Lenguajes Formales y Computabilidad Definiciones y Convenciones: Combo 2

Nicolás Cagliero

June 23, 2025

Defina:

- 1. $d\stackrel{n}{\vdash} d'$ y $d\stackrel{*}{\vdash} d'$ (no hace falta que defina $\vdash)$
- 2. L(M)
- 3. "f es una función de tipo (n, m, s)"
- 4. (x)
- 5. $(x)_i$

Respuestas:

1. Para $d, d' \in Des$ y $n \geq 0$, escribiremos $d \stackrel{n}{\vdash} d'$ si existen $d_1, \dots, d_{n+1} \in Des$ tales que

$$d = d_1$$

$$d' = d_{n+1}$$

$$d_i \vdash d_{i+1}, \quad \text{para } i = 1, \dots, n$$

Por último: $d \stackrel{*}{\vdash} d'$ si
i $(\exists n \in \omega) \ d \stackrel{n}{\vdash} d'$

2. Diremos que una palabra $\alpha \in \Sigma^*$ es aceptada por M por alcance de estado final cuando

$$|q_0B\alpha| \vdash^* d$$
, con d tal que $St(d) \in F$.

El lenguaje aceptado por M por alcance de estado final se define de la siguiente manera

 $L(M) = \{\alpha \in \Sigma^* : \text{es aceptada por } M \text{ por alcance de estado final} \}$

3. $f: D_f \subseteq \omega^n \times \Sigma^{*m}$ y:

$$s = \# \ \mathbf{y} \ I_f \subseteq \omega$$

$$\mathbf{o}$$

$$\mathbf{o}$$

$$\mathbf{o}$$

$$\mathbf{o}$$

$$\mathbf{o}$$

$$\mathbf{o}$$

4. Dado $x \in \mathbb{N}$, usaremos (x) para denotar la única infinitupla $(s_1, s_2, \dots) \in \omega^{\mathbb{N}}$ tal que

$$x = \langle s_1, s_2, \dots \rangle = \prod_{i=1}^{\infty} pr(i)^{s_i}$$

- 5. Para $i \in \mathbb{N}$, usaremos $(x)_i$ para denotar a s_i de la infinitupla (x). Es decir que
 - (a) $(x) = ((x)_1, (x)_2, \dots)$
 - (b) $(x)_i$ es el exponente de pr(i) en la (única posible) factorización de x como producto de primos