TEST REPORT

Reference No	:	WTS14S0513948E
FCC ID	:	2AAWUTL100-E26
Applicant	:	AVC Technology (International) Limited
Address	:	6/F, Enterprise Square Three, 39 Wang Chiu Road, Kowloon Bay, Hong Kong
Manufacturer	:	SHENZHEN SUNLIGHT TECHNOLOGY CO., LTD
Address	:	Block B, Xinshidai gongrong Industrial Park, Shihuan RD, Shilong, Shiyan street, Baoan, Shenzhen. China.
Product Name	:	LuMini -3WLED dimmable mood light bulb
Model No	:	TL100-E26, TL100-E12
Standards	:	FCC CFR47 Part 15 Section 15.247:2012

Date of Receipt sample..... : May 13, 2014

Date of Test...... : May 14-16, 2014

Date of Issue...... Jun.19, 2014

Test Result..... Pass *

*Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Testing location: The same as above Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by: Approved by:

Zero Zhou / Project Engineer Philo Zhong / Manager

Reference No.: WTS14S0513948E Page 2 of 38

2 Test Summary

Test Items	Test Requirement	Result
Radiated Emissions	15.205(a) 15.209(a)	PASS
Conducted Emissions	15.207(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

Reference No.: WTS14S0513948E

3 Contents

_			Page
1			
2		RY	
3		FORMATION	
4			
		DESCRIPTION OF E.U.T	
		LIST	
		DE	
		ILITY	
5		JSED DURING TEST	
		ITS LIST	
		MENT UNCERTAINTYIIPMENT CALIBRATION	
6		EMISSIONS	
U		PERATION	
		JP	
		MENT DESCRIPTION	
	6.4 CONDUCTE	ED EMISSION TEST RESULT	10
7	RADIATED EM	AISSIONS	12
		RATION	
		UP	
		M ANALYZER SETUP	
		ED AMPLITUDE & MARGIN CALCULATION	
	7.6 SUMMARY	OF TEST RESULTS	16
8	BAND EDGE M	MEASUREMENT	19
		DDUCE	
		:ULT	
9		IDTH MEASUREMENT	
		OCEDURE	
10		AK OUTPUT POWER	
10			
		PROCEDURERESULT	
11		CTRAL DENSITY	
11		PROCEDURE	
		RESULT	
12	ANTENNA REC	QUIREMENT	27
13	RF EXPOSURE	E	28
	13.1 REQUIR	REMENTS	28
	13.2 THE PRO	ROCEDURES / LIMIT	28
		CALCULATION METHOD	
14		HS – MODEL TL100-E26 TEST SETUP	
		ICTED EMISSION	
	14.2 RADIATE	ED EMISSION	30

Reference No.: WTS14S0513948E Page 4 of 38

15	PHOT	OGRAPHS - CONSTRUCTIONAL DETAILS	32
	15.1	EUT- External View	32
	15.2	Model TL100-F26 - Internal View	34

Reference No.: WTS14S0513948E Page 5 of 38

4 General Information

4.1 General Description of E.U.T.

Product Name : LuMini -3WLED dimmable mood light bulb

Model No. : TL100-E26, TL100-E12

Model Difference : Only the lamp holder thread size is different. The model TL100-

E26 is the tested sample.

Operation Frequency : 2402MHz ~ 2480MHz, separated by 2MHz,40 channels in total

The lowest oscillator : 32.768kHz

Type of modulation : GFSK(BLE only)

4.2 Details of E.U.T.

Technical Data : AC 100-240V, 50/60Hz, 3W

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2404	3	2406	4	2408
5	2410	6	2412	7	2414	8	2416
9	2418	10	2420	11	2422	12	2424
13	2426	14	2428	15	2430	16	2432
17	2434	18	2436	19	2438	20	2440
21	2442	22	2444	23	2446	24	2448
25	2450	26	2452	27	2454	28	2456
29	2458	30	2460	31	2462	32	2464
33	2466	34	2468	35	2470	36	2472
37	2474	38	2476	39	2478	40	2480

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Table 1 Tests Carried Out Under FCC part 15.247

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2440MHz	2480MHz

Table 2 Tests Carried Out Under FCC part 15.207

Test Item	Test Mode
Conduction Emission, 0.15MHz to 30MHz	Communication

Reference No.: WTS14S0513948E Page 6 of 38

4.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A-1, July 12, 2012.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

