CS-3013 — Operating Systems

Professor Hugh C. Lauer CS-3013 — Operating Systems

(Slides include copyright materials from *Operating Systems: Three Easy Step*, by Remzi and Andrea Arpaci-Dusseau, from *Modern Operating Systems*, by Andrew S. Tanenbaum, 3rd edition, and from other sources)

Outline for Today

- Details and logistics of this course
- Discussion
 - What is an Operating System?
 - What every student should know about them
- Project Assignment
 - Virtual machines
 - Building Linux kernel
 - Adding a system call
- Introduction to Concurrency

This course

Two sections:-

- Section C01 meets at 9:00-11:00 AM Tuesdays and Fridays — Prof. Walls
- Section C02 (this section) meets at noon-2:00 PM
 Tuesdays and Fridays Prof. Lauer

Different Lectures and quizzes!

Identical programming projects and schedules

- Shared website on *InstructAssist*
- Same textbook, etc.

This Course & Section (continued)

Two 2-hour classes per week

- noon 2:00 PM, Tuesdays and Fridays
- January 12 March 2, 2018
- No class on Friday, February 23, 2018
 - "Reading Day" (or make-up day for closures)

Very similar to first half of CS-502

First graduate course in Operating Systems

Concentrated reading and project work

Concentrated reading and project work

- Students often report that this is their hardest CS course at WPI (so far).
 - The programming is demanding (even though not many lines of code)
 - C language is unforgiving (costing you many hours of frustration)
 - If you wait till a day or two before an assignment is due, you have very little chance to complete it

This Course & Section

Parts of course web site are protected in order to comply with copyright regulations

- Two 2-hour classes per week
 - noon 2:00 PM, Tuesdays and Fridays
 - January 12 March 2, 2018
 - No class on Friday, February 23, 2018
 - "Reading Day" (or make-up day for closures)
- Very similar to first half of CS-502
 - First graduate course in Operating Systems
- Concentrated reading and project work
- Course web site on InstructAssist
 - https://ia.wpi.edu/cs3013/

Textbooks

Free (or cheap) online Printed copy for about \$21

A.k.a OSTEP

Very useful if you plan to do serious work in Linux

Recommended Background

- Computer Programming:—
 - C/C++ programming
 - Especially a low-level language such as C
 - CS-2301 or CS-2303
 - Data structures
 - Linked lists
 - Computer Organization and Assembly Language
 - CS-2011 (Useful)
 - Unix/Linux user experience
 - Very Useful

C Programming Language

- Almost all difficulties that students have in this course go back to the C language
 - Insufficient preparation and understanding
 - Especially modules and include files
 - printf() formats of data types
 - static versus global variables
 - Lack of experience with debugger

Recommended Background

Computer Programming:—

- C/C++ programming
 - Especially a low-level language such as C
 - *CS-2301* or *CS-2303*
- Data structures
 - Linked lists

Reading assignment

- OSTEP Chapters 1&2
- Quiz on Friday, January 19!

Schedule & Logistics — Section C02

Schedule

- Classroom: Kaven 116
- noon 2:00 PM, Tuesdays and Fridays
- One 5 minute break
- 14 classes

~ 4.5 Programming Projects

1-1.5 weeks each

Weekly quizzes

Friday's at start of class

 Mobile Phones, pagers and other similar devices SILENT during class

Prof's Office Hours

- By appointment, or
- See IA or chart by door
- Office: Fuller 144

Contact

- lauer in the domain wpi.edu
- Course e-mail list
 - cs3013-all (in domain cs.wpi.edu)
 - cs3013-staff (Prof & TAs)

Assistants

Graduate TAs

- Yu Liu
- Ashvini Varatharaj

Undergraduate SAs

- Jeffrey Estrada
- Jeffrey Martin
- Christopher Myers

Office hours in Zoo Lab – i.e., Fuller A21

Lecture Capture – Section C02

- Lectures (voice and slides) will be captured automatically
- Can be viewed at

https://echo360.org/section/99afb70b-f55c-41d2-9266-ed069c280ba2/public

- Link is also on InstructAssist
 - Lessons > Lecture Capture

Please remind me *every class* to turn on microphone!

