Topic 10: Virtual Private Networks

Virtual Private Networks (VPNs)

Understand the principles and mechanisms of VPN technology and use it to secure your network communications

COMP38411: Cryptography and Network Security (Topic 10)

1

Overview

- □ VPN Overview
- □ VPN Technologies
 - OPoint-to-point tunnelling protocol (PPTP)
 - OLayer 2 tunnelling protocol (L2TP)
 - OIP Security (IPSec)
- □ Conclusions

source: Chapter 20 of Cryptography and Network Security; RFCs 2401/2402/2406/2408

COMP38411: Cryptography and Network Security (Topic 10)

VPN Overview - What is a VPN?

- □ VPN Routers (or VPN Gateways) are located at the corporate network perimeter; they perform tunneling, authentication, and data encryption/decryption.
- ☐ They can be categorized as Standalone or Integrated.
 - Standalone VPNs incorporate purpose-built devices.
 - OIntegrated implementations add VPN functionality to existing devices such as routers, firewalls.
 - ➤ Router based VPNs add encryption support to existing routers and can keep the upgrade costs of VPN low.
 - Firewall based VPNs are a workable solution for small networks with low traffic volume.

COMP38411: Cryptography and Network Security (Topic 10)

VPN Overview - What is a VPN?

□ VPN Client

- Ois software used for remote VPN access.
- Ocreates a secure path from the remote client computer to a VPN gateway.
- ocan be loaded onto an individual computer requesting remote access **or** a router that establishes a peer-to-peer (router-to-router) VPN connection.
- □ During tunnel setup, the devices on each side of the tunnel agree on the details of authentication and encryption.
 - OAuthentication is for identifying VPN users and devices and for ensuring the authenticity of data;
 - OEncryption is for protecting the confidentiality of data while transit across the Internet.

COMP38411: Cryptography and Network Security (Topic 10)

7

VPN Overview – VPN Types

Types	Applications	Alternatives	Benefits
Remote Access VPN	Remote Connectivity	Dedicated Dial ISDN	Ubiquitous Access Lower Cost
Intranet VPN	Site-to-Site Internal Connectivity	Leased Line	Extended Connectivity Lower Cost
Extranet VPN	Business-to- Business External Connectivity	Fax, Snail Post	Facilitates eTransaction and eCommerce

COMP38411: Cryptography and Network Security (Topic 10)

VPN Overview - Why do we need it?

- □ Security risks on the Internet:
 - Loss of privacy (packet sniffing) a perpetrator may observe confidential
 data as it traverses the Internet.
 - Loss of data integrity data may be modified maliciously or accidentally.
 - Oldentity spoofing impersonation.

ODenial of Service - attacks to cause computer systems to crash.

COMP38411: Cryptography and Network Security (Topic 10)

9

Confidentiality -

Encryption

Integrity -

HMAC

Entity Authentication -

Keyed hash token

VPN Overview – VPN protocols

- ☐ There are multiple ways of implementing a VPN
 - OPPTP (point-to-point tunnelling protocol) is based upon PPP (point-to-point protocol)
 - oL2TP (Layer 2 tunnelling protocol) is an extension or enhanced version of PPTP; often used together with IPSec.
 - **OIPSec**
- □ Although IPSec has become the de facto standard for LAN-WAN-LAN VPNs, PPTP and L2TP are heavily used for single client to LAN connections.
- ☐ Therefore, many VPN products support IPSec, PPTP and L2TP.

COMP38411: Cryptography and Network Security (Topic 10)

IPSec Overview - Its position in the protocol stack

- □ IPSec Overview
- □ AH (Authentication Header) Protocol
- □ ESP (Encapsulating Security Payload) Protocol
- □ IP Security Summary

COMP38411: Cryptography and Network Security (Topic 10)

11

IPSec Overview - What it provides

- □ It operates at the IP (network) layer
- □ It provides security protection
 - Ofor the transport layer, including all TCP and UDP, traffic;
 - Ofor all other traffic carried in the data field of the IP packet, e.g. ICMP messages;
 - Oalso for IP packets (IPv4 and IPv6) when using tunnel mode.
- ☐ This protection is transparent, i.e. there is no need to modify applications or transport-layer protocols to work with IPSec, and can be applied to all the application-level programs.

