Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process

Cite as: J. Appl. Phys. **97**, 121301 (2005); https://doi.org/10.1063/1.1940727 Submitted: 20 September 2004 . Accepted: 08 April 2005 . Published Online: 30 June 2005

Riikka L. Puurunen

ARTICLES YOU MAY BE INTERESTED IN

Island growth as a growth mode in atomic layer deposition: A phenomenological model Journal of Applied Physics **96**, 7686 (2004); https://doi.org/10.1063/1.1810193

Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition

Review of Scientific Instruments 73, 2981 (2002); https://doi.org/10.1063/1.1490410

Conformality in atomic layer deposition: Current status overview of analysis and modelling Applied Physics Reviews 6, 021302 (2019); https://doi.org/10.1063/1.5060967

APPLIED PHYSICS REVIEWS

Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process

Riikka L. Puurunen^{a)}

Interuniversity Microelectronics Center (IMEC vzw), Kapeldreef 75, B-3001 Leuven, Belgium, University of Leuven (K.U.Leuven), Integrated Systems (INSYS), Kasteelpark Arenberg, B-3001 Leuven, Belgium, and VTT Technical Research Centre of Finland, Information Technology, Tietotie 3, FI-02044 Espoo, Finland

(Received 20 September 2004; accepted 8 April 2005; published online 30 June 2005)

Atomic layer deposition (ALD), a chemical vapor deposition technique based on sequential self-terminating gas-solid reactions, has for about four decades been applied for manufacturing conformal inorganic material layers with thickness down to the nanometer range. Despite the numerous successful applications of material growth by ALD, many physicochemical processes that control ALD growth are not yet sufficiently understood. To increase understanding of ALD processes, overviews are needed not only of the existing ALD processes and their applications, but also of the knowledge of the surface chemistry of specific ALD processes. This work aims to start the overviews on specific ALD processes by reviewing the experimental information available on the surface chemistry of the trimethylaluminum/water process. This process is generally known as a rather ideal ALD process, and plenty of information is available on its surface chemistry. This in-depth summary of the surface chemistry of one representative ALD process aims also to provide a view on the current status of understanding the surface chemistry of ALD, in general. The review starts by describing the basic characteristics of ALD, discussing the history of ALD—including the question who made the first ALD experiments—and giving an overview of the two-reactant ALD processes investigated to date. Second, the basic concepts related to the surface chemistry of ALD are described from a generic viewpoint applicable to all ALD processes based on compound reactants. This description includes physicochemical requirements for self-terminating reactions, reaction kinetics, typical chemisorption mechanisms, factors causing saturation, reasons for growth of less than a monolayer per cycle, effect of the temperature and number of cycles on the growth per cycle (GPC), and the growth mode. A comparison is made of three models available for estimating the sterically allowed value of GPC in ALD. Third, the experimental information on the surface chemistry in the trimethylaluminum/water ALD process are reviewed using the concepts developed in the second part of this review. The results are reviewed critically, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials. Although the surface chemistry of the trimethylaluminum/water ALD process is rather well understood, systematic investigations of the reaction kinetics and the growth mode on different substrates are still missing. The last part of the review is devoted to discussing issues which may hamper surface chemistry investigations of ALD, such as problematic historical assumptions, nonstandard terminology, and the effect of experimental conditions on the surface chemistry of ALD. I hope that this review can help the newcomer get acquainted with the exciting and challenging field of surface chemistry of ALD and can serve as a useful guide for the specialist towards the fifth decade of ALD research. © 2005 American Institute of Physics. [DOI: 10.1063/1.1940727]

TABLE OF CONTENTS		2. Classes of metal reactants used	
		3. AlMe ₃ /H ₂ O versus other ALD processes.	21
	_	III. GENERAL CHARACTERISTICS OF THE	
I. INTRODUCTION	2	SURFACE CHEMISTRY OF ALD	22
II. GENERAL BACKGROUND	3	A. Requirements for self-terminating reactions	22
A. Basic characteristics of ALD	3	B. Adsorption kinetics	22
B. Early experiments on ALD	3	C. Chemisorption mechanisms	24
C. ALD processes	4	D. Factors causing saturation	25
1. Materials investigated	4	E. Growth of less than a monolayer per cycle	25

F.	Effect of temperature on the GPC	26
G.	Effect of the number of cycles on the GPC	26
Н.	Growth mode	27
IV. SUR	RFACE CHEMISTRY OF THE AlMe ₃ /H ₂ O	
PRC	OCESS	27
	General characteristics	27
	Verification of self-termination	28
	Identified chemisorption mechanisms	28
	Effect of temperature on the GPC	29
	Factor causing saturation	30
F.	Effect of the surface OH group	
	concentration	30
	Kinetics of the reactions	31
	Effect of the number of cycles on the GPC	33
	Growth mode	33
	Summary	33
	CUSSION	33
A.	Problematic historical assumptions on the	
	surface chemistry of ALD	33
	1. GPC of a monolayer	33
	2. Constant GPC over cycles	34
	3. Constant GPC with temperature	34
	4. Two-dimensional growth mode	34
В.	Problematic terminology	34
	1. Growth rate (amount/cycle)	34
	2. Monolayer	34
	3. "Atomic layer" deposition	35
C.	Effect of experimental conditions on the	
	surface chemistry	35
	1. Reaction temperature	35
	2. Partial pressure of the reactant	35
	3. Substrate	36
	4. Saturation/unsaturation of the reactions	36
	5. Time	36
	6. GPC on high-surface-area substrates	36
VI. CO	NCLUSION	37

I. INTRODUCTION

Atomic layer deposition (ALD) is a chemical vapor deposition (CVD) technique suitable for manufacturing inorganic material layers with thickness down to a fraction of a monolayer. ALD has the capability to coat extremely complex shapes with a conformal material layer of high quality, a capability unique among thin-film deposition techniques. Consequently, ALD-grown materials have a wide range of applications, from catalysts to electroluminescent displays to microelectronics and beyond. 1-3

ALD can be defined as a film deposition technique that is based on the sequential use of self-terminating gas-solid reactions. It has its roots in experiments made in the 1960s and the 1970s. ^{1,2} Interest in ALD has increased in steps in the beginning of the 1990s and 2000s, as indicated by the evolution, yearly, of the, number of scientific publications on ALD, shown in Fig. 1. A major driving force for the recent interest is the prospectives seen for ALD in scaling down microelectronic devices. ⁵

FIG. 1. Number of ALD publications per year between 1972 and 2004. Search made with ISI Web of Science (see Ref. 4).

Despite the numerous successful practical applications of ALD, many physicochemical processes that control ALD growth are not yet sufficiently understood. A better understanding of these physicochemical processes should lead to improved control of the properties of the ALD-grown materials, perhaps even enabling new applications. To increase the understanding of ALD processes, overviews are needed not only of the existing ALD processes and their applications, but also of the knowledge of the surface chemistry of specific ALD processes. So far, the latter types of overviews have scarcely been made, although there are numerous more general reviews on ALD. 3.6-66

The goal of this work is to start the detailed reviews on the surface chemistry of specific ALD processes. Since, to my knowledge, comparable reviews do not yet exist, this work also aims to provide an overview of the current status of understanding the surface chemistry of ALD in general, with the hope that an in-depth review of one representative process has broader implications. The trimethylaluminum/ water (AlMe₃/H₂O) process was chosen as an example because it can be considered a rather typical and "ideal" ALD process, because it has been studied at various experimental conditions, and also because I am familiar with it. This review covers literature approximately until the end of 2004. The previous review on the surface chemistry of ALD was published in 1996 by George et al. 40 For other aspects of ALD than its surface chemistry, the reader is referred to the recent review by Ritala and Leskelä.3 Furthermore, for different views on the development of ALD over the years, I would recommend the reviews by Aleskovskii, 6 Goodman and Pessa,⁸ Suntola,¹¹ George *et al.*,⁴⁰ Malygin *et al.*,⁴² Niinistö *et al.*,³⁹ Haukka *et al.*,⁵⁰ Leskelä and Ritala,⁵¹ and Ritala and Leskelä.³

This review is organized as follows: Section II introduces the basic characteristics of ALD processing, discusses the history of ALD, and presents an overview of the two-reactant ALD processes investigated to date. In Sec. III, basic concepts related to the surface chemistry of ALD are formulated and discussed from a theoretical viewpoint. The discussion is generic for compound-reactant-based ALD processes, where the reactions are truly self-terminating and undesired side reactions are absent. Phenomena specifically related to ALD processes based on element reactants are not discussed. In Sec. IV, the experimental results for the AlMe₃/H₂O process are reviewed, especially looking for conclusions reached and quantitative information obtained on the surface chemistry. Because of differences in the experimental conditions (e.g., type of substrate, pressure, time, and temperature), in-

^{a)}Electronic mail: riikka.puurunen@iki.fi

terpreting the results of different kinds of investigations together may not always be straightforward, however. 67 The ALD literature contains also problematic historical assumptions and terminology, which may further cause confusion. The historical assumptions, terminology, and effect of experimental conditions on the surface chemistry of ALD are discussed in Sec. V.

II. GENERAL BACKGROUND

This section describes the basics of ALD processing, discusses the history of ALD, and presents an overview of the investigated ALD processes based on two reactants.

A. Basic characteristics of ALD

ALD can be defined as a film deposition technique that is based on the sequential use of self-terminating gas-solid reactions.⁶⁸⁻⁷⁰ The growth of material layers by ALD consists of repeating the following characteristic four steps:

- (1) A self-terminating reaction of the first reactant (Reactant A).
- (2) A purge or evacuation to remove the nonreacted reactants and the gaseous reaction by-products.
- (3) A self-terminating reaction of the second reactant (Reactant B)—or another treatment to activate the surface again for the reaction of the first reactant.⁷¹
- (4) A purge or evacuation.

Steps 1-4 constitute a reaction cycle. Steps 1 and 3 are sometimes referred to as half reactions of an ALD reaction cvcle.40,72

One ALD reaction cycle is illustrated schematically in Fig. 2. Each reaction cycle adds a given amount of material to the surface, referred to as the growth per cycle (GPC). To grow a material layer, reaction cycles are repeated until the desired amount of material has been deposited.⁷³ Before starting the ALD process, the surface is stabilized to a known, controlled state, for example, by a heat treatment. The use of self-terminating reactions leads to the conclusion that ALD is a surface-controlled process, where process parameters other than the reactants, substrate, and temperature have little or no influence. Because of the surface control, ALD-grown films are extremely conformal and uniform in thickness.

B. Early experiments on ALD

The starting point of ALD is somewhat controversial: depending on the source, the credit of first realizing the principles of ALD is given to different groups.

According to the more commonly acknowledged origin, ALD was developed under the name "atomic layer epitaxy (ALE)" in Finland by Suntola and co-workers. The beginning of ALD is then traced back to a patent published in the 1970s,² for which the first experiments were made in 1974. 74,75 In this patent, ALD growth is demonstrated for processes based on element reactants: the Zn/S process to grow ZnS, the Sn/O2 process to grow SnO2, and the Ga/P process to grow GaP.² In later patents, ^{76,77} Suntola and co-

FIG. 2. Schematic illustration of one ALD reaction cycle.

workers demonstrated ALD also for processes based on compound reactants: the TaCl₅/H₂O process to grow Ta₂O₅, the Zn(Mn)Cl₂/H₂S process to grow Zn(Mn)S, and the AlCl₃/H₂O process to grow Al₂O₃. The research originated by Suntola and co-workers has led to commercial applications of ALD for making thin-film electroluminescent displays already in the 1980s. An overview of the development of ALD was recently given by Suntola.⁷⁴

The less commonly acknowledged origin of ALD dates back to the work made in the Soviet Union in the 1960s by the group of Professor Aleskovskii. In the proceedings of a conference organized in 1965 and published in 1967, Shevjakov et al. describe the TiCl₄/H₂O process to grow TiO₂ and the GeCl₄/H₂O process to grow GeO₂. The first experiments in the group of Aleskovskii were made on highsurface-area silica substrates, but soon dielectric layers were grown on single-crystal substrates, too.⁷⁸ Already in the 1960s, a publication series on the "molecular layering reactions" was started by Kol'tsov and co-workers (e.g., Refs. 79-85).

Of the numerous review articles written on ALD over years, 3,6-66 the only the ones authored Russians ^{6,20,42,43,48,56} describe the Soviet origin of ALD. In the beginning, the two groups have apparently not been aware of each other's work. Connection between the groups has been established already in the late 1980s, ^{20,86} however, and scientists of the two groups have even met. ⁷⁴ To help the interested reader to explore the Soviet-Russian branch of ALD, and as an attempt to correct the historical mistake of

disregarding this work, 87 an overview of the Soviet–Russian ALD investigations is given in Table I. Most of the publications referred to in Table I have been published in Soviet-Russian journals, which have been translated into English. The overview of Table I is meant to be introductory, and it can by no means be expected to be complete. A more detailed description of the Soviet-Russian ALD work was recently provided by Malygin.⁵⁶

Partly because of its history, the ALD technique is referred to with many names. The Soviet-Russian researchers call the technique "молекулярное наслаивание (MH),"152 which has been translated into English in many ways, "molecular layering (ML)" being perhaps the most common.³ In addition to the Finnish and Soviet researchers, Japanese researchers, lead by Nishizawa, have carried out ALD research systematically under a different name, "molecular layer epitaxy (MLE)."153 The name "atomic layer deposition (ALD)," used in this work, dates back to the early 1990s. 19 Some names commonly used to refer to the ALD technique are listed in Table II.

C. ALD processes

1. Materials investigated

ALD processes have been developed for manufacturing many types of solid inorganic materials. Figure 3 visualizes in the form of the Periodic Table, the elements of which some materials have been grown by ALD: oxides, nitrides, sulphides, selenides, tellurides, pure elements, and other. Table III provides references to the experimental investigations of ALD processes based on the use of two reactants, and Table IV lists the computational chemistry investigations of the surface chemistry of ALD processes. Tables III and IV provide only references that are easily accessible; most references to conference proceedings and patents have been left out intentionally. Inclusion in Table III does not mean that the processes would obey the requirements of ALD fully. Deviation from pure ALD may have occurred, for example, through partial decomposition of the reactants. These two tables are aimed to be comprehensive and contain all relevant references reporting on the particular ALD system, but some references have undoubtedly been accidentally overlooked, for which I already apologize. To help the reader, Fig. 4 further summarizes the types of ligands that have been used in the metal reactants in ALD. Although for most groups of elements, some materials have been grown by ALD (Fig. 3), for alkali metals (group 1) and actinoids there are no reports yet. The future will show if there will be interest and success in their deposition.

From the different types of inorganic materials grown by ALD, oxides have been the type most often investigated, as evident from Fig. 3. Oxides have been grown for alkalineearth metals, transition metals including lanthanoids, and group 13–15 elements. As evident from Table III, the oxygen source in oxide deposition has most typically been water H_2O or, somewhat less often, diatomic oxygen O_2 , ozone O_3 , alcohols ROH, or atomic oxygen created through oxygen plasma. Table III also reveals the use of some more uncommon oxygen sources (H₂O+catalyst, H₂O₂, N₂O, NO₂, N₂O₄, and metal alkoxide reactants). Nitrides have analogously most often been manufactured from the metal compound and ammonia NH₃ or N₂/NH₃ plasma (or, less often, N₂, NH₃+catalyst, RNH₂, N₂H₄, R₂NNH₂, or an alkylamide reactant); sulphides from hydrogen sulphide H₂S (or, less often, S or Et₂S₂); selenides from hydrogen selenide H₂Se (or, less often, Se, Et₂Se, or Et₂Se₂); and tellurides from Te or MeAyTe (or, less often, R2Te). Several other nonmetal reactants have also occasionally been used (see Table III).

While ALD is most suited for growing compound materials, some successes have recently been booked in the deposition of pure elements also. Tungsten can be deposited by reacting the fluoride reactants with disilane, $\mathrm{Si}_2\mathrm{H}_6, ^{1066,1076-1078}$ and preliminary surface science experiments suggest that a similar process could work also for tantalum. 1063 For most other elements, in contrast, reduction by diatomic hydrogen, ^{483,546,561,570–572,575,873,875} hydrogen plasma, ^{331,332,515,516,1062} or, in some cases, alcohols ⁵⁷⁷ has been required to deposit the pure element. However, for some metals (e.g., Ru, Pd, Ir, Pt), the tendency of the metal to reduce dominates the deposition process, and the pure elements are obtained even when oxygen is used as the ligand-removal agent. 564,866–869,872,874,1081,1082

2. Classes of metal reactants used

General requirements of reactants used in ALD are that they must be volatile (either at room temperature or at elevated temperatures), the reactants may not decompose thermally at the ALD processing temperatures, and the gas-solid reactions of the reactants have to fulfill the criterion of selftermination. Other properties of the different types of reactants may differ, however. The reactants used in ALD can be divided into two main groups: inorganic and metalorganic. Metalorganic reactants can further be classified in those containing a direct metal-carbon bond, that is, organometallic reactants, 1126 and those containing no direct metal-carbon bond. Typically, of inorganic reactants, elements and halides have been used; of organometallic reactants, alkyls and cyclopentadienyls have been used; and of other metalorganic reactants, alkoxides, β -diketonates, amides, and amidinates have been used in ALD experiments. Figure 5 summarizes which types of reactants have been used for which elements, and the following paragraphs summarize the typical features of the different reactant groups.

Elements are the most simple type of reactants used in ALD and have been used in ALD investigations since the 1970s.^{2,154,171,534,887} Elements are versatile: they react both with elemental nonmetal reactants and with compounds of hydrogen, and they have been used to deposit many types of materials (oxides, nitrides, sulphides, etc), as summarized in Table V. A benefit of element reactants is also that since the elements do not carry extra ligands, the ligands cannot stay as impurities in the grown film. The lack of ligands means also the lack of steric hindrance effects caused by the ligands. 1127,1128 Nevertheless, less than a monolayer growth may be observed because of surface reconstructions.³⁶ Although popular in the 1970s and 1980s, the interest in element reactants has decreased. This decrease is partly explained by the fact that few elements have sufficiently high

TABLE I. Some Soviet-Russian ALD investigations.

Z^{a}	Material	Reactant A	Reactant B	Substrate ^b	Refs.
5 Boron					
	B_2O_3	BBr_3	$\rm H_2O$	SiO ₂ gel	85
	$\mathbf{B}_{x}\mathbf{P}_{y}\mathbf{O}_{z}$	$B(OMe)_3$	POCl ₃	SiO ₂ gel	88 and 89
13 Aluminum					
13 Mullillulli	Al_2O_3	AlCl ₃	${\rm H_2O}$	SiO ₂ gel	83, 90, and 91
	111203	AlCl ₃	H ₂ O	Al_2O_3 gel	90
		AlCl ₃	H ₂ O	Si, Al	91
		AlBr ₃	H ₂ O	Si, Ai	92
		AlMe ₃	NO_2	Si	93
	$Al_xSi_yO_z$	AlCl ₃	Si(OEt) ₄		94
	$Al_x Cr_y O_z$ $Al_x Cr_y O_z$	AlMe ₃	CrO_2Cl_2	SiO ₂ gel Si	93
	$T\Pi_X \Pi_Y G_Z$	7111103	Crozerz	51	73
14 Silicon	6:0	0.01	11.0	C.	70
	SiO_2	SiCl ₄	H ₂ O	Si	78
		SiCl ₄	H ₂ O	Ge	95
		SiCl ₄	H_2O	SiO ₂ gel	90
		SiCl ₄	H_2O	Al_2O_3 gel	90
		SiCl ₄	H_2O	SiC	96
		SiCl ₃ H	H_2O	SiO ₂ gel	97–99
	$Si_xAl_yO_z$	$Si(OEt)_4$	AlCl ₃	SiO ₂ gel	94
	$Si_xTi_yO_z$	Si(OEt) ₄	TiCl ₄	SiO ₂ gel	88
15 Phosphorus	S				
	PO_x	PCl ₃	H_2O	SiO ₂ gel	82 and 100–102
		PCl ₃	c	polymer	103
		POCl ₃	c	SiO ₂ gel	104 and 105
		POCl ₃	H_2O	SiC	96
	$P_x B_y O_z$	POCl ₃	$B(OMe)_3$	SiO ₂ gel	88 and 89
22 Titanium					
22 1144114111	${ m TiO_2}$	TiCl ₄	$\rm H_2O$	SiO ₂ gel	1, 79, 80, 100, 101, and 106–113
	2	TiCl ₄	H_2^2O	Si	81, 114, and 115
		TiCl ₄	H_2^2O	Ge	116 and 117
		TiCl ₄	H_2O	SiC	96 and 116
		TiCl ₄	H_2O	glass	118–122
		TiCl ₄	H_2O	C	123–125
		TiCl ₄	H_2O	GaAs	126
		TiCl ₄	H_2O	Al	127
		TiCl ₄	H_2O	Al_2O_3	128–132
		TiCl ₄	H_2O	MgO	133
		Ti(OBu) ₄	H_2O	glass	134
	$Ti_xSi_yO_z$	TiCl ₄	H_2O	SiO ₂ gel	88
22 17 11	~ <i>y</i> ~	•	2	2.0	
23 Vanadium	VO_x	VOCl ₃	H_2O	SiO ₂ gel	135–137
	VO_x	VOCl ₃ VOCl ₃	H ₂ O	Ge	117
		VOCl ₃ VOCl ₃	H ₂ O		121
		VOCl ₃ VOCl ₃		glass SiC	96
		VOCl ₃ VOCl ₃	$_{\rm c}^{\rm H_2O}$	polymer	103
		VOCI3		porymer	103
24 Chromium	a -		c		
	CrO_x	CrO ₂ Cl ₂	С	SiO ₂ gel	105 and 138–140
		CrO_2Cl_2		Si	84
		CrO_2Cl_2	c	Ge	84 and 117
		CrO_2Cl_2	c	Ni	141
		CrO_2Cl_2	c	Ti	141
		CrO_2Cl_2	H_2O	glass	121
		CrO_2Cl_2	H_2O	SiC	96
		CrO_2Cl_2	MeOH	Si	93
		CrO_2Cl_2	c	polymer	103
		CrO_2Cl_2	H_2	SiO ₂ gel	142
	$Cr_xAl_yO_z$	CrO_2Cl_2	$AlMe_3$	Si	93

TABLE I. (Continued.)

Z^{a}	Material	Reactant A	Reactant B	Substrate ^b	Refs.
26 Iron					
	FeO_x	$FeCl_3$	c	SiO ₂ gel	143
30 Zinc					
	ZnO	$ZnCl_2$	$\rm H_2O$	SiO ₂ gel	144
	ZnS	$ZnCl_2$	H_2S	SiO ₂ gel	86
		$ZnEt_2$	H_2S	SiO_2	145
32 Germar	nium				
	${\rm GeO}_2$	GeCl_4	H_2O	SiO_2 gel	1 and 146
38 Cadmiu	ım				
	CdS	Cd	S	GaAs	147
		$CdMe_2$	H_2S	SiO_2	145
	CdSe	Cd	Se	GaAs	147 and 148
		$CdMe_2$	H_2Se	SiO_2	145
		$CdMe_2$	H_2Se	glass,	149
				GaAs	
	CdTe	Cd	Te	GaAs	147
		Cd	Те	Si	148
50 Tin					
	SnO_2	$SnCl_4$	H_2O	SiO ₂ gel	111 and 150
		$SnMe_4$	N_2O_4	Si	151
		$SnEt_4$	N_2O_4	Si	151
73 Tantalu	m				
	Ta_2O_5	TaCl ₅	H_2O	Si, Al	91

 $[\]overline{^{a}Z}$ = atomic number.

vapor pressure to be evaporated as such [Fig. 5(a)]. In addition, the adsorption of elements is likely to be a reversible process, and the limited self-terminating characteristics of the reactions potentially limit their usability.

Halides are the oldest class of ALD reactants, with the first experiments made already in the 1960s. ^{1,77,78,83,97,100,106,135,138,150,614} Recently they have been extensively investigated, for example, for the deposition of high-dielectric-constant oxides. ^{1129–1131} A benefit of halide reactants is the availability of volatile halides for many metals, as shown in Fig. 5(b). Halides are also generally regarded highly reactive and thermally stable. The high reactivity of halides is reflected in the variety of materials grown from them: oxides, nitrides, sulphides, etc. (Table VI). To

TABLE II. Different names of ALD.

Name	Abbreviation	Refs.
Atomic layer deposition	ALD	19
Atomic layer epitaxy	ALE	2
Atomic layer evaporation	ALE	154
Atomic layer growth	ALG	155
Chemical assembly		126
Molecular deposition		117
Molecular lamination		156
Molecular layer epitaxy	MLE	153
Molecular layering	ML	1
Molecular stratification		105

give an example of the thermal stability, the HfCl₄/H₂O ALD process has been used even at and above 800 °C. 980,981,1013 In addition to the high reactivity, the small size of the halide ligands can be regarded advantageous, since the steric hindrance effects related to ligands 1127,1128 then minimized. Despite the small ligand size, GPC obtained from halides is typically a small fraction of a monolayer of the material to be grown. example, for the HfCl₄/H₂O process at 300 °C, the GPC is about 0.05 nm, corresponding to 15% of a monolayer. 982,984,985,992,998,1127,1132–1134 The low GPC has lead to a suggestion that it may be the number of reactive surface groups and not steric hindrance that controls the amount deposited in halide-based processes. 992 Despite the many favorable sides of halide reactants for ALD, there are also several drawbacks. Many halides are solids, and vaporizing solid reactants is a challenge, since particles are easily transported into the films. The gaseous reaction by-products with hydrogen-containing nonmetal reactants (H₂O, NH₃, H₂S, etc.) are HF, HCl, HBr, and HI. These gases are corrosive and can etch the film constituents or the reactor material.^{864,1036,1042} The gaseous reaction products may also readsorb on the surface after their formation, blocking reactive sites and causing undesired thickness gradients. 432,433 Part of the halide ligands may remain as impurities in the films after the growth, which can be problematic for some applications. For example, HfO2 films grown from HfCl4 and H₂O at 300 °C have been reported to contain about 0.3-

b"Glass" substrate refers to various mixed oxides, "polymer" to various organic polymer substrates.

^cOnly one half reaction of an ALD reaction cycle was carried out.

FIG. 3. Overview of the materials grown by ALD. Classification according to Reactant *A*, with details of the investigations in Table III. Growth of pure elements as well as compounds with oxygen, nitrogen, sulphur, selenium, tellurium, and other compounds grouped together are indicated through shadings of different types at different positions. The elements are named according to the recommendations of The International Union of Pure and Applied Chemistry (IUPAC, http://www.iupac.org/reports/periodic_table/, dated 1 November 2004).

at. % chlorine and 1.6-at. % hydrogen (and, surprisingly, 0.2-at. % carbon). Some halides, at least $TiCl_4$, may also react in a manner unideal for ALD, depositing particles through a so-called agglomeration process above a certain threshold temperature. Details on how the agglomeration occurs have not yet been clarified. 1135

Alkyls were introduced as ALD reactants in the mid-1980s. 153,190,305,627,723,724,726,729,733,781,929 Nowadays, Nowadays, alkyls are often used as reactants especially for aluminum and zinc. Alkyls are true organometallic compounds, which make them very reactive. Consequently, a variety of materials have been grown from alkyls (Table VII): oxides, nitrides, sulphides, etc. The alkyl ligands are also rather small, minimizing the steric hindrance effects, 1127,1128 and the GPC in alkyl-reactant-based processes is often rather high. For example, the GPC in the AlMe $_3/H_2O$ process at 300 °C is about 0.09 nm, 166,199,212,222,228,229,246 corresponding to about 30% of a monolayer of Al₂O₃. The gaseous reaction byproducts with hydrogen-containing nonmetal reactants (H₂O, H₂S, NH₃, etc.) are typically saturated hydrocarbons, which are generally inert and do not cause problems with readsorption or corrosion. Drawbacks of alkyls are that they have been used for a rather small selection of elements (groups 12-14) [Fig. 5(c)] and that they decompose at moderate temperatures. For example, AlMe₃ decomposes above 300 °C.²¹⁶ There is also the possibility of carbon and hydrogen residues in the grown films, although the concentrations are often low. For example, Al₂O₃ films grown from AlMe₃ and H_2O at 300 °C were reported to contain about 0.2at. % carbon and 0.7-at. % hydrogen. 258

Cyclopentadienyls were introduced as ALD reactants in the early $1990s^{162-164}$ and have gained popularity in the 2000s. An advantage of the cyclopentadienyl reactants is the fact that they can be synthesized also for alkaline-earth met-

als, for which other compounds have been scarce [Fig. 5(d)]. Similarly as alkyls, cyclopentadienyls are organometallic, containing a direct metal-carbon bond. This makes them reactive, and, for example, oxides can be grown through reaction with H₂O. However, the material selection grown from cyclopentadienyls is still small and comprises only oxides, sulphides, and elements, as shown in Table VIII. The future will show whether or not the growth by ALD of other inorganic materials will also be successful from cyclopentadienyls. The cyclopentadienyl ligands are medium-sized, and the GPC from these reactants is often higher than for bulkier ligands such as the β -diketonates. For example, Y_2O_3 grows through the YCpMe₃/H₂O and Y(thd)₃/O₃ processes at 300 °C with GPC values of 0.13 nm (Ref. 813) and 0.023 nm (Ref. 815), respectively. The gaseous by-products from reactions with the typical nonmetal reactants H₂O, NH₃, and H₂S are presumably hydrocarbons, which do not readsorb on the surface, although studies of the gaseous reaction products have been rare. One study indicated the gaseous reaction product to be the hydrogenated ligands. 806 Similarly as alkyls, the cyclopentadienyls decompose at moderate temperatures, and there may be carbon and hydrogen residues in the films. For example, ZrCp2Me2 decomposes at least at 500 °C, ⁸⁴⁴ and perhaps even at lower temperatures. When grown at 350 °C, ZrO2 films grown from ZrCp₂Me₂ and H₂O are rather pure and contain less than 0.1-at. % carbon and hydrogen, but the impurity concentrations increase if the deposition temperature is decreased or increased.844

Alkoxides were introduced as ALD reactants in the early 1990s. ^{89,134,173,462,467,1044,1084} Alkoxides have been used for rather few elements [groups 4, 5, 13, and 14, see Fig. 5(e)], and they have been used to deposit almost only oxides (Table IX). Nitrides have not been grown from alkoxides, which

TABLE III. Overview of ALD processes based on two reactants (Source: ISI Web of Science, status in February 2005). Description of the ligands in Fig. 4.

Z	Material	Reactant A ^a	Reactant B	Refs.
5 Boron				
	B_2O_3	BBr_3	H_2O	85
	BN	BCl ₃	NH_3	158
		BBr_3	NH_3	159
	$B_x P_y O_z$	$B(OMe)_3$	POCl ₃	88 and 89
	$\Delta x^{2}y^{2}z$	2(01110)3	1001,	oo and oy
Carbon	L.			
	C_p	CF_x	H ^c	160
		CCl_3	H^{c}	161
2 Magnesium				
2 Wagnesium	MgO	$MgCp_2$	$\rm H_2O$	162–166
	14150	$Mg(thd)_2$	H_2O_2	167
				168
	МаТа	$Mg(thd)_2$	${ m O_3}$ Te	
	MgTe	Mg	ie	169 and 170
Aluminum				
	Al_2O_3	AlCl ₃	$\rm H_2O$	76, 77, 83, 90, 91, 91, and 171–184
	<u> </u>	AlCl ₃	$\overset{\circ}{\mathrm{O}_2}$	185 and 186
		AlCl ₃	ROH^{d}	173, 181, and 187
		AlCl ₃	$Al(OEt)_3$	188
		AlCl ₃	$Al(O^iPr)_3$	188 and 189
		AlBr ₃	H_2O	92
		AlMe ₃	H_2O	166, 179, and 190–262
		AlMe ₃	H_2O_2	263–269
				236, 244, 245, and 270–273
		AlMe ₃	O ₃	
		AlMe ₃	O_2^{e}	274–276
		AlMe ₃	N_2O	266
		AlMe ₃	NO ₂	194
		AlMe ₃	N_2O_4	151
		$AlMe_3$	ⁱ PrOH	277
		AlMe ₃	$Al(O^iPr)_3$	188
		AlMe ₂ Cl	H_2O	278
		AlMe ₂ O ⁱ Pr	H_2O	279 and 280
		$AlEt_3$	H_2O	163
		$Al(OEt)_3$	H_2O	173
		$Al(OEt)_3$	O_2	173
		$Al(O^nPr)_3$	H_2O	173 and 181
		$Al(O^nPr)_3$	O_2	281
	AlN	AlCl ₃	NH_3	282 and 283
		AlCl ₃	$NH_3 + H_2^e$	284 and 285
		$AlMe_3$	NH_3	209, 216, 283, and 286-292
		AlEt ₃	NH_3	293 and 294
		$Me_3N:AlH_3$	NH_3	295
		$Me_2EtN:AlH_3$	NH_3	296–298
	AlP	AlMe ₂ H	PH_3	299–301
		Me ₂ EtN: AlH ₃	PH_3	302
	AlAs	AlCl ₃	AsH_3	303 and 304
	-	AlMe ₃	AsH ₃	305–315
		AlMe ₂ H	AsH ₃	316–320
		AlEt ₃	AsH ₃	309 and 311
		$Al^{i}Bu_{3}$	AsH ₃	321
		$Me_3N:AlH_3$		322
			AsH ₃	
		Me ₃ N:AlH ₃	$As(NMe_2)_3$	323 and 324
	A 1	Me ₂ EtN: AlH ₃	AsH ₃	320 and 325–330
	Al	AlMe ₃	H ₂ ^e	331 and 332
	$Al_xSi_yO_z$	AlCl ₃	Si(OEt) ₄	94
	Al ₂ O ₃ /SiO ₂ ^f	AlMe ₃	('BuO) ₃ SiOH	157
	$Al_xTi_yO_z$	AlCl ₃	Ti(OEt) ₄	188
		AlCl ₃	$Ti(O^iPr)_4$	188
		$AlMe_3$	$Ti(O^iPr)_4$	188

TABLE III. (Continued.)

Z	Material	Reactant A ^a	Reactant B	Refs.
	$Al_xCr_yO_z$	AlMe ₃	CrO ₂ Cl ₂	93
	$Al_xZr_yO_z$	$Al(OEt)_3$	$ZrCl_4$	188
	$Al_xHf_yO_z$	$Al(OEt)_3$	HfCl ₄	188
4 6'7'				
4 Silicon	${ m SiO}_2$	SiCl ₄	$\rm H_2O$	78, 90, 95, 96, 195, 214, and 333–337
	3102	SiCl ₄	$H_2O+cat.^g$	335 and 338–341
				97–99
		SiCl ₃ H	H ₂ O	
		SiCl ₂ H ₂	O ₃	342
		Si(OEt) ₄	H ₂ O+cat.	343
		HMDS ^h	O_2	344
		Si(NCO) ₄	H ₂ O	345
		Si(NCO) ₄	NEt ₃	346
		$MeOSi(NCO)_3$	H_2O_2	347 and 348
	$\mathrm{Si}_3\mathrm{N}_4$	SiCl ₄	NH_3	349–352
		$SiCl_2H_2$	NH_3	352
		$SiCl_2H_2$	NH_3^e	353
		$SiCl_2H_2$	NH_3 +cat.	354 and 355
		Si ₂ Cl ₆	N_2H_4	356
	SiC	$SiCl_2H_2$	C_2H_4	357 and 358
		$SiEt_2H_2$	i	359
		Si_2H_6	C_2H_4	360
		Si_2H_6	C_2H_2	361–364
	Si	SiCl ₄	Si_2H_6	365
		SiCl ₂ H ₂	H_2	366 and 367
		$SiCl_2H_2$	$H^{\overset{-}{c}}$	368–375
		SiCl ₂ H ₂	j	376–378
		$SiEt_2H_2$	k	379
		SiH ₄	k	380–382
		Si ₂ Cl ₆	Si_2H_6	371, 372, 383, and 384
		Si ₂ Cl ₆ Si ₂ Cl ₆	H ^c	385
			k	386–394
		Si ₂ H ₆	j	395–399
		Si ₂ H ₆	k	
		Si ₂ H ₆	1	394 and 400
		Si ₂ H ₆	k	401
	G: 11 O	Si ₃ H ₈		370 and 402
	$Si_xAl_yO_z$	Si(OEt) ₄	AlCl ₃	94
	SiO ₂ /Al ₂ O ₃ ^f	(¹BuO) ₃ SiOH	$AlMe_3$	157
	$Si_xTi_yO_z$	$Si(OEt)_4$	TiCl ₄	88
	$Si_xZr_yO_z$	SiCl_4	$Zr(O'Bu)_4$	403
		Si(OEt) ₄	$ZrCl_4$	188
		$Si(O^nBu)_4$	$ZrCl_4$	188 and 404
		$Si(O^nBu)_4$	$Zr(NEt_2)_4$	405
	$Si_xHf_yO_z$	$Si(OEt)_4$	$HfCl_4$	406
		Si(OEt) ₄	HfI_4	406
		('BuO) ₃ SiOH	$Hf(NMe_2)_4$	407
5 Phosphorus				
.5 1 nosphorus	PO_x	PCl ₃	$\rm H_2O$	82 and 100–103
	$1 O_{\chi}$	POCl ₃	H_2O	96, 104, and 105
	рро			
	$P_x B_y O_z$	POCl ₃	$B(OMe)_3$	88 and 89
0 Calcium				
	CaO (CaCO ₃)	$Ca(thd)_2$	H_2O	408
		Ca(thd) ₂	O_3	409
	CaS	$Ca(thd)_2$	H_2S	408 and 410-414
	CaF ₂	$Ca(thd)_2$	HF	415
	-	` / =		
21 Scandium	C 0			417
	Sc_2O_3	ScCp ₃	H_2O	416
		$Sc(thd)_3$	O_3	416
		$Sc(thd)_3$	$O_3 + H_2O_2$	416

TABLE III. (Continued.)

Z	Material	Reactant A ^a	Reactant B	Refs.
22 Titanium				
	TiO_2	$TiCl_4$	H_2O	1, 79–81, 96, 100, 101, 106–133, 207, 212, 23 260, 336, and 417–453
		TiCl ₄	H_2O_2	267, 269, and 454
		TiI_{4}	H_2O	455
		TiI_4	H_2O_2	456–458
		TiI_{4}	O_2	459 and 460
		$Ti(OMe)_4$	H_2O	461
		$Ti(OEt)_4$	H_2O	206, 212, and 462-466
		$Ti(O^iPr)_4$	H_2O	212 and 467–474
		$\mathrm{Ti}(\mathrm{O}^{i}\mathrm{Pr})_{4}$	O_2	434 and 475
		$Ti(O^iPr)_4$	$O_2^{\ e}$	476
		$Ti(O^iPr)_4$	O_3	477
		$Ti(O^iPr)_2(dmae)_2$	H_2O	478
		Ti(OBu) ₄	H_2O	134
		$Ti(NMe_2)_4$	$O_2^{\ e}$	479
	TiN	$TiCl_4$	NH_3	480–494
		$TiCl_4$	$NH_3+cat.$	205 and 481–483
		$TiCl_4$	N_2, H_2^e	274
		TiCl ₄	Me_2NNH_2	495
		TiCl_{4}	^t BuNH ₂	496
		$TiCl_4$	$AyNH_2$	496
		TiI_{4}	NH_3	483 and 497
		TiI_{4}	^t BuNH ₂	496
		TiI_{4}	$AyNH_2$	496
		$Ti(NMe_2)_4$	NH_3	498–507
		$Ti(NMe_2)_4$	NH_3^e	508 and 509
		$Ti(NMe_2)_4$	N_2^{e}	509–512
		$Ti(NMe_2)_4$	H_2^{e}	509, 511, and 512
		$Ti(NEt_2)_4$	NH_3	506
		$Ti(NEtMe)_4$	NH_3	513 and 514
	Ti	TiCl_{4}	H_2^{e}	515 and 516
	$Ti_xAl_yO_z$	Ti(OEt) ₄	AlCl ₃	188
		$Ti(O^iPr)_4$	AlCl ₃	188
		$Ti(O^iPr)_4$	$AlMe_3$	188
	$Ti_xSi_yO_z$	TiCl ₄	$Si(OEt)_4$	88
	$Ti_x Zr_y O_z$	$Ti(O^{i}Pr)_{4}$	$ZrCl_4$	188, 517, and 518
	$Ti_xHf_yO_z$	$\mathrm{Ti}(\mathrm{O}^i\mathrm{Pr})_4$	$HfCl_4$	188
23 Vanadium				
	VO_x	VOCl ₃	H_2O	96, 103, 117, 121, and 135–137
		$VO(O^{i}Pr)_{3}$	H_2O	519 and 520
		$VO(O^iPr)_3$	O_2	521–523
		$VO(acac)_2$	O_2	524 and 525
24 Chromium				
	CrO_x	CrO_2Cl_2	H_2O	84, 96, 103, 105, 117, 121, and 138–142
	- A	CrO_2Cl_2	MeOH	93
		Cr(acac) ₃	O_2	434 and 526-530
	$Cr_xAl_yO_z$	CrO_2Cl_2	AlMe ₃	93
25 Manganasa	. , ,			
25 Manganese	MnO_x	$Mn(thd)_3$	O_3	531–533
	MnO_x MnS			76 and 77
	MnTe	MnCl ₂ Mn	$ m H_2S$ Te	170 and 534–543
26 Iron	1VIII 1C	17111	10	170 and 334-343
20 11011	FeO_x	Fe(acac) ₃	0	544
	$\Gamma \in \mathcal{O}_{\chi}$	Fe(thd) ₃	O_2	545
		Fe(thd) ₃ Fe('BuAMD) ₂	O_3 H_2O	546
	Fe	$Fe(^tBuAMD)_2$	H_2	546

TABLE III. (Continued.)

