RECOMENDAÇÕES

- 1- Nao extrair o framwork em diretórios de acesso privilegiado
- 2- A alteração de alguns arquivos ou pastas podem comprometer o funcionamento do framework

REQUISITOS

1- JAVA (JRE)

INSTALAÇÃO

1- na pasta bonnmotion-3.0.1/, executar o arquivo install

COMPILAÇÃO

g++ -std=c++11 misc.h LinkAnalysis.h TraceAnalyzer.cpp -o trace

EXECUÇÃO

./trace -f <bonnmotion sinopse> -trace 1 2 3 4 5 6 7

ou

./ trace -bf <arquivo de nomes> -trace 1 2 3 4 5 6 7

-f:

Quando a entrada apresentar a flag -f, toda a fração da entrada entre ./traceT e -trace será injetada no BonnMontion. Portanto deve seguir especificações do mesmo, porém, sem informar o nome para arquivo a ser gerado.

E.x: ./a.out -f RandomDirection -d 900 -n 25 -x 1500 -y 1500 -l 3 -h 20 -p 100 -o 5 -trace 10 200 50 1500 1500 25 900

-bf:

Quando a entrada apresentar a flag -bf, será esperado que o próximo argumento seja um arquivo com o sufixo .*txt* o qual contenha:

- 1- na primeira linha: o número de arquivos de traço que o acompanha
- 2- nas demais linhas, em cada uma, um nome de arquivo de traço ns-2 que esteja no mesmo diretório

-trace:

Independentemente da primeira parte da sinópse de execução, os próximos argumentos serão: 1 numero de arquivos de traços a serem gerados (ignorado quando usada a flag **-bf** , porém precisa existir)

- 2 RADIUS = R;
- 3 TIMEPAUSE = node_pause_time
- 4 SCENARIO_WIDTH = width;
- 5 SCENARIO LENGTH = lenght;
- 6 node_num = nodeNUM;
- 7 time_slot = time_slot;

Segundo os proponentes da ferramente Trace Analyzer os valores parâmetros devem se ater ao escopo da tabela à seguir:

Parâmetro	Valores	Parâmetro	Valores
Tempo de simulação	900 s	Número de nós	25, 50,, 175, 200
Comprimento do cenário	$1, 1, 5, 2 \ km$	Largura do cenário	$1, 1, 5, 2 \ km$
Velocidade mín.	$1, 2, 3 \ m/s$	Velocidade máx.	5, 10, 20, 30 m/s
Dimensão dos grupos ¹	5, 10, 20, 25	Quant. de vias horizontais ²	5, 10, 20
Raio de comunicação	200 m	Quant. de vias verticais ²	5, 10, 20
Probabilidade de virar ⁴	0,25 0,5 0,75	Desvio padrão da velocidade ⁴	2, 4, 6 m/s
Distância alfa	2, 3, 4	Parâmetro de memória ⁷	0,2 0,4 0,5 0,6 0,8
Tempo mínimo de pausa ⁸	1, 5, 10	Tempo máximo de pausa ⁸	5, 10, 50, 100, 200, 500 s
Alcance de agrupamento ⁸	20, 50, 100, 200	Número de pontos de parada ⁸	20, 40, 60, 80, 100

¹ Para os modelos RPGM, *Column* e CMM. ² Para os modelos Manhattan e CMM.

 $^{^3}$ Para os modelos SLAW e Smooth. 4 Para o modelo Manhattan. 5 Para o modelo CMM.

 $^{^6}$ Para os modelos RPGM e ${\it Column.}$ 7 Para o modelo Gauss-Markov. $^8{\rm Para}$ os modelos SLAW e Smooth.