Г.Л. Бухбиндер

ЗАДАЧИ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное бюджетное образовательное учреждение высшего профессионального образования ОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Ф.М. ДОСТОЕВСКОГО

Г.Л. Бухбиндер

Задачи по теоретической механике

ИЗДАНИЕ ВТОРОЕ, ИСПРАВЛЕННОЕ И ДОПОЛНЕННОЕ

Учебно-методическое пособие (для студентов физического факультета)

УДК 530.1

Задачи по теоретической механике: учебно-методическое пособие / Г.Л. Бухбиндер — Омск: Изд-во Ом. гос. ун-та, 2011. — ??c.

Данное методическое пособие содержит задачи по теоретической механике и механике сплошных сред для решения на практических занятиях, а также для самостоятельной работы студентов. К задачам, отмеченным звездочкой, в разделе "Ответы" даны решения.

Для студентов физических факультетов университетов.

УДК 530.1

Содержание

§1.	Уравнения Лагранжа и законы сохранения	4
$\S 2$.	Интегрирование уравнений движения	9
§3.	Столкновение частиц. Сечение рассеяния	11
$\S 4$.	Малые колебания одномерных систем	12
§5.	Малые колебания систем с несколькими степенями	
	свободы	14
§6.	Канонические уравнения	16
	Уравнение Гамильтона – Якоби	20
	Переменные действие – угол	21
§7.	Движение твердого тела	22
§8.	Механика сплошных сред	29
	Ответы	35
	1. Уравнения Лагранжа и законы сохранения	35
	2. Интегрирование уравнений движения	40
	3. Столкновение частиц	44
	4. Малые колебания одномерных систем	45
	5. Малые колебания систем с несколькими степеня-	
	ми свободы	46
	6. Канонические уравнения	47
	7. Движение твердого тела	51
	8. Механика сплошных сред	55
	Литература	58

§1. Уравнения Лагранжа и законы сохранения

- **1.1.** Найти функцию Лагранжа и уравнение движения плоского математического маятника. Найти закон движения для случая малых отклонений от равновесия (рис. 1).
- **1.2.** Найти функцию Лагранжа двойного плоского маятника (рис. 2).
- 1.3*. Циклоидальный маятник. Частица массы m прикреплена к тонкой, нерастяжимой нити (рис. 3) длины l=4a, второй конец которой прикреплен к точке A циклоиды: $x=a(\varphi+\sin\varphi),$ $y=a(1-\cos\varphi),$ $0\leqslant\varphi\leqslant 2\pi$. При движении частицы в поле силы тяжести в плоскости xy часть нити прилегает к дугам циклоиды. а) Показать, что частица движется по циклоиде

$$x = a(\varphi - \sin \phi), \qquad y = a(\cos \varphi - 1).$$

- б) Записать функцию Лагранжа системы и найти закон движения.
- **1.4.** Показать, что функции Лагранжа $L = L(q,\dot{q},t)$ и L' = L + df(q,t)/dt, где f(q,t) произвольная функция обобщенных координат и времени, приводят к одним и тем же уравнениям Лагранжа

Рис. 1. К задаче 1.1

Рис. 2. К задаче 1.2

 θ

Рис. 3. К задаче 1.3

Рис. 4. К задаче 1.5

- **1.5.** Нерастяжимая нить длины l, к одному концу которой подвешен груз массы m, прикреплена к верхней точке A вертикального диска радиуса R ($R < l/\pi$) (рис. 4). При движении груза в поле силы тяжести нить наматывается на диск. Найти функцию Лагранжа и уравнение движения.
- **1.6.** Найти функцию Лагранжа плоского маятника длины l, массы m, точка подвеса которого:
- а) равномерно движется по вертикальной окружности радиуса a с постоянной частотой γ (рис. 5);
- б) совершает горизонтальные колебания по закону $a\cos\gamma t$;
- в) совершает вертикальные колебания по закону $a\cos\gamma t$.

Рис. 5. К задаче 1.6

- 1.7. Найти функцию Лагранжа плоского маятника с массой m_2 , точка подвеса которого с массой m_1 может совершать движение вдоль горизонтальной оси. Длина маятника l.
- **1.8.** Две точки с массами m_1 и m_2 соединены гладкой нерастяжимой нитью длины l, перекинутой через блок пренебрежимой

массы . Найти функцию Лагранжа и закон движения грузов в поле силы тяжести.

Рис. 6. К задаче 1.9

- 1.9. Найти функцию Лагранжа системы, изображенной на (рис. 6) и находящейся в поле силы тяжести; точка m_2 движется по вертикальной оси, а вся система вращается с постоянной угловой скоростью Ω вокруг этой оси.
- **1.10.** Две точки с массами m_1 и m_2 , соединенные стержнем длины а пренебрежимо малой массы, перемещаются по гладким сторонам неподвижного прямого угла, расположенного в вертикальной плоскости (стороны угла образуют угол

 $rac{1}{4}\pi$ с горизонтом)(рис. 7). Найти Лагранжиан системы .

1.11. Упругая нить длины 2a в ненаправленном состоянии перекинута через два горизонтальных параллельных стержня, расположенных на одном ходов, на расстоянии а друг от друга. Концы нити прилеплены к шарику массы m, совершающему колебания по вертикали (рис. 8). Найти Лагранжиан системы. Нить подчинена закону Γ ука с жесткостью κ .

Рис. 7. К задаче 1.10

- **1.12.** Точка массы m, которая может передвигаться по гладкой горизонтальной прямой, соединена пружиной с неподвижной точкой, находящейся на расстоянии h от прямой. Найти функцию Лагранжа, предполагая, что пружина подчинена закону Гука с жесткостью κ , а ее недеформированная длина есть l_0 .
- **1.13.** Два шарика (массы m_1 и m_2), соединенные пружиной, подчиняющейся закону Гука (жесткость к), движутся по гладкой горизонтальной прямой. Найти Лагранжиан системы и интегралы движения.

1.14. Найти закон движения механической системы с лагранжианом

$$L = \frac{1}{2} \frac{\dot{q}_1^2}{a + bq_2^2} - cq_2^2 \,,$$

где a > 0, b > 2, c > 0.

- **1.15.** Найти проекции скорости частицы на оси цилиндрической и сферической систем координат.
- **1.16.** Найти составляющие ускорения частицы в ортогональной системе координат q_i , если элемент длины задан соотношением:

$$dl^2 = h_1^2 dq_1^2 + h_2^2 dq_2^2 + h_3^2 dq_3^2,$$

где $h_i(q_1,q_2,q_3)$ - коэффициенты Ляме. Записать ускорение в цилиндрических и сферических координатах.

Рис. 8. К задаче 1.11

- **1.17.** Записать уравнения движения частицы в произвольных координатах q_i , связанных с декартовыми координатами x_i соотношениями: $x_i = x_i(q_1, q_2, q_3), i = 1, 2, 3$.
- **1.18.** Записать уравнение движения частицы в естественных координатах.
- **1.19.** Найти действие частицы, движущейся в отсутствие поля и проходящей через точки $\mathbf{r}_1 = \mathbf{r}(t_1)$ и $\mathbf{r}_2 = \mathbf{r}(t_2)$.
- 1.20*. Вычислить действие для частицы, движущейся в поле U=-Fx. Показать, что если $x(t_1)=x_1,\,x(t_2)=x_2,\,$ то действие S равно:

$$S = \frac{m}{2\tau}(x_2 - x_1)^2 + \frac{F\tau}{2}(x_1 + x_2) - \frac{F^2\tau^3}{24m}$$

$$\tau = t_2 - t_1$$

- **1.21.** Вычислить действие для частицы с лагранжианом $L=\frac{1}{2}m\dot{x}^2-\frac{1}{2}m\omega^2x^2$, проходящей через точки $x_1=x(t_1),\,x_2=x(t_2).$
- 1.22. Частица в поле U=-Fx за время au перемещается из точки x=0 в точку x=a. Найти закон движения частицы,

предполагая, что он имеет вид $x(t) = At^2 + Bt + C$ и подбирая параметры A, B, C так, чтобы действие имело наименьшее значение.

- **1.23.** Частица движется вдоль оси x в потенциальном поле U(x) так, что $x(t_1)=x_1,\ x(t_2)=x_2.$ Показать, что если t_2-t_1 мало, то интеграл действия, для действительного движения, принимает минимальное значение.
- **1.24.** Найти плоскую кривую, соединяющую две точки A и B, по которой частица, движущаяся в поле силы тяжести, скатится из A в B в кратчайшее время. Начальная скорость частицы равна нулю.
- **1.25.** Частица с массой m, движущаяся со скоростью \mathbf{v}_1 , переходит из полуплоскости, в которой ее потенциальная энергия постоянна и равна U_1 , в полуплоскость, где эта энергия тоже постоянна, но равна U_2 . Определить изменение направления движения частицы.
- **1.26.** Найти выражение для декартовых компонент и абсолютной величины момента частицы в цилиндрических координатах.
- **1.27.** Какие компоненты импульса и момента сохраняются при движении частицы в следующих полях: a) поле бесконечного однородного цилиндра,
- б) поле однородной бесконечной призмы,
- в) поле двух точек,
- г) поле бесконечной однородной полуплоскости,
- ∂) поле однородного конуса,
- е) поле однородного кругового тора,
- \mathcal{H}) поле бесконечной однородной цилиндрической винтовой линии.
- 1.28. Однородный стержень длины l в начальный момент времени занимает вертикальное положение и опирается на гладкую горизонтаьную плоскость. Затем под очень малым случайным воздействием стержень начинает падать на плоскость. Найти траекторию верхнего конца стержня.

1.29. Проинтегрировать уравнение движения свободной частицы в цилиндрических координатах.

§2. Интегрирование уравнений движения

- **2.1*.** Частица движется в поле $U(x) = -\frac{1}{2}kx^2 + \frac{1}{4}\lambda x^4$ $(k>0,\lambda>0)$. Найти закон движения, если $x(0)=x_0=\sqrt{2k/\lambda},\,\dot{x}(0)=0$.
- **2.2.** Частица движется в поле с потенциалом $U = U_0 \operatorname{tg}^2(x/a)$. Найти закон движения и период колебаний.
- **2.3.** Найти частоту колебаний при движении частицы в потенциальном поле $U = -U_0/\mathrm{ch}^2 \alpha x$, $-U_0 < E < 0$.
- **2.4.** Определить закон движения частицы в поле $U=A(e^{-2\alpha x}-2e^{-\alpha x}),\ \alpha>0,\ A>0$ (потенциал Морза). Полная энергия E=0. Найти точки поворота.
- **2.5** Плоский математический маятник длины l отклонен от вертикали на угол φ_0 и начинает двигаться без начальной скорости. Показать, что зависимость периода от амплитуды колебаний имеет вид:

$$T = 4\sqrt{l/g} \int_{0}^{\pi/2} \frac{du}{\sqrt{1 - \sin^2 \frac{\varphi_0}{2} \sin u}},$$

считая, что φ_0 мало, найти первые два члена разложения T в ряд.

2.6. Частица движется по циклоиде, лежащей в вертикальной плоскости, уравнение которой в параметрической форме имеет вид:

$$x(s) = Rs + R\sin s$$
 $y(s) = -R\cos s$

Найти закон движения, если при максимальном отклонении от нижней точки циклоиды, когда $s=s_0$, частица скатывается без начальной скорости. Найти полный период движения по одной ветви циклоиды.

2.7. Проинтегрировать уравнения движения сферического маятника - материальной точки массы m, движущейся по внутрен-

ней поверхности гладкой сферы радиуса l в поле тяжести. Найти силу реакции сферы.

- **2.8.** Проинтегрировать уравнения движения частицы, движущейся по внутренней поверхности гладкого конуса (с углом 2α при вершине), расположенного вертикально, вершиной вниз, в поле тяжести. Найти силу реакции конуса.
- **2.9***. Найти дифференциальное уравнение траектории $r = r(\varphi)$ при движении частицы в центральном поле U(r).
- **2.10.** Найти силу $F(r) = -\partial U/\partial r$, действующую на частицу в центральном поле U(r), для которой траектория движения представляет собой логарифмическую спираль $r=ke^{\alpha\varphi}$, где k и α константы
- **2.11.** Найти r(t) и $\varphi(t)$ при движении по траектории $r=ke^{\alpha\varphi},$ k и α константы.
- **2.12.** Частица массы m движется под действием центральной силы F(r) по коническому сечению, уравнение которого в полярных координатах имеет вид $\frac{p}{r}=1+e\cos\varphi$, где p и e- параметр и эксцентриситет траектории. Найти силу F(r) и потенциал U(r).
- **2.13.** Показать, что при движении в центральном поле $U = -\alpha/r$ сохраняется вектор Лапласа

$$\mathbf{l} = \frac{1}{\alpha} [\mathbf{v}, \mathbf{M}] - \frac{\mathbf{r}}{r},$$

лежащий в плоскости траектории. Найти величину вектора 1 и скалярное произведение $1 \cdot \mathbf{r}$. Показать, что если угол между векторами 1 и \mathbf{r} есть φ , то уравнение траектории имеет вид

$$\frac{p}{r} = 1 + e\cos\varphi\,,$$

где $p=M^2/m\alpha,\,e=\sqrt{1+2M^2E/m\alpha^2}$ и E - энергия частицы.

2.14. Показать, что уравнение $p/r=1+e\cos\varphi$, где r, φ полярные координаты, в зависимости от величины e, описывает эллипс (0< e< 1), гиперболу (e>1), параболу (e=1) или окружность (e=0).

