Analyses of Flow Field Within the TUDa Compressor

Boqian Wang, Dingxi Wang

School of Power and Energy, Northwestern Polytechnical University
The Global Power and Propulsion Society 4th Turbomachinery CFD Workshop
4 Sep, 2024, Chania

Contents

- ➤ Solver introduction
- ➤ Computational domain and numerical settings
- > Flow field analyses (N100)
- > Flow field analyses (N65)
- ➤ Conclusions

Solver introduction

AeroX:

Multi-block structured mesh Spalart-Allmaras turbulence model

Spatial discretization:

- Convective fluxes: JST scheme with the scaled numerical disspation
- Diffusive fluxes: evaluate the gradient of the velocity, temperature and turbulence quantity at cell centers using the Gauss's theorem, then use a central scheme to face values

Time integration in pseudo time:

- Local time stepping
- Hybrid method combining an explicit five stage Runge-Kutta method and the implicit LU-SGS method

Row interface method

- Steady state: mixing plane method
- Unsteady state: Fourier transformation based method

Solver introduction

Fourier transformation based method (+DTS method)

- 1. Uniform resample to account for a non-uniform mesh along the circumferiential direction
- 2. Rotational Fourier transformation
- 3. Recover the distribution at ghost cells of the other side of an interface

Computational domain and grid

The officical medium mesh with the rotor casing pinch is adopted

The computational domain is extended for analyzing rotating instability and rotating stall

Numerical settings

Shaft speed:arithmetic average of measured data

Numerical settings

Inlet boundary (ME15) condition

Numerical settings

Performance map is obtained by

- ☐ Increasing back pressure, constant nozzle outlet area (100%)
- □ Decreasing nozzle outlet area, constant back pressure (1 atm)

$$Ar = \frac{Area_{nozzle}}{Area_{channel}} \in [57\%, 100\%]$$

Performance map

Radial profile at a near peak efficiency point

ME30 (Stator exit)

ME21 (Rotor exit)

Performance map

Time step for an unsteady solution: T/100 (T is blade passing period)

Radial profile at ME30 (Stator exit)

Exp. ID 7

Axial velocity distribution near the casing

Spatial FT results of the numerical probes

(attached to the rotor)

Numerical probes around L.E. at the blade tip

The leakage flow/main flow interface has developed to the leading edge of the blade

Unsteady point 4 (Ar=57%)

Spatial propagation of rotaing stall

Fluctuations of axial velocity due to the stall cell is less pronounced

Conclusion

☐ The calculated radial profiles of total pressure ratio, total temperature ratio and flow angle show good agreement with the experimental data for both 65% and 100% of the design speed

■ Unsteady flows at near stall conditions of the 65% design speed are analyzed. The rotating stall is detected and the speed of the rotating cell is about 57% of the shaft speed

Analyses of Flow Field Within the TUDa Compressor

Boqian Wang, Dingxi Wang

School of Power and Energy, Northwestern Polytechnical University
The Global Power and Propulsion Society 4th Turbomachinery CFD Workshop
4 Sep, 2024, Chania

