Лекция 7. Гомоморфизм и изоморфизм. Циклические группы. Смежные классы

#вшпи #дискретная_математика #теория

Автор конспекта: Гридчин Михаил

Аккуратнее про группы

Вспомним определение группы

Def. Множество M и операцию \circ на нём (" \circ ": $M \times M \to M$) называют группой G и пишут $G = (M, \circ)$, если:

0) " \circ " - алгебраическая операция, то есть $orall a,b\in G(M)\implies a\circ b\in G.$

- 1. ассоциативность: $\forall a,b,c \in G \implies a \circ (b \circ c) = (a \circ b) \circ c.$
- 2. нейтральный элемент $\exists ! e \in G : \forall a \in G \implies e \circ a = a \circ e = a$. Нетрудно показать, что нейтральный элемент единственный. Действительно,

$$e_1 \circ e_2 = e_1 = e_2 \circ e_1 = e_2 \implies e_1 = e_2.$$

3. обратный элемент. $\forall a \in G \exists ! b \in G : a \circ b = b \circ a = e$. Нетрудно показать, что обратный элемент может единственный. Действительно,

$$a\circ b=a\circ c=e$$
 домножим на b слева $(b\circ a)\circ b=b=(b\circ a)\circ c=c$ $b=c$

Свойство 1. $(a^n)^m = a^{nm}$ - по определению и по ассоциативности.

Свойство 2. $(a^{-1})^m \circ a^m = e$ по ассоциативности $\implies (a^{-1})^m = (a^m)^{-1} =: a^{-m}$.

Def. $a^0 := e$.

Def. Порядок конечной группы - количество элементов := |G|.

Def. Порядок элемента $a\in G=:ord(a)$ - это такое наименьшее $m\in\mathbb{N}:a^m=e.$

Свойство 3. В конечных группах существуют порядки всех элементов (они конечны).

 \square Операция (\circ) алгебраическая \implies все степени элемента $a \in G$ также лежат в G.

Рассмотрим ряд:

$$a^1$$
 a^2 a^3 \dots a^N , $N>|G|$

Тогда $\exists i,j \in \{1,2,3,\ldots,N\}: a^i = a^j$ По принципу Дирихле. Тогда $a^{|i-j|} = e$. \blacksquare

Гомоморфизм и изоморфизм

Def. Гомоморфизм групп из группы G в группу G' - это такое отображение ϕ

$$\phi:G o G',\quad G=(M,\circ),\quad G'=(M',*)$$

Что $oxed{ orall a,b \in G: \phi(a \circ b) = \phi(a) * \phi(b) }$

Свойство гомоморфизма 1. $\phi(a^{-1}) = (\phi(a))^{-1}, \, \phi(e) = e'.$

1.
$$\phi(a \circ e) = \phi(a) * \phi(e) = \phi(a) = \phi(e \circ a) = \phi(e) * \phi(a) \implies \phi(e \circ a) = \phi(a \circ e) = \phi(a)$$
.

2.
$$\phi(a \circ a^{-1}) = \phi(a^{-1} \circ a) = \phi(e) = e' = \phi(a) * \phi(a^{-1}) = \phi(a^{-1}) * \phi(a)$$
.

Свойство гомоморфизма 2. $a^m = e \implies \phi(a^m) = e'$ (из свойства гомоморфизма 1) $\phi(a)^m = e'$ (по определению гомоморфизма) \implies порядок элемента $\phi(a)$ является делителем порядка элемента a.

Def. Сюръективный гомоморфизм из G на G' - гомоморфизм, такой, что

$$orall b \in G' \exists a \in G : \phi(a) = b \iff Im(\phi) = \phi(G) = G'$$

Def. Изоморфизм - гомоморфизм, являющийся биекцией. Обозначается: "≅".

Свойство Изоморфизма. Изоморфизм - это гомоморфизм из G на G' и одновременно гомоморфизм из G' на G.

Таблицы Кэли.

Построим таблицу Кэли для множества на 4 элементах.

В таблице A порядок каждого элемента кроме нейтрального равен 2. В таблице B порядок каждого элемента равен 3.

Для таблицы A например можно взять множество пар по модулю 2 с поэлементным хогом (\oplus) ($M=\{(0,0),(0,1),(1,0),(1,1)\}$). Нейтральный - (0,0), обратный к $a\in M$ это сам a. Для таблицы B подойдёт например $G(\mathbb{Z}_4,+)$.

Утверждение: группы, задающиеся таблицами Кэли для множества на 4 элементах неизоморфны.

□ По второму свойству гомоморфизма порядок элемента $\phi(a)$ должен быть делителем порядка элемента $a, \forall a \in G'$. Но порядки элементов $\phi(a)$ все кроме нейтрального равны 2, а у a порядки все кроме нейтрального равны 3. Как видим, a - не делитель 3. ■

Note. Группа порядка 5 всего одна.

