(1) Which of these sentences are proposition? What are the truth values of those that are Propositions ?

- (a) London is the capital of France. (b) What time is it? (c) Read this carefully
- (d) x + 1 = 2 (e) 2 + 2 = 3 (f) Answer this question.
- (2) Let P, q and r be the propositions:

P: you have the flu , q: you miss the final examination , r: you pass the course Express each of these propositions as an English sentence.

- (a) $(P \land q) \lor (\neg q \land r)$ (b) $(P \rightarrow q)$ $(c) q \rightarrow \neg r$

(3) Determine whether these biconditionals are true or false:

- (a)2 + 2 = 4 if and only if <math>1 + 1 = 2
- (b) 0 > 1 if and only if 2 > 1
- (c) 1+1=3 if and only if monkeys can fly

(4) Determine whether each of these conditional statements is true or false:

- (a) if 1+1=2 then 2+2=5 (b) if 1+1=3 then 2+2=4
- (c) if monkeys can fly, then 1+1=3

(5) Construct a truth table for each of these compound propositions:

- $(a)(p \lor q) \oplus (p \land q) \qquad (b) \quad p \oplus \neg p \qquad (c) (p \to q) \lor (\neg p \to q)$

(1) Use truth table to verify these equivalences:

(a)
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$(c)\neg(p\oplus q)\equiv p\leftrightarrow q$$
 $(d)\neg(p\leftrightarrow q)\equiv p\leftrightarrow \neg q$

$$(\mathsf{d}\,)\,\neg(p\leftrightarrow q)\equiv p\leftrightarrow \neg q$$

(2) Show that each of these conditional statements a tautology by using truth tables:

(a)
$$(p \land q) \rightarrow (p \rightarrow q)$$
 (b) $\neg (p \rightarrow q) \rightarrow \neg q$ (c) $\neg p \rightarrow (p \rightarrow q)$

$$(b) \neg (p \rightarrow q) \rightarrow \neg q$$

$$(c) \neg p \rightarrow (p \rightarrow q)$$

- (3) Determine whether $(p \land q) \rightarrow (p \lor q)$ is a tautology by using logic laws
- (4) Show that the statements:

(a)
$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$
 (b) $\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$

$$(b) \neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$$

by using logic laws

(5) Use a direct proof to show that the sum of two odd integers is even

(6) Given an indirect contrapositive proof of $\ if \ n=ab \ then \ a \leq \sqrt{n} \ or \ b \leq \sqrt{n} \ , \forall a,b \in \mathbf{Z}$

(7) Given an indirect contradiction proof of $\sqrt{7}$ is irrational number

Exercise (1): Discrete Mathematical
D Which of these sentences are proposition? What are the truth values of those that are propositions?
(a) London is the capital of France. It's proposition (false). (b) What time is it? It's not proposition. (c) Read this carefully. It's not proposition. (d) X+1=2 It's not proposition. (e)2+2-3. It's proposition (false). (f) Answer this question It's not proposition.
Det P, quandr be the propositions:
P: you have the flu. 9: you miss the final examination r: you pass the course. - Express each of these propositions as an english sentence.
(a) (P/9) V(-9/1x). (you have the flu and you miss the final examination) or (you don't miss the final examination and you pass the course) (b) (P->9) (if you have the flu, then you miss the final examination). (c) 9 -> -x (if you miss the final examination, then you don't pass the course)
3 Desemine whether these biconditionals are thue false:
(a) 2+2=4 if and only if 1+1=2. (True). (b) 0>1 if and only if 2>1. (false) (c) 1+1=3 if and only if monkeys can fly. (True)
4) Determine whether each of these conditional statements is the orfals
(a) if [+1=2, +hon 2+2=5 (false). (b) if [+1=3, +hon 2+2=4. (True) (c) if monkeys can fly, +hon [+1=3. (True)
(5) Construct a truth table for each of these compound propositions:
$(a)(p \vee q) \oplus (p \wedge q) \qquad (b) p \oplus \neg p \qquad (c) (p \rightarrow q) \vee (\neg p \rightarrow q)$
Scanned by CamScanner

