第四章 线性方程组

1987~2008本章考题考点分布统计表

考点	考频	考题分布与分值						
齐次方程组、基础 解系	3	2001,十二题 6 分	2004 , 22 题 9 分	2005,23 题 9 分				
非齐次方程组的求解	7	1997,四题 8分 2003,十二题 8分	2000,十二题 6分 2006,22题 9分	2001,—(5) 题 3分 2008,22 题 12分	2002,十二题 6分			
公共解与同解	1	2007,23 题 11 分		·				

本章导读

本章从1997年开始有考题.线性方程组是否有解?若有解,那么一共有多少解?有解时怎样求 出其所有的解?如何求齐次方程组的基础解系?

当给出具体的方程组时,如何加减消元化简(注意只用行变换)?如何求出所有的解(可能还涉 及对一些参数的讨论)?

没有具体的方程组时,如何利用解的结构(注意对矩阵秩的推断)分析、推导出通解? 面对两个方程组,如何处理公共解或同解问题?

这一切都是大家在复习方程组时要认真对待的.方程组历年来都是考试的重点,其比重大,分 值高,解答题多,大家一定要好好复习.

真题分类练习

一个一个题,相对容易,推荐先做 二阶题,较综合,可在第二轮复习时做

一、齐次方程组、基础解系

试题特点

考查的主要定理是:

- (1) 设 $A \in m \times n$ 矩阵, 齐次方程组 Ax = 0 有非零解 \Leftrightarrow 秩 r(A) < n;
- (2) 齐次方程组 Ax = 0 如有非零解,则必有无穷多解,而线性无关的解向量个数为 n r(A).

艾宾浩斯抗遗	臻选			再做	a	161
忘复习计划	題号			时间	一天 □四天 □七天 □一月 □考前	价 .

真题真 刷基础篇・考点分类详解版 (数学二)

求基础解系是重点.

n-r(A) 既表示 Ax = 0 线性无关解向量的个数,也表示方程组中自由变量的个数,如何确定自由变量?如何给自由变量赋值并求解,是这一章的基本功.

不论是 Ax = 0,还是 Ax = b 都要涉及求 Ax = 0 的基础解系,这里的计算一定要过关(正确、熟练).

线性无关的证明题的另一种出题方法就是证基础解系.

[2001,十二题,6分] 已知 α_1 , α_2 , α_3 , α_4 是线性方程组 Ax = 0 的一个基础解系, $Z = \alpha_1 + t\alpha_2$, $Z = \alpha_2 + t\alpha_3$, $Z = \alpha_3 + t\alpha_4$, $Z = \alpha_4 + t\alpha_1$, 讨论实数 $Z = \alpha_4 + t\alpha_5$, $Z = \alpha_5 + t\alpha_5$, $Z = \alpha_5$

答题区

2 (2005,23 题,9 分) 已知三阶矩阵 A 的第 1 行是(a,b,c),a,b,c 不全为零,矩阵

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{bmatrix} (k 为常数)$$

且 AB = O, 求线性方程组 Ax = 0 的通解.

答题区

3 (2004,22 题,9 分) 设有齐次线性方程组

$$\begin{cases} (1+a)x_1 & +x_2 & +x_3 & +x_4=0, \\ 2x_1+(2+a)x_2 & +2x_3 & +2x_4=0, \\ 3x_1 & +3x_2+(3+a)x_3 & +3x_4=0, \\ 4x_1 & +4x_2 & +4x_3+(4+a)x_4=0. \end{cases}$$

试问 a 取何值时,该方程组有非零解?并求出其通解.

答题区

解题加速度

1.(1989, 数四, 3 分) 设 n 元齐次线性方程组 Ax=0 的系数矩阵 A 的秩为 r ,则 Ax=0 有非零解的充分必要条件是

$$(A)r = n$$
.

(B)
$$r \geqslant n$$
.

$$(C)r < n$$
.

(D)
$$r > n$$
.

163

2.(1994, 数四, 8 分)设 α_1 , α_2 , α_3 是齐次线性方程组 Ax=0 的一个基础解系. 证明 $\alpha_1+\alpha_2$, $\alpha_2+\alpha_3$, $\alpha_3+\alpha_1$ 也是该方程组的一个基础解系.

真题真刷基础篇・考点分类详解版 (数学二)

3.(1992, 数三, 3 分) 设 $A 为 m \times n$ 矩阵, 齐次线性方程组 Ax = 0 仅有零解的充分条件是

(A)A 的列向量线性无关.

(B)A 的列向量线性相关.

(C)A 的行向量线性无关.

(D)A 的行向量线性相关.

二、非齐次方程组的求解

试题特点

记住解的结构

$$\boldsymbol{\alpha} + k_1 \boldsymbol{\eta}_1 + k_2 \boldsymbol{\eta}_2 + \cdots + k_{n-r} \boldsymbol{\eta}_{n-r}$$

其中 α 是 Ax = b 的特解, η_1 , η_2 , \dots , η_{n-r} 是 Ax = 0 的基础解系.

往届考生在加减消元时计算错误较多(一定要多动手做;认真);讨论参数时不能丢三落四,要严谨.

求 A 的秩、求特解、求基础解系、讨论参数是复习时要注意的知识点.

4 (1997,四题,8 分)λ 取何值时,方程组

$$\begin{cases} 2x_1 + \lambda x_2 - x_3 = 1\\ \lambda x_1 - x_2 + x_3 = 2\\ 4x_1 + 5x_2 - 5x_3 = -1 \end{cases}$$

无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解. 答题区

64 艾宾浩斯抗遗

臻选 超号

5 (2000, 十二類, 6分)设
$$\alpha = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
, $\beta = \begin{bmatrix} 1 \\ \frac{1}{2} \\ 0 \end{bmatrix}$, $\gamma = \begin{bmatrix} 0 \\ 0 \\ 8 \end{bmatrix}$, $A = \alpha \beta^{T}$, $B = \beta^{T} \alpha$, 其中 β^{T} 是 β 的

转置,求解方程 $2B^2A^2x = A^4x + B^4x + \gamma$. 答题区

6 (2001, -(5) 题, 3 分) 设方程 $\begin{bmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$ 有无穷多个解,则 $a = \underline{\qquad \qquad}$

答题区

7 (2003,十二题,8分)已知平面上三条不同直线的方程分别为

$$l_1:ax+2by+3c=0$$

$$l_2:bx+2cy+3a=0$$

$$l_3: cx + 2ay + 3b = 0$$

试证这三条直线交于一点的充分必要条件为a+b+c=0.

答题区

臻选 题号

真題真刷基础篇・考点分类详解版(数学二)

8 (2006,22 题,9 分)已知非齐次线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = -1, \\ 4x_1 + 3x_2 + 5x_3 - x_4 = -1, \\ ax_1 + x_2 + 3x_3 + bx_4 = 1. \end{cases}$$

有3个线性无关的解.

- (I)证明方程组系数矩阵 A 的秩 r(A) = 2;
- (Ⅱ) 求 a,b 的值及方程组的通解.

答题区

9 (2002,十二题,6分)已知四阶方阵 $\mathbf{A} = (\mathbf{\alpha}_1, \mathbf{\alpha}_2, \mathbf{\alpha}_3, \mathbf{\alpha}_4), \mathbf{\alpha}_1, \mathbf{\alpha}_2, \mathbf{\alpha}_3, \mathbf{\alpha}_4$ 均为四维列向量, 其中 α_2 , α_3 , α_4 线性无关, $\alpha_1 = 2\alpha_2 - \alpha_3$. 如果 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$, 求线性方程组 $Ax = \beta$ 的通解.

