Weight Shuchires

and

geometric representation

theory

Cathonina Stroppel

(Housdorff Center Uni Bonn)

HANDOUT

jt vill J. Eberhordt

1 Convolution

 μ_1 μ_2 μ_2 μ_2

Smooth voneties / R=R

M: proper
W not necessorily smooth

Xy WX KPr

 (α,β)

 $\alpha * \beta := \rho r_{x} \circ \Delta \cdot ((\alpha, \beta))$

Ch (X; xNXx)

Convolution

> Ch (X; xw Xj)

Ch (x; ~wxj)

Chow groups of cocycles/rotional equivelence (world wik @ coethicients)

Repd

veder compositions of d

(~ Khovenov-Lande Rouguier Mohivic KLR-algebra Veragnolo-Vesserot) Motivic Quiver Schur Olgebra (S. - Webskel) 3) $X = \frac{G}{8}$ fleg vericly Xw Schubert voniety (we Weyl group) Xu Schubert cell BS (U) Mu = BoH - Samelson resolution of Xu 1-equivonont Ch (BS(w) x BS(v))) endomorphism Olgebra of certain Soergel bimodules 4) [Graded] Heck elgeloras

(Luszha)

Theorem [Eberhardt-S.) [Formality] Sehip: Wi iEI smooth venichy / Top) M. proper, G-equiv N (not necess. smooth) Geffire 05 STP E:= P Ch (Wir w Wj) algebora Assume (PT) M(p-1/x1) E < Q(n) [2n] > (F) (4) (PO) $\mu_i(\tilde{V}_i) \in \mathcal{N}$ hoo finitely mony G-abits DMG (W) EDMG (W) Doelf (E) perfect derived derived. Springer Cotegory of Z-graded cet. of G-Mohives equiv. mohino E-module

She over on W

Theorem (ES): Possumptions hold in above examples assuming type AADE in 2)

(uses results of

De Concini - Luszlig

Cerulli- Irelli- Exposits - Tronzen- Reineke

Maksimau)

Structures

Definition A.2. [Bon10] Definition 1.1.1] Let $\mathcal C$ be a triangulated category. A weight structure $\mathbf w$ on $\mathcal C$ is a pair $\mathbf w = (\mathcal C^{w \le 0}, \mathcal C^{w \ge 0})$ of full subcategories of $\mathcal C$, which are closed under direct summands, such that with $C^{w \leq n} := C^{w \leq 0}[-n]$ and $\mathcal{C}^{w \geq n} := \mathcal{C}^{w \geq 0}[-n]$ the following conditions are satisfied:

- (1) $C^{w \le 0} \subseteq C^{w \le 1}$ and $C^{w \ge 1} \subseteq C^{w \ge 0}$;
- (2) for all $X \in \mathcal{C}^{w \geq 0}$ and $Y \in \mathcal{C}^{w \leq -1}$, we have $\operatorname{Hom}_{\mathcal{C}}(X, Y) = 0$;
- (3) for any $X \in \mathcal{C}$ there is a distinguished triangle

$$A \longrightarrow X \longrightarrow B \stackrel{+1}{\longrightarrow}$$

with $A \in \mathcal{C}^{w \ge 1}$ and $B \in \mathcal{C}^{w \le 0}$.

The full subcategory $C^{w=0} = C^{w \leq 0} \cap C^{w \geq 0}$ is called the heart of the weight struture.

Definition A.1. [BBD82], Definition 1.3.1] Let $\mathcal C$ be a triangulated category. A t-structure t on $\mathcal C$ is a pair $t=(\mathcal C^{t\leq 0},\mathcal C^{t\geq 0})$ of full subcategories of $\mathcal C$ such that with $\mathcal C^{t\leq n}:=\mathcal C^{t\leq 0}[-n]$ and $\mathcal C^{t\geq n}:=\mathcal C^{t\geq 0}[-n]$ the following conditions are satisfied:

- (1) $C^{t \le 0} \subseteq C^{t \le 1}$ and $C^{t \ge 1} \subseteq C^{t \ge 0}$; (2) for all $X \in C^{t \le 0}$ and $Y \in C^{t \ge 1}$, we have $\operatorname{Hom}_{\mathcal{C}}(X, Y) = 0$;
- (3) for any $X \in \mathcal{C}$ there is a distinguished triangle

$$A \longrightarrow X \longrightarrow B \stackrel{+1}{\longrightarrow}$$

with $A \in \mathcal{C}^{t \leq 0}$ and $B \in \mathcal{C}^{\geq 1}$.

The full subcategory $C^{t=0} = C^{t \le 0} \cap C^{t \ge 0}$ is called the heart of the t-struture.

Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)

also require all categories to be idempotent complete

General combruction (Bondarko)

Cet, colompotent Mong.

Collection of objets

negative

n > 0.

finder realisation

complex Rundon Bondeillo's weight

Prop: Assume &. Then

wh is an equivalence

E) ev=0 is filling

Vito YM,NE ew=0 Hom (M, N [i])=0

(Chow) motives

Define cotegory of correspondences lover N)

Smooth

proper

Corr (N) = | objecto: M(X/N) for X -> N Q-equiv.

Corr (N) = (M(X/N) M(X/N)) = CH(X/N)

Corr (N)

additive coregory

Can take Koroubian closure Kar (Corr (W))

J lefsclet motive

e.g. $\mathcal{M}(P'_{\mathcal{N}}) = Q \circ L$

Chow(N) = Kar (Gra(W)) [IL OM]

a-equivariant Chow motives

Bondorko: G-equir Chow motives form of weight structure on triongulated cod. DM (IN) = derived cat of G - equivorons geometric morives over W (= motiviz sheaves on W)

Main point behind formality Hearem:

Springer motives are a certain tilting family inside DM (N)