Internship Program Report

By

KOSURU RESHMA - 18481A0249

In association with

Contents

ntroduction	3
Program organiser	3
Courtesy	3
Program details	3
nternship program	3
3 rd May2021: Introduction to EPC Industry	4
4 th May2021: Engineering documentation for EPC projects	5
5 th May2021: Engineering documentation for commands and formulae	6
7 th May2021: Engineering documentation for Electrical system design	7
10 th May2021: Engineering documentation for Typical diagrams	8
11 th May2021: Classification of Transformers and Generators	9
12 th May2021: Classification of Switchgare construction and power factor improven	nent 10
17 th May2021: Detailing about UPS system and Busducts	11
18 th May2021: Detailing about Motor Starters and Sizing of motors	12
19 th May2021: Discribing about Earthing system and Lighting Protection	13
20 th May2021: Lighting or illumination systems and calculations	14
21 th May2021: Lighting or illumination systems using DIALUX software	15
24 th May2021: Cabling and their calculations and types	
25 th May2021: Cabling calculations and Cable gland selection	17
28 th May2021: Load calculations and Transformer sizing calculations	18
29th May2021: DG set calculations	19
2nd june2021: Caluculations of Earthing and Lighting protection	20
5 th june 2021: Cable sizing and cable tray sizing calculations	21
Conclusion	
Epodhack:	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical

sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Mr. G. Srinivasa Rao – Internship coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Software/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: On line through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

I.A. INTRODUCTION TO EPC INDUSTRY EPC – Engineering, procurement & construction EPC companies – Engineering, Procurement & Construction (TECHNIP, TOYO, L&T, JACOBS, JGC, PUNJ LLOYD, TCE) Industry: Oil & gas, Power, Fertilizer, Chemical, Textile, Food & beverage, Utility sectors. Projects: Green Field & Brown Field. Engineering – Basic engineering, FEED (Front End Engineering & Design), Detailed engineering. Detailed Engineering Engineering (for Procurement) & detailed design (for Construction) Basic Engineering Front End Engineering & Design Detailed Engineering & Design Detailed Engineering & Design Detailed Engineering & Design Total Engineering & Design Detailed Engineering & Design

Topic details:

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info
			exchange
		Deliverables types	Different types of deliverables

Z

3. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Topic details:

Engineering deliverables list, detailed engineering flow, engineering support flow, engineering support to procurements.

ROLL NO: 18481A0249 June 2021

5 th May2021: Engineering documentation for commands and formulae

3	Document & Drawing	MS Word	Report / Calculations formats
	tools	MS Excel	Basic excel commands
		Autocad	Basic line diagrams and layout
			commends

3C. AUTOCAD BASIC COMMANDS

A	AUTOCAD BASIC KEYS						
STAND	ARD	DRAW		MOI	MODIFY		AT
NEW	Ctrl+N	LINE	L	ERASE	E	PROPERTIES	MO
OPEN	Ctrl+O	RAY	RAY	COPY	СО	SELECT COLOR	COL
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA
PLOT	Ctrl+P	3DPOLY	3P	OFFSET	0	LINETYPE	LT
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW
CUT	Ctrl+X	RECTANGLE	REC	MOVE	M	LT SCALE	LTS
COPY	Ctrl+C	ARC	A	ROTATE	RO	LIST	LI
PASTE	Ctrl+V	CIRCLE	С	SCALE	SC	DIMEN, STYLE	D
MATCH PROPE.	MA	SPLINE	SPL	STRECH	S	RENAME	REN
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX		
		POINT	PO	BRAKE	BR		
		HATCH	Н	CHAMFER	CHA		
		GRADIENT	GD	FILLET	F		
		REGION	REG	EXPLODE	X		
		BOUNDARY	ВО				
		DONUT	DO				

	EX	TRA		DRAF	TING	PAPER SIZE
UNIT	UN	UCS	UCS	ORTHO	F8, Ctrl+L	A4=210*297
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctrl+F	A3=297*420
(0,0; 1000,	1000)	MULTILINE TEXT	MT	POLAR	F10, Ctrl+U	A2=420*594
ZOOM	Z	EDIT TEXT	ED	GRID 🖟	F7, Ctrl+G	A1=594*841
ALL	Α	OBJECT SNAP	OB	OTRACK	F11	A0=841*1189
PAN	Р	DIMENTION	DIM	SNAP	F9	
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR			
COMMAMD WIN	Ctrl+9	VERTICAL	VER			

Topic details:

Here we need to learn the basis of the autocadbasic keys like standard, modify,draw,format,papersize etc..

