Estrutura de Dados Árvore - Conceitos

— Profa. Ana Cristina dos Santos

email: ana.csantos@sp.senac.br

Conteúdo

- Árvore e suas terminologias
- Árvore Binária e suas terminologias
- Percursos em árvores
- Árvore Binária de Busca
- Operações básicas: busca, inserção e remoção

- Agora que estudamos estruturas de dados lineares como pilhas e filas e temos alguma experiência com recursão, veremos uma estrutura de dados comum chamada de árvore.
- As árvores são usadas em muitas áreas da ciência da computação, incluindo sistemas operacionais, gráficos, sistemas de bancos de dados e redes de computadores.

- Estruturas de dados de árvores têm muitas coisas em comum com seus primos botânicos. Uma estrutura de dados em árvore tem uma raiz, ramificações e folhas.
- A diferença entre uma árvore na natureza e uma árvore na ciência da computação é que a estrutura de dados de uma árvore tem sua raiz no topo e suas folhas na parte inferior.

Árvores: exemplo

```
<html xmlns="http://www.w3.org/1999/xhtml"</pre>
     xml:lang="en" lang="en">
<head>
    <meta http-equiv="Content-Type"</pre>
         content="text/html; charset=utf-8" />
    <title>simple</title>
</head>
<body>
<h1>A simple web page</h1>
<l
   List item one
   List item two
<h2><a href="http://www.cs.luther.edu">Luther CS </a><h2>
</body>
</html>
```

Árvores: exemplo

- Uma Árvore é uma estrutura complexa, que modela inúmeros problemas práticos.
- Uma árvore (tree) pode ser implementada como um tipo abstrato de dados - TAD que armazena elementos de maneira hierárquica.

- A árvore é o exemplo mais básico de estruturas de dados hierárquicas
 - Nesse tipo de estrutura a relação entre os dados é formada pela subordinação de nós
 - O formalismo no conceito das árvores define que uma árvore T (de Tree) é um conjunto finito de nós, onde:
 - Existe um nó denominado "raiz da árvore";
 - Os demais nós da árvore são divididos em $n \ge 0$ subconjuntos que formam as chamadas subárvores.

 No exemplo ao lado, os círculos representam os nós da árvore, sendo que o nó A representa a raiz da árvore:

- Terminologia de Árvores
 - Na figura anterior cada nó da árvore representa a raiz de uma subárvore.
 - Porém, além da terminologia "raiz" a árvore é composta de:
 - Nó pai: nó ao qual um nó está ligado (diretamente);
 - Nó filho: cada um dos nós subordinados ao nó pai;
 - Nó ancestral: todos os nós acima de um dado nó (em direção a raiz);
 - Nó descendente: todos os nós abaixo de um dado nó;

- Terminologia de Árvores
 - Na figura anterior cada nó da árvore representa a raiz de uma subárvore.
 - Porém, além da terminologia "raiz" a árvore é composta de:
 - Nós irmãos: todos os nós que tem o mesmo pai;
 - Grau: número de subárvores (ou de nós filhos) de um nó;
 - Folha (Nó Terminal): nó sem filho ou com grau zero;
 - Nível: número de nós entre um nó e a raiz;

- Terminologia de Árvores
 - Na figura anterior cada nó da árvore é representa a raiz de uma subárvore. Porém, além da terminologia "raiz" a árvore é composta de:
 - Altura da árvore (Profundidade): nível mais alto;
 - Grau da árvore: o mesmo valor do nó com a maior quantidade de filhos (maior grau da árvore);
 - Floresta: conjunto de árvores disjuntas.
 - Eliminando a raiz → floresta
 - Criando uma nova raiz → árvore

- Terminologia de Árvores
 - De acordo com os dados ilustrados na figura anterior, podemos montar uma tabela com os dados da terminologia de árvores, veja:

O nível da árvore e o grau da árvore é 3.

Nó	Grau	Nível	Filhos	Irmãos	Observações
Α	3	0	B, C, D		Raiz
В	1	1	E	C, D	
C	2	1	F, G	B, D	
D	1	1	Н	B, C	
E	0	2			Folha
F	0	2		G	Folha
G	0	2		F	Folha
Н	3	2	I, J, K		
1	0	3		J, K	Folha
J	0	3		I, K	Folha
K	0	3		l, J	Folha

- Terminologia de Árvores
 - Algumas observações:
 - A raiz da árvore tem nível 0 e o nível dos demais nós é igual ao número de segmentos que o liga à raiz;
 - A altura (ou profundidade) da árvore é definida pelo nível mais alto da árvore;
 - Ao eliminarmos a raiz de uma árvore, o que restar dessa operação forma uma floresta;
 - Todos os nós da árvore, com exceção do nó raiz, têm como ancestral a raiz da árvore;

Árvores: exemplo

Árvores: exemplo

- Na árvore mostrada:
 - Identifique a raiz, as folhas e os nós internos.
 - Mostre quais são os filhos do nó programas/
 - Identifique quem é o pai de mercado/
 - notas/ e programas/ são irmãos ?
 - Quais são os níveis dos nós cs252/ e mercado/?
 - Qual é a altura desta árvore ?

- Representações de Árvores
 - As três formas clássicas para representar graficamente uma árvore são ilustradas nesse tópico:
 - Parênteses Aninhados
 - Diagrama de Inclusão
 - Hierárquica
 - Veja alguns exemplos nos próximos slides

Parênteses Aninhados

(A (B) (C (D (G) (H)) (E) (F (I))))

Diagrama de Inclusão

Hierárquica

- Uma árvore T é classificada como Árvore Binária se cada um dos seus nós for de grau igual a: 0, 1 ou 2
 - o Como cada nó da árvore pode ter no máximo dois nós filhos, eles são denominados como:
 - nó filho esquerdo; e
 - nó filho direito

 Um dos modos mais clássicos para representar uma árvore binária é ilustrado na figura abaixo

- A árvore binária possui 9 nós e:
 - O nó 2 é a raiz da árvore;
 - O nó 7 é a raiz da subárvore da esquerda do nó 2;
 - O nó 5 é a raiz da subárvore da direita do nó 2.
 - Os nós 2, 5, 11, 4 são as folhas da árvore binária.
- Observe que é possível armazenar valores idênticos em nós distintos da árvore

Árvores Binárias : Definição

- A Árvore Binária acima:
- O nó D é descendente de A.
- O nível de F é 2 e sua altura é 2,
- O nível de A é 0 e sua altura é 0.
- A altura da árvore é 3.

- Tipos de Árvores Binárias
 - Apesar de ser um tópico simples, cada autor na computação dá uma nomenclatura diferente para as árvores binárias
 - Os três tipos de árvores binárias que vamos estudar são:
 - Árvore Estritamente Binária
 - Árvore Binária Quase Completa
 - Árvore Binária Completa

- Tipos de Árvores Binárias
 - Árvore Estritamente Binária é aquela onde todos os nós (numa árvore binária) que não são folhas tiver subárvores esquerda e direita (não vazias). Ou ainda, cada nó possui 0 ou 2 filhos.

- Tipos de Árvores Binárias
 - Uma árvore binária de profundidade d é tipada como Árvore Binária Quase Completa se:
 - Cada folha da árvore estiver no nível d ou no nível d-1;
 - Para cada nó $n \downarrow d$ na árvore com um descendente direto no nível d, todos os descendentes esquerdos de $n \downarrow d$ que forem folhas estiverem também no nível d.

- Tipos de Árvores Binárias
 - Como descobrir se uma árvore binária é uma Árvore Binária Quase Completa?
 - Podemos numerar os nós de árvores binárias completas seguindo as seguintes regras:
 - Atribui-se o número 1 à raiz da árvore;
 - Os nós filhos da esquerda recebem um número equivalente ao dobro do seu nó pai (2n);
 - Os nós filhos da direita recebem um número equivalente ao dobro mais um do seu nó pai (2n + 1).
 - Ao final, se não estiver faltando nenhum número a árvore é quase completa.

- Tipos de Árvores Binárias
 - Árvore Binária Quase Completa
 - Apresenta a seguinte propriedade: se r é um nó tal que alguma subárvore de r é vazia, então r se localiza ou está no último (maior) ou nó penúltimo nível da árvore.

- Tipos de Árvores Binárias
 - Exemplos de Árvores Binárias Quase Completas

- Tipos de Árvores Binárias
 - Árvore Binária Completa é aquela que também é estritamente binária e todos os nós folhas estão no nível d da árvore

Exercícios:

- Desenhe uma árvore estritamente binária com 7 nós
- Desenhe uma árvore binária completa com 9 nós

- Percursos em Árvores Binárias
 - O percurso é um processo que visita todos os nós de uma árvore binária uma única vez
 - Esse processo gera uma sequência linear de nós
 - Algo muito parecido como colocar os nós de uma árvore em uma única linha
 - Existem três maneiras recursivas de se visitar os nós da árvore binária: pré-ordem, in-ordem ou ordem simétrica e pós-ordem

- Percursos em Árvores Binárias
 - Para exemplificar os 3 tipos de percursos, vamos utilizar a árvore binária abaixo:

- Percursos em Árvores Binárias
 - Pré-Ordem: é um tipo de percurso que segue as seguintes regras:
 - Visita o nó raiz;
 - Percorre a subárvore esquerda (pré-ordem);
 - Percorre a subárvore direita (pré-ordem).

Percursos em Árvores Binárias

O resultado do percurso dessa árvore na forma pré-ordem gera a seguinte saída:

- Percursos em Árvores Binárias
 - In-Ordem ou Ordem Simétrica: é um tipo de percurso que segue as seguintes regras:
 - Percorre a subárvore esquerda (in-ordem);
 - Visita o nó raiz;
 - Percorre a subárvore direita (in-ordem).

- Percursos em Árvores Binárias
 - O resultado do percurso dessa árvore na forma in-ordem gera a seguinte saída:

- Percursos em Árvores Binárias
 - Pós-Ordem: é um tipo de percurso que segue as seguintes regras:
 - Percorre a subárvore esquerda (pós-ordem);
 - Percorre a subárvore direita (pós-ordem);
 - Visita o nó raiz.

- Percursos em Árvores Binárias
 - O resultado do percurso dessa árvore na forma pós-ordem gera a seguinte saída:

- Percursos em Árvores Binárias
 - Os percursos também são conhecidos como:
 - **Pré-Ordem:** Pré-fixado, varredura r-e-d e preorder traversal
 - In-Ordem: central, em ordem, varredura e-r-d e inorder traversal
 - Pós-Ordem: Pós-fixado, varredura e-d-r e postorder traversal

- Representação de Expressões Matemáticas
 - As árvores binárias são utilizadas para representar expressões matemática sob forma hierárquica, chamadas de árvore de expressão.
 - Os operandos e operadores são distribuídos sob os nós de uma árvore estritamente binária, onde:
 - A raiz da árvore contém um operador que deve ser aplicado aos resultados das subárvores esquerda e direita;
 - Os nós não folha representam os operadores;
 - Os nós folhas representam os operandos.

 Ao percorre a árvore ao lado com o processo pré-ordem gera a seguinte expressão:

Já no percurso pós-ordem, a saída gerada é a seguinte:

- Observem que os dois percursos anteriores não geraram expressões matemáticas válidas
- O percurso in-ordem é o responsável por gerar saídas válidas

$$(3+6)*(4-1)+5$$

- Notação Polonesa ou Posfixa:
 - Notação prefixa
 - Notação infixa
 - Notação posfixa

- Árvore Binária de Busca (= search trees) ou Árvore Binária de Pesquisa:
 - Todas as chaves da sub-árvore esquerda são menores que a chave da raiz.
 - Todas as chaves da sub-árvore direita são maiores que a chave raiz.
 - As sub-árvores direita e esquerda são também Árvores Binárias de Busca.
- O objetivo desta árvore é estruturar os dados de forma flexível, permitindo pesquisa binária.

- o Para montar uma árvore binária de busca, devemos considerar as seguintes regras:
 - Todos os nós da árvore armazenam valores;
 - Todos os descendentes esquerdos em uma subárvore contêm valores menores ou iguais do que a raiz;
 - Todos os descendentes direitos em uma subárvore contêm valores maiores do que a raiz.

Árvore Binária de Busca - ABB

- Exemplos:
- Representar os dados a seguir em uma ABB:

5821210149

Representar os dados a seguir em uma ABB:

9 12 10 5 8 2 14

Representar os dados a seguir em uma ABB:

12 9 14 5 10 8 2

 Obs: Uma ABB não é única para um conjunto de dados, a árvore depende da ordem nas quais os elementos são inseridos na árvore.

- É importante ressaltar que os símbolos armazenados nesse tipo de árvore podem ser numéricos, alfabéticos ou alfanuméricos
 - Nesse caso, devemos considerar a organização dos símbolos em ordem crescente
 - Por exemplo: Como organizar os "nomes" dos meses do ano?
 - Abril < Agosto < Dezembro < Fevereiro < Janeiro < Julho < Junho < Maio <
 Março < Novembro < Outubro < Setembro

- Se for aplicado o percurso em ordem simétrica na árvore, será gerado uma saída com os símbolos em ordem crescente
- As operações mais básicas sob uma árvore binária de busca são as seguintes:
 - Busca por um símbolo na árvore;
 - Inserir um símbolo na árvore;
 - Excluir um símbolo da árvore.

Busca em Árvore Binária de Busca

- A busca por um dado em uma árvore binária de pesquisa é realizada da seguinte forma:
 - Examina a raiz de uma subárvore
 - Se o valor for igual: você achou o valor na árvore
 - Caso contrário
 - Se o valor for menor do que a raiz: continue a busca recursivamente na subárvore à esquerda
 - Caso contrário: continue a busca recursivamente na subárvore à direita

Busca em Árvore Binária de Busca

• Por exemplo: Procurar o valor 40 na árvore

Inserção em Árvore Binária de Busca

- Antes de inserir um símbolo, é necessário realizar o processo de busca visto no slide anterior
 - Caso não encontre o valor na árvore (atingiu um nó folha) insere o símbolo como filho do nó folha
 - Veja o diagrama ao lado:

Remoção em Árvore Binária de Busca

- A operação mais difícil em uma árvore binária de pesquisa é o processo de exclusão.
- O grande problema nesse caso é a necessidade de reestruturar a árvore binária em alguns casos extremos
 - Vamos considerar os três casos possíveis de exclusão:
 - Excluir o nó folha
 - Excluir um nó de grau 1
 - Excluir um nó de grau 2

Remoção em Árvore Binária de Busca

- Excluir o nó folha
 - Basta remover a folha

- Excluir um nó de grau 1
 - O nó filho substitui o nó pai em sua posição.

- Excluir um nó de grau 2
 - Podemos excluir esse tipo de nó de duas maneiras:
 - Se você desejar substituir o símbolo por um valor maior, substitua-o pelo descendente direito mais à esquerda
 - Se você desejar substituir o símbolo por um valor menor, substitua-o pelo descendente esquerdo mais à direita

Remoção em Árvore Binária de Busca

- Excluir um nó de grau 2
 - Por exemplo:

