importing libraries

```
In [1]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
df = pd.read_csv('Admission_Predict.csv')
df
```

Out[2]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65
5	6	330	115	5	4.5	3.0	9.34	1	0.90
6	7	321	109	3	3.0	4.0	8.20	1	0.75
7	8	308	101	2	3.0	4.0	7.90	0	0.68
8	9	302	102	1	2.0	1.5	8.00	0	0.50
9	10	323	108	3	3.5	3.0	8.60	0	0.45
10	11	325	106	3	3.5	4.0	8.40	1	0.52
11	12	327	111	4	4.0	4.5	9.00	1	0.84
12	13	328	112	4	4.0	4.5	9.10	1	0.78
13	14	307	109	3	4.0	3.0	8.00	1	0.62
14	15	311	104	3	3.5	2.0	8.20	1	0.61
15	16	314	105	3	3.5	2.5	8.30	0	0.54
16	17	317	107	3	4.0	3.0	8.70	0	0.66
17	18	319	106	3	4.0	3.0	8.00	1	0.65
18	19	318	110	3	4.0	3.0	8.80	0	0.63
19	20	303	102	3	3.5	3.0	8.50	0	0.62
20	21	312	107	3	3.0	2.0	7.90	1	0.64
21	22	325	114	4	3.0	2.0	8.40	0	0.70
22	23	328	116	5	5.0	5.0	9.50	1	0.94
23	24	334	119	5	5.0	4.5	9.70	1	0.95
24	25	336	119	5	4.0	3.5	9.80	1	0.97
25	26	340	120	5	4.5	4.5	9.60	1	0.94
26	27	322	109	5	4.5	3.5	8.80	0	0.76
27	28	298	98	2	1.5	2.5	7.50	1	0.44
28	29	295	93	1	2.0	2.0	7.20	0	0.46
29	30	310	99	2	1.5	2.0	7.30	0	0.54
370	371	310	103	2	2.5	2.5	8.24	0	0.72
371	372	324	110	3	3.5	3.0	9.22	1	0.89
372	373	336	119	4	4.5	4.0	9.62	1	0.95

373 374	Serial	GRE Score	TOEFL Score	University Rating	3.0 SOP 2.0	3.0 LOR 2.5	8.54 CGPA 7.65	1 Research 0	Chance of Admit
375	376	304	101	2	2.0	2.5	7.66	0	0.38
376	377	297	96	2	2.5	2.0	7.43	0	0.34
377	378	290	100	1	1.5	2.0	7.56	0	0.47
378	379	303	98	1	2.0	2.5	7.65	0	0.56
379	380	311	99	1	2.5	3.0	8.43	1	0.71
380	381	322	104	3	3.5	4.0	8.84	1	0.78
381	382	319	105	3	3.0	3.5	8.67	1	0.73
382	383	324	110	4	4.5	4.0	9.15	1	0.82
383	384	300	100	3	3.0	3.5	8.26	0	0.62
384	385	340	113	4	5.0	5.0	9.74	1	0.96
385	386	335	117	5	5.0	5.0	9.82	1	0.96
386	387	302	101	2	2.5	3.5	7.96	0	0.46
387	388	307	105	2	2.0	3.5	8.10	0	0.53
388	389	296	97	2	1.5	2.0	7.80	0	0.49
389	390	320	108	3	3.5	4.0	8.44	1	0.76
390	391	314	102	2	2.0	2.5	8.24	0	0.64
391	392	318	106	3	2.0	3.0	8.65	0	0.71
392	393	326	112	4	4.0	3.5	9.12	1	0.84
393	394	317	104	2	3.0	3.0	8.76	0	0.77
394	395	329	111	4	4.5	4.0	9.23	1	0.89
395	396	324	110	3	3.5	3.5	9.04	1	0.82
396	397	325	107	3	3.0	3.5	9.11	1	0.84
397	398	330	116	4	5.0	4.5	9.45	1	0.91
398	399	312	103	3	3.5	4.0	8.78	0	0.67
399	400	333	117	4	5.0	4.0	9.66	1	0.95

400 rows × 9 columns

In [3]:

df.head()

Out[3]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

In [4]:

df.drop('Serial No.', axis = 1,inplace =True)
df

Out[4]:

		GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
Ī	0	337	118	4	4.5	4.5	9.65	1	0.92
	1	324	107	4	4.0	4.5	8.87	1	0.76