COMP38411: Cryptography and Network Security (Topic 10)

IP Security Overview - Session key establishment

□ Key Management

- Manual management
 - Manually configure keying material and SA data for each system;
 - > Practical in small, static environments; Do not scale well.

Automated key management

- ➤ ISAKMP (Internet SA Key Management Protocol)
 - defines procedures and packet formats to establish, negotiate, modify and delete SA.

➤ IKE (Internet Key Exchange)

- provides facilities to negotiate and derive keying material for establishing a session key.
 - DH-DSA: using Diffie-Hellman (DH) key agreement for deriving key material between peers on a public network, and DSA to sign the DH exchanges to counter the man-in-the-middle attack.
 - Public key cryptography: using recipient's public key for secure session key transportation.

COMP38411: Cryptography and Network Security (Topic 10)

IP Security Overview - Authentication methods

□ ISAKMP/IKE supports multiple authentication methods:

○Symmetric key cryptography (scheme one)

- > The same key is pre-installed on each host.
- ➤ The peers authenticate each other by computing and sending a keyed hash of data that includes the pre-shared keys.

OPublic key cryptography (scheme two)

- ➤ Each party generates a pseudo-random number (nonce) and encrypts it and its ID using the other party's public key;
- > The ability to decrypt the data with the local private key authenticates the parties to each other.
- ➤ The method requires the ability to generate random numbers, and perform public-key encryption/decryption;
- > It does not provide non-repudiation (as in scheme one).
- ➤ Currently, only RSA algorithm is supported.

COMP38411: Cryptography and Network Security (Topic 10)

17

IP Security Overview - Authentication methods

ODigital signature (scheme three)

- ➤ Each device signs some data contributed by the other entity;
- ➤ This method is similar to scheme two, except that it provides non-repudiation;
- ➤ Both RSA and DSS are supported.
- □ Once SA(s) is negotiated and session key established, packets are forwarded using traffic protocols, AH and/or ESP.
- □ IPSec (AH and ESP) may be employed in one of the two ways *transport* and *tunnel* modes (or *a combination of them*) (the packet formats given next are based upon IPv4).

COMP38411: Cryptography and Network Security (Topic 10)

IP Security Overview – Combining SAs

- ☐ Multiple SAs may be combined into an SA bundle.
- □ An SA can only implement either AH or ESP, so in cases such as the following, one may combine more than one SAs into a bundle:
 - oto have both services; and/or
 - Odifferent flows in one communication path requires different services.
- □ SAs can be combined into bundles in the following two ways:
 - Transport Adjacency:
 - > Apply ESP in transport mode without authentication;
 - >Apply AH in transport mode.
 - olterated Tunneling (multiple nested tunnels):
 - > use multiple IPSec services through IP tunneling; multiple SAs in one bundle may terminate at different or same endpoints.

COMP38411: Cryptography and Network Security (Topic 10)

23

IP Security Overview – Traffic security protocols

- □ Each of the IPSec traffic protocols defines a new set of headers to be added to IP datagrams.
- □ Authentication Header (AH) provides
 - Odata origin authentication,
 - ➤ data integrity, and
 - >anti-replay.
 - Odoes not provide confidentiality protection.

COMP38411: Cryptography and Network Security (Topic 10)

IP Security Overview - Traffic security protocols

- □ Encapsulating security payload (ESP) provides
 - oconfidentiality (encryption) protection;
 - opartial traffic flow confidentiality; and
 - Ooptional service
 - >data origin authentication,
 - >data integrity,
 - ≽anti-replay.

AH has these protections

- □ uses keyed-hash function, HMAC, for data integrity and authentication protection (no non-repudiation protection):
 - OHMAC-MD5-96, HMAC-SHA-1-96, SHA-512/256, etc.
- □ uses bulk encryption algorithms, 3-key triple DES, AES, IDEA, CAST, Blowfish and RC5, for confidentiality protection.

