

高等数学同步辅导及习题上册

练习题合集及解答

作者:安云野逸 组织:清疏大学 时间: 2024.12.11

微信公众号:安云野逸

目录

第1章 函数、极限与连续

1.1 函数及其初等性质

练习1.1.1 * 设函数 f(x) 满足方程 $f(x) + f\left(\frac{x-1}{x}\right) = 1 + x, x \neq 0, 1, 求 f(x)$.

答案
$$f(x) = \frac{x^3 - x^2 - 1}{2x(x-1)}$$
.

练习 1.1.2 * 证明
$$f(x) = \frac{1}{\sqrt{x}}$$
 在 $(0,2)$ 内无界

练习 1.1.3 求 $y = f(x) = \ln(x + \sqrt{x^2 - 1})$ 的反函数, 并判断反函数的奇偶性 答案 $x = \frac{e^y + e^{-y}}{2}$, 偶函数.

1.2 数列极限、函数极限的概念与性质

练习 1.2.1 设 $\lim_{x\to a} \frac{f(x)-1}{(x-a)^2} = -2$. 证明: 在 x=a 的某去心邻域内 f(x)<1.

1.3 无穷小与无穷大极限运算准则

练习1.3.1 * 求 $\lim_{n\to\infty} \sin^2(\pi\sqrt{n^2+n})$.

答案1.

练习 1.3.2 下列函数中在 $[1,+\infty)$ 内无界的是 ()。

(A)
$$f(x) = x^2 \sin \frac{1}{x^2}$$

(B)
$$f(x) = \sin x^2 + \frac{\ln^2 x}{\sqrt{x}}$$

(C)
$$f(x) = x \cos \sqrt{x} + x^2 e^{-x}$$

(D) $f(x) = \frac{\arctan \frac{1}{x}}{x^2}$

(D)
$$f(x) = \frac{\arctan \frac{1}{x}}{x^2}$$

答案 (C).

练习1.3.3 设 $f(x) = \frac{(x^3-1)\sin x}{(x^2+1)x}, g(x) = \frac{1}{x}\sin\frac{1}{x}$,则下列命题正确的个数为 ().

(1) 对任意 X > 0, f(x) 在 0 < |x| < X 内有界, 在 $(-\infty, +\infty)(x \neq 0)$ 内无界.

(2)
$$f(x)$$
 在 $(-\infty, +\infty)(x \neq 0)$ 内有界.

(3) g(x) 在 x=0 的去心邻域内无界, 但 $\lim_{x\to 0} g(x) \neq \infty$.

$$(4) \lim_{x \to 0} g(x) = \infty.$$

答案 (C).

练习1.3.4 $x_n = (\sqrt{n})^{(-1)^n}$,下列结论中正确的是().

(A)
$$x_n$$
 有界

(B)
$$n \to \infty$$
 时, x_n 有极限

(C)
$$x_n$$
 无界

(D)
$$n \to \infty$$
 时, x_n 为无穷大性

答案 (C).

练习1.3.5 求下列极限:

(1)
$$\lim_{x\to 0} \left(\frac{2+e^{1/x}}{1+e^{3/x}} + \frac{\arcsin x}{\sqrt{x^2}}\right);$$

(2) $\lim_{n\to\infty} \frac{1+x}{1+x^{2n}};$

(2)
$$\lim_{n\to\infty} \frac{1+x}{1+x^{2n}}$$

(3)
$$\lim_{x\to -\infty} x \left(\sqrt{x^2 + 2022} + x \right)$$
.

答案 (1) 1; (2)
$$\begin{cases} 1+x, & |x|<1,\\ 1, & x=1,\\ 0, & x=-1,\\ 0, & |x|>1; \end{cases}$$
 (3) -1011.

1.4 极限存在准则

练习1.4.1求下列极限:

(1)
$$\lim_{n\to\infty} (2^n + 3^n + 4^n)^{\frac{1}{n}};$$

(2) $\lim_{n\to\infty} \sqrt[n]{\pi^n + (\frac{22}{7})^n + (\frac{355}{113})^n}.$

答案 (1) 4; (2) 22/7.

练习 1.4.2 求下列极限:

 $\begin{array}{l} (1) \ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n+k}{n^2+k}; \\ (2) \ \lim_{n \to \infty} \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}}; \\ (3) \ \lim_{n \to \infty} \sum_{k=1}^{n} (n^k+1)^{-\frac{1}{k}}. \end{array}$

答案(1) $\frac{3}{2}$; (2) 2, $\sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}}$ 共 2n+2 项; (3) 1,根据 $n^k < n^k + 1 < (n+1)^k$ 进行放缩.

练习 **1.4.3***设 $a>0, x_1>0$,定义 $x_{n+1}=\frac{1}{4}\left(3x_n+\frac{a}{x_n^3}\right), n=1,2,\cdots$,求 $\lim_{n\to\infty}x_n$ 。 提示本题为上例的拓展。可先利用下列均值不等式证明 $\{x_n\}$ 有下界。 $\lim_{n\to\infty}x_n=\sqrt[4]{a}$ 。

$$x_{n+1} = \frac{1}{4} \left(x_n + x_n + x_n + \frac{a}{x_n^3} \right) \ge 4 \sqrt[4]{x_n \cdot x_n \cdot x_n \cdot \frac{a}{x_n^3}} = \sqrt[4]{a}.$$

练习 1.4.4设 $a_n = \sqrt{6 + \sqrt{6 + \cdots + \sqrt{6}}}$ (n重),证明: $\{a_n\}$ 收敛,并求 $\lim_{n\to\infty} a_n$ 。

答案 $\lim_{n\to\infty} a_n = 3$ 。

练习 **1.4.5**设 $x_1 = \sqrt{2}, x_2 = \sqrt{2\sqrt{2}, \cdots, x_n} = \sqrt{2\sqrt{2} \cdots \sqrt{2}} (n \uparrow \sqrt{2})$,证明 x_n 的极限存在,并求 $\lim_{n \to \infty} x_n$ 。

答案 $\lim_{n\to\infty} x_n = 2$ 。

练习 1.4.6对两个初值 $a_1=\frac{1}{2},1$, $a_{n+1}=\sqrt{\frac{a_n}{1+a_n}}$ $(n\geq 1)$,证明: $\{a_n\}$ 收敛并求其极限。

答案 $\lim_{n\to\infty} a_n = \frac{\sqrt{5}-1}{2}$.

练习 1.4.7 计算下列极限: (1) $\lim_{x\to 0} \left(e^{2x}+\sin x\right)^{\tan x}$; (2) $\lim_{x\to 0} \left(2^x+x\right)^{\arcsin 2x}$; (3) $\lim_{x\to 0} \left(1-2x^2\right)^{1-\sqrt{1-x^2}}$;

(4) $\lim_{x\to 0} \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}} (a > 0, b > 0);$ (5) $\lim_{n\to\infty} \left[1 + \sin\left(\pi\sqrt{1 + 4n^2}\right)\right]^n$

答案 (1) e^3 ; (2) $\sqrt{2e}$; (3) e^{-4} ; (4) \sqrt{ab} ; (5) e^4 , 参照例 1.3.1.

练习 1.4.8 设 $\lim_{x\to 0} \frac{\ln[1+f(x)]}{\sin x} = A \ (a>0, a\neq 1)$,求 $\lim_{x\to 0} \left[1+\frac{f(x)}{x}\right]^{\frac{1}{x}}$ 。 答案 a^A 。

1.5 无穷小的比较与等价无穷小代换

练习 1.5.1设 $x \to 0$ 时, $ax^2 + bx + c - \cos x$ 是 x^2 的高阶无穷小,求常数 a, b, c。

答案 $a = -\frac{1}{2}, b = 0.$

练习 **1.5.2**设 $x \to 0$ 时, $e^{x \cos x^2} - e^x$ 与 x^n 是同阶无穷小,则 n = ()。

- (A)5
- (B) 4
- (C) $\frac{5}{2}$
- (D) 2

答案(A)

练习 **1.5.3**设 $x \to 0$ 时, $\ln(\cos ax) \sim -2x^b$ (a > 0),则 a =___,b =___。

答案a = 2, b = 2.

练习 1.5.4* 当 $x \to 0$ 时, $(3 + 2 \tan x)^x - 3^x$ 是 $3 \sin^2 x + x^3 \cos \frac{1}{x}$ 的(). (A)高阶无穷小

(B)]低阶无穷小

(C)等价无穷小

(D)同阶非等价无穷小

答案(D)

练习 1.5.5*求下列极限:

$$\begin{array}{ll} \text{(1)} & \lim_{x \to 0^+} \frac{1 - \sqrt{\cos x}}{x(1 - \cos \sqrt{x})}; \\ \text{(2)} & \lim_{x \to 0} \frac{e^{x^2} - \cos x}{\arctan^2 x}; \end{array}$$

(3) $\lim_{x\to 1} (1-x) \tan\left(\frac{\pi}{2}x\right);$ (4) $\lim_{x\to 0} \frac{\ln(e^{2x}+x)}{x};$ (5) $\lim_{x\to 0} \frac{x^2}{\sqrt{1+x\sin x}-\sqrt{\cos x}}.$ 答案 (1) $\frac{1}{2}$; (2) $\frac{3}{2}$; (3) $\frac{2}{\pi}$; (4) 3; (5) $\frac{4}{3}$.

