High-Dimensional Sparse Surrogate Construction via Bayesian Compressive Sensing

*K. Sargsyan*¹, C. Safta¹, D. Ricciuto², B.Debusschere¹,H. Najm¹,P. Thornton²

¹Sandia National Laboratories Livermore, CA

²Oak Ridge National Laboratory Oak Ridge, TN

Sponsored by DOE, Biological and Environmental Research, under Accelerated Climate Modeling for Energy (ACME).

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

OUTLINE

- Surrogates needed for complex models
- Polynomial Chaos (PC) surrogates do well with uncertain inputs
- Bayesian regression provide results with uncertainty certificate
- · Compressive sensing ideas deal with high-dimensionality

Surrogate construction: scope and challenges

Construct surrogate for a complex model $f(\lambda)$ to enable

- Global sensitivity analysis
- Optimization
- Forward uncertainty propagation
- Input parameter calibration
- • •

- Computationally expensive model simulations, data sparsity
 - Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
 - Too many samples needed to cover the space
 - Too many terms in the polynomial expansion

Surrogate construction: scope and challenges

Construct surrogate for a complex model $f(\lambda)$ to enable

- Global sensitivity analysis
- Optimization
- Forward uncertainty propagation
- Input parameter calibration
- . . .

- Computationally expensive model simulations, data sparsity
 - Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
 - Too many samples needed to cover the space
 - Too many terms in the polynomial expansion

Surrogate construction: scope and challenges

Construct surrogate for a complex model $f(\lambda)$ to enable

- Global sensitivity analysis
- Optimization
- Forward uncertainty propagation
- Input parameter calibration
- . .

- Computationally expensive model simulations, data sparsity
 - Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
 - Too many samples needed to cover the space
 - Too many terms in the polynomial expansion

Build/presume PC for input parameter λ

$$\lambda(\mathbf{x}) = \sum_{k=0}^{K-1} \mathbf{a}_k \Psi_k(\mathbf{x})$$

Build/presume PC for input parameter λ

$$\lambda(\mathbf{x}) = \sum_{k=0}^{K-1} \mathbf{a}_k \Psi_k(\mathbf{x})$$

• E.g., gaussian with known moments μ_i , σ_i ,

$$\lambda_i = \mu_i + \sigma_i x_i$$

Build/presume PC for input parameter λ

$$\lambda(\mathbf{x}) = \sum_{k=0}^{K-1} \mathbf{a}_k \Psi_k(\mathbf{x})$$

• Input parameters are represented via their cumulative distribution function $F(\cdot)$, such that, with $x_i \sim \text{Uniform}[-1, 1]$

$$\lambda_i = F_{\lambda_i}^{-1} \left(\frac{x_i + 1}{2} \right), \quad \text{for } i = 1, 2, \dots, d.$$

Build/presume PC for input parameter λ

$$\lambda(\mathbf{x}) = \sum_{k=0}^{K-1} \mathbf{a}_k \Psi_k(\mathbf{x})$$

• If input parameters are uniform in $[a_i, b_i]$, then

$$\lambda_i = \frac{a_i + b_i}{2} + \frac{b_i - a_i}{2} x_i$$

Build/presume PC for input parameter λ

$$\lambda(\mathbf{x}) = \sum_{k=0}^{K-1} \mathbf{a}_k \Psi_k(\mathbf{x})$$

• If input parameters are uniform in $[a_i, b_i]$, then

$$\lambda_i = \frac{a_i + b_i}{2} + \frac{b_i - a_i}{2} x_i$$

• Forward function $f(\cdot)$, output u

$$u = f(\lambda(x))$$

$$u = \sum_{k=0}^{K-1} c_k \Psi_k(x) \equiv g(x)$$

- Global sensitivity information for free
 - Sobol indices, variance-based decomposition.

