普通高等学校招生全国统一考试(浙江卷)数学模拟1(2019.2)

命题人: 宗语轩

一、选择题: 本大题共 10 小题, 每小题 4 分, 共 40 分。在每小题给出的四个选项中, 只 有一项是符合题目要求的。

1.已知全集 $U = \{1,2,3,4,5,6\}$, $P = \{1,2,4\}$, $Q = \{2,3,4,6\}$.则 $P \cup (C_UQ) = (\blacktriangle)$

A. {1,2,4,5}

B. {1,2,3,4,6}

C. {2,4}

D. {1}

2.双曲线 C: $\frac{y^2}{9} - \frac{x^2}{4} = 1$ 的离心率是(**△**)

A. $\frac{\sqrt{5}}{3}$ B. $\frac{\sqrt{13}}{3}$ C. $\frac{13}{9}$

D. $\frac{\sqrt{13}}{2}$

3.复数 $\frac{5}{1-2i}$ (i 为虚数单位)的共轭复数是(▲)

A. -1+2i

B. 1 + 2i

C. -1-2i

D. 1-2i

4.某空间几何体的三视图如图所示,则该几何体的体积是(▲)

A.16

C. 48

D. 144

5.函数 $f(x) = \sin x \cdot \ln |x|$ 的图象大致是(\triangle)

6.若 $0 < x < \frac{1}{2}$,随机变量 ξ 的分布列是

ξ	0	1	2
P	$\frac{x}{2}$	$\frac{1}{2}$ -x	$\frac{1+x}{2}$

则当x在 $(0,\frac{1}{2})$ 内增大时, $D(\xi)$ (\triangle)

A. 减小

B. 增大

C. 先减小后增大 D. 先增大后减小

7.设0 < x < 1,则" $x^2 \sin x < \frac{1}{2}$ "是" $x \tan x < \frac{1}{2}$ "的(**Δ**)

A. 充要条件

B. 充分不必要条件

C. 必要不充分条件

D. 既不充分也不必要条件

8.在 $\triangle ABC$ 中, $A=90^{\circ}$, $B=60^{\circ}$,点D满足 $\overrightarrow{AD}=\lambda \overrightarrow{AB}+(2-\lambda)\overrightarrow{AC}$ ($\lambda \in R$),点E是线段 BC 上的动点。若 $\overrightarrow{AE} \cdot \overrightarrow{AD}$ 为定值,则 $\lambda = (\blacktriangle)$ B. $\frac{3}{4}$ C. 1 D. $\frac{3}{2}$ A. $\frac{1}{2}$ 9. 已知数列 $\{a_n\}$ 是公比为 $q(q \neq 0)$ 的等比数列,且对任意 $n \in N^+$,均有 $a_n S_n > 0$ (其中 S_n 为数列 $\{a_n\}$ 的前n项和),则下列命题一定成立的是(\triangle) A. q > 0B. 数列{|a_n|}有最小值 C. 若 $n \ge 2$,则 $|S_{n+1}| \ge |S_n|$ D. $|S_{n+2}| \ge |S_n|$ 10. 已知 α , β 为两个不重合的平面,m,n为两条不重合的直线,且 $\alpha \cap \beta = m$, $n \subset \beta$. 记 直线m与直线n的夹角和二面角 $\alpha-m-\beta$ 均为 θ , 直线n与平面 α 的夹角为 θ , 则下列 说法正确的是(▲) A. 若 $0 < \theta_1 < \frac{\pi}{6}$,则 $\theta_1 > 2\theta_2$ B. 若 $\frac{\pi}{6} < \theta_1 < \frac{\pi}{4}$,则 $\tan \theta_1 > 2 \tan \theta_2$ C. 若 $\frac{\pi}{4} < \theta_1 < \frac{\pi}{3}$,则 $\sin \theta_1 < \sin \theta_2$ D. 若 $\frac{\pi}{3} < \theta_1 < \frac{\pi}{2}$,则 $\cos \theta_1 > \frac{3}{4}\cos \theta_2$ 二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。 11.已知多项式 $(x-2)^2(x+3) = x^3 + a_1x^2 + a_2x + a_3$,则 $a_1 = A$, $a_3 = A$. 12. 在 $\triangle ABC$ 中,角A、B、C所对的边分别为a、b、c,若 $a = \sqrt{7}$,b = 2, $A = 120^{\circ}$, 则 $\sin B =$ _ _ _ , c = _ _ _ . 13.已知函数 $f(x) = \begin{cases} x + \frac{3}{x}, x > 1 \\ 2^{-x} + 1, x \le 1 \end{cases}$ 则 $f(-1) = \underline{\qquad}, f(f(x))$ 的最小值是 $\underline{\qquad}$. $\int y + 2x - 3 \le 0$ 14. $\exists x, y$ 满足约束条件 $\left\{x-2y+1\geq 0, \text{ 该平面区域表示的面积记为 } S, \text{ 则 } S=\underline{\quad \blacktriangle\quad}\right\}$ z = |x+2| + |y|的取值范围是_______. 15.桌面上有分别标有数字 1、2、3、4、5 的 5 张卡片, 5 个同学各随机抽取 1 张卡片.若同 学甲与同学乙抽取的卡片上数字之和不为7,且同学乙与同学丙抽取的卡片上数字之和不为

6,则抽取方法种数是 ▲ 种.

16.已知椭圆 $C: \frac{x^2}{4} + y^2 = 1$, P(a,0) 为 x 轴上一动点.若存在以点 P 为圆心的圆O,使得椭

圆C与圆O有四个不同的公共点,则a的取值范围是_____.

17.已知 $g(x,y) = |y-x| + \frac{2}{x} + \frac{y^2}{2}, x, y$ 均为正实数.则 g(x,y) 的最小值是_____.

- 三、解答题:本大题共5小题,共74分。解答应写出文字说明、证明过程或演算步骤。
- 18. (本题满分 14 分) 已知函数 $f(x) = \cos^2 x + \sqrt{3} \sin x \sin(x + \frac{\pi}{2})$ $(x \in R)$.
- (I) 求 f(x) 的最小正周期和单调递增区间;
- (II) 若角 α 满足 $f(\frac{\alpha}{2}) = \frac{3}{4}$,求 $\cos \alpha$ 的值.

19. (本题满分 15 分)如图,在三棱柱 $ABC-A_lB_lC_l$ 中,

 $\angle BAC = 90^\circ$,AB = AC = 2, $A_1A = \sqrt{10}$, $D \not\in B_1C_1$ 的中点, A_1 在底面 ABC 的射影为 BC 的中点.

- (I) 证明: $A_1D \perp$ 平面 A_1BC ;
- (II) 设E是AB的中点,直线DE与平面 AB_1C_1 所成的角为 θ ,求 $\sin\theta$ 的值.

- 20. (本题满分 15 分) 已知等比数列 $\{a_n\}$ 的公比 q>1,且 $a_1+a_2+a_3=39$, a_3+2a_2 是 a_2 , a_4 的等差中项。
- (I) 求 $\{a_n\}$ 的通项公式及数列 $\{n \cdot a_n\}$ 的前n项和 S_n ;
- (II) 设 $b_n = \frac{a_{n-1}}{(a_{n-1}+1)(a_n+1)} (n \ge 2)$, T_n 是数列 $\{b_n\}$ 的前n 项和,若 $T_k \ge \frac{31}{125}$,求正整数k 的最小值.
- 21. (本题满分 15 分) 已知直线 l: y = kx + b 与抛物线 C: $y^2 = 4x$ 交于不同的两点 A , B. F 为抛物线 C 的焦点,O 为坐标原点,G 是 $\triangle OAB$ 的重心,直线 l 恒过点 P ($\frac{7}{2},\frac{7}{2}$).

