1

Signals & Circuits

G V V Sharma*

CONTENTS

1 Fourier Series

Problem 1.1. Type the following program in octave to obtain g(t). g(t) is a periodic signal called a square wave with amplitude A = 5V and time period T = 20ms.

Solution:

Problem 1.2. The following expression

$$g(t) = \sum_{n=0}^{\infty} a_n \cos 2\pi n f t + b_n \sin 2\pi n f t \qquad (1.1)$$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

Fig. 1.1: Generating square wave.

is known as the Fourier series expansion of g(t), where $f = \frac{1}{T}$. Find

$$a_n = \frac{2}{T} \int_0^T g(t) \cos 2\pi n f t \, dt \tag{1.2}$$

$$b_n = \frac{2}{T} \int_0^T g(t) \sin 2\pi n f t \, dt \tag{1.3}$$

Solution:

$$a_0 = \frac{A}{T} \int_0^{T_0} dt$$
 (1.4)

$$=\frac{AT_0}{T}\tag{1.5}$$

and

$$a_n = \frac{2A}{T} \int_0^{T_0} \cos 2\pi n f t \, dt$$
 (1.6)

$$= \frac{A}{\pi n f T} \sin 2\pi n f T_0 \tag{1.7}$$

Similarly,

$$b_n = \frac{2A}{T} \int_0^{T_0} \sin 2\pi n f t \, dt \tag{1.8}$$

$$=\frac{A}{\pi n f T} \left[1 - \cos 2\pi n f T_0\right] \tag{1.9}$$

Problem 1.3. Using Octave, compute the series

$$\sum_{n=0}^{15} a_n \cos 2\pi n f t + b_n \sin 2\pi n f t$$
 (1.10)

for A = 5, T = 20ms and a_n , b_n obtained in the previous problem. Comment.

Solution: Type the following program

```
%Filter input: Square Wave and
   Fourier series
clear:
close;
T 0 = 0.01;
T = 0.02;
f = 1/T;
A = 5;
simlen = 1e3;
t = linspace(0, 0.1, simlen); \%
   generating points in t-axis
n = 1:15; %series range
%g = zeros(1, 1e2); %initialising
   sum
for n = 0:20,
         if n == 0,
                  g = A*T 0/T;
         else
                  cost = cos(2*pi*n*
                     f * t); % Computing
                     cosine term
                  sint = sin(2*pi*n*
                     f * t ); % Computing
                     sine term
                  an = 2*A*sin(2*pi*
                     n * f * T = 0) ./(2 * pi *
                     n * f * T); %
                     Computing
                     coefficients
                  bn = 2*A*(1 - \cos s)
                     (2*pi*n*f*T 0)
                     ./(2*pi*n*f*T);
                     %Computing
```

coefficients

g = g + an*cost +

bn*sint; % evaluating the summation

end

end

```
plot(t,g,"Linewidth",4)
grid
xlabel('t')
ylabel('g(t)')
print -deps -color ../ figs/1.4.eps
```

to obtain the following figure.

Fig. 1.3: Gibbs phenomenon.

Problem 1.4. Generate g(t) using an arduino for A = 5 V and T = 20 ms using the blink.ino program.

2 Filter

2.1 RC Circuit

Problem 2.1. Refer to the circuit in Fig. 2.1. Suppose you are told that C has a resistance given by $\frac{1}{sC}$. Find the ratio H(s) of the output voltage and input voltage using node analysis. The above circuit is known as a low pass filter and H(s) is known as the transfer function.

