$=4m^{2}$	$2 + 4m + 9 + 6m = 4m^2 + 10m + 9$ $2 + 10m + 8 + 1 = 2(2m^2 + 5m + 4) + 1$ $2 + (2m^2 + 5m + 4) = n \in \mathbb{Z}$, Therefore $a^2 + 3a$	+5 = 2n + 1, and is an odd integer.
	$x = 2m + 1, m \in \mathbb{Z}$ $y = 2n + 1, n \in \mathbb{Z}$ $xy = (2m + 1)(2n + 1)$	
	=4mr	n + 2m + 2n + 1 $mn + m + n) + 1$
5	=2b+	- 1, Therefore it's odd
	$x = 2m, m$ $y = 2n, n \in$ $xy = (2m)(2m)$ $= 4mn$	\mathbb{Z}
	$= 2(2mn)$ $2mn = b \in \mathbb{Z}$	erefore it's even
7	t.	$b = ac, c \in \mathbb{Z}$
11		$a^2, c^2 = d \in \mathbb{Z}$ herefore $a^2 b^2$
11		$b=am, m\in\mathbb{Z}$ $d=cn, n\in\mathbb{Z}$, Therefore $ac bd$
15	Case 1, even n	Case 2, odd n $n=2b+1, b\in \mathbb{Z}$ $n^2+3n+4=4b^2+4b+1+6b+3+4$
= :	$n = 2a, a \in \mathbb{Z}$ $n^2 + 3n + 4 = 4a^2 + 6a + 4$ $2(2a^2 + 3a + 2), (2a^2 + 3a + 2) = c, c \in \mathbb{Z}$ $= 2c$, Therefore, $n^2 + 3n + 4$ is even	$= 4b^{2} + 10b + 8 = 2(2b^{2} + 5b + 4)$ $2b^{2} + 5b + 4 = d \in \mathbb{Z}, = 2d$ Therefore, $n^{2} + 3n + 4$ is even
16	Case 1: Odd parity $a = 2x + 1, x \in \mathbb{Z}$	Case 2: Even parity $a = 2x, x \in \mathbb{Z}$ $b = 2y, y \in \mathbb{Z}$
	$a - 2x + 1, x \in \mathbb{Z}$ $b = 2y + 1, y \in \mathbb{Z}$ $a + b = (2x + 1) + (2y + 1)$ $= 2x + 2y + 2 = 2(x + y + 1)$	$a+b=(2x)+(2y)$ $=2x+2y=2(x+y)$ $x+y=z\in\mathbb{Z}, \text{ Therefore, their sum is even}$
x + y	$y + 1 = z \in \mathbb{Z}$, Therefore, their sum is even	
		$a = 2x, x \in \mathbb{Z}$ $b = 2y + 1, y \in \mathbb{Z}$ $ab = (2x)(2y + 1)$
		= 4xy + 2x = 2(2xy + x) ore, their product is even
	es for Section 9 e contrapositive, suppose If n is odd then n^2 is	
		$n = 2a + 1, a \in \mathbb{Z}$ $n^2 = (2a + 1)^2$ $4a^2 + 4a + 1 = 2(2a^2 + 2a) + 1$ $= 2a^2 + 2a \in \mathbb{Z}$
3	Therefore, by the contrapositi	$=2a^2+2a\in\mathbb{Z}$ eve, If n^2 is even, then n is even
		$a = 2x, x \in \mathbb{Z}$ $b = 2y, y \in \mathbb{Z}$ $a^{2}(b^{2} - 2b) = 4x^{2}(4y^{2} - 4y)$
	Therefore, by the contrapositive, if a^2	$= 16x^{2}y^{2} - 16x^{2}y = 2(8x^{2}y^{2} - 8x^{2}y)$ $= 8x^{2}y^{2} - 8x^{2}y \in \mathbb{Z}$ $f(b^{2} - 2b) \text{ is odd, then a and b are odd}$
5 By the	e contrapositive, If $x \ge 0$, then $x^2 + 5x \ge 0$	Case 2: b odd, a even
	Case 1: a odd, b even $a = 2x + 1, x \in \mathbb{Z}$ $b = 2y, y \in \mathbb{Z}$	$a = 2x, x \in \mathbb{Z}$ $b = 2y + 1, y \in \mathbb{Z}$ $a \cdot b = 4xy + 2x$
	$a \cdot b = 4xy + 2y$ $= 2(2xy + y), (2xy + y) \in \mathbb{Z}$ a times b is even	$= 2(2xy + x), (2xy + x) \in \mathbb{Z}$ a times b is even $a + b = 2x + 2y + 1$
	a+b = 2x + 2y + 1 $= 2(x + y) + 1$ $a + b is odd$	= 2(x+y) + 1 a + b is odd
		Case 3: both odd
		$a = 2x + 1, x \in \mathbb{Z}$ $b = 2y + 1, y \in \mathbb{Z}$ $= 4xy + 2x + 2y + 1$
		$1, (2xy + x + y) \in \mathbb{Z}$ a times b is odd $b = 2x + 2y + 1 + 1$ $= 2(x + y + 1) + 1$
Theref	fore, by the contrapositive, in all cases, there	= 2(x+y+1)+1 a + b is even 's at least one odd when at least a or b are odd
9		$n = 3x, x \in \mathbb{Z}$ $n^2 = 9x^2 = 3(3x^2)$
