

BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 06-194615

(43)Date of publication of application : 15.07.1994

(51)Int.Cl.

G02F 1/13

G02F 1/1339

G02F 1/1341

(21)Application number : 04-343716

(71)Applicant : CASIO COMPUT CO LTD

(22)Date of filing : 24.12.1992

(72)Inventor : SAKAMOTO KATSUTO

(54) PRODUCTION OF FERROELECTRIC LIQUID CRYSTAL ELEMENT

(57)Abstract:

PURPOSE: To provide the process for production of the ferroelectric liquid crystal element which can prevent the degradation in display grade by arranging spaces for maintaining the specified spacing between substrates in parts deviating from picture element regions and can prevent the adverse influence of a sealing material on the ferroelectric liquid crystal by averting the contact of the liquid crystal to be encapsulated into the spacing and the sealing material of an uncured state.

CONSTITUTION: This method for production of the ferroelectric liquid crystal element consists in encapsulating the ferroelectric liquid crystal LC between a pair of the substrates 1 and 2 formed with transparent electrodes 3, 4. The columnar spaces 9a to be arranged in the parts averting the picture element regions A of the substrate 2 and the frame-shaped spacers 9b to be arranged in the parts along the peripheral edges of the substrate 2 are simultaneously formed by a photolithographic method on this substrate. In addition, the frame-shaped sealing material 10 is formed on the substrate 1 and the ferroelectric liquid crystal is dropped onto the substrate 1. The two substrates 1, 2 are then superposed and pressurized on each other in such a manner that the sealing material 10 is arranged on the outer periphery of the frame-shaped spacer 9b. The sealing material 10 is cured in this state and the two substrates 1, 2 are adhered via this sealing material 10.

LEGAL STATUS

[Date of request for examination] 22.12.1999

[Date of sending the examiner's decision of rejection] 12.06.2001

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-194615

(43)公開日 平成6年(1994)7月15日

(51)Int.Cl.⁵

G 0 2 F 1/13
1/1339
1/1341

識別記号 101
1/05
505
1/1341

序内整理番号 9315-2K
8507-2K
8507-2K

F I

技術表示箇所

審査請求 未請求 請求項の数1(全5頁)

(21)出願番号 特願平4-343716

(22)出願日 平成4年(1992)12月24日

(71)出願人 000001443

カシオ計算機株式会社

東京都新宿区西新宿2丁目6番1号

(72)発明者 坂本 克仁

東京都八王子市石川町2951番地の5 カシ
オ計算機株式会社八王子研究所内

(74)代理人 弁理士 鈴江 武彦

(54)【発明の名称】 強誘電性液晶素子の製造方法

(57)【要約】

【目的】 基板間の隙間を一定に保つスペーサを画素領域から外れる部分に配置させて表示品位の低下を防止できるとともに、その隙間に封入する強誘電性液晶と未硬化状態のシール材との接触を避けてそのシール材による液晶への悪影響を防止することができる強誘電性液晶素子の製造方法を提供する。

【構成】 透明電極3, 4が形成された一対の基板1, 2間に強誘電性液晶LCを封入してなる強誘電性液晶素子を製造する方法であって、基板2にその画素領域Aを避ける部分に配置する柱状のスペーサ9aと、基板2の周縁に沿う部分に配置する枠状のスペーサ9bとをフォトリソグラフィー法により同時に形成し、かつ基板1に枠状のシール材10を形成し、基板1の上に強誘電性液晶を滴下し、ついで両基板1, 2をシール材10が枠状のスペーサ9bの外周に配置するように重ね合わせて加圧し、この状態でシール材10を硬化させ、このシール材10を介して両基板1, 2を接着させる。

【特許請求の範囲】

【請求項1】透明電極が形成された一対の基板間に強誘電性液晶を封入してなる強誘電性液晶素子を製造する方法であって、

前記一対の基板のいずれか一方に、その画素領域を避ける部分に配置する柱状のスペーサと、該基板の周縁に沿う部分に配置する枠状のスペーサとをフォトリソグラフィー法により同時に形成し、かつ前記一対の基板の少なくとも一方に、前記枠状のスペーザの外周を囲むことが可能な大きさの枠状のシール材を形成し、前記いずれか一方の基板の上に強誘電性液晶を滴下し、ついで前記一対の基板を前記シール材が前記枠状のスペーザの外周に配置するように重ね合わせて加圧し、この状態で前記シール材を硬化させ、このシール材を介して両基板を接着させることを特徴とする強誘電性液晶素子の製造方法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、透明電極が形成された一対の基板間に強誘電性液晶を封入してなる強誘電性液晶素子の製造方法に関する。

