Email training, N2 August 31 - September 7, 2019

Problem 2.1. Let S(x) be the sum of digits of x. Solve the equation

$$x + S(x) + S(S(x)) = 2018.$$

Problem 2.2. Find the maximum possible value of $x^6 + y^6$ if it's known that $x^2 + y^2 = 1$.

Problem 2.3. Solve the inequality

$$\frac{2x^2 - 5x - 2}{3x - x^2 - 7} \le 1.$$

Problem 2.4. Let S(n) be the sum of divisors of n (for example S(6) = 1 + 2 + 3 + 6 = 12). Find all n for which S(2n) = 3S(n).

Problem 2.5. Is it possible to write numbers (each once) from 1 to 10 on edges and vertices of triangular pyramid in such a way, that any number on the edge is the arithmetical mean of the numbers written on the endpoints of that edge.

Problem 2.6. Let numbers (1, 2, 3, 4) are given. On each step one chooses 2 neighboring numbers (first and fourth numbers are considered as neighboring) and increases by 1. Is it possible after some steps get numbers (2015, 2016, 2017, 2016)?

Problem 2.7. Find the number of acute triangles that has perimeter less than 100 and sides are 3 consecutive positive integers.

Problem 2.8. In the triangle ABC one has $\angle A = 70^{\circ}$. The point D is chosen on the segment AC such that the bisector AE intersects BD at point H and AH: HE = 3: 1. as well BH: HD = 5: 3. Find $\angle C$.

Solution submission deadline September 7, 2019