Tarea 1

OLIMPIADA MEXICANA DE FÍSICA, SMF Fecha de entrega: lunes 23 enero 2017.

Entrenamiento 2017

Problema 1

Sin el uso de calculadora completa los espacios vacíos la siguiente tabla con los valores correctos de las funciones trigonométricas que se especifican en cada columna, también haz las conversiones a radianes los ángulos.

θ (grados)	θ ángulo (radianes)	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0	0	1	0
45°		$1/\sqrt{2}$		
30°				
60°				
90°	$\pi/2$	1	0	∞
120°				
135°				-1
150°	$15\pi/18$			
180°	π	0	-1	0
210°				
225°				
240°				
270°		-1	0	∞
300°				
315°				
330°				
360°	2π	0	1	0

Tabla 1

Sugerencias:

Te pueden servir los siguientes triangulo

También puedes hacer uso las formulas del seno y coseno para la suma de ángulos:

$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \sin\beta \cos\alpha$$

$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$$
(1)

Problema 2

- 1. La suma de la diagonal de un cubo y la diagonal de una cara es 40 cm. Calcular el área total y el volumen del cubo.
- 2. Un circo utiliza una tienda de lona de forma cilíndrica de 16 m de radio y 3 m de altura, terminando por un cono del mismo radio y 12 cm de altura. ¿Cuánto costará hacer una nueva tienda si la lona tiene un costo de $$950/m^2$, sabiendo que se desperdicia $6.5 \, \text{m}^2$ de lona?
- 3. Un rectángulo al girar sobre sus dos lados contiguos genera dos cilindros cuyas áreas totales son 98π y 1.152π ; Cuáles son las dimensiones del rectángulo?

Problema 3

1. Sin emplear las formulas de suma y resta de ángulos, ecuación (1), y con la ayuda de los dos triángulos mostrados en la figura de abajo calcula las funciones $\sin (75^{\circ})$, $\cos (75^{\circ})$, $\tan (75^{\circ})$.

- 2. Distancia a la Tierra. De un punto exterior P que está a una distancia h desde la superficie terrestre una recta tangente se traza a la superficie terrestre (vea la figura). Denote con y la distancia desde el punto P al punto de tangencia T.
 - a) Exprese y como función de h.
 - b) Si R_T es el radio de la Tierra y h es la altitud de un transbordador espacial, entonces y es la distancia máxima a la Tierra que un astronauta puede ver desde el transbordador. En particular, si $h = 300 \,\mathrm{km}$ y $R_T = 6370 \,\mathrm{km}$, aproxime y.

Problema 4

- 1. Un químico tiene 10 ml de una solución que contiene una concentración al 30 % de ácido. ¿Cuántos mililitros de ácido puro deben agregarse para aumentar la concentración al 50 %?
- 2. Dos ciudades están comunicadas por una carretera. Un auto sale de la ciudad B a la 1:00 p.m. y avanza a una velocidad constante de 40 km/h hacia la ciudad C. Treinta minutos después, otro auto sale de la ciudad B y avanza hacia C a una velocidad constante de 55 km/h. Si no consideramos las longitudes de los autos, ¿a qué hora el segundo auto alcanzará al primero?
- 3. La temperatura T dentro de una nube a una altura h (en pies) sobre la base de la nube se puede aproximar usando la ecuación: $T = B \left(\frac{3}{1000}\right)h$, donde B es la temperatura de la nube en su base. Determine la temperatura a 10,000 pies en una nube con una temperatura de su base de y una altura de base de 4000 pies.

- a) Aproxime la altura del nivel de congelación en una nube si la temperatura del suelo es de 80°F y el punto de rocío o condensación es 68°F.
- b) Encuentre una fórmula para la altura h del nivel de congelación en una nube con una temperatura del suelo G y punto de rocío D.
- 4. La población P (en miles) de un pequeño poblado se espera que aumente de acuerdo con la fórmula: $P = 15 + \sqrt{3t + 2}$, donde t es el tiempo en años. ¿Cuándo será de 20,000 la población?

Problema 5

En la figura se muestra el interior de un condensador de placas paralelas (la placa superior esta con polaridad positiva) que esta conectado a una diferencia de potencial $\Delta V = 5 \times 10^5 \,\mathrm{V}$, la separación entre las placas es $d=1\,\mathrm{cm}$. En la placa inferior se encuentra una fuente de partículas α (las partículas α son núcleos de Helio, es decir que están formadas por 2 protones y 2 neutrones) y por la pequeña apertura (Slit S) emergen dos partículas α a la misma velocidad $v_0 = 6 \times 10^6 \,\mathrm{m/s}$ pero a diferentes ángulos $\theta_1 = 45^\circ + 1^\circ$ y $\theta_2 = 45^\circ - 1^\circ$. Responde las siguientes preguntas (desprecia la gravedad):

- a) Demuestra que las dos partículas α son proyectadas en la placa inferior sobre un mismo punto P.
- **b)** Calcula el valor del alcance R al que son proyectadas las partículas en la placa inferior.
- c) Calcula el valor de $h_1 h_2$, donde h_1 y h_2 corresponden a la altura máxima de la partícula con ángulo de salida θ_1 y θ_2 respectivamente.