【0002】

【従来の技術】強誘電性液晶素子は、透明電極が形成された一対の基板間に強誘電性液晶を封入してなるもので、その基板間に封入する強誘電性液晶としては、二つの方向の配向のメモリ性（配向状態の安定性）をもつ通常の強誘電性液晶と、三つの方向の配向のメモリ性をもつ反強誘電性と呼ばれる強誘電性液晶が用いられている。

【0003】このような強誘電性液晶は、いずれもネマティク液晶に比べてその粘度が高く、このため基板間の隙間内へ注入する際に、通常の真空注入法により注入することがほとんど困難である。

【0004】このため、強誘電性液晶においては、図3に示す方法により基板間への封入が行われている。すなわち、液晶素子を構成する一対の基板a, bの一方、または両方に液晶封入領域を囲む枠状のシール材cを形成し、一方の基板aの上に強誘電性液晶LCを滴下し、ついで両基板a, bを一定の圧力を加えながら重ね合わせ、前記シール材cにより両基板a, bを互いに接着させる。なお、液晶LCの滴下ならびに両基板a, bの接着は、図示しない真空槽内で行われる。

【0005】このような方法によれば、基板aの上に滴下された粘度の高い液晶LCが両基板a, bの重ね合わせ時の圧力でシール材cで囲まれた液晶封入領域内に均等に流れ拡がって封入される。

【0006】ところで通常の液晶素子においては、基板間に球状のガラス粒や短く切断したグラスファイバ等からなる多数のスペーザが散布され、これらスペーザにより基板間の隙間のギャップが一定に保持される。

【0007】しかしながら、上述したような方法で基板

10

20

30

40

50

2

間に液晶を封入して液晶素子を製造する場合においては、予め基板の上に多数のスペーザを一様な分布状態に散布しておいても、液晶が基板の上で流れ拡がるときにそのスペーザが移動して均等的な分布が崩れてしまう。

【0008】また、強誘電性液晶はもともと配向にくい性質をもつが、とくにその液晶中にスペーザが介在していると、そのスペーザの付近で配向が大きく乱れる。したがってスペーザが一方の基板に形成された電極と、他方の基板に形成された電極との対向間つまり画素領域内に介在していると、その配向の乱れにより画像表示時に表示むらが生じて表示品位が低下し、このためスペーザは画素領域から外れる位置に配置させることが好ましい。

【0009】ところが、上述のようにスペーザを基板の上に散布して設ける手段では、その位置が無秩序となり、したがって画素領域を避けるように配設することが困難となる。

【0010】そこで、例えば、一方の基板の周縁部にシール材を印刷により枠状に形成し、他方の基板の上に、画素領域を避けるように、フォトリソグラフィー法により多数のスペーザを均等的に形成し、かつ一方の基板の上に強誘電性液晶を滴下し、ついで両基板を一定の圧力を重ね合わせ、前記スペーザによりその両基板間のギャップを一定に保ち、この状態でシール材を加熱して硬化させ、このシール材により両基板を接着して液晶素子を組み立てる製造方法が一般に採用されている。

【0011】このような製造方法によれば、スペーザが基板に対して一体的に形成されているから、強誘電性液晶の拡がり時の流れで移動するようことがなく、また各スペーザが画素領域を避ける部分に配置するから、画像を表示したときに表示むらが生じるようなことがない。

【0012】

【発明が解決しようとする課題】しかしながら、このような製造方法においては、両基板を重ね合わせてその隙間に強誘電性液晶を封入し、こののちシール材を加熱して硬化させるものであるから、強誘電性液晶が未硬化状態のシール材と直接接触してしまう。

【0013】強誘電性液晶とシール材が直接接觸すると、シール材中の不純物が液晶中に混入して液晶の特性が悪化してしまう恐れがある。そしてこののちシール材が加熱されて硬化する際に、このシール材から揮発性物質等が発生してこれが液晶中に混入し、さらに大きな悪影響が生じてしまう。

