Dynamic Programming

Algorithm Design and Analysis Dynamic Programming (1)

http://ada.miulab.tw

slido: #ADA2021

Yun-Nung (Vivian) Chen

Outline

- Dynamic Programming
- DP #1: Rod Cutting
- DP #2: Stamp Problem
- DP #3: Matrix-Chain Multiplication
- DP #4: Weighted Interval Scheduling
- DP #5: Sequence Alignment Problem
 - Longest Common Subsequence (LCS) / Edit Distance
 - Viterbi Algorithm
 - Space Efficient Algorithm
- DP #6: Knapsack Problem
 - 0/1 Knapsack
 - Unbounded Knapsack
 - Multidimensional Knapsack
 - Fractional Knapsack

動腦一下 – 囚犯問題

- 有100個死囚,隔天執行死刑,典獄長開恩給他們一個存活的機會。
- 當隔天執行死刑時,每人頭上戴一頂帽子(黑或白)排成一隊伍,在死刑執行前,由隊 伍中最後的囚犯開始,每個人可以猜測自己頭上的帽子顏色(只允許說黑或白),猜對 則免除死刑,猜錯則執行死刑。
- 若這些囚犯可以前一天晚上先聚集討論方案,是否有好的方法可以使總共存活的囚犯數量期望值最高?

猜測規則

- 囚犯排成一排,每個人可以看到前面所有人的帽子,但看不到自己及後面囚犯的。
- 由最後一個囚犯開始猜測,依序往前。
- 每個囚犯皆可聽到之前所有囚犯的猜測內容。

Example: 奇數者猜測內容為前面一位的帽子顏色 → 存活期望值為75人

有沒有更多人可以存活的好策略?

Algorithm Design Strategy

- Do not focus on "specific algorithms"
- But "some strategies" to "design" algorithms
- First Skill: Divide-and-Conquer (各個擊破/分治法)
- Second Skill: Dynamic Programming (動態規劃)

Dynamic Programming

Textbook Chapter 15 – Dynamic Programming
Textbook Chapter 15.3 – Elements of dynamic programming

What is Dynamic Programming?

- Dynamic programming, like the divide-and-conquer method, solves problems by combining the solutions to subproblems
 - 用空間換取時間
 - 讓走過的留下痕跡
- "Dynamic": time-varying
- "Programming": a tabular method

Dynamic Programming: planning over time

Algorithm Design Paradigms

- Divide-and-Conquer
 - partition the problem into independent or disjoint subproblems
 - repeatedly solving the common subsubproblems
 - → more work than necessary

- Dynamic Programming
 - partition the problem into dependent or overlapping subproblems
 - avoid recomputation
 - ✓ Top-down with memoization
 - ✓ Bottom-up method

Dynamic Programming Procedure

- Apply four steps
 - 1. Characterize the structure of an optimal solution
 - 2. Recursively define the value of an optimal solution
 - 3. Compute the value of an optimal solution, typically in a **bottom-up** fashion
 - 4. Construct an optimal solution from computed information

Rethink Fibonacci Sequence

- Fibonacci sequence (費波那契數列)
 - Base case: F(0) = F(1) = 1
 - Recursive case: F(n) = F(n-1) + F(n-2)


```
Fibonacci(n)
  if n < 2 // base case
    return 1
  // recursive case
  return Fibonacci(n-1)+Fibonacci(n-2)</pre>
```

- ✓ F(3) was computed twice
- ✓ F(2) was computed 3 times

$$T(n) = O(2^n)$$

Calling overlapping subproblems result in poor efficiency

Fibonacci Sequence Top-Down with Memoization

- Solve the overlapping subproblems recursively with memoization
 - Check the memo before making the calls

Fibonacci Sequence

Top-Down with Memoization

```
Memoized-Fibonacci(n)
  // initialize memo (array a[])
  a[0] = 1
  a[1] = 1
  for i = 2 to n
    a[i] = 0
  return Memoized-Fibonacci-Aux(n, a)
Memoized-Fibonacci-Aux(n, a)
  if a[n] > 0
    return a[n]
  // save the result to avoid recomputation
  a[n] = Memoized-Fibonacci-Aux(n-1, a) + Memoized-Fibonacci-Aux(n-2, a)
  return a[n]
```

