RL: Basics Policy Iteration

Marius Lindauer

Winter Term 2021

Policy Search (PS)

Lindauer

- One option is searching to compute the best policy
- Number of deterministic policies is $|A|^{|S|}$
- ▶ Policy iteration is generally more efficient than enumeration

MDP Policy Iteration (PI)

- ightharpoonup Set i=0
- lnitialize $\pi_0(s)$ randomly for all states s
- ightharpoonup While i==0 or

$$||\pi_i - \pi_{i-1}||_1 > 0$$
 (L1-norm, measures if the policy changed for any state)

- $ightharpoonup V^{\pi_i} \leftarrow \mathsf{MDP}\ \mathsf{V} ext{-function policy evaluation of }\pi$
- $ightharpoonup \pi_{i+1} \leftarrow \text{Policy improvement}$
- $i \leftarrow i + 1$

Definition: State-Action Value Q

State-action value of a policy

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s' \mid s,a) V^{\pi}(s')$$

 \rightarrow Take action a, then follow the policy π

Lindauer

Policy Improvement

- \blacktriangleright Compute state-action value of a policy π_i
 - ightharpoonup For s in S and a in A:

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s' \mid s,a) V^{\pi}(s')$$

Policy Improvement

- lacktriangle Compute state-action value of a policy π_i
 - For s in S and a in A:

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s' \mid s,a) V^{\pi}(s')$$

▶ Compute new policy π_{i+1} for all $s \in S$

$$\pi_{i+1}(s) \in \operatorname*{arg\,max}_{a \in A} Q^{\pi_i}(s,a). \forall s \in S$$

MDP Policy Iteration (PI)

- ightharpoonup Set i=0
- lnitialize $\pi_0(s)$ randomly for all states s
- lacktriangle While i==0 or $||\pi_i-\pi_{i-1}||_1>0$ (L1-norm, measures if the policy changed for any state)
 - $ightharpoonup V^{\pi_i} \leftarrow \mathsf{MDP}\,\mathsf{V}$ function policy evaluation of $\pi \longrightarrow \mathsf{use}\,Q$
 - $\blacktriangleright \pi_{i+1} \leftarrow \text{Policy improvement}$
 - $i \leftarrow i + 1$

Delving Deeper Into Policy Improvement Step

$$\begin{split} Q^{\pi}(s,a) &= R(s,a) + \gamma \sum_{s' \in S} P(s' \mid s,a) V^{\pi}(s') \\ \max_{a} Q^{\pi}(s,a) &\geq R(s,a) + \gamma \sum_{s' \in S} P(s' \mid s,a) V^{\pi}(s') \\ \pi_{i+1}(s) &\in \operatorname*{arg\,max}_{a \in A} Q^{\pi_{i}}(s,a) \end{split}$$

- ▶ Suppose we take $\pi_{i+1}(s)$ for one action, then follow π_i forever
 - lacktriangle Our expected sum of rewards is at least as good as if we had always followed π_i
- lacktriangle But new proposed policy is to always follow π_{i+1}

Monotonic Improvement in Policy

Definition

$$V^{\pi_2} \ge V^{\pi_1} : V^{\pi_2}(s) \ge V^{\pi_1}(s) . \forall s \in S$$

- ▶ Proposition: $V^{\pi_{i+1}} \ge V^{\pi_i}$
 - \blacktriangleright where π_{i+1} is the new policy we get from policy improvement on π_i
 - lacktriangle with strict inequality if π_i is suboptimal

MDP Policy Iteration (PI): Check your Understanding

- \triangleright Set i=0
- ▶ Initialize $\pi_0(s)$ randomly for all states s
- ▶ While i=0 or $||\pi_i-\pi_{i-1}||_1>0$ (L1-norm, measures if the policy changed for any state)
 - $ightharpoonup V^{\pi_i} \leftarrow \mathsf{MDP}\,\mathsf{V}$ function policy evaluation of $\pi \longrightarrow \mathsf{use}\,Q$
 - $\blacktriangleright \pi_{i+1} \leftarrow \text{Policy improvement}$
 - $i \leftarrow i + 1$
- ▶ If policy doesn't change, can it ever change?
- Is there a maximum of iterations of policy iteration?