Automata theory and formal languages

Closure Properties & Regular Languages

Dr. Mohammad Ahmad

Closure properties

Example

• The language L of strings that end in 101 is regular

$$(0+1)*101$$

• How about the language \overline{L} of strings that do not end in 101?

Example

• **Hint:** w does not end in 101 if and only if it ends in:

or it has length 0, 1, or 2

• So \overline{L} can be described by the regular expression

$$(0+1)*(000+001+010+010+100+110+111)$$

+ ϵ + $(0+1)$ + $(0+1)(0+1)$

Complement

• The complement \overline{L} of a language L is the set of all strings that are not in L

- Examples ($\Sigma = \{0, 1\}$)
 - $-L_1$ = all strings that end in 101
 - $-\overline{L}_1$ = all strings that do not end in 101 = all strings end in 000, ..., 111 or have length 0, 1, or 2
 - $-L_2 = 1* = {\epsilon, 1, 11, 111, ...}$
 - $-\overline{L}_2$ = all strings that contain at least one 0= (0 + 1)*0(0 + 1)*

Example

• The language L of strings that contain 101 is regular

$$(0+1)*101(0+1)*$$

• How about the language \overline{L} of strings that do not contain 101?

You can write a regular expression, but it is a lot of work!

Closure under complement

If L is a regular language, so is \overline{L} .

 To argue this, we can use any of the equivalent definitions for regular languages:

- The DFA definition will be most convenient
 - We assume L has a DFA, and show \overline{L} also has a DFA

Arguing closure under complement

ullet Suppose L is regular, then it has a DFA M

• Now consider the DFA M with the accepting and rejecting states of M reversed

accepts strings not in L this is exactly \overline{L}

Food for thought

Can we do the same thing with an NFA?

Intersection

• The intersection $L \cap L'$ is the set of strings that are in both L and L'

Examples:

$$L = (0 + 1)*11$$
 $L' = 1*$ $L \cap L' = 1*11$ $L = (0 + 1)*10$ $L' = 1*$ $L \cap L' = \emptyset$

• If L, L' are regular, is $L \cap L$ ' also regular?

Closure under intersection

If L and L' are regular languages, so is $L \cap L'$.

 To argue this, we can use any of the equivalent definitions for regular languages:

Suppose L and L' have DFAs, call them M and M'

Goal: Construct a DFA (or NFA) for $L \cap L'$

An example

L = even number of 0s

L' = odd number of 1s

 $L \cap L' = \text{even number of } 0\text{s and odd number of } 1\text{s}$

Closure under intersection

	M and M '	DFA for $L \cap L'$
states	$Q = \{r_1,, r_n\}$ $Q' = \{s_1,, s_{n'}\}$	$Q \times Q' = \{(r_1, s_1), (r_1, s_2),, (r_2, s_1),, (r_n, s_n')\}$
start state	\mathbf{r}_i for M \mathbf{s}_j for M	$(\mathbf{r}_i, \mathbf{s}_j)$
accepting states	F for M'	$F \times F = \{(\mathbf{r}_i, \mathbf{s}_j) : \mathbf{r}_i F, \mathbf{s}_j F'\}$

Whenever M is in state r_i and M is in state s_j , the DFA for $L \cap L$ will be in state (r_i, s_j)

Closure under intersection

Reversal

• The reversal w^R of a string w is w written backwards

$$w = \text{cave}$$
 $w^R = \text{evac}$

• The reversal $L^{\rm R}$ of a language L is the language obtained by reversing all its strings

$$L = \{\text{cat, dog}\}$$
 $L^R = \{\text{tac, god}\}$

Reversal of regular languages

• L = all strings that end in 101 is regular

$$(0+1)*101$$

- How about L^{R} ?
- This is the language of all strings beginning in 101
- Yes, because it is represented by

Closure under reversal

If L is a regular language, so is L^R .

How do we argue?

Arguing closure under reversal

• Take a regular expression E for L

• We will show how to reverse E

- A regular expression can be of the following types:
 - The special symbols \varnothing and ε
 - Alphabet symbols like a, b
 - The union, concatenation, or star of simpler expressions

Proof of closure under reversal

regular expression E	regu	lar	exp	ression	E
------------------------	------	-----	-----	---------	---

reversal E^{R}

 \emptyset

 \varnothing

3

3

a (alphabet symbol)

a

 $E_1 + E_2$

 $E_{1}^{R} + E_{2}^{R}$

 E_1E_2

 $E_2^R E_1^R$

 E_1^*

 $(E_1^R)^*$

A question

$$L^{DUP} = \{ww: w \in L\}$$
 Ex. $L = \{\text{cat}, \text{dog}\}$
$$L^{DUP} = \{\text{catcat}, \text{dogdog}\}$$

If L is regular, is L^{DUP} also regular?

A question

Let's try with regular expression:

Let's try with NFA:

An example

```
L = 0*1 is regular L = \{1, 01, 001, 0001, ...\} L^{DUP} = \{11, 0101, 001001, 00010001, ...\} = \{0^n 10^n 1: n \ge 0\}
```

• Let's try to design an NFA for L^{DUP}

An example

$$L^{DUP} = \{11, 0101, 001001, 00010001, ...\}$$

= $\{0^n 10^n 1: n \ge 0\}$

For regular language L_1 and L_2

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

Grammars is generative description of a language

A regular grammar G is a quadruple (V, Σ, R, S) , where:

- V is the rule alphabet (Variables), which contains non-terminals,
- \bullet Σ (the set of terminals).
- R (the set of rules) is a finite set of rules of the form:

$$X \rightarrow Y$$

S (the start symbol) is a nonterminal.

In a regular grammar, all rules in R must:

- have a left hand side that is a single nonterminal
- have a right hand side that is:
 - e, or
 - a single terminal, or
 - a terminals followed by a single nonterminal.

