Grundlegendes zur Konvergenz von Reihen

Jendrik Stelzner

3. Dezember 2014

Inhaltsverzeichnis

1 Definition 1

2 Grundlegende Eigenschaften 2

1 Definition

Definition 1. Für eine Folge $(a_n)_{n\in\mathbb{N}}$ ist die Folge der *Partialsummen* $(s_n)_{n\in\mathbb{N}}$ als

$$s_n \coloneqq \sum_{k=0}^n a_k$$

definiert; s_n heißt die n-te Partialsumme (der Folge (a_n)). Diese Folge der Partialsummen bezeichnet man als Reihe und schreibt man als $\sum_{k=0}^{\infty} a_k$. Konvergiert die Reihe $\sum_{k=0}^{\infty} a_k$, d.h. konvergiert die Folge der Partialsummen (s_n) , so bezeichnet man den Grenzwert $\lim_{n\to\infty} s_n = \lim_{n\to\infty} \sum_{k=0}^n a_k$ ebenfalls als $\sum_{k=0}^{\infty} a_k$ und nennt dies den Wert der Reihe.

Für $N\in\mathbb{N}$ ist die Reihe $\sum_{k=N}^\infty a_k$ als die Reihe $\sum_{k=0}^\infty a_{k+N}$ definiert.

Bemerkung 2. Die Reihe $\sum_{k=N}^{\infty} a_k$ wird nach dieser Definition als die Folge der Partialsummen $(s_n)_{n\in\mathbb{N}}$ mit $s_n=\sum_{k=0}^n a_{k+N}$ verstanden. Alternativ kann man die Reihe auch als die Folge der Partialsummen $(s'_n)_{n\in\mathbb{N}}$ mit

$$s_n' \coloneqq \sum_{k=N}^{\infty} a_k$$

definieren. Dies macht praktisch keinen Unterschied, da dann

$$s_n' = \begin{cases} 0 & \text{falls } n < N, \\ s_{n-N} & \text{falls } n \geq N. \end{cases}$$

Die Folge (s_n') ist also die Folge (s_n) mit Nullen aufgefüllt.

Man bemerke, dass man mit der Notation $\sum_{k=0}^\infty a_k$ sowohl die Folge der Partialsummen $(\sum_{k=0}^n a_k)_{n\in\mathbb{N}}$ als auch der Grenzwert dieser Folge bezeichnet. Soll also gezeigt werden, dass die Reihe $\sum_{k=0}^\infty a_k$ konvergiert, so ist damit gemeint, dass die Folge der Partialsummen $(\sum_{k=0}^n a_k)_{n\in\mathbb{N}}$ konvergieren soll. Soll der Wert der Reihe $\sum_{k=0}^\infty a_k$ bestimmt werden, so soll der Grenzwert $\lim_{n\to\infty}\sum_{k=0}^n a_k$ ermittelt werden.

Definition 3. Eine Reihe $\sum_{k=0}^{\infty} a_k$ heißt *absolut konvergent*, wenn die Reihe der Beträge $\sum_{k=0}^{\infty} |a_k|$ konvergiert.

Bemerkung 4. Ist $\sum_{k=0}^{\infty} a_k$ eine Reihe und $(s_n)_{n\in\mathbb{N}}$ die Folge der Partialsummen, also $s_n=\sum_{k=0}^n a_k$, so schreibt man für $\lim_{n\to\infty} s_n=\infty$ und $\lim_{n\to\infty} s_n=-\infty$ ebenfalls $\sum_{k=0}^{\infty} a_k=\infty$, bzw. $\sum_{k=0}^{\infty} a_k=-\infty$. Die Reihe $\sum_{k=0}^{\infty} a_k$ bezeichnet man aber in diesen Fällen nicht als konvergent.

2 Grundlegende Eigenschaften

Lemma 5. Konvergiert für eine Folge $(a_n)_{n\in\mathbb{N}}$ die Reihe $\sum_{k=0}^n a_k$, so ist (a_n) eine Nullfolge, d.h. $\lim_{n\to\infty} a_n = 0$.

Beweis. Wir betrachten die Folge der Partialsummen $(s_n)_{n\in\mathbb{N}}$, also $s_n\coloneqq\sum_{k=0}^n a_k$. Dass die Reihe $\sum_{k=0}^\infty a_k$ konvergiert bedeutet gerade, dass die Folge (s_n) konvergiert. Es sei

$$s := \lim_{n \to \infty} s_n.$$

Wir bemerken nun, dass für alle $n \ge 1$

$$s_n - s_{n-1} = \left(\sum_{k=0}^n a_k\right) - \left(\sum_{k=0}^{n-1} a_k\right) = a_n.$$

Durch die üblichen Rechenregeln konvergenter Folgen ergibt sich daher, dass

$$a_n = s_n - s_{n-1} \rightarrow s - s = 0$$

für $n \to \infty$. Also ist (a_n) konvergent und $\lim_{n \to \infty} a_n = 0$.