Solution: The equations at the nodes are given by

$$\frac{V_1 - V_i}{R} + sCV_1 + \frac{V_1 - V_2}{R} = 0$$
 (2.1)

$$\frac{V_2 - V_1}{R} + sCV_2 + \frac{V_2 - V_o}{R} = 0 {(2.2)}$$

$$\frac{V_o - V_2}{R} + sCV_o = 0 {(2.3)}$$

Fig. 2.1: Three stage R - C low pass filter circuit

which can be expressed as

$$\begin{pmatrix}
sC + \frac{2}{R} & -\frac{1}{R} & 0 \\
-\frac{1}{R} & sC + \frac{2}{R} & -\frac{1}{R} \\
0 & -\frac{1}{R} & sC + \frac{1}{R}
\end{pmatrix} \begin{pmatrix}
\frac{V_1}{V_i} \\
\frac{V_2}{V_i} \\
\frac{V_0}{V_i}
\end{pmatrix} = \begin{pmatrix}
\frac{1}{R} \\
0 \\
0
\end{pmatrix} (2.4)$$

Thus,

$$H(s) = \frac{V_o}{V_i} = \frac{\begin{vmatrix} sC + \frac{2}{R} & -\frac{1}{R} & \frac{1}{R} \\ -\frac{1}{R} & sC + \frac{2}{R} & 0 \\ 0 & -\frac{1}{R} & 0 \end{vmatrix}}{\begin{vmatrix} sC + \frac{2}{R} & -\frac{1}{R} & 0 \\ -\frac{1}{R} & sC + \frac{2}{R} & -\frac{1}{R} \\ 0 & -\frac{1}{R} & sC + \frac{1}{R} \end{vmatrix}} = \frac{1/R^3}{\left(sC + \frac{1}{R}\right)\left\{\left(sC + \frac{2}{R}\right)^2 - \frac{1}{R^2}\right\} - \frac{1}{R^2}\left(sC + \frac{2}{R}\right)}$$
(2.5)

which can be expressed as

$$H(s) = \frac{1}{(sCR+1)\{(sCR+2)^2 - 1\} - (sCR+2)}$$

$$= \frac{1}{(sCR+2)^3 - (sCR+2)^2 - 2(sCR+2) + 1}$$

$$= \frac{1}{(sCR)^3 - 5(sCR)^2 + 6sCR + 1}$$
(2.9)

Problem 2.2. Substitute $s = j2\pi f$, $j = \sqrt{-1}$ in (2.9) to obtain H(f). H(f) is known as the frequency response. Plot |H(f)| in octave for -20 < f < 20, given that $R = 1 k\Omega$ and $C = 10 \mu F$.

Solution: Type the following code to get Fig. 2.2. You will find that H(f) is a low pass filter.

```
%Filter Characteristics
clear:
close;
R = 1e3; %10K ohm resistance
C = 10e - 6;\%10 \text{ uF capacitance}
%Plotting the filter amplitude
   response
f = linspace(-20,20,1e2);
s = i * 2 * pi * f;
den = polyval([1 -5 6 1], s*C*R);
H = 1./den;
plot(f, abs(H), "Linewidth",4)
grid minor
xlabel('f')
vlabel('H(f)')
print -deps -color ../ figs/2.2.eps
```


Fig. 2.2: Frequency response of the R-C filter

Problem 2.3. Find the frequency at which $|H(f)|^2 = \frac{1}{2}$. This frequency is known as the 3-dB bandwidth of H(f).

Solution: Substituting sCR = yx in (2.9),

$$\left| H(\mathfrak{z}) \right| = \frac{1}{\sqrt{2}} \tag{2.10}$$

$$\Rightarrow -jx^3 + 5x^2 + j6x + 1 = \sqrt{2}$$
 (2.11)

$$\Rightarrow x^{2}(6 - x^{2})^{2} + (1 + 5x^{2})^{2} = 2$$
 (2.12)

$$\Rightarrow x^6 + 13x^4 + 46x^2 - 1 = 0 \tag{2.13}$$

(2.14)

Letting $y = x^2$, we obtain the cubic equation

$$y^3 + 13y^2 + 46y - 1 = 0 (2.15)$$

The following script gives the 3 dB bandwidth for the filter H by choosing the real root.

This yields the value $f_{3dB} = 2.3395$ Hz.