答题区

10 (2008,22 题,12 分) 设 n 元线性方程组 Ax = b,其中

$$\mathbf{A} = \begin{bmatrix} 2a & 1 & & & & & \\ a^{2} & 2a & 1 & & & & \\ & a^{2} & 2a & 1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & a^{2} & 2a & 1 \\ & & & & a^{2} & 2a \end{bmatrix}_{n \times n}, \mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

- (I)证明行列式 $|A| = (n+1)a^n$;
- (Ⅱ) 当 a 为何值时,该方程组有唯一解?并求 x1;
- (Ⅲ) 当 a 为何值时,该方程组有无穷多解?并求通解.

答题区

解题加速度

- 1.(1991, 数四, 3 分)设A是 $m \times n$ 矩阵,Ax = 0是非齐次线性方程组Ax = b所对应的齐次线性方程组,则下列结论正确的是
 - (A) 若 Ax = 0 仅有零解,则 Ax = b 有唯一解.
 - (B) Ax = 0 有非零解,则 Ax = b 有无穷多个解.
 - (C) 若 Ax = b 有无穷多个解,则 Ax = 0 仅有零解.
 - (D) 若Ax = b有无穷多个解,则Ax = 0有非零解.

再做时间

真題真 刷基础篇・考点分类详解版 (数学二)

2.(2000, 数三, 数四, 3分)设 $\alpha_1, \alpha_2, \alpha_3$ 是四元非齐次线性方程组Ax = b的三个解向量,且秩(A) = $3, \alpha_1 = (1, 2, 3, 4)^T, \alpha_2 + \alpha_3 = (0, 1, 2, 3)^T, c$ 表示任意常数,则线性方程组Ax = b的通解x = a

(A)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 (B)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + c \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$
 (C)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + c \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$
 (D)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + c \begin{bmatrix} 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

三、公共解与同解

试题特点

如果已知两个方程组(Π),那么将其联立 $\{(\Pi)\}$,其联立方程组的解就是(Π)与(Π)的公共解.

如果已知(I) 与(II) 的基础解系分别是 α_1 , α_2 , α_3 和 β_1 , β_2 , 则可设公共解为 γ , 那么 $\gamma = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = l_1\beta_1 + l_2\beta_2$

由此得 $k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + k_3 \boldsymbol{\alpha}_3 - l_1 \boldsymbol{\beta}_1 - l_2 \boldsymbol{\beta}_2 = \boldsymbol{0}$,解出 k_1 , k_2 , k_3 , l_1 , l_2 可求出公共解 $\boldsymbol{\gamma}$.

以上这两种常见的出题方法应当把握.

而处理同解的方法,往往是代入来处理,即把(I)的解代入(I),把(I)的解代入(I).

11 (2007,23 题,11 分) 设线性方程组

$$x_1 + x_2 + x_3 = 0$$
,
 $x_1 + 2x_2 + ax_3 = 0$,
 $x_1 + 4x_2 + a^2x_3 = 0$

与方程

$$x_1 + 2x_2 + x_3 = a - 1$$

有公共解,求 a 的值及所有公共解.

答题区

(量) 解题加速度

- 1.(2000, 数三, 3 分) 设A 为n 阶实矩阵,A^T 是A 的转置矩阵,则对于线性方程组(I):Ax = 0 和(II):A^T Ax = 0,必有 公众号: 旗胜考研
 - (A)(Ⅱ)的解是(Ⅱ)的解,(Ⅱ)的解也是(Ⅱ)的解.
 - (B)(II)的解是(II)的解,但(II)的解不是(II)的解.
 - (C)(I)的解不是(II)的解,(II)的解也不是(I)的解.
 - (D)(I)的解是(II)的解,但(II)的解不是(II)的解.

2. (2002,数四,8分)设4元齐次线性方程组([)为

$$\begin{cases} 2x_1 + 3x_2 - x_3 = 0 \\ x_1 + 2x_2 + x_3 - x_4 = 0 \end{cases}$$

而已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为

$$\boldsymbol{\alpha}_1 = (2, -1, a+2, 1)^{\mathrm{T}}, \boldsymbol{\alpha}_2 = (-1, 2, 4, a+8)^{\mathrm{T}}$$

- (1) 求方程组(I)的一个基础解系;
- (2)当 a 为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.

短号

再

