An Overview of Gradient Descent Optimization Algorithms

Matteo Sordello

University of Pennsylvania

Credits: A big part of this presentation is borrowed from Sebastian Ruder

October 18, 2018

1 / 37

Matteo Sordello October 18, 2018

Expected vs. Empirical Loss

- $(x_i, y_i) \in \mathbb{R}^{d_x} \times \mathbb{R}$ for i = 1, ..., n, we call x the input and y the output.
- $f(\theta, x, y)$ is the loss (risk) function. Two popular examples
 - Linear regression: $f(\theta, x, y) = (y x \cdot \theta)^2$
 - Logistic regression: $f(\theta, x, y) = \log(1 + e^{-yx \cdot \theta})$

Expected vs. Empirical Loss

- $(x_i, y_i) \in \mathbb{R}^{d_x} \times \mathbb{R}$ for i = 1, ..., n, we call x the input and y the output.
- $f(\theta, x, y)$ is the loss (risk) function. Two popular examples
 - Linear regression: $f(\theta, x, y) = (y x \cdot \theta)^2$
 - Logistic regression: $f(\theta, x, y) = \log(1 + e^{-yx \cdot \theta})$
- The **expected** loss is

$$L(\theta) = \mathbb{E}_{(x,y)} [f(\theta, x, y)]$$

Expected vs. Empirical Loss

- $(x_i, y_i) \in \mathbb{R}^{d_x} \times \mathbb{R}$ for i = 1, ..., n, we call x the input and y the output.
- $f(\theta, x, y)$ is the loss (risk) function. Two popular examples
 - Linear regression: $f(\theta, x, y) = (y x \cdot \theta)^2$
 - Logistic regression: $f(\theta, x, y) = \log(1 + e^{-yx \cdot \theta})$
- The **expected** loss is

$$L(\theta) = \mathbb{E}_{(x,y)} [f(\theta, x, y)]$$

• The empirical loss is

$$L_n(\theta) = \frac{1}{n} \sum_{i=1}^n f(\theta, x_i, y_i) := \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

2 / 37

Gradient descent

- Gradient descent is a way to minimize an objective function $F(\theta)$.
 - $oldsymbol{ heta} heta \in \mathbb{R}^d$ are the model parameters
 - η_t is the learning rate at iteration t.
 - $abla_{ heta}F(heta)$ is the gradient of the objective function with respect to the parameters

<ロト <回り < 重り < 重

Matteo Sordello October 18, 2018 3 / 37

Gradient descent

- Gradient descent is a way to minimize an objective function $F(\theta)$.
 - $oldsymbol{ heta} heta \in \mathbb{R}^d$ are the model parameters
 - η_t is the learning rate at iteration t.
 - $\nabla_{\theta} F(\theta)$ is the gradient of the objective function with respect to the parameters
- The parameters get updated in the opposite direction of the gradient, following the equation

Matteo Sordello

October 18, 2018

Variants

- Batch gradient descent
- Stochastic gradient descent
- Mini-batch gradient descent

They only differ in the amount of data used for each update.

Matteo Sordello October 18, 2018 4 / 37

Batch gradient descent

At every iteration we compute the gradient using the whole dataset. The update equation is

$$\theta_{t+1} = \theta_t - \eta_t \cdot \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} f_i(\theta_t)$$

5 / 37

Batch gradient descent

At every iteration we compute the gradient using the whole dataset. The update equation is

$$\theta_{t+1} = \theta_t - \eta_t \cdot \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} f_i(\theta_t)$$

- Pros: Guaranteed to converge to global minimum for convex error surfaces and to a local minimum for non-convex surfaces.
- Cons:
 - Very slow
 - Intractable for datasets that do not fit in memory
 - No online learning

Stochastic gradient descent

We compute an update for each data point. The update equation is

$$\theta_{t+1} = \theta_t - \eta_t \cdot \nabla_{\theta} f_{i_t}(\theta_t)$$

where $i_t \in \{1, ..., n\}$.

Stochastic gradient descent

We compute an update for each data point. The update equation is

$$\theta_{t+1} = \theta_t - \eta_t \cdot \nabla_{\theta} f_{i_t}(\theta_t)$$

where $i_t \in \{1, ..., n\}$.