Alternative methods to obtain PC coefficients

$$u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{x})$$

• <u>Projection</u> $c_k = \frac{\langle u(\mathbf{x})\Psi_k(\mathbf{x})\rangle}{\langle \Psi_k^2(\mathbf{x})\rangle}$ The integral $\langle u(\mathbf{x})\Psi_k(\mathbf{x})\rangle = \int u(\mathbf{x})\Psi_k(\mathbf{x})d\mathbf{x}$ can be estimated by

Monte-Carlo

$$\frac{1}{N}\sum_{j=1}^{N}u(\mathbf{x}_{j})\Psi_{k}(\mathbf{x}_{j})$$

many(!) random samples

Quadrature

$$\sum_{j=1}^{Q} u(\mathbf{x}_j) \Psi_k(\mathbf{x}_j) w_j$$

samples at quadrature

Alternative methods to obtain PC coefficients

$$u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{x})$$

Projection

$$c_k = \frac{\langle u(\boldsymbol{x})\Psi_k(\boldsymbol{x})\rangle}{\langle \Psi_k^2(\boldsymbol{x})\rangle}$$

The integral $\langle u(x)\Psi_k(x)\rangle = \int u(x)\Psi_k(x)dx$ can be estimated by

Monte-Carlo

$$\frac{1}{N}\sum_{j=1}^{N}u(x_{j})\Psi_{k}(x_{j})$$

 $many (!) \ random \ samples$

Quadrature

$$\sum_{i=1}^{Q} u(\mathbf{x}_i) \Psi_k(\mathbf{x}_i) w_j$$

samples at quadrature

Bayesian regression

$$P(c_k|u(\mathbf{x}_j)) \propto P(u(\mathbf{x}_j)|c_k)P(c_k)$$

any (number of) samples

Alternative methods to obtain PC coefficients

$$u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

Projection

$$c_k = \frac{\langle u(\mathbf{X})\Psi_k(\mathbf{X})\rangle}{\langle \Psi_k^2(\mathbf{X})\rangle}$$

The integral $\langle u(x)\Psi_k(x)\rangle=\int u(x)\Psi_k(x)dx$ can be estimated by

Monte-Carlo

$$\frac{1}{N}\sum_{j=1}^{N}u(\mathbf{x}_{j})\Psi_{k}(\mathbf{x}_{j})$$

many(!) random samples

Quadrature

$$\sum_{i=1}^{Q} u(\mathbf{x}_{i}) \Psi_{k}(\mathbf{x}_{i}) w_{j}$$

samples at quadrature

Bayesian regression

$$\underline{P(c|\mathcal{D})} \propto \underline{P(\mathcal{D}|c)} \underline{P(c)}$$
Posterior Likelihood Prior

any (number of) samples

Bayesian inference of PC surrogate

$$u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x}) \equiv g_{\mathbf{c}}(\mathbf{x})$$
 Posterior Likelihood Prior $P(\mathbf{c}|\mathcal{D}) \propto P(\mathcal{D}|\mathbf{c})$ Prior $P(\mathbf{c}|\mathcal{D}) \propto P(\mathcal{D}|\mathbf{c})$

• Data consists of training runs

$$\mathcal{D} \equiv \{(\boldsymbol{x}_i, u_i)\}_{i=1}^N$$

• <u>Likelihood</u> with a gaussian noise model with σ^2 fixed or inferred,

$$L(\mathbf{c}) = P(\mathcal{D}|\mathbf{c}) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^N \exp\left(-\frac{(u_i - g_{\mathbf{c}}(\mathbf{x}))^2}{2\sigma^2}\right)$$

- Prior on c is chosen to be conjugate, uniform or gaussian.
- Posterior is a multivariate normal

$$oldsymbol{c} \in \mathcal{MVN}(oldsymbol{\mu},oldsymbol{\Sigma})$$

The (uncertain) surrogate is a gaussian process

$$\sum_{k=0}^{K-1} c_k \Psi_k(\pmb{x}) = \pmb{\Psi}(\pmb{x})^T \pmb{c} \quad \in \quad \mathcal{GP}(\pmb{\Psi}(\pmb{x})^T \pmb{\mu}, \pmb{\Psi}(\pmb{x}) \pmb{\Sigma} \pmb{\Psi}(\pmb{x}')^T)$$

$$y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

$$\Psi_k(x_1, x_2, ..., x_d) = \psi_{k_1}(x_1)\psi_{k_2}(x_2)\cdots\psi_{k_d}(x_d)$$

- Issues:
 - how to properly choose the basis set?

