

GRANIFY DATA-DRIVEN MARKETING STRATEGIES ANALYSIS

Angeli De Los Reyes

Meyliani Sanjaya

Nay Zaw Lin (Neo)

Javier Merino

OBJECTIVE

Understand User Behavior

Analyze features such as FEATURE_1 to FEATURE_5 to capture session-level interactions and behavioral patterns

Assess Marketing Campaigns

Compare response outcomes (RESPONSE) between CONTROL and AD_ID groups to evaluate the impact of different advertisements

Measure Ad Performance:

Identify which advertisements are associated with higher conversion rates and user engagement

Derive Actionable Insights

Use exploratory data analysis, data visualization, and predictive modeling to guide future marketing decisions

TOOLS FOR ANALYSIS

DATASET **OVERVIEW**

speed, cart total, etc.)

- AD_ID: Indicates which marketing strategy (Ad variant) was shown to the user (if any)
- **RESPONSE**: Target variable 1 if the user responded (e.g., clicked or purchased), o otherwise
- **TIME**: Session timestamp in a 14-day marketing campaign, further broken down into DAY and HOUR for temporal analysis
- **CONTROL**: Binary indicator where 0 = user was shown an Ad (treatment group), 1 = user was not shown an Ad (control group)

DATA EXPLORATION

- Total observation: 14202 and Total Features: 9
- No missing values were found in the dataset across all columns
- Duplicate Records: 2,779 duplicate rows were detected

FEATURE DESCRIPTIONS TABLE

Feature	Data Type	Description
FEATURE_1	Categorical	Categorical variable describing a user/session attribute (e.g., device type)
FEATURE_2	Categorical	Categorical feature possibly related to demographics or user behavior
FEATURE_3	Categorical	Categorical session feature, likely from user interaction metadata
FEATURE_4	Categorical	Categorical variable with discrete levels (e.g., user interest group)
FEATURE_5	Categorical	Categorical session/user feature representing an attribute or category
AD_ID	Categorical	Identifier for which Ad strategy was shown (Range: 1, 2, 3)
CONTROL	Binary	Indicates whether user saw an Ad (0 = Shown, 1 = Control group)
RESPONSE	Binary	Target variable, 1 if user responded positively, 0 otherwise
TIME	Categorical	Datetime String used to derive time-based insights such as DAY and HOUR. (Format: Day 1, 9:00)

DATA PREPROCESSING

- Remove the duplicate records
- Transform 'day' and 'hour' from the 'TIME' feature
- Features data type corrections

DATA VISUALIZATION User Response and Ad Effectiveness Analysis

Class Imbalance

- Majority: RESPONSE = 0
- Minority: RESPONSE = 1
- Typical in marketing data

Low Conversion Rate

- Few users responded
- Indicates weak persuasion or poor targeting

Control vs. Treatment

- Majority: Treatment (Ad shown)
- Minority: Control (No ad shown)
- Most users were shown ads (treatment group), while fewer users were in the control group

Ad Effectiveness (by AD_ID)

- Ad 1: Highest response (~11%), distribution (~61%) → Most persuasive
- Ad 2: Moderate response (~6%), distribution (~21%)
- Ad 3: Lowest response (~1%), distribution (~17%) → Needs revision

• CONTROL o vs 1:

- CONTROL 1: This user was part of the control group selected for a marketing strategy experiment but not shown one. Their behavior represents what would happen without the strategy's influence.
- CONTROL 0: This user was in the treatment group they were shown a specific ad (AD_ID 1, 2, or 3)

DATA VISUALIZATION Time-Based Response Analysis

Day-Level Engagement

Higher responses on Day 5 and Day 12

Peak Hours

Most sessions between 9 AM - 3 PM

DATAVISUALIZATION Time-Based Response Analysis

- Heatmap Response Rate by Day and Hour
 - Day 1 at 1 AM and Day 4 at 4 AM exceptionally high engagement (33%)
 - Day 8 at 1 AM, Day 9 at 1 AM, and Day 12 and 13 at 3 AM to 4 AM also show notable peaks (25-29%)

