1.2. Дифференциальные уравнения с частными производными. Классификация линейных уравнений второго порядка. Метод разделения переменных.

<u>Пучп</u> — уравнение вида $F\left(x,\ldots,p_{i_1,\ldots,i_n},\ldots\right)=0$, где F — заданная функция относительно точки $x=(x_1,\ldots,x_n)$ области D евклидова пространства размерности $n\geq 2$ и переменных $p_{i_1,\ldots,i_n}\equiv \frac{\partial^k U}{\partial x_1^{i_1}\ldots\partial x_n^{i_n}}$ (U(x) — неизвестная функция) с неотрицательными целочисленными

индексами $i_1, ..., i_n, \sum_{j=1}^n i_j = k$, где k=0, ..., m, причём как минимум одна из производных $\frac{\partial F}{\partial p_{i_1,...,i_n}}$

функции F (при $\sum_{j=1}^{n} i_{j} = m$) отлична от нуля; натуральное число m называют $nopsd\kappa om$ уравнения.

В предположении непрерывности частных производных 1-го порядка функции F относительно переменных $p_{i_1,...,i_n}$, $\sum_{i=1}^n i_j = m$ в теории ДУЧП фундаментальную роль играет форма порядка m:

$$\Phi(\lambda_1,\ldots,\lambda_n) = \sum_{\substack{\partial F \\ \partial p_{i_1,\ldots,i_n}}} \lambda_1^{i_1} \ldots \lambda_n^{i_n}, \quad \sum_{j=1}^n i_j = m$$

относительно действительных параметров $\lambda_1, \ldots, \lambda_n$, которая называется *характеристической* формой, соответствующей исходному ДУЧП.

Когда F — линейная функция набора переменных $\mathcal{P}_{i_1,...,i_n}$, ДУЧП называется линейным.

<u>Линейное ДУЧП 2-го порядка</u> можно записать в виде: $\sum_{i,j=1}^n A_{ij} \frac{\partial^2 U}{\partial x_i \partial x_j} + \sum_{i=1}^n B_i \frac{\partial U}{\partial x_i} + CU = f$, где A_{ij} , B_i , C и f — заданные в области D функции точки x. Уравнение называют однородным, если f(x) = 0 для всех $x \in D$. Для линейных уравнений второго порядка характеристическая форма

является квадратичной: $Q(\lambda_1,\ldots,\lambda_n)=\sum_{i,j=1}^n A_{ij}\lambda_i\lambda_j$ с коэффициентами A_{ij} , зависящими только от точки $x\in D$. В каждой точке $x_0\in D$ для квадратичной формы Q можно выполнить неособое аффинное преобразование ξ независимых переменных таким образом, что исходное уравнение в новых координатах $\xi=(\xi_1,\xi_2,\ldots,\xi_n)$ примет *канонический вид*:

$$\sum_{i,j=1}^{n} A_{ij}^{*}(\xi) \frac{\partial^{2} U(\xi)}{\partial \xi_{i} \partial \xi_{j}} + \sum_{i=1}^{n} B_{i}^{*} \frac{\partial U(\xi)}{\partial \xi_{i}} + C^{*}(\xi) U(\xi) = f^{*}(\xi),$$

где коэффициенты $A_{ij}^*(\xi)$ в точке $\xi_0 = \xi(x_0)$ равны нулю при $i \neq j$ и равны ± 1 или 0 при i = j.

Число k положительных и число l отрицательных в точке ξ_0 коэффициентов $A_{ii}^*(\xi)$ в каноническом уравнении зависит только от коэффициентов $A_{ij}(x)$ исходного уравнения (с точностью до обмена местами). Этот факт называют алгебраическим законом инерции квадратичных форм. Он позволяет классифицировать уравнения по знакам коэффициентов следующим образом. Если k=n или l=n, то уравнение называют эллиптическим в точке x_0 ; если k=n-1, а l=1, или k=1, а l=n-1, то — гиперболическим; если k=n и 1 < k < n-1, то — ультрагиперболическим. Если хотя бы один из коэффициентов равен нулю (k+l < n), то — параболическим в широком смысле. Если ровно один коэффициент равен k=10 (пусть k=11), а все остальные коэффициенты одного знака, и k=11, то — параболическим.

В случае двух независимых переменных (n = 2) тип уравнения удобнее всего определять с помощью функции $\Delta(x) = A_{11}A_{22} - A_{12}A_{21}$. Так, уравнение является эллиптическим в точке x_0 , если $\Delta(x_0) > 0$; гиперболическим, если $\Delta(x_0) < 0$, и параболическим в широком смысле, если $\Delta(x_0) = 0$. Примеры.