5 Equipment Used during Test

5.1 Equipments List

Conducted Emissions								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.18,2013	Sep.17,2014		
2.	LISN	R&S	ENV216	101215	Nov. 29,2013	Nov. 28,2014		
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.18,2013	Sep.17,2014		
3m Sei	mi-anechoic Chamber	for Radiation Emis	ssions					
Item Equipment Manufacturer Model No. Serial No. Calibration Date								
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.18,2013	Sep.17,2014		
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.18,2013	Sep.17,2014		
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.19,2014	Apr.18,2015		
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.18,2013	Sep.17,2014		
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.19,2014	Apr.18,2015		
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.19,2014	Apr.18,2015		
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Mar.17,2014	Mar.16,2015		
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.10,2014	Apr.09,2015		
RF Co	nducted Testing							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.18,2013	Sep.17,2014		
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.18,2013	Sep.17,2014		
3.	Humidity Chamber	GF	GTH-225-40-1P	IAA061213	May 16,2014	May 15,2015		

Reference No.: WTS14S0513948E Page 8 of 38

Measurement Uncertainty 5.2

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Emissions test	± 4.74 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

Test Equipment CalibrationAll the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS14S0513948E Page 9 of 38

6 Conducted Emissions

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: $66-56 \text{ dB}\mu\text{V}$ between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in communication mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

11

12

4.4450

4.4450

34.90

25.42

10.65

10.65

45.55

36.07

56.00

46.00

-10.45

-9.93

QΡ

AVG

Reference No.: WTS14S0513948E Page 12 of 38

7 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.4:2003

Test Result: PASS
Measurement Distance: 3m

Limit:

Francis	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

7.1 EUT Operation

Operating Environment:

Temperature: $25.5 \, ^{\circ}\text{C}$ Humidity: $51 \, \% \, \text{RH}$ Atmospheric Pressure: 101.6 kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber Antenna Elevation Varies From 1 to 4 m Turn Table From 0° to 360° 3m **EUT** 0.8m Turn Table Absorbers Combining

Spectrum

Analyzer

AMP

Network

The test setup for emission measurement above 1 GHz.

System

Spectrum Analyzer Setup 7.3

•	•	
Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	. 10kHz
	Resolution Bandwidth	. 10kHz
30MHz ~ 1GHz	Z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	. 300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	. 3MHz
	Detector	. Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	. 10Hz

Reference No.: WTS14S0513948E Page 15 of 38

7.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

Corrected factor=Antenna Factor + Cable Factor - Amplifier Gain

7.6 Summary of Test Results

Test Frequency: 32.768kHz~30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK Low Channel									
82.23	12.32	PK	333	1.8	Н	17.01	29.33	40.00	-10.67
82.23	10.52	PK	28	1.5	V	17.01	27.53	40.00	-12.47
4804.00	55.21	PK	317	1.1	V	-1.06	54.15	74.00	-19.85
4804.00	45.63	Ave	317	1.1	V	-1.06	44.57	54.00	-9.43
7206.00	43.52	PK	53	1.5	V	1.33	44.85	74.00	-29.15
7206.00	40.47	Ave	53	1.5	V	1.33	41.80	54.00	-12.20
2334.53	46.05	PK	296	1.3	V	-13.19	32.86	74.00	-41.14
2334.53	39.96	Ave	296	1.3	V	-13.19	26.77	54.00	-27.23
2365.02	42.09	PK	47	1.5	Н	-13.14	28.95	74.00	-45.05
2365.02	38.13	Ave	47	1.5	Н	-13.14	24.99	54.00	-29.01
2492.13	42.06	PK	328	1.5	V	-13.08	28.98	74.00	-45.02
2492.13	37.71	Ave	328	1.5	V	-13.08	24.63	54.00	-29.37

