

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Example
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Bayesian Statistics and Data Analysis Lecture 3

Måns Magnusson Department of Statistics, Uppsala University Thanks to Aki Vehtari, Aalto University

Introduction

- Multiple parameter models
 - Marginalization
 - Gaussian
 Example
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Example of uncertainty in modeling

Posterior mean

Introduction

- Multiple parameter models
 - Marginalization
 - Gaussian
 - Gaussian conjugate prior
 - Multinomial model
 - Wultinomiai mode
 - Multivariate Gaussian
- Bioassay example

Monte Carlo and Posterior Draws

- Assume we can get draws from $p(\theta \mid y)$
- $\theta^{(s)}$ draws from $p(\theta \mid y)$ can be used
 - for visualization
 - to approximate expectations (integrals)

$$E_{p(\theta|y)}[\theta] = \int \theta p(\theta \mid y) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$$

ullet to approximate uncertainty intervals for heta

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 Evample
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- iviuitivariate Gaussiai
- · Bioassay example

Marginalization

Joint posterior distribution of multiple parameters

$$p(\theta_1, \theta_2 \mid y) \propto p(y \mid \theta_1, \theta_2) p(\theta_1, \theta_2)$$

Marginalization

$$p(\theta_1 \mid y) = \int p(\theta_1, \theta_2 \mid y) d\theta_2$$

 $p(\theta_1 \mid y)$ is a marginal distribution

- Goal is often to find marginal posterior of an interesting quantity
 - a parameter $p(\theta|y)$
 - a potential observation $p(\tilde{y}|y)$

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Example
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Marginalization - predictive distribution

 Joint distribution of unknown future observation and parameters

$$p(\tilde{y}, \theta \mid y) = p(\tilde{y} \mid \theta, y)p(\theta \mid y)$$
$$= p(\tilde{y} \mid \theta)p(\theta \mid y) \qquad \text{(often)}$$

• Marginalization over posterior distribution

$$p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \theta) p(\theta \mid y) d\theta$$
$$= \int p(\tilde{y}, \theta \mid y) d\theta$$

 $p(\tilde{y} \mid y)$ is a predictive distribution

• Introduction

- Multiple parameter models
- Marginalization
 - Gaussian
 - Example
 - Gaussian conjugate prior
 - Multinomial model
 - iviuitinomiai model
 - Multivariate Gaussian
- Bioassay example

Gaussian with unknown μ and σ^2

Observation model

$$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{1}{2\sigma^2}(y-\theta)^2\right)$$

Uninformative prior

$$p(\mu, \sigma^2) \propto \sigma^{-2}$$

- Introduction
- Multiple parameter models
- models

 Marginalization
 - iviargi
 - Gaussian
 - Example
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Gaussian example

Gaussian fit with posterior mean

Introduction

- Multiple parameter models
 - Marginalization

 - Gaussian
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- · Bioassay example

Joint posterior

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$

with $p(\mu, \sigma^2) \propto \sigma^{-2}$

$$p(\mu, \sigma^2 \mid y) \propto \sigma^{-2} \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y_i - \mu)^2\right)$$

$$p(\mu, \sigma^2 \mid y) \propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right)$$
$$= \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right]\right)$$

where
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$=\sigma^{-n-2}\exp\left(-\frac{1}{2\sigma^2}\left[(n-1)s^2+\textit{n}(\bar{\textit{y}}-\mu)^2\right]\right)$$

where
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

UPPSALA UNIVERSITET

- Introduction
- Multiple parameter models
- Marginalization

 - Gaussian
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Gaussian: Completing the square

$$\sum_{i=1}^{n} (y_{i} - \mu)^{2}$$

$$\sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\mu + \mu^{2})$$

$$\sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\mu + \mu^{2} - \bar{y}^{2} + \bar{y}^{2} - 2y_{i}\bar{y} + 2y_{i}\bar{y})$$

$$\sum_{i=1}^{n} (y_{i}^{2} - 2y_{i}\bar{y} + \bar{y}^{2}) + \sum_{i=1}^{n} (\mu^{2} - 2y_{i}\mu - \bar{y}^{2} + 2y_{i}\bar{y})$$

$$\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} + n(\mu^{2} - 2\bar{y}\mu - \bar{y}^{2} + 2\bar{y}\bar{y})$$

$$\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} + n(\bar{y} - \mu)^{2}$$

UPPSALA UNIVERSITET

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Example
 Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Marginal $p(\mu)$ and $p(\sigma^2)$

Joint posterior

Marginal of mu

Marginal of sigma

$$\mu^{(s)}, \sigma^{(s)} \sim p(\mu, \sigma \mid y)$$
 marginals

$$p(\mu \mid y) = \int p(\mu, \sigma \mid y) d\sigma$$
$$p(\sigma \mid y) = \int p(\mu, \sigma \mid y) d\mu$$

Introduction

- Multiple parameter
- models
 - Marginalization
 - Example
 - Gaussian conjugate prior
 - Multinomial model
 Multivariate Gaussian
- Bioassay example

Marginal $p(\mu|y)$ and $p(\sigma^2|y)$

Marginal posterior $p(\sigma^2 \mid y)$ (easier for σ^2 than σ)

$$p(\sigma^{2} \mid y) \propto \int p(\mu, \sigma^{2} \mid y) d\mu$$

$$\propto \int \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} \left[(n-1)s^{2} + n(\bar{y} - \mu)^{2} \right] \right) d\mu$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^{2}} \left[(n-1)s^{2} \right] \right).$$

Note!

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}(n-1)s^2\right)$$

$$\int \exp\left(-\frac{n}{2\sigma^2}(\bar{y}-\mu)^2\right) d\mu$$

$$\int \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y-\theta)^2\right) d\theta = 1$$

$$\propto \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2}(n-1)s^2\right) \sqrt{2\pi\sigma^2/n}$$

$$\propto (\sigma^2)^{-(n+1)/2} \exp\left(-\frac{(n-1)s^2}{2\sigma^2}\right)$$

$$p(\sigma^2 \mid y) = \operatorname{Inv-}\chi^2(\sigma^2 \mid n-1, s^2)$$

- Introduction
- Multiple parameter models
- Marginalization
 - Gaussian
 - Example
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Gaussian - non-informative prior

Known mean

$$\sigma^2 \mid y \sim ext{Inv-}\chi^2(n,v)$$
 where $v = rac{1}{n} \sum_{i=1}^n (y_i - heta)^2$

Unknown mean

$$\sigma^2 \mid y \sim ext{Inv-}\chi^2(n-1,s^2)$$
 where $s^2 = rac{1}{n-1}\sum_{i=1}^n (y_i - ar{y})^2$

- Introduction
- Multiple parameter models
 - Marginalization

 - Gaussian

 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Gaussian - non-informative prior

Marginal posterior $p(\mu \mid y)$

$$p(\mu \mid y) = \int_0^\infty p(\mu \mid \sigma^2, y) p(\sigma^2 \mid y) d\sigma^2$$

Marginal posterior of μ , a mixture of normal distributions where mixing density is the marginal posterior of σ^2

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Example
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Joint posterior

-Exact contour plot — Cond. distribution of mu Sample from joint post. — Sample from the marg.

Cond distr of mu for 25 draws

Cond distr of mu for 25 draws

Factorization

$$p(\mu, \sigma^{2} \mid y) = p(\mu \mid \sigma^{2}, y)p(\sigma^{2} \mid y)$$

$$(\sigma^{2})^{(s)} \sim p(\sigma^{2} \mid y)$$

$$p(\mu \mid (\sigma^{2})^{(s)}, y) = \mathcal{N}(\mu \mid \bar{y}, (\sigma^{2})^{(s)}/n)$$

$$p(\mu \mid y) \approx \frac{1}{S} \sum_{s=1}^{S} \mathcal{N}(\mu \mid \bar{y}, (\sigma^{2})^{(s)}/n)$$

14/33

UPPSALA UNIVERSITET

- Introduction
- Multiple parameter models
- Marginalization
- Gaussian
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Multivariate Gaussiai