Proposition 6. 1. Konvergieren die Reihen $\sum_{k=0}^{\infty} a_k$ und $\sum_{k=0}^{\infty} b_k$, so konvergiert auch die Reihe $\sum_{k=0}^{\infty} (a_k + b_k)$ und es gilt

$$\sum_{k=0}^{\infty} (a_k + b_k) = \left(\sum_{k=0}^{\infty} a_k\right) + \left(\sum_{k=0}^{\infty} b_k\right).$$

2. Konvergiert die Reihe $\sum_{k=0}^{\infty} a_k$ so konvergiert für jedes $\lambda \in \mathbb{R}$ auch die Reihe $\sum_{k=0}^{\infty} (\lambda a_k)$ und es gilt

$$\sum_{k=0}^{\infty} (\lambda a_k) = \lambda \sum_{k=0}^{\infty} a_k.$$

3. Für eine Reihe $\sum_{k=0}^{\infty} a_k$ gilt für jedes $N \in \mathbb{N}$: Die Reihe $\sum_{k=0}^{\infty} a_k$ konvergiert genau dann, wenn die Reihe $\sum_{k=N}^{\infty} a_k$ konvergiert. Es ist dann

$$\sum_{k=0}^{\infty} a_k = \sum_{k=0}^{N-1} a_k + \sum_{k=N}^{\infty} a_k.$$

Beweis. Die Aussagen ergeben sich direkt aus den bekannten Rechenregeln für endliche Summen und konvergente Folgen. Ein genaues Formulieren bleibt den Lesern als Übung überlassen. \Box

Lemma 7. Ist die Reihe $\sum_{k=0}^{\infty} a_k$ konvergent, so ist

$$\left| \sum_{k=0}^{\infty} a_k \right| \le \sum_{k=0}^{\infty} |a_k|.$$

Bemerkung 8. Im Beweis des Lemmas werden wir die folgende kleine Aussage über konvergente Folgen nutzen, die man normalerweise im Laufe der Vorlesung behandelt: Ist eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen konvergent, so ist auch die Folge der Beträge $(|a_n|)_{n\in\mathbb{N}}$ konvergent und es gilt

$$\lim_{n \to \infty} |a_n| = \left| \lim_{n \to \infty} a_n \right|.$$

Dies folgt leicht mithilfe der umgekehrten Dreiecksungleichung: Sei $a\coloneqq \lim_{n\to\infty} a_n$ und $\varepsilon>0$ beliebig aber fest. Dann gibt es ein $N\in\mathbb{N}$ mit $|a-a_n|<\varepsilon$ für alle $n\ge N$. Für alle $n\ge N$ ist dann auch

$$||a| - |a_n|| \le |a - a_n| < \varepsilon.$$

Wegen der Beliebigkeit von $\varepsilon > 0$ zeigt dies, dass $|a_n| \to |a|$ für $n \to \infty$.

Beweis des Lemmas. Ist die Reihe $\sum_{k=0}^\infty a_k$ nicht absolut konvergent, so haben wir $\sum_{k=0}^\infty |a_k| = \infty$ und die Aussage ist klar. Ansonsten gilt für alle $n \in \mathbb{N}$ nach der Dreiecksungleichung für endliche Summen

$$\left| \sum_{k=0}^{n} a_k \right| \le \sum_{k=0}^{n} |a_k|,$$

so dass wir im Grenzwert

$$\left|\sum_{k=0}^{\infty} a_k\right| = \left|\lim_{n \to \infty} \sum_{k=0}^n a_k\right| = \lim_{n \to \infty} \left|\sum_{k=0}^n a_k\right| \le \lim_{n \to \infty} \sum_{k=0}^n |a_k| = \sum_{k=0}^{\infty} |a_k|$$

haben.

Proposition 9. Ist eine Reihe $\sum_{k=0}^{\infty} a_k$ absolut konvergent, so ist sie auch konvergent.

Beweis. Es sei $(s_n)_{n\in\mathbb{N}}$ die Folge der Partialsummen, also $s_n=\sum_{k=0}^n a_k$. Wir wollen zeigen, dass (s_n) eine Cauchy-Folge ist. Sei hierfür $\varepsilon>0$ beliebig aber fest. Für alle $m,m'\in\mathbb{N}$ haben wir

$$|s_m - s_{m'}| = \left| \sum_{k = \min\{m, m'\}}^{\max\{m, m'\}} a_k \right| \le \sum_{k = \min\{m, m'\}}^{\max\{m, m'\}} |a_k| \le \sum_{k = \min\{m, m'\}}^{\infty} |a_k|.$$

Behauptung. Es gibt ein $N \in \mathbb{N}$ mit

$$\sum_{k=N}^{\infty} |a_k| < \varepsilon.$$

Beweis der Behauptung. Es sei $a\coloneqq\sum_{k=0}^\infty |a_k|$. Für alle $n\in\mathbb{N}$ haben wir

3