

Derivative Portfolio - Entity Relationship

www.peaks2tails.com Exposure Modelling

Exposure Metrics

$$V_0 = \text{MTM}$$
 of the trade or CE (current exposure)

$$V_t =$$
Future value of the trade at time t (random)

$$EFV(t) = (Expected Future Value) = \mathbb{E}[V_t]$$

Positive Exposure =
$$V_t^+ = \max\{V_t, 0\}$$

Negative Exposure =
$$V_t^- = \min\{V_t, 0\}$$

$$EE(t) = (Expected Exposure) = \mathbb{E}[V_t^+]$$

$$ENE(t) = (Expected Negative Exposure) = \mathbb{E}[V_t^{-}]$$

$$PFE(t) = (Potential Future Exposure) = q_{\alpha}(V_t)$$

$$EPE = (Expected Positive Exposure) = \underset{t \in (0,T)}{\operatorname{Avg}} \mathbb{E}[V_t^+]$$

$$EEE(t)$$
= (Effective Expected Exposure) = $Non\ decreasing\ EE(t)$

$$EEPE = (Effective Expected Positive Exposure) = Avg_{t \in (0,T)} EEE(t)$$

Equity Class

www.peaks2tails.com xVA modelling in Python

Modelling Exposure Metrics

www.peaks2tails.com Exposure Modelling

Equity Models - GBM

$$dS(t) = rS(t)dt + \sigma S(t)dW$$

Risk neutral dynamics

$$S(T) = S_t \exp\left(\left(r - \frac{1}{2}\sigma^2\right)(T - t) + \sigma Z\sqrt{T - t}\right)$$

$$\mathbb{E}[S(T)] = S_t \exp(r(T-t))$$

Density of S(t) is lognormal

Time Discretization for Monte Carlo

$$S(t + \delta t) = S(t) \exp\left(\left(r - \frac{1}{2}\sigma^2\right)(\delta t) + \sigma Z\sqrt{\delta t}\right)$$

Euler Maruyama

$$S(t + \delta t) = S(t) (1 + r\delta t + \sigma Z \sqrt{\delta t})$$

Milstein

$$S(t + \delta t) = S_t \left(1 + r\delta t + \frac{1}{2}\sigma^2(z^2 - 1)\delta t + \sigma Z\sqrt{\delta t} \right)$$

Simulate Exposure for Equity Products

1. Simulate equity dynamics

2. Pass simulated risk factors into the valuation functions

 $V_t^{Option} = \omega S_t N(\omega d_1) - \omega K e^{-r(T-t)} N(\omega d_2)$ $\omega = 1 \text{ for call and } -1 \text{ for put}$

3. Obtain the Exposure distribution V(t)

Rate Class

www.peaks2tails.com

(rate agreed date (t) = period start date (T_1))

Forward rates

 $f(t,T_1,T_2)$

(rate agreed date (t) < period start date (T_1))

- ✓ If t = today, everything is known
- \checkmark If t is in future, everything is random and needs to be modelled

Rates – Modelling choices

Short rate = instantaneous spot rate

$$r(t) \coloneqq f(t, t, t + \epsilon)$$

ZCB
$$P(t,T) = \mathbb{E}\left[\exp\left(-\int_{t}^{T} r(s)ds\right)\right]$$

Short rate models

• Vasicek, CIR, Ho-Lee, Hull-White

Instantaneous forward rate

$$f(t,T) \coloneqq f(t,T,T+\epsilon)$$

$$T \quad T+\epsilon$$

ZCB
$$P(t,T) = e^{-\int_t^T f(t,s)ds}$$

Instantaneous forward rate modelling framework

• HJM

ZCB $P(t,T) = e^{-R(t,T)(T-t)}$

Market rate models

BGM (Black 76 – a special case)

$$r(t) = \lim_{T \to t} f(t, T)$$

Short rate := r(t)

