Regression

Amr Khalil

Reinforcement Learning?

Terminology

_ . . .

Deep Reinforcemen

Applications

References

Deep Reinforcement Learning: An Introduction

Abdelrahman Khaled and Amr Khalil

Machine Learning Community German University in Cairo

August 1, 2019

Outline

Regression

- 1 What is Reinforcement Learning?
- 2 Terminology
- 3 Terminology
- Deep Reinforcement Learning
- 5 Applications
- References

Regression

Abdelrahma Khaled and Amr Khalil

What is Reinforcement Learning?

Terminology

Deep Reinforcemer

Application

Figure: Venn Diagram from David Silver's UCL slides

Regression

Abdelrahmar Khaled and Amr Khalil

What is Reinforcement Learning?

Terminology

Terminolog

Deep Reinforcement

Applications

References

Definition

Reinforcement learning is a training method based on rewarding desired behaviors and/or punishing undesired ones. -Search Enterprise AI

Regression

Abdelrahma Khaled and Amr Khalil

Reinforcement Learning?

Terminology

_ . . .

Deep Reinforcemen

Learning

Applications

Figure: The agent-environment cycle. Image source

Regression

Abdelrahma Khaled and Amr Khalil

What is Reinforcement Learning?

Terminology

3,

Deep Reinforcemen

Application

References

A typical reinforcement learning problem is different from a traditional machine learning problem in the sense that:

- **1** There is no predefined data set.
- 2 Sequence of inputs and time between inputs matters.
- 3 Agent's actions often affect the upcoming inputs.
- 4 Pre-processing of data is done online.

Regression

Khaled and Amr Khalil

What is Reinforcemen Learning?

Terminology

Terminology

Deep Reinforcemen Learning

Applications

Reference

A typical reinforcement learning problem is different from a traditional machine learning problem in the sense that:

- 1 There is no predefined data set.
- 2 Sequence of inputs and time between inputs matters.
- 3 Agent's actions often affect the upcoming inputs.
- 4 Pre-processing of data is done online.

Offline RL

Reinforcemet Learning can be done offline by collecting data about the environment over a set period of time to create a dataset. However this loses the effect of the agent learning as it experiences the environment.

Frozen Lake

Regression

Abdelrahman Khaled and Amr Khalil

What is Reinforcemen Learning?

Terminology

Terminology

Deep Reinforcemen Learning

Applications

References

the game consists of a grid, some cells in the grid are terminal nodes that will reward you or punch you if you step in them. each time you can take action of moving up,down,left,right and depending on your action you will either move in the direction you choose or as the grid is a frozen lake you will move perpendicular on the direction you choose depending on some noise variable.

Figure: Frozen Lake

Regression

Amr Khalil

- · ·

Terminology

Terminology

Deep Reinforcemen

Applications

Figure: The agent-environment cycle. Image source

Regression

Abdelrahman Khaled and Amr Khalil

What is Reinforcement Learning?

Terminology

Terminology

Deep Reinforcemen

Applications

References

Definition

Markov Decision Processes a mathematical framework for modeling decision making in situations where outcomes are partly random.

Regression

Abdelrahmar Khaled and Amr Khalil

What is Reinforcement Learning?

Terminology

Terminology

Deep Reinforcemen Learning

Application:

References

Definition

Markov Decision Processes a mathematical framework for modeling decision making in situations where outcomes are partly random.

Markov Decision Processes can be considered as a tuple

 \blacksquare Set of states S

Regression

Abdelrahmar Khaled and Amr Khalil

What is Reinforcemen Learning?

Terminology

Terminology

Deep Reinforcemen Learning

Applications

References

Definition

Markov Decision Processes a mathematical framework for modeling decision making in situations where outcomes are partly random.

- Set of states S
- 2 Set of actions A

Regression

Abdelrahmaı Khaled and Amr Khalil

What is Reinforcement Learning?

Terminology

Terminology

Deep Reinforcemen Learning

Applications

References

Definition

Markov Decision Processes a mathematical framework for modeling decision making in situations where outcomes are partly random.

