Работа 2.2.3

ИЗМЕРЕНИЕ ТЕПЛОПРОВОДНОСТИ ВОЗДУХА ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ

Работу выполнил Матренин Василий Б01-006

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

В работе используются: цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр и амперметр (цифровые мультиметры); эталонное сопротивление; источник постоянного напряжения; реостат (или магазин сопротивлений).

1 Теоритическая часть

Теплопроводность — это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии $\bar{q} \left[\frac{\mathrm{B} \mathrm{T}}{\mathrm{M}^2} \right]$ (количество теплоты, переносимое через единичную площадку в единицу времени) пропорциональна градиенту температуры ∇T :

$$\overline{q} = -k \cdot \nabla T, \tag{1}$$

где k $\left[\frac{\mathrm{B_T}}{\mathrm{M}\cdot K}\right]$ - коэффициент теплопроводности.

Молекулярно-кинетическая теория даёт следующую оценку для коэффициента теплопроводности газов:

$$k \sim \lambda \overline{v} \cdot nc_V,$$
 (2)

где λ - длинна свободного пробега молекул газа, $\overline{v}=\sqrt{\frac{8k_{\rm B}T}{\pi m}}$ - средняя скорость их теплового движения, n - концентрация (объёмная плотность) газа, $c_V=\frac{i}{2}k_{\rm B}$ - его теплоемкость при постоянном объёме в расчёте на одну молекулу (i - эффективное число степеней свободы молекулы).

Длина свободного пробега может быть оценена как $\lambda=\frac{1}{n\sigma}$, где σ - эффектиное сечение столкновений молекул друг с другом. Тогда из (2) видно, что коэффициент теплопроводности газа не зависит от плотности газа и определяется только его температурой. В простейшей модели твёрдых шариков $\sigma=const$, и коэффициент теплопроводности пропорционален корню абсолютной температуры: $k \propto \frac{\overline{v}}{\sigma} \propto \sqrt{T}$. На практике эффективное сечение $\sigma(T)$ следует считать медленно убывающей функцией T.

Рассмотрим стационарную теплопроводность в цилиндрической геометрии (см. рис. 1). Пусть тонкая нить радиусом r_1 и длиной L помещена на оси цилиндра радиусом r_0 . Температура стенок цилиндра T_0 поддерживается постоянной. Пусть в нити выделяется некоторая тепловая мощность Q [Вт]. Если цилиндр длинный $(L >> r_0)$, можно пренебречь теплоотводом через его торцы. Тогда все параметры газа можно считать зависящими только от расстояния до оси системы г. Вместо (1) имеем:

Рис. 1. Геометрия задачи

$$q = -k\frac{dT}{dr} \tag{3}$$

В стационарном состоянии полный поток тепла через любую цилиндрическую поверхность радиуса г площадью $S=2\pi rL$ должен быть одинаков и равен Q=qS:

$$Q = -2\pi r L \cdot k \frac{dT}{dr} = const \tag{4}$$

Если перепад температуры $\Delta T = T_1 - T_0$ между нитью и стенками цилиндра мал ($\Delta T << T_0$), то в (4) можно пренебречь изменением теплопроводности от температуры в пределах системы, положив $\chi \approx \chi(T_0)$. Тогда разделяя переменные в (4) и интегрируя от радиуса нити до радиуса колбы получим:

$$Q = \frac{2\pi L}{\ln \frac{r_0}{r_1}} k \cdot \Delta T \tag{5}$$

Схема установки:

Рис. 2. Схема установки

2 Ход работы

Подготовка к эксперименту

2.1 Предварительные расчеты

Провел предварительные расчёты параметров опыта. Приняв максимально допустимый перегрев нити относительно термостата равным $\Delta t_{max}=10^{\circ}C$, оценил максимальную мощность нагрева $Q_{max}[{\rm MBT}]$, которую следует подавать на нить. Для этой оценки принял коэффициент теплопроводности воздуха $k\sim 25\frac{{\rm MBT}}{{\rm M}\cdot K}$

Зная приблеженное значение сопростивления нити R, определил соответствующие значения максимального тока I_{max} и максимального напряжения U_{max}

Полученные значения:

 $Q_{max} = 102,9 \, \text{MBT}$

 $R = 13,0 \, \text{Om}$

 $I_{max} = 89,0 \, \text{MA}$

 $U_{max} = 1,16 \,\mathrm{B}$

2.2 Подготовил эксперементальную установку к работе:

- Проверил, что измерительная схема собрана правильно;
- На магазине сопротивлений (или на реостате) установил максимальное сопростивление $R_{\rm M}$ ((чтобы ток в цепи при её замыкании был минимален);
- Включил вольтметр и амперметр и настроил режимы их работы (по техническому описанию к установке);
- Включил источник питания; проверил, что он работает в режиме источника напряжения, и что напряжение на нём не превышает максимально допустимое (указано на установке);
- Включил термостат и убедился, что вода в нём находится при комнатной температуре (измеренной по комнатному термометру).