$$P(t,T) = \mathbb{E}\left[\exp\left(-\int_{t}^{T} r(s)ds\right)\right]$$

▶ Market rate $\coloneqq R(t,T)$

$$P(t,T) = e^{-R(t,T)(T-t)}$$

$$R(t,T) = -\frac{1}{T-t} \ln(P(t,T))$$

Instantaneous forward rate := f(t,T)

$$P(t,T) = e^{-\int_{t}^{T} f(t,s)ds}$$
$$f(t,T) = -\frac{\partial}{\partial T} \ln P(t,T)$$

$$R(t,T) = \frac{1}{T-t} \int_{t}^{T} f(t,s)ds$$
$$f(t,T) = R(t,T) + \frac{\partial R(t,T)}{\partial T} (T-t)$$

$$f(t, T_1, T_2) = \frac{R(t, T_2)(T_2 - t) - R(t, T_1)(T_1 - t)}{T_2 - T_1}$$

Term Structure Models - Vasicek Model Dynamics

SDE
$$dr(t) = k(\theta - r(t))dt + \sigma dW$$

Solution
$$r(t) = r(s)e^{-k(t-s)} + \theta(1 - e^{-k(t-s)}) + \sigma \int_{s}^{t} e^{-k(t-u)} dW_{u}$$

deterministic drift

$$\mathbb{E}[r(t)] = r(s)e^{-k(t-s)} + \theta (1 - e^{-k(t-s)})$$

$$t \to \infty, \mathbb{E}[r(t)] = \theta$$

Density of r(t) is normal

diffusion

$$\mathbb{V}[r(t)] = \left(\frac{\sigma^2}{2k}\right) \left(1 - e^{-2k(t-s)}\right)$$

$$t \to \infty, \mathbb{V}[r(t)] = \frac{\sigma^2}{2k}$$

- ✓ Equilibrium model
- ✓ Mean Reverting
- ✓ Rates are Gaussian
- ✓ Negative interest rates are allowed

Exposure Modelling

Term Structure Models - CIR Model Dynamics

SDE
$$dr(t) = k(\theta - r(t))dt + \sigma\sqrt{r}dW$$

Solution
$$r(t) = r(s)e^{-k(t-s)} + \theta(1 - e^{-k(t-s)}) + \sigma \int_{s}^{t} e^{-k(t-u)} \sqrt{r(u)} dW_{u} \quad 0 \quad s \quad s + \epsilon \quad t \quad t + \epsilon$$

r(s)

r(t)

$$\mathbb{E}[r(t)] = r(s)e^{-k(t-s)} + \theta \left(1 - e^{-k(t-s)}\right) \qquad \mathbb{V}[r(t)] = \left(\frac{\sigma^2 r(s)}{k}\right) \left(e^{-k(t-s)} - e^{-2k(t-s)}\right) + \left(\frac{\sigma^2 \theta}{2k}\right) \left(1 - e^{-k(t-s)}\right)^2$$

$$t \to \infty , \mathbb{E}[r(t)] = \theta \qquad \qquad t \to \infty , \mathbb{V}[r(t)] = \left(\frac{\sigma^2 \theta}{2k}\right)$$

- ✓ Equilibrium model
- ✓ Mean Reverting
- ✓ Rates are not Gaussian (non-central Chi squared)
- ✓ Negative interest rates are not allowed

(Affine Solution)

- ✓ Analytical (closed form)
- ✓ Value depends only on the short rate at valuation date

Vasicek Model

$$B(t,T) = \frac{1 - e^{-k(T-t)}}{k}$$

$$A(t,T) = \exp\left\{ \left(\theta - \frac{\sigma^2}{2k^2}\right) \left(B(t,T) - (T-t)\right) - \frac{\sigma^2}{4k}B(t,T)^2 \right\}$$

