

COM303: Digital Signal Processing

Lecture 4: Introduction to Fourier Analysis

Overview

- ► Fourier analysis: concept and motivation
- ▶ the complex exponential
- ▶ the Fourier basis
- ▶ the DFT

signals are often expressed as a linear combination of "atomic" time units:

$$x[n] = \sum_{k=0}^{N-1} x[k]\delta[n-k]$$

signals are often expressed as a linear combination of "atomic" time units:

$$x[n] = \sum_{k=0}^{N-1} x[k]\delta[n-k]$$

signals are often expressed as a linear combination of "atomic" time units:

$$x[n] = \sum_{k=0}^{N-1} x[k]\delta[n-k]$$

signals are often expressed as a linear combination of "atomic" time units:

$$x[n] = \sum_{k=0}^{N-1} x[k]\delta[n-k]$$

signals are often expressed as a linear combination of "atomic" time units:

$$x[n] = \sum_{k=0}^{N-1} x[k]\delta[n-k]$$

signals are often expressed as a linear combination of "atomic" time units:

$$x[n] = \sum_{k=0}^{N-1} x[k]\delta[n-k]$$

signals are often expressed as a linear combination of "atomic" time units:

$$x[n] = \sum_{k=0}^{N-1} x[k]\delta[n-k]$$

signals are often expressed as a linear combination of "atomic" time units:

$$x[n] = \sum_{k=0}^{N-1} x[k]\delta[n-k]$$

signals are often expressed as a linear combination of "atomic" time units:

$$x[n] = \sum_{k=0}^{N-1} x[k]\delta[n-k]$$

in vector notation:

$$\mathbf{x} = \sum_{k=0}^{N-1} x_k \boldsymbol{\delta}^{(k)}$$

where $\{\delta^{(k)}\}$ is the canonical basis for \mathbb{C}^N ; e.g.:

$$\boldsymbol{\delta}^{(2)} = \begin{bmatrix} 0 & 0 & 1 & 0 & \dots & 0 \end{bmatrix}^T$$

The frequency domain

Fourier analysis: express a signal as a combination of periodic oscillations:

$$\mathbf{x} = \sum_{k=0}^{N-1} X_k \mathbf{w}^{(k)}$$

where $\{\mathbf{w}^{(k)}\}$ is the Fourier basis.

Fourier transform: a change of basis in the space of discrete-time signals

The frequency domain

Fourier analysis: express a signal as a combination of periodic oscillations:

$$\mathbf{x} = \sum_{k=0}^{N-1} X_k \mathbf{w}^{(k)}$$

where $\{\mathbf{w}^{(k)}\}$ is the Fourier basis.

Fourier transform: a change of basis in the space of discrete-time signals

- sustainable dynamic systems exhibit oscillatory behavior
- ▶ intuitively: things that don't move in circles can't last:
 - bombs
 - rockets
 - human beings..

- sustainable dynamic systems exhibit oscillatory behavior
- ▶ intuitively: things that don't move in circles can't last:
 - bombs
 - rockets
 - human beings...

- sustainable dynamic systems exhibit oscillatory behavior
- ▶ intuitively: things that don't move in circles can't last:
 - bombs
 - rockets
 - human beings...

- sustainable dynamic systems exhibit oscillatory behavior
- ▶ intuitively: things that don't move in circles can't last:
 - bombs
 - rockets
 - human beings...

- sustainable dynamic systems exhibit oscillatory behavior
- ▶ intuitively: things that don't move in circles can't last:
 - bombs
 - rockets
 - human beings...

•

You too can detect sinusoids!

the human body has two receptors for sinusoidal signals:

- ► air pressure sinusoids
- ▶ frequencies from 20Hz to 20KHz

rods and cones (retina)

- electromagnetic sinusoids
- ▶ frequencies from 430THz to 790THz

The intuition

- ▶ humans analyze complex signals (audio, images) in terms of their sinusoidal components
- ▶ we can build instruments that "resonate" at one or multiple frequencies (tuning fork vs piano)
- ▶ the "frequency domain" seems to be as important as the time domain

The intuition

- ▶ humans analyze complex signals (audio, images) in terms of their sinusoidal components
- ▶ we can build instruments that "resonate" at one or multiple frequencies (tuning fork vs piano)
- the "frequency domain" seems to be as important as the time domain

The intuition

- ▶ humans analyze complex signals (audio, images) in terms of their sinusoidal components
- we can build instruments that "resonate" at one or multiple frequencies (tuning fork vs piano)
- ▶ the "frequency domain" seems to be as important as the time domain

can we decompose any signal into sinusoidal elements?

yes, and Fourier showed us how to do it exactly

analysis

- ▶ from time domain to frequency domain
- find the contribution of different frequencies
- discover "hidden" signal properties

- from frequency domain to time domain
- create signals with known frequency content
- ▶ fit signals to specific frequency regions

can we decompose any signal into sinusoidal elements?

yes, and Fourier showed us how to do it exactly!

analysis

- ▶ from time domain to frequency domain
- find the contribution of different frequencies
- discover "hidden" signal properties

- from frequency domain to time domain
- create signals with known frequency content
- ▶ fit signals to specific frequency regions

can we decompose any signal into sinusoidal elements?

yes, and Fourier showed us how to do it exactly!

analysis

- from time domain to frequency domain
- find the contribution of different frequencies
- discover "hidden" signal properties

- ▶ from frequency domain to time domain
- create signals with known frequency content
- fit signals to specific frequency regions

can we decompose any signal into sinusoidal elements?

yes, and Fourier showed us how to do it exactly!

analysis

- from time domain to frequency domain
- find the contribution of different frequencies
- discover "hidden" signal properties

- from frequency domain to time domain
- create signals with known frequency content
- fit signals to specific frequency regions

- ▶ let's start with finite-length signals (i.e. vectors in \mathbb{C}^N)
- ► Fourier analysis is a simple change of basis
- ▶ a change of basis is a change of perspective
- ▶ a change of perspective can reveal things (if the basis is good)

- ▶ let's start with finite-length signals (i.e. vectors in \mathbb{C}^N)
- ► Fourier analysis is a simple change of basis
- ▶ a change of basis is a change of perspective
- ▶ a change of perspective can reveal things (if the basis is good)

- ▶ let's start with finite-length signals (i.e. vectors in \mathbb{C}^N)
- ► Fourier analysis is a simple change of basis
- ▶ a change of basis is a change of perspective
- ▶ a change of perspective can reveal things (if the basis is good)

- ▶ let's start with finite-length signals (i.e. vectors in \mathbb{C}^N)
- ► Fourier analysis is a simple change of basis
- ▶ a change of basis is a change of perspective
- ▶ a change of perspective can reveal things (if the basis is good)

Mystery signal

Mystery signal in the Fourier basis

Prerequisite Warning!

The complex exponential

$$e^{j\alpha}=\cos\alpha+j\sin\alpha$$

The complex exponential

z: point on the complex plane

The complex exponential

The discrete-time oscillatory heartbeat

Ingredients:

- ightharpoonup a frequency ω (units: radians)
- \blacktriangleright an initial phase ϕ (units: radians)
- ► an amplitude A

$$x[n] = Ae^{j(\omega n + \phi)}$$
$$= A[\cos(\omega n + \phi) + j\sin(\omega n + \phi)]$$

The discrete-time oscillatory heartbeat

Ingredients:

- ightharpoonup a frequency ω (units: radians)
- \blacktriangleright an initial phase ϕ (units: radians)
- ► an amplitude *A*

$$x[n] = Ae^{j(\omega n + \phi)}$$
$$= A[\cos(\omega n + \phi) + j\sin(\omega n + \phi)]$$

Why complex exponentials?

- we can use complex numbers in digital systems, so why not?
- ▶ it makes sense: every sinusoid can always be written as a sum of sine and cosine
- ▶ math is simpler: trigonometry becomes algebra

Why complex exponentials?

- we can use complex numbers in digital systems, so why not?
- ▶ it makes sense: every sinusoid can always be written as a sum of sine and cosine
- ▶ math is simpler: trigonometry becomes algebra

Why complex exponentials?

- we can use complex numbers in digital systems, so why not?
- ▶ it makes sense: every sinusoid can always be written as a sum of sine and cosine
- ▶ math is simpler: trigonometry becomes algebra

Example: change the phase of a cosine the "old-school" way

$$cos(\omega n + \phi) = a cos(\omega n) - b sin(\omega n),$$
 $a = cos \phi, b = sin \phi$

- we have to remember complex trigonometric formulas
- we have to carry more terms in our equations

Example: change the phase of a cosine the "old-school" way

$$cos(\omega n + \phi) = a cos(\omega n) - b sin(\omega n),$$
 $a = cos \phi, b = sin \phi$

- ▶ we have to remember complex trigonometric formulas
- we have to carry more terms in our equations

Example: change the phase of a cosine the "old-school" way

$$cos(\omega n + \phi) = a cos(\omega n) - b sin(\omega n),$$
 $a = cos \phi, b = sin \phi$

- ▶ we have to remember complex trigonometric formulas
- we have to carry more terms in our equations

$$cos(\omega n + \phi) = Re\{e^{j(\omega n + \phi)}\} = Re\{e^{j\omega n} e^{j\phi}\}$$

- sine and cosine "live" together
- phase shift is simple multiplication
- notation is simpler

$$cos(\omega n + \phi) = Re\{e^{j(\omega n + \phi)}\} = Re\{e^{j\omega n} e^{j\phi}\}$$

- sine and cosine "live" together
- phase shift is simple multiplication
- notation is simpler

$$cos(\omega n + \phi) = Re\{e^{j(\omega n + \phi)}\} = Re\{e^{j\omega n} e^{j\phi}\}$$

- sine and cosine "live" together
- phase shift is simple multiplication
- notation is simpler

$$cos(\omega n + \phi) = Re\{e^{j(\omega n + \phi)}\} = Re\{e^{j\omega n} e^{j\phi}\}$$

- ▶ sine and cosine "live" together
- phase shift is simple multiplication
- notation is simpler

The discrete-time oscillatory heartbeat

$$x[n] = Ae^{j(\omega n + \phi)}$$

$$x[n] = e^{j\omega n};$$
 $x[n+1] = e^{j\omega}x[n]$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n};$$
 $x[n+1] = e^{j\omega}x[n]$

Initial phase

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

Initial phase

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

23

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

23

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

23

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

23

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

$$x[n] = e^{j(\omega n + \phi)};$$
 $x[n+1] = e^{j\omega}x[n],$ $x[0] = e^{j\phi}$

23

$$x[n] = e^{j\omega n};$$
 $x[n+1] = e^{j\omega}x[n]$

$$x[n] = e^{j\omega n}; \qquad x[n+1] = e^{j\omega}x[n]$$

$$x[n] = e^{j\omega n};$$
 $x[n+1] = e^{j\omega}x[n]$

$$e^{j\omega n}$$
 periodic in $n\iff \omega=rac{M}{N}2\pi, \quad M,N\in\mathbb{Z}$

$$x[n] = x[n + N]$$

$$e^{j(\omega n + \phi)} = e^{j(\omega(n+N) + \phi)}$$

$$e^{j\omega n} e^{j\phi} = e^{j\omega n} e^{j\omega N} e^{j\phi}$$

$$e^{j\omega N} = 1$$

$$\omega N = 2M\pi, \quad M \in \mathbb{Z}$$

$$\omega = \frac{M}{N} 2\pi$$

$$x[n] = x[n + N]$$

$$e^{j(\omega n + \phi)} = e^{j(\omega(n+N) + \phi)}$$

$$e^{j\omega n}e^{j\phi} = e^{j\omega n}e^{j\omega N}e^{j\phi}$$

$$e^{j\omega N} = 1$$

$$\omega N = 2M\pi, \quad M \in \mathbb{Z}$$

$$\omega = \frac{M}{N}2\pi$$

$$x[n] = x[n + N]$$

$$e^{j(\omega n + \phi)} = e^{j(\omega(n+N) + \phi)}$$

$$e^{j\omega n}e^{j\phi} = e^{j\omega n}e^{j\omega N}e^{j\phi}$$

$$e^{j\omega N} = 1$$

$$\omega N = 2M\pi, \quad M \in \mathbb{Z}$$

$$\omega = \frac{M}{N}2\pi$$

Condition for periodicity in discrete time

$$x[n] = x[n + N]$$

$$e^{j(\omega n + \phi)} = e^{j(\omega(n+N) + \phi)}$$

$$e^{j\omega n}e^{j\phi} = e^{j\omega n}e^{j\omega N}e^{j\phi}$$

$$e^{j\omega N} = 1$$

$$\omega N = 2M\pi, \quad M \in \mathbb{Z}$$

$$\omega = \frac{M}{N}2\pi$$

Condition for periodicity in discrete time

$$x[n] = x[n + N]$$

$$e^{j(\omega n + \phi)} = e^{j(\omega(n+N) + \phi)}$$

$$e^{j\omega n}e^{j\phi} = e^{j\omega n}e^{j\omega N}e^{j\phi}$$

$$e^{j\omega N} = 1$$

$$\omega N = 2M\pi, \quad M \in \mathbb{Z}$$

$$\omega = \frac{M}{N}2\pi$$

Condition for periodicity in discrete time

$$x[n] = x[n + N]$$

$$e^{j(\omega n + \phi)} = e^{j(\omega(n+N) + \phi)}$$

$$e^{j\omega n}e^{j\phi} = e^{j\omega n}e^{j\omega N}e^{j\phi}$$

$$e^{j\omega N} = 1$$

$$\omega N = 2M\pi, \quad M \in \mathbb{Z}$$

$$\omega = \frac{M}{N}2\pi$$

2π phase periodicity of complex exponentials

$$e^{j\alpha} = e^{j(\alpha + 2k\pi)} \quad \forall k \in \mathbb{Z}$$

2π -periodicity: one point, many names

2π -periodicity: one point, many names

2π -periodicity: one point, many names

One point, many names

One point, many names

$$0 \le \omega < 2\pi$$

Remember the complex exponential generating machine

Remember the complex exponential generating machine

$$\omega = 2\pi/12$$

$$\omega = 2\pi/6$$

$$\omega = 2\pi/5$$

$$\omega = 2\pi/4$$

$$\omega = 2\pi/3$$

$$\omega = 2\pi/2 = \pi$$

What if we go "faster"?

$$\pi < \omega < 2\pi$$

What if we go "faster"?

$$\pi < \omega < 2\pi$$

$$\omega = 2\pi - \alpha, \quad \alpha \text{ small}$$

$$\omega = 2\pi - \alpha, \quad \alpha \text{ small}$$

$$\omega = 2\pi - \alpha, \quad \alpha \text{ small}$$

$$\omega = 2\pi - \alpha, \quad \alpha \text{ small}$$

$$\omega = 2\pi - \alpha, \quad \alpha \text{ small}$$

$$\omega = 2\pi - \alpha, \quad \alpha \text{ small}$$

$$\omega = 2\pi - \alpha, \quad \alpha \text{ small}$$

$$\omega = 2\pi - \alpha, \quad \alpha \text{ small}$$

The wagonwheel effect

Summary

- $x[n] = e^{j(\omega n + \phi)}$ is the prototypical DSP oscillation
- \blacktriangleright discrete-time oscillations are periodic ONLY if frequency a rational multiple of π
- in discrete time, ω and $\omega + 2k\pi$ are indistinguishable frequencies

▶ Discrete time:

- n: no physical dimension (just a counter)
- periodicity: how many samples before pattern repeats
- "Real world":
 - periodicity: how many seconds before pattern repeats
 - frequency measured in Hz (s^{-1})

- Discrete time:
 - *n*: no physical dimension (just a counter)
 - periodicity: how many samples before pattern repeats
- "Real world"
 - periodicity: how many seconds before pattern repeatern
 - frequency measured in Hz (s^{-1})

- Discrete time:
 - *n*: no physical dimension (just a counter)
 - periodicity: how many samples before pattern repeats
- "Real world"
 - periodicity: how many seconds before pattern repeatern
 - frequency measured in Hz (s^{-1})

- Discrete time:
 - n: no physical dimension (just a counter)
 - periodicity: how many samples before pattern repeats
- "Real world":
 - periodicity: how many seconds before pattern repeats
 - ullet frequency measured in Hz (s^{-1})

- Discrete time:
 - n: no physical dimension (just a counter)
 - periodicity: how many samples before pattern repeats
- "Real world":
 - periodicity: how many seconds before pattern repeats
 - ullet frequency measured in Hz (s^{-1})

- ▶ Discrete time:
 - *n*: no physical dimension (just a counter)
 - periodicity: how many samples before pattern repeats
- "Real world":
 - periodicity: how many seconds before pattern repeats
 - ullet frequency measured in Hz (s^{-1})

How your PC plays sounds

How your PC plays sounds

- \triangleright set T_s , time in seconds between samples
- lacktriangledown periodicity of MT_s seconds
- real world frequency:

$$f = \frac{1}{MT_s}$$

- \triangleright set T_s , time in seconds between samples
- ightharpoonup periodicity of M samples \longrightarrow periodicity of MT_s seconds
- real world frequency:

$$f = \frac{1}{MT_s}$$

- \triangleright set T_s , time in seconds between samples
- ightharpoonup periodicity of MT_s seconds
- real world frequency:

$$f=\frac{1}{MT_s}$$

The Fourier Basis for \mathbb{C}^N

Claim: the set of N signals in \mathbb{C}^N

$$w_k[n] = e^{j\frac{2\pi}{N}nk}, \qquad n, k = 0, 1, \dots, N-1$$

is an orthogonal basis in \mathbb{C}^N .

The Fourier Basis for \mathbb{C}^N

In vector notation:

$$\{\mathbf{w}^{(k)}\}_{k=0,1,...,N-1}$$

with

$$w_n^{(k)} = e^{j\frac{2\pi}{N}nk}$$

is an orthogonal basis in \mathbb{C}^N

Basis vector $\mathbf{w}^{(0)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(1)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(2)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(3)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(4)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(5)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(16)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(16)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(20)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(20)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(30)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(30)} \in \mathbb{C}^{64}$

Basis vector $\boldsymbol{w}^{(31)} \in \mathbb{C}^{64}$

 $\omega_{31}=2\pi\,\frac{31}{64}$

Basis vector $\mathbf{w}^{(31)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(32)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(32)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(33)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(34)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(60)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(61)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(62)} \in \mathbb{C}^{64}$

Basis vector $\mathbf{w}^{(63)} \in \mathbb{C}^{64}$

$$\langle \mathbf{w}^{(k)}, \mathbf{w}^{(h)} \rangle = \sum_{n=0}^{N-1} (e^{j\frac{2\pi}{N}nk})^* e^{j\frac{2\pi}{N}nh}$$

$$= \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}(h-k)n}$$

$$= \begin{cases} N & \text{for } h = k \\ \frac{1 - e^{j\frac{2\pi}{N}(h-k)}}{1 - e^{j\frac{2\pi}{N}(h-k)}} = 0 & \text{otherwise} \end{cases}$$

$$\langle \mathbf{w}^{(k)}, \mathbf{w}^{(h)} \rangle = \sum_{n=0}^{N-1} (e^{j\frac{2\pi}{N}nk})^* e^{j\frac{2\pi}{N}nh}$$

$$= \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}(h-k)n}$$

$$= \begin{cases} N & \text{for } h = k \\ \frac{1 - e^{j2\pi(h-k)}}{1 - e^{j\frac{2\pi}{N}(h-k)}} = 0 & \text{otherwise} \end{cases}$$

$$\langle \mathbf{w}^{(k)}, \mathbf{w}^{(h)} \rangle = \sum_{n=0}^{N-1} (e^{j\frac{2\pi}{N}nk})^* e^{j\frac{2\pi}{N}nh}$$

$$= \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}(h-k)n}$$

$$= \begin{cases} N & \text{for } h = k \\ \frac{1 - e^{j2\pi(h-k)}}{1 - e^{j\frac{2\pi}{N}(h-k)}} = 0 & \text{otherwise} \end{cases}$$

$$\begin{split} \langle \mathbf{w}^{(k)}, \mathbf{w}^{(h)} \rangle &= \sum_{n=0}^{N-1} (e^{j\frac{2\pi}{N}nk})^* \, e^{j\frac{2\pi}{N}nh} \\ &= \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}(h-k)n} \\ &= \begin{cases} N & \text{for } h = k \\ \frac{1 - e^{j2\pi(h-k)}}{1 - e^{j\frac{2\pi}{N}(h-k)}} = 0 & \text{otherwise} \end{cases} \end{split}$$

Remarks

- ightharpoonup N orthogonal vectors \longrightarrow basis for \mathbb{C}^N
- ightharpoonup vectors are not ortho*normal*. Normalization factor would be $1/\sqrt{N}$

Remarks

- ▶ *N* orthogonal vectors \longrightarrow basis for \mathbb{C}^N
- ightharpoonup vectors are not ortho*normal*. Normalization factor would be $1/\sqrt{N}$

The Fourier Basis for \mathbb{C}^N

- ▶ in "signal" notation: $w_k[n] = e^{j\frac{2\pi}{N}nk}, \qquad n, k = 0, 1, \dots, N-1$
- ▶ in vector notation: $\{\mathbf{w}^{(k)}\}_{k=0,1,...,N-1}$ with $w_n^{(k)}=e^{j\frac{2\pi}{N}nk}$

The Fourier Basis for \mathbb{C}^N

- ▶ in "signal" notation: $w_k[n] = e^{j\frac{2\pi}{N}nk}$, n, k = 0, 1, ..., N-1
- ▶ in vector notation: $\{\mathbf{w}^{(k)}\}_{k=0,1,...,N-1}$ with $w_n^{(k)}=e^{j\frac{2\pi}{N}nk}$

The Fourier Basis for \mathbb{C}^N

- ightharpoonup N orthogonal vectors \longrightarrow basis for \mathbb{C}^N
- \blacktriangleright vectors are not ortho*normal*. Normalization factor would be $1/\sqrt{N}$
- will keep normalization factor explicit in DFT formulas

Basis expansion

Analysis formula:

$$X_k = \langle \mathbf{w}^{(k)}, \mathbf{x} \rangle$$

Synthesis formula:

$$\mathbf{x} = \frac{1}{N} \sum_{k=0}^{N-1} X_k \mathbf{w}^{(k)}$$

Basis expansion (signal notation)

Analysis formula:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}nk}, \qquad k = 0, 1, \dots, N-1$$

N-point signal in the frequency domain

Synthesis formula:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}nk}, \qquad n = 0, 1, \dots, N-1$$

N-point signal in the "time" domain

Basis expansion (signal notation)

Analysis formula:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}nk}, \qquad k = 0, 1, \dots, N-1$$

N-point signal in the frequency domain

Synthesis formula:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}nk}, \qquad n = 0, 1, \dots, N-1$$

N-point signal in the "time" domain

Change of basis in matrix form

Define
$$W_N = e^{-j\frac{2\pi}{N}}$$
 (or simply W when N is evident from the context)

Change of basis matrix **W** with $W[n, m] = W_N^{nm}$:

$$\mathbf{W} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & W^1 & W^2 & W^3 & \dots & W^{N-1} \\ 1 & W^2 & W^4 & W^6 & \dots & W^{2(N-1)} \\ & & & & \dots & & \\ 1 & W^{N-1} & W^{2(N-1)} & W^{3(N-1)} & \dots & W^{(N-1)^2} \end{bmatrix}$$

Change of basis in matrix form

Define
$$W_N=e^{-jrac{2\pi}{N}}$$
 (or simply W when N is evident from the context)

Change of basis matrix **W** with $W[n, m] = W_N^{nm}$:

$$\mathbf{W} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & W^1 & W^2 & W^3 & \dots & W^{N-1} \\ 1 & W^2 & W^4 & W^6 & \dots & W^{2(N-1)} \\ & & & & \dots & & \\ 1 & W^{N-1} & W^{2(N-1)} & W^{3(N-1)} & \dots & W^{(N-1)^2} \end{bmatrix}$$

Change of basis in matrix form

Analysis formula:

$$\mathbf{X} = \mathbf{W}\mathbf{x}$$

Synthesis formula:

$$\mathbf{x} = \frac{1}{N} \mathbf{W}^H \mathbf{X}$$

DFT Matrix

$$W_N^m = W_N^{(m \mod N)}$$

e.g.
$$W_8^{11} = W_8^3$$

DFT Matrix

$$W_N^m = W_N^{(m \mod N)}$$

e.g.
$$W_8^{11} = W_8^3$$

Small DFT matrices: N = 2, 3

$$W_2 = e^{-jrac{2\pi}{2}} = -1$$
 $\mathbf{W}_2 = egin{bmatrix} 1 & 1 \ 1 & W \end{bmatrix} = egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$

$$\mathbf{W}_{3} = e^{-j\frac{2\pi}{3}} = -(1+j\sqrt{3})/2$$

$$\mathbf{W}_{3} = \begin{bmatrix} 1 & 1 & 1\\ 1 & W & W^{2}\\ 1 & W^{2} & W^{4} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1\\ 1 & W & W^{2}\\ 1 & W^{2} & W \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1\\ 1 & -(1+j\sqrt{3})/2 & -(1-j\sqrt{3})/2\\ 1 & -(1-j\sqrt{3})/2 & (1-j\sqrt{3})/2 \end{bmatrix}$$

Small DFT matrices: N = 4

$$W_4 = e^{-j\frac{2\pi}{4}} = e^{-j\frac{\pi}{2}} = -j$$

$$\mathbf{W}_{4} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & W & W^{2} & W^{3} \\ 1 & W^{2} & W^{4} & W^{6} \\ 1 & W^{3} & W^{6} & W^{9} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & W & W^{2} & W^{3} \\ 1 & W^{2} & 1 & W^{2} \\ 1 & W^{3} & W^{2} & W \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$$

Small DFT matrices: N = 5

$$\mathbf{W}_{5} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & W & W^{2} & W^{3} & W^{4} \\ 1 & W^{2} & W^{4} & W^{6} & W^{8} \\ 1 & W^{3} & W^{6} & W^{9} & W^{12} \\ 1 & W^{4} & W^{8} & W^{12} & W^{16} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & W & W^{2} & W^{3} & W^{4} \\ 1 & W^{2} & W^{4} & W & W^{3} \\ 1 & W^{3} & W & W^{4} & W^{2} \\ 1 & W^{4} & W^{3} & W^{2} & W \end{bmatrix}$$

Small DFT matrices: N = 6

$$\boldsymbol{W}_{6} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & W & W^{2} & W^{3} & W^{4} & W^{5} \\ 1 & W^{2} & W^{4} & W^{6} & W^{8} & W^{10} \\ 1 & W^{3} & W^{6} & W^{9} & W^{12} & W^{15} \\ 1 & W^{4} & W^{8} & W^{12} & W^{16} & W^{20} \\ 1 & W^{5} & W^{10} & W^{15} & W^{20} & W^{25} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & W & W^{2} & W^{3} & W^{4} & W^{5} \\ 1 & W^{2} & W^{4} & 1 & W^{2} & W^{4} \\ 1 & W^{3} & 1 & W^{3} & 1 & W^{3} \\ 1 & W^{4} & W^{2} & 1 & W^{4} & W^{2} \\ 1 & W^{5} & W^{4} & W^{3} & W^{2} & W \end{bmatrix}$$