- need to work in underdetermined regime N < K: fewer data than bases (d.o.f.)
- Discover the underlying low-d structure in the model
 - get help from the machine learning community

$$y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

$$\Psi_k(x_1, x_2, ..., x_d) = \psi_{k_1}(x_1)\psi_{k_2}(x_2)\cdots\psi_{k_d}(x_d)$$

Issues:

- need to work in underdetermined regime N < K: fewer data than bases (d.o.f.)
- · Discover the underlying low-d structure in the model
 - get help from the machine learning community

$$y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

$$\Psi_k(x_1, x_2, ..., x_d) = \psi_{k_1}(x_1)\psi_{k_2}(x_2)\cdots\psi_{k_d}(x_d)$$

Issues:

- how to properly choose the basis set?
- need to work in underdetermined regime N < K: fewer data than bases (d.o.f.)
- · Discover the underlying low-d structure in the model
 - get help from the machine learning community

$$y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

$$\Psi_k(x_1, x_2, ..., x_d) = \psi_{k_1}(x_1)\psi_{k_2}(x_2)\cdots\psi_{k_d}(x_d)$$

- Issues:
 - how to properly choose the basis set?

- need to work in underdetermined regime N < K: fewer data than bases (d.o.f.)
- Discover the underlying low-d structure in the model
 - get help from the machine learning community

$$y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

$$\Psi_k(x_1, x_2, ..., x_d) = \psi_{k_1}(x_1)\psi_{k_2}(x_2)\cdots\psi_{k_d}(x_d)$$

- Issues:
 - how to properly choose the basis set?

- need to work in underdetermined regime N < K: fewer data than bases (d.o.f.)
- · Discover the underlying low-d structure in the model
 - get help from the machine learning community

In a different language....

- *N* training data points (x_n, u_n) and *K* basis terms $\Psi_k(\cdot)$
- Projection matrix $P^{N \times K}$ with $P_{nk} = \Psi_k(x_n)$
- Find regression weights $c = (c_0, \dots, c_{K-1})$ so that

$$u \approx Pc$$
 or $u_n \approx \sum_k c_k \Psi_k(\mathbf{x}_n)$

- The number of polynomial basis terms grows fast; a p-th order, d-dimensional basis has a total of K = (p+d)!/(p!d!) terms.
- For limited data and large basis set (N < K) this is a sparse signal recovery problem ⇒ need some regularization/constraints.
- Least-squares $argmin_{m{c}}\left\{||m{u}-m{P}m{c}||_{2}
 ight\}$
- The 'sparsest' $\operatorname{argmin}_{\boldsymbol{c}} \left\{ ||\boldsymbol{u} \boldsymbol{P}\boldsymbol{c}||_2 + \alpha ||\boldsymbol{c}||_0 \right\}$
- ullet Compressive sensing $\mathit{argmin}_{oldsymbol{c}}\left\{||oldsymbol{u}-oldsymbol{P}oldsymbol{c}||_{2}+lpha||oldsymbol{c}||_{1}
 ight\}$

In a different language....

