Problem 1. Spin-wave theory (P&S 11.1)

1(a) Prove the following wonderful formula: Let $\phi(x)$ be a free scalar field with propagator $\langle T\phi(x)\phi(0)\rangle = D(x)$. Then

$$\left\langle Te^{i\phi(x)}e^{-i\phi(0)}\right\rangle = e^{[D(x)-D(0)]}.$$

(The factor D(0) gives a formally divergent adjustment of the overall normalization.)

1(b) We can use this formula in Euclidean field theory to discuss correlation functions in a theory with spontaneously broken symmetry for $T < T_C$. Let us consider only the simplest case of a broken $\emptyset(2)$ or U(1) symmetry. We can write the local spin density as a complex variable

$$s(x) = s^1(x) + is^2(x).$$

The global symmetry is the transformation

$$s(x) \to e^{-i\alpha} s(x)$$
.

If we assume that the physics freezes the modulus of s(x), we can parameterize

$$s(x) = Ae^{i\phi(x)}$$

and write an effective Lagrangian for the field $\phi(x)$. The symmetry of the theory becomes the translation symmetry

$$\phi(x) \to \phi(x) - \alpha$$
.

Show that (for d > 0) the most general renormalizable Lagrangian consistent with this symmetry is the free field theory

$$\mathcal{L} = \frac{1}{2}\rho(\vec{\nabla}\phi)^2.$$

In statistical mechanics, the constant ρ is called the *spin wave modulus*. A reasonable hypothesis for ρ os that it is finite for $T < T_C$ and tends to 0 as $T \to T_C$ from below.

1(c) Compute the correlation function $\langle s(x)s^*(0)\rangle$. Adjust A to give a physically sensible normalization (assuming that the system has a physical cutoff at the scale of one atomic spacing) and display the dependence of this correlation function on x for d = 1, 2, 3, 4. Explain the significance of your results.

Problem 2. The Gross-Neveu model (P&S 11.3) The Gross-Neveu model is a model in two spacetime dimensions of fermions with a discrete chiral symmetry:

$$\mathcal{L} = \bar{\psi}_i i \partial \psi_i + \frac{1}{2} g^2 (\bar{\psi}_i \psi_i)^2$$

with $i=1,\ldots,N$. The kinetic term of two-dimensional fermions is built from matrices γ^{μ} that satisfy the two-dimensional Dirac algebra. These matrices can be 2×2 :

$$\gamma^0 = \sigma^2, \qquad \qquad \gamma^1 = i\sigma^1,$$

where σ^i are Pauli sigma matrices. Define

$$\gamma^5 = \gamma^0 \gamma^1 = \sigma^3;$$

this matrix anticommutes with the γ^{μ} .

February 11, 2021 1

2(a) Show that this theory is invariant with respect to

$$\psi_i \to \gamma^5 \psi_i$$
,

and that this symmetry forbids the appearance of a fermion mass.

- **2(b)** Show that this theory is renormalizable in 2 dimensions (at the level of dimensional analysis).
- **2(c)** Show that the functional integral for this theory can be represented in the following form:

$$\int \mathcal{D}\psi \, e^{i \int d^2 x \mathcal{L}} = \int \mathcal{D}\psi \, \mathcal{D}\sigma \, \exp\left[i \int d^2 x \left\{ \bar{\psi}_i i \partial \!\!\!/ \psi_i - \sigma \bar{\psi}_i \psi_i - \frac{1}{2g^2} \sigma^2 \right\} \right],$$

where $\sigma(x)$ (not to be confused with a Pauli matrix) is a new scalar field with no kinetic energy terms.

- **2(d)** Compute the leading correction to the effective potential for σ by integrating over the fermion fields ψ_i . You will encounter the determinant of a Dirac operator; to evaluate this determinant, diagonalize the operator by first going to Fourier components and then diagonalizing the 2 × 2 Pauli matrix associated with each Fourier mode. (Alternatively, you might just take the determinant of this 2 × 2 matrix.) This 1-loop contribution requires a renormalization proportional to σ^2 (that is, a renormalization of g^2). Renormalize by minimal subtraction.
- **2(e)** Ignoring two-loop and higher-order contributions, minimize this potential. Show that the σ field acquires a vacuum expectation value which breaks the symmetry of 2(a). Convince yourself that this result does not depend on the particular renormalization condition chosen.
- 2(f) Note that the effective potential derived in 2(e) depends on g and N according to the form

$$V_{\text{eff}}(\sigma_{\text{cl}}) = N \cdot f(g^2 N).$$

(The overall factor of N is expected in a theory with N fields.) Construct a few of the higher-order contributions to the effective potential and show that they contain additional factors of N^{-1} which suppress them if we take the limit $N \to \infty$, (g^2N) fixed. In this limit, the result of 2(e) is unambiguous.

February 11, 2021 2