Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Nieistniejący Nichilista

Nr albumu: 123456

Implementacja systemu AI-Arena

Praca licencjacka na kierunku INFORMATYKA

> Praca wykonana pod kierunkiem **dra. Roberta Dabrowskiego** Wydział Matematyki Informatyki i Mechaniki

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

W pracy przedstawiono implementacje systemu AI-Arena, służacego do przeprowadzania turniejow programow walczacych.

Słowa kluczowe

programy walczace, arena, sztuczna inteligencja

Dziedzina pracy (kody wg programu Socrates-Erasmus)

11.3 Informatyka

Klasyfikacja tematyczna

D. Software D.0. General

Tytuł pracy w języku angielskim

Implementation of AI-Arena system

Spis treści

W	prowadzenie	7
1.	Podstawowe pojęcia 1.1. Gra 1.2. Konkurs 1.3. Program Walczący - Bot	9 9 9
2.	Zastosowania w nauce i biznesie	11
3.	Podobne platformy 3.1. Top Coder 3.2. Ai Challenge 3.3. SIO 3.4. SPOJ 3.5. MAIN 3.6. Tabela porównująca serwisy	13 13 13 13 13 14
4.	Use cases	15
5.	Metodyka Scrum	19
6.	Architektura systemu 6.1. Nadzorca 6.2. Scheduler 6.3. Serwis webowy 6.4. Baza danych	21 21 22 22 23
7.	Dokumentacja uzytkowa i opis implementacji	25
8.	Podsumowanie	27
9.	Podział prac	29
10	.Spis płyty	31
Α.	Przykladowa gra	33
в.	Przykladowe programy	35
$\mathbf{C}.$	Przebieg przykladowego turnieju	37

Metodologia Pracy

Podczas pracy nad systemem AI-Arena stosowaliśmy pewną modyfikację metodologii Scrum. Co tydzień spotykaliśmy się na zajęciach z prowadzącym grupy, gdzie omawialiśmy zadania wykonane w poprzednim tygodniu i ustalaliśmy zadania na następny tydzień. Zapis spotkań był prowadzony z wykorzystaniem Google Documents. Ponad to, raz w tygodniu spotykaliśmy się by ustalić stan prac w danym tygodniu i sprawdzić, czy uda się zrealizować wyznaczone zadania. Do kontroli zadań użyliśmy systemu Redmine. Jako systemu kontroli wersji użyliśmy gita, a publiczne repozytorium trzymaliśmy na Githubie.

Wprowadzenie

System Ai-Arena służy do przeprowadzania rozgrywek i turniejów różnych gier pomiędzy programami komputerowymi. System ma w zamierzeniu twórców służyć osobom zainteresowanym sztuczną inteligencją do sprawdzenia swoich umiejętności, lub jako pomoc przy badaniach nad sztuczną inteligencją.

Praca składa się z pięciu rozdziałów. Pierwszy zawiera opis architektury systemu. W drugim rozdziałe zawarto dokumentację użytkownika systemu i szczegóły implementacji. Rozdział trzeci zawiera podsumowanie, rozdział czwart podział prac a rozdział piąty spis płyty dołączonej do pracy.

Podstawowe pojęcia

1.1. Gra

Gra składa się z Reguł i Sędziego.

Reguły określają stan początkowy, dostępne graczom ruchy oraz warunki zwycięstwa, przegranej, badź remisu.

Powinny ściśle określać Protokół Komunikacji między Programami Walczącymi, a Sędzią. Gra powinna być co najmniej dwuosobowa.

W warunkach serwisu AI-Arena graczami będą najczęściej programy komputerowe, nazywane Botami bądź Programami Walczącymi.

Sędzia to program kontrolujący przebieg rozgrywki. Ma za zadanie:

- wyznaczyć stan początkowy każdej rozgrywki
- Odbierać komunikaty od programów grających, sygnalizujące ich zagrania
- Kontrolować poprawność zagrań graczy, oraz uaktualniać stan rozgrywki
- Informować Graczy o obecnym stanie rozgrywki
- Rozstrzygać czy gra się zakończyła i przydzielać punkty zwycięstwa graczom.

1.2. Konkurs

Konkurs może mieć określoną datę zakończenia, bądź być tzw konkursem stałym, w którym nie ma ostatecznego terminu wysyłania rozwiązań. Dla każdego konkursu tworzony jest ranking, bądź drabinka rozgrywek. Określają one kolejność botów, w szczególności zwycięzcę, bądź aktualnego lidera konkursu. W przypadku konkursu stałego istnieje ranking, który jest posortowany po sumie zdobytych przez bota punktów w meczach, przy czym każdy bot powinien mieć tę samą liczbę rozegranych meczy.

