Kapitel 3 – Kombinatorische Logik

- 1. Kombinatorische Schaltkreise
- 2. Boolesche Algebren
- 3. Boolesche Ausdrücke, Normalformen, zweistufige Synthese
- 4. Berechnung eines Minimalpolynoms
 - 4.1 Karnaugh / Quine-McCluskey
 - 4.2 Überdeckungsproblem
- 5. Arithmetische Schaltungen

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Armin Biere

Institut für Informatik Sommersemester 2024

Billigste Überdeckung der markierten Ecken

Wir suchen ein sogenanntes Minimalpolynom, das heißt ein Polynom mit minimalen Kosten.

Definition

Ein Minimalpolynom p einer Booleschen Funktion f ist ein Polynom von f mit minimalen Kosten, das heißt mit der Eigenschaft $cost(p) \le cost(p')$ für alle Polynome p' von f.

Quine's Primimplikantensatz

Satz

Jedes Minimalpolynom p einer Booleschen Funktion f besteht ausschließlich aus Primimplikanten von f.

Beweis:

- Nehme an, dass p einen nicht primen Implikanten m von f enthält.
- m wird durch zumindest einen echten Primimplikanten m' von f überdeckt, ist also in m' enthalten.
- Es gilt demnach cost(m') < cost(m).
- Ersetzt man in p den Implikanten m durch den Primimplikanten m', so erhält man ein Polynom p', das ein Polynom von f ist mit cost(p') < cost(p) (also mit strikt besseren Kosten).
- **Widerspruch** dazu, dass p ein Minimalpolynom ist.

Berechnung von Implikanten

Lemma 1

Ist m ein Implikant von f, so auch $m \cdot x$ und $m \cdot x'$ für jede Variable x, die in m weder als positives, noch als negatives Literal vorkommt.

Beweis:

- $\mathbf{m} \cdot \mathbf{x}$ und $\mathbf{m} \cdot \mathbf{x}'$ sind Teilwürfel des Würfels \mathbf{m} .
- Wenn Ecken von m markiert, dann auch Ecken von $m \cdot x$ und $m \cdot x'$.

Lemma 2

Sind $m \cdot x$ und $m \cdot x'$ Implikanten von f, so auch m.

Beweis:

Charakterisierung von Implikanten

Satz

Ein Monom m ist genau dann ein Implikant von f, wenn entweder

- m ein Minterm von f ist, oder
- $m \cdot x$ und $m \cdot x'$ Implikanten von f sind für eine Variable x, die nicht in m vorkommt.
- Äquivalente Schreibweise:

```
m \in Implikant(f)

\Leftrightarrow (m \in Minterm(f)) \lor (m \cdot x, m \cdot x' \in Implikant(f))
```

Beweis folgt unmittelbar aus Lemma 1 und Lemma 2.

Berechnung eines Minimalpolynoms

- Verfahren von Quine-McCluskey zur Berechnung aller Primimplikanten.
 - Idee: Berechne sogar alle Implikanten.
 - Dann ist auch klar, welche Primimplikanten sind.

- Verfahren zur Lösung des "Überdeckungsproblems".
 - Treffe unter den Primimplikanten eine geeignete Auswahl,
 - so dass die Disjunktion der ausgewählten Primimplikanten ein Polynom für f ist
 - und minimale Kosten hat.

Quine vs Karnaugh-Veitch

Die zwei Verfahren berechnen das selbe, aber anders: Quine ist besser für den Komputer und Karnaugh-Veitch funktioniert weil Menschen Motive erkenne.

4 Variablen

Funktion wird als Tabelle dargestellt.

Gray-Code für die Einträge: nur eine Unterscheidung von einer

Zeiler zur nächsten.

