Lecture 14 - Exam Review

Tuesday, March 24, 2020 11:05 AM

Objectives: - Introduce the on-line course details - Begin reviewing the exam questions

Exam 1B Spring 2020

ECE 344L Microprocessors Test 1

100 Points MAX

								21 Points
	 Number Representations unsigned format. As binary values and the 	suming th	nat our wo	rd size is 7 bits				
	Number	Unsigned			Signed			
	Maximum value which can be represented	111	1111	12	7	0 11	n) i	63
	Minimum value which can be represented.	000	0000	D		100 (0000	-64
	21	001	0101	2		001	0101	21
	-8			N/A		111	1000	- 8
UNSIGNED Max:	27-1-127			ele n	ED AX = 2	2 -1		Wz
WEIE+IT 164 32 16 8	s 3 + 2			М	14 = -	- Z [*]		
			-64 +	37 +16	4B			
			1	1 1	l			
	Run Sun			-16	- 3			
	Given the following value?	binary val	ue, 101010		the equiv	alent hex	kadecimal	4 Points
	0x1B5							
	0x16A							
	0x552							
	0x362							
	3/10/20			1.				

3. What are the three basic operations in processing an instruction in a stored program computer?

6 Points

6 Points

FETCH - DECODE - EXECUTE

ŧ.	Given a processor which is a CISC processor, select the characteristics below which				
	apply:	Risc	Olac.		
	Many general purpose registers	I INSTR/CLE CYCLE			
	✓ Many addressing modes	I FEW ADDR MODES	MANY ADOR		

Many general purpose registers

| Nota / Clk Cill
| FEW ADDR Modes
| Nany 6.7. Ref
| Few general purpose registers
| Fixed length instructions

Instructions require one to many clock cycles to execute

1-HANY CLOCKS / INSTR MANY ADOR MODES FEW G.P. REG VACING LENGTH INSTR

5. In the MIPS processor that is part of the PIC32 microcontroller, what is the length of application?

4 Points

each instruction?

______16 bits
______24 bits
______32 bits
______64 bits

6. In the MIPS processor, how many bits are used to represent a byte and how many are used to represent a half-word?

4 Points

8 bits / BYTE

HALF-WOND -16 BITS - 2BYTES WORD 32-BITS - 4BITES 7. In the PIC microcontroller, we use SFRs. What are SFRs used for and how do they differ from general purpose registers?

10 Points

SFR's

CONFILVER

HW CONFIGURE PERIPHERALS

MONITOR STATUS COMMUNICATE W/ PERIPERALS

GPR - DATA & ADDRESSES NO NOTIONS

8. The MIPS processor has a load-store instruction set. Explain what is meant by load-

10 Points

ONLY TWO INSTRUCTION TYPES THAT ACCESS MEMORY, GAD & STORE OPERADO MUST FIRST BE WADED FROM MEM TO A REG

PROCESS DATA

STORE NESULT FROM REG BACK TO MEMORY

9. If our MIPS code has the following instruction:

\$t1, 16(\$t0) where \$t0 contains 0xB00C

address: 16 PLUS CONTENTS OF \$to

a. Which value would be written into \$t1?

address = 16+ 0xBOOC =

0110

UxBOIC VALUE: 0x1BB7

b. What instruction would you use to write the value in

\$t1 to memory address 0xB008?

Sw \$t1, OFFSET (\$t\$) su \$t1, -4(\$t\$)

10 Points

Memory contents

		Address
	0XCD99	0xB000 - C
	0xA100	0xB004 - 8
	0x4888	0xB008 - 4
\$t0→	0x6541	0xB00C
	0x722B	0xB010
	0x4220	0xB014
	0xCA0A	0xB018
	0x1BB7	0xB01C 🗻

- LOCATION 0xB020 0x2000 0x78B0 0xB024

3.

10. The MIPS processor uses a pipeline architecture, which can result in data hazards and control hazards. What is a data hazard? Give a specific example of where we must deal with data hazards when writing assembly language programs for the MIPS processor.

10 Points

11. In the MIPS assembly language code shown for the MinMax routine, explain in detail what will happen if a nop instruction is not included after the following instruction, which appears on line 21:

bnez \$a1, loop

1	.text	# Pipelined	Implementation
2	MinMax:		
3		lw	\$v0, 0(\$a0)
4		addiu	\$a0, \$a0, 4
5		addi	\$a1, \$a1, -1
6		blez	\$a1, ret
7		move	\$v1, \$v0
8	loop:		
9		lw	\$t0, 0(\$a0)
10		addi	\$a0, \$a0, 4
11		bge	\$t0, \$v0, next
12		nop	
13		b	chk
14		move	\$v0, \$t0
15	next:		
16		ble	\$t0, \$v1, chk
17		nop	
18		move	\$v1, \$t0
19	chk:		
20		addi	\$a1, \$a1, -1
21		bnez	\$a1, loop
22		nop	
23	ret:		
24		jr	\$ra
25		nop	

12.	When we are configuring all of the bits in a ports as outputs, we must also configure the open-drain setting for each of them. TRUE	5 Points
	FALSE	
13.	You are using timer 1 to measure a specific time interval. With your configuration of the clock source and the maximum pre-scaler option, you determine that you will need to count 57,322 clock pulses. This is possible using timer 1. (Explain why, or why need to count 57,000 clock pulses).	5 Points
	FALSE	
		5 Points
14.	Our microcontroller uses a system clock for controlling the processor operations (SYSCLK separate clock to drive the peripheral devices (PBCLK). Why do we use different clocks at they typically configured with respect to each other?	
3/1	5.	