CS2601 Linear and Convex Optimization Homework 3

Due: 2021.10.18

1. Suppose f is a convex function and $S \subset \text{dom } f$ is a convex set. Let M be the set of global minima of f over S,

$$M = \{ \boldsymbol{x}^* \in S : f(\boldsymbol{x}^*) \le f(\boldsymbol{x}), \forall \boldsymbol{x} \in S \}.$$

Show that M is a convex set.

2. Let f be convex. If $f(\theta x + \bar{\theta} y) = \theta f(x) + \bar{\theta} f(y)$ for some x, y and $\theta = \theta_0 \in (0, 1)$, then it holds for the same x, y and any $\theta \in [0, 1]$.

Hint: Assume $f(\theta_1 \boldsymbol{x} + \bar{\theta}_1 \boldsymbol{y}) < \theta_1 f(\boldsymbol{x}) + \bar{\theta}_1 f(\boldsymbol{y})$ for some θ_1 . Without loss of generality, you may assume $\theta_1 \in (0, \theta_0)$; the case $\theta_1 \in (\theta_0, 1)$ is similar. Express $\theta_0 \boldsymbol{x} + \bar{\theta}_0 \boldsymbol{y}$ as a convex combination of $\theta_1 \boldsymbol{x} + \bar{\theta}_1 \boldsymbol{y}$ and \boldsymbol{x} . Then deduce a contradiction.

- **3.** Determine if the following functions are convex, concave, or neither.
- (a). $f(\mathbf{x}) = f(x_1, x_2, x_3) = x_1^2 + x_1 x_3 + x_2^2 + x_2 x_3 + \frac{1}{2} x_3^2$ on \mathbb{R}^3
- (b). $f(\mathbf{x}) = f(x_1, x_2) = (x_1 x_2)^{-1}$ on $\mathbb{R}^2_{++} = \{(x_1, x_2) : x_1 > 0, x_2 > 0\}$
- (c). $f(x_1, x_2) = x_1 x_2^2$ on $\mathbb{R}^2_{++} = \{(x_1, x_2) : x_1 > 0, x_2 > 0\}$
- (d). $f(x_1, x_2) = x_1 x_2^{-1/2}$ on $\mathbb{R}^2_{++} = \{(x_1, x_2) : x_1 > 0, x_2 > 0\}$
- (e). $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 \le \alpha \le 1$, on $\mathbb{R}^2_{++} = \{(x_1, x_2) : x_1 > 0, x_2 > 0\}$
- **4.** Suppose $f_i: \mathbb{R} \to \mathbb{R}$, i = 1, 2, are strictly convex functions. Show that $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = f_1(x_1) + f_2(x_2)$ is strictly convex over \mathbb{R}^2 , and in particular $f(x_1, x_2) = x_1^2 + x_2^4$ is strictly convex.
- **5.** Let $f: C \subset \mathbb{R}^n \to \mathbb{R}$ be a differentiable function defined on a nonempty open convex set C. Show that f is convex if and only if

$$\langle \nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \ge 0, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in C.$$
 (1)

Hint: For the sufficiency, consider the restrictions of f to straight lines, and note that a univariate function h is increasing iff $[h(t) - h(s)](t - s) \ge 0$. You can assume the fact that the intersection of C with a straight line is an open interval when it is not empty.