## **Homework 3- Solution**

## Total Mark - 100

1. Design a combinational circuit that accepts a 4-bit number and generates a 3 –bit binary number output that approximates the square root of the number. If the square root is 3.5 or larger, give a result of 4. If less than <3.5 and >2.5, give the result of 3.

| Α | В | С | D | S2 | S1 | S0 |
|---|---|---|---|----|----|----|
| 0 | 0 | 0 | 0 | 0  | 0  | 0  |
| 0 | 0 | 0 | 1 | 0  | 0  | 1  |
| 0 | 0 | 1 | 0 | 0  | 0  | 1  |
| 0 | 0 | 1 | 1 | 0  | 1  | 0  |
| 0 | 1 | 0 | 0 | 0  | 1  | 0  |
| 0 | 1 | 0 | 1 | 0  | 1  | 0  |
| 0 | 1 | 1 | 0 | 0  | 1  | 0  |
| 0 | 1 | 1 | 1 | 0  | 1  | 1  |
| 1 | 0 | 0 | 0 | 0  | 1  | 1  |
| 1 | 0 | 0 | 1 | 0  | 1  | 1  |
| 1 | 0 | 1 | 0 | 0  | 1  | 1  |
| 1 | 0 | 1 | 1 | 0  | 1  | 1  |
| 1 | 1 | 0 | 0 | 0  | 1  | 1  |
| 1 | 1 | 0 | 1 | 1  | 0  | 0  |
| 1 | 1 | 1 | 0 | 1  | 0  | 0  |
| 1 | 1 | 1 | 1 | 1  | 0  | 0  |
|   |   |   |   |    |    |    |

$$\begin{split} &S0 = \overline{B}\overline{C}D + \overline{B}C\overline{D} + A\overline{B} + A\overline{C}\overline{D} + \overline{A}BCD \\ &S1 = \overline{A}B + A\overline{B} + \overline{A}CD + B\overline{C}\overline{D} \\ &S2 = ABC + ABD \end{split}$$

2. Design a circuit with a 4-bit BCD input A,B,C,D that produces an output W,X,Y,Z that is equal to the input +6 in binary. For example 9(1001)+6(0110)=15(1111). The output for invalid BCD codes are don't cares.

| Α | В | С | D | W | Χ | Υ | Z |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 | Х | Х | Х | Χ |
| 1 | 0 | 1 | 1 | Χ | Χ | Χ | Χ |
| 1 | 1 | 0 | 0 | Х | Χ | Χ | Χ |
| 1 | 1 | 0 | 1 | Х | Χ | Χ | Χ |
| 1 | 1 | 1 | 0 | Х | Χ | Χ | Χ |
| 1 | 1 | 1 | 1 | х | Χ | Х | Χ |

$$W = A + B + C$$

$$X = \bar{B}\bar{C} + BC$$

$$Y = \bar{C}$$

$$Z = D$$

## 3. Perform technology mapping to (a) NAND and (b) NOR gates for the following circuit







4. Design a 5 to 32 line decoder using a 3 to 8 line decoder ,a 2 to 4 line decoder and 32 2 input AND gates.



5. Design a 4-input priority encoder with four inputs and three outputs including the valid bit but with the truth table representing the case in which input  $D_0$  has the highest priority and input  $D_3$  has the lowest priority.

| $\mathbf{D}_3$ | $D_2$ | $\mathbf{D}_1$ | $\mathbf{D}_0$ | $A_{l}$ | $A_0$                    | V |
|----------------|-------|----------------|----------------|---------|--------------------------|---|
| 0              | 0     | 0              | 0              | Х       | A <sub>0</sub> X 0 1 0 1 | 0 |
| Х              | Х     | Х              | 1              | 0       | 0                        | 1 |
| Х              | Х     | 1              | 0              | 0       | 1                        | 1 |
| Х              | 1     | 0              | 0              | 1       | 0                        | 1 |
| 1              | 0     | 0              | 0              | 1       | 1                        | 1 |

6. A combinational circuit is defined by the two Boolean functions

$$F_1 = \overline{X + Z} + XYZ$$

$$F_2 = \overline{Y + Z} + XYZ$$

Design the circuit with a decoder and external OR gate.

| Х | У | Z | XYZ | (X+Z)' | (Y+Z)' | F1 | F2 |
|---|---|---|-----|--------|--------|----|----|
| 0 | 0 | 0 | 0   | 1      | 1      | 1  | 1  |
| 0 | 0 | 1 | 0   | 0      | 0      | 0  | 0  |
| 0 | 1 | 0 | 0   | 1      | 0      | 1  | 0  |
| 0 | 1 | 1 | 0   | 0      | 0      | 0  | 0  |
| 1 | 0 | 0 | 0   | 0      | 1      | 0  | 1  |
| 1 | 0 | 1 | 0   | 0      | 0      | 0  | 0  |
| 1 | 1 | 0 | 0   | 0      | 0      | 0  | 0  |
| 1 | 1 | 1 | 1   | 0      | 0      | 1  | 1  |

$$f_{1} = \sum_{m=1}^{6} f_{1} = \sum_{m=1}^{6} f_{2} = \sum_{m=1}^{6} f_{2$$



7. A combinational circuit is defined by the following Boolean functions

$$F(A, B, C, D) = \sum m(0,2,3,6,10,11,15)$$

Design the circuit with a decoder and external OR gate.



8. Design a 16 to 1 line multiplexer using a 4 to 16 line decoder and a 16 × 2 AND OR.



9. Implement the following Boolean function with an 8 to 1 line multiplexer and a single inverter with variable D as its input.

$$F(A, B, C, D) = \sum m(2,4,6,9,10,11,15)$$





## 10. Find the truth table for the outputs F and G of the hierarchical circuit shown below.



| W | Х | Υ | Z | F | G |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 1 |