

Electronic Notes in Theoretical Computer Science

ELSEVIER Electronic Notes in Theoretical Computer Science 120 (2005) 217–230

www.elsevier.com/locate/entcs

A Computable Version of the Daniell-Stone Theorem on Integration and Linear Functionals

Yongcheng Wu¹

Mathematics Department Nanking University Nanking, China

Klaus Weihrauch²

Computer Scienece Fernuniversität Hagen, Germany

Abstract

For every measure μ , the integral $I: f \mapsto \int f \, d\mu$ is a linear functional on the set of real measurable functions. By the *Daniell-Stone theorem*, for every abstract integral $\Lambda: F \to \mathbb{R}$ on a stone vector lattice F of real functions $f: \Omega \to \mathbb{R}$ there is a measure μ such that $\int f \, d\mu = \Lambda(f)$ for all $f \in F$. In this paper we prove a computable version of this theorem.

Keywords: computable analysis, measure theory, Daniell-Stone theorem

1 Introduction and Mathematical Preliminaries

In this section we summarize some notations, definitions and facts from measure theory and computable analysis.

As a reference to measure theory we use the book [1]. A ring in a set Ω is a set \mathcal{R} of subsets of Ω such that $\emptyset \in \mathcal{R}$ and $A \cup B \in \mathcal{R}$ and $A \setminus B \in \mathcal{R}$

 $1571\text{-}0661\ @\ 2005$ Elsevier B.V. Open access under CC BY-NC-ND license. doi:10.1016/j.entcs.2004.06.046

¹ Email: victorwu@cer.net

² Email: Klaus.Weihrauch@fernuni-hagen.de

if $A, B \in \mathcal{R}$. A σ -algebra in Ω is a set \mathcal{A} of subsets of Ω such that $\Omega \in \mathcal{A}$, $\Omega \setminus A \in \mathcal{A}$ if $A \in \mathcal{A}$ and $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$, if $A_1, A_2, \ldots \in \mathcal{A}$. For any system \mathcal{E} of subsets of Ω let $\mathcal{A}(\mathcal{E})$ be the smallest σ -algebra in Ω containing \mathcal{E} .

A premeasure on a ring \mathcal{R} is a function $\mu : \mathcal{R} \to \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ such that $\mu(\emptyset) = 0$, $\mu(A) \geq 0$ for $A \in \mathcal{R}$ and

$$\mu(\bigcup_{i=1}^{\infty} A_n) = \sum_{i=1}^{\infty} \mu(A_n)$$

if $A_1, A_2, \ldots \in \mathcal{A}$ are pairwise disjoint and $\bigcup_{i=1}^{\infty} A_n \in \mathcal{A}$. A premeasure on an algebra is called a *measure*. A premeasure μ on a ring \mathcal{R} is called σ -finite, if there is a sequence $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$ in \mathcal{R} such that $A_1 \cup A_2 \cup \ldots = \Omega$ and $\mu(A_i) < \infty$ for all i.

Theorem 1.1 ([1]) Every σ -finite premeasure μ on a ring \mathcal{R} in Ω has a unique extension to a measure on $\mathcal{A}(\mathcal{R})$ which (for convenience) we also denote by μ .

Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. A function $f : \Omega \to \mathbb{R}$ is called *measurable*, if $\{x \mid f(x) > a\} \in \mathcal{A}$ for all $a \in \mathbb{R}$. The following condition is equivalent:

$$(\forall a \in D) \{x \mid f(x) > a\} \in \mathcal{A} \quad \text{for some set } D \text{ dense in } \mathbb{R}.$$
 (1)

As usual we will abbreviate $\{f > a\} := \{x \in \Omega \mid f(x) > a\}$. In (1) the relation ">" can be replaced by " \leq ", " \geq " or "<". A function $f : \Omega \to \mathbb{R}$ is simple, if there are non-negative real numbers a_1, \ldots, a_n and pairwise disjoint sets $A_1, \ldots, A_n \in \mathcal{A}$ of finite measure such that $f(x) = \sum_{i=1}^n a_i \chi_{A_i}$, where χ_A is the characteristic function of A. For a simple function the integral is defined by

$$\int \sum_{i=1}^{n} a_i \chi_{A_i} := \sum_{i=1}^{n} a_i \mu(A_i).$$
 (2)

For functions $u, u_0, u_1, \ldots \Omega \to \mathbb{R}$, $u_i \nearrow u$ means: For all $x \in \omega$, $u_0(x) \le u_1(x) \le \ldots$ and $\sup_i u_i(x) = u(x)$. For a non-negative measurable real function $f: \Omega \to \mathbb{R}$ and $b \in \mathbb{R}$, $\int f d\mu = b$, iff there is some increasing sequence $(u_i)_{i \in \mathbb{N}}$ of simple functions such that

$$u_i \nearrow f$$
 and $\sup_i \int u_i \, d\mu = b$ (3)

[1]. In particular, $\int f d\mu$ does not exist (in \mathbb{R}), if the sequence $(\int u_i d\mu)_i$ is unbounded. For an arbitrary real function $f: \Omega \to \mathbb{R}$ let $f_+ := \sup(0, f)$ (the positive part of f) and $f_- := \sup(0, -f)$ (the negative part of f). By

definition, a measurable function f is integrable, if $\int f_+ d\mu$ and $\int f_- d\mu$ exist and its integral is defined by

$$\int f \, d\mu := \int f_+ \, d\mu - \int f_- \, d\mu \,. \tag{4}$$

For the following concepts from computable analysis see [4]. Let $\mathbb{N} := \{0,1,2,\ldots\}$ be the set of natural numbers. A partial function from X to Y is denoted by $f:\subseteq X\to Y$, a multifunction by $f:\subseteq X\rightrightarrows Y$. Let Σ be a sufficiently large finite alphabet such that $\{0,1\}\subseteq \Sigma$. The set of finite words over Σ is denoted by Σ^* , the set of infinite sequences by Σ^ω . Computability of functions on Σ^* and Σ^ω is defined by Turing machines which can read and write finite and infinite sequences, respectively. Standard pairing functions on Σ^* are denoted by $\langle \, ; \, \rangle$. For $w \in \Sigma^*$ let $\xi_w : \subseteq \Sigma^* \to \Sigma^*$ be the word function computed by the Turing machine with canonical code $w \in \Sigma^*$. Like the "effective Gödel numbering" $\phi: \mathbb{N} \to P^{(1)}$ of the partial recursive functions the notation ξ satisfies the utm-theorem and the smn-theorem.