2	GRE Score 322	TOE長4 Score 110	University Rating	s∂ ₽	LÕ ₹	cen	Research 1	Chance, pg Admit 0.80
4	314	103	2	2.0	3.0	8.21	0	0.65
5	330	115	5	4.5	3.0	9.34	1	0.90
6	321	109	3	3.0	4.0	8.20	1	0.75
7	308	101	2	3.0	4.0	7.90	0	0.68
8	302	102	1	2.0	1.5	8.00	0	0.50
9	323	108	3	3.5	3.0	8.60	0	0.45
10	325	106	3	3.5	4.0	8.40	1	0.52
11	327	111	4	4.0	4.5	9.00	1	0.84
12	328	112	4	4.0	4.5	9.10	1	0.78
13	307	109	3	4.0	3.0	8.00	1	0.62
14	311	104	3	3.5	2.0	8.20	1	0.61
15	314	105	3	3.5	2.5	8.30	0	0.54
16	317	107	3	4.0	3.0	8.70	0	0.66
17	319	106	3	4.0	3.0	8.00	1	0.65
18	318	110	3	4.0	3.0	8.80	0	0.63
19	303	102	3	3.5	3.0	8.50	0	0.62
20	312	107	3	3.0	2.0	7.90	1	0.64
21	325	114	4	3.0	2.0	8.40	0	0.70
22	328	116	5	5.0	5.0	9.50	1	0.94
23	334	119	5	5.0	4.5	9.70	1	0.95
24	336	119	5	4.0	3.5	9.80	1	0.97
25	340	120	5	4.5	4.5	9.60	1	0.94
26	322	109	5	4.5	3.5	8.80	0	0.76
27	298	98	2	1.5	2.5	7.50	1	0.44
28	295	93	1	2.0	2.0	7.20	0	0.46
29	310	99	2	1.5	2.0	7.30	0	0.54
370	310	103	2	2.5	2.5	8.24	0	0.72
371	324	110	3	3.5	3.0	9.22	1	0.89
372	336	119	4	4.5	4.0	9.62	1	0.95
373	321	109	3	3.0	3.0	8.54	1	0.79
374	315	105	2	2.0	2.5	7.65	0	0.39
375	304	101	2	2.0	2.5	7.66	0	0.38
376	297	96	2	2.5	2.0	7.43	0	0.34
377	290	100	1	1.5	2.0	7.56	0	0.47
378	303	98	1	2.0	2.5	7.65	0	0.56
379	311	99	1	2.5	3.0	8.43	1	0.71
380	322	104 105	3	3.5	4.0 3.5	8.84	1	0.78 0.73
381 382	319 324	110	4	4.5	4.0	8.67	1	0.73
383	300	100	3	3.0	3.5	9.15 8.26	0	0.82
384	340	113	4	5.0	5.0	9.74	1	0.62
385	335	117	5	5.0	5.0	9.82	1	0.96
386	302	101	2	2.5	3.5	7.96	0	0.46
387	307	105	2	2.0	3.5	8.10	0	0.53
388	296	97	2	1.5	2.0	7.80	0	0.49
389	320	108	3	3.5	4.0	8.44	1	0.76
390	314	102	2	2.0	2.5	8.24	0	0.64
500	317	102	2	0	0	J.27	U	0.04

391	GŔÊ	тое́Р́е̂	University 3	2.0 SOP	3.0 LOR	8.65 CGPA	0 Research	Chance of
392	Score 326	Score	Rating	4.0	3.5	9.12	1	Admit Admit
393	317	104	2	3.0	3.0	8.76	0	0.77
394	329	111	4	4.5	4.0	9.23	1	0.89
395	324	110	3	3.5	3.5	9.04	1	0.82
396	325	107	3	3.0	3.5	9.11	1	0.84
397	330	116	4	5.0	4.5	9.45	1	0.91
398	312	103	3	3.5	4.0	8.78	0	0.67
399	333	117	4	5.0	4.0	9.66	1	0.95

400 rows × 8 columns

In [5]:

```
df.isnull().sum()
```

Out[5]:

GRE Score 0
TOEFL Score 0
University Rating 0
SOP 0
LOR 0
CGPA 0
Research 0
Chance of Admit 0
dtype: int64

In [6]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 8 columns):

