

PHYSICS Chapter 19

3rd SECONDARY

CAMBIO DE FASE

LOS MISTERIOS DE LA VIDA

¿De acuerdo al video, de cual es la diferencia entre el sólido y el gas?

HELICO | THEORY CAMBIO DE FASE

Es el reordenamiento molecular que experimenta una sustancia debido a la variación de su energía interna, manteniéndose constantes la presión y la temperatura. Para que se produzca este reordenamiento molecular es necesario que la sustancia absorba o ceda energía en forma de calor.

CALOR DE TRANSFORMACIÓN

Es la cantidad de calor que debe de absorber o ceder toda sustancia, para que experimente un cambio de fase.

 $Q_{Trans} = m L_{Trans}$

Su valor se obtiene con:

Unidad: caloría (cal)

Es la cantidad de calor que requiere 1 g de una L_{Trans}: sustancia para cambiar de fase completamente

Para el agua

$$L_{\text{fusión}} = 80 \text{ cal/g}$$

 $L_{\text{vaporización}} = 540 \text{ cal/g}$

CALOR DE TRANSFORMACIÓN

Cuando un material está en su fase sólida, las fuerzas que atraen las partículas entre sí son particularmente _____ en los sólidos.

RESOLUCIÓN

En los sólidos, las partículas que los conforman (moléculas) están unidas (ligadas), tal que presentan una forma y un volumen totalmente definido, esto se debe a la fuerza que atraen a las partículas entre sí es FUERTE.

: FUERTE

La forma de un líquido se determina por la forma de su _____. Aunque las partículas en un líquido no están unidas entre sí tan estrechamente como las de un

RESOLUCIÓN

En la fase líquida, las partículas que la componen tienen más libertad de movimiento. Debido a esto el liquido adopta la forma del envase o recipiente que lo contiene.

: Envase - solido

Se tiene 40 g de hielo a 0 °C. Determine la cantidad de calor necesario para fundirlos.

RESOLUCIÓN

Aplicamos:

$$Q_{Fusi\acute{o}n} = mL_{Fusi\acute{o}n}$$

$$Q_{Fusi\acute{o}n} = 40 \text{ g} \cdot 80 \frac{cal}{\text{g}}$$

$$\therefore Q_{Fusi\acute{o}n} = 3200 \ cal$$

Se tiene 100 g de líquido (agua) a 0 °C. Determine la cantidad de calor necesario para solidificarlos.

RESOLUCIÓN

Aplicamos:

$$Q_{Solidificación} = mL_{Solidificación}$$

$$Q_{Solidificación} = 100 \,\mathrm{g} \cdot 80 \frac{cal}{\mathrm{g}}$$

$$\therefore Q_{Solidificación} = 8000 \ cal$$

RESOLUCIÓN

Aplicamos:

$$Q_{Vaporización} = mL_{Vaporización}$$

$$Q_{Vaporización} = 100 \,\mathrm{g} \cdot 540 \frac{cal}{\mathrm{g}}$$

$$\therefore Q_{Vaporizaci\'on} = 54000 \ cal = 54kcal$$

Se tiene 20 g de vapor de agua a 100 °C. Determine la cantidad de calor necesario para condensarlos.

RESOLUCIÓN

Aplicamos:

$$Q_{Condensación} = mL_{Condensación}$$

$$Q_{Condensación} = 20 \,\mathrm{g} \cdot 540 \frac{cal}{\mathrm{g}}$$

$$\therefore Q_{Condensaci\'on} = 10800 \ cal = 10,8kcal$$

Se tiene 20 g de hielo a –10 °C. Determine la cantidad de calor necesario para fusionarlos. ($Ce_{Hielo}=0.5\ cal/g$ °C)

RESOLUCIÓN

Piden:

$$Q = Q_S + Q_{Fusi\'on}$$

Aplicamos:

$$Q_S = Ce \cdot m \cdot \Delta T$$

Reemplazando:

$$Q_S = 0.5 \frac{cal}{g \cdot ^{\circ}\text{C}} \cdot 20 \ g \cdot 10 \ ^{\circ}\text{C}$$
 $Q_S = 100 \ cal$

Aplicamos:

$$Q_{Fusi\acute{0}n} = mL_{Fusi\acute{0}n}$$

Reemplazando:

$$Q_{Fusi\acute{o}n} = 20 \text{ g} \cdot 80 \frac{cal}{\text{g}}$$
 $Q_{Fusi\acute{o}n} = 1600 \text{ cal}$

$$Q = 100 \ cal + 1600 \ cal$$

$$\therefore Q = 1700 \ cal = 1,7kcal$$

El mercurio se genera de manera natural en el medio ambiente y se da en una gran variedad de formas. Al igual que el plomo y el cadmio, el mercurio es un elemento constitutivo de la tierra, un metal pesado. Para vaporizarlo se necesita 2,82 cal por cada gramo de este metal. Si 50 g de mercurio están a punto de vaporizarse, ¿qué cantidad de calor será necesario para vaporizarlo completamente?

Aplicamos:

$$Q_{Vaporizaci\'on} = mL_{Vaporizaci\'on}$$

$$Q_{Vaporización} = 50 \text{ g} \cdot 2,82 \frac{cal}{\text{g}}$$

$$\therefore Q_{Vaporizaci\'on} = 141 \, cal$$

Se agradece su colaboración y participación durante el tiempo de la clase.