Legal: $S \rightarrow a$, $S \rightarrow \varepsilon$, and $T \rightarrow aS$

Not legal: $S \rightarrow aSa$ and $aSa \rightarrow T$

A regular grammar is any right-linear or leftlinear grammar

Examples:

$$G_1$$
 G_2 $S \rightarrow abS$ $S \rightarrow Aab$ $A \rightarrow Aab \mid B$ $B \rightarrow a$

Observation

Regular grammars generate regular languages

Examples:

$$G_1$$

$$S \rightarrow abS$$

$$S \rightarrow a$$

$$L(G_1) = (ab) * a$$

$$G_2$$

$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

$$L(G_2) = aab(ab) *$$

Regular Grammar Example

 $\overline{L = \{w \in \{a, b\}^* : |w| \text{ is even}\}}$

3 1

Regular Grammar Example

```
L = \{w \in \{a, b\}^* : |w| \text{ is even}\}
Regular expression: ((aa) \cup (ab) \cup (ba) \cup (bb))^*
```

FSM:


```
Regular grammar: G = (V, \Sigma, R, S), where V = \{S, T\}, \Sigma = \{a, b\}, R = \{S \rightarrow \varepsilon \\ S \rightarrow aT \\ S \rightarrow bT \\ T \rightarrow aS \\ T \rightarrow bS \}
```

In General

For any transition:

3 3

Regular Languages and Regular Grammars

Theorem: The class of languages that can be defined with regular grammars is exactly the regular languages.

Regular Languages and Regular Grammars

Regular grammar → FSM:

grammar to fsm $(G = (V, \Sigma, R, S)) =$

- 1. Create in *M* a separate state for each nonterminal in *V*.
- 2. Start state is the state corresponding to S.
- 3. If there are any rules in R of the form $X \rightarrow w$, for some $w \in \Sigma$, create a new state labeled #.
- 4. For each rule of the form $X \rightarrow w Y$, add a transition from X to Y labeled w.
- 5. For each rule of the form $X \rightarrow w$, add a transition from X to # labeled w.
- 6. For each rule of the form $X \to \varepsilon$, mark state X as accepting.
- 7. Mark state # as accepting.

FSM → **Regular grammar:** Similarly.

Example 1 - Even Length Strings

$$S \rightarrow \varepsilon$$
 $S \rightarrow aT$
 $S \rightarrow bT$
 $T \rightarrow aS$
 $T \rightarrow bS$

Example 1 - Even Length Strings

$$S \rightarrow \varepsilon$$
 $S \rightarrow aT$
 $S \rightarrow bT$
 $T \rightarrow aS$
 $T \rightarrow bS$

Strings that End with aaaa

 $L = \{w \in \{a, b\}^* : w \text{ ends with the pattern } aaaa\}.$

$$S \rightarrow aS$$

 $S \rightarrow bS$
 $S \rightarrow aB$
 $B \rightarrow aC$
 $C \rightarrow aD$
 $D \rightarrow a$

Strings that End with aaaa

 $L = \{w \in \{a, b\}^* : w \text{ ends with the pattern } aaaa\}.$

$$S \rightarrow aS$$

 $S \rightarrow bS$
 $S \rightarrow aB$
 $B \rightarrow aC$
 $C \rightarrow aD$
 $D \rightarrow a$

Example 2 – One Character Missing

$$S \rightarrow \epsilon$$

$$S \rightarrow aB$$

$$S \rightarrow aC$$

$$S \rightarrow bA$$

$$S \rightarrow bC$$

$$S \rightarrow cA$$

$$S \rightarrow cB$$

$$A \rightarrow bA$$

$$A \rightarrow cA$$

$$A \rightarrow \varepsilon$$

$$B \rightarrow aB$$

$$B \rightarrow cB$$

$$B \rightarrow \varepsilon$$

$$C \rightarrow aC$$

$$C \rightarrow bC$$

$$C \rightarrow \epsilon$$

4 0

Example 2 – One Character Missing

$$S \rightarrow \varepsilon$$
 $S \rightarrow aB$
 $S \rightarrow aC$
 $S \rightarrow bA$
 $S \rightarrow bC$
 $S \rightarrow cA$

 $S \rightarrow cB$

$$A
ightharpoonup bA$$
 $A
ightharpoonup cA$
 $A
ightharpoonup cA$
 $C
ightharpoonup aC$
 $C
ightharpoonup bC$
 $C
ightharpoonup cB$
 $C
ightharpoonup aC$
 $C
ightharpoonup bC$
 $C
ightharpoonup cB$
 $C
ightharpoonup aC$
 $C
ightharpoonup aC$

Regular Languages and Regular Grammars

FSM → Regular grammar:

Show by construction that, for every FSM M there exists a regular grammar G such that L(G) = L(M).

- 1. Make M deterministic $\rightarrow M' = (Q, \Sigma, \delta, s, F)$. Construct $G = (V, \Sigma, R, S)$ from M'.
- 2. Create a nonterminal for each state in the M'. V = Q.
- 3. The start state becomes the starting nonterminal. S = s.
- 4. For each transition $\delta(T, a) = U$, make a rule of the form $T \rightarrow aU$.
- 5. For each accepting state T, make a rule of the form $T \rightarrow \varepsilon$.

Strings that End with aaaa

 $L = \{w \in \{a, b\}^* : w \text{ ends with the pattern } aaaa\}.$

4 3

Strings that End with aaaa

 $L = \{w \in \{a, b\}^* : w \text{ ends with the pattern } aaaa\}.$

$$S \rightarrow bS$$

$$S \rightarrow aB$$

$$B \rightarrow aC$$

$$C \rightarrow aD$$

$$D \rightarrow a$$