ECE 286 Class 4: The Unscented Kalman Filter

Florian Meyer

Electrical and Computer Engineering Department University of California San Diego

The Unscented Kalman Filter

• Consider a random vector $\mathbf{x} \in \mathbb{R}^L$ whose mean $\mu_{\mathbf{x}}$ and covariance matrix $\mathbf{C}_{\mathbf{x}}$ are known, and a transformed random vector $\mathbf{y} = H(\mathbf{x})$

The Unscented Kalman Filter

- Consider a random vector $\mathbf{x} \in \mathbb{R}^L$ whose mean $\mu_{\mathbf{x}}$ and covariance matrix $\mathbf{C}_{\mathbf{x}}$ are known, and a transformed random vector $\mathbf{y} = H(\mathbf{x})$
- Sigma points (SPs) are used to calculate approximations of the mean $\mu_{\mathbf{y}}$, covariance matrix $\mathbf{C}_{\mathbf{y}}$, and cross-covariance matrix $\mathbf{C}_{\mathbf{x},\mathbf{y}}$

The Unscented Kalman Filter

- Consider a random vector $\mathbf{x} \in \mathbb{R}^L$ whose mean $\mu_{\mathbf{x}}$ and covariance matrix $\mathbf{C}_{\mathbf{x}}$ are known, and a transformed random vector $\mathbf{y} = H(\mathbf{x})$
- Sigma points (SPs) are used to calculate approximations of the mean μ_{y} , covariance matrix C_{y} , and cross-covariance matrix $C_{x,y}$
- The resulting approximations are at least as good as those obtained by linearizing $H(\cdot)$ as done in the extended Kalman filter
- Fundamental difference to the particle filter: The SPs are not random samples but are calculated by means of a deterministic algorithm

Calculation of Sigma Points

• For a *L*-dimensional random vector \mathbf{x} , SPs $\{(\mathbf{x}^{(j)})\}_{j=1}^{2L}$ are calculated as

$$\mathbf{x}^{(j)} = \begin{cases} \mu_{\mathbf{x}} + \sqrt{L} \left(\mathbf{C}_{\mathbf{x}}^{1/2} \right)_{j}, & j = 1, \dots, L \\ \mu_{\mathbf{x}} - \sqrt{L} \left(\mathbf{C}_{\mathbf{x}}^{1/2} \right)_{j}, & j = L+1, \dots, 2L \end{cases}$$

Here, $(\mathbf{C}_{\mathbf{x}}^{1/2})_{j}$ is the jth row or column of the matrix square root of $\mathbf{C}_{\mathbf{x}}$

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, MIT Press, 2006

Calculation of Sigma Points

• For a *L*-dimensional random vector \mathbf{x} , SPs $\{(\mathbf{x}^{(j)})\}_{j=1}^{2L}$ are calculated as

$$\mathbf{x}^{(j)} = \begin{cases} & \boldsymbol{\mu}_{\mathbf{x}} + \sqrt{L} \left(\mathbf{C}_{\mathbf{x}}^{1/2} \right)_{j}, \qquad j = 1, \dots, L \\ & \boldsymbol{\mu}_{\mathbf{x}} - \sqrt{L} \left(\mathbf{C}_{\mathbf{x}}^{1/2} \right)_{j}, \qquad j = L + 1, \dots, 2L \end{cases}$$

Here, $(\mathbf{C}_{\mathsf{x}}^{1/2})_j$ is the jth row or column of the matrix square root of \mathbf{C}_{x}

- SPs have the property that the sample mean $\tilde{\mu}_{\mathbf{x}} = \frac{1}{2L} \sum_{j=1}^{2L} \mathbf{x}^{(j)}$ and sample covariance matrix $\tilde{\mathbf{C}}_{\mathbf{x}} = \frac{1}{2L} \sum_{j=1}^{2L} (\mathbf{x}^{(j)} \tilde{\boldsymbol{\mu}}_{\mathbf{x}}) (\mathbf{x}^{(j)} \tilde{\boldsymbol{\mu}}_{\mathbf{x}})^{\mathsf{T}}$ are exactly equal to $\boldsymbol{\mu}_{\mathbf{x}}$ and $\mathbf{C}_{\mathbf{x}}$, respectively
 - S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, MIT Press, 2006

Unscented Transformation

• SPs $\{\mathbf{y}^{(j)}\}_{j=1}^{2L}$ of \mathbf{y} can be obtained by propagating each SP $\mathbf{x}^{(j)}$ through $H(\cdot)$:

$$\mathbf{y}^{(j)} = H(\mathbf{x}^{(j)}), \qquad j = 1, \dots, 2L$$

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, MIT Press, 2006

Calculation of Mean and Covariance

• From $\{(\mathbf{x}^{(j)},\mathbf{y}^{(j)})_{j=1}^{2L}$, one can calculate approximations of $\mu_{\mathbf{y}}$, $\mathbf{C}_{\mathbf{y}}$ and $\mathbf{C}_{\mathbf{xy}}$ as

$$\begin{split} \tilde{\boldsymbol{\mu}}_{\mathbf{y}} &= \frac{1}{2L} \sum_{j=1}^{2L} \mathbf{y}^{(j)} \\ \tilde{\mathbf{C}}_{\mathbf{y}} &= \frac{1}{2L} \sum_{j=1}^{2L} (\mathbf{y}^{(j)} - \boldsymbol{\mu}_{\mathbf{y}}) (\mathbf{y}^{(j)} - \boldsymbol{\mu}_{\mathbf{y}})^{\mathsf{T}} \\ \tilde{\mathbf{C}}_{\mathbf{x}\mathbf{y}} &= \frac{1}{2L} \sum_{j=1}^{2L} (\mathbf{y}^{(j)} - \boldsymbol{\mu}_{\mathbf{y}}) (\mathbf{x}^{(j)} - \boldsymbol{\mu}_{\mathbf{x}})^{\mathsf{T}} \end{split}$$

Bayesian Update

 SPs can be used for Bayesian estimation of a random vector x from an observed vector

$$z = y + n$$
 with $y = H(x)$

Here, the noise n is zero-mean and statistically independent of \boldsymbol{x} , and has known covariance matrix \boldsymbol{C}_n

Bayesian Update

 SPs can be used for Bayesian estimation of a random vector x from an observed vector

$$z = y + n$$
 with $y = H(x)$

Here, the noise n is zero-mean and statistically independent of x, and has known covariance matrix \boldsymbol{C}_n

• Bayesian estimation relies on the posterior probability density function (pdf) $f(\mathbf{x}|\mathbf{z}) \propto f(\mathbf{z}|\mathbf{x})f(\mathbf{x})$

where $f(\mathbf{z}|\mathbf{x})$ is the likelihood function and $f(\mathbf{x})$ is the prior pdf.

Bayesian Update

 SPs can be used for Bayesian estimation of a random vector x from an observed vector

$$z = y + n$$
 with $y = H(x)$

Here, the noise n is zero-mean and statistically independent of x, and has known covariance matrix C_n

• Bayesian estimation relies on the posterior probability density function (pdf) $f(\mathbf{x}|\mathbf{z}) \propto f(\mathbf{z}|\mathbf{x})f(\mathbf{x})$

where $f(\mathbf{z}|\mathbf{x})$ is the likelihood function and $f(\mathbf{x})$ is the prior pdf.

• Closed-form calculation of $f(\mathbf{x}|\mathbf{z})$ is usually infeasible

Bayesian Update in the Linear-Gaussian Case

• A feasible special case is when $H(\cdot)$ is linear, i.e., $H(\mathbf{x}) = \mathbf{H}\mathbf{x}$ and \mathbf{x} and \mathbf{n} are Gaussian. Then $f(\mathbf{x}|\mathbf{z})$ is also Gaussian, and $\mu_{\mathbf{x}|\mathbf{z}}$ and $\mathbf{C}_{\mathbf{x}|\mathbf{z}}$ can be calculated as

$$\mu_{\mathsf{x}|\mathsf{z}} = \mu_\mathsf{x} + \mathsf{K}(\mathsf{z} - \mu_\mathsf{y}) \qquad \mathsf{C}_{\mathsf{x}|\mathsf{z}} = \mathsf{C}_\mathsf{x} - \mathsf{K}(\mathsf{C}_\mathsf{y} + \mathsf{C}_\mathsf{n})\mathsf{K}^\mathsf{T}$$

with

$$egin{aligned} \mathbf{K} &= \mathbf{C}_{\mathsf{x}\mathsf{y}} (\mathbf{C}_\mathsf{y} + \mathbf{C}_\mathsf{n})^{-1} \ \mu_\mathsf{y} &= \mathbf{H} \mu_\mathsf{x} \ \mathbf{C}_\mathsf{y} &= \mathbf{H} \mathbf{C}_\mathsf{x} \mathbf{H}^\mathsf{T} \ \mathbf{C}_\mathsf{x}\mathsf{y} &= \mathbf{C}_\mathsf{x} \mathbf{H}^\mathsf{T} \end{aligned}$$

