Stochastic Time-Inverted Lagrangian Transport (STILT) Model www.stilt-model.org

How To

by

John C. Lin

<u>jcl@uwaterloo.ca</u> University of Waterloo Waterloo, Canada

Christoph Gerbig

christoph.gerbig@bgc-jena.mpg.de Max-Planck-Institut für Biogeochemie Jena, Germany

August, 2010

Table of Contents

Table of Contents	2
Foreword	3
Fair Use Policy	3
Publications	3
Content of Distribution Package	4
Model Files Neededa) Essential files:b) Optional files	5
Meteorological Files Needed	6
Structure of CONTROL file	7
Structure of SETUP.CFG	8
List of Variables that can be Outputted from STILT	10
Sample PARTICLE.DAT output CONTROL file:	12
R scripts to Run STILT	14 15

Foreword

The Stochastic Time-Inverted Lagrangian Transport (STILT) model is an atmospheric model that simulates the movement of air parcels using ensembles of fictitious "particles" starting from a specified location and time. These particles can run both backward and forward in time from the starting location. STILT has predominantly been used in a time-reversed manner, where the particles spread out as they travel backward in time. In this way, the particles provide knowledge of the trajectories of air that arrives at the specified location (receptor). From this information one can construct the "influence" or "footprint" of an atmospheric observation and has proven to be extremely useful for understanding atmospheric datasets. As a simple example, imagine a case in which one observes an increase in pollutant concentrations. By examining the STILT-simulated particles, then, the researcher can get a sense of where the plume originated from.

This document is intended to provide a quick introduction to running STILT and serves as a supplement to the official STILT website: http://www.stilt-model.org/

Fair Use Policy

STILT is freely available and we encourage others to use it. Kindly keep us informed of how you are using the model and of any publication plans. Please acknowledge the source as a citation. STILT is continuously updated and improved by the development consortium, and in some cases (as when new elements are used for the first time) we may suggest that one or more of the developers be offered participation as authors. If your work directly competes with our analysis we may ask that we have the opportunity to submit a manuscript before you submit one that uses unpublished features. The software is updated from time to time, and it is your responsibility to insure that your publication is consistent with the most recent revision.

Publications

The formal reference describing the STILT model is:

Lin, J.C., C. Gerbig, S.C. Wofsy, A.E. Andrews, B.C. Daube, K.J. Davis, and C.A. Grainger, A near-field tool for simulating the upstream influence of atmospheric observations: the Stochastic Time-Inverted Lagrangian Transport (STILT) model, *Journal of Geophysical Research*, *108* (D16), 4493, doi:10.1029/2002JD003161, 2003.

A few selected papers that use STILT:

- Gerbig, C., J.C. Lin, S.C. Wofsy, B.C. Daube, A.E. Andrews, B.B. Stephens, P.S. Bakwin, and C.A. Grainger, Toward constraining regional-scale fluxes of CO₂ with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-oriented framework, *Journal of Geophysical Research*, 108 (D24), 4757, doi:10.1029/2003JD003770, 2003.
- Lin, J.C., et al., Measuring fluxes of trace gases at regional scales by Lagrangian observations: application to the CO₂ Budget and Rectification Airborne (COBRA) study, *Journal of Geophysical Research*, 109 (D15304, doi:10.1029/2004JD004754), 2004.
- Lin, J.C., and C. Gerbig, Accounting for the effect of transport errors on tracer inversions, *Geophysical Research Letters*, 32 (L01802), doi:10.1029/2004GL021127, 2005.

