

PROJEKT: MSS54

KAPITEL: 4.02

EINSPRITZUNG Modul:

FUNKTION: BERECHNUNG DER EINSPRITZZEIT

TEILFUNKTION: SEQUENTIELLE EINSPRITZMASSE UND

EINSPRITZZEIT

AUTORISATION

AUTOR (ZS-M-57)	DATUM
GENEHMIGT (ZS-M-57)	DATUM
GENEHMIGT (EA-E-2)	DATUM

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

Inhaltsverzeichnis

A	NDERUN	IGSDOKUMENTATION AB R360	3
	FUNIX	TIONODECOUDEIDUNO	
1		TIONSBESCHREIBUNG	
	1.1 P	HYSIKALISCHER HINTERGRUND	4
	1.2 B	ERECHNUNG DER KORREKTURFAKTOREN	4
	1.2.1	BERECHNUNG DES GRUNDANPASSUNGSFAKTORS	4
	1.2.2	BERECHNUNG DES STARTFAKTORS	5
	1.2.3	BERECHNUNG DES FAKTORS IM STATIONÄRBETRIEB	6
	1.2.4	BERECHNUNG DES KATSCHUTZFAKTORS	7
	1.2.5	BERECHNUNG DES NACHSTARTFAKTORS	9
	1.2.6	BERECHNUNG DES WARMLAUFFAKTORS	
	1.2.7	BERECHNUNG DER ZYLINDERINDIVIDUELLEN KORREKTURFAKTOREN	12
	1.2.8	BERECHNUNG DES LEERLAUFSYNCHRONISATIONSOFFSETS	12
	1.2.9	BERECHNUNG DES MOMENTENFAKTORS	12
	1.3 S	EQUENTIELLE EINSPRITZZEIT	
	1.3.1	BERECHNUNG DER KRAFTSTOFFMASSE UND EINSPRITZZEIT	
	1.3.2	BETRIEBSZUSTAND START	13
	1.3.3	BETRIEBSZUSTAND MOTOR LÄUFT	
	1.3.4	BEGRENZUNG UND UBATT-KORREKTUR DER EINSPRITZZEIT	
		UNKTIONSBILD	
		PPLIKATIONSHINWEISE	
		YLINDERAUSBLENDUNG UND ZYLINDEREINBLENDUNG	
		ADEN DER EINSPRITZZEIT IN DIE TIME PROZESSOR UNIT	
	1.8 E	INSPRITZENDE	17
2	DATE	N DES MODULS	18
3	ERST	BEDATUNG DER FUNKTION	22
_		,, /, /	

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

ÄNDERUNGSDOKUMENTATION AB R360

Version	Datum	Kommentar
r360	1.6.2001	Spezifik. v. F.H. Mayer und Doku aus MSS54-Projekt zusammengeführt
R380	29.10.2001	rm : Änderung der Nomenklatur der Einspritz-Korrekturfaktoren v. F.H. Mayer
R380	13.11.2001	ke: Anzeigevariable ti_eff_out

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

1 FUNKTIONSBESCHREIBUNG

1.1 PHYSIKALISCHER HINTERGRUND

Im Modul Einspritzung wird basierend auf einer für das Arbeitsspiel zyklenkonsistent vorgegebenen Luftmasse die zugehörige Kraftstoffmasse bestimmt. Die Grundeinspritzmasse wird unter Berücksichtigung von Korrekturparametern zu einer Soll-Gesamtkraftstoffmasse berechnet. Diese Größe wird dann zur Kraftstoffbilanzierung im Modul Einspritzung-Betriebsartenübergänge verwendet. Anschließend wird nach Einrechnung der Adaptionswerte und Komponentenkorrekturen die Einspritzzeit berechnet.

1.2 Berechnung der Korrekturfaktoren

Der Betriebszustand wird via Status-Bytes dokumentiert :

[File: st_bytes.gif]

1.2.1 BERECHNUNG DES GRUNDANPASSUNGSFAKTORS

Die Konstante K_TI_MK_GA kann über das Applikationssystem als multiplikativer Eingriff auf die Kraftstoffmasse vorgegeben werden. Zu beachten ist, dass diese Konstante für Normalbetrieb neutral zu bedaten ist.

(1)
$$ti_mk_f_ga = K_TI_MK_GA$$

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

1.2.2 BERECHNUNG DES STARTFAKTORS

Der Startfaktor wird nur im Betriebszustand START benötigt. Die Berechnung findet ab Motor steht (B_MS) statt, so daß beim Übergang nach Start B_START schon ein gültiger Wert vorhanden ist. Solange man sich im Modus START befindet wird dieser Faktor ermittelt.

• Es gibt Bedingungen, die bei der Berechnung des Faktors ti_mk_f_start berücksichtigt werden müssen:

```
Heißstart B_HS (tmot > K_TI_MK_TMOT_HS),
Normalstart B_NS (K_TI_MK_TMOT_KS<=tmot<=K_TI_MK_TMOT_HS),
Kaltstart B_KS und
Wiederholkaltstart B_WKS.
```

Diese Bedingungen werden in der Funktion ti_set_startbereich() überprüft und gesetzt.

• Die Ermittlung der Umschaltbedingungen für den Startbereich von Bereich1 in den Bereich2 im Start sind wie folgt definiert:

```
B_B1 nach B_B2,

WENN

n > KL_TI_MK_TMOT_B2

ODER

ti_anz_seg_zaehler > K_TI_MK_KW.
```

Diese Bedingungen werden im Modul TI beim Eintritt in Start überprüft und gesetzt.