CIR Model

$$\gamma = \sqrt{k^2 + 2\sigma^2}$$

$$B(t,T) = \frac{2(e^{\gamma(T-t)} - 1)}{2\gamma + (k+\gamma)(e^{\gamma(T-t)} - 1)}$$

$$A(t,T) = \left(\frac{2\gamma e^{\frac{(\gamma+k)(T-t)}{2}}}{2\gamma + (k+\gamma)(e^{\gamma(T-t)} - 1)}\right)$$

Simulate Exposure of rate products

1. Simulate short rate dynamics

2. Pass simulated risk factors into closed form affine solution

3. Obtain the Exposure distribution V(t)

Issue with Equilibrium Models

- Figure 1 Equilibrium models are used to produce theoretical term structures based on economic arguments
- ► The theoretical term structures generated from Vasicek / CIR model are too simplistic and no where resembles the complex dynamics of term structures observed in practice
- ▶ The limited number of parameters are not adequate to fit the term structure
- We therefore resort to no arbitrage models which have one or more time-varying parameters, and these parameters are calibrated from the observed yield curve
- ► These models therefore match the yield curve by design i.e., model generated ZCB prices match the market observed ZCB prices
- In practice, the yield curves are constructed from liquid instruments such as futures, IRS etc. and the volatility surfaces / cubes of those yields are constructed from caplets / swaption prices
- Next, we will see two popular short rate no arbitrage models (Ho-Lee , Hull-White) which have affine solutions

Calibration results

www.peaks2tails.com

Exposure Modelling

Term Structure Models – Ho Lee Dynamics & Calibration

$$dr(t) = \theta(t)dt + \sigma dW$$

Solution

$$r(t) = r(s) + \int_{s}^{t} \theta(u)du + \sigma Z\sqrt{t-s}$$

$$\mathbb{E}[r(t)] = r(s) + \int_{s}^{t} \theta(u) du$$

$$\mathbb{V}[r(t)] = \sigma^2(t - s)$$

- ✓ No arbitrage model
- ✓ Not mean reverting
- ✓ Rates are Gaussian
- ✓ Negative interest rates are allowed

For any valuation date 0

$$P(t,T) = A(t,T)e^{-r(t)B(t,T)}$$
 (Affine Solution)

$$B(t,T) = T - t$$

$$A(t,T) = \exp\left\{-\int_{t}^{T} \theta(s)(T-s) \, ds + \frac{1}{6}\sigma^{2}(T-t)^{3}\right\}$$

Term Structure Models – Hull and White One factor Model Dynamics and Calibration

SDE
$$dr(t) = k(\theta(t) - r(t))dt + \sigma dW$$

Solution
$$r(t) = r(s)e^{-k(t-s)} + \int_{s}^{t} k\theta(u)e^{-k(t-u)}du + \sigma \int_{s}^{t} e^{-k(t-u)}dW_{u}$$

$$\mathbb{E}[r(t)] = r(s)e^{-k(t-s)} + \int_{s}^{t} k\theta(u)e^{-k(t-u)}du$$

$$\mathbb{V}[r(t)] = \left(\frac{\sigma^2}{2k}\right) \left(1 - e^{-2k(t-s)}\right)$$

- ✓ No arbitrage model
- ✓ Mean Reverting
- ✓ Rates are Gaussian
- ✓ Negative interest rates are allowed

For any valuation date 0

www.peaks2tails.com Exposure Modelling

$$P(t,T) = A(t,T)e^{-r(t)B(t,T)}$$
 (Affine Solution)

$$B(t,T) = \frac{1 - e^{-k(T-t)}}{k}$$

$$A(t,T) = \exp\left\{-\int_{t}^{T} k\theta(s)B(s,T) \, ds + \frac{\sigma^{2}}{2k^{2}} \left(T - t + \frac{2}{k}e^{-k(T-t)} - \frac{1}{2k}e^{-2k(T-t)} - \frac{3}{2k}\right)\right\}$$

