A Refresher on Probabilities and K-means Clustering

Morteza Haghir Chehreghani

March 18, 2011

Overview

A Refresher on Probabilities

K-means Clustering

Refresher

Pen and Paper

Random Variables

- A random variable is a "probabilistic" outcome of an experiment, such as a coin flip or the height of a person chosen from a population.
- Notation:
 - X Random variable \approx a device from which we draw a value.
 - x If x is not capital, it denotes a value taken by the RV X. $Pr\{X=x\}$ denotes the probability for this to occur.
 - ${\mathcal X}$ Sample space or domain of X. The set of all values a draw from X may result in.

Random Variables

RVs take on values in a sample space.

Types of sample spaces:

- 1. Discrete sets:
 - Finite: for a coin flip $\mathcal{X} = \{H, T\}$
 - ▶ Infinite: $\mathcal{X} = \mathbb{N}, \mathbb{Z}$ etc.
- 2. Continuous sets: e.g. $\mathcal{X} = \mathbb{R}, \mathbb{R}_+, \mathbb{R}^d, [0, 1], [a, b]$

Probability distribution function describes how probabilities are distributed over the values of the random variable:

 $ightharpoonup p(\mathbf{x}) = \mathsf{the} \ \mathsf{probability} \ \mathsf{that} \ X \ \mathsf{takes} \ \mathsf{the} \ \mathsf{value} \ x.$

Probability of Random Variables

- ▶ A discrete distribution assigns a probability to every atom in the sample space of a random variable.
- For example, if X is an (unfair) coin, then the sample space consists of the atomic events X=H and X=T, and the discrete distribution might look like:

$$P(X = H) = 0.7$$
$$P(X = T) = 0.3$$

- For any valid discrete distribution, the probabilities over the atomic events must fulfill:
 - 1. Non-negativity: $P(x) \ge 0$
 - 2. Normalization: $\sum_{x \in \mathcal{X}} P(x) = 1$

Continuous Random Variables

► A continuous random variable can assume any value in an interval or in a collection of intervals.

$$P(a \le X \le b) = \int_{a}^{b} p(x)dx$$

Example: Find the probability that $0.5 \le X \le 1.5$

Continuous Random Variables

- ▶ For continuous probability distributions, we require:
 - 1. Non-negativity: $p(x) \ge 0$
 - 2. Normalization: $\int_{\mathcal{X}} p(x) dx = 1$
- ▶ **Notation:** We deal with three types of symbols:
 - $\Pr\{...\}$ Probability of an event (inside the curly brackets), such as $\Pr\{X = x\}$.
 - P(x) Probability mass function.
 - p(x) Probability density function.
- Density functions are only applicable in the case of continuous sample spaces.

Joint Probabilities

Typically, one considers collections of RVs. For example, the flipping of 4 coins involves 4 RVs, 1 for each coin.

Joint probability: The probability for precisely the values x,y

to occur together.

Definition: $P(x,y) := \Pr\{X = x, Y = y\}$

The joint distribution for a flip of each of 4 coins assigns a probability to every outcome in the space of all possible outcomes of the 4 flips.

If all coins are fair: P(HHHHH) = 0.0625 P(HHHHT) = 0.0625 P(HHTHHHHT) = 0.0625 ...

Conditional Probability

A conditional distribution is the distribution of some random variable given some evidence, such as the value of another random variable.

▶ **Def.**: P(X = x | Y = y) is the probability that X = x when Y = y.

Conditional probability can be defined in terms of the joint and single probability distributions:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

(which holds when P(Y) > 0)

The Chain Rule

The definition of conditional probability leads to the chain rule, which lets us define the joint distribution of two (or more) random variables as a product of conditionals:

The Chain Rule:

$$P(X,Y) = \frac{P(X,Y)P(Y)}{P(Y)}$$
$$= P(X|Y)P(Y)$$

- ightharpoonup The chain rule can be used to derive the P(X,Y) when it is not known.
- ▶ The chain rule can be extended to any set of *n* variables.

Marginalization

▶ Given a collection of random variables, we are often interested in only a subset of them. For example, we might want to compute P(X) from a joint distribution P(X,Y,Z).

Def.

Marginal probability: The probability for x to occur,

regardless of y.

Discrete case: $P(x) := \sum_{y \in \mathcal{Y}} P(x, y)$

Continues case: $p(x) := \int_{\mathcal{V}} p(x, y) dy$

Marginalization

This property actually derives from the chain rule:

$$\begin{array}{lcl} \sum_{y\in\mathcal{Y}}P(x,y) & = & \sum_{y\in\mathcal{Y}}P(x)P(y|x) & \text{ by the chain rule} \\ & = & P(x)\sum_{y\in\mathcal{Y}}P(y|x) & P(x) \text{ doesn't depend on y} \\ & = & P(x) & \sum_{y\in\mathcal{Y}}P(y|x) = 1 \end{array}$$

Bayes Rule

By the chain rule:

$$P(X,Y) = P(X|Y)P(Y)$$
$$= P(Y|X)P(X)$$

This is equivalently expressed as Bayes rule:

