Project 4 Proposal

NBA Player Performance Analysis, Clustering and Prediction (Inspired by Movie Moneyball!)

Objective: Use regression analysis, PCA to reduce the dimensionality of NBA player performance metrics, K-Means Clustering to group similar players, Random Forest to predict player performance, and Neural Networks to enhance prediction accuracy and identify patterns in NBA player data.

Outcome:

- **Enhanced Player Profiling**: Identify distinct player styles and performance potential based on data-driven analysis.
- Actionable Insights: Provide valuable insights into player development, team strategy, and scouting decisions, enhancing the overall approach to managing and optimizing player performance.
- Advanced Prediction: Improve player performance predictions using Neural Networks, capturing patterns in player data that traditional models might miss.

Time period: 2007 to 2024 (Each year has a dataset with ~210 data points)

Dataset: NBA Playoff Player Statistics from NBA

- Independent variable
 - MIN (Minutes Played)
 - OFFRTG (Offensive Rating)
 - DEFRTG (Defensive Rating)
 - EFG% (Effective Field Goal Percentage)
 - TS% (True Shooting Percentage)
 - USG% (Usage Percentage)
 - AST% (Assist Percentage)
 - AST/TO (Assist to Turnover Ratio)
 - OREB% (Offensive Rebounding Percentage)
 - DREB% (Defensive Rebounding Percentage)
 - REB% (Total Rebounding Percentage)
 - TO RATIO (Turnover Ratio)
 - PACE (Pace)
 - AGE
- Dependent variable
 - PIE (Player Impact Estimate)

Detailed Steps:

- 1. ETL:
 - Collect data on player performance from <u>NBA league</u> including metrics such as points scored, assists, rebounds, tackles, goals, passing accuracy, etc.

 Clean and preprocess the data by handling missing values, standardizing numerical features, and encoding categorical data.

2. Regression analysis to predict PIE

3. Dimensionality Reduction with PCA:

- Apply PCA to reduce the dimensionality of the performance metrics to focus on the most significant features that contribute to player performance.
- Determine the optimal number of principal components by analyzing the explained variance ratio, retaining components that capture the majority of the variance.

4. Player Clustering with K-Means:

- Use K-Means Clustering on the reduced data from PCA to group players into distinct clusters based on similar playing styles or performance metrics (e.g., scorers, defenders, playmakers).
- Visualize the clusters using scatter plots with the principal components to interpret different player types.

5. Performance Prediction with Random Forest:

- Use Random Forest to predict future player performance metrics based on historical data and identified clusters.
- Feature importance analysis from Random Forest to highlight which metrics are most predictive of future performance.

6. Enhanced Prediction with Neural Networks:

- Neural Network Model: Build a Neural Network model (e.g., Multi-Layer Perceptron) to capture complex, non-linear relationships in player performance data that might be missed by Random Forest.
- Network Architecture: Use an architecture with input layers matching the number of PCA components, hidden layers tuned based on data complexity (e.g., 2-3 hidden layers with a varying number of neurons), and an output layer predicting player performance metrics.
- Activation Functions: Use ReLU activation functions for hidden layers and an appropriate activation for the output layer based on the target variable (e.g., linear activation for regression).
- Training: Train the Neural Network using backpropagation and optimize using techniques like Adam optimizer with mean squared error (MSE) as the loss function.
- Evaluation: Compare the performance of the Neural Network with Random Forest using metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and R² score to evaluate prediction accuracy.
- **Regulation:** L2 regulation to avoid model overfitting.

7. Model Comparison and Insights:

- Compare Models: Compare the predictions of the Neural Network and Random Forest to see which model better captures player performance trends.
- Model Interpretation: Use visualization tools like SHAP (SHapley Additive exPlanations) to interpret the Neural Network's predictions, identifying which features (or PCA components) most influence the results.

8. Deploy Insights:

- Deploy the model insights to assist coaches, scouts, or sports analysts in decision-making processes like player trading, game strategy adjustments, and talent identification.
- Use cluster-based player profiles to identify potential future stars or undervalued players.

Tools and Techniques:

- **Libraries**: Python libraries such as Scikit-learn (PCA, K-Means, Random Forest), TensorFlow or PyTorch (Neural Networks), Pandas (data manipulation), Matplotlib and Seaborn (visualization).
- Visualization: Use dimensionality reduction plots (e.g., 2D scatter plots of PCA components), cluster heatmaps, and SHAP plots to interpret model predictions, spider plot

Appendix

Slide presentation [link]

Report [link]

Glossary

GP

Games Played

W

Wins

L

Losses

MIN

Minutes Played

OFFRTG

Offensive Rating

DEFRTG

Defensive Rating

NETRTG

Net Rating

AST%

Assist Percentage

AST/TO

Assist to Turnover Ratio

AST RATIO

Assist Ratio

OREB%

Offensive Rebounding Percentage

DREB%

Glossary

Defensive Rebounding Percentage

REB%

Rebounding Percentage

TO RATIO

Turnover Ratio

EFG%

Effective Field Goal Percentage

TS%

True Shooting Percentage

USG%

Usage Percentage

PACE

Pace

PIE

Player Impact Estimate

POSS

Possessions