방학세미나 후기

학회장팀

김현우 윤지영

INDEX

- 1. 출제 의도
- 2. 방법론 참고
- 3. 공통 피드백
- 4. 1등팀 발표

DATA

https://www.kaggle.com/competitions/santander-customer-transaction-prediction/data

Kaggle에서 진행했던 은행의 거래 예측 Competition

고객이 미래에 특정 거래를 진행 할 것인지 여부 예측

0: 거래 X / 1: 거래 O

목적

불균형 클래스에 대한 분류모델 생성 연습 & 변수가 많은 고차원 데이터에 대한 접근법 연습

F1 Score(Macro)

: 각 Label당 F1 Score의 평균

$$Macro - Precision = \frac{Pecision1 + Precision2}{2}$$

$$Macro-Recall = \frac{Recall1 + Recall2}{2}$$

$$Macro - F - Score = 2. \frac{Macro - Precision . Macro - Recall}{Macro - Precision + Macro - Recall}$$

분류 모델의 성능을 평가하는 지표로 사용

평가지표

분류 모델의 성능을 평가하는 지표로 사용

평가지표

F1 Score(Macro)

	실제 거래 O	실제 거래 X
예측 거래 O	TP	FP
예측 거래 X	FN	TN

Accuracy: (TP+TN)/(TP+FP+FN+TN)

은행의 입장에선

모델이 정확하게 작동하는 것 또한 중요하지만,

Pecision 사용자가 특정 거래를 진행하는 지를

ecall1 + Recall2 예측하는 것 또한 중요

1

Macro - F - Score = 2. Macro - Pre따라서 각 label(0, 1)에 대한

F1-Score의 평균인 Macro-F1을 사용!

분류 모델의 성능을 평가하는 지표로 사용

분석 과제

고차원 데이터 처리

데이터 셋 내 200개 변수에 대한 처리 변수 선택이나 변수 추출, 혹은 파생변수 생성

변수 특성에 따른 모델 선택

변수의 특성에 따른 적절한 모델 선정

불균형 클래스

0과 1이 9:1의 비율로 분포 Minor Class에 대한 예측

하이퍼파라미터 튜닝 및 시각화

파라미터 튜닝 시 평가지표 시각화의 효율성

출제 의도

분석 과제

Main!

고차원 데이터 처리

데이터 셋 내 200개 변수에 대한 처리 변수 선택이나 변수 추출, 혹은 파생변수 생성

변수 특성에 따른 모델 선택

변수의 특성에 따른 적절한 모델 선정

불균형 클래스

0과 1이 9:1의 비율로 분포 Minor Class에 대한 예측

하이퍼파라미터 튜닝 및 시각화

파라미터 튜닝 시 평가지표 시각화의 효율성

2

방법론 참고

200개의 변수

변수선택, 차원축소 등 피쳐를 줄이는 시도를 하기 쉬움!

하지만, 이번 데이터에서는 이러한 방법이 잘 작동하지 X

변수의 특징을 찾아내어 이를 충분히 이용하는 방향으로 접근

> 변수선택 공부에 도움되는 산탄데르 고객 만족도 예측 데이터

https://www.kaggle.com/competitions/santandercustomer-satisfaction/overview

변수별 빈도수 확인

각 값이 발생하는 빈도수대로 그룹을 만들어 확인 → 특정 변수에서는 매우 많은 그룹 존재

방법론 참고

변수별 빈도수 확인

이번 데이터처럼 연속적인 값들의 빈도수가 유의미하게 작동되는 것은 이례적인 일이긴 하나, 범주형 변수의 경우 이런 빈도수를 확인하는 것은 매우 기본적인 절차라고 합니다~

빈도 변수 생성

EXAMPLE

빈도 변수를 이용한 여러 접근법

- ① 빈도수가 발생하는 5가지의 상황으로 범주형 변수 생성
 - ② 빈도수 변수 추가 후 인코딩
- ③ 빈도수가 1이면 0, 나머지는 1로 처리

. . .

Feature engineering:

Technical part:

The "magic" is about count of values, especially the

fact that some are unique.

실제 대회에서 상위팀 모두 빈도 변수 이용

방법론 참고

빈도 변수 생성

Var111의 빈도수별 분포

Var120의 빈도수별 분포

즉, EDA를 통해 변수별로 차이점을 나타내는 <mark>고유한 특징</mark>을 찾아 그 요소를 이용할 수 있는 변수를 만들어보는 것이 중요

빈도 변수 생성

빈도 변수 생성

Target 별 변수 분포 시각화

Target에 따른 변수의 분포를 확인해보았을 때, 대체로 Target값에 따라 분포가 달라 보이지만, Target값에 관계없이 비슷해 보이는 분포가 나타남을 확인 가능

Target 별 변수 분포 시각화

따라서, 동질성 검정을 진행하여

Target값에 관계없이 비슷해 보이는 분포를 제거

방법론 참고

동질성 검정

주어진 **두 표본의 분포가 일치**하는가 검정

범주형

카이 제곱 검정

KS test는 연속형 데이터에만 사용

Ho: 비교하는 두 분포가 동질적이다

P-value <0.05 → 비교하는 분포 이질성 존재

연속형

Kolmogorov Smirnov 검정

Ho: 비교하는 두 분포가 동질적이다

P-value <0.05 → 비교하는 분포 이질성 존재

만일 열 별 Target의 0/1에 대한 두 분포가 이질적임을 확인

→ 0/1을 결정짓는 중요한 요인으로 작용함을 알 수 있음

동질성 검정

변수 선택 전 F1-Score: 0.7556

변수 선택 후 F1-Score : 0.7606

KS검정에서 동질성을 보이는 분포(P-value >=0.05)를 가지는 변수를 제거해주었을 때, 유의미한 성능향상이 나타남을 확인

추가적 성능 향상 방법: 앙상블

단일 모델들을 세운 후, <mark>앙상블</mark> 사용

예측이 틀리는 경우는 흔하게 발생하지 않기 때문에, 여러 모델의 예측값들을 함께 이용하여 오분류된 데이터를 보완가능

각 모델의 단일 예측률이 높을수록

모델 간 상관관계가 낮을수록(다양성)

앙상블 통한 error 보완력 ↑

Weighted Voting Ensemble

성능이 좋은 모델에 가중치를 주며 다수결로 예측값을 결정하는 형식

EXAMPLE

6개의 모델이 있는 경우

'가장 잘 예측하는 모델 ' 에게 3표를 주고, 나머지 5개의 모델에게 한 표씩 주었을 때 가장 좋은 모델의 몇 개의 오분류를 바로잡을 가능성 부여

> 0에 대한 예측력은 높지만 1에 대해서 50%로 찍고 있는 경우 더욱 잘 작동

예측값이 연속적인 경우

Weighted Average Ensemble

여러 모델의 예측값들의 가중평균을 사용

FXAMPI F

이번 데이터의 기존 대회는 분류확률을 제출 LGBM & NN 모델의 예측력이 높다는 사실 발견

1, 2위팀 모두lgbm, nn모델의 예측값을 ex) 6:4 의 비율로 평균내어 사용

Stacking Ensemble

개별 모델의 예측 결과들로 메타 데이터셋을 만들고 최종 모델에 적용하여 예측을 수행하는 방법

EXAMPLE: Gold Medal solution

각 변수별로 학습을 진행하여 200개의 모델로 예측을 한 후 로지스틱 회귀모델로 최종 예측 진행

스태킹 과정을 하나의 클래스로 짜[']둔 커널로, 매우 용이하게 커스텀하여 활용할 수 있으니 참고하세용

https://www.kaggle.com/code/yekenot/simple-stacker-lb-0-284

스태킹 기법 - 다중계층스태킹, 메타 특징 변수 생성 등 홀드아웃 데이터를 이용한 블렌딩 기법 등 이외에도 다양한 앙상블 기법 존재

데이터/경진대회의 성격, 평가지표 등에 따라 효과가 달라짐 → 상황에 따라 적용하는 것이 필요

방법론 참고

기타 참고 사항

2 방법론 참고

사용 시 참고

대회 목적

해당 보험사의 고객이 내년에 보험을 청구할지에 대한 예측이 목적

오토 인코더는 예측 성능이 높았으나, 왜 이런 결과가 도출되었는지 분석 어려움 데이터 실무 및 공모전에서는 성능도 중요하지만, 해석이 더 중요한 경우 많음

신용평가사 등 데이터를 분석하는 직무에서 일을 할때는 모델의 성능 자체도 필요하지만, 성능이 다소 낮더라도 해석이 가능하여 향후 경영 전략에 도움이 되는 데이터 분석 공모전에서도 성능만 좋은 모델은 좋은 평가를 못받음

근백 리 교수님 + 신용평가사에 계신 선배님들 조언…

학습 결과 해석

모델 불특정 기법

Model Agnostic

지역적 대리 분석

Local Surrogate

Lime

SHAP

자세한 내용은 지난 방세 PPT 참고!

이 외에도 SHAP이나 LIME들을 활용해서 각 변수들이 어떻게 모델에서 작용하는지, 그 해석에도 힘 쓸 수 있음

3

공통 피드백

공통 피드백

EDA 과정에서 대부분의 팀들이 본인들이 실패한 내용을 제외하고 제출

EDA 과정에서 인사이트를 찾아내지 못하거나, 적용 결과 큰 의미가 없더라도 이 내용을 잘 정리한다면, 해당 기법을 사용하지 않은 이유에 대한 당위성을 부여할 수 있음

공통 피드백

많은 팀에서 Optuna를 활용하여 하이퍼파라미터 튜닝을 진행한 것을 확인

공통 피드백

Optuna의 경우에는 하이퍼파라미터의 중요도를 plot_param_importances() 함수를 통해 플랏을 그려 확인 가능하고, 이를 바탕으로 어떤 변수에 중점을 둬서 튜닝할 지 고려해볼 수 있을 것임

Q&A 및 모델에 대한 설명

4

1등팀 발표

3팀

김수빈 김민 안은선 조건우

다른 팀들도 모두 수고하셨습니다!