- N training data points (x_n, u_n) and K basis terms $\Psi_k(\cdot)$
- Projection matrix $\mathbf{P}^{N \times K}$ with $\mathbf{P}_{nk} = \Psi_k(\mathbf{x}_n)$
- Find regression weights $c = (c_0, \dots, c_{K-1})$ so that

$$u \approx Pc$$
 or $u_n \approx \sum_k c_k \Psi_k(\mathbf{x}_n)$

- The number of polynomial basis terms grows fast; a p-th order, d-dimensional basis has a total of K = (p + d)!/(p!d!) terms.
- For limited data and large basis set (N < K) this is a sparse signal recovery problem ⇒ need some regularization/constraints.
- ullet Least-squares $\mathit{argmin}_{oldsymbol{c}}\left\{||oldsymbol{u}-oldsymbol{P}oldsymbol{c}||_{2}
 ight\}$
- The 'sparsest' $\operatorname{argmin}_{\boldsymbol{c}} \left\{ ||\boldsymbol{u} \boldsymbol{P}\boldsymbol{c}||_2 + \alpha ||\boldsymbol{c}||_0 \right\}$
- Compressive sensing $argmin_{m{c}} \left\{ ||m{u} m{P} m{c}||_2 + \alpha ||m{c}||_1 \right\}$ Bayesian Likelihood Prior

Dimensionality reduction by using hierarchical priors

$$p(c_k|\sigma_k^2) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{c_k^2}{2\sigma_k^2}} \qquad p(\sigma_k^2|\alpha) = \frac{\alpha}{2} e^{-\frac{\alpha\sigma_k^2}{2}}$$

Effectively, one obtains Laplace sparsity prior

$$p(c|lpha) \ = \ \int \prod_{k=0}^{K-1} p(c_k|\sigma_k^2) p(\sigma_k^2|lpha) d\sigma_k^2 \ = \ \prod_{k=0}^{K-1} rac{\sqrt{lpha}}{2} e^{-\sqrt{lpha}|c_k|}$$

- The parameter α can be further modeled hierarchically, or fixed.
- Evidence maximization dictates values for σ_k^2 , α , σ^2 and allows exact Bayesian solution

$$c \sim \mathcal{MVN}(\mu, \Sigma)$$

with

$$\mu = \sigma^{-2} \Sigma P^T u$$
 $\Sigma = \sigma^2 (P^T P + \operatorname{diag}(\sigma^2 / \sigma_k^2))^{-1}$

Dimensionality reduction by using hierarchical priors

$$p(c_k|\sigma_k^2) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{c_k^2}{2\sigma_k^2}} \qquad p(\sigma_k^2|\alpha) = \frac{\alpha}{2} e^{-\frac{\alpha\sigma_k^2}{2}}$$

Effectively, one obtains Laplace sparsity prior

$$p(\boldsymbol{c}|\alpha) = \int \prod_{k=0}^{K-1} p(c_k|\sigma_k^2) p(\sigma_k^2|\alpha) d\sigma_k^2 = \prod_{k=0}^{K-1} \frac{\sqrt{\alpha}}{2} e^{-\sqrt{\alpha}|c_k|}$$

- The parameter α can be further modeled hierarchically, or fixed.
- Evidence maximization dictates values for σ_k^2 , α , σ^2 and allows exact Bayesian solution

$$c \sim \mathcal{MVN}(\mu, \Sigma)$$

with

$$\mu = \sigma^{-2} \Sigma P^T u$$
 $\Sigma = \sigma^2 (P^T P + \operatorname{diag}(\sigma^2 / \sigma_k^2))^{-1}$

Dimensionality reduction by using hierarchical priors

$$p(c_k|\sigma_k^2) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{c_k^2}{2\sigma_k^2}} \qquad p(\sigma_k^2|\alpha) = \frac{\alpha}{2} e^{-\frac{\alpha\sigma_k^2}{2}}$$

Effectively, one obtains Laplace sparsity prior

$$p(\boldsymbol{c}|\alpha) = \int \prod_{k=0}^{K-1} p(c_k|\sigma_k^2) p(\sigma_k^2|\alpha) d\sigma_k^2 = \prod_{k=0}^{K-1} \frac{\sqrt{\alpha}}{2} e^{-\sqrt{\alpha}|c_k|}$$

