Table 1: Various specifications expressed in natural language and MTL.

Automatic Transmission		
	Natural Language	MTL
ϕ_1^{AT}	The engine speed never reaches $\bar{\omega}$.	$\Box(\omega<\bar{\omega})$
ϕ_2^{AT}	The engine and the vehicle speed	$\Box((\omega<\bar{\omega})\wedge(v<\bar{v}))$
	never reach $\bar{\omega}$ and \bar{v} , resp.	
ϕ_3^{AT}	There should be no transition from	
	gear two to gear one and back to	$\square((g_2 \land Xg_1) \to \square_{(0,2.5]} \neg g_2)$
	gear two in less than 2.5 sec.	
ϕ_4^{AT}	After shifting into gear one, there	
	should be no shift from gear one to	$\square((\neg g_1 \land Xg_1) \to \square_{(0,2.5]}g_1)$
	any other gear within 2.5 sec.	
ϕ_5^{AT}	When shifting into any gear, there	
	should be no shift from that gear to	
	any other gear within 2.5sec.	
ϕ_6^{AT}	If engine speed is always less than $\bar{\omega}$,	
	then vehicle speed can not exceed \bar{v}	$\neg (\diamondsuit_{[0,T]}(v > \bar{v}) \land \Box(\omega < \bar{\omega}))$
	in less than T sec.	
ϕ_7^{AT}	Within T sec the vehicle speed is	
	above \bar{v} and from that point on the	$\diamondsuit_{[0,T]}((v \ge \bar{v}) \land \Box(\omega < \bar{\omega}))$
	engine speed is always less than $\bar{\omega}$.	
ϕ_8^{AT}	A gear increase from first to fourth	
	in under 10secs, ending in an RPM	$\left \begin{array}{cccc} (g_1 \ \mathcal{U} \ g_2 \ \mathcal{U} \ g_3 \ \mathcal{U} \ g_4) \wedge \diamondsuit_{[0,10]}(g_4 \wedge \\ \end{array} \right $
	above $\bar{\omega}$ within 2 seconds of that,	$ \diamondsuit_{[0,2]}(\omega \geq \bar{\omega}))\rangle \rightarrow \diamondsuit_{[0,10]}(g_4 \rightarrow)\rangle$
	should result in a vehicle speed	$X(g_4 \mathcal{U}_{[0,1]} (v \ge \bar{v})))$
	above \bar{v} .	4 10 4
Fault-Tolerant Fuel Control System		
	Natural Language	MTL
ϕ_1^{FCS}	The fuel flow rate should not be 0	(En-151D-4
	for more than 1 sec within the next	$\neg \diamondsuit_{[0,100]} \square_{[0,1]} (FuelFlowRate = 0)$
	100 sec period.	
ϕ_2^{FCS}	Always, if the air-to-fuel ratio out-	$\Box(())$ out of bounds)
	put goes out of bounds, then within 1 sec it should settle inside the	$\Box((\lambda \text{ out of bounds})) \rightarrow$
		$\diamondsuit_{[0,1]}\square_{[0,1]}\neg(\lambda \text{ out of bounds}))$
<u> </u>	bounds and stay there for a sec.	

 ω : Engine rotation speed, v: vehicle velocity, g_i : gear i, λ : air-to-fuel ratio. Recommended values: $\bar{\omega}$: 4500, 5000, 5200, 5500 RPM; \bar{v} : 120, 160, 170, 200 mph; T: 4, 8, 10, 20 sec; λ bounds: 0.9 - 1.1.

 \square : Always, \diamond : Eventually, \mathcal{U} : Until