CPSC 465/565 Theory of Distributed Systems

James Aspnes

2023-09-06

Today's exciting topic

Leader election, mostly in rings

Motivation: where does initiator come form?

- Broadcast starts with an initiator.
- ▶ Where does the initiator come from?

Leader election: Protocol where one and only one process declares itself leader.

No requirement that losers learn who the leader is, but leader can always broadcast victory message.

Impossibility of leader election

Leader election is impossible assuming

- Deterministic algorithm.
- Anonymous processes.
- Symmetric network.

(Angluin 1980)

We'll use rings (cycles) as a test case since they are very symmetric.

Leader election impossibility proof

- Adversary chooses synchronous execution
- In initial configuration:
 - ► All processes have same state (anonymity)
 - ▶ ⇒ All processes send same messages (determinism)
 - ► ⇒ All processes receive same messages (symmetry)
 - → All processes get same new state (determinism)
- By induction, maintain symmetry forever.
- ▶ ⇒ If any process says it's leader, all processes do.

How to escape impossibility?

Need to break symmetry!

- Drop anonymity by giving processes ids.
- Or drop determinism by allowing randomness.

Most common approach is to use ids and elect max id.

Le Lann-Chang-Roberts (LCR)

(Le Lann 1977, Chang-Roberts 1979)

```
1 initially do
       leader ← false
 2
       maxId \leftarrow id_i
 3
       send id; to clockwise neighbor
4
   upon receiving i from i-1 do
       if i = id_i then
6
           leader \leftarrow true
 7
       if i > \max d then
8
           maxId \leftarrow i
 9
           send i to clockwise neighbor
10
```

Notes:

- \triangleright We distinguish process position *i* from id_{*i*}.
- \triangleright All arithmetic on positions is mod n.

Typical execution of LCR

- ► Any id < max id gets eaten.
- ► Eventually max id goes all the way around.

Correctness of LCR: safety

Let ℓ be process with maximum id_{ℓ} .

Then either:

- 1. No $b_{j,j+1}$ contains id_{ℓ} , and
 - 1.1 For all messages m in transit, $m < id_{\ell}$.
 - 1.2 For all i, max $Id_i = id_\ell$.
 - 1.3 leader $_{\ell} = true$.
 - 1.4 For all $i \neq \ell$, leader $\ell =$ false.
- 2. Exactly one $b_{i,j+1}$ contains id_{ℓ} , and
 - 2.1 For all messages m in transit, $m \leq id_{\ell}$.
 - 2.2 For all $i \in [m, j]$, max $Id_i = id_\ell$.
 - 2.3 For all $i \in [j+1, m-1]$, maxld_i < id_{\ell}.
 - 2.4 For all i, leader $_i =$ false.

Essentially this just encodes intuition about reachable configurations.

Correctness of LCR: liveness

Let ℓ be process with maximum id_{ℓ} .

Then we can prove by induction on clockwise distance from ℓ :

- 1. Eventually, every process sends $id_\ell.$
- 2. Eventually, every process receives id_{ℓ} .

This means that eventually ℓ receives id_{ℓ} and sets $leader_{\ell}$ to **true**.

Complexity of LCR

$$\begin{cases} 1 & \text{if } i = H(i) \\ 1 & \text{if } i = H(i) \end{cases}$$

Message complexity:

- \triangleright $O(n^2)$ since each id is forwarded at most once per process.
- \triangleright $\Omega(n^2)$ in synchronous execution if ids increase clockwise.
- ▶ $\Rightarrow \Theta(n^2)$ in worst case.

Time complexity:

- Exactly *n* from liveness induction.
- ► (+*n* for optional victory broadcast.)

It's hard to see how to use less time, but maybe we can use fewer messages.

Hirschberg-Sinclair (1980)

Idea: Replace global probe to see if my id is max by local probes.

Probing scheme for one process:

- 1. Start as candidate leader.
- 2. In phase $k \in \{0, \ldots, \lceil \lg n \rceil\}$:
 - \triangleright Send probe message 2^k hops in both directions.
 - Probe is eaten by nodes with higher id.
 - If probe not eaten, gets sent back.
- 3. If probe makes it all the way around, I win!