- Pros:
 - Much faster than batch gradient descent
 - Allows online learning
- Cons: High variance updates.
- SGD shows same convergence behaviour as batch gradient descent if learning rate is slowly decreased over time.

《四》《圖》《重》《重》

Figure: Batch gradient descent vs. SGD fluctuation (Source: Wikipedia)

Mini-batch gradient descent

Matteo Sordello

At every gradient update a mini-batch of b data points is used. Let B be the set indices, the update equation is

$$\theta_{t+1} = \theta_t - \eta_t \cdot \frac{1}{b} \sum_{i \in B} \nabla_{\theta} f_i(\theta_t)$$

Mini-batch gradient descent

At every gradient update a mini-batch of b data points is used. Let B be the set indices, the update equation is

$$\theta_{t+1} = \theta_t - \eta_t \cdot \frac{1}{b} \sum_{i \in B} \nabla_{\theta} f_i(\theta_t)$$

- Pros: Reduces variance of updates
- Cons: Mini-batch size is a hyperparameter. Common sizes are 50-256
- This is the algorithm used in practice most of the times in real applications.

 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > □
 ② Q ○

 Matteo Sordello
 October 18, 2018 8 / 37

Method	Accuracy	Update Speed	Memory Usage	Online Learning
Batch gradient descent	Good	Slow	High	No
Stochastic gradient descent	Good (with annealing)	High	Low	Yes
Mini-batch gradient descent	Good	Medium	Medium	Yes

Table: Comparison of trade-offs of gradient descent variants

Matteo Sordello October 18, 2018 9 / 37

Challenges

ullet Choosing a learning rate η_t (constant or decreasing? How fast?)

Challenges

- ullet Choosing a learning rate η_t (constant or decreasing? How fast?)
- Updating features to different extent

Challenges

- Choosing a learning rate η_t (constant or decreasing? How fast?)
- Updating features to different extent
- Avoiding suboptimal minima

Matteo Sordello October 18, 2018 10 / 37

Gradient descent optimization algorithms

- Momentum
- Nesterov accelerated gradient
- Adagrad
- Adadelta
- RMSprop
- Adam

11 / 37

Matteo Sordello October 18, 2018

Ravine

A ravine is a slope landform of relatively steep (cross-sectional) sides.

Matteo Sordello

Momentum

- SGD has trouble navigating ravines
- Momentum [Qian, 1999] helps SGD accelerate
- ullet A fraction γ of the update vector at step t-1 is added to the gradient

$$v_t = \gamma v_{t-1} + \eta_t \nabla_{\theta} f(\theta_t)$$

$$\theta_{t+1} = \theta_t - v_t$$

or equivalently $\theta_{t+1} = \theta_t - \eta_t \nabla_{\theta} f(\theta_t) - \gamma(\theta_{t-1} - \theta_t)$

Figure: SGD without momentum

Figure: SGD with momentum

Advantages of momentum

IDEA: a ball rolling down a hill accumulating momentum

- Reduces updates for dimensions whose gradients change directions
- Increases updates for dimensions whose gradients point in the same directions

Figure: Optimization with momentum (Source: distill.pub)

Nesterov accelerated gradient

Problem with momentum: the ball has no notion of where it's going

 Momentum blindly accelerates down slopes: First computes gradient, then makes a big jump

Nesterov accelerated gradient

Problem with momentum: the ball has no notion of where it's going

- Momentum blindly accelerates down slopes: First computes gradient, then makes a big jump
- Nesterov accelerated gradient (NAG) [Nesterov, 1983] first makes a big jump in the direction of the previous accumulated gradient $\theta_t \gamma v_{t-1}$. Then measures where it ends up and makes a correction, resulting in the complete update vector.

$$v_t = \gamma v_{t-1} + \eta_t \nabla_{\theta} f(\theta_t - \gamma v_{t-1})$$

$$\theta_{t+1} = \theta_t - v_t$$

◆□ > ◆圖 > ◆臺 > ◆臺 >

Nesterov update

- small blue vector: current gradient
- brown vector: previous accumulated gradient
- big blue vector: current accumulated gradient
- red vector: gradient after the big jump
- green vector: NAG update

16 / 37

Matteo Sordello October 18, 2018

Adagrad

Notation: $g_t = \nabla_{\theta} f(\theta_t)$.

