Question 1: NFA to DFA

The RegEx for this NFA is: $x*y{1}x*z*$

The NFA has 4 states: a, b, c, d. Therefore the corresponding DFA has the state set:

The accept states for the DFA are:

$$\{\{c\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, c, d\}\}$$

 ϵ -closure(a) = {a}

 ϵ -closure(b) = {b,c,d}

 ϵ -closure(c) = {c}

 ϵ -closure(d) = {c,d}

Transitions

State	X	У	Z
{a}	{a}	{b,c}	Ø
$\{b,c,d\}$	$\{c,d\}$	Ø	Ø
{c}	Ø	Ø	{c}
{c,d}	$\{c,d\}$	Ø	{c}

Turning all of this into a graphical representation of the corresponding DFA we get:

Question 2: RegEx to NFA

Question 3: Binary Additive Arithmetic

The RegEx for the Binary Additive Arithmetic language is:

$$(0? + 1(1+0)*)(+|-)(0? + 1(1+0)*)$$

The corresponding NFA for this language is:

