COMS30035, Machine learning: Sequential Data (LDS)

James Cussens

School of Computer Science University of Bristol

1st October 2024

Acknowledgement

► These slides are adapted from ones originally created by Edwin Simpson.

Agenda

- ► Markov Models
- ► Hidden Markov Models
- ► EM for HMMs
- ► Linear Dynamical Systems

From HMM to LDS

- HMM assumes discrete latent states.
- Linear dynamical systems (LDS) assume states have continuous values.
- Both have the same graphical model:

▶ Inference has the same form as for an HMM, but when marginalising z_{n-1} and z_{n+1} , we take integrals instead of sums.

Motivations for LDS

- Noisy sensors: inferring the true sequence of states from observations with Gaussian noise.
- ➤ Tracking: predicting the next movement and tracing the path from noisy observations.

Transition and Emission Distributions for LDS

- $p(z_1) = \mathcal{N}(z_1|\mu_0, V_0);$
- $ightharpoonup p(\mathbf{x}_n|\mathbf{z}_n) = \mathcal{N}(\mathbf{x}_n|\mathbf{C}\mathbf{z}_n, \mathbf{\Sigma}).$
- ▶ Note that the means of both distributions are *linear* functions of the latent states.
- ► This choice of distributions ensures that the posteriors are also Gaussians with updated parameters
- ▶ This means that $\mathcal{O}(N)$ inference can still be performed using the sum-product algorithm.

Inference for an LDS

- ► Kalman filter = forward pass of sum-product for LDS.
- ► Kalman smoother = backward pass of sum-product for LDS.
- ▶ No need for an analogue of Viterbi: the most likely sequence is given by the individually most probable states, so we get this from the Kalman equations.

Forward Inference (Kalman Filter) for an LDS

$$\alpha(\mathbf{z}_n) = \mathcal{N}(\mathbf{x}_n | \mathbf{C}\mathbf{z}_n, \mathbf{\Sigma}) \int \mathcal{N}(\mathbf{z}_n | \mathbf{A}\mathbf{z}_{n-1}, \mathbf{\Gamma}) \alpha(\mathbf{z}_{n-1}) d\mathbf{z}_{n-1}$$
 (1)

Normalising results in a Gaussian-distributed variable, whose parameters can be computed efficiently:

$$\hat{lpha}(\pmb{z}_n) = p(\pmb{z}_n|\pmb{x}_1,...,\pmb{x}_n) = \mathcal{N}(\pmb{z}_n|\pmb{\mu}_n,\pmb{V}_n)$$
, where

- \blacktriangleright μ_n is a function of μ_{n-1} , x_n , A and C.
- \triangleright V_n is a function of V_{n-1} , Σ , A, Γ and C.
- We can view each forward step as predicting z_n based on the distribution over z_{n-1} , then correcting that prediction given the new observation x_n .
- ► For details, see [Bis06, §13.3.1].

Backward Inference (Kalman Smoother) for an LDS

- ▶ Backward pass also follows that of the HMM: messages are passed from the final state to the start of the sequence.
- ► The backward messages contain information about future states that affects the posterior distribution at each step *n*.
- Since the transition and emission probabilities are all Gaussian, the posterior responsibilities are also Gaussian, as are the state pair expectations.
- ► For details, see [Bis06, §13.3.1].

Learning the Parameters of LDS

- ► Kalman filter/smoother are analogous to the forward-backward algorithm for HMMs.
- ▶ Remember that this algorithm is used for the *E step* of EM.
- ▶ The parameters are optimised in the M step as before, by using the responsibilities $\mathbb{E}[\mathbf{z}_n]$, $\mathbb{E}[\mathbf{z}_n\mathbf{z}_n^T]$ and state pair expectations $\mathbb{E}[\mathbf{z}_n\mathbf{z}_{n-1}^T]$.
- ► For details, see [Bis06, §13.3.2].

Reading

▶ foo

Problems and quizzes

- Quizzes:
 - ► Week 7: Linear Dynamical Systems

Christopher M. Bishop.

Pattern Recognition and Machine Learning.

Springer, 2006.