พืชคณิตบูลีน และการลดรูปสมการ

รหัสวิชา 30127-2004 (2-3-3) ดิจิทัลและไมโครคอนโทรลเลอร์

Digital And Microcontroller

ภาษาซีกับไมโครคอนโทรลเลอร์

ภาษาซีกับไมโครคอนโทรลเลอร์

- 1. โครงสร้างของการเขียนโปรแกรมภาษาซี
- 2. ตัวแปร (Variable)
- 3. การเขียนฟังก์ชัน
- 3.1 ฟังก์ชันที่ไม่มีการให้ค่าเมื่อทำการเรียกใช้งานและไม่มีการคืนค่าเมื่อออก จากการทำงานของฟังก์ชัน
- 3.2 ฟังก์ชันที่มีการส่งผ่านค่าเมื่อทำการเรียกใช้งานและไม่มีการคืนค่าเมื่อออก จากการทำงานของฟังก์ชัน
- 3.3 ฟังก์ชันที่ไม่มีการส่งผ่านค่าเมื่อทำการเรียกใช้งานและมีการคืนค่าข้อมูล เมื่อออกจากการทำงานของฟังก์ชัน
- 3.4 ฟังก์ชันที่มีการส่งผ่านค่าเมื่อทำการเรียกใช้งานและมีการคืนค่าข้อมูลเมื่อ ออกจากการทำงานของฟังก์ชัน

Digital And Microcontroller

2

ภาษาซีกับไมโครคอนโทรลเลอร์

- 4. ตัวดำเนินการ และนิพจน์คณิตศาสตร์
 - 4.1 ตัวดำเนินการนิพจน์ทางคณิตศาสตร์ (Arithmetic Operation)
 - 4.2 ตัวดำเนินการเปรียบเทียบ (Comparative Operation)
 - 4.3 ตัวดำเนินการทางตรรกะ (Logical Operation)
 - 4.4 ตัวดำเนินการกำหนดค่า
- 5. คำสั่งพื้นฐานในเขียนโปรแกรมภาษาซี
 - 5.1 คำสั่งการตรวจสอบเงื่อนไข
 - 5.2 คำสั่งวนรอบการทำงาน

Digital And Microcontroller

ภาษาซีกับไมโครคอนโทรลเลอร์

- 6. การใช้งานขาไมโครคอนโทรลเลอร์ด้วยภาษซี
- 6.1 การใช้งานขาไมโครคอนโทรลเลอร์ตระกูล MCS-51,PIC16F และAVR เป็นขาสัญญาณเอาต์พุตด้วยภาษาซี
- 6.2 การใช้งานขาไมโครคอนโทรลเลอร์ตระกูล MCS-51,PIC16F และAVR เป็นขาสัญญาณอินพุตด้วยภาษาซี
 - 7. การใช้งานซอฟต์แวร์เพื่อเขียนโปรแกรมภาษาซีของไมโครคอนโทรลเลอร์

Digital And Microcontroller

4

ภาษาซีกับไมโครคอนโทรลเลอร์

1. โครงสร้างของการเขียนโปรแกรมภาษาซี

การเขียนโปรแกรมภาษาซีจะมีรูปแบบของโครงสร้างในการเขียนโปรแกรมอยู่ 2 รูปแบบใหญ่ๆ ดังนี้

1. โครงสร้างของการเขียนโปรแกรมภาษาซีรูปแบบที่ 1

#include <headerfile.h> //Preprocessor Directives
void function() //Subroutine Function
{
;
}
void main() //Main Function
{

Digital And Microcontroller

ภาษาซีกับไมโครคอนโทรลเลอร์

โครงสร้างของการเขียนโปรแกรมภาษาซีรูปแบบที่ 2
 #include <headerfile.h> //Preprocessor Directives
 void function(); // Function Prototype

Digital And Microcontroller

ภาษาซีกับไมโครคอนโทรลเลอร์

2. ตัวแปร (Variable)

