1. Temperature-dependent material properties of UO2

(1) Density
$$(kg/m^3)^{[1]}$$

$$\rho_0 = 10960(a+bT+cT^2+dT^3)^{-3}$$

Where, T represents the temperature (K).

Table 1: Material parameter values for the density.

Parameter	<i>T</i> ≤ 923 <i>K</i>	T > 923K
а	0.99734	0.99672
b	9.802×10^{-6}	1.179×10^{-5}
c	-2.705×10^{-10}	-2.429×10^{-9}
d	4.391×10^{-11}	1.219×10^{-12}

(2) Thermal conductivity
$$(\mathbf{W}/\mathbf{m}/\mathbf{K})^{[2]}$$

$$k_{u} = k_{95} \cdot f_{d} \cdot f_{p} \cdot f_{pro} \cdot f_{x} \cdot f_{r}$$

 k_{95} refers to the thermal conductivity of unirradiated uranium dioxide at 95% theoretical density (W/m/K); $f_{\rm d}$ is the soluble fission product correction factor; $f_{\rm p}$ is the insoluble fission product correction factor; $f_{\rm pro}$ is the porosity correction factor; $f_{\rm x}$ represents the deviation from stoichiometry, taken as 1.0 in this case; and $f_{\rm r}$ is the irradiation effect correction factor.

The temperature range for this model is 298~3120K, and the specific forms of these correction factors are as follows:

$$k_{95} = \frac{100}{7.5408 + 17.692 \cdot T^{-3} + 3.6142 \cdot T^{-6}} + \frac{6400}{T^{-15/2}} \exp\left(-\frac{16.35}{T^{-3}}\right)$$

$$f_{d} = \left(\frac{1.09}{Bu^{3.265}} + 0.0643 \cdot \sqrt{\frac{T}{Bu}}\right) \times \arctan\left(\frac{1.0}{\frac{1.09}{Bu^{3.265}} + 0.0643 \cdot \sqrt{\frac{T}{Bu}}}\right)$$

$$f_{p} = 1.0 + \left(\frac{0.019Bu}{3.0 - 0.019Bu}\right) \times \left(\frac{1.0}{1.0 + \exp\left(\frac{-T + 1200}{100}\right)}\right)$$

$$f_{por} = \frac{1.0 - p}{1.0 + 0.5p}$$

$$f_{r} = 1.0 - \frac{0.2}{1.0 + \exp\left(\frac{T - 900}{80}\right)}$$

Where, Bu represents the burnup (%); p represents the fuel porosity (%).

(3) Specific heat capacity
$$(J/kg/K)^{[3]}$$

$$C_{\rm u} = C_1 \left(\frac{\theta}{T}\right)^2 \exp\left(\frac{\theta}{T}\right) \left(\exp\left(\frac{\theta}{T}\right) - 1\right)^{-2} + 2C_2T + C_3E_{\rm a}\exp\left(\frac{-E_{\rm a}}{T}\right)T^{-2}$$

Where C_1 , C_2 and C_3 are material parameters, with values of $302.27 \, \mathrm{J/kg/K}$, $8.463 \times 10^{-3} \, \mathrm{J/kg/K}$ and $8.741 \times 10^7 \, \mathrm{J/kg/K}$, respectively. θ is the Einstein temperature, with a value of $548.68 \, \mathrm{K}$; E_{a} is the ratio of electronic activation energy to the Boltzmann constant, with a value of $18531.7 \, \mathrm{K}$.

(4) Coefficient of thermal expansion $(1/\mathbf{K})^{[4]}$ $\alpha_{\rm u} = m + nT + jT^2 + kT^3$

Table 2: Material parameter values for the coefficient of thermal expansion.

Parameter	$T \le 923K$	T > 923K
m	9.28×10^{-6}	1.183×10^{-5}
n	-6.390×10^{-10}	-5.103×10^{-9}
\dot{J}	1.33×10^{-12}	3.756×10^{-12}
k	-1.757×10^{-17}	-6.125×10^{-17}

(5) Young's modulus (Pa) [5]

$$E_{\rm u} = 2.334 \times 10^{11} (1 - 2.752(1 - D))(1 - 1.0915 \times 10^{-4} T)$$

- 2. Temperature-dependent material properties of 316SS ^[6]
- (1) Density (kg/m^3)

$$\rho = 8084 - 0.4209T - 3.894 \times 10^{-5}T^2$$

(2) Thermal conductivity (W/m/K)

$$k = 9.248 + 0.01571T$$

(3) Specific heat capacity (J/kg/K)

$$c_{\rm p} = 462 + 0.134T$$

(4) Coefficient of thermal expansion (1/K)

$$\alpha_{.}(T) = 1.789 \times 10^{-5} + 2.398 \times 10^{-9}T + 3.269 \times 10^{-13}T^{2}$$

(5) Young's modulus (Pa)

$$E = 2.15946 \times 10^{11} - 7.07727 \times 10^{7} T$$

- (6) Melting point: 1700K
- (7) Yield strength (MPa)

$$\sigma_{0.2\%} = \begin{cases} 555.5 - 0.25T & \text{if } T < 600^{\circ}\text{C} \\ 405.5 - 0.775(T - 600) & \text{if } 600^{\circ}\text{C} < T < 1000^{\circ}\text{C} \\ 345.5 - 0.25T & \text{if } T > 1000^{\circ}\text{C} \end{cases}$$

The material parameters listed above are primarily sourced from the referenced literature, with some modifications based on experiments conducted by the Nuclear Power Institute of China.

- [1] Fink J K. Thermophysical properties of uranium dioxide[J]. Journal of nuclear materials, 2000, 279(1): 1-18.
- [2] Williamson R L, Hales J D, Novascone S R, et al. Multidimensional multiphysics simulation of nuclear fuel behavior[J]. Journal of Nuclear Materials, 2012, 423(1-3): 149-163.
- [3] Carbajo J J, Yoder G L, Popov S G, et al. A review of the thermophysical properties of MOX and UO2 fuels[J]. Journal of Nuclear materials, 2001, 299(3): 181-198.
- [4] Martin D G. Thermal expansion of solid UO/sub 2/and (U, Pu) mixed oxides-a review and recommendations[J]. J. Nucl. Mater.;(Netherlands), 1988, 152(2/3).
- [5] Hagrman D L, Reymann G A. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior[R]. Idaho National Lab.(INL), Idaho Falls, ID (United States), 1979.
- [6] Hales J D, Williamson R L, Novascone S R, et al. BISON theory manual the equations behind nuclear fuel analysis[R]. Idaho National Lab.(INL), Idaho Falls, ID (United States), 2016.