Term Structure Models – Simulation

https://panthema.net/2019/0403-US-Treasury-Yield-Curve-Inversions-Animation/

Exposure Modeling for Rate Derivatives

www.peaks2tails.com xVA model

Parameter Calibration

www.peaks2tails.com Exposure Modelling

1. Understand the Model Dynamics

$$SDE dr(t) = \theta(t)dt + \sigma dW$$

Solution
$$r(t) = r(s)$$

$$r(t) = r(s) + \int_{s}^{t} \theta(u)du + \sigma Z\sqrt{t-s}$$

$$\mathbb{E}[r(t)] = r(s) + \int_{s}^{t} \theta(u) du$$

$$\mathbb{V}[r(t)] = \sigma^2(t - s)$$

- No arbitrage model
- Not mean reverting
- Rates are Gaussian
- Negative interest rates are allowed

www.peaks2tails.com

Exposure Modelling

$$P(t,T) = A(t,T)e^{-r(t)B(t,T)}$$
 (Affine Solution)

$$B(t,T) = T - t$$

$$A(t,T) = \exp\left\{-\int_{t}^{T} \theta(s)(T-s) \, ds + \frac{1}{6}\sigma^{2}(T-t)^{3}\right\}$$

 \checkmark Affine solutions only need the short rate r(t) at the valuation date (t) for ZCB price. Everything else is deterministic

3. Calibrate Ho-Lee parameters $(\sigma, \theta(t))$ to current market prices

- \checkmark Calibrate σ to caplet / swaption prices
- ✓ Calibrate $\theta(t)$ to ZCB prices : P(0,T)

$$\int_0^T \theta(s)(T-s)ds = \frac{1}{2}\theta_j (T_j - T_{j-1})^2 + \frac{1}{2} \sum_{i=1}^{j-1} \theta_i \left[(T_j - T_{i-1})^2 - (T_j - T_i)^2 \right]$$

 T_{i-1}

$$\theta_{j} = \frac{2}{\left(T_{j} - T_{j-1}\right)^{2}} \left(-\ln P(0, T_{j}) - r(0)T_{j} + \frac{1}{6}\sigma^{2}T_{j}^{3} - \frac{1}{2}\sum_{i=1}^{j-1}\theta_{i}\left[\left(T_{j} - T_{i-1}\right)^{2} - \left(T_{j} - T_{i}\right)^{2}\right]\right)$$

 $T_0 = 0$

Excel Snapshot

 $\theta_{j} = \frac{2}{\left(T_{j} - T_{j-1}\right)^{2}} \left(-\ln P(0, T_{j}) - r(0)T_{j} + \frac{1}{6}\sigma^{2}T_{j}^{3} - \frac{1}{2}\sum_{i=1}^{j-1}\theta_{i}\left[\left(T_{j} - T_{i-1}\right)^{2} - \left(T_{j} - T_{i}\right)^{2}\right]\right)$

Risk Neutral Calibration

 $\begin{array}{ccc} \sigma & 0.0070 \text{ (calibrated from CAP prices)} \\ r(0) & 4.520\% \text{ (slope of the short end)} \\ \text{dt} & 0.5 \end{array}$

(Sanity Check)

	Today							
Т0	0.00	spot rate	P (0,T) ^{obs}	f(0, T)	θ	A(0,T)	B(0,T)	P(0,T)
T1	0.5	4.5200%	0.977653467	4.520%	0.0008%	1.000000	0.50	0.977653467
T2	1	4.5680%	0.955347625	4.616%	0.388%	0.999520	1.00	0.9553476245
T3	1.5	4.6150%	0.933116705	4.709%	-0.006%	0.998576	1.50	0.933116705
T4	2	4.6610%	0.910993060	4.799%	0.381%	0.997184	2.00	0.910993060
T5	2.5	4.7060%	0.889007151	4.886%	-0.013%	0.995361	2.50	0.889007151
T6	3	4.7500%	0.867187554	4.970%	0.374%	0.993124	3.00	0.867187554
T7	3.5	4.7930%	0.845560972	5.051%	-0.020%	0.990491	3.50	0.845560972
T8	4	4.8350%	0.824152247	5.129%	0.367%	0.987479	4.00	0.824152247
T9	4.5	4.8760%	0.802984394	5.204%	-0.028%	0.984108	4.50	0.802984394
T10	5	4.9160%	0.782078625	5.276%	0.360%	0.980395	5.00	0.782078625

