Chapter 5 Electric Circuits

Currents:

- 1. Conduction current: resulting from motion of electrons and/or holes in a neutral material
- 2. Electrolytic current: resulting from migration of positive or negative ions in an aqueous environment.
- 3. Convection current: resulting from motion of charged particles in vacuum. The charge density can modify the potential that drives the particles.

cathode Ray Tube (CRT)

Volume Current Density *J* (A/m²)

Total charge
$$\Delta Q = Nq \Delta V = Nq \Delta Ls_n$$

N: # of moving charges per unit volume (m⁻³) q: charge unit (coulomb)

 S_n : surface along the direction of the moving charges.

 ΔV : a differential volume

but
$$\Delta Ls_n = u_n \Delta ts_n = \vec{u} \cdot \vec{s} \Delta t$$
,

where \vec{u} is the velocity of charges and the subscript n designates the normal direction of the cross sectional surface.

$$\Rightarrow \Delta Q = Nq \Delta L s_n = Nq \vec{u} \cdot \vec{s} \Delta t$$

The definition of a *current* is the time rate change of charge

$$\Rightarrow I = \frac{\Delta Q}{\Delta t} = Nq\vec{u} \cdot \Delta \vec{s} = \vec{J} \cdot \vec{s},$$

where $\vec{J} \equiv Nq\vec{u} = \rho\vec{u}$ is the *volume current density* in units of A/m². Again ρ is the volume charge density.

$$\Rightarrow$$
 total current $I = \int_{S} \vec{J} \cdot d\vec{s}$ (A)

 \vec{u} : velocity of charges

$$I = \frac{dq}{dt} = \int_{s} \vec{J} \cdot d\vec{s}$$

Eg. Convection current across a parallel-plate accelerator

Find J as a function of V_0

From energy conservation, electron kinetic energy = electric energy

Use Newton's mechanics for non-relativistic motion $\frac{1}{2}mu^2 = eV$

$$\Rightarrow u = \sqrt{\frac{2eV}{m}}$$

Recall $\vec{J} = Nq\vec{u} = \rho(y)\vec{u}(y) = \text{const.}$ at steady state.

The charge density is
$$\rho(y) = -J \sqrt{\frac{m}{2eV(y)}}$$

From Poisson's equation $\nabla^2 V = -\frac{\rho}{\varepsilon_0}$, one writes

$$\frac{d^2V}{dy^2} = \frac{J}{\varepsilon_0} \sqrt{\frac{m}{2e}} V^{-1/2}$$

across two infinitely large electrode plates, where J is a constant.

Math trick:
$$\frac{d}{dy} \left(\frac{dV}{dy} \right)^2 = 2 \frac{dV}{dy} \left(\frac{d^2V}{dy^2} \right)$$

Thus
$$2\frac{dV}{dy} \left(\frac{d^2V}{dy^2} \right) = 2\frac{dV}{dy} \frac{J}{\varepsilon_0} \sqrt{\frac{m}{2e}} V^{-1/2} = \frac{d}{dy} \left(\frac{dV}{dy} \right)^2$$

$$\Rightarrow d\left(\frac{dV}{dy}\right)^{2} = 2\frac{J}{\varepsilon_{0}}\sqrt{\frac{m}{2e}}V^{-1/2}dV$$

Boundary conditions

i. at
$$y = 0$$
, $V = 0$ and $\frac{dV}{dy} = 0$;

ii. at
$$y = d$$
, $V = V_0$

The current density can be solved to be $J=\frac{4\varepsilon_0}{9d^2}\sqrt{\frac{2e}{m}}V_0^{3/2}$ or the charge density is proportion to $V_0^{3/2}$ (note: Ohm's law has a linear dependence). This formula is called the Child-Langmuir law. Note that in Poisson's equation the charge density is associated with free charges and the charge density modifies local electric potential.

