

Atividade: Pressão Arterial

(ENEM 2017)

Um cientista, em seus estudos para modelar a pressão arterial de uma pessoa, utiliza uma função do tipo $P(t) = A + B\cos(Kt)$ em que $A, B \in K$ são constantes reais positivas e t representa a variável tempo, medida em segundos. Considere que um batimento cardíaco representa o intervalo de tempo entre duas sucessivas pressões máximas. Ao analisar um caso específico, o cientista obteve os dados:

Pressão mínima	78
Pressão máxima	120
Número de batimentos cardíacos por minuto	90

A função P(t) obtida, por este cientista, ao analisar o caso específico foi:

- a) $P(t) = 99 + 21\cos(3\pi t)$
- b) $P(t) = 78 + 42\cos(3\pi t)$
- c) $P(t) = 99 + 21\cos(2\pi t)$
- d) $P(t) = 99 + 21\cos(t)$
- e) $P(t) = 78 + 42\cos(t)$

Solução:

O período da função é dado pelo tempo entre um batimento cardíaco e outro. Como em 1 minuto (60 s) o coração faz 90 batimentos, o tempo necessário para um batimento é $\frac{2}{3}$ s.

Utilizando o fato de que o período é $\frac{2\pi}{K}$, segue que $K=3\pi$. Por outro lado, o parâmetro B fornece a amplitude da função, que tem 120 como valor máximo e 78 como valor mínimo. Portanto, $B=\frac{(120-78)}{2}=21$. Segue que $P(t)=A+21\cos(3\pi t)$.

Para determinar o parâmetro A, note que P(t) é máximo quando o cosseno for máximo, isto é, quanto t=0. Logo, $120=P(0)=A+21\cos(0)=A+21$, donde concluímos que A=99.

