BEAM DEFLECTION FORMULAE

BEAM TYPE	SLOPE AT FREE END	DEFLECTION AT ANY SECTION IN TERMS OF x	MAXIMUM DEFLECTION			
1. Cantilever Beam – Concentrated load <i>P</i> at the free end						
V O	$\theta = \frac{Pl^2}{2EI}$	$y = \frac{Px^2}{6EI} (3l - x)$	$\delta_{\text{max}} = \frac{Pl^3}{3EI}$			
2. Cantilever Bea	am – Concentrated load P at a	any point				
$\begin{array}{c c} a & P & b \\ \hline y & l & \delta_{\text{max}} \end{array}$	$\theta = \frac{Pa^2}{2EI}$	$y = \frac{Px^2}{6EI} (3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI} (3x - a) \text{ for } a < x < l$	$\delta_{\text{max}} = \frac{Pa^2}{6EI} (3l - a)$			
3. Cantilever Bea	am – Uniformly distributed lo	oad ω (N/m)				
$\begin{array}{c c} \omega & & x \\ \hline \\ y & & \\ l & & \\ \end{array}$	$\theta = \frac{\omega l^3}{6EI}$	$y = \frac{\omega x^2}{24EI} \left(x^2 + 6l^2 - 4lx \right)$	$\delta_{\text{max}} = \frac{\omega l^4}{8EI}$			
4. Cantilever Bea	am – Uniformly varying load	: Maximum intensity ω_o (N/m)				
$\omega = \frac{\omega_{o}}{l}(l-x)$ ω_{o} v l δ_{max}	$\theta = \frac{\omega_o l^3}{24EI}$	$y = \frac{\omega_o x^2}{120lEI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3 \right)$	$\delta_{\text{max}} = \frac{\omega_{\text{o}} l^4}{30EI}$			
5. Cantilever Beam – Couple moment <i>M</i> at the free end						
$ \begin{array}{c c} l & x \\ \hline 0 & \delta_{\text{max}} \\ \hline \end{array} $	$\theta = \frac{Ml}{EI}$	$y = \frac{Mx^2}{2EI}$	$\delta_{\text{max}} = \frac{Ml^2}{2EI}$			

BEAM DEFLECTION FORMULAS

BEAM TYPE	SLOPE AT ENDS	DEFLECTION AT ANY SECTION IN TERMS OF x	MAXIMUM AND CENTER DEFLECTION			
6. Beam Simply Supported at Ends – Concentrated load <i>P</i> at the center						
1		$y = \frac{Px}{12EI} \left(\frac{3l^2}{4} - x^2 \right) \text{ for } 0 < x < \frac{l}{2}$	$\delta_{\text{max}} = \frac{Pl^3}{48EI}$			
7. Beam Simply S	Supported at Ends – Concen	trated load P at any point				
$ \begin{array}{c c} & a & P \\ \hline \theta_1 & a & P \\ \hline & \theta_2 & X \\ \hline & b \\ \hline & \delta_{max} \\ \hline & \delta_{max} \end{array} $	$\theta_1 = \frac{Pb(l^2 - b^2)}{6lEI}$ $\theta_2 = \frac{Pab(2l - b)}{6lEI}$	$y = \frac{Pbx}{6lEI} \left(l^2 - x^2 - b^2 \right) \text{ for } 0 < x < a$ $y = \frac{Pb}{6lEI} \left[\frac{l}{b} (x - a)^3 + \left(l^2 - b^2 \right) x - x^3 \right]$ for $a < x < l$	$\delta_{\text{max}} = \frac{Pb(l^2 - b^2)^{3/2}}{9\sqrt{3} lEI} \text{ at } x = \sqrt{(l^2 - b^2)/3}$ $\delta = \frac{Pb}{48EI} (3l^2 - 4b^2) \text{ at the center, if } a > b$			
8. Beam Simply S	Supported at Ends – Uniform	nly distributed load ω (N/m)				
δ_{max}	$\theta_1 = \theta_2 = \frac{\omega l^3}{24EI}$	$y = \frac{\omega x}{24EI} \left(l^3 - 2lx^2 + x^3 \right)$	$\delta_{\text{max}} = \frac{5\omega l^4}{384EI}$			
9. Beam Simply S	Supported at Ends – Couple	moment M at the right end				
θ_1 θ_2 λ λ	$\theta_1 = \frac{Ml}{6EI}$ $\theta_2 = \frac{Ml}{3EI}$	$y = \frac{Mlx}{6EI} \left(1 - \frac{x^2}{l^2} \right)$	$\delta_{\text{max}} = \frac{Ml^2}{9\sqrt{3} EI} \text{ at } x = \frac{l}{\sqrt{3}}$ $\delta = \frac{Ml^2}{16EI} \text{ at the center}$			
10. Beam Simply Supported at Ends – Uniformly varying load: Maximum intensity ω _o (N/m)						
$\omega = \frac{\omega_{o}}{l} x$ $\theta_{1} \qquad \theta_{2} \qquad \omega_{o} \qquad x$ $V \qquad l$	$\theta_1 = \frac{7\omega_0 l^3}{360EI}$ $\theta_2 = \frac{\omega_0 l^3}{45EI}$	$y = \frac{\omega_0 x}{360lEI} \left(7l^4 - 10l^2 x^2 + 3x^4 \right)$	$\delta_{\text{max}} = 0.00652 \frac{\omega_{\text{o}} l^4}{EI} \text{ at } x = 0.519 l$ $\delta = 0.00651 \frac{\omega_{\text{o}} l^4}{EI} \text{ at the center}$			

From "Handbook of Engy Mechanics", W. Flugge (editor), McGrow-Hill, 1962

Table 61.1. Frequencies and Eigenfunctions for Uniform Beams

Туре	Boundary conditions	Frequency equation	Eigenfunction $\phi_n(x)$	Roots of frequency equation \(\lambda_n\)
Clamped-clamped	$\phi(0) = \phi'(0) = 0$ $\phi(l) = \phi'(l) = 0$	cos λ Cosh λ = 1	$J\left(\frac{\lambda_n x}{l}\right) - \frac{J(\lambda_n)}{H(\lambda_n)} H\left(\frac{\lambda_n x}{l}\right)$	$\lambda_1 = 4.7300$ $\lambda_2 = 7.8532$ $\lambda_3 = 10.9956$ $\lambda_4 = 14.1372$ For n large, $\lambda_n = (2n + 1)\pi/2$
Clamped-hinged	$ \phi(0) - \phi'(0) - 0 \phi(l) - \phi''(l) - 0 $	tan d ∞ Tanh d	$J\left(\frac{\lambda_n x}{l}\right) - \frac{J(\lambda_n)}{H(\lambda_n)} H\left(\frac{\lambda_n x}{l}\right)$	$\lambda_1 = 3.9266$ $\lambda_2 = 7.0686$ $\lambda_3 = 10.2102$ $\lambda_4 = 13.3518$ For n largo, $\lambda_n \approx (4n + 1)\pi/4$
Clamped-free	$\phi(0) = \phi'(0) = 0 \phi''(l) = \phi'''(l) = 0$	uos λ Cosh λ ≕ −1	$J\left(\frac{\lambda_n x}{l}\right) - \frac{G(\lambda_n)}{F(\lambda_n)} H\left(\frac{\lambda_n x}{l}\right)$	$\lambda_1 = 1.8751$ $\lambda_2 = 4.6941$ $\lambda_3 = 7.8548$ $\lambda_4 = 10.9955$ For n large, $\lambda_n \approx (2n - 1)\pi/2$
Clampod-guided	$\phi(0) = \phi'(0) = 0$ $\phi'(l) = \phi'''(l) = 0$	tan A = -Tanh A	$J\left(\frac{\lambda_n x}{l}\right) - \frac{l'(\lambda_n)}{J(\lambda_n)} H\left(\frac{\lambda_n x}{l}\right)$	$\lambda_1 = 2.3650$ $\lambda_2 = 5.4978$ $\lambda_4 = 8.6394$ $\lambda_4 = 11.7810$ For n large, $\lambda_n \approx (4n - 1)\pi/4$
Hingod-hingod	$\phi(0) = \phi''(0) = 0$ $\phi(l) = \phi''(l) = 0$	sin λ = 0	$\sin \frac{n\pi x}{l}$	$\lambda_n = n\pi$

Table 61.1. Frequencies and Eigenfunctions for Uniform Beams (Continued)

Туре	Boundary conditions	Frequency equation	Eigenfunction $\phi_n(x)$	Roots of frequency equation λ_n
Hinged-guided	$\phi(0) = \phi''(0) = 0 \phi'(l) = \phi'''(l) = 0$	cos λ == 0	$\sin \frac{(2n-1)\pi x}{2i}$	$\lambda_n = (2n - 1)\pi/2$
Guided-guided	$\phi'(0) = \phi'''(0) = 0$ $\phi'(l) = \phi'''(l) = 0$	sin λ ≈ 0	$\cos \frac{n\pi x}{l}$	λ, = nπ
Free-free	$\phi''(0) = \phi'''(0) = 0 \phi''(l) = \phi'''(l) = 0$	cos λ Cosh λ = 1	$G\left(\frac{\lambda_n x}{l}\right) - \frac{J(\lambda_n)}{H(\lambda_n)} F\left(\frac{\lambda_n x}{l}\right)$	Same as for clamped- clamped beam
Free-hingod	$\phi''(0) = \phi'''(0) = 0$ $\phi(l) = \phi''(l) = 0$	tan λ = Tanh λ	$G\left(\frac{\lambda_n x}{l}\right) - \frac{G(\lambda_n)}{F(\lambda_n)} F\left(\frac{\lambda_n x}{l}\right)$	Same as for clamped- hinged beam
Froc-guided	$\phi''(0) = \phi'''(0) = 0$ $\phi'(l) = \phi'''(l) = 0$	tan λ = -Tanh λ	$G\left(\frac{\lambda_n x}{l}\right) - \frac{H(\lambda_n)}{F(\lambda_n)} F\left(\frac{\lambda_n x}{l}\right)$	Same as for clamped- guided beam

1. The circular frequency is

$$\omega_n = \frac{\lambda_n^2}{l^2} \sqrt{\frac{EI}{\mu}}$$

where

EI = bending stiffness

μ = mass per unit length

I = length of the beam

2. Notation used in expressions for the eigenfunctions:

$$F(u) = \sinh u + \sin u$$

$$G(u) = \operatorname{Cosh} u + \cos u$$

$$H(u) = Sinh u - sin u$$

$$J(u) = \cosh u - \cos u$$