AEEM 3042 – Integrated Aircraft Engineering

Aircraft Performance Equations of Motion Climb & Descent Ceilings

$$L = W$$

Range = How <u>FAR</u> can an aircraft fly?

Endurance = How LONG can an aircraft fly?

 V_{max} = How <u>FAST</u> can an airplane fly?

 V_{min} = How <u>SLOW</u> can an airplane fly?

Ceiling = How <u>HIGH</u> can an airplane fly?

Climb = How long does it take an aircraft to get to a higher altitude? How fast can it climb?

Descent = How long does it take an aircraft to get to a lower altitude? How slow can it descend?

Simple Free Body Diagram

Straight and Level Flight

Lift acts perpendicular to the Free Stream Velocity
Drag acts parallel to the Free Stream Velocity
Weight acts vertically towards the ground
Thrust is fixed in the aircraft

Stability Axis System

Straight and Level Flight

Lift acts perpendicular to the Free Stream Velocity
Drag acts parallel to the Free Stream Velocity
Weight acts vertically towards the ground
Thrust is fixed in the aircraft

Stability Axis System

Lift acts perpendicular to the Free Stream Velocity
Drag acts parallel to the Free Stream Velocity
Weight acts vertically towards the ground
Thrust is fixed in the aircraft

Video

UNIVERSITY OF Cincinnati

$$\sum F_{x} = T \cos \alpha - D - W \sin \theta = \frac{d(mV)}{dt} = \dot{m}V + mV$$

$$\Sigma F_z = L + T \sin \alpha - W \cos \theta = 0$$

Steady Climb = Not Accelerating

Steady Climb = Constant Weight

Small Angle Approximation Assumption for Angle of Attack (α)

$$\Sigma F_x = T - D - W \sin \theta = 0$$

$$\Sigma F_z = L - W \cos \theta = 0$$

$$\sin\theta = \frac{T-D}{W}$$

$$\cos \theta = \frac{L}{W}$$

$$\sin \theta = \frac{T-D}{W} \longrightarrow V \sin \theta = \frac{(T-D)V}{W} = R/C$$

$$\cos \theta = \frac{L}{W} \longrightarrow L = W \cos \theta$$

$$V \sin \theta = \frac{(T-D) V}{W} = R/C$$

$$(T - D) V = T V - D V = Excess Power$$

$$\frac{(T-D) V}{W}$$
 = Specific Excess Power = R/C

Climb = How long does it take an aircraft to get to a higher altitude? How fast can it climb?

$$R/C = V \sin \theta = \frac{(T-D) V}{W}$$

$$R/C = V \left(\frac{T}{W}\right) - \frac{q C_{D_0}}{(W/S)} - \frac{W}{S} \frac{K}{q}$$

Fundamental Parameters

Speed and Altitude

Drag Polar Characteristics

2 cases to examine: Maximum Climb Angle

Maximum Rate of Climb

2 cases to examine: Maximum Climb Angle

Maximum Rate of Climb

Maximum Climb Angle

Maximum Climb Angle (jet aircraft)

$$\sin\theta_{max} = \left(\frac{\mathtt{T}}{\mathtt{W}}\right) - \frac{\mathtt{1}}{(\mathtt{L/D})_{\;max}} = \left(\frac{\mathtt{T}}{\mathtt{W}}\right) - \sqrt{4\;C_{D_0}K}$$

Dominated by thrust term

$$V_{\theta_{max}} = \sqrt{\frac{2}{\rho} \left(\frac{K}{C_{D_0}}\right)^{1/2} \left(\frac{W}{S}\right) \cos \theta_{max}}$$

Dominated by aero terms

Maximum Climb Angle

Maximum Climb Angle (jet aircraft)

$$V_{\theta_{max}} = \sqrt{\frac{2}{\rho} \left(\frac{K}{C_{D_0}}\right)^{1/2} \left(\frac{W}{S}\right) \cos \theta_{max}}$$

377 ft/sec @ SL

Maximum Endurance (jet aircraft R=1)

$$V_{(L/D)_{max}} = \sqrt{\frac{2}{\rho} \left(\frac{K}{C_{D_0}}\right)^{1/2} \left(\frac{W}{S}\right)}$$