1.3. Program Walczący - Bot

Jest to program napisany w jednym z obsługiwanych przez język serwisów. Musi być przypisany do konkretnej Gry dostępnej w serwisie. Uczestniczy w rozgrywkach (Meczach) z innymi botami przypisanymi do tej Gry. Ma za zadanie przetwarzać informacje o dotychczasowym przebiegu rozgrywki i produkować kolejne posunięcia, zgodne z regułami Gry.

Zastosowania w nauce i biznesie

Sztuczna inteligencja jest jedną z szybciej rozwijających się obecnie dziedzin. Zastosowania algorytmów SI sięgają prawie wszystkich obszarów nie tylko internetu, ale i codziennego życia. Serwis AI-Arena pomaga rozwijać gałąź tej nauki związaną z rywalizacją.

Najprostsze przykłady rywalizacji to oczywiście wszelkiego rodzaju gry i sporty. Obecnie komputery są w stanie wygrywać z człowiekiem w większości gier takich jak szachy, warcaby itp. Coraz bardziej zaawansowani stają się przeciwnicy kierowani przez komputer w grach video. Również w sporcie zaczęto doceniać znaczenie metod naukowych do opracowywania optymalnych strategii. Prawdopodobnie kwestią czasu jest analizowanie gry wirtualnych zespołów kierowanych sztuczną inteligencją, a następnie wykorzystywanie obserwacji do poprawy gry prawdziwej drużyny.

Rywalizacja może być wykorzystana również jako metoda rozwiązywania problemów. Przykładem takiego podejścia są algorytmy genetyczne, w których najlepsze jednostki pozostają w obiegu, cały czas udoskanalając swoje podejście do rozwiązywania danego problemu.

Serwis AI-Arena ma duże zastosowanie w biznesie. Firmy nieustannie rywalizują między sobą w walce o klienta. Serwis umożliwia symulowanie takiej rywalizacji i dzięki temu odkrywanie skutecznych algorytmów sztucznej inteligencji, które będą podejmowały decyzje decydujące o sukcesie wykorzystującej je firmy.

Innym przykładem zastosowania AI-Arena są działania wojenne. Serwis może pomóć w szukaniu algorytmów, które będą potrafiły adaptować się do różnych warunków i w zależności od nich sugerować najlepsze strategie i taktyki w walce z przeciwnikiem.

Podobne platformy

Obecnie istnieją serwisy internetowe podobne do Ai-Arena. Oto kilka z nich:

3.1. Top Coder

Bardzo popularny serwis organizujący różnego rodzaju konkursy programistyczne. Jednym z nich są tzw Marathon Matche, podczas których uczestnicy wysyłają programy, które starają się najbardziej optymalnie rozwiązać dany problem, przy czym nie istnieje rozwiązanie całkowicie optymalne.

3.2. Ai Challenge

Serwis organizujący w sposób cykliczny zawody dla programów walczących. Najczęściej ok 2 konkursy rocznie. Każdy konkurs ma określony czas trwania i nie można w nim uczestniczyć po jego zakończeniu.

3.3. SIO

Projekt od lat wykorzystywany do organizowania konkursów algorytmicznych, w szczególności polskiej Olimpiady Informatycznej, ale też Międzynarodowej Olimpiady Informatycznej. Jest to framework, który można wykorzystywać również w wersji lokalnej, nie tylko jako serwis internetowy.

3.4. SPOJ

Serwis zawierający dużą bazę zadań algorytmicznych dostępnych do rozwiązywania użytkownikom. Zadania nie mają określonego terminu rozwiązywania. Istnieje ranking biorący pod uwagę liczbę wszystkich rozwiązanych przez użytkowników zadań.

3.5. MAIN

Posiada dużą bazę zadań z olimpiad informatycznych, ale także kursy umożliwiające pogłębienie wiedzy algorytmicznej.