(Calibrated drift parameter)

4. Calculate A(t,T) and B(t,T) grid

A(t,T) and B(t,T) under time varying drift

σ	0.007
r(0)	0.0452
dt	0.5

$$A(t,T) = \exp\left\{-\int_{t}^{T} \theta(s)(T-s) \, ds + \frac{1}{6}\sigma^{2}(T-t)^{3}\right\}$$

$$B(t,T) = T - t$$

Simulation

www.peaks2tails.com Exposure Modelling

$$r(t + \delta t) = r(t) + \theta(t)\delta t + \sigma Z\sqrt{\delta t}$$

6. Simulate ZCB prices P(t,T) / yield curve R(t,T)

Plugin simulated r(t) into Affine solution to obtain simulated prices of P(t,T)

And you are ready to model exposure of derivatives !!

Exposure Modelling (EFV, EE, ENE, PFE)

www.peaks2tails.com Exposure Modelling

Exposure profile of a ZCB

Find the Exposure profile of a zero coupon bond maturing at T=2 years

PFE EE **EFV** t >

0.91099	0.943	0.96537	0.98348	1
0.91099	0.93154	0.95349	0.97623	1
0.91099	0.93154	0.95349	0.97623	1
0	0.5	1	1.5	2

www.peaks2tails.com Exposure Modelling

Coupon Bond

Exposure profile of a Coupon Bond

Find the Exposure profile of a coupon bond maturing at T=2 years

Coupon = 5.00% (semi-annual)

PFE	1.00542	1 04015	1 01515	1.03908	1 01408	1.03306	1.00806	1.025	0
EE	1.00542	1.02811	1.00311	1.02674		1.02563	1.00063	1.025	0
EFV	1.00542	1.02811	1.00311	1.02674	1.00174	1.02563	1.00063	1.025	0
t →	0	0.5	1	1.5	2				
CF		0.025	0.025	0.025	1.025	l			

#	0	0.5	0.5	1	1	1.5	1.5	2	2
1	1.00542	1.02624	1.00124	1.02654	1.00154	1.02773	1.00273	1.025	0
2	1.00542	1.02613	1.00113	1.01989	0.99489	1.02207	0.99707	1.025	0
3	1.00542	1.03151	1.00651	1.02397	0.99897	1.02179	0.99679	1.025	0
4	1.00542	1.03425	1.00925	1.03502	1.01002	1.02896	1.00396	1.025	0
5	1.00542	1.02554	1.00054	1.02712	1.00212	1.02476	0.99976	1.025	0
6	1.00542	1.03395	1.00895	1.04119	1.01619	1.0347	1.0097	1.025	0
7	1.00542	1.0305	1.0055	1.02773	1.00273	1.02619	1.00119	1.025	0
8	1.00542	1.02108	0.99608	1.02139	0.99639	1.02187	0.99687	1.025	0
9	1.00542	1.03558	1.01058	1.03401	1.00901	1.02851	1.00351	1.025	0
10	1.00542	1.02625	1.00125	1.01953	0.99453	1.02213	0.99713	1.025	0
11	1.00542	1.02061	0.99561	1.01918	0.99418	1.0238	0.9988	1.025	0
12	1.00542	1.01863	0.99363	1.01551	0.99051	1.01675	0.99175	1.025	0
13	1.00542	1.03999	1.01499	1.0345	1.0095	1.02827	1.00327	1.025	0
14	1.00542	1.02342	0.99842	1.00876	0.98376	1.0196	0.9946	1.025	0

www.peaks2tails.com Exposure Modelling

Exposure profile of an FRA

Find the Exposure profile of an FRA (30×36)