 $\frac{\partial^2 U}{\partial t^2} = a^2 \frac{\partial^2 U}{\partial x^2}$ — гиперболическое уравнение струны (множитель $a^2 > 0$ связан с плотностью и коэффициентом упругости).

$$\frac{\partial U}{\partial t} = a^2 \frac{\partial^2 U}{\partial x^2}$$
 — параболическое уравнение теплопроводности (диффузии).

 $\Delta U = 0$ — эллиптическое уравнение задачи Дирихле для уравнения Лапласа.

Метод разделения переменных (метод Фурье, метод стоячих волн) — метод отыскания частных решений дифференциальных уравнений вида $(L \circ U)(x, y) = (M \circ U - N \circ U)(x, y) = 0$, где x и y векторы переменных, а M (или N) — линейное дифференциальное выражение, содержащее производные только по переменным x (или, соответственно, y).

Решение уравнения ищется в виде $U(x, y) = V(x) \cdot W(y)$. Функция такого вида будет решением, если существует такая константа λ , что $M \circ V = \lambda V$ и $N \circ W = \lambda W$.

Например, для (волнового) уравнения колебаний струны $\frac{\partial^2 U}{\partial t^2} - a^2 \frac{\partial^2 U}{\partial x^2} = 0$ при начальных условиях $U(x, 0) = \varphi(x), \ U'_t(x, 0) = \psi(x)$ и краевых условиях U(0, t) = U(l, t) = 0 искомая функция

принимает вид
$$U(x, t) = X(x) \cdot T(t)$$
, откуда $\frac{T_{tt}''(t)}{a^2 T(t)} = \frac{X_{xx}''(x)}{X(x)} = \lambda$, где λ — постоянная

разделения (то, что оба выражения равны константе, следует из того, что первое из них не зависит от x, а второе — от t). Получили уравнения: $\begin{cases} X''_{xx} = \lambda X \\ T''_{tt} = \lambda a^2 T \end{cases}$

При $\lambda = 0$ получим U(x, t) = (A x + B) (C t + D), из-за краевых При $\lambda = 0$ получим $U(x, t) = (A \ x + B) \ (C \ t + D)$, из-за краевых условий функция вырождается, поэтому этот случай нам неинтересен. При $\lambda \neq 0$ решение имеет вид: $\begin{cases} X(x) = c_1 e^{\sqrt{\lambda}x} + c_2 e^{-\sqrt{\lambda}x} \\ T(t) = c_3 e^{a\sqrt{\lambda}t} + c_4 e^{-a\sqrt{\lambda}t} \end{cases}$

При $\lambda > 0$ решение «нефизично», т. к. нарушается закон сохранения энергии. При $\lambda = -p^2 < 0$ решение имеет вид:

$$\begin{cases} X(x) = c_1 e^{\sqrt{\lambda}x} + c_2 e^{-\sqrt{\lambda}x} \\ T(t) = c_3 e^{a\sqrt{\lambda}t} + c_4 e^{-a\sqrt{\lambda}t} \end{cases}$$
$$\begin{cases} X(x) = c_1 \cos px + c_2 \sin px \\ T(t) = c_3 \cos apt + c_4 \sin apt \end{cases}$$

Учитывая краевые условия, получим c_1 = 0; p l = π k (k — целое), следовательно, p = π k / l . Просуммируем решения по всем к. Из линейности нашего уравнения следует, что составленный из этих функций ряд доставляет решение U нашей начально-краевой задачи:

$$U(x,t) = \sum_{k=1}^{\infty} \left(a_k \sin \frac{\pi k a}{l} t + b_k \sin \frac{\pi k a}{l} t \right) \sin \frac{\pi k x}{l},$$

если a_k и nb_k являются коэффициентами Фурье для разложения достаточно гладких начальных данных $\varphi(x)$ и $\psi(x)$, соответственно (разложение по синусам):

$$\phi(x) = \sum_{k=1}^{\infty} a_k \sin \frac{\pi kx}{l} \qquad \qquad \psi(x) = \sum_{k=1}^{\infty} b_k \frac{\pi ka}{l} \sin \frac{\pi kx}{l}$$

$$a_k = \frac{2}{l} \int_0^l \phi(x) \sin \frac{\pi kx}{l} dx \qquad \qquad b_k = \frac{2}{\pi ka} \int_0^l \psi(x) \sin \frac{\pi kx}{l} dx$$

 $u_{
m actory}\ \omega_{
m min} = \pi a/l$ называют *основным тоном* струны, а частоты $\omega_k = \pi \, n \, a/l$ для k>1— обертонами.