Électricité et électronique TP2 : Réalisation d'un amplificateur audio - 1^{ère} partie : analyse du montage

Pré-requis

Avant la séance, vous aurez lu attentivement cet énoncé. Vous aurez par ailleurs revu :

- Les notions d'électricité suivantes sont à relire avant la séance :
 - adaptation d'impédance : §§4.1 à 4.3 du syllabus ELECH2001
 - décibels et logarithmes : §9.1
 - filtres RC et RL du premier ordre : §§6.2.4 et 6.3.3, 9.4 et 9.5, 9.6.1 et 9.6.2, 9.7.1 et 9.7.2
- Les notions d'électronique suivantes sont à relire avant la séance :
 - amplification d'un signal analogique au moyen d'un amplifiateur opérationnel : fichier Slides06a
 - montages inverseur et non-inverseur : fichier Slides06b
 - relation entre gain et bande passante d'un ampli-op : fichier Slides06e

But de la manipulation

Les buts de cette manipulation sont :

- analyser un montage électronique courant (dans ce cas-ci : un ampli audio);
- illustrer quelques fonctions de base en électronique;
- illustrer l'utilisation des amplificateurs opérationnels dans une application réaliste.

Aquis d'apprentissage

A la fin de ce laboratoire, vous devez :

- être capable d'expliquer le fonctionnement de notre ampli audio;
- avoir réalisé qu'on peut comprendre le fonctionnement d'un circuit électronique complexe en identifiant des blocs (étages ampli-op, filtres) et en les analysant séparément, pour après comprendre le fonctionnement de l'ensemble;
- utiliser ce principe pour analyser un montage électronique.

1 Manipulation

1.1 Définition du problème

On désire réaliser un amplificateur dans la gamme des fréquences audio. Il sera utilisé pour amplifier le signal provenant de la sortie audio d'un ordinateur ou de votre téléphone ¹, et piloter un haut-parleur (HP).

On dispose des informations suivantes (voir schéma en ANNEXE A) :

- La plage des fréquences audio s'étend de 20Hz à 20kHz.
- Vous devez régler votre source pour qu'elle produise un signal d'environ 25 mV crête à la sortie du diviseur résistif, avec une impédance de sortie d'environ $100k\Omega$.
- Le dernier étage ("étage de sortie") est un amplificateur de puissance ayant une sortie différentielle pour pouvoir connecter un haut-parleur.
- Le haut-parleur (HP) se comporte comme une résistance de 16Ω (impédance habituelle d'un HP) dans la plage des fréquences audio. Sa puissance est limitée à $500 \mathrm{mW}$.
- Le gain minimum de l'ampli audio doit idéalement valoir 0 pour pouvoir annuler totalement le volume.

1.2 Découpage en blocs

Question 1.1.

Dans le montage donné en ANNEXE A, identifiez les différents **composants** situés entre la source et l'amplificateur de puissance.

Pour analyser un circuit électronique complexe, il est plus facile de commencer par identifier les différentes fonctions principales (amplification, filtrage, etc) réalisées dans ce circuit et de découper le montage en blocs. Ensuite, on pourra étudier ces différents blocs séparément. Selon la complexité du circuit, ces opérations pourront être itératives, c'est-à-dire qu'on pourra découper ces blocs en sous-blocs, etc.

Question 1.2.

Sur le schéma, identifiez et encadrez les différentes fonctions du montage.

^{1.} Étant donné que cette sortie est déjà amplifiée, afin qu'on puisse par exemple y connecter une paire d'écouteurs, nous allons articiellement dégrader le signal à l'aide d'un diviseur résistif.

Question 1.3.

Redessinez un schéma bloc du montage en y indiquant la fonctionnalité de chaque bloc.

1.3 Analyse préliminaire

Une propriété importante des ampli-op est leur produit "gain.bande passante". Le produit "gain.bande passante" d'un montage amplificateur à ampli-op est **constant** : si l'on augmente le gain du montage, la bande passante diminue et inversement (ceci est lié aux propriétés de la rétroaction - sans démonstration). Comme on va le voir, le produit "gain.bande passante" intervient dans le dimensionnement d'un montage à ampli-op.

Rappel : la bande passante est la plage de fréquence dans laquelle un circuit fonctionne sans que sa sortie ne soit atténuée de plus d'un facteur $\sqrt{2}$.

Pour notre montage, nous avons choisi d'utiliser des ampli-op TLE2061.

Question 1.4.

A l'aide de la notice du constructeur (voir Annexe B), donnez le produit « gain bande passante », les impédances d'entrée et de sortie et le courant maximum de sortie de cet ampli-op.

Question 1.5.

Calculez le gain maximum d'un étage à TLE2061 qui respecte la bande passante voulue.

Question 1.6.

A partir de cette dernière valeur, on peut déterminer le nombre minimum d'étages d'amplification.

— Pour cela, nous avons besoin de la valeur de crête maximum supportée par le HP. Déterminez-la.

page: 4 v2.0.0

Question 1.6 suite.

- Déduisez-en le gain maximum du montage.
- A partir de ce gain maximum du montage et du gain maximum d'un étage, déterminez le nombre d'étages nécessaire.

1.4 1er étage

Question 1.7.

Sur base du schéma, indiquez :

- Quel est le type de montage à ampli-op?
- Quel est le gain de cet étage?
- Sur base des caractéristiques de ce type de montage et de la source placée à son entrée, justifiez son choix.

1.5 2^{ème} étage

Question 1.8.

Du point de vue adaptation d'impédance, est-il raisonnable de connecter ce second étage au premier?

Le deuxième étage peut être divisé en deux blocs mis en parallèle qui eux-mêmes peuvent être divisés en deux sous-blocs. Le premier sous-bloc est un filtre et le second un ampli.

Question 1.9.

Quel est le type de montage à ampli-op?

Question 1.10.

Respectons-nous bien l'adaptation d'impédance entre le filtre et l'ampli?

Question 1.11.

Quel est le gain de cet ampli?

Question 1.12.

Pour quelle raison avons-nous choisi ce type de montage alors que l'autre type de montage aurait permis d'utiliser des résistances de plus faible valeur?

Question 1.13.

Quelle est la fréquence de coupure du filtre?

Pour quelle raison avons-nous choisi une telle fréquence de coupure? La première idée qui vient à l'esprit est de placer la fréquence de coupure au milieu de la bande audio (20Hz à 20kHz), pour la diviser en deux parts égales. La fréquence de coupure divisant basses et aigües serait alors de 10kHz environ.

C'est une bonne idée, mais il y a une subtilité : l'oreille humaine possède une sensibilité logarithmique à la fréquence : l'écart perçu par une oreille humaine entre deux notes ne dépend pas de la différence des deux fréquences mais du rapport de ces deux fréquences. Pour s'en persuader, il suffit de regarder les fréquences des notes de musique. Elles sont organisées en octaves ; une octave comprend 12 tons, également espacés ; ils correspondent aux 12 touches d'un piano :

Le tableau ci-dessous donne les fréquences des notes de musique (en Hz), pour 2 octaves consécutives :

Do ₄	Do _{#4}	Ré ₄	Mi _{b4}	Mi ₄	Fa ₄	Fa _{#4}	Sol ₄	La _{b4}	La ₄	Si _{b4}	Si ₄
261,63	277,18	293,66	311,13	329,63	349,23	369,99	392,00	415,31	440,00	466,16	493,88
Do ₅	Do _{#5}	Ré₅	Mi _{b5}	Mi ₅	Fa ₅	Fa _{#5}	Sol₅	La _{b5}	La ₅	Si _{b5}	Si ₅
523,25	554,36	587,32	622,26	659,26	698,46	739,98	784,00	830,62	880,00	932,32	987,76

On voit que:

- d'une octave à l'autre, la fréquence a été multipliée par 2
- d'un ton au suivant, la fréquence a été multipliée par $\sqrt[12]{2}$. La fréquence des notes de musique forme donc une suite géométrique de $\sqrt[12]{2}$.

De ceci, on peut déduire que la fréquence séparant les basses des aigus doit être la moyenne géométrique 2 (et non la moyenne arithmétique) des fréquences extrêmes de la gamme audio. Les bonnes oreilles humaines entendent les notes depuis le Do₀ (16, 35Hz) jusqu'au Do₁₀ (16742Hz), soit 10 octaves.

Une fréquence logique pour diviser cette gamme "en deux" (basses/aigües) est donc le Do_5 .

N.B.: Une autre valeur "moyenne" possible est le La₄ (440Hz), la note sur laquelle on accorde les instruments; c'est aussi celle que vous entendez lorsque vous décrochez votre téléphone.

