Durrett Probability: Problems

Youngduck Choi *

Abstract

This work contains solutions to some exercises from Durrett's probability text.

1 Chapter 6: Markov Chains

Question 6.3.3.

6.3.3. First entrance decomposition. Let $T_y = \inf\{n \ge 1 : X_n = y\}$. Show that

$$p^{n}(x,y) = \sum_{m=1}^{n} P_{x}(T_{y} = m)p^{n-m}(y,y)$$

Solution.

Here we assume countable state space. Observe that

$$p^{n}(x,y) = P_{x}(X_{n} = y) = P_{x}(\bigcup_{m=1}^{n} \{T_{y} = m; X_{n} = y\})$$

$$= E_{x}(1_{\{X_{n-T_{y}} = y\}} \circ \theta_{T_{y}}; T_{y} \leq n) = E_{x}(E_{x}(1_{\{X_{n-T_{y}} = y\}} \circ \theta_{T_{y}} | \mathscr{F}_{T_{y}}); T_{y} \leq n)$$
(1)
$$= E_{x}(E_{X_{T_{y}}}(1_{\{X_{n-T_{y}} = y\}}; T_{y} \leq n) = E_{x}(E_{y}(1_{\{X_{n-T_{y}}\}}); T_{y} \leq n)$$
(2)
$$= \sum_{m=1}^{n} P_{x}(T_{y} = m)E_{y}(1_{\{X_{n-m} = y\}}) = \sum_{m=1}^{n} P_{x}(T_{y} = m)P^{n-m}(y, y)$$

where (1) holds by definition of conditional expectation and (2) holds by the strong Markov property.

^{*}Department of Mathematics,

Question 6.3.4.

6.3.4. Show that
$$\sum_{m=0}^{n} P_x(X_m = x) \ge \sum_{m=k}^{n+k} P_x(X_m = x)$$
.

Question 6.3.5.

6.3.5. Suppose that S-C is finite and for each $x \in S-C$ $P_x(\tau_C < \infty) > 0$. Then there is an $N < \infty$ and $\epsilon > 0$ so that $P_y(\tau_C > kN) \le (1 - \epsilon)^k$.

Solution.

We assume countable state space. Observe that, for any $x \in S \setminus C$, we can choose $n(x) \in \mathbb{N}$ such that

$$P_x(\tau_C \le n) > 0.$$

Otherwise, for some $x \in S \setminus C$, by continuity of probability,

$$P_x(\tau_C < \infty) = \lim_{k \to \infty} P_x(\tau_C \le k) = 0,$$

which is a contradiction. Now, let

$$N = \max_{z \in S \setminus C} n(x)$$
. and $\epsilon = \min_{z \in S \setminus C} P_z(\tau_C \le N)$.

Trivially,

$$P_u(\tau_C > kN) = 0$$

for any $k \in \mathbb{N}$, and $y \in C$, since $y \in C$ implies $\tau_C = 0$ by definition. Therefore, it suffices to show

$$P_y(\tau_C > kN) \le (1 - \epsilon)^k \tag{3}$$

for all $k \in \mathbb{N}$ and $y \in S \setminus C$. Fix $y \in S \setminus C$. Then,

$$P_y(\tau_C \leq N) \geq \epsilon.$$

and hence

$$P_u(\tau_C > N) \le (1 - \epsilon)$$

Now, we proceed by induction to prove (3). Suppose, for some $k \in \mathbb{N}$ such that $k \geq 2$,

$$P_u(\tau_C > kN) \le (1 - \epsilon)^k.$$

We compute

$$P_{y}(T_{c} > (k+1)N) = E_{y}(1_{\{\tau_{C} > kN\}} \circ \theta_{N}; \tau_{C} > N)$$

$$= E_{y}(E_{y}((1_{\{\tau_{C} > kN\}} \circ \theta_{N} | \mathscr{F}_{N}); \tau_{C} > N))$$

$$= E_{y}(E_{X_{N}}((1_{\{\tau_{C} > kN\}}); \tau_{C} > N))$$

$$\leq E_{y}(\sup_{z \in S} P_{z}(\tau_{C} > kN); \tau_{C} > N))$$

$$\leq (1 - \epsilon)^{k} E_{y}(1; \tau_{C} > N)) = (1 - \epsilon)^{k+1}$$
(4)

where (4) holds by Markov Property, which completes the proof.

Question 6.3.6.

