Confidence intervals

Recap: Pivotal quantities

Let
$$X_1,...,X_n$$
 be a sample and Θ be an unknown parameter. A function $G(X_1,...,X_n,\Theta)$ is called a pivot if the distribution of $G(X_1,...,X_n,\Theta)$ does not depend an Θ

To construct a 1-d confidence Set:

Find $G(Y)$ St $G(G \subseteq G(X_1,...,X_n,\Theta) \subseteq G(X_1,$

Example

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

Suppose $X_1,\ldots,X_n\stackrel{iid}{\sim} Uniform[0,\theta].$ We want to construct a $1-\alpha$ confidence set for θ using a pivot.

$$Q(x_1, \dots, x_n, \theta) = \frac{x_{in}}{\theta} = P(\frac{x_{in}}{\theta} \leq t) = (\frac{t \cdot \theta}{\theta})^n = t^n$$

$$\frac{\partial ces}{\partial t} = \frac{1}{\theta}$$

e.6,

Choose a, b st
$$P_{\theta}(a \leq \frac{x_{(n)}}{\theta} \leq b) = 1 - x_{(n)}$$

$$P_{\theta}(a \leq \frac{x_{(n)}}{\theta} \leq 1) = P_{\theta}(a \leq \frac{x_{(n)}}{\theta})$$

$$= 1 - \alpha$$

$$= 1 - \alpha$$

Example

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Exponential(\theta)$, with density $f(x|\theta) = \theta e^{-\theta x}$.

Find a pivotal quantity $Q(X_1,\ldots,X_n, heta)$ and construct a 1-lphaconfidence interval for θ using the pivotal quantity.

Hints:

Begin with the maximum likelihood estimate of θ , which is $\hat{\theta} = \frac{n}{n}$

$$\hat{ heta} = rac{n}{\sum\limits_{i=1}^{n} X_i}$$

- If $X\sim Exponential(heta)$, then $cX\sim Exponential\left(rac{ heta}{c}
 ight)$ $Exponential\left(rac{1}{2}
 ight)=\chi_2^2$

$$X_{1,...}, X_{n} \stackrel{iii}{\sim} E \times P(0)$$

$$Q(X_{1,...}, X_{n}, 0) = 20 2 i X i$$

$$= 2i 20 \times i$$
 20 \times \times \times 2

Next
$$\alpha$$
, β st $Po\left(\alpha \leq 202iXi \leq b\right) = 1-\alpha$

went
$$\alpha$$
, β st $Po\left(\alpha \leq 20 \text{ ZiXi} \leq b\right) = 1-\alpha$

went
$$\alpha$$
, β st $P_0\left(\alpha \subseteq 202i\lambda, -B\right) = 0$

$$\alpha = \chi_{2n}^{2}, 1-\frac{\alpha}{2}$$

$$\alpha = 0$$

	又か, 1-元	$\alpha = 0$
G =	1-0)	b = x2n, d
b =	X2, 2	$b = \lambda_{2}$

c =	X20, 1-2	~= O 2
b =	χ^2_{cn} , \hat{z}	b = Xzn,d

C	=					2	
\	_	1,2 a			p =	Xzn,d	
b -	_	入之,至					
			$\overline{}$				

$$b = \chi^2_{en}, \hat{z}$$

$$b = \chi^2_{en}, \hat{z}$$

$$b = \chi_{en}, \hat{z}$$

$$= 7 \qquad \left[\frac{a}{2\cancel{2} \cdot \cancel{X}}, \frac{b}{2\cancel{2} \cdot \cancel{X}} \right]$$

Wald CI

Let $X_1,\ldots,X_n \stackrel{iid}{\sim} Exponential(heta)$, with density $f(x| heta) = heta e^{- heta x}$.

MLE:
$$\hat{\theta} = \frac{1}{X} = \frac{\hat{Q}}{X}$$
 $\hat{\theta} \approx N(\theta, \mathcal{I}^{-1}(\theta))$
 $\approx N(\theta, \mathcal{I}$

can re find a transformation $g(\hat{\theta})$ such that the variance $Var(g(\hat{\theta}))$ des not depend on

Delta method

$$\frac{\text{Exercertical'}}{\sqrt{n(\delta - 6)}} \rightarrow N(0, 6^2)$$

$$\sqrt{n(\delta - 6)} \rightarrow N(0, 6^2 \cdot \text{Eg'(6)})^2$$

Suppose $\hat{\theta}$ is an estimate of $\theta \in \mathbb{R}$, such that

$$\sqrt{n}(\hat{ heta}- heta)\stackrel{d}{
ightarrow} N(0,\sigma^2)$$

for some σ^2 , and g is a continuously differentiable function with $g'(\theta) \neq 0$. Then

$$\sqrt{n}(g(\hat{ heta})\!\!\!-g(heta)) \stackrel{d}{
ightarrow} N(0,\sigma^2[g'(heta)]^2)$$

Proof sketch:

- lacktriangle First-order Taylor expansion of $g(\hat{ heta})$ around heta
- Slutsky's theorem

want
$$g'(\theta) = \frac{1}{\Theta}$$
 $g(\theta) = \log(\theta)$
 $\sqrt{n} (\log(\theta) - \log(\theta)) \rightarrow N(O, 1)$

Variance stabilizing transformations