1 point

1 point

1 point

1 point

1 point

Unit 7 - Week 6

How does an NPTEL online

Advanced Probability Theory

Advanced Probability Theory

Quiz : Assignment 6

Week 6 Feedback Form

Course outline

course work?

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

(Lec14)

(Lec15)

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Download Videos

Assignment Solution

NPTEL » Advanced Probability Theory

If two Random variables have the same moment generating function, then they have identical distributions If two Random variables have the same probability generating function, then they have identical distributions. If two Random variables have the same characteristic function, then they have identical distributions. If two Random variables have the same mean, then they have identical distributions to, the answer is incorrect. If two Random variables have the same moment generating function, then they have identical distributions two Random variables have the same probability generating function, then they have identical distributions two Random variables have the same characteristic function, then they have identical distributions. What are the conditions required to define a Probability Generating Function for the random variable X? X should be continuous type random variable X should be continuous type random variable X should be continuous type random variable X should only take integer values Should only take integer	The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.	Due on 2020-03-11,	, 23:58
If two Random variables have the same probability generating function, then they have identical distributions. If two Random variables have the same characteristic function, then they have identical distributions. If two Random variables have the same mean, then they have identical distributions to the function of the same moment generating function, then they have identical distributions two Random variables have the same moment generating function, then they have identical distributions two Random variables have the same probability generating function, then they have identical distributions with Random variables have the same characteristic function, then they have identical distributions. What are the conditions required to define a Probability Generating Function for the random variable X? X should be mon-negative X should be ontinuous type random variable X should be discrete type random variable X should be discrete type random variable X should be discrete type random variable Should be random variable Should be random variable Should be random variabl	Which of the following statements is/are true?		
If two Random variables have the same characteristic function, then they have identical distributions. If two Random variables have the same mean, then they have identical distributions to cope the content of th	If two Random variables have the same moment generating function	on, then they have identical distributions	
o, the answer is incorrect. core: 0 coepted Answers: two Random variables have the same moment generating function, then they have identical distributions two Random variables have the same moment generating function, then they have identical distributions two Random variables have the same probability generating function, then they have identical sistibutions is incorrect. two Random variables have the same characteristic function, then they have identical distributions. What are the conditions required to define a Probability Generating Function for the random variable X? X should be non-negative X should be continuous type random variable X should be discrete type random variable X should be discrete type random variable whole of the discrete type random variable should only take integer values In the probability generating function of a binomial distributed random variable with parameters n and p (pt+1-p) ⁿ (pt+1-p) ⁿ (pt+1-p) ⁿ (pt+1-p) ⁿ (t+1-p) ⁿ In the probability generating function of a binomial distributed random variable with parameters n and p (pt+1-p) ⁿ (pt+1-p) ⁿ In the probability generating function of X k! d ² C ₂ (t) t ₁ 0 1 d d ² C ₂ (t) t ₁ 0 1 d d ² C ₂ (t) t ₁ 0 1 d d ² C ₂ (t) t ₁ 0 1 d d ² C ₂ (t) t ₁ 0 1 d d ² C ₂ (t) t ₁ 0 1 d d ² C ₂ (t) t ₁ 0 1 d d ² C ₂ (t) t ₁ 0 1 d d ² C ₂ (t) t ₁ 0 1 d d ² C ₂ (t) t ₁ 0 1 d d ² C ₂ (t) t ₁ 0 1 d d ² C ₂ (t) t ₁ 0 1 d d ² C ₂ (t) t ₁ 0 2 d d ² C ₂ (t) t ₂ 0 3 d d ² C ₂ (t) t ₂ 0 4 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0 5 d d ² C ₂ (t) t ₂ 0	If two Random variables have the same probability generating fund	ction, then they have identical distributions	
