Problem Solving with AI Techniques Convolutional/Recurrent Neural Networks

Paul Weng

UM-SJTU Joint Institute

VE593, Fall 2018

- Motivations
- 2 Convolutional Neural Network
- Recurrent Neural Network
- 4 Discussions

Motivations

- MLP has a simple architecture, may become hard to train when the number of layers becomes large
- Issue: MLP doesn't really exploit a priori knowledge we may have
- Example: Classification tasks in computer vision enjoy e.g., locality and translation invariance
- Convolutional NNs exploit such properties
- Issue: MLP requires a fixed-sized input
- Example: In NLP tasks, inputs have varying lengths
- Recurrent NN accept sequential inputs

Training Many-Layers ANN

Recall backpropagation:

$$\delta_{j}^{L} = \frac{\partial R}{\partial a_{j}^{L}} f^{l'}(z_{j}^{L})$$

$$\delta^{l} = (\mathbf{w}^{l+1\mathsf{T}} \delta^{l+1}) \otimes f^{l'}(\mathbf{z}^{l})$$

$$\frac{\partial R}{\partial b_{j}^{l}} = \delta_{j}^{l}$$

$$\frac{\partial R}{\partial w_{ik}^{l}} = a_{k}^{l-1} \delta_{j}^{l}$$

Issue: Unstable gradient:

- Vanishing gradient
- Exploding gradient

- Motivations
- 2 Convolutional Neural Network
- 3 Recurrent Neural Network
- 4 Discussions
 - Heuristics for ANNs
 - ML Pipeline
 - ML Practice

Convolution Neural Network (CNN)

- CNNs are feedforward ANNs and is a variation of MLP
- MLPs only contain fully-connected layers
- CNN also contains:
 - Convolutional layers
 - Pooling layers

Convolutional Layer: Introduction

- A node is connected to a small square area
- All nodes share the same weights, which are learned
- This set of weights defines a filter (or kernel)
- A filter defines a feature map

Convolutional Layer: Numerical Example

Assuming a filter with weights $\begin{pmatrix} 0 & 1 & 2 \\ 2 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$, bias/activation fcn ignored

30	3,	22	1	0
0_2	02	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0 12.0 17.0 10.0 17.0 19.0 9.0 6.0 14.0			
	12.0	12.0	17.0
9.0 6.0 14.0	10.0	17.0	19.0
	9.0	6.0	14.0

12.0 12.0 17.0 10.0 17.0 19.0			
	12.0	12.0	17.0
9.0 6.0 14.0	10.0	17.0	19.0
3.0 0.0 14.0	9.0	6.0	14.0

3	3	20	1,	02
0	0	1_2	32	10
3	1	20	2,	32
2	0	0	2	2
2	0	0	0	1

3	3	2	1	0
00	0,	1_2	3	1
32	12	20	2	3
20	0,	02	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Convolutional Layer: Strides and Zero-Padding

Convolutional Layer: Hyperparameters

- Depth: # of filters
- Filter size
- Stride
- Pading

• Output size for 1 filter: (input size-filter size $+2 \times padding$) / stride +1

Pooling Layer: Introduction

- Feature maps may be of high dimension
- Pooling layer summarizes the information from previous layer
- No learning at pooling layer

Pooling Layer: Max

- Motivations
- Convolutional Neural Network
- Recurrent Neural Network
- 4 Discussions
 - Heuristics for ANNs
 - ML Pipeline
 - ML Practice

Recurrent Neural Network (RNN)

- RNNs are defined by graphs that contain cycles
- Cycles endow RNNs with a "memory"

from Karpathy

- Issue: Managing long-term dependencies
- Long Short Term Memory (LSTM) network

Long Short Term Memory (LSTM) network

from Wikipedia

- Forget gate: $f_t = \sigma(W_f(h_{t-1}, x_t) + b_f)$
- Input gate: $i_t = \sigma(W_i(h_{t-1}, x_t) + b_i)$
- Cell update: $c_t = f_t \otimes c_{t-1} + i_t \otimes \tanh \left(W_c(h_{t-1}, x_t) + b_c\right)$
- Output gate: $o_t = \sigma(W_o(h_{t-1}, x_t) + b_o)$
- ullet Output: $h_t = o_t \otimes \mathsf{tanh}\left(c_t
 ight)$

- Motivations
- 2 Convolutional Neural Network
- Recurrent Neural Network
- 4 Discussions
 - Heuristics for ANNs
 - ML Pipeline
 - ML Practice

Heuristics to Train ANNs

- Different initialization techniques
 - $w_{ii}^I \sim \mathcal{N}(0, \varepsilon)$
 - $w_{ij}^l \sim \mathcal{N}(0, \sqrt{\frac{2}{n^{l-1}}})$
 - all weights are zero, except for a fixed number of connections per node

- Batch normalization
 - Idea: Input is normalized, why not the next layers?
 - Each activation is normalized for a minibatch

- Motivations
- 2 Convolutional Neural Network
- Recurrent Neural Network
- 4 Discussions
 - Heuristics for ANNs
 - ML Pipeline
 - ML Practice

ML Pipeline

Standard ML pipeline

- Data acquisition
- Data preprocessing
- Feature engineering
- Model building/training/selection
- Model deployment

Deep learning pipeline

- Data acquisition
- Data preprocessing
- Model building/training/selection
- Model deployment

Data acquisition: Data collection, aggregation, consolidation

Data preprocessing: Data cleaning, missing data imputation, normalization

Feature engineering: Feature construction/selection

Model building, training and selection: Training on training dataset,

hyperparameter tuning on validation dataset, model selection on validation dataset,

cross-validation, evaluation on test dataset

Model deployment: Profit!

- Motivations
- 2 Convolutional Neural Network
- Recurrent Neural Network
- Discussions
 - Heuristics for ANNs
 - ML Pipeline
 - ML Practice

Why do we need to divide the data into different datasets?

- Training dataset for training models
- Validation dataset used for hyperparameter tuning/model selection
- Testing dataset used for evaluating the final model

- An estimation is biased if it is computed on dataset that was used to optimize parameters or hyperparameters
- Risk of performance overestimation

Cross-validation

- Issue: One estimation may have a high variance
- Idea: Use several estimations!
- Principle of k-fold cross-validation
 - Divide dataset in k parts (called folds)
 - For each fold, train model on k-1 remaining folds and evaluate model on it
 - Average evaluations

Hyperparameter Optmization

- Grid search
- Random search
- Reinforcement Learning

Learning Rate Decay

Learning rate schedule:

- Step decay $\alpha_t = \alpha_0 \beta^{\lfloor t/h \rfloor}$ where $\beta \in (0,1)$ and $h \in \mathbb{N}$
- Exponential decay $\alpha_t = \alpha_0 e^{-\beta t}$ where $\beta > 0$
- Time-based decay $\alpha_t = \frac{\alpha_0}{1+\beta t}$ where $\beta > 0$

Accelerated (stochastic) gradient descent:

- Accelerated first-order methods: Momentum and Nesterov acceleration
- Adagrad (Adaptive gradient algorithm)
- RMSprop (root mean square propagation)
- Adam (adaptive moment estimation)