Bioassay example

Marginal posterior $p(\mu \mid y)$

$$p(\mu \mid y) = \int_0^\infty p(\mu, \sigma^2 \mid y) d\sigma^2$$

$$\propto \int_0^\infty \sigma^{-n-2} \exp\left(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2 \right] \right) d\sigma^2$$

Transformation (integration by substitution)

$$A = (n-1)s^{2} + n(\mu - \bar{y})^{2} \quad \text{and} \quad z = \frac{A}{2\sigma^{2}}$$

$$dz = \left(-\frac{A}{2(\sigma^{2})^{2}}\right)d\sigma^{2}$$

$$p(\mu \mid y) \propto A^{-n/2} \int_{-\infty}^{\infty} z^{(n-2)/2} \exp(-z)dz$$

Recognize gamma integral
$$\Gamma(u) = \int_0^\infty x^{u-1} \exp(-x) dx$$

$$\propto [(n-1)s^2 + n(\mu - \bar{\nu})^2]^{-n/2}$$

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Evample
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- · Bioassay example

Marginal posterior $p(\mu \mid y)$

$$p(\mu|y) \propto [(n-1)s^2 + n(\mu - \bar{y})^2]^{-n/2}$$
 $\propto \left[1 + \frac{n(\mu - \bar{y})^2}{(n-1)s^2}\right]^{-n/2}$ $p(\mu \mid y) = t_{n-1}(\mu \mid \bar{y}, s^2/n)$ Student's t

- Introduction
- Multiple parameter models
 - Marginalization
 - GaussianExample
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Joint posterior

60
-Exact contour plot — Cond. distribution of mu Sample from joint post. — Sample from the marg.

Predictive distribution for new \tilde{y}

$$p(\tilde{y}|y) = \int p(\tilde{y}|\mu,\sigma)p(\mu,\sigma|y)d\mu\sigma$$

$$\mu^{(s)},\sigma^{(s)} \sim p(\mu,\sigma|y)$$

$$\tilde{y}^{(s)} \sim p(\tilde{y}|\mu^{(s)},\sigma^{(s)})$$

Marginal of sigma

Posterior predictive distribution

- Sample from the predictive distribution
- Predictive distribution given the posterior samp

Posterior predictive distribution

- Sample from the predictive distribution
- Predictive distribution given the posterior samp

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Gaussian
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- · Bioassay example

Gaussian - posterior predictive distribution

Posterior predictive distribution given known variance

$$p(\tilde{y} \mid \sigma^{2}, y) = \int p(\tilde{y} \mid \mu, \sigma^{2}) p(\mu \mid \sigma^{2}, y) d\mu$$
$$= \int \mathcal{N}(\tilde{y} \mid \mu, \sigma^{2}) \mathcal{N}(\mu \mid \bar{y}, \sigma^{2}/n) d\mu$$
$$= \mathcal{N}(\tilde{y} \mid \bar{y}, (1 + \frac{1}{n})\sigma^{2})$$

this is up to scaling factor same as $p(\mu \mid \sigma^2, y)$

$$p(\tilde{y} \mid y) = t_{n-1}(\tilde{y} \mid \bar{y}, (1 + \frac{1}{n})s^2)$$

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Example
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- · Bioassay example

Simon Newcomb's light of speed experiment in 1882

Newcomb measured (n=66) the time required for light to travel from his laboratory on the Potomac River to a mirror at the base of the Washington Monument and back, a total distance of 7422 meters

Normal model

19/33

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Example
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Gaussian - conjugate prior

- Conjugate prior has to have a form $p(\sigma^2)p(\mu \mid \sigma^2)$
- Handy parameterization

$$\mu \mid \sigma^2 \sim \mathrm{N}(\mu_0, \sigma^2/\kappa_0)$$
 $\sigma^2 \sim \mathsf{Inv-}\chi^2(\nu_0, \sigma_0^2)$

which can be written as

$$p(\mu, \sigma^2) = \text{N-Inv-}\chi^2(\mu_0, \sigma_0^2/\kappa_0; \nu_0, \sigma_0^2)$$

- μ and σ^2 are a priori dependent
 - if σ^2 is large, then μ has wide prior

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Gaussian - conjugate prior

Joint posterior (exercise 3.9)

$$p(\mu, \sigma^2 \mid y) = \text{N-Inv-}\chi^2(\mu_n, \sigma_n^2/\kappa_n; \nu_n, \sigma_n^2)$$

where

$$\mu_{n} = \frac{\kappa_{0}}{\kappa_{0} + n} \mu_{0} + \frac{n}{\kappa_{0} + n} \bar{y}$$

$$\kappa_{n} = \kappa_{0} + n$$

$$\nu_{n} = \nu_{0} + n$$

$$\nu_{n} \sigma_{n}^{2} = \nu_{0} \sigma_{0}^{2} + (n - 1) s^{2} + \frac{\kappa_{0} n}{\kappa_{0} + n} (\bar{y} - \mu_{0})^{2}$$

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Example
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Gaussian - conjugate prior

• Conditional $p(\mu \mid \sigma^2, y)$

$$\begin{split} \mu \mid \sigma^2, y &\sim \mathrm{N}\big(\mu_n, \sigma^2/\kappa_n\big) \\ &= \mathrm{N}\left(\frac{\frac{\kappa_0}{\sigma^2}\mu_0 + \frac{n}{\sigma^2}\bar{y}}{\frac{\kappa_0}{\sigma^2} + \frac{n}{\sigma^2}}, \frac{1}{\frac{\kappa_0}{\sigma^2} + \frac{n}{\sigma^2}}\right) \end{split}$$

• Marginal $p(\sigma^2 \mid y)$

$$\sigma^2 \mid y \sim \text{Inv-}\chi^2(\nu_n, \sigma_n^2)$$

• Marginal $p(\mu \mid y)$

$$\mu \mid y \sim t_{\nu_n}(\mu \mid \mu_n, \sigma_n^2/\kappa_n)$$

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Watervariate Gadosia
- Bioassay example

Multinomial model for categorical data

- Extension of binomial to *K* categories
- Observation model (Categorical distribution, n = 1) $y_i = (0, 1, 0, 0, 0)$ what is K here?

$$p(y \mid \theta) \propto \prod_{k=1}^{K} \theta_j^{y_j},$$

where
$$\sum_{k=0}^{K} \theta_{k} = 1$$
, and $\forall \theta_{k} > 0$

- What is important when choosing the prior for θ ?
- Conjugate prior: The Dirichlet distribution

$$p(\theta) \propto \prod_{k=1}^K \theta_k^{\alpha_k-1},$$

where $\forall \alpha_k > 0$

- Introduction
- Multiple parameter models
 - Marginalization

 - Gaussian
 - Example
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- · Bioassay example

Multinomial model for categorical data: The posterior

• The posterior $p(\theta|y)$

$$p(\theta \mid y) \propto p(y \mid \theta)p(\theta)$$

$$\propto \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \prod_{i}^{n} \prod_{k=1}^{K} \theta_{k}^{y_{k,i}}$$

$$= \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \prod_{k=1}^{K} \theta_{k}^{\sum_{i}^{n} y_{k,i}}$$

$$= \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1+\sum_{i}^{n} y_{k,i}}$$

• The posterior is $p(\theta|y) = Dir(\alpha + \sum y)$

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 Example
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Multivariate Gaussian

- Observation model

$$p(y \mid \mu, \Sigma) \propto \mid \Sigma \mid^{-1/2} \exp \left(-\frac{1}{2}(y - \mu)^T \Sigma^{-1}(y - \mu)\right),$$

where
$$y \in \mathcal{R}^D$$

- See BDA3 p. 72-
- New recommended LKJ-prior mentioned in Appendix A, see more in Stan manual

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Example
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Bioassay

Dose, x_i (log g/ml)	Number of animals, n_i	Number of deaths, <i>y</i> ;	Data		
-0.86 -0.30 -0.05 0.73	5555	0 1 3 5	Number of deaths	•	•
			-0.86	-0.30-0.05	0.73
				Dose (log g/ml)

Find out lethal dose 50% (LD50)

- used to classify how hazardous chemical is
- 1984 EEC directive has 4 levels

Bayesian methods help to

- reduce the number of animals needed
- easy to make sequential experiment and stop as soon as desired accuracy is obtained

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Bioassay

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Bioassay

$$y_i \mid \theta_i \sim \mathsf{Bin}(\theta_i, n_i)$$
 $\mathsf{logit}(\theta_i) = \mathsf{log}\left(\frac{\theta_i}{1 - \theta_i}\right)$
 $= \alpha + \beta x_i$

$$\theta_i = \frac{1}{1 + \exp(-(\alpha + \beta x_i))}$$

- Introduction
- Multiple parameter models
 - Marginalization
 - Guassian
 - Example
 - Gaussian conjugate prior
 - Multinomial model
- Multivariate Gaussian
- Bioassay example

Bioassay: Lethal Dose 50%

Introduction

Multiple parameter models

- Marginalization
- Gaussian
 - Gaussian conjugate prior
- Multinomial model

Multivariate Gaussian Bioassay example

Bioassay posterior

Binomial model

$$y_i \mid \theta_i \sim \mathsf{Bin}(\theta_i, n_i)$$

Link function

$$\mathsf{logit}(\theta_i) = \alpha + \beta x_i$$

Likelihood

$$p(y_i \mid \alpha, \beta, n_i, x_i) \propto \theta_i^{y_i} [1 - \theta_i]^{n_i - y_i}$$

$$\propto [\operatorname{logit}^{-1}(\alpha + \beta x_i)]^{y_i} [1 - \operatorname{logit}^{-1}(\alpha + \beta x_i)]^{n_i - y_i}$$

Posterior

$$p(\alpha, \beta \mid y, n, x) \propto p(\alpha, \beta) \prod_{i=1}^{n} p(y_i \mid \alpha, \beta, n_i, x_i)$$

No analytic posterior distribution? What can we do?

- Introduction
- Multiple parameter models
 - Marginalization
 - GaussianEvample
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Grid evaluation

- 1. Setup an area (can be hard) for α and β that capture most mass (here $\alpha = [-1, 5]$ and $\beta = [0, 30]$)
- 2. Compute unnormalized $p(\alpha^{(g)}, \beta^{(g)} \mid y, n, x)$, here \tilde{p} , at the grid points g
- 3. Sum up \tilde{p} over the whole grid (for all $g \in \{1, ..., G\}$)
- Compute (normalize) the pmf approximation of the posterior p̂

g	(α, β)	\widetilde{p}	$\hat{\boldsymbol{p}}$
1	(0, -1)	0.02	0.0002
2	(0, -0.8)	0.03	0.0003
G	(30, 5)	0.001	0.00001
\sum_{g}^{G}	-	100	1

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Gaussian conjugate prior
 - Multinomial model
 - Multivariate Gaussian
- Bioassay example

Bioassay (with uniform prior on α, β)

Posterior density evaluated in a grid

32/33

- Introduction
- Multiple parameter models
 - Marginalization
 - Gaussian
 - Example
 - Gaussian conjugate prior
 - Multinomial model
 - Iviuitinomiai mode
 - Multivariate Gaussian
- Bioassay example

- Draws can be used to estimate expectations, for example

$$E[x_{\text{LD50}}] = E[-\alpha/\beta] \approx \frac{1}{S} \sum_{s=1}^{S} \frac{\alpha^{(s)}}{\beta^{(s)}}$$

 Instead of sampling, grid could be used to evaluate functions directly, for example

$$\mathrm{E}[-\alpha/\beta] \approx \sum_{t=1}^{T} w_{\mathrm{cell}}^{(t)} \frac{\alpha^{(t)}}{\beta^{(t)}},$$

where $w_{\text{cell}}^{(t)}$ is the normalized probability of a grid cell t, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

Grid sampling gets computationally too expensive in high dimensions