Dynamic Memory Allocation

Jinyang Li

based on Tiger Wang's slides

What we've learnt: how C program is executed by hardware

- Compiler translates C programs to machine code
 - Basic execution:
 - Load instruction from memory, decode + execute, advance %rip
 - Control flow
 - Arithmetic instructions, cmp/test set RFLAGS
 - jge (...) changes %rip depending on RFLAGS
 - Procedure call
 - return address is stored on stack
 - %rsp points to top of stack (stack grows down)
 - call/ret
- Linking:
 - Combine multiple compiled object files together
 - Resolve and relocate symbols (functions, global variables)

Today's lesson plan

dynamic memory allocation (malloc/free)

Why dynamic memory allocation?

```
typedef struct node {
   int val;
   struct node *next;
} node;
void list insert(node *head, int v)
{
   node *np = malloc(sizeof(node));
   np->next = head;
   np \rightarrow val = v;
   *head = np;
}
int main(void)
{
   char buf[100];
   node *head = NULL;
   while (fgets(buf, 100, stdin)) {
      list insert(&head, atoi(buf));
```

How many nodes to allocate is only known at runtime (when the program executes)

Question: can one dynamically allocate memory on stack?

Question: Is it possible to dynamically allocate memory on stack?

Answer: Yes, but space is freed upon function return

```
void
list_insert(node *head, int v) {
   node n;
   node *np = &n;
   np->next = head;
   np->val= v;
   *head = np;
}
```


subq \$16,%rsp

Question: How to allocate memory

on heap?

Question: How to allocate memory on heap?

Ask OS for allocation on the heap via system calls

void *sbrk(intptr_t size);

It increases the top of heap by "size" and returns a pointer to the base of new storage. The "size" can be a negative number.

Question: How to allocate memory on heap?

Ask OS for allocation on the heap via system calls

```
void *sbrk(intptr_t size);
```

It increases the top of heap by "size" and returns a pointer to the base of new storage. The "size" can be a negative number.

$$p = sbrk(1024) //allocate 1KB$$

Question: How to allocate memory on heap?

Ask OS for allocation on the heap via system calls

```
void *sbrk(intptr_t size);
```

It increases the top of heap by "size" and returns a pointer to the base of new storage. The "size" can be a negative number.

```
p = sbrk(1024) //allocate 1KB
sbrk(-1024) //free p
```


Question: How to allocate memory on heap?

Ask OS for allocation on the heap via system calls

```
void *sbrk(intptr_t size);
```

Issue I – can only free the memory on the top of heap

```
p1 = sbrk(1024) //allocate 1KB

p2 = sbrk(4096) //allocate 4KB
```

How to free p1?

Question: How to allocate memory on heap?

Ask OS for allocation on the heap via system calls

```
void *sbrk(intptr_t size);
```

Issue I – can only free the memory on the top of heap

Issue II – system call has high performance cost > 10X

Question: How to effciently allocate memory on heap?

Basic idea: user program asks a large memory region from OS once, User User User User program program program then manages this memory region program by itself (using a "malloc" library) malloc/free your malloc tcmalloc C standard library (by Google) (lab4) sbrk

Operating System

How to implement a memory allocator?

- API:
 - void* malloc(size_t size);
 - void free(void *ptr);
- Goal:
 - Efficiently utilize acquired memory with high throughput
 - high throughput how many mallocs / frees can be done per second
 - high utilization fraction of allocated size / total heap size

How to implement a memory allocator?

- Assumptions on application behavior:
 - Use APIs correctly
 - Argument of free must be the return value of a previous malloc
 - No double free
 - Use APIs freely
 - Can issue an arbitrary sequence of malloc/free
- Restrictions on the allocator:
 - Once allocated, space cannot be moved around

Questions

 (Basic book-keeping) How to keep track which bytes are free and which are not?

(Allocation decision) Which free chunk to allocate?

 (API restriction) free is only given a pointer, how to find out the allocated chunk size?

How to bookkeep? Strawman #1

Structure heap as n 1KB chunks + n metadata

```
1KB | 1KB | 1KB | 1KB | 1KB |
       1KB
            1KB
                                                 0
                                                   0101
    chunks
                                                bitmap
#define CHUNKSIZE 1<<10;</pre>
typedef char[CHUNKSIZE] chunk;
char *bitmap;
                                       Assume allocator asks for
chunk *chunks;
                                       enough memory from OS
size t n chunks;
                                       in the beginning
void init() {
  n chunks = 128;
  sbrk(n_chunks*sizeof(chunk)+ n_chunks/8);
  chunks = (chunk *)heap_lo();
  bitmap = heap lo() + n chunks *CHUNKSIZE;
```

How to bookkeep? Strawman #1

```
1KB | 1KB | 1KB | 1KB |
                                1KB | 1KB |
  1KB
      1KB
chunks
          p=malloc(1000);
                                         bitmap
 void* malloc(size t sz) {
   // find out # of chunks needed to fit sz bytes
   CSZ = ...
   //find csz consecutive free chunks according to bitmap
   int i = find consecutive chunks(bitmap);
   // return NULL if did not find csz free consecutive chunks
   if (i < 0)
     return NULL;
   // set bitmap at positions i, i+1, ... i+csz-1
   bitmap_set_pos(bitmap, i, csz);
   return (void *)&chunks[i];
```

How to bookkeep? Strawman #1

```
1KB 1KB 1KB 1KB 1KB 1KB 1KB 1KB 0 0 1 0 0 0 0 0
chunks p=malloc(1000); bitmap

void free(void *p) {
  i = ((char *)p - (char *)chunks)/sizeof(chunk);
  bitmap_clear_pos(bitmap, i); //how many bits to clear??
}
```

- Problem with strawman?
 - free does not know how many chunks allocated
 - wasted space within a chunk (internal fragmentation)
 - wasted space for non-consecutive chunks (external fragmentation)

How to bookkeep? Other Strawmans

- How to support a variable number of variable-sized chunks?
 - Idea #1: use a hash table to map address → [chunk size, status]
 - Idea #2: use a linked list in which each node stores
 [address, chunk size, status] information.

Problems of strawmans?

Implementing a hash table and linked list requires use of a dynamic memory allocator!

How to implement a "linked list" without use of malloc

- Embed chunk metadata in the chunks
 - Chunk has a header storing size and status
 - 16-byte aligned
 - Payload starting address must be some multiple of 16
 - To simplify design, assume header size is 16 byte, payload size is x*16

Embed chunk metadata in the chunks

- Chunk has a header storing size and status
- Payload is 16-byte aligned

```
Chunk_size = 1024 + 16
= 1040 (0x410)

0x411

0x411
```

Embed chunk metadata in the chunks

- Chunk has a header storing size and status
- Payload is 16-byte aligned

```
p = malloc(1)
```


Embed chunk metadata in the chunks

- Chunk has a header storing size and status
- Payload is 16-byte aligned

```
p = malloc(1)
```


How to initialize an implicit list

```
typedef struct {
  unsigned long size and status;
  unsigned long padding;
} header;
void init_chunk(header *p, unsigned long sz, bool status)
    p->size_and_status = sz | (unsigned long) status;
void init()
    header *p;
    p = ask_os_for_chunk(INITIAL_CSZ);
    init chunk(p, INITIAL CSZ, status);
```

How to traverse an implicit list

```
typedef struct {
  unsigned long size and status;
  unsigned long padding;
} header;
void traverse implicit list() {
   header *curr = (header *)heap lo();
   while ((char *)curr < heap_high()) {</pre>
       bool allocated = get status(curr);
       size_t csz = get_chunksz(curr);
       // How to set curr to point to next chunk?
bool get status(header *h) {
   return h->size_and_status & 0x1L;
size_t get_size(header *h) {
   return h->size_and_status & ~(0x1L);
```

Today's lesson plan

Previously:

- Why dynamic memory allocation?
- Design requirements and challenges
- The basics of implicit list design.

Today:

- Implicit list
- Explicit list
- Segregated list


```
heap lo() \rightarrow
typedef struct {
  unsigned long size and status;
  unsigned long padding;
                                          curr=next chunk(curr)
} header;
bool get_status(header *h) {
   return h->size_and_status & 0x1L;
                                             payload2header(p
unsigned long get size(header *h)
   return h->size_and_status & ~(0x1L);
header *next_chunk(header *curr)
                                                                            addr increases
  return (header *)((char *)curr + get_size(curr));
header *payload2header(void *p)
  return (header *)((char *)p - sizeof(header));
                                                   heap hi()-
```

Where to place an allocation?

```
p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
```


Where to place an allocation?

```
p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
```


First fit

First fit

Best fit

Best fit

Splitting a free block

Splitting a free block

Coalescing a free block with its next free

Coalescing a free block with its next free

Coalescing a free block with its next free

Use footer to coalesce with previous block

Duplicate header information into the footer

Coalescing prev and next blocks

Coalescing prev and next blocks

Explicit free lists

Problems of implicit list:

Allocation time is linear in # of total (free and allocated)
 chunks

Explicit free list:

Maintain a linked list of free chunks only.

Explicit free list

Question: do we need next/prev fields for allocated blocks?

Answer: No. We do not need to chain together allocated blocks. We can still traverse all blocks (free and allocated) as in the case of implicit list.

Question: what's the minimal size of a chunk?

Answer: 16 (header) + 16 (footer) + 8 (next pointer) + 8 (previous pointer) = 48 bytes

Explicit list: types, basic helpers

```
typedef struct {
  unsigned long size and status;
  unsigned long padding;
} header;
typedef struct free_hdr {
   header common header;
   struct free hdr *next;
   struct free hdr *prev;
} free hdr;
bool
get status(header *h) {
  return h->size and status & 0x1L;
size t
get size(header *h) {
  return h->size_and_status & ~(0x1L);
```

```
void
set size status(header *h,
  size_t sz, bool status) {
  h->size and status = sz | status;
void
set status(header *h, bool status){
   size t sz = get_size(h);
   set size status(h, sz, status);
void
set_size(header *h, size_t sz) {
   status = get status(h);
   set size status(h, sz, status);
```

Explicit list: globals, initialization

```
free hdr *freelist;
header*
get footer from header(header *h) {
    return (header *)((char *)h + get_size(h) - sizeof(header));
}
init free chunk(free hdr *h, size t sz) {
   set_size_status(&h->common_header, sz, false);
   h->prev = h->next = NULL;
   set_size_status(get_footer_from_header(h->common_header), sz, false);
free hdr *
get_block_from_OS(size_t sz) {
   free hdr *h = sbrk(sz);
   init_free_chunk(h, sz); //init header and footer
   return h;
#define MIN OS ALLOC SZ 1024
void init() {
   freelist = get block from OS(MIN OS ALLOC SZ);
}
```

Explicit list: allocate

```
void *
                    assume s>=16 and is 16-byte aligned
malloc(size t s) {
   size t csz = s + 2*sizeof(header); //min chunk size required
   free hdr *n = first fit(csz);
   if (!n)
       n = get block from OS(csz>MIN OS ALLOC SIZE?csz:MIN OS ALLOC SIZE);
   free hdr *newchunk = split(n, csz);
   if (newchunk)
      insert(&freelist, newchunk);
   set_status(n, true);
   return (char *)n+sizeof(header);
}
free hdr *
first_fit(size_t sz) {
   free hdr *n = freelist;
   while (n) {
      if (get size(n->common header)>= sz) {
          delete(&freelist, n);
          break;
      n = n-next;
   return n;
```

Explicit list: free

```
void free(void *p) {
    header *h = get header from payload(p);
    init_free_chunk((free_hdr *)h, get_size(h));
    header *next = get next header(h);
    if (!get status(next))
       h = coalesce((free hdr *)h, (free hdr *)next);
    header *prev = get prev header(h);
    if (!get status(prev))
       h = coalesce((free_hdr *)h, (free_hdr *)prev);
    insert(&freelist, (free hdr *)h);
free hdr *
coalesce(free hdr *me, free hdr *other) {
   delete(&freelist, other);
   int sum = get size(me->common header)+get size(other->common header));
   free hdr *h = me<other? me:other;</pre>
   set size status(h->common header, sum, false);
   set size status(get footer from header((header *)h, sum, false);
   h->next = h->prev = NULL;
   return h;
```

Segregated list

- Idea: keep multiple freelists
 - each freelist contains chunks of similar sizes

Segregated list: initialize

```
#define NLISTS 3
free hdr* freelists[NLISTS];
size t size classes[NLISTS] = {32, 128, -1};
                                                   (0, 32] (32, 128] (128, \infty)
int which_freelist(size_t s) {
                                          freelists:
   int ind = 0;
   while (s > size_classes[ind])
      ind++;
   return ind;
}
void init() {
    free_hdr *h = get_block_from_OS(1024);
   freelist[which_freelist(1024)] = h;
}
```

Segregated list: allocation

Segregated list: free

Buddy System

- A special case of segregated list
 - each freelist has identically-sized blocks
 - block sizes are powers of 2
- Advantage over a normal segregated list?
 - Less search time (no need to search within a freelist)
 - Less coalescing time
- Adopted by Linux kernel and jemalloc

Simple binary buddy system

 $(0000\ 0000\ 0000\ 0000)_2$

Initialize:

for simplicity, assume the initial 2^m block is aligned at 2^m (i.e. the least significant m-bits of its addr are zero)

Binary buddy system: allocate

Binary buddy system: allocate

Binary buddy system: free

Binary buddy system: free

free(p);

If buddy is free:

- 2. Detach free buddy from its list
- 3. Combine with current block

Binary buddy system: free

(0000 0000 0000 0000)2 0x10000 free(p); rest of header Repeat to merge with larger buddy -32K (0100 0000 0000 0000)2 Insert final block into appropriate freelist 64K $(1000\ 0000\ 0000\ 0000)_2$ 32K