• Ein Wiederholkaltstart ist wie folgt definiert:

Das Wiederholkaltstartflag B_FLAG_WKS (BIT4 in start_st) wird gesetzt, wenn

```
der Motor abgestellt wird (B_KLA)

UND der Motor im Startbereich B_B2 abgestellt wurde

ODER die gesammte Motorlaufzeit kleiner

KL_TI_MK_WKS_ML_TMOT war,

SONST

wird B_FLAG_WKS geloescht.
```

Anschließend erfolgt die Abspeicherung im NVRAM.

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

1.2.2.1 Heißstart und Bereich2 (B_HS und B_B2)

(2)
$$ti_mk_f_start = ti_mk_f_n_ks(KL_TI_MK_N_KS)$$

 $*ti_mk_f_tan_hs(KL_TI_MK_TAN_HS)$

1.2.2.2 Heißstart und !Bereich2 (B_HS und !B_B2)

(3)
$$ti_mk_f_start = ti_mk_f_tan_hs(KL_TI_MK_TAN_HS)$$

1.2.2.3 !Heißstart und Bereich2 und !Wiederholkaltstart (!B_HS und B_B2 uns !B_WKS)

$$\begin{array}{lll} \text{(4)} & & \text{ti_mk_f_start} = & & \text{ti_mk_f_n_ks(KL_TI_MK_N_KS)} \\ & & & \text{ti_mk_f_tmot_ks(KL_TI_MK_TMOT_KS)} \\ & & & & \text{ti_mk_f_kw_zaehler(KL_TI_MK_KW)} \\ \end{array}$$

1.2.2.4 !Heißstart und Bereich2 und Wiederholkaltstart (!B_HS und B_B2 und B_WKS)

$$\begin{array}{lll} \text{(5)} & & \text{ti_mk_f_start} = & & \text{ti_mk_f_n_ks(KL_TI_MK_N_KS)} \\ & & * & \text{ti_mk_f_tmot_ks(KL_TI_MK_TMOT_KS)} \\ & & * & \text{ti_mk_f_kw_zaehler(KL_TI_MK_KW)} \\ & & * & K & TI & MK & WKS & B2 \\ \end{array}$$

1.2.2.5 !Heißstart und !Bereich2 und !Wiederholkaltstart (!B_HS und !B_B2 und !B_WKS)

1.2.2.6 !Heißstart und !Bereich2 und Wiederholkaltstart (!B HS und !B B2 und B WKS)

1.2.3 BERECHNUNG DES FAKTORS IM STATIONÄRBETRIEB

Der Faktor ti_mk_f_stat wird als stationärer Lambdakorrekturwert auf die Kraftstoffmasse multipliziert.

1.2.3.1 Vollast

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

1.2.3.2 Alle weiteren Betriebszustände

(9) $ti_mk_f_stat = KF_TI_MK_N_WI$

1.2.4 BERECHNUNG DES KATSCHUTZFAKTORS

Bei Aktivierung ist der Katschutzfaktor immer >= 1,0 und ist von der Zündwinkelrücknahme abhängig.

Der Katschutz wird über eine Vorsteuerung und einem I-Regler realisiert. Sobald der Katschutzfaktor > 1.0 ist, d.h. hiermit der KAT gekühlt wird, wird die Lambdaregelung deaktiviert.

1.2.4.1 Vorsteuerung

Die Eintrittsbedingung zur Berechnung eines Vorsteuerwertes ungleich eins ist erfüllt, wenn die Rückziehzündwinkel aus der Klopfregelung und der Klopfadaption negative Werte annehmen. Erst dann wird die Vorsteuerung bankselektiv ermittelt:

(10)
$$dtz_sum[j] = kr_dtz_sum[j] + ka_dtz_sum[j]$$

 $mit j = 1, 2 (Bank-j)$

Hierbei ist dtz_sum[j] die Summe aller Rückziehwinkel bezogen auf eine Bank und hat immer einen Zahlenwert kleiner Null.

Der Zündwinkel-Offset ti_mk_tz_offset_kats wird als Schwellwert für die Berechnung des Vorsteuerwertes appliziert.

Hieraus ergit sich:

Ist die Differenz aus der Summe der Rückziehwinkel und des Offsetwerts positiv, Gl.(11), so wird der Vorsteuerfaktor ti_mk_f_kats_steuer[j] = 1,0 gesetzt, sonst erfolgt die Multiplikation mit minus Eins und die Einrechnung in Gl.(12).

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

1.2.4.2 I-Regler

Um den I-Regler zu aktivieren, muß eine wi-Schwelle überschritten werden. Hiermit soll eine unnötig lange Anfettung vermieden werden.

Die Freigabebedingung ist erfüllt, wenn:

Ist diese Freigabebedingung nicht erfüllt, so wird ti_mk_f_kats_regler = 0 gesetzt.

Der I-Regler wird über einen Zustandsautomaten realisiert, dessen Zustandsgröße die Abgastemperatur TABG ist. Die Abgastemperatur muß eine Schwelle überschreiten, damit der Regler aktiviert wird:

Als Ergebnis wird der Zustand KATS_AKTIV gesetzt.

Zustand KATS AKTIV:

Solange die Abgastemperatur die Einschaltschwelle (K_TI_MK_KATS_TABG_EIN) überschreitet, wird der Reglerwert folgendermassen errechnet:

In den nächsten Zustand gelangt man, wenn die Abgastemperatur eine nächst höhere Schwelle überschreitet.

Als Ergebnis wird der Zustand KATS_SCHNELL gesetzt.

In den Zustand der Abregelung gelangt man, wenn die Abregelschwelle unterschritten wird.