GRE Score 400 non-null int64
TOEFL Score 400 non-null int64
University Rating 400 non-null int64
SOP 400 non-null float64
LOR 400 non-null float64
CGPA 400 non-null float64
Research 400 non-null int64
Chance of Admit 400 non-null float64

dtypes: float64(4), int64(4)

memory usage: 25.1 KB

In [7]:

```
df.describe()
```

Out[7]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
count	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000
mean	316.807500	107.410000	3.087500	3.400000	3.452500	8.598925	0.547500	0.724350
std	11.473646	6.069514	1.143728	1.006869	0.898478	0.596317	0.498362	0.142609
min	290.000000	92.000000	1.000000	1.000000	1.000000	6.800000	0.000000	0.340000
25%	308.000000	103.000000	2.000000	2.500000	3.000000	8.170000	0.000000	0.640000
50%	317.000000	107.000000	3.000000	3.500000	3.500000	8.610000	1.000000	0.730000
75%	325.000000	112.000000	4.000000	4.000000	4.000000	9.062500	1.000000	0.830000
max	340.000000	120.000000	5.000000	5.000000	5.000000	9.920000	1.000000	0.970000

In [8]:

```
uni = df.groupby(by = 'University Rating').mean()
uni
```

Out[8]:

	GRE Score	TOEFL Score	SOP	LOR	CGPA	Research	Chance of Admit
University Rating							
1	303.153846	99.076923	1.884615	2.211538	7.745769	0.192308	0.548077
2	309.177570	103.523364	2.705607	2.925234	8.183738	0.299065	0.625981
3	315.954887	106.887218	3.364662	3.402256	8.552256	0.533835	0.711880
4	324.824324	111.824324	4.108108	4.006757	9.021622	0.797297	0.818108
5	328.333333	113.666667	4.500000	4.358333	9.291167	0.866667	0.888167

Data Visualization

In [9]:

```
df.hist(bins = 200,figsize=(20,20),color='purple')
```

Out[9]:

In [10]:

sns.pairplot(df)

Out[10]:

<seaborn.axisgrid.PairGrid at 0x290244ff470>


```
In [11]:
```

```
corr_matrix=df.corr()
plt.figure(figsize=(12,12))
sns.heatmap(corr_matrix,annot=True)
plt.show()
```


create ,training and testing dataset

Out[13]:

	GRE Score Score	TOEFL Score Score	University University Rating Rating	§8\$	Ł8₽	£8₽ ₹	Research Research
0	337	118	4	4.5	4.5	9.65	1
1	324	107	4	4.0	4.5	8.87	1
2	316	104	3	3.0	3.5	8.00	1
3	322	110	3	3.5	2.5	8.67	1
4	314	103	2	2.0	3.0	8.21	0
5	330	115	5	4.5	3.0	9.34	1
6	321	109	3	3.0	4.0	8.20	1
7	308	101	2	3.0	4.0	7.90	0
8	302	102	1	2.0	1.5	8.00	0
9	323	108	3	3.5	3.0	8.60	0
10	325	106	3	3.5	4.0	8.40	1
11	327	111	4	4.0	4.5	9.00	1
12	328	112	4	4.0	4.5	9.10	1
13	307	109	3	4.0	3.0	8.00	1
14	311	104	3	3.5	2.0	8.20	1
15	314	105	3	3.5	2.5	8.30	0
16	317	107	3	4.0	3.0	8.70	0
17	319	106	3	4.0	3.0	8.00	1
18	318	110	3	4.0	3.0	8.80	0
19	303	102	3	3.5	3.0	8.50	0
20	312	107	3	3.0	2.0	7.90	1
21	325	114	4	3.0	2.0	8.40	0
22	328	116	5	5.0	5.0	9.50	1
23	334	119	5	5.0	4.5	9.70	1
24	336	119	5	4.0	3.5	9.80	1
25	340	120	5	4.5	4.5	9.60	1
26	322	109	5	4.5	3.5	8.80	0
27	298	98	2	1.5	2.5	7.50	1
28	295	93	1	2.0	2.0	7.20	0
29	310	99	2	1.5	2.0	7.30	0
370	310	103	2	2.5	2.5	8.24	0
371	324	110	3	3.5	3.0	9.22	1
372	336	119	4	4.5	4.0	9.62	1
373	321	109	3	3.0	3.0	8.54	1
374	315	105	2	2.0	2.5	7.65	0
375	304	101	2	2.0	2.5	7.66	0
376	297	96	2	2.5	2.0	7.43	0
377	290	100	1	1.5	2.0	7.56	0
378	303	98	1	2.0	2.5	7.65	0
379	311	99	1	2.5	3.0	8.43	1
380	322	104	3	3.5	4.0	8.84	1
381	319	105	3	3.0	3.5	8.67	1
382	324	110	4	4.5	4.0	9.15	1
383	300	100	3	3.0	3.5	8.26	0
384	340	113	4	5.0	5.0	9.74	1
385	335	117	5	5.0	5.0	9.82	1
386	302	101	2	2.5	3.5	7.96	0
387	307	105	2	2.0	3.5	8.10	
301	307	เบอ	2	2.0	3.3	0.10	0

