

Lógica para Programação

Exame de 2ª Época

2 de Julho de 2019

9:00-11:00

Nome:	Número:

- Esta prova, individual e sem consulta, tem **11** páginas com **11** perguntas. A cotação de cada pergunta está assinalada entre parêntesis.
- Escreva o seu número em todas as folhas da prova. O tamanho das respostas deve ser limitado ao espaço fornecido para cada questão. O corpo docente reserva-se o direito de não considerar a parte das respostas que excedam o espaço indicado.
- Pode responder utilizando lápis.
- Em cima da mesa devem apenas estar o enunciado, caneta ou lápis e borracha e cartão de aluno. Não é permitida a utilização de folhas de rascunho, telemóveis, calculadoras, etc.
- Boa sorte!

Pergunta	Cotação	Nota
1.	1.0	
2.	1.0	
3.	2.0	
4.	1.5	
5.	2.0	
6.	1.5	
7.	3.0	
8.	2.0	
9.	2.0	
10.	1.5	
11.	2.5	
Total	20.0	

3. (2.0) Demonstre o seguinte teorema

C

$$\{\} \vdash (\forall x [(P(x) \to R(x))] \land \exists y [P(y)]) \to \exists z [R(z)]$$

Número: _____ Pág. 3 de 11

usando o sistema dedutivo da Lógica de Primeira Ordem (apenas pode usar as regras de premissa, hipótese, repetição, reiteração, e as regras de introdução e eliminação de cada um dos símbolos lógicos).

Resposta:

$$\begin{array}{c|cccc} 1 & & \forall x[P(x) \rightarrow R(x)] \land \exists y[P(y)] & & \text{Hip} \\ 2 & & \forall x[P(x) \rightarrow R(x)] & & \text{E} \land, 1 \\ 3 & & \exists y[P(y)] & & & \text{E} \land, 1 \\ 4 & & x_0 & P(x_0) & & \text{Hip} \\ 5 & & & \forall x[P(x) \rightarrow R(x)] & & \text{Rei, 2} \\ 6 & & & P(x_0) \rightarrow R(x_0) & & \text{E} \forall, 5 \\ 7 & & & R(x_0) & & & \text{E} \forall, 5 \\ 7 & & & & & \text{E} \rightarrow, (4, 6) \\ 8 & & & & & & \exists z[R(z)] & & & \text{E} \exists, (3, (4, 8)) \\ 10 & & & (\forall x[P(x) \rightarrow R(x)] \land \exists y[P(y)]) \rightarrow \exists z[R(z)] & & \text{I} \rightarrow, (1, 9) \\ \end{array}$$

4. (1.5) Considere o seguinte conjunto de fbfs (em que x, y e z são variáveis, a e c são constantes e f é uma função)

$$\{P(x, f(a), z), P(y, f(y), c)\}$$

Preencha as linhas necessárias da seguinte tabela, de forma a seguir o algoritmo de unificação para determinar se as *fbfs* são unificáveis. Em caso afirmativo, indique o unificador mais geral; caso contrário, indique que as *fbfs* não são unificáveis.

Conjunto de fbfs	Conjunto de desacordo	Substituição

Unificador mais geral (se existir):

Resposta:

Conjunto de fbfs	Conjunto de	Substituição
	desacordo	
P(x, f(a), z), P(y, f(y), c)	$\{x,y\}$	$\{y/x\}$
$\{P(y, f(a), z), P(y, f(y), c)\}$	$\{y,a\}$	$\{a/y\}$
$\{P(a, f(a), z), P(a, f(a), c)\}$	$\{z,c\}$	$\{c/z\}$
$\{P(a, f(a), c)\}$		

Unificador mais geral (se existir):

$$\{y/x\} \circ \{a/y\} \circ \{c/z\} = \{a/x, a/y, c/z\}$$

5. (2.0) Demonstre o seguinte teorema

$$\{ \forall x [(P(x) \to R(x))] \land \exists y [P(y)] \} \vdash \exists z [R(z)]$$

usando resolução.

Resposta:

Para provar o teorema teremos de fazer uma prova por refutação:

- Forma clausal das premissas e da negação da conclusão: $\{\{\neg P(x), R(x)\}, \{P(a)\}, \{\neg R(z)\}\}\$ (em que a é uma constante de Skolem)
- Prova:

$$\begin{array}{lll} 1 & \{\neg P(x), R(x)\} & \text{Prem} \\ 2 & \{P(a)\} & \text{Prem} \\ 3 & \{\neg R(z)\} & \text{Prem} \\ 4 & \{R(a)\} & \text{Res, (1,2), }_{\{a/x\}} \\ 5 & \{\} & \text{Res, (3,4), }_{\{a/z\}} \end{array}$$

6. (1.5) Considere a conceptualização (D, F, R) em que:

$$D = \{\diamondsuit, \Box, \odot\}$$

$$F = \{\}$$

$$R = \{\ldots\}.$$

Considere a interpretação $I: \{a, b, c, P, S\} \mapsto D \cup F \cup R$, tal que:

$$I(a) = \diamondsuit$$

$$I(b) = \square$$

$$I(c) = \odot$$

Preencha a tabela abaixo, de forma a que a interpretação $\it I$ seja um modelo do conjunto de $\it fbfs$

$$\Delta = \{ \neg P(c), \neg P(a), \neg P(b), \forall x, y [S(x, y) \to P(x)] \}.$$