- The parameter α can be further modeled hierarchically, or fixed.
- Evidence maximization dictates values for $\sigma_k^2, \alpha, \sigma^2$ and allows exact Bayesian solution

$$oldsymbol{c} \sim \mathcal{MVN}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

with

$$\mu = \sigma^{-2} \Sigma P^T u$$
 $\Sigma = \sigma^2 (P^T P + \text{diag}(\sigma^2 / \sigma_k^2))^{-1}$

Dimensionality reduction by using hierarchical priors

$$p(c_k|\sigma_k^2) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{c_k^2}{2\sigma_k^2}} \qquad \qquad p(\sigma_k^2|\alpha) = \frac{\alpha}{2} e^{-\frac{\alpha\sigma_k^2}{2}}$$

Effectively, one obtains Laplace sparsity prior

$$p(\boldsymbol{c}|\alpha) = \int \prod_{k=0}^{K-1} p(c_k|\sigma_k^2) p(\sigma_k^2|\alpha) d\sigma_k^2 = \prod_{k=0}^{K-1} \frac{\sqrt{\alpha}}{2} e^{-\sqrt{\alpha}|c_k|}$$

- The parameter α can be further modeled hierarchically, or fixed.
- Evidence maximization dictates values for $\sigma_k^2, \alpha, \sigma^2$ and allows exact Bayesian solution

$$oldsymbol{c} \sim \mathcal{MVN}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

with

$$\mu = \sigma^{-2} \Sigma P^T u$$
 $\Sigma = \sigma^2 (P^T P + \text{diag}(\sigma^2 / \sigma_k^2))^{-1}$

• KEY: Some $\sigma_k^2 \to 0$, hence the corresponding basis terms are dropped.

[Tipping, 2001, Ji et al., 2008; Babacan et al., 2010]

BCS removes unnecessary basis terms

The square (i,j) represents the (log) spectral coefficient for the basis term $\psi_i(x)\psi_i(y)$.

Success rate grows with more data and 'sparser' model

Consider test function

$$f(\mathbf{x}) = \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

where only S coefficients c_k are non-zero. Typical setting is

Success rate grows with more data and 'sparser' model

Consider test function

$$f(\mathbf{x}) = \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

where only S coefficients c_k are non-zero. Typical setting is

BCS recovers true PC coefficients with increased number of measurements

BCS recovers true PC coefficients with increased number of measurements

BCS recovers true PC coefficients with increased number of measurements

Bayesian Compressive Sensing

Dimensionality reduction by using hierarchical priors

$$p(c_k|\sigma_k^2) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{c_k^2}{2\sigma_k^2}} \qquad p(\sigma_k^2|\alpha) = \frac{\alpha}{2} e^{-\frac{\alpha\sigma_k^2}{2}}$$

Effectively, one obtains Laplace sparsity prior

$$p(\boldsymbol{c}|\boldsymbol{\alpha}) = \int \prod_{k=0}^{K-1} p(c_k|\sigma_k^2) p(\sigma_k^2|\alpha) d\sigma_k^2 = \prod_{k=0}^{K-1} \frac{\sqrt{\alpha}}{2} e^{-\sqrt{\alpha}|c_k|}$$

- The parameter α can be further modeled hierarchically, or fixed.
- Evidence maximization dictates values for $\sigma_k^2, \alpha, \sigma^2$ and allows exact Bayesian solution

$$c \sim \mathcal{MVN}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

with

$$\mu = \sigma^{-2} \Sigma P^T u$$
 $\Sigma = \sigma^2 (P^T P + \operatorname{diag}(\sigma^2 / \sigma_k^2))^{-1}$

• KEY: Some $\sigma_k^2 \to 0$, hence the corresponding basis terms are dropped.

