«Поволжская электротехническая компания»

42 1851

МЕХАНИЗМЫ ИСПОЛНИТЕЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ ОДНООБОРОТНЫЕ

группа МЭО-630-92 группа МЭО-1600-92 группа МЭОФ-630-97 группа МЭОФ-1600-96

Руководство по эксплуатации ВЗИС.421321.063 РЭ (БСП-10)

ООО «Поволжская электротехническая компания»

Почтовый адрес:

Российская Федерация, Чувашская Республика, 428000, г. Чебоксары, а/я 163

Тел./факс: (8352) 57-05-16, 57-05-19

Электронный адрес E-mail: info@piek.ru Caйт: www.piek.ru

(СОДЕРЖАНИЕ	стр.
1.	Описание и работа механизмов	4
	Назначение механизмов	4
1.2	Технические характеристики	5
	Состав механизма	8
	Устройство и работа механизма	8
	Устройство и работа основных узлов механизма	8
	Маркировка механизма	10
	Использование по назначению	11
	Эксплуатационные ограничения	11
	Подготовка механизмов к использованию	11
	Использование механизма	13
		13
	Возможные неисправности и рекомендации по их устранения	13
	Меры безопасности при использовании механизма	13
4	Техническое обслуживание	14
5	Транспортирование и хранение	15
6	Утилизация	

ПРИЛОЖЕНИЯ:

- А Общий вид, габаритные и присоединительные размеры механизмов (Рис. А.1; А.2; А.3; А.4; А.5)
- Б- Схемы электрические принципиальные МЭО(Ф)-630 КБ (датчик с клеммным блоком)
- Б2 Схемы электрические принципиальные МЭО(Ф) (датчик с клеммным блоком)
- В Схемы подключения механизма $M\ThetaO(\Phi)$ $M\ThetaO(\Phi)$ -630 КБ (датчик с клеммным блоком)
- В2- Схемы подключения механизма МЭО(Ф) (датчик с клеммным блоком)
- Γ Тормоз

вниманию потребителей!

Предприятие непрерывно проводит работы по совершенствованию конструкции механизмов, поэтому некоторые конструктивные изменения в руководстве могут быть не отражены.

Руководство по эксплуатации (долее - РЭ) предназначено для ознакомления потребителя с механизмами исполнительными электрическими однооборотными МЭО-92 группы 630 и МЭО-92 группы 1600 (далее – МЭО) и с механизмами исполнительными электрическими однооборотными фланцевыми МЭОФ-97 группы 630 и МЭОФ-96 группы 1600 (далее - МЭОФ).

РЭ содержит сведения о технических данных механизма, устройстве, принципе действия, мерах по обеспечению безопасности, техническому обслуживанию, транспортирования и хранению, а также другие сведения, соблюдение которых гарантирует безотказную работу механизма.

Работы по монтажу, регулировке и пуску механизмов разрешается выполнять лицам, имеющим специальную подготовку и допуск к эксплуатации электроустановок напряжением до 1000 V.

РЭ распространяется на типы механизмов, указанные в таблице 2.

Во избежание поражения электрическим током при эксплуатации механизма должны быть осуществлены меры безопасности, изложенные в разделе 2 «Использование по назначению».

Приступать к работе с механизмами только после ознакомления с настоящим РЭ!

1 ОПИСАНИЕ И РАБОТА МЕХАНИЗМОВ

1.1 Назначение механизмов

- **1.1.1** Механизмы предназначены для перемещения регулируемых органов в системах автоматического регулирования технологическими процессами в соответствии с командными сигналами поступающими от автоматических регулирующих и управляющих устройств. Механизмы соответствуют техническим условиям ТУ 4218-002-70235294-2004.
- **1.1.2** Механизмы имеют одинаковую конструктивную базу и отличаются способом присоединения к регулирующему органу арматуры.

Механизмы МЭО устанавливаются отдельно от приводимого устройства и соединяются с его регулирующим органом посредством соединительной тяги.

Механизмы МЭОФ устанавливаются непосредственно на трубопроводную арматуру и соединяются с валом регулирующего органа посредством переходной муфты.

1.1.3 Механизмы изготавливаются в серийном исполнении в следующих климатических условиях по ГОСТ 15150-69 согласно таблице 1.

Таблица 1

т иолици т		
Климатическое	Температура	Верхнее значение относительной влажности
исполнение и категория	окружающей среды	окружающей среды
размещения		
У1; У2	от минус 40 до плюс	до 98 % при температуре 25 °С и более низких
	45° C	температурах без конденсации влаги.
T2	от минус 10 до плюс	до 100 % при температуре 35 °С и более
	$50^{0} \mathrm{C}$	низких температурах с конденсацией влаги.
УХЛ1;	от минус 60 до плюс	до 100 % при температуре 25 °С и более низких
УХЛ2	40^{0} C	температурах с конденсацией влаги.

Механизмы с категорией размещения «2» по ГОСТ 15150-69 предназначены для эксплуатации под навесом, исключающим прямое воздействие атмосферных осадков или в помещениях.

- **1.1.4** Степень защиты механизмов IP65 по ГОСТ 14254-2015 с двигателями ДСР135 и IP54 с двигателями АИР.
- **1.1.5** Механизмы не предназначены для работы в средах, содержащих агрессивные пары, газы и вещества, вызывающие разрушение покрытий, изоляции и материалов, и во взрывоопасных средах.
- **1.1.6** Механизмы устойчивы и прочны к воздействию синусоидальных вибраций по группе исполнения VI ГОСТ Р 52931-2008.

1.2 Технические характеристикиТипы механизмов и их основные технические данные приведены в таблице 2. Таблица 2.