Als Ergebnis wird der Zustand KATS_ABREGELN gesetzt.

Liegt man allerdings mit der Abgastemperatur zwischen der Aufregelschwelle und der Abregelschwelle, so wird der Regler angehalten um einen Überlauf zu verhindern (Integratorstop).

Zustand KATS_SCHNELL:

In diesem Zustand wird mit Hilfe eines Faktors eine Übersteuerung erzeugt.

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

+ (KL_TI_MK_KATS_DELTA_ML *K_TI_MK_KATS_FAK_SCHNELL)

In den langsamen Aufregelbereich gelangt man wieder, wenn die Abgastemperatur die Schwelle

unterschreitet. Dies entspricht wieder dem Zustand KATS AKTIV.

Zustand KATS_ABREGELN:

Im folgenden Zustand wird der Regler wieder auf Null abgeregelt, da die Abgastemperatur die applizierbare Ausschaltschwelle unterschritten hat.

Steigt die Abgastemperaturschwelle allerdings während diesem Vorgang über die Aufregelschwelle, so wird wieder in den Zustand KATS AKTIV gewechselt.

1.2.4.3 Gesamter Anreicherungsfaktor

Folgender Faktor wird in die Einspritzmassengleichung (Kap.4.2, Gl.(7)) eingerechnet,

und mit $j=1,\,2$ der bankselektive Einfluß berücksichtigt. Eine Begrenzung des Gesamtanreicherungsfaktors auf K_TI_MK_F_KATS_MAX wird vor der Einrechnung durchgeführt.

1.2.5 BERECHNUNG DES NACHSTARTFAKTORS

Die Berechnung wird in der 10 msec Task durchgeführt. Der Nachstartfaktor wird über eine Exponentialfunktion abgeregelt. Der Startwert für die Exponentialfunktion wird beim Übergang vom Betriebszustand START in MOTOR LÄUFT ermittelt.

Wenn der Nachstartfaktor kleiner als die Schwelle K_TI_MK_SCH_NAS ist, wird die Zeitkonstante ti_mk_tau_nas wie folgt berechnet:

Ist der Nachstartfaktor größer als oder gleich der Schwelle K_TI_MK_SCH_NAS, wird die Zeitkonstante ti_mk_tau_nas wie folgt berechnet:

Die Bedingung für einen Wiederholnachstart ist wie folgt definiert:

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

B_WNAS = 1,
 WENN
 der letzte Start ein Kaltstart oder ein Wiederholkaltstart war
 (tmot < K_TI_MK_TMOT_KS)
 UND die Standzeit t_motor_steht < KL_TI_MK_WKS_MS_TMOT
 UND B_FLAG_WNAS gesetzt war
 SONST
 B WNAS = 0.

Das Wiederholnachstartflag B_FLAG_WNAS (BIT5 in start_st) wird gesetzt,

WENN der Motor abgestellt wird (B_KLA)
UND die Motorlaufzeit sich beim Abstellen innerhalb der Grenzen
K_TI_MK_TMIN_WNAS < t_ml < K_TI_MK_TMAX_WNAS bewegt,
SONST
wird B_FLAG_WNAS geloescht.

Anschließend erfolgt die Abspeicherung im NVRAM.

Der Nachstartfaktor ti_mk_f_nas wird nur im Betriebszustand MOTOR LÄUFT berechnet:

(20)
$$ti_mk_f_nas(k) = 1 + ti_mk_f_nas_word(k)$$

Der Faktor ti_mk_f_nas_word wird nur im Betriebszustand START berechnet und dann als Startwert für die Exponentialfuntion verwendet.

1.2.5.1 Bei Heißstart

(21)
$$ti_mk_f_nas_word = KL_TI_MK_TAN_NAS$$

1.2.5.2 Kein Heißstart und kein Wiederholkaltnachstart

(22)
$$ti_mk_f_nas_word = KL_TI_MK_TMOT_NAS$$

1.2.5.3 Kein Heißstart und Wiederholkaltnachstart

(23)
$$ti_mk_f_nas_word = KL_TI_MK_TMOT_NAS * K_TI_MK_WNAS$$

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

1.2.6 BERECHNUNG DES WARMLAUFFAKTORS

Die Berechnung des Warmlauffaktors ti_mk_f_wl wird in der 10 msec Task durchgeführt.

Der Warmlauffaktor wird ab B_START und bei B_ML berechnet und wenn kein teilbefeuerter Betrieb aktiv ist (!B_SKS_TIEINGRIFF; zum Schutz des Katalysators).

Sobald die Lambdaregelung aktiv ist, wird dieser Faktor über eine Rampe mit der Steigung K_TI_D_WL (für MSN64 : K_TI_MK_D_WL) auf 1,0 ab- bzw. aufgeregelt. Nur über den Zustand B_START kann eine erneute Triggerung erfolgen.

Betriebszustand KATHEIZEN:

1.2.6.1 Sekundärluftpumpe an

1.2.6.2 Sekundärluftpumpe aus

$$(25) \hspace{0.5cm} ti_mk_f_wl = \hspace{0.5cm} KF_TI_MK_TMOT_TML_KAT_F \\ \hspace{0.5cm} * KF_TI_MK_N_WI_KAT_F \\ \hspace{0.5cm} + (KF_TI_MK_TMOT_TML_KAT_M) \\ \hspace{0.5cm} * KF_TI_MK_N_WI_KAT_M)$$

Betriebszustand KEIN KATHEIZEN:

1.2.6.3 Sekundärluftpumpe aus und kein Katheizen

(26)
$$ti_mk_f_wl_long = KF_TI_MK_TMOT_TML_WL$$

$$* KF_TI_MK_N_WI_WL$$

Während KATHEIZEN wird auf den errechneten Faktor ti_mk_f_wl noch ein Korrekturfaktor aus der Kennlinie KL_TI_MK_TMOT_TAN_DIF, der abhänigig von der Temperaturdifferenz TMOT-TAN ist, aufgerechnet.