- Hurst, D.F., J.C. Lin, P.A. Romashkin, B.C. Daube, C. Gerbig, D.M. Matross, S.C. Wofsy, B.D. Hall, and J.W. Elkins, Continuing global significance of emissions of Montreal Protocol-restricted halocarbons in the United States and Canada. *Journal of Geophysical Research*, 111(D15): D15302, DOI: 10.1029/2005JD006785, 2006.
- Kort, E.A., J. Eluszkiewicz, B.B. Stephens, J.B. Miller, C. Gerbig, T. Nehrkorn, B.C. Daube, J.O. Kaplan, S. Houweling, and S.C. Wofsy, Emissions of CH₄ and N₂O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations. *Geophysical Research Letters*, *35*: L18808, doi:10.1029/2008GL034031, 2008.
- Macatangay, R., T. Warneke, C. Gerbig, S. Körner, R. Ahmadov, M. Heimann, and J. Notholt, A framework for comparing remotely sensed and in-situ CO₂ concentrations. *Atmospheric Chemistry and Physics*, 8: 2555-2568, 2008.
- Miller, S.M., D.M. Matross, A.E. Andrews, D.B. Millet, M. Longo, E.W. Gottlieb, A.I. Hirsch, C. Gerbig, J.C. Lin, et al., Sources of carbon monoxide and formaldehyde in North America determined from high-resolution atmospheric data, *Atmospheric Chemistry and Physics*, 8, 7673-7696, 2008.
- Nehrkorn, T., J. Eluszkiewicz, S.C. Wofsy, J.C. Lin, C. Gerbig, M. Longo, and S. Freitas. Coupled Weather Research and Forecasting--Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) Model, *Meteorology and Atmospheric Physics*, 107, 51-64, 2010.

A complete list of STILT publications can also be found on the STILT website.

Content of Distribution Package								
Exe	multiple copies of the STILT executables							
Boundary	tracer boundary conditions, valid for the middle of the Pacific							
Fluxes	surface flux grids over North America							
Rsc	R scripts to run STILT and the ROAM framework (Receptor-Oriented Atmospheric							
	Model)—i.e., calculating tracer concentrations at the particle starting location							
	("receptor") by having the STILT particles pick up tracer fluxes and tracer boundary							
	conditions (see section on 'R scripts')							
src	source code for the STILT model							

Model Files Needed

The current version of the STILT model has been compiled to run on Linux machines.

Some compilers that have successfully compiled STILT:

- Portland Group Compiler (*pgf90*)
- Intel Fortran Compiler (*ifort*)
- GNU Fortran Compiler (*gfortran*)
- G95 Fortran Compiler (*g95*)

a) Essential files:

i) hymodelc compiled model executable file

ii) CONTROL file containing the main control parameters for the model

iii) SETUP.CFG file containing the secondary control parameters

b) Optional files

ASCDATA.CFG—configuration file defining data structure of LANDUSE.ASC & ROUGLEN.ASC LANDUSE.ASC—text file containing land-use data ROUGLEN.ASC—text file containing roughness length data

Note: The files above must be placed in the same directory.

Meteorological Files Needed

Because STILT does not solve the atmospheric equations of motions, it requires meteorological datasets to drive the movement of the particles. Since STILT is built upon the HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model developed by NOAA-ARL (Air Resources Laboratory), the input meteorological files required by STILT are in NOAA-ARL format.

Archived meteorological files are available for download from NOAA-ARL: http://ready.arl.noaa.gov/archives.php

A webpage that discusses the NOAA-ARL data format, with conversion programs, is available at: http://ready.arl.noaa.gov/HYSPLIT_data2arl.php

The relevant papers describing the HYSPLIT model and the format of the NOAA-ARL meteorological files are:

Draxler, R.R., HYSPLIT_4 User's Guide, *NOAA Technical Memorandum ERL ARL-230*, 1999. Draxler, R.R., and G.D. Hess, Description of the HYSPLIT_4 modeling system, *NOAA Technical Memorandum ERL ARL-224*, 1997.

Draxler, R.R., and G.D. Hess, An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition, *Australian Meteorological Magazine*, 47, 295-308, 1998.

Please properly acknowledge NOAA ARL as appropriate and please be aware of limitations when publishing results using forecast meteorology from ARL. The following are instructions from http://ready.arl.noaa.gov/HYSPLIT_traj.php:

Publications using HYSPLIT results, maps or other READY products provided by NOAA ARL are requested to include an acknowledgement of, and citation to, the NOAA Air Resources Laboratory. Appropriate versions of the following are recommended:

Citation

Draxler, R.R. and Rolph, G.D., 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD.

Rolph, G.D., 2003. Real-time Environmental Applications and Display sYstem (READY) Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD.

Acknowledgment

The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.arl.noaa.gov/readv.html) used in this publication.

Redistribution Permission

Permission to publish or redistribute HYSPLIT model results using forecast meteorological data from NOAA ARL can be obtained by providing relevant information (reason, to whom, from whom) via email to permission@www.arl.noaa.gov.

Structure of CONTROL file

Here is a sample CONTROL file (with explanation following # sign):

```
0 8 26 18
                      #yr ('0' => 2000), mon, day, hr [UT]
                      #number of starting locations
                      #starting location: lat, lon, height [m AGL]
#number of hours to run model (negative numbers denote backward run)
45 -90.2 5
48
0
                      #vertical motion option (0:data 1:isob 2:isen 3:dens 4:sigma)
10000.0
                      #top of model domain [m AGL]
                      #number of input meteorological data
/users/jcl/Metdat/ #meteorological data directory
edas.subgrd.aug00.002
                           #meteorological filename
test
1
0.01
00 00 00 00 00
0.0 0.0
0.5 0.5
30.0 30.0
./
cdump
1
100
00 00 00 00 00
00 00 00 00 00
00 24 00
0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0
0.0
0.0
```

Structure of SETUP.CFG

SETUP. CFG is a 'namelist' file, which can alter the behavior of the model without having to recompile it.

Here is a sample SETUP. CFG file:

```
$SETUP
NUMPAR=50,
DELT=30,
TRATIO=0.75,
ISOT=0,
TLFRAC=0.1,
OUTFRAC=0.9,
NDUMP=1,
RANDOM=1,
OUTDT=0.0,
VEGHT=0.5,
NTURB=0,
ICONVECT=0,
WINDERRTF=0,
ZICONTROLTF=0,
IVMAX=11,
VARSIWANT='time', 'indx', 'lati', 'long', 'zagl', 'zsfc', 'samt', 'temp', 'dswf', 'mlht', 'dmas',
```

Explanation of parameters in SETUP.CFG:

NUMPAR—number of particles to be run (default: 100)

- DELT—integration timestep [min]; if set to 0.0, then timestep is dynamically determined
- TRATIO—maximum fraction of gridcell to be traveled by a particle in a single integration timestep. This determines the timestep is DELT is set to be dynamic (default: 0.75)
- ISOT—flag used to set the isotropic turbulence option. The default value of 0 results in the computation of horizontal turbulence from wind field deformation. Setting this flag to 1 results in the horizontal turbulence to be the same in both the U- and V- directions. (default: 0)
- TLFRAC—the fraction of T_L (Lagrangian timescale) to set as timestep in dispersion subroutine. The smaller this fraction is, the more finely the turbulence is resolved. (default: 0.1)
- NDUMP—is a flag that can be set to dump out all the particle/puff points at the end of a simulation to a file called PARDUMP. This file can be read at the start of a new simulation to continue the previous calculation. Valid NDUMP settings: 0 no I/O, 1- read and write, 2 read only, 3 write only (default: 0)
- RANDOM—flag that tells random number generator whether to have a different random sequence each time model is run (0-FALSE; 1-TRUE); if set FALSE, then generates same random sequence each time, which is useful for debugging purposes (default: 1)
- OUTDT—interval to output data to PARTICLE . DAT [min]; 0.0 means output is written every timestep (default: 0.0)
- NTURB—No <u>Turb</u>ulence flag; 1 sets run to simulate mean trajectories, 0 sets run to include turbulence (default: 0)
- VEGHT—height [fraction of PBL ht or m] below which a particle's time spent is tallied; useful if want to specify a certain ht as 'seeing' ground vegetation. If <=1.0, then specifies <u>fraction of PBL ht</u> (default: 0.5)
- OUTFRAC—the fraction of particles that are allowed to leave model domain (given by met. data); if exceeded, model stops (default: 0.9)

STILT How To

- ICONVECT—flag for convection. If set to 1, then runs excessive convection as described in Gerbig et al., *J. Geophys. Res.*, *108* (D24), 4757, doi:10.1029/2003JD003770, 2003. For specialized RAMS output, the particles will be vertically redistributed according to the outputted convective mass fluxes (default: 0)
- WINDERRTF—flag that specifies whether to have particle motions be affected by horizontal wind errors. (default: 0) If set to 1, then STILT looks for file called "WINDERR" that has four lines, with one number on each line: 1. Standard deviation of errors [m/s] 2. Correlation timescale of errors [min] 3. Vertical correlation lengthscale of errors [m] 4. Horizontal correlation lengthscale of errors [km]. All the statistical properties specified in 1.~4. are applied equally to the U- and V- wind components.
- ZICONTROLTF—flag that species whether to scale the PBL heights in STILT uniformly in the entire model domain. (default: 0) If set to 1, then STILT looks for file called 'ZICONTROL' that species the scaling for the PBL height. The first line of ZICONTROL indicates the number of hours that the PBL height will be changed, and each subsequent line indicates the scaling factor for that hour. A sample ZICONTROL file could contain:

2 1.5 0.4

This file would alter the PBL heights for the first two hours of the model runtime, increasing the PBL height by 50% during the first hour and decreasing it to only 40% of the original value

IVMAX—the total number of variables to be outputted (see VARSIWANT) (default: 5)

VARSIWANT—a list of 4-letter codes specifying variables to be outputted. See next section for complete list of variables that can be outputted (default: 'time', 'indx', 'long', 'lati', 'zagl')

List of Variables that can be Outputted from STILT

The following are the 4-letter codes of variables that should be specified for VARSIWANT in SETUP. CFG to get the output.

The output from STILT will be written to a text file called PARTICLE.DAT.

time	time since start of simulation; negative if going backward in time [min]
indx	particle index
long	longitude position of particle [degrees]
lati	latitude position of particle [degrees]
zagl	vertical position of particle [m above ground level]
sigw	standard deviation of vertical velocity; measure of strength of vertical turbulence [m/s]
tlgr	Lagrangian decorrelation timescale [s]
zsfc	terrain height [m above sea level]
icdx	cloud index when using RAMS (Grell scheme) [1=updraft, 2=environment, 3=downdraft]
temp	air temperature at lowest model layer [K]
samt	amount of time particle spends below VEGHT (see section on SETUP.CFG) [min]
foot	'footprint', or sensitivity of mixing ratio to surface fluxes [ppm/(\(\mu\text{mole/m}^2/\s))]
shtf	sensible heat flux [W/m ²]
lhtf	latent heat flux [W/m ²]
tcld	total cloud cover [%]
dmas	particle weight changes due to mass violation in wind fields [initial value = 1.0]
dens	air density [kg/m ³]
rhfr	relative humidity fraction [0~1.0]
sphu	specific humidity [g/g]
solw	soil moisture
lcld	low cloud cover [%]
zloc	limit of convection heights [m]
dswf	downward shortwave radiation [W/m ²]
wout	vertical mean wind [m/s]
mlht	mixed-layer height [m]
rain	total rainfall rate [m/min]
crai	convective rainfall rate [m/min]

