Assignment 10: Data Scraping

Dwiti Bagadia

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on data scraping.

Directions

- 1. Rename this file <FirstLast>_A10_DataScraping.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Be sure your code is tidy; use line breaks to ensure your code fits in the knitted output.
- 5. Be sure to **answer the questions** in this assignment document.
- 6. When you have completed the assignment, Knit the text and code into a single PDF file.

Set up

- 1. Set up your session:
- Load the packages tidyverse, rvest, and any others you end up using.
- Check your working directory

```
#1 loading packages
library(tidyverse)
library(lubridate)
library(formatR)
library(rvest)
library(ggplot2)

#working directory
getwd()
```

[1] "/Users/d/Desktop/UNC/Spring:23/DUKE 872 L1 - Environmental Data Analysis/EDA-Spring23"

```
knitr::opts_chunk$set(tidy.opts=list(width.cutoff=40), tidy=TRUE)
```

- 2. We will be scraping data from the NC DEQs Local Water Supply Planning website, specifically the Durham's 2022 Municipal Local Water Supply Plan (LWSP):
- Navigate to https://www.ncwater.org/WUDC/app/LWSP/search.php
- Scroll down and select the LWSP link next to Durham Municipality.

• Note the web address: https://www.ncwater.org/WUDC/app/LWSP/report.php?pwsid=03-32-010&year=2022

Indicate this website as the as the URL to be scraped. (In other words, read the contents into an rvest webpage object.)

```
# 2
the.web = read_html("https://www.ncwater.org/WUDC/app/LWSP/report.php?pwsid=03-32-010&year=2022")
```

- 3. The data we want to collect are listed below:
- From the "1. System Information" section:
- Water system name
- PWSID
- Ownership
- From the "3. Water Supply Sources" section:
- Maximum Day Use (MGD) for each month

In the code chunk below scrape these values, assigning them to four separate variables.

HINT: The first value should be "Durham", the second "03-32-010", the third "Municipality", and the last should be a vector of 12 numeric values (represented as strings), with the first value being "27.6400".

```
# 3
water.system.name <- the.web %>%
    html_nodes("div + table tr:nth-child(1) td:nth-child(2)") %>%
    html_text()

PWSID <- the.web %>%
    html_nodes("td tr:nth-child(1) td:nth-child(5)") %>%
    html_text()

ownership <- the.web %>%
    html_nodes("div + table tr:nth-child(2) td:nth-child(4)") %>%
    html_text()

max.withdrawals.mgd <- the.web %>%
    html_node("th ~ td + td") %>%
    html_text()
```

4. Convert your scraped data into a dataframe. This dataframe should have a column for each of the 4 variables scraped and a row for the month corresponding to the withdrawal data. Also add a Date column that includes your month and year in data format. (Feel free to add a Year column too, if you wish.)

TIP: Use rep() to repeat a value when creating a dataframe.

NOTE: It's likely you won't be able to scrape the monthly widthrawal data in chronological order. You can overcome this by creating a month column manually assigning values in the order the data are scraped: "Jan", "May", "Sept", "Feb", etc... Or, you could scrape month values from the web page...

5. Create a line plot of the average daily withdrawals across the months for 2022

Max Daily Withdrawals Across the Months (2022) in Durham

6. Note that the PWSID and the year appear in the web address for the page we scraped. Construct a

function using your code above that can scrape data for any PWSID and year for which the NC DEQ has data. Be sure to modify the code to reflect the year and site (pwsid) scraped.

```
# 6.
scrape.it <- function(pwsid, the_year) {</pre>
    the url = ifelse(pwsid == "03-32-010" &
        the_year == 2022, "https://www.ncwater.org/WUDC/app/LWSP/report.php?pwsid=03-32-010&year=2022",
        paste0("https://www.ncwater.org/WUDC/app/LWSP/report.php",
            "?", "pwsid=", pwsid, "&", "year=",
            the year))
    web <- read html(the url)</pre>
    water.system.name.2 <- web %>%
        html_nodes("div+ table tr:nth-child(1) td:nth-child(2)") %>%
        html_text()
    PWSID.2 <- web %>%
        html_nodes("td tr:nth-child(1) td:nth-child(5)") %>%
        html text()
    ownership.2 <- web %>%
        html_nodes("div+ table tr:nth-child(2) td:nth-child(4)") %>%
        html_text()
    max.withdrawals.mgd.2 <- web %>%
        html_nodes("th~ td+ td") %>%
        html text()
    withdrawal.2 <- data.frame(Month = rep(1:12),</pre>
        `Water System Name` = water.system.name.2,
        Ownership = ownership.2, PWSID = PWSID.2,
        MGD = as.numeric(max.withdrawals.mgd.2))
    withdrawal.2 <- withdrawal.2 %>%
        mutate(Date = ym(pasteO(the_year,
            "-", Month)))
    return(withdrawal.2)
}
```

7. Use the function above to extract and plot max daily withdrawals for Durham (PWSID='03-32-010') for each month in 2015

Max Daily Withdrawals Across the Months for 2015 in Durham

8. Use the function above to extract data for Asheville (PWSID = 01-11-010) in 2015. Combine this data with the Durham data collected above and create a plot that compares Asheville's to Durham's water withdrawals.

```
# 8
Asheville.2015 = scrape.it("01-11-010", 2015)
Asheville.2015
```

```
##
      Month Water.System.Name
                                  Ownership
                                                PWSID
                                                        MGD
## 1
          1
                    Asheville Municipality 01-11-010 20.81 2015-01-01
## 2
          2
                    Asheville Municipality 01-11-010 23.95 2015-02-01
## 3
          3
                    Asheville Municipality 01-11-010 22.97 2015-03-01
## 4
          4
                    Asheville Municipality 01-11-010 24.54 2015-04-01
                    Asheville Municipality 01-11-010 23.53 2015-05-01
## 5
          5
## 6
          6
                    Asheville Municipality 01-11-010 21.32 2015-06-01
## 7
          7
                    Asheville Municipality 01-11-010 21.42 2015-07-01
## 8
          8
                    Asheville Municipality 01-11-010 23.68 2015-08-01
## 9
          9
                    Asheville Municipality 01-11-010 20.45 2015-09-01
         10
## 10
                    Asheville Municipality 01-11-010 21.60 2015-10-01
## 11
         11
                    Asheville Municipality 01-11-010 24.11 2015-11-01
## 12
         12
                    Asheville Municipality 01-11-010 19.88 2015-12-01
```

```
Compare.plot = ggplot(Durham.2015, aes(x = Date,
    y = MGD)) + geom_line(color = "lightblue") +
    ylab("Max Day Use(Gallons)") + xlab("Date") +
```

Max Daily Withdrawals Across the Months for 2015 in Durham and Asheville

9. Use the code & function you created above to plot Asheville's max daily withdrawal by months for the years 2010 thru 2021.Add a smoothed line to the plot (method = 'loess').

TIP: See Section 3.2 in the "09_Data_Scraping.Rmd" where we apply "map2()" to iteratively run a function over two inputs. Pipe the output of the map2() function to bindrows() to combine the dataframes into a single one.

Max Daily Withdrawals Across the Months for Asheville (2010–2021)

Question: Just by looking at the plot (i.e. not running statistics), does Asheville have a trend in water usage over time? We see a trend in water usage in Asheville just by looking at the plot. We see a slow smooth decrease in usage from 2010 - 2015 and then a significant increase in usage from 2016 - 2021.