

1. Übungsblatt

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik

Sommersemester 2021

23. April 2021

Auf diesem Übungsblatt wird der Vorlesungsstoff bis Seite 8 (einschließlich Satz 16.4) des Vorlesungsskripts behandelt.

Aufgabe 1:

- (i) Untersuchen Sie die folgenden Mengen jeweils auf Beschränktheit, Offenheit, Abgeschlossenheit und Kompaktheit.
 - (a) $A := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \ge 1, x y \le 3\},\$
 - (b) $B := \{(x, y) \in \mathbb{R}^3 : (x+4)^2 + (y-1)^4 + (z-3)^6 < 16\}.$
- (ii) Es seien $f, g \in C(\mathbb{R})$ und $x_1, x_2 \in \mathbb{R}, x_1 < x_2$, seien Schnittstellen von f und g, das heißt es gilt $f(x_k) = g(x_k)$ (k = 1, 2). Ferner sei f(x) > g(x) $(x \in (x_1, x_2))$ und $f(x) \leq g(x)$ sonst. Zeigen Sie:
 - (a) Die Menge $\{(x,y) \in \mathbb{R}^2 : g(x) < y < f(x)\}$ ist offen,
 - (b) die Menge $\{(x,y) \in \mathbb{R}^2 : g(x) \le y \le f(x)\}$ ist abgeschlossen.

Lösungsvorschlag zu Aufgabe 1:

(i) (a) Behauptung: A ist unbeschränkt, abgeschlossen und weder offen noch kompakt.

<u>Beweis:</u> Die Menge A ist unbeschränkt, da die unbeschränkte Folge (z_n) mit $z_n := (n, n)$ $(n \in \mathbb{N})$ in A liegt. Somit ist A auch nicht kompakt. Ferner lässt sich $A = (\mathbb{R}^2 \setminus U_1((0, 0))) \cap \tilde{A}$ als Schnitt der beiden abgeschlossenen Mengen

$$\mathbb{R}^2 \setminus U_1((0,0)) = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \ge 1\} \text{ und } \tilde{A} = \{(x,y) \in \mathbb{R}^2 : x - y \le 3\}$$

darstellen. Dabei ist $\mathbb{R}^2 \setminus U_1((0,0))$ als Komplement der offenen Einheitskugel abgeschlossen. Im Folgenden zeigen wir die Abgeschlossenheit von \tilde{A} : Es sei $((x_n,y_n))$ eine konvergente Folge in \tilde{A} mit Grenzwert $(x,y) \in \mathbb{R}^2$, so gilt für alle $n \in \mathbb{N}$:

$$x_n - y_n \le 3. \tag{1}$$

Nach Satz 15.1 gilt $x_n \to x$ und $y_n \to y$ in \mathbb{R} für $n \to \infty$. Wir betrachten in (1) den Grenzwert $(n \to \infty)$ und erhalten $x - y \le 3$. Folglich ist (x, y) selbst ein Element der Menge \tilde{A} und folglich ist \tilde{A} abgeschlossen. Damit ist A als Schnitt zweier abgeschlossener Mengen abgeschlossen. Da $\emptyset \ne A \ne \mathbb{R}^2$ ist die abgeschlossene Menge A nicht offen.

(b) Behauptung: B ist beschränkt und offen, aber weder abgeschlossen noch kompakt.

<u>Beweis:</u> Die Menge B ist beschränkt, da für alle $(x,y) \in B$ gilt:

$$(x+4)^{2} + (y-1)^{4} + (z-3)^{6} < 16 \quad \Rightarrow \quad (x+4)^{2} < 16$$

$$\Leftrightarrow \quad |x+4| < 4 \quad \Leftrightarrow \quad -8 < x < 0.$$

Analog zeigen wir, dass -1 < y < 3 und durch grobes Abschätzen erhalten wir $z \in (4,8)$, woraus folgt $|(x,y)| = (x^2 + y^2 + z^2)^{\frac{1}{2}} \le (8^2 + 3^2 + 8^2)^{\frac{1}{2}} < 12$.