	Material	Reactant A ^a	Reactant B	Refs.
	CoO_x	Co(acac) ₂	O_2	547 and 548
		Co(acac) ₃	O_2	547–554
		$Co(thd)_2$	O_3	555
		$Co(^{i}PrAMD)_{2}$	H_2O	546
	Co	$Co(^{i}PrAMD)_{2}$	H_2	546
0.35 1.1		72	<u> </u>	
8 Nickel	NiO	NiCp ₂	H_2O	556
	NIO			557–559
		Ni(acac) ₂	O_2	
		Ni(acac) ₂	O_3	560 and 561
		Ni(thd) ₂	O_3	562
		Ni(apo) ₂	O_3	560
		Ni(dmg) ₂	O_3	560
	Ni	Ni(acac) ₂	H_2	561
		$Ni(^{i}PrAMD)_{2}$	H_2	546
Copper				
	CuO	Cu(acac) ₂	O_2	563
		$Cu(thd)_2$	O_2	46, 50, and 564
		Cu(hfac) ₂	$\rm H_2O$	565
	Cu_xS	$Cu(thd)_2$	H_2S	566–569
	Cu	CuCl	H_2	570 and 571
		CuCl	$H_2 + H_2O$	571 and 572
		CuCl	Zn	573
		Cu(acac) ₂	H_2	561
		$Cu(acac)_2$	H_2^e	574
		$Cu(thd)_2$	H_2	575 and 576
		$Cu(thd)_2$ $Cu(hfac)_2$	ROH^{d}	577
			HCHO ^m	
		Cu(hfac) ₂ Cu(ⁱ PrAMD)	H_2	577 546
		cu(Tiriniz)	112	2.0
) Zinc	7,0	7	0	570
	ZnO	Zn	O_2	578 570
		Zn	H ₂ O	579
		ZnCl ₂	H ₂ O	144
		ZnCl ₂	O_2	580–582
		$ZnMe_2$	H_2O	583 and 584
		$ZnEt_2$	H_2O	201, 229, 231, and 584-607
		$ZnEt_2$	H_2O^n	598
		$ZnEt_2$	O_2	605
		$Zn(OAc)_2$	H_2O	608-610
	ZnS	Zn	S	2, 171, 611, and 612
		Zn	H_2S	613
			TT C	
		$ZnCl_2$	H_2S	76, 77, 86, 177, and 614–626
		$ZnCl_2$ $ZnMe_2$		76, 77, 86, 177, and 614–626 583 and 627–635
		$ZnMe_2$	H_2S	583 and 627-635
		${ m ZnMe_2} \ { m ZnEt_2}$	H_2S H_2S	583 and 627–635 145, 596, 636, and 637
		$ ZnMe_2 $ $ ZnEt_2 $ $ ZnEt_2 $	$\begin{array}{c} H_2S \\ H_2S \\ Et_2S_2 \end{array}$	583 and 627–635 145, 596, 636, and 637 638
	ZnSe	$ZnMe_2$ $ZnEt_2$ $ZnEt_2$ $Zn(OAc)_2$	$\begin{aligned} & \text{H}_2\text{S} \\ & \text{H}_2\text{S} \\ & \text{Et}_2\text{S}_2 \\ & \text{H}_2\text{S} \end{aligned}$	583 and 627–635 145, 596, 636, and 637 638 415, 608, 615, 616, 618–620, and 639
	ZnSe	$ZnMe_2$ $ZnEt_2$ $ZnEt_2$ $Zn(OAc)_2$ Zn	$\begin{array}{c} H_2S \\ H_2S \\ Et_2S_2 \\ H_2S \\ Se \end{array}$	583 and 627–635 145, 596, 636, and 637 638 415, 608, 615, 616, 618–620, and 639 578, 611, and 640–655
	ZnSe	$ \begin{array}{c} ZnMe_2 \\ ZnEt_2 \\ ZnEt_2 \\ Zn(OAc)_2 \\ Zn \\ Zn \end{array} $	H_2S H_2S Et_2S_2 H_2S Se H_2Se	583 and 627–635 145, 596, 636, and 637 638 415, 608, 615, 616, 618–620, and 639 578, 611, and 640–655 656
	ZnSe	$ \begin{array}{c} ZnMe_2 \\ ZnEt_2 \\ ZnEt_2 \\ Zn(OAc)_2 \\ Zn \\ Zn \\ Zn \end{array} $	H_2S H_2S Et_2S_2 H_2S Se H_2Se Et_2Se	583 and 627–635 145, 596, 636, and 637 638 415, 608, 615, 616, 618–620, and 639 578, 611, and 640–655 656 657
	ZnSe	$ZnMe_2$ $ZnEt_2$ $Zn(OAc)_2$ Zn Zn Zn Zn Zn Zn Zn Zn	H_2S H_2S Et_2S_2 H_2S Se H_2Se Et_2Se	583 and 627–635 145, 596, 636, and 637 638 415, 608, 615, 616, 618–620, and 639 578, 611, and 640–655 656 657 658–660
	ZnSe	$ZnMe_2$ $ZnEt_2$ $Zn(OAc)_2$ Zn Zn Zn Zn Zn Zn Zn Zn	$\begin{array}{c} H_2S \\ H_2S \\ Et_2S_2 \\ H_2S \\ Se \\ H_2Se \\ Et_2Se \\ H_2Se \\ H_2Se \\ H_2Se \end{array}$	583 and 627–635 145, 596, 636, and 637 638 415, 608, 615, 616, 618–620, and 639 578, 611, and 640–655 656 657 658–660 633–635 and 661–671
	ZnSe	$ZnMe_2$ $ZnEt_2$ $ZnEt_2$ $Zn(OAc)_2$ Zn Zn Zn Zn Zn Zn $ZnCl_2$ $ZnMe_2$ $ZnEt_2$	$\begin{array}{c} H_2S \\ H_2S \\ Et_2S_2 \\ H_2S \\ Se \\ H_2Se \\ Et_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ H_2Se \end{array}$	583 and 627–635 145, 596, 636, and 637 638 415, 608, 615, 616, 618–620, and 639 578, 611, and 640–655 656 657 658–660 633–635 and 661–671
	ZnSe	$ZnMe_2$ $ZnEt_2$ $ZnEt_2$ $Zn(OAc)_2$ Zn Zn Zn Zn Zn $Zncl_2$ $ZnMe_2$ $ZnEt_2$ $ZnEt_2$	$\begin{array}{c} H_2S \\ H_2S \\ Et_2S_2 \\ H_2S \\ Se \\ H_2Se \\ Et_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ Et_2Se_2 \end{array}$	583 and 627–635 145, 596, 636, and 637 638 415, 608, 615, 616, 618–620, and 639 578, 611, and 640–655 656 657 658–660 633–635 and 661–671 672 638
		$ZnMe_2$ $ZnEt_2$ $ZnEt_2$ $Zn(OAc)_2$ Zn Zn Zn Zn Zn $ZnEl_2$ $ZnMe_2$ $ZnEl_2$ $ZnEt_2$ $ZnEl_2$ $ZnEl_2$ $ZnEl_2$ $Zn(N(SiMe_3)_2]_2$	$\begin{array}{c} H_2S \\ H_2S \\ Et_2S_2 \\ H_2S \\ Se \\ H_2Se \\ Et_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ Et_2Se_2 \\ H_2Se \end{array}$	583 and 627–635 145, 596, 636, and 637 638 415, 608, 615, 616, 618–620, and 639 578, 611, and 640–655 656 657 658–660 633–635 and 661–671 672 638 672
	ZnSe ZnTe	$ZnMe_2$ $ZnEt_2$ $ZnEt_2$ $Zn(OAc)_2$ Zn Zn Zn Zn $ZnCl_2$ $ZnMe_2$ $ZnEt_2$ $ZnEt_2$ $ZnEt_2$ $Zn[N(SiMe_3)_2]_2$ Zn	$\begin{array}{c} H_2S \\ H_2S \\ Et_2S_2 \\ H_2S \\ Se \\ H_2Se \\ Et_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ Et_2Se_2 \\ H_2Se \\ Te \end{array}$	583 and 627–635 145, 596, 636, and 637 638 415, 608, 615, 616, 618–620, and 639 578, 611, and 640–655 656 657 658–660 633–635 and 661–671 672 638 672 154, 536, 640, 643–645, 647, and 673–66
		$ZnMe_2$ $ZnEt_2$ $ZnEt_2$ $Zn(OAc)_2$ Zn Zn Zn Zn $ZnEt_2$ $ZnMe_2$ $ZnEt_2$ $ZnEt_3$ $ZnEt_2$ $ZnEt_2$ $ZnEt_3$ $ZnEt_4$ $ZnEt_2$ $ZnEt_2$ $ZnEt_3$ $ZnEt_4$ $ZnEt_4$ $ZnEt_4$ $ZnEt_5$ $ZnEt_6$ $ZnEt_7$ $ZnEt_8$	$\begin{array}{c} H_2S \\ H_2S \\ Et_2S_2 \\ H_2S \\ Se \\ H_2Se \\ Et_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ T_2Se \\ Et_2Se_2 \\ H_2Se \\ Te \\ Et_2Te \end{array}$	583 and 627–635 145, 596, 636, and 637 638 415, 608, 615, 616, 618–620, and 639 578, 611, and 640–655 656 657 658–660 633–635 and 661–671 672 638 672 154, 536, 640, 643–645, 647, and 673–636
		$ZnMe_2$ $ZnEt_2$ $ZnEt_2$ $Zn(OAc)_2$ Zn Zn Zn Zn $ZnCl_2$ $ZnMe_2$ $ZnEt_2$ $ZnEt_2$ $ZnEt_2$ $Zn[N(SiMe_3)_2]_2$ Zn	$\begin{array}{c} H_2S \\ H_2S \\ Et_2S_2 \\ H_2S \\ Se \\ H_2Se \\ Et_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ H_2Se \\ Et_2Se_2 \\ H_2Se \\ Te \end{array}$	583 and 627–635 145, 596, 636, and 637 638 415, 608, 615, 616, 618–620, and 639 578, 611, and 640–655 656 657 658–660 633–635 and 661–671 672 638 672 154, 536, 640, 643–645, 647, and 673–66

TABLE III. (Continued.)

Z	Material	Reactant A ^a	Reactant B	Refs.
	Ga ₂ O ₃	Ga(acac) ₃	O ₃	681 and 682
		Ga(acac) ₃	H_2O	681
	GaN	Ga	N_2	683 and 684
		GaCl	NH_3	685 and 686
		GaCl ₃	NH_3	687
		GaMe ₃	NH ₃	290 and 688–692
		GaEt ₃	NH ₃	294, 693, and 694
		GaEt ₃	NH ₃ °	695
	C-D			
	GaP	Ga	P	2
		GaCl	PH ₃	696
		GaMe ₃	PH_3	299, 313, and 697–701
		GaEt ₃	PH_3^n	702
	GaAs	GaCl	AsH_3	696 and 703–716
		GaCl ₃	AsH_3	303, 304, and 717–721
		GaCl ₃	As	720
		GaBr	AsH_3	722
		GaI	AsH_3	722
		GaMe ₃	AsH_3	153, 305–308, 311, 313, 315, 318, 321, 698, 701 and 723–771
		GaMe ₃	EtAsH ₂	772
		GaMe ₃	^t BuAsH ₂	773–780
		-	~	
		GaEt ₃	AsH ₃	26, 309, 311, 698, 729, 738, 743, and 781–788
		GaEt ₃	^t BuAsH ₂	779 and 789
		$GaEt_3$	$(Me_2N)_3As$	324, 790, and 791
		GaEt ₂ Cl	As	792
		GaEt ₂ Cl	AsH_3	755 and 793
		GaEt ₂ Me	AsH_3	698
		Ga ⁱ Bu₃	AsH_3	26
		$GaNp_3$	^t BuAsH ₂	779 and 794
32 Germanium				
	GeO_2	GeCl_4	H_2O	1 and 146
	Ge	$GeCl_4$	H^{c}	795 and 796
		$GeMe_2H_2$	H^{c}	797–799
		$GeEt_2H_2$	k	800 and 801
		GeH_4	k	382 and 802
		Ge_2H_6	k	803 and 804
38 Strontium				
	SrO (SrCO ₃)	$Sr(Cp^iPr_3)_2$	H_2O	805 and 806
		$Sr(thd)_2$	O_3	807
		$Sr(methd)_2$	O_2^{e}	476
	SrS	$Sr(CpMe_5)_2$	H_2S	808
	515	$Sr(Cp^{i}Pr_{3})_{2}$	H_2S	808 and 809
		$Sr(thd)_2$	H_2S	410, 412, and 810–812
	SrF_2	$Sr(thd)_2$	HF	415
	\mathfrak{SIF}_2	$Sr(ma)_2$	пг	413
39 Yttrium	V C	VC-	шо	012
	Y_2O_3	YCp ₃	H ₂ O	813
		$Y(CpMe)_3$	H ₂ O	813
		$Y(thd)_3$	O_2	814
		$Y(thd)_3$	O_3	219, 237, 814, and 815
	Y_2O_2S	$Y(thd)_3$	H_2S	816
40 Zirconium	5.0	~ ~·	•• ~	010 010 000 000 017
	ZrO_2	$ZrCl_4$	H_2O	212, 219, 222, 230, 246, 434, and 817–834
		$ZrCl_4$	H_2O_2	825 and 826
		$ZrCl_4$	O_2	835 and 836
		ZrI_4	H_2O	837
		ZrI_4	H_2O_2	838-841
		$ZrCp_2Cl_2$	O_3	842 and 843
		* 4 4	J	

TABLE III. (Continued.)

Z	Material	Reactant A ^a	Reactant B	Refs.
		$ZrCp_2Me_2$	O_3	842 and 845
		$Zr(O^iPr)_2(dmae)_2$	H_2O	846
		$Zr(O^tBu)_4$	H_2O	471, 473, 474, and 847–851
		$Zr(O^tBu)_4$	O_2	851
		$Zr(O'Bu)_4$	O_2^{e}	852–855
		$Zr(O'Bu)_4$	N_2O	851
		$Zr(O^tBu)_4$	Ar ^e	855
		$Zr(O^tBu)_2(dmae)_2$	H_2O	846 and 856
		$Zr(dmae)_4$		846
			H ₂ O	
		$Zr(thd)_4$	O_3^e	842
		$Zr(NMe_2)_4$	H ₂ O	857 and 858
		$Zr(NEt_2)_4$	H ₂ O	857
		$Zr(NEt_2)_4$	$O_2^{\ e}$	853
		$Zr(NEtMe)_4$	H_2O	857
		$Zr[N(SiMe_3)_2]_2Cl_2$	H_2O	859
	Zr_3N_4	$Zr(NMe_2)_4$	NH_3	860
		Zr(NEtMe) ₄	NH_3	860
		$Zr(NEt_2)_4$	NH_3	860
	$Zr_xAl_yO_z$	ZrCl ₄	$Al(OEt)_3$	188
		ZrCl ₄ ZrCl ₄	Si(OEt) ₄	188 and 861
	$Zr_xSi_yO_z$			
		ZrCl ₄	$Si(O^nBu)_4$	188 and 404
		$Zr(O^tBu)_4$	SiCl ₄	403
		$Zr(NEt_2)_4$	$Si(O^nBu)_4$	405
	$Zr_xTi_yO_z$	ZrCl_4	$Ti(O^{i}Pr)_{4}$	188, 517, and 518
1 Niobium				
1 Woordin	Nb_2O_5	Nb(OEt) ₅	H_2O	184, 206, 465, 820, 862, and 863
	NbN	NbCl ₅	NH ₃	480, 482, and 864
	INDIN	_	2	
		NbCl ₅	NH ₃ +cat.	482 and 864
		NbCl ₅	Me_2NNH_2	495
42 Molybdenum				
	Mo_xN	MoCl ₅	NH_3	480
		MoCl ₅	Me_2NNH_2	495
	Mo	MoCl ₅	Zn	865
4 Destile				
4 Ruthenium	RuO	Ru(CpEt) ₂	0	866
			O_2	
	Ru	$RuCp_2$	O_2	867–869
		Ru(CpEt) ₂	O_2	866
		$Ru(CpEt)_2$	NH_3^e	870 and 871
		$Ru(od)_3$	O_2	872
		$Ru(thd)_3$	H_2	873
		$Ru(thd)_3$	O_2	869 and 874
6 Palladium				
	Pd	$Pd(thd)_2$	H_2	873
		$Pd(thd)_2$	O_2	564
		$Pd(hfac)_2$	H_2	875
		$Pd(mac)_2$ $Pd(hfac)_2$	HCOCOOH	875 875
		ru(mac) ₂	нсосоон	673
8 Cadmium				
	CdS	Cd	S	147 and 876
		$CdCl_2$	H_2S	623
		$CdMe_2$	H_2S	145 and 877-881
	CdSe	Cd	Se	147-149, 611, and 882-886
		CdMe ₂	H ₂ Se	145 and 662
	CdTe	Cd Cd	Te	147, 148, 170, 534–539, 541–543, 655, 675, 67
	Cule	Cu	16	147, 148, 170, 534–539, 541–543, 655, 675, 67 and 886–911
		$CdMe_2$	Et ₂ Te	680
		$CdMe_2$	MeAyTe	680 and 912–914
				~~~ / / * ·

TABLE III. (Continued.)

Z	Material	Reactant A ^a	Reactant B	Refs.
49 Indium				
	$In_2O_3$	InCl ₃	$H_2O$	212 and 917–921
		$InCl_3$	$H_2O_2$	921
		$InMe_3$	$H_2O$	922
	$In_2S_3$	$InCl_3$	$H_2S$	923
		In(acac) ₃	$H_2S$	596, 597, and 924–927
	InN	In	$N_2$	928
		$InEtMe_2$	$NH_3$	290, 689, and 690
	InP	InCl	$PH_3$	696
		InCl	'BuPH ₂	712
		$InMe_3$	$PH_3$	741, 754, and 929–937
		InMe ₃	'BuPH ₂	938-940
		InEt ₃	$PH_3$	697 and 699
		InEt ₃	^t BuPH ₂	941
	InAs	InCl	AsH ₃	704, 705, and 717
		InMe ₃	AsH ₃	733, 942, and 943
		InMe ₃	'BuAsH ₂	780, 931, 933, 944, and 945
		InClMe ₂	AsH ₃	946
		InEt ₃	AsH ₃	726, 947, and 948
	InSb	In	Sb	949 and 950
	11130	111	30	949 and 930
50 Tin	00	C.,	0	2
	$SnO_2$	Sn	$O_2$	2
		SnCl ₄	H ₂ O	111, 150, 212, 445, 682, and 951–960
		SnCl ₄	$H_2O_2$	959, 961, and 962
		$\mathrm{SnI}_4$	$H_2O_2$	959
		SnI ₄	$O_2$	959 and 961–964
		SnMe ₄	$N_2O_4$	151
		$\mathrm{SnEt}_4$	$N_2O_4$	151
51 Antimony				
	$\mathrm{Sb_2O_5}$	SbCl ₅	$H_2O$	952
56 Barium				
	BaS	$Ba(CpMe_5)_2$	$H_2S$	808 and 809
		$Ba(thd)_2$	$H_2S$	410 and 965
57 Lanthanum				
	$La_2O_3$	$La(thd)_3$	$\mathrm{O}_2$	46 and 50
		$La(thd)_3$	$O_3$	555, 562, 966, and 967
		$La[N(SiMe_3)_2]_3$	$H_2O$	407, 968, and 969
		$La(^{i}PrAMD)_{3}$	$H_2O$	546
	$La_2S_3$	La(thd) ₃	$H_2S$	970
	$La_xSi_yO_x$	$La[N(SiMe_3)_2]_3$	('BuO) ₃ SiOH	407
58 Cerium				
	$CeO_2$	Ce(thd) ₄	$\mathrm{O}_2$	46 and 50
	2	$Ce(thd)_4$	$O_3$	971
		Ce(thd) ₃ phen	$O_3$	971
59 Praseodymium				
	$PrO_x$	$Pr[N(SiMe_3)_2]_3$	$\rm H_2O$	972
60 Naadymiym		<u>J. 2</u> _J	2	
60 Neodymium	Nd O	Nd(thd) ₃	0	973
	$Nd_2O_3$	ma(ma) ₃	$O_3$	913
62 Samarium				
	$Sm_2O_3$	$Sm(thd)_3$	$O_3$	973
			-	
63 Europium				
	$Eu_2O_3$	$Eu(thd)_3$	$O_3$	973
64 Gadolinium				
04 Gauoninium	$Gd_2O_3$	$Gd(thd)_3$	0	973
	$u_2u_3$	Gu(tilu) ₃	$O_3$	913

TABLE III. (Continued.)

Z	Material	Reactant A ^a	Reactant B	Refs.
			-teneralit D	
66 Dysprosium	$Dy_2O_3$	$Dy(thd)_3$	$O_3$	973
	$Dy_2O_3$	Dy(tild) ₃	O ₃	913
67 Holmium		(1.1)	-	
	$Ho_2O_3$	$Ho(thd)_3$	$O_3$	973
68 Erbium				
	$Er_2O_3$	$Er(thd)_3$	$O_3$	973 and 974
69 Thulium				
	$Tm_2O_3$	$Tm(thd)_3$	$O_3$	973
71 1				
71 Lutetium	$Lu_2O_3$	Lu[Cp(SiMe ₃ )] ₂ Cl	$\rm H_2O$	975
	Lu ₂ O ₃	Eu[ep(Shvie ₃ / ₁₂ ei	1120	713
72 Hafnium				
	$HfO_2$	$HfCl_4$	$H_2O$	219, 238, 244, 252, 253, 255–257, 259, 439, 822
		$HfCl_4$	$\mathrm{O}_2$	832, 837, 969, and 976–1008 1009 and 1010
		HfCl ₄	$O_2$ $O_3$	990
		$HfCl_2[N(SiMe_3)_2]_2$	$H_2O$	1011
		HfI ₄	$H_2O$	837, 989, 994, and 1012
		$\mathrm{HfI}_4$	$H_2O_2$	1012
		$\mathrm{HfI}_4$	$O_2$	994 and 1013-1016
		$Hf(O^tBu)_4$	$O_3$	1017 and 1018
		$Hf(O^tBu)_4$	O ₂ ^e	854
		$Hf(O'Bu)_2(mmp)_2$ $Hf(mmp)_4$	H ₂ O	1019 1020
		$Hf(ONEt_2)_4$	$ m H_2O$ $ m H_2O$	1020
		$Hf(NMe_2)_4$	$H_2O$	407, 857, 858, 1022, and 1023
		$Hf(NMe_2)_4$	$O_3$	1023
		$Hf(NEt_2)_4$	$H_2O$	857, 1024, and 1025
		$Hf(NEt_2)_4$	$O_2$	1026
		$Hf(NEt_2)_4$	O ₂ ^e	1026
		Hf(NEtMe) ₄	H ₂ O	244, 857, 1005, and 1027–1029
		$Hf(NEtMe)_4$ $Hf[N(SiMe_3)_2]_2Cl_2$	O ₃	1018 1030
		$Hf(NO_3)_4$	$ m H_2O$ $ m H_2O$	1030-1033
	$Hf_3N_4$	$Hf(NMe_2)_4$	NH ₃	860
	3 4	$Hf(NEt_2)_4$	$NH_3$	860
		$Hf(NEtMe)_4$	$NH_3$	860
	$Hf_xAl_yO_z$	$HfCl_4$	$Al(OEt)_3$	188
	$Hf_xSi_yO_z$	HfCl ₄	Si(OEt) ₄	406
		HfCl ₄	$Si(O^nBu)_4$	1034 and 1035
		$HfI_4$ $Hf(NMe_2)_4$	Si(OEt) ₄ ('BuO) ₃ SiOH	406 407
	$Hf_xTi_yO_z$	HfCl ₄	$Ti(O^iPr)_4$	188
	xy - z		(/4	
73 Tantalum	T. 0	The City	11.0	76 77 01 174 102 010 614 022 062 076
	$Ta_2O_5$	TaCl ₅	$H_2O$	76, 77, 91, 174, 183, 212, 614, 822, 863, 976, and 1036–1040
		TaCl ₅	Ta(OEt) ₅	188 and 1041
		TaI ₅	$H_2O_2$	1042
		$TaI_5$	$O_2$	1043
		Ta(OEt) ₅	$H_2O$	178, 184, 206, 207, 212, 465, 820, 863, 978, and 1044–1047
		Ta(OEt) ₅	$O_2^{e}$	1048
		Ta(OEt) ₅	$O_2^{n}$	1049
		$Ta(NMe_2)_5$	$H_2O$	466
		$Ta(NEt_2)_5$	H ₂ O	1050
	ToN	$Ta(NEt)(NEt_2)_3$	H ₂ O	1050
	$TaN_x$	TaCl ₅	NH ₃	480 and 1051 1051
		TaCl ₅	$NH_3$ +cat.	1031

TABLE III. (Continued.)

Z	Material	Reactant A ^a	Reactant B	Refs.
		TaCl ₅	$Me_2NNH_2$	495
		TaCl ₅	^t BuNH ₂	1052
		TaCl ₅	$AyNH_2$	1052
		TaCl ₅	$N_2^e$	1053-1055
		TaBr ₅	'BuNH ₂	1052
		$Ta(NMe_2)_5$	NH ₃	1056 and 1057
		$Ta(N'Bu)(NEt_2)_3$	$NH_3$	1058
		$Ta(N'Bu)(NEt_2)_3$	$H_2^{e}$	1059 and 1060
		$Ta(N'Bu)(NEtMe)_3$	$NH_3$	1061
		$Ta(N'Bu)(NEtMe)_3$	NH ₃ ^e	1061
	Ta	TaCl ₅	$H_2^e$	515 and 1062
		TaF ₅	$Si_2H_6^p$	1063
		141 5	512116	1003
4 Tungsten				
	$WO_3$	$WF_6$	$H_2O$	1064
		$WF_xO_y$	$H_2O$	1064
		$WOCl_4$	q	1065
	$W_xN$	$WF_6$	$NH_3$	490, 491, 1066, and 1067
		$\mathrm{WF}_6$	NH ₃ ^e	1068-1070
		$W(N'Bu)_2(NMe_2)_2$	$NH_3$	1071–1073
	$WS_2$	$WF_6$	$H_2S$	1074
	$\mathbf{W}_{x}\mathbf{C}$	$W(N'Bu)_2(NMe_2)_2$	$H_2, N_2^e$	1075
	W	$WF_6$	$Si_2H_6$	249, 602, 1066, and 1076-1080
			20	,,,,
77 Iridium				
	Ir	$Ir(acac)_3$	$O_2$	1081
78 Platinum				
8 Plauliulli	De	Dt(CnMa)Ma	0	967, 960, and 1092
	Pt	$Pt(CpMe)Me_3$	$O_2$	867, 869, and 1082
		$Pt(acac)_2$	$H_2$	561
30 Mercury				
Ž	HgTe	$HgMe_2$	MeAyTe	912 and 914
	Ü	0 2	•	
32 Lead				
	PbS	$PbBr_2$	$H_2S$	1083
		$PbI_2$	$H_2S$	1083
		$Pb(OAc)_2$	$H_2S$	1083
		$Pb(O^tBu)_2$	$H_2S$	1084
		$Pb_4O(O^tBu)_6$	$H_2S$	1084
		$Pb(thd)_2$	$H_2S$	1083 and 1084
		Pb(dedtc) ₂	$H_2S$	1083 and 1084
20.71				
33 Bismuth	P. 0	D:F37/G37.6. \ ]	*** 0	1007
	$\mathrm{BiO}_{\scriptscriptstyle \mathcal{X}}$	$Bi[N(SiMe_3)_2]_3$	$H_2O$	1085

^aThe metal thd complexes may have been slightly oligomerized and contain a neutral adduct molecule.

 $^{^{\}rm b}$ Diamond.

^cAtomic hydrogen.
^dR refers to alkyl chains of various lengths.

^fThis process is atypical for ALD: it deposits nanolaminates of Al₂O₃ and SiO₂, where the growth per cycle is many nanometers, through a catalytic mechanism (Ref. 157).

gCat.=catalyst.

^hHMDS=hexamethyldisilazane, (Me₃Si)₂NH.

ⁱControlled desorption.

^jIrradiation.

^kTemperature treatment, such as flash heating or temperature modulation.

^lHe plasma treatment.

 $^{^{\}mathrm{m}}$ Reactant B was formaline, containing  $\sim$ 37% of formaldehyde HCHO and some ethanol in water.

ⁿPhotoassisted.

 $^{{}^{}o}Decomposed.\\$ 

^pPreliminary surface science investigation.

^qOnly one half reaction of an ALD reaction cycle was carried out.

TABLE IV. Computational chemistry investigations on ALD processes.

Z	Material	Reactant A	Reactant B	Refs.
5 Boron				
	$\mathrm{BPO}_4$	$B(OMe)_3$	$POCl_3$	89
6 Carbon				
	$\mathbf{C}^{\mathrm{a}}$	$CF_3$		1086
13 Alumi	num			
	$Al_2O_3$	AlCl ₃	$H_2O$	1087
		$AlMe_3$	$H_2O$	1088-1097
14 Silicor	1			
	$\mathrm{SiO}_2$	$SiCl_4$	$H_2O$	1098
		SiCl ₄	H ₂ O+cat. ^b	1099
	$Si_3N_4$	$\mathrm{SiH}_4$	$NH_3$	1100
	Si	SiCl ₃ H	$H_2$	1101
20 Calciu	m			
	CaS	$Ca(thd)_2$	•••	1102
22 Titaniu	ım			
	$TiO_2$	$TiCl_4$	$H_2O$	1103 and 1104
	TiN	TiCl ₄	$NH_3$	1105
28 Coppe	r			
	Cu	CuCl	$H_2$	1106–1108
30 Zinc				
	ZnS	$ZnCl_2$	$H_2S$	1109–1111
	ZnSe	$ZnCl_2$	$H_2Se$	1111
	ZnTe	$ZnCl_2$	$H_2Te$	1111
31 Galliu	m			
	GaAs	GaCl	$AsH_3$	711 and 1112-1114
40 Zircon	ium			
	$ZrO_2$	$\mathrm{ZrCl}_4$	$\rm H_2O$	1091 and 1115-1123
72 Hafniu	ım			
	HfO ₂	$HfCl_4$	$\rm H_2O$	1091, 1119, 1122, and 1123
	-	HfCl ₄	Hf(OEt) ₄	1124
		Hf(OEt) ₄	$H_2O$	1124
73 Tantalı	um			
	$Ta_2O_5$	TaCl ₅	$H_2O$	1125

^aDiamond.

may be related to the difficulty of cleaving the M-O bond present in the alkoxides. Decomposition at low temperatures is a typical drawback of alkoxide reactants. For example,  $Ti(O^iPr)_4$  decomposes already at 200 °C. Although the decomposition product is the desired oxide, the decomposition inevitably leads to a decreased film conformality. A second drawback is the generation of alcohols as by-products in the gas-solid reactions. Alcohols are reactive and may readsorb on the surface and interface with the growth. 465,470 A third drawback is the high concentrations of carbon and hydrogen impurities in the films. For example, ZrO2 films grown at 250 °C through the Zr(O'Bu)₄/H₂O process have been reported to contain 8-at. % hydrogen and 2-at. % carbon. 847 The popularity of alkoxides for growing binary oxides seems to have been decreasing in the recent years, although some new studies keep appearing. Nowadays,

alkoxides have been most often used for growing ternary oxides in combination with metal halide reactants. This reaction concept was demonstrated by Brei *et al.*, ^{88,94} and it was made more widely known by Ritala *et al.* ^{188,1138}

 $\beta$ -diketonates are in use as ALD reactants since the late 1980s.  $^{408,410-412,415,814,1083,1084}$  As evident from Fig. 5(f), there are  $\beta$ -diketonate reactants available for groups 2–14 elements (except group 12 has not been demonstrated), which make them the most broadly used class of ALD reactants. Before the recent introduction of cyclopentadienyls,  $\beta$ -diketonates were the only reactant types available for alkaline-earth metals. Although available for a broad variety of metals, only a few types of materials have been made from  $\beta$ -diketonates (Table X): mostly oxides, and some sulphides, fluorides, and metals. Similarly as for alkoxides, nitrides are missing from the types of materials made, which

^bCat.=catalyst.

#### Metalorganic



FIG. 4. Typical ligands L of the reactants  $ML_n$  used in ALD. M represents the central atom, most often a metal. The ALD reactants can be divided into two main groups, inorganic and metalorganic; organometallic reactants with a direct metal–carbon bond (Ref. 1126) form a subgroup of the latter. In this work, eight main ligand groups are further distinguished: elements [no ligands], halides [F, Cl, Br, and I], alkyls [Me, Et,  i Pr, Ay,  n Bu,  i Bu, and Np], cyclopentadienyls [Cp, CpMe, CpMe₅, CpEt, Cp i Pr₃, and Cp(SiMe₃)], alkoxides [OMe, OEt, O i Pr, O i Bu, or i Bu, mmp, and dmae],  i Buketonates [acac, thd, hfac, od, and methd], alkylamides and silylamides [NMe₂, NEtMe, NEte, and N(SiMe₃)2], and amidinates [ i PrAMD and  i BuAMD].

may be related to the difficulty of replacing the metal-oxygen bond in the  $\beta$ -diketonate with a metal-nitrogen bond. The lower reactivity of the  $\beta$ -diketonates is also reflected in the observation that the oxygen source in the growth of oxide materials is most often not  $H_2O$ , but  $O_3$  (or  $O_2$  may be used at higher temperatures).  $\beta$ -diketonates decompose at moderate temperatures. For example,  $La(thd)_3$  decomposes at  $300 \, ^{\circ}C$ . A drawback in using  $\beta$ -diketonate reactants is their size. The bulky ligands cause marked steric

hindrance, ^{1127,1128} and the GPC obtained from these reactants is typically low, some percent of a monolayer. ^{237,815} The reaction mechanisms related to removing the  $\beta$ -diketonate differ from most ALD processes, since the ligands are most often oxidized with O₃. Whether or not the oxidation is complete and H₂O and CO₂ form as by-products has apparently not yet been verified. The films grown from  $\beta$ -diketonate reactants often contain considerable amounts of carbon and hydrogen impurities. For example, Y₂O₃ deposited through



FIG. 5. Overview of the different types of metal reactants used in ALD (based on the list of Reactants A in Table III). The dark background indicates that metal reactants containing the particular type of ligand have been used for ALD: (a) elements [no ligands], (b) halides [F, Cl, Br, and I], (c) alkyls [Me, Et,  i Pr, Ay,  n Bu,  i Bu,  i Bu, and Np], (d) cyclopentadienyls [Cp, CpMe, CpMe₅, CpEt, Cp i Pr $_{3}$ , and Cp(SiMe₃)], (e) alkoxides [OMe, OEt, O i Pr, O i Bu, O i Bu, od, and methd], (g) alkylamides and silylamides [NMe₂, NEtMe, NEt₂, and N(SiMe₃)₂], and (h) amidinates [ i PrAMD and  i BuAMD].

the Y(thd) $_3$ /O $_3$  process at 300 °C was reported to contain about 2 at. % of both carbon and hydrogen. Because of the generation of CO $_2$  during the oxidation of the ligands, carbonate films may form in place of the more-often-desired oxides.

TABLE V. Typical ALD processes of the type Reactant A+Reactant B  $\rightarrow$  Material, reported for element reactants (references in Table III).

Reactant B	Material	Reactant $A(M)$
$O_2$	$MO_x$	Zn, Sn
$H_2O$	$MO_x$	Zn
$N_2$	$MN_x$	Ga, In
S	$MS_x$	Zn, Cd
$H_2S$	$MS_x$	Zn
P	$MP_x$	Ga
Se	$MSe_x$	Zn, Cd
H ₂ Se	$MSe_x$	Zn
Te	$MTe_x$	Mg, Mn, Zn, Cd
Sb	$MSb_{r}$	In

An interesting observation was recently made regarding the reactivity of lanthanoid (Ln)  $\beta$ -diketonates. Päiväsaari et al. 973 studied the ALD growth of several lanthanoid oxides from Ln(thd)₃ and ozone at a constant temperature (300 °C). Päiväsaari et al. 973 noticed the thickness increment per ALD reaction cycle to increase systematically with increasing ionic radius of the lanthanides (the ionic radius of the lanthanoid cautions decreases with increasing atomic number, known as the "lanthanoid contraction" (973,1139). A similar qualitative trend of the GPC (in thickness units) as reported by Päiväsaari et al. 973 would be created simply if the same number of lanthanoid atoms was, in all cases, deposited per unit surface area per cycle. Namely, the larger the ionic radius of the lanthanoid (Ln), the larger the volume v occupied by a LnO_{3/2} unit and the larger the average thickness corresponding to one monolayer of LnO_{3/2}  $(\bar{h}^{\rm ml} = v^{1/3})$ . The GPC could be expected to be constant in units of atoms per unit surface area, if the steric hindrance by the bulky thd ligands completely dominated the chemi-

TABLE VI. Typical ALD processes of the type Reactant A+Reactant B  $\rightarrow$  Material, reported for metal halides that contain one type of ligand (references in Table III).

Reactant B	Material	Reactant $A$ ( $ML_n$ : atom $M$ -ligand $L$ )
H ₂ O	$MO_x$	B-Br, Al-(Cl,Br), Si-Cl, P-Cl,
		Ti-(Cl,I), Zn-Cl, Ge-Cl, Zr-(Cl,I), In-Cl, Sb-Cl, Hf-(Cl,I), Ta-Cl, W-F
$O_2$	$MO_x$	Ti-I, Zn-Cl, Sn-I, Hf-(Cl,I)
O ₃	$MO_x$	Hf–Cl
NH ₃	$MN_x$	B-(Cl,Br), Al-Cl, Si-Cl, Ti-(Cl,I), Ga-Cl, Nb-Cl, Mo-Cl, Ta-Cl,
		W-F
$H_2S$	$MS_x$	Mn–Cl, Zn–Cl, Cd–Cl, In–Cl, W–F, Pb–(Br,I)
$PH_3$	$MP_x$	In-Cl
H ₂ Se	$MSe_x$	Zn–Cl
$AsH_3$	$MAs_x$	Ga-(Cl,Br,I), In-Cl
$H_2$	M	Cu–Cl
$N^a$	$MN_x$	Ta-Cl
$H^{b}$	M	C-Cl, Ti-Cl, Ge-Cl, Ta-Cl
$\mathrm{Si}_{2}\mathrm{H}_{6}$	M	Ta-F, W-F

^aAtomic nitrogen, for example, in plasma.

sorption process. ^{1127,1128} However, the mechanical contribution of the ionic radius appears too small to explain the full quantitative trend reported by Päiväsaari *et al.*, ⁹⁷³ and the amount of lanthanoid atoms deposited per unit surface area per cycle also must increase with increasing ionic radius. The types of chemical changes occurring in the Ln(thd)₃ molecules with increasing ionic radius are yet to be clarified.

Alkylamides and silylamides have been investigated as ALD reactants since the late 1990s. 407,498,499,513,857,1059 Alkylamides and silylamides appear as a versatile group of reactants, both in terms of the elements for which they are available [Fig. 5(g)] and the types of materials made from them (Table XI): oxides, nitrides, and selenides. Decomposition at low temperatures is a problem for these amides, however.

TABLE VII. Typical ALD processes of the type Reactant A+Reactant  $B \rightarrow$  Material, reported for metal alkyls that contain one type of ligand (references in Table III).

Reactant B	Material	Reactant $A$ ( $ML_n$ : atom $M$ -ligand $L$ )
H ₂ O	MO _x	Al-(Me,Et), Zn-(Me,Et), In-Me
O ₂	$MO_r$	Zn–Et
O ₃	$MO_x$	Al–Me
ROH ^a	$MO_x$	Al–Me
NH ₃	$MN_x$	Al-(Me,Et), Ga-(Me,Et)
H ₂ S	$MS_x$	Zn-(Me,Et), Cd-Me
PH ₃	$MP_x$	Ga-Me, In-(Me,Et)
H ₂ Se	$MSe_x$	Zn-(Me,Et), Cd-Me
AsH ₃	$MAs_r$	$Al-(Me, Et, ^{i}Bu), Ga-(Me, Et, ^{i}Bu),$
,		In-(Me,Et)
$O_p$	$MO_x$	Al–Me
$H^c$	M	Al–Me

^aAlcohols with various organic chains R.

TABLE VIII. Typical ALD process of the type Reactant A+Reactant  $B \rightarrow$  Material, reported for metal cyclopentadienyls that contain one type of ligand (references in Table III).

Reactant B	Material	Reactant $A$ ( $ML_n$ : atom $M$ -ligand $L$ )
H ₂ O	$MO_x$	Mg–Cp, Sc–Cp, Ni–Cp, Sr–Cp ⁱ Pr ₃ , Y–(Cp,CpMe)
$O_2$	M	Ru–(Cp,CpEt)
H ₂ S	$MS_x$	$Sr-(CpMe_5, Cp^iPr_3)$

For example, the Ti(NMe2)4 reactant decomposes already at 150 °C. 505 Rather typical also is that the GPC from amides, at least for alkylamides of titanium, exceeds a monolayer. 499-501,513 Although a theory has been built to beyond-monolayer-growth explain explain the beyond-monolayer-growth through "readsorption," ^{499–501,509} I suspect that decomposition remains a candidate to explain the high GPC values. Little investigations seem to have been carried out to identify the gaseous reaction by-products in alkylamide-and silylamidebased ALD processes. Impurities are often found in the films, which for alkylamide reactants may be nitrogen, carbon, and hydrogen, and for silylamide reactants additional silicon. As an example of films grown from alkylamides, TiN films grown through the Ti(NEt₂)₄/NH₃ process at 200 °C contained about 4-at. % carbon and 6-at. % hydrogen. 513 As an example of films grown from silylamides, PrO, films grown through the Pr[N(SiMe₃)₂]₃/H₂O process at 250 °C contained about 3-at. % carbon, 20-at. % hydrogen, and 6-at. % silicon. 972

Amidinates are the most recent class of ALD reactants, introduced only in 2003. S46,1141 Because of their novelty, their use in ALD has so far been investigated only for a few elements, as summarized in Fig. 5(h). The material selection (Table XII) may broaden in the future, however, because amidinates should be available for most metals. The reactions seem self-terminating. Decomposition temperatures are typically around 300 °C. 1141,1143 Potentially, the films may contain residues of carbon, hydrogen, and nitrogen. The gaseous reaction by-products remain to be identified.

In addition to the eight reactant classes described above, many miscellaneous types of reactants have been tried out

TABLE IX. Typical ALD processes of the type Reactant A+Reactant  $B \rightarrow$  Material, reported for metal alkoxides that contain one type of ligand (references in Table III).

		Reactant A
Reactant B	Material	$(ML_n: atom M-ligand L)$
H ₂ O	$MO_x$	Al– $(OEt, O^nPr)$ , Si– $OEt$ ,
		Ti-(OMe, OEt, O'Pr, OBu),
		Zr-(O'Bu, dmae), Nb-OEt, Ta-OEt,
		Hf–mmp
$O_2$	$MO_x$	Al–(OEt, $O^n$ Pr), Ti– $O^i$ Pr, Zr– $O^t$ Bu
$O_3$	$MO_x$	Ti–O ⁱ Pr, Hf–O ^t Bu
$H_2S$	$MS_x$	Pb–O'Bu
$O^a$	$MO_x$	Ti-O ⁱ Pr, Zr-O ⁱ Bu, Hf-O ⁱ Bu,
		Ta-OEt

^aAtomic oxygen, for example, in plasma.

^bAtomic hydrogen, for example, in plasma.

^bAtomic oxygen, for example, in plasma.

^cAtomic hydrogen, for example, in plasma.

TABLE X. Typical ALD processes of the type Reactant A+Reactant B  $\rightarrow$  Material, reported for metal  $\beta$ -diketonates that contain one type of ligand (references in Table III).

Reactant B	Material	Reactant $A$ $(ML_n$ : atom $M$ -ligand $L$ )
	- Triateriai	$(M \mathcal{L}_n)$ atom $M$ figure $\mathcal{L}_n$
$H_2O$	$MO_x$	Ca-thd, a Cu-Hfac, Ga-acac
$O_2$	$MO_x$	Cr-acac, Fe-acac, Co-acac,
		Ni-acac, Cu-(acac,thd), Y-thd,
		La-thd, Ce-thd
$O_2$	M	Ru-od, Ru-thd, Pd-thd, Ir-acac
$O_3$	$MO_x$	Mg-thd, Ca-thd, a Sc-thd, Mn-thd,
		Fe-thd, Co-thd, Ni-(acac,thd),
		Ga-acac, Sr-thd, a Y-thd, La-thd,
		Ce-thd, Nd-thd, Sm-thd, Eu-thd,
		Gd-thd, Dy-thd, Ho-thd, Er-thd,
		Tm-thd
$ROH^b$	M	Cu-hfac
$H_2S$	$MS_x$	Ca-thd, Cu-thd, Sr-thd, Y-thd,
		In-acac, Ba-thd, La-thd, Pb-thd
HF	$MF_x$	Ca-thd, Sr-thd
$H_2$	M	Ni-acac, Cu-(acac,thd), Ru-thd,
<u> </u>		Pd-thd, Pd-hfac, Pt-acac

 $^{{}^{}a}M(CO_{3})_{r}$ 

for ALD. For example, hydrides have been used for depositing especially silicon and germanium (references in Table III); acetates for zinc and lead-containing films; 415,608,609,615,616,618–620,639,1083 nitrate and hydroxylamide for hafnium oxide; 1021,1031–1033 and a carbonyl compound for cobalt. 1144 The specific characteristics of these processes are not discussed further in this review.

#### 3. AIMe₃/H₂O versus other ALD processes

In this work, the current status of understanding the surface chemistry of ALD is reviewed using the AlMe₃/H₂O ALD process as a vehicle. All ALD processes have their individual characteristics, and no ALD process can be ex-

TABLE XI. Typical ALD process of the type Reactant A+Reactant B  $\rightarrow$  Material, reported for metal amides that contain one type of ligand (references in Table III).

Reactant B	Material	Reactant $A$ ( $ML_n$ : atom $M$ -ligand $L$ )
H ₂ O	$MO_x$	Zr-(NMe ₂ , NEt ₂ ), La-N(SiMe ₃ ) ₂ , Pr-N(SiMe ₃ ) ₂ , Hf-(NMe ₂ , NEt ₂ ), Ta-(NMe ₂ , NEt ₂ ), Bi-N(SiMe ₃ ) ₂
$O_2$	$MO_x$	$Hf-NEt_2$
$O_3$	$MO_x$	Hf–NMe ₂
NH ₃	$MN_x$	Ti-(NMe ₂ ,NEt ₂ ), Zr-(NMe ₂ ,NEt ₂ ), Hf-(NMe ₂ ,NEt ₂ ), Ta-NMe ₂
H ₂ Se	$MSe_x$	Zn–N(SiMe ₃ ) ₂
$O^a$	$MO_x$	Ti-NMe ₂ , Zr-NEt ₂ , Hf-NEt ₂
$N^b$	$MN_x$	Ti–NMe ₂
$H^{c}$	$MN_x$	Ti–NMe ₂

^aAtomic oxygen, for example, in plasma.

TABLE XII. Typical ALD processes of the type Reactant A+Reactant  $B \rightarrow$  Material, reported for metal amidinates that contain one type of ligand (references in Table III).

Reactant B	Material	Reactant $A$ ( $ML_n$ : atom $M$ -ligand $L$ )
H ₂ O	$MO_x$	Fe- ['] BuAMD, Co- ['] PrAMD, La- ['] PrAMD
$H_2$	M	Fe ⁻ⁱ BuAMD, Co ⁻ⁱ PrAMD, Ni ⁻ⁱ PrAMD, Cu ⁻ⁱ PrAMD

pected to fully represent the others. The AlMe₃/H₂O process still seems a good choice as one of the most representative processes, for at least four reasons.

First, the AlMe₃/H₂O process represents "thermal ALD." The advantage of thermal ALD over various "energy-enhanced" ALD processes is that thermal ALD processes fulfill best the requirement of self-terminating reactions on complex three-dimensional (3D) substrates. In energy-enhanced processes, typically utilizing energetic but unstable reactants such as ozone or plasma, problems with conformality may arise through reactant decomposition, at least on 3D substrates.

Second, the AlMe₃/H₂O process deposits an oxide material and uses water to deposit it. Oxides are the inorganic materials most frequently grown by ALD, and water is the most frequently used oxygen source.

Third, the AlMe₃/H₂O process uses trimethylaluminum as the aluminum source. If a choice is made to review the growth characteristics of aluminum oxide (the growth of another metal oxide could as well have been chosen), AlMe₃ is a justified choice as the aluminum source, as it is perhaps the most commonly used aluminum source in ALD. Further advantages of using AlMe₃, as a general example, is that the reactions are rather ideal: the reactions are truly selfterminating, the AlMe₃ reactant is highly reactive and many types of compounds have been grown from it (oxides, nitrides, arsenides, and pure Al; see Tables III and VII), and the gaseous reaction products (methane) are rather inert. Many other reactant classes, such as elements, halides, alkoxides,  $\beta$ -diketonates, and alkyl/silylamides would have difficulties fulfilling at least some of these criteria, whereas alkyls, cyclopentadienyls, and perhaps amidinates fulfill them better. A disadvantage in using an alkyl reactant, as a general example, is the fact that alkyls are available for a limited selection of elements only [Fig. 5(c)]. Some reaction mechanisms are likely to be specific for the particular reactant or for the reactant group. A similar disadvantage of having reactant-specific or reactant-group-specific reactions would be encountered, however, for reactants from other groups as well.

Fourth, the AlMe₃/H₂O process is one of the most studied ALD processes (Table III). There is therefore material to be reviewed.

Although it will not be possible to transfer the specific conclusions regarding the AlMe₃/H₂O process directly to other ALD processes, it is likely that if a specific physicochemical phenomenon is an issue for the AlMe₃/H₂O process, it will be so also for other ALD processes. Additional

^bR refers to alkyl chains of various lengths.

 $^{^{}c}MO_{x}S_{y}$ .

^bAtomic nitrogen, for example, in plasma.

^cAtomic hydrogen, for example, in plasma.



FIG. 6. Adsorption classes.

physicochemical phenomena may play a role in the surface chemistry of other ALD processes, caused, for example, by the occurrence of reactant decomposition (either purely thermally or through the use of energy-enhanced processes) or the formation of noninert gaseous reaction products. Understanding these unideal phenomena should be possible through building additional models on top of the models describing ideal ALD systems.

## III. GENERAL CHARACTERISTICS OF THE SURFACE CHEMISTRY OF ALD

To provide a framework for discussing the surface chemistry of the AlMe₃/H₂O and other ALD processes, the general concepts and characteristics of the surface chemistry of ALD are summarized here. Section III A discusses the chemical requirements for self-terminating reactions and Sec. III B the kinetic characteristics of such reactions. Section III C describes the three classes of chemisorption reactions typically involved in ALD, and Sec. III D identifies the possible factors causing the termination of the reactions. Section III E illustrates, with the aid of published models, how steric hindrance typically limits the GPC to less than a monolayer. Sections III F and III G, respectively, discuss why the GPC varies with temperature and with the number of reaction cycles. Finally, Sec. III H introduces the possible growth modes that define how the material gets arranged on the surface during the growth.

#### A. Requirements for self-terminating reactions

ALD can be defined to be based on the sequential use of *self-terminating gas-solid reactions*. In the reaction of a gaseous compound reactant with the solid surface, atoms which are to be included in the ALD-grown film are adsorbed on the surface. Simultaneously, atoms which are not to be included in the film may be removed as gaseous reaction byproducts.

Adsorption can be divided into two general classes on the basis of the strength of interaction between the adsorbing molecule ("adsorptive") and the solid surface ("adsorbent"): *physisorption* (i.e., physical adsorption) and *chemisorption* (i.e., chemical adsorption), ¹¹⁴⁵ as shown in Fig. 6. Physisorption originates from weak interactions, where minimal changes typically occur in the structure of the adsorbing molecule. The interactions are not specific to the molecule–surface pair, and consequently, adsorption may occur in multilayers. Chemisorption, in turn, involves the making and optionally breaking of chemical bonds. Because in chemisorption, chemical bonds are formed between the adsorbing molecule and the surface, the surface "accepts" only one layer, a *monolayer*, of the adsorbed species ("adsorbate"). ¹¹⁴⁵ In relation with ALD, one must realize that a monolayer of



FIG. 7. Three different types of monolayers relevant to ALD: (a) a chemisorbed monolayer (the substrate before chemisorption indicated above, with reactive sites shown), (b) a physisorbed monolayer, and (c) a monolayer of the ALD-grown material.

the adsorbed species, such as  $\|Al(Me)_2$ , differs both from a monolayer of the reactant molecule, AlMe₃, and from a monolayer of the ALD-grown material, Al₂O₃ (Fig. 7):

- Monolayer (capacity) for chemisorption is defined¹¹⁴⁵ as "the amount of adsorbate (adsorbed species) which is needed to occupy all adsorption sites as determined by the structure of the adsorbent (surface) and the chemical nature of the adsorptive (the reactant)."
- Monolayer (capacity) for physisorption is defined¹¹⁴⁵ as "the amount needed to cover the surface with a complete monolayer of molecules in a close-packed array."
- Monolayer for the ALD-grown material  $MZ_x$  can be defined as one plane of  $MZ_x$  units in a crystalline face of the bulk  $MZ_x$  material in the preferred orientation of growth. ¹¹⁴⁶

The amount of material adsorbed in gas-solid reactions can depend on time in various ways, as schematically illustrated in Fig. 8. Both irreversible and reversible adsorption can be saturating in nature [panels (a) and (b), respectively]. For the adsorption to be self-terminating, however, the adsorbed material may not desorb from the surface during the purge or evacuation. Consequently, in ALD, the type of adsorption is limited to irreversible adsorption (irreversible in the time scale of the experiment). Because physisorption is always reversible, whereas chemisorption can be reversible or irreversible, the requirement of irreversibility restricts the type of adsorption to chemisorption. In addition to irreversible adsorption, reversible adsorption may occur, but it does not contribute to ALD growth [panel (c)]. Irreversible adsorption as such is not a sufficient requirement to achieve ALD growth, however, as irreversible adsorption can also be continuous and nonsaturating [panel (d)]. Moreover, to take advantage of the self-terminating features, the irreversible, saturating reactions must be allowed to terminate, to go to completion [panel (e)]. 1147

#### **B.** Adsorption kinetics

Chemical kinetics describes the effect of process parameters such as temperature and reactant concentrations on reaction (adsorption) rates. A simple example of molecular adsorption of a gaseous compound A on a surface site  $\parallel*$  illustrates the characteristics of adsorption kinetics in ALD. In the general case, the adsorption can be considered reversible, as illustrated in reactions (1) and (2),

$$\| * + A(g) \stackrel{r_a}{\rightarrow} \| * A, \tag{1}$$

FIG. 8. Examples of how the amount of material adsorbed can vary with time: (a) irreversible saturating adsorption (i.e., self-terminating reaction), (b) reversible saturating adsorption, (c) combined irreversible and reversible saturating adsorption, (d) irreversible nonsaturating adsorption (deposition), and (e) irreversible saturating adsorption not allowed to saturate. The vertical dashed line marks the end of the reactant supply and the beginning of a purge or evacuation.

$$\|*A \xrightarrow{r_d} \|* + A(g). \tag{2}$$

Adsorption rate  $r_a$  refers to the amount of molecules A attached to the surface per unit time and desorption rate  $r_d$  to the amount of molecules A detached from the surface per unit time.

The partial pressure of the reactant is a central parameter describing the adsorption process. For illustrating the effect of pressure, three assumptions are made that are often used in the ALD literature:  $^{192,196,1149-1154}$  the maximum amount of adsorbed species is assumed to be a monolayer (as in chemisorption), all adsorption sites on the surface are assumed equal, and neighboring adsorbed species are assumed not to interact with each other. The coverage of adsorbed species is referred here to as *chemisorption coverage* and denoted as Q.  1155  The adsorption rate  $r_a$  equals the adsorption rate constant  $k_a$  times the partial pressure p of the molecule A times the fraction (1-Q) of unoccupied surface sites, and the desorption rate  $r_d$  equals the desorption rate constant  $k_d$  times the fraction Q of occupied surface sites. The rate of change of the chemisorption coverage, dQ/dt, is obtained by subtracting the desorption rate from the adsorption rate,

$$\frac{dQ}{dt} = r_a - r_d = k_a p(1 - Q) - k_d Q.$$
 (3)

After saturation, the chemisorption coverage is constant (dQ/dt=0), and we get from Eq. (3) the *Langmuir isotherm*, giving the equilibrium chemisorption coverage  $Q^{eq}$  as a function of reactant partial pressure,

$$Q^{\text{eq}} = \frac{k_a p}{k_a p + k_d} = \frac{1}{1 + (Kp)^{-1}}.$$
 (4)

The right side of Eq. (4) has been obtained by recognizing that  $K=k_a/k_d$  is the *equilibrium constant* of the adsorption. In the general case of reversible adsorption  $(k_a \neq 0 \neq k_d)$ ,  $Q^{\rm eq}$  increases with p, as illustrated in Fig. 9(a). To achieve ALD conditions with self-terminating reactions, however, the adsorption must be irreversible (Sec. III A). Equations (3) and (4) describe practically irreversible reactions if the equilibrium constant K is allowed to approach infinity (or  $k_d$  to approach zero). Solving Eq. (4) with this assumption, we get

$$\lim_{V \to \infty} Q^{\text{eq}} = 1. \tag{5}$$

In irreversible chemisorption, the chemisorption coverage Q does not increase with p, but settles to unity even at negligibly low reactant partial pressures p [Fig. 9(b)].

Time is also a central parameter is the adsorption process. Solving by integrating from Eq. (3), assuming constant pressure and temperature, the chemisorption coverage Q is obtained as a function of time t,

$$Q = Q^{eq} (1 - e^{-(k_a p + k_d)t}).$$
(6)

For irreversible chemisorption, Eq. (6) reduces to Q=1 $-e^{-k_a pt}$ . Figure 10(a) illustrates the chemisorption coverage Q as a function of time for irreversible chemisorption. During the reaction of Reactant A (Step 1), typically a compound reactant  $ML_n$ , the chemisorption coverage increases until it settles to one when the reaction has terminated. (The higher the p and  $k_a$ , the faster the reaction is completed.) During the following purge/evacuation (Step 2), the chemisorption coverage remains constant. The reaction of Reactant B (Step 3) causes the chemisorption coverage of the species adsorbed from Reactant A to decrease, ideally down to zero. Reactant B brings other types of adsorbed species on the surface, the coverage of which increases from zero to one during the reaction. During the following purge/evacuation (Step 4), the chemisorption coverages remain constant. During repeating reaction cycles of Steps 1-4, the chemisorption coverages therefore switch between zero and one [Fig. 10(a)].

Time affects the chemisorption coverage Q in a different way than it affects the total amount of material deposited  $c_M$ . As illustrated in Fig. 10(b), the amount of atoms M deposited  $c_M$  increases during Step 1 of the reaction cycles. The deposition rate  $\mathrm{d}c_M/\mathrm{d}t$  varies with time [Fig. 10(c)], implying that the process is in a transient state. ¹¹⁵⁶ For comparison, in this example, the amount of material deposited  $c_M$  increases linearly with the number of reaction cycles [Fig. 10(d)] and the GPC  $\Delta c_M$  is constant [Fig. 10(e)]. The number of reaction cycles n is clearly a discrete variable, ^{992,1140} whereas time t is continuous.

The temperature dependency of adsorption and desorp-



FIG. 9. Effect of the reactant partial pressure p on the amount of material chemisorbed in a gas–solid reaction: (a) the equilibrium chemisorption coverage  $Q^{\rm eq}$  in reversible adsorption (equilibrium constants  $1 \le K \le 10^4$ ) and (b) the chemisorption coverage Q after saturation in irreversible adsorption.



FIG. 10. Schematic representation of five reaction cycles, assuming irreversible adsorption: (a) chemisorption coverage Q as a function of time t (solid line:  $ML_{\tau}$  species adsorbed in the reaction of the Reactant A assumed to be of type  $ML_n$ , dashed line: species adsorbed in the reaction of Reactant B; the beginning and end of a reaction cycle and Steps 1–4 are indicated), (b) the amount of atoms M adsorbed  $c_M$  as a function of time t, (c) the deposition rate of M atoms  $dc_M/dt$  as a function of time t [obtained as the time derivative of the curve in panel (b)], (d) amount of material deposited  $c_M$  as a function of the number of reaction cycles n, and (e) the GPC  $\Delta c_M$  as a function of the number of reaction cycles n.

tion rate constants  $k_i$  is typically described by the Arrhenius equation,

$$k_i = Ae^{-E_i/RT}. (7)$$

In this equation, A is the pre-exponential factor,  $E_i$  is the activation energy, R is the gas constant, and T is the absolute temperature. The higher the temperature, the faster the reactions go to completion. Although reactions are faster at higher temperatures, the amount of material adsorbed at saturation is dictated by factors other than the reaction rate, as will be discussed in Sec. III F.

In addition to adsorption kinetics, mass transport kinetics affect the amount of material adsorbed at a given time. Mass-transport kinetics are reactor-specific and depend also on the shape of the substrate, and are not discussed further here. Mass transport in ALD has been discussed at least in Refs. 432, 1038, 1152–1154, and 1157–1160.

#### C. Chemisorption mechanisms

Three main classes of chemisorption mechanisms have been identified for the self-terminating reactions of compound reactants in ALD. ¹¹⁶¹ In *ligand exchange*, the reactant molecule  $(ML_n)$  is split on the surface. ¹¹⁶² The ligand (L) combines with a surface group  $\parallel -a$  to form a volatile compound that is released as a gaseous reaction



FIG. 11. Chemisorption mechanisms identified for ALD: (a) ligand exchange reaction of the  $ML_n$  reactant with surface "-a" groups, releasing gaseous aL, (b) dissociation of the  $ML_n$  in surface M-Z sites, and (c) association of the  $ML_n$  species onto the surface. In this scheme, n=3.

by-product, aL, and the remaining part of the molecule chemisorbs to the surface as a  $ML_{n-1}$  species [Eq. (8)], 98,197,209,216,419,526,818,1163-1165

$$||-a + ML_n(g) \rightarrow ||-ML_{n-1} + aL(g).$$
 (8)

Ligand-exchange reaction can also occur for more than one ligand of the  $ML_n$  reactant or between an adsorbed  $ML_z$  species  $(1 \le z \le n)$  and a surface  $\|-a\|$  group. These reactions release ligands as aL and consume additional  $\|-a\|$  groups, but do not result in bonding more metal M on the surface [Eq. (9), reaction of an adsorbed  $ML_z$  species]:

$$||-ML_z + ||-a \rightarrow ||-ML_{z-1} - ||+aL(g).$$
 (9)

In *dissociation*, the reactant molecule is split onto reactive M'-Z sites on the surface [Eq. (10)],  197,209,216,1163,1164 

$$||M' - Z|| + ML_n(g) \rightarrow ||M' - L + ||Z - ML_{n-1}|.$$
 (10)

Similarly as ligand-exchange reaction, dissociation may proceed further on the surface, but this reaction affects neither the number of bonded M atoms nor the number of bonded ligands. In *association*, the reactant molecule forms a coordinative bond with a reactive site on the surface and is chemisorbed without a release of ligands [Eq. (11)], (101,144,1110,1165-1167)

$$\|+ML_n(g) \to \|\cdots ML_n.$$
 (11)

The three classes of chemisorption mechanisms are schematically illustrated in Fig. 11.

When reactions (8)–(11) occur, a simple mass balance governs the chemisorption. The amount of ligands L chemisorbed  $\Delta c_L$  equals n times the amount of metal M chemisorbed  $\Delta c_M$ , subtracted by the number of ligands L released in the ligand-exchange reaction with surface  $\|-a\|$  groups, that is, the amount of surface  $\|-a\|$  groups reacted  $\Delta c_a$ . The mass balance is summarized in Eq. (12),

$$\Delta c_L = n\Delta c_M - \Delta c_a. \tag{12}$$

FIG. 12. Factors identified to cause saturation of irreversible chemisorption: (a) steric hindrance of the ligands and (b) number of reactive surface sites.

Sometimes, reactions other than those presented in Eqs. (8)–(11) occur. For example, the oxidation state of the elements may change during the ALD processing.  63,102,1066,1168  The mass balance of Eq. (12) may then not be valid. A special class of self-terminating reactions has been observed for metal chloride reactants, where metal oxide particles can form in a single reaction.  419,421,818,1135,1169  The so-called nongrowth ligand-exchange reactions  1088,1135,1170  may be involved in the metal oxide particle formation, which is unideal in ALD since multilayers form in a single reaction. The details of the metal oxide particle formation process are not yet sufficiently understood, as reviewed elsewhere.  1135  Unexplained formation of particles, or "nanorods," has been reported also for the ZnEt₂/H₂O ALD process.

#### D. Factors causing saturation

Two factors have been identified to cause the saturation of the surface with adsorbed species in a self-terminating gas–solid reaction, as illustrated in Fig. 12: steric hindrance of the ligands  209,216,237,291,292,530,548,554  and the number of reactive surface sites. Steric hindrance of the ligands can cause the ligands of the chemisorbed  $ML_z$  species to shield part of the surface from being accessible to the  $ML_n$  reactant. The surface can be considered "full." The number of bonding sites on the surface may also be less than that required for achieving the maximum ligand coverage. In that case, although space remains available on the surface, no bonding sites are accessible. Irrespective of the factor causing saturation, the chemisorption coverage Q equals one after the self-termination of the reactions.

#### E. Growth of less than a monolayer per cycle

How much material is adsorbed in irreversible, saturating chemisorption is defined by the reaction mechanisms and the factor causing saturation. The highest obtainable GPC values correspond to a chemistry where the maximum number of surface sites react through ligand exchange, releasing thereby the maximum number of ligands into the gas phase, and reaction continues until steric hindrance terminates it. 1128

Irrespective of the factor causing saturation and the absolute amount of material adsorbed, a monolayer of the chemisorbed  $ML_z$  species has formed by definition when the chemisorption has saturated (Sec. IV B). It is of interest to analyze to which GPC, in monolayers of the ALD-grown



FIG. 13. Schematic illustration for analyzing sterically hindered chemisorption on the basis of the size of the  $ML_n$  reactant [Model I by Ritala *et al.* (Refs. 462 and 468) and Morozov *et al.* (Ref. 133)], the size and geometry of the chemisorbed  $ML_z$  species [Model II by Ylilammi (Ref. 1127)], and the size and number of ligands L [Model III by Siimon and Aarik (Ref. 432) and Puurunen (Ref. 1128)]. Left: side view, right: top view.

 $MZ_x$  material, the monolayer of adsorbed  $ML_z$  species converts. Often, it has been assumed that a monolayer of the ALD-grown material should form per cycle, but this assumption is obviously incorrect.¹¹⁷¹ Three models have been developed for analyzing the GPC when steric hindrance causes saturation, as summarized in Fig. 13.

Ritala *et al.*  462,468  and Morozov *et al.*  133  developed a model, referred to as *Model I*, to estimate the maximum GPC from the size of the  $ML_n$  reactant [Fig. 13(a)]. The size of the  $ML_n$  reactant is calculated from the density of the liquid reactant and the area covered by the reactant, assuming a close-packed monolayer of  $ML_n$ . Model I, in fact, corresponds to a physisorbed monolayer of the  $ML_n$  molecules (Sec. III A). Because the chemisorbed  $ML_z$  species differs from the  $ML_n$  reactant, Model I gives at best a rough estimate of the achievable GPC.

Ylilammi¹¹²⁷ developed a model, *Model II*, for calculating the maximum GPC from the size and geometry of the adsorbed  $ML_z$  species [Fig. 13(b)]. The sizes of the ligand L and the metal M must be known. Also the bond lengths and angles must be known or assumed for the adsorbed species. In Model II, the GPC increases in steps with decreasing size of the adsorbate  $ML_z$ . Siimon and Aarik ⁴³² and Puurunen ^{237,1128} developed, in-

Siimon and Aarik⁴³² and Puurunen^{237,1128} developed, independently of each other, basically the same model, *Model III*, for calculating the maximum GPC from the size and number of the adsorbed ligands L [Fig. 13(c)]. A theoretical maximum amount of ligands adsorbed is calculated assuming a close-packed monolayer of the ligands. This theoretical



FIG. 14. Variation of the GPC with the ALD processing temperature in the ALD window: (a) the GPC decreases with temperature, (b) the GPC is constant with temperature (possible with different values at different temperature ranges, as shown by the dashed line), (c) the GPC increases with temperature, and (d) the GPC first increases and then decreases with temperature.

arrangement corresponds to a "physisorbed monolayer" of the ligands.  1172  A theoretical maximum is calculated for the amount of metal M adsorbed by dividing the amount of ligands adsorbed by the L/M ratio in the  $ML_z$  adsorbate. As should be expected, the GPC increases with decreasing size of the adsorbate.  1128 

Because of steric hindrance, the GPC in ALD from compound reactants should be considerably less than a monolayer of the ALD-grown material, as indicated by all three models. For example, for the  ${\rm TiCl_4}$  reaction with one surface  $\parallel$ –OH group to give a surface  $\parallel$ –TiCl $_3$  species, the maximum GPC predicted with the models, in monolayers of  ${\rm TiO_2}$ , is about 28% (Model I,  133,468  calculated for the TiCl $_4$  molecule), 19% [Model II (Ref. 1127)], and 33% [Model III (Ref. 237)].  1173  Experimental GPC values vary within about 15%–30% of a monolayer, depending on the growth temperature.  237 

#### F. Effect of temperature on the GPC

The GPC in ALD typically varies with temperature. The temperature dependency of the GPC can come at least from the effect of temperature on the number and type of reactive sites present on the surface before and after the chemisorption, and from the effect of temperature on the preferred reaction mechanisms. 1174

Four characteristic ways the GPC may depend on temperature in the *ALD window*—the temperature range where an ALD process fulfills the requirement of self-terminating reactions  1175 —are illustrated in Fig. 14. (i) The GPC may decrease with temperature [panel (a)]. This occurs typically if the number of reactive surface sites affects the amount and/or the type of chemisorbed species and if increasing the temperature decreases the number of reactive surface sites.  130,216,548,554  Increasing the reaction temperature may also change the inherent reaction mechanisms, for example, so that the L/M ratio in the chemisorbed  $ML_z$  species changes.  418,419,421,818  (ii) The GPC may stay constant with temperature [panel (b)]. This can occur, for example, if steric



FIG. 15. Dependency of the GPC on the number of reaction cycles in different types of ALD processes (Ref. 247): (a) linear growth, (b) substrate-enhanced growth, (c) substrate-inhibited growth of Type 1, and (d) substrate-inhibited growth of Type 2.

hindrance causes saturation and the number of reactive sites does not affect the amount of adsorbed species. 237,530,815 Sometimes, the GPC settles to different constant values at different temperatures.⁸⁹⁸ (iii) The GPC can also increase with increasing temperature [panel (c)]. At higher temperatures, some energy barriers may be overcome and reactions occur, which do not occur at lower temperatures. 481,1071 (iv) The GPC can also increase first and then decrease with temperature [panel (d)]; first, some reactions are activated with increasing temperature, after which the decreasing number of reactive sites starts decreasing the GPC. 199,243 However, this can also be an artifact caused by incomplete reactions: the GPC has been measured for a constant reactant exposure as a function of temperature, and at lower temperatures with lower reaction rates [Eq. (7)] and slower mass transport, the reactions have not been completed [see, e.g., Fig. 8(e)]. 422

#### G. Effect of the number of cycles on the GPC

The ALD process modifies the chemical composition of the surface through material deposition. The first ALD reaction cycle occurs on the surface of the original substrate material, the following cycles are usually on a surface with both the original substrate and the ALD-grown material exposed, and, after several ALD reaction cycles—the exact number depending on the GPC and the growth mode 246,247,1140—finally, on a surface with only the ALD-grown material exposed. If the chemical composition of the surface changes, the GPC should be expected to vary with the number of cycles.

ALD processes can be classified into four groups on the basis of how the GPC varies with the number of ALD reaction cycles,  247  as shown in Fig. 15. In all four cases, the GPC is expected to settle to a constant value after a sufficient number of ALD reaction cycles. In *linear growth*, the GPC is constant over the cycles, from the first cycle on. The growth is always in the *steady regime*. Linear growth  527,528,530  can occur, for example, if the number of reactive sites on the surface does not change with the cycle number or if the L/M ratio in the adsorbed  $ML_z$  species is constant and steric hindrance of the ligands of the adsorbed species causes saturation. In *substrate-enhanced growth*, the GPC is higher in the

FIG. 16. Schematic illustration with increasing number of reaction cycles n of selected growth modes possible in ALD: (a) two-dimensional growth, (b) island growth and, (c) random deposition.

beginning of the growth than at the steady regime. The initial, nonconstant growth is referred to as being in a *transient regime*. Substrate-enhanced growth 110,118,132,516,548,1008 can occur, for example, if the number of reactive sites on the substrate is higher than on the ALD-grown material. In *substrate-inhibited growth of Type 1* and *Type 2*, 247 the GPC is lower in the beginning of the growth than at the steady regime. In Type 2 substrate-inhibited growth, the GPC additionally goes through a maximum before settling to the constant value. Substrate-inhibited growth is caused by a lower number of reactive sites on the substrate than on the ALD-grown material. 123,223,224,231,292,488,984,992,1176,1177 In substrate-inhibited growth of Type 2, 488,499-501,984,992,1151,1178 island growth further seems to occur.

#### H. Growth mode

The way the material gets arranged on the surface during ALD growth is defined by the *growth mode*. For the growth of a full monolayer per cycle, two-dimensional growth may be expected because multilayer adsorption should be excluded by definition in ALD. For the growth of less than a monolayer per cycle, in turn, other growth modes can prevail.

Several growth modes are possible in ALD. In twodimensional growth (layer-by-layer growth, Frank-van der Merwe growth), the deposited material settles always in the lowest unfilled material layer and one monolayer of the ALD-grown material covers the substrate completely. 246,1180 While sometimes achieved, 1077,1181 this growth mode is not universally valid. In island growth (Volmer-Weber growth), new material units are preferentially deposited the ALD-grown material. 246,247,1180 Island on growth has been concluded for several ALD processes.  132,134,154,214,246,247,488,771,1182  A model has recently been derived to describe island growth in ALD.²⁴⁷ Random deposition is a statistical growth mode, where the new material units are deposited with an equal probability on all surface sites. 1140 Because of the self-terminating reactions, random deposition results in smoother layers in ALD than in continuous deposition processes ("shower model" versus "rain model" of random deposition). 992,1140 Random deposition has been concluded at least for two ALD processes. 292,544 Figure 16 compares schematically twodimensional growth, island growth, and random deposition.

The growth mode may also change during growth. For example, the growth mode may be two-dimensional for the deposition of the first monolayer and island growth or ran-

dom deposition thereafter (Stranski–Krastanov growth). ¹¹⁸⁰ Vice versa, the growth mode may be first island growth, and when the islands have coalesced to form a continuous layer, two-dimensional growth may occur. ¹⁰⁷⁷

Assigning a relation between the way the GPC varies with the number of cycles and the growth mode would be attractive. The experimental investigations published so far do not support the existence of such a relation, however, except for the substrate-inhibited growth of Type 2, which seems to correspond to an island growth mode. A corresponded to two-dimensional growth mode as well as random deposition. Substrate-enhanced growth of Type 1 has corresponded to island growth mode and random deposition.

### IV. SURFACE CHEMISTRY OF THE AIMe₃/H₂O PROCESS

This section reviews the current status of understanding the surface chemistry of the AlMe₃/H₂O process. This process is considered ideal for ALD: the reactants are highly reactive, but at the same time thermally stable, and the gaseous reaction product, methane, does not interfere with the growth. The process gives smooth, conformal films on highly complex structures. Section IV A introduces the general characteristics of the process. Self-termination of the reactions is verified in Sec. IV B. The chemisorption mechanisms identified to occur during the AlMe₃ and H₂O reactions are summarized in Sec. IV C. Section IV D discusses the decreasing effect of increasing growth temperature on the GPC and Sec. IV E discusses steric hindrance as the factor causing saturation. The effect of the surface OH group concentration on the GPC is explored in Sec. IV F. Section IV G summarizes the (little) experimental information available on the kinetics of the reactions, and Secs. IV H and IV I summarize the way the GPC varies with the number of reaction cycles and the growth mode, respectively. Finally, Sec. IV J summarizes the findings.

#### A. General characteristics

The AlMe₃/ $H_2O$  process follows the overall stoichiometry presented in Eq. (13) (Me= $CH_3$ =methyl),

$$Al(CH_3)_3(g) + \frac{3}{2}H_2O(g) \to \frac{1}{2}Al_2O_3(s) + 3CH_4(g). \eqno(13)$$

The aluminum and oxygen retain their oxidation states, and the mass balance of Eq. (12) is valid. For the AlMe₃ reaction, the mass balance converts to Eq. (14),

$$\Delta c_{\text{Me}} = 3\Delta c_{\text{Al}} - \Delta c_{(\text{O})\text{H}}.\tag{14}$$

The chemistry of the  $AlMe_3/H_2O$  process is often described by the two successive "half reactions" presented in the Eqs. (15) and (16), ^{192,196}

$$\|AI - OH + Al(CH_3)_3(g) \rightarrow \|AI - O - Al(CH_3)_2 + CH_4(g),$$
 (15)



FIG. 17. Self-termination in the AlMe $_3$ /H $_2$ O process (TMA=AlMe $_3$ ) at 300 °C in the steady-growth regime: effect on the measured GPC (labeled "deposition per cycle") of (a) the AlMe $_3$  pulse and the following purge times (Steps 1 and 2) and (b) the H $_2$ O pulse and the following purge times (Steps 3 and 4). (Reprinted from Sneh *et al.* (Ref. 222) with permission. Copyright 2002, Elsevier.)

$$\|AI - CH_3 + H_2O(g) \rightarrow \|AI - OH + CH_4(g).$$
 (16)

That the surface switches from methyl-terminated to hydroxyl-terminated and vice versa is well known and illustrated, for example, by infrared measurements. The AlMe₃/H₂O process is more complex than revealed by Eqs. (15) and (16), however, as discussed in the following sections.

#### B. Verification of self-termination

The AlMe $_3$ /H $_2$ O process is self-terminating with respect to time. For sufficiently long reactant pulses and purges, lengthening the AlMe $_3$  and H $_2$ O pulses and the purges in between (Steps 1–4) does not affect the amount of species adsorbed, ^{222,227} as illustrated in Fig. 17. When the AlMe $_3$  and H $_2$ O exposures (Steps 1 and 3) are sufficiently long, the reactions go to completion and the GPC does not increase with increasing exposure time. The purges between the AlMe $_3$  and H $_2$ O reactions (Steps 2 and 4) must also be sufficiently long. If the purges are too short, the GPC increases because AlMe $_3$  and H $_2$ O are simultaneously present in the gas phase, enabling continuous CVD-type deposition. ^{222,227}

The AlMe₃/H₂O process seems self-terminating also with respect to the AlMe₃ pressure. In the experiments of Kumagai *et al.*²⁶⁷ for the AlMe₃/H₂O₂ ALD process (oxygen source is  $\rm H_2O_2$  instead of  $\rm H_2O$ ), the GPC was independent of the reactant pressures, as shown in Fig. 18. The independent



FIG. 18. Self-terminating reactions in the AlMe₃/H₂O₂ ALD process (TMA=AlMe₃) in the steady-growth regime: effect of reactant pressures to the GPC (labeled "growth rate") at 340 °C (Ref. 267). [Reprinted from Kumagai *et al.* (Ref. 267) with permission. Copyright 1994, Institute of Pure and Applied Physics.]

dence of the GPC from the AlMe₃ pressure is consistent with irreversible, saturating reaction of AlMe₃ on aluminum oxide.

Whether or not the  $\rm H_2O$  pressure affects the amount of  $\rm H_2O$  chemisorbed on aluminum oxide is not entirely clear. In some investigations,  211,212,234  the effect of reactant dose (exposure time multiplied with reactant partial pressure) on the  $\rm AlMe_3/H_2O$  process has been suggested. A systematic study of the effect of  $\rm H_2O$  exposure time and pressure is missing, however.

#### C. Identified chemisorption mechanisms

Several reactions have both been experimentally and theoretically identified to occur when gaseous AlMe₃ interacts with oxide supports. AlMe₃ reacts through ligand exchange with the hydrogen atoms in surface OH groups, producing O–Al bonds and releasing methane [Eq. (15)]. ^{190,192,193,196,1088,1163,1164,1183–1186} Other gaseous reaction products, in addition to methane, have not been found. ^{211,217,227,243,443} The AlMe₃ molecule can also react through ligand exchange simultaneously with two OH groups, in the reaction described by Eq. (17), ^{196,209,216,217}

$$2\|O-H+Al(CH_3)_3(g)\to (\|O-)_2AlCH_3+2CH_4(g). \eqno(17)$$

Practically all OH groups on silica and alumina react with AlMe₃ through ligand exchange, at least at temperatures between 80 and  $300 \,^{\circ}\text{C}$ . In addition to the ligand exchange reaction [Eqs. (15) and (17)], AlMe₃ reacts dissociatively with the oxygen bridges of silica [Eq. (18)],  197,209,1163,1164,1183,1187,1188 



FIG. 19. GPC in the AlMe₃/H₂O process to grow amorphous aluminum oxide on flat substrates in the steady-growth regime (Refs. 228, 199, 212, 222, 229, 179, 234, and 246). The GPC is expressed as the amount of aluminum atoms attached per cycle per square nanometer of surface  $\Delta c_{\rm Al}$  (nm⁻²), which converts to the thickness increment per cycle  $\Delta h$  (nm) through  $\Delta c_{\rm Al} = \rho N_A M^{-1} \Delta h$  ( $\rho = 3.5~{\rm g~cm^{-3}}$ ) (Refs. 237 and 1128). A line was fitted to the data on flat substrates, except the points of Kuse *et al.*, which probably represent unsaturated conditions. Confidence limit of one standard deviation is shown. Data points obtained on high-surface-area alumina substrates are shown for reference (Ref. 216). The results (Ref. 216) were calculated through the mass balance [Eq. (23) for AlMe₃ reaction at 150 °C with alumina heat treated at the temperature indicated in the *x* axis. The results for AlMe₃ reaction at 150 °C can be used for the comparison, because increasing the temperature to 300 °C does not affect the amount of adsorbed species (Fig. 20).

$$\|Si - O\| + Al(CH_3)_3(g) \rightarrow \|Si - CH_3 + \|O - Al(CH_3)_2.$$
(18)

Dissociation to several oxygen bridges bonded to the same silicon atom leads also to surface species of type  $\|Si(Me)_2$  and  $\|Si(Me)_3.^{197,209}$  AlMe₃ seems also to react dissociatively with coordinatively unsaturated (c.u.s.) Al–O pairs of alumina [Eq. (19)],  196,216,1096 

$$\|AI - O\| + AI(CH_3)_3(g) \rightarrow \|AI - CH_3 + \|O - AI(CH_3)_2.$$
(19)

Similarly as for AlMe₃ reaction on aluminum oxide, ligand-exchange reaction and dissociation has been concluded to occur in the  $H_2O$  reaction with AlMe₃-modified aluminum oxide [Eqs. (20) and (21)],  192,211,215,217,220 

$$\|-CH_3 + H_2O(g) \rightarrow \|-OH + CH_4(g),$$
 (20)

$$\|-O - \| + H_2O(g) \rightarrow 2\|-OH$$
. (21)

The reversed reaction of dissociation, dehydroxylation, also occurs, through which the surface OH concentration decreases with increasing temperatures [Eq. (22)], 211,215,217,220

$$2\|-OH \to \|-O-\|+H_2O(g). \tag{22}$$

#### D. Effect of temperature on the GPC

The GPC in the steady regime of the AlMe₃/H₂O process decreases with increasing processing temperature, as shown in Fig. 19 that summarizes the results by several groups. ^{179,199,212,216,222,228,229,234} This figure does not include results beyond 300 °C, the temperature at which AlMe₃ starts to decompose thermally. ^{216,1189} The different investigations share the decreasing trend and agree quantitatively within an experimental error of about 10%. One investigations, ²³⁴ however, shows a significantly lower GPC.



FIG. 20. Effect of the AlMe₃ reaction temperature on the amount of aluminum adsorbed in the AlMe₃ reaction  $\Delta c_{\rm Al}$  (nm⁻²) on alumina heat treated at 560 °C, according to Puurunen *et al.* (Ref. 216). The confidence limits represent one standard deviation.

It did not confirm the saturation of the surface reactions through sufficiently long pulse and purge times, however, and the process probably operated at unsaturated conditions.

Change in the inherent reaction mechanisms [Eqs. (15) and (17)–(19)] with temperature might account for the decreasing GPC. To investigate this possibility, one needs to separate the effect of temperature on the reaction mechanisms from its effect on the number of reactive sites. Figure 20 shows the results obtained for the AlMe3 reaction on high-surface-area alumina, which had been stabilized by a preceding heat treatment at 560 °C to have a surface OH group concentration  $c_{\rm (O)H}$  of 2.0 nm⁻². ^{216,262} The amount of aluminum atoms adsorbed  $\Delta c_{\rm Al}$  (nm⁻²) could be calculated through the mass balance, Eq. (23) [rearranged from Eq. (14)], ^{216,262} because the amount of methyl groups adsorbed  $\Delta c_{\rm Me}$  (nm⁻²) was measured and the amount of OH groups reacted  $\Delta c_{\rm (O)H}$  (nm⁻²) could be approximated with the surface OH group concentration before the reaction  $c_{\rm (O)H}$  (nm⁻²), ^{209,216}

$$\Delta c_{\rm Al} = \frac{1}{3} (\Delta c_{\rm Me} + c_{\rm (O)H}).$$
 (23)

As seen from Fig. 20, the reaction temperature has no effect on the amount of aluminum atoms adsorbed in the AlMe₃ reaction with alumina. An effect of the reaction temperature on the preferred reaction mechanisms therefore cannot explain the decreasing GPC.

The change in the number of reactive surface groups with temperature is another option to account for the decreasing GPC. Increasing the substrate heat-treatment temperature indeed decreases the amount of aluminum  $\Delta c_{\rm Al}$  chemisorbed in the AlMe3 reaction on alumina^{216,262} and silica, ^{209,210,262} as shown in Fig. 21. Increasing the heat-treatment temperature concurrently decreases the surface OH group concentration, ^{209,216,1190} as also indicated in the figure. Moreover, the quantitative values and temperature dependency of the amount of aluminum  $\Delta c_{\rm Al}$  chemisorbed on alumina [Fig. 21(a)] and the GPC  $\Delta c_{\rm Al}$  in the AlMe3/H2O process (Fig. 19) agree. ¹¹⁹¹ The AlMe3 reaction on alumina subjected to a controlled heat-treatment therefore seems to represent the AlMe3 reaction in the steady regime of the AlMe3/H2O process. This representativeness is as expected, because in both cases AlMe3 reacts with an Al2O3 surface.



FIG. 21. Effect of the substrate heat-treatment temperature on the amount of aluminum adsorbed  $\Delta c_{\rm Al}$  (nm⁻²) in the AlMe₃ reaction (a) on alumina at 150 °C ( $\bigcirc$  Refs. 216) and (b) on silica at 150 or 250 °C ( $\square$  Refs. 209 and 210). The OH surface concentrations (nm⁻²) are shown as crosses for reference (alumina:  $\times$  Ref. 216, silica:  $\times$  Ref. 209, and + Ref. 1190). The confidence limits represent one standard deviation.

Consequently, a decrease in the surface OH group concentration with increasing temperature seems to explain the decreasing GPC.

#### E. Factor causing saturation

Steric hindrance by methyl groups appears to cause the termination of the AlMe₃ reaction by the saturation of the surface with adsorbed species. ^{209,216,221,237,291,292,1096} This conclusion originates from the fact that the methyl group content settles to approximately a constant value after saturation has been attained, ^{209,210,216,291,292,1192} as illustrated in Fig. 22(b), where the methyl group content after the AlMe₃ reaction with high-surface-area alumina and silica is plotted as a function of the surface OH group concentration. Although the surface OH group concentration varies markedly (1–9 nm⁻²), the amount of methyl groups adsorbed is approximately constant (5–6 nm⁻²).

Of the three models developed for analyzing steric hindrance in self-terminating reactions in ALD (Sec. III E), only Model III has been applied for the AlMe₃ reaction. Addled II has never been applied and Model II seems not to be applicable. The maximum theoretical amount of methyl groups adsorbed according to Model III is 7.2 nm⁻², 209,237,1128 calculated from the van der Waals radius of methyl groups of 0.20 nm. The observed amount of methyl groups adsorbed is about 70%–80% of this theoretical maximum, corresponding to a ligand coverage  $\theta$  of 0.7–0.8. This ligand coverage is consistent with the conclusion that the saturation of the AlMe₃ reaction is caused by the steric hindrance of methyl groups: the chemisorption of AlMe₃ proceeds as long as sufficiently large areas not shielded by the methyl ligands remain on the surface. On the surface.

#### F. Effect of the surface OH group concentration

The surface concentration of OH groups affects the number and type of species adsorbed in the AlMe $_3$  reaction. The amount of aluminum atoms  $\Delta c_{\rm Al}$  adsorbed in the AlMe $_3$  reaction increases, the amount of methyl groups adsorbed  $\Delta c_{\rm Me}$  stays about constant, and the average Me/Al ratio  $(\Delta c_{\rm Me}/\Delta c_{\rm Al})$  in the adsorbed surface species decreases with increasing surface OH group concentration  $c_{\rm (O)H}$ , as shown



FIG. 22. Effect of the surface OH group concentration  $c_{\rm (O)H}$  on the amount of material chemisorbed in the AlMe $_3$  reaction on alumina and silica substrates (Ref. 262): (a) amount of aluminum atoms adsorbed in the reaction  $\Delta c_{\rm Al}$  (nm $^{-2}$ ), (b) methyl group concentration after the reaction  $\Delta c_{\rm Me}$  (nm $^{-2}$ ), and (c) the average methyl/aluminum (Me/Al) ratio in the adsorbed species ( $\Delta c_{\rm Me}/\Delta c_{\rm Al}$ ). Data from Ref. 216 for alumina and Refs. 209 and 210 for silica, for AlMe $_3$  reaction at the indicated temperatures. The OH surface concentrations are from Ref. 216 for alumina and Refs. 209 and 1190 for silica. In panels (a) and (b), the lines have been fitted to the data. The confidence limits represent one standard deviation. In panel (b), the dashed line indicates the maximum theoretical methyl group concentration of 7.2 nm $^{-2}$  according to Model III (Refs. 237 and 1128).

in Fig. 22.²⁶² The amount of aluminum adsorbed  $\Delta c_{\rm Al}$  (nm⁻²) on oxide substrates (alumina, silica) increases linearly with the OH surface concentration  $c_{\rm (O)H}$  (nm⁻²),

$$\Delta c_{\text{Al}} = a + b c_{\text{(O)H}} \approx 1.68 + 0.37 c_{\text{(O)H}}.$$
 (24)

Even in the absence of OH groups, aluminum is deposited (a>0), a fact consistent with dissociative (or associative) reactions of AlMe₃ (Sec. IV C). In dissociation or association, the Me/Al ratio is three, and the a (nm⁻²) in Eq. (24) expectedly corresponds to one third of the number of methyl groups adsorbed at low surface OH group concentrations [Fig. 22(b)]. In contrast to what would be expected on the



FIG. 23. Illustration of the physical situation corresponding to Eq. (24): number of aluminum atoms  $\Delta c_{\rm Al}$  and methyl groups  $\Delta c_{\rm Me}$  adsorbed in the self-terminating AlMe₃ reaction on surfaces with different OH group concentrations  $c_{\rm (O)H}$ , resulting in average Me/Al ratios of (a) 3, (b) 2, and (c) 1.5. The squares represent an area of 3 nm²; the methyl groups are drawn in scale  $(r_{\rm Me}{=}0.2~{\rm nm}^{-2})$ . The small dependency that the number of adsorbed methyl groups has on the surface OH group concentration [Fig. 22(b)] has been neglected for simplicity.

basis of Eq. (15), there is no one-to-one correspondence between  $\Delta c_{\rm Al}$  and  $c_{\rm (O)H}$  ( $b \neq 1$ ). Instead, almost three ( $b^{-1}$ ) OH groups are needed for attaching one additional aluminum atom. This number is consistent with the fact that steric hindrance causes the amount of adsorbed methyl groups  $\Delta c_{\rm Me}$  to be about constant (Sec. IV E): three OH groups are needed to release the three methyl groups of one AlMe₃ molecule as methane, and thereby to attach one additional aluminum atom to the surface.

The values of the parameters a and b in Eq. (24) are consistent with the reaction scheme  192,195,196,209,216,237,1088,1164  that AlMe $_3$  reacts through ligand exchange with practically all OH groups, releasing methane, and additionally through dissociation or association, until steric hindrance by adsorbed methyl groups causes the reaction to terminate. The physical significance of Eq. (24) is further illustrated in Fig. 23 for the situations after the completion of the self-terminating AlMe $_3$  reaction with oxide substrates with different surface OH group concentrations. The more OH groups there are on the substrate, the more aluminum atoms adsorb, whereas the number of adsorbed methyl groups stays about constant. As shown in Fig. 24, the GPC calculated with Eq. (24) [assuming that  $c_{\rm (O)H}$  decreases linearly with temperature from 9 nm $^{-2}$  at 200 °C to 7 nm $^{-2}$  at 300 °C (Ref. 1195)] agrees with the experimental values.



