Examen de Aprendizaje Automático

ETSINF, Universitat Politècnica de València, 7 de enero de 2019

Apellidos: Nombre:

Cuestiones (2 puntos; tiempo estimado: 30 minutos)

Marca cada recuadro con una única opción de entre las dadas. Cada acierto suma 0.4 puntos y cada fallo resta 1/6 puntos.

- 1 D Al aplicar el método de partición de datos denominado validación cruzada en 5 bloques a un conjunto de 1000 muestras, el clasificador obtiene, por bloque, 2, 5, 7, 8, 5 errores. Indicar la opción *correcta*:
 - A) El error es de $0.5\% \pm 0.5\%$.
 - B) La talla de entrenamiento efectiva es de 900 muestras.
 - C) La talla de entrenamiento efectiva es de 1000 muestras.
 - D) El error es de $2.7\% \pm 1\%$.
- 2 C En un clasificador en 3 clases resulta que la probabilidad a-posteriori de cada clase, y, dada una muestra \mathbf{x} es:

y	$P(Y = y \mid \mathbf{x})$
A	0.1
В	0.6
\mathbf{C}	0.3

Indicar cuál es la opción errónea:

- A) La probabilidad de error si se toma la decisión Y = B es 0.4.
- B) La mínima probabilidad de error es 0.4.
- C) La probabilidad de error si se toma la decisión Y = C es 0.4.
- D) La peor decisión es Y = A, cuya probabilidad de error es 0.9.
- 3 A En el problema de optimización con restricciones

minimizar
$$q(\mathbf{\Theta}), \quad \mathbf{\Theta} \in \mathbb{R}^D$$

sujeto a $v_i(\mathbf{\Theta}) \ge 0, \quad 1 \le i \le k$
 $u_i(\mathbf{\Theta}) = 0, \quad 1 \le i \le m$

sea Θ^* la solución óptima y sean α_i^* , $1 \le i \le k$, y β_i^* , $1 \le i \le m$, los multiplicadores de Lagrange óptimos para las restricciones de desigualdad e igualdad, respectivamente. Indicar cuál de las siguientes afirmaciones es falsa:

- A) Si para algún j, $\alpha_i^* = 0$, entonces $v_j(\mathbf{\Theta}^*) = 0$.
- B) Para $1 \le i \le m \ u_i(\mathbf{\Theta}^*) = 0.$
- C) Para $1 \le i \le k \ v_i(\boldsymbol{\Theta}^{\star}) \ge 0$.
- D) $v_j(\mathbf{\Theta}^*) = 0 \ \forall j \ \text{si} \ \alpha_i^* > 0, \ 1 \le j \le k.$
- $4 \boxed{\mathrm{D}}$ Las siguientes afirmaciones se refieren a la estimación por máxima verosimilitud de los parámetros de un modelo mediante el algoritmo de esperanza maximización (EM). Identificar cuál es falsa.
 - A) En el paso E se estiman los valores de las variables ocultas (o se calculan sus probabilidades).
 - B) En el paso M se calcula el máximo de una función auxiliar que depende de las estimaciones del paso E.
 - C) El algoritmo EM se puede aplicar incluso cuando hay restricciones en los valores de los valores de los parámetros o de las variables ocultas, pero para ello hay que aplicar también la técnica de los multiplicadores de Lagrange.
 - D) Si se usa de algoritmo EM es innecesaria la aplicación de la técnica de los multiplicadores de Lagrange.
- 5 C En una red bayesiana, sea \mathcal{A} un conjunto de variables aleatorias y G el grafo que establece las dependencias entre las variables de \mathcal{A} . Identificar cuál de las siguientes afirmaciones es cierta.
 - A) Los arcos de G representan las probabilidades condicionales de las variables de A.
 - B) G define una distribución de probabilidad condicional entre las variables en A.
 - C) Cualquier distribución condicional o conjunta en la que participen todas o cualquier subconjunto de las variables de \mathcal{A} , se puede deducir a partir de la distribución conjunta definida por G.
 - D) Si el valor de la variable asociada a un nodo ν de G está dada, entonces todos las variables asociadas a los nodos que están directamente conectados con ν son independientes entre si.

