IE406 Machine Learning

Lab Assignment - 4
Group 39

201901201: Sharvil Sheth 201901216: Prabhav Shah 201901301: Mohil Desai 201901462: Dhaval Vaidya 201901464: Vishvesh Patel

Question 1

The MNIST database of handwritten digits, has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. It is a good database for people who want to try learning techniques and pattern recognition methods on real-world data while spending minimal efforts on pre-processing and formatting. (hint: use scikit-learn library's "fetchmldata" to load dataset) Plot Mean Image of all the 10 digits.

Answer

```
[1]: from sklearn.datasets import fetch_openml
   import numpy as np
   import matplotlib.pyplot as plt

[2]: mnist = fetch_openml('mnist_784')
   X = mnist.data
   Y = mnist.target
```

```
fig, axs = plt.subplots(3, 4, figsize=(10,10))
j=0
for i, ax in enumerate(axs.flatten()):
    x = X[Y == str(j)]
    j=j+1
    mean_images = np.array(np.mean(x, axis = 0))
    mean_images = mean_images.reshape(28,28)
    if i < 10:
        plt.gray()
        ax.imshow(mean_images)</pre>
```

```
else:
    ax.remove()
plt.show()
```



```
[4]: import numpy as np
import pprint
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
import seaborn as sns
from sklearn.metrics import confusion_matrix
```

```
[5]: def covv(x1,x2):

m1 = np.sum(x1)/len(x1)

m2 = np.sum(x2)/len(x2)
```

```
temp = (x1-m1)*(x2-m2)
return np.sum(temp)/len(temp)
# Check if matrix is singular or not
# If matrix is singular then add some noise to it
def sing(c):
if(np.linalg.det(c) == 0):
 noise = np.random.normal(0,0.00000000001,len(c)**2)
 noise = noise.reshape(len(c),len(c))
 c = c + noise
return c
# Calculating delta for LDA
def LDA(x,m,c,p):
t = x - m
c = np.linalg.inv(c)
return ((-1/2)*(np.dot(np.dot(t.T,c), t)) + np.log(p))
# Calculating delta for QDA
def QDA(x,m,c,p):
t = x - m
d = np.log(abs(np.linalg.det(c)))
c = np.linalg.inv(c)
return (-1/2)*(d + (np.dot(np.dot(t.T,c), t))) + np.log(p)
```

Question 2

Perform Linear Discriminant Analysis (LDA) on the MNIST dataset* for binary as well as for multiclass classification. Plot confusion matric and find out the combinations where the classifier is confused in predicting the right label.

Answer

Code

Binary Classification

```
# splitting data into test and train
X1, X_test1, y1, y_test1 = train_test_split(X1, y1, test_size = 0.1,__
→random_state = 42)
X2, X_test2, y2, y_test2 = train_test_split(X2, y2, test_size = 0.1,_
→random_state = 42)
X1 = np.transpose(X1)
X2 = np.transpose(X2)
# making covariance matrix for both the digits
covM1 = []
for i in X1:
 t = \prod
 for j in X1:
   t.append(covv(i,j))
 covM1.append(t)
covM2 = []
for i in X2:
 t = \prod
 for j in X2:
   t.append(covv(i,j))
 covM2.append(t)
# To remove singularity
covM1 = sing(covM1)
covM2 = sing(covM2)
# Average
covM = (covM1 + covM2)/2
# Inverse of the covariance matrix
covInv = np.linalg.inv(covM)
# calculating mean vector
meanVector1T = []
meanVector2T = []
s = len(X1[0]) #samples 1797
n = len(X1) #number of random variables 64
for i in range(n):
meanVector1T.append(np.sum(X1[i])/s)
s = len(X2[0]) #samples 1797
n = len(X2)
```

```
for i in range(n):
 meanVector2T.append(np.sum(X2[i])/s)
meanVector1 = np.transpose([meanVector1T])
meanVector2 = np.transpose([meanVector2T])
theta = np.dot(covInv ,(meanVector1-meanVector2))
# Prior probability of both will be 1/2 since there are equal number of samples
p0 = 1/2
apriory1 = 1/2
theta0 = np.log(apriory1/p0) - 1/2*( np.dot(meanVector1T , covInv),
→meanVector1 )
- np.dot( np.dot(meanVector2T , covInv), meanVector2 ))
# Predict value using decision boundary
yPredicted = []
yActual = []
# predicting the value
for i in range(len(X_test1)):
 z1 = np.dot(X_test1[i],theta) + theta0
 if(z1 > 0):
   pred = 0
 else:
   pred = 1
 yPredicted.append(pred)
 yActual.append(0)
 z2 = np.dot(X_test2[i],theta) + theta0
 if(z2 > 0):
   pred = 0
 else:
   pred = 1
 yPredicted.append(pred)
 yActual.append(1)
# Confusion matrix
cm = confusion_matrix(yActual, yPredicted)
sns.heatmap(cm, annot = True)
print('-----hinary Classification Report -----\n')
labels = ['Class 0', 'Class 1']
print(classification_report(yActual, yPredicted, target_names = labels))
```

```
-----Binary Classification Report ------

precision recall f1-score support
```

Class 0	1.00	1.00	1.00	18
Class 1	1.00	1.00	1.00	18
accuracy			1.00	36
macro avg	1.00	1.00	1.00	36
weighted avg	1.00	1.00	1.00	36

For binary class, only 0 and 1 are used for classification from the mnist dataset. As, shapes of 0 and 1 are very different, so the accuracy will be high to classify correct class. Here, covariance used for both classes is the average of the covariance matrix of both 0 and 1.

