Traffic Sign Recognition with Data Augmentation

S Overview

This project implements a **deep learning pipeline** for the recognition of **German Traffic Signs** using **Convolutional Neural Networks (CNNs)**.

The goal is to **accurately classify traffic signs into 43 categories**, a crucial step in developing **autonomous driving systems** and **advanced driver-assistance systems** (ADAS).

Traffic sign recognition plays a critical role in **road safety**, enabling vehicles to automatically detect and interpret signs such as **speed limits**, **stop signs**, **and warnings**.

****Objectives**

- Build a robust classification model for the German Traffic Sign Recognition Benchmark (GTSRB).
- Apply data augmentation to improve generalization.
- Compare baseline and augmented results.
- Evaluate model with accuracy, precision, recall, and F1-score.
- Provide a **reproducible training pipeline** for researchers and engineers.

Dataset

Name: German Traffic Sign Recognition Benchmark (GTSRB)

• Number of classes: 43

• Training images: ~39,000

• Test images: ~12,000

• Image size: Resized to 32×32×3

Example Images

Original Augmented

Class Distribution

The dataset is **imbalanced**, with some classes having thousands of samples (e.g., speed limits) while others have fewer (e.g., rare signs).

Methodology

1. Data Preprocessing

- Resizing all images to 32×32×3.
- Normalization to range [0, 1].
- One-hot encoding of labels.

2. Data Augmentation

To improve generalization, the following transformations were applied:

- Random rotations (±20°)
- Zoom (0.8–1.2×)
- Horizontal/vertical shifts (±10%)
- Brightness variation (±20%)
- Shear transformations

Horizontal flips

3. Model Architecture (CNN)

```
Input: 32x32x3
↓
Conv2D (32 filters, 3x3) + ReLU
↓
Conv2D (64 filters, 3x3) + ReLU
↓
MaxPooling (2x2)
↓
Dropout (0.25)
↓
Conv2D (128 filters, 3x3) + ReLU
↓
MaxPooling (2x2)
↓
Dropout (0.25)
↓
Flatten
↓
Dense (256 units) + ReLU
↓
Dropout (0.5)
↓
Dense (43 units) + Softmax
```

Training Setup

• Loss Function: Categorical Crossentropy

• Optimizer: Adam (1r=0.001)

• Batch Size: 32 / 64

• **Epochs**: 30–50

• Callbacks:

EarlyStopping (patience=5)

ModelCheckpoint (best model saved)

Accuracy

• Baseline CNN: ~92% test accuracy

• With Augmentation: 95-97% test accuracy

Evaluation Metrics

Metric	Score
Accuracy	95%
Precision	94%
Recall	94%
F1-score	94%

Confusion Matrix

Reproducibility

1. Clone Repo

git clone https://github.com/your-username/traffic-signsclassification.git
cd traffic-signs-classification

2. Install Dependencies

pip install -r requirements.txt

3. Run Training Notebook

jupyter notebook augmented_traffic_signs.ipynb

4. Evaluate Model

from tensorflow.keras.models import load_model
model = load_model("best_model.h5")

Openation Dependencies

- Python 3.8+
- TensorFlow / Keras
- NumPy
- Matplotlib
- OpenCV
- Scikit-learn

Install with:

pip install tensorflow keras numpy matplotlib opencv-python scikitlearn

Future Work

- Apply transfer learning with ResNet, VGG, or EfficientNet.
- Experiment with **semi-supervised learning** for rare signs.
- Deploy model using Flask, FastAPI, or Streamlit.

• Optimize for **edge devices** (Jetson Nano, Raspberry Pi).

Acknowledgements

- GTSRB Dataset
- TensorFlow & Keras documentation
- OpenCV tutorials