VLSI Design Flow

Digital design

FPGA Design

- Fastest turn around time
- Cheapest at lower volumes
- Limited by resources
- Power, Timing Performance is compromised

CMOS Design Flow

- Huge Time To Market
- Labour Intensive
- The most efficient of all flows

ASIC Design Flow

- Faster Time To Market
- Fairly optimized for Area, Power and Timing

Advantages of Semi-Custom

- Faster time to market than full-custom Design
- Better performance than FPGAs
- Mature tools available for all stages
- Cheaper in the long run
- Better debug and re-use

Abstraction Levels

Synthesis

 Transformation of design from higher level of abstraction to lower level of abstraction

Semi-Custom ASIC Design Flow

Types of ASICs

□ Full-Custom ASICs

- ❖ Include some (possibly all) customized logic cells
- Have all their mask layers customized
- ❖ Full-custom ASIC design makes sense only
 - ✓ When no suitable existing libraries exist or
 - ✓ Existing library cells are not fast enough or
 - ✓ The available pre-designed/pre-tested cells consume too much power that a
 design can allow or
 - ✓ The available logic cells are not compact enough to fit or
 - ✓ ASIC technology is new or/and so special that no cell library exits.
- ❖ Offer highest performance and lowest cost (smallest die size) but at the expense of increased design time, complexity, higher design cost and higher risk.
- Some Examples: High-Voltage Automobile Control Chips, Analog-Digi Communication Chips, Sensors and Actuators

ASIC Design Process

S-1 Design Entry: Schematic entry or HDL description

S-2: Logic Synthesis: Using Verilog HDL or VHDL and Synthesis tool, produce *a netlist*-logic cells and their interconnect detail

S-3 System Partitioning:Divide a large system into ASIC sized pieces

S-4 Pre-Layout Simulation: Check design functionality

S-5 Floorplanning: Arrange netlist blocks on the chip

S-6 Placement: Fix cell locations in a block

S-7 Routing: Make the cell and block interconnections

S-8 Extraction: Measure the interconnect R/C cost

S-9 Post-Layout Simulation

Applications

- FPGA:
 - Research
 - Academics
 - Defense
 - Prototyping
 - Start Ups
 - IP Core developers

• Full Custom:

- Memory
- I/O
- Analog Blocks
- Processors

- Semi Custom :
 - Wireless Applications
 - Modulators
 - Decoders
 - DSP Block Sets

Designs

Design Flow

- ASIC and FPGA design and implementation methodologies differ moderately
 - Xilinx FPGAs provide for reduced design time and later bug fixes
 - No design for test is required, deep sub-micron verification has been completed, and no waiting for prototypes

- For high-performance designs, FPGAs require more pipelining
- When re-targeting code from an ASIC to an FPGA, the code usually requires optimization

ASIC Design Flow

- ASIC tools are generally driven by scripts
- Post-synthesis static timing analysis and equivalency checking are musts for signoff to foundry
- Verification of deep submicron effects (second- and third-order effects) is required
 - Internal, deep sub-micron effects are already verified for Xilinx FPGAs

FPGA Design Flow

- FPGA tools are generally GUI-driven, push-button flows
 - FPGA tools also have scripting capabilities
- After the design passes behavioral simulation and static timing analysis, verification is completed most efficiently by verifying in circuit
 - Fast turn-around times
 - Static timing analysis is used to verify timing of the design

ASIC Versus FPGA Design Flow

Primary Design Flow Differences

HDL	FPGA code may need optimization for high performance
Post-Synthesis Static Timing Analysis	ASIC only; not required for FPGAs
Design for Test Insertion	ASIC only; not required for FPGAs
In-Circuit Verification and Waiting for Prototypes	No waiting time for FPGAs; ASICs wait 1–3 months for first prototype
Deep Sub-Micron Verification	ASIC only; already completed for FPGAs

Two competing implementation

ASIC Application Specific Integrated Circuit

- Designed all the way from behavioral description to physical layout
- Designs must be sent for expensive and time consuming fabrication in semiconductor foundry

FPGA Field Programmable Gate Array

- No physical layout design; design ends with a bitstream used to configure a device
- Bought off the shelf and reconfigured by designers themselves

Which Way to Go?

ASICs **FPGA**s

High performance

Low power

Low cost in high volumes

Off-the-shelf

Low development cost

Short time to market

Reconfigurability

IC Products

- Processors
 - CPU, DSP, Controllers
- Memory chips
 - RAM, ROM, EEPROM
- Analog
 - Mobile communication, audio/video processing
- Programmable
 - PLA, FPGA
- Embedded systems
 - Used in cars, factories
 - Network cards
- System-on-chip (SoC)

System On chip

- System
 - A collection of all kinds of components and/or subsystems that are appropriately interconnected to perform the specified functions for end users.
- An SoC design is a "product creation process" which
 - Starts at identifying the end-user needs
 - Ends at delivering a product with enough functional satisfaction to overcome the payment from the end-user

System-on-Chip Contains...

- An SoC contains:
 - Portable / reusable IP
 - Embedded CPU
 - Embedded Memory
 - Real World Interfaces (USB, PCI, Ethernet)
 - Software (both on-chip and off-chip)
 - Mixed-signal Blocks
 - Programmable HW (FPGAs)
 - > 500K gates
- Not an ASIC!

System Evolution

System complexity and density

Components of the system are large.

"In-room" interconnect

All components reside in relatively small box.

On-board interconnect

Components of the system reside on single chip.

On-chip interconnect

We are here

Old systems

Recent systems

Modern systems

Time

System on a Programmable Chip ...

- On the other hand, FPGA-type solutions are also evolving
 - On-chip processor cores
 - Multi-million gate capacity
 - FPGA-based SoC -type platforms thus have a growing niche
- System-on-a-Programmable Chip (SOPC) term coined by Synopsys
- Platform FPGA, Programmable System-on-Chip (PSOC) or System-on-Reconfigurable-Chip (SORC) are alternative names for these solutions

Paradigm Shift in SoC Design

System on a chip

System on a board

SoC design process

Add user logic

Problem: Reduce Cost, Complexity & Power

System On A Programmable Chip (SOPC)

CPU is a Critical Control Function Required for System-Level Integration

Traditional Embedded System

Next Step...

Configurable System on a Chip (CSoC)

Reconfigurable System on a Chip (SoC)

How to build such a system?

- . Overview:
- → Xilinx EDK / MicroBlaze Soft CPU core
- → Design- / Tool-Flow

2. Demonstration:

- → Create a simple system
- → Implement the system on a Xilinx Virtex 7/Kintex 7 FPGAs