How useful is causal discovery when making predictions?

MATH-516 Applied Statistics

Linda Mhalla

2024-04-22

Introduction: Local causal discovery

Local causal discovery methods focus on identifying causal relationships within a specific subset of variables in complex systems

 \rightarrow targets localized areas, reducing complexity and computational demands

Key Methods:

- Constraint-based approaches: utilize conditional independence tests within a confined set of variables, e.g., the PC algorithm applied locally
- Score-based approaches: evaluate a subset of models based on a scoring criterion that measures how well the model fits the data for a particular subset of variables

Applications:

- Biological Systems: particularly useful in studying gene regulatory networks where full network analysis is unfeasible
- Economic Models: applied to study localized economic interactions without needing to model the entire economic system

Introduction: Local causal discovery

For a target variable T, local causal discovery methods aim at learning its $Markov\ blanket$, i.e., the direct causes (parents), direct effects (children), and spouses (direct causes of the direct effects) of T, yielding its "neighbourhood" in the causal DAG

 \Rightarrow not interested in the causal DAG of the entire system of (T,\mathbf{X}) but only on the causal DAG around T

Popular constraint-based methods:

- IAMB (Incremental Association Markov Blanket) (Tsamardinos et al., 2003): incrementally adds and then removes variables to find the Markov blanket, using conditional independence tests
- HITON-PC (Aliferis et al. 2003): identifies the Markov blanket of a target variable using conditional independence tests

Introduction: Local causal discovery

Popular constraint-based methods:

• Max-Min Markov Blanket (mmmb) (Tsamardinos et al., 2003): forward selection on a maximum-minimum conditional dependence on T + backward elimination

Note: All rely on the faithfulness condition

Data and aim

LUCASO data: artificially generated **lung cancer data** set for studying causal discovery

 along with the binary variable Lung_cancer, 11 binary features/covariates are available, e.g., Smoking, Anxiety, Allergy, etc

Pre-defined training and test data provided in repository for comparability (lucas_train.csv and lucas_test.csv)

The goal of this project is to investigate

- how stable (local) causal discovery is and
- how far it can pay off also in terms of prediction accuracy

Tasks

To model the effect of the other variables given for each patient/control in the data set on lung cancer (target variable T), perform classification using logistic regression, where — instead of using all of the 11 variables — you reduce the set of features/covariates by

- $\ensuremath{\bullet}$ performing standard variable selection, such as, e.g., by using a L_1 penalty (LASSO)
- ullet using the **PC algorithm** for causal discovery and selecting only variables in the Markov blanket around T
- ullet using a local causal discovery method (such as implemented in the R packages bnlearn and MXM) to get the Markov blanket around T and keeping only the corresponding variables
- ${\color{red} \bullet}$ selecting the true variables Smoking , Genetics, Fatigue, Coughing and Allergy in the actual Markov blanket around T

and compare the prediction performance on the test set

Tasks

Do this

- for different samples sizes ("small", "medium", and "large" corresponding to different shares of the provided training set)
- discussing also the stability of the (local) causal discovery, and
- adding a brief description of the chosen local discovery method to the report