Musterlösung Iterierte Abbidlungen

1 Lineare Iterierte Abbildungen

Teilaufgaben a und b

$$s(t) = c mit c = 6$$

Vorgehensweise: Da wir c auf 6 festgelegt haben, können wir die Orbite folgendermaßen berechnen.

•
$$x^0 = 6$$

•
$$x^1 = s(x^0) = s(6) = 6$$

•
$$x^2 = s(s(x^0)) = s(s(6)) = s(6) = 6$$

• ...

Vorgehensweise: Da wir c auf 6 festgelegt haben, können wir die Orbite folgendermaßen berechnen.

$$\begin{array}{|c|c|c|}\hline s(t-1) & s(t) = c \\ \hline 6 & 6 \\ \hline \end{array}$$

s(t) = c => s(t) ist immer c => s(t-1) ist immer c

$$s(t) = s(t-1) + v \text{ mit } v = 3$$

Vorgehensweise: Da wir v ${\rm auf}$ 3 festgelegt haben, können wir die Orbite folgendermaßen berechnen.

- $x^0 = 3$
- $x^1 = x^0 + 3 = 6$
- $x^2 = x^1 + 3 = 9$
- ...

Vorgehensweise: Da wir v ${\rm auf}$ 3 festgelegt haben, können wir die Orbite folgendermaßen berechnen.

s(t-1)	s(t) = s(t-1) + 3
0	0 + 3 = 3
1	1 + 3 = 4
2	2 + 3 = 5
3	6
4	7
5	8
6	9
7	10

s(t) = as(t-1); a > 1 mit a = 2 und s(0) = 1

Vorgehensweise: Da wir a auf 2 festgelegt haben, können wir die Orbite folgendermaßen berechnen.

- $x^0 = 1$ (selbst definiert)
- $x^1 = s(x^0) = s(1) = 2 * 1 = 2$
- $x^2 = 2 * x^1 = 4$
- $x^3 = 2 * x^2 = 8$

• ...

Vorgehensweise: Da wir a auf 2 festgelegt haben, können wir die Orbite folgendermaßen berechnen.

s(t-1)	s(t) = 2 * s(t-1)
0	2 * 0 = 0
1	2 * 1 = 2
2	2 * 2 = 4
3	2*3 = 6
4	2*4 = 8
5	2*5 = 10

$$s(t) = as(t-1); 0 < a < 1 \text{ mit } a = 0.5 \text{ und } s(0) = 10$$

Vorgehensweise: Da wir a auf 0.5 festgelegt haben, können wir die Orbite folgendermaßen berechnen.

- $x^0 = 10$ (selbst definiert)
- $x^1 = s(x^0) = s(10) = 0.5 * 10 = 5$
- $x^2 = 0.5 * x^1 = 2.5$
- $x^3 = 0.5 * x^2 = 1.25$
- $x^4 = 0.5 * x^3 = 0.625$
- $x^5 = 0.5 * x^4 = 0.3125$
- $x^6 = 0.5 * x^5 = 0.15625$
- $x^7 = 0.5 * x^6 = 0.078125$

• ...

Vorgehensweise: Da wir a auf 0.5 festgelegt haben, können wir die Orbite folgendermaßen berechnen.

s(t-1)	s(t) = 2 * s(t-1)
0	0.5 * 0 = 0
1	0.5 * 1 = 0.5
2	0.5 * 2 = 1
3	0.5 * 3 = 1.5
4	0.5 * 4 = 2
5	0.5 * 5 = 2.5
6	0.5 * 6 = 3
7	0.5 * 7 = 3.5
8	0.5 * 8 = 4
9	0.5 * 9 = 4.5
10	0.5 * 10 = 5

$$s(t) = as(t-1); -1 < a < 0 mit a = -0.5 und s(0) = 10$$

Vorgehensweise: Da wir a auf -0.5 festgelegt haben, können wir die Orbite folgendermaßen berechnen.