【0014】本発明はこのような点に着目してなされたもので、その目的とするところは、基板間の隙間を一定に保つスペーザを画素領域から外れる部分に配置させて表示品位の低下を防止するとともに、その隙間に封入する強誘電性液晶と未硬化状態のシール材との接觸を避けてそのシール材による液晶への悪影響を防止するこ

とができる強誘電性液晶素子の製造方法を提供することにある。

【0015】

【課題を解決するための手段】本発明はこのような目的を達成するために、透明電極が形成された一対の基板間に強誘電性液晶を封入してなる強誘電性液晶素子を製造する方法であって、前記一対の基板のいずれか一方に、その画素領域を避ける部分に配置する柱状のスペーサーと、該基板の周縁に沿う部分に配置する枠状のスペーサーとをフォトリソグラフィー法により同時に形成し、かつ前記一対の基板の少なくとも一方に、前記枠状のスペーサーの外周を囲むことが可能な大きさの枠状のシール材を形成し、前記いずれか一方の基板の上に強誘電性液晶を滴下し、ついで前記一対の基板を前記シール材が前記枠状のスペーサーの外周に配置するように重ね合わせて加圧し、この状態で前記シール材を硬化させ、このシール材を介して両基板を接着させるようにしたものである。

【0016】

【作用】両基板を重ね合わせて加圧したときに、基板上の強誘電性液晶が流れ抜がる。しかしスペーサーが基板にフォトリソグラフィー法により一体的に設けられているから、強誘電性液晶の流れ抜がりの圧力でスペーサーが移動するようなことがなく、したがって両基板間の隙間が一定に保たれる。そして柱状のスペースが画素領域を避ける部分に配置しているから、画像表示時に表示むらが生じるようなことがない。

【0017】基板の上に強誘電性液晶を滴下して両基板を重ね合わせた際には、枠状のスペーサーがシール材の内側に嵌合し、このためその重ね合わせに応じて流れ抜がる強誘電性液晶は枠状のスペーサーにより遮られて未硬化状態のシール材と接触するようなことがない。したがって未硬化状態のシール材中の不純物等が強誘電性液晶中に混入したり、シール材を加熱して硬化させる際にそのシール材から発生する揮発性物質等が強誘電性液晶中に混入するようなことがない。

【0018】

【実施例】以下、本発明の一実施例について図1および図2を参照して説明する。

【0019】図1(A)は、基板1、2間に強誘電性液晶LCを封入する前の状態を示し、図1(B)は基板1、2間に隙間に強誘電性液晶LCを封入して液晶素子を組み立てた状態を示してある。

【0020】各基板1、2にはそれぞれその一方の面上に透明な電極3、4が配列形成されている。これら電極3、4は、両基板1、2を重ね合わせときに立体的に交差するように配置し、その交差の対向間が画素領域Aとなるものである。電極3、4はそれぞれ絶縁膜5、6で覆われ、この絶縁膜5、6の上に配向膜7、8が形成されている。

【0021】基板2における配向膜8の上には、多数の

柱状のスペーサ9aと枠状のスペーサ9bが形成されている。これら柱状のスペーサ9aおよび枠状のスペーサ9bはそれぞれ一定の高さに形成され、一方の柱状のスペーサ9aは、図2に示すように、画素領域Aとなる部分を避け、かつ基板2の上に均等的に分布するように配置し、他方の枠状のスペーサ9bは基板2の周縁のやや内側の部分に沿って前記柱状のスペーサ9aを囲むように配置している。

【0022】このようなスペーサ9a、9bは、基板2の上の全体に例えば感光性樹脂を一定の厚さに塗布し、これをフォトリソグラフィー法によりパターニングする方法で形成する。したがって各スペーサ9a、9bの高さが確実に均一の寸法に仕上がる。

【0023】なお、スペーサ9a、9bを形成する工程と、絶縁膜6および配向膜8を形成する工程は逆の順序であってもよい。すなわち、基板2の上に電極4を形成したのちに、この基板2の上に感光性樹脂を塗布し、これをフォトリソグラフィー法によりパターニングして前記電極4を避ける部分に柱状のスペーサ9aを、基板2の周縁部分に枠状のスペーサ9bを形成し、ついで基板2の上に前記電極4を覆う絶縁膜5を形成し、この絶縁膜5の上に配向材を塗布しその膜面にラビング等による配向処理を施して配向膜8を形成するようにしてもよい。