Fibonacci Sequence Bottom-Up Method

Building up solutions to larger and larger subproblems


```
Bottom-Up-Fibonacci(n)
  if n < 2
    return 1
  a[0] = 1
  a[1] = 1
  for i = 2 ... n
    a[i] = a[i-1] + a[i-2]
  return a[n]</pre>
```

Avoid recomputation of the same subproblems

Optimization Problem

- Principle of Optimality
 - Any subpolicy of an optimum policy must itself be an optimum policy with regard to the initial and terminal states of the subpolicy
- Two key properties of DP for optimization
 - Overlapping subproblems
 - Optimal substructure an optimal solution can be constructed from optimal solutions to subproblems
 - ✓ Reduce search space (ignore non-optimal solutions)

If the optimal substructure (principle of optimality) does not hold, then it is incorrect to use DP

Optimal Substructure Example

Shortest Path Problem

Tainan (S)

- Input: a graph where the edges have positive costs
- Output: a path from S to T with the smallest cost

The path costing $C_{S\to M} + C_{M\to T}$ is the shortest path from S to T \to The path with the cost $C_{S\to M}$ must be a shortest path from S to M

Proof by "Cut-and-Paste" argument (proof by contradiction): Suppose that it exists a path with smaller cost $C'_{S\to M}$, then we can "cut" $C_{S\to M}$ and "paste" $C'_{S\to M}$ to make the original cost smaller

DP#1: Rod Cutting

Textbook Chapter 15.1 – Rod Cutting

Rod Cutting Problem

• Input: a rod of length n and a table of prices p_i for $i=1,\ldots,n$

length i (m)	1	2	3	4	5
price p_i	1	5	8	9	10

• Output: the maximum revenue r_n obtainable by cutting up the rod and selling the pieces

Brute-Force Algorithm

length i (m)	1	2	3	4	5
price p_i	1	5	8	9	10

• A rod with the length = 4

Brute-Force Algorithm

length i (m)	1	2	3	4	5
price p_i	1	5	8	9	10

• A rod with the length = n

- For each integer position, we can choose "cut" or "not cut"
- There are n-1 positions for consideration
- The total number of cutting results is $2^{n-1} = \Theta(2^{n-1})$

Recursive Thinking

 r_n : the maximum revenue obtainable for a rod of length n

- We use a recursive function to solve the subproblems
- If we know the answer to the subproblem, can we get the answer to the original problem?

 Optimal substructure – an optimal solution can be constructed from optimal solutions to subproblems

Recursive Algorithms

Version 1

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \cdots, r_{n-1} + r_1)$$
no cut

cut at the i-th position (from left to right)

- Version 2
 - try to reduce the number of subproblems → focus on the left-most cut

the remaining part

Recursive Procedure

- Focus on the left-most cut
 - assume that we always cut from left to right → the first cut

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$
 optimal solution optimal solution to subproblems

Rod cutting problem has optimal substructure

Naïve Recursion Algorithm

$$r_n = \max_{1 \le i \le n} \left(p_i + r_{n-i} \right)$$

```
Cut-Rod(p, n)
  // base case
  if n == 0
    return 0
  // recursive case
  q = -∞
  for i = 1 to n
    q = max(q, p[i] + Cut-Rod(p, n - i))
  return q
```

• T(n) = time for running Cut-Rod (p, n)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ \Theta(1) + \sum_{i=0}^{n} T(n-i) & \text{if } n \ge 2 \end{cases} \implies T(n) = \Theta(2^n)$$

Naïve Recursion Algorithm

Rod cutting problem

```
Cut-Rod(p, n)
    // base case
    if n == 0
        return 0
    // recursive case
    q = -∞
    for i = 1 to n
        q = max(q, p[i] + Cut-Rod(p, n - i))
    return q
```


Calling overlapping subproblems result in poor efficiency

Dynamic Programming

- Idea: use space for better time efficiency
- Rod cutting problem has overlapping subproblems and optimal substructures → can be solved by DP
- When the number of subproblems is polynomial, the time complexity is polynomial using DP
- DP algorithm
 - Top-down: solve overlapping subproblems recursively with memoization
 - Bottom-up: build up solutions to larger and larger subproblems

