EDAN20

Language Technology
http://cs.lth.se/edan20/

Chapter 5: Counting Words

Pierre Nugues

Lund University
Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

September 9, 2019

Text Segmentation

Figure: Latin inscriptions on the *lapis niger*. Corpus inscriptionum latinarum, CIL I, 1. Picture from Wikipedia

Getting the Words from a Text: Tokenization

Arrange a list of characters:

```
[1, i, s, t, '', o, f, '', c, h, a, r, a, c, t, e, r, s]
into words:
```

[list, of, characters]

Sometimes tricky:

- Dates: 28/02/96
- Numbers: 9,812.345 (English), 9 812,345 (French and German)
 9.812,345 (Old fashioned French)
- Abbreviations: km/h, m.p.h.,
- Acronyms: S.N.C.F.

Tokenizers use rules (or regexes) or statistical methods.

Tokenizing in Python: Using the Boundaries

Simple program

```
import re
```

```
one_token_per_line = re.sub('\s+', '\n', text)
```

Punctuation

```
import regex as re
```

```
spaced_tokens = re.sub('([\p{S}\p{P}])', r' \1 ', text)
one_token_per_line = re.sub('\s+', '\n', spaced_tokens)
```


Tokenizing in Python: Using the Content

Simple program

```
import regex as re
```

```
re.findall('\p{L}+', text)
```

Punctuation

```
spaced\_tokens = re.sub('([\p{S}\p{P}])', r' \label{eq:spaced_tokens}', re.findall('[\p{S}\p{P}\p{L}]+', spaced\_tokens)
```


Improving Tokenization

The tokenization algorithm is word-based and defines a content It does not work on nomenclatures such as Item #N23-SW32A, dates, or numbers

Instead it is possible to improve it using a boundary-based strategy with spaces (using for instance \s) and punctuation

But punctuation signs like commas, dots, or dashes can also be parts of tokens

Possible improvements using microgrammars

At some point, need of a dictionary:

 $Can't \rightarrow can n't, we'll \rightarrow we 'll$

 $J'aime \rightarrow j'$ aime but aujourd'hui

Sentence Segmentation

As for tokenization, segmenters use either rules (or regexes) or statistical methods.

Grefenstette and Tapanainen (1994) used the Brown corpus and experimented increasingly complex rules

Most simple rule: a period corresponds to a sentence boundary: 93.20% correctly segmented

Recognizing numbers:

$$[0-9]+(\setminus [0-9]+)+$$
 Fractions, dates $([+\setminus])?[0-9]+(\setminus .)?[0-9]*%$ Percent $([0-9]+,?)+(\setminus [0-9]+|[0-9]+)*$ Decimal numbers

93.78% correctly segmented

Abbreviations

Common patterns (Grefenstette and Tapanainen 1994):

- single capitals: A., B., C.,
- letters and periods: U.S. i.e. m.p.h.,
- capital letter followed by a sequence of consonants: Mr. St. Assn.

Regex	Correct	Errors	Full stop
[A-Za-z]\.	1,327	52	14
$[A-Za-z] \setminus .([A-Za-z0-9] \setminus .) +$	570	0	66
$[A-Z][bcdfghj-np-tvxz]+\$.	1,938	44	26
Totals	3,835	96	106

Correct segmentation increases to 97.66% With an abbreviation dictionary to 99.07%

Counting Words With Unix Tools

- tr -cs 'A-Za-z' '\n' <input_file |
 Tokenize the text in input_file, where tr behaves like Perl tr: We have
 one word per line and the output is passed to the next command.</pre>
- ② tr 'A-Z' 'a-z' | Translate the uppercase characters into lowercase letters and pass the output to the next command.
- sort | Sort the words. The identical words will be grouped in adjacent lines.
- uniq -c | Remove repeated lines. The identical adjacent lines will be replaced with one single line. Each unique line in the output will be preceded by the count of its duplicates in the input file (-c).
- Sort -rn | Sort in the reverse (-r) numeric (-n) order: Most frequent words
- head -5
 Print the five first lines of the file (the five most frequent words)

Counting Words in Python

```
def tokenize(text):
    words = re.findall('\p{L}+', text)
    return words
def count_unigrams(words):
    frequency = {}
    for word in words:
        if word in frequency:
            frequency[word] += 1
        else:
            frequency[word] = 1
    return frequency
```


Counting Words in Python (Cont'd)

```
if __name__ == '__main__':
    text = sys.stdin.read().lower()
    words = tokenize(text)
    frequency = count_unigrams(words)
    for word in sorted(frequency.keys()):
        print(word, '\t', frequency[word])
```


Posting Lists

Many websites, such as Wikipedia, index their texts using an inverted index. Each word in the dictionary is linked to a posting list that gives all the documents where this word occurs and its positions in a document.