Таолица 2.	1			1		
Условное наименование механизма	Номинальный кругящий Момент на выходном валу, N·m	Номинальное время полного хода выходного вала, S	Номинальный полный ход выходного вала, г	Тип электродвигателя	Потребляемая, мощность W, не более	Масса kg, не более
1	2	3	4	5	6	7
ΓΙ)Ф-630-97	1	
МЭОФ-400/10-0,25Х-97 К(Б)	400	10	0,25	АИР56А4	214	
МЭОФ-400/25-0,63Х-97 К(Б)		25	0,63			
МЭОФ-630/15-0,25Х-97 К(Б)	630	15	0,25			
МЭОФ-630/25-0,25Х-97 К(Б)	630	25	0,25			
МЭОФ-800/12-0,25Х-97 К(Б)	800	12	0,25	АИР 56В4	304	
МЭОФ-960/20-0,25Х-97 СК(Б)	960	20	0,25			69
МЭОФ-1000/25-0,25Х-97К(Б)	1000	25	0,25	АИР56А4	214	
МЭОФ-1200/25-0,25Х-97К(Б)	1200	25	0,25			
МЭОФ-1200/63-0,63Х-97К(Б)		63	0,63			
МЭОФ-1200/63-0,25Х-97К(Б)		63	0,25			
МЭОФ-1200/160-0,63Х-97К(Б)		160	0,63			4
МЭОФ-1400/63-0,25Х-97СК(Б)	1400	63	0,25	HCD125 2 2 107 5	154	
МЭОФ-1600/120-0,25Х-97СК(Б)	1600	120	0,25	ДСР135-3,2-187,5	154	4
МЭОФ-1400/63-0,25Х-97С	1400	63	0,25		254	
МЭОФ-1600/120-0,25X-97С	1600	120	0,25	HCD125 1 2 107 5	104	4
МЭОФ-1600/180-0,25Х-97СК(Б)		180	0,25	ДСР135-1,3-187,5	124	4
МЭОФ-1600/180-0,25X-97С	1,600	180	0,25	ATIDECAA	144	4
МЭОФ-1600/63-0,25Х-97СК(Б)	1600	63	0,25	АИР56А4	214	
МЭОФ-1600/120-0,25Х-97СК(Б)		120	0,25			
МЭОФ-1600/180-0,25Х-97СК(Б)	1400	180	0,25	A LIDS (D4	204	1
МЭОФ-1400/25-0,25Х-97СК(Б)	1400	25	0,25		304	
	уппа мех:			Ф-1600-96		1
МЭОФ-630/10-0,25X-96К(Б) МЭОФ-630/25-0,63X-96К(Б)	630	10 25	0,25	-		
	1400		0,63		304	
МЭОФ-1400/15-0,25X-96К(Б) МЭОФ-1600/25-0,25X-96К(Б)	1400	15 25	0,25	АИР56В4	304	
МЭОФ-1600/25-0,25Х-96К(Б)	1600	63	0,23	1111 2011		
МЭОФ-1600/63-0,63А-96К(Б)	2500	63	0,03	АИР56А4	214	1
МЭОФ-2500/65-0,25Х-96К(Б)	2300	160	0,23	AM 30A4	214	
МЭОФ-2500/100-0,05Х-96К(Б)		63	0,03	ДСР135-3,2-187,5	154	1
МЭОФ-1600/63-0,25X-15К(В) МЭОФ-1600/63-0,25X-15	1600	63	0,25	дет 155-5,2-167,5	254	╡
МЭОФ-1600/03-0,25X-15	1000	36	0,25	ДСР135-6,4-187,5	274	124
МЭОФ-1600/10-0,25Х-15К(Б)	1	10	0,25	АИР63А4	384	1
МЭОФ-1600/16-0,25Х-76СК(Б)	†	25	0,63	1111 03/14	307	
МЭОФ-1000/25-0,05Х-96СК(Б)	2500	25	0,03			
МЭОФ-2500/25-0,25Х-76СК(Б)	2500	63	0,63			
МЭОФ-4000/63-0,25Х-96СК(Б)	4000	63	0,05	АИР 56В4	304	1
МЭОФ-4000/160-0,63Х-96СК(Б)		160	0,63			
			,	1	1	1

Продолжение таблицы 2

1	2	3	4	5	6	7
Группа механизмов МЭО-630-92						
МЭО-250/10-0,25Х-92К(Б)	250	10	0,25	АИР56А4	214	
МЭО-250/25-0,63Х-92К(Б)		25	0,63			
МЭО-630/25-0,25Х-92К(Б)		25	0,25			
МЭО-630/63-0,63Х-92К(Б)	(20	63	0,63			
МЭО-630/63-0,25Х-92К(Б)	630	63	0,25			
МЭО-630/160-0,63Х-92К(Б)		160	0,63			
MЭO-1400/63-0,25X-92	1.400	63	0,25	ДСР135-3,2-187,5	254	7.4
MЭO-1400/160-0,63X-92	1400	160	0,63			74
МЭО-1000/25-0,25Х-92СК(Б)	1000	25	0,25			
МЭО-1000/63-0,63Х-92СК(Б)	1000	63	0,63	АИР56А4	214	
МЭО-1600/63-0,25Х-92СК(Б)		63	0,25		214	
МЭО-1600/160-0,63Х-92СК(Б)	1600	160	0,63			
МЭО-1600/120-0,25Х-92СК(Б)	1000	120	0,25	ДСР135-1,3-187,5	124	
M9O-1600/120-0,25X-92C		120	0,25		144	
Γμ	уппа мех	анизмо	в МЭС	<u>)-1600-92</u>		
МЭО-630/10-0,25Х-92К(Б)	630	10	0,25			
МЭО-630/25-0,63Х-92К(Б)	030	25	0,63	АИР56В4	304	
МЭО-1600/25-0,25Х-92К(Б)		25	0,25		304	
МЭО-1600/63-0,63Х-92К(Б)	1600	63	0,63			
МЭО-1600/63-0,25Х-92К(Б)	1000	63	0,25	АИР56А4	214	129
МЭО-1600/160-0,63Х-92К(Б)		160	0,63			
МЭО-1000/10-0,25Х-92СК(Б)	1000	10	0,25			
МЭО-2500/25-0,25Х-92СК(Б)		25	0,25	АИР63А4	384	
МЭО-2500/63-0,63Х-92СК(Б)	2500	63	0,63			
МЭО-2500/63-0,25Х-92СК(Б)	2300	63	0,25	АИР56А4	214	
МЭО-2500/160-0,63Х-92СК(Б)		160	0,63	AHI JUA4	214]
МЭО-1600/63-0,25Х-15К(Б)]	63	0,25	ДСР135-3,2-187,5	154	
M9O-1600/63-0,25X-15	1600	63	0,25		254	
МЭО-1600/36-0,25Х-15К(Б)		36	0,25	ДСР135-6,4-187,5	274	

