Домашнее задание курса «Теория поля»

Автор: Хоружий Кирилл

От: 18 мая 2021 г.

Содержание

T	Общие сведения I
2	Упражнения
	У1
	У2
	У3
	У4
3	Первое задание
	T1
	T2
	T3
	T4
	T5
	T6
	T7
4	Общие сведения II
5	Второе задание
	T8
	T8
	Т9
	T9
	T9 T10 T11 T12 T13 T14 T15 T16
	T9 T10 T11 T11 T12 T13 T14 T15 T15 T16 T17
	T9 T10 T11 T12 T13 T14 T15 T16

 $\mathsf{W}_{\mathsf{N}}\mathsf{K}$ Физ $\mathsf{T}_{\mathsf{E}}\mathsf{X}$

1 Общие сведения I

Для кинематики полезно было бы ввести следующие величины

$$\gamma(v) = \gamma_v = \left(1 - \frac{v^2}{c^2}\right)^{-1/2}, \qquad \beta(v) = \beta_v = \frac{v}{c}, \qquad \Lambda(v, OX) = \begin{pmatrix} \gamma_v & -\beta_v \gamma_v & 0 & 0\\ -\beta_v \gamma_v & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}, \tag{1.1}$$

где Λ – преобразование Лоренца, для которого, кстати, верно, что $\Lambda^{-1}(v) = \Lambda(-v)$.

Также преобразование Лоренца можно записать в виде

$$\begin{pmatrix} ct' \\ r' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta_v \gamma \\ -\beta_v \gamma & \mathbb{E} + \frac{\gamma_v - 1}{\beta_v^2} \beta \otimes \beta \end{pmatrix},$$
 (1.2)

что очень удобно и полезно.

Говоря о движение заряда в ЭМ-поле, хотелось бы получить уравнения движения. По принципу наименьшего действия

$$\delta S = \delta \int_{a}^{b} \left(-mc \, ds - \frac{e}{c} A_i \, dx^i \right) = 0, \qquad \stackrel{ds = \sqrt{dx_i \, dx^i}}{\Rightarrow} \qquad \delta S = -\int_{a}^{b} \left(mc \frac{dx_i \, d\delta x^i}{ds} + \frac{e}{c} A_i \, d\delta x^i + \frac{e}{c} \delta A_i \, dx^i \right) = 0,$$

где проинтегрировав по частям первые два слагаемые получаем

$$\int_{a}^{b} \left(mc \, du_{i} \delta x^{i} + \frac{e}{c} \frac{\partial A_{i}}{\partial x^{k}} \delta x^{i} \, dx^{k} - \frac{e}{c} \frac{\partial A_{i}}{\partial x^{k}} \, dx^{i} \delta x^{k} \right) = 0, \quad \Rightarrow \quad \int_{a}^{b} \left(mc \frac{du_{i}}{ds} - \frac{e}{c} \left(\frac{\partial A_{k}}{\partial x^{i}} - \frac{\partial A_{i}}{\partial x^{k}} \right) u^{k} \right) \delta x^{i} \, ds = 0$$

где $(\delta ...)|_a^b = 0$ в силу варьирования при заданных пределах. Также сделаны замены $du_i \to (u_i)'_s ds, \ dx^i \to u^i ds$. А это уже победа, ведь в силу произвольности δx^i получаем

$$\frac{mc^2}{e} \frac{du^i}{ds} = F^{ik} u_k = F^{ik} g_{kj} u^j, \qquad F^{ik} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -H_z & H_y \\ E_y & H_z & 0 & -H_x \\ E_z & -H_y & H_x & 0 \end{pmatrix}, \tag{1.3}$$

что позволяет всегда смотреть на движение заряда в постоянном ЭМ-поле, как на систему линейных дифференциальных уравнений, решать которую, по крайней мере относительно $s=c\tau$ решать мы умеем.

2 Упражнения

У1

Строчка с символами Кронекера:

$$\delta^{\alpha}_{\alpha} = 3, \qquad \delta^{\beta}_{\alpha}\delta^{\gamma}_{\beta} = \delta^{\gamma}_{\alpha}, \qquad \delta^{\beta}_{\alpha}\delta^{\gamma}_{\beta}\delta^{\alpha}_{\gamma} = \delta^{\alpha}_{\alpha} = 3.$$

По определению символа Леви-Чивиты, раскроем определитель:

$$\varepsilon_{\alpha\beta\gamma}\varepsilon^{\alpha'\beta'\gamma} = \begin{vmatrix} \delta_{\alpha}^{\alpha'} & \delta_{\alpha}^{\beta'} & \delta_{\gamma}^{\gamma} \\ \delta_{\beta}^{\alpha'} & \delta_{\beta}^{\beta'} & \delta_{\gamma}^{\gamma} \\ \delta_{\gamma}^{\alpha'} & \delta_{\gamma}^{\beta'} & \delta_{\gamma}^{\gamma'} \end{vmatrix} = \delta_{\alpha}^{\alpha'} \left(\delta_{\beta}^{\beta'} \delta_{\gamma}^{\gamma} - \delta_{\beta}^{\gamma} \delta_{\gamma}^{\beta'} \right) - \delta_{\alpha}^{\beta'} \left(\delta_{\beta}^{\alpha'} \delta_{\gamma}^{\gamma} - \delta_{\beta}^{\gamma} \delta_{\gamma}^{\alpha'} \right) + \delta_{\alpha}^{\gamma} \left(\delta_{\beta}^{\alpha'} \delta_{\gamma}^{\beta'} - \delta_{\beta}^{\beta'} \delta_{\gamma}^{\alpha'} \right) =$$

$$= \delta_{\alpha}^{\alpha'} \left(3\delta_{\beta}^{\beta'} - \delta_{\beta}^{\beta'} \right) - \delta_{\alpha}^{\beta'} \left(2\delta_{\beta}^{\alpha'} \right) + \delta_{\alpha}^{\beta'} \delta_{\beta}^{\alpha'} - \delta_{\alpha}^{\gamma} \delta_{\beta}^{\beta'} \delta_{\gamma}^{\alpha'} = \begin{bmatrix} \delta_{\alpha}^{\alpha'} \delta_{\beta}^{\beta'} - \delta_{\alpha}^{\beta'} \delta_{\beta}^{\alpha'} \end{bmatrix}$$

Далее просто в последнем равенстве приравниваем в первом случае $\beta'=\beta,$ а во втором ещё и $\alpha=\alpha',$ получая:

$$\varepsilon_{\alpha\beta\gamma}\varepsilon^{\alpha'\beta\gamma} = 3\delta_{\alpha}^{\alpha'} - \delta_{\alpha}^{\alpha'} = 2\delta_{\alpha}^{\alpha'}, \qquad \varepsilon_{\alpha\beta\gamma}\varepsilon^{\alpha\beta\gamma} = 2\delta_{\alpha}^{\alpha} = 6.$$

 y_2

- $[\boldsymbol{a} \times [\boldsymbol{b} \times \boldsymbol{c}]]^i = \varepsilon^i_{\ ik} a^j [\boldsymbol{b} \times \boldsymbol{c}]^k = \varepsilon^i_{\ ik} a^j \varepsilon^k_{\ mn} b^m c^n = (\delta^i_m \delta_{jn} \delta^i_n \delta_{jm}) a^j b^m c^n = a^j b^i c_j c^i a^j b_j = b^i (\boldsymbol{a} \cdot \boldsymbol{c}) c^i (\boldsymbol{a} \cdot \boldsymbol{b}).$
- $([\boldsymbol{a} \times \boldsymbol{b}] \cdot [\boldsymbol{c} \times \boldsymbol{d}]) = \varepsilon_{ijk} a^j b^k \varepsilon^i{}_{mn} c^m d^n = (\delta_{jm} \delta_{kn} \delta_{jn} \delta_{km}) a^j b^k c^m d^n = a^j b^k c_j d_k a^j b^k c_k d_j = (\boldsymbol{a} \cdot \boldsymbol{c}) (\boldsymbol{b} \cdot \boldsymbol{d}) (\boldsymbol{a} \cdot \boldsymbol{d}) (\boldsymbol{b} \cdot \boldsymbol{c}).$

 Φ_{N} ЗТ $_{\mathsf{E}}$ Х

• Тут придется применить результаты первого примера этого урпажения:

$$([\boldsymbol{a} \times \boldsymbol{b}] \cdot [[\boldsymbol{b} \times \boldsymbol{c}] \times [\boldsymbol{c} \times \boldsymbol{a}]]) = (\boldsymbol{a} \cdot [\boldsymbol{b} \times \boldsymbol{c}]) (\boldsymbol{b} \cdot [\boldsymbol{c} \times \boldsymbol{a}]) - (\boldsymbol{a} \cdot [\boldsymbol{c} \times \boldsymbol{a}]) (\boldsymbol{b} \cdot [\boldsymbol{b} \times \boldsymbol{c}]) =$$

$$= a^{i} \varepsilon_{ijk} b^{j} c^{k} \cdot b^{\alpha} \varepsilon_{\alpha\beta\gamma} c^{\beta} a^{\gamma} - a^{i} \varepsilon_{ijk} c^{j} a^{k} \cdot b^{\alpha} \varepsilon_{\alpha\beta\gamma} b^{\beta} c^{\gamma} = (a^{i} \varepsilon_{ijk} b^{j} c^{k})^{2} = (\boldsymbol{a} \cdot [\boldsymbol{b} \times \boldsymbol{c}])^{2}$$

У3

Сразу оговорим, что все нечетные степени, ввиду инвариантности по перестановкам при усреднении дадут нуль.

Для четных же будем получать какие-то симметричные тензоры, которые могут быть выражены через всевозможные комбинации символов Кронекера. Так для два-тензора:

$$\langle n_{\alpha} n_{\beta} \rangle = z_{ab} = \frac{1}{3} \delta_{\alpha\beta}.$$

В силу единичности n при свертке два-тензора из них должна получиться единица. Симметричный единичный два-тензор, инвариантный к поворотам это и есть Кроннекер на троих.

Для четырех же возьмём все возможные комбинации символов Кроннекера:

$$\langle n_{\alpha}n_{\beta}n_{\gamma}n_{\mu}\rangle = \frac{1}{c}\left(\delta_{\alpha\beta}\delta_{\gamma\mu} + \delta_{\alpha\gamma}\delta_{\beta\mu} + \delta_{\alpha\mu}\delta_{\beta\gamma}\right).$$

Опять же нужно найти константу c, чтобы свертка четыре-тензора была единичной:

$$\delta^{\alpha\beta}\delta^{\gamma\mu}\left(\delta_{\alpha\beta}\delta_{\gamma\mu} + \delta_{\alpha\gamma}\delta_{\beta\mu} + \delta_{\alpha\mu}\delta_{\beta\gamma}\right) = 9 + \delta^{\beta}_{\gamma}\delta^{\gamma}_{\beta} + \delta^{\beta}_{\mu}\delta^{\mu}_{\beta} = 15. \quad \Rightarrow \quad \langle n_{\alpha}n_{\beta}n_{\gamma}n_{\mu}\rangle = \frac{1}{15}\left(\delta_{\alpha\beta}\delta_{\gamma\mu} + \delta_{\alpha\gamma}\delta_{\beta\mu} + \delta_{\alpha\mu}\delta_{\beta\gamma}\right).$$

У4

a)

- $\bullet \ (\operatorname{rot}\operatorname{rot} \boldsymbol{A})^i = \varepsilon^i_{\ jk}\nabla^j(\varepsilon^k_{\ \alpha\beta}\nabla^\alpha A^\beta) = (\delta^i_\alpha\delta_{j\beta} \delta^i_\beta\delta_{j\alpha})\nabla^j\nabla^\alpha A^\beta = \nabla^i(\nabla_j A^j) \nabla_j\nabla^j A^i = \left(\operatorname{grad}\operatorname{div}\boldsymbol{A} \nabla^2\boldsymbol{A}\right)^i.$
- $(\operatorname{rot}[\boldsymbol{a}\times\boldsymbol{b}])^i = \varepsilon^i_{\ jk}\nabla^j\varepsilon^k_{\ \alpha\beta}a^{\alpha}b^{\beta} = (\delta^i_{\alpha}\delta_{j\beta} \delta^i_{\beta}\delta_{j\alpha})(a^{\alpha}\nabla^jb^{\beta} + b^{\beta}\nabla^ja^{\alpha}) = a^i\nabla^jb_j b^i\nabla^ja_j + b_j\nabla^ja^i a^j\nabla^jb^i = (\boldsymbol{a}\operatorname{div}\boldsymbol{b} \boldsymbol{b}\operatorname{div}\boldsymbol{a})^i + ((\boldsymbol{b}\cdot\nabla)\boldsymbol{a} (\boldsymbol{a}\cdot\nabla)\boldsymbol{b})^i..$
- $\bullet \ (\operatorname{rot} f \boldsymbol{A})^i = \varepsilon^i{}_{jk} \nabla^j f A^k = \varepsilon^i{}_{jk} (f \nabla^j A^k + A^k \nabla^j f) = f \varepsilon^i{}_{jk} \nabla^j A^k + \varepsilon^i{}_{jk} \nabla^j f = (f \operatorname{rot} \boldsymbol{A} + \boldsymbol{A} \times \operatorname{grad} f)^i.$
- $\operatorname{div} f \mathbf{A} = \nabla_i f A^i = A^i \nabla_i f + f \nabla_i A^i = (\mathbf{A} \cdot \operatorname{grad} f) + f \operatorname{div} \mathbf{A}.$
- $\operatorname{div}[\boldsymbol{a} \times \boldsymbol{b}] = \nabla_i \varepsilon^i_{jk} a^j b^k = \varepsilon^i_{jk} (b^k \nabla_i a^j + a^j \nabla_i b^k) = \varepsilon^i_{jk} b^k \nabla_i a^j + \varepsilon^i_{jk} a^j \nabla_i b^k = b^k \varepsilon_k^{\ i}_{j} \nabla_i a^j a^j \varepsilon_j^{\ i}_{k} \nabla_i b^k = (\boldsymbol{b} \cdot \operatorname{rot} \boldsymbol{a}) (\boldsymbol{a} \cdot \operatorname{rot} \boldsymbol{b}).$
- $[\operatorname{grad}(\boldsymbol{a} \cdot \boldsymbol{b})]^i = \nabla^i a^j b_i = a^j \nabla^i b_i + b_i \nabla^i a^j$

