STATIC CALCULATIONS

Prepared by: Karlis Zemitis

Class: Bkai0216 Semester: 2

Assignment detailing: This static calculation has been prepared for the Villa M house. I created calculations for the following: timber rafter, concrete storey partition and steel beam, foundation width.

STATIC CALCULATIONS	1
INTRODUCTION	3
CALCULATION ASSUMPTIONS	4
STANDARDS	4
LITERATURE	4
MATERIALS	5
LoADS	6
STATIC CALCULATIONS	7
RAFTER	7
LIGHTWEIGHT FLOOR SLAB	12
STEEL BEAM	14
FOUNDATION WIDTH	18
CONCLUSION	19

INTRODUCTION

In our project we are using large amount of different beams. House has a steel beam for balcony, common rafters(timber) as roof construction and storey partition, and, lastly, we have glue laminated beam that holds parts of the roof. To know the necessary size to provide deflection that would be acceptable and safe.

The calculations will be done in 4 parts - timber rafter, concrete storey partition and steel beam, foundation width. For timber beam, since it is holding the roof in several places with different spans, only the largest span will be calculated as deflection will be the highest there.

Since we have chosen the beam size from the tables provided in Compendium in Scheme Design phase, we will have to reflect on how precisely the tables are for our case and see if we need to change the size in our drawings.

CALCULATION ASSUMPTIONS

STANDARDS

CONSEQUENCE CLASS:

Since this is a single family house, it is in consequence class M (Medium).

All other classes such as load duration class, service class and material class for each element will be defined under the Static Calculations section within the report.

LITERATURE

In order to affectively complete these calculations I used the following documentation for guidance:

- Jnc 106 kompendie Load and safety.pdf
- Jnc 231 Example of calculating a steel beam A2016.pdf
- Jnc 203 Compendium for Load bearing constructions 2. Semester Timber and steel beams rev 01.09.2015.pdf
- Jnc 223 Example of the sizing a timber beam A2016.pdf
- Jnc 224a Exercise no 1 Solution proposal part one A2016.pdf

MATERIALS

ROOF - Light roof construction								
Material	Density kN/m³	Calculation	Total kN/m ²					
Common Rafter	5 kN/m³	5kN/m³ x (0.095 x 0,295) / 0.800	0.175					
Asphalt paper(both layers			0.10					
Plywood	7 kN/m³	7kn/m³ x (0.026)						
Mineral wool insulation 300mm	0.5 kN/m ³	0.5kn/m³ x (0.300)	0.15					
Plasterboard 2 x 13mm	9 kN/m³	9kn/m³ x (0.013) = 0.117 x 2	0.23					
		Sum Self weight	0.745					
		Heaviest wall						
Material	Density kN/m³	Calculation	Total kN/m ²					
Lecarille block part	6 kN/m³	6 kN/m³ x 0.39	2.34					
Cavity brick wall	_	-	4					
Insulation 190mm	1 kN/m³	1 kN/m³ x 0.19	0.2					

Other								
Material	Density kN/m³	Calculation	Total kN/m ²					
Floor slab	17.5	17.5 kN/m ³ x 0.14 m	2.45					
Ceiling and flooring			0.6					
Steel beam(IPE120)			0.1*					
Foundations	25 kN/m³	25 kn/m³ x 0.4	10					
*Values are kN/m, because area load is irrelevant in these cases								

LOADS

SELF WEIGHT	
Element	Total
Roof	0.745 kN/m ²
Wall	2.94 kN/m²
Floor slab	0.6 kN/m²
Steel beam IPE120	0.1 kN/m
Foundations	10 kN/m

IMPOSED LOAD	
Element	Total
Floor slab	1.5 kN/m ²
Steel beam IPE120	1.5 kN/m ²

ENVIRONMENTAL ACTIONS - SNOW									
Element Snow load shape coefficient Total									
Roof	-	0.8 kN/m ²							

Table 5.2: Snow load shape coefficients taken from 'jnc 106 kompendie load and safety pg. 23'.

Table 5.2: Snow load shape coefficients

Angle of pitch of roof α	0° ≤ α≤ 30°	30° < α < 60°	α≥60°
μ_1	0,8	0,8(60 - α)/30	0,0
μ_2	0,8 + 0,8 \alpha/30	1,6	

STATIC CALCULATIONS

RAFTER

Load duration class: K (as snow is a short term load)

Service class: 2 (Ventilated area)

Material class: C18

Common rafter dimension: 95 x 295

Fmd: 12.0 MPa (bending)

Fvd: 2.27 MPa (Shear)

Fc 90d: 1.47 MPa (compression)

 E_0 : C18 = 9000 (Rigidity factor for timber)

Line Load

Self weight - $0.745 \text{ kN/m2} \times 0.8 \text{m} =$

0.6 kN/m

Snow load - $0.8 \text{ kN/m2} \times 0.8 \text{m} =$

0.64 kN/m

Design Loads

 $Ed = \gamma g \times g + \gamma s \times s$

 $Ed = 1.0 \times 0.6 \text{ kN/m} + 1.5 \times 0.64 \text{ kN/m} =$

1.56 kN/m

Internal forces

$$Mmax = 1/8 x q x L^2$$

 $= 1/8 \times 1.56 \text{ kN/m} \times 6^2$

= 7 kNm

 $Vd = R = 1/2 \times q \times L$

 $= 1/2 \times 1.56 \times 6$

= 4.7 kN

Sectional modulus

 $Wmin = Mmax/f_{m,d}$

 $= 7 \times 10^6 \text{ N/mm} / 12 \text{ N/mm}2 = 583 \times 10^3 \text{ N/mm}^3$

* Table 7.3.2.2 in 'jnc 203 Compendium for load bearing constructions 2' has been checked and the beam size 95 x 295 cannot be found within this table. Therefore the calculations created within this document is necessary as it is not possible to get a good understanding of the section properties of the timber beam from this table.

 $ly = 1/12 \times w \times h^{3}$ $= 1/12 \times (95 \times 295^{3})$ $= 203 \times 10^{6} \text{ mm}^{4}$ $Wy = 1/6 \times w \times h^{2}$ $= 1/6 \times 95 \times 295^{2}$

 $= 1378 \times 10^{3} \text{ mm}^{3}$

Wy >Wmin -> OK

Excepted deflection amount

L/400

= 6000 / 400 = 15 mm

U inst: Selfweight

 $5 \times q \times L^4 / 384 \times E \times I$

 $= (5 \times 0.6 \times 6^4 \times 10^{12}) / (384 \times 9000 \times 203 \times 10^6)$

= 5.4 < 15 (so it is well under the accepted deflection amount)

U inst: Snow load

 $5 \times q \times L^4 / 384 \times E \times I$

 $= (5 \times 0.64 \times 3850^4) / (384 \times 9000 \times 116 \times 10^6)$

= 5.64 < 15 (so it is well under the accepted deflection amount)

Final Deflections

Ufin,G = Uinst,G (1 + kdef)

Ufin,G = 5.4 * (1+0.8) = 9.72 mm

Ufin,Q = 5.64 * (1+0) = 5.64 mm

Ufin = 9.72 + 5.64 = 15.36 mm

= 15.36 mm > 15mm (deflection is close enough to accept it, because it won't make a difference.

Bending stress

 $\sigma b = M/W < fmd$

 $\sigma b = (7 \times 10^6) / (950 \times 10^3)$

 $\sigma b = 7.3 < 12 \text{ (fmd)}$

 $\sigma b = 3.27 < 12$ (so it is well under the maximum bending stress amount)

Shear stress

 $Rd = 1.5 \times Vd/A < fvd$

 $Rd = 1.5 \times 4700 / 28025$

Rd = 0.25 < 2.27

Shear stress calculation details:

4.7 has been changed from kN to N

28025 = 95 X 295 (Beam dimensions)

Rd = 0.25 < 2.27 (so it is well under the maximum shear stress amount)

Determining the min length of the bearing

Lmin = Vd / fc90d x W

 $Lmin = 4700 / 1.47 \times 95$

= 33.5mm (min amount to place on the wall plate)

Documentation

Strength class	Strength classes : design values for softwoods in MPa											
Service class	Service class 1 and 2											
	C18							C14				
		P	L	M	K	Ø		P	L	M	K	Ø
Bending	$f_{m,d}$	8.0	9.3	10.7	12.0	14.7]	6.2	7.3	8.3	9.3	11.4
Tension	$f_{t,0,d}$	4.9	5.7	6.5	7.3	9.0		3.6	4.1	4.7	5.3	6.5
	f _{t,90,d}	0.22	0.26	0.30	0.33	0.41		0.18	0.21	0.24	0.27	0.33
Compression	f _{c,0d}	8.0	9.3	10.7	12.0	14.7]	7.1	8.3	9.49	10.67	13.4
_	f _{c,90,d}	0.98	1.14	1.30	1.47	1.79		0.89	1.04	1.19	1.33	1.63
Shear	$f_{v,d}$	1.51	1.76	2.01	2.27	2.77		1.33	1.56	1.78	2.00	2.44

Table for Strength classes taken from 'jnc 203 Compendium for load bearing constructions 2' page 20.

Rigidity factor for timber

For calculating the instantaneous deflection u_{inst} we have to use the characteristic value of the regidity factor. See table below.

Strength		C30	C24	C18	C14	GL32h	GL32c	GL28h	GL28c	GL24h	GL24c
clas											
Elastic	$\mathbf{E_0}$	12000	11000	9000	7000	14200	13500	12600	12500	11500	11000
modulus	MPa										

Table for rigidity factor for timber taken from 'jnc 203 Compendium for load bearing constructions 2' page 22.

Table 2.2 Single span rafters. Clear span L in meters

Heavy r	oof 0.55 kN/m ²										
Beam di	mension	Beam	Beam Distance from centre to centre								
		0.4 m		0.6 m	1	0.8 m		1.0 m		1.2 m	
W	h	Lu	$L_{\rm f}$	Lu	$L_{\rm f}$	Lu	$L_{\rm f}$	Lu	$L_{\rm f}$	Lu	$L_{\rm f}$
45	120	2.43	3.46	2.13	2.82	1.93	2.44	1.79	2.17	1.68	1.98
45	145	2.94	4.18	2.58	3.42	2.35	2.96	2.18	2.64	2.05	2.41
45	170	3.44	4.90	3.03	4.02	2.76	3.48	2.57	3.11	2.42	2.84
45	195	3.94	5.62	3.48	4.61	3.18	4.00	2.95	3.58	2.78	3.27
45	220	4.44	6.33	3.93	5.20	3.59	4.52	3.34	4.04	3.15	3.69
45	245	4.93	7.03	4.37	5.79	3.99	5.03	3.72	4.51	3.51	4.12
45	270	5.41	7.73	4.48	6.38	4.40	5.55	4.10	4.97	3.87	4.54
45	295	5.90	8.43	5.24	6.96	4.48	6.60	4.48	5.43	4.23	4.97
70	145	3.36	5.18	2.97	4.26	2.71	3.70	2.52	3.31	2.38	3.02
70	170	3.93	6.06	3.48	4.99	3.18	4.34	2.97	3.88	2.80	3.55
70	195	4.48	6.92	3.99	5.72	3.65	4.97	3.41	4.46	3.21	4.07
70	220	5.03	7.78	4.49	6.44	4.12	5.61	3.84	5.03	3.63	4.60
70	245	5.58	8.63	4.98	7.16	4.58	6.24	4.28	5.60	4.04	5.12
95	145	3.67	5.98	3.26	4.94	2.99	4.30	2.79	3.85	2.63	3.52
95	170	4.28	6.98	3.82	5.78	3.50	5.03	3.27	4.52	3.09	4.13
95	195	4.87	7.96	4.36	6.61	4.01	5.77	3.75	5.18	3.54	4.74
95	220	5.46	8.93	4.90	7.43	4.51	6.49	4.22	5.84	3.99	5.34
95	245	6.03	9.89	5.43	8.25	5.01	7.21	4.69	6.49	4.44	5.95
95	295	7.16	11.76	6.47	9.85	5.99	8.64	5.62	7.79	5.33	7.14

Table 2.2 single span rafters taken from 'jnc 205 Load bearing tables for use in scheme design' page 24.

Table 2.3. Factors r_u and r_f as the clear span L_u and L_F in Table 2.1 and 2.2 must be multiplied with, as a function of the slope of the beam.

β	≥ 15°	20°	25°	30°	35°	40°	45°	50°
r_{u}	1.00	0.97	0.94	0.89	0.84	0.79	0.72	0.66
r_{f}	1.00	0.98	0.95	0.92	0.92	0.91	0.89	0.86

Table 2.3 taken from 'jnc 205 Load bearing tables for use in scheme design' page 25.

Calculation:

800 mm distance between rafters

Lu $5.99 \times 1 = 5.99 \text{m}$ (which is what we need so it is fine)

Reflection:

Lf $8.64 \times 1 = 8.64 \text{m}$ (which is way beyond needed).

I feel that Lu is close enough to 6m not to make a difference, later in calculations we will see if it is or not.

Table A.3 - Construction materials-wood

Materials	Density y [kN/m³]
wood (see EN 338 for timber strength classes)	
timber strength class C14	3,5
timber strength class C16	3,7
timber strength class C18	3,8

Table A.3 taken from 'jnc 106 kompendie load and safety pg. 26'.

Reflection:

3.8kN/m³ for wood was not used within these calculations as I followed the 5kn/m³ as per usual standard and John's suggestion.

LIGHTWEIGHT FLOOR SLAB

Load duration class: P & M (Permanent and Medium Term loads

Service class: 1 (Moisture not added to the air)

Consequence class: CC2 medium

Span: 3.7m

Ultimate limit state(ULS):

 $Sd = yg \times g + yq + Qk = 1,0 \times 0.6 + 1,5 \times 1.5 = 2.85 \text{ kN/m}^2$

Serviceability limit state(SLS):

 $Sk = G + 0.5 \times Qk$

 $Sk = 0.6 \text{ kN/m}^2 + 0.5 \text{ x } 1.5 \text{ kN/m}^2 = 1.35 \text{ kN/m}^2$

Fire limit state:

 $Sk = G + w_1 * Qk$

 $Sk = 0.6 \text{ kN/m}^2 + 0.3 \text{ x } 1.5 \text{ kN/m}^2 = 1.05 \text{ kN/m}^2$

Expan acoustics deck density 1750 kg/m² Load-bearing capacity

EXPAN Lyddæk rumvægt 1750 kg/m³ - bæreevnetabel 140 og 160 mm

Element type	Egen- last kN/m²	Vd max kN/m	Md max kNm/m	Vk R 60 A1 kN/m	Mk R 60 A1 kNm/m	Line Maximum load-bearing c Line Load bearing capacity in Line Maximum load-bearing c component, class R60 A1
	Self weigh	(design		ring capa exclusive ap	_	Clear span between the supports in mm 2800 3000 3200 3400 3600 3800 4000 3,8 4,3 4,9 5,6 6,2 6,9 7,7
140/30		45,23	17,64	60,67	13,25	14,69 12,52 10,74 9,26 8,01 6,95 6,04 7,37 5,84 4,63 3,67 2,88 2,23 1,69 10,41 8,78 7,44 6,33 5,39 4,60 3,91
140/31		45,60	20,30	45,50	16,25	17,29 14,79 12,74 11,03 9,59 8,37 7,33 8,02 6,38 5,08 4,04 3,20 2,51 1,93 13,34 11,34 9,69 8,33 7,18 6,20 5,37
140/32		47,13	26,50	60,67	21,42	23,32 20,06 17,38 15,16 13,28 11,69 10,33 9,67 7,74 6,22 5,00 4,02 3,21 2,54 18,37 15,74 13,57 11,77 10,26 8,97 7,87
140/33	2,50	49,52	36,35			32,07 28,46 24,78 21,72 19,15 16,97 15,10

Final comparison

As per EXPAN table in previous page, I chose to use 140/30 element, here is the comparison:

Ultimate limit state:

 $2.85 \ kN/m^2 < 6.95 \ kN/m^2$ (very far from pushing the limits)

Serviceability limit state:

1.35 kN/m² < 2.23 kN/m² (similar situation here)

Fire limit state:

 $1.05 < 4.6 \text{ kN/m}^2 \text{ (very safe here, too)}$

As all these values are very, very far from limits provided by Expan, we technically could use weaker slab but since this is the weakest they provide, I just have to use it. Other option would be searching for another company that makes thinner floor slabs but that would impact the price and availability because would have to import from other countries.

STEEL BEAM

Load duration class: P & M (Permanent and Medium Term loads

Service class: 3 (located outside)

Material class: S235

Inspection level: Normal

Cross section class: 1

E = 0,21*106 N/mm2 (page 30. compendium)

fy = 235 N/mm2 (table 3.1 compendium)

 $y_{M0} = 1,1$ (resistance of cross-section, 30. page of compendium)

IPE-profile

Load span = 0.5m

Span = 5.5m

Loads

Self-weight of wooden deck(density x loadspan x thickness):

 $5 \text{ kN/m}^3 \times 0.5 \times 0.022 = 0.055 \text{ kN/m}$

Imposed load on flooring 1.5 kN/m 2 -> 0.5*1.5=0.75 kN/m

Design load

 $Ed=1.0 \times 0.055 + 1.5*0.75 = 1.18 \text{ kN/m}$

Load on each support

Qd,max=0.5*1.18*5.5=3.25 kN

Moment

Mmax=1.18*5.5²/8=4.47 kNm

Acceptable U value

Uacc=5500/400=13.75 mm

Minimum section modulus

 $Wmin=Mmax ym/fy=4.47*1.1*10^6/235=21*10^3 mm^3$

^ IPE120 profile has Wel value of 53 x 103 mm³. I have to use Wel not Wpl due to Service class 3.

Design moment of elasticity

Mel,d=Wel*fy/ γ M0=53*10³*235/1.1=11,3*10⁶ Nmm

Values from IPE table

ly=3.18*10⁶mm⁴

g=10.4 kg/m -> g=0.1 kN/m

Adjusting loads w/ self weight of the beam

Ed=1.0*0.055 + 1.5*0.75+0.1=1.28 kN/m

Qd,max=0.5*1.28*5.5=3.5 kN

Mmax=1.28*5.5²/8=4.84 kNm

Wmin=Mmax γ m/fy=4.84*1.1*10⁶/235=23*10³ mm³

Self weight deflection

 $\mathsf{uself} = 5^{*}0.1^{*}5500^{4}/384^{*}3.18^{*}10^{6*}0.21^{*}10^{6} = 0.5^{*}915^{*}10^{12}/256^{*}10^{12} = 1.8 \ \mathsf{mm}$

ufloor= $5*0.055*5500^4/384*3.18*10^6*0.21*10^6=251*10^{12}/256*10^{12}=1 \text{ mm}$

 $uimposed = 5^{*}0.75^{*}5500^{4}/384^{*}3.18^{*}10^{6} * 0.21^{*}10^{6} = 3431^{*}10^{12}/256^{*}10^{12} = 13 \ mm$

ufinal=1.8+1+13=15.8 mm > Umax but imposed load is not going to be as high in real life(balcony) and deflection is acceptable since it wont affect anything else.

Bending stress

 $\sigma = Md/Wel < fy/ \gamma M0$

 $Md/Wel = 4.8 \times 10^6/53 \times 10^3 = 90$

 $fy/\gamma M0 = 213.6$

^ the difference between the two already says it all - not even close to the limit

Area of the beam, size taken from table

Av=A-2btf+(tw+2r)tf

 $Av=1.32*10^3-2*64*6.3+(4.4+2*7)*6.3=1320-806+116=630 \text{ mm}^2$

Shear stress

 $Td=Vd^*\sqrt{3}/Av=4.84^*10^{3*}1.73/630=13.3 \text{ N/mm}^2$

^value is less than 213.6 -> beam can withstand the shear stress.

Documentation

Table 3.1: Nominal values of yield strength $f_{\rm y}$ and ultimate tensile strength $f_{\rm u}$ for hot rolled structural steel

Standard	Nominal thickness of the element t [mm]									
and	t ≤ 40	0 mm	40 mm < t ≤ 80 mm							
steel grade	f _y [N/mm ²]	f _u [N/mm ²]	f _y [N/mm ²]	f _u [N/mm ²]						
EN 10025-2										
S 235	235	360	215	360						
S 235 S 275	275	430	255	410						
S 355	355	510	335	470						
S 450	440	550	410	550						

6.4.1.2 Tværsnitsklasse for valsede I-formede profiler

											R	ent n	nom	ent										
profiltype	IPE							HEA						HEB					HEM					
stålstyrke	S235	S275	S355	S420	S450	S460	S235	S275	\$355	\$420	S450	\$460	S235	S275	S355	S420	S450	S460	S235	S275	S355	S420	S450	S460
profil nr.																								
80	1	1	1	1	1	1																		
100	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
120	1	1	1	1	1	1	1	1	1	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1
140	1	1	1	1	1	1	1	1	2	3	3	3	1	1	1	1	1	1	1	1	1	1	1	1
160	1	1	1	1	1	1	1	1	2	3	3	3	1	1	1	1	1	1	1	1	1	1	1	1
180	1	1	1	1	1	1	1	2	3	3	3	3	1	1	1	1	1	1	1	1	1	1	1	1
200	1	1	1	1	1	1	1	2	3	3	3	3	1	1	1	1	1	1	1	1	1	1	1	1
220	1	1	1	1	1	1	1	2	3	3	3	3	1	1	1	1	1	1	1	1	1	1	1	1
240	1	1	1	1	1	1	1	2	3	3	3	3	1	1	1	1	1	1	1	1	1	1	1	1
260 270	1	,	,	1	,	,	2	3	3	3	3	3	1	1	1	1	2	2	1	1	1	1	1	1
280	1	1	1	1	1	1	2	3	3	3	3	4	1	1	1	2	2	2	1	1	1	1	1	1
300	1	1	1	1	1	1	2	3	3	3	3	3	1	1	1	2	2	2	1	1	1	1	1	1
320							1	2	3	3	3	3	1	1	1	1	1	2	1	1	1	1	1	1
330	1	1	1	1	1	1																		

- From the compendium page 35 the shear area A_v for IPE section is
- $A_v = A 2bt_f + (t_w + 2r)t_f$

FOUNDATION WIDTH

Self weight

Structure	Load span	Area load	Line load
	(m)	(kN/m²)	(kN/m)
Roof	3	0.745	2.235
Cavity brick wall incl. insulation	2.6	4.2	11
Lecarille blokke basement wall	2.6	2.34	6
Concrete floor slab	1.85	2.45	4.5
Ceiling and flooring	1.85	0.6	1.11
Foundation	0.9	10	9
		Total	33.85

Imposed loads

Load	Load span	Area load	Line load
	(m)	(kN/m²)	(kN/m)
Snow load on roof	3	0.8	2.4
Imposed load on concrete floor slab	1.85	1.5	2.78
		Total	5.18

Load combinations

Formulas are taken from material given last semester. It is the same, but I don't have gangway so I substitute q_{loft} with 0. This

$$E_{d,1} = \gamma_g \cdot \Sigma G + \gamma_q \cdot S_k + \gamma_q \cdot \psi_0 \cdot q_{loft} + \ \gamma_q \cdot \psi_0 \cdot q_{storey}$$

calculation is carried 2 times because we have only 2 loads that can be reduced - snowload and imposed load.

Load combinations

$$E_{d,1} = 1 \times 33.85 + 1.5 \times 2.4 \times 0.3 + 1.5 \times 2.78 = 39.1 \text{ kN/m}$$

$$E_{d,2} = 1 \times 33.85 + 1.5 \times 2.4 + 1.5 \times 2.78 \times 0.5 = 39.55 \text{ kN/m}$$

Thus we use 39.55 kN/m to size our foundations.

 $\sigma = E_{d,max}/w$ $\sigma = 39.55/0.4 = 98.9 \text{ kN/m}^2 < 200 \text{ kN/m}^2$

^ for school situation we are using approximate maximum tension of soil 200 kN/m²

CONCLUSION

Doing this calculation was to give me some actual numbers and calculations to back up the choices we made in scheme design when chose the sizes of floor slab, rafters, balcony beam and foundation width.

Rafters final deflection turned out to be 0.36 mm more than suggested maximum but 1/3 of a millimetre will not change the quality and it will not affect any other structures negatively. So I decided to keep the previously used size. It is the most convenient as well, because of the fact that we have 300mm insulation and with suspended ceiling and a little big higher roof it is perfect fit for us.

Floor slab we chose from the tables before was, as expected, too much. But since it would be more expensive to find another company from different country that could provide a thinner slab, I think this is still a good choice.

Steel beam for balcony I chose just based on my experience and turned out to be spot on. I used service class 3 since it is exposed to environment. But I feel that the service class safety is a bit too much, because the beam would be zinc coated and thus not rust and the temperature swings in Denmark are not that harsh to affect strength of the beam.

Foundation width was not chosen by any tables but it is the only thing that was fixed by the fact that we have 408mm cavity brick walls that demand at least 390mm wide foundation. But, just to make sure, I did the calculations and as expected - turned out to be very safe. Of course, to be completely sure land should be examined to know the exact maximum tension of the soil but it more than certainly will be in range of 150-250, so our foundation size is safe.

Overall these calculations approved of the sizes and material classes we have chosen in scheme design, which means nothing needs to be changed in our drawings regarding sizes. But doing this calculation, I understood that depending on whether it's timber beam, steel, concrete slab or something else, the formatting and the way to structure the calculations, is very different. This lead me to think that if I would like to make future-proof template, I would make for each type of calculations a different template and include all the tables and everything in them.