FIG. 24. The correlation of Eq. (24), marked as a solid line, is in line with the GPC in the AlMe₃/H₂O process (data points as in Fig. 19). The GPC values for the correlation were calculated assuming that  $c_{\rm (O)H}$  decreases linearly with temperature from 9 nm⁻² at 200 °C to 7 nm⁻² at 300 °C (Ref. 1195).

#### G. Kinetics of the reactions

The kinetics of the AlMe₃ and H₂O reactions during the AlMe₃/H₂O process have not been thoroughly investigated. Some qualitative and quantitative information on the kinetics exist or can be obtained by critically investigating published results.

Recent in situ mass spectrometry (MS) and quartz crystal microbalance (QCM) investigations ^{211,217} contain qualitative kinetic information of the AlMe₃/H₂O process. These investigations were carried out (mostly) under conditions where the methane-producing ligand-exchange reactions of AlMe₃ and H₂O reactions have been completed. 211,215,217,220 However, as described below, the reactions have not yet completely self-terminated. The main results obtained in these investigations by the MS technique have been collected in Figs. 25 and 26. Results only up to a processing temperature of 300 °C are shown because of the decomposition of AlMe₃ at higher temperatures. ^{216,1189} Reinterpreting these results, to follow, indicates that the ligand-exchange reactions are completed faster than the dissociation in the selfterminating reactions of both AlMe₃ and H₂O during AlMe₃/H₂O ALD.

Extracting qualitative kinetic information from the results of the H₂O reaction needs some reinterpretation. It is possible to investigate the H₂O reaction in AlMe₃/H₂O ALD under conditions where the ligand-exchange reaction of water has terminated, but other reactions have not. In Ref. 211, Juppo et al. investigated the AlMe₃/H₂O process under such conditions. Although in Ref. 211 they did not conclude the water reaction to be incomplete, later it was concluded to have been the case. 215,217,220 The fact that the amount of hydroxyl groups increased with increasing water dose [Fig. 25(b)] reveals the incomplete H₂O reaction. Because at the same time the methane production had stopped,²¹¹ qualitative kinetic information exist for the water reaction: the reaction has been investigated under conditions where the methaneproducing ligand-exchange reaction of water [Eq. (20)] has been completed, but the dissociation of water [Eq. (21)], or perhaps association, has not. The ligand-exchange reaction of water is evidently completed faster than the other reac-

Extracting qualitative kinetic information from the results of the AlMe₃ reaction needs additional reinterpretation. It seems to be possible to investigate the AlMe₃/H₂O process also under conditions where the ligand-exchange reaction of AlMe₃ has terminated, but other reactions have not. With increasing temperature, the GPC increased in the experiments of Juppo et al. [Fig. 25(a)], 211 whereas in most investigations the GPC has decreased (Fig. 19). The increase in GPC²¹¹ came mostly from the fact that more material was deposited during the AlMe₃ reaction, and the amount of methyl groups present on the surface after the AlMe₃ reaction increased with increasing processing temperature [Fig. 25(c)]. At saturation, however, the methyl group concentration should be approximately constant (Sec. IV E). For unsaturated reactions, increasing the reaction temperature increases the amount of material adsorbed, because reactions [Eq. (7)] as well as mass transport get faster. Saturation was



FIG. 25. Summary of the in situ MS results for the AlMe₃/H₂O process of Juppo et al. (Ref. 211) (open symbols, left axis) and Rahtu et al. (Ref. 217) (black squares, right axis): (a) total amount of methane produced during a reaction cycle divided by three, proportional to the GPC  $\Delta c_{Al}$ , (b) the amount of methane produced during the AlMe3 reaction, proportional to the surface OH group concentration before the AlMe₃ reaction  $c_{\rm (O)H}$ , (c) the amount of methane produced during the H2O reaction, proportional to the methyl group concentration after the AlMe₃ reaction  $\Delta c_{\text{Me}}$ , and (d) Me/Al ratio on the surface after the AlMe $_3$  reaction, obtained by dividing  $\Delta c_{\mathrm{Me}}$ [panel (c)] with  $\Delta c_{Al}$  [panel (a)]. The results of Juppo *et al.* obtained for the shortest water pulses are not shown, because in them, the methaneproducing reactions had not saturated (Ref. 211). All results are in arbitrary units (a.u.). Although the exact dependency is not known, for plotting the results in the same graphs, 25 (unnormalized) units of Juppo et al. (left axis) were assumed to correspond to 1.5 (normalized) units of Rahtu et al. (right axis).



FIG. 26. Effect of AlMe₃ and  $H_2O$  pulse times to the average Me/Al ratio after AlMe₃ reaction with alumina, as reported by Rahtu *et al.* (Ref. 217). The AlMe₃ and  $H_2O$  reactions were saturated after a pulse time of about 3 s.

not confirmed in the experiments of Ref. 211, except that the methane production from ligand-exchange reactions had been completed, ²¹¹ and it seems that the AlMe₃ reaction had not fully saturated. Consequently, qualitative kinetic information exist also for the AlMe₃ reaction: the reaction has been investigated under conditions where the ligand-exchange reaction of AlMe₃ [Eqs. (15) and (17)] has been completed, but the dissociation [Eq. (19)] has not. The ligand-exchange reaction of AlMe₃ is therefore evidently completed faster than dissociation.

The investigations of Rahtu *et al.*, ²¹⁷ George and co-workers, ^{195,196} and Elam *et al.* ²²⁷ support the interpretation made here that the ligand-exchange reaction of AlMe3 is completed faster than dissociation. According to the results of Rahtu et al., 217 for unsaturated reaction, the average Me/Al ratio of the adsorbed species is lower than when the AlMe₃ reaction is allowed to go to completion (Fig. 26). Therefore, ligand-exchange reactions, which give a lower Me/Al ratio, seem to occur earlier than dissociation. George and co-workers 195,196 showed by infrared analysis that, in the beginning of the AlMe₃ reaction, the O-H features decrease immediately in intensity, whereas the C-H features increase only after a delay, which is also in line with the current interpretation. Elam et al. 227 also found qualitative evidence by in situ MS analysis for two kinetic regimes in the AlMe₃ reaction, although they did not comment on the types of reactions occurring.

Quantitative kinetic information exist for AlMe₃/H₂O process for narrow temperature and pressure ranges. Soto and Tysoe ¹⁹² investigated the process on flat substrates in ultrahigh vacuum (UHV) at room temperature. They modeled the AlMe₃/H₂O process with three reactions: ¹⁹² (i) the ligand-exchange reaction of AlMe₃ in the first half reaction with one surface OH group to release one methane molecule [reaction (15)], (ii) the ligand-exchange reaction of water in the second half reaction with one methyl group of a surface ||AlMe₂ species, and (iii) the ligandexchange reaction of water in the second half reaction with the second methyl group, now in a ||Al(Me)OH species. The kinetics were described similarly as in Sec. III B assuming irreversible reactions. According to Soto and Tysoe, ¹⁹² the probability that the reactions (i), (ii), or (iii) occur when AlMe₃ or H₂O molecules hit the surface at room temperature are 0.01, 0.25, and 0.009, respectively. Dillon et al. 196 investigated the AlMe₃/H₂O process on high-surface-area substrates at 227 °C and 0.01 Torr. They modeled the



FIG. 27. GPC in the AlMe $_3/H_2O$  process at 300 °C as a function of the number of ALD reaction cycles when a chemical SiO $_2$  rich in OH groups and a hydrogen-terminated silicon are used as substrates. Data from Zhao *et al.* (Ref. 1176).

AlMe₃/H₂O process with reactions (15) and (16), assuming irreversible adsorption as in Sec. III B. Dillon *et al.*¹⁹⁶ extracted rate constants  $k_a$  for AlMe₃ reaction of 0.0076 s⁻¹ and H₂O reaction of 0.029 s⁻¹, where the constants are given for 227 °C and 0.01 Torr.

#### H. Effect of the number of cycles on the GPC

The GPC in the AlMe₃/H₂O process depends on the number of ALD reaction cycles carried out and on the substrate used. Figure 27 shows how the GPC depends on the number of cycles. ^{246,1176} On silicon dioxide as substrate, the GPC increases with the number of cycles, and the process seems to follow Type 1 substrate-inhibited growth [Fig. 15(c)]. On hydrogen-terminated silicon as substrate, the GPC is low in the beginning of the growth, increases, goes through a maximum, and then decreases to a constant value. ¹¹⁷⁶ Thus, the process follows Type 2 substrate-inhibited growth [Fig. 15(d)].

The increase in GPC with the number of cycles most likely originates from the fact that the number of reactive surface sites increases with the number of cycles. For the AlMe $_3$ /H $_2$ O process at 300 °C on the silicon dioxide substrate, the surface OH group concentration  $c_{(O)H}$  is expected to start from about 3–5 nm $^{-2}$  (Refs. 1190 and 1196) and to increase with deposition to the value characteristic for aluminum oxide, about 7 nm $^{-2}$ . The Si–H bonds on hydrogen-terminated silicon appear not to react with the AlMe $_3$  and H $_2$ O reactants. The characteristic type of the GPC curve is explained by the fact that AlMe $_3$  reacts initially with defect sites on the hydrogen-terminated silicon substrate, after which Al $_2$ O $_3$  islands begin to deposit. The characteristic type of hydrogen-terminated silicon surface to form reactive SiO $_x$  species. The characteristic type of the oxidation of hydrogen-terminated silicon surface to form reactive SiO $_x$  species.

#### I. Growth mode

The growth mode in the AlMe₃/H₂O process has not been systematically investigated. The fact that smooth layers with the expected material density are obtained ^{198,199} indicates that the growth mode is generally probably close to two dimension. On hydrogen-terminated silicon as substrate, however, island growth occurs. ²⁴⁶ Islands of ALD-grown

Al₂O₃ are revealed both through transmission electron microscopy and through growth-mode modeling.²⁴⁶

#### J. Summary

The AlMe₃/H₂O process can be summarized as follows: AlMe₃ reacts through ligand exchange with practically all surface OH groups, releasing methane. AlMe₃ reacts also through dissociation with surface oxygen bridges. The ligand-exchange reaction is completed first, after which the dissociation is completed. The AlMe3 reaction selfterminates because of steric hindrance of the methyl groups, but the surface OH group concentration affects the type and number of adsorbed species. H₂O reacts through ligand exchange with practically all surface methyl groups, releasing methane. H₂O reacts also through dissociation (and perhaps association) with surface oxygen bridges. The ligandexchange reaction is completed first, after which the dissociation is completed. When the H₂O reaction self-terminates, the surface hydroxyl group concentration settles to a value dictated by the temperature and by the chemical nature of the surface.

Although the surface chemistry of the AlMe₃/H₂O process is qualitatively rather well understood, systematic investigations of the reaction kinetics and the growth mode on different substrates could help to further clarify the details of the process. Because the quantitative relationship between the amount of aluminum adsorbed (or the Me/Al ratio after AlMe₃ chemisorption) and the surface OH group concentration is known, the AlMe₃ reaction might be applicable for probing the surface OH group concentration of oxide materials.

#### V. DISCUSSION

Several issues may hamper multidisciplinary surface chemistry investigations of ALD: the ALD literature contains incorrect historical assumptions and nonstandard, problematic terminology. The effect of experimental conditions on the surface chemistry is not clear, ⁶⁷ but one needs to understand this effect to interpret together the results of investigations made at different conditions. To assist multidisciplinary surface chemistry investigations, Sec. V A discusses the problematic historical assumptions, Sec. V B discusses the problematic terminology, and Sec. V C discusses the effect of experimental conditions on the surface chemistry of ALD.

## A. Problematic historical assumptions on the surface chemistry of ALD

At least four common historical assumptions on the surface chemistry of ALD are often cited but are, in practice, seldom valid. The reasons why ALD processes do not follow these assumptions have been discussed in some research articles, ^{237,247,432,468,488,499–501,1119,1127,1128,1140,1151,1178} but only to a limited extent in existing reviews. ^{3,6–66}

#### 1. GPC of a monolayer

Perhaps the oldest of these problematic historical assumptions is GPC of a monolayer. According to this assump-

tion, ALD should lead to the growth of one monolayer of the desired material per ALD reaction cycle. This assumption was made already in the 1960s and 1970s by Soviet and Finnish scientists^{2,79} and has been thereafter widely adopted. 7-9,11,13,17,25-27,31,36,54,62,63,66,318

In real ALD processes, the GPC is typically less than a monolayer.  40,62,63,246,488,984,1178,1197  This is also true for the AlMe₃/H₂O process, which is otherwise known as a rather ideal ALD process (Sec. IV). Recent models 1127,1128 have clearly shown that in self-terminating reactions of compound reactants, "full monolayer growth" is often impossible due to steric reasons: the ligands of the adsorbed species are simply too large.

Although the reasons for assuming a GPC of a monolayer are seldom itemized in ALD publications, I believe the assumption of a GPC of a monolayer originates from a desired two-dimensional growth mode, because a full monolayer growth should in the absence of multilayer adsorption lead to two-dimensional growth. The persistence of this assumption may also be related to confusing the two definitions of a monolayer (Fig. 7): a chemisorbed monolayer and a monolayer of the ALD-grown material. Namely, a chemisorbed monolayer forms by definition in a self-terminating gas—solid reaction. However, this monolayer is unlikely to convert to a monolayer of the ALD-grown material in the second half reaction of an ALD reaction cycle.

#### 2. Constant GPC over cycles

It has been often assumed, 7-9,11,13,17,23,25-27,31,32,36,38,39,51,205,1198 and still often is, 3,55,58,59,63,64,91,1199 that the amount of material deposited in an ALD reaction cycle should remain constant with the number of reaction cycles. Assuming a constant GPC over the cycles is a logical consequence of assuming a GPC of a monolayer. However, as it has been recognized that the GPC can be less than a monolayer (Secs. III E and V A 1), it should be obvious that the GPC may vary with the number of cycles when the composition of the surface changes with the number of cycles. 40,63,64,246,488,984,1178

#### 3. Constant GPC with temperature

Historically it has been assumed, in line with the assumed GPC of a monolayer, that the GPC in ALD should remain constant with temperature. However, as the GPC may be less than a monolayer, and the GPC is a sensitive function of the reactivity of the reactant molecule and the number and type of reactive sites present on the surface, it is natural that the GPC may change with temperature. The AlMe₃/H₃O ALD process is an example of a process where the GPC decreases with temperature due to a decrease in OH surface concentration (Sec. IV F). Correspondingly, the assumption of a constant GPC with temperature seems mostly abandoned. 3,36

#### 4. Two-dimensional growth mode

Two-dimensional growth mode is also an old assumption in ALD,² and is interlinked with the assumed GPC of a monolayer: In the absence of multilayer deposition, a GPC

of a monolayer should result in two-dimensional growth. Historically, the assumption of two-dimensional growth has been rather widely accepted, 9,13,15,19,21,23,26,318 even though island growth (in the beginning of ALD growth) was reported already early. Thereafter, island growth has been observed in many processes. 246,247,292,488,544,558,1077

A special deviation from the expected growth mode is the yet unexplained particle formation in the  $TiCl_4/H_2O$  and  $ZnEt_2/H_2O$  ALD processes: multilayer growth occurs even during one ALD reaction cycle, although the reactions otherwise seem to fulfill the basic ALD requirement of self-termination.  419,421,600,818,1135,1169 

#### B. Problematic terminology

In a multidisciplinary field, clear and correct terminology is required for fluent communication between different researchers and research groups. In the field of ALD, at least two terms have nonstandard or otherwise difficult definitions. Even the name "ALD" itself could need reconsideration.

#### 1. Growth rate (amount/cycle)

The most common way to refer to the amount of material deposited per reaction cycle is the "growth rate (amount/cycle)." 3,25,26,31,32,40,59,63,66,126,927,985,1178 This term is nonstandard, however, as the amount of material deposited per reaction cycle is not a rate.

In general terms, "rate" refers to a change of a property per unit of time. Continuous deposition processes are typically characterized by a constant growth rate [derivative of the growth curve showing the amount of material deposited versus time, giving a growth rate (amount/time)]. Growth rate (amount/cycle) has analogously been adopted as a term for ALD, replacing the time in the unit by the number of cycles. This term is confusing not only because it is of nonstandard nature, but also because ALD processes have rates, too, which are of interest regarding the surface chemistry and the throughput of the process. The instantaneous growth rate in ALD (amount/time) is related to the kinetics of the reactions and is typically nonconstant [see Fig. 10(c); deposition rate=growth rate]. The overall growth rate (amount/time), which gives the amount of material deposited in a time unit and which depends on the specific process and on the reactor construction, in turn, is important considering the throughput of the processes. Calling the amount of material deposited per reaction cycle also a rate (amount/cycle) is confusing, as illustrated also by the problems it has given in modeling substrate-inhibited ALD of Type 2. 992,1178,1200

To avoid misconceptions, using the term growth rate (amount/cycle) to describe the amount of material deposited per cycle should be discouraged. In 1986, Goodman and Pessa⁸ suggested "growth per cycle" as a better term, which has been adopted also in this work [written as growth per cycle (GPC)].

#### 2. Monolayer

Monolayer is a convenient unit for discussing ALD growth: it can be considered as a theoretical maximum for

the GPC, and the GPC when given in monolayers is useful as a statistical quantity in modeling growth modes in ALD. ^{246,247,1140} However, defining the characteristics of a monolayer is not always easy.

The first difficulty is that distinction has often not been made in the ALD literature between a chemisorbed monolayer and a monolayer of the ALD-grown material. Intermixing the two types of monolayers is confusing.

Second, it is not easy to define a monolayer for polycrystalline and amorphous materials. For crystalline materials with a well-defined direction of growth, a suitable crystalline plane of the bulk material may be chosen to represent a monolayer of the ALD-grown material, but how to choose the reference monolayer when the direction of growth is not known? A rather widely used and easy approximation is to calculate in that case the monolayer properties from the density of the bulk material. 199,237,292,333,984,1127,1128,1140,1177 The representativeness of such monolayer can, of course, still be questioned.

Third, in ALD, one deposits a bulk material through reactions that occur on the surface. The deposition characteristics are therefore defined by the surface. Because of the discontinuity caused by the surface, the characteristics of the uppermost material layer are likely to differ from those of the bulk material. Therefore, even for single-crystal materials defining the monolayer through the bulk structure may not be fully meaningful.

The fourth complication is related to defining a monolayer in catalysis-related ALD work. It has been a custom in the field of catalysis to define the monolayer to correspond to the loading when multilayer formation begins, as determined by experimental techniques such as x-ray diffraction or Raman spectroscopy. Defining monolayer this way does not yet require the substrate to be fully covered by the ALD-grown film, however. Consequently, when defined this way, a monolayer contains typically a few metal atoms per square nanometer, ^{246,523,527,819} which is considerably less than typically obtained, for example, by the density method.

Defining a monolayer is not easy, but discussing ALD growth in terms of monolayers is illustrative. To avoid confusions when using this term, it is important always to state how the reference monolayer has been defined.

#### 3. "Atomic layer" deposition

The name "atomic layer deposition" used also in this work to refer to the technique based on sequential self-terminating gas—solid reactions is unfortunately misleading. This name gives an impression of depositing full monolayers of material on top of each other. As such, this name directly leads to the four problematic historical assumptions on ALD related to full monolayer growth, as discussed in Sec. V A. The fact that many different names have been used to refer to the same technique (Table II) testifies to the difficulty of finding a concise but, at the same time, descriptive name for the technique.

## C. Effect of experimental conditions on the surface chemistry

The effect of the experimental conditions on self-terminating gas—solid reactions must be well understood to be able to compare the results of different investigations. To help comparing different investigations and making multidisciplinary studies of ALD, this section discusses the effect of temperature, pressure, type of substrate, saturation/unsaturation of the reactions, and time on ALD reactions. Some challenges in extracting the GPC on high-surface-area substrates are also pointed out.

#### 1. Reaction temperature

Temperature is one of the three parameters, together with the reactant and the surface, that determine the amount and type of species adsorbed in irreversible, saturating chemisorption. Consequently, different experiments should be expected to compare directly only if they have been carried out at the same temperature. (For the effect of substrate heat treatments, see Sec. V C 3.) Temperature-dependent experiments, such as temperature-programmed desorption (TPD), can be useful for elucidating the possible chemisorption reactions. If the results are overinterpreted, however, these experiments can also lead to misleading conclusions. For example, the amount of methyl groups chemisorbed in the AlMe₃ reaction has been suggested to decrease with increasing temperature 40,199 on the basis of TPD experiments made after the AlMe₃ reaction at room temperature. 196 Experiments made for the AlMe₃ reaction at different temperatures have indicated, however, that temperature has almost no effect on the number of methyl groups adsorbed (Fig. 20).

#### 2. Partial pressure of the reactant

For truly saturating, irreversible reactions, partial pressures are not expected to affect the amount of material adsorbed at saturation (Sec. III A). There are ALD reactions, however, where the partial pressure has been suggested to affect the amount of adsorbed species. More systematic studies on the effect of partial pressures would be needed. Sometimes, gaseous reaction products released in the ligand-exchange reaction can readsorb onto the surface. For example, the HCl released in the reaction of metal chlorides with OH groups reabsorbs on the surface and, in this case, the partial pressure of HCl affects the main adsorption process. ^{135,139,143,432,433,1201} Such readsorption is undesired in ALD.

A "pressure gap" has been hypothesized to exist between ALD growth at typical pressures (~0.1–10 kPa) and in UHV. Experimental investigations on the effect of the reactant pressure on reactions occurring in ALD are infrequent and, as of today, no report has indicated that reactions which occur during typical ALD conditions would not occur in UHV. In contrast, for the AlMe₃/H₂O process, similar reactions have been concluded to occur in UHV and at higher pressures. ¹⁹²

#### 3. Substrate

Differences in the surface characteristics of the substrates can cause differences in ALD experiments carried out for the same reactants and reaction temperature(s). The number and type of reactive surface sites may sometimes differ inherently on two substrates, even if the general chemical composition of the substrates are the same. Moreover, differences can be induced for example by thermal or chemical treatments. The reaction chemistry investigation for the AlMe₃ reaction with high-surface-area substrates, discussed in Sec. IV D, provides an example of differences induced by thermal treatments: with increasing heat-treatment temperature, the OH surface concentration on the substrate decreased. The work of Nechiporenko et al., 141 in turn, illustrates the differences induced by chemical treatments: depending on the surface treatment of Ti and Ni substrates, different amounts of chromium chemisorbed in the saturating reaction of chromyl chloride CrO₂Cl₂. The work of Ferguson et al. 214,337 who investigated the SiCl₄/H₂O process on boron nitride particles, illustrates inherent differences. The SiO₂ film deposited only patchlike on the basal planes of the boron nitride particles, whereas the edges of the particles were conformally coated. ^{214,337} Evidently, the basal planes of boron nitride contained fewer sites reactive with the SiCl4 molecule than the edges of the particles. Some substrates may mostly consist of edgeareas, whereas other substrates expose primarily well-defined basal planes, which may lead to a different amount of material deposited. The crystalline face exposed may also affect the adsorption process and the structures formed. 109,318,442,703,986,1202

The ALD process modifies the chemical composition of the surface through material deposition. In reaction mechanism investigations on high-surface-area materials, the number of ALD reaction cycles has been typically below ten. 209,216,291,292,344,418,419,421,434,521,526,527,530,548,352,554,557,818,819,873,1165–1167,1203 The high-surface-area substrates have not yet been fully covered by the ALD-grown film; the initial substrate has still been partly exposed, influencing the growth. On flat substrates, the number of ALD reaction cycles has typically been hundreds to thousands, and the initial substrate has been covered by the ALD-grown material. 211,217,422,425,426,443,487,518,827,844,867,868,1082

When investigating the surface chemistry, one must take into account the type of surface exposed at the particular experimental conditions.

### 4. Saturation/unsaturation of the reactions

Saturation of the surface with adsorbed species by allowing each reaction to go to completion is a prerequisite for material growth by the ALD technique. To compare different experiments in a meaningful way, one must know whether or not the experiments were made at saturated or unsaturated conditions. If it is not known whether or not saturation had occurred, comparing different experiments is often of little value. For example, *in situ* investigations made for the AlMe₃/H₂O process provided important qualitative information of the reaction kinetics, but only after realizing that the investigations were made for unsaturated conditions (Sec.

IV G). In other types of investigations, GPC values both higher and lower than the generally accepted trend (Fig. 19) have been reported because of insufficient purge or evacuation 198 and unsaturated reactions, 200,234 respectively.

#### 5. Time

The time needed for completing the self-terminating reactions can differ in orders of magnitude between different types of experiments. For fast reactions, where mass transport dictates the time required to saturate the surface with adsorbed species, \$\frac{1159}{1204}\$, \$\frac{1205}{1205}\$ the use of high-surface-area substrates lengthens the processing times compared to flat substrates. \$\frac{1206}{1206}\$ The use of UHV compared to higher pressures also lengthens the processing times.

If different reactions would occur in experiments with different reactant exposure times, as has been suggested, 3,211,217 this fact would be expected to be reflected in the value of the GPC, since the GPC is directly related to the reaction chemistry. Quantitative agreement exists between the GPC in the AlMe₃/H₂O process on high-surfacearea substrates and flat substrates (Fig. 19), suggesting the occurrence of similar reactions. The time scale of the experiment seems not to affect the number or type of species adsorbed in irreversible, saturating gas-solid reactions. Nevertheless, slow, nonsaturating reactions, such as thermal decomposition of the ALD reactants or of the adsorbed species, do often manifest themselves at lower temperatures and longer processing times. 197,216,468,475,922,942,944 The insensitivity of the GPC to the process parameters (time, pressure) when the reactions are truly self-terminating is in unison with the excellent upscaling capability of the ALD processes^{3,201,1207} and the fact that close to 100% step coverage can be obtained by ALD in deep-trench structures. ^{205,1204}

# 6. GPC on high-surface-area substrates

To calculate the GPC on high-surface-area materials, the amount of material adsorbed is typically measured by conventional chemical means, giving the mass of metal M per unit mass of sample,  $w_M$  ( $g_M$   $g_{\rm samp}^{-1}$ ). To compare the results with those of other ALD investigations, the results are converted to the amount of metal M atoms adsorbed per unit surface area of the substrate,  $c_M$  (nm⁻²). Typically, the specific surface area of the substrate, S (m²  $g_{\rm subst}^{-1}$ ), is measured for this conversion. However, the relative mass of the original substrate in the samples decreases with increasing amount of material deposited. In addition to the specific surface area of the substrate, the ratio of the total mass of the sample (the substrate and the adsorbed material together)  $m_{\rm samp}$  ( $g_{\rm samp}$ ) to the mass of the substrate  $m_{\rm subst}$  ( $g_{\rm subst}$ ) is needed for calculating  $c_M$ ,

$$c_M = \frac{w_M N_A}{M_M S} \frac{m_{\text{samp}}}{m_{\text{subst}}}.$$
 (25)

In this equation,  $N_A$  is Avogadro's number (mol⁻¹) and  $M_M$  is the molar mass of metal M ( $g_M$  mol⁻¹).

If term  $m_{\text{samp}}/m_{\text{subst}}$  is ignored and the  $c_M$  is calculated from a simplified equation,



FIG. 28. Illustration of the importance of taking into account the mass of the deposited layer when calculating the GPC on high-surface-area substrates. Difference between Eqs. (25) [full symbols] and (26) [open symbols] for a substrate with a specific surface area of 300 m² g⁻¹: (a) Al₂O₃, assuming a constant GPC  $\Delta c_{\rm Al}$ =4 nm⁻²; (b) ZrO₂, assuming  $\Delta c_{\rm Zr}$ =1.2 nm⁻²; and (c) HfO₂, assuming  $\Delta c_{\rm Hf}$ =1.2 nm⁻². n indicates the number of ALD reaction cycles.

$$c_M = \frac{w_M N_A}{M_M S},\tag{26}$$

an error is created that increases with increasing mass of the deposited material. Although the need for this correction was noted already by Kol'tsov and co-workers, ^{79,98} in more recent work, the correction has not always been made. The error may be small for low cycle numbers and light materials, but it increases with increasing number of ALD reaction cycles and molar mass of the ALD-grown material, as illustrated in Fig. 28. The error also increases with increasing specific surface area of the substrate.

# VI. CONCLUSION

This work has given an overview of the basic characteristics of ALD, its history, existing ALD processes, and current status of understanding the surface chemistry of, in particular, the trimethylaluminum/water ALD process. I hope that this review serves its main purpose; that it helps the newcomer to get acquainted with the exciting and challenging field of surface chemistry of ALD, and that it is also a useful guide for the specialist. I also wish that it initiates discussion on the history, assumptions, and terminology of ALD now that we are about to enter the fifth decade of ALD research.

### **ACKNOWLEDGMENTS**

Past and present colleagues are acknowledged for numerous discussions related to ALD, which have contributed to my present-day understanding of ALD and have thereby assisted in writing this review. Thanks go especially to Dr. Suvi Haukka (ASM Microchemistry), Professor Outi Krause (Helsinki University of Technology, HUT), Dr. Marina Lindblad (Fortum), Dr. Marko Tuominen (ASM Microchemistry), and Dr. Annelies Delabie (IMEC). Dr. Jaana Kanervo (HUT) helped to formulate the description of adsorption kinetics for this work. Professor Anatoly Malygin and Mr. Vitality Dorofeev (St. Petersburg State Technological Institute) assisted me to get started exploring the Soviet–Russian branch of ALD, and the IMEC library provided invaluable help in finding many of the cited publications. Dr. Robin Ras

(K.U.Leuven, HUT) and Dr. Jörg Schuhmacher (IMEC) gave useful general comments regarding this manuscript and Dr. Jean-luc Doumont (JL Consulting) gave valuable advice on scientific writing. I gratefully acknowledge a postdoctoral fellowship by IMEC/K.U.Leuven and support from the Academy of Finland (decision 105364) and the National Technology Agency of Finland (Tekes) through the "Nanoramems" project.

¹ A. M. Shevjakov, G. N. Kuznetsova, and V. B. Aleskovskii, in *Chemistry of High-Temperature Materials*, Proceedings of the Second USSR Conference on High-Temperature Chemistry of Oxides, Leningrad, USSR, 26–29 November 1965 (Nauka, Leningrad, USSR, 1967), pp. 149–155, in Russian.

²T. Suntola and J. Antson, U.S. Patent No. 4,058,430 (15 November 1977).

³ M. Ritala and M. Leskelä, in *Handbook of Thin Film Materials*, edited by H. S. Nalwa (Academic, San Diego, 2002), Vol. 1, pp. 103–159.

⁴ Key words used: atomic layer chemical vapor deposition, atomic layer deposition, atomic layer epitaxy, molecular lamination, molecular layer epitaxy, molecular layering, molecular stratification.

⁵International Technology Roadmap for Semiconductors, http://public.itrs.net/

⁶V. B. Aleskovskii, Zh. Prikl. Khim. (S.-Peterburg) **47**, 2145 (1974); [J. Appl. Chem. USSR **47**, 2207 (1974)].

⁷T. Suntola and J. Hyvärinen, Annu. Rev. Mater. Sci. **15**, 177 (1985).

⁸C. H. L. Goodman and M. V. Pessa, J. Appl. Phys. **60**, R65 (1986).

⁹S. M. Bedair et al., J. Cryst. Growth **93**, 182 (1988).

¹⁰S. P. DenBaars and P. D. Dapkus, J. Cryst. Growth 98, 195 (1989).

¹¹T. Suntola, Mater. Sci. Rep. **4**, 261 (1989).

¹²T. Suntola, Acta Polytech. Scand., Electr. Eng. Ser. 64, 242 (1989).

¹³ H. Sitter and W. Faschinger, Advances in Solid State Physics (Festkörper probleme) 30, 219 (1990).

¹⁴T. Pakkanen, in *Atomic Layer Epitaxy*, edited by T. Suntola and M. Simpson (Blackie and Son, London, 1990), pp. 40–62.

¹⁵ M. Leskelä and L. Niinistö, in Atomic Layer Epitaxy, edited by T. Suntola and M. Simpson (Blackie and Son, London, 1990), pp. 1–39.

¹⁶ N. J. Mason, in *Atomic Layer Epitaxy*, edited by T. Suntola and M. Simpson (Blackie and Son, London, 1990), pp. 63–109.

¹⁷ M. A. Tischler and S. M. Bedair, in *Atomic Layer Epitaxy*, edited by T. Suntola and M. Simpson (Blackie and Son, London, 1990), pp. 110–154.

¹⁸T. Yao, in *Atomic Layer Epitaxy*, edited by T. Suntola and M. Simpson (Blackie and Son, London, 1990), pp. 155–180.

¹⁹M. Leskelä, Acta Polytech. Scand., Chem. Technol. Ser. 195, 67 (1990).

²⁰ V. B. Aleskovskii and V. E. Drozd, Acta Polytech. Scand., Chem. Technol. Ser. 195, 155 (1990).

²¹ H. Watanabe, T. Mizutani, and A. Usui, Very High Speed Integrated Circuits: Heterostructure, Semiconductors and Semimetals, Vol. 30, edited by T. Ikoma (Academic, San Diego, 1990), pp. 1–52.

²²S. M. Bedair, Acta Polytech. Scand., Chem. Technol. Ser. 195, 17 (1990)

²³ M. A. Herman, Vacuum **42**, 61 (1991).

²⁴B. W. Gregory and J. L. Stickney, J. Electroanal. Chem. Interfacial Electrochem. 300, 543 (1991).

²⁵ A. Usui and H. Watanabe, Annu. Rev. Mater. Sci. **21**, 185 (1991).

²⁶M. Ozeki, Mater. Sci. Rep. **8**, 97 (1992).

²⁷ A. Usui, Proc. IEEE **80**, 1641 (1992).

²⁸T. Suntola, Thin Solid Films **216**, 84 (1992).

²⁹T. Suntola, Thin Solid Films **225**, 96 (1993).

³⁰L. Niinistö and M. Leskelä, Thin Solid Films **225**, 130 (1993).

³¹T. Suntola, in *Handbook of Crystal Growth*, edited by D. T. J. Hurle (Elsevier, Amsterdam, 1994), Vol. 3, pp. 601–663.

³² S. M. Bedair, J. Vac. Sci. Technol. B **12**, 179 (1994).

³³ S. M. Bedair, 3. Vac. Sci. Technol. B **12**, 175 (1554).

³⁴ J. M. Heitzinger, J. M. White, and J. G. Ekerdt, Surf. Sci. **299**, 892 (1994).

³⁵ E.-L. Lakomaa, Appl. Surf. Sci. **75**, 185 (1994).

³⁶ T. Suntola, in *Handbook of Thin Film Process Technology*, edited by D. A. Glocker and S. I. Shah (IOP, Bristol, United Kingdom, 1995), Vol. 1, pp. B1.5:1–B1.5:17.

pp. B1.5:1–B1.5:17.

37 M. A. Herman, Thin Solid Films **267**, 1 (1995).

- ³⁸ M. Leskelä and M. Ritala, J. Phys. IV **5**, C5/937 (1995).
- ³⁹ L. Niinistö, M. Ritala, and M. Leskelä, Mater. Sci. Eng., B 41, 23 (1996).
- ⁴⁰ S. M. George, A. W. Ott, and J. W. Klaus, J. Phys. Chem. **100**, 13121 (1996).
- ⁴¹T. Suntola, Appl. Surf. Sci. **100/101**, 391 (1996).
- ⁴² A. A. Malygin, A. A. Malkov, and S. D. Dubrovenskii, Stud. Surf. Sci. Catal. **99**, 213 (1996).
- ⁴³ A. A. Malygin, Zh. Prikl. Khim. (S.-Peterburg) **69**, 1585 (1996) [Russ. J. Appl. Chem. **69**, 1419 (1996)].
- ⁴⁴M. A. Herman, Appl. Surf. Sci. **112**, 1 (1997).
- ⁴⁵M. Ritala, Appl. Surf. Sci. **112**, 223 (1997).
- ⁴⁶S. Haukka and T. Suntola, Interface Sci. **75**, 119 (1997).
- ⁴⁷L. Niinistö, Curr. Opin. Solid State Mater. Sci. 3, 147 (1998).
- ⁴⁸ A. A. Malygin, Compos. Interfaces **5**, 561 (1998).
- ⁴⁹L. Niinistö, J. Therm Anal. Calorim. **56**, 7 (1999).
- ⁵⁰ S. Haukka, E.-L. Lakomaa, and T. Suntola, Stud. Surf. Sci. Catal. **120A**, 715 (1999).
- ⁵¹ M. Leskelä and M. Ritala, J. Phys. IV **9**, Pr8/837 (1999).
- ⁵²M. Ritala and M. Leskelä, Nanotechnology **10**, 19 (1999).
- ⁵³ J. L. Stickney, Electroanal. Chem. **21**, 75 (1999).
- ⁵⁴ K. Ikeda, J. Yanase, S. Sugahara, and M. Matsumura, J. Korean Phys. Soc. 39, S447 (2001).
- ⁵⁵ M. Leskelä and M. Ritala, Thin Solid Films **409**, 138 (2002).
- ⁵⁶ A. A. Malygin, Zh. Obshch. Khim. **72**, 617 (2002) [Russ. J. Gen. Chem. 72, 575 (2002)].
- ⁵⁷ A. C. Jones and P. R. Chalker, J. Phys. D **36**, R80 (2003).
- ⁵⁸ M. Leskelä and M. Ritala, J. Solid State Chem. **171**, 170 (2003).
- ⁵⁹ M. Leskelä and M. Ritala, Angew. Chem., Int. Ed. **42**, 5548 (2003).
- ⁶⁰T. Seidel, A. Londergan, J. Winkler, X. Liu, and S. Ramanathan, Solid State Technol. 46, 67 (2003).
- ⁶¹ A. Hand, Semicond. Int. **26**, 46 (2003).
- ⁶²R. M. C. de Almeida and I. J. R. Baumvol, Surf. Sci. Rep. **49**, 1 (2003).
- ⁶³ H. Kim, J. Vac. Sci. Technol. B **21**, 2231 (2003).
- ⁶⁴ M. Ritala, in *High-κ Gate Dielectrics*, edited by M. Houssa (IOP, London, 2004), pp. 17–64.
- ⁶⁵L. Niinistö, J. Päiväsaari, J. Niinistö, M. Putkonen, and M. Nieminen, Phys. Status Solidi A 201, 1443 (2004).
- ⁶⁶ A. C. Jones, H. C. Aspinall, P. R. Chalker, R. J. Potter, K. Kukli, A. Rahtu, M. Ritala, and M. Leskelä, J. Mater. Chem. 14, 3101 (2004).
- ⁶⁷ Different experimental conditions have been hypothesized to lead to different reactions in ALD processes based on the same reactants (see, e.g., Refs. 3, 211, and 217).
- ⁶⁸No universally accepted definition of ALD is currently available. The definition used in this work is built on the recognized practice of ALD and covers most of ALD processes with compounds as well as elements as reactants. Also other distinctively different definitions have been suggested, for example, that the GPC should be a monolayer or the GPC should be constant over the cycles. Most ALD processes do not fulfill these criteria, however.
- ⁶⁹ In addition to "self-terminating" used to refer to ALD reactions in this work, ALD reactions have been referred to being saturating, selflimiting, self-extinguishing, etc.
- ⁷⁰ In this review, ALD is defined to be based on gas-solid reactions. Analogous experiments have been made from liquid phase [e.g., S. Lindroos, T. Kanniainen, and M. Leskelä, Appl. Surf. Sci. **75**, 70 (1994)] and electrochemically [e.g., J. L. Stickney, Electroanal. Chem. **21**, 75 (1999)] as well. Although in some publications such experiments may be classified as ALD, in this work they are excluded from the definition.
- 71  Instead of the reactant of Reactant B, Step 3 may be, for example, a thermal treatment (see Table III).
- ⁷² The term "half reaction" in ALD should not be confused with the conceptual half reactions in electrochemistry. In ALD, the half reactions are real reactions.
- ⁷³ Some ALD processes consist of repeating the self-terminating reactions of more than two reactants, for example, the WF₆/BEt₃/NH₃ (Et = ethyl) process to grow WC_xN_y [e.g., A. Martin Hoyas, J. Schuhmacher, D. Shamiryan, J. Waeterloos, W. Besling, J. P. Celis, and K. Maex, J. Appl. Phys. 95, 381 (2004)]. Each new reactant adds a reaction step and a purge/evacuation step to the reaction cycle.
- ⁷⁴T. Suntola, AVS Topical Conference on Atomic Layer Deposition ALD 2004, Helsinki, Finland, 16–18 August 2004 (presentations published on CD, AVS, 2004).
- ⁷⁵T. Suntola and J. Antson, Finland Patent No. 52,359 (10 September

- 1977).
- ⁷⁶T. S. Suntola, A. J. Pakkala, and S. G. Lindfors, U.S. Patent No. 4,389,973 (28 June 1983).
- ⁷⁷T. S. Suntola, A. J. Pakkala, and S. G. Lindfors, U.S. Patent No. 4,413,022 (1 November 1983).
- ⁷⁸G. V. Sveshnikova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. (S.-Peterburg) **43**, 1150 (1970) [J. Appl. Chem. USSR **43**, 1155 (1970)].
- ⁷⁹ S. I. Kol'tsov, Zh. Prikl. Khim. (S.-Peterburg) **42**, 1023 (1969) [J. Appl. Chem. USSR **42**, 975 (1969)].
- ⁸⁰ S. I. Kol'tsov, Zh. Prikl. Khim. (S.-Peterburg) **43**, 1956 (1970) [J. Appl. Chem. USSR **43**, 1976 (1970)].
- ⁸¹G. V. Sveshnikova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. (S.-Peterburg) **43**, 430 (1970) [J. Appl. Chem. USSR **43**, 432 (1970)].
- ⁸² S. I. Kol'tsov, V. B. Aleskovskii, A. N. Volkova, and V. M. Smirnov, Zh. Prikl. Khim. (S.-Peterburg) 47, 1254 (1974) [J. Appl. Chem. USSR 47, 1292 (1974)].
- ⁸³ S. I. Kol'tsov, V. B. Kopylov, V. M. Smirnov, and V. B. Aleskovskii, Zh. Prikl. Khim. (S.-Peterburg) 49, 516 (1976) [J. Appl. Chem. USSR 49, 525 (1976)].
- ⁸⁴ A. P. Nechiporenko, T. M. Sukhareva, A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. (S.-Peterburg) **51**, 2447 (1978) [J. Appl. Chem. USSR **51**, 2333 (1978)].
- ⁸⁵ S. I. Kol'tsov, T. V. Tuz, and A. N. Volkova, Zh. Prikl. Khim. (S. Peterburg) **52**, 2196 (1979) [J. Appl. Chem. USSR **52**, 2074 (1979)].
- ⁸⁶ N. A. Stepanova, V. D. Kupriyanov, and A. A. Malygin, Izv. Akad. Nauk SSSR, Neorg. Mater. **23**, 377 (1987) [Inorg. Mater. **23**, 331 (1987)].
- ⁸⁷Even the American Vacuum Society topical conference on atomic layer deposition, ALD 2004 (Helsinki, Finland, 16–18 August 2004), was organized "celebrating 30 years of ALD." ALD was then defined to have started from filing the first Finnish ALE patent (Ref. 75) in 1974, disregarding the work made in the Soviet Union already in the 1960s.
- ⁸⁸ V. V. Brei, V. A. Kasperskii, and N. E. Gulyanitskaya, React. Kinet. Catal. Lett. **50**, 415 (1993).
- ⁸⁹ V. M. Gun'ko, Kinet. Katal. **34**, 463 (1993) [Kinet. Catal. 34, 406 (1993)].
- ⁹⁰ S. I. Kol'tsov, V. M. Smirnov, R. R. Rachkovskii, T. V. Malalaeva, and V. B. Aleskovskii, Zh. Prikl. Khim. (S.-Peterburg) **51**, 2596 (1978) [J. Appl. Chem. USSR **51**, 2475 (1978)].
- ⁹¹ Yu. K. Ezhovskii and A. I. Klusevich, Neorg. Mater. **39**, 1230 (2003) [Inorg. Mater. **39**, 1062 (2003)].
- ⁹²G. V. Anikeev, Yu. K. Ezhovskii, and S. I. Kol'tsov, Izv. Akad. Nauk SSSR, Neorg. Mater. **24**, 619 (1988) [Inorg. Mater. **24**, 514 (1988)].
- ⁹³ V. E. Drozd, A. A. Tulub, V. B. Aleskovskii, and D. V. Korol'kov, Appl. Surf. Sci. **82/83**, 587 (1994).
- ⁹⁴ V. V. Brei, V. A. Kasperskii, and A. A. Chuiko, Zh. Prikl. Khim. (S.-Peterburg) **69**, 378 (1996) [Russ. J. Appl. Chem. **69**, 335 (1996)].
- ⁹⁵ M. A. Eremeeva, A. P. Nechiporenko, G. N. Kuznetsova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. (S.-Peterburg) 47, 2332 (1974) [J. Appl. Chem. USSR 47, 2390 (1974)].
- ⁹⁶ L. V. Miroshnichenko, A. A. Malygin, and S. I. Kol'tsov, Ogneupory 26, 22 (1985) [Refractories 26, 82 (1985)].
- ⁹⁷ S. I. Kol'tsov, Zh. Prikl. Khim. (S.-Peterburg) 38, 1384 (1965) [J. Appl. Chem. USSR 38, 1352 (1965)].
- ⁹⁸ S. I. Kol'tsov, G. N. Kuznetsova, and V. B. Aleskovskii, Zh. Prikl. Khim. (S.-Peterburg) **40**, 2774 (1967) [J. Appl. Chem. USSR **40**, 2644 (1967)].
- ⁹⁹ S. I. Kol'tsov, Zh. Obshch. Khim. **71**, 1616 (2001) [Russ. J. Gen. Chem. 71, 1531 (2001)].
- ¹⁰⁰ S. I. Kol'tsov, A. N. Volkova, and V. B. Aleskovskii, Zh. Prikl. Khim. (S.-Peterburg) **42**, 1028 (1969) [J. Appl. Chem. USSR **42**, 980 (1969)].
- ¹⁰¹ S. I. Kol'tsov, A. N. Volkova, and V. B. Aleskovskii, Zh. Fiz. Khim. 46, 1292 (1972) [Russ. J. Phys. Chem. 46, 742 (1972)].
- A. N. Volkova, A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh.
   Obshch. Khim. 45, 3 (1975) [J. Gen. Chem. USSR 45, 1 (1975)].
- S. A. Trifonov, V. A. Lapikov, and A. A. Malygin, Zh. Prikl. Khim.
   (S.-Peterburg) 75, 986 (2002) [Russ. J. Appl. Chem. 75, 969 (2002)].
- ¹⁰⁴ A. N. Volkova, A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. 43, 724 (1973) [J. Gen. Chem. USSR 43, 723 (1973)].
- ¹⁰⁵ A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. 50, 2633 (1980) [J. Gen. Chem. USSR 50, 2121 (1980)].
- ¹⁰⁶ S. I. Kol'tsov and V. B. Aleskovskii, Zh. Prikl. Khim. (S.-Peterburg) 40,