- $x^0 = 10$ (selbst definiert)
- $x^1 = s(x^0) = s(10) = -0.5 * 10 = -5$
- $x^2 = -0.5 * x^1 = 2.5$

•
$$x^3 = -0.5 * x^2 = -1.25$$

•
$$x^4 = -0.5 * x^3 = 0.625$$

•
$$x^5 = -0.5 * x^4 = -0.3125$$

•
$$x^6 = -0.5 * x^5 = 0.15625$$

•
$$x^7 = -0.5 * x^6 = -0.078125$$

• ...

Vorgehensweise: Da wir a auf -0.5 festgelegt haben, können wir die Orbite folgendermaßen berechnen.

s(t-1)	s(t) = 2 * s(t-1)
0	-0.5 * 0 = 0
1	-0.5 * 1 = -0.5
2	-0.5 * 2 = -1
3	-0.5 * 3 = -1.5
4	-0.5 * 4 = -2
5	-0.5 * 5 = -2.5
6	-0.5 * 6 = -3
7	-0.5 * 7 = -3.5
8	-0.5 * 8 = -4
9	-0.5 * 9 = -4.5
10	-0.5 * 10 = -5

Vorgehensweise:

Da wir a auf -1.5 festgelegt haben, können wir die Orbite folgendermaßen berechnen.

- $x^0 = 1$ (selbst definiert)
- $x^1 = s(x^0) = s(1) = -1.5 * 1 = -1.5$
- $x^2 = -1.5 * x^1 = 2.25$
- $x^3 = -1.5 * x^2 = -3.375$
- $x^4 = -1.5 * x^3 = 5.0625$
- $x^5 = -1.5 * x^4 = -7.59375$
- $x^6 = -1.5 * x^5 = 11.390625$
- ...

Vorgehensweise: Da wir a auf -1.5 festgelegt haben, können wir die Orbite folgendermaßen berechnen.

s(t-1)	s(t) = 2 * s(t-1)
0	-1.5 * 0 = 0
1	-1.5 * 1 = -1.5
2	-1.5 * 2 = -3
3	-1.5 * 3 = -4.5
4	-1.5 * 4 = -6
5	-1.5 * 5 = -7.5
6	-1.5 * 6 = -9

Teilaufgaben c und d

s(t) = c mit c = 6 und c = 8

s(t) = s(t-1) + v mit v = 3 und v = 2

 $\mathbf{s}(\mathbf{t}) = \mathbf{a}\mathbf{s}(\mathbf{t}\text{-}1); \ a > 1 \ \mathrm{mit} \ \mathbf{a} = 2 \ \mathrm{und} \ \mathbf{a} = \mathbf{3} \ \mathrm{und} \ \mathbf{s}(0) = 1$

s(t) = as(t-1); 0 < a < 1 mit a = 0.5 und a = 0.6 und s(0) = 10

s(t) = as(t-1); -1 < a < 0 mit a = -0.5 und a = -0.6 und s(0) = 10

s(t) = as(t-1); a < -1 mit a = -1.5 und a = -2 und s(0) = 1

2 Nichtlineare Iterierte Abbildungen

Teilaufgabe a)

Fixpunkte von

$$x_{n+1} = f(x_n) = ax_n \left(1 - \frac{x_n}{K}\right)$$
ergeben sich aus $f(x^*) = x^* \Rightarrow \begin{cases} x^* = ax^* \left(1 - \frac{x^*}{K}\right) \to x^* = 0\\ \text{für } x^* \neq 0 \to 1 = a - \frac{ax^*}{K} \to x^* = \frac{(a-1)K}{a} \end{cases}$
Teilaufgabe b)

Damit für a = 1,01 ein Fixpunkt entsteht, muss:

$$K = \frac{ax^*}{a-1} = \frac{1,01 \cdot 7000}{0,01} = 707000$$

gewählt werden.

Teilaufgabe c)

$$x_{n+1} = 3, 3x_n(1 - \frac{x_n}{K}) \Longrightarrow$$

n	0	1	2	3	4	5	6	7	8	9	10
x_n	0,90	0,297	0,689	0,707	0,684	0,713	0,675	0,724	0,659	0,742	0,632

