Introduction to Linear Circuit Analysis and Modelling

From DC to RF

MATLAB and SPICE Examples

Luis Moura Izzat Darwazeh

Introduction

MATLAB®1 and OCTAVE2 are numeric computation software packages which are used to solve engineering and scientific problems. SPICE is a general purpose circuit simulation program which originates from the University of California at Berkeley.

This manual contains numerous examples which make use of these software packages to study the key subjects discussed in each chapter of the book. Most of the examples are solved using both packages.

For the MATLAB solutions we show the analytical solution and its implementation as a MATLAB script (m-file). The MATLAB scripts allow the relevant numeric calculations. These scripts also valid for the OCTAVE software package.

For the SPICE solutions we provide the netlists of the circuits. This allows for the simulation of these circuits. All the netlists were written for the version 3f5.

We strongly recommend readers to get familiar with the subjects discussed in the book and the relevant analysis techniques prior to the study of the examples provided in this manual.

¹MATLAB[®] is a registered trademark of the MathWorks, Inc. For MATLAB product information contact: The MathWorks, Inc., 3 Apple Drive, Natick, MA 01760-2098 USA.

²GNU OCTAVE is a Free Software. For more information write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Contents

1	Eler	mentary electrical circuit analysis	5
	1.1	Elementary circuits	5
	1.2	Equivalent resistance	12
	1.3	Circuits containing controlled sources	20
	1.4	Electrical network theorems	29
		1.4.1 Thévenin theorem	29
		1.4.2 Norton theorem	35
		1.4.3 Superposition theorem	38
2	Con	nplex numbers: an introduction	43
3	Free	quency domain electrical signal and circuit analysis	46
	3.1	AC circuits	46
	3.2	Maximum power transfer	63
	3.3	Transfer functions	65
	3.4	Fourier series	67
	3.5	Convolution	70
4	Nati	ural and forced responses circuit analysis	73
-	4.1	Natural Response	73
		4.1.1 RC circuit	73
		4.1.2 RL circuit	75
		4.1.3 LC circuit	77
		4.1.4 RLC circuit	79
	4.2	Response to the step function	81
	1.2	4.2.1 RC circuit	81
		4.2.2 RL circuit	83
		4.2.3 RLC circuit	85
5	Floo	ctrical two-port network analysis	87
3	5.1		87
	5.2	Z-parameters	90
	5.3		93
	5.4	Chain parameters	93 103
	5.5		103 105
	5.6		103 109
	5.7		
	3.7	1	111
			111
			112
			113
			114
		*	115
	. .	1	116
	5.8	Computer-aided electrical analysis	117

CONTENTS

6	Basi	c electronic amplifier building blocks	123
	6.1	Operational Amplifiers	123
	6.2	Active devices	126
	6.3	Common-emitter amplifier	132
	6.4	Common-base amplifier	133
	6.5	Common-collector amplifier	134
	6.6	Differential pair amplifier	135
7	RF	circuit analysis techniques	136
	7.1	Transmission lines	136
	7.2	S-parameters	142
	7.3	Smith chart	150
8	Nois	se in electronic circuits	155
	8.1	Equivalent noise bandwidth	155
	8.2	Conversion between noise representations	157
		8.2.1 Chain to admittance	157
		8.2.2 Chain to impedance	158
		8.2.3 Impedance to chain	159
		8.2.4 Impedance to admittance	160
		8.2.5 Admittance to chain	161
		8.2.6 Admittance to impedance	162
	8.3	Computer-aided noise analysis	163
		8.3.1 Chain connection	163
		8.3.2 Parallel connection	165
		8.3.3 Series connection	167
		8.3.4 Common-emitter amplifier	169
		8.3.5 Differential pair amplifier	175
Bi	bliog	raphy	176
In	dex o	f m-functions	177

Chapter 1

Elementary electrical circuit analysis

1.1 Elementary circuits

Example 1.1 Determine the voltage at each node of the circuit of figure 1.1.

Solution (using SPICE):

* Circuit of figure 1.1

Figure 1.1: DC circuit.

Figure 1.2: DC circuit.

First, we write the following eqns (see also figure 1.2):

$$\begin{cases}
I_{R_4} = I_{R_1} + I_{R_3} \\
I_{R_2} = I_{R_3} \\
V_A = V_1
\end{cases}$$
(1.1)

or

$$\begin{cases}
\frac{V_C}{R_4} = \frac{V_1 - V_C}{R_1} + \frac{V_B - V_C}{R_3} \\
\frac{V_1 - V_B}{R_2} = \frac{V_B - V_C}{R_3}
\end{cases}$$
(1.2)

This set of eqns can be rewritten as follows:

$$\begin{cases}
\frac{V_1}{R_1} = \left(\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_4}\right) V_C - \frac{V_B}{R_3} \\
\frac{V_1}{R_2} = -\frac{V_C}{R_3} + \left(\frac{1}{R_3} + \frac{1}{R_2}\right) V_B
\end{cases} (1.3)$$

The last eqn can also be written in matrix form:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} \frac{V_1}{R_1} \\ \frac{V_1}{R_2} \end{bmatrix} \tag{1.4}$$

$$[B] = \begin{bmatrix} \frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_4} & \frac{-1}{R_3} \\ \frac{-1}{R_3} & \frac{1}{R_3} + \frac{1}{R_2} \end{bmatrix}$$
(1.5)

$$[C] = \begin{bmatrix} V_C \\ V_B \end{bmatrix} \tag{1.6}$$

We can determine the unknown variables, V_B and V_C by solving the following eqn using MATLAB/OCTAVE:

$$[C] = [B]^{-1} \times [A]$$

V_1= 2;

 $R_1 = 330;$

R 2 = 70;

 $R_3 = 160;$

 $R_4 = 270;$

$$B=[1/R_1+1/R_3+1/R_4 -1/R_3 ; ... \\ -1/R_3 1/R_3+1/R_2]$$

$$A = [V_1/R_1; V_1/R_2]$$

C=inv(B) *A

%======

inv.m is a built-in m-function which calculates the inverse of a matrix.

Example 1.2 Determine the voltage at each node of the circuit of figure 1.3

Solution (using SPICE):

Figure 1.3: DC circuit.

Figure 1.4: DC circuit.

For the circuit of figure 1.4 we write the following set of eqns:

$$\begin{cases}
I_1 = I_{R_1} + I_{R_3} \\
I_1 = I_{R_2} + I_{R_4} \\
V_1 = V_A - V_C
\end{cases}$$
(1.7)

that is

$$\begin{cases}
I_1 = \frac{V_B - V_A}{R_1} + \frac{V_B - V_C}{R_3} \\
I_1 = \frac{V_A}{R_2} + \frac{V_C}{R_4} \\
V_1 = V_A - V_C
\end{cases}$$
(1.8)

The last eqn can be written in matrix form as follows:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} I_1 \\ I_1 \\ V_1 \end{bmatrix}$$
 (1.9)

$$[B] = \begin{bmatrix} \frac{-1}{R_1} & \frac{1}{R_3} + \frac{1}{R_1} & \frac{-1}{R_3} \\ \frac{1}{R_2} & 0 & \frac{1}{R_4} \\ 1 & 0 & -1 \end{bmatrix}$$
 (1.10)

$$[C] = \begin{bmatrix} V_A \\ V_B \\ V_C \end{bmatrix}$$
 (1.11)

We can determine the unknown variables by solving the following eqn using MATLAB/OCTAVE:

$$[C] = [B]^{-1} \times [A]$$

%======= mat_script2.m =========== clear

 $V_1 = 2;$

 $I_1 = 0.2;$ $R_1 = 80;$

 $R_2 = 70;$

 $R_3 = 60;$

R 4 = 90;

C=inv(B)*A

Example 1.3 Determine the voltage at each node of the circuit of figure 1.5

Solution (using SPICE):

Figure 1.5: DC circuit.

Figure 1.6: DC circuit.

Solution (using MATLAB/OCTAVE):

For the circuit of figure 1.6 we write the following set of eqns:

$$\begin{cases}
I_{R_1} + I_{R_2} + I_{R_3} = 0 \\
I_{R_4} = I_{R_3} \\
V_B - V_A = V_1 \\
V_B - V_C = V_2
\end{cases}$$
(1.12)

This set of eqns can be written as:

$$[A] = [B] \times [C]$$

[A] = [B]

with

$$[A] = \begin{bmatrix} 0\\0\\V_1\\V_2 \end{bmatrix} \tag{1.14}$$

$$[B] = \begin{bmatrix} \frac{1}{R_1} & \frac{1}{R_3} & 0 & \frac{1}{R_3} \\ 0 & 0 & \frac{1}{R_4} & -\left(\frac{1}{R_3} + \frac{1}{R_4}\right) \\ -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$
 (1.15)

$$[C] = \begin{bmatrix} V_A \\ V_B \\ V_C \\ V_D \end{bmatrix}$$
 (1.16)

We can determine the unknown variables by solving the following eqn using MATLAB/OCTAVE:

$$[C] = [B]^{-1} \times [A]$$

%======= mat_script3.m ===========

clear

V_1= 2

V_2= 3

R_1= 90

 $R_2 = 680$

 $R_3 = 180$

 $R_4 = 220$

 $A = [0; 0; V_1; V_2];$

 $B = [1/R_1 \ 1/R_2 \ 0]$

1/R_3

; . . .

1.2 Equivalent resistance

Example 1.4 Determine the equivalent resistance of the circuit of figure 1.7 a) between points A and B.

Solution (using SPICE):

Figure 1.7: a) Resistive circuit. b) Calculation of its equivalent resistance between points A and B.

Note that a voltage source of 1 V is applied to the resistive circuit between points A and B. We can determine the equivalent resistance by first calculating the current provided by V_t , $I_t = -i (V_t)^1$. Then, the equivalent resistance is calculated as indicated below:

$$R_{eq} = \frac{1}{I_t} (\Omega)$$

¹Note that, in SPICE, the positive current is assumed to flow from the positive pole, through the source, to the negative pole.

The equivalent resistance of the circuit of figure 1.7 a) can be determined after recognising that $R_1 + R_2$ is connected in parallel with R_5 and also with $R_3 + R_4$.

In this script parallel.m is an m-function which calculates the equivalent resistance of a parallel combination of two resistances; R_1 and R_2 .

Figure 1.8: a) Resistive circuit b) Calculation of the equivalent resistance between points A and B.

Example 1.5 Determine the equivalent resistance of the circuit of figure 1.8 a) between points A and B.

Solution (using SPICE):

*_____

Note that a current source of 1 A is applied to the resistive circuit between points A and B. We can determine the equivalent resistance by calculating the voltage across the source, V_t . Then, the equivalent resistance is simply

$$R_{eq} = \frac{V_t}{1} (\Omega)$$

with $V_t = \forall (1)$.

For the circuit of figure 1.9 we can write

Figure 1.9: Calculation of the equivalent resistance between nodes A and B.

$$\begin{cases}
I_t = I_{R_1} + I_{R_4} \\
I_t = I_{R_5} + I_{R_3} \\
I_{R_1} = I_{R_5} + I_{R_2} \\
V_X = V_t
\end{cases}$$
(1.17)

that is,

$$\begin{cases} I_{t} = \frac{V_{t} - V_{Y}}{R_{1}} + \frac{V_{t} - V_{Z}}{R_{4}} \\ I_{t} = \frac{V_{Y}}{R_{5}} + \frac{V_{Z}}{R_{3}} \\ \frac{V_{t} - V_{Y}}{R_{1}} = \frac{V_{Y}}{R_{5}} + \frac{V_{Y} - V_{Z}}{R_{2}} \end{cases}$$
(1.18)

This last eqn can be written in a matrix form as follows:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} I_t \\ I_t \\ 0 \end{bmatrix} \tag{1.19}$$

$$[B] = \begin{bmatrix} \frac{1}{R_1} + \frac{1}{R_4} & -\frac{1}{R_1} & -\frac{1}{R_4} \\ 0 & \frac{1}{R_5} & \frac{1}{R_3} \\ -\frac{1}{R_1} & \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_5} & -\frac{1}{R_2} \end{bmatrix}$$
(1.20)

$$[C] = \begin{bmatrix} V_t \\ V_Y \\ V_Z \end{bmatrix}$$
 (1.21)

We can determine the unknown variables by solving the following eqn:

$$[C] = [B]^{-1} \times [A]$$

The equivalent resistance is:

$$R_{eq} = \frac{V_t}{1} \Omega$$

$$I_t= 1$$

R 1= 100

R 2 = 40

 $R_3 = 170$

R_4= 70

 $R_5 = 50$

Example 1.6 Determine the equivalent resistance of the circuit of figure 1.10 a) between points A and B.

Solution (using SPICE):

.print dc v(1)

.end

Figure 1.10: a) Resistive circuit. b) Calculation of the equivalent resistance between points A and B.

The resistance between points A and B is equal to

$$R_{eq} = \frac{V_t}{1} \Omega$$

where V_t is the voltage across the current source, that is $V_t = \mathbf{v}$ (1).

For the circuit of 1.11 we can write

$$\begin{cases} I_{t} = I_{a} + I_{b} + I_{c} \\ I_{t} = I_{b} + I_{k} + I_{l} \\ I_{a} = I_{e} + I_{d} \\ I_{d} = I_{f} + I_{m} \\ I_{m} = I_{j} + I_{h} \\ I_{k} = I_{g} + I_{h} \\ I_{l} = I_{e} + I_{j} \end{cases}$$

$$(1.22)$$

Since all resistances are equal, we can write the previous set of eqns as follows:

We can express these eqns in matrix form:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} I_t \\ I_t \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 (1.24)

$$[B] = \begin{bmatrix} \frac{3}{R} & -\frac{1}{R} & 0 & -\frac{1}{R} & 0 & 0 & 0\\ \frac{1}{R} & 0 & \frac{1}{R} & 0 & 0 & 0 & \frac{1}{R}\\ -\frac{1}{R} & 0 & 0 & \frac{3}{R} & -\frac{1}{R} & 0 & -\frac{1}{R}\\ 0 & -\frac{1}{R} & 0 & -\frac{1}{R} & \frac{3}{R} & 0 & -\frac{1}{R}\\ 0 & 0 & -\frac{1}{R} & 0 & -\frac{1}{R} & \frac{3}{R} & -\frac{1}{R}\\ 0 & -\frac{1}{R} & \frac{3}{R} & 0 & 0 & -\frac{1}{R} & 0\\ 0 & 0 & 0 & -\frac{1}{R} & 0 & -\frac{1}{R} & \frac{3}{R} \end{bmatrix}$$
(1.25)

Figure 1.11: Calculation of the equivalent resistance between points A and B.

$$[C] = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \\ V_5 \\ V_6 \\ V_7 \end{bmatrix}$$
 (1.26)

We can determine the unknown variables by solving the following eqn:

$$[C] = [B]^{-1} \times [A]$$

The equivalent resistance is:

$$R_{eq} = \frac{V_1}{1} \Omega$$

 $I_t= 1$

R = 1000

C=inv(B)*A

Req=C(1)

1.3 Circuits containing controlled sources

Example 1.7 Determine the voltage at each node of the circuit of figure 1.12 a).

Solution (using SPICE):

* Circuit of figure 1.12 b)

Figure 1.12: a) DC circuit with current controlled-current source. b) Equivalent circuit.

Note the inclusion of a voltage source $V_{sens}=0$ which represents a short-circuit and does not influence the behaviour of the circuit. This source is necessary for the SPICE simulation since it allows us to identify the current I that controls the current controlled-current source.

For the circuit of figure 1.13 we can write the following set of equations indicated below:

$$\begin{cases}
I_{s} + I + I_{R_{2}} = 0 \\
I_{R_{2}} = A_{i} I \\
I = -\frac{V_{A}}{R_{1}} \\
I_{R_{3}} = -A_{i} I
\end{cases}$$
(1.27)

that is

$$\begin{cases} I_{s} + I + \frac{V_{B} - V_{A}}{R_{2}} = 0 \\ \frac{V_{B} - V_{A}}{R_{2}} = A_{i} I \\ I = -\frac{V_{A}}{R_{1}} \\ \frac{V_{C}}{R_{3}} = -A_{i} I \end{cases}$$
(1.28)

This last eqn can be written in a matrix form as follows:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} I_s \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 (1.29)

$$[B] = \begin{bmatrix} \frac{1}{R_2} & -\frac{1}{R_2} & 0 & -1 \\ -\frac{1}{R_2} & \frac{1}{R_2} & 0 & -A_i \\ \frac{1}{R_1} & 0 & 0 & 1 \\ 0 & 0 & \frac{1}{R_3} & A_i \end{bmatrix}$$
 (1.30)

$$[C] = \begin{bmatrix} V_A \\ V_B \\ V_C \\ I \end{bmatrix}$$
 (1.31)

We can determine the unknown variables by solving the following eqn using MATLAB or OCTAVE:

$$[C] = [B]^{-1} \times [A]$$

$$I_s = 0.25;$$

$$R_2 = 45;$$

$$R_3 = 70;$$

$$R_1 = 90;$$

Figure 1.13: *DC circuit with current controlled-current source.*

Example 1.8 Determine the voltage at each node of the circuit of figure 1.14.

Solution (using SPICE):

.dc V_1 0 5 5

.print dc v(1) v(2) v(3)

Figure 1.14: DC circuit.

For the circuit of figure 1.15 we can write:

$$\begin{cases}
V = V_B \\
\frac{V_C}{R_3} = G_m V \\
V = V_s \frac{R_2}{R_2 + R_1}
\end{cases}$$
(1.32)

Figure 1.15: DC circuit.

$$V_{B} = V_{s} \frac{R_{2}}{R_{2} + R_{1}}$$

$$V_{C} = R_{3} G_{m} V_{s} \frac{R_{2}}{R_{2} + R_{1}}$$

 $V_s = 5$

that is,

R_1= 68

 $R_2 = 10$

R_3= 100

 $G_m = 0.5$

V_B=V_s*R_2/(R_2+R_1) V_C=R_3*G_m*V_s*R_2/(R_2+R_1)

Example 1.9 Determine the voltage at each node of the circuit of figure 1.16

Solution (using SPICE):

.dc V_1 0 5 5

.print dc v(1) v(2) v(3) v(4)

Figure 1.16: DC circuit.

For the circuit of figure 1.17 we can write:

Figure 1.17: DC circuit.

that is

$$\begin{cases} \frac{V_s - V_B}{R_1} = \frac{V_B}{R_2} + \frac{V_D}{R_4} \\ V_B - V_C = A_v V_B \\ \frac{V_s - V_B}{R_1} = \frac{V_B}{R_2} + \frac{V_C - V_D}{R_3} \end{cases}$$
(1.34)

This last eqn can be written in a matrix form as follows:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} \frac{V_s}{R_1} \\ 0 \\ \frac{V_s}{R_1} \end{bmatrix}$$
 (1.35)

$$[B] = \begin{bmatrix} \frac{1}{R_1} + \frac{1}{R_2} & 0 & \frac{1}{R_4} \\ A_v - 1 & 1 & 0 \\ \frac{1}{R_1} + \frac{1}{R_2} & \frac{1}{R_3} & -\frac{1}{R_3} \end{bmatrix}$$
 (1.36)

$$[C] = \begin{bmatrix} V_B \\ V_C \\ V_D \end{bmatrix}$$
 (1.37)

We can determine the unknown variables by solving the following eqn using MATLAB or OCTAVE:

$$[C] = [B]^{-1} \times [A]$$

$$V s = 5$$

$$R 1 = 80$$

$$R_3 = 10$$

$$R_4 = 57$$

$$A_v = 10$$

Example 1.10 Determine the voltage at each node of the circuit of figure 1.18.

Solution (using SPICE):

Figure 1.18: a) DC circuit. b) Equivalent circuit

For the circuit of figure 1.19 we can write;

Figure 1.19: DC circuit.

$$\begin{cases} V_B - V_C = R_m \frac{-V_B}{R_2} \\ V_D = -V_s \\ \frac{V_A}{R_1} + \frac{V_C - V_D}{R_3} = \frac{-V_B}{R_2} \\ \frac{V_A}{R_1} = -I_s \end{cases}$$
 (1.38)

This eqn can be written is matrix form as follows

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} 0 \\ V_s \\ 0 \\ I_s \end{bmatrix}$$
 (1.39)

$$[B] = \begin{bmatrix} 0 & \left(1 + \frac{R_M}{R_2}\right) & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \frac{1}{R_1} & \frac{1}{R_2} & \frac{1}{R_3} & -\frac{1}{R_3} \\ -\frac{1}{R_1} & 0 & 0 & 0 \end{bmatrix}$$
 (1.40)

$$[C] = \begin{bmatrix} V_A \\ V_B \\ V_C \\ V_D \end{bmatrix}$$
 (1.41)

We can determine the unknown variables by solving the following eqn:

$$[C] = [B]^{-1} \times [A]$$

$$I_s = 0.6$$

$$R_1 = 39$$

$$R_3 = 72$$

$$R_2 = 18$$

$$R m = 40$$

%========

1.4 Electrical network theorems

1.4.1 Thévenin theorem

Example 1.11 Consider the circuit of figure 1.20. Determine the Thévenin equivalent circuit between nodes A and B.