Computability on other sets is introduced by using finite or infinite sequences of symbols as "names". For the natural numbers let $\nu_{\mathbb{N}}:\subseteq\Sigma^*\to\mathbb{N}$ be the notation by binary numbers and let bn_i be the binary name of $i\in\mathbb{N}$. Let $\nu_{\mathbb{Q}}:\subseteq\Sigma^*\to\mathbb{Q}$ be some standard notation of the rational numbers. For the real numbers we use the standard Cauchy representation $\rho:\subseteq\Sigma^\omega\to\mathbb{R}$, where $\rho(p)=x$, iff p encodes a sequence $(a_i)_i$ of rational numbers such that $|a_i-x|\leq 2^{-i}$. For naming systems $\delta_i:\subseteq Y_i\to M_i$, $Y_i\subseteq \{\Sigma^*,\Sigma^\omega\}$ for i=1,2,a multifunction $f:\subseteq M_1\rightrightarrows M_2$ is (δ_1,δ_2) -computable, iff there is a computable function $h:\subseteq Y_1\to Y_2$ such that $\delta_2\circ h(p)\in f(\delta_1(p))$ for all $p\in\mathrm{dom}(\delta_1)$ such that $f(\delta_1(p))\neq\emptyset$.

In this article we will consider computability on factorizations of several pseudometric spaces [2]. We generalize the definition of a computable metric space with Cauchy representation from [4] straightforwardly as follows: A computable pseudometric space is a quadruple $\mathcal{M} = (M, d, A, \alpha)$ such that (M, d) is a pseudometric space, $A \subseteq M$ is dense and $\alpha : \subseteq \Sigma^* \to A$ is a notation of A such that $dom(\alpha)$ is recursive and the restriction of the pseudometric d to A is (α, α, ρ) -computable. (In [4], $dom(\alpha)$ is assumed to be r.e. Notice that for every notation with r.e. domain there is an equivalent one with recursive domain.) In our applications, \mathcal{M} is a linear space and the pseudometric is derived from a seminorm ||.||, d(x, y) = ||x - y||.

The factorization $(\overline{M}, \overline{d})$ of the pseudometric space (M, \underline{d}) is a metric space defined canonically as follows: $\overline{x} := \{y \in M \mid d(x, y) = 0\}, \overline{M} := \{\overline{x} \mid x \in M\}, \overline{d}(\overline{x}, \overline{y}) := d(x, y)$. We define the Cauchy representation $\delta_{\mathcal{M}}$ of the factorization of a computable pseudometric space as follows: $\delta_{\mathcal{M}}(p) = \overline{x}$, if $p \in \Sigma^{\omega}$ encodes

a sequence $(a_i)_i$ (of α -names) of elements of A such that $d(a_i, x) \leq 2^{-i}$ for all i. If \mathcal{M} is a linear space with seminorm ||.||, by $a\overline{x} := \overline{ax}$ and $\overline{x} + \overline{y} := \overline{x+y}$ the factor space becomes a linear space with norm $||\overline{x}|| := ||x||$. In this case, $\overline{d}(\overline{x}, \overline{y}) = ||x-y||$.

2 Computable Measure Spaces

In this section let $(\Omega, \mathcal{A}, \mu)$ be a measure space. For any $\mathcal{D} \subseteq \mathcal{A}$ let $\mathcal{D}^f := \{A \in \mathcal{D} \mid \mu(A) < \infty\}$. In computable measure theory we want to identify two sets $A, B \in \mathcal{A}$, if their symmetric difference $A\Delta B := (A \setminus B) \cup (B \setminus A)$ has measure 0 and distinguish them otherwise. Since $A\Delta B \subseteq A\Delta C \cup C\Delta B$, on the set \mathcal{A}^f the mapping $d: (A, B) \mapsto \mu(A\Delta B)$ is a pseudometric.

Lemma 2.1 Let \mathcal{R} be a ring such that $\mathcal{A}(\mathcal{R}) = \mathcal{A}$ and μ is a σ -finite premeasure on \mathcal{R} . Then (\mathcal{A}^f, d) , $d: (A, B) \mapsto \mu(A\Delta B)$, is a complete pseudometric space with \mathcal{R}^f as a dense subset.

Proof: Straightforward.

For including sets with infinite measure consider the mapping $d_{\infty}: (A, B) \mapsto \mu(A\Delta B)/(1+\mu(A\Delta B))$ which is a pseudometric on \mathcal{A} (notice: $\infty/(1+\infty) = 1$). Its restriction to \mathcal{A}^f is equivalent to d. For introducing computability on a pseudometric space we need a countable dense subset [4,3]. Unfortunately, there are important measure spaces such that the pseudometric space $(\mathcal{A}, d_{\infty})$ is not separable.

Example: Consider the measure space $(\mathbb{R}, \mathcal{B}, \lambda)$ where \mathcal{B} is the set of Borel subsets of the real numbers and λ is the Lebesgue-Borel measure. Let $(E_i)_{i \in \mathbb{N}}$ be any countable sequence in \mathcal{B} . Define $B := \bigcup_i (i; i+1) \setminus E_i$. Then for all i, $\lambda(B\Delta E_i) \geq 1$ and hence $d_{\infty}(B, E_i) \geq 1/2$. Therefore, the set of all E_i cannot be dense. Since this is true for every sequence $(E_i)_{i \in \mathbb{N}}$, the pseudometric space $(\mathcal{B}, d_{\infty})$ is not separable.

We will consider measures which are completions of σ -finite premeasures on *countable* rings consisting of sets with finite measure. We assume that the operations on the ring and the premeasure are computable.

Definition 2.2 A computable measure space is a quintuple $\mathcal{M} = (\Omega, \mathcal{A}, \mu, \mathcal{R}, \alpha)$ such that

- (i) \mathcal{A} is a σ -algebra in Ω and μ is a measure on it,
- (ii) \mathcal{R} is a countable ring such that $\mathcal{A} = \mathcal{A}(\mathcal{R})$,
- (iii) $\mu(A) < \infty$ for all $A \in \mathcal{R}$,

- (iv) the restriction of μ to \mathcal{R} is σ -finite,
- (v) $\alpha: \subseteq \Sigma^* \to \mathcal{R}$ is a notation of \mathcal{R} with recursive domain,
- (vi) $(A, B) \mapsto A \cup B$ and $(A, B) \mapsto A \setminus B$ are (α, α, α) -computable,
- (vii) μ is (α, ρ) -computable on \mathcal{R} .

By (iv), $\Omega = \bigcup \mathcal{R}$. If $\bigcup \mathcal{R}$ is a proper subset of Ω , then for obtaining a σ -finite measure, either restrict Ω to $\bigcup \mathcal{R}$ or add the set $\Omega \setminus \bigcup \mathcal{R}$ to \mathcal{R} and define $\mu(\Omega \setminus \bigcup \mathcal{R}) = 0$.

Theorem 2.3 Let $(\Omega, \mathcal{A}, \mu, \mathcal{R}, \alpha)$ be a computable measure space. Then the quadruple $(\mathcal{A}^f, d, \mathcal{R}, \alpha)$ is a computable complete pseudometric space, where $\mathcal{A}^f = \{A \in \mathcal{A} \mid \mu(A) < \infty\}$ and $d(A, B) = \mu(A \Delta B)$.

Proof: By Lemma 2.1, (\mathcal{A}^f, d) is a complete pseudometric space with \mathcal{R} as a dense subset. By Def. 2.2(v)-(vii) the notation α has recursive domain and the distance d is (α, α, ρ) -computable.

Computability on the computable measure space can be defined via the Cauchy representation of the joined pseudometric space.

Example 2.4 [Lebesgue-Borel measure on \mathbb{R}] Let $\Omega = \mathbb{R}$, let $D \subseteq \mathbb{R}$ be dense in \mathbb{R} and let $\nu_D : \subseteq \Sigma^* \to D$ be a notation such that $\operatorname{dom}(\nu_D)$ is recursive and $\nu \leq \rho$. Let \tilde{I}_D be the set of all intervals $[a;b) \subseteq \mathbb{R}$ such that $a,b \in D$ and a < b. Let \mathcal{R}_D be the set of all finite unions of intervals from \tilde{I}_D and let α_D be some notation of \mathcal{R}_D canonically derived from ν_D . Then $\mathcal{B} := \mathcal{A}(\mathcal{R}_D)$ is the set of Borel-subsets of \mathbb{R} . The Lebesgue-Borel measure λ on \mathcal{B} is defined uniquely by setting $\lambda([a;b)) := b - a$ for all $a,b \in D$, a < b [1]. $\mathcal{M}_D := (\mathbb{R}, \mathcal{B}, \lambda, \mathcal{R}_D, \alpha_D)$ is a computable measure space.

3 Computability on the Integrable Functions

In this section we assume that $\mathcal{M} = (\Omega, \mathcal{A}, \mu, \mathcal{R}, \alpha)$ is a computable measure space. We introduce a computable pseudometric space for the integrable functions. On the set $\mathcal{I}(\mathcal{M})$ of μ -integrable functions $f: \Omega \to \mathbb{R}$ a seminorm and a pseudometric are defined by

$$||f||_{\mathcal{M}} := \int |f| \, d\mu, \quad d_{\mathcal{M}}(f,g) := ||f - g||_{\mathcal{M}}.$$
 (5)

(see [1]). For introducing computability on $\mathcal{I}(\mathcal{M})$ we consider a countable dense set.

Definition 3.1 (i) A function $u: \Omega \to \mathbb{R}$ is a rational step function, iff there are rational numbers a_1, \ldots, a_n and pairwise disjoint sets

$$A_1, \ldots, A_n \in \mathcal{R}$$
 such that $u = \sum_{i=1}^n a_i \cdot \chi_{A_i}$.

(ii) Let $\beta : \subseteq \Sigma^* \to RSF$ be a canonical notation of the set RSF of rational step functions derived from the notation α such that $dom(\beta)$ is recursive.

In contrast to a simple function (see Sec. 1), for a rational step function $f = \sum_{i=1}^{n} a_i \cdot \chi_{A_i}$ the sets A_i must be in \mathcal{R} and the coefficients must be rational, but may be negative. For a rational step function $u = \sum_{i=1}^{n} a_i \cdot \chi_{A_i}$, $\int u \, d\mu = \sum_{i=1}^{n} a_i \cdot \mu(A_i)$ and $||u||_{\mathcal{M}} = \sum_{i=1}^{n} |a_i| \cdot \mu(A_i)$.

Lemma 3.2 For rational step functions u, v and $a \in \mathbb{Q}$ the functions

- (i) $(a, u) \mapsto a \cdot u$, $(u, v) \mapsto u + v$, $u \mapsto |u|$, $u \mapsto \inf(u, 1)$, $u \mapsto \int u \ d\mu$,
- (ii) $(u,v) \mapsto \sup(u,v), (u,v) \mapsto \inf(u,v), u \mapsto u_+, u \mapsto u_-, (u,a) \mapsto \inf(u,a), u \mapsto ||u||_{\mathcal{M}}$

are computable w.r.t. the notations β , $\nu_{\mathbb{Q}}$ and ρ .

Proof: Straightforward.

In Def. 3.1(i) the condition " A_1, \ldots, A_n are pairwise disjoint" is not restrictive.

Lemma 3.3 Let β' be a canonical notation of all $u = \sum_{i=1}^{n} a_i \cdot \chi_{A_i}$ such that $a_i \in \mathbb{Q}$ and $A_i \in \mathcal{R}$ (but the A_i are not necessarily disjoint). Then $\beta' \equiv \beta$.

