Package 'COMET'

April 8, 2024
Title COMET (Context-specific Optimization of EMT Trajectories)
Version 0.0.0.9000
Author Annice Najafi
Maintainer [Annice Najafi] <annicenajafi@tamu.edu></annicenajafi@tamu.edu>
Description COMET is a computational framework for inferring EMT trajectories from time-course single cell RNA sequencing data.
License MIT
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Imports Rmagic, Seurat, phateR, umap, dtw, pracma, dplyr, ggplot2, ggpubr, readxl, devtools, tidyr, tidyverse, reshape2, grid, gridExtra, diagram, plotly, data.table
R topics documented: calculate_conf_intervals 2 DTW_calculate 2 find.min.alpha 3 find.optimal.cutoff 3 fit.all.data 4

2 DTW_calculate

fit.CTMC																
generate_pipeline_files																
KS.label.me																
run.CTMC																
run_pipeline																
start_pipeline																
transition_matrix																

calculate_conf_intervals

This function calculates confidence intervals for every sample over 10 runs

Description

This function calculates confidence intervals for every sample over 10 runs

Usage

Index

```
calculate_conf_intervals(data.inputs)
```

Arguments

data.inputs the input datasheet stored in a csv file in the tables dir

Value

nothing, saves results within the Confidence_Interval_Calculations dir

DTW_calculate This function calculates the DTW distance bewteen the inferred trajectories for every cutoff and the flow cytometry data

Description

This function calculates the DTW distance bewteen the inferred trajectories for every cutoff and the flow cytometry data

Usage

```
DTW_calculate(data.inputs, MET.range)
```

Arguments

data.inputs the input datasheet stored in a csv file in the tables dir
MET.range range of time for MET to take place

Value

nothing, saves the matrix in the DTW_Matrix dir

find.min.alpha 3

Description

This function finds the mse_total given a certain alpha

Usage

```
find.min.alpha(
  alpha,
  E_cad,
  hybrid,
  ZEB,
  M_sc,
  Mu_sc,
  eq,
  ref_eq_day,
  timepoints
)
```

Arguments

alpha parameter alpha

E_cad Epithelial percentage, just named E_cad
hybrid hybrid percentage

ZEB Mesenchymal percentage, just named ZEB

M_sc ratio of M/E at steady state

Mu_sc ratio of H/E at steady state

Mu_sc ratio of H/E at steady star eq what timepoint to start ref_eq_day steady state timepoint timepoints total timepoints

Value

 mse_total

find.optimal.cutoff Find the optimal cutoff Finds the best number of highly variable EMT genes

Description

Find the optimal cutoff Finds the best number of highly variable EMT genes

Usage

```
find.optimal.cutoff(data.input)
```

4 fit.CTMC

Arguments

data.input input data to use

Value

optimal cutoff of highly variable genes

fit.all.data

This function fits optimal CTMC trajectories to timecourse data

Description

This function fits optimal CTMC trajectories to timecourse data

Usage

```
fit.all.data(data.inputs, MET.range)
```

Arguments

data.inputs the input datasheet stored in a csv file in the tables dir

MET.range range of time for MET to take place

Value

the final dataframe with the optimal trajectories fitted to data

fit.CTMC This function optimally fits 3 CTMC models to data (1st phase, 2nd

phase, MET range)

Description

This function optimally fits 3 CTMC models to data (1st phase, 2nd phase, MET range)

Usage

```
fit.CTMC(data.input, MET.range, opt.cutoff)
```

Arguments

data.input input data to use

MET. range range where MET takes place

opt.cutoff optimal cutoff of highly variable genes

Value

final trajectories, lambda_E, mu, and lambda_M respectively

generate_pipeline_files 5

generate_pipeline_files

This function is to be ran for all cutoffs, purpose is to find the optimal number of EMT genes to minimize the DTW distance between the flow cytometry trajectories and data

Description

This function is to be ran for all cutoffs, purpose is to find the optimal number of EMT genes to minimize the DTW distance between the flow cytometry trajectories and data

Usage

```
generate_pipeline_files(data.inputs, tables.dir, input.data.dir, parallelize)
```

Arguments

data.inputs the input datasheet stored in a csv file in the tables dir

tables.dir directory with a csv file that had the address for the data and metadata

input.data.dir this is the directory where the input file should be saved in

parallelize this boolean variable indicates whether code is parallelized over cores or not, set

parallelize to 'TRUE' for parallelizing code over cores

Value

does not return, saves the files in the COMET_populated_files dir

KS.label.me This function perform Kolmogorov Smirnov scoring on data, credit given to Priyanka Chakraborty as the code was adapted from her work and modified

Description

This function perform Kolmogorov Smirnov scoring on data, credit given to Priyanka Chakraborty as the code was adapted from her work and modified

Usage

```
KS.label.me(exp.mat, genes, topgenes)
```

Arguments

exp.mat gene expression matrix

genes genes

top200 receives top 200 highly variable genes for scoring

Value

KS score

6 run_pipeline

run.CTMC	This function generates trajectories for a CTMC model given param-
	eters

Description

This function generates trajectories for a CTMC model given parameters

Usage

```
run.CTMC(alph_fun, time.range, M_sc_fun, Mu_sc_fun, p0_fun)
```

Arguments

alph_fun alpha parameter used in function

time.range specific timerange to generate trajectory

 M_sc_fun ratio of M/E at steady state Mu_sc_fun ratio of H/E at steady state

p0_fun initial state vector

Value

trajectories along with the resulting p vector

run_pipeline This function runs the data driven pipeline for inferring trajectories

Description

This function runs the data driven pipeline for inferring trajectories

Usage

```
run_pipeline(data.inputs, tables.dir, input.data.dir, cutoff)
```

Arguments

data.inputs the input datasheet stored in a csv file in the tables dir

tables.dir directory with a csv file that had the address for the data and metadata

input.data.dir this is the directory where the input file should be saved in

cutoff of highly variable EMT genes to be considered

Value

the inferred trajectories, also saves them within the COMET_populated_files directory

start_pipeline 7

start_pipeline	Read necessary files and parameters for pipeline to run This function reads all the necessary files to run this pipeline
	reads an the necessary files to run this pipetine

Description

Read necessary files and parameters for pipeline to run This function reads all the necessary files to run this pipeline

Usage

```
start_pipeline(tables.dir, input.data.dir)
```

Arguments

```
tables.dir directory with a csv file that had the address for the data and metadata input.data.dir this is the directory where the input file should be saved in
```

Value

nothing, stores necessary parameters for the model in global variables

transition_matrix This function finds the transition matrix given the parameters for the generator matrix	he
---	----

Description

This function finds the transition matrix given the parameters for the generator matrix

Usage

```
transition_matrix(lambda_E, lambda_M, mu_E, mu_M, t)
```

Arguments

lambda_E	Rate of transition from H to E
lambda_M	Rate of transition from H to M
mu_E	Rate of transition from E to H
mu_M	Rate of transition from M to H
t	time

Value

the probability transition matrix

Index

```
calculate_conf_intervals, 2

DTW_calculate, 2

find.min.alpha, 3
find.optimal.cutoff, 3
fit.all.data, 4
fit.CTMC, 4

generate_pipeline_files, 5

KS.label.me, 5

run.CTMC, 6
run_pipeline, 6

start_pipeline, 7

transition_matrix, 7
```