

ĐẠI HỌC ĐÀ NẪNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THỐNG VIỆT - HÀN

VIETNAM - KOREA UNIVERSITY OF INFORMATION AND COMMUNICATION TECHNOLOGY

한-베정보통신기술대학교

Nhân bản – Phụng sự – Khai phóng

Chapter 1

Overview of Machine Learning

CONTENTS

- Introduction to ML
- Types of ML Systems
- Challenges of ML
- Testing & Validating

- Introduction
- Types of ML Systems
- Challenges of ML
- Testing & Validating

What is ML?

- ML is the science (& art) of programming computers so they can learn from data.
- "ML is the field of study that gives computers the ability to learn without being explicitly programmed" [Arthur Samuel, 1959]
- "A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E" – [Tom Mitchell, 1997]

e.g: spam filter

- task T ⇔ flag spam for new emails
- experience E ⇔ training data
- performance measure P ⇔ ratio of correctly classified emails (*accuracy*)

• Why use ML?

- Why use ML?
 - Machine Learning approach

- Why use ML?
 - Automatically adapting to change

• Why use ML?

Machine Learning can help humans learn

Machine Learning is great for

- Problems require a lot of hand-tuning or long lists of rules

 ⇒ ML algorithm can often simplify code & perform better.
- Complex problems, no good solution by using a traditional approach

 ⇒ ML techniques can find a solution.
- Fluctuating environments ⇒ ML system can adapt to new data.
- Getting insights about complex problems and large amounts of data.

Applications of ML

- Image Recognition
- Speech Recognition
- Sentiment Analysis
- Traffic prediction
- Product recommendations
- Self-driving cars
- Email Spam and Malware Filtering
- Medical Diagnosis
- Automatic Language Translation

•

CONTENTS

Introduction

Types of ML Systems

Challenges of ML

Testing & Validating

Many different types of ML systems, classify them in categories based on:

Supervised >< Unsupervised Learning

Batch >< Online Learning

Instance-Based >< Model-Based Learning

- Supervised >< Unsupervised Learning
 - ML systems can be classified according to the amount and type of supervision they get during training.
 - There are four major categories:
 - Supervised learning
 - Unsupervised learning
 - Semisupervised learning
 - Reinforcement Learning

Supervised

- Supervised learning: the training data you feed to the algorithm includes the desired solutions, called labels
- 2 types of supervised learning:
 - Regression
 - Classification
- Important supervised learning algorithms:
 - k-Nearest Neighbors
 - Linear Regression
 - Logistic Regression
 - Support Vector Machine (SVM)
 - Decision Trees and Random Forests
 - Neural networks

Unsupervised Learning

- Unsupervised learning: the training data is unlabeled (the system tries to learn without a teacher).
- Important Unsupervised learning algorithms:
 - Clustering: K-Means, DBSCAN, Hierarchical Cluster Analysis (HCA)
 - Anomaly detection and novelty detection: One-class SVM, Isolation Forest
 - Visualization and dimensionality reduction: Principal Component Analysis (PCA), Kernel PCA, Locally-Linear Embedding (LLE), t-distributed Stochastic Neighbor Embedding (t-SNE)
 - Association rule learning: Apriori, Eclat.

Unsupervised Learning

t-distributed Stochastic Neighbor Embedding (t-SNE)

Semisupervised learning

- Semisupervised learning: deal with partially labeled training data (usually a lot of unlabeled data & a little bit of labeled data)
- Most semisupervised learning algorithms are combinations of unsupervised & supervised algorithms.

For example:

- Deep Belief Networks (DBNs) are based on unsupervised components called Restricted Boltzmann Machines (RBMs).
- RBMs are trained sequentially in an unsupervised manner, and then the whole system is fine-tuned using supervised learning techniques.

Reinforcement Learning

- Reinforcement learning:
 - can observe the environment, select and perform actions, and get rewards in return (or penalties in the form of negative rewards)
 - then, system must learn by itself what is the best strategy to get the most reward over time.

CONTENTS

- Introduction
- Types of ML Systems
- Challenges of ML

Testing & Validating

Main Challenges of ML: 2 problems

- bad data
 - Insufficient Quantity of Training Data
 - Nonrepresentative Training Data
 - Poor-Quality Data
 - Irrelevant Features
- bad algorithm
 - Overfitting the Training Data
 - Underfitting the Training Data

The importance of data versus algorithms

CONTENTS

- Introduction
- Types of ML Systems
- Challenges of ML
- Testing & Validating

Testing

- Split data into 2 sets:
 - training set (for train model)
 - test set (for testing model)
- Evaluating model on the test set
 - ⇒ estimate of generalization error.
- If the training error is low but the generalization error is high
 - ⇒ model is overfitting the training data.

Validating

 Hold out part of the training set to evaluate several candidate models and select the best one. The new heldout set is called the validation set

SUMMARY

- Introduction
- Types of ML Systems
- Challenges of ML
- Testing & Validating

ĐẠI HỌC ĐÀ NẪNG

ĐẠI HỌC ĐA NANG TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

Nhân bản – Phụng sự – Khai phóng

Enjoy the Course...!