7 th May2021: Engineering documentation for Electrical system design

Ī	4	Electrical system	Overall plant description
		design for a small	Sequence of approach
		small project	Approach to detailed design

Topic details:

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May2021: Engineering documentation for Typical diagrams

5	Electrical system design for typical diagrams		
		Load lists shedule	Power flow diagram
		Single line diagram	Typical schematic diagram

Topic details:

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

Ī	6	Classification of		
		Transformers and Generators	Different types of Transformers	Different types of Generators

Topic details:

Classification of Transformers and Generators

12th May2021: Classification of Switchgare construction and power factor improvement

S co p	Classification of Switchgare construction and power factor improvement	Different types of Switchgare assembles	Power factor improvement
--------------	--	---	--------------------------

Topic details:

Classification of Switchgare contruction and Power Factor Improvement

17th May2021: Detailing about UPS system and Busducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Busducts	system	

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

18th May2021: Detailing about Motor Starters and Sizing of motors.

9	Detailing about Motor	Motor starters and drives	Sizing and selection of
	Starters and Sizing of		motors
	motors		

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter

19th May2021: Discribing about Earthing system and Lighting Protection.

10	Discribing	Plant Earthing system	Lighting Protection materials
	about Earthing		
	system and		
	Lighting		
	Protection.		

Topic details: Discribing about Earthing system and Lighting Protection.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May2021: Lighting or illumination systems and calculations.

11	Lighting		
	or	Lighting or illumination systems	Lighting calculations
	Illuminatio		
	n systems		
	and		
	Calculation		
	S		

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon,

CG Lux Applicable Standards: IS 6665: Code of practice for industrial

lighting, IS 3646: Code

of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12	Lighting or				
	Illumination using DIALUX	Lighting or illumination systems	Operation software	of	dialux
	software		software		

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

24th May2021: Cabling and their calculations and types.

13	Cabling and their				
	types and claculations	Cabling calculations	Types materials	of	cabling

Topic details: Cabling and their types and claculations.

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling claculations and cable gland	Cabling calculations	Cable gland selection
	selection		

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point. Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table
Refer to illustration at the top of the page.

Cable Gland	Available Entry Threads "C (Alternate Metric Thread Lengths Available)		Cable Bedding Diameter "A"	Overall Cable Diameter "B"	Armour Range		Across Flats "D"	Across Corners "D"	Protrusion
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length "F"
20516	M20	10.0	8.7	13.2	0.8	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	0.8	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	88.0	49.8
755	M75	15.0	62.0	72.1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	80.0	90.4	3.15	4.0	114.3	125.7	66.6

28 th May2021: Load calculations and Transformer sizing calculations

15	Load calc	ulations		
	and	TR	Load calculations	TR calculations
	calculation	ns		

Topic details:

List of electrical load calculations.

T/F	cal	lcu.	lati	on	:

29th May2021: DG set calculations

16	DG set
10	2000
	a a 1 a v 1 a 4 i a 4 a
	calculations
	• • • • • • • • • • • • • • • • • • • •

Topic details:

Transformer and DG set calculations, types, sizing or selections

2nd june 2021: Caluculations of Earthing and Lighting protection.

17	Calculation of Earthing and Lighting protection calculations	Earthing calculations	Lighting protection calculation	
----	--	-----------------------	---------------------------------	--

Topic details:

June 2021

Calculation of Earthing and Lighting protection calculations

Earthing calculation

```
Maximum line-to-ground fault in kA for 1 sec
Earthring material (Earth rod 8 earth strip)

Depth of earth that burntal in meter

Average depth I, length of Earth rod in meters

Soil resistivity 0.-meter

For dearth rod in meter

Number of earth rod in noe.

Ac - Required conductor cross section in sq.mm

Ac - Required conductor cross section in sq.mm

The row of the form of the sets which is a so C

The mail con-efficient of resistivity, at 20 oC

The main con-efficient of resistivity, at 20 oC

The main con-efficient of resistivity, at 20 oC

The row of the strip of th
```

5 th june 2021: Cable sizing and cable tray sizing calculations.