K(cont) = 4.970%K(semi) = 5.032%

Tenor	Spot	ZCB
0.5	4.5200%	0.97765347
1	4.5680%	0.95534762
1.5	4.6150%	0.93311671
2	4.6610%	0.91099306
2.5	4.7060%	0.88900715
3	4.7500%	0.86718755

FRA

$FRA(t) = N[P(t,T_2)K(T_2 - T_1) + P(t,T_2) - P(t,T_1)]$

PFE	0	0.00366	0.00582	0.00708	0.00789	0.00887
ENE	0	-0.00095	-0.00132	-0.00162	-0.00193	-0.00215
EE	0	0.00085	0.00128	0.00156	0.00179	0.00201
EFV	0	-9.1E-05	-4E-05	-6.4E-05	-0.00013	-0.00014
#	0	0.5	1	1.5	2	2.5
1	0.0000000	-0.000683	-0.000163	0.001906	0.002266	0.002143
2	0.000000	-0.000717	-0.003260	-0.003464	-0.004437	-0.006791
3	0.000000	0.000947	-0.001366	-0.003728	-0.002704	-0.003818
4	0.000000	0.001803	0.003862	0.003086	0.003672	0.003786
5	0.000000	-0.000899	0.000109	-0.000923	0.000999	0.001931
6	0.000000	0.001710	0.006844	0.008689	0.007981	0.004564
7	0.000000	0.000635	0.000395	0.000439	0.003299	0.006480
8	0.000000	-0.002265	-0.002566	-0.003650	-0.004712	-0.002171
9	0.000000	0.002220	0.003378	0.002654	-0.000005	-0.003273
10	0.000000	-0.000681	-0.003428	-0.003410	-0.004149	-0.004494
11	0.000000	-0.002409	-0.003589	-0.001830	-0.005517	-0.002269
12	0.000000	-0.003012	-0.005275	-0.008400	-0.007191	-0.006952
13	0.000000	0.003612	0.003611	0.002431	-0.001690	-0.002321
14	0.000000	-0.001552	-0.008329	-0.005765	-0.007906	-0.007901
15	0.000000	-0.000886	0.000393	-0.000165	-0.001458	-0.009989
16	0.000000	-0.000891	-0.003825	-0.008330	-0.010405	-0.013851

Exposure profile of an IRS

Find the Exposure profile of an IRS ($T_alpha = 0$, $T_beta = 3$)

s(0) = 4.800%

Work with 6 FRAs

Tenor	Spot	DF
0.5	4.5200%	0.9776535
1	4.5680%	0.9553476
1.5	4.6150%	0.9331167
2	4.6610%	0.9109931
2.5	0.04706	0.8890072
3	0.0475	0.8671876