Solution (using SPICE):

The following netlist allows us to obtain the Thévenin voltage which is v(1) - v(7).

```
* Circuit of figure 1.20
```

*----netlist10-----

```
V_S1 4 3 dc 5
V_S2 2 1 dc 2
I_S 0 5 dc 1e-3
```

R_1 1 7 1k
R_2 6 7 1k
R_3 5 6 2k
R_4 4 5 4k
R_5 3 2 4k
R_6 6 0 1k
R_7 4 0 3k
R 8 2 0 4k

R_9 7 0 1k *-----

*----

```
.dc V_S1 0 5 5 .print dc v(1) v(7) .end
```

*-----

Figure 1.20: Electrical network.

The following netlist allows us to obtain the Thévenin resistance which is

$$R_{Th} = \frac{v(1) - v(5)}{1} \Omega$$

* Circuit of figure 1.21

I_t 5 1 dc 1

*----netlist11-----

Figure 1.21: Circuit for the calculation of R_{Th} .

First we determine the Thévenin voltage, V_{Th} , of the circuit of figure 1.22. The Thévenin voltage is $V_1 - V_7$. For this circuit we can write:

$$\begin{cases} V_{S_1} = V_4 - V_3 \\ V_{S_2} = V_2 - V_1 \\ I_{R_9} = I_{R_1} + I_{R_2} \\ I_{R_3} = I_{R_6} + I_{R_2} \\ I_{R_3} = I_S + I_{R_4} \\ I_{R_5} + I_{R_7} + I_{R_4} = 0 \\ I_{R_5} = I_{R_1} + I_{R_8} \end{cases}$$
(1.42)

or

Figure 1.22: Equivalent circuit for the calculation of the Thévenin voltage.

This last eqn can be written in a matrix form as follows:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} V_{S_1} \\ V_{S_2} \\ 0 \\ 0 \\ I_S \\ 0 \\ 0 \end{bmatrix}$$
 (1.44)

$$[B] = \begin{bmatrix} 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{R_1} & 0 & 0 & 0 & 0 & -\frac{1}{R_2} & \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_9} \\ 0 & 0 & 0 & 0 & -\frac{1}{R_3} & \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_6} & -\frac{1}{R_2} \\ 0 & 0 & 0 & -\frac{1}{R_4} & \frac{1}{R_3} + \frac{1}{R_4} & -\frac{1}{R_3} & 0 \\ 0 & -\frac{1}{R_5} & \frac{1}{R_5} & \frac{1}{R_4} + \frac{1}{R_7} & -\frac{1}{R_4} & 0 & 0 \\ \frac{1}{R_1} & \frac{1}{R_5} + \frac{1}{R_8} & -\frac{1}{R_5} & 0 & 0 & 0 & -\frac{1}{R_1} \end{bmatrix}$$
 (1.45)

$$[C] = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \\ V_5 \\ V_6 \\ V_7 \end{bmatrix}$$
 (1.46)

We can determine the unknown variables by solving the following eqn:

$$[C] = [B]^{-1} \times [A]$$

```
%====== mat_script10.m =======
clear
V_S1 = 5;
V_S2 = 2;
I_S = 1e-3;
R_1 = 1e3;
R_2 = 1e3;
R_3 = 2e3;
R_4 = 4e3;
R_{5} = 4e3;
R_6 = 1e3;
R_7 = 3e3;
R_8 = 4e3;
R_9 = 1e3;
A=[V_S1; V_S2; 0; 0; I_S; 0; 0];
B = [0 \ 0 \ -1 \ 1 \ 0 \ 0 \ 0;
   -1 1 0 0 0 0 0;
   -1/R_1 0 0 0 0 -1/R_2 1/R_1+1/R_2+1/R_9;
   0 0 0 0 -1/R_3 1/R_2+1/R_3+1/R_6 -1/R_2;
   0 0 0 -1/R_4 1/R_3+1/R_4 -1/R_3 0;
   0 - 1/R_5 1/R_5 1/R_4 + 1/R_7 - 1/R_4 0 0;
   1/R_1 1/R_5+1/R_8 -1/R_5 0 0 0 -1/R_1 ;
C=inv(B) *A;
V Th=C(1)-C(7)
```

%_____

Figure 1.23 shows the equivalent circuit for the calculation of the

Note that $I_{R_3}=I_{R_4}$ and that R_3 is connected in series with R_4 . Hence we can write $R_{3,4}=R_3+R_4$. Now, the set of eqns given by 1.47 can be written as

$$\begin{cases}
I_{t} + \frac{V_{5}}{R_{9}} = \frac{V_{1} - V_{5}}{R_{1}} + \frac{V_{4} - V_{5}}{R_{2}} \\
I_{t} + \frac{V_{2} - V_{1}}{R_{5}} = \frac{V_{1} - V_{5}}{R_{1}} + \frac{V_{1}}{R_{8}} \\
\frac{V_{2} - V_{1}}{R_{5}} + \frac{V_{2}}{R_{7}} + \frac{V_{2} - V_{4}}{R_{3,4}} = 0 \\
\frac{V_{2} - V_{4}}{R_{3,4}} = \frac{V_{4}}{R_{6}} + \frac{V_{4} - V_{5}}{R_{2}}
\end{cases}$$
(1.48)

This last eqn can be written in a matrix form as follows:

$$[A] = [B] \times [C]$$

 $[A] = \begin{bmatrix} I_t \\ I_t \\ 0 \\ 0 \end{bmatrix} \tag{1.49}$

$$[B] = \begin{bmatrix} \frac{1}{R_1} & 0 & \frac{1}{R_2} & -\frac{1}{R_1} - \frac{1}{R_2} - \frac{1}{R_9} \\ \frac{1}{R_1} + \frac{1}{R_5} + \frac{1}{R_8} & -\frac{1}{R_5} & 0 & -\frac{1}{R_1} \\ -\frac{1}{R_5} & \frac{1}{R_{3,4}} + \frac{1}{R_5} + \frac{1}{R_7} & -\frac{1}{R_{3,4}} & 0 \\ 0 & -\frac{1}{R_{3,4}} & \frac{1}{R_{3,4}} + \frac{1}{R_2} + \frac{1}{R_6} & -\frac{1}{R_2} \end{bmatrix}$$
(1.50)

$$[C] = \begin{bmatrix} V_1 \\ V_2 \\ V_4 \\ V_5 \end{bmatrix}$$
 (1.51)

We can determine the unknown variables by solving the following eqn:

$$[C] = [B]^{-1} \times [A]$$

and the Thévenin resistance is:

$$R_{Th} = \frac{V_1 - V_5}{1} \Omega$$

$$I_t = 1;$$

with

Figure 1.23: *Equivalent circuit for the calculation of the Thévenin resistance.*

```
R_1 = 1e3;
R_2 = 1e3;
R_3 = 2e3;
R_4 = 4e3;
R_5 = 4e3;
R_6 = 1e3;
R_{7} = 3e3;
R_8 = 4e3;
R_9 = 1e3;
R_34=R_3+R_4;
A=[I_t;I_t;0;0];
B=[1/R_1 \ 0 \ 1/R_2 \ -(1/R_1+1/R_2+1/R_9);
 1/R_1+1/R_5+1/R_8 -1/R_5 0 -1/R_1;
 -1/R_5 1/R_34+1/R_5+1/R_7 -1/R_34 0;
 0 - 1/R_34 1/R_34 + 1/R_2 + 1/R_6 - 1/R_2;
C=inv(B)*A;
R_{Th}=C(1)-C(4)
```

1.4.2 Norton theorem

Example 1.12 Consider the circuit of figure 1.20. Determine the Norton equivalent circuit between nodes A and B.

Solution (using SPICE):

* Circuit of figure 1.24

The Norton resistance is equal to the Thévenin resistance which was calculated in the previous example. The following netlist allows us to obtain the Norton current.

```
----netlist12-----
V_S1 4 3 dc 5
V_S2 2 1 dc 2
I S 0 5 dc 1e-3
R 2 6 1 1k
R 3 5 6 2k
 _4 4 5 4k
 _5 3
     2 4k
 _6 6
     0 1k
 7 4
     0 3k
 _8 2 0 4k
R_9 1 0 1k
.dc V_S1 0 5 5
.print dc i(V_S2)
```

The Norton current, I_{Nt} , is equal to i (V_S2).

Figure 1.24: Equivalent circuit for the calculation of the Norton current.

We determine the Norton current, I_{Nt} , of the circuit of figure 1.25. For this circuit we can write:

$$\begin{cases} V_{S_1} = V_4 - V_3 \\ V_{S_2} = V_2 - V_1 \\ I_{R_9} = I_{Nt} + I_{R_2} \\ I_{R_3} = I_{R_6} + I_{R_2} \\ I_{R_3} = I_S + I_{R_4} \\ I_{R_5} + I_{R_7} + I_{R_4} = 0 \\ I_{R_5} = I_{Nt} + I_{R_8} \end{cases}$$

$$(1.52)$$

or

Figure 1.25: Equivalent circuit for the calculation of the Norton current.

This last eqn can be written in a matrix form as follows:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} V_{S_1} \\ V_{S_2} \\ 0 \\ 0 \\ I_S \\ 0 \\ 0 \end{bmatrix}$$
 (1.54)

$$[B] = \begin{bmatrix} 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{R_2} - \frac{1}{R_9} & 0 & 0 & 0 & 0 & \frac{1}{R_2} & 1 \\ -\frac{1}{R_2} & 0 & 0 & 0 & -\frac{1}{R_3} & \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_6} & 0 \\ 0 & 0 & 0 & -\frac{1}{R_4} & \frac{1}{R_3} + \frac{1}{R_4} & -\frac{1}{R_3} & 0 \\ 0 & -\frac{1}{R_5} & \frac{1}{R_5} & \frac{1}{R_4} + \frac{1}{R_7} & -\frac{1}{R_4} & 0 & 0 \\ 0 & \frac{1}{R_5} + \frac{1}{R_8} & -\frac{1}{R_5} & 0 & 0 & 0 & 1 \end{bmatrix}$$
 (1.55)

$$[C] = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \\ V_5 \\ V_6 \\ I_{Nt} \end{bmatrix}$$
 (1.56)

We can determine the unknown variables by solving the following eqn:

$$[C] = [B]^{-1} \times [A]$$

```
%====== mat_script12.m =======
clear
V_S1 = 5;
V_S2 = 2;
I_S = 1e-3;
R_1 = 1e3;
R_2 = 1e3;
R_3 = 2e3;
R_4 = 4e3;
R_{5} = 4e3;
R_6 = 1e3;
R_7 = 3e3;
R_8 = 4e3;
R_9 = 1e3;
A=[V_S1;V_S2;0;0;I_S;0;0];
B = [0 \ 0 \ -1 \ 1 \ 0 \ 0 \ 0;
   -1 1 0 0 0 0 0 ;
   -1/R_2-1/R_9 0 0 0 0 1/R_2 1;
   -1/R_2 0 0 0 -1/R_3 1/R_2+1/R_3+1/R_6 0;
   0 0 0 -1/R_4 1/R_3+1/R_4 -1/R_3 0;
   0 - 1/R_5 1/R_5 1/R_4 + 1/R_7 - 1/R_4 0 0;
   0 1/R_5+1/R_8 -1/R_5 0 0 0 1 ];
C=inv(B)*A;
I_Nt=C(7)
```


Figure 1.26: a) DC circuit. b) Equivalent circuit.

1.4.3 Superposition theorem

Example 1.13 Consider the circuit of figure 1.26 a). Determine the contribution of each independent source to the voltage across R_4 . $G_M=2$ mS and $R_M=500~\Omega$.

Solution (using SPICE):

We start by calculating the contribution of V_S to the voltage across R_4 . Note that the value of the current source is set to zero.

```
* Circuit of figure 1.26 b)
       -----netlist13a-----
    -----Contribution from V_S-----
V_S 1 0 dc 2
I_S 10 3 dc 0
V_sens 2 10 dc 0
R_1 2 1 1k
   3
     4 5k
     5 3.5k
R_3 4
R_4 5 0 1.5k
G_M 5 3 2 1 0.002
H_M 4 1 V_sens 500
.dc V_S 0 2 2
.print dc v(5)
.end
```

Now we calculate the contribution of I_S to the voltage across R_4 . Note that the value of the voltage source is set to zero.

Figure 1.27: Equivalent circuit to calculate the contribution of V_S to the voltage across R_4 .

We start by calculating the contribution of V_S to the voltage across R_4 . Figure 1.27 shows the equivalent circuit. Note that since the current source I_S has been replaced by an open-circuit there is no current flowing through R_1 ($I_{R_1}=0$) and, therefore, there is no voltage across R_1 ($V_{R_1}=0$). Hence, the current source controlled by V_{R_1} has been replaced by an open-circuit and the voltage source controlled by I_{R_1} has been replaced by a short-circuit.

The voltage across the resistance R_4 is

$$V_4 = V_S \, \frac{R_4}{R_4 + R_3}$$

$$V_S = 2;$$

 $R_1 = 1e3;$

 $R_2 = 5e3;$

 $R_3 = 3.5e3;$

 $R_4 = 1.5e3;$

 $G_M = 0.002;$

 $R_M = 500;$

$$V_4=V_S*R_4/(R_4+R_3)$$

Figure 1.28: Equivalent circuit to calculate the contribution of I_S to the voltage across R_4 .

Now we calculate the contribution of I_S to the voltage across R_4 . Figure 1.28 shows the equivalent circuit. For this circuit we can write

$$\begin{cases}
I_{R_2} = I_s + G_M V_{R_1} \\
I_{R_3} = I_{R_4} + G_M V_{R_1} \\
I_{R_1} = I_S \\
V_5 = R_M I_{R_1}
\end{cases}$$
(1.57)

or

$$\begin{cases} \frac{V_3 - V_5}{R_2} = I_S + G_M V_2 \\ \frac{V_5 - V_4}{R_3} = \frac{V_4}{R_4} + G_M V_2 \\ -\frac{V_2}{R_1} = I_S \\ V_5 = R_M I_S \end{cases}$$
 (1.58)

This last eqn can be written in a matrix form as follows:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} I_S \\ 0 \\ I_S \\ I_S \end{bmatrix}$$
 (1.59)

$$[A] = \begin{bmatrix} I_S \\ 0 \\ I_S \\ I_S \end{bmatrix}$$

$$[B] = \begin{bmatrix} -G_M & \frac{1}{R_2} & 0 & -\frac{1}{R_2} \\ G_M & 0 & \frac{1}{R_3} + \frac{1}{R_4} & -\frac{1}{R_3} \\ -\frac{1}{R_1} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{R_M} \end{bmatrix}$$

$$(1.59)$$

$$[C] = \begin{bmatrix} V_2 \\ V_3 \\ V_4 \\ V_5 \end{bmatrix}$$
 (1.61)

We can determine the unknown variables by solving the following eqn:

$$[C] = [B]^{-1} \times [A]$$

%====== mat_script13.m ======== clear

 $I_S = 2.5e-3;$

 $R_1 = 1e3;$

 $R_2 = 5e3;$

 $R_3 = 3.5e3;$

 $R_4 = 1.5e3;$

 $G_M = 0.002;$

 $R_M = 500;$

Chapter 2

Complex numbers: an introduction

Complex numbers can be entered in MATLAB or OCTAVE by using the letter i or j to express the imaginary number $j=\sqrt{-1}$. For example, the number z=3+j4 can be entered in MATLAB or OCTAVE as follows;

```
z = 3 + 4 * j
```

Complex numbers can also be entered in these packages using the complex exponential (phasor) form. For example, $z=3+j\,4$ which is equal to $5\exp(j\,0.9273)$ can be entered as

```
z = 5 * exp(j*0.9273)
```

The elementary algebra of complex numbers using MATLAB or OCTAVE is straightforward. To sum $z_1=2+j\,2$ to $z_2=3-j$ we can enter

```
z1=2+j*2;
z2=3-j;
```

z3 = z1 + z2

This produces

```
z3 = 5.0000 + 1.0000i
```

To subtract z_2 from z_1 we can enter

```
z4 = z1 - z2
```

which produces

```
z4 = -1.0000 + 3.0000i
```

To multiply z_1 by z_2 we can enter

```
z5=z1*z2
```

which produces

```
z5 = 8.0000 + 4.0000i
```

The division z_1/z_2 can be effected as

```
z6=z1/z2
```

which produces

```
z6 = 0.4000 + 0.8000i
```

All these operation can be carried out by MATLAB or OCTAVE if the complex numbers are expressed in the complex exponential form. For example if we want to add $z_a=\sqrt{2}\,\exp{(-j\,\pi/3)}$ to $z_b=4.5\,\exp{(j\,\pi/8)}$ we can enter

```
za=sqrt(2)*exp(-j*pi/3);
zb=4.5*exp(j*pi/8);
zc=za+zb
```

which produces

```
zc = 4.8646 + 0.4973i
```

In order to convert a complex number from its rectangular representation to the complex exponential representation we can use the functions abs.m and angle.m as follows:

```
zc_mag = abs(zc);
zc_ang = angle(zc);
```

To obtain the real part and the imaginary part of a complex number we can use the functions real.m and imag.m as follows:

```
zc_real = real(zc);
zc_imag = imag(zc);
```

To obtain the conjugate of a complex number we can use the function $\verb"conj.m"$ as follows:

```
zc_conj = conj(zc);
```

The $N{\rm th}$ roots of a complex number can be calculated using the following script.

Complex matrices can be entered in MATLAB or OCTAVE. For example, let us consider a complex matrix [A] as indicated below:

$$A = \begin{bmatrix} 1+j & 2.4+j \, 0.6 \\ \sqrt{2} & 3.1-j \, \pi \end{bmatrix}$$
 (2.1)

This matrix can be entered in MATLAB or OCTAVE as follows:

$$A=[1+j 2.4+j*0.6 ; sqrt(2) 3.1-j*pi]$$

This produces

Chapter 3

Frequency domain electrical signal and circuit analysis

3.1 AC circuits

Example 3.1 Determine the voltage at each node of the circuit of figure 3.1.

Solution (using SPICE):

*_____

Figure 3.1: AC circuit.

The impedances associated with the capacitor, Z_C and the inductor, Z_L , can be obtained as:

$$Z_C = \left. rac{1}{j\,\omega\,C}
ight|_{\omega=30 \, ext{ krad/s}}$$
 $Z_L = \left. j\,\omega\,L
ight|_{\omega=30 \, ext{ krad/s}}$

The (static) phasor associated with the voltage source is

$$V = 10 \exp(j \pi/4) \text{ V}$$

Since R is connected in series with C and with L we can determine the current I as follows:

$$I = \frac{V}{Z_L + Z_C + R}$$

The voltage across the resistance, V_R , can be obtained as:

$$V_R = RI$$

The voltage across the capacitance, V_C , can be obtained as:

$$V_C = Z_C I$$

The voltage across the inductance, V_L , can be obtained as:

$$V_L = Z_L I$$

The numeric results can be obtained using MATLAB or OCTAVE

Figure 3.2: AC circuit.

Example 3.2 Determine the voltage at each node of the circuit of figure 3.3

Solution (using SPICE):

```
* Circuit of figure 3.3

*----netlist2-----
V_1 1 0 AC 10 45
```

R_1 1 2 1k L_1 2 3 10m R_2 3 0 300 C_1 2 0 0.2u

*_____

Figure 3.3: AC circuit.

For the circuit of figure 3.4 we can write the following set of eqns:

$$\begin{cases}
I_{R_1} = I_{Z_L} + I_{Z_C} \\
I_{Z_L} = I_{R_2} \\
V = V_A
\end{cases}$$
(3.1)

This can also be written as

$$\begin{cases} \frac{V_A - V_B}{R_1} = \frac{V_B - V_C}{Z_L} + \frac{V_B}{Z_C} \\ \frac{V_B - V_C}{Z_L} = \frac{V_C}{R_2} \\ V = V_A \end{cases}$$
 (3.2)

$$Z_C = \left. rac{1}{j\,\omega\,C}
ight|_{\omega=30 \, ext{ krad/s}}$$
 $Z_L = j\,\omega\,L
ight|_{\omega=30 \, ext{ krad/s}}$

The eqn 3.2 can be written in matrix form as follows:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \tag{3.3}$$

$$[B] = \begin{bmatrix} -\frac{1}{R_1} & \frac{1}{R_1} + \frac{1}{Z_C} + \frac{1}{Z_L} & -\frac{1}{Z_L} \\ 0 & -\frac{1}{Z_L} & \frac{1}{R_2} + \frac{1}{Z_L} \\ 1 & 0 & 0 \end{bmatrix}$$
(3.4)

$$[C] = \begin{bmatrix} V_A \\ V_B \\ V_C \end{bmatrix}$$
 (3.5)

We can determine the unknown variables by solving the following eqn using MATLAB/OCTAVE:

$$[C] = [B]^{-1} \times [A]$$

V = 10 * exp(j*pi/4); $R_1 = 1e3;$ $R_2 = 300;$ L= 10e-3;C = 0.2e - 6;

Figure 3.4: AC circuit.

Example 3.3 Determine the voltage at each node of the circuit of figure 3.5

Solution (using SPICE):

```
* Circuit of figure 3.5

*------netlist3-----

V_1 2 4 AC 10 45

I_1 0 2 AC 0.15 60

R_1 1 2 250

L_1 1 0 5m

R_2 3 2 200

C_1 3 4 0.7u

R_3 4 0 280

*------

.ac lin 2 4.7745k 4.775k
.print ac v(1) v(2) v(3) v(4)
.end
```


Figure 3.5: AC circuit.