Sample PARTICLE.DAT output

The order of columns will be matched to the VARSIWANT specified in SETUP.CFG

42.53572	-72.17200		30.000	00			
-30.	1.	42.5282	-72.1839	60.4405	263.4937	0.0563537	1703.51
-30.	2.	42.5271	-72.1848	32.8217	263.6271	0.0563549	1703.51
-30.	3.	42.5288	-72.1901	88.2987	264.9537	0.0563575	1703.51
-30.	4.	42.5304	-72.1971	69.1384	267.0585	0.0563600	1703.51
-30.	5.	42.5275	-72.1902	139.3386	264.9070	0.0563553	1703.51
-60.	1.	42.5299	-72.2076	224.0589	269.1796	0.0743809	1283.81
-60.	2.	42.5245	-72.2083	117.5103	268.4974	0.0743784	1283.81
-60.	3.	42.5260	-72.2052	0.1150	268.7074	0.0743854	1283.81
-60.	4.	42.5279	-72.2153	133.3466	270.7165	0.0743937	1283.81
-60.	5.	42.5251	-72.2099	139.8024	268.9242	0.0743850	1283.81
-90.	1.	42.5384	-72.2313	403.4171	275.8311	0.0836150	923.35
-90.	2.	42.5294	-72.2307	38.5641	274.2447	0.0836082	923.35
-90.	3.	42.5224	-72.2096	3.7323	269.3789	0.0835918	923.35
-90.	4.	42.5319	-72.2384	217.6264	276.3353	0.0836206	923.35
-90.	5.	42.5278	-72.2313	130.4637	274.2950	0.0836099	923.35
-120.	1.	42.5518	-72.2531	394.9881	283.0028	0.1021289	923.35
-120.	2.	42.5403	-72.2517	74.2778	280.1912	0.1021117	923.35
-120.	3.	42.5238	-72.2223	58.4240	272.0490	0.1020613	923.35
-120.	4.	42.5407	-72.2566	163.0003	282.3101	0.1021277	923.35
-120.	5.	42.5340	-72.2526	107.5163	279.9136	0.1021114	923.35

The order of columns will be matched to the VARSIWANT specified in SETUP.CFG. Here the variables are: 'time', 'indx', 'lati', 'long', 'zagl', 'zsfc', 'foot', 'mlht'

The CONTROL and SETUP.CFG files that generated the output above are as follows:

CONTROL file:

```
2 8 12 18
42.53572 -72.172 30
-2
0
25000.0
/bluejay/stilt/Metdata/
edas.subgrd.julaug02
/bluejay/stilt/Metdata/
fnl.nh.julaug02
1
test
1
0.01
00 00 00 00 00
0.0 0.0
0.5 0.5
30.0 30.0
./
cdump
100
00 00 00 00 00
00 00 00 00 00
00 2 00
0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0
0.0
0.0
```

SETUP . CFG file:

```
&SETUP
TRATIO=0.75,
INITD=0,
KHMAX=9999,
NUMPAR=5,
QCYCLE=0,
KRND=6,
FRMR=0.0,
DELT=10,
ISOT=0,
OUTFRAC=0.9,
NDUMP=0,
RANDOM=1,
OUTDT=30,
VEGHT=0.5,
NTURB=0,
ICONVECT=0,
ZICONTROLTF=0,
WINDERRTF=0,
IVMAX=8,
VARSIWANT='time', 'indx', 'lati', 'long', 'zagl', 'zsfc', 'foot', 'mlht',
```

R scripts to Run STILT

It is a lot of work to manually modify the CONTROL and SETUP.CFG files for each run! Hence a layer of code written in a higher-level language has been designed and constructed to interact with the core Fortran model. These scripts are written in the R language (OpenSource implementation of the S-statistical analysis language). The source code, installation files, and documentation on R can be downloaded from the R Project for Statistical Computing: http://www.r-project.org/. R is a fully-functional, free, and open-source software that runs on multiple platforms (e.g., Mac OS, Windows, Linux). Furthermore, R is gaining in popularity due to the powerful data analysis packages that have been contributed by users all over the world.

