W207 Final Project

AMES Housing Mrinal Chawla, Thomas Gao, Fengyao Luo

The Inference Problem

GIVEN

- A vector of features about the house
 - Neighborhood
 - Quality
 - Overall, Pool, etc.
 - Sale Condition
 - Normal, Abnormal
 - Amenities
 - Alley, Garage, Basement, etc.
 - Size
 - Sqft, # of rooms, # of bathrooms etc

PREDICT

Sale Price of the House

WHY

- Helps housing market for both sellers and buyers
- Help plan renovations
 - Help plan infrastructure improvements
- Etc.

Exploratory Data Analysis

- SalePrice slightly right-skewed
 - Log transformation to fix
- Sizing variables highly correlated
 - o Bsmt sqft vs 1st floor sqft
 - GarageArea vs GarageCars

Exploratory Data Analysis

- Generally linear relationships
- Few outliers for expensive homes
- Top indicators
 - Overall Quality
 - Living Area
 - Neighborhood
- Scaling and encoding

Baseline Models

PREDICT MEAN

Predict average sale price for every house

RMSE: 0.419

LINEAR REGRESSION

Use top 2 features and neighborhood

RMSE: 0.169

LASS0

Linear Regression with L1
Regularization

RMSE: 0.137

Error Analysis

- Complexity vs Performance
 - Number of Features
 - o RMSE
- Outliers
 - Living Area
 - Quality
- Non-Linear Relationship
 - YrSold
 - SalePrice

Feature Engineering

- Aggregate size features
 - Total Sqft
 - Average Room Sqft
 - Total bathrooms
 - Total porch sqft
- Presence of amenities (binary)
 - Alley
 - Garage
 - Basement
 - o Pool
- Years Since Remodelled (Year Sold Year Remodelled)
- Seasonality (Month Sold → Season)
- Skewness (np.log)
- Neighborhood bins

Final Models

LASS0	SPLIT LASSO
Linear Regression with L1 Regularization	Linear Regression with L1 Regularization + Separate Model for each Neighborhood Bin
RMSE: 0.121	RMSE: 0.126
RANDOM FOREST	ENSEMBLE
Nonlinear Model	0.75 Lasso + 0.25 Random Forest
RMSE: 0.135	RMSE: 0.119

Final Performance

Model: Ensemble

• RMSE: 0.1217

Kaggle: 10th percentile

