Approximating Kernels with Random Fourier Features

Mathis Rost Tanja Zast

- Dataset is not linear seperable
- Project Data into a Featurespace where Data is linear sperable
- XOR function with noise

XOR Function with Gaussian Noise (Projected in 3D)

$$\phi(x_1, x_2) = (x_1, x_2, x_1 x_2) \in \mathbb{R}^3$$

XOR Function with Gaussian Noise (Projected in 3D)

XOR Function with Gaussian Noise (Projected in 3D)

Kernel SVMs and the Kernel Trick

- Hyperplane can be represented with a vector $w \in \mathcal{H}$
- $-\operatorname{sign}(w^T x_i + b) = y_i$
- Support Vector Machines (SVM) calculate the best possible Hyperplane.
- SVMs can be kernelized with $\phi: X \to \mathcal{H}$
- Resulting Hyperplane: $w^T \phi(z) + b = \langle w, \phi(z) \rangle_{\mathcal{H}} + b$

Kernel SVMs and the Kernel Trick

- Formula for Hyperplane in data-space

$$w^T z + b = \sum_{(x,y)} y \alpha_x x^T z + b$$

Formula for hyperplane in feature-space

$$w^T \phi(z) + b = \langle w, \phi(z) \rangle_{\mathcal{H}} + b = \sum_{x,y} \alpha_x y \phi(x) \phi(z) = \sum_{x,y} \alpha_x y k(z,x) + b$$

Definition of a kernel

Definition 2. Let X be our data set. A function $k: X \times X \to \mathbb{R}$ is called kernel if there exists an Hilbertspace \mathcal{H} and a map $\phi: X \to \mathcal{H}$ such that $\forall x, y \in X$,

$$k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$$
 (3.3)

Kernel Machines and the Kernel Trick

Mercer's Theorem

Mercer's Theorem: A symmetric function k can be expresses as an inner Product, i.e.

$$k(x,y) = \langle \phi(x), \phi(y) \rangle$$
 (3.6)

for some $\phi: X \to \mathcal{H}$ if and only if k is positive semi definite

- We don't need to calculate the mapping $\phi: X \to \mathcal{H}$
- We can calculate decision boundaries with Help of the kernel Matrix
- this saves a lot of time for large dimensional features spaces
- Feature Space could also be infinity

Kernel Matrix

$$K = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix}$$

Decision Boundary (RRE Kernel SVM

Kernel Machines and the Kernel Trick

- Regression can also be kernelized
- Linear regression is implicit calculated in feature space
- This also works with the kernel trick

- optimal regression line in data-space
- $\hat{w} = (X^T X)^{-1} X^T y$
- optimal regression in feature-space
- $\hat{w} = (\Phi^T \Phi)^{-1} \Phi^T y$ with $\Phi = \phi(X)$
- can be calculated with kernel matrix
- $y = w^T \phi(z) = y(\Phi^T \Phi)^{-1} \Phi^T \phi(z) = (\Phi^T \Phi)^{-1} \sum_{x \in X} k(x, z)$

Kernel Machines and the Kernel Trick

- Problem with kernel Machines:

- kernel Methods do not scale very well with large amount of data
- For regression the inverse of the kernel matrix has to be computed
- Kernel matrix will be very large. This can be a Problem for the RAM.

- Solution

- Approximate kernel function
- We need a map $z:X\to \mathbb{K}^M$, also called random feature

$$k(x,y) = \langle \phi(x), \phi(y) \rangle \approx z(x)^T z(y) = \langle z(x), z(y) \rangle$$

Random Fourer Features (RFFs)

- Translations-invariant kernel: $\forall x, y, z \in X \ k(x, y) = k(x z, y z)$.
- RBF-kernel is translations-invariant

$$k(x,y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right)$$

- We can approximate RBF-kernel with $z:x o \expig(iw^Txig)$, and $w\sim \mathcal{N}(0,I_d)$
- Using multiple Features for better approximation

$$\langle z(x), z(y) \rangle = \frac{1}{R} \sum_{r} z_{w_r}(x), z_{w_r}(y)^*$$

Definition 3. We call the map $z : \mathbb{R}^d \to \mathbb{K}^R$ a random fourier feature if it approximates a translations-invariant positive definite kernel k, i.e.

$$\mathbb{E}\left[\langle z(x), z(y)\rangle\right] = k(x-y) = k(x,y) \tag{4.9}$$

Random Fourer Features (RFFs)

Experiments

- Regression with Random Fourier Features approximation
- Classification with Random Fourier Features approximation
- Ensemble Learning with Random Fourier Features

Model Architecture and Hyperparameter

- 2 datasets for regression and 2 datasets for classification
- Using Maxpool Operation for RAM saving and better results
- Using regularization term $\lambda = 1$
- Variance for RBF-kernel $\sigma = 2$

	Dataset	#Entries	#Features
	Avocado	18 200	8
	Wine	1 143	11

Table 5.1.: Dataset Avocado and Wine Quality for Regression

Dataset	#Entries	#Classes
MNIST	70 000	10
Fashion-MNIST	70 000	10

Table 5.2.: Dataset MNIST and Fashion-MNIST for Classification

$$\mathcal{L}(X) = \sum_{x,y \in X \times Y} (w^{T} \phi(x) - y)^{2} + \frac{\lambda}{2} ||w||^{2}$$

Approximating Kernel Regression

Approximating Kernel Support Vector Machine

Comparing to PCA

Noisy Data

- evaluating impact of noise
- p: prob. of each pixel to be uniform random

- testing for p = 0, p = 0.05, p = 0.1, p = 0.2,

p = 0.3 and p = 0.5

Noisy Data

Ensemble Learning

- RFF approximation can be used for ensemble learning
 - Classifiers are "random"
 - Classifiers will produce different Predictions
- Using majority Voting for Combined Classifier

$$V(x) = \max_{y \in Y} (h_1(x), h_2(x), \cdots, h_t(x))$$

Ensemble Learning

Ensemble Learning

Conclusion and Discussion

- Always a trade-off between time and performance
- Still good performance with way less computing time
 - For regression and Classification

- Kernel approximation with RFFs is well suited for ensemble-learning
- Should be compared with other ensemble methods in future work.

Danke für ihre Aufmerksamkeit

Boncher's theorem: A continuous and translations-invariant kernel k(x,y)=k(x-y) is positive definite if and only if $k(\Delta)$ is the Fourier transform of a non-negative measure p(w) i.e.

$$k(\Delta) = \int p(w) \exp(iw\Delta) dw$$

Translations-invariant means that $\forall x, y, z \in X \ k(x, y) = k(x - z, y - z)$. This means that the kernel-function does only depend on the distance between x and y.

$$\langle z(x), z(y) \rangle = \frac{1}{R} \sum_{r} z_{w_r}(x), z_{w_r}(y)^*$$
 (4.7)

It's also possible to show the convergence in probability of the inner product of our approximated features towards the true kernel function, if R is large enough i,e

$$\mathbb{P}\left[\sup_{x,y\in X} |\langle z(x), z(y)\rangle - k(x,y)| \ge \epsilon\right] \xrightarrow{R\to\infty} 0 \tag{4.8}$$

