

Instrumentação e Projeto de Circuitos

Condensadores e Indutores

LETI – Licenciatura em Engenharia de Telecomunicações e Informática

Rudimentos de Eletricidade

Componentes fundamentais

resistência

condensador

indutor

fonte de tensão (independente)

fonte de corrente (independente)

fonte de corrente (dependente)

fonte de tensão (constante)

fonte de tensão (alternada)

Componentes Ativos e Passivos

- As fontes de tensão e de corrente (dependentes ou independentes) designam-se por componentes ativos, por possuírem a capacidade de fornecer energia a qualquer elemento externo
- O elementos aptos, apenas, para receber energia designam-se por componentes passivos
 - Alguns dissipam a energia que recebem (caso das resistências)
 - Outros podem armazenar energia e trocá-la com outros elementos (caso dos indutores e condensadores)

- Constituído por duas superfícies condutoras separadas por um dielétrico (um tipo de isolador)
- Possui a capacidade de armazenar carga elétrica nas suas placas
- Quanto maior for a sua capacidade (C), maior é a carga (Q) depositada nas suas placas para a mesma tensão (U_c) aplicada aos seus terminais

$$Q = C \times U_C$$

$$C = \frac{Q}{U_C}$$
 F (farad)

- A unidade de medida de capacidade é o farad (F), embora nos condensadores comerciais seja mais comum o microfarad (µF), nanofarad (nF) e picofarad (pF)
- Como a sua tensão está diretamente relacionada com a carga (Q) armazenada nas placas, esta não pode variar abruptamente, ou seja, não é possível observar descontinuidades na tensão U_c
- A taxa de variação da tensão *U_c* irá depender dos outros elementos do circuito onde o condensador está inserido

$$i_{C}$$
 U_{C}

$$Q = C \times U_C$$

$$C = \frac{Q}{U_C}$$
F (farad)

- Ao contrário das resistências, a corrente no condensador não depende directamente da amplitude da tensão U_c aplicada aos seus terminais (lei de Ohm), mas sim da taxa de variação (derivada) da tensão.
 - Se a tensão U_c não varia, a corrente I_c é zero (comporta-se como um circuito aberto)
- Ao contrário dos componentes resistivos, os condensadores (ideais) também não dissipam energia (sob a forma de calor), apenas armazenam energia sob a forma dum campo elétrico

$$i_{C} = \frac{dq}{dt} \rightarrow i_{C} = C \frac{du_{C}}{dt}$$

$$C = \frac{Q}{U_{C}} \qquad F \text{ (farad)}$$

$$W_{C} = \frac{1}{2}CU_{C}^{2}$$

Principais tipos

Eletrolíticos, tântalo, cerâmicos, polipropileno, poliéster, mica, etc.

Rudimentos de Eletricidade

■ Associação de condensadores – ligação em paralelo

$$C_{eq} = \frac{Q_{total}}{U} = \frac{Q_1}{U} + \frac{Q_2}{U} + ... + \frac{Q_n}{U}$$
 $\rightarrow C_{eq} = C_1 + C_2 + ... + C_n$

Rudimentos de Eletricidade

■ Associação de condensadores – ligação em série

$$\frac{i}{C_{eq}} = \frac{du}{dt} = \frac{du_1}{dt} + \frac{du_2}{dt} + \dots + \frac{du_n}{dt} = \frac{i}{C_1} + \frac{i}{C_2} + \dots + \frac{i}{C_3} \longrightarrow \frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

- Um indutor (ou bobina), é análogo ao condensador, mas os papéis da corrente e da tensão estão invertidos.
- O indutor consiste num enrolamento condutor com ou sem um núcleo de ferro.
 Quando o enrolamento é percorrido por corrente, estabelece-se um campo magnético. A linhas de fluxo magnético (ψ) são contínuas e indicam, através da sua densidade, a intensidade do campo magnético numa determinada região.

- A indutância (unidade de medida H Henry) é o parâmetro que relaciona a corrente elétrica com o fluxo magnético
- A tensão na bobina depende da taxa de variação da corrente
- Quando a corrente não varia, a tensão aos terminais duma bobina é zero
 - Nos circuitos CC em regime permanente um indutor comporta-se como um curto-circuito (recordar que o indutor é constituído por um enrolamento com resistência nula).
- No condensador a tensão não podia variar instantaneamente. Na bobina é a corrente iL que não pode apresentar descontinuidades

$$\psi = Li_L$$
, $L = \frac{\psi}{i_L}$ H (henry) $\rightarrow u_L = L\frac{di_L}{dt}$
 $u_L = \frac{d\psi}{dt}$ (lei de Faraday) $\rightarrow W_L = \frac{1}{2}LI_L^2$

■ Principais tipos: núcleo de ar, núcleo de ferro, núcleo de ferrite

■ Associação de indutores – ligação em série

■ Associação de indutores – ligação em paralelo

$$\frac{u}{L_{eq}} = \frac{di}{dt} = \frac{di_1}{dt} + \frac{di_2}{dt} + \dots + \frac{di_n}{dt} = \frac{u}{L_1} + \frac{u}{L_2} + \dots + \frac{u}{L_n}$$

$$\to \frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}$$

Resumo

■ Componentes eletrónicos básicos

Componente	Relação v(t) / i(t)	Comentário
$i(t) \downarrow \uparrow + \\ R \not \Longrightarrow u(t) \\ -$	$u(t) = R \times i(t)$	Dissipa energia (convertida em calor). A potência dissipada é, $P = R \cdot i^2 = \frac{U^2}{R}$
$i(t) \downarrow \uparrow + C = u(t)$	$i(t) = C \frac{du(t)}{dt}$ ou $u(t) = \frac{1}{C} \int_0^t i(\tau) d\tau + u(0^+)$	Armazena energia através de um campo eléctrico: $W = \frac{1}{2}C \cdot U^2$
<i>i</i> (t)	$u(t) = L \frac{di(t)}{dt}$ ou $i(t) = \frac{1}{L} \int_0^t u(\tau) d\tau + i(0^+)$	Armazena energia através de um campo magnético: $W = \frac{1}{2}L \cdot I^2$

Resumo

■ Componentes eletrónicos básicos

Componente	Ligação em série	Ligação em Paralelo	Comportamento em CC
<i>i</i> (t)	$R_{eq} = R_1 + R_2 + + R_n$	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$ $R_{eq} = \frac{R_1 \cdot R_2}{R_1 + R_2} \text{ (só 2 resistências)}$	O comportamento é o mesmo para qualquer regime de funcionamento
$ \begin{array}{c} i(t) \downarrow \\ C & \downarrow \\ & \downarrow $	$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$ $C_{eq} = \frac{C_1 \cdot C_2}{C_1 + C_2} \text{ (só 2 condens.)}$	$C_{eq} = C_1 + C_2 + + C_n$	Circuito aberto
<i>i</i> (t)	$L_{eq} = L_1 + L_2 + \dots + L_n$	$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}$ $L_{eq} = \frac{L_1 \cdot L_2}{L_1 + L_2} \text{ (só 2 indutores)}$	Curto-circuito