Problem: up to now the learning rate η_t was the same for each parameter.

(日) (日) (日) (日)

Adagrad

Notation: $g_t = \nabla_{\theta} f(\theta_t)$.

Problem: up to now the learning rate η_t was the same for each parameter.

- Adagrad [Duchi et al., 2011] adapts the learning rate to the parameters (large updates for infrequent parameters, small updates for frequent parameters)
- It divides the learning rate by the square root of the sum of squares of historic gradients. Its update is

$$\theta_{t+1} = \theta_t - \frac{\eta_t}{\sqrt{G_t + \epsilon}} \cdot g_t$$

where G_t is the diagonal matrix where each entry is the sum of the squares of the gradients up to time t.

ullet is a smoothing term to avoid division by 0.

Matteo Sordello

4日 > 4回 > 4 至 > 4 至 >

Pros:

- Well-suited for dealing with sparse data
- Significantly improves robustness of SGD
- Lesser need to manually tune learning rate
- Cons: Accumulates squared gradients in denominator. Causes the learning rate to shrink and become infinitesimally small

Adadelta

Idea: only keep a window of accumulated past squared gradients (inefficient)

• Defines running average of squared gradients $avg(g^2)_t$ at time t with

$$avg(g^2)_t = \gamma \cdot avg(g^2)_{t-1} + (1-\gamma)g_t^2$$

The parameter γ is similar to the momentum term, usually $\gamma=0.9$.

• The preliminary Adadelta upgrade is then

$$\theta_{t+1} = \theta_t - \frac{\eta_t}{\sqrt{\textit{avg}(g^2)_t + \epsilon}} \cdot g_t$$

19 / 37

4 D > 4 P > 4 B > 4 B >

Matteo Sordello October 18, 2018

Units matching with Adadelta

Note

As well as in SGD, Momentum, or Adagrad, hypothetical units do not match. If $f(\theta)$ is unitless, then

$$g = rac{\partial f(heta)}{\partial heta} \propto rac{1}{ ext{units of } heta} \quad \Rightarrow \quad rac{\eta_t}{\sqrt{ ext{avg}(g^2)_t + \epsilon}} \cdot g_t \quad ext{is unitless}$$

Units matching with Adadelta

Note

As well as in SGD, Momentum, or Adagrad, hypothetical units do not match. If $f(\theta)$ is unitless, then

$$g = rac{\partial f(heta)}{\partial heta} \propto rac{1}{ ext{units of } heta} \quad \Rightarrow \quad rac{\eta_t}{\sqrt{ ext{avg}(g^2)_t + \epsilon}} \cdot g_t \quad ext{is unitless}$$

• Define $\Delta \theta_t = \theta_{t+1} - \theta_t$ and a running average of squared parameter updates

$$avg(\Delta \theta^2)_t = \gamma \cdot avg(\Delta \theta^2)_{t-1} + (1-\gamma)\Delta \theta_t^2$$

The final Adadelta update is

$$heta_{t+1} = heta_t - rac{\sqrt{ extstyle avg(\Delta heta^2)_{t-1} + \epsilon}}{\sqrt{ extstyle avg(g^2)_t + \epsilon}} \cdot g_t$$

Matteo Sordello October 18, 2018

4 D > 4 P > 4 B > 4 B >

Comments on Adadelta

- In the final formula we use $avg(\Delta\theta^2)_{t-1}$ instead of $avg(\Delta\theta^2)_t$ because it is not known
- Adadelta uses the hyperparameters γ and ϵ , but it's **robust** so they don't need to be tuned
- The learning rate η_t does not have to be specified!

