Finding the Big Data Sweet Spot: Towards Automatically Recommending Configurations for Hadoop Clusters on Docker Containers

Rui Zhang, Min Li* and Dean Hildebrand
IBM Research - Almaden *IBM T.J. Watson Research Center

Introduction

Aim:

---automatically configuring Hadoop workloads for container-driven clouds

Contributions:

- ---design a lightweight algorithm based on customized k-nearest neighbor to efficiently recommend Hadoop and container configurations prior to job execution
- ---identify key parameters for YARN MapReduce performance on Docker, and leverage the Sahara framework to enforce recommended configurations.
 - ---estimate the performance gain from our approach using early experiments that consider Hadoop configurations only

- ---consider automatic configuration as an offline recommendation problem
- ---design a lightweight custom k-nearest neighbor (KNN) heuristic that leverages a simple intuition
 - --- borrowing configuration knowledge from "similar" past jobs whose configuration has delivered good performance
- ---denote a set of past jobs {J1,...,JN} where each job Ja is associated with with three vectors

TABLE I: Job feature vector

Feature	Values	
Job type	{iterative, interactive, real-time, batch}	
Data size	{small, medium, large}	
Data type	{text, image, database}	
Sensitive resource	{cpu, memory, network, i/o}	
Resource load at job submission	{high, medium, low}	

A job feature vector \overrightarrow{F} a =< fa1, . . . , fam > containing features that are descriptive of the job

TABLE II: Key YARN container parameters

Parameter names	Meaning	
yarn.nodemanager.resource.memory-mb	Total memory available for all containers	
yarn.scheduler.minimum-allocation-mb	Minimum memory limit per container	
yarn.scheduler.maximum-allocation-mb	Maximum memory limit per container	
mapreduce.map.memory.mb	Memory per mapper container	
mapreduce.reduce.memory.mb	Memory per reducer container	
yarn.nodemanager.vmem-pmem-ratio	Container physical vs. virtual memory ratio	
mapreduce.map.cpu.vcores	Virtual cores per map container	
mapreduce.reduce.cpu.vcores	Virtual cores per reduce container	

TABLE III: Key Docker-specific container parameters

Parameters	Meaning
-m	Container memory limit
-c	CPU shares (relative weight)
—privileged	Give extended privileges to this container
-device	Run devices inside the container without the -privileged flag
-lxc-conf	lxc options including cgroup resource shares between containers
-s	storage driver: one of aufs, devicemapper, btrfs and overlay
- storage-opt:	storage driver options

A job configuration vector \overrightarrow{C} a =< Ca1,..., Can > consisting of analytics framework configuration parameters or cloud platform parameters

System Architecture --- Methodology

- ---Jx denote a new incoming job
- ---F[→]x becomes known upon submission
- ---Goal: determine the job configuration vector \overrightarrow{C} x for the new job such that \overrightarrow{P} x is desirable.
- ---solving two sub problems

System Architecture --- Methodology

The first problem

---identify the k-nearest neighbors for the new job to form a group $Gx = \{Jx1,...,Jxk\}$ that have k past jobs most similar to Jx in terms of their job feature vectors

---Solve

---define similarity

$$S(J_a, J_b) = \sqrt{\sum_{i=1}^{m} s(f_{ai}, f_{bi})^2} \qquad s(f_{ai}, f_{bi}) = \begin{cases} 1 & if \quad f_{ai} = f_{bi} \\ 0 & otherwise \end{cases}$$

- ---m is the size of the job feature vector, fai and fbi are the i-th element of the feature vector for jobs Ja and Jb
- ---per element similarity function returns 1 if the two corresponding elements of job feature vectors fai and fbi are the same

System Architecture --- Methodology

The Second Problem

---rank the performance vectors associated with each job in Gx and return the configuration vectors corresponding to the top k' ($k' \le k$) performance vectors that meet a performance threshold

---Slove

---use a weighted sum formulation to convert each performance vector into a single score

$$P(J_a) = \sum_{i=1}^{\bar{o}} \beta_i \times p'_{ai}$$

- ---βi is a normalized weight factor
- ---For metrics such as response time, whose value corresponds negatively to performance, we set P'ai = 1/Pai; otherwise we simply have P'ai = Pai

Recommending Configurations for MapReduce Jobs on Docker in OpenStack Clouds

---Sahara is the OpenStack component that aims to enable users to automatically provision and manage Hadoop clusters in OpenStack cloud environments

- ---Sahara's RESTful job APIs would allow to capture past job features, configurations and performance and are stored in the job repository
- ---When a new job arrives, it is first assigned a neighbor group by the classification module(the first problem) and subsequently recommended one or a few configurations (the second problem)
- ---The final configuration can be enforced using a Sahara transient cluster, a custom temporary cluster launched specially for the duration of one single job with a specific configuration

Fig. 1: Overall architecture with a view of Sahara integration

Evaluation

---three application from HiBench

Benchmark	Input Size	Shuffle Size	Output Size
Bayes	1.2 GB	47 GB	37 GB
K-means	8 GB	30 KB	4 KB
PageRank	12.8 GB	27 GB	6.4 GB

- ---Bayes is a CPU, memory and shuffle intensive application
- ---K-means is a CPU intensive application
- ---PageRank is a CPU and shuffle intensive web search application
- ---The input data sets are generated using the HiBench generator

Evaluation

- ---run every benchmark 3 times and get the average execution time for each
- ---comparing configurations recommended with the default configurations shipped with YARN.

Fig. 2: Execution time: our recommended configuration vs. default.

---reduces job execution time by 11%, 13%, and 28% for Bayes, PageRank and K-means respectively

(a) Default.

(b) KNN Heuristic.

Fig. 3: CPU Utilization of K-means.

- ---how the good configurations recommended by KNN improve resource utilization, in turn leading to performance gain
- ---average CPU utilization of K-means is improved by 5.9%
- ---The CPU utilization of K-means has four peaks corresponding to the centroid computation and three iteration of the clustering

---Similar trends can be observed for memory utilization

