Problem 5

Problem

In $\triangle ABC$, AM is the median. AT is the angle bisector of $\angle A.BE \perp AT$ at T and $CF \perp AT$ at F. Show that ME = MF.

Solution

Method 1: Extend CF to meet AB at C'.

Since AT is the angle bisector of $\angle A, AF$ is the angle bisector of $\angle A.AF$ is the perpendicular bisector of C'C in $\triangle AC'C$, so $\triangle AC'F \cong \triangle ACF, CF = FC'$.

Since F is the midpoint of CC', M is the midpoint of BC, $FM//BC'//AB.\angle MFE = \angle BAT.$ Extend BE to meet the extension of AC at E'.

Similarly, we get $ME//CE\prime$, $\angle MEF = \angle CAT$. Since $\angle BAT = \angle CAT$, $\angle MFE = \angle MEF$. Thus ME = MF. Method 2:

Extend CF to meet AB at C'.

Since AT is the angle bisector of $\angle A, AF$ is the angle bisector of $\angle A.AF$ is the perpendicular bisector of C'C in $\triangle AC'C$, so $\triangle AC'F \cong \triangle ACF, CF = FC'$. Since F is the midpoint of CC', M is the midpoint of $BC, MF = \frac{1}{2}BC$.

Extend BE to meet the extension of AC at E'. Similarly, we get $ME=\frac{1}{2}CE$. Since CC'//BE', CB=CE'. Thus ME=MF.