Genetic Variation and Transcriptional Regulation

BIOM262 - Quantitative Methods in Genetics and Genomics

Graham McVicker – Salk Institute

Which genetic variants affect human traits?

Alzheimer's Disease

Ankylosing Spondyliti

Multiple Sclerosis

Leukemia

Schizophrenia

Psoriasis

Breast Cancer

Rheumatoid Arthritis
Coronary Heart Disease

Autism

Celiac Disease

Crohn's Disease

Parkinson's Disease

Type I Diabetes

Systemic Lupus Erythematosus

Topics

- Genome-wide association studies
- Molecular quantitative trait loci (QTLs)
- Gene expression QTLs
- Chromatin QTLs
- DNA methylation QTLs
- Intersection of molecular QTLs and GWAS

Molecular traits as an intermediate phenotype

Why use molecular traits?

- Close to underlying genetics
 - affected by small number of polymorphisms
 - require smaller sample sizes
- Can measure 1000s of traits in single experiment (e.g. RNA-seq)
- Reveal molecular basis of organismal traits
 - implicate specific cell types

Discussion

- What else could be used as molecular or cellular traits?
- How would you measure these?

The first gene expression QTL mapping study

Cross two diverged yeast strains "RM" and "BY"

Genotype "segregants" to identify parental genome segments

Brem et al. 2002

A yeast eQTL

Quantitative Trait Locus Mapping with recombinant inbred lines

eQTL mapping in humans

Pedigree-based mapping of eQTLs in human B cell lines

eQTL mapping with RNA-seq

Pickrell et al. 2010

Splicing QTLs (sQTLs)

eQTLs are enriched near transcription start sites

eQTLs are enriched in regions with open/active chromatin

Distance from TSS and DNase sensitivity are predictive of eQTLs

Gaffney et al. 2012

Chromatin as a molecular trait

Discussion

 What aspects of chromatin could be treated as a molecular trait?

 Do these traits have discrete or continuous values?

Nucleosomes are depleted in regulatory regions

digest chromatin with Deoxyribonuclease 1 (DNase1)

sequence DNA fragments

ТТСТТА АССТТТАТСТТССТТТА АТССТС

TTTCTTACGACTGTACGATCAAAACGGGG

AGGCGGCAAGCAGGTGCAGCGTTTTTATA

GGGCTACAACACGTTGGTGCACCCAACAC

GTTCGTTTAATGGTGGCCGGAGGG
GTTTATGTTCGTTTAATGGTGCCG
GTTTATGTTCGTTTAATGGTGCCG
AAGGTTTATGTTCGTTTAATGGTG
TTGTTAAGGTTTATGTTCGTTTAA

TTGTTAAGGTTTATGTTCGTTTAATGGTG

TTTCTTACGACTGTACGATCAAAACGGGG

AGGCGGCAAGCAGGTGCAGCGTTTTTATA

GGGCTACAACACGTTGGTGCACCCAACAC

DNase hypersensitive sites

TTTCTTACGACTGTACGATCAAAACGGGG

AGGCGGCAAGCAGGTGCAGCGTTTTTATA

GGGCTACAACACGTTGGTGCACCCAACAC

DNase sensitivity as a quantitative trait 25 DNasel sensitivity CC (n=27)CT (n=35) TT (n=8) -100bp -50bp +50bp +100bp 0

distance from center of DNase peak

Determining nucleosome positions with MNase-seq

digest chromatin with micrococcal nuclease (MNase)

Determining nucleosome positions with MNase-seq

isolate nucleosome-sized fragments and sequence ends

Determining nucleosome positions with MNase-seq

dsQTLs are associated with nucleosome

dsQTLs are associated with nucleosome

Distance from midpoint of sensitive site (bp)

Gaffney*, McVicker* et al. 2012

Histone modifications

H3K4me1: active/open chromatin outside of promoters

H3K4me3: active promoters

H3K27ac: active promoters & enhancers

H3K27me3: silenced genes

Measuring histone marks with ChIP-seq

Measuring histone marks with ChIP-seq

Measuring histone marks with ChIP-seq

High-throughput DNA sequencing

TTGTTAAGGTTTATGTTCGTTTAATGGTG

TTTCTTACGACTGTACGATCAAAACGGGG

AGGCGGCAAGCAGGTGCAGCGTTTTTATA

GGGCTACAACACGTTGGTGCACCCAACAC

Measuring histone marks with ChIP-seq

Map reads to genome

GTTCGTTTAATGGTGGCCGGAGGG GTTTATGTTCGTTTAATGGTGCCG GTTTATGTTCGTTTAATGGTGCCG AAGGTTTATGTTCGTTTAATGGTG TTGTTAAGGTTTATGTTCGTTTAA

TTGTTAAGGTTTATGTTCGTTTAATGGTG

TTTCTTACGACTGTACGATCAAAACGGGG

AGGCGGCAAGCAGGTGCAGCGTTTTTATA

GGGCTACAACACGTTGGTGCACCCAACAC

Measuring histone marks with ChIP-seq

Identify ChIP-seq peaks

TTGTTAAGGTTTATGTTCGTTTAATGGTG

TTTCTTACGACTGTACGATCAAAACGGGG

AGGCGGCAAGCAGGTGCAGCGTTTTTATA

GGGCTACAACACGTTGGTGCACCCAACAC

ChIP-seq data from 10 individuals

Are eQTLs also associated with histone modifications?

Are eQTLs also associated with histone modifications?

Are dsQTLs also associated with histone modifications?

Are dsQTLs also associated with histone modifications?

Can we identify Histone Mark QTLs?

Combined Haplotype Test

Read Depth Association Test

Model read counts with Poisson distribution:

$$\lambda = 2\alpha \qquad \alpha + \beta \qquad 2\beta$$

Allelic Imbalance Test

Model reference proportion with binomial distribution:

$$p = \frac{\alpha}{\alpha + \beta}$$

Haplotype Imbalance Test

- Phase SNPs
- Test allelic imbalance across entire haplotype

Combined Haplotype Test

Read Depth Association Test

Haplotype Imbalance Test

null hypothesis, $\mathbf{H_0}$: $\alpha = \beta$

alternative hypothesis, $\mathbf{H_1}$: $\alpha \neq \beta$

Standard mapping of H3K27ac QTLs with 10 Individuals

Combined Haplotype Test Mapping of H3K27ac QTLs

DNA methylation QTLs

Banovich et al. 2014

DNA Methylation QTLs are often also DNase sensitivity QTLs

dsQTL SNPs association with methylation

Banovich et al. 2014

Histone mark QTLs are often DNA methylation QTLs

Li et al. 2016

Sharing of regulatory QTLs

Intersecting eQTLs with GWAS

GWAS enrichment in cell-type specific annotations

Summary

- Many molecular traits can be associated with genetic variants
- Molecular QTLs can reveal mechanism underlying organismal traits
- Smaller samples are needed to map molecular QTLs that organismal traits
- Genetic associations are challenging to interpret