$FRA(t) = N[P(t, T_2)K(T_2 - T_1) + P(t, T_2) - P(t, T_1)]$

T1 = T2 =

FRA 2 T1 =

0.5 T2 =

FRA 3

T1 = T2 = 1.5 FRA 4 T1 = 1.5 T2 =

FRA 5 T1 = 2 T2 = 2.5

#	0	0.5	#	0	0.5	1
1	0.001119467	0.00114505	1	0.00062	-9E-05	-9.3E-0
2	0.001119467	0.00114505	2	0.00062	-0.00013	-0.00013
3	0.001119467	0.00114505	3	0.00062	0.001702	0.00174
4	0.001119467	0.00114505	4	0.00062	0.002632	0.002688
5	0.001119467	0.00114505	5	0.00062	-0.00033	-0.00034
6	0.001119467	0.00114505	6	0.00062	0.002531	0.002585
7	0.001119467	0.00114505	7	0.00062	0.00136	0.001391
8	0.001119467	0.00114505	8	0.00062	-0.00185	-0.0019
9	0.001119467	0.00114505	9	0.00062	0.003083	0.003147
10	0.001119467	0.00114505	10	0.00062	-8.8E-05	-9.1E-05
11	0.001119467	0.00114505	11	0.00062	-0.00202	-0.00207
12	0.001119467	0.00114505	12	0.00062	-0.0027	-0.00277
13	0.001119467	0.00114505	13	0.00062	0.004577	0.004666
14	0.001119467	0.00114505	14	0.00062	-0.00106	-0.00108
15	0.001119467	0.00114505	15	0.00062	-0.00032	-0.00032
16	0.001119467	0.00114505	16	0.00062	-0.00032	-0.00033
17	0.001119467	0.00114505	17	0.00062	-0.00192	-0.00197
18	0.001119467	0.00114505	18	0.00062	0.001704	0.001742
19	0.001119467	0.00114505	19	0.00062	-0.00085	-0.00087
20	0.001119467	0.00114505	20	0.00062	-0.00105	-0.00108

#	0	0.5	1	1.5	2	2.5
1	-0.0006	-0.0014	-0.0008	0.00127	0.00163	0.00167
2	-0.0006	-0.0014	-0.004	-0.0042	-0.0053	-0.0054
3	-0.0006	0.00031	-0.0021	-0.0045	-0.0035	-0.0036
4	-0.0006	0.00118	0.00327	0.00247	0.00306	0.00312
5	-0.0006	-0.0016	-0.0006	-0.0016	0.00034	0.00034
6	-0.0006	0.00109	0.00628	0.00814	0.00742	0.00754
7	-0.0006	-9E-06	-0.0003	-0.0002	0.00268	0.00274
8	-0.0006	-0.003	-0.0033	-0.0044	-0.0055	-0.0057
9	-0.0006	0.00161	0.00278	0.00203	-0.0007	-0.0007
10	-0.0006	-0.0014	-0.0042	-0.0042	-0.005	-0.0051
11	-0.0006	-0.0031	-0.0044	-0.0026	-0.0064	-0.0066
12	-0.0006	-0.0037	-0.0061	-0.0094	-0.0081	-0.0084
13	-0.0006	0.00302	0.00301	0.0018	-0.0024	-0.0025
14	-0.0006	-0.0022	-0.0093	-0.0066	-0.0088	-0.0091
15	-0.0006	-0.0016	-0.0003	-0.0008	-0.0022	-0.0022
16	-0.0006	-0.0016	-0.0046	-0.0093	-0.0115	-0.0119
17	-0.0006	-0.003	-0.0059	-0.0007	-0.003	-0.0031
18	-0.0006	0.00031	0.00236	-0.0018	0.00391	0.00399
19	-0.0006	-0.0021	-0.0045	-0.0037	-0.0014	-0.0015
20	-0.0006	-0.0022	-0.0023	-0.0021	-0.0047	-0.0048

2

-0.004

-0.0043

0.00304 -0.0012

-0.0042

-0.004

-0.0022

-0.0095

-0.0066

-0.0004

-0.0094

-0.0002

-0.0015

-0.0034

Forward Swap

Exposure profile of a forward IRS

Find the Exposure profile of an IRS ($T_alpha = 1$, $T_beta = 3$) $s(0) = \frac{4.897\%}{}$

Work with 4 FRAs

 $FRA(t) = N[P(t,T_2)K(T_2 - T_1) + P(t,T_2) - P(t,T_1)]$

FRA 1 T1 = 1 T2 = 1.5

DF Tenor Spot 0.5 4.5200% 0.9776535 4.5680% 0.9553476 1.5 4.6150% 0.9331167 4.6610% 0.9109931 2 2.5 0.04706 0.8890072 0.8671876 0.0475

