Projeto rede de distribuição de petróleo

Aluno 1: Leonardo Neves

Aluno 2: Vitor Liu

Sumário

A rede de petróleo apresentada é constituída por uma estação de bombeamento que distribui petróleo para três refinarias distintas, cada uma com uma com especificações distintas de distâncias, vazões volumétricas e resistências hidráulicas. Com o uso de um circuito elétrico com uma tensão de 3 volts e diferentes resistores foi possível simular a pressão (tensão elétrica); a vazão volumétrica (corrente elétrica); a resistência hidráulica (resistência elétrica); e a resistência hidráulica em válvulas (resistência elétrica). Equivalência em resistência elétrica: 10 km de linha = 33 ohms. Equivalência em tensão (diferença de potencial): 900 kPa = 3 volts. Equivalência corrente elétrica por vazão volumétrica: 6,905 L/s = 1 mA.

O Projeto

Materiais utilizados:

- Fonte de 3 volts;
- 2 cabos com garras jacaré;
- Protoboard;
- 6 fios Jumpers;
- 3 resistores de 100 ohms;
- 3 resistores de 10 ohms;
- 3 resistores de 330 ohms;

Modelo simplificado:

Bombeamento à refinaria A (36 km = 118,8 ohms; vazão mínima: 80 L/s = 11,58 mA; vazão máxima: 100 L/s = 14,48 mA):

Bombeamento à refinaria **B** (50 km = 165 ohms; vazão mínima: 135 L/s = 19,55 mA; vazão máxima: 145 L/s = 20,99 mA):

Bombeamento à refinaria $\bf C$ (100 km = 330 ohms; vazão mínima: 100 L/s = 14,48 mA; vazão máxima: 145 L/s = 20,99 mA):

Metodologia de execução

- Conectar os fios jacaré na fonte (um em cada polo da fonte);
- Fixar um jumper em cada extremidade restante dos fios jacaré;

No protoboard:

Modelo A:

- Conectar em série os dois resistores de 100 ohms e os três resistores de 10 ohms;
- Conectar os jumpers dos fios jacaré;
- Se necessário, fechar o circuito com jumpers.

Modelo B:

- Montar um sistema com três partes em paralelo, cada parte com uma associação em paralelo com um resistor de 100 ohms, um resistor de 10 ohms e um resistor de 330 ohms;
- Conectar os jumpers dos fios jacaré;
- Se necessário, fechar o circuito com jumpers.

Modelo **C**:

• Conectar em paralelo dois resistores de 330 ohms;

- Conectar os jumpers dos fios jacaré;
- Se necessário, fechar o circuito com jumpers.

O Produto

A rede de distribuição de petróleo tem uma estação de bombeamento com potencial de 900 kPa que envia petróleo a três diferentes refinarias. A refinaria **A** fica a 36 km da estação, recebendo no mínimo 80 L/s, no máximo 100 L/s, usando um tubo e usa válvulas para controlar a vazão. A refinaria **B** fica a 50 km da estação, recebendo no mínimo 135 L/s, no máximo 145 L/s, usando três tubos para conduzir o petróleo e usa válvulas para controlar a vazão. A refinaria **C** fica a 100 km da estação, recebendo no mínimo 100 L/s, no máximo 145 L/s, usando dois tubos para conduzir o petróleo e sem necessidade de uso de válvulas. Todos os tubos tem diâmetro de 24".

Validação

Os resultados esperados são:

Refinaria	Pressão	Equivalência em	Distância	Equivalência em	Vazão	Equivalência em
		tensão elétrica		resistência elétrica	média total	corrente elétrica
Α	900 kPa	3 volts	36 km	118,8 ohms	90 L/s	13,03 mA
В	900 kPa	3 volts	50 km	165 ohms	140 L/s	20,27 mA
С	900 kPa	3 volts	100 km	330 ohms	122,5 L/s	17,73 mA

Refinaria	Resistência elétrica			
	equivalente total			
Α	230 ohms			
В	146,66 ohms			
С	165 ohms			

Em cada cano da refinaria **B**:

Pressão	Equivalência em	Distância	Equivalência em	Vazão	Equivalência em	Resistência elétrica adicional
	tensão elétrica		resistência elétrica	média	corrente elétrica	equivalente às válvulas
900 kPa	3 volts	50 km	165 ohms	70 L/s	6,75 mA	275 ohms

Em cada cano da refinaria **C**:

Pressão	Equivalência em	Distância	Equivalência em	Vazão	Equivalência em	Resistência elétrica adicional
	tensão elétrica		resistência elétrica	média	corrente elétrica	equivalente às válvulas
900 kPa	3 volts	100 km	330 ohms	61,25 L/s	8,86 mA	275 ohms

Os resultados obtidos são:

Refinaria	Tensão elétrica	Resistência elétrica	Corrente elétrica	Equivalência em vazão
		equivalente total		
Α	3 volts	230,2 ohms	13,00 mA	89,76 L/s
В	3 volts	148,2 ohms	20,00 mA	138,10 L/s
С	3 volts	163,7 ohms	19,00 mA	131,19 L/s

As diferenças de valores foram causadas pelos valores reais dos resistores não equivalentes ao esperado. Porém, as diferenças afetam o sistema a ponto de ultrapassar as exigências de cada refinaria. Em todos os casos, o mínimo de resistência causado pelo comprimento do cano foi respeitado e as equivalências em vazão ficaram dentro da faixa limitada.