Курсовая работа: редуктор с электродвигателем

Потапов Антон R3325

Дано:

Вид компоновки:

S1 - на одной плате, перпендикулярной оси двигателя;

Условие определения числа ступеней:

К1 - минимизация приведенного момента инерции;

На выходном валу располагается предохранительная фрикционная муфта На выходе располагается двухпальцевый поводок.

1. Выбор электродвигателя:

Число оборотов выходного вала:

Угловая скорость вращения выходного вала:

Момент нагрузки статический:

$$M_{HC} := 35 \text{ H cm} = 0,35 \text{ Дж}$$

Момент инерции нагрузки:
$$_{J_{H}}:=0$$
, 2 кг см $_{=2\cdot10}^{2}-5$ кг м

Угловое ускорение:

$$\varepsilon_v \coloneqq$$
 250 c

Динамический момент нагрузки:

$$M_{HD} := J_H \cdot \varepsilon_{_V} = 0,005$$
 Дж

Статическая мощность

$$N_{HC} := M_{HC} \cdot \omega_{_{V}} = 5$$
,3145 BT

Динамическая мощность

$$N_{HD} := M_{HD} \cdot \omega_{_{V}} = 0,0759 \; \text{Bt}$$

Суммарная нагрузка на выходе механизма:

$$N_{HS} := N_{HC} + N_{HD} = 5,3904 \text{ Bt}$$

Коэффициент запаса:

$$k := 2$$

Мощность двигателя:

$$N_{DV} := k \cdot N_{HS} = 10,7809 \text{ Bt}$$

Двигатель: $ДПР - 72 - \Phi 2 - 03$

Ссылка на сайт производителя:

https://eandc.ru/catalog/index.php?SECTION_ID=227&ELEMENT_ID=18585

Частота вращения вала двигателя:

$$n_{DV} := 4500 \text{ мин}$$

Номинальный момент:

$$M_{DV} := 39,2 \text{ H MM} = 0,0392 \text{ Дж}$$

Момент инерции ротора:

$$J := 0,00869 \text{ Kr cm}^2$$

Полезная мощность:

$$N_{DV} := 18,5 \text{ BT}$$

Пусковой момент:

$$M_{_{D}} := 245 \text{ H MM} = 0,245 \text{ Дж}$$

Гарантийная наработка:

Macca:

mass := 0,6 KT

2. Кинематический расчет редуктора:

$$\begin{split} & i_{MR} := \frac{n_{DV}}{n_{_{V}}} = 31,0345 \\ & n_{_{OPt}} := 3 \cdot \lg \left(i_{MR}\right) = 4,4755 \\ & n := 4 \end{split}$$

Числа зубьев шестерен и колес:

$$Z_1 := 16$$
 $Z_3 := Z_1 = 16$
 $Z_5 := Z_1 = 16$
 $Z_7 := Z_1 = 16$

Передаточные числа ступеней:

$$i_{12} := 1, 6$$
 $i_{34} := 1, 85$
 $i_{56} := 2, 7$
 $i_{78} := 3, 9 = 3, 9$

$$\begin{split} &Z_9 := Z_1 = 16 \\ &Z_2 := Z_1 \cdot i_{12} = 25,6 \\ &Z_2 := 26 \\ &Z_4 := Z_3 \cdot i_{34} = 29,6 \\ &Z_4 := 30 \\ &Z_6 := Z_5 \cdot i_{56} = 43,2 \\ &Z_6 := 44 \\ &Z_8 := Z_7 \cdot i_{78} = 62,4 \\ &Z_8 := 63 \end{split}$$

Действительные передаточные отношения каждой пары:

$$i_{12} := \frac{Z_2}{Z_1} = 1,625$$

$$i_{34} := \frac{Z_4}{Z_3} = 1,875$$

$$i_{56} := \frac{Z_6}{Z_5} = 2,75$$

$$i_{78} := \frac{Z_8}{Z_7} = 3,9375$$

Действительное передаточное отношение механизма:

$$\begin{split} & \mathbf{i}_{MD} := \mathbf{i}_{12} \cdot \mathbf{i}_{34} \cdot \mathbf{i}_{56} \cdot \mathbf{i}_{78} = 32,9919 \\ & \Delta \mathbf{i}_{MD} := \mathbf{i}_{MR} - \mathbf{i}_{MD} = -1,9575 \end{split}$$

Расчетное значение скорости выходного вала:

$$n_{RV} := \frac{n_{DV}}{i_{MD}} = 2,2733$$
 Гц

Условие выполняется!

3. Проектировочный расчет модуля зацепления:

Исходные данные из проектировочного расчета пятого семестра:

Допускаемый угол закручивания вала на единицу длины:

$$\theta_d := \frac{1}{10000} \frac{\text{рад}}{\text{мм}} = 0, 1 \cdot \frac{1}{\text{м}}$$

Для ЗК используется материал СТАЛЬ 15X

Допускаемая стрела изгиба на единицу длины вала:

Термообработка: объемная закалка

$$\Delta f := \frac{1,4}{1000} = 0,0014$$

Коэффициент запаса прочности материала вала:

$$S_1 := 6$$

Вариант марки материала вала:

 $k_1 := 3$

 $σ_{Tshaft} := 320 \text{ M}\Pi \text{a}$

 $\sigma_{\textit{Bshaft}} \coloneqq \texttt{530 M}\Pi\texttt{a}$

 $\textit{HB}_{\textit{shaft}} := 165$

Вариант марки материала ЗК:

 $k_2 := 9$

Степень точности и вид сопряжения ЗК:

6 - E

Механические характеристики:

 $\sigma_{\!\scriptscriptstyle R} := 685~{\rm M\Pi a}$

Предел текучести:

 $σ_{\scriptscriptstyle T} := 490 \ \mathrm{MΠa}$

Твердость

HB := 179

Долговечность работы зубчатой передачи:

 $L_h := 6000 \text{ u} = 2,16 \cdot 10^7 \text{ c}$

Расчет

Так как по условию твердость материала ЗК HB=179<350, габариты эвольвентной передачи определяются только контактной прочностью зубьев.

Предел контактной выносливости при объемной закалке:

$$\sigma_{\rm HlimB} := 17 \cdot {\rm H_{HRC9}} + 200$$

$$\sigma_{\rm HlimB} := 17 \cdot 15 \; {\rm M\Pi a} + 200 \; {\rm M\Pi a} = 4,55 \cdot 10 \; {}^{8} \; {\rm \Pi a}$$

Допускаемое контактное напряжение:

$$S_H := 1, 1$$

$$Z_N := 1$$

$$\sigma_{\!_{HP}} := \text{0,9} \cdot \frac{\sigma_{\!_{H1imB}}}{S_{\!_{H}}} \cdot Z_{\!_{N}} = \text{3,7227} \cdot \text{10}^{8} \text{ \Pia}$$

 $S_{Hmin} = 1.1$ - Коэффициент запаса прочности для зубчатых колес;

 $Z_N = 1.0$ - Коэффициент долговечности;

Ориентировочное значение диаметра начальной окружности шестерни:

$$d_{w1} = K_d * \sqrt[3]{rac{T_{2H} * K_{H\beta} * (u+1)}{\psi_{bd} * \sigma_{HP}^2 * u^2}} = 14,5 \text{ mm}$$

 $K_d = 770$ - вспомогательный коэффициент для прямозубых передач;

Коэффициенты относительной ширины венца зубьев:

$$\psi_{bd} = 0.2, \psi_{ba} = \frac{2 * \psi_{bd}}{u + 1} = 0.089$$

 $K_{H\beta} = 1.05$ - коэффициент, учитывающий неравномерной распределение нагрузки по ширине венца (определяется по экспериментальной характеристике);

Ориентировочное значение межосевого расстояния:

$$a_w = K_a * (u+1) * \sqrt[3]{rac{T_{2H} * K_{H\beta}}{\psi_{ba} * \sigma_{HP}^2 * u^2}} = 33,3$$
mm

3

Ориентировочное значение модуля:

$$m = \frac{d_{w1}}{z_1} = 0.9$$

Возьмем ближайший больший модуль из ряда стандартных значений модуля: m=1 мм

Модуль:

m := 1

4. Геометрический расчет зубчатой передачи

Число зубьев:

$$\begin{split} &Z_1 := 16 \\ &Z_3 := Z_1 = 16 \\ &Z_5 := Z_1 = 16 \\ &Z_7 := Z_1 = 16 \end{split}$$

$$\begin{split} &Z_2 := Z_1 \cdot i_{12} = 26 \\ &Z_2 := 26 \\ &Z_4 := Z_3 \cdot i_{34} = 30 \\ &Z_4 := 30 \end{split}$$

$$Z_6 := Z_5 \cdot i_{56} = 44$$

 $Z_6 := 44$
 $Z_8 := Z_7 \cdot i_{78} = 63$
 $Z_8 := 63$

Модуль расчетный:

$$m := 1 \text{ MM}$$

Угол наклона зубьев:

$$\beta := 0$$

Угол профиля: $\alpha := 20$

$$\alpha := 20$$

Коэффициент высоты головки:

$$h_{az} := 1, 0$$

Коэффициент ражиального зазора:

$$c_z := 0,25$$

Коэффициент граничной высоты:

$$h_{iz} := 2$$

Передаточное число:

Действительные передаточные отношения каждой пары:

$$i_{12} := \frac{Z_2}{Z_1} = 1,625$$

$$i_{34} := \frac{Z_4}{Z_3} = 1,875$$

$$i_{56} := \frac{Z_6}{Z_5} = 2,75$$

$$i_{78} := \frac{Z_8}{Z_7} = 3,9375$$

Угол профиля торцовый:

$$\alpha_{\scriptscriptstyle +} := 20$$

Диаметры делительных окружностей:

$$d_1 := m \cdot Z_1 = 0,016 \text{ M}$$

$$d_2 := m \cdot Z_2 = 0,026 \text{ M}$$

$$d_3 := m \cdot Z_3 = 0,016 \text{ M}$$

$$d_4 := m \cdot Z_4 = 0,03 \text{ M}$$

$$d_5 := m \cdot Z_5 = 0,016 \text{ M}$$

$$d_6 := m \cdot Z_6 = 0,044 \text{ M}$$

$$d_7 := m \cdot Z_7 = 0,016 \text{ M}$$

$$d_8 := m \cdot Z_8 = 0,063 \text{ M}$$

Коэффициент минимального смещения:

$$\begin{split} x_{\min 1} &:= h_{iz} - h_{az} - \frac{Z_1 \cdot \sin\left(\alpha_t\right)^2}{2 \cdot \cos\left(\beta\right)} = 0,0642 \\ x_{\min 2} &:= h_{iz} - h_{az} - \frac{Z_2 \cdot \left(\sin\left(\alpha_t\right)\right)^2}{2 \cdot \cos\left(\beta\right)} = -0,5207 \\ x_{\min 3} &:= h_{iz} - h_{az} - \frac{Z_3 \cdot \sin\left(\alpha_t\right)^2}{2 \cdot \cos\left(\beta\right)} = 0,0642 \\ x_{\min 4} &:= h_{iz} - h_{az} - \frac{Z_4 \cdot \left(\sin\left(\alpha_t\right)\right)^2}{2 \cdot \cos\left(\beta\right)_2} = -0,7547 \\ x_{\min 5} &:= h_{iz} - h_{az} - \frac{Z_5 \cdot \sin\left(\alpha_t\right)}{2 \cdot \cos\left(\beta\right)} = 0,0642 \\ x_{\min 6} &:= h_{iz} - h_{az} - \frac{Z_6 \cdot \left(\sin\left(\alpha_t\right)\right)^2}{2 \cdot \cos\left(\beta\right)} = -1,5735 \\ x_{\min 7} &:= h_{iz} - h_{az} - \frac{Z_7 \cdot \sin\left(\alpha_t\right)^2}{2 \cdot \cos\left(\beta\right)} = 0,0642 \\ x_{\min 7} &:= h_{iz} - h_{az} - \frac{Z_7 \cdot \sin\left(\alpha_t\right)^2}{2 \cdot \cos\left(\beta\right)} = 0,0642 \\ x_{\min 8} &:= h_{iz} - h_{az} - \frac{Z_8 \cdot \left(\sin\left(\alpha_t\right)\right)^2}{2 \cdot \cos\left(\beta\right)} = -2,6848 \end{split}$$

Коэффициент смещения:

$$x_1 := 0,07$$
 $x_2 := -x_1 = -0,07$
 $x_3 := x_1 = 0,07$
 $x_4 := -x_3 = -0,07$
 $x_5 := x_1 = 0,07$
 $x_6 := -x_5 = -0,07$
 $x_7 := x_1 = 0,07$
 $x_8 := -x_7 = -0,07$

Угол зацепления:

$$\begin{split} &\alpha_{tw} \coloneqq \operatorname{arcinv} \bigg[\operatorname{inv} \left(\alpha_{t} \right) + 2 \cdot \frac{ \left(x_{1} + x_{2} \right) }{ Z_{1} + Z_{2} } \bigg] \\ &\alpha_{tw} \coloneqq 20 \ ^{\circ} \end{split}$$

Межосевое расстояние делительное:

$$a_{12} := \frac{m \cdot \left(Z_1 + Z_2\right)}{2 \cdot \cos\left(\beta\right)} = 0,021 \text{ M}$$

$$a_{34} := \frac{m \cdot \left(Z_3 + Z_4\right)}{2 \cdot \cos\left(\beta\right)} = 0,023 \text{ M}$$

$$a_{56} := \frac{m \cdot \left(Z_5 + Z_6\right)}{2 \cdot \cos\left(\beta\right)} = 0,03 \text{ M}$$

$$a_{78} := \frac{m \cdot \left(Z_7 + Z_8\right)}{2 \cdot \cos\left(\beta\right)} = 0,0395 \text{ M}$$

Межосевое расстояние:

$$\begin{aligned} &a_{w12} := a_{12} \cdot \frac{\cos \left(\alpha_{t}\right)}{\cos \left(\alpha_{tw}\right)} = 0,021 \text{ M} \\ &a_{w34} := a_{34} \cdot \frac{\cos \left(\alpha_{t}\right)}{\cos \left(\alpha_{tw}\right)} = 0,023 \text{ M} \\ &a_{w56} := a_{56} \cdot \frac{\cos \left(\alpha_{t}\right)}{\cos \left(\alpha_{tw}\right)} = 0,03 \text{ M} \\ &a_{w78} := a_{78} \cdot \frac{\cos \left(\alpha_{t}\right)}{\cos \left(\alpha_{tw}\right)} = 0,0395 \text{ M} \end{aligned}$$

Высота ножки зуба:

$$\begin{split} h_{f1} &:= m \cdot \left(h_{az} + c_z - x_1\right) = 0,0012 \text{ M} \\ h_{f2} &:= m \cdot \left(h_{az} + c_z - x_2\right) = 0,0013 \text{ M} \\ h_{f3} &:= m \cdot \left(h_{az} + c_z - x_3\right) = 0,0012 \text{ M} \\ h_{f4} &:= m \cdot \left(h_{az} + c_z - x_4\right) = 0,0013 \text{ M} \\ h_{f5} &:= m \cdot \left(h_{az} + c_z - x_5\right) = 0,0012 \text{ M} \\ h_{f6} &:= m \cdot \left(h_{az} + c_z - x_6\right) = 0,0013 \text{ M} \\ h_{f7} &:= m \cdot \left(h_{az} + c_z - x_7\right) = 0,0012 \text{ M} \\ h_{f8} &:= m \cdot \left(h_{az} + c_z - x_8\right) = 0,0013 \text{ M} \end{split}$$

Коэффициент воспринимаемого смещения:

$$y := \frac{a_w - a}{m}$$
$$y := 0$$

Коэффициент уравнительного смещения:

$$\Delta y := x_1 + x_2 - y$$
$$\Delta y := 0$$

Высота головки зуба:

$$\begin{split} h_{a1} &:= m \cdot \left(h_{az} + x_1 - \Delta y\right) = 0,0011 \text{ M} \\ h_{a2} &:= m \cdot \left(h_{az} + x_2 - \Delta y\right) = 0,0009 \text{ M} \\ h_{a3} &:= m \cdot \left(h_{az} + x_3 - \Delta y\right) = 0,0011 \text{ M} \\ h_{a4} &:= m \cdot \left(h_{az} + x_4 - \Delta y\right) = 0,0009 \text{ M} \\ h_{a5} &:= m \cdot \left(h_{az} + x_5 - \Delta y\right) = 0,0011 \text{ M} \\ h_{a6} &:= m \cdot \left(h_{az} + x_6 - \Delta y\right) = 0,0009 \text{ M} \\ h_{a7} &:= m \cdot \left(h_{az} + x_7 - \Delta y\right) = 0,00011 \text{ M} \\ h_{a8} &:= m \cdot \left(h_{az} + x_8 - \Delta y\right) = 0,0009 \text{ M} \end{split}$$

Диаметр окружности впадин:

$$\begin{split} &d_{f1} := d_1 - 2 \cdot h_{f1} = 0\,,\,0136\,\,\mathrm{M} \\ &d_{f2} := d_2 - 2 \cdot h_{f2} = 0\,,\,0234\,\,\mathrm{M} \\ &d_{f3} := d_3 - 2 \cdot h_{f3} = 0\,,\,0136\,\,\mathrm{M} \\ &d_{f4} := d_4 - 2 \cdot h_{f4} = 0\,,\,0274\,\,\mathrm{M} \\ &d_{f5} := d_5 - 2 \cdot h_{f5} = 0\,,\,0136\,\,\mathrm{M} \\ &d_{f6} := d_6 - 2 \cdot h_{f6} = 0\,,\,0414\,\,\mathrm{M} \\ &d_{f7} := d_7 - 2 \cdot h_{f7} = 0\,,\,0136\,\,\mathrm{M} \\ &d_{f8} := d_8 - 2 \cdot h_{f8} = 0\,,\,0604\,\,\mathrm{M} \end{split}$$

Диаметр окружности вершин:

$$\begin{aligned} &d_{a1} := d_1 + 2 \cdot h_{a1} = 0,0181 \text{ M} \\ &d_{a2} := d_2 + 2 \cdot h_{a2} = 0,0279 \text{ M} \\ &d_{a3} := d_3 + 2 \cdot h_{a3} = 0,0181 \text{ M} \\ &d_{a4} := d_4 + 2 \cdot h_{a4} = 0,0319 \text{ M} \\ &d_{a5} := d_5 + 2 \cdot h_{a5} = 0,0181 \text{ M} \\ &d_{a6} := d_6 + 2 \cdot h_{a6} = 0,0459 \text{ M} \\ &d_{a7} := d_7 + 2 \cdot h_{a7} = 0,0181 \text{ M} \\ &d_{a8} := d_8 + 2 \cdot h_{a8} = 0,0649 \text{ M} \end{aligned}$$

Минимальное число зубьев свободное от подрезания:

$$\begin{split} z_{\min 1} &:= 2 \cdot \left[\frac{h_{iz} - h_{az} - x_{1}}{\sin \left(\alpha_{t}\right)^{2}} \right] = 15,9005 \\ z_{\min 2} &:= 2 \cdot \left[\frac{h_{iz} - h_{az} - x_{2}}{\sin \left(\alpha_{t}\right)} \right] = 18,2941 \\ z_{\min 3} &:= 2 \cdot \left[\frac{h_{iz} - h_{az} - x_{3}}{\sin \left(\alpha_{t}\right)} \right] = 15,9005 \\ z_{\min 4} &:= 2 \cdot \left[\frac{h_{iz} - h_{az} - x_{4}}{\sin \left(\alpha_{t}\right)^{2}} \right] = 18,2941 \\ z_{\min 5} &:= 2 \cdot \left[\frac{h_{iz} - h_{az} - x_{5}}{\sin \left(\alpha_{t}\right)^{2}} \right] = 15,9005 \\ z_{\min 6} &:= 2 \cdot \left[\frac{h_{iz} - h_{az} - x_{6}}{\sin \left(\alpha_{t}\right)^{2}} \right] = 18,2941 \\ z_{\min 7} &:= 2 \cdot \left[\frac{h_{iz} - h_{az} - x_{7}}{\sin \left(\alpha_{t}\right)^{2}} \right] = 15,9005 \\ z_{\min 7} &:= 2 \cdot \left[\frac{h_{iz} - h_{az} - x_{7}}{\sin \left(\alpha_{t}\right)^{2}} \right] = 18,2941 \end{split}$$

Диаметр измерительных роликов:

$$D := 1,732 \text{ MM}$$

Угол развернутости эвольвенты в точке касания измерительных роликов:

$$inv(t) := tg(t) - t$$

$$inv\alpha_{D1} := \frac{D}{m \cdot Z_{1}} + inv(\alpha_{t}) - \frac{\pi}{2 \cdot Z_{1}} + \frac{2 \cdot x_{1}}{Z_{1}} \cdot tg(\alpha) = 0,0282$$

$$inv\alpha_{D2} := \frac{D}{m \cdot Z_{2}} + inv(\alpha_{t}) - \frac{\pi}{2 \cdot Z_{2}} + \frac{2 \cdot x_{2}}{Z_{2}} \cdot tg(\alpha) = 0,0191$$

$$inv\alpha_{D3} := \frac{D}{m \cdot Z_{3}} + inv(\alpha_{t}) - \frac{\pi}{2 \cdot Z_{3}} + \frac{2 \cdot x_{3}}{Z_{3}} \cdot tg(\alpha) = 0,0282$$

$$inv\alpha_{D4} := \frac{D}{m \cdot Z_{4}} + inv(\alpha_{t}) - \frac{\pi}{2 \cdot Z_{4}} + \frac{2 \cdot x_{4}}{Z_{4}} \cdot tg(\alpha) = 0,0186$$

$$inv\alpha_{D5} := \frac{D}{m \cdot Z_{5}} + inv\left(\alpha_{t}\right) - \frac{\pi}{2 \cdot Z_{5}} + \frac{2 \cdot x_{5}}{Z_{5}} \cdot \operatorname{tg}\left(\alpha\right) = 0,0282$$

$$inv\alpha_{D6} := \frac{D}{m \cdot Z_{6}} + inv\left(\alpha_{t}\right) - \frac{\pi}{2 \cdot Z_{6}} + \frac{2 \cdot x_{6}}{Z_{6}} \cdot \operatorname{tg}\left(\alpha\right) = 0,0174$$

$$inv\alpha_{D7} := \frac{D}{m \cdot Z_{7}} + inv\left(\alpha_{t}\right) - \frac{\pi}{2 \cdot Z_{7}} + \frac{2 \cdot x_{7}}{Z_{7}} \cdot \operatorname{tg}\left(\alpha\right) = 0,0282$$

$$inv\alpha_{D8} := \frac{D}{m \cdot Z_{8}} + inv\left(\alpha_{t}\right) - \frac{\pi}{2 \cdot Z_{8}} + \frac{2 \cdot x_{8}}{Z_{8}} \cdot \operatorname{tg}\left(\alpha\right) = 0,0167$$

Размер по роликам:

$$\begin{split} \mathbf{M}_1 &:= \frac{m \cdot \mathbf{Z}_1 \cdot \cos\left(\alpha_t\right)}{\cos\left(\alpha_{D1}\right)} + D = 0,02 \; \mathbf{M} \\ \mathbf{M}_5 &:= \frac{m \cdot \mathbf{Z}_5 \cdot \cos\left(\alpha_t\right)}{\cos\left(\alpha_{D5}\right)} + D = 0,02 \; \mathbf{M} \\ \mathbf{M}_2 &:= \frac{m \cdot \mathbf{Z}_3 \cdot \cos\left(\alpha_t\right)}{\cos\left(\alpha_{D2}\right)} + D = -0,0136 \; \mathbf{M} \\ \mathbf{M}_6 &:= \frac{m \cdot \mathbf{Z}_6 \cdot \cos\left(\alpha_t\right)}{\cos\left(\alpha_{D6}\right)} + D = -0,0459 \; \mathbf{M} \\ \mathbf{M}_3 &:= \frac{m \cdot \mathbf{Z}_3 \cdot \cos\left(\alpha_t\right)}{\cos\left(\alpha_{D3}\right)} + D = 0,02 \; \mathbf{M} \\ \mathbf{M}_7 &:= \frac{m \cdot \mathbf{Z}_7 \cdot \cos\left(\alpha_t\right)}{\cos\left(\alpha_{D7}\right)} + D = 0,02 \; \mathbf{M} \\ \mathbf{M}_4 &:= \frac{m \cdot \mathbf{Z}_4 \cdot \cos\left(\alpha_t\right)}{\cos\left(\alpha_{D4}\right)} + D = -0,028 \; \mathbf{M} \\ \mathbf{M}_8 &:= \frac{m \cdot \mathbf{Z}_8 \cdot \cos\left(\alpha_t\right)}{\cos\left(\alpha_{D8}\right)} + D = -0,0961 \; \mathbf{M} \end{split}$$

5. Выбор показателя точности зубчатых передач

$E_{Ms1} := 58 \text{ MKM}$	$E_{Ms2} := 70 \text{ MKM}$	$E_{Ms7} := 58 \text{ MKM}$	E _{MS8} := 85 mkm
<i>T_{M1}</i> := 32 мкм	<i>Т_{м2}</i> := 36 мкм	<i>T_{M7}</i> := 32 мкм	<i>T_{M8}</i> := 40 мкм
<i>E_{MS3}</i> := 58 мкм	E _{MS4} := 70 MKM	E _{MS9} := 58 мкм	E _{Ms10} := 100 mkm
$T_{M3} := 32 \text{ MKM}$	<i>T_{M4}</i> := 36 мкм	$T_{M9} := 32 \text{ MKM}$	$T_{M10} := 48 \text{ MKM}$
E _{MS5} := 58 мкм	<i>Е_{МS 6}</i> := 70 мкм		
T _{M5} := 32 мкм	<i>Т_{м6}</i> := 36 мкм		

Отклонения размеров по роликам М:

$$\begin{split} \mathbf{M}T1 &:= -E_{MS1} = -5, 8 \cdot 10^{-5} \, \mathbf{M} \\ \mathbf{M}_{D1} &:= -\left(E_{MS1} + T_{M1}\right) = -9 \cdot 10^{-5} \, \mathbf{M} \\ \mathbf{M}_{D2} &:= -\left(E_{MS2} + T_{M2}\right) = -0,000106 \, \mathbf{M} \\ \mathbf{M}_{D3} &:= -\left(E_{MS3} + T_{M3}\right) = -9 \cdot 10^{-5} \, \mathbf{M} \\ \mathbf{M}_{D3} &:= -\left(E_{MS3} + T_{M3}\right) = -9 \cdot 10^{-5} \, \mathbf{M} \\ \mathbf{M}_{D3} &:= -\left(E_{MS3} + T_{M3}\right) = -9 \cdot 10^{-5} \, \mathbf{M} \\ \mathbf{M}_{D5} &:= -\left(E_{MS5} + T_{M5}\right) = -9 \cdot 10^{-5} \, \mathbf{M} \\ \mathbf{M}_{D5} &:= -\left(E_{MS5} + T_{M5}\right) = -9 \cdot 10^{-5} \, \mathbf{M} \\ \mathbf{M}_{D7} &:= -\left(E_{MS7} + T_{M7}\right) = -9 \cdot 10^{-5} \, \mathbf{M} \\ \mathbf{M}_{D7} &:= -\left(E_{MS7} + T_{M7}\right) = -9 \cdot 10^{-5} \, \mathbf{M} \\ \mathbf{M}_{D9} &:= -\left(E_{MS9} + T_{M9}\right) = -9 \cdot 10^{-5} \, \mathbf{M} \\ \mathbf{M}_{D9} &:= -\left(E_{MS9} + T_{M9}\right) = -9 \cdot 10^{-5} \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left(E_{MS10} + T_{M10}\right) = -0,000148 \, \mathbf{M} \\ \mathbf{M}_{D10} &:= -\left($$

6. Расчёт вращательных моментов на валах

Суммарный момент нагрузки:

$$M_{\Sigma} := M_{HD} + M_{HC} = 0$$
, 355 Дж

Для данной схемы:

$$M_V := M_{\Sigma} = 0$$
, 355 Дж

Для заданной степени точности зубчатых колес коэффициент трения скольжения стальных ЗК:

$$f := 0,08$$

Ha IV валу:

Нормальное усилие в зацеплении:

$$F_{n78} := \frac{2 \cdot M_V}{m \cdot Z_8 \cdot \cos(\alpha_t)} = 11,9931 \text{ H}$$

Поправочный коэффициент:

$$C_{78} := \frac{F_{n78} + 3 \text{ H}}{F_{n78} + 0, 2 \text{ H}} = 1,2296$$

$$\eta_{78} := 1 - C_{78} \cdot f \cdot \mathbf{n} \cdot \left[\frac{1}{Z_8} + \frac{1}{Z_7} \right] = 0,9758$$

$$M_{IV} := \frac{M_{V}}{\eta_{78} \cdot i_{78}} = 0,0924$$
 Дж

На III валу:

Нормальное усилие в зацеплении:

$$F_{n65} := \frac{2 \cdot M_{IV}}{m \cdot Z_6 \cdot \cos\left(\alpha_t\right)} = 4,4694 \text{ H}$$

Поправочный коэффициент:

$$\begin{split} &C_{65} \coloneqq \frac{F_{n65} + 3 \text{ H}}{F_{n65} + 0, 2 \text{ H}} = 1,5997 \\ &\eta_{65} \coloneqq 1 - C_{65} \cdot f \cdot \mathbf{n} \cdot \left[\frac{1}{Z_6} + \frac{1}{Z_5} \right] = 0,9657 \\ &M_{III} \coloneqq \frac{M_{IV}}{\eta_{65} \cdot i_{56}} = 0,0348 \text{ Дж} \end{split}$$

На II валу:

Нормальное усилие в зацеплении:

$$F_{n43} := \frac{2 \cdot M_{III}}{m \cdot Z_4 \cdot \cos\left(\alpha_t\right)} = 2,4682 \text{ H}$$

Поправочный коэффициент:

$$\begin{split} &C_{43} \coloneqq \frac{F_{n43} + 3 \text{ H}}{F_{n43} + 0\text{, 2 H}} = 2\text{, 0494} \\ &\eta_{43} \coloneqq 1 - C_{43} \cdot f \cdot \mathbf{\pi} \cdot \left(\frac{1}{Z_4} + \frac{1}{Z_3}\right) = 0\text{, 9506} \\ &M_{II} \coloneqq \frac{M_{III}}{\eta_{43} \cdot i_{34}} = 0\text{, 0195 Дж} \end{split}$$

На І валу:

Нормальное усилие в зацеплении:

$$F_{n21} := \frac{2 \cdot M_{II}}{m \cdot Z_2 \cdot \cos(\alpha_t)} = 1,5978 \text{ H}$$

Поправочный коэффициент:

$$C_{21} := \frac{F_{n21} + 3 \text{ H}}{F_{n21} + 0, 2 \text{ H}} = 2,5575$$

$$\eta_{21} := 1 - C_{21} \cdot f \cdot \mathbf{m} \cdot \left(\frac{1}{Z_2} + \frac{1}{Z_1} \right) = 0$$
, 9351
$$M_I := \frac{M_{II}}{\eta_{21} \cdot i_{12}} = 0$$
, 0128 Дж

7. Расчет валов на статическую прочность

Механические характеристики конструкционной стали, используемой для изготовления вала Упругие константы углеродистых сталей:

 $E = 1.95..2.05 *10^5 M\Pi a$ - модуль упругости первого рода;

 $G = 0.80..0.81 *10^5 M\Pi a$ - модуль упругости второго рода;

v = 0.024..0.028 - коэффициент Пуассона;

$$G := 0, 8 \cdot 10^{5}$$
 MMTa $= 8 \cdot 10^{10}$ MTa

Марки стали: Сталь 35;

$$\sigma_{BV} \geq$$
 600 M Π a

$$σ_{\scriptscriptstyle TV} \ge$$
 320 ΜΠα

$$τ_{TV} \ge 190$$
 ΜΠα

$$\sigma_{_{\!M}}$$
 $_1:=220-300$ МПа

$$\sigma_{P\ 1}^- := 170 - 220 \ \mathrm{M\Pi a}$$

$$\tau_{k-1}^- := 130 - 180 \text{ M}\Pi \text{a}$$

$$\sigma_{\!\scriptscriptstyle BV} \coloneqq$$
 600 МПа

$$σ_{TV}$$
 := 320 MΠa

$$\tau_{TV} := 190$$
 ΜΠα

$$\sigma_{_{\!M}}$$
 $_{1}:=$ 220 — 300 МПа

$$\sigma_{P \ 1}^- := 170 - 220 \ \text{M}\Pi \text{a}$$

$$\tau_{k}^{-1} := 130 - 180 \text{ M}\Pi \text{a}$$

Допускаемое напряжение при кручении:

$$\tau_{dk} := \frac{\sigma_{TV}}{S_1} = 5,3333 \cdot 10^{7} \text{ IIa}$$

С учетом того, что при проектировочном расчете валов допускаемые напряжения обычно занижают:

$$\tau_{dk} := 20 \text{ M}\Pi \text{a}$$

По условию статической прочности вала на кручение:

$$d_{\min} := \left(\frac{M_V}{0, 2 \cdot \tau_{dk}}\right)^{\frac{1}{3}} = 0,0045 \text{ M}$$

По условию крутильной жесткости вала:

$$d_{\min} := \left[\frac{M_V}{0, 1 \cdot G \cdot \theta_d}\right]^{\frac{1}{4}} = 0,0046 \text{ M}$$

dm := 5 MM

Радиальная составляющая силы резания:

$$P := 150 + S_1 \cdot 10 = 210$$

Длина вала, округленная до ближайшего целого:

$$L := 10 \cdot dm = 0,05 \text{ M}$$

Допускаемая деформация изгиба вала:

$$\Delta f_{ud} := \Delta f \cdot L = 7 \cdot 10 - 5$$
 M

Модуль первого рода:

$$E := 200000 \, \text{MПа}$$

$$d := \left(\frac{1, 3 \text{ H} \cdot P \cdot L}{E \cdot \mathbf{n} \cdot \Delta f_{ud}}\right)^{\frac{1}{4}} = 0,00528 \text{ M}$$

d := 0,006 M

Диаметры валов:

$$d_I := 4$$

$$d_{\tau \tau} := 5$$

$$d_{III} := 5$$

$$d_{IV} := 5$$

$$d_{V} := 6$$

8. Выбор посадок для сопрягаемых деталей.

4.1.1. Посадки внутреннего кольца шарикоподшипников с валом

Посадка вешнего кольца шарикоподшипников с подшипниковой втулкой:

4.1.3. Посадки зубчатого колеса с валом

9. Проверочные расчеты:

9.1 Расчет цилиндрической зубчатой передачи на контактную прочность /выносливость

Окружная сила на делительном цилиндре:

$$F_{tH} := 2 \cdot \frac{M_V}{d_g} = 11,2698 \text{ H}$$

Коэффициент внешней динамической нагрузки

$$K_{A} := 1$$

Коэффициент, учитывающий распределение нагрузки между зубьями

$$K_{\mu\alpha} := 1$$

Коэффициент ширины зубчатого венца:

$$b_{xx} := 2 \text{ MM}$$

$$\psi_{bd1} := \frac{b_{W}}{d_{7}} = 0,125$$

Коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий:

$$K_{H\beta} := 1,08$$

$$K_{F\beta} := 1, 17$$

Коэффициент влияния погрешности зацепления на динамическую нагрузку:

$$\delta_{_H} := 0,06$$

Коэффициент влияния разности шагов шестерни и колеса:

$$g_0 := 3, 8$$

Окружная скорость на делительном радиусе:

(В данном выражении убрал знаменатель из формулы вычисления, чтобы считать в сразу подставлять значения в м и рад/с)

$$v := \mathbf{n} \cdot d_8 \cdot n_v = 0,4783 \frac{M}{C}$$

(Домножаю на 100 чтобы получить величину в размерности Н/мм)

$$\varpi_{Hv} := \delta_H \cdot g_0 \cdot 100 \cdot v \cdot \sqrt{\frac{a_{w78}}{i_{78}}} = 1,0923 \frac{\frac{3}{2}}{c}$$

Удельная окружная динамическая сила:

(Домножаю bw на 1000, чтобы можно было подставить метры в формулу)

$$K_{HV} := \frac{\varpi_{HV} \cdot b_{W} \cdot 1000}{F_{tH} \cdot K_{A}} = 0,1938 \frac{\frac{3}{2}}{\text{KT}}$$

$$K_{HV} := K_{HV} + 1 \text{ M} \frac{\frac{3}{2}}{\frac{\text{C}}{\text{KF}}} = 1,1938 \frac{\frac{3}{2}}{\frac{\text{KF}}{\text{KF}}}$$

Коэффициент, учитывающий механические свойства зубьев:

$$Z_{F} := 190$$

Коэффициент рмы сопряженных поверхностей зубьев в полюсе зацепления:

$$Z_H := 2, 5$$

Коэффициент, учитывающий суммарную длину контактных линий:

$$Z_s := 0,95$$

Коэффициент наклона зуба:

$$Z_{\beta} := 1$$

Расчетное контактное напряжение:

$$\sigma_{\!{}_{\!\!H}} \coloneqq Z_{\!{}_{\!\!E}} \cdot Z_{\!{}_{\!\!H}} \cdot Z_{\!{}_{\!\!E}} \cdot Z_{\!{}_{\!\!B}} \cdot \sqrt{\frac{F_{tH}}{\left[b_{_{\!\scriptscriptstyle W}} \cdot d_{_{\!\!7}} \cdot 10^{\,6}\right]} \cdot \left(\frac{i_{_{\!\!78}} + 1}{i_{_{\!\!78}}}\right) \cdot K_{\!{}_{\!\!A}} \cdot K_{\!{}_{\!\!HV}} \cdot K_{\!{}_{\!\!HV}} \cdot K_{\!{}_{\!\!HX}}} = 340,5095 \, \frac{\frac{1}{4}}{\frac{1}{2}}$$

Предельная контактная выносливость повеврхностей зубьев при базовом числе циклов перемены напряжений:

$$\sigma_{\mathrm{HlimB}} := 2 \cdot \mathrm{HB} + 70 = 428 \quad \mathrm{M\Pi a}$$

Базовое число циклов перемены напряжений:

$$N_{Hlim} := 30 \cdot HB^{2,4} \cdot 120 \cdot 10^{6} = 9,1865 \cdot 10^{14}$$

Эквивалентное число циклов перемены напряжений:

$$N_K := \frac{60 \cdot n_V \cdot L_h}{60} = 5,22 \cdot 10^7$$

$$Z_N := \left(\frac{N_{\text{Hlim}}}{N_K}\right)^{\frac{1}{6}} = 16,128 \quad \text{ Tak kak ZN} > 2.6$$

$$Z_N := 2,6$$

$$\begin{split} Z_R &:= \text{0,95} & Z_V &:= \text{1} \\ S_H &:= \text{1,1} & Z_X &:= \text{1} \\ Z_L &:= \text{1} & Z_\varpi &:= \text{1} \end{split}$$

Допускаемое контактное напряжение:

$$\sigma_{\!HP} := \frac{\sigma_{\!H1\,imB} \cdot Z_{\!N}}{S_{\!H}} \cdot Z_{\!L} \cdot Z_{\!R} \cdot Z_{\!v} \cdot Z_{\!\varpi} \cdot Z_{\!x} = 961,0545$$

Условие прочности выполнено: расчетное действующее контактное напряжение не превышает допускаемое!

9.2 Расчет цилиндрической зубчатой передачи на изгибную прочность.

$$K_A := 1$$

$$K_{F\alpha} := 1$$

$$\delta_E := 0, 16$$

Удельная окружная динамическая сила:

$$\varpi_{FV} := \delta_F \cdot g_0 \cdot 100 \cdot v \cdot \sqrt{\frac{a_{w78}}{i_{78}}} = 2,9127 \frac{M}{C} \frac{H}{MM}$$

Коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении:

$$K_{FV} := \varpi_{FV} \cdot \frac{b_{W} \cdot 1000}{F_{tH} \cdot K_{A}} \cdot 1 \frac{K\Gamma}{\frac{3}{2}} = 0,5169$$

$$K_{FV} := K_{FV} + 1 = 1,5169 \text{ M} \text{ C}$$

Коэффициент, учитывающий распределение нагрузки между зубьями:

$$K_{F\alpha} := 1$$

Коэффициент нагрузки:

$$K_F := K_A \cdot K_{FV} \cdot K_{F\beta} \cdot K_{F\alpha} = 1$$
,7748

Коэффициенты, учитывающие форму зуба и концентрацию напряжений:

$$Y_{FS1} := 3,47 + \frac{13,2}{Z_7} - 29,7 \cdot \frac{x_7}{Z_7} + 0,092 \cdot x_7^2 = 4,1655$$

$$Y_{FS2} := 3,47 + \frac{13,2}{Z_8} - 29,7 \cdot \frac{x_8}{Z_8} + 0,092 \cdot x_8^2 = 3,713$$

Коэффициенты наклона зуба и учитывающий перекрытие зубьев соответственно:

$$Y_{\beta} := 1$$

$$Y_{\varepsilon} := 1$$

Так как YFS2 < YFS1, а материал колеса и шестерни один и тот же, рассчитывается напряжение на изгбит только для шестерни

Расчетное действующее напряжение:

$$\sigma_{_{\!F}} \coloneqq \frac{^{F}_{_{tH}}}{^{b}_{_{_{\!W}}} \cdot m \cdot 10} \cdot {^{6}} \cdot {^{K}_{\!F}} \cdot {^{Y}_{\!FS1}} \cdot {^{Y}_{\!\beta}} \cdot {^{Y}_{\!\varepsilon}} = 41 \text{, 6582 IIa}$$

Предел выносливости зубьев на изгиб:

$$\sigma_{\mathit{FlimB}} \coloneqq 1,75 \cdot \mathit{HB} = 313,25$$

Коэффициент безопасности:

$$S_F := 22 \\ N_{Flim} := 4 \cdot 10 \\ 6$$

$$Y_N := \left(\frac{N_{Flim}}{N_K}\right)^{\frac{1}{6}} = 0,6517$$

$$Y_{z} := 1$$

$$Y_{R} := 1$$

$$Y_X := 1$$

$$Y_{\delta} := 1$$

$$\sigma_{FP} := \sigma_{FlimB} \cdot \frac{Y_N}{S_F} \cdot Y_A \cdot Y_R \cdot Y_X \cdot Y_\delta = 9,2797$$

Условие прочности выполнено: расчетное действующее напряжение на изгиб не превышает допускаемое!

9.3 Проверочный расчет на прочность выходного вала:

$$\begin{split} F_{r8} &:= \frac{2 \cdot M_V}{m \cdot Z_8} \cdot \text{tg}\left(\alpha_{tw}\right) = 4,1019 \text{ H} \\ F_{t8} &:= \frac{2 \cdot M_V}{m \cdot Z_8} = 11,2698 \text{ H} \end{split}$$

$$S := 11, 5 \text{ MM}$$

$$U := 20 \text{ MM}$$

$$R_{BX} := \frac{F_{t8} \cdot S}{II} = 6,4802 \text{ H}$$

$$R_{AX} := F_{t.8} + R_{BX} = 17,75 \text{ H}$$

$$R_{BY} := \frac{F_{r8} \cdot S}{U} = 2,3586 \text{ H}$$

$$R_{AY} := F_{r8} + R_{BY} = 6,4605 \text{ H}$$

$$M_{_{UX}} := 130 \text{ H мм} = 0,13 \text{ Дж}$$

$$M_{uy} := 47,2$$
 н мм = 0,0472 Дж

$$\sigma_{_{\mathfrak{I}KB}} := \frac{\sqrt{\frac{2}{M_{ux}} + \frac{2}{M_{uy}} + \frac{2}{M_{V}}}}{0,1 \cdot d} = 1,7638 \cdot 10^{7} \text{ Ta}$$

$$\sigma_{ud} := \frac{\sigma_{Tshaft}}{S_1} = 5,3333 \cdot 10^{7} \text{ \Pia}$$

Условие прочности выполняется!

9.4 Расчет валов и осей на усталостную прочность:

При симметричном цикле:

$$\sigma_{npe \pi 1} := 0,43 \cdot \sigma_{Bshaft} = 2,279 \cdot 10^8 \text{ \Pia}$$

$$\tau_{npe \pi 1} := 0,22 \cdot \sigma_{Bshaft} = 1,166 \cdot 10^8 \text{ \Pia}$$

При отнулевом цикле:

$$\sigma_{\mathrm{npe} \mathrm{H} 0} \coloneqq \mathrm{0.6} \cdot \sigma_{\mathrm{Bshaft}} = \mathrm{3.18 \cdot 10}^{8} \; \mathrm{\Pia}$$

$$\tau_{\pi p e \pi 0} := 0,32 \cdot \sigma_{Bshaft} = 1,696 \cdot 10^{8} \, \Pia$$

Масштабный коэффициент:

$$K_m := 0, 9$$

Коэффициенты концентрации напряжений по изгибу и кручению соответственно:

$$K_{\sigma} := 1, 6$$

$$K_{\tau} := 1,25$$

Технологический коэффициент:

$$K_{_{T}} := 1$$

Коэффициент, учитывающий неточность в выборе расчетной схемы нагрузок:

$$n1 := 1, 2$$

Поправка на отклонения, принимаемые в расчете на прочность механических характеристик материала, , от действительных.

$$n2 := 1, 2$$

Степень ответственности детали и ее влияние на общею работу ПМ:

$$n3 := 2$$

Запасы прочности по нормальным и касательным напряжениям:

$$n_{\sigma\tau} := n1 \cdot n2 \cdot n3 = 2,88$$

Допускаемые нормальные и касательные напряжения соответственно при симметричном пикле:

$$\sigma_{u1} := \frac{\sigma_{\pi p e \# 1} \cdot K_{m}}{K_{\sigma} \cdot K_{T} \cdot n_{\sigma^{\tau}}} = 4,4512 \cdot 10^{-7} \text{ IIa}$$

$$\boldsymbol{\tau}_{1} := \frac{\boldsymbol{\tau}_{\pi p e \pi 1} \cdot \boldsymbol{K}_{m}}{\boldsymbol{K}_{T} \cdot \boldsymbol{K}_{T} \cdot \boldsymbol{n}_{\sigma T}} = 2,915 \cdot 10^{-7} \text{ IIa}$$

Допускаемые нормальные и касательные напряжения соответственно при отнулевом цикле:

$$\sigma_{u0} := \frac{\sigma_{\pi p \in \mathcal{A}0} \cdot K_{m}}{K_{\sigma} \cdot K_{T} \cdot n_{\sigma T}} = 6,2109 \cdot 10^{-7} \text{ Ma}$$

$$\boldsymbol{\tau}_{0} := \frac{\boldsymbol{\tau}_{\textit{пред0}} \cdot \boldsymbol{K}_{\textit{m}}}{\boldsymbol{K}_{\textit{T}} \cdot \boldsymbol{K}_{\textit{\tau}} \cdot \boldsymbol{n}_{\textit{OT}}} = 4,24 \cdot 10^{7} \; \text{\Pia}$$

Вывод: при симметричном цикле допускаемые напряжения для данного валика ниже, чем при отнулевом цикле напряжений на 29%.

Расчет радиальных подшипников на динамическую грузоподъемность:

Базовая динамическая грузоподъемность:

$$C := 884$$

В качестве радиальной нагрузки принимается наибольшая из результирующий реакций в опорах R,A и R,B

$$R_A := \sqrt{R_{AX}^2 + R_{AY}^2} = 18,8892 \text{ H}$$

$$R_B := \sqrt{R_{BX}^2 + R_{BY}^2} = 6,896 \text{ H}$$

$$F_r := R_A = 18,8892 \text{ H}$$

Коэффициент вращения, при вращении внутреннего кольца подшипника:

$$V := 1$$

Коэффициент безопасности:

$$K_{E} := 1$$

Температурный коэффициент:

$$K_{\tau} := 1$$

Эквивалентная нагрузка:

$$P := V \cdot F_{_T} \cdot K_{_{\! E}} \cdot K_{_{\! T}} = 18,8892 \text{ H}$$

Расчетное значение динамической грузоподъемности:

$$C_p := 10^{-2} \cdot P \cdot \left(\frac{L_h}{3600} \cdot 3600 \cdot n_v \right)^{\frac{1}{3}} = 70,5943 \text{ H}$$

Условие на динамическую грузоподъемность выполняется!

10. Собственный момент трения механизма.

Коэффициент трения скольжения:

$$f = 0,08$$

$$M_{TOI} := M_P = 0$$
, 245 Дж

$$\begin{split} & \textit{M}_{TOII} \coloneqq \texttt{0,03 H MM} \cdot \texttt{5}^{2} = \texttt{0,0008 } \, \texttt{J} \times \\ & \textit{M}_{TOIII} \coloneqq \texttt{0,03 H MM} \cdot \texttt{5}^{2} = \texttt{0,0008 } \, \texttt{J} \times \\ & \textit{M}_{TOIV} \coloneqq \texttt{0,03 H MM} \cdot \texttt{5}^{2} = \texttt{0,0008 } \, \texttt{J} \times \\ & \textit{M}_{TOIV} \coloneqq \texttt{0,03 H MM} \cdot \texttt{6}^{2} = \texttt{0,0011 } \, \texttt{J} \times \\ & \textit{M}_{TOV} \coloneqq \texttt{0,03 H MM} \cdot \texttt{6}^{2} = \texttt{0,0011 } \, \texttt{J} \times \\ & \textit{M}_{TOI} \coloneqq \textit{M}_{TOI} + \frac{\textit{M}_{TOII}}{\textit{i}_{12} \cdot \textit{i}_{34}} + \frac{\textit{M}_{TOIII}}{\textit{i}_{12} \cdot \textit{i}_{34} \cdot \textit{i}_{56} \cdot \textit{i}_{78}} + \frac{\textit{M}_{TOIV}}{\textit{i}_{12} \cdot \textit{i}_{34} \cdot \textit{i}_{56} \cdot \textit{i}_{78}} + = \texttt{0,2459} \\ & + \frac{\textit{M}_{TOV}}{\textit{i}_{12} \cdot \textit{i}_{34} \cdot \textit{i}_{56} \cdot \textit{i}_{78} \cdot \textit{n}_{21} \cdot \textit{n}_{43} \cdot \textit{n}_{65} \cdot \textit{n}_{78}}{\textit{i}_{12} \cdot \textit{i}_{34} \cdot \textit{i}_{56} \cdot \textit{i}_{78} \cdot \textit{n}_{21} \cdot \textit{n}_{43} \cdot \textit{n}_{65} \cdot \textit{n}_{78}} \end{split}$$

11. Расчет на прочность штифтового соединения:

Условие прочности штифта:

$$\begin{split} &\tau_{cp} \leq \tau_{dcp} \\ &\tau_{dcp} := 60 - 80 \text{ MПа} \end{split}$$

Усилие, отнесенное к одной поверхности среза штифта:

$$P'_{cp} := \frac{M_V}{d} = 59,1667 \text{ H}$$

Площадь поперечного сечения штифта:

$$d_{_{\!I\!I\!I\!I}} := 1, 3 \text{ MM}$$

$$F_{\underline{m}\underline{r}} := \frac{\mathbf{\pi} \cdot d_{\underline{m}\underline{r}}}{4} = 1,3273 \cdot 10^{-6} \text{ M}^2$$

Напряжение среза:

Условие прочности штифтового соединения на срез выполняется!

12. Расчет шпонки на прочность:

рабочими. В радиальном направлении предусмотрен завор. Сегментные шпонки имеют более глубокий паз, который существенно ослабляет сечение вала, но изготовить его дисковой фрезой проще.
Поэтому они используются преимущественно при малых диаметрах вала и для закрепления малонагруженных деталей.

Сегментная шпонка для вала диаметром 6мм

$$\begin{split} h_{_{\rm III}} &:= 3\,,\,7\,\,{\rm MM} \\ b_{_{\rm III}} &:= 2\,\,{\rm MM} \\ D &:= 10\,\,{\rm MM} \\ t_{_1} &:= 2\,,\,9\,\,{\rm MM} \\ t_{_2} &:= 1\,,\,0\,\,{\rm MM} \end{split}$$

$$\begin{split} &\sigma_{dcM} := 150 - 180 \text{ M}\Pi\text{a} \\ &\sigma_{cM} := 2 \cdot \frac{M_{V}}{d \cdot \left(h_{\text{III}} - t_{1}\right) \cdot D} = 1\text{, }4792 \cdot 10^{7} \text{ }\Pi\text{a} \end{split}$$

Условие прочности шпонки на смятие удовлетворяется!

13. Расчет на прочность винтового соединения:

Условия прочности:

Для разрыва стержня:

$$\sigma_{\!_{\varPi p}} \leq \sigma_{\!_{\varPi p}}$$

Для среза витков:

$$\tau_{cp} \le \tau_{дcp}$$

Для смятия поверхности витков:

$$\sigma_{_{CM}} \leq \sigma_{_{ДCM}}$$

Q - усилие затяжки резьбового соединения

$$Q := 258$$

F - площадь поперечного сечения винта

$$d_{_{B}} := 2,5 \text{ MM}$$
 $F := 0,5 \cdot d_{_{B}} = 3,125 \cdot 10 - 6 2$

Определение приведенного напряжения в стержне винта:

$$\begin{split} &\sigma_{\pi p} := 1\text{, } 3 \cdot \frac{\mathcal{Q}}{F} = 1\text{, } 0733 \cdot 10^{8} \cdot \frac{1}{2} \\ &d_{1B} := d_{B} = 0\text{, } 0025\text{ m} \\ &d_{\Gamma} := d_{1B} = 0\text{, } 0025\text{ m} \end{split}$$

Длина свинчивания:

$$L_{CB} := d_{1B} = 0,0025 \text{ M}$$

Определение напряжения среза:

Срез витков винта происходит по цилиндру диаметра d, а гайки по внутреннему диаметру d1

Для винта:

$$\tau_{CPB} := \frac{Q}{\mathbf{\pi} \cdot d_{1B} \cdot 0,75 \cdot L_{CB}} = 1,752 \cdot 10^{\frac{7}{2}} \cdot \frac{1}{2}$$

Для гайки:

$$\tau_{_{CP\Gamma}} := \frac{Q}{\mathbf{m} \cdot d_{_{\Gamma}} \cdot 0,88 \cdot L_{_{CB}}} = 1,4932 \cdot 10^{\frac{7}{2}} \cdot \frac{1}{_{_{M}}}$$

$$d := d_{1B} = 0,0025 \text{ M}$$

Диаметр винта без высоты резьбы:

$$d_1 := 2,1 \text{ mm} = 0,0021 \text{ m} \text{ (FOCT 24705-2004)}$$

0,75 и 0,88 - коэффициенты полноты резьбы, учитывающие отношение толщины витка на цилиндре, по которому происходит срез витков, к шагу резьбы

Определение напряжения смятия:

Шаг резьбы:

$$p := 0, 4$$

$$z := \frac{L}{p} = 0,125 \text{ M}$$

$$\sigma_{_{CM}} := 4 \cdot \frac{Q}{\mathbf{m} \cdot \left(d^2 - d_1^2\right) \cdot z \cdot 1000} = 1,4282 \cdot 10^6 \cdot \frac{1}{_{M}}$$

В расчетах на смятие и на срез витков условно предполагают, что общая нагрузка Q распределяется поровну между всеми рабочими витками. Неточность такого предположения компенсируется уменьшением допускаемых напряжений.

Определение допускаемых напряжений:

Предел текучести винтов:

$$\sigma_{_{TBИНТОВ}} := 240 \ \mathrm{MПa}$$

Коэффициент запаса:

$$n := 1, 5$$

$$\sigma_{_{\! I\! D}} := \frac{\sigma_{_{\! T\! B\! U\! HT\! O\! B}}}{n} = 1,6\cdot 10^{-8}$$
 Па

$$au_{{
m Д}{c}{p}} := 0$$
,75 · $\sigma_{{
m Д}{p}} = 1$,2 · 10^8 Па $\sigma_{{
m Д}{c}{M}} := 0$,4 · $\sigma_{{
m Д}{p}} = 6$,4 · 10^8 Па

14. Расчет фрикционной муфты:

Режим работы 1 - постоянная нагрузка

$$r_{HAP} := 25 \text{ MM}$$

 $r_{BH} := 18 \text{ MM}$

Крутящий момент, при котором начинается проскальзывание одной полумуфты относительно другой:

$$M_{_{MY\Phi TH}} := M_{_{\Sigma}} = 0$$
, 355 Дж

Число поверхностей трения:

$$n_{_{\Pi T}} := 2$$

Коэффициент трения скольжения пары материалов:

$$f_{_{MY}\phi_{TH}} := 0$$
, 1 сталь по стали

$$k_{3\Delta\pi} := 1, 0$$

Средний радиус площадки контакта:

$$r_{CP} := \frac{r_{HAP} + r_{BH}}{2} = 0,0215 \text{ M}$$

Сила пружины при рабочей деформации:

$$F_{2\pi pyжины} := \frac{k_{3A\Pi} \cdot M_{My\Phi Tb}}{n_{\Pi T} \cdot f_{MV\Phi Tb} \cdot r_{CD}} = 82,5581 \text{ H}$$

площадь кольца, по которому контактируют детали муфты

$$F_{KMY\Phi TM} := \pi \cdot \left[r_{HAP}^2 - r_{BH}^2 \right] = 0,0009 \text{ M}^2$$

Допускаемое давление:

$$p_{_{\!\mathcal{I}}} := 1,5 \; \mathrm{M}\Pi \mathrm{a}$$

Удельное давление, возникающее на поверхностях трения:

$$p_{_{MY\Phi^{TH}}} := \frac{F_{2\pi ружины}}{F_{KMY\Phi^{TH}}} = 87305,887$$
 Па

Расчет пружины:

1. Сила пружины при максимальной деформации:

$$F_{3\pi py * uh b} := 1, 2 \cdot F_{2\pi py * uh b} = 99,0698 \text{ H}$$

Средний диаметр пружины (подбирается по эскизу):

$$D_{\Pi D V M U H b i} := 12,0 \text{ MM} = 0,012 \text{ M}$$

2. Выбираем предварительное значение индекса пружины іпр:

$$i_{_{\Pi D}} := 6$$
 (FOCT 13765-86)

3. предварительное значение диаметра проволоки:

$$d_{np} := \frac{D_{npyжины}}{i_{np}} = 0,002 \text{ M}$$

4. Выбираем ближайшее значение диаметра проволоки d по таблице ГОСТ 9389-75

$$d_{\text{проволоки}} := 2,0 \text{ mm} = 0,002 \text{ m}$$

Номинальный дна- метр проволоки,	the little state of the contract of the	ые отклонения гру, мм, при	Временное сопро- тивление разрыв; Б., МНа		
104	повыш.	номинальн.	(не менее)		
0,14 0,15 0,16 0,18	+0,005	+0,020	2300		
0,20 0,22 0,25 0,28 0,30	-0,003	-0,015	2260		
0.32 0.36			2210		
0,40 0,45 0,50 0,56 0,60			2160		
0,63 0,70	±0,0I	±0,02	2160		
0,80	- Coulon		2110		
0.90			2110		
I,00			2060		
1,10	+0,015	±0,02	2010		
I,20 I,30 I,40	-0,0I3	10,00	1960_		
I,50 I,60	See N.		_I860		
I.70 I.80 I.90	The sale	ALES S. S.	·1770		
0.00		-	TOOO		

5. Действительное значение индекса пружины:

$$i_{\text{пружины}} := \frac{D_{\text{пружины}}}{d_{\text{проволоки}}} = 6$$

6. Коэффициент, учитывающий кривизну витка пружины к

$$k := \frac{4 \cdot i_{\text{пружины}} - 1}{4 \cdot i_{\text{пружины}} - 4} + \frac{0,615}{i_{\text{пружины}}} = 1,2525$$

7. Допускаемое касательное напряжение для выбранного диаметра проволоки:

предел прочности:

$$\sigma_{\rm Впружины} := 1770~{\rm M\Pi a} = 1,77\cdot 10 {}^{9}{\rm \Pi a}$$

$$\tau_{_{\rm Z}} := 0,32\cdot \sigma_{\rm Впружины} = 5,664\cdot 10 {}^{8}{\rm \Pi a}$$

8. Минимально возможный по условию прочности диаметр проволоки:

$$d_{\min} := 1,6 \cdot \sqrt{\frac{F_{3\pi py \text{жины}} \cdot i_{\pi py \text{жины}} \cdot k}{\tau_{\pi}}} = 0,0018 \text{ m}$$

9. Проверяем выбранное значение диаметра проволоки по условию прочности

$$d_{\text{проволоки}} \ge d_{\min}$$

Если условие не выполняется, уменьшаем значение іпр и повторяем расчет с пункта 2

- 10. Определяем число рабочих витков п
- S2 рабочая деформация пружины, назначается в пределах 4...6 мм

$$S_{2 \pi p y ж u H b} := 5 \ {\rm MM}$$

$$n_{_{BUTKOB}} \coloneqq \frac{10125 \cdot S_{_{2\pi ружины}} \cdot d_{_{\pi poboлoku}}}{S_{_{2\pi ружины}} \cdot i_{_{\pi pyжины}}} = 5$$
, 6778 \cdot 10 $^{-6}$ $\frac{\text{M C}}{\text{KF}}$

11. Округлить число витков до ближайшего необходимого значения.

$$n_{_{BUTKOB}} := 5$$

12. Для принятого числа витков рассчитываем уточнённое значение рабочей деформации модуль сдвига, для стальной пружинной проволоки

$$G_{npoвoлoки} := 81000$$
 МПа
$$S_{2npyжины} := \frac{8 \cdot F_{2npyжины} \cdot n_{витков} \cdot D_{npyжины}}{4} = 0,0044$$
 м
$$G_{npoвoлoки} \cdot d_{npoвoлoки}$$

13. Длина пружины при полностью поджатых витках

$$L := d_{\text{проволоки}} \cdot (n_{\text{витков}} + 1) = 0,012 \text{ м}$$

14. Жёсткость пружины

$$C_{\text{пружины}} := rac{F_{2\text{пружины}}}{S_{2\text{пружины}}} = 18750 \ \text{м} \ \Pi \text{a}$$

15. Расчет приведенного момента инерции.

Приведенный момент инерции ротора двигателя:

$$J_{nppot} := J = 8,69 \cdot 10^{-7} \text{ Kr M}^2$$

$$\rho := 7,85 \cdot 10^{-6} \frac{\text{Kr}}{3}$$

Диаметры ступиц зубчатых колес:

$$d_{CT1} := 8 \text{ MM} = 0,008 \text{ M}$$
 $d_{CT2} := 9 \text{ MM} = 0,009 \text{ M}$
 $d_{CT3} := 9 \text{ MM} = 0,009 \text{ M}$
 $d_{CT4} := 9 \text{ MM} = 0,009 \text{ M}$
 $d_{CT5} := 9 \text{ MM} = 0,009 \text{ M}$
 $d_{CT5} := 9 \text{ MM} = 0,009 \text{ M}$

Ширина венцов зубчатых колес:

$$\begin{aligned} b_1 &:= 2 \text{ MM} \\ b_2 &:= b_1 = 0,002 \text{ M} \\ b_3 &:= b_1 = 0,002 \text{ M} \\ b_4 &:= b_1 = 0,002 \text{ M} \\ b_5 &:= b_1 = 0,002 \text{ M} \\ b_6 &:= b_1 = 0,002 \text{ M} \end{aligned}$$

$$\begin{aligned} & d_{_{CT7}} := 9 \text{ mm} = 0,009 \text{ m} \\ & d_{_{CT8}} := 10 \text{ mm} \\ & d_{_{CTPOV}} := 10 \text{ mm} \end{aligned}$$

$$b_7 := b_1 = 0,002 \text{ M}$$

 $b_8 := 0,003 \text{ M}$
 $b_{pov} := 0,002 \text{ M}$

Диаметры отвертстий:

$$\begin{split} &d_{_{OTB1}} := 4 \text{ mm} \\ &d_{_{OTB2}} := 5 \text{ mm} \\ &d_{_{OTB3}} := d_{_{OTB2}} = 0,005 \text{ m} \\ &d_{_{OTB4}} := d_{_{OTB3}} = 0,005 \text{ m} \\ &d_{_{OTB5}} := d_{_{OTB4}} = 0,005 \text{ m} \\ &d_{_{OTB6}} := d_{_{OTB5}} = 0,005 \text{ m} \\ &d_{_{OTB6}} := d_{_{OTB6}} = 0,005 \text{ m} \\ &d_{_{OTB7}} := d_{_{OTB6}} = 0,006 \text{ m} \\ &d_{_{OTB8}} := 6 \text{ mm} = 0,006 \text{ m} \\ &d_{_{OTBPOV}} := 6 \text{ mm} \end{split}$$

Длины ступиц:

$$\begin{split} &\boldsymbol{l}_{CT1} := 5 \text{ MM} & \boldsymbol{l}_{CT5} := 6 \text{ MM} \\ &\boldsymbol{l}_{CT2} := 6 \text{ MM} & \boldsymbol{l}_{CT6} := 6, 5 \text{ MM} \\ &\boldsymbol{l}_{CT3} := 6, 5 \text{ MM} \boldsymbol{l}_{CT7} := 6, 5 \text{ MM} \\ &\boldsymbol{l}_{CT4} := 6, 5 \text{ MM} \boldsymbol{l}_{CT8} := 0 \text{ MM} \\ &\boldsymbol{l}_{CTPOV} := 6 \text{ MM} \end{split}$$

Массы зубчатых колес:

$$\begin{split} & m_1 \coloneqq \rho \cdot \mathbf{n} \cdot \left| b_1 \cdot \frac{\left| \frac{d_{cT1}^2 - d_{otb1}^2}{4} \right|}{4} + l_{ct1} \cdot \left| \frac{d_{ct2}^2 - d_{otb1}^2}{4} \right| = 0,0021 \text{ kg} \\ & m_2 \coloneqq \rho \cdot \mathbf{n} \cdot \left| b_2 \cdot \frac{\left| \frac{d_{ct2}^2 - d_{otb2}^2}{4} \right|}{4} + l_{ct2} \cdot \left| \frac{d_{ct2}^2 - d_{otb2}^2}{4} \right| = 0,0028 \text{ kg} \\ & m_3 \coloneqq \rho \cdot \mathbf{n} \cdot \left| b_3 \cdot \frac{\left| \frac{d_{ct3}^2 - d_{otb3}^2}{4} \right|}{4} + l_{ct3} \cdot \left| \frac{d_{ct3}^2 - d_{otb3}^2}{4} \right| = 0,0029 \text{ kg} \\ & m_4 \coloneqq \rho \cdot \mathbf{n} \cdot \left| b_4 \cdot \frac{\left| \frac{d_{ct3}^2 - d_{otb4}^2}{4} \right|}{4} + l_{ct4} \cdot \left| \frac{d_{ct4}^2 - d_{otb4}^2}{4} \right| = 0,0029 \text{ kg} \\ & m_5 \coloneqq \rho \cdot \mathbf{n} \cdot \left| b_5 \cdot \frac{\left| \frac{d_{ct5}^2 - d_{otb4}^2}{4} \right|}{4} + l_{ct5} \cdot \left| \frac{d_{ct5}^2 - d_{otb4}^2}{4} \right| = 0,0029 \text{ kg} \\ & m_6 \coloneqq \rho \cdot \mathbf{n} \cdot \left| b_6 \cdot \frac{\left| \frac{d_{ct5}^2 - d_{otb4}^2}{4} \right|}{4} + l_{ct6} \cdot \left| \frac{d_{ct5}^2 - d_{otb4}^2}{4} \right| = 0,0029 \text{ kg} \\ & m_7 \coloneqq \rho \cdot \mathbf{n} \cdot \left| b_7 \cdot \frac{\left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} \right|}{4} + l_{ct7} \cdot \left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} \right| = 0,0029 \text{ kg} \\ & m_8 \coloneqq \rho \cdot \mathbf{n} \cdot \left| b_8 \cdot \frac{\left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} \right|}{4} + l_{ct7} \cdot \left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} \right| = 0,0029 \text{ kg} \\ & m_8 \coloneqq \rho \cdot \mathbf{n} \cdot \left| b_8 \cdot \frac{\left| \frac{d_{ct7}^2 - d_{otb8}^2}{4} \right|}{4} + l_{ct7} \cdot \left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} \right| = 0,0029 \text{ kg} \\ & m_{gov} \coloneqq \rho \cdot \mathbf{n} \cdot \left| b_1 \cdot \frac{\left| \frac{d_{ct7}^2 - d_{otb8}^2}{4} \right|}{4} + l_{ct7} \cdot \left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} \right| = 0,0022 \text{ kg} \\ & m_{gov} \coloneqq \rho \cdot \mathbf{n} \cdot \left| b_1 \cdot \frac{\left| \frac{d_{ct7}^2 - d_{otb8}^2}{4} \right|}{4} + l_{ct7} \cdot \left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} \right| = 0,0022 \text{ kg} \\ & m_{gov} \coloneqq \rho \cdot \mathbf{n} \cdot \left| b_1 \cdot \frac{\left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} \right|}{4} + l_{ct7} \cdot \left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} \right| = 0,0022 \text{ kg} \\ & m_{gov} \coloneqq \rho \cdot \mathbf{n} \cdot \left| b_1 \cdot \frac{\left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} \right|}{4} + l_{ct7} \cdot \left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} \right| = 0,0022 \text{ kg} \\ & m_{gov} \coloneqq \rho \cdot \mathbf{n} \cdot \left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} + l_{ct7} \cdot \left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} \right| = 0,0022 \text{ kg} \\ & m_{gov} \coloneqq \rho \cdot \mathbf{n} \cdot \left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} + l_{ct7} \cdot \left| \frac{d_{ct7}^2 - d_{otb4}^2}{4} \right| = 0,0022 \text{ kg} \\ & m_{gov} \coloneqq \rho \cdot \mathbf{n} \cdot \left| \frac{d_{ct7}^2 - d_{o$$

Моменты инерции зубчатых колес:

$$J_{1} := \frac{m_{1} \cdot \left(\frac{d_{a1}}{2}\right)^{2}}{2} = 8,5209 \cdot 10^{-8} \text{ Kp M}^{2}$$

$$J_{2} := \frac{m_{2} \cdot \left(\frac{d_{a2}}{2}\right)^{2}}{2} = 2,6798 \cdot 10^{-7} \text{ Kp M}^{2}$$

$$J_{3} := \frac{m_{3} \cdot \left(\frac{d_{a3}}{2}\right)^{2}}{2} = 1,2071 \cdot 10^{-7} \text{ Kp M}^{2}$$

$$J_{4} := \frac{m_{4} \cdot \left(\frac{d_{a4}}{2}\right)^{2}}{2} = 3,7236 \cdot 10^{-7} \text{ Kp M}^{2}$$

$$J_{5} := \frac{m_{5} \cdot \left(\frac{d_{a5}}{2}\right)^{2}}{2} = 1,1361 \cdot 10^{-7} \text{ Kp M}^{2}$$

$$J_{6} := \frac{m_{6} \cdot \left(\frac{d_{a6}}{2}\right)^{2}}{2} = 7,7152 \cdot 10^{-7} \text{ Kp M}^{2}$$

$$J_{7} := \frac{m_{7} \cdot \left(\frac{d_{a7}}{2}\right)^{2}}{2} = 1,2071 \cdot 10^{-7} \text{ Kp M}^{2}$$

$$J_{8} := \frac{m_{8} \cdot \left(\frac{d_{a8}}{2}\right)^{2}}{2} = 6,2248 \cdot 10^{-7} \text{ Kp M}^{2}$$

$$d_{pov} := 30 \text{ MM}$$

$$J_{pov} := \frac{m_{pov} \cdot \left(\frac{d_{pov}}{2}\right)^{2}}{2} = 3,5513 \cdot 10^{-7} \text{ kg m}^{2}$$

Приведенный к первому колесу момент инерции редуктора

$$\begin{split} J_{nppe_{\mathcal{A}}} \coloneqq J_{1} + \frac{J_{2} + J_{3}}{2} + \frac{J_{4} + J_{5}}{\left(i_{12} \cdot i_{34}\right)^{2}} + &= 2,9836 \cdot 10^{-7} \text{ kg m}^{2} \\ + \frac{J_{6} + J_{7}}{\left(i_{12} \cdot i_{34} \cdot i_{56}\right)^{2}} + \frac{J_{8} + J_{pov}}{\left(i_{12} \cdot i_{34} \cdot i_{56} \cdot i_{78}\right)^{2}} \end{split}$$

Приведенный момент инерции механизма рассчитывается по формуле:

$$J_{np} := J_{nppot} + J_{npped} = 1,1674 \cdot 10^{-6} \text{ Kp M}^2$$

16. Расчет времени разгона механизма:

Скорость вращения вала двигателя:

$$\omega_{_{\it I\!I\!B}} := 2 \cdot \mathbf{n} \cdot n_{_{\it D\!V}} = 471$$
, 2389 Гц

Жесткость механической характеристики электродвигателя:

$$K := \frac{M_P - M_{DV}}{\omega_{_{IIB}}} = 0$$
,0004 с Дж

Костанта времени разгона:

$$T := \frac{J_{\pi p}}{K} = 0,0027 \text{ c}$$

Время разгона:

$$t := 3 \cdot T = 0,008 \text{ c}$$

17. Кинематическая погрешность передачи.

	F _c	16							
	$F_{\mathbf{i}}'$	От 1 до 16	$F_{ m p}$ + $f_{ m f}$ (см. примечание 2)						
		От 1 до 3,5	25	36	45	50	56	-	-
		CB. 3,5 " 6,3	28	40	50	56	63	71	-
	F _r	" 6,3 " 10	32	45	56	63	71	80	90
6		" 10 " 16	-	50	63	71	80	90	100
	F_{vW}	От 1 до 16	16	28	45	70	-	-	-
		От 1 до 3,5	36	50	63	71	-	-	-
	F _i "	CB. 3,5 " 6,3	40	56	71	80	-	-	-
		" 6,3 " 10	45	63	80	90	-	-	-
		" 10 " 16	×	71	90	100	-	-	-
		2 12					1	0.12	

		11 ИЮН 2020 19.11.	25 - Calculations	.5
		Св. 3,5 " 6,3	±13	
	f _{Pt}	" 6,3 " 10	±14	
		" 10 " 16	-	
		От 1 до 3,5	±9,5	
	f _{Pb}	CB. 3,5 " 6,3	±12	
		" 6,3 " 10	±13	
6		" 10 " 16	-	
		От 1 до 3,5	8	
	$\mathbf{f_f}$	CB. 3,5 " 6,3	10	
		" 6,3 " 10	12	
		" 10 " 16	-	

f_f := 8

		1		1	<u> </u>			Для ±]	р - доли	ГСЛВПВП	й диаме	ip u,
			1	До	Св.	Св.	Св.	Св.	Св.	Св.	Св.	Св.
				12,7	12,7	20,4	31,8	50,9	101,8	200,5	401,1	636,6
					до	до	до	до	до	до	до	до
					20,4	31,8	50,9	101,8	200,5	401,1	636,6	1019
						8. 8			B 48	MKM		
3	F _{Pk} или	От 1 до 10	2,8	4,0	5,0	5,5	6,0	8,0	11	16	20	25
	$ F_P $											
4		" 1 " 10	4,5	6	8	9	10	12	18	25	32	40
5		" 1 " 16	7	10	12	14	16	20	28	40	50	63
6		" 1 " 16	11	16	20	22	25	32	45	63	80	100
7		" 1 " 25	16	22	28	32	36	45	63	90	112	140

$$F_{p1} := 20$$

$$F_{p2} := 22$$

$$F_{p3} := F_{p1} = 20$$

$$F_{p4} := 22$$

$$|F_{i1} := F_{p1} + f_f = 28$$

$$|F_{i2} := F_{p2} + f_f = 30$$

$$|F_{i3} := F_{p3} + f_f = 28$$

$$|F_{i4} := F_{p4} + f_f = 30$$

$$F_{p5} := F_{p1} = 20$$

$$F_{p6} := 25$$

$$F_{p7} := 20$$

$$F_{p8} := 32$$

$$|F_{i5} := F_{p5} + f_f = 28$$

$$|F_{i6} := F_{p6} + f_f = 33$$

$$|F_{i7} := F_{p7} + f_f = 28$$

$$|F_{i8} := F_{p8} + f_f = 40$$

$$E_{\Sigma M} := 30$$

$$G_r := 20$$

$$K_{12} := 0,85$$

$$K_{s12} := 0,76$$

$$K_{34} := 0,85$$

$$K_{s34} := 0,76$$

$$K_{56} := 0,93$$

$$K_{s56} := 0,74$$

$$K_{78} := 0,96$$

$$K_{s78} := 0,80$$

Минимальная погрешность:

$$\begin{split} F_{iomin12} &:= 0,62 \cdot K_{s12} \cdot \left(F_{i1} + F_{i2}\right) = 27,3296 \\ F_{iomin34} &:= 0,62 \cdot K_{s34} \cdot \left(F_{i3} + F_{i4}\right) = 27,3296 \\ F_{iomin56} &:= 0,62 \cdot K_{s56} \cdot \left(F_{i5} + F_{i6}\right) = 27,9868 \\ F_{iomin56} &:= 0,62 \cdot K_{s78} \cdot \left(F_{i7} + F_{i8}\right) = 33,728 \end{split}$$

Максимальная кинематическая погрешность передачи:

$$\begin{split} F_{iomax12} &:= K_{12} \cdot \left(\sqrt{F_{i1}}^2 + E_{\Sigma M}^2 + \sqrt{F_{i2}}^2 + E_{\Sigma M}^2 \right) = 70,9435 \\ F_{iomax34} &:= K_{34} \cdot \left(\sqrt{F_{i3}}^2 + E_{\Sigma M}^2 + \sqrt{F_{i4}}^2 + E_{\Sigma M}^2 \right) = 70,9435 \\ F_{iomax56} &:= K_{56} \cdot \left(\sqrt{F_{i5}}^2 + E_{\Sigma M}^2 + \sqrt{F_{i6}}^2 + E_{\Sigma M}^2 \right) = 79,6403 \\ F_{iomax78} &:= K_{78} \cdot \left(\sqrt{F_{i7}}^2 + E_{\Sigma M}^2 + \sqrt{F_{i8}}^2 + E_{\Sigma M}^2 \right) = 87,3951 \end{split}$$

Максимальная кинематическая погрешность в угловых единицах:

$$\begin{split} \delta\varphi_{12} &:= 6\text{, } 88 \cdot \frac{F_{iomax12}}{d_2 \cdot 1000} = 18\text{, } 7727 \cdot \frac{1}{\text{M}} & \delta\varphi_{56} := 6\text{, } 88 \cdot \frac{F_{iomax56}}{d_6 \cdot 1000} = 12\text{, } 4529 \cdot \frac{1}{\text{M}} \\ \delta\varphi_{34} &:= 6\text{, } 88 \cdot \frac{F_{iomax34}}{d_4 \cdot 1000} = 16\text{, } 2697 \cdot \frac{1}{\text{M}} & \delta\varphi_{78} := 6\text{, } 88 \cdot \frac{F_{iomax78}}{d_8 \cdot 1000} = 9\text{, } 5441 \cdot \frac{1}{\text{M}} \\ \delta\varphi_{13} & \delta\varphi_{34} & \delta\varphi_{56} & \delta\varphi_{78} & 1 \end{split}$$

$$\delta \varphi_{\max \Sigma} := \frac{\delta \varphi_{12}}{i_{34} \cdot i_{56} \cdot i_{78}} + \frac{\delta \varphi_{34}}{i_{56} \cdot i_{78}} + \frac{\delta \varphi_{56}}{i_{78}} + \frac{\delta \varphi_{78}}{1} = 15,1339 \cdot \frac{1}{M}$$

18. Кинематический мертвый ход зубчатой передачи.

Наименьшие дополнительные смещения исходного контура:

$$E_{HS1} := 32$$
 $E_{HS5} := 32$ $E_{HS6} := 35$ $E_{HS2} := 38$ $E_{HS6} := 45$ $E_{HS3} := 28$ $E_{HS7} := 28$ $E_{HS8} := 53$

Допуск на радиальное биение зубчатого венца:

Допуск на смещение исходного контура:

$$T_H := 56$$

Гарантированный боковой зазор:

$$j_{nmin12} := 21 \quad j_{nmin56} := 21$$

$$j_{nmin34} := 21 \quad j_{nmin78} := 25$$

Минимальный кинематический мертвый ход передачи:

$$j_{tmin12} := \frac{j_{nmin12}}{\cos(\alpha) \cdot \cos(\beta)} = 22,3477 \qquad j_{tmin56} := \frac{j_{nmin56}}{\cos(\alpha) \cdot \cos(\beta)} = 22,3477$$

$$j_{tmin34} := \frac{j_{nmin34}}{\cos(\alpha) \cdot \cos(\beta)} = 22,3477 \qquad j_{tmin78} := \frac{j_{nmin78}}{\cos(\alpha) \cdot \cos(\beta)} = 26,6044$$

Предельные отклонения межосевого расстояния:

$$f_{a12} := 40$$

$$f_{a34} := 40$$

$$f_{a56} := 40$$

$$f_{a78} := 50$$

Максимальный кинематический мертвый ход передачи:

$$\begin{split} &j_{tmax12} := 0,7 \cdot \left(E_{HS1} + E_{HS2} \right) + \sqrt{0,5 \cdot \left(T_H^2 + T_H^2 \right) + 2 \cdot f_{a12}^2 + G_r^2 + G_r^2} = 133,4748 \\ &j_{tmax34} := 0,7 \cdot \left(E_{HS3} + E_{HS4} \right) + \sqrt{0,5 \cdot \left(T_H^2 + T_H^2 \right) + 2 \cdot f_{a34}^2 + G_r^2 + G_r^2} = 130,6748 \\ &j_{tmax56} := 0,7 \cdot \left(E_{HS1} + E_{HS2} \right) + \sqrt{0,5 \cdot \left(T_H^2 + T_H^2 \right) + 2 \cdot f_{a56}^2 + G_r^2 + G_r^2} = 133,4748 \\ &j_{tmax78} := 0,7 \cdot \left(E_{HS1} + E_{HS2} \right) + \sqrt{0,5 \cdot \left(T_H^2 + T_H^2 \right) + 2 \cdot f_{a78}^2 + G_r^2 + G_r^2} = 143,5304 \end{split}$$

Минимальное и максимальное значение мертвого хода передачи в угловых единицах:

(Домножил знаменатель на 1000 для получения правильной размерности угл. мин)

$$\begin{split} &j_{\varphi min12} \coloneqq 7,32 \cdot \frac{j_{tmin12}}{d_2 \cdot 1000} = 6,2917 \cdot \frac{1}{M} \\ &j_{\varphi min34} \coloneqq 7,32 \cdot \frac{j_{tmin34}}{d_4 \cdot 1000} = 5,4528 \cdot \frac{1}{M} \\ &j_{\varphi min56} \coloneqq 7,32 \cdot \frac{j_{tmin56}}{d_6 \cdot 1000} = 3,7179 \cdot \frac{1}{M} \\ &j_{\varphi min78} \coloneqq 7,32 \cdot \frac{j_{tmin56}}{d_8 \cdot 1000} = 3,0912 \cdot \frac{1}{M} \end{split}$$

(Домножил знаменатель на 1000 для получения правильной размерности угл. мин)

$$\begin{split} &j_{\varphi max12} := 7,32 \cdot \frac{j_{tmax12}}{d_2 \cdot 1000} = 37,5783 \cdot \frac{1}{M} \\ &j_{\varphi max34} := 7,32 \cdot \frac{j_{tmax34}}{d_4 \cdot 1000} = 31,8847 \cdot \frac{1}{M} \\ &j_{\varphi max56} := 7,32 \cdot \frac{j_{tmax56}}{d_6 \cdot 1000} = 22,2054 \cdot \frac{1}{M} \\ &j_{\varphi max78} := 7,32 \cdot \frac{j_{tmax78}}{d_8 \cdot 1000} = 16,6769 \cdot \frac{1}{M} \end{split}$$

Кинематический мертвый ход многозвенного механизма, приведенный к выходному звену:

$$j_{\varphi \max \Sigma} := \frac{j_{\varphi \max 12}}{i_{34} \cdot i_{56} \cdot i_{78}} + \frac{j_{\varphi \max 34}}{i_{56} \cdot i_{78}} + \frac{j_{\varphi \max 56}}{i_{78}} + \frac{j_{\varphi \max 78}}{1} = 27,1118 \cdot \frac{1}{M}$$

19. Расчет упругого мертвого хода:

Полярные моменты инерции валов:

$$\begin{split} J_{pI} &:= \mathbf{n} \cdot \frac{d_I}{32} = 25,1327 \qquad J_{pII} := \mathbf{n} \cdot \frac{d_{II}}{32} = 61,3592 \quad J_{pIII} := \mathbf{n} \cdot \frac{d_{III}}{32} = 61,3592 \\ J_{pIV} &:= \mathbf{n} \cdot \frac{d_{IV}}{32} = 61,3592 \quad J_{pV} := \mathbf{n} \cdot \frac{d_V}{32} = 127,2345 \end{split}$$

Длины участков валов, на которые действует крутящий момент:

$$l_1 := 4$$
 $l_2 := 20,5$ $l_3 := 20,5$ $l_4 := 37,5$ $l_5 := 39,2$

Деформации кручения валов:

$$j_{\varphi y maxI} := \frac{10800 \cdot M_I \cdot I_1}{\mathbf{m} \cdot J_{DI} \cdot G} = 8,7849 \cdot 10^{-11} \, \mathrm{m}^3$$

$$j_{\varphi y maxII} := \frac{10800 \cdot M_{II} \cdot l_2}{\mathbf{m} \cdot J_{pII} \cdot G} = 2,8022 \cdot 10^{-10} \, \mathrm{m}^3$$

$$j_{\varphi y maxIII} := \frac{10800 \cdot M_{III} \cdot l_3}{\mathbf{m} \cdot J_{pIII} \cdot G} = 4,9949 \cdot 10^{-10} \, \mathrm{m}^3$$

$$j_{\varphi y maxIV} := \frac{10800 \cdot M_{IV} \cdot l_4}{\mathbf{m} \cdot J_{pIV} \cdot G} = 2,4266 \cdot 10^{-9} \, \mathrm{m}^3$$

$$j_{\varphi y maxV} := \frac{10800 \cdot M_V \cdot I_5}{\pi \cdot J_{pV} \cdot G} = 4,7 \cdot 10^{-9} \text{ M}^3$$

$$\begin{split} j_{\varphi y max \Sigma} &:= \frac{j_{\varphi y max I}}{i_{12} \cdot i_{34} \cdot i_{56} \cdot i_{78}} + \frac{j_{\varphi y max II}}{i_{34} \cdot i_{56} \cdot i_{78}} + \frac{j_{\varphi y max III}}{i_{56} \cdot i_{78}} + = 5,3788 \cdot 10^{-9} \text{ M} \\ &+ \frac{j_{\varphi y max IV}}{i_{79}} + \frac{j_{\varphi y max V}}{1} \end{split}$$