Beyond SIDH: A survey on countermeasures and new constructions

École Polytechnique Fédérale de Lausanne, Switzerland

June 12th 2024

Outline

- Preliminaries
- SIDH
- 3 Breaking SIDH
- 4 M-SIDH & MD-SIDH
- FESTA
- 6 POKE
- Conclusions

Overview - Public-key cryptography

- Public-key cryptography from a far:
 - Relies on computationally hard problems like integer factorization and discrete logarithm.
 - Basis for secure online payments and private messaging.
- Quantum threat and post-quantum cryptography:
 - Quantum computers solve those computationally hard problems in polynomial time
 - ⇒ Post-quantum cryptography (to resist those attacks)

Preliminaries SIDH Breaking SIDH M-SIDH & MD-SIDH FESTA POKE Conclusions References

Overview – Isogeny-based cryptography

- Isogeny-based cryptography:
 - Uses maps between *supersingualr* elliptic curves
 - The (pure) isogeny problem is quantum-hard
- SIDH / SIKE:
 - 2011: Supersingular Isogeny Diffie-Hellman (SIDH)
 - 2016: Supersingular Isogeny Key Exchange (SIKE)
 - 2022:
 - May: SIKE advances to 4th round of NIST's competition
 - August: SIDH is broken
- After the attacks:
 - Countermeasures: M-SIDH, MD-SIDH
 - New constructions: FESTA, POKE

Part 1 Supersingular Isogeny Diffie-Hellman (SIDH)

Isogenies between elliptic curves

- An isogeny $\phi: E \to E' := E/K$ is a *surjective homomorphism* having *finite kernel*
- The kernel K uniquely determines the isogeny
- ullet $\# \ker \phi$ is the number of pre-images that each point has
- For this presentation (separable isogenies): $\deg \phi := \# \ker \phi$
- A d-isogeny is an isogeny whose degree is d

Isogenies – More facts

- An endomorphism $\phi: E \to E$ has degree > 1 (End(E), +, \circ) is the endomorphism ring Example: $[m]: P \mapsto [m]P$ has degree m^2
- Torsion points: $E[m] := \{ P \in E(\overline{k}) : [m]P = \mathcal{O} \}$

SIDH - The scheme

Public parameters: ℓ_A, ℓ_B, p primes. E/\mathbb{F}_{p^2} supersingular. $\langle P_A, Q_A \rangle = E[\ell_A^a], \langle P_B, Q_B \rangle = E[\ell_B^b]$. Typically $\ell_A = 2$ and $\ell_B = 3$ for efficiency reasons.

Alice: $A = [m_A]P_A + [n_A]Q_A$ with $m_A, n_A \in_{\$} \mathbb{Z}/\ell_A^a\mathbb{Z}$.

Send to Bob: image of the torsion basis $\{\phi_A(P_B), \phi_A(Q_B)\}$ and $E_A = E/\langle A \rangle$.

Bob: $B = [m_B]P_B + [n_B]Q_B$ with $m_B, n_B \in \mathbb{Z}/\ell_B^b\mathbb{Z}$.

Send to Alice: image of the torsion basis $\{\phi_B(P_A), \phi_B(Q_A)\}$ and $E_B = E/\langle B \rangle$.

Figure 1: Orange \leftrightarrow Alice, blue \leftrightarrow Bob. Alice and Bob *close* the commutative diagram. Taken from [De 17, Figure 16].

SIDH – Hardness assumptions

- Many isogeny-based protocols \to (pure) isogeny problem: Recover large-degree isogeny $\phi: E \to E'$ between two elliptic curves
- SIDH → Supersingular Isogeny with Torsion (SSI-T) problem:
 Weaker because parties publish the image of a torsion basis under the secret isogeny

Preliminaries SIDH Breaking SIDH M-SIDH & MD-SIDH FESTA POKE Conclusions References

Breaking SIDH in polynomial time

Historical stages of SIDH:

- 2011: SIDH is created
- 2014: SIDH is improved
- 2016: NIST post-quantum standardization competition
- 2016: SIKE is obtained from SIDH
- ullet 2017: [Pet17] polynomial time with unbalanced parameters $(d_A \geq d_B^2)$
- 2022:
 - May: SIKE advances to 4th round
 - August: SIDH is completely broken by the "SIDH attacks":
 - [CD23]: heuristic polynomial time, knowing End(E)
 - [Mai+23]: provable polynomial time, knowing End(E)
 - [Rob23]: provable polynomial time, without knowledge of End(E)
 - September: SIKE is declared insecure
- 2023-today: Countermeasures and new constructions

Castryck, Decru - "An efficient key recovery attack on SIDH"

- Goal: recover Bob's 3^b -isogeny $\phi_B: E_0 \to E_B$
- How? Exploit the knowledge of two elements:
 - The torsion point information $\phi_B(P_A), \phi_B(Q_A)$ published by Bob
 - The degree $d_B = 3^b$ of the secret isogeny ϕ_B
- Idea: embed a part of ϕ_B into a **higher-dimensional** isogeny

Castryck, Decru – "An efficient key recovery attack on SIDH"

Strategy of the attack:

$$\phi_B : E_0 \xrightarrow{\phi_B} E_B$$

$$\deg \phi_B = 3^b$$

Castryck, Decru – "An efficient key recovery attack on SIDH"

Strategy of the attack: **iterate** for a lot of steps! 1^{st} step:

Is E_1 on the path between E_0 and E_B ? Use **Kani's criterion** for this decision!

Castryck, Decru – "An efficient key recovery attack on SIDH"

Strategy of the attack: **iterate** for a lot of steps! 2^{nd} step: $\beta = \beta_2 - \beta_1$

$$\phi_1: E_1 \xrightarrow{\kappa_2} E_2 \xrightarrow{\phi_2} E_B$$

$$\kappa_2: E_1 \twoheadrightarrow E_2 \qquad \phi_2: E_2 \rightarrow E_B$$

$$\deg \kappa_2 = 3^{\beta} \qquad \deg \phi_2 = 3^{b-\beta}$$

Does this isogeny exist? Is E_2 on the path between E_1 and E_B ?

Use **Kani's criterion** for this decision!

A toolbox for breaking SIDH

Theorem (Petit's attack to unbalanced-SIDH, 2017)

Let an attacker know:

- d_A and d_B sufficiently smooth coprime integers
- $\{P_A, Q_A\}$ the basis of $E_0[d_A]$
- $\{\phi_B(P_A), \phi_B(Q_A)\}\$ a known basis of $E_B[d_A]$ (published by Bob)

If $d_A \ge d_B^2$, then the d_B -isogeny $\phi_B : E_0 \to E_B$ can be recovered efficiently.

A toolbox for breaking SIDH

Theorem (SIDH attacks as a black-box, 2022)

Let an attacker know:

- d_A and d_B sufficiently smooth coprime integers
- $\{P_A, Q_A\}$ the basis of $E_0[d_A]$
- $\{\phi_B(P_A), \phi_B(Q_A)\}\$ a known basis of $E_B[d_A]$ (published by Bob)

If $d_A \ge \sqrt{d_B}$, then the d_B -isogeny $\phi_B : E_0 \to E_B$ can be recovered efficiently.

Part 2 Countermeasures & New Constructions

M-SIDH & MD-SIDH – Overview

To make SIDH work, each party has to **reveal**:

- The image of a torsion basis under their secret isogeny
- The degree of their secret isogeny

But these cause SIDH to be insecure!

M-SIDH & MD-SIDH allow to **not throw away** the SIDH-framework, but at a hefty price:

- Much larger public keys, by a factor of at least 6.8 for same security
- Much **slower** run-time, by a factor of $O(\sqrt{\lambda} \log^{3/2} \lambda)$

M-SIDH - Masked torsion SIDH

- Goal: make the *image of the torsion basis* **not available** to the adversary, but still make the key exchange succeed.
- How? For each party:
 - **Scale** the *image of the torsion basis* by a random (secret) integer (delete it after usage)
 - ⇒ reveal less information
 - Degree of the isogeny is publicly known (as in SIDH), but it is different from an SIDH-degree $(d_A = \ell_A^a)$ and $d_B = \ell_B^b$: $d_A = \prod_{i=1}^t \ell_i$ and $d_B = \prod_{i=1}^t q_i$ are coprime integers s.t. $d_A \approx d_B$

M-SIDH - Masked torsion SIDH

$$d_A = \prod_{i=1}^t \ell_i$$
 and $d_B = \prod_{i=1}^t q_i$ are coprime integers s.t. $d_A \approx d_B$

Why degrees of this form?