Zudem können wir $B = \{(x,y,z) \in \mathbb{R}^3 : (x+4)^2 + (y-1)^4 + (z-3)^6 < 16\} = \mathbb{R}^3 \setminus \tilde{B}$ als Komplement der abgeschlossenen Menge $\tilde{B} = \{(x,y,z) \in \mathbb{R}^3 : (x+4)^2 + (y-1)^4 + (z-3)^6 \ge 16\}$ schreiben und es folgt direkt die Offenheit von B. Der Beweis der Abgeschlossenheit von \tilde{B} kann wie in (i) geführt werden. Da $\emptyset \neq B \neq \mathbb{R}^3$ ist die offene Menge B nicht abgeschlossen und demzufolge auch nicht kompakt.

- (ii) Wir beweisen das Folgende: es sei $h \in C(\mathbb{R})$ und $x_1 < x_2$ seien Nullstellen von h mit h(x) > 0 ($x \in (x_1, x_2)$) und $h(x) \le 0$ sonst. Dann ist die Menge $C := \{(x, y) \in \mathbb{R}^2 \colon 0 < y < h(x)\}$ offen und die Menge $D := \{(x, y) \in \mathbb{R}^2 \colon 0 \le y \le h(x)\}$ abgeschlossen. Die Behauptung folgt dann durch Betrachtung der Funktion h = f g.
 - (a) Behauptung: Die Menge C ist offen.

<u>Beweis:</u> Es sei $(x,y) \in C$, dann gibt es $\varepsilon > 0$ mit $y + \varepsilon < h(x)$, wähle $\varepsilon := \frac{h(x) - y}{2}$. Da h stetig ist, gibt es ein $\delta > 0$, sodass für alle $\tilde{x} \in \mathbb{R}$ mit $|\tilde{x} - x| < \delta$ gilt: $|h(x) - h(\tilde{x})| < \varepsilon$. Insbesondere folgt daraus, dass $y < h(\tilde{x})$ ($\tilde{x} \in (x - \delta, x + \delta)$). Definiere $\rho := \min\{|y|, \delta, \varepsilon, x_2 - x, x - x_1\}$. Dann gilt für alle $(\tilde{x}, \tilde{y}) \in U_{\rho}(x, y)$: $0 < \tilde{y}$ und $\tilde{y} < h(\tilde{x})$. Damit ist $U_{\rho}(x, y) \subseteq C$ und somit eine offene Kugel um (x, y) gefunden. C ist folglich offen.

(b) Behauptung: Die Menge D ist abgeschlossen.

<u>Beweis:</u> Es sei (x_n, y_n) eine Folge in D mit $(x_n, y_n) \to (x, y) \in \mathbb{R}^2$. Dann gilt $x_n \to x$ in \mathbb{R} und, da h stetig ist, auch $h(x_n) \to h(x)$ $(n \to \infty)$. Gilt $0 \le y_n \le h(x_n)$, so gilt nach Betrachtung des Grenzwertes auch $0 \le y \le \lim_{n \to \infty} h(x_n) = h(x)$. Folglich ist $(x, y) \in D$ und damit D abgeschlossen.

Aufgabe 2 (K):

(i) Es sei $D := U_1(0) \setminus \{0\} \subseteq \mathbb{R}^2$. Untersuchen Sie jeweils für die angegebene Funktion $f : D \to \mathbb{R}$, ob der Grenzwert $\lim_{(x,y)\to(0,0)} f(x,y)$ existiert und bestimmen Sie diesen gegebenenfalls.

(a)
$$f(x,y) := \frac{4xy}{x^2 + y^2} \sin(xy^2 - x^2y)$$
, (b) $f(x,y) := \frac{xy^5 + x^2y^4}{6x^6 + 4y^6}$.

