Homework #9

MOSFET Circuits: DC Biasing and Common Source Amplifier – 100 points

DUE @ Beginning of Class: Thursday, November 16

- 1) E-Book, problem 3.26 (10 points)
- 2) E-Book, problem D3.28 (find R₁ and R₂) (10 points)
- 3) E-Book, problem 3.29 (20 points)
- 4) E-Book, problem 3.40 (10 points)
- 5) E-Book, problem 4.8 (10 points)
- 6) E-Book, problem 4.15 (12 points)
- 7) E-Book, problem 4.18 (10 points)
- 8) E-Book, problem D4.26 (18 points)

- 1) E-Book, problem 3.26 (10 points)
- 3.26 In the circuit in Figure P3.26, the transistor parameters are $V_{TN} = 0.8 \text{ V}$ and $K_n = 0.5 \text{ mA/V}^2$. Calculate V_{GS} , I_D , and V_{DS} .

- 2) E-Book, problem D3.28 (find R_1 and R_2) (10 points)
- D3.28 The transistor in Figure P3.28 has parameters $V_{TN}=0.4$ V, $k_n'=120$ μ A/V², and W/L=80. Design the circuit such that $I_Q=0.8$ mA and $R_{\rm in}=200$ k Ω .

- 3) E-Book, problem 3.29 (20 points)
 - 3.29 The transistor in the circuit in Figure P3.29 has parameters $V_{TP}=-0.8~{\rm V}$ and $K_p=0.20~{\rm mA/V^2}$. Sketch the load line and plot the Q-point for (a) $V_{DD}=3.5~{\rm V}$, $R_D=1.2~{\rm k}\Omega$ and (b) $V_{DD}=5~{\rm V}$, $R_D=4~{\rm k}\Omega$. What is the operating bias region for each condition?

- 4) E-Book, problem 3.40 (10 points)
- 3.40 The PMOS transistor in Figure P3.40 has parameters $\tilde{V}_{TP} = -0.7 \text{ V}$, $k_p' = 50 \,\mu\text{A/V}^2$, $L = 0.8 \,\mu\text{m}$, and $\lambda = 0$. Determine the values of W and R such that $I_D = 0.1 \,\text{mA}$ and $V_{SD} = 2.5 \,\text{V}$.

- 5) E-Book, problem 4.8 (10 points)
- 4.8 The parameters of the circuit in Figure 4.1 are $V_{DD}=3.3\,\mathrm{V}$ and $R_D=5\,\mathrm{k}\Omega$. The transistor parameters are $k_n'=100\,\mu\mathrm{A/V^2},\,W/L=40,\,V_{TN}=0.4\,\mathrm{V}$, and $\lambda=0.025\,\mathrm{V^{-1}}$. (a) Find I_{DQ} and V_{GSQ} such that $V_{DSQ}=1.5\,\mathrm{V}$. (b) Determine the small-signal voltage gain.

- 6) E-Book, problem 4.15 (12 points)
- 4.15 For the NMOS common-source amplifier in Figure P4.15, the transistor parameters are: $V_{TN}=0.8$ V, $K_n=1$ mA/V², and $\lambda=0$. The circuit parameters are $V_{DD}=5$ V, $R_S=1$ k Ω , $R_D=4$ k Ω , $R_1=225$ k Ω , and $R_2=175$ k Ω . (a) Calculate the quiescent values I_{DQ} and V_{DSQ} . (b) Determine the small-signal voltage gain for $R_L=\infty$. (c) Determine the value of R_L that will reduce the small-signal voltage gain to 75 percent of the value found in part (b).

- 7) E-Book, problem 4.18 (10 points)
- 4.18 The ac equivalent circuit of a common-source amplifier is shown in Figure P4.18. The small-signal parameters of the transistor are $g_m = 2 \text{ mA/V}$ and $r_o = \infty$. (a) The voltage gain is found to be $A_v = V_o/V_i = -15$ with $R_S = 0$. What is the value of R_D ? (b) A source resistor R_S is inserted. Assuming the transistor parameters do not change, what is the value of R_S if the voltage gain is reduced to $A_v = -5$.

- 8) E-Book, problem D4.26 (18 points)
- *D4.26 Design the common-source circuit in Figure P4.26 using an n-channel MOSFET with $\lambda=0$. The quiescent values are to be $I_{DQ}=6$ mA, $V_{GSQ}=2.8$ V, and $V_{DSQ}=10$ V. The transconductance is $g_m=2.2$ mA/V. Let $R_L=1$ k Ω , $A_v=-1$, and $R_{\rm in}=100$ k Ω . Find R_1 , R_2 , R_S , R_D , K_n , and V_{TN} .