Sesion final

Juan José Merino Zarco

4/7/2021

```
pacman::p_load(ggplot2, stargazer)
```

Graficas

Libro recomendado:

THE HITCHHIKER'S GUIDE TO GGPLOT2

ggplot2, data visualization (Alboukadel Kassambara)

Regresion lineal, ggplot()

```
ggplot(data = mtcars, aes(x=wt, y = mpg)) +
    geom_point(shape = 1) +
    geom_smooth(method = "lm", color = "blue") + labs(title = "Regresion lineal", x = "Peso (1000 lbs)",
## 'geom_smooth()' using formula 'y ~ x'
```

Regresion lineal

Regresion Lineal

Para representar los datos de una regresion lineal o de una regresion multiple hay varias maneras de mediante las cuales podemos presentar los datos.

Modelo de regresion lineal.

$$\hat{wt} = \hat{b_0} + \hat{b_1}mpg$$

```
reg1 <- lm(wt ~ mpg, data = mtcars)
reg1

##
## Call:
## lm(formula = wt ~ mpg, data = mtcars)
##
## Coefficients:
## (Intercept) mpg
## 6.0473 -0.1409</pre>
```

Presentacion de resultados con funciones de R

```
print(reg1)
Call: lm(formula = wt \sim mpg, data = mtcars)
Coefficients: (Intercept) mpg
6.0473 - 0.1409
summary(reg1)
##
## Call:
## lm(formula = wt ~ mpg, data = mtcars)
##
## Residuals:
##
                1Q Median
                                3Q
                                        Max
##
  -0.6516 -0.3490 -0.1381 0.3190
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.04726
                           0.30869 19.590 < 2e-16 ***
## mpg
               -0.14086
                           0.01474 -9.559 1.29e-10 ***
## --
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4945 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
```

g <- coef(summary(reg1))</pre>

knitr::kable(g)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	6.047255	0.3086907	19.590012	0
mpg	-0.140862	0.0147360	-9.559044	0

Presentacion de resultados con Stargazer

stargazer(reg1, header=FALSE, type='latex', title = "Regresion Lineal")

Table 2: Regresion Lineal

	Dependent variable:	
	wt	
mpg	-0.141^{***}	
	(0.015)	
Constant	6.047***	
	(0.309)	
Observations	32	
\mathbb{R}^2	0.753	
Adjusted R ²	0.745	
Residual Std. Error	0.494 (df = 30)	
F Statistic	$91.375^{***} (df = 1; 30)$	
Note:	*p<0.1; **p<0.05; ***p<0.05	

Nota

obj1 <- 2 + 2 obj1

[1] 4

4

Presentacion manual de resultados

$$\hat{wt} = \hat{b_0} + \hat{b_1}mpg = (6.047255) + (-0.140862)mpg$$

 $(\hat{\hat{b}})^T = (6.047255, -0.140862)$

 $\hat{b_0} = 6.047255$

 $\hat{b_1} = -0.140862$

 $R^2 = 0.7528328$

SÍMBOLOS MATEMÁTICOS

$$\left(\frac{x^2}{a}\right) + b = 5$$

$$\left[\frac{x^2}{a}\right] + b = 5$$

$$\left\lceil \frac{x^2}{a} \right\rceil + b = 5$$

ECUACIONES

Ecuación en la misma linea: $ax^2 + bx + c = 0$

Ecuación centrada:

$$ax^2 + bx + c = 0$$

Ecuación centrada y numerada:

$$ax^2 + bx + c = 0, a \neq 0 \tag{1}$$

Ecuacion centrada y sin numerar:

$$ax^2 + bx + c = 0, a \neq 0$$

Alinear una serie de ecuaciones.

Ejemplo: Demostración de la Fórmula General para Resolver Ecuaciones de Segundo Grado.

$$ax^{2} + bx + c = 0, a \neq 0$$

$$4a \cdot (ax^{2} + bx + c) = 4a \cdot 0$$

$$4a^{2}x^{2} + 4abx + 4ac = 0$$

$$4a^{2}x^{2} + 4abx + 4ac + (b^{2}) = (b^{2})$$

$$4a^{2}x^{2} + 4abx + (b^{2}) = (b^{2}) - 4ac$$

$$(2ax)^{2} + 2 \cdot 2ax \cdot +b^{2} = b^{2} - 4ac$$

$$(2ax + b)^{2} = b^{2} - 4ac$$

$$2ax + b = \sqrt{b^{2} - 4ac}$$

$$2ax = -b \pm \sqrt{b^{2} - 4ac}$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

REFERENCIAS CRUZADAS

Problema de optimización:

$$\max_{x_1, x_2} u(x_1, x_2)
s.a : p_1 x_1 + p_2 x_2 \le m$$
(2)

El problema (2) de maximización, corresponde al problema de maximización de las preferencias sujeto a una restricción presupuestal, para resolverlo, existen varios métodos, entre los que se encuentran los "Multiplicadores de Lagrange".

LISTAS

Listas no numeradas

- 1 Primer Nivel
- 2 Primer Nivel
- 3 Primer Nivel

Niveles de listas

Segundo nivel

- 1 Primer Nivel
- 2 Primer Nivel
 - 1 Segundo nivel
 - 2 Segundo nivel
- 3 Primer Nivel

Tercer nivel

- 1 Primer Nivel
- 2 Primer Nivel
 - 1 Segundo nivel
 - 2 Segundo nivel
 - * 1 Tercer nivel
 - * 2 Tercer nivel
- 3 Primer Nivel

Listas Numeradas

- 1. Tierra
- 2. Aire
- 3. Fuego
- 4. Agua

Niveles

- 1. Primer nivel
 - (a) Segundo nivel
 - (b) Segundo nivel
 - i. Tercer nivel
 - ii. Tercer nivel

Material Adicional

Enlaces:

Creación de listas y tablas

 $http://metodos.fam.cie.uva.es/{\sim}latex/apuntes/apuntes2.pdf \backslash$

Formulas matemáticas

 $http://metodos.fam.cie.uva.es/{\sim}latex/apuntes/apuntes3.pdf$