Collection

D1: Chrysler plans new investments in Latin America.

D2: Chrysler plans major investments in Mexico.

Posting lists
(D1, 7)
$(D1,1)\to(D2,1)$
$(D1, 5) \rightarrow (D2, 5)$
$(D1,4)\to(D2,4)$
(D1, 6)
(D2, 3)
(D2, 6)
(D1, 3)
$(D1, 2) \rightarrow (D2, 2)$

Lucene is a high quality open-source indexer.

Inverted Index (Source Apple)

http://developer.apple.com/library/mac/documentation/ UserExperience/Conceptual/SearchKitConcepts/index.html

Information Retrieval: The Vector Space Model

The vector space model represents a document in a space of words.

Documents \Words	<i>w</i> ₁	W ₂	W ₃	 W _m
D_1 D_2		$C(w_2, D_1)$ $C(w_2, D_2)$	/	$C(w_m, D_1)$ $C(w_m, D_2)$
D_n	$C(w_1, D_n)$	$C(w_2,D_n)$	$C(w_3,D_n)$	 $C(w_m, D_n)$

It was created for information retrieval to compute the similarity of two documents or to match a document and a query.

We compute the similarity of two documents through their dot probability

The Vector Space Model: Example

A collection of two documents D1 and D2:

D1: Chrysler plans new investments in Latin America.

D2: Chrysler plans major investments in Mexico.

The vectors representing the two documents:

D.	america	chrysler	in	investments	latin	major	mexico	new	plans
1	1	1	1	1	1	0	0	1	1
2	0	1	1	1	0	1	1	0	1

The vector space model represents documents as bags of words (BOW) that do not take the word order into account.

The dot product is
$$\vec{D1} \cdot \vec{D2} = 0 + 1 + 1 + 1 + 0 + 0 + 0 + 0 + 1 = 4$$

Their cosine is
$$\frac{\vec{D1} \cdot \vec{D2}}{||\vec{D1}||.||\vec{D2}||} = \frac{4}{\sqrt{7}.\sqrt{6}} = 0.62$$

Giving a Weight

Word clouds give visual weights to words

Image: Courtesy of Jonas Wisbrant

$TF \times IDF$

The frequency alone might be misleading

Document coordinates are in fact $tf \times idf$: Term frequency by inverted document frequency.

Term frequency $tf_{i,j}$: frequency of term j in document i

Inverted document frequency: $idf_j = \log(\frac{N}{n_j})$

Document Similarity

Documents are vectors where coordinates could be the count of each word: $\vec{d} = (C(w_1), C(w_2), C(w_3), ..., C(w_n))$

The similarity between two documents or a query and a document is given by their cosine:

$$cos(\vec{q}, \vec{d}) = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \sqrt{\sum_{i=1}^{n} d_i^2}}.$$

Dimension Reduction

One-hot encoding of TFIDF encoding can produce very long vectors: Imagine a vocabulary one one million words per language with 100 languages.

A solution is to produce dense vectors also called word embeddings using a dimension reduction

This reduction is very close to principal component analysis or singular value decomposition

It can be automatically obtained through training or initialized with pretrained vectors

A Data Set: Salammbô

A corpus is a collection – a body – of texts.

Supervised Learning

Letter counts from Salammbô

Chapter	French		English	
	# characters	# A	# characters	# A
Chapter 1	36,961	2,503	35,680	2,217
Chapter 2	43,621	2,992	42,514	2,761
Chapter 3	15,694	1,042	15,162	990
Chapter 4	36,231	2,487	35,298	2,274
Chapter 5	29,945	2,014	29,800	1,865
Chapter 6	40,588	2,805	40,255	2,606
Chapter 7	75,255	5,062	74,532	4,805
Chapter 8	37,709	2,643	37,464	2,396
Chapter 9	30,899	2,126	31,030	1,993
Chapter 10	25,486	1,784	24,843	1,627
Chapter 11	37,497	2,641	36,172	2,375
Chapter 12	40,398	2,766	39,552	2,560
Chapter 13	74,105	5,047	72,545	4,597
Chapter 14	76,725	5,312	75,352	4,871
Chapter 15	18,317	1,215	18,031	1,119

Data set: https://github.com/pnugues/ilppp/tree/master programs/ch04/salammbo

Principal Component Analysis

We will use a small dataset to explain principal component analysis: The characters in *Salammbô*

Table: Character counts per chapter, where the fr and en suffixes designate the language, either French or English

Each chapter is modeled by a vector of characters.

Character Counts

								French															English			
	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	01	02	03	04	05	06	07	08	09	10	11
- 2	2503	2992	1042	2487	2014	2805	5062	2643	2126	1784	2641	2766	5047	5312	1215	2217	2761	990	2274	1865	2606	4805	2396	1993	1627	2375
ь	365	391	152	303	268	368	706	325	289	249	381	373	725	689	173	451	551	183	454	400	518	913	431	408	359	437
c	857	1006	326	864	645	910	1770	869	771	546	817	935	1730	1754	402	729	777	271	736	553	797	1521	702	653	451	643
d	1151	1388	489	1137	949	1266	2398	1085	920	805	1078	1237	2273	2149	582	1316	1548	557	1315	1135	1509	2681	1416	1096	933	1364
e	4312	4993	1785	4158	3394	4535	8512	4229	3599	3002	4306	4618	8678	8870	2195	3967	4543	1570	3814	3210	4237	7834	4014	3373	2690	3790
f	264	319	136	314	223	332	623	307	278	179	263	329	648	628	150	596	685	279	595	515	687	1366	621	575	477	610
8	349	360	122	331	215	384	622	317	289	202	277	350	566	630	134	662	769	253	559	525	669	1163	624	517	409	644
, h	295	350	126	287	242	378	620	359	279	215	330	349	642	673	148	2060	2530	875	1978	1693	2254	4379	2171	1766	1475	2217
- 1	1945	2345	784	2028	1617	2219	4018	2102	1805	1319	1985	2273	3940	4278	969	1823	2163	783	1835	1482	2097	3838	2011	1648	1196	1830
- 1	65	81	41	57	67	97	126	85	52	60	114	65	140	143	27	22	13	. 4	22	7	26	42	24	16	7	16
	1946	2128	816	1796	1513	3 1900	19 3726	1857	1499	5 1462	1886	2 1955	3746	2 3780	950	200 1204	284 1319	82 520	198 1073	153 949	216 1239	416 2434	216 1152	146 861	131 789	217 1122
- 1																										
m	726 1896	823 2308	397 778	722 1958	651 1547	841 2179	1596	811 2041	619 1711	598 1246	900 1966	812 2285	1597	1610 4255	387 906	656 1851	829 2218	333	690	571 1468	763 2174	1461 3816	748 2085	629 1728	506 1266	799 1833
n	1372	2308 1560	612	1318	1053	1569	3851 2823	1367	1130	922	1356	1419	3984 2736	2713	697	1897	2218	816 828	1771 1865	1586	2231	4091	1947	1698	1369	1948
	789	977	315	773	672	868	1532	833	651	557	763	865	1550	1599	417	525	606	194	514	517	613	1040	527	442	325	486
P	248	281	102	274	166	285	468	239	187	172	230	272	425	512	103	19	21	194	33	17	25	39	33	20	23	23
9	1948	2376	792	2000	1601	2205	4015	2132	1719	1242	1912	2276	4081	4271	985	1764	2019	711	1726	1357	1931	3674	1915	1561	1211	1720
- 1	2996	3454	1174	2792	2192	3065	5634	2814	2404	1769	2564	3131	5599	5770	1395	1942	2411	864	1918	1646	2192	4060	1966	1626	1344	1945
- 7	1938	2411	856	2031	1736	2293	4116	2134	1763	1423	2218	2274	4387	4467	1037	2547	3083	1048	2704	2178	2955	5369	2765	2442	1759	2424
i i	1792	2069	707	1734	1396	1895	3518	1788	1448	1191	1737	1923	3480	3697	893	704	861	298	745	663	899	1552	789	683	502	767
v	414	499	147	422	315	453	844	437	348	270	425	455	767	914	206	258	295	94	245	194	277	465	266	208	181	246
w	0	0	0	0	1	0	0	0	0	0	o o	0	0	0	0	653	769	254	663	568	733	1332	695	560	410	632
×	129	175	42	138	83	151	272	135	119	65	114	149	288	283	63	29	37	8	60	26	49	74	65	25	31	20
y	94	89	31	81	67	80	148	64	58	61	61	98	119	145	36	401	475	145	467	330	464	843	379	328	255	457
ž	20	23	7	27	18	39	71	30	20	11	25	37	41	41	3	18	31	15	19	33	37	52	24	18	20	39
- 3	128	136	39	110	90	131	246	130	90	73	101	129	209	224	48	0	0	0	0	0	0	0	0	0	0	0
- 5	36	50	9	43	67	42	50	43	24	18	40	33	55	75	20	0	0	0	0	0	0	0	0	0	0	0
ae	0	1	0	0	0	0	1	0	2	0	0	0	3	0	2	0	0	0	0	0	0	0	0	0	0	0
ç	35	28	10	22	24	30	46	34	16	16	34	23	61	56	17	0	0	0	0	0	0	0	0	0	0	0
è	102	147	49	138	112	122	232	119	99	68	108	151	237	260	58	0	0	0	0	0	0	0	0	0	0	0
é	423	513	194	424	367	548	966	502	370	304	438	480	940	1019	221	0	0	0	0	0	0	0	0	0	0	0
ê	43	68	24	36	44	57	96	54	43	53	68	60	126	94	32	0	0	0	0	0	0	0	0	0	0	0
ē	1	0	0	0	1	0	2	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- 1	17	20	12	15	11	15	42	11	8	15	26	13	32	28	12	0	0	0	0	0	0	0	0	0	0	0
T	2	0	0	2	8	12	9	1	2	5	15	3	5	2	0	0	0	0	0	0	0	0	0	0	0	0
8	20	20	27	15	23	15	41	14	13	38	50	15	37	45	24	0	0	0	0	0	0	0	0	0	0	0
ù	14	9	4	6	18	14	30	6	5	3	7	11	24	21	7	0	0	0	0	0	0	0	0	0	0	0
û	7	9	7	4	15	15	38	8	15	10	9	14	30	21	11	0	0	0	0	0	0	0	0	0	0	0
œ	5	5	2	8	7	9	9	5	3	5	7	0	13	12	6	0	0	0	0	0	0	0	0	0	0	0