3.6. Tabela porównująca serwisy

	Top Coder	Ai Challenge	SPOJ	AI-Arena
Tematyka	algorytmy	programy walczące	algorytmika	programy walczące
	problemy optymalizacyjne			
Typ konkursów	okresowe	okresowe	stałe/okresowe	stałe/okresowe
Różnorodność	regularne i częste	konkurs co pół roku	duża baza zadań	baza gier modyfikowana
	konkursy w różnych			przez użytkowników
	kategoriach			

Use cases

Scenariusze użycia systemu przez użytkownika niezalogowanego (Gościa)

Dostęp do strony głównej Założenia:

• Brak

Scenariusz postępowania:

1. Gość wpisuje w pasku adresu adres strony

Efekt:

1. W oknie przeglądarki wyświetla się strona główna

Scenariusze alternatywne:

• Brak

Rejestracja w systemie

Założenia:

- 1. Gość znajduje się na stronie głównej serwisu
- 2. Gość posiada aktywne konto mailowe

Scenariusz postępowania:

- 1. Gość klika na link ?zarejestruj? przekierowujący do strony z rejestracją
- 2. Gość wpisuje swoje dane do formularza. Dane zawierają m.in. pożądaną nazwę użytkownika, hasło, pole do weryfikacji hasła, adres mailowy.
- 3. Gość wchodzi na swoją skrzynkę mailową i otwiera list wysłany przez serwis
- 4. Gość klika w link aktywacyjny

Efekt:

- 1. System wysyła do użytkownika wiadomość na podany adres mailowy
- 2. System zakłada użytkownikowi nowe konto w serwisie
- 3. Po kliknięciu w link aktywacyjny system umożliwia zalogowanie na to konto

Scenariusze alternatywne:

- 1. Gość wybrał nazwę użytkownika, która jest już zajęta
 - a) System wyświetla komunikat, że żądana nazwa użytkownika jest niedostępna
- 2. Gość wpisał niejednakowe ciągi znaków w polu "hasło" i "potwierdzenie hasła"
 - a) System wyświetla komunikat o niezgodności danych
- 3. Gość wpisał niepoprawny adres mailowy
 - a) System próbuje wysłać maila na podany adres
 - b) W przypadku braku aktywacji konta w ciągu 24 godzin konto zostanie automatycznie skasowane
- 4. Gość nie kliknął w link aktywacyjny przysłany w mailu
 - a) Po upływie 24 godzin konto zostanie automatycznie skasowane

Logowanie w systemie - wariant 1: Gość posiada konto Założenia:

- 1. Gość znajduje się na stronie głównej serwisu
- 2. Gość posiada konto w serwisie

Scenariusz postępowania:

- 1. Gość klika w link ?zaloguj? przekierowujący na stronę logowania
- 2. Gość w formularzu wpisuje swoją nazwę użytkownika i hasło

Efekt:

1. System przekierowuje użytkownika na jego stronę startowa

Scenariusze alternatywne:

- 1. Podana przez Gościa nazwa użytkownika jest nieprawidłowa
 - a) System wyświetla komunikat, że podana nazwa użytkownika lub hasło jest nieprawidłowe
- 2. Podane przez Gościa hasło jest nieprawidłowe
 - a) System wyświetla komunikat, że podana nazwa użytkownika lub hasło jest nieprawidłowe
- 3. Konto nie zostało aktywowane

a) System wyświetla komunikat, że konto nie zostało jeszcze aktywowane. Użytkownik pozostaje niezalogowany

Logowanie w systemie - wariant 2: Gość nie posiada konta Założenia:

- 1. Gość znajduje się na stronie głównej serwisu
- 2. Gość nie posiada konta w serwisie

Scenariusz postępowania:

- 1. Gość klika w link ?zaloguj? przekierowujący na stronę logowania
- 2. Gość w formularzu wpisuje nazwę użytkownika i hasło

Efekt:

1. System wyświetla komunikat, że podana nazwa użytkownika lub hasło są nieprawidłowe

Scenariusze alternatywne:

• Brak

Metodyka Scrum

Architektura systemu

Na serwis AI-Arena składają się trzy wartwy: nadzorcy, schedulera i serwisu webowego.

6.1. Nadzorca

Nadzorca jest jądrem serwisu AI-Arena. Warstwa nadzorcy jest odpowiedzialna za uruchamianie rozgrywek pomiędzy wybranymi graczami, zbieranie informacji o ich wynikach i przekazywnie ich do warstwy schedulera. Nadzorca jest skryptem napisanym w pythonie, którego najważniejszą częścią jest metoda play. Metoda ta przyjmuje jako argumenty uruchamialne pliki sędziego i programów grających, oraz limity czasowy i pamięciowy dla każdego programu grającego. Następnie metoda play przeprowadza odpowiednią rozgrywkę, zwracając jako wynik słownik zawierający:

- Ciąg liczb oznaczający przydzielone przez sedziego punkty za rozgrywkę
- Informacje na temat przebiegu rozgrywki
- Czas jaki zużyły programy walczące
- Pamięć RAM jaką wykorzystywały programy walczące