- **2.15.** Спутник движется вокруг Земли по эллиптической орбите с эксцентриситетом *e*. Найти отношение максимального и минимального значений угловой скорости радиус-вектора спутника.
- **2.16.** Проинтегрировать уравнения движения частицы в центральном поле $U=-\alpha/r^2,\ \alpha>0$ при а) $E>0,\ M^2/2m>\alpha,$ 6) $E>0,M^2/2m<\alpha$, в) $<0,M^2/2m<\alpha$.
- **2.17.** Найти угол на который отклоняется частица от своего первоначального направления при инфинитном движении в поле $U=\alpha/r + \beta/r^2 \quad (\alpha>0, \ \beta>0).$
- **2.18.** Определить траекторию частицы в поле $U = \alpha/r + \beta/r^2 \ (\alpha > 0, \ \beta > 0).$
- **2.19.** Найти зависимость координат частицы от времени при движении по элиптической орбите в поле $U=-\alpha/r$ ($\alpha>0$, E<0).
- **2.20.** Определить траекторию частицы в поле $U = \frac{1}{2}\alpha r^2$, $(\alpha > 0, E > 0)$.
- **2.21.** Определить траекторию финитного движения двух частиц, энергия взаимодействия которых есть:

$$U(\mathbf{r}_1, \mathbf{r}_2) = -\frac{\alpha}{|\mathbf{r}_1 - \mathbf{r}_2|}, \quad (\alpha > 0, \quad m_1 < m_2)$$

§3. Столкновение частиц. Сечение рассеяния

- **3.1.** Выразить скорости обеих частиц, после столкновения движущейся частицы массы m_1 с неподвижной массы m_2 , через их углы рассеяния θ_1 , θ_2 в л-системе.
- **3.2.** Определить интервал значений, которые может иметь угол между направлениями скоростей частиц после столкновения движущейся частицы (масса m_1) с первоначально покоившейся (масса m_2).
- **3.3.** Частица с массой m_1 сталкивается с первоначально покоившейся частицой массы $m_2 < m_1$. На какой максимальный угол может отклониться налетающая частица.
- **3.4.** Выразить абсолютные значения скоростей частиц после столкновения через угол рассеяния в ц-системе.

- **3.5.** Частица, масса которой m и начальная скорость \mathbf{v}_1 , сталкивается с покоившейся частицей той же массы. Считая, что угол рассеяния частиц в ц-системе известен, найти углы рассеяния и конечные импульсы каждой частицы в л-системе.
 - 3.6. Найти эффективное сечение рассеяния в полях:
- a) $U = \alpha/r$; 6) $U = \alpha/r^2$ $(\alpha > 0)$.
- **3.7.** Найти эффективное сечение рассеяния частиц на гладкой упругой поверхности вращения $\rho(z)$:

$$\rho(z) = Az^n$$
, $0 < n < 1$, $A = \text{const}$

§4. Малые колебания одномерных систем

- **4.1.** Частица движется в поле силы тяжести по гладкой плоской кривой $y=2ax^3-9bx^2+12cx+d,\ (ac=b^2,b>0).$ Найти малые колебания системы.
- **4.2.** Частица массы m движется в потенциале $U=-Cx^ne^{-ax}$, где $C={\rm const},\ a>0$ и n>0. Найти частоту малых колебаний около устойчивого положения равновесия.
- 4.3. Найти частоту ω малых колебаний частицы в поле $U=V\cos\alpha x-Fx,~~\alpha,V,F$ положительные константы.

Рис. 9. К задаче 7.9

- **4.4.** Частица массы *т* соединена с двумя пружинами жёсткости *k*, имеющими закреплённые концы, и может перемещаться вдоль вертикальной оси. Найти частоту малых колебаний системы в поле силы тяжести.
- **4.5.** Найти частоту малых колебаний системы из задачи 1.5.
- **4.6.** Найти частоту малых колебаний системы из задачи 1.9 при $m_1=m_2$.
 - 4.7. Определить частоту малых ко-

лебаний системы из задачи 1.11. В положении равновесия нить образует равносторонний треугольник.

4.8. Материальная точка массы m соединена с помощью неве-

сомого стержня длины l (рис.9) с шарниром O, вращающимся вокруг вертикали с постоянной угловой скоростью ω . Найти малые колебания стержня около устойчивого положения равновесия.

- **4.9.** Частица массы m прикреплена к двум одинаковым пружинам жёсткости k, имеющим закрепленные концы. В недеформированном состоянии пружины находятся вдоль горизонтальной прямой AB. Найти частоту свободных колебаний системы, если частица может двигаться: а) вдоль прямой AB; б) перпендикулярно AB. Недеформированная длина пружин равна l.
- **4.10.** Тяжелое колечко массы m может скользить по гладкой проволочной параболе $y=x^2/(2l)$ (ось Oy направлена вертикально вверх). Найти малые колебания колечка около устойчивого положения равновесия.
- **4.11.** Тяжёлое колечко массы m может скользить по неподвижному проволочному эллипсу, задаваемому уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, ось Oy которого вертикальна. Найти малые колебания колечка около устойчивого положения равновесия.
- **4.12.** Частица массы m, несущая заряд q, может двигаться в поле тяжести по вертикальной окружности радиуса R. В нижней части окружности закреплён заряд q. Найти частоту малых колебаний частицы.
- **4.13.** Определить вынужденные колебания гармонического осциллятора с частотой ω под влиянием силы F(t), если в начальный момент времени t=0 осциллятор покоится в положении равновесия $(u=0,\dot{u}=0)$, для случаев: а) $F=F_0=const$, б) F=at, в) $F=F_0e^{-\alpha t}$, г) $F=F_0e^{-\alpha t}\cos\beta t$.

Рис. 10. К задаче 5.2

Рис. 11. К задаче 5.3

§5. Малые колебания систем с несколькими степенями свободы

5.1. Найти закон движения системы, функция Лагранжа которой есть:

$$L = \frac{1}{2}(2\dot{x}_1^2 + 2\dot{x}_1\dot{x}_2 + 5\dot{x}_2^2) - \frac{1}{2}(3x_1^2 + 6x_1x_2 + 9x_2^2)$$

- **5.2** Найти малые колебания двойного плоского маятника в поле силы тяжести (рис. 2), если $m_1 = m_2$ и $l_1 = l_2$. Установить вид движения, соответствующего нормальным колебаниям.
- **5.3.**Две частицы с массами m, связанные между собой и с неподвижными стенками одинаковыми пружинами жесткости k, совершают малые колебания вдоль горизонтальной оси (рис. 10). Найти малые колебания системы.
- **5.4.** Две частицы массы m, соединённые пружиной, движутся вдоль горизонтальной прямой (рис. 11). Одна из частиц соединена

Рис. 13. К задаче 5.6

Рис. 14. К задаче 5.7

Рис. 15. К задаче 5.8

с другой пружиной, имеющей закрепленный конец. Найти малые колебания системы. Какой вид движения соответствует нормальным колебаниям. Недеформированная длина пружин - a.

- **5.5.** Найти частоты малых колебаний маятника с упругим подвесом. Пружина деформируется только вдоль своей оси и её недеформированная длина равна равна l_0 (рис. 12).
- **5.6.** Частица массы *т* прикреплена к трем пружинам, концы двух из которых прикреплены к углам квадрата, а конец третьей пружины прикреплен к середине противоположной стороны (рис. 13). Найти малые колебания системы, если частица движется в плоскости квадрата.
- **5.7.** Две частицы массы m, соединённые двумя пружинами жесткости k, могут двигаться по кольцу радиуса R (рис. 14). Когда частицы находятся на вертикальной линии, пружины недеформированны. Найти нормальные колебания системы.
- **5.8.** Две частицы массы m, связанные между собой пружиной жесткости k, могут двигаться по гладкому неподвижному горизонтальному кольцу радиуса R (рис. 15); длина пружины в недеформированном состоянии равна $R\sqrt{2}$. Найти малые колебания системы. Определить вид движения, соответствующий каждой нормальной моде.
- **5.9.** Найти малые колебания обращенного двойного маятника (рис. 16), вблизи устойчивого вертикального положения равнове-

сия.

Рис. 16. К задаче 5.9

5.10. Найти нормальные колебания системы, функция Лагранжа которой

$$L = \frac{\dot{x}^2}{2} + \frac{\dot{y}^2}{2} - \frac{1}{2}(\omega_1^2 x^2 + \omega_2^2 y^2) + \alpha xy \ ,$$

используя преобразование к нормальным координатам.

5.11. Невесомая струна длиной 4a натянута силой P между двумя фиксированными точками. На струне закреплены точечные массы $m, \frac{4}{3}m, m$ на равных

расстояниях друг от друга. Систем совершает малые поперечные колебания в своей плоскости. Пренебрегая изменением напряжения P, найти нормальные колебания системы.

Указание: найти вначале силы, действующие на частицы.

5.12. Найти малые колебания материальной точки, находящейся в поле силы тяжести на поверхности, заданной уравнением

$$lz - x^2 - xy - y^2 = 0.$$

5.13. Найти нормальные колебания системы N частиц массы m, движущихся вдоль прямой и соединённых пружинами жёст-кости k. Крайние концы пружин закреплены . Yказание: удобно искать нормальные колебания в виде суперпозиции бегущих волн.

§6. Канонические уравнения

- **6.1.** Найти функцию Гамильтона и решение канонических уравнений для гармонического осциллятора с частотой ω и массой m.
- **6.2.** Определить функцию Гамильтона ангармонического осциллятора, функция Лагранжа которого

$$L = \frac{\dot{x}^2}{2} - \frac{\omega^2 x^2}{2} - \alpha x^3 + \beta x \dot{x}^2$$

- 6.3. Найти гамильтониан и составить канонические уравнения движения механической системы, лагранжиан которой имеет следующий вид:
- a) $L = \frac{1}{2}(2\dot{q}_1^2 + 2\dot{q}_1\dot{q}_2 + \dot{q}_2^2) U(q_1, q_2);$
- 6) $L = \frac{\bar{3}\dot{q}_1^2}{2} + \frac{\dot{q}_2^2}{2} q_1^2 \frac{q_2^2}{2} q_1q_2;$
- B) $L = a\dot{q}_1^2 + (\dot{c}^2b^2\cos^2q_1)\dot{q}_2^2$.
- 6.4. Найти лагранжиан механической системы, гамильтониан которой имеет следующий вид
- a) $H = p_1 p_2 + q_1 q_2$;
- 6) $H = \frac{1}{2} \frac{p_1^2 + p_2^2}{q_1^2 + q_2^2} + a(q_1^2 + q_2^2).$
- 6.5. Найти функцию Гамильтона и уравнения движения в параболических координатах ξ η arphi, связанных с цилиндрическими координатами соотношениями

$$z = \frac{1}{2}(\xi - \eta), \quad \rho = \sqrt{\xi \eta}.$$

6.6. Найти функцию Гамильтона в эллиптических координатах ξ, η, φ , связанных с цилиндрическими координатами ρ, φ, z соотношениями

$$\rho = \sigma \sqrt{(\xi^2 - 1)(1 - \eta^2)} \qquad z = \sigma \xi \eta,$$

- $1 \le \xi \le \infty$, $|\eta| < 1$, σ некотороя постоянная.
- 6.7. Написать функцию Гамильтона и канонические уравнения для системы с Лагранжианом:
- a) $L = -mc^2\sqrt{1-\dot{x}^2/c^2}$ 6) $L = -mc^2\sqrt{1-v^2/c^2}$, $v^2 = \dot{x}^2 + \dot{y}^2 + \dot{z}^2$
- **6.8.** Частица массы m движется по поверхности цилиндра, определяемой уравнением $x^2 + y^2 = R^2$. На частицу действует сила, пропорциональная расстоянию до начала координат: ${f F} = -k{f r},$ где **r** - радиус вектор частицы. Записать канонические уравнения движения. Найти закон движения.

- **6.9.** Найти функцию Гамильтона и канонические уравнения движения для сферического маятника массы m и длины l.
- **6.10.** Найти функцию Гамильтона и канонические уравнения для частицы с зарядом e в электромагнитном поле с векторным **A** и скалярным φ потенциалами.
- **6.11.** Показать, что функция f = x pt/m является интегралом движения свободной частицы.
 - 6.12. Вычислить скобки Пуассона
- 1) $\{M_i, p_j\}, \{M_i, x_j\}; 2) \{M_i, p^2\}, \{M_i, r^2\}$
- 3) $\{M_i, M_j\}$
- 4) $\{ap, br\}, \{M_i, rp\}, \{p, r^n\}$

Здесь x_i , p_i , M_i , (i=1,2,3) - декартовы компоненты, соответственно радиус - вектора частицы \mathbf{r} , импульса \mathbf{p} и момента \mathbf{M} ; \mathbf{a} , \mathbf{b} - постоянные векторы.

6.13. Найти каноническое преобразование, соответствующее производящей функции

$$F_2(q, \mathcal{P}, t) = q\mathcal{P} + (bq - a\mathcal{P})t$$
,

где a, b - константы. Записать в новых переменных канонические уравнения, если

$$H = \frac{p^2}{2m} + \frac{1}{2}(q - at)^2 .$$

6.14. При каком условии преобразование

$$Q = \alpha q + \beta p,$$
 $\mathcal{P} = \gamma q + \nu p$

будет каноническим. Найти производящую функцию.

6.15. Является ли каноническим преобразование:

- a) $Q = p \cos q$, $\mathcal{P} = p \sin q$;
- 6) $Q = \sqrt{2p}\cos q$, $\mathcal{P} = -\sqrt{2p}\sin q$;
- $Q = pe^q, \mathcal{P} = q + e^q + \ln p.$

Найти производящую функцию.

6.16. Показать, что преобразование

$$q = Q \cos \omega t + \frac{\mathcal{P}}{\omega} \sin \omega t$$

$$p = -\omega Q \sin \omega t + \mathcal{P} \cos \omega t$$

является каноническим и найти производящую функцию F_1 . Записать в новых переменных канонические уравнения, если

$$H = \frac{p^2}{2m} + \frac{\omega^2 q^2}{2} \,.$$

- **6.17.** Найти производящую функцию вида $F_3(p,Q)$, приводящую к такому же каноническому преобразованию, что и $F_2(q,\mathcal{P})=a^2e^{\mathcal{P}}$.
 - 6.18. Доказать, что преобразование

$$Q = \ln\left(\frac{\sin p}{q}\right) \qquad \mathcal{P} = q \operatorname{ctg} p$$

является каноническим и найти производящую функцию.

