Machine Learning 1

Regression & Classification

Prelude

- Due to popular demand, we are redirecting the last 2 lectures of this course from Big Data Analytics & Spark to Machine Learning.
- Your final project is due on Dec 3rd, with optional presentation in class to show off what you have done for your project to the whole class.
 This is your chance to learn the real-skill of communicating insights to others.

Agenda

- Missing Values
- Introduction to Machine Learning
- Scikit-Learn
- Regression
- Classification

Missing Values: NaN

```
string_data = Series(['aardvark', 'artichoke', np.nan, 'avocado'])
string data
      aardvark
0
     artichoke
           NaN
       avocado
dtype: object
string_data.isnull()
    False
     False
      True
     False
dtype: bool
```

Strategy 1: filtering out missing values

```
from numpy import nan as NA
data = Series([1, NA, 3.5, NA, 7])
data.dropna()
    1.0
  3.5
    7.0
dtype: float64
data[data.notnull()]
    1.0
    3.5
    7.0
dtype: float64
```

Strategy 1: filtering out missing values

	0	1	2
0	1.0	6.5	3.0
1	1.0	NaN	NaN
2	NaN	NaN	NaN
3	NaN	6.5	3.0

cleaned

	0	1	2
0	1.0	6.5	3.0

Strategy 2: filtering out some missing values

	0	1	2
0	1.0	6.5	3.0
1	1.0	NaN	NaN
2	NaN	NaN	NaN
3	NaN	6.5	3.0

```
data.dropna(how='all')
```

	0	1	2
0	1.0	6.5	3.0
1	1.0	NaN	NaN
3	NaN	6.5	3.0

Strategy 2: filtering out some missing values

```
data[4] = NA
data
```

	0	1	2	4
0	1.0	6.5	3.0	NaN
1	1.0	NaN	NaN	NaN
2	NaN	NaN	NaN	NaN
3	NaN	6.5	3.0	NaN

data.dropna(axis=1, how='all')

	0	1	2
0	1.0	6.5	3.0
1	1.0	NaN	NaN
2	NaN	NaN	NaN
3	NaN	6.5	3.0

Strategy 3.1: filling in missing values

df.fillna(0)

	0	1	2
0	-0.204708	0.000000	0.000000
1	-0.555730	0.000000	0.000000
2	0.092908	0.000000	0.000000
3	1.246435	0.000000	-1.296221
4	0.274992	0.000000	1.352917
5	0.886429	-2.001637	-0.371843
6	1.669025	-0.438570	-0.539741

Strategy 3.2: filling in missing values

df.fillna({1: 0.5, 2: -1})

	0	1	2
0	-0.577087	0.500000	-1.000000
1	0.523772	0.500000	-1.000000
2	-0.713544	0.500000	-1.000000
3	-1.860761	0.500000	0.560145
4	-1.265934	0.500000	-1.063512
5	0.332883	-2.359419	-0.199543
6	-1.541996	-0.970736	-1.307030

Strategy 3.3 forward filling missing values

```
df = DataFrame(np.random.randn(6, 3))
df.ix[2:, 1] = NA; df.ix[4:, 2] = NA
df
```

	0	1	2
0	-0.831154	-2.370232	-1.860761
1	-0.860757	0.560145	-1.265934
2	0.119827	NaN	0.332883
3	-2.359419	NaN	-1.541996
4	-0.970736	NaN	NaN
5	0.377984	NaN	NaN

Strategy 3.3 forward filling missing values

df.fillna(method='ffill')

	0	1	2
0	-0.831154	-2.370232	-1.860761
1	-0.860757	0.560145	-1.265934
2	0.119827	0.560145	0.332883
3	-2.359419	0.560145	-1.541996
4	-0.970736	0.560145	-1.541996
5	0.377984	0.560145	-1.541996

Strategy 3.3 forward filling missing values

df.fillna(method='ffill', limit=2)

	0	1	2
0	-0.831154	-2.370232	-1.860761
1	-0.860757	0.560145	-1.265934
2	0.119827	0.560145	0.332883
3	-2.359419	0.560145	-1.541996
4	-0.970736	NaN	-1.541996
5	0.377984	NaN	-1.541996

Agenda

- Missing Values
- Introduction to Machine Learning
- Scikit-Learn
- Regression
- Classification

Machine learning

- T = tasks to be performed
- E = experience (usually in the form of history datasets)
- P = performance for an algorithm for T using E

Typical Paradigms of Recognition

Types of ML approaches

- Regression
 - Linear regression
 - Structured output regression
- Classification
 - Generative vs. Discriminative
 - Supervised, unsupervised, semi-supervised, weakly supervised
 - Linear, nonlinear
 - Ensemble methods
 - Probabilistic
- Structure Learning
 - Graphical Models
 - Margin based approaches

Agenda

- Missing Values
- Introduction to Machine Learning
- Scikit-Learn
- Regression
- Classification

Scikit-learn: ML in Python

scikit-learn is a Python module integrating classic machine learning algorithms in the tightly-knit world of scientific Python packages (numpy, scipy, matplotlib)

Tools for:

- Regression
- Classification
- Clustering
- Dimensionality Reduction
- Model Selection

Scikit-learn: http://scikit-learn.org/

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors,

random forest, ... - Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. **Algorithms**: SVR, ridge regression, Lasso,

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation,

Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

mean-shift, ... — Examples

Fit and predict

- All models (Classification and regression) implement at least two functions:
 - fit(x, y) Fit the model to the given dataset
 - predict(x) Predict the y values associated with the x values

```
>>> clf = linear_model.Lasso(alpha = 0.1)
>>> clf.fit([[0, 0], [1, 1]], [0, 1])
Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
    normalize=False, positive=False, precompute=False, random_state=None,
    selection='cyclic', tol=0.0001, warm_start=False)
>>> clf.predict([[1, 1]])
array([ 0.8])
```

Agenda

- Missing Values
- Introduction to Machine Learning
- Scikit-Learn
- Regression
- Classification

Regression: fitting "lines"

- Example: Price of a used car
- x : car attributes

y: price

$$y = g(x \mid \theta)$$

g () model,

 θ parameters

Supervised Learning: Regression

- Regression: tries to fit a mathematical function that describes the learning data set E to minimize some error function
- Example: House price prediction
 - E = house prices ("targets") with characteristics on # rooms, location, sq footage, etc.
 - T = predict the house sale price
 - P = how well the estimator can accurately predict the actual sale price

Linear Regression: House Price Prediction

- UC Irvine House Dataset: Boston House Prices for 506 homes
 - http://archive.ics.uci.edu/ml/datasets/Housing

```
from sklearn.datasets import load_boston

boston = load_boston()

print boston.DESCR
```

Boston Housing Dataset: 13 Attributes

```
CRIM per capita crime rate by town
```

ZN proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS proportion of non-retail business acres per town

CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

NOX nitric oxides concentration (parts per 10 million)

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940

DIS weighted distances to five Boston employment centres

RAD index of accessibility to radial highways

TAX full-value property-tax rate per \$10,000

PTRATIO pupil-teacher ratio by town

3k 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town

LSTAT % lower status of the population

MEDV Median value of owner-occupied homes in \$1000's

Visualizing Boston House Prices

```
plt.hist(boston.target, bins=50)
plt.xlabel("Prices in $1000s")
plt.ylabel("Number of Houses")
```


Visualizing Influence of # Rooms

```
# the 5th column in "boston" dataset is "RM" (# rooms)
plt.scatter(boston.data[:,5], boston.target)
plt.ylabel("Prices in $1000s")
plt.xlabel("# rooms")
                                              50
                                           Prices in $1000s
                                              30
                                              10
```

rooms

Visualizing Influence of # Rooms with fit

• Start by creating a DataFrame that can be used by Seaborn

```
boston_df = DataFrame(boston.data)
boston_df.columns = boston.feature_names
boston_df['Price'] = boston.target
boston_df.head(5)
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	Price
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

Visualizing Influence of # Rooms with fit

```
sns.lmplot('RM', 'Price', data=boston_df)
```


Ridge regression

Linear prediction: $\hat{y}_i = \mathbf{w} \cdot \mathbf{x}_i$

Loss function:

$$L = \sum_{i} \frac{1}{2} (\hat{y}_i - y_i)^2 + \frac{1}{2} \lambda |\mathbf{w}|^2$$
 Fit quality Penalty

Both the fit quality and the penalty can be changed.

Changing the penalty

•
$$|\mathbf{w}| = \sqrt{\sum_i w_i^2}$$
 is called the " L_2 norm"

• $|\mathbf{w}|_1 = \sum_i |w_i|$ is called the " L_1 norm"

• In general $|\mathbf{w}|_p = \sqrt[p]{\sum_i |w_i|^p}$ is called the " L_p norm"

The LASSO

Loss function:

$$L = \sum_i \frac{1}{2} (\hat{y}_i - y_i)^2 + \frac{1}{2} \lambda |\mathbf{w}|_1$$
 Fit quality Penalty

LASSO regularization path

- Most weights are exactly zero
- "sparse solution", selects a small number of explanatory variables
- This can help avoid overfitting when p>>N
- Models are easier to interpret but remember there is no proof of causation.
- Path is piecewise-linear

Agenda

- Missing Values
- Introduction to Machine Learning
- Scikit-Learn
- Regression
- Classification

Supervised Learning: Classification

- Classification: assign discrete labels to input data
- Example: Medical image diagnosis
 - E = CAT medical scans with labels ("targets") on (1) tumor, or (2) no tumor
 - T = predict tumor or not tumor for new images
 - P = how well the estimator can accurately predict tumor or not

Supervised Learning: Use Cases

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand
- Compression: The rule is simpler than the data it explains
- Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

Classification: Oranges and Lemons

Classification: Oranges and Lemons

Classification problem

- Given: Training set
 - labeled set of *N* input-output pairs
 - $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$
 - $y = \{1, ..., K\}$
- Goal: Given an input x, assign it to one of K classes

- Examples:
 - Spam filter
 - Handwritten digit recognition

Digit Recognition

• Input: pixel grids

• Output: a digit 0-9

Naïve Bayes Classifier

• Given:

- Prior P(Y)
- n conditionally independent features X given the class Y
- For each X_i, we have likelihood P(X_i|Y)

• Decision rule:

$$y^* = h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) P(x_1, \dots, x_n \mid y)$$

= $\arg \max_{y} P(y) \prod_{i} P(x_i \mid y)$

Example Distribution

Linear classifiers

- Linear classifiers:
 - Decision boundaries are linear functions
 - d-1 dimensional hyper-plane within the d dimensional input space.
 - Examples
 - Perceptron
 - Support vector machine
 - Decision Tree
 - KNN
 - Naive Bayes classifier
 - Linear Discriminant Analysis (or Fisher's linear discriminant)

Linear classifiers

- Linearly separable
 - Data points can be exactly classified by a linear decision surface.
- Binary classification
 - Target variable
 - $y \in \{0,1\}$
 - $y \in \{-1,1\}$

Decision boundary

- Discriminant function : $f(x; w) = w^T x$
 - $x = [1 x_1 x_2 ... x_d]$
 - $\mathbf{w} = [w_0 \ w_1 \ w_2 \ ... \ w_d]$
 - w_0 : bias
- if $f(x; w) = w^T x \ge 0$ then C1 else C2

- Decision boundary: f(x; w) = 0
 - The sign of f(x; w) predicts binary class labels

Linear Decision boundary (Perceptron)

Linear Decision boundary (Decision Tree)

Linear Decision boundary (K Nearest Neighbor)

Non-Linear Decision boundary

Decision boundary

Linear classifier

$$3 + \frac{3}{4}x_1 + x_2 = 0$$
if $w^T x \ge 0$ then $y = 1$
else $y = -1$

$$\mathbf{w} = [3, 0.75, 1]$$

Non-linear decision boundary

- Choose non-linear features
 - Classifier still linear in parameters w

$$-1 + x_1^2 + x_2^2 = 0$$

$$\phi(x) = [1, x_1, x_2, x_1^2, x_2^2, x_1 x_2]$$

$$w = [-1, 0, 0, 1, 1, 0]$$

if
$$\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) \ge 0$$
 then $y = 1$ else $y = -1$

Linear boundary: geometry

Unsupervised Learning

- Data has no labels (no "outputs")
- Clustering: Grouping similar instances
- Goal is to find similarity among the data to "discover" labels from the data itself

• Examples:

- Customer segmentation: given purchase behaviors and demographics, classify type of consumers for different marketing campaigns.
- Image compression: Color quantization
- Bioinformatics: Learning motifs

Reinforcement Learning

- Learning a policy: A sequence of outputs
- No supervised output but delayed reward
- Credit assignment problem
- Game playing
- Robot in a maze
- Multiple agents, partial observability, ...

APPENDIX

Learning Associations

Basket analysis:

 $P(Y \mid X)$ probability that somebody who buys X also buys Y where X and Y are products/services.

Example: P (chips | beer) = 0.7

Classification

- Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their income and savings

Discriminant: IF $income > \theta_1$ AND $savings > \theta_2$ THEN low-risk ELSE high-risk

Classification: Applications

- Aka Pattern recognition
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
- Medical diagnosis: From symptoms to illnesses
- Biometrics: Recognition/authentication using physical and/or behavioral characteristics: Face, iris, signature, etc

• ...

Face Recognition

Training examples of a person

Test images

