CSC 370

Database Systems: Towards a Design Theory for Relational Models

Major topics

Functional dependencies

 Mathematical notation for describing relationships amongst relations

Decompositions

Breaking larger relations into sets of smaller relations

Normal forms

 Using functional dependencies + decompositions in order to prevent data anomalies

Functional dependencies

- $\bullet X \rightarrow Y$
 - This is an assertion about some relation R
 - Whenever two tuples of R agree on all attributes of set X...
 - ... they must also agree on attributes in set Y.
 - (Note that there may be more attributes in R than in X ∪ Y.)
- Pronounced: "X → Y holds in R"
- Our notational convention:
 - X, Y, Z: Sets of attributes
 - A, B, C: Single attributes
 - We write ABC rather than {A, B, C}

Simplification: Splitting FD right-hand sides

- X → A₁A₂...A_n holds for R exactly when all the following hold for R:
 - $-X \rightarrow A_1$
 - $-X \rightarrow A_2$
 - **–** ...
 - $-X \rightarrow A_n$
- Example: A \rightarrow BC is equivalent to A \rightarrow B and A \rightarrow C
- (There is no splitting rule for left-hand sides!)
- In general, we will express FDs with singleton right sides.

Example of an FD

- Patrons(name, addr, beersLiked, manf, favBeer)
- Some reasonable FDs we could assert
 - name → addr favBeer
 - beersLiked → manf
- Note: beersLiked in the relation schema suggests there may be multiple entries for a patron in the table

Example: Patron (with sample data)

Keys of relations

- Assume K is a set of attributes from relation R.
- K is a superkey for relation R if K functionally determines all of R
 - (i.e., determines all attributes in R)
- K is a **key** for R if:
 - K is a superkey and...
 - There exists no proper subset of K that is also a superkey.
 - Put differently, if $\{A_1, A_2, ..., A_n\}$ is K, then it is impossible for two distinct tuples in R to agree on all of $A_1, A_2, ..., A_n$.

Example: superkey

- Patrons(name, addr, beersLiked, manf, favBeer)
- {name, addr, beersLiked}
 - Forms a superkey because together these attributes determine all other attributes
 - name → addr favBeer
 - beersLiked → manf

Example: key

- Patrons(name, addr, beersLiked, manf, favBeer)
- {name, beersLiked}
 - Forms a key because neither {name} or {beersLike} is a superkey
 - i.e., names doesn't imply manf
 - i.e., beersLiked doesn't imply addr
- There are no other keys, but there are lots of superkeys
 - Any set of R's attributes that includes {name, beersLiked}

"Mommy, where do keys come from?"

- 1. Sometimes we simply assert the fact of a key K on the data
 - The only FD becomes $K \to Z$ for all attributes Z in the relation R
- 2. Sometimes we assert the FDs and then try to deduce the keys by systematic exploration
- 3. Sometimes the facts of life intervene. Example:
 - "No two courses can meet in the same room at the same time" implies: hour room \rightarrow course
- (Wrinkle: Relations can have more than one key...)

Inferring FDs

- There exist rules for reasoning about functional dependencies
- Sometimes we would like to determine whether or not a specific set of FDs infers another
- Example:
 - We are given FDs $X_1 \rightarrow A_1$, $X_2 \rightarrow A_2$, ..., $X_n \rightarrow A_n$
 - We want to know whether or not $Y \to B$ must hold in any relation satisfying the given FDs
- Example:
 - If A → B and B → C holds, it must be the case A → C holds even if this last FD is not part of the FD set.
- We need rules of inference in order to design sets of good relation schemas...