- **6.19.** Гамильтониан частицы $H=p^2/2m$. Найти новый гамильтониан и каноническое преобразование порождаемое производящей функцией
- a) $F_1(q, Q, t) = \frac{m}{2t}(q Q)^2$
- 6) $F_2(q, \mathcal{P}, t) = q\mathcal{P} \frac{1}{2m}\mathcal{P}^2 t$.
- **6.20.** Найти собственные частоты и нормальные координаты системы с гамильтонианом

$$H = \frac{1}{2}[p_1^2 + p_2^2 + q_1^2 + (q_2 - q_1)^2 + q_2^2],$$

используя каноническое преобразование с производящей функцией

$$F_1 = \frac{1}{4}(q_1 + q_2)^2 \operatorname{ctg} Q_1 + \frac{\sqrt{3}}{4}(q_1 - q_2)^2 \operatorname{ctg} Q_2.$$

6.21. Является ли функция

$$F(q, \mathcal{P}) = q^2 + \mathcal{P}^2$$

производящей функцией некоторого канонического преобразования.

Уравнение Гамильтона - Якоби

- **6.22.** Найти закон движения свободной частицы с начальными условиями $\mathbf{r}(0) = \mathbf{r}_0$, $\mathbf{p}(0) = \mathbf{p}_0$, используя уравнение Гамильтона Якоби.
- **6.23.** Найти закон движения частицы в однородном гравитационном поле, используя уравнение Гамильтона Якоби, если $x(0) = y(0) = 0, \quad z(0) = h, \quad \mathbf{p}(0) = 0.$
- **6.24.** Найти полный интеграл уравнения Гамильтона Якоби для математического маятника массы m и длины l и закон его движения в квадратуре.
- **6.25.** Найти полный интеграл уравнения Гамильтона Якоби для тела, движущегося по гладкой наклонной плоскости, составляющей угол α с горизонтом.
- **6.26.** Найти закон движения сферического маятника материальной точки массы m, движущейся по поверхности сферы радиуса l в поле тяжести, используя метод Гамильтона Якоби.
- **6.27.** Найти полный интеграл уравнения Гамильтона Якоби для электрона, движущегося во взаимно перпендикулярных постоянных и однородных электрическом и магнитном полях.
- **6.28.** Найти траекторию релятивистской частицы в кулоновском поле $U(\mathbf{r})=\alpha/r$, если $Mc=|\alpha|,~M$ момент импульса, c скорость света.
- **6.29.** Найти полный интеграл уравнения Гамильтона Якоби для частицы, движущейся в поле $U(\mathbf{r}) = \mathbf{ar}/r^3$, где \mathbf{a} постоянный вектор.
- **6.30*.** Составить уравнение Гамильтона-Якоби и найти его полный интеграл в квадратурах для системы с гамильтонианом

$$H(q,p) = \frac{H_1 + H_2 + \ldots + H_n}{A_1 + A_2 + \ldots + A_n},$$

где H_1 , A_1 - зависят только от переменных q_1 , p_1 ; H_2 , A_2 - зависят только от q_2 , p_2 и.т.д.

6.31. Составить уравнение Гамильтона-Якоби, определить его полный интеграл и найти закон движения для системы с лагран-

жианом.

$$L = \frac{1}{2}(\dot{q}_1^2 + \frac{q_1^2}{q_2^2}\dot{q}_2^2);$$

- 6.32. Составить уравнение Гамильтона-Якоби, определить его полный интеграл и найти закон движения для системы с гамильтонианом
- $$\begin{split} H &= (p_1 q_2 + 2 p_1 p_2 + q_1^2)/2 \,; \\ H &= \frac{1}{2} \Big[\frac{p_1^2 + p_2^2}{q_1 q_2} + \Big(p_3^2 + \frac{1}{q_3^2} \Big) (q_1 + q_2) \Big]. \end{split}$$
 - 6.33. Найти траекторию и закон движения частицы в поле

$$U(\mathbf{r}) = \frac{m\omega_1^2}{2}x^2 + \frac{m\omega_2^2}{2}y^2$$

с помощью уравнения Гамильтона – Якоби.

6.34. Найти закон движения частицы с гамильтонианом

$$H = \frac{1}{2}p^2 - tx \quad ,$$

используя уравнение Гамильтона – Якоби.

6.35. Воспользовавшись уравнением Гамильтона - Якоби, показать, что траектория частицы, движение которой описывается гамильтонианом

$$H = \frac{1}{2}(p_1^2 + p_2^2)(q_1^2 + q_2^2)^{-1} + (q_1^2 + q_2^2)^{-1},$$

будет коническим сечением в плоскости q_1q_2 (энергия частицы E > 0).

Переменные действие – угол

6.36. Найти частоту периодического движения для частицы, находящейся в поле

$$U(x) = \begin{cases} \infty, & \text{если } x < 0 \\ Fx, & \text{если } x > 0. \end{cases}$$

22 **Задачи**

Рис. 17. К задаче 7.1

Рис. 18. К задаче 7.2

6.37. Найти переменные действие – угол и частоту периодического движения для частицы в периодическом поле

$$U(x) = \left\{ \begin{array}{ll} 0 & \text{при } na < x < (n+1/2)a \\ V & \text{при } (n+1/2)a < x < (n+1)a \\ n = 0, \pm 1, \pm 2, \dots \end{array} \right. ,$$

§7. Движение твердого тела

- **7.1.** Конус катится без скольжения по плоскости (рис. 17). Высота конуса h, а угол при вершине 2α . Скорость точки P есть v. Найти угловую скорость вращения конуса относительно неподвижной системы отсчета.
- **7.2*.** Конус A с углом 2α при вершине катится без скольжения по поверхности неподвижного конуса B с углом 2β ($\beta>\alpha$) при вершине (рис. 18). Ось подвижного конуса вращается с постоянной угловой скоростью ω вокруг оси неподвижного конуса Определить угловую скорость и угловое ускорение конуса A, а также скорость точки M, если OM=a, $MM_0=b$.

- 7.3. Конус A с углом раствора при вершине 2α катится без скольжения по внутренней поверхности неподвижного конуса B с углом раствора 2β (рис. 19). Ось Ox_3 равномерно вращается с угловой скоростью ω вокруг неподвижной оси OZ. Найти угловую скорость и угловое ускорение конуса A, а также скорость точки M, если $OM_0 = a$, $MM_0 = b$ (отрезок $MM_0\bot Ox_3$ и лежит в плоскости осей Ox_3 и OZ).
- **7.4.** Выбрав начало системы координат в центре инерции, найти главные моменты инерции следующих систем с полной массой μ .
- 1) Две частицы с массами m_1 , m_2 на расстоянии l друг от друга (двухатомная молекула).
- 2) Три частицы, две из которых имеют массы m_1 , а третья массу m_2 , лежат в вершинах равнобедренного треугольника с длиной основания a и высотой h. Частицы с равными массами

сотой *h*. Частицы с равными массами Рис. 19. К задаче 7.3 лежат в основании треугольника (трёхатомная молекула).

- 3) Три частицы с массой m_1 и одна с массой m_2 расположены в вершинах плавильной трёхугольной пирамиды. Частицы с равными массами находятся в основании пирамиды на расстоянии a друг от друга. Высота пирамиды h.
- **7.5.** Найти главные моменты инерции однородных сплошных тел массы μ .
- 1) Стержень длины l.
- 2) Шар радиуса R.
- 3) Круговой цилиндр радиуса R, высотой h.
- 4) Прямоугольный параллелепипед с длинами ребер a, b, c.
- 5) Полый шар с радиусами $R_1 > R_2$ (полость в центре шара).
- 6) Круговой конус с высотой h и радиусом основания R.
- **7.6.** Найти центр масс материального сектора, вырезанного из однородного тонкого диска радиуса R. Угол раствора сектора –

 α .

- 7.7. Найти момент инерции относительно оси симметрии дуги окружности радиуса R и массы μ , стягивающей центральный угол α .
- 7.8. Найти главные моменты инерции однородного тонкого эллипса с полуосями a, b.

Рис. 20. К задаче 7.10

7.9. Две частицы с массами m_1 и m_2 расположены соответственно в точках с координатами $(1; 1/\sqrt{3}; 0), (1/\sqrt{3}; 1/\sqrt{3};$ 0). Найти тензор инерции, главные оси и главные моменты инерции.

7.10. Найти кинетическую энергию системы, изображенной на (рис. 20). OAи AB – тонкие однородные стержни длиной l и массы μ , шарнирно скреплённые в точке A. Стержень OA вращается во-

круг точки O, а точка B скользит вдоль оси.

7.11. Найти кинетическую энергию цилиндра радиуса R и массы μ , катящегося по плоскости (рис. 21). Масса цилиндра распределена по его объёму таким образом, что одна из его главных осей инерции параллельна оси цилиндра и проходит на расстоянии a от неё. Момент инерции относительно этой главной оси есть I. Найти частоту малых колебаний цилиндра в поле силы тяжести.

7.12. Найти кинетическую энергию однородного цилиндра радиуса а, который катится по внутренней поверхности цилиндра радиуса R (рис. 22). Масса цилиндра равна μ . Найти частоту малых колебаний цилиндра в поле силы тяжести.

7.13. Найти кинетическую энергию од-Рис. 21. К задаче 7.11 нородного трехосного эллипсоида вращающегося вокруг оси АВ (рис. 23), причём последняя сама вращается вокруг направления CD.

- **7.14.** Однородный круговой диск радиуса R подвешен к точке с помощью невесомой нерастяжимой нити длины l, закреплённой в одной из точек граничной окружности диска. Найти частоту малых колебаний в поле силы тяжести. Колебания происходят в вертикальной плоскости.
- **7.15.** Концы тонкого стержня массы μ длины l скользят по параболе $y=kx^2$ с вертикально расположенной осью y. Найти частоту малых колебаний стержня в поле силы тяжести.
- **7.16.** Диск радиуса a и массы m в поле силы тяжести скатывается без скольжения по наклонной плоскости. Найти силу реакции плоскости. Угол наклона плоскости к горизонту равен α . колебаний.

Рис. 22. К задаче 7.12

7.17. Два одинаковых стержня длины l и массы m каждый (рис. 24) соединены пружиной жесткости k. Расстояние между точкой подвеса и точкой закрепления пружины для каждого маятника равна a, длина пружины в недеформированном состоянии равна расстоянию между точками подвеса маятников. Найти малые колебания в поле силы тяжести. Определить формы нормальных колебаний.

Рис. 24. К задаче 7.17

7.18. Однородная балка массой m и длиной L поддерживается на своих концах двумя одинаковыми пружинами жесткости k (рис. 25). Балку приводят в движение, нажимая на один из ее концов, смещая его вниз на небольшое расстояние и затем освобождаяю Длина пружин в покое b. Найти закон движения. Схематически изобразить нормальные моды.

Рис. 25. К задаче 7.18

7.19. Однородный диск массы m, центр которого соединен с неподвижными стенками двумя одинаковыми пружинами жесткости k каждая может катиться без проскальзывания по горизонтальной прямой (рис. 26). Найти частоту малых колебаний.

7.20. Два одинаковых однородных

диска массы m каждый (рис. 27) могут катиться без проскальзывания по горизонтальной направляющей. Центры дисков соединены между собой и с неподвижными стенками одинаковыми пружинами жесткости k. Найти малые колебания системы. Указать вид движений, соответствующих нормальным модам.

- **7.21.** Шар радиуса a и массы m движется без проскальзывания по горизонтальной плоскости, вращающейся вокруг вертикальной оси с постоянной угловой скоростью Ω_0 . Найти закон движения центра инерции шара \mathbf{R} и угловую скорость вращения $\mathbf{\Omega}$.
- **7.22.** Найти ускорение центра инерции и угловое ускорение шара массы m и радиуса a, катящегося по плоскости под действием приложенных к нему внешней силы F и момента K (относи-

Рис. 26. К задаче 7.19

Рис. 27. К задаче 7.20

Рис. 28. К задаче 7.23

Рис. 29. К задаче 7.24

тельно центра шара). Найти реакцию плоскости.

- **7.23*.** Однородный параллелепипед массы m с ребрами a, b, c вращается с угловой скоростью Ω относительно своей диагонали OB (рис. 28). Найти компоненты момента импульса параллелепипеда относительно произвольной точки A пространства.
- **7.24.** Прямой однородный круговой цилиндр (рис. 29), имеющий массу m, высоту h и радиус основания R, вращается с постоянной угловой скоростью Ω вокруг оси AB, проходящей через его центр масс C и образующей угол α с осью симметрии. Найти величину момента импульса относительно точки C и угол β , который он образует с осью симметрии.
- 7.25. Брусок массы m (рис. 30), скользящий по гладкой плоскости, связан с неподвижными стенками двумя одинаковыми пружинами жесткости k каждая. По верхней поверхности бруска катиться без проскальзывания диск массы m/2 и радиуса r, центр которого соединен с краем

Рис. 30. К задаче 7.25

доски пружиной жесткости 2k. Найти малые колебания системы.

7.26. Симметричный волчок вращается в отсутствии внешних сил. Найти угол α между осью симметрии волчка и угловой скоростью, если моменты инерции равны $I_1 = I_2, I_3$.

- **7.27.** Тонкий однородный стержень OB массы m и длины l вращается с постоянной угловой скоростью Ω около неподвижной точки O, описывая коническую поверхность (рис. 31). Вычислить угол α отклонения стержня от вертикали, а также силу реакции в точке O. Найти частоту колебаний стержня при малых изменениях угла α .
- **7.28.** Найти момент импульса системы, состоящей из двух частиц массы m_1 и m_2 , соединенных невесомым жестким стержнем длины 2l (рис. 32), вращающейся с постоянной угловой скоростью Ω вокруг вертикальной оси, проходящей через середину стержня, закрепленную в точке O. Используя уравнения Эйлера, найти момент сил \mathbf{K} , необходимый для поддержания такого движения.
- **7.29.** Однородный стержень AB длины l движется в поле силы тяжести в вертикальной плоскости XY вокруг горизонтальной оси, проходящей через точку A. Найти закон движения стержня, используя уравнения Эйлера и силу реакции \mathbf{N} , действующую со стороны оси в точке A.

Рис. 31. K задаче 7.27

Рис. 32. К задаче 7.28

7.30. Однородный цилиндр A радиуса r и массы m (рис. 33) катится без проскальзывания по внутренней поверхности полого цилиндра B радиуса R и той же массы m, который может

вращаться вокруг своей горизонтально расположенной неподвижной оси O. Найти малые колебания системы в поле силы тяжести (момент инерции полого цилиндра относительно своей оси равен mR^2).

C A A

Рис. 33. К задаче 7.30

Рис. 34. К задаче 7.31

7.31. Тонкий диск R катится по плоскости (рис. 34). Масса диска m распределена по его объему таким образом, что одна из его главных осей инерции параллельна оси диска и проходит на расстоянии a=R/2 от нее. Момент инерции относительно этой главной оси равен $I=\frac{3}{4}mR^2$. Стержень AC длиной l=6R и той же массы m совершает колебания вокруг горизонтальной оси, проходящей через точку C перпендикулярно плоскости рисунка. Найти малые колебания системы и формы нормальных колебаний.

§8. Механика сплошных сред

8.1. Дан закон движения сплошной седы:

$$x_1 = \xi_1,$$
 $x_2 = \frac{1}{2}e^t(\xi_1 + \xi_2) + \frac{1}{2}e^{-t}(\xi_2 - \xi_3)$
 $x_3 = \frac{1}{2}e^t(\xi_1 + \xi_2) - \frac{1}{2}e^{-t}(\xi_2 - \xi_3),$

где ξ_i, x_i лагранжевы и эйлеровы координаты соответственно. Определить компоненты скорости в лагранжевой и эйлеровой форме.

8.2. Вектор смещения $u_i = x_i - \xi_i$ задан в виде :

$$u_i = \xi_i (e^{k_i t} - 1).$$

Найти поле скоростей и поле ускорений.

8.3. Дано поле скоростей:

$$v_k = \frac{kx_k}{1+t}$$
 $k = 1, 2, 3.$

Найти поле ускорений. Найти скорость и ускорение среды в лагранжевой форме.

8.4. Поле скоростей имеет вид:

$$v_1 = cx_2 - bx_3$$
 $v_2 = ax_3 - cx_1$ $v_3 = bx_1 - ax_2$

где a, b, c – постоянные. Показать, что движение частиц среды происходит по окружности.

- **8.5.** Доказать, что поле скоростей задачи **8.4** представляет вращение абсолютно твёрдого тела.
- **8.6.** Поле скоростей задано в виде $\mathbf{v}(\mathbf{r}) = [\mathbf{\Omega}, \mathbf{r}],$ где $\mathbf{\Omega}$ постоянный вектор. Вычислить

$$\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} \qquad \text{div } \mathbf{v} \,.$$

8.7. Задан закон движения сплошной среды:

$$x_1 = A + \frac{e^{-B\lambda}}{\lambda}\sin(\omega t + A)$$
 $x_2 = -B - \frac{e^{-B\lambda}}{\lambda}\cos(\omega t + A)$ $x_3 = \xi_3$,

где A, B – постоянные. Показать, что траектории – окружности, а величина скорости постоянна.

8.8. Показать, что поле скоростей $v_i = Ax_i/r^3$ (i=1,2,3), где $r^2 = x_1^2 + x_2^2 + x_3^2$ и A произвольная константа, удовлетворяет уравнению неразрывности несжимаемой жидкости.

8.9. Для поля скоростей:

$$v_i = \frac{x_i}{1+t}$$
 $i = 1, 2, 3$,

показать, что $\rho x_1 x_2 x_3 = \rho_o \xi_1 \xi_2 \xi_3$, где плотность частицы среды ρ удовлетворяет начальному условию $\rho(t=0)=\rho_0$, и

$$\rho J = \rho_0, \qquad J = \frac{\partial (x_1 x_2 x_3)}{\partial (\xi_1 \xi_2 \xi_3)}.$$

8.10. Показать, что в лагранжевой форме уравнение неразрывности имеет вид:

$$\rho_0 = \rho J$$
,

где ρ_0, ρ – плотность частицы среды в начальный и произвольный моменты времени. Рассмотреть одномерный случай.

8.11. Тензор напряжений в точке M задан в виде:

$$P_{ij} = \left(\begin{array}{rrr} 7 & 0 & -2 \\ 0 & 5 & 0 \\ -2 & 0 & 4 \end{array}\right)$$

Найти поверхностную силу ${\bf P}_n$ в точке M на площадке с нормалью ${\bf n}=(2/3,-2/3,1/3)$, компоненту перпендикулярную площадке, модуль ${\bf P}_n$ и угол между ${\bf P}_n$ и ${\bf n}$.

8.12. Поле напряжений в сплошной среде задаётся тензором:

$$P_{ij} = \begin{pmatrix} 3x_1x_2 & 5x_2^2 & 0\\ 5x_2^2 & 0 & 2x_3\\ 0 & 2x_3 & 0 \end{pmatrix}$$

Определить поверхностную силу в точке $M(2,1,\sqrt{3})$ на элементарной площадке, касательной в этой точке к цилиндрической поверхности: $x_2^2+x_3^2=4$.

8.13. Поле напряжений в сплошной среде задано тензором:

$$P_{ij} = \begin{pmatrix} x_1^2 x_2 & (1 - x_2^2) x_1 & 0\\ (1 - x_2^2) x_1 & \frac{1}{3} (x_2^3 - 3x_2) & 0\\ 0 & 0 & 2x_3^2 \end{pmatrix}$$

Определить: а) распределение массовых сил, если среда неподвижна; б) максимальное нормальное напряжение в точке $M(a, 0, 2\sqrt{a})$.

8.14. Тензор напряжений в точке M задан в виде:

$$P_{ij} = \left(\begin{array}{ccc} 0 & 1 & 2\\ 1 & P_{22} & 1\\ 2 & 1 & 0 \end{array}\right)$$

Определить P_{22} так, чтобы поверхностная сила на некоторой площадке в этой точке обращалась бы в нуль. Найти орт \mathbf{n} к этой площадке.

8.15. Неподвижная несжимаемая жидкость находится в однородном поле тяжести. На высоте h жидкость имеет свободную поверхность, к которой приложено одинаковое во всех точках внешнее давление p_0 . Найти распределение давления в жидкости.

Рис. 35. К задаче 8.16

- **8.16.** Определить давление на дно сосудов, заполненных тяжёлой несжимаемой жидкостью (рис. 35). Внешнее давление равно p_0 .
- **8.17.** Найти распределение плотности ρ покоящегося идеального газа, температура T которого постоянна, находящегося в однородном поле тяжести. Уравнение состояния газа имеет вид : $p=\rho kT/m,\ p$ давление, k постоянная Больцмана, m масса частиц.
- **8.18.** Определить силу, с которой тяжёлая, несжимаемая, идеальная жидкость плотности ρ действует на погруженное в неё

Рис. 36. К задаче 8.19

неподвижное тело объёма V_T .

- **8.19*.** Две жидкости с плотностями $\rho_1(z)$ и $\rho_2(z)$ находятся в равновесии с друг другом и разделены плоской границей раздела при z=0. Найти силу, действующую на тело частично погруженное в жидкость 1, а частично в в жидкость 2 (рис. 36).
- **8.20.** Определить форму поверхности тяжёлой несжимаемой жидкости в цилиндрическом сосуде с радиусом основания a, вращающейся как целое вокругоси цилиндра с постоянной угловой скоростью Ω (рис. 37). На свободной поверхности давление p_0 постоянно, а уровень жидкости в неподвижном состоянии находится на высоте h от дна сосуда.

- **8.21.** В условиях предыдущей задачи Рис. 37. К задаче 8.20 найти давление на дно сосуда.
- **8.22.** Однородное тело плотности σ , имеющее форму параболоида вращения $(x^2+y^2=2az)$, усечённого плоскостью, перпендикулярной к оси на расстоянии h от вершины, плавает на поверхности однородной жидкости плотности ρ так, что ось параболоида вертикальна и вершина обращена вниз. Определить глубину z по-

гружения вершины.

- **8.23.** Определить величину и направление действия силы давления, действующей на сферическую часть поверхности полушара радиуса a, погруженного в жидкость, с плотностью ρ . Основание полушара наклонено к поверхности жидкости под углом α , а его центр находится на глубине H. Давление на свободной поверхности жидкости p_0 .
- **8.24.** Несжимаемая вязкая жидкость в отсутствие внешних сил стационарно движется между двумя параллельными плоскостями, одна из которых покоится, а другая движется с постоянной скоростью u. Расстояние между плоскостями h. Найти поля скоростей и давлений. Найти силы, с которыми жидкость действует на плоскости.
- **8.25.** Несжимаемая вязкая жидкость движется между неподвижными параллельными плоскостями при наличии постоянного градиента давления. Найти поле скоростей и силы, действующие на плоскости. Расстояние между плоскостями равно h.
- **8.26.** Слой вязкой, тяжелой, несжимаемой жидкости (толщиной h) ограничен снизу неподвижной плоскостью, наклонённой под углом α к горизонту, а сверху свободной поверхностью, параллельной наклонной плоскости. Определить поля скоростей и давлений в жидкости. К свободной поверхности приложено внешнее давление p_0 .
- **8.27.** Вязкая, несжимаемая жидкость стационарно движется в бесконечной трубе кругового сечения радиуса R с постоянным перепадом давления на расстоянии l равном $\Delta p < 0$. Определить поля скоростей и давлении в жидкости. Найти поток жидкости Q через сечение трубы (течение Пуазейля).

Ответы 35

Ответы

1. Уравнения Лагранжа и законы сохранения

1.1. $L = \frac{1}{2}ml^2\dot{\varphi}^2 + mgl\cos\varphi$.

$$L = \frac{1}{2}(m_1 + m_2)l_1^2 \dot{\varphi}_1^2 + \frac{1}{2}m_2\{l_2^2 \dot{\varphi}_2^2 + 2l_1 l_2 \cos(\varphi_1 - \varphi_2)\dot{\varphi}_1 \dot{\varphi}_2\} + (m_1 + m_2)gl_1 \cos \varphi_1 + m_2gl_2 \cos \varphi_2$$

1.3. Решение. а) Пусть x y координаты частицы, а x_1 y_1 координаты точки M, в которой нить касается циклоиды (см. рис.3). Тогда, если s длина дуги AM, а α - угол, который касательная к циклоиде в точке M образует с осью x, то

$$x = x_1 - (l - s)\cos\alpha \qquad \qquad y = y_1 - (l - s)\sin\alpha. \tag{1}$$

Длина дуги циклоиды равна

$$s = \int_{\varphi}^{\pi} \sqrt{x'_{\varphi}^{2} + y'_{\varphi}^{2}} d\varphi = 4a \left(1 - \sin \frac{\varphi}{2}\right),$$

где φ соответствует точке M. Найдем угол α : $\lg \alpha = dy/dx = y'_{\varphi}/x'_{\varphi} = \lg(\varphi/2)$. Откуда $\alpha = \varphi/2$. Подставляя s и $x_1 = a(\varphi + \sin\varphi), y_1 = a(1-\cos\varphi)$ в (1), получим уравнение нижней циклоиды

$$x = a(\varphi - \sin \varphi) \qquad y = -a(1 - \cos \varphi). \tag{2}$$

б)Возьмем в качестве обобщенной координаты угол φ . Тогда, используя (2), будем иметь

$$\dot{x} = a\dot{\varphi}(1 - \cos\varphi)$$
 $\dot{y} = -a\dot{\varphi}\sin\varphi$.

Для функции Лагранжа тогда получим

$$L = \frac{m}{2}(\dot{x}^2 + \dot{y}^2) + mga(1 - \cos\varphi)$$
$$= ma^2(1 - \cos\varphi)\dot{\varphi}^2 + mga(1 - \cos\varphi).$$

Уравнение Лагранжа имеет вид

$$\sin\frac{\varphi}{2}\ddot{\varphi} + \frac{1}{2}\dot{\varphi}^2\cos\frac{\varphi}{2} = \frac{g}{2a}\cos\frac{\varphi}{2} \tag{3}$$

Сделаем замену $z = \cos(\varphi/2)$, уравнение (3) принимает вид

$$\ddot{z} + \omega^2 z = 0 \qquad \omega^2 = \frac{g}{4a} = \frac{g}{l}$$

Откуда

$$z = \cos\frac{\varphi}{2} = A\cos(\omega t + B)$$

И

$$\varphi = 2\arccos[A\cos(\omega t + B)]$$
.

Так как выражение в квадратных скобках является периодической функцией, то φ также периодическая функция с периодом $T=2\pi\sqrt{l/g}$, независящем от амплитуды колебаний, т.е. от величины φ . Такими же периодическими функциями являются координаты маятника (2). Циклоидальный маятник является строго изохронным, т.е. период его колебаний не зависит от величины амплитуды (Христиан Гюйгенс, 1673).

1.5.

$$L = \frac{1}{2}m\dot{\theta}^2[l^2 + R^2\theta^2 - 2Rl\theta] - mg[R\cos\theta - (l - R\theta)\sin\theta],$$
$$(l - R\theta)\ddot{\theta} - R\dot{\theta}^2 - g\cos\theta = 0.$$

1.6. a)

б)

$$L = \frac{m}{2}l^2\dot{\varphi}^2 + mla\gamma^2\sin(\varphi - \gamma t) + mgl\cos\varphi;$$

$$L = \frac{m}{2}l^2\dot{\varphi}^2 + mla\gamma^2\sin\varphi\cos\gamma t + mgl\cos\varphi + ma\gamma \left\{ \frac{1}{2}a\gamma\sin^2\gamma t - l\frac{d}{dt}(\sin\varphi\sin\gamma t) \right\};$$

Выражение в фигурных скобках может быть отброшено.

в)
$$L = \frac{m}{2}l^2\dot{\varphi}^2 + mal\gamma^2\cos\varphi\cos\gamma t + mgl\cos\varphi$$
 .

$$L = \frac{1}{2}(m_1 + m_2)\dot{x}^2 + \frac{m_2}{2}(l^2\dot{\varphi}^2 + 2l\dot{x}\dot{\varphi}\cos\varphi) + m_2gl\cos\varphi,$$

x – координата точки $m_1,\, arphi$ – угол отклонения маятника. 1.8. $L=rac{1}{2}(m_1+m_2)\dot{y}^2+g(m_1-m_2)y,\quad y,\quad l-y\quad$ – координаты точек.

