

ສາທາລະນະລັດ ປະຊາທິປະໄຕ ປະຊາຊົນລາວ ສັນຕິພາບ ເອກະລາດ ປະຊາທິປະໄຕ ເອກະພາບ ວັດທະນະຖາວອນ

ກະຊວງສຶກສາທິການ ແລະ ກິລາ ກົມສາມັນສຶກສາ

ຫົວບົດສອບເສັງແຂ່ງຂັນນັກຮູເນເກັ່ງ ຊັ້ນມັດທະຍົມສຶກສາຕອນປາຍ ລະດັບຊາດ ປະຈຳສົກຮູເນ 2017-2018

ວິຊາ ຄະນິດສາດ ເວລາ: 120 ນາທີ

1. ໃຫ້
$$\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1$$
. ຈົ່ງຊອກຫາຄ່າຂອງ: $x^{123}+y^{123}$

2. ໃຫ້
$$f(x) = \int\limits_0^\pi \left(\cos 2\theta - x \sin \theta\right)^2 d\theta$$
. ຈົ່ງຊອກຄ່າໜ້ອຍສຸດຂອງຕຳລາ $f(x)$

3. ໃຫ້
$$x+y$$
; $x-y$; xy ແລະ $\frac{x}{y}$ ເປັນສີ່ພົດທຳອິດຕາມລຳດັບຂອງອັນດັບທະວີບວກ. ຈົ່ງຊອກຫາຄ່າຂອງພົດທີ່ຫ້າ.

4. ໃຫ້ຕຳລາ
$$f$$
 ກຳນົດໃນ $\mathbb R$ ເຊິ່ງວ່າ: $2f(x)+f(1-x)=x^2$. ຈົ່ງຊອກຫາ $f(x)$

5. ໃຫ້
$$a, b, c$$
 ເປັນໃຈຜົນຂອງສົມຜົນ: $x^3 - x - 1 = 0$. ຈົ່ງຊອກຫາຄ່າຂອງ $\frac{1-a}{1+a} + \frac{1-b}{1+b} + \frac{1-c}{1+c}$

6. ໃຫ້ z ເປັນຈຳນວນສົນທີ່ຕອບສະໜອງ: $z^2 + z + 1 = 0$.

ຈົ່ງຊອກຫາ
$$\left(z+\frac{1}{z}\right)^2+\left(z^2+\frac{1}{z^2}\right)^2+...+\left(z^6+\frac{1}{z^6}\right)^2$$

7. ໃຫ້ອັນດັບ
$$(t_{_{\rm n}})$$
 ເຊິ່ງວ່າ: $t_{_{1}}=2$ ແລະ $t_{_{{\rm n}+1}}=\frac{t_{_{{\rm n}}}-1}{t_{_{{\rm n}}}+1}$. ຈົ່ງຊອກຫາຄ່າຂອງ $t_{_{2018}}$

8. ໃຫ້ມາຫຼີດ
$$A = \begin{pmatrix} \left(\tan 30^{\circ}\right)^{x} & -1 \\ \left(\cot an60^{\circ}\right)^{x} & 2 \end{pmatrix}$$
 ແລະ $\det\left(A\right) = 9$. ຈົ່ງຊອກຫາຄ່າຂອງ x

ສາທາລະນະລັດ ປະຊາທິປະໄຕ ປະຊາຊົນລາວ ສັນຕິພາບ ເອກະລາດ ປະຊາທິປະໄຕ ເອກະພາບ ວັດທະນະຖາວອນ

ກະຊວງສຶກສາທິການ ແລະ ກິລາ ກົມສາມັນສຶກສາ

ຂະໜານຕອບຫົວບົດສອບເສັງແຂ່ງຂັນນັກຮູງນເກັ່ງຊັ້ນມັດທະຍົມສຶກສາຕອນປາຍ ລະດັບຊາດປະຈຳສົກຮູງນ 2017-2018

ວິຊາ ຄະນິດສາດ ເວລາ: 120 ນາທີ

ໃຫ້ $\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1$ ຈົ່ງຊອກຄ່າຂອງ $x^{123}+y^{123}$
$ (x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = 1 \Leftrightarrow \begin{cases} (x - \sqrt{x^2 + 1})(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = (x - \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = (x - \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1})(y + \sqrt{y^2 + 1}) = (y - \sqrt{y^2 + 1})(y + \sqrt{y^2 + 1})(y + \sqrt{y^2 + 1}) = (y - \sqrt{y^2 + 1})(y + \sqrt{y^2 + 1})(y + \sqrt{y^2 + 1})(y + \sqrt{y^2 + 1}) = (y - \sqrt{y^2 + 1})(y + \sqrt{y^2 + 1})(y + \sqrt{y^2 + 1})(y + \sqrt{y^2 + 1}) = (y - \sqrt{y^2 + 1})(y + \sqrt{y^2 + 1})$
$\begin{cases} -y - \sqrt{y^2 + 1} = x - \sqrt{x^2 + 1} \\ -x - \sqrt{x^2 + 1} = y - \sqrt{y^2 + 1} \end{cases} \Rightarrow -(x + x) = (y + y) \Rightarrow x = -y$
ຈາກນັ້ນ, ໄດ້: $\mathbf{x}^{123} + \mathbf{y}^{123} = (-\mathbf{y})^{123} + \mathbf{y}^{123} = -\mathbf{y}^{123} + \mathbf{y}^{123} = 0$
ໃຫ້ $\mathbf{f}(\mathbf{x}) = \int\limits_0^\pi \left(\cos 2\theta - x \sin \theta\right)^2 \mathrm{d}\theta$ ຈົ່ງຊອກຄ່ານ້ອຍສຸດຂອງຕຳລາ $\mathbf{f}(\mathbf{x})$
จาก $f(x) = \int_0^\pi \left(\cos 2\theta - x\sin \theta\right)^2 d\theta = \int_0^\pi \left(\cos^2 2\theta - 2x\cos 2\theta \sin \theta + x^2 \sin^2 \theta\right) d\theta$
$f(x) = \int_{0}^{\pi} \cos^{2} 2\theta d\theta - x \int_{0}^{\pi} 2\cos 2\theta \sin \theta d\theta + x^{2} \int_{0}^{\pi} \sin^{2}\theta d\theta$
$f(x) = \int_0^{\pi} \frac{1 + \cos 4\theta}{2} d\theta - x \int_0^{\pi} (\sin 3\theta - \sin \theta) d\theta + x^2 \int_0^{\pi} \frac{1 - \cos 2\theta}{2} d\theta$
$f(x) = \left(\frac{1}{2}\theta + \frac{1}{8}\sin 4\theta\right)\Big _0^{\pi} - x\left(-\frac{1}{3}\cos 3\theta + \cos \theta\right)\Big _0^{\pi} + x^2\left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta\right)\Big _0^{\pi}$
$f(x) = \frac{\pi}{2}x^2 + \frac{4}{3}x + \frac{\pi}{2} = \frac{\pi}{2}\left(x + \frac{4}{3\pi}\right)^2 + \frac{\pi}{2} - \frac{8}{9\pi}$
ດັ່ງນັ້ນ $\mathbf{f}_{\min} = \frac{\pi}{2} - \frac{8}{9\pi}$

3 ໃຫ້
$$x+y; x-y; xy$$
 ແລະ $\frac{x}{y}$ ເປັນສີ່ພິດໜ້າອິດຕາມລຳດັບຂອງອັນດັບຫະຍົບວກ. ຈົ່ງຊອກຫາພິດທີ່ ຫຼັກ.

• $d=(x-y)-(x+y)=-2y$
• $a_3=xy=(x+y)+2(-2y)=x-3y..........(1)$
• $a_4=\frac{x}{y}=(x+y)+3(-2y)=x-5y\Leftrightarrow xy-5y^2=x........(2)$
ເອົາ (1) ພາມໃໝ່ (2), ເຮົາໄດ້ $(x-3y)-5y^2=x\Leftrightarrow 5y^2+3y=0$

$$\Rightarrow \begin{cases} y=0 \\ y=\frac{3}{5}\Leftrightarrow x=-\frac{9}{8} & s^2 \Rightarrow \frac{9}{8} + 4\left(-2\left(-\frac{3}{5}\right)\right)=\frac{123}{40} \end{cases}$$
4 ໃຫ້ຕຳລາ f ກຳນົດໃນ \mathbb{R} ເຊິ່ງວ່າ : $2f(x)+f(1-x)=x^2$ ຈົ່ງຊອກຫາ :: $f(x)$

$$2f(x)+f(1-x)=x^2.......(1)$$
ເມື່ອພານ x ດ້ວຍ $1-x$
ເຮົາໄດ້ : $2f(1-x)+f(x)=(1-x)^2=1-2x+x^2.......(2)$
ເຮົາ $2(1)-(2):3f(x)=x^2+2x-1\Leftrightarrow f(x)=\frac{1}{3}x^2+\frac{2}{3}x-\frac{1}{3}$
5 ໃຫ້ a,b,c ເປັນໃຈຄົນຂອງລົມຜົນ:. $x^3-x-1=0$.
ຈົ່ງຊອກຫາຄຳຂອງ : $\frac{1-a}{1+a}+\frac{1-b}{1+c}+\frac{1-c}{1+a}$

$$a,b,c$$
 ເປັນໃຈຄົນຂອງລົມຜົນ:. $x^3-x-1=0$.
$$a+b+c=0$$
ເຮົາມີ : $\begin{cases} a+b+c=0\\ a+b+c=1\\ abc=1 \end{cases}$

$$\frac{1-a}{1+a}+\frac{1-b}{1+b}+\frac{1-c}{1+c}$$

$$= (1-a)(1+b)(1+c)+(1-b)(1+a)(1+c)+(1-c)(1+a)(1+b)$$

$$= (1-a)(1+b+c+b+)+(1-b)(1+a+c+ac)+(1-c)(1+a+b+ab)$$

$$= (1-a)(1-a+bc)+(1-b)(1-b+ac)+(1-c)(1-c+ab)$$

$$= (1-a)(1-a+bc)+(1-b)(1-b+ac)+(1-c)(1-c+ab)$$

$$= 1+a+b+c+ab+ac+bc+abc$$

$$= 1-2a+bc+a^2-abc+1-2b+ac+b^2-abc+1-2c+c^2+ab-abc$$

$$= 1-2a+bc+a^2-abc+1-2b+ac+b^2-abc+1-2c+c^2+ab-abc$$

$$= 1-1+(a^2+b^2+c^2)$$

	$= -1 + (a + b + c)^{2} - 2(ab + ac + bc) = -1 + 2 = 1$
6	ໃຫ້ z ເປັນຈຳນວນສົນທີ່ຕອບສະໜອງ: $\mathbf{z}^2 + \mathbf{z} + 1 = 0$
	ຈົ່ງຊອກຫາ $\left(z+\frac{1}{z}\right)^2+\left(z^2+\frac{1}{z^2}\right)^2+\ldots+\left(z^6+\frac{1}{z^6}\right)^2$
	$z^2 + z + 1 = 0 \Rightarrow z + \frac{1}{z} = -1$
	$\left(z + \frac{1}{z}\right)^2 = z^2 + 2 + \frac{1}{z^2} \Rightarrow z^2 + \frac{1}{z^2} = -1$
	$z^3 + \frac{1}{z^3} = \left(z + \frac{1}{z}\right)\left(z^2 - 1 + \frac{1}{z^2}\right) = (-1)(-1 - 1) = 2$
	$\left(z^{2} + \frac{1}{z^{2}}\right)^{2} = z^{4} + \frac{1}{z^{4}} + 2 \Rightarrow z^{4} + \frac{1}{z^{4}} = -1$
	$z^{5} + \frac{1}{z^{5}} = \left(z + \frac{1}{z}\right)\left(z^{6} - z^{2} + 1 - \frac{1}{z^{2}} + \frac{1}{z^{6}}\right) = (-1)(-1 + 1 - 1) = -1$
	$\left(z^{3} + \frac{1}{z^{3}}\right)^{2} = z^{6} + \frac{1}{z^{6}} + 2 \Rightarrow z^{6} + \frac{1}{z^{6}} = 2$
	ດັ່ງນັ້ນ: $\left(z + \frac{1}{z}\right)^2 + \left(z^2 + \frac{1}{z^2}\right)^2 + \dots + \left(z^6 + \frac{1}{z^6}\right)^2 = \left(-1\right)^2 + \left(-1\right)^2 + 2^2 + \left(-1\right)^2 + 2^2 = 12$
7	ໃຫ້ອັນດັບ (t_n) ເຊິ່ງວ່າ: $t_1=2$ ແລະ $t_{n+1}=\frac{t_n-1}{t_n+1}$.ຈົ່ງຊອກຫາຄ່າຂອງ t_{2018}
	$t_1 = 2$
	$t_2 = \frac{2-1}{2+1} = \frac{1}{3}$
	$\frac{1}{-1}$
	$t_3 = \frac{\frac{1}{3} - 1}{\frac{1}{3} + 1} = -\frac{1}{2}$
	$-\frac{1}{2}-1$
	$t_4 = \frac{-\frac{1}{2} - 1}{-\frac{1}{2} + 1} = -3$ $t_5 = -\frac{4}{-2} = 2 = t_1$
	4
	ຄ່າຂອງ t_i ຊ້ຳກັນເປັນຮອບວງນ 4 ດັ່ງນັ້ນ: $t_{2018} = t_2 = \frac{1}{3}$
8	ໃຫ້ມາຫຼີດ $A = \begin{pmatrix} \left(\tan 30^{\circ} \right)^{x} & -1 \\ \left(\cot an60^{\circ} \right)^{x} & 2 \end{pmatrix}$ ແລະ $\det(A) = 9$ ຈົ່ງຫາຄ່າຂອງ x

$$A = \begin{pmatrix} \left(\tan 30^{\circ}\right)^{x} & -1 \\ \left(\cot 60^{\circ}\right)^{x} & 2 \end{pmatrix} \Leftrightarrow A = \begin{pmatrix} \left(\frac{1}{\sqrt{3}}\right)^{x} & -1 \\ \left(\frac{1}{\sqrt{3}}\right)^{x} & 2 \end{pmatrix}$$

$$\det(\mathbf{A}) = 2\left(\frac{1}{\sqrt{3}}\right)^{x} + \left(\frac{1}{\sqrt{3}}\right)^{x} = 3\left(\frac{1}{\sqrt{3}}\right)^{x}$$

ອິງຕາມຫົວບົດເຮົາມີ : det(A) = 9

ເຮົາໄດ້:
$$9 = 3\left(\frac{1}{\sqrt{3}}\right)^x \Leftrightarrow 3 = \left(\frac{1}{\sqrt{3}}\right)^x$$

$$\Leftrightarrow 3 = 3^{-\frac{x}{2}} \Leftrightarrow 1 = -\frac{x}{2} \Rightarrow x = -2$$