Álgebra Lineal - Clase 5

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Matrices elementales.
- Coordenadas y cambios de base.
- Noción de transformación lineal.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 2 (Secciones 2.3 y 2.4), Capítulo 3 (Sección 3.1.1).

Matrices elementales

Operación de filas en matrices $n \times n$

~~→

Matriz que se obtiene al aplicar operación de filas a I_n

1. Intercambiar dos filas.

Para $1 \le i, j \le n$, se define $P^{ij} = I_n - E^{ii} - E^{jj} + E^{jj} + E^{ji}$, la matriz que resulta al intercambiar las filas i y j en I_n .

Si $A \in K^{n \times n}$, el producto $P^{ij}A$ es la matriz que resulta al intercambiar las filas i y j en A.

$$P^{ij} P^{ij} = I_n \Rightarrow P^{ij} \in GL(n,K) \text{ y } P^{ij-1} = P^{ij}.$$

Ejemplo.

En
$$K^{3\times3}$$
, $P^{12} = I_3 - E^{11} - E^{22} + E^{12} + E^{21}$.

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

2. Multiplicar una fila por una constante no nula.

Para $\lambda \in K - \{0\}$ y $1 \le i \le n$, $M_i(\lambda) = I_n + (\lambda - 1).E^{ii}$ se obtiene al mutiplicar por λ la i-ésima fila de I_n .

Si $A \in K^{n \times n}$, el producto $M_i(\lambda)A$ es la matriz que resulta al multiplicar por λ la i-ésima fila de A.

$$M_i(\lambda)M_i(\lambda^{-1}) = I_n \text{ y } M_i(\lambda^{-1})M_i(\lambda) = I_n$$

 $\Rightarrow M_i(\lambda) \in GL(n, K) \text{ y } (M_i(\lambda))^{-1} = M_i(\lambda^{-1}).$

Ejemplo.

En
$$K^{3\times 3}$$
, $M_3(\lambda) = I_3 + (\lambda - 1)E^{33}$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ \lambda a_{31} & \lambda a_{32} & \lambda a_{33} \end{pmatrix}$$

3. Reemplazar una fila por ella misma más un múltiplo de otra. Para $\lambda \in K$ y $1 \le i, j \le n$ con $i \ne j$, $T^{ij}(\lambda) = I_n + \lambda E^{ij}$

se obtiene de I_n al sumarle a la i-ésima fila, λ por la fila j.

Si $A \in K^{n \times n}$, $T^{ij}(\lambda)A$ es la matriz que se obtiene de A al sumarle a la i-ésima fila, λ por la fila j.

$$T^{ij}(\lambda)T^{ij}(-\lambda) = I_n \text{ y } T^{ij}(-\lambda)T^{ij}(\lambda) = I_n$$

$$\Rightarrow T^{ij}(\lambda) \in GL(n,K) \text{ y } (T^{ij}(\lambda))^{-1} = T^{ij}(-\lambda).$$

Ejemplo.

En
$$K^{3\times 3}$$
, $T^{31}(\lambda) = I_3 + \lambda E^{31}$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \lambda & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ \lambda a_{11} + a_{31} & \lambda a_{12} + a_{32} & \lambda a_{13} + a_{33} \end{pmatrix}$$

Observación.

Las matrices elementales se pueden pensar a partir de hacer operaciones en las columnas de I_n y, por multiplicación a derecha, producen esas operaciones en las columnas de $A \in K^{n \times n}$.

Observación.

Escalonar una matriz mediante operaciones de filas es multiplicarla a izquierda por matrices elementales.

Proposición.

Dada $A \in K^{n \times n}$, existen matrices elementales $E_1, \ldots, E_r \in K^{n \times n}$ tales que $E_r \ldots E_1 A$ es triangular superior. Si, además, $E_r \ldots E_1 A$ no tiene ceros en la diagonal, existen matrices elementales E_{r+1}, \ldots, E_s tales que $E_s \ldots E_{r+1} E_r \ldots E_1 A = I_n$. En consecuencia, A es producto de

matrices elementales, $A = E_1^{-1} \dots E_s^{-1}$, y $A^{-1} = E_s \dots E_1$.

En particular, si por medio de la aplicación de operaciones elementales a las filas de A se obtiene I_n , aplicando las mismas operaciones en las filas de I_n se obtiene A^{-1} :

$$(A \mid I_n) \rightsquigarrow (I_n \mid A^{-1})$$

Coordenadas en una base

Proposición.

Sea V un K-e.v. de dimensión finita y sea $B=\{v_1,\ldots,v_n\}$ una base de V. Para cada $v\in V$ existen únicos $\alpha_1,\ldots,\alpha_n\in K$ tales que $v=\sum\limits_{i=1}^n\alpha_iv_i$.

El vector $(\alpha_1, \ldots, \alpha_n) \in K^n$ se llama el vector de coordenadas de v en la base B. Lo notaremos $(v)_B$.

Demostración.

Existencia: B base de $V \Rightarrow B$ es un sistema de generadores de V.

Unicidad:
$$\sum_{i=1}^{n} \alpha_{i} v_{i} = \sum_{i=1}^{n} \beta_{i} v_{i} \Rightarrow \sum_{i=1}^{n} (\alpha_{i} - \beta_{i}) v_{i} = 0.$$
$$\{v_{1}, \dots, v_{n}\} \text{ l.i. } \Rightarrow \alpha_{i} - \beta_{i} = 0 \ \forall 1 \leq i \leq n.$$
$$\Rightarrow \alpha_{i} = \beta_{i} \ \forall 1 \leq i \leq n.$$

Ejemplos.

$$V = \mathbb{R}_4[X], B = \{1, X, X^2, X^3, X^4\} \text{ y}$$

 $B' = \{X^4, X^3, X^2, X, 1\} \text{ bases de } V.$

$$(2X^3 + 3X^2 - 1)_B = (-1, 0, 3, 2, 0).$$

$$(2X^3 + 3X^2 - 1)_{B'} = (0, 2, 3, 0, -1).$$

▶
$$V = \mathbb{R}^3$$
 , $E = \{(1,0,0), (0,1,0), (0,0,1)\}$ la base canónica. Para cada $(x,y,z) \in \mathbb{R}^3$, vale $(x,y,z)_E = (x,y,z)$.

$$V = \mathbb{R}^3$$
, $B = \{(0,2,1), (1,-1,0), (1,0,0)\}$. Para cada $(x,y,z) \in \mathbb{R}^3$,

$$(x, y, z) = z(0, 2, 1) + (-y + 2z)(1, -1, 0) + (x + y - 2z)(1, 0, 0).$$

$$\Rightarrow (x,y,z)_B = (z,-y+2z,x+y-2z).$$

Observar:

$$(v)_B^t = \begin{pmatrix} z \\ -y + 2z \\ x + y - 2z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = C \cdot (v)_E^t.$$

Cambios de base

Definición.

Sea
$$V$$
 un K -e.v. y sean $B_1 = \{v_1, \ldots, v_n\}$ y $B_2 = \{w_1, \ldots, w_n\}$ bases de V . Para cada $1 \le j \le n$, sea $v_j = \sum_{i=1}^n \alpha_{ij} w_i$. Se llama matriz de cambio de base de B_1 a B_2 , y se nota $C(B_1, B_2) \in K^{n \times n}$, a la matriz definida por $(C(B_1, B_2))_{ij} = \alpha_{ij}$ para cada $1 \le i, j \le n$.
$$C(B_1, B_2) = ((v_1)_{B_2}^t \ldots (v_i)_{B_2}^t \ldots (v_n)_{B_n}^t).$$

Ejemplo.
$$V = \mathbb{R}^3$$
, $B_1 = \{(1,0,0),(0,1,0),(0,0,1)\}$ y $B_2 = \{(0,2,1),(1,-1,0),(1,0,0)\}$. $(1,0,0) = 0.(0,2,1) + 0.(1,-1,0) + 1.(1,0,0)$ $(0,1,0) = 0.(0,2,1) + (-1).(1,-1,0) + 1.(1,0,0)$ $(0,0,1) = 1.(0,2,1) + 2.(1,-1,0) + (-2).(1,0,0)$

$$C(B_1, B_2) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & 1 & -2 \end{pmatrix}.$$

Proposición.

Sea V un K-e.v. dimensión finita, y sean B_1 y B_2 bases de V. Entonces $C(B_1, B_2)$ es la única matriz en $K^{n \times n}$ que verifica $C(B_1, B_2).(v)_{B_1}^t = (v)_{B_2}^t$ para todo $v \in V$.

Demostración.

Sean $B_1 = \{v_1, \ldots, v_n\}$ y $B_2 = \{w_1, \ldots, w_n\}$. Supongamos que $(C(B_1, B_2))_{ij} = \alpha_{ij} \ (1 \le i, j \le n)$, es decir $v_j = \sum_{i=1}^n \alpha_{ij} w_i \ \forall j$. Sea $v \in V$, $v = \sum_{k=1}^n a_k v_k$. Para cada $1 \le h \le n$, sea

$$b_h = \left(C(B_1, B_2).(v)_{B_1}^t\right)_h = \sum_{k=1}^n \alpha_{hk} a_k.$$

Basta ver que $v = \sum_{h=1}^{n} b_h w_h$.

$$\sum_{h=1}^{n} b_{h} w_{h} = \sum_{h=1}^{n} \left(\sum_{k=1}^{n} \alpha_{hk} a_{k} \right) w_{h} = \sum_{h=1}^{n} \left(\sum_{k=1}^{n} \alpha_{hk} a_{k} w_{h} \right) =$$

$$= \sum_{k=1}^{n} \left(\sum_{h=1}^{n} \alpha_{hk} a_{k} w_{h} \right) = \sum_{k=1}^{n} a_{k} \left(\sum_{h=1}^{n} \alpha_{hk} w_{h} \right) = \sum_{k=1}^{n} a_{k} v_{k} = v.$$

Unicidad: consecuencia de que si $A, A' \in K^{n \times n}$ verifican A.x = A'.x para todo $x \in K^n$, entonces A = A'.

Corolario

Sean V un K-e.v. de dimensión finita y B_1 , B_2 y B_3 bases de V. Entonces:

- $ightharpoonup C(B_1, B_3) = C(B_2, B_3)C(B_1, B_2).$
- $ightharpoonup C(B_2, B_1) = C(B_1, B_2)^{-1}.$

Demostración.

- $C(B_2, B_3)C(B_1, B_2)(v)_{B_1}^t = C(B_2, B_3)(v)_{B_2}^t = (v)_{B_3}^t \ \forall \ v \in V$ $\Rightarrow C(B_2, B_3)C(B_1, B_2) = C(B_1, B_3)$
- $C(B_2, B_1)C(B_1, B_2) = C(B_1, B_1) = I_n,$ $C(B_1, B_2)C(B_2, B_1) = C(B_2, B_2) = I_n$ $\Rightarrow C(B_2, B_1) = C(B_1, B_2)^{-1}.$

Proposición

Dada $A \in GL(n, K)$, existen bases B_1, B_2 de K^n tales que $A = C(B_1, B_2)$.

Demostración.

Supongamos que $A_{ij}=a_{ij}$ para $1\leq i\leq n,\, 1\leq j\leq n.$

Sean $B_2 = \{e_1, \dots, e_n\}$, la base canónica de K^n , y

$$B_1 = \left\{ \sum_{i=1}^n a_{i1}e_i, \dots, \sum_{i=1}^n a_{in}e_i \right\}$$
 (vectores columna de A).

Veamos que B_1 es l.i.: si $\sum_{i=1}^n \alpha_i \left(\sum_{i=1}^n a_{ij}e_i\right) = 0$,

$$0 = \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \alpha_j a_{ij} e_i \right) = \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \alpha_j a_{ij} e_i \right) = \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \alpha_j a_{ij} \right) e_i.$$

$$\Rightarrow \sum_{j=1}^{n} a_{ij} \alpha_j = 0 \ \forall 1 \leq i \leq n$$
, o equivalentemente, $A = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = 0$.

A inversible $\Rightarrow \alpha_1 = \cdots = \alpha_n = 0$. Luego, B_1 es una base de K^n .

Es claro que $C(B_1, E) = A$.

Proposición.

Sea $A \in GL(n, K)$ y sea B una base de un K-e.v. V. Entonces:

- i) Existe una base B_1 de V tal que $A = C(B_1, B)$.
- ii) Existe una base B_2 de V tal que $A = C(B, B_2)$.

Demostración.

- i) Se prueba como la proposición, reemplazando la base canónica E de K^n por la base B de V.
- ii) Por la parte i), dadas $A^{-1} \in GL(n, K)$ y la base B de V, existe una base B_2 de V tal que $A^{-1} = C(B_2, B)$.

$$\Rightarrow A = C(B_2, B)^{-1} = C(B, B_2).$$

Ejemplo.

Sean
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$
, $V = \mathbb{R}[X]_2$ y $B = \{1, X, X^2\}$.
 $B_1 = \{1, -1 + X, 2 - 3X + X^2\} \Rightarrow B_1$ base de V y $C(B_1, B) = A$.

Transformaciones lineales

Definición.

Sean $(V, +_V, \cdot_V)$ y $(W, +_W, \cdot_W)$ dos K-espacios vectoriales. Una función $f: V \to W$ se llama una transformación lineal de V en W si cumple:

i)
$$f(v +_{V} v') = f(v) +_{W} f(v') \quad \forall v, v' \in V.$$

ii)
$$f(\lambda \cdot_{V} v) = \lambda \cdot_{W} f(v) \quad \forall \lambda \in K, \forall v \in V.$$

Observación.

Si $f: V \to W$ es una t.l., entonces $f(0_V) = 0_W$.

En efecto, si $f(0_V) = f(0_V + 0_V) = f(0_V) + f(0_V)$, entonces

$$0_W = f(0_V) + (-f(0_V)) = (f(0_V) + f(0_V)) + (-f(0_V)) =$$

= $f(0_V) + (f(0_V) + (-f(0_V))) = f(0_V) + 0_W = f(0_V).$

Ejemplos.

- ▶ Si V y W son dos K-e.v., $0: V \to W$, $0(x) = 0_W \forall x \in V$, es una transformación lineal.
 - ▶ Si V es un K-e.v., $id: V \to V$, $id(x) = x \ \forall x \in V$, es una transformación lineal.
 - ▶ Si $A \in K^{m \times n}$, $f_A : K^n \to K^m$ definida por $f_A(x) = (A.x^t)^t$ es
 - una transformación lineal.
 - $\delta: K[X] \to K[X], \ \delta(P) = P'$ es una transformación lineal. ▶ $F : \mathcal{C}(\mathbb{R}) \to \mathbb{R}$, donde $\mathcal{C}(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ es continua}\}$,

 $F(g) = \int_{a}^{1} g(x) dx$ es una transformación lineal.

Ejemplo. Hallar, si es posible, una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ que verifique f(1,1) = (0,1) y f(1,0) = (2,3).

$$(x_1, x_2) = x_2.(1, 1) + (x_1 - x_2).(1, 0)$$

Si *f* cumple lo pedido:

$$f(x_1, x_2) = f(x_2.(1, 1) + (x_1 - x_2).(1, 0))$$

$$= f(x_2.(1, 1)) + f((x_1 - x_2).(1, 0))$$

$$= x_2.f(1, 1) + (x_1 - x_2).f(1, 0)$$

$$= x_2.(0, 1) + (x_1 - x_2).(2, 3)$$

$$= (2x_1 - 2x_2, 3x_1 - 2x_2).$$

f es una t.l., f(1,1) = (0,1) y f(1,0) = (2,3) \checkmark

Observación.

Si $f: V \to W$ es una t.l., $v_1, \ldots, v_r \in V$ y $v = \sum_{i=1}^r \alpha_i v_i$, entonces

$$f(\mathbf{v}) = f\left(\sum_{i=1}^r \alpha_i \mathbf{v}_i\right) = \sum_{i=1}^r f(\alpha_i \mathbf{v}_i) = \sum_{i=1}^r \alpha_i f(\mathbf{v}_i).$$

Teorema.

Sean V y W dos K-e.v., dim(V) = n. Sea $B = \{v_1, \ldots, v_n\}$ una base de V y sean $w_1, \ldots, w_n \in W$ vectores arbitrarios.

Existe una única transformación lineal $f: V \to W$ tal que $f(v_i) = w_i \ \forall 1 \le i \le n$.

Demostración.

Existencia: $v \in V \Rightarrow \exists \text{ únicos } \alpha_1, \ldots, \alpha_n \in K$: $v = \sum_{i=1}^n \alpha_i v_i$.

Definimos $f(v) = \sum_{i=1}^{n} \alpha_i w_i$. Veamos que f es una t.l.:

i) Sean
$$v = \sum_{i=1}^{n} \alpha_i v_i$$
 y $v' = \sum_{i=1}^{n} \alpha'_i v_i$ en V .

$$v + v' = \sum_{i=1}^{n} \alpha_{i} v_{i} + \sum_{i=1}^{n} \alpha'_{i} v_{i} = \sum_{i=1}^{n} (\alpha_{i} + \alpha'_{i}) v_{i}.$$

$$f(v+v') = \sum_{i=1}^{n} (\alpha_{i} + \alpha'_{i}) w_{i} = \sum_{i=1}^{n} \alpha_{i} w_{i} + \sum_{i=1}^{n} \alpha'_{i} w_{i} = f(v) + f(v').$$

ii) $f(\lambda v) = \lambda f(v) \ \forall \lambda \in K$, $\forall v \in V$, se prueba similarmente.

Unicidad: Supongamos que f y g son dos t.l. de V en W tales que $f(v_i) = w_i$ y $g(v_i) = w_i$ $\forall 1 \le i \le n$.

Si $v = \sum_{i=1}^{n} \alpha_i v_i$, se tiene que

$$f(v) = \sum_{i=1}^n \alpha_i f(v_i) = \sum_{i=1}^n \alpha_i w_i = \sum_{i=1}^n \alpha_i g(v_i) = g(v).$$

$$\Rightarrow f(v) = g(v) \ \forall v \in V \Rightarrow f = g.$$

Observación.

Similarmente se prueba que, si V y W son dos K-e.v. (V no necesariamente de dimensión finita), $B = \{v_i : i \in I\}$ es una base de V y $\{w_i : i \in I\} \subset W$, existe una única transformación lineal $f: V \to W$ tal que $f(v_i) = w_i \ \forall i \in I$.