$(a)(\beta \vee \beta) \oplus (\beta \wedge \beta) $ (b) $\beta \oplus \beta = \beta$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(c)(f-9) V(-p-9)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Exercise (2):
1) Use that table to verify these equivalences:
$(a) \rho \rightarrow 9 = \neg 9 \rightarrow \neg \rho (b) \rho \Lambda(9, Vr) = (\rho \Lambda 9) V(\rho \Lambda r)$ $(c) \neg (\rho \rightarrow 9) = \rho \leftrightarrow 9 (d) \neg (\rho \leftrightarrow 9) = \rho \leftrightarrow \neg 9$
$(q) \rho \rightarrow q \equiv \neg q \rightarrow \neg \rho$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(b) $PA(qVr) = (PAq)V(PAr)$
P 9 r 9Vr PA(9Vr) PA9 PAr (PA9)V(PAr)
TETT TETT
TFFFFFFFFF
FTTFFFF
FFTFFF
FFFFFFFFF
$(c) - (p \oplus q) = p \Leftrightarrow q \qquad (d) - (p \Leftrightarrow q) = p \Leftrightarrow \neg q$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2) Show that each of these conditional statement's a tautology by using truth tables:
using truth tables:
$(9)(P/9) \rightarrow (P-9) (1) \cdot (0 \cdot 0)$
$(a)(P/19) \rightarrow (P \rightarrow 9)$
P = 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9

$(c) \neg P \rightarrow (P \rightarrow q)$ $P \neq \neg P \Rightarrow q \neg P \rightarrow (P \rightarrow q)$ $T T F T T$ $F T T T T$ $F F T T T$ $F F T T T$ $P \neq P \Rightarrow q \neg P \Rightarrow q \rightarrow (P \rightarrow q)$ $P \Rightarrow q \Rightarrow $
4 Show that the statements:
$(a)(\rho \rightarrow r) \vee (q \rightarrow r) \equiv (\rho \wedge q) \rightarrow r \qquad (b) \neg (\rho \vee (\neg \rho \wedge q)) \equiv \neg \rho \wedge \neg q$ by using logic laws $(a)(\rho \rightarrow r) \vee (q \rightarrow r) \equiv (\rho \wedge q) \rightarrow r$ $(\rho \rightarrow r) \vee (q \rightarrow r) \equiv \neg \rho \vee r \vee \neg q \vee r \equiv (\neg \rho \vee \neg q) \vee (\neg \nu \wedge q) \vee r$ $(\rho \rightarrow r) \vee (q \rightarrow r) \equiv \neg \rho \wedge \neg q \vee r \equiv (\neg \rho \wedge q) \vee (\neg \rho \wedge q) \vee r$ $(\beta) \neg (\rho \vee (\neg \rho \wedge q)) \equiv \neg \rho \wedge \neg q \vee r \equiv (\neg \rho \wedge q) \vee (\neg \rho \wedge q) = (\neg \rho \wedge \rho \wedge q) \vee (\neg \rho \wedge q)$ $= \rho \vee (\neg \rho \wedge q) \equiv \neg \rho \wedge \neg q \vee r \equiv (\neg \rho \wedge q) \vee (\neg \rho \wedge q) \vee (\neg \rho \wedge q)$ $= \rho \vee (\neg \rho \wedge q) \equiv \neg \rho \wedge \neg q \vee r \equiv (\neg \rho \wedge q) \vee (\neg \rho \wedge q) \vee (\neg \rho \wedge q)$
5 Use a direct proof to show that the sum of two odd integers is even. Proof: Let U, V are odd, then U=2k+1, V=2J+1 (for some kile)
$\frac{U+V=2k+l+2J+l=2k+2J+2=2(k+J+1)=2m(such +hat)}{Thus \ U+V \ is even.}$
(b) Given an indirect contrapositive proof of if $n=ab$, then a $\leqslant \sqrt{n}$ or $b \leqslant \sqrt{n}$. Proof: $n=ab$, then $a \leqslant \sqrt{n}$ or $b \leqslant \sqrt{n}$ $\forall a,b \in \mathbb{Z}$ $\neg (a \leqslant \sqrt{n} \text{ or } b \leqslant \sqrt{n}) = \neg (a \leqslant \sqrt{n}) \text{ and } \neg (b \leqslant \sqrt{n})$
= a $> \sqrt{n}$ and b $> \sqrt{n} = ab > \sqrt{n} \cdot \sqrt{n} = n \Rightarrow ab n$
$\Rightarrow ab \neq n$