กฏในการตั้งชื่อตัวแปร

- 1. ต้องขึ้นต้นด้วยตัวอักษร ตัวต่อไปจะเป็นตัวอักษรหรือตัวเลขก็ได้
- 2. ห้ามใช้สัญลักษณ์อื่นใด ยกเว้น \$ และขีดล่าง
- 3. ตัวอักษรพิมพ์เล็ก และพิมพ์ใหญ่มีความหมายต่างกัน
- 4. ห้ามเว้นวรรคระหว่างตัวแปร
- ห้ามตั้งชื่อซ้ำกับคำสงวน

รูปแบบของการประกาศตัวแปร

name; type โดย type = ชนิดของข้อมูล name = ชื่อของตัวแปร

Digital And Microcontroller

ภาษาซีกับไมโครคอนโทรลเลอร์

ตารางที่ 1.1 ตารางชนิดข้อมูลของตัวแปร

		_ *
ชนิดตัวแปร	จำนวนบิต	ค่าข้อมูลที่เก็บได้
char	8	-128 ถึง 127
unsigned char	8	0 ถึง 255
int	16	-32768 ถึง 32767
unsigned int	16	0 ถึง 65535
long	32	-2147483648 ถึง 2147483648
unsigned long	32	0 ถึง 4294967925
float	32	3.4E-38 ถึง 3.4E+38
double	64	1.7E-308 ถึง 1.7E+308
bit (MCS-51)	1	0 ถึง 1

Digital And Microcontroller

ภาษาซีกับไมโครคอนโทรลเลอร์

การเขียนโปรแกรมภาษาซีด้วย Complier AvrGCC ชนิดของข้อมูลที่นิยมใช้งาน สามารถกำหนดได้อีก 3 รูปแบบ คือ

- 1. uint8_t คือการประกาศตัวแปรแบบ unsigned char
- 2. uint16_t คือการประกาศตัวแปรแบบ unsigned int
- 3. uint32_t คือการประกาศตัวแปรแบบ unsigned long

ในกรณีที่มีการประกาศตัวแปรเพื่อใช้งานแบบพิเศษ จะต้องมีข้อความกำกับขึ้นต้น ก่อนการประกาศตัวแปร ซึ่งมักจะพบเจอในการเขียนโปรแกรมของภาษาซีสำหรับ ไมโครคอนโทรลเลอร์ประมาณ 3 รูปแบบได้แก่

- 1. การระบุคำ extern โดยมีรูปแบบ extern type name;
- 2. การระบุคำ static โดยมีรูปแบบ static type name;
- 3. การระบุคำ volatile โดยมีรูปแบบ volatile type name;

Digital And Microcontroller

ภาษาซีกับไมโครคอนโทรลเลอร์

ชนิดของตัวแปร

ตัวแปรจะแบ่งออกเป็น 2 ชนิดใหญ่ ๆ ได้แก่

- 1. Global variable คือตัวแปรที่ประกาศไว้ภายนอกฟังก์ชันทุกฟังกชัน ซึ่ง ฟังก์ชันอื่น ๆ สามารถเรียกใช้งานตัวแปรแบบนี้ได้
- 2. Local variable คือ ตัวแปรที่ประกาศภายในฟังก์ชันหลัก หรือฟังก์ชัน ย่อย การใช้งานจะสามารถใช้งานได้เฉพาะฟังก์ชันที่ประกาศไว้เท่านั้น

Digital And Microcontroller

10

ภาษาซีกับไมโครคอนโทรลเลอร์

3. การเขียนฟังก์ชัน

การเขียนโปรแกรมฟังก์ชันย่อยในภาษาซีจะมีรูปแบบและองค์ประกอบใน การเขียนดังนี้

> function-type function-name (Argument Variable) type variable; statement instruction; return value:

> > Digital And Microcontroller

11

ภาษาซีกับไมโครคอนโทรลเลอร์

3.1 ฟังก์ชันที่ไม่มีการให้ค่าเมื่อทำการเรียกใช้งานและไม่มีการคืนค่าเมื่อออก จากการทำงานของฟังก์ชัน