Table: Character counts per chapter in French, left part, and English, right part

Each characters is modeled by a vector of chapters.

Singular Value Decomposition

There are as many as 40 characters: the 26 unaccented letters from a to z and the 14 French accented letters

Singular value decomposition (SVD) reduces these dimensions, while keeping the resulting vectors semantically close

X is the $m \times n$ matrix of the letter counts per chapter, in our case, m = 30 and n = 40.

We can rewrite X as:

$$X = U\Sigma V^{\mathsf{T}},$$

where **U** is a matrix of dimensions $m \times m$, Σ , a diagonal matrix of dimensions $m \times n$, and **V**, a matrix of dimensions $n \times n$.

The diagonal terms of Σ are called the **singular values** and are traditionally arranged by decreasing value.

We keep the highest values and set the rest to zero.

Code Example

Jupyter Notebook 3.1-SVD

Word Sequences

Words have specific contexts of use.

Pairs of words like *strong* and *tea* or *powerful* and *computer* are not random associations.

Psychological linguistics tells us that it is difficult to make a difference between *writer* and *rider* without context

A listener will discard the improbable *rider of books* and prefer *writer of books*

A language model is the statistical estimate of a word sequence.

Originally developed for speech recognition

The language model component enables to predict the next word given a sequence of previous words: the writer of books, novels, poetry, etc. and not the writer of hooks, nobles, poultry, ...

N-Grams

The types are the distinct words of a text while the tokens are all the words or symbols.

The phrases from Nineteen Eighty-Four

War is peace

Freedom is slavery

Ignorance is strength

have 9 tokens and 7 types.

Unigrams are single words

Bigrams are sequences of two words

Trigrams are sequences of three words

Trigrams

Word	Rank	More likely alternatives
We	9	The This One Two A Three Please In
need	7	are will the would also do
to	1	
resolve	85	have know do
all	9	the this these problems
of	2	the
the	1	
important	657	document question first
issues	14	thing point to
within	74	to of and in that
the	1	
next	2	company
two	5	page exhibit meeting day
days	5	weeks years pages months

Counting Bigrams With Unix Tools

- tr -cs 'A-Za-z' '\n' < input_file > token_file Tokenize the input and create a file with the unigrams.
- tail +2 < token_file > next_token_file Create a second unigram file starting at the second word of the first tokenized file (+2).
- paste token_file next_token_file > bigrams Merge the lines (the tokens) pairwise. Each line of bigrams contains the words at index i and i+1 separated with a tabulation.
- And we count the bigrams as in the previous script.