386 ft/sec @ SL

UNIVERSITY OF CIPCIPPORT

Maximum Rate of Climb (jet aircraft)

$$(R/C)_{max} = \left[\left(\frac{W}{S} \right) \frac{Z}{3 \rho C_{D_0}} \right]^{1/2} \left(\frac{T}{W} \right)^{3/2} \left[1 - \frac{Z}{6} - \frac{Z}{2 Z (T/W)^2 (L/D)_{max}^2} \right]$$

where
$$Z = 1 + \sqrt{1 + \frac{3}{(T/W)^2 (L/D)^2_{max}}}$$

Maximum Rate of Climb (jet aircraft)

$$V_{(R/C)_{max}} = \left[\left(\frac{T}{W} \right) \left(\frac{W}{S} \right) \frac{Z}{3 \ \rho \ C_{D_0}} \right]^{1/2}$$

where
$$Z = 1 + \sqrt{1 + \frac{3}{(T/W)^2 (L/D)^2_{max}}}$$

Hodograph: Velocity Diagram

Vel (fps)	Theta	VH	VV
200	13.94	194.1	48.2
250	16.39	239.8	70.5
300	17.52	286.1	90.3
350	17.99	332.9	108.1
400	18.06	380.3	124.0
450	17.87	428.3	138.1
500	17.50	476.8	150.4
550	16.99	526.0	160.7
600	16.35	575.7	168.9
650	15.62	626.0	175.0
700	14.79	676.8	178.7
750	13.87	728.1	179.8
800	12.88	779.9	178.3
850	11.81	832.0	174.0
900	10.67	884.4	166.6
950	9.46	937.1	156.1
1000	8.18	989.8	142.3
1050	6.83	1042.5	124.9
1100	5.42	1095.1	103.9
1150	3.94	1147.3	79.0
1200	2.39	1199.0	50.1
1250	0.78	1249.9	17.1
1300	-0.90	1299.8	-20.4

$$R/C = V \sin \theta = \frac{(T-D) V}{W}$$

Gulfstream IV twin-turbofan biz jet: $C_{D_0} = 0.0150 \text{ K} = 0.08$ W = 73,000 lbh = sea level

CD0	0.0150	Wt	73,000				
K	0.08	Alt	0	ft			
		rho	0.00237688				
		QMS	1481.4				
		а	1116.45	ft/sec			
		S	950	sq ft			
					Pow	<i>r</i> er	
Vel (fps)	CL	CD	D (lb)	T (lb)	TV	DV	R/C
200	1.6164	0.2240	10117	27700	5,540,000	2,023,428	48.2
250	1.0345	0.1006	7100	27700	6,925,000	1,774,976	70.5
300	0.7184	0.0563	5720	27700	8,310,000	1,715,897	90.3
350	0.5278	0.0373	5157	27700	9,695,000	1,804,951	108.1
400	0.4041	0.0281	5070	27700	11,080,000	2,027,869	124.0
450	0.3193	0.0232	5294	27700	12,465,000	2,382,370	138.1
500	0.2586	0.0204	5744	27700	13,850,000	2,872,166	150.4
550	0.2137	0.0187	6371	27700	15,235,000	3,504,237	160.7
600	0.1796	0.0176	7146	27700	16,620,000	4,287,471	168.9
650	0.1530	0.0169	8049	27700	18,005,000	5,231,930	175.0
700	0.1319	0.0164	9069	27700	19,390,000	6,348,430	178.7
750	0.1149	0.0161	10198	27700	20,775,000	7,648,200	179.8
800	2.1010	0.0158	11429	27700	22,160,000	9,143,173	178.3
850	0.0895	0.0156	12759	27700	23,545,000	10,844,990	1/4.0
900	0.0798	0.0155	14184	27700	24,930,000	12,765,824	166.6
950	0.0716	0.0154	15703	27700	26,315,000	14,917,891	156.1
1000	0.0647	0.0153	17314	27700	27,700,000	17,313,502	142.3
1050	0.0586	0.0153	19014	27700	29,085,000	19,965,046	124.9
1100	0.0534	0.0152	20805	27700	30,470,000	22,884,964	103.9
1150	0.0489	0.0152	22683	27700	31,855,000	26,085,746	79.0
1200	0.0449	0.0152	24650	27700	33,240,000	29,579,917	50.1
1250	0.0414	0.0151	26704	27700	34,625,000	33,380,028	17.1
1300	0.0383	0.0151	28845	27700	36,010,000	37,498,656	(20.4)

