

GCE

Edexcel GCE

Mechanics M1 (6677)

Summer 2005

advancing learning, changing lives

Mark Scheme (Results)

June 2005 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1	(a) ' $v = u + at$ ': $74 = 2 + a \times 20 \implies a = \underline{3.6 \text{ m s}^{-2}}$ (b) ' $v^2 = u^2 + 2as$ ': $74^2 = 2^2 + 2 \times 3.6 \times AC$	M1 A1 (2)
	or ' $s = ut + \frac{1}{2}at^2$ ': $AC = 2 \times 20 + \frac{1}{2} \times 3.6 \times 20^2$	M1 A1√
	$\Rightarrow AC = 760 \text{ m}$	A1
	Hence $BC = 1200 - 760 = 440 \text{ m}$	B1√ (4)
2	8	M1 A1 ↓ M1 ↓ M1 A1 (5)
	= 2.16 Ns	M1 A1√ A1 (3)
3	$T \longrightarrow T$ (a) $R(\rightarrow)$ $T \cos \alpha = 6$ $\rightarrow T = 7.5 \text{ N}$	M1 A1 A1 (3)
	(b) $R(\uparrow)$ $T + T \sin \alpha = W$	M1 A1 ↓
	Using same T's and solving	M1
	$\rightarrow W = \underline{12 \text{ N}}$	A1 (4)

Question Number	Scheme	Marks
4	(a) R (perp to plane): $R = 2g \cos 20$ $\approx 18.4 \text{ or } 18 \text{ N}$ (b) R (// to plane): $18 - 2g \sin 20 - F = 2a$ $F = 0.6 R \text{ used}$ Sub and solve: $a = 0.123 \text{ or } 0.12 \text{ m s}^{-2}$	M1 A1 A1 (3) M1 A1 B1 ↓ M1 A1 (5)
5	Shape $0 < t < 12$ Shape $t > 12$ Shape $t > 12$ Shape $t > 12$ Shape $t > 12$ Figures (b) Distance in 1st 12 s = ½ x (10 + 3) x 12 or (3 x 12) + ½ x 3 x 7 = 78 m (c) either distance from $t = 12$ to $t = 27 = 15$ x $3 = 45$ \therefore distance in last section = $135 - 45 = 12$ m ½ x 3 x $t = 12$, $\Rightarrow t = 8$ hence total time = $27 + 8 = \frac{35 \text{ s}}{35 \times 35}$ or Distance remaining after $12 \text{ s} = 135 - 78 = 57$ m ½ x (15 + 15 + t) x 3 = 57 $\Rightarrow t = 8$ Hence total time = $27 + 8 = \frac{35 \text{ s}}{35 \times 35}$	B1 B1 B1 (3) M1 A1 (2) B1√ M1 A1√ A1 (5) B1√ M1 A1√ A1 A1 A1 A1 A1

Question Number	Scheme	Marks
6	(a) M(A): $12g \times 1.5 = R \times 2$ $R = 9g \text{ or } 88.2 \text{ N}$ (b) $S \downarrow x$ $48g \downarrow x$ $12g \qquad R(\uparrow) \qquad 2S = 48g + 12g$ $S = 30g$ M(A): $S \times 2 = 12g \times 1.5 + 48g \times x$ Sub for S and solve for x: $x = \frac{7}{8} \text{ or } 0.875 \text{ or } 0.88 \text{ m}$	M1 A1 A1 (3) M1 A1 M1 A2,1,0 ↓ M1 A1 (7)
7	300 1500 (a) Lorry + Car: $2500a = 1500 - 300 - 600$ $a = 0.24 \text{ m s}^{-2}$ (b) Car: $T \cos 15 - 300 = 900a$ OR Lorry: $1500 - T \cos 15 - 600 = 1600a$ Sub and solve: $T \approx \underline{534 \text{ N}}$ (c) 300 Deceleration of car = $300/900 = 1/3 \text{ m s}^{-1}$ Hence $6^2 = 2 \times 1/3 \times s \Rightarrow s = \underline{54 \text{ m}}$ (d) Vertical component of T now removed Hence normal reaction is increased	M1 A1 A1 (3) M1 A1 ↓↓ M1 A1 (4) M1 A1 (4) M1 A1 cso (2)

(d) When $t = 1.6$, p.v. of ball = $10\mathbf{i} + 13.8\mathbf{j}$ (or \mathbf{j} component = 13.8) Distance travelled by 2^{nd} player = $13.8 - 6 = 6.8$ Speed = $6.8 \div 1.6 = \underline{4.25 \text{ m s}^{-1}}$ M1 A or $[(2+5t)\mathbf{i}+](1+8t)\mathbf{j} = [10\mathbf{i}+](7+vt)\mathbf{j}$ (pv's or \mathbf{j} components same) Using $t = 1.6$: $1+12.8 = 7+1.6v$ (equn in v only) $v = \underline{4.25 \text{ m s}^{-1}}$ (e) Allow for friction on field (i.e. velocity of ball not constant)	(2) .1 (2) .1 (2) .1 .1 .1 (6)