1.6 $3^{\text{ème}}$ étage

Question 1.14.

En considérant des tensions V_{i_1} et V_{i_2} entrant respectivement dans cet étage par les résistances R_9 et R_{10} , donnez la tension de sortie en fonction de V_{i_1} , V_{i_2} , R_9 , R_{10} et R_{11} . (indication : utiliser les théorèmes du zéro virtuel et de superposition)

Question 1.15.

Quel est la plage de gain?

1.7 Etage de sortie

Les HP ne supportent pas qu'on leur applique des tensions continues; en effet, la partie électrique d'un HP est essentiellement composée d'une bobine dont l'impédance est quasi nulle en continu. Il faudra donc éliminer cette composante continue.

1.7.1 Explication de l'amplificateur de puissance

On peut remarquer que la résistance de charge est de faible valeur; cela implique qu'il faut pouvoir lui fournir un courant important :

$$I_{
m out_{max}} = rac{V_{
m out_{max}}}{R_{
m HP}} = rac{4V}{16\Omega} = 250 {
m mA}$$

Où V_{out_{max}} est la valeur crête maximum supportée par le haut-parleur calculée en 1.3).

C'est beaucoup plus que ce que peut fournir un TLE2061. Il faut donc ajouter un 3^e étage, appelé étage de sortie, dont le rôle est de fournir le courant nécessaire à la charge. Il existe des amplis-op spécialement conçus pour réaliser ces étages de sortie.

Les fabricants conseillent d'utiliser ces amplis-op dans des montages dont le gain est faible (typiquement A=1), pour optimiser leurs performances. Leur but n'est donc pas d'amplifier une tension d'entrée, mais de fournir le courant nécessaire à la charge.

On utilisera l'ampli-op NJM2113; il peut fournir une puissance de 550 mW à une charge de 16Ω . Il a été spécialement conçu pour les applications demandant une faible puissance sonore : GSM, baladeur, lecteur mp3, carte son,...

Malheureusement, ces appareils ne disposent en général que d'une source de tension de 5V (produite en régulant la tension de la batterie ou des piles); il est donc impossible d'alimenter les ampli-op de manière symétrique (+12V/-12V, +5V/-5V, etc). Le NJM2113 a donc été spécialement conçu pour être alimenté en +5V/0V.

Cela a une conséquence importante (et gênante) : les limites d'écrêtage de l'ampli ne sont plus symétriques et en particulier, le signal de sortie ne peut plus devenir négatif.

On ne peut donc pas amplifier directement notre signal (qui est purement alternatif) avec cet ampli. On doit ajouter au signal une composante continue, pour que celui-ci ne devienne jamais négatif :

Dans le schéma ci-dessus, V_i est le signal que l'on veut amplifier (signal utile) et E est une tension continue (à déterminer) qui va empêcher la tension de sortie de devenir négative. On a ajouté un condensateur en série avec l'entrée, pour supprimer l'éventuelle composante continue de V_i . Cet étage a donc un comportement de filtre passe-haut ; sa fréquence de coupure est de 20 Hz.

Classiquement, on choisit la valeur de E qui maximise l'amplitude admissible de V_i . Si V_i est symétrique comme ici, E doit être au milieu de la gamme d'alimentation de l'ampliop (0-5V), donc E=2,5V pour permettre une valeur crête maximale de V_i de 2,5V également.

Question 1.16.

En considérant la fréquence de V_i supérieur à 20Hz telle que l'on puisse considérer le condensateur C_2 comme un court-circuit, montrez (par exemple en utilisant le principe de superposition) qu'on obtient $V_o = E - V_i$

Avec ce montage, on arrive donc à amplifier notre signal d'entrée sans être gêné par les limites d'écrêtage de l'ampli-op. Ce montage a cependant un gros inconvénient : sa tension de sortie a une composante continue importante (2,5V); on ne peut donc connecter directement un HP à sa sortie.

On pourrait placer un condensateur entre la sortie de l'ampli et le HP pour créer un filtre passe-haut, mais la valeur de ce condensateur devrait être très élevée pour avoir une fréquence de coupure de $20\mathrm{Hz}$:

$$C = \frac{1}{2\pi R_{HP}f_c} = 995 \mu F$$

1mF est une valeur de capacité qui n'est pas irréaliste, mais qui est à la limite de ce qui est réalisable. Un condensateur de 1mF se présente typiquement sous la forme d'un cylindre de 1 à 2cm de diamètre et de 4cm de hauteur; il s'agit donc d'un élément volumineux, peu adapté pour être inclus dans un appareil portable.