Рассмотрим такую штуку: $((\boldsymbol{a} \cdot \nabla)\boldsymbol{b})^j = a_i \nabla^i b^j$

И такую: $(\boldsymbol{a} \times [\nabla \times \boldsymbol{b}])^i = \varepsilon^i_{ik} a^j \varepsilon^k_{\alpha\beta} \nabla^{\alpha} b^{\beta} = (\delta^i_a \delta_{j\beta} - \delta^i_{\beta} \delta_{j\alpha}) a^j \nabla^{\alpha} b^{\beta} = a^j \nabla^i b_j - a_j \nabla^j b^i$

Из этих штук и можем составить начальную:

$$[\operatorname{grad}(\boldsymbol{a}\cdot\boldsymbol{b})]^i = \nabla^i a^j b_j = a^j \nabla^i b_j + b_j \nabla^i a^j = [\boldsymbol{a} \times [\nabla \times \boldsymbol{b}]]^i + [\boldsymbol{b} \times [\nabla \times \boldsymbol{a}]] + (\boldsymbol{a} \cdot \nabla) \boldsymbol{b} + (\boldsymbol{b} \cdot \nabla) \boldsymbol{a}.$$

б)

- $rot[\boldsymbol{\omega} \times \boldsymbol{r}] = 2\boldsymbol{\omega}$.
- grad $(\boldsymbol{a} \cdot \boldsymbol{r}) = (\boldsymbol{a} \cdot \nabla)\boldsymbol{r} = /a^i \nabla_i r^j = a^i \delta_i^j / = \boldsymbol{a}$

в)

- grad $r = /\nabla^i \sqrt{r^j r_j} = \frac{1}{2} \frac{\nabla^i r^j r_j}{\sqrt{r^\gamma r_\gamma}} = \frac{r^j \delta_j^i}{r} / = \frac{\boldsymbol{r}}{r}.$
- div $\mathbf{r} = \nabla_{\alpha} r^{\alpha} = \delta^{\alpha}_{\alpha} = 3$.
- $(\boldsymbol{a} \cdot \nabla) \boldsymbol{r} = /a^i \nabla_i r^j / = \boldsymbol{a}$.
- grad $f(r) = /\nabla^i f(r) = f'_r \nabla^i \sqrt{r^j r_i} / = f'_r \frac{\mathbf{r}}{\pi}$.

 $\mathsf{M}_{\mathsf{U}}\mathsf{K}$ Физ $\mathsf{T}_{\mathsf{E}}\mathsf{X}$

- rot $\mathbf{a}(r) = \left/ \varepsilon^i_{jk} \nu^j a^k(r) = \varepsilon^i_{jk} (a^k)'_r \frac{\nabla^j r}{r^j / r} \right/ = \frac{1}{r} [\mathbf{a}'_r \times \mathbf{r}].$
- div $\mathbf{a}(r) = /\nabla^i a_i(r) = (a_i)_r' \nabla^i r / = \frac{1}{r} (\mathbf{a}_r' \cdot \mathbf{r}).$

У5

Суть в том, чтобы скалярно домножая на константу, получать интегралы от форм, которые можно позже преобразовать по формуле Стокса.

- $\mathbf{c} \cdot \int_{V} \nabla f d^{3}r = \int_{V} \operatorname{div}(\mathbf{c}f) = \oint_{\partial V} \omega_{\mathbf{c}f}^{2} = \oint_{\partial V} \mathbf{c}f \cdot d\mathbf{S}$.
- $\mathbf{c} \cdot \int_{V} \operatorname{rot} \mathbf{A} d^{3}r = \int_{V} \mathbf{\nabla} \cdot [\mathbf{A} \times \mathbf{c}] d^{3}r = \int_{V} \operatorname{div}[\mathbf{A} \times \mathbf{c}] d^{3}r = \oint_{S} [\mathbf{A} \times \mathbf{c}] \cdot d\mathbf{S} = \oint_{S} \mathbf{c} \cdot [d\mathbf{S} \times \mathbf{A}] = -\oint_{S} \mathbf{c}[\mathbf{A} \times d\mathbf{S}].$
- $c \cdot \int_{S} [\nabla f \times d\mathbf{S}] = \int_{S} d\mathbf{S} \cdot [\mathbf{c} \times \nabla f] = -\int_{S} d\mathbf{S} \cdot \operatorname{rot} \mathbf{c} f = -\oint \mathbf{c} f \cdot d\mathbf{l}$.
- $\oint_S [oldsymbol{
 abla} \times oldsymbol{A}] doldsymbol{S} = \int_\Gamma oldsymbol{A} \cdot doldsymbol{l} = 0$, t.k. $\Gamma = \varnothing$.

3 Первое задание

T1

Для начала запишем преобразование Лоренца для системы K':

$$t' = \gamma_{v_x} \left(t - \beta_x \frac{x}{c} \right), \qquad x' = \gamma_{v_x} (x - v_x t), \qquad y' = y, \qquad z' = z.$$

Аналогично перейдём к системе K'', выразив компоненты через их представление в системе K'

$$t'' = \gamma_{v_y'} \left(t' - \beta_{v_y'} \frac{y'}{c} \right), \qquad x'' = x', \qquad y'' = \gamma_{v_y'} (y' - v_y' t), \qquad z'' = z'.$$

Центр системы K'' неподвижен в координатах системы K'', соответственно

$$x'' = y'' = z'' = 0, \quad \Rightarrow \quad \begin{cases} x_{K''} = v_x t \\ y_{K''} = \gamma_{v_x}^{-1} v_y' t \end{cases},$$

что соответствет (x,y)[t] для координат центра системы K'' в системе K.

Теперь найдём движение центра системы K в системе K'', подставив значения x=y=0,

$$x_K'' = -\gamma_{v_x} v_x t, y_K'' = -\gamma_{v_y'} \gamma_{v_x} v_y' t, t_K'' = -\gamma_{v_y'} \gamma_{v_x} t.$$

Можно заметить, что

$$\gamma_{v_y'}\gamma_{v_x} \approx \gamma \left(\sqrt{v_x^2 + v_y'^2}\right) = \gamma_v, \qquad \beta_{v_x}, \beta_{v_y'} \ll 1.$$

Теперь нас интересует направление прямой $\| v - д$ вижения K'' в системе K:

$$\operatorname{tg} \varphi = \frac{v_y}{v_x} = \frac{\dot{y}_{K''}}{\dot{x}_{K''}} = \gamma_{v_x}^{-1} \frac{v_y'}{v_x}.$$

Угол же между осью x'' и движением центра системы K может быть найден, как

$$\operatorname{tg}(\theta + \varphi) = \frac{dy_K''}{dt''} / \frac{dx_K''}{dt''} = \gamma_{v_y'} \frac{v_y'}{v_x} = \gamma_{v_x} \gamma_{v_y'} \operatorname{tg} \varphi \approx \gamma_v \operatorname{tg} \varphi.$$

С другой стороны, раскрывая тангенс суммы, находим

$$\operatorname{tg} \theta + \operatorname{tg} \varphi = \gamma_v \operatorname{tg} \varphi (1 - \operatorname{tg} \varphi \operatorname{tg} \theta), \quad \Rightarrow \quad \operatorname{tg} \theta = \frac{(\gamma_v - 1) \operatorname{tg} \varphi}{1 + \gamma_v \operatorname{tg}^2 \varphi}.$$

T2

Аппроксимируем движение нИСО в моменты времени t и t+dt сопутствующими ИСО K' и K''. Пусть K – лабороторная система отсчета, K' – сопутствующая ИСО $\boldsymbol{v} \stackrel{\text{def}}{=} \boldsymbol{v}(t)$, а K'' – сопутствующая ИСО движущаяся относительно K со скоростью $\boldsymbol{v}(t+dt) = \boldsymbol{v} + d\boldsymbol{v}$. Далее для удобства будем считать, что K'' движется относительно K' со скоростью $d\boldsymbol{v}'$.

Проверим, что последовательное применеие $\Lambda(dv')\cdot \Lambda(v)$ эквивалентно $R(\varphi)\cdot \Lambda(v+dv)$, где $R(\varphi)$ – вращение в $\{xyz\}$. Для этого просто найдём

$$R(\varphi) = \Lambda(d\mathbf{v}') \cdot \Lambda(\mathbf{v}) \cdot \Lambda(\mathbf{v} + d\mathbf{v})^{-1}.$$

 Φ_{M} ЗТ $_{\mathsf{E}}$ Х Ж $_{\mathsf{M}}$ К

Пусть ось $x \parallel \boldsymbol{v}$, ось y выберем так, чтобы $d\boldsymbol{v} \in \{Oxy\}$. Теперь, согласно (1.2), считая $|\boldsymbol{v}| = \beta_1$, $d\boldsymbol{v}' = (\beta_x', \beta_y')^{\mathrm{T}}$ можем записать (пренебрегая слагаемыми β_x', β_y' второй и выше степени):

$$\Lambda(\boldsymbol{v}) = \left(\begin{array}{cccc} \gamma_1 & -\beta_1 \gamma_1 & 0 & 0 \\ -\beta_1 \gamma_1 & \gamma_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right), \quad \Lambda(d\boldsymbol{v}') = \left[\begin{array}{cccc} 1 & -\beta_x' & -\beta_y' & 0 \\ -\beta_x' & 1 & 0 & 0 \\ -\beta_y' & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

Теперь можем выразить dv' через dv, считая $r_{\rm f}$ центром системы K'

$$\boldsymbol{r}_f' = \Lambda(d\boldsymbol{v}') \cdot \Lambda(\boldsymbol{v}) \boldsymbol{r}_f = (ct', \ 0, \ 0, \ 0)^{\mathrm{T}} \quad \Rightarrow \quad \beta(\boldsymbol{v} + d\boldsymbol{v})_x = \frac{\beta_1 + \beta_x'}{1 + \beta_1 \beta_x'}, \quad \beta(\boldsymbol{v} + d\boldsymbol{v})_y = \frac{\gamma_{\beta_1} \beta_y}{1 + \beta_1 \beta_x}.$$

где скорость находим аналогично первому номеру. Тут стоит заметить, что скоростью β_x можно было бы пренебречь в сравнении с β_1 , так как скорее всего первый порядок малось β_x не войдёт в ответ, однако хотелось бы в этом убедиться.

Зная $d\boldsymbol{v}$ можем найти $d\boldsymbol{v}'$:

$$\beta_x' = \gamma_{\beta_1}^2 \beta_x, \quad \beta_y' = \gamma \beta_y.$$

Но это на потом.

Через v, dv' теперь можем найти $\Lambda(v+dv)$, и посчитать обратную матрицу:

$$\Lambda^{-1}(\boldsymbol{v} + d\boldsymbol{v}) = \begin{bmatrix} \gamma_{\beta_1}(\beta_1\beta_x + 1) & \gamma_{\beta_1}(\beta_1 + \beta_x) & \beta_y & 0\\ \gamma_{\beta_1}(\beta_1 + \beta_x) & \gamma_{\beta_1}(\beta_1\beta_x + 1) & \frac{\beta_1\beta_y}{\gamma_{\beta_1}^{-1} + 1} & 0\\ \beta_y & \frac{\beta_1\beta_y}{\gamma_{\beta_1}^{-1} + 1} & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Наконец можем посчитать матрицу поворота, которая в первом приближении действительно не содержит β_x :

$$R(\varphi) = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & -\frac{\beta_1 \beta_y'}{\sqrt{1 - \beta_1^2 + 1}} & 0\\ 0 & \frac{\beta_1 \beta_y'}{\sqrt{1 - \beta_1^2 + 1}} & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

что дейстительно соответствует повороту в плоскости $\{xy\}$ вокруг оси z с углом φ равным

$$\varphi = -\frac{\beta_y \beta_1}{\gamma_{\beta_1}^{-2} + \gamma_{\beta_1}^{-1}} = -\frac{\gamma_{\beta_1}^2}{\gamma_{\beta_1} + 1} \beta_1 \beta_y,$$

где φ малый, в силу малости β_y . Так вот, в результате поворота координатных осей меняются и любые векторы, неподвижные в неИСО, то есть искомая угловая скорость

$$\omega_z = -\frac{\gamma_{\beta_1}^2}{\gamma_{\beta_1}+1}\beta_1(\beta_y/\Delta t), \quad \Leftrightarrow \quad \boldsymbol{\omega} = -\frac{\gamma_{\beta_1}^2}{\gamma_{\beta_1}+1}\left[\boldsymbol{\beta}\times\dot{\boldsymbol{\beta}}\right] = \frac{\gamma_{\beta_1}^2}{\gamma_{\beta_1}+1}\left[\dot{\boldsymbol{\beta}}\times\boldsymbol{\beta}\right],$$

что и требовалось доказать

T3

Посмотрим на сопутствующую вращающемуся интерферометру в точке рассматриваемого луча. Для луча можем записать волновой вектор, как

$$\bar{k}'_{\pm} = \left(\frac{\omega}{c}, \pm n \frac{\omega}{c}, 0, 0\right),$$

где знак выбирается в соответсвии с направлением обхода. Считая, что ось Ox направлена вдоль вращения интерферометра в рассматриваемой точке

$$ck_{\pm} = \begin{bmatrix} \gamma & \gamma\beta & 0 & 0 \\ \gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \omega \\ \pm n\omega \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \omega\gamma(1 + \pm n\beta) \\ \omega\gamma(n \pm \beta) \\ 0 \\ 0 \end{pmatrix},$$

откуда

$$ck_{x,\pm} = \omega \gamma (n \pm \beta).$$

 $M_{
m H}$ K $\Phi_{
m H}$ 3 $T_{
m E}$ X

Можно заметить, что у света также зависит частота от направления двиения, судя по формуле выше, но в силу малости скорости вращения, это приведет только к оооочень медленной осцилляции в интерференции

$$I_{\text{инт}} = I_1 + I_2 + \langle (\boldsymbol{E}_{10} \cdot \boldsymbol{E}_{20}) \cos((\omega_2 - \omega_1)t + \ldots) \rangle,$$

так что по идее этим эффектом можно принебречь.

В силу различности k_+ и k_- можем найти разность хода

$$\Delta \varphi = \varphi_{+} - \varphi_{-} = 2\pi R \frac{\gamma \omega \beta}{c},$$

считая данной угловую скорость вращения интерферометра Ω приходим к выражению вида

$$\Delta \varphi = \frac{2\gamma}{c^2} \omega \Omega \pi R^2 \stackrel{\gamma \sim 1}{\approx} \frac{2\pi}{c^2} \omega \Omega R^2,$$

где $\gamma \approx 1$ для корректности результата, так как при расчете не учитывалось изменение метрики для не $\rm HCO$.

T4

Теперь рассмотрим реакцию превращения электрона и позитрона в мюон и антимюон:

$$e^+ + e^- \to \mu^+ + \mu^-$$
.

Хотелось бы зная энергию стакивающихся частиц найти эффективную массу системы $((\mathcal{E}_1 + \mathcal{E}_2)^2)$ и энергии μ^{\pm} . Для 4-импульса $p^i = (\mathcal{E}/c, \mathbf{p})$, для которого верно

$$c^2(2m_{\mu})^2 \leqslant (p_1^i + p_2^i)^2 = \bar{p}_1^2 + \bar{p}_2^2 + 2\bar{p}_1 \cdot \bar{p}_2 = c^2 2m_e^2 + 2\left(\mathcal{E}_1\mathcal{E}_2/c^2 - \boldsymbol{p}_1 \cdot \boldsymbol{p}_2\right).$$

что приводит нас к неравенству

$$c^2(2m_\mu^2 - m_e^2) \leqslant \frac{1}{c^2} \mathscr{E}_1 \mathscr{E}_2 - \boldsymbol{p}_1 \cdot \boldsymbol{p}_2.$$

При равных энергия $\mathscr{E}_1=\mathscr{E}_2=\mathscr{E}$ и $\boldsymbol{p}_1=-\boldsymbol{p}_2$ верно, что

$$p_1^2 = \frac{\mathscr{E}^2}{c^2} - m^2 c^2,$$

тогда

$$c^{2}(2m_{\mu}^{2}-m_{e}^{2})\leqslant \frac{1}{c^{2}}\mathscr{E}^{2}+p_{1}^{2}=\frac{2}{c^{2}}\mathscr{E}^{2}-m_{e}^{2}c^{2},$$

таким образом

$$\mathscr{E} \geqslant m_{\mu}c^2, \quad T_{\text{порог}} = (m_{\mu} - m_e)c^2.$$

При налете на неподвижную частицу $\mathscr{E}_2 = m_e c$ и $\boldsymbol{p}_2 = 0$, тогда

$$(2m_{\mu}^2 - m_e^2)c^2 \leqslant \mathscr{E}_1 m_e, \quad \Rightarrow \quad \mathscr{E}_1 \geqslant \left(2\frac{m_{\mu}^2}{m_e} - m_e\right)c^2.$$

Соответсвенно для пороговой энергии верно

$$T_{\text{порог}} = \frac{2c^2}{m_e} \left(m_{\mu}^2 - m_e^2 \right).$$

T5

Имеем две частицы, 4-импульсы которых в начальный момент:

$$p_{\gamma}^{i} = \begin{pmatrix} \varepsilon_{\gamma} \\ \boldsymbol{p}_{\gamma} \end{pmatrix}, \quad |p_{\gamma}^{i}| \approx \varepsilon_{\gamma}.$$
 $p_{e}^{i} = \begin{pmatrix} \varepsilon_{e} \\ \boldsymbol{p}_{e} \end{pmatrix}, \quad |p_{e}^{i}| = \beta_{e}\varepsilon_{e}.$

Перейдём в систему центра инерции двух частиц. Пусть пусть движется со скоростью β , тогда матрица преобразования для такой пересадки и аберация угла будут

$$\begin{pmatrix} \gamma & \gamma\beta & 0 & 0 \\ \gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad \cos\theta' = \frac{\cos\theta - \beta}{1 - \cos\theta\beta}.$$

Запишем закон сохранения импульса до и после столкновения, штрихами пометим величины после столкновения.

$$p_{\gamma}^{i} + p_{e}^{i} = p_{\gamma}^{\prime i} + p_{e}^{\prime i} \quad \Rightarrow \quad (p_{e}^{\prime i})^{2} = (p_{\gamma}^{i} + p_{e}^{i} - p_{\gamma}^{\prime i})^{2} = p_{\gamma}^{2} + p_{e}^{2} + p_{\gamma}^{\prime 2} + 2p_{e}p_{\gamma} - 2p_{e}p_{\gamma}^{\prime} - 2p_{\gamma}p_{\gamma}^{\prime},$$

пренебрегая квадратом импульса фотонов получаем

$$m_e^2 = m_e^2 + 2p_e p_\gamma - 2p_e p_\gamma' - 2p_\gamma p_\gamma' \qquad \Rightarrow \qquad p_e p_\gamma - p_e p_\gamma' - p_\gamma p_\gamma' = 0.$$

Перемножим компоненты 4-импульсов:

$$\varepsilon_e \varepsilon_\gamma - \boldsymbol{p}_e \cdot \boldsymbol{p}_\gamma - \varepsilon_e \varepsilon_\gamma' + \boldsymbol{p}_e \cdot \boldsymbol{p}_\gamma' - \varepsilon_\gamma \varepsilon_\gamma' + \boldsymbol{p}_\gamma \cdot \boldsymbol{p}_\gamma' = 0.$$

Пусть частицы разлетелись под углом θ :

$$\varepsilon_e \varepsilon_\gamma + \varepsilon_e \varepsilon_\gamma \beta_e - \varepsilon_e \varepsilon_\gamma' + \beta_e \varepsilon_e \varepsilon_\gamma' \cos \theta - \varepsilon_\gamma \varepsilon_\gamma' + \varepsilon_\gamma \varepsilon_\gamma' \cos(\pi - \theta) = 0.$$

Откуда не сложно выразить энергию фотона после столкновения, заметим, что по условию задачи: $\varepsilon_{\gamma}/\varepsilon_{e}=10^{-11}$, такими членами будем пренебрегать:

$$\varepsilon_{\gamma}' = \frac{\varepsilon_e \varepsilon_{\gamma} (1 + \beta_e)}{\varepsilon_e (1 - \beta_e \cos \theta) + \varepsilon_{\gamma} (1 + \cos \theta)} = \frac{\varepsilon_{\gamma} (1 + \beta_e)}{1 - \beta \cos \theta + \frac{\varepsilon_{\gamma}}{\varepsilon_e} (1 + \cos \theta)} \approx \frac{\varepsilon_{\gamma} (1 + \beta_e)}{1 - \beta_e \cos \theta}.$$

Имея формулу плюс-минус общую не сложно ответить на вопрос про рассеяние назад:

$$\varepsilon_{\gamma}'(\cos\theta = -1) \approx \varepsilon_{\gamma} = 2 \text{ aB}.$$

в то время, как вперед пролетает:

$$\varepsilon_{\gamma}'(\cos\theta=1)pproxrac{arepsilon_{\gamma}arepsilon_{e}^{2}}{m_{-}^{2}}pprox320$$
 ГэВ.

T6

Пион распадается на нейтрино и мюон: $\pi \to \mu + \nu$. Будем работать в система центра инерции.

$$p_{0\mu}^i = p_{0\mu}^i + p_{0\nu}^i \quad \Rightarrow \quad (p_{0\mu}^i)^2 = (p_{0\pi}^i - p_{0\nu}^i)^2 \quad \Rightarrow \quad m_{\mu}^2 c^2 = c^2 (m_{\pi}^2 + m_{\nu}^2) - 2p_{0\pi}^i p_{i0\nu} = c^2 m_{\pi}^2 - 2m_{\pi} \varepsilon_{0\nu}.$$

Откуда получаем

$$\varepsilon_{o\nu} = \frac{m_{\pi}^2 - m_{\mu}^2}{2m_{\pi}}c^2 = \frac{140^2 - 105^2}{2 \cdot 140} \cdot 1^2 = 31 \text{ M} \cdot \text{B}.$$

Переходя в лабораторную систему отсчёта:

$$\varepsilon_{\nu} = \gamma(v)\varepsilon_{0\nu} \left(1 - \frac{v}{c}\cos\theta_0\right).$$

Подставляя углы θ_0 найдём минимальную и максимальную энергии:

$$\varepsilon_{\min}^{\nu} = \varepsilon_{0\nu} \gamma(v) \left(1 - \frac{v}{c}\right) \approx 0.4 \text{ M} \\ \text{əB}, \qquad \quad \varepsilon_{\max}^{\nu} = \varepsilon_{0\nu} \gamma(v) \left(1 + \frac{v}{c}\right) \approx 2666 \text{ M} \\ \text{əB}.$$

Для определения среднего значения сначала нужно задаться вопросом распределения по углу отклонения, пока в системе покоя π :

$$\varepsilon_{\nu} = \gamma(v)\varepsilon_{0\nu}\left(1 - \frac{v}{c}\cos\theta_{0}\right) \quad \stackrel{d}{\Rightarrow} \quad d\varepsilon = \frac{v}{c}\gamma\varepsilon_{0}\,d\cos\theta_{0}.$$

Из всех частиц N_0 в телесном угле $d\Omega_0$ заключено:

$$\frac{dN}{N_0} = \frac{d\Omega_0}{4\pi} = \frac{1}{2}(d\cos\theta)\frac{d\varphi}{2\pi} \qquad \Rightarrow \qquad \frac{dN}{N_0} = \frac{1}{4\pi}\frac{c\,d\varepsilon}{v\gamma\varepsilon_0}(2\pi) = \frac{d\varepsilon}{\varepsilon_{\rm max}-\varepsilon_{\rm min}}.$$

Но это всё было в системе центра инерции, нужно перейти в лабораторную, а тогда произойдёт аберрация:

$$\cos \theta = \frac{\cos \theta - \beta}{1 - \beta \cos \theta}.$$

Таким образом

$$\frac{dN}{d\cos\theta} = \left(\frac{dN}{d\cos\theta'}\right)\frac{d\cos\theta'}{d\cos\theta} = \left(\frac{dN}{d\cos\theta'}\right)\frac{1-\beta^2}{(\beta\cos\theta-1)^2},$$

где $dN/d\cos\theta'$ — распределение по углу в системе центра инерции, которое в силу изотропности пространства постоянно. Так как в правой части отсутствует энергия, то распределение энергии по углу — постоянно, тогда

$$\langle \varepsilon^{\nu} \rangle = 1333 \text{ M} \cdot \text{B}.$$

T7

Выберем оси z по H, ось y так, чтобы в $E \in \text{Oyz}$. Тогда тензор электромагнитного поля запишется:

$$F^{\mu\nu} = \begin{pmatrix} 0 & 0 & -E\sin\theta & -E\cos\theta \\ 0 & 0 & -H & 0 \\ E\sin\theta & H & 0 & 0 \\ E\cos\theta & 0 & 0 & 0 \end{pmatrix},$$

с учетом $\theta = \pi/2$, $E = \alpha H$, $mc^2/e = K$, вспомнив (1.3), запишем уравнение движения

$$\frac{mc^2}{e} \frac{du^i}{ds} = F^{ik} u_k = F^{ij} g_{jk} u^k, \quad \Rightarrow \quad K \frac{d\bar{u}}{ds} = \begin{pmatrix} 0 & 0 & \alpha H & 0 \\ 0 & 0 & H & 0 \\ \alpha H & -H & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \bar{u},$$

где $\bar{u}=(u_0,u_x,u_y,u_z)=\bar{p}/mc$. Линейные дифференциальные уравнения мы решать вроде умеем, так что находм собственные числа, как

$$\det(F^{ik}g_{kj} - \lambda \mathbb{E}_j^i) = \lambda^2(\lambda^2 - H^2(\alpha^2 - 1)) = 0, \qquad \Rightarrow \qquad \begin{array}{c} \lambda_{1,2} = 0, \\ \lambda_{3,4} = \pm H\sqrt{\alpha^2 - 1}. \end{array}$$

И, соответственно, собственные векторы ($\alpha \neq 1$):

$$(\bar{v}_1, \bar{v}_2, \bar{v}_3, \bar{v}_4) = \begin{pmatrix} 0 & 0 & 0 & 1\\ \frac{1}{\alpha} & 1 & 0 & 0\\ -\frac{\alpha}{\sqrt{\alpha^2 - 1}} & -\frac{1}{\sqrt{\alpha^2 - 1}} & 1 & 0\\ \frac{\alpha}{\sqrt{\alpha^2 - 1}} & \frac{1}{\sqrt{\alpha^2 - 1}} & 1 & 0 \end{pmatrix}.$$

Осталось подставить начальные условия

$$\bar{u}(s=0) = (\mathcal{E}_0/c, p_{0x}, p_{0y}, p_{0z})^{\mathrm{T}}/mc,$$

находим уравнения относительно \bar{u} для трёх случаев. При $\alpha \in (0,1)$:

$$u_{x}(s) = -\frac{(\alpha p_{0} - p_{0x})\cos\left(\frac{\sqrt{1-\alpha^{2}}eHs}{c^{2}m}\right)}{(1-\alpha^{2})cm} - \frac{(\alpha^{2}-1)p_{0y}\sin\left(\frac{\sqrt{1-\alpha^{2}}eHs}{c^{2}m}\right)}{(1-\alpha^{2})^{3/2}cm} - \frac{\alpha(\alpha p_{0x} - p_{0})}{(1-\alpha^{2})cm},$$

$$u_{y}(s) = \frac{(\alpha p_{0} - p_{0x})\sin\left(\frac{\sqrt{1-\alpha^{2}}eHs}{c^{2}m}\right)}{\sqrt{1-\alpha^{2}}cm} + \frac{p_{0y}\cos\left(\frac{\sqrt{1-\alpha^{2}}eHs}{c^{2}m}\right)}{cm}.$$

При $\alpha > 1$:

$$u_x(s) = \frac{(\alpha p_0 - p_{0x})\cosh\left(\frac{\sqrt{\alpha^2 - 1}eHs}{c^2 m}\right)}{(\alpha^2 - 1)cm} + \frac{p_{0y}\sinh\left(\frac{\sqrt{\alpha^2 - 1}eHs}{c^2 m}\right)}{\sqrt{\alpha^2 - 1}cm} + \frac{\alpha(\alpha p_{0x} - p_0)}{(\alpha^2 - 1)cm},$$
$$u_y(s) = \frac{(\alpha p_0 - p_{0x})\sinh\left(\frac{\sqrt{\alpha^2 - 1}eHs}{c^2 m}\right)}{\sqrt{\alpha^2 - 1}cm} + \frac{p_{0y}\cosh\left(\frac{\sqrt{\alpha^2 - 1}eHs}{c^2 m}\right)}{cm}.$$

И при $\alpha = 1$:

$$\begin{split} u_0(s) &= \frac{e^2 H^2 s^2 (p_0 - p_{0x})}{2c^5 m^3} + \frac{e H p_{0y} s}{c^3 m^2} + \frac{p_0}{cm} \\ u_x(s) &= \frac{e^2 H^2 s^2 (p_0 - p_{0x})}{2c^5 m^3} + \frac{e H p_{0y} s}{c^3 m^2} + \frac{p_{0x}}{cm} \\ u_y(s) &= \frac{e H s (p_0 - p_{0x})}{c^3 m^2} + \frac{p_{0y}}{cm} . \end{split}$$

и по оси z движение с $u_z = p_{0z}/mc = \text{const}$, а $s = c\tau$.

При пристальном взгляде на u_0 и u_x

$$u_0 - u_x = \frac{p_0 - p_{0x}}{cm} = \frac{\mathcal{E}_0 - cp_{0x}}{mc^2} = \text{const.}$$

Для скорости по оси x получили компоненту, независящую от времени (E < H) — это скорость дрейфа:

$$v_{\mathrm{AP}} = u_x^{\neq f(s)} c = c \frac{\alpha(\alpha p_{0x} - p_0)}{(\alpha^2 - 1) \, cm} = \left/ \begin{matrix} p_0 \approx mc \\ \alpha \ll 1. \end{matrix} \right/ = c\alpha = c \frac{E}{H},$$

что соответствует нерелятивистскому случаю.

 $\Phi_{\mathsf{N}^3}\mathrm{T}_{\!E}\!\mathrm{X}$ ЖиК

Для случая H < E:

$$v_{\text{AP}} = u_x^{\neq f(s)} c = c \frac{\alpha(\alpha p_{0x} - p_0)}{(\alpha^2 - 1) \, cm} = \left/ \begin{matrix} p_0 \approx mc \\ \alpha \gg 1. \end{matrix} \right/ = \frac{p_0}{cm} \frac{c}{\alpha} = -\frac{c}{\alpha} = -c \frac{H}{E},$$

что уже очень похоже на правду.

Тут стоит заметить, что решение получено в параметризации собственным временем системы, что, конечно, дает представление о геометрии происходящего, но, возможно, не всегда информативно. Решение в параметризации временем лабораторной системы отсчета можно посмотреть здесь.

Видеть три случая с движением по спирали и по.. чему-то вроде цепной линии тоже вполне логично: в зависимости от значения α можно пересесеть в систему ($\alpha>1$), где H'=0, и увидеть движение по \sim цепной, а при $\alpha<1$ перейти к системе с E'=0 и движением по окружности, движущейся относительно лабораторной с дрейфовой скоростью.

Также замечу, что $sign \alpha$ – инвариант, в силу существующих инвариантов поля (свертов тензора Θ -поля)

$$F_{ik}F^{ik} = H^2 - E^2 = H^2(1 - \alpha^2) = \text{inv},$$
 $\varepsilon^{iklm}F_{ik}F_{lm} = \mathbf{E} \cdot \mathbf{H} = \text{inv},$

что и является основой для вышеприведенных рассуждений.

4 Общие сведения II

Запишем действие взаимодействия $S_{\rm int}$

$$S_{
m int} = -rac{e}{c} \int d au \, u^\mu A_\mu,$$

учитывая $u^{\mu} = f x^{\mu}/d\tau$:

$$S_{\rm int} = -\frac{1}{c} \int d^3 V \, \rho \int d\tau \, \frac{dx^{\mu}}{d\tau} A_{\mu} = -\frac{1}{c} \int dt \, d^3 V \, \rho \frac{dx^{\mu}}{dt} A_{\mu},$$

что можем переписать в случае неподвижных зарядов $(\frac{dx^{\mu}}{dt} = (c, \vec{0})^{\mathrm{T}})$, как

$$S_{\mathrm{int}} = -\int dt \int d^3V \cdot \rho \varphi(\boldsymbol{r}), \quad \Rightarrow \quad L_{\mathrm{int}} = -\int d^3V \, \rho A_0(\boldsymbol{r}), \quad \Rightarrow \quad U = \int d^3r \, \rho(\boldsymbol{r}) A_0(\boldsymbol{r}).$$

Thr 4.1 (Теорема Адемолло-Гатто). Если к исходному действию S_0 , привлдящему к периодическому движению, и, следовательно, к адиабатическому инварианту \mathcal{I} , добавлено возмущение с малым параметром λ , так что полной действие $S = S_0 + \lambda \int V(q,\dot{q}) \, dt$, то инвариант, по-прежнему, сохарняется с точностью до членов второго порядка малости по λ : $\frac{d}{dt}\mathcal{I} = O(\lambda^2)$.

Тензор энергии-импульса поля:

$$T^{\nu}_{\mu} = \frac{1}{4\pi c} F^{\nu\lambda} F_{\lambda\mu} + \frac{1}{16\pi c} F^2 \delta^{\nu}_{\mu},$$

где $F^2 = F_{ij} F^{ij}$. В частности, пространственная и временная компоненты

$$T_0^0 = \frac{1}{8\pi c} (\boldsymbol{H}^2 + \boldsymbol{E}^2), \quad T_0^{\alpha} = \frac{1}{4\pi c} [\boldsymbol{E} \times \boldsymbol{H}]^{\alpha}.$$

Баланс энергии можем записать в интегральном и в дифференциальном виде:

$$\frac{d}{dt}\left(W_{\mathbf{q}} + \int d^3r \, cT_0^0\right) + \int d^3r \, \operatorname{div} \mathbf{S} = 0, \quad \mathbf{S} = \frac{c}{4\pi} \left[\mathbf{E} \times \mathbf{H} \right], \mathbf{E} \cdot \mathbf{j} + \frac{d}{dt} cT_0^0 + \operatorname{div} \mathbf{S} = 0.$$

Аналогично, баланс импульса

$$\frac{d}{dt}\left(p^{\beta} + \frac{1}{c^2}\int d^3r\,S^{\beta}\right) = \int d^3r\,c\nabla_{\alpha}T^{\alpha}_{\beta}, \quad \frac{1}{c}\left(j_0\boldsymbol{E} + \boldsymbol{j}\times\boldsymbol{H}\right)^{\beta} + \frac{1}{c^2}\frac{dS^{\beta}}{dt} = c\nabla_{\alpha}T^{\alpha}_{\beta}.$$

Для электрического, и магнитного поля, во время электрического дипольного излучения верно, что

$$m{H} = -rac{1}{cr^2}m{n} imes \dot{m{d}} - rac{1}{c^2r}m{n} imes \ddot{m{d}}, \quad m{E} = rac{1}{r^3}\left(3\left(m{d}\cdotm{n}
ight)m{n} - m{d}
ight) + rac{1}{cr^2}\left(3(\dot{m{d}}\cdotm{n})m{n} - \dot{m{d}}
ight) + rac{1}{c^2r}\left((\ddot{m{d}}\cdotm{n})m{n} - \ddot{m{d}}
ight).$$

Вектор потока энергии в волновой зоне

$$S = \frac{c}{4\pi} \left[E \times H \right] = \frac{1}{4\pi c^3 r^2} n \ddot{d}^2 \sin^2 \theta, \quad \Rightarrow \quad \mathcal{J} = \frac{2}{3c^3} \left\langle \ddot{d}^2 \right\rangle.$$

где θ – угол между векторами n и \ddot{d} , \mathcal{J} –полная интенсивность дипольного излучения.

 M_{M} K Φ_{M} 3 T_{E} X

5 Второе задание

T8

Заряд электрона распределен с плотностью

$$\rho(r) = \frac{e}{\pi a^3} \exp\left(-\frac{2r}{a}\right).$$

Найдём энергию взаимодействия электронного облака с ядром в случае ядра, как точечного заряда, и в случае ядра, как равномерно заряженного шара радиуса r_0 . Точнее найдём значение следующего выражения:

$$S_{
m int} = -rac{e}{c}\int d au\, u^\mu A_\mu, \quad \Rightarrow \quad U = \int d^3r\,
ho(m{r}) A_0(m{r}).$$

Ядро, как точечный заряд. Вспоминая, что $E = -\nabla A_0$ и div $E = 4\pi \rho_N$, тогда $\nabla (-\nabla A_0) = -\Delta A_0 = 4\pi \rho_N$, тогда плотность заряда ядра

$$\rho_N = -e \cdot \delta(\mathbf{r}).$$

Для электронного облака известно $\rho(r)$, тогда

$$-\Delta A_0 = -4\pi e \,\delta(\mathbf{r}), \quad \Rightarrow \quad A_0 = -\frac{e}{r}$$

и, соответсвенно,

$$U = \int d^3r \, \frac{e}{\pi a^3} e^{-2r/a} \cdot \left(-\frac{e}{r}\right) \stackrel{\text{sp.c.s.}}{=} -\frac{e^2}{\pi a^3} \int_0^{2\pi} d\varphi \, \int_{-1}^{+1} d\cos\theta \int_0^{\infty} r^2 \, dr \frac{1}{r} e^{-2r/a},$$

упрощая выражение, переходим к интегралу вида

$$U = -\frac{e^2}{\pi a^3} \cdot 2\Pi \cdot 2 \cdot \int_0^\infty dr \, r e^{-2r/a} = -\frac{e^2}{a} \approx 27.2 \text{ sB},$$

где интеграл мы взяли по частям

$$\int_0^\infty dt \, t^n e^{-t} = e^{-t} t^n \Big|_0^\infty + \int_0^\infty e^{-t} t^{n-1} n \, dt = \dots = n! \ .$$

Ядро, как шар. Здесь стоит разделить пространство на две области:

$$A_0 = \begin{cases} -e/r, & r \geqslant r_0, \\ \frac{e}{2r_0^3}r^2 - \frac{3}{2}\frac{e}{r_0}, & r \leqslant r_0, \end{cases}$$

где A_0 для $r \leqslant r_0$ находится, как решение уравнения Пуассона ($\rho_N = {\rm const}$):

$$\int_0^{r_0} d^3r \ \rho_N = -e, \quad \rho_N = -\frac{3}{4\pi} \frac{e}{r_0^3}, \quad \Delta A_0 = -3 \frac{e}{r_0^3}. \quad A_0(r_0) = -\frac{e}{r_0}.$$

Так как садача симметрична относительно любых поворотов, то $A_0 \equiv A_0(r)$, тогда

$$\Delta A_0 = \frac{d^2 A_0}{dr^2} + \frac{2}{r} \frac{dA_0}{dr}, \quad \Rightarrow \quad A_0'' + \frac{2A_0'}{r} = \frac{(rA_0)''}{r} = -3\frac{e}{r_0^3}.$$

Интегрируя, находим

$$rA_0 = -\frac{3e}{r_0^3} \left(\frac{1}{6}r^3 + c_1r + c_2 \right), \quad \Rightarrow \quad A_0(r) = -\frac{e}{2r_0^3}r^2 + \tilde{c}_1 + \frac{\tilde{c}_2}{r}.$$

Подставляя граничное условие, находим

$$\tilde{c}_1 = -\frac{3}{2}\frac{e}{r_0}, \quad \Rightarrow \quad A_0 = \frac{e}{2r_0^3}r^2 - \frac{3}{2}\frac{e}{r_0}.$$

Осталось посчитать интеграл вида

$$U = \int d^3r \; \rho A_0 \stackrel{sp. c.s.}{=} \int_0^{2\pi} d\varphi \int_{-1}^{+1} d\cos\theta \int_0^{\infty} r^2 dr \cdot \rho A_0 = 4\pi I,$$

где I, соответсвенно, равен

$$I = \int_0^{r_0} r^2 \, dr \cdot \left(A_0 - A_0^{\text{toy}} + A_0^{\text{toy}}\right) + \int_0^{\infty} r^2 \, dr \rho A_0^{\text{toy}} = \int_0^{\infty} r^2 \, dr \rho A_0^{\text{toy}} + \int_0^{r_0} r^2 \, dr \rho \left(A_0 - A_0^{\text{toy}}\right).$$

Таким образом искомая энергия представилась, как $U = U_{\text{точ}} + \Delta U$, где ΔU – некоторая поправка, связанная с ненулевым размером ядра. Она равна

$$\Delta U = 4\pi \int_0^{r_0} r^2 dr \rho \cdot (A_0 - A_0^{\text{TOY}}) = \frac{4e^2}{a^3} \int_0^{r_0} dr e^{-2r/a} \left(\frac{e}{2r_0^3} r^4 - \frac{3}{2} \frac{e}{r_0} r^2 + er \right).$$

 Φ_{N} ЗТ $_{\mathsf{E}}$ Х Ж $_{\mathsf{N}}$ К

Если разложить экспоненту в ряд, то найдём, что $r_0/a \approx 10^{-5} \ll 1$, тогда получится интеграл вида

$$\Delta U = \frac{4e^2}{a^3} \left(\frac{e}{2r_0^3} \frac{1}{5} r_0^5 - \frac{3}{2} \frac{e}{r_0} \frac{1}{3} r_0^3 + e \frac{r_0^2}{2} \right) = \frac{4}{9} \left(\frac{e^2}{2a} \right) \left(\frac{r_0}{a} \right)^2 = 2.2 \times 10^{-11} U_{\text{\tiny TOY}}.$$

T9

Потенциал диполя

$$\varphi = -\mathbf{d} \cdot \nabla \frac{1}{r} = \frac{\mathbf{d} \cdot \mathbf{r}}{r^3}.$$

Соответсвенно, поле диполя

$$E = -\operatorname{grad} \varphi = \frac{3(\boldsymbol{n} \cdot \boldsymbol{d})\boldsymbol{n} - \boldsymbol{d}}{r^3},$$

в случае $r \neq 0$. Если же учесть такую возможность, то

$$E = \frac{3(d \cdot n)n - d}{r^3} - \frac{4\pi}{3}\delta(r)d.$$

Потенциальная энергия диполя:

$$U = \int d^3r \, \rho A_0 = -q\varphi(\mathbf{R}) + q\varphi(\mathbf{R} + \mathbf{l}) = q(\mathbf{l} \cdot \nabla)\varphi = \mathbf{d} \cdot (\nabla \varphi) = -\mathbf{d} \cdot \mathbf{E}_{\mathrm{ext}}.$$

Подставляя $m{E}_{\mathrm{ext}}$ находим

$$U = \frac{(d_1 \cdot d_2) - 3(n \cdot d_1)(n \cdot d_2)}{r_{12}^3} + \frac{4\pi}{3}\delta(r_{12})(d_1 \cdot d_2),$$

где r_{12} – радиус вектор от первого диполя, ко второму

T10

Нас просят найти диполный момент двух полусфер. Так как нас спросили только про дипольный момент, а про распределение зарядов не спросили, то мы последнее и не будем находить.

$$\varphi(\mathbf{r}) = \int \frac{\rho(\mathbf{r}')d^3\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|} = \varphi^{(0)} + \varphi^{(1)} + \varphi^{(2)} + \dots = \sum_{l=0}^{\infty} \varphi^{(l)}.$$

Известно что (ЛЛІІ §41):

$$\varphi^{(l)} = \sum_{a} e_a \sum_{m=-l}^{l} \sqrt{\frac{4\pi}{2l+1}} D_l^{(m)} Y_{lm}(\theta, \varphi) \frac{r_a^l}{R_0^{l+1}}.$$
 (5.1)

Любой скалярный потенциал мы всегда можем разложить по сферическим гармоникам:

$$\varphi(z) = \sum_{l,m} c_{lm} Y_{lm}(\theta, \varphi) R(z).$$

Ha сфере: R = z:

$$\varphi(r) = \begin{cases} \Phi_0, \ z > 0 \\ -\Phi_0, \ z < 0 \end{cases} \Rightarrow \int \varphi(r) Y_{lm}(\theta, \varphi) = \sin \theta d\theta d\varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{2\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{\pi} \int_0^{\pi} \cos \theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{\pi} \int_0^{\pi} \sin \theta d\theta d\theta \varphi(r) \sin \theta d\theta \varphi = i \sqrt{\frac{2l+1}{4\pi}} \int_0^{\pi} \int_0^{\pi} \sin \theta d\theta d\theta \varphi(r) \sin \theta d\theta \varphi(r) \sin$$

$$= i\sqrt{\frac{2l+1}{4\pi}} \left(-\int_0^{\pi/2} \Phi_0 \cos\theta d\cos\theta + \int_{\pi/2}^{\pi} \Phi_0 \cos\theta d\cos\theta \right) = 2\Phi_0 \pi i \sqrt{\frac{3}{4\pi}} \left(-\frac{\cos^2\theta}{2} \Big|_0^{\pi/2} + \frac{\cos^2\theta}{2} \Big|_{\pi/2}^{\pi} \right).$$

Мы получили, что из (5.1) взяв как и в выводе формулы до l=1

$$2\pi i \Phi_0 \sqrt{\frac{3}{4\pi}} = \frac{4\pi}{3} \frac{1}{r} D_l^m = \sqrt{\frac{2\pi}{3}} i d_z \frac{1}{r} \quad \Rightarrow \quad d_z = r \frac{3\Phi_0}{2}.$$

T11

Задача аксиально симметрична относительно оси Oz, дан потенциал:

$$v(r,0) - v_0 \left(1 - \frac{r^2 - a^2}{r\sqrt{r^2 + a^2}}\right), \ r > a.$$

Хочется узнать $v(r,\theta)$ при условии, что $r\gg a$.

 $\mathbf{K}_{\mathsf{H}}\mathsf{K}$ Физ $\mathrm{T}_{\mathsf{E}}\mathsf{X}$

Соотвественно раскладываем в ряд, раз $r \gg a$, и получаем:

$$v(z,0) = v_0 \left(1 - \left(1 - \frac{a^2}{z^2} \right) \left(1 + \frac{a^2}{z^2} \right)^{-1/2} \right) \simeq v_0 \left(1 - \left(1 - \frac{a^2}{z^2} \right) \left(1 + \frac{a^2}{2z^2} \right) \right) = v_0 \left(\frac{3a^2}{2z^2} - \frac{a^4}{2z^4} \right).$$

С другой стороны по теории должно было бы получиться разложение вида

$$\varphi(\mathbf{r}) = \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 r' = \frac{Q}{r} + \frac{d\mathbf{r}}{r^3} + \frac{r_{\alpha} r_{\beta} D_{\alpha\beta}}{2r^5} + \frac{O_{\alpha\beta\gamma r_{\alpha} r_{\beta} r_{\gamma}}}{6r^7} + \dots$$

. Сравнивая степени в разложении получаем:

$$Q = 0,$$
 $D_{zz} = 0,$ $d_z = \frac{3a^2}{2}v_0,$ $O_{zzz} = -3a^4v_0.$

Теперь применим аксиальную симметрию: $\mathbf{d} = \int \rho(\mathbf{r})\mathbf{r}\,d^3\mathbf{r}$. В дипольном моменте компоненты $d_x = d_y = 0$, что мы получаем так же как в упражнении про усреднение $\rho(x,y) = \rho(-x,-y)$.

Далее $D_{\alpha\alpha}=0$, значит $D_{xx}+D_{yy}+D_{zz}=0$ то есть $D_{xx}=-D_{yy}$, но в силу аксиальной симметрии такое возможно лишь если $D_{xx}=D_{yy}=0$.

Наконец $O_{\alpha\alpha\beta}=0$. То есть $O_{xxz}+O_{yyz}+O_{zzz}=0$, тогда получаем:

$$O_{xxz} = O_{yyz} = -\frac{O_{zzz}}{2} = \frac{3a^4}{2}v_0$$
 $O_{xzx} = O_{yzy} = O_{zxx} = O_{zyy} = \frac{3a^4}{2}v_0$

Вариант со всеми разными: $O_{xyz} = \int \rho(x,y,z) (15xyz) d^3r = 0$, так как $\rho(x) = \rho(-x)$. И поэтому же $O_{xxx} = O_{yyy} = 0$.

И не взятые ещё:

$$O_{zzx} = O_{zzy} = O_{xzz} = O_{yzz} = O_{zxz} = O_{zyz} = 0.$$

 $O_{xxy} = O_{yyx} = O_{xyx} = O_{yxy} = O_{yxx} = O_{xyy} = 0.$

Теперь давайте, как нас просят в задаче, подставим $z = r \cos \theta$:

$$v_0(r,\theta) = \frac{3a^2v_0}{2}\frac{\cos\theta}{r^2} + \left(-\frac{a^4v_0}{2r^4}\cos^3\theta + \frac{3O_{xxz}xxz}{6r^7} + \frac{3O_{yyz}yyz}{6r^7}\right) = \frac{3a^2v_0}{2}\frac{\cos^2\theta}{r^2} + \frac{\left(\frac{3}{4}\cos\theta\sin^2\theta - \frac{1}{2}\cos^3\theta\right)}{r^4}a^4v_0.$$

/так как по сферической замене: $xxz=r^3\cos\theta\sin^2\theta\cos^2\varphi,\ yyz=r^3\cos\theta\sin^2\theta\sin^2\varphi/$

T12

Для движения в постоянном магнитном поле можно записать уравнения движения

$$\dot{\boldsymbol{p}} = \frac{e}{c} \left[\boldsymbol{v} \times \boldsymbol{H} \right], \quad \boldsymbol{p} = \frac{W \boldsymbol{v}}{c^2}, \quad \Rightarrow \quad \frac{W}{c^2} \frac{d \boldsymbol{v}}{dt} = \frac{e}{c} \left[\boldsymbol{v} \times \boldsymbol{H} \right],$$

или, считая $\boldsymbol{H} \parallel Oz$,

$$\dot{v}_x = \omega v_y, \quad \dot{v}_y = -\omega v_x, \quad \dot{v}_z = 0, \quad \omega_L = \frac{ecH}{W} = \frac{eH}{mc\gamma}, \quad r = \frac{cp_t}{eH}.$$

Рассмотрим теперь адиабатический инвариант, вида

$$I = \frac{1}{2\pi} \oint \mathbf{P}_t d\mathbf{r} = \frac{1}{2\pi} \oint \mathbf{p}_t dt + \frac{e}{2\pi c} \oint \mathbf{A} d\mathbf{r},$$

вспоминая, что rot A = H, по теореме Стокса, находим

$$I = rp_t - \frac{e}{2c}Hr^2 = \frac{cp_t^2}{2eH}, \quad \Rightarrow \quad \frac{p_\perp^2}{H} = \tilde{I}.$$

 Γ ак что, по теореме Адемолло- Γ атто, I сохраняется и в случае слабонеоднородного магнитного поля.

Изменения энергии за период найдём, выразив:

$$\frac{d}{dt}\left(\frac{W^2}{c^2}\right) = \frac{d}{dt}p^2, \quad \Rightarrow \quad \Delta W = \frac{2\pi}{\omega_L}\dot{W} = \frac{2\pi}{\omega_L}\frac{c}{2W}\frac{2e\dot{H}J}{c} = \frac{\pi c}{eH}J\dot{H}.$$

Найдём теперь измененне r и W при изменение поля от H_1 до H_2 . Во-первых

$$\frac{p_1^2}{H_1} = \frac{p_2^2}{H_2} = J.$$

 Φ_{U} З $\mathsf{T}_{\mathsf{E}}\mathsf{X}$

Далее, считая c=1, запишем

$$W_1^2 - m^2 = \frac{H_2}{H_1} \left(W_2^2 - m^2 \right), \quad \Rightarrow \quad W_2^2 = \sqrt{m^2 \left(1 - \frac{H_1}{H_2} \right) + \frac{H_1}{H_2} W_1^2}, r \quad \Rightarrow \quad W_2 - W_1 \approx \frac{J}{2m} \left(H_2 - H_1 \right).$$

Чуть проще обстоит дело с радиусами

$$r_2 = \frac{cp_2}{eH_2} = \frac{c}{e} \frac{p_1}{\sqrt{H_1 H_2}} = r_1 \sqrt{\frac{H_1}{H_2}}.$$

T13

Известен дипольный момент земли $\mu = 8.1 \cdot 10^{25}$ гаусс·см³. Найдём в полярных координатах линии магнитного диполя, и определим, как меняется поле вдоль силовой линии.

Уравнение силовых линий магнитного поля. Поле от магнитного диполя H можем записать, как

$$H = \frac{3(\mu \cdot n)n - \mu}{r^3}, \quad n = \frac{r}{r}.$$

Считая, что $\boldsymbol{\mu} = \mu \boldsymbol{o}$, и выбирая $Oz \parallel \boldsymbol{o}$, можем записать

$$\boldsymbol{\mu} \cdot \boldsymbol{e}_r = \mu_r, \quad \boldsymbol{\mu} \cdot \boldsymbol{e}_\theta = \mu_\theta, \quad \boldsymbol{\mu} \cdot \boldsymbol{e}_\varphi = \mu_\varphi.$$

Также верно, что $n = r/r = e_r$. Можем вычислить все проекции

$$\mu_r = \mu(\mathbf{o} \cdot \mathbf{e}_r) = \mu(\mathbf{e}_z \cdot \mathbf{e}_r) = \mu \cos \theta, \quad \mu_\theta = -\mu \sin \theta, \quad \mu_\varphi = 0.$$

Так приходим к записи для векторов в сферических координатах

$$\boldsymbol{\mu} = \mu (\cos \theta, -\sin \theta, 0)^{\mathrm{T}}, \quad \boldsymbol{n} = (1, 0, 0)^{\mathrm{T}}.$$

Тогда магнитное поле

$$\boldsymbol{H} = \frac{1}{r^3} \mu \begin{pmatrix} 3\cos\theta - \cos\theta \\ -(-\sin\theta) \\ 0 \end{pmatrix} = \frac{\mu}{r^3} \begin{pmatrix} 2\cos\theta \\ \sin\theta \\ 0 \end{pmatrix}, \quad d\boldsymbol{l} = \begin{pmatrix} dr \\ r\theta \\ r\sin\theta \, d\varphi \end{pmatrix}, \quad \frac{H_r}{dl_r} = \frac{H_\theta}{dl\theta}.$$

Раскрывая последнее уравнение находим

$$\frac{dr}{r} = \frac{2\cos\theta}{\sin\theta} d\theta = 2\frac{d\sin\theta}{\sin\theta}, \quad \Rightarrow \quad \ln r = 2\ln\sin\theta + \text{const}, \quad \Rightarrow \quad \boxed{r(\theta) = r_0\sin^2\theta}, \quad r_0 = r\left(\theta = \pi/2\right).$$

Можно построить такой бублик (сииметричный относительно оси z, или относительно поворота φ), см. рис. 1.

Рис. 1: Поверхность, образованная силовыми линиями в задаче 13.

Кривизна силовой линии магнитного поля. Определим h = H/H, для него верно

$$\dot{\boldsymbol{H}} = \frac{d}{dt} \left(\boldsymbol{h}(\boldsymbol{r} + \boldsymbol{h} dt) - \boldsymbol{h}(\boldsymbol{r}) \right) = \frac{\boldsymbol{h}}{\rho} \cdot \boldsymbol{h}^2.$$

Расписывая дифференцирование, находим

$$h(r + h dt) - h(r) = h^{\alpha} dt \partial_{\alpha} h, \quad \Rightarrow \quad (h \cdot \nabla) h = \frac{n}{\rho}.$$

Подробнее рассмотрим диффернцирование по направлению

$$\boldsymbol{h} \cdot \nabla = h_r \partial_r + h_\theta \frac{1}{r} \partial_\theta + h_\varphi \frac{1}{r \sin \theta} \partial_\varphi.$$

Магнитное поле, соответсвенно, равно

$$\mathbf{H}^2 = \left(\frac{\mu}{r^3}\right)^2 \cdot (3\cos^2\theta + 1), \quad \Rightarrow \quad h_r = \frac{2\cos\theta}{\sqrt{3\cos^2\theta + 1}}, \quad h_\theta = \frac{\sin\theta}{\sqrt{\sin^2\theta + 2}}.$$

 $\mathcal{K}_{\mathsf{H}}\mathsf{K}$ Физ $\mathsf{T}_{\mathsf{E}}\mathsf{X}$

Наконец, можем подтсавить их в $(\boldsymbol{h}\cdot\nabla)\boldsymbol{h}=\left(h_r\partial_r+h_\theta\frac{1}{r}\partial_\theta\right)\boldsymbol{h}=\boldsymbol{n}/\rho$. Так, например, на экваторе $\theta=\pi/2$, $h_r=0,\ h_\theta=1$:

$$\left(\frac{1}{r}\partial_{\theta}\right)\boldsymbol{h} = \frac{1}{r}\partial_{\theta}\left(h_{r}\boldsymbol{e}_{r} + h_{\theta}\boldsymbol{e}_{\theta}\right)\bigg|_{\theta=\pi/2} = \frac{1}{r}\left(\partial_{\theta}h_{r}\boldsymbol{e}_{r} + h_{r}\partial_{\theta}\boldsymbol{e}_{r} + \partial_{\theta}h_{\theta}\boldsymbol{e}_{\theta} + h_{\theta}\partial_{\theta}\boldsymbol{e}_{\theta}\right).$$

В частности, слагаемые равноы

$$\partial_{\theta} h_r \big|_{\theta = \pi/2} = -2, \quad \partial_{\theta} h_{\theta} \big|_{\theta = \pi/2} = 0.$$

В результате получаем

$$(\boldsymbol{h}\cdot\nabla)\,\boldsymbol{h}\bigg|_{\theta=\pi/2} = -rac{3}{r}\boldsymbol{e}_r = rac{\boldsymbol{n}}{
ho}, \quad \Rightarrow \quad
ho_{\scriptscriptstyle \mathrm{9KB}} = rac{r}{3}.$$

Движение частицы. Для начала вспомним, что поле называется слабонеоднородным, если

$$r_{\perp} = p_{\perp} \frac{c}{|e|H_0} \ll \rho.$$

Движение же можно разделить на движение по спирали вокруг силовой линии и двиение вдоль силовой линии.

Вспомним, про существование адиабатического инварианта, вида

$$\frac{p_{\perp}^2}{H} = \text{const}, \quad \boldsymbol{p}^2 = p_{\perp}^2 + p_{\parallel}^2.$$

Таким образом при движении $H\uparrow$ меняется и $p_{\perp}\uparrow$, таким образом $p_{\parallel}=0$ в некотороый момент, а потом и меняет знак.

Также происходит дрейф по бинормали, обеспечивающий радиационные пояса Земли.

Ну, действительно, общее уравнение движения можем записать в виде

$$m\gamma \frac{d\boldsymbol{v}}{dt} = \frac{e}{c} \left[\boldsymbol{v} \times \boldsymbol{H} \right].$$

Можно воспринимать происходящее как движение в постоянном магнитном поле, с поправкой к Лагранжиану $L_{\text{маг}} = \mu \cdot H$, тогда добавочная сила

$$F = \nabla (\mu \cdot H), \quad \Rightarrow \quad F = (\mu \cdot \nabla)H + \mu \times \operatorname{rot} H = (\mu \cdot \nabla)H,$$

где учтено, что rot $H=\frac{4\pi}{c} \pmb{j}+\frac{1}{c}\partial_t \pmb{E}=0.$ Итого, уравнение движения

$$m\gamma \frac{d\mathbf{v}}{dt} = \frac{e}{c}\mathbf{v} \times \mathbf{H} + (\boldsymbol{\mu} \cdot \nabla)\mathbf{H}.$$

Можно показать, что $\frac{d}{dt} \boldsymbol{v}_{\perp}$ мало, и перейти к уравнению

$$\frac{d\boldsymbol{v}_{\parallel}}{dt} = \omega_L \boldsymbol{v}_{\perp} \times \boldsymbol{H} + \frac{1}{mg} \left(\boldsymbol{\mu} \cdot \nabla \right) \boldsymbol{H},$$

которое почленно распишем. В частности,

$$(\boldsymbol{\mu} \cdot \nabla) \boldsymbol{H} = -\boldsymbol{h}_{\mu} \cdot (\boldsymbol{h} \cdot \nabla) H - H_{\mu} (\boldsymbol{h} \cdot \nabla) \boldsymbol{h}.$$

Другое слагаемое, соответсвенно

$$\frac{d\boldsymbol{v}_{\parallel}}{dt} = \dot{v}_{\parallel}\boldsymbol{h} + v_{\parallel}^{2}(\boldsymbol{h}\cdot\nabla)\boldsymbol{h}.$$

Переписывая уравнения в ОНБ (h, n), где бинормаль определим, как $b = h \times n$.

Домножая одно из уравнений на h, переходим к выражению для v_{\perp}

$$oldsymbol{v}_{\perp} = rac{1}{
ho\omega L}\left(v_{\parallel}^2 + rac{u_{\perp}^2}{2}
ight)\cdotoldsymbol{b}.$$

Проеция на h может быть найдена через скалярное домножение:

$$\dot{v}_{\parallel} = -rac{\mu h^2}{m\gamma}(m{h}\cdot
abla)H = -rac{u_{\perp}^2}{2H}(m{h}
abla)H.$$

Также можем учесть, что магнитное поле не совершает работы, тогда $u_{\perp}+v_{\parallel}^2=\mathrm{const}$ тогда

$$v_{\parallel}(\boldsymbol{h}\cdot\nabla)H=\dot{H},\quad \dot{v}_{\parallel}\sim-(\boldsymbol{h}\nabla)H,$$

где мы знаем, что $u_{\perp}^2/H={
m const.}$ Таким образом возможны колебания v_{\parallel} вокруг положения 0, что и называется «магнитным зеркалом».

Зная $v = u_{\perp} + v_{\parallel}$ можем определить, где возникает магнитное зеркало: из адиабатического инварианта:

$$\frac{v^2 \cos^2 \alpha}{H_{r_0}} = \frac{v_{\perp}^2(\pi/2)}{H(\pi/2)} = \frac{v_{\perp}^2(\theta_{\rm max})}{H(\theta_{\rm max})} = \frac{v^2}{H(\theta_{\rm max})}.$$

 $\Phi_{\text{И}}$ ЗТ $_{\text{E}}$ Х ЖиК

Откуда можем найти

$$\frac{\sqrt{4-3\sin^2\theta_{\max}}}{\sin^6\theta_{\max}} = \frac{1}{\cos^2\alpha},$$

иначе, можем записать,

$$\sin^2\beta = \frac{\sin^6\theta_{\rm max}}{\sqrt{4-3\sin^2\theta_{\rm max}}} \approx \left(\frac{\pi}{2} - \alpha\right)^2, \quad \Rightarrow \quad \alpha \approx 86^\circ,$$

где воспольщовались $R = r_0 \sin^2 \theta_{\rm max} \approx 6, 4 \cdot 10^3$ км.

В случае же рассмотрения скорости дрейфа, мы переходим к выражению (для скорости на экваторе)

$$m{v}_{ ext{ iny AP}} = -rac{W}{ecH}rac{f}{m}\left[m{n} imesm{h}
ight], \quad \Rightarrow \quad |v_{ ext{ iny AP}}| = rac{T_{ ext{ iny KM}}}{m\omega
ho} pprox 0.009c, \quad \Rightarrow \quad |v_{ ext{ iny AP}}| = 3\cdot 10^3 rac{ ext{ iny KM}}{c}$$

T14

Запишем выражение для магнитного дипольного момента:

$$\boldsymbol{\mu} = g \frac{e}{2mc\gamma} [\boldsymbol{r} \times \boldsymbol{p}].$$

Обозначив момент количества движения как $m{l} = [m{r} imes m{p}]$ получим поправку в гамильтониан от взаимодействие вила:

$$H_{int} = -\frac{eg}{2mc\gamma}(\boldsymbol{l} \cdot \boldsymbol{H}) = -\frac{eg}{2mc\gamma}l_{\alpha}H^{\alpha}.$$

И так у нас есть величина, которая вообще есть функция F(q, p, t), то есть

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \frac{\partial F}{\partial q^{\alpha}} \dot{q}^{\alpha} + \frac{\partial F}{\partial p_{\alpha}} \dot{p}_{\alpha} = \frac{\partial F}{\partial t} + \frac{\partial F}{\partial q^{\alpha}} \frac{\partial H}{\partial p_{\alpha}} - \frac{\partial F}{\partial p_{\alpha}} \frac{\partial H}{\partial q^{\alpha}} = \frac{\partial F}{\partial t} + \{F, H\}.$$

Тогда с таким великим механическим знанием пойдём посмотрим на наш момент импульса:

$$\frac{dl_i}{dt} = 0 + \frac{\partial l_i}{\partial r^{\alpha}} \left(-\frac{eg}{2mc\gamma} H^{\beta} \frac{\partial l_{\beta}}{\partial p_{\alpha}} \right) - \frac{\partial l_i}{\partial p_{\alpha}} \left(-\frac{eg}{2mc\gamma} H^{\beta} \frac{\partial l_{\beta}}{\partial r^{\alpha}} \right) = -\frac{eg}{2mc\gamma} H^{\beta} \{l_i, l_{\beta}\}$$

Давайте отдельно посмотрим на скобку Пуассона для таких вот векторных произведений, как моменты импульса мюона:

$$\{l_i,l_\beta\} = \varepsilon_{ijk}\varepsilon_{\beta\alpha\gamma}\{r^jp^k,r^\alpha p^\gamma\} = \varepsilon_{ijk}\varepsilon_{\beta\alpha\gamma}(\delta^{j\gamma}p^kr^\alpha - \delta^{\alpha k}p^\gamma r^j) = \varepsilon_{ik}^{\ \gamma}\varepsilon_{\beta\alpha\gamma}p^kr^\alpha - \varepsilon_{ij}^{\ \alpha}\varepsilon_{\beta\alpha\gamma}p^\gamma r^j = \varepsilon_{ijk}\varepsilon_{\beta\alpha\gamma}(\delta^{j\gamma}p^kr^\alpha - \delta^{\alpha k}p^\gamma r^j) = \varepsilon_{ijk}\varepsilon_{\beta\alpha\gamma}(\delta^{j\gamma}p^k,r^\alpha p^\gamma r^j) = \varepsilon_{ijk}\varepsilon_{\beta\alpha\gamma}(\delta^{j\gamma}p^\gamma r^j) = \varepsilon_{ijk}\varepsilon_{\beta\alpha\gamma}(\delta^{j\gamma}p^\gamma r^j)$$

$$= (\delta_{i\beta}\delta_{j\gamma} - \delta_{i\gamma}\delta_{j\beta})p^{\gamma}r^{j} - (\delta_{i\beta}\delta_{k\alpha} - \delta_{i\alpha}\delta_{k\beta})p^{k}p^{\alpha} = \delta_{i\beta}p_{j}r^{j} - p_{i}r_{\beta} - \delta_{i\beta}p_{\alpha}r^{\alpha} + p_{\beta}r_{i} = p_{\beta}r_{i} - p_{i}r_{\beta} = \varepsilon_{i\beta}^{\ \gamma}\varepsilon_{\gamma mn}r^{m}p^{n} = \varepsilon_{i\beta}^{\ \gamma}l_{\gamma}.$$

Тогда получаем:

$$\frac{dl_i}{dt} = -\frac{eg}{2mc\gamma} \varepsilon_{i\beta}^{\ \gamma} l_{\gamma} H^{\beta} \qquad \Rightarrow \qquad \frac{d\boldsymbol{l}}{dt} = \frac{eg}{2mc\gamma} [\boldsymbol{l} \times \boldsymbol{H}].$$

Тогда для производной по времени от магнитного дипольного момента имеем:

$$\frac{d\boldsymbol{\mu}}{dt} = \frac{eg}{2mc\gamma}[\boldsymbol{\mu} \times \boldsymbol{H}] = \frac{g}{2}[\boldsymbol{\omega}_L \times \boldsymbol{\mu}],$$

где $\boldsymbol{\omega}_L = - rac{e H}{m c \gamma}$ – Ларморовская частота.

Знаем теперь гиромагнитное соотношение для дипольного момента, и тогда в первом приближении в постоянном магнитном поле:

$$\mu = \frac{ge}{2mc}s \qquad \Rightarrow \qquad \dot{s}^{(1)} = \frac{g}{2}\gamma[\omega_L \times s].$$

Во втором же приближении получим прецессию Томаса, с которой мы уже работали в Задаче 2.

$$\dot{m{s}}^{(2)} = rac{\gamma^2}{(\gamma+1)c^2} [\dot{m{v}} imes m{v}] = m{\omega}_{th} imes m{s}.$$

Теперь свяжем Ларморовскую частоту с Томасоновской, зная, что

$$m\gamma\dot{m v}=rac{e}{c}[{m v} imes{m H}] \qquad \Rightarrow \qquad \dot{m v}=[{m \omega}_L imes{m v}]$$

Тогда выражение для прецессии Томаса:

$$\boldsymbol{\omega}_{th} = \frac{\gamma^2}{\gamma + 1} c^2 [\boldsymbol{\omega}_L \times \boldsymbol{v}] \times \boldsymbol{v} = -\frac{\gamma^2 v^2}{(\gamma + 1)c^2} = -(\gamma - 1) \boldsymbol{\omega}_L.$$

Таким образом для изменения спина получаем:

$$\dot{\boldsymbol{S}} = \left(\frac{g}{2}\gamma - (\gamma - 1)\right)\boldsymbol{\omega}_L \times \boldsymbol{s} = \boldsymbol{\omega}_L \times \boldsymbol{s} + \gamma\left(\frac{g}{2} - 1\right)\boldsymbol{\omega}_L \times \boldsymbol{s}.$$

 M_{M} K Φ_{M} 3 T_{E} X

Таким образом за один оборот спин отклонится на

$$\Delta \varphi = \left(\frac{g}{2} - 1\gamma\right) \cdot 2\pi = \alpha \gamma.$$

И как нетрудно показать,

$$P = mc\sqrt{\gamma^2 - 1}$$
 \Rightarrow $\gamma = \sqrt{\left(\frac{P}{mc}\right)^2 + 1}$

Тогда получаем ответ:

$$\Delta \varphi = \alpha \sqrt{\left(\frac{P}{mc}\right)^2 + 1} \simeq 0.07.$$

T15

Пусть есть плоскость Oxz, и диполь направлен под углом θ_d к оси Oz. Воспользуемся методом изображений и зеркально под проводящей плоскостью Oxyрасположим второй диполь, заменяющий её.

$$d_1 = d(e_z \cos \theta_d + e \sin \theta_d),$$
 $d_2 = d(e_z \cos \theta_d - e_x \sin \theta_d).$

Здесь введены единичные векторы, и также ещё введём на будущее r вектор на точку наблюдения из середины координат, n — единичный по этому направлению.

$$r_1 = r - Le_z,$$
 $r_2 = r + Le_z.$

Тут 2L – расстояние между диполями, будем работать в приближении $r \gg L$. Тогда примерно $r_1 \parallel r_2 \parallel n$. И соответственно r = (rn), а остальные:

$$r_1 = (r_1 n) = r - L(e_z n),$$
 $r_2 = (r_2 n) = r + L(e_z n).$

И для $d_{1,2}(t-rac{r_{1,2}}{c})$

$$d_1 = d(e_z \cos \theta_d + e \sin \theta_d) \cos(\omega t - kr_1),$$
 $d_2 = d(e_z \cos \theta_d - e_x \sin \theta_d) \cos(\omega t - kr_2),$

колеблеющегося гармонически (по условию):

$$\boldsymbol{H} = \frac{[\boldsymbol{\ddot{d}_1} \times \boldsymbol{n}]}{c^2 r_1} + \frac{\boldsymbol{\ddot{d}_2} \times \boldsymbol{n}}{c^2 r_2} = \frac{-\omega^2 d}{c^2 r} \left(([\boldsymbol{e_z} \times \boldsymbol{n}] \cos \theta_d + [\boldsymbol{e_x} \times \boldsymbol{n}] \sin \theta_d) \cos(\omega t - \frac{\omega}{c} r_1) + ([\boldsymbol{e_z} \times \boldsymbol{n}] \cos \theta_d + [\boldsymbol{e_x} \times \boldsymbol{n}] \sin \theta_d) \cos(\omega t - \frac{\omega}{c} r_1) \right)$$

Очень хочется упростить:

$$\cos(\omega t - kr_1) = \cos(\omega t - kr + kL(\boldsymbol{e}_z \boldsymbol{n})) = \cos(\omega t - kr)\cos(kL(\boldsymbol{e}_z \boldsymbol{n})) - \sin(\omega t - kr)\sin(kL(\boldsymbol{e}_z \boldsymbol{n})).$$

$$\cos(\omega t - kr_2) = \cos(\omega t - kr - kL(\boldsymbol{e}_z \boldsymbol{n})) = \cos(\omega t - kr)\cos(kL(\boldsymbol{e}_z \boldsymbol{n})) + \sin(\omega t - kr)\sin(kL(\boldsymbol{e}_z \boldsymbol{n}))$$

Тогда возвращаемся к выражению для H:

$$\boldsymbol{H} = \frac{-2\omega^2 d}{c^2 r} \left(\left[\boldsymbol{e}_z \times \boldsymbol{n} \right] \cos \theta_d \cos(\omega t - kr) \cos(kL(\boldsymbol{e}_z \boldsymbol{n})) - \left[\boldsymbol{e}_x \times \boldsymbol{n} \right] \sin \theta_d \sin(\omega t - kr) \sin(kL(\boldsymbol{e}_z \boldsymbol{n})) \right).$$

T16

Значит есть разноименные заряды, один будем характеризовать индексами "1 а другой "2". Будем работать в системе центра инерции:

$$m{R} = rac{m_1 m{r}_1 + m_2 m{r}_2}{m_1 + m_2}, \ m{r} = m{r}_2 - m{r}_1 \qquad \leadsto \qquad m{R}_{ ext{qentrpa инерции}} = 0.$$

Тогда не сложно вычислить:

$${m r}_1 = -rac{m_2}{m_1}{m r}_2, \ {m r}_2 = rac{m_1}{m_1+m_2}{m r}, \ {m r} = {m r}_2(1+rac{m_2}{m_1}), \ {m r}_1 = -rac{m_2}{m_1+m_2}{m r}.$$

Ну и как мы показывали для излучения диполя: $I = 2|\ddot{\boldsymbol{d}}|^2/(3c^3)$. В нашем случае:

$$d = e_1 r_1 + e_2 r_2 = \left(\frac{e_2 m_1 - e_1 m_2}{m_1 + m_2}\right) r = q r$$
 \Rightarrow $I = \frac{2q^2 \ddot{r}^2}{3c^3}.$

Введем $\mu = \frac{m_1 m_2}{m_1 + m_2}$. Посмотрим на энергию, излучаемую за один период:

$$\delta \varepsilon = I \cdot T_{\text{период}} = I \frac{2\pi r}{v}.$$

 Φ_{U} З $\mathsf{T}_{\mathsf{E}}\mathsf{X}$

Будем работать в предположении, что $\delta \varepsilon \ll \varepsilon$. Воспользуемся теоремой Вириала:

$$2\langle T\rangle = n\langle u\rangle, \ T = \frac{\mu v^2}{2}, \ \mu v^2 = -\frac{e_1e_2}{r} \qquad \leadsto \qquad u = \frac{e_1e_2}{r}.$$

Таким образом $v=\sqrt{|e_1e_2|/\mu^2},$ тогда опять к энергии:

$$\delta\varepsilon = \frac{2q^2\ddot{r}^2}{3c^3}\frac{\pi r^{3/2}\mu^{1/2}}{|e_1e_2|^{1/2}} = \frac{2q^2}{3c^3}\frac{|e_1e_2|^{3/2}}{\mu^{3/2}r^{5/2}}\pi = \frac{|e_1e_2|}{2r}\frac{4\pi q^2}{3|e_1e_2|}\underbrace{\frac{|e_1e_2|^{3/2}}{c^3\mu^{3/2}r^{3/2}}}_{(v/c)^3} = \varepsilon\left(\frac{v}{c}\right)^3\frac{4\pi q^2}{3|e_1e_2|} \ll \varepsilon.$$

Теперь на интересует r(t). Знаем, что $\varepsilon = \frac{e_1 e_2}{2r}$.

$$I = -\frac{d\varepsilon}{dt} = -\frac{d\varepsilon}{dr}\frac{dr}{dt} = \frac{e_1e_2}{2r^2}\dot{r} = \frac{2q^2\ddot{r}^2}{3c^3},$$

подставляем сюда Кулона $\mu\ddot{r} = \frac{e_1e_2}{-2}$, а он выполняется, так как за один оборот не очень много энергии теряется:

$$\frac{e_1 e_2}{2r^2} \dot{r} = \frac{2q^2 (e_1 e_2)^2}{3c^3 \mu^2 r^4} \qquad \leadsto \qquad r^2 \dot{r} = \frac{4q^2 (e_1 e_2)}{3c^3 \mu^2} = \frac{1}{3} \frac{dr^3}{dt}.$$

Не сложно тогда получается:

$$r = \left(r_0^3 + \frac{4\theta^2(e_1e_2)}{c^3\mu^2}t\right)^{1/3}, \qquad t_{\text{mag}} = \frac{r_0^3\mu^2c^3}{4q^2(e_1e_2)}.$$

Для атома время падения электрона на него $t\sim 10^{-8}$ секунды, и действительно в классической теории поля атомы с электронами стабильно существовать не могут.

T17

Два заряда у нас сталкиваются, излучают и летят обратно, нас интересует процесс излучения. Будем считать, что $v \ll c$. Воспользуемся выведенной формулой $I = 2|\ddot{\boldsymbol{d}}|^2/3(c^3)$. И всё так же живём в системе центра инерции, как в прошлой задаче.

$$d = e_1 r_1 + e_2 r_2 = \left(\frac{e_2 m_1 - e_1 m_2}{m_1 + m_2}\right) r = q r.$$

Давайте рассмотрим случай, когда $e_2m_1 \neq e_1m_2$. Тогда у нас не появляется лишних нулей, $I = \frac{2q^2\ddot{\pmb{r}}^2}{ec^3}$. И, собственно, для энергии имеем:

$$\varepsilon = \int_{-\infty}^{\infty} I(t)dt = \frac{2q^2}{3c^3} \int_{-\infty}^{\infty} \ddot{r}^2 dt = \frac{2q^2}{3c^3} \int_{v=0}^{v_{\infty}} \ddot{r} d\dot{r}$$

Опять, работая с предположением: $\varepsilon_{\text{изл}} \ll \varepsilon_{\text{полная}}$, воспользуемся законом кулона. Ещё нам, для выражения скорости понадобится закон сохранения энергии:

$$\frac{\mu v_{\infty}^2}{2} = \frac{\mu v^2}{2} + \frac{e_1 e_2}{r} \qquad \Rightarrow \qquad \frac{(e_1 e_2)^2}{r^2} = \frac{\mu^2}{4} (v_{\infty}^2 - v^2)^2,$$

что при подстановке в закон Кулона

$$\ddot{r} = \frac{e_1 e_2}{\mu r^2} = \frac{(e_1 e_2)^2}{r^2} \frac{1}{\mu(e_1 e_2)} = \frac{\mu}{4(e_1 e_2)} (v_\infty^2 - v^2)^2.$$

Теперь мы готовы взять наш интеграл:

$$\varepsilon = \frac{q^2 \mu}{6c^3(e_1 e_2)} \int_{-v_\infty}^{v_\infty} (v_\infty^2 - v^2) dv = \frac{\mu q^2}{6c^3(e_1 e_2)} \left(v_\infty^4 v - \frac{2v^3}{3} v_\infty^2 + \frac{v^5}{5} \right) \bigg|_{-v_\infty}^{v_\infty} = \frac{8 \mu q^2}{45c^3(e_1 e_2)} v_\infty^5 = \left(\frac{\mu v_\infty^2}{2} \right) \left(\frac{v_\infty}{c} \right)^3 \frac{16q^2}{45(e_1 e_2)} \ll \frac{\mu v_\infty^2}{2}.$$

Так и показали, что $\varepsilon \ll \varepsilon_{\text{полн}}$.

T18

У нас есть некий электрон летящий по окружности. Магнитное поле пусть направлено ${\pmb H}=(0,0,H).$ И у нас релетявистсктй случай $v\to c.$

Пренебрегаем излучением:

$$\frac{d\boldsymbol{p}}{dt} = e\boldsymbol{E} + \frac{e}{c}[\boldsymbol{v} \times \boldsymbol{H}].$$

Изменение энергии при E=0 будет:

$$\frac{d\varepsilon}{dt} = e\boldsymbol{v}\boldsymbol{E} = 0.$$

 $\mathcal{K}_{\mathsf{H}}\mathsf{K}$ Физ $\mathsf{T}_{\mathsf{E}}\mathsf{X}$

То есть константа, а значит:

$$\varepsilon = \gamma mc^2 = \text{const.}$$
 $\Rightarrow \gamma = \text{const.}$

Тогда далее жить намного удобнее, найдем радиус орбиты:

$$\begin{split} \frac{d\boldsymbol{p}}{dt} &= \gamma m \dot{\boldsymbol{v}} = \frac{e}{c} [\boldsymbol{v} \times \boldsymbol{H}]. \\ \boldsymbol{v}(t) &= \boldsymbol{v}_0 + \frac{e}{mc\gamma} [(\boldsymbol{r} - \boldsymbol{r}_0) \times \boldsymbol{H}], \quad \boldsymbol{v}_0 = \frac{e}{mc\gamma} [\boldsymbol{r}_0 \times \boldsymbol{H}] \quad \Rightarrow \quad \boldsymbol{v} = \frac{e}{\gamma mc} [\boldsymbol{r} \times \boldsymbol{H}] \end{split}$$

Тогда имеем радиус и циклотронную частоту:

$$R = \frac{\gamma mc}{eH}v, \qquad \Omega = \frac{eH}{\gamma mc}.$$

Далее достаточно большой блок теории – нужны запаздывающие потенциалы, но мы будем пытаться обойтись без них, введем на веру *потенциалы Лиенара-Вихерта*:

$$\varphi = \frac{e}{R\left(1 - \frac{\boldsymbol{n}\boldsymbol{v}}{c}\right)}, \quad \boldsymbol{A} = \frac{e\boldsymbol{v}}{R\left(1 - \frac{\boldsymbol{n}\boldsymbol{v}}{c}\right)}.$$

Переходим в мгновенную систему отсчета K':

$$\mathbf{v}' = (0,0,0); \ \mathbf{v}(0,v,0); \ \mathbf{H}(0,0,H); \ \mathbf{E} = (0,0,0).$$

Тогда, зная как преобразуются компоненты поля:

$$E'_{\parallel} = E_{\parallel} = 0, \ H'_{\parallel} = H_{\parallel} = 0.$$

$$m{E}_{\perp}' = \gamma = \left(m{E}_{\perp} - rac{1}{c}[m{v} imes m{H}]
ight), ~~ m{H}_{\perp}' = \gamma = \left(m{H}_{\perp} - rac{1}{c}[m{v} imes m{E}]
ight).$$

Таким образом получаем:

$$\mathbf{H}' = (0, 0, \gamma H), \ \mathbf{E}' = (-\beta \gamma H, 0, 0).$$

Тогда в новой системе отсчета движение описывается как:

$$\frac{dp'}{dt'} = e\mathbf{E}' + \underbrace{\frac{e}{c}[\mathbf{v}' \times \mathbf{H}']}_{0} = \underbrace{\dot{\gamma}'m\mathbf{v}'}_{0} + \gamma'm\dot{\mathbf{v}}' \qquad \Rightarrow \qquad m\dot{\mathbf{v}}' = e\mathbf{E}'.$$

$$\ddot{\boldsymbol{r}}' = -rac{eeta\gamma H}{m}\boldsymbol{e}_x \quad \ \ddot{\boldsymbol{d}}' = e\ddot{\boldsymbol{r}}' = -rac{e^2eta\gamma H}{m}\boldsymbol{e}_x.$$

Тогда интенсивность излучения:

$$I' = \frac{2|\vec{\mathbf{d}}'|^2}{3c^3} = \frac{2e^4\beta^2\gamma^2H^2}{3m^2c^3}.$$

Но в то же время $I' = -d\varepsilon'/dt'$ и $I = -d\varepsilon/dt$. счастью наше преобразование нам даёт, что x' = y' = z' = 0, и главное – $t = \gamma t'$. И большая удача, что преобразование четыре импульса системы тоже даёт нам $p'_x = p'_y = p'_z = 0$, и самое главное – $\varepsilon = \gamma \varepsilon'$. Тогда и I = I', по замечанию выше.

T19

Пусть электрон движется вдоль оси x, конденсатор вызывает колебания вдоль оси y. Предполагаем, что колебания примерно не влияют на движения электрона с большой скоростью вдоль оси конденсатора.

Перейдём в систему K', движущуюся относительно лабораторной со скоростью $\langle v_x \rangle$. 4-вектор стоячей волны в конденсаторе имеет вид $k_{\rm cr}^{\mu} = (\omega_0/c, \, 0, \, 0, \, 0)^{\rm T}$. В системе K' можем найти, что

$$k_{\text{ct}}^{\mu \prime} = \Lambda(\langle v_x \rangle, Ox)_{\nu}^{\mu} k_{\text{ct}}^{\nu} = (\gamma \omega_0 / c, -\beta \gamma \omega_0, 0, 0)^{\text{T}},$$

с $\beta=v/c$. Если в системе K' электроны остаются нерелятивисткими, частота частота излучения не зависит от направления и совпадает с вынуждающей сильной $k_{\rm cr}^0{}'=\gamma\omega_0/c$.

Рассмотрим волновой 4-вектор излучения в системе K'. Считая, что излучение происходит (x,y), можем записать

$$\tilde{k}^{\mu} = \frac{1}{c} (\gamma \omega_0, \gamma \omega_0 \cos \theta', \gamma \omega_0 \sin \theta', 0),$$

где θ' – угол между волновым вектором k' и осью x. После обратного преобразования Лоренца переходим к

 $\Phi_{\rm M}$ 3 $T_{\rm F}$ X $W_{II}K$

выражению, вида

$$k^{\mu} = \Lambda(-\langle v_x \rangle, Ox)^{\mu}_{\nu} \tilde{k}^{\nu} = \frac{1}{c} \begin{pmatrix} \gamma^2 \omega_0 (1 + \beta \cos \theta') \\ \gamma^2 \omega_0 (\beta + \cos \theta') \\ \gamma \omega_0 \sin \theta' \\ 0 \end{pmatrix} = \frac{1}{c} \begin{pmatrix} \omega \\ \omega \cos \theta \\ \omega \sin \theta \\ 0 \end{pmatrix},$$

внимательно посмотрев на которое, находим

$$\cos \theta = \frac{k^1}{k^0} = \frac{\beta + \cos \theta'}{1 + \beta \cos \theta'}, \quad \cos \theta' = \frac{-\beta + \cos \theta}{1 - \beta \cos \theta}, \quad \omega = \gamma^2 \omega_0 (1 + \beta \cos \theta') = \frac{\omega_0}{1 - \beta \cos \theta}.$$

Таким образом излучение происходяет в формате узкого конуса вперед по движению ($\theta \approx 0$)

T20

Имеем что? $E_0 \parallel e_x$ и $H_0 \parallel e_y$. Запишем вектор Пойтинга для такой рассейянной волны:

$$oldsymbol{S} = rac{c}{4\pi} |H|^2 oldsymbol{n} = rac{c}{4\pi} |oldsymbol{E}|^2 oldsymbol{n}.$$

Вдали от источника, как мы обсуждали выполняется $E \perp H$ и равны по модулю.

Для интенсивности имеем

$$dI = nSr^2d\Omega = S_0d\sigma,$$

где ввели дифференциальное сечение рассеяния $d\sigma$, а $S_0 = \frac{c}{4\pi} |E_0|^2$.

Внутри идеально проводящего шара E=0 и H=0. Рассмотрим конкретно электрическое поле в центре шара с плотностью заряда $\rho(\theta,\phi)$, взяв закон Кулона:

$$\boldsymbol{E}_0 \cos(\omega t - \boldsymbol{k} \cdot \boldsymbol{r}) + \int \frac{\rho(\theta, \varphi)(-\boldsymbol{r})}{r^3} dS = 0 \qquad \Rightarrow \qquad \boldsymbol{E}_0 \cos(\omega t) - \frac{1}{r^3} \underbrace{\int \rho(\theta, \varphi) \boldsymbol{r} dS}_{\boldsymbol{d}} = 0.$$

Соответственно получаем: $\mathbf{d} = \mathbf{E}_0 r^3 \cos(\omega t)$.

Теперь берем Био-Савара

$$\boldsymbol{H}_0\cos(\omega t) + \int \frac{[\boldsymbol{J}\times(-\boldsymbol{r})]}{cr^3}dS = 0 \qquad \Rightarrow \qquad \boldsymbol{H}_0\cos(\omega t) + \frac{2}{r^3}\int \frac{\boldsymbol{r}\times\boldsymbol{J}}{2c}dS = 0.$$

И аналогично $\mu = -\frac{H_0 r^3}{2} \cos(\omega t)$. В волновой (зоне) будет верно, что

$$m{H}_d = rac{m{\ddot{d}} imes m{n}}{c^2 r}, \qquad m{H}_\mu = rac{m{n} (m{n} \cdot m{\ddot{\mu}}) - m{\ddot{\mu}}}{c^2 r}.$$

Таким образом вектор Пойтинга:

$$\boldsymbol{S} = \frac{c}{4\pi} |\boldsymbol{H}_d + \boldsymbol{H}_\mu|^2 \boldsymbol{n} = \frac{c}{4\pi c^4 r^2} \big(|[\boldsymbol{\ddot{d}} \times \boldsymbol{n}]|^2 + (\boldsymbol{n} \cdot \boldsymbol{\ddot{\mu}})^2 + |\boldsymbol{\ddot{\mu}}|^2 + 2([\boldsymbol{\ddot{d}} \times \boldsymbol{n}] \cdot \boldsymbol{n}) (\boldsymbol{n} \cdot \boldsymbol{\ddot{\mu}}) - 2(\boldsymbol{\ddot{\mu}} \cdot [\boldsymbol{\ddot{d}} \times \boldsymbol{n}]) - 2(\boldsymbol{n} \cdot \boldsymbol{\ddot{\mu}})^2 \big) \boldsymbol{n}.$$

Будем разбираться по очереди: $[\ddot{\boldsymbol{d}} \times \boldsymbol{n}] \cdot \boldsymbol{n} = 0$. Далее:

$$[\ddot{m{d}} imesm{n}]_lpha[\ddot{m{d}} imesm{n}]^lpha=|\ddot{m{d}}|^2-(m{n}\cdot\ddot{m{d}})^2$$

Теперь вроде как немного упростилось:

$$S = \frac{1}{4\pi c^3 r^2} \left(|[\ddot{\boldsymbol{d}} \times \boldsymbol{n}]|^2 - (\boldsymbol{n} \cdot \ddot{\boldsymbol{\mu}})^2 + |\ddot{\boldsymbol{\mu}}|^2 - (\boldsymbol{n} \cdot \ddot{\boldsymbol{\mu}})^2 - 2(\ddot{\boldsymbol{\mu}} \cdot [\ddot{\boldsymbol{d}} \times \boldsymbol{n}]) \right) \boldsymbol{n}.$$

$$d\sigma = \frac{\omega^4 r^6}{c^4} \cos^2(\omega t) \left(|\boldsymbol{e}_x|^2 - (\boldsymbol{n} \cdot \boldsymbol{e}_x)^2 + \frac{1}{4} |\boldsymbol{e}_y|^2 - \frac{1}{4} (\boldsymbol{n} \cdot \boldsymbol{e}_y)^2 - (\boldsymbol{e}_y [\boldsymbol{e}_x \times \boldsymbol{n}]) \right) d\Omega =$$

$$= \frac{\omega^4 r^6}{2c^4} \left(\frac{5}{4} - \sin^2 \theta \cos^2 \varphi - \frac{1}{4} \sin^2 \theta \sin^2 \varphi + \cos \theta \right) d\Omega.$$

А теперь, как нас просят задаче, мы это возьмём и проинтегри

$$\sigma = 2\pi \frac{\omega^4 r^6}{2c^4} \left(\frac{5}{4} - \frac{1}{3} - \frac{1}{12} \right) = \frac{5\pi}{3} \frac{\omega^4}{2c^4} r^6.$$