A Microscopic View of Current: Mobility μ_e (m²/V·s)

For more than one kind of charged carriers, the total current density is a superposition of individual ones

$$\vec{J} = \sum_{i} N_{i} q_{i} \vec{u}_{i}$$

For most conducting materials, the average drifting velocity of charges $\sim 10^{-3} \sim 10^{-4} \, m/s$ due to collisions, and can be expressed by $\vec{u} = -\mu_e \vec{E} \quad (\text{m/s}) \, ,$

where μ_e (m²/V·s) is the *mobility* of charged carries.

For example, copper (Cu), aluminum (Al), and silver (Ag) have mobility

of
$$\mu_e = 3.2 \times 10^{-3}$$
, $\mu_e = 1.4 \times 10^{-4}$, and

 $\mu_e = 5.2 \times 10^{-3} \, m^2 / V \cdot s$, respectively. Thus the expression of a current density can be written as

$$\vec{J} = \rho \vec{u} = -\rho \mu_e \vec{E} = \sigma \vec{E}$$

where σ in Siemens/m is the conductivity . The reciprocal of conductivity is *resistivity*.

In semiconductor, there are two charge carriers, electrons and holes. The conductivity of a semiconductor is the sum of those of both electrons and holes, given by

$$\sigma = -\rho_e \mu_e + \rho_h \mu_h$$

Material	Conductivity ^a	Material	Conductivity
Silver	6.2×10^{7}	H ₂ O	2×10^{-4}
Copper	5.8×10^{7}	Marble	10^{-5}
Pure iron	1.0×10^{7}	Wood	10 ⁻⁹
Steel	0.2×10^{7}	Glass	10-11
Mercury	10^{6}	Oil	10^{-14}
Carbon	10 ⁴	Polyethylene	10-15
Silicon	10^{-2}	Fused quartz	10^{-17}
Alcohol	3×10^{-4}	True vacuum	?

For additional materials, consult Table B-2, Appendix B of Ulaby's textbook or Appendix B-4 of D. K. Cheng's textbook.

Ohm's Law

$$V_{12} = El$$
 $I = JS = \sigma ES$

$$\Rightarrow \frac{V_{12}}{I} = \frac{l}{\sigma S} = R.$$

thus $R \equiv \frac{l}{\sigma S}$ is the resistance in Ω (ohms) for a conducting wire of length l and cross section S.

- >> Prove the following as an exercise
- 1. for two serially connected resistors R_1 and R_2 the total resistance is $R_{total} = R_1 + R_2$
- 2. for two parallel connected resistors R_1 and R_2 the total resistance

is
$$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2}$$
 or $G_{total} = G_1 + G_2$, where $G_i = \frac{1}{R_i}$ is

termed conductance.

Electromotive Force (from a non-conservative field)

conservative field
$$\nabla \times \vec{E} = 0 \implies \oint \vec{E} \cdot d\vec{l} = 0$$
 or

 $\oint \frac{1}{\sigma} \vec{J} \cdot d\vec{l} = 0$. This means no unidirectional current can be sustained in a closed circuit loop by an electrostatic field, because the energy of the moving charges in an ohmic material (with a finite σ) has to come from

somewhere.

For a non-conservative field, $\nabla \times \vec{E} = 0$ is written as

$$\nabla \times \vec{E} = f$$

where f can be related to, say, time-varying magnetic field in a power generator or chemical potential in a battery.

$$abla imes \vec{E} = f \quad \Rightarrow \quad \oint \frac{1}{\sigma} \vec{J} \cdot d\vec{l} = V_{em} \quad , \quad \text{where} \quad V_{em} \quad \text{is called the}$$
 electromotive force.