Les concepteurs du NJM2113 ont donc imaginé une astuce pour éviter de devoir utiliser un tel condensateur :

On peut vérifier que :

$$V_{o_1} = E - V_i \text{ et } V_{o_2} = E + V_i \Rightarrow V_o = V_{o_2} - V_{o_1} = 2V_i$$

En plaçant notre HP entre les sorties des deux amplis, on lui applique une tension purement alternative : puisque les deux tensions de sortie ont la même composante continue, ces dernières s'annulent.

Le circuit NJM2113 intègre presque toute cette solution :

Le circuit intégré (partie encadrée) contient : les 2 amplis-op, les résistances de rétroaction du 2^{ème} ampli et un diviseur résistif pour créer la tension continue E de 2,5V. Nous devons ajouter à l'extérieur : les résistances de rétroaction du 1^{er} ampli, le condensateur du filtre passe-haut et un condensateur de grande valeur en parallèle sur la tension continue de 2,5V (C₃). Ce condensateur sert à stabiliser la tension continue (il forme un filtre passe-bas avec le diviseur résistif).

1.8 Montage complet

Question 1.17.

Maintenant que nous avons analysé tous les blocs du montage, vérifiez que le gain total correspond bien à celui calculé à la sous-section 1.3.

ANNEXE A : Schéma de montage

$\mathrm{R}_1=1\mathrm{k}\Omega$	$ m R_2 = 39 k\Omega$	$ m R_3 = 2.7 k\Omega$	$ m R_4 = 100 k\Omega$	$ m R_{5}=100k\Omega$	$ m R_6 = 2.7 k\Omega$
$ m R_7 = 100 k\Omega$	$ m R_8 = 100 k\Omega$	$ m R_9 = 22 k\Omega$	$ m R_{10}=22k\Omega$	$ m R_{11}=100k\Omega$	$ m R_{12}=22k\Omega$
$ m R_{13}=22k\Omega$	$\mathrm{C_1} = 100 \mathrm{nF}$	$\mathrm{C}_2=100\mathrm{nF}$	$\mathrm{C_3} = 330 \mathrm{nF}$	$\mathrm{C}_4=1\mu\mathrm{F}$	

ANNEXE B: Datasheet TLE2061

TLE206x, TLE206xA, TLE206xB, TLE206xY EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE µPOWER OPERATIONAL AMPLIFIERS

TLE206x, TLE206xA, TLE206xB, TLE206xY **EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE µPOWER OPERATIONAL AMPLIFIERS**

SLOS193A - FEBRUARY 1997 - REVISED MARCH 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC+} (see Note 1)	
Supply voltage, V _{CC}	
Differential input voltage, V _{ID} (see Note 2)	
Input voltage range, V _I (any input)	
Input current, I _I (each input)	±1 mÅ
Output current, IO	±80 mA
Total current into V _{CC+}	80 mA
Total current out of V _{CC}	
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A : C suffix	0°C to 70°C
I suffix	–40°C to 85°C
M suffix	
Storage temperature range	–65°C to 150°C
Case temperature for 60 seconds: FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, P, or PW pa	ackage 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .	300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D-8	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW
D-14	950 mW	7.6 mW/°C	608 mW	494 mW	190 mW
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW	230 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	200 mW
PW	525 mW	4.2 mW/°C	336 mW	_	_

recommended operating conditions

			C SUFFIX		I SUFFIX		M SUFFIX		
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
Supply voltage, V _{CC±}		±3.5	±18	±3.5	±18	±3.5	±18	V	
Common mode input voltage V	V _{CC±} = ± 5 V	-1.6	4	-1.6	4	-1.6	4	\/	
Common-mode input voltage, V _{IC}	V _{CC±} = ± 15 V	-11	13	-11	13	-11	13	٧	
Operating free-air temperature, T _A		0	70	-40	85	-55	125	°C	

TLE206x, TLE206xA, TLE206xB, TLE206xY **EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE** μPOWER OPERATIONAL AMPLIFIERS SLOS193A – FEBRUARY 1997 – REVISED MARCH 1998

TLE2061I electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = $\pm 15~V$ (unless otherwise noted)

