

Dipartimento di Matematica e Informatica Anno Accademico 2016-2017

Corso di Laurea in Informatica (L-31)

Prova scritta per i corsi di Analisi Matematica (MAT/05) di **6 CFU** 3 Luglio 2017

Tempo a disposizione. 120 minuti.

 $\boxed{\mathbf{1}}$ Sia data la successione numerica reale $(a_n)_{n\in\mathbb{N}}$, dove

$$a_n = \frac{1}{\sqrt{n^n}} \max_{x \in [0, +\infty[} x^n e^{-x^2}.$$

- (a) Studiare la monotonia di $(a_n)_{n \in \mathbb{N}}$.
- (b) Calcolare, se esiste,

$$\lim_{n\to+\infty}a_n$$
.

2 Determinare l'insieme di definizione della funzione reale di variabile reale definita dalla legge

$$f(x) = \frac{\sup_{n \in \mathbb{N}} \left(n^{\log_3(x-1)-2} \right)}{\inf_{n \in \mathbb{N}} \left(n^{\log_2(x-1)+2} \right)} \sqrt{\frac{\pi^{x^2-5x+7} - \pi}{\left(\frac{1}{\pi}\right)^{x^2+2} + \pi}}.$$

 $oxed{3}$ Sia data la funzione $f:\mathbb{R} o \mathbb{R}$ definita dalla legge

$$f(x) = x^{2017} + 7x^3 + 3x - 5.$$

- Provare che l'equazione f(x) = 0 ammette una ed una sola radice reale e che essa è positiva.
- ullet Determinare il minimo e il massimo assoluti della funzione $g:[0,1]
 ightarrow \mathbb{R}$ definita dalla legge

$$g(x) = \pi^{f(x)}.$$

4 Sia data la funzione reale di variabile reale definita dalla legge

$$f(x) = \frac{x^2 - 2x - 1}{x} e^{-\frac{1}{x}}.$$

Studiare f e tracciarne il grafico.

3 Luglio 2017

Svolgimento della prova scritta (6 CFU)

Sia $n \ge 1$ e sia $f: [0, +\infty[\to \mathbb{R}$ la funzione definita dalla legge $f(x) = x^n e^{-x^2}$. Per ogni $x \in [0, +\infty[$ si ha

$$f'(x) = x^{n-1}e^{-x^2}(n-2x^2).$$

Da ciò segue che f'(x) > 0 per ogni $x \in]0, \sqrt{\frac{n}{2}}[$ e f'(x) < 0 per ogni $x \in]\sqrt{\frac{n}{2}}, +\infty[$. Ciò implica che la funzione continua f è strettamente crescente in $[0, \sqrt{\frac{n}{2}}]$ e strettamente decrescente in $[\sqrt{\frac{n}{2}}, +\infty[$. Di conseguenza:

$$a_n = \frac{1}{\sqrt{n^n}} \max_{x \in [0, +\infty[} f(x) = \frac{1}{\sqrt{n^n}} f\left(\sqrt{\frac{n}{2}}\right) = (2e)^{-\frac{n}{2}}.$$

- Evidentemente la successione $(a_n)_{n\in\mathbb{N}}$ è strettamente decrescente.
- Si ha subito che

$$\lim_{n\to+\infty}a_n=0$$

2 Bisogna imporre le seguenti condizioni:

$$\begin{cases} \sup_{n \in \mathbb{N}} \left(n^{\log_3(x-1)-2} \right) \in \mathbb{R} \\ \inf_{n \in \mathbb{N}} \left(n^{\log_2(x-1)+2} \right) \in \mathbb{R} \\ \inf_{n \in \mathbb{N}} \left(n^{\log_2(x-1)+2} \right) \neq 0 \\ \frac{\pi^{x^2 - 5x + 7} - \pi}{\left(\frac{1}{\pi}\right)^{x^2 + 2} + \pi} \ge 0 \end{cases}$$

Tale sistema equivale al seguente:

$$\begin{cases} \sup_{n \in \mathbb{N}} \left(n^{\log_3(x-1)-2} \right) \in \mathbb{R} \\ \inf_{n \in \mathbb{N}} \left(n^{\log_2(x-1)+2} \right) \in \mathbb{R} \setminus \{0\} \\ \frac{\pi^{x^2 - 5x + 7} - \pi}{\left(\frac{1}{\pi}\right)^{x^2 + 2} + \pi} \ge 0 \end{cases}.$$

La prima condizione equivale a richiedere che

$$\sup_{n\in\mathbb{N}}\left(n^{\log_3(x-1)-2}\right)=1$$

e ciò si realizza se e solo se $\log_3(x-1)-2 \leq 0$ cioè se e solo se

$$\begin{cases} x - 1 > 0 \\ x - 1 \le 8 \end{cases}$$

da cui si trova che la prima condizione è verificata se e solo se $x \in]1,9]$.

La seconda condizione equivale a richiedere che

$$\inf_{n \in \mathbb{N}} \left(n^{\log_2(x-1)+2} \right) = 1$$

e ciò si realizza se e solo se $log_2(x-1) + 2 \ge 0$ cioè se e solo se

$$\begin{cases} x - 1 > 0 \\ x - 1 \ge \frac{1}{4} \end{cases}$$

da cui si trova che la prima condizione è verificata se e solo se $x \in \left[\frac{5}{4}, +\infty\right]$.

Infine, la terza condizione equivale a richiedere che $\pi^{x^2-5x+7} - \pi \ge 0$ da cui $x^2-5x+6 \ge 0$ e quindi $x \le 2 \lor x \ge 3$.

Complessivamente, il sistema originario equivale al seguente:

$$\begin{cases} 1 < x \le 9 \\ x \ge \frac{5}{4} \\ x \le 2 \lor x \ge 3 \end{cases}.$$

Concludendo, si ha:

3

$$\mathscr{D}_f = \left[\frac{5}{4}, 2\right] \cup [3, 9].$$

ullet La funzione f è continua e derivabile in $\mathbb R$. Avendosi

$$\lim_{x\to\pm\infty}f(x)=\pm\infty,$$

per il Teorema dei valori intermedi, esiste $\overline{x} \in \mathbb{R}$ tale che $f(\overline{x}) = 0$. Proviamo che un siffatto \overline{x} è unico. Basta osservare che

$$f'(x) = 2017x^{2016} + 21x^2 + 3 > 0 \qquad \forall x \in \mathbb{R},$$

dunque f è strettamente monotona in \mathbb{R} e quindi biiettiva.

Osserviamo, infine, che f soddisfa le ipotesi del Teorema di esistenza degli zeri nell'intervallo [0,1] poiché essa è ivi continua e inoltre f(0)=-5<0 e f(1)=6>0. Pertanto, alla luce di quanto detto sopra, necessariamente deve aversi $\overline{x}\in]0,1[$ e quindi l'unica radice dell'equazione f(x)=0 è positiva.

• La funzione f è monotona strettamente crescente in [0,1] così come la funzione $t\mapsto \pi^t$. Per composizione, dunque, la funzione g è monotona strettamente crescente in [0,1]. Essendo inoltre continua in [0,1], per il Teorema di Weierstrass, g ammette minimo e massimo assoluti in [0,1] e si ha

$$\min_{x \in [0,1]} g(x) = g(0) = \pi^{-5}, \qquad \max_{x \in [0,1]} g(x) = g(1) = \pi^{6}.$$

Osservazione. Si può escludere immediatamente che l'unica radice dell'equazione f(x) = 0 sia negativa poiché se x < 0 si ha f(x) < 0 in quanto è somma di numeri negativi.

4 Insieme di definizione. Si vede subito che

$$\mathscr{D}_f =]-\infty,0[\cup]0,+\infty[.$$

Segno. Risolvendo, ad esempio, la disequazione f(x) > 0 in \mathcal{D}_f , si trova che:

$$f(x) > 0 \Leftrightarrow 1 - \sqrt{2} < x < 0 \lor x > 1 + \sqrt{2}$$
,

$$f(x) = 0 \quad \Leftrightarrow \quad x = 1 \pm \sqrt{2},$$

$$f(x) < 0 \quad \Leftrightarrow \quad x < 1 - \sqrt{2} \lor 0 < x < 1 + \sqrt{2}.$$

Comportamento di f agli estremi di \mathcal{D}_f . Si ha:

$$\lim_{x \to \pm \infty} f(x) = \pm \infty, \qquad \lim_{x \to 0^{-}} f(x) = +\infty.$$

Infine, usando la gerarchia degli infiniti, otteniamo

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -(x^2 - 2x - 1) \frac{-\frac{1}{x}}{e^{-\frac{1}{x}}} = 0.$$

Potrebbero esistere asintoti obliqui. Esaminiamo dapprima l'eventuale esistenza dell'asintoto obliquo destro. Esso, se esiste, avrà una equazione del tipo y = mx + k. Si ha:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = 1,$$

$$k = \lim_{x \to +\infty} [f(x) - mx] = \lim_{x \to +\infty} \left[\frac{x^2 - 2x - 1}{x} e^{-\frac{1}{x}} - x \right]$$

$$= \lim_{x \to +\infty} \left[x \left(1 - \frac{2}{x} - \frac{1}{x^2} \right) e^{-\frac{1}{x}} - x \right]$$

$$= \lim_{x \to +\infty} x \left[\left(1 - \frac{2}{x} - \frac{1}{x^2} \right) e^{-\frac{1}{x}} - \left(1 - \frac{2}{x} - \frac{1}{x^2} \right) + \left(1 - \frac{2}{x} - \frac{1}{x^2} \right) - 1 \right]$$

$$= \lim_{x \to +\infty} \left[-\left(1 - \frac{2}{x} - \frac{1}{x^2} \right) \frac{e^{-\frac{1}{x}} - 1}{-\frac{1}{x}} + x - 2 - \frac{1}{x} - x \right]$$

$$= 1 \quad 2 = 3$$

Quindi l'asintoto obliquo destro ha equazione y = x - 3. Alla luce dei conti svolti, si vede che la retta di equazione y = x - 3 è pure asintoto obliquo sinistro per il grafico di f.

Monotonia di f. Per ogni $x \in \mathcal{D}_f$ si ha:

$$f'(x) = \frac{(2x-2)x - (x^2 - 2x - 1)}{x^2} e^{-\frac{1}{x}} + \frac{x^2 - 2x - 1}{x} \frac{1}{x^2} e^{-\frac{1}{x}}$$

$$= \frac{2x^3 - 2x^2 - x^3 + 2x^2 + x + x^2 - 2x - 1}{x^3} e^{-\frac{1}{x}}$$

$$= \frac{x^3 + x^2 - x - 1}{x^3} e^{-\frac{1}{x}}$$

$$= \frac{x^2(x+1) - (x+1)}{x^3} e^{-\frac{1}{x}}$$

$$= \frac{(x+1)^2(x-1)}{x^3} e^{-\frac{1}{x}}.$$

Studiando il segno di f' si trova che f è crescente in $]-\infty,0[$ e in $[1,+\infty[$ e f è decrescente in]0,1[. In x=1 si ha un minimo relativo (non assoluto) di coordinate $M(1,f(1))\equiv (1,-2\mathrm{e}^{-1})$. Nel punto x=-1 si ha un flesso a tangente orizzontale.

Concavità e convessità di f. Per ogni $x \in \mathcal{D}_f$ si ha:

$$f''(x) = \frac{(3x^2 + 2x - 1)x^3 - (x^3 + x^2 - x - 1)3x^2}{x^6} e^{-\frac{1}{x}} + \frac{x^3 + x^2 - x - 1}{x^3} \frac{1}{x^2} e^{-\frac{1}{x}}$$

$$= \left[\frac{(3x^2 + 2x - 1)x - 3(x^3 + x^2 - x - 1)}{x^4} + \frac{x^3 + x^2 - x - 1}{x^5} \right] e^{-\frac{1}{x}}$$

$$= \frac{3x^2 + 2x - 1}{x^5} e^{-\frac{1}{x}}$$

$$= \frac{(x + 1)(3x - 1)}{x^5} e^{-\frac{1}{x}}.$$

Studiando il segno di f'' si trova che f è convessa in]-1,0[e in $]\frac{1}{3},+\infty[$ ed è concava in $]-\infty,-1[$ e in $]0,\frac{1}{3}[$. In $x=\frac{1}{3}$ si localizza un punto di flesso e, come visto precedentemente, in x=-1 si ha un punto di flesso a tangente orizzontale.

Grafico di f. Nella figura seguente è riportato il grafico di f.

Dipartimento di Matematica e Informatica Anno Accademico 2016-2017

Corso di Laurea in Informatica (L-31)

Prova scritta per i corsi di Analisi Matematica (MAT/05) di **9 CFU** 3 Luglio 2017

Tempo a disposizione. 120 minuti.

 $\boxed{\mathbf{1}}$ Sia data la successione numerica reale $(a_n)_{n\in\mathbb{N}}$, dove

$$a_n = \frac{1}{\sqrt{n^n}} \max_{x \in [0, +\infty[} x^n e^{-x^2}.$$

- (a) Studiare la monotonia di $(a_n)_{n \in \mathbb{N}}$.
- (b) Calcolare, se esiste,

$$\lim_{n\to+\infty}a_n.$$

2 Determinare l'insieme di definizione della funzione reale di variabile reale definita dalla legge

$$f(x) = \frac{\sup_{n \in \mathbb{N}} \left(n^{\log_3(x-1)-2} \right)}{\inf_{n \in \mathbb{N}} \left(n^{\log_2(x-1)+2} \right)} \sqrt{\frac{\pi^{x^2-5x+7} - \pi}{\left(\frac{1}{\pi}\right)^{x^2+2} + \pi}}.$$

3 Sia data la funzione reale di variabile reale definita dalla legge

$$f(x) = \frac{x^2 - 2x - 1}{x} e^{-\frac{1}{x}}.$$

Studiare f e tracciarne il grafico.

4 Calcolare il seguente integrale indefinito:

$$\int \frac{1}{\sin^2 x} \ln \left(1 + \frac{1}{\tan^2 x} \right) \mathrm{d}x$$

3 Luglio 2017

Svolgimento della prova scritta (9 CFU)

Sia $n \ge 1$ e sia $f: [0, +\infty[\to \mathbb{R}$ la funzione definita dalla legge $f(x) = x^n e^{-x^2}$. Per ogni $x \in [0, +\infty[$ si ha

$$f'(x) = x^{n-1}e^{-x^2}(n-2x^2).$$

Da ciò segue che f'(x) > 0 per ogni $x \in]0, \sqrt{\frac{n}{2}}[$ e f'(x) < 0 per ogni $x \in]\sqrt{\frac{n}{2}}, +\infty[$. Ciò implica che la funzione continua f è strettamente crescente in $[0, \sqrt{\frac{n}{2}}]$ e strettamente decrescente in $[\sqrt{\frac{n}{2}}, +\infty[$. Di conseguenza:

$$a_n = \frac{1}{\sqrt{n^n}} \max_{x \in [0, +\infty[} f(x) = \frac{1}{\sqrt{n^n}} f\left(\sqrt{\frac{n}{2}}\right) = (2e)^{-\frac{n}{2}}.$$

- Evidentemente la successione $(a_n)_{n\in\mathbb{N}}$ è strettamente decrescente.
- Si ha subito che

$$\lim_{n\to+\infty}a_n=0$$

2 Bisogna imporre le seguenti condizioni:

$$\begin{cases} \sup_{n \in \mathbb{N}} \left(n^{\log_3(x-1)-2} \right) \in \mathbb{R} \\ \inf_{n \in \mathbb{N}} \left(n^{\log_2(x-1)+2} \right) \in \mathbb{R} \\ \inf_{n \in \mathbb{N}} \left(n^{\log_2(x-1)+2} \right) \neq 0 \\ \frac{\pi^{x^2 - 5x + 7} - \pi}{\left(\frac{1}{\pi}\right)^{x^2 + 2} + \pi} \ge 0 \end{cases}$$

Tale sistema equivale al seguente:

$$\begin{cases} \sup_{n \in \mathbb{N}} \left(n^{\log_3(x-1)-2} \right) \in \mathbb{R} \\ \inf_{n \in \mathbb{N}} \left(n^{\log_2(x-1)+2} \right) \in \mathbb{R} \setminus \{0\} \\ \frac{\pi^{x^2 - 5x + 7} - \pi}{\left(\frac{1}{\pi}\right)^{x^2 + 2} + \pi} \ge 0 \end{cases}.$$

La prima condizione equivale a richiedere che

$$\sup_{n\in\mathbb{N}}\left(n^{\log_3(x-1)-2}\right)=1$$

e ciò si realizza se e solo se $\log_3(x-1)-2\leq 0$ cio
è se e solo se

$$\begin{cases} x - 1 > 0 \\ x - 1 \le 8 \end{cases}$$

da cui si trova che la prima condizione è verificata se e solo se $x \in]1,9]$.

La seconda condizione equivale a richiedere che

$$\inf_{n \in \mathbb{N}} \left(n^{\log_2(x-1)+2} \right) = 1$$

e ciò si realizza se e solo se $log_2(x-1) + 2 \ge 0$ cioè se e solo se

$$\begin{cases} x - 1 > 0 \\ x - 1 \ge \frac{1}{4} \end{cases}$$

da cui si trova che la prima condizione è verificata se e solo se $x \in \left[\frac{5}{4}, +\infty\right]$.

Infine, la terza condizione equivale a richiedere che $\pi^{x^2-5x+7} - \pi \ge 0$ da cui $x^2-5x+6 \ge 0$ e quindi $x \le 2 \lor x \ge 3$.

Complessivamente, il sistema originario equivale al seguente:

$$\begin{cases} 1 < x \le 9 \\ x \ge \frac{5}{4} \\ x \le 2 \lor x \ge 3 \end{cases}.$$

Concludendo, si ha:

$$\mathscr{D}_f = \left\lceil \frac{5}{4}, 2 \right\rceil \cup [3, 9].$$

3 Insieme di definizione. Si vede subito che

$$\mathscr{D}_f =]-\infty, 0[\cup]0, +\infty[.$$

Segno. Risolvendo, ad esempio, la disequazione f(x) > 0 in \mathcal{D}_f , si trova che:

$$f(x) > 0 \quad \Leftrightarrow \quad 1 - \sqrt{2} < x < 0 \lor x > 1 + \sqrt{2},$$

$$f(x) = 0 \quad \Leftrightarrow \quad x = 1 \pm \sqrt{2},$$

$$f(x) < 0 \quad \Leftrightarrow \quad x < 1 - \sqrt{2} \lor 0 < x < 1 + \sqrt{2}.$$

Comportamento di f agli estremi di \mathcal{D}_f . Si ha:

$$\lim_{x \to \pm \infty} f(x) = \pm \infty, \qquad \lim_{x \to 0^{-}} f(x) = +\infty.$$

Infine, usando la gerarchia degli infiniti, otteniamo

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -(x^2 - 2x - 1) \frac{-\frac{1}{x}}{e^{-\frac{1}{x}}} = 0.$$

Potrebbero esistere asintoti obliqui. Esaminiamo dapprima l'eventuale esistenza dell'asintoto obliquo destro. Esso, se esiste, avrà una equazione del tipo y = mx + k. Si ha:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = 1,$$

$$k = \lim_{x \to +\infty} [f(x) - mx] = \lim_{x \to +\infty} \left[\frac{x^2 - 2x - 1}{x} e^{-\frac{1}{x}} - x \right]$$

$$= \lim_{x \to +\infty} \left[x \left(1 - \frac{2}{x} - \frac{1}{x^2} \right) e^{-\frac{1}{x}} - x \right]$$

$$= \lim_{x \to +\infty} x \left[\left(1 - \frac{2}{x} - \frac{1}{x^2} \right) e^{-\frac{1}{x}} - \left(1 - \frac{2}{x} - \frac{1}{x^2} \right) + \left(1 - \frac{2}{x} - \frac{1}{x^2} \right) - 1 \right]$$

$$= \lim_{x \to +\infty} \left[-\left(1 - \frac{2}{x} - \frac{1}{x^2} \right) \frac{e^{-\frac{1}{x}} - 1}{-\frac{1}{x}} + x - 2 - \frac{1}{x} - x \right]$$

$$= -1 - 2 = -3.$$

Quindi l'asintoto obliquo destro ha equazione y = x - 3. Alla luce dei conti svolti, si vede che la retta di equazione y = x - 3 è pure asintoto obliquo sinistro per il grafico di f.

Monotonia di f. Per ogni $x \in \mathcal{D}_f$ si ha:

$$f'(x) = \frac{(2x-2)x - (x^2 - 2x - 1)}{x^2} e^{-\frac{1}{x}} + \frac{x^2 - 2x - 1}{x} \frac{1}{x^2} e^{-\frac{1}{x}}$$

$$= \frac{2x^3 - 2x^2 - x^3 + 2x^2 + x + x^2 - 2x - 1}{x^3} e^{-\frac{1}{x}}$$

$$= \frac{x^3 + x^2 - x - 1}{x^3} e^{-\frac{1}{x}}$$

$$= \frac{x^2(x+1) - (x+1)}{x^3} e^{-\frac{1}{x}}$$

$$= \frac{(x+1)^2(x-1)}{x^3} e^{-\frac{1}{x}}.$$

Studiando il segno di f' si trova che f è crescente in $]-\infty,0[$ e in $[1,+\infty[$ e f è decrescente in]0,1[. In x=1 si ha un minimo relativo (non assoluto) di coordinate $M(1,f(1))\equiv (1,-2\mathrm{e}^{-1})$. Nel punto x=-1 si ha un flesso a tangente orizzontale.

Concavità e convessità di f. Per ogni $x \in \mathcal{D}_f$ si ha:

$$f''(x) = \frac{(3x^2 + 2x - 1)x^3 - (x^3 + x^2 - x - 1)3x^2}{x^6} e^{-\frac{1}{x}} + \frac{x^3 + x^2 - x - 1}{x^3} \frac{1}{x^2} e^{-\frac{1}{x}}$$

$$= \left[\frac{(3x^2 + 2x - 1)x - 3(x^3 + x^2 - x - 1)}{x^4} + \frac{x^3 + x^2 - x - 1}{x^5} \right] e^{-\frac{1}{x}}$$

$$= \frac{3x^2 + 2x - 1}{x^5} e^{-\frac{1}{x}}$$

$$= \frac{(x + 1)(3x - 1)}{x^5} e^{-\frac{1}{x}}.$$

Studiando il segno di f'' si trova che f è convessa in]-1,0[e in $]\frac{1}{3},+\infty[$ ed è concava in $]-\infty,-1[$ e in $]0,\frac{1}{3}[$. In $x=\frac{1}{3}$ si localizza un punto di flesso e, come visto precedentemente, in x=-1 si ha un punto di flesso a tangente orizzontale.

Grafico di f**.** Nella figura seguente è riportato il grafico di f.

Si denoti con *I* l'integrale assegnato. Ponendo $t = \tan x$, si ricava $dx = \frac{1}{1+t^2}dt$. Usando poi la formula di integrazione per parti, *I* diventa:

$$I = \int \frac{1}{t^2} \ln \left(1 + \frac{1}{t^2} \right) dt = -\frac{1}{t} \ln \left(1 + \frac{1}{t^2} \right) - 2 \int \frac{1}{t^2 (1 + t^2)} dt.$$

Al fine di calcolare $J:=\int \frac{1}{t^2(1+t^2)}\,\mathrm{d}t$, decomponiamo la funzione integranda in fratti semplici, ricercando quattro costanti A, B, C, D tali che:

$$\frac{1}{t^2(1+t^2)} = \frac{A}{t} + \frac{B}{t^2} + \frac{Ct+D}{1+t^2} = \frac{At+At^3+B+Bt^2+Ct^3+Dt^2}{t^2(1+t^2)},$$

da cui A = C = 0, B = 1 e D = -1. Pertanto risulta:

$$J = \int \frac{\mathrm{d}t}{t^2} - \int \frac{\mathrm{d}t}{1+t^2} = -\frac{1}{t} - \arctan t + c, \quad \forall c \in \mathbb{R}.$$

Da ciò segue che

$$I = -\frac{1}{\tan x} \ln \left(1 + \frac{1}{\tan^2 x} \right) + \frac{2}{\tan x} + 2x + c, \quad \forall c \in \mathbb{R}.$$

Dipartimento di Matematica e Informatica

Anno Accademico 2016-2017

Corso di Laurea in Informatica (L-31)

Prova scritta per i corsi di Analisi Matematica (MAT/05) di **12 CFU** 3 Luglio 2017

Tempo a disposizione. 120 minuti.

1 Sia data la successione numerica reale $(a_n)_{n\in\mathbb{N}}$, dove

$$a_n = \frac{1}{\sqrt{n^n}} \max_{x \in [0, +\infty[} x^n e^{-x^2}.$$

- (a) Studiare la monotonia di $(a_n)_{n \in \mathbb{N}}$.
- (b) Calcolare, se esiste,

$$\lim_{n\to+\infty}a_n$$
.

2 Sia data la funzione reale di variabile reale definita dalla legge

$$f(x) = \frac{x^2 - 2x - 1}{x} e^{-\frac{1}{x}}.$$

Studiare f e tracciarne il grafico.

• Dimostrare che $\frac{t}{e^t}$ < 1 per ogni $t \in \mathbb{R}$ e, avvalendosi di tale disuguaglianza, studiare al variare del parametro reale x il carattere della seguente serie numerica:

$$\sum_{n=1}^{+\infty} \left(\frac{x^2 - 2x + 17}{e^{x^2 - 2x + 17}} \right)^n \frac{\left(1 - \cos \frac{1}{36\sqrt{n}} \right)^2}{\arctan \frac{1}{9\sqrt{n}}}.$$

• Studiare, al variare di parametri reali positivi α e β , il carattere della seguente serie numerica:

$$\sum_{n=1}^{+\infty} \left[\ln \left(1 + \frac{1}{\sqrt[7]{n}} \right) \right]^2 \arctan \left(\frac{1}{\sqrt[14]{n^{\alpha}}} \right) \left[\tan \frac{1}{\sqrt[42]{n^{\beta}}} \right]^3.$$

4 Calcolare il seguente integrale indefinito:

$$\int \frac{1}{\sin^2 x} \ln \left(1 + \frac{1}{\tan^2 x} \right) \mathrm{d}x$$

3 Luglio 2017

Svolgimento della prova scritta (12 CFU)

Sia $n \ge 1$ e sia $f: [0, +\infty[\to \mathbb{R}]$ la funzione definita dalla legge $f(x) = x^n e^{-x^2}$. Per ogni $x \in [0, +\infty[$ si ha

$$f'(x) = x^{n-1}e^{-x^2}(n-2x^2).$$

Da ciò segue che f'(x) > 0 per ogni $x \in]0, \sqrt{\frac{n}{2}}[$ e f'(x) < 0 per ogni $x \in]\sqrt{\frac{n}{2}}, +\infty[$. Ciò implica che la funzione continua f è strettamente crescente in $[0, \sqrt{\frac{n}{2}}]$ e strettamente decrescente in $[\sqrt{\frac{n}{2}}, +\infty[$. Di conseguenza:

$$a_n = \frac{1}{\sqrt{n^n}} \max_{x \in [0, +\infty[} f(x) = \frac{1}{\sqrt{n^n}} f\left(\sqrt{\frac{n}{2}}\right) = (2e)^{-\frac{n}{2}}.$$

- Evidentemente la successione $(a_n)_{n\in\mathbb{N}}$ è strettamente decrescente.
- Si ha subito che

$$\lim_{n\to+\infty}a_n=0.$$

2 Insieme di definizione. Si vede subito che

$$\mathscr{D}_f =]-\infty, 0[\cup]0, +\infty[.$$

Segno. Risolvendo, ad esempio, la disequazione f(x) > 0 in \mathcal{D}_f , si trova che:

$$f(x) > 0 \quad \Leftrightarrow \quad 1 - \sqrt{2} < x < 0 \lor x > 1 + \sqrt{2},$$

$$f(x) = 0 \quad \Leftrightarrow \quad x = 1 \pm \sqrt{2},$$

$$f(x) < 0 \quad \Leftrightarrow \quad x < 1 - \sqrt{2} \lor 0 < x < 1 + \sqrt{2}.$$

Comportamento di f agli estremi di \mathcal{D}_f . Si ha:

$$\lim_{x \to \pm \infty} f(x) = \pm \infty, \qquad \lim_{x \to 0^{-}} f(x) = +\infty.$$

Infine, usando la gerarchia degli infiniti, otteniamo

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -(x^2 - 2x - 1) \frac{-\frac{1}{x}}{e^{-\frac{1}{x}}} = 0.$$

Potrebbero esistere asintoti obliqui. Esaminiamo dapprima l'eventuale esistenza dell'asintoto obliquo destro. Esso, se esiste, avrà una equazione del tipo y = mx + k. Si ha:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = 1,$$

$$k = \lim_{x \to +\infty} [f(x) - mx] = \lim_{x \to +\infty} \left[\frac{x^2 - 2x - 1}{x} e^{-\frac{1}{x}} - x \right]$$

$$= \lim_{x \to +\infty} \left[x \left(1 - \frac{2}{x} - \frac{1}{x^2} \right) e^{-\frac{1}{x}} - x \right]$$

$$= \lim_{x \to +\infty} x \left[\left(1 - \frac{2}{x} - \frac{1}{x^2} \right) e^{-\frac{1}{x}} - \left(1 - \frac{2}{x} - \frac{1}{x^2} \right) + \left(1 - \frac{2}{x} - \frac{1}{x^2} \right) - 1 \right]$$

$$= \lim_{x \to +\infty} \left[-\left(1 - \frac{2}{x} - \frac{1}{x^2} \right) \frac{e^{-\frac{1}{x}} - 1}{-\frac{1}{x}} + x - 2 - \frac{1}{x} - x \right]$$

$$= -1 - 2 - 3$$

Quindi l'asintoto obliquo destro ha equazione y = x - 3. Alla luce dei conti svolti, si vede che la retta di equazione y = x - 3 è pure asintoto obliquo sinistro per il grafico di f.

Monotonia di f. Per ogni $x \in \mathcal{D}_f$ si ha:

$$f'(x) = \frac{(2x-2)x - (x^2 - 2x - 1)}{x^2} e^{-\frac{1}{x}} + \frac{x^2 - 2x - 1}{x} \frac{1}{x^2} e^{-\frac{1}{x}}$$

$$= \frac{2x^3 - 2x^2 - x^3 + 2x^2 + x + x^2 - 2x - 1}{x^3} e^{-\frac{1}{x}}$$

$$= \frac{x^3 + x^2 - x - 1}{x^3} e^{-\frac{1}{x}}$$

$$= \frac{x^2(x+1) - (x+1)}{x^3} e^{-\frac{1}{x}}$$

$$= \frac{(x+1)^2(x-1)}{x^3} e^{-\frac{1}{x}}.$$

Studiando il segno di f' si trova che f è crescente in $]-\infty,0[$ e in $[1,+\infty[$ e f è decrescente in]0,1[. In x=1 si ha un minimo relativo (non assoluto) di coordinate $M(1,f(1))\equiv (1,-2e^{-1})$. Nel punto x=-1 si ha un flesso a tangente orizzontale.

Concavità e convessità di f. Per ogni $x \in \mathcal{D}_f$ si ha:

$$f''(x) = \frac{(3x^2 + 2x - 1)x^3 - (x^3 + x^2 - x - 1)3x^2}{x^6} e^{-\frac{1}{x}} + \frac{x^3 + x^2 - x - 1}{x^3} \frac{1}{x^2} e^{-\frac{1}{x}}$$

$$= \left[\frac{(3x^2 + 2x - 1)x - 3(x^3 + x^2 - x - 1)}{x^4} + \frac{x^3 + x^2 - x - 1}{x^5} \right] e^{-\frac{1}{x}}$$

$$= \frac{3x^2 + 2x - 1}{x^5} e^{-\frac{1}{x}}$$

$$= \frac{(x + 1)(3x - 1)}{x^5} e^{-\frac{1}{x}}.$$

Studiando il segno di f'' si trova che f è convessa in]-1,0[e in $]\frac{1}{3},+\infty[$ ed è concava in $]-\infty,-1[$ e in $]0,\frac{1}{3}[$. In $x=\frac{1}{3}$ si localizza un punto di flesso e, come visto precedentemente, in x=-1 si ha un punto di flesso a tangente orizzontale.

Grafico di f. Nella figura seguente è riportato il grafico di f.

• Proviamo che $\frac{t}{\mathrm{e}^t} < 1$ per ogni $t \in \mathbb{R}$. Tale disuguaglianza è banalmente verificata per ogni $t \leq 0$. Proviamo che essa vale per ogni t > 0. Allo scopo, per ogni t > 0, sia $f(t) = \frac{t}{\mathrm{e}^t}$. Si ha $f'(t) = \frac{1-t}{\mathrm{e}^t}$ per ogni t > 0. Dallo studio del segno di f' segue che f ammette un massimo

relativo in t = 1. Tale massimo è assoluto poiché

$$\lim_{t\to 0^+} f(t) = 0, \qquad \lim_{t\to +\infty} f(t) = 0.$$

Allora, per ogni t > 0, si ha:

$$f(t) \le f(1) \quad \Leftrightarrow \quad f(t) \le \frac{1}{e}.$$

Visto che $\frac{1}{e} < 1$, dalla precedente disuguaglianza segue subito che

$$\frac{t}{\mathbf{e}^t} < 1, \qquad \forall t > 0.$$

In definitiva, la disuguaglianza in esame vale per ogni $t \in \mathbb{R}$.

Studiamo adesso il carattere della serie numerica proposta. Essa è a termini positivi (infatti, $x^2 - 2x + 17 > 0$ per ogni $x \in \mathbb{R}$. Dai limiti notevoli segue subito la seguente stima asintotica:

$$\frac{\left(1-\cos\frac{1}{\frac{36}{n}}\right)^2}{\arctan\frac{1}{\frac{9}{n}}} \approx \frac{\left(\frac{1}{n^{\frac{2}{36}}}\right)^2}{\frac{1}{n^{\frac{1}{9}}}} = \frac{\frac{1}{n^{\frac{1}{9}}}}{\frac{1}{n^{\frac{1}{9}}}} = 1.$$

Per il Criterio del confronto asintotico, da ciò segue che la serie proposta ha lo stesso carattere della serie geometrica

$$\sum_{n=1}^{+\infty} \left(\frac{x^2 - 2x + 17}{e^{x^2 - 2x + 17}} \right)^n,$$

di ragione $q(x) = \frac{x^2 - 2x + 17}{e^{x^2 - 2x + 17}}$. Sappiamo che q(x) > 0 per ogni $x \in \mathbb{R}$. Inoltre, dalla disugua-glianza precedentemente provata, $\frac{t}{e^t} < 1$, segue che q(x) < 1, per ogni $x \in \mathbb{R}$. Pertanto la serie geometrica in oggetto converge per ogni $x \in \mathbb{R}$ in quanto la sua ragione è compresa strettamente tra 0 e 1. Si conclude, dunque, che la serie assegnata converge per ogni $x \in \mathbb{R}$.

• La serie è a termini positivi. Dai limiti notevoli, segue subito la seguente stima asintotica del termine generale a_n della serie:

$$a_n \asymp \left(\frac{1}{n^{\frac{1}{7}}}\right)^2 \cdot \frac{1}{n^{\frac{\alpha}{14}}} \cdot \left(\frac{1}{n^{\frac{\beta}{42}}}\right)^3 = \frac{1}{n^{\frac{4+\alpha+\beta}{14}}}.$$

Per il Criterio del confronto asintotico, la serie assegnata ha dunque lo stesso carattere della serie armonica generalizzata

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\frac{4+\alpha+\beta}{14}}}$$

e dunque converge se e solo se $4+\alpha+\beta>14$ cioè $\alpha+\beta>10$ e diverge positivamente se $4+\alpha+\beta\leq 14$ cioè $\alpha+\beta\leq 10$.

Si denoti con *I* l'integrale assegnato. Ponendo $t = \tan x$, si ricava d $x = \frac{1}{1+t^2} dt$. Usando poi la formula di integrazione per parti, *I* diventa:

$$I = \int \frac{1}{t^2} \ln \left(1 + \frac{1}{t^2} \right) dt = -\frac{1}{t} \ln \left(1 + \frac{1}{t^2} \right) - 2 \int \frac{1}{t^2 (1 + t^2)} dt.$$

Al fine di calcolare $J := \int \frac{1}{t^2(1+t^2)} dt$, decomponiamo la funzione integranda in fratti semplici, ricercando quattro costanti A, B, C, D tali che:

$$\frac{1}{t^2(1+t^2)} = \frac{A}{t} + \frac{B}{t^2} + \frac{Ct+D}{1+t^2} = \frac{At+At^3+B+Bt^2+Ct^3+Dt^2}{t^2(1+t^2)},$$

da cui A = C = 0, B = 1 e D = -1. Pertanto risulta:

$$J = \int \frac{\mathrm{d}t}{t^2} - \int \frac{\mathrm{d}t}{1+t^2} = -\frac{1}{t} - \arctan t + c, \quad \forall c \in \mathbb{R}.$$

Da ciò segue che

$$I = -\frac{1}{\tan x} \ln \left(1 + \frac{1}{\tan^2 x} \right) + \frac{2}{\tan x} + 2x + c, \quad \forall c \in \mathbb{R}.$$

Dipartimento di Matematica e Informatica Anno Accademico 2016-2017

Corso di Laurea in Informatica (L-31)

Prova scritta per il corso di Formazione Analitica 2 (MAT/05) di **6 CFU** 3 Luglio 2017

Tempo a disposizione. 120 minuti.

• Dimostrare che $\frac{t}{e^t}$ < 1 per ogni $t \in \mathbb{R}$ e, avvalendosi di tale disuguaglianza, studiare al variare del parametro reale x il carattere della seguente serie numerica:

$$\sum_{n=1}^{+\infty} \left(\frac{x^2 - 2x + 17}{e^{x^2 - 2x + 17}} \right)^n \frac{\left(1 - \cos \frac{1}{36\sqrt{n}} \right)^2}{\arctan \frac{1}{9\sqrt{n}}}.$$

• Studiare, al variare di parametri reali positivi α e β , il carattere della seguente serie numerica:

$$\sum_{n=1}^{+\infty} \left[\ln \left(1 + \frac{1}{\sqrt[7]{n}} \right) \right]^2 \arctan \left(\frac{1}{\sqrt[14]{n^\alpha}} \right) \left[\tan \frac{1}{\sqrt[42]{n^\beta}} \right]^3.$$

2 Calcolare il seguente integrale indefinito:

$$\int \frac{1}{\sin^2 x} \ln \left(1 + \frac{1}{\tan^2 x} \right) dx$$

3 Sia dato il seguente limite

$$\lim_{(x,y)\to(0,0)}\frac{x^5+y^4}{\sin^2(x^2+y^2)}.$$

Dire, giustificando la risposta, se tale limite esiste e, in caso affermativo, calcolarlo.

 $oxed{4}$ Sia data la funzione $f: \mathbb{R}^2 o \mathbb{R}$ definita dalla legge

$$f(x,y) = \begin{cases} (x^2 + y^2) |\ln(x^2 + y^2)| & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}.$$

- Studiare la continuità e la derivabilità di f nel punto (0,0).
- Determinare, se esistono, i punti di massimo e di minimo assoluto di f sull'insieme

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$$

Svolgimento della prova scritta (9 CFU)

• Proviamo che $\frac{t}{\mathrm{e}^t} < 1$ per ogni $t \in \mathbb{R}$. Tale disuguaglianza è banalmente verificata per ogni $t \leq 0$. Proviamo che essa vale per ogni t > 0. Allo scopo, per ogni t > 0, sia $f(t) = \frac{t}{\mathrm{e}^t}$. Si ha $f'(t) = \frac{1-t}{\mathrm{e}^t}$ per ogni t > 0. Dallo studio del segno di f' segue che f ammette un massimo relativo in t = 1. Tale massimo è assoluto poiché

$$\lim_{t\to 0^+} f(t) = 0, \qquad \lim_{t\to +\infty} f(t) = 0.$$

Allora, per ogni t > 0, si ha:

1

$$f(t) \le f(1) \quad \Leftrightarrow \quad f(t) \le \frac{1}{e}.$$

Visto che $\frac{1}{e}$ < 1, dalla precedente disuguaglianza segue subito che

$$\frac{t}{\mathbf{e}^t} < 1, \qquad \forall t > 0.$$

In definitiva, la disuguaglianza in esame vale per ogni $t \in \mathbb{R}$.

Studiamo adesso il carattere della serie numerica proposta. Essa è a termini positivi (infatti, $x^2 - 2x + 17 > 0$ per ogni $x \in \mathbb{R}$. Dai limiti notevoli segue subito la seguente stima asintotica:

$$\frac{\left(1-\cos\frac{1}{\frac{36}{\sqrt{n}}}\right)^2}{\arctan\frac{1}{\frac{9}{\sqrt{n}}}} \approx \frac{\left(\frac{1}{\frac{2}{n^{\frac{3}{36}}}}\right)^2}{\frac{1}{n^{\frac{1}{9}}}} = \frac{\frac{1}{n^{\frac{1}{9}}}}{\frac{1}{n^{\frac{1}{9}}}} = 1.$$

Per il Criterio del confronto asintotico, da ciò segue che la serie proposta ha lo stesso carattere della serie geometrica

$$\sum_{n=1}^{+\infty} \left(\frac{x^2 - 2x + 17}{e^{x^2 - 2x + 17}} \right)^n,$$

di ragione $q(x) = \frac{x^2 - 2x + 17}{e^{x^2 - 2x + 17}}$. Sappiamo che q(x) > 0 per ogni $x \in \mathbb{R}$. Inoltre, dalla disugua-glianza precedentemente provata, $\frac{t}{e^t} < 1$, segue che q(x) < 1, per ogni $x \in \mathbb{R}$. Pertanto la serie geometrica in oggetto converge per ogni $x \in \mathbb{R}$ in quanto la sua ragione è compresa strettamente tra 0 e 1. Si conclude, dunque, che la serie assegnata converge per ogni $x \in \mathbb{R}$.

• La serie è a termini positivi. Dai limiti notevoli, segue subito la seguente stima asintotica del termine generale a_n della serie:

$$a_n \simeq \left(\frac{1}{n^{\frac{1}{7}}}\right)^2 \cdot \frac{1}{n^{\frac{\alpha}{14}}} \cdot \left(\frac{1}{n^{\frac{\beta}{42}}}\right)^3 = \frac{1}{n^{\frac{4+\alpha+\beta}{14}}}.$$

Per il Criterio del confronto asintotico, la serie assegnata ha dunque lo stesso carattere della serie armonica generalizzata

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\frac{4+\alpha+\beta}{14}}}$$

e dunque converge se e solo se $4+\alpha+\beta>14$ cioè $\alpha+\beta>10$ e diverge positivamente se $4+\alpha+\beta\leq 14$ cioè $\alpha+\beta\leq 10$.

Si denoti con *I* l'integrale assegnato. Ponendo $t = \tan x$, si ricava $dx = \frac{1}{1+t^2}dt$. Usando poi la formula di integrazione per parti, *I* diventa:

$$I = \int \frac{1}{t^2} \ln \left(1 + \frac{1}{t^2} \right) dt = -\frac{1}{t} \ln \left(1 + \frac{1}{t^2} \right) - 2 \int \frac{1}{t^2 (1 + t^2)} dt.$$

Al fine di calcolare $J := \int \frac{1}{t^2(1+t^2)} dt$, decomponiamo la funzione integranda in fratti semplici, ricercando quattro costanti A, B, C, D tali che:

$$\frac{1}{t^2(1+t^2)} = \frac{A}{t} + \frac{B}{t^2} + \frac{Ct+D}{1+t^2} = \frac{At+At^3+B+Bt^2+Ct^3+Dt^2}{t^2(1+t^2)},$$

da cui A = C = 0, B = 1 e D = -1. Pertanto risulta:

$$J = \int \frac{\mathrm{d}t}{t^2} - \int \frac{\mathrm{d}t}{1+t^2} = -\frac{1}{t} - \arctan t + c, \quad \forall c \in \mathbb{R}.$$

Da ciò segue che

$$I = -\frac{1}{\tan x} \ln \left(1 + \frac{1}{\tan^2 x} \right) + \frac{2}{\tan x} + 2x + c, \quad \forall c \in \mathbb{R}.$$

3 Il limite non esiste. Infatti, posto

$$f(x,y) = \frac{x^5 + y^4}{\sin^2(x^2 + y^2)},$$

si ha

$$\lim_{t \to 0} f(t, 0) = 0, \qquad \lim_{t \to 0} f(0, t) = 1.$$

Quindi abbiamo trovato due restrizioni di f lungo le quali f ha limiti diversi: ciò è sufficiente per concludere che il limite assegnato non esiste.

- 4 Proponiamo due diversi metodi di svolgimento dell'esercizio. *Primo metodo.*
 - Per calcolare

$$\lim_{(x,y)\to(0,0)} f(x,y)$$

passiamo a coordinate polari, ottenendo

$$\lim_{\rho \to 0^+} \rho^2 |\ln \rho^2| = 0$$

uniformemente rispetto a ϑ , quindi f è continua nell'origine.

Per quanto riguarda la derivabilità, si ha:

$$\lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{h^2 |\ln h^2|}{h} = 0 := f_x(0,0).$$

Analogamente, per simmetria, $f_v(0,0) = 0$, pertanto $\nabla f(0,0) = (0,0)$.

• Dalla discussione precedente, risulta che f è continua su D che è un compatto di \mathbb{R}^2 . Per il Teorema di Weierstrass, f ammette minimo e massimo assoluti su D. Osserviamo subito che

$$f(x,y) = 0 \Leftrightarrow (x,y) = (0,0) \lor x^2 + y^2 = 1$$

mentre f(x,y) > 0 altrove. Sicché (0,0) e tutti i punti $\partial D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ (cioè il centro di D e la sua frontiera) sono punti di minimo assoluto per f su D (e su tutto

 \mathbb{R}^2).

Per quanto riguarda i punti di massimo assoluto, questi sono certamente interni a *D*. Per tutti i punti interni a *D*, abbiamo

$$f(x,y) = -(x^2 + y^2) \ln(x^2 + y^2).$$

Inoltre

$$f_x(x,y) = -2x[\ln(x^2 + y^2) + 1], \qquad f_y(x,y) = -2y[\ln(x^2 + y^2) + 1]$$

da cui

$$\nabla f(x,y) = (0,0) \Leftrightarrow \begin{cases} 2x = 0 \lor \ln(x^2 + y^2) + 1 = 0 \\ 2y = 0 \lor \ln(x^2 + y^2) + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 0 \end{cases} \lor \begin{cases} x = 0 \\ \ln(x^2 + y^2) + 1 = 0 \end{cases} \lor \begin{cases} \ln(x^2 + y^2) + 1 = 0 \\ y = 0 \end{cases} \lor \begin{cases} \ln(x^2 + y^2) + 1 = 0 \\ \ln(x^2 + y^2) + 1 = 0 \end{cases} \Leftrightarrow (x,y) = (0,0) \lor \begin{cases} x = 0 \\ \ln y^2 = -1 \end{cases} \lor \begin{cases} \ln x^2 = -1 \\ y = 0 \end{cases} \lor x^2 + y^2 = \frac{1}{e}.$$

L'origine è da escludere (è stata già esaminata e risulta tra i punti di minimo assoluto); dal primo sistema si ottengono i punti $(0, \pm \sqrt{e^{-1}})$ e dal secondo i punti $(\pm \sqrt{e^{-1}}, 0)$. Questi quattro punto appartengono tutti alla circonferenza $x^2 + y^2 = \frac{1}{e}$. Ne viene che gli unici punti critici sono quelli di tale circonferenza e, dovendo il massimo essere assunto nell'interno di D, essi sono tutti punti di massimo assoluto.

Secondo metodo. Poiché la funzione f presenta simmetria radiale, si può porre $x^2 + y^2 = r^2$ e studiare la funzione di una variabile

$$g(r) = \begin{cases} r^2 |\ln r^2| & \text{se } r > 0 \\ 0 & \text{se } r = 0 \end{cases}.$$

• Si ha:

$$\lim_{r \to 0^+} g(r) = \lim_{r \to 0^+} r^2 |\ln r^2| = 0 = g(0),$$

$$\lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{h^2 |\ln h^2|}{h} = 0.$$

Tali relazioni forniscono, rispettivamente, la continuità e la derivabilità di g in 0 e dunque di f in (0,0).

• Si ha:

$$g'(r) = \begin{cases} -2r(\ln r^2 + 1) & \text{se } 0 < r < 1\\ 2r(\ln r^2 + 1) & \text{se } r > 1 \end{cases}$$

ed evidentemente g non è derivabile in r = 1.

Studiando il segno di g', si trova che g cresce per $0 < r < \sqrt{\frac{1}{\mathrm{e}}}$ e per r > 1; inoltre g decresce per $\sqrt{\frac{1}{\mathrm{e}}} < r < 1$. Avendosi poi g(r) = 0 per r = 0 e r = 1 e g(r) > 0 per ogni $r \neq 0$ e $r \neq 1$, possiamo concludere che r = 0 e r = 1 sono punti di minimo assoluto per g su [0,1] (e su \mathbb{R}), ,emtre $r = \sqrt{\frac{1}{\mathrm{e}}}$ è punto di massimo assoluto per g su [0,1]. Alla luce della posizione fatta, i punti del piano tali che $x^2 + y^2 = 0$ (cioè (0,0)) e quelli per cui $x^2 + y^2 = 1$ sono punti di minimo assoluto per g su g0.