Weighted Bayesian Compressive Sensing

Dimensionality reduction by using hierarchical priors

$$p(c_k|\sigma_k^2) = \frac{1}{\sqrt{2\pi}\sigma_k}e^{-\frac{c_k^2}{2\sigma_k^2}} \qquad \qquad p(\sigma_k^2|\alpha_k) = \frac{\alpha_k}{2}e^{-\frac{\alpha_k\sigma_k^2}{2}}$$

Effectively, one obtains Laplace sparsity prior

$$p(\boldsymbol{c}|\boldsymbol{\alpha}) = \int \prod_{k=0}^{K-1} p(c_k|\sigma_k^2) p(\sigma_k^2|\alpha_k) d\sigma_k^2 = \prod_{k=0}^{K-1} \frac{\sqrt{\alpha_k}}{2} e^{-\sqrt{\alpha_k}|c_k|}$$

- The parameter α_k can be further modeled hierarchically, or fixed.
- Evidence maximization dictates values for $\sigma_k^2, \alpha_k, \sigma^2$ and allows exact Bayesian solution

$$c \sim \mathcal{MVN}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

with

$$\mu = \sigma^{-2} \Sigma P^T u$$
 $\Sigma = \sigma^2 (P^T P + \text{diag}(\sigma^2 / \sigma_k^2))^{-1}$

• KEY: Some $\sigma_k^2 \to 0$, hence the corresponding basis terms are dropped.

WBCS recovers true coefficients better

Iteratively reweighting Compressive Sensing

[Candes et al., 2007]

Sparsest solution: $min||c||_0$ such that $u \approx Pc$

Compressive sensing: $min||c||_1$ such that $u \approx Pc$

Weighted compressive sensing: $min||Wc||_1$ such that $u \approx Pc$

Sparsest solution: m

 $min||c||_0$ such that $u \approx Pc$

Compressive sensing:

 $min||c||_1$ such that $u \approx Pc$

Weighted compressive sensing:

 $min||Wc||_1$ such that $u \approx Pc$

For sparse signals, $u = Pc^s$, with $||c_s||_0 = S < K$, ideal weights are

$$m{W} = diag\left(rac{1}{|c_k^s|}
ight)$$
 [i.e., $W_{kk} = +\infty$ if $c_k^s = 0$]

In practice, the true signal coefficients are not known, so...

Sparsest solution:

 $min||c||_0$ such that $u \approx Pc$

Compressive sensing:

 $min||c||_1$ such that $u \approx Pc$

Weighted compressive sensing:

 $min||Wc||_1$ such that $u \approx Pc$

For sparse signals, $u = Pc^s$, with $||c_s||_0 = S < K$, ideal weights are

$$m{W} = diag\left(rac{1}{|c_k^s|}
ight)$$
 [i.e., $W_{kk} = +\infty$ if $c_k^s = 0$]

In practice, the true signal coefficients are not known, so...

Iterative re-weighting

$$\mathbf{W}^{(i+1)} = diag\left(\frac{1}{|c_k^{(i)}| + \epsilon}\right)$$

 $[\epsilon \ll 1 \text{ for stability}]$

Iterative Bayesian Compressive Sensing (iBCS)

 Iterative BCS: We implement an iterative procedure that allows increasing the order for the relevant basis terms while maintaining the dimensionality reduction [Sargsyan et al. 2014]. In a pure CS setting, [Jakeman et al. 2015].

Iterative Bayesian Compressive Sensing (iBCS)

Combine basis growth and reweighting!

