

Seepify There's a nap for that.

Jeremy Chan

Tsz Ho Ho

Calvin Lo

Dominic Kwok

Nathalie Wong

At a glance...

- Sleepify improves sleep quality depending on temperature
- App + the cloud + machine learning + web interface
- Non intrusive wearable

Industry / Our Promise / High Level Design / Backend / Web
 Interface / Machine Learning / Demo / Testing and Evaluation

- Focused on sleep tracking
- None on temperature and heating

Our Promise

- 1. Better sleep quality can be achieved by sleeping in an ideal sleeping temperature; we want the environment to not be too cold nor too hot.
- 2. Through machine learning, prolonged usage of the app will improve performance and classification accuracy.
- 3. Provide a slick, and intuitive app and web interface for the user

- 4. The feeling of tiredness can be reduced by:
 - · Reducing the effects of jet-lag by notifying the user to sleep
 - Setting the alarm to go off when the user is not in deep sleep

High Level Design

Backend / Web Interface

django-bootstrap3 djangorestframework django-sendfile Sphinx django-ical django-cron django-rest-auth django-push-notifications

- Extremely fast development
- Tried, tested, scalable framework
- Security issues mostly taken care of

Bitbucket

RESTful API

- Empowers the other sections
- Raw data, graphs, machine learning results, calendar events, notifications
- Authentication using sessions/cookies

Machine Learning - Sleep Quality Classification

SCIENTIA SULTABLE SCIENTIA SUL

- 1. Polysomnography
 - *Requires EEG / ECG
- Expensive, and intrusive to the user
- 2. Pittsburgh Sleep Quality Index
- Suited for long term classification (1 week+)
- *Requires constant user feedback via a questionnaire
- 3. Actigraphy
 - Compromise between accuracy and resources

- Prioritize real-time aspect
- Reduce accuracy problems using machine learning

Machine Learning - Hardware

- 1. Microsoft Band 2
 - Heartrate
 - GSR
 - Body Temperature
 - Acceleration
- 2. Elgato Eve Room Smart Plug
- 3. iOS Device

- Existing sensors and hardware
 - +Temp, +GSR
- Smart plugs replace thermostat integration

Machine Learning - Software

- 1. MATLAB Benchmarking
- 2. Python scikit-learn
 - Extends RESTful API

Choose random forest
Fast training and testing times
Enables online training

ata Browser	
▼ History	
1.1 😭 SVM	Accuracy: 96,4%
Last change: Linear SVM	17/17 features
1.2 🏠 SVM	Accuracy: 97,6%
Last change: Quadratic SVM	17/17 features
1.3 ☆ SVM	Accuracy: 98.8%
Last change: Cubic SVM	17/17 features
1.4 ☆ SVM	Accuracy: 96,4%
Last change: Fine Gaussian SVM	17/17 features
1.5 ☆ SVM	Accuracy: 98.8%
Last change: Medium Gaussian SVM	17/17 features
1.6 SVM	Accuracy: 96,4%
Last change: Coarse Gaussian SVM	17/17 features
2.1 😭 Ensemble	Accuracy: 96,4%
Last change: Boosted Trees	17/17 features
2.2 🖒 Ensemble	Accuracy: 98.8%
Last change: Bagged Trees	17/17 features
2.3 🟠 Ensemble	Accuracy: 97,6%
Last change: Subspace Discriminant	17/17 features
2.4 🟠 Ensemble	Accuracy: 97.6%
Last change: Subspace KNN	17/17 features
	A 02 00/
2.5 🏠 Ensemble Last change: RUSBoosted Trees	Accuracy: 92,8% 17/17 features
cast change. NOSBOOSTED Trees	17/17 features
Last change: RUSBoosted Trees	17/17 features
2.5 💢 Ensemble	Accuracy: 92,8%

Machine Learning - Software

App sends data using API API stores as features in database

Train and update the model

Predict based on current data API sends the result back to the app

- Frequent model updates
- Continuous learning

- Model is trained in batches
- Load the model as a binary file
- Initial prediction from user feedback
- Obtain optimum temperature from database

Demo

Modifications

- 1. Refresh interval set from 10 minutes -> 10 seconds
- 2. Calendar 'time-to-sleep' push notification is manually sent.

- 1. Use the Pittsburgh Sleep Quality Index
- 2. Before and after a week's* usage
- 3. 6 differing subjects
 - 1x good sleeper
 - 3x mediocre sleepers
 - 2x bad sleepers

PSQI BEFORE AND AFTER

^{*)} in cases where a full week wasn't done, the results are scaled accordingly PSQI Questions - http://uacc.arizona.edu/sites/default/files/psqi_sleep_questionnaire_1_pg.pdf

Our Promise

- 1. Better sleep quality can be achieved by sleeping in an ideal sleeping temperature; we want the environment to not be too cold nor too hot.
- 2. Through machine learning, prolonged usage of the app will improve performance and classification accuracy.
- 3. Provide a slick, and intuitive app and web interface for the user
- 4. The feeling of grogginess can be reduced by:
 - Reducing the effects of jet-lag by notifying the user to sleep
 - Setting the alarm to go off when the user is not in deep sleep

Give it a try!

http://sleepify.zapto.org/download/

©2017 Sleepify. All rights reserved. | Powered by Django and Bootstrap | Created with love from the United Kingdom