Introdução à teoria das probabilidades

- Introdução
- Conceitos fundamentais
- Conceitos de probabilidade
- Teoremas para o cálculo de probabilidades
- Probabilidade condicional e independência
- > Teorema de Bayes

Probabilidade condicional e independência

Sejam A e B dois eventos associados a um mesmo espaço amostral S. Se A e B não são eventos mutuamente exclusivos $(A \cap B \neq \emptyset)$, então A e B poderão ser eventos independentes ou condicionados.

Exemplo:

Experimento: Uma caixa contém cinco bolas equiprováveis, sendo três azuis e duas brancas. Duas bolas são retiradas, uma a uma, e suas cores são observadas.

duas bolas

Definimos, então, dois eventos:

A₁: a primeira bola é azul

B₂: a segunda bola é branca

As probabilidades dos eventos A_1 e B_2 serão calculadas em duas situações: retiradas **sem** e **com reposição** da primeira bola.

Situação 1. Consideremos que a primeira bola retirada não é reposta → retirada sem reposição

$$A_1 = \{A, A, A\}$$

$$P(A_1) = \frac{\# A_1}{\# S} = \frac{3}{5}$$

A probabilidade do B₂ depende da ocorrência ou não do A₁?

 \Rightarrow Se ocorreu A_1 , então temos $P(B_2/A_1)$

$$S = \{B, B, A, A\}$$

$$P(B_2/A_1) = \frac{\#B_2/A_1}{\#S} = \frac{2}{4}$$

$$B_2/A_1 = \{B, B\}$$

⇒ Se não ocorreu A₁, então temos P(B₂)

$$S = \{B, A, A, A\}$$

$$B_2 = \{B\}$$

$$P(B_2) = \frac{\#B_2}{\#S} = \frac{1}{4}$$

Se a bola **não for reposta**, a probabilidade de ocorrência do B₂ fica **alterada** pela ocorrência ou não do A₁

$$P(B_2/A_1) \neq P(B_2)$$

Eventos condicionados

Definição: dois eventos quaisquer, A e B, são condicionados quando a ocorrência de um altera a probabilidade de ocorrência do outro.

A probabilidade condicional de A é denotada por P(A/B)

(lê-se probabilidade de A dado que ocorreu B)

A₁: a primeira bola é azul

B₂: a segunda bola é branca

Situação 2. Consideremos que a primeira bola retirada é reposta antes de tirar a segunda → retirada com reposição.

$$S = \{B, B, A, A, A\}$$

$$A_1 = \{A, A, A\}$$

$$P(A_1) = \frac{\# A_1}{\# S} = \frac{3}{5}$$

A probabilidade do B₂ depende da ocorrência do A₁?

 \Rightarrow Se ocorreu A_1 , então temos $P(B_2/A_1)$

$$S = \{B, B, A, A, A\}$$

 $B_2/A_1 = \{B, B\}$

$$P(B_2/A_1) = \frac{\#B_2/A_1}{\#S} = \frac{2}{5}$$

⇒ Se não ocorreu A₁, então temos P(B₂)

$$S = \{B, B, A, A, A\}$$

 $B_2 = \{B, B\}$

$$P(B_2) = \frac{\#B_2}{\#S} = \frac{2}{5}$$

Se a bola **for reposta**, a probabilidade de ocorrência do B₂ **não é alterada** pela ocorrência ou não do A₁

$$P(B_2/A_1) = P(B_2)$$

Eventos independentes

Definição: Dois eventos quaisquer, A e B, são independentes quando a ocorrência de um não altera a probabilidade de ocorrência do outro.

$$P(A/B)=P(A) e P(B/A)=P(B)$$

Teorema do Produto das Probabilidades

Se A e B são dois eventos quaisquer, então

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

Caso particular:

A e B são independentes ⇔

mutuamente exclusivos

Grau máximo de dependência entre dois eventos: a ocorrência de um impede a ocorrência do outro

não mutuamente exclusivos

$$A \cap B \neq \emptyset$$

Condicionados: a ocorrência de um altera a probabilidade de ocorrência do outro

Independentes: a ocorrência de um não altera a probabilidade de ocorrência do outro

