

Data Science Session Housekeeping

- The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all - please engage accordingly.
- No question is daft or silly ask them!
- There are Q&A sessions midway and at the end of the session, should you
 wish to ask any follow-up questions. Moderators are going to be
 answering questions as the session progresses as well.
- If you have any questions outside of this lecture, or that are not answered during this lecture, please do submit these for upcoming Academic Sessions. You can submit these questions here: <u>Questions</u>

Data Science Session Housekeeping cont.

- For all non-academic questions, please submit a query:
 www.hyperiondev.com/support
- Report a safeguarding incident:
 <u>www.hyperiondev.com/safeguardreporting</u>
- We would love your feedback on lectures: Feedback on Lectures

Learning Outcomes

Understand and implement simple linear regression models using Python and scikit-learn.

- Define simple linear regression and its purpose
- Interpret the mathematical equation and assumptions of simple linear regression
- Implement and evaluate simple linear regression models using Python

Introduction to Machine Learning

- Machine learning is a way of teaching computers to learn and improve from experience without being explicitly programmed.
- It allows computers to automatically learn and adapt based on data.

Types of machine learning

Supervised learning: The computer learns from labelled data, where both input and output data are provided.

Source: geeksforgeeks

Types of machine learning

Unsupervised learning: The computer learns from unlabeled data, discovering hidden patterns or structures on its own.

Source: geeksforgeeks

Types of machine learning

Reinforcement learning: The computer learns through interaction with an environment, receiving rewards or penalties for its actions.

Source: geeksforgeeks

Some Applications of machine learning

- Spam email filtering: Identifying and separating spam emails from regular emails.
- Image recognition: Recognizing objects, faces, or scenes in images.
- Recommender systems: Suggesting products, movies, or songs based on user preferences.

Supervised Learning

- In supervised learning, the algorithm learns from labelled data, which consists of input-output pairs.
- The goal is to learn a function that maps input data to the correct output labels.

Types of Supervised Learning

- Regression: Predicting continuous numerical values, such as house prices or stock prices.
- Classification: Predicting discrete categories or classes, such as whether an email is spam or not.

Supervised Learning Algorithms

- Linear regression: Fitting a straight line to data points to make predictions.
- Logistic regression: Predicting binary outcomes, such as yes/no or true/false.
- Decision trees: Making decisions based on a series of questions or conditions.
- Support vector machines (SVM): Finding the best boundary to separate different classes.
- Neural networks: Mimicking the structure and function of the human brain to learn complex patterns.

Simple Linear Regression

- Simple linear regression is a method to study the relationship between two variables: an independent variable (x) and a dependent variable (y).
- It helps us understand how changes in the independent variable affect the dependent variable.

Source: Wikipedia

Purpose of Simple Linear Regression

- To find the best-fitting straight line that describes the relationship between x and y.
- This line can be used to make predictions about the dependent variable based on new values of the independent variable.

Applications of Simple Linear Regression

- Sales forecasting: Predicting future sales based on historical data.
- Price prediction: Estimating the price of a product based on its features.
- Trend analysis: Identifying trends or patterns in data over time.

Math behind Simple Linear Regression

- * The equation is written as: $y = β_0 + β_1x + ε$
 - \triangleright β_0 is the intercept, representing the value of y when x is zero.
 - $ightharpoonup eta_1$ is the slope, indicating how much y changes for a one-unit increase in x.
 - \succ ϵ is the error term, accounting for the variability in y that cannot be explained by x.

Source: <u>geeksforgeeks</u>

Linearity: The relationship between x and y should be linear.

Independence: The observations should be independent of each other.

Homoscedasticity: The variability of y should be constant across all values of x.

Normality: The errors should be normally distributed.

Implementing Simple Linear Regression

Scikit-learn

- Scikit-learn is a popular Python library for machine learning.
- It provides simple and efficient tools for data analysis and modelling.

```
from sklearn.datasets import load_diabetes
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
```


Loading the Diabetes Dataset

- We'll use the built-in diabetes dataset from scikit-learn for our example.
- The dataset contains information about various medical predictors and a quantitative measure of disease progression.

df = load_diabetes(as_frame=True).data

Evaluation Metrics:

Mean Squared Error (MSE): 0.00044342882373426217

R-squared (R2) Score: 0.8040044599094562

Interpretation of Results

- Scatter plot:
 - > The scatter plot visualises the relationship between s1 (total serum cholesterol) and s2 (low-density lipoproteins).
 - It helps assess the linearity and spread of the data points.
- Linear regression line:
 - The red line represents the best-fit line obtained from the linear regression model.
 - It shows the predicted relationship between s1 and s2 based on the trained model.

Evaluation Metrics

- Mean Squared Error (MSE):
 - > MSE measures the average squared difference between the predicted and actual values.
 - > A lower MSE indicates better model performance.
- \bullet R-squared (R²) score:
 - R² represents the proportion of variance in the target variable that can be explained by the model.
 - An R² value closer to 1 indicates a better fit of the model to the data.

Evaluation Metrics

$$R^2 = 1 - SS_{error}/SS_{total}$$

Where:

$$>$$
 SS_{error} = $\Sigma(y_i - \hat{y}_i)^2$

$$>$$
 SS_{total} = $\Sigma(y_i - E[y_i])^2$

Evaluation Metrics

- Accuracy is another commonly used metric for evaluating the performance of a machine learning model, particularly in classification problems.
 - Accuracy = (Number of correct predictions) / (Total number of predictions) * 100%
- While accuracy is more suitable for classification tasks, metrics like Mean Squared Error (MSE) and R-squared (R^2) are used for regression problems.

Parameter Tuning

- Parameter tuning is the process of finding the optimal values for a model's hyperparameters to improve its performance.
- Hyperparameters are settings that are not learned from the data but are set before training the model.
 - Examples of hyperparameters in linear regression include the learning rate, regularization strength, and the number of iterations.

Questions and Answers

Thank you for attending