Hirschberg-Sinclair: complexity

- ▶ I finish phase k only if no node in range $[i-2^k, i+2^k]$ has larger id.
- ⇒ if i, i' within 2^k , at most one finishes phase k. ⇒ at most $n/(2^{k-1}+1)$ nodes execute phase k.
- ▶ ⇒ total messages in phase $k \le \frac{n}{2^{k-1}+1} \cdot 2^k \cdot 4 < 8n$.
- \rightarrow total messages in all phases $= O(n \log n)$.

Gives $O(n \log n)$ messages and O(n) time in two-way ring.

Peterson's algorithm for one-way ring

- Each candidate moves to next candidate position.
- Also sends value to next position after that.
- $ightharpoonup \geq 1/2$ of candidates drop out in each phase.
- $ightharpoonup \Rightarrow O(n \log n)$ messages.

Randomized LCR

- 1. Pick a random id for each node from range $\gg n^2$.
- 2. Run LCR.

The k-th largest id goes through $\leq n/k$ nodes on average.

E [total messages]
$$\leq \sum_{k=1}^{n} \frac{n}{k} = n \sum_{k=1}^{n} \frac{1}{k} = nH_n = \Theta(n \log n)$$
.

Small chance of failure if range too small; also requires knowing n.

Lower bound on messages?

Many $\Theta(n \log n)$ -message algorithms. Maybe it's best possible?

A perverse synchronous algorithm

- ▶ Run LCR where *minimum* id wins.
- ▶ Have process *i* wait until round $n \cdot id_i$ to start.

Exactly n messages in every execution, but unbounded time.

Frederickson-Lynch (1987)

Assumption: Synchronous comparison-based algorithm.

- 1. Comparison-based = can't evaluate ids but can test $id_i < id_j$.
- 2. **Effective round** = at least one message sent.
- 3. After k effective rounds, I learn ids within $\leq k$ of me.
- 4. If my *k*-neighborhood is ordered like your *k*-neighborhood, I send if you send!

Bit-reversal graph

Any node has $\Omega(n/k)$ order-equivalent k-neighborhoods, so:

- 1. $\Omega(n/k)$ messages sent in k-th effective round.
- 2. No unique leader until $k = \Omega(n)$.

Frederickson-Lynch continued

Total messages
$$=\sum_{k=1}^{\Omega(n)} \Omega(n/k) = \Omega(n \log n)$$
.

Can we drop comparison-based assumption?

- ► Alternative assumptions:
 - 1. Deterministic **time-bounded** algorithm.
 - 2. No knowledge of *n* (uniform).
 - 3. Unbounded ids.
- Allows Ramsey theory argument:
 - 1. Infinitely many id sequences in *k*-neighborhood.
 - 2. Finitely many possible bounded-time message patterns.
 - 3. \Rightarrow Infinitely many id sequences give same pattern.

Repeat symmetry argument using message-pattern-equivalent id sequences instead of order-equivalent id sequences.

Burns (1980)

- $ightharpoonup \Omega(n \log n)$ messages for asynchronous uniform algorithms.
- ▶ No time bound needed.

Burns: Proof outline

- Argue leader election \equiv everybody learns max id (within $\pm\Theta(n)$ messages).
- ▶ Define **open execution** of size *n* as execution that delivers no messages across some edge *e*.
- ▶ Observe this is indistinguishable from execution on size-2n ring with two missing edges e_1 and e_2 .
- ▶ Each size-*n* execution uses $\geq T(n)$ messages (ind. hyp.).
- Combined execution uses $\geq 2T(n)$ messages without delivering across e_1 or e_2 .
- ▶ Show delivering across one of e_1 or e_2 costs at least n/2 extra messages, while still being open since we didn't use one of the edges.
- ► This gives $T(2n) \ge 2T(n) + n/2 \Rightarrow T(n) = \Omega(n \log n)$.

I magine letting all mage through Burns: Induction step 多元 msgs max Id $T(2n) = 2T(n) + \frac{n}{2}$

Leader election in general graphs

- Simple LCR-style algorithm:
 - Everybody starts broadcast+convergecast with their id.
 - ▶ Only respond to convergecast if my id < yours.
 - ▶ Only max id node finishes convergecast ⇒ leader.
 - High message complexity!
- Afek-Gafni (1991):
 - Coalesce increasingly large neighborhoods.
 - ► Gets $O(n \log n)$ messages.
 - See notes for reference.