From the graphs:

$$V_{(R/C)_{max}} = 750 \text{ ft/sec}$$

$$(R/C)_{max} = 180 \text{ ft/sec}$$

$$V_{\theta_{max}}$$
 = 375 ft/sec

$$\theta_{\text{max}} = \arctan(125/375) = 18.4^{\circ}$$

Maximum Climb Angle

$$\sin\theta_{\max} = \left(\frac{\mathsf{T}}{\mathsf{W}}\right) - \sqrt{4\;\mathsf{C}_{\mathsf{D}_0}\mathsf{K}}$$

$$V_{\theta_{max}} = \sqrt{\frac{2}{\rho} \left(\frac{K}{C_{D_0}}\right)^{1/2} \left(\frac{W}{S}\right) \cos \theta_{max}}$$

Maximum Rate of Climb

$$V_{(R/C)_{max}} = \left[\left(\frac{T}{W} \right) \left(\frac{W}{S} \right) \frac{Z}{3 \rho C_{D_0}} \right]^{1/2}$$

CD0	0.0150	Wt	73,000	lb	
К	0.08	Alt	0	ft	
Т	27,700	rho	0.00237688		
Z	2.0488	QMS	1481.4		
		а	1116.45	ft/sec	
		S	950	sq ft	
T/W	0.3795				
W/S	76.84				
L/D max	14.43				
Max Climb Angle					
	Max Theta	18.07	degrees	18.4	
	Velocity	376.8	ft/sec	375	
Max Rate of Climb					
	Max R/C	179.8	ft/sec 1	80	
	Velocity	747.3	ft/sec	750	

$$(R/C)_{max} = \left[\left(\frac{W}{S} \right) \frac{Z}{3 \rho C_{D_0}} \right]^{1/2} \left(\frac{T}{W} \right)^{3/2} \left[1 - \frac{Z}{6} - \frac{3}{2 Z (T/W)^2 (L/D)_{max}^2} \right]$$

where
$$Z = 1 + \sqrt{1 + \frac{3}{(T/W)^2 (L/D)^2_{max}}}$$

$$\frac{dh}{dt} = R/C \longrightarrow dt = \frac{dh}{R/C} \longrightarrow t = \int_{h_1}^{h_2} \frac{dh}{R/C}$$

$$t_{min} = \int_{h_1}^{h_2} \frac{dh}{(R/C)_{max}}$$

Calculate the maximum Rate of Climb at many altitudes Divide Δh by $(R/C)_{max}$ at each altitude Sum up all of the increments to get Time to Climb

Altitude	DR	rho	Thrust	T/W	W/S	Z	max R/C	dh/(R/C)	
0	1.0000	0.00237688	27,700	0.3795	76.84	2.0488	179.8		
2,000	0.9428	0.00224086	26,738	0.3663	76.84	2.0523	175.1	11.3	
4,000	0.8881	0.00211087	25,796	0.3534	76.84	2.0561	170.5	11.6	
6,000	0.8359	0.00198673	24,875	0.3408	76.84	2.0602	165.8	11.9	
8,000	0.7860	0.00186826	23,974	0.3284	76.84	2.0647	161.2	12.2	
10,000	0.7385	0.00175527	23,093	0.3163	76.84	2.0695	156.6	12.6	
12,000	0.6932	0.00164758	22,232	0.3046	76.84	2.0748	152.0	13.0	
14,000	0.6500	0.00154502	21,391	0.2930	76.84	2.0806	147.4	13.4	
16,000	0.6090	0.00144742	20,570	0.2818	76.84	2.0869	142.9	13.8	
18,000	0.5699	0.00135461	19,768	0.2708	76.84	2.0938	138.3	14.2	
20,000	0.5328	0.00126642	18,985	0.2601	76.84	2.1013	133.8	14.7	
22,000	0.4976	0.00118269	18,222	0.2496	76.84	2.1096	129.2	15.2	
24,000	0.4642	0.00110326	17,478	0.2394	76.84	2.1186	124.7	15.8	
26,000	0.4325	0.00102798	16,752	0.2295	76.84	2.1285	120.1	16.3	
28,000	0.4025	0.00095670	16,045	0.2198	76.84	2.1393	115.5	17.0	
30,000	0.3741	0.00088926	15,356	0.2104	76.84	2.1513	111.0	17.7	
								Time to Climb	
								210.5	seconds
								3.51	minutes 🚬

<u>Alternative Method in Textbook</u> – assume linear R/C_{max} vs Altitude

$$t_{min} = \int_{h_1}^{h_2} \frac{dh}{(R/C)_{max}}$$

<u>Alternative Method in Textbook</u> – assume linear R/C_{max} vs Altitude

Calculate the maximum Rate of Climb at Sea Level Calculate the maximum Rate of Climb at 30,000 ft Derive the linear relationship R/C_{max} = $a + b \Delta h$

$$\mathbf{t_{min}} = \int_{\mathbf{h_1}}^{\mathbf{h_2}} \frac{\mathbf{dh}}{(\mathbf{R/C})_{max}} = \int_{\mathbf{h_1}}^{\mathbf{h_2}} \frac{\mathbf{dh}}{\mathbf{a} + \mathbf{b} \, \Delta \mathbf{h}}$$

$$t_{\min} = \frac{1}{b} [\ln(a + b \Delta h) - \ln a]$$

<u>Alternative Method in Textbook</u> – assume linear R/C_{max} vs Altitude

Calculate the maximum Rate of Climb at Sea Level Calculate the maximum Rate of Climb at 30,000 ft Derive the linear relationship $R/C_{max} = a + b \Delta h$

Alternative Method in Textbook

$$t_{\min} = \frac{1}{b} [\ln(a + b \Delta h) - \ln a]$$

since
$$(R/C)_{max} = a + b \Delta h = a + b (h_2 - h_1)$$

$$t_{min} = \frac{1}{b} [ln(R/C)_2 - ln(R/C)_1]$$

Alternative Method in Textbook

$$t_{min} = \frac{1}{b} [ln(R/C)_2 - ln(R/C)_1]$$

Solve for b

At Sea Level: $(R/C)_{max} = 179.8$ ft/sec

At 30,000 ft: $(R/C)_{max} = 111.0 \text{ sec}$

$$a = 179.8$$
 $b = (111.0 - 179.8) / (30,000 - 0) = -0.0022933$

 $(R/C)_{max} = 179.8 - 0.0022933 \Delta h$

$$t_{min} = \frac{1}{-0.0022933} [ln(111.0) - ln(179.8)]$$

$$t_{min} = 210.3 \text{ sec} = 3.51 \text{ min}$$

Easier Method – assume linear R/C_{max} vs Altitude

Calculate the maximum Rate of Climb at Sea Level Calculate the maximum Rate of Climb at 30,000 ft Calculate the average Rate of Climb

Easier Method

$$\mathbf{t_{min}} = \frac{\Delta \mathbf{h}}{(\mathbf{R/C})_{avg}}$$

At Sea Level: $(R/C)_{max} = 179.8 \text{ ft/sec}$ At 30,000 ft: $(R/C)_{max} = 111.0 \text{ ft/sec}$

$$t_{min} = \frac{(30,000-0)}{(179.8+111.0)/2}$$

$$t_{min} = 206.3 \text{ sec} = 3.44 \text{ min}$$

Stability Axis System

Lift acts perpendicular to the Free Stream Velocity Drag acts parallel to the Free Stream Velocity Weight acts vertically towards the ground Thrust is fixed in the aircraft

Steady Descending Flight

$$\Sigma F_{x} = T - D + W \sin \theta = \frac{d(mV)}{dt} = \dot{m}V + \dot{m}V$$

$$\Sigma F_z = L - W \cos \theta = 0$$

Steady Descent = Not Accelerating

Steady Descent = Constant Weight

Steady Descending Flight

$$\Sigma F_x = T - D + W \sin \theta = 0$$

$$\Sigma F_z = L - W \cos \theta = 0$$

$$\sin\theta = \frac{D-T}{W}$$

$$\cos \theta = \frac{L}{W}$$

Steady Descending Flight

$$\sin \theta = \frac{D-T}{W} \longrightarrow V \sin \theta = \frac{(D-T)V}{W} = R/D$$

$$\cos \theta = \frac{L}{W} \longrightarrow L = W \cos \theta$$

$$\tan \theta = \frac{D-T}{L} = \frac{1-(T/D)}{(L/D)}$$

Steady Gliding Flight

$$\sin \theta = \frac{D - y^0}{W} \longrightarrow V \sin \theta = \frac{D V}{W} = R/D$$

$$\cos \theta = \frac{L}{W} \longrightarrow L = W \cos \theta$$

$$\tan \theta = \frac{D - T'}{L} = \frac{1 - (T/D)}{(L/D)} = \frac{1}{(L/D)}$$

Aircraft Performance

Descent = How long does it take an aircraft to get to a lower altitude? How slow can it descend?

Minimum Glide Angle

$$\theta$$
 $V_V = R / D$

$$\tan \theta_{\min} = \frac{1}{(L/D)_{\max}}$$

Minimum descent angle = Maximum glide range

$$V_{\theta_{min}} = \sqrt{\frac{2}{\rho} \left(\frac{K}{C_{D_0}}\right)^{1/2} \left(\frac{W}{S}\right) \cos \theta}$$

$$V_{(L/D)_{max}} = \sqrt{\frac{2}{\rho} \left(\frac{K}{C_{D_0}}\right)^{1/2} \left(\frac{W}{S}\right)}$$

$$V_{\theta_{min}} \approx V_{(L/D)_{max}}$$

Minimum Glide Angle

$$\tan \theta_{\min} = \frac{1}{(L/D)_{\max}} = \frac{h}{R}$$

Minimum Sink Rate

Rate of Descent (R/D) = Sink Rate (V_V)

$$V_{V_{min}} = \sqrt{\frac{2}{\rho \left(C_L^{3/2}/C_D\right)^2} \left(\frac{W}{S}\right)}$$

Minimum Sink Rate occurs when $C_L^{3/2}$ / C_D is a maximum

$$V_{(VV)_{min}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{3 C_{D_0}}} \frac{W}{S}\right)^{1/2} = 0.7598 V_{L/D_{max}}$$

$$R = \frac{Zero\ Lift\ Drag}{Drag\ Due\ to\ Lift}$$

$$R = 1 C_{D_0} = C_{D_L} = K C_L^2$$
 Max $\frac{C_L}{C_D}$

Max Endurance Max Glide Range

$$R = 3$$
 $C_{D_0} = 3 C_{D_L} = 3 K C_L^2$ $Max \frac{C_L^{-1/2}}{C_D}$

$$\text{Max } \frac{C_L^{-1/2}}{C_D} \quad \text{Max Range}$$

$$R = \frac{1}{3}$$
 $C_{D_0} = \frac{1}{3} C_{D_L} = \frac{1}{3} K C_L^2$

$$\operatorname{Max} \frac{C_L^{-3/2}}{C_D} \quad \operatorname{Min Sink Rate}$$

$$R = \frac{Zero Lift Drag}{Drag Due to Lift}$$

$$R = 1$$
 $C_{D_0} = C_{D_L} = K C_L^2$

$$\operatorname{Max} \frac{\operatorname{C}_{\operatorname{L}}}{\operatorname{C}_{\operatorname{D}}} = \sqrt{\frac{1}{4 \operatorname{C}_{\operatorname{D}_{\operatorname{0}}} \operatorname{K}}}$$

$$R = 3$$
 $C_{D_0} = 3 C_{D_L} = 3 K C_L^2$

Max
$$\frac{C_L^{1/2}}{C_D} = \frac{3}{4} \left(\frac{1}{3 \text{ K } C_{D_0}^{3}} \right)^{1/4}$$

$$R = \frac{1}{3}$$
 $C_{D_0} = \frac{1}{3} C_{D_L} = \frac{1}{3} K C_L^2$

Max
$$\frac{C_L^{3/2}}{C_D} = \frac{1}{4} \left(\frac{3}{K C_{D_0}^{1/3}} \right)^{3/4}$$

$$R = \frac{Zero\ Lift\ Drag}{Drag\ Due\ to\ Lift}$$

Max Endurance Max Glide Range

$$R = 1 C_{D_0} = C_{D_L} = K C_L^2 Max \frac{C_L}{C_D}$$

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2}$$

Max Range

$$R = 3$$
 $C_{D_0} = 3 C_{D_L} = 3 K C_L^2$ $Max \frac{C_L^{-1/2}}{C_-}$ $V = 1.3161 V_{L/D_{max}}$

$$\operatorname{Max} \frac{\mathsf{C_L}^{1/2}}{\mathsf{C_D}}$$

$$V=1.3161\ V_{L/D_{max}}$$

Min Sink Rate

$$R = \frac{1}{3}$$
 $C_{D_0} = \frac{1}{3} C_{D_L} = \frac{1}{3} K C_L^2$ $Max \frac{C_L^{3/2}}{C_D}$ $V = 0.7598 V_{L/D_{max}}$

$$\operatorname{Max} \frac{\operatorname{C}_{L}^{3/2}}{\operatorname{C}_{D}}$$

$$V = 0.7598 V_{L/D_{max}}$$

G-IV Descent

$$R/D = V \sin \theta = \frac{(D-T) V}{W}$$

Gulfstream IV twin-turbofan biz jet: $C_{D_0} = 0.0150 \text{ K} = 0.08$ W = 73,000 lbh = 30,000 ft

CD0	0.0150	Wt	73,000	lb
K	0.08	Alt	30,000	ft
Т	0	rho	0.00088926	
		QMS	439.9	
		а	994.67	ft/sec
		S	950	sq ft
T/W	0.0000			
W/S	76.84			
L/D max	14.43			
CL^3/2/CD	10.83			
Min Glide A	ingle = Max Glid	e Range		
	Min Theta	3.96	degrees	
	Velocity	631.0	ft/sec	
	Distance	433,013	ft	
		71.3	M	
	Sink Rate	43.6	ft/sec	
Min Sink Ra	te			
	Min sink rate	38.4	ft/sec	
	Velocity	479.4	ft/sec	
	L/D	12.5		
	Theta	4.57	degrees	
	Distance	375,000	ft	
		61.7	NM	UNIVERSITY

G-IV Descent

Simple Free Body Diagram

Straight and Level Flight

Lift acts perpendicular to the Free Stream Velocity
Drag acts parallel to the Free Stream Velocity
Weight acts vertically towards the ground
Thrust is fixed in the aircraft

Aircraft Flight Ceiling

How HIGH can an airplane fly in steady, level flight?

Upper altitude limit = ceiling

Ceiling	R / C Capability	P _s Capability
Absolute	0 ft / min	0 ft / sec
Service	100 ft / min	1.67 ft / sec
Cruise	300 ft / min	5.00 ft / sec
Combat	500 ft / min	8.33 ft / sec

Estimating Absolute Ceiling

Calculate the maximum Rate of Climb at Sea Level

Calculate the maximum Rate of Climb at another altitude

Derive the linear relationship $R/C_{max} = a + b h$ and solve for h where $R/C_{max} = 0$

At Sea Level: $(R/C)_{max} = 4,600 \text{ ft/min}$

At 30,000 ft: $(R/C)_{max} = 1,600$ ft/min

a = 4,600 b = -0.1

$$(R/C)_{max} = 4,600 - 0.1 h$$
 $h = [4,600 - (R/C)_{max}] / 0.1$

When $(R/C)_{max} = 0$, then h = 46,000 ft

Estimating Service Ceiling

Calculate the maximum Rate of Climb at Sea Level

Calculate the maximum Rate of Climb at another altitude

Derive the linear relationship R/C_{max} = a + b hand solve for h where R/C_{max} = 100 ft/min

At Sea Level: $(R/C)_{max} = 4,600$ ft/min

At 30,000 ft: $(R/C)_{max} = 1,600$ ft/min

a = 4,600 b = -0.1

$$(R/C)_{max} = 4,600 - 0.1 h$$
 $h = [4,600 - (R/C)_{max}] / 0.1$

When $(R/C)_{max} = 100$ ft/min, then h = 45,000 ft

Aircraft Flight Ceiling

T-38 Flight Envelope

Homework Assignment

HW #11 – Rate of Climb; Rate of Descent; Ceilings (due by 11:59 pm ET on Monday)
Reading – Chapters 5.10 - 5.12

HW Help Session

Monday 1:00 - 2:00

Monday 1:00 – 2:00 pm ET

Posted on Canvas

HW #11 Assignment with instructions, tips, and checklist

HW #11 Template for data table in Excel

Homework

Plotting Charts

Altitude	0 ft		a	1116.45	ft/sec			
			rho 0.	0.00237688	slugs/ft^3			
				1.0000				
Mach Vel	CL	CD0	CDL	CD	D	Thrust	R/C	Climb Angle
(ft/se	c)				(lb)	(lb)	(ft/min)	(deg)
0.05 55.82	6.4291	0.0200	2.5627	2.5827	362	202.0	-593.75	-10.21
0.06 66.99	4.4647	0.0200	1.2359	1.2559	253	202.0	-228.47	-3.26
0.07 78.15	3.2802	0.0200	0.6671	0.6871	189	202.0	70.23	0.86

x axis y axis

Questions?