Keep Learning

 $\begin{array}{c} \text{grade} \\ 100\% \end{array}$

Key concepts on Deep Neural Networks

LATEST SUBMISSION GRADE

100%

	That is the "cache" used for in our implementation of forward propagation and backward $_{1/1poi}$ copagation?	nt
0	It is used to cache the intermediate values of the cost function during training.	
0	We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.	
	We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.	
0	It is used to keep track of the hyperparameters that we are searching over, to speed up computation.	
	Correct Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives.	
2. д	mong the following, which ones are "hyperparameters"? (Check all that apply.) 1 / 1 point	
	weight matrices $W^{[l]}$	

$lacksquare$ size of the hidden layers $n^{[I]}$	
Correct	
$eq:local_$	
Correct	
number of iterations	
Correct	
$lacksquare$ bias vectors $b^{[l]}$	
$lacksquare$ activation values $a^{[l]}$	
lacksquare learning rate $lpha$	
Correct	
Which of the following statements is true?	1 / 1 point
The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.	f
The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.	
Correct	

3.

- True
- False
 - ✓ Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]}), z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}, ...)$ in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]}), z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}, ...)$.

⁵·Assume we store the values for $n^{[I]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. 1/1 point So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following forloops will allow you to initialize the parameters for the model?

```
for(i in range(1, len(layer_dims)/2)):
    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) *
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) *
3  parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2  parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) *
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
for(i in range(1, len(layer_dims))):
    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) *
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```


How many layers does this network have?

	The number of layers L is 4.	The number of hidden layers is 3	3.
(-)	11.0 1.01.00	The manner of made in a year	•

- \bigcirc The number of layers L is 3. The number of hidden layers is 3.
- \bigcirc The number of layers L is 4. The number of hidden layers is 4.
- \bigcap The number of layers L is 5. The number of hidden layers is 4.

✓ Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers

+ 1. The input and output layers are not counted as hidden layers.

7-During forward propagation, in the forward function for a layer *l* you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer *l*, since the gradient depends on it. True/False?

1 / 1 point

True

False

✓ Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

- (i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?
 - True
 - False
 - ✓ Correct
- 9. Consider the following 2 hidden layer neural network:

1 / 1 point

Which of the following statements are True? (Check all that apply).

 $lue{W}^{[1]}$ will have shape (4, 4)

✓ Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

$lacksquare$ $b^{[1]}$ will have shape (4, 1)
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$lacksquare$ $W^{[1]}$ will have shape (3, 4)
$lacksquare$ $b^{[1]}$ will have shape (3, 1)
$W^{[2]}$ will have shape (3, 4)
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
$W^{[2]}$ will have shape (3, 1)
$lacksquare$ $b^{[2]}$ will have shape (3, 1)
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (3, 1)
$lacksquare b^{[3]}$ will have shape (1, 1)
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (1, 3)
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

$10.$ Whereas the previous question used a specific network, in the general case what is the dimension of W^{[I]}, the weight matrix associated with layer l ?	1 / 1 point
$lackbox{ }W^{[l]}$ has shape $(n^{[l]},n^{[l-1]})$	
$igcup W^{[l]}$ has shape $(n^{[l+1]},n^{[l]})$	
$igcup W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$	
$igcup W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$	
✓ Correct True	