Figure 1: A schematic of how the Fortran code and the R code interact with one another in STILT.

In the Rsc/ directory are scripts to run STILT and to calculate tracer concentrations at the particle location ("receptor") using a "receptor-oriented framework". A description of the receptor-oriented framework employing STILT is:

Gerbig, C., J.C. Lin, S.C. Wofsy, B.C. Daube, A.E. Andrews, B.B. Stephens, P.S. Bakwin, and C.A. Grainger, Toward constraining regional-scale fluxes of CO₂ with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-oriented framework, *Journal of Geophysical Research*, 108 (D24), 4757, doi:10.1029/2003JD003770, 2003.

See the file 'Rsc/OOREADME.TXT' for a description of how to run the R scripts. In particular, the function 'Trajec' can be used in R to automatically generate the CONTROL and SETUP.CFG configuration files, call the Fortran executable hymodelc, and read in the output (PARTICLE.DAT).

In addition, there's a short tutorial 'Rsc/Ostilt_tutorial.r' that generates sample output and illustrates how STILT can be run with the R scripts.

Here a few of the core functions are described:

I. Trajec

Trajec is the workhorse function that runs STILT and then reads in the output file PARTICLE. DAT By default, the function stores the results in a ".RData" file with a name that reflects the starting time and location of the run. For instance,

".RData2002x08x12x18x42.54Nx072.17Wx00030" stores the output from a run that started on Aug. 12^{th} , 2002, at 1800 UT. The starting locations is at 42.54-deg N and 72.17-deg W, at a height of 30-m AGL.

```
info<-Trajec(yr=2,mon=8,day=12,hr=18,lat=42.53572,lon=-72.172,agl=30,nhrs=-2,
    numpar=5,delt=10,outdt=30,metlib="/bluejay/stilt/Metdata/",
    metfile=c("edas.subgrd.julaug02","fnl.nh.julaug02"),
    varsout=c("time","index","lat","lon","agl","grdht","foot","zi"),
    rundir="/home/jcl/STILT/Exe/")</pre>
```

.RData files are in binary format, but are compatible across platforms!

The output from Trajec is written to an external file .RData "info", then, stores the details of this run.

```
> info
                                                                            mon
                                    "2"
                                                                             "8"
                                    day
                                                                             hr
                                   "12"
                                                                            "18"
                                   lat1
                                                                           lon1
                            "42.53572"
                                                                      "-72.172"
                                   agl1
                                                                           nhrs
                                   "30"
                                                                           "-2"
                                   delt
                                                                         numpar
                                   "10"
                                  ndump
                                                                         random
                                    "0"
                                                                         "TRUE"
                                  outdt
                                                                          veght
                                   "30"
                                                                          "0.5"
                                metlib
                                                                          metd1
                                                                         "edas"
            "/bluejay/stilt/Metdata/"
                        doublemetfiles
                                                                       metfile1
                               "FALSE"
                                                        "edas.subgrd.julaug02"
                              metfile2
                                                                          nturb
                     "fnl.nh.julaug02"
                                                                        "FALSE"
                               outfrac
                                                                           conv
                                                                        "FALSE"
                                 "0.9"
                              varsout1
                                                                       varsout2
                                 "time"
                                                                        "index"
                              varsout3
                                                                       varsout4
                                  "lat"
                                                                          "lon"
                              varsout5
                                                                       varsout6
                                  "agl"
                                                                        "grdht"
```

```
      varsout7
      varsout8

      "foot"
      "zi"

      nummodel
      outname

      "0"
      "2002x08x12x18x42.54Nx072.17Wx00030"

      outpath
      overwrite

      "TRUE"

      xedas.subgrd.julaug02xfnl.nh.julaug02
      status

      "4"
      "1"
```