Примечание:

Буквой X условно обозначено исполнение блока БСП-10, каждый механизм может быть изготовлен с различными исполнениями:

- У блок сигнализации положения токовый (далее блок БСПТ-10М);
- Р блок сигнализации положения реостатный (далее блок БСПР-10);
- М блок концевых выключателей (далее блок БКВ);
- И блок сигнализации положения индуктивный (далее блок БСПИ-10).

Индекс \mathbf{K} обозначает, что данный механизм изготавливается только в трехфазном исполнении. Без индекса только в однофазном исполнении.

Индекс (**Б**) обозначает, что данный механизм изготавливается в двух исполнениях: с выносным блоком питания БП-20 или со встроенным блоком питания для датчика БСПТ-10М (приложение **Б**, рисунок **Б**1).

- 1.2.1 Параметры питающей сети электродвигателей механизмов:
- однофазный переменный ток напряжением:: 220 V частотой 50 Hz;
- трехфазный ток напряжением: 380V, частотой 50.
- 1.2.2 Параметры питающей сети блока сигнализации положения БСП:
- а) токового БСПТ-10М:
- постоянный ток напряжением 24 V;
- однофазный переменный ток напряжением 220V частотой 50 Hz через блок питания БП-20;

- б) реостатного БСПР-10:
- постоянный ток напряжением до 12 V;
- переменный ток напряжением до 12 V частотой 50 Hz;
- в) индуктивного БСПИ-10:
- переменный ток напряжением до 12 V частотой 50Hz.

Параметры питающей сети выносного блока питания БП-20 — однофазное переменное напряжение 220 V частотой 50 Hz.

Допустимые отклонения от номинального значения параметров переменного тока питающей сети электродвигателя, БСП, блока БП-20:

- напряжения питания от минус 15 до плюс 10%;
- частоты питания от минус 2 до плюс 2 %.

При этом отклонения частоты и напряжения не должны быть противоположными.

- **1.2.3** Усилие на ручке или рукоятке ручного привода механизмов не должно превышать 200 N.
- 1 2.4 Режим работы механизмов с двигателями синхронными ДСР135 по ГОСТ IEC 60034-1-2014 повторно-кратковременный реверсивный с частными пусками S4 продолжительностью включений (ПВ) до 25% и номинальной частотой включений до 630 в час при нагрузке на выходном валу в пределах от номинальной противодействующей до 0,5 номинального значения сопутствующей. Допускается работа механизма в кратковременном режиме S2 с номинальной нагрузкой на выходном валу при номинальном напряжении питания электродвигателя продолжительностью не более 3 min. Минимальная величина импульса включения не менее 0,5 s.

Режим работы механизмов с электродвигателем АИР по ГОСТ IEC 60034-1-2014 - повторно-кратковременный реверсивный с частными пусками S4 продолжительностью включений (ПВ) до 25% и номинальной частотой включений до 320 в час при нагрузке на выходном валу в пределах от номинальной противодействующей до 0,5 номинального значения сопутствующей. Допускается работа механизма в кратковременном режиме в течение одного часа с частотой включений до 630 в час при ПВ до 25%, со следующим повторением не менее чем через 3 часа. Минимальная величина импульса включения не менее 0,5 s.

При реверсировании электродвигателя механизма интервал времени между включением и выключением на обратное направление должен быть не менее 50 ms.

- **1.2.5** Кратность пускового крутящего момента к номинальному при номинальном значении напряжении питания равна 1,5, а для механизмов имеющих в условном обозначении букву «С» кратность равна 1,25.
- **1.2.6** Для ограничения величины выбега выходного вала и предотвращения перемещения его от усилия регулирующего органа при отсутствии напряжения на электродвигателе в механизме предусмотрен механический тормоз.
- **1.2.7** Выбег выходного вала механизмов при сопутствующей нагрузке, равной 0,5 номинального значения, и номинальном напряжении питания не более:
 - 1 % полного хода выходного вала для механизмов с временем полного хода 10 s;
 - 0,5 % полного хода выходного вала для механизмов с временем полного хода 25 s;
- -0.25~% полного хода выходного вала для механизмов с временем полного хода $63~\mathrm{s}$ и более.
- **1.2.8** Люфт выходного вала механизмов при нагрузке 5-6 % номинального значения не более 0.75^{0} .
- **1.2.9** Значение допустимого уровня шума не превышает 80 dB(A) на расстоянии 1 m от корпуса по ГОСТ 12.1.003-2014.
- **1.2.10** Механизм обеспечивает фиксацию положения выходного вала при номинальной нагрузке и отсутствии напряжения питания при усилии не более номинального значения.
- **1.2.11** Действительное время полного хода выходного вала механизма при номинальной противодействующей нагрузке, номинальном напряжении питания и нормальных условиях окружающей среды не должно отличаться от значении указанных в таблице 2 более чем на 10%.

1.2.12 Отклонение времени полного хода выходного вала механизма от действительного значения при изменении напряжения питания в пределах от 85 до 110% номинального значения или изменении температуры окружающей среды от минимального до максимального значения не должно превышать 20%.

