Computational Complexity

Scribe: Sophia Wang and Sharath Byakod

Date: 23, May, 2019

1 Chomsky Hierarchy

Recursively Enumerable Languages: can be recognized by Turing Machines.

Context Sensitive Languages: can be recognized by Turing Machines with linear space on their tape. Ex: $\{a^nb^nc^n|n\epsilon Z^+\}$

Context Free Languages: can be recognized by NPDAs. Ex: $\{ww^R\}$ and $\{a^nb^n|n\epsilon Z^+\}$

Regular Expressions: can be recognized by DFAs. Ex: $\{a^n|n\epsilon Z^+\}$

Note: a Turing Machine can "recognize a language" if and only if:

TM(x) answers "Yes", if x is in the language, and

TM(x) either answers "No" or runs forever, for all x not in the language.

2 The Halting Problem

Given a Turing Machine M and input x, we are presented with the question: "Does M(x) halt?", or, does the Turing Machine give an answer instead of running indefinitely? The following things are true:

- 1. Turing Machines are enumerable. Any and all Turing Machines can be uniquely represented by a integer. This makes sense when we consider that a binary string is a series of operations.
- 2. All x's are enumerable. Turing Machines only run on integers.
- 3. Universal Turing Machines exist.

Define: A recursive language is any language such that a Turing Machine acting on a x within the language will halt if it results in an "Yes" or a "No".

Define: An alternating Turing Machine is visualized as a tree that alternates between levels of \exists and \forall with leaves that are conditional statements.

3 The Arithmetic Hierarchy

```
\exists = Existential Quantifier, or "there exists". \exists x: x>5 \forall = Universal Quantifier, or "for all". \forall x: x>5x \forall x \exists y: y < x— d
```


In the lowest level of the arithmetic hierarchy $\rightarrow \exists x: P(x)$, NP and $\forall x: P(x)$, co-NP. It is known that $PRIME \in \text{co-}NP$ since it is defined as: for all x, x is not an integer between 1-n, nor does it divide n. However, Pratt's Theorem shows that $PRIME \in NP$.

Theorem 3.1. *Pratt's Theorem:* $PRIME \in NP$

Proof. If p is prime, then \mathbb{Z}_p^* is cyclic. This means that an element g generates the entire group. Then, we use a non-deterministic Turing Machine to guess g. To prove g is a generator, for all primes that divide $p-1=q_1^{e_1}*q_2^{e_2}*\dots,g^{(p-1)/q_i}\not\equiv 1\pmod p$, we need only perform $\log_2 p$ tests on primes of size and order $\log p$. We need to prove this recursively to show that prime factors are truly prime. Thus, Pratt's Certificate of Primality requires the factorization of n-1 and the method is best applied to small numbers (numbers n known to have easily factorable n-1).