	388	G₽₹8E	TOEPE	University	sop	LÕR	CGPA	Research
-	389	Score 320	Score 108	Rating 3	3.5	4.0	8.44	1_
	390	314	102	2	2.0	2.5	8.24	0
	391	318	106	3	2.0	3.0	8.65	0
	392	326	112	4	4.0	3.5	9.12	1
	393	317	104	2	3.0	3.0	8.76	0
	394	329	111	4	4.5	4.0	9.23	1
	395	324	110	3	3.5	3.5	9.04	1
	396	325	107	3	3.0	3.5	9.11	1
	397	330	116	4	5.0	4.5	9.45	1
	398	312	103	3	3.5	4.0	8.78	0
	399	333	117	4	5.0	4.0	9.66	1

400 rows × 7 columns

```
In [14]:
y = df['Chance of Admit']
Out[14]:
0
    0.92
    0.76
1
     0.72
2
3
     0.80
4
     0.65
5
     0.90
     0.75
6
7
     0.68
8
      0.50
     0.45
9
10
     0.52
11
     0.84
```

0.78 12 13 0.62 14 0.61 15 0.54 16 0.66 17 0.65 18 0.63 19 0.62 20 0.64 0.70 21 22 0.94 23 0.95 24 0.97

25 0.94 0.76 26 27 0.44 28 0.46 29 0.54 . . . 370 0.72 371 0.89 372 0.95 373 0.79 374 0.39 375 0.38 376 0.34