1.9.

$$L = m_1 a^2 (\dot{\theta}^2 + \Omega^2 \sin^2 \theta) + 2m_2 a^2 \dot{\theta}^2 \sin^2 \theta + 2ga(m_1 + m_2) \cos \theta;$$

1.10.

$$L = \frac{a^2 \dot{\varphi}^2}{2} (m_1 \sin^2 \varphi + m_2 \cos^2 \varphi) - \frac{ag}{\sqrt{2}} (m_1 \cos \varphi + m_2 \sin \varphi).$$

1.11.

$$L = \frac{ma^2\dot{\theta}^2}{8\sin^4\theta} - \frac{\kappa a^2}{2} \left(\frac{1}{\sin\theta} - 1\right)^2 + \frac{mga}{2}\operatorname{ctg}\theta.$$

1.12.
$$L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}\kappa(\sqrt{h^2 + x^2} - l_0)^2$$
.

1.13.

$$L = \frac{1}{2}(m_1 + m_2)\dot{x}_c^2 + \frac{\mu}{2}\dot{x}^2 + \frac{\kappa}{2}(x - l)^2 \qquad \mu = \frac{m_1 m_2}{m_1 + m_2},$$

 $E=const, \ (m_1+m_2)x_c=const, x_c, x$ – сответственно соордината центра инерции и расстояние между шариками, l – равновесная длина пружины.

1.14.

$$q_1 = C_1(a + \frac{1}{2}bC_2^2)t + \frac{1}{4}C_1bC_2^2\omega^{-1}\sin(2\omega t + C_3) + C_4,$$

$$q_2 = C_2\cos(\omega t + C_3), \qquad \omega^2 = bC_2^2 + 2c.$$

1.15. $\mathbf{v} = (\dot{\rho}, \ \rho \dot{\varphi}, \ \dot{z}); \ \mathbf{v} = (\dot{r}, \ r \dot{\theta}, \ r \sin \theta \dot{\varphi}).$

1.16.

$$w_j = h_j \ddot{q}_j + \sum_{k=1}^{3} \left\{ 2 \frac{\partial h_j}{\partial q_k} \dot{q}_k \dot{q}_j - \dot{q}_k^2 \frac{h_k}{h_j} \frac{\partial h_k}{\partial q_j} \right\}.$$

1.17. Функция Лагранжа:

$$L = \frac{m}{2} \sum_{i,k=1}^{3} g_{ik} \dot{q}_i \dot{q}_k - U(q_1, q_2, q_3),$$

где

$$g_{ik} = \sum_{l=1}^{3} \frac{\partial x_l}{\partial q_i} \frac{\partial x_l}{\partial q_k}$$

Уравнения движения:

$$m\sum_{k=1}^{3}g_{ik}\ddot{q_k} + m\sum_{k=1}^{3}\Gamma_{i,kl}\dot{q_k}\dot{q_l} = -\frac{\partial U}{\partial q_i},$$

где

$$\Gamma_{i,kl} = \frac{1}{2} \bigg(\frac{\partial g_{ik}}{\partial q_l} + \frac{\partial g_{il}}{\partial q_k} - \frac{\partial g_{kl}}{\partial q_i} \bigg).$$

1.18. $m\ddot{s} = -\partial U/\partial s, \quad s$ – длина пройденного вдоль траектории пути.

1.19.

$$S = \frac{m}{2} \frac{|\mathbf{r}_2 - \mathbf{r}_1|^2}{t_2 - t_1}.$$

1.20. Решение. Функция Лагранжа имеет вид

$$L = \frac{m\dot{x}^2}{2} + Fx,$$

которой соответствует закон движения

$$x(t) = \frac{Ft^2}{2m} + ct + c_0, \qquad \dot{x}(t) = \frac{Ft}{m} + c.$$
 (4)

Вычисляя с (4) действие

$$S = \int_{t_1}^{t_2} L(x(t), \dot{x}, (t), t) dt = \int_{t_1}^{t_2} \left[\frac{m \dot{x}^2(t)}{2} + Fx(t) \right] dt,$$

получим

$$S = \frac{F^2(t_2^3 - t_1^3)}{3m} + Fc(t_2^2 - t_1^2) + \left(\frac{mc^2}{2} + Fc_0\right)(t_2 - t_1).$$

Наконец, учитывая начальные условия, будем иметь

$$S = \frac{m}{2\tau}(x_2 - x_1)^2 + \frac{F\tau}{2}(x_1 + x_2) - \frac{F^2\tau^3}{24m}, \qquad \tau = t_2 - t_1$$

1.21. $S = (m\omega/2\sin\omega\tau)[(x_1^2 + x_2^2)\cos\omega\tau - 2x_1x_2].$

1.22.

$$x(t) = \frac{Ft^2}{2m} + \left(\frac{a}{\tau} - \frac{F\tau}{2m}\right)t.$$

1.24. Циклоида: $x=\frac{1}{2}C(t-\sin t), \;\; y=\frac{1}{2}C(1-\cos t), \, t$ - параметр, C - константа.

1.25.

$$\frac{\sin \theta_1}{\sin \theta_2} = \sqrt{1 + \frac{2}{mv_1^2} (U_1 - U_2)} ,$$

 θ_1, θ_2 – углы между скоростью частицы в разных полуплоскостях и горизонталью.

1.26. $M_x = m \sin \varphi(r\dot{z} - z\dot{r}) - mrz\dot{\varphi}\cos \varphi, \quad M_y = -m \cos \varphi(r\dot{z} - z\dot{r}) - mrz\dot{\varphi}\sin \varphi, \quad M_z = mr^2\dot{\varphi}, \quad M^2 = m^2r^2\dot{\varphi}^2(r^2 + z^2) + m^2(r\dot{z} - z\dot{r})^2.$

1.27. а) M_z, P_z (ось цилиндра — ось z) б) P_z (ребра призмы параллельны оси z), в) M_z (точки находятся на оси z), г) P_y (бесконечная полуплоскость — часть плоскости x,y, ограниченная осью y), д) M_z (ось конуса — ось z), е) M_z (ось тора — ось z), ж) $M_z + (h/2\pi)P_z$ (ось винта — ось z,h — шаг винта).

1.28. $x^2 + y^2/4 = l^2/4$, стержень движется в плоскости (xy) .

1.29.
$$\rho = \rho_0/\cos\varphi$$
, $\rho = \left[\rho_0^2 + 2Em^{-1}(t+C)^2\right]^{1/2}$, E – энергия, M – момент, $\rho_0 = M/\sqrt{2mE}$, $C = const$, $-\pi/2 < \varphi < \pi/2$.

2. Интегрирование уравнений движения

2.1. Решение. Полная энергия $E=E(0)=\frac{1}{2}m\dot{x}^2(0)+U(x_0)=0$. Найдем точки остановки. Решая уравнение U(x)=E, получим $x_{1,2}=\pm x_0=\pm \sqrt{2k/\lambda}$ (рис. 38). Из условия следует, что в начальный момент времени частица находится в граничной точке $x_1=x_0>0$ и, следовательно, может перемещаться только в направлении начала координат с $\dot{x}<0$. Имея ввиду это обстоятельство, вычислим интеграл

$$t = -\sqrt{\frac{m}{2}} \int_{x_0}^{x} \frac{dx}{\sqrt{E - U(x)}} = -\sqrt{\frac{2m}{\lambda}} \int_{x_0}^{x} \frac{dx}{x\sqrt{x_0^2 - x}} = \frac{1}{2x_0} \sqrt{\frac{2m}{\lambda}} \ln\left[\frac{x_0 + \sqrt{x_0^2 - x^2}}{x_0 - \sqrt{x_0^2 - x^2}}\right].$$

Разрешая полученное равенство относительно x, получим $x(t)=\sqrt{2k/\lambda}\,\mathrm{ch}^{-1}\big(\sqrt{k/m}\ t\big)$. При $t\to\infty$ x(t) достигает значения x=0.

Рис. 38. К задаче 2.1

2.2.

$$x = \pm a \arcsin\left\{\frac{1}{\sqrt{1 + U_0/E}} \sin\sqrt{\frac{2}{m}(E + U_0)} \frac{t - t_0}{a}\right\}$$
$$T = \pi a \sqrt{\frac{2m}{E + U_0}}, \quad E > 0$$

2.3.
$$\omega = \alpha \sqrt{2m^{-1}|E|}$$
.
2.4. $x_1 = -\alpha^{-1} \ln 2$,

2.4.
$$x_1 = -\alpha^{-1} \ln 2$$
,

$$x(t) = \frac{1}{\alpha} \ln \left\{ \frac{1}{2} + \frac{\alpha^2 A}{m} (t + C)^2 \right\}.$$

2.5.
$$T = 2\pi\sqrt{(l/g)}\{1 + \varphi_0^2/16\}$$
.

2.6.

$$\frac{\sin s/2}{\sin s_0/2} = \sin[\frac{1}{2}\sqrt{Rg^{-1}}(t+C)],$$

где $\cos s_0 = -E/mgR$, $T = 4\pi\sqrt{(g/R)}$.

2.7. Траектория на сфере определяется уравнением:

$$\varphi - \varphi_0 = \pm \frac{M_z}{l\sqrt{2m}} \int \frac{d\theta}{\sin^2 \theta \sqrt{E - U_{\text{3}\phi\phi}}},$$

где

$$U_{\vartheta \Phi \Phi}(\theta) = \frac{M_z^2}{2ml^2 \sin^2 \theta} - mgl \cos \theta.$$

Границы изменения heta находятся из уравнения $U_{
m add}(heta)=E$. Проекции силы реакции на орты сферической системы координат равны: $R_r = -2l^{-1}E - 3mg\cos\theta$, $R_z = R_r\cos\theta$, с уменьшением θ R_z возрастает (ось z направлена вертикально вниз).

2.8. В сферических координатах траектория определяется уравнением:

$$\varphi - \varphi_0 = \frac{M_z}{\sin^2 \alpha \sqrt{2m}} \int \frac{dr}{r^2 \sqrt{E - U_{3 \oplus \Phi}}},$$

где

$$U_{9\Phi\Phi} = \frac{M_z^2}{2mr^2\sin^2\alpha} + mgr\cos\alpha.$$

Сила реакции равна:

$$R = -\frac{M_z^2 \cos \alpha}{mr^3 \sin^3 \alpha} + mg \sin \alpha.$$

Начало сферической системы координат находится в вершине конуса, ось z — вдоль оси конуса.

2.9. Pemenue. Уравнение Лагранжа для координаты r имеет вид

$$m(\ddot{r} - r\dot{\varphi}^2) = -\frac{\partial U}{\partial r} = F(r).$$
 (5)

Сделаем замену переменной

$$u = \frac{1}{r}$$

и найдем производные $du/d\varphi$ и $d^2u/d\varphi^2$,

$$\frac{du}{d\varphi} = -\frac{1}{r^2}\frac{dr}{d\varphi} = -\frac{1}{r^2}\frac{dr}{dt}\frac{dt}{d\varphi} = -\frac{1}{r^2}\frac{\dot{r}}{\dot{\varphi}}\,.$$

Выражая затем $\dot{\varphi}$ из закона сохранения момента, $\dot{\varphi}=M/mr^2$, получим

$$\frac{du}{d\varphi} = -\frac{m}{M}\dot{r}\,.$$
(6)

Далее, запишем

$$\frac{d^2u}{d\varphi^2} = \frac{d}{d\varphi} \left(-\frac{m}{M} \dot{r} \right) = \frac{dt}{d\varphi} \frac{d}{dt} \left(-\frac{m}{M} \dot{r} \right) = -\frac{m}{M\dot{\varphi}} \ddot{r} \,. \tag{7}$$

Выражая из (7) \ddot{r} , а из закона сохранения момента $r\dot{\varphi}^2$, найдем

$$\ddot{r} = -\frac{M^2}{m^2} u^2 \frac{d^2 u}{d\varphi^2}, \qquad r\dot{\varphi}^2 = \frac{M^2}{m^2} u^3.$$
 (8)

Подставляя равенства (8) в (5), получим уравнение

$$\frac{d^2u}{d\varphi^2} + u = -\frac{m}{M^2} \frac{1}{u^2} F(1/u) \,,$$

43

которое можно переписать в виде

$$\frac{d^2}{d\varphi^2}\left(\frac{1}{r}\right) + \frac{1}{r} = -\frac{m}{M^2}r^2F(r). \tag{9}$$

Это уравнение оказывается полезным, если требуется найти силу F(r), действующую на частицу, совершающую движение по заданной траектории $r = r(\varphi)$.

2.10.
$$F(r) = -(M^2/mr^3)(1 + \alpha^2)$$

2.10.
$$F(r) = -(M^2/mr^3)(1 + \alpha^2)$$
.
2.11. $\varphi(t) = \frac{1}{2\alpha} \ln\left(\frac{2\alpha M}{mk^2}t + C\right), r(t) = \left(\frac{2\alpha M}{m}t + k^2C\right)^{1/2}$.

2.12.
$$F(r) = -\frac{\alpha}{r^2}$$
, $U(r) = -\frac{\alpha}{r}$, $\alpha = \frac{M^2}{mp}$.

2.13.
$$|\mathbf{l}| = e$$
, $\mathbf{r}\mathbf{l} = p - r$.

2.15.
$$\dot{\varphi}_{max}/\dot{\varphi}_{min} = (1+e)^2/(1-e)^2$$
.

2.16. Угол φ отсчитывается от направления на максимально удаленную от центра точку орбиты.

$$\frac{1}{r} = \sqrt{\frac{2mE}{M^2 - 2m\alpha}} \cos \left[\varphi \sqrt{1 - \frac{2m\alpha}{M^2}}\right],$$

$$\frac{1}{r} = \sqrt{\frac{2mE}{2m\alpha - M^2}} \operatorname{sh} \left[\varphi \sqrt{\frac{2m\alpha}{M^2} - 1} \right],$$

$$_{\rm B})$$

$$\frac{1}{r} = \sqrt{\frac{2m|E|}{2m\alpha - M^2}} ch \left[\varphi \sqrt{\frac{2m\alpha}{M^2} - 1} \right].$$

2.17.

$$\chi = \pi - \frac{2M}{\sqrt{2m\beta + M^2}} \arccos \frac{1}{\sqrt{1 + \frac{4E}{\alpha^2} \left(\beta + \frac{M^2}{2m}\right)}}.$$

2.18.
$$p/r = -1 + e \cos \gamma \varphi$$
, где

$$e = \sqrt{1 + \frac{4E}{\alpha^2} \left(\beta + \frac{M^2}{2m}\right)}, \quad p = \frac{2}{\alpha} \left(\beta + \frac{M^2}{2m}\right), \quad \gamma = \sqrt{1 + \frac{2m\beta}{M^2}},$$

значение $\varphi = 0$ отвечает перегелию.