Weekly Quizzes

Quiz portion of grade based on sum of four highest numerical quiz grades out of 100

One quiz each week in Section C02

Friday, Jan 19

Friday, Feb 9

Friday, Jan 26

Friday, Feb 16

Friday, Feb 2

Friday, Mar 2

No makeup quizzes!

20 minutes each

Except 50 minutes on March 2

No final exam!

- Must take March 2 quiz to pass course
- Skipping March2 is equivalent to asking for an NR

No quiz Feb 23 unless it is a make-up day due to WPI closure

Open book, open notes

May use electronic books

May not access the Web or any online site!

Projects

- Install Virtual Machine, build Linux kernel, add Linux Kernel Module
- Midday commander learn how to create and manage processes
- Adding functionality to Linux Kernel
- 3. Serious multithreaded application
- 4. Virtual Memory simulation

Grading

- Grading
 - Quizzes ~ 45%
 - Projects ~ 45%
 - Class participation ~ 10%
- Good-faith attempt & submission of all projects required to pass this course!

WPI Academic Honesty Policy

http://www.wpi.edu/Pubs/Policies/Honesty/policy.html

More on Prerequisites

- C programming is essential
 - Java-only programmers will find it very challenging
- Time required
 - 17+ hours per week, 7 weeks total
- Computing resources required
 - Modern PC or Mac with > 20 gigabytes of free disk space
 - Preferably dual- or quad-core
 - Ability to install Virtual Box

OR

Zoo Lab (with do-it-yourself storage)

Ground Rule

- There are no "stupid" questions.
- It is a waste of your time and the class's time to proceed when you don't understand the basic terms.
- If you don't understand it, someone else probably doesn't, either.

20

Ground Rule #2

- Help each other!
- Even if a project or assignment is specified as individual, ask your colleagues about stuff you don't understand.
- It is a waste of your time try to figure out some obscure detail on your own when there are lots of resources around.
- When you have the answer, write it in your own words (or own coding style)

A Proverb

Lesson:— We don't have a lot of patience with students who come to us on the day before a project is due and look for help in getting started!

Questions?

23

Teaching staff

My third career!

Hugh C. Lauer Teaching Professor

Office hours:- Tue 10:00 - 11:00 AM Thurs 1:00 - 3:00 PM Fri 10:00 - 11:00 AM

- Ph. D. Carnegie-Mellon, 1972-73
 - Dissertation "Correctness in Operating Systems"
- Faculty at University of Newcastle upon Tyne, UK
- Approximately 30 years in industry in USA
- WPI since 2006
- 21 US patents issued
- 2 seminal contributions to Computer Science

Systems Experience

- IBM Corporation
- University of Newcastle
- Systems Development Corporation
- Xerox Corporation (Palo Alto)
- Software Arts, Inc.
- Apollo Computer
- Eastman Kodak Company
- Mitsubishi Electric Research Labs (MERL)
- Real-Time Visualization
 - Founded and spun out from MERL
 - Acquired by TeraRecon, Inc.
- SensAble Technologies, Inc.
- Dimensions Imaging, Inc. (recent start-up, now defunct)

VolumePro™

Interactive volume rendering of 3D data such as

- MRI scans
- CT scans
- Seismic scans

■ Two generations of ASICs, boards, software

- VolumePro 500 1999
- VolumePro 1000 2001

CTO, Chief Architect of VolumePro 1000

- 7.5-million gate, high-performance ASIC
- 10⁹ Phong-illuminated samples per second
- Install in all Siemens CT scanners worldwide!

