggregate country level.
- We test this by aggregating country-industry level trade and IMF data

Country-Level Regressions

Panel A. input-output trade database (N=11,549)

	De	pendent v	rariable: R	c,t
$FX_{c,t}^{USD}$	-0.073			-0.066
	(-3.98)			(-1.56)
$FX_{c,t}^{EX}$		-2.988	-2.988	-1.815
-,-		(-4.55)	(-4.55)	(-2.93)
$FX_{c,t}^{IM}$		3.528	3.593	2.875
0,0		(5.08)	(5.18)	(4.28)
$R_{WLD,t}$	0.944	0.918	0.918	
	(81.26)	(84.88)	(85.02)	
Country FE	N	N	Y	Y
Month FE	N	N	N	Y
$Adj-R^2$	0.396	0.396	0.395	-0.029

D. . . 1 D. DOTE + . . 1 - 1 - 4 - 5 - . . IME /N. 10 000

Panel B. DC	Panel B. DOTS trade data from IMF (N=12,890)								
	Ι	Dependent	variable:	$R_{c,t}$					
$FX_{c,t}^{USD}$	-0.100			0.011					
	(-5.86)			(0.20)					
$FX_{c,t}^{EX}$		-0.627	-0.654	-0.234					
,		(-4.30)	(-4.50)	(-1.65)					
$FX_{c,t}^{IM}$		0.689	0.727	0.292					
,		(4.73)	(4.99)	(2.04)					
$R_{WLD,t}$	0.920	0.891	0.891						
	(82.68)	(85.16)	(85.33)						
Country FE	N	N	Y	Y					
Month FE	N	N	N	Y					
$\mathrm{Adj}\text{-}\mathrm{R}^2$	0.377	0.376	0.376	-0.033					

USD Invoicing Interaction

- ▷ Interactive regression considered in panel data:

$$\begin{split} R_{c,t} &= \alpha_c + \beta_c F X_{c,t}^{\textit{USD}} + \gamma_c F X_{c,t}^{\textit{EX}} + \delta_c F X_{c,t}^{\textit{IM}} \\ &+ \eta_c F X_{c,t}^{\textit{EX}} \times \textit{Invoice}_{c,t}^{\textit{USD}} + \zeta_c F X_{c,t}^{\textit{IM}} \times \textit{Invoice}_{c,t}^{\textit{USD}} + \epsilon_{c,t} \end{split}$$

- η > 0: The negative effect of export appreciation is attenuated by USD invoicing.
- $\zeta <$ 0: The positive effect of import appreciation is attenuated by USD invoicing.

Data

Panel A. Sample using input-output database (N=9,449)

			1	$R_{c,t}$
$FX_{c,t}^{EX}$	-17.731	-21.830	-17.646	-21.759
		(-10.13)	(-8.17)	(-10.10)
$FX_{c,t}^{EX} \times Invoice_{c,t}^{USD}$	0.271	0.292	0.269	0.290
	(8.54)		(8.47)	(9.27)
$FX_{c,t}^{IM}$	17.791	16.708	17.710	16.608
,		(7.51)	(7.94)	(7.47)
$FX_{c,t}^{IM} \times Invoice_{c,t}^{USD}$	-0.219	-0.235	-0.216	-0.231
	(-6.39)	(-6.93)	(-6.30)	(-6.82)
$Invoice_{c,t}^{USD}$	0.000	0.000	0.000	0.000
	(1.62)	(1.58)	(-1.65)	(-1.47)
$FX_{c,t}^{USD}$		0.599		0.602
		(17.58)		(17.69)
Country FE	N	N	Y	Y
$\mathrm{Adj}\text{-}\mathrm{R}^2$	0.026	0.058	0.024	0.056

Panel B. Sample using IMF DOTS database (N=10.451)

Tanci D. Bampic asin	8 mm D	JID data	oube (11—.	10, 101)
			I	$R_{c,t}$
$FX_{c,t}^{EX}$	-1.460	-2.555	-1.479	-2.575
	(-3.48)	(-5.98)	(-3.52)	(-6.02)
$FX_{c,t}^{EX} \times Invoice_{c,t}^{USL}$	0.037	0.042	0.037	0.041
-,-	(4.51)	(5.13)	(4.48)	(5.11)
$FX_{c,t}^{IM}$	1.369	1.536	1.396	1.563
	(3.27)	(3.66)	(3.33)	(3.72)
$FX_{c,t}^{IM} \times Invoice_{c,t}^{USD}$	-0.030	-0.030	-0.030	-0.029
	(-3.65)	(-3.67)	(-3.61)	(-3.64)
$Invoice_{c,t}^{USD}$	0.000	0.000	0.000	0.000
	(1.32)	(1.11)	(-2.15)	(-2.07)
$FX_{c,t}^{USD}$		0.522		0.520
-,-		(14.65)		(14.65)
Country FE	N	N	Y	Y
$Adj-R^2$	0.016	0.038	0.014	0.036

Conclusion and Contributions

- ▶ Trade-weighted currency measures estimated separately for import and export partners:
 - Capture currency movements relative to trade partners
- ▶ Main Findings:
 - Appreciation vs. export partners → lower stock returns
 - ullet Appreciation vs. **import partners** o higher stock returns
 - Results are robust across specifications and data levels
- **▷** Contribution:
 - USD invoicing reduces firm-level risk as predicted by the model of Doepke and Schneider (EM 2017)
 - Stock returns react to changes in FX values as predicted by economic theory.