wherein the at least one cell is a cell that is formed from a polycarbonate substrate with two opposing walls comprising permeable polycarbonate film.

- 2. (amended) The reactor plate of claim 1, wherein the <u>permeable</u> polycarbonate film is characterized by a diffusion coefficient of about 5 X 10^{-10} to about 5 X 10^{-7} cc(STP)-mm/cm²-sec-cmHg.
- 3. (amended) The reactor plate of claim 1, wherein the <u>permeable</u> polycarbonate film is characterized by a diffusion coefficient of about 1 \times 10⁻⁹ to about 1 \times 10⁻⁷ cc(STP)-mm/cm²-sec-cmHg.
- 4. (amended) The reactor plate of claim 1, wherein the <u>permeable</u> polycarbonate film is characterized by a diffusion coefficient of about and preferably about 2 X 10⁻⁸ to about 2 X 10⁻⁶ cc(STP)-mm/cm²-sec-cmHg.
- 5. (amended) The reactor plate of claim 1, wherein the <u>permeable</u> polycarbonate film is about .0002 to about .05 mm thick.
- 6. (amended) The reactor plate of claim 1, wherein the <u>permeable</u> polycarbonate film is about .005 to about .04 mm thick.
- 7. (amended) The reactor plate of claim 1, wherein the <u>permeable</u> polycarbonate film is, desirably about .01 to about .025 mm thick.
- 10. (amended) The reactor plate of claim 1, wherein the <u>permeable</u> polycarbonate film is a monofilm, coextrusion, composite or laminate.
- 11. (amended) The reactor plate of claim 1, wherein the <u>permeable</u> <u>polycarbonate</u> film selectively admits transport of a reactant and prohibits transport of a reaction product.
- 12. (amended) The reactor plate of claim 1, wherein the <u>permeable</u> <u>polycarbonate</u> film selectively admits transport of oxygen and carbon monoxide and prohibits transport of a diaryl carbonate.