Electric battery

 \vec{E}_i : non-conservative field from, say, chemical energy, separating positive and negative charges.

$$\vec{E} = -\vec{E}_i$$
 at steady state (no current flow)

Electromotive force
$$V_{em} = \int_{2}^{1} \vec{E}_{i} \cdot d\vec{l} = -\int_{2}^{1} \vec{E} \cdot d\vec{l} \Big|_{inside}$$

Conservative field

$$\oint_C \vec{E} \cdot d\vec{l} = \int_1^2 \vec{E} \cdot d\vec{l} \bigg|_{outside} + \int_2^1 \vec{E} \cdot d\vec{l} \bigg|_{inside} = 0$$

thus
$$V_{em} = \int_{2}^{1} \vec{E}_{i} \cdot d\vec{l} = \int_{1}^{2} \vec{E} \cdot d\vec{l}$$
_{outside}

Closed loop integration on total electric field $\vec{E} = \frac{\vec{J}}{\sigma}$

$$\oint_{C} \vec{E} \cdot d\vec{l} = \int_{2}^{1} \vec{E}_{i} \cdot d\vec{l} \Big|_{inside} + \int_{2}^{1} \vec{E} \cdot d\vec{l} \Big|_{inside} + \int_{1}^{2} \vec{E} \cdot d\vec{l} \Big|_{outside}$$

$$\Rightarrow V_{em} = \oint_C \frac{\vec{J}}{\sigma} \cdot d\vec{l} = RI$$
 in a circuit.

Kirchhoff's Voltage Law

around a closed-loop circuit, voltage rises = voltage drops

$$\sum_{j} V_{em_j} = \sum_{k} R_k I_k$$

Note that this result is consistent with energy conservation, because a voltage by its definition is the work done externally when moving a unit positive charge from one location to another.

Equation of Continuity

In a closed volume,

Positive (negative) time-rate change of charges = current flowing outward (inward).

$$\oint_{S} \vec{J} \cdot d\vec{s} = -\frac{dQ}{dt} = -\frac{d}{dt} \int_{V} \rho dV$$

From the divergence theorem,

$$\int_{V} \nabla \cdot \vec{J} dv = -\int_{V} \frac{\partial \rho}{\partial t} dv$$

one can obtain the so-called equation of continuity

$$\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$$

Kirchhoff's current law

In equilibrium, no charge is generated or annihilated in a neutral conductor and therefore $\oint_S \vec{J} \cdot d\vec{s} = 0 \implies \sum_i I_i = 0$

It is equivalent to say that the *algebraic sum of all current flowing out of* a circuit node is zero

Relaxation Time in a Conductor

Upon a perturbation of a charge density, how fast does an E field (induced by the perturbation of charges) settle to zero inside a good conductor?

$$\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0, \text{ but } \vec{J} = \sigma \vec{E}$$

$$\Rightarrow \sigma \nabla \cdot \vec{E} + \frac{\partial \rho}{\partial t} = 0, \text{ but } \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon}$$

$$\Rightarrow \frac{\partial \rho}{\partial t} + \frac{\sigma}{\varepsilon} \rho = 0 \Rightarrow \rho = \rho_0 e^{-\frac{\sigma}{\varepsilon} t}$$

note that ρ is a localized excessive charges under disturbance of an electric field. ρ settles to almost zero with a time constant (called

relaxation time)
$$\tau \approx \frac{\varepsilon}{\sigma}$$
. For Cu with $\sigma = 5.8 \times 10^7$ S/m. $\tau \approx 10^{-19}$ sec!

Ohmic Loss and Joule's Law

Charges move under an electric force, because an electric source does work on charges.

power
$$P = \vec{F} \cdot \vec{u}$$
 $\Rightarrow P = \int q\vec{E} \cdot \vec{u} N dv$, but $\vec{J} = Nq\vec{u}$ \Rightarrow $P = \int_{V} \vec{E} \cdot \vec{J} dv$,

where $\vec{E}\cdot\vec{J}$ is a volume power density in Watt/m³.

The formula $P = \int_{V} \vec{E} \cdot \vec{J} dv$ is called **Joule's Law**

Note that dv = dlds in a circuit

$$P = \int_{V} \vec{E} \cdot \vec{J} dv = \int_{L} \vec{E} \cdot d\vec{l} \int_{S} \vec{J} \cdot d\vec{s} = VI = I^{2}R = \frac{V^{2}}{R}$$

Or simply
$$P = \frac{d(QV)}{dt} = IV = I^2R = \frac{V^2}{R}$$
 This power

dissipation in a conductor is called Ohmic loss.

Boundary Conditions for J at a Steady State $\partial \rho / \partial t = 0$

Differential Forms

Integral Forms

$$\nabla \cdot \vec{J} = 0$$

$$\oint_{S} \vec{J} \cdot d\vec{s} = 0$$

$$\nabla \times \vec{E} = 0 \implies \nabla \times (\vec{J}/\sigma) = 0$$

$$\oint_{c} \frac{1}{\sigma} \vec{J} \cdot d\vec{l} = 0$$

Boundary Conditions:

i. Normal components across a boundary

$$J_{1n} = J_{2n}$$

iii. Tangential components across a boundary

$$J_{1t} / \sigma_1 = J_{2t} / \sigma_2$$

Recall
$$\varepsilon_1 E_{1n} - \varepsilon_2 E_{2n} = \rho_s$$
 and $E_{1t} = E_{2t}$

Surface charges between two Lossy Dielectrics

$$J_{1n} = J_{2n} \qquad \Rightarrow \qquad \sigma_1 E_{1n} - \sigma_2 E_{2n} = 0$$

Recall
$$D_{1n} - D_{2n} = \rho_s \Rightarrow \varepsilon_1 E_{1n} - \varepsilon_2 E_{2n} = \rho_s$$

$$\Rightarrow \rho_s = (\varepsilon_1 \frac{\sigma_2}{\sigma_1} - \varepsilon_2) E_{2n} = (\varepsilon_1 - \varepsilon_2 \frac{\sigma_1}{\sigma_2}) E_{1n}$$

Surface charges must exist unless $\frac{\sigma_1}{\sigma_2} = \frac{\varepsilon_1}{\varepsilon_2}$. This result is not

surprising, if one notices that the charge relaxation time $\tau = \frac{\mathcal{E}}{\sigma}$ was previously calculated. Later, one will also find $\frac{\mathcal{E}}{\sigma}$ is in fact the RC time constant of a material system. The condition $\frac{\sigma_1}{\sigma_2} = \frac{\mathcal{E}_1}{\mathcal{E}_2}$ indicates that the charges at the two sides of the interface dissipate at the same rate and

Eg. Given an emf V, find $\rho_{s1}, \rho_{s2}, \rho_{si}, E_1, E_2, J$

the interface charge cannot be built up.

From the geometry, no tangential components of J or E.

Boundary conditions at the dielectric interface

$$\sigma_{1}E_{1n} - \sigma_{2}E_{2n} = 0$$

$$\varepsilon_{1}E_{1n} - \varepsilon_{2}E_{2n} = \rho_{si}$$

$$thus E_{1n} = \frac{\sigma_{2}\rho_{si}}{\varepsilon_{1}\sigma_{2} - \varepsilon_{2}\sigma_{1}}, \text{ and } E_{2n} = \frac{\sigma_{1}\rho_{si}}{\varepsilon_{1}\sigma_{2} - \varepsilon_{2}\sigma_{1}}.$$
 (5-1)

But the voltage across the two plates is fixed at V or $E_{1n}d_1+E_{2n}d_2=V$,

$$\Rightarrow \rho_{si} = \frac{\varepsilon_1 \sigma_2 - \varepsilon_2 \sigma_1}{d_1 \sigma_2 + d_2 \sigma_1} V$$
 (5-2)

Substituting (5-2) into (5-1) to obtain E_{1n} and E_{2n}

Calculate charge densities from $\rho_{s1} = \varepsilon_1 E_{1n}$ and $\rho_{s2} = -\varepsilon_2 E_{2n}$.

Obtain
$$J$$
 from $J = \sigma_1 E_{1n} = \sigma_2 E_{2n}$.