- Top-Down with Memoization
 - Solve recursively and memo the subsolutions (跳著填表)
 - Suitable that not all subproblems should be solved

- Bottom-Up with Tabulation
 - Fill the table from small to large
 - Suitable that each small problem should be solved

Algorithm for Rod Cutting Problem Top-Down with Memoization

```
Memoized-Cut-Rod(p, n)
  // initialize memo (an array r[] to keep max revenue)
 r[0] = 0
  for i = 1 to n
    r[i] = -\infty // r[i] = \max revenue for rod with length = i
  return Memorized-Cut-Rod-Aux(p, n, r)
Memoized-Cut-Rod-Aux(p, n, r)
  if r[n] >= 0
                                                                \Theta(1)
    return r[n] // return the saved solution
  a = -\infty
  for i = 1 to n
                                                               \Theta(n^2)
    q = max(q, p[i] + Memoized-Cut-Rod-Aux(p, n-i, r))
  r[n] = q // update memo
  return q
```

• $T(n) = \text{time for running Memoized-Cut-Rod(p, n)} \Rightarrow T(n) = \Theta(n^2)$

Algorithm for Rod Cutting Problem Bottom-Up with Tabulation

```
Bottom-Up-Cut-Rod(p, n)  r[0] = 0  for j = 1 to n // compute r[1], r[2], ... in order  q = -\infty  for i = 1 to j  q = \max(q, p[i] + r[j - i])  r[j] = q return r[n]
```

• $T(n) = \text{time for running Bottom-Up-Cut-Rod(p, n)} \implies T(n) = \Theta(n^2)$

Rod Cutting Problem

• Input: a rod of length n and a table of prices p_i for i = 1, ..., n

length i (m)	1	2	3	4	5
price p_i	1	5	8	9	10

• Output: the maximum revenue r_n obtainable and the list of cut pieces

Algorithm for Rod Cutting Problem Bottom-Up with Tabulation

Add an array to keep the cutting positions cut

```
Extended-Bottom-Up-Cut-Rod(p, n)
  r[0] = 0
  for j = 1 to n //compute r[1], r[2], ... in order
  q = -\infty
    for i = 1 to j
        if q < p[i] + r[j - i]
            q = p[i] + r[j - i]
            cut[j] = i // the best first cut for len j rod
    r[i] = q
  return r[n], cut</pre>
```

```
Print-Cut-Rod-Solution(p, n)
  (r, cut) = Extended-Bottom-up-Cut-Rod(p, n)
  while n > 0
    print cut[n]
    n = n - cut[n] // remove the first piece
```

Dynamic Programming

Top-Down with Memoization

f(0) f(1) f(2) ... f(n)

 Better when some subproblems not be solved at all

 Solve only the <u>required</u> parts of subproblems Bottom-Up with Tabulation

- Better when all subproblems must be solved at least once
- Typically outperform top-down method by a constant factor
 - No overhead for recursive calls
 - Less overhead for maintaining the table

Informal Running Time Analysis

- Approach 1: approximate via (#subproblems) * (#choices for each subproblem)
 - For rod cutting
 - #subproblems = n
 - #choices for each subproblem = O(n)
 - \rightarrow T(n) is about O(n²)
- Approach 2: approximate via subproblem graphs

Subproblem Graphs

- The size of the subproblem graph allows us to estimate the time complexity of the DP algorithm
- A graph illustrates the set of subproblems involved and how subproblems depend on another G = (V, E) (E: edge, V: vertex)
 - |V|: #subproblems
 - A subproblem is run only once
 - |E|: sum of #subsubproblems are needed for each subproblem
 - Time complexity: linear to O(|E| + |V|)

Top-down: Depth First Search

Bottom-up: Reverse Topological Sort

Graph Algorithm (taught later)

Dynamic Programming Procedure

- 1. Characterize the structure of an optimal solution
 - ✓ Overlapping subproblems: revisit same subproblems
 - ✓ Optimal substructure: an optimal solution to the problem contains within it optimal solutions to subproblems
- 2. Recursively define the value of an optimal solution
 - ✓ Express the solution of the original problem in terms of optimal solutions for subproblems
- 3. Compute the value of an optimal solution
 - ✓ Typically in a bottom-up fashion
- 4. Construct an optimal solution from computed information
 - ✓ Step 3 and 4 may be combined

