CSC0056 Data Communication Markov Chains

Instructor: Chao Wang

Networked Cyber-Physical Systems Laboratory
Department of Computer Science and Information Engineering
National Taiwan Normal University

Oct. 7, 2024

Outline

References

- Discrete-time Markov chain (DTMC) [1]
- \odot From DTMC to the analysis of the M/M/1 systems [2]

References

- Required reading (DTMC, and from DTMC to CTMC)
 - Harchol-Balter, Mor. Performance modeling and design of computer systems: queueing theory in action. Cambridge University Press, 2013. ISBN 9781107027503. (Chapter 8)
 - Bertsekas, Dimitri and Gallager, Robert. Data networks (2nd edition). Prentice Hall, 1992. ISBN 0132009161. (Section 3.3–3.3.1 and Appendix A)
 - A visual explanation for Markov chains: https://setosa.io/blog/2014/07/26/markov-chains/
- Further reading (for CTMC itself)
 - Harchol-Balter, Mor. Performance modeling and design of computer systems: queueing theory in action. Cambridge University Press, 2013. ISBN 9781107027503. (Section 9.6 and Chapter 12)

DTMC: discrete-time Markov chain [1]

• A discrete-time Markov chain is a stochastic process $\{X_n, n=0,1,2,...\}$ where X_n denotes the state at discrete time step n and such that, $\forall n \geq 0, \ \forall i,j, \ \text{and} \ \forall i_0,...,i_{n-1}$,

$$P\{X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, ..., X_0 = i_0\}$$

= $P\{X_{n+1} = j | X_n = i\}$
= P_{ij} (by stationarity),

where P_{ij} is independent of the time step and of past history.

• The Markovian Property: The conditional distribution of any future state X_{n+1} , given past states $X_0, X_1, ..., X_{n-1}$, and given the present state X_n , is independent of past states and depends only on the present state X_n .

Transition probability matrix

• The transition probability matrix associated with any DTMC is a matrix P whose (i,j)-th entry P_{ij} represents the probability of moving to state j on the next transition, given that the current state is i. Then we have

$$P_{ij}^n = \sum_{k=0}^{M-1} P_{ik}^{n-1} P_{kj}$$
 and $\mathbf{P}^n = \mathbf{P}^{n-1} \cdot \mathbf{P}$.

Example:

$$\mathbf{P} = \begin{bmatrix} W \to W & W \to R \\ R \to W & R \to R \end{bmatrix} = \begin{bmatrix} 0.95 & 0.05 \\ 0.4 & 0.6 \end{bmatrix}.$$

Limiting distribution

• In general, for 0 < a, b < 1, let $\mathbf{P} = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix}$, then we will have

$$\lim_{n\to\infty} \mathbf{P}^n = \begin{bmatrix} \frac{b}{a+b} & \frac{a}{a+b} \\ \frac{b}{a+b} & \frac{a}{a+b} \end{bmatrix}.$$

Now, define the *limiting probability* to be

$$\pi_j = \lim_{n \to \infty} P_{ij}^n = (\lim_{n \to \infty} \mathbf{P}^n)_{ij}.$$

Then for an M-state DTMC, we have

$$\overrightarrow{\pi}=(\pi_0,\pi_1,...,\pi_{M-1})$$
, where $\sum_{i=0}^{M-1}\pi_i=1$

represents the *limiting distribution* in each state.

Stationary distribution

• A probability distribution $\overrightarrow{\pi}=(\pi_0,\pi_1,...,\pi_{M-1})$ is said to be stationary for the Markov chain if

$$\vec{\pi} \cdot \mathbf{P} = \vec{\pi}$$
 and $\sum_{i=0}^{M-1} \pi_i = 1$.

These equations are called the stationary equations.

• Stationary distribution=Limiting distribution [1]: Given a finite-state DTMC with M states, let $\pi_j = \lim_{n \to \infty} P_{ij}^n > 0$ be the limiting probability of being in state j and let

$$\overrightarrow{\pi}=(\pi_0,\pi_1,...,\pi_{M-1})$$
, where $\sum_{i=0}^{M-1}\pi_i=1$

be the limiting distribution. Assuming that the limiting distribution exists, then $\overrightarrow{\pi}$ is also a stationary distribution and *no other* stationary distribution exists.

