Laborator 0×0C

- 1. Reprezentarea linara a instrucțiuniles
- 2. Instrucțiumi de baja ale prosesorului anipe
- 3. Pipelines
- 4. Hazarduni
- 5. Performanta
- 6. Memory Cache

Reprejentarea linara a instructioniles

 $\hat{J_n}$ RISC-V, some devoclire de x 86, toate instrucțiunile sunt audificate pe dimensione fixă, pe 32 life = 4 B = 4 outeți

Avem, in RISC-V, 6 clase de instrucțiuni, R, I, S, B, U, J

R - type

3 1	30	29	28	27	26	25	24	23	22	21	20
{ }	f7	‡ 7	47	‡ 7	‡ 7	f 7	n 2	n2	nι	πZ	ΛZ
19	18	17	16	15	14	13	12	11	10	09	08
nι	ሊ1	አ 1	2.1	n 1	‡3	‡3	‡3	nd	nd	nd	nd
Fo	06	05	04	03	02	01	00				
			en.								

J -	type	im	m [11								
3 1 im			28 im	27 im					22 im		
19	18	17	16	15	14	13	12	11	10	09	08
			nη								
Fo	06	05	04	03	02	01	00				
				et e							

ß	- type	im	m [12	10:5] 7	i.	[h	: 4 1	4]		
3 1 im	30 im		2 8 im			25 im	2 4 ni		22 n1	21	20 12
19 21	18	17	16	15 ni	1 h \$ 3	13		11 im	10 im	09 im	08 im
F0	06 m	05 m	04 m	03 gn	02 m	01 on	00 n				
J -	type	imm	[20	10:1	11	1 13	: 12]				
3 1 im	30 im	2 9 im	28 im	27 im			2 4 im	23 im		2 1 im	20 im
19 im	18 im	17 im		15 im	14 im	13 im	12 im	11 2d	10		08 ~d
FO bx	06 m	05 m	04	03	02 %	01 m	00 m				
U	- Type	ima	n [31 :	12]							
3 1 im	30	2 9 im	28 im	27 im	26 im	25 im	2 4 im	23 in	22 im	2 1 im	20 im
19 im	18 im	17 im	16 im	15 im	1 h	13 im	12 im	11 ~d	10	0 9 Nd	08 ~d
Fo	06 m	05 m	04	03 m	02 %	01 m	00 %				

l'ampui identificate în reprezentare

Ex um plu

add a0, a1, a2

Jtim:

Identif can

Exemple 2

J, tim

Identificam

Instructionale de baja de personelier

all = shift bog al left

rll rd, rs1, 22

=) nd: = no1 44 x52

= 151 + 2 252

060100 461 = 061000

0 l- 000 11 0000 100 42 = 0 L 011 0000 10000

lui rd, imm -> rd = im 44 12

= im * 2¹²

auje rd, imm -> rd = pe + (imm 26 12)

Exemple

Lo PC - program counter Fig PC = 0 x 1000

- pleasa initial de la jera

Exentam auje a0, 0x3 - la finare instructione executatà,

veste a 0 x 4

Cum se executa?

a0 = P(+ (imm 26 12) = 0 x 1000 + (0x3 26 12)

= 0x 1000 + 0x 3000

= 0 x 4 0 6 0

Pipelines

- huram an un provesor à 5 stadis

Fetch (se peia instructumea din memorie) 00 C5 85 3)

Devode (se devodifică would besa pentru a det. re

trelnie escental mai escort) odd a0, a1, a2

Escente (se escentă, folosind UAL)

Memory (citre/sniere în memoria principală)

Write Back (nohour in reg. / nemorie, juntur utilizare de alte instr in viitor)

Hazorduni

- o problema com împiedica procesorul sa execute eficient mestr. in pipeline

- oven hazand de date without structurale

Hajarduni de date

data forwarding: nu astertam na se finalizeze instrucțiunile care datele de care aven revoie, ci folisie valori in termediare

stalling: blocam pipeline-ul penten a aslepta dupa date

out - of - order execution: he postuage ordine de preluose ni de wolf cone (Fetch & Dewde), don celebalte trei un mut reajonal in ordine.

Instrucțiumile ne pur intr- un briffer, purtur ca, în final, nă păstram ordinea

Hajarduri de wrterl

- apar in rituatio de branching - province un stre re instr. sa preia pana un se walneaga wonditio raltului

- re foloseste branch prediction

Hajarduri structurale

- dona non mai multe instr. in cearcia na foloseosco acesa; resurso hardware in acelazi timp

Exercitin:

Aven un procesor (F, D, E, M, WB). Consideram:

hu a0, 0(gt)

add a1, a0, a2

mu a1, 4(gt)

Identij. hazandul de date.

