Zusätzliche Aufgabe - Woche 1

Dienstag, 26. September 2023 12:39

Sei $n \in \mathbb{N}$. Wie viele Wörter der Länge n über dem Alphabet $\Sigma = \{a, b, c\}$ gibt es, die jeden der drei Buchstaben mindestens einmal enthalten?

Wir zählen zunächst, wie viele Wörter der Länge n über $\{a,b,c\}$ die Bedingung aus der Aufgabenstellung nicht erfüllen. Dies sind alle diejenigen Wörter, die höchstens zwei der Buchstaben enthalten. Es gibt 2^n verschiedene Wörter, die nur die Buchstaben aund b enthalten, denn für jede der n Positionen kann einer der beiden Buchstaben gewählt werden. Analog gibt es 2^n verschiedene Wörter, die nur a und c enthalten, sowie 2^n verschiedene Wörter, die nur b und c enthalten. Unter diesen $3 \cdot 2^n$ Wörtern haben wir die Wörter a^n , b^n und c^n jeweils doppelt gezählt, also gibt es insgesamt $3 \cdot 2^n - 3$ Wörter, die die Bedingung der Aufgabenstellung nicht erfüllen. Weil es insgesamt 3^n Wörter der Länge n über $\{a, b, c\}$ gibt, haben wir insgesamt also

$$3^n - 3 \cdot 2^n + 3$$

Wörter, die jeden der drei Buchstaben mindestens einmal enthalten.