- 907 (1967) [J. Appl. Chem. USSR 40, 872 (1967)].
- ¹⁰⁷S. I. Kol'tsov and V. B. Aleskovskii, Zh. Prikl. Khim. (S.-Peterburg) 42, 1210 (1968) [Russ. J. Phys. Chem. 42, 630 (1968)].
- ¹⁰⁸ V. N. Pak, Yu. P. Kostikov, S. I. Kol'tsov, and V. B. Aleskovskii, Kinet. Katal. **15**, 1358 (1974) [Kinet. Catal. 15, 1205 (1974)].
- ¹⁰⁹ V. N. Pak, Zh. Prikl. Khim. (S.-Peterburg) **50**, 1266 (1976) [Russ. J. Phys. Chem. **50**, 758 (1976)].
- ¹¹⁰ V. A. Tolmachev, Zh. Prikl. Khim. (S.-Peterburg) **55**, 1410 (1982) [J. Appl. Chem. USSR **55**, 1298 (1982)].
- ¹¹¹ V. M. Smirnov, A. A. Malkov, and R. R. Rachovskii, Zh. Prikl. Khim. (S.-Peterburg) **65**, 2666 (1992) [J. Appl. Chem. USSR **65**, 2213 (1992)].
- ¹¹² V. N. Pak, I. Yu. Tikhomirova, T. M. Burkat, and B. I. Lobov, Zh. Fiz. Khim. **73**, 2024 (1999) [Russ. J. Phys. Chem. **73**, 1824 (1999)].
- ¹¹³S. I. Kol'tsov and G. N. Kuznetsova, Zh. Prikl. Khim. (S.-Peterburg) 72, 900 (1999) [Russ. J. Appl. Chem. 72, 942 (1999)].
- ¹¹⁴S. I. Kol'tsov, V. E. Drozd, and V. B. Aleskovskii, Dokl. Akad. Nauk SSSR **229**, 1145 (1976) [Dokl. Phys. Chem. **229**, 718 (1976)].
- ¹¹⁵ V. P. Dorofeev, A. A. Malygin, and S. I. Kol'tsov, Zh. Prikl. Khim. (S.-Peterburg) 77, 1077 (2004) [J. Appl. Chem. USSR 77, 1061 (2004)].
- ¹¹⁶ S. I. Kol'tsov, V. E. Drozd, T. A. Redova, and V. B. Aleskovskii, Dokl. Akad. Nauk SSSR **235**, 1090 (1977) [Dokl. Phys. Chem. **235**, 794 (1977)].
- ¹¹⁷ V. B. Aleskovskii, V. E. Drozd, V. F. Kiselev, S. N. Kozlov, S. I. Kol'tsov, A. S. Petrov, and G. S. Plotnikov, Fiz. Tekh. Poluprovodn. (S.-Peterburg) 13, 1397 (1979) [Sov. Phys. Semicond. 13, 817 (1979)].
- ¹¹⁸ M. N. Tsvetkova, I. M. Yur'evskaya, A. A. Malygin, S. I. Kol'tsov, and Yu. I. Skorik, Zh. Prikl. Khim. (S.-Peterburg) **55**, 256 (1982) [J. Appl. Chem. USSR **55**, 229 (1982)].
- ¹¹⁹ V. A. Tolmachev and M. A. Okatov, Opt. Mekh. Promst. 50, 38 (1983) [Sov. J. Opt. Technol. **50**, 706 (1983)].
- ¹²⁰ V. A. Tolmachev, M. A. Okatov, and V. V. Pal'chevskii, Opt. Mekh. Promst. 51, 57 (1984) [Sov. J. Opt. Technol. **51**, 368 (1984)].
- ¹²¹ M. N. Tsvetkova, V. N. Pak, A. A. Malygin, and S. I. Kol'tsov, Izv. Akad. Nauk SSSR, Neorg. Mater. **20**, 144 (1984) [Inorg. Mater. **20**, 121 (1984)].
- ¹²² L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. (S.-Peterburg) **59**, 1224 (1986) [J. Appl. Chem. USSR **59**, 1131 (1986)].
- ¹²³S. K. Gordeev, E. P. Smirnov, and S. I. Kol'tsov, Zh. Obshch. Khim. 52, 1468 (1982) [J. Gen. Chem. USSR 52, 1298 (1982)].
- 124 S. K. Gordeev and E. P. Smirnov, Zh. Obshch. Khim. 52, 1464 (1982)
   [J. Gen. Chem. USSR 52, 1294 (1982)].
- ¹²⁵ A. B. Zhidkov and E. P. Smirnov, Kinet. Katal. **29**, 946 (1988) [Kinet. Catal. 29, 813 (1988)].
- ¹²⁶ A. L. Egorov, Yu. K. Ezhovskii, S. I. Kol'tsov, and G. V. Anikeev, Zh. Prikl. Khim. (S.-Peterburg) **57**, 2593 (1984) [J. Appl. Chem. USSR **57**, 2395 (1984)].
- ¹²⁷ A. A. Seitmagzimov, V. N. Pak, and S. I. Kol'tsov, Zh. Prikl. Khim. (S.-Peterburg) **58**, 92 (1985) [J. Appl. Chem. USSR **58**, 85 (1985)].
- ¹²⁸ L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. (S.-Peterburg) **59**, 2277 (1986) [J. Appl. Chem. USSR **59**, 2093 (1986)].
- ¹²⁹ L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. (S.-Peterburg) **64**, 763 (1991) [J. Appl. Chem. USSR **64**, 679 (1991)].
- 130 L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. (S.-Peterburg) **64**, 1435 (1991) [J. Appl. Chem. USSR **64**, 1290 (1991)]
- ¹³¹N. V. Dolgushev, A. A. Malkov, A. A. Malkov, A. A. Malygin, S. A. Suvorov, A. V. Shchukarev, A. V. Beljaev, and V. A. Bykov, Zh. Prikl. Khim. (S.-Peterburg) 65, 1117 (1992) [J. Appl. Chem. USSR 65, 921 (1992)]
- ¹³²N. V. Dolgushev, A. A. Malkov, A. A. Malygin, S. A. Suvorov, A. V. Shchukarev, A. V. Beljaev, and V. A. Bykov, Thin Solid Films **293**, 91 (1997).
- ¹³³S. A. Morozov, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. (S.-Peterburg) **76**, 9 (2003) [Russ. J. Appl. Chem. **76**, 7 (2003)].
- ¹³⁴ L. I. Chernaya, P. E. Matkovskii, V. M. Rudakov, Yu. M. Shul'ga, I. V. Markov, V. I. Tomilo, and Z. G. Busheva, Zh. Obshch. Khim. **62**, 28 (1992) [J. Gen. Chem. USSR 62, 21 (1992)].
- ¹³⁵ A. A. Malygin, A. N. Volkova, S. I. Kol'tsov, and A. A. Aleskovskii, Zh. Obshch. Khim. **43**, 1436 (1972) [J. Gen. Chem. USSR 43, 1426 (1973)].

- ¹³⁶W. Hanke, R. Bienert, and H.-G. Jerschkewitz, Z. Anorg. Allg. Chem. 414, 109 (1975).
- ¹³⁷ W. Hanke, K. Heise, H.-G. Jerschkewitz, G. Lischke, G. Öhlmann, and B. Parlitz, Z. Anorg. Allg. Chem. 438, 176 (1978).
- ¹³⁸ A. N. Volkova, A. A. Malygin, V. M. Smirnov, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. **42**, 1431 (1972) [J. Gen. Chem. USSR 42, 1422 (1972)].
- ¹³⁹ A. A. Malygin, A. N. Volkova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. **42**, 2373 (1972) [J. Gen. Chem. USSR 42, 2368 (1972)].
- ¹⁴⁰G. N. Kuznetsova, T. V. Shakina, A. A. Malygin, and S. I. Kol'tsov, Kolloidn. Zh. **45**, 574 (1983) [Colloid J. USSR **45**, 503 (1983)].
- ¹⁴¹ A. P. Nechiporenko, G. K. Shevchenko, and S. I. Kol'tsov, Zh. Prikl. Khim. (S.-Peterburg) **55**, 1239 (1982) [J. Appl. Chem. USSR **55**, 1133 (1982)].
- ¹⁴² S. I. Kol'tsov, A. A. Malygin, and V. B. Aleskovskii, Zh. Fiz. Khim. **54**, 2331 (1980) [Russ. J. Phys. Chem. **54**, 2331 (1980)].
- ¹⁴³ V. B. Aleskovskii, Yu. M. Artem'ev, and S. F. Gerasimov, Zh. Prikl. Khim. (S.-Peterburg) **67**, 212 (1994) [Russ. J. Appl. Chem. **67**, 192 (1994)].
- ¹⁴⁴ N. A. Stepanova, V. M. Smirnov, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. (S.-Peterburg) **50**, 465 (1977) [J. Appl. Chem. USSR **50**, 450 (1977)].
- ¹⁴⁵ R. A. Bisengaliev, B. V. Novikov, V. B. Aleskovskii, V. E. Drozd, D. A. Ageev, V. I. Gubaidullin, and A. P. Savchenko, Fiz. Tverd. Tela (S.-Peterburg) 40, 820 (1998) [Phys. Solid State 40, 754 (1998)].
- ¹⁴⁶S. I. Kol'tsov, V. B. Aleskovskii, G. N. Kuznetsova, and N. G. Roslyakova, Izv. Akad. Nauk SSSR, Neorg. Mater. 3, 1509 (1967) [Inorg. Mater. 3, 1318 (1967)].
- Yu. K. Ezhovskii and A. I. Klyuikov, Zh. Prikl. Khim. (S.-Peterburg) 73, 881 (2000) [Russ. J. Appl. Chem. 73, 933 (2000)].
- ¹⁴⁸ Yu. K. Ezhovskii and D. P. Mikhaevich, Neorg. Mater. 40, 1043 (2004) [Inorg. Mater. 40, 909 (2004)].
- D. P. Mikhaevich and Yu. K. Ezhovskii, Zh. Prikl. Khim. (S.-Peterburg)
   76, 1238 (2003) [Russ. J. Appl. Chem. 76, 1197 (2003)].
- ¹⁵⁰R. R. Rachkovskii, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Neorg. Khim. **15**, 3158 (1970) [Russ. J. Inorg. Chem. **15**, 1646 (1970)].
- ¹⁵¹ V. E. Drozd and V. B. Aleskovskii, Appl. Surf. Sci. **82/83**, 591 (1994).
   ¹⁵² Transliterated "molekulyarnoe naslaivanie."
- ¹⁵³ J. Nishizawa, H. Abe, and T. Kurabayashi, J. Electrochem. Soc. **132**,
- 1197 (1985).
  ¹⁵⁴ M. Ahonen, M. Pessa, and T. Suntola, Thin Solid Films **65**, 301 (1980).
- ¹⁵⁵ Y. Aoyagi, A. Doi, S. Iwai, and S. Namba, J. Vac. Sci. Technol. B 5, 1460 (1987).
- ¹⁵⁶ V. B. Kopylov, M. N. Tsvetkova, V. N. Pak, A. A. Malygin, and S. I. Kol'tsov, Zh. Prikl. Khim. (S.-Peterburg) **54**, 293 (1981) [J. Appl. Chem. USSR **54**, 186 (1981)].
- ¹⁵⁷ D. Hausmann, J. Becker, S. L. Wang, and R. G. Gordon, Science 298, 402 (2002).
- ¹⁵⁸ J. D. Ferguson, A. W. Weimer, and S. M. George, Thin Solid Films 413, 16 (2002).
- ¹⁵⁹B. Mårlid, M. Ottosson, U. Pettersson, K. Larsson, and J.-O. Carlsson, Thin Solid Films 402, 167 (2002).
- ¹⁶⁰S. F. Komarov, J. J. Lee, J. B. Hudson, and M. P. D'Evelyn, Diamond Relat. Mater. 7, 1087 (1998).
- ¹⁶¹T. I. Hukka, R. E. Rawles, and M. P. D'Evelyn, Thin Solid Films 225, 212 (1993).
- ¹⁶²R. Huang and A. H. Kitai, Appl. Phys. Lett. **61**, 1450 (1992).
- ¹⁶³ R. Huang and A. H. Kitai, J. Electron. Mater. **22**, 215 (1993).
- ¹⁶⁴R. Huang and A. H. Kitai, J. Mater. Sci. Lett. 12, 1444 (1993).
- ¹⁶⁵ M. Putkonen, T. Sajavaara, and L. Niinistö, J. Mater. Chem. **10**, 1857 (2000).
- ¹⁶⁶ M. Putkonen, M. Nieminen, and L. Niinistö, Thin Solid Films 466, 103 (2004).
- ¹⁶⁷ T. Hatanpää, J. Ihanus, J. Kansikas, I. Mutikainen, M. Ritala, and M. Leskelä, Chem. Mater. 11, 1846 (1999).
- ¹⁶⁸M. Putkonen, L.-S. Johansson, E. Rauhala, and L. Niinistö, J. Mater. Chem. 9, 2449 (1999).
- ¹⁶⁹ J. M. Hartmann, J. Cibert, F. Kany, H. Mariette, M. Charleux, P. Alleysson, R. Langer, and G. Feuillet, J. Appl. Phys. 80, 6257 (1996).
- ¹⁷⁰J. M. Hartmann, M. Charleux, H. Mariette, and J. L. Rouvière, Appl. Surf. Sci. 112, 142 (1997).
- ¹⁷¹T. Suntola, J. Antson, A. Pakkala, and S. Lindfors, in SID International Symposium Digest of Technical Papers, San Diego, California, 29

- April–1 May 1980 (SID, Los Angeles, California, 1980), pp. 108–109.  $^{172}\mathrm{J}.$  Aarik, A. Aidla, A. Jaek, A.-A. Kiisler, and A.-A. Tammik, Acta
- Polytech. Scand., Ser. Chem. Technol. Metall. 195, 201 (1990).

  173 L. Hiltunen, H. Kattelus, M. Leskelä, M. Mäkelä, L. Niinistö, E. Nykänen, P. Soininen, and M. Tiitta, Mater. Chem. Phys. 28, 379 (1991).
- ¹⁷⁴ H. Kattelus, M. Ylilammi, J. Saarilahti, J. Antson, and S. Lindfors, Thin Solid Films 225, 296 (1993).
- ¹⁷⁵ M. Nieminen, L. Niinistö, and R. Lappalainen, Microchim. Acta 119, 13 (1995).
- ¹⁷⁶M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grassenbauer, Thin Solid Films 286, 54 (1996).
- ¹⁷⁷ D. Riihelä, M. Ritala, R. Matero, and M. Leskelä, Thin Solid Films **289**, 250 (1996).
- ¹⁷⁸ K. Kukli, J. Ihanus, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 144, 300 (1997).
- ¹⁷⁹S. J. Yun, K. H. Lee, J. Skarp, H. R. Kim, and K. S. Nam, J. Vac. Sci. Technol. A **15**, 2993 (1997).
- ¹⁸⁰S. J. Yun, J. S. Kang, M. C. Paek, and K. S. Nam, J. Korean Phys. Soc. 33, S170 (1998).
- ¹⁸¹ M. Tiitta, E. Nykänen, P. Soininen, L. Niinistö, M. Leskelä, and R. Lappalainen, Mater. Res. Bull. 33, 1315 (1998).
- ¹⁸² M. Nieminen and L. Niinistö, Fresenius' J. Anal. Chem. 364, 224 (1999).
- ¹⁸³ Y. S. Kim, J. S. Kang, S. J. Yun, and K. I. Cho, J. Korean Phys. Soc. 35, S216 (1999).
- ¹⁸⁴ K. Kukli, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **148**, F35 (2001).
- ¹⁸⁵G. Oya, M. Yoshida, and Y. Sawada, Appl. Phys. Lett. **51**, 1143 (1987).
- ¹⁸⁶G. Oya and Y. Sawada, J. Cryst. Growth **99**, 572 (1990).
- ¹⁸⁷ M. Leskelä, L. Niinistö, E. Nykänen, P. Soininen, and M. Tiitta, Acta Polytech. Scand., Chem. Technol. Ser. 195, 193 (1990).
- ¹⁸⁸ M. Ritala, K. Kukli, A. Rahtu, P. I. Räisänen, M. Leskelä, T. Sajavaara, and J. Keinonen, Science 288, 319 (2000).
- ¹⁸⁹ P. I. Räisänen, M. Ritala, and M. Leskelä, J. Mater. Chem. **12**, 1415 (2002).
- ¹⁹⁰G. S. Higashi and L. J. Rothberg, J. Vac. Sci. Technol. B 3, 1460 (1985).
- ¹⁹¹G. S. Higashi and C. G. Fleming, Appl. Phys. Lett. **55**, 1963 (1989).
- ¹⁹²C. Soto and W. T. Tysoe, J. Vac. Sci. Technol. A **9**, 2686 (1991).
- ¹⁹³C. Soto, R. Wu, D. W. Bennett, and W. T. Tysoe, Chem. Mater. 6, 1705 (1994).
- ¹⁹⁴ V. E. Drozd, A. P. Baraban, and I. O. Nikiforova, Appl. Surf. Sci. **82/83**, 583 (1994).
- ¹⁹⁵S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, Appl. Surf. Sci. 82/83, 460 (1994).
- ¹⁹⁶ A. C. Dillon, A. W. Ott, J. D. Way, and S. M. George, Surf. Sci. 322, 230 (1995).
- ¹⁹⁷E.-L. Lakomaa, A. Root, and T. Suntola, Appl. Surf. Sci. **107**, 107 (1996).
- ¹⁹⁸ A. W. Ott, K. C. McCarley, J. W. Klaus, J. D. Way, and S. M. George, Appl. Surf. Sci. **107**, 128 (1996).
- ¹⁹⁹ A. W. Ott, J. W. Klaus, J. M. Johnson, and S. M. George, Thin Solid Films **292**, 135 (1997).
- ²⁰⁰ A. W. Ott, J. W. Klaus, J. M. Johnson, S. M. George, K. C. McCarley, and J. D. Way, Chem. Mater. 9, 707 (1997).
- ²⁰¹ J. I. Skarp, P. J. Soininen, and P. T. Soininen, Appl. Surf. Sci. **112**, 251 (1997)
- ²⁰² P. Ericsson, S. Bengtsson, and J. Skarp, Microelectron. Eng. 36, 91 (1997).
- ²⁰³ Y. Kim, S. M. Lee, C. S. Park, S. I. Lee, and M. Y. Lee, Appl. Phys. Lett. **71**, 3604 (1997).
- ²⁰⁴ B. S. Berland, I. P. Gartland, A. W. Ott, and S. M. George, Chem. Mater. 10, 3941 (1998).
- ²⁰⁵ M. Ritala, M. Leskelä, J.-P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, Chem. Vap. Deposition 5, 7 (1999).
- ²⁰⁶ M. Ritala, M. Juppo, K. Kukli, A. Rahtu, and M. Leskelä, J. Phys. IV 9, Pr8/1021 (1999).
- ²⁰⁷ R. Matero, M. Ritala, M. Leskelä, T. Salo, J. Aromaa, and O. Forsén, J. Phys. IV 9, Pr8/493 (1999).
- ²⁰⁸ E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, Appl. Phys. Lett. 76, 176 (2000).
- ²⁰⁹ R. L. Puurunen, A. Root, S. Haukka, E. I. Iiskola, M. Lindblad, and A. O. I. Krause, J. Phys. Chem. B **104**, 6599 (2000).

- ²¹⁰ A. M. Uusitalo, T. T. Pakkanen, M. Kröger-Laukkanen, L. Niinistö, K. Hakala, S. Paavola, and B. Löfgren, J. Mol. Catal. A: Chem. 160, 343 (2000).
- ²¹¹M. Juppo, A. Rahtu, M. Ritala, and M. Leskelä, Langmuir 16, 4034 (2000).
- ²¹²R. Matero, A. Rahtu, M. Ritala, M. Leskelä, and T. Sajavaara, Thin Solid Films 368, 1 (2000).
- ²¹³ J. D. Ferguson, A. W. Weimer, and S. M. George, Thin Solid Films **371**, 95 (2000).
- ²¹⁴ J. D. Ferguson, A. W. Weimer, and S. M. George, Appl. Surf. Sci. 162/163, 280 (2000).
- ²¹⁵M. Juppo, Ph.D. thesis, University of Helsinki, Finland, 2001.
- ²¹⁶R. L. Puurunen, M. Lindblad, A. Root, and A. O. I. Krause, Phys. Chem. Chem. Phys. **3**, 1093 (2001).
- ²¹⁷ A. Rahtu, T. Alaranta, and M. Ritala, Langmuir **17**, 6506 (2001).
- ²¹⁸ A. Paranjpe, S. Gopinath, T. Omstead, and R. Bubber, J. Electrochem. Soc. 148, G465 (2001).
- ²¹⁹E. P. Gusev, E. Cartier, D. A. Buchanan, M. Gribelyuk, M. Copel, H. Okorn-Schmidt, and C. D'Emic, Microelectron. Eng. 59, 341 (2001).
- ²²⁰ A. Rahtu, Ph.D. thesis, University of Helsinki, Finland, 2002.
- ²²¹R. Puurunen, Ph.D. thesis, Helsinki University of Technology, Espoo, Finland, 2002; http://lib.hut.fl/Diss/2002/isbn9512261421/
- ²²²O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, Thin Solid Films 402, 248 (2002).
- ²²³ H. Nohira et al., J. Non-Cryst. Solids **303**, 83 (2002).
- ²²⁴W. F. A. Besling et al., J. Non-Cryst. Solids **303**, 123 (2002).
- ²²⁵L. G. Gosset et al., J. Non-Cryst. Solids 303, 17 (2002).
- ²²⁶ J. W. Elam, Z. A. Zechrist, and S. M. George, Thin Solid Films **414**, 43 (2002).
- ²²⁷ J. W. Elam, M. D. Groner, and S. M. George, Rev. Sci. Instrum. 73, 2981 (2002).
- ²²⁸M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, Thin Solid Films 413, 186 (2002).
- J. M. Jensen, A. B. Oelkers, R. Toivola, D. C. Johnson, J. W. Elam, and S. M. George, Chem. Mater. 14, 2276 (2002).
- ²³⁰B. Brijs *et al.*, Nucl. Instrum. Methods Phys. Res. B **190**, 505 (2002).
- ²³¹ J. W. Elam and S. M. George, Chem. Mater. **15**, 1020 (2003).
- ²³²T. M. Mayer, J. W. Elam, S. M. George, P. G. Kotula, and R. S. Goeke, Appl. Phys. Lett. **82**, 2883 (2003).
- ²³³ N. D. Hoivik, J. W. Elam, R. J. Linderman, V. M. Bright, S. M. George, and Y. C. Lee, Sens. Actuators, A **103**, 100 (2003).
- ²³⁴R. Kuse, M. Kundu, T. Yasuda, N. Miyata, and A. Toriumi, J. Appl. Phys. **94**, 6411 (2003).
- ²³⁵ S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, and J. W. Bartha, Thin Solid Films 425, 216 (2003).
- ²³⁶ S. Jakschik, U. Schroeder, T. Hecht, D. Krueger, G. Dollinger, A. Bergmaier, C. Luhmann, and J. W. Bartha, Appl. Surf. Sci. 211, 352 (2003).
- ²³⁷R. L. Puurunen, Chem. Vap. Deposition **9**, 327 (2003).
- ²³⁸ J.-F. Damlencourt, O. Renault, A. Chabli, F. Martin, and M.-N. Séméria, J. Mater. Sci.: Mater. Electron. 14, 379 (2003).
- ²³⁹ M. M. Frank, Y. J. Chabal, and G. D. Wilk, Appl. Phys. Lett. **82**, 4758 (2003).
- ²⁴⁰ M. M. Frank *et al.*, Appl. Phys. Lett. **83**, 740 (2003).
- ²⁴¹ P. D. Ye *et al.*, Appl. Phys. Lett. **83**, 180 (2003).
- ²⁴²J. S. Lee et al., J. Cryst. Growth **254**, 443 (2003).
- ²⁴³ M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, Chem. Mater. **16**, 639 (2004).
- ²⁴⁴T. Kawahara, K. Torii, R. Mitsuhashi, A. Muto, A. Horiuchi, H. Ito, and H. Kitajima, Jpn. J. Appl. Phys., Part 1 43, 4129 (2004).
- ²⁴⁵ S. Jakschik, U. Schroeder, T. Hecht, D. Krueger, G. Dollinger, A. Bergmaier, C. Luhmann, and J. W. Bartha, Mater. Sci. Eng., B 107, 251 (2004).
- ²⁴⁶ R. L. Puurunen *et al.*, J. Appl. Phys. **96**, 4878 (2004).
- ²⁴⁷R. L. Puurunen and W. Vandervorst, J. Appl. Phys. **96**, 7686 (2004).
- ²⁴⁸R. T. Brewer, M.-T. Ho, K. Z. Zhang, L. V. Goncharova, D. G. Starodub, T. Gustafsson, Y. J. Chabal, and N. Moumen, Appl. Phys. Lett. 85, 3830 (2004).
- ²⁴⁹ R. K. Grubbs, C. E. Nelson, N. J. Steinmetz, and S. M. George, Thin Solid Films 467, 16 (2004).
- ²⁵⁰ S. S. Lee, J. Y. Baik, K.-S. An, Y. D. Suh, J.-H. Oh, and Y. Kim, J. Phys. Chem. B **108**, 15128 (2004).
- ²⁵¹M. Kang et al., Thin Solid Films 466, 265 (2004).
- ²⁵²C. Lee, J. Choi, M. Cho, J. Park, C. S. Hwang, H. J. Kim, and J. Jeong, J. Vac. Sci. Technol. B 22, 1838 (2004).

- ²⁵³ R. G. Vitchev, J. J. Pireaux, T. Conard, H. Bender, J. Wolstenholme, and C. Defranoux, Appl. Surf. Sci. 235, 21 (2004).
- ²⁵⁴ J. D. Ferguson, A. W. Weimer, and S. M. George, Chem. Mater. 16, 5602 (2004).
- ²⁵⁵H. Bender et al., Mater. Sci. Eng., B **109**, 60 (2004).
- ²⁵⁶ P. Boher, C. Defranoux, P. Heinrich, J. Wolstenholme, and H. Bender, Mater. Sci. Eng., B 109, 64 (2004).
- ²⁵⁷ C. Lee, C. S. Hwang, and H. J. Kim, Integr. Ferroelectr. **67**, 49 (2004).
- ²⁵⁸R. Matero, Ph.D. thesis, University of Helsinki, Finland, 2004.
- ²⁵⁹ D. Wu, J. Lu, E. Vainonen-Ahlgren, E. Tois, M. Tuominen, M. Östling, and S.-L. Zhang, Solid-State Electron. 49, 193 (2005).
- ²⁶⁰ D. R. G. Mitchell, D. J. Attard, K. S. Finnie, G. Triani, C. J. Barbé, C. Depagne, and J. R. Bartlett, Appl. Surf. Sci. 243, 265 (2005).
- ²⁶¹ S.-H. K. Park, J. Oh, C.-S. Hwang, J.-I. Lee, Y. S. Yang, and H. Y. Chu, Electrochem. Solid-State Lett. 8, H21 (2005).
- ²⁶²R. L. Puurunen, Appl. Surf. Sci. **245**, 6 (2005).
- ²⁶³ J.-F. Fan, J. Sugioka, and K. Toyoda, Jpn. J. Appl. Phys., Part 2 30, L1139 (1991).
- ²⁶⁴ J.-F. Fan and K. Toyoda, Appl. Surf. Sci. **60/61**, 765 (1992).
- ²⁶⁵ J.-F. Fan and K. Toyoda, Jpn. J. Appl. Phys., Part 2 **32**, L1349 (1993).
- ²⁶⁶H. Kumagai, K. Toyoda, M. Matsumoto, and M. Obara, Jpn. J. Appl. Phys., Part 1 32, 6137 (1993).
- ²⁶⁷ H. Kumagai, M. Matsumoto, and Y. Kawamura, Jpn. J. Appl. Phys., Part 1 33, 7086 (1994).
- ²⁶⁸ H. Kumagai and K. Toyoda, Appl. Surf. Sci. **82/83**, 481 (1994).
- ²⁶⁹H. Kumagai, K. Toyoda, K. Kobayashi, M. Obara, and Y. Iimura, Appl. Phys. Lett. **70**, 2338 (1997).
- ²⁷⁰ J. B. Kim, D. R. Kwon, K. Chakrabarti, C. Lee, K. Y. Oh, and J. H. Lee, J. Appl. Phys. **92**, 6739 (2002).
- ²⁷¹ J. Kim, K. Chakrabarti, J. Lee, K.-Y. Oh, and C. Lee, Chem. Phys. 78, 733 (2003).
- ²⁷²S. K. Kim and C. S. Hwang, J. Appl. Phys. **96**, 2323 (2004).
- ²⁷³T.-P. Lee, C. Jang, B. Haselden, M. Dong, S. Park, L. Bartholomew, H. Chatham, and Y. Senzaki, J. Vac. Sci. Technol. B 22, 2295 (2004).
- ²⁷⁴S. W. Choi, C. M. Jang, D. Y. Kim, J. S. Ha, H. S. Park, W. Koh, and C. S. Lee, J. Korean Phys. Soc. **42**, S975 (2003).
- ²⁷⁵S. J. Yun, J. W. Lim, and J.-H. Lee, Electrochem. Solid-State Lett. 7, C13 (2004).
- ²⁷⁶ J. W. Lim and S. J. Yun, Electrochem. Solid-State Lett. 7, F45 (2004).
- ²⁷⁷ W.-S. Jeon, S. Yang, C.-S. Lee, and S.-W. Kang, J. Electrochem. Soc. 149, C306 (2002).
- ²⁷⁸ K. Kukli, M. Ritala, M. Leskelä, and J. Jokinen, J. Vac. Sci. Technol. A 15, 2214 (1997).
- ²⁷⁹ K. S. An, W. T. Cho, K. H. Sung, S. S. Lee, and Y. Kim, Bull. Korean Chem. Soc. **24**, 1659 (2003).
- ²⁸⁰ W. Cho, K. Sung, K. S. An, S. S. Lee, T. M. Chung, and Y. Kim, J. Vac. Sci. Technol. A 21, 1366 (2003).
- ²⁸¹ Y.-S. Min, Y. J. Cho, and C. S. Hwang, Chem. Mater. **17**, 626 (2005).
- ²⁸² K.-E. Elers, M. Ritala, M. Leskelä, and L.-S. Johansson, J. Phys. IV 5, C5/1021 (1995).
- ²⁸³ J. Jokinen, P. Haussalo, J. Keinonen, M. Ritala, D. Riihelä, and M. Leskelä, Thin Solid Films 289, 159 (1996).
- ²⁸⁴ Y. J. Lee and S.-W. Kang, Thin Solid Films **446**, 227 (2004).
- ²⁸⁵ Y. J. Lee, J. Cryst. Growth **266**, 568 (2004).
- ²⁸⁶ T. M. Mayer, J. W. Rogers, Jr., and T. A. Michalske, Chem. Mater. 3, 641 (1991).
- ²⁸⁷ M. E. Bartram, T. A. Michalske, J. W. Rogers, Jr., and R. T. Paine, Chem. Mater. 5, 1424 (1993).
- ²⁸⁸ H. Liu, D. C. Bertolet, and J. W. Rogers, Jr., Surf. Sci. **340**, 88 (1995).
- ²⁸⁹ D. Riihelä, M. Ritala, R. Matero, M. Leskelä, J. Jokinen, and P. Haussalo, Chem. Vap. Deposition 2, 277 (1996).
- ²⁹⁰ F. G. McIntosh, E. L. Piner, J. C. Roberts, M. K. Behbehani, M. E. Aumer, N. A. El-Masry, and S. M. Bedair, Appl. Surf. Sci. 112, 98 (1997).
- ²⁹¹ R. L. Puurunen, A. Root, P. Sarv, S. Haukka, E. I. Iiskola, M. Lindblad, and A. O. I. Krause, Appl. Surf. Sci. 165, 193 (2000).
- ²⁹² R. L. Puurunen, A. Root, P. Sarv, M. M. Viitanen, H. H. Brongersma, M. Lindblad, and A. O. I. Krause, Chem. Mater. 14, 720 (2002).
- ²⁹³ M. Asif Khan, J. N. Kuznia, R. A. Skogman, and D. T. Olson, Appl. Phys. Lett. **61**, 2539 (1992).
- ²⁹⁴ M. Asif Khan, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. **63**, 3470 (1993).
- ²⁹⁵ H. Liu and J. W. Rogers, Jr., J. Vac. Sci. Technol. A **17**, 325 (1999).
- ²⁹⁶ J. N. Kidder, Jr., J. S. Kuo, A. Ludviksson, T. P. Pearsall, J. W. Rogers,

- Jr., J. M. Grant, L. R. Allen, and S. T. Hsu, J. Vac. Sci. Technol. A 13, 711 (1995).
- ²⁹⁷ A. Ludviksson, D. W. Robinson, and J. W. Rogers, Jr., Thin Solid Films 289, 6 (1996).
- ²⁹⁸ J. N. Kidder, Jr., H. K. Yun, J. W. Rogers, Jr., and T. P. Pearsall, Chem. Mater. **10**, 777 (1998).
- ²⁹⁹ M. Ishii, S. Iwai, H. Kawata, T. Ueki, and Y. Aoyagi, J. Cryst. Growth 180, 15 (1997).
- ³⁰⁰ M. Ishii, S. Iwai, T. Ueki, and Y. Aoyagi, Appl. Phys. Lett. **71**, 1044 (1997).
- ³⁰¹ M. Ishii, S. Iwai, T. Ueki, and Y. Aoyagi, Thin Solid Films 318, 6 (1998).
- ³⁰² S. Hirose, M. Yamaura, and H. Munekata, Appl. Surf. Sci. **150**, 89 (1999).
- ³⁰³R. Kobayashi, J. Cryst. Growth **113**, 491 (1991).
- ³⁰⁴M. Akamatsu, S. Narahara, T. Kobayashi, and F. Hasegawa, Appl. Surf. Sci. **82/83**, 228 (1994).
- ³⁰⁵S. M. Bedair, M. A. Tischler, T. Katsuyama, and N. A. El-Masry, Appl. Phys. Lett. **47**, 51 (1985).
- ³⁰⁶ M. Ozeki, K. Mochizuki, N. Ohtsuka, and K. Kodama, J. Vac. Sci. Technol. B 5, 1184 (1987).
- ³⁰⁷S. P. DenBaars, P. D. Dapkus, C. A. Beyler, A. Hariz, and K. M. Dzurko, J. Cryst. Growth 93, 195 (1988).
- ³⁰⁸ M. Ozeki, K. Mochizuki, N. Ohtsuka, and K. Kodama, Thin Solid Films 174, 63 (1989).
- ³⁰⁹ T. Meguro, S. Iwai, Y. Aoyagi, K. Ozaki, Y. Yamamoto, T. Suzuki, Y. Okano, and A. Hirata, J. Cryst. Growth 99, 540 (1990).
- ³¹⁰N. Ohtsuka, K. Kitahara, M. Ozeki, and K. Kodama, J. Cryst. Growth 99, 346 (1990).
- ³¹¹Y. Aoyagi, T. Meguro, S. Iwai, and A. Doi, Mater. Sci. Eng., B **10**, 121
- ³¹²S. Yokoyama, M. Shinohara, and N. Inoue, Appl. Phys. Lett. **60**, 377 (1992).
- ³¹³ K. Kitahara, M. Ozeki, and K. Nakajima, Jpn. J. Appl. Phys., Part 1 32, 1051 (1993).
- ³¹⁴M. Ozeki and N. Ohtsuka, Appl. Surf. Sci. **82/83**, 233 (1994).
- ³¹⁵ N. Hayafuji, G. M. Eldallal, A. Dip, P. C. Colter, N. A. El-Masry, and S. M. Bedair, Appl. Surf. Sci. **82/83**, 18 (1994).
- ³¹⁶ M. Ishizaki, N. Kano, J. Yoshino, and H. Kukimoto, Jpn. J. Appl. Phys., Part 2 30, L435 (1991).
- ³¹⁷M. Ishizaki, N. Kano, J. Yoshino, and H. Kukimoto, Thin Solid Films 225, 74 (1993).
- ³¹⁸ H. Isshiki, Y. Aoyagi, T. Sugano, S. Iwai, and T. Meguro, Appl. Surf. Sci. **82/83**, 57 (1994).
- S. Hirose, N. Kano, M. Deura, K. Hara, H. Munekata, and H. Kukimoto,
   Jpn. J. Appl. Phys., Part 2 34, L1436 (1995).
- S. Hirose, H. Ibuka, A. Yoshida, N. Kano, K. Hara, H. Munekata, and H. Kukimoto, J. Cryst. Growth 208, 49 (2000).
- ³²¹D. E. Aspnes *et al.*, Thin Solid Films **225**, 26 (1993).
- ³²² K. Kitahara, N. Ohtsuka, T. Ashino, M. Ozeki, and K. Nakajima, Jpn. J. Appl. Phys., Part 2 32, L236 (1993).
- ³²³ K. Fujii, I. Suemune, and M. Yamanishi, Appl. Phys. Lett. **62**, 1420 (1993).
- 324 I. Suemune, Appl. Surf. Sci. **82/83**, 149 (1994).
- ³²⁵ M. Nagano, S. Iwai, K. Nemoto, and Y. Aoyagi, Jpn. J. Appl. Phys., Part 2 33, L1289 (1994).
- ³²⁶N. Kano, S. Hirose, K. Hara, J. Yoshino, H. Munekata, and H. Kukimoto, Appl. Phys. Lett. 65, 1115 (1994).
- ³²⁷N. Kano, S. Hirose, K. Hara, J. Yoshino, H. Munekata, and H. Kukimoto, Appl. Surf. Sci. 82/83, 132 (1994).
- ³²⁸ S. Hirose, N. Kano, K. Hara, H. Munekata, and H. Kukimoto, J. Cryst. Growth **172**, 13 (1997).
- ³²⁹S. Hirose, M. Yamaura, A. Yoshida, H. Ibuka, K. Hara, and H. Munekata, J. Cryst. Growth **194**, 16 (1998).
- ³³⁰S. Hirose, A. Yoshida, M. Yamaura, N. Kano, and H. Munekata, J. Mater. Sci.: Mater. Electron. 11, 7 (2000).
- ³³¹Y. J. Lee and S.-W. Kang, J. Vac. Sci. Technol. A **20**, 1983 (2002).
- ³³² Y. J. Lee and S.-W. Kang, Electrochem. Solid-State Lett. **5**, C91 (2002).
- ³³³O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, Surf. Sci. 334, 135 (1995).
- ³³⁴ J. W. Klaus, A. W. Ott, J. M. Johnson, and S. M. George, Appl. Phys. Lett. **70**, 1092 (1997).
- ³³⁵ J. W. Klaus, A. W. Ott, and S. M. George, Surf. Rev. Lett. 6, 435 (1999).

- ³³⁶M. A. Cameron, I. P. Gartland, J. A. Smith, S. F. Diaz, and S. M. George, Langmuir 16, 7435 (2000).
- ³³⁷ J. D. Ferguson, A. W. Weimer, and S. M. George, Chem. Mater. 12, 3472 (2000).
- ³³⁸ J. W. Klaus, O. Sneh, and S. M. George, Science **278**, 1934 (1997).
- ³³⁹ J. W. Klaus and S. M. George, Surf. Sci. **447**, 81 (2000).
- ³⁴⁰B. A. McCool and W. J. DeSisto, Ind. Eng. Chem. Res. 43, 2478
- ³⁴¹B. A. McCool and W. J. DeSisto, Chem. Vap. Deposition 10, 190 (2004).
- ³⁴² J.-H. Lee, U.-J. Kim, C.-H. Han, S.-K. Rha, W.-J. Lee, and C.-O. Park, Jpn. J. Appl. Phys., Part 2 43, L328 (2004).
- ³⁴³ J. D. Ferguson, E. R. Smith, A. W. Weimer, and S. M. George, J. Electrochem. Soc. 151, G528 (2004).
- 344 M. Lindblad and A. Root, in Proceedings of the Seventh International Symposium Scientific Bases for the Preparation of Heterogeneous Catalysts, Louvain-la-Neuve, Belgium, 1-4 September 1998, edited by B. Delmon, P. A. Jacobs, R. Maggi, J. A. Martens, P. Grange, and G. Poncelet [Stud. Surf. Sci. Catal. 118, 817 (1998)].
- ³⁴⁵ W. Gasser, Y. Uchida, and M. Matsumura, Thin Solid Films **250**, 213
- 346 K. Yamaguchi, S. Imai, N. Ishitobi, M. Takemoto, H. Miki, and M. Matsumura, Appl. Surf. Sci. 130-132, 202 (1998).
- ³⁴⁷S. Morishita, Y. Uchida, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 34, 5738 (1995).
- ³⁴⁸S. Morishita, W. Gasser, K. Usami, and M. Matsumura, J. Non-Cryst. Solids 187, 66 (1995).
- ³⁴⁹ J. W. Klaus, A. W. Ott, A. C. Dillon, and S. M. George, Surf. Sci. 418, L14 (1998).
- ³⁵⁰M. Yokoyama, J. Korean Phys. Soc. **35**, S71 (1999).
- ³⁵¹ A. Nakajima, T. Yoshimoto, T. Kidera, and S. Yokoyama, Appl. Phys. Lett. 79, 665 (2001).
- ³⁵² W. J. Lee, J. H. Lee, C. O. Park, Y. S. Lee, S. J. Shin, and S. K. Rha, J. Korean Phys. Soc. 45, 1352 (2004).
- ³⁵³ H. Goto, K. Shibahara, and S. Yokoyama, Appl. Phys. Lett. **68**, 3257 (1996).
- 354 S. Yokoyama, H. Goto, T. Miyamoto, N. Ikeda, and J. Shibahara, Appl. Surf. Sci. 112, 75 (1997).
- 355 S. Yokoyama, N. Ikeda, K. Kajikawa, and Y. Nakashima, Appl. Surf. Sci. 130-132, 352 (1998).
- ³⁵⁶ S. Morishita, S. Sugahara, and M. Matsumura, Appl. Surf. Sci. 112, 198
- 357 H. Nagasawa and Y. Yamaguchi, Thin Solid Films 225, 230 (1993).
- 358 H. Nagasawa and Y. Yamaguchi, Appl. Surf. Sci. 82/83, 405 (1994).
- ³⁵⁹E. Sadayuki, S. Imai, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 34, 6166 (1996).
- 360 J. Sumakeris, L. B. Rowland, R. S. Kern, S. Tanaka, and R. F. Davis, Thin Solid Films 225, 219 (1993).
- 361 T. Fuyuki, M. Nakayama, T. Yoshinobu, H. Shiomi, and H. Matsunami, J. Cryst. Growth 95, 461 (1989).
- 362 S. Hara, Y. Aoyagi, M. Kawai, S. Misakawa, E. Sakuma, and S. Yoshida, Surf. Sci. 273, 437 (1992).
- ³⁶³ T. Fuyuki, T. Yoshinobu, and H. Matsunami, Thin Solid Films **125**, 225 (1993).
- ³⁶⁴S. Hara, T. Meguro, Y. Aoyagi, and M. Kawai, Thin Solid Films 225, 240 (1993).
- 365 S. Yokoyama, K. Ohba, and A. Nakajima, Appl. Phys. Lett. 79, 617 (2001).
- ³⁶⁶ J. Nishizawa, K. Aoki, S. Suzuki, and K. Kikuchi, J. Electrochem. Soc. 137, 1898 (1990).
- ³⁶⁷ J. Nishizawa, K. Aoki, S. Suzuki, and K. Kikuchi, J. Cryst. Growth **99**,
- ³⁶⁸ J. A. Yarmoff, D. K. Shuh, T. D. Durbin, C. W. Lo, D. A. Lapiano-Smith, F. R. McFreely, and F. J. Himpsel, J. Vac. Sci. Technol. A 10, 2303 (1992).
- ³⁶⁹S. Imai, T. Iizuka, O. Sugiura, and M. Matsumura, Thin Solid Films 225, 168 (1993).
- ³⁷⁰ S. Imai and M. Matsumura, Appl. Surf. Sci. **82/83**, 322 (1994).
- ³⁷¹D. D. Koleske and S. M. Gates, Appl. Surf. Sci. **82/83**, 344 (1994).
- ³⁷²D. D. Koleske and S. M. Gates, J. Appl. Phys. **76**, 1615 (1994).
- ³⁷³ S. Sugahara, E. Hasunuma, S. Imai, and M. Matsumura, Appl. Surf. Sci. 107, 161 (1996).
- ³⁷⁴E. Hasunuma, S. Sugahara, S. Hoshino, S. Imai, K. Ikeda, and M. Matsumura, J. Vac. Sci. Technol. A 16, 679 (1998).

