

TMA4145 Linear Methods

Fall 2018

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 3

- $\boxed{1}$ a) Determine if the following expressions are norms for \mathbb{R}^3 .
 - 1. $f(x_1, x_2, x_3) = |x_1| + |x_2|$;
 - 2. $f(x_1, x_2, x_3) = |x_1| + (|x_2|^2 + |x_3|^2)^{1/2}$;
 - 3. $f(x_1, x_2, x_3) = (w_1|x_1|^3 + w_2|x_2|^2 + w_3|x_3|)^{1/2}$ for some positive real numbers w_1, w_2, w_3 .
 - **b)** Determine $||z||_1$, $||z||_2$ and $||z||_{\infty}$ for z = (1+i, 1-i) and $z = (e^{i\pi/2}, e^{3i\pi/2})$ in \mathbb{C}^2 .
- 2 1. What is an *open* ball $B_1(x_0)$ in \mathbb{C} with the metric induced by the norm $||x|| = \sqrt{\text{Re}(x)^2 + \text{Im}(x)^2}$?
 - 2. What is a *closed* ball $\overline{B_1}(f_0)$ in the space of bounded and continuous real-valued functions on [a,b], denoted $BC([a,b],\mathbb{R})$, with the metric induced by the supremum norm?
- $\boxed{\bf 3}$ Recall that any set X can be endowed with the discrete metric

$$d(x,y) := \begin{cases} 1, & x \neq y, \\ 0, & x = y. \end{cases}$$

Show that in a discrete metric space, every subset is both open and closed.

4 Let X be a vector space and $\|.\|_a$ and $\|.\|_b$ norms on x. Show that $\|x\| := (\|x\|_a^2 + \|x\|_b^2)^{1/2}$ defines a norm on X.

Challenge (voluntary): Try to define a variant of this norm for $p \neq 2$ and contemplate about a possible proof of this statement.

5 Let $M_n(\mathbb{R})$ be the vector space of $n \times n$ matrices. Define for $A \in M_n(\mathbb{R})$ the function $||A||_2 = (\sum_{i,j=1}^n |a_{ij}|^2)^{1/2}$. Show that $||.||_2$ is a norm on $M_n(\mathbb{R})$. The trace of a matrix $A \in M_n(\mathbb{R})$ is defined as the sum of its diagonal elements, $\operatorname{tr}(A) = a_{11} + \cdots + a_{nn}$. Prove that $||A||_2^2 = \operatorname{tr}(A^T A)$. If the general case is too difficult, try to do it for n = 3.

6 Let (X, ||.||) be a normed vector space. Show that for any $x, y \in X$ we have $|||x|| - ||y||| \le ||x - y||.$

This is known as the reversed triangle inequality.