Tarea 2 (Dinámica)

Física 1A - Dpto de Física - FCEyN, Universidad de Buenos Aires Septiembre 2020

Une niñe con bastante vocación científica se propone experimentar distintas situaciones dinámicas con un autito de juguete y una pista de carreras que cuenta con partes planas, una pendiente de ángulo α y un rulo de radio R según lo esquematizado en la Figura 1. Considerá el autito como $puntual^1$. Datos: m, R, H, α, g

- (a) Escribí las ecuaciones de Newton para el autito en la parte plana de la pista, en el rulo y en la pendiente.
- (b) Se lanza el auto de manera que llega con velocidad v_0 al comienzo del rulo; calculá la fuerza de vínculo ejercida por la pista sobre el auto en la parte del rulo como función de θ .
- (c) ¿Cuál es el valor mínimo de v_0 para que el autito de la vuelta completa? ¿Para qué rango de valores de v_0 el autito se desprende de la pista y se cae? ¿Qué sucede si la velocidad inicial es menor al valor mínimo del rango anterior?
- (d) Si el autito parte del reposo, ¿A qué altura mínima H hay que colocarlo para que de la vuelta entera del rulo sin despegarse de la pista? Despreciá rozamiento y asumí que el cambio de dirección en el punto P es ideal, es decir la velocidad cambia de dirección siguiendo la pista pero se conserva la rapidez. Aclaración: no vale utilizar argumentos que aún no discutimos en la materia como, por ejemplo, argumentos de energía.

Figura 1: Esquema del problema.

 $^{^{1}}$ Es decir, mucho más pequeño que las dimensiones características del problema R y H