

Figure 26.19: The covering of \mathbb{RP}^2 by the affine planes z=1, x=1, and y=1. The plane z=1 covers everything but the circle $x^2+y^2=1$ in the xy-plane. The plane y=1 covers that circle modulo the point (1,0,0), which is then covered by the plane x=1.

26.8 Projective Completion of an Affine Space

We begin by spelling out the universal property characterizing the projective completion of an affine space (E, \overrightarrow{E}) . Then, we prove that $\langle \widetilde{E}, \mathbf{P}(\overrightarrow{E}), i \rangle$ where $\widetilde{E} = \mathbf{P}(\widehat{E})$ is the projective space obtained associated with the vector space \widehat{E} obtained from E by the hat construction from Chapter 25 is indeed a projective completion of (E, \overrightarrow{E}) .

Definition 26.7. Given any affine space E with associated vector space \overrightarrow{E} , a projective completion of the affine space E with hyperplane at infinity $\mathbf{P}(\mathcal{H})$ is a triple $\langle \mathbf{P}(\mathcal{E}), \mathbf{P}(\mathcal{H}), i \rangle$, where \mathcal{E} is a vector space, \mathcal{H} is a hyperplane in \mathcal{E} , $i \colon E \to \mathbf{P}(\mathcal{E})$ is an injective map such that $i(E) = \mathcal{E}_{\mathcal{H}}$ and i is affine (where $\mathcal{E}_{\mathcal{H}} = \mathbf{P}(\mathcal{E}) - \mathbf{P}(\mathcal{H})$ is an affine patch), and for every projective space $\mathbf{P}(F)$ (where F is some vector space), every hyperplane H in F, and every map $f \colon E \to \mathbf{P}(F)$ such that $f(E) \subseteq F_H$ and f is affine (where $F_H = \mathbf{P}(F) - \mathbf{P}(H)$ is an