(27)
$$ti_mk_f_wl = 1 + (ti_mk_f_wl_long + KL_Tl_MK_TMOT_TAN_DIF)$$

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

1.2.7 BERECHNUNG DER ZYLINDERINDIVIDUELLEN KORREKTURFAKTOREN

Der Korrekturfaktor wirkt auf die Einspritzzeit und wird aus einer individuellen Kennlinie über Drehzahl ermittelt.

(28)
$$ti_rzyl[i] = KL_Tl_N_ZYL[i]$$
 mit $i = 1, 2, ..., n$; $n = Zylinderzahl$

1.2.8 BERECHNUNG DES LEERLAUFSYNCHRONISATIONSOFFSETS

Es gibt für jeden Zylindern einen indivuduelle Offset, der bei kleiner Drehzahl die unterschiedliche Füllung der einzelnen Zylinder bei geschlossener Drosselklappe über die Einspritzzeit kompensiert.

(29)
$$ti_sync[i] = (K_N_LL_SYNC / n40) * ti_ll_z[i]$$

 $mit i = 1, 2, ..., n; n = Zylinderzahl$

Die Variablen ti_ll_z[i] sind sowohl über das Applikationssystem als auch über die Diagnoseschnittstelle veränderbar und im NVRAM abspeicherbar.

1.2.9 BERECHNUNG DES MOMENTENFAKTORS

Einspritzmassenfaktoren, die das Motormoment beeinflussen werden in einem Faktor zusammengefasst und an den Momentenmanager, Kapitel "Berechnung Lambdawirkungsgrade", weitergegeben. Es werden nur Gemischabmagerungen während der Warmlaufphase berücksichtigt, Faktoren zur Gemischanfettungen (ti_mk_f_md > 1) werden nicht eingerechnet.

(30)
$$ti_mk_f_md = ti_mk_f_wl * ti_mk_f_nas * ((ti_mk_f_kats1 + ti_mk_f_kats2) / 2)$$

1.3 SEQUENTIELLE EINSPRITZZEIT

1.3.1 BERECHNUNG DER KRAFTSTOFFMASSE UND EINSPRITZZEIT

Die Luftmasse pro Zylinder und Arbeitsspiel ml_zyl berechnet sich aus dem Produkt von ml_soll_korr_eff[i] und dem Zylinderhubvolumen. ml_soll_korr_eff[i] ist die korrigierte Luftmasse je Arbeitsspiel und Zylinder bezogen auf das Zylinderhubvolumen. ml_soll_korr_eff[i] wird in [mg/l*ASP] angegeben. Da ml_zyl nur als Zwischengröße dient und über das Zylinderhubvolumen direkt ml_soll_korr_eff[i] proportional ist, wird die Größe zwar segmentsynchron berech-

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

net und ist auch über ein Applikationssystem anschaubar, wird aber nicht zylinderindividuell abgespeichert.

Die zylinderselektive Einspritzmasse wird aus dem Quotient der Luftmasse und dem stöchiometrischen Luft-Kraftstoffverhältnis gebildet.

Der Zusammenhang zwischen eingespritzter Kraftstoffmasse und Einspritzzeit lautet wie folgt:

(1) $mk_zy[i] = K_TI_EV_QSTAT * ti[i]$

mit

mk_zyl[i]: zylinderselektive Kraftstoffmasse [mg] ti[i]: effektive, zylinderselektive Einspritzzeit [ms]

K_TI_EV_QSTAT: Faktor aus Einspritzventilkennlinie [mg/ms](druckabh.)

Aus Gl. (1) folgt:

(2) $ti[i] = mk_zyl[i] / K_Tl_EV_QSTAT$

1.3.2 BETRIEBSZUSTAND START

1.3.2.1 Kraftstoffmasse im START

Wenn START-Bedingung erfüllt, ergibt sich die zylinderselektive Einspritzmasse zu:

(3) ml_zyl = ml_soll_korr_eff[i] * K_RF_HUBVOLUMEN / cfg_zylinderanzahl

(4) mk_zyl[i] = (ml_zyl/K_TI_L_STOECH) Starteinspritzmasse (zyl.selektiv)

* ti_mk_f_ga Grundanpassungsfaktor

* ti_mk_f_ga Grundanpassungsfaktor

* ti_mk_f_start Starteinspritzfaktor

* ti_mk_start_f_p_umg umgeb.druckabh.Faktor

Eine Kraftstoffbilanzierung im Modul Einspritzung-Betriebsartenübergänge findet im Betriebsmodus START nicht statt.

1.3.2.2 Einspritzzeit im START

Prinzipiell wird nach der Berechnung von mk_zyl das Modul tiueb zur Bilanzierung der Kraftstoffmassen aufgerufen, das aber in dem Betriebszustand Start keinen Beitrag liefert, sodass sich unter Verwendung der Gl. (2) die korrigierte, zylinderselektive Einspritzzeit im Start ergibt zu:

(5) ti_[i] = ((mk_zyl[i] / K_TI_EV_QSTAT

* ti_f_adapt[j]) Adaptionsfaktor (bankselektiv)

+ ti_offset_adapt[j]) Adaptionsoffset (bankselektiv)

+ ti_sync[i] Leerlaufsynchronisationsoffsets
(zylinderindividuell)

Hinweis für Softwareentwickler: In der Software wird für die Betriebsarten

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

Start und Motor läuft die gleiche Formel verwendet. Der Faktor ti_f_zyl beträgt aber beim Start stets 1.0, weil er nur in dem Betriebszustand Vollast, der nicht gleichzeitig mit dem Betriebszustand Start auftreten kann, aus Kennlinien interpoliert wird.