378 0.56 379 0.71 380 0.78

0.47

377

381 0.73 382 0.82

383 0.62 384 0.96

385 0.96 386 0.46

```
U. TU
_{\mathcal{I}}
387
        0.53
388
        0.49
389
        0.76
390
        0.64
391
        0.71
392
        0.84
        0.77
393
394
        0.89
395
        0.82
396
        0.84
397
        0.91
398
        0.67
399
        0.95
Name: Chance of Admit , Length: 400, dtype: float64
In [15]:
x.shape
Out[15]:
(400, 7)
In [16]:
y.shape
Out[16]:
(400,)
In [17]:
X = np.array(x)
Out[17]:
                                              4.5 ,
array([[337. , 118. ,
                               4. , ...,
                                                         9.65.
                                                                 1. ],
                                               4.5 ,
        [324. , 107. ,
                               4. , ...,
                                                         8.87,
                                                                 1. ],
                               3. , ...,
        [316. , 104. ,
                                               3.5 ,
                                                         8. ,
                                                                 1. ],
        . . . ,
                , 116.
                               4. , ...,
                                               4.5 ,
                                                         9.45,
                                                                   1.
                                                                       ],
                          ,
                                                                  0.],
                , 103. ,
                               3. , ...,
                                               4.,
                                                         8.78,
        [312.
        [333. , 117. ,
                              4. , ...,
                                              4.,
                                                                 1. ]])
                                                         9.66,
In [18]:
Y = np.array(y)
Out[18]:
array([0.92, 0.76, 0.72, 0.8 , 0.65, 0.9 , 0.75, 0.68, 0.5 , 0.45, 0.52,
        0.84, 0.78, 0.62, 0.61, 0.54, 0.66, 0.65, 0.63, 0.62, 0.64, 0.7, 0.94, 0.95, 0.97, 0.94, 0.76, 0.44, 0.46, 0.54, 0.65, 0.74, 0.91,
        0.9, 0.94, 0.88, 0.64, 0.58, 0.52, 0.48, 0.46, 0.49, 0.53, 0.87,
        0.91, 0.88, 0.86, 0.89, 0.82, 0.78, 0.76, 0.56, 0.78, 0.72, 0.7,
        0.64, 0.64, 0.46, 0.36, 0.42, 0.48, 0.47, 0.54, 0.56, 0.52, 0.55,
        0.61, 0.57, 0.68, 0.78, 0.94, 0.96, 0.93, 0.84, 0.74, 0.72, 0.74, 0.64, 0.44, 0.46, 0.5, 0.96, 0.92, 0.92, 0.94, 0.76, 0.72, 0.66,
        0.64, 0.74, 0.64, 0.38, 0.34, 0.44, 0.36, 0.42, 0.48, 0.86, 0.9,
        0.79, 0.71, 0.64, 0.62, 0.57, 0.74, 0.69, 0.87, 0.91, 0.93, 0.68,
        0.61, 0.69, 0.62, 0.72, 0.59, 0.66, 0.56, 0.45, 0.47, 0.71, 0.94,
        0.94, 0.57, 0.61, 0.57, 0.64, 0.85, 0.78, 0.84, 0.92, 0.96, 0.77, 0.71, 0.79, 0.89, 0.82, 0.76, 0.71, 0.8 , 0.78, 0.84, 0.9 , 0.92, 0.97, 0.8 , 0.81, 0.75, 0.83, 0.96, 0.79, 0.93, 0.94, 0.86, 0.79,
        0.8, 0.77, 0.7, 0.65, 0.61, 0.52, 0.57, 0.53, 0.67, 0.68, 0.81,
        0.78, 0.65, 0.64, 0.64, 0.65, 0.68, 0.89, 0.86, 0.89, 0.87, 0.85,
        0.9, 0.82, 0.72, 0.73, 0.71, 0.71, 0.68, 0.75, 0.72, 0.89, 0.84,
        0.93, 0.93, 0.88, 0.9, 0.87, 0.86, 0.94, 0.77, 0.78, 0.73, 0.73, 0.7 0.72 0.73 0.72 0.97 0.97 0.69 0.67 0.63 0.66 0.64
```

```
0.68, 0.79, 0.82, 0.95, 0.96, 0.94, 0.93, 0.91, 0.85, 0.84, 0.74,
       0.76, 0.75, 0.76, 0.71, 0.67, 0.61, 0.63, 0.64, 0.71, 0.82, 0.73,
       0.74, 0.69, 0.64, 0.91, 0.88, 0.85, 0.86, 0.7, 0.59, 0.6, 0.65,
       0.7 , 0.76, 0.63, 0.81, 0.72, 0.71, 0.8 , 0.77, 0.74, 0.7 , 0.71,
       0.93,\ 0.85,\ 0.79,\ 0.76,\ 0.78,\ 0.77,\ 0.9\ ,\ 0.87,\ 0.71,\ 0.7\ ,\ 0.7\ ,
       0.75, 0.71, 0.72, 0.73, 0.83, 0.77, 0.72, 0.54, 0.49, 0.52, 0.58,
       0.78, 0.89, 0.7, 0.66, 0.67, 0.68, 0.8, 0.81, 0.8, 0.94, 0.93,
       0.92, 0.89, 0.82, 0.79, 0.58, 0.56, 0.56, 0.64, 0.61, 0.68, 0.76,
       0.86, 0.9 , 0.71, 0.62, 0.66, 0.65, 0.73, 0.62, 0.74, 0.79, 0.8 ,
       0.69, 0.7, 0.76, 0.84, 0.78, 0.67, 0.66, 0.65, 0.54, 0.58, 0.79,
       0.8, 0.75, 0.73, 0.72, 0.62, 0.67, 0.81, 0.63, 0.69, 0.8, 0.43, 0.8, 0.73, 0.75, 0.71, 0.73, 0.83, 0.72, 0.94, 0.81, 0.81, 0.75,
       0.79, 0.58, 0.59, 0.47, 0.49, 0.47, 0.42, 0.57, 0.62, 0.74, 0.73,
       0.64, 0.63, 0.59, 0.73, 0.79, 0.68, 0.7, 0.81, 0.85, 0.93, 0.91,
       0.69, 0.77, 0.86, 0.74, 0.57, 0.51, 0.67, 0.72, 0.89, 0.95, 0.79,
       0.39, 0.38, 0.34, 0.47, 0.56, 0.71, 0.78, 0.73, 0.82, 0.62, 0.96,
       0.96, 0.46, 0.53, 0.49, 0.76, 0.64, 0.71, 0.84, 0.77, 0.89, 0.82,
       0.84, 0.91, 0.67, 0.95])
In [19]:
Y = Y.reshape(-1,1)
Y.shape
Out[19]:
(400, 1)
In [20]:
from sklearn.preprocessing import StandardScaler, MinMaxScaler
scalar_x = StandardScaler()
X = scalar_x.fit_transform(X)
In [21]:
scalar_y = StandardScaler()
Y = scalar y.fit transform(Y)
In [221:
from sklearn.model selection import train test split
X train, X test, Y train, Y test = train test split(X, Y, test size = 0.15)
Train and Evaluate a linear regression model
In [23]:
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean squared error,accuracy score
In [24]:
reg = LinearRegression()
reg.fit(X train, Y train)
Out[24]:
LinearRegression(copy X=True, fit intercept=True, n jobs=None,
         normalize=False)
In [25]:
acc = reg.score(X_test,Y_test)
acc
Out[25]:
```

