MATLABによるGUIアプリの作成

~Corey Correlationによる相対浸透率曲線の可視化~

1. GUIアプリ概要

水と油が混在する場合のダルシー則

• 水相

$$\boldsymbol{v}_{\boldsymbol{w}} = -\frac{k\boldsymbol{k}_{\boldsymbol{r}\boldsymbol{w}}}{\mu_{\boldsymbol{w}}}(\nabla P_{\boldsymbol{w}} - \rho_{\boldsymbol{w}}\boldsymbol{g})$$

油相

$$\boldsymbol{v_o} = -\frac{k \boldsymbol{k_{ro}}}{\mu_o} (\nabla P_o - \rho_o \boldsymbol{g})$$

有効浸透率の絶対浸透率に対する比を相対浸透率という。

この値は飽和率の関数で,次のような曲線を描く。

 $S_w \leq S_{wc}$ で水の流動なし

 S_w が増加すると k_{rw} も増加

 S_o が減少すると k_{ro} も減少

 $S_o \leq S_{orw}$ で油の流動なし

(5) $S_w + S_o = 1$

- 相対浸透率は油層解析における重要なパラメータ(の1つ)
- 実際にはコア試験によって計測される離散的な値
- 相対浸透率を飽和率の関数として扱う様々な相関式が存在
- 今回は Corey Correlation (コーレイの式)を使用

cf. Honarpour, Stone I, Stone II, Baker

3. Corey Correlation

Water / Oil System

$$k_{ro} = k_{rocw} \left[\frac{1 - S_w - S_{orw}}{1 - S_{wc} - S_{orw}} \right]^{n_{ow}}$$
 0.8

$$k_{rw} = k_{rwro} \left[\frac{S_w - S_{wc}}{1 - S_{wc} - S_{orw}} \right]^{n_w}$$

コア試験の結果と曲線が一致するようにパラメータを調整

5. MATLABによるGUIアプリ作成

5. MATLABによるGUIアプリ作成

- MATLABユーザー間なら容易に共有できる
- .mlappinstall という拡張子のファイル
- MATLABユーザー以外とアプリケーションを 共有する場合には、MATLAB compilerが 便利(らしい)

https://jp.mathworks.com/products/com piler.html