Lecture 2 set cover definition

Tuesday, 10 January 2023

3:41 PM

The Set Cover Problem

We have $E = \mathcal{L}e_1, e_2, \dots e_n \mathcal{L}e_n$ $S_1, S_2, \dots S_m$ each $S_i \subseteq E$ Non-negative Weights $w_i \ge 0$ for each S_i

Groal: Find a minimumweight collection of subsets that covers all E. i.e. Find I C Sl. 21...mg that minimizes & W; s.t. U Sj=E j&I

Unweighted set cover

Lecture 2 set cover algorithm

Tuesday, 10 January 2023

3:53 PM

The ALGO

I = \$\psi\$
\$\frac{1}{3} \in S_j \in S_j, \frac{1}{3}; \text{ or en do} \text{ or

Lecture 2 set cover analysis

Tuesday, 10 January 2023

Harmonic number

Hx = 1+1+1+...

K

Useful Fact:

For positive numbers

On ak

Ok

min ai

ieki bi

Zhi

Lieki ii

Lecture 2 set cover proof

Tuesday, 10 January 2023

4:08 PM

Lecture2 proof continued

Lemma 2:- For set j chosen in kth iteration Tuesday, 10 January 2023 $W_{i} \leq n_{k} - n_{k+1}$ Proof: - j minimizes katio.

So Wj & OPT

15:1 np $W' \leq |S'| |OPT| = M_R - M_{R+1} |OPT|$

 $\frac{1}{2} \left(\frac{1}{N_{k+1}} - \frac{1}{N_k} - \frac{1}{N_k} \right)$

Lecture 2 Final part of proof

Tuesday, 10 January 2023
4:39 PM $\underbrace{X} \quad \underbrace{X} \quad \underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} - \underbrace{N}_{R+1} \quad OPT$ $\underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} - \underbrace{N}_{R+1} \quad OPT$ $\underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} - \underbrace{N}_{R+1} \quad OPT$ $\underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} - \underbrace{N}_{R+1} \quad OPT$ $\underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} - \underbrace{N}_{R+1} \quad OPT$ $\underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} - \underbrace{N}_{R+1} \quad OPT$ $\underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} - \underbrace{N}_{R+1} \quad OPT$ $\underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} - \underbrace{N}_{R+1} \quad OPT$ $\underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} - \underbrace{N}_{R+1} \quad OPT$ $\underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} - \underbrace{N}_{R+1} \quad OPT$ $\underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} - \underbrace{N}_{R+1} \quad OPT$ $\underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} - \underbrace{N}_{R} - \underbrace{N}_{R} \quad OPT$ $\underbrace{X} \quad \underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} - \underbrace{N}_{R} \quad \underbrace{N}_{R} \quad OPT$ $\underbrace{X} \quad \underbrace{X} \quad \underbrace{N}_{R} \quad \underbrace{N}_$