COMP38411: Cryptography and Network Security (Topic 10)

25

Authentication Header (AH) - Format

☐ The IPsec authentication header in transport mode for IPv4.

COMP38411: Cryptography and Network Security (Topic 10)

- NextHeader specifies the type of header immediately following the Authentication Header.
- PayloadLength the length of AH in 4-byte unit, minus '2'.
- Reserved not used for now (set to 0).
- SPI (security parameter index) identifies a SA.
- SequenceNumber contains a monotonically increasing counter to protect against replay.
- AuthenticationData contains the message authentication code (MAC) for this packet (typical 96 bits long).

COMP38411: Cryptography and Network Security (Topic 10)

AH - Transport and tunnel modes for IPv4

Original IPv4 packet:

Original IP header	TCP/UDP	DATA
	header	

AH in transport mode:

◆ Authenticated except for mutable fields in IP header —

Original IP header	AH	TCP/UDP	DATA
_		header	

AH in tunnel mode:

◆ Authenticated except for mutable fields in the outer IP header

			_	_
New IP header	AH	Original IP	TCP/UDP	DATA
		header	header	

COMP38411: Cryptography and Network Security (Topic 10)

29

AH - MAC computation

- ☐ The default MAC algo is HMAC built on keyed one-way hash function (MD5 or SHA-256 which is detailed in the SA);
- □ It is truncated to the first 96 bits;
- □ It is stored in the AH AuthenticationData field.
- ☐ The following rules are applied to IP Headers (transport mode) and New IP Headers (tunnel mode) when computing the MAC:
 - OMutable IP header fields, e.g. TOS, Flags, Fragment Offset, TTL and Header Checksum are zeroed prior to MAC calculation. All other (immutable) fields are included.
 - The AH AuthenticationData field is zeroed. All other AH header fields are included.
 - The entire upper-level protocol data are included.

COMP38411: Cryptography and Network Security (Topic 10)

AH - Integrity & Authentication Services

- □ Outbound packet processing (by sender)
 - **SA** lookup
 - OSequence number generation must not cycle for anti-replay
 - OMAC calculation
- □ Inbound packet processing (by receiver)
 - ORe-assembly (if IP packet has been fragmented)
 - **SA** lookup
 - OSequence number verification
 - **OMAC** verification
 - >computes MAC and verifies that it is the same as the MAC included in AuthenticationData field.

COMP38411: Cryptography and Network Security (Topic 10)

31

AH – Anti-Replay

- Replay: retransmits a packet to the intended destination.
- ☐ The seq.no. field is used to thwart such attacks.
- □ For a new SA, seq.no. is initialized as 1 for the 1st packet, and increate it by 1 for each outgoing packet (up to 2³² -1). If this limit is reached, then a new SA with a new key should be negotiated.
- □ IP service is connectionless and unreliable, but IPSec requires the receiver implement a (default) window of size W=64 to track the out-of-order packets received, and to ensure that 'old' or 'duplicated/replayed' packets are discarded.

COMP38411: Cryptography and Network Security (Topic 10)

ESP - Format

- PayloadData is a transport level segment, e.g. TCP segment, (transport mode), or IP packet (tunnel mode) that is protected by encryption.
- Padding to expand the plaintext (consisted of PayloadData, Padding, PadLth, NextHdr) to the required length e.g. by a block cipher; be aligned on a 4-byte boundary; and to provide partial traffic flow confidentiality.
- PadLth indicates the number of pad bytes immediately preceding this field.
- NextHdr identifies the type of data contained in the PayloadData field by identifying the first header in that payload.
- AuthenticationData contains MAC computed over the ESP packet minus AuthenticationData.
- Other headers are the same as in AH.

COMP38411: Cryptography and Network Security (Topic 10)

35

ESP - The transport mode

• ESP Trailer is consisted of Padding, PadLength, and NextHeader.