18	Cable sizing and cable tray	Cable sizing calculations	Cable tray calculation
	sizing calculations	custo siening custominis	cuere truy cure urunters

Topic details:

Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

Balain

Overalliseding date is black SASA

Kickling state for an entitles in departed larger along

SASA grade for day large

SASA grade for a fact of the large

SASA grade for a fact of the large

SASA grade for a sasa fact of the large and

SASA for the large state for a sasalist in the large and state of the said

SASA for the large state for a said state for large and street a fact of the said

SASA for the large state for a said state in the large and state of the said

THE SASA CARRIER, SASA for the large state of the large state of

CAL	BLE TRAY: FROM	LT-4		TO	L	T-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	each Cable	(mm)	Self Weight of Cable (Kg/Mt)	l otal Veight of Cable (Ka/Mr)	Remarks
1	PU2315	4	16	1	21	21	1	1	
2	PU2322A	4	10	1	18	18	0.9	0.9	
3	PU 2314A	4	2.5	1	16	16	0.5	0.5	
4	PU2316	4	16	1	21	21	1	1	
5	PU2322A	4	16	1	21	21	1	1	
6	PU 2314A	4	25	1	22	22	1.4	1.4	
7	PU2317	4	10	1	18	18	0.9	0.9	
8	PU2322A	4	10	1	18	18	0.9	0.9	
9	PU 2314A	4	6	1	18	18	0.7	0.7	
10	PU2318	4	2.5	1	16	16	0.5	0.5	
11	PU2322A	4	6	1	18	18	0.7	0.7	
12	PU 2314A	4	6	1	18	18	0.7	0.7	
13	PU2319	4	25	1	22	22	1.4	1.4	
14	PIVICE-2 TO NOVILIAR I PAIVEL-	4	2.5	1	16	16	0.5	0.5	
15	PMCC-2 TO COOLING TOWER DOSING SYSTEM PACKAGE	4	2.5	1	16	16	0.5	0.5	
_	Total								
				15		279	12.6	12.6	
	culation					Result			
	imum Cable Diameter:		22				ble Tray width:	O.K	
	sider Spare Capacity of Cable T	ray:	302				ible Tray Depth:	O.K	
	ance between each Cable:		0				ble Tray Weight:	O.K	Including Spare Capacity
Calc	wlated Width of Cable Tray:		363			Selected Ca	ble Tray Size:	O.K	Including Spare Capacity
Calculated Area of Cable Tray:		7979	Sq.mm						
No c	of Layer of Cables in Cable Tray	:	1			Required Ca	ble Tray Size:	600 x 100	
Sele	cted No of Cable Tray:		1	Nos.		Required No	s of Cable Tray:	1	No
Sele	cted Cable Tray Width:		600			Required Ca	ble Tray Weight:	90.00	Kg/Meter/Tray
Sele	cted Cable Tray Depth:		100			Type of Cab		Ladder	· · ·
Sele	cted Cable Tray Weight Capacit	ty:	90	Kq/Me	ter		-		
	e of Cable Tray:	-	Ladder			Cable Tray	√idth Area Rema	402	
	I Area of Cable Tray:		60000	Sq.mm			Area Remaning:	872	

Conclusion

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

ASSIGNMENT-1

ELECTRICAL LOAD CALCULATIONS LV MCC

												kW = [A] / [D]		Consumed I	Load	kVAR = kW	x tan φ	
SI.	Equipment	Equipment Description	Breaker		Breaker	ELCB	Absorbed	Motor / Load	Load	Efficiency	Power	O a matimus		Intorna	:44.0.04	Otom al I	L	Remarks
No.	No.		Rating	Туре	No. of Poles	Rating	Load	Rating	Factor [A] / [B]	at Load Factor [C]	Factor at Load	Continuo	ous	Intermi	illeni	Stand-l	by	
					1 0103				[/1]/[D]	i actor [O]	Factor [C]							
							[A]	[B]	[C]	[D]								
			Α			mA	kW	kW	decimal	decimal	cos φ	kW	kVAR	kW	kVAR	kW	kVAR	
	PU2315	Silica filter feed pump					28.83		0.96		0.78	31.68	25.42					
	PU 2314-A	Absorbesnt/Neutral oil pump (W)					8.37		0.91	0.85	0.73	9.8	9.2			0.5	7.0	
	PU 2314 -B PU2305	Absorbesnt/Neutral oil pump (S)					7.21 29.11		0.96 0.97		0.73 0.78	32.0	25.7			8.5	7.9	
	MX2305	Feed Pump (Seperator) MIXER (W)					29.11		0.97		0.78	32.0						
	MX 2308	MIXER (S)					29.34		0.98		0.78	32.2	25.9			32.2	25.9	
	BW2313	Blower					12.60		0.84		0.78	14.8	13.9			32.2	25.5	
	Rotary valve	TK 2313B (I)					1.23		0.82		0.73	14.0	13.9	1.4	1.4			
	SC2314	Screw conveyor (I)				\vdash	2.83		0.02		0.73		<u> </u>	3.33				
10	AG 2324A	Citric acid tan agitator (W)				\vdash	2.12		0.94		0.73	2.49	2.34		0.12			
11	AG 2324B	Citric acid tank agitator (S)					2.12				0.73	2.40	2.01			2.5	2.3	
12	AG 2305	Citric oil rection vessol agitator					7.73				0.73	9.09	8.51			2.0	2.0	
	AG 2309	Lye oil reaction vessel agitator					2.81				0.73	3.31	3.10					
	AG 2310	Lye oil reaction vessel agitator					2.81		0.94		0.73	3.31	3.10					
	AG 2314	Soap Adsorbant Tank Agitator					4.91		0.89		0.73	5.78	5.41					
		3						1										
						\vdash							-					
				<u> </u>	<u> </u>			<u> </u>		<u> </u>								
		nal running plant load : 146.0 kW		123.8	kVAR		sqrt ($kW^2 + kVAR^2$) =	191.4	kVA	TOTAL	144.56	122.49	4.78	4.47	43.22	36.14	
	(Est. x%E + y%F)																	
	Peak Load :	150.3 kW		107.4	kVAR		oart (sqrt (kW² +kVAR²) =		IA) / A	kVA	189.4	0	6.5	4	FG 2/		
	(Est. x%E + y%F			127.4	KVAR		sqrt (KVV2 +KVAR2) =	197.1	KVA	KVA	189.4	8	6.5	4	56.34	ŧ.	
	(Lot: X/0L 1 y/01	12/00/												<u> </u>				
	<u>Assumptions</u>																	
		ficiency and Power factor.																
		Load Rating (kW)	Effic	iency		Power fac	ctor											
		<= 20	0.8			0.73												
		> 20 - <= 45	0.9			0.78												
		> 45 - < 150	0.9			0.82												
		>= 150	0.9	94		0.91												
	2) Coincidence to	estare v = 1.0 v = 0.2 and z=0.1 considered for containing intermitting	ant and ata	ndby lood														
	Z) Coincidence fa	actors x= 1.0, y= 0.3, and z=0.1 considered for contnious, intermitted	ent and sta	nuby load.														

	Design Data		
	Rated Volatge	6.6	KV
	Power factor (CosØ)	0.91	Assumed
	Efficiency	0.94	Assumed
	Total operating load on DG set in kVA at 0.91 power factor	#REF!	KVA (Refer Annexure-1 Eelctrical Load schedule
	Last motor to start in the sequence - load in KW	350	KW
	Running kVA of last motor (CosØ= 0.91)	409	KVA
	Starting current ratio of motor	4	(Considering starting method as Soft starter)
	Starting KVA of the last motor	1637	KVA
	(Running kVA of last motor X Starting current ratio of motor)		
	Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)	#REF!	KVA
Α	Continous operation under load -P1		
	Capacity of DG set based on continuous operation under load P1	#REF!	KVA
В	Transient Voltage dip during Soft starter starting of Last motor P2		
	Total momentary load in KVA	#REF!	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd")	14.91%	(Assumed)
	Transient Reactance of Generator (Xd')	21.065%	(Assumed)
	Xd''' = (Xd'' + Xd')/2	0.179875	
	Transient Voltage Dip (Ref: Job specification (Electrical) PC00167-GL-8001, 1.10.07,V)	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor P2 = Total momentary load in KVA x Xd''' x (1-Transient Voltage Dip) (Transient Voltage Dip)	#REF!	KVA
С	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	#REF!	KVA
	overcurrent capacity of DG (K) (Ref: IS/IEC 60034-1, Clause 9.3.2)	150%	
	Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA overcurrent capacity of DG (K)	#REF!	KVA
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	#REF!	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2	#REF!	KVA
	Overload capacity P3	#REF!	KVA
	Considering the last value amongst P1, P2 and P3	#REF!	KVA
	Selected Generator Size	3750	KVA

ASSIGNMENT-3 Calculation for Transformer Capacity

1.0 Example of calculation for Transformer Capacity

1.1 Calculation for consumed load

Consumed loads used for this example are as follows:

	KVV	RVai	NVA	
a. Continuous load	144.56	122.5	189.48	(i)
b. Intermittent load / Diversity Factor	4.78	4.5	6.54	(ii)
c. Stand-by load required as consumed load	43.22	36.1	56.34	(iii)
				_
Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) =	150.3	127.4	197.07	
Future expansion load (20% capacity)	30.1	25.5	39.41	
Total Load =	180.4	152.9	236.49	

1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

 Max. Consumed load
 =
 197.1 kVA

 Spare capacity
 =
 39.4 kVA

 Required capacity
 =
 236.5 kVA

 Transformer rated capacity
 =
 300 kVA

1.3 Voltage regulation check

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows:

$$P_{T} = \begin{bmatrix} 300 \text{ KVA} & (\%Z) = 4 & \text{Ratio X/R} = 1.5 \text{ (refer table)} \end{bmatrix}$$

Hence, $\%R = = 2.219 \%$
 $\%X = = 3.33 \%$
 $P_{M} = \begin{bmatrix} 30 \text{ KW having (K = 6 & & C = 1 & & Cos θ = 0.78 & Eff. η = 0.91 & & Cos θ = 0.25 \\ P_{S} = = 253.593 \text{ KVA} \end{bmatrix}$
 $Cos \theta_{S} = 0.25 \text{ , Corresponding to Angle } \theta_{S} = 253.593 \text{ KVA}$
 $Cos \theta_{B} = 0.85 \text{ , Corresponding to Angle } \theta_{S} = 117.78 & P_{B} \text{ in Kvar = 94.4 } \therefore Cos \theta_{B} = 0.83 \text{ (or fer table)}$
 $Cos \theta_{B} = 0.85 \text{ , Corresponding to Angle } \theta_{S} = 117.78 & P_{B} \text{ in Kvar = 94.4 } \therefore Cos \theta_{B} = 0.83 \text{ (or fer table)}$
 $P_{CO} = = 181.178 \text{ KW}$
 $P_{CQ} = = 339.94 \text{ KVAR}$
 $P_{CQ} = 385.207 \text{ KVA}$
 $P_{CO} = 0.47034 \text{ , where as Sin } \theta_{C} = 0.882$

Voltage Regulation ε = 5.1 % Selected Transformer rating is adequate.

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals shall be approx. 5.1% which meets the criteria to maintain less than 15% voltage regulation.

1.4 Selection of rated capacity

Hence 300kVA Transformer rating selected.

ASSIGNMENT-4 EARTHING CACULATIONS

	8
Maximum line-to-ground fault in kA for 1 sec	15
Earthing material (Earth rod & earth strip) Depth of earth flat burrial in meter	GI 0.5
Average depth / length of Earth rod in meters	4.5
Soil resistivity Ω -meter Ambient temperature in deg C	15 55
Plot dimensions (earth grid) L x B in meters	75
Number of earth rods in nos.	6

Earth electrode sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
pr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I_{l-g} - RMS fault current in kA = 50 KA	15
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
15 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	122
Earth rod dia in mm	12
Earth rod dia (including 25% corrosion allowance) in mm	16
ASSIGNMENT-4 EARTHING CALCULATIONS	

Earth flat sizing:

Ac - Required conductor cross section in sq.mm

$\begin{split} I_{lg} &= A_c x \sqrt{\left[\frac{T C A P x 10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]} \\ \alpha r \text{ - Thermal co-efficient of resistivity, at 20 oC} \end{split}$	
αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
pr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I_{l-g} - RMS fault current in kA = 50 KA	15
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	

Ac - Required conductor cross section in sq.mm
Earth flat area in mm
12
Earth flat area (including 25% corrosion allowance) in mm
Selected flat size W * Thk in sq mm
20

Rg - Grid resistance

Grid resistance can be calculated using Eq. 52 of IEEE 80

$$R_g = \rho \left\{ \frac{1}{L} + \frac{1}{\sqrt{20 \times A}} \left[1 + \frac{1}{1 + h \sqrt{20 / A}} \right] \right\}$$

 $\begin{array}{ll} \rho \text{ - Soil resistivity in } \Omega\text{-meter=} & 15 \\ \text{L - Total buried length of ground conductor in meter} & 420 \\ \text{h - Depth of burial in meter} & 0.5 \\ \text{A - Grid area in sq. meter} & 10125 \\ \end{array}$

Rg - Grid resistance 0.102

Rr - Earth Electrode resistance

Grid resistance can be calculated using Eq. 55 of IEEE 80

$$R_{r} = \frac{\rho}{2 \times \pi \times n_{r} \times L_{r}} \left\{ l_{n} \left[\frac{4 \times L_{r}}{b} \right] - 1 + \frac{2 \times k_{1} \times L_{r}}{\sqrt{A}} \left(\sqrt{n_{r}} - 1 \right)^{2} \right\}$$

 ρ - Soil resistivity in Ω -meter, 16.96 15 n - No of earth electrodes 6 Lr - Length of earth electrode in meter 4.5 b - Diameter of earth electrode in meter 0.020 k1 - co-efficient 1 A - Area of grid in square metre 10125

Rr - Earth Electrode resistance 5.50927

Grounding system resistance

Grounding system resistance can be calculated using equation 53 of IEEE 80 as follows:

$$R_{s} = \frac{R_{g} \times R_{2} - R_{m}^{2}}{R_{g} + R_{2} - 2R_{m}}$$

 R_m - Mutual ground resistance between the group of ground conductors, R_g and group of electrodes, R_r in $\Omega.$ Neglected R_m , since this is for homogenous soil

0.100

ASSIGNMENT-5 LIGHTING CALCULATIONS

	8
Location	Rajkot
Building	Concrete, School
Type of Building	Triangle Roofs (c)
Building Length (L)	15
Building breadth (W)	6
Building Height (H)	7

Risk Factor Calculation

1 Collection Area (A_c)

A_c		=	(2*L*W)+(3.14* 537.86
2 Probability of Being Struck (P)			557.80
P		=	$A_c * N_g * 10^{-6}$
			0.00026893
3 Overall weighing factor			
a) Use of structure (A)		=	1.7
b) Type of construction (B)		=	1.7
c) Contents or consequential effects (C)		=	1.7
d) Degree of isolation (D)		=	1.0
e) Type of country (E)		=	0.3
Wo - Overall weighing factor		=	A * B * C * D * E
		=	1.474
4 Overall Risk Factor	Po	=	P * Wo

Po = 0.000396376 $Pa = 10^{-5}$

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10^{-5} Since Po > Pa lightning protection required.

5 Air Terminations

Perimeter of the building	=	2(L+W)
	=	42
6 Down Conductors		
Perimeter of building	=	42
No. of down conductors based on perimeter	=	2

Hence 2 nos. of Down conductors have been selected.

Size of Down conductor = 20 X 2.5 mm Ga

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size

ASSIGNMENT-6 CABLE SIZING

0.110		Equipment	ASSIGNMENT-0 CABLE SIZING	Consumed	Load	Voltage	No. Full	Motor	Load P.F.	SIN Φ	Motor P.F	SIN Φ	_	No. of	No. of	Size	Current	Derating	Derating	Derating	Derating	Overall	Derated	Cable	Cable	Cable	Voltage	Voltage	Voltage	Voltage	Cable OL	of Gland
S.NO.		No.	Description	I vay KM	Datina	ΛΛ	of Load	Starting	Dunning	Dunnina	Staring	Storing	Туре	Dune	Cores	/mm2\	Datina	factor	factor	factor	factor	Dorotina	Current	Lanath	Dacietanca	Pagetanea	dron	dron	dron	dron	cizo Co	
3	LV MCC	PU2315	Silica filter feed pump	28.83	30.00	415	3 50.1	300.82	0.8	0.6	0.8	0.5	2	1	4.0	16	85	0.98	0.9	1	1	0.882	75.0	95	1.4700	0.0815	10.10	2.43	60.23	14.51	OIL I	18 20
4	LV MCC	PU2322A	Soft water pump	8.37	9.20	415	3 14.6		0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	95	2.3400	0.0852	4.61	1.11	27.51	6.63	0.1	18 20s
5	LV MCC	PU 2314A	Absorbesnt/Neutral oil pump	7.21	7.50	415	3 12.5	75.23	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	60	9.4800	0.1007	9.96	2.40	59.69	14.38	OIL	16 20s
6	LV MCC	PU2324	Citric Acid Tank pump	29.11	30.00	415	3 50.6	303.74	0.8	0.6	0.8	0.5	2	1	4.0	16	85	0.98	0.9	1	1	0.882	75.0	85	1.4700	0.0815	9.13	2.20	54.41	13.11		21 20s
7	LV MCC	PU2333	Slop Oil pump	29.34	30.00	415	3 51.0	306.14	0.8	0.6	0.8	0.5	2	1	4.0	16	85	0.98	0.9	1	1	0.882	75.0	75	1.4700	0.0815	8.12	1.96	48.39	11.66		21 20s
8	LV MCC	PU 2322B	Soft water pump-Stand by	29.34	30.00	415		306.14	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	105	0.9300	0.0816	7.36	1.77	43.69	10.53		22 20s
9	LV MCC	PU2321A	Lye/Simplex Metering Pump	12.60	15.00	415		131.47	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	100	2.3400	0.0852	7.30	1.76	43.60	10.51	OK 1	18 20s
10	LV MCC	PU2321B PU2305	Lye storage tank pump	1.23	1.50	415	3 2.1	12.83	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	100	2.3400 3.9400	0.0852 0.0902	0.71	0.17	4.26	1.03 2.96	OK 1	18 20s 18 20
11	LV MCC	PU2305 PU2332	Feed Pump(Seperator)	2.83	3.00	415	3 4.9	29.53	0.8	0.6		0.5	2	1	4.0	2.5		0.98	0.9	1	1	0.882 0.882	45.0	75 110	9.4800	0.0902	2.05	0.49 1.29	12.26 32.17	7.75	OK 1	
12	LV MCC	MX2305	Saop Stock Pump Mixer	2.12	2.20	415 415	3 3.7	22.12	0.8	0.6	0.8	0.5	2	- 1	4.0	2.5	28 51	0.98	0.9	1	1	0.882	24.7 45.0	110	3.9400	0.1007	5.37 1.54	0.37	9.19	2.21	OK 1	16 20s 18 20
13	LV MCC	MX2308	Mixer	2.12	2.20	415	3 13.4	80.66	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	105	3.9400	0.0902	7.84	1.89	46.90	11.30		18 20
14	LV MCC	CF2312	Separator	7.73	9.20	415	3 4.9	29.32	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	85	0.9300	0.0902	0.57	0.14	3.39	0.82		22 32
16	LV MCC	BW2313		2.81	3.00	415	3 4.9	29.32	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9		1	0.882	24.7	05	9.4800	0.1007	6.15	1.48	36.83	8.87	OK 1	16 20s
			Blower	2.81	3.00								-							'				95								
17	LV MCC	RV 2314	Rotary valve	4.91	5.50	415	3 8.5	51.23	0.8	0.6	8.0	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	65	9.4800	0.1007	7.35	1.77	44.03	10.61	OK 1	16 20s
18	LV MCC	SC2314	Screw conveyor			415	3 0.0	0.00	8.0	0.6	8.0	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	65	9.4800	0.1007	0.00	0.00	0.00	0.00	OK 1	16 20s
19	LV MCC	AG2324A	citric acid tan agitator			415	3 0.0	0.00	8.0	0.6	8.0	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	85	9.4800	0.1007	0.00	0.00	0.00	0.00	OK 1	16 20s
20	LV MCC	AG2305	citric oil rection vessol agitator			415	3 0.0	0.00	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	75	0.9300	0.0816	75	#REF!	0.00	0.00	#REF! 2	22 20s
21	LV MCC	AG2309	lye oil reaction vessel agitator			415	3 0.0	0.00	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	65	9.4800	0.1007	0.00	0.00	0.00	0.00	OK 1	16 20s
22	LV MCC	AG2310	lye oil reaction vessel agitator			415	3 0.0	0.00	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	65	9.4800	0.1007	0.00	0.00	0.00	0.00	OK 1	16 20s
23	LV MCC	AG2321A	lve tank agitator			415	3 0.0	0.00	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	115	9.4800	0.1007	0.00	0.00	0.00	0.00	OK 1	16 20s
24	LV MCC	AG2321B	Ive tank agitator			415	3 0.0	0.00	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	115	9.4800	0.1007	0.00	0.00	0.00	0.00	OK 1	16 20s
25	LV MCC	AG2314	Soap adsorbant tank agitator			415	3 0.0	0.00	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	65	9.4800	0.1007	0.00	0.00	0.00	0.00	OK 1	16 20s
26	LV MCC	AG2300	Crude oil tank agitator			415	3 0.0	0.00	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	115	9.4800	0.1007	0.00	0.00	0.00	0.00	OK 1	16 20s
20	LV MCC	APFC	APFC PANEL			415	3 0.0	0.00	0.8	0.6	0.0	0.5	2	1	3.0	25	122	0.98	0.9	1	1	0.882	107.6	30	0.9300	0.0816	0.00	0.00	0.00	0.00		22 25
21	LV IVICC	APFC	AFFO PAINEL			410	3 0.0		0.0	0.0			2	- 1	3.0	20	122	0.90	0.9	'	-	0.002	107.0	30	0.9300	0.0010	0.00	0.00	0.00	0.00	UN 2	2 20
																-					 											- -
																																
																l																

Basis:

1. Overall derating factor k = k1 x k2 x k3 x k4

K1=Rating factor for variation in air/ground temperature K2=Rating factor for depth of laying K3=Rating factor for spacing between two circuits

K4=Rating factor for variation in thermal resistivity of the soil

2. LT Motors : Running Voltage Drop = 3%, Starting Voltage Drop = 15%

3. Cable type:

TYPE 1: Al Conductor, XLPE Insulated, Armoured, PVC outer sheathed TYPE 2: Cu Conductor, XLPE Insulated, Armoured, PVC outer sheathed

4. Effect of Frequency Variation ± 5%

5. Combined Effect of Voltage & Frequency Variation ±10%

	ABLES								
CABL	E TRAY: FROM	LT-4		TO	L	T-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	PU2315	4	16	1	21	21	1	1	
2	PU2322A	4	10	1	18	18	0.9	0.9	
3	PU 2314A	4	2.5	1	16	16	0.5	0.5	
4	PU2316	4	16	1	21	21	1	1	
5	PU2322A	4	16	1	21	21	1	1	
6	PU 2314A	4	25	1	22	22	1.4	1.4	
7	PU2317	4	10	1	18	18	0.9	0.9	
8	PU2322A	4	10	1	18	18	0.9	0.9	
9	PU 2314A	4	6	1	18	18	0.7	0.7	
10	PU2318	4	2.5	1	16	16	0.5	0.5	
11	PU2322A	4	6	1	18	18	0.7	0.7	
12	PU 2314A	4	6	1	18	18	0.7	0.7	
13	PU2319	4	25	1	22	22	1.4	1.4	
	PMCC-2 TO AUXILIARY PANEL-2(A/C)	4	2.5	1	16	16	0.5	0.5	
15	PMCC-2 TO COOLING TOWER DOSING	4	2.5	1	16	16	0.5	0.5	
	SYSTEM PACKAGE								
	Total			15		279	12.6	12.6	
`alc	ulation		1	1	ļi.	Result			I.
	num Cable Diameter:		-00			Selected Cable To		0.14	
	der Spare Capacity of Cable Tray:		22	mm		Selected Cable 11		0.K 0.K	
			30%			Selected Cable I			la alculla a Carara Cara - ''
	ice between each Cable:		0	mm				0.K	Including Spare Capacity
	ated Width of Cable Tray:		363	mm		Selected Cable T	ray Size:	O.K	Including Spare Capacity
	ated Area of Cable Tray:		7979	Sq.mm		Demoised Californ	ray Cina.		
	Layer of Cables in Cable Tray:		1			Required Cable T		600 x 100	mm
	ed No of Cable Tray:		1	Nos.		Required Nos of		1	No
	ed Cable Tray Width:		600	mm		Required Cable T		90.00	Kg/Meter/Tray
	ed Cable Tray Depth:		100	mm		Type of Cable Tra	ıy:	Ladder	
	ed Cable Tray Weight Capacity:		90	Kg/Meter					
	of Cable Tray:		Ladder			Cable Tray Width		40%	
	Area of Cable Tray:		60000	Sq.mm		Cable Tray Area F	Remanina:	87%	