(ii) Untersuchen Sie für die folgende Funktion f die Grenzwerte $\lim_{t\to 0+} f(tv)$ für alle $v\in \mathbb{R}^2\setminus\{(0,0)\}$ und prüfen Sie, ob f stetig in 0 ist.

$$f \colon \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) := \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \\ 0, & (x,y) = (0,0). \end{cases}$$

Lösungsvorschlag zu Aufgabe 2:

(i) (a) <u>Behauptung:</u> Es gilt $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

<u>Beweis:</u> Es sei $(z_n) = (x_n, y_n)$ eine Folge in D mit $z_n \to (0, 0)$ für $n \to \infty$, d.h. $x_n \to 0$ und $y_n \to 0$ für $n \to \infty$. Für alle $x, y \in \mathbb{R}$ gilt

$$0 \le (|x| - |y|)^2 = x^2 - 2|xy| + y^2,$$

was $4|xy| \le 2(x^2 + y^2)$ impliziert. Es folgt daher für jedes $n \in \mathbb{N}$

$$|f(z_n)| = |f(x_n, y_n)| = \left| \frac{4x_n y_n}{x_n^2 + y_n^2} \right| \cdot \left| \sin(x_n y_n^2 - x_n^2 y_n) \right| \le 2 \left| x_n y_n^2 - x_n^2 y_n \right|$$

$$\le 2(\left| x_n y_n^2 \right| + \left| x_n^2 y_n \right|) \xrightarrow{n \to \infty} 0.$$

(b) <u>Behauptung:</u> Der Grenzwert $\lim_{(x,y)\to(0,0)} f(x,y)$ existiert nicht.

Beweis: Es gilt

$$\lim_{n \to \infty} f\left(\frac{1}{n}, \frac{1}{n}\right) = \lim_{n \to \infty} \frac{2\left(\frac{1}{n}\right)^6}{6\left(\frac{1}{n}\right)^6 + 4\left(\frac{1}{n}\right)^6} = \lim_{n \to \infty} \frac{1}{5} = \frac{1}{5}.$$

Für jedes $x \in \mathbb{R}$ und y = -x gilt

$$xy^5 + x^2y^4 = -x^6 + x^6 = 0.$$

Folglich ist

$$\lim_{n \to \infty} f\left(\frac{1}{n}, -\frac{1}{n}\right) = \lim_{n \to \infty} 0 = 0.$$

Wegen $(\frac{1}{n}, \frac{1}{n}) \to (0, 0)$ und $(\frac{1}{n}, -\frac{1}{n}) \to (0, 0)$ für $n \to \infty$ und $\frac{1}{5} \neq 0$, existiert der Grenzwert $\lim_{(x,y)\to(0,0)} f(x,y)$ nicht.

(ii) <u>Behauptung:</u> Es gilt $\lim_{t\to 0+} = \frac{2v_1v_2}{v_1^2+v_2^2}$ für alle $v\in \mathbb{R}\setminus\{(0,0)\}$ und f ist nicht stetig in (0,0).

<u>Beweis:</u> Es sei $v = (v_1, v_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ und t > 0. Dann ist

$$f(tv) = \frac{2tv_1 \cdot tv_2}{t^2v_1^2 + t^2v_2^2} = \frac{2v_1v_2}{v_1^2 + v_2^2} \xrightarrow{t \to 0+} \frac{2v_1v_2}{v_1^2 + v_2^2}.$$

Mit den beiden Einheitsvektoren $e_1, e_2 \in \mathbb{R}^2$ gilt beispielsweise $\lim_{t \to 0+} f(te_1) = 0 = \lim_{t \to 0+} f(te_2)$, aber $\lim_{t \to 0+} f(t(e_1 + e_2)) = 1$. Wegen $te_1 \to 0$, $te_2 \to 0$ und $t(e_1 + e_2) \to 0$ für $t \to 0+$ ist f daher nicht stetig in (0,0).

Aufgabe 3:

Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) := \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{für } (x,y) \neq (0,0), \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

- (i) Untersuchen Sie die Funktion f in jedem Punkt $(x, y) \in \mathbb{R}^2$ auf Stetigkeit.
- (ii) Zeigen Sie, dass für alle $(a, b) \in \mathbb{R}^2$ die Grenzwerte

$$\lim_{x \to a} \left(\lim_{y \to b} f(x, y) \right) \quad \text{und} \quad \lim_{y \to b} \left(\lim_{x \to a} f(x, y) \right)$$

existieren. Für welche $(a,b) \in \mathbb{R}^2$ stimmen diese überein?

Lösungsvorschlag zu Aufgabe 3:

(i) Behauptung: f ist auf $\mathbb{R} \setminus \{(0,0)\}$ stetig und in (0,0) unstetig.