Problem 2.4. Obtain the 3 dB bandwidth by solving the cubic equation in the previous problem

Solution: In the above, let $y = z - \frac{13}{3}$. Then the equation becomes

$$\Rightarrow z^3 - (31/3)z - 1015/27 = 0 \tag{2.16}$$

This equation has the theoretical solution evaluated by the following script

```
%Filter Characteristics
clear;
close;

R = 1e3; %IK ohm resistance
C = 10e-6;%10 uF capacitance

%finding 3 dB bandwidth
theoretically

q = -31/3;
```

$$| r = -1015/27;$$

$$sqrt((-r/2 + sqrt(r^2/4 + q^3/27))$$

$$^{(1/3)} + (-r/2 - sqrt(r^2/4 + q^3/27))$$

$$^{(3/27)} ^{(1/3)} - 13/3)/(2*pi*R*C)$$

Note that this script gives the same result as the one in the previous problem.

Problem 2.5. Suppose the square wave in Fig. 1.1 is given as input to the filter in Fig. 2.2. Find and plot the filter output.

Solution: Using sinusoidal steady state analysis, if the input to the filter is $\cos 2\pi nft$, the output is given by

$$|H(nf)|\cos\{2\pi nft + \angle H(nf)\}\tag{2.17}$$

Using the principle of superposition, for the input

$$\sum_{n=0}^{\infty} a_n \cos 2\pi n f t + b_n \sin 2\pi n f t \qquad (2.18)$$

the output will be

%Filter output

$$\sum_{n=0}^{\infty} a_n |H(nf)| \cos \left\{2\pi nft + \angle H(nf)\right\} + b_n |H(nf)| \sin \left\{2\pi nft + \angle H(nf)\right\}$$
 (2.19)

Suitably modifying the program in Problem 1.3,

```
clear;
close;

R = 1e3; %10 k resistance
C = 10e-6;%10 uF capacitance
T_0 = 0.01;
T = 0.02;
f = 1/T;
A = 5; %input amplitude
simlen = 1e3; %time range

t = linspace(0,0.1, simlen); %
    generating points in t-axis
n = 1:15; %series range

for n = 0:20,
    if n == 0,
        g = A*T_0/T;
    else
```

```
an = 2*A*sin(2*pi*
                     n*f*T = 0 . /(2*pi*
                     n * f * T); %
                     Computing
                     coefficients
                  bn = 2*A*(1 - \mathbf{cos})
                     (2*pi*n*f*T 0)
                     ./(2*pi*n*f*T);
                     %Computing
                     coefficients
                  s = i * 2 * pi * n * f;
                  den = polyval([1
                     -5 \ 6 \ 1], s*C*R);
                  Hn = 1./den; \%
                     Frequency
                     response
                  thetan = arg(Hn);
                  cost = cos(2*pi*n*
                     f * t + thetan);\%
                     Computing cosine
                      term
                  sint = sin(2*pi*n*)
                     f*t+thetan);%
                     Computing sine
                     term
                  g = g + abs(Hn)*an
                     *cost + abs(Hn)*
                     bn*sint; %
                     evaluating the
                     summation
         end
end
plot(t,g,"Linewidth",4)
grid
print -deps -color ... figs/2.5.eps
```

The output of the filter is shown in Fig. 2.5

Problem 2.6. Sketch |H(nf)|.

Solution:

```
%Filter output clear;
```


Fig. 2.5: Frequency response of the R-C filter

```
close;
R = 1e3; %10 k resistance
C = 10e-6;\%10 \text{ uF } capacitance
T = 0.02:
f = 1/T;
for n = 0:20,
                  s = i * 2 * pi * n * f;
                  den = polyval([1
                      -5 \ 6 \ 1], s*C*R);
                  H(n+1) = 1./den; \%
                      Frequency
                      response
end
stem(0:20, abs(H), "Linewidth", 4)
xlabel('n')
ylabel('H(nf)')
grid
print -deps -color ../ figs/2.6.eps
```

The output of the filter is shown in Fig. 2.6

2.2 Circuit Analysis

Problem 2.7. Obtain the expression for H(s) using mesh analysis.

Problem 2.8. Repeat the above exercise using Thevenin's theorem.

Fig. 2.6: Frequency response of the R-C filter

Problem 2.9. Repeat the above exercise using Norton's theorem.

Problem 2.10. Repeat the above exercise using $Y - \Delta$ transformation.

Problem 2.11. Obtain all the two port network parameters for the circuit in Fig. 2.1.