_	Receiver		Turn	RX Antenna		Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Middle	Channe	el			
82.23	12.68	PK	161	1.6	Н	17.01	29.69	40.00	-10.31
82.23	10.25	PK	90	2.0	V	17.01	27.26	40.00	-12.74
4880.00	54.63	PK	111	2.0	V	-0.62	54.01	74.00	-19.99
4880.00	45.32	Ave	111	2.0	V	-0.62	44.70	54.00	-9.30
7320.00	42.98	PK	352	1.7	V	2.21	45.19	74.00	-28.81
7320.00	40.91	Ave	352	1.7	V	2.21	43.12	54.00	-10.88
2326.88	45.77	PK	293	1.4	V	-13.19	32.58	74.00	-41.42
2326.88	39.19	Ave	293	1.4	V	-13.19	26.00	54.00	-28.00
2385.58	44.36	PK	264	1.9	Н	-13.14	31.22	74.00	-42.78
2385.58	37.30	Ave	264	1.9	Н	-13.14	24.16	54.00	-29.84
2487.82	43.14	PK	26	1.5	V	-13.08	30.06	74.00	-43.94
2487.82	38.47	Ave	26	1.5	V	-13.08	25.39	54.00	-28.61

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF:	SK High (Channel				
82.23	12.36	PK	88	1.0	Н	17.01	29.37	40.00	-10.63
82.23	10.15	PK	112	1.4	V	17.01	27.16	40.00	-12.84
4960.00	54.71	PK	339	1.5	V	-0.24	54.47	74.00	-19.53
4960.00	45.62	Ave	339	1.5	V	-0.24	45.38	54.00	-8.62
7440.00	43.02	PK	73	2.0	V	2.84	45.86	74.00	-28.14
7440.00	41.25	Ave	73	2.0	V	2.84	44.09	54.00	-9.91
2337.27	45.40	PK	27	1.5	V	-13.19	32.21	74.00	-41.79
2337.27	39.08	Ave	27	1.5	V	-13.19	25.89	54.00	-28.11
2386.03	43.33	PK	286	1.0	Н	-13.14	30.19	74.00	-43.81
2386.03	36.63	Ave	286	1.0	Н	-13.14	23.49	54.00	-30.51
2488.52	42.03	PK	291	1.5	V	-13.08	28.95	74.00	-45.05
2488.52	38.83	Ave	291	1.5	V	-13.08	25.75	54.00	-28.25

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS14S0513948E Page 19 of 38

8 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) and

15.205(c).

Test Method: KDB558074 D01 DTS Meas Guidance v03r02

Test Mode: Transmitting

8.1 Test Produce

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.

3. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.2 Test Result

Reference No.: WTS14S0513948E Page 21 of 38

9 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r02

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

9.2 Test Result

Operation mode	Bandwidth (MHz)
Lowchannel	0.703
Middle channel	0.703
High channel	0.703

Test result plot as follows:

Reference No.: WTS14S0513948E Page 23 of 38

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r02

10.1 Test Procedure

KDB558074 D01 DTS Meas Guidance v03r02 section 8.1.2 Option 2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.2 Test Result

Maximum Peak Output Power (dBm)						
Low channel	High channel					
-5.97	-8.47					
Limit						
	1W/30dBm					

Reference No.: WTS14S0513948E Page 25 of 38

11 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r02

11.1 Test Procedure

KDB558074 D01 DTS Meas Guidance v03r02 section 9.1 Option 1

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result

Power Spectral Density							
Low channel	Middle channel	High channel					
-18.82	-18.95	-20.52					
Limit							
8dBm per 3kHz							

12 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB printed antenna, fulfill the requirement of this section.

Reference No.: WTS14S0513948E Page 28 of 38

13 RF Exposure

Test Requirement: FCC Part 1.1307

Test Mode: The EUT work in test mode(Tx).

13.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

13.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ²or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

ı	Frequency Range (MHz)	•		Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
	0.3-1.34	614	1.63	(100)*	30
	1.34-30	824/f	2.19/f	(180/f)*	30
	30-300	27.5	0.073	0.2	30
	300-1500			F/1500	30
	1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS14S0513948E Page 29 of 38

13.3 MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$\textit{Pd} = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain	Max.Peak Output	Peak Output	Power Density	Limit of Power Density
(numeric)	Power (dBm)	Power (mW)	(mW/cm2)	(mW/cm2)
1.000	-5.97	0.253	0.000050	

14 Photographs – Model TL100-E26 Test Setup

14.1 Conducted Emission

14.2 Radiated Emission

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Test frequency from 30MHz to 1GHz

Test frequency above 1GHz

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

15 Photographs - Constructional Details

15.1 EUT- External View

Reference No.: WTS14S0513948E Page 34 of 38

15.2 Model TL100-E26 - Internal View

Reference No.: WTS14S0513948E Page 36 of 38

RF module

=====End of Report=====