รูปแบบในการเขียน void function-name() type variable; statement instruction;

Digital And Microcontroller

ภาษาซีกับไมโครคอนโทรลเลอร์

3.2 ฟังก์ชันที่มีการส่งผ่านค่าเมื่อทำการเรียกใช้งานและไม่มีการคืนค่าเมื่อออก จากการทำงานของฟังก์ชัน

```
รูปแบบในการเขียน
void function-name(Argument Variable)
{
    type variable;
    statement instruction;
}
```

Digital And Microcontroller

13

17

ภาษาซีกับไมโครคอนโทรลเลอร์

ภาษาซีกับไมโครคอนโทรลเลอร์

3.4 ฟังก์ชันที่มีการส่งผ่านค่าเมื่อทำการเรียกใช้งานและมีการคืนค่าข้อมูลเมื่อ ออกจากการทำงานของฟังก์ชัน

```
รูปแบบในการเขียน
function-type function-name( Argument Variable)
{
    type variable;
    statement instruction;
    return value;
}
```

Digital And Microcontroller

ภาษาซีกับไมโครคอนโทรลเลอร์

ตัวดำเนินการ และนิพจน์คณิตศาสตร์
 ส.1 ตัวดำเนินการนิพจน์ทางคณิตศาสตร์ (Arithmetic Operation)

ตัวดำเนินการ	ความหมาย	ตัวอย่าง
.+.	ນາກ (addition)	x + y
	71 (subtraction)	х-у
*	កូយ(multiplication)	x * y
7	หาร(division)	x / y
%	หารเอาผลลัพธ์เฉพาะเศษ	x % y
++	เพิ่มค่าครั้งละ 1	x++
-	ลดค่าครั้งละ เ	х

รูปที่ 1.1 รูปตารางแสดงตัวดำเนินการนิพจน์ทางคณิตศาสตร์ของภาษาซึ

Digital And Microcontroller

16

ภาษาซีกับไมโครคอนโทรลเลอร์

4.2 ตัวดำเนินการเปรียบเทียบ (Comparative Operation)

ตัวคำเนินการ	ความหมาย	ตัวอย่าง
>	มากกว่า	x > y
<	น้อยกว่า	x < y
>=	มากกว่าหรือเท่ากับ	x>= y
<=	น้อยกว่าหรือเท่ากับ	x <= y
	เท่ากับ	x == y
!=	ไม่เท่ากับ	x != y

รูปที่ 1.2 รูปตารางแสดงตัวดำเนินการเปรียบเทียบของภาษาซี

Digital And Microcontroller

ภาษาซีกับไมโครคอนโทรลเลอร์

4.3 ตัวดำเนินการทางตรรกะ (Logical Operation)

ตัวคำเนินการ	กวามหมาย	ตัวอย่าง
&&	uns(and)	mark>=80&&mark<=100
i i	หรือ(or)	score<0 score>100
it.	Tai(not)	1x &&1v

รูปที่ 1.3 รูปตารางแสดงตัวดำเนินการทางตรรกะที่ใช้ งานร่วมกับชุดคำสั่ง if(),for(),while() และ do-while()

ตารางที่ 1.2 ตารางตัวดำเนินการทางตรรกะของภาษาซีเพื่อใช้ในการเปลี่ยนแปลงค่าข้อมูล

ตัวดำเนินการ	ความหมาย	ตัวอย่าง
&	And Data	A & 0xff
I	Or Data	A 0x03
! หรือ ~	Not Data	!A หรือ ~A
٨	Xor Data	A ^ 0xff

