Análisis Matemático para Inteligencia Artificial

Verónica Pastor (vpastor@fi.uba.ar), Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Clase 3

Colab

El mundo del Data Science y las competencias de Machine Learning cobraron mucha relevancia con la competencia de Netflix, que prometía 1M USD a quien pudiera obtener una performance de un 10% por sobre su algoritmo de base para el problema de recomendación de películas.

En este contexto surgió una nueva variante de modelo en base a factorización de matrices.

¿Lo interesante? Con las dos clases de AM ya nos alcanza para entenderlo!

¿Por qué funciona la inversa? (1/2)

Demostremos que:

Si $A \in \mathbb{R}^{n \times n}$ es una matriz definida positiva, entonces es invertible: Dem.: (por método del absurdo)

Supongamos que el determinante de A es cero, y llegaremos a una solución absurda.

Si det(A) = 0 y queremos resolver un sistema Ax = 0 significa que además de la solución trivial hay infinitas soluciones, es decir rango(A) < n, entonces

$$\exists \tilde{x} \neq 0 : A\tilde{x} = 0 \Rightarrow \tilde{x}^T A\tilde{x} = \tilde{x}^T 0 = 0$$

y entonces no se cumple que $\tilde{x}^T A \tilde{x} > 0$.

¿Por qué funciona la inversa? (2/2)

Demostremos que:

$$A = x \cdot x^T + \lambda I_k$$
 es definida positiva, es decir, $y^T A y > 0$, $\forall y \in \mathbb{R}^k - \{0\}$

Dem.: Sea
$$y \in \mathbb{R}^k - \{0\}$$

$$y^{T}(x \cdot x^{T} + \lambda I_{k})y = y^{T}xx^{T}y + y^{T}\lambda I_{k}y$$

(recordemos que el p.i. es $\langle u, v \rangle = u^T v$), prop. asociativa,

$$< y, x > < x, y > +\lambda < y, y > = < x, y >^2 + \lambda ||y||^2 > 0.$$

$$\therefore x \cdot x^T + \lambda I_k$$
 es definida positiva.

>0 by \$0,

Proyección Ortogonal

Proyección

Sea $\mathbb V$ un EV y $S\subset \mathbb V$ un SEV. Una transformación lineal $\Pi:\mathbb V\to S$ es una proyección si $\Pi^2=\Pi\circ\Pi=\Pi$

Esto significa que la matriz de transformación asociada a la proyección cumple con la propiedad de idempotencia: $[\Pi]^2 = [\Pi]$.

Proyección Ortogonal

Dado $\mathbb V$ un EV con p.i. y $S\subset \mathbb V$ un SEV, el objetivo es dado $v\in \mathbb V$ hallar $\tilde v\in S$ que sea "lo más parecido posible" a v.

$$\tilde{v} \in S : \tilde{v} = arg \ min_{s \in S} ||v - s||$$

Además vale que $\langle v-\tilde{v},s \rangle=0, \ \forall s \in S$

Obs: La ortogonalidad de la proyección tiene que ver con el p.i. que se use.

Teorema de proyección

Sea $\mathbb V$ un EV de dimensión finita con p.i. $\langle .,. \rangle$, S un SEV. Dado $v \in \mathbb V$ existe un único $\tilde v \in S$ tal que

$$|\widehat{|v-\tilde{v}||} \le ||v-u||, \quad \forall u \in \mathbb{T}$$

¿Cómo hallar la proyección?

Sea $\mathbb V$ un EV de dimensión n con p.i. $\langle .,. \rangle$, y $S \subset \mathbb V$ un SEV, $dim(S) = m \geq 1$, y sea $B = \{s_1,...,s_m\}$ una BON de S. Buscamos encontrar la proyección de $\tilde{v} \in S$ de $v \in \mathbb V$ ($\tilde{v} = \Pi_S(v)$).

Como $\tilde{v} \in S$, $\tilde{v} = \sum_{i=1}^{m} \alpha_i s_i \Rightarrow$ busco los coeficientes que minimizan $||v - \sum_{i=1}^{m} \alpha_i s_i||$. El problema puede escribirse como:

$$\Pi_{S}(v) = \sum_{i=1}^{m} \alpha_{i} s_{i} = B\alpha, \quad B = [s_{1}, ..., s_{m}], \quad \alpha = [\alpha_{1}, ..., \alpha_{m}]^{T}$$

¿Cómo hallar la proyección?

Como por definición $\langle v - \Pi_S(v), s \rangle = 0$, $\forall s \in S$, debo resolver el siguiente sistema de ecuaciones:

$$\begin{cases} \langle v - \Pi_{S}(v), s_{1} \rangle = 0 & \downarrow \\ \vdots & \Rightarrow \\ \langle v - \Pi_{S}(v), s_{m} \rangle = 0 & \vdots \\ s_{m}^{T}(v - B\alpha) = 0 & \begin{pmatrix} -s_{1}^{T} - \\ \vdots \\ -s_{m}^{T} - \end{pmatrix} (v - B\alpha) = 0 \end{cases}$$

$$B^{T}(v - B\alpha) = 0 \Leftrightarrow B^{T}v = B^{T}B\alpha \Leftrightarrow \alpha = (B^{T}B)^{-1}B^{T}v$$

$$\Pi_{S} = B(B^{T}B)^{-1}B^{T}$$

$$\Pi_{S} \Leftrightarrow \Pi_{S} : \mathcal{N} \qquad \qquad \mathcal{N} \Rightarrow B \cdot d$$

Observación: Si B es una BON entonces $P_{\Pi_S} = BB^T$.

Aplicación: Cuadrados Mínimos

Supongamos que tenemos un sistema sobredeterminado de la forma:

$$Ab = y$$
, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, $m > n$.

b es la solución de cuadrados mínimos

Como m>n, puede que no exista b que satisfaga todas las m ecuaciones, entonces busco la solución que más se acerque (busco $Proy_{Col(A)}y$)

$$b = (A^T A)^{-1} A^T y \implies P = A(A^T A)^{-1} A^T$$

Colab

Ya vimos que el ajuste por cuadrados mínimos funciona en la teoría, ahora veámoslo funcionar en la práctica!