Falsi Method

Secant Method

To find a root of an equation using secant method in given number of iterations.

(1) Find a real root of the equation $f(x) = x^3 - 5x + 1 = 0$ using secant method in six iterations.

```
Secant[x0_, x1_, n_, f_]:=
Module [ \{xk, xk1, xk2\}, xk = N[x0]; xk1 = N[x1]; i = 0; 
 Output = { };
 While[i < n,
  xk2 = (xk * f[xk1] - xk1 * f[xk]) / (f[xk1] - f[xk]);
  interval = "[" <> ToString[NumberForm[xk, 12]] <>
   "," <> ToString[NumberForm[xk1, 12]] <> "]";
  xk = xk1; xk1 = xk2; i++;
  Output = Append[Output,
   {i, interval, xk2, f[xk2]}];];
 Print[NumberForm[TableForm[Output, TableHeadings →
    {None, {"i", "interval", "xi", "f[xi]"}}], 8]];
 Print[" Root after ", n, " iterrations ",
  NumberForm[xk2, 8]];
 Print[" Function value at approximated
   root,f[xi] = ", NumberForm[f[xk2], 8]];]
g[x] := x^3 - 5x + 1;
Plot[g[x], \{x, -4, 4\}]
Secant[0, 1, 6, g]
```


(2) Find a real root of the equation $f(x) = Cosx - xe^x$ using secant method in eight iterations

```
f[x_] := Cos[x] - x Exp[x];
Plot[f[x], {x, -1, 1}]
Secant[0, 1, 8, f]
```


i	interval	xi	f[xi]	
1	[0.,1.]	0.31466534	0.51987117	
2	[1.,0.314665337801]	0.44672814	0.20354478	
3	[0.314665337801,0.446728144591]	0.53170586	-0.042931093	
4	[0.446728144591,0.531705860645]	0.51690447	0.0025927631	
5	[0.531705860645,0.516904467567]	0.51774747	0.000030111941	
6	[0.516904467567,0.517747465271]	0.51775737	$-2.1513164 \times 10^{-8}$	
7	[0.517747465271,0.517757370754]	0.51775736	$\textbf{1.7841284} \times \textbf{10}^{-13}$	
8	[0.517757370754,0.517757363682]	0.51775736	$-3.3306691 \times 10^{-16}$	
Doct - 55 0 - 51 0 - 51775726				

Root after 8 iterrations 0.51775736

Function value at approximated root, $f[xi] = -3.3306691 \times 10^{-16}$

Regula-Falsi Method

(1) Find out the root of the function $g(x) = x^3 - 5x + 1$ after 10 iterations of the Regula Falsi method.

```
RegulaFalsi[x0_, x1_, n_, f_] := Module[{xk, xk1, xk2},
  xk = N[x0]; xk1 = N[x1]; If[f[xk] * f[xk1] > 0,
  Print["We cannot continue with Regula Falsi
     method as function values are not
     opposite sign at end points of interval"];
  Return[]]; i = 1; Output = { };
  While [i \le n, xk2 = (xk * f[xk1] - xk1 * f[xk]) /
    (f[xk1] - f[xk]);
  interval = "[" <> ToString[NumberForm[xk, 12]] <>
    "," <> ToString[NumberForm[xk1, 12]] <> "]";
  Output = Append[Output, {i, interval, xk2, f[xk2]}];
  If[Sign[f[xk1]] == Sign[f[xk2]],
   xk1 = xk2, xk = xk2; i++;;
  Print [NumberForm [TableForm [Output, TableHeadings →
     {None, {"i", "interval", "xi", "f[xi]"}}], 8]];
  Print[" Root after ", n, " iterations ",
  NumberForm[xk2, 8]];
  Print[" Function value at approximated
    root,f[xi] = ", NumberForm[f[xk2], 8]];];
q[x] := x^3 - 5x + 1;
Plot[g[x], \{x, -10, 10\}]
RegulaFalsi[-1, 1, 10, g]
             500
-10
             -500
```

```
interval
1
    [-1.,1.]
                                                                            -0.234375
                                                         0.19402985 0.037155501
    [-1.,0.25]
   [0.194029850746,0.25]
                                                         0.20168865 - 0.00023892045
4 \quad \hbox{\tt [0.194029850746,0.201688654959]} \quad \hbox{\tt 0.20163972} \quad \hbox{\tt -2.2244344} \times \hbox{\tt 10}^{-7}
    [0.194029850746, 0.201639721325] 0.20163968 -2.0708324 \times 10^{-10}
    [0.194029850746, 0.201639675766] 0.20163968 -1.9273472 \times 10^{-13}
     \hspace{-0.1cm} [ \hspace{-0.1cm} 0.194029850746 \hspace{-0.1cm} , 0.201639675723 \hspace{-0.1cm} ] \hspace{-0.1cm} \hspace{-0.1cm} 0.20163968 \hspace{-0.1cm} \hspace{-0.1cm} -4.4408921 \times 10^{-16} 
    \hspace{3.1em} [\hspace{.08cm}0.194029850746\hspace{.1em}, 0.201639675723\hspace{.1em}] \hspace{.1em} 0.20163968 \hspace{.1em} 1.110223\times 10^{-16} 
9 [0.201639675723, 0.201639675723] 0.20163968 1.110223 \times 10^{-16}
10 [0.201639675723, 0.201639675723] 0.20163968 -2.220446 \times 10^{-16}
 Root after 10 iterations 0.20163968
```

(2) Find out the root of the function $f(x) = x^4 - 3x^2$

Function value at approximated root, $f[xi] = -2.220446 \times 10^{-16}$

+x-10 over the interval [2, 3] after 7 iterations of the Regula Falsi method.

$$f[x_{-}] := x^4 - 3x^2 + x - 10;$$

Plot[f[x], {x, 2, 3}]
RegulaFalsi[2, 3, 7, f]

1	[2.,3.]	2.0784314	-2.2198625
2	[2.07843137255,3.]	2.119995	-1.1637008
3	[2.11999499205,3.]	2.1412571	-0.59162874
4	[2.14125711528,3.]	2.1519325	-0.29607559
5	[2.15193245843,3.]	2.1572414	-0.1469951
6	[2.15724139986,3.]	2.159869	-0.072691406
7	[2.15986895617,3.]	2.1611663	-0.035876602

Root after 7 iterations 2.1611663

Function value at approximated root, f[xi] = -0.035876602