1.2.13 Способы управления механизмом приведены в таблице 3.

Таблица 3

Тип механизма	Управление механизмами	Тип пускателя
Механизм трехфазного исполнения	Бесконтактное	Усилитель тиристорный трехпозиционный ФЦ-0610. Пускатель реверсивный ПБР-3А
Механизм однофазного исполнения	Бесконтактное	Пускатель реверсивный ПБР-2А.

Бесконтактный пускатель не входит в состав механизма

- **1.12.14** Работоспособное положение механизмов любое. Для механизмов МЭОФ рабочее положение обусловлено положением регулирующего органа.
- **1.12.15** Общий вид, габаритные и присоединительные размеры механизмов приведены в приложении A.

1.3 Состав механизма

Механизм является законченным однофункциональным изделием.

В состав механизма МЭО входят: редуктор, электропривод, блок БСП-10, сальниковый ввод, тормоз, болт заземления, ручной привод, рычаг. В состав механизмов МЭОФ вместо рычага входит ограничитель.

1.4 Устройство и работа механизма

Принцип работы механизмов заключается в преобразовании электрического сигнала, поступающего от регулирующих и управляющих устройств, во вращательное перемещение выходного вала.

У механизмов рычажного исполнения МЭО на выходной вал насажен рычаг, рабочий ход которого ограничивается двумя упорами, которые могут быть закреплены в любом угловом положении относительно оси вращения выходного вала с шагом 4°. Упоры крепятся к диску, закрепленного на редукторе, и выдерживают радиальную нагрузку в крайних положениях рабочего хода рычага за счет зацепления с внешним зубчатым венцом диска. Механизмы рычажного исполнения крепятся к несущей конструкции корпуса редуктора.

У механизмов фланцевого исполнения МЭОФ конец выходного вала имеет квадратное сечение, рабочий ход имеет фиксированное значение -0.25 оборота (90°) или 0,63 оборота (225°), обусловленное установкой на квадрат вала соответствующего ограничителя.

Ограничитель вращается внутри фланца, закрепленного на выходном валу редуктора, радиальную нагрузку в крайних положениях рабочего хода несет упор.

Механизмы фланцевого исполнения крепятся непосредственно к арматуре (или к несущей конструкции) фланцем с четырьмя шпильками и двумя штифтами.

Для обеспечения возможности настройки и регулировки блок сигнализации положения расположен под съёмной крышкой. Крышка имеет смотровое окно для определения углового положения выходного вала по шкале блока сигнализации положения.

1.5 Устройство и работа основных узлов механизма.

1.5.1 Электропривод

Электропривод служит для передачи вращения через редуктор и создания требуемого крутящего момента на выходном валу механизма и обеспечения точной остановки выходного вала. В качестве электропривода механизма применяется асинхронный электродвигатель типа АИР или синхронный электродвигатель ДСР135 согласно таблице 2.

1.5.2.1 Краткие технические характеристики синхронных электродвигателей ДСР, устанавливаемых в механизмы, приведены в таблице 4.

По защищенности от попадания внутрь твердых частиц (пыли) и воды электродвигатели ДСР имеют степень защиты IP65 или IP67 по ГОСТ 14254-2015.

Таблица 4

Тип	Параметры		Номи-	Частота	Потребляемая	Номиналь-
электродвигателя	питающей сети		нальный	вращения	мощность,	ный ток,
	Напряже-	Частота,	момент,	min-1	W	A
	жение, V	Hz	N.m			
ДСР135- 1,3-187,5	380	50		187,5	120	0,54
ДСР135- 1,3-187,5	220				140	0,92
ДСР135- 3,2-187,5	380		3,2		150	1,2
ДСР135- 3,2-187,5	220				250	1,3
ДСР135- 6,4-187,5	380		6,4		270	2,9

При превышении номинального крутящего момента (например, при неправильном выборе механизма по крутящему моменту, при работе механизма на «упор» или при заедании регулирующего органа арматуры) синхронный электродвигатель ДСР выпадает из синхронизма и издает шум.

Внимание! Наличие шума при работе на холостом ходу, исчезающего при нагружении механизма рабочим моментом, не является признаком неисправности.

Работа электродвигателей основана на использовании в качестве рабочего поля зубцовых гармоник, вызванных периодическим изменением магнитной проводимости рабочего зазора из-за зубчатого строения статора и ротора.

1.5.2.2 Краткие технические характеристики асинхронных электродвигателей АИР, устанавливаемых в механизмы, приведены в таблице 5.

Таблица 5

Тип	Параметры		Номинальная	Номинальный	Отношение	Синхронная
электродви-	питающей сети		мощность,	ток, А	начального	частота
гателя	напряже-	частота	кВт		пускового тока	вращения,
	ние, V	Hz			к номинальному	об/мин
АИР56А4			0,12	0,44	5,0	1500
АИР56В4	380	50	0,18	0,65	5,0	1500
АИР63А4			0,25	0,83	5,0	1500

1.5.2 Редуктор

Редуктор является основным узлом механизма, на котором устанавливаются составные части механизма.

Редуктор состоит из корпуса, цилиндрических прямозубых ступеней, планетарной зубчатой передачи, ручного привода, тормоза. Наличие планетарной ступени в редукторе механизмов позволяет использовать ручной привод независимо от включения или выключения электродвигателя. Ручное управление осуществляется вращением маховика.

1.5.3 Ручной привод

Ручной привод служит для перемещения выходного вала (регулирующего органа) при монтаже и настройке механизмов, а также в аварийных ситуациях (отсутствии напряжения питания). Перемещение выходного вала механизмов осуществляется вращением маховика ручного привода. Наличие планетарной передачи в редукторе механизмов позволяет использовать ручной привод независимо от включения или выключения электродвигателя.

1.5.4 Тормоз

Для ограничения величины выбега выходного вала и предотвращения перемещения его от усилия регулирующего органа при отсутствии напряжения на электродвигателе в механизмах предусмотрен механический тормоз.

