Introduction

Schedule:

- (I) Basic properties of continuous-time Markov Chains
- (II) Qualitative properties of continuous time Markov Chains
- (III) Queueing theory
- (IV) Renewal theory
- (V) Spatial Poisson processes

1 Some basic aspects of continuous-time Markov Chains

Definition. A sequence of random variables is called a *stochastic process* or *process*. The process $X = (X_n)_{n \ge 1}$ is called a discrete-time Markov Chain with state space I if for all $x_0, x_1, \ldots, x_n \in I$

$$\mathbb{P}(X_n = x_n | X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = \mathbb{P}(X_n = x_n | X_{n-1} = x_{n-1}).$$

If $\mathbb{P}(X_{n+1} = y | X_n = x)$ is independent of n, the chain is called *time-homogeneous*. We then write $P = (P_{x,y})_{x,y \in I}$ for the *transition matrix* where $P_{x,y} = \mathbb{P}(X_1 = y | X_0 = x)$. The data associated to every time-homogeneous Markov Chain is the transition matrix P and the initial distribution μ , i.e $\mathbb{P}(X_0 = x_0) = \mu(x_0)$.

From now on:

- I denotes a countable (or finite) state space.
- (Ω, F, P) is the probability space on which all the relevant random variables are defined.

Definition. $X = (X(t) : t \ge 0)$ is a (right-continuous) continuous-time random process with values in I if

- (a) for all $t \geq 0$, $X(t) = X_t$ is a random variable such that $X(t): \Omega \to I$;
- (b) for all $\omega \in \Omega$, $t \mapsto X_t(\omega)$ is right-continuous (right-continuous sample path). In our case this means for all $\omega \in \Omega$, for all $t \geq 0$, there exists $\varepsilon > 0$ (depending on ω, t) such that

$$X_t(\omega) = X_s(\omega) \ \forall s \in [t, t + \varepsilon].$$

Fact. A right-continuous random process is defined by its finite-dimensional distributions

$$\mathbb{P}(X_{t_0=i}, X_{t_1=i_1}, \dots, X_{t_n}=i_{t_n}), \ n \geq 0, \ t_k \geq 0, \ i_k \in I.$$

For every $\omega \in \Omega$, the path $t \mapsto X_t(\omega)$ of a right-continuous process stays constant for a while. So there are 3 possibilities:

- (i) The path makes infinitely many jumps overall but only finitely many in a given interval [0, t].
- (ii) The path makes finitely many jumps & then gets absorbed in some state.
- (iii) The path makes infinitely jumps in a finite time interval. After the 'explosion time' ζ , the process starts up again.

Write $J_0 = 0, J_1, J_2, ...$ for the jump times and $S_1, S_2, ...$ for the holding times, defined by

$$J_0 = 0, \ J_{n+1} = \inf\{t \ge J_n : X_t \ne X_{J_n}\},$$

$$S_n = \begin{cases} J_n - J_{n-1} & J_{n-1} < \infty \\ \infty & \text{otherwise} \end{cases}.$$

By right-continuity, $S_n > 0$ for all n. If $J_{n+1} = \infty$ for some n, we define $X_{\infty} = X_{J_n}$ as the final value, otherwise X_{∞} is not defined. The explosion time ζ is defined by

$$\zeta = \sup(J_n) = \sum_{n=1}^{\infty} S_n.$$

We are not going to consider what happens to a chain after explosion. We thus set $X_t = \infty$ for all $t \geq \zeta$ (adjoining a new state ' ∞ '). We call such a chain minimal.

Definition. We define the *jump chain* Y_n of $(X_t)_{t\geq 0}$ by setting $Y_n=X_{J_n}$ for all n.

Definition. A right-continuous random process $X = (X_t)_{t\geq 0}$ has the Markov property (and is called a continuous-time markov chain) if for all $i_1, i_2, \ldots, i_n \in I$ and $0 \leq t_1 < t_2 < \ldots < t_n$,

$$\mathbb{P}(X_{t_n} = i_n | X_{t_{n-1}} = i_{n-1}, \dots, X_{t_0} = i_0) = \mathbb{P}(X_{t_n} = i_n | X_{t_0} = i_0).$$

Remark. For all h > 0, $Y_n = X(hn)$ defines a discrete-time Markov Chain.

Definition. The transition probabilities are $P_{ij}(s,t) = \mathbb{P}(X_t = j|X_s = i)$, $s \leq t, i, j \in I$. It is called *time-homogeneous* if it depends on t - s only, i.e

$$P_{ij}(s,t) = P_{i,j}(0,t-s).$$

In this case we just write $P_{ij}(t-s)$. As in the case of discrete time, a (time-homogeneous) Markov process is characterised by

- 1. Its initial distribution $\lambda_i = \mathbb{P}(X_0 = i), i \in I$;
- 2. Its family of transition matrices $(P(t))_{t\geq 0} = (P_{ij}(t))_{t\geq 0}$.

The family $(P(t))_{t\geq 0}$ is called the transition subgroup of the MC.

A (time-homogeneous) Markov process is characterised by

- its initial distribution;
- its transition subgroup $(P(t))_{t\geq 0}$

$$(P(t))_{t\geq 0} = (P(t))_{\substack{i,j \in I \\ t\geq 0}} = (\mathbb{P}(X_t = j | X_0 = i))_{\substack{i,j \in I \\ t\geq 0}}$$

It is easy to see that

- P(0) is the identity
- P(t) is a stochastic matrix for all t (i.e rows sum to 1)
- $P(t+s) = P(t)P(s) \ \forall s,t$ (Chapman-Kolmogorov equation)

$$\begin{split} P_{xz}(t+s) &= \mathbb{P}(X_{t+s} = z | X_0 = x) \\ &= \sum_{y \in I} \mathbb{P}(X_{t+s} = z | X_0 = x, X_t = y) \mathbb{P}(X_t = y | X_0 = x) \\ &= \sum_{y \in I} \mathbb{P}(X_s = z | X_0 = y) \mathbb{P}(X_t = y | X_0 = x) \\ &= \sum_{y \in I} P_{yz}(s) P_{xy}(t) = P_{x\cdot}(t) P_{\cdot z}(s) \end{split}$$

Holding times

Let X be a (right-continuous continuous-time time-homogeneous) Markov Chain on a countable state-space I.

Suppose X starts from $x \in I$. Question: how long does X stay in the state x?

Definition. We call S_x the holding time at state x ($S_x > 0$ by right-continuity).

Let $s, t \geq 0$. Then

$$\begin{split} \mathbb{P}(S_x > t + s | S_x > s) &= \mathbb{P}(X_u = x \ \forall u \in [0, t + s] | X_u = x \ \forall u \in [0, s]) \\ &= \mathbb{P}(X_u = x \ \forall u \in [s, t + s] | X_u = x \ \forall u \in [0, s]) \\ &= \mathbb{P}(X_u = x \ \forall u \in [s, t + s] | X_s = x) \\ &= \mathbb{P}(X_u = x \ \forall u \in [0, t] | X_0 = x) \\ &= \mathbb{P}(S_x > t). \end{split}$$

Thus S_x has the memoryless property.

By the next theorem, we will get that S_x has the exponential distribution, say with parameter q_x .

Theorem 1.1 (Memoryless property). Let S be a positive random variable. Then S has the memoryless property, i.e $\mathbb{P}(S > t + s | S > s) = \mathbb{P}(S > t)$ for all $s, t \geq 0$ if and only if S has the exponential distribution.

Proof. It is easy to see the exponential distribution is memoryless. So we prove the other direction. Set $F(t) = \mathbb{P}(S > t)$. Then F(s+t) = F(s)F(t) for all $s,t \geq 0$.

Since S is a positive random variable, there exists $n \in \mathbb{N}$ large such that $F(1/n) = \mathbb{P}(S > 1/n) > 0$. Then $F(1) = F(1/n)^n > 0$. So we can set $F(1) = e^{-\lambda}$ for some $\lambda \geq 0$.

For $k \in \mathbb{N}$, $F(k) = F(1)^k = e^{-\lambda k}$. For p/q rational, $F(p/q) = F(1/q)^p = (F(1/q)^q)^{p/q} = F(1)^{p/q} = e^{-\lambda \frac{p}{q}}$.

