

Description

The VSM60P06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =-60V, I_{D} =-60A $R_{DS(ON)}$ <23m Ω @ V_{GS} =-10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM60P06-T2	VSM60P06	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-60	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current-Continuous	I _D	-60	А	
Drain Current-Continuous(T _C =100℃)	I _D (100°C)	-21	А	
Pulsed Drain Current	I _{DM}	150	А	
Maximum Power Dissipation	P _D	130	W	
Derating factor		0.87	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	578	mJ	
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Case(Note 2) R _{eJC} 1.15 °C/W

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics	•		•				
Drain-Source Breakdown Voltage	e Breakdown Voltage BV_{DSS} V_{GS} =0V I_D =-2		-60	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	1	μA	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)						•	
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA		-3	-4	V	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-20A	-	18	23	mΩ	
Forward Transconductance	g FS	V _{DS} =-15V,I _D =-20A	20	-	-	S	
Dynamic Characteristics (Note4)	•		•				
Input Capacitance	C _{lss}	\\ 05\\\\ 01\\	-	3500	-	PF	
Output Capacitance	C _{oss}	V _{DS} =-25V,V _{GS} =0V,	-	390	-	PF	
Reverse Transfer Capacitance	C_{rss}	F=1.0MHz	-	290	-	PF	
Switching Characteristics (Note 4)	•		•				
Turn-on Delay Time	t _{d(on)}		-	16	-	nS	
Turn-on Rise Time	t _r	V _{DD} =-30V,I _D =-15A	-	20	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10V, R_{GEN} =2.5 Ω	-	38	-	nS	
Turn-Off Fall Time	t _f		-	15	-	nS	
Total Gate Charge	Qg	\/ - 20\/ - 20 \	-	76	-	nC	
Gate-Source Charge	Q _{gs}	V_{DS} =-30V, I_{D} =-20A, V_{GS} =-10V	-	16	-	nC	
Gate-Drain Charge	Q_{gd}	V _{GS} 10V	-	19	-	nC	
Drain-Source Diode Characteristics		•	•				
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-24A	-	-	1.2	V	
Diode Forward Current (Note 2)	Is		-	-	-60	Α	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = -15A	-	45	-	nS	
Reverse Recovery Charge	Qrr	di/dt = 100A/µs(Note3)	-	59	-	nC	
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)					

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}$ C,V_{DD}=-30V,V_G=-10V,L=1mH,Rg=25 Ω ,I_{AS}=-34A

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance Normalized

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance