תורת הקבוצות – קובץ תרגילים מספר 1

1.1 שאלה

 $.x\subseteq y$ אם אם $x\in y$ הבאים, קבע הם אם הזוגות x; y הבאים בכל אחד

ייתכן ששני היחסים יתקיימו בעת ובעונה אחת, וייתכן גם שאף אחד משניהם לא יתקיים. בשאלה זו בלבד אין צורך לנמק.

$$\{l\}$$
 ; $\{\{l\}\}$ ב. \emptyset ; $\{\emptyset\}$.

$$\varnothing$$
 ; $\{\varnothing, \{1\}\}$. T . $\{1\}$; $\{\varnothing, \{1\}\}$.

$$\{\{\emptyset\}\}\ ;\ \{\emptyset,\{1\}\}\$$
 . $\{\{1\}\}\ ;\ \{\emptyset,\{1\}\}\$

$$P(\varnothing)$$
 ; $P(\{\varnothing\})$. \square \varnothing ; $P(\{1\})$. \square

1.2 שאלה

נתונות הקבוצות:

$$A_1 = \emptyset$$
 $A_2 = \{\emptyset\}$ $A_3 = \{\text{David}, \emptyset\}$ $A_4 = \{A_2, A_3\}$

 $(1 \le i, j \le 4)$ i,j בכל אחד מן הסעיפים הבאים, מצא את כל

עבורם מתקיים התנאי הנתון באותו סעיף. בשאלה זו בלבד אין צורך לנמק.

$$A_i \subseteq A_j$$
 .

$$A_i \in A_j$$
 .

(ציין גם את ייאיבר הבינייםיי) איבר של איבר של הבינייםיי) איבר איבר איבר או A_i

$$A_i \cap A_i = \phi$$
 .7

$$A_i \cap A_j = A_2$$
 .

שאלה 1.3

 $x \subseteq y$ וקבע אם $x \in y$ וקבע אם $x \in y$ הבאים, הבאים $x \in y$

ייתכן ששני היחסים יתקיימו בעת ובעונה אחת, וייתכן גם שאף אחד משניהם לא יתקיים. בשאלה זו בלבד אין צורך לנמק.

$$\varnothing$$
 ; $\{\varnothing\}$: Σ

$$\{\varnothing\}$$
 ; $\{\varnothing,\{1\}\}$. \top \varnothing ; $\{\varnothing,\{1\}\}$. λ

$$\{\{\emptyset\}\}\ ;\ \{\emptyset,\{1\}\}$$
 .1 $\{\{1\}\}\}\ ;\ \{\emptyset,\{1\}\}$

$$P(\varnothing)$$
 ; $P(P(\varnothing))$. \cap $\{\varnothing\}$; $P(\{1\})$. \uparrow

1.4 שאלה

. (בוצה) אינו קבוצה) אינו קבוצה) עצם כלשהו שאינו קבוצה) אינה: $Z = \{\emptyset, \{\emptyset\}\}$, $Y = \{\emptyset, \mathbf{foo}\}$

לכל אחת מהטענות הבאות קבע אם היא נכונה.

בשאלה זו בלבד אין צורך לנמק, די לרשום בכל סעיף נכון / לא נכון.

$$\{X\} \cup Y = Y$$
 . Υ . $Y \cap Z = X$. $X = \{X\} \in Y$. $X \cup Y = Y$.

$$Y \in P(Y)$$
 . $T \subseteq P(Y)$.

2.1 שאלה

הוכח או הפרך כל אחת מהטענות הבאות. כדי להפריך - הבא דוגמא נגדית.

לטענות הנכונות - תן הוכחה מסודרת.

$$A-C=B$$
 א $A-B=C$ א. אם.

$$A - B = \emptyset$$
 אז $A \subseteq B$ ב. אם

$$A \subseteq B$$
 אז $A - B = \emptyset$ ג. אם

.
$$P(A) \subseteq P(B)$$
 אז $A \subseteq B$ ד. אם .ד

שאלה 2.2

הוכח את הטענות הבאות בעזרת "אלגברה של קבוצות": צא מאחד האגפים, פתח אותו בעזרת זהויות ידועות, והגע לאגף השני. אין להשתמש בהוכחה במושג "איבר"!

$$A \oplus B = (A \cup B) - (A \cap B)$$
.

$$(A - B) \cup (B - C) = (A \cup (B - C)) - (B \cap C)$$
.

$$(A-B)\cap (C-D)=(A\cap C)-(B\cup D)$$
 .

2.3 שאלה

הוכח או הפרך כל אחת מהטענות הבאות. כדי להפריך - הבא דוגמא נגדית.

לטענות הנכונות - תן הוכחה מסודרת.

$$.C-A=B$$
 in $A\cup B=C$ dy.

$$A \cup B = C$$
 אז $C - A = B$ ב. אם

A,B,X,Y מתקיים:

$$X = Y$$
 in $B \cap X = B \cap Y$ -1 $A \cup X = A \cup Y$

.
$$P(A) \subseteq P(B)$$
 אז $A \subseteq B$ ד. אם

$$A \cup B = C$$
 אז $A \subseteq C$ ווועם $C - A = B$ ה. אם

2.4 שאלה

הוכח או הפרך כל אחת מהטענות הבאות. כדי להפריך טענה - הבא דוגמא נגדית.

לטענות הנכונות - תן הוכחה מסודרת.

.
$$A-B=A$$
 או $A\cap B=\emptyset$ או אם

$$A \subseteq P(A)$$
 .

$$P(A \cap B) = P(A) \cap P(B) . \lambda$$

שאלה 3.1

הוכח את הטענות אי-די. U היא קבוצה אוניברסלית, המכילה את כל הקבוצות שבשאלה.

שים לב: בטענות "אם ורק אם" יש להוכיח שני כיוונים.

$$X=Y$$
 אז $X\oplus A=Y\oplus A$ אם א כלל הצמצום:

הדרכה: היעזר באסוציאטיביות של ⊕ ובתכונות אחרות שלה.

$$A=B$$
 אם ורק אם $A\oplus B=\varnothing$ ב.

$$A=B$$
' אם ורק אם $A\oplus B=U$.ג

$$A \oplus B = \emptyset$$
 אם ורק אם $A \oplus B = A$.

שאלה 3.2

הוכח את הטענות הבאות בעזרת "אלגברה של קבוצות": צא מאחד האגפים, פתח אותו בעזרת זהויות ידועות, והגע לאגף השני. אין להשתמש בהוכחה במושג "איבר". ציין את הזהויות עליהן אתה מסתמך.

$$A \oplus B = (A \cup B) - (A \cap B)$$
 .

$$A \cup B = (A \cap B) \cup (A \oplus B)$$
.

לצרף את הגורמים.

שאלה 3.3

הוכח את הטענות הבאות בעזרת *"אלגברה של קבוצות"*: צא מאחד האגפים, פתח אותו בעזרת זהויות ידועות, והגע לאגף השני. אין להשתמש בהוכחה במושג "איבר".

$$(A \cup B) - C = (A - C) \cup (B - C)$$
.

$$(A \cap B) \cup (A \cap B') = A$$
.

$$(A \oplus B) \oplus (B \oplus C) = A \oplus C$$
.

4.1 שאלה

 $N = \{0, 1, 2, ..., \}$: היא קבוצת המספרים הטבעיים N

$$A_n=A_{n+1}-A_n$$
 ותהי $A_n=\left\{x\in \mathbf{N}\mid \ n\leq x\leq 2n-1
ight\}$ לכל , $n\in \mathbf{N}$

- A_0 א. מהי
- ב. חשב את $\bigcup_{n\in \mathbf{N}}A_n$ (הוכח את תשובתך). $. B_0, B_1$. מצא את הקבוצות .
- .($n \geq 2$) א עבור (עבור התרגיל) עבור התרגיל ביטוי מפורש (בדומה להגדרת ביטוי להגדרת ביטוי מפורש (בדומה להגדרת אור).

$$\bigcup_{n\in\mathbb{N}}B_n$$
 ה. חשב את

 $n \in \mathbf{N}^+$ גגדיר קבוצה מ- 0. לכל $n \in \mathbf{N}^+$ גגדיר קבוצה \mathbf{N}^+

$$B_n = \{ n \cdot k \mid k \in \mathbf{N}^+ \}$$

.($k \in \mathbf{N}^+$ כאשר , $n \cdot k$ קבוצת כל המספרים שצורתם

n ,m אב המינימלית המשותפת הוא הכפולה הוא c(n,m) כאשר אב הוא המינימלית של מא $B_n \cap B_m = B_{c(n,m)}$ א.

(המספר הטבעי החיובי הקטן ביותר המתחלק ללא שארית ב- n וב- m). הדרכה: ניתן להסתמך בכפולה מתחלקת .m משותפת כפולה כל הטענה על המשותפת המינימלית שלהן.

.
$$\bigcap_{n\in \mathbf{N}^*} B_n = \varnothing$$
 ב. הסבר מדוע

.(
$$D_3=B_3-B_2$$
 , $D_2=B_2$: נסמן) $D_n=B_n-\bigcup_{1\leq i\leq n}B_i$ נסמן $n\geq 2$. λ

. $\{n \in \mathbf{N} | \ D_n \neq \varnothing\}$ את מצא את ירכים של חn קיים חn עבור איזה ערכים איזה חיים פור איזה חיים ח

אל תשכח להראות שתשובתך כוללת את **כל** הערכים המקיימים זאת (ייהכלה דו-כיווניתיי).

4.3 שאלה

. נסמן את קבוצת המספרים הטבעיים מאפס \mathbf{N}^+ את קבוצת מספרים מאפס

. היא קבוצת המספרים הממשיים R

.
$$A_n = \left\{x \in \mathbf{R} \mid 2 + \frac{1}{n} \le x \le 2n
ight\}$$
 תהי , $n \in \mathbf{N}^+$ לכל

.
$$A_2 = \{x \in \mathbf{R} \mid 2.5 \le x \le 4\}$$
 למשל

- $\bigcap_{n \in \mathbf{N}^*} A_n$ ואת $A_{\mathbf{l}}$ א. חשב את
 - . $\bigcap_{1 < n \in \mathbf{N}^*} A_n$ ב. חשב את
 - $\bigcup_{n\in \mathbf{N}^*}A_n$ ג. חשב את
- ד. לכל $n \in \mathbb{N}^+$ נסמן $n \in \mathbb{N}^+$ נסמן $n \in \mathbb{N}^+$ הראה כי יש רק ערך אחד של $n \in \mathbb{N}^+$ קטע. הראה כי לכל $n \in \mathbb{N}^+$ איחוד של שני קטעים זרים. ציין מיהם הקטעים. $n \in \mathbb{N}^+$ קטע. הראה כי לכל $n \in \mathbb{N}$ אחר, $n \in \mathbb{N}$ היא איחוד של שני קטעים זרים. ציין מיהם הקטעים. $n \in \mathbb{N}^+$ הוא קבוצה מהצורה $n \in \mathbb{N}$ הוא קבוצה מהצורה $n \in \mathbb{N}$ או קבוצה המתקבלת מביטוי זה עייי החלפת אחד או שני סימני $n \in \mathbb{N}$

. עטע. איא למעלה למעלה שהוגדרה A_n הקבוצה היא קטע, לכל לכל לכל

שאלה 4.4

$$A_n=A_{n+1}-A_n$$
 ותהי $A_n=\left\{x\in N\mid\ n-1\leq x\leq 2(n-1)
ight\}$, $n\in N$ לכל

- A_0 מהי א.
- . ב. חשב את $\bigcup_{n\in N}A_n$ את תשובתך).
- B_0, B_1, B_2, B_3, B_4 מצא את הקבוצות מצא ...
- . $K = \{0,1,2,3,4\}$ כאשר $\bigcup_{n \in K} B_n$ ד.