For any $t \geq 0$, for any $r, s \in \mathbb{Q}$ such that $r \leq t \leq s$, since F is decreasing

$$e^{-\lambda s} = F(s) \le F(t) \le F(r) = e^{-\lambda r}$$
.

So taking sequences of rationals approaching t, we have $F(t) = e^{-\lambda t}$.

Poisson Process'

We are now going to look at the simplest (and most important) example of continuous time Markov Chains - the Poisson process.

Definition. Suppose S_1, S_2, \ldots are iid random variables with $S_1 \sim \operatorname{Exp}(\lambda)$. Define the *jump times* $J_0 = 0, J_1 = S_1, J_n = S_1 + \ldots + S_n$ for all n, and set $X_t = i$ if $J_i \leq t < J_{i+1}$. Then $I = \{0, 1, 2, \ldots\}$ and note that X is right-continuous and increasing. X is called a *Poisson process* of parameter/intensity λ . We sometimes refer to the jump times $(J_i)_{i\geq 1}$ as the *points* of the Poisson process, then X =number of points in [0, t].

Theorem 1.2 (Markov property). Let $(X_t)_{t\geq 0}$ be a Poisson process of intensity λ . Then for all $s\geq 0$, the process $(X_{s+t}-X_s)_{t\geq 0}$ is also a Poisson process of intensity λ , and is independent of $(X_t)_{0\leq t\leq s}$.

Proof. Set $Y_t = X_{t+s} - X_s$ for all $t \ge 0$. Let $i \in \{0, 1, 2, ...\}$ and condition on $\{X_s = i\}$, Then the jump times for the process Y are $J_{n+1} - s, J_{n+2} - s, ...$ and the holding times are

$$T_1 = J_{n+1} - s = S_{i+1} - (s - J_i)$$

 $T_2 = S_{i+2}$
 $T_3 = S_{i+3}$
:

Since $\{X_s = i\} = \{J_i \le s\} \cap \{s < J_{i+1}\} = \{J_i \le s\} \cap \{S_{i+1} > s - J_i\}$, conditional on $\{X_s, i\}$, by the memoryless property of the exponential distribution (and

independence of S_{i+1} and J_i) we see that $T_1 \sim \operatorname{Exp}(\lambda)$. Moreover the times $J_j, j \geq 2$ are independent of $S_k, k \leq i$ and hence independent of $(X_r)_{r \leq s}$, and they have iid $\operatorname{Exp}(\lambda)$ distribution. Thus $((X_{s+t} - X_s))_{t \geq 0}$ is a Poisson process of parameter λ and is independent of $(X_t)_{0 \leq t \leq s}$.

Similar to this, one can show the Strong Markov property for a Poisson process of parameter λ . Recall a random variable $T \in [0, \infty]$ is called a *stopping time* if for all t, the event $\{T \leq t\}$ depends only on $(X_s)_{s \leq t}$.

Theorem 1.3 (Strong Markov property). Let $(X_t)_{t\geq 0}$ be a Poisson process of parameter λ and T a stopping time. Then conditional on $T < \infty$, the process $(X_{T+t} - X_T)_{t\geq 0}$ is a Poisson process of parameter λ and independent of $(X_s)_{s\leq T}$.

Theorem 1.4. Let $(X_t)_{t\geq 0}$ be an increasing right-continuous process taking values in $\{0,1,2,\ldots\}$ with $X_0=0$. Let $\lambda>0$. Then the following are equivalent

- (a) The holding times S_1, S_2, \ldots are iid $\text{Exp}(\lambda)$ and the jump chain is given by $Y_n = n$ (i.e X is a poisson process of intensity λ)
- (b) (Infinitesimal def) X has independent increments and as $h \downarrow 0$ uniformly in t we have

$$\mathbb{P}(X_{t+h} - X_t = 1) = \lambda h + o(h),$$

 $\mathbb{P}(X_{t+h} - X_t = 0) = 1 - \lambda h + o(h).$

(c) X has independent and stationary increments and for all $t \geq 0$, $X_t \sim \operatorname{Poi}(\lambda t)$.

Proof. First we show (a) \Rightarrow (b). If (a) holds, then by the Markov property, the increments are independent and stationary $((X_{t+s} - X_s)_{t \geq 0}) = d(X_t - X_0)_{t \geq 0}$. Using stationarity we have (uniformly in t) as $h \to 0$,

$$\mathbb{P}(X_{t+h} - X_t = 0) = \mathbb{P}(X_h = 0) = \mathbb{P}(S_1 > h) = e^{-\lambda h} = 1 - \lambda h + o(h),$$

$$\mathbb{P}(X_{t+h} - X_t \ge 1) = \mathbb{P}(X_h \ge 1) = \mathbb{P}(S_1 \le h) = 1 - e^{-\lambda h} = \lambda h + o(h),$$

$$\mathbb{P}(X_{t+h} - X_t \ge 2) = \mathbb{P}(X_h \ge 2) = \mathbb{P}(S_1 + S_2 \le h)$$

$$\le \mathbb{P}(S_1 \le h, S_2 \le h)$$

$$= \mathbb{P}(S_1 \le h)^2$$

$$= (\lambda h + o(h))^2 = o(h).$$

Now we show (b) \Rightarrow (c). If X satisfies (b), then $(X_{t+s} - X_s)_{t \geq 0}$ also satisfies (b). So X has independent and stationary increments. Now set $p_j(t) = \mathbb{P}(X_t = j)$. Then since increments are independent and X is increasing,

$$p_{j}(t+h) = \mathbb{P}(X_{t+h} = j) = \sum_{i=0}^{j} \mathbb{P}(X_{t} = j-i)\mathbb{P}(X_{t+h} - X_{t})$$
$$= p_{j}(t)(1 - \lambda h + o(h)) + p_{j-1}(t)(\lambda h + o(h)) + o(h).$$

Thus, $\frac{p_j(t+h)-p_j(t)}{h}=-\lambda p_j(t)+\lambda p_{j-1}(t)+o(1)$. Setting s=t+h, we get

$$\frac{p_j(s) - p_j(s-h)}{h} = -\lambda p_j(s-h) + \lambda p_{j-1}(s-h) + o(1).$$

In particular, $p_i(t)$ is continuous and differentiable with

$$p_j'(t) = -\lambda p_j(t) + \lambda p_{j-1}(t).$$

Differentiating

$$\left(e^{\lambda t}p(t)\right)' = \lambda e^{\lambda t}p_j(t) + e^{\lambda t}p_j'(t) = \lambda e^{\lambda t}p_{j-1}(t).$$

For j = 0 we have $p_0(t + h) = p_0(t)(1 - \lambda h + o(h))$, i.e $p_0'(t) = -\lambda p_0(t)$ so $p_0(t) = e^{-\lambda t}$. Thus

$$p_1'(t) = -\lambda p_1(t) + \lambda e^{-\lambda t}$$
, i.e $p_1(t) = \lambda t e^{-\lambda t}$.

And by induction

$$p_k(t) = e^{-\lambda t} \frac{(\lambda t)^k}{k!},$$

i.e $X_t \sim \text{Poi}(\lambda t)$.

Finally we show (c) \Rightarrow (a). We know X has independent stationary increments, We have for $t_1 \leq \ldots \leq t_k, \ n_1 \leq \ldots \leq n_k$,

$$\mathbb{P}(X_{t_1} = n_1, \dots, X_{t_k} = n_k) = \mathbb{P}(X_{t_1} = n_1) \underbrace{\mathbb{P}(X_{t_2} - X_{t_1} = n_2 - n_1)}_{\sim \text{Poi}(\lambda t_1)} \dots \underbrace{\mathbb{P}(X_{t_k} - X_{t_{k-1}} = n_k - n_{k-1})}_{\sim \text{Poi}(\lambda (t_2 - t_1))}.$$

So (c) determines the finite-dimensional distributions (f.d.d) of a right-continuous process X, hence (c) determines X. So (c) \Rightarrow (a).

Question: can we show (a) \Rightarrow (c) directly? Indeed note

$$\mathbb{P}(X_t = n) = \mathbb{P}(S_1 + \ldots + S_n \le t < S_1 + \ldots + S_{n+1})$$

$$= \mathbb{P}(S_1 + \ldots + S_n \le t) - \mathbb{P}(S_1 + \ldots + S_{n+1} \le t)$$

$$= \int_0^t \lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!} dx - \int_0^t \lambda e^{-\lambda x} \frac{(\lambda x)^n}{n!} dx$$

$$= e^{-\lambda t} \frac{(\lambda t)^n}{n!} \text{ (integration by parts)}.$$

Theorem 1.5 (Superposition). Let X and Y be two independent Poisson processes with parameters λ and μ respectively. Then $(Z_t)_{t\geq 0}=(X_t+Y_t)_{t\geq 0}$ is a Poisson process with parameter $\lambda + \mu$.

