"Sparknotes" for Algebra by MacLane and Birkhoff

Muthu Chidambaram

Last Updated: May 21, 2019

Contents

1	Sets	s, Func	ctions, and Integers	3
	1.1	Sets		3
		1.1.1	Exercise 5	3
		1.1.2	Exercise 6	3
	1.2	Functi		3
		1.2.1	Exercise 2	3
		1.2.2	Exercise 3	3
		1.2.3	Exercise 4	3
		1.2.4	Exercise 5	3
		1.2.5	Exercise 6	3
		1.2.6	Exercise 7	3
		1.2.7	Exercise 8	4
		1.2.8	Exercise 9	4
		1.2.9	Exercise 10	4
		1.2.10		4
	1.3	Relatio	ons and Binary Operations	4
		1.3.1	Exercise 2	4
		1.3.2	Exercise 3	4
		1.3.3	Exercise 4	4
		1.3.4	Exercise 5	5
		1.3.5	Exercise 6	5
		1.3.6	Exercise 7	5
		1.3.7	Exercise 9	5
		1.3.8	Exercise 10	5
	1.4	The N	Tatural Numbers	5
		1.4.1	Exercise 1	5
		1.4.2	Exercise 2	6
		1.4.3	Exercise 3	6
		1.4.4	Exercise 6	6
		1.4.5	Exercise 8	6

																_
1 1 6	Exercise 9															6
L.4.U	Exercise 9															U

Preface

"A modern mathematical proof is not very different from a modern machine, or a modern test setup: the simple fundamental principles are hidden and almost invisible under a mass of technical details." - Hermann Weyl

These notes contain short summaries of (my) proof ideas for exercises and some theorems from the book *Algebra* by MacLane and Birkhoff. I have tried to make the summaries as brief as possible, sometimes only one line or one equation. My hope is that the summaries will give enough information to reconstruct a full proof without bogging the reader down with details. In many cases, I am sure that I inadvertently sacrificed clarity in an attempt to obtain brevity, and would greatly appreciate any feedback.

Also, I like when people include (what they presume to be) relevant quotes from mathematicians of past generations in their notes, so I have to ask you to forgive my haughtiness in starting these notes with a quote from Hermann Weyl.

1 Sets, Functions, and Integers

1.1 Sets

1.1.1 Exercise 5

When constructing a subset, each element in the set can either be in or out (2 choices). Hence, 2^n .

1.1.2 Exercise 6

There are n choices for the first element, n-1 choices for the second element, and so on up to n-m, hence dividing n! by (n-m)!. The order of these m selected elements doesn't matter, hence the division by m!.

1.2 Functions

1.2.1 Exercise 2

 $h_g \circ h_f$, where h corresponds to left-inverse.

1.2.2 Exercise 3

Let $f: A \to B$ and $g: B \to C$ be surjections. Then $g \circ f$ is surjective since $\exists x \in B$ such that $g(x) = y \quad \forall y \in C$, and $\exists x' \in A$ such that $f(x') = x \quad \forall x \in B$ (from the surjectivity of f and g). Proving injectivity follows similarly.

1.2.3 Exercise 4

The reverse direction follows from Exercise 3. If $f \circ g$ is injective and g is not, we could choose two elements from the domain of g that map to the same element in the domain of f (contradiction). Surjectivity is a similar argument.

1.2.4 Exercise 5

f has no right inverse since it is not surjective. There are infinitely many left inverses of f, two possibilities are mapping to square roots when possible and to 1 or 2 otherwise.

1.2.5 Exercise 6

Apply the left inverse of f.

1.2.6 Exercise 7

When surjective, use right inverse.

1.2.7 Exercise 8

Define h such that h(y) = x if $\exists x \in S \mid f(x) = y$, and h(y) = x' otherwise (axiom of choice necessary for choosing x). If f is injective, there will only be one choice of x, and if f is surjective, there will be some x for every y.

1.2.8 Exercise 9

Unique right inverse indicates that every element in the range has only one choice to map back to in the domain, implying injectivity.

1.2.9 Exercise 10

If g is a bijection, then we can define f such that f(y) = x where g(x) = y. f is then a two-sided inverse. If f is a two-sided inverse of g, then every element of T maps to a unique element of S (from left inverse) and vice versa. Hence g is a bijection.