موضوع الترس اليوم التوريخ / /
Diven an indirect contradiction proof of 17 is irrational number.
Proof: Let 17 is rational number.
$(\sqrt{7} = \frac{a}{b} \text{ where } a,b \in \mathbb{Z}, b \neq 0, \text{have no common}$ $factor)$ $a = \sqrt{7}b \Rightarrow a^2 = 7b^2 \text{ this means a is prime}$ $a = 7k$ $(7k)^2 = 7b^2 \Rightarrow 49k^2 = 7b^2 \Rightarrow b^2 = 7k^2$
this means b is prime $[b=7]$
Thus a, b have a common factor this contradiction
+nis contradiction

Exercise: (3)

Discrete math

- (1) List the members of this set: $\{x/x \text{ is a real number such that } x^2 = 1\}$
- (b) AXBXC (3) Let $A = \{a, b, c\}$, $B = \{f, g\}$ and $C = \{d, e\}$ find (a) AXB
- (4) Suppose that the universal set is $U = \{1,2,3,4,5,6,7,8,9,10\}$ express each of these sets $(c)\{2,3,4,7,8,9\}$ $(b)\{1,3,6,10\}$ with bit string (a) {1,4,5}
- (5) Using the same universal set in the last problem, find set specified by each of these bit strings: (a)1111001111 (b)0101111000 (c)1000000001
- (6) Let f be the function from $\{a, b, c, d\}$ to $\{5,6,7,8\}$ f(a) = 5, f(b) = 6, f(d) = 7f(c) = 5 IS f onto? Why?
- (7) Determine whether each of these functions is a bijection from $\Re to \Re (i) + (x) = x + 1 + 1 + 1 = 3 \times -2$
- (8) Find f0g and g0f, where f(x)=3x+1 and g(x)=x+2 are functions from $\mathcal{R}to\mathcal{R}$
- (9) Let A and B be two sets , show that $(A \cup B)^c = A^c \cap B^c$
- (10) Use the set identity $X Y = X \cap Y^c$ to prove $(A B) \cap (C B) = (A \cap C) B$
- (11) Find two finite sets A and B such that $A \in B$ and $A \subset B$
- (12) Given a proof of or a counterexample to the following statement:

$$A\cap (B\cup C)=(A\cup B)\cap (A\cup C)$$

Exercise (3) Discrete Mathematical
1) List the members of this set: {X X is a real number s.t X=1}
Set = \{-1,1\} (2) Let A = \{a,b,c\}, B = \{f,9\} and C = \{d,e\} \{ind:}
a) $A \times B = \{(a,f), (a,g), (b,f), (b,g), (c,f), (c,g)\}$ b) $A \times B \times C = \{(a,f,d), (a,f,e), (a,g,d), (a,g,e), (b,f,d), (b,f,e), (b,g,d), (b,g,e), (c,g,e)\}$
3 Suppose that the universal set is $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
express each of these sets with bit string: a) $\{1,4,5\} = 1001100000, b$) $\{1,3,6,10\} = 1010010001$ c) $\{2,3,4,7,8,9\} = 0111001110$
① Using the same universal set in the last problem, find set specified by each of these bit string: a) $1111001111 = \{1,2,3,4,7,8,9,10\}$, b) $0101111000 = \{2,4,5,6,7\}$
(a) 1000000001 = {1,10} (b) Let f be the function from {a,b,c,d} to {5,6,7,8} f(a)=5,f(b)=6
(5) Let f be the function from (4,0,0,0) of formain= (5,6,7,8) f(d)=7,f(c)=5 IS f onto? Why? It's not onto because Domain= (a,b,c,d) + Codomain= (5,6,7,8)
6 Determine whether each of these function is a bijection from Rto R:
(i) $f(x) = x^3 + 1$ (i) Let X_1, X_2 such that $X_1 \neq X_2$ $X_1^3 + X_2^3 \Rightarrow X_1^3 + 1 = X_2^3 + 1 \Rightarrow f(x_1) \neq f(x_2) , X_1 \neq X_2 f(x_1) \neq f(x_2)$ $f(x) = x^3 + 1 \text{(i)} \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(ii)} \Rightarrow y = x^3 + 1 \Rightarrow y - 1 = x^3$ $f(x) = x^3 + 1 \text{(ii)} \text{(iii)} \Rightarrow y = x^3 + 1 \Rightarrow x = x = x^3 + 1 \Rightarrow x = x = x^3 + 1 \Rightarrow x =$