【0024】一方、基板1の上には、前記枠状のスペーサ9bの外周を囲むことが可能な抜がりの大きさをもつ枠状のシール材10が形成されている。このシール材10は例えば熱硬化性樹脂からなり、印刷法により基板1の上に形成されている。次に、液晶素子を組み立てる工程について説明する。

【0025】まず、図1(A)に鎖線で示すように、一方の基板1の上の中央部分に強誘電性液晶LCをその封入量に見合う量だけ滴下して乗せ、この基板1の上方に他方の基板2を対向して配置させる。このとき、両基板1、2は強誘電性液晶LCが液晶相から液体相に転位する付近の温度にまで予め加熱しておく。

【0026】ついで、一方の基板1のシール材10が他方の基板2の枠状のスペーサ9bの外周に嵌合するよう両基板1、2を一定の圧力を加えながら重ね合わせる。この重ね合わせにより両基板1、2間の強誘電性液晶LCが液晶封入領域の全体に流れ抜がり、かつ両基板1、2間の隙間が柱状のスペーサ9aおよび枠状のスペーサ9bにより一定に保持される。

【0027】また両基板1、2の重ね合わせに応じて、基板1に形成されたシール材10が基板2に圧着するとともに、その圧力でシール材10が図1(B)に示すように弾性的に変形して枠状のスペーサ9bの外周部に密着する。

【0028】こののち、基板1、2の重ね合わせの圧力を保持したまま、シール材10を加熱して硬化させ、こ

5

のシール材10により両基板1、2を接着して液晶素子を組み立てる。なお、このような液晶素子の組み立ての工程は、真空槽内において行なう。

【0029】このような製造方法においては、スペーサ9a、9bが基板2に一体的に形成されているから、強誘電性液晶LCが流れ抜がるときの圧力で移動するようなことがなく、したがって柱状のスペーサ9aが両基板1、2間に均等的に分布して確実に両基板1、2間の隙間が一定に保たれる。そして前記柱状のスペース9aが画素領域Aを避ける部分に配置しているから、画像表示時に表示むらが生じるようなことがなく、表示品位の低下を防止することができる。

【0030】基板1の上に強誘電性液晶LCを滴下して両基板1、2を重ね合わせた際には、枠状のスペーサ9bがシール材10の内側に嵌合し、このためその重ね合わせに応じて流れ抜がる強誘電性液晶LCは前記枠状のスペーサ9bにより遮られて強誘電性液晶LCと未硬化状態のシール材10とが直接接触するようなことがない。

【0031】したがって未硬化状態のシール材10中の不純物等が強誘電性液晶LC中に混入することも、またシール材10を加熱して硬化させる際にこのシール材10から発生する揮発性物質等が強誘電性液晶LC中に混入するようなことがなく、シール材10による液晶LCへの悪影響を確実に防止することができる。

【0032】なお、前記実施例においては、一方の基板1にシール材10を形成し、他方の基板2にスペーサ9a、9bを形成するようにしたが、いずれか一方の基板1または2にシール材10とスペーサ9a、9bを形成して両基板1、2を重ね合わせるような場合であっても

よいし、また両方の基板1、2にシール材10を形成し、両基板1、2を重ね合わせる際にそのシール材10を互いに圧着させるような場合であっても差し支えない。

【0033】

【発明の効果】以上説明したように本発明によれば、基板間の隙間を一定に保つスペーサを画素領域から外れる部分に配置させることができ、したがって表示品位の低下を防止でき、また両基板を重ね合わせてその隙間に強誘電性液晶を封入する際に、その強誘電性液晶と未硬化状態のシール材との接触を避けることができ、したがってそのシール材から液晶へ不純物等が混入するような悪影響を防止することができる利点がある。

【図面の簡単な説明】

【図1】本発明の一実施例による強誘電性液晶素子を製造する方法を説明するための図で、(A)は一対の基板を重ね合わせる前の状態を示す断面図、(B)は一対の基板を重ね合わせた後の状態を示す断面図である。

【図2】図1(A)のX-X線に沿う断面図である。

【図3】基板間に強誘電性液晶を封入する一般的な方法を説明するための斜視図である。

【符号の説明】

1, 2…基板

3, 4…電極

9a, 9b…スペーサ

10…シール材

LC…強誘電性液晶

A…画素領域

【図1】

【図2】

【図3】