Устройство тормоза и его узлов приведены в приложении Г.

При работе электродвигателя шарики отжимают тормозной диск от фрикционного диска на величину «В». После выключения электродвигателя пружина возвращает тормозной диск в исходное положение, то есть прижимает его к плоскости фрикционного диска, обеспечивая торможение редуктора.

Внимание! Включать механизм на длительную работу допускается только с нагрузкой на выходном валу не менее, чем 25 % от номинального значения, так как без нагрузочного момента на валу тормоза шарики не отжимают тормозной диск, что приводит к не растормаживанию тормоза и износу фрикционных дисков.

1.5.5 Блок сигнализации положения

Блок сигнализации положения предназначен для преобразования положения выходного вала механизма в пропорциональный электрический сигнал и сигнализации о крайних и промежуточных его положениях.

В зависимости от заказа, механизм может быть изготовлен с блоком сигнализации положения: реостатный БСПР-10, токовый БСПТ-10М, индуктивный БСПИ-10 или с блоком концевых выключателей БКВ.

Устройство, технические данные и принцип работы блока приведены в их руководстве по эксплуатации, входящем в комплект поставки механизма.

Для заземления корпуса механизма предусмотрен наружный зажим заземления с требованиями по ГОСТ 21130-75.

1.5.6 Упоры и ограничитель

Упоры и механический ограничитель (приложение А) предназначены для ограничения положения регулирующего органа в случае его выхода за пределы рабочего диапазона: 0,25 оборота (90°) или 0,63 оборота (225°) из-за несрабатывания концевых выключателей. В механизмах МЭО роль ограничителя выполняет рычаг, имеющий для этого специальный выступ.

Примечание - в механизмах МЭО Φ с рабочим диапазоном 0,63 оборота ограничитель не устанавливается.

1.6 Маркировка механизма

- **1.6.1** Маркировка механизмов соответствует ГОСТ 18620-86, ТР ТС 010/2011. На механизме нанесены следующие данные:
 - товарный знак предприятия изготовителя;
 - условное обозначение механизма;
 - номинальное напряжение питания, V;
 - частота тока, Нz;
 - надпись « СДЕЛАНО В РОССИИ» на русском языке;
 - номер механизма по системе нумерации предприятия изготовителя;
 - год изготовления.
- изображение единого знака обращения продукции на рынке государств членов Таможенного союза.
 - **1.6.2** На корпусе механизма рядом с заземляющем зажимом нанесен знак заземления. Рельеф знака заземления покрыт эмалью красного цвета.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

- **2.1.1** Требования к месту установки механизма и параметрам окружающей среды являются обязательными как относящиеся к требованиям безопасности.
- **2.1.3** Продолжительность включений и число включений в час не должны превышать значений, установленных указанным режимом работы механизма (п.1.2.4).

2.2 Подготовка механизма к использованию

2.2.1 Меры безопасности при подготовке к использованию механизма

Эксплуатацию механизма разрешается проводить лицам, имеющим допуск к эксплуатации электроустановок напряжением до 1000 V и ознакомленным с настоящим РЭ.

При этом необходимо руководствоваться требованиями «Правил техники безопасности при эксплуатации электроустановок потребителей» (ПТБЭ):

- все работы по ремонту, настройке и монтажу механизма производить при полностью снятом напряжении питания;
- на щите управления необходимо укрепить табличку с надписью « НЕ включать работают люди»;
- работы, связанные с наладкой, обслуживанием механизма производить только исправным инструментом;
- при удалении старой смазки и промывке деталей и узлов механизма необходимо применять индивидуальные средства защиты;
- корпус механизма должен быть заземлен медным проводом сечением не менее 4 мм², место подсоединения провода должно быть защищено от коррозии нанесением консервационной смазки;

Эксплуатация механизма должна осуществляться при наличии инструкции по технике безопасности, учитывающей специфику соответствующего производства и утвержденной главным инженером предприятия-потребителя.

2.2.2 Объем и последовательность внешнего осмотра механизма

Осмотреть механизм и убедиться в отсутствии внешних повреждений. Проверить комплектность поставки механизма в соответствии с паспортом.

Проверить с помощью ручного привода легкость вращения выходного вала механизма, повернув его на несколько градусов от первоначального положения. Выходной вал должен вращаться плавно.

Внимание! Маховик ручного привода не допускается использовать в целях строповки!

Заземлить механизм медным проводом сечением не менее 4 mm². Для этого тщательно зачистить место присоединения заземляющего проводника к болту, защитить от коррозии консервационной смазкой. подсоединить провод, затянуть болт. Проверить сопротивление заземляющего устройства, оно должно быть не более 10 Ом.

Подать на механизмы **МЭО-К**, **МЭОФ-К** трехфазное напряжение питания на клеммы 1, 2, 3 (приложение B2), при этом выходной вал должен прийти в движение. Поменять местами концы любых 2-х проводов, подключенных к контактам 1, 2, 3, при этом выходной вал должен прийти в движение в другую сторону.

Подать на механизмы **МЭО, МЭОФ** однофазное напряжение питания на клеммы 1, 2 (приложение B2), при этом выходной вал механизма должен прийти в движение. Перебросить провод с контакта 2 на контакт 3, выходной вал должен прийти в движение в другую сторону.

2.2.3 Монтаж и настройка механизма

При установке механизма необходимо предусмотреть свободное место для обслуживания механизма, обеспечить возможность доступа к блоку БСП и ручному приводу.

Прежде чем приступать к установке механизма на арматуру необходимо руководствоваться мерами безопасности изложенными в разделе 2.2.1.

2.2.3.1 Порядок монтажа механизмов МЭОФ:

- закрепить на механизме монтажные детали (кран, задвижку);
- с помощью ручного привода установить выходной вал механизма таким образом, чтобы механический ограничитель 11 (приложение А) находился не доходя на 3-5° до упоров 13, в положении ОТКРЫТО;

Регулирующий орган трубопроводной арматуры также должен быть установлен в положение ОТКРЫТО.

- установить механизм на трубопроводную арматуру. Выходной вал механизма и шток регулирующего органа арматуры соединить при помощи муфты;
 - закрепить механизм соответствующим крепежом;
- с помощью ручки ручного привода на механизме, вращая маховик против часовой стрелки, установить кран в положение «ОТКРЫТО».

При вращении маховика ручного привода по часовой стрелке устанавливаем кран в положении «ЗАКРЫТО».

Примечание - в механизмах с полным ходом выходного вала 0,63 оборота механические ограничители перемещения выходного вала не устанавливаются. Положение ОТКРЫТО и ЗАКРЫТО механизма определяются исключительно положением рабочего органа арматуры.

2.2.3.2 Порядок монтажа механизмов МЭО:

- установить механизм на фундамент или промежуточную конструкцию, и закрепить соответствующим крепежом;
 - снять упоры;
- поворачивая ручкой ручного привода, установить рычаг (приложение A) в положение, соответствующее положению ЗАКРЫТО регулирующего органа;
 - установить упор;
- соединить рычаг механизма с регулирующим органом при помощи тяги. Отрегулировать длину тяги, перемещая рычаг механизма маховиком ручного привода в диапазоне рабочего угла поворота выходного вала.
- поворачивая ручку ручного привода, установить рычаг в положение, соответствующее положению ОТКРЫТО регулирующего органа;
 - установить второй упор;
- поворачивая ручку ручного привода, вернуть регулирующий орган в положение ЗАКРЫТО.

2.2.4 Электрическое подключение

Подключение внешних электрических цепей к механизмам производить через сальниковый ввод для МЭОФ и через штуцерный ввод для МЭО (приложения А) многожильным круглым гибким кабелем диаметром от 8 до 15 mm, согласно схеме подключения (приложение В2). Монтаж сигнальных цепей рекомендуется вести многожильным гибким проводом и сечением проводников каждой жилы должно быть в пределах от 0,5 до 1,5 mm², силовых от 1 до 2,5 mm². При легком подергивании кабель не должен выдергиваться и проворачиваться в узле уплотнения.

При подключении механизма необходимо:

- открутить гайки сальникового ввода;
- пропустить провод через цанговый зажим;
- подключение внешних электрических цепей производить к клемному блоку, согласно схеме электрической принципиальной;
- установить розетку на место и закрепить винтами. Уплотнить кабель, затянув гайки штуцерных вводов.

Провода, идущие к датчику блока сигнализации положения должны быть пространственно разделены от силовых сетей и экранированы. Сопротивление каждого провода линии связи между механизмом и блоком питания должно быть не более $12~\Omega$.

Проверить мегаомметром сопротивление изоляции электрических цепей, значение которого должно быть не менее $20~\mathrm{M}\Omega$, и сопротивление заземляющего устройства, к которому подсоединен механизм, значение должно быть не более $10~\Omega$.

Подать напряжение питания на блок сигнализации положения. Произвести настройку блока сигнализации положения в соответствии с его руководством по эксплуатации.

Внимание! Во избежание перегрузки электродвигателя электрические микровыключатели, ограничивающие крайние положения регулирующего органа, должны срабатывать на $3 \div 5^0$ раньше, чем механический ограничитель встанет на упор. Механический ограничитель предназначен для ограничения крайних положений регулирующего органа трубопроводной арматуры на случай выхода из строя микровыключателей.

2.2.5 Указания по включению, проверка работы

Пробным включением проверить работоспособность механизма в обоих направлениях и правильность настройки блока сигнализации положения.

3 ИСПОЛЬЗОВАНИЕ МЕХАНИЗМА

3.1 Использование механизма и контроль работоспособности

Механизм являются восстанавливаемыми, ремонтопригодными, однофункциональными изделием.

Порядок контроля работоспособности механизма, необходимость, подстройки и регулировки, методики выполнения измерений определяются эксплуатирующей организацией.

3.2 Возможные неисправности и рекомендации по их устранению

Возможные неисправности и рекомендации по их устранению приведены в таблице 6. Таблица 6

Неисправность	Вероятна причина	Метод устранения
При подключении	Не поступает напряжение	Проверить поступление напряжения к
механизм не работает	питания на электродвигатель	электродвигателю. Проверить цепь и
		устранить неисправность.
	Неисправен электродвигатель	Заменить электродвигатель
При работе механизма	Механизм стоит на упоре	Включить в обратную сторону. Проверить
наблюдается чрезмерный		настройку БСП. При необходимости
нагрев и повышенный шум		перенастроить
	Наличие помехи или	Устранить помеху или заклинивание
	заклинивание регулирующего	
	органа арматуры	
	Обрыв фазы в цепи питания	Проверить цепь питания, устранить обрыв.
	электродвигателя	При необходимости заменить двигатель.
	Межвитковое замыкание в	Заменить электродвигатель
	обмотке статора двигателя	
Увеличенный выбег	Износ тормозного диска	Заменить тормозной диск или
выходного вала механизма		отрегулировать зазор «В»
Блок сигнализации	Сбилась настройка	Настроить БСП согласно его руководству
положения работает	Блок сигнализации	Провести ревизию БСП согласно его РЭ
некорректно	положения неисправен	или заменить
Отсутствует сигнал блока	Обрыв сигнальных цепей	Найти обрыв и устранить неисправность
сигнализации положения	Сбилась настройка	Найти обрыв и устранить неисправность
БСП	БСП неисправен	Провести ревизию БСП согласно РЭ. При
		необходимости заменить

3.3 Меры безопасности при использовании механизма

При эксплуатации механизма не требуется соблюдение дополнительных мер безопасности, кроме общих, изложенных в 2.2.1

4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

4.1 При техническом обслуживании механизма должны выполняться требования безопасности, приведенные в 2.2, а также требования инструкций, действующих в промышленности, где применяется механизм.

Механизм должен подвергаться техническому обслуживанию в соответствии с таблицей 7. Таблица 7

Вид технического	Наименование	Примечание		
обслуживания	работ			
Профилактический	Проверка по	Периодичность устанавливается в зависимости от		
осмотр	4.2	производственных условий, но реже одного раза в месяц		
Периодическое техни-	Проверка по	Один раз в (1,5-2) года		
ческое обслуживание	4.3			
Плановое техническое	Проверка по	При необходимости, рекомендуется при интенсивной работе,		
обслуживание	4.4	не реже одного раза в 6-8 лет, при неинтенсивной – в 10-12		
Электродвигатель является неремонтопригодным изделием и не требует специального технического				
обслуживания				

- 4.2 Во время профилактических осмотров необходимо проверять:
- состояние наружных поверхностей механизма, при необходимости очистить от грязи и пыли;
 - заземляющие зажимы должны быть затянуты и не покрыты ржавчиной;
- проверить затяжку всех крепежных болтов и гаек. Болты и гайки должны быть равномерно затянуты;
- **4.3** Периодическое техническое обслуживание проводить согласно 4.2 и дополнительно:
 - отключить механизм от источника питания;
 - снять крышку блока;
- проверить надежность крепления блока к корпусу механизма, надежность подключения внешних кабелей к разъемам блока БСП-10
- проверить состояние заземления, при необходимости очистить зажимы заземления и нанести консистентную смазку;
- проверить уплотнение кабельного ввода. При легком подергивании кабель не должен выдергиваться и проворачиваться в узле уплотнения;
 - закрыть крышку блока.
 - проверить надежность крепления механизма:
 - а) МЭО к фундаменту;
 - б) МЭОФ фланца к трубопроводной арматуре.
- проверить настройку блока БСП-10, в случае необходимости произвести его подрегулировку.

Подключить механизм, проверить его работу по 1.4.2, при необходимости настроить.

- 4.4 Плановое техническое обслуживание проводить в следующей последовательности:
- отключить механизм от источника питания;
- отсоединить механизм от арматуры, снять с места установки и последующие работы проводить в мастерской;
 - отсоединить блок БСП-10;
 - отсоединить электродвигатель;
 - открутив болты, снять крышку;
- разобрать редуктор. Произвести диагностику состояния корпуса редуктора, крышек, шестерен, валов, подшипников, шпоночных, резьбовых соединений. Узлы и детали промыть в керосине и высушить. Поврежденные детали заменить;
- подшипники, зубья шестерен и поверхности трения подвижных частей редуктора обильно смазать смазкой ЦИАТИМ-203 ГОСТ 8773-73. Расход смазки на один механизм составляет 150g. Собрать механизм. Проверить надежность крепления блока БСП-10, электродвигателя.

В процессе эксплуатации при увеличении выбега выходного вала механизма произвести регулировку зазора «В» и «В1» с помощью регулировочных винтов 8 (приложение Γ).

Для этого необходимо снять узел тормоза:

- отвинтить крепежные болты крепления электродвигателя и отсоединить электродвигатель;
- отвинтить крепежные болты крепления тормоза и отсоединить узел тормоза от механизма.

Произвести внешний осмотр тормозного узла на предмет отсутствия дефектов и повреждений и промасливания тормозных дисков.

Внимание! Промасливание тормозных дисков недопустимо.

Проверить щупом зазор В и отрегулировать его в пределах 0,4...0,6 mm, для этого освободить контргайки 9, и с помощью регулировочных винтов 8 произвести регулировку зазора В (закрутить на 1-2 оборота равномерно все регулировочные винты 8), обеспечивая равномерный зазор В1 по окружности с точностью до 0,2 mm. Контроль зазоров В и В1 осуществлять набором щупов и штангенциркулем с ценой деления 0,05 mm. Увеличение зазора «В» вызвано износом тормозных дисков «Феродо». Зафиксировать положение регулировочных винтов контргайками. Подсоединить узел тормоза и электродвигатель к механизму с помощью крепежных болтов.

Внимание! Данная конструкция тормоза позволяет осуществлять регулировку зазоров без разборки узла тормоза, что существенно упрощает данный процесс, снижает трудоемкость, повышает надежность работы.

Попадание смазки на элементы блока БСП10 не допускается.

После сборки механизма произвести обкатку. Режим работы при обкатке 1.4.2. Проверить при установке на объекте максимальное требуемое усилие на рабочем органе с целью выявления возможной перегрузки механизма

4.5 В течение гарантированного срока не допускается производить любые действия, связанные с разборкой механизма и его составных частей, кроме указанных в разделе 3 и в 4.3, в противном случае действие гарантийных обязательств предприятия- изготовителя прекращается. Текущий ремонт во время гарантийного срока производит предприятие — изготовитель.

5 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- **5.1** Механизмы должны транспортироваться в упаковке предприятия изготовителя в крытых вагонах, универсальных контейнерах, крытых машинах, в трюмах речных судов и авиационным транспортом (в герметизированных отапливаемых отсеках) при условии хранения «5» климатического исполнения «УХЛ1» или «6» климатического исполнения «Т2» по ГОСТ 15150-69, но при атмосферном давлении не ниже 36,6 кПа и температуре не ниже минус 50°С, или условия хранения 3 при морских перевозках в трюмах. Время транспортирования не более 45 суток. Механизмы транспортируются в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта.
- **5.2** Во время погрузочно-разгрузочных работ и транспортирования, упакованные механизмы не должны подвергаться резким ударам и воздействию атмосферных осадков. Способ укладки механизмов на транспортное средство должен исключить их самопроизвольное перемещение.
 - **5.3** Срок хранения механизма в неповрежденной упаковке предприятия- изготовителя не более 12 месяцев с момента изготовления.
 - 5.4 Условия хранения механизмов в упаковке по группе 3 или 5 по ГОСТ 15150-69.