Revisit DP for Rod Cutting Problem

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution
- 4. Construct an optimal solution from computed information

Step 1: Characterize an OPT Solution

Rod Cutting Problem

Input: a rod of length n and a table of prices p_i for i = 1, ..., n

Output: the maximum revenue r_n obtainable

- Step 1-Q1: What can be the subproblems?
- Step 1-Q2: Does it exhibit optimal structure? (an optimal solution can be represented by the optimal solutions to subproblems)
 - Yes. → continue
 - No. → go to Step 1-Q1 or there is no DP solution for this problem

Step 1: Characterize an OPT Solution

Rod Cutting Problem

Input: a rod of length n and a table of prices p_i for i = 1, ..., n

Output: the maximum revenue r_n obtainable

- Step 1-Q1: What can be the subproblems?
- Subproblems: Cut-Rod(0), Cut-Rod(1), ..., Cut-Rod(n-1)
 - Cut-Rod (i): rod cutting problem with length-i rod
 - Goal: Cut-Rod(n)
- Suppose we know the optimal solution to Cut-Rod(i), there are i cases:
 - Case 1: the first segment in the solution has length 1 從solution中拿掉一段長度為1的鐵條, 剩下的部分是Cut-Rod(i-1)的最佳解
 - Case 2: the first segment in the solution has length 2 從solution中拿掉一段長度為2的鐵條, 剩下的部分是Cut-Rod(i-2)的最佳解
 - Case i: the first segment in the solution has length i 從solution中拿掉一段長度為i的鐵條, 剩下的部分是Cut-Rod (0) 的最佳解

Step 1: Characterize an OPT Solution

Rod Cutting Problem

Input: a rod of length n and a table of prices p_i for i = 1, ..., n

Output: the maximum revenue r_n obtainable

- Step 1-Q2: Does it exhibit optimal structure? (an optimal solution can be represented by the optimal solutions to subproblems)
- Yes. Prove by contradiction.

Step 2: Recursively Define the Value of an OPT Solution

Rod Cutting Problem

Input: a rod of length n and a table of prices p_i for i = 1, ..., n

Output: the maximum revenue r_n obtainable

- Suppose we know the optimal solution to Cut-Rod(i), there are i cases:
 - Case 1: the first segment in the solution has length 1 從solution中拿掉一段長度為1的鐵條, 剩下的部分是Cut-Rod(i-1)的最佳解

$$r_i = p_1 + r_{i-1}$$

• Case 2: the first segment in the solution has length 2 從solution中拿掉一段長度為2的鐵條, 剩下的部分是Cut-Rod(i-2)的最佳解

$$r_i = p_2 + r_{i-2}$$

• Case i: the first segment in the solution has length i 從solution中拿掉一段長度為i的鐵條, 剩下的部分是Cut-Rod (0) 的最佳解

$$r_i = p_i + r_0$$

• Recursively define the value $r_i = \left\{ \begin{array}{ll} 0 & \text{if } i=0 \\ \max_{1 \leq j \leq i} \left(p_j + r_{i-j}\right) & \text{if } i \geq 1 \end{array} \right.$

Step 3: Compute Value of an OPT Solution

Rod Cutting Problem

Input: a rod of length n and a table of prices p_i for i = 1, ..., n

Output: the maximum revenue r_n obtainable

Bottom-up method: solve smaller subproblems first

$$r_i = \begin{cases} 0 & \text{if } i = 0 \\ \max_{1 \le j \le i} (p_j + r_{i-j}) & \text{if } i \ge 1 \end{cases}$$


```
Bottom-Up-Cut-Rod(p, n)
  r[0] = 0
  for j = 1 to n // compute r[1], r[2], ... in order
   q = -∞
   for i = 1 to j
    q = max(q, p[i] + r[j - i])
   r[j] = q
  return r[n]
```

