**Problem 1** (4.2). (a) Let f be a bounded function on [a,b], and let h be the upper envelope of f (cf. Problem 2.51). Then  $R \int_a^b f = \int_a^b h$ .

*Proof.* Let f be a bounded function on [a,b] with  $h(y) = \inf_{\delta>0} \sup_{|x-y|<\delta} f(x)$  for all  $x \in [a,b]$  be the upper envelope of f. Because f is bounded, by Problem 2.51 part (b), h is lower semicontinuous. To show equality, we will show that

$$R\overline{\int_a^b}f \le \int_a^b h$$
 and  $R\overline{\int_a^b}f \ge \int_a^b h$ .

Let  $\phi$  be a step function on [a,b] such that  $\phi \geq f$ . Then for any  $x \in [a,b]$ ,  $h(x) \leq f(x) \leq \phi(x)$ , except at the defined partition points of  $\phi$ . Thus, by using the definition of Lebesgue integration, we have that

$$\int_a^b h(x) \, \mathrm{d}x \le \int_a^b f(x) \, \mathrm{d}x = \inf \int_a^b \phi(x) \, \mathrm{d}x \le R \overline{\int_a^b} f(x) \, \mathrm{d}x.$$

For the other inequality, we note that because h is upper semicontinuous, by Problem 2.51 part (g), there exists a monotonically decreasing sequence of step functions  $\{\phi_n\}$  such that  $\phi_n \to h$  pointwise. Because f is bounded, we have that for all  $x \in [a, b]$ , there exists some M > 0 such that

$$|\phi_n| \le |h| \le |f| \le M$$
 for all  $n \in \mathbb{N}$ .

Thus using the Bounded Convergence Theorem and properties of the upper Riemann integral,

$$\lim_{n \to \infty} \int_a^b \phi_n(x) \, \mathrm{d}x = \int_a^b h(x) \, \mathrm{d}x \le R \int_a^b f(x) \, \mathrm{d}x \le R \overline{\int_a^b} f(x) \, \mathrm{d}x.$$

Therefore,

$$R\overline{\int_{a}^{b}}f = \int_{a}^{b}h$$

which is the desired result.

(b) Use part (a) to prove Proposition 7 which is stated as follows

**Proposition** (4.7). A bounded function f on [a, b] is Riemann integrable if and only if the set of points at which f is discontinuous has measure zero.

*Proof.* Let f be a bounded function on [a,b]. We will need to show a forward and backwards implication to complete this proof. For simplicity, define E to be the set of discontinuities of f. Additionally, let  $g(y) = \sup_{\delta>0} \inf_{|x-y|<\delta} f(x)$  be the lower envelope of f.

( $\Leftarrow$ ) First, suppose m(E) = 0. Since g is the lower envelope of f, there exists a monotonically increasing sequence of step functions  $\{\phi_n\} \to g$  pointwise. Thus, by a similar but reverse argument to part (a),

$$\int_{a}^{b} g(x) dx = \int_{\underline{a}}^{b} f(x) dx.$$
 (1)

So because f is continuous everywhere except on the set E—namely, continuous on  $[a,b] \setminus E$ — by Problem 2.51, g(x) = h(x) is continuous on the set  $[a,b] \setminus E$ . But since m(E) = 0, this means g = h almost everywhere and thus, using part (a) of this problem and Equation (1),

$$\int_a^b f(x) dx = \int_a^b g(x) dx = \int_a^b h(x) dx = \overline{\int_a^b} f(x) dx.$$

Thus, f is Riemann integrable.

 $(\Rightarrow)$  Now suppose f is Riemann integrable. Thus, the lower and upper integrals of f are equal to each other and so using Equation (1)

$$\int_a^b h(x) \, \mathrm{d}x = \int_a^b g(x) \, \mathrm{d}x.$$

Consider the set  $A_n = \left\{ x : |g(x) - h(x)| > \frac{1}{n} \right\}$  for all  $n \in \mathbb{N}$ . Because the integrals of g and h are equal,

$$\int_a^b |h(x) - g(x)| \, \mathrm{d}x = 0.$$

So for any fixed  $n \in \mathbb{N}$ ,

$$\int_{a}^{b} |h(x) - g(x)| \, \mathrm{d}x \ge m(A_n).$$

So h(x) = g(x) almost everywhere and so by Problem 2.51 part(a), we must that f is continuous almost everywhere as well. But then this means that the measure of discontinuities is zero—that is, m(E) = 0 which is what we wanted to show.

Having completed both directions, we have shown the desired equivalence.  $\Box$ 

**Problem 2** (4.3). Let f be a nonnegative measurable function. Show that  $\int f = 0$  implies f = 0 almost everywhere.

*Proof.* Let  $f \ge 0$  be a measurable function, and suppose that  $\int f = 0$ . We want to show that the set  $E = x : f(x) \ne 0 = \{x : f(x) > 0\}$  has measure 0. Define the set

$$E_n = \left\{ x : f(x) \ge \frac{1}{n} \right\}$$
 for all  $n \in \mathbb{N}$ .

Note that  $\bigcup_{n=1}^{\infty} E_n = E$ . Fix  $n \in \mathbb{N}$ . Because the integral of f is equal to 0,

$$0 = \int_{E_n} \ge \int_{E_n} \frac{1}{n} = m(E_n) \cdot \frac{1}{n} \ge 0.$$

Thus, because  $n \in \mathbb{N}$  was fixed,  $m\left(\bigcup_{n=1}^{\infty} E_n\right) = 0 = m(E)$ , and therefore f = 0 almost everywhere.

**Problem 3** (4.8). Prove the following generalization of Fatuo's Lemma: If  $f_n$  is a sequence of nonnegative functions then

$$\int \underline{\lim}_{n \to \infty} f_n \le \underline{\lim}_{n \to \infty} \int f_n.$$

*Proof.* Let  $\{f_n\} \geq 0$  for each  $n \in \mathbb{N}$  on any set E. Define  $h_n = \inf_{k \geq n} f_k$  for all  $n \in \mathbb{N}$ . Note that as  $n \to \infty$ ,  $h_n \to \underline{\lim}_{n \to \infty} f_n$  (i.e.,  $h_n$  converges pointwise on E to the limit inferior of  $f_n$ ). Thus, by Fatou's lemma, we have that

$$\int_{E} \underline{\lim}_{n \to \infty} f \le \int_{E} \underline{\lim}_{n \to \infty} h_n.$$

But since  $h_n$  is the infimum of the  $f_n$ 's, this implies that  $h_n \leq f_n$  for all  $n \in \mathbb{N}$  and so

$$\int_{E} h_n \le \int_{E} f_n$$

and thus

$$\underline{\lim}_{n \to \infty} \int_E h_n \le \underline{\lim}_{n \to \infty} \int_E f_n.$$

By combining all three inequalities, we get that

$$\int_{E} \underline{\lim}_{n \to \infty} f \le \underline{\lim}_{n \to \infty} \int_{E} h_n \le \underline{\lim}_{n \to \infty} \int_{E} f_n$$

which then completes the proof.