Liii STEM 0.12要点速览!

Jack Yansong Li Liii Network

电子邮件: yansong@liii.pro *网站:* https://liiistem.cn/

景目

图形目录
需知
1 新的Liii主题! 2
2 手写内容(包括公式!)识别和整理
2.1 手写公式识别 2.2 整理手写笔记, 黑板板书
3 预览编号
附录 A 部分Bug 修复
修正了自定义宏的bug,现在默认导出IAT _E X不会加入T _E X _{MACS} 自定义宏 切换标签页现在会停留在之前光标所在的位置,不会回到文档开头。 在 Windows 上解决使用 LLM 插件显示黑色弹出窗口的问题
附录 B 部分新特性
图形目录
新的主题(部分图标) 新的主题(部分图标) 嵌入图片 编号预览 例子:定理编号预览

需知

- 以下所有演示均在Liii STEM v2025.0.12版本上
- 所有英文的内容均为大模型生成!
- 我们不再维护之前的版本,请务必下载并安装v2025.0.12使用!

下载地址: https://liiistem.cn/install.html

1 新的Liii主题!

如图 1所示,我们现在提供了一个全新的,更加现代化的主题《Liii 主题》。从v2025.0.12版本开始,这个主题会成为Liii STEM的默认主题!

(a) 旧默认主题(文本环境)

(b) Liii 主题(文本环境)

图 1. 新的主题(部分图标)

(b) Liii 主题(数学环境)

图 2. 新的主题(部分图标)

注意 1. 老用户可以在编辑->首选项->用户界面里恢复之前的主题。

2 手写内容(包括公式!)识别和整理

注意 2. 除了OpenAI系列的模型外, 其余的大模型都不再需要配置API, 开箱即用。

注意 3. 只有名称里带VL的模型和OpenAI的模型支持图片交互。

注意 4. 截图后直接拖进的图片需要嵌入后才可以和AI对话,如图 3所示

图 3. 嵌入图片

2.1 手写公式识别

我们可以使用 Pro-Qwen2.5-VL-7B-Instruct@SiliconFlow这个模型通过%system 关键字设置特定的提示词后当做OCR来用,如下所示:

LLM session v20250715 by LiiiLabs

Using Pro/Qwen/Qwen2.5-VL-7B-Instruct provided by siliconflow.cn with max_tokens 4096 Help docs: Help->Plugins->LLM

7B> %system Consider yourself as an OCR (math expert), render the contents I sent to you and do not inference!

系统提示词已设置,长度为98

FTh
$$\mathcal{H} = \mathcal{L}^{2}(\mathcal{S}_{2}, \mathcal{F}, \mathbb{P})$$
 \mathcal{G} is sub-6-algebra of \mathcal{F}
 $\mathcal{H}_{1} = \mathcal{L}^{2}(\mathcal{S}_{2}, \mathcal{F}, \mathbb{P})$ is indep of \mathcal{G} .

If $X \in \mathcal{L}^{2}(\Omega, \mathcal{F}, \mathbb{P})$ is indep of \mathcal{G} .

 $\forall Y \in \mathcal{L}^{2}(\Omega, \mathcal{G}, \mathbb{P})$ o we have $IE(XY) = IEXIEY$.

Thence $X - (EX)_{1\alpha}$ is perpendicular sto $\mathcal{L}^{2}(\Omega, \mathcal{G}, \mathbb{P})$.

 $(EX)_{2\alpha}$ is the proj. of X onto $\mathcal{L}^{2}(\Omega, \mathcal{G}, \mathbb{P})$.

Theorem: If $H = \Sigma^2(\Sigma_2, \mathcal{F}, \mathbb{P})$ and \mathcal{G} is a sub- σ -algebra of \mathcal{F} , and $H_1 = \Sigma^2(\Sigma_2, \mathcal{G}, \mathbb{P})$, if $X \in \Sigma^2(\Sigma_2, \mathcal{F}, \mathbb{P})$ is independent of \mathcal{G} , then for any $Y \in \Sigma^2(\Sigma_2, \mathcal{G}, \mathbb{P})$, we have $\mathbb{I} E(XY) = \mathbb{I} E(X) \mathbb{I} E(Y)$. Hence, $X - (\mathbb{E} X)_{H_1}$ is perpendicular to $\Sigma^2(\Sigma_2, \mathcal{G}, \mathbb{P})$. $(\mathbb{E} X)_{H_1}$ is the projection of X onto $\Sigma^2(\Sigma_2, \mathcal{G}, \mathbb{P})$.