6.3.6. Let $h(x)=P_x(\tau_A<\tau_B)$. Suppose $A\cap B=\emptyset,\ S-(A\cup B)$ is finite, and $P_x(\tau_{A\cup B}<\infty)>0$ for all $x\in S-(A\cup B)$. (i) Show that

$$(*) \hspace{1cm} h(x) = \sum_{y} p(x,y) h(y) \quad \text{for } x \notin A \cup B$$

(ii) Show that if h satisfies (*) then $h(X(n \wedge \tau_{A \cup B}))$ is a martingale. (iii) Use this and Exercise 6.3.5 to conclude that $h(x) = P_x(\tau_A < \tau_B)$ is the only solution of (*) that is 1 on A and 0 on B.

Solution.

(i) Let $x \in S \setminus (A \cup B)$. Then,

$$1_{\{\tau_A < \tau_B\}} = 1_{\{\tau_A < \tau_B\}} \circ \theta_1.$$

It follows that

$$h(x) = P_{x}(\tau_{A} < \tau_{B}) = E_{x}(1_{\{\tau_{A} < \tau_{B}\}}) = E_{x}(1_{\{\tau_{A} < \tau_{B}\}} \circ \theta_{1})$$

$$= E_{x}(E_{x}(1_{\{\tau_{A} < \tau_{B}\}} \circ \theta_{1} | \mathscr{F}_{1})) = E_{x}(E_{X_{1}}(1_{\{\tau_{A} < \tau_{B}\}}))$$

$$= \sum_{y} P(X_{1} = y)P_{y}(\tau_{A} < \tau_{B}) = \sum_{y} p(x, y)P_{y}(\tau_{A} < \tau_{B})$$
(5)

where (5) holds by Markov property.

- (ii)
- (iii)

Question 6.3.7.

6.3.7. Let X_n be a Markov chain with $S=\{0,1,\ldots,N\}$ and suppose that X_n is a martingale and $P_x(\tau_0 \wedge \tau_N < \infty) > 0$ for all x. (i) Show that 0 and N are absorbing states, i.e., p(0,0) = p(N,N) = 1. (ii) Show $P_x(\tau_N < \tau_0) = x/N$.

Question 6.4.4.

Exercise 6.4.4. Use the strong Markov property to show that $\rho_{xz} \geq \rho_{xy}\rho_{yz}$.

Solution.

The key insight in this problem is that if you shift the chain by a stopping time of one variable, then the probability of the chain coming back to another fixed variable decreases. This relation allows one to estimate p_{xz} from below using strong markov.

Let $x, y, z \in S$. Then,

$$p_{xz} = P_{x}(T_{z} < \infty) = E_{x}(1_{\{T_{z} < \infty\}}) \ge E_{x}(1_{\{T_{z} < \infty\}} \circ \theta_{T_{y}})$$

$$= E_{x}(E_{x}(1_{\{T_{z} < \infty\}} \circ \theta_{T_{y}} | \mathscr{F}_{T_{y}}); T_{y} < \infty)$$

$$= E_{x}(E_{X_{T_{y}}}(1_{\{T_{z} < \infty\}}; T_{y} < \infty) = E_{x}(E_{X_{y}}(1_{\{T_{z} < \infty\}}; T_{y} < \infty)$$

$$= E_{x}(P_{y}(T_{z} < \infty); T_{y} < \infty) = P_{y}(T_{z} < \infty)P_{x}(T_{y} < \infty) = p_{xy}p_{yz}$$

$$(6)$$

$$(7)$$

where (6) holds by definition of conditional expectation, and (7) holds by strong Markov. \Box

2 Chapter 2: Law of Large Numbers

3 Chapter 5: Martingales

Question 5.2.1.

Exercise 5.2.1. Suppose X_n is a martingale w.r.t. \mathcal{G}_n and let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$. Then $\mathcal{G}_n \supset \mathcal{F}_n$ and X_n is a martingale w.r.t. \mathcal{F}_n .

Solution.

Various properties of conditional expectations are used.

We compute

$$E[X_{n+1}|\mathscr{F}_n] = E[X_{n+1}|\mathscr{G}_n|\mathscr{F}_n] \tag{8}$$

$$= E[X_n|\mathscr{F}_n] \tag{9}$$

$$= X_n \tag{10}$$

for all $n \in \mathbb{N}$, where (8) holds by the Tower property, (9) holds by Martingale property of $\{G_n\}$ and (10) holds by measurability of X_n w.r.t \mathscr{F}_n for all $n \in \mathbb{N}$.

Question 5.2.2.

Exercise 5.2.2. Suppose f is superharmonic on \mathbf{R}^d . Let ξ_1, ξ_2, \ldots be i.i.d. uniform on B(0,1), and define S_n by $S_n = S_{n-1} + \xi_n$ for $n \geq 1$ and $S_0 = x$. Show that $X_n = f(S_n)$ is a supermartingale.

${\bf Question~5.2.3.}$

Exercise 5.2.3. Give an example of a submartingale X_n so that X_n^2 is a supermartingale. Hint: X_n does not have to be random.