

Cryptocurrency Forecasting with Quantum Machine Learning

CatsInHilbertSpace

Project Overview

- The purpose of this work is to compare quantum and classical machine learning methods for time series forecasting of cryptocurrency
- In particular, this project analyzes the value of Ethereum, between 2015 and 2021. The
 project focuses on making near-term predictions of the open price given data from previous
 days
- The techniques include a classical CNN, Hybrid CNN with quantum layer, and custom quantum variational algorithm for sequences

Motivation

- Cryptocurrencies are notoriously volatile and challenging to predict
- However, there is a great financial incentive in predicting their value
- Ethereum is one of the most popular cryptocurrencies with a value that has grown drastically from \$7 in February 2016 to around \$2600 in February 2022
- This motivated forecasting the Ethereum Open price of Ethereuem given data such as Open,
 Close, and Volume of the previous (e.g. 5) days
- The goal was to compare quantum and classical forecasting models of Ethereum

Data

- Ethereum Data Arpit Verma: https://www.kaggle.com/varpit94/ethereum-data
- This data consists of the Open, High, Low, Close, Adj Close, and Volume for each day between August 2015 to December 2021

Date Y	Open ▼	High ▼	Low ▼	Close ▼	Adj Close ▼	Volume ▼
2015-08-07	2.83	3.54	2.52	2.77	2.77	164329
2015-08-08	2.79	2.8	0.71	0.75	0.75	674188
2015-08-09	0.71	0.88	0.63	0.7	0.7	532170
2015-08-10	0.71	0.73	0.64	0.71	0.71	405283
2015-08-11	0.71	1.13	0.66	1.07	1.07	1463100
2015-08-12	1.06	1.29	0.88	1.22	1.22	2150620
2015-08-13	1.22	1.97	1.17	1.83	1.83	4068680
2015-08-14	1.81	2.26	1.75	1.83	1.83	4637030
2015-08-15	1.8	1.88	1.57	1.69	1.69	2554360
2015-08-16	1.68	1.7	1.09	1.57	1.57	3550790
2015-08-17	1.58	1.58	1.19	1.2	1.2	1942830
2015-08-18	1.22	1.33	1.09	1.09	1.09	1485680
2015-08-19	1.17	1.32	1.17	1.26	1.26	1486240
2015-08-20	1.25	1.53	1.25	1.46	1.46	2843760
2015-08-21	1.48	1.56	1.35	1.4	1.4	2020970
2015-08-22	1.4	1.48	1.35	1.38	1.38	948310

Algorithms

- CNN: Convolutional Neural Network
 - Primarily used in processing image data, but also proven useful and efficient in sequential data using 1D convolutional layers
 - Used two 1D convolutional layers followed by max pooling layers, and ending with two dense layers
- Hybrid CNN: Convolutional Neural Network with one-two quantum layers
 - Same structure as CNN but replaced one dense layer with one-two quantum layers
 - Quantum layer includes angle embedding of features and different circuit structures, such as PennyLane's defined strongly entangled layers
- Variational Algorithm: Custom variational algorithm
 - Circuit iterates over sequence, embedding each previous date's data with an angle embedding of the features into the six qubits and using similar circuit structures as in Hybrid CNN

Software & Services

- PennyLane: for the Hybrid CNN and Variational Algorithm
- Braket: for running on simulators
- Torch: for CNN and Hybrid CNN
- Scikit-Learn: for preprocessing data
- Matplotlib: for plotting data
- Pandas and Numpy: for representing data

Procedure

- Read: read data in as pandas dataframe
- Preprocess: basic preprocessing, including standardizing the features, scaling y between 0 and 1, and reshaping data.
- Train: optimize square loss comparing training batch processed predictions and true values
- Test: compare square loss of predictions and true values
- Write: write results to csv file, including information about parameters
- Plot: plot results in several formats, comparing different model predictions

Plot 1: Local Simulator CNN (+ Quantum)

Overall

- Size: Train: 100 samples, Test: 50
- Iterations: 1000, Batch Size: 10
- CNN Layers Out Channels: 128, 64
- Lookback: 5

-CNN

- Times: Train: 1.94s, Test: .002
- Loss: Train: 9.45e-7, Test: 1.05e-5

CNN+Quantum

- Times: Train: 776.82s, Test: 2.44
- Loss: Train: 1.03e-7, Test: **4.67e-7**

Plot 2: Local Simulator CNN (+ Quantum)

Overall

Size: Train: 100 samples, Test: 50

■ Iterations: 1000, Batch Size: 5

CNN Layers Out Channels: 128, 64

Lookback: 4

-CNN

■ Times: Train: 4.69s, Test: .002

Loss: Train: 9.97e-07, Test: 1.123e-05

CNN+Quantum

Times: Train: 154.53, Test: 0.86

Loss: Train: 1.30e-07, Test: **9.49e-07**

Plot 3: Local Simulator CNN (+ Quantum) & Custom Variational Sequential

Overall

- Size: Train: 100 samples, Test: 50
- Iterations: 1000 (100 for Variational), Batch Size: 10
- CNN Layers Out Channels: 64, 32
- Lookback: 5

CNN

- Times: Train: 3.74s, Test: .002
- Loss: Train: 4.55e-6, Test: **0.00012**

CNN+Quantum

- Times: Train: 152.61s, Test: .833
- Loss: Train: 1.85e-5, Test: 0.000138

Custom Variational Sequential

- Times: Train: 395.17s, Test: 0.35
- Loss: Train: 0.005, Test: 0.002

Plot 4: Local Simulator CNN (+ Quantum) & Custom Variational Sequential

Overall

- Size: Train: 50 samples, Test: 25
- Iterations: 1000 (100 for Variational), Batch Size: 5
- CNN Layers Out Channels: 64, 32
- Lookback: 4

CNN

- Times: Train: 4.15s, Test: .002
- Loss: Train: 1.06e-6, Test: 0.00024

CNN+Quantum

- Times: Train:157.44s, Test: .423
- Loss: Train: 1.28e-6, Test: **2.60e-5**

Custom Variational Sequential

- Times: Train: 2714s*, Test: .0.438
- Loss: Train: 0.003, Test: 0.004

Overall Trends

- Overall, non-quantified trends that were observed from the different parameter choices and train and test sizes. The following rankings were observed:
- Best performance (testing square loss)
 - 1. Hybrid CNN + Quantum
 - 2. CNN
 - 3. Custom Variational Sequential
- Fastest (test and train times)
 - 1. CNN
 - 2. Hybrid CNN + Quantum
 - 3. Custom Variational Sequential

Discussion

- There is a potential performance benefit to incorporating quantum layers
- The hybrid algorithm with quantum and classical layers outperforms the customized sequential model, and in many cases, the classical CNN as well
- At later dates, the value of the cryptocurrency was more difficult to predict than earlier dates
- Due to time constraints, although the models were run on Braket QPU and Simulators, the runs did not terminate in time to plot their results

Conclusion

- Forecasting cryptocurrency prices is an important and challenging problem
- This project focused on smaller training and testing sizes, using recent data to make predictions about the near future
- Two quantum and one classical algorithm were used to forecast cryptocurrency prices
- The customized sequential quantum model was much slower to run and did not perform as well as the other two algorithms
- The hybrid quantum and CNN algorithm did perform well, at many points better than the purely classical CNN, indicating a performance benefit to incorporating quantum layers

Future Work

- Implement more classical and quantum algorithms, particularly recurrent algorithms such as LSTM and QRNN
- Continue to explore different parameter choices and layer structures to improve models
- Run on Braket QPUs, and use more shots
- Use different cryptocurrencies
- Predict different features e.g. Close price

Sources

- https://www.statista.com/statistics/806453/price-of-ethereum
- https://arxiv.org/abs/2006.14619
- https://controlandlearning.wordpress.com/2020/07/26/pytorch-basics-1d-convolution/
- https://cnvrg.io/pytorch-lstm/
- https://towardsdatascience.com/pytorch-lstms-for-time-series-data-cd16190929d7
- https://www.kdnuggets.com/2020/07/pytorch-lstm-text-generation-tutorial.html
- https://medium.com/swlh/stock-price-prediction-with-pytorch-37f52ae84632
- Cat image credit: Shutterstock

