אלגברה ב' - גיליון תרגילי בית 1 מטריצות מייצגות וכלל קרמר

תאריך הגשה: 6.4.2021

 $T^2=-5$ Id_V יהי V מרחב וקטורי מעל $\mathbb R$ ותהי ותהי $T\colon V o V$ לינארית המקיימת יהי מרחב וקטורי מעל $v\in V\setminus\{0\}$ בלתי־תלויה לינארית.

.
$$\begin{pmatrix} 0 & 1 \\ -5 & 0 \end{pmatrix}$$
 נתון גם כי T מיוצגת על ידי .dim $V=2$.2

תרגיל 2. יהי $T\colon V o V$ הפיכה המקיימת בסיס למרחב וקטורי $B=(v_i)_{i\in[n]}$ היהי

$$.T(v_1 + 2v_2) = \sum_{i \in [n]} v_i$$

 $.[T^{-1}]_{\scriptscriptstyle B}$ מצאו את סכום איברי

.V בסיס של B ויהי $\mathbb F$ ויהי $n\in\mathbb N_+$ מעל שדה וקטורי ממימד N יהי ער יהי N

1. תהי

$$\rho_B \colon V \to \mathbb{F}^n$$
$$.v \mapsto [v]_B$$

הראו ש־ ho_B חד־חד ערכית ועל.

T=S העתקוים שמתקיים $T,S\colon V o V$. תהיינה $T,S\colon V o V$ העתקות לינאריות עבורן $A\in M_n$ ($\mathbb F$) מערכת משוואות כאשר Ax=b הפיכה. לכל Ax=b תהי

$$K_{A,i} \colon \mathbb{F}^n \to \mathbb{F}$$

$$\det \begin{pmatrix} | & & | & | & | & | \\ A_1 & \cdots & A_{i-1} & b & A_{i+1} & \cdots & A_n \\ | & & | & | & | & | \end{pmatrix}$$

$$b \mapsto \frac{\det (A)}{\det (A)}$$

ותהי

$$K_{A} \colon \mathbb{F} \xrightarrow{} \mathbb{F}$$

$$b \mapsto \begin{pmatrix} K_{A,1}(b) \\ K_{A,2}(b) \\ \vdots \\ K_{A,n-1}(b) \\ K_{A,n}(b) \end{pmatrix}$$

 $x=K_{A}\left(b
ight)$ נראה שהפתרון היחיד למערכת נתון על ידי

- .1 הראו שלכל $K_{A,i}$ ההעתקה $i \in [n]$ לינארית.
 - . הסיקו ש־ K_A העתקה לינארית.
 - 3. תהי

$$L_A \colon \mathbb{F}^n \to \mathbb{F}^n$$

. $v \mapsto Av$

 $K_A = (L_A)^{-1}$ על ידי בדיקה על הבסיס הסטנדרטי, והסיקו שמתקיים $K_A \circ L_A = \mathsf{Id}_{\mathbb{F}^n}$

 \mathbb{F}^n כאשר בסיס הסטנדרטי של $[K_A]_E = A^{-1}$ בסיקו שמתקיים. 4

תראו כי הראו V בסיסים של B,C ויהיו העתקה לינארית העתקה $T\colon V \to V$ תהי תהי

$$\operatorname{tr}\left([T]_B\right)=\operatorname{tr}\left([T]_C\right)$$

וגם

$$.\det([T]_B) = \det([T]_C)$$

אז נוכל להגדיר

$$\operatorname{tr} T \coloneqq \operatorname{tr} \left([T]_B \right)$$
 .
$$\operatorname{det} T \coloneqq \operatorname{det} \left([T]_B \right)$$

תרגיל 6 (מטריצות בלוקים). מטריצה $M \in M_n\left(\mathbb{F}
ight)$ מטריצה מטריצה (מטריצות מטריצה לוקים). מטריצה מטריצה אלכסונית מטריצה אונה מטריצה מטריצ

$$A = \begin{pmatrix} A_1 & 0 & \cdots & & 0 \\ 0 & A_2 & & 0 & \vdots \\ \vdots & & \ddots & & \\ 0 & & A_{k-1} & 0 \\ 0 & \cdots & & 0 & A_k \end{pmatrix}$$

 $i\in\left[k
ight]$ לכל $A_{i}\in M_{n_{i}}\left(\mathbb{F}
ight)$ כאשר

 $A_i\in M_{n_i}\left(\mathbb{F}
ight)$ עם בלוקים (n_1,\ldots,n_k) אלכסונית בלוקים $A\in M_n\left(\mathbb{F}
ight)$

1. הראו שמתקיים

$$.\det\left(A\right)=\prod_{i\in\left[k\right]}\det\left(A_{i}\right)$$

2. הראו שמתקיים

$$.\operatorname{tr}(A) = \sum_{i \in [k]} \operatorname{tr}(A_i)$$

שמתקיים שמתקיים . $B_i\in M_{n_i}\left(\mathbb{F}
ight)$ עם בלוקים (n_1,\ldots,n_k) אלכסונית בלוקים $B\in M_n\left(\mathbb{F}
ight)$.3

$$.AB = \begin{pmatrix} A_1B_1 & 0 & \cdots & & 0 \\ 0 & A_2B_2 & & 0 & \vdots \\ \vdots & & \ddots & & \\ 0 & & A_{k-1}B_{k-1} & 0 \\ 0 & \cdots & & 0 & A_kB_k \end{pmatrix}$$

מתקיים $m \in \mathbb{N}$ מתקיים 4.

$$A^{m} = \begin{pmatrix} A_{1}^{m} & 0 & \cdots & 0 \\ 0 & A_{2}^{m} & 0 & \vdots \\ \vdots & & \ddots & \\ 0 & & A_{k-1}^{m} & 0 \\ 0 & \cdots & 0 & A_{k}^{m} \end{pmatrix}$$

סטריצה אלכסונית $P\in M_n\left(\mathbb{F}\right)$ די $i\in[k]$ די לכל $P_i\in M_{n_i}\left(\mathbb{F}\right)$ מטריצה אלכסונית ($P_i)_{i\in[k]}$ שאם מטריצה אלכסונית פינות הפיכה ומתקיים בלוקים P_i , אז P_i הפיכה ומתקיים

$$.PAP^{-1} = \begin{pmatrix} P_1 A_1 P_1^{-1} & 0 & \cdots & 0 \\ 0 & P_2 A_2 P_2^{-1} & 0 & \vdots \\ \vdots & & \ddots & & \\ 0 & & P_{k-1} A_{k-1} P_{k-1}^{-1} & 0 \\ 0 & & \cdots & 0 & P_k A_k P_k^{-1} \end{pmatrix}$$