

Presentation of the team

Miguel Vasquez

Code and technical report

Juan Alberto Rodriguez

Code and
technical report

Andrea SernaLiterature review

Mauricio Toro y
Jaime Andres
Riascos
Data preparation

https://github.com/bosh99/SH-proyect.git

Problem Statement

Streets of Medellín, Origin and Destination

Three paths that reduce both the risk of harassment and distance

Solution Algorithm

Explanation of the algorithm

Dijkstra's algorithm

This algorithm finds the shortest path between a given node and all the other ones in the graph using weights that minimizes the total distance

Complexity of the algorithm

	Time complexity	Complexity of memory
Dijkstra's	O (E*logV)	O(E!*V*E*E*2 ^E)
N/A		

Time and memory complexity of the algorithm name. V is the vertex's E is the edges.

First path minimizing d = SH*L

Origin	Destination	Distance (meters)	Risk of harassment (between 0 and 1)
EAFIT University	National University	5082.36	0.0019

Distance and risk of harassment for the path that minimizes d = SH*L. Execution time of 0.786 seconds.

The data in the table explains the distance between the universities and we can see that the risk between them its very low which concludes that the algorithm significantly reduces the risk.

Second path minimizing d = SH+L

Origin	Destination	Distance (meters)	Risk of harassment (between 0 and 1)
EAFIT University	National University	7894.27	0.0017

Distance and risk of harassment for the path that minimizes d = SH+L. Execution time of 0.714 seconds.

Now we can see that the distance is greater, and the risk continues being low, also the time compilation determines that the algorithm its fast and efficient because of the results it shows

Third path minimizing $d = SH^2 * L^2$

Origin	Destination	Distance (meters)	Risk of harassment (between 0 and 1)
EAFIT University	National University	642144.12	0.000012

Distance and risk of harassment for the path that minimizes $d = SH^2 * L^2$. Execution time of 0.999 seconds.

The distance continues being greater and the risk continues being lower, so there's a relation between distance and risk in which when the distance increases the risk is lower.

Visual comparison of the three paths

Future work directions

Data structures and algorithms II

Applying another uses of data structures

Data bases

Creating a data base for the project

Telematics

Using more advanced concepts

Statistics

• • Drawe • conclusions for improving

Future work directions

Project management

Planning and organization

Project 1

More code for more efficiency

Software Engineering

> Successful app

Project 2

Givinganotherapproach

