Final Project: Disney and Marvel Merger: Who Has Had the Bigger Impact?

Principal investigator: Aigul Saiapova

Email: as10369@nyu.edu

This project will study the interdynamics of the 2009 acquisition of Marvel Entertainment by The Wall Disney Company. Since the time of the merger, Marvel Cinematic Universe (MCU) productions have been hitting box office records all around the world, while The Walt Disney Company kept growing in size and profitability. According to the most recent news, MCU has become the most profitable movie franchise in the history of cinematography. Disney, at the same time, went on a "shopping spree" to acquire the ABC broadcasting company (1995), Lucasfilm (famous for its production of Star Wars), 20th and 21th Century Fox, FOX Television Studios and Pixar ever since. With these extended capabilities, The Walt Disney Company has formed a massive conglomerate, strongly exhibiting monopolistic behavior. Some media sources (https://www.fool.com/investing/2018/04/25/how-the-avengers-saved-disneys-movie-business.aspx) claim that the acquisition of Marvel Entertainment is what "saved Disney's movie business" while others (http://fortune.com/2015/10/08/disney-marvel/) claim the reverse: Disney saved Marvel. Therefore, my objective for this project is to disentangle the causal-correllational effect of this merger. Here is how I plan to proceed:

- 1. Look at the box office data from the dawn to dusk of Marvel Cinematic Universe, marking the date of the acquisition.
- Examine the review dynamics for the MCU productions by using data on average film ratings and variance in number of reviewers from websites like <u>IMDb</u> (https://www.imdb.com/list/ls066946827/) (International Movie Database) and <u>Rotten</u> <u>Tomatoes (https://www.rottentomatoes.com/franchise/marvel_cinematic_universe/)</u>, widely used for reference by the audience.
- 1. Screen effect: how many screens on average could display films of the MCU, and whether that had an effect on profitability.
- 1. Look at the general entertainment trends: what if the popularity of the Marvel content is a consequence of shifting preferences for entertainment rather than the sheer excellence of the franchise?
- 1. Look at Disney's performance over time: has their stock price been rising since the acquisition?

The project will have two parts: an analytical, programming based assignment presented in this Jupyter Notebook and a separate PowerPoint presentation explaining data points and providing additional reference information.

Part Zero: Data import and overview.

In [1]:

```
import pandas as pd
import numpy as np
import datetime as dt
import matplotlib.dates as mdates
import statsmodels.formula.api as sm
import matplotlib.pyplot as plt
plt.style.use("ggplot")
%matplotlib inline
```

Import the data.

My excel document has four sheets: one describing the contents, second contains box office statistics, the third is review data, the last has the industry statistics. I will import them as separate variables.

In [59]:

```
path="C:\\Users\\Aygul Sayapova\\Desktop\\NYU New York\\Data bootcamp\\MARVEL
DISNEY PROJECT\\MCU_box.xlsx"
```

In [60]:

```
box_office=pd.read_excel(path, sheet_name="box_office")
```

In [4]:

```
industry_stats=pd.read_excel(path, sheet_name="industry_stat")
```

In [5]:

```
review=pd.read_excel(path, sheet_name="review")
```

In [6]:

```
path_stock="C:\\Users\\Aygul Sayapova\\Desktop\\NYU New York\\Data bootcamp\\
MARVEL DISNEY PROJECT\\DIS.csv"
stock=pd.read_csv(path_stock)
```

I at's look at the data

Box Office

In [61]:

box_office.head()

Out[61]:

	Name	US_release_date	open_week_revenue	total_gross_US	total_gross_
0	Iron Man	2008-02-05	98618668	318412101	266762
1	The Incredible Hulk	2008-06-13	55414050	134806913	1286200
2	Iron Man 2	2010-05-07	128122480	312433331	3115000
3	Thor	2011-05-06	65723338	181030624	268295!
4	Captain America: The First Avenger	2011-07-22	65058524	176654505	193915;
4					•

In [8]:

box_office.shape

Out[8]:

(22, 14)

This tells us that there are 14 columns and 22 rows, each representing a different production. As we can see, there are 14 descriptive columns for the data, including:

- · The release date
- Revenue in the opening week (nominal data)
- Total box office revenue in the US and internationally (nominal). For the most of the movies, at least 50% of their revenue is collected outside the US. So we can trace popularity of the franchise in the world as well.
- Real values for the aforementioned revenue values to account for price inflation. (GDP deflator number is the last column)
- The screen effect: the number of theatres where the films were screened.
- Number of tickets sold per each movie in the US
- · Year marking the year of production.

In [9]:

box_office.dtypes

Out[9]:

Name	object
US_release_date	<pre>datetime64[ns]</pre>
open_week_revenue	int64
total_gross_US	int64
total_gross_intl	int64
total_world	int64
<pre>inflation_adj_open_week_US</pre>	float64
<pre>inlfation_adjusted_US</pre>	float64
<pre>inlfation_adjusted_intl</pre>	float64
inlfation_adjusted_world	float64
num_theatres	int64
num_tix_sold	int64
CPI_adj_2008	float64
year	int64
dtype: object	

Industry Statistics

In [10]:

industry_stats.head()

Out[10]:

	year	num_tix_sold	box_office_nominal	box_office_adj	avg_tix_price	other_
0	2008	1358041408	9750739371	12371757232	7.18	
1	2009	1418567388	10639257284	12923123576	7.50	
2	2010	1328549021	10482254025	12103081587	7.89	
3	2011	1282891721	10173333767	11687143588	7.93	
4	2012	1402603148	11164723987	12777714678	7.96	4

In [11]:

industry_stats.shape

Out[11]:

(12, 7)

In [14]:

industry_stats.dtypes

Out[14]:

year	int64
num_tix_sold	int64
<pre>box_office_nominal</pre>	int64
<pre>box_office_adj</pre>	int64
avg_tix_price	float64
other_disney_tix	int64
num_productions	int64
dtype: object	

Reviews

In [15]:

review.head()

Out[15]:

	title	genre	year	runtime_min	imdb_rating	imdb_vote
0	Iron Man	Action,Adventure,Sci-Fi	2008	126	7.9	737719
1	The Incredible Hulk	Action,Adventure,Sci-Fi	2008	112	6.8	34235
2	Iron Man 2	Action,Adventure,Sci-Fi	2010	124	7.0	556666
3	Thor	Action,Adventure,Fantasy	2011	115	7.0	570814
4	Captain America: The First Avenger	Action,Adventure,Sci-Fi	2011	124	6.9	54736{
4						•

In this sheet, there are:

- Genre
- Year of release
- · Runtime in minutes
- Ratings: IMDb rating: average of individual user ratings; metascore rating given by critics, number of users voted; Rotten Tomatoes: audience ratings, critics ratings, the respective numbers behind those scores.

In [16]:

review.shape

Out[16]:

(22, 11)

In [17]:

review.dtypes

Out[17]:

title	object
genre	object
year	int64
runtime_min	int64
imdb_rating	float64
imdb_vote	int64
imdb_metascore	int64
rt_audience_pct	float64
rt_prof_rev	float64
rt_rev_num	int64
rt_user_rating_num	int64
dtype: object	

Stock Prices

In [18]:

stock.head()

Out[18]:

	Date	Open	High	Low	Close	Adj Close	Volume
0	2006-01- 03	23.747534	24.142012	23.668638	24.063116	20.257336	9792600
1	2006-01- 04	24.161736	24.349112	23.441814	23.658777	19.916945	13341800
2	2006-01- 05	23.796844	24.349112	23.767258	24.072979	20.265636	8818900
3			24.447731				6502200
4	2006-01- 09	24.506903	24.684418	24.378698	24.654833	20.755468	6682500

This sheet shows us daily stock prices for The Walt Disney Company starting Jan.3, 2006. The range of data was chosen to reflect the dynamic of Disney's stock prices before and after the merger.

In [19]:

```
stock.shape
```

Out[19]:

(3366, 7)

There are 3366 observations across 7 columns.

Part One: Analysis

Argument: Disney saved Marvel.

To examine the hypothesis, we need to first look at the dynamics of MCU productions in the box office. For this, we need to create a subset of box_office that includes data only relevant to our objective: that is, real values for box office revenues over time.

To make it easier, I merge the datasets of box_office and industry_stats together, as the merged dataset will be useful in the coming steps.

In [54]:

```
merged=pd.merge(box_office, industry_stats, on="year", how="left")
```

In [55]:

```
merged.set_index("US_release_date", inplace=True)
```

In [56]:

merged.head()

Out[56]:

	Name	open_week_revenue	total_gross_US	total_gross_intl
US_release_date				
2008-02-05	Iron Man	98618668	318412101	266762121
2008-06-13	The Incredible Hulk	55414050	134806913	128620638
2010-05-07	Iron Man 2	128122480	312433331	311500000
2011-05-06	Thor	65723338	181030624	268295994
2011-07-22	Captain America: The First Avenger	65058524	176654505	193915269

→

I would like to keep the release date in the dataset in case I need it in the future. Since indexing is a complex pandas operation and is not always straightforward, I create a new column:

In [28]:

```
merged["release_date"]=merged.index
```

Then, I create the subset useful for graphing the data.

In [29]:

```
box_office_sub=merged[["inflation_adj_open_week_US","inlfation_adjusted_US",
"inlfation_adjusted_intl","inlfation_adjusted_world"]]
```

In [30]:

```
box_office_sub.head()
```

Out[30]:

	inflation_adj_open_week_US	inIfation_adjusted_US	inlfation_adj
US_release_date			
2008-02-05	4.580523e+07	1.478923e+08	1.2
2008-06-13	2.573806e+07	6.261352e+07	5.97
2010-05-07	5.950882e+07	1.451153e+08	1.44
2011-05-06	3.052640e+07	8.408297e+07	1.24
2011-07-22	3.021761e+07	8.205040e+07	9.00
4			•

In [75]:

```
def formatter (df):
    df
    pd.options.display.float_format = '{:,.2f}'.format
    return df
```

In [76]:

```
box_office_sub=formatter(box_office_sub)
```

In [77]:

```
box_office_sub.head()
```

Out[77]:

inflation_adj_open_week_US inlfation_adjusted_US inlfation_adj

US release date

000.0	<u>-</u>			
20	008-02-05	45,805,233.63	147,892,290.29	123,9
20	008-06-13	25,738,063.17	62,613,522.06	59,
20	010-05-07	59,508,815.61	145,115,341.85	144,(
20	011-05-06	30,526,399.44	84,082,965.16	124,(
20	011-07-22	30,217,614.49	82,050,397.12	90,(
4				•

We know that the merger happened on December 31, 2009. Therefore, it would be most useful to see if the box office revenues for movies have grown since then. To show that, we need to compute growth rates in box office revenues as compared to the average box office revenue of the first two films made in 2008.