	00	01	01	11	10
00					
01					
11					
10					

4 Variablen

Eigentlich Torus (wikipedia bild)

0000	0100	1100	1000
0001	0101	1101	1001
0011	0111	1111	1011
0010	0110	1110	1010

Gibt eine Bedeckung die nicht vollständig bedeckt ist:

■ 4 × 4? monom: 0 literal

 \blacksquare 4 \times 2 oder 2 \times 4 ? monom: 1 literal

■ 2×2? monom: 2 literal

 \blacksquare 2 × 1 oder 1 × 2? monom: 3 literal

■ 1 × 1? monom: 4 literal

(nicht vergessen: es ist ein Torus!)

Für jedes: Monom schreiben!

Bedeckung 4×4

Bedeckung 4×2

Bedeckung 2×2

Es ist viel leichter zu erkennen als alle zu zeichnen:

		x_3x_4				
		00	01	11	10	
<i>x</i> ₁ <i>x</i> ₂	00	1	1	0	1	
	01	1	1	0	1	
	11	1	1	1	0	
	10	1	1	1	0	

Also:
$$f = \neg x_3 + \neg x_1 \neg x_4 + x_1 x_4$$

Verfahren von Quine: Der Algorithmus

Prime implicants function **Quine** $(f : \mathbb{B}^n \to \mathbb{B})$

```
begin
```

```
L_0 := Minterm(f);
   i := 0:
   Prim(f) := \emptyset
    while (L_i \neq \emptyset) and (i < n) do
       // L_i enthält alle Implikanten von f der Länge n-i.
       L_{i+1} := \{ m \mid m \cdot x \text{ und } m \cdot x' \text{ sind in } L_i \text{ für ein } x \};
      Prim(f) := Prim(f) \cup
          \{m' \mid m' \in L_i \text{ und } m' \text{ wird von keinem } g \in L_{i+1} \text{ überdeckt}\};
      i := i + 1:
    end while;
    return Prim(f) \cup L_i;
end;
```

Verbesserung durch McCluskey

- Vergleiche nur Monome untereinander
 - welche die gleichen Variablen enthalten und
 - bei denen sich die Anzahl der positiven Literale nur um 1 unterscheidet.
- Dies wird erreicht durch:
 - Partitionierung von L_i in Klassen L_i^M , mit $M \subseteq \{x_1, \dots, x_n\}$ und |M| = n i.
 - L_i^M enthält die Implikanten aus L_i, deren Literale alle aus M sind.
 - Anordnung der Monome in L_i^M gemäß der Anzahl der positiven Literale.

Beispiel Quine-McCluskey

Vergleiche im Folgenden nur Monome aus benachbarten Blöcken!

Beispiel Quine-McCluskey: Bestimmung von L_1 (1/4)

$$L_1^{\{x_1,x_2,x_3\}}$$
:

Beispiel Quine-McCluskey: Bestimmung von L_1 (2/4)

$$L_{1}^{\{x_{1},x_{2},x_{3}\}}:$$
0000-
$$L_{1}^{\{x_{1},x_{3},x_{4}\}}:$$
0-00

Beispiel Quine-McCluskey: Bestimmung von L_1 (3/4)

$$L_{1}^{\{X_{1},X_{2},X_{3}\}}:$$

$$000-$$

$$L_{1}^{\{X_{1},X_{3},X_{4}\}}:$$

$$\frac{0-00}{0-11}$$

Beispiel Quine-McCluskey: Bestimmung von L_1 (4/4)

$$L_{1}^{\{X_{1},X_{3},X_{4}\}}:$$

$$\frac{0-00}{0-11}$$

 $L_1^{\{x_1,x_2,x_3\}}$:

000-

Nicht kürzbar, da nicht Ecken der gleichen Kante.

