وَمَا أُوتِيتُمْ مِنَ الْعِلْمِ إِلَّا هَلِيلًا

Analog IC Design

Lecture 14 Negative Feedback

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

General Feedback System

- \Box A_{OL} = Open loop (OL) gain $\gg 1$
- $\Box A_{CL} = \frac{Y}{X} = \text{Closed loop (CL) gain}$
- \square Error signal = $X X_F$

General Feedback System

- \Box A_{OL} = Open loop (OL) gain $\gg 1$
- \square Error signal = $X X_F$

$$Y = A_{OL}(X - X_F) = A_{OL}(X - \beta Y)$$
$$A_{CL} = \frac{Y}{X} = \frac{A_{OL}}{1 + \beta \cdot A_{OL}} \approx \frac{1}{\beta}$$

Feedback Example

- Op-amp A_{OL} performs two functions: (1) subtraction of X and X_F and (2) amplification
- lacksquare The network R_1 and R_2 performs two functions: (1) sensing the output voltage and (2) providing a feedback factor $\beta = \frac{R_2}{(R_1 + R_2)}$

$$A_{CL} = \frac{Y}{X} = \frac{A_{OL}}{1 + \beta \cdot A_{OL}} = \frac{A_{OL}}{1 + \frac{R_2}{(R_1 + R_2)} \cdot A_{OL}} \approx \frac{R_1 + R_2}{R_2} = 1 + \frac{R_1}{R_2}$$

14: Negative Feedback

Feedback Example

Negative feedback loop works to minimize the error signal

$$Error = E = X - X_F = X - \beta Y = X - \beta A_{OL}E$$

$$E = \frac{X}{1 + \beta A_{OL}} \to 0$$

14: Negative Feedback [Razavi, 2014]

Loop Gain

- □ Break the loop → Apply a test source → Calculate the gain around the loop
- \Box Loop gain = $\beta \cdot A_{OL}$
- But the loading changes when we break the loop!
 - We may add a dummy load
 - STB simulation takes care of this ©

14: Negative Feedback [Razavi, 2014]

Why Negative Feedback?

- We use a very high gain amplifier (A_{OL}) , but end up with a much smaller gain $\frac{A_{OL}}{1+\beta\cdot A_{OL}} \approx \frac{1}{\beta}$
- We can design high gain amplifiers, but we really do not need all that gain
- High gain is the balance that we use to buy other useful properties
- Negative feedback properties
 - Gain Desensitization → Accurate, stable, and linear gain
 - Bandwidth Extension
 - Modification of I/O Impedances

14: Negative Feedback

Gain Desensitization

- In IC design, we cannot control absolute values due to PVT, load, and input signal variations
- But we can precisely control ratios of MATCHED components

$$A_{CL} = \frac{Y}{X} = \frac{A_{OL}}{1 + \beta \cdot A_{OL}} = \frac{A_{OL}}{1 + \frac{R_2}{(R_1 + R_2)} \cdot A_{OL}} \approx \frac{R_1 + R_2}{R_2} = 1 + \frac{R_1}{R_2}$$

 \square $R_1 = 3R$ and $R_2 = R \Rightarrow A_{CL} = 4 \Rightarrow$ Accurate, stable, and linear

Bandwidth Extension

$$A_{CL}(s) = \frac{A_{OL}(s)}{1 + \beta \cdot A_{OL}(s)}$$

$$A_{OL}(s) = \frac{A_o}{1 + \frac{s}{\omega_{n,OL}}}$$

$$A_{CL}(s) = \frac{\frac{A_o}{(1+\beta A_o)}}{1+\frac{S}{(1+\beta A_o)\omega_{p,OL}}}$$

$$\omega_{p,CL} = (1 + \beta A_o)\omega_{P,OL}$$

- $lue{}$ CL DC gain reduced by $(1 + \beta A_o)$
- \Box CL bandwidth extended by $(1 + \beta A_o)$
- ☐ GBW (and UGF) remains constant

14: Negative Feedback

Bandwidth Extension

$$A_{CL}(s) = \frac{\frac{A_o}{(1 + \beta A_o)}}{1 + \frac{S}{(1 + \beta A_o)\omega_{p,OL}}}$$

- \Box CL DC gain reduced by $(1 + \beta A_o)$
- \Box CL bandwidth extended by $(1 + \beta A_o)$
- ☐ GBW (and UGF) remains constant

14: Negative Feedback [Razavi, 2017]

Bandwidth Extension

☐ Cascade of feedback amplifiers provides the same gain and a much faster response → But power consumption is doubled

Modification of I/O Impedances

Example: voltage sensing – voltage mixing feedback

$$I_{in}R_{in} = V_{in} - V_F$$

$$= V_{in} - (I_{in}R_{in})A_0 \beta$$

$$\frac{V_{in}}{I_{in}} = R_{in}(1 + \beta A_0)$$

12

14: Negative Feedback [Razavi, 2014]

Modification of I/O Impedances

Example: voltage sensing – voltage mixing feedback

$$I_X = \frac{V_X - (-\beta A_0 V_X)}{R_{out}}$$

$$\frac{V_X}{I_X} = \frac{R_{out}}{1 + \boldsymbol{\beta} A_0}$$

14: Negative Feedback

Modification of I/O Impedances

- ☐ Shunt sensing/mixing → R decreases
- \square Series sensing/mixing \rightarrow R increases

Output impedance falls by 1+ loop gain.

Input impedance rises by 1+ loop gain.

Output impedance rises by 1+ loop gain.

Input impedance falls by 1+ loop gain.

Stability of Feedback System

$$H_{CL}(s) = \frac{Y(s)}{X(s)} = \frac{H(s)}{1 + \beta H(s)}$$

14: Negative Feedback [Razavi, 2017]

Barkhausen's Oscillation Criteria

$$H_{CL}(s) = \frac{Y(s)}{X(s)} = \frac{H(s)}{1 + \beta H(s)}$$

$$|\beta H(s)| = 1$$
$$\angle \beta H(s) = -180$$

14: Negative Feedback [Razavi, 2017]

Stable vs Unstable System: Bode Plot

- \Box Gain crossover frequency (GX): @ $|\beta H(s)| = 1$
- □ Phase crossover frequency (PX): @ $\angle \beta H(s) = -180$
- ☐ For a stable system: GX < PX

14: Negative Feedback [Razavi, 2017]

Stable vs Unstable System: Pole-Zero Plot

14: Negative Feedback [Razavi, 2017]

Effect of Feedback Factor (β)

- \square We assume β is independent of frequency: $\angle \beta H$ independent of β
- \Box If we apply no feedback (β = 0), the circuit will never oscillate
- \square Worst-case stability corresponds to $\beta = 1 \rightarrow \beta H = H \rightarrow OL$ gain
 - Worst case for unity-gain feedback → buffer → smallest CL gain

14: Negative Feedback [Razavi, 2017]

Single-Pole System: Bode Plot

$$\frac{Y}{X}(s) = \frac{\frac{A_0}{1 + \beta A_0}}{1 + \frac{s}{\omega_0 (1 + \beta A_0)}}$$

14: Negative Feedback [Razavi, 2017]

Single-Pole System: Root Locus

- ☐ The locus exists on real axis to the left of an odd number of poles and zeros.
- ☐ The locus starts at the open-loop poles and end at the open-loop zeros or at infinity.

14: Negative Feedback [Razavi, 2017]

Two-Pole System: Bode Plot

14: Negative Feedback [Razavi, 2017]

Two-Pole System: Root Locus

- ☐ The locus exists on real axis to the left of an odd number of poles and zeros.
- ☐ The locus starts at the open-loop poles and end at the open-loop zeros or at infinity.

14: Negative Feedback [Razavi, 2017]

Three-Pole System

14: Negative Feedback [Razavi, 2017]

Phase Margin (PM)

- \square PM > 0 \rightarrow stable, but...
 - Low PM → frequency domain peaking → time domain ringing

Phase Margin: Ultimate GBW

- \Box If $\omega_{p2} = \omega_u$: PM = 45° \rightarrow typically inadequate (peaking/ringing)
- $f \square$ The ultimate ω_u cannot exceed $\omega_{p2} o \omega_{p1} < \omega_u < \omega_{p2}$
 - For $\omega < \omega_u$ the Bode plot is similar to a 1st order system

[Razavi, 2017]

Optimum Phase Margin

PM	Peaking	Closed Loop Response
0	∞	1/β
5	$\frac{11.5}{\beta}$	11.3/β 1/β
45	$\frac{1.3}{\beta}$	$1/\beta$ $1.3/\beta$
60	$\frac{1}{\beta}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
90	$\frac{0.707}{\beta}$	$ \begin{array}{c} 1/\beta & 0.7/\beta \\ \hline \end{array} $

Optimum Phase Margin

- PM = 60° is optimum
- But we must take some extra margin to account for variations

ω_{p2}/ω_u	PM
1	45°
2	60^{o}
3	72 °

[Razavi, 2017] **14: Negative Feedback**

Frequency Compensation

- ☐ We need GX much smaller than PX
- ☐ Push PX outwards: minimize poles → minimize nodes/stages
- Push GX inwards: lower GBW

14: Negative Feedback [Razavi, 2017]

Thank you!

14: Negative Feedback 30