Assignment 4

Due: April 15

Submission Instructions

- Create a README file, with simple, clear instructions on how to compile and run your code. If the TA cannot run your program by following the instructions, you will receive 50% of the programing score.
- Zip all your files (code, README, written answers, etc.) in a zip file named {firstname}_{CS5790_HW3.zip} and upload it to Blackboard
- 1. (40 points) For this question you will implement the k-means clustering algorithm and apply it to color a given image (*image.png*). you are allowed to use these Python packages: pandas, numpy, skimage.io, matplotlib.

First use the following code to load the image, which will give you a handle (i.e., img) of a (244, 198, 3) numpy.ndarray. The first two dimensions represent the height and width of the image. The last dimension represents the 3 color channels (RGB) for each pixel of the image.

```
import skimage.io
import matplotlib.pyplot as plt
img = skimage.io.imread('image.png')
skimage.io.imshow(img)
plt.show()
```

Next implement the k-means algorithm to partition the 244×198 pixels into k clusters based on their RGB values and the Euclidean distance measure. Run your experiment with k = 2, 3, 6, 10 with the following given starting centroids:

```
\begin{array}{l} k=2:\ (0,\,0,\,0),\ (0.1,\,0.1,\,0.1)\\ k=3:\ (0,\,0,\,0),\ (0.1,\,0.1,\,0.1),\ (0.2,\,0.2,\,0.2)\\ k=6:\ (0,\,0,\,0),\ (0.1,\,0.1,\,0.1),\ (0.2,\,0.2,\,0.2),\ (0.3,\,0.3,\,0.3),\ (0.4,\,0.4,\,0.4),\ (0.5,\,0.5,\,0.5)\\ k=10:\ (0,\,0,\,0),\ (0.1,\,0.1,\,0.1),\ (0.2,\,0.2,\,0.2),\ (0.3,\,0.3,\,0.3),\ (0.4,\,0.4,\,0.4),\ (0.5,\,0.5,\,0.5),\ (0.6,\,0.6,\,0.6),\ (0.7,\,0.7,\,0.7),\ (0.8,\,0.8,\,0.8),\ (0.9,\,0.9,\,0.9) \end{array}
```

For each value of k, you will run k-means until either convergence or your program has conducted 50 iterations over the data, whichever comes first.

Deliverables:

For each k = 2, 3, 6, 10, report the final SSE and re-color the pixels in each cluster using the following color scheme:

Cluster 1. SpringGreen: (60, 179, 113)

Cluster 2. DeepSkyBlue: (0, 191, 255)

Cluster 3. Yellow: (255, 255, 0)

Cluster 4. Red: (255, 0, 0)

Cluster 5. Black: (0, 0, 0)

Cluster 6. DarkGray: (169, 169, 169)

Cluster 7. DarkOrange: (255, 140, 0)

Cluster 8. Purple: (128, 0, 128)

Cluster 9. Pink: (255, 192, 203)

Cluster 10. White: (255, 255, 255)

Submit the SSE values and colored images for each k, together with your program code in your homework submission.

Note: You should normalize the data as a preprocessing step before proceeding with the clustering. Because the range of RGB is [0, 255], so please do the normalization using (R/255, G/255, B/255).

2. (20 points) Consider the following dataset:

- (a) Build a dendrogram for this dataset using the **single-link**, **bottom-up** approach. Show your work.
- (b) Suppose we want the two top-level clusters. List the data points in each cluster.
- 3. (20 points) Given two clusters

$$C_1 = \{(1,1), (2,2), (3,3)\}$$
 $C_2 = \{(5,2), (6,2), (7,2), (8,2), (9,2)\}$

compute the values in (a) - (f). Use the definition for scattering criteria presented in class. Note that tr in the scattering criterion is referring to the trace of the matrix.

- (a) The mean vectors m_1 and m_2
- (b) The total mean vector m
- (c) The scatter matrices S_1 and S_2
- (d) The within-cluster scatter matrix S_W
- (e) The between-cluster scatter matrix S_B

- (f) The scatter criterion $\frac{tr(S_B)}{tr(S_W)}$
- 4. (20 points) A Naive Bayes classifier gives the predicted probability of each data point belonging to the positive class, sorted in a descending order:

Instance #	True Class Label	Predicted Probability of Positive Class
1	Р	0.95
2	N	0.85
3	Р	0.78
4	Р	0.66
5	N	0.60
6	Р	0.55
7	N	0.43
8	N	0.42
9	N	0.41
10	Р	0.4

Suppose we use 0.5 as the threshold to assign the predicted class label to each data point, i.e., if the predicted probability \geq 0.5, the data point is assigned to positive class; otherwise, it is assigned to negative class. Calculate the *Confusion Matrix*, *Accuracy*, *Precision*, *Recall*, *F1 Score* and *Specificity* of the classifier.