

Motivation

- Develop an alternative architecture for an ALU
- Can be further used to create a CPU entirely from Neural Processing Units

- Algorithmically, uses lesser number of computing units
- Moving towards a complexity-effective design of an ALU

- Seamless integration with DNNs: built upon the same computing unit
- A step towards a complete hardware solution without a digital processor
- Can be applied in problems dependent on quantitative operations navigation, information fusion, risk assessment, etc

Algorithmic Improvements

Algorithmic Improvements: Outcome

Adder

	Paper1	Paper2	Current
Time	N + 3	2N + 4	N+3
Neurons	3	N + 8	6
Types of Firing rules	2	3	1
Types of Forgetting rules	1	3	0

Subtractor

	Paper1	Paper2	Current
Time	N + 3	2N + 3	N+5
Neurons	10	N + 13	10
Types of Firing rules	4	7	1
Types of Forgetting rules	3	4	0

Multiplicator

	Paper1	Paper2	Current
Time	6+M+N	3N + 5	$\frac{(M-1)(N+3M-2)}{2}$
Neurons	$\frac{N^2+15N+8}{2}$	3N + 8	К
Types of Firing rules	3 + N/2	5	1
Types of Forgetting rules	2 + N/2	4	0

Neuron Models

Used in the paper

- a) A custom spiking rule: $\frac{a^s}{a^c} \rightarrow a, d$
- \rightarrow when neuron has 's' spikes in it, where $s \ge c$, 'c' spikes would be lost leaving 's-c' spikes stored in it and emit a single spike denoted by 'a' after a delay 'd'
- b) A custom forgetting rule: $\frac{a^s}{a^k} \rightarrow \lambda$
- → when neuron has 's' spikes in it, it will just forget the 'k' spikes stored in it, leaving 's-k' spikes stored and also emit nothing

Used here

- a) IF Neuron: $V(t) = V(t-1) + \sum_{j=1}^n w_j s_j^{in}$ $s^{out} = 1 \ if \ V(t) > V_{th}$
- \rightarrow where w_j is the weight of the input synapse connected from j^{th} pre-neuron and s_j^{in} is the corresponding input spike. s^{out} is the output spike and V_{th} is the threshold voltage

Adder network: Prev Paper

No. of steps	σ_1	σ_2	σ_3	output
0	0	0	0	
1	0	1	0	
2	1	0	1	-
3	1	1	1	1
4	1	0	2	1
5	0	0	2	0
6	0	0	1	0
7	0	0	0	1

Adder network: Proposed

Subtractor network: Prev Paper

No. of steps	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8	σ_9	σ_{10}	output
0	0	0	1	0	0	0	0	0	0	0	-
1	0	1	0	0	0	0	0	1	1	0	12
2	1	0	0	0	0	0	1	1	1	1	-
3	1	1	0	1	1	1	0	1	1	2	0
4	1	0	0	1	1	1	1	1	1	5	1
5	0	0	0	1	1	1	0	1	1	5	0
6	0	0	0	0	0	0	0	1	1	4	0
7	0	0	0	0	0	0	0	1	1	1	1

Subtractor network: Proposed


```
5 4 3 2 1 0 time

0 0 0 0 0 1 1

0 1 0 1 1 0 12

1 1 1 1 1 0 H1

0 1 0 0 0 0 0
```

Subtractor network: Proposed


```
7 6 5 4 3 2 1 time

0 1 0 1 1 0 0 12

0 0 0 1 0 0 0 H1

1 0 1 1 0 0 0 H2

1 1 1 0 0 0 0 H3

0 1 0 1 0 0 0 0
```

Multiplicator network: Prev Paper

Basic Logic networks

Basic Logic networks

DESERIALIZER

Basic Logic networks

Storage unit

Currently Proposed

N-bit storage Unit

Multiplicator network: Proposed

Multiplicator network: Proposed

Rough Top level architecture of the proposed multiplier network

Multiplicator circuit: Proposed

```
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
               1 1 0 1 0 0 0 0 1 1 0 1
                      1 0 1 0 0 0 1 0 1
                          0 0 0 1 1 0 1
                                         I_{o2}
                          0 0 0 0 0 0
               1 1 0 1 0 0 0 0 0 0 0
       0 0 1 1 0 1 X X 0 0 0 0 0 0 0
               0 0 0 1 0 0 0 0 0 0 1
                                         S
     1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
               1 1 0 1 0 0 0 0 0 0 0
                                         M_o
       0 0 1 1 0 1 X X 0 0 0 0 1 1 0 1
                                         A_1
       1 1 0 1 X X X X 0 0 0 0 0 0 X
                                         A_2
1 0 0 0 0 1 X X X X 0 0 1 1 0 1 X X
                                         Υ
```

Iterative Input Generator

Learning Delay Model (LDM) - LAVA

- Learning Delay Model is a synaptic learning algorithm proposed in this research project
- The synapse modifies its synaptic delay over time based on the actual time passed since it started receiving any input
- This enables the repeated multiplier to perform looped addition using the same network over time

Divider circuit

Application

- The previous paper uses this arithmetic calculator to perform information fusion based on Dempster-Shafer evidence theory (DST)
- The evidence theory says that the Basic Probability Assignment (BPA) of an event/evidence can be found using the BPAs of multiple internal sub-events/evidences
- Consider For example, that there is a probabilistic reliability factor assigned to each sensor in an AI automotive chip. Then the overall BPA can be calculated to give a more realistic picture of the environment. Using the above arithmetic calculator such things can be internally calculated in the Neural Processing Unit (NPU) and incorporated with the DNN/robot/control system.

Application : Example

- Use DS evidence theory to compute the BPA of the combined system
- A Possible output could be "the combined system is saying colour could be Pink or Red with total reliability of 79%"

Action Items

- Motivation and Plausibility

Motivation [CPU Design, Complexity & H/W reduction, complete Neuromorphic solution, etc]

Plausibility ? [Beyond CMOS]

- Algorithm

Multiplicator [bit-independent H/W, Basic IF neurons]

Basic Logic units [NAND, NOR, XOR, MUX, De-serialiser, Encoder, repeater, etc]

Storage Unit [only 3 Neurons for 'n' bit storage]

Division Unit?

Binary to frequency encoded spike train converter?

- Implementation

Proof of Concept in Loihi
Full multiplicator Implementation?

- Application

Basic Probability Assignment (reliability factor) calculation [Showed by the previous paper] Shortest-path Navigation or another multiplicator application?

Beyond CMOS

- Tunnel Field-Effect Transistor (TFET)
- Optical Transistor
- Tunnel Magnetoresistance (TMR)
- Quantum Computing (qubit)
- Spin-tronics (Quantum dot, Single Electron Transistor (SET))
- Vertical cavity surface emission Laser neuron (VCSEL neuron)

Single Electron Transistor (SET)

- Works on the principle of Quantum dot and Coulomb blockade

- Quantum dot (QD):

- A minute piece of a semiconductor
- Quantum mechanical effects in play
- electrons tightly confined like particle in a box
- When Photons excite the electrons to conduction band in a QD, it excites as per quantum energy levels
- When it de-excites from conduction to valence band, photon is released based on the quantum energy level difference

Single Electron Transistor

- SET has \rightarrow a capacitor with a perfect insulator in between, two tunnel junctions and a QD

Single Electron Transistor (SET)

- <u>Coulomb blockade:</u> Conductance of very small devices decreases on very small bias voltages, so much so that is vanishes under a particular voltage
- Coulomb blockade occur in SETs as follows ->
 - When $V_{bias} < \ ^e/_{\it C}$ where C is self-capacitance of the QD
 - lower quantum levels occupied by electrons
 - Due to quantum principles, no. of electrons in a level is fixed
 - Source electron can't tunnel into the QD
- Once V_{bias} is increased, the energy levels are lowered and electron can tunnel onto the QD and then onto the drain

Quantum Dot in a SET

Single Electron Transistor (SET)

Conductance/current waveform for a SET and nanowire QD

- a) SET → energy levels are equally spaced hence peaks at equal intervals
- b) Nanowire QD → the energy levels are dependent on external factors like a magnetic field and are irregularly placed

VCSEL Neuron – an optical device

- Vertical cavity surface emission laser
- Based on the concept of Laser Diode, injection locking and polarisation switching
- <u>Laser Diode:</u> releases a beam of light nonlinearly based on bias voltage
- <u>Injection Locking:</u> The frequency of the output beam of light can be locked based on another reference (or seed) beam of a particular stable frequency

Laser Diode

VCSEL power spectrum and profile

VCSEL Neuron – an optical device

VCSEL neuron activity

- <u>Polarisation Switching (PS):</u> switching of the laser wavelength to the subsidiary wavelength non-linearly depending on the power of the injection beam
- This non-linear dynamics is used as the neuronal dynamics