Digital And Microcontroller

ภาษาซีกับไมโครคอนโทรลเลอร์

4.4 ตัวดำเนินการกำหนดค่า

ตัวคำเนินการ	ความหมาย	ตัวอย่าง
=	กำหนดค่าให้เท่ากับ	x = y
+=	การเพิ่มคำ	х у ителл х - х - у
-88	การลบคำ	x y utern x - x - y
*	การคูณ	x *= y wiein x = x * y
/	หารใต้ผลลัพธ์จำนวนเต็ม	$x := y \text{ when } x = x \wedge y$
1/6-	การหารได้ผลลัพธ์เสม	x %= y are in x = x % y
&=	ดำเนินการ	x &= y u1410 x = x & y
=	คำเนินการ	x = y site to x = x y
^=	คำเนินการ	x ^= y utern x = x ^ y
<<=	การเลื่อนบิดไปทางข้าย	x <<=2 tris (n x = x <<)
>>=	การเลื่อนบิดไปทางขวา	x >>-2 unein x = x >>2

รูปตารางที่ 1.4 รูปตารางแสดงการใช้งานตัวดำเนินการกำหนดค่าของภาษาซีในรูปแบบต่าง ๆ

ภาษาซีกับไมโครคอนโทรลเลอร์

5. คำสั่งพื้นฐานในเขียนโปรแกรมภาษาซี 5.1 คำสั้งการตรวจสอบเงื่อนไข

> 5.1.1 กลุ่มคำสั่งตรวจสอบเงื่อนไขในรูปแบบคำสั่ง if() 5.1.1.1 คำสั่งตรวจสอบเงื่อนไข 1 ทางเลือก

> > รูปแบบ if (เงื่อนไข) ประโยคคำสั่งเมื่อเงื่อนไขเป็นจริง;

5.1.1.2 คำสั่งตรวจ สอบเงื่อนไข 2 ทางเลือก

รูปแบบ if (เงื่อนไข) ประโยคคำสั่งเมื่อเงื่อนไขเป็นจริง; } else { ประโยคคำสั่งเมื่อเงื่อนไขเป็นเท็จ;

Digital And Microcontroller

20

ภาษาซีกับไมโครคอนโทรลเลอร์

5.1.1.3 คำสั่งตรวจสอบเงื่อนไขหลายทางเลือกโดยใช้ if

```
รูปแบบ if (เงื่อนไข 1)
                     ประโยคคำสั่งเมื่อเงื่อนไขที่ 1 เป็นจริง;
         } else if ( เงื่อนไขที่ 2) {
                     ประโยคคำสั่งเมื่อเงื่อนไข 2 เป็นจริง;
         } else if ( เงื่อนไขที่ n) {
                     ประโยคคำสั่งเมื่อเงื่อนไข n เป็นจริง;
                     ประโยคคำสั่งเมื่อเงื่อนไขทั้งหมดเป็นเท็จ;
```

Digital And Microcontroller

21

23

ภาษาซีกับไมโครคอนโทรลเลอร์

5.1.2 กลุ่มคำสั่งตรวจสอบเงื่อนไขในรูปแบบคำสั่ง switch-case

```
รูปแบบ switch (ตัวแปร)
               case 1 : ประโยคคำสั่งเมื่อตัวแปรมีค่าเท่ากับ 1 ;
               case 2 : ประโยคคำสั่งเมื่อตัวแปรมีค่าเท่ากับ 2 ;
                         break;
               case n : ประโยคคำสั่งเมื่อตัวแปรมีค่าเท่ากับ n ;
                         break;
               default : break;
```

Digital And Microcontroller

ภาษาซีกับไมโครคอนโทรลเลอร์

5.2 คำสั่งวนรอบการทำงาน

5.2.1 คำสั่ง for()

```
รูปแบบ for (ให้ค่าเริ่มต้นแก่ตัวแปร ; ตรวจสอบเงื่อนไข ; เพิ่มค่าหรือลดค่าตัวแปร )
                   ประโยคคำสั่งเมื่อเงื่อนไขเป็นจริง:
```

5.2.2 **คำสัง** while()

```
รูปแบบ while (เงื่อนไข)
                  ประโยคคำสั่งเมื่อเงื่อนไขเป็นจริง;
```

