GREENAID README

Folder/File	☐ Description
01_Neural_Network.ipynb	Standalone Neural Network for general classification.
02_cnn_plant_type.ipynb	Model for detecting plant type (Tomato, Potato, Bell Pepper).
03_cnn_disease_type.ipynb	Model for classifying disease status (Healthy / Infected).
04_Bounding_Boxes.ipynb	YOLO-based model for localizing disease spots.
05_Final_Model.ipynb	Combines Plant, Disease, Bounding Box + LLM for treatment advice.
data/	Folder with 1) data for yolo bounding boxes 2)data for all other models.

Below is a simple **step-by-step flow** to run the entire project.

✓ 1 Train Standalone Neural Network

Step	Command
Open	01_Neural_Network.ipynb
Run	All cells
Save	Save for further use

Dataset - = archive/PlantVillage/

✓2 Train Plant Detection Model

Step	Command	
Open	02_cnn_plant_type.ipynb	
Run	All cells	
Save	Save and Export best model for final model notebook	

Dataset - = archive/PlantVillage/

✓3 Train Disease Detection Model

Step	Command
Open	03_cnn_disease_type.ipynb
Run	All cells
Save	Save and Export best model for final model notebook

Dataset - = archive/PlantVillage/

✓ 4 Train Bounding Box Model

Step	Command
Open	04_Bounding_Boxes.ipynb
Run	All cells
Save	Save and Export best model for final model notebook

Dataset - 19 YOLO/ (custom annotated images)

✓ 5 Combine All — Final Pipeline

Step	Command
∲ Open	05_Final_Model.ipynb
Load	Insert All best models from each of the notebooks in required lines of the code
₩ Run	All cells — this will:
	✓ Detect Plant Type
	✓ Classify Disease
	✓ Draw Bounding Box
	✓ Pass to LLM for treatment recommendation

X Dependencies

Before running, make sure you install:

#CODE

pip install tensorflow keras numpy opencv-python pillow matplotlib tqdm yolov5 transformers

Key Points

✓ data organization:

/data/PlantType/DiseaseClass/images

✓ consistent image size:

Set img_size the same in all notebooks.

✓ Export best models:

Save as .h5 for Keras or .pt for YOLO.

✓ Load paths correctly:

The final notebook must load the correct saved weights.