Rozgrywka zaczyna się przez uruchomienie programów walczących, oraz sędziego, kontrolującego przebieg rozgrywki. Komunikacja między sędzią a poszczególnymi programami odbywa się za pośrednictwem nadzorcy, który odczytuje komunikaty ze standardowego wyjścia programów i wypisuje informacje zwrotne na ich standardowe wejście. Format komunikatów od sędziego i botów powinien być wyspecyfikowany dla każdej gry, przy czym powinien on być zgodny z poniższym protokołem:

- Bot wysyła komunikaty TYLKO do sędziego (za pośrednictwem Nadzorcy)
- Każdy komunikat od Sędziego musi być potwierdzony komunikatem zwrotnym od Bota.
- Komunikaty wysyłane przez sędziego mają następujący format: zaczynają się od nawiasów kwadratowych, w ktorych znajduje się lista garczy oddzielona przecinkami. Następnie znajduje się wiadomość, która zostanie przekazana odpowiednim botom. Komunikat musi kończy się ciągiem '«¡' i znakiem nowej linii, n.p. '[1,2,3,4,5]INIT«¡newline'.
- Sędzia otrzymuje komunikaty zwrotne od botów w takiej kolejności w jakiej zostali wylistowani.

- Zakłada się że ciąg '«¡newline' kończy komunikat. Wysłanie komunikatu o nieprawidłowym formacie skutkuje zakończeniem rozgrywki.
- Komunikaty od nadzorcy do botów i do sędziego również kończą się ciągiem znaków '«¡newline'. Dzięki temu można przesyłać komunikaty wielowierszowe.
- Jeśli Sędzia chce wysłać komunikat do wszystkich może zacząć ALBO od wylistowania wszystkich graczy, ALBO użyć skrótu notacyjnego: '[0]' - to jeszcze nie działa, kewstia dopisania jednego if'a
- Ponadto, jeśli Sędzia stwierdził, że gra się zakończyła i chce poinformować wszystkich o tym, że nastąpił koniec gry wysyła do Nadzorcy komunikat o treści "[0]END«¡newline". Następnie powinien wysłać komunikat zawierający punktację dla wszystkich graczy w postaci: '[score1, score2, ...] «¡newline'.
- Jeśli sędzia chce zakończyć działanie któregoś z graczy należy wysłać do niego wiadomość KILL (np. "[4]KILL«¡newline"). Można też w ten sposób zabić większą liczbę graczy lub nawet wszystkich ("[0]KILL«¡newline")
- Jeśli sędzia wyśle komunikat do bota który odszedł w pokoju, dostanie komunikat zwrotny '_DEAD_«¡newline'. Boty powinny unikać wysyłania tego komunikatu, gdyż mogą zostać uznane za martwe.

6.2. Scheduler

Warstwa schedulera łączy część webową serwisu z nadzorcą. W ten sposób obie części funkcjonują niezależnie i mogą być używane jako osobne produkty. Scheduler jest kolejką zadań, w której trzymane są zlecenia rozegrania meczy. Zlecenia te są przekazywane nadzorcy, a następnie wyniki rozgrywek zwracane przez nadzorcę są zapisywane w bazie. Do realizacji warstwy nadzorcy używany jest program Gearmand0.26.

6.3. Serwis webowy

Użytkownik komunikuje się z systemem poprzez interfejs webowy, zaimplementowany w Django. Interfejs udostępnie następujące akcje:

- Założenie konta
- Dodanie nowej gry do serwisu
- Wysłanie własnego programu walczącego w wybraną grę dostępną w serwisie
- Uruchomienie testowego meczu, między własnym programem, a innym wybranym programem, zgłoszonym do tej samej gry.
- Zgłoszenie programu walczącego do konkursu, gdzie będzie on rywalizował z pozostałymi zgłoszonymi programami.
- Przeglądanie zapisów rozgrywek.
- Przegladanie aktualnego rankingu konkursu.
- Zapoznanie się z zasadami wybranego konkursu/gry
- Obejrzenie kodu źródłowego programu sędziego, dla danej gry.

6.4. Baza danych

Za obsługę bazy danych odpowiedzialny jest framework Django. Domyślną bazą, na której działa serwis jest PostgreSQL, ale nie jest to wymagane.

Dokumentacja uzytkowa i opis implementacji

Podsumowanie

Podział prac

Spis płyty

Dodatek A

Przykladowa gra

Dodatek B

Przykladowe programy

Dodatek C

Przebieg przykladowego turnieju

Bibliografia