DATA VISUALIZATION Feature Distributions and Correlation Analysis

- Feature Distributions
 - FEATURE_1, FEATURE_3: Right-skewed, dominant categories
 - FEATURE_2: Heavily skewed to category 1
 - FEATURE_4: Imbalanced distribution
 - FEATURE_5: Uniform distribution → less predictive

- Correlation Insights
 - RESPONSE: Weakly correlated with all features
 - AD_ID: 0
 - Moderate correlation with FEATURE_4 (+0.45)
 - Negative correlation with FEATURE_3 (-0.30)
 - CONTROL: Uncorrelated → confirms random assignment
 - DAY & HOUR: Low direct correlation but potential non-linear effects
 - Multicollinearity: Low \rightarrow features are mostly independent

DATA VISUALIZATION Correlation Funnel Visualization

- **Goal**: Identify features that influence customer response to the marketing campaign (click/purchase).
- Binary Correlation Analysis: Convert continuous and categorical data to binary features and analyze their correlation with the target response.
- Features with greater correlation with responding to the marketing campaign (right):
 - For feature 3, category 1 is more likely to give a positive response.
 - For AD ID, ad strategy 1 is more likely to give a positive response.
 - For feature 4, category 3 is more likely to give a positive response.
 - For feature 2, category 3 is more likely to give a positive response.
 - The others have weak correlation.

DATA VISUALIZATION Control, Time vs Response Visualization

- Control Group
 - Nearly all responses came from the treatment group (CONTROL = 0)
 - Confirms Ad exposure drives user action
- Hour of Day
 - Non-responses peak between 10 AM-7 PM
 - Responses are spread out, slight bump at mid-day
 - Timing has some influence but not dominant

- Day of Campaign:
 - Responses are evenly distributed across days
 - DAY variable alone has low predictive power

MODEL PREDICTIONS Feature Engineering

MODEL PREDICTIONS Advanced Heatmap with Hierarchical Clustering

- Low Correlation:
 - Most features are weakly correlated, indicating they provide independent signals
- No Strong Clusters:
 - Dendrogram shows features are not grouped into tight clusters — each adds unique value
- Mild Associations Only:
 - Slight links exist (e.g., FEATURE_2 & FEATURE_4: +0.095; FEATURE_2 & FEATURE_3: -0.17), but not strong enough to indicate redundancy
- Modeling Implication:
 - Independence supports models like Random Forest or XGBoost
 - The dimensionality reduction approach is not critical

MODEL PREDICTIONS Model Building and Evaluation: Advanced Analysis (Random Forest)

Random Forest	Accuracy: 0	. 95		
Random Forest	Classificat	ion Repor	t:	
	precision	recall	f1-score	support
0	0.96	0.99	0.98	2183
1	0.42	0.16	0.23	102
accuracy			0.95	2285
macro avg	0.69	0.57	0.60	2285
weighted avg	0.94	0.95	0.94	2285

- Overall Accuracy
 - 95% strong overall classification
- Weighted average score:
 - Precision: 94%
 - Recall: 95%

- Confusion Matrix
 - False Negatives (86): Most responses were missed
 - True Positives (16): Few positive cases were identified correctly

MODEL PREDICTIONS
Logistic Regression, Random Forest, and XGBoost Comparisons

Logistic Regression Accuracy: 0.96

Random Forest Accuracy: 0.95

XGBoost Accuracy: 0.95

Logistic Regression Classification Report:							
	precision	recision recall		support			
0	0.96	1.00	0.98	2183			
1	0.50	0.01	0.02	102			
accuracy			0.96	2285			
macro avg	0.73	0.50	0.50	2285			
weighted avg	0.94	0.96	0.93	2285			

Random Forest	: Classification Report:					
	precision	recall	f1-score	support		
0	0.96	0.99	0.98	2183		
1	0.42	0.16	0.23	102		
accuracy			0.95	2285		
macro avg	0.69	0.57	0.60	2285		
weighted avg	0.94	0.95	0.94	2285		

