Construcción de un perfilador de haz portátil automático

Estudiante: Sebastián Schiavinato Director: Dr. Hernán E. Grecco Codirectora: Dr. Andrea V. Bragas

Laboratorio 6, DF, FCEyN, UBA

Noviembre 19, 2015

Objetivo del proyecto

Objetivos de laboratorio 6:

- Diseñar y construir un perfilador portátil y de fácil reproducción capaz de caracterizar el haz en diferentes setups ópticos.
- Diseñar y construir un espectrómetro portátil para aplicaciones del LEC, adaptado a los diferentes setups del laboratorio.

Motivación del proyecto

<u>Mucho</u> es el tiempo desperdiciado en el laboratorio armado y desarmando el setup, alineando cada etapa.

Caracterizar haces de fuentes conlleva

- Perfil espacial. Divergencia
- Perfil espectral y temporal
- Polarización

Concepto del perfilador

Funcionamiento general de un perfilador

- Se corta el haz con un filo móvil (en general con un tornillo micrométrico), recolectando el haz.
- Se usan sensores económicos, integradores del haz obturado.

Concepto del perfilador

Para haces gaussianos (la mayoría), el perfil de intensidades, es decir la integral del perfil, es la función error

Concepto del perfilador

Propuesta inicial:

- Tambor giratorio, capaz de obturar automáticamente
- Sensor de luz integrador, tipo fotodiodo o medidor de potencia
- Adquisición en tiempo real de los cambios del haz.

Premisas mecánicas del perfilador:

- Se debe poder insertar en el sistema Cage de ThorLabs, de 30mm. A 50mm de la mesa
- El tambor debe tener una velocidad que permita actualización en tiempo real.

Diseño del tambor

- Cilindro de 20mm de diametro
- Fácil de ubicar en el Cage
- Proyección axial, permite obturar el haz.
- Fácil prototipado con impresora 3D.

El motor se determinó con las siguientes premisas

- Debe ser fácil de controlar la velocidad. Descartados motores de escobillas, que requieren retroalimentación.
- Debe ser rápido, alcanzando 24 revoluciones por segundo si se puede. Descartado servomotores, no alcanzan las 2 revoluciones por segundo.

Se eligen motores paso a paso.

• Motor modelo NEMA 17 (1,8°, máx 3000PPS, 4kg cm).

- Diseño auto-portante, no se necesita ningún agregado.
- Permite adaptarse al Cage y a otros entornos de trabajo.
- Permite medir el haz en varias direcciones.

Diseño de electrónica de adquisición

Electrónica digital (microcontrolador) de uso general, adaptada a la adquisición de un sensor de luz (fotodiodo)

- Arduino UNO: Barato, sencillo. CPU 16MHz y 2KiB RAM. ADC a 10ksps.
- Teensy v3.1: CPU 96MHz, y 64KiB RAM. ADC a 1Msps. Tipicamente 100kmps.

Diseño de electrónica de adquisición

Circuito resultante, con integrado driver (Pololu A4988) del motor

- Permite mover motores hasta 2A por fase.
- Adquiere corriente del fotodiodo en resistencia variable por el usuario
- Adquiere 100ksps de la señal analogica.
- Permite adquirir a la velocidad máxima de 12RPS, limitación del motor, es decir adquirir 24 perfiles por segundo.

Analisis de datos

La computadora es encargada del análisis automático de los datos transmitidos. A partir de una serie de datos

Analisis de datos

Se ajusta automáticamente los datos con un algoritmo de procesamiento de señales propio.

- Tamaño del haz inferido del ajuste y la velocidad del motor, con el error de propagación
- Diferencia entre perfiles debido a problemas mecánicos de la pieza plástica.

Proyecto SOMA (Sistema de OptoMecánica Abierta)

- Plataforma abierta de instrumental opto-mecánico
- Diseño con énfasis en la reproducibilidad, con tecnología de impresora 3D o mecanizado automático.
- Electrónica libre, controlada por software creado con tecnologías libres.

Página del proyecto: http://lec.df.uba.ar/soma

A completar

- Mecanizado de las piezas metálicas
- Terminado final del perfilador
- Diseño y construcción del espectrómetro, a partir del circuito Hamammatsu C12666MA

Objetivos de Laboratorio 7

Estos dispositivos van a ser utilizados durante laboratorio 7 en los siguientes proyectos:

- Mejora de la resolución del SPIM mediante la optimización del perfil del haz
- Caracterización del espectro de emisión de nanolamparas de Lantánidos

Gracias