Resultados del método East-West

Evelyn G. Coronel
Tesis de Maestría en Ciencias Físicas
Instituto Balseiro

(9 de noviembre de 2020)

COMO SE HACE EL CÁLCULO

- Definimos el rango de tiempo a estudiar, para estos resultados se utilizaron los límites: 1 de Enero del 2014 hasta el 1 de Enero del 2020.
- Recorre cada evento que cumpla con las siguientes características:
 - Pertenezca el rango de energía a estudiar
 - \blacksquare Sea un evento 6T5 con ángulo cenital menor a 60^o
 - Se haya registrado en el rango de tiempo seleccionado

En cada evento se calcula los siguientes valores:

$$a' = \cos(X - \beta) \tag{1}$$

$$b' = \sin(X - \beta) \tag{2}$$

el valor de X depende la frecuencia a estudiar, la misma es igual a la ascensión recta del cenit α_i^0 al momento del evento si se estudia la frecuencia sidérea, en cambio es igual al equivalente en grados de la hora local de Malargüe. El valor de β es depende si el evento provino del Este donde $\beta=180^o$ o $\beta=0$ caso contrario. Se intentó hacer un barrido de frecuencias análogo al análisis de Rayleigh pero la variable utilizada para generalizar el análisis a frecuencias arbitrarias:

$$\tilde{\alpha} = 2\pi f_x t_i + \alpha_i - \alpha_i^0(t_i) \tag{3}$$

es tal que la variable es igual a la ascensión recta del evento a estudiar y no al cenit como es el caso del EW.

 Una vez corridos todos los eventos se calculan los parámetros:

$$a_{EW} = \frac{2}{N} \sum_{i=1}^{N} a$$

$$b_{EW} = \frac{2}{N} \sum_{i=1}^{N} b$$

que es equivalente a haber calculado

$$a_{EW} = \frac{2}{N} \sum_{i=1}^{N} \cos(\alpha_i^0 - \beta_i)$$

$$b_{EW} = \frac{2}{N} \sum_{i=1}^{N} \sin(\alpha_i^0 - \beta_i)$$

donde N indica la cantidad eventos considerados. La cantidad de eventos por rango de energía se muestran en la tabla I.

Con esto puedo calcular la amplitud asociada al análisis r_{EW} y la fase ϕ_{EW} :

$$r_{EW} = \sqrt{a_{EW}^2 + b_{EW}^2}$$

 $\phi_{EW} = \tan^{-1}(b_{EW}/a_{EW})$

Estos valores se traducen a los valores de amplitud r y fase ϕ del dípolo físico mediante las expresiones:

$$r = \frac{\pi}{2} \frac{\langle \cos \delta \rangle}{\langle \sin \theta \rangle} r_{EW}$$
$$\phi = \phi_{EW} + \frac{\pi}{2}$$
$$d_{\perp} = \frac{\pi}{2\langle \sin \theta \rangle} r_{EW}$$

Se suma $\frac{\pi}{2}$ por el artificio de agregar π en los coeficientes para obtener la diferencia entre tasas del este y oeste. Los valores $\langle \cos \delta \rangle$ y $\langle \sin \delta \rangle$ son los valores medios de estas variables en los años estudiados.

4. Se calcula la amplitud límite r_{99} y la probabilidad de que las amplitudes calculadas sea ruido $P(r_{EW})$ mediante:

$$P(\geq r_{EW}) = \exp{-\frac{N}{4}r_{EW}^2}$$
$$r_{99} = \frac{\pi}{2} \frac{\langle \cos \delta \rangle}{\langle \sin \theta \rangle} \sqrt{\frac{4}{N} \ln(100)}$$

TABLA PARA DISTINTOS RANGOS

Rango [EeV]	Eventos	Energía Media
0.25 - 0.5	3 967 368 3 638 226	0.374
0.5 - 1	3 638 226	0.687
1 - 2	1 081 846	1.315

Tabla I: Tabla de eventos por rango de energía [1]

Resultados en el rango $0.25~{\rm EeV}$ - $0.5~{\rm EeV}$

Resultados en el rango $0.5~{\rm EeV}$ - $1~{\rm EeV}$

Frecuencia:	365.25	366.25	366.25[3]
	0.00428		
d_{\perp} :	0.00543	0.00561	
Probabilidad:			
Fase:	128 ± 20	260 ± 20	
r99:	0.00556	0.00556	

Tabla III: Características para las frecuencias solar y sidérea con el método East-West en el primer armónico en rango de energía $0.5~{\rm EeV}$ - $1~{\rm EeV}$

Resultados en el rango 1 ${\rm EeV}$ - 2 ${\rm EeV}$

	Rayleigh	$_{\rm EW}$	EW Referencia
Frecuencia:	365.25	365.25	366.25
Amplitud:	0.00385	0.00282	
d_{\perp} :	-	0.00359	0.018
${\bf Probabilidad:}$	0.0181	0.64	
Fase:	288 ± 20	200±60	
r99:	0.0041263	0.00916	

Tabla IV: Características para la frecuencia solar con los métodos de Rayleigh e East-West en el primer armónico.

Frecuencia:	365.25	366.25	366.25	2
Amplitud:	0.00173	0.00123	-	
d_{\perp} :	0.00219	0.00156		
Probabilidad:	0.66	0.81		
Fase:	144 ± 60	279 ± 90		
r_{99} :	0.00580	0.00580		
$d_{\perp,99}$			'	

Tabla II: Características para las frecuencias solar y sidérea con el método East-West en el primer armónico en rango de energía $0.25~{\rm EeV}$ - $0.5~{\rm EeV}$

	Rayleigh	EW
Frecuencia:	366.25	366.25
Amplitud:	0.00399	0.00495
d_{\perp} :	_	0.00631
Probabilidad:	0.0136	0.26
Fase:	336 ± 20	320 ± 30
r99:	0.00413	0.00916

Tabla V: Características para la frecuencia sidérea con los métodos de Rayleigh e East-West en el primer armónico.

^[1] Energía según el archivo del Herald.

^[2] Análisis EW de referencia.

^[3] Análisis EW de referencia.