Counting Bigrams in Python

```
bigrams = [tuple(words[inx:inx + 2])
           for inx in range(len(words) - 1)]
The rest of the count_bigrams function is nearly identical to
count_unigrams. As input, it uses the same list of words:
def count_bigrams(words):
    bigrams = [tuple(words[inx:inx + 2])
                for inx in range(len(words) - 1)]
    frequencies = {}
    for bigram in bigrams:
        if bigram in frequencies:
             frequencies[bigram] += 1
        else:
            frequencies[bigram] = 1
    return frequencies
```

$$P(S) = P(w_1,...,w_n),$$

= $P(w_1)P(w_2|w_1)P(w_3|w_1,w_2)...P(w_n|w_1,...,w_{n-1}),$
= $\prod_{i=1}^{n} P(w_i|w_1,...,w_{i-1}).$

The probability P(It was a bright cold day in April) from Nineteen Eighty-Four corresponds to

It to begin the sentence, then was knowing that we have It before, then a knowing that we have It was before, and so on until the end of the sentence.

$$P(S) = P(It) \times P(was|It) \times P(a|It, was) \times P(bright|It, was, a) \times ... \times P(April|It, was, a, bright, ..., in).$$

Approximations

Bigrams:

$$P(w_i|w_1, w_2, ..., w_{i-1}) \approx P(w_i|w_{i-1}),$$

Trigrams:

$$P(w_i|w_1, w_2, ..., w_{i-1}) \approx P(w_i|w_{i-2}, w_{i-1}).$$

Using a trigram language model, P(S) is approximated as:

$$P(S) \approx P(It) \times P(was|It) \times P(a|It, was) \times P(bright|was, a) \times ... \times P(April|day, in).$$

Maximum Likelihood Estimate

Bigrams:

$$P_{MLE}(w_i|w_{i-1}) = \frac{C(w_{i-1},w_i)}{\sum\limits_{w} C(w_{i-1},w)} = \frac{C(w_{i-1},w_i)}{C(w_{i-1})}.$$

Trigrams:

$$P_{MLE}(w_i|w_{i-2},w_{i-1}) = \frac{C(w_{i-2},w_{i-1},w_i)}{C(w_{i-2},w_{i-1})}.$$

Conditional Probabilities

A common mistake in computing the conditional probability $P(w_i|w_{i-1})$ is to use

$$\frac{C(w_{i-1},w_i)}{\#bigrams}$$
.

This is not correct. This formula corresponds to $P(w_{i-1}, w_i)$. The correct estimation is

$$P_{MLE}(w_i|w_{i-1}) = \frac{C(w_{i-1},w_i)}{\sum\limits_{w} C(w_{i-1},w)} = \frac{C(w_{i-1},w_i)}{C(w_{i-1})}.$$

Proof:

$$P(w_1, w_2) = P(w_1)P(w_2|w_1) = \frac{C(w_1)}{\#words} \times \frac{C(w_1, w_2)}{C(w_1)} = \frac{C(w_1, w_2)}{\#words}$$

Training the Model

The model is trained on a part of the corpus: the **training set**It is tested on a different part: the **test set**The vocabulary can be derived from the corpus, for instance the 20,000 most frequent words, or from a lexicon
It can be closed or open
A closed vocabulary does not accept any new word
An open vocabulary maps the new words, either in the training or test sets, to a specific symbol, <UNK>

Probability of a Sentence: Unigrams

<s> A good deal of the literature of the past was, indeed, already being transformed in this way </s>

w_i	$C(w_i)$	#words	$P_{MLE}(w_i)$
<g>></g>	7072	_	
a	2482	108140	0.023
good	53	108140	0.00049
deal	5	108140	$4.62 \ 10^{-5}$
of	3310	108140	0.031
the	6248	108140	0.058
literature	7	108140	$6.47 10^{-5}$
of	3310	108140	0.031
the	6248	108140	0.058
past	99	108140	0.00092
was	2211	108140	0.020
indeed	17	108140	0.00016
already	64	108140	0.00059
being	80	108140	0.00074
transformed	1	108140	$9.25 10^{-6}$
in	1759	108140	0.016
this	264	108140	0.0024
way	122	108140	0.0011
	7072	108140	0.065

