Import necessary libraries

```
In [3]: import numpy as np
   import pandas as pd
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   from sklearn.metrics import mean_squared_error
   from sklearn.datasets import load_boston
   import matplotlib.pyplot as plt
```

Load the Boston Housing dataset

```
In [4]:
    boston = load_boston()
    data = pd.DataFrame(boston.data, columns=boston.feature_names)
```

In [14]: data

Out[14]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90

506 rows × 14 columns

```
In [ ]: data['PRICE'] = boston.target
```

Select features and target variable

```
In [17]: X = data.drop('PRICE', axis=1)
y = data['PRICE']
```

1 of 3 03-03-2024, 09:28 pm

Split the data into training and testing sets

```
In [18]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra
```

Create a Linear Regression model

```
In [19]: model = LinearRegression()
```

Train the model

```
In [20]: model.fit(X_train, y_train)
Out[20]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=F alse)
```

Make predictions on the test set

```
In [21]: y_pred = model.predict(X_test)
```

Evaluate the model

```
In [22]: mse = mean_squared_error(y_test, y_pred)
    rmse = np.sqrt(mse)
    print(f'Mean Squared Error: {mse}')
    print(f'Root Mean Squared Error: {rmse}')
```

Mean Squared Error: 24.291119474973538 Root Mean Squared Error: 4.928602182665339

Visualize predictions vs actual values

2 of 3 03-03-2024, 09:28 pm

```
In [23]: plt.scatter(y_test, y_pred)
    plt.xlabel('Actual Prices')
    plt.ylabel('Predicted Prices')
    plt.title('Actual Prices vs Predicted Prices')
    plt.show()
```


In []:

3 of 3 03-03-2024, 09:28 pm