

WATER YIELD DATA AND PREPROCESSING

May 22, 2014

Stacie Wolny swolny@stanford.edu

COMMON DATA ISSUES

Projections: All GIS layers must have the same projected coordinate system

Clipping:

- Rasters should completely cover watershed
- Use watershed boundary as a mask
- Can resample coarse layers or buffer

Tables: Required field names and data types

DEM: Fill in missing data, fill sinks, check hydrology

Check for correct units on all inputs

Soil Survey of India: soil depth may be estimated using the given classes:

Depth description	Soil depth (mm)		
Rocky outcrops	0		
Shallow	300		
Medium deep	900		
Medium deep to deep	1050		
Deep	1200		

Soil Survey of India: Available Water Content

- Estimate soil texture from the TYPE field ("Loamy Soils; Sandy-Skeletal Soils...")
- Use this texture with the Hydraulic Properties Calculator from the USDA

SOILS

Soil Survey of India: Erodibility (Kfact)

- Use same texture classes derived from TYPE field for water yield AWC
- Map texture class using the Roose table in the InVEST User Guide

Textural	Texture	Soil composition		Mean K (based on % organic material)			
Class		Sand	Silt	Clay	unknown	< 2%	22%
Clay	Arcilloso	0-45	0-40	40-100	0.22	0.24	0.21
Sandy Clay	Arcilloso arenoso	45-65	0-20	35-55	0.2	0.2	0.2
Silty Clay	Arcilloso limoso	0-20	40-60	40-60	0.26	0.27	0.26
Sand	Arenoso	86-100	0-14	0-10	0.02	0.03	0.01

CLIMATE

- Precipitation from weather stations (IMD), gridded local or global data (CRU, WorldClim), climate change scenarios
- Average over 10+ years
- If weather stations:
 - Best to have full coverage
 - Test out interpolation methods
 - Adjust for elevation?
 - May be able to combine with global grids

IMD Gauges

RIOS DATA

CLIMATE

Precipitation is used to derive:

Rainfall erosivity - equation from Singh et al

- Potential evapotranspiration Modified Hargreaves method
 - Monthly min/max temperatures
 - Monthly precipitation
 - Average monthly extraterrestrial radiation
- Actual evapotranspiration from InVEST Water Yield model

TOPOGRAPHY/HYDROLOGY

natural capital

- Sources: NASA, USGS, SRTM (90m)...
- Preparing the DEM: Mosaic, fill holes, fill sinks, burn streams
- Verify watersheds and sub-watersheds and/or create with ArcHydro/ArcSWAT/AGWA/BASINS...
- Determine threshold flow accumulation

Threshold = 10,000

Threshold = 100

NATCAP SUPPORT

User Guide: Installed with InVEST or online:

http://ncp-dev.stanford.edu/~dataportal/invest-releases/documentation/current release/

User Forums:

http://ncp-yamato.stanford.edu/natcapforums/

Data Sources – Spatial and Sediment/Nutrient coefficients:

http://naturalcapitalproject.org/database.html