Importing the Dependencies

```
In [3]: | import numpy as np
    import pandas as pd
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split
    from sklearn import svm
    from sklearn.metrics import accuracy_score
    from mlxtend.plotting import plot_decision_regions
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.metrics import confusion_matrix
    sns.set()
    import warnings
    warnings.filterwarnings('ignore')
    %matplotlib inline
```

Data Collection and Analysis

PIMA Diabetes Dataset

```
In [4]:  diabetes_data = pd.read_csv('diabetes.csv')
```

Out[5]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.6:
1	1	85	66	29	0	26.6	0.3
2	8	183	64	0	0	23.3	0.6
3	1	89	66	23	94	28.1	0.1
4	0	137	40	35	168	43.1	2.2
4							>

Basic EDA and statistical analysis

```
In [6]: ▶ diabetes_data.shape
```

Out[6]: (768, 9)

```
In [7]: # getting the statistical measures of the data
diabetes_data.describe()
```

Out[7]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Diabe
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

1st Benchmark: Training the model with the raw data

```
In [12]: # accuracy score on the training data
X_train_prediction = classifier.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)

print('Accuracy score of the training data : ', training_data_accuracy)

# accuracy score on the test data
X_test_prediction = classifier.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)

print('Accuracy score of the test data : ', test_data_accuracy)
```

Accuracy score of the training data: 0.7833876221498371 Accuracy score of the test data: 0.7532467532467533

Pre-processing:

On these columns, a value of zero does not make sense and thus indicates missing value. Following columns or variables have an invalid zero value: Glucose BloodPressure SkinThickness Insulin BMI

```
In [13]:
             diabetes data copy = diabetes data.copy(deep = True)
             diabetes_data_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI'
             print(diabetes_data_copy.isnull().sum())
             Pregnancies
                                             0
                                             5
             Glucose
             BloodPressure
                                            35
             SkinThickness
                                           227
             Insulin
                                           374
                                            11
             DiabetesPedigreeFunction
                                             0
             Age
                                             0
                                             0
             Outcome
             dtype: int64
```

To fill these Nan values the data distribution needs to be understood

In [12]:

p = diabetes_data.hist(figsize = (20,20)) Glucose BloodPressure 0.0 2.5 5.0 7.5 10.0 12.5 SkinThickness DiabetesPedigreeFunction Outcome

Replacing null values for columns considering their distribution

In [14]: p = diabetes_data_copy.hist(figsize = (20,20))

0 5001 268

Name: Outcome, dtype: int64

From the above graph we can say that the number of non-diabetics is almost twice the number of diabetic patients.

0 --> Non-Diabetic

1 --> Diabetic

```
In [15]:
              diabetes data copy.groupby('Outcome').mean()
    Out[15]:
                         Pregnancies
                                        Glucose BloodPressure SkinThickness
                                                                                 Insulin
                                                                                              BMI Dia
                Outcome
                      0
                            3.298000
                                     110.710121
                                                     70.935397
                                                                   27.726000
                                                                             127.792000
                                                                                         30.885600
                      1
                            4.865672 142.165573
                                                                   31.686567
                                                                              164.701493
                                                                                        35.383582
                                                     75.147324
In [16]:
              # separating the data and labels
              X = diabetes data copy.drop(columns = 'Outcome', axis=1)
              Y = diabetes data copy['Outcome']
In [18]:
              print(X)
                    Pregnancies
                                   Glucose
                                             BloodPressure
                                                              SkinThickness
                                                                               Insulin
                                                                                          BMI
               0
                               6
                                     148.0
                                                       72.0
                                                                        35.0
                                                                                 125.0
                                                                                         33.6
               1
                                                       66.0
                                                                        29.0
                                                                                 125.0
                               1
                                      85.0
                                                                                         26.6
               2
                               8
                                                                        29.0
                                                                                 125.0
                                     183.0
                                                       64.0
                                                                                         23.3
               3
                                1
                                      89.0
                                                       66.0
                                                                        23.0
                                                                                   94.0
                                                                                         28.1
               4
                               0
                                     137.0
                                                       40.0
                                                                        35.0
                                                                                  168.0
                                                                                         43.1
                                                         . . .
                                                                          . . .
                                                                                    . . .
                                                                                           . . .
               763
                              10
                                     101.0
                                                       76.0
                                                                        48.0
                                                                                 180.0
                                                                                         32.9
               764
                                                                                         36.8
                                2
                                     122.0
                                                       70.0
                                                                        27.0
                                                                                 125.0
                               5
                                                                                         26.2
               765
                                     121.0
                                                       72.0
                                                                        23.0
                                                                                 112.0
               766
                               1
                                     126.0
                                                       60.0
                                                                        29.0
                                                                                 125.0
                                                                                         30.1
               767
                               1
                                      93.0
                                                       70.0
                                                                        31.0
                                                                                 125.0
                                                                                         30.4
                    DiabetesPedigreeFunction
                                                  Age
                                          0.627
               0
                                                   50
               1
                                          0.351
                                                   31
               2
                                                   32
                                          0.672
               3
                                          0.167
                                                   21
               4
                                                   33
                                          2.288
                                            . . .
               763
                                          0.171
                                                   63
               764
                                          0.340
                                                   27
               765
                                          0.245
                                                   30
               766
                                          0.349
                                                   47
               767
                                          0.315
                                                   23
               [768 rows x 8 columns]
```

```
In [19]:
         print(Y)
            0
                   1
            1
                   0
            2
                   1
            3
                   0
            4
                   1
            763
                   0
            764
                   0
            765
                   0
            766
                   1
            767
                   0
            Name: Outcome, Length: 768, dtype: int64
         Data Standardization

  | scaler = StandardScaler()
In [17]:
          In [18]:
   Out[18]: StandardScaler()

▶ standardized data = scaler.transform(X)

In [19]:
In [20]:
          ▶ print(standardized_data)
            [ 0.63994726  0.86510807 -0.03351824 ...  0.16661938  0.46849198
               1.4259954 ]
             [-0.84488505 -1.20616153 -0.52985903 ... -0.85219976 -0.36506078
              -0.19067191]
             -0.10558415]
             [ 0.3429808 -0.0225789 -0.03351824 ... -0.910418
                                                                 -0.68519336
              -0.27575966]
             [-0.84488505 \quad 0.14180757 \quad -1.02619983 \quad \dots \quad -0.34279019 \quad -0.37110101
               1.17073215]
             [-0.84488505 -0.94314317 -0.19896517 ... -0.29912651 -0.47378505
              -0.87137393]]
In [21]:
         X = standardized_data
            Y = diabetes data copy['Outcome']
```

```
In [22]:
           print(X)
            print(Y)
            [[ 0.63994726
                         0.86510807 -0.03351824 ... 0.16661938 0.46849198
              1.4259954 ]
             [-0.84488505 -1.20616153 -0.52985903 ... -0.85219976 -0.36506078
             -0.19067191]
             -0.10558415]
             [ 0.3429808 -0.0225789 -0.03351824 ... -0.910418
                                                             -0.68519336
              -0.27575966]
             [-0.84488505 0.14180757 -1.02619983 ... -0.34279019 -0.37110101
              1.17073215]
             [-0.84488505 -0.94314317 -0.19896517 ... -0.29912651 -0.47378505
              -0.87137393]]
                  1
                  0
            1
            2
                  1
            3
            4
                  1
            763
                  0
            764
                  0
            765
                  0
            766
                  1
            767
            Name: Outcome, Length: 768, dtype: int64
```

Train Test Split

Linear

Training the Model - Linear SVM, before hyperparameter optimization

0

20

0

```
In [30]: # accuracy score on the training data
X_train_prediction = classifier.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)

print('Accuracy score of the training data : ', training_data_accuracy)

# accuracy score on the test data
X_test_prediction = classifier.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)

print('Accuracy score of the test data : ', test_data_accuracy)
```

Accuracy score of the training data : 0.7801302931596091 Accuracy score of the test data : 0.7597402597402597

SVM - Hyperparameter optimization

```
In [55]:
          ▶ from sklearn.model selection import GridSearchCV
             # defining parameter range
             param_grid = {'C': [0.1, 1, 10, 100, 1000],
                            'gamma': [1, 0.1, 0.01, 0.001, 0.0001],
                           'kernel': ['liner','rbf','poly']}
             grid = GridSearchCV(svm.SVC(), param grid, refit = True, verbose = 3)
             #fitting the model for grid search
             grid.fit(X train, Y train)
             |CV 4/5| END ...C=0.1, gamma=0.0001, Kernel=rpt;, Score=0.659 total time
                 0.0s
             [CV 5/5] END ...C=0.1, gamma=0.0001, kernel=rbf;, score=0.656 total time
                 0.0s
             [CV 1/5] END ..C=0.1, gamma=0.0001, kernel=poly;, score=0.650 total time
                 0.0s
             [CV 2/5] END ..C=0.1, gamma=0.0001, kernel=poly;, score=0.650 total time
                 0.0s
             [CV 3/5] END ..C=0.1, gamma=0.0001, kernel=poly;, score=0.650 total time
                 0.0s
             [CV 4/5] END ..C=0.1, gamma=0.0001, kernel=poly;, score=0.659 total time
                 0.0s
             [CV 5/5] END ..C=0.1, gamma=0.0001, kernel=poly;, score=0.656 total time
                 0.0s
             [CV 1/5] END ......C=1, gamma=1, kernel=liner;, score=nan total time
                 0.0s
             [CV 2/5] END ......C=1, gamma=1, kernel=liner;, score=nan total time
                 0.0s
             [CV 3/5] END .........C=1, gamma=1, kernel=liner;, score=nan total time
```

```
In [56]:
          ▶ # print best parameter after tuning
             print(grid.best params )
             # print how our model looks after hyper-parameter tuning
             print(grid.best estimator )
             {'C': 1, 'gamma': 0.01, 'kernel': 'rbf'}
             SVC(C=1, gamma=0.01)
In [57]:
         from sklearn.metrics import classification report, confusion matrix
             grid_predictions = grid.predict(X_test)
             # print classification report
             print(classification_report(Y_test, grid_predictions))
                           precision
                                         recall f1-score
                                                            support
                        0
                                 0.75
                                           0.90
                                                     0.82
                                                                 99
                                 0.72
                        1
                                                     0.57
                                                                 55
                                           0.47
                 accuracy
                                                     0.75
                                                                154
                                0.74
                                           0.69
                                                     0.70
                                                                154
                macro avg
             weighted avg
                                0.74
                                           0.75
                                                     0.73
                                                                154
```

Model 3 - KNN classification

Max train score 100.0 % and k = [1]

Max test score 79.87012987012987 % and k = [28]

```
In [37]:  plt.figure(figsize=(12,5))
p = sns.lineplot(range(1,30),train_scores,marker='*',label='Train Score')
p = sns.lineplot(range(1,30),test_scores,marker='o',label='Test Score')
```



```
In [38]: N knn = KNeighborsClassifier(n_neighbors = 28,metric='euclidean',p=2)
knn.fit(X_train,Y_train)
knn.score(X_test,Y_test)
```

Out[38]: 0.7987012987012987

Out[41]: array([[93, 6], [25, 30]], dtype=int64)

Predictive system

Out[53]: 0.7662337662337663

```
In [42]:
          \forall #input data = (5,166,72,19,175,25.8,0.587,51)
             input data = []
             print("Enter Pregnancy Month:")
             input data.append(input())
             print("Enter Glucose Level:")
             input data.append(input())
             print("Enter Blood Pressure Level:")
             input_data.append(input())
             print("Enter Skin Thickness of the Patient:")
             input data.append(input())
             print("Enter Insulin Level:")
             input_data.append(input())
             print("Enter BMI of the Patient:")
             input data.append(input())
             print("Enter Diabetese Pedegree Function:")
             input data.append(input())
             print("Enter Patient Age:")
             input data.append(input())
             # changing the input data to numpy array
             input_data_as_numpy_array = np.asarray(input_data)
             print(input_data_as_numpy_array)
             # reshape the array as we are predicting for one instance
             input data reshaped = input data as numpy array.reshape(1,-1)
             # standardize the input data
             std data = scaler.transform(input data reshaped)
             prediction = knn.predict(std_data)
             print(prediction)
             if (prediction[0] == 0):
               print('The person is not diabetic')
             else:
               print('The person is diabetic')
             Enter Pregnancy Month:
             Enter Glucose Level:
             Enter Blood Pressure Level:
             Enter Skin Thickness of the Patient:
             14
```

Enter Insulin Level:

Enter BMI of the Patient:

```
172
Enter Diabetese Pedegree Function:
0.2
Enter Patient Age:
22
['4' '23' '100' '14' '67.2' '172' '0.2' '22']
[1]
The person is diabetic
```