Math 310 - HW 6 (Due Wednesday 04/02)

(As always, first try some warm-up problems from the textbook!)

- 1. Use the $\epsilon \delta$ definition to show that:
- (i) $f(x) = x^2 + 2x + 1$ is continuous on its domain.
- (ii) $f(x) = \sqrt{x}$ is continuous on its domain.
- (iii) [Non-Credit] $f(x) = e^x$ is continuous on its domain. (Hint: First show that e^x is continuous at a = 0. You may use the fact that $e^x > 1 + x, \forall x$)
- **2.** (i) Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ such that it is discontinuous at $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\}$ but is continuous at every other point. Justify your answer.
- (ii) Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ such that it is discontinuous at $\left\{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\}$ but is continuous at every other point. Justify your answer.
- (iii) [Extra-Credit] Give an example of a function $f:(0,1)\to(0,1)$ such that it is continuous at every irrational number but discontinuous at every rational number. Justify your answer. (*Hint*: Modify Dirichlet's function. *Remark*: One can then also periodically extend this to $f:\mathbb{R}\to\mathbb{R}$)
- (iv) [Non-Credit] Show that there cannot be a function which is continuous at every rational number but discontinuous at every irrational number. (*Hint*: If not, then one builds a countable collection of nested closed intervals containing a point of continuity which is a irrational number; a contradiction.)
- 3. (i) Show that if f_1, f_2 are continuous functions, then $g = \max\{f_1, f_2\}$ and $h = \min\{f_1, f_2\}$ also are.
- (ii) Let f be a continuous function. Prove that f(x) can always be written as f(x) = g(x) h(x), where g,h are continuous functions and non-negative. (Hint: Use (i))
- 4. [Applications of IVP; Do any three]
- (i) If $f:[a,b]\to [a,b]$ is continuous on [a,b], then f has a fixed point (that is, f(c)=c for some $c\in [a,b]$).
- (ii) Prove that at any given instant, some two diametrically opposite (anti-podal) points on the Equator of our Earth have the same temperature. (Assume Earth to be spherical and thus the Equator to be circular.)
- (iii) Prove that there exists NO continuous function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) \in \mathbb{Q}, \forall x \in \mathbb{R} \mathbb{Q}$ and $f(x) \in \mathbb{R} \mathbb{Q}, \forall x \in \mathbb{Q}$.
- (iv) Let $f:[0,1]\to\mathbb{R}$ be continuous with f(0)=f(1). Show that there must exist $x,y\in[0,1]$ with $|x-y|=\frac{1}{2}$ for which f(x)=f(y).
- (v) [Hiker's dèjá vu] Show that if a hiker hikes up a mountain from time s_1 to s_2 on one day, and hikes down the same path from time t_1 to t_2 the next day, such that $[s_1, s_2] \cap [t_1, t_2] \neq \emptyset$, then there exists some time instant at which the hiker was at the same spot on both days.
- **5**. [IVP + Monotonicity \Rightarrow Continuity]

Assume f has IVP in [a,b]. Show that if f is increasing on [a,b], then f is also continuous on [a,b].

6. [A fixed-point theorem for contraction maps; Extra-Credit] Let $f : \mathbb{R} \to \mathbb{R}$ and assume there exists $0 \le C < 1$ such that for all $x, y \in \mathbb{R}$

$$|f(x) - f(y)| \le C|x - y|$$

- (i) Prove that f is continuous on \mathbb{R} .
- (ii) Pick any $x_1 \in \mathbb{R}$ and consider the sequence $x_n = f(x_{n-1})$. Prove that $\{x_n\}$ is a Cauchy sequence.
- (iii) Let $\{x_n\} \to c$. Prove that f(c) = c.
- (iv) Prove that this c is unique for f.