21 / 37

RMSprop

Developed independently from Adadelta around the same time by Geoff Hinton. Its updates are the same as in the preliminary Adadelta

$$\theta_{t+1} = \theta_t - \frac{\eta_t}{\sqrt{\textit{avg}(g^2)_t + \epsilon}} \cdot g_t$$

Some cool animation

(a) SGD optimization on loss surface contours

(b) SGD optimization on saddle point

◆□ > ◆圖 > ◆臺 > ◆臺 >

Link to animations

23 / 37

Adam (Adaptive Moment Estimation)

 Like Adadelta and RMSprop, also Adam [Kingma and Ba, 2015] stores a running average of past squared gradients

$$avg(g^2)_t = \beta_2 \cdot avg(g^2)_{t-1} + (1 - \beta_2)g_t^2$$

 Moreover, similar to Momentum, it also stores an exponentially decaying average of past gradients

$$avg(g)_t = \beta_1 \cdot avg(g)_{t-1} + (1 - \beta_1)g_t$$

They are estimates of the first and second moments of the gradient (hence the name). The parameters β_1 and β_2 are decay rates.

< □ > → □ > → □ > → □ >

24 / 37

If initialized as vectors of zeros, $avg(g^2)_t$ and $avg(g)_t$ are biased towards zero. Compute bias-corrected first and second moment estimates

$$m_t = rac{\mathsf{avg}(g)_t}{1-eta_1^t} \ v_t = rac{\mathsf{avg}(g^2)_t}{1-eta_2^t}$$

The Adam update is

$$\theta_{t+1} = \theta_t - \frac{\alpha_t}{\sqrt{v_t} + \epsilon} \cdot m_t$$

Why the bias correction

$$\mathbb{E}\left[\mathsf{avg}(g^2)_t\right] = \mathbb{E}\left[(1-\beta_2)\sum_{i=1}^t \beta_2^{t-i} \cdot g_i^2\right]$$
$$= \mathbb{E}\left[g_t^2\right] \cdot (1-\beta_2)\sum_{i=1}^t \beta_2^{t-i} + \zeta$$
$$= \mathbb{E}\left[g_t^2\right] \cdot (1-\beta_2^t) + \zeta$$

• $\zeta=0$ if $\mathbb{E}\left[g_i^2\right]$ is stationary, otherwise it can be kept small assigning small weights to gradients too far in the past.

4□ > 4♠ > 4₺ > ₺ 999

26 / 37

Matteo Sordello October 18, 2018

Convergence analysis

- $f_t(\theta)$ is a sequence of convex cost functions of unknown nature
- $\theta^* = \operatorname{argmin}_{\theta} \sum_{t=1}^{T} f_t(\theta)$
- The goal is to show that the regret

$$R(T) = \sum_{t=1}^{T} \left[f_t(\theta_t) - f_t(\theta^*) \right]$$

is sublinear in T.

 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > □
 ② Q ○

 Matteo Sordello
 October 18, 2018
 27 / 37

Convergence analysis

Theorem

Assume that the function f_t has bounded gradients $||\nabla f_t(\theta)||_2 \leq G$ and $||\nabla f_t(\theta)||_\infty \leq G_\infty$ for all $\theta \in \mathbb{R}^d$ and that the distance between any θ_t generated by Adam is bounded, $||\theta_n - \theta_m||_2 \leq D$ and $||\theta_n - \theta_m||_\infty \leq D_\infty$ for any $m, n \in \{1, ..., T\}$. Then Adam achieves the following guarantee, for all $T \geq 1$

$$\frac{R(T)}{T} = O\left(\frac{1}{\sqrt{T}}\right)$$

4日 > 4周 > 4 至 > 4 至

Experiment: Logistic Regression

• stepsize is $\alpha_t = \alpha/\sqrt{t}$.

4 □ > 4 □ > 4 ≡ > 4

Experiment: Convolutional Neural Networks

Extensions: Adamax

- Instead of I^2 norm we can consider the I^p norm
- It is usually unstable, but for $p \to \infty$ the algorithm is surprisingly simple and stable. Define $v_t = \beta_2^p \cdot v_{t-1} + (1 - \beta_2^p) \cdot |g_t|^p$ and

$$u_t = \lim_{p \to \infty} (v_t)^{1/p} \quad \Rightarrow \quad u_t = \max(\beta_2 \cdot u_{t-1}, |g_t|_1)$$