- Set of states S
- 2 Set of actions A
- **3** Transition function T P(s'|s, a)

Regression

Terminology

Definition

Markov Decision Processes a mathematical framework for modeling decision making in situations where outcomes are partly random.

- Set of states S
- 2 Set of actions A
- **3** Transition function T P(s'|s,a)
- 4 Reward function R(s, a, s')

Regression

Abdelrahma Khaled and Amr Khalil

What is Reinforcemen Learning?

Terminology

Terminology

Deep Reinforcemen Learning

Applications

Deferenc

Definition

Markov Decision Processes a mathematical framework for modeling decision making in situations where outcomes are partly random.

- Set of states S
- 2 Set of actions A
- **3** Transition function T P(s'|s, a)
- 4 Reward function R(s, a, s')
- 5 Start state s0

Regression

Abdelrahmaı Khaled and Amr Khalil

What is Reinforcemen Learning?

Terminology

Deep Reinforcement

Applications

Reference

Definition

Markov Decision Processes a mathematical framework for modeling decision making in situations where outcomes are partly random.

- Set of states S
- 2 Set of actions A
- **3** Transition function T P(s'|s, a)
- 4 Reward function R(s, a, s')
- 5 Start state *s*0
- 6 Discount factor γ

Frozen Lake

Regression

Abdelrahmar Khaled and Amr Khalil

Reinforcement Learning?

Terminology

Terminology

Reinforceme

Application

References

Markov Decision Processes

- 1 Set of states S
- 2 Set of actions A
- **3** Transition function T P(s'|s, a)
- 4 Reward function R(s, a, s')
- 5 Start state s0
- $footnote{\mathbf{G}}$ Discount factor γ

Frozen Lake

Regression

Khaled and Amr Khalil

What is Reinforcement Learning?

Terminology

Terminology

Deep Reinforceme

Learning

Application

Terminology

Regression

Abdelrahman Khaled and Amr Khalil

What is Reinforcement Learning?

Terminology

Terminology

Deep Reinforcement Learning

Applications

Terminology

Regression

Abdelrahmar Khaled and Amr Khalil

What is Reinforcemen Learning?

Terminology

Terminology

Deep Reinforcemen Learning

Applications

References

Definition

A reward R_t is a number the environment provides to the agent at timestep t. It can either be positive (positive reward) or negative (punishment or negative reward). A reward of 0 is the same as no reward.

Terminology

Regression

Abdelrahman Khaled and Amr Khalil

What is Reinforcemer Learning?

Terminology

Deep Reinforcemen Learning

Applications

References

Definition

A reward R_t is a number the environment provides to the agent at timestep t. It can either be positive (positive reward) or negative (punishment or negative reward). A reward of 0 is the same as no reward.

Definition

An episode E is everything involved in the agent-environment cycle from start until termination.

Regression

Khaled and Amr Khalil

What is Reinforcement Learning?

Terminology

Terminology

Deep Reinforcemen

Applications

Regression

Amr Khalil

What is Reinforcement Learning?

Terminology

Terminology

Deep Reinforcemen

Applications

References

Definition

A policy π is a function that maps a state to an action. $(\pi:\mathcal{S}\longrightarrow\mathcal{A})$. An optimal policy is usually denoted as π^* .

Regression

Abdelrahmar Khaled and Amr Khalil

What is Reinforcemen Learning?

_

Terminology

Deep Reinforcemen Learning

Applications

References

Definition

A policy π is a function that maps a state to an action. $(\pi: \mathcal{S} \longrightarrow \mathcal{A})$. An optimal policy is usually denoted as π^* .

Definition

A value function V maps a state to a real number that signifies the intrinsic goodness of that state. $(V:\mathcal{S}\longrightarrow\mathbb{R})$. An optimal value function is usually denoted as V^* .

$$V^*(s_t) = Max_{\pi} E[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t, s_{t+1}) | \pi, s_t = s0]$$

Frozen Lake

Regression

Abdelrahman Khaled and Amr Khalil

What is Reinforcement Learning?

Terminology

Terminology

Deep

Reinforcement Learning

Applications

Reward Fuction as	State-Volue as	
6 0 6 +1 0 0 -1	a Look up table 3 (VB, 1) (VB, 2) (VB, 4) 2 (VB, 1) (VB, 2) (VB, 4)	
with Nolse = 6 and 8= 1	\(\(\sigma \) \(\sig	with noise = 0,2
V(3,4) = 1 V(3,3) = 1	and $Y = 99$ V(3,4) = 1	and Y= 0.7 V(3,3)= 1+,8+114=3
V(2,3)=12 V(1,1)=1	V(3,3) = 9/9 V(2/3) = 0/9 * 6/9	(+)/X(G33)
	V(1,1) = 0/9 * 0/9 * 0/9	*0,9*0,9 \$166km

Regression

Abdelrahmar Khaled and Amr Khalil

What is Reinforcement Learning?

Terminology

Terminology

Deep Reinforcemer

Application:

References

end

```
 \forall s, V_0^*(s) = 0; \\ \textbf{for } k = 1, 2..., H \ \textbf{do} \\ \begin{vmatrix} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\
```

Regression

Abdelrahma Khaled and Amr Khalil

What is Reinforcement

Terminology

Terminology

Deep Reinforcement

Applications

Reference

Value Iteration

$$V_2(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_1(s'))$$

Noise = 0.2 Discount = 0.9

Video Time

https://youtu.be/qaMdN6LS9rA?t=1517

Regression

Abdelrahma Khaled and Amr Khalil

What is Reinforcemen Learning?

J

Terminology

Deep Reinforcemer Learning

Applications

References

Definition

A quality function Q combines both the policy and value functions together. It maps a state and action pair to a real number that signifies how good it is to take the action in that state. $(Q: \mathcal{S} \times \mathcal{A} \longrightarrow \mathbb{R})$. An optimal quality function is usually denoted as Q^* .

Regression

Abdelrahmaı Khaled and Amr Khalil

What is Reinforcemen

Terminology

Terminology

Deep Reinforceme

Application

References

Definition

Bellman Equation

$$Q^*(s,a) = \sum_{s'} P(s`|s,a)(R(s,a,s`)) + \gamma \max_{a`} Q^*(s`,a))$$

Regression

Abdelrahmaı Khaled and Amr Khalil

Reinforcemen Learning?

Terminology

Terminology

Deep Reinforcemer Learning

Application

References

Definition

Bellman Equation

$$Q^*(s,a) = \sum_{s'} P(s`|s,a)(R(s,a,s`)) + \gamma \max_{a`} Q^*(s`,a))$$

Definition

Iteration Equation

$$Q_{k+1}^*(s,a) = \sum_{s'} P(s'|s,a) (R(s,a,s')) + \gamma \textit{max}_{a'} Q_k^*(s',a))$$

Regression

Terminology

In the end, all that really matters is the quality function. If we know Q, then we can get both V and π .

$$V(S_t) = \max_{A_t} Q(S_t, A_t)$$

$$\pi(S_t) = \operatorname*{arg\,max}_{a} Q(S_t, a)$$

Q Learning (sampling or tabular)

```
Regression
```

Abdelrahmaı Khaled and Amr Khalil

Reinforcement Learning?

Terminology

Davis

Reinforcemen Learning

Application

```
for s in S do
    for a in A do
    Q(s,a)=initialization;
    end
end
s=s_0;
for k=1,2.... convergence do
    a=sampleAction();
    s'=runAction(a):
    if s' = TERMINAL then
         Q(s,a) = R(s,a,s');
         s=s_0:
    else
         Q(s,a) =
           Q(s, a) + \alpha [R(s, a, s') + \gamma \max_a Q(s', a) - Q(s, a)];
    end
                                       4□ > 4同 > 4 = > 4 = > ■ 900
```

Q Learning (sampling or tabular)

Regression

Abdelrahma Khaled and Amr Khalil

Reinforcement Learning?

Terminology

Terminology

Deep Reinforcement

Applications

References

Video Time

https://youtu.be/q0-HUo0Ls04?t=1916

Exploration vs Exploitation

Regression

Abdelrahmar Khaled and Amr Khalil

Reinforcement Learning?

Terminolog

Terminology

Deep Reinforcemen

Applications

```
inisilize
\epsilon = 1:
\epsilon_{min} = 0.01:
\lambda = 0.001:
Function sampleAction():
      if \epsilon < \epsilon_{min} then
           \epsilon = \epsilon_{min};
      end
      r = random();
      if r < \epsilon then
           \epsilon -= \lambda:
             return randomAction();
      else
             return arg max<sub>a</sub> Q(S_t, a);
      end
End Function
```

Regression

Abdelrahmar Khaled and Amr Khalil

What is Reinforcemen Learning?

_

Terminolog

Deep Reinforcement Learning

Application:

References

Q-learning is a technique in reinforcement learning where the agent attempts to fill a table with the correct value for each state-action pair. It's usually initialized at 0s and filled using the following formula:

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha [R + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t)]$$

Regression

Abdelrahmar Khaled and Amr Khalil

What is Reinforcemen Learning?

Terminolog

Ī

Deep Reinforcement Learning

Applications

Reference:

Sometimes regular *Q*-learning is just not feasible, but that's mainly because of the fact that the state space can become extremely large. For example:

Regression

Abdelrahmar Khaled and Amr Khalil

What is Reinforcement Learning?

- . .

Deep Reinforcement

Learning

присастоп.

Sometimes regular *Q*-learning is just not feasible, but that's mainly because of the fact that the state space can become extremely large. For example:

Chess has about 10²⁰ possible states. If each state only took 10 bytes of data, the table would be more than 800 exabytes large. All of the memory space in existence currently cannot hold that much data.

Regression

Abdelrahmar Khaled and Amr Khalil

What is Reinforcement Learning?

Torminalom

Deep Reinforcement Learning

Applications

References

Sometimes regular *Q*-learning is just not feasible, but that's mainly because of the fact that the state space can become extremely large. For example:

- Chess has about 10²⁰ possible states. If each state only took 10 bytes of data, the table would be more than 800 exabytes large. All of the memory space in existence currently cannot hold that much data.
- Tetris has about 10^{64} possible states. (These can be reduced down to around 10^{22} states, but that is still a large number).

Regression

Abdelrahmar Khaled and Amr Khalil

What is Reinforcement Learning?

Terminology

Deep Reinforcement Learning

Applications

Reference

Sometimes regular *Q*-learning is just not feasible, but that's mainly because of the fact that the state space can become extremely large. For example:

- Chess has about 10²⁰ possible states. If each state only took 10 bytes of data, the table would be more than 800 exabytes large. All of the memory space in existence currently cannot hold that much data.
- Tetris has about 10^{64} possible states. (These can be reduced down to around 10^{22} states, but that is still a large number).
- A self-driving car has a *continuous* state space, and thus the number of states is possibly infinite.

Regression

Abdelrahmai Khaled and Amr Khalil

What is Reinforcemen Learning?

Terminology

Deep Reinforcement Learning

Application

References

Deep Q-learning uses a neural network as a function approximator for learning the Q function.

Figure: A deep Q-network

Success Stories in RL

Regression

Abdelrahmar Khaled and Amr Khalil

What is Reinforcement Learning?

6,7

Terminology

Reinforcemen Learning

Applications

References

Probably the best known success story in RL is Google's deepmind team.

In 2013 they published a paper detailing their experiment where they used a DQN along with a few convolution layers to read input directly from the frames of a few different Atari games.

Success Stories in RL

Regression

Abdelrahmaı Khaled and Amr Khalil

What is Reinforcemen Learning?

Terminology

reminology

Deep Reinforcemen

Applications

References

In 2015, they published their improved results where their agent either achieved or surpassed human-level control on upwards of 20 different games.

RL Algorithms

Regression

Abdelrahma Khaled and Amr Khalil

What is Reinforcement

Terminology

reminology

Terminolog

Reinforcemen

Applications

References

Regression

- UCL. Advanced Topics 2015. (COMPM050/COMPGI13) Reinforcement Learning. David Silver. link
- Mnih et al. (2013). Playing Atari with Deep Reinforcement Learning.
- Mnih et al. (2015). Human-level control through deep reinforcement learning.
- Al Prism's Deep Reinforcement Learning Bootcamp