1. Introduction to Seismology

M. Ravasi ERSE 210 Seismology

Course Objectives

Learn fundaments of Seismology, both Global and Exploration

- Familiarize with theory of wave propagation (basis for ErSE 326 and 390N)

Recent developments in the field (last 20 years)

Lectures

Monday 2:30pm 4:00pm

- Thursday 2:30pm 4:00pm

- Bldg. 9, Room 3123

! Be on time: participation is recorded!

Teaching Staff

Instructors:

 Matteo Ravasi - Office Hours: Sunday 3pm to 4pm (by Appointment: B5-4274)

Textbook

- Shearer, P., Introduction to Seismology (Main reference)

- Aki, K., and Richards, P.G., Quantitative Seismology
- Avseth, P., Mukerji, T., and Mavko, G., Quantitative Seismic Interpretation
- Ikelle, L.T., and Amundsen, L., Introduction to Petroleum Seismology
- Yilmaz, O., Seismic Data Analysis

Grading

- 30 % Homework
- 30 % Mid-term exam
- 10 % Paper reading: **Read a paper** (list provided after midterm) on a topic covered in the course and present to the rest of the class
- 40% Project and presentation

Course material

- Slides and Laboratory exercises can be accessed from:

http://github.com/dig-kaust/seismology

What is Seismology?

"Field of study of propagation of elastic waves"

What is Seismology?

"Field of study of propagation of elastic waves"

Tsunamies

Sun (helioseismology)

Stars (asteroseismology)

Planetary bodies (planetary seismology)

GLOBAL

What is Seismology?

"Field of study of propagation of elastic waves"

Hydrocarbon prospection

Geothermal

Geotechnics

Nuclear Explosions

Transportation monitoring

How do we learn about waves?

OBSERVATIONS

THEORY

EXPERIMENTS

What do we know so far?

- Compressional wave velocities: up to a fraction of %
- Damping of waves in the inner core: poor
- Mapping of earthquake position & radiation: done routinely
- Physics of earthquakes: poor

Sensitivity of seismic waves

History of global seismology

Cauchy

Stokes

Rayleigh

1800s: early **theories** of elastic waves

Mallet

1857: Napoli earthquake – beginning of **observational seismology**

Cecchi

This seismogram was recorded in Potsdam in 1889. The seismic waves were generated by an earthquake in Japan

1875: First time-recording **seismograph**

1889: First recorded **teleseism**

History of global seismology

1897: First seismograph in **US**: will record S.Francisco earthquake

in 1906

Wiechert

1898: Fist **seismometer** with viscous damping

1906: First **P, S, and** surface waves identified on seismogram

Zoeppritz

Gutenberg

CALCULATED TRAVEL TIMES

1/V	P^{Δ}_{KP}	PKP	PES .	PK8	sks	sks
sec/deg.	deg.	800.	deg.	900.	dog.	800.
0.000	180.000	1201.06	180,000	1416.09	180,000	1631.13
2.310	149.345	1186.60	142,776	1393.77	136,207	1600.94
2.319	149.264	1186.41	142.663	1393.50	136,061	1600.58
2.383	148.688	1185.06	141.838	1391.56	134.988	1598.06
2.446	148.136	1183.73	141.031	1389.61	133.926	1595.50
2.510	147.610	1182.42	140.241	1387.66	132.873	1592.89
2.574	147.109	1181.14	139.470	1385.69	131.831	1590.24
2.638	146.637	1179.92	138.719	1383.74	130.801	1587.55
2.701	146.193	1178.74	137.987	1381.78	129.780	1584.83
2.765	145.781	1177.60	137.276	1379.83	128.771	1582.07
2.828	145.400	1176.54	136.586	1377.91	127,772	1579.28
2.892	145.052	1175.55	135.918	1376.00	126.784	1576.45
2.955	144.740	1174.63	135.274	1374.11	125.808	1573.60
3.018	144.466	1173.82	134.654	1372.27	124.841	1570.72
3.082	144.231	1173.10	134.059	1370.45	123.886	1567.80
3.145	144.040	1172.50	133.491	1368.68	122.942	1564.86
3.208	143.894	1172.05	132.951	1366.97	122,009	1561.90
3.271	143.797	1171.72	132.442	1365.31	121.087	1558.90
3.334	143.757	1171.58	131.966	1363.74	120.176	1555.90
3.397	143.765	1171.63	131.520	1362.25	119.275	1552.87
3.460	143.841	1171.89	131.113	1360.85	118.385	1549.82
3.523	143.985	1172.38	130.746	1359.56	117.507	1546.74
3.586	144.205	1173.17	130.422	1358.41	116.638	1543.66
3.649	144.510	1174.28	130.146	1357.42	115.781	1540.56

1900-1950: **Traveltime** tables of earthquake arrivals

Earth interior

Crust: ~6km to 30-50km thickness

Interior:

- Mantle: solid outer shell (84% volume) with rapid velocity increase at the start (transition zone) and then gradually up until CMB
- Outer core: drastic drop in velocities at CMB due to solid-to-fluid transition $(VS \rightarrow 0)$, followed by slow velocity increase
- Inner core: solid, small increase in P-wave velocities and non-zero S-wave velocities

Density is less understood as traveltimes do not provide direct constraints.

History of global seismology

1923: Theory of **double couple source** (i.e., how earthquake originates)

1928+: Evidence of deep earthquakes (>100km)

1960: Discovery of **Normal modes** from Chile earthquake

1960: Theory of plate tectonics

Seismology role in plate tectonics theories

Seismology role in plate tectonics theories

History of global seismology

1961: Seismometers on **Moon**

1960/70: **Helioseismology** (Doppler shift similar to normal mode theories)

1970: Advent of **computers**, better modelling and storage solution

1970/80: Early successes in **seismic tomography**

Tomographic images of the Earth

History of earthquake physics

 $M_0 = rac{1}{\sqrt{2}} (M_{ij}^2)^{1/2}$

1906: Elastic rebound theory

1935: Richter scale

1966: **Seismic moment** and moment magnitude

History of applied seismology

Mintrop

1914 and 1917:
Refraction and
reflection seismology
was first conceived
(and patented)

1920/30: First **oil discoveries** in US and Mexico using seismic methods

1956: **CMP stacking** was invented and patented

1950s: **Vibroseis** were introduced to replace explosive sources

History of applied seismology

1970s: **3D** seismic was first introduced

1980: **4D seismic** was first introduced

2000': **Ambient noise** is first show to carry information about subsurface properties

2000'2010': Fullwaveform-inversion (FWI) takes off