Exercício: Dois dígitos são selecionados aleatoriamente de 1 a 9 sem repeti-los. Se a soma é par encontre a probabilidade de ambos os números serem ímpares.

$$\# S = C_{9.2} = 36$$

A = ambos são ímpares
$$\Rightarrow$$
 #A = $C_{5,2}$ = 10
B = soma é par \Rightarrow #B = $C_{5,2}$ + $C_{4,2}$ = 10 + 6 = 16

A∩B = ambos ímpares com soma par

$$\Rightarrow$$
 # A \cap B = C_{5,2} = 10

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{10/36}{16/36} = \frac{10}{16} = 0,625$$

Teorema da Probabilidade Total e Teorema de Bayes

Seja S um espaço amostral, com n partições, onde está definido o evento A.

Thomas Bayes (1702 –1761)

Exemplo: Em uma fábrica de parafusos, as máquinas 1, 2 e 3 produzem 25%, 35% e 40% do total produzido. Da produção de cada máquina, 5%, 4% e 2%, respectivamente, são defeituosos.

S = produção total da fábrica

B₁ = produção da máquina 1

B₂ = produção da máquina 2

B₃ = produção da máquina 3

A = produção defeituosa

Se escolhemos ao acaso um parafuso desta fábrica, qual é a probabilidade de que este parafuso seja defeituoso?

$$A = (B_1 \cap A) \cup (B_2 \cap A) \cup (B_3 \cap A)$$

$$P(A) = ?$$

$$P(A) = P[(B_1 \cap A) \cup (B_2 \cap A) \cup (B_3 \cap A)] = P(B_1 \cap A) + P(B_2 \cap A) + P(B_3 \cap A)$$

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(B) \cdot P(A/B)$$

$$P(B_1 \cap A) = P(B_1) \cdot P(A/B_1)$$

$$P(B_2 \cap A) = P(B_2) \cdot P(A/B_2)$$

$$P(B_3 \cap A) = P(B_3) \cdot P(A/B_3)$$

$$P(A) = P(B_1) \cdot P(A/B_1) + P(B_2) \cdot P(A/B_2) + P(B_3) \cdot P(A/B_3)$$

Profa Lisiane Selau

$$P(A) = P(B_1) \cdot P(A/B_1) + P(B_2) \cdot P(A/B_2) + P(B_3) \cdot P(A/B_3)$$

Exemplo: Em uma fábrica de parafusos, as máquinas 1, 2 e 3 produzem 25%, 35% e 40% do total produzido. Da produção de cada máquina, 5%, 4% e 2%, respectivamente, são defeituosos.

 $P(B_1)=0,25$

 $P(B_2) = 0.35$

 $P(B_3) = 0.40$

15

Probabilidade de ser defeituoso dado que foi fabricado pela máquina 1

$$\rightarrow$$
 P(A/B₁) = 0,05

Probabilidade de ser defeituoso dado que foi fabricado pela máquina 2

$$\rightarrow$$
 P(A/B₂) = 0.04

Probabilidade de ser defeituoso dado que foi fabricado pela máquina 3

$$\rightarrow P(A/B_3) = 0.02$$

Prof^a Lisiane Selau

$$P(B_1)=0.25$$
 $P(A/B_1)=0.05$

$$P(B_2) = 0.35$$
 $P(A/B_2) = 0.04$

$$P(B_3) = 0.40$$
 $P(A/B_3) = 0.02$

$$P(A) = P(B_1) \cdot P(A/B_1) + P(B_2) \cdot P(A/B_2) + P(B_3) \cdot P(A/B_3)$$

$$P(A) = 0.25 \cdot 0.05 + 0.35 \cdot 0.04 + 0.40 \cdot 0.02$$

$$P(A) = 0.0345$$

P(A) = 0.0345 3,45% da produção de parafusos da fábrica é defeituosa

Teorema da Probabilidade Total:

$$P(A) = P(B_1) \cdot P(A/B_1) + P(B_2) \cdot P(A/B_2) + ... + P(B_n) \cdot P(A/B_n)$$

 $P(A) = \sum_{i=1}^{n} P(B_i) \cdot P(A/B_i)$

Profa Lisiane Selau

 $B_1 = máquina 1$

 $B_2 = máquina 2$

 $B_3 = máquina 3$

Escolhe-se ao acaso um parafuso e verifica-se que ele é defeituoso. Qual é a probabilidade de que seja da máquina 1, da máquina 2 e da máquina 3?