Probability of a Sentence: Bigrams

<s> A good deal of the literature of the past was, indeed, already being transformed in this way </s>

w_{i-1}, w_i	$C(w_{i-1}, w_i)$	$C(w_{i-1})$	$P_{MLE}(w_i w_{i-1})$
<s> a</s>	133	7072	0.019
a good	14	2482	0.006
good deal	0	53	0.0
deal of	1	5	0.2
of the	742	3310	0.224
the literature	1	6248	0.0002
literature of	3	7	0.429
of the	742	3310	0.224
the past	70	6248	0.011
past was	4	99	0.040
was indeed	0	2211	0.0
indeed already	0	17	0.0
already being	0	64	0.0
being transformed	0	80	0.0
transformed in	0	1	0.0
in this	14	1759	0.008
this way	3	264	0.011
way	18	122	0.148

Sparse Data

Given a vocabulary of 20,000 types, the potential number of bigrams is $20,000^2 = 400,000,000$ With trigrams $20,000^3 = 8,000,000,000,000$

Methods:

- Laplace: add one to all counts
- Linear interpolation:

$$\begin{array}{lcl} P_{DelInterpolation}(w_n|w_{n-2},w_{n-1}) & = & \lambda_1 P_{MLE}(w_n|w_{n-2}w_{n-1}) + \\ & & \lambda_2 P_{MLE}(w_n|w_{n-1}) + \lambda_3 P_{MLE}(w_n), \end{array}$$

- Good-Turing: The discount factor is variable and depends on the number of times a n-gram has occurred in the corpus.
- Back-off

Laplace's Rule

$$P_{Laplace}(w_{i+1}|w_i) = \frac{C(w_i, w_{i+1}) + 1}{\sum\limits_{w} (C(w_i, w) + 1)} = \frac{C(w_i, w_{i+1}) + 1}{C(w_i) + Card(V)},$$

w_i, w_{i+1}	$C(w_i, w_{i+1}) + 1$	$C(w_i) + Card(V)$	$P_{Lap}(w_{i+1} w_i)$
<s> a</s>	133 + 1	7072 + 8635	0.0085
a good	14 + 1	2482 + 8635	0.0013
good deal	0 + 1	53 + 8635	0.00012
deal of	1 + 1	5 + 8635	0.00023
of the	742 + 1	3310 + 8635	0.062
the literature	1 + 1	6248 + 8635	0.00013
literature of	3 + 1	7 + 8635	0.00046
of the	742 + 1	3310 + 8635	0.062
the past	70 + 1	6248 + 8635	0.0048
past was	4 + 1	99 + 8635	0.00057
was indeed	0 + 1	2211 + 8635	0.000092
indeed already	0 + 1	17 + 8635	0.00012
already being	0 + 1	64 + 8635	0.00011
being transformed	0 + 1	80 + 8635	0.00011
transformed in	0 + 1	1 + 8635	0.00012
in this	14 + 1	1759 + 8635	0.0014
this way	3 + 1	264 + 8635	0.00045
way	18 + 1	122 + 8635	0.0022

Good-Turing

the corpus.

Laplace's rule shifts an enormous mass of probability to very unlikely bigrams. Good-Turing's estimation is more effective Let's denote N_c the number of n-grams that occurred exactly c times in

 N_0 is the number of unseen n-grams, N_1 the number of n-grams seen once, N_2 the number of n-grams seen twice The frequency of n-grams occurring c times is re-estimated as:

$$c* = (c+1)\frac{E(N_{c+1})}{E(N_c)},$$

Unseen n-grams: $c* = \frac{N_1}{N_0}$ and N-grams seen once: $c* = \frac{2N_2}{N_1}$.

Good-Turing for *Nineteen eighty-four*

Nineteen eighty-four contains 37,365 unique bigrams and 5,820 bigram seen twice.

Its vocabulary of 8,635 words generates $86352^2 = 74,563,225$ bigrams whose 74.513.701 are unseen.

New counts:

ew counts:

• Unseen bigrams:
$$\frac{37,365}{74,513,701} = 0.0005$$
.

