Theory of Computing Pushdown Automata

2ND YEAR - ENSIA

PRE-TUTORIAL EXERCISE

Without consulting the solution in the lectures and on your own, construct the pushdown automaton for the following languages:

1. $\{w \mid w = w^R , \text{ that is, } w \text{ is a palindrome}\}$ 2. $L = \{a^n b^{2n} : n \ge 0\}$

FXFRCISFS

Exercise C1 (Constructing Simple PDA):

Draw a pushdown automaton for the following language $L = \{a^ib^jc^k \mid j+k\geq i\}$. Only one symbol is allowed to be pushed/popped to/from the stack at a time.

Exercise C2 (Constructing more PDA):

Give pushdown automata for the following languages:

- 1. {w| the length of w is odd and its middle symbol is a 0}
- 2. $L = \{w \mid w = w^R, \text{ that is, } w \text{ is a palindrome and } |w| \text{ is odd} \}$
- 3. L = $\{0^{m}1^{n} : m \ge n \}$
- 4. L = $\{u0w1: u \text{ and } w \in \{0, 1\}* \text{ and } |u| = |w|\}$

Exercise C3 (Converting):

1. Convert the following CFGs to an equivalent PDA:

```
a) b)  E \rightarrow E+T \mid T \\ T \rightarrow T \times F \mid F   P \rightarrow aP \mid bP \mid \epsilon   F \rightarrow (E) \mid a
```

Exercise P1 (Optional) :

Construct pushdown automata that accept each of the following:

- $L = \{a^m b^n : m \le n \le 2m\}.$
- L = $\{w \in \{a, b\} * : w \text{ has equal numbers of a's and b's} \}$.
- L = $\{w \in \{a, b\} * : w \text{ has twice as many a's as b's} \}$.

Exercise P2 (Optional)

Write down the formal description detailing the transitions for pushdown automata for the following languages over $\Sigma = \{a, b, c\}$:

```
1. L = \{a^n \ b^m \ c^{n+m} : n \ge 0, m \ge 0\}
2. L = \{w_1 \ c \ w_2 : w_1 \ , w_2 \in \{a, b\} * \ , w_1 \ not equal to <math>w_2^R \}
```

Exercise P3 (Optional)

Let Σ = {0, 1} and let B be the collection of strings that contain at least one 1 in their second half. In other words, B = {uv| u ∈ Σ^* , v ∈ $\Sigma^*1\Sigma^*$ and |u| ≥ |v|}. Construct the PDA which recognizes B.

Exercise P4 (Optional)

Construct a PDA corresponding to the grammars:

1.

S → aABB | aAA

 $A \rightarrow aBB \mid a$

 $B \rightarrow bBB \mid A$

2.

 $R \rightarrow XRX \mid S$

 $S \rightarrow aT b \mid bT a$

 $T \rightarrow XT X \mid X \mid \epsilon$

 $X \rightarrow a \mid b$

Exercise P5 (Optional) :

Construct pushdown automata that accept each of the following:

L = the language generated by the grammar G = (V, Σ, R, S) , where

 $V = \{S, (,), [,]\},\$

 $\Sigma = \{(,), [,]\},$

 $R = \{ S \rightarrow \epsilon,$

 $S \rightarrow SS$,

 $S \rightarrow [S],$

 $S \rightarrow (S)$.

Exercise P6 (Optional)

Convert the following context-free grammar into a pushdown automaton:

 $S \rightarrow aXc \mid ab$

 $X \rightarrow SX \mid \epsilon$

Exercise P7 (Transitions Tables):

Consider the PDA in the table below, and for each of the following languages over {a, b}, modify it to obtain a PDA accepting the language.

- 1. Draw the PDA corresponding to the transition tables. Λ is the empty string. Z_0 is just a marker. The move (A,
 - a. The language of even-length palindromes.
 - b. The language of odd-length palindromes.

Move Number	State	Input	Stack Symbol	Move(s)
1	q_0	а	Z_0	$(q_0, aZ_0), (q_1, Z_0)$
2	q_0	а	a	$(q_0, aa), (q_1, a)$
3	q_0	а	b	$(q_0, ab), (q_1, b)$
4	q_0	b	Z_0	$(q_0, bZ_0), (q_1, Z_0)$
5	q_0	b	a	$(q_0, ba), (q_1, a)$
6	q_0	b	b	$(q_0,bb),(q_1,b)$
7	q_0	Λ	Z_0	(q_1, Z_0)
8	q_0	Λ	a	(q_1, a)
9	q_0	Λ	b	(q_1, b)
10	q_1	а	а	(q_1,Λ)
11	q_1	b	b	(q_1,Λ)
12	q_1	Λ	Z_0	(q_2, Z_0)
(all other combinations)				none