2.19. $r = a(1 - e\cos\xi), \quad t = \sqrt{(ma^3/\alpha)}(\xi - e\sin\xi), \quad a - \text{полуось}$ эллипса, e -эксцентриситет; $x = a(\cos\xi - e), \quad y = a\sqrt{1 - e^2}\sin\xi.$

2.20. Эллипс, вытянутый вдоль оси y, уравнение которого есть

$$\frac{p}{1-e} \frac{1}{r^2} = 1 + \frac{2e}{1-e} \cos^2 \varphi,$$

$$M^2 \qquad \sqrt{e^{M^2}} \qquad mF^2$$

$$p=\frac{M^2}{mE}, \ e=\sqrt{1-\frac{\alpha M^2}{mE^2}}, \ \frac{mE^2}{\alpha M^2}\geq 1.$$

Начало координат в центре эллипса, длины полуосей равны

$$\frac{p}{1-e} = b^2$$
, $\frac{2e}{1-e} = \frac{b^2}{a^2} - 1$, $b > a$.

Угол φ отсчитывается от оси y.

2.21. В ц– системе траектории частиц представляют собой эллипсы, один из фокусов которых общий.

3. Столкновение частиц

3.1. $v_2'/v = (2m/m_2)\cos\theta_2$,

$$\frac{v_1'}{v} = \frac{m_1}{m_1 + m_2} \cos \theta_1 \pm \frac{1}{m_1 + m_2} \sqrt{m_2^2 - m_1^2 \sin^2 \theta_1}.$$

При $m_1 > m_2$ перед корнем возможны оба знака, при $m_1 < m_2$ – знак + (v – относительная скорость).

3.2. 1)
$$\pi/2 \le \theta_1 + \theta_2 \le \pi$$
, $(m_1 < m_2)$, 2) $0 \le \theta_1 + \theta_2 \le \pi/2$, $(m_1 > m_2)$, 3) $\theta_1 + \theta_2 = \pi/2$, $(m_1 = m_2)$.

3.3. $\sin \theta_{max} = m_2/m_1$.

3.4.

$$v_1' = \frac{\sqrt{m_1^2 + m_2^2 + 2m_1 m_2 \cos \chi}}{m_1 + m_2} v \qquad v_2' = \frac{2m_1 v}{m_1 + m_2} \sin \frac{\chi}{2}.$$

3.5.
$$\theta_1 = \chi/2$$
, $\theta_2 = \pi/2 - \chi/2$, $p_1' = p_1 \cos \frac{\chi}{2}$, $p_2' = p_1 \sin \frac{\chi}{2}$.

3.6. a)

$$d\sigma = \left(\frac{\alpha}{2mv_{\infty}^2}\right)^2 \frac{d\Omega}{\sin^4\frac{\chi}{2}}$$

45

6)
$$d\sigma = \frac{2\pi^2 \alpha}{m v_{\infty}^2} \frac{\pi - \chi}{\chi^2 (2\pi - \chi)^2} \frac{d\Omega}{\sin \chi}.$$

3.7.

$$d\sigma = A^{\frac{2}{1-n}} \left(n \operatorname{ctg} \frac{\chi}{2} \right)^{\frac{1+n}{1-n}} \frac{d\Omega}{2(1-n) \sin \chi \cos^2 \frac{\chi}{2}}.$$

4. Малые колебания одномерных систем

4.1.
$$x = 2b/a + A\cos(\sqrt{(6gb}t + B))$$

4.2.
$$\omega = \sqrt{Ce^{-n}n^{n-1}/ma^{n-2}}$$

4.2.
$$\omega = \sqrt{Ce^{-n}n^{n-1}/ma^{n-2}}$$

4.3. $\omega^2 = \alpha^2Vm^{-1}\sqrt{1-(F/\alpha V)^2}$.

4.4.
$$\omega^2 = 2k/m$$

4.5.
$$\omega^2 = 2g/(2l - R\pi)$$

4.4.
$$\omega^2 = 2k/m$$
.
4.5. $\omega^2 = 2g/(2l - R\pi)$.
4.6. При $\Omega^2 > \Omega_0^2 = 2g/a$,

$$\omega^2 = \Omega^2 \frac{\Omega^4 - \Omega_0^4}{3\Omega^4 - 2\Omega_0^4},$$

при $\Omega^2 < \Omega_0^2$,

$$\omega^2 = \Omega_0^2 - \Omega^2 \,.$$

4.7.
$$\omega^2 = 7g/(2\sqrt{3}a)$$
.

4.8. $\varphi = \varphi_0 + A\cos(\Omega t + B)$, где φ_0 , - положение устойчивого равновесия,

$$\Omega = \left\{ \begin{array}{ll} \sqrt{g/l - \omega^2} & \text{при } \omega < \sqrt{g/l}, \\ \omega \sqrt{1 - g^2/(\omega^4 l^2)} & \text{при } \omega > \sqrt{g/l} \end{array} \right..$$

4.9. a)
$$\omega^2 = 2k/m$$

 $ky^4/4l^2$, частота

$$\omega = \sqrt{\pi} \frac{\Gamma(3/4)}{\Gamma(1/4)} \sqrt{\frac{2k}{m}} \frac{y_0}{l} \quad y_0 = \left(\frac{4l^2 E}{k}\right)^{1/4}$$

46

где E – энергия системы.

4.12.
$$\omega^2 = 3gR^{-1}(1-x_0^2)$$
, при $x_0 = \sqrt[3]{q^2/8mgR^2} < 1$; $\omega^2 = gR^{-1}(x_0^2-1)$, при $x_0 > 1$.

4.13. a)
$$u = (F_0/m\omega^2)(1-\cos\omega t);$$
 6) $u = a/(m\omega^3)(\omega t - \sin\omega t);$ B)

$$u = \frac{F_0}{m(\omega^2 + \alpha^2)} \{ e^{-\alpha t} - \cos \omega t + \frac{\alpha}{\omega} \sin \omega t \}$$

 Γ

$$\begin{split} u &= C \Big[-(\omega^2 + \alpha^2 - \beta^2) \cos \omega t + \frac{\alpha}{\omega} (\omega^2 + \alpha^2 + \beta^2) \sin \omega t + \\ &\quad + e^{-\alpha t} [(\omega^2 + \alpha^2 - \beta^2) \cos \beta t - 2\alpha\beta \sin \beta t] \Big], \\ C &= \frac{F_0}{m[(\omega^2 + \alpha^2 - \beta^2)^2 + 4\alpha^2\beta^2]}. \end{split}$$

5. Малые колебания систем с несколькими степенями свободы

5.1.
$$x_1 = \theta_1 - 2\theta_2$$
, $x_2 = \theta_1 + \theta_2$, $\theta_1 = b_1 \cos(\sqrt{2}t + \beta_1)$, $\theta_2 = b_2 \cos(t + \beta_2)$, $b_1, b_2, \beta_1, \beta_2 = \text{const.}$

5.2.
$$\omega_{1,2}^2 = gl^{-1}(2 \pm \sqrt{2}), \ \varphi_1 = \theta_1 + \theta_2, \ \varphi_2 = \sqrt{2}(\theta_2 - \theta_1).$$

5.3.
$$u_{1,2} = \theta_1 \pm \theta_2$$
, $\theta_i = a_i \cos(\omega_i t + \beta_i)$, $\omega_1^2 = k/m$, $\omega_2^2 = 3k/m$

5.3.
$$u_{1,2} = gt + (2 \pm \sqrt{2}), \varphi_1 = v_1 + v_2, \varphi_2 = \sqrt{2}(v_2 - v_1).$$
5.3. $u_{1,2} = \theta_1 \pm \theta_2, \theta_i = a_i \cos(\omega_i t + \beta_i), \omega_1^2 = k/m, \omega_2^2 = 3k/m.$
5.4. $u_1 = \theta_1 + \theta_2, u_2 = \frac{1 - \sqrt{5}}{2}\theta_1 + \frac{1 + \sqrt{5}}{2}\theta_2, \omega_{1,2}^2 = \frac{3 \pm \sqrt{5}}{2}(k/m).$
5.5. $\omega_1^2 = k/m, \omega_2^2 = gl_0^{-1}(1 - mg/kl_0)^{-1}.$

5.5.
$$\omega_1^2 = k/m$$
, $\omega_2^2 = gl_0^{-1}(1 - mg/kl_0)^{-1}$.

5.6.
$$x = A_1 \cos(\sqrt{(k/m)}t + B_1), y = A_2 \cos(\sqrt{(2k/m)}t + B_2), (x, y)$$
 - координаты частицы, начало координат в центре квадрата.

5.7.
$$\varphi_{1,2} = \theta_1 \pm \theta_2$$
, $\theta_1 = at + b$, $\theta_2 = A\cos(2\sqrt{(k/m)}t + B)$, $\omega_1 = 0$ (равномерное движение вдоль кольца), $\omega_2 = 2\sqrt{k/m}$ (движение частиц навстречу друг другу); φ_i определяют углы отклонения частиц от вертикали.

5.8.
$$u_{1,2} = \pm A \cos(\sqrt{k/m} t + \alpha) + (Bt + B_0).$$
 5.9.

5.10.
$$x = Q_1 \cos \varphi - Q_2 \sin \varphi$$
, $y = Q_1 \sin \varphi + Q_2 \cos \varphi$, $\operatorname{ctg} 2\varphi = (\omega_2^2 - \omega_1^2)/2\alpha$.

5.11.
$$\omega_1^{2/7} = \omega_0^2$$
, $\omega_2^2 = 4\omega_0^2$, $\omega_3^2 = 6\omega_0^2$, $\omega_0^2 = \frac{P}{2ma}$

5.12.
$$x = \theta_1 + \theta_2, \ y = -\theta_1 + \theta_2, \ \theta_1 = A_1 \cos\left(\sqrt{(g/l)}t + \beta_1\right),$$

$$\theta_1 = A_2 \cos\left(\sqrt{(3g/l)}t + \beta_2\right).$$

5.13.
$$\omega_n^2=4\frac{k}{m}\sin^2\frac{\pi n}{2(N+1)}$$
 , амплитуды: $A_n^{(l)}=A\sin\frac{\pi n l}{N+1},~A=const.~n,l=1,...,N$.

6. Канонические уравнения

6.1.
$$H = p^2/2m + \frac{1}{2}m\omega^2x^2$$
, $x = A\cos(\omega t + \alpha)$, $p = -Am\omega\sin(\omega t + \alpha)$, α , $A = \text{const.}$

6.2.
$$H = \frac{1}{2}p^2(1+2\beta x)^{-1} + \frac{1}{2}\omega^2 x^2 + \alpha x^3;$$

a)
$$H = \frac{1}{2}(p_1^2 - 2p_1p_2 + 2p_2^2) + U;$$

$$6)H = \frac{p_1^2}{6} + \frac{p_2^2}{2} + q_1^2 + \frac{q_2^2}{2} + q_1q_2;$$

$$\mathbf{B})H = \frac{p_1^2}{2a} + \frac{p_2^2}{4(c^2 + b^2 \cos q_1)}.$$

6.4. a)
$$L = \dot{q}_1\dot{q}_2 - q_1q_2$$
; 6) $L = \frac{1}{2}(q_1^2 + q_2^2)(\dot{q}_1^2 + \dot{q})_2^2 - 2a$

6.4. a)
$$L = \dot{q}_1 \dot{q}_2 - q_1 q_2$$
; б) $L = \frac{1}{2} (q_1^2 + q_2^2) (\dot{q}_1^2 + \dot{q})_2^2 - 2a$.
6.5. $H = 2m^{-1} (\xi p_{\xi}^2 + \eta p_{\eta}^2) (\xi + \eta)^{-1} + (p_{\varphi}^2 / 2m\xi \eta) + U(\xi, \eta, \varphi)$.

6.6.

$$\begin{array}{rcl} H & = & \dfrac{1}{2m\sigma^2(\xi^2-\eta^2)} \Big[(\xi^2-1) p_\xi^2 \, + \\ & & \\ & \left(1 - \eta^2 \right) p_\eta^2 + \Big(\dfrac{1}{\xi^2-1} + \dfrac{1}{1-\eta^2} \Big) p_\varphi^2 \Big] + U(\xi,\eta,\varphi) \end{array}$$

6.7.)
$$H = c\sqrt{p^2 + m^2c^2}$$
, $\dot{\mathbf{r}} = c\mathbf{p}/\sqrt{p^2 + m^2c^2}$, $\dot{\mathbf{p}} = 0$.

6.8. $mR^2\dot{\theta} = {\rm const}, \ \ddot{z} + \omega^2 z = 0, \ \omega^2 = k/m, \ (R, \theta, z)$ - цилиндрические координаты.

6.9.
$$H = \frac{1}{2ml^2} \left(p_{\theta}^2 + \frac{p_{\varphi}^2}{\sin^2 \theta} \right) + mgl \cos \theta$$
.

6.10.
$$H = \frac{1}{2}m^{-1}[\mathbf{p} - (e/c)\mathbf{A}]^2 + e\varphi, \quad m\dot{\mathbf{v}} = e\mathbf{E} + (e/c)[\mathbf{v}, \mathcal{H}],$$

$$\mathbf{E} = -c^{-1}\partial \mathbf{A}/\partial t - \nabla \varphi, \quad \mathcal{H} = rot \ A.$$

6.12. 1) $-e_{ijk}p_k$, $-e_{ijk}x_k$; 2) 0, 0; 3) $-e_{ijk}M_k$; 4) **ab**, 0, $nr^{n-2}\mathbf{r}$, e_{ijk} равны нулю, если среди индексов ijk есть хотя бы два одинаковых, или ± 1 в зависимости от того, является ли ijk чётной или нечётной перестановкой 1,2,3; по повторяющимся индексам предполагается суммирование от 1 до 3.

