

TOWARDS TASK-COMPATIBLE COMPRESSIBLE REPRESENTATIONS

Anderson de Andrade, Ivan Bajić

School of Engineering Science Simon Fraser University Burnaby, BC, Canada

MOTIVATION

- · Representations induced by choices: task, architecture, co-parameters
- · Relevant information cannot be fully extracted by different processes
- · Critical in multi-task learning and scalable coding (side-information)

RELATED WORK

Referred as co-adaptation in transfer learning:

Figure 1: "Features interact with each other in a complex or fragile way such that this co-adaptation could not be relearned" (credit: Yosinski et al.¹)

¹J. Yosinski et al. "How transferable are features in deep neural networks?" In: *NIPS*. 2014.

PROBLEM FORMULATION

- · Predictive \mathcal{V} -information 2 considers limited synthesis transforms \mathcal{G}
- Choose analysis transform that optimizes $\mathcal V\text{-information}$ between representation and output:

$$\sup_{\mathbf{f}\in\mathcal{F}}I_{\mathcal{V}}(\mathbf{f}(X)\to Z)$$

- \cdot Predictive set ${\mathcal V}$ is parameterized by ${\mathcal G}$
- For unrestricted \mathcal{F} , attaining I(X;Z) limited by expressiveness of \mathcal{G} and \mathcal{V}

²Yilun Xu et al. "A Theory of Usable Information under Computational Constraints". In: ICLR. 2020.

INSIGHT

- · Several analysis transforms \mathcal{F}_b^* can achieve desired RD for task Z_b
- · Selected analysis transform \mathbf{f}_b^* can underperform in secondary task Z_e :

$$I_{\mathcal{V}_e}(\mathbf{f}_b^*(X) \to Z_e) \leq rg \max_{\mathbf{f} \in \mathcal{F}_b^*} I_{\mathcal{V}_e}(\mathbf{f}(X) \to Z_e)$$

· Achieve similar RD on base while optimizing for secondary tasks

PROPOSAL

· New objective for base:

$$\sup_{\mathbf{f}\in\mathcal{F}}\left\{I_{\mathcal{V}_b}(\mathbf{f}(X)\to\mathcal{Z}_b)+\beta I_{\mathcal{V}_a}(\mathbf{f}(X)\to\mathcal{Z}_a)\right\}$$

- \cdot \mathcal{V}_a is a predictive set given by synthesis transforms \mathcal{G}_a
- Propose reconstruction as to generalize to other tasks
- Small reward β on capacity of **f** to reconstruct input X

PROPOSAL

Choice of reconstruction task $Z_a = X$ and simple \mathcal{G}_a :

- · Partial reconstruction can be subsumed by secondary tasks
- · Task models often designed to work on original input space
- Trained in an unsupervised manner

SCALABLE CODING

- · Set $I_{\mathcal{V}_b}(Y_b \to Z_b)$ as information bottleneck³ for rate-constrained Y_b
- · Define \mathcal{V}_b according to task loss Z_b
- · Assume Normal distribution centered around $\hat{X} = \mathbf{g}_a(\hat{Y}_b)$ for \mathcal{V}_a
- · Base loss:

$$\mathcal{L}_b(\psi_b, \phi_b, \theta_b, \theta_a) = \lambda_b \mathbb{E}[d_b(\hat{Z}_b, Z_b)] + \hat{h}(\hat{Y}_b; \phi_b) + \beta \mathbb{E}[\|\hat{X} - X\|]$$

• $\beta \ll \lambda_b$

³N. Tishby, F. C. N. Pereira, and W. Bialek. "The information bottleneck method". In: *CoRR* physics/0004057 (2000).

SCALABLE CODING

- Information bottleneck for enhancement representation
- Entropy estimates conditional on base
- · Enhancement loss:

$$\mathcal{L}_e(\psi_e, \phi_e) = \lambda_e \mathbb{E}[d_e(\hat{Z}_e, Z_e)] + \hat{h}(\hat{Y}_e|\hat{Y}_b; \phi_e)$$

ARCHITECTURE

Figure 2: Architecture overview.

ARCHITECTURE

- · Analysis and synthesis transform in ELIC⁴
- Append model to synthesis transform according to task
- Gaussian entropy model⁵
- Quantization modelled by STE instead of uniform noise

⁴D. He et al. "ELIC: Efficient Learned Image Compression with Unevenly Grouped Space-Channel Contextual Adaptive Coding". In: *IEEE CVPR*. 2022.

⁵J. Ballé et al. "Variational image compression with a scale hyperprior". In: *ICLR*. 2018.

EXPERIMENTS

- · Reconstruction with object detection base
- · Reconstruction with depth estimation base
- · Semantic segmentation with depth estimation base
- Baseline with $\beta = 0$, proposal with $\beta = 0.01$
- · Rate of scalable approach is sum of base and enhancement rates
- · Standalone method with no side-information as lower bound
- Base task trained separately and frozen

EXPERIMENTS

- Object detection on COCO 2017
- Depth estimation and semantic segmentation on Cityscapes
- Faster R-CNN⁶ with ResNet-50⁷ for object detection
- LRASPP with MobileNetV3⁸ for depth estimation
- DeepLabV39 with ResNet-50 for segmentation

⁶S. Ren et al. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". In: *IEEE TPAMI* 39 (2017).

⁷K. He et al. "Deep Residual Learning for Image Recognition". In: *IEEE CVPR*. 2016.

⁸A. Howard et al. "Searching for MobileNetV3". In: *IEEE ICCV*. 2019.

⁹L.-C. Chen et al. "Rethinking Atrous Convolution for Semantic Image Segmentation". In: *CORR* abs/1706.05587 (2017).

Figure 3: Rate-distortion of base tasks. 1.3% and 75% BD-rate.

Figure 4: Rate-distortion of input reconstruction from the base representation directly. No-overlap and 85% BD-rate.

Figure 5: Rate-distortion of input reconstruction conditional on base representation. 10% and 22% BD-rate w/r baseline.

Figure 6: Rate-distortion with depth estimation as base and semantic segmentation as enhancement on Cityscapes. 26% BD-rate w/r baseline. Training set due to dataset size.

RESULTS

(b) Original

Figure 7: Preview of object detection base at 17.23 PSNR.

RESULTS

(a) Preview

(b) Original

Figure 8: Preview of depth estimation base at 30.45 PSNR.

CONCLUSIONS

- Baseline unable to extract useful information in some experiments
- \cdot Base RD lift suggests co-adaptation between Y_b and entropy/task models

CONCLUSIONS

- \cdot \mathcal{V} -information framework provides possible interpretation
- Auxiliary task is sufficiently non-specific and \mathcal{V}_a is sufficiently simple to reduce co-adaptation and generalize to other tasks