Foundations of Programming Languages 2023

Fundamental theorems of the λ -calculus

Sandra Alves September 2023

Fundamental theorems of the λ -calculus

- The Church-Rosser theorem
- The finiteness of developments
- The conservation theorem for λ_I
- Standardisation

The diamond property

A reduction relation satisfies the diamond property iff:

$$\begin{array}{ccc}
M & \longrightarrow & N_2 \\
\downarrow & & \downarrow \\
N_1 & \longrightarrow & N
\end{array}$$

The relation $\rightarrow \beta$ does not satisfy the diamond property:

$$M = \omega(II)$$
 $\longrightarrow \omega I = N_2$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 $N_1 = (II)(II)$ $\longrightarrow (II)(I)$ $\longrightarrow II = N$

where $\omega = \lambda x.xx$.

The Church-Rosser theorem

A reduction R is confluent (or Church-Rosser), if its reflexive and transitive closure \twoheadrightarrow_R satisfies the diamond property.

 $\twoheadrightarrow_{\beta}$ satisfies the diamond property therefore β is Church-Rosser.

Proving confluence:

- Newman's Lemma
- Tait and Martin-Löf's multi-step reduction
- Using finiteness of developments

Newman's Lemma

Formally, a reduction R is Weak Church-Rosser (WCR), if it satisfies the *weak diamond property*.

A reduction satisfies the weak diamond property iff:

The relation β satisfies the *weak-diamond property*.

Newman's Lemma

Strong Normalization \land Weak-Church Rosser \Rightarrow Church Rosser

Although β is WCR, it is not strongly normalisable.

4

WCR **⇒** CR

To prove that β is WCR it is sufficient to consider the redexes Δ_1, Δ_2 , respectively contracted in:

$$M \xrightarrow{\Delta_1}_{\beta} N_1 \qquad M \xrightarrow{\Delta_2}_{\beta} N_2$$

and construct N such that $N_1 \twoheadrightarrow_{\beta} N$, $N_2 \twoheadrightarrow_{\beta} N$, by contracting the **residuals**¹ of Δ_1, Δ_2 in N_2, N_1 , respectively.

However, WCR is not sufficient to show confluence due to the existence of infinite reduction paths.

$$\begin{array}{ccc} \textit{M} \rightarrow \textit{N}_2 \rightarrow \textit{N}_3 \rightarrow \cdots \\ \downarrow & \downarrow \\ \textit{N}_1 \twoheadrightarrow \textit{N} \end{array}$$

¹more on this later...

Tait and Martin-Löf's proof

If a relation R satisfies the diamond property, then its transitive closure R^* also satisfies the diamond property.

As suggested by the following diagram:

To prove that $\twoheadrightarrow_{\beta}$ satisfies the diamond property:

- define a reduction relation that satisfies the diamond property;
- show that $\twoheadrightarrow_{\beta}$ is the transitive closure of that relation.

Some insight

Looking again at:

$$\begin{array}{cccc}
\omega(II) & \longrightarrow & \omega I \\
\downarrow & & \downarrow \\
(II)(II) & \longrightarrow & (II)(I) & \longrightarrow & II
\end{array}$$

Note that:

Defining the multi-step relation (first attempt)

In the reduction of $\omega(II)$ one cannot merge (II)(II) and ωI to II in one step because of the two redexes in (II)(II).

What if we reduce them in parallel?

- (i) $x \Rightarrow x$
- (ii) $(\lambda x.M)N \Rightarrow M[N/x]$
- (iii) If $M \Rightarrow M'$ then $\lambda x.M \Rightarrow \lambda x.M'$
- (iv) If $M \Rightarrow M'$ and $N \Rightarrow N'$ then $MN \Rightarrow M'N'$

Now we have $(II)(II) \Rightarrow II$.

But is this relation good enough?

⇒ and the diamond property

$$(\lambda x.M)N \quad \Rightarrow \quad M[N/x]$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\lambda x.M')N' \quad \Rightarrow \qquad \dots$$

For example:

$$(\lambda x.(\lambda y.yy)x)(II) \qquad \Rightarrow \qquad (\lambda x.xx)I$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\lambda y.yy)(II) \qquad \Rightarrow \quad (\lambda y.yy)I \quad \Rightarrow \quad II$$

The parallel reduction \Rightarrow does not satisfy the diamond property

The multi-step relation \rightrightarrows^2

The multi-step relation is defined as:

- (i) $x \Rightarrow x$
- (ii) If $M \rightrightarrows M'$ then $\lambda x.M \rightrightarrows \lambda x.M'$
- (iii) If $M \rightrightarrows M'$ and $N \rightrightarrows N'$ then $MN \rightrightarrows M'N'$
- (iv) If $M \rightrightarrows M'$ and $N \rightrightarrows N'$ then $(\lambda x.M)N \rightrightarrows M'[N'/x]$

Now we have:

$$(\lambda x.(\lambda y.yy)x)(II) \quad \Rightarrow \quad (\lambda x.xx)I$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow$$

$$(\lambda y.yy)(II) \qquad \Rightarrow \qquad II$$

²This relation is called parallel by Takahashi.

Properties of \Rightarrow

 \Rightarrow includes the β -identity of λ -terms:

- If $M =_{\beta} M'$ then $M \Rightarrow M'$.
- \Rightarrow includes $\rightarrow \beta$:
 - If $M \to_{\beta} M'$ then $M \rightrightarrows M'$.
- \rightrightarrows is included in $\twoheadrightarrow_{\beta}$:
 - If $M \rightrightarrows M$ then $M \twoheadrightarrow_{\beta} M'$.
- \Rightarrow is compatible with substitution:
 - If $M \rightrightarrows M'$ and $N \rightrightarrows N'$, then $M[N/x] \rightrightarrows M'[N'/x]$.

β is confluent

As consequences of the previous properties...

- \Rightarrow satisfies the diamond property (Prove!)
- $\twoheadrightarrow_{\beta}$ is the transitive closure of \rightrightarrows :

$$\rightarrow_{\beta} \subseteq \Rightarrow \subseteq \twoheadrightarrow_{\beta}$$

Since $\twoheadrightarrow_{\beta}$ is this transitive closure of \rightarrow_{β} , so it is of \rightrightarrows .

Theorem (Church-Rosser)

If $M \twoheadrightarrow_{\beta} N_1$ and $M \twoheadrightarrow_{\beta} N_2$, there exists N such that $N_1 \twoheadrightarrow_{\beta} N$ and $N_2 \twoheadrightarrow_{\beta} N$. Thus β is Church-Rosser.

A simpler proof due to Takahashi

From M obtain a term M^* by contracting all the existing redexes.

- (i) $x^* = x$
- (ii) $(\lambda x.M)^* = \lambda x.M^*$
- (iii) $(MN)^* = M^*N^*$ if M is not an abstraction
- (iv) $((\lambda x.M)N)^* = M^*[N^*/x]$

Takahashi proved the following stronger result for \Rightarrow (triangle method):

If
$$M \rightrightarrows N$$
 then $N \rightrightarrows N^*$

Other methods to proof confluence

Recall that $\to \beta$ satisfies the weak-diamond property, which does not imply confluence.

The following stronger result does imply confluence:

$$\begin{array}{ccc}
M \to M' \\
\downarrow & \downarrow \\
N' \to N
\end{array}$$

This is called the strip lemma, and β is CR follows now from:

The strip lemma

To prove the strip lemma, suppose that $M \xrightarrow{\Delta}_{\beta} M'$, then:

- keep track of what happens to Δ in $M \rightarrow_{\beta} N'$;
- reduce all the **residuals** of Δ in N' to obtain N.

Extend the set of λ -terms to deal with the bookkeeping.

- Define a new set of terms, where the first abstraction in a redex is marked with an index;
- Extend the notion of β-reduction to deal with both indexed and non-indexed abstractions.

$$\beta_0: (\lambda_i x.M)N \to M[N/x]$$

 $\beta_1: (\lambda x.M)N \to M[N/x]$

Indexed terms

For any given term M and set of redex occurrences \mathcal{F} , we define

$$(M, \mathcal{F})$$

as the indexed term obtained from M by indexing the occurrences given by $\mathcal{F}.$

Example

For
$$M = (\lambda x.(II)x)(II)(Iz)$$
 and $\mathcal{F} = \{\text{second } II, Iz\}$ then
$$(M, \mathcal{F}) = (\lambda w.(II)w)((\lambda_0 x.x)I)((\lambda_0 x.x)z)$$

Note that (M, \emptyset) is just a normal λ -term.

Residuals

In a reduction

$$\sigma: M \twoheadrightarrow_{\beta} N$$

The set of residuals of a set of redexes $\mathcal{F} \subseteq M$ in N, relative to σ (denoted \mathcal{F}/σ) is the set of remaining indexed redexes after σ .

$$M' = (M, \mathcal{F}) \xrightarrow{\sigma'} N' = (N, \mathcal{F}/\sigma)$$
 $| | \downarrow \qquad \qquad \downarrow | |$
 $M \xrightarrow{\sigma} N$

where |M| just removes the indexes from M.

Intuitively: one marks a set of redexes in the initial term, and follows them thought the course of σ .

Examples³

Consider
$$\Delta = (\lambda a.a(Ix))(xb)$$

$$\sigma$$

$$(\lambda x.xx)a\Delta \to aa\Delta$$

$$(\lambda x.xx)\Delta \to \Delta\Delta$$

$$(\lambda x.y)\Delta \to y$$

$$(\lambda x.x)\Delta \to (\lambda x.x)(xb(Ix))$$

$$(\lambda x.\Delta)P \to (\lambda a.a(Px))(Pb)$$

$$\Delta \to (\lambda a.ax)(xb)$$

 \mathcal{F}/σ the unchanged Δ two residuals Δ no residuals no residuals the residual $\Delta[P/x]$ the residual $(\lambda x.ax)(xb)$

³taken from [Barendregt94]

The Finiteness of Developments

A development of M (relative to a set of redexes \mathcal{F}) is a reduction

$$M \xrightarrow{\Delta_1}_{\beta} M_1 \xrightarrow{\Delta_2}_{\beta} M_2 \xrightarrow{\Delta_3}_{\beta} \cdots$$

where Δ_i are redexes in \mathcal{F} or their **residuals** (we only perform β_0).

A development of M (relative to a set of redexes \mathcal{F}) is complete if the set of residuals of \mathcal{F} becomes empty.

Theorem

All developments of a λ -term M are finite.

For example,

$$(\lambda_0 x.xx)(\lambda x.xx) \rightarrow_{\beta_0} (\lambda x.xx)(\lambda x.xx) \in \mathsf{NF}_{\beta_0}$$

How redexes are created

Lévy (1978) defined three ways to create new redexes:

(i)
$$(\lambda xy.M)NP \rightarrow (\lambda y.M[N/x])$$

(ii)
$$(\lambda x.x)(\lambda y.M)P \rightarrow (\lambda y.M)P$$

(iii)
$$(\lambda x.C[xN])(\lambda y.M) \rightarrow C'[(\lambda y.M)N'$$

Note that the only indexed redexes will be residuals of already indexed redexes.

Another CR proof

Definition: If *N* is a complete development of *M* then $M \rightrightarrows N$.

We use the same notation for \Rightarrow because both definitions define the same relation.

For example $\omega(II)$ (as before) we have:

$$\omega(II) \rightrightarrows (II)(II), \qquad \omega(II) \rightrightarrows II, \qquad \omega(II) \rightrightarrows \omega I$$

but not

$$\omega(II) \rightrightarrows I(II), \qquad \omega(II) \rightrightarrows (II)I.$$

To prove CR one just needs to prove that $\twoheadrightarrow_{\beta}$ is the transitive closure of \rightrightarrows (has defined above) and that \rightrightarrows satisfies the diamond property.

Conservation Theorem for λ_I

Church's initial approach to the λ -calculus considered a restricted set of terms (λ_I), in which abstractions were non-erasing.

An *I*-redex is a term $(\lambda x.M)N$ where $x \in \text{fv}(M)$.

Theorem (Conservation for λ_I)

If
$$M \to N$$
, then $\infty(M) \Rightarrow \infty(N)$.

Or in other words:

M is normalisable $\Rightarrow M$ is strongly normalisable.

The general λ -calculus (sometimes denoted λ_K) does not have this property.

Note that $(\lambda xy.x)I\Omega$ has a normal form, but it is not strongly normalisable.

The conservation theorem and the theory of residuals

The conservation theorem is a consequence of the finiteness of developments and the fact that, in the λ_I calculus, when reducing:

$$M \xrightarrow{\Delta_1} N$$

The only redex that has no residual is Δ_1 .

This is not true in the λ_K : $(\lambda xy.y)\Omega I \to (\lambda y.y)I$ and Ω has no residual after this reduction step.

Nonetheless, there is a conservation theorem in the $\lambda_{\mathcal{K}}$ -calculus:

If
$$M \xrightarrow{\Delta} N$$
 and Δ is an *I*-redex then $\infty(M) \to \infty(N)$.

Standardisation

The standardisation theorem states that, if M woheadrightarrow N, then there is a standard reduction from M to N.

A standard reduction (denoted $\overset{\rightarrow}{\underset{s}{\longrightarrow}}$) is a sequence

$$\sigma: M_1 \xrightarrow{\Delta_1} M_2 \xrightarrow{\Delta_2} M_3 \xrightarrow{\Delta_3} \cdots$$

in which, for every i < j, Δ_j is not a residual of a redex to the left of Δ_i , i.e., all contractions proceed from left to right.

For example:

$$(\lambda x.xx)(II) \rightarrow (\lambda x.xx)I \rightarrow II \rightarrow I$$

is not a standard reduction, since $(\lambda x.xx)I$ is to the left of II, whereas the following is:

$$(\lambda x.xx)(II) \rightarrow (II)(II) \rightarrow I(II) \rightarrow II \rightarrow I$$

Head reduction

Every λ -term has one of two forms:

(i)
$$\lambda x_1 \dots x_n x M_1 \dots M_m, n, m \geq 0$$

(ii)
$$\lambda x_1 \dots x_n \cdot (\lambda x \cdot M_0) M_1 \dots M_m, n \geq 0, m \geq 1.$$

In (i) x is called head variable, and in (ii) $(\lambda x.M_0)M_1$ is called head-redex.

Also, a head normal form is a term of the form (i).

The head reduction of M is the sequence:

$$M = M_1 \xrightarrow{\Delta_1} M_2 \xrightarrow{\Delta_2} \cdots$$

where Δ_i are head-redexes.

Internal reduction

An internal redex of a term M is a redex Δ that is not the head-redex of M.

For example, for $M = \lambda x.(\lambda y.x)(\omega(Ix))$:

- $(\lambda y.x)(\omega(Ix))$ is the head-redex;
- $\omega(Ix)$ and Ix are internal redexes.

For any reduction $M \rightarrow N$, there exists M' such that

$$M \underset{h}{\rightarrow} M'$$
 and $M' \underset{i}{\rightarrow} N$

where $\underset{h}{\twoheadrightarrow}$ (resp. $\underset{i}{\twoheadrightarrow}$) denotes head (resp. internal) reduction.

Again, this is a consequence of the finiteness of developments.

Standardisation theorem

Theorem: If $M \rightarrow N$, then $M \rightarrow N$.

Proof: By induction on *N* using the fact that $M \xrightarrow[h]{} M' \xrightarrow[i]{} N$.

- If N = x then M' = x and the reduction is a standard one (h is standard).
- If $N = \lambda x_1 \dots x_n . N_0 N_1 \dots N_m (n + m > 0)$ then

$$M' = \lambda x_1 \dots x_n . M_0 M_1 \dots M_m$$

with $M_i \rightarrow N_i$, for $0 \le i \le m$. By induction hypothesis:

$$\sigma_i: M_i \xrightarrow{s} N_i$$

therefore, for
$$\sigma: M \xrightarrow[h]{} M'$$
 then
$$\sigma + \sigma_1 + \dots + \sigma_m: M \twoheadrightarrow N.$$

Head normal forms and solvability

Solvability captures the notion of meaningful/defined terms.

A λ -term M is solvable if there exists a closure $\lambda x_1 \dots x_m M$ and terms N_1, \dots, N_n such that

$$MN_1 \dots N_n =_{\beta} I$$

For example $x\Omega$ is solvable since $(\lambda yx.x)\Omega \to I$ whereas Ω itself is not solvable.

A consequence of the standardisation theorem is:

M has a head normal form \Leftrightarrow the head reduction of M terminates.

Wadsworth [1971] proved that:

M is solvable $\Leftrightarrow M$ has a head normal form.

Exercises

- 1. Recall the inductive definition of \Rightarrow . Prove the following properties:
 - 1.1 If $M =_{\beta} M'$ then $M \Rightarrow M'$.
 - 1.2 If $M \rightarrow_{\beta} M'$ then $M \rightrightarrows M'$.
 - 1.3 If $M \Rightarrow M$ then $M \rightarrow_{\beta} M'$.
 - 1.4 If $M \rightrightarrows M'$ and $N \rightrightarrows N'$, then $M[N/x] \rightrightarrows M'[N'/x]$.
- 2. Prove that β is WCR.
- 3. Prove that both definitions of \Rightarrow define the same relation.