1.3.3 BETRIEBSZUSTAND MOTOR LÄUFT

1.3.3.1 Kraftstoffmasse bei MOTOR LÄUFT

Wenn der Betriebsmodus MOTOR LÄUFT aktiv ist, berechnet sich die zylinderselektive Einspritzmasse zu:

(6) ml_zyl = ml_soll_korr_eff[i] * K_RF_HUBVOLUMEN / cfg_zylinderanzahl

= (ml zyl/K TI L STOECH) Grundeinspritzmasse (zyl.selektiv) (7) mk_zyl[i] Grundanpassungsfaktor * ti_mk_f_ga * ti_mk_f_stat Stationärfaktor * ti_mk_f_nas Nachstartfaktor * ti_f_mk_wl Warmlauffaktor * ba_f_ti Beschleunigungsanreicherung * ti mk f we Wiedereinsetzfaktor Faktor bzg. Sicherheitskonzept * ti_mk_f_sks (K_TI_MK_SKS) * ti_mk_f_kats[j] KAT-Schutzfaktor (bankselektiv)

Die hier berechnete Kraftstoffmasse wird nun zur Kraftstoffbilanzierung im Modul Einspritzung-Betriebsartenübergänge herangezogen. Im SES-Betrieb wird zusätzlich zur aktuell geforderten Kraftstoffmasse noch die VL-Kraftstoffmasse zur Bilanzierung benötigt. Die VL-Kraftstoffmasse wird wie folgt bestimmt:

Wird ein Betriebsartenübergang von FES auf SES erkannt, folgt mit der korrigierten, maximalen indizierten Arbeit wi_max (Modul Momentenmanager) aus dem Kennfeld KF_ML_SOLL_BAS_5 (Sollluftmasse SES+4V) die VL-Sollluftmasse bei aktueller Motordrehzahl. Die resultierende VL-Sollluftmasse ist noch auf die aktuellen Umgebungsbedingungen zu beziehen.

Anschließend berechnet sich die VL-Kraftstoffmasse analog zu Gl. (6) und (7):

(8) ml vl zyl = ml soll vl korr eff[i] * K RF HUBVOLUMEN/cfq zylinderanzahl (9) mk_vl_zyl[i]= (ml_vl_zyl/K_TI_L_STOECH) VL-Einspritzmasse (zyl.selektiv) Grundanpassungsfaktor * ti_mk_f_ga * ti_mk_f_stat Stationärfaktor * ti mk f nas Nachstartfaktor * ti_mk_f_wl Warmlauffaktor * ba_f_ti Beschleunigungsanreicherung * ti_mk_f_we Wiedereinsetzfaktor * ti_mk_f_sks Faktor bzg. Sicherheitskonzept (K_TI_MK_SKS) * ti_mk_f_kats[j] KAT-Schutzfaktor (bankselektiv)

Hinweis: Die VL-Kraftstoffmasse ist nur im Betriebsmodus SES zu berechnen.

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

Ml_vl_zyl ist nur eine Hilfsvariable, die nicht im Applikationssystem sichtbar ist.

1.3.3.2 Einspritzzeit bei MOTOR LÄUFT

Nach der Berechnung von mk_zyl[i] wird das Modul tiueb zur Kraftstoffbilanzierung aufgerufen. Die übergebenen Parameter sind mk_zyl[i] und mk_vl_zyl[i]. Das Modul tiueb liefert eine korrigierte Kraftstoffmasse mk_korr, die wiederum Eingangsgröße für die Einspritzzeitberechnung ist.

Unter Verwendung der Gl. (2) und nach der Kraftstoffmassenbilanzierung ergibt sich die korrigierte, zylinderselektive Einspritzzeit im Betriebsmodus MOTOR LÄUFT zu:

 $(10) \ ti[i] = (((mk_korr / K_TI_EV_QSTAT \\ * ti_f_adapt[j]) & Adaptionsfaktor (bankselektiv) \\ + ti_offset_adapt[j]) & Adaptionsoffset (bankselektiv) \\ * ti_f_zyl[i]) & zylinderindividueller Faktor \\ + ti_sync[i] & Leerlaufsynchronisationsoffsets \\ (zylinderindividuell)$

mk_korr bezeichnet die sich im aktuellen Segment ergebende Kraftstoffmasse aus der Bilanzrechnung.

1.3.4 BEGRENZUNG UND UBATT-KORREKTUR DER EINSPRITZZEIT

Allgemein gilt:

Die Einspritzzeit wird nach unten auf K_TI_MIN und nach oben auf K_TI_MAX begrenzt.

Anschließend wird der Bordnetzspannungskorrekturoffset ti_ub aus der Kennlinie KL_TI_UB eingerechnet und die TPU-Werte für Gesamt-Einspritzzeit bestimmt:

(11)
$$ti_eff[i] = ti[i] + ti_ub$$

Als Hilfsmittel zur Applikation werden die Variablen ti_eff_out[i] im 10ms Raster berechnet, die bei Einspritzausblendungen auf Null gesetzt werden, ansonsten aber mit ti_eff[I] übereinstimmen.

1.4 FUNKTIONSBILD

(to be defined!)

1.5 APPLIKATIONSHINWEISE

(to be defined!)

