INDIAN INSTITUTE OF TECHNOLOGY INDORE

MA 203 Complex Analysis and Differential Equations-II Autumn Semester Tutorial -7 (Complex Analysis)

- 1. Find the values of the integrals (i) $\int_C \operatorname{Re} z \, dz$ (ii) $\int_C z^2 \, dz$ from the point $z_1 = 1$ to the point $z_2 = i$ in the positive direction on the following curves C:
 - (a) the boundary of the square: $0 \le x \le 1, \ 0 \le y \le 1$.

Ans: (i) 1/2 + i (ii) $\frac{-1-i}{3}$

(b) the part of the circle: $z = e^{it}$, $0 \le t \le \frac{\pi}{2}$.

Ans: (i) $i\pi/4 - 1/2$ (ii) $\frac{-1-i}{3}$

(c) the straight line segment z=(1-t)+it $0 \le t \le 1$.

Ans: (i) $\frac{-1+i}{2}$ (ii) $\frac{-1-i}{3}$

2. Find $I = \int_C z \, dz$, where C is the contour given below:

- 3. Evaluate the following integrals:
 - (a) $\int_C |z|^2 dz$, where C is an arc of unit circle |z| = 1 traversed in the clockwise direction with initial point -1 and final point i.
 - (b) $\int_C |z| \overline{z} \, dz$, where C consists of the half-circle $z = R e^{it}$, $0 \le t \le \pi$, and the straight line segment: $-R \le Re \, z \le R$, Im z = 0 and traversed in the anticlockwise direction. Ans: $R^3 \pi i$

(c) $\int_C \overline{z} dz$, where C consists of the semi circle $z = e^{it}$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$, and the straight line segment: z = it, $-1 \le t \le 1$, and traversed in the anticlockwise direction. Ans: πi

- 4. Explain why the integrals in question 3 cannot be evaluated by the method of indefinite integral.
- 5. Evaluate the following integrals using the method of indefinite integral.
 - (a) $\int_C \sin^2 z \, dz$, C from $-\pi i$ along $|z| = \pi$ to πi in the right half plane Ans: $\pi i \frac{1}{4}[\sin(2\pi i) \sin(-2\pi i)]$
 - (b) $\int_C ze^{z^2} dz$, C from 1 along the axis to i Ans: $\frac{1}{2}[e-e^{-1}]$
- 6. Explain why the integral $\int_C \frac{1}{z-3i} dz$, where C is the circle $|z| = \pi$ traversed in counter clockwise direction, cannot be evaluated by the method of indefinite integral.

—— × —