Проведение измерений

2.3 Измерение зависимости R(Q)

Провел серии экспериментов при разных температурах. $U_{\mathfrak{I}}$ - Напряжение на эталонном сопротивлении; $U_{\mathfrak{H}}$ - Напряжение на нити; R - Расчетное сопротивление нити; Q - Расчетная мощность на нити. Результаты представлены в таблице 1:

Таблица 1: Измерение зависимости R(Q)

$ m t=~25,4^{\circ}~C$								
U э , мВ	50,0	75,0	100,0	200,0	350,0	500,0	700,0	850,0
U _н , мВ	62,5	93,8	124,9	249,8	438,9	628,8	885,4	1081,7
R, Ом	12,56	12,51	12,49	12,49	12,54	12,58	12,66	12,73
Q, мВт	0,31	0,70	1,25	5,00	15,36	31,44	62,01	91,94
$\mathrm{t}=~30,2^{\circ}~\mathrm{C}$								
U э , мВ	50,0	75,0	100,0	200,0	350,0	500,0	700,0	850,0
U _н , мВ	63,7	95,7	127,6	255,5	447,8	642,1	903,2	1104,0
R, Ом	12,74	12,76	12,76	12,78	12,79	12,84	12,90	12,99
Q, мВт	0,32	0,72	1,28	5,11	15,67	32,10	63,22	93,84
$\mathrm{t}=~40,1^{\circ}~\mathrm{C}$								
U э , мВ	50,0	75,0	100,0	200,0	350,0	500,0	700,0	840,0
U _н , мВ	65,6	98,4	131,1	262,5	460,2	659,5	928,2	1120,1
R, Ом	13,12	13,12	13,11	13,13	13,15	13,19	13,26	13,33
Q, мВт	0,33	0,74	1,31	5,25	16,11	32,98	64,97	94,09
$ m t=~50,4^{\circ}~C$								
U э , мВ	50,0	75,0	100,0	200,0	350,0	500,0	700,0	800,0
U _н , мВ	67,5	101,2	135,0	270,4	474,0	679,1	956,3	1096,2
R, Ом	13,50	13,49	13,50	13,52	13,55	13,58	13,66	13,70
Q, мВт	0,34	0,76	1,35	5,41	16,60	33,95	66,94	87,70
$\mathrm{t}=~60,4^{\circ}~\mathrm{C}$								
U э , мВ	50,0	75,0	100,0	200,0	350,0	500,0	700,0	800,0
U _н , мВ	69,3	104,0	138,6	277,4	486,4	697,0	981,0	1125,0
R, Ом	13,86	13,87	13,86	13,87	13,90	13,94	14,01	14,06
Q, мВт	0,35	0,78	1,39	5,55	17,02	34,85	68,67	90,00

2.4 График зависимостей R(Q)

Построил график для зависимостей R(Q) при разных температурах. График представлен на Рис. 3.

 $Puc. \ 3. \ R(Q) \ для \ разных \ температур$

Таблица 2: Значения угловых к-тов $\frac{dR}{dQ}$ и значения R(0) для графика R(Q)

$t,^{\circ}C$	25,4	30,2	40,1	50,4	60,4
R(0), Ом	12,49	12,75	13,11	13,50	13,86
$\frac{dR}{dQ}, \frac{\mathrm{O_M}}{\mathrm{Br}}$	2,57	2,46	2,31	2,34	2,25

2.5 График зависимости R(t)

Построил график для зависимости R(t). График представлен на Рис. 4.

Значение углового к-та для данного графика $\frac{dR}{dT} = 3,83 \cdot 10^{-2} \frac{{\rm O}_{\rm M}}{K}$

2.6 Вычисление к-та теплопроводности при разных температурах термостата

Из формулы (5) получил следующую формулу для расчета к:

$$k = \frac{\frac{dQ}{dR}\frac{dR}{dT} \cdot ln\frac{r_0}{r_1}}{2\pi L}$$

 T_0 - Температура термостата; k - Значение теплопроводности. Результаты расчетов представлены в Таблице 3:

Таблица 3: к (T_0)

$T_0, ^{\circ}C$	25,4	30,2	40,1	50,4	60,4
$k, \frac{\mathrm{O_M}}{\mathrm{M}K} \cdot 10^{-2}$	2,67	2,78	2,96	2,92	3,04

2.7 График к(Т)

Пользуясь значениями из предыдущего пункта построил график к(T). График представлен на рис. 5.

2.8 Погрешности

Привожу максимальные относительные погрешности для полученых величин:

```
\epsilon_{\frac{dR}{dO}}\approx 3,5\%\; - относительная погрешность для к-та наклона зависимости R(Q)
```

 $\epsilon_{R_0}\approx 0,1\%\,$ - относительная погрешность R(0) для зависимости R(Q)

 $\epsilon_{\frac{dQ}{dT}} pprox 3,8\%$ - относительная погрешность для производной полного потока тепла по температуре

 $\epsilon_k \approx 4,2\%$ - относительная погрешность для теплопроводности

2.9 Подписаные данные

Далее приложены фотографии данных на подписаных листах.

Quinx = 102,86 0 R 2 13 Ou Inux = 88,0 ut Umm = 1, 16 1 Un 7=254 93 8 10 100,0 200,0 936.8 5,000 6183 00,0 200,0 885,9 1081,8 850,0 1= 30,8 63,22 50,0 95,7 30,0 122,6 100,0 216,5 200,0 447,8 350,0 4,002 697.1 2000 10>,1 1,1040 0,028