- (I) 若 $k \ge 1$, 求直线 OG 斜率的取值范围;
- (II) 若 D 是半椭圆 $x^2+9y^2=1(x\le 0)$ 上的动点,直线 GF 与抛物线 C 交于不同的两点 M,N. 当 $\frac{1}{2}\le k\le 2$ 时,求 $\triangle DMN$ 面积的取值范围.

- 22. (本题满分 15 分) 已知函数 $f(x) = x \ln x ax^2 + x \ (a \in R)$.
- (I) 若f(x)恰有两个极值点 $x_1, x_2(x_1 < x_2)$,求 $f(x_1)$ 的取值范围.
- (II) 若 $\sqrt{e} \le a \le e^2$, f(x) 在 $x = x_1, x_2(x_1 < x_2)$ 处导数相等,证明: $f(x_1 + x_2) < -\frac{2}{e^2}$. (e为自然对数的底数且 $e = 2.71 \cdots$)

参考答案及评分标准

- 一、选择题:本题考查基本知识和基本运算。每小题 4 分,满分 40 分。
- **1.** A
- **2.** B
- **3.** D
- 4. C

- **6.** B
- **7.** C
- 8. D
- 9. D
- 10. A
- 二、填空题:本题考查基本知识和基本运算。多空题每题 6 分,单空题每题 4 分,满分 36 分。
- 11. -1;12
- 12. $\frac{\sqrt{21}}{7}$; 1 13. 3; $2\sqrt{3}$ 14. 5; $[\frac{1}{2},5]$

- **15.** 78
- 16. $\left(-\frac{3}{2}, \frac{3}{2}\right)$ 17. $2\sqrt{2} \frac{1}{2}$
- (区间开闭不作要求)

- 三、解答题:本大题共5小题,共74分。
- 18. 本题主要考查三角函数及其恒等变换等知识、同时考查运算求解能力。满分14分。
 - (I) 由 $\cos 2x = 2\cos^2 x 1$ 与 $\sin 2x = 2\sin x \cos x$ 得

$$f(x) = \sin(2x + \frac{\pi}{6}) + \frac{1}{2}$$
. 3 $\frac{1}{2}$

所以 f(x) 的最小正周期是 π . 5分

由正弦函数的性质得

$$-\frac{\pi}{2} + 2k\pi \le 2x + \frac{\pi}{6} \le \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$$
,

解得

$$-\frac{\pi}{3} + k\pi \le x \le \frac{\pi}{6} + k\pi, k \in \mathbb{Z},$$

所以 f(x) 的单调递增区间是 $[k\pi - \frac{\pi}{3}, k\pi + \frac{\pi}{6}](k \in \mathbb{Z})$. 7分

(II) 由
$$f(\frac{\alpha}{2}) = \frac{3}{4}$$
得

$$\sin(\alpha + \frac{\pi}{6}) = \frac{1}{4}$$

由
$$\alpha = (\alpha + \frac{\pi}{6}) - \frac{\pi}{6}$$
得

$$\cos \alpha = \cos(\alpha + \frac{\pi}{6})\cos\frac{\pi}{6} + \sin(\alpha + \frac{\pi}{6})\sin\frac{\pi}{6} \quad \mathbf{10} \ \mathbf{\cancel{A}}$$

因为

$$\cos(\alpha + \frac{\pi}{6}) = \pm \frac{\sqrt{15}}{4}$$

所以

$$\cos \alpha = \frac{1+3\sqrt{5}}{8}$$
 或 $\cos \alpha = \frac{1-3\sqrt{5}}{8}$ 14 分(每个答案 2 分)

- 19. 本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想 象能力和运算求解能力。满分15分。
 - (I) 设F为BC的中点,由题意得A,F 上平面ABC,所以A,F 上AF

因为AB = AC,所以 $AF \perp BC$. 故 $AF \perp$ 平面ABC.

由D, F分别为 B_1C_1, BC 的中点,得 $DF // B_1B$ 且 $DF = B_1B$,从而 $DF // A_1A$ 且 $DF = A_1A$,

所以AAFD为平行四边形.故AD//AF.