Proof. We use (c) from the previous theorem. So Z has stationary independent increments. Also $Z_t \sim \text{Poi}(\lambda t + \mu t)$.

Theorem 1.6 (Thinning). Let X be a Poisson process with parameter λ . Let $(Z_i)_{i\geq 1}$ be a sequence of iid Bernouilli(p) random variables. Let Y be a Posisson press with values in $\{0,\ldots,\}$ which jumps at time t if and only if X_t jumps at time t and $Z_{X_t} = 1$.

In other words, we keep every point of X with probability p independently. Then Y is another Poisson process, with parameter λp and X - Y is an independent Poisson process with parameter $\lambda(1-p)$.

Proof. We shall use the infinitesimal definition. The independence of increments for Y is clear. Since $\mathbb{P}(X_{t+h} - X_t \ge 2) = o(h)$, we have

$$\mathbb{P}(Y_{t+h} - Y_t = 1) = p\mathbb{P}(X_{t+h} - X_t = 1) + o(h) = p\lambda h + o(h),$$

$$\mathbb{P}(Y_{t+h} - Y_t = 0) = \mathbb{P}(X_{t+h} - X_t = 0) + (1-p)\mathbb{P}(X_{t+h} - X_t = 1) + o(h)$$

$$= 1 - \lambda h + (1-p)(\lambda h + o(h)) + o(h)$$

$$= 1 - \lambda ph + o(h).$$

Hence Y is Poisson of parameter λp . Clearly X - Y is a thinning of X with Bernouilli parameter 1 - p, so X - Y is Poisson of parameter $\lambda(1 - p)$.

Now we show Y and X-Y are independent. It is enough to show that the f.d.d of Y and X-Y are independent, i.e if $0 \le t_1 \le t_2 \le \ldots \le t_k$, $n_1 \le \ldots \le n_k$ and $m_1 \le \ldots \le m_k$, then we want to prove

$$\mathbb{P}(Y_{t_1} = n_1, \dots, Y_{t_k} = n_k, X_{t_1} - Y_{t_1} = m_1, \dots, X_{t_k} - Y_{t_k} = m_k)$$

$$= \mathbb{P}(X_{t_1} = n_1, \dots, Y_{t_k} = n_k) \mathbb{P}(X_{t_1} - Y_{t_1} = m_1, \dots, X_{t_k} - Y_{t_k} = m_K).$$

We will only show this for fixed $t\ (k=1)$ the general case follows similarly using independence of increments. We have

$$\begin{split} \mathbb{P}(Y_t = n, X_t - Y_t = m) &= \mathbb{P}(X_t = m + n, Y_t = n) \\ &= \mathbb{P}(X_t = m + n) \mathbb{P}(Y_t = n | X_t = m + n) \\ &= e^{-\lambda t} \frac{(\lambda t)^{m+n}}{(m+n)!} \binom{m+n}{n} p^n (1-p)^m \\ &= e^{-\lambda t p} \frac{(\lambda t p)^n}{n!} e^{-\lambda t (1-p)} \frac{(\lambda t (1-p))^m}{m!} \\ &= \mathbb{P}(X_t = n) \mathbb{P}(X_t - Y_t = m), \end{split}$$

as required.

Theorem 1.7. Let X be a Poisson Process. Conditional on the event $(X_t = n)$, the jump times J_1, J_2, \ldots, J_n are distributed as the order statistics of n iid U[0,t] random variables. That is, they have joint density

$$f(t_1,\ldots,t_n) = \frac{n!}{t^n} \mathbb{1}(0 \le t_1 \le \ldots \le t_n \le t).$$

Proof. Since S_1, S_2, \ldots are iid $\text{Exp}(\lambda)$, the joint density of (S_1, \ldots, S_{n+1}) is

$$\lambda^{n+1} e^{-\lambda(S_1 + \dots + S_{n+1})} \mathbb{1}(S_i \ge 0 \text{ for all } i).$$

Then the jump times $J_1 = S_1, J_2 = S_1 + S_2, \dots, J_{n+1} = S_1 + \dots + S_{n+1}$ have joint density

$$g(t_1, \dots, t_{n+1}) = \lambda^{n+1} e^{-\lambda t_{n+1}} \mathbb{1}(0 \le t_1 \le t_2 \le \dots t_{n+1}).$$

(Noting the Jacobian of the transformation is 1.) Now take $A \subseteq \mathbb{R}^n$ so

$$\mathbb{P}((J_1,\ldots,J_n)\in A|X_t=n)=\frac{\mathbb{P}((J_1,\ldots,J_n)\in A|X_t=n)}{\mathbb{P}(X_t=n)}.$$

Note

$$\mathbb{P}((J_{1}, \dots, J_{n}) \in A, X_{t} = n)
= \mathbb{P}((J_{1}, \dots, J_{n}) \in A, J_{n} \leq t < J_{n+1})
= \int_{(t_{1}, \dots, t_{n+1}) \in A \times \mathbb{R}} g(t_{1}, \dots, t_{n}) \mathbb{1}(t_{n+1} \geq t \geq t_{n}) dt_{1} \dots dt_{n+1}
= \int_{A} \int_{t}^{\infty} \lambda^{n+1} e^{-\lambda t_{n+1}} \mathbb{1}(0 \leq t_{1} \leq \dots \leq t_{n} \leq t) dt_{n+1} dt_{1} \dots dt_{n}
= \int_{A} \lambda^{n} e^{-\lambda t} \mathbb{1}(0 \leq t_{1} \leq \dots \leq t_{n} \leq t) dt_{1} \dots dt_{n}.$$

Then we get

$$\mathbb{P}((J_1,\ldots,J_n)\in A|X_t=n)=\int_A\frac{n!}{t^n}\mathbb{1}(0\leq t_1\leq\ldots\leq t_n\leq t)\mathrm{d}t_1\ldots\mathrm{d}t_n.$$

As required. \Box

Now we look at a generalisation of a Poisson Process: called a Birth Process. For a Poisson Process, the rate of going from i to i+1 is λ . For a Birth Process, this is q_i (can depend on i). More precisely:

Definition (Birth Process). For each i, let $S_i = \operatorname{Exp}(q_i)$ with S_1, S_2, \ldots independent. Set $J_i = S_1 + \ldots + S_i$ and $X_t = i$ if $J_i \leq t < J_{i+1}$. Then X is called a *Birth Process*.

We have some special cases:

- 1. Simple birth process: when $q_i = \lambda i$ for i = 1, 2, ...;
- 2. Poisson Proces $q_i = \lambda$ for all i.

Motivation for Simple Birth Process (SBP): at time 0 there is only one 'individual' i.e $X_0 = 1$. Each individual has an exponential clock of parameter λ independently. Then if there are i individuals, the first clock rings after $\text{Exp}(\lambda i)$ time, and we jump from i to i+1 individuals. Indeed, by the memoryless property, the process begins afresh after each jump.

Proposition 1.8. Let $(T_k)_{k\geq 1}$ be a sequence of independent random variables with $T_K \sim \operatorname{Exp}(q_k)$ and $\sum_k q_k < \infty$. Let $T = \inf_k T_k$. Then

- (a) $T \sim \text{Exp}\left(\sum_{k} q_{k}\right)$
- (b) The infimum is attained at a point T_K almost surely, and

$$\mathbb{P}(K=n) = \frac{q_n}{\sum_k q_k}.$$

(c) T and K are independent.

Proof. See example sheet.

The main difference between a Poisson Process and a Birth Process is that there is the possibility of explosion in the Birth Process. Recall explosion occurs when $\zeta := \sum_n S_n < \infty$.

Proposition 1.9. Let X be a Birth Process with rates q_i and $X_0 = 1$. Then

- 1. If $\sum_{i=1}^{\infty} \frac{1}{q_i} < \infty$, then X is explosive, i.e $\mathbb{P}(\zeta < \infty) = 1$;
- 2. If $\sum_{i=1}^{\infty} \frac{1}{q_i} = \infty$, then X is non-explosive, i.e $\mathbb{P}(\zeta = \infty) = 1$.