7B>

7B>

2.2 整理手写笔记,黑板板书

您可以用更大的模型整理手写笔记和板书, 如下图所示

LLM session v20250715 by LiiiLabs

Using Qwen/Qwen2.5-VL-32B-Instruct provided by siliconflow.cn with max_tokens 4096 Help docs: Help->Plugins->LLM

32B> %system you are an expert in math, please help me arrange the contents I sent to you as lecture notes.

系统提示词已设置,长度为94

2.2.1 Lecture Notes: Topological and Measure Spaces, Functional Analysis

1. Topological Spaces

A topological space is defined as a pair (S, \mathcal{U}) , where: - S is a set. - \mathcal{U} is a collection of subsets of S (called **open sets**) satisfying the following axioms: 1. S and \emptyset are in \mathcal{U} . 2. The intersection of any finite number of sets in \mathcal{U} is in \mathcal{U} . 3. The union of any arbitrary collection of sets in \mathcal{U} is in \mathcal{U} .

2. Measurable Spaces

A measurable space is defined as a pair (Ω, \mathcal{F}) , where: - Ω is a set (often called the sample space). - \mathcal{F} is a σ -algebra on Ω , i.e., a collection of subsets of Ω satisfying: 1. $\Omega \in \mathcal{F}$ and $\emptyset \in \mathcal{F}$. 2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (closed under complements). 3. If $\{A_n\}$ is a countable collection of sets in \mathcal{F} , then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$ (closed under countable unions).

3. Measure Spaces

A measure space is defined as a triple $(\Omega, \mathcal{F}, \mu)$, where: - (Ω, \mathcal{F}) is a measurable space. - μ : $\mathcal{F} \to [0, \infty]$ is a **measure**, satisfying: 1. $\mu(\emptyset) = 0$. 2. For any countable collection of pairwise disjoint sets $\{A_n\} \subset \mathcal{F}$,

$$\mu\!\!\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n).$$

Example: The Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra on \mathbb{R} .

4. Probability Spaces

A **probability space** is a special case of a measure space (Ω, \mathcal{F}, P) , where: - P is a **probability measure**, satisfying: 1. $P(\Omega) = 1$. 2. $P(A) \ge 0$ for all $A \in \mathcal{F}$.

Random Variables: - A random variable $X: (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is a measurable function, i.e., for any $A \in \mathcal{B}(\mathbb{R})$, $X^{-1}(A) \in \mathcal{F}$.

5. Measurable Functions

Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be measurable spaces. A function $f: \Omega \to \Omega'$ is called **measurable** if:

$$f^{-1}(A) \in \mathcal{F}$$
 for all $A \in \mathcal{F}'$.

Example: If $f:(\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is measurable, then for any $t \in \mathbb{R}$,

$$\{w \in \Omega: f(w) < t\} \in \mathcal{F}.$$

6. Expectation and L^2 Space

Let (Ω, \mathcal{F}, P) be a probability space. - The **expectation** of a random variable X is defined as:

$$\mathbb{E}[X] = \int_{\Omega} X \ dP.$$

- The space $L^2(\Omega, \mathcal{F}, P)$ consists of square-integrable random variables:

$$L^2(\Omega, \mathcal{F}, P) = \{X : \Omega \to \mathbb{R} | \mathbb{E}[X^2] < \infty\}.$$

Equipped with the inner product:

$$\langle X, Y \rangle = \mathbb{E}[XY],$$

 $L^2(\Omega, \mathcal{F}, P)$ becomes a Hilbert space.

Key Properties: - If $\mathbb{E}[X^2] < \infty$, then $\mathbb{E}[|X|] < \infty$. - For a sequence of mutually independent random variables $\{X_t\}_{t \in T}$:

$$\mathbb{E}\bigg[\prod_{t\in T} X_t\bigg] = \prod_{t\in T} \mathbb{E}[X_t].$$

7. Hilbert Spaces and Orthogonality

A Hilbert space is a complete inner product space. Examples: - $L^2(\Omega, \mathcal{F}, P)$ (as defined above). - ℓ^2 : The space of square-summable sequences.