1.2.10 Exercise 11

Following the hint, we can see that $f: U \to \mathcal{F}$ is surjective since $S \in \mathcal{F} \Longrightarrow S \neq \emptyset \Longrightarrow \exists u \in S \Longrightarrow u \in U \Longrightarrow f(u) = S$. The existence of the right inverse then gives us the axiom of choice.

1.3 Relations and Binary Operations

1.3.1 Exercise 2

Symmetry + transitivity imply circularity. For the other direction, we have xRy, $yRy \implies yRx$, which gives both symmetry and transitivity.

1.3.2 Exercise 3

This only implies reflexivity for the elements $x, y \in X \mid (x, y) \in R$, not $\forall x \in X$.

1.3.3 Exercise 4

If R is transitive T = R. Otherwise, start with T = R and add (x, z) to T whenever $(x, y), (y, z) \in R$. Repeat this process until there are no more pairs to add.

1.3.4 Exercise 5

Let $R \subset X \times Y$, $S \subset Y \times Z$, $T \subset Z \times A$.

$$xR \circ (S \circ T)a \implies \exists y \in Y \mid xRy, y(S \circ T)a$$
$$\implies \exists z \in Z \mid ySz, zTa$$
$$\implies x(R \circ S)z$$
$$\implies x(R \circ S) \circ Ta$$

1.3.5 Exercise 6

Let $R \subset X \times Y$, $S \subset Y \times Z$.

$$z(R \circ S)^{\smile} x \implies x(R \circ S)z$$

$$\implies \exists y \in Y \mid xRy, ySz$$

$$\implies yR^{\smile} x, zS^{\smile} y$$

$$\implies z(S^{\smile} \circ R^{\smile})x$$

1.3.6 Exercise 7

$$(x,z) \in G(g \circ f) \implies \exists y \in Y \mid g(y) = z, \ f(x) = y$$

$$\implies (x,y) \in G(f), \ (y,z) \in G(g)$$

$$\implies (x,z) \in G(f) \circ G(g)$$

1.3.7 Exercise 9

$$(x,y) \in G(f) \implies \forall x \in X, \ \exists y \in Y \mid f(x) = y$$

$$\implies \forall x \in X, \ (x,x) \in G(f) \circ G^{\smile}(f)$$
and
$$\forall y \in \operatorname{Im} f, \ (y,y) \in G^{\smile}(f) \circ G(f)$$

1.3.8 Exercise 10

$$x \square y = u \square (x \square y) = (u \square y) \square x = y \square x$$
$$x \square (y \square z) = x \square (z \square y) = (x \square y) \square z$$

1.4 The Natural Numbers

1.4.1 Exercise 1

 $f^0=1_X$ is trivially an injection. Suppose f^n is an injection for some $n\in\mathbb{N}$. Then $f^{\sigma(n)}=f\circ f^n$ is a composition of injections and we are done.

1.4.2 Exercise 2

Same thing as Exercise 1.

1.4.3 Exercise 3

We have that $\sigma^0(0) = 0$. Now assuming $\sigma^n(0) = n$ for some $n \in \mathbb{N}$, we have $\sigma^{\sigma(n)}(0) = \sigma \circ \sigma^n(0) = \sigma(n) = n + 1$.

1.4.4 Exercise 6

We can take $\sigma^{-1}(n) = n-1$ for n > 0 and $\sigma^{-1}(0) = 0, 1, 2$ to get 3 different left inverses.

1.4.5 Exercise 8

Let $n \in U$ if the elements in all sets of size n are equal. Since we can construct a set with two different elements, we have that n = 1 does not imply $\sigma(n) \in U$, and the induction axiom cannot be applied to U.

1.4.6 Exercise 9

(Property I, Property II): Take $X = \mathbb{N}$ and $\sigma(x) = x^2 + 1$.

(Property I, Property III): Let $X = \{0,1\}$ and let $\sigma(0) = 1$, $\sigma(1) = 0$. Then σ is clearly injective, and any subset of X that contains 0 and $\sigma(0)$ is all of X.

(Property II, Property III): Again take $X=\{0,1\},$ but this time let $\sigma(0)=\sigma(1)=1.$