Predictive Maintenance

September 30, 2025

```
[23]: import pandas as pd
  import numpy as np
  import seaborn as sea
  import matplotlib.pyplot as plt

  df = pd.read_csv('../data/ai4i2020.csv')
  print("Data set loaded")
  df.head()

Data set loaded

[23]: UDI Product ID Type Air temperature [K] Process temperature [K] \
```

[23]:	UDI	Product ID	Туре	Air temperature [K]	Process temperature [K]	\
0	1	M14860	М	298.1	308.6	
1	2	L47181	L	298.2	308.7	
2	3	L47182	L	298.1	308.5	
3	4	L47183	L	298.2	308.6	
4	5	L47184	L	298.2	308.7	

	Rotational speed	[rpm]	Torque [Nm]	Tool wear [min]	Machine failure	TWF	\
0		1551	42.8	0	0	0	
1		1408	46.3	3	0	0	
2		1498	49.4	5	0	0	
3		1433	39.5	7	0	0	
4		1408	40.0	9	0	0	

	HDF	PWF	OSF	RNF
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	Ο

0.1 Correlation Heatmap

```
[27]: df_numeric_only = df.drop(columns=['Product ID', 'Type'])

correlation_matrix = df_numeric_only.corr()

plt.figure(figsize=(8, 8))
    sea.heatmap(correlation_matrix, annot=False, cmap='coolwarm')
    plt.title(f'Heatmap of Numerical Data \n')
    plt.show()
```

Heatmap of Numerical Data

0.2 Histogram

```
[25]: hist_columns = [
    'Air temperature [K]',
    'Process temperature [K]',
    'Rotational speed [rpm]',
    'Torque [Nm]',
    'Tool wear [min]'
]

for column_name in hist_columns:
    plt.figure(figsize=(8, 5))
    sea.histplot(data=df, x=column_name)
    plt.title(f'Distribution of {column_name}')
    plt.show()
```


0.3 Box Plots

Air temperature [K] Distribution for Failure vs. No Failure

Process temperature [K] Distribution for Failure vs. No Failure

Rotational speed [rpm] Distribution for Failure vs. No Failure

Torque [Nm] Distribution for Failure vs. No Failure

Tool wear [min] Distribution for Failure vs. No Failure

0.4 Key Predictive Features

Based on the exploratory data analysis, the following features show the strongest correlation with machine failure and will be used for development:

- Torque [Nm]
- Rotational Speed [rpm]
- Tool Wear [min]