Control for Robotics: From Optimal Control to Reinforcement Learning

Lingjie Zhang

2024 SS

Assignment 1: Optimal Control and Dynamic Programming

Contents

Problem 1.1 Finite Horizon Dynamic Programming	1
1.1 (a)	1
1.1 (b)	1
1.1 (c)	2
1.1 (d)	4
Problem 1.2 Dynamic Programming for a Robot Vacuum Cleaner	5
1.2 (a)	8
1.2 (b)	8
1.2 (c)	9
1.2 (d)	9
Problem 1.3 Approximate Dynamic Programming	10
1.3 (a)	13

1.3 (b)	14
1.3 (c)	14
1.3 (d)	14
1.3 (e)	14
Problem 1.4 Infinite Horizon Dynamic Programming	16
1.4 (a)	16
1.4 (b)	16
1.4 (c)	17
1.4 (d)	18

Problem 1.1 Finite Horizon Dynamic Programming

(a)

The policy found using the dynamic programming algorithm is expected to behave in a way that minimizes the total cost over the given time horizon.

Different values of q and r will change the robot's behavior as follows:

- Increasing *q* will increase penalty of position errors in the cost function, which leading to a policy that prioritizes minimizing position errors.
- Increasion *r* will increase penalty of control inputs in the cost function, which leading to a policy that prioritizes smoother control inputs to save energy.

(b)

· Dynamics

$$x_{k+1} = x_k + u_k + w_k (1.1)$$

(1.2)

· Cost

$$x_2^2 + \sum_{k=0}^{1} (qx_k^2 + ru_k^2) \tag{1.3}$$

Let q = 5/2 and r = 1 and assume that $w_k = 0$ for all k:

· Initialization

$$J_2(x_2) = x_2^2 (1.4)$$

· Recursion

 $\triangleright Step \ k = 1$

$$J_1(x_1) = \min_{u_1} \mathbb{E}_{w_1} \left[\frac{5}{2} x_1^2 + u_1^2 + J_2(x_2) \right]$$
 (1.5)

$$= \min_{u_1} \mathbb{E}_{w_1} \left[\frac{5}{2} x_1^2 + u_1^2 + (x_1 + u_1)^2 \right]$$
(sub dynamics) (1.6)

$$= \min_{u_1} \mathbb{E}_{w_1} \left[\frac{7}{2} x_1^2 + 2u_1 x_1 + 2u_1^2 \right] \tag{1.7}$$

Solve for optimal u_1 by differentiating the cost and setting it to zero:

$$u_1 = -\frac{x_1}{2} \tag{1.8}$$

Substitute u_1 back to $J_1(x_1)$:

$$J_1(x_1) = 3x_1^2 (1.9)$$

 $\triangleright Step \ k = 0$

$$J_0(x_0) = \min_{u_0} \mathbb{E}_{w_0} \left[\frac{5}{2} x_0^2 + u_0^2 + J_1(x_1) \right]$$
 (1.10)

$$= \min_{u_0} \left[\frac{11}{2} x_0^2 + 4u_0^2 + 6x_0 u_0 \right] \tag{1.11}$$

Solve for optimal u_0 by differentiating the cost and setting it to zero:

$$u_0 = -\frac{3x_0}{4} = -\frac{3\cdot(-1)}{4} = \frac{3}{4} \tag{1.12}$$

Substitute u_0 back to $J_0(x_0)$:

$$J_0(x_0) = \frac{13}{4}x_0^2 = \frac{13}{4} \tag{1.13}$$

For $x_0 = -1$:

$$x_1 = x_0 + u_0 = -1 + \frac{3}{4} = -\frac{1}{4}$$
 (1.14)

The answer:

- Optimal policy: $\pi^* = \{-\frac{3x_0}{4}, -\frac{x_1}{2}\} = \{\frac{3}{4}, \frac{1}{8}\}$
- $J(x_0) := \frac{13}{4}x_0^2 = \frac{13}{4}$

(c)

$$\operatorname{Var}[w_k] = \mathbb{E}[w_k^2] - \mathbb{E}[w_k]^2 \tag{1.15}$$

$$\Rightarrow \mathbb{E}[w_k^2] = 1 + 1 = 2$$
 (1.16)

We keep q=5/2 and r=1, but now assume there is some variation:

· Initialization

$$J_2(x_2) = x_2^2 (1.17)$$

Recursion

 $\triangleright Step \ k = 1$

$$J_1(x_1) = \min_{u_1} \mathbb{E}_{w_1} \left[\frac{5}{2} x_1^2 + u_1^2 + J_2(x_2) \right]$$
 (1.18)

$$= \min_{u_1} \left(\frac{5}{2} x_1^2 + u_1^2 + (x_1 + u_1 + w_1)^2 \right) \text{ (sub dynamics)}$$
 (1.19)

$$= \min_{u_1} (\frac{7}{2}x_1^2 + 2u_1^2 + w_1^2 + 2x_1u_1 + 2x_1w_1 + 2u_1w_1)$$
 (1.20)

$$= \min_{u_1} (\frac{7}{2}x_1^2 + 2u_1^2 + 2 + 2x_1u_1 + 2x_1 + 2u_1)$$
 (1.21)

Solve for optimal u_1 by differentiating the cost and setting it to zero:

$$u_1 = -\frac{x_1 + 1}{2} \tag{1.22}$$

Substitute u_1 back to $J_1(x_1)$:

$$J_1(x_1) = 3x_1^2 + x_1 + \frac{3}{2} ag{1.23}$$

 $\triangleright Step \ k = 0$

$$J_0(x_0) = \min_{u_0} \mathbb{E}_{w_0} \left[\frac{5}{2} x_0^2 + u_0^2 + J_1(x_1) \right]$$
 (1.24)

$$= \min_{u_0} \mathbb{E}_{w_0} \left[\frac{5}{2} x_0^2 + u_0^2 + (3(x_0 + u_0 + w_0)^2 + x_0 + u_0 + w_0 + \frac{3}{2}) \right]$$
 (1.25)

$$= \min_{u_0} \left(\frac{11}{2} x_0^2 + 4u_0^2 + 6x_0 u_0 + 7x_0 + 7u_0 + \frac{17}{2} \right) \tag{1.26}$$

Solve for optimal u_0 by differentiating the cost and setting it to zero:

$$u_0 = -\frac{6x_0 + 7}{8} = -\frac{1}{8} \tag{1.27}$$

Substitute u_0 back to $J_0(x_0)$:

$$J_0(x_0) = \frac{13}{4}x_0^2 + \frac{7}{4}x_0 + \frac{87}{16}$$
 (1.28)

For $x_0 = -1$:

$$x_1 = x_0 + u_0 + w_0 = -1 - \frac{1}{8} + 1 = -\frac{1}{8}$$
 (1.29)

The answer:

- Optimal policy: $\pi^* = \{-\frac{6x_0+7}{8}, -\frac{x_1+1}{2}\} = \{-\frac{1}{8}, -\frac{7}{16}\}$
- $J(x_0) := \frac{13}{4}x_0^2 + \frac{7}{4}x_0 + \frac{87}{16} = \frac{111}{16}$

(d)

Disturbance is not considered in (b), there are no constant terms in the optimal policy, and no linear terms and constant terms in $J(x_0)$; Disturbance is considered in (c), there are constant terms in the optimal policy, and there are linear terms and constant terms in $J(x_0)$;

Problem 1.2 Dynamic Programming for a Robot Vacuum Cleaner

```
% cfr_a1_2: Main script for Problem 1.2 Dynamic Programming for a
                Robot Vacuum Cleaner.
  %
3
  % --
  % Control for Robotics
  % Summer 2023
  % Assignment 1
  %
  % --
  % Technical University of Munich
  % Learning Systems and Robotics Lab
  % Course Instructor:
  % Angela Schoellig
  % schoellig@utias.utoronto.ca
  % Teaching Assistants:
  % SiQi Zhou: siqi.zhou@tum.de
  % Lukas Brunke: lukas.brunke@tum.de
  % Revision history
  \% [22.01.17, LB] \, first version
  % [22.01.23, LB] added 2 (c) to the code, removed N
  clear all
  close all
   clc
  %% calculate optimal control using dynamic programming
30
  % initialize the grid world
  grid = GridWorld();
33
34
  % allocate arrays for optimal control inputs and cost-to-go
35
  U = zeros(grid.num_rows, grid.num_columns);
   J = zeros(grid.num_rows, grid.num_columns);
   % set the cost for the obstacle
39
  J(grid.obstacle_pos(1), grid.obstacle_pos(2)) = inf;
40
  	imes
  % TODO: YOUR CODE HERE - Exercise 2 (a)
43
  epsilon = 1e-6; % Convergence basis
  max_iter = 1000; % Maximum number of iterations
  [J, U] = compute_optimal_policy(grid, epsilon, max_iter, J, U);
   % Function at the end
49
```

```
%% Simulate robot vacuum cleaner
       x_0 = [4; 3];
54
       % TODO: YOUR CODE HERE - Exercise 2 (b)
57
58
       optimal_actions = plot_optimal_trajectory(grid, x_0, U);
59
       % Function at the end
60
       	ilde{\mathsf{v}}_{\mathsf{v}}
62
63
       grid.plot_moves(x_0, optimal_actions)
64
65
      % %% Simulate robot vacuum cleaner
       x_0 = [4; 3];
67
68
      oldsymbol{X} 
69
      % TODO: YOUR CODE HERE - Exercise 2 (c)
      grid = GridWorld();
      grid.cost_dirt = 5;
       grid.stage_cost(1, 1) = grid.cost_dirt;
       grid.stage_cost(1, 2) = grid.cost_dirt;
       grid.stage_cost(2, 1) = grid.cost_dirt;
       grid.stage_cost(3, 1) = grid.cost_dirt;
       grid.stage_cost(3, 2) = grid.cost_dirt;
       % allocate arrays for optimal control inputs and cost-to-go
      U1 = zeros(grid.num_rows, grid.num_columns);
      J1 = zeros(grid.num_rows, grid.num_columns);
      % set the cost for the obstacle
82
      J1(grid.obstacle_pos(1), grid.obstacle_pos(2)) = inf;
83
       epsilon = 1e-6; % Convergence basis
       max_iter = 1000; % Maximum number of iterations
       [J1, U1] = compute_optimal_policy(grid, epsilon, max_iter, J1, U1);
86
       optimal_actions = plot_optimal_trajectory(grid, x_0, U1);
88
      grid.plot_moves(x_0, optimal_actions)
91
92
       function [J, U] = compute_optimal_policy(grid, epsilon, max_iter, J, U)
93
              iter = 0:
94
              while true
95
                      iter = iter + 1;
96
97
                      old_J = J;
                      for i = 1:grid.num_rows
                              for j = 1:grid.num_columns
99
                                      state = [i; j];
100
                                      actions = grid.available_actions(state);
101
                                      min_cost = inf;
102
                                      best_action = -1;
103
104
                                             next_state = grid.next_state(state, a);
105
                                             cost = grid.stage_cost(next_state(1), next_state(2));
106
                                             if cost < inf
                                                     new_cost = cost + old_J(next_state(1), next_state(2));
```

```
if new_cost < min_cost</pre>
109
                                   min_cost = new_cost;
110
                                   best action = a;
111
112
                              end
                          end
113
114
                     J(i, j) = min_cost;
115
                     U(i, j) = best_action;
116
                 end
             end
118
             if max(max(abs(J - old_J))) < epsilon || iter >= max_iter
119
120
                 break;
121
             end
        end
    end
123
124
    function optimal_actions = plot_optimal_trajectory(grid, x_0, U)
125
        optimal_actions = [];
        x = x_0;
127
        trajectory = [x'];
128
129
        while true
            action = U(x(1), x(2));
131
             optimal_actions = [optimal_actions, action];
132
            x_next = grid.next_state(x, action);
133
            trajectory = [trajectory; x_next'];
134
            x = x_next;
             if all(x == grid.charger_pos)
136
                 break;
137
             end
138
        end
139
        figure;
141
        hold on;
142
143
        for i = 1:grid.num_rows
144
            for j = 1:grid.num_columns
145
                 if grid.stage_cost(i, j) == grid.cost_obstacle
146
                     fill([j-1 j j j-1], [i-1 i-1 i i], 'k'); % obstacle
147
                 elseif grid.stage_cost(i, j) == grid.cost_dirt
148
                     fill([j-1 j j j-1], [i-1 i-1 i i], 'y'); % dirt
                 elseif grid.stage_cost(i, j) == grid.cost_charger
150
                     fill([j-1 j j j-1], [i-1 i-1 i i], 'g'); % charger
151
                 elseif grid.stage_cost(i, j) == grid.cost_carpet
152
                     fill([j-1 \ j \ j-1], [i-1 \ i-1 \ i \ i], 'm'); % carpet
153
                 else
154
                     fill([j-1 j j j-1], [i-1 i-1 i i], 'w'); % blank
155
156
                 plot([j-1 j-1], [i-1 i], 'k');
157
                 plot([j-1 j], [i i], 'k');
158
             end
159
        end
160
161
        plot(trajectory(:, 2)-0.5, trajectory(:, 1)-0.5, 'r', 'LineWidth', 2);
162
        legend('Dirt', 'Optimal trajectory', 'Location', 'northeastoutside');
        set(gca, 'YDir', 'reverse');
```

```
yticks(1:grid.num_rows);
165
        yticklabels(arrayfun(@num2str, flip(1:grid.num_rows), 'UniformOutput', false));
166
        set(gca, 'YTick', [], 'XTick', []);
        xlabel('Column');
        ylabel('Row');
169
        title('Robot Vacuum Cleaner Trajectory');
170
171
        for i = 1:grid.num_rows
172
            for j = 1:grid.num_columns
173
                 if grid.stage_cost(i, j) == grid.cost_dirt
174
                     \texttt{text(j-0.5, i-0.5, 'Dirt', 'HorizontalAlignment', 'center', \dots}
175
                     'VerticalAlignment', 'middle');
176
                 elseif grid.stage_cost(i, j) == grid.cost_charger
                     text(j-0.5, i-0.5, 'Charger', 'HorizontalAlignment', 'center', ...
178
                     'VerticalAlignment', 'middle');
179
                 elseif grid.stage_cost(i, j) == grid.cost_carpet
180
                     text(j-0.5, i-0.5, 'Carpet', 'HorizontalAlignment', 'center', ...
181
                     'VerticalAlignment', 'middle');
182
                 elseif grid.stage_cost(i, j) == grid.cost_obstacle
183
                     text(j-0.5, i-0.5, 'Obstacle', 'HorizontalAlignment', 'center', ...
184
                      'VerticalAlignment', 'middle', 'Color', 'w');
185
                 end
186
187
            \quad \text{end} \quad
188
        hold off;
189
    end
190
```

(a)

Run the code, we can get cost-to-go and optimal policies:

```
13
                           6
                                   0
                                           0
                  12
2
                                          0
3
          14
                 Inf
                          12
                                   6
          15
                  16
                          17
                                 12
                                           6
          16
                  17
                          23
                                 18
                                         24
5
6
          2
                  2
                          2
                                 2
                                         0
          1
                 -1
                          1
                                 1
                                         1
          1
                  4
                          4
                                 1
                                         1
```

(b)

Run the code, and we can get the map:

```
map
                                       10
          6
                 7
                         8
                                 9
2
                                 0
                                        0
          5
                 0
                         0
3
          4
                 3
                         2
                                 0
                                        0
          0
                 0
                         1
                                 0
                                        0
```

The robot will first move towards the dirt, then pass through all dirts, and then go straight to the charger.

(c)

Run the code, and we can get optimal policy and the map:

The robot moves straight up, then to the right, and finally to the Charger

(d)

- 1. Set a reward for leaving the charging station to encourage the robot to move;
- 2. Set lower costs for dirts to make sure that clean these dirts a priority for the robot;
- 3. Set lower costs for the paths between dirts to make sure that the robot will find the efficient way to move.
- 4. After all dirts are cleaned, make the cost of returning to the charging station the lowest among all other cells to make sure the robot will return.
- 5. Obstacle and carpet have a high cost.

Problem 1.3 Approximate Dynamic Programming

```
% cfr_a1_3: Main script for Problem 1.3 Approximate Dynamic Programming.
   % adapted from: Borrelli, Francesco: "ME 231 Experiential Advanced Control
   % Design I"
  %
  % --
  % Control for Robotics
   % Summer 2023
   % Assignment 1
   % Technical University of Munich
  % Learning Systems and Robotics Lab
  % Course Instructor:
  % Angela Schoellig
  % schoellig@utias.utoronto.ca
   % Teaching Assistants:
   % SiQi Zhou: siqi.zhou@tum.de
   % Lukas Brunke: lukas.brunke@tum.de
  % --
  % Revision history
  % [22.01.17, LB] first version
  % [22.01.23, LB] added 2 (c) to the code, removed N
   % --
   % Revision history
   % [22.01.17, LB]
                      first version
   % [22.01.24, LB] updated horizon and initial state
   clear all
   close all
   clc
35
   %% set up system
38
   % inverted pendulum parameters
   1 = 1.0; % length
   g = 9.81; % gravitational constant
   m = 1.0; % mass
43
   % create inverted pendulum system
44
   sys = InvertedPendulum(1, g, m);
45
   % controller parameters
47
   Q = diag([1, 0.1]);
   N = 25;
  % linearization point
  x_up = [pi; 0];
53
```

```
% TODO: YOUR CODE HERE - Exercise 3 (a)
      %% Linearize the nonlinear continuous-time control system
57
      % Calculate the Jacobian matrix around the upright position x_up = [pi; 0] with no control input
59
       % Define the system dynamics function
60
      f = O(x) [x(2); -g/1 * sin(x(1)) + (1/m*1^2).* u];
      % A_c and B_c
      A_c = [0, 1; -g/1 * cos(x_up(1)), 0];
      B_c = [0; 1];
      save('a1_3.mat', 'A_c', 'B_c');
66
      %% Discretize the continuous-time control system
       % Sampling time
69
      Delta t = 0.1;
70
      % Use Matlab's c2d function to discretize the system
      sys_d = c2d(ss(A_c, B_c, eye(2), 0), Delta_t);
      % Extract discrete-time system matrices
73
      A_d = sys_d.A;
      B_d = sys_d.B;
75
       save('a1_3.mat', 'A_d', 'B_d');
77
       	imes 	ime
79
80
81
      %% cost functions
      	ilde{\mathsf{X}}
83
      % TODO: YOUR CODE HERE - Exercise 3 (b)
84
85
       stage_cost = @(x, u) x' * Q * x + u' * R * u;
       initial_cost_to_go = @(x) x' * Q * x;
88
       80
      %% calculate optimal control using dynamic programming and gridding
92
      % grid state-space
93
      num_points_x1 = 10;
94
      num_points_x2 = 5;
       X1 = linspace(-pi/4, pi/4, num_points_x1);
       X2 = linspace(-pi/2, pi/2, num_points_x2);
      % allocate arrays for optimal control inputs and cost-to-go
      U = zeros(num_points_x1, num_points_x2);
      J = zeros(num_points_x1, num_points_x2);
102
      103
      % TODO: YOUR CODE HERE - Exercise 3 (c)
104
105
       % Initialize J with initial cost-to-go
106
      for i = 1:num points x1
107
              for j = 1:num_points_x2
108
                     x = [X1(i); X2(j)];
                      J(i,j) = initial_cost_to_go(x);
```

```
end
111
   end
112
113
   % Dynamic programming to compute optimal policy
114
   for k = N-1:-1:0
115
        J_{new} = J;
116
       for i = 1:num_points_x1
117
            for j = 1:num_points_x2
118
                x = [X1(i); X2(j)];
                min_cost = inf;
120
                optimal_u = 0;
121
                for u = -1:0.1:1
122
                    x_next = A_d * x + B_d * u;
123
                    % Interpolate cost-to-go for x_next
124
                    cost_to_go = interp2(X1, X2, J', x_next(1), x_next(2), 'spline');
125
                    cost = stage_cost(x, u) + cost_to_go;
126
                    if cost < min_cost</pre>
127
                        min_cost = cost;
128
                        optimal_u = u;
129
                    end
130
                end
131
                J_new(i, j) = min_cost;
132
                U(i, j) = optimal_u;
133
            end
134
       end
135
        J = J_{new};
136
   end
138
   	imes
139
140
   %% plot optimal control and cost-to-go
141
   figure
   subplot(1, 2, 1)
143
   surf(X1, X2, U')
144
   xlabel('x_1')
145
   ylabel('x_2')
   zlabel('u')
   subplot(1, 2, 2)
   surf(X1, X2, J')
149
   xlabel('x_1')
150
   ylabel('x_2')
   zlabel('J')
152
153
   %% apply control law and simulate inverted pendulum
154
   % create the controlled inverted pendulum system
   control_sys = InvertedPendulum(1, g, m, X1, X2, U, x_up);
157
   % initial condition
158
   x0 = x_{up} + [-pi/6; 0];
159
160
   % duration of simulation
   t = [0, 10];
162
163
   % simulate control system
   [t, x] = ode45(@control_sys.controlled_dynamics, t, x0);
```

```
% determine control inputs from trajectory
    u = zeros(size(t));
168
    for i = 1 : length(t)
169
        u(i) = control_sys.mu(x(i, :)' - x_up);
    end
171
172
   %% plot state and input trajectories
173
   figure
174
   subplot(2, 1, 1)
   hold on
176
   plot(t, x(:, 1))
177
   plot(t, x(:, 2))
   xlabel('t')
    ylabel('x_1 and x_2')
    hold off
   legend('\theta','d\theta/dt')
182
   grid on
183
   subplot(2, 1, 2)
   plot(t, u)
185
   xlabel('t')
186
   ylabel('u')
187
   grid on
```

(a)

```
% TODO: YOUR CODE HERE - Exercise 3 (a)
   %% Linearize the nonlinear continuous-time control system
   \% Calculate the Jacobian matrix around the upright position x_up = [pi; 0] with no control input
   % Define the system dynamics function
5
   f = O(x) [x(2); -g/1 * sin(x(1)) + (1/m*1^2).* u];
   % A_c and B_c
   A_c = [0, 1; -g/1 * cos(x_up(1)), 0];
   B_c = [0; 1];
   save('a1_3.mat', 'A_c', 'B_c');
11
   %% Discretize the continuous-time control system
12
   % Sampling time
14
   Delta_t = 0.1;
15
   % Use Matlab's c2d function to discretize the system
   sys_d = c2d(ss(A_c, B_c, eye(2), 0), Delta_t);
   % Extract discrete-time system matrices
   A_d = sys_d.A;
   B_d = sys_d.B;
20
21
   save('a1_3.mat', 'A_d', 'B_d');
```

Run the code, get:

```
1 A_c =
2 0 1.0000
3 9.8100 0
```

```
5
              0
6
              1
         A_d =
9
              1.0495
                          0.1016
10
              0.9971
                          1.0495
11
12
        B_d =
13
              0.0050
14
              0.1016
15
```

(b)

(c)

Yes, the controller stabilize the system at the upright position.

(d)

• Effect of Q:

Q controls the weighting of the state variables, indicating their impact on the cost function. If certain states have a greater impact on the system's performance, larger values can be assigned to the corresponding elements in Q to emphasize their importance.

• Effect of r:

r controls the weighting of the control input, indicating its impact on the cost function. Higher values of r imply a greater emphasis on minimizing the magnitude of the control input, whereas smaller values of r indicate a willingness to allow larger control inputs.

(e)

In a high-dimensional system, the computational complexity will be much higher than that of two-dimensional systems, which is likely to bring about curse of dimensionality in optimization. Therefore, some measures need to be considered.

- Provide more memory and computational requirements.
- Use more efficient interpolation methods.

- Increase the number of iterations and iteration time.
- Consider using parallel computing.

Problem 1.4 Infinite Horizon Dynamic Programming

(a)

$$y_k = x_k + v_k \tag{4.1}$$

$$u_k = -\frac{1}{2}y_k \tag{4.2}$$

$$\Rightarrow u_k = -\frac{1}{2}(x_k + v_k) \tag{4.3}$$

$$x_{k+1} = x_k + u_k + w_k (4.4)$$

$$x_{k+1} = x_k - \frac{1}{2}(x_k + v_k) + w_k \tag{4.5}$$

(4.6)

So the closed-loop dynamics:

$$x_{k+1} = \frac{1}{2}x_k - \frac{1}{2}v_k + w_k \tag{4.7}$$

(b)

Considering that the expected values of v_k and w_k are zero:

$$\mathbb{E}[v_k] = 0 \tag{4.8}$$

$$\mathbb{E}[w_k] = 0 \tag{4.9}$$

Taking the expectation of the closed-loop dynamics equation:

$$\mathbb{E}[x_{k+1}] = \mathbb{E}[\frac{1}{2}x_k - \frac{1}{2}v_k + w_k]$$
 (4.10)

Since expectation is a linear operator:

$$\mathbb{E}[x_{k+1}] = \frac{1}{2}\mathbb{E}[x_k] - \frac{1}{2}\mathbb{E}[v_k] + \mathbb{E}[w_k]$$
(4.11)

$$\mathbb{E}[x_{k+1}] = \frac{1}{2}\mathbb{E}[x_k] - \frac{1}{2} \cdot 0 + 0 \tag{4.12}$$

$$\mathbb{E}[x_{k+1}] = \frac{1}{2}\mathbb{E}[x_k] \tag{4.13}$$

So the eigenvalue of this system is $r=\frac{1}{2},$ and $|r|=\frac{1}{2}<1,$ so this closed-loop system is stable.

(c)

$$\operatorname{Var}(v_k) = \mathbb{E}[v_k^2] - \mathbb{E}[v_k]^2 = 1 \tag{4.14}$$

$$Var(w_k) = \mathbb{E}[w_k^2] - \mathbb{E}[w_k]^2 = 1$$
 (4.15)

Variance of x_k

$$Var(x_{k+1}) = Var(\frac{1}{2}x_k - \frac{1}{2}v_k + w_k)$$
(4.16)

$$Var(x_{k+1}) = (\frac{1}{2})^{2}Var(x_{k}) + (\frac{1}{2})^{2}Var(v_{k}) + Var(w_{k})$$
(4.17)

$$Var(x_{k+1}) = \frac{1}{4}Var(x_k) + \frac{1}{4} + 1 = \frac{1}{4}Var(x_k) + \frac{5}{4}$$
 (4.18)

At steady state: $Var(x_{k+1}) = Var(x_k)$, so:

$$Var(x_{k+1}) = \frac{1}{4}Var(x_k) + \frac{5}{4}$$
 (4.19)

$$\Rightarrow \operatorname{Var}(x_k) = \frac{5}{3} \tag{4.20}$$

Variance of u_k

$$u_k = -\frac{1}{2}(x_k + v_k) \tag{4.21}$$

$$Var(u_k) = Var(-\frac{1}{2}(x_k + v_k))$$
 (4.22)

$$Var(u_k) = (-\frac{1}{2})^2 \cdot Var(x_k + v_k)$$
 (4.23)

$$Var(u_k) = \frac{1}{4} \cdot (\frac{5}{3} + 1) = \frac{2}{3}$$
 (4.24)

Because the goal is to move the robot's position to x = 0. So $\mathbb{E}[x_k] = 0$ and $\mathbb{E}[u_k] = 0$

So:

$$\mathbb{E}[x_k^2] = \text{Var}[x_k] + \mathbb{E}[x_k]^2 = \frac{5}{3}$$
 (4.25)

$$\mathbb{E}[u_k^2] = \text{Var}[u_k] + \mathbb{E}[u_k]^2 = \frac{2}{3}$$
 (4.26)

So the infinite horizon cost J:

$$J = \mathbb{E}_{w_k, v_k} \left[\frac{x_k^2}{2} + u_k^2 \right] \tag{4.27}$$

$$J = \frac{1}{2} \cdot \mathbb{E}[x_k^2] + \mathbb{E}[u_k^2]$$
 (4.28)

$$J = \frac{1}{2} \cdot \frac{5}{3} + \frac{2}{3} \tag{4.29}$$

$$J = \frac{3}{2} {(4.30)}$$

(d)

The Algebraic Riccatti equation

$$P = A^{T}PA - (A^{T}PB)(R + B^{T}PB)^{-1}(B^{T}PA) + Q$$
(4.31)

Because there is no noise for this problem, so

$$x_{k+1} = x_k + u_k (4.32)$$

$$y_k = x_k \tag{4.33}$$

So $A = 1, B = 1, Q = \frac{1}{2}, R = 1$

$$P = 1 \cdot P \cdot 1 - (1 \cdot P \cdot 1)(1 + 1 \cdot P \cdot 1)^{-1}(1 \cdot P \cdot 1) + \frac{1}{2}$$
 (4.34)

$$\Rightarrow P = 1 \text{ or } P = -\frac{1}{2} \tag{4.35}$$

The optimal feedback gain α is given by:

$$\alpha = -(B^T P B + R)^{-1} (B^T P A)$$
(4.36)

$$\alpha = -(P+1)^{-1}(P) \tag{4.37}$$

$$\alpha = -\frac{1}{2} \text{ or } \alpha = \frac{1}{4} \tag{4.38}$$

Because $\alpha < 0$, so the optimal feedback gain $\alpha = -\frac{1}{2}$.