

- Simcenter Amesim overview
- Electrical vehicle model description
- Modelica inverter model
- Comparison between homogeneous and heterogeneous approach
- Conclusions

- Simcenter Amesim overview
- Electrical vehicle model description
- Modelica inverter model
- Comparison between homogeneous and hybrid model
- Conclusions

Simcenter system simulation solutions

Industry Sector

Automotive & Transportation

Aerospace & Defense

Heavy Equipment

Industrial Machinery

Marine

Energy & Utilities

Pre-design

Performance analysis

Design Optimization

Controls validation

Scalable simulation

Connecting "mechanical" – "controls"

Multi-physics

Co-simulation

Open and customizable

Open platform

Platform facilities:

Data management, pack, libraries, supercomponents...

Solvers and numerics:

Solver technology, Parallel computing, HPC, ...

Analysis tools:

Eigenvalues, Modal shapes, Bode plots, ...

MIL/SIL/HIL and real-time:

Blackbox, RT FMUs, Precompiled objects for RT targets...

Optimization, robustness, design of experiments: NLPQL, Parameter sweep, Monte Carlo, Genetic

Algorithms

Software interfaces:

FMI export/import 1.0-2.0 dedicated interfaces (Simulink, etc...), Excel import, in-house codes...

Simulator scripting & APIs:

C/C++, python, VBA, matlab, scilab, console...

1D/3D CAE:

CAD import, FE import, CFD coupling,...

Customization:

App designer, customized components...

Modelica platform

Simcenter Amesim & Modelica

Modeling & Simulation platform

Modelica engine

Modelica edition

Modelica Editor

Simcenter Amesim platform

Unrestricted © Siemens DI 2020

Basic workflow

Create

Compile

Connect

Simulate

Analyze

- Full-featured, configurable IDE
- Source code editor
- Graphical component assembly
- MSL v3.2.2
- Easy library loading

Automated compiling when model added to Simcenter Amesim

Connection with native libraries through dedicated physical connectors – FMI 2.1

Solved as whole system, in Model Exchange.
Compatible with Simcenter Amesim simulation capabilities:
Batch/Design Exploration,
HPC, MIL/SIL/HIL...

Compatible with
Simcenter Amesim
platform capabilities:
Performance analyzer,
linear **analysis**(eigenvalues, modal
shapes, frequency
response, root
locus...), dashboards,
scripting,...

MODELICA

- Simcenter Amesim overview
- Electrical vehicle model description
- Modelica inverter model
- Comparison between homogeneous and hybrid model
- Conclusions

Model definition of a complete electrical vehicle system used for the sizing of the electric powertrain

- EV Model Based Design
- Supporting BEV design project to define requirements for instance
- > Focus on the electrical system
- > Electrical motor control system validation
- Simulation of high frequency effects on the electrical system

Multi-level modeling

EV model	Electric motor	Inverter	Battery	Gearbox	Chassis
Level 1	Static	Balanced	Generic battery	Ratios efficiency	One inertia
Level 2	Quasi-static	Average	Advanced model (semi- empiric)	Flywheel inertia	3 DoF (2D)
Level 3	Dynamic	Switched	Advanced model (semi-empiric) + thermal	Detailed rotary stiffness and inertia	18 DoF (3D)
Level 4	Cooperation with FEM		Advanced model (semi-empiric) + aging		

Accuracy

Simcenter Amesim electrical vehicle model

Inverter component characterization

Inverter component characterization

3 switched inverter arms

- **→** Conduction
- → Switching losses quasi-static way

2 modules composed by a transistor and an antiparallel diode

- Simcenter Amesim overview
- Electrical vehicle model description
- Modelica inverter model
- Comparison between homogeneous and hybrid model
- Conclusions

Inverter Component Modelica based

Modelica Editor Diagram

- Simcenter Amesim overview
- Electrical vehicle model description
- Modelica inverter model
- Comparison between homogeneous and hybrid model
- Conclusions

Modeling approaches: Simcenter Amesim / Modelica

Simcenter Amesim combines this approach and a representation of the components grouped into specialized libraries

Declarative model, without preferred causality. Enabling the direct manipulation of a set of algebraic differential equations

In practice

Specific study and development to have an arm composed by 2 modules

Simple step by step composition based on connection of single systems find in the MSL

Settings

Homogeneous model

Heterogeneous model

diode forward resistance	0.00234	Ohm
diode forward threshold voltage	0.9	٧
transistor on-state resistance	0.00262	Ohm
transistor forward threshold voltage	0	٧
diode turn-off switching energy at reference voltage and current	0	J
diode turn-on switching energy at reference voltage and current	0	J
transistor turn-on switching energy at reference voltage and current	0	J
transistor turn-off switching energy at reference voltage and current	0	J
idealdiode_2_1.Goff - Backward state-off conductance (opened conductance)	1/(Roff/2)	S
off-state resistance	1000000	Ohm

Inverter results for a 0.2 second simulation Same print interval, same solver

Global results for a 10 seconds simulation Same print interval, same solver

CPU time comparison

- Performance drop of 20% by using the heterogeneous approach
- May be linked to the Modelica approach due to a none optimal symbolic processing for this use case

- Context
- Electrical vehicle in Simcenter Amesim
- Modelica inverter
- Conclusions

Conclusions

- Simcenter Amesim platform can perform hybrid modeling mixing causal and acausal approach
- ➤ The hybrid model of the Electrical Vehicle can be used for validating the electric powertrain sizing
- During the modelling phase the Modelica approach can be complimentary and facilitate locally the development of sub-models
- ➤ For instance, if we want to create an inverter with more than 2 modules in parallel to increase the current, clearly the Modelica approach should be recommended
- ➤ A slight disadvantage during the simulation for the hybrid model, the simulation performances decreased by 20% for 10 seconds of simulation

Karim Besbes

Siemens DI Software / Simulation & Test Solutions Department

karim.besbes@siemens.com

Where today meets tomorrow.