Folosim stalling pt. a rejohra areste hajarduri, adica instr. dependință trebnie sã finalizeze WB pt a intra în procesarea arentâ.

Lore este numaiul total de viduri à con re menta reventa?

hur FDE M WB

add FDSSE M WB

mu FDSSSSE M WB

rospuns: 11 (numarà coloanele)

Performanta

Aven mai multe masuri :

- Throughput vate instr. pot fi finalizate pe unitatea de ling
- Latența timpul total neusan pt. a finaliza o singura
- CPI cicli per instructione m de ciclusi necesari pt a finaliza o instr
- IPC vistandiumi per cicla CPI

Exemple 1

Un program execula un m. egal de instr. onitretie, de aussare de memorie ni an floating points.

O mot onthetica on h cidi, una de acesare de mem. on 5, respectir una de pp are 6 Care ment CPI, IPC ?

 $CP1 = 0.33 * q_{-} \text{ aritm} + 0.33 \text{ ou}_{-} \text{ mem} + 0.33 \cdot f_{p}$ $= 0.33 * h + 0.33 \cdot 5 + 0.33 \cdot 6 = h,95$ $JPC = \frac{1}{cP1} = \frac{1}{h_{1}95} = 0.202$

Exemple 2

IPC = 19 = ...

Pp. va 2011 din vojeni avem instr. onitretice, in 501.
door ausare de nem, ion in set fp.

O unte autre ou laider, don recenté à averance mplimentaire de men

O an de mem. on 3 wick

O and for an S with

Care est person auto? (CPI, JPC)

CPJ = 0.2 " on_onitr + 0.5 " acc_ mem + 0.3 * fn = 0.2 * (1 cide cuite + 3 cide are. nem) + 0.5 * 3 cide + 0.3 * 5 cide = 0.2 * h + 0.5 * 3 + 0.3 * 5 = 3.8

Memoria cache

- este un tip de nem rapida, util pl. a reste performanta procesorului
- ne menteste de acresarea mem. RAM
- este amplacato in apropiera puresone lui
- pools je soget à men. intermediano

Ne meneragé un majon odresele in cache
Aven 3 tijuni de majone:

- mapone directo: feron Mor din nem. principalò prote fi mapot door mti-o locate sperificò in coche
- mapore avoiativé: viu blor din mem. principalé poète fi mapot in vive bratje din cache
- majore 2- way set avoidive cache-ul est imported in seturi,

 si un blor die sem principalé poets f. majort ûtre un subset

 sperific de loratir à cache

Ex unple :

Pn. va avem un sistem de colcul un o memorie principalo de 2¹⁸ bytes si un cache de 16 KB.

Memoria estr împorțità în blouni de 32 bytes.

Cote blown met a men, juncipale? Cate blows ment a men. cache?

m blown mm. pinc. = 2¹⁸ / 2³ = 2¹¹ blown

m blown di coch = 16 KB / 32 bytes = 2⁴. 2¹⁰ / 2⁵

= 2⁹ blown

Ex um plu 2

A vem a memorie principala de 2¹⁷ bytes, ion casa alaba umi llor solo de 129 bytes

Det me de blown die men, respective me. de blown die sache?

Juti-o selem i de mapone directo, unde se ve mapa 0 x AIFO?

<u>Jol</u>:

m. blown mm pincipala = $2^{18}/2^{\frac{7}{4}} = 2^{11}$ blown in mem p.

n. blown nem. cache = 8KB/1/2P bytes = $2^3 \cdot 2^{10}/1/2^{\frac{4}{4}}$ $= 2^6$ blown cache

0 x A1 7 0 = 0 6 10 10 0001 1111 0000

A vem de aflat um. if om atie

- offset - n obtine din dimensionea blocului
- da ca blocul este 2ⁿ, offset ul mut
ultimii n liti din odesa

In sazul mostun, blocul est 128 hyter => 23
=> mud ultimi 7 htj: die oderse

Ob 111 0000

- index - re obtine din dimminus conte-ului, din m de

- dans am cache 2 = 1 umatorii m hifi, , de la despte la stânge

In soul moster, over 26 blocus à coule =>
umo teris 6 lifi

06 0000 11

- tay - u ramând 0 h 0 1 0 1

off set = $0 + 1110000 = 0 \times 70$ index = $0 + 00 + 0011 = 0 \times 3$ tag = $0 + 101 = 0 \times 5$

Advisa 0 x A 1 7 0 ne ma jeogé la linic (index) la off retul (ofset)