Proof: " \leq ": From the sets A_i by determining intersections and differences a finite set B_1, \ldots, B_m of pairwise disjoint sets can be computed such that each A_i is a finite union of B_j s. Then coefficients $b_j \in \mathbb{Q}$ can be computed such that $\sum_{i=1}^n a_i \cdot \chi_{A_i} = \sum_{j=1}^m b_j \cdot \chi_{B_j}$. This procedure is computable w.r.t the representations $\beta, \beta', \alpha, \nu_{\mathbb{Q}}$ and $\nu_{\mathbb{N}}$.

"
$$\geq$$
": Obvious. \square

Theorem 3.4 $(\mathcal{I}(\mathcal{M}), d_{\mathcal{M}}, RSF, \beta)$ is a computable complete peudometric space.

Proof: By Th. 15.5 in [1], $(\mathcal{I}(\mathcal{M}), d_{\mathcal{M}})$ is complete.

Consider $f \in \mathcal{I}(\mathcal{M})$ and $\varepsilon > 0$. Then $\int f \, d\mu = \int f_+ \, d\mu - \int f_- \, d\mu$. By (3) there is a simple function $u \leq f_+$ such that $0 \leq \int f_+ \, d\mu - \int u \, d\mu < \varepsilon/4$, hence $d_{\mathcal{M}}(f_+, u) = \int |f_+ - u| \, d\mu = \int f_+ \, d\mu - \int u \, d\mu < \varepsilon/4$. Since $\mathbb Q$ is dense in $\mathbb R$ and $\mathcal R$ is dense in $\mathcal A^f$ by Thm. 2.3, there is a rational step function v such that $d_{\mathcal{M}}(u, v) < \varepsilon/4$. We obtain $d_{\mathcal{M}}(f_+, v) \leq d_{\mathcal{M}}(f_+, u) + d_{\mathcal{M}}(u, v) \leq \varepsilon/2$. Correspondingly, there is a rational step function w such that $d_{\mathcal{M}}(f_-, w) \leq \varepsilon/2$. We obtain $d_{\mathcal{M}}(f, v - w) = ||f_+ - f_- - (v - w)|| \leq ||f_+ - v|| + ||f_- - w|| < \varepsilon$. Therefore, v - w is a rational step function which is ε -close to f.

On RSF the distance $d_{\mathcal{M}}$ is (β, β, ρ) -computable. This follows from Lemma 3.2.

Let $\delta_{\mathcal{M}} : \subseteq \Sigma^{\omega} \to \mathcal{I}(\mathcal{M})/_{\equiv}$ be the Cauchy representation of the set of equivalence classes of integrable functions (see Sec. 1).

4 The Computable Daniell-Stone Theorem

For two real-valued functions let $(f \wedge g)(x) := \inf(f(x), g(x))$. A Stone vector lattice of real functions is a vector space \mathcal{F} of functions $f : \Omega \to \mathbb{R}$ such that the functions $x \mapsto |f(x)|$ and $x \mapsto \inf(f(x), 1)$ (denoted by |f| and $f \wedge 1$, resp.) are in \mathcal{F} if $f \in \mathcal{F}$.

Let \mathcal{F}_+ be the set of non-negative functions in \mathcal{F} . Let us call \mathcal{F} complete, if $f \in \mathcal{F}$ whenever $u_i \nearrow f$ for $u_i \in \mathcal{F}_+$ and $f : \Omega \to \mathbb{R}$.

An abstract integral on a Stone vector lattice \mathcal{F} of real functions is a linear functional $I: \mathcal{F} \to \mathbb{R}$ such that for all $f, f_0, f_1, \ldots \in \mathcal{F}_+$,

$$I(f) \ge 0$$
 and $I(f) = I(\sup_{n} f_n) = \sup_{n} I(f_n)$ if $f_i \nearrow f$. (6)

Let $\mathcal{A}(\mathcal{F})$ be the smallest σ -algebra in Ω such that every function $f \in \mathcal{F}$ is measurable.

Theorem 4.1 (Daniell-Stone [1]) Let \mathcal{F} be a Stone vector lattice with abstract integral I. Then there is a measure μ on $\mathcal{A}(\mathcal{F})$ such that f is μ -integrable and $I(f) = \int f \ d\mu$ for all $f \in \mathcal{F}$. Furthermore, if there is a sequence $(f_i)_i$ in \mathcal{F} such that $(\forall x \in \Omega)(\exists i) f_i(x) > 0$, then the measure μ is uniquely defined.

For a proof see Thms. 39.4 and Cor. 39.6 in [1]. On a Stone vector lattice with abstract integral a seminorm $||.||_{\mathcal{S}}$ and a pseudometric $d_{\mathcal{S}}$ can be defined by

$$||f||_{\mathcal{S}} := I(|f|) \text{ and } d_{\mathcal{S}}(f,g) := ||f - g||_{\mathcal{S}} = I(|f - g|).$$
 (7)

For an effective version of Thm. 4.1 we consider a notation γ of a dense subset \mathcal{D} such that $(\mathcal{F}, d_{\mathcal{S}}, \mathcal{D}, \gamma)$ is a computable pseudometric space. Furthermore, we assume that |f|, $f \wedge 1 \in \mathcal{D}$ if $f \in \mathcal{D}$ and that \mathcal{D} is closed under rational linear combination.

Definition 4.2 A computable Stone vector lattice with abstract integral is a tuple $S = (\Omega, \mathcal{F}, I, \mathcal{D}, \gamma)$ such that

- (i) \mathcal{F} is a Stone vector lattice with abstract integral I,
- (ii) $\mathcal{D} \subseteq \mathcal{F}$ is dense w.r.t the pseudometric $d_{\mathcal{S}}: (f,g) \mapsto I(|f-g|)$,
- (iii) γ is a notation of \mathcal{D} with recursive domain,

- (iv) if $a \in \mathbb{Q}$ and $f, g \in \mathcal{D}$, then $\{af, f+g, |f|, f \wedge 1\} \subseteq \mathcal{D}$,
- (v) for $a \in \mathbb{Q}$ and $f, g \in \mathcal{D}$, the functions $(a, f) \mapsto af$, $(f, g) \mapsto f + g$, $f \mapsto |f|$ and $f \mapsto f \wedge 1$ are computable w.r.t. $\nu_{\mathbb{Q}}$, γ and ρ .
- (vi) the restriction of I to \mathcal{D} is (γ, ρ) -computable.

Let $\delta_{\mathcal{S}} : \subseteq \Sigma^{\omega} \to \mathcal{F}/_{\equiv}$ be the canonical Cauchy representation of the factorization of the computable pseudometric space $(\mathcal{F}, d_{\mathcal{S}}, \mathcal{D}, \gamma)$.

It can be shown easily that $(\mathcal{F}, d_{\mathcal{S}}, \mathcal{D}, \gamma)$ is a computable pseudometric space. For a computable measure space, the integrable functions with the integral as linear operator form a computable Stone vector lattice with abstract integral.

Proposition 4.3 Let $\mathcal{M} = (\Omega, \mathcal{A}, \mu, \mathcal{R}, \alpha)$ be a computable measure space. Then $(\Omega, \mathcal{I}(\mathcal{M}), (f \mapsto \int f d\mu), RSF, \beta)$ (see Def. 3.1(ii)) is a computable complete Stone vector lattice with abstract integral.

Proof: Straightforward.

For two metric spaces (M_i,d_i) (i=0,1) call $\psi:M_0\to M_1$ a metric embedding, iff $d_1(\psi(x),\psi(y))=d_0(x,y)$ for all $x,y\in M_0$. Obviously, a metric embedding ψ is injective, i.e., (M_0,d_0) is, up to renaming, a subspace of (M_1,d_1) . For computable metric spaces (M_i,d_i,A_i,α_i) (i=0,1) with Cauchy representaions δ_i (i=0,1), if $\psi:M_0\to M_1$ is a (δ_0,δ_1) -computable embedding, then its inverse $\psi^{-1}:\subseteq M_1\to M_0$ is (δ_1,δ_0) -computable. In this case, the first space is, up to renaming, a very well behaved subspace of the second one.

We can now formulate and prove our computational version of the Daniell-Stone theorem. (We use the Cauchy representation $\delta_{\mathcal{M}}$ of a factorized pseudometric space of the integrable functions, see Thm. 3.4 and the end of Sec. 3.)

Theorem 4.4 (computable Daniell-Stone) Let $S = (\Omega, \mathcal{F}, I, \mathcal{D}, \gamma)$ be a computable Stone vector lattice with abstract integral such that $(\forall x \in \Omega)(\exists f \in \mathcal{D})f(x) > 0$. Then there exist a computable measure space $\mathcal{M} = (\Omega, \mathcal{A}, \mu, \mathcal{R}, \alpha)$ and a funtion ψ such that

- (i) ψ is a $(\delta_{\mathcal{S}}, \delta_{\mathcal{M}})$ computable metric embedding $\psi : \mathcal{F}/_{\equiv} \to \mathcal{I}(\mathcal{M})/_{\equiv}$;
- (ii) $I(f) = \int g \, d\mu \text{ for all } f \in \mathcal{F} \text{ and } g \in \psi(f/_{\equiv});$

where $\delta_{\mathcal{S}}$ is the Cauchy representation of the factorized pseudometric space derived from \mathcal{S} (Def. 4.2) and $\delta_{\mathcal{M}}$ is the Cauchy representation of the factorized pseudometric space derived from \mathcal{M} (Thm. 3.4).

For the main proof we need a number of auxiliary propositions. Because

of the space limit their proofs are omitted. First, a ring \mathcal{R} on Ω must be defined. Consider $f \in \mathcal{D}$. Since f must be μ -integrable by (i) and hence \mathcal{A} -measurable, we must have $\{f>a\}\in\mathcal{A}=\mathcal{A}(\mathcal{R})$ for all $a\in\mathbb{R}$. Since $\{f>a\}=\bigcup_{a< b\in\mathbb{O}}\{f>b\}$, it would suffice to require $\{f>b\}\in\mathcal{R}$ for all $f \in \mathcal{D}$ and $b \in \mathbb{Q}$. Unfortunately, some of the values $\mu(\{f > b\}), b \in \mathbb{Q}$, (which will be defined canonically) might become non-computable. In order to avoid this problem, for every function $f \in \mathcal{D}_+$ (the non-negative functions from \mathcal{D}) we construct a new countable dense set C_f of computable real numbers (see (1)) such that $\mu(\{f > c\})$ becomes computable for each $c \in C_f$. \mathcal{R} will be the smallest ring containing all the sets $\{f > c\}$ $(f \in \mathcal{D}_+, c \in C_f)$ for which we define $\mu\{f>c\}:=\sup\{I(h)\mid h\in\mathcal{D}_+,\ h\leq\chi_{\{f>c\}}\}$. Moreover, we define a notation $\alpha:\subseteq \Sigma^* \to \mathcal{R}$ such that (v) - (vii) from Def. 2.2 are satisfied. A further crucial step is to show that for every function $f \in \mathcal{D}_+$ and every $n \in \mathbb{N}$ a rational step function t in $\mathcal{M} = (\Omega, \mathcal{A}, \mu, \mathcal{R}, \alpha)$ with non-negative coefficients can be computed w.r.t. the notations γ , $\nu_{\mathbb{N}}$ and β (from Def. 3.1) such that $t \leq f$ and $0 \leq I(f) - \int t d\mu \leq 2^{-n}$.

Define a notation γ_+ of $\mathcal{D}_+ := \mathcal{D} \cap \mathcal{F}_+$ by $\gamma_+(v) := |\gamma(v)|$. From Def. 4.2 we can conclude that γ_+ is reducible to γ ($\gamma_+ \leq \gamma$). Define a notation ν_{\to} of the computable sequences in \mathcal{D}_+ by

$$\nu_{\to}(s) = (f_0, f_1, \dots) \iff (\forall w \in \text{dom}(\nu_{\mathbb{N}})) \quad f_{\nu_{\mathbb{N}}(w)} = \gamma_+ \circ \xi_s(w),$$
 that is, iff ξ_s is a $(\nu_{\mathbb{N}}, \gamma_+)$ -realization of $i \mapsto f_i$ (see Section 1).

As a first step, for each $f = \gamma_+(v) \in \mathcal{D}_+$ we compute some dense set $D_v \subseteq \mathbb{R}_+$ such that $\mu(\{f > a\})$ is a computable real number for all $a \in D_v$ (and show how to compute these values).

