

European Regional Development Fund

Producing the next generation Improving smolt output with examples from the R. Frome

Stephen D. Gregory, Céline Artero, Jessica E. Marsh & Olivia M. Simmons

Decline causes

Ocean climate influences on critical Atlantic salmon (Salmo salar) life history events Abstract: Ocean climate and ocean-linked terrestrial climate affect nearly all phases of Atlantic salmon (Salmo salar) life history. Natural mortality in salmon occurs in two main phases: invenile stages Abstract: Ocean climate and ocean-linked terrestrial climate affect nearly all phases of Atlantic salmon (Salmo salari) and phases: juvenile stages experience high mortality during history. Natural mortality in salmon occurs in two main phases: juvenile and ocean environments. Freshwater residency and pre-adult salmon experience high mortality in estuarine and ocean environments. life history. Natural mortality in salmon occurs in two main phases: juvenile stages experience high mortality are stages experience high mortality in estuarine and ocean environments. Freshwater freshwater residency and pre-adult salmon experience high mortality in estuarine and ocean environments. Sources of marine mortality. Sources of marine mortality in estuarine and ocean environments. freshwater residency and pre-adult salmon experience high mortality in estuarine and ocean environments. Freshwater survivorship is well characterized and tends to be less variable than marine mortality. Sources of marine mortality are Kevin D. Friedland © 1998 NRC Canada Aquat. Sci. 55(Suppl. 1): 119-130 (1998)

critical Atlantic events

13

ICES Journal of Marine Science (2012), 69(9), 1538-1548. doi:10.1093/icesjms/fss013 Overview of the status of Atlantic salmon (Salmo salar) in the North Atlantic and trends in marine mortality

Fisheries and Oceans Canada, PO Box 5030, Moncton, New Brunswick, Canada E1C 9B6; tel: +1 506 851 2022; fax: +1 506 851 2620; Chaput, G. 2012. Overview of the status of Atlantic salmon (Salmo salar) in the North Atlantic and trends in marine mortality. – ICES Journal Received 9 September 2011; accepted 3 January 2012; advance access publication 19 April 2012.

Since the early 1980s, the ICES Working Group on North Atlantic Salmon has collated and interpreted catch data, exchanged informanagers in support of conservation efforts for Atlantic salmon. During the past mation on research initiatives, and provided advice to managers in support of conservation efforts for Atlantic salmon. During the pass

ICES Journal of Marine Science; doi:10.1093/icesjms/fsr208

The influence of the freshwater environment and the biological characteristics of Atlantic salmon smolts on their subsequent marine survival

Ian C. Russell^{1*}, Miran W. Aprahamian², Jon Barry¹, Ian C. Davidson³, Peder Fiske⁴, Anton T. Ibbotson⁵, Richard J. Kennedy⁶, Julian C. Maclean⁷, Andrew Moore¹, Jaime Otero⁸, Ted (E. C. E.) Potter¹, and Christopher D. Todd⁹

¹Cefas, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK

²Environment Agency, Richard Fairclough House, Knutsford Road, Warrington WA4 1HG, UK

³Environment Agency, Chester Road, Buckley, Flintshire CH7 3AJ, UK

⁴Norwegian Institute for Nature Research, PO Box 5685, Sluppen, Trondheim 7485, Norway

Sci. 55(Supplementation of Supplementation of Suppl

Olivia Simmons

osimmons@gwct.org.uk

Juvenile

habitat

Smolt estuary migration

Céline Artero cartero@gwct.org.uk

Smolt size & marine return rate

Stephen Gregory sgregory@gwct.org.uk

Correlation study

Manipulation study

Manipulation study

More *Ranunculus*-> More & bigger juveniles

August-September

September-October

June-August

Smolt monitoring on the R. Frome, Dorset

A map showing (a) the location of the river Frome in the UK, the locations of the detection devices and the trap (b) in the catchment and (c) on the river.

Overwinter juvenile growth on R. Frome

TABLE 3 Total number of PIT-tagged smolts caught in the RST each spring

/ear	Number of Smolts caught in RST
2006	316
2007	609
2008	389
2009	419
2010	356
2011	224
2012	223
2013	330
2014	303
2015	220
2016	233
2017	141
2018	136

Overwinter juvenile growth on R. Frome

TABLE 3 Total number of PIT-tagger each spring

Year	Number
2006	316
2007	609
2008	389
2009	419
2010	356
2011	224
2012	223
2013	330
2014	303
2015	220
2016	233
2017	141
2018	136

P Frome

Received: 19 November 2019 DOI: 10.1111/eff.12542 Revised: 14 February 2020 Accepted: 18 February 2020

ORIGINAL ARTICLE

updates WILEY

Check for

2

nsity

fidence interval

Influence of environmental and biological factors on the overwinter growth rate of Atlantic salmon Salmo salar parr in a

Olivia M. Simmons^{1,2} Stephen D. Gregory²

TABLE 3

each sprin

Year

2006

2007

2008

2009

2010

2017

2018

John Robert Britton¹

Phillipa K. Gillingham¹

2011	¹ Department
201	¹ Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole Like
201	nemouth Unit
20	and Wildlife Co. Research Centre Co.
2015	Laboratory, Wareham, UK
2016	233

141

136

Abstract

Smolt lengths are increasingly recognised as an important determinant of salmonid marine survival rates. Overwintering growth rates could thus strongly influence adult return rates. In Atlantic salmon Salmo salar, most overwintering studies focus on riv-

