Session 5

Morphological Image Processing

OBJECTIVE:

The objective of this lab is to understand:

- 1. Dilation
- 2. Erosion
- 3. Opening
- 4. Closing

CONCEPTS TO LEARN:

- 1. Structuring element
- 2. hit
- 3. fit
- 4. miss
- 5. Set definitions regarding image

NOTE:

Morphological Operations are always done on binary images.

CODE OF MORPHOLOGICAL OPERATIONS:

Program-code 5.1 shows a sample code which takes in input image and shows the binary, dilation, erosion, opening and closing images as in Figure 5.1. The implementation of functions hitfitmiss(), myerosion(), mydilation(), myopening(), myclosing() are left as exercises.

```
S=myerosion(R, se);
subplot(2,3,3);
19 imshow(S)
  title('erosion')
21
22 S=mydilation(R, se);
subplot(2,3,4);
imshow(S)
25 title('dilation')
S=myopening(R, se);
28 subplot (2,3,5);
29 imshow(S)
30 title('opening')
S=myclosing(R, se);
33 subplot (2,3,6);
34 imshow(S)
stitle('closing')
```

Program 5.1: Morphological Operations

SAMPLE INPUT/OUTPUT:

Figure 5.1: Original images and morphologically operated images.

- Task 1. Write a program to implement dilation and note the effect on binary images
- Task 2. Write a program to implement erosion and note the effect on binary images
- Task 3. Write a program to implement opening and note the effect on binary images

$$A \circ B = (A \ominus B) \oplus B$$

Task 4. Write a program to implement closing and note the effect on binary images

$$A \bullet B = (A \oplus B) \ominus B$$