For the circuit of figure 3.6 we can write:

$$\begin{cases}
I_{R_3} + I_{Z_L} = I_1 \\
I_{R_2} = I_{Z_C} \\
I_{R_1} = I_{Z_L} \\
V_A - V_C = V_1
\end{cases}$$
(3.6)

This can also be written as

$$\begin{cases} \frac{V_D}{Z_L} + \frac{V_C}{R_3} = I_1 \\ \frac{V_A - V_B}{R_2} = \frac{V_B - V_C}{Z_C} \\ \frac{V_A - V_D}{R_1} = \frac{V_D}{Z_L} \\ V_A - V_C = V_1 \end{cases}$$
(3.7)

where Z_C and Z_L are given by:

$$Z_C = \left. rac{1}{j\,\omega\,C}
ight|_{\omega=30 \, ext{ krad/s}}$$
 $Z_L = j\,\omega\,L
ight|_{\omega=30 \, ext{ krad/s}}$

The eqn 3.7 can be written in matrix form as follows:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} I_1 \\ 0 \\ 0 \\ V_1 \end{bmatrix}$$

$$(3.8)$$

$$[B] = \begin{bmatrix} 0 & 0 & \frac{1}{R_3} & \frac{1}{Z_L} \\ -\frac{1}{R_2} & \frac{1}{R_2} + \frac{1}{Z_C} & -\frac{1}{Z_C} & 0 \\ -\frac{1}{R_1} & 0 & 0 & \frac{1}{Z_L} + \frac{1}{R_1} \\ 1 & 0 & -1 & 0 \end{bmatrix}$$
(3.9)

$$[C] = \begin{bmatrix} V_A \\ V_B \\ V_C \\ V_D \end{bmatrix}$$
(3.10)

Figure 3.6: AC circuit.

We can determine the unknown variables by solving the following eqn using MATLAB/OCTAVE:

```
[C] = [B]^{-1} \times [A]
%====== mat_script3.m =======
clear
V_1 = 10 * exp(j*pi/4);
I_1 = 0.15 \exp(j * pi/3);
R_1 = 250
R_2 = 200
R_3 = 280
L = 5e - 3
C = 0.7e - 6
omega= 30e3;
Z_C = 1/(j*omega*C);
Z_L= j*omega*L;
B=[ 0 0 1/R_3 1/Z_L; ...
    -1/R_2 1/R_2+1/Z_C -1/Z_C 0; ...
    -1/R_1 0 0 1/Z_L+1/R_1;...
    1 0 -1 0];
A=[I_1; 0 ; 0; V_1];
C=inv(B)*A
%=================================
```


Solution (using SPICE):

Figure 3.7: AC circuit.

For the circuit of figure 3.8 we can write:

$$Z_C = \left. rac{1}{j\,\omega\,C}
ight|_{\omega=30 \, ext{ krad/s}}$$
 $Z_L = j\,\omega\,L
ight|_{\omega=30 \, ext{ krad/s}}$

and

$$\begin{cases}
V_C = -V_S \\
G_m V_C = -I_{R_2} \\
I_{R_2} = I_{Z_L}
\end{cases}$$
(3.11)

This can also be written as

$$\begin{cases}
G_m V_S = \frac{V_A - V_B}{R_2} \\
\frac{V_A - V_B}{R_2} = \frac{V_B}{Z_L}
\end{cases}$$
(3.12)

The eqn 3.12 can be written in matrix form as follows:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} G_m V_S \\ 0 \end{bmatrix}$$
 (3.13)

$$[B] = \begin{bmatrix} \frac{1}{R_2} & -\frac{1}{R_2} \\ -\frac{1}{R_2} & \frac{1}{R_2} + \frac{1}{Z_L} \end{bmatrix}$$
(3.14)

$$[C] = \begin{bmatrix} V_A \\ V_B \end{bmatrix} \tag{3.15}$$

We can determine the unknown variables by solving the following eqn using MATLAB/OCTAVE:

$$[C] = [B]^{-1} \times [A]$$

The current through the capacitor is

$$I_{Z_C} = \frac{V_S}{Z_C}$$

$$R_1 = 1.3e3;$$

$$R_2 = 800;$$

$$C = 1e-6;$$

$$L = 6e - 3;$$

$$G m=0.1$$

omega= 30e3;

Figure 3.8: AC circuit.

Example 3.5 Consider the circuit of figure 3.9 a). Determine the average power dissipated by R_1 . $v_s(t)=6\cos(15\times 10^3\,t)$ V, $i_s(t)=3\cos(20\times 10^3\,t+\pi/4)$ mA and $G_M=2$ mS.

Solution (using SPICE):

* Circuit of figure 3.9 b)

Since the two sources have different frequencies we apply the superposition theorem to determine the contribution of each source to the average power dissipated in R_1 .

^-----

.ac lin 2 2.38725k 2.3873k .print ac
$$v(1)$$
 $v(2)$

.end

Figure 3.9: a) AC circuit. b) Contribution from $v_s(t)$.

The contribution of $v_s(t)$ to the average power dissipated in R_1 can be determined as follows:

$$P'_{R_1} = \frac{|v(1) - v(2)|^2}{2R_1}$$

Figure 3.10: Contribution from $i_s(t)$.

G_M 3 2 2 0 2m

*----
.ac lin 2 3.1830k 3.1831k
.print ac v(1) v(2)

.print ac v(1) v(2)
.end
*------

The contribution of $i_s(t)$ to the average power dissipated in R_1 can be determined as follows:

$$P_{R_1}^{"} = \frac{|v(1) - v(2)|^2}{2R_1}$$

The total average power dissipated by R_1 is:

$$P_{R_1} = P'_{R_1} + P''_{R_1}$$

Figure 3.11: Equivalent circuit for the calculation of the contribution of $v_s(t)$ to the average power dissipated in R_1 .

We apply the superposition theorem to determine the contribution of each source to the average power dissipated in R_1 . Figure 3.11 shows the equivalent circuit for the calculation of the contribution of $v_s(t)$ to the average power dissipated in R_1 . For this circuit we can write:

$$\begin{cases} V_S = V_1 - V_4 \\ I_{C_2} = I_{L_1} \\ I_{R_1} + I_{C_1} + G_M V_2 = I_{C_2} + I_{L_2} \\ I_{L_2} = G_M V_2 \end{cases}$$
(3.16)

This can also be written as

$$\begin{cases} V_{S} = V_{1} - V_{4} \\ \frac{V_{2}}{Z_{C_{2}}} = -\frac{V_{4}}{Z_{L_{1}}} \\ \frac{V_{1} - V_{2}}{R_{1}} + \frac{V_{1} - V_{2}}{Z_{C_{1}}} + G_{M} V_{2} = \frac{V_{2}}{Z_{C_{2}}} + \frac{V_{2} - V_{3}}{Z_{L_{2}}} \\ \frac{V_{2} - V_{3}}{Z_{L_{2}}} = G_{M} V_{2} \end{cases}$$

$$(3.17)$$

where Z_{C_1} , Z_{C_2} , Z_{L_1} and Z_{L_2} are given by:

$$egin{array}{lcl} Z_{C_1} & = & rac{1}{j\,\omega\,C_1}igg|_{\omega=15 ext{ krad/s}} \ & Z_{C_2} & = & rac{1}{j\,\omega\,C_2}igg|_{\omega=15 ext{ krad/s}} \ & Z_{L_1} & = & j\,\omega\,L_1igg|_{\omega=15 ext{ krad/s}} \ & Z_{L_2} & = & j\,\omega\,L_2igg|_{\omega=15 ext{ krad/s}} \ \end{array}$$

The eqn 3.17 can be written in matrix form as follows:

$$[A_1] = [B_1] \times [C_1]$$

with

$$[A_1] = \begin{bmatrix} V_S \\ 0 \\ 0 \\ 0 \end{bmatrix} \tag{3.18}$$

$$[B_{1}] = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & \frac{1}{Z_{C_{2}}} & 0 & \frac{1}{Z_{L_{1}}} \\ -\frac{1}{R_{1}} - \frac{1}{Z_{C_{1}}} & \left(\frac{1}{R_{1}} + \frac{1}{Z_{C_{1}}} + \frac{1}{Z_{C_{2}}} + \frac{1}{Z_{L_{2}}} - G_{M}\right) & -\frac{1}{Z_{L_{2}}} & 0 \\ 0 & G_{M} - \frac{1}{Z_{L_{2}}} & \frac{1}{Z_{L_{2}}} & 0 \end{bmatrix}$$
(3.19)

Figure 3.12: Equivalent circuit for the calculation of the contribution of $i_s(t)$ to the average power dissipated in R_1 .

$$[C_1] = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix}$$

$$(3.20)$$

We can determine the unknown variables by solving the following eqn using MATLAB/OCTAVE (see mat_script4a.m):

$$[C_1] = [B_1]^{-1} \times [A_1]$$

The power dissipated in R_1 is

$$P'_{R_1} = \frac{|V_1 - V_2|^2}{2R_1}$$

Figure 3.12 shows the equivalent circuit for the calculation of the contribution of $i_s(t)$ to the average power dissipated in R_1 . For this circuit we can write:

$$\begin{cases}
I_{C_2} = I_{L_1} + I_{R_2} \\
I_S = I_{R_2} \\
I_{R_1} + I_{C_1} + G_M V_2 = I_{C_2} + I_{L_2} \\
I_S = I_{L_2} = G_M V_2
\end{cases}$$
(3.21)

This can also be written as

$$\begin{cases}
\frac{V_2}{Z_{C_2}} = -\frac{V_1}{Z_{L_1}} - \frac{V_5}{R_2} \\
I_S = -\frac{V_5}{R_2} \\
\frac{V_1 - V_2}{R_1} + \frac{V_1 - V_2}{Z_{C_1}} + G_M V_2 = \frac{V_2}{Z_{C_2}} + \frac{V_2 - V_3}{Z_{L_2}} \\
I_S + \frac{V_2 - V_3}{Z_{L_2}} = G_M V_2
\end{cases}$$
(3.22)

Now $Z_{C_1}, Z_{C_2}, Z_{L_1}$ and Z_{L_2} are given by:

$$egin{array}{lll} Z_{C_1} &=& rac{1}{j\,\omega\,C_1}igg|_{\omega=20\, ext{ krad/s}} \ Z_{C_2} &=& rac{1}{j\,\omega\,C_2}igg|_{\omega=20\, ext{ krad/s}} \ Z_{L_1} &=& j\,\omega\,L_1igg|_{\omega=20\, ext{ krad/s}} \ Z_{L_2} &=& j\,\omega\,L_2igg|_{\omega=20\, ext{ krad/s}} \end{array}$$

The eqn 3.22 can be written in matrix form as follows:

$$[A_2] = [B_2] \times [C_2]$$

with

$$[A_2] = \begin{bmatrix} 0 \\ I_S \\ 0 \\ I_S \end{bmatrix}$$

$$(3.23)$$

$$[B_2] = \begin{bmatrix} \frac{1}{Z_{L_1}} & \frac{1}{Z_{C_2}} & 0 & \frac{1}{R_2} \\ 0 & 0 & 0 & 0 & -\frac{1}{R_2} \\ -\frac{1}{R_1} - \frac{1}{Z_{C_1}} & \left(\frac{1}{R_1} + \frac{1}{Z_{C_1}} + \frac{1}{Z_{C_2}} + \frac{1}{Z_{L_2}} - G_M\right) & -\frac{1}{Z_{L_2}} & 0 \\ 0 & G_M - \frac{1}{Z_{L_2}} & \frac{1}{Z_{L_2}} & 0 \end{bmatrix}$$

$$(3.24)$$

$$[C_{2}] = \begin{bmatrix} V_{1} \\ V_{2} \\ V_{3} \\ V_{5} \end{bmatrix}$$
 (3.25)

We can determine the unknown variables by solving the following eqn using MATLAB/OCTAVE:

$$[C_2] = [B_2]^{-1} \times [A_2]$$

The power dissipated in R_1 is

$$P_{R_1}^{"} = \frac{|V_1 - V_2|^2}{2R_1}$$

The total average power dissipated by R_1 is $P'_{R_1} + P''_{R_1}$.

```
%====== mat script4a.m ========
clear
V S = 6;
I_S = 3e - 3 * exp(j*pi/4);
R_1 = 180;
L_1 = 10e-3;
C_1 = 0.1e-6;
R_2 = 200;
C_2 = 0.3e - 6;
L_2 = 17e - 3;
G_M=2e-3;
omega= 15e3;
Z_C1= 1/(j*omega*C_1);
Z_L1= j*omega*L_1;
Z_C2 = 1/(j*omega*C_2);
Z_L2= j*omega*L_2;
B1 = [ 1 0 0 -1;
 0 1/Z_C2 0 1/Z_L1;
-1/R_1-1/Z_C1 1/R_1+1/Z_C1+1/Z_C2+1/Z_L2-G_M ...
                                -1/Z_L2 0;
```

```
0 G_M-1/Z_L2 1/Z_L2 0];
A1=[V_S; 0; 0; 0];
C1=inv(B1)*A1;
P_R11 = abs(C1(1)-C1(2))^2/(2*R_1);
omega= 20e3;
Z_C1= 1/(j*omega*C_1);
Z_L1= j*omega*L_1;
Z_C2= 1/(j*omega*C_2);
Z_L2= j*omega*L_2;
B2=[1/Z_L1 1/Z_C2 0 1/R_2;
   0 0 0 -1/R_2
-1/R_1-1/Z_C1 1/R_1+1/Z_C1+1/Z_C2+1/Z_L2-G_M ...
                              -1/Z_L2 0;
  0 G_M-1/Z_L2 1/Z_L2 0];
A2=[0; I_S; 0; I_S];
C2=inv(B2)*A2;
P_R111 = abs(C2(1)-C2(2))^2/(2*R_1);
P_R1=P_R11+P_R111
%======
```

3.2 Maximum power transfer

Example 3.6 Study the variation of the average power transfer from a voltage source, with an output impedance $Z_S = R_S + j X_S$, to a load $Z_L = R_L + j X_L$.

Solution (using MATLAB/OCTAVE):

The average power dissipated by the load Z_L can be expressed as follows:

$$P_L = \frac{V_s^2}{2} \frac{R_L}{(R_S + R_L)^2 + (X_S + X_L)^2}$$

This equation can be rewritten as indicated below

$$P_{L} = \underbrace{\frac{V_{s}^{2}}{8 R_{S}}}_{P_{L_{max}}} \times \frac{4 \frac{R_{L}}{R_{S}}}{(1 + \frac{R_{L}}{R_{S}})^{2} + \frac{(X_{S} + X_{L})^{2}}{R_{S}}}}_{(X_{L} = -X_{S})}$$
(3.26)

The function expressed by the last equation can be studied using the following m-script.

logspace.m is a built-in function which generates a logarithmically spaced vector. loglog.m is a built-in function to plot data with logarithmic scales. semilogx.m is a built-in function to plot data where a logarithmic (base 10) scale is used for the axis.

Figure 3.13: AC circuit.

Figure 3.14: a) AC circuit. b) Thévenin equivalent circuit.

Figure 3.15: a) Equivalent circuit to calculate Z_{Th} . b) Equivalent circuit to calculate V_{Th} .

Example 3.7 Consider the circuit of figure 3.14 a). Determine the value of Z_{Load} for which there is maximum power transfer to this impedance. Determine the power dissipated in Z_{Load} .

Solution (using MATLAB/OCTAVE):

Figure 3.14 b) shows the Thévenin equivalent circuit. From this circuit it is clear that Z_{Load} must be equal to Z_{Th}^* so that maximum power transfer to this impedance is obtained (see also the previous example).

Figure 3.15 a) shows the equivalent circuit for the calculation of Z_{Th} . Note that V_S has been replaced by a short-circuit and I_S has been replaced by an open-circuit. From this figure it is clear that Z_{Th} can be obtained as follows:

$$Z_{Th} = Z_L || [R_2 + (R_1 || Z_C)]$$

with $Z_L = j \, 500 \, \Omega$ and $Z_C = -j \, 200 \, \Omega$.

Figure 3.15 b) shows the equivalent circuit for the calculation of V_{Th} which is the voltage between points A and B. From this circuit we can calculate V_{Th} as follows:

$$V_{Th} = V_S \frac{Z_A}{Z_A + Z_L}$$

with

$$Z_A = R_2 + (R_1 \mid\mid Z_C)$$

The power power dissipated in $Z_{Load} = Z_{Th}^*$ is

$$P_{Load} = \frac{|V_{Th}|^2}{2R_{Th}}$$

where $R_{Th} = \text{Real}[Z_{Th}]$.

```
Z_L=j*500;
Z_C=-j*200;
R_1=700;
R_2=900;
V_S=3*exp(j*5*pi/3);
Z_A=R_2+parallel(R_1,Z_C);
Z_Th=parallel(Z_L,Z_A);
Z_LOAD=conj(Z_Th)
```

 $V_Th=V_S*Z_A/(Z_A+Z_L)$;

parallel.m is an m-function presented in section 1.2.

3.3 Transfer functions

Example 3.8 Plot the phase and the magnitude of the voltage transfer function V_O/V_1 of the circuit of figure 3.16 for frequencies ranging from 10 Hz to 100kHz.

Solution (using SPICE):

V_1 1 0 AC 1

R_1 1 2 30 L_1 2 3 0.7m C_1 3 0 1.5u

ı

*-----

Figure 3.16: AC circuit.

In order to obtain the voltage transfer function, the circuit must be driven by an AC voltage source. If the magnitude and the phase of this source are one volt and zero degrees, respectively, the output voltage represents the transfer function as follows:

$$V_O(f) = H(f) \times 1 \text{ (V)}$$

The transfer function V_O/V_1 can be determined as follows:

Figure 3.17: AC circuit.

$$H(f) = \frac{V_O}{V_1}$$
$$= \frac{Z_C}{Z_C + Z_L + R}$$

with

$$Z_C = \frac{1}{j \omega C}$$

$$Z_L = j \omega L$$

```
%====== mat_script5.m =======
clear
R = 30;
L= 0.7e-3;
C = 1.5e - 6;
f = logspace(1, 5);
omega= 2*pi.*f;
Z_C = 1./(j.*omega.*C);
Z_L= j.*omega.*L;
H_f=Z_C./(Z_C+Z_L+R);
subplot (211)
loglog(f,abs(H_f))
title('Magnitude of the transfer function')
xlabel('Frequency (Hz)')
ylabel('Amplitude')
axis([10 1e5 1e-3 10])
subplot (212)
semilogx(f,angle(H_f))
title('Phase of the transfer function')
xlabel('Frequency (Hz)')
ylabel('Angle (rad)')
axis([10 1e5 -3.5 0.5])
```

3.4 Fourier series

Example 3.9 Determine the Fourier series of the voltage $v_c(t)$. Sketch $v_c(t)$. $v_s(t)$ is a periodic square wave with period T=1 s and amplitudes ranging from -1 to 1 V.

Solution (using SPICE):

*_____

Figure 3.18: RC circuit.

- .print tran v(2)
 .plot tran v(2)
 .four 1 v(2)
- end

*-----

The . four statement is the indication for SPICE to compute the Fourier series of v (2). The output produced by this statement is $2 \times c_n$. These coefficients are given by

$$c_{n}=\frac{1}{T}\int_{t_{o}}^{t_{o}+T}\,\mathrm{v}\left(2\right)\left(t\right)\;dt$$

The Fourier coefficients of the input signal are given by:

$$V_{S_n} = \begin{cases} \frac{2A}{j\pi n} & \text{if } |n| \text{ is odd} \\ 0 & \text{if } |n| \text{ is even} \end{cases}$$
 (3.27)

The circuit transfer function is:

$$H(f) = \frac{V_C}{V_S}$$

$$= \frac{1}{1 + 2\pi f \tau}$$
(3.28)

with $\tau = R C$. The Fourier of the output signal are given by:

$$V_{C_n} = V_{S_n} \times H\left(\frac{n}{T}\right) \tag{3.29}$$

that is

$$V_{C_n} = \begin{cases} \frac{2A}{j\pi n} \times \frac{1}{1+2\pi \frac{n}{T}\tau} & \text{if } |n| \text{ is odd} \\ 0 & \text{if } |n| \text{ is even} \end{cases}$$
(3.30)

The output signal can be expressed as:

$$v_c(t) = V_{C_0} + \sum_{n=1}^{\infty} 2|V_{C_n}| \cos\left(2\pi \frac{n}{T}t + \angle(V_{C_n})\right)$$

```
clear
clf
%+++++++ Circuit data +++++
R= 2e3;
C = 100e - 6;
tau=R*C;
% H_f=1./(1+j.*omega.*tau); Transfer
%++++++ Input signal data +++++
T=1;
                       % period
                        % Amplitude
A=1;
%+++++++ Output signal +++++++
time=3:0.002:5;
N=31;
                       % Number of
                       % harmonics
vc_t=zeros(size(time));
                       % Output signal,
```

% v_c(t)

3.5 Convolution

Example 3.10 Determine the output voltage $v_c(t)$. Sketch $v_c(t)$.

Solution (using SPICE):

Figure 3.19: RC circuit.