Basis set growth: simple anisotropic function

Basis set growth: ... added outlier term

Application of Interest: Community Land Model

http://www.cesm.ucar.edu/models/clm/

- Nested computational grid hierarchy
- ullet A single-site, 1000-yr simulation takes ~ 10 hrs on 1 CPU
- Involves ~ 50 input parameters; some dependent
- Non-smooth input-output relationship

Input correlations: Rosenblatt transformation

• Rosenblatt transformation maps any (not necessarily independent) set of random variables $\lambda = (\lambda_1, \dots, \lambda_d)$ to uniform i.i.d.'s $\{x_i\}_{i=1}^d$ [Rosenblatt, 1952].

$$\begin{aligned}
 x_1 &= F_1(\lambda_1) \\
 x_2 &= F_{2|1}(\lambda_2|\lambda_1) \\
 x_3 &= F_{3|2,1}(\lambda_3|\lambda_2,\lambda_1) \\
 \vdots \\
 x_d &= F_{d|d-1,...,1}(\lambda_d|\lambda_{d-1},...,\lambda_1)
 \end{aligned}$$

• Inverse Rosenblatt transformation $\lambda = R^{-1}(x)$ ensures a well-defined input PC construction

$$\lambda_i = \sum_{k=0}^{K-1} \lambda_{ik} \Psi_k(\boldsymbol{x})$$

• Caveat: the conditional distributions are often hard to evaluate accurately.

Piecewise PC expansion with classification

- Cluster the training dataset into non-overlapping subsets D₁ and D₂, where the behavior of function is smoother
- Construct global PC expansions $g_i(x) = \sum_k c_{ik} \Psi_k(x)$ using each dataset individually (i = 1, 2)
- Declare a surrogate

$$g_s(\mathbf{x}) = \begin{cases} g_1(\mathbf{x}) & \text{if } \mathbf{x} \in {}^*\mathcal{D}_1 \\ g_2(\mathbf{x}) & \text{if } \mathbf{x} \in {}^*\mathcal{D}_2 \end{cases}$$

* Requires a classification step to find out which cluster *x* belongs to. We applied Random Decision Forests (RDF).

Caveat: the sensitivity information is harder to obtain.

Sparse PC surrogate for the Community Land Model

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 200 polynomial basis terms in the 50-dimensional space
- Sparse PC will further be used for
 - sampling in a reduced space
 - parameter calibration against experimental data

Sparse PC surrogate for the Community Land Model

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 200 polynomial basis terms in the 50-dimensional space
- Sparse PC will further be used for
 - sampling in a reduced space
 - parameter calibration against experimental data

Summary

- Surrogate models are necessary for complex models
 - · Replace the full model for both forward and inverse UQ
- Uncertain inputs
 - Polynomial Chaos surrogates well-suited
- Limited training dataset
 - Bayesian methods handle limited information well
- Curse of dimensionality
 - The hope is that not too many dimensions matter
 - Compressive sensing (CS) ideas ported from machine learning
 - We implemented iteratively reweighting Bayesian CS algorithm that reduces dimensionality and increases order on-the-fly.

- Open issues
 - Computational design. What is the best sampling strategy?
 - Overfitting still present. Cross-validation techniques help.

Literature

- M. Tipping, "Sparse Bayesian learning and the relevance vector machine", J Machine Learning Research, 1, pp. 211-244, 2001.
- S. Ji, Y. Xue and L. Carin, "Bayesian compressive sensing", IEEE Trans. Signal Proc., 56:6, 2008.
- S. Babacan, R. Molina and A. Katsaggelos, "Bayesian compressive sensing using Laplace priors", IEEE Trans. Image Proc., 19:1, 2010.
- E. J. Candes, M. Wakin and S. Boyd. "Enhancing sparsity by reweighted ℓ₁ minimization", J. Fourier Anal. Appl., 14 877-905, 2007.
- A. Saltelli, "Making best use of model evaluations to compute sensitivity indices", Comp Phys Comm, 145, 2002.
- K. Sargsyan, C. Safta, H. Najm, B. Debusschere, D. Ricciuto and P. Thornton, "Dimensionality reduction for complex models via Bayesian compressive sensing", Int J for Uncertainty Quantification, 4(1), pp. 63-93,2014.
- J. Jakeman, M. Eldred and K. Sargsyan, "Enhancing ℓ_1 -minimization estimates of polynomial chaos expansions using basis selection", *J Comp Phys*, in press, 2015, see ArXiv.