1.5

2

T1 =

T2 =

FRA 2

FRA 3 T1 = 2T2 = 2.5 FRA 4 T1 = 2.5T2 = 3

#	0	0.5	1	1.5	[#	0	0.5		EFV EE PFE ENE	2	2.5		#	0	0.5	1
1	0.000618158	-8.652E-05	0.00051	0.00052		1	0.000184	-0.00)021	0.00215	_	1	-0.0006	-0.0013	-0.0008
2	0.000618158	-0.0001232	-0.0029	-0.0029		2	0.000184	-0.00	0.0300000		0048	-0.0049		2	-0.0006	-0.0013	-0.0039
3	0.000618158	0.00166647	-0.0008	-0.0008		3	0.000184	0.001			.003	-0.0031		3	-0.0006	0.00035	-0.002
4	0.000618158	0.00257898	0.00479	0.00488		4	0.000184	0.002	0.0250000		0353	0.00361		4	-0.0006	0.0012	0.00324
5	0.000618158	-0.0003201	0.0008	0.00082		5	0.000184	-0.000			0081	0.00083		5	-0.0006	-0.0015	-0.0005
6	0.000618158	0.00247948	0.00789	0.00802		6	0.000184	0.001			079	0.00803		6	-0.0006	0.00111	0.00621
7	0.000618158	0.00133168	0.00111	0.00113		7	0.000184	0.000	0.0200000		0315	0.00322		7	-0.0006	3.4E-05	-0.0002
8	0.000618158	-0.001805	-0.0021	-0.0022		8	0.000184	-0.00			0051	-0.0052		8	-0.0006	-0.0029	-0.0032
9	0.000618158	0.00302156	0.00428	0.00436		9	0.000184	0.002	0.0150000		0002	-0.0002		9	-0.0006	0.00161	0.00276
10	0.000618158	-8.453E-05	-0.003	-0.0031		10	0.000184	-0.00	0.0130000		0045	-0.0046		10	-0.0006	-0.0013	-0.004
11	0.000618158	-0.0019631	-0.0032	-0.0033		11	0.000184	-0.00			0059	-0.0061		11	-0.0006	-0.003	-0.0042
12	0.000618158	-0.0026234	-0.0051	-0.0052		12	0.000184	-0.00	0.0100000		0076	-0.0079		12	-0.0006	-0.0036	-0.0059
13	0.000618158	0.00449202	0.00452	0.00461		13	0.000184	0.003			0019	-0.002		13	-0.0006	0.003	0.00299
14	0.000618158	-0.0010286	-0.0085	-0.0088		14	0.000184	-0.00			0084	-0.0087		14	-0.0006	-0.0021	-0.0089
15	0.000618158	-0.000306	0.00111	0.00113		15	0.000184	-0.000	0.0050000		0017	-0.0018		15	-0.0006	-0.0015	-0.0002
16	0.000618158	-0.0003111	-0.0035	-0.0036		16	0.000184	-0.000			.011	-0.0114		16	-0.0006	-0.0015	-0.0044
17	0.000618158	-0.0018715	-0.0049	-0.0051		17	0.000184	-0.00	0.0000000		0026	-0.0026		17	-0.0006	-0.0029	-0.0057
18	0.000618158	0.00166852	0.00385	0.00393		18	0.000184	0.001	0.000000	0,5 1 1,5 2 2,5 3 3,5	0438	0.00447		18	-0.0006	0.00035	0.00235
19	0.000618158	-0.0008239	-0.0034	-0.0034		19	0.000184	-0.00			.001	-0.001		19	-0.0006	-0.002	-0.0043
20	0.000618158	-0.0010232	-0.001	-0.001		20	0.000184	-0.00	-0.0050000		0042	-0.0043		20	-0.0006	-0.0021	-0.0022
21	0.000610160	0.0015006	0.003	0.003		21	0.000194	0.00			1007	0.01		21	0.0006	0.0027	0.004