Multiclass classification

```
# Splitting Train:test data into 9:1 ratio
Xtemp, X_test, ytemp, y_test = train_test_split(Xtemp, ytemp, test_size = 0.1)
# 3D arrays for storing data
X = \Gamma
total_samples = len(Xtemp)
for i in range(k):
X.append( Xtemp[(ytemp == i)])
# Prior probability(1,10)
prior = []
for i in range(len(X)):
 prior.append(len(X[i])/total_samples)
meanVector = []
# mean vector: meanVector (10,64)
for i in range(len(X)):
 meanVectorT = []
 for j in range(len(X[0][0])):
   meanVectorT.append(np.sum(X[i][:,j])/len(X[0]))
 meanVector.append(meanVectorT)
# covariance matrix (10,64,64)
covM = []
for i in range(len(X)):
 covM1 = []
 for j in range(len(X[0][0])):
   t = []
   for 1 in range(len(X[0][0])):
       t.append(covv(X[i][:,j] , X[i][:,1] ))
   covM1.append(t)
 covM1 = sing(covM1)
 covM.append(covM1)
n = len(X[0][0])
# taking average of all the covariance matrices
covariance = [[0 for i in range(n)] for j in range(n)]
for i in covM:
 covariance += i
covariance /= k
yPredicted = []
yActual = []
```

```
for i in range(len(y_test)):
 test = np.transpose([X_test[i]])
 delta = []
 for j in range(k):
   delta.append(LDA(test,np.transpose([meanVector[j]]),covM[j],prior[j]))
 yPredicted.append(delta.index(max(delta)))
 yActual.append(y_test[i])
# Confusion matrix
fig = plt.figure(figsize = (15,10))
cm = confusion_matrix(yActual, yPredicted)
sns.heatmap(cm, annot = True)
print('-----\n')
labels = ['Class 0', 'Class 1', 'Class 2', 'Class 3', 'Class 4', 'Class 5',
'Class 7', 'Class 8', 'Class 9']
print(classification_report(yActual, yPredicted, target_names = labels))
```

----- Multiclass Classification Report -----

	precision	recall	f1-score	support
a 2	4 00	0.05	0.50	0.0
Class 0	1.00	0.35	0.52	20
Class 1	0.80	0.67	0.73	18
Class 2	0.50	0.08	0.14	12
Class 3	0.50	0.13	0.21	23
Class 4	0.59	0.76	0.67	17
Class 5	0.71	0.45	0.56	22
Class 6	0.33	0.46	0.39	24
Class 7	0.19	0.62	0.29	16
Class 8	0.52	0.92	0.67	12
Class 9	1.00	0.50	0.67	16
accuracy			0.48	180
macro avg	0.62	0.49	0.48	180
weighted avg	0.62	0.48	0.48	180

Accuracy for LDA binary classification is higher than LDA multiclass classification.

Question 3

Perform Quadratic Discriminant Analysis (QDA) on the MNIST dataset* for multiclass classification. Plot confusion matric and find out the combinations where the classifier is confused in predicting the right label.

Answer

```
# splitting data into test and train
Xtemp, X_test, ytemp, y_test = train_test_split(Xtemp, ytemp, test_size = 0.1)
# 3D arrays for storing data
X = []
total_samples = len(Xtemp)
for i in range(k):
X.append( Xtemp[( ytemp == i )])
# prior probabilitis
prior = []
for i in range(len(X)):
prior.append(len(X[i])/total_samples)
meanVector = []
# mean vectors meanVector (10,64)
for i in range(len(X)):
 meanVectorT = []
 for j in range(len(X[0][0])):
   meanVectorT.append(np.sum(X[i][:,j])/len(X[0]))
 meanVector.append(meanVectorT)
# 3D covariance matrix
covM = []
# calculating covariance matrix for every class
for i in range(len(X)):
 covM1 = []
 for j in range(len(X[0][0])):
   t = []
   for 1 in range(len(X[0][0])):
     t.append(covv(X[i][:,j] , X[i][:,1] ))
   covM1.append(t)
 covM1 = sing(covM1)
 covM.append(covM1)
#number of random variables
n = len(X[0][0])
yPredicted = []
yActual = []
for i in range(len(y_test)):
```

