

Механико-математический факультет

Линейная алгебра и геометрия, 2 семестр, 2 поток

Преподаватель: Чубаров Игорь Андреевич

Студент: Молчанов Вячеслав

Группа: 108

Контакт: Мой телеграм для связи

Содержание

1	Векторное пространство	2
	1.1 Изменение координат вектора при замене базиса	4
2	Векторные подпространства	4

1 Векторное пространство

Определение 1. Множество V называется векторным пространством над полем F, если заданы операции " + " и " · " : $V \times V \to V$, $F \times V \to V$ и выполнены следующие аксиомы:

1.
$$\forall v_1, v_2, v_3 \in V : (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$

$$2. \ \exists \ \vec{0} \in V: \ \forall v \in V: \ v + \vec{0} = v$$

3.
$$\forall v \in V \ \exists -v \in V : v + (-v) = \vec{0}$$

4.
$$\forall v_1, v_2 \in V : v_1 + v_2 = v_2 + v_1$$

5.
$$\forall \alpha, \beta \in F, v \in V : (\alpha \beta)v = \alpha(\beta v)$$

$$6. \ \forall v \in V \ \exists \ 1 \in F : 1 \cdot v = v$$

7.
$$\forall \alpha, \beta \in F, v \in V : (\alpha + \beta)v = \alpha v + \beta v$$

8.
$$\forall \alpha \in F, v_1, v_2 \in V : \alpha(v_1 + v_2) = \alpha v_1 + \alpha v_2$$

Загадка: Одна из этих аксиом - следствие других. Какая?

Определение 2. $U \subset V$ - векторное подпространство пространства V, если оно само является пространством относительно тех же операций в V.

Утверждение. Определение 2 эквивалентно:

1.
$$\forall U \neq \emptyset$$

2.
$$\forall u_1, u_2 \in U : u_1 + u_2 \in U$$

3.
$$\forall u \in U, \ \lambda \in F : \lambda u \in U$$

Определение 3. Векторы $v_1,...,v_n\in V$ называются линойно независимыми, если $\exists \ \lambda_1,...,\lambda_n$ (не все равные 0) : $\lambda_1v_1+...+\lambda_nv_n=\vec{0}$

Утверждение. Определение $3 \iff (m \ge 2)$ хотя бы один вектор из векторов v_i выражается как линейная комбинация остальных.

Определение 4. Упорядоченный набор векторов $e = (e_1, ..., e_n), e_k \in V$, если это максимальный ЛНЗ набор веторов из V.

Утверждение. e - базис e $V \Longleftrightarrow$

1.
$$e_1, ..., e_n - JH3$$

2.
$$\forall x \in V \exists x_1, ..., x_n \in F : x = x_1 e_1 + ... + x_n e_n = \sum_{i=1}^n x_i e_i$$

Следствие. Разложение любого вектора в базисе единственно.

Доказательство. Если
$$x=\sum\limits_{i=1}^n x_ie_i=\sum\limits_{i=1}^n x_i'e_i$$
, то $\vec{0}=x-x=\sum\limits_{i=1}^n (x_i'-x_i)e_i$ Из ЛНЗ все коэффициенты равны

Обозначаем:
$$X_e = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in F^n$$
, тогда $x = eX_e = e_1x_1 + ... + e_nx_n$
$$\boxed{x = eX_e} \tag{1}$$

Теорема. Если в $V \equiv 6$ азис из k векторов, то любой базис V содержит k векторов.

Доказательство.

Если \exists базис $e'_1,...,e'_m \in V$, где m>n, то по ОЛЛЗ $e'_1,...,e'_m$ - ЛЗ, т.е. не базис. Если же m< n, то по ОЛЛЗ (в другую сторону) $e_1,...,e_n$ - ЛЗ \Longrightarrow не базис. \square

Свойства. матриц перехода

- 1. $\det C \neq 0$
- 2. $C_{e'\to e} = (C_{e\to e'})^{-1}$
- 3. $C_{e'' \rightarrow e} = C_{e \rightarrow e'} \cdot C_{e' \rightarrow e''}$

Доказательство.

- 1) Столбцы координаты ЛНЗ векторов $e_1',...,e_n' \Longrightarrow rkC = n \Longrightarrow \det C \neq 0$
- 2) Перепишем определение матрицы перехода в матричный вид. По определению:

$$e' = (e'_1, ..., e'_n) = (e_1, ..., e_n) C_{e \to e'}, \text{ r.e. } e' = e C_{e \to e'}$$

$$e' = e C_{e \to e'}$$
(2)

С другой стороны

$$C = e'C_{e' \to e} = eC_{e \to e'}C_{e' \to e} \Longrightarrow C_{e \to e'}C_{e' \to e} = E$$

ввиду единственности разложения векторов по базису, т.е.

$$C_{e \to e'} = (C_{e' \to e})^{-1}$$

$$e'' = e'C_{e' \to e''} = e(C_{e \to e'}C_{e' \to e''}) = eC_{e \to e''}$$

В силу единственности разложения $C_{e \to e''} = C_{e \to e'} C_{e' \to e''}$

Алгоритм. Как вычислить матрицу перехода, если известны координаты векторов e_i и e'_j в некотором универсальном?

 $e' = eC_{e \to e'}$ можно рассмотреть как матричное уравнение:

$$(e_1^{\uparrow}, ..., e_n^{\uparrow})C = (e_1^{\prime \uparrow}, ..., e_n^{\prime \uparrow})$$
$$[e_1^{\uparrow}, ..., e_n^{\uparrow} \mid e_1^{\prime \uparrow}, ..., e_n^{\prime \uparrow}] \stackrel{cmpo\kappa}{\leadsto} [E \mid C_{e \to e^{\prime}}]$$

1.1 Изменение координат вектора при замене базиса

Теорема. Формула изменения координат вектора при замене базиса:

$$X_e = C_{e \to e'} X_{e'} \tag{3}$$

Доказательство.

$$\forall x \in V : x = eX_e = e'X_{e'} = eC_{e \to e'}X_{e'}$$
$$\Longrightarrow X_e = C_{e \to e'}X_{e'}$$

2 Векторные подпространства

Примеры.

- 1. Геометрические вектроры
- 2. F^n пространство слобцов (строк) высоты (длины) n с естественными оперицаями $(+, \cdot \lambda)$

Базис
$$\vartheta=\left\{\begin{pmatrix}1\\0\\\vdots\\0\end{pmatrix},\begin{pmatrix}0\\1\\\vdots\\0\end{pmatrix},...,\begin{pmatrix}0\\0\\\vdots\\1\end{pmatrix}\right\}$$
 (можно взять столбцы любой

невырожденной матрицы порядка n)

Замечание. Доказать, что если e - базис, C - невырожденная матрица, то eC - тоже базис (из (2))

Упражнение. Пусть $|F|=q, \dim_F V=n \Longrightarrow |V|=q^n$ $\dim M_{m,n}=mn$, стандартный базис - $\{E_{ij}\}$, где E_{ij} содержит 1 на ij-ой позиции и 0 на остальных.

3. $V = \{F: \underset{(X \subseteq \mathbb{R})}{X} \to \mathbb{R}\}$ с операциями сложения и λF

Оно бесконечномерно, если X бесконечно.

Если $\lambda_1,...,\lambda_n$ - попарно различные числа, то $y_1=e^{\lambda_1 x},...,y_n=e^{\lambda_n x}$ ЛНЗ Допустим, что:

$$\begin{cases} C_{1}y_{1} + \dots + C_{n}y_{n} \equiv 0 \\ C_{1}y'_{1} + \dots + C_{n}y'_{n} \equiv 0 \\ \vdots \\ C_{1}y_{1}^{(n-1)} + \dots + C_{n}y_{n}^{(n-1)} \equiv 0 \end{cases} \implies \begin{cases} C_{1}e^{\lambda_{1}x} + \dots + C_{n}e^{\lambda_{n}x} \equiv 0 \\ \lambda_{1}C_{1}y'_{1} + \dots + \lambda_{n}C_{n}y'_{n} \equiv 0 \\ \vdots \\ \lambda^{n-1}C_{1}e^{\lambda_{1}x} + \dots + \lambda^{n-1}C_{n}e^{\lambda_{n}x} \equiv 0 \end{cases}$$

$$\Delta = V(\lambda_{1}, \dots, \lambda_{n}) \neq 0 \implies C_{1} = \dots = C_{n} = 0$$