Module II

Distributed Database Concepts

Introduction

- Distributed computing system
 - Consists of several processing sites or nodes interconnected by a computer network
 - Nodes cooperate in performing certain tasks
 - Partitions large task into smaller tasks for efficient solving
- Big data technologies
 - Combine distributed and database technologies
 - Deal with mining vast amounts of data

23.1 Distributed Database Concepts

Distributed Database

- A collection of multiple logically interrelated databases distributed over computer network, and a distributed DBMS as a software system that manages a distributed database
- What constitutes a distributed database?
 - Connection of database nodes over computer network
 - Logical interrelation of the connected databases
 - Possible absence of homogeneity among connected nodes
- Distributed database management system (DDBMS)
 - Software system that manages a distributed database

Distributed Database Concepts (cont'd.)

- Local area network
 - Hubs or cables connect sites
- Long-haul or wide area network
 - Telephone lines, cables, wireless, or satellite connections
- Network topology defines communication path
- Transparency
 - Hiding implementation details from the end user

Transparency

- Types of transparency
 - Data organization transparency
 - Location transparency
 - Naming transparency
 - Replication transparency
 - Fragmentation transparency
 - Horizontal fragmentation (sharding)
 - Vertical fragmentation
 - Design transparency
 - Execution transparency

Distributed Databases

Figure 23.1 Data distribution and replication among distributed databases

Availability and Reliability

- Availability
 - Probability that the system is continuously available during a time interval
- Reliability
 - Probability that the system is running (not down) at a certain time point
- Both directly related to faults, errors, and failures
- Fault-tolerant approaches

Scalability and Partition Tolerance

- Horizontal scalability
 - Expanding the number of nodes in a distributed system
- Vertical scalability
 - Expanding capacity of the individual nodes
- Partition tolerance
 - System should have the capacity to continue operating while the network is partitioned

Autonomy

- Determines extent to which individual nodes can operate independently
- Design autonomy
 - Independence of data model usage and transaction management techniques among nodes
- Communication autonomy
 - Determines the extent to which each node can decide on sharing information with other nodes
- Execution autonomy
 - Independence of users to act as they please

Advantages of Distributed Databases

- Improved ease and flexibility of application development
 - Development at geographically dispersed sites
- Increased availability
 - Isolate faults to their site of origin
- Improved performance
 - Data localization
- Easier expansion via scalability
 - Easier than in non-distributed systems

23.2 Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design

- Fragments
 - Logical units of the database
- Horizontal fragmentation (sharding)
 - Horizontal fragment or shard of a relation is a subset of the tuples in that relation
 - Can be specified by condition on one or more attributes or by some other method
 - Groups rows to create subsets of tuples
 - Each subset has a certain logical meaning

Data Fragmentation (cont'd.)

- Vertical fragmentation
 - Divides a relation vertically by columns
 - Keeps only certain attributes of the relation
- Complete horizontal fragmentation
 - Apply UNION operation to the fragments to reconstruct relation
- Complete vertical fragmentation
 - Apply OUTER UNION or FULL OUTER JOIN operation to reconstruct relation

Data Fragmentation (cont'd.)

- Mixed (hybrid) fragmentation
 - Combination of horizontal and vertical fragmentations
- Fragmentation schema
 - Defines a set of fragments that includes all attributes and tuples in the database
- Allocation schema
 - Describes the allocation of fragments to nodes of the DDBS

Data Replication and Allocation

- Fully replicated distributed database
 - Replication of whole database at every site in distributed system
 - Improves availability remarkably
 - Update operations can be slow
- Nonredundant allocation (no replication)
 - Each fragment is stored at exactly one site

Data Replication and Allocation (cont'd.)

- Partial replication
 - Some fragments are replicated and others are not
 - Defined by replication schema
- Data allocation (data distribution)
 - Each fragment assigned to a particular site in the distributed system
 - Choices depend on performance and availability goals of the system

Example of Fragmentation, Allocation, and Replication

- Company with three computer sites
 - One for each department
 - Expect frequent access by employees working in the department and projects controlled by that department
- See Figures 23.2 and 23.3 in the text for example fragmentation among the three sites

Types of Distributed Database Systems (cont'd.)

- Communication autonomy
 - Decide whether to communicate with another component DBS
- Execution autonomy
 - Execute local operations without interference from external operations by other component DBSs
 - Ability to decide order of execution
- Association autonomy
 - Decide whether and how much to share its functionality and resources