HOMEWORK 2

February 18^{th} 2016 beg2119

Question 1. Using direct proof, show that the sum of two consecutive perfect squares is odd.

Proof. 1. Suppose that the sum of two consecutive perfect squares is odd

- 2. The definition of consecutive squares is $(x)^2 + (x+1)^2$
- 3. $2x^2 + 2x + 1$
- 4. $2(x^2+x)+1$
- 5. Set k to the value of the parentheses,
- 6. $k = (x^2 + x)$
- 7. Thus, 2k + 1
- 8. The definition of an odd number is $(\forall k \in \mathbb{Z})(2k+1)$
- 9. \therefore The sum of two consecutive perfect squares is odd

Question 2. Use proof by contrapositive to prove the following proposition: If x^3 is odd, then x is odd.

Proof. 1. Suppose that x^3 is odd and x is odd

- 2. the contrapositive must also be true: "if x is not odd, then x^3 is not odd"
- 3. OR, "if x is even, then x^3 is even"
- 4. The definition of an even number is $(\exists k \in \mathbb{Z})x = 2k$
- 5. Cube both sides,
- 6. $x^3 = 8k^3$
- 7. Let $m = 4k^3$ thus $x^3 = 2m$
- 8. : If x is even, then x^3 is even

Question 3. Prove that an integer is odd if and only if it is the sum of two consecutive integers.

Proof. 1. Formally, $(\forall x \in \mathbb{Z})(2 \nmid (x + (x + 1)) \equiv 2x + 1$

- 2. The definition of an odd number is 2x + 1
- 3. .. If it is the sum of two consecutive integers then it is odd * $p \Leftrightarrow q$ *
- 4. Suppose that x is odd,
- 5. x = 2k + 1
- 6. Can be expressed as 2k=k+k+1 which signifies consecutive integers such that $(\forall x \in \mathbb{Z})$

7. : If it is odd then it is it is the sum of two consecutive integers

Question 4. Prove or disprove the following proposition: any prime number greater than 2 can be expressed as 1 less than a power of 2. More formally, this means that for every prime number p > 2, there exists a natural number n such that $p = 2^n - 1$.

Proof. 1. Let \mathbb{P} denote the set of all prime numbers

- 2. $(\forall p > 2 \in \mathbb{P})(\exists n \in \mathbb{N}) p = 2^n 1$
- 3. Suppose that the previous proposition is true
- 4. Let p = 11, which clearly satisfies the condition
- 5. $11 = 2^n 1$; $(2^3 = 8) & (2^4 = 16)$
- 6. There is no natural value of n that satisfies this theorem when p=11
- 7. .: This proposition is disproven by counterexample

Question 5. Use direct proof for parts 1 and 2.

1. Let x be an integer. Prove the following proposition: If $x \ge 3$, then $x^2 > 2x + 1$.

Proof. (a) Suppose that $x \geq 3$

- (b) Multiply by x on both sides
- (c) $x^2 \ge 3x \equiv x^2 \ge 2x + x$

2

- (d) From the original conditional clause we see $x^2 > 2x + 1$
- (e) While $x \geq 3$,
- (f) It must be the case that 2x + x > 2x + 1
- (g) $\therefore x^2 > 2x + 1$.

2. Let a and b be integers, and let c be a negative integer. Prove the following proposition:

If
$$a > b$$
, then $a^2c^2 - 2abc^2 + b^2c^2$ is positive.

Proof. (a) $a^2c^2 - 2abc^2 + b^2c^2 = (ac - bc)^2$

- (b) Take a > b
- (c) Multiply by c, (a negative integer)
- (d) ac < bc
- (e) ac bc < 0
- (f) Multiply by negative (square)
- (g) $(ac bc)^2 > 0$
- (h) : $((ac bc)^2)$, or $(a^2c^2 2abc^2 + b^2c^2)$, is positive

Question 6. Let x and y be real numbers. Using proof by cases, show that the following property holds:

$$|x+y| \le |x| + |y|$$

Proof. • CASE 1

Let both x & y be positive

$$|x+y| \le |x| + |y|$$

$$x + y \le x + y$$

- TRUE

• CASE 2

Let x be positive and y be negative $|x - y| \le |x| + |-y|$

$$x-y \leq x+y$$

- TRUE
- CASE 3

Let both x & y be negative

$$|-x-y| \le |-x| + |-y|$$

$$|-(x+y)| \le x+y$$

$$x + y \le x + y$$

- TRUE

• CASE 4 Case 4: Let x be 0 and y be positive $|0+y| \le |0| + |y|$ $|y| \le y$ $y \le y$

Question 7. Using proof by contradiction, show that there are no integers x, y that satisfy the equation 5x + 25y = 1723.

Proof. 1. Suppose that $(x, y \in \mathbb{Z})5x + 25y = 1723$

2. 5(x+5y) = 1723

- TRUE

- 3. x + 5y = 1723/5
- 4. The result is not in the set of integers, and two integers cannot add to create something outside of that set
- 5. ... There are no integers x & y that satisfy the equation 5x + 25y = 1723

Question 8. Prove, using any method you'd like, that the sum of any three consecutive integers is divisible by 3.

Proof. 1. Assume that the sum of any three consecutive integers is divisible by 3

- 2. $(x, y, z \in \mathbb{Z})$ x < y < z
- 3. As x, y, z are consecutive, y = x + 1, z = x + 1 + 1
- 4. Thus, $x + y + z \equiv x + (x + 1) + (x + 1 + 1)$
- 5. 3x + 3 = 3(x + 1) = 3y
- 6. Because $(y \in \mathbb{Z})$, 3|3y
- 7. \therefore The sum of any three consecutive integers is divisible by 3

Question 9. Prove, using any method you'd like, that the difference between distinct, nonconsecutive perfect squares is composite. Recall that an integer x is composite if and only if there exists some integer y such that 1 < y < x and y|x. In other words, x is composite if it has some positive factor other than 1 and itself, i.e. x is not prime.

Proof. 1. Let a & b be nonconsecutive perfect squares

- 2. $(\exists x, y \in \mathbb{Z}^+)$ such that $a = x^2 \& b = y^2$
- 3. x & y are non consecutive, so $(x y) \neq 1$
- 4. The difference between distinct, nonconsecutive perfect squares should be composite
- 5. $x^2 y^2 = (x+y)(x-y)$
- 6. Neither factor (x+y) nor factor (x-y) equals 1 or x^2-y^2
- 7. \therefore The difference between distinct, nonconsecutive perfect squares is composite

Question 10. Convert the following statements into the formal notation of propositional logic (i.e. using variables and logical operators). Make sure to explain what each variable you introduce represents.

- Whenever we add a rational number and an irrational number, the sum is irrational.
 - Let \mathbb{R} represent the set of all real numbers, \mathbb{Q} represent the set of all rational numbers, & $\mathbb{R}\setminus\mathbb{Q}$ represent the set of all irrational numbers $Q + \mathbb{R}\setminus\mathbb{Q} \Rightarrow \mathbb{R}\setminus\mathbb{Q}$
- Two integers are odd only if their sum is even. Let $\mathbb Z$ represent the set of all integers and $(x,y,z\in\mathbb Z)$ 2|x,y but $2\nmid z$ $x+y\Rightarrow z$
- It is necessary that a|(b+c) be true for a|b and a|c to be true. $a|(b+c) \Rightarrow a|b \wedge a|c$
- For (ac)|(bd) to be true , it is sufficient that a|b and c|d. $a|b \wedge c|d \Rightarrow (ac)|(bd)$
- For x to be an odd number, it is necessary and sufficient that x-1 is even. $(x \in \mathbb{Z})$ $2|(x-1) \Rightarrow x$
- An integer is even if and only if its square is even. $(x \in \mathbb{Z})$ $2|x \Leftrightarrow 2|x^2$

BONUS

Question 11. Let x and y be two numbers. State whether the following proposition is true or not:

If
$$x > y$$
 and $x < y$, then $x = y$.

True. Contradictions imply everything. (on the contrary tautologies are implied by everything)