练习 1.5.6* 求下列极限:

(1) $\lim_{x\to 1} \frac{\sin^2 \pi x}{(x-1)\ln x}$; (2) $\lim_{x\to 1} \frac{(1-\sqrt{x})(1-\sqrt[3]{x})\cdots(1-\sqrt[n]{x})}{(1-x)^{n-1}} \ (n\in\mathbb{Z}^+)$; (3) $\lim_{x\to 0} \frac{\sqrt[4]{\frac{1+x}{1-x}}\cdot \sqrt[6]{\frac{1+2x}{1-2x}}\cdots \sqrt[2n]{\frac{1+nx}{1-nx}}-1}{3\pi\arctan x-(x^2+1)\arctan^3 x} \ (n\in\mathbb{Z}^+)$. 答案 (1) π^2 ; (2) $\frac{1}{n!}$; (3) $\frac{n}{3\pi}$, 分母提取后代换, 分子化 e 后分别代换.

练习1.5.7*已知 $\lim_{x\to+\infty} (\sqrt{x^2+ax+b}+cx+d)=0$,试确定 a,b,c,d 之间的关系.

答案 a + 2d = 0, c = -1, b, d 任意.

1.6 函数连续的概念与连续函数的性质

练习 1.6.1 设函数

$$f(x) = \begin{cases} \frac{\ln(1+x)}{\arctan x} + a, & x > 0, \\ 0, & x = 0, \\ \frac{\sqrt{1+x} - \sqrt{1-x}}{e^{2x} - 1} - b, & -1 \le x < 0 \end{cases}$$

在 x = 0 处连续, 求常数 a, b。

答案 $a = -1, b = \frac{1}{2}$.

练习 1.6.2 若函数

$$f(x) = \begin{cases} \frac{\cos\sqrt{x} - 1}{ax}, & x > 0, \\ b, & x \le 0 \end{cases}$$

在 x = 0 处连续,则().

(A)
$$ab = \frac{1}{2}$$

(B)
$$ab = -\frac{1}{2}$$

(C)
$$ab = 0$$

(D)
$$ab = 2$$

答案 (B).

练习 1.6.3 设
$$f(x)$$
 连续, $\lim_{x\to 0} \frac{1-\cos[xf(x)]}{(e^{x^2}-1)f(x)} = 1$,则 $f(0) =$.

练习 **1.6.4** 讨论 $y = \lim_{n \to \infty} \sqrt[n]{1 + x^{2n}}$ 的连续性.

答案 y 在 $(-\infty, +\infty)$ 内连续.

练习 1.6.5 试证明方程 $x - a \sin x = b$ 至少存在一正根 $\xi \in (0, a + b]$, 其中常数 a, b 满足 0 < a < 1, b > 0。

练习 1.6.6 设 f(x) 在 [0,2] 上连续,且 f(0) + 2f(1) + 3f(2) = 6。证明:存在 $c \in [0,2]$,使得 f(c) = 1。

练习 1.6.7 证明: 若 f(x) 在 [a,b] 上连续, $a < x_1 < x_2 < \cdots < x_n < b$,则在 $[x_1,x_n]$ 上必存在 ξ ,使得

$$f(\xi) = \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}.$$

1.7 间断点及分类

练习1.7.1设 $f(x) = \lim_{n \to \infty} \frac{x^2 + e^{n(1-x)}}{2 + e^{n(1-x)}}$,求 f(x) 及其间断点,并判断其类型。

答案x = 1 为 f(x) 的跳跃间断点。

练习 **1.7.2** 求 $f(x) = e^{\tan x}$ 的间断点及类型。

答案 x=0 为可去间断点; $x=k\pi$ $(k\in\mathbb{Z},k\neq0)$ 为无穷间断点; $x=k\pi+\frac{\pi}{2}$ $(k\in\mathbb{Z})$ 为可去间断点。

练习 1.7.3 *求

$$f(x) = \begin{cases} \frac{x(x+2)}{\sin \pi x}, & x < 0, \\ \frac{x}{x^2 - 1}, & x \ge 0 \end{cases}$$

的间断点,并对其进行分类。

答案 x = -2 为可去间断点; x = k (k = -1, -3, -4, ...) 为无穷间断点; x = 1 为无穷间断点; x = 0 为跳跃间断点。

练习 **1.7.4** 设函数 $f(x) = \frac{1}{x(e^{x-1}-1)}$, 则 ().