The circuit impulse response is:

$$h(t) = \frac{1}{\tau} e^{-t/\tau} u(t)$$

The input voltage can be represented as:

$$v_s(t) = \operatorname{rect}(t - 0.5) V$$

The output voltage can be calculated as follows:

$$v_c(t) = h(t) * v_s(t)$$

This convolution operation can be calculated numerically by MATLAB or OCTAVE.

```
%====== mat script7.m =======
clear
clf
%++++++ Input signal data +++++
T=1;
         %period
dt=T/500;
time=0:dt:2*T;
A=1;
         %Amplitude
vs_t = A.*rect(time-T/2,T);
%++++++ Circuit data +++++
R= 2e3;
C = 100e - 6;
tau=R*C;
h_t=1./tau.*exp(-time./tau).*unitstep(time);
%+++++++ Output signal +++++++
vc_t=conv(h_t, vs_t).*dt;
time2=0:dt:4*T;
subplot(211)
plot(time, vs_t)
xlabel('time (s)')
ylabel('Amplitude (V)')
title('v_s(t)')
axis([-0.2 \ 2 \ -0.2 \ 1.2])
subplot (212)
plot(time2, vc_t)
xlabel('time (s)')
ylabel('Amplitude (V)')
title('v_c(t)')
axis([-0.2 \ 2 \ -0.2 \ 1.2])
%==================================
```

rect.m and unitstep.m are m-functions which implement the rectangular and the unit-step functions, respectively, as defined in appendix A. conv.m is a built-in m-function.

```
rect.m
%______
                            ========
function y=rect(t,tau)
% Rectangular function; y=rect(t,tau)
y=zeros(size(t));
I1=find(t>-tau/2 & t<=tau/2);</pre>
if (isempty(I1)^{\sim}=1)
y(I1) = ones(size(I1));
end
%=========== unitstep.m ========
function y=unitstep(x)
   Unit-step function y=unitstep(x)
y=zeros(size(x));
I=find(x>0);
if (isempty(I) == 0)
y(I) = ones(size(I));
end
%======
```

Chapter 4

Natural and forced responses circuit analysis

4.1 Natural Response

4.1.1 RC circuit

Example 4.1 Consider the circuit of figure 4.1. Determine the voltage across the capacitor for $t \ge 0$. At t = 0, the capacitor is initially charged showing 5 Volts across its terminals.

Solution (using SPICE):

Figure 4.1: RC circuit.

The voltage across the capacitor for $t \ge 0$ is:

4.1.2 RL circuit

Example 4.2 Consider the circuit of figure 4.2. Determine the voltage across the inductor for $t \ge 0$. At t = 0 the current through the inductor is 1 mA.

Solution (using SPICE):

```
* Circuit of figure 4.2

*-----netlist2------

R_1 0 1 20
L_1 1 0 100m IC=1e-3

*-----

tran 0.25m 30m 0.001m UIC

.print tran v(1)

.plot tran v(1)

.end
```


Figure 4.2: RL circuit.

The voltage across the inductor for $t \ge 0$ is:

Figure 4.3: LC circuit.

4.1.3 LC circuit

Example 4.3 Consider the circuit of figure 4.3 a). Determine the voltage across the capacitor and the current through the inductor for $t \ge 0$.

Solution (using SPICE):

The current through the inductor and the voltage across the capacitor, for $t \ge 0$, are given by:

$$i(t) = -\sqrt{\frac{C}{L}} V_{co} \sin\left(\frac{1}{\sqrt{LC}}t\right) u(t)$$

$$v_{LC}(t) = V_{co} \cos\left(\frac{1}{\sqrt{LC}}t\right) u(t)$$

where $V_{co} = 1$ V.

```
%====== mat_script3.m =========
clear
clf
L= 100e-3;
C=10e-6;
omega_o=1/sqrt(L*C);
Vco=1;
time=0:1e-5:15e-3;
vc_t=Vco.*cos(omega_o.*time).*unitstep(time);
il_t=-sqrt(C/L)*Vco.*sin(omega_o.*time).*...
     unitstep(time);
subplot (211)
plot(time, vc_t)
xlabel('time (s)')
ylabel('Amplitude (V)')
title('v_C(t)')
subplot(212)
plot(time,il_t)
xlabel('time (s)')
ylabel('Amplitude (A)')
title('i_L(t)')
```

%=======

$$v_C(t = 0) = 1 \text{ V}$$

 $i_L(t = 0) = 0 \text{ A}$
a)

Figure 4.4: RLC circuit.

4.1.4 RLC circuit

Example 4.4 Consider the circuit of figure 4.4 a). Determine the current i(t) for $t \ge 0$.

Solution (using SPICE):

- * Circuit of figure 4.4 b)
- -----netlist4-----

L_1 1 0 100m IC=0

C_1 2 10 10u IC=1

R_1 1 2 20

v_sens 10 0 dc 0

**----

*_____

- .tran 0.1m 15m 0.001m UIC
- .print tran i(v_sens)
- .plot tran i(v_sens)
- .end

The current $i_L(t)$ can be expressed as follows $(t \ge 0)$:

$$i(t) = C V_{co} \frac{\omega_n}{\sqrt{1 - \eta^2}} \sin\left(\omega_n \sqrt{1 - \eta^2} t\right) e^{-t \eta w_n} u(t)$$

with

$$\omega_n = \frac{1}{\sqrt{LC}}$$

$$= 1 \text{ krad/s}$$

$$\eta = \frac{1}{2} R \sqrt{\frac{C}{L}}$$

$$= 0.1$$

```
%====== mat_script4.m =========
clear
clf
L= 100e-3;
C=10e-6;
R = 20;
omega_n=1/sqrt(L*C);
eta=0.5*R*sqrt(C/L);
Vco=1;
time=0:1e-5:15e-3;
il_t=C.*Vco*omega_n/sqrt(1-eta^2).*...
    exp(-time.*omega_n.*eta).*...
    sin(sqrt(1-eta^2)*omega_n.*time).*...
     unitstep(time);
plot(time,il_t)
xlabel('time (s)')
ylabel('Amplitude (A)')
title('i_L(t)')
%===============
```

Response to the step 4.2 function

4.2.1 RC circuit

Example 4.5 Determine the voltage across the capacitor of the circuit of figure 4.5. Assume zero initial conditions.

Solution (using SPICE):

```
* Circuit of figure 4.5
*----netlist5-----
V_1 1 0 pulse(0 1 0 0.01 0.01 2 3)
R_1 1 2 2k
C_1 2 0 100u
```


The voltage across the capacitor is given by:

4.2.2 RL circuit

Example 4.6 Determine the voltage across the inductor of the circuit of figure 4.6 for $t \ge 0$. Assume zero initial conditions.

Solution (using SPICE):

.plot tran v(2)

```
V_1 1 0 pulse(0 1 0 1e-6 1e-6 2e-4 3e-4)

R_1 1 2 20
L_1 2 0 1e-3

*------
.tran 0.2e-6 1.5e-4 0
.print tran v(2)
```

*----netlist5b-----

Figure 4.6: RL circuit.

The voltage across the inductor is given by:

4.2.3 RLC circuit

Example 4.7 Determine the current through the inductor of the circuit of figure 4.7 a) for $t \ge 0$. Assume zero initial conditions.

Solution (using SPICE):

* Circuit of figure 4.7 b)

Figure 4.7: *a) RLC circuit. b) Equivalent circuit.*

The current through the inductor is given by:

$$i_L(t) = I_s \left[1 - \frac{e^{-t \eta \omega_n}}{\sqrt{1 - \eta^2}} \sin \left(\sqrt{1 - \eta^2} \omega_n t + \phi' \right) \right] u(t)$$

with

$$\phi' = \tan^{-1}\left(\frac{\sqrt{1-\eta^2}}{\eta}\right)$$

and

$$\omega_n = \frac{1}{\sqrt{LC}}$$

$$= 64.6 \text{ krad/s}$$

$$\eta = \frac{1}{2R} \sqrt{\frac{L}{C}}$$

$$= 0.48$$

```
%====== mat_script6.m =========
clear
clf
R = 20;
C = 0.8e - 6;
L=0.3e-3;
t = 0:1e-6:2.5e-4;
Is= 1e-3;
omega_n=1/sqrt(L*C);
eta=0.5/R*sqrt(L/C);
phi=atan(sqrt(1-eta^2)/eta);
il_t=(1-exp(-omega_n*eta.*t)/sqrt(1-eta^2)...
     .* sin(sqrt(1-eta^2)*omega_n.*t+phi))...
     .* Is .* unitstep(t);
plot(t,il_t)
xlabel('time (s)')
ylabel('Amplitude (A)')
title('i_L(t)')
```

Chapter 5

Electrical two-port network analysis

Z-parameters **5.1**

Example 5.1 Determine the Z-parameters of the circuit of figure 5.1 a) for frequencies ranging from 10 Hz to 100kHz.

Solution (using SPICE):

- * Circuit of figure 5.1 b)
- -----netlis1-----

I_1 0 1 dc 0 ac 1

L 1 1 3 10m

C_1 3 0 3u

L_2 2 3 10m

R_1 3 0 10e9

I_2 0 2 dc 0 ac 0

- .ac dec 10 10 100k
- .plot ac vm(2) vp(2) vm(1) vp(1)
- .end

The circuit is driven, from port one, by a current source providing 1 A. Now Z_{11} and Z_{21} can be determined as follows:

$$Z_{11} = \frac{V_1}{1} (\Omega)$$

$$Z_{21} = \frac{V_2}{1} (\Omega)$$

$$Z_{21} = \frac{V_2}{1} (\Omega)$$

with $V_1 = v(1)$ and $V_2 = v(2)$. Note the existence of a zero amp current source at port 2 which implements an open-circuit. There is also a very high resistance (10 G Ω) across the capacitor. The purpose of this resistance is to avoid SPICE convergence problems.

Figure 5.1: a) AC circuit. b) Calculation of Z_{11} and of Z_{21} .

Figure 5.2: a) AC circuit. b) Calculation of Z_{12} and Z_{22} .

Now, the circuit is driven, from port two, by a current source providing 1 A. Z_{12} and Z_{22} can be determined as follows:

$$Z_{12} = \frac{V_1}{1} (\Omega)$$

$$Z_{22} = \frac{V_2}{1} (\Omega)$$

with $V_1 = v(1)$ and $V_2 = v(2)$.

.end

Figure 5.3: a) AC circuit. b) Calculation of Z_{11} and Z_{21} . c) Calculation of Z_{12} and Z_{22} .

The Z-parameters of the circuit of figure 5.3 a) are:

$$Z_{11} = Z_1 + Z_3$$

$$= j \omega L_1 + \frac{1}{j\omega C}$$

$$= \frac{1 - \omega^2 L_1 C}{j \omega C}$$

$$Z_{21} = Z_3$$

$$= \frac{1}{j\omega C}$$

$$Z_{22} = Z_2 + Z_3$$

$$= \frac{1 - \omega^2 L_2 C}{j \omega C}$$

$$Z_{12} = Z_{21}$$

```
mat_script1.m ========
clear
clf
C = 3e - 6;
L_1=10e-3;
L_2=10e-3
f = logspace(1, 5);
omega=2*pi.*f;
Z_11=(1-\text{omega.^2.*L_1.*C})./(j*\text{omega.*C});
Z_{21=1./(j*omega.*C)};
Z_2=(1-\text{omega.^2.*L_2.*C})./(j*\text{omega.*C});
Z_{12=1./(j*omega.*C)};
subplot (221)
semilogx(f,abs(Z_11))
xlabel('Frequency (Hz)')
ylabel('Amplitude (Ohm)')
title('Magnitude of Z_{11}')
subplot (222)
semilogx(f,abs(Z_12))
xlabel('Frequency (Hz)')
ylabel('Amplitude (Ohm)')
title('Magnitude of Z_{12}')
subplot (223)
semilogx(f,abs(Z_21))
xlabel('Frequency (Hz)')
ylabel('Amplitude (Ohm)')
title('Magnitude of Z_{21}')
subplot(224)
semilogx(f,abs(Z_22))
xlabel('Frequency (Hz)')
ylabel('Amplitude (Ohm)')
title('Magnitude of Z_{22}')
```

5.2 Y-parameters

Example 5.2 Determine the Y-parameters of the circuit of figure 5.4 a) for frequencies ranging from 100 kHz to 100 MHz.

Solution (using SPICE):

 $L \quad (1 \mu H)$ $C_1 \quad C_2 \quad (1 nF)$ A) $L \quad C_2 \quad V_2 = 0$ $R = 1 n\Omega \quad \textcircled{0}_{b}$

Figure 5.4: *a)* AC circuit. *b)* Calculation of Y_{11} and Y_{21} .

We include a very small resistance $(1 \text{ n}\Omega)$ to avoid convergence problems. The circuit is driven, from port one, by a voltage source supplying 1 V. Y_{11} and Y_{21} can be determined as follows¹:

$$Y_{11} = -\frac{I_1}{1}$$
 (S)
 $Y_{21} = -\frac{I_2}{1}$ (S)

with $I_1=\mathrm{i}\,(\mathrm{V}_-1)$ and $I_2=\mathrm{i}\,(\mathrm{V}_-2)$. Note that the short-circuit is implemented with a voltage source supplying zero Volts, $V_2=0$.

¹Recall that, in SPICE, the positive current is assumed to flow from the positive pole, through the source, to the negative pole.

* Circuit of figure 5.5 b)

Figure 5.5: a) AC circuit. b) Calculation of Y_{12} and Y_{22} .

The circuit is driven, from port two, by a voltage source supplying 1 V. Y_{12} and Y_{22} can be determined as follows:

*----netlist4-----

$$Y_{12} = -\frac{I_1}{1}$$
 (S)
 $Y_{22} = -\frac{I_2}{1}$ (S)

with $I_1 = i (V_1)$ and $I_2 = i (V_2)$.

Figure 5.6: a) AC circuit. b) Calculation of Y_{11} and Y_{21} . c) Calculation of Y_{12} and Y_{22} .

The Y-parameters of the circuit of figure 5.6 a) are:

$$Y_{11} = \frac{1 - \omega^2 L C_1}{j \omega L}$$

$$Y_{21} = -\frac{1}{j \omega L}$$

$$Y_{22} = \frac{1 - \omega^2 L C_2}{j \omega L}$$

$$Y_{12} = Y_{21}$$

```
mat_script2.m ========
clear
clf
C 1= 3e-9;
L=1e-6;
C_2=1e-9
f = logspace(5, 8);
omega=2*pi.*f;
Y_11=(1-\text{omega.}^2.*L.*C_1)./(j*\text{omega.}*L);
Y_21=-1./(j*omega.*L);
Y_22=(1-omega.^2.*L.*C_2)./(j*omega.*L);
Y_12=-1./(j*omega.*L);
subplot (221)
semilogx(f,abs(Y_11))
xlabel('Frequency (Hz)')
ylabel('Amplitude (S)')
title('Magnitude of Y_{11}')
subplot (222)
semilogx(f,abs(Y 12))
xlabel('Frequency (Hz)')
ylabel('Amplitude (S)')
title('Magnitude of Y_{12}')
subplot (223)
semilogx(f,abs(Y_21))
xlabel('Frequency (Hz)')
ylabel('Amplitude (S)')
title('Magnitude of Y_{21}')
subplot (224)
semilogx(f,abs(Y_22))
xlabel('Frequency (Hz)')
ylabel('Amplitude (S)')
title('Magnitude of Y_{22}')
```

5.3 Chain parameters

Example 5.3 Consider the circuit of figure 5.7 a) which represents an electrical model for a bipolar transistor. Determine its chain parameters for frequencies ranging from 10 kHz to 100 MHz. $R_x=5~\Omega, R_\pi=2.5~\mathrm{k}\Omega, R_o=100~\mathrm{k}\Omega, g_m=40~\mathrm{mS}, C_\pi=10~\mathrm{pF}$ and $C_\mu=1~\mathrm{pF}.$

Solution (using SPICE):

Figure 5.7: a) Electrical model for a transistor. b) Calculation of A_{11} .

 A_{11} can be determined as follows:

$$A_{11} = \frac{1}{V_2}$$

with $V_2 = v(2)$.

* Circuit of figure 5.8 b)

Figure 5.8: a) Electrical model for a transistor. b) Calculation of A_{12} .

 A_{12} can be determined as follows:

$$A_{12} = \frac{1}{I_2} (\Omega)$$

-----netlist6-----

with $I_2 = i (V_2)$

Figure 5.9: a) Electrical model for a transistor. b) Calculation of A_{21} .

 A_{21} can be determined as follows:

$$A_{21} = \frac{1}{V_2} (S)$$

with $V_2 = v(2)$.

Figure 5.10: a) Electrical model for a transistor. b) Calculation of A_{22} .

 A_{22} can be determined as follows:

$$A_{22} = \frac{1}{I_2}$$

with $I_2 = i (V_2)$.

Figure 5.11: a) Electrical model for a transistor. b) Calculation of A_{11} . c) Calculation of A_{12} . d) Calculation of A_{21} . e) Calculation of A_{22} .

Figure 5.11 b) shows the equivalent circuit for the calculation of A_{11} . For this circuit we can write:

$$\begin{cases}
\frac{V_1 - V_{\pi}}{R_x} = \frac{V_{\pi}}{R_{\pi}} + V_{\pi} j \omega C_{\pi} + (V_{\pi} - V_2) j \omega C_{\mu} \\
(V_{\pi} - V_2) j \omega C_{\mu} = g_m V_{\pi} + \frac{V_2}{R_o}
\end{cases} (5.1)$$

This set of eqns can be written in matrix form as follows:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} \frac{V_1}{R_x} \\ 0 \end{bmatrix}$$
 (5.2)

$$[B] = \begin{bmatrix} \frac{1}{R_x} + \frac{1}{R_\pi} + j\omega (C_\mu + C_\pi) & -j\omega C_\mu \\ g_m - j\omega C_\mu & \frac{1}{R_o} + j\omega C_\mu \end{bmatrix}$$
(5.3)

$$[C] = \begin{bmatrix} V_{\pi} \\ V_{2} \end{bmatrix} \tag{5.4}$$

We can determine the unknown variables by solving the following eqn using MATLAB/OCTAVE:

$$[C] = [B]^{-1} \times [A]$$

clf

 $V_1 = 1;$

Rx = 5

Rpi = 2.5e3

Cpi = 10e-12

Cmu = 1e-12

Ro = 100e3

gm = 40e-3

freq=logspace(4,9);

V_2=zeros(size(freq));

 $A = [V_1/Rx; 0];$

for k=1:length(freq)

omega=2*pi*freq(k);

Figure 5.11 c) shows the equivalent circuit for the calculation of A_{12} . For this circuit we can write:

$$\begin{cases}
\frac{V_1 - V_{\pi}}{R_x} = \frac{V_{\pi}}{R_{\pi}} + V_{\pi} j \omega C_{\pi} + V_{\pi} j \omega C_{\mu} \\
I_2 = g_m V_{\pi} - V_{\pi} j \omega C_{\mu}
\end{cases} (5.5)$$

Solving this set of eqns in order to obtain $V_1/(-I_2)$ we get A_{12} :

$$A_{12} = \frac{R_{\pi} + R_{x} + j \omega (C_{\mu} + C_{\pi}) R_{\pi} R_{x}}{R_{\pi} (j \omega C_{\mu} - g_{m})}$$

```
%====== mat_script4.m ========
```

```
clear
clf
Rx = 5
Rpi = 2.5e3
Cpi = 10e-12
Cmu = 1e-12
Ro = 100e3
gm = 40e-3
freq=logspace(4,9);
omega=2.*pi.*freq;
A_12=(Rx+Rpi+j.*omega.*(Cpi+Cmu).*Rpi.*Rx)...
     ./((j*omega*Cmu-gm).*Rpi);
subplot(211)
semilogx(freq, abs(A_12))
xlabel('Frequency (Hz)')
ylabel('Amplitude ')
title('Magnitude of A_{12}')
subplot(212)
semilogx(freq, angle(A_12))
xlabel('Frequency (Hz)')
ylabel('Angle (rad)')
title('Phase of A_{12}')
%======
```

Figure 5.11 d) shows the equivalent circuit for the calculation of A_{21} . For this circuit we can write:

$$\begin{cases}
I_{1} = \frac{V_{\pi}}{R_{\pi}} + V_{\pi} j \omega C_{\pi} + (V_{\pi} - V_{2}) j \omega C_{\mu} \\
(V_{\pi} - V_{2}) j \omega C_{\mu} = g_{m} V_{\pi} + \frac{V_{2}}{R_{o}}
\end{cases}$$
(5.6)

This set of eqns can be written in matrix form as follows:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} I_1 \\ 0 \end{bmatrix} \tag{5.7}$$

$$[B] = \begin{bmatrix} \frac{1}{R_{\pi}} + j\omega (C_{\mu} + C_{\pi}) & -j\omega C_{\mu} \\ g_{m} - j\omega C_{\mu} & \frac{1}{R_{o}} + j\omega C_{\mu} \end{bmatrix}$$
(5.8)

$$[C] = \begin{bmatrix} V_{\pi} \\ V_{2} \end{bmatrix} \tag{5.9}$$

We can determine the unknown variables by solving the following eqn using MATLAB/OCTAVE:

Figure 5.11 e) shows the equivalent circuit for the calculation of A_{22} . For this circuit we can write:

$$\begin{cases}
I_{1} = \frac{V_{\pi}}{R_{\pi}} + V_{\pi} j \omega C_{\pi} + V_{\pi} j \omega C_{\mu} \\
V_{\pi} j \omega C_{\mu} = g_{m} V_{\pi} - I_{2}
\end{cases}$$
(5.10)

Solving to obtain $I_1/(-I_2)$ we can express A_{22} as follows:

$$A_{22} = \frac{1 + j \omega (C_{\mu} + C_{\pi}) R_{\pi}}{R_{\pi} (j \omega C_{\mu} - g_{m})}$$

%====== mat_script6.m =======

```
clear
clf
Rx = 5
Rpi = 2.5e3
Cpi = 10e-12
Cmu = 1e-12
Ro = 100e3
qm = 40e-3
freq=logspace(4,9);
omega=2.*pi.*freq;
A_22 = (1+j.*omega.*(Cpi+Cmu).*Rpi)...
     ./((j*omega*Cmu-gm).*Rpi);
subplot(211)
semilogx(freq, abs(A_22))
xlabel('Frequency (Hz)')
ylabel('Amplitude ')
title('Magnitude of A_{22}')
subplot(212)
semilogx(freq, angle(A_22))
xlabel('Frequency (Hz)')
ylabel('Angle (rad)')
title('Phase of A_{22}')
%======
```

5.4 Series connection

Figure 5.12: *a) Two-port circuit. b) Equivalent circuit.*

Example 5.4 Determine the Z-parameters of the circuit of figure 5.12 a) considering that this circuit results from the series connection of two *two-port* circuits as shown in figure 5.12 b). Consider frequencies ranging from 10 Hz to 100kHz.

Solution (using MATLAB/OCTAVE):

The two-port A can be characterised by the following Z-parameters:

$$[Z_A] = \begin{bmatrix} Z_1 & 0 \\ 0 & Z_2 \end{bmatrix} \tag{5.11}$$

that is

$$[Z_A] = \begin{bmatrix} j \omega L_1 & 0 \\ 0 & j \omega L_2 \end{bmatrix}$$
 (5.12)

The two-port ${\cal B}$ can be characterised by the following ${\cal Z}$ -parameters:

$$[Z_B] = \begin{bmatrix} Z_3 & Z_3 \\ Z_3 & Z_3 \end{bmatrix}$$
 (5.13)

that is

clear

$$[Z_B] = \begin{bmatrix} (j \omega C)^{-1} & (j \omega C)^{-1} \\ (j \omega C)^{-1} & (j \omega C)^{-1} \end{bmatrix}$$
 (5.14)

The two-port of figure 5.12 a) can be characterised by Z-parameters given by:

$$[Z_{eq}] = [Z_A] + [Z_B]$$

%====== mat_script7.m ========

```
1/(j*omega(k)*C) 1/(j*omega(k)*C)];
   Z_eq=Z_A+Z_B;
   Z_{11}(k) = Z_{q}(1,1);
   Z_21(k) = Z_eq(2,1);
   Z_22(k) = Z_eq(2,2);
   Z_{12}(k) = Z_{eq}(1, 2);
end
subplot (221)
semilogx(f,abs(Z_11))
xlabel('Frequency (Hz)')
ylabel('Amplitude (Ohm)')
title('Magnitude of Z_{11}')
subplot(222)
semilogx(f,abs(Z_12))
xlabel('Frequency (Hz)')
ylabel('Amplitude (Ohm)')
title('Magnitude of Z_{12}')
subplot (223)
semilogx(f,abs(Z_21))
xlabel('Frequency (Hz)')
ylabel('Amplitude (Ohm)')
title('Magnitude of Z_{21}')
subplot (224)
semilogx(f,abs(Z_22))
xlabel('Frequency (Hz)')
ylabel('Amplitude (Ohm)')
title('Magnitude of Z_{22}')
```

5.5 Parallel connection

Example 5.5 Determine the *Y*-parameters of the circuit of figure 5.13 a) considering that this circuit results from the parallel connection of two *two-port* circuits as shown in figure 5.13 b). Consider frequencies ranging from 100 kHz to 100 MHz.

Solution (using MATLAB/OCTAVE):

The two-port A can be characterised by the following Y-parameters:

$$[Y_A] = \begin{bmatrix} Y_3 & -Y_3 \\ -Y_3 & Y_3 \end{bmatrix}$$
 (5.15)

that is

$$[Y_A] = \begin{bmatrix} (j \omega L)^{-1} & -(j \omega L)^{-1} \\ -(j \omega L)^{-1} & (j \omega L)^{-1} \end{bmatrix}$$
 (5.16)

The two-port B can be characterised by the following Y-parameters:

$$[Y_B] = \begin{bmatrix} Y_1 & 0 \\ 0 & Y_2 \end{bmatrix} \tag{5.17}$$

that is

$$[Y_B] = \begin{bmatrix} j \omega C_1 & 0 \\ 0 & j \omega C_2 \end{bmatrix}$$
 (5.18)

The two-port of figure 5.13 a) can be characterised by Y-parameters given by:

$$[Y_{eq}] \quad = \quad [Y_A] + [Y_B]$$

%====== mat_script8.m ========

Figure 5.13: *a) Two-port circuit. b) Equivalent circuit.*

clear
clf

C_1= 3e-9;
L=1e-6;
C_2=1e-9;

f=logspace(5,8);
omega=2*pi.*f;

Y_11=zeros(size(f));
Y_21=zeros(size(f));
Y_22=zeros(size(f));
Y_12=zeros(size(f));

for k=1:length(f)

Y_A=[1/(j*omega(k)*L) -1/(j*omega(k)*L); ...
-1/(j*omega(k)*L) 1/(j*omega(k)*L)];

```
Y_B = [j*omega(k)*C_1 0; ...
        0 j*omega(k)*C_2];
   Y_eq=Y_A+Y_B;
   Y_11(k) = Y_eq(1,1);
   Y_21(k) = Y_eq(2,1);
   Y_2(k) = Y_eq(2, 2);
   Y_12(k) = Y_eq(1,2);
end
subplot (221)
semilogx(f,abs(Y_11))
xlabel('Frequency (Hz)')
ylabel('Amplitude (S)')
title('Magnitude of Y_{11}')
subplot (222)
semilogx(f,abs(Y_12))
xlabel('Frequency (Hz)')
ylabel('Amplitude (S)')
title('Magnitude of Y_{12}')
subplot (223)
semilogx(f,abs(Y_21))
xlabel('Frequency (Hz)')
ylabel('Amplitude (S)')
title('Magnitude of Y_{21}')
subplot (224)
semilogx(f,abs(Y_22))
xlabel('Frequency (Hz)')
ylabel('Amplitude (S)')
title('Magnitude of Y_{22}')
```

%===================================

Figure 5.14: *a) Two-port circuit. b) Equivalent circuit.*

Example 5.6 Determine the *Y*-parameters of the circuit of figure 5.14 a) considering that this circuit results from the parallel connection of two *two-port* circuits as shown in figure 5.14 b). Consider frequencies ranging from 100 Hz to 100 kHz.

Solution (using MATLAB/OCTAVE):

The two-port A can be characterised by the following Y-parameters:

$$[Y_A] = \begin{bmatrix} \frac{1}{Z_3 + Z_4} & \frac{-1}{Z_3 + Z_4} \\ \frac{-1}{Z_3 + Z_4} & \frac{1}{Z_3 + Z_4} \end{bmatrix}$$
 (5.19)

with $Z_3 = j \omega L$ and $Z_4 = (j \omega C)^{-1}$.

The two-port B can be characterised by the following Y-parameters:

$$[Y_B] = \begin{bmatrix} \frac{1}{Z_1 + Z_2} & \frac{1}{Z_1 + Z_2} \\ \frac{1}{Z_1 + Z_2} & \frac{1}{Z_1 + Z_2} \end{bmatrix}$$
 (5.20)

with $Z_1=300~\Omega$ and $Z_2=200~\Omega$. The two-port of figure 5.14 a) can be characterised by Y-parameters given by:

$$[Y_{eq}] = [Y_A] + [Y_B]$$

========= mat_script8b.m =========

```
clear
clf
C = 2e - 6;
L=1e-3;
f = logspace(2, 5);
omega=2*pi.*f;
Z1=300;
Z2=200;
Y_11=zeros(size(f));
Y_21=zeros(size(f));
Y_22=zeros(size(f));
Y_12=zeros(size(f));
for k=1:length(f)
   Z3=j.*omega(k).*L;
   Z4=1./(j.*omega(k).*C);
   Y_A = [1./(Z3+Z4) -1./(Z3+Z4); ...
       -1./(Z3+Z4) 1./(Z3+Z4)];
```

 $Y_B=[1./(Z1+Z2) \quad 1./(Z1+Z2); \dots \\ 1./(Z1+Z2) \quad 1./(Z1+Z2)];$

```
Y_eq=Y_A+Y_B;
   Y_{11}(k) = Y_{eq}(1,1);
   Y_21(k) = Y_eq(2,1);
   Y_22(k)=Y_eq(2,2);
   Y_12(k) = Y_eq(1,2);
end
subplot (221)
semilogx(f,abs(Y_11))
xlabel('Frequency (Hz)')
ylabel('Amplitude (S)')
title('Magnitude of Y_{11}')
subplot (222)
semilogx(f,abs(Y_12))
xlabel('Frequency (Hz)')
ylabel('Amplitude (S)')
title('Magnitude of Y_{12}')
subplot (223)
semilogx(f,abs(Y_21))
xlabel('Frequency (Hz)')
ylabel('Amplitude (S)')
title('Magnitude of Y_{21}')
subplot(224)
semilogx(f,abs(Y_22))
xlabel('Frequency (Hz)')
ylabel('Amplitude (S)')
title('Magnitude of Y_{22}')
```

5.6 Chain connection

Example 5.7 Determine the chain-parameters of the circuit of figure 5.15 a) considering that this circuit results from the chain connection of two *two-port* circuits as shown in figure 5.15 b). Consider frequencies ranging from 100 kHz to 100 MHz.

Solution (using MATLAB/OCTAVE):

eters: $[A_X] = \left[\begin{array}{cc} 1 & & R \\ & & \\ 0 & & 1 \end{array} \right]$ (5.21)

The two-port X can be characterised by the following chain param-

The two-port Y can be characterised by the following chain parameters:

$$[A_Y] = \begin{bmatrix} 1 & 0 \\ j \omega C & 1 \end{bmatrix}$$
 (5.22)

The two-port of figure 5.12 a) can be characterised by chain parameters given by:

$$[A_{eq}] = [A_X] \times [A_Y]$$

Figure 5.15: *a) Two-port circuit. b) Equivalent circuit.*

```
%======== mat_script9.m =========
clear
clf
C = 3e - 9;
R = 100;
f = logspace(5, 8);
omega=2*pi.*f;
A_11=zeros(size(f));
A_21=zeros(size(f));
A_22=zeros(size(f));
A_12=zeros(size(f));
for k=1:length(f)
   A_X = [1 R; ...]
        0 1];
   A_Y = [1 \ 0; \dots]
         j*omega(k)*C 1];
   A_eq=A_X*A_Y;
   A_11(k) = A_eq(1,1);
   A_21(k) = A_eq(2,1);
   A_22(k) = A_eq(2,2);
   A_12(k) = A_eq(1,2);
```

end

```
subplot (221)
semilogx(f,abs(A_11))
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('Magnitude of A_{11}')
subplot (222)
semilogx(f,abs(A_12))
xlabel('Frequency (Hz)')
ylabel('Amplitude (Ohm)')
title('Magnitude of A_{12}')
subplot(223)
semilogx(f,abs(A_21))
xlabel('Frequency (Hz)')
ylabel('Amplitude (S)')
title('Magnitude of A_{21}')
subplot (224)
semilogx(f,abs(A_22))
xlabel('Frequency (Hz)')
ylabel('Amplitude ')
title('Magnitude of A_{22}')
%================
```

5.7 Conversion between parameters

We use the tables appearing in the book in appendix C for conversions between the various parameters.

5.7.1 Chain to admittance

Example 5.8 Write a script-file to convert chain parameters into admittance parameters.

5.7.2 Impedance to admittance

Example 5.9 Write a script-file to convert impedance parameters into admittance parameters.

Solution (using MATLAB/OCTAVE):

5.7.3 Impedance to chain

Example 5.10 Write a script-file to convert impedance parameters into chain parameters.

5.7.4 Admittance to chain

Example 5.11 Write a script-file to convert admittance parameters into chain parameters.

5.7.5 Chain to impedance

Example 5.12 Write a script-file to convert chain parameters into impedance parameters.

5.7.6 Admittance to impedance

Example 5.13 Write a script-file to convert admittance parameters into impedance parameters.

5.8 Computer-aided electrical analysis

Example 5.14 Write a script-file to compute the equivalent chain matrix of the cascade of two *two-port* circuits.

```
function [a11,a12,a21,a22]=CHAIN(x11,x12,x21,x22, x, w11,w12,w21,w22, w)
% [a11,a12,a21,a22]=chain(x11,x12,x21,x22, x , w11,w12,w21,w22, w)
% CALCULATES THE EQUIVALENT CHAIN MATRIX OF THE CASCADE OF TWO TWO-PORTS
% 'x' INDICATES THE REPRESENTATION FOR THE FIRST MATRIX :z,y,a
% 'w' INDICATES THE REPRESENTATION FOR THE SECOND MATRIX :z,y,a
if (x == 'a')
 ax11=x11;
 ax12=x12;
 ax21=x21;
 ax22=x22;
else
 eval([' [ax11,ax12,ax21,ax22]=' x '2a(x11,x12,x21,x22);']);
end
if (w == 'a')
 aw11=w11;
 aw12=w12;
 aw21=w21;
 aw22=w22;
else
 eval([' [aw11,aw12,aw21,aw22]=' w '2a(w11,w12,w21,w22);']);
end
all=ax11.*aw11 + ax12.*aw21;
a12=ax11.*aw12 + ax12.*aw22;
a21=ax21.*aw11 + ax22.*aw21;
a22=ax21.*aw12 + ax22.*aw22;
```

Example 5.15 Write a script-file to compute the equivalent admittance matrix of the parallel connection of two *two-port* circuits.

```
%-----
function [y11,y12,y21,y22] = PARALLEL(x11,x12,x21,x22,x,w11,w12,w21,w22,w)
% [y11,y12,y21,y22]=PARALLEL(x11,x12,x21,x22, 'x', w11,w12,w21,w22, 'w')
% CALCULATES THE EQUIVALENT [Y] MATRIX OF THE PARALLEL CONNECTION OF
% TWO TWO-PORT CIRCUITS
% 'x' INDICATES THE REPRESENTATION FOR THE FIRST MATRIX :z,y,a
% 'w' INDICATES THE REPRESENTATION FOR THE SECOND MATRIX :z,y,a
if (x == 'y')
ya11=x11;
ya12=x12;
ya21=x21;
ya22=x22;
else
 eval([' [ya11,ya12,ya21,ya22]=' x '2y(x11,x12,x21,x22);']);
end
if (w == 'y')
yb11=w11;
yb12=w12;
yb21=w21;
yb22=w22;
else
 eval([' [yb11,yb12,yb21,yb22]=' w '2y(w11,w12,w21,w22);']);
end
y11 = ya11 + yb11 ;
y12 = ya12 + yb12;
y21 = ya21 + yb21;
y22 = ya22 + yb22;
<del>}</del>
```

Example 5.16 Write a script-file to compute the equivalent impedance matrix of the series connection of two *two-port* circuits.

```
%-----
function [z11,z12,z21,z22]=SERIES(x11,x12,x21,x22, x , w11,w12,w21,w22, w)
% [z11,z12,z21,z22]=SERIES(x11,x12,x21,x22, 'x', w11,w12,w21,w22, 'w')
% CALCULATES THE EQUIVALENT [Z] MATRIX OF THE SERIES CONNECTION OF TWO
% TWO-PORT CIRCUITS
% 'x' INDICATES WHICH REPRESENTATION FOR THE FIRST MATRIX :z,y,a
% 'w' INDICATES WHICH REPRESENTATION FOR THE SECOND MATRIX :z,y,a
if (x == 'z')
za11=x11;
za12=x12;
za21=x21;
za22=x22;
else
 eval([' [za11, za12, za21, za22]=' x '2z(x11, x12, x21, x22);']);
end
if (w == 'z')
zb11=w11;
zb12=w12;
zb21=w21;
zb22=w22;
else
 eval([' [zb11, zb12, zb21, zb22]=' w '2z(w11, w12, w21, w22);']);
end
z11 = za11 + zb11;
z12 = za12 + zb12;
z21 = za21 + zb21;
z22 = za22 + zb22;
<del>}</del>
```

Example 5.17 Consider the circuit of figure 5.16 which represents an electrical model of an amplifier. Determine the voltage gain V_o/V_s for frequencies ranging from 1 kHz to 10 GHz. $C_i=1~\mu\text{F},\,C_{gs}=10~\text{pF},\,C_{gd}=1~\text{pF},\,R_S=100~\Omega,\,G_m=20~\text{mS},\,R_L=10~\text{k}\Omega,\,R_o=70~\text{k}\Omega.$

Solution (using MATLAB/OCTAVE):

Figure 5.16: a) Electrical model for an amplifier. b) Equivalent circuit.

```
======mat_script10.m===========
clear
clf
C_{i=1e-6};
Cgs=10e-12;
Cgd=1e-12;
Gm = 20e - 3;
Ro = 70e3
RL = 10e3
RS = 100;
f=logspace(3,10);
omega=2*pi.*f;
VCCS_11=j.*omega.*Cgs;
VCCS 12=zeros(size(f));
VCCS_21=Gm.*ones(size(f));
VCCS_22=1/Ro.*ones(size(f));
CGD_11= j.*omega.*Cgd;
CGD_12=-j.*omega.*Cgd;
```

```
CGD_21=-j.*omega.*Cgd;
CGD_22= j.*omega.*Cgd;
RS_11=RS.*ones(size(f));
RS_12=RS.*ones(size(f));
RS_21=RS.*ones(size(f));
RS_22=RS.*ones(size(f));
RL_11=RL.*ones(size(f));
RL_12=RL.*ones(size(f));
RL_21=RL.*ones(size(f));
RL_22=RL.*ones(size(f));
Ci_11= j.*omega.*C_i;
Ci_12=-j.*omega.*C_i;
Ci_21=-j.*omega.*C_i;
Ci_22= j.*omega.*C_i;
[Xa_11, Xa_12, Xa_21, Xa_22] = PARALLEL (VCCS_11, VCCS_12, VCCS_21, VCCS_22, 'y'...
                       ,CGD_11,CGD_12,CGD_21,CGD_22,'y');
[Xb_11, Xb_12, Xb_21, Xb_22] = SERIES (Xa_11, Xa_12, Xa_21, Xa_22, 'y', ...
                      RS_11,RS_12,RS_21,RS_22,'z');
[Xc_11, Xc_12, Xc_21, Xc_22]=CHAIN(Xb_11, Xb_12, Xb_21, Xb_22, 'z',...
                     RL_11, RL_12, RL_21, RL_22, 'z');
[Xd_11, Xd_12, Xd_21, Xd_22]=CHAIN(Xc_11, Xc_12, Xc_21, Xc_22, 'a',...
                     Ci_11, Ci_12, Ci_21, Ci_22, 'y');
subplot (211)
semilogx(f,abs(1./Xd_11))
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('Magnitude of the voltage gain')
subplot (212)
semilogx(f, angle(1./Xd_11))
xlabel('Frequency (Hz)')
ylabel('Angle (rad)')
title('Phase of the voltage gain')
```

Solution (using SPICE):

Figure 5.17: *Electrical model for an amplifier.*

.ac dec 10 1e3 1e10 .plot ac abs(V(3)) phase(V(3)) .end

Chapter 6

Basic electronic amplifier building blocks

6.1 Operational Amplifiers

Example 6.1 Consider the Non-inverting amplifier of figure 6.1 a). Determine the voltage gain v_o/v_s and shows that it is approximately equal to $1+R_1/R_2$. Show that the input terminals of the op-amp are nearly at the same voltage potential (virtual short-circuit). Assume a non-ideal op-amp with input resistance of 50 M Ω , output resistance of 40 Ω and open-loop voltage gain of 10^5 .

Solution (using SPICE):

Figure 6.1: *a) Non-inverting amplifier. b) Op-Amp electrical model.*

Since the input voltage $v_s=1$ V, the voltage gain is equal to:

$$A_v = \frac{v(3)}{1}$$

Solution (using MATLAB/OCTAVE):

For the circuit of figure 6.2 we can write:

$$\begin{cases} v_{s} = v_{i} + v_{f} \\ \frac{v_{i}}{R_{i}} = \frac{v_{f}}{R_{2}} + \frac{v_{f} - v_{o}}{R_{1}} \\ \frac{A_{v} v_{i} - v_{o}}{R_{o}} = \frac{v_{o} - v_{f}}{R_{1}} \end{cases}$$
(6.1)

The last eqn can be written in matrix form as follows:

$$[A] = [B] \times [C]$$

with

$$[A] = \begin{bmatrix} v_s \\ 0 \\ 0 \end{bmatrix} \tag{6.2}$$

$$[B] = \begin{bmatrix} 1 & 1 & 0 \\ -\frac{1}{R_i} & \frac{1}{R_1} + \frac{1}{R_2} & -\frac{1}{R_1} \\ \frac{A_v}{R_o} & \frac{1}{R_1} & -\frac{1}{R_1} - \frac{1}{R_o} \end{bmatrix}$$
(6.3)

$$[C] = \begin{bmatrix} v_i \\ v_f \\ v_o \end{bmatrix}$$
 (6.4)

We can determine the unknown variables by solving the following eqn using MATLAB/OCTAVE:

$$[C] = [B]^{-1} \times [A]$$

Figure 6.2: Non-inverting amplifier equivalent model.

