ΘΕΜΑ 4

Δορυφόρος μάζας $M=300~{\rm kg}~$ μπορεί να εκτελεί κυκλική τροχιά σε διάφορα ύψη πάνω από την επιφάνεια της Γης, το μεγαλύτερο από τα οποία είναι $h_1=2R_\Gamma$ και το μικρότερο $h_2=R_\Gamma$

4.1. Ποια είναι η ταχύτητα του δορυφόρου όταν εκτελεί κυκλική τροχιά σε ύψος h_1 από την επιφάνεια της Γης;

Μονάδες 6

4.2. Ποιο το έργο της βαρυτικής δύναμης του πεδίου κατά την αλλαγή της τροχιάς του δορυφόρου, από ύψος h_1 σε ύψος h_2 από την επιφάνεια της Γης;

Μονάδες 6

4.3. Αν ο δορυφόρος συνέχιζε να περιστρέφεται στο ύψος h_1 , να υπολογίσετε την ελάχιστη ενέργεια που πρέπει να προσφερθεί σε τμήμα του δορυφόρου μάζας $m_2=100 {
m kg}$, ώστε μόλις να φτάσει στο άπειρο.

Μονάδες 6

4.4. Αν το υπόλοιπο τμήμα του δορυφόρου εξακολουθεί να κινείται σε κυκλική τροχιά στο ύψος h_1 , με τις δικές του μηχανές, ποια η ολική μηχανική ενέργεια του δορυφόρου μετά την αποχώρηση της μάζας m_2 ;

Μονάδες 7

Θεωρείστε αμελητέα την ελκτική δύναμη μεταξύ δορυφόρου και της μάζας m_2 . Δίνονται: η ένταση του πεδίου βαρύτητας στην επιφάνεια της Γης $g_0=10 \text{m/s}^2$, η ακτίνα της Γης $R_\Gamma=6400 \text{km}, \sqrt{21,33}=4,62$.