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

Independence

Random variables are independent if knowing about X tells us nothing about Y. That is,

$$P(Y|X) = P(Y)$$

► This means that their joint distribution factorizes:

$$P(X,Y) = P(X)P(Y)$$

▶ This factorization is possible because of the chain rule:

$$P(X,Y) = P(X)P(Y|X)$$

= $P(X)P(Y)$

I.i.d

- I.i.d. = independently, identically distributed
- $ightharpoonup RVs X_1, ..., X_n$ are i.i.d. iff
 - 1. They are (pairwise) statistically independent.
 - 2. All drawn according to the same distribution.
- Note: If $X_1, ..., X_n$ are i.i.d., then

$$p(x_1, ..., x_n) = p_{X_1}(x_1)...p_{X_n}(x_n)$$

= $\prod_{i=1}^n p(x_i)$

Expectation

Definition:

$$\mu_x := \mathrm{E}[X] := \int_{\mathcal{X}} x p(x) dx$$

The integral is called the first moment of p.

- ▶ Note: Expected value ≠ Most likely value.
- ► For a function *f*:

$$E[f(X)] := \int_{\mathcal{X}} f(x)p(x)dx$$

Variance

Definition:

$$\sigma_X^2 := \operatorname{Var}[X] := \int_{\mathcal{X}} (x - \mu_X)^2 p(x) dx$$

- \rightarrow second centralized moment of p.
- ▶ Always: $Var[X] \ge 0$
- ▶ Definition: The square root $\sigma_X = \sqrt{\operatorname{Var}[X]}$ is called the standard deviation of X.

Statistics

- Expectation and variance map distribution functions (densities or mass functions) to real values. They are examples of functionals of distribution functions.
- ▶ Note: A functional is a mapping which takes a function as its argument.
- Definition: We call a functional of a distribution function a statistic of the distribution.

Multiple Dimensions

A vector of random variables

$$\mathbf{X} = (X_1, ..., X_n)^{\top}$$

A draw $\mathbf{x} = (x_1 \dots x_n)^{\top}$ from \mathbf{X} defines a point in n-dimensional space.

- ▶ It is treated just like a list of 1D RV's.
- ▶ The vector components are not necessarily i.i.d
- ▶ We can add RV's to produce a new RV

$$Y := c_1 X_1 + c_2 X_2$$

Multidimensional Moment Statistics

Expectation: Vector of components expectation

$$\mathbf{E}[\mathbf{X}] := (\mathbf{E}[X_1], ..., \mathbf{E}[X_n])^{\top}$$

Variance: Generalized to covariance:

$$Cov[X,Y] := \int_{\mathcal{X}} \int_{\mathcal{Y}} p(x,y)(x-\mu_X)(y-\mu_Y) dx dy$$
$$= \operatorname{E}_{X,Y}[(x-\mu_X)(y-\mu_Y)]$$

- ▶ If X,Y are independent, then Cov[x,y] = 0
- Proportional behavior:

$$Cov[X,Y] > 0 \Leftrightarrow X,Y$$
 increase together $Cov[X,Y] < 0 \Leftrightarrow X,Y$ are anti-proportional

Covariance Matrix

▶ For RVs $X_1,...,X_n$ we use a covariance matrix Σ to describe their mutual covariances:

$$\Sigma_{i,j} := Cov[X_i, X_j]$$
 $i, j = 1, ..n$

Properties:

1. Diagonal entries are RVs variances

$$\Sigma_{i,j} := Cov[X_i, X_i] = Var[X_i]$$

2. Σ is symmetric

$$\Sigma_{i,j} = Cov[X_i, X_j] = Cov[X_j, X_i] = \Sigma_{j,i}$$

3. Σ is positive semi-definite

Brain Teaser

Question: Assume you have observed 2D data $\mathbf{X} \in \mathbb{R}^{2 \times N}$ (observations as columns). The first row of \mathbf{X} corresponds to the first dimension x_1 , the second row corresponds to x_2 .

For each of the 3 covariance matrices $\mathbf{C}_{\mathbf{X}}$, choose the iso-line plot (A-E) corresponding to the covariance matrix.

Brain Teaser

Gaussian Distribution (1D)

- ▶ Sample space $\mathcal{X} = \mathbb{R}$
- ▶ Definition: $p(x|\mu,\sigma) := \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$

Gaussian Distribution (nD)

- Sample space $\mathcal{X} = \mathbb{R}^n, \mathbf{x} = (x_1, ..., x_n)^{\top}$
- Definition:

$$p(\mathbf{x}|\mu, \Sigma) := \frac{1}{(\sqrt{2\pi})^n |\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Sigma^{-1}(\mathbf{x} - \mu))$$

where Σ is the covariance matrix and $|\Sigma|$ is its determinant

Data vs. Distribution

- Important: Be careful to distinguish between distributions (smooth functions in most examples) and data (point clouds).
- ► Machine learning:
 - ► Data = input
 - ▶ Distribution = model or assumption
- ML methods usually make some general assumptions about distribution, then try to obtain ("infer") the specifics from the data.

