

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Banco de Dados AP1 2° semestre de 2014.

Nome -

Assinatura –

Observações:

- 1. Prova sem consulta e sem uso de máquina de calcular.
- 2. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- 3. Você pode usar lápis para responder as questões.
- 4. Ao final da prova devolva as folhas de questões e as de respostas.
- 5. Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Questão 1 [4,0 pontos]

Deseja-se projetar uma base de dados que dará suporte a um sistema WEB para controlar as horas trabalhadas pelos profissionais de uma empresa de desenvolvimento de software. O sistema destina-se a coletar dados para cobrança dos clientes da empresa. Através de um diagrama entidade-relacionamento, deve ser modelada esta base de dados. A base de dados não deve conter redundância de dados. O modelo ER deve ser representado com a notação vista em aula ou com outra notação de poder de expressão equivalente. O modelo deve apresentar, ao menos, entidades, relacionamentos, atributos, especializações, identificadores e restrições de cardinalidade. Não usar atributos multivalorados. O modelo deve ser feito no nível conceitual, sem incluir chaves estrangeiras.

Todas atividades da empresa acontecem através de projetos. Para cada projeto, o banco de dados deve armazenar um identificador, o nome do projeto e o seu cliente. Um cliente pode ter vários projetos. Além dos projetos do cliente, o banco de dados deve armazenar o número (único) do cliente, seu CGC e seu nome.

Em cada projeto são alocados vários desenvolvedores. Um desenvolvedor é alocado a um projeto por um tempo determinado (de-até). Cada desenvolvedor tem um código identificador, um nome e um custo por hora trabalhada.

Para cada vez que um desenvolvedor trabalha em um projeto, mesmo que por alguns minutos, o banco de dados deve armazenar, além do projeto e do desenvolvedor, a data/hora em que o

desenvolvedor começou a trabalhar e a data/hora em que ele encerrou o trabalho. É preciso manter o histórico dos projetos em que um determinado empregado trabalhou.

Resposta:

Questão 2 [1,0 ponto]

Suponha que, na questão, 1, casa desenvolvedor trabalha em apenas um projeto, e que não se mantém o histórico dos projetos em que o empregado trabalhou no passado. O que muda no diagrama?

Resposta:

A cardinalidade do relacionamento alocação passa a ser 1:n, ou seja, (0,1) do lado da entidade Projeto, e (0,n) do lado da entidade Desenvolvedor. Além disso, o atributo "de" deixa de ser identificador do relacionamento.

Depois de construído, o modelo ER deve ser verificado para detecção de erros. Existem erros sintáticos e erros semânticos. Dê um exemplo de 2 erros sintáticos e 2 erros semânticos.

Questão 3 [1,0 ponto]

Que recursos um SGBD possui para prover independência de dados e acesso eficiente aos dados.

Os SGBDS possuem três níveis de representação de dados, e a definição de mapeamentos entre os níveis. Esses esquemas isolam os dados de características internas de armazenamento físico e representação lógica. Os esquemas lógico e externo provêem independência das representações de dados quanto ao armazenamento físico e projeto lógico respectivamente. Assim, estruturas de dados podem evoluir à medida que novos requisitos são definidos.

Para prover acesso eficiente, o SGBD possui mecanismos eficientes de armazenamento e acesso aos dados, contando com a gerência de arquivos muito grandes, estruturas de índices e otimização de consultas.

Questão 4 [4,0 pontos]

Considere as relações a seguir.

Localidade (codLocal, nomeLocal)

codLocal	nomeLocal	
1	Rio de Janeiro	
2	Volta Redonda	
3	Rio Bonito	

Pessoa (codPessoa, nomePessoa, sexo, dataNascimento, codLocalNascimento, codUniaoPais) codLocalNascimento referencia Localidade codUniaoPais referencia Uniao

codPessoa	nomePessoa	sexo	dataNascimento	codLocalNascimento	codUniaoPais
1	Ana Rich	F	03/03/1950	3	NULL
2	Pedro Silva	M	02/07/1945	1	NULL
3	João Silva	M	10/02/1980	1	1
4	Maria Silva	F	15/03/1983	1	1
5	Fábio Martins	M	23/10/1978	3	1
6	Fernando Perez	M	12/09/2008	1	2
7	Tatiana Jardins	F	15/12/1977	1	NULL

Uniao (codUniao, codPessoaEsposa, codPessoaMarido, dataUniao, codLocalUniao)

codPessoaEsposa referencia Pessoa codPessoaMarido referencia Pessoa codLocalUniao referencia Localidade

codUniao	codPessoaEsposa	codPessoaMarido	dataUniao	codLocalUniao
1	1	2	12/10/1978	3
2	7	5	10/12/2006	1

a) Escreva o resultado da consulta abaixo. Apresente a tabela resultante com o esquema correspondente:

 $\pi_{nomePessoa,\;nomeLocal}\;(Localidade \underset{codLocal=codLocalNascimento}{\triangleright}\sigma_{dataNascimento} \circ_{01/01/1980}(Pessoa))$

Resposta:

R(nomePessoa, nomeLocal)

nomePessoa	nomeLocal
João Silva	Rio de Janeiro
Maria Silva	Rio de Janeiro
Fernando Perez	Rio de Janeiro

b) Escreva o resultado da consulta abaixo. Apresente a tabela resultante com o esquema correspondente:

$$\begin{array}{l} \rho \; (R1,\pi_{codLocal,\;nomeLocal}\; (Localidade \begin{tabular}{l} \begin{tabular}{l}$$

Resposta:

R(codLocal, nomeLocal)

codLocal	nomeLocal
2	Volta Redonda

c) Escreva o resultado da consulta abaixo. Apresente a tabela resultante com o esquema correspondente:

```
\pi_{nomePessoa, \ sexo} \ (\sigma_{sexo="F"}(Pessoa) {\ \bowtie \ } Uniao) \\ {}_{codUniaoPais=codUniao}
```

Resposta:

R(nomePessoa, sexo)

nomePessoa	sexo
Maria Silva	F

d) Escreva uma consulta em álgebra relacional que retorna os nomes das esposas e que se casaram em Rio Bonito

Resposta:

 $\pi_{nomePessoa} \left(\sigma_{nomeLocal} = \text{``Rio Bonito''} \left(Localidade\right) \underset{codLocal=codLocalUniao}{\longmapsto} \underbrace{Uniao} \underset{codPessoa}{\longmapsto} \underbrace{Pessoa}\right)$