Sample images from VolumePro™

Operating Systems I Have Known

- IBSYS (IBM 7090)
- OS/360 (IBM 360)
- TSS/360 (360 mod 67)
- Michigan Terminal System (MTS)
- CP/CMS & VM 370
- MULTICS (GE 645)
- Alto (Xerox PARC)
- Pilot (Xerox STAR)
- CP/M

- MACH
- Apollo DOMAIN
- Unix (System V & BSD)
- Apple Mac (v.1 v.9)
- MS-DOS
- Windows NT, 2000, XP, Vista, 7, etc.
- various embedded systems
- Linux
- •••

Outline for Today

- Details and logistics of this course
- Discussion
 - What is an Operating System?
 - What every student should know about them
- Project Assignment
 - Virtual Machines
- Introduction to Concurrency

Class Photos

Class Discussion

What is an Operating System?

(Laptops closed, please!)

What is an Operating System?

Characteristics

- Large, complex set of programs
- Long-lived, evolutionary
- Worked on by many people over many years

Functions

- Creates abstractions
- Multiplexes concurrent activities
- Manages resources
- Mediates access to hardware devices
- Provides a variety of services to users and applications

•

Definition – Abstraction

- The distillation of a complex mechanism into a simple, conceptual model
- User of abstraction does not need to worry about details

 Implementer of abstraction does not need to worry about how user will use it (within limits)

Abstraction

The most important word in this course!

The textbook uses *Virtualization* to mean approximately what we mean by *Abstraction*

What is an operating system? (continued)

- Abstractions:—
 - Processes, threads, and concurrent computation
 - Virtual memory. For managing memory
 - Files. Persistent storage of information
 - Sockets & connections for network communication
- Controls I/O & peripherals
- Implements security and accessibility

■ See §1.1 of Tanenbaum

Definition — Same as judicial definition of pornography

"I cannot define it, but I sure can recognize one when I see it!"

OS and Hardware

OS mediates programs' access to hardware

- Computation CPU
- Storage volatile (memory) and persistent (disk)
- Networks NIC, protocols
- I/O devices sound cards, keyboards, displays

OS creates uniform abstractions

- Processes
- Files
- Sockets
- Streams

Operating Systems – a Study of Evolution

- Simple managing of time of expensive computers
- Managing concurrency between I/O and computation

... and users

... and applications

- Managing memory
- Managing files, communication, GUIs
- Creating abstractions for all of the above
- ... and more!

What should every student of the <u>Computational</u> Sciences know about Operating Systems?

- Processes, threads, concurrent computation, & how to use them
- Memory Management, fragmentation, allocation, and virtual memory
- Files, persistent storage, and what they can do for you
- Protection, authentication, and what are those silly little keys they ask us about
- Different kinds of operating systems and what they are good for

All of these are embodied in the Course Outcomes

http://web.cs.wpi.edu/~cs3013/c18/Outcomes.htm

Questions or Comments?

Outline for Today

- Details and logistics of this course
- Discussion
 - What is an Operating System?
 - What every student should know about them
- Project Assignment
 - Virtual Machines
- Introduction to Concurrency

More about Programming Projects

- Project work based on *Ubuntu 16.04.3 LTS*
 - "LTS" = Long-Term Support
- Each student will use a "virtual machine"
 - What is a virtual machine?
 - A:— a program with enough power and performance to mimic a physical computer
 - See Setting up your Virtual Machine (docx, pdf)
- Build, modify, install Linux kernel on your virtual machine
 - Debug, analyze, crash
 - Restore, try again

Using a Virtual Machine

- Use VirtualBox on your own PC or Macintosh
- Any other virtualization platform
 - You are on your own for support!
- Zoo Lab
 - See Professor if you need it!

What is a Virtual Machine?

- An application that simulates a computer system with enough performance and fidelity to mimic actual hardware
- Concept originated in 1960s, and had been used occasionally in large systems
- Established in mainstream of enterprise systems by VMware in early 2000s
 - By 2012, a many high quality virtualization systems were available
 - VirtualBox is virtualization system of choice at WPI

Virtual Machine Definitions

- Host system:— The hardware and operating system that supports the virtualization application
 - E.g., your own or company PC or Mac
 - E.g., a departmental server

- Guest system:— The virtual hardware and the operating system that is being simulated
 - E.g., Ubuntu 16.04.3 LTS for this course

Questions?