Proposition 4.5 For every $f \in \mathcal{D}_+$ and every $a_0, b_0 \in \mathbb{Q}$, $0 < a_0 < b_0$, a real number c and two sequences $(g_n)_n$ and $(h_n)_n$ in \mathcal{D}_+ can be computed w.r.t. the notations γ , $\nu_{\mathbb{Q}}$, ν_{\to} and ρ such that

$$a_0 < c < b_0 \tag{9}$$

$$0 \le h_0 \le h_1 \le \dots \le \chi_{\{f > c\}} \le \chi_{\{f \ge c\}} \le \dots \le g_1 \le g_0 \tag{10}$$

$$\sup I(h_n) = \inf I(g_n). \tag{11}$$

Notice that for every fixed $v \in \text{dom}(\gamma) = \text{dom}(\gamma_+)$, the set of constants c,

$$D_v := \{ \rho \circ H_0(v, u_l, u_r) \mid 0 < \nu_{\mathbb{Q}}(u_l) < \nu_{\mathbb{Q}}(u_r) \} \text{ is dense in } \mathbb{R}_+.$$
 (12)

We define the ring and the σ -algebra for the measure space \mathcal{M} .

Definition
$$\mathcal{A}.6$$

 $\mathcal{K}_0 := \{ \{ \gamma_+(v) > \rho \circ H_0(v, u_l, u_r) \} \mid v \in \text{dom}(\gamma_+), 0 < \nu_{\mathbb{Q}}(u_l) < \nu_{\mathbb{Q}}(u_r) \}$
 $\mathcal{R} := \text{the smallest ring containing } \mathcal{R}_0$
 $\mathcal{A} := \mathcal{A}(\mathcal{R}) = \mathcal{A}(\mathcal{R}_0)$

Notice that \mathcal{R}_0 is not a ring in general. By Prop. 4.8 for every set $A \in \mathcal{R}_0$ there are sequences (h_i) and (g_i) in \mathcal{D}_+ such that

$$0 \le h_0 \le h_1 \le \ldots \le \chi_A \le \ldots \le g_1 \le g_0$$
 and $\sup I(h_n) = \inf I(g_n).(13)$

In the following we prove that this is true also for all $A \in \mathcal{R}$. Additionally we introduce a notation α of \mathcal{R} such that the sequences (h_i) and (g_i) can be computed from $A \in \mathcal{R}$.

Proposition 4.7 For functions $h_n, g_n, h'_n, g'_n \in \mathcal{D}_+$ and $A, A' \subseteq \Omega$ let

$$0 \le h_0 \le h_1 \le \dots \le \chi_A \le \dots \le g_1 \le g_0,$$

$$\sup I(h_n) = \inf I(g_n),$$

$$0 \le h'_0 \le h'_1 \le \dots \le \chi_{A'} \le \dots \le g'_1 \le g'_0,$$

$$\sup I(h'_n) = \inf I(g'_n).$$

Then for $h_n^+ := \sup(h_n, h'_n)$, $g_n^+ := \sup(g_n, g'_n)$, $h_n^- := (h_n - g'_n)_+$ and $g_n^- := (g_n - h'_n)_+$,

$$0 \le h_0^+ \le h_1^+ \le \dots \le \chi_{A \cup A'} \le \dots \le g_1^+ \le g_0^+,$$

$$\sup I(h_n^+) = \inf I(g_n^+),$$

$$0 \le h_0^- \le h_1^- \le \dots \le \chi_{A \setminus A'} \le \dots \le g_1^- \le g_0^-,$$

$$\sup I(h_n^-) = \inf I(g_n^-).$$

By the next proposition the constructions in Prop. 4.7 are computable. Let us say that $t = \langle s_-, s_+ \rangle$ encloses a set $A \subseteq \Omega$, if (13) for the sequences $(h_0, h_1, \ldots) := \nu_{\rightarrow}(s_-)$ and $(g_0, g_1, \ldots) := \nu_{\rightarrow}(s_+)$.

Proposition 4.8 There are computable functions G_1 and G_2 such that $G_1(t,t')$ encloses $A \cup A'$ and $G_2(t,t')$ encloses $A \setminus A'$, if t encloses A and t' encloses A'.

Proposition 4.9 There is a computable function L such that $\rho \circ L(\langle s_-, s_+ \rangle) = \sup I(h_n)$, if $\nu_{\rightarrow}(s_-) = (h_i)_i$ and $\nu_{\rightarrow}(s_+) = (g_i)_i$ such that (13).

Proof: This follows by standard arguments from Def. 4.2(vi). \Box (Prop. 4.9)

We define a notation α of \mathcal{R} inductively as follows. By Prop. 4.5 there is a computable function H_0 such that

$$c; \rho \circ -09v, u_l, u_r)$$

if $f = \gamma_+(v)$, $a_0 = \nu_{\mathbb{Q}}(u_l)$ and $b_0 = \nu_{\mathbb{Q}}(u_r)$. (For convenience we assume $\operatorname{dom}(\gamma)$, $\operatorname{dom}(\nu_{\mathbb{Q}}) \subseteq (\Sigma \setminus \Sigma')^*$ and $\Sigma' \subseteq \Sigma \setminus \{0,1\}$ for $\Sigma' := \{(,),\cup,\setminus\}$.)

$$\alpha(\langle v, u_l, u_r \rangle) := \{ \gamma_+(v) > \rho \circ H_0(v, u_l, u_r) \} \in \mathcal{R}_0,$$
(14)

$$\alpha((w \cup w')) := \alpha(w) \cup \alpha(w'), \tag{15}$$

$$\alpha((w \setminus w')) := \alpha(w) \setminus \alpha(w') \tag{16}$$

for $v \in \text{dom}(\gamma) = \text{dom}(\gamma_+)$, $u_l, u_r \in \text{dom}(\nu_{\mathbb{Q}})$ such that $0 < \nu_{\mathbb{Q}}(u_l) < \nu_{\mathbb{Q}}(u_r)$ and $w, w' \in \text{dom}(\alpha)$. Let $\alpha(x)$ be undefined for all other $x \in \Sigma^*$. Then α is a notation of \mathcal{R} such that $\text{dom}(\alpha)$ is recursive. Obviously, union and difference on \mathcal{R} are (α, α, α) -computable.