6.13.
$$P = p - bt$$
, $Q = q - at$.

6.14.
$$F_1 = -(1/2\beta)(\alpha q^2 - 2qQ + \nu Q^2), \quad \alpha \nu - \gamma \beta = 1.$$

6.15. a) Het, б)
$$F_1 = (Q^2/2)tg\,q$$
, в) $F_1 = Qe^{-q}\Big[e^q\ln eQ^{-1} - 1\Big]$.

6.16.
$$F_1 = \frac{\omega}{2}(q^2 + Q^2) \operatorname{ctg} \omega t - \frac{\omega q Q}{\sin \omega t}$$

6.17.
$$F_3 = -Q \ln(ep^2/4Q);$$

6.18.
$$F_4 = \mathcal{P} \ln(e \cos p/\mathcal{P});$$

6.19. a), б)
$$q = Q + (\mathcal{P}/m)t$$
, $p = \mathcal{P}$, $H' = 0$.

6.20.
$$q_1 = \theta_1 + \theta_2$$
, $q_2 = \theta_1 - \theta_2$, $\omega_1 = 1$, $\omega_2 = \sqrt{3}$;

6.22.
$$S = -\alpha_1 t + \alpha_x x + \alpha_y y + \alpha_z z$$
, $\alpha_x^2 + \alpha_y^2 + \alpha_z^2 = 2m\alpha_1$.

6.23.

$$S = -\alpha_1 t + \alpha_x x + \alpha_y y - \frac{1}{3m^2 g} [2m(\alpha_1 - mgz) - \alpha_x^2 - \alpha_y^2]^{3/2}.$$

6.24.

$$S = -\alpha_1 t + \int d\varphi \sqrt{2ml^2(\alpha_1 + mgl\cos\varphi)}$$

$$\sqrt{ml^2} \int_{-\infty}^{\varphi} dx$$

$$t - t_0 = \sqrt{\frac{ml^2}{2}} \int_{\varphi_0}^{\varphi} \frac{dx}{\sqrt{\alpha_1 + mgl\cos\varphi}}$$

6.25.

$$S = -\alpha_1 t + \alpha_y y + \frac{1}{3m^2 q \sin \alpha} [2m\alpha_1 - \alpha_y^2 + (2m^2 g \sin \alpha)x]^{3/2}$$

6.26

$$S = -\alpha t + \alpha_{\varphi} \varphi + \sqrt{2ml^2} \int d\theta \sqrt{\alpha + mgl \cos \theta - \frac{\alpha_{\varphi}^2}{2ml^2 \sin^2 \theta}}$$

Закон движения см. в 2.6.

6.27.

$$S = -\alpha_1 t + \alpha_x x + \alpha_z z + W(y) ,$$

$$W(y) = \int dy \sqrt{2m(\alpha_1 + e\mathcal{E}y) - (\alpha_x + \frac{e}{c}\mathcal{H}y)^2 - \alpha_z^2}$$

 $\mathcal{E},\,\mathcal{H}$ – напряжённости электрического и магнитного полей.

6.28.

$$S = -Et + M\varphi + \int dr \sqrt{\frac{1}{c^2} \left(E - \frac{\alpha}{r}\right)^2 - \frac{M^2}{r^2} - m^2 c^2}$$
$$\frac{2E\alpha}{r} = E^2 - m^2 c^4 - \varphi^2 \left(\frac{E\alpha}{cM}\right)^2$$

6.29.

$$S = -\alpha_1 t + \alpha_{\varphi} \varphi + \int dr \sqrt{2m\alpha_1 - \frac{\alpha_2}{r^2}} + \int d\theta \sqrt{\alpha_2 - \frac{\alpha_{\varphi}^2}{\sin^2 \theta} - 2ma \cos \theta}$$

6.30. Уравнение Гамильтона-Якоби для производящей функции $S = -\alpha t + W(q)$ имеет вид

$$H\left(q, \frac{\partial W}{\partial q}\right) = \alpha$$
.

Используя явный вид гамильтониана, это уравнение можно переписать в форме

$$D_1 + D_2 + \ldots + D_n = 0, (10)$$

где

$$D_i = H_i \left(q_i, \frac{\partial W}{\partial q_i} \right) - \alpha A_i \left(q_i, \frac{\partial W}{\partial q_i} \right).$$

Уравнение (10) может быть решено методом разделения переменных. Пологая

$$W(q) = W_1(q_1, \alpha_1, \alpha) + W_2(q_2, \alpha_2, \alpha) + \ldots + W_n(q_n, \alpha_n, \alpha),$$

получим, что W_i удовлетворяет уравнению

$$H_i\left(q_i, \frac{\partial W_i}{\partial q_i}\right) - \alpha A_i\left(q_i, \frac{\partial W_i}{\partial q_i}\right) = \alpha_i,$$

где постоянные $lpha_1,lpha_2,\ldotslpha_n$ - связаны единственным условием

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = 0.$$

6.31.
$$S = -\alpha_1 t + \alpha_2 \ln q_2 + \int \sqrt{2\alpha_1 q_1^2 - \alpha_2^2} \frac{dq_1}{q_1}$$

a)
$$S = -\alpha_1 t + \frac{1}{\alpha_2} \left(2\alpha_1 q_1 - \frac{q_1^3}{3} \right) + \frac{1}{2} \left(\alpha_2 q_2 - \frac{q_2^2}{2} \right);$$

6)
$$S = -\alpha_1 t + \int \sqrt{\alpha_2 - \alpha_3 q_1^2 + 2\alpha_1 q_1} dq_1 + \int \sqrt{-\alpha_2 + \alpha_3 q_2^2 - 2\alpha_1 q_2} dq_2 + \int \sqrt{\alpha_3 - q_3^{-2}} dq_3.$$

6.33.
$$x = A \cos \omega_1 t$$
, $y = B \cos \omega_2 t$

$$S = -\alpha_1 t + \int dy \sqrt{2m(\alpha_2 - \frac{1}{2}m\omega_2^2 y^2)} + \int dx \sqrt{2m(\alpha_1 - \alpha_2 - \frac{1}{2}m\omega_1^2 x^2)}.$$

6.34.
$$x = t^3/6 + \alpha t + \beta$$
.

$$S = \frac{xt^2}{2} + \alpha x - \left(\frac{t^5}{40} + \frac{\alpha t^3}{6} + \frac{\alpha^2 t}{2}\right)$$

$$S = -Et + \alpha\varphi + \int dr \sqrt{2Er^2 - 2 - \frac{\alpha^2}{r^2}}$$
$$\frac{q_1^2}{\alpha^2/(e-1)} - \frac{q_2^2}{\alpha^2/(e+1)} = 1, \qquad e = \sqrt{1 + 2E\alpha^2}$$

6.36.
$$I = 4\sqrt{2m}(3F)^{-1}E^{3/2}, \quad \omega = \pi F/\sqrt{2mE}.$$

6.37. $I = a\sqrt{2mE}, \quad \omega = 2\pi a^{-1}\sqrt{2E/m}.$

6.37.
$$I = a\sqrt{2mE}, \quad \omega = 2\pi a^{-1}\sqrt{2E/m}$$

7. Движение твердого тела

7.1. $\Omega = V/h \sin \alpha$; вектор Ω вращается вокруг вертикальной оси с угловой скоростью $\omega = V/h \cos \alpha$.

7.2. Решение. Конус A совершает чистое вращение вокруг оси OC. Пусть скорость центра окружности, лежащей в основании конуса есть V. Тогда

$$V = \Omega a \sin \alpha \cos \alpha.$$

с другой стороны, эта точка вращается вокруг вокруг OZ с угловой скоростью ω , поэтому

51

Рис. 39.

$$V = \omega a \cos \alpha \sin(\alpha + \beta).$$

Приравнивая оба выражения, найдем

$$\Omega = \omega \frac{\sin(\alpha + \beta)}{\sin \alpha}.$$

Вектор Ω направлен вдоль OC. Так как длина вектора Ω постоянна, то при движении конуса, Ω может только вращаться вокруг OZ с угловой скоростью ω . Поэтому угловое ускорение есть

$$\varepsilon = \frac{d\Omega}{dt} = [\omega, \Omega]$$
 $|\varepsilon| = \omega \Omega \sin \beta$.

Найдем скорость точки M. Так как точка O неподвижна, то $V_M = [\mathbf{\Omega} \, , \mathbf{r_M}]$ и (см. рис. 39)

$$V_M = \Omega r_M \sin \angle CMO.$$

Учитывая, что $CM_0 = 2a \sin \alpha$, получим

$$r_M \sin \angle CMO = MK = CM \cos \alpha = (2a \sin \alpha - b) \cos \alpha$$

52

и $V_M = \Omega(2a\sin\alpha - b)\cos\alpha$.

7.3.
$$\Omega = \omega \frac{\sin(\beta - \alpha)}{\sin \alpha}; |\varepsilon| = \omega \Omega \sin \beta, V_M = \Omega(2a \sin \alpha - b) \cos \alpha.$$

7.4. 1) $I_{1,2} = m_1 m_2 l^2 / \mu, I_3 = 0;$ 2) $I_1 = 2m_1 m_2 h^2 / \mu, I_2 = m_1 m_2 h^2 / \mu$

 $m_1 a^2 / 2$, $I_3 = I_1 + I_2$, ось x – вдоль основания треугольника, ось z -перпендикулярна плоскости системы; 3) $I_{1,2} = 3m_1m_2h^2/\mu +$

$$m_1a^2/2$$
, $I_3=m_1a^2$, ось z – вдоль высоты, ось x – вдоль медианы.
7.5. 1) $I_{1,2}=\mu l^2/12$, $I_3=0$; 2) $I_{1,2,3}=2\mu R^2/5$; 3) $I_{1,2}=\frac{1}{4}\mu(R^2+h^2/3)$, $I_3=\mu R^2/2$, ось x – вдоль оси цилиндра; 4) $I_1=\frac{1}{12}\mu(b^2+c^2)$, $I_2=\frac{1}{12}\mu(a^2+c^2)$, $I_3=\frac{1}{12}\mu(a^2+b^2)$; 5) $I_{1,2,3}=\frac{2}{5}\mu(R_2^5-R_1^5)(R_2^3-R_1^3)^{-1}$; 6) $I_{1,2}=\frac{3}{5}\mu\left(\frac{1}{4}R^2+h^2\right)$, $I_3=\frac{3}{20}\mu(R^2+h^2)$.

$$\frac{2}{5}\mu(R_2^5 - R_1^5)(R_2^3 - R_1^3)^{-1}; 6) I_{1,2} = \frac{3}{5}\mu\left(\frac{1}{4}R^2 + h^2\right), I_3 = \frac{3}{20}\mu(R^2 + h^2).$$
7.6. $x = \frac{4}{5}\alpha^{-1}R\sin\frac{1}{2}\alpha$, where we consider a respective constant.

7.6. $x = \frac{4}{3}\alpha^{-1}R\sin\frac{1}{2}\alpha$, начало координат – в вершине сектора, ось x — вдоль оси симметрии.

7.7.
$$I = \frac{1}{2}\mu R^2(1 - \alpha^{-1}\sin\alpha)$$

7.8.
$$I_1 = \frac{2}{4}\mu b^2$$
, $I_2 = \frac{1}{4}\mu a^2$, $I_3 = I_1 + I_2$. **7.9.**

$$I_{\alpha\beta} = \begin{pmatrix} 1 & -2/3 & 0 \\ -2/3 & 2/3 & 0 \\ 0 & 0 & 5/3 \end{pmatrix}.$$

Главные моменты инерции равны $I_1=5/3,\;I_{2,3}=(5\pm\sqrt{17})/6;$ главные оси направлены вдоль векторов $\mathbf{e}_{1,2} = (1, 1/4 \pm \sqrt{17}/4, 0),$ $\mathbf{e}_3 = (0, 0, 1).$

7.10.
$$T = \frac{1}{3}\mu l^2 \dot{\varphi}^2 (1 + 3\sin^2 \varphi).$$

7.11.
$$T = \frac{\mu \dot{\varphi}^2}{2} (R^2 + a^2 - 2aR\cos\varphi) + \frac{1}{2}I\dot{\varphi}^2, \quad \omega^2 = \mu ga[\mu(R-a)^2 + I]^{-1}.$$

7.12.
$$T = \frac{1}{2}\mu(R-a)^2\dot{\varphi}^2 + \frac{I}{2}(R-a)^2\dot{\varphi}^2/a^2$$
, $I = \frac{1}{2}\mu a^2$, $\omega^2 = \frac{2}{3}g(R-a)^{-1}$.

7.13. $T=\frac{1}{2}\dot{ heta^2}(I_1\cos^2\varphi+I_2\sin^2\varphi)+\frac{1}{2}I_3\dot{\varphi^2},$ ось x_3 направлена вдоль AB.

7.14.
$$\omega^2 = 2gl(2l^2 + R^2)^{-1}$$

7.15.
$$\omega^2 = 6gk(1 - k^2l^2)(3 + k^2l^2)^{-1}, \quad (kl < 1); \omega^2 = 6gl^{-1}(kl - 1), \quad (kl > 1).$$

7.16.
$$R = \frac{1}{3}mg(1 + 8\cos^2\alpha)^{1/2}$$
.

7.17. $\varphi = \theta_1 + \theta_2$; $\psi = \theta_1 - \theta_2$; $\theta_\alpha = A_\alpha \cos(\omega_\alpha t + \beta_\alpha)$; $\omega_1^2 = 3g/2l$, $\omega_1^2 = 3g/2l + 6ka^2/ml^2$.

7.18. $u_i = c_i \cos(\omega_i t + \beta_i), (i = 1, 2), u_1 = x - b, u_2 = \varphi, x$ - координата ц.и. балки вдоль вертикали, φ - угол поворота балки в плоскости рисунка вокруг оси, проходящей через ц.и.; $\omega_1 = 2k/m, \omega_2 = 6k/m; c_i, \beta_i$ - произвольные постоянные.

