중심극한정리 n이 클 때의 \bar{X} 의 분포

chengbinjin@inha.edu

인하대 정보통신학과

한국통계학회 2007년 추계학술대회

Theorem

 X_1, X_2, \cdots, X_n 이 독립이고 $E[X] = \mu$, $Var(X) = \sigma^2(>0)$ 이고 \bar{X} 와 S^2 이 각각 표본평균, 표본분산이라고 하자. 이때 $n \to \infty$ 이면

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \stackrel{\text{asymp.}}{\sim} N(0, 1) \tag{1}$$

이다.

Sketch of proof

- ① 식 (1)의 $ch.f \phi(t)$ 의 expansion을 구한다.
- $n \to \infty$ 일 때 이 함수가 수렴함을 보인다.

Theorem

 X_1, X_2, \cdots, X_n 이 독립이고 $E[X] = \mu$, $Var(X) = \sigma^2(>0)$ 이고 \bar{X} 와 S^2 이 각각 표본평균, 표본분산이라고 하자. 이때 $n \to \infty$ 이면

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \stackrel{\text{asymp.}}{\sim} N(0, 1) \tag{1}$$

이다.

Sketch of proof.

- ① 식 (1)의 $ch.f \phi(t)$ 의 expansion을 구한다.
- ② $n \to \infty$ 일 때 이 함수가 수렴함을 보인다.

Theorem

 X_1, X_2, \cdots, X_n 이 독립이고 $E[X] = \mu$, $Var(X) = \sigma^2(>0)$ 이고 \bar{X} 와 S^2 이 각각 표본평균, 표본분산이라고 하자. 이때 $n \to \infty$ 이면

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \stackrel{\text{asymp.}}{\sim} N(0, 1) \tag{1}$$

이다.

Sketch of proof.

- ① 식 (1)의 $ch.f \phi(t)$ 의 expansion을 구한다.
- $2 n \to \infty$ 일 때 이 함수가 수렴함을 보인다.

2/2

Theorem

 X_1, X_2, \cdots, X_n 이 독립이고 $E[X] = \mu$, $Var(X) = \sigma^2(>0)$ 이고 \bar{X} 와 S^2 이 각각 표본평균, 표본분산이라고 하자. 이때 $n \to \infty$ 이면

$$\frac{X - \mu}{S/\sqrt{n}} \stackrel{\text{asymp.}}{\sim} N(0, 1) \tag{1}$$

이다.

Sketch of proof.

- ① 식 (1)의 $ch.f \phi(t)$ 의 expansion을 구한다.
- ② $n \to \infty$ 일 때 이 함수가 수렴함을 보인다.

