

Institut für Experimentalphysik der Technischen Universität Graz

&

Institut für Physik der Universität Graz

LABORÜBUNGEN 2: ELEKTRIZITÄT, MAGNETISMUS, OPTIK

Übungsnummer: PHYC03UF

Übungstitel: Spektralphotometer

Betreuer: Presel Francesco

Gruppennummer: 1

Name: PHILIPP Maximilian Name: STARK Matthias

Mat. Nr.: 11839611 Mat. Nr.: 12004907

Datum der Übung: 08 Oktober WS 2021/2022

$P_{\rm HILIPP}$	Maximilian
Stark	Matthias

${\bf Spektral photometer}$

08 Oktober 2021

	1 1				•		•
ı	In	hal	Its۱	<i>y</i> erz	zei	ch	nıs

1	Aufgabenstellung	3
2	Grundlagen	3
3	Versuchsanordnung	4
4	Geräteliste	4
5	Versuchsdurchführung & Messergebnisse	4
6	Auswertung	4
7	Diskussion	4
Q	Zucammanfaccung	4

1 Aufgabenstellung

2 Grundlagen

Um zu sehen wie sich die Unsicherheit der Messungen bis in die Ergebnisse fortplanzt, ist Gleichung 1 verwendet worden. Die Grundlagen dieser Gleichung stammen von den Powerpointfolien von GUM.[?] Die Verallgemeinerung ist von Wikipedia entnommen worden [?]. Für die Auswertung ist die Progammiersprache Python im speziellen das Packet scipy, zur Hilfe genommen worden.

$$V_y = J(x) \cdot V_x \cdot J^T(x) \tag{1}$$

Wobei V_y und V_x die Kovarianzmatrizen von den Vektoren \boldsymbol{y} und \boldsymbol{x} sind. \boldsymbol{x} ist der Vektor der Eingangsvariablen und \boldsymbol{y} ist der Vektor der Ausgangsvariablen. J ist die Jakobimatrix der vektorwertigen Funktion $\boldsymbol{y} = \vec{F}(\boldsymbol{x})$. So lassen sich die Komponenten der Matrix relativ einfach anschreiben $J_{ij}(x) = \frac{\partial y_i}{\partial x_j}(x)$. Damit man die Unsicherheit der einzelnen Variablen y_i bekommt, muss nur die Quadratwurzel des i-ten Diagonalelementes der \boldsymbol{y} -Kovarianzmatrix genommen werden $u_i = \sqrt{\operatorname{diag}(V_y)_i}$. Da in diesem Experiment meistens nur skalare Funktionen untersucht werden, vereinfacht sich die Gleichung 1 dramatisch und die Unsicherheit der Variable \boldsymbol{y} lässt sich einfach so berechnen:

$$u_y = \sqrt{\operatorname{grad} y^T \cdot V_x \cdot \operatorname{grad} y} \tag{2}$$

3 Versuchsanordnung

4 Geräteliste

Für die Messungen wurden folgende Geräte verwendet:

Tabelle 1: Verwendete Geräte

Gerät	Typ	Hersteller
Spektralphotometer	CCS200/M	Thorlabs
Halogenlampe	QTH10/M	Thorlabs
Gestell	LCP01/M	Thorlabs
Computersoftware	SPLICCO	
Farbfilter	rot	
Farbfilter	grün	
Küvette	gefüllt mit Wasser	
Küvette	gefüllt mit Methylenblaulösung	
Halterung	für Küvetten	
Glasplatte	befestigt auf Halterung	

5 Versuchsdurchführung & Messergebnisse

- 6 Auswertung
- 7 Diskussion
- 8 Zusammenfassung

	• •			-		
	18		ra	•		
ᆫ	IL	C	ıa	L	u	•

[1]	Institut für	Experiment	talphysik	Technische	Universität	Graz.	Übung	Entfernungs	3-
	messung - E	Brechzahl SS	321, 18.3.	2021.					

[2] Horst Kuchling. *Taschenbuch der Physik*. Fachbuchverlag Leipzig, im Carl Hansen Verlag, Carl Hanser Verlag München, 21.,aktualisierte auflage edition, 2014.

Abbildungsverzeichnis

Tabellenverzeichnis