7.19. $\omega^2 = 4k/3m$

7.20. $u_1 = \theta_1 + \theta_2$; $u_2 = \theta_1 - \theta_2$; $\theta_{\alpha} = A_{\alpha} \cos(\omega_{\alpha} t + \beta_{\alpha})$; $\omega_1^2 = 2k/m$.

7.21. $\mathbf{R} = \frac{7}{2}A\Omega_0^{-1}(\sin \psi + \text{const}, \cos \psi + \text{const}, 0), \mathbf{\Omega} = \frac{5}{7}a^{-1}\Omega_0\mathbf{R}, \psi = \frac{2}{7}\Omega_0t + \text{const}, A = \text{const}.$

7.22. $w_x=(5/7ma)(aF_x+K_y), \quad w_y=(5/7ma)(aF_y-K_x),$ $\dot{\Omega}=a^{-1}(-w_y,w_x,\frac{5}{2}(ma)^{-1}K_z), \; \mathbf{R}=\frac{1}{7}a^{-1}(5K_y-2aF_x,\;\;-5K_x-2aF_y,\;\;7aF_z),\;\;$ ось z перпендикулярна плоскости.

7.23. Решение. В общем случае момент импульса относительно произвольной точки A равен $\mathbf{M} = \mathbf{M}_{\text{ци}} + \mathbf{M}_{\text{вр}}$, где $\mathbf{M}_{\text{ци}}$ - момент импульса центра инерции, а $\mathbf{M}_{\text{вр}}$ - момент вращательного движения, обусловленный вращением вокруг оси, проходящей через центр инерции тела (начало подвижной системы координат находится в центре инерции). В данном случае центр инерции неподвижен и, следовательно, $\mathbf{M}_{\text{ци}} = 0$ относительно любой точки A, а $\mathbf{M}_{\text{вр}}$ не зависит от точки A и равен в главных осях $M_{\alpha} = I_{\alpha}\Omega_{\alpha}$, $\mathbf{M}_{\text{вр}} = (M_1, M_2, M_3)$, I_{α} - главные моменты инерции и Ω_{α} - проекции угловой скорости на главные оси инерции, которые направлены вдоль ребер параллелепипеда. Поэтому

$$\Omega = \frac{\Omega}{\sqrt{a^2 + b^2 + c^2}}(a, b, c).$$

Так как для параллелепипеда

$$I_1 = \frac{m}{12}(b^2 + c^2), \quad I_2 = \frac{m}{12}(a^2 + c^2), \quad I_3 = \frac{m}{12}(a^2 + b^2),$$

то для компонент M_{lpha} получим

$$M_1 = \frac{ma\Omega(b^2 + c^2)}{12\sqrt{a^2 + b^2 + c^2}}; \quad M_2 = \frac{mb\Omega(a^2 + c^2)}{12\sqrt{a^2 + b^2 + c^2}};$$

$$M_3 = \frac{mc\Omega(a^2 + b^2)}{12\sqrt{a^2 + b^2 + c^2}}.$$

7.24.

$$M^{2} = \left(\frac{m\Omega}{12}\right)^{2} [(3R^{2} + h^{2})^{2} \sin^{2}\alpha + 36R^{4} \cos^{2}\alpha], \quad \text{tg}\beta = \frac{3R^{2} + h^{2}}{6R62} \text{tg}\alpha.$$

7.25.
$$x = 2\theta_1 + \theta_2, r\varphi = \theta_1 - 2\theta_2, \theta_\alpha = A_\alpha \cos(\omega_\alpha t + \beta_\alpha), \alpha = 1, 2, \omega_1 = \sqrt{8k/7m}, \omega_2 = 2\sqrt{k/m}.$$

7.26. $\operatorname{tg} \alpha = (I_3/I_1) \operatorname{tg} \theta$, θ - угол между осью симметрии волчка и направлением момента импульса.

направлением момента импульса.
$$7.27. \cos\theta = \frac{3g}{2l\Omega^2} < 1, \, \omega^2 = \Omega^2 \Big[1 - \Big(\frac{3g}{2l\Omega^2} \Big)^2 \Big],$$

$$R^2 = \frac{ml\Omega^2}{2} \sqrt{1 + \frac{7g^2}{4l^2\Omega^4}} \ .$$

7.27. Во вращающейся системе координат ось x_3 направлена вдоль стержня, x_2 - перпендикулярна плоскости векторов \mathbf{v}_i и \mathbf{e}_3 , ось x_1 перпендикулярна плоскости рисунка; $M_1=M_3=0,\ M_2=(m_1+m_2)l^2\Omega\sin\alpha;\ K_2=K_3=0,\ K_1=-(m_1+m_2)l^2\Omega^2\sin\alpha\cos\alpha.$ **7.29.** $N_1=-(5mg/2)\cos\theta-(3E/l),\ N_2=(mg/4)\sin\theta,\ N_3=0,\ E$ - энергия стержня,

$$t + C = \pm \sqrt{\frac{ml^2}{6}} \int \frac{d\theta}{\sqrt{E + \frac{1}{2} mgl \cos \theta}}.$$

7.30.

$$\varphi = A_1 \cos\left(\sqrt{\frac{3g}{4(R-r)}} \ t + \alpha_1\right),$$

$$\theta = \alpha t + \beta + \frac{R-r}{3R} A_1 \cos\left(\sqrt{\frac{3g}{4(R-r)}} \ t + \alpha_1\right).$$

7.31.
$$\varphi = \theta_1 + \theta_2, \ \theta = -(1/\sqrt{6})(\theta_1 - \theta_2); \ \theta_\alpha = b_\alpha \cos(\omega_\alpha t + \beta_\alpha), \ \omega_{1,2}^2 = (g/R)(4 \pm \sqrt{6})/10.$$

8. Механика сплошных сред

8.1. $\mathbf{v} = (0, x_3, x_2)$.

8.2. $v_i = k_i x_i$, $w_i = k_i^2 x_i$, i = 1, 2, 3. **8.3.** $w_1 = 0$, $w_k = k! x_k (1+t)^{-2}$ (k = 2, 3); $x_k = \xi_k (1+t)^k$ (k = 2, 3)

8.11. $\mathbf{P}_n = (4, -\frac{10}{3}, 0), \quad \mathbf{P}_{nn} = \frac{44}{9}\mathbf{n} \quad |\mathbf{P}_n| = \frac{2}{3}\sqrt{61}, \quad \cos\widehat{\mathbf{P}_n \mathbf{n}} = \frac{2}{3}\sqrt{61}$ $22/3\sqrt{61}$.

8.12. $(\frac{5}{2}, 3, \sqrt{3})$.

8.13. $\mathbf{F} = (0, 0, -4x_3/\rho), \max P_{nn} = 8a, \mathbf{n} = (0, 0, 1).$

8.14. $P_{22} = 1$, $\mathbf{n} = (1/\sqrt{6})(1, -2, 1)$.

8.15. $p = p_0 + \rho g(h-z)$, ось z перпендикулярна свободной поверхности.

8.16. $\rho = \rho_0 \exp(-mgz/kT); \ \rho_0 = const, \$ ось z направлена вдоль силы тяжести.

8.17. $\mathbf{R} = (0, 0, g\rho V_T)$.

8.19. Решение. Сила, действующая на тело равна

$$\mathbf{R} = -\iint_{S_1} p(z)\mathbf{n}_1 dS - \iint_{S_2} p(z)\mathbf{n}_2 dS, \qquad (11)$$

где p(z) - давление, \mathbf{n}_i - единичные орты вдоль нормалей к поверхностям S_1 и S_2 (рис. 36).

Предполагается, сила с которой обе жидкости действуют на тело объёма $V = V_1 + V_2$ равна силе с которой жидкости действуют на такой же жидкий объём. Пусть S_0 - поверхность сечения объёма V координатной плоскостью z=0, везде на S_0 $\mathbf{n}_1=\mathbf{k}$, $\mathbf{n}_2 = -\mathbf{k} \; (\mathbf{k}$ - орт вдоль оси z) и давление p(z) непрерывно при переходе через поверхность раздела, тогда

$$\iint_{S_0} p(z)\mathbf{n}_1 dS + \iint_{S_0} p(z)\mathbf{n}_2 dS = 0.$$
 (12)

Рассмотрим теперь замкнутые поверхности $\tilde{S}_1 = S_1 \cup S_0$ и $\tilde{S}_2 =$ $S_2 \cup S_0$. Тогда, используя (12), равенство (11) можно записать в виде

$$\mathbf{R} = -\iint_{S_1} p(z)\mathbf{n}_1 dS - \iint_{S_0} p(z)\mathbf{n}_1 dS$$
$$-\iint_{S_2} p(z)\mathbf{n}_2 dS - \iint_{S_0} p(z)\mathbf{n}_2 dS$$
$$-\oint_{\tilde{S}_1} p(z)\mathbf{n}_1 dS - \oint_{\tilde{S}_2} p(z)\mathbf{n}_2 dS.$$

Так как \tilde{S}_1 и \tilde{S}_2 - замкнутые поверхности, можно применить теорему Гаусса-Остроградского к двум последним интегралам и записать

$$\mathbf{R} = -\int\limits_{V_1} \nabla p \, dV - \int\limits_{V_2} \nabla p \, dV \,.$$

Поскольку в каждой жидкости выполняется уравнение гидростатики, $\nabla p = -g\rho \mathbf{k}$, где g - ускорение свободного падения, а \mathbf{k} - орт вдоль оси Oz, то

$$\mathbf{R} = \left(\int_{V_1} \rho_1 dV + \int_{V_2} \rho_2 dV \right) g\mathbf{k} = (m_1 + m_2) g\mathbf{k},$$

8.20. $z=h+rac{\Omega^2}{2g}(x^2+y^2-rac{a^2}{2})$ — параболоид вращения, ось z — вдоль оси цилиндра.

8.21. $P = \int p(x, y, z = 0) dS = (p_0 + \rho g h) \pi a^2$ = давление в состоянии покоя.

8.22.
$$z = h\sqrt{\sigma/\rho}$$
.

8.23.
$$p = \frac{2}{3}g\rho\pi a^3\sin\alpha\sqrt{1+{\rm tg}^{-2}\,\delta},$$
 где

$$tg\delta = 2a\rho g \sin \alpha [3(p_0 + \rho gH) + 2a\rho g \cos \alpha]^{-1},$$

 δ – угол между силой p и нормалью к основанию полушара.

- **8.24.** $v_x=uy/h,\ v_y=v_z=0,$ ось x направлена вдоль плоскости, ось y перпендикулярно, $p=const,\ P_{(\pm y)x}=\pm \eta u/h,\ P_{(\pm y)y}=p,$ η коэффициент сдвиговой вязкости.
- **8.25.** $v_x = \frac{1}{2}\eta^{-1}(dp/dx)y(y-h), \ v_y = v_z = 0, \ (dp/dx) = const < 0,$ ось x направлена вдоль движения жидкости, ось y перпендикулярно плоскостям, $P_{(y)x} = (h/2)|dp/dx|$.
- **8.26.** $p=p_0+\rho g\cos\alpha(h-z),\ v_x=\frac{1}{2}\rho g\sin\alpha\,\eta^{-1}z(2h-z),\ v_y=v_z=0$, ось x в направлении движения жидкости, ось y перпендикулярно наклонной плоскости.
- **8.27.** $dp/dx=l^{-1}\Delta p, \quad v=-\frac{1}{4}\Delta p(\eta l)^{-1}(R^2-r^2), \quad r$ полярный радиус в плоскости сечения, $Q=-\frac{1}{8}\pi\Delta p(\nu l)^{-1}R^4, \quad \nu=\eta/\rho.$

Литература

- 1. Ландау Л.Д., Лифшиц Е.М. Механика. М.: Физматлит, 2004.
- 2. Πa вленко H. Γ . Лекции по теоретической механике . M.: Физматлит, 2002.
- 3. *Павленко Ю.Г.* Задачи по теоретической механике . М.: Изд во МГУ, 1988.
- 4. Пятницкий Е.С., Трухан Н.М., Ханукаев Ю.И., Яковенко Г.Н Сборник задач по аналитической механике, М.: Физматлит, 2002.
- 5. Ольховский И.И., Павленко Ю.Г. Кузьменков Л.С. Задачи по теоретической механике для физиков. М.: Изд во МГУ, 1977. 6. Ольховский И.И. Курс теоретической механики для физиков. М.: Изд во МГУ, 1974.
- 7. *Коткин Г.Л., Сербо В.Г.* Сборник задач по классической механике. М.: Наука, 1977.
- 8. Голдстейн Г. Классическая механика. М.: Наука, 1975.
- 9. Тер. Хаар Д. Основы гамильтоновой механики. М.: Наука, 1974.
- 10. Парс Л. Аналитическая динамика. М.: Наука, 1971.
- 11. Мещерский И.В. Сборник задач по теоретической механике.
- М.: Наука, 1975.
- 12. Синг Дэк. Л. Классическая динамика. М.: ГИФМЛ, 1960.
- 13. Фейнман Р., Хибс А. Квантовая механика и интегралы по траекториям. М.: Мир, 1968.
- 14. Thornton S.T., Marion J.B. Classical dynamics of particles and systems. Thomson Learning, Inc. 2004.
- 15. Marion D. Introduction to classical mechanics. With problems and solution. Cambridge University Press, 2008.
- 16. Ландау Л.Д., Лифшиц Е.М. Гидродинамика, М.: Наука, 1986.
- 17. *Мейз Дэс.* Теория и задачи механики сплошных сред, М.: Мир, 1974.

Учебное издание

ЗАДАЧИ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ Бухбиндер

Геннадий Львович

Санитарно-гигиенический сертификат № Редактор ???
Технический редактор Н.С. Серопян
Дизайн обложки ???

Подписано в печать ???

Формат $60 \times 84 \ 1/16$.

Печ. л. ???. Усл. печ. л. ??. Уч.-изд. л. ??.

Тираж ??экз. Заказ

Издательство Омского государственного университета $644077,\ \mathrm{Omck}\text{--}77,\ \mathrm{np.}\ \mathrm{Mupa},\ 55\mathrm{a}$