Marginal effects plots of each standardised explanatory variable. The shaded as

Year	Detections	Captures
2006	710	320
2007	1063	610
2008	986	400
2009	896	442
2010	741	356
2011	595	234
2012	387	235
2013	856	341
2014	698	309
2015	545	228
2016	553	238
2017	433	147
2018	434	138
2019	415	130
2020	406	181

Day of year

Day of year

Tag detections

Year	No. smolts tagged
2018	35
2019	85
Total	120

Tag detections

Year No. smolts tagged
2018 35

"fish mortality is inversely related to their body size"

Ricker's (1976) inverse-weight hypothesis

"fish mortal body size"

Ricker's (1976)

BIOLOGY related to their

Journal of Fish Biology (2018) 92, 579-592

Is bigger really better? Towards improved models for testing how Atlantic salmon Salmo salar smolt size affects S. D. Gregory*†, J. D. Armstrong‡ and J. R. Britton§ *Salmon & Trout Research Centre, Game and Wildlife Conservation Trust, FBA River

*Experimental Scotlan **Scotlan**

*Salmon & Trout Research Centre, Game and Wildlife Conservation Trust, FBA River

**Salmon & Trout Research Centre, Game and Wildlife Conservation Trust, FBA River

**Salmon & Trout Research Centre, Game and Wildlife Conservation Trust, FBA River

**Salmon & Trout Research Centre, Game and Wildlife Conservation Trust, FBA River *Salmon & Trout Research Centre, Game and Wildlife Conservation Trust, FBA River Science, Faskally, Pitlochry, Perthshire, PH16 5LB, U.K. and & Centre for Conservation

Science, Faskally, Pitlochry, Perthshire, PH16 SLB, U.K. and & Centre for Conservation

Faculty of Science and Technology Rournemouth Science, Faskally, Pitlochry, Perthshire, PH16 5LB, U.K. and & Centre for Conservation University. Poole. Dorset. BH12 5BB. U.K.

Science, Faskally, Pitlochry, Perthshire, PH16 5LB, U.K. and & Centre for Conservation University. Poole. Dorset. BH12 5BB. U.K.

"fish mortal body size"

Ricker's (1976)

Salmo salar smolt size affects marine survival

D. $A_{RMSTRONG \stackrel{+}{,} AND} J. R. B_{RITTON \stackrel{-}{,} S}$ e, Game and Wildlife Conservation Trust, FBA River K., Freshwater Fisheries Laboratory, Marine Scotland ire, PH16 5LB, U.K. and § Centre for Conservation

Toolmalam, Rournomouth Faculty of Science and Technology, Bournemouth

R. Frome smolt length & marine return rate

R. Frome

ICES Journal of Marine Science

ate

1, 2, Y

2, ..., 1

turni

Downloaded from https://academic.oup.com/lcesjms

ICES Journal of Marine Science (2019), 76(6), 1702-1712. doi:10.1093/icesjms/fsz066

Original Article

Atlantic salmon return rate increases with smolt length

Stephen D. Gregory (b) 1*, Anton T. Ibbotson¹, William D. Riley², Marie Nevoux^{3,4}, Rasmus B. Lauridsen¹, Ian C. Russell², J. Robert Britton⁵, Phillipa K. Gillingham⁵,

Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, FBA River Laboratory, Wareham, Dorset, BH20 6BB, UK Olivia M. Simmons^{1,5}, and Etienne Rivot^{3,4}

0.0

1SW return rate 70.0

0.02

0.00

²Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK

Management of Diadromous Fish in their Environment, AFB, INRA, Agrocampus Ouest, Université de Pau et des Pays de l'Adour/E2S UPPA, 65 ³UMR ESE, Ecology and Ecosystems Health, INRA, Agrocampus Ouest, 65 rue de Saint-Brieuc, Rennes, France

rue ae Saint-Brieuc, Kennes, France

SCentre for Conservation Ecology and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Talbot Campus, Poole,

Dorset, BH12 5BB, UK SAlmonid Management Round the Channel

Fres

Juvenil habita More juvenile habitat >> More & larger juveniles

Smolt estuary migration

olt size narine rn rate

Warmer & wetter winters >> Larger & earlier migrating smolts

Some evidence that larger smolts >> Higher survival through estuaries?

Larger smolts are $3-4x \gg$ More likely to survive their first year at sea

Freshwater influences marine*

ICES Journal of Marine Science; doi:10.1093/icesjms/fsr208

The influence of the freshwater environment and the biological characteristics of Atlantic salmon smolts on their subsequent marine survival

lan C. Russell^{1*}, Miran W. Aprahamian², Jon Barry¹, Ian C. Davidson³, Peder Fiske⁴, Anton T. Ibbotson⁵, Richard J. Kennedy⁶, Julian C. Maclean⁷, Andrew Moore¹, Jaime Otero⁸, Ted (E. C. E.) Potter¹, and Christopher D. Todd⁹

²Environment Agency, Richard Fairclough House, Knutsford Road, Warrington WA4 1HG, UK

³Environment Agency, Chester Road, Buckley, Flintshire CH7 3AJ, UK

⁵Game and Wildlife Conservation Trust, Salmon and Trout Research Centre, The River Laboratory, East Stoke, Wareham, Dorset BH20 6BB, UK

^{*} at least for the R. Frome

Thanks & contacts

Queen Mary **University of London**

- Juvenile habitat Jess <u>jmarsh@gwct.org.uk</u>
- Juvenile growth & migration Olivia <u>osimmons@gwct.org.uk</u>
- Smolt estuary migration Céline <u>cartero@gwct.org.uk</u>
- Smolt size & marine return rate Stephen sqreqory@gwct.org.uk

Marsh et al. 2020

Simmons et al. 2020

Gregory et al. 2018

Gregory et al. 2019