<u>Beweis:</u> Für alle $(x, y) \neq (0, 0)$ ist f als Verknüpfung stetiger Funktionen selbst stetig. Der eigentlich interessante Fall ist die Frage nach Stetigkeit im Punkt (0, 0). Betrachte die Folge $((\frac{1}{n}, 0))$. Sie konvergiert gegen (0, 0), aber es gilt:

$$f\left(\frac{1}{n},0\right) = \frac{\left(\frac{1}{n}\right)^2 - 0}{\left(\frac{1}{n}\right)^2 + 0} = 1 \quad (n \in \mathbb{N}).$$

Damit ist $\lim_{n\to\infty} f(\frac{1}{n},0) = 1 \neq 0 = f(0,0)$ und damit ist f nicht stetig in (0,0).

(ii) <u>Behauptung:</u> Die obigen beiden Grenzwerte existieren für alle $(a, b) \in \mathbb{R}^2$ und stimmen für $(a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ überein.

<u>Beweis:</u> Da $\mathbb{R}^2 \setminus \{(0,0)\}$ offen ist, gibt es um jeden Punkt $(a,b) \neq (0,0)$ eine Umgebung, die (0,0) nicht enthält. Auf dieser Umgebung ist f stetig, und damit auch stetig in allen Komponenten, das heißt, es gilt:

$$\lim_{x \to a} \left(\lim_{y \to b} f(x, y) \right) = \lim_{x \to a} f(x, b) = f(a, b) = \lim_{y \to b} \left(\lim_{x \to a} f(x, y) \right).$$

Im Ursprung berechnen wir

$$\begin{split} &\lim_{x \to 0} \left(\lim_{y \to 0} f(x,y) \right) = \lim_{x \to 0} \left(\lim_{y \to 0} \frac{x^2 - y^2}{x^2 + y^2} \right) = \lim_{x \to 0} \frac{x^2}{x^2} = 1, \\ &\lim_{y \to 0} \left(\lim_{x \to 0} f(x,y) \right) = \lim_{y \to 0} \left(\lim_{x \to 0} \frac{x^2 - y^2}{x^2 + y^2} \right) = \lim_{y \to 0} \frac{-y^2}{y^2} = -1, \end{split}$$

somit existieren die beiden Grenzwerte, stimmen aber nicht überein.

Aufgabe 4 (K):

Untersuchen Sie jeweils, an welchen Stellen die folgenden Funktionen stetig bzw. unstetig sind.

(i)
$$f : \mathbb{R}^3 \to \mathbb{R}, \ f(x,y) := \begin{cases} \frac{x+y}{\sqrt[4]{x^2+y^2+z^2}} & \text{für } (x,y,z) \neq (0,0,0), \\ 0 & \text{für } (x,y,z) = (0,0,0). \end{cases}$$

(ii)
$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) := \begin{cases} (x+y)\sin\left(\frac{1}{xy}\right) & \text{für } xy \neq 0, \\ 0 & \text{für } xy = 0. \end{cases}$$

(iii)
$$f \colon \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) := \begin{cases} \frac{\sin(x)y - xy}{x^3} & \text{für } x \neq 0, \\ -\frac{1}{6}y & \text{für } x = 0. \end{cases}$$

Lösungsvorschlag zu Aufgabe 4:

(i) Behauptung: f ist auf ganz \mathbb{R}^3 stetig.

<u>Beweis:</u> Die Funktion ist stetig auf \mathbb{R}^3 . Zunächst ist sie stetig in allen Punkten außer dem Ursprung als Verkettung von stetigen Funktionen. Es sei nun (x_n, y_n, z_n) eine Folge aus $\mathbb{R}^3 \setminus \{(0,0,0)\}$ mit $(x_n, y_n, z_n) \to (0,0,0)$ für $(n \to \infty)$. Dann gilt (beachte: $a \le \sqrt{a^2 + b^2 + c^2}$ und $b \le \sqrt{a^2 + b^2 + c^2}$ für $a, b, c \in \mathbb{R}$):

$$|f(x_n, y_n, z_n)| = \left| \frac{x_n + y_n}{\sqrt[4]{x_n^2 + y_n^2 + z_n^2}} \right| \le 2 \left| \frac{\sqrt{x_n^2 + y_n^2 + z_n^2}}{\sqrt[4]{x_n^2 + y_n^2 + z_n^2}} \right| = 2 \sqrt[4]{x_n^2 + y_n^2 + z_n^2} \xrightarrow{n \to \infty} 0.$$

Folglich konvergiert $f(x_n, y_n, z_n)$ gegen 0 = f(0, 0, 0) nach dem Sandwich-Kriterium.