Before applying ESP

After applying ESP

COMP38411: Cryptography and Network Security (Topic 10)

ESP - The tunnel mode

- □ The New IP Header just contains enough information for routing at intermediate nodes but not for traffic analysis (based on destination addresses).
- □ In this mode, encryption only occurs between external host and security gateway, or between security gateways.

COMP38411: Cryptography and Network Security (Topic 10)

37

ESP - Outbound packet processing

- □ SA lookup
- □ Packet encryption
 - OEncapsulate relevant data into the ESP payload field.
 - OAdd any necessary padding.
 - OEncrypts the result (PayloadData, Padding, PadLength, and NextHeader) using the key, encryption algorithm indicated by the SA.
- □ Sequence number generation.
- □ MAC calculation (if authentication is selected by the SA).

Why is the encryption performed before MACing?

COMP38411: Cryptography and Network Security (Topic 10)

ESP - Inbound packet processing

□ Re-assembly (if IP packet has been fragmented by the routers en route)

What can you observe from this

order of operations?

- □ SA lookup
- □ Sequence number verification
- MAC verification
- □ Packet decryption
 - ODecrypt the relevant data.
 - Process any padding as specified in the encryption algorithm specification.
 - OReconstructs the original IP datagram.

COMP38411: Cryptography and Network Security (Topic 10)

39

Topic 10 - A Quick Question

□ What is the major difference between transport mode and tunnel mode in IPSec ESP?

COMP38411: Cryptography and Network Security (Topic 10)

41

IP Security Summary - Services

	AH	ESP	ESP with authentication
Access control	1	V	$\sqrt{}$
Connectionless integrity	1		$\sqrt{}$
Data origin authentication	V		$\sqrt{}$
Rejection of replayed packets	1		$\sqrt{}$
Confidentiality		$\sqrt{}$	$\sqrt{}$
Limited traffic flow confidentiality		1	V

COMP38411: Cryptography and Network Security (Topic 10)

Exercise 10

One of the ISAKMP key exchange protocols, Identity Protection Exchange, is given below:

Outlined protocol	Description
$(1) I \to R: SA_I$	Begin ISAKMP-SA negotiation; ISAKMP = Internet SA Key Management Protocol.
$(2) R \to I: SA_R$	Basic SA agreed upon.
$(3) I \rightarrow R: Y_I, NONCE_I$	I's DH public key generated and transmitted to R.
$(4) R \rightarrow I: Y_R, NONCE_R$	R's DH public key generated and transmitted to I.
$(5)^* I \rightarrow R: ID_I, AUTH_I$	Initiator (I) identity verified by responder (R)
$(6)^* R \rightarrow I: ID_R, AUTH_R$	Responder's identity verified by I; SA established
	* signifies that the message content is encrypted

With the use of a diagram, explain whether or not the identity ID_I of the initiator I could be revealed to a third party (\neq responder R). You should justify your answer.

COMP38411: Cryptography and Network Security (Topic 10)

12

Conclusions (1)

- □ IPSec is designed to provide interoperable, high quality, cryptographyically-based security services for IPv4 and IPv6, offering protection for IP and/or upper layer protocols, such as TCP, UDP, ICMP.
- □ AH ensures integrity and origin authentication of data, and is an appropriate protocol to use when confidentiality is not required/permitted.
- ESP protects confidentiality, integrity and origin authentication of data. The scope of the authentication offered by ESP is narrower than it is for AH.

COMP38411: Cryptography and Network Security (Topic 10)

Conclusions (2)

- □ Because these security services use shared secrets (cryptographic keys), IPSec relies on a separate set of mechanisms - ISAKMP/IKE, for putting these keys in place.
- □ It is important to note that IPSec is only as strong as the algorithms chosen by the individuals for its implementation.
- □ Its security also depends on other factors such as OS security, random number sources, system management protocols and practices, etc.
- □ IPSec is mostly commonly used as a VPN solution (it is usually implemented in a user host, or a security gateway, e.g. a router or a firewall).

COMP38411: Cryptography and Network Security (Topic 10)