Ejercicios Método de Vógel Grupal
Cada grupo debe presentar tres ejercicios (dos a su selección y el tercero asignado obligatorio en el cuadro siguiente) resueltos en hojas de Excel del Capitulo 8 del libro de texto (Hillier)

Grupo #7	
Nombre	Matricula
Jordaly José Suriel Vargas	2-17-1630
Edwar siriaco	1-16-0262
Berseli Fermin	1-12 -2913
augusto cornielle	2-17-0798

Grupo	Hillier cap 8
1	8.2.6 Aplicar método de Vogel
2	8.2.1.(a)
3	8.2.3 (b)
4	8.2.7 (b)
5	8.2.9 (D.1.d)
6	8.2.11
7	8.2.13
8	8.2.4 Aplicar método de Vogel
9	8.2.8 Aplicar método de Vogel
10	8.2.2 (b)

BONO DE 2 PUNTOS POR SOLUCIÓN CASO 8.1 AL FINAL EL CAPITULO.

8.2-13.

OYD	1	2	F	
1	3	2.7	0	5
2	2.9	2.8	0	4
	3	4	2	z=9

Compra de Tom

#8.1-3.* Tom desearía comprar exactamente 3 litros de cerveza casera hoy y al menos 4 litros mañana. Dick quiere vender un máximo de 5 litros en total a un precio de \$3.00 por litro hoy y de \$2.70 por litro mañana. Harry está dispuesto a vender un máximo de 4 litros en total, a un precio de \$2.90 por litro hoy y \$2.80 por litro mañana. Tom quiere saber cuánto debe comprar a cada uno para mínimizar su costo y a la vez cumplir con los requisitos mínimos para satisfacer su sed.

In [6]: using JuMP, Clp, DataFrames cerveza= Model(solver=ClpSolver()) costo=[3 2.70 0; 2.90 2.80 0] demanda=[3 4 2] oferta=[5; @variable(cerveza,x[1:2,1:3]>=0) @objective(cerveza,Min,sum(x.*costo)) for i=1:2 @constraint(cerveza, sum(x[i, j] for j=1:3)==oferta[i]) end for j=1:3 @constraint(cerveza, sum(x[i,j] for i=1:2)==demanda[j]) print(cerveza) status=solve(cerveza) println("el costo minimo es: ",getobjectivevalue(cerveza)) println("las asignaciones son: ",DataFrame(getvalue(x)))

```
Min 3 x[1,1] + 2.9 x[2,1] + 2.7 x[1,2] + 2.8 x[2,2]

Subject to  x[1,1] + x[1,2] + x[1,3] = 5 
 x[2,1] + x[2,2] + x[2,3] = 4 
 x[1,1] + x[2,1] = 3 
 x[1,2] + x[2,1] = 3 
 x[1,3] + x[2,3] = 2 
 x[1,3] \ge 0 \ \forall \ i \in \{1,2\}, \ j \in \{1,2,3\} = 2 
 x[i,j] \ge 0 \ \forall \ i \in \{1,2\}, \ j \in \{1,2,3\} = 2 
 x[i,j] \ge 0 \ \forall \ i \in \{1,2\}, \ j \in \{1,2,3\} = 2 
 x[i,j] \ge 0 \ \forall \ i \in \{1,2\}, \ j \in \{1,2,3\} = 2 
 x[i,j] \ge 0 \ \forall \ i \in \{1,2\}, \ j \in \{1,2,3\} = 2 
 x[i,j] \ge 0 \ \forall \ i \in \{1,2\}, \ j \in \{1,2,3\} = 2 
 x[i,j] \ge 0 \ \forall \ i \in \{1,2\}, \ j \in \{1,2,3\} = 2 
 x[i,j] \ge 0 \ \forall \ i \in \{1,2\}, \ j \in \{1,2,3\} = 2 
 x[i,j] \ge 0 \ \forall \ i \in \{1,2\}, \ j \in \{1,2,3\} = 2 
 x[i,j] \ge 0 \ \forall \ i \in \{1,2\}, \ j \in \{1,2\}, \ j
```

8.2-2-Considere el problema de transporte que tiene la siguiente tabla de parámetros:

О	ria	en

	1	2	3	4	5	Recursos
1	2	4	6	5	7	4
2	7	6	3	m	4	6
3	8	7	5	2	5	6
4	0	0	0	0	0	4
Demanda	4	4	2	5	5	

z=2(4)+3(2)+4(4)+2(5)+5(1)+4(0)

Z=55

8.2-3. Considere el problema de transporte cuya tabla de parámetros se muestra a continuación:

	1	2	3	4	5	6	Recursos
1	13	10	22	19	18	0	5
2	14	13	16	21	m	0	6
3	3	0	m	11	6	0	7
4	18	9	19	23	11	0	4
5	30	24	34	36	28	0	3
Demanda	3	5	4	5	6	2	Z=1m+260

Z=5(10)+3(3)+4(16)+1(21)+1(m)+4(11)+4(11)+1(28

Z=1m+260

origen	1	2	3	4	5	disponible	Costo unitario por Tren
1	6(61)		9(45)			15	8.1Bono
2	5(69)	5(78)		10(49)		20	
3		7(66)			8(47)	15	
demanda	11	12	9	10	8		

X=6(61)+9(45)+5(69)+5(78)+10(49)+7(66)+8(47)

X=2834

origen	1	2	3	4	5	disponible	Costo unitario por Barco
1			5(24)	10(0)		15	
2		12(43)			8(31)	20	
3	11(0)					15	
demanda	11	12	9	10	8		

X=11(0)+5(24)+10(0)+12(43)+8(31)+11(0)

X=884

En conclusión, el transporte por barco es mas económico que por tren según nos expresa los resultados finales.