• Unique bigrams:
$$2 \times \frac{5820}{37.365} = 0.31$$
.

• Etc.

Freq. of occ.	N_c	<i>C</i> *	Freq. of occ.	N_c	C *
0	74,513,701	0.0005	5	719	3.91
1	37,365	0.31	6	468	4.94
2	5,820	1.09	7	330	6.06
3	2,111	2.02	8	250	6,49 4
4	1,067	3.37	9	179	8 93
					- L

Backoff

If there is no bigram, then use unigrams:

$$P_{\mathsf{Backoff}}(w_i|w_{i-1}) = \begin{cases} \tilde{P}(w_i|w_{i-1}), & \text{if } C(w_{i-1},w_i) \neq 0, \\ \alpha P(w_i), & \text{otherwise.} \end{cases}$$

$$P_{\mathsf{Backoff}}(w_i|w_{i-1}) = \begin{cases} P_{\mathsf{MLE}}(w_i|w_{i-1}) = \frac{C(w_{i-1},w_i)}{C(w_{i-1})}, & \text{if } C(w_{i-1},w_i) \neq 0, \\ P_{\mathsf{MLE}}(w_i) = \frac{C(w_i)}{\#\mathsf{words}}, & \text{otherwise.} \end{cases}$$

Backoff: Example

w_{i-1}, w_i	$C(w_{i-1}, w_i)$		$C(w_i)$	$P_{Backoff}(w_i w_{i-1})$
<g>></g>			7072	_
<s> a</s>	133		2482	0.019
a good	14		53	0.006
good deal	0	backoff	5	$4.62 \ 10^{-5}$
deal of	1		3310	0.2
of the	742		6248	0.224
the literature	1		7	0.00016
literature of	3		3310	0.429
of the	742		6248	0.224
the past	70		99	0.011
past was	4		2211	0.040
was indeed	0	backoff	17	0.00016
indeed already	0	backoff	64	0.00059
already being	0	backoff	80	0.00074
being transformed	0	backoff	1	$9.25 \ 10^{-6}$
transformed in	0	backoff	1759	0.016
in this	14		264	0.008
this way	3		122	0.011
way	18		7072	0.148

The figures we obtain are not probabilities. We can use the Good-Turing technique to discount the bigrams and then scale the unigram probabilities the Katz backoff.

Quality of a Language Model (I)

The quality of a language model corresponds to its accuracy in predicting word sequences: $P(w_1,...,w_n)$: The higher, the better.

We derive the model (the statistics) from a training set and evaluate this quality on a long unseen sequence sequence: The test set.

With the *n*-gram approximations, we have:

$$P(w_1,...,w_n) = \prod_{i=1}^n P(w_i)$$
 Unigrams
$$P(w_1,...,w_n) = P(w_1) \prod_{i=2}^n P(w_i|w_{i-1})$$
 Bigrams
$$P(w_1,...,w_n) = P(w_1)P(w_2|w_1) \prod_{i=2}^n P(w_i|w_{i-2},w_{i-1})$$
 Trigrams

etc.

Quality of a Language Model (II)

The probability value will depend on the length of the sequence. We take the geometric mean instead to standardize across different lengths:

$$\sqrt[n]{\prod_{i=1}^{n} P(w_i)}$$
 Unigrams $\sqrt[n]{P(w_1) \prod_{i=2}^{n} P(w_i|w_{i-1})}$ Bigrams ...

In practice, we use the log to compute the per word probability of a word sequence, the entropy rate:

$$H(L) = -\frac{1}{n}\log_2 P(w_1, ..., w_n).$$

Here the lower, the better

The figures are usually presented with the perplexity metric:

$$PP(p,m)=2^{H(L)}$$
.

Mathematical Background

Entropy rate: $H_{rate} = -\frac{1}{n} \sum_{w_1,...,w_n \in L} p(w_1,...,w_n) \log_2 p(w_1,...,w_n)$. Cross entropy:

$$H(p,m) = -\frac{1}{n} \sum_{w_n \in I} p(w_1,...,w_n) \log_2 m(w_1,...,w_n).$$

We have:

$$H(p,m) = \lim_{n\to\infty} -\frac{1}{n} \sum_{w_1,...,w_n\in L} p(w_1,...,w_n) \log_2 m(w_1,...,w_n),$$

=
$$\lim_{n\to\infty} -\frac{1}{n} \log_2 m(w_1,...,w_n).$$

We compute the cross entropy on the complete word sequence of a test set governed by p, using a bigram or trigram model, m, from a training t.

