Contrôle continu 2

EP 2 : Arithmétique Semestre 3

L'épreuve dure 2h. Les exercices sont indépendants. La notation tiendra compte de la clarté de la rédaction. Toute affirmation doit être justifiée.

Exercice 1 Vrai ou Faux (justifier en invoquant éventuellement un théorème du cours ou donner un contreexemple).

- 1. Si $d_1 \mid m$ et $d_2 \mid n$ alors $d_1 d_2 \mid mn$.
- 2. Si deux entiers sont premiers entre eux, alors chacun d'eux est premier avec leur somme.
- 3. L'équation $15x \equiv 1 \mod 60$ a trois solutions distinctes.
- 4. L'équation $x^p x \equiv 0$ modulo p, où p est premier, a p solutions.
- 5. L'ensemble des solutions entières de 34x + 85y = 0 est $\{(85k, -34k) \mid k \in \mathbb{Z}\}.$
- 6. $a^3 b^3$ est divisible par 3 si et seulement si a b est divisible par 3.

Exercice 2 Dans cette exercice on s'intéresse à l'équation suivante définie pour tout $m \in \mathbb{N}^*$:

$$(E_m)$$
 $x^2 \equiv -1 \mod m$.

On désigne par A(m) le nombre de solution modulo m de (E_m) , autrement dit

$$A(m) = \text{Card}(\{x \in \{0, \dots, m-1\} \mid x^2 \equiv -1 \mod m\}).$$

- 1. Montrer que A(2) = 1.
- 2. Soit p un nombre premier impair.
 - (a) Montrer que $x \equiv -x \mod p$ si et seulement si $x \equiv 0 \mod p$.
 - (b) Montrer que si x et x' sont deux solutions de (E_p) alors $x \equiv \pm x' \mod p$.
 - (c) En déduire que A(p) = 0 ou A(p) = 2.
- 3. Soit $(m,n) \in \mathbb{N}^2$ tel que $\operatorname{pgcd}(m,n) = 1$.
 - (a) Montrer que pour tout $x \in \mathbb{Z}$ on a

$$x^2 \equiv -1 \mod mn \iff \begin{cases} x^2 \equiv -1 \mod m \\ x^2 \equiv -1 \mod n \end{cases}$$

(b) Soit $(a, b) \in \mathbb{Z}^2$ une solution du système

$$\begin{cases} a^2 \equiv -1 \mod m \\ b^2 \equiv -1 \mod n \end{cases}$$

Montrer qu'il existe une unique solution $x \in \{0, \dots, mn-1\}$ de (E_{mn}) telle que $\begin{cases} x \equiv a \mod m \\ x \equiv b \mod n \end{cases}$

- 4. Déduire de la question précédente que si pgcd(m,n) = 1 alors A(mn) = A(m)A(n).
- 5. Montrer que A(65) = 4 et résoudre $x^2 \equiv -1 \mod 65$ sachant que 5 et 8 sont les solutions de (E_{13}) .

Exercice 3 Les nombres triangulaires T_n (respectivement pentagonaux P_n) sont les nombres qui peuvent être arrangés sous forme de triangles (respectivement de pentagones) comme indiqués sur la figure ci-dessous. On a par exemple $T_1 = 1, T_2 = 3, T_3 = 6, T_4 = 10, T_5 = 15$ et $P_1 = 1, P_2 = 5, P_3 = 12, P_4 = 22, P_5 = 35$.

Dans cette exercice, on s'intéresse aux nombres qui sont à la fois triangulaires et pentagonaux.

- 1. Montrer que $T_n = \frac{n(n+1)}{2}$ pour tout $n \in \mathbb{N}^*$.
- 2. Montrer que $P_n = \frac{n(3n-1)}{2}$ pour tout $n \in \mathbb{N}^*$.
- 3. En déduire que $P_n = T_m$ ssi $(6n-1)^2 3(2m+1)^2 = -2$.

On désigne par (*) l'équation $x^2 - 3y^2 = -2$.

- 4. (a) Soit $(a_1, b_1, a_2, b_2) \in \mathbb{Z}^4$. Montrer que $a_1 + b_1\sqrt{3} = a_2 + b_2\sqrt{3}$ si et seulement si $a_1 = a_2$ et $b_1 = b_2$. On pourra utiliser ici le fait que $\sqrt{3}$ est irrationnel.
 - (b) Montrer que si (a, b) est solution de (*), alors (a_2, b_2) , défini par :

$$(a_2 + \sqrt{3}b_2) = (a + \sqrt{3}b)(2 + \sqrt{3})$$

est également solution de (*).

5. Montrer que tous les couples $(a_k, b_k), k \in \mathbb{N}$ définis par

$$(a_k + \sqrt{3}b_k) = (1 + \sqrt{3})(2 + \sqrt{3})^k$$

sont solutions de (*).

6. Calculer (a_3, b_3) et en déduire que $P_{12} = T_{20} = 210$.