6.2 Active devices

Example 6.2 Plot the DC characteristics of a bipolar junction transistor; $I_C = f(V_{CE}, V_{BE})$. Consider $I_S = 30 \times 10^{-15}$ A, $\beta_F = 220$, and $\beta_R = 1$. See also the circuit of figure 6.3.

Solution (using SPICE):

Figure 6.3: Measurement of the DC characteristics of a BJT, $I_C = f(V_{CE}, V_{BE})$.

Solution (using MATLAB/OCTAVE):

The Ebers-Moll model for the bipolar transistor can be written as:

$$I_{E} = \underbrace{I_{S_{E}}\left(e^{V_{BE}/V_{T}}-1\right)}_{\text{Diode effect}} - \underbrace{\alpha_{R}\,I_{S_{C}}\left(e^{V_{BC}/V_{T}}-1\right)}_{\text{Reverse transistor effect}} \quad (6.5)$$

$$I_{C} = \underbrace{\alpha_{F}\,I_{S_{E}}\left(e^{V_{BE}/V_{T}}-1\right)}_{\text{Forward transistor effect}} - \underbrace{I_{S_{C}}\left(e^{V_{BC}/V_{T}}-1\right)}_{\text{Diode effect}} \quad (6.6)$$

$$I_{B} = I_{E}-I_{C} \quad (6.7)$$

with

$$\alpha_F I_{S_E} = \alpha_R I_{S_C}$$

$$\alpha_F = \frac{\beta_F}{\beta_F + 1}$$

$$\alpha_R = \frac{\beta_R}{\beta_R + 1}$$

```
%====== mat_script2.m =========
clear
Beta_F=220;
Beta_R=1;
I_S=30e-15;
alpha_R=Beta_R/(Beta_R+1);
alpha_F=Beta_F/(Beta_F+1);
I_SE=(Beta_F+1)/Beta_F*I_S;
I_SC=(Beta_R+1)/Beta_R*I_S;
VT = 27e - 3;
V_CE=0.02:0.01:0.5;
V_BE_Vector=[ 0.6:0.02:0.75];
for k=1:length(V_BE_Vector)
  V_BE=V_BE_Vector(k);
  V_BC=V_BE-V_CE;
  I_E=I_SE.*(exp(V_BE./VT)-1)...
     -alpha_R.*I_SC.*(exp(V_BC./VT)-1);
  I_C=alpha_F.* I_SE.*(exp(V_BE./VT)-1)...
     -I\_SC.*(exp(V\_BC./VT)-1);
  I_B=I_E-I_C;
  plot(V_CE, I_C)
  hold on
  end
hold off
```

Example 6.3 Plot the DC characteristics of an insulated gate FET; $I_D = f(V_{DS}, V_{GS})$. Consider $K_n = 0.2 \, \text{mA/V}^2 \, W/L = 20, V_{Th} = 1$. Refer to the circuit of figure 6.4.

Solution (using SPICE):

```
* Circuit of figure 6.4

*-----netlist3-----
V_DS 2 0 dc 10
V_GS 1 0 dc 1.3

Mn 2 1 0 0 modn L=10u W=200u
```


Currentmeter

 V_{DS}

Figure 6.4: Measurement of the DC characteristics of a IGFET, $I_D = f(V_{DS}, V_{GS})$.

Voltmeter .model modn nmos level=1 VTO=1 KP=0.2e-3
*-----.dc V_DS 0 10 0.01 V_GS 1 2 0.2
.plot dc -i(V_DS)
.print dc -i(V_DS)
.end

Solution (using MATLAB/OCTAVE):

The DC model that we use to characterise n-channel FETs is defined by the following set of equations:

```
I_{DS} = \begin{cases} k_n \frac{W}{L} \left[ (V_{GS} - V_{Th}) V_{DS} - \frac{1}{2} V_{DS}^2 \right], & V_{DS} \leq V_{GS} - V_{Th} \\ & \text{and } V_{GS} > V_{Th} \\ & \text{(Triode region)} \end{cases}
\frac{1}{2} k_n \frac{W}{L} \left[ V_{GS} - V_{Th} \right]^2 & , V_{DS} > V_{GS} - V_{Th} \\ & \text{and } V_{GS} > V_{Th} \\ & \text{(Saturation region)} \end{cases}
0 & , V_{GS} \leq V_{Th} \\ & \text{(Cut-off region)}
                                                                  (Cut-off region)
                                                                                  (6.8)
 %====== mat_script3.m ========
 clear
 Kn=0.2e-3;
 W = 200e - 6
 L=10e-6;
 knWoL=Kn.*W/L;
 VTh=1;
 VDS=0:0.01:10;
 IDS=zeros(size(VDS));
 VGSk=1:0.2:2;
 for k=1:length(VGSk)
     vqs=VGSk(k);
     vds_th=vqs-VTh;
     I_triode=find(VDS <= vds_th);</pre>
     I_sat=find(VDS >= vds_th);
     if isempty(I_triode) == 0
      IDS(I_triode) = knWoL.*(vds_th.* ...
        VDS(I_triode) - VDS(I_triode).^2./2 );
     if isempty(I sat) == 0
      IDS(I sat)=0.5.*knWoL.*(vds th).^2;
     end
     plot (VDS, IDS)
     hold on
 end
 hold off
```

Example 6.4 Determine f_T of the BJT of figure 6.5. Assume $I_S=30\times 10^{-15}$ A, $\beta_F=220$, $\beta_R=1$, $C_\mu=2$ pF and $C_\pi=10$ pF.

Solution (using SPICE):

Figure 6.5: *Measurement of* f_T .

 f_t is the frequency at which the current gain becomes equal to unity corresponding to $|i_c|=|i_b|=10~\mu {\rm A}.$

Solution (using MATLAB/OCTAVE):

The short-circuit current gain is given by:

$$\frac{i_c}{i_b} = \frac{r_\pi \left(g_m - j \omega C_\mu\right)}{1 + j \omega \left(C_\mu + C_\pi\right) r_\pi}$$

$$\simeq \frac{\beta_F}{1 + j \omega \left(C_\mu + C_\pi\right) r_\pi}$$

The unity-gain bandwidth, f_T , can be calculated as follows:

$$f_T \simeq \frac{g_m}{2\pi \left(C_\mu + C_\pi\right)}$$

```
%======= mat_script4.m ===========
clear
Beta=220;
Cpi=10e-12;
Cmu=2e-12;
IB=0.05e-3;
IC=IB*Beta;
VT = 27e - 3;
qm=IC/VT;
rpi=Beta/gm;
freq=logspace(2,10)
omega=2*pi.*freq;
H=rpi.*(gm-j.*omega.*Cmu)...
  ./(1+j.*omega.*(Cpi+Cmu)*rpi);
ft=gm/(2*pi*(Cmu+Cpi))
loglog(freq, abs(H))
```

%================

6.3 Common-emitter amplifier

Example 6.5 Plot the voltage gain v_o/v_s as a function of frequency and find the bandwidth of the common-emitter amplifier shown in figure 6.6. Assume $I_S=30\times 10^{-15}$ A, $\beta_F=220$, $\beta_R=1$, $C_\mu=2$ pF and $C_\pi=10$ pF.

Solution (using SPICE):

```
* Circuit of figure 6.6
   -----netlist5-----
V_CC 7 0 dc 10
v_s 1 0 dc 0 ac 1
R_s 1 2 100
R_1 7 3 9k
R_2 3 0 1k
R_E 4 0 300
R_C 7 5 5k
R_L 6 0 15k
C_B 2 3 5u
C_E 4 0 10u
C_L 5 6 1u
Q1 5 3 4 QGEN
.model QGEN NPN IS=30e-15 BF=220
+BR=1 CJC=2p CJE=10p
.ac DEC 10 1e2 1e8
.plot ac abs(v(6)) phase(v(6))
.print ac abs(v(6)) phase(v(6))
```


Figure 6.6: Common-emitter amplifier.

6.4 Common-base amplifier

Example 6.6 Plot the voltage gain v_o/v_s versus frequency and find the bandwidth of the common-base amplifier shown in figure 6.7. Assume $I_S=30\times 10^{-15}$ A, $\beta_F=220$, $\beta_R=1$, $C_\mu=2$ pF and $C_\pi=10$ pF.

Solution (using SPICE):

```
* Circuit of figure 6.7
             ----netlist5b-----
V_CC 7 0 dc 10
   1 0 dc 0 ac 1
R s 1 2 10
R_1 7 4 9k
R_2 4 0 1k
R_E 3 0 300
R_C 7 5 5k
R_L 6 0 15k
C_B 4 0 5u
C_E 3 2 10u
C_L 5 6 1u
.model QGEN NPN IS=30e-15 BF=220
+BR=1 CJC=2p CJE=10p
.ac DEC 10 1e2 1e9
.plot ac abs(v(6)) phase(v(6))
.print ac abs(v(6)) phase(v(6))
```


Figure 6.7: Common-base amplifier.

Common-collector 6.5 amplifier

Example 6.7 Plot the voltage gain v_o/v_s versus frequency and find the bandwidth of the common-collector amplifier shown in figure 6.8. Assume $I_S = 30 \times 10^{-15}$ A, $\beta_F = 220$, $\beta_R = 1$, $C_\mu = 2$ pF and $C_\pi = 10$

Solution (using SPICE):

* Circuit of figure 6.8

```
-----netlist5c-----
             V_CC 7 0 dc 10
             v_s 1 0 dc 0 ac 1
             R_s 1 2 100
V_{CC} (10 V)
             R_1 7 3 5k
             R_2 3 0 7k
             R_E 4 0 2.5k
             C_B 2 3 5u
             Q1 7 3 4 QGEN
             .model QGEN NPN IS=30e-15 BF=220
             +BR=1 CJC=2p CJE=10p
             .ac DEC 10 1e1 1e10
             .plot ac abs(v(4)) phase(v(4))
             .print ac abs(v(4)) phase(v(4))
       (2.5 kΩ)
```


Figure 6.8: Common-collector amplifier.

6.6 Differential pair amplifier

Example 6.8 Plot the voltage gain v_o/v_s as a function of frequency of the differential pair amplifier shown in figure 6.9. Assume $K_n=0.2$ mA/V², W/L=10 and $V_{Th}=1$.

Solution (using SPICE):

```
* Circuit of figure 6.9
  -----netlist6-----
V_DD 5 0 dc 5
V_SS 6 0 dc -5
V_s 1 0 dc 0 ac 1
Mn1 3 1 2 6 modn L=10u W=100u
Mn2 4 0 2 6 modn L=10u W=100u
Mn3 2 7 6 6 modn L=10u W=100u
Mn4 7 7 6 6 modn L=10u W=100u
R D1 5 3 6k
R_D2 5 4 6k
    7 0 3k
.model modn nmos level=1 VTO=1 KP=0.2e-3
.ac DEC 10 1e2 1e8
.plot ac abs(v(4)) phase(v(4))
.print ac abs(v(4)) phase(v(4))
.end
```


Figure 6.9: Differential pair amplifier.

Chapter 7

RF circuit analysis techniques

7.1 Transmission lines

Figure 7.1: Transmission line.

Example 7.1 Consider the transmission line of figure 7.1. Determine the line input impedance, $Z_{in}(d)$, for $0 < \beta d < 0$ and for the following situations:

1.
$$Z_L/Z_o = 0.1$$

2.
$$Z_L/Z_o = 1$$

3.
$$Z_L/Z_o = 10$$

Solution (using MATLAB/OCTAVE):

$$\frac{Z_{in}(d)}{Z_o} = \frac{Z_L + j Z_o \tan(\beta l)}{Z_o + j Z_L \tan(\beta l)}$$
$$= \frac{\frac{Z_L}{Z_o} + j \tan(\beta l)}{1 + j \frac{Z_L}{Z_o} \tan(\beta l)}$$

```
%====== mat_script1.m ========
clear
clf
beta_d=0:0.02:2*pi;
ZL_over_Zo=...
   input(' Input the ratio Z_L/Z_o');
Zin_Norm=(ZL_over_Zo+i.*tan(beta_d))...
       ./(1+ZL over Zo.*i.*tan(beta d));
subplot(211)
plot(beta_d./(pi),abs(Zin_Norm))
xlabel('beta d (normalised to pi)')
ylabel('|Z_{in}|/Z_o')
subplot (212)
plot(beta_d./(pi),angle(Zin_Norm)./(pi))
xlabel('beta d (normalised to pi)')
ylabel('Phase(Z_{in}) (normalised to pi)')
axis([0 2 -0.5 0.5])
%============
```

Example 7.2 Consider the transmission line of figure 7.1 with an inductance per metre of 550 nH and a capacitance per metre of 100 pF. This line has a length l=13 m and is terminated by a load $Z_L=25$ Ω .Determine the line input impedance, $Z_{in}(d=l)$, for $\omega=27$ krad/s.

Solution (using MATLAB/OCTAVE):

Example 7.3 V_s is a DC voltage source with a resistive output impedance, $Z_s=R_s=10~\Omega$, applied to an open-circuit transmission line with characteristic impedance $Z_o=50~\Omega$. Assuming that the source is switched-on at t=0, show that the current provided by the source tends to zero as $t\to\infty$. The delay of the line is $3~\mu s$.

Solution (using SPICE):

Figure 7.2: *Open-circuit transmission line driven by a DC voltage source.*

Figure 7.3: *Transient analysis for the current.*

Solution (using MATLAB/OCTAVE):

clear

Figure 7.3 illustrates the transient analysis for the current provided by the source V_s where $r=R_s/Z_o$. The current provided by the source as t increases, I_s , can be obtained as follows:

$$I_{s} = \frac{V_{s}}{Z_{o}(1+r)} - \frac{V_{s} 2 r}{Z_{o}(1+r)^{2}} \sum_{k=0}^{\infty} \left(\frac{1-r}{r+1}\right)^{k}$$

$$= \frac{V_{s}}{Z_{o}} \left(\frac{1}{1+r} - \frac{2 r}{(1+r)^{2}} \times \frac{1+r}{2 r}\right)$$

$$= 0$$

%====== mat_script2b.m =========

```
clf
Zo=input('characteristic impedance (Ohm)...');
Rs=input('Source resistance (Ohm)...');
r=Zo/Rs;
N=10;
I_s=1/(1+r);
plot([0 0],[0 I_s])
hold on
for n=1:N
  k=n-1;
  plot([2*k 2*(k+1)],[I_s I_s])
   I_sn=I_s-2*r/((1+r)^2)*((1-r)/(r+1))^k;
  plot([2*(k+1) 2*(k+1)], [I_s I_sn])
   I_s=I_sn;
end
hold off
xlabel('Time (normalised to the delay time)')
ylabel('Current (normalised to V_s/Z_o)')
title('Current provided by V_s')
%=================
```


Figure 7.4: Waveforms monitored at the input of a faulty cable.

Example 7.4 We want to determine the location of a failure in a coaxial cable. In order to identify this location we send a 150 ns pulse through the cable. Figure 7.4 a) shows the waveform monitored at the input of the cable. Determine the location of the fault knowing that the cable has an inductance per metre of 250 nH and a capacitance per metre of 100 pF.

Solution (using MATLAB/OCTAVE):

Figure 7.4 b) shows the waveform monitored at the input of the cable as the sum of the 150 ns pulse with its delayed replica. From this figure it is clear that the fault is an open-circuit ($\Gamma=1$). The distance where this fault occurs is obtained from the following eqn:

$$x = \frac{1}{2} T_P \frac{1}{\sqrt{LC}}$$

```
L=250e-9;
C=100e-12;
total_delay=120e-9;
Zo=sqrt(L/C);
speed_prop=1/sqrt(L*C);
length=speed_prop*total_delay/2
```

Example 7.5 Simulate the faulty cable discussed in the previous example using SPICE and observe the test pulse monitored at the input of the cable.

Solution (using SPICE):

Figure 7.5: Simulating a faulty cable (open-circuit).

- .tran 0.01n 310n 0
- .plot tran v(2)
- .end

7.2 S-parameters

Example 7.6 Determine the S-parameters of an RC low-pass filter, $R=70~\Omega,~C=1$ nF. Use the frequency range $100~\mathrm{kHz} < f < 100~\mathrm{MHz}$ and assume a reference impedance $Z_o=50~\Omega.$

Solution (using MATLAB/OCTAVE):

The S-parameters are given by the following expressions:

Figure 7.6: RC Circuit.

```
S_{11} = \frac{R + j\omega C Z_o(R - Z_o)}{R + 2Z_o + 2j\omega C Z_o(R + Z_o)}
S_{21} = \frac{2 Z_o}{2Z_o + R + j\omega C Z_o(R + Z_o)}
S_{22} = \frac{R - j\omega C Z_o(Z_o + R)}{R + 2Z_o + j\omega C Z_o(Z_o + R)}
S_{12} = \frac{2 Z_o}{2Z_o + R + j\omega C Z_o(R + Z_o)}
```

```
%========= mat_script3.m ============
clear
clf
C=1e-9;
R = 70;
freq=logspace(5,8);
omega=2.*pi.*freq;
Zo=50;
S_{11}=(R+j.*omega.*C.*Zo.*(R-Zo))...
      ./(R+2*Zo+2.*j.*omega.*C.*Zo.*(R+Zo));
S_21 = (2*Zo)...
      ./(R+2*Zo+2.*j.*omega.*C.*Zo.*(R+Zo));
S_22 = (R-j.*omega.*C.*Zo.*(R+Zo))...
      ./(R+2*Zo+2.*j.*omega.*C.*Zo.*(R+Zo));
S 12 = (2 \times Z_0) \dots
      ./(R+2*Zo+2.*j.*omega.*C.*Zo.*(R+Zo));
subplot(211)
semilogx(freq, abs(S_11))
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('S_{11}')
subplot (212)
semilogx(freq, angle(S_11))
xlabel('Frequency (Hz)')
ylabel('Phase (rad)')
A=input('Press enter for next plot...');
subplot (211)
semilogx(freq, abs(S_21))
xlabel('Frequency (Hz)')
```

```
ylabel('Amplitude')
title('S_{21}')
subplot (212)
semilogx(freq, angle(S_21))
xlabel('Frequency (Hz)')
ylabel('Phase (rad)')
A=input('Press enter for next plot...');
subplot (211)
semilogx(freq, abs(S_22))
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('S_{22}')
subplot(212)
semilogx(freq, angle(S_22))
xlabel('Frequency (Hz)')
ylabel('Phase (rad)')
A=input('Press enter for next plot...');
subplot (211)
semilogx(freq, abs(S_12))
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('S_{12}')
subplot(212)
semilogx(freq, angle(S_12))
xlabel('Frequency (Hz)')
ylabel('Phase (rad)')
```

Example 7.7 Determine the S-parameters of the FET small-signal high-frequency model. Assume $k_n W/L = 40$ mA/V², $C_{gs} = 3$ pF, $C_{gd} = 1.5$ pF, $V_A = 60$ V and $I_D = 10$ mA. $Z_o = 50$ Ω . Plot the S-parameters for a frequency range 1 MHz–10 GHz.

Solution (using SPICE):

Calculation of S_{11} and of S_{21} .

 g_m and r_o can be obtained as follows:

$$g_m = \sqrt{k_n \frac{W}{L} 2 I_D}$$

$$= 0.0283 \text{ S}$$

$$r_o = \frac{V_A}{I_D}$$

$$= 6 \text{ k}\Omega$$

Figure 7.7: Calculation of S_{11} and of S_{21} .

* Circuit of figure 7.7

*----netlist1-----

v_s 1 0 ac 1

C_gd 1 2 1.5p

C_gs 1 0 3p

R_ro 2 0 6k

R_Zo 2 0 50

 $G_gm 2 0 1 0 28.3m$

*-----

*_____

.ac DEC 10 1e6 1e10

.print ac abs(v(2)) phase(v(2))

.print ac abs(i(v_s)) -phase(i(v_s))

.end

*_____

$$S_{11} = \frac{Z_{IN_1} - Z_o}{Z_{IN_1} + Z_o}$$

$$S_{21} = \frac{2 A_v}{1 + \frac{Z_o}{Z_{IN_1}}}$$

 Z_{IN_1} and A_v can be obtained as follows:

$$Z_{IN_1} = -\frac{1}{i \text{ (v-s)}} (\Omega)$$

$$A_v = \frac{v(2)}{1}$$

Figure 7.8: Calculation of S_{12} and of S_{22} .

Calculation of S_{12} and of S_{22} .

* Circuit of figure 7.8

*----netlist2-----

V_s 1 0 ac 1

*_____

*_____

- .ac DEC 10 1e6 1e10
- .print ac abs(v(2)) phase(v(2))
- .print ac abs(i(V_s)) -phase(i(V_s))
- .end

*_____

$$S_{22} = \frac{Z_{IN_2} - Z_o}{Z_{IN_2} + Z_o}$$

$$S_{12} = \frac{2 A_{v_2}}{1 + \frac{Z_o}{Z_{IN_2}}}$$

 Z_{IN_2} and A_{v_2} can be obtained as follows:

$$Z_{IN_2} = -\frac{1}{\mathrm{i} (v-s)} (\Omega)$$

$$A_{v_2} = \frac{v(2)}{1}$$

Figure 7.9: Calculation of S_{11} and of S_{21} .