- ³⁷⁵ Y. Satoh, K. Ikeda, S. Sugahara, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 39, 5732 (2000).
- ³⁷⁶ Y. Takahashi and T. Urisu, Jpn. J. Appl. Phys., Part 2 **30**, L209 (1991).
- ³⁷⁷ H. Akazawa, Phys. Rev. B **54**, 10917 (1996).
- ³⁷⁸H. Akazawa, J. Appl. Phys. **81**, 3320 (1997).
- ³⁷⁹P. A. Coon, M. L. Wise, A. C. Dillon, M. B. Robinson, and S. M. George, J. Vac. Sci. Technol. B 10, 221 (1992).
- ³⁸⁰ F. Hirose, M. Suemitsu, and N. Miyamoto, Appl. Surf. Sci. **60/61**, 592
- ³⁸¹ J. Murota, M. Sakuraba, and S. Ono, Appl. Phys. Lett. **62**, 2353 (1993).
- 382 M. Sakuraba, J. Murota, T. Watanabe, Y. Sawada, and S. Ono, Appl. Surf. Sci. 82/83, 354 (1994).
- ³⁸³ D. D. Koleske, S. M. Gates, and D. B. Beach, J. Appl. Phys. **72**, 4073 (1992).
- ³⁸⁴ S. M. Gates, D. D. Koleske, J. R. Heath, and M. Copel, Appl. Phys. Lett. 62, 510 (1993).
- 385 D. D. Koleske and S. M. Gates, Appl. Phys. Lett. **64**, 884 (1994).
- ³⁸⁶ Y. Suda, D. Lubben, T. Motooka, and J. Greene, J. Vac. Sci. Technol. B 7, 1171 (1989).
- ³⁸⁷D. Lubben, R. Tsu, T. R. Bramblett, and J. E. Greene, J. Vac. Sci. Technol. A 9, 3003 (1991).
- ³⁸⁸D. Lin, T. Miller, and T. Chiang, Phys. Rev. B **47**, 6543 (1993).
- 389 Y. Suda, M. Ishida, M. Yamashita, and H. Ikeda, Appl. Surf. Sci. 82/83, 332 (1994).
- ³⁹⁰ Y. Suda, Y. Misato, and D. Shiratori, Jpn. J. Appl. Phys., Part 1 **38**, 2390 (1999).
- ³⁹¹ J. Nishizawa, A. Murai, T. Ohizumi, T. Kurabayashi, K. Ohtsuka, and T. Yoshida, J. Cryst. Growth 209, 327 (2000).
- ³⁹² J. Nishizawa, A. Murai, T. Oizumi, T. Kurabayashi, K. Kanamoto, and T. Yoshida, J. Cryst. Growth 233, 161 (2001).
- ³⁹³ J. Nishizawa, A. Murai, T. Oizumi, T. Kurabayashi, K. Kanamoto, and T. Yoshida, J. Cryst. Growth 226, 39 (2001).
- ³⁹⁴ Y. Suda, N. Hosoya, and K. Miki, Appl. Surf. Sci. **216**, 424 (2003).
- ³⁹⁵ H. Akazawa, Y. Utsumi, T. Urisu, and M. Nagase, Phys. Rev. B 47, 15946 (1993).
- ³⁹⁶H. Akazawa, Appl. Surf. Sci. **82/83**, 394 (1994).
- ³⁹⁷ H. Akazawa and Y. Utsumi, J. Appl. Phys. **78**, 2725 (1995).
- ³⁹⁸ M. Ishida, M. Yamashita, Y. Nagata, and Y. Suda, Jpn. J. Appl. Phys., Part 1 35, 4011 (1996).
- ³⁹⁹ H. Akazawa, J. Cryst. Growth **173**, 343 (1997).
- ⁴⁰⁰ Y. Suda, N. Hosoya, and D. Shiratori, J. Cryst. Growth 237, 1404 (2002).
- ⁴⁰¹ A. Mahajan, J. Irby, D. Kinosky, R. Qian, S. Thomas, S. Banerjee, A. Tasch, and T. Picraux, Thin Solid Films 225, 177 (1993).
- 402 S. Imai, S. Takagi, O. Sugiura, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 30, 3646 (1991).
- ⁴⁰³ W. K. Kim, S. W. Kang, and S. W. Rhee, J. Vac. Sci. Technol. A 21, L16 (2003).
- 404 W. K. Kim, S. W. Kang, S. W. Rhee, N. I. Lee, J. H. Lee, and H. K. Kang, J. Vac. Sci. Technol. A 20, 2096 (2002).
- ⁴⁰⁵ J. Kim and K. Yong, Electrochem. Solid-State Lett. **7**, F35 (2004).
- ⁴⁰⁶ K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, R. I. Hegde, D. C. Gilmer, and P. J. Tobin, J. Electrochem, Soc. 151, F98 (2004).
- ⁴⁰⁷ R. G. Gordon, J. Becker, D. Hausmann, and S. Suh, Chem. Mater. 13, 2463 (2001).
- ⁴⁰⁸J. Aarik, A. Aidla, A. Jaek, M. Leskelä, and L. Niinistö, Appl. Surf. Sci. **75**, 33 (1994).
- ⁴⁰⁹O. Nilsen, H. Fjellvåg, and A. Kjekshus, Thin Solid Films **450**, 240
- ⁴¹⁰ M. Tammenmaa, H. Antson, M. Asplund, L. Hiltunen, M. Leskelä, L. Niinistö, and E. Ristolainen, J. Cryst. Growth 84, 151 (1987).
- ⁴¹¹ J. Rautanen, M. Leskelä, L. Niinistö, E. Nykänen, P. Soininen, and M. Utriainen, Appl. Surf. Sci. 82/83, 553 (1994).
- ⁴¹²P. Soininen, L. Niinistö, E. Nykänen, and M. Leskelä, Appl. Surf. Sci. **75**, 99 (1994).
- ⁴¹³ T. Hänninen, I. Mutikainen, V. Saanila, M. Ritala, M. Leskelä, and J. C. Hanson, Chem. Mater. 9, 1234 (1997).
- 414 S. Dey and S. J. Yun, Appl. Surf. Sci. 143, 191 (1999).
- ⁴¹⁵M. Ylilammi and T. Ranta-aho, J. Electrochem. Soc. **141**, 1278 (1994).
- ⁴¹⁶ M. Putkonen, M. Nieminen, J. Niinistö, and L. Niinistö, Chem. Mater. **13**, 4701 (2001).
- ⁴¹⁷S. B. Desu, Mater. Sci. Eng., B **13**, 299 (1992).
- ⁴¹⁸ E.-L. Lakomaa, S. Haukka, and T. Suntola, Appl. Surf. Sci. **60/61**, 742 (1992).

- ⁴²⁰ S. Haukka, E.-L. Lakomaa, and T. Suntola, Thin Solid Films **225**, 280 (1993).
- 421 S. Haukka, E.-L. Lakomaa, O. Jylhä, J. Vilhunen, and S. Hornytzkyj, Langmuir 9, 3497 (1993).
- ⁴²² M. Ritala and M. Leskelä, Thin Solid Films **225**, 288 (1993).
- ⁴²³M. Ritala, M. Leskelä, L.-S. Johansson, and L. Niinistö, Thin Solid Films 228, 32 (1993).
- ⁴²⁴ S. Haukka, E.-L. Lakomaa, and T. Suntola, Appl. Surf. Sci. **82/83**, 548 (1994).
- ⁴²⁵ J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, J. Cryst. Growth 148, 268 (1995).
- ⁴²⁶ J. Aarik, A. Aidla, V. Sammelselg, H. Siimon, and T. Uustare, J. Cryst. Growth 169, 496 (1996).
- ⁴²⁷ J. Aarik, A. Aidla, and T. Uustare, Philos. Mag. Lett. **73**, 115 (1996).
- ⁴²⁸ A. Rosental, P. Adamson, A. Gerst, and A. Niilisk, Appl. Surf. Sci. 107, 178 (1996).
- ⁴²⁹ V. E. Drozd, N. N. Kopilov, and V. B. Aleskovski, Appl. Surf. Sci. 112, 258 (1997).
- ⁴³⁰ J. Aarik, A. Aidla, V. Sammelselg, and T. Uustare, J. Cryst. Growth 181, 259 (1997).
- ⁴³¹ J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films 305, 270 (1997).
- ⁴³²H. Siimon and J. Aarik, J. Phys. D **30**, 1725 (1997).
- ⁴³³H. Siimon, J. Aarik, and T. Uustare, in *Proceedings of the 14th International Conference of Chemical Vapor Deposition and EUROCVD-11*, edited by M. D. Allendorf and C. Bernard [Proc.-Electrochem. Soc. 97, 131 (1997)].
- ⁴³⁴ M. Lindblad, S. Haukka, A. Kytökivi, E.-L. Lakomaa, A. Rautiainen, and T. Suntola, Appl. Surf. Sci. 121/122, 286 (1997).
- ⁴³⁵ A. Rosental, P. Adamson, A. Gerst, H. Koppel, and A. Tarre, Appl. Surf. Sci. 112, 82 (1997).
- ⁴³⁶ V. Sammelselg, A. Rosental, A. Tarre, L. Niinistö, K. Heiskanen, K. Ilmonen, L.-S. Johansson, and T. Uustare, Appl. Surf. Sci. 134, 78 (1998).
- ⁴³⁷ A. Suisalu, J. Aarik, H. Mändar, and I. Sildos, Thin Solid Films 336, 295 (1998).
- ⁴³⁸ A. Rosental, A. Tarre, P. Adamson, A. Gerst, A. Kasikov, and A. Niilisk, Appl. Surf. Sci. **142**, 204 (1999).
- ⁴³⁹ V. Sammelselg, J. Aarik, A. Aidla, A. Kasikov, E. Heikinheimo, M. Peussa, and L. Niinistö, J. Anal. At. Spectrom. 14, 523 (1999).
- ⁴⁴⁰ K. Schrijnemakers, N. R. E. N. Impens, and E. F. Vansant, Langmuir 15, 5807 (1999).
- ⁴⁴¹ A. Turković, Mater. Sci. Eng., B **75**, 85 (2000).
- ⁴⁴² J. Aarik, A. Aidla, H. Mändar, and V. Sammelselg, J. Cryst. Growth 220, 531 (2000).
- ⁴⁴³ R. Matero, A. Rahtu, and M. Ritala, Chem. Mater. **13**, 4506 (2001).
- ⁴⁴⁴ J. Aarik, A. Aidla, H. Mändar, and T. Uustare, Appl. Surf. Sci. **172**, 148 (2001).
- ⁴⁴⁵ A. Tarre, A. Rosental, V. Sammelselg, and T. Uustare, Appl. Surf. Sci. 175/176, 111 (2001).
- ⁴⁴⁶ J. Aarik, A. Aidla, H. Mändar, T. Uustare, M. Schuisky, and A. Hårsta, J. Cryst. Growth **242**, 189 (2002).
- ⁴⁴⁷B. J. Ninness, D. W. Bousfield, and C. P. Tripp, Colloids Surf., A 214, 195 (2003).
- ⁴⁴⁸ K. S. Finnie, G. Triani, K. T. Short, D. R. G. Mitchell, D. J. Attard, J. R. Bartlett, and C. J. Barbé, Thin Solid Films 440, 109 (2003).
- ⁴⁴⁹D. R. G. Mitchell, D. J. Attard, and G. Triani, Thin Solid Films 441, 85 (2003).
- ⁴⁵⁰ J. D. Ferguson, A. R. Yoder, A. W. Weimer, and S. M. George, Appl. Surf. Sci. **226**, 393 (2004).
- ⁴⁵¹ X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, Nano Lett. 4, 2223 (2004).
- ⁴⁵²M. S. Sander, M. J. Côté, W. Gu, B. M. Kile, and C. P. Tripp, Adv. Mater. (Weinheim, Ger.) 16, 2052 (2004).
- ⁴⁵³W. Gu and C. P. Tripp, Langmuir **21**, 211 (2005).
- ⁴⁵⁴ H. Kumagai, M. Matsumoto, K. Toyoda, M. Obara, and M. Suzuki, Thin Solid Films 263, 47 (1995).
- ⁴⁵⁵ J. Aarik, A. Aidla, T. Uustare, K. Kukli, V. Sammelselg, M. Ritala, and M. Leskelä, Appl. Surf. Sci. 193, 277 (2002).
- ⁴⁵⁶ K. Kukli, M. Ritala, M. Schusky, M. Leskelä, T. Sajavaara, J. Keinonen, T. Uustare, and A. Hårsta, Chem. Vap. Deposition 6, 303 (2000).
- 457 K. Kukli, A. Aidla, J. Aarik, M. Schuisky, A. Hårsta, M. Ritala, and M.

- Leskelä, Langmuir 16, 8122 (2000).
- ⁴⁵⁸M. Schuisky, A. Hårsta, A. Aidla, K. Kukli, A.-A. Kiisler, and J. Aarik, J. Electrochem. Soc. 147, 3319 (2000).
- ⁴⁵⁹ M. Schuisky, J. Aarik, K. Kukli, A. Aidla, and A. Hårsta, Langmuir 17, 5508 (2001).
- ⁴⁶⁰M. Schuisky, K. Kukli, J. Aarik, J. Lu, and A. Hårsta, J. Cryst. Growth 235, 293 (2002).
- ⁴⁶¹ V. Pore, A. Rahtu, M. Leskelä, M. Ritala, T. Sajavaara, and J. Keinonen, Chem. Vap. Deposition 10, 143 (2004).
- ⁴⁶²M. Ritala, M. Leskelä, and E. Rauhala, Chem. Mater. **6**, 556 (1994).
- ⁴⁶³ J. Aarik, A. Aidla, V. Sammelselg, T. Uustare, M. Ritala, and M. Leskelä, Thin Solid Films 370, 163 (2000).
- ⁴⁶⁴ J. Aarik, J. Karlis, H. Mändar, T. Uustare, and V. Sammelselg, Appl. Surf. Sci. 181, 339 (2001).
- ⁴⁶⁵ A. Rahtu, K. Kukli, and M. Ritala, Chem. Mater. **13**, 817 (2001).
- ⁴⁶⁶I.-D. Kim, H. L. Tuller, H.-S. Kim, and J.-S. Park, Appl. Phys. Lett. 85, 4705 (2004).
- ⁴⁶⁷H. Döring, K. Hashimoto, and A. Fujushima, Ber. Bunsenges. Phys. Chem. 96, 620 (1992).
- ⁴⁶⁸M. Ritala, M. Leskelä, L. Niinistö, and P. Haussalo, Chem. Mater. 5, 1174 (1993).
- ⁴⁶⁹J. Aarik, A. Aidla, T. Uustare, M. Ritala, and M. Leskelä, Appl. Surf. Sci. **161**, 385 (2000).
- ⁴⁷⁰ A. Rahtu and M. Ritala, Chem. Vap. Deposition **8**, 21 (2002).
- ⁴⁷¹H. Shin, D.-K. Jeong, J. Lee, M. M. Sung, and J. Kim, Adv. Mater. (Weinheim, Ger.) 16, 1197 (2004).
- ⁴⁷²J. W. Lim and S. J. Yun, Electrochem. Solid-State Lett. 7, H33 (2004).
- ⁴⁷³ D. K. Jeong, N. H. Park, S. H. Jung, W. G. Jung, H. Shin, J. G. Lee, and J. Y. Kim, Mater. Sci. Forum 449–452, 1165 (2004).
- ⁴⁷⁴ D. Jeong, J. Lee, H. Shin, J. Lee, J. Kim, and M. Sung, J. Korean Phys. Soc. 45, 1249 (2004).
- ⁴⁷⁵ J. Keränen, E. Iiskola, C. Guimon, A. Auroux, and L. Niinistö, in *Proceedings of the Eight International Symposium on Scientific Bases for the Preparation of Heterogeneous Catalysts, Louvain-la-Neuve, Belgium, 9–12 September 2002*, edited by E. Gaigneaux, D. E. De Vos, P. Grange, P. A. Jacobs, J. A. Martens, P. Ruiz, and G. Poncelet [Stud. Surf. Sci. Catal. 143, 777 (2002)].
- ⁴⁷⁶D.-S. Kil, J.-M. Lee, and J.-S. Roh, Chem. Vap. Deposition 8, 195 (2002).
- ⁴⁷⁷S. K. Kim, W.-D. Kim, K.-M. Kim, C. S. Hwang, and J. Jeong, Appl. Phys. Lett. **85**, 4112 (2004).
- ⁴⁷⁸J. P. Lee, M. H. Park, T. M. Chung, Y. Kim, and M. M. Sung, Bull. Korean Chem. Soc. **25**, 475 (2004).
- ⁴⁷⁹ J. J. Park, W. J. Lee, G. H. Lee, I. S. Kim, B. C. Shin, and S. G. Yoon, Integr. Ferroelectr. **68**, 129 (2004).
- ⁴⁸⁰ L. Hiltunen, M. Leskelä, M. Mäkelä, L. Niinistö, E. Nykänen, and P. Soininen, Thin Solid Films 166, 149 (1988).
- ⁴⁸¹M. Ritala, M. Leskelä, E. Rauhala, and P. Haussalo, J. Electrochem. Soc. **142**, 2731 (1995).
- ⁴⁸²M. Ritala, T. Asikainen, M. Leskelä, J. Jokinen, R. Lappalainen, M. Utriainen, L. Niinistö, and E. Ristolainen, Appl. Surf. Sci. 120, 199 (1997).
- ⁴⁸³ P. Mårtensson, M. Juppo, M. Ritala, M. Leskelä, and J.-O. Carlsson, J. Vac. Sci. Technol. B 17, 2122 (1999).
- ⁴⁸⁴ J. Uhm, S. Lee, J. Lee, Y. D. Kim, H. Jeon, T. Cha, and K. Yi, J. Korean Phys. Soc. **35**, S765 (1999).
- ⁴⁸⁵C. H. Ahn, S. G. Cho, H. J. Lee, K. H. Park, and S. H. Jeong, Met. Mater. Int. 7, 621 (2001).
- ⁴⁸⁶ J. Uhm and H. Jeon, Jpn. J. Appl. Phys., Part 1 **40**, 4657 (2001).
- ⁴⁸⁷ M. Juppo, A. Rahtu, and M. Ritala, Chem. Mater. **14**, 281 (2002).
- ⁴⁸⁸ A. Satta *et al.*, J. Appl. Phys. **92**, 7641 (2002).
- ⁴⁸⁹S. Li, Z. L. Dong, B. K. Lim, M. H. Liang, C. Q. Sun, W. Gao, H. S. Park, and T. White, J. Phys. Chem. B **106**, 12797 (2002).
- ⁴⁹⁰ K.-E. Elers, V. Saanila, P. J. Soininen, J. T. Kostamo, S. Haukka, J. Juhanoja, and W. F. A. Besling, Chem. Vap. Deposition 8, 149 (2002).
- ⁴⁹¹ K.-E. Elers, V. Saanila, W.-M. Li, P. J. Soininen, J. T. Kostamo, S. Haukka, J. Juhanoja, and W. F. A. Besling, Thin Solid Films 434, 94 (2003).
- ⁴⁹² J. Kim, H. Hong, S. Ghosh, K.-Y. Oh, and C. Lee, Jpn. J. Appl. Phys., Part 1 **42**, 1375 (2003).
- ⁴⁹³ J. Kim, H. Hong, K. Oh, and C. Lee, Appl. Surf. Sci. **210**, 231 (2003).
- ⁴⁹⁴ A. Satta, A. Vantomme, J. Schuhmacher, C. M. Whelan, V. Sutcliffe, and K. Maex, Appl. Phys. Lett. 84, 4571 (2004).
- ⁴⁹⁵M. Juppo, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **147**, 3377

- (2000).
- ⁴⁹⁶ M. Juppo, P. Alén, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Electrochem. Solid-State Lett. 5, C4 (2002).
- ⁴⁹⁷M. Ritala, M. Leskelä, E. Rauhala, and J. Jokinen, J. Electrochem. Soc. 145, 2914 (1998).
- ⁴⁹⁸ J.-S. Min, H.-S. Park, and S.-W. Kang, Appl. Phys. Lett. **75**, 1521 (1999).
- ⁴⁹⁹ J.-W. Lim, J.-S. Park, and S.-W. Kang, J. Appl. Phys. **87**, 4632 (2000).
- ⁵⁰⁰ J.-W. Lim, H.-S. Park, and S.-W. Kang, J. Appl. Phys. **88**, 6327 (2000).
- ⁵⁰¹ J.-W. Lim, H.-S. Park, and S.-W. Kang, J. Electrochem. Soc. **148**, C403 (2001).
- ⁵⁰² J. H. Yun, E. S. Choi, C. M. Jang, and C. S. Lee, Jpn. J. Appl. Phys., Part 2 41, L418 (2002).
- ⁵⁰³ J. Y. Kim, H. K. Kim, Y. Kim, Y. D. Kim, W. M. Kim, and H. Jeon, J. Korean Phys. Soc. 40, 176 (2002).
- ⁵⁰⁴ H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, J. Korean Phys. Soc. 41, 739 (2002).
- ⁵⁰⁵ J. W. Elam, M. Schuisky, J. D. Ferguson, and S. M. George, Thin Solid Films **436**, 145 (2003).
- ⁵⁰⁶ J. Y. Kim, G. H. Choi, Y. D. Kim, Y. Kim, and H. Jeon, Jpn. J. Appl. Phys., Part 1 42, 4245 (2003).
- $^{507}\,\text{S.}$  G. Park and D.-H. Kim, Jpn. J. Appl. Phys., Part 1  $\,$  43, 303 (2004).
- ⁵⁰⁸ J. Y. Kim, D. Y. Kim, H. O. Park, and H. Jeon, J. Korean Phys. Soc. 45, 1639 (2004).
- ⁵⁰⁹ J. Y. Kim, D. Y. Kim, H. O. Park, and H. Jeon, J. Electrochem. Soc. 152, G29 (2005).
- ⁵¹⁰ J. Y. Kim, Y. Kim, and H. Jeon, Jpn. J. Appl. Phys., Part 2 42, L414 (2003).
- ⁵¹¹ D.-H. Kim, Y. J. Kim, J.-H. Park, and J. H. Kim, Mater. Sci. Eng., C 24, 289 (2004).
- 512 J. Y. Kim, S. Seo, D. Y. Kim, H. Jeon, and Y. Kim, J. Vac. Sci. Technol. A 22, 8 (2004).
- 513 J.-S. Min, Y.-W. Son, W.-G. Kang, S.-S. Chun, and S.-W. Kang, Jpn. J. Appl. Phys., Part 1 37, 4999 (1998).
- 514 D.-J. Kim, Y.-B. Jung, M.-B. Lee, Y.-H. Lee, J.-H. Lee, and J.-H. Lee,
   Thin Solid Films 372, 276 (2000).
- ⁵¹⁵S. M. Rossnagel, A. Sherman, and F. Turner, J. Vac. Sci. Technol. B 18, 2016 (2000).
- ⁵¹⁶H. Kim and S. M. Rossnagel, J. Vac. Sci. Technol. A **20**, 802 (2002).
- ⁵¹⁷ A. Rahtu, M. Ritala, and M. Leskelä, Chem. Mater. **13**, 1528 (2001).
- $^{518}\,A.$  Rahtu and M. Ritala, Langmuir 18, 10046 (2002).
- 519 J. C. Badot, S. Ribes, E. B. Yousfi, V. Vivier, J. P. Pereira-Ramos, N. Baffier, and D. Lincot, Electrochem. Solid-State Lett. 3, 485 (2000).
- ⁵²⁰ J. C. Badot, A. Mantoux, N. Baffier, O. Dubrunfaut, and D. Lincot, J. Mater. Chem. 14, 3411 (2004).
- ⁵²¹ J. Keranen, C. Guimon, E. Iiskola, A. Auroux, and L. Niinisto, J. Phys. Chem. B **107**, 10773 (2003).
- ⁵²² J. Keränen, C. Guimon, A. Auroux, E. I. Iiskola, and L. Niinistö, Phys. Chem. Chem. Phys. 5, 5333 (2003).
- ⁵²³ J. Keränen, C. Guimon, E. Liskola, A. Auroux, and L. Niinistö, Catal. Today 78, 149 (2003).
- 524 J. Keränen, A. Auroux, S. Ek, and L. Niinistö, Appl. Catal., A 228, 213 (2002)
- ⁵²⁵ A. Gervasini, P. Carniti, J. Keränen, L. Niinistö, and A. Auroux, Catal. Today **96**, 187 (2004).
- 526 S. Haukka, E.-L. Lakomaa, and T. Suntola, Appl. Surf. Sci. 75, 220 (1994).
- ⁵²⁷A. Kytökivi, J.-P. Jacobs, A. Hakuli, J. Meriläinen, and H. H. Brongersma, J. Catal. **162**, 190 (1996).
- ⁵²⁸ A. Hakuli, A. Kytökivi, and A. O. I. Krause, Appl. Catal., A **190**, 219 (2000)
- ⁵²⁹ J. M. Kanervo and A. O. I. Krause, J. Phys. Chem. B **105**, 9778 (2001).
- ⁵³⁰ R. L. Puurunen, S. M. K. Airaksinen, and A. O. I. Krause, J. Catal. **213**, 281 (2003).
- ⁵³¹O. Nilsen, M. Peussa, H. Fjellvåg, L. Niinistö, and A. Kjekshus, J. Mater. Chem. 9, 1781 (1999).
- ⁵³²O. Nilsen, H. Fjellvåg, and A. Kjekshus, Thin Solid Films 444, 44 (2003).
- 533 O. Nilsen, S. Foss, H. Fjellvåg, and A. Kjekshus, Thin Solid Films 468, 65 (2004)
- ⁵³⁴M. A. Herman, O. Jylhä, and M. Pessa, J. Cryst. Growth 66, 480 (1984).
- ⁵³⁵M. Pessa and O. Jylhä, Appl. Phys. Lett. **45**, 646 (1984).
- ⁵³⁶W. Faschinger, F. Hauzenberger, P. Juza, A. Pesek, and H. Sitter, J.

- Electron. Mater. 22, 497 (1993).
- ⁵³⁷W. Faschinger, Phys. Scr., T **49**, 492 (1993).
- ⁵³⁸ J. M. Hartmann, G. Feuillet, M. Charleux, and H. Mariette, J. Appl. Phys. **79**, 3035 (1996).
- ⁵³⁹J. M. Hartmann, M. Charleux, J. L. Rouvière, and H. Mariette, Appl. Phys. Lett. **70**, 1113 (1997).
- ⁵⁴⁰S. Kuroda, Y. Terai, K. Takita, T. Okuno, and Y. Masumoto, J. Cryst. Growth **184/185**, 274 (1998).
- ⁵⁴¹F. Kany, J. M. Hartmann, H. Ulmer-Tuffigo, and H. Mariette, Superlattices Microstruct. 23, 1359 (1998).
- ⁵⁴² J. M. Hartmann, F. Kany, M. Charleux, Y. Samson, J. L. Rouvière, and H. Mariette, J. Appl. Phys. **84**, 4300 (1998).
- ⁵⁴³ J. M. Hartmann, F. Kany, F. Chautain, J. L. Rouvière, A. Wasiela, and H. Mariette, J. Cryst. Growth **184/185**, 279 (1998).
- ⁵⁴⁴M. de Ridder et al., J. Phys. Chem. B **106**, 13146 (2002).
- ⁵⁴⁵O. Nilsen, M. Lie, S. Foss, H. Fjellvåg, and A. Kjekshus, Appl. Surf. Sci. **227**, 40 (2004).
- ⁵⁴⁶B. S. Lim, A. Rahtu, and R. G. Gordon, Nat. Mater. 2, 749 (2003).
- ⁵⁴⁷L. B. Backman, A. Rautiainen, M. Lindblad, and A. O. I. Krause, Appl. Catal., A 191, 55 (2000).
- ⁵⁴⁸ A. Rautiainen, M. Lindblad, L. B. Backman, and R. L. Puurunen, Phys. Chem. Chem. Phys. 4, 2466 (2002).
- ⁵⁴⁹L. B. Backman, A. Rautiainen, A. O. I. Krause, and M. Lindblad, Catal. Today 43, 11 (1998).
- ⁵⁵⁰L. B. Backman, A. Rautiainen, M. Lindblad, O. Jylhä, and A. O. I. Krause, Appl. Catal., A **208**, 223 (2001).
- ⁵⁵¹V. G. Milt, M. A. Ulla, and E. A. Lombardo, Catal. Lett. **65**, 67 (2000).
- ⁵⁵² V. G. Milt, M. A. Ulla, and E. A. Lombardo, J. Catal. **200**, 241 (2001).
- ⁵⁵³V. G. Milt, E. A. Lombardo, and M. A. Ulla, Appl. Catal., B 37, 63 (2002).
- 554 R. L. Puurunen, T. A. Zeelie, and A. O. I. Krause, Catal. Lett. 83, 27 (2002).
- ⁵⁵⁵H. Seim, M. Nieminen, L. Niinistö, H. Fjellvåg, and L.-S. Johansson, Appl. Surf. Sci. 112, 243 (1997).
- J. Chae, H.-S. Park, and S. W. Kang, Electrochem. Solid-State Lett. 5, C64 (2002).
- ⁵⁵⁷ M. Lindblad, L. P. Lindfors, and T. Suntola, Catal. Lett. **27**, 323 (1994).
- ⁵⁵⁸J. P. Jacobs, L. P. Lindfors, J. G. H. Reintjes, O. Jylhä, and H. H. Brongersma, Catal. Lett. 25, 315 (1994).
- ⁵⁵⁹P. Mäki-Arvela *et al.*, Appl. Catal., A **241**, 271 (2003).
- ⁵⁶⁰M. Utriainen, M. Kröger-Laukkanen, and L. Niinistö, Mater. Sci. Eng., B 54, 98 (1998).
- ⁵⁶¹M. Utriainen, M. Kröger-Laukkanen, L.-S. Johansson, and L. Niinistö, Appl. Surf. Sci. 157, 151 (2000).
- ⁵⁶² H. Seim, H. Mölsä, M. Nieminen, H. Fjellvåg, and L. Niinistö, J. Mater. Chem. 7, 449 (1997).
- ⁵⁶³R. G. van Welzenis, R. A. M. Bink, and H. H. Brongersma, Appl. Surf. Sci. **107**, 255 (1996).
- ⁵⁶⁴ A. M. Molenbroek, S. Haukka, and B. S. Clausen, J. Phys. Chem. B 102, 10680 (1998).
- ⁵⁶⁵ J. S. Huo, R. Solanki, and J. McAndrew, J. Mater. Res. 17, 2394 (2002).
- ⁵⁶⁶L. Reijnen, B. Meester, A. Goossens, and J. Schoonman, J. Phys. IV 11, Pr3/1103 (2001).
- ⁵⁶⁷B. Meester, L. Reijnen, A. Goossens, and J. Schoonman, J. Phys. IV 11, Pr3/1147 (2001).
- ⁵⁶⁸ J. Johansson, J. Kostamo, M. Karppinen, and L. Niinistö, J. Mater. Chem. **12**, 1022 (2002).
- ⁵⁶⁹L. Reijnen, B. Meester, A. Goossens, and J. Schoonman, Chem. Vap. Deposition 9, 15 (2003).
- ⁵⁷⁰ P. Mårtensson and J.-O. Carlsson, Chem. Vap. Deposition **3**, 45 (1997).
- ⁵⁷¹T. Törndahl, M. Ottosson, and J.-O. Carlsson, Thin Solid Films 458, 129 (2004).
- ⁵⁷² A. Johansson, T. Törndahl, L. M. Ottosson, M. Boman, and J.-O. Carlsson, Mater. Sci. Eng., C 23, 823 (2003).
- ⁵⁷³ M. Juppo, M. Ritala, and M. Leskelä, J. Vac. Sci. Technol. A **15**, 2330 (1997).
- ⁵⁷⁴A. Niskanen, A. Rahtu, T. Sajavaara, K. Arstila, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 152, G25 (2005).
- ⁵⁷⁵P. Mårtensson and J.-O. Carlsson, J. Electrochem. Soc. **145**, 2926 (1998).
- ⁵⁷⁶ A. U. Mane and S. A. Shivashankar, Mater. Sci. Semicond. Process. 7, 343 (2004).
- 577 R. Solanki and B. Pathangey, Electrochem. Solid-State Lett. 3, 479 (2000).

- ⁵⁷⁹ K. S. A. Butcher, P. Afifuddin, P.-T. Chen, M. Godlewski, A. Szczerbakov, E. M. Goldys, T. L. Tansley, and J. A. Freitas Jr., J. Cryst. Growth 246, 237 (2002).
- ⁵⁸⁰ K. Kaiya, N. Yoshii, N. Takahashi, and T. Nakamura, J. Mater. Sci. Lett. 19, 2089 (2000).
- ⁵⁸¹ K. Kaiya, N. Yoshii, K. Omichi, N. Takahashi, T. Nakamura, S. Okamoto, and H. Yamamoto, Chem. Mater. 13, 1952 (2001).
- ⁵⁸² K. Kopalko, M. Godlewski, J. Z. Domagala, E. Lusakowska, R. Minikayev, W. Paszkowicz, and A. Szczerbakow, Chem. Mater. 16, 1447 (2004).
- ⁵⁸³B. W. Sanders and A. Kitai, Chem. Mater. **4**, 1005 (1992).
- ⁵⁸⁴ V. Lujala, J. Skarp, M. Tammenmaa, and T. Suntola, Appl. Surf. Sci. 82/83, 34 (1994).
- ⁵⁸⁵B. Sang and M. Konagai, Jpn. J. Appl. Phys., Part 2 **35**, L602 (1996).
- ⁵⁸⁶ K. Saito, Y. Watanabe, K. Takahashi, T. Matsuzawa, B. Sang, and M. Konagai, Sol. Energy Mater. Sol. Cells 49, 187 (1997).
- ⁵⁸⁷ A. Yamada, B. Sang, and M. Konagai, Appl. Surf. Sci. **112**, 216 (1997).
- ⁵⁸⁸B. Sang, A. Yamada, and M. Konagai, Sol. Energy Mater. Sol. Cells 49, 19 (1997).
- 589 B. Sang, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., Part 2 37, L1125 (1998).
- ⁵⁹⁰B. Sang, K. Dairiki, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., Part 1 38, 4983 (1999).
- ⁵⁹¹S. Chaisitsak, T. Sugiyama, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., Part 1 38, 4989 (1999).
- ⁵⁹² A. Yamada and M. Konagai, Solid State Phenom. **67/68**, 237 (1999).
- ⁵⁹³ A. W. Ott and R. P. H. Chang, Mater. Chem. Phys. **58**, 132 (1999).
- ⁵⁹⁴ A. Shimizu, S. Chaisitsak, T. Sugiyama, A. Yamada, and M. Konagai, Thin Solid Films 361/362, 193 (2000).
- ⁵⁹⁵E. B. Yousfi, J. Fouache, and D. Lincot, Appl. Surf. Sci. **153**, 223 (2000).
- ⁵⁹⁶ E. B. Yousfi, T. Asikainen, V. Pietu, P. Cowache, M. Powalla, and D. Lincot, Thin Solid Films 361/362, 183 (2000).
- ⁵⁹⁷E. B. Yousfi, B. Weinberger, F. Donsanti, P. Cowache, and D. Lincot, Thin Solid Films 387, 29 (2001).
- ⁵⁹⁸ Y. Yamamoto, K. Saito, K. Takahashi, and M. Konagai, Sol. Energy Mater. Sol. Cells 65, 125 (2001).
- ⁵⁹⁹C. H. Liu, M. Yan, X. Liu, E. Seelig, and R. P. H. Chang, Chem. Phys. Lett. 355, 43 (2002).
- 600 C. H. Liu and R. P. H. Chang, J. Chem. Phys. 116, 8139 (2002).
- ⁶⁰¹ J. Sterner, J. Kessler, and L. Stolt, J. Vac. Sci. Technol. A **20**, 278 (2002).
- ⁶⁰²M. Schuisky, J. W. Elam, and S. M. George, Appl. Phys. Lett. **81**, 180 (2002).
- ⁶⁰³ J. Lim, K. Shin, K. W. Kim, and C. Lee, Mater. Sci. Eng., B **107**, 301 (2004).
- ⁶⁰⁴ J. Lim, K. Shin, H. W. Kim, and C. Lee, J. Lumin. **109**, 181 (2004).
- ⁶⁰⁵ S.-H. K. Park and Y. E. Lee, J. Mater. Sci. **39**, 2195 (2004).
- ⁶⁰⁶ J. Lim, K. Shin, H. Kim, and C. Lee, Thin Solid Films **475**, 256 (2005).
- ⁶⁰⁷ J. D. Ferguson, A. W. Weimer, and S. M. George, J. Vac. Sci. Technol. A 23, 118 (2005).
- ⁶⁰⁸ M. Tammenmaa, T. Koskinen, L. Hiltunen, L. Niinistö, and M. Leskelä, Thin Solid Films 124, 125 (1985).
- 609 K. Kobayashi and S. Okudaira, Chem. Lett. **26**, 511 (1997).
- 610 A. Wójcik et al., Acta Phys. Pol. A 105, 667 (2004).
- ⁶¹¹ W. Faschinger, P. Juza, S. Ferreira, H. Zajicek, A. Pesek, H. Sitter, and K. Lischka, Thin Solid Films 225, 270 (1993).
- ⁶¹²T. Tadokoro, S. Ohta, T. Ishiguro, Y. Ichinose, S. Kobayashi, and N. Yamamoto, J. Cryst. Growth 148, 223 (1995).
- ⁶¹³ A. Koukitu, T. Miyazawa, H. Ikeda, and H. Seki, J. Cryst. Growth 123, 95 (1992).
- 614 M. Pessa, R. Mäkelä, and T. Suntola, Appl. Phys. Lett. 38, 131 (1981).
- ⁶¹⁵J. A. Lahtinen, A. Lu, T. Tuomi, and M. Tammenmaa, J. Appl. Phys. 58, 1851 (1985).
- 616 M. Oikkonen, J. Appl. Phys. **62**, 1385 (1987).
- ⁶¹⁷J. Hyvärinen, M. Sonninen, and R. Törnqvist, J. Cryst. Growth 86, 695 (1988).
- ⁶¹⁸ M. Oikkonen, M. Tammenmaa, and M. Asplund, Mater. Res. Bull. 23, 133 (1988).
- ⁶¹⁹ M. Oikkonen, T. Tuomi, and M. Luomajärvi, J. Appl. Phys. **63**, 1070 (1988)
- ⁶²⁰ V. Balek, J. Fusek, O. Kříž, M. Leskelä, L. Niinistö, E. Nykänen, J. Rautanen, and P. Soininen, J. Mater. Res. 9, 119 (1994).