Свойства групп

Свойство 4. Если $a^m = e$, то порядок a - делитель $m, m \in \mathbb{N}$.

 \square Мы точно знаем, что $ord(a) \leq m$. Обозначим n := ord(a). Разделим m на n с остатком:

$$m=nq+r \implies a^m=e=\underbrace{(a^n)^q}_{=e}\circ a^r=a^r$$

Но при этом $0 \le r < n$ и при этом n - наименьшее натуральное число, при котором $a^n = e \implies r = 0$. \blacksquare

Def. Группа G называется $\mu \kappa \pi u \nu e \kappa \sigma u$, если $\exists a \in G$ (порождающий элемент):

$$orall b \in G \exists m \in \mathbb{Z} : a^m = b$$

Замечание. m в определении именно *целое*, не натуральное, что важно в следующем утверждении.

Утверждение. Группа $(\mathbb{Z},+)$ - циклическая группа . Действительно, порождающий элемент - 1 или -1.

Следствие. Порождающий элемент не обязательно единственный.

Пример. Группа $(\mathbb{Z}_m, +)$ - циклическая группа. Порождающий элемент - 1.

Def. Если группа G циклическая и |G|=m, то её обозначают C_m .

Теорема. Все циклические группы из m элементов изоморфны между собой.

 \square Пусть есть циклические группа C_m и C_m' , неизоморфные между собой:

$$C_m: e \quad a \quad a^2 \quad \dots \quad a^{m-1} \ C'_m: \quad e \quad b \quad b^2 \quad \dots \quad b^{m-1}$$

Все элементы первой и второй групп различны, иначе бы порядки групп были меньше. То есть порядок порождающего элемента совпадает с порядком группы. Изоморфизм тривиальный. Сопоставим $\phi(a^i)=b^i$.

Следствие. Всякая циклическая группа $C_m \cong (\mathbb{Z}_m, +)$.

Def. Будем говорить, что H - подгруппа группы $G(M,\circ)$ и записывать H < G, если

$$\begin{cases} H \subseteq G \\ H \text{ - группа относитаельно } (\circ) \end{cases}$$

Def (эквивалентное определение подгруппы). H - подгруппа G, если:

$$\left\{egin{aligned} H\subseteq G\ orall a,b\in H\implies a\circ b\in H\ orall a\in H\implies a^{-1}\in H \end{aligned}
ight.$$

Теорема. Приведённые определения подгруппы эквивалентны. \square Пусть выполнено первое. Тогда второе следует из аксиоматики группы напрямую. Пусть выполнено второе. Тогда H замкнуто относительно групповой операции (\circ) , а также взятие обратного элемента также не выводит за пределы H из аксиоматики группы. Отдельно доказывается, что нейтральный элемент также лежит в H. Это следует из единственности e также из аксиоматики группы и из того, что $a \circ a^{-1} = e$.

Теорема (критерий подгруппы). H является подгруппой G тогда и только тогда, когда $\forall a,b\in H\implies a\circ b^{-1}\in H$ и $H\subseteq G$.

□ В одну сторону очевидно и в другую тоже очевидно.

Слева направо. Если $b \in H$, то и $b^{-1} \in H$, значит $a \circ b^{-1} \in H$.

Справа налево. Если $orall a,b\in H$ верно, что $a\circ b^{-1}\in H$, тогда

- 1. возьмём b=a. Тогда $e\in H$.
- a=e. Тогда a=0.
- 3. возьмём $b=b^{-1}$. Тогда $a\circ b^{-1^{-1}}=a\circ b\in H$. И получили первый пункт эквивалентного определения подгруппы

Теорема. Пусть дана произвольная группа G и элемент $a \in G: ord(a) = n, n \in \mathbb{N}$. Тогда

$$H := \{a^0, a^1, \dots, a^{n-1}\} < G$$

 \square Заметим, что $H\subseteq G$. Тогда применим критерий подгруппы и получим требуемое. \blacksquare

Пример. Пример бесконечной группы, у которой есть конечные циклические подгруппы. Рассмотрим множество всех многочленов с коэффициентами по модулю m. Обозначается $\mathbb{Z}_m[x]$. Причём порядок каждого элемента - делитель m.

Def. Пусть H < G. Возьмём $g \in G$. Будем говорить, что gH - левый смежный класс по подгруппе H с представителем g, если

$$gH:=\{g\circ h\mid h\in H\}$$

Утверждение. Смежные классы не пересекаются или совпадают.

$$\square$$
 Пусть $\exists z \in aH \cap bH \implies \exists h_1 \in H, h_2 \in H: z = a \circ h_1 = b \circ h_2 \implies a = b \circ h_2 \circ h_1^{-1}$, также $\implies \forall t \in aH \to t = a\tilde{h} = b \underbrace{\circ h_2 \circ h_1^{-1} \circ \tilde{h}}_{\in H} \implies t \in bH$. \blacksquare