Solution (using MATLAB/OCTAVE):

Calculation of S_{11} and of S_{21} .

$$S_{11} = \frac{Z_{IN_1} - Z_o}{Z_{IN_1} + Z_o}$$

$$S_{21} = \frac{2 A_v}{1 + \frac{Z_o}{Z_{IN_1}}}$$

where Z_{IN_1} and $A_v = v_o/v_s$ can be calculated from the circuit of figure 7.9.

$$Z_{IN_1} =$$

$$\frac{r_{o} + Z_{o} + j\,\omega\,C_{gd}\,r_{o}\,Z_{o}}{j\,\omega\,[(C_{gd} + C_{gs})\,(r_{o} + Z_{o}) + C_{gd}\,g_{m}\,r_{o}\,Z_{o}] - \omega^{2}\,C_{gd}\,C_{gs}\,r_{o}\,Z_{o}}$$

$$A_{v_1} = \frac{r_o Z_o(j \omega C_{gd} - g_m)}{j \omega C_{gd} r_o Z_o + r_o + Z_o}$$

```
%====== mat_script4.m =========
clear
clf
KnWoverL=40e-3;
Cgs=3e-12;
Cgd=1.5e-12;
VA=60;
ID=10e-3;
gm=sqrt(KnWoverL*2*ID);
ro=VA/ID;
freq=logspace(6,10);
omega=2.*pi.*freq;
Zo=50;
Z_{IN1}=(ro+Zo+j.*omega.*Cgd.*ro.*Zo)...
    ./(j.*omega.*((Cgs+Cgd)*(ro+Zo)+...
    Cgd*gm*ro*Zo) - omega.^2.*Cgs.*Cgd.*ro.*Zo);
A_v=(ro.*Zo.*(j.*omega.*Cgd-gm))...
       ./(j.*omega.*Cgd.*ro.*Zo+ro+Zo);
S_11 = (Z_IN1 - Z_0) . / (Z_IN1 + Z_0);
S_21=2.*A_v./(1+Zo./Z_IN1);
subplot(211)
semilogx(freq, abs(S_11))
```

xlabel('Frequency (Hz)')

```
ylabel('Amplitude')
title('S_{11}')
subplot (212)
semilogx(freq, angle(S_11))
xlabel('Frequency (Hz)')
ylabel('Phase (rad)')
A=input('press enter to display next plot');
subplot(211)
semilogx(freq, abs(S_21))
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('S_{21}')
subplot(212)
semilogx(freq, angle(S_21))
xlabel('Frequency (Hz)')
ylabel('Phase (rad)')
%==================
```


Figure 7.10: Calculation of S_{12} and of S_{22} .

Calculation of S_{12} and of S_{22} .

$$S_{22} = \frac{Z_{IN_2} - Z_o}{Z_{IN_2} + Z_o}$$

$$S_{12} = \frac{2 A_{v_2}}{1 + \frac{Z_o}{Z_{IN_2}}}$$

where Z_{IN_2} and $A_{v_2}=v_i/v_s$ can be calculated from the circuit of figure 7.10.

$$Z_{IN_2} =$$

subplot(212)

$$\frac{r_o[j\,\omega\left(C_{gd}+C_{gs}\right)Z_o+1]}{1+j\,\omega\left(C_{gd}+C_{gs}\right)Z_o+j\,\omega\,C_{gd}\,r_o\left(g_m\,Z_o+1\right)-\omega^2\,C_{gd}\,C_{gs}\,r_o\,Z_o}$$

$$A_{v_2} = \frac{j \omega C_{gd} Z_o}{1 + j \omega (C_{gd} + C_{gs}) Z_o}$$

```
%====== mat_script5.m =========
clear
clf
KnWoverL=40e-3;
Cgs=3e-12;
Cgd=1.5e-12;
VA=60;
ID=10e-3;
gm=sqrt(KnWoverL*2*ID);
ro=VA/ID;
freq=logspace(6,10);
omega=2.*pi.*freq;
Zo=50;
Z_{IN2}=ro.*(1+j.*omega.*(Cgs+Cgd).*Zo)...
       ./(1+j.*omega.*(Cgs+Cgd).*Zo+...
      j.*omega.*Cgd.*ro.*(gm*Zo+1)...
      -omega.^2.*Cgs.*Cgd.*ro.*Zo);
A_v2=(Zo.*j.*omega.*Cgd)...
       ./(1+j.*omega.*(Cgs+Cgd)*Zo);
S_22 = (Z_IN2 - Z_0) \cdot / (Z_IN2 + Z_0);
S_12=2.*A_v2./(1+Zo./Z_IN2);
subplot (211)
semilogx(freq, abs(S_22))
\verb|xlabel('Frequency (Hz)')|\\
ylabel('Amplitude')
title('S_{22}')
```

```
semilogx(freq, angle(S_22))
xlabel('Frequency (Hz)')
ylabel('Phase (rad)')

A=input('press enter to display next plot');
subplot(211)
semilogx(freq, abs(S_12))
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('S_{12}')
subplot(212)
semilogx(freq, angle(S_12))
xlabel('Frequency (Hz)')
ylabel('Phase (rad)')
```

7.3 Smith chart

Example 7.8 Write a script-file to plot the Smith chart.

Solution:

The Smith chart can be drawn by plotting the two families of circles described by the following eqns:

$$\left(U - \frac{r}{r+1}\right)^2 + V^2 = \frac{1}{(r+1)^2}$$
$$(U-1)^2 \left(V - \frac{1}{x}\right)^2 = \frac{1}{x^2}$$

where U and V represent the two orthogonal axis of the reflection coefficient plane and r and x represents the normalised resistance and reactance values.

```
%====== smith_chart.m ========
clf
clear
x=[-100:0.01:100];
r=[0 \ 0.5 \ 1 \ 2 \ 4 \ 8 \ 16 \ 32 \ 64];
for k=1:length(r)
   U=(r(k).^2-1+x.^2)./((r(k)+1).^2+x.^2);
   Uu=(r(k).^2-1)./((r(k)+1).^2);
   V=2.*x./((r(k)+1).^2+x.^2);
   plot(U,V)
    if (r(k) \le 8)
    xxx=num2str(r(k));
    text (Uu+0.005, 0.025, xxx)
hold on
end
r=[0:0.01:64];
x=[-20 \ -8 \ -6 \ -5 \ -4 \ -3 \ -2 \ -1 \ ...
   -0.5 0 0.5 1 2 3 4 5 6 8 20];
for k=1:length(x)
   U=(r.^2-1+x(k).^2)./((r+1).^2+x(k).^2);
   V=2.*x(k)./((r+1).^2+x(k).^2);
   Uu=(-1+x(k).^2)./((1).^2+x(k).^2);
   Vv=2.*x(k)./((1).^2+x(k).^2);
   plot(U,V)
hold on
    if (x(k)>0 & x(k)^{-}=0.5)
    xxx=num2str(abs(x(k)));
    text(Uu+0.01, Vv+0.04, xxx)
     end
    if (x(k) < 0 & x(k)^{-} = -0.5)
    xxx=num2str(abs(x(k)));
    text(Uu+0.01, Vv-0.04, xxx)
```

```
end
    if (x(k) == 0.5)
    xxx=num2str(abs(x(k)));
    text (Uu-0.05, Vv+0.07, xxx)
     end
    if (x(k) == -0.5)
    xxx=num2str(abs(x(k)));
    text (Uu-0.05, Vv-0.07, xxx)
end
%====
x=[-1:0.01:1];
r = [0:0.1:1];
for k=1:length(r)
   U=(r(k).^2-1+x.^2)./((r(k)+1).^2+x.^2);
   V=2.*x./((r(k)+1).^2+x.^2);
   plot(U,V)
hold on
end
r=[0:0.01:1];
x=[-1:0.1:1];
for k=1:length(x)
   U=(r.^2-1+x(k).^2)./((r+1).^2+x(k).^2);
   V=2.*x(k)./((r+1).^2+x(k).^2);
   plot(U,V)
hold on
end
x=[-4:0.01:4];
r = [1:0.2:4];
for k=1:length(r)
   U=(r(k).^2-1+x.^2)./((r(k)+1).^2+x.^2);
   V=2.*x./((r(k)+1).^2+x.^2);
   plot(U,V)
hold on
end
r = [0:0.01:4];
x=[-4:0.2:-1 1:0.2:4];
for k=1:length(x)
   U=(r.^2-1+x(k).^2)./((r+1).^2+x(k).^2);
   V=2.*x(k)./((r+1).^2+x(k).^2);
   plot(U,V)
hold on
end
%====
x=[-8:0.01:8];
r = [4:1:8];
for k=1:length(r)
   U=(r(k).^2-1+x.^2)./((r(k)+1).^2+x.^2);
   V=2.*x./((r(k)+1).^2+x.^2);
```

Example 7.9 Represent the following impedances on the Smith chart. $Z_o = 50 \ \Omega$.

```
1. Z_1 = 100 + j 75 \Omega
```

2.
$$Z_2 = 80 - j 25 \Omega$$

3.
$$Z_3 = 10 + j \, 45 \, \Omega$$

Solution (using MATLAB/OCTAVE):

```
%====== mat_script5.m =========
clear
clf
smith_chart
hold on
Zo=50;
Z1=100+j*75;
Z2=80-j*25;
Z3=10+j*45;
z1=Z1/Zo;
z2=Z2/Zo;
z3=Z3/Zo;
[u1,v1]=zy2smith(real([z1 z2 z3]),...
        imag([z1 z2 z3]));
plot(u1, v1, 'ro', u1, v1, 'r*')
hold off
%================
```

smith_chart.m is the m-script derived in the previous example and zy2smith.m is an m-function which maps normalised impedances (or normalised admittances) into the reflection coefficient plane (U,V).

Example 7.10 Represent the following admittances on the Smith chart. $Z_o = 50 \, \Omega$.

- 1. $Y_1 = 3.7 j \, 8.3 \, \text{mS}$
- 2. $Y_2 = 5.9 + j \, 14.2 \, \text{mS}$
- 3. $Y_3 = 2 + j \, 7.1 \, \text{mS}$

Solution (using MATLAB/OCTAVE):

```
%====== mat_script7.m ========
clear
clf
smith_chart
hold on
Yo=1/50;
Y1=(3.7-j*8.3).*1e-3;
Y2=(5.9+j*14.2).*1e-3;
Y3 = (2 + j * 7.1) .* 1e - 3;
y1=Y1/Yo;
y2=Y2/Yo;
y3=Y3/Yo;
[u1,v1]=zy2smith(real([y1 y2 y3]),...
         imag([y1 y2 y3]));
plot(u1, v1, 'ro', u1, v1, 'r*')
hold off
%=============
```

Chapter 8

Noise in electronic circuits

8.1 Equivalent noise bandwidth

Example 8.1 Determine the equivalent noise bandwidth of the following transfer functions. Consider $\eta < 1$.

1.

$$H_1(\omega) = \frac{\omega_n^2}{-\omega^2 + 2 i n \omega_n \omega + \omega_n^2}$$

2.

$$H_2(\omega) = \frac{2 j \eta \omega_n \omega}{-\omega^2 + 2 j \eta \omega_n \omega + \omega_n^2}$$

3.

$$H_3(\omega) = \frac{\omega_n^2 + 2 j \eta \omega_n \omega}{-\omega^2 + 2 j \eta \omega_n \omega + \omega_n^2}$$

Solution (using MATLAB/OCTAVE):

Normalising the frequency such that $\omega' = \omega/\omega_n$ the transfer functions mentioned above can be represented as follows:

$$H_{1}(\omega') = \frac{1}{-\omega'^{2} + 2 j \eta \omega' + 1}$$

$$H_{2}(\omega') = \frac{2 j \eta \omega'}{-\omega'^{2} + 2 j \eta \omega' + 1}$$

$$H_{3}(\omega') = \frac{2 j \eta \omega' + 1}{-\omega'^{2} + 2 j \eta \omega' + 1}$$

Now, the equivalent noise bandwidths, B_N , normalised to ω_n can be determined according to:

$$\frac{B_N}{\omega_n} = \int_{-\infty}^{\infty} |H_k(\omega')|^2 d\omega', \quad k = 1, 2, 3$$

$$\simeq 2 \int_0^{10} |H_k(\omega')|^2 d\omega', \quad k = 1, 2, 3$$

%====== mat_script1a.m =======

8.2 Conversion between noise representations

8.2.1 Chain to admittance

Example 8.2 Write a script-file to convert the chain noise representation into the admittance noise representation.

```
function [y11,y12,y21,y22,Cy11,Cy12,Cy21,Cy22]=a2y_noisy(a11,a12,a21,a22,...
                                                      Ca11, Ca12, Ca21, Ca22)
% function [y11,y12,y21,y22,Cy11,Cy12,Cy21,Cy22]=a2y_noisy(a11,a12,a21,
                                                 a22, Ca11, Ca12, Ca21, Ca22)
% CONVERSION OF A PARAMETERS TO Y PARAMETERS (noisy representations)
% a_ij are vectors - electrical chain parameters versus the frequency
% Ca_ij are vectors - correlation chain parameters versus the frequency
% y_ij are vectors - admittance parameters versus the frequency
% Cy_ij are vectors - correlation admittance parameters versus the frequency
    [y11, y12, y21, y22] = a2y(a11, a12, a21, a22);
    T11 = -y11;
    T12=ones(size(y12));
    T21 = -y21;
    T22=zeros(size(y12));
    Tc11=conj(T11);
    Tc12=conj(T21);
    Tc21=conj(T12);
    Tc22=conj(T22);
    Cy11= T11.*Ca11.*Tc11+T11.*Ca12.*Tc21+T12.*Ca21.*Tc11+T12.*Ca22.*Tc21;
    Cy12= T11.*Ca11.*Tc12+T11.*Ca12.*Tc22+T12.*Ca21.*Tc12+T12.*Ca22.*Tc22;
    Cy21= T21.*Ca11.*Tc11+T21.*Ca12.*Tc21+T22.*Ca21.*Tc11+T22.*Ca22.*Tc21;
    Cy22= T21.*Ca11.*Tc12+T21.*Ca12.*Tc22+T22.*Ca21.*Tc12+T22.*Ca22.*Tc22;
```

8.2.2 Chain to impedance

Example 8.3 Write a script-file to convert the chain noise representation into the impedance noise representation.

```
function [z11,z12,z21,z22,Cz11,Cz12,Cz21,Cz22]=a2z_noisy(a11,a12,a21,a22,...
                                                                                                                                                               Call, Call, Call, Call)
% function [z11,z12,z21,z22,Cz11,Cz12,Cz21,Cz22]=a2z_noisy(a11,a12,a21,a22,
                                                                                                                                                            Call, Call, Call, Call, Call)
% CONVERSION OF A PARAMETERS TO Z PARAMETERS (noisy representations)
% a_ij are vectors - electrical chain parameters versus the frequency
\$ Ca_ij are vectors – correlation chain parameters versus the frequency
\ \mbox{\ensuremath{\mbox{\$}}}\ \mbox{\ensuremath{\mbox{z\_ij}}}\ \mbox{\ensuremath{\mbox{are}}}\ \mbox{\ensuremath{\mbox{versus}}\ \mbox{\ensuremath{\mbox{c}}}\ \mbox{\ensuremath{\mbox{c}}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{c}}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{c}}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\ensuremath{\mbox{e}}\ \mbox{\en
% Cz_ij are vectors - impedance correlation parameters versus the frequency
              [z11, z12, z21, z22] = a2z(a11, a12, a21, a22);
             T11=ones(size(z11));
             T12 = -z11;
             T21=zeros(size(y12));
             T22 = -z21;
             Tc11=conj(T11);
             Tc12=conj(T21);
             Tc21=conj(T12);
             Tc22=conj(T22);
             Cz11= T11.*Ca11.*Tc11+T11.*Ca12.*Tc21+T12.*Ca21.*Tc11+T12.*Ca22.*Tc21;
             Cz12= T11.*Ca11.*Tc12+T11.*Ca12.*Tc22+T12.*Ca21.*Tc12+T12.*Ca22.*Tc22;
             Cz21= T21.*Ca11.*Tc11+T21.*Ca12.*Tc21+T22.*Ca21.*Tc11+T22.*Ca22.*Tc21;
             Cz22= T21.*Ca11.*Tc12+T21.*Ca12.*Tc22+T22.*Ca21.*Tc12+T22.*Ca22.*Tc22;
```

8.2.3 Impedance to chain

Example 8.4 Write a script-file to convert the impedance noise representation into the chain noise representation.

```
function [a11,a12,a21,a22,Ca11,Ca12,Ca21,Ca22]=z2a_noisy(z11,z12,z21,z22,...
                                                     Cz11, Cz12, Cz21, Cz22)
% function [a11,a12,a21,a22,Ca11,Ca12,Ca21,Ca22]=z2a_noisy(y11,z12,z21,
                                                z22, Cz11, Cz12, Cz21, Cz22)
% CONVERSION OF A PARAMETERS TO Z PARAMETERS (noisy representations)
% a_ij are vectors - electrical chain parameters versus the frequency
% Ca_ij are vectors - chain correlation parameters versus the frequency
\ y_ij are vectors – admittance parameters versus the frequency
% Cy_ij are vectors - admittance correlation parameters versus the frequency
    [a11,a12,a21,a22]=z2a(z11,z12,z21,z22);
    T11=ones(size(z11));
    T12 = -a11;
    T21=zeros(size(z11));
    T22 = -a21;
    Tc11=conj(T11);
    Tc12=conj(T21);
    Tc21=conj(T12);
    Tc22=conj(T22);
    Call= T11.*Cz11.*Tc11+T11.*Cz12.*Tc21+T12.*Cz21.*Tc11+T12.*Cz22.*Tc21;
    Ca12= T11.*Cz11.*Tc12+T11.*Cz12.*Tc22+T12.*Cz21.*Tc12+T12.*Cz22.*Tc22;
    Ca21= T21.*Cz11.*Tc11+T21.*Cz12.*Tc21+T22.*Cz21.*Tc11+T22.*Cz22.*Tc21;
    Ca22= T21.*Cz11.*Tc12+T21.*Cz12.*Tc22+T22.*Cz21.*Tc12+T22.*Cz22.*Tc22;
```

8.2.4 Impedance to admittance

Example 8.5 Write a script-file to convert the impedance noise representation into the admittance noise representation.

```
function [y11,y12,y21,y22,Cy11,Cy12,Cy21,Cy22]=z2y_noisy(z11,z12,z21,z22,...
                                                 Cz11, Cz12, Cz21, Cz22)
% function [y11,y12,y21,y22,Cy11,Cy12,Cy21,Cy22]=z2y_noisy(y11,z12,z21,z22,
                                                 Cz11, Cz12, Cz21, Cz22)
% CONVERSION OF A PARAMETERS TO Z PARAMETERS (noisy representations)
% z_ij are vectors - electrical impedance parameters versus the frequency
% Cz_ij are vectors - impedance correlation parameters versus the frequency
% Cy_ij are vectors - admittance correlation parameters versus the frequency
    [y11, y12, y21, y22] = z2y(z11, z12, z21, z22);
    T11=y11;
    T12=y12;
    T21=y21;
    T22=y22;
    Tc11=conj(T11);
    Tc12=conj(T21);
    Tc21=conj(T12);
    Tc22=conj(T22);
    Cy11= T11.*Cz11.*Tc11+T11.*Cz12.*Tc21+T12.*Cz21.*Tc11+T12.*Cz22.*Tc21;
    Cy12= T11.*Cz11.*Tc12+T11.*Cz12.*Tc22+T12.*Cz21.*Tc12+T12.*Cz22.*Tc22;
    Cy21= T21.*Cz11.*Tc11+T21.*Cz12.*Tc21+T22.*Cz21.*Tc11+T22.*Cz22.*Tc21;
    Cy22= T21.*Cz11.*Tc12+T21.*Cz12.*Tc22+T22.*Cz21.*Tc12+T22.*Cz22.*Tc22;
```

8.2.5 Admittance to chain

Example 8.6 Write a script-file to convert the admittance noise representation into the chain noise representation.

```
function [a11,a12,a21,a22,Ca11,Ca12,Ca21,Ca22]=y2a_noisy(y11,y12,y21,y22,...
                                                 Cy11, Cy12, Cy21, Cy22)
% function [a11,a12,a21,a22,Ca11,Ca12,Ca21,Ca22]=y2a_noisy(y11,y12,y21,y22,
                                                 Cy11, Cy12, Cy21, Cy22)
% CONVERSION OF A PARAMETERS TO Z PARAMETERS (noisy representations)
% a_ij are vectors - electrical chain parameters versus the frequency
\$ Ca_ij are vectors – correlation chain parameters versus the frequency
% Cy_ij are vectors - admittance correlation parameters versus the frequency
    [a11,a12,a21,a22] = y2a(y11,y12,y21,y22);
    T11=zeros(size(a11));
    T12=a12;
    T21=ones(size(a21));
    T22=a22;
    Tc11=conj(T11);
    Tc12=conj(T21);
    Tc21=conj(T12);
    Tc22=conj(T22);
    Call= T11.*Cyl1.*Tcl1+T11.*Cyl2.*Tc21+T12.*Cy21.*Tcl1+T12.*Cy22.*Tc21;
    Ca12= T11.*Cy11.*Tc12+T11.*Cy12.*Tc22+T12.*Cy21.*Tc12+T12.*Cy22.*Tc22;
    Ca21= T21.*Cy11.*Tc11+T21.*Cy12.*Tc21+T22.*Cy21.*Tc11+T22.*Cy22.*Tc21;
    Ca22= T21.*Cy11.*Tc12+T21.*Cy12.*Tc22+T22.*Cy21.*Tc12+T22.*Cy22.*Tc22;
```