Orthogonality: - Two elements x, y in a Hilbert space are orthogonal if:

$$\langle x, y \rangle = 0.$$

- For a subspace $\mathcal{H}_1 \subset \mathcal{H}$, the orthogonal complement is:

$$\mathcal{H}_1^{\perp} = \{ y \in \mathcal{H} : \langle x, y \rangle = 0 \text{ for all } x \in \mathcal{H}_1 \}.$$

8. Conditional Expectation

Let (Ω, \mathcal{F}, P) be a probability space, and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. The **conditional expectation** of a random variable $X \in L^2(\Omega, \mathcal{F}, P)$ given \mathcal{G} is a random variable $\mathbb{E}[X|\mathcal{G}]$ such that: 1. $\mathbb{E}[X|\mathcal{G}]$ is \mathcal{G} -measurable. 2. For all $A \in \mathcal{G}$,

$$\int_{A} \mathbb{E}[X|\mathcal{G}] dP = \int_{A} X dP.$$

Key Properties: - $\mathbb{E}[X|\mathcal{G}]$ is the orthogonal projection of X onto $L^2(\Omega, \mathcal{G}, P)$. - If X is \mathcal{G} -measurable, then $\mathbb{E}[X|\mathcal{G}] = X$.

9. Independence

• Two events $A, B \in \mathcal{F}$ are **independent** if:

$$P(A \cap B) = P(A) P(B)$$
.

• Two random variables X, Y are **independent** if:

 $\sigma(X)$ and $\sigma(Y)$ are independent σ -algebras.

• A sequence of random variables $\{X_t\}_{t\in T}$ is **mutually independent** if for any finite subset $\{t_1,\ldots,t_n\}\subset T$,

$$P\left(\bigcap_{i=1}^{n} A_{t_i}\right) = \prod_{i=1}^{n} P(A_{t_i}),$$

for all $A_{t_i} \in \sigma(X_{t_i})$.

10. Linear Contractions and Projections

• A linear contraction on a Hilbert space is a linear operator T such that:

$$||Tx|| \le ||x||$$
 for all $x \in \mathcal{H}$.

• The **projection operator** P onto a closed subspace $\mathcal{H}_1 \subset \mathcal{H}$ satisfies:

$$P(x) \in \mathcal{H}_1$$
, $\langle x - P(x), y \rangle = 0$ for all $y \in \mathcal{H}_1$.

同之前一样,您可以直接粘贴公式追问!这里我们演示让AI补全上文中红色部分的证明

32B> Let (Ω, \mathcal{F}, P) be a probability space, and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. The **conditional expectation** of a random variable $X \in L^2(\Omega, \mathcal{F}, P)$ given \mathcal{G} is a random variable $\mathbb{E}[X|\mathcal{G}]$ such that: 1. $\mathbb{E}[X|\mathcal{G}]$ is \mathcal{G} -measurable. 2. For all $A \in \mathcal{G}$,

$$\int_{A} \mathbb{E}[X|\mathcal{G}] dP = \int_{A} X dP.$$

Key Properties: - $\mathbb{E}[X|\mathcal{G}]$ is the orthogonal projection of X onto $L^2(\Omega,\mathcal{G},P)$. - If X is \mathcal{G} -measurable, then $\mathbb{E}[X|\mathcal{G}] = X$.

We are tasked with proving the property that the conditional expectation $\mathbb{E}[X|\mathcal{G}]$ is the orthogonal projection of X onto the subspace $L^2(\Omega, \mathcal{G}, P)$. Let us proceed step by step.

2.2.2 Step 1: Understanding the setup

- 1. Space and sub- σ -algebra:
 - (Ω, \mathcal{F}, P) is a probability space.
 - $\mathcal{G} \subset \mathcal{F}$ is a sub- σ -algebra.
 - $X \in L^2(\Omega, \mathcal{F}, P)$, i.e., X is a square-integrable random variable.

2. Conditional expectation:

 $\mathbb{E}[X|\mathcal{G}]$ is a random variable that is \mathcal{G} -measurable and satisfies the following property:

$$\int_A \mathbb{E}[X|\mathcal{G}] \ dP = \int_A X \ dP, \quad \forall A \in \mathcal{G}.$$

This is the defining property of the conditional expectation.

3. Orthogonal projection:

We aim to show that $\mathbb{E}[X|\mathcal{G}]$ is the orthogonal projection of X onto the subspace $L^2(\Omega, \mathcal{G}, P)$, which is the set of all square-integrable random variables that are \mathcal{G} -measurable.

2.2.3 Step 2: Orthogonality condition

The orthogonal projection of X onto $L^2(\Omega, \mathcal{G}, P)$ is characterized by the following condition:

$$X - \mathbb{E}[X|\mathcal{G}] \perp L^2(\Omega, \mathcal{G}, P),$$

which means:

$$\langle X - \mathbb{E}[X|\mathcal{G}], Y \rangle = 0, \quad \forall Y \in L^2(\Omega, \mathcal{G}, P),$$

where the inner product $\langle \cdot, \cdot \rangle$ is defined as:

$$\langle U, V \rangle = \int_{\Omega} UV \ dP.$$

Thus, we need to show:

$$\int_{\Omega} (X - \mathbb{E}[X|\mathcal{G}]) Y dP = 0, \quad \forall Y \in L^{2}(\Omega, \mathcal{G}, P).$$

2.2.4 Step 3: Using the defining property of conditional expectation

Let $Y \in L^2(\Omega, \mathcal{G}, P)$. Since Y is \mathcal{G} -measurable, we can use the defining property of $\mathbb{E}[X | \mathcal{G}]$ to write:

Now, consider the integral:
$$\int_A \mathbb{E}[X|\mathcal{G}] \ dP = \int_A X \ dP, \quad \forall A \in \mathcal{G}.$$

Now, consider the integral:
$$\int_{\Omega} (X - \mathbb{E}[X|\mathcal{G}]) Y \ dP.$$
 We can split this into two terms:

$$\int_{\Omega} (X - \mathbb{E}[X | \mathcal{G}]) \, Y \, \, dP = \int_{\Omega} \! X \, Y \, \, dP - \int_{\Omega} \! \mathbb{E}[X | \mathcal{G}] \, Y \, \, dP.$$

2.2.5 Step 4: Simplifying the second term

Since Y is \mathcal{G} -measurable, we can use the defining property of conditional expectation. Specifically, for any \mathcal{G} -measurable function Y, we have:

$$\int_{\Omega} \mathbb{E}[X|\mathcal{G}] Y dP = \int_{\Omega} XY dP.$$

This follows because we can write $Y = \sum_{i} c_i 1_{A_i}$ for some constants c_i and sets $A_i \in \mathcal{G}$, and

the defining property of $\mathbb{E}[X|\mathcal{G}]$ applies to each indicator function 1_{A_i} . Thus:

$$\int_{\Omega} \mathbb{E}[X|\mathcal{G}] Y dP = \int_{\Omega} XY dP.$$

2.2.6 Step 5: Combining results

Substituting back, we have:

$$\int_{\Omega} (X - \mathbb{E}[X|\mathcal{G}]) Y dP = \int_{\Omega} XY dP - \int_{\Omega} XY dP = 0.$$

This shows that:

$$X - \mathbb{E}[X|\mathcal{G}] \perp L^2(\Omega, \mathcal{G}, P).$$

2.2.7 Step 6: Uniqueness of the orthogonal projection

The orthogonal projection of X onto $L^2(\Omega, \mathcal{G}, P)$ is unique. Since $\mathbb{E}[X|\mathcal{G}]$ satisfies the orthogonality condition and is \mathcal{G} -measurable, it must be the orthogonal projection of X onto $L^2(\Omega, \mathcal{G}, P)$.

2.2.8 Final Answer

$$\mathbb{E}[X|\mathcal{G}]$$
 is the orthogonal projection of X onto $L^2(\Omega,\mathcal{G},P)$.

32B>

3 预览编号

在文本模式下如图 4的选项里选择preview-ref便可以预览编号。Liii STEM的0.12版本对这个功能做了些优化,增大了预览框的大小。当鼠标悬停在编号上会显示如图 5的效果。

图 4. 编号预览

定理 5. 实数集合R不可数

根据定理 5.

Theorem 1. The set of real number \mathbb{R} is uncountable.

By Theorem-1.

The set of real number \mathbb{R} is uncountable.

图 5. 例子: 定理编号预览

A 部分Bug 修复

- 修正了自定义宏的bug,现在默认导出LATEX不会加入TEX_{MACS}自定义宏 例如粗体之前导出代码为\tm-textbf,现在为\textbf。
- 切换标签页现在会停留在之前光标所在的位置,不会回到文档开头。
- 在 Windows 上解决使用 LLM 插件显示黑色弹出窗口的问题

B 部分新特性

- 除了OpenAI系列的模型外,其余的大模型都不再需要配置API,开箱即用。
- macOS和Linux用户现在不再需要安装pandoc就可以使用LLM了。
- macOS平台现在支持Cmd + 数字 (1-6) 切换标签页
- 现在支持Ctrl/Cmd + T 新增空标签页
- 新增大量新模型
- 数学环境下*优先输出×而不是空格。