Example

- 1) Modeling step: Assume a Gaussian as model.
- 2) Inference step: Estimate Gaussian parameters $(\mu \text{ and } \sigma)$ from data.

Empirical distribution

- We try to regard data sample (imagine some point cloud) as a distribution.
- ▶ Problem: We only know wether or not a point is there, not how probable that is.
- ▶ Simple solution: Assign same probability to each point.

Def. Let $S = \{x_1, ..., x_n\}$ be a sample of the data, we call

$$P(x) := \frac{1}{n} \cdot \#\{y \in S | y = x\}$$

the empirical distribution defined by the data.

The Clustering Problem

- ▶ Consider N data points in a D-dimensional space. Each data vector is denoted by \mathbf{x}_n , n = 1, ..., N.
- ▶ Our goal is to partition the data set into *K* clusters.
- ▶ In other words, find vectors $\mathbf{u}_1, \dots, \mathbf{u}_K$ that represent the centroid of each cluster.
- ▶ A data point \mathbf{x}_n belongs to cluster k if the Euclidean distance between \mathbf{x}_n and \mathbf{u}_k is smaller than the distance to any other centroid.

K-means Cost Function

Objective

Minimize the following cost function

$$J(\mathbf{U}, \mathbf{Z}) = \|\mathbf{X} - \mathbf{U}\mathbf{Z}\|_{2}^{2} = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{k,n} \|\mathbf{x}_{n} - \mathbf{u}_{k}\|_{2}^{2}.$$

Here, $\mathbf{X} = [\mathbf{x}_1 \ \cdots \ \mathbf{x}_N] \in \mathbb{R}^{D \times N}$, $\mathbf{U} = [\mathbf{u}_1 \ \cdots \ \mathbf{u}_K] \in \mathbb{R}^{D \times K}$. We call the \mathbf{u}_k the centroids. And \mathbf{z}_n the assignments of data points to clusters.

Constraints on Z: Hard assignments

We consider the constraint $\mathbf{Z} \in \{0,1\}^{K \times N}$ with $\sum_k z_{k,n} = 1 \ \forall n$, i.e., one element per column set to 1.

K-means Algorithm

- 1. Initiate with a random choice of $\mathbf{u}_1^{(0)}, \dots, \mathbf{u}_K^{(0)}$ (or let $\mathbf{u}_1^{(0)}, \dots, \mathbf{u}_K^{(0)}$ equal data points from the set), set t=1.
- 2. Cluster assignment. Solve $\forall n$:

$$k^*(\mathbf{x}_n) = \operatorname*{argmin}_k \left\{ \|\mathbf{x}_n - \mathbf{u}_1^{(t)}\|_2^2, \dots, \|\mathbf{x}_n - \mathbf{u}_k^{(t)}\|_2^2, \dots, \|\mathbf{x}_n - \mathbf{u}_K^{(t)}\|_2^2 \right\}.$$

Then, $z_{k^*(\mathbf{x}_n),n}^{(t)} = 1$ and $z_{j,n}^{(t)} = 0 \ \forall j \neq k, \ j = 1, \dots, K$.

Centroid update. The centroids are given by:

$$\mathbf{u}_{k}^{(t)} = \frac{\sum_{n=1}^{N} z_{k,n}^{(t)} \mathbf{x}_{n}}{\sum_{i=1}^{N} z_{k,n}^{(t)}} \ \forall k, \ k = 1, \dots, K$$

4. Increment t. Repeat step 2 until $\|\mathbf{u}_k^{(t)} - \mathbf{u}_k^{(t-1)}\|_2^2 < \epsilon \ \forall k$ $(0 < \epsilon \ll 1)$ or until $t = t_{\text{finish}}$.

K-means Exercise

Question 1: Show that the K-means algorithm always converges.

Hint: Show that both steps only decrease the objective, unless the algorithm converged.

K-means Exercise

Question 2: Formally show that the K-means Algorithm can be recast as a Matrix Factorization problem.

Again, the cost function

$$J(\mathbf{U}, \mathbf{Z}) = \|\mathbf{X} - \mathbf{U}\mathbf{Z}\|_{2}^{2} = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{k,n} \|\mathbf{x}_{n} - \mathbf{u}_{k}\|_{2}^{2},$$

under the constraint $\mathbf{Z} \in \{0,1\}^{K \times N}$ with $\sum_k z_{k,n} = 1$.

Show that at Step 2, for a given u, the K-means algorithm solves:

$$\min_{\mathbf{Z}} \sum_{n=1}^{N} \sum_{k=1}^{K} \|\mathbf{x}_{n} - z_{k,n} \mathbf{u}_{k}\|_{2}^{2}$$

▶ Show that at **Step 3**, for a given **Z**, the *K*-means algorithm solves:

$$\min_{\mathbf{u}} \sum_{n=1}^{N} \sum_{k=1}^{K} \|\mathbf{x}_n - z_{k,n} \mathbf{u}_k\|_2^2$$