Closure test

- This test is a straightforward way to check if an FD (that is not part of the existing set of FDs) is valid
 - "Valid" implies the FD is supported by the existing set of FDs
- Recall:
 - We have FDs $X_1 \rightarrow A_1, X_2 \rightarrow A_2, ..., X_n \rightarrow A_n$
 - We want to know if $Y \rightarrow B$ also holds
- To do this, we compute the closure of Y (denoted Y+)
- Technique:
 - Basis: $Y^+ = Y$
 - Induction: Look at a given FDs left side X that is a subset of the current Y⁺. If the FD is $X \rightarrow A$, add A to Y⁺
 - Repeat inductive step until there are no more rules $X \to A$ that change Y^+

Visualization: How Y+ grows

Finding all implied FDs

Motivation:

- We eventually want to apply normalization to our schema.
- (This is the process by which we break a relation schema into two or more schemas.)

• Example:

- Schema: ABCD
- FDs: $AB \rightarrow C$, $C \rightarrow D$, $D \rightarrow A$
- Possible decomposition: ABCD becomes ABC and AD.
- Question: Is $C \rightarrow A$ an FD that would be valid on ABC?

Why? Here's one way to look at it...

Thus, tuples in the projection with equal Cs have equal As

$$C \rightarrow A$$

Basic idea

- Start with given FDs and find all non-trivial FDs that follow from the given FD
 - Non-trivial ⇒ right side not contained in the left
- Restrict ourselves to examining those FDs involving only attributes of the projected schema

Simple exponential algorithm

- This is for finding all implied FDs for a schema
 - (Sometimes also called "projecting FDs" when we project onto a schema with a subset of the original attributes.)
- 1. For each set of attributes X, compute X+
- 2. Add $X \rightarrow A$ for all A in $(X^+ X)$
- 3. However, drop XY \rightarrow A whenever we find X \rightarrow A
 - Why? Because XY → A will follow from X → A in any projection (i.e., the Y attributes add no new information).
- 4. Finally, use only FDs involving projected attributes

Some corners we can cut

- No need to compute the closure of the empty set or of the set of all attributes
- If we find X⁺ equals all attributes, so is the closure of any superset of X

Example: Projecting FDs

- Assume the following schema and FDs
 - Schema: ABC
 - FDs: $A \rightarrow B$, $B \rightarrow C$
- We want to project onto AC
- Computing closure:
 - $-A^{+} = ABC$; yields FDs $A \rightarrow B$, $A \rightarrow C$
 - We need not compute AB+ or AC+
 - B^+ = BC; this yields $B \rightarrow C$
 - $C^+ = C$; this yields nothing non-trivial
 - BC⁺ = BC; this yields nothing non-trivial

Example: Projecting FDs (continued)

- Resulting FDs
 - $-A \rightarrow B$
 - $-A \rightarrow C$
 - $-B \rightarrow C$
- The FDs that project onto AC:
 - $-A \rightarrow C$
 - That is, this single FD is the only one that involves a subset of attributes {A, C}

Spatial Metaphor for FDs

- Imagine the set of all possible instances of a particular relation
 - (Ignore for now the FDs proper to the relation)
- Put differently, we consider all finite sets of tuples having the proper number of components dictated by the schema
- Each instance is a point in some space

Example: R(A,B)

Spatial Metaphor for FDs (continued)

- A functional dependency is a subset of the relation instances in our space (i.e., a subset of points)
- For each FD X → A there is a subset of instances satisfying the FD
- We can therefore represent an FD as a region in the space containing properly restricted relation instances
- Trivial FD implies an FD represented by the entire space!

Example: $A \rightarrow B$ for R(A,B)

Representing Sets of FDs

- If each FD is a set of relation instances...
 - ... then a collection of FDs corresponds to the intersection of those sets

 That is, the intersection is the set of all instances that satisfy all of the FDs

Instances satisfying $A \rightarrow B, B \rightarrow C,$ and $CD \rightarrow A$

More implications of FDs

- Suppose Y \rightarrow B follows from FDs $X_1 \rightarrow A_1$, $X_2 \rightarrow A_2$, ... $X_n \rightarrow A_n$
 - Then the region in the space of instances for Y \rightarrow B must include the intersection of the regions for all $X_i \rightarrow A_i$
 - That is, every instance satisfying all FDs $X_i \rightarrow A_i$ surely satisfies $Y \rightarrow B$
 - However, an instance could satisfy Y → B yet not be in the intersection!

Relational Schema Design

 Goal of relational schema design is to avoid redundancy and anomalies.

Update anomaly:

 One occurrence of a fact is changed, but not all occurrences are changed.

Deletion anomaly:

- A valid fact is lost when a tuple is deleted.
- Let's look first at redundancy.

Example of bad design: Patrons

name	addr	beersLiked	manf	favBeer
Norm	Dallas Road	<u>!</u> Blue	Labatts	Bud Light
Norm	???	Bud Light	Anheuser-Busch	???
Cliff	Myrtle Ave	. Blue	???	Blue

- Patrons(<u>name</u>, addr, <u>beersLiked</u>, manf, favBeer)
- Some data is redundant:
 - Each of the ???s can be figured out by using one of two FDs
 - 1. name \rightarrow addr favBeer
 - 2. beersLiked \rightarrow manf

Patrons also exhibits anomalies

name	addr	beersLiked	manf	favBeer
Norm	Dallas Road	Blue	Labatts	Bud Light
Norm	Dallas Road	Bud Light	Anheuser-Busch	Bud Light
Cliff	Myrtle Ave	Blue	Labatts	Blue

- Update anomaly
 - If Norm moves to Shelbourne, will we remember to change each of his tuples?
- Deletion anomaly:
 - If nobody likes Blue, we lose of the track of that fact that Labatt's manufactures Blue.

Normal Forms

- These are used to characterize schema decompositions
 - As we proceed through the normal forms, fewer and fewer kinds of anomalies are present
- Simple normal forms
 - First Normal Form (1NF): All components of all tuples are atomic (i.e., components do not have structure)
 - Second Normal Form (2NF): There exists no FD X → A such that (1) X is a subset of a key and (2) A is not in the key (i.e., A is non-prime)
- We will examine:
 - Boyce-Codd Normal Form
 - Third Normal Form (3NF)
 - Fourth Normal Form (4NF)

Boyce-Codd Normal Form (BCNF)

A relation R is in BCNF if:

- for each X → Y that is both a non-trivial FD and holds in R
- it is the case that X is a superkey.
- Recall: nontrivial means the set of attributes Y is not contained in the set of attributes X.
- Also recall: A superkey is any superset of a key.

Example 1: BCNF

- Patrons(name, addr, beersLiked, manf, favBeer)
- FDs:
 - name → addr favBeer
 - beersLiked → manf
- Only key is {name, beersLiked}
- Is the relation in BCNF?
 - Each FD has a left side that is not a superkey
 - Therefore each of the FDs demonstrates that Patrons is not in BCNF

Example 2: BCNF

- Beers(name, brewer, addr)
- FDs:
 - name → brewer
 - brewer \rightarrow addr
- Only key is {name} (Why?)
- Is the relation in BCNF?
 - name → brewer does not violate BCNF
 - However, brewer → addr does violate BCNF
 - Therefore schema is not in BCNF

Idea: Transform schema in BCNF

- So far we have seen schemas that are not in BCNF (given the associated FDs)
- We want to decompose the schema such that the smaller ones are in BCNF
 - That is, we guide our decomposition such that all schemas (and FDs that apply to them) are in BCNF
- So now let us look closer at decompositions...

Decomposition into BCNF: Basic idea

- We are given:
 - Relation R
 - A set of FDs named F
- Look among given FDs for a BCNF violation involving X → Y
 - (And if any FD that can be inferred from F violates BCNF, then there will be an FD in F itself that violates BCNF.)
- Compute X⁺
 - We don't expect X+ to consist of all attributes, otherwise we would have already had X as a superkey!

Basic idea continued...

Replace R with two new schemas

A.
$$R_1 = X^+$$

B. $R_2 = R - (X^+ - X)$

- Project each FD in the set F onto the two new relations
- Check to ensure that both of the resulting relations are in BCNF
 - If one is still not in BCNF, then decompose that one following a similar procedure.

Decomposition Visualization