Beispiel Quine-McCluskey: Alle bestimmten Mengen L_1

$$L_{1}^{\{x_{1},x_{2},x_{4}\}}: L_{1}^{\{x_{1},x_{2},x_{3}\}}:$$

$$\begin{array}{ccc}
0 & 0 & -1 & & & 0 & 0 & -\\
1 & 0 & -0 & & & & 0 & 1 & -\\
\hline
0 & 1 & -1 & & & & & 1 & 0 & -\\
1 & 1 & -0 & & & & & 1 & 1 & 0 & -\\
\end{array}$$

$$L_{1}^{\{x_{2},x_{3},x_{4}\}}: L_{1}^{\{x_{1},x_{3},x_{4}\}}:$$

$$\begin{array}{ccc} -000 \\ -001 \\ -100 \\ \hline -101 \end{array} & \begin{array}{ccc} 0-00 \\ \hline 0-01 \\ \hline 1-00 \\ \hline 0-11 \\ \hline 1-01 \\ \hline 1-10 \end{array}$$

Alle Minterme von f sind Eckpunkte von Kanten, die Implikanten sind: $Prim(f) = \emptyset$

Beispiel Quine-McCluskey: Bestimmung von L_2 (1/2)

Alle Implikanten aus $L_1^{\{x_1,x_2,x_i\}}$ sind Kanten von Flächen, die Implikanten sind: $Prim(f) = \emptyset$

Beispiel Quine-McCluskey: Bestimmung von L_2 (2/2)

$$L_{1}^{\{x_{1},x_{2},x_{4}\}}: \qquad L_{1}^{\{x_{1},x_{2},x_{3}\}}:$$

$$\begin{array}{ccc}
0 & 0 & -1 & & 0 & 0 & -1 \\
1 & 0 & -1 & & 0 & 0 & -1 \\
\hline
0 & 1 & -1 & & 1 & 0 & -1 \\
1 & 1 & -0 & & 1 & 1 & 0 & -1
\end{array}$$

$$L_{1}^{\{X_{2},X_{3},X_{4}\}}: L_{1}^{\{X_{1},X_{3},X_{4}\}}:$$

$$\begin{array}{ccc} -000 \\ \hline -001 \\ \hline -100 \\ \hline -101 \\ \end{array} & \begin{array}{cccc} 0-00 \\ \hline 0-01 \\ \hline 1-00 \\ \hline 0-11 \\ \hline 1-01 \\ \end{array}$$

Alle Implikanten aus L_1^M sind Kanten von Flächen, die Implikanten sind: $Prim(f) = \emptyset$

Beispiel Quine-McCluskey: Bestimmung von L_3 (1/2)

$$L_{2}^{\{x_{1},x_{2}\}}: \qquad L_{2}^{\{x_{1},x_{3}\}}: \\ L_{2}^{\{x_{1},x_{4}\}}: \\ U_{2}^{\{x_{1},x_{4}\}}: \\ U_{2}^{\{x_{1},x_{4}\}}: \\ U_{2}^{\{x_{2},x_{3}\}}: \\ U_{2}^{\{x_{2},x_{4}\}}: \\ U_{2}^{\{x_{2},x_{4}$$

Die markierten Implikanten-Flächen sind nicht Rand eines 3-dim. Implikanten. Sie sind also prim! $\Rightarrow Prim(f) = \{x'_1x_4, x_1x'_4\}$

Beispiel Quine-McCluskey: Bestimmung von L_3 (2/2)

$$L_{2}^{\{x_{1},x_{2}\}}: \qquad L_{2}^{\{x_{1},x_{3}\}}: \\ & \underbrace{\begin{array}{c} 0 - 0 - \\ 1 - 0 - \end{array}}_{1 - 0 - 1} \\ 1 - - 0 & \underbrace{\begin{array}{c} L_{2}^{\{x_{2},x_{3}\}}: \\ - 0 0 - \\ - 1 0 - \end{array}}_{2} \\ L_{2}^{\{x_{2},x_{4}\}}: \qquad \underbrace{\begin{array}{c} L_{2}^{\{x_{3},x_{4}\}}: \\ L_{2}^{\{x_{3},x_{4}\}}: \\ - - 0 0 \end{array}}_{2} \\ \end{array}$$

