

BERTScore & MoverScore

Presented to: Pierre Colombo

Presented by:
Rebecca Bayssari
Paul-Ambroise Leroy
Marius Nadalin

Outline

- 1. Introduction: Context & State of the art
- 2. New scoring methods: BERTScore & MoverScore
- 3. Experimentations

Introduction

Context & State of the art

The Papers

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M. Meyer, and Steffen Eger. **MoverScore:** *Text generation evaluating with contextualized embeddings and earth mover distance.*

In EMNLP, **2019**.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.

BERTScore: Evaluating text generation with BERT.

In CoRR, 2019 (Published in ICLR, 2020)

Objective: Automatic evaluation of natural language generation

Reference text	People like foreign cars.	
Candidate text 1	People like visiting places abroad.	Score 1
Candidate text 2	Consumers prefer imported cars.	Score 2

Paper Motivations

State of the art: a problematic example

Reference text	People like foreign cars.		
Candidate text 1	People like visiting places abroad.	Score 1	BLEU
Candidate text 2	Consumers prefer imported cars.	Score 2	Human eval

An ideal scoring method would:

- Take semantics into account and recognize:
 - Meaning-preserving vocabulary (synonyms / paraphrases)
 - Compositional diversity (reordering words)
 - Context
- With an unsupervised training
- Go toward human-like evaluation (test on specific tasks with human-labeled data)

New scoring methods

BERTScore & MoverScore

Step 1: Tokenization & Embedding

- Use a pre-trained BERT model to obtain contextualized word embeddings for each token.
- Each token is represented as a high-dimensional vector, capturing semantic meaning.

Step 2: Pairwise Cosine Similarity

- Compute cosine similarity between embeddings of candidate and reference tokens.
- Measures semantic closeness based on context.

Step 3: Matching tokens

For each token in candidate, find the most similar token in reference.

Step 4: Precision, Recall and F1 computation

- Precision: Average similarity of candidate tokens matched to reference.
- Recall: Average similarity of reference tokens matched to candidate.
- F1 score: Harmonic mean of precision and recall.

Step 5: Weight with IDF (optional)

- Weight the computation of Precision, Recall and F1 score.
- IDF (Inverse Document Frequency) weights rare tokens more.

MoverScore

MoverScore

$$egin{aligned} & \mathrm{WMD}(x^n,y^n) := \min_{F \in \mathbb{R}^{|x^n| imes |y^n|}} \langle C,F
angle, \ & \mathrm{s.t.} \ F\mathbf{1} = f_{x^n}, \ \ F^\intercal \mathbf{1} = f_{y^n}. \end{aligned}$$

Where:

$$oldsymbol{f}_{oldsymbol{x}_i^n} = rac{1}{Z} \sum_{k=i}^{i+n-1} \operatorname{idf}(\mathbf{x}_k)$$
 is a distribution of weights

→ **BERTScore** (precision/recall) can be represented as a (non-optimized) **Mover Distance**

Interpretation

- System x: A guy with a red jacket is standing on a boat
- Ref y: A man wearing a lifevest is sitting in a canoe

An illustration of MoverScore (hard alignments) and BERTScore (soft alignments)

Experimentations

Test human-like performance & Comparison

Experimentation Setup

- Objective: test scoring against human judgment
- Tasks:
 - Machine translation
 - Image captioning
 - Text summarization
 - Data-to-text generation

Pearson correlation coefficient

$$ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$

Results for BERTScore

Metric	cs ← en	de ⇔ en	et ←en	fi ←→ en	ru ←→en	tr⇔en	zh ← en
BLEU	.970	.971	.986	.973	.979	.657	.978
ITER	.975	.990	.975	.996	.937	.861	.980
RUSE	.981	.997	.990	.991	.988	.853	.981
YiSi-1	.950	.992	.979	.973	.991	.958	.951
P _{BERT}	.980	.998	.990	.995	.982	.791	.981
R _{BERT}	.998	.997	.986	.997	.995	.054	.990
F _{BERT}	.990	.999	.990	.998	.990	.499	.988
F _{BERT} (idf)	.985	.999	.992	.992	.991	.826	.989

Key takeaways

F1(BERT)

It balances precision and recall, making it a reliable metric for capturing both the accuracy and completeness of a generated text

IDF Weighting

Provides small benefits in certain cases but does not consistently improve performance.

BERTSCORE Robustness: Image Captioning

Dataset

The evaluation uses the **COCO** dataset with five human-written reference captions for each image

Metrics Compared

BERTSCORE is compared against general-purpose metrics like BLEU and caption-specific metrics like SPICE and LEIC.

BERTSCORE Robustness: Handling Adversarial Challenges

Datasets

QQP: Standard paraphrase detection tasks.

PAWS: Tough adversarial examples with word swaps and reordered phrases.

AUC Scores

The Area Under the ROC Curve (AUC) is used to evaluate the performance of metrics and models.

Results for MoverScore

Correlation in distant language (zh-en) pair

Absolute Pearson correlations with segment-level human judgments in 7 language pairs on WMT17 dataset

Conclusion

- The two scoring methods aim to automatically evaluate text-generation based on semantics.
- They both rely on the BERT contextual embeddings.
- Although BERTScore surpasses traditional metrics by effectively capturing semantic similarity between candidate and reference captions, MoverScore stands out as a more advanced and precise metric, offering superior performance in evaluating text quality.

Appendix

Understanding Contextual Embedding Layers

Dataset

The WMT16 dataset, from the Workshop on Machine Translation 2016, serves as the validation set for this study.

Purpose

It's used to determine which layer from each model produces the best embeddings for semantic tasks.

Approach

A systematic evaluation ensures the optimal layer is selected for each contextual embedding model.

Empirical Results

4 different tasks:

- Machine translation
- Text summarization
- Data-to-text generation
- Image Captioning

Pearson correlation coefficient:

$$ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$

Absolute Pearson correlations with segment-level human judgments in 7 language pairs on WMT17 dataset

Current solutions: BLEU & METEOR

1

n-grams

Candidate text: People like visiting places abroad.

- 1-grams: "People", "like", "visiting", "places", "abroad"
- 2-grams: "People like", "like visiting", "visiting places", "places abroad"
- 3-grams: "People like visiting", "like visiting places", "visiting places abroad"

Reference text: People like foreign cars.

2

Precision: Exact-P = Number of candidate n-grams that match reference n-grams

Number of candidate n-grams

Statistics

Recall: Exact-R₂ = Number of **reference** n-grams that **match candidate** n-grams

Number of reference n-grams

3

BLEU ~ Geometric average of Exact-P_n for n=1,2,3,4

Score

METEOR ~ Exact-P1 and Exact-R1 with relaxed matching