

Documento de ArquiteturaMUSA

Fazemos Qualquer Negócio Inc.

Compilação 2.0

Histórico de Revisões

Date	Descrição	Autor(s)
25/06/2014	Concepção do documento	joaocarlos
15/10/2014	Adição da subseção de acesso à memória	Weverson Gomes
16/10/2014	Adição da subseção de acesso à memória	Weverson Gomes
Adição da seção "Leitura da Instrução"com da- dos preliminares e modificação do nome do projeto no documento.		santana22 e gabri14el.
19/10/2014 Modificações na seção "Leitura da Instrução"		santana22

SUMÁRIO

1	Intr	odução	4
	1	Propósito do Documento	4
	2	Stakeholders	4
	3	Visão Geral do Documento	4
	4	Definições	5
	5	Acrônimos e Abreviações	5
2	Visã	o Geral da Arquitetura	6
	1	Restrições	6
	2	Codificação das instruções	6
	3	Descrição dos Componentes	8
	4	Diagrama de Classe (Interface)	9
	5	Definições de Entrada e Saída	9
	6	Datapath Interno	9
3	Des	crição da Arquitetura	10
	1	Unidade de Processamento	10
		1.1 Diagrama de Classe	10
		1.2 Definições de Entrada e Saída	10
		1.3 Datapath Interno	11
	2	Leitura da Instrução	12
		2.1 Diagrama de Classe	12
		2.2 Definições de entrada e saída	12
	3	Acesso à memória	13
		3.1 Diagrama de Classe	13

	3.2	Definições de entrada e saída	13
4	Interfa	ce de Comunicação	14
	4.1	Diagrama de Classe	14
	4.2	Definições de Entrada e Saída	14
	4.3	Máquina de Estados	15
	4.4	Diagrama de Temporização	16

1 Introdução

1. Propósito do Documento

Este documento descreve a arquitetura do projeto MUSA, incluindo especificações do circuitos internos de cada componente. Ele também apresenta diagramas de classe, definições de entrada e saída.O principal objetivo deste documento é definir as especificações do projeto MUSA e prover uma visão geral completa do mesmo.

2. Stakeholders

Nome	Papel/Responsabilidades
Manuelle Macedo	Gerência
Patrick	Análise
Dilan Nery, Lucas Almeida, Mirela Rios, Cabele e Vinícius Santana	Desenvolvimento
Antônio Gabriel e Weverson Gomes	Testes
Tarles Walker e Anderson Queiroz	Implementação

3. Visão Geral do Documento

O presente documento é apresentado como segue:

- Capítulo 2 Este capítulo apresenta uma visão geral da arquitetura, com foco em entrada e saída do sistema e arquitetura geral do mesmo;
- Capítulo 3 Este capítulo descreve a arquitetura interna do IP a partir do detalhamento dos seus componentes, definição de portas de entrada e saída e especificação de caminho de dados.

4. Definições

Termo	Descrição
RS232	Protocolo de comunicação serial utilizado em aplicações que requerem transmissão de dados entre elementos conectados à um mesmo canal.

5. Acrônimos e Abreviações

Sigla	Descrição
TBD	To be defined (A ser definido)

2 | Visão Geral da Arquitetura

1. Restrições

· Restrições -

2. Codificação das instruções

Instrução é uma palavra da linguagem de máquina, sua codificação é de fundamental importância para o processamento das operações. Todas as instruções contém 32 bits. Exitem 4 formatos de instruções: R (R-type), I (I-type), Load/Store e Jump.

Formato da instrução	Instrução	Descrição
	ADD	Soma dois valores
	SUB	Subtrai dois valores
	MUL	Multiplica dois valores
R-type	DIV	Divide dois valores
K-type	AND	AND lógico
	OR	OR lógico
	СМР	Compara dois valores
	NOT	NOT lógico
	ADDI	Soma dois valores,um destes imediato.
I-type	SUBI	Subtrai dois valores, um destes imediato.
Ттуре	ANDI	AND lógico de dois valores, um destes imediato.
	ORI	OR lógico de dois valores, um destes imediato.
Load/Store	LW	Leitura de um dado da memória de dados
Load/Stole	SW	Armazena um dado na memória de dados
	JP	Desvia para um destino
	JPC	Desvia para um destino relativo ao PC
lump		continua na próxima página

continuação da página	continuação da página anterior		
Formato da Instrução	Instrução	Descrição	
	BRFL	Desvia para um destino se RF==CST	
	CALL	Chamada de subrotina	
	RET	Retorno de Subrotina	
	HALT	Parada do sistema	
-	NOPE	•	

O formato R está relacionado as instruções lógicas e aritméticas.

OPCODE	RS	RT	RD	SHAMT	FUNCT
31:26	25:21	15:11	15:11	10:6	5:0

Figura 2.1: Formato R

Seus respectivos campos são:

- OPCODE Código da operação básica da instrução.
- **RS** Registrador do primeiro operando de origem.
- RT Registrador do segundo operando de origem.
- **RD** Registrador destino.
- **SHAMT** *Shift amount*; Quantidade de deslocamento.
- **FUNCT** Função; Esse campo seleciona a variante específica da operação no campo opcode, e as vezes, é chamado de código de função.

Um segundo tipo de formato de instrução é chamado de formato I, utilizado pelas instruções imediatas e de transferência de dados.

OPCODE	RS	RT	ADDRESS OR IMMEDIATE
31:26	25:21	15:11	15:0

Figura 2.2: Formato I

Seus respectivos campos são:

• OPCODE - Código da operação básica da instrução.

- RS Registrador do operando de origem.
- RT Registrador destino.
- ADDRESS OR IMMEDIATE Endereço de memória ou constante numérica.

O terceiro formato de instrução são para instruções de leitura e escrita de dados na memória de dados.

OPCODE	RS	ADDRESS
31:26	25:21	20:0

Figura 2.3: Formato Load/Store

Seus respectivos campos são:

- OPCODE Código da operação básica da instrução.
- RS Registrador onde está o dado.
- ADDRESS Endereço da memória de dados.

O formato Jump servem para as instruções de desvio incondicional.

OPCODE	ADDRESS
31:26	25:0

Figura 2.4: Formato Jump

Seus respectivos campos são:

- OPCODE Código da operação básica da instrução.
- ADDRESS Endereço de memória ou constante numérica.

3. Descrição dos Componentes

A unidade de processamento a ser desenvolvida é composta a partir dos seguintes componentes:

- **Serial Controller** Controlador para comunicação com módulo de transmissão serial através do protocolo RS232.
- Interface Control Interface de controle, responsável por fazer a leitura correta das informações da serial e transmiti-las para a unidade de processamento.
- Processing Unit Unidade responsável pela realização das operações e armazenamento do resultado.

4. Diagrama de Classe (Interface)

5. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
clock_in	1	entrada	Clock principal do sistema.
reset_in	1	entrada	Sinal de reset geral do sistema.
rx_in	1	entrada	Dado serial da RS232.
result_data_out	8	saída	Representação do resultado da operação.
overflow_out	1	saída	Sinal indicador de overflow aritmético.

6. Datapath Interno

3 | Descrição da Arquitetura

1. Unidade de Processamento

1.1. Diagrama de Classe

1.2. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
clock_in	1	entrada	Clock principal do sistema.
reset_in	1	entrada	Sinal de reset geral do sistema.
data_a_in	8	entrada	Dado do primeiro operando.
data_b_in	8	entrada	Dado do segundo operando.
operation_in	TBD	entrada	Código da operação.
result_data_out	8	saída	Representação do resultado da operação.
			continua na próxima página

continuação da página anterior			
Nome	Tamanho	Direção	Descrição
overflow_out	1	saída	Sinal indicador de overflow aritmético.

1.3. Datapath Interno

2. Leitura da Instrução

2.1. Diagrama de Classe

Instruction Fetch

+ clock : input bit

+ pcInput : input bit[32]

+ pcWrite : input bit

+ pcOutput : output bit[32]

+ instruction : output bit[32]

2.2. Definições de entrada e saída

Nome	Tamanho	Direção	Descrição
pcInput	32	entrada	Valor do PC atual.
pcWrite	1	entrada	Sinal proveniente da UC que habilita a modificação do valor de PC.
pcOutput	32	saída	Valor do PC atual.
instruction	32	saída	Instrução a ser executada.

3. Acesso à memória

3.1. Diagrama de Classe

MemoryExecute

+ zero : input bit

+ address : input bit

+ writeData : input bit[TBD]

+ memRead : input bit

+ memWrite : input bit

+ readData()

+ writeToRegister()

3.2. Definições de entrada e saída

Nome	Tamanho	Direção	Descrição
zero	1	entrada	Executa branch quando é zero.
address	TBD	entrada	Endereço no qual o dado deve ser escrito.
memRead	1	entrada	Sinal proveniente da UC que abilita leitura.
memWrite	1	entrada	Sinal proveniente da UC que abilita escrita.
writeData	1	entrada	O dado a ser escrito na memória.
readData	TBD	saída	Dado a ser utilizado pelo MUX do "Write Back".
writeToRegister	TBD	saída	Dado do segundo operando.

4. Interface de Comunicação

4.1. Diagrama de Classe

4.2. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
clock_in	1	entrada	Clock principal do sistema.
reset_in	1	entrada	Sinal de reset geral do sistema.
rx_data_ready_in	1	entrada	Indica que o dado foi recebido pelo controle RS232.
rx_data_in	8	entrada	Dado proveniente da transmissão.
data_a_out	8	saída	Dado do primeiro operando.
data_b_out	8	saída	Dado do segundo operando.
operation_out	TBD	saída	Código da operação.

4.3. Máquina de Estados

4.4. Diagrama de Temporização