Die markierten Implikanten-Flächen sind Rand eines 3-dimensionalen Implikanten. Sie sind also nicht prim! $\Rightarrow Prim(f) = \{x_1, x_4, x_1, x_4'\}$

Beispiel Quine-McCluskey: Ende

$$L_3^{\{x_1\}}$$
: $L_3^{\{x_2\}}$:

$$L_3^{\{x_3\}}$$
: $L_3^{\{x_4\}}$:

$$Prim(f) = \{x_1'x_4, x_1x_4'\}$$

$$\Rightarrow Prim(f) = \{x_1'x_4, x_1x_4', x_3'\}$$

$$p_{complete}(f) = x_1'x_4 + x_1x_4' + x_3'$$

Korrektheit von Quine-McCluskey (1/2)

Prime implicants function **Quine** ($f : \mathbb{B}^n \to \mathbb{B}$)

```
begin
```

```
L_0 := Minterm(f);
   i := 0:
   Prim(f) := \emptyset
    while (L_i \neq \emptyset) and (i < n) do
       // L_i enthält alle Implikanten von f der Länge n-i.
       L_{i+1} := \{ m \mid m \cdot x \text{ und } m \cdot x' \text{ sind in } L_i \text{ für ein } x \};
      Prim(f) := Prim(f) \cup
          \{m' \mid m' \in L_i \text{ und } m' \text{ wird von keinem } g \in L_{i+1} \text{ überdeckt}\};
      i := i + 1:
    end while;
    return Prim(f) \cup L_i;
end;
```

Korrektheit von Quine-McCluskey (2/2)

Satz

Für alle i = 0, 1, ..., n gilt:

- \blacksquare L_i enthält nur Monome mit n-i Literalen.
- \blacksquare L_i enthält genau die Implikanten von f mit n-i Literalen.
- Nach Iteration i enthält Prim(f) genau die Primimplikanten von f mit mindestens n-i Literalen.

Beweis:

Induktion über i.

- Abbruchbedingung ($L_i = \emptyset$) oder (i = n):
- $L_i = \emptyset$ bedeutet, dass keine Implikanten bei der "Partnersuche" entstanden sind, d.h. L_{i-1} ist vollständig in Prim(f) aufgegangen.
- i = n bedeutet, dass L_n berechnet wurde, es gilt dann $L_n = \emptyset$ oder $L_n = \{1\}$, letzteres bedeutet f ist die Eins-Funktion und $Prim(f) = \{1\}$.

Kosten des Verfahrens

Lemma

Es gibt 3ⁿ verschiedene Monome in *n* Variablen.

Beweis:

Für jedes Monom m und jede der n Variablen x liegt genau eine der drei folgenden Situationen vor:

- \blacksquare *m* enthält weder das positive noch das negative Literal von x.
- m enthält das positive Literal x.
- \blacksquare m enthält das negative Literal x'.

Jedes Monom ist durch diese Beschreibung auch eindeutig bestimmt.

Komplexität des Verfahrens von Quine-McCluskey

Satz

Die Laufzeit des Verfahrens liegt in $O(n^2 \cdot 3^n)$ beziehungsweise in $O(\log^2(N) \cdot N^{\log(3)})$, wobei $N = 2^n$ die Größe der Funktionstabelle ist.

Beweisidee:

Jedes der 3^n Monome wird im Verlauf des Verfahrens mit höchstens n anderen Monomen verglichen.

■ Gegeben sei ein Monom mx. Die Erzeugung von mx' und die Suche nach mx' in L_i ist bei Verwendung geeigneter Datenstrukturen in O(n) durchführbar.

 $O(n^2 \cdot 3^n) = O(\log^2(N) \cdot N^{\log(3)})$ durch Nachrechnen:

$$3^n = (2^{\log_2(3)})^n = (2^n)^{\log_2(3)} = N^{\log_2(3)}$$