cone, to the answer is incorrect. core to Variables have the same moment generating function, then they have identical distributions two Fandom variables have the same probability generating function, then they have identical distributions is two Fandom variables have the same characteristic function, then they have identical distributions. What are the conditions required to define a Probability Generating Function for the random variable X? X should be non-negative X should be continuous type random variable X should be discrete type random variable X should be discrete type random variable Interpretation of the interpretation of the probability generating function of the probability generating function of a binomial distributed random variable with parameters n and p (pt+1-p) ⁿ (pt + p)			
core: 0 cocpted Answers: two Random variables have the same moment generating function, then they have identical distributions two Random variables have the same probability generating function, then they have identical distributions. I what are the conditions required to define a Probability Generating Function for the random variable X? X should be non-negative X should be discrete type random variable X should not be discrete type random variable X should not be discrete type random variable X should not pake integer values X should	If two Random variables have the same mean, then they have iden	itical distributions	
two Random variables have the same moment generating function, then they have identical distributions two Random variables have the same probability generating function, then they have identical distributions. What are the conditions required to define a Probability Generating Function for the random variable X? X should be non-negative X should be continuous type random variable X should be discrete type random variable X should be discrete type random variable Description on the probability generating function of a binomial distributed random variable with parameters n and p (pt+1-p) ⁿ (pt + p) ⁿ (pt + 1 - p	No, the answer is incorrect. Score: 0		
who Random variables have the same characteristic function, then they have identical distributions. What are the conditions required to define a Probability Generating Function for the random variable X? X should be non-negative X should be continuous type random variable X should be discrete type random variable X should only take integer values 0, the answer is incorrect. core to core to descrete type random variable should be discrete type random variable should be discrete type random variable should not ytake integer values 1 Find the probability generating function of a binomial distributed random variable with parameters n and p (pt+1-p) ⁿ (pt+1-p) ⁿ (pt+1-p) ⁿ (pt+1-p) ⁿ (t+1-p) ⁿ (
X should be non-negative X should be continuous type random variable X should be discrete type random variable X should only take integer values to, the answer is incorrect. core: 0 (pt+1-p) ⁿ (pt+1-p) ⁿ (pt+1-p) ⁿ (pt+1-p) ⁿ (pt+1-p) ⁿ (pt+1-p) ⁿ (t+1-p) ⁿ (t+		y have identical distributions.	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	What are the conditions required to define a Probability Generating	Function for the random variable X?	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	X should be non-negative		
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
to, the answer is incorrect. Core: 0 core of Answers: Should be non-negative should be discrete type random variable should only take integer values Find the probability generating function of a binomial distributed random variable with parameters n and p	X should be discrete type random variable		
cores 0 ccepted Answers: should be non-negative should be discrete type random variable should be discrete type random variable should only take integer values Find the probability generating function of a binomial distributed random variable with parameters n and p (pt+1-p)^n (pt + p)^n (pt + 1)^n (t + 1 - p)^n (b, the answer is incorrect. core: 0 cocepted Answers: $t+1-p/t$ Find $P\{X=k\}$ in terms of the probability generating function of X $k! \frac{d^k G_{\sigma}(t)}{(dt)^k} \Big _{t=0}$ $\frac{1}{k!} \frac{d^{k+1} G_{\sigma}(t)}{(dt)^k} \Big _{t=0}$ $\frac{1}{k!} \frac{d^k G_{\sigma}(t)}{(dt)^k} \Big _{t=0}$ $0, the answer is incorrect. core: 0 core: 0 o, the answer is incorrect. core: 0 core: 0 core to dispersion of the probability generating function of X$	X should only take integer values		
cocepted Answers: should be non-negative should be incorrect per andom variable should only take integer values Find the probability generating function of a binomial distributed random variable with parameters n and p	No, the answer is incorrect. Score: 0		
should be discrete type random variable should only take integer values Find the probability generating function of a binomial distributed random variable with parameters n and p (pt+1-p) ⁿ (pt - p) ⁿ (pt + 1) ⁿ (t + 1 - p) ⁿ (b), the answer is incorrect. core: 0 coepted Answers: $\frac{1}{n^{2}-p^{n}}$ Find $P\{X=k\}$ in terms of the probability generating function of X $k! \frac{d^{k}G_{x}(t)}{(dt)^{k}}\Big _{t=0}$ $\frac{1}{k!} \frac{d^{k}G_{x}(t)}{(dt)^{k}}\Big _{t=0}$ $\frac{1}{k!} \frac{d^{k}G_{x}(t)}{(dt)^{k}}\Big _{t=0}$ (b), the answer is incorrect. core: 0 coepted Answers:	Accepted Answers:		
$(pt+1-p)^n \\ (pt+1)^n \\ (pt+1)^n \\ (t+1-p)^n \\ (b, the answer is incorrect. \\ core: 0 \\ cocepted Answers: \\ tt-1-p)^n \\ Find P\{X=k\} in terms of the probability generating function of X k! \frac{d^k G_x(t)}{(dt)^k} \bigg _{t=0} \\ \frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \bigg _{t=1} \\ \frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \bigg _{t=0} \\ 0, the answer is incorrect. \\ core: 0 \\ cocepted Answers:$	X should be non-negative X should be discrete type random variable X should only take integer values		
$\begin{array}{c} (\text{pt}-\text{p})^n \\ (\text{pt}+1)^n \\ (\text{t}+1-\text{p})^n \\ \text{lo, the answer is incorrect.} \\ \text{core: 0} \\ \text{cccepted Answers:} \\ t^{l+1-p})^n \\ \end{array}$ $\begin{array}{c} \text{Find P}\{X=k\} \text{ in terms of the probability generating function of X} \\ k! \frac{d^k G_x(t)}{(dt)^k} \bigg _{t=0} \\ \frac{1}{k!} \frac{d^{k+1} G_x(t)}{(dt)^{k+1}} \bigg _{t=0} \\ \frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \bigg _{t=1} \\ \frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \bigg _{t=0} \\ \text{lo, the answer is incorrect.} \\ \text{core: 0} \\ \text{cccepted Answers:} \end{array}$	3) Find the probability generating function of a binomial distributed rar	ndom variable with parameters n and p	
$(pt+1)^n \\ (t+1-p)^n$ $(t,t) = p^n$ (t,t)	(pt+1-p) ⁿ		
(b), the answer is incorrect. core: 0 cocepted Answers: $t+1-p)^n$ Find $P\{X=k\}$ in terms of the probability generating function of X $k! \frac{d^k G_x(t)}{(dt)^k} \Big _{t=0}$ $\frac{1}{k!} \frac{d^{k+1} G_x(t)}{(dt)^{k+1}} \Big _{t=0}$ $\frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \Big _{t=1}$ $\frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \Big _{t=0}$ Io, the answer is incorrect. core: 0 cocepted Answers:	(pt - p) ⁿ		
lo, the answer is incorrect. core: 0 Incorporation of the probability generating function of X Incorporation of X	(pt + 1) ⁿ		
cocepted Answers: $\frac{d^k G_x(t)}{(dt)^k} \Big _{t=0}$ Find $P\{X=k\}$ in terms of the probability generating function of X $k! \frac{d^k G_x(t)}{(dt)^k} \Big _{t=0}$ $\frac{1}{k!} \frac{d^{k+1} G_x(t)}{(dt)^{k+1}} \Big _{t=0}$ $\frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \Big _{t=1}$ $\frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \Big _{t=0}$ Io, the answer is incorrect. core: 0 accepted Answers:	○ (t + 1 - p) ⁿ		
Find $P\{X=k\}$ in terms of the probability generating function of X $k! \frac{d^k G_x(t)}{(dt)^k} \Big _{t=0}$ $\frac{1}{k!} \frac{d^{k+1} G_x(t)}{(dt)^{k+1}} \Big _{t=0}$ $\frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \Big _{t=1}$ $\frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \Big _{t=0}$ lo, the answer is incorrect. core: 0 accepted Answers:	No, the answer is incorrect. Score: 0		
$ \left.\begin{array}{c} k! \frac{d^k G_x(t)}{(dt)^k} \right _{t=0} \\ \\ \frac{1}{k!} \frac{d^{k+1} G_x(t)}{(dt)^{k+1}} \right _{t=0} \\ \\ \frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \right _{t=1} \\ \\ \frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \right _{t=0} \\ \\ \text{lo, the answer is incorrect.} \\ \\ \text{core: 0} \\ \\ \text{accepted Answers:} \\ \end{array} $	Accepted Answers: (pt+1-p) ⁿ		
$\frac{1}{k!} \frac{d^{k+1}G_x(t)}{(dt)^{k+1}} \Big _{t=0}$ $\frac{1}{k!} \frac{d^kG_x(t)}{(dt)^k} \Big _{t=1}$ $\frac{1}{k!} \frac{d^kG_x(t)}{(dt)^k} \Big _{t=0}$ Io, the answer is incorrect. core: 0 accepted Answers:	4) Find P{X=k} in terms of the probability generating fund	ction of X	
$\frac{1}{k!} \frac{d^{k+1}G_x(t)}{(dt)^{k+1}} \Big _{t=0}$ $\frac{1}{k!} \frac{d^kG_x(t)}{(dt)^k} \Big _{t=1}$ $\frac{1}{k!} \frac{d^kG_x(t)}{(dt)^k} \Big _{t=0}$ Io, the answer is incorrect. core: 0 accepted Answers:	$k! \frac{d^k G_x(t)}{dt = k}$		
$\frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \bigg _{t=1}$ $\frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \bigg _{t=0}$ lo, the answer is incorrect. Accore: 0 Accepted Answers:	16-0		
$\frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \bigg _{t=0}$ lo, the answer is incorrect. Accore: 0			
lo, the answer is incorrect. core: 0 ccepted Answers:	$\left.\begin{array}{c} \left.\begin{array}{c} k: & (dt) \\ \left.\begin{array}{c} t \\ \end{array}\right _{t=1} \end{array}\right _{t=0}$		
ccepted Answers:	No, the answer is incorrect.		
$d^kG_r(t)$	Accepted Answers:		
$\left.\frac{1}{t!}\frac{dt}{(dt)^k}\right _{t=0}$	$\frac{1}{k!} \frac{d^k G_x(t)}{(dt)^k} \bigg _{t=0}$		
Find the moment generating function of a exponential distributed random variable with parameter λ .	 Find the moment generating function of a exponential d 	istributed random variable with parameter λ .	
	$\frac{\lambda - t}{\lambda} \ \forall t \in (-\infty, \lambda)$		
	$\bigcirc \frac{\lambda}{t} \ \forall t \in (-\infty, \lambda)$		
	$\frac{\lambda}{\lambda - t} \ \forall t \in (-\infty, \lambda)$		
$\bigcirc \frac{\lambda}{\lambda - t} \ \forall t \in (-\infty, +\infty)$ $\bigcirc \frac{\lambda}{\lambda - t} \ \forall t \in (-\infty, +\infty)$	$\lambda - t$		

