Prof. F. Ganazzoli II^a prova

POLITECNICO DI MILANO Scuola 3I Bovisa II prova in itinere – Fondamenti di Chimica – 13 gennaio 2023 A

(3 punti)

1. Considerare la reazione 2 SO₂ $(g) + O_2(g) \rightleftharpoons 2$ SO₃ (g) e spiegare come la si può accelerare, dandone una giustificazione se possibile anche tramite la teoria delle collisioni (o del complesso attivato).

R: La velocità di reazione è data da $v = k[SO_2]^{\alpha} [O_2]^{\beta}$, con ordini di reazione α , $\beta > 0$ da determinare sperimentalmente. Quindi v aumenta se aumenta la concentrazione dei reagenti. Un aumento di T aumenta v perché k aumenta secondo l'eq. di Arrhenius $k = A \exp(-E_a/RT)$. Un catalizzatore, che non viene consumato nella reazione (si recupera inalterato), accelera la reazione che segue una strada diversa con E_a minore. Secondo la teoria delle collisioni, l'aumento di concentrazione rende più frequenti gli urti molecolari, e l'aumento di T aumenta il numero di urti efficaci con $E > E_a$.

(3 punti)

- 2. Si effettua l'elettrolisi di una soluzione acquosa contenente AgNO₃ in concentrazione 1 M usando elettrodi inerti di grafite. a) Stabilire quali prodotti si ottengono ai due elettrodi. b) Determinare la quantità dei prodotti che si ottengono al catodo effettuando il processo per 2 h 30 min con una corrente di 2.0 A (come massa se solidi, e come volume a 25°C e 1 atm se gassosi).
- **R:** a) Al catodo (polo -) avviene la semireazione di riduzione Ag⁺ + e⁻ → Ag perché ha il potenziale standard di riduzione più alto (E° = 0.80 V), mentre all'anodo (polo +) avviene la semireazione di ossidazione 6 H₂O → O₂ + 4 H₃O⁺ + 4 e⁻ (l'acqua è l'unica specie che può ossidarsi). b) La carica totale passata nel circuito è di 2.0 A · 9000 s = 1.80 · 10⁴ C. Le moli di elettroni sono perciò 1.80 · 10⁴ C / 96480 C mol⁻¹ = 0.187 mol. La massa di Ag deposto è quindi 0.187 mol · 107.9 g mol⁻¹ = 20.1 g.

(4 punti)

- 3. Considerare la reazione $2 \text{ SO}_2(g) + \text{O}_2(g) \rightleftharpoons 2 \text{ SO}_3(g)$, e prevederne qualitativamente il calore svolto e la variazione di entropia standard, e disegnare il grafico di ΔG° in funzione di T. Stabilire poi il valore della K_{eq} a 500°C. Giustificare infine perchè nella combustione dello zolfo si forma solo SO_2 , anche in base al valore calcolato di K_{eq} .
- **R:** E' una combustione, quindi una reazione esotermica ($\Delta H^{\circ}_{reaz} < 0$), con diminuzione di moli gassose, quindi ordinante in cui l'entropia diminuisce ($\Delta S^{\circ}_{reaz} < 0$). Infatti: $\Delta H^{\circ}_{reaz} = 2 \Delta H^{\circ}_{f}$ [SO₃ (g)] 2 ΔH°_{f} [SO₂ (g)] = [2 · (-396) 2 · (-297)] kJ = -198 kJ; $\Delta S^{\circ}_{reaz} = 2 S^{\circ}_{f}$ [SO₃ (g)] (2 S°_{f} [SO₂ (g)] + S° [O₂ (g)] = (2 · 256 (2 · 248 + 205) J/K = -189 J/K. Da $\Delta G^{\circ} = \Delta H^{\circ} T \cdot \Delta S^{\circ}$ a 773 K si ha $\Delta G^{\circ} = -52$ kJ. Per cui, dato che $\Delta G^{\circ} = -RT$ ln K_{eq} si ha: $K_{eq} = exp(-\Delta G^{\circ}/RT) = exp[52000/(8.31 \cdot 773)] = 3.3 \cdot 10^{3}$. Si forma solo SO₂ per motivi cinetici, in quanto la reazione è molto lenta.

(4+2=6 punti)

- 4. **a)** Cosa avviene se si aggiunge $SO_3(g)$ ad una soluzione acquosa di ossido di calcio? **b)** Calcolare il pH di una soluzione acquosa 0.20 M di acido formico HCOOH ($K_a = 1.8 \cdot 10^{-4} \text{ mol / L}$)
- **R:** a) L'ossido di calcio CaO in acqua si comporta da base forte: $CaO + H_2O \rightarrow Ca(OH)_2 \rightarrow Ca^{2+} + 2 OH^-$, dando pH basico. L' SO₃ invece si comporta da acido forte: $SO_3 + H_2O \rightarrow H_2SO_4$; poi $H_2SO_4 + 2 H_2O \rightarrow 2 H_3O^+ + SO_4^{2-}$. Avviene perciò la reazione $H_3O^+ + OH^- = 2 H_2O$, spostata a destra, ed il pH quindi diminuisce. Inoltre, si forma anche $CaSO_4$ (s) \downarrow . b) In sol. acquosa: $HCOOH + H_2O = HCOO^- + H_3O^+$. Per cui $K_a = [HCOO^-] [H_3O^+] / [HCOOH] = x^2 / (0.2 x)$ $\approx x^2 / 0.2$, da cui $x = 6.0 \cdot 10^{-3} M$ e pH = 2.2.

Prof. F. Ganazzoli II^a prova

(4 punti

5. Il gas di città (o gas d'acqua) è prodotto con la reazione endotermica $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$. Stabilire se queste affermazioni sono vere o false, dandone una giustificazione: i) la reazione avviene con un aumento di entropia del sistema; ii) un aumento di pressione non cambia la quantità di idrogeno all'equilibrio; iii) con un aumento di temperatura si ha più idrogeno all'equilibrio; iv) con un aumento di temperatura si arriva prima all'equilibrio.

R: *i) Vero*: l'entropia aumenta per l'aumento delle moli gassose; *ii) Falso*: un aumento di pressione sposta l'equilibrio a sinistra, perchè così diminuisce il numero di moli gassose. *iii) Vero*: il processo è endotermico, per cui un aumento di T fa aumentare K_{eq}, quindi le moli di H₂. *iv) Vero*: un aumento di T accelera sempre una reazione, per cui l'equilibrio è raggiunto prima.

(4 punti)

- 6. Il calcare, essenzialmente CaCO₃ (*s*), è poco solubile in acqua. Scrivere l'espressione della sua costante del prodotto di solubilità, ed indicare come si può aumentare la solubilità di questo sale così da eliminarne le incrostazioni.
- **R:** In acqua la reazione è $CaCO_3(s) \rightleftharpoons Ca^{2+} + CO_3^{2-}$, per cui $K_{ps} = [Ca^{2+}][CO_3^{2-}]$. Dato che in acqua $CO_3^{2-} + H_2O \rightleftharpoons HCO_3^{-} + OH^-$, in cui si riforma l'acido debole HCO_3^{-} , si deve aggiungere un acido che sposta a destra i due equilibri consumando ioni OH^- . Aggiungo inoltre che con eccesso di acido avviene anche la reazione $HCO_3^{-} + H_2O \rightleftharpoons H_2CO_3 + OH^-$ spostata a destra, che forma quindi H_2CO_3 , il quale a sua volta libera $CO_2(g)$ e $H_2O(l)$.

(3 punti)

- 7. In un reattore, in cui è stato fatto il vuoto, vengono introdotte 4 moli di CO, 4 moli di H₂O, 3 mol di CO₂ e 3 mol di H₂. Per la reazione CO (g) + H₂O (g) = CO₂ (g) + H₂ (g) si ha K_p = 10 a 400 °C. Stabilire in che direzione prosegue la reazione, e calcolare la composizione all'equilibrio in moli ed il ΔG° della reazione.

Dato che il quoziente di reazione inizialmente vale $Q = (3 \text{ mol})^2 / (4 \text{ mol})^2 = 0.56 < K_p$, la reazione procede verso destra. All'eq.: $K_p = (3+x)^2 / (4-x)^2 = 10$, da cui: (3+x)/(4-x) = 3.162, ex = 2.32 mol. Perciò all'eq. si hanno 1.68 mol di CO e di H₂O, e 5.32 mol di CO₂ e H₂. Infine: $\Delta G^{\circ} = -RT \ln K_{eq} = -8.31 \left[J/(K \cdot mol) \right] \cdot 673 \text{ K} \cdot \ln 10 = -12.9 \text{ kJ/mol}$.

(4 punti)

- 8. **a)** Una pila è costituita da un semielemento standard ad idrogeno e dal semielemento Pb (*s*) / Pb²⁺ (0.01 M). Scrivere le semireazioni che avvengono, fare un disegno della pila e determinarne la polarità e la f.e.m. **b)** L'oro, il ferro e l'alluminio si comportano in modo diverso rispetto al fenomeno della comune corrosione: spiegare in che modo e perchè.
- **R:** a) Semireazioni: 2 H₃O⁺ + 2 e⁻ = H₂ + 2 H₂O E = E° = 0.00 V; Pb²⁺ + 2 e⁻ = Pb E = E°(Pb²⁺/Pb) + (0.059/2) log [Pb³⁺] = [-0.13 + (0.059/2) log 0.01] V = -0.19 V. Perciò il semielemento a idrogeno fa da polo + e Pb da polo -., e si ha f.e.m. = E°₊ E°₋ = 0.19 V. b) La corrosione dei metalli è legata alla semireazione O₂ + 4 H₃O⁺ + 4 e⁻ → 6 H₂O che a pH = 7 ha E = 0.82 V. L'oro non è quindi ossidato (ha E° (Au³⁺ / Au) = 1.50 V), al contrario di ferro e alluminio, dato che E° (Fe²⁺ / Fe) = -0.44 V ed E° (Al³⁺ / Al) = -1.66 V. Però l'alluminio si passiva grazie ad un film compatto ed aderente di Al₂O₃, mentre la ruggine (ossidi ed idrossidi di ferro) è porosa e poco aderente, per cui la corrosione del ferro avviene liberamente.