Relationship between R and C

From the definition of capacitance, one has

$$C = \frac{Q}{V} = \frac{\oint_{S} \vec{D} \cdot d\vec{s}}{-\int_{L} \vec{E} \cdot d\vec{l}} = \frac{\varepsilon \oint_{S} \vec{E} \cdot d\vec{s}}{-\int_{L} \vec{E} \cdot d\vec{l}}$$

From the definition of resistance, one has

$$R = \frac{V}{I} = \frac{-\int_{L} \vec{E} \cdot d\vec{l}}{\oint_{S} \vec{J} \cdot d\vec{s}} = \frac{-\int_{L} \vec{E} \cdot d\vec{l}}{\oint_{S} \sigma \vec{E} \cdot d\vec{s}}$$

If R and C are associated with the same volume, the following relationship can be derived immediately

$$RC = \frac{\varepsilon}{\sigma}$$
,

from which R can be derived by knowing C or vice versa.

Eg. Find R for a given C of the parallel conducting cylinders

Recall the capacitance per unit length $C_l = \frac{\pi \mathcal{E}}{\cosh^{-1} \left(\frac{D}{2a}\right)}$ or

$$C = \frac{\pi \varepsilon L}{\cosh^{-1} \left(\frac{D}{2a}\right)}$$
 for a transmission line of length *L*. From the RC

relationship $RC = \frac{\mathcal{E}}{\sigma}$, \Rightarrow the resistance for a transmission line of

length L is
$$R = \frac{1}{\pi \sigma L} \cosh^{-1} \left(\frac{D}{2a} \right)$$
.

Previously we have $R \propto l$, the length of a conducting wire. Note that for a transmission line of length L in this case, the resistance is inversely proportional to L (why?)

Calculating Resistance for a Conductor

- 1. Choose a coordinate system
- 2. Find V from $\nabla^2 V = 0$ subject to $V = V_0$ at a suitable boundary.
- 3. Find E from $\vec{E} = -\nabla V$.

4. Find
$$I$$
 from $I = \int_{S} \vec{J} \cdot d\vec{s} = \int_{S} \vec{\sigma} \vec{E} \cdot d\vec{s}$

5. Calculate *R* from
$$R = \frac{V_0}{I}$$

Exercise: Find the resistance of the following conductor..

Boundary Conditions:

V=0 at $\phi=0$ and $V=V_0$ at $\phi=\pi/2$. No dependence on r and z, thus

Turn Laplace's equation
$$\nabla^2 V = 0$$
 into $\frac{d^2 V}{d\phi^2} = 0$

General solution $V = c_1 \phi + c_2$

Apply boundary conditions
$$V = \frac{2V_0}{\pi} \phi$$

Electric field can be found from

$$\vec{E} = -\nabla V = -\hat{a}_{\phi} \frac{\partial V}{r \partial \phi} = -\frac{2V_0}{\pi r}$$

Current density is
$$\vec{J} = \sigma \vec{E} = -\sigma \frac{2V_0}{\pi r} \vec{a}_{\phi}$$

Total current is the integration

$$I = \int_{S} \vec{J} \cdot d\vec{s} = \int_{a}^{b} \sigma \frac{2V_{0}}{\pi r} h dr = \frac{2\sigma h V_{0}}{\pi} \ln \frac{b}{a}$$

Therefore the resistance can be obtained

$$R = \frac{V}{I} = \frac{\pi}{2\sigma h \ln \frac{b}{a}}$$

A Simple Trick

Given $R \equiv \frac{l}{\sigma S} \Rightarrow G \equiv \frac{\sigma S}{l}$. Thus the differential conductance is

$$dG = \frac{\sigma ds}{l}$$
, where the differential surface is $ds = hdr$, and the

length of the conductor is $l = \frac{\pi}{2}r$. The differential conductance

becomes

$$dG = \frac{2\sigma h dr}{\pi r} \Rightarrow G = \int_a^b \frac{2\sigma h}{\pi r} dr = \frac{2\sigma h}{\pi} \ln \frac{b}{a}$$
. Take the inverse

of the conductance to obtain resistance

$$\Rightarrow R = \frac{1}{G} = \frac{\pi}{2\sigma h \ln(b/a)} \text{ same as above.}$$