Моделирование портфеля ценных бумаг

Кирилл Захаров

СПбГЭУ

Постановка задачи

 $x=(x_1,...,x_n)\in\mathbb{R}^n; r=(r_1,...,r_n)\in\mathbb{R}^n; l=(1,...,1)\in\mathbb{R}^n$ Рассмотрим следующую квадратичную функцию

$$f(X) = \sum_{i=1}^{n} c_i x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{ij} x_i x_j$$
 (1)

$$f(X) = rx^{T} + \frac{1}{2}x\Sigma x^{T} \tag{2}$$

 Σ - положительно полуопределенная матрица.

Постановка задачи

Определение

Портфель называется эффективным по дисперсии, если для фиксированного дохода портфеля r_p , не существует портфеля с меньшей дисперсией.

Определение

Портфель называется эффективным по доходности, если для фиксированной дисперсии портфеля σ_p^2 , не существует портфеля с большим доходом.

Постановка задачи

Для получения максимального дохода, будем решать следующую оптимизационную задачу

$$\max_{x \in \mathbb{R}^n} \left\{ r \cdot x^T \mid l \cdot x^T = 1; x \Sigma x^T \le \tilde{\sigma}_p; 0 \le x_i \le 1 \right\}$$
 (3)

А для минимизации риска

$$\min_{x \in \mathbb{R}^n} \left\{ x \Sigma x^T \mid l \cdot x^T = 1; r \cdot x^T \ge \tilde{r}_p; 0 \le x_i \le 1 \right\}$$
 (4)

Пусть t - неотрицательный параметр. Будем решать следующую задачу

$$\min_{x \in \mathbb{R}^n} \left\{ -t \cdot r \cdot x^T + \frac{1}{2} x \Sigma x^T \mid l \cdot x^T = 1; 0 \le x_i \le 1 \right\}$$
 (5)

Определение

Портфель называется параметрически-эффективным, если он является оптимальным решением задачи (5) для некоторого неотрицательного параметра t.

Теорема

Оптимальными условиями для квадратичной функции являются: $Ax_0 = b$ и существование вектора u, такого что $-\nabla f(x_0) = uA^T$.

Тогда получаем $t \cdot r - \Sigma x^T = u \cdot l^T \wedge l \cdot x^T = 1$. Решаем по х.

$$x^T = -u\Sigma^{-1}l^T + t\Sigma^{-1}r^T \tag{6}$$

$$l \cdot x^T = -u \cdot l\Sigma^{-1}l^T + t \cdot l\Sigma^{-1}r^T = 1 \tag{7}$$

$$u = \frac{-1}{l\Sigma^{-1}l^T} + t\frac{l\Sigma^{-1}r^T}{l\Sigma^{-1}l^T}$$
(8)

Подставим найденный вектор u в уравнение (6).

$$x^{T} \equiv x^{T}(t) = \frac{\Sigma^{-1}l^{T}}{l\Sigma^{-1}l^{T}} - \Sigma^{-1}l^{T} \cdot t \frac{l\Sigma^{-1}r^{T}}{l\Sigma^{-1}l^{T}} + t \cdot \Sigma^{-1}r^{T} =$$

$$= \frac{\Sigma^{-1}l^{T}}{l\Sigma^{-1}l^{T}} + t \left(\Sigma^{-1}r^{T} - \Sigma^{-1}l^{T} \cdot t \frac{l\Sigma^{-1}r^{T}}{l\Sigma^{-1}l^{T}}\right)$$
(9)

Пусть $h_0 = \frac{\Sigma^{-1}l^T}{l\Sigma^{-1}l^T}, \ h_1 = \Sigma^{-1}r^T - \Sigma^{-1}l^T \cdot t \frac{l\Sigma^{-1}r^T}{l\Sigma^{-1}l^T}.$ Тогда получим следующую зависимость от параметра t.

$$x^{T}(t) = h_0 + th_1 (10)$$

Теперь определим доходность портфеля и риск.

$$r_{p} = r \cdot x^{T}(t) = rh_{0} + rth_{1}$$

$$\sigma_{p}^{2} = (h_{0} + th_{1})^{T} \Sigma (h_{0} + th_{1}) = h_{0}^{T} \Sigma h_{0} + th_{1}^{T} \Sigma h_{0} + th_{0}^{T} \Sigma h_{1} + t^{2} h_{1}^{T} \Sigma h_{1} = h_{0}^{T} \Sigma h_{0} + 2th_{1}^{T} \Sigma h_{0} + t^{2} h_{1}^{T} \Sigma h_{1}$$

$$(12)$$

Введем дополнительные обозначения.

$$\alpha_0 = r \cdot h_0$$

$$\alpha_1 = r \cdot h_1$$

$$\beta_0 = h_0^T \Sigma h_0$$

$$\beta_1 = h_1^T \Sigma h_0$$

$$\beta_2 = h_1^T \Sigma h_1$$
(13)

Тогда получим $r_p = \alpha_0 + t\alpha_1$, $\sigma_p^2 = \beta_0 + 2t\beta_1 + t^2\beta_2$. Можно показать, что $\beta_1 = 0$, $\alpha_1 = \beta_2$. Выразим t.

$$r_p \to : t = \frac{r_p - \alpha_0}{\alpha_1}$$
 (14)

$$\sigma_p^2 \to : \ t^2 = \frac{\sigma_p^2 - \beta_0}{\beta_2} = \frac{\sigma_p^2 - \beta_0}{\alpha_1}$$
 (15)