又因为AF 上平面ABC,所以A,D 上平面ABC

(II) 连结 AF , FD , AD , 作 $EE_1 \perp AF$ 且 $EE_1 \cap AF = E_1$, 设 D_1 为 CD_1 的中点,连结 D_1E_1 得 DD_1 // EE_1 且 $DD_1 = EE_1$. 所以 DD_1E_1E 为平行四边形. 故 D_1E_1 // DE 且 $D_1E_1 = DE$. 所以直线 D_1E_1 与平面 AB_1C_1 所成的角为 θ 8 分

设 D 在平面 ABC 的射影是 H ,由 AB=AC=2 , $A_1A=\sqrt{10}$ 得 $DH=2\sqrt{2}$, $HE=\sqrt{5}$.

因为DH 上平面ABC,HE 二平面ABC, 所以DH 上HE.故 $D_1E_1 = DE = \sqrt{13}$. **10** 分 因为 $B_1C_1 \perp DF$, $B_1C_1 \perp AF$,DF,AF 二平面ADF,所以 $B_1C_1 \perp$ 平面ADF.

又因为 B_1C_1 \subset 平面 AB_1C_1 ,故平面 ADF \bot 平面 AB_1C_1 . 12 分

所以 E_1 在平面 AB_1C_1 的射影 H_1 在AD上.在 ΔAFD 中,F到AD的距离h=1,

故
$$EH_1 = \frac{h}{2} = \frac{1}{2}$$
. 14 分 所以 $\sin \theta = \frac{EH_1}{D_1E_1} = \frac{\sqrt{13}}{26}$. 15 分

(建系等其他方法皆可,酌情给分)

- 20. 本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力。满分 15 分。

$$a_2 + a_4 = 2a_3 + 4a_2.$$

因为 $a_2 > 0$,所以

$$q^2 - 2q - 3 = 0$$
.

解得

$$q = 3$$
 或 $q = -1$.

因为q>1,所以

$$q=3$$
. 2分

由 $a_1 + a_2 + a_3 = 39$ 得

$$a_1 = 3$$
.

解得

$$a_n = 3^n$$
. 4 \Re

故

$$S_n = 1 \cdot 3 + 2 \cdot 9 + 3 \cdot 27 + \dots + n \cdot 3^n,$$

 $3S_n = 1 \cdot 9 + 2 \cdot 27 + \dots + n \cdot 3^{n+1}, \quad 6 \, \text{ }$

所以

$$2S_n = n \cdot 3^{n+1} - (3+9+27+\cdots+3^n)$$

因此

$$S_n = \frac{(2n-1)\cdot 3^{n+1} + 3}{4}$$
 8 \$\frac{4}{2}

(II) 由(I) 可知

$$b_n = \frac{3^{n-1}}{(3^{n-1}+1)(3^n+1)} = \frac{1}{2} \left(\frac{1}{3^{n-1}+1} - \frac{1}{3^n+1} \right) \qquad \textbf{10 }$$

所以

$$T_n = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{4} \right) + \frac{1}{2} \left(\frac{1}{4} - \frac{1}{10} \right) + \dots + \frac{1}{2} \left(\frac{1}{3^{n-1} + 1} - \frac{1}{3^n + 1} \right)$$

$$=\frac{1}{2}(\frac{1}{2}-\frac{1}{3^n+1})$$
 12 $\%$

曲 $T_k \ge \frac{31}{125}$ 得

$$\frac{1}{3^k + 1} \le \frac{1}{250}$$

因为k是正整数,解得

所以正整数k的最小值是6.

注: 若写出 k 的最小值是 6, 但无裂项这一过程, 只给 2 分答案分.

- 21. 本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力。满分 15 分。
 - (I) $\mbox{if } A(x_1, y_1), B(x_2, y_2), G(x_0, y_0).$

直线
$$AB$$
 与抛物线 C 联立: $\frac{k}{4}y^2 - y + b = 0$.

所以

$$y_1 + y_2 = \frac{4}{k}$$
, $x_1 + x_2 = \frac{y_1 + y_2 - 2b}{k} = \frac{4}{k^2} - \frac{7}{k} + 7$. 2 分

曲
$$x_0 = \frac{x_1 + x_2}{3}$$
, $y_0 = \frac{y_1 + y_2}{3}$ 得

直线
$$OG$$
 斜率 $k' = \frac{y_0}{x_0} = \frac{4}{7k + \frac{4}{k} - 7}$. 3分

因为 $k \ge 1$,所以 $0 < k' \le 1$. **5分**

(II) 直线
$$MN$$
 斜率 $k_0 = \frac{y_0}{x_0 - 1} = \frac{4}{4k + \frac{4}{k} - 7}$.

由
$$\frac{1}{2} \le k \le 2$$
 得

$$\frac{4}{3} \le k_0 \le 4$$
. 7分

设直线 MN: x = my + 1(其中 $m = \frac{1}{k_0} \in [\frac{1}{4}, \frac{3}{4}]$), $D(x_D, y_D)$, $M(x_M, y_M)$, $N(x_N, y_N)$.

直线 MN 与抛物线 C 联立: $y^2 - 4my - 4 = 0$.

所以

$$|y_M - y_N| = 4\sqrt{m^2 + 1}$$

设d为点D到直线MN的距离, $\triangle DMN$ 的面积记为S.

$$S = \frac{1}{2} |MN| \cdot d = \frac{1}{2} \sqrt{m^2 + 1} \cdot |y_M - y_N| \cdot \frac{|my_D + 1 - x_D|}{\sqrt{m^2 + 1}} = 2\sqrt{m^2 + 1} \cdot |my_D + 1 - x_D|. 9$$

由题知 $x_D^2 + 9y_D^2 = 1(x_D \le 0)$,故令 $x_D = \sin \theta \le 0$, $y_D = \frac{1}{3}\cos \theta$.

$$S \le 2\sqrt{m^2 + 1} \cdot (1 + \sqrt{1 + \frac{m^2}{9}})$$
. 10 $\%$

当
$$m = \frac{3}{4}$$
 时, S 取最大值 $\frac{5\sqrt{17}}{8} + \frac{5}{2}$. 12 分

$$S \ge 2(1 - \frac{m}{3})\sqrt{m^2 + 1}$$
. 13 分

设

$$f(m) = 2(1 - \frac{m}{3})\sqrt{m^2 + 1}, \frac{1}{4} \le m \le \frac{3}{4},$$

则

$$f'(m) = -\frac{2\sqrt{m^2+1}}{3} + \frac{2m(3-m)}{3\sqrt{m^2+1}} = \frac{-2(2m-1)(m-1)}{3\sqrt{m^2+1}}$$
.

 $\frac{1}{4} \le m \le \frac{1}{2}$ 时, f'(m) < 0, f(m) 单调递减; $\frac{1}{2} \le m \le \frac{3}{4}$ 时, f'(m) > 0, f(m) 单调递增。 所以

$$f(m) \ge f(\frac{1}{2}) = \frac{5\sqrt{5}}{6}$$
,即 $m = \frac{1}{2}$ 时, S 取最小值 $\frac{5\sqrt{5}}{6}$. 15 分

所以 $\triangle DMN$ 面积的取值范围是[$\frac{5\sqrt{5}}{6}$, $\frac{5\sqrt{17}}{8}$ + $\frac{5}{2}$]. (**两端求解过程各 3 分,独立给分**)

注: 开闭区间不作要求,如果设直线MN: y = k(x-1),则同样按上述类似标准给分

22. 本题主要函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力。满分 15 分。

(I) 函数 f(x) 的导函数

$$f'(x) = 2 + \ln x - 2ax$$
. 2 $\frac{1}{2}$

设

$$g(x) = \frac{2 + \ln x}{2x} \, .$$

则 g(x) = a 存在不同的两个实根 x_1, x_2 .

