5. PK - Ball Sound

Wie entwickelt sich der Ton, der beim Zusammenstoß zweier Metallkugeln entsteht?

Leonard Hackel und Niklas Schelten

Herder Oberschule Berlin

23. März 2015

- Das Experiment
 - Vorführung
 - Zusammensetzung des Tons
 - Simulation
- Physikalische Analyse
 - Chirp
 - Physikalische Beschreibung des Tons
 - Verallgemeinerung
 - Peak
 - Frequenz

Experiment

Chirp

Chirp

jugend<a>

forscht

Peak

Peak

PeakPeak

Chirp Frequenz

- Chirp Frequenz
 - → Anzahl der Peaks pro Sekunde

- Chirp Frequenz
 - → Anzahl der Peaks pro Sekunde
- Peak Frequenz

- Chirp Frequenz
 - → Anzahl der Peaks pro Sekunde
- Peak Frequenz
 - → Anzahl der PeakPeaks pro Sekunde

Simulation

Periodendauer über Peaks

•
$$\delta_{fit}(x) = 43,27 \cdot 0,82^{x}$$

Periodendauer über Peaks

•
$$\delta_{fit}(x) = 43,27 \cdot 0,82^{x}$$

$$\bullet \ \delta_n = \delta_1 \cdot b^{n-1}$$

•
$$0 \le b < 1$$

• n: Anzahl der Peaks

• δ : Periode

Amplitude über Peaks

• $y_{fit}(x) = 1,26 \cdot 0,80^x$

Amplitude über Peaks

•
$$y_{fit}(x) = 1,26 \cdot 0,80^x$$

•
$$y_n = a \cdot y_{n-1}$$

•
$$0 \le a < 1$$

• n: Anzahl der Peaks

y: Amplitude

Amplitude über Peaks

•
$$y_{fit}(x) = 1,26 \cdot 0,80^x$$

$$y_n = a \cdot y_{n-1}$$

•
$$0 \le a < 1$$

y: Amplitude

$$\Rightarrow y_n = y_0 \cdot a^n$$

Amplitude in Abhängigkeit von der Periode

Beide Gleichungen nach n umformen, gleichsetzen

$$\rightarrow \frac{\log \frac{y_n}{y_0}}{\log a} = \frac{\log \left(1 - \frac{t_n}{t_{ges}}\right)}{\log b}$$

Amplitude in Abhängigkeit von der Periode

• Beide Gleichungen nach n umformen, gleichsetzen und nach y_n umformen:

$$\rightarrow y_n = y_0 \cdot \left(1 - \frac{t_n}{t_{ges}}\right)^{\frac{\log a}{\log b}}$$

 unterschiedliche rücktreibende Kräfte

- unterschiedliche rücktreibende Kräfte
 - Gravitation

- unterschiedliche rücktreibende Kräfte
 - Gravitation
 - Magnetkraft

jugend@forscht HERDER

- unterschiedliche rücktreibende Kräfte
 - Gravitation
 - Magnetkraft
 - Federkaft

- unterschiedliche rücktreibende Kräfte → Potenz des Weges
 - Gravitation
 - Magnetkraft
 - Federkaft

- unterschiedliche rücktreibende Kräfte → Potenz des Weges
 - Gravitation \rightarrow nahezu s^0
 - Magnetkraft
 - Federkaft

- unterschiedliche rücktreibende Kräfte → Potenz des Weges
 - Gravitation \rightarrow nahezu s^0
 - Magnetkraft $ightarrow s^{-2}$
 - Federkaft

- unterschiedliche rücktreibende Kräfte → Potenz des Weges
 - Gravitation \rightarrow nahezu s^0
 - Magnetkraft $ightarrow s^{-2}$
 - Federkaft $ightarrow s^1$

Verallgemeinerung - Differentialgleichung

• folgende Differentialgleichung als Ergebnis:

•
$$m \cdot \ddot{s} + c \cdot s^a = 0$$

Verallgemeinerung - Ergebnis

Verallgemeinerung - Ergebnis

Verallgemeinerung - Ergebnis

Frequenz

• Peak-Frequenz für jeden Peak gleich

Frequenz

- Peak-Frequenz für jeden Peak gleich
- zwei Ursprünge:
 - Eigenfrequenz der Kugeln

Frequenz

- Peak-Frequenz für jeden Peak gleich
- zwei Ursprünge:
 - Eigenfrequenz der Kugeln
 - Frequenz zwischen den Kugeln

Eigenfrequenz

stehende Welle in den Kugeln

Eigenfrequenz

stehende Welle in den Kugeln

$$\rightarrow f = \frac{c}{2n \cdot \lambda} = \frac{5170^{m/s}}{8 \cdot 0.017m} \approx 38 kHz \text{ mit } n \in \mathbb{N}$$

jugend@forscht ⊢ERDER

Eigenfrequenz

stehende Welle in den Kugeln

$$\rightarrow f = \frac{c}{2n \cdot \lambda} = \frac{5170^{m/s}}{8 \cdot 0.017m} \approx 38 kHz \text{ mit } n \in \mathbb{N}$$

ightarrow nicht hörbar

"Auftreff Frequenz"

 Arbeit von K. Mehraby, H Khadem-hosseini Beheshti und M. Poursina¹

1 Impact noise radiated by collision of two spheres: Comparison between numerical simulations, experiments and analytical results

"Auftreff Frequenz"

 Arbeit von K. Mehraby, H Khadem-hosseini Beheshti und M. Poursina¹

$$\rightarrow f = \frac{76,1}{r}Hz = \frac{76,1}{0.017}Hz \approx 4476Hz$$

Impact noise radiated by collision of two spheres: Comparison between numerical simulations, experiments and analytical results

Frequenzanalyse

Frequenzanalyse

 hörbare Frequenz 4406Hz "Auftreff Frequenz"

Frequenzanalyse

- hörbare Frequenz 4406Hz "Auftreff Frequenz"
- nicht hörbare
 Frequenz 39kHz
 Eigenfrequenz

Vielen Dank für Ihre Aufmerksamkeit