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

1.6 ZYLINDERAUSBLENDUNG UND ZYLINDEREINBLENDUNG

1.6.1 Ausblendung bei Schubabschaltung

Wenn die Bedingung Schubabschaltung B_SA erfuellt ist, werden alle Zylinder ausgeblendet. Dazu werden die begonnen Einspritzimpulse fertig eingespritzt und auch noch gezuendet; danach erst werden alle weiteren Einspritzimpulse unterdrueckt, d.h. alle 90 °KW bzw. 120 °KW (bei Einspritzende) wird dieser Zylinder gesperrt.

1.6.2. Einblenden nach Schubabschalten

Nachdem alle Zylinder ausgeblendet waren, trocknet das Saugrohr aus. Um beim Wiedereinsetzen den abgedampften Saugrohrwandfilm wieder aufzubauen, muss man mehr Kraftstoff zufuehren als normal.

Der Wiedereinsetzfaktor ti_mk_f_we kompensiert diesen Mehrbedarf an Kraftstoff.

Er berechnet sich wie folgt:

Der Faktor ti_f_we_off haengt von der Zeit ab, wie lange die Schubabschaltung aktiv war. Er wird aus zwei Kennlinien ueber Zeit in SA berechnet, wobei eine Kennlinie fuer hartes und eine fuer weiches Wiedereinsetzen gilt (KL TI WE OFF S bzw. KL TI WE OFF H).

Der Faktor ti_f_we_ign haengt von der Anzahl der Zuendungen seit Wiedereinsetzen ab. Dieser Faktor wird ueber die Anzahl der Zuendungen auf 1,0 abgeregelt. Er wird aus zwei Kennlinien über Anzahl der Zuendungen berechnet, wobei eine Kennlinie für hartes und eine für weiches Wiedereinsetzen gilt (KL_TI_WE_IGN_S bzw. KL_TI_WE_IGN_H).

Der Zündungszähler ti_we_ign zählt die Anzahl der Zündungen seit Wiedereinsetzen, unabhängig davon, ob es sich um hartes oder weiches Wiedereinsetzen handelt.

Alle 90 °KW bzw. 120 °KW (bei fiktivem Einspritzende) wird ein Zylinder wieder freigegeben.

1.7 LADEN DER EINSPRITZZEIT IN DIE TIME PROZESSOR UNIT

Wenn die Bedingung für einen Vorabspritzer B_VSP erfüllt ist, wird dieser ausgegeben.

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

Wenn die Bedingung für die sequentielle Einspritzung B_SSP erfüllt ist, werden die TPU Parameter für die Einspritzzeiten in der 90 ° bzw. 120°KW Task aktualisiert und die TPU Parameter für die Einspritzenden werden alle 720 °KW aktualisiert.

1.8 EINSPRITZENDE

Das Einspritzende wird relativ zu Einlaßventil schließt berechnet, d. h. 200 °KW heißt Einspritzende ist 200 °KW vor Einlaßventil schließt.

Für den Einspritzendewert gibt es für die unterschiedlichen Betriebszustände jeweils eine Konstante. Momentan gibt es:

K_TI_ENDE_MAN, K_TI_ENDE_START, K_TI_ENDE_VL, KL_TI_ENDE_0(bis 5), K_TI_ENDE_11.

Der in der MSSxx implementierte Filterungsmechanismus wurde entfernt.

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

DATEN DES MODULS

Die Berechnung der Funktion erfolgt **segmentsynchron** im Master.

	Winkel	background	1ms	10ms	20ms	100ms	1s
Task	Х						

Variablen

Variable	Initialisierung	Einheit	Bereich	Quant.	Impl.	Seite
ml_zyl	0p	mg/Asp	0p-1638p	1/40p	uw	
•	Luftmasse pro Zylinder	und Arbeitsspiel				
mk_zyl[i]	0p	mg/Asp	0p-131p	0.002p	uw	
	Zylinderselektive Krafts	toffmasse für Bilanzierung				
mk_vl_zyl[i]	0p	mg/Asp	0p-131p	0.002	uw	
	Zylinderselektive VL-Kr	aftstoffmasse für Bilanzierur	ng			•
ti_ub	0p	ms	0p-65.53p	0.001p	uw	
	Bordnetzspannungskori	rekturoffset für die Einspritzz	zeit			
ti[i]	0p	ms	0p-65.53p	0.001p	uw	
	zylinderselektive Einspr	itzzeit, ohne Batteriespannu	ngskorrektur			
ti_eff[i]	0p	ms	0p-65.53p	0.001p	uw	
	Effektive, zylinderselekt	iver Gesamteinspritzzeit		•	•	
ti_mk_f_ga		·	0p-2p	1/128	ub	
	Grundanpassungsfakto	r		•	•	,
ti_mk_start_f_p_umg	Op	-	0p-2p	1/128p	uw	
	Umgebungsdruckabhär	ngiger Korrekturfaktor für Be	triebsmodus S		•	•
ti_mk_f_start						
	Starteinspritzfaktor		I.	- I	· I	
ti_mk_f_stat			0p-2p	1/128p	ub	\neg
	Stationärfaktor	l	1 ob =b	.,		
ti mk f nas			0p-4p	1/1024p	uw	
	Nachstartfaktor		۹. و	., . o = .p		
ti_mk_f_wl	- Tuomotantianto		0p-4p	1/1024p	uw	
u_mx_i_wi	Warmlauffaktor		ор тр	1/102-1P	aw	
ba_f_ti	varmauraktor		0p-2p	1/1024p	uw	_
ba_i_ti			1 OP 2P	1/102-tp	uw	
ti_mk_f_we	Wiedereinsetzfaktor		0p-2p	1/128p	ub	_
u_mc_i_wc	Wiedereinsetziaktor		1 OP 2P	1/120p	ub	
ti_mk_f_sks			0p-2p	1/128p	ub	1
ti_iiik_i_sks	Faktor bzgl. Sicherheits	konzent	υρ-2ρ	1/120p	ub	
ti_mk_f_kats1,2	Taktor bzgi. Olenemens		0p-4p	1/1024p	uw	
!!_!!!K_!_Kat51,2	Katschutzfaktor Bank1/		υρ-4p	1/1024p	uw	
ti_ausblend_soll	Ratscriatziaktor Barik i//					
ii_ausbieriu_soii	Anzahl der auszublende	nden Zylinder		<u> </u>		
ti quahland iat	Arizarii der auszubieride	T Zyllilder				_
ti_ausblend_ist	Anzahl dar tataächlich a	<u> </u>				
ti at aall	Anzani del tatsachilon a	usgebiendeten Zyllnder	T	1		
ti_st_soll	Status des Collevetere de	<u> </u>	l oktiv.	1	1	
4: _4	Status des Solizustande	es der Einspritzung (T = Kar	iai akliv)		T	_
ti_st_psp	Ctatus des lataurates des	dor Financitation (I. 1/	l oletis ()	1	1	
C .II.I 4	Status des istzustandes	s der Einspritzung (! = Kanal	· · · · · · · · · · · · · · · · · · ·	4/4000		
ti_dkba1	Markanata		0p-65.53p	1/1000	uw	
	Nachspritzer					