Возведем в квадрат (14) и приравняем к (15). Получим следующее соотношение, называемое границей эффективности (efficient frontier).

$$\frac{(r_p - \alpha_0)^2}{\alpha_1} = \sigma_p^2 - \beta_0 \tag{16}$$

$$\mathbb{O} = \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix} \in \mathbb{R}^{n}$$

$$\Sigma > 0$$

$$\min_{x \in \mathbb{R}^{n}, x_{n+1}} \left\{ -t \begin{pmatrix} r^{T} & r_{f} \end{pmatrix} \cdot \begin{pmatrix} x^{T} \\ x_{n+1} \end{pmatrix} + \frac{1}{2} \begin{pmatrix} x & x_{n+1} \end{pmatrix} \begin{bmatrix} \sum & \mathbb{O} \\ \mathbb{O}^{T} & 0 \end{bmatrix} \begin{pmatrix} x^{T} \\ x_{n+1} \end{pmatrix} \right\}$$

$$l \cdot x^{T} + x_{n+1} = 1$$

Оптимизационные задачи

Коэффициент Шарпа

$$Sh(x) = \frac{r_p(x) - r_f}{\sigma_p^2(x)} \tag{17}$$

$$\max_{x \in \mathbb{R}^n} \left\{ Sh(x) \mid l \cdot x^T = 1; 0 \le x_i \le 1 \right\}$$

Коэффициент Сортино

$$i = 1, ..., n$$

$$St(x) = \frac{r_p(x) - MAR}{\sum_{i=1}^{n} \min\{(r_i - MAR), 0\}^2}$$
(18)

$$\max_{x \in \mathbb{R}^n} \left\{ St(x) \mid l \cdot x^T = 1; 0 \le x_i \le 1 \right\}$$

Коэффициент Модильяни

$$M2(x) = (r_p(x) - r_f) \frac{\sigma_m}{\sigma_n(x)} + r_f$$
(19)

0 | 1

Многокритериальная задача

$$\begin{cases} f_1(x) = r \cdot x^T \to \max_x \\ f_2(x) = Sh(x) \to \max_x \\ f_3(x) = -t \cdot r \cdot x^T + \frac{1}{2}x\Sigma x^T \to \min_x \\ l \cdot x^T = 1 \\ 0 \le x_i \le 1 \end{cases}$$
 (20)

. 17

Модель

Рис.1 - Эффективная граница

Модель без ребалансировки

```
q^i - количество ценных бумаг актива i \Delta_{ij}=q^i(p^i_{s_j}-p^i_{b_j});\ i=1,...,n;j=1,...,k - доход за период j актива i t_0 - начальный период m - число ценных бумаг в валюте 1 \xi - курс валюты на период j tax - налог на доход fee - комиссия за сделки
```

Модель без ребалансировки

```
q^i - количество ценных бумаг актива i \Delta_{ij}=q^i(p^i_{s_j}-p^i_{b_j});\ i=1,...,n;j=1,...,k - доход за период j актива i t_0 - начальный период m - число ценных бумаг в валюте 1 \xi - курс валюты на период j tax - налог на доход fee - комиссия за сделки
```

Example

$$t_1: \Delta_{i1} = q^i(p_{s_1}^i - p_{b_1}^i), \qquad i = 1, ..., m$$

$$\Delta_{i1} = q^i(p_{s_1}^i - p_{b_1}^i) \cdot \xi, \quad i = m + 1, ..., n$$

$$t_2: \Delta_{i2} = q^i(p_{s_2}^i - p_{b_1}^i)$$

$$t_k: \Delta_{ik} = q^i(p_{s_k}^i - p_{b_1}^i)$$

Модель

Рис.2 - Котировки

Показатели оценки эффективности портфеля

$$\beta_p = \sum_{i=1}^n \beta_i x_i; \quad \beta_i = \frac{cov(r_i, r_m)}{\sigma_{r_m}}$$
 (21)

$$RVol = \frac{r_p - r_f}{\beta_p} \tag{22}$$

	Max return	Max Sharpe ratio	Max Sortino ratio	Min risk	Generalized fun	Generalized free fun	Multi-criteria
Return	3.3%	1.913%	3.296%	0.993%	2.676%	2.585%	2.63%
Risk	1.0%	0.251%	0.95%	0.187%	0.443%	0.41%	0.424%
Return/Risk	3.3	7.622	3.469	5.31	6.041	6.305	6.203
Beta	1.263	0.714	1.263	0.636	0.951	0.916	0.927
Treynor ratio	2.61	2.672	2.606	1.556	2.811	2.819	2.834
M2	0.013	0.026	0.014	0.019	0.021	0.022	0.022

Рис.3 - Показатели эффективности

Модель с ребалансировкой

```
\psi_i(t_j) - предсказанное значение i-го актива в период j N - количество наблюдений временного ряда y_i=(y_1^i,...,y_N^i)
```

Модель с ребалансировкой

 $\psi_i(t_i)$ - предсказанное значение i-го актива в период jN - количество наблюдений временного ряда $y_i = (y_1^i, ..., y_N^i)$

Example

$$t_j: y_i = (y_1^i, ..., y_N^i, \psi_i(t_j))$$

Спасибо за внимание!