6) Find P{X=0} if $M_X(t) = \frac{e^t}{2} + \frac{e^{-t}}{3} + \frac{1}{6}$

No, the answer is incorrect. Score: 0

Accepted Answers:

7) If $X_1, X_2, ..., X_n$ are mutually independent normal random variables with means $\mu_1, \mu_2, ..., \mu_n$ and vari-

ances $\sigma_1, \sigma_2, ..., \sigma_n$ then find the distribution of the linear combination $Y = \sum_{i=1}^n c_i X_i$. Normal distribution Binomial distribution

 Chi Square distribution Exponential distribution

No, the answer is incorrect.

Score: 0 Accepted Answers:

Normal distribution

Which of the following statements is/are true ($\psi_X(t)$ is the characteristic function of the random variable

X)? $|\psi_X(t)| \geq 2$

 $|\psi_X(t)| \leq 1$ $|\psi_x(t)|=2$

 $|\psi_x(t)| > 1$

No, the answer is incorrect. Score: 0

Accepted Answers:

 $|\psi_X(t)| \leq 1$

9) Which of the following statements is/are true?

Characteristic function of a random variable always exists and moment generating function may or may not exist Characteristic function of a random variable always exists and moment generating function also exists always Characteristic function of a random variable may or may not exist and moment generating function may or may not exist

No, the answer is incorrect. Score: 0 Accepted Answers:

Characteristic function of a random variable always exists and moment generating function may or may not exist

10) Let $X_1, X_2, and X_3$ denote a random sample of size 3 from a gamma distribution with $\alpha = 7$ and $\theta = 5$

Let Y be the sum of the three random variables. Find the distribution of Y. Gamma distribution with $\alpha = 7$ and $\theta = 5$

Characteristic function of a random variable may or may not exist and moment generating function always exists

Gamma distribution with $\alpha = 7$ and $\theta = 25$ Gamma distribution with $\alpha = 21$ and $\theta = 5$ Exponential distribution with $\lambda = 7$

No, the answer is incorrect. Score: 0

Gamma distribution with $\alpha = 21$ and $\theta = 5$

Accepted Answers: