Differential Geometry

Module III

Chapter 9: Weingarten Map

June 28, 2023

Directional Derivatives

Suppose,

$$f: \mathbb{R}^{n+1} \to \mathbb{R}$$
 $\boldsymbol{X}(p) = (p, X_1(p), X_2(p), \dots, X_{n+1}(p))$

 $\nabla_{\mathbf{v}} f$, the derivative of function f with respect to \mathbf{v}

$$\nabla_{\mathbf{v}} f = \nabla f(p) \cdot \mathbf{v}$$
 where $\mathbf{v} = (p, v)$

 $\nabla_{\mathbf{v}} \mathbf{X}$, the derivative vector field \mathbf{X} with respect to \mathbf{v} .

$$\nabla_{\mathbf{v}}\mathbf{X} = (\rho, \nabla_{\mathbf{v}}X_1, \nabla_{\mathbf{v}}X_2, \dots, \nabla_{\mathbf{v}}X_{n+1})$$

 \triangleright $D_{\mathbf{v}}X$, the covariant derivative of X with respect to \mathbf{v} .

$$D_{\mathbf{v}}\mathbf{X} = \nabla_{\mathbf{v}}\mathbf{X} - (\nabla_{\mathbf{v}}\mathbf{X}\cdot\mathbf{N})\mathbf{N}$$

Properties of $\nabla_{\mathbf{v}} f$

 $\nabla_{\mathbf{v}} f$ is a linear map.

- 1. $\nabla_{\mathbf{v}+\mathbf{w}}f = \nabla_{\mathbf{v}}f + \nabla_{\mathbf{w}}f$.
- 2. $\nabla_{c\mathbf{v}}f = c\nabla_{\mathbf{v}}f$.

We also have,

- 1. $\nabla_{\mathbf{v}}(f+g) = \nabla_{\mathbf{v}}f + \nabla_{\mathbf{v}}g$.
- 2. $\nabla_{\mathbf{v}}(fg) = f(\nabla_{\mathbf{v}}g) + (\nabla_{\mathbf{v}}f)g$.

Properties of $\nabla_{\mathbf{v}} \mathbf{X}$ and $D_{\mathbf{v}} \mathbf{X}$

Properties of derivative of \boldsymbol{X} with respect to \boldsymbol{v} ,

- 1. $\nabla_{\mathbf{v}}(\mathbf{X} + \mathbf{Y}) = \nabla_{\mathbf{v}}\mathbf{X} + \nabla_{\mathbf{v}}\mathbf{Y}$.
- 2. $\nabla_{\mathbf{v}}(f\mathbf{X}) = f(\nabla_{\mathbf{v}}\mathbf{X} + (\nabla_{\mathbf{v}}f)\mathbf{X}.$
- 3. $\nabla_{\mathbf{v}}(\mathbf{X} \cdot \mathbf{Y}) = \mathbf{X} \cdot \nabla_{\mathbf{v}} \mathbf{Y} + (\nabla_{\mathbf{v}} \mathbf{X}) \cdot \mathbf{Y}$.

Properties of covariant derivative of \boldsymbol{X} with respect to \boldsymbol{v} ,

- 1. $D_{\mathbf{v}}(\mathbf{X} + \mathbf{Y}) = D_{\mathbf{v}}\mathbf{X} + D_{\mathbf{v}}\mathbf{Y}$.
- 2. $D_{\mathbf{v}}(f\mathbf{X}) = f(D_{\mathbf{v}}\mathbf{X}) + (\nabla_{\mathbf{v}}f)\mathbf{X}$.
- 3. $D_{\mathbf{v}}(\mathbf{X} \cdot \mathbf{Y}) = \mathbf{X} \cdot D_{\mathbf{v}} \mathbf{Y} + (D_{\mathbf{v}} \mathbf{X}) \cdot \mathbf{Y}$.

Weingarten Map, L_p

Weingarten map of an n-surface S at p,

$$L_p: S_p \to S_p, \ L_p(\mathbf{v}) = -\nabla_{\mathbf{v}} \mathbf{N}$$

Practically, $-\nabla_{\mathbf{v}}\mathbf{N}(p) = -\nabla_{\mathbf{v}}\tilde{\mathbf{N}}(p)$.

► *n*-sphere of radius r, $L_p(\mathbf{v}) = \frac{1}{r}\mathbf{v}$.

The shape operator, L_p

- Rate of change of the unit normal at each point on S.
- Measure of the turning of tangent space at each point on S.
- ▶ Describes the shape of the surface *S*.

Properties of Weingarten Map

1. The normal component of acceleration at p is the same for all parametrized curves with same velocity at p.

$$\ddot{\alpha}(t_0)\cdot \mathbf{N}(p) = L_p(\mathbf{v})\cdot \mathbf{v}$$

2. Weingarten Map is self adjoint.

$$L_p(\mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot L_p(\mathbf{w})$$

Thank You