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

ti_isr_count							
ti_iSi_count	Interruptzähler der P	SP-Interrunts					
ti_st_start	interruptzumer der i	or interrupto					
11_31_31411	Statuswort der Finsp	ritzung im Betriebszusta	nd START				
ti_off_time	Ctataewert der Einep	The aring in the both observation	0p-	1/16	ul		
u_on_umo			268Miop	1,710	u.		
	Zeitdauer der Ausble	ndung			•	l .	
ti_zyl_off							
_ , _			· ·		•	l .	
start_st							
	Statuswort des Betrie	ebszustandes START	· ·		•	l .	
ti_f_n_ks			0p-2p	1/128	ub		
	Kaltstartfaktor über d	ler Drehzahl		•	•	•	
ti_f_tan_hs			0p-64p	1/1024	uw		
-	Heißstartfaktor über	Ansauglufttemperatur	<u>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' </u>	•	•	•	
ti_f_tmot_ks			0p-64p	1/1024	uw		
	Kaltstartfaktor über d	ler Motortemperatur					
ti_f_no_zaehler		·					
	Abrgelfaktor über die Anzahl der Nockenwellenumdrehungen im Start						
ti tz offset kats		°KW			ub		
	Zündwinkeloffset für	Summe der Rückziehwir	nkel für Einspritzkorr	ekturfaktor b	ei KAT-Schu	tz	
ti_kats_st							
	Status für Katschutz		<u>.</u>				
ti_f_kats_steuer1/2			0p-64p	1/1024	uw		
	Vorsteuerwert des Ka	atschutz Bank1/2		•		•	
ti_f_kats_regler				1/8192	uw		
	Reglerwert des Katso	chutz für Bank1/2	<u>.</u>				
ti_mk_f_f_nas_word				1/32768	uw		
	Startwert und interne	r, genauerer Rechenwer	t für den Nachstartfa	aktor			
ti_mk_nas				1/1024	uw		
	Nachstartfaktor						
ti_tau_nas				655/(x+1	uw		
)			
	Abregelzeitkonstante	für den Nachstart					

Parameter

Applgröße	Stützstellen	Einheit	Bereich	Quant.	Impl.	Seite	
K_TI_EV_QSTAT		mg/ms	0p-10p	0.01p	uw		
	Steigungsfaktor aus o	der Einspritzventilkennlinie					
K_TI_MIN		ms	0p-4p	0.001p	uw		
	Minimale Einspritzzei	t					
K_TI_MAX		ms	0p-65.53p	0.001	uw		
	Maximale Einspritzzeit						
K_TI_L_STOECH		-	0p-25p	0.1	ub		
	Stöchiometrisches Luft-Kraftstoff-Verhältnis						
K_TI_MK_SKS		-	0p-2p	0.01	ub		
Abmagerungsfaktor bei teilbefeuertem Betrieb							
K_TI_START		ms	0p-65.35p	0.001	uw		
	Startgrundmenge				•	_	
K_TI_MK_NAS		-	0p-2p	0.01	ub		