Bayesian Update with Sigma Points

- \bullet In the nonlinear case, $\mu_{\mathbf{x}|\mathbf{z}}$ and $\mathbf{C}_{\mathbf{x}|\mathbf{z}}$ can be approximated by means of SPs
- This is done by using the closed-form expressions of the linear-Gaussian case, in which μ_y , C_y , and C_{xy} are replaced by the SP approximations $\tilde{\mu}_y$, \tilde{C}_y , and \tilde{C}_{xy}

Bayesian Update with Sigma Points

- \bullet In the nonlinear case, $\mu_{\mathbf{x}|\mathbf{z}}$ and $\mathbf{C}_{\mathbf{x}|\mathbf{z}}$ can be approximated by means of SPs
- This is done by using the closed-form expressions of the linear-Gaussian case, in which μ_{y} , C_{y} , and C_{xy} are replaced by the SP approximations $\tilde{\mu}_{y}$, \tilde{C}_{y} , and \tilde{C}_{xy}
- ullet SP approximations $ilde{\mu}_{\mathsf{x}|\mathsf{z}}$ and $ilde{\mathsf{C}}_{\mathsf{x}|\mathsf{z}}$ are thus obtained as

$$\begin{split} \tilde{\mu}_{\textbf{x}|\textbf{z}} &= \mu_{\textbf{x}} + \tilde{\textbf{K}}(\textbf{z} - \tilde{\mu}_{\textbf{y}}) \,, \qquad \tilde{\textbf{C}}_{\textbf{x}|\textbf{z}} = \textbf{C}_{\textbf{x}} - \tilde{\textbf{K}}(\tilde{\textbf{C}}_{\textbf{y}} + \textbf{C}_{\textbf{n}}) \tilde{\textbf{K}}^{\mathsf{T}}, \end{split}$$
 with $\tilde{\textbf{K}} = \tilde{\textbf{C}}_{\textbf{xy}} (\tilde{\textbf{C}}_{\textbf{y}} + \textbf{C}_{\textbf{n}})^{-1}$

Bayesian Update with Sigma Points

- \bullet In the nonlinear case, $\mu_{\mathbf{x}|\mathbf{z}}$ and $\mathbf{C}_{\mathbf{x}|\mathbf{z}}$ can be approximated by means of SPs
- This is done by using the closed-form expressions of the linear-Gaussian case, in which μ_y , C_y , and C_{xy} are replaced by the SP approximations $\tilde{\mu}_y$, \tilde{C}_y , and \tilde{C}_{xy}
- ullet SP approximations $ilde{\mu}_{\mathsf{x}|\mathsf{z}}$ and $ilde{\mathsf{C}}_{\mathsf{x}|\mathsf{z}}$ are thus obtained as

$$\begin{split} \tilde{\mu}_{\textbf{x}|\textbf{z}} &= \mu_{\textbf{x}} + \tilde{\textbf{K}}(\textbf{z} - \tilde{\mu}_{\textbf{y}}) \,, \qquad \tilde{\textbf{C}}_{\textbf{x}|\textbf{z}} = \textbf{C}_{\textbf{x}} - \tilde{\textbf{K}}(\tilde{\textbf{C}}_{\textbf{y}} + \textbf{C}_{\textbf{n}})\tilde{\textbf{K}}^{\mathsf{T}}, \end{split}$$
 with $\tilde{\textbf{K}} = \tilde{\textbf{C}}_{\textbf{xy}}(\tilde{\textbf{C}}_{\textbf{y}} + \textbf{C}_{\textbf{n}})^{-1}$

Sequential implementation of this algorithm
⇒ Unscented Kalman Filter