(A) x = 0,1 都是 f(x) 的第一类间断点

(B) x = 0.1 都是 f(x) 的第二类间断点

(C) x = 0 是 f(x) 的第一类间断点, x = 1 是 f(x) 的第二类间断点

(D) x = 0 是 f(x) 的第二类间断点, x = 1 是 f(x) 的第一类间断点

答案 x = 0 为第二类无穷间断点; x = 1 为第一类跳跃间断点.

练习 **1.7.5*** 求 $f(x) = e^{\frac{1}{x-2}} \cdot \frac{\ln|x|}{x^2-1}$ 的间断点并判断类型。

答案 x = 0 为无穷间断点; $x = \pm 1$ 为可去间断点; x = 2 为无穷间断点。

第2章 一元函数分析学

2.1 导数的概念

练习 2.1.1 设 $f'(x_0)$ 存在,求 $\lim_{\Delta x \to 0} \frac{f(x_0 + \alpha \Delta x) - f(x_0 - \beta \Delta x)}{\Delta x}$. 答案 $(\alpha + \beta)f'(x_0)$. 练习 2.1.2 设 f(x) 连续,且 $\lim_{x \to 0} \frac{f(x) - 2}{\sin x} = 1$,求 f'(0). 答案 f'(0) = 1.

2.2 导数的运算法则

- 2.3 隐函数、由参数方程确定的函数的导数
- 2.4 函数的微分

第3章 微分中值定理与导数的应用

3.1 微分中值定理

练习 3.1.1 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 f(a) = f(b) = 0。证明:

- (1) 存在 $\xi \in (a,b)$, 使得 $\xi f'(\xi) + f(\xi) = 0$;
- (2) 存在 $\eta \in (a, b)$, 使得 $f'(\eta) = 2\eta f(\eta)$ 。

练习 3.1.2* 设 f(x) 在 [1,2] 上连续,在 (1,2) 内可导,且 f(2)=2, $f(1)=\frac{1}{2}$ 。证明:存在 $\xi\in(1,2)$,使得 $f'(\xi)=\frac{2f(\xi)}{\xi}$ 。

- 3.2 洛必达法则与未定式极限
- 3.3 泰勒公式
- 3.4 函数的单调性及应用
- 3.5 函数的极值与最值
- 3.6 曲线的凹凸性与拐点
- 3.7 函数性态的描述与函数零点问题
- 3.8 曲率

第4章 一元函数积分学

4.1 定积分的概念与性质

练习 **4.1.1** 求极限
$$\lim_{n\to\infty}\frac{1}{n}\left(\sqrt{1+\cos\frac{\pi}{n}}+\sqrt{1+\cos\frac{2\pi}{n}}+\cdots+\sqrt{1+\cos\frac{n\pi}{n}}\right)$$
. 答案 $\frac{2\sqrt{2}}{\pi}$. 练习 **4.1.2*** 求极限 $\lim_{n\to\infty}\sum_{k=1}^n\frac{k}{n^2}\ln\left(1+\frac{k}{n}\right)$. 答案 $\frac{1}{4}$.

- 4.2 变上限积分函数及其导数
- 4.3 积分的计算
- 4.4 定积分的特定结论及综合题目与证明题
- 4.5 反常积分
- 4.6 分部积分的快速积分法

第5章 定积分的应用

5.1 平面图形的面积

练习 **5.1.1** 曲线 $y=-x^3+x^2+2x$ 与 x 轴所围成图形的面积 A= ______. 答案 $\frac{37}{12}$.

- 5.2 体积
- 5.3 平面曲线的弧长旋转体的侧面积
- 5.4 定积分的物理应用

第6章 常微分方程

6.1 一阶微分方程及其应用

练习 6.1.1 求下列微分方程的通解:

- (1) $\frac{dy}{dx} = 1 + x + y^2 + xy^2$;
- (2) $y' + \sin \frac{x+y}{2} = \sin \frac{x-y}{2}$;
- $(3) \frac{dy}{dx} = \frac{1}{(x+y)^2}.$ 答案

- (1) $\arctan y = x + \frac{1}{2}x^2 + C;$
- (2) $\ln \left| \csc \frac{y}{2} \cot \frac{y}{2} \right| + 2 \sin \frac{x}{2} = C;$
- (3) $y \arctan(x + y) = C$.
- 6.2 可降阶的二阶微分方程及其应用
- 6.3 二阶线性微分方程及其应用

习题个人解答