PARAMETER TEST CONDITIONS TA\$ TLE2061BI MIN TYP A TLE2061BI TLE2061	MAX 3 4.3 1.5 2.9 0.5 1.3	mV μV/°C μV/mc pA nA pA	
$V_{IO} = I_{ID} u \text{ offset voltage} = I_{ID} u \text{ offset voltage long-term drift} = I_{ID} u \text{ offset current} = I_{ID} u offset cu$	4.3 1.5 2.9 0.5 1.3	mV μV/°C μV/mc pA nA pA NA V	
$V_{IO} = \begin{array}{c} V_{IO} \\ V_{IO$	1.5 2.9 0.5 1.3	mV μV/°C μV/mc pA nA pA v	
$V_{IO} = \frac{1}{100} = \frac{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100} $	2.9 0.5 1.3	mV μV/°C μV/mc pA nA pA v	
	0.5	μV/°C μV/mc pA nA pA nA V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.3	μV/°C μV/mc pA nA pA NA V	
	3	μV/°C μV/me pA nA pA nA V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		μV/mo pA nA pA nA V	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		pA nA pA nA V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		nA pA nA V	
$I_{IB} \text{Input bias current} \\ V_{ICR} \text{Common-mode input voltage range} \\ V_{ICR} \text{In to 13} -12 \text{ to 16} \\ V_{ICR} \text{Full range} 13 \\ V_{ICR} \text{Full range} 13 \\ V_{ICR} \text{Full range} 12 \\ V_{ICR} \text{Full range} 12 \\ V_{ICR} \text{Full range} -13 \\ V_{ICR} \text{Full range} -13 \\ V_{ICR} \text{Full range} -12 \\ V_{ICR} \text{Full range} -12 \\ V_{ICR} \text{Full range} 20 \\ V_{ICR} \text{Full range} $		pA nA V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	nA V V	
$V_{ICR} \text{Common-mode input voltage range} \qquad \begin{array}{c} Full \ range \\ 25^{\circ}\text{C} & -11 \ \text{to} \ 13 & -12 \ \text{to} \ 16 \\ \hline Full \ range & -11 \ \text{to} \ 13 & \\ \hline Full \ range & -11 \ \text{to} \ 13 & \\ \hline Full \ range & 12 & \\ \hline Full \ range & -13 & \\ \hline Full \ range & -13 & \\ \hline Full \ range & -13 & \\ \hline Full \ range & -12 & \\ \hline Full \ range & -12 & \\ \hline Full \ range & 20 &$	5	V	
$V_{OM+} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V	
$V_{OM+} \begin{tabular}{lllllllllllllllllllllllllllllllllll$			
$V_{OM+} \begin{tabular}{lllllllllllllllllllllllllllllllllll$		- v	
$V_{OM+} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		\ \	
$ R_{L} = 600 \Omega $		7 °	
$V_{OM-} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$] `	
$\begin{array}{c} \text{Maximum negative peak output voltage} \\ \text{Swing} \end{array} \begin{array}{c} \text{R}_L = 10 \text{ k}\Omega \\ \\ \text{R}_L = 600 \ \Omega \\ \\ \text{R}_L = 600 \ \Omega \\ \end{array} \begin{array}{c} \text{Full range} \\ \text{25°C} \\ \text{-12.5} \\ \text{-13} \\ \text{Full range} \\ \text{-12} \\ \\ \text{VO} = \pm 10 \text{ k}\Omega \\ \\ \text{R}_L = 10 \text{ k}\Omega \\ \end{array} \begin{array}{c} \text{VO} = \pm 10 \text{ k}\Omega \\ \text{Full range} \\ \text{-12} \\ \text{-12} \\ \text{-12} \\ \text{-12} \\ \text{-13} \\ \text{-13} \\ \text{-13} \\ \text{-14} \\ \text{-10} \\ \text{-12} \\ \text{-10} \\ \text{-12} \\ \text{-13} \\ \text{-14} \\ \text{-16} \\ \text{-16} \\ \text{-17} \\ \text{-18} \\ \text{-18} \\ \text{-19} \\ $			
$V_{OM-} \begin{tabular}{lllllllllllllllllllllllllllllllllll$		V	
$ \text{RL} = 600 \Omega \\ \text{RL} = 600 \Omega \\ \text{Full range} \\ \text{VO} = \pm 10 \text{V}, \\ \text{RL} = 10 \text{k} \Omega \\ \text{Full range} \\ \text{25°C} \\ \text{30} \\ \text{230} \\ \text{Full range} \\ \text{20} \\ \text{RI} = 10 \text{k} \Omega \\ \text{Full range} \\ \text{20} \\ \text{RI} = 10 \text{k} \Omega \\ \text{RI} =$			
$V_{O} = \pm 10 \text{ V},$ $R_{L} = 10 \text{ k}Ω$ Full range -12 $25^{\circ}C \qquad 30 \qquad 230$ Full range 20			
$R_L = 10 \text{ k}\Omega$ Full range 20		1	
- I am tange			
		1	
Avp. Large-signal differential voltage amplification $VO = 0 \text{ to } 8 \text{ V},$ $VO = 25^{\circ}\text{C}$ 25 100		V/mV	
AVD Large-signal differential voltage amplification $R_L = 600 \Omega$ Full range 10			
$V_{O} = 0 \text{ to } -8 \text{ V}.$ 25°C 3 25			
$V_O = 0 \text{ to } -8 \text{ V},$ $R_L = 600 \Omega$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	
r _i Input resistance 25°C 10 ¹²		Ω	
c _i Input capacitance 25°C 4		pF	
z_0 Open-loop output impedance $I_0 = 0$ 25°C 280		Ω	
$V_{IC} = V_{ICRMin}, \qquad 25^{\circ}C \qquad 72 \qquad 90$			
CMRR Common-mode rejection ratio $RS = 50 \Omega$ Full range 65		dB	
$V_{CC+} = \pm 5 \text{ V to } \pm 15 \text{ V}, 25^{\circ}\text{C} \qquad 75 \qquad 93$. _	
k _{SVR} Supply-voltage rejection ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$) $R_S = 50 \Omega$ Full range 65		dB	
25°C 290	350		
$V_{O} = 0$, Full range	375	μΑ	
Supply-current change over operating temperature range No load Full range 34		μА	

† Full range is –40°C to 85°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE206x, TLE206xA, TLE206xB, TLE206xY **EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE** μPOWER OPERATIONAL AMPLIFIERS SLOS193A – FEBRUARY 1997 – REVISED MARCH 1998

TLE2061I operating characteristics at specified free-air temperature, $V_{CC\pm}$ = $\pm 15~V$

PARAMETER		TEST CONDITIONS		τ _Α †	TLE2061I TLE2061AI TLE2061BI			UNIT
					MIN	TYP	MAX	
SR	Slew rate at unity gain (see Figure 1)	$R_1 = 10 \text{ k}\Omega$	C _I = 100 pF	25°C	2.6	3.4		V/µs
Six	Siew rate at unity gain (see rigure 1)		CL = 100 pF	Full range	2.1			ν/μ5
V	Equivalent input noise voltage (see Figure 2)	f = 10 Hz,	$R_S = 20 \Omega$	25°C		70	100	nV/√ Hz
V _n	Equivalent input noise voltage (see Figure 2)	f = 1 kHz,	$R_S = 20 \Omega$	25 C		40	60	nv/∀HZ
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10	Hz	25°C		1.1		μV
In	Equivalent input noise current	f = 1 kHz		25°C		1.1		fA/√Hz
THD	Total harmonic distortion	A _{VD} = 2, V _O (PP) = 2 V,	f = 10 kHz, $R_L = 10 \text{ k}\Omega$	25°C		0.025%		
Б.	Haite and bandwidth (and Figure 2)	$R_L = 10 \text{ k}\Omega$	C _L = 100 pF	0500		2		MHz
B ₁	Unity-gain bandwidth (see Figure 3)	$R_L = 600 \Omega$,	C _L = 100 pF	25°C		1.5		IVIHZ
	Cattling time	0.1%		25°C		5		
t _S	Settling time	0.01%		25°C		10		μs
ВОМ	Maximum output-swing bandwidth	$A_{VD} = 1$,	R _L = 10 kΩ	25°C		40		kHz
φ.	Phase margin at unity gain (see Figure 2)	$R_L = 10 \text{ k}\Omega$	C _L = 100 pF	25°C		60°		
Φm	Phase margin at unity gain (see Figure 3)	$R_L = 600 \Omega$	C _L = 100 pF	25 0		70°		

[†] Full range is –40°C to 85°C.