Random variables represented by Polynomial Chaos

$$X \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta})$$

• $\eta = (\eta_1, \dots, \eta_d)$ standard i.i.d. r.v. Ψ_k standard polynomials, orthogonal w.r.t. $\pi(\eta)$.

$$\Psi_k(\eta_1, \eta_2, \dots, \eta_d) = \psi_{k_1}(\eta_1)\psi_{k_2}(\eta_2)\cdots\psi_{k_d}(\eta_d)$$

- Typical truncation rule: total-order $p, k_1 + k_2 + \dots k_d \le p$. Number of terms is $K = \frac{(d+p)!}{d! p!}$.
- Essentially, a parameterization of a r.v. by deterministic spectral modes c_k .
- Most common standard Polynomial-Variable pairs: (continuous) Gauss-Hermite, <u>Legendre-Uniform</u>, (discrete) Poisson-Charlier.

Basis normalization helps the success rate

Strong discontinuities/nonlinearities challenge global polynomial expansions

- Basis enrichment [Ghosh & Ghanem, 2005]
- Stochastic domain decomposition
 - Wiener-Haar expansions, Multiblock expansions, Multiwavelets, [Le Maître et al, 2004,2007]
 - also known as Multielement PC [Wan & Karniadakis, 2009]
- Smart splitting, discontinuity detection
 [Archibald et al, 2009; Chantrasmi, 2011; Sargsyan et al, 2011; Jakeman et al, 2012]
- Data domain decomposition,
 - Mixture PC expansions [Sargsyan et al, 2010]
- Data clustering, classification,
 - Piecewise PC expansions

Sensitivity information comes free with PC surrogate,

$$g(x_1,\ldots,x_d)=\sum_{k=0}^{K-1}c_k\Psi_k(\mathbf{x})$$

Main effect sensitivity indices

$$S_{i} = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_{i}))]}{Var[g(\mathbf{x})]} = \frac{\sum_{k \in \mathbb{I}_{i}} c_{k}^{2} ||\Psi_{k}||^{2}}{\sum_{k > 0} c_{k}^{2} ||\Psi_{k}||^{2}}$$

 \mathbb{I}_i is the set of bases with only x_i involved

Sensitivity information comes free with PC surrogate,

$$g(x_1,\ldots,x_d) = \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

· Main effect sensitivity indices

$$S_{i} = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_{i}))]}{Var[g(\mathbf{x})]} = \frac{\sum_{k \in \mathbb{I}_{i}} c_{k}^{2} ||\Psi_{k}||^{2}}{\sum_{k > 0} c_{k}^{2} ||\Psi_{k}||^{2}}$$

Joint sensitivity indices

$$S_{ij} = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i, x_j))]}{Var[g(\mathbf{x})]} - S_i - S_j = \frac{\sum_{k \in \mathbb{I}_{ij}} c_k^2 ||\Psi_k||^2}{\sum_{k > 0} c_k^2 ||\Psi_k||^2}$$

 \mathbb{I}_{ij} is the set of bases with only x_i and x_j involved

Sensitivity information comes free with PC surrogate,

but not with piecewise PC

$$g(x_1,\ldots,x_d) = \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

• Main effect sensitivity indices

$$S_{i} = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_{i}))]}{Var[g(\mathbf{x})]} = \frac{\sum_{k \in \mathbb{I}_{i}} c_{k}^{2} ||\Psi_{k}||^{2}}{\sum_{k > 0} c_{k}^{2} ||\Psi_{k}||^{2}}$$

Joint sensitivity indices

$$S_{ij} = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i, x_j))]}{Var[g(\mathbf{x})]} - S_i - S_j = \frac{\sum_{k \in \mathbb{I}_{ij}} c_k^2 ||\Psi_k||^2}{\sum_{k > 0} c_k^2 ||\Psi_k||^2}$$

 For piecewise PC, need to resort to Monte-Carlo estimation [Saltelli, 2002].