Trig Final (SLTN v688)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 10 meters. The angle measure is 3 radians. How long is the radius in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

r = 3.333 meters.

Question 2

Consider angles $\frac{-17\pi}{6}$ and $\frac{9\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{-17\pi}{6}\right)$ and $\cos\left(\frac{9\pi}{4}\right)$ by using a unit circle (provided separately).

Find
$$sin(-17\pi/6)$$

$$\sin(-17\pi/6) = \frac{-1}{2}$$

Find $cos(9\pi/4)$

$$\cos(9\pi/4) = \frac{\sqrt{2}}{2}$$

Question 3

If $\tan(\theta) = \frac{15}{8}$, and θ is in quadrant III, determine an exact value for $\cos(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$8^{2} + 15^{2} = C^{2}$$

$$C = \sqrt{8^{2} + 15^{2}}$$

$$C = 17$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant III in a unit circle.

$$\cos(\theta) = \frac{-8}{17}$$

Question 4

A mass-spring system oscillates vertically with a midline at y = 5.62 meters, a frequency of 3.63 Hz, and an amplitude of 8.89 meters. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -8.89\cos(2\pi 3.63t) + 5.62$$

or

$$y = -8.89\cos(7.26\pi t) + 5.62$$

or

$$y = -8.89\cos(22.81t) + 5.62$$