Thus we have proved (v) and (vi) in Def. 2.2:

Proposition 4.10 $\alpha : \subseteq \Sigma^* \to \mathcal{R}$ is a notation of \mathcal{R} with recursive domain and $(A, B) \mapsto A \cup B$ and $(A, B) \mapsto A \setminus B$ are (α, α, α) -computable,

Next, we define the function μ on $\mathcal{A} = \mathcal{A}(\mathcal{R})$. For finding a σ -additive measure we apply the non-effective theorem 4.1 since $\mathcal{R}_0 \subseteq \mathcal{F}$, $\mathcal{A}(\mathcal{R}) \subseteq \mathcal{A}(\mathcal{F})$.

Definition 4.11 Let μ' be the unique measure on $\mathcal{A}(\mathcal{F})$ such that f is μ' -integrable and $I(f) = \int f d\mu'$ for all $f \in \mathcal{F}$ (Thm. 4.1). Let μ be the restriction of μ' to $\mathcal{A}(\mathcal{R})$.

Since $\mathcal{A}(\mathcal{R})$ is a σ -algebra, μ is a measure. Therefore, (i), (ii), (v) and (vi) from Def. 2.2 are true. It remains to prove (iii) and (vii). From Prop. 4.7 we obtain:

Proposition 4.12 For every $A \in \mathcal{R}$ and sequences (h_i) and (g_i) in \mathcal{D}_+ such that (13), $\int \chi_A d\mu = \mu(A) = \sup_i I(h_i) = \inf_i I(g_i)$. Furthermore, appropriate sequences (h_i) and (g_i) in \mathcal{D}_+ can be computed from A w.r.t. the notations α and ν_{\rightarrow} .

Proof: For all i we obtain: $I(h_i) = \int h_i d\mu' \le \int \chi_A d\mu' \le \int g_i d\mu' = I(g_i)$. Therefore, $\sup_i I(h_i) = \int \chi_A d\mu' = \mu'(A) = \mu(A)$. $\square(\text{Prop. 4.12})$

Using the functions G_1 and G_2 from Prop. 4.8 and the function L from Prop. 4.9 we prove that the measure μ is (α, ρ) -computable on \mathcal{R} .

Proposition 4.13 The measure μ is (α, ρ) -computable on \mathcal{R} , in particular, $\mu(A) < \infty$ for all $A \in \mathcal{R}$.

Thus we have proved Def. 2.2(iii) and (vii). Finally we prove Def. 2.2(iv).

Proposition 4.14 The restriction of μ to \mathcal{R} is σ -finite.

Proof: Since \mathcal{R} is countable and $\mu(A) < \infty$ for all $A \in \mathcal{R}$, it suffices to show $(\forall x \in \Omega)(\exists A \in \mathcal{R}) x \in A$. Consider $x \in \Omega$. By assumption $f(x) \neq 0$ for some $f \in \mathcal{D}$. Then $|f| = \gamma_+(v) \in \mathcal{D}_+$ for some v and |f|(x) > 0. Therefore, there is

some $c \in D_v$ (see (12)) such that |f|(x) > c. Therefore, $x \in \{|f| > c\} \in \mathcal{R}$. $\Box(\text{Prop. 4.14})$

Altogether, we have a defined a computable measure space $\mathcal{M} = (\Omega, \mathcal{A}, \mu, \mathcal{R}, \alpha)$.

Finally, we consider integration. First, we generalize Prop. 4.12 from characterictic functions χ_A , $A \subseteq \mathcal{R}$ to rational linear combinations of such functions, i.e., rational step functions. A notation β for the rational step functions is defined in Def. 3.1.

Proposition 4.15 For every rational step function t with non-negative coefficients and every $m \in \mathbb{N}$, functions $H, G \in \mathcal{D}_+$ can be computed (w.r.t. β and γ) such that $H \leq t \leq G$ and

$$\int t \, d\mu - 2^{-m} \le I(H) \le \int t \, d\mu \le I(G) \le \int t \, d\mu + 2^{-m} \, .$$

Proof: Straightforward from Prop. 4.12.

Notice that a μ' -integrable function $f \in \mathcal{F}$ (see Def. 4.11) which is μ -measurable may be not μ -integrable. We prove the converse of Prop. 4.15.

Proposition 4.16 For every function $f \in \mathcal{D}_+$ and every $n \in \mathbb{N}$ a rational step function t in $\mathcal{M} = (\Omega, \mathcal{A}, \mu, \mathcal{R}, \alpha)$ with non-negative coefficients can be computed w.r.t. the notations γ , $\nu_{\mathbb{N}}$ and β (from Def. 3.1) such that

$$t \le f \text{ and } 0 \le I(f) - \int t \, d\mu \le 2^{-n}$$
.

Let \mathcal{F}_+^* be the set of all $f:\Omega\to\overline{\mathbb{R}}$ such that $f_i\nearrow f$ for some sequence of functions in \mathcal{F}_+ .

Define $I^*: \mathcal{F}_+^* \to \overline{\mathbb{R}}$ by

$$I^*(f) := \sup_i I(u_i) \text{ if } u_i \nearrow f.$$

In [1] p. 189 it is proved that I^* is well-defined (i.e., $\sup_i I(u_i) = \sup_i I(v_i)$ if $u_i \nearrow f$ and $v_i \nearrow f$) and that I^* extends I on \mathcal{F}_+ such that $I^*(af) = aI^*(f)$ ($a \ge 0$), $I^*(f+g) = I^*(f) + I^*(g)$ ($f, g, \in \mathcal{F}_+^*$) and $I^*(\sup_i f_i) = \sup_i I^*(f_i)$ if $f_i \nearrow f$ in \mathcal{F}_+^* .

For every $A \in \mathcal{R}$, there is a sequence $(h_i)_i$ in \mathcal{D}_+ such that $h_i \nearrow \chi_A$, hence by Prop. 4.12, $\int \chi_A d\mu = \mu(A) = I^*(\chi_A)$, therefore

$$\int t \, d\mu = I^*(t) \quad \text{for every non-negative rational step function} \quad t. \tag{17}$$

Now define the embedding $\psi : \mathcal{F}/_{\equiv} \to \mathcal{I}(\mathcal{M})/_{\equiv}$. First, we define $\psi(\overline{f})$ for $f \in \mathcal{F}_+$ by a $(\delta_{\mathcal{S}}, \delta_{\mathcal{M}})$ -realization on names as follows.

Suppose $\delta_{\mathcal{S}}(p) = \overline{f}$. Then p encodes (γ -names of) elements $f_i \in \mathcal{D}_+$ such $I(|f - f_i|) \leq 2^{-i}$. By Prop 4.16, for each i a rational step function s_i can be computed such that $0 \leq s_i \leq f_{i+2}$ and $0 \leq I(f_{i+2}) - \int s_i d\mu \leq 2^{-i-2}$, and hence

$$0 \le I^*(|f_{i+2} - s_i|)$$

= $I^*(f_{i+2}) - I^*(s_i)$
 $\le 2^{-i-2}$.

Then for any k > i,

$$\int |s_i - s_k| d\mu = I^*(|s_i - s_k|) \quad \text{by (17)}$$

$$\leq I^*(|s_i - f_{i+2}|) + I^*(|f_{i+2} - f|)$$

$$+ I^*(|f - f_{k+2}|) + I^*(|f_{k+2} - s_k|)$$

$$\leq 2^{-i-2} + 2^{-i-2} + 2^{-k-2} + 2^{-k-2}$$

$$< 2^{-i}.$$

By Thm 15.5 in [1], the sequence (s_i) of rational step functions converges to some $h \in \mathcal{I}(\mathcal{M})$ such that $d_{\mathcal{S}}(s_i, h) \leq 2^{-i}$.

Define $\psi(\overline{f}) := \overline{h}$.

We show that ψ is well-defined on \mathcal{F}_+ . Suppose $\overline{f} = \overline{g}$ and $\delta_{\mathcal{S}}(q) = \overline{g}$. The computation specified above gives a sequence $(g_i)_i$ of functions in \mathcal{D}_+ and a sequence $(t_i)_i$ of rational step functions such that

$$I(|g - g_i|) \le 2^{-i}, \quad 0 \le t_i \le g_{i+2} \text{ and } 0 \le I(g_{i+2}) - \int t_i \, d\mu \le 2^{-i-2}$$

and $d_{\mathcal{S}}(t_i, h') \leq 2^{-i}$ for some $h' \in \mathcal{I}(\mathcal{M})$. Therefore for all i,

$$\begin{split} d_{\mathcal{S}}(h,h') &\leq d_{\mathcal{S}}(h,s_{i}) + d_{\mathcal{S}}(s_{i},t_{i}) + d_{\mathcal{S}}(t_{i},h') \\ &\leq 2^{-i} + \int |s_{i} - t_{i}| \, d\mu + 2^{-i} \\ &= 2^{-i+1} + I^{*}(|s_{i} - t_{i}|) \\ &\leq 2^{-i+1} + I^{*}(|s_{i} - f_{i+2}| + |f_{i+2} - f| \\ &\quad + |f - g| + |g - g_{i+2}| + |g_{i+2} - t_{i}|) \\ &\leq 2^{-i+1} + 2^{-i-2} + 2^{-i-2} + 0 + 2^{-i-2} + 2^{-i-2} \\ &< 2^{-i+2} \, . \end{split}$$

and hence, $\overline{h} = \overline{h'}$.

We extend ψ from $\mathcal{F}_+/_{\equiv}$ to $\mathcal{F}/_{\equiv}$. For $f = f_+ - f_-$, $(f_+, f_- \in \mathcal{F}_+)$, define $\psi(\overline{f}) := \psi(\overline{f}_+) - \psi(\overline{f}_-)$.

The definition is sound since f_+ and f_- are uniquely defined.

We show that ψ is norm-preserving. Let $f = f_+ - f_- \in \mathcal{F}$. Let f_i^+, s_i^+, h^+ and f_i^-, s_i^-, h^- be the functions used in the computation of $\psi(\overline{f}_+)$ and $\psi(\overline{f}_-)$, respectively. Then

$$||\psi(\overline{f})|| = ||\psi(\overline{f}_+) - \psi(\overline{f}_-)|| = ||h^+ - h^-|| = I^*(|h^+ - h^-|)$$

and for all i,

$$h^{+} - h^{-} = (h^{+} - s_{i}^{+}) + (s_{i}^{+} - f_{i+2}^{+}) + (f_{i+2}^{+} - f_{+})$$

$$+ (f_{+} - f_{-})$$

$$+ (f_{-} - f_{i+2}^{-}) + (f_{i+2}^{-} - s_{i}^{-}) + (s_{i}^{-} - h^{-})$$

$$=: (f_{+} - f_{-}) + v_{i}.$$

Then $I^*(v_i) \leq 2^{-i+2}$. Since in general $|I^*(|g|) - I^*(|g+u|)| \leq I^*(|u|)$ we can conclude

$$I^*(|h^+ - h^-|) - I^*(|f_+ - f_-|)| < 2^{-i+2}$$

and therefore.

$$||\psi(\overline{f})|| = I^*(|h^+ - h^-|) = I^*(|f_+ - f_-|) = I^*(|f|) = ||f|| = ||\overline{f}||.$$

Similar considerations show that ψ is a linear mapping and that $I(f) = \int g d\mu$ for all $f \in \mathcal{F}$ and $g \in \psi(\overline{f})$.

This ends the proof of the computable Daniell-Stone Theorem.

The complete 6 pages longer version of this article is available from the authors. The authors want to thank the unknown referee for careful proofreading and valuable comments.

References

- Heinz Bauer. Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie. de Gruyter, Berlin, 1974.
- [2] Ryszard Engelking. Dimension Theory, volume 19 of North-Holland Mathematical Library. North-Holland, Amsterdam, 1978.
- [3] Matthias Schröder. Admissible representations for continuous computations. Informatik Berichte 299, FernUniversität Hagen, Hagen, April 2003. Dissertation.
- [4] Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.