8.2.6 Admittance to impedance

Example 8.7 Write a script-file to convert the admittance noise representation into the impedance noise representation.

```
function [z11,z12,z21,z22,Cz11,Cz12,Cz21,Cz22]=y2z_noisy(y11,y12,y21,y22,...
                                                 Cy11, Cy12, Cy21, Cy22)
% function [z11,z12,z21,z22,Cz11,Cz12,Cz21,Cz22]=y2z_noisy(y11,y12,y21,y22,
                                                Cy11, Cy12, Cy21, Cy22)
% CONVERSION OF A PARAMETERS TO Z PARAMETERS (noisy representations)
% z_ij are vectors - electrical impedance parameters versus the frequency
% Cz_ij are vectors - impedance correlation parameters versus the frequency
% Cy_ij are vectors - admittance correlation parameters versus the frequency
    [z11, z12, z21, z22] = y2z(y11, y12, y21, y22);
    T11=z11;
    T12=z12;
    T21=z21;
    T22=z22;
    Tc11=conj(T11);
    Tc12=conj(T21);
    Tc21=conj(T12);
    Tc22=conj(T22);
    Cz11= T11.*Cy11.*Tc11+T11.*Cy12.*Tc21+T12.*Cy21.*Tc11+T12.*Cy22.*Tc21;
    Cz12= T11.*Cy11.*Tc12+T11.*Cy12.*Tc22+T12.*Cy21.*Tc12+T12.*Cy22.*Tc22;
    Cz21= T21.*Cy11.*Tc11+T21.*Cy12.*Tc21+T22.*Cy21.*Tc11+T22.*Cy22.*Tc21;
    Cz22= T21.*Cy11.*Tc12+T21.*Cy12.*Tc22+T22.*Cy21.*Tc12+T22.*Cy22.*Tc22;
```

8.3 Computer-aided noise analysis

8.3.1 Chain connection

Example 8.8 Write a script-file to compute the chain representation of the chain of two noisy two-port circuits.

```
function [all,al2,a21,a22,Call,Cal2,Ca21,Ca22]=CHAIN_noisy(x11,x12,x21,...
       x22, Cx11, Cx12, Cx21, Cx22, x ,w11, w12, w21, w22, Cw11, Cw12, Cw21, Cw22, w)
 [a11,a12,a21,a22,Ca11,Ca12,Ca21,Ca22]=CHAIN_noisy(x11,x12,x21,x22,
         Cx11,Cx12,Cx21,Cx22, 'x',w11,w12,w21,w22,Cw11,Cw12,Cw21,Cw22,'w')
% CALCULATES THE EQUIVALENT CHAIN MATRIX OF THE CASCADE OF TWO NOISY
% TWO-PORTS
% 'x' INDICATES WHICH REPRESENTATION FOR THE FIRST MATRIX :z,y,a
% 'w' INDICATES WHICH REPRESENTATION FOR THE SECOND MATRIX :z,y,a
if (x == 'a')
ax11=x11;
ax12=x12;
ax21=x21;
ax22=x22;
Cax11=Cx11;
Cax12=Cx12;
Cax21=Cx21;
Cax22=Cx22;
else
 eval([' [ax11,ax12,ax21,ax22,Cax11,Cax12,Cax21,Cax22]=' x '2a_noisy(x11,...
                                      x12, x21, x22, Cx11, Cx12, Cx21, Cx22); ']);
end
if (w == 'a')
aw11=w11;
aw12=w12;
aw21=w21;
aw22=w22;
Caw11=Cw11;
Caw12=Cw12;
Caw21=Cw21;
Caw22=Cw22;
else
 eval([' [aw11,aw12,aw21,aw22,Caw11,Caw12,Caw21,Caw22]=' w '2a_noisy(w11,...
                                      w12,w21,w22,Cw11,Cw12,Cw21,Cw22);']);
```

```
end
a11=ax11.*aw11 + ax12.*aw21;
a12=ax11.*aw12 + ax12.*aw22;
a21=ax21.*aw11 + ax22.*aw21;
a22=ax21.*aw12 + ax22.*aw22;
 axc11=conj(ax11);
 axc12=conj(ax21);
 axc21=conj(ax12);
 axc22=conj(ax22);
Call= ax11.*Caw11.*axc11+ax11.*Caw12.*axc21+ax12.*Caw21.*axc11+...
                                          ax12.*Caw22.*axc21+Cax11;
Cal2= ax11.*Caw11.*axc12+ax11.*Caw12.*axc22+ax12.*Caw21.*axc12+...
                                         ax12.*Caw22.*axc22+Cax12;
Ca21= ax21.*Caw11.*axc11+ax21.*Caw12.*axc21+ax22.*Caw21.*axc11+...
                                          ax22.*Caw22.*axc21+Cax21;
Ca22= ax21.*Caw11.*axc12+ax21.*Caw12.*axc22+ax22.*Caw21.*axc12+...
                                          ax22.*Caw22.*axc22+Cax22;
```

8.3.2 Parallel connection

Example 8.9 Write a script-file to compute the admittance representation of the parallel connection of two noisy two-port circuits.

```
function [y11,y12,y21,y22,Cy11,Cy12,Cy21,Cy22] = PARALLEL_noisy(x11,x12,...
    x21,x22,Cx11,Cx12,Cx21,Cx22, x ,w11,w12,w21,w22,Cw11,Cw12,Cw21,Cw22,w)
% [y11,y12,y21,y22,Cy11,Cy12,Cy21,Cy22]=PARALLEL_noisy(x11,x12,x21,x22,
        Cx11, Cx12, Cx21, Cx22, 'x', w11, w12, w21, w22, Cw11, Cw12, Cw21, Cw22, 'w')
% CALCULATES THE EQUIVALENT ADMITTANCE MATRIX OF THE PARALLEL CONNECTION
% OF TWO NOISY TWO-PORTS
% 'x' INDICATES WHICH REPRESENTATION FOR THE FIRST MATRIX :z,y,a
% 'w' INDICATES WHICH REPRESENTATION FOR THE SECOND MATRIX :z,y,a
if (x == 'y')
yx11=x11;
yx12=x12;
yx21=x21;
yx22=x22;
Cyx11=Cx11;
Cyx12=Cx12;
Cyx21=Cx21;
Cyx22=Cx22;
else
 eval([' [yx11,yx12,yx21,yx22,Cyx11,Cyx12,Cyx21,Cyx22]=' x '2y_noisy(...
                               x11, x12, x21, x22, Cx11, Cx12, Cx21, Cx22); ']);
end
if (w == 'y')
yw11=w11;
yw12=w12;
yw21=w21;
yw22=w22;
Cyw11=Cw11;
Cyw12=Cw12;
Cyw21=Cw21;
Cyw22=Cw22;
else
 eval([' [yw11,yw12,yw21,yw22,Cyw11,Cyw12,Cyw21,Cyw22]=' w '2y_noisy(...
                               w11, w12, w21, w22, Cw11, Cw12, Cw21, Cw22);']);
```

8.3.3 Series connection

Example 8.10 Write a script-file to compute the impedance representation of the series connection of two noisy two-port circuits.

```
%------
function [z11,z12,z21,z22,Cz11,Cz12,Cz21,Cz22]=SERIES_noisy(x11,x12,x21,...
        x22, Cx11, Cx12, Cx21, Cx22, x ,w11, w12, w21, w22, Cw11, Cw12, Cw21, Cw22, w)
% [z11,z12,z21,z22,Cz11,Cz12,Cz21,Cz22]=SERIES_noisy(x11,x12,x21,x22,
        Cx11,Cx12,Cx21,Cx22, 'x' ,w11,w12,w21,w22,Cw11,Cw12,Cw21,Cw22,'w')
% CALCULATES THE EQUIVALENT IMPEDANCE MATRIX OF THE SERIES CONNECTION
% OF TWO NOISY TWO-PORTS
% 'x' INDICATES WHICH REPRESENTATION FOR THE FIRST MATRIX :z,y,a
% 'w' INDICATES WHICH REPRESENTATION FOR THE SECOND MATRIX :z,y,a
if (x == 'z')
 zx11=x11;
 zx12=x12;
 zx21=x21;
zx22=x22;
Czx11=Cx11;
Czx12=Cx12;
Czx21=Cx21;
Czx22=Cx22;
else
 eval(['[zx11, zx12, zx21, zx22, Czx11, Czx12, Czx21, Czx22] = 'x'2z_noisy(...
                               x11, x12, x21, x22, Cx11, Cx12, Cx21, Cx22); ']);
end
if (w == 'z')
zw11=w11;
zw12=w12;
 zw21=w21;
 zw22=w22;
Czw11=Cw11;
Czw12=Cw12;
Czw21=Cw21;
Czw22=Cw22;
else
 eval([' [zw11,zw12,zw21,zw22,Czw11,Czw12,Czw21,Czw22]=' w '2z_noisy(...
                               w11, w12, w21, w22, Cw11, Cw12, Cw21, Cw22);']);
```

```
end

z11=zx11+zw11 ;
z12=zx12+zw12 ;
z21=zx21+zw21 ;
z22=zx22+zw22 ;

Cz11=Czx11+Czw11 ;
Cz12=Czx12+Czw12 ;
Cz21=Czx21+Czw21 ;
Cz22=Czx22+Czw22 ;
```

8.3.4 Common-emitter amplifier

Example 8.11 Determine the equivalent input noise voltage of the common-emitter amplifier shown in figure 6.6 for frequencies ranging from 100 Hz to 10 MHz. Assume $I_S=33\times 10^{-16}$ A, $\beta_F=250$, $\beta_R=1$, $C_\mu=2$ pF and $C_\pi=10$ pF.

Solution (using SPICE):

```
* Circuit of figure 8.1
```

*-----netlist1-----

V_CC 7 0 dc 10 v_s 1 0 dc 0 ac 1

R_s 1 2 100

R_1 7 3 9k

R_2 3 0 1k

R_E 4 0 300

R_C 7 5 5k

R_L 6 0 15k

C_B 2 3 5u

C_E 4 0 10u

C_L 5 6 1u

Q1 5 3 4 QGEN

·-----

.model QGEN NPN IS=33e-16 BF=250

+ CJC=2e-12 CJE=10e-12

*_____

*.ac DEC 10 1e2 1e7

.noise v(6) v_s DEC 10 1e2 1e7 1

*.plot noise inoise

.plot noise inoise_spectrum

.end

Note that the noise spectra produced by SPICE are unilateral. The bilateral spectral density of the equivalent input noise voltage is

inoise_spectrum

Figure 8.1: Common-emitter amplifier.

Solution (using MATLAB/OCTAVE):

Figure 8.2 shows the small-signal equivalent circuit for the commonemitter including the various noise sources. The noise sources which

Figure 8.2: a) Small-signal model for the common-emitter amplifier. b) Equivalent circuit.

model the noise generated by the transistor are characterised by the following spectral densities:

$$\mathbf{i_{nb}} = q I_B$$

 $\mathbf{i_{nc}} = q I_C$

The 1/f noise is neglected.

```
IC=1e-3;
hFE=250;
q=1.6e-19;
Kb=1.38e-23;
Temp=300;
VT=Kb*Temp/q;
RB=R1*R2/(R1+R2);
f = logspace(2,7);
omega=2*pi.*f;
Gm = IC/VT;
IB=IC/hFE;
r_pi=hFE/Gm;
VCCS_11=j.*omega.*Cpi+1/r_pi;
VCCS 12=zeros(size(f));
VCCS_21=Gm.*ones(size(f));
VCCS_22=zeros(size(f));
C_VCCS_11=q*IB.*ones(size(f));
C_VCCS_12=zeros(size(f));
C_VCCS_21=zeros(size(f));
C_VCCS_22=q*IC.*ones(size(f));
Cmu_11= j.*omega.*Cmu;
Cmu_12=-j.*omega.*Cmu;
Cmu_21=-j.*omega.*Cmu;
Cmu_22= j.*omega.*Cmu;
C_Cmu_11= zeros(size(f));
C_Cmu_12= zeros(size(f));
C_Cmu_21= zeros(size(f));
C_Cmu_22= zeros(size(f));
RSCB_11=j.*omega.*CB./(1+j.*omega.*CB.*Rs);
RSCB_{12}=-j.*omega.*CB./(1+j.*omega.*CB.*Rs);
RSCB_21=-j.*omega.*CB./(1+j.*omega.*CB.*Rs);
RSCB_22=j.*omega.*CB./(1+j.*omega.*CB.*Rs);
C_RSCB_{11=2.*Kb.*Temp.*real(RSCB_{11)};
C_RSCB_{12=2.*Kb.*Temp.*real(RSCB_{12});
C_RSCB_21=2.*Kb.*Temp.*real(RSCB_21);
C_RSCB_22=2.*Kb.*Temp.*real(RSCB_22);
RB 11=RB.*ones(size(f));
RB_12=RB.*ones(size(f));
RB_21=RB.*ones(size(f));
```

```
RB 22=RB.*ones(size(f));
C_RB_11=2.*Kb.*Temp.*real(RB_11);
C_RB_12=2.*Kb.*Temp.*real(RB_12);
C_RB_21=2.*Kb.*Temp.*real(RB_21);
C_RB_22=2.*Kb.*Temp.*real(RB_22);
RL_11=RL.*ones(size(f));
RL_12=RL.*ones(size(f));
RL_21=RL.*ones(size(f));
RL_22=RL.*ones(size(f));
C_RL_11=2.*Kb.*Temp.*real(RL_11);
C_RL_12=2.*Kb.*Temp.*real(RL_12);
C_RL_21=2.*Kb.*Temp.*real(RL_21);
C_RL_22=2.*Kb.*Temp.*real(RL_22);
CL_11= j.*omega.*CL;
CL_12=-j.*omega.*CL;
CL_21=-j.*omega.*CL;
CL_22= j.*omega.*CL;
C_CL_11= zeros(size(f));
C_CL_12= zeros(size(f));
C_CL_21= zeros(size(f));
C_CL_22 = zeros(size(f));
RC_11=RC.*ones(size(f));
RC_12=RC.*ones(size(f));
RC_21=RC.*ones(size(f));
RC_22=RC.*ones(size(f));
C_RC_{11=2.*Kb.*Temp.*real(RC_{11)};
C_RC_12=2.*Kb.*Temp.*real(RC_12);
C_RC_21=2.*Kb.*Temp.*real(RC_21);
C_RC_22=2.*Kb.*Temp.*real(RC_22);
RECE_11=RE./(1+j.*omega.*CE.*RE);
RECE_12=RE./(1+j.*omega.*CE.*RE);
RECE_21=RE./(1+j.*omega.*CE.*RE);
RECE_22=RE./(1+j.*omega.*CE.*RE);
C_RECE_11=2.*Kb.*Temp.*real(RECE_11);
C_RECE_12=2.*Kb.*Temp.*real(RECE_12);
C_RECE_21=2.*Kb.*Temp.*real(RECE_21);
C_RECE_22=2.*Kb.*Temp.*real(RECE_22);
```

```
[Xa_11, Xa_12, Xa_21, Xa_22, C_Xa_11, C_Xa_12, C_Xa_21, C_Xa_22] = PARALLEL_noisy(...
VCCS_11, VCCS_12, VCCS_21, VCCS_22, C_VCCS_11, C_VCCS_12, C_VCCS_21, C_VCCS_22, ...
'y', Cmu_11,Cmu_12,Cmu_21,Cmu_22,C_Cmu_11,C_Cmu_12,C_Cmu_21,C_Cmu_22,'y');
[Xb_11,Xb_12,Xb_21,Xb_22, C_Xb_11,C_Xb_12,C_Xb_21,C_Xb_22]=SERIES_noisy(...
Xa_11, Xa_12, Xa_21, Xa_22, C_Xa_11, C_Xa_12, C_Xa_21, C_Xa_22, 'y', RECE_11, ...
RECE_12, RECE_21, RECE_22, C_RECE_11, C_RECE_12, C_RECE_21, C_RECE_22 , 'z');
[Xc_11,Xc_12,Xc_21,Xc_22,C_Xc_11,C_Xc_12,C_Xc_21,C_Xc_22]=CHAIN_noisy(...
Xb_11, Xb_12, Xb_21, Xb_22, C_Xb_11, C_Xb_12, C_Xb_21, C_Xb_22, 'z', RC_11, ...
RC_12,RC_21,RC_22,C_RC_11,C_RC_12,C_RC_21,C_RC_22,'z');
[Xd_11,Xd_12,Xd_21,Xd_22,C_Xd_11,C_Xd_12,C_Xd_21,C_Xd_22]=CHAIN_noisy(...
Xc_11, Xc_12, Xc_21, Xc_22, C_Xc_11, C_Xc_12, C_Xc_21, C_Xc_22, 'a', CL_11, ...
CL_12, CL_21, CL_22, C_CL_11, C_CL_12, C_CL_21, C_CL_22, 'y');
[Xe_11, Xe_12, Xe_21, Xe_22, C_Xe_11, C_Xe_12, C_Xe_21, C_Xe_22] = CHAIN_noisy(...
Xd_11, Xd_12, Xd_21, Xd_22, C_Xd_11, C_Xd_12, C_Xd_21, C_Xd_22, 'a', RL_11,...
RL_12, RL_21, RL_22, C_RL_11, C_RL_12, C_RL_21, C_RL_22, 'z');
[Xf_11,Xf_12,Xf_21,Xf_22,C_Xf_11,C_Xf_12,C_Xf_21,C_Xf_22]=CHAIN_noisy(...
RB_11, RB_12, RB_21, RB_22, C_RB_11, C_RB_12, C_RB_21, C_RB_22, 'z', Xe_11, Xe_12, ...
Xe_21, Xe_22, C_Xe_11, C_Xe_12, C_Xe_21, C_Xe_22, 'a');
[Xg_11, Xg_12, Xg_21, Xg_22, C_Xg_11, C_Xg_12, C_Xg_21, C_Xg_22] = CHAIN_noisy(...
RSCB_11,RSCB_12,RSCB_21,RSCB_22,C_RSCB_11,C_RSCB_12,C_RSCB_21,...
C_RSCB_22, 'y', Xf_11, Xf_12, Xf_21, Xf_22, C_Xf_11, C_Xf_12, C_Xf_21, C_Xf_22, 'a');
subplot (211)
semilogx(f,abs(1./Xg_11))
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('Magnitude of the voltage gain')
subplot (212)
semilogx(f, angle(1./Xg_11))
xlabel('Frequency (Hz)')
ylabel('Angle (rad)')
title('Phase of the voltage gain')
input('Next plot...');
subplot (111)
```

8.3.5 Differential pair amplifier

Example 8.12 Determine the output noise voltage of the differential pair amplifier shown in figure 8.3. Assume $K_n=0.2~{\rm mA/V^2}~W/L=10, V_{Th}=1.$

Solution (using SPICE):

```
* Circuit of figure 8.3
*----netlist2-----
V_DD 5 0 dc 5
V_SS 6 0 dc -5
V_s 1 0 dc 0 ac 1
Mn1 3 1 2 6 modn L=10u W=100u
Mn2 4 0 2 6 modn L=10u W=100u
Mn3 2 7 6 6 modn L=10u W=100u
Mn4 7 7 6 6 modn L=10u W=100u
R_D1 5 3 6k
R_D2 5 4 6k
R_S 7 0 3k
.model modn nmos level=1 VTO=1 KP=0.2e-3
*.ac DEC 10 1e2 1e8
.noise v(4) V_s DEC 10 1e2 1e8 1
*.plot noise onoise
.plot noise onoise_spectrum
```


Bibliography

- 1. A. Vladimirescu, The SPICE Book, 1994 (Wiley).
- 2. J.O. Attia, *PSPICE and MATLAB for Electronics: An integrated approach*, 2002 (CRC Press).

Index of m-functions

```
a2y.m, 111
a2y\_noisy.m, 157
a2z.m, 115
a2z\_noisy.m,158
abs.m(built-in),44
angle.m (built-in), 44
CHAIN.m, 117
{\tt CHAIN\_noisy.m, 163}
conj.m(built-in),45
{\tt conv.m}\,({\tt built-in}),\,72
eval.m (built-in), 117
imag.m(built-in),44
inv.m (built-in), 6
loglog.m (built-in), 63
logspace.m(built-in),63
PARALLEL.m, 118
parallel.m, 13
PARALLEL_noisy.m, 165
real.m(built-in),44
{\tt rect.m}, 72
semilogx.m (built-in), 63
SERIES.m, 119
SERIES_noisy.m, 167
smith_chart.m, 150
sum.m (built-in), 154
unitstep.m,72
y2a.m, 114
y2a\_noisy.m, 161
y2z.m, 116
y2z_noisy.m, 162
z2a.m, 113
z2a\_noisy.m, 159
z2y.m, 112
z2y\_noisy.m, 160
```

zy2smith.m, 153