4/22	*.	Mark Scheme	Sandary 200
1 (3+2.	$(x)^3 = 27 + 54x + 36x^2 + 8x^3$	M1	For recognisable binomial expansion attempt
		Al	For any two terms correct, possibly unsimplified
		A1	For all four terms correct and simplified
(3-2)	$(x)^3 = 27 - 54x + 36x^2 - 8x^3$	B1√	For changing the appropriate signs
Hence	$(3+2x)^3 + (3-2x)^3 = 108x + 16x^3$	A1	5 For answer $108x + 16x^3$ or $4x(27 + 4x^2)$
		5	
2 (i)	$u_2 = -1, \ u_3 = \frac{1}{2}, \ u_4 = 2, \ u_5 = -1$	В1	For correct value -1 for u_2

2	(i) $u_2 = -1$, $u_3 = \frac{1}{2}$, $u_4 = 2$, $u_5 = -1$	B1 For correct value -1 for u_2	
	•	B1 $\sqrt{}$ For correct u_3 from their u_2	
		B1 $\sqrt{}$ 3 For correct u_4 and u_5 from their u_3	and u_4
	(ii) u_1, u_4, u_7 , etc all have the value 2	B1 For recognising the repeating prope	rty
	Hence $u_{199} = 2$, giving $u_{200} = -1$	M1 For division by 3, or equivalent	
		A1 For correctly linking relevant term t found	o a term already
		A1 4 For the correct answer -1	
	(SR - Answer only is B1)		
		7	

(i)	$\frac{LB}{\sin 65^{\circ}} = \frac{200}{\sin 35^{\circ}}$ OR $\frac{LA}{\sin 80^{\circ}} = \frac{200}{\sin 35^{\circ}}$	Ml		For correct use of the sine rule in $\Delta \textit{LAB}$ (could be in ii)
	$\Rightarrow LB = 316.0198 \Rightarrow LA = 343.39$	Al		For correct value of (or explicit expression for) LB or LA
Hence	$p = LB \sin 80^\circ = 311 \text{m}$ $p = LA \sin 65 = 311 \text{m}$	M1		For calculation of perpendicular distance
		A1	4	For correct distance (rounding to) 311
(ii)	$LC^2 = 200^2 + 316^2 - 2 \times 200 \times 316 \times \cos 100^\circ$	MI		For use of cosine rule in ΔLBC or LAC
	$\left(or\ LC^2 = 400^2 + 343^2 - 2 \times 400 \times 343 \times \cos 65^{\circ}\right)$	$A1s^l$		For correct unsimplified numerical expression for LC^2
				following their LA or LB
	Hence $LC = 402 \text{ m}$	Al	3	For correct distance (rounding to) 402

				7
4	(i)	$\frac{16}{1^2} = 16$ and $16 = 17 - 1^2$ stated		
		$I = \frac{16}{4^2}$ and $I = 17 - 4^2$ stated	В1	1 For complete verification for both points

(ii) Area is $\int_{1}^{4} \left(17 - x^2 - \frac{16}{x^2} \right) dx$	Мι	For appropriate subtraction (at any stage) - correct or
$= \left[17x - \frac{1}{3}x^3 + \frac{16}{x}\right]_1^4$	*M1	For integration attempt with any one term OK
	A1	For $17x = \frac{1}{3}x^3$ completely correct
$= 68 - \frac{64}{3} + 4 - 17 + \frac{1}{3} - 16 = 18$	M1 A1 M1dep*M	For correct form kx^{-1} for third term For correct k, for their stage of working For use of limits—correct order
, ,	A1 7	For correct answer 18

