

This presentation is released under the terms of the **Creative Commons Attribution-Share Alike** license.

You are free to reuse it and modify it as much as you want and as long as (1) you mention Miguel Xochicale as being the original author, and (2) you re-share your presentation under the same terms.

You can download the sources of this presentation here: https://github.com/mxochicale/mrhd

Motor Theory and Practice

Medical Robotics: Hardware Development 3th & 5th of February 2020

Miguel Xochicale, PhD

School of Biomedical Engineering & Imaging Sciences King's College London

Outline

- 1. Introduction
- 2. Motor Circuit and equations
- 3. Motors and Motor types
- 4. Motor Control
- 5. Summary

Introduction to Motors

0000

Introduction to Motors

Introduction

0000

Motors of all types serve to convert electrical energy into mechanical energy.

Some Motors in the school of BMEIS

How do a motor work

Torque

Torque, also known as momentum, is the term used to talk about forces that cause or change rotational motion.

For the case of a wheel or winch the force is always tangent.

$$T = r \cdot \mathbf{F} \cdot \sin(\phi)$$
$$T = r \cdot \mathbf{F}_{tan}$$

Units of torque

- * SI: newton-meters (N-m)
- * English: inch-pounds (in-lb), foot-pounds (ft-lb), inch-ounces (in-oz)

Summary

Speed

The rate of rotation around an axis usually expressed in radians or revolutions per second or per minute.

$$1revolution = 360deg$$

$$1revolution = 2\pi radians$$

$$1radian = (180/\pi)deg$$

$$1deg = (\pi/180)radians$$

Units of speed:

- * radians/second (rad/s)
- * revolutions/second (rps)
- * revolutions/minute (rpm)

From the angular velocity ω , we can find the tangential velocity with $v_{tan}=r\cdot\omega$ anywhere in the rotating body.

Power

When a torque T (with respect to the axis of rotation) acts on a body that rotates with angular velocity ω , its power (rate of doing work) is the product of the torque and angular velocity.

$$P_{rot} = T \cdot \omega$$

Units of power:

- * SI: Watts (W), newton-meters per second (N-m/s)
- * English: foot-pound per second (ft-lb/s), horsepower (hp)

Summary

Torque/Speed Curves

There is a tradeoff between how much torque a motor delivers, and how fast the output shaft spins.

- * The stall torque (T_s) point in the curve where torque is at its maximum but the shaft is not rotating.
- * The no load speed (ω_n) maximum output speed of the motor (where no torque is applied to the shaft)

Torque/Speed Curves

The area under the curve is the power given by the product of torque and angular velocity.

* Due to the linear relationship of torque and angular velocity, the maximum power occurs at the point where $\omega=1/2_n$, $T=1/2T_s$.

Power/Torque and Power/Speed Curves

Choosing an electric motor

- Torque
- Speed
- Precision and Accuracy
- Voltage
- Cost
- Form factor

- 1. Brushed DC Motor
- 2. DC gear motors
- 3. Brushless motors
- 4. Servo motors
- 5. Stepper motors

Brushed DC Motor

Advantages:

- * Inexpensive
- * Lightweight
- * Reasonable Efficient
- * Good low-speed torque

Limitations:

audible whine from the commutator brushes, create electrical noise

Applications:

- * Toys
- * RC Servos
- * Gear Motors

DC geat motors

Advantages:

- * Speed reduction
- * Increase torque

Limitations:

The extra resistance can make these gear-trains balky at low speeds.

Applications:

- * Robot Drive Trains
- * Radio Control Vehicles
- * Cordless Tools

Brushless motors

Advantages:

- * Quiet
- * Efficient

Limitations:

Some types of brushless motors require a separate controller

Applications:

Multicopters, Drones, Radio Control Vehicles, Disk Drives, Fans, Industrial Servos, Hybrid Vehicles, High-End Gearmotors

Servo motors

Advantages:

- * Low cost (RC Servos)
- * Variety There is a wide range of sizes and torque ratings
- * Simple to control using logic level pulses from a microcontroller or a dedicated servo controller

Limitations:

Most RC servos are limited to 180 degrees of motion and positioning accuracy and repeatability of +/-1 degree is typical.

Applications:

Robotics, Animatronics, Radio Control Cars/Boats/Planes

Stepper motors

Advantages:

- * Precise repeatable positioning
- * Precise speed control
- * Excellent low-speed torque
- * Excellent 'holding torque' to maintain position

Limitations:

- * Low efficiency
- * May need encoder or limit switch to establish a reference position
- * Subject to missed steps if overloaded

Applications:

3D Printers, CNC Machines, Camera rigs Robotics, Printers, Precision Gearmotors

Motor Modelling

DC motor modelling: electrical part

By Kirchhoff's Voltage Law, we have

$$\begin{split} V_m - V_R - V_L - V_{emf} &= 0 \\ V_m - Ri - L \frac{di}{dt} - k_e \dot{\theta} &= 0 \end{split} \tag{1}$$

Assumming the circuit has a very fast response, Eq (1) with $L \approx 0$ is presented as

$$V_m - Ri - k_e \dot{\theta} = 0$$

$$\frac{V_m}{R} - \frac{k_e}{R} \dot{\theta} = i$$
(2)

DC motor modelling: mechanical part

By Newton's Law (torque aka energy balance), we have

$$T_e - T_{\dot{\theta}} - T_b - T_L = 0 \tag{3}$$

Where T_e is the electromagnetic torque. $T_{\dot{\theta}}$, is torque generated from the rotational acceleration of the rotor. T_b , is the torque due to the friction and angular velocity in the motor. T_L is the torque of the mechanical load (external load).

$$K_t i - J\ddot{\theta} - b\dot{\theta} - T_L = 0 \tag{4}$$

DC motor modelling: complete

Assume the motor is not connected to the load (i.e. $T_L=0$) in Eq 4, we have

$$J\ddot{\theta} + b\dot{\theta} = K_t i$$

$$\frac{J}{K_t} \ddot{\theta} + \frac{b}{K_t} \dot{\theta} = i$$
(5)

DC motor modelling: complete

Subtituting i from (2) in (5), we then have

$$\frac{J}{K_t}\ddot{\theta} + \frac{b}{K_t}\dot{\theta} = \frac{V_m}{R} - \frac{k_e}{R}\dot{\theta}$$

$$\frac{J}{K_t}\ddot{\theta} + (\frac{b}{K_t} + \frac{k_e}{R})\dot{\theta} = \frac{V_m}{R}$$

$$J\ddot{\theta} + (b + \frac{k_t k_e}{R})\dot{\theta} = V_m \frac{k_t}{R}$$
(6)

First-order differential equation in angular velocity

$$J\dot{\omega} + (b + \frac{k_t k_e}{R})\omega = V_m \frac{k_t}{R}$$

Motor Modelling

Open loop

(Lewis A. D. 2003) 32

Closed loop

(Lewis A. D. 2003) 33

Title

References

Andrew D. Lewis

» A Mathematical Approachto Classical Control « Open Book (2003)

freescience.info/go.php?pagename=books&id=1740

This presentation is released under the terms of the **Creative Commons Attribution-Share Alike** license.

You are free to reuse it and modify it as much as you want and as long as (1) you mention Miguel Xochicale as being the original author, and (2) you re-share your presentation under the same terms.

You can download the sources of this presentation here: https://github.com/mxochicale/mrhd