Fuzzy Classification of Web Reports with **Linguistic Text Mining**

Jan Dědek^{1,2} Peter Voitáš^{1,2}

¹Department of Software Engineering, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

²Institute of Computer Science, Academy of Sciences of the Czech Republic

Soft approaches to information access on the Web, Web Intelligence 2009, 15 – 18 September 2009 Università degli Studi di Milano Bicocca, Milano, Italy

Outline

- Introduction
 - Our Information Extraction System
 - Fuzzy ILP
- Our Experiment
 - Experiment Description
- Fuzzy ILP / GAP Implementation
 - Monotonization
- Evaluation and Conclusion
 - Learning Results
 - Evaluation
 - Conclusion

Our work

- Extraction of semantic information form texts.
 - In Czech language.
 - Coming form web pages.
- Using of Semantic Web ontologies.
 - RDF, OWL
- Exploiting of linguistic tools.
 - Mainly from the Prague Dependency Treebank project.
 - Experiments with the Czech WordNet.
- Rule based extraction method.
 - Extraction rules ≈ tree queries
 - ILP learning of extraction rules

In this presentation

- Experiment with Fuzzy ILP
- Accident seriousness classification
- Exploitation of extracted information

Schema of the whole system

- Web Crawling
- Information Extraction and User Evaluation
- Logic representation
 - Construction of background knowledge
 - Construction of learning examples
- ILP Learning
 - Crisp
 - Fuzzy
- Comparison of results

Example of processed web page

■HZS Jihomoravského kraje

Zubatého 1, 614 00 Brno, telefon 950 630 111. http://www.firebmo.cz >

15 05 2007

V trahantu zemřeli dva lidé

Zpravodajství v roce 2006

K tragické nehodě dnes odpoledne hasiči vyjížděli na silnici z obce Česká do Kuřimi na Brněnsku.

Nehoda byla operačnímu středisku HZS ohlášena ve 13.13 hodin na místě zasahovala jednotka profesionálních hasičů ze stanice v Tišnově. Jednalo se o čelní srážku autobusu Karosa s vozidlem Trabant 601. Podle dostupných informací trabant jedoucí ve z Brna do Kuřimi zřejmě vyjel do protisměru, kde narazil do linkového autobusu dopravní společnosti ze Žďáru nad Sázavou. Ve zdemolovaném trabantu na místě zemřeli dva muži – 82letý senior a další muž, jehož totožnost

Hasiči udělali na vozidle protipožární opatření a po vyšetření a zadokumentování nehody dopravní policií vrak trabantu zaklesnutý pod autobusem pomocí lana odtrhli. Po odstranění střechy trabantu pak z kabiny vyprostili těla obou mužů. Obě vozidla – trabant i autobus, pak postupně odstranili na kraj vozovky a uvolnili tak jeden jízdní pruh. Únik provozních kapalin nebyl zijštěn. Po 16. hodině pomohli vrak trabantu naložit k odtahu a asistovali při odtažení autobusu. Po úklidu vozovky átce před 16 30 hod, místo nehody předali policistům a ukončili zásah

)dkazv

Generální ředitelství

hl. m. Praha 7

Jihočeský krai z Jihomoravský kra

Karlovarský krai z Královéhradecký kraj

Liberecký krai z

Moravskoslezský kraj

 Olomoucký krai Pardubický kraj

Plzeňský kraj

Středočeský kraj Ústecký kraj

kraj Vysočina Zlínský kraj z

V této rubrice Zpravodaiství

Aktualizace stránek

Archiv zpravodajstvi Bleskové zpravodajství

 Boi proti korupci Digitální televize

 Hasiči Hlavní zprávy

 Ministerstvo Od dopisovatelů

(neoficiální) Policie

Regiony

 Servis nejen pro novináře Schengenská spolupráce

WebEditorial

Na našem serveru v jiných nibrikách Aktuality Národního

Fire and car accidents reports Introduction

Our Information Extraction System

Example of processed text

- Information to be extracted is decorated.
- See the last sentence on the next slide.

Example of a linguistic tree

- ..., škodu vyšetřovatel předběžně vyčíslil na osm tisíc korun.
- ..., investigating officer preliminarily reckoned the damage to be 8 000 CZK.
- Our IE method uses tree queries (tree patterns)

Accident attributes

	distinct	missing	
attribute name	values	values	monotonic
size (of file)	49	0	yes
type (of accident)	3	0	no
damage	18	30	yes
dur_minutes	30	17	yes
fatalities	4	0	yes
injuries	5	0	yes
cars	5	0	yes
amateur_units	7	1	yes
profesional_units	6	1	yes
pipes	7	8	yes
lather	3	2	yes
aqualung	3	3	yes
fan	3	2	yes
ranking	14	0	yes

- Information that we can/could extract from a report.
- Not everything is always mentioned.

Fuzzy ILP

Classical ILP and Fuzzy ILP principles

- Learning examples $E = P \cup N$ (Positive and Negative)
- Background knowledge B
- ILP task to find hypothesis H such that:

$$(\forall e \in P)(B \cup H \models e) \& (\forall n \in N)(B \cup H \not\models n).$$

- Fuzzy learning examples $\mathcal{E}: E \longrightarrow [0,1]$
- Fuzzy background knowledge $\mathcal{B}: B \longrightarrow [0, 1]$
- Fuzzy ILP task to find hyp. $\mathcal{H}: H \longrightarrow [0,1]$ such that:

$$(\forall e_1, e_2 \in E)(\forall \mathcal{M})(\mathcal{M} \models_f \mathcal{B} \cup \mathcal{H}) \,:\, \mathcal{E}(e_1) > \mathcal{E}(e_2) \Rightarrow \|e_1\|_{\mathcal{M}} \geq \|e_2\|_{\mathcal{M}}$$

Generalized Annotated Programs

- Fuzzy ILP is equivalent to Induction of Generalized Annotated Programs¹
- For implementation we use GAP or strictly speaking:
 Definite Logic Programs with monotonicity axioms (also equivalent)
- Basic paradigm: deal with values as with degrees.
 - We don't have to normalize values, they order is enough.
- For example with monotonicity axioms we can use rule: serious (A, 4) ← fatalities (A, 10).
 and form the fact fatalities (id_123, 1000) deduce serious_alt (id_123, 4).

¹See in S. Krajci, R. Lencses and P. Vojtas: "A comparison of fuzzy and annotated logic programming", Fuzzy Sets and Systems, vol.144, pp.173–192, 2004.

Experiment Description

Accident attributes

	distinct	missing	
attribute name	values	values	monotonic
size (of file)	49	0	yes
type (of accident)	3	0	no
damage	18	30	yes
dur_minutes	30	17	yes
fatalities	4	0	yes
injuries	5	0	yes
cars	5	0	yes
amateur_units	7	1	yes
profesional_units	6	1	yes
pipes	7	8	yes
lather	3	2	yes
aqualung	3	3	yes
fan	3	2	yes
ranking	14	0	yes

- Almost all attributes are numeric.
 - So monotonic
 - This will be used for "fuzzyfication"
- Artificial target attribute seriousness ranking.

Experiment Description

Histogram of the seriousness ranking attribute

- 14 different values, range 0.5 − 8
- Divided into four approximately equipotent groups.

Monotonization

Essential difference between learning examples

Crisp learning examples

```
serious_2(id_47443). *positive
serious_0(id_47443). *negative
serious_1(id_47443). *negative
serious 3(id 47443). *negative
```

Monotonized learning examples

```
serious_atl_0(id_47443). *positive serious_atl_1(id_47443). *positive serious_atl_2(id_47443). *positive serious_atl_3(id_47443). *negative
```

For one evidence (occurrence):

- Crisp:
 Always one positive and three negative learning examples
- Monotonized:
 Up to the observed degree positive, the rest negative.

Monotonization

Monotonization of attributes

damage → damage_atl

- We infer all lower values as sufficient.
- Treatment of unknown values.
- Negation as failure.

```
serious_0(A):-type(A,fire),pipes(A,0).
serious_0(A):-fatalities(A,0),pipes(A,1),lather(A,0).
serious_1(A):-amateur_units(A,1).
serious_1(A):-amateur_units(A,0),pipes(A,2),aqualung(A,1).
serious_1(A):-damage(A,300000).
serious_1(A):-damage(A,unknown),type(A,fire),prof_units(A,1).
```

serious_1(A):-dur_minutes(A,unknown), fatalities(A,0), cars(A,1). serious_2(A):-lather(A,unknown). serious_2(A):-lather(A,0), aqualung(A,1), fan(A,0). serious_2(A):-amateur_units(A,2),prof_units(A,2). serious_2(A):-dur_minutes(A,unknown),injuries(A,2).

serious_3(A):-fatalities(A,1).
serious_3(A):-fatalities(A,2).
serious_3(A):-injuries(A,2).
serious_3(A):-injuries(A,2).

serious O(A):-dur minutes(A,8).

serious_3(A):-injuries(A,2), cars(A,2). serious_3(A):-pipes(A,4).

serious_atl_0(A). serious_atl_1(A):-injuries_atl(A,1). serious_atl_1(A):-lather_atl(A,1).

serious_atl_1(A):-pipes_atl(A,3). serious_atl_1(A):-dur_minutes_atl(A,unknown).

serious_atl_1(A):-size_atl(A,764),pipes_atl(A,1). serious_atl_1(A):-damage_atl(A,8000),amateur_units_atl(A,3). serious_atl_1(A):-type(A,car_accident).

serious_attl_1(A):-pipes_attl(A,unknown), randomized_order_attl(A,35).
serious_attl_2(A):-pipes_attl(A,3), aqualung_attl(A,1).
serious_attl_2(A):-type(A,car_accident), cars_attl(A,2),prof_units_attl(A,2).

serious_atl_2(A):-injuries_atl(A,1),prof_units_atl(A,3),fan_atl(A,0). serious_atl_2(A):-type(A,other), aqualung_atl(A,1). serious_atl_2(A):-dur_minutes_atl(A,59), pipes_atl(A,3).

serious_atl_2(A):-dur_minutes_atl(A,59), pipes_atl(A,3) serious_atl_2(A):-injuries_atl(A,2),cars_atl(A,2). serious_atl_2(A):-fatalities_atl(A,1).

serious_atl_3(A):-fatalities_atl(A,1). serious_atl_3(A):-dur_minutes_atl(A,unknown),pipes_atl(A,3). Crisp hypothesis

- Monotonized hypothesis
 - Monotonicity axioms
 - Monotonized learning examples

Evaluation and Comparison of Results

		Raw ILP	Monot. ILP
Monot. test set	TP:	42	57
positive: 64	FP:	7	6
negative: 36	Precision:	0,857	0,905
sum: 100	Recall:	0,656	0,891
	F-measure:	0,743	0,898
Crisp test set	TP:	12	15
positive: 25	FP:	13	10
negative: 75	Precision:	0,480	0,600
sum: 100	Recall:	0,480	0,600
	F-measure:	0,480	0,600

- Rules evaluated on both testing sets.
 - By use of conversion predicates (next slide)
- Monotonized rules better in both cases.

Evaluation

Conversion of Results

crisp → monotone

monotone → crisp

```
serious_atl_0(ID) :- serious_2(ID).
serious_atl_1(ID) :- serious_2(ID).
serious atl 2(ID) :- serious 2(ID).
```

Conclusion

- We used Fuzzy/GAP ILP in an experiment closely connect with WIE.
- Showed basic principles and implementation of Fuzzy/GAP ILP.
- Compared results of Fuzzy/GAP ILP and Classical ILP.
- Observed much better results in the Fuzzy case.
- Future work: finer "approximatization" of target attribute.
 - Not only "four degrees".