Визначити добову виробничу програму невеликого цеху з пошиття жіночого одягу. Для весняно-літнього сезону модельєри цеху розробили нові моделі жіночих брюк та спідниць; відомі витрати на пошиття цих виробів і ціна їх реалізації на ринку. Необхідно встановити кількість брюк та спідниць, які необхідно пошити за добу. Цифрова інформація по даній ситуації наведена у табл. 1.

Таблиця 1

Виробничі фактори	Витрати на один виріб		Максимально
	брюки	спідниці	можливий
			добовий запас
Тканина, м	1,5	2	42
Трудомісткість, людгод.	3	2	60
Накладні витрати, у.о.	5	5	200
Ціна одного виробу, у.о.	60	50	

Вивчення ринку збуту показало, що добовий попит на брюки ніколи не перевищить 18 шт. Попит на спідниці забезпечений.

Яку кількість брюк і спідниць повинен пошити цех, щоб прибуток від реалізації продукції був максимальний?

Розв'язання

Для розв'язання поставленої задачі потрібно почати з побудови математичної моделі. Так як слід визначити обсяги виробництва, то змінними у моделі є:

 x_1 – обсяг виробництва брюк на добу, шт.

х₂ – обсяг виробництва спідниць на добу, шт.

При розв'язанні задачі повинні бути враховані обмеження на витрати виробничих факторів (тканини, праці) і накладні витрати, а також попит на готову продукцію.

Отримаємо чотири обмеження:

- 1) $1.5x_1+2x_2 \le 42$;
- 2) $3x_1+2x_2 \le 60$;
- 3) $5x_1+5x_2\leq 200$;
- 4) $x_1 \le 18$.

Обсяги виробництва продукції не можуть набувати від'ємних значень, тобто $x_1 \ge 0$ і $x_2 \ge 0$.

Мета нашого аналізу полягає в максимізації прибутку, кількісним виразом якого є вираз: $60x_1+50x_2 \rightarrow max$. Тобто, маємо задачу лінійного програмування:

$$F(x_1,x_2)=60x_1+50x_2 \rightarrow max, \\ 1,5x_1+2x_2 \leq 42; \\ 3x_1+2x_2 \leq 60; \\ 5x_1+5x_2 \leq 200; \\ x_1 \leq 18. \\ x_1, x_2 \geq 0.$$

Розв'язок можна отримати графічним способом (рис. 3).

Шуканою областю розв'язків, у якому одночасно виконуються усі обмеження моделі, є многокутник ABCDE. Щоб знайти оптимальний розв'язок, необхідно переміщувати пряму, що характеризує прибуток (рис. 3), у напряму зростання цільової функції до тих пір, поки вона не переміститься у область недопустимих розв'язків.

На рис. 3 видно, що оптимальному розв'язку відповідає точка C, що є точкою перетину прямих обмежень (I) і (II). Визначимо координати точки C, розв'язавши систему:

$$\begin{cases} 1.5x_1 + 2x_2 = 42, \\ 3x_1 + 2x_2 = 60. \end{cases}$$

Розв'язання вказаної системи рівнянь дає x_1 =12, x_2 =12. Отриманий розв'язок означає, що цех повинен на добу виробляти по 12 брюк і спідниць. Прибуток, отриманий у цьому випадку, складає: