Simulating lattice spin models on today's quantum computers

Mateusz Salamon

30 August 2022

Supervisor: Karl Jansen, Centre for Quantum Technologies and Applications, DESY

Quantum Computing

- Based on qubits: $|\psi\rangle = \alpha \, |0\rangle + \beta \, |1\rangle$
- Utilise superposition and entanglement
- Promise of a 'quantum advantage'
- Use-case: quantum simulation of spin systems, molecules...

Figure: Superconducting quantum computers developed by IBM.

(Image sources:

https://www.nature.com/articles/d41586-021-03476-5;

https://research.ibm.com/blog/fraunhofer-quantum-system-one;

https://research.ibm.com/interactive/system-one)

VQE - Variational Quantum Eigensolver

- Hybrid quantum-classical algorithm
- ► Finds the ground state by minimising the Hamiltonian expectation value using the **variational principle**:

$$\langle \psi(\theta)|H|\psi(\theta)\rangle \geq E_0$$

► Applications: chemistry, lattice models and many more

Figure: A schematic showing the steps of the VQE algorithm.

(Image source: http://opengemist.1qbit.com/docs/vqe_microsoft_qsharp.html)

Transverse-field Ising model

Hamiltonian of the model:

$$H = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - h \sum_i \sigma_i^x$$

- Non-commuting operators σ_x and $\sigma_y \Rightarrow$ quantum effects!
- Exhibits a quantum phase transition as the field h is varied
- Can measure magnetisation to find the transition point

Figure: Solutions for various fields h found by 'exact' diagonalisation for a system of 4 spins in a chain.

Methods

- Choice of an ansatz
- Finding the right optimiser (COBYLA, SLSQP, SPSA, ...)
- ▶ Degenerate ground state for low h
 ⇒ necessary to add a bias magnetic field in the z-direction:

$$-h_z \sum_i \sigma_i^z$$

Figure: A standard ansatz of 'RyRz' type with layer depth equal to 2.

Ideal quantum computer simulation

Best set of results from an ideal simulation:

- 4 spins in a chain
- ► SLSQP, 1000 iterations
- ► Energy error: within 1-2%
- ► State fidelity: over 97%

Effects of noise and error mitigation

- In the near future only noisy and small devices available
- Full quantum error correction requires many qubits
- Measurement error mitigation:
 - 1. Perform measurements
 - 2. Measure basis states
 - 3. Construct calibration matrix M
 - 4. Apply inverted matrix to results

$$M = \begin{bmatrix} 0.9022 & 0.0978 \\ 0.0951 & 0.9049 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} 1.12117 & -0.12117 \\ -0.11783 & 1.11783 \end{bmatrix}$$

Question: Can today's noisy quantum computers be useful?

Real IBM hardware

Results from the IBMQ Belem device:

- ▶ 4 spins in a chain
- ► SPSA, 1000 iterations
- ► Energy error: within 10-20%
- ► State fidelity: mostly over 90%

Excited states

- Variational Quantum Deflation (VQD) extension to VQE for finding the excited states
- ▶ **Iterative method:** uses previously found ground state to get 1st excited state, which is then used for 2nd exited state, etc.
- ▶ Issue difficult to deal with degenerate states

STATE	GROUND	1ST EXCITED
Energy	-10.021	-4.926
(Exact)	-10.025	-5.525
Mag. in z	0.000	-0.010
(Exact)	0.000	0.000
Mag. in x	0.998	0.497
(Exact)	0.997	0.498
Fidelity	0.993	0.001

Table: An example set of results from VQD for field h = 10.

Conclusions and Outlook

What was achieved:

- Demonstrated a possibility to simulate lattice spin models on ideal quantum computers
- Analysed the effects of noise on the results
- Used real, noisy quantum computers to find ground states of a simple lattice Hamiltonian
- Attempted to find low-lying excited states with ideal quantum computer (partially successful)

Future work?

- Understand how to obtain excited states more reliably
- Attempt at using VQD on real hardware
- Scale up the number of qubits