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

	Umschaltschwelle für	die Zeitkonstante bei NAS				
K_TI_D_WL	Omoonalisonwelle ful	%/s	0p-0.63p	10/6553	uw	
		7.5.2		6		
	Warmlaufabregelgrad	ient bei aktiver Lambdareg	gelung			
K_TI_MK_GA		-	0p-2p	1/128	ub	
	Grundanpassungsfakt	tor				
K_TI_KATS		1/°KW	0p-0.01p	10/2621	ub	
				4		
	KAT-Schutzfaktor					
K_TI_KATS_TABG_EIN		-	0p-2p	0.01	ub	
	Einschaltschwelle TAI	BG für Regler KAT-Schutz				
K_TI_KATS_TABG_SCHN		-	0p-2p	1/16	ub	
ELL	Schwelle TABG für Re	egler KAT-Schutz verstärk	t			
K_TI_KATS_TABG_AUS		-	0p-2p	0.01	ub	
	Ausschaltschwelle TA	BG für Regler KAT-Schutz	Z			
K_TI_KATS_FAK_SCHNEL		-	0p-16p	1/16	ub	
L	Faktor für Übersteuer	ung Regler KAT-Schutz			-	
K_TI_MK_F_KATS_MAX		-	0p-4p	1/1024	uw	
_	Max. Kat.schutzfaktor)				
K_TI_TAU_NAS		-	0p-4p	1/64	ub	
	Wichtungsfaktot für Ta	au bei NAS				
K_TI_TMIN_WNAS	<u> </u>	s	0p-255p	1	ub	
	Minimale Zeit für WN/			1 -	1	1
K_TI_TMAX_WNAS	· · · · · · · · · · · · · · · · · · ·	s	0p-255p	1	ub	
10_11_11000_0000	Maximale Zeit für WN	_	ор 200р		ub	1
K_TI_TMOT_HS	Waximale Zeit fai VVIV	°C	-48p-207p	1	ub	
K_11_1WO1_118	Tmot-Schwelle für He		-40p-207p	'	ub	<u> </u>
K_TI_TMOT_KS	Titlot-Scriwelle ful fie	°C	19n 207n	1	ub	
K_TI_TMOT_KS	Tmot-Schwelle für Ka		-48p-207p	1	ub	
K TI WKO DA	Timot-Scriwelle für Ka	แรเลน	0 0	4/400		
K_TI_WKS_B1	100 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- Dataiahahanaiah D4	0p-2p	1/128	ub	
14 TI 14440 Bo	vviedernoikaitstarttakt	or im Betriebsbereich B1				1
K_TI_WKS_B2	100 1 1 11 10 10 10 10 10 10 10 10 10 10	-	0p-2p	1/128	ub	
	Wiederholkaltstartfakt	or im Betriebsbereich B2				
K_TI_WNAS		<u> </u>	0p-1p	1/256	ub	
	Wiederholkaltnachsta			1	1	
K_TIENDE_START		°KW	0p-6553p	0.1	ub	
	Einspritzende bei Star					
K_TIENDE_TMOT		°C	-48p-207p	1	ub	
	Tmot-Schwelle für Tie					
K_TIENDE_TMOT_HYS		°C	-48p-207p	1	ub	
	Tmot-Hysterese für Ti	iende				
K_TIENDE_TAU		ms	0p-5100p	20	ub	
	Zeitkonstante Tau für	Tiende				
K_TIENDE_TAU1		ms	0p-5100p	20	ub	
	Zeitkonstante Tau1 fü	r Tiende				
K_TIENDE_N_TAU		1/min	0p-10200p	40	ub	
_ _	n-Schwelle für Tiende					
K_TIENDE_TAU2		s	0p-25p	0.1	ub	
	Tau für Tiende		1 -1 -F		1	I
K_T_EKP_ON		ms	0p-65535p	1	uw	
	Minimale Einzeit der E		1 25 00000b	ı '	1 411	1
K_TI_MIN		ms	0p-4p	0.0001	uw	
IX_TI_IVIIIX	Minimale Einspritzzeit		l ∩h-4h	0.0001	Law	1
K_TI_MAX	William Emophizzen		On 6En	0.0004	LINA	
L'IIINY	Maximale Einspritzzei	ms +	0p-65p	0.0001	uw	<u> </u>
K TI NO	waxiiiiaie EiiispiitZZei		05 05505	4		1
K_TI_NO	Abmagan	1/NW-Umdreh	0p-65535p	1	uw	I
K TI DT KOES 1111	Apmagerungstaktor b	ei teilbefeuertem Betrieb	0 46555	1 4		1
K_TI_PT_KORR_MAX	Maria N. O. J II. Cii. T	1/min	0p-10000p	1	uw	<u> </u>
	Max. N-Schwelle für F	'I_KORR Faktor				

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

K_TI_AUSS_COUNT		2U	0p-255p	1	ub	
	Anzahl Ausblendunge	n innerhalb K_TI_AUSS_E	BEREICH			
K_TI_AUSS_ZYL		-	0p-255p	1	ub	
	Maske für auszublendende Zylinder					
K_N_MAX_VFEHLER		1/min	0p-10200p	1	uw	
	Nmax Wert bei V-Fehler					
K_N_LL_SYNC		1/min	0p-10200p	40	ub	
	n-Schwelle für LL-Synchro					

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01

Kennlinien

Applgröße	Stützstellen	Einheit	Bereich	Quant.	Impl.	Seite
KL_TI_UB	In: 6xub	V	0p-20p	0.1p	uw	
	Out: 6xti_ub	ms	0p-65.53p	0.001p	uw	
	Einspritzzeitkorrektur über UB					
KL_TI_MK_START_F_P_U MG	In: 4xp_umg	mbar	500p- 1150p	3р	ub	
	Out: 4xti_mk_start_f_p_u ma	-	0p-2p	0.01p	ub	
		ı sdruckabhängigen Korrektı	urfaktor			

3 ERSTBEDATUNG DER FUNKTION

Parameter:

K_TI_EV_QSTAT 2.50

K_TI_MIN 0.90

K_TI_MAX 64.00

K_TI_L_STOECH 14.7

K_TI_MK_SKS 0.90

Kennlinien:

KL_TI_UB

UB [V]	6	8	10	12	14	16
TI_UB [ms]	3.88	2.06	1.38	1.00	0.76	0.60

KL_TI_MK_START_F_P_UMG

P_UMG [mbar]	701	800	974	1013
TI_MK_START_F_P_UMG [-]	1.00	1.00	1.00	1.00

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Erdl	4.01