A problem of Tate-Shafarevich groups

Daniel Miller

August 7, 2016

1 Generalities on group cohomology

Let Γ be a profinite group. A continuous Γ -module (later: just a Γ -module) is a Γ -module M such that the action $\Gamma \times M \to M$ is continuous when M is given the discrete topology. One puts $H^{\bullet}(\Gamma, -)$ for the derived functors of $H^{0}(\Gamma, -)$, taken in the category of all continuous Γ -modules. We will frequently use the inflation-restriction exact sequence [NSW08, 1.6.7]: let $1 \to \Gamma' \to \Gamma \to \Gamma'' \to 1$ be a short exact sequence of profinite groups, M a Γ -module. Then the following sequence is exact:

$$0 \longrightarrow \mathrm{H}^1(\Gamma'', M^{\Gamma'}) \stackrel{\mathrm{inf}}{\longrightarrow} \mathrm{H}^1(\Gamma, M) \stackrel{\mathrm{res}}{\longrightarrow} \mathrm{H}^1(\Gamma', M).$$

Lemma 1. Let $\Gamma' \subset \Gamma$ be a closed subgroup of a profinite group. Then the kernel of $H^1(\Gamma, M) \xrightarrow{\operatorname{res}} H^1(\Gamma', M)$ does not depend on the conjugacy class of Γ' .

Proof. Let $c: \Gamma \to M$ represent an element of $H^1(\Gamma, M)$. Elementary manipulations show that $c_{\gamma^{-1}} = -\gamma^{-1}c_{\gamma}$ for all $\gamma \in \Gamma$. For $\sigma \in \Gamma'$, we compute

$$c_{\gamma\sigma\gamma^{-1}} = \gamma\sigma c_{\gamma^{-1}} + \gamma c_{\sigma} + c_{\gamma}$$
$$= (1 - \gamma\sigma\gamma^{-1})c_{\gamma} + \gamma c_{\sigma}.$$

Thus $c|_{\gamma\Gamma'\gamma^{-1}}$ is equivalent to the cocycle

$$\gamma \sigma \gamma^{-1} \mapsto \gamma(\sigma - 1)m$$

= $(\gamma \sigma \gamma^{-1} - 1)\gamma m$,

which is a coboundary. We have shown that

$$\ker \left(\mathrm{H}^1(\Gamma, M) \to \mathrm{H}^1(\Gamma', M) \right) \subset \ker \left(\mathrm{H}^1(\Gamma, M) \to \mathrm{H}^1(\gamma \Gamma' \gamma^{-1}, M) \right).$$

To obtain the other inclusion, replace Γ' by $\gamma \Gamma' \gamma^{-1}$ and γ by γ^{-1} .

2 Galois cohomology of number fields

Let k be a number field, v a place of k. We write $\Gamma_v = \operatorname{Gal}(\overline{k_v}/k)$ for the decomposition group, and assume given a conjugacy class of embeddings $\Gamma_v \hookrightarrow \Gamma$. Let $I_v \subset \Gamma_v$ be the inertia group. If S is a finite set of places, we write $\Gamma^S \subset \Gamma$ for the normal subgroup generated by the images of $I_v \to \Gamma$ $(v \notin S)$, and put $\Gamma_S = \Gamma/\Gamma^S$. If M is a Γ_v -module, put

$$\begin{aligned} \mathbf{H}_{\mathrm{ur}}^{1}(\Gamma_{v}, M) &= \ker \left(\mathbf{H}^{1}(\Gamma_{v}, M) \to \mathbf{H}^{1}(I_{v}, M) \right) \\ &= \operatorname{im} \left(\mathbf{H}^{1}(\widehat{\mathbf{Z}}, M^{I_{v}}) \to \mathbf{H}^{1}(\Gamma_{v}, M) \right). \end{aligned}$$

Lemma 2. Let M be a Γ -module unramified outside S. Then

$$\begin{split} \mathrm{H}^1(\Gamma_S, M) &\xrightarrow{\sim} \ker \left(\mathrm{H}^1(\Gamma, M) \to \bigoplus_{v \notin S} \frac{\mathrm{H}^1(\Gamma_v, M)}{\mathrm{H}^1_{\mathrm{ur}}(\Gamma_v, M)} \right) \\ &= \ker \left(\mathrm{H}^1(\Gamma, M) \to \bigoplus_{v \notin S} \mathrm{H}^1(I_v, M) \right). \end{split}$$

Proof. By the inflation-restriction exact sequence, we know that

$$H^{1}(\Gamma_{S}, M) = \{c \in H^{1}(\Gamma, M) : c|_{\Gamma^{S}} = 0\}.$$

Moreover, we know that the map $\prod_{v \notin S} I_v^{ab} \to \Gamma^{S,ab}$ is surjective. Since

$$H^{1}(\Gamma^{S}, M) = \hom(\Gamma^{S, ab}, M)$$

$$\hookrightarrow \prod_{v \notin S} \hom(I_{v}, M)$$

$$= \prod_{v \notin S} H^{1}(I_{v}, M),$$

it is clear that $c|_{\Gamma^S} = 0$ if and only if $c|_{I_v} = 0$ for all $v \notin S$.

As before, let M be a Γ -module unramified outside S. Define

$$\mathrm{III}_S^1(M) = \ker \left(\mathrm{H}^1(\Gamma_S, M) \to \bigoplus_{v \in S} \mathrm{H}^1(\Gamma_v, M) \right).$$

Theorem 1. If M is unramified outside S and $T \supset S$ is a finite set of places, the image of $\coprod_{S}^{1}(M)$ under the inflation map $H^{1}(\Gamma_{S}, M) \hookrightarrow H^{1}(\gamma_{T}, M)$ contains $\coprod_{T}^{1}(M)$.

Proof. We need to show that if $c \in H^1(\Gamma, M)$, then

$$\left(\begin{array}{cc} c|_{\Gamma_v} \in \mathrm{H}^1_{\mathrm{ur}}(\Gamma_v, M) & v \not \in T \\ c|_{\Gamma_v} = 0 & v \in T \end{array}\right) \Rightarrow \left(\begin{array}{cc} c|_{\Gamma_v} \in \mathrm{H}^1_{\mathrm{ur}}(\Gamma_v, M) & v \not \in S \\ c|_{\Gamma_v} = 0 & v \in S \end{array}\right),$$

but this is obvious. \Box

Note: elliptic curves $E_{/\mathbf{Q}}$ with $\mathrm{III}(E) \neq 0$ (or failures of the Grunwald-Wang theorem over number fields having no unramified extensions) seemed to be counterexamples to Theorem 1, as in those cases $\Gamma_{\varnothing} = 1$ but $\mathrm{III}_S^1 \neq 0$. The problem is, in all such cases the module in question is not everywhere unramified.

References

[NSW08] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of number fields. Second. Vol. 323. Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, 2008.