- ⁶²¹ J. Ihanus, M. Ritala, M. Leskelä, T. Prohaska, R. Resch, G. Friedbacher, and M. Grasserbauer, Appl. Surf. Sci. 120, 43 (1997).
- ⁶²² J. Ihanus, M. Ritala, M. Leskelä, and E. Rauhala, Appl. Surf. Sci. 112, 154 (1997).
- ⁶²³ A. Szczerbakow, M. Godlewski, E. Dynowska, V. Yu. Ivanov, K. Świątek, E. M. Goldys, and M. R. Phillips, Acta Phys. Pol. A **97**, 579 (1998).
- ⁶²⁴ A. Szczerbakow, E. Dynowska, M. Godlewski, and K. Swiatek, J. Cryst. Growth 183, 708 (1998).
- ⁶²⁵ S. J. Yun, S. Dey, and K. S. Nam, J. Korean Phys. Soc. 33, S454 (1998).
- ⁶²⁶ J. S. King, C. W. Neff, C. J. Summers, W. Park, S. Blomquist, E. Forsythe, and D. Morton, Appl. Phys. Lett. 83, 2566 (2003).
- 627 A. Hunter and A. H. Kitai, J. Cryst. Growth **91**, 111 (1988).
- ⁶²⁸ M. D. Bhise, B. Sanders, N. Dalacu, and A. H. Kitai, J. Mater. Sci. 24, 3164 (1989).
- ⁶²⁹ Y.-H. Wu, T. Toyoda, Y. Kawakami, S. Fujita, and S. Fujita, Jpn. J. Appl. Phys., Part 2 29, L727 (1990).
- ⁶³⁰S. Yamaga and A. Yoshikawa, J. Cryst. Growth **117**, 152 (1992).
- ⁶³¹C. H. Liu, M. Yokoyama, and Y. K. Su, Jpn. J. Appl. Phys., Part 1 35, 5416 (1996).
- ⁶³² C. H. Liu, M. Yokoyama, Y. K. Su, and N. C. Lee, Jpn. J. Appl. Phys., Part 1 35, 2749 (1996).
- ⁶³³C.-T. Hsu, M. Yokoyama, and Y. K. Su, Mater. Chem. Phys. **51**, 102 (1997).
- ⁶³⁴C. T. Hsu, Thin Solid Films **335**, 284 (1998).
- ⁶³⁵M. Yokoyama and N.-T. Chen, J. Cryst. Growth **223**, 369 (2001).
- ⁶³⁶G. Stuyven, P. De Visschere, A. Hikavyy, and K. Neyts, J. Cryst. Growth 234, 690 (2002).
- ⁶³⁷ Y. S. Kim and S. J. Yun, Appl. Surf. Sci. **229**, 105 (2004).
- ⁶³⁸H. Fujiwara, H. Kiryu, and I. Shimizu, J. Appl. Phys. **77**, 3927 (1995).
- ⁶³⁹ M. Oikkonen, M. Blomberg, T. Tuomi, and M. Tammenmaa, Thin Solid Films 124, 317 (1985).
- 640 T. Yao and T. Takeda, Appl. Phys. Lett. **48**, 160 (1986).
- 641 T. Yao, T. Takeda, and R. Watanuki, Appl. Phys. Lett. 48, 1615 (1986).
- ⁶⁴²T. Yao, Jpn. J. Appl. Phys., Part 2 **25**, L544 (1986).
- 643 T. Takeda, T. Kurosu, M. Lida, and T. Yao, Surf. Sci. 174, 548 (1996).
- 644 T. Yao, Jpn. J. Appl. Phys., Part 2 25, L942 (1986).
- ⁶⁴⁵S. Dosho, Y. Takemura, M. Konagai, and K. Takahashi, J. Cryst. Growth 95, 580 (1989).
- ⁶⁴⁶ Y. Takemura, M. Konagai, K. Yamasaki, C. H. Lee, and K. Takahashi, J. Electron. Mater. 22, 437 (1993).
- ⁶⁴⁷ M. Konagai, Y. Takemura, K. Yamasaki, and K. Takahashi, Thin Solid Films 225, 256 (1993).
- ⁶⁴⁸H. Akinaga and K. Tanaka, Appl. Surf. Sci. **82/83**, 298 (1994).
- ⁶⁴⁹ Y. Ohtake, K. Kushiya, M. Ichikawa, A. Yamada, and M. Konagai, Jpn.
   J. Appl. Phys., Part 1 34, 5949 (1995).
- ⁶⁵⁰ K. Arai, Z. Q. Zhu, T. Sekiguchi, T. Yasuda, F. Lu, N. Kuroda, Y. Segawa, and T. Yao, J. Cryst. Growth **184/185**, 254 (1998).
- ⁶⁵¹ A. Szczerbakow, E. Dynowska, K. Swiatek, and M. Godlewski, J. Cryst. Growth 207, 148 (1999).
- ⁶⁵² A. Ohtake, T. Hanada, T. Yasuda, K. Arai, and T. Yao, Phys. Rev. B 60, 8326 (1999).
- 653 A. Ohtake et al., J. Cryst. Growth 201/202, 490 (1999).
- ⁶⁵⁴E. Guziewicz, M. Godlewski, K. Kopalko, E. Lusakowska, E. Dynowska, M. Guziewicz, M. M. Godlewski, and M. Phillips, Thin Solid Films 446, 172 (2004).
- 655 J. Y. Lee et al., Curr. Appl. Phys. 4, 611 (2004).
- ⁶⁵⁶ A. Koukitu, A. Saegusa, M. Kitho, H. Ikeda, and H. Seki, Jpn. J. Appl. Phys., Part 2 31, L2165 (1992).
- ⁶⁵⁷ R. Kimura, M. Konagai, and K. Takahashi, J. Cryst. Growth 116, 283 (1992).
- ⁶⁵⁸ C. D. Lee, B. H. Lim, C. Lim, H. L. Park, C. H. Chung, and S. K. Chang, J. Cryst. Growth 117, 148 (1992).
- ⁶⁵⁹C. D. Lee, B. K. Kim, J. W. Kim, S. K. Chang, and S. H. Suh, J. Appl. Phys. **76**, 928 (1994).
- ⁶⁶⁰C. D. Lee, B. K. Kim, J. W. Kim, H. L. Park, C. H. Chung, S. K. Chang, J. I. Lee, and S. K. Noh, J. Cryst. Growth 138, 136 (1994).
- ⁶⁶¹ A. Yoshikawa, T. Okamoto, H. Yasuda, S. Yamaga, and H. Kasai, J. Cryst. Growth 101, 86 (1990).
- ⁶⁶²A. Yoshikawa, M. Kobayashi, and S. Tokita, Appl. Surf. Sci. **82/83**, 316 (1904)
- ⁶⁶³I. Bhat and S. Akram, J. Cryst. Growth **138**, 127 (1994).
- ⁶⁶⁴C. D. Lee, S. I. Min, and S. K. Chang, J. Korean Phys. Soc. 28, S136

- (1995).
- ⁶⁶⁵C. D. Lee, S. I. Min, and S. K. Chang, J. Cryst. Growth **159**, 108 (1996).
- 666 C.-T. Hsu, Jpn. J. Appl. Phys., Part 1 35, 4476 (1996).
- ⁶⁶⁷C.-T. Hsu, J. Cryst. Growth **193**, 33 (1998).
- ⁶⁶⁸C.-T. Hsu, Mater. Chem. Phys. **52**, 240 (1998).
- ⁶⁶⁹C. T. Hsu, Mater. Chem. Phys. **58**, 6 (1999).
- ⁶⁷⁰ M. Yokoyama, N. T. Chen, and H. Y. Ueng, J. Cryst. Growth 212, 97 (2000).
- ⁶⁷¹ Y. G. Kim, Y. S. Joh, J. H. Song, K. S. Baek, S. K. Chang, and E. D. Sim, Appl. Phys. Lett. 83, 2656 (2003).
- ⁶⁷²W. S. Rees, D. M. Green, T. J. Anderson, E. Bretschneider, B. Pathangey, C. Park, and J. Kim, J. Electron. Mater. 21, 361 (1992).
- ⁶⁷³ Y. Takemura, H. Nakanishi, M. Konagai, and K. Takahashi, Jpn. J. Appl. Phys., Part 2 30, L246 (1991).
- ⁶⁷⁴Y. Takemura, M. Konagai, H. Nakanishi, and K. Takahashi, J. Cryst. Growth 117, 144 (1992).
- ⁶⁷⁵ F. Hauzenberger, W. Faschinger, P. Juza, A. Pesek, K. Lischka, and H. Sitter, Thin Solid Films 225, 265 (1993).
- ⁶⁷⁶ B. Daudin, S. Tatarenko, and D. Brun-Le Cunff, Phys. Rev. B **52**, 7822 (1995).
- ⁶⁷⁷ J. T. Sadowski and M. A. Herman, Appl. Surf. Sci. **112**, 148 (1997).
- ⁶⁷⁸E. M. Larramendi et al., J. Cryst. Growth 223, 447 (2001).
- ⁶⁷⁹E. M. Larramendi, E. López-Luna, O. De Melo, and I. Hernández-Calderón, Surf. Rev. Lett. 9, 1725 (2002).
- ⁶⁸⁰ W.-S. Wang, H. Ehsani, and I. Bhat, J. Electron. Mater. **22**, 873 (1993).
- ⁶⁸¹M. Nieminen, L. Niinistö, and E. Rauhala, J. Mater. Chem. **6**, 27 (1996).
- ⁶⁸²M. Utriainen, S. Lehto, L. Niinistö, C. Düsco, N. Q. Khanh, Z. E. Horváth, I. Bársony, and B. Pécz, Thin Solid Films 297, 39 (1997).
- ⁶⁸³C. Adelmann, E. Martinez-Guerrero, J. Barjon, J. Brault, L. S. Dang, H. Mariette, G. Mula, and B. Daudin, Phys. Status Solidi A 188, 673 (2001).
- ⁶⁸⁴C. Adelmann, J. Brault, J.-L. Rouvière, H. Mariette, G. Mula, and B. Daudin, J. Appl. Phys. 91, 5498 (2002).
- ⁶⁸⁵ A. Koukitu, Y. Kumagai, T. Taki, and H. Seki, Jpn. J. Appl. Phys., Part 1 38, 4980 (1999).
- ⁶⁸⁶ Y. Kumagai, M. Mayumi, A. Koukitu, and H. Seki, Appl. Surf. Sci. 159/160, 427 (2000).
- ⁶⁸⁷ H. Tsuchiya, M. Akamatsu, M. Ishida, and F. Hasegawa, Jpn. J. Appl. Phys., Part 2 35, L748 (1996).
- ⁶⁸⁸ N. H. Karam, T. Parodos, P. Colter, D. McNulty, W. Rowland, J. Schetzina, N. El-Masry, and S. M. Bedair, Appl. Phys. Lett. 67, 94 (1995).
- ⁶⁸⁹ K. S. Boutros, F. G. McIntosh, J. C. Roberts, S. M. Bedair, E. L. Piner, and N. A. El-Masry, Appl. Phys. Lett. **67**, 1856 (1995).
- ⁶⁹⁰E. L. Piner, M. K. Behbehani, N. A. El-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros, and S. M. Bedair, Appl. Phys. Lett. 70, 461 (1997).
- ⁶⁹¹ S.-C. Huang, H.-Y. Wang, C.-J. Hsu, J.-R. Gong, C.-I. Chiang, S.-L. Tu, and H. Chang, J. Mater. Sci. Lett. 17, 1281 (1998).
- ⁶⁹²H. Y. Wang, S. C. Huang, T. Y. Yan, J. R. Gong, T. Y. Lin, and Y. F. Chen, Mater. Sci. Eng., B 57, 218 (1999).
- ⁶⁹³ M. Asif Khan, R. A. Skogman, J. M. Van Hove, D. T. Olson, and J. N. Kuznia, Appl. Phys. Lett. **60**, 1366 (1992).
- ⁶⁹⁴ M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and L. F. Reitz, Appl. Phys. Lett. **60**, 2917 (1992).
- ⁶⁹⁵ J. Sumakeris, Z. Sitar, K. S. Ailey-Trent, K. L. More, and R. F. Davis, Thin Solid Films 225, 244 (1993).
- ⁶⁹⁶ A. Usui, H. Sunakawa, F. J. Stützler, and K. Ishida, Appl. Phys. Lett. 56, 289 (1990).
- ⁶⁹⁷ B. T. McDermott, K. G. Reid, N. A. El-Masry, S. M. Bedair, W. M. Duncan, X. Yin, and F. H. Pollak, Appl. Phys. Lett. **56**, 1172 (1990).
- ⁶⁹⁸ Y. Sakuma, M. Ozeki, N. Ohtsuka, and K. Kodama, J. Appl. Phys. 68, 5660 (1990).
- ⁶⁹⁹B. T. McDermott, N. A. El-Masry, B. L. Jiang, F. Hyuga, S. M. Bedair, and W. M. Duncan, J. Cryst. Growth 107, 96 (1991).
- ⁷⁰⁰ J. R. Gong, S. Nakamura, M. Leonard, S. M. Bedair, and N. A. El-Masry, J. Electron. Mater. **21**, 965 (1992).
- ⁷⁰¹ H. Isshiki, Y. Aoyagi, and T. Sugano, Microelectron. Eng. 43/44, 301 (1998).
- ⁷⁰²M. Yoshimoto, A. Kajimoto, and H. Matsunami, Thin Solid Films 225, 70 (1993).
- ⁷⁰³ A. Usui and H. Sunakawa, Jpn. J. Appl. Phys., Part 2 **25**, L212 (1986).

- ⁷⁰⁴ A. Koukitu, H. Nakai, A. Saegusa, T. Suzuki, O. Nomura, and H. Seki, Jpn. J. Appl. Phys., Part 2 27, L744 (1988).
- ⁷⁰⁵ J. Ahopelto, H. P. Kattelus, J. Saarilahti, and I. Suni, J. Cryst. Growth 99, 550 (1990).
- ⁷⁰⁶ A. Koukitu, H. Ikeda, H. Suzuki, and H. Seki, Jpn. J. Appl. Phys., Part 2 30, L1712 (1991).
- ⁷⁰⁷ A. Koukitu, H. Ikeda, H. Yasutake, and H. Seki, Jpn. J. Appl. Phys., Part 2 **30**, L1847 (1991).
- ⁷⁰⁸ C. Sasaoka, Y. Kato, and A. Usui, Jpn. J. Appl. Phys., Part 2 30, L1756 (1991)
- ⁷⁰⁹C. Sasaoka, Y. Kato, and A. Usui, J. Cryst. Growth **115**, 94 (1991).
- ⁷¹⁰ K. Nishi, A. Usui, and H. Sakaki, Appl. Phys. Lett. **61**, 31 (1992).
- ⁷¹¹ A. Usui, Thin Solid Films **225**, 53 (1993).
- ⁷¹² K. Nishi, A. Usui, and H. Sakaki, Thin Solid Films 225, 47 (1993).
- ⁷¹³ Y. Takahashi, M. Yagi, A. Koukitu, and H. Seki, Jpn. J. Appl. Phys., Part 2 32, L1277 (1993).
- ⁷¹⁴ A. Koukitu, N. Takahashi, Y. Miura, and H. Seki, Jpn. J. Appl. Phys., Part 2 33, L613 (1994).
- ⁷¹⁵ A. Koukitu, N. Takahashi, and H. Seki, J. Cryst. Growth **146**, 467 (1995).
- ⁷¹⁶ A. Koukitu, N. Takahashi, and H. Seki, J. Cryst. Growth **163**, 180 (1996).
- ⁷¹⁷H. P. Kattelus, J. Ahopelto, and I. Suni, Acta Polytech. Scand., Electr. Eng. Ser. 64, 155 (1989).
- 718 Y. Jin, R. Kobayashi, K. Fujii, and F. Hasegawa, Jpn. J. Appl. Phys., Part 1 29, L1350 (1990).
- ⁷¹⁹ K. Ishikawa, R. Kobayashi, S. Narahara, and F. Hasegawa, Jpn. J. Appl. Phys., Part 1 31, 1716 (1992).
- ⁷²⁰ R. Kobayashi, K. Ishikawa, S. Narahara, and F. Hasegawa, Jpn. J. Appl. Phys., Part 2 31, L1730 (1992).
- ⁷²¹ R. Kobayashi, S. Narahara, K. Ishikawa, and F. Hasegawa, Jpn. J. Appl. Phys., Part 2 32, L164 (1993).
- ⁷²²T. Taki and A. Koukitu, Appl. Surf. Sci. **112**, 127 (1997).
- ⁷²³ A. Doi, Y. Aoyagi, and S. Namba, Appl. Phys. Lett. **49**, 785 (1986).
- ⁷²⁴M. A. Tischler and S. M. Bedair, J. Cryst. Growth **77**, 89 (1986).
- ⁷²⁵ M. A. Tischler and S. M. Bedair, Appl. Phys. Lett. **48**, 1681 (1986).
- ⁷²⁶ M. A. Tischler, N. G. Anderson, and S. M. Bedair, Appl. Phys. Lett. 49, 1199 (1986).
- ⁷²⁷ S. P. DenBaars, C. A. Beyler, A. Hariz, and P. D. Dapkus, Appl. Phys. Lett. **51**, 1530 (1987).
- ⁷²⁸ M. Ozeki, K. Mochizuki, N. Ohtsuka, and K. Kodama, Appl. Phys. Lett. 53, 1509 (1988).
- ⁷²⁹ K. Mochizuki, M. Ozeki, K. Kodama, and N. Ohtsuka, J. Cryst. Growth 93, 557 (1988).
- ⁷³⁰ Y. Ide, B. T. McDermott, M. Hashemi, S. M. Bedair, and W. D. Goodhue, Appl. Phys. Lett. **53**, 2314 (1988).
- ⁷³¹ K. Kitahara, N. Ohtsuka, and M. Ozeki, J. Vac. Sci. Technol. B 7, 700 (1989).
- ⁷³² K. Kodama, M. Ozeki, K. Mochizuki, and N. Ohtsuka, Appl. Phys. Lett. **54**, 656 (1989).
- ⁷³³ P. D. Dapkus, S. P. DenBaars, Q. Chen, W. G. Jeong, and B. Y. Maa, Prog. Cryst. Growth. Charact. Mater. 19, 137 (1989).
- ⁷³⁴ E. Colas, R. Bhat, B. J. Skromme, and G. C. Nihous, Appl. Phys. Lett. 55, 2769 (1989).
- ⁷³⁵ Y. Kawakyu, H. Ishikawa, M. Sasaki, and M. Mashita, Jpn. J. Appl. Phys., Part 2 28, L1439 (1989).
- ⁷³⁶ A. Watanabe, T. Isu, M. Hata, T. Kamijoh, and Y. Katayama, Jpn. J. Appl. Phys., Part 2 28, L1080 (1989).
- ⁷³⁷ M. L. Yu, U. Memmert, and T. F. Kuech, Appl. Phys. Lett. **55**, 1011 (1989).
- ⁷³⁸T. H. Chiu, Appl. Phys. Lett. **55**, 1244 (1989).
- ⁷³⁹B. Y. Maa and P. D. Dapkus, J. Electron. Mater. **19**, 289 (1990).
- ⁷⁴⁰ M. Hashemi, J. Ramdani, B. T. McDermott, K. Reid, and S. M. Bedair, Appl. Phys. Lett. **56**, 964 (1990).
- ⁷⁴¹ K. Kodama, M. Ozeki, Y. Sakuma, K. Mochizuki, and N. Ohtsuka, J. Cryst. Growth **99**, 535 (1990).
- ⁷⁴² J. R. Creighton, K. R. Lykke, V. A. Shamamian, and B. D. Kay, Appl. Phys. Lett. **57**, 279 (1990).
- ⁷⁴³ T. H. Chiu, J. E. Cunningham, A. Robertson, Jr., and D. L. Malm, J. Cryst. Growth **105**, 155 (1990).
- ⁷⁴⁴ K. Kitahara, N. Ohtsuka, O. Ueda, M. Funagura, and M. Ozeki, Jpn. J. Appl. Phys., Part 2 29, L2457 (1990).
- ⁷⁴⁵ A. Watanabe, T. Kamijoh, M. Hata, T. Isu, and Y. Katayama, Vacuum 41, 965 (1990).

- ⁷⁴⁶ M. de Keijser and C. van Opdrop, Appl. Phys. Lett. **58**, 1187 (1991).
- ⁷⁴⁷ J. R. Gong *et al.*, J. Cryst. Growth **107**, 83 (1991).
- ⁷⁴⁸S. Yokoyama, M. Shinohara, and N. Inoue, Appl. Phys. Lett. **59**, 2148 (1991).
- ⁷⁴⁹S. Yokoyama, M. Shinohara, and N. Inoue, J. Cryst. Growth 115, 89 (1991).
- ⁷⁵⁰ K. G. Reid, H. M. Urdianyk, and S. M. Bedair, Appl. Phys. Lett. **59**, 2397 (1991).
- ⁷⁵¹ M. Sasaki, Y. Kawakyu, H. Ishikawa, and M. Mashita, Jpn. J. Appl. Phys., Part 2 31, L1313 (1992).
- ⁷⁵² J. P. Simko, T. Meguro, S. Iwai, K. Ozasa, A. Hirata, Y. Aoyagi, and T. Sugano, Jpn. J. Appl. Phys., Part 2 31, L1518 (1992).
- ⁷⁵³ D. E. Aspnes, I. Kamiya, and R. Bhat, J. Vac. Sci. Technol. B **10**, 1725 (1992).
- ⁷⁵⁴ N. Kobayashi and Y. Kobayashi, Thin Solid Films **225**, 32 (1993).
- ⁷⁵⁵M. L. Yu, J. Appl. Phys. **73**, 716 (1993).
- ⁷⁵⁶M. L. Yu, Thin Solid Films **225**, 7 (1993).
- ⁷⁵⁷ J. R. Creighton and B. A. Bansenauer, Thin Solid Films **225**, 17 (1993).
- ⁷⁵⁸ K. G. Reid, A. F. Myers, N. A. El-Masry, and S. M. Bedair, Thin Solid Films **225**, 59 (1993).
- ⁷⁵⁹ A. Dip, G. M. Eldallal, P. C. Colter, N. Hayafuji, and S. M. Bedair, Appl. Phys. Lett. **62**, 2378 (1993).
- ⁷⁶⁰ H. Liu, P. A. Zawadzki, and P. E. Norris, Thin Solid Films **225**, 105 (1993).
- ⁷⁶¹ M. Mashita, M. Sasaki, Y. Kawakyu, and H. Ishikawa, J. Cryst. Growth 131, 61 (1993).
- ⁷⁶² H. Isshiki, Y. Aoyagi, T. Sugano, S. Iwai, and T. Meguro, Appl. Phys. Lett. **63**, 1528 (1993).
- ⁷⁶³C. A. Wang and D. M. Tracy, J. Electron. Mater. 23, 185 (1994).
- ⁷⁶⁴ S. J. Park, J. S. Ha, J. R. Ro, J. K. Sim, E. H. Lee, and C. Jeon, J. Vac. Sci. Technol. B **12**, 1623 (1994).
- ⁷⁶⁵ H. Yokoyama, M. Tanimoto, M. Shinohara, and N. Inoue, Jpn. J. Appl. Phys., Part 2 33, L1292 (1994).
- ⁷⁶⁶ J. Nishizawa and T. Kurabayashi, Appl. Surf. Sci. **106**, 11 (1996).
- ⁷⁶⁷ J.-S. Lee, S. Iwai, H. Isshiki, T. Meguro, T. Sugano, and Y. Aoyagi, Appl. Surf. Sci. **103**, 275 (1996).
- ⁷⁶⁸ J.-S. Lee, S. Iwai, H. Isshiki, T. Meguro, T. Sugano, and Y. Aoyagi, J. Cryst. Growth **160**, 21 (1996).
- ⁷⁶⁹ K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara, Appl. Surf. Sci. 112, 102 (1997).
- ⁷⁷⁰ S. Hirose, A. Yoshida, M. Yamaura, and H. Munekata, Appl. Phys. Lett. **74**, 964 (1999).
- ⁷⁷¹ K. Kono, T. Kurabayashi, J. Nishizawa, and M. Esashi, Jpn. J. Appl. Phys., Part 1 39, 5737 (2000).
- ⁷⁷²B. Y. Maa and P. D. Dapkus, Appl. Phys. Lett. **58**, 1762 (1991).
- ⁷⁷³B. Y. Maa and P. D. Dapkus, Appl. Phys. Lett. **58**, 2261 (1991).
- ⁷⁷⁴B. Y. Maa and P. D. Dapkus, J. Electron. Mater. **20**, 589 (1991).
- ⁷⁷⁵Q. Chen, C. A. Beyler, P. D. Dapkus, J. J. Alwan, and J. J. Coleman, Appl. Phys. Lett. **60**, 2418 (1992).
- ⁷⁷⁶ B. Y. Maa and P. D. Dapkus, Thin Solid Films **225**, 12 (1993).
- 777 B. Y. Maa, P. D. Dapkus, P. Chen, and A. Madhukar, Appl. Phys. Lett. 62, 2551 (1993).
- ⁷⁷⁸ M. Y. Jow, B. Y. Maa, T. Morishita, and P. D. Dapkus, J. Electron. Mater. **24**, 25 (1995).
- ⁷⁷⁹ E. Arès, S. P. Watkins, P. Yeo, G. A. Horley, P. O'Brien, and A. C. Jones, J. Appl. Phys. **83**, 3390 (1998).
- ⁷⁸⁰ J. A. Gupta, J. C. Woicik, S. P. Watkins, K. E. Miyano, J. G. Pellegrino, and E. D. Crozier, J. Cryst. Growth 195, 34 (1998).
- ⁷⁸¹T. Meguro *et al.*, J. Cryst. Growth **93**, 190 (1988).
- ⁷⁸² H. Ohno, S. Ohtsuka, H. Ishii, Y. Matsubara, and H. Hasegawa, Appl. Phys. Lett. **54**, 2000 (1989).
- ⁷⁸³Q. Chen and P. D. Dapkus, Thin Solid Films **225**, 115 (1993).
- ⁷⁸⁴T. Kurabayashi, K. Kono, H. Kikuchi, J. Nishizawa, and M. Esashi, J. Cryst. Growth 229, 152 (2001).
- ⁷⁸⁵ Y. Oyama, K. Tezuka, K. Suto, and J.-I. Nishizawa, J. Cryst. Growth 246, 15 (2002).
- ⁷⁸⁶ J. Nishizawa, T. Kurabayashi, P. Płotka, H. Kikuchi, and T. Hamano, J. Cryst. Growth **244**, 236 (2002).
- ⁷⁸⁷ J. Nishizawa, T. Kurabayashi, P. Plotka, H. Kikuchi, and T. Hamano, Mater. Sci. Semicond. Process. 6, 429 (2003).
- ⁷⁸⁸T. Ohno, Y. Oyama, K. Saito, K. Suto, and J. Nishizawa, Thin Solid Films 464/465, 123 (2004).
- ⁷⁸⁹ M. Aït-Lhouss, J. L. Castaño, B. J. García, and J. Piqueras, J. Appl. Phys. **78**, 5834 (1995).

- ⁷⁹⁰ K. Fujii, I. Suemune, T. Koui, and M. Yamanishi, Appl. Phys. Lett. **60**, 1498 (1992).
- ⁷⁹¹ K. Fujii, I. Suemune, and M. Yamanishi, Appl. Phys. Lett. **61**, 2577 (1992).
- ⁷⁹²C. Sasaoka, M. Yoshida, and A. Usui, Jpn. J. Appl. Phys., Part 2 27, L490 (1988).
- ⁷⁹³ K. Mori, M. Yoshida, A. Usui, and H. Terao, Appl. Phys. Lett. **52**, 27 (1988).
- ⁷⁹⁴ P. Yeo, R. Arès, S. P. Watkins, G. A. Horley, P. O'Brien, and A. C. Jones, J. Electron. Mater. 26, 1174 (1997).
- ⁷⁹⁵ S. Sugahara, Y. Uchida, T. Kitamura, T. Nagai, M. Matsuyama, T. Hattori, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 36, 1609 (1997).
- ⁷⁹⁶ M. Matsuyama, S. Sugahara, K. Ikeda, Y. Uchida, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 39, 2536 (2000).
- ⁷⁹⁷ S. Sugahara, T. Kitamura, S. Imai, and M. Matsumura, Appl. Surf. Sci. **82/83**, 380 (1994).
- ⁷⁹⁸ S. Sugahara, M. Kadoshima, T. Kitamura, S. Imai, and M. Matsumura, Appl. Surf. Sci. **90**, 349 (1995).
- 799 S. Sugahara, K. Hosaka, and M. Matsumura, Appl. Surf. Sci. 132, 327 (1998)
- 800 Y. Takahashi, H. Ishii, and K. Fujinaga, J. Electrochem. Soc. 136, 1826
- (1989).

  801 Y. Takahashi, Y. Sese, and T. Urisu, Jpn. J. Appl. Phys., Part 1 **28**, 2387
- (1989).
   ⁸⁰²M. Sakuraba, J. Murota, N. Mikoshiba, and S. Ono, J. Cryst. Growth 115, 79 (1991).
- ⁸⁰³ K. H. Huang, T. S. Ku, and D. S. Lin, Phys. Rev. B **56**, 4878 (1997).
- 804 D.-S. Lin, J.-L. Wu, S.-Y. Pan, and T.-C. Chiang, Phys. Rev. Lett. 90, 046102 (2003).
- ⁸⁰⁵ M. Vehkamäki, T. Hänninen, M. Ritala, M. Leskelä, T. Sajavaara, E. Rauhala, and J. Keinonen, Chem. Vap. Deposition 7, 75 (2001).
- Radinara, and J. Remonen, Chem. vap. Deposition 7, 73 (2001).

  806 A. Rahtu, T. Hänninen, and M. Ritala, J. Phys. IV 11, Pr3/923 (2001).
- ⁸⁰⁷A. Kosola, M. Putkonen, L.-S. Johansson, and L. Niinistö, Appl. Surf. Sci. 211, 102 (2003).
- 808 J. Ihanus et al., Chem. Mater. 14, 1937 (2002).
- ⁸⁰⁹ J. Ihanus, T. Hänninen, T. Hatanpää, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 151, H221 (2004).
- ⁸¹⁰ J. Aarik, A. Aidla, A. Jaek, M. Leskelä, and L. Niinistö, J. Mater. Chem. 4, 1239 (1994).
- ⁸¹¹P. Soininen, E. Nykänen, L. Niinistö, and M. Leskelä, Chem. Vap. Deposition 2, 69 (1996).
- ⁸¹²R. Lappalainen, M. Karjalainen, R. Serimaa, S. Sevanto, and M. Leskelä, J. Appl. Phys. 87, 1153 (2000).
- ⁸¹³J. Niinistö, M. Putkonen, and L. Niinistö, Chem. Mater. **16**, 2953 (2004).
- 814 H. Mölsa, L. Niinistö, and M. Utriainen, Adv. Mater. Opt. Electron. 4, 389 (1994).
- ⁸¹⁵ M. Putkonen, T. Sajavaara, L.-S. Johansson, and L. Niinistö, Chem. Vap. Deposition 7, 44 (2001).
- ⁸¹⁶ K. Kukli, M. Peussa, L.-S. Johansson, E. Nykänen, and L. Niinistö, Mater. Sci. Forum 315–3, 216 (1999).
- ⁸¹⁷ M. Ritala and M. Leskelä, Appl. Surf. Sci. **75**, 333 (1994).
- ⁸¹⁸ A. Kytökivi, E.-L. Lakomaa, and A. Root, Langmuir **12**, 4395 (1996).
- 819 A. Kytökivi, E.-L. Lakomaa, A. Root, H. Österholm, J.-P. Jacobs, and H. H. Brongersma, Langmuir 13, 2717 (1997).
- 820 K. Kukli, M. Ritala, and M. Leskelä, Nanostruct. Mater. **8**, 785 (1997).
- ⁸²¹M. Copel, M. Gribelyuk, and E. Gusev, Appl. Phys. Lett. **76**, 436 (2000).
- 822 H. Zhang, R. Solanki, B. Roberds, G. Bai, and I. Banerjee, J. Appl. Phys. 87, 1921 (2000).
- ⁸²³ M. Cassir, F. Goubina, C. Bernay, P. Vernoux, and D. Lincot, Appl. Surf. Sci. **193**, 120 (2002).
- 824 A. Javey et al., Nat. Mater. 1, 241 (2002).
- ⁸²⁵ J. Aarik, A. Aidla, H. Mändar, T. Uustare, and V. Sammelselg, Thin Solid Films 408, 97 (2002).
- ⁸²⁶ K. Kukli, M. Ritala, J. Aarik, T. Uustare, and M. Leskelä, J. Appl. Phys. 92, 1833 (2002).
- 827 A. Rahtu and M. Ritala, J. Mater. Chem. 12, 1484 (2002).
- ⁸²⁸ H. Kim, C. O. Chui, K. C. Saraswat, and P. C. McIntyre, Appl. Phys. Lett. 83, 2647 (2003).
- ⁸²⁹E. Bonera, G. Scarel, and M. Fanciulli, J. Non-Cryst. Solids 322, 105 (2003).
- ⁸³⁰G. Scarel, S. Ferrari, S. Spiga, C. Wiemer, G. Tallarida, and M. Fanciulli, J. Vac. Sci. Technol. A 21, 1359 (2003).

- ⁸³¹S.-Y. Lee, H. Kim, P. C. McIntyre, K. C. Saraswat, and J.-S. Byun, Appl. Phys. Lett. **82**, 2874 (2003).
- 832 S. Ferrari, M. Modreanu, G. Scarel, and M. Fanciulli, Thin Solid Films 450, 124 (2004).
- 833 J. Lee, J. Koo, H. S. Sim, H. Jeon, and Y. Won, J. Korean Phys. Soc. 44, 915 (2004).
- ⁸³⁴ J. Okabayashi, S. Toyoda, H. Kumigashira, M. Oshima, K. Usuda, M. Niwa, and G. L. Liu, Appl. Phys. Lett. 85, 5959 (2004).
- 835 N. Yoshii, N. Takahashi, T. Nakamura, and M. Yoshioka, Electrochem. Solid-State Lett. 5, C85 (2002).
- ⁸³⁶ N. Takahashi, N. Yoshii, S. Nonobe, T. Nakamura, and M. Yoshioka, J. Electron. Mater. 32, 1107 (2003).
- ⁸³⁷ K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Thin Solid Films 416, 72 (2002).
- 838 K. Kukli et al., J. Cryst. Growth 231, 262 (2001).
- ⁸³⁹ K. Kukli, K. Forsgren, M. Ritala, M. Leskelä, J. Aarik, and A. Hårsta, J. Electrochem. Soc. 148, F227 (2001).
- ⁸⁴⁰ K. Kukli, M. Ritala, T. Uustare, J. Aarik, K. Forsgren, T. Sajavaara, M. Leskelä, and A. Hårsta, Thin Solid Films 410, 53 (2002).
- ⁸⁴¹ K. Forsgren, J. Westlinder, J. Lu, J. Olsson, and A. Hårsta, Chem. Vap. Deposition 8, 105 (2002).
- ⁸⁴²M. Putkonen and L. Niinistö, J. Mater. Chem. **11**, 3141 (2001).
- ⁸⁴³M. Kröger-Laukkanen, M. Peussa, M. Leskelä, and L. Niinistö, Appl. Surf. Sci. 183, 290 (2002).
- ⁸⁴⁴ M. Putkonen, J. Niinistö, K. Kukli, T. Sajavaara, M. Karppinen, H. Yamauchi, and L. Niinistö, Chem. Vap. Deposition 9, 207 (2003).
- ⁸⁴⁵ J. Niinistö, M. Putkonen, L. Niinistö, K. Kukli, M. Ritala, and M. Leskelä, J. Appl. Phys. **95**, 84 (2004).
- ⁸⁴⁶ R. Matero, M. Ritala, M. Leskelä, T. Sajavaara, A. C. Jones, and J. L. Roberts, Chem. Mater. 16, 5630 (2004).
- ⁸⁴⁷ K. Kukli, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 6, 297 (2000).
- ⁸⁴⁸ A. Nakajima, T. Kidera, H. Ishii, and S. Yokoyama, Appl. Phys. Lett. 81, 2824 (2002).
- ⁸⁴⁹ J. Park, B. Choi, N. Park, H. J. Shin, J. G. Lee, and J. Kim, Integr. Ferroelectr. 48, 23 (2002).
- 850 H. Ishii, A. Nakajima, and S. Yokoyama, J. Appl. Phys. 95, 536 (2004).
- 851 D. Jeong, J. Lee, and J. Kim, Integr. Ferroelectr. **67**, 41 (2004).
- 852 J. Koo, Y. Kim, and H. Jeon, Jpn. J. Appl. Phys., Part 1 **41**, 3043 (2002).
- 853 Y. Kim, J. Koo, J. Han, S. Choi, H. Jeon, and C.-G. Park, J. Appl. Phys. 92, 5443 (2002).
- ⁸⁵⁴ K. Endo and T. Tatsumi, Jpn. J. Appl. Phys., Part 2 **42**, L685 (2003).
- 855 K. Endo and T. Tatsumi, Jpn. J. Appl. Phys., Part 2 **43**, L1296 (2004).
- ⁸⁵⁶R. Matero *et al.*, J. Non-Cryst. Solids **303**, 24 (2002).
- 857 D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon, Chem. Mater. 14, 4350 (2002).
- ⁸⁵⁸ D. M. Hausmann and R. G. Gordon, J. Cryst. Growth **249**, 251 (2003).
- ⁸⁵⁹ W.-H. Nam and S.-W. Rhee, Chem. Vap. Deposition **10**, 201 (2004).
- ⁸⁶⁰ J. S. Becker, E. Kim, and R. G. Gordon, Chem. Mater. **16**, 3497 (2004).
- 861 S. V. Ushakov et al., Phys. Status Solidi B 241, 2268 (2004).
- ⁸⁶²K. Kukli, M. Ritala, M. Leskelä, and R. Lappalainen, Chem. Vap. Deposition 4, 29 (1998).
- ⁸⁶³ K. Kukli, M. Ritala, and M. Leskelä, J. Appl. Phys. **86**, 5656 (1999).
- ⁸⁶⁴ K.-E. Elers, M. Ritala, M. Leskelä, and E. Rauhala, Appl. Surf. Sci. 82/83, 468 (1994).
- ⁸⁶⁵ M. Juppo, M. Vehkamäki, M. Ritala, and M. Leskelä, J. Vac. Sci. Technol. A 16, 2845 (1998).
- ⁸⁶⁶O.-K. Kwon, J.-H. Kim, H.-S. Park, and S.-W. Kang, J. Electrochem. Soc. **151**, G109 (2004).
- ⁸⁶⁷T. Aaltonen, A. Rahtu, M. Ritala, and M. Leskelä, Electrochem. Solid-State Lett. 6, C130 (2003).
- ⁸⁶⁸ T. Aaltonen, P. Alen, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 9, 45 (2003).
- ⁸⁶⁹T. Aaltonen, M. Ritala, Y. L. Tung, Y. Chi, K. Arstila, K. Meinander, and M. Leskelä, J. Mater. Res. 19, 3353 (2004).
- ⁸⁷⁰O.-K. Kwon, S.-H. Kwon, H.-S. Park, and S.-W. Kang, Electrochem. Solid-State Lett. 7, C46 (2004).
- ⁸⁷¹O.-K. Kwon, S.-H. Kwon, H.-S. Park, and S.-W. Kang, J. Electrochem. Soc. 151, C753 (2004).
- 872 Y.-S. Min, E. J. Bae, K. S. Jeong, Y. J. Cho, J.-H. Lee, W. B. Choi, and G.-S. Park, Adv. Mater. (Weinheim, Ger.) 15, 1019 (2003).
- ⁸⁷³ M. Lashdaf, T. Hatanpää, A. O. I. Krause, J. Lahtinen, M. Lindblad, and M. Tiitta, Appl. Catal., A 241, 51 (2003).
- ⁸⁷⁴ T. Aaltonen, M. Ritala, K. Arstila, J. Keinonen, and M. Leskelä, Chem.

- Vap. Deposition 10, 215 (2004).
- ⁸⁷⁵ J. J. Senkevich, F. Tang, D. Rogers, J. T. Drotar, C. Jezewski, W. A. Lanford, G. C. Wang, and T. M. Lu, Chem. Vap. Deposition 9, 258 (2003)
- ⁸⁷⁶T. Tadokoro, S. Ohta, T. Ishiguro, Y. Ichinose, S. Kobayashi, and N. Yamamoto, J. Cryst. Growth 130, 29 (1993).
- ⁸⁷⁷ Y. Luo, D. Slater, M. Han, J. Moryl, and R. M. Osgood, Jr., Appl. Phys. Lett. **71**, 3799 (1997).
- ⁸⁷⁸Y. Luo, D. Slater, M. Han, J. Moryl, and R. M. Osgood, Jr., Langmuir 14, 1493 (1998).
- ⁸⁷⁹ M. Han, Y. Luo, J. E. Moryl, R. M. Osgood, Jr., and J. G. Chen, Surf. Sci. 415, 251 (1998).
- 880 M. Han, Y. Luo, J. E. Moryl, and R. M. Osgood, Jr., Surf. Sci. 425, 259 (1999).
- ⁸⁸¹ Y. Luo, M. Han, D. A. Slater, and R. M. Osgood, Jr., J. Vac. Sci. Technol. A **18**, 438 (2000).
- ⁸⁸² Y. Z. Feng and S. P. Guo, J. Mater. Sci. Lett. **15**, 1824 (1996).
- ⁸⁸³ M. Y. Shen, T. Goto, E. Kurtz, Z. Zhu, and T. Yao, J. Phys.: Condens. Matter 10, L171 (1998).
- ⁸⁸⁴E. Kurtz, H. D. Jung, T. Hanada, Z. Zhu, T. Sekiguchi, and T. Yao, J. Cryst. Growth **184/185**, 242 (1998).
- ⁸⁸⁵ E. Kurtz, T. Sekiguchi, Z. Zhu, T. Yao, J. X. Shen, Y. Oka, M. Y. Shen, and T. Goto, Superlattices Microstruct. 25, 119 (1999).
- ⁸⁸⁶I. Hernández-Calderón, M. García-Rocha, and P. Díaz-Arencibia, Phys. Status Solidi B 241, 558 (2004).
- 887 M. Pessa, P. Huttunen, and M. A. Herman, J. Appl. Phys. 54, 6047 (1983)
- 888 M. Pessa, O. Jylhä, P. Huttunen, and M. A. Herman, J. Vac. Sci. Technol. A 2, 418 (1984).
- 889 M. Pessa, O. Jylhä, and M. A. Herman, J. Cryst. Growth 67, 255 (1984).
- ⁸⁹⁰ M. A. Herman, M. Vulli, and M. Pessa, J. Cryst. Growth **73**, 403 (1985).
- ⁸⁹¹ M. A. Herman, O. Jylhä, and M. Pessa, Cryst. Res. Technol. **21**, 969 (1986).
- ⁸⁹²M. A. Herman, O. Jylhä, and M. Pessa, Cryst. Res. Technol. **21**, 841 (1986).
- ⁸⁹³ M. A. Herman, P. Juza, W. Faschinger, and H. Sitter, Cryst. Res. Technol. 23, 307 (1988).
- ⁸⁹⁴ W. Faschinger, H. Sitter, and P. Juza, Appl. Phys. Lett. **53**, 2519 (1988).
- ⁸⁹⁵ W. Faschinger and H. Sitter, J. Cryst. Growth **99**, 566 (1990).
- ⁸⁹⁶ W. Faschinger, P. Juza, and H. Sitter, J. Cryst. Growth **115**, 692 (1991).
- 897 P. Juza, W. Faschinger, and H. Sitter, Microchim. Acta 107, 265 (1992).
- ⁸⁹⁸ H. Sitter and W. Faschinger, Thin Solid Films **225**, 250 (1993).
- ⁸⁹⁹ V. B. Veron, A. Arnoult, B. Daudin, and S. Tatarenko, Phys. Rev. B **54**, R5267 (1996).
- ⁹⁰⁰ J. T. Sadowski and M. A. Herman, Thin Solid Films **306**, 266 (1997).
- ⁹⁰¹L. Marsal, H. Mariette, Y. Samson, J. L. Rouviere, and E. Picard, Appl. Phys. Lett. **73**, 2974 (1998).
- ⁹⁰² J. M. Hartmann, M. Charleux, J. Cibert, and H. Mariette, Appl. Phys. Lett. **72**, 3151 (1998).
- ⁹⁰³T. Taliercio, P. Lefebvre, N. Magnea, J. Allègre, and H. Mathieu, J. Cryst. Growth **184/185**, 288 (1998).
- ⁹⁰⁴ L. Carbonell, S. Tatarenko, J. Cibert, J. M. Hartmann, G. Mula, V. H. Etgens, and A. Arnoult, Appl. Surf. Sci. 123/124, 283 (1998).
- ⁹⁰⁵ L. Marsal, Y. Samson, J. L. Rouviere, and H. Mariette, J. Cryst. Growth 201/202, 1226 (1999).
- ⁹⁰⁶ H. Mariette, M. Charleux, J. M. Hartmann, F. Kany, D. Martrou, L. Marsal, N. Magnèa, and J. L. Rouviére, Microelectron. J. 30, 329 (1999).
- ⁹⁰⁷ H. Mariette, L. Marsal, L. Besombes, F. Tinjod, B. Gilles, K. Kheng, and J. L. Rouvière, J. Cryst. Growth 237/239, 227 (2002).
- ⁹⁰⁸ M. García-Rocha and I. Hernández-Calderón, Surf. Rev. Lett. 9, 1667 (2002).
- 909 T. Volkmann, M. Ahr, and M. Biehl, Phys. Rev. B **69**, 165303 (2004).
- ⁹¹⁰E. M. Larramendi, O. de Melo, M. Hernández Vélez, and M. C. Tamargo, J. Appl. Phys. 96, 7164 (2004).
- ⁹¹¹ H. S. Lee, H. L. Park, and T. W. Kim, Appl. Phys. Lett. **85**, 5598 (2004).
- ⁹¹²I. Bhat, H. Ehsani, W. S. Wang, S. K. Ghandhi, and N. H. Karam, J. Vac. Sci. Technol. B **10**, 1376 (1992).
- ⁹¹³W.-S. Wang, H. E. Ehsani, and I. B. Bhat, J. Cryst. Growth **124**, 670 (1992).
- 914 N. H. Karam, R. G. Wolfson, I. B. Bhat, H. Ehsani, and S. K. Gandhi,

- Thin Solid Films 225, 261 (1993).
- ⁹¹⁵R. M. Emerson, J. L. Hoyt, and J. F. Gibbons, Appl. Phys. Lett. 65, 1103 (1994).
- 916 S. Dakshinamurthy and I. Bhat, J. Electron. Mater. 27, 521 (1998).
- ⁹¹⁷T. Asikainen, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **141**, 3210 (1994).
- ⁹¹⁸T. Asikainen, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **142**, 3538 (1995).
- ⁹¹⁹T. Asikainen, M. Ritala, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, Appl. Surf. Sci. **99**, 91 (1996).
- ⁹²⁰T. Asikainen, M. Ritala, W.-M. Li, R. Lappalainen, and M. Leskelä, Appl. Surf. Sci. 112, 231 (1997).
- ⁹²¹ M. Ritala, T. Asikainen, and M. Leskelä, Electrochem. Solid-State Lett. 1, 156 (1998).
- ⁹²² A. W. Ott, J. M. Johnson, J. W. Klaus, and S. M. George, Appl. Surf. Sci. **112**, 205 (1997).
- 923 T. Asikainen, M. Ritala, and M. Leskelä, Appl. Surf. Sci. 82/83, 122 (1994).
- ⁹²⁴ J.-F. Guillemoles *et al.*, Jpn. J. Appl. Phys., Part 1 **40**, 6065 (2001).
- ⁹²⁵N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, Prog. Photovoltaics 11, 437 (2003).
- ⁹²⁶S. Spiering, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, Thin Solid Films 431/432, 359 (2003).
- ⁹²⁷N. Naghavi, R. Henriquez, V. Laptev, and D. Lincot, Appl. Surf. Sci. 222, 65 (2004).
- ⁹²⁸ T. Inushima, T. Shiraishi, and V. Yu. Davydov, Solid State Commun. 110, 491 (1989).
- ⁹²⁹ W. K. Chen, J. C. Chen, L. Anthony, and P. L. Liu, Appl. Phys. Lett. 55, 987 (1989).
- ⁹³⁰D. Bertone, J. Electron. Mater. **21**, 265 (1992).
- ⁹³¹C. A. Tran, R. A. Masut, J. L. Brebner, and R. Leonelli, Appl. Phys. Lett. **62**, 2375 (1993).
- ⁹³²C. A. Tran, R. A. Masut, J. L. Brebner, M. Jouanne, L. Salamanca-Riba, C. C. Shen, B. Sieber, and A. Miri, J. Cryst. Growth 145, 332 (1994).
- ⁹³³C. A. Tran, R. A. Masut, J. L. Brebner, and M. Jouanne, J. Appl. Phys. 75, 2398 (1994).
- ⁹³⁴ D. G. Patrikarakos, N. Shukla, and M. E. Pemble, J. Cryst. Growth **170**, 215 (1997).
- ⁹³⁵ Y. Kobayashi and N. Kobayashi, Jpn. J. Appl. Phys., Part 2 31, L71 (1992).
- ⁹³⁶T. W. Lee, H. Hwang, Y. Moon, E. Yoon, and Y. D. Kim, J. Korean Phys. Soc. **34**, S25 (1999).
- ⁹³⁷ Y. D. Kim, M. S. Lee, T.-W. Lee, H. Hwang, S. Yoon, Y. Moon, and E. Yoon, Microelectron. Eng. 51/52, 43 (2000).
- ⁹³⁸ N. Pan, J. Carter, S. Hein, D. Howe, L. Goldman, L. Kupferberg, S. Brierley, and K. C. Hsieh, Thin Solid Films 225, 64 (1993).
- ⁹³⁹ N. Otsuka, J. Nishizawa, H. Kikuchi, and Y. Oyama, J. Cryst. Growth 205, 253 (1999).
- ⁹⁴⁰ N. Otsuka, J. Nishizawa, H. Kikuchi, and Y. Oyama, J. Cryst. Growth 209, 252 (2000).
- ⁹⁴¹ N. Otsuka, J. Nishizawa, H. Kikuchi, and Y. Oyama, J. Vac. Sci. Technol. A 17, 3008 (1999).
- 942 W. G. Jeong, E. P. Menu, and P. D. Dapkus, Appl. Phys. Lett. **55**, 244 (1980)
- ⁹⁴³D. Jung and S. M. Bedair, J. Mater. Res. **9**, 3022 (1994).
- ⁹⁴⁴C. A. Tran, R. Ares, S. P. Watkins, G. Soerensen, and Y. Lacroix, J. Electron. Mater. 24, 1597 (1995).
- ⁹⁴⁵ R. Arès, J. Hu, P. Yeo, and S. P. Watkins, J. Cryst. Growth **195**, 234 (1998)
- ⁹⁴⁶ K. Mori, S. Sugou, Y. Kato, and A. Usui, Appl. Phys. Lett. **60**, 1717 (1992)
- ⁹⁴⁷ M. A. Tischler and S. M. Bedair, Appl. Phys. Lett. **49**, 274 (1986).
- ⁹⁴⁸B. T. McDermott, N. A. El-Masry, M. A. Tischler, and S. M. Bedair, Appl. Phys. Lett. **51**, 1830 (1987).
- ⁹⁴⁹ P. E. Thompson, J. L. Davis, J. Waterman, R. J. Wagner, D. Gammon, D. K. Gaskill, and R. Stahlbush, J. Appl. Phys. 69, 7166 (1991).
- ⁹⁵⁰G. S. Lee, P. E. Thompson, J. L. Davis, J. P. Omaggio, and W. A. Schmidt, Solid-State Electron. 36, 387 (1993).
- ⁹⁵¹H. Viirola and L. Niinistö, Thin Solid Films **249**, 144 (1994).
- 952 H. Viirola and L. Niinistö, Thin Solid Films **251**, 127 (1994).
- ⁹⁵³C. Dücsö, N. Q. Khanh, Z. Horváth, I. Bársony, M. Utriainen, S. Lehto, M. Nieminen, and L. Niinistö, J. Electrochem. Soc. **143**, 683 (1996).
- M. Utriainen, K. Kovács, J. M. Campbell, L. Niinistö, and F. Réti, J. Electrochem. Soc. 146, 189 (1999).