(ii) Behauptung: f ist auf $\{(0,0)\} \cup \{(x,y) \in \mathbb{R}^2 : xy \neq 0\}$ stetig, in allen anderen Punkten unstetig.

<u>Beweis:</u> Auch diese Funktion ist stetig in allen Punkten mit $xy \neq 0$ als Verkettung stetiger Funktionen. In (0,0) ist die Funktion stetig, denn wie in (i) erhalten wir für eine Folge (x_n,y_n) mit $(x_n,y_n) \to 0$ für $(n \to \infty)$:

$$|f(x_n, y_n)| \le |x_n| + |y_n| \to 0 = f(0, 0) \quad (n \to \infty).$$

An allen weiteren Punkten ist die Funktion unstetig. Sei $a \neq 0$, betrachte dann die Folgen $(a, \frac{1}{\pi na})$ und $(a, \frac{1}{(2n+\frac{1}{2})\pi a})$. Beide gehen gegen (a,0) für $n \to \infty$, aber es gilt:

$$f\left(a, \frac{1}{\pi \cdot na}\right) = \left(a + \frac{1}{\pi \cdot na}\right) \cdot \sin(n\pi) = 0 \xrightarrow{n \to \infty} 0,$$

$$f\left(a, \frac{1}{(2n + \frac{1}{2})\pi a}\right) = \left(a + \frac{1}{(2n + \frac{1}{2})\pi a}\right) \sin\left(\left(2n + \frac{1}{2}\right)\pi\right) \xrightarrow{n \to \infty} a.$$

Wegen $a \neq 0$ ist f nicht stetig. Der Fall (0, b) für $b \neq 0$ funktioniert analog durch Vertauschen der Argumente.

(iii) Behauptung: f ist auf ganz \mathbb{R}^2 stetig.

<u>Beweis:</u> Auch hier ist die Funktion f auf $\mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 : x = 0\}$ als Verkettung stetiger Funktionen stetig. Sei nun $((x_n,y_n))$ eine konvergente Folge in \mathbb{R}^2 mit Grenzwert $(0,y) \in \mathbb{R}^2$. Wir betrachten zunächst den Spezialfall, dass die Folge $((x_n,y_n))$ in $\mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 : x = 0\}$ liegt. Dann gilt wegen der Potenzreihenentwicklung des Sinus

$$\lim_{n\to\infty} f(x_n,y_n) = \lim_{n\to\infty} \frac{\sin(x_n) - x_n}{x_n^3} y_n = \lim_{n\to\infty} \frac{\sin(x_n) - x_n}{x_n^3} \cdot \lim_{n\to\infty} y_n = -\frac{1}{6}y.$$

Als nächstes betrachten wir den anderen Spezialfall, dass die Folge $((x_n, y_n))$ in $\{(x, y) \in \mathbb{R}^2 : x = 0\}$ liegt. In diesem Fall gilt offensichtlich

$$\lim_{n \to \infty} f(x_n, y_n) = \lim_{n \to \infty} -\frac{1}{6} y_n = -\frac{1}{6} y.$$

Die beiden Spezialfälle ergeben, dass $\lim_{n\to\infty} f(x_n,y_n) = -\frac{1}{6}y$ für jede beliebige Folge $((x_n,y_n))$ in \mathbb{R}^2 mit Grenzwert $(0,y)\in\mathbb{R}^2$, da sich diese Folge stets in eine Teilfolge in $\mathbb{R}^2\setminus\{(x,y)\in\mathbb{R}^2\colon x=0\}$ und eine Teilfolge in $\{(x,y)\in\mathbb{R}^2\colon x=0\}$ aufteilen lässt oder es gibt nur endlich viele Folgeglieder in einer der beiden Mengen. Insgesamt ist f also auf ganz \mathbb{R}^2 stetig.