函数 g(x) 的导函数

$$g'(x) = -\frac{1 + \ln x}{2x^2}$$
.

 $x \in (0, \frac{1}{\rho})$ 时, g'(x) > 0 , g(x) 单调递增; $x \in (\frac{1}{\rho}, +\infty)$ 时, g'(x) < 0 , g(x) 单调递减.

因为
$$x \in (\frac{1}{e^2}, \frac{1}{e})$$
时, $g(x) \in (0, \frac{e}{2})$; $x \in (\frac{1}{e}, +\infty)$ 时, $g(x) \in (0, \frac{e}{2})$.

所以
$$x_1 \in (\frac{1}{\rho^2}, \frac{1}{\rho}), x_2 \in (\frac{1}{\rho}, +\infty)$$
. 4分 (写出 x_1 的范围即可)

因为 $f'(x_1) = 0$,所以

$$f(x_1) = \frac{x_1 \ln x_1}{2}$$
. 5 \$\frac{\pi}{2}\$

而 $f(x_1)$ 的导函数 $f'(x_1) = \frac{1 + \ln x_1}{2} \le 0$,即 $f(x_1)$ 在 $(\frac{1}{e^2}, \frac{1}{e})$ 上单调递减。

所以 $f(x_1)$ 的取值范围是 $\left(-\frac{1}{2e}, -\frac{1}{e^2}\right)$. 7分

(II) 函数 f(x) 的导函数

$$f'(x) = 2 + \ln x - 2ax$$
.

由 $f'(x_1) = f'(x_2)$ 得

$$\frac{\ln x_1 - \ln x_2}{x_1 - x_2} = 2a.$$

而

$$x_1 + x_2 = \frac{1}{2a}(x_1 + x_2) \frac{\ln x_2 - \ln x_1}{x_2 - x_1} = \frac{\ln t(t+1)}{2a(t-1)} . \sharp \div t = \frac{x_2}{x_1} \in (1, +\infty) .$$

设

$$g(t) = \ln t - \frac{2(t-1)}{t+1}, t \in (1,+\infty),$$

函数 g(t) 的导函数

$$g'(t) = \frac{1}{t} - \frac{4}{(t+1)^2} = \frac{(t-1)^2}{t(t+1)^2} > 0.$$
即 $g(t)$ 在 $(1,+\infty)$ 上单调递增

所以

$$g(t) > g(1) = 0$$
.
 $\lim \frac{\ln t(t+1)}{t-1} > 2$.

因此

$$x_1 + x_2 > \frac{1}{a}$$
. 11 $\%$

函数 f'(x) 的导函数

$$f''(x) = \frac{1}{x} - 2a.$$

故

$$f''(x_1+x_2) < -a < 0$$
.即 $f'(x_1+x_2)$ 在 $(\frac{1}{a},+\infty)$ 上单调递减.

则

$$f'(x_1 + x_2) < f'(\frac{1}{a}) = -\ln a < 0$$
.即 $f(x_1 + x_2)$ 在 $(\frac{1}{a}, +\infty)$ 上单调递减.
所以 $f(x_1 + x_2) < f(\frac{1}{a}) = -\frac{\ln a}{a}$. 13 分

设

$$h(x) = -\frac{\ln x}{x}$$
.

函数h(x)的导函数

$$h'(x) = \frac{\ln x - 1}{x^2}.$$

 $x \in (\sqrt{e}, e)$ 时 h'(x) < 0 ,h(x) 单调递减; $x \in (e, e^2)$ 时 h'(x) > 0 ,h(x) 单调递增. 所以 $h(x) \le \max\{h(\sqrt{e}), h(e^2)\} \le h(e^2) = -\frac{2}{e^2}$.

又
$$\sqrt{e} \le a \le e^2$$
, 故

$$f(x_1 + x_2) < -\frac{2}{e^2}$$
. 15 分