Abstract

English title

Keywords: k1, k2

Streszczenie

Tytuł polski Tytuł polski Tytuł polski

Słowa kluczowe: slowo1, slowo2

Bolesław Prus	Warsaw,
Nr albumu 100000	
	Declaration
I hereby declare that the thesis ent	itled "English title", submitted for the magisters degree, su-
pervised by dr inż. Promotor Promoto	orski, is entirely my original work apart from the recognized
reference.	

Spis treści

In	trod	luct	ion	9
1.	Sc	oft I	Body Dynamics - Overview	0
	1.1.	Ma	ass Spring	10
	1.1	1.1.	Formulation	10
	1.1	.2.	Simulation	10
	1.1	1.3.	Numerical Integration	11
	1.2.	Po	sition Based Dynamics	14
	1.2	2.1.	Formulation	14
	1.3.	Fir	nite Element Method	15
2.	C	omp	putational Mesh	6
3.	\mathbf{Fi}	nite	e Element Method	7
	3.1.	For	rmulation	17
	3.1	1.1.	Strong formulation	17
	3.1	1.2.	Weak formulation	17
	3.1	1.3.	Discrete formulation	17
	3.1	1.4.	FEM - Idea	17
	3.1	1.5.	Final formulation	17
	3.2.	Fir	nite Element - Tetrahedron	17
	3.3.	Ma	aterial	17
	3.4.	Lo	ad 1	17
	3.5.	As	sembly Process	17
	3.5	5.1.	Sparse Matrix Representation	17
	3.6.	Во	oundary Conditions	17
	3.7.	Sol	lver	17
4.	In	ıple	ementation	8
	4.1.	CU	JDA 1	18
	4.1	.1.	GPU Architecture	18

4.2. Matrix Vector Multipliation	1	 	18
4.3. Linear System of Equations	3	 	18
4.3.1. CG		 	18
4.3.2. CG with precondition		 	18
4.3.3. LU		 	18
4.4. RTFEM		 	18
4.5. RTFEM Integration into G	ame Engine .	 	18
4.5.1. Rendering		 	18
4.5.2. Collision		 	18
5. Tests		 	19
5.1. Benchmarks		 	19
5.1.1. Float vs Double		 	19
5.1.2. Materials		 	19
5.1.3. Structures		 	19
5.1.4. Speed		 	19
6. Conclusions		 	20
Bibliografia		 	21
Wykaz symboli i skrótów		 	22
Spis rysunków		 	23
Spis tabel		 	24
Spis załaczników			25

Introduction

Soft Body Dynamics - Overview

Mass Spring

Formulation

The simplest method to simulate soft body deformation is Mass Spring System. Such a system includes a set of N particles with masses m_i , positions x_i and velocites v_i , where $i \in 1...N$. The particles are connected by a set of springs S. A single spring $s \in S$ consists of $s = (i, j, l_0, k_s, k_d)$, where i and j are the indices of connected particles, l_0 is the rest length, k_s is the spring stiffness and k_d is the damping coefficient. To calcuate the forces acting on particles i and j, we use the following formula:

$$f_i^S = f^S(x_i, x_j) = k_s \frac{x_j - x_i}{|x_i - x_i|} (|x_j - x_i| - l_0)$$
(1.1)

$$f_j^S = f^S(x_j, x_i) = -f^S(x_i, x_j)$$
(1.2)

It is easy to see that the forces conserve momentum, since $(f_i + f_j = 0)$

We apply damping by computing the damping forces:

$$f_i^D = f^D(x_i, v_i, x_j, v_j) = k_d(v_j - v_i) \frac{x_j - x_i}{|x_j - x_i|}$$
(1.3)

$$f_j^D = f^D(x_j, v_j, x_i, v_i) = -f_i^D$$
(1.4)

Combining two forces we get the final spring force

$$f(x_i, v_i, x_j, v_j) = f^S(x_i, x_j) + f^D(x_i, v_i, x_j, v_j)$$
(1.5)

Simulation

In order to simulate the mass spring system, we use the Newton's second law of motion,

$$f = m\ddot{x} \tag{1.6}$$

1.1. Mass Spring

where f is the force, m is the mass and \ddot{x} is the acceleration or the second derivate of position with respect to time. By transforming the equation to solve for acceleration, we get a second order ordinary differential equation (ODE):

$$\ddot{x} = \frac{f}{m} \tag{1.7}$$

In order to solve it, we can split this equation into two first order ODEs

$$\dot{v} = \frac{f}{m} \tag{1.8}$$

$$\dot{x} = v \tag{1.9}$$

Analytically, these can be solved by definite integrals:

$$v(t) = v_0 \int_{t_0}^{t} \frac{f(t)}{m} dt$$
 (1.10)

$$x(t) = x_0 \int_{t_0}^{t} v(t)dt$$
 (1.11)

where $v_0 = v(t_0)$ and $x_0 = x(t_0)$ are the initial conditions.

Numerical Integration

Explicit Euler Integration

One of the most basic numerical integration of ODE is explicit Euler integration scheme. The scheme approximates the derivatives using finite differences:

$$\dot{v} = \frac{v^{t+1} - v^t}{\Delta t} \tag{1.12}$$

$$\dot{x} = \frac{x^{t+1} - x^t}{\Delta t} \tag{1.13}$$

where Δt is a discrete time step and t is the index of the simulation iteration. By substituting these equations into Eq. 1.8 and Eq. 1.9, we get get the explicit Euler integration method:

$$v^{t+1} = v^t + \Delta t \frac{f(x^t, v^t)}{m}$$
 (1.14)

$$x^{t+1} = x^t + \Delta t v^{t+1} (1.15)$$

The term 'explicit' comes from the fact that information of the next time step can be directly computed using the information at the current time step.

The entire simulation can be summed with the following algorithm:

 f^g is the gravity force and f^{coll} collision forces.

Algorithm 1 Mass Spring Simulation

```
2: while true do
```

3: **for** all particles i **do**

1: procedure SIMULATION

4:
$$f_i = f^g + f_i^{coll} + \sum_{j,(i,j) \in S} f(x_i, v_i, x_j, v_j)$$

5: **for** all particles i **do**

$$6: v_i = v_i + \Delta t \frac{f_i}{m_i}$$

7:
$$x_i = x_i + \Delta t v_i$$

A known drawback for explicit Euler integration is the fact that it requires small time steps to remain stable. This problem accurs becouse explicit Euler does not account for the near future and it assumes that the force is constant during the entire time step. Let us assume a system of two particles connected with a spring. Assume the following configuration: the spring is stretched and the two particles start moving towards each other. If we take a large time step to compute the next configuration, the particles might pass the equilibrium configuration, which in theory means that the force should change its sign during that time step. Sadly, since the force is constant throughtout the entire time step, the sign change of the force is not accounted for. This might lead to particles overshooting and gaining energy which in turn leads to a so called simulation explosion. Other numerical integration methods exist that are more accurate. Among the most popular are the second and fourth order Runge-Kutta integrators. These schemes compute forces multiple times during a single time step, which might reduce the effect of the problem mentioned above.

Runge-Kutta Integration

The second order Runge-Kutta integrator has a different method of numerically solving ODEs. The approximation of explicit Euler Eq. 1.14 and Eq. 1.15 are instead computed by the formulas:

$$a_{1} = v^{t}$$

$$a_{2} = \frac{f(x^{t}, v^{t})}{m}$$

$$b_{1} = v^{t} + \frac{\Delta t}{2} a_{2}$$

$$b_{2} = \frac{f(x^{t} + \frac{\Delta t}{2} a_{1}, v^{t} + \frac{\Delta t}{2} a_{2})}{m}$$

$$x^{t+1} = x^{t} + \Delta t b_{1}$$

$$v^{t+1} = v^{t} + \Delta t b_{2}$$

$$(1.16)$$

1.1. Mass Spring

It is easy to see that the forces are computed twice during one time step. This makes the second order Runge-Kutta integrator more accurate compared to the simple first order explicit Euler method.

One of the most popular methods of integrating ODE is a forth order Runge-Kutta integrator. It extends the the second order Runge-Kutta by computing the force four times during a single time step. Making it even more accurate. The accuracy obviously comes with longer computations.

Implicit Euler

Another way to improve stability is to use implicit integrator. Among the most populars is the implicit Euler method. As opposed to explicit integrators, the implicit is more physically correct.

$$v^{t+1} = v^t + \Delta t \frac{f(x^{t+1})}{m} \tag{1.17}$$

$$x^{t+1} = x^t + \Delta t v^{t+1} \tag{1.18}$$

First difference lies in the force function f. Now it only depends on the position. In another words, the force does not include friction. It is said that implicit integration introduces enough numerical damping to accomedate for physical damping (TODO citation). However, if needed, the friction force can be added in the explicit step after the implicit solve. The most important change, is the fact that the force f depends now on the position of next step x^{t+1} . Thus, it is no longer possible to explicitly compute the two equations. Instead we now deal with a algebraic system, with unknowns being x^{t+1} and x^{t+1} .

In order to compute these equation we must first construct the algebraic system. The position, velocities and forces are concatanted into vectors:

$$x = [x_1, x_2, ..., x_n]$$

$$v = [v_1, v_2, ..., v_n]$$

$$f(x) = [f_1(x_1, ..., x_n), ..., f_n(x_1, ..., x_n)]$$
(1.19)

Further, we construct a mass matrix $M \in \mathbb{R}^{3N \times 3N}$ which is diagonal with values $m_1, m_1, m_1, ..., m_N, m_N, m_N$ on the diagonal.

$$Mv^{t+1} = Mv^t + \Delta t f(x_{t+1}) \tag{1.20}$$

$$x^{t+1} = x + \Delta t v^{t+1} \tag{1.21}$$

Substituing Eq. 1.21 into Eq. 1.20, results in single system of algebraic equations:

$$Mv^{t+1} = Mv^t + \Delta t f(x + \Delta t v^{t+1}) \tag{1.22}$$

We solve this system for v^{t+1} .

Examples

Example implementation of mass spring system can found in open source software created by the author of this thesis in [2]. TODO Show screen TODO Give profesional example

Conclusions

Mass spring systems are easy to implement and for many applications give good enough results (e.g. computer games). However, relatively expensive ODE integrators have to be used in order to keep the simulation stable. Moreover, modeling physically correct materials can be a complicated task, since the parameters of the system hardly reflect reality.

Position Based Dynamics

As the name suggests, Position Based Dynamics(PBD) omits integrating over velocity and works directly on positions. The biggest advantage over mass spring system is avoidance of overshooting problem during integration step.

Formulation

The system of PBD includes a set of N particles and a set of M contraints. Each particle i has three attributes:

- 1. mass m_i
- 2. position x_i
- 3. velocity v_i

Each constraint j has five attributes:

- 1. Cardinality n_j
- 2. Scalar constraint function $C_j : \mathbb{R}^{3n_j} \to \mathbb{R}$
- 3. Set of indices $\{i_1,...,i_{n_i}\},i_k\in[1,...,N]$

1.3. Finite Element Method

- 4. Stiffness parametr $k_j \in [0...1]$
- 5. Type unilateral or bilateral

It is said that bilateral contraint j is satisfied if $C_j(x_{i_1},...,x_{i_{n_j}})=0$ or if the case of unilateral $C_j(x_{i_1},...,x_{i_{n_j}}) \ge 0$. The strength of the contraint is defined by the stiffness parameter k_j . Given initial conditions for positions and velocities the simulation proceeds as follows:

```
Algorithm 2 Particle Based Dynamics
```

```
1: procedure Simulation
         while true do
 2:
             for all particles i do
 3:
                 v_i = v_i + \Delta t \frac{f_i}{m_i}
                 p_i = x_i + \Delta t v_i
 5:
                 generateCollisionContraints(x_i, p_i)
 6:
             while iteratively do
 7:
                 projectContraints(C_1, ..., C_{M+M_{ext}}, p_1, ..., p_N)
 8:
             for all particles i do
 9:
                 v_i = \frac{(p_i - x_i)}{\Delta t}
10:
11:
                 x_i = p_i
```

The lines 4 and 5 compute explicit Euler integration on velocities and positions. However, output positions p_i are only used as predictions. The line 6 generates external constrain such as collisions. The original and predicted positions x_i , p_i can be used in this step in order to perform continuous collision detection. The simulation then computes line 8 which iteratively corrects the predicted positions such that they satisfy the M_{ext} external and M internal constraints.

Finite Element Method

Computational Mesh

Creating Compulational Mesh

Finite Element Method

Advanced
Formulation
Some general math from my Presentation and
Strong formulation
Weak formulation
Discrete formulation
FEM - Idea
Final formulation
Finite Element - Tetrahedron
Material
Load
Assembly Process
Sparse Matrix Representation
Boundary Conditions
Solver

Implementation

CUDA
GPU Architecture
Pascal Architecture
Matrix Vector Multipliation
Linear System of Equations
\mathbf{CG}
CG with precondition
${f L}{f U}$
RTFEM
RTFEM Integration into Game Engine
Rendering
Collision

Tests

Benchmarks

Float vs Double

Materials

Structures

 ${\bf Speed}$

Conclusions

Bibliografia

- 1 Matthias Muller, Jos Stam, Doug James, Nils Thurey, Real Time Physics Class Notes.
- $[2] \quad \text{Jakub Ciecierski}, \ https://github.com/Jakub-Ciecierski/SoftBodySimulation}$
- [3] Michał Kleiber, Piotr Kowalczyk, Wprowadzenie do Nieliniowej Termomechaniki Ciał Odkształcalnych.
- [4] Zienkiewicz The Finite Element Method. Volume 1: The Basis.
- [5] Zienkiewicz The Finite Element Method. Volume 2: Solid Mechanics.
- [5] Altair University Practical Aspects of Finite Element Simulation.

Wykaz symboli i skrótów

nzw. nadzwyczajny

* operator gwiazdka

~ tylda

Spis rysunków

Spis tabel

Spis załączników

- 1. Załącznik 1
- 2. Załącznik 2

Załącznik 1, załącznik 2 – mają się znajdować na końcu pracy (to jest notka przypominająca)