MAST30001 Stochastic Modelling

Tutorial Sheet 6

You've probably already seen/done some of these before, but it's useful to do them yourselves/see them again!

- 1. Let $X \sim \text{Exponential}(\lambda)$, with $\lambda > 0$. Prove that $\mathbb{P}(X > s + t | X > t) = \mathbb{P}(X > s)$ for every s, t > 0.
- 2. Let $(X_i)_{i\in\mathbb{N}}$ be independent random variables with $X_i \sim \text{Exponential}(\lambda_i)$. Find the distribution of $Y_n = \min_{i\leq n} X_i$.
- 3. Let $(T_i)_{i\in\mathbb{N}}$ be i.i.d. Exponential(λ) random variables, and let N be a Geometric(p) random variable that is independent of the other variables.
 - (a) Find the moment generating function $\mathbb{E}[e^{tT_1}]$ of T_1 .
 - (b) Let $Y = \sum_{i=1}^{N} X_i$. Find the distribution of Y.
- 4. Let $X \geq 0$ be a random variable satisfying

Assignment Project Exam Help

Show that $X \sim \text{Exponential}(\lambda)$, for some $\lambda \geq 0$.

https://powcoder.com

Add WeChat powcoder