I(P)	
I(S)	

Resposta:

$$\begin{array}{c|c} I(P) & \{\} \\ \hline I(S) & \{\} \end{array}$$

- 7. (3.0) Considere a *fbf* $(P \rightarrow Q) \land (Q \rightarrow R)$, e a ordem $P \prec Q \prec R$.
 - (a) (2.0) Obtenha o seu OBDD reduzido, por aplicação dos algoritmos *reduz* e *compacta* à respectiva árvore de decisão.

Resposta:

Tabela associativa

(b) (1.0) O resultado obtido na alínea anterior permite concluir que $\{(P \to Q) \land (Q \to R)\} \models R$? Justifique a sua resposta.

Resposta:

Não, R não é consequência semântica da fbf, pois é possível encontrar um modelo da fbf que não é modelo de R. Por exemplo, a interpretação I(P)=F,I(Q)=F,I(R)=F.

8. (2.0) Seja $\Delta = \{\{\neg D, B\}, \{\neg C, A\}, \{\neg A, D, C\}, \{\neg C, E\}, \{\neg E\}\}\}$. Após aplicação do algoritmo DP a Δ , recorrendo a baldes, obtém-se:

(a) (0.5) Supondo I(E)=F e I(C)=F, qual dos seguintes casos **NÃO** conduz a uma testemunha de Δ :

A:
$$I(B) = V, I(A) = F, I(D) = V$$

B:
$$I(B) = V, I(A) = F, I(D) = F$$

C:
$$I(B) = V, I(A) = V, I(D) = V$$

D:
$$I(B) = F, I(A) = F, I(D) = V$$

Resposta: ___

Resposta:

D

(b) (0.5) Qual das seguintes frases é FALSA:

A: Numa testemunha de Δ verifica-se sempre I(E) = F.

B: Numa testemunha de Δ se I(B) = V então I(A) = F.

Número: ˌ	Pág. 6 de 11
	C: Numa testemunha de Δ verifica-se sempre $I(C)=F$. D: Numa testemunha de Δ ou $I(D)=V$ ou $I(A)=F$. Resposta: Resposta: B
(c)	$(0.5) {\rm Seja} \Delta_1 = \Delta \cup \{A\} \cup \{\neg B\}. {\rm Qual das seguintes afirmações \'e VERDADEIRA}: \\ A: \Delta_1 \'e {\rm uma tautologia}. \\ B: \Delta_1 \'e {\rm contradit\'oria}. \\ C: \Delta_1 \'e {\rm simultaneamente falsific\'avel e satisfaz\'ivel}. \\ D: {\rm Nenhuma das anteriores}. \\ \\ B$
	Resposta: Resposta: B
(d)	(0.5) Tendo em conta a alínea c) qual das seguintes afirmações é VERDADEIRA : A: $\Delta \cup \{A\} \models B$ B: $\Delta \models A \wedge B$ C: $\Delta \cup \{\neg B\} \models A$ D: $\Delta \cup \{B\} \models \neg A$
	Resposta: Resposta: A
C ₁ : \$\delta\$ C ₂ : \$\delta\$ C ₃ : \$\delta\$ C ₄ : \$\delta\$ C ₅ : \$\delta\$ C ₆ : \$\delta\$ C ₇ : \$\delta\$ Supo	Considere o seguinte programa em Prolog: a(2, 2). a(X, Y) :- b(X, Y), c(Y, X). b(22, 55). b(44, 13). c(22, 55). c(12, 33). brido que vão sempre ser pedidas mais respostas enquanto tal for possível, qual a reta do Prolog ao objectivo ?- a(X, Y)
	considerando o programa anterior. Resposta: X = Y, $Y = 2$; $X = 33$, $Y = 12$; false. considerando que C_1 é agora: $a(X, Y) := b(X, Y)$, $c(X, Y)$, !. Resposta:
(c)	X = 22, $Y = 55$. considerando que C_1 é agora: a(X, Y) :- not(b(X, Y)), c(X, Y). Resposta: X = 33, $Y = 12$; false.
10. (1.5)	Implemente em Prolog:
(a)	(1.0) O predicado seguidosDe/3 tal que seguidosDe(X, L1, L2) significa que L2 é a lista de elementos de L1 que aparecem imediatamente a seguir a X. Por exemplo: ?- seguidosDe(1, [1, 2, 7, 8, 1, 'ola', 1, 7, 1, b], L). L = [2, ola, 7, b]

Resposta:

Número: _____ Pág. 7 de 11

(b) (0.5) O predicado contaSeguidos/3 em que contaSeguidos (X, L, N) significa que N é o número de elementos que aparecem imediatamente a seguir a X na lista L. Sugestão: use o predicado definido anteriormente.

Por exemplo:

```
?- contaSeguidos(2, [1, 2, 7, 2, 1, 5, 2, a, 1, 1], N). N = 3
```

Resposta:

```
contaSeguidos(X, L, N) :- seguidosDe(X, L, L1), length(L1, N).
```

- 11. As questões que se seguem dizem respeito ao contexto do projecto. Na implementação dos predicados pode, ou não, usar os meta-predicados sobre listas. Fica ao seu critério.
 - (a) (1.0) Implemente o predicado conta_vars_0_1/2, tal que conta_vars_0_1 (Fila, [N_Vars, N_Zeros, N_Uns]) significa que N_Vars, N_Zeros e N_Uns são o número de variáveis, de zeros e de uns da fila Fila de um puzzle binário, respectivamente. Se Fila tiver algum elemento que não seja nem uma variável, nem zero, nem um, o predicado deve devolver false. Por exemplo,

```
?- Fila = [0, 1, _, 1, 1, 0, 0, 1], conta_vars_0_1(Fila, Res).
Fila = [0, 1, _G529, 1, 1, 0, 0, 1],
Res = [1, 3, 4].
?- Fila = [5, 1, _, 1, 1, 0, 0, 1], conta_vars_0_1(Fila, Res).
false.
```

Resposta:

Sem usar meta-predicados:

Usando o meta-predicado include:

Número: Pág. 8 de 11

```
conta_vars_0_1(Fila, [N_Vars, N_Zeros, N_Uns]) :-
   include(var, Fila, Vars),
   length(Vars, N_Vars),
   include(==(0), Fila, Zeros),
   length(Zeros, N_Zeros),
   include(==(1), Fila, Uns),
   length(Uns, N_Uns),
   Soma is N_Vars + N_Zeros + N_Uns,
   length(Fila, Soma).
```

- (b) (0.5) Usando o predicado definido na alínea anterior, implemente o predicado verifica_fila (Fila), em que Fila é uma lista, significa que Fila é uma lista tal que:
 - o número de elementos é par;
 - o número de zeros e o número de uns são iguais a metade do número de elementos.

Por exemplo,

```
?- Fila = [0, 1, 0, 1, 1, 0, 0, 1], verifica_fila(Fila).
Fila = [0, 1, 0, 1, 1, 0, 0, 1].
?- Fila = [0, 1, 0, 1, 1, 0, 0, _], verifica_fila(Fila).
false.
?- Fila = [0, 1, 0], verifica_fila(Fila).
false.
```

Resposta:

```
verifica_fila(Fila) :-
  length(Fila, Total),
  Total mod 2 =:= 0,
  Metade is Total // 2,
  conta_vars_0_1(Fila, [_, Metade, Metade]).
```

(c) (0.5) Usando o predicado definido na alínea anterior, implemente o predicado verifica_filas/1, tal que verifica_filas (Filas), em que Filas é uma lista de filas, significa que todas as filas satisfazem o predicado definido na alínea anterior. Por exemplo,

```
?- Fila1 = [0, 1, 0, 1, 1, 0, 0, 1],
  Fila2 = [1, 1, 0, 1, 1, 0, 0, 1],
  verifica_filas([Fila1, Fila2]).
false.
?- Fila1 = [0, 1, 0, 1, 1, 0, 0, 1],
  Fila2 = [1, 1, 0, 0, 1, 0, 0, 1],
  verifica_filas([Fila1, Fila2]).
Fila1 = [0, 1, 0, 1, 1, 0, 0, 1],
Fila2 = [1, 1, 0, 0, 1, 0, 0, 1].
```

Resposta:

Sem usar meta-predicados:

```
verifica_filas([]).
verifica_filas([F | R_F]) :-
    verifica_fila(F),
    verifica_filas(R_F).
```

Número: _____ Pág. 9 de 11

Usando o meta-predicado maplist:

```
verifica_filas2(Filas) :-
   maplist(verifica_fila, Filas).
```

(d) (0.5) Usando o predicado definido na alínea anterior, implemente o predicado verifica_puzzle/1, tal que verifica_puzzle(Puz), em que Puz é um puzzle binário, significa que todas as filas (linhas e colunas) de Puz satisfazem o predicado verifica_fila/1. Sugestão: Use o predicado transpose/2, tal que transpose (Mat, Mat_T) significa que Mat_T é a transposta da matriz Mat. Por exemplo, sendo Puz o puzzle

```
[[0,0,1,1],
 [1,0,1,0],
 [0,1,0,1],
 [1,1,0,0]]
teríamos
 ?- ..., verifica_puzzle(Puz).
Puz = [[0, 0, 1, 1], [1, 0, 1, 0], [0, 1, 0, 1], [1, 1, 0, 0]].
e sendo Puz o puzzle
[[0,0,1,1],
 [1,0,1,0],
 [0,1,0,1],
 [0,1,1,0]]
teríamos
 ?- ..., verifica_puzzle(Puz).
false.
Resposta:
```

```
verifica_puzzle(Puz) :-
    verifica_filas(Puz),
    transpose(Puz, Puz_T),
    verifica_filas(Puz_T).
```

Número: _____ Pág. 10 de 11

Número: _____ Pág. 11 de 11

