# Bryan T. Weinstein

Active TS/SCI Clearance

9 Sigmund Way Walpole, MA 02081 (585) 738-0690 btweinstein@gmail.com

## Education

• Harvard University

Cambridge, MA

May 2018

PhD in Applied Physics

- Conducted experiments and developed probabilistic models & simulations to investigate microbial colonies' stochastic evolutionary dynamics on the surface of complex fluids and materials

• Harvard University

Cambridge, MA

PhD Secondary Field: Computational Science and Engineering (CSE)

May 2018

Mastered state-of-the-art computational methods used in scientific research and data science;
 completed advanced applied math and scientific computing courses

• Harvard University

Cambridge, MA

S.M. in Applied Physics

November 2014

- GPA: 3.95/4.00

• Case Western Reserve University

Cleveland, OH

Bachelor of Science in Engineering, Engineering Physics

May 2012

- GPA: 4.00/4.00, Summa Cum Laude, Valedictorian

- Engineering Concentration: Aerospace Engineering

# Work Experience

• MITRE

Bedford, MA

Lead Modeling & Simulation Engineer Senior Modeling & Simulation Engineer April 2021 - Present August 2018 - April 2021

August 2010 - April 2021

- Develop innovative technical solutions to national security problems utilizing modeling, simulation, engineering, data science, and prototyping skills.
- Led core part of department's work program (Command and Control across all domains); mentored dozens of staff and led diverse teams of various sizes across classification levels to produce high quality and timely deliverables for government stakeholders
- Presented results to senior government stakeholders across the DOD and MITRE executive leadership to deliver maximum impact
- Pioneered the widespread usage of a probabilistic agent-based modeling tool across the company
  - \* added testing, CI/CD (none existed where I started), docker based pipelines, human-in-the-loop experimentation. Created community of practice; 700+ members now. Across all classification levels. Developed widely used repositories, deployed production-level code at different classification levels. Presented at national conferences.
- Proposed and procured over three million dollars in internal research funding to build and deploy a
  prototype allowing humans to interact with our probabilistic simulations to conduct wargames; used
  prototype to solve directly funded government problems

### Selected MITRE Awards

#### • Trailblazer Award: Functional Architecture Deployment

December 2023

Awarded for demonstrating tenacity over the past five years; led a large team to enable distributed
 LVC experimentation at the classified level through a next-gen C4 prototype

- Catalyst Award: CDAO Data Integration Layer Prototype Demonstration May 2023
  - Awarded to team that delivered a prototype of an API Gateway to the Chief Data and Artificial Intelligence Office (CDAO) in response to a quick-turn two week request
- Trailblazer Award: Digital Twin JWICS deployment

 $\mathrm{May}\ 2022$ 

- Given to our team for linking our next-gen C4 prototype to a classified dashboard using a series of Open APIs, and demonstrating this capability during MITRE's Research and Technology (R&T) showcase to hundreds of government sponsors
- Trailblazer Award: Self Forming Kill Chains Analysis

May 2021

- Recognized the impact of our analysis showing the benefit of novel decision aids at the army tactical level in partnership with OUSD R&E, Army Futures Command, and MIT Lincoln Labs
- Breakthrough Award: Chief's Challenge Prototype

July 2020

 Acknowledged our team's work to rapidly create an exemplar JADC2 prototype for the Air Force Secretary of Defense under a tight deadline

# Selected Graduate Fellowships and Awards

• Institute for Applied Computational Science Scholarship

Graduate Student

Cambridge, MA

September 2016 - September 2017

- Wrote proposal and won a \$25,000 student scholarship from Harvard's Institute for Applied Computational Science (IACS)
- Used funds to further develop my IACS capstone: an OpenCL-powered Lattice Boltzmann fluid mechanics simulator utilizing OpenGL for real-time visualization
- Department of Energy Office of Science Graduate Fellowship Washington, D.C.

  Graduate Student September 2012 September 2015
  - Wrote proposal to win a competitive fellowship that supports students pursuing training in areas relevant to Department of Energy (DOE). Selected out of 1,300 applicants; 50 fellowships awarded
  - Attended yearly conferences at National Laboratories; presented posters on my active research, networked with other DOE fellows and government officials
- Harvard University Pierce Fellow

  Graduate Student

Cambridge, MA

September 2012 - September 2015

 Won fellowship awarded to the highest caliber PhD students accepted into Harvard's School of Engineering and Applied Sciences (SEAS). Selected out of 150 students; 8 fellowships awarded

# Computational & Analytical Skills

- Over 12 years of experience optimizing programs to run on multiple processors, graphics processing units (GPUs), and supercomputers
- Expert at using Jupyter/IPython Notebooks to explore, visualize, and analyze large tabular datasets and large collections of images
- Experienced at applying stochastic techniques to model and solve high-dimensional problems
- Expert at rapidly creating new M&S software tools to answer novel questions
- Ability to create and calibrate mathematical models to data through core physics training
- Expert knowledge of Applied Mathematics, especially stochastic modeling involving the Master equation, the Fokker-Planck equation (PDEs), and (spatial) stochastic differential equations
- Selected Government Software
  - AFSIM, pymission, SBSS, C2S, milsymbol, custom MITRE AFSIM/Python packages
- Languages for General Scientific Computing:
  - Python, Cython, OpenCL, CUDA, C, C++, Java, Mathematica, Matlab
- Selected Python Packages and Tools:
  - IPython/Jupyter Notebook, matplotlib, seaborn, colorcet, numpy, scipy, pandas, pandera, astrolib, scikit-image, pymc3 multiprocessing, cython, cython\_gsl, mako, PyOpenCL, pyCUDA
- Selected Software Development Tools:
  - Docker, CI/CD, GitLab, git, Django, REST APIs, Flask, FastAPI, Pydantic, JIRA, Nexus Registries,
     VS Code, PyCharm, vim
- Fluid and Solid Mechanics Simulations:
  - Lattice Boltzmann Method (custom-built code), OpenFOAM, SALOME, gmsh
- Image Analysis Tools
  - Python, OpenCL, ImageJ/Fiji

### Certifications

• TS/SCI Clearance

Active

October 2020

• Secret Clearance MITRE

Active October 2019

• Engineer in Training (EIT)

Active

September 2012

 Successfully passed Fundamentals of Engineering Exam, the first step towards becoming a licensed Professional Engineer (PE)

### **Publications**

- [1] Bryan T. Weinstein, Maxim O. Lavrentovich, et al. "Genetic Drift and Selection in Many-Allelle Range Expansions." In: *PLOS Computational Biology* 13.12 (Dec. 2017). Article chosen for journal cover photo, e1005866. DOI: 10.1371/journal.pcbi.1005866. URL: http://dx.plos.org/10.1371/journal.pcbi.1005866.
- [2] B. T. Weinstein, S. Atis, et al. "Microbial Range Expansions on Liquid Substrates." In: *Physical Review X* 9.2 (June 2019). Equal first co-author. DOI: 10.1103/physrevx.9.021058. URL: https://doi.org/10.1103/PhysRevX.9.021058.
- [3] Severine Atis, Bryan T. Weinstein, et al. *Rocket yeast*. Video. DFD Gallery of Fluid Motion Milton van Dyke Award. Nov. 2021. DOI: 10.1103/physrevfluids.6.110507. URL: https://doi.org/10.1103/PhysRevFluids.6.110507.