

2022.5.13. Econometrics.

The Gauss-Markov Theorem.

When Assumptions A.I.-A.4 hold, the least squares estimator $B = (X/X)^{-1}X'y$ is the minimum variance linear unbiased estimator (or BLUE) of B.

- · A.1: 9=XB+E. The model is correctly specified.
- · A.4: homoskodostisity. & no autocorrelation.

 Linear estimator.
- · trade-off of bias and variance.

Asymptotic (large sample) properties. ||x-c||> 2 . h→∞ 1x:-c:1>E. · Convergence in probability (Def. D1) A random variable In Converges in probability to a constant C (a random variable 2) if lim Prob ($|2n-c| \ge 8$) = 0 $|x| > \infty$ | Folim |x| = 0for any positive |x|Let $x_n = \begin{cases} 0 & \text{with Prob. } + h > 1 \\ n & \text{with Prob. } + h > 0 \end{cases}$ plim $x_n = 0$

Consistent estimator (Def D.2).

An estimator $\hat{\theta}_n$ of a parameter θ is a consistent estimator of θ iff plim $\hat{\theta}_n = \theta$.

Theorem D.4

The mean of a random sample $\bar{x} = \frac{2\pi i}{n}$ from any population with finite μ and σ^2 is a consistent estimator of μ .

The OLS estimator is consistent. > plim 16 = 18 $b = (\chi'\chi)^{-1}\chi'\gamma \qquad (A.1, A.2)$ $= (X'X)^{1} X'(X\beta + \Sigma)$ plim 16 = plim (B+plim_ $=\beta+(x'x)^{-1}(x \mathcal{E})$ = B + Plim____ Theirem D.14 If polim Xn=A. plim Yn=13, then
plim Xn Yn = AB.

$$(x'x)^{-1}.$$

$$x'x = \begin{bmatrix} x'x & x_1 & x_2 & x_3 & x_4 & x_5 &$$

Theorem D.S. Law of Large numbers. If x_i , i=1,...,n is i.i.d. random sample with $E[x_i] = M$. then $\sum_{i=1}^{n} x_i = M$.

[0..0.0] [3] E \(\oldots 0.0

We have plim (1 x'x) = Q

$$\Rightarrow p \lim_{n \to \infty} \left(\frac{1}{n} X'X \right)^{-1} = Q^{-1}.$$

$$\begin{array}{l}
\times'\S . \quad (A.3) \\
E[X'\S] = E_{\times}[E[X'\S|X]] = E_{\times}[X'.E[\S|X]] \\
= E_{\times}[X'O] = O, \\
\Rightarrow E[X_{i}\S_{i}] = O. \\
\times'\S = \sum_{i} x_{i}\S_{i} \\
\text{plim}(\frac{1}{N} \times \S) = \text{plim}(\frac{1}{N} \sum_{i=1}^{N} x_{i}\S_{i}) = E[X_{i}\S_{i}] = O.
\end{array}$$

plim (lb) = B+ plim (hxx)-! plim (hxx) = \beta + \alpha^1.0 = B .

Under assumptions A.I. A.3 and A.S.a.,

(b) is a consistent estimator of B.