Before the Break

Photos

To help me learn your names!

Survey

To help me understand your background

Short Break

(Not enough time to go to Campus Center for coffee!)

What is an Operating System?

Computer System Organization

Operating System Organization

Major Topics in Traditional OS Courses

- structure: how is the OS organized?
- sharing: how are resources shared across users?
- naming: how are resources named (by users or programs)?
- security: how is the integrity of the OS and its resources ensured?
- protection: how is one user/program protected from another?
- performance: how do we make it all go fast?
- reliability: what happens if something goes wrong hardware or software
- extensibility: can we add new features?
- communication: how do programs exchange information
- concurrency: how are parallel activities created and controlled?
- scale: what happens as demands or resources increase?
- persistence: how do you make data last longer than program executions?
- distribution: how do multiple computers interact with each other?
- accounting: how do we keep track of resource usage, and charge for it?
- Is user interface package part of operating system?

Kinds of operating systems

- Mainframe Operating Systems
- Server Operating Systems
- Multiprocessor Operating Systems
- Personal Computer Operating Systems
- Handheld Computer Operating Systems
- Embedded Operating Systems
- Sensor Node Operating Systems
- Real-time Operating Systems
- Smart-card Operating Systems
- •••

Some Important Operating Systems

- Windows
- IOS (i.e., Apple)
- Linux
 - Android

Spans PCs, servers, multiprocessors, mobile devices, etc.

OS History – Unix & Linux

Unix

- Descendant of Multics
- First "C" version in 1973 (DEC PDP-11)
 - Timesharing for < 10 users on 32K Memory
 - Many Unix versions at Bell Labs different goals
 - Source code made available to Universities BSD
- Posix (start 1981) defines standard Unix system calls
- AT&T licensing!

OS History - Linux

- Open Source Linux.org
- First Version 1991, Linus Torvalds, 80386 processor
 - v.01, limited devices, no networking,
 - with proper Unix process support!
- 1994, v1.0
 - networking (Internet)
 - enhanced file system
 - many devices, dynamic kernel modules

OS History — Linux

- 1996, v2.0
 - multiple architectures, multiple processors
 - threads, memory management
- Gnome UI introduced in 1999
- Recent
 - V2.4 3 million lines of code
 - 7-10 million users
 - Growth by 25%/year through 2003
 - Growing use in business server market
- Note: development convention
 - Odd numbered minor versions "development"
 - Even numbered minor versions "stable"

57

Linux Versions

- Linux 2.6.xx.yy had been the "stable" version for many years!
- Many revisions in xx and yy!
 - Including some rather major changes!
- No magic in rollover from 2.x.y to 3.x.y
 - Simply celebrating 20th anniversary of Linux development
 - Typical "social dynamic" of numbering systems!
- Even less reason to roll over from 3.x to 4.x

■ Version for this course:— 4.13.0-26-generic

OS History – Windows NT/2000/XP

- Key designer David Cutler also designed VAX/VMS
- 1988, v1 Win32 API "microkernel"
- 1990, v3.1- Server and Workstation versions
- 1996, v4
 - Win95 interface
 - Graphics moved into kernel
 - More NT licenses sold than all Unix combined
 - Microkernel de-emphasized

OS History – Windows NT/2000/XP

Windows 2000 – NT5.0

- Multi-user (with terminal services)
- Professional desktop
- Server and Advanced Server Client-server application servers
- Datacenter Server Up to 32 processors, 64 GB RAM

Windows XP

- Windows 2000 code base
- Revised UI
- EOL for DOS/Windows line

OS History – Windows NT/2000/XP/etc.

- Microsoft has 80% to 90% of OS market for ...
 - Desktops, laptops, servers, data centers, etc.
- Wintel Windows + X86
- WinNT 4.x is 12 million lines of code
- Win2000 is 18 million lines of code
- Windows XP approaching 10⁸ lines of code
- Windows Vista early 2006
- Windows 7 2010
- Windows 8 2013
- Windows 10 2016?

Questions?