In [78]:

In [79]:

```
average_open_week=box_office_sub.loc["2008"]["inflation_adj_open_week_US"].me
an()
```

In [80]:

```
average_US=box_office_sub.loc["2008"]["inlfation_adjusted_US"].mean()
```

In [81]:

```
average_intl=box_office_sub.loc["2008"]["inlfation_adjusted_intl"].mean()
```

In [82]:

```
average_world=box_office_sub.loc["2008"]["inlfation_adjusted_world"].mean()
```

We then replace old variables with the new variables:

In [83]:

```
growth rate["inflation adj open week US"]=(growth rate["inflation adj open we
ek US"]-average open week)/average open week
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel launcher.p
y:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFram
e.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/p
andas-docs/stable/indexing.html#indexing-view-versus-copy
  """Entry point for launching an IPython kernel.
In [84]:
growth rate["inlfation adjusted US"]=(growth rate["inlfation adjusted US"]-av
erage US)/average US
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel launcher.p
y:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFram
e.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/p
andas-docs/stable/indexing.html#indexing-view-versus-copy
  """Entry point for launching an IPython kernel.
In [85]:
growth rate["inlfation adjusted intl"]=(growth rate["inlfation adjusted intl"
l-average intl)/average intl
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel launcher.p
y:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFram
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/p
andas-docs/stable/indexing.html#indexing-view-versus-copy
```

"""Entry point for launching an IPython kernel.

In [86]:

growth_rate["inlfation_adjusted_world"]=(growth_rate["inlfation_adjusted_worl
d"]-average_world)/average_world

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.p
y:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFram e.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/p andas-docs/stable/indexing.html#indexing-view-versus-copy """Entry point for launching an IPython kernel.

In [87]:

growth_rate.head()

Out[87]:

inflation_adj_open_week_US inlfation_adjusted_US inlfation_adj

US_release_date			
2008-02-05	0.28	0.41	
2008-06-13	-0.28	-0.41	
2010-05-07	0.66	0.38	
2011-05-06	-0.15	-0.20	
2011-07-22	-0.16	-0.22	
4			•

We can see that for the first two rows, the numbers are identical opposites of each other. Given that we have taken growth rates based on the average revenue of the first two rows, this makes sense, and shows the direction of performance of each film as compared to the average. The rest of the data set, however, is unidirectional.

In [124]:

```
domestic_growth, ax=plt.subplots(figsize=(12,6))
growth_rate.inlfation_adjusted_US.plot(ax=ax,xticks=growth_rate.index.date)
growth_rate.inlfation_adjusted_world.plot(ax=ax, xticks=growth_rate.index.dat
e)
plt.title ("Box Office Revenue Growth Over the Years", fontsize=12)
plt.xlabel("Film Release Year", fontsize=12)
plt.ylabel("Growth Rate (in multiples)", fontsize=12)
ax.tick_params(axis='x',rotation=70, labelsize=9)
ax.legend()
plt.savefig("box_growth")
```


This graphs tells us that the overall growth trend is positive, as the majority of the points are located above zero on the Y axis.

However, it would be useful to look at the actual box office revenues over time. These next steps are done to reflect that.

In [98]:

```
style=['-', '--', ":"]
labels=["Domestic Opening Week Revenue",
        "Domestic Box Office", "International Box Office", "Total Box Office"
1
colors=["crimson","navy","crimson","navy"]
box office graph, ax=plt.subplots(figsize=(28,14))
box office sub.plot.area(ax=ax, colormap="Accent", style=style,
                    xticks=box office sub.index.date, alpha=0.75)
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%d-%b-%y'))
plt.gca().yaxis.set major locator(plt.MaxNLocator(20))
plt.vlines(x=(dt.datetime(2009,12,31)), ymin=0,ymax=1700000000, linestyle=":"
ax.annotate('Merger date', xy=(dt.datetime(2009,12,31),1688000000),
            xytext=(dt.datetime(2008,9,1), 1669000000), fontsize="xx-large",
            arrowprops=dict(facecolor='black', shrink = 0.05, width=3))
plt.title ("Box Office Revenues Over the Years", fontsize=25)
plt.xlabel("Film Release Date", fontsize=25)
plt.ylabel("Revenue (in $ billion)", fontsize=25)
ax.legend(labels,frameon=True, fontsize="xx-large")
ax.tick_params(axis='x',rotation=70, labelsize=16)
ax.tick params(axis='y', labelsize=16)
```


Some of the data points have scored much above others. We can identify those by date and label them on the graph.

In [99]:

merged.loc["2012-05-04"]

Out[99]:

Name	Marvel's The Avengers
open_week_revenue	207438708
total_gross_US	623357910
total_gross_intl	895455078
total_world	1518812988
<pre>inflation_adj_open_week_US</pre>	96,348,679.98
<pre>inlfation_adjusted_US</pre>	289,529,916.40
<pre>inlfation_adjusted_intl</pre>	415,910,393.87
<pre>inlfation_adjusted_world</pre>	705,440,310.26
num_theatres	4349
<pre>num_tix_sold_x</pre>	78301450
CPI_adj_2008	NaN
year	2012
num_tix_sold_y	1402603148
<pre>box_office_nominal</pre>	11164723987
<pre>box_office_adj</pre>	12777714678
<pre>avg_tix_price</pre>	7.96
other_disney_tix	218325741
num_productions	18
Name: 2012-05-04 00:00:00 d	tyne: ohiect

Name: 2012-05-04 00:00:00, dtype: object

In [100]:

```
merged.loc["2015-05-01"]
```

Out[100]:

Name	Avengers: Age of Ultron
open_week_revenue	191271109
total_gross_US	459005868
total_gross_intl	946397826
total_world	1405403694
<pre>inflation_adj_open_week_US</pre>	88,839,344.64
<pre>inlfation_adjusted_US</pre>	213,193,621.92
<pre>inlfation_adjusted_intl</pre>	439,571,679.52
<pre>inlfation_adjusted_world</pre>	652,765,301.44
num_theatres	4276
<pre>num_tix_sold_x</pre>	54449094
CPI_adj_2008	NaN
year	2015
<pre>num_tix_sold_y</pre>	1323262157
<pre>box_office_nominal</pre>	11155102984
<pre>box_office_adj</pre>	12054918255
<pre>avg_tix_price</pre>	8.43
other_disney_tix	277660192
num_productions	15
Name: 2015-05-01 00:00:00 dt	vne: object

Name: 2015-05-01 00:00:00, dtype: object

In [101]:

```
merged.loc["2018-04-27"]
```

Out[101]:

Name	Avengers: Infinity War
open_week_revenue	257698183
total_gross_US	678815482
total_gross_intl	1369544272
total_world	2048359754
<pre>inflation_adj_open_week_US</pre>	119,692,607.06
<pre>inlfation_adjusted_US</pre>	315,288,194.15
<pre>inlfation_adjusted_intl</pre>	636,109,740.83
<pre>inlfation_adjusted_world</pre>	951,397,934.97
num_theatres	4474
num_tix_sold_x	74513225
CPI_adj_2008	NaN
year	2018
num_tix_sold_y	1313272361
<pre>box_office_nominal</pre>	11963913722
<pre>box_office_adj</pre>	11963913893
<pre>avg_tix_price</pre>	9.11
other_disney_tix	344128465
num_productions	13
Name: 2018-04-27 00:00:00 d	ltyne: object

Name: 2018-04-27 00:00:00, dtype: object

In [102]:

```
merged.loc["2019-04-26"]
```

Out[102]:

```
Name
                               Avengers: Endgame
open week revenue
                                       357115007
total gross US
                                       619698638
total gross intl
                                      1569000000
total world
                                      2188698638
inflation adj open week US
                                  165,868,558.76
inlfation adjusted US
                                  287,830,300.98
inlfation adjusted intl
                                  728,750,580.59
inlfation adjusted world
                                1,016,580,881.56
num theatres
                                            4662
num tix sold x
                                        69371882
CPI adj 2008
                                             NaN
year
                                            2019
num tix sold y
                                      1239713179
box office nominal
                                     11293787064
box office adj
                                     11293787064
avg tix price
                                            9.11
other disney tix
                                       145307257
num productions
                                               7
Name: 2019-04-26 00:00:00, dtype: object
```

In [103]:

```
# List of highest grossing movies: dates and names

date_list=["2012-05-04","2015-05-01","2018-04-27","2019-04-26"]
marked_movies=["Marvel's The Avengers", "Avengers: Infinity War", "Avengers:
Age of Ultron", "Avengers: Endgame"]
```

In [108]:

```
# Getting the point values of each observation for graphing heights=[705440310.26,652765301,951397935,1016580882]
```

```
In [96]:
```

```
# Creating a function that allows to convert string dates to datetime format

def date_converter(str_dates):
    datetime_dates=[]
    for n in range(len(str_dates)):
        k=pd.to_datetime(str_dates[n])
        datetime_dates.append(k)
    return datetime_dates
```

In [97]:

```
# Stripping the datetime values creating above from time stamps for graphing
purposes

def truncator(list_date):
    new_list_date=[]
    for n in range(len(list_date)):
        d_truncated = dt.date(list_date[n].year, list_date[n].month, list_dat
e[n].day)
        new_list_date.append(d_truncated)
    return new_list_date
```

In [104]:

```
date=date_converter(date_list)
```

In [107]:

```
empty=truncator(date)
```

In [125]:

```
style=['-', '--', ":"]
labels=["Domestic Opening Week Revenue",
        "Domestic Box Office", "International Box Office", "Total Box Office"
1
colors=["crimson","navy","crimson","navy"]
box office graph labeled, ax=plt.subplots(figsize=(28,14))
box office sub.plot.area(ax=ax, colormap="Accent", style=style,
                    xticks=box office sub.index.date, alpha=0.75)
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%d-%b-%y'))
plt.gca().vaxis.set major locator(plt.MaxNLocator(20))
plt.vlines(x=(dt.datetime(2009,12,31)), ymin=0,ymax=1700000000, linestyle=":"
ax.annotate('Merger date', xy=(dt.datetime(2009,12,31),1688000000),
            xytext=(dt.datetime(2008,9,1), 1669000000), fontsize="xx-large",
            arrowprops=dict(facecolor='black', shrink = 0.05, width=3))
for n in range(len(marked movies)):
   plt.vlines(x=date list[n], ymin=0, ymax=heights[n]*2.3, linestyle='--',co
lor=colors[n])
    date calculator=empty[n]+pd.DateOffset(months=-20)
    ax.annotate(marked movies[n], xy=(date calculator, heights[n]*2.2),
                xvtext=(date calculator, heights[n]*2.2), fontsize=17,
                color=colors[n], fontstyle="italic")
plt.title ("Box Office Revenues Over the Years", fontsize=25)
plt.xlabel("Film Release Date", fontsize=25)
plt.ylabel("Revenue (in $ billion)", fontsize=25)
ax.legend(labels,frameon=True, fontsize="xx-large")
ax.tick_params(axis='x',rotation=70, labelsize=16)
ax.tick_params(axis='y', labelsize=16)
plt.savefig("box office marked")
```


As we see, the Avengers series have brought MCU and Disney the most money. Each upper part of the shaded area shows trends for collected revenues, respectively (as specified in the legend in the upper left corner). Shaded areas on the graph show the difference between each column:

- Green volume of opening week box office revenues
- Peach difference between opening week revenues and the domestic box office revenues (calculated at closing date)
- Pink difference between domestic box office revenues and international box office revenues
- Grey difference between international box office and world gross.

There is an interesting trend shown here: pink shaded areas have grown over time, implying greater engagement of the international audience.

However, even after looking at the data above, we cannot conclusively say why the box office revenues have been growing. Is this because of better movie quality? Let's look at the rating data to see if the audience has enjoyed new films more.

For that, I examine professional and user ratings from Rotten Tomatoes and IMDb.

Reviews

In [110]:

```
review.set_index("title", inplace=True)
```

In [111]:

```
review.columns.tolist()
```

Out[111]:

```
['genre',
  'year',
  'runtime_min',
  'imdb_rating',
  'imdb_vote',
  'imdb_metascore',
  'rt_audience_pct',
  'rt_prof_rev',
  'rt_rev_num',
  'rt_user_rating_num']
```

In [113]:

```
review_sub=review.drop(['genre', "year", "runtime_min"], axis=1)
```

In [114]:

```
review_sub.head()
```

Out[114]:

	imdb_rating	imdb_vote	imdb_metascore	rt_audience_pct	rt_prof_re\
title					
Iron Man	7.90	737719	79	0.91	0.90
The Incredible Hulk	6.80	342355	61	0.70	0.67
Iron Man 2	7.00	556666	57	0.71	0.73
Thor	7.00	570814	57	0.76	0.77
Captain America: The First Avenger	6.90	547368	66	0.74	0.80
4					•

The columns all have different values. It would help to convert them to percentage points on 100% scale.

```
In [115]:
```

```
review_sub["rt_prof_rev"]=review_sub["rt_prof_rev"]*100
```

In [116]:

```
review_sub["rt_audience_pct"]=review_sub["rt_audience_pct"]*100
```

In [117]:

```
review_sub["imdb_rating"]=review_sub["imdb_rating"]*10
```

I'd also like to plot how the number of reviews have changed. To meaningfully compact it, I scale imdb_vote and rt_user_rating_num based on the highest number of reviews and take that as 100%.

In [120]:

```
review["imdb_num_stand"]=100*(review.imdb_vote/review.imdb_vote.max())
```

In [121]:

```
review["rt_num_stand"]=100*(review.rt_user_rating_num/review.rt_user_rating_n
um.max())
```

IMDb ratings.

In [126]:

```
legend=["Percent of Reviews","IMDb Ratings", "IMDB Critic Ratings"]
review plot imdb, ax=plt.subplots(figsize=(18,10))
review sub.plot.bar(ax=ax,y=["imdb metascore", "imdb rating"], colormap="Acce
nt", width=0.85)
review.imdb num stand.plot(ax=ax,color="navy", alpha=0.5)
ax.legend(legend, frameon=True, fontsize=10)
ax.tick params(axis='x',rotation=70, labelsize=10)
plt.title ("IMDb Ratings", fontsize=16)
plt.xlabel("Film Title", fontsize=16)
plt.ylabel("Rating (in %)", fontsize=16)
colors=['g','k']
for p in ax.patches:
   height=p.get height()
   name=str("{:.0f}".format(height))+"%"
    ax.annotate(name, (p.get x() * 1.005, p.get height() *0.85), fontsize=10,
color='w', fontstyle="oblique" )
plt.savefig("rating imdb")
```


In [127]:

```
legend=["Percent of Reviews ","RT User Ratings", "RT Professional Ratings"]
rt plot, ax=plt.subplots(figsize=(20,12))
review sub.plot.bar(ax=ax,y=["rt audience pct", "rt prof rev"], colormap="Set
3", width=0.85)
review.rt num stand.plot(ax=ax,color="grey", alpha=0.7)
ax.legend(legend,frameon=False, fontsize=10,loc="upper right")
ax.tick_params(axis='x',rotation=70, labelsize=12)
plt.title ("Rotten Tomatoes Ratings", fontsize=16)
plt.xlabel("Film Title", fontsize=16)
plt.ylabel("Rating (in %)", fontsize=16)
colors=['g','k']
for p in ax.patches:
   height=p.get height()
   name=str("{:.0f}".format(height))+"%"
    ax.annotate(name, (p.get x() * 1.005, p.get height() * 0.85+3),
                fontsize=9.8, color='darkslategray', fontstyle="oblique")
plt.savefig("rt ratings")
```


The graphs above tell us that film raitings have been more or less consistent over time, amongst both critics and audience. We also observe that the number of ratings have been declining over the years (at least for Rotten Tomatoes).

There is also a possibility that other factors have influenced the ratings. For example, the duration of the movie. Let's see how it affects rating value.

In [129]:

```
review_sub["runtime_min"]=review["runtime_min"]
```

In [130]:

review_sub.head()

Out[130]:

	imdb_rating	imdb_vote	imdb_metascore	rt_audience_pct	rt_prof_rev
title					
Iron Man	79.00	737719	79	91.00	93.00
The Incredible Hulk	68.00	342355	61	70.00	67.00
Iron Man 2	70.00	556666	57	71.00	73.00
Thor	70.00	570814	57	76.00	77.00
Captain America: The First Avenger	69.00	547368	66	74.00	80.00
4					•

In [131]:

```
correlation, ax=plt.subplots()
ax.scatter(review_sub.runtime_min,review_sub.imdb_rating, color="crimson", al
pha=0.7)
ax.scatter(review_sub.runtime_min,review_sub.imdb_metascore, color="navy", al
pha=0.7)
plt.xlabel("Runtime (mins)")
plt.ylabel("Rating (in %)")
plt.title("Runtime and Review Score Correlation")
plt.savefig("correlation")
```

Runtime and Review Score Correlation 90 -Rating (in %)

Runtime (mins)

There seems to be a positive correlation between ratings and runtime. Let's see if that could have affected reviews.

In [134]:

```
runtime, ax= plt.subplots()
review_sub.runtime_min.plot()
plt.ylabel("Runtime (mins)")
plt.xlabel("Title")
plt.title("Runtime per film")
plt.savefig("runtime")
```


As data is sorted chronologically, we can see that as a general trend, runtime has indeed been increasing. However, we cannot meaningfully use that given the small sample size.

This makes me wonder: why have MCU movies been collecting more and more money over time? Looking at the box office revenue chart, we can see that revenues have increased significantly over time. We can also see that the films have been making more money on the international market over time. Is this a consequence of rising demand for movie tickets over all or is MCU outperforming the market?

Industry trends.

In [135]:

```
industry stats.head()
```

Out[135]:

	year	num_tix_sold	box_office_nominal	box_office_adj	avg_tix_price	other_
0	2008	1358041408	9750739371	12371757232	7.18	_
1	2009	1418567388	10639257284	12923123576	7.50	
2	2010	1328549021	10482254025	12103081587	7.89	
3	2011	1282891721	10173333767	11687143588	7.93	
4	2012	1402603148	11164723987	12777714678	7.96	1
4						•

In [136]:

```
industry_stats.set_index('year', inplace=True)
```

In [139]:

```
box_office.set_index("year", inplace=True)
```

In [140]:

```
# For purposes of creating a meaningful stacked bar chart
industry_stats["delta_mcu_tix"]=industry_stats.num_tix_sold-box_office.num_ti
x_sold.groupby("year").sum()
```

In [142]:

```
industry_stats=industry_stats.dropna()
```

In [143]:

industry_stats.head()

Out[143]:

	num_tix_sold	box_office_nominal	box_office_adj	avg_tix_price	other_dis
year					
2008	1358041408	9750739371	12371757232	7.18	139
2010	1328549021	10482254025	12103081587	7.89	185
2011	1282891721	10173333767	11687143588	7.93	154
2012	1402603148	11164723987	12777714678	7.96	218
2013	1339244141	10888057844	12200514133	8.13	213

→

In [144]:

industry_stats['mcu_tix']=box_office.num_tix_sold.groupby("year").sum()

In [145]:

sub_ind=industry_stats[["mcu_tix", "delta_mcu_tix"]]

In [149]:

```
names=["MCU","Market"]
stats, ax=plt.subplots(figsize=(12,8))
sub_ind.plot.bar(ax=ax, stacked=True)
ax.legend(names)
plt.title ("Demand for Movie Tickets in the World Over Time", fontsize=14)
plt.xlabel("Year", fontsize=14)
plt.ylabel("Number of tickets sold (in billions)", fontsize=14)
plt.savefig("demand")
```


The bar chart does not let us clearly observe a trend. Neither does a regular line plot. Therefore, to interpret it, I need to run a regression of number of tickets sold on time.

In [157]:

```
industry_stats['year']=industry_stats.index
```

In [158]:

```
mcu = sm.ols(formula="mcu_tix ~ year ", data=industry_stats).fit()
print(mcu.summary())
```

OLS Regression Results

=======================================	============	=====	========	======
Dep. Variable:	mcu_tix	R-sq	uared:	
0.584	_	·		
Model:	0LS	Adj.	R-squared:	
0.538				
Method:	Least Squares	F-st	atistic:	
12.65	- 04 14 0040		/ -	
Date:	Tue, 21 May 2019	Prob	(F-statisti	.c):
0.00615	12.22.26	١٥٣	likalihaad.	
Time: -202.67	12:23:36	Log-	Likelihood:	
No. Observations:	11	AIC:		
409.3	11	AIC.		
Df Residuals:	9	BIC:		
410.1				
Df Model:	1			
Covariance Type:	nonrobust			
=======================================		======	========	======
=======================================				
25 0.975]	ef std err	t 	P> t 	
Intercept -1.742e+3	L0 4.92e+09	-3.540	0.006	-2.85e+
year 8.689e+6	06 2.44e+06	3.556	0.006	3.16e+
=======================================		======	=======	======
Omnibus:	F 410	Dunh	in-Watson:	
1.890	5.412	Durb	III-WatSOII:	
Prob(Omnibus):	0.067	lard	ue-Bera (JB)	r •
2.512	0.007	Juiq	ac bera (3b)	•
Skew:	1.158	Prob	(JB):	
0.285				
Kurtosis:	3.346	Cond	. No.	
1.22e+06				
=======================================	=======================================	=====	========	======
=========				

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.22e+06. This might indicate that there are

strong multicollinearity or other numerical problems.

C:\ProgramData\Anaconda3\lib\site-packages\scipy\stats\stats.py:
1394: UserWarning: kurtosistest only valid for n>=20 ... continu
ing anyway, n=11
 "anyway, n=%i" % int(n))

In [160]:

industry=sm.ols(formula="num_tix_sold ~ year ", data=industry_stats).fit()
print(industry.summary())

OLS Regression Results

=======================================	=======================================		=======	
Dep. Variable:	num_tix_sold	R-sq	uared:	
0.356				
Model:	OLS	Adj.	R-squared:	
0.285				
Method:	Least Squares	F-st	atistic:	
4.984	T 21 Mar. 2010	Durala	/5	- \ -
Date: 0.0525	Tue, 21 May 2019	Prob	(F-Statist)	LC):
Time:	12.24.05	l og-	Likelihood:	
-208.24	12.24.03	LUG	LIKEIIIIOOU.	
No. Observations:	11	AIC:		
420.5		,,,		
Df Residuals:	9	BIC:		
421.3				
Df Model:	1			
Covariance Type:	nonrobust			
=======================================	=======================================	=====	=======	======
=======================================			5. 1. 1	F 0 0
	f std err	t	P> t	[0.0
25 0.975]				
Intercept 1.953e+1	0 8.16e+09	2.392	0.040	1.06e+
09 3.8e+10	0.1200.00	_,,,,		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	6 4.05e+06 -	-2.232	0.052	-1.82e+
07 1.21e+05				
=======================================	============	=====	========	======
Omnibus:	0.382	Durb	in-Watson:	
2.801	0.004	_	- ()	
Prob(Omnibus):	0.826	Jarq	ue-Bera (JB)) :
0.476 Skew:	0.291	Dnob	/JD).	
0.788	0.291	Prob	(36).	
Kurtosis:	2 163	Cond	. No.	
1.22e+06	2.103	Cond	. 110 .	
=======================================	=======================================		========	:======
=========				
Wannings:				

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.22e+06. This might indicate that there are

strong multicollinearity or other numerical problems.

```
C:\ProgramData\Anaconda3\lib\site-packages\scipy\stats\stats.py:
1394: UserWarning: kurtosistest only valid for n>=20 ... continu
ing anyway, n=11
   "anyway, n=%i" % int(n))
```

We can see that the respective regression betas are b(MCU)=8.689e+06 and b(industry)=-9.05e+06. Both are statistically significant at 90% confidence level and indicate positive dynamic for Marvel movies and negative for the industry. Therefore, we can say that MCU movies have outperformed the market in terms of demand for tickets.

This lets me conclude that Marvel movies's growing revenues are not due to the market dynamics. Rather, their box office success is correlated with *movie quality* and **brand recognition**.

Part Two: Analysis

Argument: Marvel saved Disney.

In this section, I am going to examine the effect of the merger on Disney's financial performance to see if the effect has been the reverse.

```
In [161]:
```

```
stock['Date']=pd.to_datetime(stock['Date'])
```

In [162]:

```
stock.set_index("Date", inplace=True)
```

In [165]:

```
exp=["Share Price"]
marked movies=["Marvel's The Avengers", "Avengers: Infinity War", "Avengers:
Age of Ultron" , "Avengers: Endgame"]
colors=["crimson","navy","crimson","navy"]
stock graph, ax=plt.subplots(figsize=(16,10))
stock.Close.plot(ax=ax,colormap="Accent")
ax.legend(exp,frameon=True, fontsize=12, loc="upper left")
ax.tick_params(axis='x',rotation=0, labelsize=12)
plt.title ("Disney Stock Price Overtime", fontsize=14)
plt.xlabel("Year", fontsize=14)
plt.ylabel("Price in USD", fontsize=14)
ax.xaxis.set major locator(plt.MaxNLocator(10))
ax.yaxis.set major locator(plt.MaxNLocator(20))
plt.vlines(x=(dt.datetime(2009,12,31)), ymin=0,ymax=120, linestyle=":")
plt.gca().xaxis.set major locator(plt.MaxNLocator(14))
ax.annotate('Merger date', xy=(dt.datetime(2009,12,31),120),
            xytext=(dt.datetime(2010,6,28), 130), fontsize=10,
            arrowprops=dict(facecolor='black', width=0.8))
for n in range(len(marked movies)):
   plt.vlines(x=date_list[n], ymin=0, ymax=stock.Close.loc[date_list[n]]*1.2
, linestyle='--',color=colors[n])
    date calculator=empty[n]+pd.DateOffset(months=-19)
    ax.annotate(marked movies[n], xy=(date calculator, stock.Close.loc[date 1
ist[n]]+10),
                xytext=(date calculator,stock.Close.loc[date list[n]]*1.22),
fontsize=10,
                color=colors[n], fontstyle="italic")
plt.savefig("stock")
```


Looking at the stock price performance, we can conclude that Disney's stock **has** grown since the time of the acquisition. Marking the highest grossing movies, also shows a positive effect of the releases on stock price.

However, stocks are highly volatile and can be affected by a number of other factors, particularly, major acquisitions.

Since and before 2009, Disney has made a lot of acquisitions to its business, growing in most of its segments:

- · Media networks
 - UTV Software Communications, February 1, 2012
 - BAMTech 33% acquisition, August 17, 2016
- Studio Entertainment
 - Pixar August 23, 2006
 - 20th, 21st Century Fox, December 14, 2017
- Theme Parks and Resorts
 - Opening of Disneyland in Shanghai, April 4, 2011
- Internet and Direct Marketing
 - Streaming services announcement, August 9, 2017

Therefore, their stock price could have been also affected by these events. Let's have a look.

```
In [166]:
```

```
shopping=['2006-01-23','2011-04-07','2012-02-07','2016-08-17','2017-08-09','2 017-12-14']
```

In [167]:

```
shopping=date_converter(shopping)
```

In [168]:

```
shopping=truncator(shopping)
```

In [169]:

```
events=[" Pixar", "Shanghai DL", " UTV SC", "BAMTech", "Stream", "Fox"]
```

In [171]:

```
lines=["crimson","navy","b","k", 'r','m']
acquisitions, ax=plt.subplots(figsize=(16,10))
stock.Close.plot(ax=ax,colormap="Accent")
ax.legend(exp,frameon=True, fontsize=12, loc="upper left")
ax.tick_params(axis='x',rotation=0, labelsize=12)
plt.title ("Disney Stock Price Overtime", fontsize=14)
plt.xlabel("Year", fontsize=14)
plt.ylabel("Price in USD", fontsize=14)
ax.xaxis.set_major_locator(plt.MaxNLocator(10))
ax.yaxis.set_major_locator(plt.MaxNLocator(20))
plt.vlines(x=(dt.datetime(2009,12,31)), ymin=0,ymax=120, linestyle=":")
ax.annotate('Marvel merger', xy=(dt.datetime(2009,12,31),120),
            xytext=(dt.datetime(2010,6,28), 130), fontsize=10,
            arrowprops=dict(facecolor='black', width=0.8))
for n in range(len(events)):
    plt.vlines(x=shopping[n], ymin=0, ymax=stock.Close.loc[shopping[n]]*1.2,
linestyle='--', color=lines[n])
    date calculator=shopping[n]+pd.DateOffset(months=-6)
    ax.annotate(events[n], xy=(date calculator, stock.Close.loc[shopping[n]]+
10),
                xytext=(date calculator,stock.Close.loc[shopping[n]]*1.25), f
ontsize=10,
                color=lines[n], fontstyle="italic")
plt.savefig("shopping")
```


The general impact of M&A's on stock is, historically speaking, negative (at least in the immediate terms). However, the company's stock has continued to grow over time, which implies successful business management of the new units.

We cannot, therefore, conclusively say if MCU has been the driver of Disney's success, but we can be sure that it contributed to company's growth. Perhaps, the profit made on MCU productions drove further expansion and success.

Although we cannot decifer if MCU's success had greatest profit margins amongst all sectors as such data is unavailable, we can examine what share of the film market in the US have MCU productions occupied - to give us a rough idea.

In [173]:

```
merged["market share_mcu"]=100*(merged.num_tix_sold_x/merged.num_tix_sold_y)
```

In [174]:

```
merged["market_share_disney"]=100*(merged.other_disney_tix/merged.num_tix_sol
d_y)
```

In [175]:

```
mcu_year=merged.market_share_mcu.resample('y').sum()
```

In [176]:

```
disney_year=merged.market_share_disney.resample("y").mean()
```

In [177]:

```
new_df=pd.DataFrame(mcu_year)
```

In [178]:

```
new_df=new_df.join(disney_year)
```

In [179]:

```
new_df.dropna(inplace=True)
```

In [180]:

```
new_df.set_index(new_df.index.year, inplace=True)
```

In [181]:

new_df

Out[181]:

market_share_mcu market_share_disney

US_release_date

2008	4.65	10.26
2010	2.98	13.98
2011	3.52	12.04
2012	5.58	15.57
2013	3.78	15.97
2014	5.77	15.59
2015	5.73	20.98
2016	5.67	26.07
2017	9.42	21.74
2018	13.34	26.20
2019	9.32	11.72

In [182]:

new_df["market_share_disney_only"]=new_df.market_share_disney-new_df.market_s
hare_mcu

In [183]:

```
market share, ax = plt.subplots(figsize=(14,10))
new df[["market share mcu", "market share disney only"]].plot.barh(ax=ax,
                                                                   width=0.9.
stacked=True,
                                                                   colormap="A
ccent", xticks=range(0,30,2))
ax.legend(["Marvel release", "Other Disney releases"])
plt.title ("Domestic (US) Market Share by Ticket Sales")
plt.xlabel("Marke share (%)")
plt.ylabel("Release year")
for p in ax.patches:
    left, bottom, width, height = p.get bbox().bounds
    label=str("{:.1f}".format(width))+"%"
    ax.annotate(label, xy=(left+width/2, bottom+height/2),
                ha='center', va='center', color="w")
  # ax.annotate(str("{:.1f}".format(new df.market share disney)), xy=(width,
bottom+height/2),
                 ha="center", va="center")
ax.invert yaxis()
plt.savefig("market_share")
```


This plot tells us that Disney managed to capture up to 26% of the domestic movie market - a large margin considering the competition. A significant part of it is MCU films. Therefore, MCU films have brought greater returns to the company as compared to the sum of other productions by Dinsey in a given year.

Conclusion

The report above has shown us the following things:

- 1. Marvel Cinematic Universe productions have been grossing more since the time of the acquisition.
 - Is the reason for that Disney's involvement?

This is inconclusive. Our sample size totals 22 observations for the movies made, only 2 of which have been pre-Disney era. therefore, it is hard to tell if their success is attributed to Disney's involve ment in production or the general success of the superhero movie idea. As quality remained stable throughout the franchise given our analysis of the review data, we cannot make an argument of Disney's production development skills.

- Is the reason - general market trends?

The answer is no, as shown by the regression. MCU productions hav e been outperforming the market for movie tickets, which speaks of the *strong brand value* of the franchise.

- 1. Disney has grown significantly since the merger.
 - Is this because of Marvel?

This remains inconclusive, although the general impact of box of fice hits on the stock has been positive. There has been a number of a cquisitions since and before the Marvel Entertainment, which in turn c ould have contributed greatly to the growth of the company.

Limitations.

As stated in the conclusion above, there have been a number of limitations to this study.

First and foremost, of course, is the **sample size***. The difficulty in arriving to a clear conclusion lies in the absence of greater sample of observations preceding the merger that could show some form of a trend. The acquisition happened at the dawn of the Marvel Cinematic Universe, and was a timely purchase by Disney.

Second is the **scope of data**. There is only so much to be shown with the data provided, and more can be concluded if financial statements breaking down each sector performance have been available. However, that lies beyond the scope of this project and can be examined in its further iterations.