Qual é a probabilidade de ocorrer B₁, sabendo-se que ocorreu A?

Probabilidade condicionada:

$$P(B_1/A) = ?$$

$$P(B_1/A) = \frac{P(B_1 \cap A)}{P(A)}$$

$$P(B_1 \cap A) = P(B_1) \cdot P(A/B_1)$$

$$P(A) = \sum_{i=1}^{3} P(B_i) \cdot P(A/B_i)$$

Teorema de Bayes

$$P(B_{i}/A) = \frac{P(B_{i}).P(A/B_{i})}{\sum_{i=1}^{n} P(B_{i}).P(A/B_{i})}$$

Exemplo: Em uma fábrica de parafusos, as máquinas 1, 2 e 3 produzem 25%, 35% e 40% do total produzido. Da produção de cada máquina, 5%, 4% e 2%, respectivamente, são defeituosos.

B₁ = produção da máquina 1

B₂ = produção da máquina 2

B₃ = produção da máquina 3

A = produção defeituosa

Escolhe-se ao acaso um parafuso e verifica-se que ele é defeituoso. Qual é a probabilidade de que seja da máquina 1, da máquina 2 e da máquina 3?

Solução:
$$P(B_1)=0,25$$

$$P(B_2) = 0.35$$
 $P(B_3) = 0.40$

$$P(B_3) = 0.40$$

$$P(A/B_1) = 0.05$$

$$P(A/B_2) = 0.04$$

$$P(A/B_1) = 0.05$$
 $P(A/B_2) = 0.04$ $P(A/B_3) = 0.02$

$$P(B_1/A) = \frac{P(B_1).P(A/B_1)}{P(A)} = \frac{0.25.0.05}{0.0345} = 0.3623$$

$$P(B_2/A) = \frac{P(B_2).P(A/B_2)}{P(A)} = \frac{0,35.0,04}{0,0345} = 0,4058$$

 $P(B_3/A) = \frac{P(B_3).P(A/B_3)}{P(A)} = \frac{0.40.0,02}{0.0345} = 0.2319$

Se o parafuso é defeituoso, a probabilidade de ter sido fabricado pela Máquina 1 é 0,3623; pela Máquina 2 é 0,4058 e pela Máquina 3 é 0,2319

20

Exercício:

Em uma certa comunidade, 6 % de todos os adultos com mais de 45 anos têm diabetes. Um novo teste diagnostica corretamente 84% das pessoas que têm diabetes e 98% das que não tem a doença.

- a) Qual é a probabilidade de uma pessoa diagnosticada como diabética no teste, ter de fato a doença? 0,7283
- b) Qual é a probabilidade de uma pessoa que faça o teste seja diagnosticada como não diabética? 0,9308

DD
$$-0.84$$
D -0.06
DND -0.16
DD -0.02
ND -0.94
DND -0.98

a) Qual é a probabilidade de uma pessoa diagnosticada como diabética no teste, ter de fato a doença?

$$P(D/DD) = \frac{P(D).P(DD/D)}{P(D).P(DD/D) + P(ND).P(DD/ND)}$$

$$= \frac{0,06 \times 0,84}{(0,06 \times 0,84) + (0,94 \times 0,02)} = \frac{0,0504}{0,0504 + 0,0188} = \frac{0,0504}{0,0692} = 0,7283 = 72,83\%$$

b) Qual é a probabilidade de uma pessoa que faça o teste seja diagnosticada como não diabética?

$$P(DND) = P(D).P(DND/D) + P(ND).P(DND/ND)$$

= $0.06 \times 0.16 + 0.94 \times 0.98 = 0.0096 + 0.9212 = 0.9308 = 93.08\%$

Profa Lisiane Selau