$$T(n) = \Theta(n^2)$$

Step 4: Construct an OPT Solution by Backtracking

length i	1	2	3	4	5
price p_i	1	5	8	9	10

Rod Cutting Problem

Input: a rod of length n and a table of prices p_i for i = 1, ..., n

Output: the maximum revenue r_n obtainable

Bottom-up method: solve smaller subproblems first

$$r_i = \begin{cases} 0 & \text{if } i = 0\\ \max_{1 \le j \le i} (p_j + r_{i-j}) & \text{if } i \ge 1 \end{cases}$$

i	0	1	2	3	4	5	 n
r[i]	0	1	5	8	10		
cut[i]	0	1	2	3	2		

$$\max(p_1 + r_0)
\max(p_1 + r_1, p_2 + r_0)
\max(p_1 + r_2, p_2 + r_1, p_3 + r_0)
\max(p_1 + r_3, p_2 + r_2, p_3 + r_1, p_4 + r_0)$$

Step 4: Construct an OPT Solution by Backtracking

```
Cut-Rod(p, n)
  r[0] = 0
  for j = 1 to n // compute r[1], r[2], ... in order
  q = -∞
    for i = 1 to j
        if q < p[i] + r[j - i]
            q = p[i] + r[j - i]
            cut[j] = i // the best first cut for len j rod
        r[i] = q
  return r[n], cut</pre>
```

$$T(n) = \Theta(n^2)$$

```
Print-Cut-Rod-Solution(p, n)
  (r, cut) = Cut-Rod(p, n)
  while n > 0
    print cut[n]
    n = n - cut[n] // remove the first piece
```

$$T(n) = \Theta(n)$$

DP#2: Stamp Problem

Stamp Problem

• Input: the postage n and the stamps with values v_1, v_2, \dots, v_k

• Output: the minimum number of stamps to cover the postage

A Recursive Algorithm

• The optimal solution S_n can be recursively defined as $1 + \min_i (S_{n-v_i})$

$$1 + \min(S_{n-3}, S_{n-5}, S_{n-7}, S_{n-12})$$

```
Stamp(v, n)
    r_min = ∞
    if n == 0 // base case
        return 0
    for i = 1 to k // recursive case
        r[i] = Stamp(v, n - v[i])
        if r[i] < r_min
            r_min = r[i]
        return r_min + 1</pre>
```

$$T(n) = \Theta(k^n)$$

Step 1: Characterize an OPT Solution

Stamp Problem

Input: the postage n and the stamps with values v_1, v_2, \dots, v_k Output: the minimum number of stamps to cover the postage

- Subproblems
 - S (i): the min #stamps with postage i
 - Goal: S (n)
- Optimal substructure: suppose we know the optimal solution to S (i), there are k cases:
 - Case 1: there is a stamp with v₁ in OPT
 從solution中拿掉一張郵資為v₁的郵票, 剩下的部分是S(i-v[1])的最佳解

Step 2: Recursively Define the Value of an OPT Solution

Stamp Problem

Input: the postage n and the stamps with values v_1, v_2, \dots, v_k Output: the minimum number of stamps to cover the postage

- Suppose we know the optimal solution to S (i), there are k cases:

 - Case 2: there is a stamp with v_2 in OPT 從solution中拿掉一張郵資為 v_2 的郵票,剩下的部分是S(i-v[2])的最佳解 $S_i=1+S_{i-v_2}$
 - Case k: there is a stamp with v_k in OPT 從solution中拿掉一張郵資為 v_k 的郵票,剩下的部分是S(i-v[k])的最佳解 $S_i = 1 + S_{i-v_k}$
- Recursively define the value $S_i = \left\{ egin{array}{ll} 0 & ext{if } i=0 \\ \min_{1 < j < k} \left(1 + S_{i-v_j}\right) & ext{if } i \geq 1 \end{array} \right.$

Step 3: Compute Value of an OPT Solution

Stamp Problem

Input: the postage n and the stamps with values $v_1, v_2, ..., v_k$

Output: the minimum number of stamps to cover the postage

Bottom-up method: solve smaller subproblems first

$$S_i = \begin{cases} 0 & \text{if } i = 0 \\ \min_{1 \le j \le k} (1 + S_{i-v_j}) & \text{if } i \ge 1 \end{cases}$$
 if $i = 0$ if $i = 0$

```
Stamp(v, n)
   S[0] = 0
   for i = 1 to n // compute r[1], r[2], ... in order
       r_min = ∞
       for j = 1 to k
        if S[i - v[j]] < r_min
            r_min = 1 + S[i - v[j]]
       S[i] = r_min
       return S[n]</pre>
```

$$T(n) = \Theta(kn)$$

Step 4: Construct an OPT Solution by Backtracking

```
Stamp(v, n)
   S[0] = 0
   for i = 1 to n
       r_min = ∞
       for j = 1 to k
        if S[i - v[j]] < r_min
            r_min = 1 + S[i - v[j]]
        B[i] = j // backtracking for stamp with v[j]
       S[i] = r_min
       return S[n], B</pre>
```

$$T(n) = \Theta(kn)$$

```
Print-Stamp-Selection(v, n)
  (S, B) = Stamp(v, n)
  while n > 0
    print B[n]
    n = n - v[B[n]]
```

$$T(n) = \Theta(n)$$

DP#3: Matrix-Chain Multiplication

Textbook Chapter 15.2 – Matrix-chain multiplication

Matrix-Chain Multiplication

- Input: a sequence of *n* matrices $\langle A_1, ..., A_n \rangle$
- Output: the product of $A_1A_2 ... A_n$

Observation

$$C(i,j) = \sum_{k=1}^{n} A(i,q) \cdot B(k,j)$$

- Each entry takes q multiplications
- There are total pr entries

$$ightharpoonup \Theta(q)\Theta(pr) = \Theta(pqr)$$

Matrix multiplication is associative: A(BC) = (AB)C. The time required by obtaining $A \times B \times C$ could be affected by which two matrices multiply first.

Example

• Overall time is $\Theta(n^2) + \Theta(n^3) = \Theta(n^3)$

Example

• Overall time is $\Theta(n^2) + \Theta(n^2) = \Theta(n^2)$

Matrix-Chain Multiplication Problem

- Input: a sequence of integers l_0, l_1, \dots, l_n
 - l_{i-1} is the number of rows of matrix A_i
 - l_i is the number of columns of matrix A_i
- Output: an <u>order</u> of performing n-1 matrix multiplications in the minimum number of operations to obtain the product of $A_1A_2 \dots A_n$

Do not need to compute the result but find the fast way to get the result! (computing "how to fast compute" takes less time than "computing via a bad way")

Brute-Force Naïve Algorithm

• P_n : how many ways for n matrices to be multiplied

$$P_{n} = \begin{cases} 1 & \text{if } n = 1\\ \sum_{k=1}^{n-1} P_{k} P_{n-k} & \text{if } n \ge 2 \end{cases}$$

$$(A_{1} A_{2} \cdots A_{k}) \qquad (A_{k+1} A_{k+2} \cdots A_{n})$$

• The solution of P_n is Catalan numbers, $\Omega\left(\frac{4^n}{\frac{3}{n^2}}\right)$, or is also $\Omega(2^n)$

Step 1: Characterize an OPT Solution

Matrix-Chain Multiplication Problem

Input: a sequence of integers $l_0, l_1, ..., l_n$ indicating the dimensionality of A_i Output: an order of matrix multiplications with the minimum number of operations

- Subproblems
 - M (i, j): the min #operations for obtaining the product of $A_i ... A_j$
 - Goal: M(1, n)
- Optimal substructure: suppose we know the OPT to M(i, j), there are k cases: $i \le k < j$

$$A_i A_{i+1} \dots A_k$$

$$A_{k+1}A_{k+2} \dots A_j$$

Case k: there is a cut right after A_k in OPT

左右所花的運算量是M(i, k) 及M(k+1, j) 的最佳解

Step 2: Recursively Define the Value of an OPT Solution

Matrix-Chain Multiplication Problem

Input: a sequence of integers $l_0, l_1, ..., l_n$ indicating the dimensionality of A_i Output: an order of matrix multiplications with the minimum number of operations

- Suppose we know the optimal solution to M(i, j), there are k cases:
 - Case k: there is a cut right after A_k in OPT 左右所花的運算量是M(i, k)及M(k+1, j)的最佳解

$$M_{i,j} = M_{i,k} + M_{k+1,j} + l_{i-1}l_kl_j$$

$$A_{i\dots k}A_{k+1\dots j}$$

$$A_i A_{i+1} \dots A_k$$

$$A_{k+1}A_{k+2} \dots A_j = A_i.\text{rows} = l_{i-1}$$

$$A_k.\text{cols} = l_k$$

$$A_{i..k}$$

$$A_k.\mathsf{cols} = l_k$$
 $A_{i..k}$
 $A_{k+1..j}$
 $A_k.\mathsf{cols} = l_k$
 $A_i.\mathsf{cols} = l_i$

$$M_{i,j} = \begin{cases} 0 & i \ge j \\ \min_{i \le k < j} (M_{i,k} + M_{k+1,j} + l_{i-1} l_k l_j) & i < j \end{cases}$$

Step 3: Compute Value of an OPT Solution

Matrix-Chain Multiplication Problem

Input: a sequence of integers $l_0, l_1, ..., l_n$ indicating the dimensionality of A_i Output: an order of matrix multiplications with the minimum number of operations

Bottom-up method: solve smaller subproblems first

$$M_{i,j} = \begin{cases} 0 & i \ge j \\ \min_{i \le k < j} (M_{i,k} + M_{k+1,j} + l_{i-1}l_kl_j) & i < j \end{cases}$$

- How many subproblems to solve
 - #combination of the values i and j s.t. $1 \le i \le j \le n$

$$T(n) = C_2^n + n = \Theta(n^2)$$

$$i \neq j \qquad i = j$$

Step 3: Compute Value of an OPT Solution

```
Matrix-Chain(n, 1)
  initialize two tables M[1..n][1..n] and B[1..n-1][2..n]
  for i = 1 to n
   M[i][i] = 0 // boundary case
  for p = 2 to n // p is the chain length
    for i = 1 to n - p + 1 // all i, j combinations
      j = i + p - 1
     M[i][j] = \infty
      for k = i to j - 1 // find the best k
        q = M[i][k] + M[k + 1][j] + 1[i - 1] * 1[k] * 1[j]
        if q < M[i][j]
          M[i][j] = q
return M
```

$$T(n) = \Theta(n^3)$$

Dynamic Programming Illustration

How to decide the order of the matrix multiplication?

J								
$M_{i,j}$	1	2	3	4	5	6		n
1	0							
2		0						
3			0					
4				0				
5					0			
6						0		
:							0	
n								0

 \dot{j}

Step 4: Construct an OPT Solution by Backtracking

```
Matrix-Chain(n, 1)
  initialize two tables M[1..n][1..n] and B[1..n-1][2..n]
  for i = 1 to n
    M[i][i] = 0 // boundary case
  for p = 2 to n // p is the chain length
    for i = 1 to n - p + 1 // all i, j combinations
    j = i + p - 1
    M[i][j] = ∞
    for k = i to j - 1 // find the best k
        q = M[i][k] + M[k + 1][j] + 1[i - 1] * 1[k] * 1[j]
        if q < M[i][j]
        M[i][j] = q
        B[i][j] = k // backtracking
    return M and B</pre>
```

$$T(n) = \Theta(n^3)$$

```
Print-Optimal-Parens(B, i, j)
  if i == j
    print A<sub>i</sub>
  else
    print "("
    Print-Optimal-Parens(B, i, B[i][j])
    Print-Optimal-Parens(B, B[i][j] + 1, j)
    print ")"
```

$$T(n) = \Theta(n)$$

Exercise

Matrix	A_1	A_2	A_3	A_4	A_5	A_6
Dimension	30 x 35	35 x 15	15 x 5	5 x 10	10 x 20	20 x 25

0

6

$B_{i,j}$	1	2	3	4	5	6	
1		1	\bigcirc	3	3	(3)	
2			2	3	3	3	
3				3	3	3	i
4					4	5	
5						5	
6							

$$((A_1(A_2A_3))((A_4A_5)A_6))$$

DP#4: Weighted Interval Scheduling

Textbook Exercise 16.2-2

Interval Scheduling

- Input: n job requests with start times s_i , finish times f_i
- Output: the maximum number of compatible jobs

• The interval scheduling problem can be solved using an "early-finish-time-first" greedy algorithm in O(n) time

"Greedy Algorithm"

Ime-first greedy algorithm in O(n) time "Greedy Algorithm" Next topic! +

Weighted Interval Scheduling

- Input: n job requests with start times s_i , finish times f_i , and values v_i
- Output: the <u>maximum total value</u> obtainable from compatible jobs

Assume that the requests are sorted in non-decreasing order ($f_i \le f_j$ when i < j) p(j) = largest index i < j s.t. jobs i and j are compatible e.g. p(1) = 0, p(2) = 0, p(3) = 1, p(4) = 1, p(5) = 4, p(6) = 3

Step 1: Characterize an OPT Solution

Weighted Interval Scheduling Problem

Input: n jobs with $\langle s_i, f_i, v_i \rangle$, p(j) = largest index i < j s.t. jobs i and j are compatible Output: the maximum total value obtainable from compatible

- Subproblems
 - WIS (i): weighted interval scheduling for the first *i* jobs
 - Goal: WIS(n)
- Optimal substructure: suppose OPT is an optimal solution to WIS (i), there are 2 cases:
 - Case 1: job i in OPT
 - OPT\{i\} is an optimal solution of WIS (p (i))
 - Case 2: job i not in OPT
 - OPT is an optimal solution of WIS (i−1)

Step 2: Recursively Define the Value of an #ADA2021 **OPT Solution**

Weighted Interval Scheduling Problem

Input: n jobs with $\langle s_i, f_i, v_i \rangle$, p(j) =largest index i < j s.t. jobs i and j are compatible Output: the maximum total value obtainable from compatible

- Optimal substructure: suppose OPT is an optimal solution to WIS(i), there are 2 cases:
 - Case 1: job i in OPT
 - OPT\{i} is an optimal solution of WIS (p (i)) $M_i = v_i + M_{p(i)}$
 - Case 2: job i not in OPT
 - OPT is an optimal solution of WIS (i-1) $M_i = M_{i-1}$

$$M_i = M_{i-1}$$

Recursively define the value

$$M_i = \begin{cases} 0 & \text{if } i = 0\\ \max(v_i + M_{p(i)}, M_{i-1}) & \text{otherwise} \end{cases}$$

Step 3: Compute Value of an OPT Solution

Weighted Interval Scheduling Problem

Input: n jobs with $\langle s_i, f_i, v_i \rangle$, p(j) = largest index i < j s.t. jobs i and j are compatible Output: the maximum total value obtainable from compatible

Bottom-up method: solve smaller subproblems first

$$M_i = \left\{ \begin{array}{lll} 0 & \text{if } i=0 \\ \max(v_i+M_{p(i)},M_{i-1}) & \text{otherwise} \end{array} \right.$$
 i 0 1 2 3 4 5 ... n

```
WIS(n, s, f, v, p)
  M[0] = 0
  for i = 1 to n
    M[i] = max(v[i] + M[p[i]], M[i - 1])
  return M[n]
```

$$T(n) = \Theta(n)$$

Step 4: Construct an OPT Solution by Backtracking

Weighted Interval Scheduling Problem

Input: n jobs with $\langle s_i, f_i, v_i \rangle$, p(j) = largest index i < j s.t. jobs i and j are compatible Output: the maximum total value obtainable from compatible

Bottom-up method: solve smaller subproblems first

Step 4: Construct an OPT Solution by Backtracking

Weighted Interval Scheduling Problem

Input: n jobs with $\langle s_i, f_i, v_i \rangle$, p(j) = largest index i < j s.t. jobs i and j are compatibleOutput: the maximum total value obtainable from compatible

```
WIS(n, s, f, v, p)
  M[0] = 0
  for i = 1 to n
    M[i] = max(v[i] + M[p[i]], M[i - 1])
  return M[n]
```

$$T(n) = \Theta(n)$$

```
Find-Solution(M, n)
  if n = 0
    return {}
  if v[n] + M[p[n]] > M[n-1] // case 1
    return {n} U Find-Solution(p[n])
  return Find-Solution(n-1) // case 2
```

$$T(n) = \Theta(n)$$

To Be Continued...

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw