Maximum Tolerance Class

You are given a directed graph G = (V, E) on the set of vertices $V = \{0, ..., n-1\}$. Let $v_1, v_2 \in V$. We say that $v_1 \sim v_2$ if there exists a path from v_1 to v_2 or a path from v_2 to v_1 . \sim is a tolerance relation as it is reflexive and symmetric. A tolerance class is an inclusionwise

Compute the maximal cardinality of a tolerance class.

Input: The first line contains the number of vertices n and the number of edges m. The following m lines describe the edges. You can assume that $n \leq 50000$.

Output: Output the maximal cardinality of a tolerance class.

maximal set $W \subseteq V$ such that for all $w_1, w_2 \in W$ it is true that $w_1 \sim w_2$.

Sample Input:

- 5 5
- 0 1
- 1 2
- 2 3
- 3 1
- 4 3

Sample Output:

4