

MEDIDAS DE DESEMPENHO

MEDIDAS DE DESEMPENHO

UM ALGORITMO É BOM SE PRODUZ

HIPÓTESES QUE FAZEM UM BOM

TRABALHO DE PREVISÃO DE

CLASSIFICAÇÃO DE EXEMPLOS NÃO-

VISTOS

MEDIDAS DE DESEMPENHO

MACHINE LEARNING UMA FERRAMENTA

PODEROSA PARA AQUISIÇÃO

AUTOMÁTICA DE CONHECIMENTO,

ENTRETANTO, NÃO EXISTE UM ÚNICO

ALGORITMO QUE APRESENTE MELHOR

DESEMPENHO PARA TODOS PROBLEMAS.

COMO TESTAR UMALGORITMO

PASSOS PARA TESTE DESEMPENHO Soco

- 1 COLETAR UM GRANDE CONJUNTO DE EXEMPLOS;
- 2 DIVIDI-LO EM DOIS CONJUNTOS (TREINO/TESTE)
- 3 TREINAR O ALGORITMO COM O CONJUNTO DE TREINO;
- 4 TESTAR A HIPÓTESE COM O CONJUNTO DE TESTE;
- 5 MEDIR OS ACERTOS DA HIPÓTESE.

ERRO

ERRO

EQUAÇÃO

$$err(h) = \frac{1}{n} \sum_{i=1}^{n} \left\| y_i \neq h(x_i) \right\|$$

EXEMPLO:

Em um conjunto com 100 objetos de teste 95 foram classificados corretamente e 5 não.

Então o erro será de

5/50 = 0.05 ou 5%

ENTRETANTO EM MACHINE LEARNING
NÃO ENFATIZAMOS OS ERROS DO
ALGORITMOS E SIM A TAXA DE ACERTOS
COMO A ACURÁCIA.

DEFINIÇÃO:

PROXIMIDADE ENTRE O VALOR OBTIDO

EXPERIMENTALMENTE E O VALOR VERDADEIRO

NA MEDIÇÃO DE UMA GRANDEZA FÍSICA.

EQUAÇÃO

$$acc(h) = 1 - err(h)$$

EXEMPLO:

Em um conjunto com 100 objetos de teste 95 foram classificados corretamente e 5 não.

Então o erro será de 5/50= 0.05

e a acurácia de 1-0.05 = 0.95 ou 95%

QUANDO DIVIDIMOS O CONJUNTO DE DADOS EM DOIS CONJUNTOS, PODEMOS REDUZIR DRASTICAMENTE O NÚMERO DE AMOSTRAS PARA O TREINAMENTO.

O CONCEITO CENTRAL DAS TÉCNICAS DE

VALIDAÇÃO CRUZADA É O

PARTICIONAMENTO DO CONJUNTO DE

DADOS EM SUBCONJUNTOS

MUTUALMENTE EXCLUSIVOS.

BASICAMENTE 3 TIPOS:

HOLDOUT;

K-FOLD;

LEAVE-ONE-OUT.

HOLDOUT

Dividir o conjunto de dados em dois.

Muito comum é considerar 2/3 dos dados

para treinamento e o 1/3 restante para

teste.

SCIKIT LEARN

IMPORTAR TRAIN_TEST_SPLIT PARA DIVIDIR O CONJUNTO DE DADOS EM TREINO E TESTE

from sklearn.model selection import train test split

SCIKIT LEARN

EXECUTAR A DIVISÃO DOS CONJUNTOS

```
X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.4)
```

```
X_train = Conjunto de treino das Features
```

X_test = Conjunto de teste das Features

y_train = Conjunto de treino das targets

Y_test = Conjunto de teste das targets

SCIKIT LEARN

EXECUTAR A DIVISÃO DOS CONJUNTOS

X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.4)

X = Conjunto original das Features

Y = Conjunto original das targets

test_size = porcentagem do conjunto de teste

SCIKIT LEARN

Executando KNN

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train,y_train)
knn.score(X_test, y_test)
```


SCIKIT LEARN

Executando com árvores de decisão

```
from sklearn import tree

tree = tree.DecisionTreeClassifier()

tree.fit(X_train, y_train)

tree.score(X_test,y_test)
```


UMA MELHOR

DIVIDIR O CONJUNTO TOTAL DE DADOS EM **K** SUBCONJUNTOS MUTUAMENTE EXCLUSIVOS DO MESMO TAMANHO.

K-FOLD

Validation Set

Partir disto, um subconjunto é utilizado para teste e os k-1 para treino. Calcula-se a acurácia do modelo. Este processo é realizado k vezes alternando de forma circular o subconjunto de teste.

LEAVE-ONE-OUT

É UM CASO ESPECÍFICO DO K-FOLD, COM KIGUAL AO NÚMERO TOTAL DE DADOS N. NESTA ABORDAGEM SÃO REALIZADOS N CÁLCULOS DE ERRO, UM

PARA CADA DADO.

LEAVE-ONE-OUT

APESAR DA INVESTIGAÇÃO COMPLETA
DO MODELO EM RELAÇÃO AOS DADOS
UTILIZADOS, POSSUI ALTO CUSTO
COMPUTACIONAL.

CONFUSAO

A **ACURÁCIA** NÃO É UMA MÉTRICA CONFIÁVEL PARA O DESEMPENHO REAL DE UM CLASSIFICADOR.

PORQUE PRODUZIRÁ RESULTADOS ENGANADORES SE O CONJUNTO DE DADOS ESTIVER DESEQUILIBRADO.

POR EXEMPLO, SE HOUVESSE 95

EXEMPLOS DE UMA CLASSE A E APENAS

5 DE OUTRA CLASSE B

UM CLASSIFICADOR PARTICULAR

PODERIA CLASSIFICAR TODAS AS

OBSERVAÇÕES COMO CLASSE A,

DADO O DESEQUILÍBRIO

DADO UM EXPERIMENTO

DE INSTÂNCIAS P POSITIVAS E N

INSTÂNCIAS NEGATIVAS A MATRIZ DE

CONFUSÃO SERÁ:

		Condição verdadeira	
	População total	Condição positiva	Condição negativa
Condição prevista	Condição preditiva positiva	Verdadeiro positivo VP	Falso positivo (erro Tipo I) FP
	Condição preditiva negativa	Falso negativo (erro Tipo II) FN	Verdadeiro negativo VN

SCIKIT LEARN

Executando com KNN

```
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix

y_pred = cross_val_predict(nayB, X, y, cv=5)

conf_mat = confusion_matrix(y, y_pred)
```


MÉTRICAS GERADAS

A PARTIR DA MATRIZ DE CONFUSÃO

ACURÁCIA

A PROPORÇÃO DE PREDIÇÕES CORRETAS, SEM LEVAR EM CONSIDERAÇÃO O QUE É POSITIVO E O QUE É NEGATIVO. ESTA MEDIDA É ALTAMENTE SUSCETÍVEL A DESBALANCEAMENTOS DO CONJUNTO DE DADOS E PODE FACILMENTE INDUZIR A UMA CONCLUSÃO ERRADA SOBRE O DESEMPENHO DO SISTEMA.

		Condição verdadeira	
	População total	Condição positiva	Condição negativa
Condição prevista	Condição preditiva positiva	VP	FP
	Condição preditiva negativa	FN	VN

ACURACIA

 $TOTAL\ DE\ ACERTOS\ /N\ DE\ EXEMPLOS$ $(VP + VN)\ /\ (P + N)$

SENSIBILIDADE ou REVOCAÇÃO

A PROPORÇÃO DE VERDADEIROS POSITIVOS:

A CAPACIDADE DO SISTEMA EM PREDIZER

CORRETAMENTE A CONDIÇÃO PARA CASOS QUE

REALMENTE A TÊM.

		Condição verdadeira	
	População total	Condição positiva	Condição negativa
Condição	Condição preditiva positiva	VP	FP
prevista	Condição preditiva negativa	FN	VN

SENSIBILIDADE ou **REVOCAÇÃO**ACERTOS POSITIVOS / TOTAL DE POSITIVOS

VP / (VP + FN)

ESPECIFICIDADE

A PROPORÇÃO DE VERDADEIROS NEGATIVOS.

A CAPACIDADE DO SISTEMA EM PREDIZER

CORRETAMENTE A AUSÊNCIA DA CONDIÇÃO

PARA CASOS QUE REALMENTE NÃO A TÊM.

		Condição verdadeira	
	População total	Condição positiva	Condição negativa
Condição prevista	Condição preditiva positiva	VP	FP
	Condição preditiva negativa	FN	VN

ESPECIFICIDADE

ACERTOS NEGATIVOS / TOTAL DE NEGATIVOS VN / (VN + FP)

EFICIÊNCIA

A MÉDIA ARITMÉTICA DA SENSIBILIDADE E ESPECIFICIDADE. NA PRÁTICA, A SENSIBILIDADE E A ESPECIFICIDADE VARIAM EM DIREÇÕES OPOSTAS. ISTO É, GERALMENTE, QUANDO UM MÉTODO É MUITO SENSÍVEL A POSITIVOS, TENDE A GERAR MUITOS FALSO-POSITIVOS, E VICE-VERSA. ASSIM, UM MÉTODO DE DECISÃO PERFEITO (100 % DE SENSIBILIDADE E 100% ESPECIFICIDADE) RARAMENTE É ALCANÇADO.

		Condição verdadeira	
	População total	Condição positiva	Condição negativa
Condição prevista	Condição preditiva positiva	VP	FP
	Condição preditiva negativa	FN	VN

EFICIÊNCIA

(SENS + ESPEC) / 2

VALOR PREDITIVO POSITIVO ou PRECISÃO

A PROPORÇÃO DE VERDADEIROS POSITIVOS EM

RELAÇÃO A TODAS AS PREDIÇÕES POSITIVAS.

ESTA MEDIDA É ALTAMENTE SUSCETÍVEL A

DESBALANCEAMENTOS DO CONJUNTO DE DADOS E

PODE FACILMENTE INDUZIR A UMA CONCLUSÃO

ERRADA SOBRE O DESEMPENHO DO SISTEMA.

		Condição verdadeira	
	População total	Condição positiva	Condição negativa
Condição prevista	Condição preditiva positiva	VP	FP
	Condição preditiva negativa	FN	VN

VALOR PREDITIVO POSITIVO ou PRECISÃO

ACERTOS POSITIVOS / TOTAL DE PREDIÇÕES POSITIVAS VP / (VP + FP)

VALOR PREDITIVO NEGATIVO

A PROPORÇÃO DE VERDADEIROS NEGATIVAS EM

RELAÇÃO A TODAS AS PREDIÇÕES NEGATIVAS.

ESTA MEDIDA É ALTAMENTE SUSCETÍVEL A

DESBALANCEAMENTOS DO CONJUNTO DE DADOS E

PODE FACILMENTE INDUZIR A UMA CONCLUSÃO

ERRADA SOBRE O DESEMPENHO DO SISTEMA.

		Condição verdadeira	
	População total	Condição positiva	Condição negativa
Condição	Condição preditiva positiva	VP	FP
prevista	Condição preditiva negativa	FN	VN

VALOR PREDITIVO NEGATIVO

ACERTOS NEGATIVOS / TOTAL DE PREDIÇÕES NEGATIVAS VN/ (VN + FN)

COEFICIENTE DE CORRELAÇÃO DE MATTHEWS - COEFICIENTE (PHI)

O coeficiente de correlação de Matthews é uma medida de qualidade de duas classificações binárias que pode ser usada mesmo se as classes possuem tamanhos bastante diferentes. Retorna um valor entre (-1) e (+1), em que um coeficiente de (+1) representa uma predição perfeita, (0) representa uma predição aleatória media, e (-1) uma predição inversa. Esta estatística é equivalente ao coeficiente phi, e tenta, assim como a eficiência, resumir a qualidade da tabela de contingência em um único valor numérico passível de ser comparado.

		Condição verdadeira	
	População total	Condição positiva	Condição negativa
Condição prevista	Condição preditiva positiva	VP	FP
	Condição preditiva negativa	FN	VN

VALOR PREDITIVO POSITIVO

(VP*VN - FP*FN) / sqrt((VP + FP)*(VP + FN)*(VN + FP)*(VN + FN))

F-MEASURE

A MEDIDA QUE COMBINA PRECISÃO E

REVOCAÇÃO É A MÉDIA HARMÓNICA DE

PRECISÃO E REVOCAÇÃO, A TRADICIONAL F-

MEASURE OU F-SCORE BALANCEADA

		Condição verdadeira	
	População total	Condição positiva	Condição negativa
Condição prevista	Condição preditiva positiva	VP	FP
	Condição preditiva negativa	FN	VN

F-MEASURE

2* ((Precisao*revocação) / (Precisao+revocação))

UMA RETRICA

A CURVA ROC É UMA FERRAMENTA

PODEROSA PARA MEDIR E ESPECIFICAR

PROBLEMAS DE DESEMPENHO DOS

CLASSIFICADORES.

É BASEADA EM MÉTRICAS DA MATRIZ DE CONFUSÃO COM SENSIBILIDADE E ESPECIFICIDADE.

QUANTO MAIOR A SENSIBILIDADE DO ALGORITMO DE CLASSIFICAÇÃO AO PROBLEMA MELHOR

EXEMPLO

- A PONTO IDEAL
- B BOA CLASSIFICAÇÃO
- C RUIM CLASSIFICAÇÃO

