DEVIN MAYA 3/17/23

Math 100A Homework 9

1. CH 12.1 PROB. 8 Consider the set $f = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x + 3y = 4\}$. Is this a function from \mathbb{Z} to \mathbb{Z} ?n Explain?

Solution. The set $f = (x, y) \in \mathbb{Z} \times \mathbb{Z} : x + 3y = 4$ can also be considered as a function from \mathbb{Z} to \mathbb{Z} . This is the function $f : \mathbb{Z} \to \mathbb{Z}$ defined as $y = \frac{4-x}{3}$

2. CH 12.2 Prob 4 A function $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ is defined as f(n) = (2n, n+3). Verify whether this function is injective and whether it is surjective.

Solution. First the objective is to verify if it is injective or One-to-One Suppose $m, n \in \mathbb{Z}$ and f(m) = f(n). Then (2m, m+3) = (2n, n+3) So 2m = 2n and m+3 = n+3 Thus m = n for both by dividing by two on the first equation and subtracting three for the second equation. Thus f is injective since f(m) = f(n), then m = n.

Now the objective is to verify surjectivity For any element $(a, b) \in \mathbb{Z} \times \mathbb{Z}$, there exists an $n \in \mathbb{Z}$ such that f(n) = (a, b).

Since $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ find n such that (2n,n+3) = (a,b) So 2n = a and n+3 = b Solving the first equation for n results in $n = \frac{a}{2}$ Since a is an integer then n will be an integer if a is even. Substituting n into the second equation results in $\frac{a}{2} + 3 = b$ This equation is satisfied for all $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ where a is even. If a is odd then the equation does not result in an integer. Thus a must be even for it to satisfy the equation. Thus f is not surjective.

Therefore function f(n) = (2n, n+3) is injective but not surjective.

3. CH 12.2 PROB 16 This question concerns functions $f : \{A, B, C, D, E\} \rightarrow \{1, 2, 3, 4, 5, 6, 7\}$. How many such functions are there? How many of these functions are injective? How many are surjective? How many are bijective?

Solution. Function f can be described as a list (f(A), f(B), f(C), f(D), f(E)) where there are seven choices for each entry. By the multiplication principle the total number of functions f is $7^5 = 16807$. If f is injective, then this list can't have any repetition so there are $7!/(7-5)! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 = 2520$ injective functions. Since the domain has fewer elements than the codomain 5 < 7 it is not surjective. Thus there are 0 surjective functions. Therefore it is not a bijective function since the domain and codomain do not have the same number of elements $5 \neq 7$ so there are 0 bijective functions. Therefore there are 16807 total functions, 2520 injective functions, 0 surjective functions, and 0

bijective functions.

4. CH 12.4 PROB 8 Consider the functions $f, g : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined as f(m, n) = (3m - 4n, 2m + n) and g(m, n) = (5m + n, m). Find the formulas for $g \circ f$ and $f \circ g$.

Solution.
$$g \circ f$$
: $g \circ f(m,n) = g(f(m,n)) = g(3m-4n,2m+n)$. Then $g(3m-4n,2m+n) = (5(3m-4n)+(2m+n),3m-4n) = (15m-20n+2m+n,3m-4n)$ Simplifying results in $g \circ f(m,n) = (17m-19n,3m-4n)$ $f \circ g$: $f \circ g(m,n) = f(g(m,n)) = f(5m+n,m)$. Then $f(5m+n,m) = (3(5m+n)-4m,2(5m+n)+m) = (15m+3n-4m,10m+2n+m)$ Simplifying results in $f \circ g(m,n) = (11m+3n,11m+2n)$ Therefore $g \circ f(m,n) = (17m-19n,3m-4n)$ and $f \circ g(m,n) = (11m+3n,11m+2n)$

5. CH 12.5 PROB 2. In Exercise 9 of Section 12.2, you proved that $f: \mathbb{R} - 2 \to \mathbb{R} - 5$ defined by $f(x) = \frac{5x+1}{x-2}$ is bijective. Now find its inverse.

Solution. The objective is to solve for x thus Multiply both sides by (x-2) results in y(x-2)=5x+1 xy-2y=5x+1 xy-5x=1+2y x(y-5)=1+2y $x=\frac{1+2y}{y-5}$ Therefore the inverse function $f^{-1}:\mathbb{R}-5\to\mathbb{R}-2$ is $f^{-1}(y)=\frac{1+2y}{y-5}$

6. CH 12.5 PROB 8 Is the function $\theta : \mathcal{P}(\mathbb{Z}) \to \mathcal{P}(\mathbb{Z})$ defined as $\theta(X) = \overline{X}$ bijective? If so, find θ^{-1} .

Solution. Verifying for injectivity first let $\theta(X) = \theta(Y)$. Then $\overline{X} = \overline{Y}$. Then X = Y. Therefore θ is injective.

Verifying for surjectivity let $Y \in \mathcal{P}(\mathbb{Z})$. $X \in \mathcal{P}(\mathbb{Z})$ such that $\theta(X) = Y$. If $X = \overline{Y}$ then $\theta(X) = \theta(\overline{Y}) = \overline{\overline{Y}} = Y$. Since the complement of a complement results in the regular set. Therefore θ is surjective.

therefore it is bijective since θ is both injective and surjective.

The inverse $\theta^{-1}: \mathcal{P}(\mathbb{Z}) \to \mathcal{P}(\mathbb{Z})$ is

$$\theta^{-1}(Y) = \overline{Y}$$

7. CH 12.6 PROB 6 Given a function $f: A \to B$ and a subset $Y \subseteq B$, is $f(f^{-1}(Y)) = Y$ always true? Prove or give a counterexample.

Solution. Let $f: \mathbb{R} \to \mathbb{R}$ be $f(x) = x^4$ or any even powered function such as $f(x) = x^2$ and let Y = 1. Then $f^{-1}(Y) = -1, 1$ and $f(f^{-1}(Y)) = f(-1, 1) = 1$. Y = 1 does not equal $f(f^{-1}(Y))$ so $f(f^{-1}(Y)) = Y$ is not true for all cases. Therefore disproving statement.

8. CH 12.6 PROB 10 Given $f: A \to B$ and subsets $Y, Z \subseteq B$, prove $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$.

Solution. First it will be shown that $f^{-1}(Y \cap Z) \subseteq f^{-1}(Y) \cap f^{-1}(Z)$ Let $a \in f^{-1}(Y \cap Z)$. By Definition 12.9 this means $f(a) \in Y \cap Z$. Thus $f(a) \in Y$ and $f(a) \in Z$. Since $f(a) \in Y$ then $a \in f^{-1}(Y)$ by Definition 12.9. Since $f(a) \in Z$ then $a \in f^{-1}(Z)$. Then $a \in f^{-1}(Y) \cap f^{-1}(Z)$. Results in $f^{-1}(Y \cap Z) \subseteq f^{-1}(Y) \cap f^{-1}(Z)$.

Now it will be shown that $f^{-1}(Y) \cap f^{-1}(Z) \subseteq f^{-1}(Y \cap Z)$ let $a \in f^{-1}(Y) \cap f^{-1}(Z)$. Then $a \in f^{-1}(Y)$ and $a \in f^{-1}(Z)$. By Definition 12.9 $f(a) \in Y$ and $f(a) \in Z$ thus $f(a) \in Y \cap Z$. By Definition 12.9, $f(a) \in Y \cap Z$ means $a \in f^{-1}(Y \cap Z)$. Results in $f^{-1}(Y) \cap f^{-1}(Z) \subseteq f^{-1}(Y \cap Z)$.

Therefore $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$ since $f^{-1}(Y \cap Z) \subseteq f^{-1}(Y) \cap f^{-1}(Z)$ and $f^{-1}(Y) \cap f^{-1}(Z) \subseteq f^{-1}(Y \cap Z)$.