Note that u_t now does not need bias correction

The update rule for Adamax is

$$\theta_{t+1} = \theta_t - \frac{\eta_t}{u_t} \cdot m_t$$

4 D > 4 P > 4 B > 4 B >

Extensions: Temporal Averaging

The last iterate is noisy, instead one can use:

Polyak-Ruppert averaging

$$\bar{\theta}_t = \frac{1}{t} \sum_{k=1}^t \theta_k$$

running average

$$\bar{\theta}_t = \beta \cdot \bar{\theta}_{t-1} + (1 - \beta)\theta_t$$

starting from $\bar{\theta}_0=0$. Initalization bias can again be corrected by the estimator

$$\hat{\theta}_t = \frac{\bar{\theta}_t}{1 - \beta^t}$$

32 / 37

<ロト <回り < 重り < 重

Matteo Sordello October 18, 2018

• Nadam: combine Adam and NAG modifying the momentum term m_t .

- Nadam: combine Adam and NAG modifying the momentum term m_t .
- **Hogwild!**: a way to perform SGD updates in parallel. It only works if the input data is sparse, as in this case it is unlikely that processors will overwrite useful information.

- Nadam: combine Adam and NAG modifying the momentum term m_t .
- Hogwild!: a way to perform SGD updates in parallel. It only works if the
 input data is sparse, as in this case it is unlikely that processors will overwrite
 useful information.
- Early stopping: "beautiful free lunch". Always monitor error on a validation set during training and stop (with some patience) if your validation error does not improve enough.

4 - - - 4 - - - - - - - - - - - - - -

- Nadam: combine Adam and NAG modifying the momentum term m_t .
- Hogwild!: a way to perform SGD updates in parallel. It only works if the input data is sparse, as in this case it is unlikely that processors will overwrite useful information.
- Early stopping: "beautiful free lunch". Always monitor error on a validation set during training and stop (with some patience) if your validation error does not improve enough.
- **Gradient noise**: adding noise to each gradient update

$$g_{t,i} = g_{t,i} + N(0, \sigma_t^2)$$
 where $\sigma_t^2 = \frac{\eta}{(1+t)^{\gamma}}$

makes networks more robust to poor initialization and helps training particularly deep and complex networks. They use $\gamma = 0.55$.

October 18, 2018 Matteo Sordello

◆□ > ◆圖 > ◆臺 > ◆臺 >

Comparison on Neural Machine Translation

- The goal is to minimize the cross-entropy over the training samples
- Two tasks:
 - English → Romanian, 604K pairs of bilingual sentences with 16.8M English and 17.7M Romanian words
 - German → English, 4.2M sentence pairs with 133M German and 125M English words
- The hyperparameters are always the ones proposed in the original publications
- First single algorithm, then a combination of them

34 / 37

<ロト <回り < 重り < 重

Matteo Sordello October 18, 2018

Comparison on Neural Machine Translation

- The goal is to minimize the cross-entropy over the training samples
- Two tasks:
 - English → Romanian, 604K pairs of bilingual sentences with 16.8M English and 17.7M Romanian words
 - German → English, 4.2M sentence pairs with 133M German and 125M English words
- The hyperparameters are always the ones proposed in the original publications
- First single algorithm, then a combination of them
- How to evaluate performance
 - PPL: perplexity, strictly related to the entropy, we want to minimize it
 - BLEU: bilingual evaluation understudy, measure of similarity between texts, we want to maximize it

Matteo Sordello October 18, 2018 34 / 37

Figure 1: log PPL and BLEU score of all optimizers on validation sets.

Figure 3: BLEU of optimizers followed by the combinations on the val. set for $De \rightarrow En$. The representation of x-axis of Adam is different as it is faster.

Matteo Sordello October 18, 2018

4 □ > 4 □ > 4 ≡ > 4

Bibliography

- Ruder S (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747
- Kingma DP, Ba J (2014). Adam: A Method for Stochastic Optimization. arXiv preprint: arXiv:1412.6980
- Bahar P, Alkhouli T, Peter JT, Brix CJS, Ney H (2017) Empirical Investigation of Optimization Algorithms in Neural Machine Translation. The Prague Bulletin of Mathematical Linguistics, 108, p. 13-25.