Remark. This shows the SBP (as well as the PP) is non-explosive.

Proof.

1. If $\sum_{n} \frac{1}{q_n} < \infty$, then

$$\mathbb{E}[\zeta] = \mathbb{E}\left[\sum_{n} S_{n}\right] = \sum_{n} \mathbb{E}S_{n} = \sum_{n} \frac{1}{q_{n}} < \infty.$$

Where we have swapped summation and expectation by the MCT (monotone convergence theorem). Thus $\zeta = \sum_n S_n < \infty$ almost surely.

2. If
$$\sum_{n} \frac{1}{q_n} = \infty$$
, then $\prod_{n} \left(1 + \frac{1}{q_n} \right) \ge 1 + \sum_{n} \frac{1}{q_n} = \infty$. Then
$$\mathbb{E}[e^{-\zeta}] = \mathbb{E}\left[e^{-\sum_{n=1}^{\infty} S_n} \right]$$

$$= \lim_{n \to \infty} \left[e^{-\sum_{i=1}^{n} S_i} \right] \qquad (MCT)$$

$$= \lim_{n \to \infty} \prod_{i=1}^{n} \mathbb{E}[e^{-S_i}] \qquad (independence)$$

$$\le \lim_{n \to \infty} \prod_{i=1}^{n} \frac{1}{1 + 1/q_i} = 0.$$

Since $e^{-\zeta}\geq 0$, since $\mathbb{E}(e^{-\zeta})=0$ we have $e^{-\zeta}=0$ almsot surely, i.e $\mathbb{P}(\zeta=\infty)=1.$

Theorem 1.10 (Markov Property). Let X be a BP with parameters (q_i) . Conditional on $X_s = i$, the process $(X_{s+t})_{t\geq 0}$ is a birth process with rates $(q_j)_{j\geq i}$ starting from i, and independent of $(X_r)_{r\leq s}$.

Proof. As in the Poisson Process case.

Theorem 1.11. Let X be an increasing right-continuous process with values in $\{1, 2, ...\} \cup \{\infty\}$. Let $0 \le q_j < \infty$ for all $j \ge 0$. Then the following are equivalent:

- 1. (jump chain/holding time definition) conditional on $X_s = i$, the holding times S_1, S_2, \ldots are independent exponentials with rates q_i, q_{i+1}, \ldots respectively and the jump chain is given $Y_n = i + n$ for all n.
- 2. (infinitesimal definition) for all $t, h \ge 0$, conditional on $X_t = i$, the process $(X_{t+h})_{h\ge 0}$ is independent of $(X_s)_{s\le t}$ and as $h\to 0$, uniformly in t we have

$$\mathbb{P}(X_{t+h} = i | X_t = i) = 1 - q_i h + o(h),$$

$$\mathbb{P}(X_{t+h} = i + 1 | X_t = i) = q_i h + o(h).$$

3. (transition probability definition) for all n = 0, 1, 2, ... and all times $0 \le t_0 \le t_1 \le ... \le t_{n+1}$, and all states $i_0, i_1, ..., i_{n+1}$,

$$\mathbb{P}(X_{t_{n+1}} = i_{n+1} | X_0 = i_0, \dots, X_{t_n} = i_n) = p_{i_n, i_{n+1}}(t_{n+1} - t_n),$$

where $(p_{ij}(t): i, j = 0, 1, 2, ...)$ is the unique solution to the equation (called Kolmogorov's forward equation)

$$p'_{ij}(t) = q_{j-1}p_{i,j-1}(t) - q_j p_{i,j}(t). \tag{*}$$

(as in the Poisson Process, $p_{ij}(t+h) = p_{i,j-1}(t)q_jh + p_{i,j}(t)(1-q_jh) + o(h)$.)

Existence and uniqueness of a solution in (3) gollow since for $i = j \ p'_{i,i}(t) = -q_i p_{i,i}(t)$ and $p_{i,i}(0) = 1$, so $p_{i,i}(t) = e^{-q_i t}$. Then by induction, if the unique solution for $p_{i,j}(t)$ exists, then plug into (*) to see there exists a unique solution for $p_{i,j+1}(t)$.

Also note that we can write the equation in matrix form:

$$P'(t) = P(t)Q, \text{ where } Q = \begin{pmatrix} -q_1 & q_1 & 0 & \dots \\ 0 & -q_2 & q_2 & \dots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}.$$

Q-matrix and construction of Markov Processes

Definition. $Q = (q_{ij})_{i,j \in I}$ is called a Q-matrix if

(a)
$$-\infty < q_{ii} \le 0$$
 for all $i \in I$;

- (b) $0 \le q_{ij} < \infty$ for all $i, j \in I$ with $i \ne j$;
- (c) $\sum_{i \in I} q_{ij} = 0$ for all $i \in I$.

Write $q_i = -q_{ii} = \sum_{i \notin I} q_{ij}$ for all $i \in I$.

Given a Q-matrix Q, we define a jump matrix P as follows. For $x \neq y$ with $q_x \neq 0$, set $p_{xy} = \frac{q_{xy}}{q_x}$ and $p_{xx} = 0$. If $q_x = 0$, set $p_{xy} = \mathbb{1}(x = y)$.

Example.

$$Q = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -2 & 1 \\ 2 & 1 & -3 \end{pmatrix} \implies P = \begin{pmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 2/3 & 1/3 & 0 \end{pmatrix}.$$

Definition. Let Q be a Q-matrix and λ a probability measure on the state space I. Then a (minimal) random process X is a Markov process with initial distribution λ and infinitesimal generator Q if

- (a) The jump chain $Y_n = X_{J_n}$ is a discrete time Markov chain starting from $Y_0 \sim \lambda$ with transition matrix P.
- (b) Conditional on Y_0, Y_1, \ldots, Y_n , the holding times S_1, \ldots, S_{n+1} are independent with $S_i \sim \text{Exp}(q_{Y_{i-1}})$ for $i = 1, \ldots, n+1$.

We write $X \sim \text{Markov}(\lambda, Q)$.

Example. Birth-Processes are Markov(λ, Q) with $I = \mathbb{N}$ and

$$Q = \begin{pmatrix} -q_1 & q_1 & 0 & \dots \\ 0 & -q_2 & q_2 & \dots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix} \text{ and } P = \begin{pmatrix} 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & \dots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}.$$

And jump chain $Y_n = Y_0 + n$.

We have multiple constructions of a Markov (λ, Q) process: Construction 1:

- $(Y_n)_{n>1}$ is a discrete-time Markov chain, $Y_0 \sim \lambda$ & transition matrix P.
- $(T_i)_{i\geq 1}$ iid $\operatorname{Exp}(1)$ random variables, independent of Y and set $S_n = \frac{T_n}{qX_{n-1}}$ and $J_n = \sum_{i=1}^n S_i$ (this implies $S_n \sim \operatorname{Exp}(qX_{n-1})$) and set $X_t = Y_n$ if $J_n \leq t < J_{n+1}$ and $X_t = \infty$ otherwise.

Construction 2:

- Let $(T_n^y)_{\substack{n \geq 1 \ y \in I}}$ be iid Exp(1) random variables
- $Y_0 \sim \lambda$ and inductively define Y_n, S_n : if $Y_n = x$ then for $y \neq x$ define $S_{n+1}^y = \frac{T_{n+1}^y}{q_{xy}} \sim \operatorname{Exp}(q_{xy})$ and $S_{n+1} = \inf_{y \neq x} S_{n+1}^y \sim \operatorname{Exp}\left(\sum_{y \neq x} q_{xy}\right)$, and if $S_{n+1} = S_{n+1}^Z$ for some random Z (since the infimum is attained), take $Y_{n+1} = Z$ (if $q_x > 0$). If $q_x = 0$ take $Y_{n+1} = x$.