Other Statistical Formulas

• Mutual information (The strength of an association):

$$I(w_i, w_j) = \log_2 \frac{P(w_i, w_j)}{P(w_i)P(w_j)} \approx \log_2 \frac{N \cdot C(w_i, w_j)}{C(w_i)C(w_j)}.$$

• T-score (The confidence of an association):

$$t(w_i, w_j) = \frac{mean(P(w_i, w_j)) - mean(P(w_i))mean(P(w_j))}{\sqrt{\sigma^2(P(w_i, w_j)) + \sigma^2(P(w_i)P(w_j))}}$$

$$\approx \frac{C(w_i, w_j) - \frac{1}{N}C(w_i)C(w_j)}{\sqrt{C(w_i, w_j)}}.$$

T-Scores with Word set

Word	Frequency	Bigram set + word	t-score
ир	134,882	5512	67.980
a	1,228,514	7296	35.839
to	1,375,856	7688	33.592
off	52,036	888	23.780
out	12,3831	1252	23.320

Source: Bank of English

Mutual Information with Word surgery

Word	Frequency	Bigram word + surgery	Mutual info
arthroscopic	3	3	11.822
pioneeing	3	3	11.822
reconstructive	14	11	11.474
refractive	6	4	11.237
rhinoplasty	5	3	11.085

Source: Bank of English

Mutual Information in Python

T-Scores in Python

return ts

Word Embeddings

We can extend singular value decomposition from characters to words.

The rows will represent the words in the corpus, and the columns, documents,

We can replace documents by a context of a few words to the left and to the right of the focus word: w_i .

A context C_j is then defined by a window of 2K words centered on the word:

$$W_{i-K}, W_{i-K+1}, ..., W_{i-1}, W_{i+1}, ..., W_{i+K-1}, W_{i+K},$$

where the context representation uses a bag of words.

We can even reduce the context to a single word to the left or to the right of w_i and use bigrams.

Word Embeddings

We store the word-context pairs (w_i, C_j) in a matrix.

Each matrix element measures the association strength between word w_i and context C_j , for instance mutual information.

Mutual information, often called pointwise mutual information (the strength of an association) is defined as:

$$I(w_i, w_j) = \log_2 \frac{P(w_i, w_j)}{P(w_i)P(w_j)} \approx \log_2 \frac{N \cdot C(w_i, w_j)}{C(w_i)C(w_j)}.$$

D#\Words	C_1	C ₂	C ₃	 C _n
W ₁	$MI(w_1, C_1)$	$MI(w_1, C_2)$	$MI(w_1, C_3)$	 $MI(w_1, C_n)$
W ₂	$MI(w_2,C_1)$	$MI(w_2,C_2)$	$MI(w_2, C_3)$	 $MI(w_2, C_n)$
W ₃	$MI(w_3, C_1)$	$MI(w_3,C_2)$	$MI(w_3, C_3)$	 $MI(w_3, C_n)$
	***	***	***	 A DET TO
w _m	$MI(w_m, C_1)$	$MI(w_m, C_2)$	$MI(w_m, C_3)$	 M(C)
				625

Word Embeddings

We compute the word embeddings with a singular value decomposition, where we truncate the matrix $U\Sigma$ to 50, 100, 300, or 500 dimensions. The word embeddings are the rows of this matrix.

We usually measure the similarity between two embeddings \vec{u} and \vec{v} with the cosine similarity:

$$\cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||},$$

ranging from -1 (most dissimilar) to 1 (most similar) or with the cosine distance ranging from 0 (closest) to 2 (most distant):

$$1 - \cos(\vec{u}, \vec{v}) = 1 - \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||}.$$

Popular Word Embeddings

Embeddings from large corpora are obtained with iterative techniques Some popular embedding algorithms with open source programs:

```
word2vec: https://github.com/tmikolov/word2vec
```

GloVe: Global Vectors for Word Representation

https://nlp.stanford.edu/projects/glove/

ELMo: https://allennlp.org/elmo

fastText: https://fasttext.cc/

To derive word embeddings, you will have to apply these programs on a very large corpus

Embeddings for many languages are also publicly available. You just download them

gensim is a Python library to create word embeddings from a corporate https://radimrehurek.com/gensim/index.html