EECS 376: Foundations of Computer Science

Chris Peikert 11 Jan 2023

Divide-and-Conquer Algorithms

Main Idea:

- 1. Divide the input into smaller sub-inputs
- 2. Solve each sub-input recursively
- 3. Combine these solutions in a "meaningful" way

Designing, Proving Correctness: an "art"

* Depends on problem structure, ad-hoc, creative

Runtime Analysis: "mechanical"

- * Express runtime using a recurrence
- * Can often solve using the "Master Theorem"

Recall: MergeSort

```
Algorithm: MergeSort(A[1..n]: array of n integers)

if n=1 return

m:=\lfloor n/2\rfloor find mid point

MergeSort(A[1..m]) sort first half recursively

MergeSort(A[m+1..n]) sort second half recursively

return merge(A[1..m], A[m+1..n]) combine two sorted lists
```

Runtime Analysis:

- * T(n) = runtime of MergeSort on input arrays of size n.
- * Runtime of combining two **sorted** arrays of size n/2 is O(n).
- * So: T(n) = 2T(n/2) + O(n). (Same for ClosestPair.)

Question: How do we get a "closed form" for T(n)?

Solving Recurrences via Recurrence Trees

* (Follow hand-written notes...)

The "Master" Theorem

Template: Suppose a D&C algorithm breaks size-n input into:

- * a constant number $k \ge 1$ sub-inputs (solved recursively),
- * each of size n/b (for some *constant* $b \ge 1$),
- * with cost of $O(n^d)$ to combine the results together.

So its runtime $T(n) = k \cdot T(n/b) + O(n^d)$. Then:

$$T(n) = \begin{cases} O(n^d) & \text{if } k/b^d < 1 \text{ ("root dominates")} \\ O(n^d \log n) & \text{if } k/b^d = 1 \text{ ("levels equal")} \\ O(n^{\log_b k}) & \text{if } k/b^d > 1 \text{ ("leaves dominates")} \end{cases}$$

Integer Arithmetic

- * Many programming languages support "big" integers with a <u>non-constant</u> number of digits, and basic operations on them, e.g., +, -, *, /, \ll , etc.
 - * We can represent a "big" integer as an array of digits.
- * Q: How does the runtime of arithmetic operations scale with the input size (n = # digits)?
 - * Addition/Subtraction: O(n)
 - * Multiplication: $O(n \log n)$ [Harvey-Hoeven 2019]

Integer Addition

- * Given n-digit integers x and y
- * Goal: compute x + y (or x y)
- * Easy: add digits one at a time and keep a "carry" digit
- * Q: What's the runtime (in terms of the input size n)?
 - * O(n)

	1	1	1		
		9	4	6	
+		9	8	5	
	1	9	3	1	

Integer Shift

- * Given an n-digit integer x and a (small) positive integer k
- * Goal: compute $x \ll k \coloneqq x \cdot 10^k$ and $x \gg k \coloneqq \left\lfloor x \cdot 10^{-k} \right\rfloor$
- * Easy: "shift" the array forward or backward by k positions, padding by zeros / dropping digits.
- * Q: What's the runtime?
 - * O(n+k)

Integer Multiplication

- * Goal: Given n-digit positive integers x and y, compute $x \cdot y$.
- * Easy: use "grade-school" method (works in base 10, 2, etc.)
- * Q: What's the runtime?
 - * $O(n^2)$ (not great!)

		3	4
*		3	9
	3	0	6
1	0	2	
1	3	2	6

Splitting a Number

*
$$376280 = 376 \cdot 10^3 + 280$$

- * Observation 1: if X is an n-digit number, (wlog n is even, by padding)
- * X can be split into n/2-digit 'high' and 'low' values:

*
$$X = H \cdot 10^{n/2} + L$$
 H L

* Observation 2: Splitting works the same way in binary

*
$$101010 = 101 \cdot 2^3 + 010$$

* An n-bit number can be split into n/2-bit 'high' and 'low' values:

$$* X = H \cdot 2^{n/2} + L$$

bits	bits	
Н	L	

Divide-and-Conquer Multiplication

- * Input: X and Y, two n-digit numbers (n is a power of 2)
- * Split them into n/2-digit 'high' and 'low' values:

*
$$X = A \cdot 10^{n/2} + B$$

*
$$Y = C \cdot 10^{n/2} + D$$

5	5
A	В
C	D

- * Compute $X \cdot Y = (AC) \cdot 10^n + (AD + BC) \cdot 10^{n/2} + BD$.
- * Runtime Analysis:
 - * 4 recursive multiplications of n/2-digit numbers
 - * 2 left shifts (by n/2, n): O(n) time
 - * 3 additions: O(n) time
- * T(n) = 4T(n/2) + O(n). So $k = 4, b = 2, d = 1 \Longrightarrow k/b^d = 2 > 1$
- * Conclusion: $T(n) = O(n^{\log_2 4}) = O(n^2)$.

Divide-and-Conquer Multiplication

* Conclusion:

- * Simple, well-known long-multiplication algorithm: $O(n^2)$
- * Complicated, scary divide-and-conquer algorithm: $O(n^2)$

Karatsuba (1962) Multiplication

- * Input: X and Y, two n-digit numbers (n is a power of 2)
- * Split them into n/2-digit 'high' and 'low' values:

*
$$X = A \cdot 10^{n/2} + B$$

*
$$Y = C \cdot 10^{n/2} + D$$

- * Cleverly compute $X \cdot Y = (AC) \cdot 10^n + (AD + BC) \cdot 10^{n/2} + BD$:
 - 1. Compute H = AC, L = BD, and $M = (A + B) \cdot (C + D)$.
 - 2. Return $H \cdot 10^{n/2} + (M H L) \cdot 10^{n/2} + L$.
- * Runtime Analysis:
 - * Just 3 recursive multiplications of n/2-digit numbers!
 - * Shifts, additions: O(n) time
- * Now T(n) = 3T(n/2) + O(n).
- * Conclusion: $T(n) = O(n^{\log_2 3}) = O(n^{1.585})$. Much better than $O(n^2)$!

Divide and Conquer Multiplication

* Conclusions & Remarks:

- * Karatsuba's algorithm (1962) was the first known multiplication algorithm that is *asymptotically faster* than "grade school" multiplication.
- * After many improvements, an $O(n \log n)$ -time multiplication algorithm was devised by Harvey and van der Hoeven in 2019!
- * We still don't know if this is the best possible. Perhaps O(n) is attainable, just like for addition/shifts!

