Unimol+XGBoost 配方预测-初测结果

为了充分验证我们的领先性,我们和2024年新发表在arxiv的配方模型——MolSets进行对标。我们完全遵照MolSets对数据的拆分流程和测试方法进行比较。

对比MolSet

数据集的复现

MolSet论文中,用的数据基于ACS cenral 2023,但没有直接使用其中的整份数据集,而是"子集";对温度的处理是,将分子组成相同但温度不同的entrees集合起来,根据阿累尼乌斯方程拟合成一个TARGET值。

拟合复现

代码如下:

```
1 # Arrhenius formula fitting and prediction functions
2 def fit and predict conductivity(group data, temp to predict):
       # Transformations
 3
       group_data['1/T'] = 1 / group_data['temperature']
       group_data['log_sigma'] = group_data['conductivity']
 5
 6
 7
       # Linear regression features and target
       X = group_data[['1/T']]
       y = group_data['log_sigma']
10
       # Fit
11
       model = LinearRegression()
12
13
       model.fit(X, y)
14
       # Predict
15
16
       inverse_temp = 1 / temp_to_predict
       predicted log sigma = model.predict([[inverse temp]])
17
       predicted_log_sigma_col = predicted_log_sigma[0]
18
19
       return predicted_log_sigma_col
20
```

结果如下:

存在一点点误差是因为此处用的273.15和298.15,换用273和298之后结果如下:

可以认为论文中对温度的处理具有科学性;有效性则需要进一步论证。

模型参数

```
1 xg_reg = xgb.XGBRegressor(
2     n_estimators=400, objective='reg:squarederror', colsample_bytree=0.3,
3     learning_rate=0.05, max_depth=6, alpha=3,
4     # tree_method='gpu_hist' if device.type == 'cuda' else 'auto'
5 )
```

数据集还原

论文中没有直接给出SMILES,尽管数据基于ACS cenral 2023。还原数据集沿用了更早些QSPR论文里 我们的格式:

		Α	В	С	D	Е	. 7970 F	G	Н	-h 79T	6 J	K	L	M ₇₆
	1	SMILES_1	mw_1	SMILES_2	mw_2	SMILES_3	mw_3	SMILES_4	mw_4	SMILES_S1	molality_1	comp_type	mol_type	TARGET
	2	CC1CCCO	86.07316	O=C1OCC	88.01604	COC	90.12	CC1COC(=	102.0317	F[As-](F)(F)	1.378305	35	small	-1.81829
	3	CC1CCCO	86.07316	O=C1OCC	88.01604	COC	90.12	CC1COC(=	102.0317	F[As-](F)(F)	1.30887	35	small	-1.85078
	4	O=C1OCC	88.01604	CC1CCCO	86.07316	CC1COC(=	102.0317	COC	46.04186	F[As-](F)(F)	1.287324	36	small	-1.87347
	5	CC1CCCO	86.07316	O=C1OCC	88.01604	COC	90.12	CC1COC(=	102.0317	F[As-](F)(F)	1.296111	35	small	-1.89452
	6	COC	46.04186	CC1CCCO	86.07316	O=C1OCC	88.01604	CC1COC(=	102.0317	F[As-](F)(F)	1.527497	37	small	-2.02481
	7	COC	46.04186	CC1CCCO	86.07316	O=C1OCC	88.01604	CC1COC(=	102.0317	F[As-](F)(F)	1.429354	37	small	-1.92108
	8	O=C1OCC	88.01604	CC1CCCO	86.07316					F[As-](F)(F)	0.919927	38	small	-1.97028
	9	CICCI	83.95336	CC1CCCO	86.07316	O=C1OCC	88.01604	CC1COC(=	102.0317	F[As-](F)(F)	0.843996	39	small	-2.05351
	10	CICCI	83.95336	CC1CCCO	86.07316	O=C1OCC	88.01604	CC1COC(=	102.0317	F[As-](F)(F)	0.910995	39	small	-1.84209
. 7	11	CICCI	83.95336	CC1CCCO	86.07316	O=C1OCC	88.01604	CC1COC(=	102.0317	F[As-](F)(F)	0.98955	39	small	-1.84806
Χ.	12	CC1CCCO	86.07316	O=C1OCC	88.01604	CC1COC(=	102.0317			F[As-](F)(F)	0.576945	40	small	-2.0281
	13	O=C1OCC	88.01604	CC1CCCO	86.07316	CC1COC(=	102.0317			F[As-](F)(F)	1.120814	41	small	-2.09901
	14	CC1CCCO	86.07316	O=C1OCC	88.01604	CC1COC(=	102.0317			F[As-](F)(F)	1.137112	40	small	-1.96305
	15	CC1CCCO	86.07316	O=C1OCC	88.01604	CC1COC(=	102.0317			F[As-](F)(F)	1.15389	40	small	-2.00208
	16	CC1CCCO	86.07316	O=C1OCC	88.01604	CC1COC(=	102.0317			F[As-](F)(F)	1.730836	40	small	-2.06168
	17	CC1CCCO	86.07316	O=C1OCC	88.01604	CC1COC(=	102.0317			F[As-](F)(F)	2.307781	40	small	-2.24182
	18	CC1CCCO	86.07316	O=C1OCC	88.01604	CC1COC(=	102.0317			F[As-](F)(F)	3.461671	40	small	-2.77267
27	19	CC1CCCO	86.07316	C1CCOC1	72.05751	O=C1OCC	88.01604	CC1COC(=	102.0317	F[As-](F)(F)	1.133226	42	small	-1.87623
á	20	C1CCOC1	72.05751	CC1CCCO	86.07316	O=C1OCC	88.01604	CC1COC(=	102.0317	F[As-](F)(F)	1.131017	43	small	-1.83686
á	21	C1CCOC1	72.05751	CC1CCCO	86.07316	O=C1OCC	88.01604	CC1COC(=	102.0317	F[As-](F)(F)	1.128816	43	small	-1.81294
á	22	CC1CCCO	86.07316	CC1=CC=	92.0626	O=C1OCC	88.01604	CC1COC(=	102.0317	F[As-](F)(F)	1.141828	44	small	-1.83618
á	23	CICCI	83.95336	CC1CCCO	86.07316					F[As-](F)(F)	0.84959	45	small	-2.48464
á	24	CICCI	83.95336	CC1CCCO	86.07316					F[As-](F)(F)	0.921916	45	small	-2.27469
á	25	CC1CCCO	86.07316	CICCI	83.95336					F[As-](F)(F)	1.007702	46	small	-2.31562
	26	O=S1(CCC	120.0245	CC1CCCO	86.07316					F[As-](F)(F)	0.946565	47	small	-2.2867
-	27	O=S1(C(C)	134.0402							F[As-](F)(F)	0.793665	48	small	-2.95932
i	28	O=S1(C(C)	134.0402	COCCOCC	134.0943					F[As-](F)(F)	0.819689	49	small	-2.56866
	29	O=S1(C(C)	134.0402	CC1=CC=	92.0626					F[As-](F)(F)	0.846546	50	small	-2.66461
3	30	O=S1(C(C)	134.0402	CC1=CC=	92.0626					F[As-](F)(F)	0.907021	50	small	-2.67902

预处理环节中我们发现了这篇论文处理数据集的一些问题 (<u>详见"发现的问题"子标题</u>),但为了对比<mark>模型本身</mark>的学习能力,本次preliminary测试中依然沿用了和论文完全一致的数据集。

Regression图

Pearson correlation:

Unimol+XGBoost: 0.91999

MolSet: 0.905

Spearman r:

Unimol+XGBoost: 0.91638

MolSet: 0.907

用与论文完全一致的实验流程和输入,也超越了MolSet的表现。

t-SNE图

特征太多,或许PCA/热图更直观展示模型学习到的信息。

PCA图

发现的问题

MolSet作为已发表的论文有一些显而易见的问题,例如:

1. mw数据不准确。比如这里,solvent_3的mw_3在molset的pickle导出里是90.12

85	2414	86.07316494 CC1CCCO	86.07316	1.171522			F[As-](F)(F)
86	2422 86.07316494, 88.01604399, 90.12, 102.0316941	CC1CCCO	86.07316 O=C1OCC	1.378305	88.01604 COC	46.04186 CC1COC(=	102.0316941 F[As-](F)(F)
87	2433 86.07316494, 88.01604399, 90.12, 102.0316941	CC1CCCO	86.07316 O=C1OCC	1.30887	88.01604 COC	46.04186 CC1COC(=	102.0316941 F[As-](F)(F)
88	2444 88.01604399, 86.07316494, 102.0316941, 90.12	O=C1OCC	88.01604 CC1CCCO	1.287324	86.07316 CC1COC(=	102.0317 COC	46.04186481 F[As-](F)(F)
89	2456 86.07316494, 88.01604399, 90.12, 102.0316941	CC1CCCO	86.07316 O=C1OCC	1.296111	88.01604 COC	46.04186 CC1COC(=	102.0316941 F[As-](F)(F)
90	2464 90.12, 86.07316494, 88.01604399, 102.0316941	COC	46.04186 CC1CCCO	1.527497	86.07316 O=C1OCC	88.01604 CC1COC(=	102.0316941 F[As-](F)(F)

2. molset的pickle导出里molality是salt_1对应的molality,把少数salt_2无视了。

883 DCC[A 3997492	2.837684				O=S(=O)([N	2 937694			
(38 11)	2.270148				O=S(=O)([N			1.125074	
885 DCC[A 3997492 C1COC(=C					O=S(=O)([N		16 3 (1.133074	
					/ / / /				
886 DCC[A 3997492 CCOC(=O)					O=S(=O)([N			0.507507	
887 DCC[A 3997492 CCOC(=O)		222.0892			O=S(=O)([N		(,,) (0.567537	
888 D(=O)(2258.659	0.512426				O=S(=O)([O				
889 D(=O)(2258.659	0.960799				O=S(=O)([O	0.960799			

我认为只有1077条的数据集,这些问题不能忽视。

对比ACS central 2023

数据集复现

基本不需要特殊处理;该数据集共10000条;暂未发现明显缺陷。

Regression图

t-SNE

发现的问题

原文的测试流程要求训练集与两个非训练集中不能有相同的polymer分子,在此基础上10-fold crossvalidation。虽然更好地表现了模型的泛化性能,但我认为这样选出的模型参数会有很大欠拟合风险。另外,一万条的数据集不算小数据集,不是很明白为什么要10-fold这么多。我认为多次随机单折、分层抽样更适合【specialist】模型。

总结

Unimol+XGBoost虽简单但有效。