Digital And Microcontroller

ภาษาซีกับไมโครคอนโทรลเลอร์

5.2.3 คำสั่ง do-while()

```
รูปแบบ do {
                ประโยคคำสั่งก่อนที่จะทำการตรวจสอบเงื่อนไข:
         } while ( เงื่อนไข ):
```

6. การใช้งานขาไมโครคอนโทรลเลอร์ด้วยภาษาซี

การใช้งานขาของไมโครคอนโทรลเลอร์ตระกูล MCS-51,PIC16F และ AVR ในลักษณะ ขาสัญญาณดิจิทัลจะมีการใช้งาน 2 รูปแบบคือ

6.1 การใช้งานขาไมโครคอนโทรลเลอร์ตระกูล MCS-51,PIC16F และAVR เป็น ขาสัญญาณเอาต์พุตด้วยภาษาซี

6.2 การใช้งานขาไมโครคอนโทรลเลอร์ตระกูล MCS-51,PIC16F และ AVR เป็น ขาสัญญาณอินพุตด้วยภาษาซี

Digital And Microcontroller

24

ภาษาซีกับไมโครคอนโทรลเลอร์ การเขียนโปรแกรมภาษาซีเพื่อกำหนด และใช้งานพอร์ตอินพุตเอาต์พุตของ ไมโครคอนโทรลเลอร์ตระกูล MCS-51 , PIC16F และ AVR ตัวอย่างการ include หัวไฟล์ MCS51-51 PIC16F PIC.16F AVR #include <xc.h> #include <ar/> /*เป็นการเรียกให่ส์ IO มาตรฐานของ PIC ซึ่งของเทียวรทัศนีเมื่อสออนเริ่มดับใช้งาน IDE ได้กำหนดเบอร์ไมโครคอนใหรลเลอร์ เตระกูล PIC เรียบร้อยแล้ว*/ "ของ AVR"/ "" #include <reg51.h> /*สำหรับไมโครคอนโทรลเลอร์ที่อ้างอิง ไมโครโพรเชสเชอร์ 8051 #include <reg52.h> /*สำหรับไมโครคอนโทรลเสอร์ที่อ้างอิง ไมโครโพรเชสเซอร์ 8052 #include <avr/iom32.h> /*เป็นการเรียกไฟล์ IO ของเบอร์ ATMEGA32*/

Digital And Microcontroller

25

/ //หรือ

ภาษาซีกับไมโครคอนโทรลเลอร์			
ตัวอย่างการเ	ตัวอย่างการประกาศตัวแปรที่อ้างถึงขาไมโครคอนโทรลเลอร์		
MCS-51	PIC16F	AVR	
sbit sw1 = P1^0; /*กำหนดตัวแปรซื้อ sw1 เพื่อใช้ในอ้าง ถึงข้อมูลที่ขา P1.0*/ รักษณดตัวแปรซื้อ led1 เพื่อใช้ใน การอ้างถึงข้อมูลที่ขา P1.1*/ หมายเหตุ MCS51 ไม่ จำเป็นต้อง กำหนด Direction ของขาก็สามารถใช้ งานเป็นขาอินทุดหรือเอาต์ทุดได้	#define sw1 RBO /*กำหนดตัวแปรซื่อ sw1 เพื่อใช้ในอ้าง ถึงข้อมูลที่ชา RBO ที่ต้องการให้ขา RBO ทำหน้าที่เป็นอินทุต*/ #define led1 RB1 /*กำหนดตัวแปรซื่อ led1 เพื่อใช้ในการ อ่างถึงข้อมูลที่ชา RBIที่ต้องการให้ขา RBI ทำหน้าที่เป็นเอาต์ทุต*/ /*เมื่อประกาศด้วนปรแล้วในล่วน ฟังก์ชัน main จะต้องทำการกำหนด กับrection ให้ขาพอร์ตแหล่านี้ให้ทำ หน้าที่เป็นขาอินทุตหรือเอาต์ทุตโดยใช้ คำสั่ง TRISx=yy โดย x คือชื่อพอร์ต และ yy คือค่าข้อมูกที่กำหนดคุณสมบัติ	#define sw1 PINB0 /*กำหนดตัวแปรซื้อ sw1 เพื่อใช้ในอ้างถึง ข้อมูลที่ขา PB0 ที่ต้องการให้ขา PB0 ทำ หน้าที่เป็นอันทุต*/ #define led1 PB1 /*กำหนดตัวแปรซื้อ led1 เพื่อใช้ในการอ้าง ถึงข้อมูลที่ขา PB.1ที่ต้องการให้ขา PB.1 ทำ หน้าที่เป็นเอาดัทุต*/ /*เมื่อประกาศตัวแปรแล้วในส่วนฟังก์ชัน main จะต้องทำการกำหนด Direction ให้ขา พอร์ดแหล่าให้ทำหน้าที่เป็นขาอินทุดหรือ เอาด์ทุดโดยใช้คำสั่ง DDRc-yy โดย x คือ ชื่อพอร์ด และ yy คือคำข้อมูลที่กำหนด คุณสมบัติของขาพอร์ต*/	
Digital And Microcontroller 26			