Problema 1 (3 puntos; tiempo estimado: 20 minutos)

Para entrenar un modelo basado en máquinas de vectores soporte, se dispone de un conjunto de entrenamiento en \mathbb{R}^2 . Estos vectores y los correspondientes multiplicadores de Lagrange óptimos obtenidos con C=10 son:

i	1	2	3	4	5	6	7	8
x_{i1}	1	2	2	2	2	3	4	3
x_{i2}	4	1	2	3	4	2	2	1
Clase	+1	-1	+1	-1	+1	-1	-1	-1
α_i^{\star}	0	3.11	10.0	10.0	3.78	0.67	0	0

- a) Obtener la función discriminante lineal correspondiente
- b) Obtener la ecuación de la frontera lineal de separación entre clases y representarla gráficamente junto con los vectores de entremamiento, indicando cuáles de ellos son vectores soporte.
- c) Obtener la toleranacia óptima de cada muestra de entrenamiento.
- d) Clasificar la muestra $(4,3)^t$.
- a) Pesos de la función discriminante:

$$\begin{array}{lll} \theta_1^* &=& + \left(-1\right) \left(2\right) \left(3.11\right) + \left(+1\right) \left(2\right) \left(10.0\right) + \left(-1\right) \left(2\right) \left(10.0\right) + \left(+1\right) \left(2\right) \left(3.79\right) + \left(-1\right) \left(3\right) \left(0.67\right) = & -0.67 \\ \theta_2^* &=& + \left(-1\right) \left(1\right) \left(3.11\right) + \left(+1\right) \left(2\right) \left(10.0\right) + \left(-1\right) \left(3\right) \left(10.0\right) + \left(+1\right) \left(4\right) \left(3.79\right) + \left(-1\right) \left(2\right) \left(0.67\right) = & 0.67 \end{array}$$

Usando el vector soporte $\mathbf{x_2}$ (que verifica la condición : $0 < \alpha_1^* < C$)

$$\theta_0^* = c_2 - \boldsymbol{\theta}^{*t} \mathbf{x_2} = 1 - ((-0.667) (2) + (0.666) (1)) = -0.33$$

Función discriminante lineal: $\phi(\mathbf{x}) = -0.33 - 0.67 \ x_1 + 0.67 \ x_2$

b) Frontera de separación y representación gráfica:

Ecuación de la frontera lineal de separación: $-0.33 - 0.67 \ x_1 + 0.67 \ x_2 = 0 \rightarrow x_2 = 1.0 \ x_1 + 0.49$. Los vectores de entrenamiento son todos los de la tabla. De ellos, los vectores soporte son: $(2,1)^t$, $(2,2)^t$, $(2,3)^t$, $(2,4)^t$, $(3,2)^t$. Representación gráfica:

Al lado de cada muestra se muestra el valor del multiplicador de lagrange asociado y la tolerancia.

c) Todas las muestras bien clasificadas y fuera del margen ($i \in \{1, 2, 5, 6, 7, 8\}$) tienen una tolerancia $\zeta_i^* = 0$ y el resto

$$\zeta_3^* = 1 - c_3 \left(\boldsymbol{\theta}^{*t} \ \boldsymbol{x}_3 + \theta_0^* \right) = 1.33; \qquad \zeta_4^* = 1 - c_4 \left(\boldsymbol{\theta}^{*t} \ \boldsymbol{x}_4 + \theta_0^* \right) = 1.33$$

d) Clasificación de la muestra $(4,3)^t$:

El valor de la función discriminante para este vector es: $\theta_0^* + 4\theta_1^* + 3\theta_2^* = -1.0 < 0 \implies \text{clase -1}.$

Problema 2 (3 puntos; tiempo estimado: 20 minutos)

La solución para un determinado problema de regresión viene dado por un perceptrón multicapa, donde la función de activación de todos los nodos de la red son de tipo sigmoid y los pesos en una iteración dada del algoritmo BackProp son:

$$\boldsymbol{\theta}_1^1 = (1.0, -1.0, 0.0, 1.0)^t \quad \ \boldsymbol{\theta}_2^1 = (-1.0, 0.0, 1.0, -1.5)^t \qquad \boldsymbol{\theta}_1^2 = (0.0, -1.0, 0.0)^t \quad \ \boldsymbol{\theta}_2^2 = (1.0, 1.0, 1.0)^t$$

Supongamos que se dan la circunstancias siguientes:

Un vector de entrada $x_1=0.0$ $x_2=1.0$ $x_3=-1.0$ Las salidas de la capa oculta $s_1^1=0.5$ $s_2^1=0.818$ Las salidas de la capa de salida $s_1^2=0.378$ $s_2^2=0.910$ Los valores deseados de la capa de salida $t_1=0.9$ $t_2=0.2$

Se pide:

- a) Dibujar el perceptrón multicapa descrito al principio del enunciado.
- b) Calcular los errores (δ 's) en los nodos de la capa de salida y en los nodos de la capa oculta.
- c) Calcular los nuevos valores de los pesos $\theta_{2,2}^2$ y $\theta_{2,3}^1$ asumiendo que el factor de aprendizaje ρ es 1.0

a) Dibujo del perceptrón multicapa

b) Errores (δ 's) en la capa de salida:

$$\delta_1^2 = (t_1 - s_1^2) \ s_1^2 \ (1 - s_1^2) = 0.123$$

$$\delta_2^2 = (t_2 - s_2^2) \ s_2^2 \ (1 - s_2^2) = -0.058$$

Errores en la capa de oculta:

$$\begin{array}{l} \delta_1^1 = (\delta_1^2 \ \theta_{11}^2 + \delta_2^2 \ \theta_{21}^2) s_1^1 \ (1 - s_1^1) = -0.045 \\ \delta_2^1 = (\delta_1^2 \ \theta_{12}^2 + \delta_2^2 \ \theta_{22}^2) \ s_2^1 \ (1 - s_2^1) = -0.0086 \end{array}$$

c) Nuevo peso $\theta_{2,2}^2=\theta_{2,2}^2+\rho~\delta_2^2~s_2^1=0.953$ Nuevo peso $\theta_{2,3}^1=\theta_{2,3}^1+\rho~\delta_2^1~x_3=-1.491$

Problema 3 (2 puntos; tiempo estimado: 30 minutos)

Considerar la red bayesiana \mathcal{R} definida como $P(R, X, Y, Z) = P(X) P(R \mid X) P(Y \mid R) P(Z \mid R)$, cuya variable R toma valores en $\{1, 2, 3\}$ y las variables X, Y, Z, en el conjunto $\{"a", "b", "c"\}$. Las distribuciones de probabilidad asociadas son como sigue:

- P(X = "a") = P(X = "b") = 1/8, P(X = "c") = 3/4
- $P(R \mid X)$ es uniforme: $P(R = 1 \mid x) = P(R = 2 \mid x) = P(R = 3 \mid x), \forall x \in \{\text{"a","b","c"}\}$
- $\blacksquare P(Y \mid R)$ y $P(Z \mid R)$ son idénticas y vienen dadas en la siguiente tabla

- a) Representar gráficamente la red
- b) Obtener una expresión simplificada de $P(X,Y,Z\mid R)$ en función de las distribuciones que definen \mathcal{R}
- c) calcular $P(X = "a", Y = "a", Z = "a" \mid R = 2)$
- a) Representación gráfica de la red:

b) Expresión simplificada de $P(X, Y, Z \mid R)$:

$$P(X,Y,Z \mid R) = \frac{P(R,X,Y,Z)}{P(R)} = \frac{P(X) \ P(R \mid X) \ P(Y \mid R) \ P(Z \mid R)}{P(R)}$$

Calculemos el denominador:

$$\begin{array}{lcl} P(R) & = & \displaystyle \sum_{xyz} P(R,X,Y,Z) \ = & \displaystyle \sum_{x} \sum_{y} \sum_{z} P(x) \ P(R\mid x) \ P(y\mid R) \ P(z\mid R) \\ \\ & = & \displaystyle \sum_{x} P(x) P(R\mid x) \ \sum_{y} P(y\mid R) \ \sum_{z} P(z\mid R) \ = \ \left(\sum_{x} P(x) P(R\mid x) \right) \cdot 1 \cdot 1 \ = \ \frac{1}{3} \sum_{x} P(x) \ = \ \frac{1}{3} \end{array}$$

Como $P(R \mid x) = 1/3$ para todo x, resulta $P(X, Y, Z \mid R) = P(X) P(Y \mid R) P(Z \mid R)$.

c)
$$P(R \mid X = x) = 1/3 \ \forall x \Rightarrow P(X = \text{"a"}, Y = \text{"a"}, Z = \text{"a"} \mid R = 2) = \frac{1}{8} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{128}$$