0.7, 0.72, 0.73, 0.74, 0.37, 0.37, 0.03, 0.07, 0.03, 0.00, 0.04,

Train and Evaluate an Artificial Network Model

In [26]:

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Activation, Dropout, Dense
from tensorflow.keras.optimizers import Adam
```

In [29]:

```
mo = keras.Sequential()
mo.add(Dense(50,input_dim=7))
mo.add(Activation('relu'))

mo.add(Dense(150))
mo.add(Activation('relu'))
mo.add(Dropout(0.5))

mo.add(Dense(150))
mo.add(Activation('relu'))
mo.add(Dropout(0.5))

mo.add(Dropout(0.5))

mo.add(Dense(50))
mo.add(Dense(50))
mo.add(Dense(1))

mo.add(Dense(1))
```

Layer (type)	Output	Shape	Param #
dense_8 (Dense)	(None,	50)	400
activation_8 (Activation)	(None,	50)	0
dense_9 (Dense)	(None,	150)	7650
activation_9 (Activation)	(None,	150)	0
dropout_6 (Dropout)	(None,	150)	0
dense_10 (Dense)	(None,	150)	22650
activation_10 (Activation)	(None,	150)	0
dropout_7 (Dropout)	(None,	150)	0
dense_11 (Dense)	(None,	50)	7550
activation_11 (Activation)	(None,	50)	0
dense_12 (Dense)	(None,	1)	51 =======
Total params: 38,301 Trainable params: 38,301 Non-trainable params: 0			

In [30]:

```
mo.compile(optimizer = 'Adam',loss='mean_squared_error')
```

In [31]:

```
ep =mo.fit(X_train,Y_train,epochs=100,batch_size=20)
```

```
result=mo.evaluate(X_test,Y_test)
acc=1-result
print("Accuracy : {}".format(acc))
```

WARNING:tensorflow:From C:\Users\Anshal\Anaconda3\lib\sitepackages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. Epoch 1/100 340/340 [============] - 4s 13ms/sample - loss: 0.6472 Epoch 2/100 340/340 [=============] - Os 284us/sample - loss: 0.3395 Epoch 3/100 340/340 [=============] - Os 420us/sample - loss: 0.3195 Epoch 4/100 340/340 [===========] - 0s 326us/sample - loss: 0.2817 Epoch 5/100 340/340 [==============] - Os 265us/sample - loss: 0.2686 Epoch 6/100 340/340 [============] - Os 421us/sample - loss: 0.2974 Epoch 7/100 340/340 [===========] - 0s 323us/sample - loss: 0.2868 Epoch 8/100 340/340 [======] - Os 261us/sample - loss: 0.2395 Epoch 9/100 340/340 [=============] - 0s 325us/sample - loss: 0.2332 Epoch 10/100 340/340 [============] - Os 449us/sample - loss: 0.2390 Epoch 11/100 340/340 [============] - 0s 1ms/sample - loss: 0.2281 Epoch 12/100 340/340 [===========] - Os 827us/sample - loss: 0.2375 Epoch 13/100 340/340 [==============] - Os 557us/sample - loss: 0.2408 Epoch 14/100 340/340 [============] - Os 640us/sample - loss: 0.2186 Epoch 15/100 340/340 [==============] - 0s 604us/sample - loss: 0.2383 Epoch 16/100 340/340 [==========] - 0s 303us/sample - loss: 0.2283 Epoch 17/100 340/340 [=============] - Os 317us/sample - loss: 0.2554 Epoch 18/100 340/340 [============] - Os 397us/sample - loss: 0.2179 Epoch 19/100 Epoch 20/100 340/340 [===============] - Os 311us/sample - loss: 0.2021 Epoch 21/100 340/340 [===========] - Os 288us/sample - loss: 0.2166 Epoch 22/100 340/340 [===========] - 0s 273us/sample - loss: 0.2388 Epoch 23/100 340/340 [======] - Os 308us/sample - loss: 0.2132 Epoch 24/100 340/340 [============] - 0s 327us/sample - loss: 0.2164 Epoch 25/100 340/340 [============] - 0s 324us/sample - loss: 0.2076 Epoch 26/100 340/340 [===========] - 0s 267us/sample - loss: 0.2052 Epoch 27/100 340/340 [===========] - Os 282us/sample - loss: 0.1708 Epoch 28/100 340/340 [=============] - Os 458us/sample - loss: 0.2152 Epoch 29/100 340/340 [============] - 0s 285us/sample - loss: 0.1860 Epoch 30/100 340/340 [======] - 0s 289us/sample - loss: 0.1936 Epoch 31/100 Epoch 32/100 340/340 [=============] - Os 268us/sample - loss: 0.2083 Epoch 33/100 340/340 [============] - 0s 293us/sample - loss: 0.2196 Epoch 34/100

```
Epoch 35/100
340/340 [======== ] - Os 343us/sample - loss: 0.1994
Epoch 36/100
340/340 [=========== ] - 0s 337us/sample - loss: 0.1992
Epoch 37/100
340/340 [=============== ] - Os 418us/sample - loss: 0.1789
Epoch 38/100
340/340 [============ ] - 0s 323us/sample - loss: 0.1935
Epoch 39/100
340/340 [============ ] - Os 293us/sample - loss: 0.1797
Epoch 40/100
340/340 [======] - 0s 276us/sample - loss: 0.1793
Epoch 41/100
Epoch 42/100
340/340 [=========== ] - 0s 324us/sample - loss: 0.1720
Epoch 43/100
340/340 [============ ] - 0s 466us/sample - loss: 0.1930
Epoch 44/100
340/340 [============== ] - Os 290us/sample - loss: 0.1885
Epoch 45/100
340/340 [=============== ] - Os 311us/sample - loss: 0.1835
Epoch 46/100
340/340 [=========== ] - 0s 396us/sample - loss: 0.1726
Epoch 47/100
340/340 [============= ] - 0s 390us/sample - loss: 0.1896
Epoch 48/100
340/340 [============ ] - 0s 443us/sample - loss: 0.1748
Epoch 49/100
340/340 [============ ] - Os 306us/sample - loss: 0.1826
Epoch 50/100
340/340 [============ ] - Os 316us/sample - loss: 0.1493
Epoch 51/100
340/340 [============ ] - 0s 295us/sample - loss: 0.1620
Epoch 52/100
340/340 [============== ] - Os 424us/sample - loss: 0.1720
Epoch 53/100
340/340 [============= ] - 0s 300us/sample - loss: 0.1519
Epoch 54/100
340/340 [============ ] - 0s 337us/sample - loss: 0.1721
Epoch 55/100
340/340 [======= ] - 0s 432us/sample - loss: 0.1676s - loss: 0.12
Epoch 56/100
340/340 [============== ] - Os 276us/sample - loss: 0.1751
Epoch 57/100
340/340 [============= - - 0s 317us/sample - loss: 0.1700
Epoch 58/100
Epoch 59/100
340/340 [=========== ] - Os 261us/sample - loss: 0.1524
Epoch 60/100
340/340 [============== ] - Os 353us/sample - loss: 0.1819
Epoch 61/100
340/340 [============ ] - 0s 396us/sample - loss: 0.1738
Epoch 62/100
Epoch 63/100
340/340 [============== - - 0s 185us/sample - loss: 0.1668
Epoch 64/100
340/340 [============= ] - Os 160us/sample - loss: 0.1583
Epoch 65/100
340/340 [============ ] - 0s 337us/sample - loss: 0.1682
Epoch 66/100
Epoch 67/100
340/340 [=============== ] - Os 291us/sample - loss: 0.1357
Epoch 68/100
340/340 [============ ] - 0s 308us/sample - loss: 0.1482
Epoch 69/100
340/340 [=========== ] - 0s 280us/sample - loss: 0.1541
Epoch 70/100
340/340 [============ ] - 0s 518us/sample - loss: 0.1549
Epoch 71/100
340/340 [============ ] - Os 440us/sample - loss: 0.1499
Epoch 72/100
340/340 [============= ] - Os 782us/sample - loss: 0.1338
Enoch 73/100
```

UU UIIAU, DAMPIC

±000. 0.±00,