6. УТИЛИЗАЦИЯ

Механизм не представляет опасности для жизни, здоровья людей и окружающей среды и подлежит утилизации после окончания срока службы по технологии, принятой на предприятии, эксплуатирующем механизм.

Приложение А (обязательное) Общий вид, габаритные и присоединительные размеры механизмов

1—электропривод (АИР);2—редуктор;3—блок сигнализации положения (БСП—10АК); 4—тормоз; 5—привод ручной; 6— сальниковый ввод;7—колодка клеммная; 8—упор; 9—болт заземления; 10—рычаг; 11—крышка.

1—электропривод (ДСР 135); 2—редуктор; 3—блок сигнализации положения (БСП—10АК); 4—тормоз; 5—привод ручной; 6—сальниковый ввод; 7—колодка клеммная; 8—болт заземления; 9—крышка; 10—выходной вал; 11—ограничитель; 12—фланец; 13—упор; 14—шпилька; 15—блок конденсаторов.

1—электропривод (АИР); 2—редуктор; 3—блок сигнализации положения (БСП—10АК); 4—тормоз; 5—привод ручной; 6—сальниковый ввод; 7 — колодка клеммная; 8—болт заземления; 9—крышка; 10—выходной вал; 11—ограничитель; 12—фланец; 13—упор; 14—шпилька.

1–электропривод (АИР); 2–редуктор; 3–блок сигнализации положения (БСП–10АК); 4–тормоз;

5-привод ручной; 6-сальниковый ввод;7-колодка клеммная; 8-болт заземления;

9-крышка; 10-выходной вал; 11-ограничитель; 12 -фланец; 13-упор; 14-шпилька.

1—электропривод (АИР); 2—редуктор;

3–блок сигнализации положения (БСП–10АК);

4-тормоз; 5-привод ручной; 6-сальниковый ввод;

7-колодка клеммная;8-упор; 9-болт заземления;

10-рычаг; 11-крышка.

ПРИЛОЖЕНИЕ Б2

Схемы электрические принципиальные МЭО(Ф)

(датчик с клемным блоком)

Рисунок Б2.1 Схема трехфазного механизма с датчиком БСПТ–10М

Рисунок Б2.2 Схема однофазного механизма

Рисунок Б2.3 Схема механизма с БСПИ–10

Рисунок Б2.4 Схема механизма с БСПР-10

микро	контакт	Положение арматуры				
выклю- чатель	соедини- теля X1	открыто	промежуточное	закрыто		
51	1–2					
37	3–4					
<i>S2</i>	5-6					
32	7–8					
<i>S3</i>	9–10					
33	11-12					
C	13–14					
54	15–16					

- S1 промежуточный выключатель открытия
- . S2 — промежуточный выключатель закрытия
- . S3 – конечный выключатель открытия
- S4 конечный выключатель закрытия

Обоз-	Наименование	примечание
С	Блок конденсаторов К78-99-250В	
R	резистор СП5-36В-50Вт	
L1 L2	Катушка индуктивности	
М	Электродвигатель однофазный ДСР-135	220 B
M1	Электродвигатель трехфазный АИР	380 B
R1 R2	Датчик реостатный	120 Ом
S1S4	Микропереключатели	
БД-20	Датчик токовый	
X1	Разъемы для питания МЭО	
X2	Разъем для датчика БКВ	
ХЗ	Разъем для датчиков БСПР, БСПИ, БСПТ	

— КОНГПОКГП ЗОМКНУГП
<i>– контакт разомкн</i> ут

ПРИЛОЖЕНИЕ Б

Схемы электрические принципиальные МЭО(Ф) -630-КБ (датчик с клеммным блоком)

Рисунок Б.1 Схема трехфазного механизма с датчиком БСПТ-10М со встроенным блоком питания БП-20 на клеммном блоке

Клемный блок

микро	контакт	Положение арматуры		
выклю- чатель	соедини- теля X1	открыто	промежуточное	закрыто
S1	1-2			
	3-4			
S2	5-6			
	7-8			
S3	9-10			
	11-12			
S4	13-14			
	15-16			

Обоз- начение	Наименование	примечание
М	Электродвигатель трехфазный АИР	380 B
S1S4	Микропереключатели	
БП-20	Блок питания =24V	
X1	Разъемы для питания МЭО	
X2	Разъем для датчика БКВ	
<i>X3</i>	Разъем для датчика БСПТ	

- S1 промежуточный выключатель открытия
- S2 промежуточный выключатель закрытия
- S3 конечный выключатель открытия
- S4 конечный выключатель закрытия

контакт замкнутконтакт разомкнут

ПРИЛОЖЕНИЕ В

Схемы электрические принципиальные МЭО(Ф) -630-КБ (датчик с клемным блоком)

Рисунок 1 - Схема подключения механизма к сети 380V с датчиком БСПТ при бесконтактном управлении

F - автоматы защиты
A - пускатель ПБР-ЗА
УУ -устройство управляющее
ИМ - исполнительный механизм
X1, X2, X3 - разъемы на клемном блоке датчика

Выключатели конечных и промежуточных положений выбраны условно

ПРИЛОЖЕНИЕ В2

Схемы подключения исполнительного механизма МОЭ(Ф)

(датчик с клемным блоком)

Рисунок 1 - Схема подключения механизма к сети 380 V с датчиком БСПТ при бесконтактном управлении

Выключатели конечных и промежуточных положений выбраны условно

Рисунок 2- Схема подключения механизма к сети 220V с датчиком БСПТ при бесконтактном управлении

Приложение Г (обязательное)

TOPM03

1-корпус, 2-полумуфта, 3-шестерня, 4-сухарь, 5-диск тормозной, 6-пружина, 7-фрикционный диск, 8-регулировочный винт, 9-контрогайка