11	Therefore, by the contrapositive, if 3 is not	divisible by n^2 , then 3 is not divisible by n
		$x = 2a + 1, a \in \mathbb{Z}$ $y = 2b, b \in \mathbb{Z}$ $x^{2}(y+3) = (4a^{2} + 4a + 1)(2b+3)$ $= 8a^{2}b + 8ab + 2b + 12a^{2} + 12a + 2 + 1$
	Therefore, by the contrapositive if x^{2}	$= 8a^{5}b + 8ab + 2b + 12a^{2} + 12a + 2 + 1$ $= 2(4a^{2}b + 4ab + b + 6a^{2} + 6a + 1) + 1$ $(4a^{2}b + 4ab + b + 6a^{2} + 6a + 1) \in \mathbb{Z}$ $y + 3) \text{ is even, then x is even or y is odd}$
15	, υ	$x = 2a, a \in \mathbb{Z}$
		$x^{3} - 1 = (2a)^{3} - 1$ $= 8a^{3} - 1 = 2(4a^{3} - 1) + 1$ $4a^{3} - 1 \in \mathbb{Z}$
17	Therefore, by the contrapositive	we, if $x^3 - 1$ is even the x is odd $n = 2a + 1, a \in \mathbb{Z}$
	,	$n = 2a + 1, a \in \mathbb{Z}$ $n^2 - 1 = 8b, b \in \mathbb{Z}$ $n^2 - 1 = 4a^2 + 4a = 4a(a + 1)$ $n + 1 \in \mathbb{Z} = 2b \text{ even } = 4(2b) = 8b$
19		$(n+1)$, $\in \mathbb{Z} = 2b \ even = 4(2b) = 8b$ odd, then 8 is divisible by $n^2 - 1$
		$a - b = nx, x \in \mathbb{Z}$ $a - c = ny, y \in \mathbb{Z}$ c - b = n(x - y)
20	Therefore, by direct	proof, $c \equiv b \pmod{n}$
		$a - 1 = 5x, x \in \mathbb{Z}$ $a = 5x + 1$ $a^2 = 25x^2 + 10x + 1$
		$a^{2} - 1 = 25x^{2} + 10x$ $a^{2} - 1 = 5(5x^{2} + 2x)$ $5x^{2} + 2x \in \mathbb{Z}$
23	Therefore, if a congruence 1	mod 5, then $a^2 \equiv 1 \pmod{5}$ $a - b = nx, x \in \mathbb{Z}$
		$a - b = nx, x \in \mathbb{Z}$ $-bc = nxc, xc = y, y \in \mathbb{Z}$ (n) , then $ca \equiv cb \pmod{n}$
Exercis	es for Section 10	
		$n = 2a + 1, a \in \mathbb{Z}$ $n^2 = 4a^2 + 4a + 1 = 2(2a^2 + 2a) + 1$ $2b + 1, b = (2a^2 + 2a) \in \mathbb{Z}$
3		even and odd, which is a contradiction.
	$\sqrt[3]{2} = 2$	contradiction, $\sqrt[3]{2}$ is rational $= a/b$, In their simpliest form $= a^3/b^3 = 2b^3 = a^3$, a is even
9		$(2c)^3 = 8c^3 = 2(4c^3), b \text{ is even}$, a, b are both even and odd
J	By contradiction, if a is rational an	and ab is irrational, then b is rational $a = n/m, n, m \in \mathbb{Z}$ $a = n/m, n, m \in \mathbb{Z}$
	Therefore, by contradiction	$b=x/y, x,y\in \mathbb{Z}$ $ab=nx/my$ n, ab is both rational and irrational
11	By contradiction, integers a and	d b exist, for which $18a+6b = 1$ $1 = 18a + 6b$
		1 = 2(9a + 3b) contradiction, 1 is even and odd
	that the sum of a rational number and an irray contradiction, the sum of a rational numb	rational number is always irrational. er and an irrational number is always rational $a=x/y, x,y\in\mathbb{Z}$
		$a = x/y, x, y \in \mathbb{Z}$ $b = irrational$ $a + b = n/m, n, m \in \mathbb{Z}$ $b = n/m - x/y$
	that the product of a nonzero rational numb	be $n/m = x/y$, by contradiction, b is rational and irrational over and an irrational number is always an irrational
numbe	•	t of a nonzero rational number per is always a rational number
		$a = x/y, x, y \in \mathbb{Z}$ $ab = n/m, n, m \in \mathbb{Z}$ $b = (n/m)/(x/y)$
_		b = ny/mx is both rational and irrational
Exercis	es for Section 12	
	3x + 5 = 6a +	$x = 2a, a \in \mathbb{Z}$ $5 = 6a + 4 + 1$
		= 2(3a+2)+1 erefore it's odd

Proof Homework

Michael Padilla

June 20, 2024

Exercises for Section 8

 $x^2 = 4m^2 = 2(2m^2), n = 2m^2, n \in \mathbb{Z}$

Therefore x^2 is a even integer.

1. $x = 2m, m \in \mathbb{Z}$

a = 2n + 1 $a^{3} + a^{2} + a = (4n^{2} + 4n + 1)(2n + 1) + (4n^{2} + 4n + 1) + 2n + 1$ $= 8n^3 + 8n^2 + 2n + 4n^2 + 4n + 1 + 4n^2 + 4n + 1 + 2n + 1$ $= 8n^3 + 16n^2 + 12n + 3 = 2(4n^3 + 8n^2 + 6n + 1) + 1$ By the contrapositive, it's odd $a^{3} + a^{2} + a = 8n^{3} + 4n^{2} + 2n = 2(4n^{3} + 2n^{2} + n)$

Therefore, by direct proof it's even 5 a = 2n + 1 $a^3 = 8n^3 + 12n^2 + 6n + 1$ $= 2(4n^3 + 6n^2 + 3n) + 1$ It's odd if a is odd a = 2n $a^3 = 8n^3 = 2(4n^3)$ Therefore, by the contrapositive, a is odd if and only if a^3 is odd. 9 $a = 14m, m \in \mathbb{Z}$ a = 7(2m) = 2(7m)Therefore, if 14—a then 7—a and 2—a $a=2x, x\in \mathbb{Z}$ $a = 7y, y \in \mathbb{Z}$ $y=2z,z\in\mathbb{Z}$ a = 14zTherefore, 14 — a if and only if 7—a and 2—a 11 By the contrapositive, if a is even and b is odd then $(a-3)b^2$ is odd $a=2n, n\in\mathbb{Z}$ $b = 2m + 1, m \in \mathbb{Z}$ $(a-3)b^2 = (2n-3)(4m^2+4m+1) = 8nm^2 + 8nm + 2n - 12m^2 - 12m - 4 + 1$ $= 2(4nm^2 + 4nm + n - 6m^2 - 6m - 2) + 1$ Therefore, it's odd

Case 2: b is even $b = 2x, x \in \mathbb{Z}$ Case 1: a is odd $(a-3)b^2 = (a-3)(2x)^2 = 2(a-3)2x^2$ $a=2x+1, x\in \mathbb{Z}$ Therefore, it's even $(a-3)b^2 = (2x+1-3)b^2 = 2(x-1)b^2$ Therefore, it's even Therefore, $(a-3)b^2$ is always even 15 $a=2m, m\in\mathbb{Z}$ $b=2n+1, n\in\mathbb{Z}$ a + b = 2m + 2n + 1 = 2(m + n) + 1Therefore, a + b is odd Case 2: a, b are odd $a=2m+1, m\in \mathbb{Z}$ Case 1: a, b are even $b = 2n + 1, n \in \mathbb{Z}$ $a=2m, m\in\mathbb{Z}$ a + b = 2m + 2n + 2 = 2(m + n + 1) $b=2n, n\in\mathbb{Z}$ It's even a+b=2m+2n=2(m+n)It's even Therefore, a + b is even 17 By the existence method, 97 is that number. 18

fff

fff

20

1. ffff

7 ffff

9 ffff

11 ffff

13 ffff

 $29 \, \text{ffff}$

Exercises for Section 13