ภาษาซีกับไมโครคอนโทรลเลอร์		
ตัวอย่างการกำหนดคุณสมบัติขาพอร์ตของไมโครคอนโทรลเลอร์ให้ทำหน้าที่เป็น อินพตหรือเอาต์พต		
MCS-51 MCS51 ไม่ จ้า เป็นต้องกำหนด Direction ของขากีสามารถใช้งานเป็น ขาอินพุศหรือเอาศ์พุศได้	PIC16F TRISB = 0b00000001; "ค่าที่กำหนดให้จีลแดยร์ TRISB เป็น ข้อมูลเลขฐานสองโดยเชียงจากข้ายมา ขวาเป็นค่าข้อมูลที่กำหนดการทำงาน ของชา RB7-RB0 ซึ่งค่า 0 หมายถึงให้ ทำงานเป็นขาเอาต์พุต และค่า 1 หมายถึงให้ทำงานเป็นขาอินพุต ดังนั้น จากคำสั่งขา RB7-RB1 จึงทำงานเป็นขา เอาต์พุต ส่วน RB0 ทำงานเป็นขา อินพุต"/	AVR DDRB = 0b0000001; phiกำหนดให้จีจิสเตอร์ DDRB เป็นข้อมูล เลขฐานสองโดยเรียงจากข้ายมาขวาเป็นค่า ข้อมูลที่กำหนดการทำงานของขา PB7-PB0 ซึ่งค่า 0 หมายถึงให้ทำงานเป็นขาเอาต์ทุต ค่า 1 หมายถึงให้ทำงานเป็นขาเอาต์ทุต ดังนั้นจากคำสั่งขา PB7-PB1 จึงทำงานเป็น ขาอินทุตส่วน PB0 ทำงานเป็นขา เอาต์ทุต*/
	Digital And Microcontroller	27

ภาษาซีกับไมโครคอนโทรลเลอร์		
ตัวอย่างการส่งค่าข้อมูลออกที่ขาพอร์ตในรูปแบบข้อมูล แบบบิตผ่านตัวแปรที่กำหนด		
MCS-51	PIC16F	AVR
led1 = 1; /*เป็นการส่งคำข้อมูล 1 หรือให้แรงต้น VCC ออกไป ยังขาพอร์ตของ ไม่โครคอนโทรลเลอร์ที่ถูกอ้างถึงด้วยตัว แปร led1*/	led1 = 1; /*เป็นการส่งค่าข้อมูล 1 หรือให้แรงคัน VDD ออกไป ยังชาพอร์ ตของ ไมโครคอนไทรลเลอร์ที่ถูกอ้างถึงค้วยตัว แปร led1*/	PORTB = (1< <led1); /*เป็นการส่งค่าข้อมูล 1 หรือให้แรงดัน VCC ออกไปยังขาพอร์ตของไมโครคอนโทรลเลอร์ ที่ถูกอ้างถึงด้วยตัวแปร led1*/</led1);
led1 = 0; /*เป็นการสงคำข้อมูล 0 หรือให้แรงดัน GND ออกไป ยังขาพอร์ดของ ไม่โครคอนโทรลเลอร์ที่ถูกอ้างถึงด้วยตัว แปร led1*/	led1 = 0; /*เป็นการส่งค่าข้อมูล 0 หรือให้แรงคัน VSS ออกไป ยังขาพอร์ดของ ในโครคอนโทรลเลอร์ที่ถูกอ้างถึงด้วยตัว แปร led1*/	PORTB &= ~_BV(led1); พรือ PORTB &= ~(1< <led1); *เป็นการส่งค่าข้อมูล="" 0="" <="" gnd="" led1*="" td="" ที่ถูกอ้างถึงตัวยตัวแปร="" หรือให้แรงตับ="" ออกไปยังชาพอร์ตของไมโครคอนโทรลเลอร์=""></led1);>
	Digital And Microcontroller	28