Example of the use of the stationary equations

From the example on page 5:

Using Markov chain to analyze the M/M/1 systems [2]

- Let N(t) be the number of messages in the system at time t. Then $\{N(t)|t>0\}$ is a Continuous-Time Markov Chain (CTMC). Each state represents a particular value of N(t).
- To analyze a M/M/1 system, we may instead start with the Discrete-Time Markov Chain (DTMC) and then reach CTMC:
 - Consider time points $0, \delta, 2\delta, 3\delta, \ldots$, and let $N_k = N(k\delta)$ denote the number of messages in the system at $k\delta$. Then $\{N_k | k=0,1,\ldots\}$ is a DTMC. Then apply $\delta \to 0$ to the analytical results for DTMC to get the results for CTMC.
- In DTMC, denote the transition probability by $P_{ij} = P\{N_{k+1}|N_k = i\}$.
 - Question: how to determine P_{ij} ?

The arrival/service statistics for M/M/1

- ullet Messages arrive according to the Poisson process with rate $\lambda.$
- The interarrival times are independent and exponentially distributed with parameter λ . For an interval of length τ_n (i.e., the interval between the n-th arrival and the (n+1)-th arrival), we have $P\{\tau_n \leq \delta\} = 1 e^{-\lambda \delta}$. For t>0, we have (review page 9 of the slides for Poisson process)

$$P\{A(t+\delta) - A(t) = 0\} = e^{-\lambda\delta} \frac{(\lambda\delta)^0}{0!} = 1 - \lambda\delta + \frac{(\lambda\delta)^2}{2} - \cdots$$
$$= 1 - \lambda\delta + o(\delta)$$
$$P\{A(t+\delta) - A(t) = 1\} = e^{-\lambda\delta} \frac{(\lambda\delta)^1}{1!} = \lambda\delta + o(\delta)$$
$$P\{A(t+\delta) - A(t) \ge 2\} = o(\delta)$$

where $o(\delta)$ is a function such that $\lim_{\delta \to 0} \frac{o(\delta)}{\delta} = 0$.

The arrival/service statistics for M/M/1 (cont.)

Accordingly, now we can determine P_{ii} in the following way :)

$$egin{aligned} P_{00} &= 1 - \lambda \delta + o(\delta) \ P_{ii} &= 1 - \lambda \delta - \mu \delta + o(\delta) \end{aligned} \qquad i \geq 1 \ P_{i,i+1} &= \lambda \delta + o(\delta) \qquad i \geq 0 \ P_{i,i-1} &= \mu \delta + o(\delta) \qquad i \geq 1 \ P_{ij} &= o(\delta) \qquad i \text{ and } j \neq i, i+1, i-1. \end{aligned}$$

Some notes on how to obtain the above equations:

- The departure statistics follows the service statistics.
- Beware the difference between the number of arrivals/departures (Poisson distributed) and the interarrival/interdeparture time (Exponential distributed).
- The $o(\delta)$ term includes all higer-order terms asympotically.

The DTMC diagram for M/M/1

Define state n to be the case where there are n messages in the system.

The transistion probabilities shown here are correct up to an $o(\delta)$ term. Let p_n denote the limiting probability of n messages in the system. Then

$$p_n = \lim_{k \to \infty} P\{N_k = n\} = \lim_{t \to \infty} P\{N(t) = n\}.$$

Now, by considering the transition probability and a long traversal between the states, we will have $p_n\lambda\delta+o(\delta)=p_{n+1}\mu\delta+o(\delta)$. Then, as $\delta\to 0$ we will have the following so-called *global balance equations*:

$$p_n\lambda=p_{n+1}\mu.$$

Chao Wang (NTNU)

Deriving the average response time of a M/M/1 system

From Little's Law, we have T the average response time equals N/λ , where $N=\sum_{n=0}^{\infty}np_n$ and p_n can be obtained via global balance equations:

Let
$$\rho=\lambda/\mu$$
. Then $p_{n+1}=\rho^{n+1}p_0$. If $\rho<1$, then $1=\sum_{n=0}^\infty p_n=rac{p_0}{1-\rho}$.

Therefore, $p_n = \rho^n (1 - \rho)$.

$$\begin{split} N &= \sum_{n=0}^{\infty} n \rho_n = \sum_{n=0}^{\infty} n \rho^n (1-\rho) = \rho (1-\rho) \sum_{n=0}^{\infty} n \rho^{n-1} \\ &= \rho (1-\rho) \frac{\partial}{\partial \rho} \left(\sum_{n=0}^{\infty} \rho^n \right) = \rho (1-\rho) \frac{\partial}{\partial \rho} \left(\frac{1}{1-\rho} \right) = \rho (1-\rho) \frac{1}{(1-\rho)^2} \\ &= \frac{\rho}{1-\rho}. \quad \text{Hence, } T = \frac{N}{\lambda} = \frac{1}{\mu-\lambda}. \end{split}$$