Good proofs are:

- 1. correct
- 2. complete
- 3. clear
- 4. brief
- 5. "elegant"
- 6. well-organized
- 7. in order

Fermat's Last Thm:

$$orall n>2,
eg\exists x,y,z\in \mathbb{N}^+ \ x^n+y^n=z^n$$

Problem:

Find a sequence of moves to go from **D**

Legal Move: Slide a letter into a adjacent blank square.

Thm: There is no sequence of legal moves to invert G&H and return all other letters to their original position.

Natural Order

Row moves

Lemma 1:

A row move does not change the order of the items.

Proof: Obvious. In a row move, we move an item from cell i into an adjacent cell i-1 or i+1. Nothing else moves. Hence the order of items is preserved.□

Column moves

Lemma2:

A column move changes the relative order of precisely 2 paris of items.

Proof: In a column move, we move an item in cell i to a blank spot in cell i-3 or i+3. When an item moves 3 positions, it changes order with 2 items(i-1,i-2 or i+1,i+2). \Box

Order Changes in Column moves:

Def:

A pair of letter L1&L2 form an inversion, also known as an inverted pair, if L1 precedes L2 in alphabet, but L1 appears after L2 in the puzzle.

(D,F),(E,F),(E,G) ——3 inverions in the left puzzle.

Lemma 3:

During a move, the number of inversions can only increases by 2, decrease by 2 or stay same.

Pf: Row move :No changes (by lemma 1)