6.1 1) Vu le théorème de Bézout, il existe des entiers u, v, u^* et v^* tels que a u + m v = 1 et $b u^* + m v^* = 1$

En multipliant ces deux équations, on obtient :

$$1 = (a u + m v) (b u^* + m v^*) = (a b) (u u^*) + m (a u v^* + b u^* v + m v v^*)$$

D'après le théorème de Bachet de Mériziac, $1 = k \cdot \operatorname{pgcd}(ab, m)$, d'où l'on tire que $\operatorname{pgcd}(ab, m) = 1$.

2) Vu la proposition de la page 4.1, il existe $x_1 \in \mathbb{Z}$ tel que $a x_1 \equiv 1 \mod m$ et $x_2 \in \mathbb{Z}$ tel que $b x_2 \equiv 1 \mod m$.

On en déduit que $(a b) (x_1 x_2) \equiv (a x_1) (b x_2) \equiv 1 \cdot 1 \equiv 1 \mod m$.

Ainsi, l'équation $(a b) x \equiv 1 \mod m$ admet pour solution $x_1 x_2$.

La proposition de la page 4.1 implique que $a\,b$ et m sont premiers entre eux, c'est-à-dire $\operatorname{pgcd}(a\,b,m)=1$.