Alice's public key is the tuple
$$\operatorname{pk}_A = (E_A, [\alpha]\phi_A(P_B), [\alpha]\phi_A(Q_B))$$
, with $\alpha \in \mu_2(d_B) := \{x \in \mathbb{Z}/d_B\mathbb{Z} \mid x^2 \equiv 1 \mod d_B\}$

- \implies there are an exponential number of square roots of 1 modulo d_B
- ⇒ the scalar cannot be recovered!

The rest of the protocol is analogous to SIDH

MD-SIDH - Masked Degree SIDH

- Goal: mask both the degree of the secret isogeny, and the image of the torsion basis.
- Idea:
 - make Alice use isogeny of degree d_A' s.t. $d_A' \mid d_A$
 - ullet make Bob use isogeny of degree d_B' s.t. $d_B'\mid d_B$
- How? For each party:
 - Scale the image of the torsion basis by a random (secret) integer (delete it after usage)
 - ⇒ reveal less information
 - Degree of the isogeny is a random (secret) divisor (delete it after usage)
 - ⇒ reveal less information

But d_A and d_B need to be different from the SIDH-degrees:

$$d_A = \prod_{i=1}^t \ell_i^{a_i}$$
 and $d_B = \prod_{i=1}^t q_i^{b_i}$ are coprime integers s.t. $d_A \approx d_B$

MD-SIDH - Masked Degree SIDH

$$d_A = \prod_{i=1}^t \ell_i^{a_i}$$
 and $d_B = \prod_{i=1}^t q_i^{b_i}$ are coprime integers s.t. $d_A \approx d_B$

Why public parameters of this form?

SIDH has $d_A=\ell_A^a$ and $d_B=\ell_B^b$, but this way we only have a+1 and b+1 possible divisors...

We want **more divisors** for more security!

Note: t depends on λ

The rest of the protocol is analogous to SIDH

FESTA – Fast Encryption from Supersingular Torsion Attack

- Isogeny-based Public-key **Encryption** scheme
- How? Use SIDH attacks in a constructive way to create a trapdoor function $f_{\rm pk}$
- Run-times:
 - KeyGen in 4.47 seconds
 - Enc in 3.09 seconds
 - Dec in 9.14 seconds

FESTA – The trapdoor function

Overview – 4 algorithms:

- $(E_0, P_b, Q_b) \leftarrow \mathsf{SetUp}(\lambda)$
- (sk, pk) \leftarrow KeyGen(λ) s.t. sk = (\mathbf{A} , ϕ_A), pk = (E_A , R_A , S_A)
- $(E_1, R_1, S_1, E_2, R_2, S_2) \leftarrow f_{pk}(\phi_1, \phi_2, \mathbf{B})$
- $(\phi_1, \phi_2, \mathbf{B}) \leftarrow f_{\mathsf{pk}}^{-1}(E_1, R_1, S_1, E_2, R_2, S_2)$

$$\begin{pmatrix} P_b \\ Q_b \end{pmatrix} \qquad \begin{pmatrix} R_A \\ S_A \end{pmatrix} = \mathbf{A} \cdot \begin{pmatrix} \phi_A(P_b) \\ \phi_A(Q_b) \end{pmatrix}$$

$$E_0 \longrightarrow E_A$$

$$\uparrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow$$

FESTA – The trapdoor function

Overview – 4 algorithms:

- $(E_0, P_b, Q_b) \leftarrow \mathsf{SetUp}(\lambda)$
- (sk, pk) \leftarrow KeyGen(λ) s.t. sk = (\mathbf{A} , ϕ_A), pk = (E_A , R_A , S_A)
- $(E_1, R_1, S_1, E_2, R_2, S_2) \leftarrow f_{pk}(\phi_1, \phi_2, \mathbf{B})$
- $(\phi_1, \phi_2, \mathbf{B}) \leftarrow f_{\mathsf{pk}}^{-1}(E_1, R_1, S_1, E_2, R_2, S_2)$

$$\begin{pmatrix} P_b \\ Q_b \end{pmatrix} \qquad \begin{pmatrix} R_A \\ S_A \end{pmatrix} = \mathbf{A} \cdot \begin{pmatrix} \phi_A(P_b) \\ \phi_A(Q_b) \end{pmatrix}$$

$$E_0 \xrightarrow{\phi_A} \qquad E_A$$

$$\downarrow^{\phi_1} \qquad \downarrow^{\psi} \qquad \downarrow^{\phi_2}$$

$$E_1 \qquad \begin{pmatrix} \psi(R_1) \\ \psi(S_1) \end{pmatrix} = [\deg \phi_1] \cdot \mathbf{A}^{-1} \cdot \begin{pmatrix} R_2 \\ S_2 \end{pmatrix} \qquad E_2$$

$$\Leftrightarrow_1(P_b) \qquad \Leftrightarrow_1(P_b) \qquad \Leftrightarrow_2(R_2) \qquad E_2$$

$$\begin{pmatrix} R_1 \\ S_1 \end{pmatrix} = \mathbf{B} \cdot \begin{pmatrix} \phi_1(P_b) \\ \phi_1(Q_b) \end{pmatrix} \qquad \deg \psi = d_1 \cdot d_A \cdot d_2 \qquad \begin{pmatrix} R_2 \\ S_2 \end{pmatrix} = \mathbf{B} \cdot \begin{pmatrix} \phi_2(R_A) \\ \phi_2(S_A) \end{pmatrix}$$

POKE – Point-based Key Exchange

- POKE at the moment is:
 - The **most compact** post-quantum PKE $(p \approx 2^{3\lambda})$
 - The **most efficient** isogeny-based PKE (runtime ≈ 0.3 seconds)
- How? Alice and Bob use different types of isogenies:

Name	Description	Alice	Bob
SIDH isogeny	Rational 1-dimensional	1	1
FESTA isogeny	Irrational 2-dimensional	✓	X

• Different types of isogenies have different representations

POKE – Isogeny representations

- Different types of isogenies have different representations:
 - SIDH isogenies:
 - Representation: 1 curve (domain), 1 kernel
 - To close the commutative diagram, must reveal the randomly scaled image of the torsion basis under the secret isogeny (M-SIDH)
 - ② FESTA isogenies:
 - Representation: 2 curves (domain, codomain), degree, image of the 2^a -torsion basis (*constructive* application of SIDH attacks)
 - To close the commutative diagram, *POKE construction*

Name	Description	Alice	Bob
SIDH isogeny	Rational 1-dimensional	✓	1
FESTA isogeny	Irrational 2-dimensional	✓	X

POKE construction

Part 3 Conclusions

Conclusions

Key insights:

- SIDH attacks were a temporary setback, but led to new developments
- Optimism that robust quantum-resistant solutions can be achieved

Thank you for your attention!

Questions?

References I

- [De 17] Luca De Feo. "Mathematics of isogeny based cryptography". In: arXiv preprint arXiv: 1711.04062 (2017). DOI: 10.48550/arXiv.1711.04062.
- [Pet17] Christophe Petit. "Faster algorithms for isogeny problems using torsion point images". In: Advances in Cryptology—ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II 23. Springer. 2017, pp. 330–353. DOI: 10.1007/978-3-319-70697-9_12.

References II

- [CD23] Wouter Castryck and Thomas Decru. "An efficient key recovery attack on SIDH". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2023, pp. 423–447. DOI: 10.1007/978-3-031-30589-4_15.
- [Mai+23] Luciano Maino et al. "A Direct Key Recovery Attack on SIDH". In: Advances in Cryptology – EUROCRYPT 2023. Ed. by Carmit Hazay and Martijn Stam. Cham: Springer Nature Switzerland, 2023, pp. 448–471. ISBN: 978-3-031-30589-4. DOI: 10.1007/978-3-031-30589-4_16.
- [Rob23] Damien Robert. "Breaking SIDH in polynomial time". In:

 Annual International Conference on the Theory and

 Applications of Cryptographic Techniques. Springer. 2023,
 pp. 472–503. DOI: 10.1007/978-3-031-30589-4_17.