----- Classification Report -----

	precision	recall	f1-score	support
Class 0	0.67	0.71	0.69	17
Class 1	0.77	0.67	0.71	15
Class 2	1.00	0.08	0.15	24
Class 3	1.00	0.41	0.58	17
Class 4	0.14	0.69	0.24	16
Class 5	0.69	0.65	0.67	17
Class 6	0.67	0.12	0.20	17
Class 7	0.65	0.73	0.69	15
Class 8	0.82	0.58	0.68	24
Class 9	0.90	0.50	0.64	18
accuracy			0.49	180
macro avg	0.73	0.51	0.53	180
weighted avg	0.75	0.49	0.52	180

QDA takes into account covariance matrix of the respective class. For both LDA and QDA the results obtained will vary with every simulation

Question 4

Perform Naïve-Bayes on the MNIST dataset* for multiclass classification. Plot confusion matric and find out the combinations where the classifier is confused in predicting the right label.

Answer

```
# total number of classes
k = 10
# splitting data into test and train
Xtemp, X_test, ytemp, y_test = train_test_split(Xtemp, ytemp, test_size = 0.1)
# Using Naive-Bayes Classifier from sklearn
model = GaussianNB()
model.fit(Xtemp,ytemp)
yPredicted = model.predict(X_test)
# Confusion Matrix
fig = plt.figure(figsize = (15,10))
cm = confusion_matrix(y_test, yPredicted)
sns.heatmap(cm, annot = True)
print('-----\n')
labels = ['Class 0', 'Class 1', 'Class 2', 'Class 3', 'Class 4', 'Class 5', \( \)
'Class 7', 'Class 8', 'Class 9']
print(classification_report(y_test, yPredicted, target_names = labels))
```

----- Classification Report -----

	precision	recall	f1-score	support
Class 0	1.00	1.00	1.00	13
Class 1	0.65	0.69	0.67	16
Class 2	0.92	0.44	0.59	25
Class 3	1.00	0.71	0.83	14
Class 4	1.00	0.74	0.85	19
Class 5	0.95	0.95	0.95	19
Class 6	1.00	1.00	1.00	16
Class 7	0.70	1.00	0.82	21
Class 8	0.47	0.89	0.62	18
Class 9	1.00	0.79	0.88	19
accuracy			0.81	180
macro avg	0.87	0.82	0.82	180
weighted avg	0.86	0.81	0.81	180

Question 5

classify using Naïve-Bayes classifier having apriory probabilities as (0.5,0.5), (0.3,0.7) and (0.7,0.3) and visualize data and class by plotting histogram.

Answer

```
[11]: import math
def plotHistograms(X, Y, apriory1, apriory2):
    x = np.arange(-20, 40, 0.1)

pdf0 = ((1/math.sqrt(20))*np.exp((-1/2)*((x - 8)/math.sqrt(20))**2))
    pdf1 = ((1/math.sqrt(25))*np.exp((-1/2)*((x - 16)/math.sqrt(25))**2))

plt.figure(figsize = (10, 6))

plt.title(f"For Apriory Probability as ({apriory1}, {apriory2})")

# Plotting histogram and pdf for class = 1
```

```
plt.hist(X[Y==0], bins=30, density=True, color='blue', label='Histogram ofu

→Class 1 predict')
    plt.plot(x, pdf0, 'b', label='N^{(8,20)}')
    # Plotting histogram and pdf for class = 2
   plt.hist(X[Y==1], bins=30, density=True, color='red', label='Histogram of | |
 →Class 2 predict')
   plt.plot(x, pdf1, 'r', label='N^{(16,25)}')
    pdf2 = apriory1*pdf0 + apriory2*pdf1
   plt.plot(x, pdf2, 'k', label='Combined pdf')
   plt.tight_layout()
   plt.legend()
   plt.show()
def predict(X_i, apriory1, apriory2):
   value1 = ((1/math.sqrt(20))*np.exp((-1/2)*((X_i - 8)/math.
 →sqrt(20))**2))**apriory1
    value2 = ((1/math.sqrt(25))*np.exp((-1/2)*((X_i - 16)/math.
→sqrt(25))**2))**apriory2
    if value1 > value2:
        return 0
    else:
       return 1
def naive_bayes(X, apriory1, apriory2):
   Y = []
    for i in range(50):
        Y.append(predict(X[i], apriory1, apriory2))
   Y = np.array(Y)
    #Calling plot histogram function
   plotHistograms(X, Y, apriory1, apriory2)
def dataGen(mu, sigma):
    #Generating data for given mu and sigma
    X = np.random.normal(mu, sigma, 50)
   naive_bayes(X, 0.5, 0.5)
    naive_bayes(X, 0.3, 0.7)
   naive_bayes(X, 0.7, 0.3)
# dataset N[5,20]
dataGen(5, 20)
# dataset N[11,10]
dataGen(11, 10)
```

dataset N[20,8]
dataGen(20, 8)

[]: