Rotations et réflexions

Il y a plusieurs façons de représenter le groupe de rotations SO(3) de \mathbb{R}^3 . La plus courante est d'identifier

$$SO(3) = \{ O \in \mathcal{O}(3) \mid \det O = 1 \}.$$

Or, le théorème d'Euler dit que pour toute rotation dans SO(3) il existe une axe de rotation $\mathbf{u} \in S^2$ de sorte que l'on puisse la représenter par le vecteur d'Euler $\omega = \theta \mathbf{u}$, où θ est l'angle de rotation. En effet, on peut identifier SO(3) à la boule de rayon π autour de l'origine avec points antipodaux identifiés, ce qui montre en passage que $SO(3) \simeq \mathbb{R}P^3$, dont on pourra déduire le groupe fondamental par exemple.

Dans la suite, on veut trouver le lien entre le vecteur d'Euler ω et la matrice de rotation R associée. On se rappelle que

$$\mathfrak{so}(3) = T_I SO(3) = \operatorname{Asym}_3(\mathbb{R}).$$

De plus, on notera $R_x(\theta)$, $R_y(\theta)$ et $R_z(\theta)$ les rotations élémentaires autour des axes x, y et z, respectivement. On voit facilement que dim $\operatorname{Asym}_3(\mathbb{R}) = 3$ et on trouve que les matrices

$$L_x = \frac{d}{d\theta} R_x(\theta)|_{\theta=0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$L_y = \frac{d}{d\theta} R_y(\theta)|_{\theta=0} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

$$L_z = \frac{d}{d\theta} R_z(\theta)|_{\theta=0} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

forment une base de $\mathfrak{so}(3)$. On montrera dans la suite que $\exp:\mathfrak{so}(3)\to SO(3)$ est bien-défini et surjectif. En effet, pour $A\in\mathfrak{so}(3)$ on obtient avec les propriétés de l'exponentielle que

$$(e^A)^T e^A = e^{A^T} e^A = e^{-A} e^A = e^I = I.$$

Donc, cette application est bien-définie et en particulier on a $R_z(\theta) = e^{\theta L_z}$ et similaire pour les autres rotations similaires. On remarque que pour tout $A \in \mathfrak{so}(3)$ et $Q \in SO(3)$ on a $QAQ^T \in \mathfrak{so}(3)$. Soit maintenant $R \in SO(3)$ quelconque. On trouve toujours un $Q \in SO(3)$ de sorte que

$$R = QR_z(\theta)Q^T = Qe^{\theta L_z}Q^T = e^{\theta QL_zQ^T} = e^{\theta \mathbf{u} \cdot \mathbf{L}},$$

avec $\mathbf{L} = (L_x, L_y, L_z)^T$ où on permet un petit abus de notation et $\mathbf{u} \in S^2$ car Q est une application orthogonale. Ceci montre bien que $\exp : \mathfrak{so}(3) \to SO(3)$ est

surjectif. Réciproquement, le calcul direct montre que pour un $\mathbf{u} \in S^2$ et $\theta \in \mathbb{R}$ la matrice $R = \exp(\theta \mathbf{u} \cdot \mathbf{L})$ est bien la matrice de rotation associée.

Soit maintenant S la réflexion au plan yz, i.e.

$$S = \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right),$$

ce que l'on appellera la forme canonique. Soit $R \in SO(3)$ l'orientation d'un corps rigide dans \mathbb{R}^3 avec vecteur d'Euler ω associé. On notera $\tilde{R} \in SO(3)$ l'orientation de l'image miroir du corps rigide avec vecteur d'Euler $\tilde{\omega}$. On s'aperçoit que $\tilde{\omega} = -S\omega$, i.e. l'axe de rotation est reflétée et au même temps le sens de rotation est inversé pour les rotations parallèles au plan de réflexion. Un petit calcul montre que

$$\tilde{\omega} \cdot \mathbf{L} = S(\omega \cdot \mathbf{L})S,$$

dont il suit que

$$\tilde{R} = \exp(\tilde{\omega} \cdot \mathbf{L}) = \exp(S(\omega \cdot \mathbf{L})S) = SRS.$$

Si maintenant S' est une réflexion quelconque, on trouve toujours un $Q \in SO(3)$ tel que $S' = QSQ^T$. Pour un $R' \in SO(3)$ on peut écrire $R' = QRQ^T$ pour un $R \in SO(3)$. En particulier, on obtient

$$\tilde{R}' = Q\tilde{R}Q^T = QSRSQ^T = S'R'S'^T.$$