(Proof of equivalence: see Example Sheet)

Construction 3:

• For $x \neq y$, let $(N_t^{x,y})$ be independent Posisson Processes with rates q_{xy} respectively. Let $Y_0 \sim \lambda$, $J_0 = 0$ and define inductively:

$$J_{n+1} = \inf\{t > J_n : N_t^{Y_n, y} \neq N_{J_n}^{Y_n, y} \text{ for some } y \neq Y_n\},$$

$$Y_{n+1} = \begin{cases} y & \text{if } J_{n+1} < \infty \text{ and } N_{J_{n+1}}^{Y_n, y} \neq N_{J_n}^{Y_n, y} \\ x & \text{if } J_{n+1} = \infty \end{cases}.$$

For a birth process, we characterised when explosion happens. In general, the next theorem gives a sufficient condition:

Theorem 1.12. Let X be $Markov(\lambda, Q)$ on I. Then $\mathbb{P}(\zeta = \infty) = 1$ (non-explosive) if any of the following hold:

- (a) I is finite;
- (b) $\sup_{x\in I} q_x < \infty$;
- (c) $X_0 = x$ and x is recurrent for the jump chain Y.

Proof. Note that (a) \Rightarrow (b) so it is enough to show in the cases we have (b) or (c). If (b) holds, set $q = \sup_{x \in I} q_x < \infty$. Since $S_n = \frac{T_n}{q_{X_{n-1}}}$, $S_n \ge \frac{T_n}{q}$. Hence

$$\zeta = \sum_{n=1}^{\infty} S_n > \frac{1}{q} \sum_{n=1}^{\infty} T_n = \infty$$
 almost surely (SLLN),

i.e $\mathbb{P}(\zeta = \infty) = 1$.

Now suppose (c) holds. Let $(N_i)_{i\in I}$ be the times when the jump chain Y visits x. By the SLLN,

$$\zeta \ge \sum_{i=1}^{\infty} S_{N_i+1} = \sum_{i=1}^{\infty} \frac{T_{N_i+1}}{q_{N_i}} = \frac{1}{q_x} \sum_{i=1}^{\infty} T_{N_i+1} = \infty$$
 almost surely,

i.e
$$\mathbb{P}(\zeta = \infty) = 1$$
.

Example. Suppose $I = \mathbb{Z}$, $q_{i,i+1} = q_{i,i-1} = 2^{|i|}$ for all i. Then $p_{i,i+1} = p_{i,i-1} = 1/2$ and the jump chain is the symmetric simple random walk on \mathbb{Z} , which is recurrent. Hence X is non-explosive.

Example. Suppose $I = \mathbb{Z}$, $q_{i,i+1} = 2^{|i|+1}$, $q_{i,i-1} = 2^{|i|}$ so $q_i = 2^{|i|} + 2^{|i|+1}$. Then the jump chain Y is a simple random walk with 1/3 probabilty of moving towards 0 and 2/3 probability of moving away from 0, hence is transient. We have

$$\mathbb{E}[\zeta] = \mathbb{E}\left[\sum_{n=1}^{\infty} S_n\right] = \sum_{j \in \mathbb{Z}} \mathbb{E}\left[\sum_{k=1}^{V_j} S_{N_k^j + 1}\right],$$

where V_j is the total number of visits to j and N_k^j is the time of the kth visit to j. Hence

$$\sum_{j\in\mathbb{Z}}\mathbb{E}\left[\sum_{k=1}^{V_j}S_{N_k^j+1}\right] = \sum_{j\in\mathbb{Z}}\mathbb{E}[V_j]\mathbb{E}[S_{N_1^j+1}] = \sum_{j\in\mathbb{Z}}\mathbb{E}[V_j]\frac{1}{q_j} = \sum_{j\in\mathbb{Z}}\frac{1}{3\cdot 2^{|j|}}\mathbb{E}V_j.$$

Since $\mathbb{E}V_i \leq 1 + \mathbb{E}_i V_i = 1 + \mathbb{E}_0 V_0 := C < \infty$ (transience) we have

$$\sum_{j \in \mathbb{Z}} \frac{1}{3 \cdot 2^{|j|}} \mathbb{E} V_j \le \sum_{j \in \mathbb{Z}} \frac{C}{2 \cdot 2^{|j|}} < \infty.$$

So $\mathbb{E}[\zeta] < \infty$ and $\mathbb{P}(\zeta < \infty) = 1$, i.e explosive.

Theorem 1.13 (Strong Markov Property). Let X be Markov (λ, Q) and let T be a stopping time. Then conditional on $T < \zeta$ and $X_T = x$, the process $(X_{T+t})_{t \geq 0}$ is Markov (δ_x, Q) and independent of $(X_s)_{s \leq T}$.

Proof. Omitted (uses measure theory, see Norris (6.5)).

Kolmogorov's forward & backward equations

We work on a countable state space I.

Theorem 1.14. Let X be a minimal right-continuous process with values in a countable set I. Let Q be a Q-matrix with jump matrix P. Then the following are equivalent:

- (a) X is a continuous-time Markov chain with generator Q.
- (b) For all $n \geq 0$, $0 \leq t_0 \leq \ldots \leq t_{n+1}$, and all states $x_0, \ldots, x_{n+1} \in I$,

$$\mathbb{P}(X_{t_{n+1}} = x_{n+1} | X_{t_n} = x_{t_n}, \dots, X_{t_0} = x_1) = p_{x_n x_{n+1}}(t_{n+1} - t_n).$$

Where $(P(t)) = (p_{xy}(t))$ is the minimal non-negative solution to the backward equation

$$P'(t) = QP(t)$$
, with $P(0) = I$.

(Minimality means that if \tilde{P} is another non-negative solution, we have $p_{xy}(t) \leq \tilde{p}_{xy}(t)$ for all t and all $x, y \in I$.) In fact, if the chain is non-explosive, the solution is unique.

(c) P(t) is the minimal non-negative solution to the forward equation

$$P'(t) = P(t)Q$$
, with $P(0) = I$.

Note. We shall skip the proof of the equivalence of (c) (see Norris (2.8)).

Proof. First we show (a) \Rightarrow (b). If $(J_n)_{n\geq 1}$ denote the jump times, then

$$\mathbb{P}_x(X_t = y, J_1 > t) = \mathbb{1}(x = y)e^{-q_x t}.$$

Integrating over the values of $J_1 \leq t$ and using independence of the jump chain, for $z \neq x$,

$$\mathbb{P}_{x}(X_{t} = y, J_{1} \le t, X_{J_{1}} = z) = \int_{0}^{t} q_{x} e^{-q_{x}s} \frac{q_{xz}}{q_{x}} p_{zy}(t - s) ds$$
$$= \int_{0}^{t} e^{-q_{x}s} q_{xz} p_{zy}(t - s) dx$$

Summing over all $z \neq x$ (and by the MCT),

$$\mathbb{P}_x(X_t = y, J_1 \le t) = \int_0^t \sum_{z \ne x} e^{-q_x s} q_{xz} p_{xy}(t - s) \mathrm{d}s.$$

So

$$p_{xy}(t) = \mathbb{P}_x(X_t = y) = e^{-q_x t} \mathbb{1}(x = y) + \int_0^t \sum_{z \neq x} e^{-q_x s} q_{xz} p_{zy}(t - s) ds.$$

And by a substitution

$$e^{q_x t} p_{xy}(t) = \mathbb{1}(x = y) + \int_0^t \sum_{z \neq x} e^{q_x u} q_{xz} p_{zy}(u) du.$$

Hence $p_{xy}(t)$ is a continuous function in t, and hence

$$\sum_{z \neq x} e^{q_x u} q_{xz} p_{zy}(u)$$

is a series of continuous functions, and is also uniformly convergence (Weierstrass-M test), so continuous. Hence $e^{q_x t} p_{xy}(t)$ is differentiable with derivative

$$e^{q_x t} (q_x p_{xy}(t) + p'_{xy}(t)) = \sum_{z \neq x} e^{q_x t} q_{xz} p_{zy}(t).$$

Thus

$$p'_{xy}(t) = \sum_{z} q_{xz} p_{zy}(t) \implies P'(t) = QP(t).$$

Now we show minimality: let \tilde{P} be another non-negative solution of the backward equation. We will show $p_{xy}(t) \leq \tilde{p}_{xy}(t)$ for all x, y, t. As before,

$$\mathbb{P}_{x}(X_{t} = y, t < J_{n+1}) = \mathbb{P}_{x}(X_{t} = y, J_{1} > t) + \mathbb{P}_{x}(X_{t} = y, J_{1} \le t < J_{n+1})$$

$$= e^{-q_{x}t} \mathbb{1}(x = y) + \sum_{z \ne x} \int_{0}^{t} q_{x} e^{-q_{x}s} \frac{q_{xz}}{q_{x}} \mathbb{P}_{z} (X_{t-s} = y, t - s < J_{n}) \, ds.$$

Now, as \tilde{P} satisfies the backward equation, we get as before (retracing previous steps)

$$\tilde{p}_{xy}(t) = e^{-q_x t} \mathbb{1}(x = y) + \sum_{z \neq x} \int_0^t e^{-q_x s} q_{xz} \tilde{p}_{zy}(t - s) ds.$$
 (*)

Now we prove by induction that

$$\mathbb{P}_x(X_t = y, t < J_n) \leq \tilde{p}_{xy}(t)$$
 for all n .

