Testing exoplanet evaporation with EvapMass

James Owen¹ & Beatriz Campos Estrada^{2,3,4}

- ¹ Imperial College London
- ² Centre for ExoLife Sciences, Niels Bohr Institute, University of Copenhagen
- ³ Space Research Institute, Austrian Academy of Sciences
- ⁴ TU Graz, Fakultät für Mathematik, Physik und Geodäsie

The radius valley

The photoevaporation model

The photoevaporation model

Testing photoevaporation: measure masses...

Problem: The mass-loss timescale is uncertain!

The solution: multitransiting systems - "multis"

EvapMass in action: TOI-270

Planet	b	С	d
Minimum core mass (M_{\oplus})	n/a	1.60	0.76
Measured mass* (M_{\oplus})	1.58 ± 0.26	6.15 ± 0.37	4.78 ± 0.43
Planetary density* (g/cm³)	4.97 ± 0.94	2.60 ± 0.26	2.72 ± 0.33

^{*}Van Eylen et al. (2021)

So, you want to use EvapMass?

Do not forget:

- You need a multitransiting system planets above and below the radius valley.
- You should carefully choose the location of the radius valley see Van Eylen et al. (2018, 2021):
 - FGK stars: $\sim 1.8 R_{\oplus}$ (default)
 - M dwarfs: $\sim 1.5 R_{\oplus}$
- Ø You can pick the mass-loss efficiency parameter. The default follows Owen and Jackson (2012).

Simply clone the repository and follow the README file.

https://github.com/jo276/EvapMass

So, you want to use EvapMass?

Outputs:

- Predict the minimum mass for mini-Neptunes in multitransiting systems according to photoevaporation.
- If masses are measured, can test planets against photoevaporation.
 - If the minimum mass of the mini-Neptune is smaller than the measured mass, the planet is consistent with photoevaporation.

Simply clone the repository and follow the README file.

https://github.com/jo276/EvapMass

EvapMass

https://github.com/jo276/EvapMass