5	(i)	$\sin\theta \tan\theta = \sin\theta \times \frac{\sin\theta}{\cos\theta} = \frac{1-\cos^2\theta}{\cos\theta}$	Ml	For use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
		COSO COSO	MI	For use of $\cos^2 \theta + \sin^2 \theta = 1$
		Hence $1 - \cos^2 \theta = \cos \theta (\cos \theta + 1)$,		
		i.e. $2\cos^2\theta + \cos\theta - 1 = 0$, or equiv	A1	3 For showing given equation correctly
	(ii)	$(2\cos\theta - 1)(\cos\theta + 1) = 0$	M1	For solution of quadratic equation in $\cos \theta$
	(- /	Hence $\cos \theta = \frac{1}{2}$ or -1	Al	For both values of $\cos \theta$ correct
		So $\theta = 60^{\circ}$, 300°, 180°	Al	For correct answer 60°
			Al	For correct answer 180°
			A1√	5 For a correct non-principal-value answer, following their value of $\cos\theta$ (excluding $\cos\theta$ = -1, 0, 1) and no other values for θ .
				8
_	(a)	$\int (x^3 + 2x) dx = \frac{1}{4}x^4 + x^2 + c$	Ml	For expanding and integration attempt
		,	Αl	For $\frac{1}{4}x^4 + x^2$ correct
			В1	3 For addition of an arbitrary constant (this mark can be given in (b)(i) if not earned here), and no dx in either
	(b)	(i) $\int x^{-\frac{1}{2}} dx = 2x^{\frac{1}{2}} + c$	В1	For use of $\frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$
			M1	For integral of the form $kx^{\frac{1}{2}}$
			A1	3 For correct term $2x^{\frac{1}{5}}$
		(ii) $0 = 2\sqrt{4} + c \Rightarrow c = -4$	Ml	For use of $x = 4$, $y = 0$ to evaluate c
			Alt	For correct c from their answer in (b)(i)
		Hence curve is $y = 2x^{\frac{1}{2}} - 4$	Alt	3 For equation of the curve correctly stated
				9
,	(i)	Length of OD is 6 cm	В1	For stating or using the correct value of r
	. ,	Angle <i>DOE</i> is $\frac{1}{3}\pi / 1.047^{\circ} / 60^{\circ} / \frac{1}{6}$ of circle	B1	For stating or using the correct angle
		Hence are length DE is 2π cm (allow 6.28 cm)	B1	For correct use of $s = r\theta$ or equiv in degrees

Mark Scheme

	Hence arc length DE is 2π cm (allow 6.28 cm) Area is $\frac{1}{2} \times 6^2 \times \frac{1}{3}\pi = 6\pi$ cm ² (or $\frac{60}{360} \times \pi \times 6^2$)	B1 B1 4	For correct use of $s = r\theta$ or equiv in degrees For obtaining the given answer 6π correctly
 (ii)	Area of small triangle is $\frac{1}{2} \times 6^2 \times \frac{1}{2} \sqrt{3} = 9\sqrt{3}$	*M1	For use of $\Delta = \frac{1}{2}ab\sin C$, or equivalent
` '	2	A1	For correct value $9\sqrt{3}$, or equiv
	Area of segment is $6\pi - 9\sqrt{3}$	M1dep*M	For relevant use of (sector - triangle)
	Hence shaded area is $(18\sqrt{3} - 6\pi)$ cm ²	A1 4	For correct answer $18\sqrt{3} \cdot 6\pi$, or exact equiv
		*M1	Scheme for alternative approaches: Attempt area of big triangle / rhombus / segment, using $\Delta = \frac{1}{2}ab\sin C$, or equivalent
		Al Mldep*M	Correct area Relevant subtraction
		Al	For correct answer $18\sqrt{3} - 6\pi$

. 7122	-		Mark Scheme	January 2005
8	(i)	(a) Sketch showing exponential growth Intersection with y-axis is (0, 1)	M1 A1	For correct shape in at least 1st quadrant For 1st and 2nd quadrants, and y-coordinate 1 stated
		(b) Sketch showing exponential decay Intersection with y-axis is (0, 2)	M1 A1 2	For correct shape in at least 1st quadrant For 1st and 2nd quadrants, and y-coordinate 2 stated
	(ii)	$a^{x} = 2b^{x}$ Hence $x \log_{2} a = \log_{2} 2 + x \log_{2} b$ i.e. $x = \frac{1}{\log_{2} a - \log_{2} b}$	BI MI MI MI	For stating the equation in x For taking logs (any base) For use of one log law For use of a second log law
		$\log_2 a - \log_2 b$	9	5 For showing the given answer correctly
9		$ar^{3} - a = 4(ar^{2} - ar)$ Hence $r^{3} - 4r^{2} + 4r - 1 = 0$	MI	For using ar^{n+1} to form an equation
		$1-4+4-1=0$ Factors are $(r-1)(r^2-3r+1)$	B1 M1	For showing the given equation correctly For correct substitution of $r = 1$, or state no remainder For attempted division, or equivalent For correct factor $r^2 - 3r + 1$
,	(iii)	$r = \frac{3 \pm \sqrt{5}}{2}$	M1	For solving the relevant quadratic equation For correct roots in exact form
	(iv)	The relevant value of r is $\frac{3-\sqrt{5}}{2}$ (or decimal)	·	For selecting the appropriate value of r
		Hence $S_{\infty} = \frac{a}{1 - \frac{1}{2} \left(3 - \sqrt{5}\right)}$	M1	For relevant use of $\frac{a}{1-r}$
		$=\frac{2a}{-1+\sqrt{5}} = \frac{2a\left(-1-\sqrt{5}\right)}{\left(-1+\sqrt{5}\right)\left(-1-\sqrt{5}\right)}$	MI	For correct process for rationalismg, using two term
		$= \frac{1}{2}\alpha\left(1 + \sqrt{5}\right)$	A1 .	surd expression
		2 ·· (· · · · ·)	A) 4	For showing the given answer correctly

Mark Scheme 4728 January 2005