MODEL PREDICTIONS Logistic Regression, Random Forest, and XGBoost Comparisons

- AUC Scores
 - Logistic Regression: 0.77
 - Random Forest: 0.83
 - XGBoost: 0.81
- Random Forest and XGBoost Outperform Logistic Regression in AUC Scores

MODEL PREDICTIONS SMOTE + Cross-Validation, Hyperparameter Tuning, Evaluation Analysis

Logistic Regression Accuracy: 0.71

Random Forest Accuracy: 0.94

XGBoost Accuracy: 0.94

Logistic Regression Classification Report:			Random Forest Classification Report:				XGBoost Classification Report:							
	precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.98	0.71	0.82	2183	0	0.97	0.97	0.97	2183	0	0.96	0.98	0.97	2183
1	0.11	0.75	0.19	102	1	0.32	0.25	0.28	102	1	0.28	0.16	0.20	102
accuracy			0.71	2285	accuracy			0.94	2285	accuracy			0.94	2285
macro avg	0.54	0.73	0.50	2285	macro avg	0.64	0.61	0.63	2285	macro avg	0.62	0.57	0.59	2285
weighted avg	0.94	0.71	0.79	2285	weighted avg	0.94	0.94	0.94	2285	weighted avg	0.93	0.94	0.94	2285

MODEL PREDICTIONS

Cross-Validation, SMOTE + Hyperparameter Tuning, Evaluation Analysis

AUC Scores

- Logistic Regression: 0.78
- Random Forest: 0.86
- XGBoost: 0.84

Random Forest and XGBoost Outperform Logistic Regression in AUC Scores

MODEL PREDICTIONS
Learning Curve for Logistic Regression, Random Forest and XGBoost Models

Model	Gap	Interpretation		
Logistic Regression	Small	Stable and well-generalized.		
Random Forest	Moderate	Slightly overfitting observed.		
XGBoost	Large	Strong overfitting. Excellent fit on train, not on test.		

MODEL PREDICTIONS All models comparison

Model	Setting		Recall (Class 1)	AUC	Key Insight
Logistic Regression	gression Baseline		0.01	0.77	High accuracy, misses positives
Logistic Regression	SMOTE + Tuning	0.71	0.75	0.78	Best recall, good for targeting responders
Random Forest	Baseline	0.95	0.16	0.83	Balanced model, limited recall
Random Forest	SMOTE + Tuning	0.94	0.25	0.86	Strong AUC, improved minority detection
XGBoost	Baseline	0.95	0.16	0.81	Stable model, recall needs improvement
XGBoost	SMOTE + Tuning	0.94	0.16	0.84	Slight recall boost, consistent performance

- Random Forest with SMOTE and Hyperparameter Tuning
- Balancing accuracy (94%), recall (25%), and AUC (86%)

FEATURES CORRELATION

The features in this dataset show low to moderate correlation, suggesting that each one provides relatively distinct behavioral or contextual information.

IMPORTANT FEATURES

Features like AD_ID, time (HOUR, DAY), and user/session traits (FEATURE_2, FEATURE_4) are crucial to model response likelihood and evaluate marketing strategies.

ANALYSIS CONCLUSION

EFFECTIVE MARKETING

Time-targeted marketing is effective - ads delivered in offpeak hours can outperform daytime when targeting the right segments result on increase conversion

User Segmentation: Identify and prioritize high-response user groups (e.g., by AD_ID or session patterns) for more personalized and effective marketing.

ACTIONABLE

- Run targeted ads during Sale-hight windows (1–4 AM)
- Focus budgets on top-performing ads (e.g., AD_ID 1) and high-response periods to maximize return on investment (ROI).
- Utilize control groups to test new ad strategies.
- Audit or optimize underperforming AD_IDs
- Segment users based on FEATURE_x combos. Some combinations correlate with higher responsiveness

