9. Übung Maß- und Wahrscheinlichkeitstheorie 1 SS2019

1. \mathfrak{S}_2 sei eine Sigmaalgebra über \mathbb{R} , die die Borelmengen enthält, $f:(\Omega,\mathfrak{S}_1)\to (\mathbb{R},\mathfrak{S}_2)$. Zeigen Sie, dass die Mengen

$$\{(\omega_1, \omega_2) \in \Omega \times \mathbb{R} : \omega_2 < f(\omega_1)\},$$
$$\{(\omega_1, \omega_2) \in \Omega \times \mathbb{R} : \omega_2 > f(\omega_1)\},$$
$$\{(\omega_1, \omega_2) \in \Omega \times \mathbb{R} : \omega_2 = f(\omega_1)\}$$

(der Subgraph, der Supergraph und der Graph von f) $\mathfrak{S}_1 \times \mathfrak{S}_2$ -messbar sind (Anl.: wenn $\omega_2 < f(\omega_1)$, dann gibt es eine rationale Zahl q mit. $\omega_2 < q < f(\omega_1)$. Damit kann man den Subgraphen als abzählbare Vereinigung von Produktmengen darstellen).

- 2. Zeigen Sie: $\{(x,x):x\in A\}$ ist genau dann eine zweidimensionale Borelmenge, wenn A eine eindimensionale Borelmenge ist.
- 3. Wir nennen zwei Maße μ und ν auf der Sigmaalgebra $\mathfrak S$ äquivalent, wenn sie dieselben Nullmengen haben, also wenn für alle $A \in \mathfrak S$ $\mu(A) = 0$ genau dann, wenn $\nu(A) = 0$. Zeigen Sie: wenn μ sigmaendlich ist, dann gibt es ein zu μ äquivalentes endliches Maß ν .
- 4. Was muss die Folge (f_n) im Maßsraum $(\mathbb{N},2^{\mathbb{N}},\mu)$ mit $\mu(A)=|A|$ erfüllen, damit sie
 - (a) fast überall,
 - (b) fast gleichmäßig,
 - (c) im Maß

konvergiert?

- 5. Was muss die Folge (f_n) im Maßsraum $(\mathbb{N},2^{\mathbb{N}},\mu)$ mit $\mu(A)=\sum_{\omega\in A}2^{-\omega}$ erfüllen, damit sie
 - (a) fast überall,
 - (b) fast gleichmäßig,
 - (c) im Maß

konvergiert?

- 6. In welchem Sinn konvergieren die folgenden Funktionenfolgen im Maßraum ($[0,1],\mathfrak{B},\lambda$)?
 - (a) $f_n(\omega) = \cos(n\omega)$ (betrachten Sie $f_{n+1} f_{n-1}$),
 - (b) $f_n(\omega) = \cos(n\omega)/n$,
 - (c) $f_n(\omega) = (\cos(\omega))^n$,

(d) $f_n(\omega) = (\cos(n\omega))^n$ (offensichtlich konvergiert $f_n(\omega)$ nicht, wenn ω ein rationales Vielfaches von π ist; im anderen Fall verwenden Sie die Tatsache, dass es für jede irrationale Zahl x unendlich viele Paare $(n,m) \in \mathbb{Z}^2$ gibt mit $|x-m/n| \leq 1/n^2$).

7. Zeigen Sie:

- (a) Wenn f_n fast überall gegen f konvergiert und $g: \mathbb{R} \to \mathbb{R}$ stetig ist, dann konvergiert $g \circ f_n$ fast überall gegen $g \circ f$.
- (b) Geben Sie ein Beispiel für eine Folge f_n , die im Maß konvergiert und eine stetige Funktion g, für die $g\circ f_n$ nicht im Maß konvergiert.
- (c) Wenn f_n gegen f im Maß konvergiert und g gleichmäßig stetig ist, dann konvergiert $g\circ f_n$ gegen $g\circ f$ im Maß.
- (d) Wenn das zugrundeliegende Maß endlich ist, dann genügt es im vorigen Punkt, dass g stetig ist (nicht unbedingt gleichmäßig).