PCS2046- Lógica Computacional

Aula 10 | Exercício 8

Professor Doutor Ricardo Rocha

9783640 - Luís Henrique Barroso Oliveira

9835623 - Rodrigo Vali Cebrian

11259715 - Vanderson da Silva dos Santos

Sumário

Sumário	2
Exercício 1	3
Resolução	3
Exercício 2	4
Resolução	5

Exercício 1

Coloque a gramática abaixo na Forma Normal de Chomsky.

G=({E, T, F}, {+, *, id, }, (}, {E
$$\rightarrow$$
 E + T, E \rightarrow T, T \rightarrow T * F, T \rightarrow F, F \rightarrow (E),
F \rightarrow id}, E)

Resolução

As transformações iniciais são:

$$E \rightarrow E + E$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

 $F \rightarrow id$

Aplicando a transformação $E \to T$, de forma a remover E todas as transformações em que este aparece do lado direito:

$$E \to T + T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (T)$$

$$F \to id$$

O proximo passo é aplicar a transformação $T \to F$, removendo T de todas as equações em que este aparece do lado direito:

$$E \rightarrow F + F$$

$$T \rightarrow F * F$$

$$T \rightarrow F$$

$$F \rightarrow (F)$$

$$F \rightarrow id$$

Dado que é possível a transformação $T \rightarrow F$, pode-se substituir também T quando este ocorre do ladon esquerdo da transformação, de forma a simplificar a lista de transformações:

$$E \to F + F$$

$$F \to F * F$$

$$F \to (F)$$

$$F \rightarrow id$$

Agora, serão criados símbolos não terminais para substituir os símbolos não terminais do lado direito das transformações, sempre que estes não forem o único símbolo no resultado da transformação.

$$N_1 \rightarrow +$$

$$N_2 \rightarrow *$$

$$N_3 \rightarrow ($$

$$N_4 \rightarrow$$
)

Com as transformações criadas acima, pode-se prosseguir da seguinte forma:

$$E \rightarrow FN_1F$$

$$F \rightarrow FN_2F$$

$$F \rightarrow N_3 F N_4$$

$$F \rightarrow id$$

Por fim, resta substituir algumas duplas de símbolos não-terminais por um único símbolo não terminal, nas ocosiões em que há mais de 2 símbolos não terminais à direita de uma transformação:

$$N_5 \rightarrow N_1 F$$

$$N_6 \rightarrow N_2 F$$

$$N_7 \rightarrow FN_4$$

Com as transformações criadas acima, pode-se prosseguir com o passo final:

$$E \rightarrow FN_{5}$$

$$F \rightarrow FN_6$$

$$F \rightarrow N_3 N_7$$

$$F \rightarrow id$$

Exercício 2

Use o algoritmo CYK para verificar se a cadeia "(()(()))" pertence à linguagem gerada pela gramática abaixo:

$$G=(\{S, S_1\}, \{\}, \{\}, \{S \to SS, S \to (S_1, S_1 \to S), S \to (\}\}, S)$$

Resolução

Para utilizar o algoritmo CYK, primeiro é necessário transformar a gramática para a Forma Normal de Chomsky (FNC), que consiste em regras de produção que são da forma $A \rightarrow BC$ ou $A \rightarrow a$, onde A, B e C são símbolos não terminais e a é um símbolo terminal.

Dessa forma, por Chomsky, obtém-se:

 $T(\rightarrow ($

 $T) \rightarrow)$

 $S \rightarrow SS$

 $S \rightarrow T(S1)$

 $S1 \rightarrow ST$

 $S \rightarrow T(T)$

Após isso, pode-se implementar a técnica da árvore de derivação para conferir se essa cadeia é aceita por tal gramática. Assim, pode-se gerar a seguinte árvore.

- (1)
 - (1)
- T
- (T)

- ((() () () ()

- (0)
- (0) (1) (10)

((O))

(m)

- (00)
- (00) (00)
- ((0)) (0))
- (000)
- (000) (00)
- (0(0) (0(0) (00)
- (000)
- (0(0))

((((()))