- 955 M. Utriainen, L. Niinistö, and R. Matero, Appl. Phys. A 68, 339 (1999).
- ⁹⁵⁶M. Utriainen, H. Lattu, H. Viirola, L. Niinistö, R. Resch, and G. Friedbacher, Mikrochim. Acta 133, 119 (2000).
- ⁹⁵⁷ A. Rosental, A. Tarre, A. Gerst, T. Uustare, and V. Sammelselg, Sens. Actuators B 77, 297 (2001).
- ⁹⁵⁸T. Takeuchi, K. Shoji, T. Tadano, I. Doteshita, and S. Onodera, Thin Solid Films 442, 98 (2003).
- ⁹⁵⁹ J. Lu, J. Sundqvist, M. Ottosson, A. Tarre, A. Rosental, J. Aarik, and A. Hårsta, J. Cryst. Growth **260**, 191 (2004).
- ⁹⁶⁰T. Takeuchi, I. Doteshita, and S. Asami, Surf. Interface Anal. **36**, 1133
- ⁹⁶¹ A. Tarre, A. Rosental, A. Aidla, J. Aarik, J. Sundqvist, and A. Hårsta, Vacuum 67, 571 (2002).
- ⁹⁶² A. Rosental, A. Tarre, A. G. J. Sundqvist, A. Hårsta, A. Aidla, J. Aarik, V. Sammelselg, and T. Uustare, Sens. Actuators B 93, 552 (2003).
- ⁹⁶³ A. Tarre, A. Rosental, J. Sundqvist, A. Hårsta, T. Uustare, and V. Sammelselg, Surf. Sci. **532**, 514 (2003).
- ⁹⁶⁴ J. Sundqvist, A. Tarre, A. Rosental, and A. Hårsta, Chem. Vap. Deposition 9, 21 (2003).
- ⁹⁶⁵ V. Saanila, J. Ihanus, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 4, 227 (1998).
- ⁹⁶⁶ M. Nieminen, M. Putkonen, and L. Niinistö, Appl. Surf. Sci. **174**, 155 (2001).
- ⁹⁶⁷ R. Haugsru, A. E. Gunnaes, and O. Nilsen, Oxid. Met. **59**, 215 (2003).
- ⁹⁶⁸ W. He, S. Schuetz, R. Solanki, J. Belot, and J. McAndrew, Electrochem. Solid-State Lett. 7, G131 (2004).
- $^{969}\,\mathrm{D.}$  H. Triyoso et al., J. Vac. Sci. Technol. B  $\,$  22, 2121 (2004).
- ⁹⁷⁰ K. Kukli, H. Heikkinen, E. Nykänen, and L. Niinistö, J. Alloys Compd. 275–277, 10 (1998).
- ⁹⁷¹ J. Päiväsaari, M. Putkonen, and L. Niinistö, J. Mater. Chem. **12**, 1828 (2002).
- ⁹⁷² K. Kukli *et al.*, Chem. Mater. **16**, 5162 (2004).
- ⁹⁷³ J. Päiväsaari, M. Putkonen, and L. Niinistö, Thin Solid Films 472, 275 (2005).
- ⁹⁷⁴ J. Päiväsaari, M. Putkonen, T. Sajavaara, and L. Niinistö, J. Alloys Compd. 374, 124 (2004).
- ⁹⁷⁵G. Scarel et al., Appl. Phys. Lett. **85**, 630 (2004).
- ⁹⁷⁶H. Kattelus, M. Ylilammi, J. Salmi, T. Ranta-Aho, E. Nykänen, and I. Suni, Mater. Res. Soc. Symp. Proc. 284, 511 (1993).
- ⁹⁷⁷ M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, and M. Grassenbauer, Thin Solid Films 250, 72 (1994).
- ⁹⁷⁸ K. Kukli, J. Ihanus, M. Ritala, and M. Leskelä, Appl. Phys. Lett. 68, 3737 (1996).
- ⁹⁷⁹ J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films 340, 110 (1999).
- ⁹⁸⁰ J. Aarik, A. Aidla, H. Mändar, V. Sammelselg, and T. Uustare, J. Cryst. Growth 220, 105 (2000).
- ⁹⁸¹ J. Aarik, A. Aidla, H. Mändar, T. Uustare, K. Kukli, and M. Schuisky, Appl. Surf. Sci. **173**, 15 (2001).
- ⁹⁸²M. Cho, J. Park, H. B. Park, C. S. Hwang, J. Jeong, and K. S. Hyun, Appl. Phys. Lett. **81**, 334 (2002).
- 983 M.-H. Cho *et al.*, Appl. Phys. Lett. **81**, 472 (2002).
- 984 M. L. Green et al., J. Appl. Phys. **92**, 7168 (2002).
- ⁹⁸⁵E. P. Gusev, C. Cabral, Jr., M. Copel, C. D'Emic, and M. Gribelyuk, Microelectron. Eng. 69, 145 (2003).
- 986 M.-Y. Ho *et al.*, J. Appl. Phys. **93**, 1477 (2003).
- ⁹⁸⁷G. D. Wilk and D. A. Muller, Appl. Phys. Lett. **83**, 3984 (2003).
- ⁹⁸⁸J.-F. Damlencourt et al., Solid-State Electron. 47, 1613 (2003).
- 989 K. Kukli et al., J. Mater. Sci.: Mater. Electron. 14, 361 (2003).
- ⁹⁹⁰ H. B. Park et al., J. Appl. Phys. **94**, 3641 (2003).
- ⁹⁹¹ T. Lee, J. Ahn, J. Oh, Y. Kim, Y. B. Kim, D. K. Choi, and J. Jung, J. Korean Phys. Soc. 42, 272 (2003).
- ⁹⁹²R. L. Puurunen, J. Appl. Phys. **95**, 4777 (2004).
- ⁹⁹³ C. Wiemer, S. Ferrari, M. Fanciulli, G. Pavia, and L. Lutterotti, Thin Solid Films 450, 134 (2004).
- ⁹⁹⁴ J. Aarik, A. Aidla, A. Kikas, T. Käämbre, R. Rammula, P. Ritslaid, T. Uustare, and V. Sammelselg, Appl. Surf. Sci. 230, 292 (2004).
- ⁹⁹⁵ J.-J. Ganem, I. Trimaille, I. C. Vickridge, D. Blin, and F. Martin, Nucl. Instrum. Methods Phys. Res. B 219/220, 856 (2004).
- ⁹⁹⁶J.-F. Damlencourt, O. Weber, O. Renault, J.-M. Hartmann, C. Poggi, F. Ducroquet, and T. Billon, J. Appl. Phys. **96**, 5478 (2004).
- ⁹⁹⁷ K. Nakajima *et al.*, Appl. Surf. Sci. **237**, 416 (2004).
- ⁹⁹⁸ D. Triyoso *et al.*, J. Electrochem. Soc. **151**, F220 (2004).
- ⁹⁹⁹ K. Kukli et al., J. Appl. Phys. **96**, 5298 (2004).

- ¹⁰⁰⁰H. Kim, P. C. McIntyre, C. O. Chui, K. C. Saraswat, and M.-H. Cho, Appl. Phys. Lett. **85**, 2902 (2004).
- ¹⁰⁰¹ J. Aarik, H. Mändar, M. Kirm, and L. Pung, Thin Solid Films **466**, 41 (2004).
- ¹⁰⁰²E. P. Gusev, H. Shang, M. Copel, M. Gribelyuk, C. D'Emic, P. Kozlowski, and T. Zabel, Appl. Phys. Lett. 85, 2334 (2004).
- ¹⁰⁰³P. S. Lysaght, J. J. Peterson, B. Foran, C. D. Young, G. Bersuker, and H. R. Huff, Mater. Sci. Semicond. Process. 7, 259 (2004).
- ¹⁰⁰⁴G. Scarel, S. Spiga, C. Wiemer, G. Tallarida, S. Ferrari, and M. Fanciulli, Mater. Sci. Eng., B 109, 11 (2004).
- ¹⁰⁰⁵S. Dueñas, H. Castán, H. García, J. Barbolla, K. Kukli, M. Ritala, and M. Leskelä, Thin Solid Films 474, 222 (2005).
- ¹⁰⁰⁶ R. Chen, H. Kim, P. C. McIntyre, and S. F. Bent, Chem. Mater. **17**, 536 (2005).
- ¹⁰⁰⁷ R. L. Puurunen *et al.*, Appl. Phys. Lett. **86**, 073116 (2005).
- ¹⁰⁰⁸ A. Delabie et al., J. Appl. Phys. **97**, 064104 (2005).
- 1009 S. Nonobe, N. Takahashi, and T. Nakamura, Solid State Sci. 6, 1217 (2004).
- ¹⁰¹⁰ N. Takahashi, S. Nonobe, and T. Nakamura, J. Solid State Chem. 177, 3944 (2004).
- ¹⁰¹¹ S.-W. Kang, S.-W. Rhee, and S. M. George, J. Vac. Sci. Technol. A 22, 2392 (2004).
- ¹⁰¹² K. Forsgren, A. Hårsta, J. Aarik, A. Aidla, J. Westlinder, and J. Olsson, J. Electrochem. Soc. **149**, F139 (2002).
- ¹⁰¹³ J. Aarik, J. Sundqvist, A. Aidla, J. Lu, T. Sajavaara, K. Kukli, and A. Hårsta, Thin Solid Films 418, 69 (2002).
- ¹⁰¹⁴ K. Kukli, M. Ritala, J. Sundqvist, J. Aarik, J. Lu, T. Sajavaara, M. Leskelä, and A. Hårsta, J. Appl. Phys. 92, 5698 (2002).
- J. Sundqvist, A. Hårsta, J. Aarik, K. Kukli, and A. Aidla, Thin Solid Films 427, 147 (2003).
- ¹⁰¹⁶J. Lu, J. Aarik, J. Sundqvist, K. Kukli, A. Hårsta, and J.-O. Carlsson, J. Cryst. Growth **273**, 510 (2004).
- ¹⁰¹⁷H. S. Chang et al., Electrochem. Solid-State Lett. 7, F42 (2004).
- ¹⁰¹⁸Y. Senzaki, S. Park, H. Chatham, L. Bartholomew, and W. Nieveen, J. Vac. Sci. Technol. A 22, 1175 (2004).
- ¹⁰¹⁹ K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, A. C. Jones, and J. L. Roberts, Chem. Vap. Deposition 9, 315 (2003).
- ¹⁰²⁰ K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, A. C. Jones, and J. L. Roberts, Chem. Mater. 15, 1722 (2003).
- and J. L. Roberts, Chem. Mater. 15, 1722 (2003).
   K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, A. C. Jones, and N. L. Tobin, Chem. Vap. Deposition 10, 91 (2004).
- ¹⁰²² M. Cho, H. B. Park, J. Park, S. W. Lee, C. S. Hwanga, G. H. Jang, and J. Jeong, Appl. Phys. Lett. 83, 5503 (2003).
- ¹⁰²³ M. Cho, D. S. Jeong, J. Park, H. B. Park, S. W. Lee, T. J. Park, and C. S. Hwang, Appl. Phys. Lett. **85**, 5953 (2004).
- ¹⁰²⁴ A. Deshpande, R. Inman, G. Jursich, and C. Takoudis, J. Vac. Sci. Technol. A 22, 2035 (2004).
- ¹⁰²⁵ D. Wang, Y.-L. Chang, Q. Wang, J. Cao, D. B. Farmer, R. G. Gordon, and H. Dai, J. Am. Chem. Soc. **126**, 11602 (2004).
- ¹⁰²⁶S. Choi, J. Koo, H. Jeon, and Y. Kim, J. Korean Phys. Soc. 44, 35 (2004).
- ¹⁰²⁷ K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Chem. Vap. Deposition 8, 199 (2002).
- ¹⁰²⁸ K. Kukli, M. Ritala, J. Lu, A. Hårsta, and M. Leskelä, J. Electrochem. Soc. **151**, F189 (2004).
- ¹⁰²⁹T. Lee, H.-K. Ko, Y. Kim, J. Ahn, Y. B. Kim, K. S. Kim, and D. K. Choi, J. Korean Phys. Soc. 45, 1308 (2004).
- 1030 W.-H. Nam and S.-W. Rhee, Electrochem. Solid-State Lett. 7, C55
- ¹⁰³¹ J. Conley, J. F. Y. Ono, W. Zhuang, D. J. Tweet, W. Gao, S. K. Mohammed, and R. Solanki, Electrochem. Solid-State Lett. 5, C57 (2002).
- 1032 J. Conley, J. F. Y. Ono, D. J. Tweet, W. Zhuang, and R. Solanki, J. Appl. Phys. 93, 712 (2003).
- ¹⁰³³ J. Conley, J. F. Y. Ono, R. Solanki, G. Stecker, and W. Zhuang, Appl. Phys. Lett. **82**, 3508 (2003).
- Phys. Lett. **82**, 3508 (2003). 103⁴ W.-K. Kim, S.-W. Rhee, N.-I. Lee, J.-H. Lee, and H.-K. Kang, J. Vac.
- Sci. Technol. A 22, 1285 (2004).
   1035 M. S. Kim, S. A. Rogers, Y. S. Kim, J. H. Lee, and H. K. Kang, J. Korean Phys. Soc. 45, 1317 (2004).
- ¹⁰³⁶ J. Aarik, A. Aidla, K. Kukli, and T. Uustare, J. Cryst. Growth **144**, 116 (1994).
- ¹⁰³⁷ K. Kukli, J. Aarik, A. Aidla, O. Kohan, T. Uustare, and V. Sammelselg, Thin Solid Films 260, 135 (1995).
- ¹⁰³⁸H. Siimon and J. Aarik, J. Phys. IV **5**, C5/277 (1995).

- ¹⁰³⁹J. Aarik, K. Kukli, A. Aidla, and L. Pung, Appl. Surf. Sci. **103**, 331 (1996).
- ¹⁰⁴⁰ K. Kukli, M. Ritala, R. Matero, and M. Leskelä, J. Cryst. Growth 212, 459 (2000).
- ¹⁰⁴¹ K. Kukli, M. Ritala, and M. Leskelä, Chem. Mater. **12**, 1914 (2000).
- ¹⁰⁴² K. Kukli et al., Chem. Mater. 13, 122 (2001).
- ¹⁰⁴³ J. Sundqvist, H. Högberg, and A. Hårsta, Chem. Vap. Deposition 9, 245 (2003).
- ¹⁰⁴⁴ K. Kukli, M. Ritala, and M. Leskelä, J. Electrochem. Soc. **142**, 1670 (1995).
- ¹⁰⁴⁵ K. Kukli, J. Aarik, A. Aidla, H. Siimon, M. Ritala, and M. Leskelä, Appl. Surf. Sci. **112**, 236 (1997).
- ¹⁰⁴⁶ Y. S. Kim, S. H. K. Park, S. J. Yun, and J. S. Kang, J. Korean Phys. Soc. 37, 975 (2000).
- ¹⁰⁴⁷ J.-C. Kwak, Y.-H. Lee, and B.-H. Choi, Appl. Surf. Sci. 230, 249 (2004).
- ¹⁰⁴⁸H.-J. Song, C.-S. Lee, and S.-W. Kang, Electrochem. Solid-State Lett. 4, F13 (2001).
- ¹⁰⁴⁹Y.-H. Lee, J.-C. Kwak, B.-S. Gang, H.-C. Kim, B.-H. Choi, B.-K. Jeong, S.-H. Park, and K.-H. Lee, J. Electrochem. Soc. 151, C52 (2004).
- ¹⁰⁵⁰D. M. Hausmann, P. de Rouffignac, A. Smith, R. Gordon, and D. Monsma, Thin Solid Films 443, 1 (2003).
- ¹⁰⁵¹ M. Ritala, P. Kalsi, D. Riihelä, K. Kukli, M. Leskelä, and J. Jokinen, Chem. Mater. 11, 1712 (1999).
- ¹⁰⁵²P. Alén, M. Juppo, M. Ritala, M. Leskelä, T. Sajavaara, and J. Keinonen, J. Mater. Res. 17, 107 (2002).
- ¹⁰⁵³H. Kim, A. J. Kellock, and S. M. Rossnagel, J. Appl. Phys. **92**, 7080 (2002).
- ¹⁰⁵⁴H. Kim, J. C. Cabral, C. Lavoie, and S. M. Rossnagel, J. Vac. Sci. Technol. B 20, 1321 (2002).
- 1055 H. Kim, C. Lavoie, M. Copel, V. Narayanan, D.-G. Park, and S. M. Rossnagel, J. Appl. Phys. 95, 5848 (2004).
- 1056 Y. Y. Wu, A. Kohn, and M. Eizenberg, J. Appl. Phys. **95**, 6167 (2004).
- ¹⁰⁵⁷W. F. Besling, M.-L. Ignacimouttou, A. Humbert, M. Mellier, and J. Torres, Microelectron. Eng. 76, 60 (2004).
- ¹⁰⁵⁸O. van der Straten, Y. Zhu, K. Dunn, E. T. Eisenbraun, and A. E. Kaloyeros, J. Mater. Res. 19, 447 (2004).
- ¹⁰⁵⁹J.-S. Park, M.-J. Lee, C.-S. Lee, and S.-W. Kang, Electrochem. Solid-State Lett. 4, C17 (2001).
- ¹⁰⁶⁰ J.-S. Park, H.-S. Park, and S.-W. Kang, J. Electrochem. Soc. **149**, C28 (2002).
- ¹⁰⁶¹ J. Y. Kim, K. W. Lee, H. O. Park, Y. D. Kim, H. Jeon, and Y. Kim, J. Korean Phys. Soc. 45, 1069 (2004).
- ¹⁰⁶²H. Kim and S. M. Rossnagel, Thin Solid Films **441**, 331 (2003).
- ¹⁰⁶³ A. M. Lemonds, J. M. White, and J. G. Ekerdt, Surf. Sci. **538**, 191 (2003).
- ¹⁰⁶⁴P. Tägtström, P. Mårtensson, U. Jansson, and J.-O. Carlsson, J. Electrochem. Soc. **146**, 3139 (1999).
- ¹⁰⁶⁵M. Lindblad and L. P. Lindfors, in *Proceedings of the Tenth International Congress on Catalysis: New Frontiers in Catalysis, Budapest, Hungary, 19–24 July 1992*, edited by L. Guczi [Stud. Surf. Sci. Catal. 75, 1763 (1993)].
- ¹⁰⁶⁶ J. W. Klaus, S. J. Ferro, and S. M. George, Appl. Surf. Sci. **162–163**, 479 (2000).
- ¹⁰⁶⁷ J. W. Klaus, S. J. Ferro, and S. M. George, J. Electrochem. Soc. 147, 1175 (2000).
- ¹⁰⁶⁸ H. S. Sim, S.-I. Kim, H. Jeon, and Y. T. Kim, Jpn. J. Appl. Phys., Part 1 42, 6359 (2003).
- ¹⁰⁶⁹H. S. Sim, S.-I. Kim, and Y. T. Kim, J. Vac. Sci. Technol. B 21, 1411 (2003)
- ¹⁰⁷⁰ H. S. Sim, J. H. Park, and Y. T. Kim, Phys. Status Solidi A **201**, R92 (2004)
- ¹⁰⁷¹J. S. Becker, S. Suh, S. Wang, and R. G. Gordon, Chem. Mater. 15, 2969 (2003).
- ¹⁰⁷² J. S. Becker and R. G. Gordon, Appl. Phys. Lett. **82**, 2239 (2003).
- ¹⁰⁷³ A. Rugge, J. S. Becker, R. G. Gordon, and S. H. Tolbert, Nano Lett. 3, 1293 (2003).
- ¹⁰⁷⁴T. W. Scharf, S. V. Prasad, T. M. Mayer, R. S. Goeke, and M. T. Dugger, J. Mater. Res. **19**, 3443 (2004).
- ¹⁰⁷⁵D.-H. Kim, Y. J. Kim, Y. S. Song, B.-T. Lee, J. H. Kim, S. Suh, and R. Gordon, J. Electrochem. Soc. **150**, C740 (2003).
- ¹⁰⁷⁶J. W. Klaus, S. J. Ferro, and S. M. George, Thin Solid Films **360**, 145 (2000).
- ¹⁰⁷⁷ J. W. Elam, C. E. Nelson, R. K. Grubbs, and S. M. George, Thin Solid

- Films **386**, 41 (2001).
- ¹⁰⁷⁸J. W. Elam, C. E. Nelson, R. K. Grubbs, and S. M. George, Surf. Sci. 479, 121 (2001).
- ¹⁰⁷⁹R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, Science 303, 989 (2004).
- ¹⁰⁸⁰R. K. Grubbs, N. J. Steinmetz, and S. M. George, J. Vac. Sci. Technol. B 22, 1811 (2004).
- ¹⁰⁸¹T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskelä, J. Electrochem. Soc. 151, G489 (2004).
- T. Aaltonen, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Chem. Mater. 15, 1924 (2003).
- ¹⁰⁸³ M. Leskelä, L. Niinistö, P. Niemelä, E. Nykänen, P. Soininen, M. Tiitta, and J. Vähäkangas, Vacuum 41, 1457 (1990).
- ¹⁰⁸⁴E. Nykänen, J. Laine-Ylijoki, P. Soininen, L. Niinistö, M. Leskelä, and L. G. Hubert-Pfalzgraf, J. Mater. Chem. 4, 1409 (1994).
- 1085 M. Vehkamäki, T. Hatanpää, M. Ritala, and M. Leskelä, J. Mater. Chem. 14, 3191 (2004).
- ¹⁰⁸⁶T. I. Hukka, T. A. Pakkanen, and M. P. D'Evelyn, Surf. Sci. 359, 213 (1996).
- ¹⁰⁸⁷ A. Heyman and C. B. Musgrave, J. Phys. Chem. B **108**, 5718 (2004).
- ¹⁰⁸⁸ Y. Widjaja and C. B. Musgrave, Appl. Phys. Lett. **80**, 3304 (2002).
- ¹⁰⁸⁹ M. D. Halls and K. Raghavachari, J. Chem. Phys. **118**, 10221 (2003).
- ¹⁰⁹⁰ M. D. Halls, K. Raghavachari, M. M. Frank, and Y. J. Chabal, Phys. Rev. B 68, 161302 (2003).
- ¹⁰⁹¹L. Jeloaica, A. Estéve, M. D. Rouhani, and D. Estéve, Appl. Phys. Lett. 83, 542 (2003).
- ¹⁰⁹² Y. Xu and C. B. Musgrave, Chem. Mater. **16**, 646 (2004).
- ¹⁰⁹³ M. D. Halls and K. Raghavachari, J. Phys. Chem. B **108**, 4058 (2004).
- ¹⁰⁹⁴M. D. Halls and K. Raghavachari, J. Phys. Chem. A **108**, 2982 (2004).
- ¹⁰⁹⁵ K. Raghavachari and M. D. Halls, Mol. Phys. **102**, 381 (2004).
- ¹⁰⁹⁶S. D. Elliott and J. C. Greer, J. Mater. Chem. **14**, 3246 (2004).
- ¹⁰⁹⁷ S. D. Elliott and H. P. Pinto, J. Electroceram. **13**, 117 (2004).
- ¹⁰⁹⁸ J. K. Kang and C. B. Musgrave, J. Appl. Phys. **91**, 3408 (2002).
- ¹⁰⁹⁹ Y. Okamoto, J. Phys. Chem. B **103**, 11074 (1999).
- ¹¹⁰⁰C. Mui, Y. Widjaja, J. K. Kang, and C. B. Musgrave, Surf. Sci. 557, 159 (2004).
- ¹¹⁰¹ P. Hirva and T. Pakkanen, Surf. Sci. **220**, 137 (1989).
- ¹¹⁰²M. J. Calhorda, L. F. Veiros, and L. Niinistö, Acta Chem. Scand. **50**, 862 (1996).
- ¹¹⁰³R. Leboda *et al.*, J. Colloid Interface Sci. **218**, 23 (1999).
- ¹¹⁰⁴ V. M. Gunko, R. Leboda, M. Marciniak, W. Grzegorczyk, J. Skubiszewska-Zieba, A. A. Malygin, and A. A. Malkov, Langmuir 16, 3227 (2000).
- ¹¹⁰⁵T. Tanaka, T. Nakajima, and K. Yamashita, Thin Solid Films 409, 51 (2002).
- 1106 P. Mårtensson, K. Larsson, and J.-O. Carlsson, Appl. Surf. Sci. 136, 137 (1998).
- ¹¹⁰⁷ P. Mårtensson, K. Larsson, and J.-O. Carlsson, Appl. Surf. Sci. **148**, 9 (1999).
- ¹¹⁰⁸P. Mårtensson, K. Larsson, and J.-O. Carlsson, Appl. Surf. Sci. **157**, 92 (2000)
- ¹¹⁰⁹T. A. Pakkanen, V. Nevalainen, M. Lindblad, and P. Makkonen, Surf. Sci. **188**, 456 (1987).
- ¹¹¹⁰M. Lindblad and T. A. Pakkanen, J. Comput. Chem. **9**, 581 (1988).
- ¹¹¹¹K. Tóth, T. A. Pakkanen, P. Hirva, and J. Muilu, Surf. Sci. 277, 395 (1992).
- ¹¹¹²Y. Mochizuki, T. Takada, and A. Usui, Jpn. J. Appl. Phys., Part 2 32, L197 (1993).
- ¹¹¹³Y. Mochizuki, T. Takada, and A. Usui, Phys. Rev. B 47, 13420 (1993).
- ¹¹¹⁴Y. Mochizuki, T. Takada, and A. Usui, Appl. Surf. Sci. 82–83, 200 (1994).
- ¹¹¹⁵ V. V. Brodskii, E. A. Rykova, A. A. Bagatur'yants, and A. A. Korkin, Comput. Mater. Sci. 24, 278 (2002).
- ¹¹¹⁶Y. Widjaja and C. B. Musgrave, Appl. Phys. Lett. **81**, 304 (2002).
- ¹¹¹⁷N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, and J. Andzelm, Comput. Mater. Sci. 28, 250 (2003).
- ¹¹¹⁸Y. J. Widjaja, H. Han, and C. B. Musgrave, J. Phys. Chem. B **107**, 9319 (2003).
- ¹¹¹⁹M. Deminsky et al., Surf. Sci. **549**, 67 (2004).
- ¹¹²⁰ J. H. Han, G. Gao, Y. Widjaja, E. Garfunkel, and C. B. Musgrave, Surf. Sci. 550, 199 (2004).
- ¹¹²¹ M. Petersen, Comput. Mater. Sci. **30**, 77 (2004).
- ¹¹²²Y. Widjaja and C. B. Musgrave, J. Chem. Phys. **117**, 1931 (2002).
- 1123 A. Estéve, M. Djafari Rouhani, L. Jeloaica, and D. Estéve, Comput.

- Mater. Sci. 27, 75 (2003).
- ¹¹²⁴C. Mui and C. B. Musgrave, J. Phys. Chem. B **108**, 15150 (2004).
- ¹¹²⁵ M. Siodmiak, G. Frenking, and A. Korkin, J. Phys. Chem. A **104**, 1186 (2000).
- ¹¹²⁶A. Salzer, Pure Appl. Chem. **71**, 1557 (1999).
- ¹¹²⁷ M. Ylilammi, Thin Solid Films **279**, 124 (1996).
- ¹¹²⁸R. L. Puurunen, Chem. Vap. Deposition **9**, 249 (2003).
- ¹¹²⁹G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).
- ¹¹³⁰ R. M. Wallace and G. D. Wilk, Crit. Rev. Solid State Mater. Sci. 28, 231 (2003).
- ¹¹³¹ J. Robertson, Eur. Phys. J.: Appl. Phys. **28**, 265 (2004).
- ¹¹³²T. Kawahara and K. Torii, IEICE Trans. Electron. **E87-C**, 2 (2004).
- ¹¹³³ K. Kukli, M. Ritala, M. Leskelä, S. Dueñas, H. Castán, H. García, and J. Barbolla, AVS Topical Conference on Atomic Layer Deposition ALD 2004, Helsinki, Finland, 16–18 August 2004 (presentations published on CD, AVS, 2004).
- 1134 One group (Refs. 979 and 980) has reported GPC values for the HfCl₄/H₂O process at 300 °C, which are about three times as high as the typically reported ~0.05 nm. (Refs. 982, 984, 985, 992, 998, 1127, and 1132) No clarification has been proposed for the different findings, although the particular reactor used in Refs. 979 and 980 has been concluded to result in systematically higher values than other reactors (Ref. 1133). ALD is a surface-controlled process, and getting significantly different GPC values in different reactors should, in principle, not be possible, unless the process itself or the chosen parameters do not represent ALD conditions.
- ¹¹³⁵R. L. Puurunen, Chem. Vap. Deposition **11**, 79 (2005).
- ¹¹³⁶J. W. Elam, G. Xiong, C. Y. Han, J. P. Birrell, G. A. Willing, H. H. Wang, J. N. Hryn, and M. J. Pellin, AVS Topical Conference on Atomic Layer Deposition ALD 2004, Helsinki, Finland, 16–18 August 2004 (presentations published on CD, AVS, 2004).
- ¹¹³⁷ E. Graugnard, J. S. King, D. Heineman, and C. J. Summers, AVS Topical Conference on Atomic Layer Deposition ALD 2004, Helsinki, Finland, 16–18 August 2004 (presentations published on CD, AVS, 2004).
- ¹¹³⁸M. Ritala, A. Rahtu, M. Leskelä, and K. Kukli, U.S. Patent 6,632,279 (14 October 2003).
- ¹¹³⁹G. E. Rodgers, Introduction to Coordination, Solid State, and Descriptive Inorganic Chemistry (McGraw-Hill, Singapore, 1994).
- ¹¹⁴⁰R. L. Puurunen, Chem. Vap. Deposition **10**, 159 (2004).
- ¹¹⁴¹B. S. Lim, A. Rahtu, J.-S. Park, and R. G. Gordon, Inorg. Chem. 42, 7951 (2003).
- ¹¹⁴²A. Rahtu, B. S. Lim, and R. Gordon, AVS Topical Conference on Atomic Layer Deposition ALD 2003, San Jose, California, USA, 4–6 August 2003 (presentations published on CD, AVS, 2003).
- ¹¹⁴³B. S. Lim, A. Rahtu, P. de Rouffignac, and R. G. Gordon, Appl. Phys. Lett. **84**, 3957 (2004).
- ¹¹⁴⁴J. Hukkamäki, S. Suvanto, M. Suvanto, and T. T. Pakkanen, Langmuir 20, 10288 (2004).
- ¹¹⁴⁵D. H. Everett, Pure Appl. Chem. 31, 579 (1972); web version http://www.iupac.org/reports/2001/colloid_2001/manual_of_s_and_t.pdf
- 1146 For amorphous and polycrystalline materials, defining a monolayer may be more difficult, as discussed in Sec. V B 2.
- Sometimes the reactions used in ALD investigations do not fulfill the criterion of self-termination. Typical deviations of self-terminating adsorption are caused by (i) continuous adsorption, often caused by too low processing temperatures and unoptimized purge times, (ii) desorption of the adsorbed reactants during purge or evacuation, often caused by too high processing temperatures, (iii) nonsaturating irreversible chemisorption, caused by thermal decomposition of the gas-phase reactant or the adsorbed surface species, and (iv) unsaturation, caused by insufficient time or reactant dose for the reactions to go to completion.
- 1148 H. S. Fogler, Elements of Chemical Reaction Engineering, 2nd ed. (Prentice Hall, Upper Saddle River, New Jersey, 1992).
- 1149 G. Eres and J. W. Sharp, J. Appl. Phys. **74**, 7241 (1993).
- ¹¹⁵⁰G. Eres, Appl. Phys. Lett. **67**, 1727 (1995).
- ¹¹⁵¹ H.-S. Park, J.-S. Min, J.-W. Lim, and S.-W. Kang, Appl. Surf. Sci. 158, 81 (2000).
- ¹¹⁵²M. K. Gobbert, S. G. Webster, and T. S. Cale, J. Electrochem. Soc. 149, G461 (2002).
- ¹¹⁵³M. K. Gobbert, V. Prasad, and T. S. Cale, J. Vac. Sci. Technol. B 20, 1031 (2002).
- ¹¹⁵⁴M. K. Gobbert, V. Prasad, and T. S. Cale, Thin Solid Films 410, 129 (2002).

- ¹¹⁵⁵In this work, the symbol Q is used for the chemisorption coverage instead of the more commonly used Θ or θ. This is done to avoid confusion with the coverage of the ALD-grown material denoted Θ in growth-mode models (Refs. 247 and 1140) and the coverage of the ligands denoted θ in a GPC model (Ref. 1128). The use of three different symbols testifies to the three different definitions for the term monolayer: for chemisorption, for physisorption, and for the ALD-grown  $MZ_x$  material (Sec. III A). Coverage is in all cases defined (Ref. 1145) as "the ratio of the amount of adsorbed substance to the monolayer capacity," and thus is obtained by dividing the amount of adsorbed species with the monolayer capacity.
- 1156 ALD processes are in a steady state, with a constant deposition rate only after termination of the reactions when the deposition rate is zero, which is a major difference compared to typical CVD processes.
- ¹¹⁵⁷ J. Aarik, A. Aidla, and K. Kukli, Appl. Surf. Sci. **75**, 180 (1994).
- ¹¹⁵⁸J. Aarik and H. Siimon, Appl. Surf. Sci. **81**, 281 (1994).
- ¹¹⁵⁹ M. Ylilammi, J. Electrochem. Soc. **142**, 2474 (1995).
- ¹¹⁶⁰H. Siimon and J. Aarik, J. Phys. IV **5**, C5/245 (1995).
- ¹¹⁶¹In this work, the term *chemisorption* is defined to refer to all processes where the  $ML_n$  reactant (dissociation, association) or just fragments of it (ligand exchange) are attached to the surface. Other ALD publications may use other definitions. For example, Ritala and Leskelä (Ref. 3) consider as "true chemisorption" only the reactions where all parts of the reactant are attached to the surface (dissociation, association), and do not classify the (ligand) exchange reactions as chemisorption.
- 1162 One can visualize the ligand exchange reaction in two ways: either the central metal atom of the  $ML_n$  compound (or of the  $ML_z$  species) exchanges one of its ligands L with a bond to the surface; or the surface exchanges its ligand -a with another "ligand," a  $MZ_z$  species.
- ¹¹⁶³R. J. Peglar, F. H. Hambleton, and J. A. Hockey, J. Catal. **20**, 309 (1971).
- ¹¹⁶⁴ M. E. Bartram, T. A. Michalske, and J. W. Rogers, Jr., J. Phys. Chem. 95, 4453 (1991).
- A. Hakuli and A. Kytökivi, Phys. Chem. Chem. Phys. 1, 1607 (1999).
   I. V. Babich, Yu. V. Plyuto, P. Van Der Voort, and E. F. Vansant, J. Chem. Soc., Faraday Trans. 93, 3191 (1997).
- ¹¹⁶⁷I. V. Babich, Yu. V. Plyuto, P. Van Der Voort, and E. F. Vansant, J. Colloid Interface Sci. **189**, 144 (1997).
- ¹¹⁶⁸ A. A. Malygin, A. N. Volkova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. **46**, 2166 (1976) [J. Gen. Chem. USSR 46, 2085 (1976)].
- ¹¹⁶⁹P. J. Kooyman, P. van der Waal, P. A. J. Verdaasdonk, K. C. Jansen, and H. van Bekkum, Catal. Lett. 13, 229 (1992).
- ¹¹⁷⁰C. Musgrave, AVS Topical Conference on Atomic Layer Deposition ALD 2003, San Jose, California, USA 4–6 August 2003 (presentations published on CD, AVS, 2003).
- Growth of a full monolayer of the ALD-grown material per cycle is sometimes regarded "theoretical" ALD. However, no theory appears to exist that would predict such growth.
- 1172 In relation with Model III, it is probably, in practice, not possible to reach a ligand content equivalent to a physisorbed monolayer of the ligands, because the ligands are bounded to surface atoms and thus are not free to move in the same way as truly physisorbed molecules.
- ¹¹⁷³ Desorption of the adsorbed species during purging periods has also been suggested to account for the GPC of less than a monolayer (Refs. 1116, 1120, 1122, and 1153). This suggestion, however, contradicts the essential requirement of irreversibility for the self-terminating ALD reactions (Sec. III A).
- 1174 Increase in temperature may also turn an irreversible reaction into a reversible reaction. Such effect is not discussed in this work, because through it, the self-terminating characteristics of the reaction are lost.
- 1175 In this work, the term ALD window is used for referring to the temperature range where an ALD process fulfills the criterion of self-terminating reactions. The same term has been used for referring to other things also, most particularly, to a temperature range where the GPC is constant (e.g., Refs. 11 and 30).
- ¹¹⁷⁶C. Zhao, B. Brijs, F. Dortu, S. De Gendt, M. Caymax, M. Heyns, W. Besling, and J. W. Maes, Proc.-Electrochem. Soc. PV 2003-3, 243 (2003).

- ¹¹⁷⁷ A. Martin Hoyas, J. Schuhmacher, D. Shamiryan, J. Waeterloos, W. Besling, J. P. Celis, and K. Maex, J. Appl. Phys. 95, 381 (2004).
- 1178 M. A. Alam and M. L. Green, J. Appl. Phys. **94**, 3403 (2003).
- ¹¹⁷⁹D. Shamiryan, Ph.D. thesis, Katholieke Universiteit Leuven, Belgium, 2004
- ¹¹⁸⁰H. Lüth, Surfaces and Interfaces of Solids, 2nd ed. (Springer, Berlin, 1993).
- ¹¹⁸¹ Y. Horikoshi, M. Kawashima, and H. Yamaguchi, Jpn. J. Appl. Phys., Part 2 25, L868 (1986).
- ¹¹⁸²O. Ueda, K. Kitahara, N. Ohtsuka, A. Hobbs, and M. Ozeki, J. Cryst. Growth **115**, 133 (1991).
- ¹¹⁸³ J. Kunawicz, P. Jones, and J. A. Hockey, Trans. Faraday Soc. 67, 848 (1971).
- J. Kratochvila, Z. Kadlc, A. Kazda, and Z. Salajka, J. Non-Cryst. Solids 143, 14 (1992).
- ¹¹⁸⁵D. C. Bertolet and J. W. Rogers, Jr., Chem. Mater. **5**, 391 (1993).
- ¹¹⁸⁶H. Liu, D. C. Bertolet, and J. W. Rogers, Jr., Surf. Sci. **320**, 145 (1994).
- ¹¹⁸⁷B. A. Morrow and A. H. Hardin, J. Phys. Chem. **83**, 3135 (1979).
- ¹¹⁸⁸ A. W. Apblett and A. R. Barron, Organometallics 9, 2137 (1990).
- ¹¹⁸⁹L. M. Yeddanapalli and C. C. Schubert, J. Chem. Phys. **14**, 1 (1946).
- ¹¹⁹⁰S. Haukka and A. Root, J. Phys. Chem. **98**, 1695 (1994).
- ¹¹⁹¹ From the experiments on alumina [Fig. 21(a)], we have  $\Delta c_{\rm Al}$  (nm⁻²) =  $(5.9\pm0.2)+(-0.0050\pm0.003)T(^{\circ}{\rm C})$ . From the GPC measured for flat substrates (Fig. 19), we have  $\Delta c_{\rm Al}$  (nm⁻²)= $(6.3\pm0.6)+(-0.0081\pm0.0024)T(^{\circ}{\rm C})$ . These equations are close to the same within the error limits.
- ¹¹⁹²R. Anwander, C. Palm, O. Groeger, and G. Engelhardt, Organometallics 17, 2027 (1998).
- ¹¹⁹³ Model II is not able to describe the GPC in the AlMe₃/H₂O process: for a surface complex with one methyl group, the maximum GPC calculated with Model II is lower than the observed real value (Ref. 992).
- ¹¹⁹⁴F. A. Cotton and G. Wilkinson, *Basic Inorganic Chemistry* (Wiley, New York, 1976), p. 88.
- ¹¹⁹⁵H. Knözinger and P. Ratnasamy, Catal. Rev. Sci. Eng. 17, 31 (1978).
- ¹¹⁹⁶L. T. Zhuravlev, Langmuir **3**, 316 (1987).
- ¹¹⁹⁷ J. E. Crowell, J. Vac. Sci. Technol. A **21**, S88 (2003).
- ¹¹⁹⁸ Yu. K. Ezhovskii and P. M. Vainshtein, Zh. Fiz. Khim. **71**, 2222 (1997) [Russ. J. Phys. Chem. **71**, 2009 (1997)].
- 1199 K. L. Choy, Prog. Mater. Sci. 48, 57 (2003).
- ¹²⁰⁰In Ref. 1178, chemical kinetics was incorrectly declared as the starting point of modeling how the amount of material deposited by ALD increases with reaction cycles, apparently because the GPC was called a "growth rate (amount/cycle)," and chemical kinetics describes rates (see Ref. 992).
- ¹²⁰¹ A. A. Malygin, V. F. Dergachev, and S. I. Kol'tsov, Zh. Prikl. Khim. (S.-Peterburg) **59**, 430 (1986) [J. Appl. Chem. USSR **59**, 392 (1986)].
- ¹²⁰²P. M. Vainshtein and Yu. K. Ezhovskii, Zh. Prikl. Khim. (S.-Peterburg) 71, 227 (1998) [Russ. J. Appl. Chem. 71, 235 (1998)].
- ¹²⁰³ K. Schrijnemakers, P. Van Der Voort, and E. F. Vansant, Phys. Chem. Chem. Phys. 1, 2569 (1999).
- ¹²⁰⁴R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition 9, 73 (2003).
- 1205 V. F. Dergachev, A. A. Malygin, and S. I. Kol'tsov, Zh. Prikl. Khim.
   (S.-Peterburg) 54, 1972 (1981) [J. Appl. Chem. USSR 54, 1722 (1981)]
- High-surface-area substrates have typically a specific surface area of 100–300 m² g⁻¹ (Refs. 209, 216, and 419) so, for example, for 10 g of the substrate, a surface area of 1000–3000 m² has to be reacted. Flat substrates have typically a surface area of 0.003–0.07 m²—from square substrates of 5 × 5 cm² in research reactors up to circular substrates with 30-cm diameter in semiconductor processing lines. The surface area to be reacted on high-surface-area substrates can thus be at least six orders of magnitude higher than on flat substrates.
- ¹²⁰⁷ S. Haukka, A. Kytökivi, E.-L. Lakomaa, U. Lehtovirta, M. Lindblad, V. Lujala, and T. Suntola, in *Proceedings of the Sixth International Symposium on Scientific Bases for the Preparation of Heterogeneous Catalysts, Louvain-la-Neuve, Belgium, 5–8 September 1994*, edited by G. Poncelet, J. Martens, B. Delmon, P. A. Jacobs, and P. Grange [Stud. Surf. Sci. Catal. 91, 957 (1995)].