컴퓨터공학부 캡스톤디자인 계획서 발표회 답변서

팀명: 5 조 assist(a security safety important special team) 조원: 손현기 (조장), 김주환, 김호준, 오예린, 이동윤, Ruslan

질문

- 이전 캡스톤 프로젝트와의 차별점은 무엇인가?
- 악성코드 파일을 두 개의 인공지능으로 분류하겠다는 것인가? 그렇게 했을 때 장점은 무엇인가?

답변

기존 프로젝트는 정상 파일과 악성 파일을 분류하는 문제를 인공지능으로 해결하는 프로젝트였습니다. 저희의 주제는 파일을 분류하는 것이 목표가 아니라, 인공지능이 분류하지 못하는 파일을 보안 전문가가 직접 분석할 때 소요되는 시간을 줄이기 위해 전문가가 검사해야 하는 코드의 범위를 줄여주는 인공지능 기반 소프트웨어를 개발하는 것입니다.

질문

- asi 가 제시한 의심내용이 적절한지를 평가할 수 있는 기준이 필요함
- 문서의 악성과 정상으로 분류 후 다음 단계의 필터링을 진행하는 데에 있어서 최종 결과물에 대한 작업의 내용이 매우 모호합니다. 정확하게 목표를 세우고, 취급할 악성 코드의 종류들을 분석하고 나열하여 그룹화하는 작업이 필요합니다.

답변

본 프로젝트와 유사한 기능을 수행하는 상용 프로그램이 없기 때문에 기존 소프트웨어와의 비교가 어려운 상황입니다. 저희는 이를 완화하기 위해 다음과 같은 방법론을 도입했습니다.

- 1. asi 가 예측한 악성 행위 수행 구문을 저장한다.
- 2. Elasticsearch 를 이용해 정상/악성 파일 데이터셋에서 해당 구문을 포함하는 파일을 찾는다.
- 3. 해당 구문을 포함하는 파일 중 악성 파일의 비중이 높다면, asi 가 적절히 예측했다고 판정한다.

한편, 본 프로젝트의 목표는 악성 코드 패밀리 분류 (악성 코드의 종류를 분류하는 문제)가 아니므로 데이터셋의 악성 코드의 종류는 큰 의미가 없습니다. 다만, 일반성을 잃지 않기 위해서 KISA, Microsoft 와 같은 공신력 있는 기관에서 제공하는 정상/악성 데이터셋을 활용하여 다양한 패밀리의 악성코드를 포함하도록 실험할 예정입니다.

심사의견

● 어떤 인공신경망 학습모델을 사용할 것인지에 대한 구체적인 설명 추가하면 좋을듯 합니다.

답변

제안서에 작성한 것과 같이 다양한 RNN(recurrent neural network) 신경망을 이용해 실험을 수행하고, 이중 최적의 신경망을 이용해 최종 프로젝트 결과를 만들 예정입니다. 사용할 신경망의 구조는 가장 기본적인 RNN 구조인 Vanilla RNN 과 이를 변형한 LSTM(long short-term memory), GRU(gated recurrent units) 각각에 대해 실험을 수행할 예정입니다.