```
340/340 [======] - 0s 259us/sample - loss: 0.1504
Epoch 74/100
340/340 [============ ] - Os 694us/sample - loss: 0.1607
Epoch 75/100
340/340 [============ ] - 0s 1ms/sample - loss: 0.1528
Epoch 76/100
340/340 [============ ] - 0s 290us/sample - loss: 0.1591
Epoch 77/100
340/340 [============== ] - Os 455us/sample - loss: 0.1593
Epoch 78/100
340/340 [=========== ] - 0s 302us/sample - loss: 0.1527
Epoch 79/100
340/340 [============= ] - 0s 252us/sample - loss: 0.1441
Epoch 80/100
Epoch 81/100
340/340 [============== ] - Os 311us/sample - loss: 0.1500
Epoch 82/100
340/340 [============ ] - Os 293us/sample - loss: 0.1387
Epoch 83/100
340/340 [======] - 0s 253us/sample - loss: 0.1348
Epoch 84/100
340/340 [=======] - Os 450us/sample - loss: 0.1420
Epoch 85/100
340/340 [============ ] - 0s 305us/sample - loss: 0.1388
Epoch 86/100
340/340 [============ ] - 0s 198us/sample - loss: 0.1352
Epoch 87/100
Epoch 88/100
340/340 [============ ] - Os 414us/sample - loss: 0.1260
Epoch 89/100
340/340 [=============== ] - Os 287us/sample - loss: 0.1401
Epoch 90/100
340/340 [============ ] - 0s 300us/sample - loss: 0.1259
Epoch 91/100
Epoch 92/100
340/340 [============== ] - Os 291us/sample - loss: 0.1182
Epoch 93/100
340/340 [============ ] - 0s 342us/sample - loss: 0.1318
Epoch 94/100
340/340 [========== ] - 0s 311us/sample - loss: 0.1354
Epoch 95/100
340/340 [=========== ] - 0s 253us/sample - loss: 0.1161
Epoch 96/100
340/340 [============ ] - Os 418us/sample - loss: 0.1130
Epoch 97/100
340/340 [============== ] - Os 320us/sample - loss: 0.1216
Epoch 98/100
340/340 [============ ] - 0s 253us/sample - loss: 0.1244
Epoch 99/100
Epoch 100/100
340/340 [============= ] - Os 249us/sample - loss: 0.1347
60/60 [============= ] - 0s 6ms/sample - loss: 0.2733
Accuracy: 0.7267367045084636
In [32]:
ep.history.keys()
Out[32]:
dict keys(['loss'])
In [33]:
plt.plot(ep.history['loss'])
plt.title('Model Loss Progress During TRaining')
plt.xlabel('Epoch')
plt.ylabel('Training Loss')
plt.legend('Training Loss')
```

Thoriz 10/100

Out[33]:

<matplotlib.legend.Legend at 0x2902e46b630>

Train and Evaluate a Decision Tree and a Random forest models

In [34]:

```
from sklearn.tree import DecisionTreeRegressor
dt = DecisionTreeRegressor()
dt.fit(X_train,Y_train)
```

Out[34]:

In [35]:

```
accc=dt.score(X_test,Y_test)
accc
```

Out[35]:

0.6972753142819761

In [36]:

```
from sklearn.ensemble import RandomForestRegressor
rm = RandomForestRegressor(n_estimators = 100, max_depth = 10)
rm.fit(X_train,Y_train)
```

C:\Users\Anshal\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: DataConversionWarning: A colu mn-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

This is separate from the ipykernel package so we can avoid doing imports until

Out[36]:

In [39]:

```
ax = rm.score(X_test,Y_test)
```

```
Out[39]:
```

0.7266698120311084

Calculating Regression model KPI's

```
In [40]:
```

```
ypr = reg.predict(X_test)
plt.plot(Y_test,ypr,'^',color='green')
```

Out[40]:

[<matplotlib.lines.Line2D at 0x29030a03b70>]

In [41]:

```
ori = scalar_y.inverse_transform(ypr)
tor = scalar_y.inverse_transform(Y_test)
```

In [42]:

```
plt.plot(tor,ori,'^',color='purple')
```

Out[42]:

[<matplotlib.lines.Line2D at 0x290308a5dd8>]

In [43]:

```
k = X test.shape[1]
n=len(X_test)
```

```
Out[43]:
```

```
In [44]:
```

```
from sklearn.metrics import r2_score,mean_squared_error,mean_absolute_error
from math import sqrt
```

```
In [45]:
```

```
RMSE = float(format(np.sqrt(mean squared error(tor,ori)),'.3f'))
MSE = mean_squared_error(tor,ori)
MAE = mean absolute error(tor,ori)
r2 = r2_score(tor,ori)
adj_r2 = 1-(1-r2)*(n-1)/(n-k-1)
print('RMSE -',RMSE,'\nMSE -',MSE,'\nMAE -',MAE,'\nR2 -',r2,'\nAdjusted R2 -',adj_r2)
```

RMSE - 0.065 MSE - 0.004197860815226231 MAE - 0.04723610074681444 R2 - 0.7940362891446728 Adjusted R2 - 0.7663104049910712

In []:

In []: