

Conceito

Resistores: Elemento linear passivo que exclusivamente dissipa energia

Capacitores e indutores: Elementos lineares passivos que armazenam energia que posteriormente pode ser recuperada

ResistoresInvariantes no tempo

Capacitores e Indutores Variantes no tempo

Capacitor

Indutor

Revisão Capacitores

Aponte o gráfico que representa a tensão entre os terminais do capacitor e o gráfico que representa a corrente no capacitor.

Revisão Capacitores

Capacitores - Conceitos

- O capacitor armazena cargas em forma de um campo elétrico
- A quantidade de carga armazenada é diretamente proporcional a tensão v aplicada.
- Bloqueia CC
- Comporta-se como um circuito aberto quando saturado

$$q = Cv$$

Onde C é a capacitância medida em Farad (F) q é a carga medida em Columb (C)

Placas condutivas

Capacitores – revisão

Principais Relações

Corrente

$$i = C \frac{dv}{dt}$$

Tensão

$$i = C \frac{dv}{dt} \qquad v(t) = \frac{1}{C} \int_0^t i d\tau + v(t_0)$$

Energia

$$w = \frac{1}{2}Cv^2$$

Associação de capacitores em série

$$C_{eq} = \left(\frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}\right)^{-1} \quad ; \quad v_{eq}(t_0) = v_1(t_0) + v_2(t_0) + \dots + v_n(t_0)$$

Associação de capacitores em paralelo

$$C_{eq} = C_1 + C_2 + \dots + C_n$$

Indutores – Tipos de indutores ◄

Esquema

Símbolos

Principais tipos

- Indutores são elementos passivos que armazém energia em seu campo magnético
- Consiste em uma bobina de fio condutor
- Entre suas principais aplicações podemos citar: fontes, filtros, transformadores, rádios, estabilizadores e motores elétricos

$$v = L \cdot \frac{di}{dt}$$

A tensão entre os terminais diretamente proporcional a variação de corrente

 L é a constante de proporcionalidade, denominada de indutância e medida em Henrys (H)

$$L=\frac{N^2\mu A}{l}$$

$$v = L \cdot \frac{di}{dt}$$

Indutores <

- Diferenciando em relação o tempo e integrando ambos os labos da expressão obtemos a relação de corrente do indutor
- Um indutor atua como um curto-circuito em CC
- A corrente que flui através de um indutor não pode variar abruptamente

$$v = L \cdot \frac{di}{dt}$$

$$di = \frac{1}{L}vdt$$

$$i = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$$

A potência instantânea de um indutor pode ser calculada pelo produto entre tensão e corrente

$$P = v \cdot i$$

$$P(t) = i(t) \cdot L \frac{di}{dt} \qquad P(t) = \left(\frac{1}{L} \int_0^t v d\tau + i(t_0)\right) \cdot v(t)$$

A energia armazenada em um indutor, pode ser calcula através da integral da potência, então:

$$w = \int_{-\infty}^{t} p dt = L \int_{-\infty}^{t} i \frac{di}{dt} dt = L \int_{-\infty}^{t} i di = \frac{1}{2} L i^{2} \begin{vmatrix} t \\ t = -\infty \end{vmatrix}$$

$$\mathbf{w} = \frac{1}{2} L \mathbf{i}^{2}$$

** Consideramos que em t=-∞ o indutor está descarregado

Associação de Indutores ◄

Associação em série de indutores

$$v_{eq}(t) = v_1(t) + v_2(t) + \dots + v_N(t)$$

$$L_{eq} \frac{di}{dt} = L_1 \frac{di}{dt} + L_2 \frac{di}{dt} + \dots + L_N \frac{di}{dt}$$

$$L_{eq} = L_1 + L_2 + \dots + L_n$$

Associação de Indutores

Associação em paralelo de indutores

Associação de Indutores

Associação em paralelo de indutores

$$i_{eq}(t) = i_1(t) + i_2(t)$$

$$\frac{1}{L_{eq}} \int_0^t v d\tau + i_{eq}(t_0) = \frac{1}{L_1} \int_0^t v d\tau + i_1(t_0) + \frac{1}{L_2} \int_0^t v d\tau + i_2(t_0)$$

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} \quad ; \quad i_{eq}(t_0) = i_1(t_0) + i_2(t_0) \qquad \left(L_{eq} = \frac{L_1 \cdot L_2}{L_1 + L_2}\right)$$

Generalizando

$$L_{eq} = \left(\frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}\right)^{-1} ; \quad i_{eq}(t_0) = i_1(t_0) + i_2(t_0) + \dots + i_n(t_0)$$

2 indutores

Exercício: Sob as condições de CC, calcule as energias armazenadas no indutor e no capacitor

$$w_C = 50J$$
$$w_L = 4J$$

Exercício: Sob as condições de CC, calcule as energias armazenadas no indutor e no capacitor

$$i = i_L = \frac{12}{1+5} = 2 \text{ A}$$

$$v_C = 5i = 10 \text{ V}$$

$$w_C = \frac{1}{2}Cv_C^2 = \frac{1}{2}(1)(10^2) = 50 \text{ J}$$

$$w_L = \frac{1}{2}Li_L^2 = \frac{1}{2}(2)(2^2) = 4 \text{ J}$$

Exercício: Calcule as energias armazenadas no indutor e no capacitor

Resposta: 1,125*J e* 9*J*

Indutores <

Exercício:

$$i_L = 4 \cdot \frac{3}{3+1} = 3A$$
 $w_L = 0.25 \cdot \frac{3^2}{2} = 1.125J$ $w_C = 2 \cdot \frac{3^2}{2} = 9J$ $v_C = 3 \cdot 1 = 3V$

Exercício: Sob as condições de CC, calcule o valor de R para que a energia armazenada no capacitor seja a mesma armazenada no indutor

Exercício: Sob as condições de CC, calcule o valor de R para que a energia armazenada no capacitor seja a mesma armazenada no indutor

$$V_s = 10V$$

$$160 \cdot 10^{-6} \cdot \left(10 \cdot \frac{R}{R+2}\right)^2 = 4 \cdot 10^{-3} \cdot \left(5 \cdot \frac{2}{R+2}\right)^2$$

$$V_c = 10 \cdot \frac{R}{R+2}$$

$$R = \sqrt{\frac{4 \cdot 10^{-3}}{160 \cdot 10^{-6}}} = 5\Omega$$

$$I_L = 5 \cdot \frac{2}{R+2}$$

$$w_C = w_L$$

$$160 \cdot 10^{-6} \cdot v^2 = 4 \cdot 10^{-3} \cdot i^2$$

R-L-C Resumão

TABLE 6.1 Important characteristics of the basic elements.†

Relation	Resistor (R)	Capacitor (C)	Inductor (L)
v-i:	v = iR	$v = \frac{1}{C} \int_{t_0}^t i \ dt + v(t_0)$	$v = L \frac{di}{dt}$
<i>i-v</i> :	i = v/R	$i = C \frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_0}^t i \ dt + i(t_0)$
<i>p</i> or <i>w</i> :	$p = i^2 R = \frac{v^2}{R}$	$w = \frac{1}{2}Cv^2$	$w = \frac{1}{2}Li^2$
Series:	$R_{\rm eq}=R_1+R_2$	$C_{\rm eq} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{\rm eq} = L_1 + L_2$
Parallel:	$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{\rm eq} = C_1 + C_2$	$L_{\rm eq} = \frac{L_1 L_2}{L_1 + L_2}$
At de:	Same	Open circuit	Short circuit
Circuit variable that cannot change abruptly:	Not applicable	v	i

Michael Faraday (1791–1867)

Joseph Henry (1797–1878)

 $^{^{\}dagger}$ Passive sign convention is assumed.