TSR: Primer parcial

Aquest examen comprèn 10 preguntes d'opció múltiple. En cada cas només una resposta és correcta. Ha de respondre's en una fulla a part. Les respostes correctes aporten 1 punt a la qualificació d'aquesta prova. Les incorrectes redueixen la qualificació 0.33 punts.

1. Quina afirmació sobre els sistemes LAMP és correcta?

Α	Els components en un sistema LAMP es despleguen habitualment sobre nodes amb sistema Windows.
В	Un sistema LAMP sol tenir una arquitectura de 3 nivells.
С	Cap component en un sistema LAMP pot replicar-se.
D	Un sistema LAMP complet no pot desplegar-se sobre un únic node.

2. Una diferència entre la computació en el núvol (CN) i els clústers d'alta disponibilitat (AD) és:

Α	Els clústers AD repliquen els components dels serveis, però els serveis desplegats en
	CN no usen replicació.
D	Els clústers AD s'utilitzen principalment per a aplicacions de ciència de dades; la CN se
В	sol utilitzar per a desplegar serveis distribuïts.
_	Per a l'usuari, la CN és facilitada per proveïdors externs, mentre els clústers AD són
С	comprats i mantinguts per l'empresa que els utilitza.
_	Els clústers AD solen utilitzar un model de servei laaS i els sistemes de CN
D	proporcionen un model de servei SaaS.

3. Un dels problemes fonamentals que han de resoldre els sistemes distribuïts és la gestió de defectes i fallades. Per a fer això, cal...

Α	Enviar els missatges una sola vegada. D'una altra manera, aquells agents que vulguen
	atacar el nostre sistema arreplegarien informació rellevant sobre els nostres serveis.
	Evitar mecanismes de detecció de fallades perquè aquests mecanismes necessiten
В	molts recursos i la detecció no sol ser fiable.
	Replicar els components dels serveis per a garantir que almenys una instància estiga
C	disponible.
D	Totes les anteriors.

4. El principal objectiu del "middleware" és:

Α	Millorar la seguretat del sistema.
В	Millorar l'escalabilitat del sistema.
С	Ocultar i resoldre múltiples problemes de comunicació que poden sorgir entre els components d'un servei.
D	Gestionar les fallades.

TSR

5. Considere aquest programa:

```
// Files.js
const fs = require('fs');
if (process.argv.length<3) {</pre>
  console.error('More file names are needed!!');
  process.exit();
function handler(name) {
  return function(err,data) {
    if (err) console.error(err);
    else console.log('File '+name+': '+data.length+' bytes.');
}
var files = process.argv.slice(2);
var i=-1;
do {
  i++;
  fs.readFile(files[i], 'utf-8', handler(files[i]))
} while (i<files.length-1);</pre>
console.log('We have processed '+files.length+' files.');
```

S'ha arribat a executar el programa amb aquesta ordre: "node Files A B". A és un fitxer de text de 234781 bytes i B un altre fitxer de text amb 430 bytes. Quina és l'eixida mostrada en l'execució?

Α	More file names are needed.
В	File A: 234781 bytes. File B: 430 bytes. We have processed 2 files.
С	"We have processed 2 files." seguit per una línia per fitxer, mostrant el seu nom i grandària.
D	No arriba a mostrar-se res perquè el procés avorta en la seua línia 8 sense mostrar cap missatge.

6. En el programa de la questió anterior, la seguent afirmació és certa:

Α	Utilitza una promesa per a processar cada fitxer.
В	Avorta la seua execució en el cos de la funció "handler" perquè les funcions no poden retornar funcions.
С	Utilitza la funció fs.readFile de manera sincrònica per a evitar problemes quan els noms i grandàries dels fitxers hagen de mostrar-se.
D	La funció "handler" proporciona una clausura per a mostrar adequadament el nom de cada fitxer.

TSR

7. En l'algorisme d'exclusió mútua amb servidor central, és cert que:

١,	^	És un algorisme altament disponible perquè tots els seus agents estan replicats per
A	4	omissió.
	В	Usa un patró sincrònic petició-resposta per a obtenir el permís d'accés a la secció
	D	Usa un patró sincrònic petició-resposta per a obtenir el permís d'accés a la secció crítica i un enviament unidireccional asincrònic per a alliberar-la.
	(Usa un patró unidireccional asincrònic PUSH-PULL per a obtenir el permís d'accés a la
'	L	secció crítica i un PUB-SUB per a alliberar-la.
	7	Usa un patró asincrònic PUB-SUB per a obtenir el permís d'accés a la secció crítica i un
ש	ע	petició-resposta sincrònic per a alliberar-la.

8. Considerant aquests programes, a executar en un mateix ordinador...

```
// client.js
                                            // server.js
var zmq=require('zmq');
                                           var zmq = require('zmq');
var rq=zmq.socket('dealer');
                                            var rp = zmq.socket('dealer');
rq.connect('tcp://127.0.0.1:8888');
                                            rp.bindSync('tcp://127.0.0.1:8888');
var i=1; rq.send(''+i);
                                            rp.on('message', function(msg) {
rq.on('message',function(req,rep){
                                             var j = parseInt(msg);
 console.log("%s %s",req,rep);
                                             rp.send([msg,(j*3).toString()]);
 if (i==100) process.exit(1);
                                            });
 rq.send((++i)+'');
});
```

La següent afirmació és certa:

Α	En el client, quan es mostra el valor del paràmetre "req", el seu valor és idèntic al de la variable "i".	
В	El client envia 101 peticions al servidor abans d'acabar la seua execució.	
С	No pot haver-hi dos o més instàncies del client en el mateix ordinador. Totes menys la primera avortarien en el seu intent de connectar amb el servidor.	
D	Cap de les anteriors.	

9. Considerant els programes mostrats en la questió anterior...

Α	El client no pot enviar una nova petició fins que la resposta a l'anterior siga rebuda i
	processada.
	Encara que el patró de comunicació DEALER-DEALER siga utilitzable, en aquest
В	exemple els missatges no inclouen un delimitador. Sense ell, els missatges no
	s'entreguen.
	Aquests programes són inútils perquè no es pot intercomunicar a dos processos
	Aquests programes són inútils perquè no es pot intercomunicar a dos processos utilitzant sockets DEALER en ambdos programes.
D	El servidor únicament pot processar les peticiones enviades per un sol client.

TSR

10. Suposem que una aplicació distribuïda necessita un canal de comunicació unidireccional asincrònic entre dos components A i B, enviant els missatges des d'A a B (és a dir, A --> B). Per a aconseguir aquesta comunicació, es pot utilitzar aquest patró ZeroMQ:

Α	A: PULL, B: PUSH.
В	A: REQ, B: REP.
С	A: SUB, B: PUB.
D	A: DEALER, B: DEALER.