ภาษาซีกับไมโครคอนโทรลเลอร์		
ตัวอย่างการอ่านค่าข้อมูลจากขาพอร์ตในรูปแบบข้อมูลแบบ บิตมาเก็บไว้ในตัวแปรที่กำหนด		
MCS-51	PIC16F	AVR
bit dat; dat = sw1; /*เป็นนำค่าข้อมูลขนาด 1 บิตที่ขา พอร์ตที่ถ้าถึงด้วยตัวแปร sw1 มาเก็บ ไว้ที่ตัวแปร dat*/	unsigned char dat; dat = sw1; /*เป็นน้ำค่าข้อมูลขนาด 1 บิตที่ขา พอร์ตที่อ้างถึงคัวยดัวแปร sw1 มาเก็บ ไว้ที่ตัวแปร dat โดยตัวแปร dat จะเก็บ ค่าข้อมูลขนาด 1 byte */	unsigned char dat; dat = PINx & (1 <sxv1); /*เป็นนำคำข้อมูลขนาค 1 บิตที่ขาพอร์ตที่ อ้างถึงตัวอยัวแปร sw1 มาเก็บไว้ที่ตัวแปร dat โดยตัวแปร dat จะเก็บคำข้อมูลขนาค 1 byte*/</sxv1);
	Digital And Microcontroller	29

ภาษาซีกับไมโครคอนโทรลเลอร์		
ตัวอย่างการอ่านค่าข้อมูลจากขาพอร์ตในรูปแบบข้อมูลแบบบิตเพื่อ เปรียบเทียบกับค่าข้อมูลที่กำหนด		
MCS-51	PIC16F	AVR
If(sw1 == 0)	If(sw1 == 0)	If((PINx & (1< <sw1)) =="0)</td"></sw1))>
{ led1 = 1; }else{ led2 = 0; } /*เป็นการตรวจสอบข้อมูลที่ขาของ พอร์ตผ่านตัวแปร sw1 ว่ามีค่าเท่ากับ 0 หรือไม่ ถ้าใช่ให้ทำคำสั่งส่งข้อมูลออก ขาพอร์ตผ่านตัวแปร led1 มีค่าเป็น 1 แต่ถ้าไม่ใช้ให้ส่งค่าข้อมูล 0 ออกไปที่ขา พอร์ตผ่านตัวแปร led1*/	{ led1 = 1; plese(led1 = 0; } /*เป็นการตรวจสอบข้อมูลที่ขาของ พอร์ดะผ่านด้วนปร sw1 ว่ามีค่าเท่ากับ 0 หรือไม่ ถ้าใช่ให้ทำคำสั่งส่งข้อมูลออกขา พอร์ดะผ่านด้วนปร led1 มีค่าเป็น 1 แต่ ถ้าไม่ใช้ให้ส่งค่าข้อมูล 0 ออกไปที่ขา พอร์ดะผ่านด้วนปร led1*/	{ PORTx = _BV(led1); lets(
Digital And Microcontroller 30		