For n = 1,

$$e^{-q_x t} \mathbb{1}(x = y) \le \tilde{p}_{xy}(t)$$
 by $(*)$.

Assume true for some $n \in \mathbb{N}$. Then for n + 1,

$$\mathbb{P}_{x}(X_{t} = y, t < J_{n+1}) \le e^{-q_{x}t} \mathbb{1}(x = y) + \sum_{z \neq x} \int_{0}^{t} q_{xz} e^{-q_{x}s} \tilde{p}_{zy}(t - s) ds = \tilde{p}_{xy}(t).$$

So it holds for all n. Hence

$$\lim_{n \to \infty} \mathbb{P}_x(X_t = y, t < J_n) = \mathbb{P}_x(X_t = y, t < \zeta) \le \tilde{p}_{xy}.$$

(Since $J_n \uparrow \zeta$.) Now by minimality,

$$p_{xy}(t) = \mathbb{P}_x(X_t = y) = \mathbb{P}_x(X_t = y, t < \zeta) \le \tilde{p}_{xy}(t).$$

Finite state space:

Definition. If A is a finite-dimensional square matrix, its matrix exponential is given by

$$e^A = \sum_{i=0}^{\infty} \frac{A^k}{k!} = I + A + \frac{A^2}{2!} + \dots$$

Claim. For any $r \times r$ matrix A, the exponential e^A is an $r \times r$ matrix. If A_1 and A_2 commute, then $e^{A_1 + A_2} = e^{A_1} e^{A_2}$.

Proof. Example Sheet.
$$\Box$$

Proposition 1.15. Let Q be a Q-matrix on a finite set I and $P(t) = e^{tQ}$. Then

- (i) P(t+s) = P(t)P(s) for all s, t;
- (ii) $(P(t))_{t\geq 0}$ is the unique solution to the forward equation P'(t) = P(t)Q, P(0) = I;
- (iii) $(P(t))_{t\geq 0}$ is the unique solution to the backward equation P'(t) = QP(t), P(0) = I;

(iv) For
$$k = 0, 1, 2, ..., \left(\frac{d}{dt}\right)^k P(t)\Big|_{t=0} = Q^k$$
.

Proof.

- (i) Since tQ and sQ commute, $\exp((t+s)Q) = \exp(tQ) \exp(sQ)$.
- (ii) The sum in e^{tQ} has infinite radius of convergence, hence we can differentiate term by term.
- (iii) Same as (ii).
- (iv) Same again.

Now we'll show uniqueness in (ii) and (iii). If \tilde{P} is another solution to the forward equation, $\tilde{P}'(t) = \tilde{P}(t)Q$, $\tilde{P}(0) = I$, then

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\tilde{P}(t)e^{-tQ} \right) = \tilde{P}'(t)e^{-tQ} + \tilde{P}(t) \left(-Qe^{-tQ} \right)$$
$$= \tilde{P}(t)Qe^{-tQ} - \tilde{P}(t)Qe^{-tQ} = 0$$

So $\tilde{P}(t)e^{-tQ}$ is a constant matrix. Since $\tilde{P}(0)=I$, this implies $\tilde{P}(t)=e^{tQ}$. The same thing works for the backward equation.

Example. Let $Q = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -3 \end{pmatrix}$. To find $p_{11}(t)$, we can diagonalise $Q = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -3 \end{pmatrix}$.

 PDP^{-1} for a diagonal matrix

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

so

$$e^{tQ} = Pe^{tD}P^{-1} = P \begin{pmatrix} e^{t\lambda_1} & 0 & 0 \\ 0 & e^{t\lambda_2} & 0 \\ 0 & 0 & e^{t\lambda_3} \end{pmatrix} P^{-1}.$$

i.e $p_{11}(t) = ae^{t\lambda_1} + be^{t\lambda_2} + ce^{t\lambda_3}$, which we can solve by considering $p_{11}(0), p'_{11}(0), p''_{11}(0)$.

Theorem 1.16. Let I be a finite state space and Q be a matrix. Then it is a Q-matrix iff $P(t) = e^{tQ}$ is a stochastic matrix for all t.

Proof. For t sufficiently small, $p(t) = e^{tQ} = I + tQ + \mathcal{O}(t^2)$, so for all $x \neq y$, $q_{xy} \geq 0$ iff $p_{xy}(t) \geq 0$ for all t sufficiently small.

Since $P(t) = (P(t/n))^n$ for all n, we get $q_{xy} \ge 0$ for all $x \ne y$ iff $p_{xy}(t) \ge 0$ for all $t \ge 0$.

Assume now that Q is a Q-matrix, i.e $\sum_y q_{xy} = 0$ for all x. Then $\sum_y (Q^n)_{xy} = \sum_y \sum_z (Q^{n-1})_{xz} Q_{zy} = \sum_z Q_{xz}^{n-1} \sum_y Q_{zy} = 0$. Hence $Q^n \mathbf{1} = Q^{n-1} Q \mathbf{1} = 0$ (1 is vector will all entries 1). Hence, since

$$p_{xy}(t) = \delta_{xy} + \sum_{k=1}^{\infty} \frac{t^k}{k!} (Q^k)_{xy}$$

we have $\sum_y p_{xy}(t) = 1 + \sum_{k=1}^{\infty} \frac{t^k}{k!} \sum_y (Q^k)_{xy} = 1$. i.e P(t) is a stochastic matrix.

Assume now that P(t) is a stochastic matrix. Then as $Q = \frac{d}{dt}\big|_{t=0} P(t)$, we have

$$\sum_{y} q_{xy} = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \sum_{y} p_{xy}(t) = 0.$$

i.e Q is a Q-matrix.

Theorem 1.17. Let X be a right-continuous process with values in a finite set I, and let Q be a Q-matrix on I. Then the following are equivalent

- (a) The process X is Markov with generator Q (Markov(Q));
- (b) (infinitesimal definition) Conditional on $X_s = x$, the process $(X_{s+t})_{t\geq 0}$ is independent of $(X_r)_{r\leq s}$ and uniformly in t as $h\downarrow 0$, for all x,y

$$\mathbb{P}(X_{t+h} = y | X_t = x) = \mathbb{1}(x = y) + q_{xy}h + o(h)$$

(c) For all $n \geq 0$, $0 \leq t_0 \leq \ldots \leq t_n$ and all states x_0, \ldots, x_n ,

$$\mathbb{P}(X_{t_n} = x_n | X_{t_0} = x_0, \dots, X_{t_{n-1}} = x_{n-1}) = p_{x_{n-1}, x_n}(t_n - t_{n-1})$$

where $(p_{xy}(t))$ is the solution to the forward equation P'(t) = P(t)Q, P(0) = I.

Proof. We have already shown (a) \iff (b) (from countable setting), so it is enough to show (b) \iff (c).

First we show (c) \Rightarrow (b). $P(t) = e^{tQ}$ is the solution (as I is finite). As $t \downarrow 0$, $P(t) = I + tQ + \mathcal{O}(t^2)$. Thus for all t > 0 and as $h \downarrow 0$, $\forall x, y$,

$$\mathbb{P}(X_{t+h} = y | X_t = x) = \mathbb{P}(X_h = y | X_0 = x) = p_{xy}(h) = \delta_{xy} + hq_{xy} + o(h).$$

Now we show (b) \Rightarrow (c). We have

$$p_{xy}(t+h) = \sum_{z} p_{xz}(t)(\mathbb{1}(z=y) + q_{zy}h + o(h)).$$

So

$$\frac{p_{xy}(t+h) - p_{xy}(t)}{h} = \sum_{z} p_{xz}(t)q_{zy} + o(1).$$

As $h \downarrow 0$,

$$p'_{xy}(t) = \sum_{z} p_{xz}(t)q_{zy} = (P(t)Q)_{xy}.$$

Remark. To get the backward equation we could write

$$p_{xy}(t+h) = \sum_{z} p_{xz}(h)p_{zy}(t)$$

and continue similarly.

Qualitative Properties of Continuous Time Markov Chains

We have minimal chains, and countable state space.

Class Structure

Definition. For states $x, y \in I$, write $x \to y$ ("x leads to y") if $\mathbb{P}_x(X_t = y \text{ for some } t \geq 0) > 0$. We write $x \leftrightarrow y$ ("x communicates with y") if $x \to y$ and $y \to x$. Clearly this is an equivalence relation and we call the equivalence classes communicating classes. We define irreducibility, closed class and absorbing states exactly as in discrete Markov Chains.

Proposition 1.18. Let X be Markov(Q) with transition semigroup $(P(t))_{t\geq 0}$. For any 2 states $x, y \in I$, the following are equivalent

- (a) $x \to y$;
- (b) $x \rightarrow y$ for the jump chain;
- (c) $q_{x_0x_1} \dots q_{x_{n-1}x_n} > 0$ for some $x = x_0, x_1, \dots, x_{n-1}, x_n = y$;
- (d) $p_{xy}(t) > 0$ for all t > 0;
- (e) $p_{xy}(t) > 0$ for some t > 0.

Proof. Clearly (d) \Rightarrow (e) \Rightarrow (b). Now we show (b) \Rightarrow (c). Since $x \to y$ for the jump chain, there exist $x_0 = x, x_1, \dots, x_{n-1}, x_n = y \in I$ such that

$$p_{x_0x_1}p_{x_1x_2}\dots p_{x_{n-1}x_n} > 0.$$

Hence $q_{x_0x_1}q_{x_1x_2}...q_{x_{n-1}x_n}$ since $q_{xy}/q_x = p_{xy}$.

Now we show (c) \Rightarrow (d). For any 2 states w, z with $q_{wz} > 0$, and for any t > 0,

$$p_{wz}(t) \ge \mathbb{P}_w(J_1 \le t, Y_1 = z, S_2 > t) = (1 - e^{-q_w t}) \frac{q_{wz}}{q_w} e^{-q_z t} > 0.$$

i.e $q_{wz} > 0$ implies $q_{wz}(t) > 0$ for all t. Hence if (c) holds, $p_{x_i x_{i+1}}(t) > 0$ for all t and all $0 \le i \le n-1$. Then $p_{xy}(t) = p_{x_0 x_1}(t/n) p_{x_1 x_2}(t/n) \dots p_{x_{n-1} x_n}(t/n) > 0$.

Hitting times

Definition. Let Y be the jump chain associated with X, and $A \subseteq I$. Set $T_A = \inf\{t > 0 : X_t \in A\}$, $H_A = \inf\{n \geq 0 : Y_n \in A\}$, $h_A(x) = \mathbb{P}_x(T_A < \infty)$ (hitting probability), $k_A(x) = \mathbb{E}_x T_A$ (mean hitting time).

Note. The hitting probability for X is the same as that for Y but the mean hitting times will differ in general.

Theorem 1.19. $(h_A(x))_{x\in I}$ and $(k_A(x))_{x\in I}$ are the minimal non-negative solutions to

$$\begin{cases} h_A(x) = 1 & \forall x \in A \\ Qh_A(x) = \sum_y q_{xy} h_A(y) = 0 & \forall x \notin A \end{cases}$$

and

$$\begin{cases} k_A(x) = 0 & \forall x \in A \\ Qk_A(x) = \sum_y q_{xy} k_A(y) = -1 & \forall x \notin A \end{cases}$$

respectively (assume $q_x > 0$ for all $x \notin A$).

Proof. The hitting probabilities are the same as those for the jump chain. Hence $h_A(x)=1$ for all $x\in A$ and $h_A(x)=\sum_{y\neq x}p_{xy}h_A(y)$ for all $x\not\in A$. Hence for all $x\not\in A$

$$q_x h_A(x) = \sum_{y \neq x} h_A(y) q_{xy} \implies \sum_y h_A(y) q_{xy} = 0.$$

Clearly if $x \in A$, $T_A = 0$, so $k_A(x) = 0$. Let $x \notin A$. Then $J_1 \leq T_A$, and hence

$$k_A(x) = \mathbb{E}_x T_A$$

$$= \mathbb{E}_x J_1 + \mathbb{E}_x (T_A - J_1)$$

$$= \mathbb{E}_x J_1 + \sum_{y \neq x} \mathbb{E}_x (T_A - J_1 | Y_1 = y) p_{xy}$$

$$= \frac{1}{q_x} + \sum_{y \neq x} k_A(y) \frac{q_{xy}}{q_x}.$$

Therefore

$$q_x k_A(x) = 1 + \sum_{y \neq x} q_{xy} k_A(y) \implies \sum_y q_{xy} k_A(y) = -1.$$

The minimality of solutions is as in the discrete chain.

Recurrence and Transience

Definition. The state x is called recurrent for X if

$$\mathbb{P}(\{t: X_t = x\} \text{ is unbounded}) = 1.$$

The state x is called transient if

$$\mathbb{P}(\{t: X_t = x\} \text{ is unbounded}) = 0.$$

Remark. If X explodes with positive probability starting from x, i.e $\mathbb{P}(\zeta < \infty) > 0$, then $\sup_t \{t : X_t = x\} \le \zeta < \infty$ with positive probability so x cannot be recurrent.

Theorem 1.20. Let X be Markov(Q) with jump chain Y. Then

- (a) If x is recurrent for Y, then x is recurrent for X;
- (b) If x is transient for Y, then x is transient for X;
- (c) Every state is either recurrent or transient;
- (d) Recurrence and transience are class properties.

Proof. (a) & (b) will imply (c) & (d) through the results for the discrete chain. So we prove (a) and (b).

First we prove (a). Suppose x is recurrent for Y and $X_0 = x$. Then X is not explosive, i.e $\mathbb{P}(\zeta = \infty) = 1$, so $J_n \to \infty$ with probability 1 (starting from x). Since $X_{J_n} = Y_n$ for all n, and Y visits x infinitely often with probability 1, $\{t: X_t = x\}$ is unbounded with probability 1.

Now we prove (b). If x is transient for Y, $q_x > 0$ (otherwise x is an absorbing state). Also, almost surely there is a last visit to x for Y, i.e

$$N := \sup\{n : Y_n = x\} < \infty \text{ almost surely.}$$

Also, $J_{N+1} < \infty$ almost surely (as $q_x > 0$) and if $t \in \{s : X_s = x\}$, then $t \leq J_{N+1}$, i.e sup $\{s : X_s = x\} \leq J_{n+1} < \infty$ almost surely.

Like in the discrete-time chain, $\sum_{n\geq 1} p_{xx}(n) = \infty$ implies x is recurrent; and $\sum_{n\geq 1} p_{xx}(n) < \infty$ implies x is transient.

Theorem 1.21. x is recurrent for X if and only if $\int_0^\infty p_{xx}(t)dt = \infty$, and x is transient for X if and only if $\int_0^\infty p_{xx}(t)dt < \infty$.

Proof. If $q_{xx}=0$, then x is absorbing, i.e $p_{xx}(t)=1$ for all t and $\int_0^\infty p_{xx}(t) dt = \infty$. Assume $q_x>0$. Then

$$\int_{0}^{\infty} p_{xx}(t)dt = \int_{0}^{\infty} \mathbb{E}[\mathbb{1}(X_{t} = x)]dt$$

$$= \mathbb{E}_{x} \left[\int_{0}^{\infty} \mathbb{1}(X_{t} = x)dt \right]$$
 (Fubini)
$$= \mathbb{E}_{x} \left[\sum_{n=0}^{\infty} \mathbb{1}(Y_{n} = x)S_{n+1} \right]$$

$$= \sum_{n=0}^{\infty} \mathbb{E}_{x} \left[\mathbb{1}(Y_{n} = x)S_{n+1} \right]$$
 (Fubini)
$$= \sum_{n=0}^{\infty} \mathbb{P}_{x}(Y_{n} = x)\mathbb{E}_{x} \left[S_{n+1} | Y_{n} = x \right]$$

$$= \sum_{n=0}^{\infty} p_{xx}(n) \frac{1}{q_{x}}.$$

Invariant Distributions

Definition. For a discrete Markov Chain Y, π is an *invariant measure* for Y if $\pi P = \pi$. If in addition $\sum \pi_i = 1$, π is called a *invariant distribution*. Then if $Y_0 \sim \pi$, $Y_n \sim \pi$ for all $n \geq 1$.

Recall:

Theorem 1.22. If Y is a discrete time Markov Chain which is irreducible, recurrent and $x \in I$. Then

$$\nu^{x}(y) = \mathbb{E}_{x} \left[\sum_{n=0}^{H_{x}-1} \mathbb{1}(Y_{n} = y) \right] \text{ where } H_{x} = \inf\{n \ge 1 : Y_{n} = x\}.$$

Then $\nu^x(\cdot)$ is an invariant measure and $0 < \nu^x(y) \le 1$ for all $y, \nu^x(x) = 1$.

Theorem 1.23. If Y is irreducible, λ is any invariant measure with $\lambda(x) = 1$, then

$$\lambda(y) \ge \nu^x(y)$$
 for all y.

If Y is recurrent then $\lambda(y) = \nu^x(y)$ for all y.

Definition. Let $X \sim \text{Markov}(Q)$ and let λ be a measure. Then λ is called invariant/infinitesimally invariant if $\lambda Q = 0$.

Lemma 1.24. If |I| is finite, then $\lambda Q = 0$ if and only if $\lambda P(s) = \lambda$ for all $s \geq 0$.

Proof. $P(s) = e^{sQ}$ since I is finite. If $\lambda Q = 0$, then

$$\lambda P(s) = \lambda e^{sQ} = \lambda \sum_{k=0}^{\infty} \frac{(sQ)^k}{k!} = I.$$

If $\lambda P(s) = \lambda$ for all s, then

$$\lambda Q = \lambda P'(0) = \frac{\mathrm{d}}{\mathrm{d}s} (\lambda P(s)) \Big|_{s=0} = \frac{\mathrm{d}}{\mathrm{d}s} \lambda \Big|_{s=0} = 0.$$

Lemma 1.25. Let X be Markov(Q) and Y its jump chain. π is invariant for X if and only if μ defined by $\mu_x = q_x \pi_x$ is invariant for Y (i.e $\pi Q = 0$ if and only if $\mu P = \mu$).

Proof. Since $q_x(p_{xy} - \delta_{xy}) = q_{xy}$,

$$(\pi Q)_y = \sum_{x \in I} \pi_x q_{xy} = \sum_{x \in I} \pi_x q_x (p_{xy} - \delta_{xy})$$
$$= \sum_{x \in I} \mu_X (p_{xy} - \delta_{xy})$$
$$= \sum_x \mu_x p_{xy} - \mu_y$$
$$= (\mu P)_y - \mu_y.$$

Theorem 1.26. Let X be irreducible \mathcal{E} recurrent, with generator Q. Then X has an invariant measure, which is unique up to scalar multiplication.

Proof. Assume |I|>1. Then by irreducibility, $q_x>0$ for all x. For Y, $\nu^x(y)=\mathbb{E}_x\left[\sum_{n=0}^{H_x-1}\mathbbm{1}(Y_n=y)\right]$ where $H_x=\inf\{n\geq 1: Y_n=x\}$ is an invariant measure as Y is irreducible & recurrent (since X is), hence ν^x is an invariant measure for Y which is unique up to scalar multiplication. By the previous lemma, $\frac{\nu^x(y)}{q_y}$ is an invariant measure for X, and also unique up to scalar multiplication. \square

Definition. Let $T_x = \inf\{t \geq J_1 : X_t = x\}$ be the first return time to x.

Lemma 1.27. Assume $q_y > 0$. Define

$$\mu^x(y) = \mathbb{E}_x \left[\int_0^{T_x} \mathbb{1}(X_t = y) dt \right].$$

Then $\mu^x(y) = \frac{\nu^x(y)}{q_y}$.

Proof.

$$\mu^{x}(y) = \mathbb{E}_{x} \left[\int_{0}^{T_{x}} \mathbb{1}(X_{t} = y) dt \right]$$

$$= \mathbb{E}_{x} \left[\sum_{n=0}^{H_{x}-1} \mathbb{1}(Y_{n} = y) S_{n+1} \right]$$

$$= \mathbb{E}_{x} \left[\sum_{n=0}^{\infty} S_{n+1} \mathbb{1}(Y_{n} = y, n \leq H_{x} - 1) \right]$$

$$= \sum_{n=0}^{\infty} \mathbb{E}_{x} \left[S_{n+1} | Y_{n} = y, n \leq H_{x} - 1 \right] \mathbb{P}_{x}(Y_{n} = y, n \leq H_{x} - 1)$$

Since $\{n < H_x\}^c = \{H_x \le n\} \in \sigma\{Y_1, \dots, Y_n\}$ (i.e depends on Y_1, \dots, Y_n only) its a stopping time so the Strong Markov Property says

$$\mu^{x}(y) = \sum_{n=0}^{\infty} \mathbb{E}_{x} \left[S_{n+1} | Y_{n} = y \right] \mathbb{P}_{x}(Y_{n} = y, n \leq H_{x} - 1)$$

$$= \sum_{n=0}^{\infty} \frac{1}{q_{y}} \mathbb{P}_{x}(Y_{n} = y, n \leq H_{x} - 1)$$

$$= \frac{1}{q_{y}} \sum_{n=0}^{\infty} \mathbb{E}_{x} \left[\mathbb{I}(Y_{n} = y, n \leq H_{x} - 1) \right]$$

$$= \frac{1}{q_{y}} \mathbb{E} \left[\sum_{n=0}^{\infty} \mathbb{I}(Y_{n} = y, n \leq H_{x} - 1) \right]$$

$$= \frac{1}{q_{y}} \mathbb{E}_{x} \left[\sum_{n=0}^{H_{x} - 1} \mathbb{I}(Y_{n} = y) \right]$$

$$= \frac{\nu^{x}(y)}{q_{y}}.$$

Definition. A recurrent state x is called *positive recurrent* if

$$m_x = \mathbb{E}_x T_x < \infty.$$

Otherwise, we call x null recurrent.

Theorem 1.28. Let $X \sim \operatorname{Markov}(Q)$ be irreducible. Then the following are equivalent

- (a) Every state is positive recurrent;
- (b) Some state is positive recurrent;

(c) X is non-explosive and has an invariant distribution.

Also, when (c) holds, the invariant distribution λ is given by $\lambda(x) = \frac{1}{q_x m_x}$ for all x

Proof. Clearly (a) \Rightarrow (b). Now we show (b) \Rightarrow (c). Assume without loss of generality that $q_x > 0$. Let x be a positive recurrent state. Then all states are recurrent, so Y is recurrent and the chain is non-explosive starting from any y. As Y is recurrent, ν^x is an invariant measure for Y. So $\mu^x = \frac{\nu^x}{q_y}$ (as defined previously) is an invariant measure for X. Also

$$\mu_x(y) = \mathbb{E}_x \left[\int_0^{T_x} \mathbb{1}(X_t = y) dt \right],$$

SO

$$\sum_{y \in I} \mu^{x}(y) = \mathbb{E}_{x} \left[\int_{0}^{T_{x}} \sum_{y \in I} \mathbb{1}(X_{t} = y) dt \right]$$
$$= \mathbb{E}_{x} T_{x} < \infty.$$

So μ_x is normalisable, and $\frac{\mu_x}{\mathbb{E}_x T_x}$ is an invariant distribution for X.

Now we show $(c)\Rightarrow(a)$. By a previous lemma, the measure $\beta(y)=\lambda(y)q_y$ is an invariant measure for Y. Since $\sum_{y\in I}\lambda(y)=1,\ \lambda(x)>0$ for some x. Since Y is irreducible, for any $y\in I,\ x\to y$, i.e $p_{xy}(n)>0$ for some n. As β is invariant for $Y,\ \beta P^n=\beta$. So

$$\lambda(y)q_y = \beta y = \sum_{z \in I} \beta_z p_{zy}(n) \ge \beta_x p_{xy}(n) = \lambda(x) q_x p_{xy}(n) > 0$$

so $\lambda(y) > 0$ for all y.