FIITJEE

CPP EXERCISE-I (A)

MATHEMATICS

Q:1 Find the coefficients : (ii) x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ (iii) x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$

(iii) Find the relation between a & b, so that these coefficients are equal.

- Q.2 If the coefficients of $(2r+4)^{th}$, $(r-2)^{th}$ terms in the expansion of $(1+x)^{18}$ are equal, find r.
- Q.3 If the coefficients of the r^{th} , $(r+1)^{th}$ & $(r+2)^{th}$ terms in the expansion of $(1+x)^{14}$ are in AP, find r.
- Find the term independent of x in the expansion of (a) $\left[\sqrt{\frac{x}{3}} + \frac{\sqrt{3}}{2x^2}\right]^{10}$ (b) $\left[\frac{1}{2}x^{1/3} + x^{-1/5}\right]^8$
 - Q.5 Find the sum of the series $\sum_{r=0}^{n} (-1)^r \cdot {^nC_r} \left[\frac{1}{2^r} + \frac{3^r}{2^{2r}} + \frac{7^r}{2^{3r}} + \frac{15^r}{2^{4r}} + \dots \right]$
- If the coefficients of 2^{nd} , 3^{rd} & 4^{th} terms in the expansion of $(1+x)^{2n}$ are in AP, show that $2n^2 9n + 7 = 0$.
 - Q.7 Given that $(1+x+x^2)^n = a_0 + a_1x + a_2x^2 + + a_{2n}x^{2n}$, find the values of: (i) $a_0 + a_1 + a_2 + + a_{2n}$; (ii) $a_0 - a_1 + a_2 - a_3 + a_{2n}$; (iii) $a_0^2 - a_1^2 + a_2^2 - a_3^2 + + a_{2n}^2$
- 2.8 If a, b, c & d are the coefficients of any four consecutive terms in the expansion of $(1+x)^n$, $n \in \mathbb{N}$, prove that $\frac{a}{a+b} + \frac{c}{c+d} = \frac{2b}{b+c}$.
 - Q.9 Find the value of x for which the fourth term in the expansion, $\left(5^{\frac{2}{5}\log_5\sqrt{4^x+44}} + \frac{1}{5^{\log_5\sqrt[3]{2^{x-1}+7}}}\right)^8 \text{ is } 336.$
 - Q.10 Prove that : ${}^{n-1}C_r + {}^{n-2}C_r + {}^{n-3}C_r + + {}^rC_r = {}^nC_{r+1}$
 - Q.11 (a) Which is larger: $(99^{50} + 100^{50})$ or $(101)^{50}$.
 - (b) Show that ${}^{2n-2}C_{n-2} + 2 \cdot {}^{2n-2}C_{n-1} + {}^{2n-2}C_n > \frac{4n}{n+1}$, $n \in \mathbb{N}$, n > 2
 - Q.12 In the expansion of $\left(1 + x + \frac{7}{x}\right)^{11}$ find the term not containing x.
 - Q.13 Show that coefficient of x^5 in the expansion of $(1+x^2)^5$. $(1+x)^4$ is 60.
- Q.14 Find the coefficient of x^4 in the expansion of: (i) $(1+x+x^2+x^3)^{11}$ (ii) $(2-x+3x^2)^6$
- Q.15 Find numerically the greatest term in the expansion of:
 - (i) $(2+3x)^9$ when $x = \frac{3}{2}$ (ii) $(3-5x)^{15}$ when $x = \frac{1}{5}$
 - Q.16 Given $s_n = 1 + q + q^2 + \dots + q^n$ & $S_n = 1 + \frac{q+1}{2} + \left(\frac{q+1}{2}\right)^2 + \dots + \left(\frac{q+1}{2}\right)^n$, $q \neq 1$, prove that ${}^{n+1}C_1 + {}^{n+1}C_2.s_1 + {}^{n+1}C_3.s_2 + \dots + {}^{n+1}C_{n+1}.s_n = 2^n$. S_n .
 - O.17 Prove that the ratio of the coefficient of x^{10} in $(1-x^2)^{10}$ & the term independent of x in

FIITJEE $\left(x - \frac{2}{y}\right)^{10}$ is 1:32.

PP

- Find the term independent of x in the expansion of $(1+x+2x^3)\left(\frac{3x^2}{2}-\frac{1}{3x}\right)$. LQ.18
 - In the expansion of the expression $(x + a)^{15}$, if the eleventh term is the geometric mean of the eighth and twelfth terms, which term in the expansion is the greatest?
- Q.20 Let $(1+x^2)^2 \cdot (1+x)^n = \sum_{k=0}^{n+4} a_k \cdot x^k$. If $a_1, a_2 & a_3$ are in AP, find n.
- If the coefficient of a^{r-1} , a^r , a^{r+1} in the expansion of $(1+a)^n$ are in arithmetic progression, prove that Q.21 $n^2 - n(4r + 1) + 4r^2 - 2 = 0$
- If ${}^{n}J_{r} = \frac{(1-x^{n})(1-x^{n-1})(1-x^{n-2})....(1-x^{n-r+1})}{(1-x)(1-x^{2})(1-x^{3})....(1-x^{r})}$, prove that ${}^{n}J_{n-r} = {}^{n}J_{r}$
- Q.23 Prove that $\sum_{K=0}^{n} {^{n}C_{K}} \sin Kx \cdot \cos(n-K)x = 2^{n-1} \sin nx.$
- Q.24 together and the terms of the product thus obtained are arranged in increasing powers of x in the form of $a_0 + a_1 x + a_2 x^2 + \dots$, then,
- how many terms are there in the product. (a)
- show that the coefficients of the terms in the product, equidistant from the beginning and end are equal. (b)
- show that the sum of the odd coefficients = the sum of the even coefficients = $\frac{(n+1)!}{2}$ (c)
- (a) x^6 in the expansion of $(ax^2 + bx + c)^9$. (b) $x^2y^3z^4$ in the expansion of $(ax by + cz)^9$ Find the coeff. of 0.25

 - $a^2 b^3 c^4 d$ in the expansion of $(a b c + d)^{10}$. (c)
- Q.26 If $\sum_{n=0}^{2n} a_r (x-2)^r = \sum_{n=0}^{2n} b_r (x-3)^r$ & $a_k = 1$ for all $k \ge n$, then show that $b_n = 2n+1$ C_{n+1}.
- Q.27 If $P_k(x) = \sum_{i=0}^{i=k-1} x^i$ then prove that, $\sum_{k=1}^{n} {}^{n}C_k P_k(x) = 2^{n-1} \cdot P_n \left(\frac{1+x}{2}\right)$
- Find the coefficient of xr in the expression of : 0.28 $(x+3)^{n-1} + (x+3)^{n-2}(x+2) + (x+3)^{n-3}(x+2)^2 + \dots + (x+2)^{n-1}$
- Q.29(a) Find the index n of the binomial $\left(\frac{x}{5} + \frac{2}{5}\right)^n$ if the 9th term of the expansion has numerically the greatest coefficient $(n \in N)$.
 - (b) For which positive values of x is the fourth term in the expansion of $(5 + 3x)^{10}$ is the greatest.
- Prove that $\frac{(72)!}{(36!)^2} 1$ is divisible by 73.
- If the 3^{rd} , 4^{th} , 5^{th} & 6^{th} terms in the expansion of $(x+y)^n$ be respectively a, b, c & d then prove that

 $\frac{b^2 - ac}{c^2 - bd} = \frac{5a}{3c}.$

Q.32 Find x for which the $(k+1)^{th}$ term of the expansion of $(x+y)^n$ is the greatest if x+y=1 and x>0, y>0.