P20/17上机题 (用C++编写)

1 . 编写计算 $S_N = \frac{1}{2^2 - 1} + \frac{1}{3^2 - 1} + \dots + \frac{1}{N^2 - 1}$ 从大到小的程序

程序代码:

```
#include<iostream>
using namespace std;
int main()
{
    float sn=0;
    float n;
    while(cin >> n)
    {for(float i=2;i<=n;i++)
    {
        sn=sn+1/(i*i-1);
    }
    cout << "当 N="<<n<<",从大到小的值为"<<sn<< endl;sn=0;}
    return 0;
}
```

2 . 编写计算 $S_N = \frac{1}{N^2 - 1} + \frac{1}{(N-1)^2 - 1} + \dots + \frac{1}{2^2 - 1}$ 从小到大的程序

程序代码:

```
#include<iostream>
using namespace std;
int main()
{
    float sn=0;
    float n;
    while(cin >> n)
    {for(float i=n;i>=2;i--)
    {
        sn=sn+1/(i*i-1);
    }
        cout << "当 N="<<n<<",从小到大的值为"<<sn<< endl;sn=0;}
        return 0;
}
```

合并成总程序:

#include <cstdio>

```
using namespace std;
    int main()
    {
        float sn,snreal,sn1=0;
        float n;
        while(scanf("%f",&n)!=EOF)
        \{for(float i=n;i>=2;i--)\}
        {
             sn + = 1/(i*i-1);
        }
        for(float i=2; i <= n; i++)
        {
             sn1=sn1+1/(i*i-1);
        }
        snreal+=0.5*(1.5-(1/n)-1/(n+1));
             printf("当 N=%f, 从小到大的值为%.7f, 从大到小的值为%.7f, 真值
为%.7f",n,sn,sn1,snreal);
             sn=0;snreal=0;sn1=0;
        }
    }
```

3. 算 N=100,N=10000,N=1000000 时的值,指出有效位数。

从大到小:有效位数分别是 7、3、3。 从小到大:有效位数分别是 7、7、7。 注: C++中,采用单精度,**最大有效数字只能是7**,虽然可以存储大于7位数的有效数字,但已经丧失精度。

4 .

可见,采用从大到小的计算方式,随着 N 的增大,误差增大。(N 趋向于无穷会更明显)。这样的原因是由于"大数吃小数"的问题。由于存储是以单精度存储,也就意味着,如果一个大数加上一个小数时,很可能会忽略小数,而这种误差累计起来,将会很大!反过来,当先从小数加起,积累成一个较大的数,再与大数相加,就极有可能不损失任何的有效数了。

P56/20 上机题 牛顿迭代法 (用 C++编写)

1、编写 Newton 法通用根程序

程序代码:

```
#include <iostream>
#include <math.h>
using namespace std;
double f(double x)
    {
         double fx = pow(x,5) - 2*x*x + 6*x + 3;
         return fx;
    }
double df(double x)
    {
         double df=5*pow(x,4)-4*x+6;
         return df;
    }
int main()
    double x,x0,error,gap;
    printf("输入初值: ");
    scanf("%lf",&x);
    printf("输入误差: ");
    scanf("%lf",&error);
    x0=x:
    gap=10;
    while(gap>=error)
    x=x0-(f(x0)/df(x0));
    gap=abs(x-x0);
    x0=x;
    printf("牛顿法迭代值为%If",x);
```

```
return 0;
```

以 $f(x) = x^5 - 2x^2 + 6x + 3$ 为例,求得的 Newton 迭代值为-0.434492

2、确定尽可能大的 δ , 使得 $(-\delta, \delta)$ 间的初值均收敛在x = 0。

程序代码:

```
#include <iostream>
#include <math.h>
using namespace std;
double fx(double x)
   {
        double fx=pow(x,3)/3-x; //表达式
        return fx;
   }
double dfx(double x)
   {
        double df=x*x-1;
        return df;
   }
int main()
    double mm=1e-6; //为了探测到最大值,每次增长的速度
   double x,x0;
   x0=0;
                       //初值
   x=0;
   int i=0;
```

程序的思路是:由于原函数是奇函数,不妨令 x_k 的选择满足以下条件:

$$\begin{cases} x_{k+1} = x_k + \varepsilon \\ s.t. \ x_0 = 0, |x_k| \ge \left| x_k - \frac{f(x_k)}{f'(x_k)} \right| \end{cases}$$

运行结果:

由于函数是奇函数,所以这个区间的最小值 $-\delta$ 为-0.774597故($-\delta$, δ)为(-0.774597, 0.774597)。

- 3、判断函数初值选取在不同区间是否收敛以及收敛到哪个值
- (1) x_0 在 $(-\infty, -1)$ 上

收敛到-1.732

(2) x_0 在 (-1, -0.774597) 上

收敛到 1.732

(3) x_0 在 (-0.774597,0.774597) 上

收敛到0

(4) x₀ 在 (0.774597,1) 上

收敛到-1.732

(5) x_0 在 (1,+ ∞) 上

收敛到 1.732

得出的结论: Newton 迭代法对于初值的选择需要慎重(必须加以对图像的理解,知道根的大概区间)。上面的函数为什么会出现初值和迭代值相差过大的情况,是因为初值的切线会与远端的线相交。

P125/40 上机题 (用 MATLAB 编写)

1、编写解 n 阶线性方程组 Ax=b 的列主元 Gauss 消去法的通用程序。程序如下:

%% 定义初始矩阵,值可以随意更换

```
A=[2,-4,6;4,-9,2;1,-1,3]
```

b=[3;5;4]

T=[A,b]

%% 开始列主元,每次选定 n-i 列最大值,进行行调换,并且消去该列其他非零值。

n=length(b);

i=n-1;

k=i;

while(i ~= 0)

```
[maxnum,maxline] = max(T(:,n-i));
```

```
T([n-i maxline],:) = T([maxline n-i],:);
   while(k ~= 0 )
          T(n-k+1,:)=T(n-k+1,:)-T(n-i,:).*(T(n-k+1,n-i) / T(n-i,n-i));
          k=k-1;
   end
   i=i-1;
   k=i;
   Т
end
Т
%% 开始回代
xi=n;
j=xi;
while(xi ~= 0)
   X(xi)=T(xi,n+1);
   j=xi;
   while((n-j) \sim = 0)
      X(xi)=X(xi)-X(n-j+xi)*T(xi,n-j+xi);
       j=j+1;
   end
   X(xi)=X(xi)/T(xi,xi);
   xi=xi-1;
end
Χ
2、用程序解 RI=V, 打印出解向量, 保留五位有效数字。
%% 定义初始矩阵
A=[31,-13, 0,0,0,-10,0,0,0;
   -13,35,-9,0,-11,0,0,0,0;
   0,-9,31,-10,0,0,0,0,0;
   0,0,-10,79,-30,0,0,0,-9;
   0,0,0,-30,57,-7,0,-5,0;
   0,0,0,0,-7,47,-30,0,0;
   0,0,0,0,0,-30,41,0,0;
   0,0,0,0,-5,0,0,27,-2;
   0,0,0,-9,0,0,0,-2,29
b=[-15;27;-23;0;-20;12;-7;7;10]
T=[A,b]
%% 开始列主元,每次选定 n-i 列最大值,进行行调换,并且消去该列其他非零值。
n=length(b);
i=n-1;
```

```
k=i;
while(i ~= 0)
     [maxnum,maxline] = max(T(:,n-i));
    T([n-i maxline],:) = T([maxline n-i],:);
    while(k \sim= 0)
              T(n-k+1,:)=T(n-k+1,:)-T(n-i,:).*(T(n-k+1,n-i) / T(n-i,n-i));
              k=k-1;
    end
    i=i-1;
    k=i;
    Т
end
Т
%% 开始回代
xi=n;
j=xi;
while(xi ~= 0)
    X(xi)=T(xi,n+1);
    j=xi;
    while((n-j) \sim = 0)
         X(xi)=X(xi)-X(n-j+xi)*T(xi,n-j+xi);
         j=j+1;
    end
    X(xi)=X(xi)/T(xi,xi);
    xi=xi-1;
end
fprintf('X=\n')
fprintf('%.5f\r',X)
    结果:
            X(xi)=X(xi)/T(xi,xi);
     45
         end
     46
    47
         fprintf('X=\n')
   命令行窗口
       31.0000 -13.0000
                                     0 -10,0000
                                                                0 -15.0000
                                                                0 20.7097
                    -9.0000
                               0 -11.0000
                                        -4. 1935
                                                   0
           0
             29. 5484
                                                         0
                    28. 2587
                          -10.0000
                                 -3. 3504
                                        -1. 2773
                                                                  -16. 6921
                           79.0000
                          -30. 0000
                                 57. 0000
                                        -7.0000
                                                      -5. 0000
                                                                  -20.0000
                                 -7.0000
                                       47.0000
                                              -30,0000
                                                                  12.0000
                                                                   -7.0000
           0
                  0
                        0
                                     0 -30.0000
                                              41.0000
                                 -5. 0000
                                                  0
                                                     27. 0000
                                                            -2.0000
     -0.04520
     -0. 10778
      -0. 35387
```

```
-0.04520
-0.10778
-0.35387
-0.15844
X = [-0.30911]
0.11082
-0.04153
0.14439
0.20844
```

3、通过本次编程,我更加认识到了矩阵消去方法的强逻辑性,并且列主元方法可以适当减少不必要的误差。利用 Matlab,处理矩阵更加便捷。

P125/41 上机题 (用 MATLAB 编写)

1、编写 SOR 方法通用程序 程序如下:

```
A = [2,-1,1;2,-2,2;1,-1,3]
b = [3;5;4]
X = [9;9;2] %初值
            % 松弛因子
w = 1;
eps= 0.001;
error = 1;
U = triu(A,1)
L = tril(A, -1)
D = A-U-L
% 进行 SOR 迭代
while(error>eps)
   SW=(D+W*L)\setminus ((1-W)*D - W*U);
       if (vrho(sw)>=1) % 计算谱半径
          fprintf("SOR 无法收敛!")
          break
       end
   fw=w * (D+w*L)\b;
   xnew = sw*X+fw;
   error=max(abs(xnew-X));
   X=xnew;
end
   Х
```

```
代码如下:
A=[31,-13, 0,0,0,-10,0,0,0;
   -13,35,-9,0,-11,0,0,0,0;
   0,-9,31,-10,0,0,0,0,0;
   0,0,-10,79,-30,0,0,0,-9;
   0,0,0,-30,57,-7,0,-5,0;
   0,0,0,0,-7,47,-30,0,0;
   0,0,0,0,0,-30,41,0,0;
   0,0,0,0,-5,0,0,27,-2;
   0,0,0,-9,0,0,0,-2,29
   ];
b=[-15;27;-23;0;-20;12;-7;7;10];
X = [0;0;0;0;0;0;0;0]; %初值
w = 1/50;
               % 松弛因子
eps= 0.5e-5;
error = 1;
U = triu(A,1);
L = tril(A, -1);
D = A-U-L;
i=1;
% 进行 SOR 迭代
while(i<=99)</pre>
   diedainum=0;
   w=i/50;
   while(error>eps)
       SW=(D+W*L)\setminus ((1-W)*D - W*U);
           if (vrho(sw)>=1) % 计算谱半径
           fprintf("SOR 无法收敛!")
           break
           end
       fw=w * (D+w*L)\b;
       xnew = sw*X+fw;
       error=max(abs(xnew-X));
       X=xnew;
       diedainum=diedainum+1;
   end
answer(i,1)=w;
answer(i,2)=diedainum;
i=i+1;
error=1;
end
```

松弛因子ω				
0.020000000000000	2181			
0.04000000000000	1115			
0.060000000000000	663			
0.080000000000000	460			
0.10000000000000	346			
0.12000000000000	274			
0.1400000000000	225			
0.16000000000000	189			
0.18000000000000	162			
0.2000000000000	141			
0.2200000000000	124			
0.2400000000000	110			
0.26000000000000	99			
0.28000000000000	89			
0.30000000000000	81			
0.32000000000000	74			
0.34000000000000	68			
0.360000000000000	62			
0.38000000000000	58			
0.40000000000000	54			
0.42000000000000	50			
0.44000000000000	47			
0.46000000000000	44			
0.48000000000000	41			
0.50000000000000	38			
0.52000000000000	36			
0.54000000000000	34			
0.56000000000000	32			
0.58000000000000	30			
0.600000000000000	29			
0.62000000000000	27			
0.640000000000000	26			
0.66000000000000	25			
0.68000000000000	23			
0.70000000000000	22			
0.72000000000000	21			
0.74000000000000	20			
0.76000000000000	19			
0.78000000000000	18			
0.80000000000000	18			

0.82000000000000	17
0.84000000000000	16
0.86000000000000	15
0.8800000000000	15
0.90000000000000	14
0.92000000000000	13
0.94000000000000	13
0.96000000000000	12
0.98000000000000	12
1	11
1.0200000000000	11
1.0400000000000	10
1.0600000000000	10
1.0800000000000	9
1.1000000000000	9
1.1200000000000	9
1.1400000000000	9
1.1600000000000	8
1.1800000000000	8
1.2000000000000	8
1.2200000000000	8
1.2400000000000	9
1.2600000000000	9
1.2800000000000	9
1.3000000000000	9
1.3200000000000	9
1.3400000000000	10
1.3600000000000	11
1.3800000000000	11
1.4000000000000	11
1.4200000000000	12
1.4400000000000	12
1.4600000000000	12
1.4800000000000	14
1.5000000000000	14
1.5200000000000	15
1.5400000000000	15
1.5600000000000	17
1.5800000000000	18
1.6000000000000	18
1.6200000000000	20
1.6400000000000	21
1.6600000000000	23
1.0000000000	

1.6800000000000	26
1.7000000000000	27
1.7200000000000	31
1.7400000000000	34
1.7600000000000	39
1.7800000000000	45
1.8000000000000	52
1.8200000000000	63
1.8400000000000	84
1.8600000000000	118
1.8800000000000	204
1.9000000000000	795
1.9200000000000	
1.9400000000000	- - 无法收敛!
1.9600000000000	7
1.9800000000000	

最佳的松弛因子 ω^* 在[1.16-1.22]间,当再降低误差允许范围时,可以发现是 ω^* =1.18.

-0.2077 0.2481 -0.5119 -0.1584 解向量为: X = [-0.3091] 0.1108

-0.0415 0.1444 0.2084

P155/39 上机题 (用 MATLAB 编写)

1、求第一型三次样条插值函数的通用程序 程序如下: x=[1,2,4,5]; lex=length(x); y=[1,3,4,2]; h = [0];

dy = [1,-1]; % 第一型条件,分别为区间两侧的一阶导数值

chashang2 = [0]; %1 阶差商 chashang3 = [0]; %2 阶差商

% 求参数 lamda, miu

miu = [0];

for i=1:lex-1
 h(i)=x(i+1)-x(i);
end

```
for i=1:length(h)-1
   miu(i)=h(i)/(h(i)+h(i+1));
end
lamda = 1 -miu;
% 求1阶差商
for i=1:lex-1
   chashang2(i)=(y(i+1)-y(i))/(x(i+1)-x(i));
end
% 求 2 阶差商
chashang3(1)=(chashang2(1)-dy(1)) / (x(2)-x(1));
chashang3(lex)=(dy(2)-chashang2(lex-1)) / (x(lex)-x(lex-1));
for i=2:lex-1
   chashang3(i)=(chashang2(i)-chashang2(i-1)) / (x(i+1)-x(i-1));
end
d=6*chashang3; % D矩阵求得!
% 定义 A 矩阵
A(1,1)=2;
A(1,2)=1;
A(lex, lex)=2;
A(lex,lex-1)=1;
for i=2:lex-1
   A(i,i-1)=miu(i-1);
   A(i,i)=2;
   A(i,i+1)=lamda(i-1);
end
% A矩阵构建完毕 AM=d,求M即可!
M=A\(d');
k=input('请输入要求的点 x=: \n');
%确定输入值的上下界
for i=1:lex
   if x(i)>k
       index1=i-1;
       break;
```

```
end
```

end

```
sx=y(index1)+(chashang2(index1)-((1/3)*M(index1)+(1/6)*M(index1+1))*
h(index1) )*(k-x(index1));
sx=sx+(1/2)*(M(index1)*(k-x(index1)))^2;
sx=sx+(1/(6*h(index1)))*(M(index1+1)-M(index1))*(k-x(index1))^3;
sx
2、 求汽车门曲线型值点的三次样条插值函数,并打印出 S(i+0.5), i=0,1,...,9
程序如下:
x=[0,1,2,3,4,5,6,7,8,9,10];
lex=length(x);
y=[2.51,3.30,4.04,4.70,5.22,5.54,5.78,5.40,5.57,5.70,5.80];
h = [0];
miu = [0];
dy = [0.8, 0.2]; % 第一型条件,分别为区间两侧的一阶导数值
chashang2 = [0]; %1 阶差商
chashang3 = [0]; %2 阶差商
% 求参数 lamda, miu
for i=1:lex-1
   h(i)=x(i+1)-x(i);
end
for i=1:length(h)-1
   miu(i)=h(i)/(h(i)+h(i+1));
end
lamda = 1 -miu;
% 求1阶差商
for i=1:lex-1
   chashang2(i)=(y(i+1)-y(i))/(x(i+1)-x(i));
end
% 求 2 阶差商
chashang3(1)=(chashang2(1)-dy(1)) / (x(2)-x(1));
chashang3(lex)=(dy(2)-chashang2(lex-1)) / (x(lex)-x(lex-1));
for i=2:lex-1
   chashang3(i)=(chashang2(i)-chashang2(i-1)) / (x(i+1)-x(i-1));
end
```

```
d=6*chashang3; % D矩阵求得!
% 定义 A 矩阵
A(1,1)=2;
A(1,2)=1;
A(lex, lex)=2;
A(lex,lex-1)=1;
for i=2:lex-1
   A(i,i-1)=miu(i-1);
   A(i,i)=2;
   A(i,i+1)=lamda(i-1);
end
% A矩阵构建完毕 AM=d,求M即可!
M=A\(d');
p=1;
% 确定输入值的上下界
for r=0.5:9.5
   for i=1:lex
       if x(i)>r
           index1=i-1;
           break;
       end
   end
sx=y(index1)+(chashang2(index1)-((1/3)*M(index1)+(1/6)*M(index1+1))*
h(index1) )*(r-x(index1));
sx=sx+(1/2)*(M(index1)*(r-x(index1)))^2;
sx=sx+(1/(6*h(index1)))*(M(index1+1)-M(index1))*(r-x(index1))^3;
sxall(p)=sx;
p=p+1;
end
sxall
汇总如下:
S(0.5)
       S(1.5)
               S(2.5)
                      S(3.5)
                              S(4.5)
                                      S(5.5)
                                             S(6.5)
                                                     S(7.5)
                                                            S(8.5)
                                                                    S(9.5)
                      5.0023
2.9089
       3.6855
               4.3923
                              5.4419
                                      5.6976
                                             5.9749
                                                     5.4679
                                                             5.7215
                                                                    5.7366
```

第五章上机题(用 MATLAB 编写)

用 Romberg 积分算法估计 $\int_{-1}^{1} \frac{1}{1+100x^2} dx$, $\varepsilon \le 0.5 \times 10^{-7}$

```
程序如下:
i=1; %循环次数
n=1; %等分区间 2^(i-1)=n
h=1-(-1);
eps=0.5e-7;
while i>0
   T(i)=((h/2^{(i-1)})/2)*(fx(-1)+fx(1));
   hh=2/2^{(i-1)};
   n=2^{(i-1)};
   for k=-1+hh:hh:1-hh
   T(i)=T(i)+((h/2^{(i-1)})/2)*(2*fx(k));
   end
   if(i>1)
       S(i-1)=(4/3)*T(i)-(1/3)*T(i-1);
   end
   if(i>2)
       C(i-2)=(16/15)*S(i-1)-(1/15)*S(i-2);
   end
```

```
if(i>3)
    R(i-3)=(64/63)*C(i-2)-(1/63)*C(i-3);
end

if(i>4)
    if abs( R(i-3)-R(i-4) )/255 <eps
        break;
    end
end

i=i+1;
end
fprintf('romberg 估计值为%6.7f\n',R(i-3))</pre>
```

得到如下结果:

n	T(f)	S(f)	C(f)	R(f)
1	0.01980198	1.33993399	0.32444782	0.27711803
2	1.0099009	0.387915714	0.27785756	0.28111937
4	0.54341203	0.284736200	0.28106840	0.29385002
8	0.349405158	0.281297643	0.29365031	0.29431613
16	0.298324521	0.292878268	0.29430573	0.29422487
32	0.294239831	0.294216516	0.29422613	0.29422552
64	0.294222344	0.294225534	0.29422553	
128	0.294224737	0.294225534		
256	0.294225335			

故
$$\int_{-1}^{1} \frac{1}{1+100x^2} dx = R_{32}(f) = 0.29422552$$
。

第六章上机题(用 MATLAB 编写)

```
程序如下:
函数:
function [output] = fx(x,y)
output=-x^2*y^2;
end
RK4:
% #RK4
xmin=0; %定义 x 的取值范围
xmax=1.5;
```

```
h=0.1; %区间大小
y(1)=3;%给定 y 初值
yi=y(1);%设定 xi,yi 初值
xi=xmin;
i=0;
while(xi<=xmax)
k1=fx(xi,yi);
k2=fx(xi+0.5*h,yi+0.5*h*k1);
k3=fx(xi+0.5*h,yi+0.5*h*k2);
k4=fx(xi+h,yi+h*k3);
y(i+1)=yi+(h/6)*(k1+2*k2+2*k3+k4);
yi=y(i+1);
i=i+1;
xi=xi+h;
```

end

	Х	0.1	0.2	0.3	0.4	0.5	0.6	0.7
3	结	2.9970028	2.9761900	2.9211287	2.8195472	2.6666634	2.4671002	2.2337991
	果							

0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
1.98412	1.73510	1.50000	1.28701	1.09972	0.938397	0.801300	0.685732
28	71	58	25	21	45	42	08

```
AB4(Adams 显式)
% #AB4
xmin=0; %定义 x 的取值范围
xmax=1.5;
h=0.1;
         %区间大小
y(1)=3;%给定 y 初值
yi=y(1);%设定 xi,yi 初值
xi=xmin;
i=0;
while(i<=3)</pre>
   k1=fx(xi,yi);
   k2=fx(xi+0.5*h,yi+0.5*h*k1);
   k3=fx(xi+0.5*h,yi+0.5*h*k2);
   k4=fx(xi+h,yi+h*k3);
   y(i+1)=yi+(h/6)*(k1+2*k2+2*k3+k4);
   yi=y(i+1);
   i=i+1;
   xi=xi+h;
```

```
end
while(i>=4 && xi<=xmax)
    k1=fx(xi,y(i));
    k2=fx(xi-h,y(i-1));
    k3=fx(xi-2*h,y(i-2));
    k4=fx(xi-3*h,y(i-3));
    y(i+1)=yi+(h/24)*(55*k1-59*k2+37*k3+-9*k4);
    yi=y(i+1);
    i=i+1;</pre>
```

xi=xi+h;

end

>		0.1	0.2	0.3	0.4	0.5	0.6	0.7
丝	吉	2.9970028	2.9761900	2.9211287	2.8195472	2.6655910	2.4660975	2.2337496
5	艮							

0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
1.98552	1.73744	1.50252	1.28897	1.10091	0.938811	0.801245	0.685377
58	54	99	58	28	98	36	31

```
AB4-AM4(Adams 预测校正)
% #AB4-AM4
xmin=0;%定义x的取值范围
xmax=1.5;
h=0.1;
        %区间大小
y(1)=3;%给定 y 初值
yi=y(1);%设定 xi,yi 初值
xi=xmin;
i=0;
while(i<=3)</pre>
   k1=fx(xi,yi);
   k2=fx(xi+0.5*h,yi+0.5*h*k1);
   k3=fx(xi+0.5*h,yi+0.5*h*k2);
   k4=fx(xi+h,yi+h*k3);
   y(i+1)=yi+(h/6)*(k1+2*k2+2*k3+k4);
   yi=y(i+1);
   i=i+1;
   xi=xi+h;
while(i>=4 && xi<=xmax)</pre>
   k1=fx(xi,y(i));
   k2=fx(xi-h,y(i-1));
   k3=fx(xi-2*h,y(i-2));
```

```
k4=fx(xi-3*h,y(i-3));

y(i+1)=yi+(h/24)*(55*k1-59*k2+37*k3+-9*k4);

k5=fx(xi+h,y(i+1));

y(i+1)=yi+(h/24)*(9*k5+19*k1-5*k2+k3); %预测-校正

yi=y(i+1);

i=i+1;

xi=xi+h;

end
```

enu

х	0.1	0.2	0.3	0.4	0.5	0.6	0.7
结	2.9970028	2.9761900	2.9211287	2.8195472	2.6667593	2.4671523	2.2336497
果							

0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
1.98372	1.73455	1.49947	1.28663	1.09951	0.938328	0.801316	0.685788
22	81	91	00	33	08	83	39

改进 AB4-AM4(使用 Richardson 外推改进 Adams 预测校正)

```
% #AB4-AM4++
xmin=0; %定义 x 的取值范围
xmax=1.5;
h=0.1;
        %区间大小
y(1)=3;%给定 y 初值
yi=y(1);%设定 xi,yi 初值
xi=xmin;
i=0;
while(i<=3)</pre>
   k1=fx(xi,yi);
   k2=fx(xi+0.5*h,yi+0.5*h*k1);
   k3=fx(xi+0.5*h,yi+0.5*h*k2);
   k4=fx(xi+h,yi+h*k3);
   y(i+1)=yi+(h/6)*(k1+2*k2+2*k3+k4);
   yi=y(i+1);
   i=i+1;
   xi=xi+h;
end
while(i>=4 && xi<=xmax)</pre>
   k1=fx(xi,y(i));
   k2=fx(xi-h,y(i-1));
   k3=fx(xi-2*h,y(i-2));
   k4=fx(xi-3*h,y(i-3));
   yp=yi+(h/24)*(55*k1-59*k2+37*k3+-9*k4);
   k5=fx(xi+h,yp);
```

```
y(i+1)=yi+(h/24)*(9*k5+19*k1-5*k2+k3);
y(i+1)=(251/270)*y(i+1)+(19/270)*yp; %改进
yi=y(i+1);
i=i+1;
xi=xi+h;
```

end

х	0.1	0.2	0.3	0.4	0.5	0.6	0.7
结	2.9970028	2.9761900	2.9211287	2.8195472	2.6666771	2.4670663	2.2336573
果							

0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
1.98386	1.73479	1.49972	1.28681	1.09961	0.938362	0.801308	0.685758
48	28	05	23	56	87	11	07

对比各方法:

各方法的局部截断误差如下:

真值	2.997002997	2.97619	2.92113	2.819549	2.666667	2.467105263	2.233805	1.984127	1.735107	1.5	1.287001	1.099707	0.93838	0.801282	0.685714
RK4	1.87138E-07	3.92E-07	7.58E-07	1.61E-06	3.18E-06	5.00551E-06	5.77E-06	4.13E-06	1.16E-07	5.81E-06	1.13E-05	1.54E-05	1.77E-05	1.84E-05	1.78E-05
AB4	1.87138E-07	3.92E-07	7.58E-07	1.61E-06	0.001076	0.001007749	5.53E-05	0.001399	0.002338	0.00253	0.001975	0.001206	0.000432	3.67E-05	0.000337
AB4-AM4	1.87138E-07	3.92E-07	7.58E-07	1.61E-06	9.27E-05	4.70742E-05	0.000155	0.000405	0.000549	0.000521	0.000371	0.000193	5.16E-05	3.48E-05	7.41E-05
AB4-AM4改进	1.87138E-07	3.92E-07	7.58E-07	1.61E-06	1.05E-05	3.88998E-05	0.000148	0.000262	0.000314	0.000279	0.000189	9.11E-05	1.69E-05	2.61E-05	4.38E-05

可见,对 AB4 进行改进后,误差得到了显著减少,AB4-AM4 结合了显式方法的方便性和隐式方法的精度更高的特点,而 Richardson 外推使得精度更高了一阶。RK4 方法的精度最高。