II. getrand assignr

To retrieve the .RData files, the getr function can be used. Here is a sample command retrieving the output from a Trajec run:

```
dat<-getr(info["outname"],path="./")</pre>
```

```
The function "gets" the contents of info["outname"]—i.e., 2002x08x12x18x42.54Nx072.17Wx00030—from its .RData file (.RData2002x08x12x18x42.54Nx072.17Wx00030), which can be found in the directory given by "path".
```

```
Conversely, assignr creates a .RData file with a specified name. Here is an example: assignr("stiltrun", value=dat, path="../", printTF=T) .../.RDatastiltrun created
```

III. Trajecfoot

Trajecfoot generates the "footprints" of the receptor, based on the Trajec run. Footprints provide the sensitivity of a concentration measurement to upwind fluxes. The unit of the footprint calculated by Trajecfoot is in [ppmv/umole/m2/s]. In other words: the footprint gives the concentration change at the starting point of the STILT run (receptor), given an unit flux from the ground surface. This is based on how many particles are found near the ground at a location and how long they reside there.

The following is some sample code to generate the footprint of a receptor:

```
#1) Call Trajec to run
info<-Trajec(yr=2,mon=8,day=12,hr=18,
             lat=43.4516, lon=-80.49242, agl=30, nhrs=-48,
             numpar=100,delt=10,outdt=30,metlib="/bluejay/stilt/Metdata/",
             metfile=c("edas.subgrd.julaug02", "fnl.nh.julaug02"),
             , varsout=c("time", "index", "lat", "lon", "agl", "grdht", "foot", "zi"), ru
             ndir="/home/jcl/STILT/Exe/")
#2) Set up input variables to Trajecfoot
foottimes<-c(0,24,48)
                                 #vector of times (backtimes) in hours between
which footprint is computed
zbot<-0
                                 #lower vertical bound for influence projection,
in meters agl
ztop<-0
                                 #upper vertical bound for influence projection,
in meters agl
                                     if ztop set to zero, *surface* influence
will be calculated
lon.res<-1/10
                                 #resolution in degrees longitude
lat.res<-1/10
                                 #resolution in degrees latitude
```

STILT How To

```
numpix.x<-40/lon.res</pre>
                                  #number of pixels in x directions in grid
numpix.y<-25/lat.res</pre>
                                  #number of pixels in y directions in grid
lon.11<--100
                                  #lower left corner of grid
lat.11<-30
                                  #lower left corner of grid
ident<-info["outname"]</pre>
                          #ident is identifier flag for an
"2002x08x12x18x42.54Nx072.17Wx00030"
#3) Call Trajecfoot
foot<-Trajecfoot(ident=ident,pathname="./",foottimes=foottimes,</pre>
                 zlim=c(zbot,ztop),fluxweighting=NULL,coarse=1,
                 numpix.x=numpix.x, numpix.y=numpix.y,
                 lon.ll=lon.ll,lat.ll=lat.ll,lon.res=lon.res,lat.res=lat.res)
#4) Process output from Trajecfoot
xfoot<-apply(foot,c(1,2),sum)</pre>
                                  #(a) generate *time-integrated* footprint
xlon<-as.numeric(dimnames(xfoot)[[2]]);xlat<-as.numeric(dimnames(xfoot)[[1]])</pre>
xfoot.log<-log10(xfoot);xfoot.log[is.inf(xfoot.log)]<-NA</pre>
#5) Generate map of footprint
library(maps); library(fields)
X11(); image.plot(x=xlon,y=xlat,z=t(xfoot.log),cex.lab=1.5,cex.axis=1.5,xlab="Lon
gitude", ylab="Latitude")
map("state",add=T); map("world",c("Canada","Mexico"),add=T)
title(main=ident,cex.main=1.5)
```

The resulting map is shown here:

2002x08x12x18x43.45Nx080.49Wx00030

Figure 2: Footprint map produced by Trajecfoot. The color scale is logarithmic (base 10).