Università degli Studi dell'Aquila

Prova Scritta di Algoritmi e Strutture Dati con Laboratorio

Martedì 14 giugno 2022 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la × erroneamente apposta (ovvero, in questo modo ⊗) e rifare la x sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. Quale delle seguenti relazioni di ricorrenza descrive la complessità dell'algoritmo più efficiente per il calcolo della sequenza di Fibonacci basato sul prodotto di matrici?
 - a) T(n) = 2T(n/2) + O(1) se $n \ge 2$, T(1) = O(1) se n = 1b) T(n) = 2T(n/4) + O(1) so $n \ge 2$, T(1) = O(1) so n = 1*c) T(n) = T(n/2) + O(1) se $n \ge 2$, T(1) = O(1) se n = 1d) T(n) = 2T(n/2) + O(1) so $n \ge 2$, T(1) = O(n) so n = 1
- 2. Sia f(n) il costo dell'algoritmo Insertion Sort 2 nel caso migliore, e sia g(n) il costo dell'algoritmo Merge Sort nel caso medio. Quale delle seguenti relazioni asintotiche è vera:
 - c) $f(n) = \omega(g(n))$ d) $f(n) = \Omega(g(n))$ *a) f(n) = o(g(n))b) $f(n) = \Theta(g(n))$
- 3. Quale delle seguenti implicazioni è falsa:
 - a) $f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$ *b) $f(n) = O(g(n)) \Rightarrow f(n) = o(g(n))$ c) $f(n) = \Theta(g(n)) \Rightarrow g(n) = \Omega(f(n))$ d) $f(n) = o(g(n)) \Rightarrow g(n) = \omega(f(n))$
- 4. Si consideri l'algoritmo di ricerca di un elemento in un insieme non ordinato di n elementi. Quale delle seguenti opzioni descrive in modo preciso il numero di confronti nel caso migliore, peggiore e medio?
 - a) $T_{\text{best}}(n) = 1$, $T_{\text{worst}}(n) = n$, $T_{\text{avg}}(n) = n/2$ *b) $T_{\text{best}}(n) = 1$, $T_{\text{worst}}(n) = n$, $T_{\text{avg}}(n) = (n+1)/2$
 - c) $T_{\text{best}}(n) = O(1), T_{\text{worst}}(n) = n, T_{\text{avg}}(n) = (n+1)/2$ d) $T_{\text{best}}(n) = 1, T_{\text{worst}}(n) = O(n), T_{\text{avg}}(n) = (n+1)/2$
- 5. Dato un heap binomiale H di n elementi, quale delle seguenti affermazioni è vera:
 - *a) Il grado della radice di ogni albero in $H \in O(\log n)$, e il numero di elementi di qualche albero in $H \in O(n)$;
 - b) Il grado della radice di ogni albero in $H \in \Theta(\log n)$, e il numero di elementi di qualche albero in $H \in \Theta(\log n)$;
 - c) Il grado della radice di ogni albero in $H \in \Theta(\log n)$, e il numero di elementi di ogni albero in $H \in \Theta(\log n)$;
 - d) Il grado della radice di ogni albero in $H \in O(\log n)$, e il numero di elementi di ogni albero in $H \in O(\log n)$.
- 6. Dato un albero AVL T contenente n elementi, si consideri la cancellazione di una sequenza di $n/\log n$ elementi da T. L'altezza dell'AVL risultante è:
 - c) $\Theta(\log^2 n)$ b) $\Theta(n/\log n)$ *d) $O(\log n)$ a) $\Theta(n)$
- 7. Sia d_{xy}^k il costo di un cammino minimo k-vincolato da x a y, secondo la definizione di Floyd e Warshall, e sia d_{xy} la distanza tra x e y. Quale tra le seguenti relazioni è falsa? a) $d_{xy}^k = \min\{d_{xy}^{k-1}, d_{xv_k}^{k-1} + d_{v_ky}^{k-1}\}$ *b) $d_{xy}^0 = 0$ c) $d_{xv_k}^k = d_{xv_k}^{k-1}$ d) $d_{xy}^n = d_{xy}$
- 8. Nel problema della gestione di insiemi disgiunti, quale tra le diverse implementazioni proposte garantisce di poter eseguire in ammortizzato la Union in $O(\log n)$ e nel caso peggiore la Find in O(1)?
 - a) nessuna *b) QuickFind con union by size c) QuickUnion con union by rank d) QuickUnion con union by size
- 9. Dato il grafo G di Domanda 10, quale delle seguenti affermazioni è falsa?
 - *a) Il grafo non è euleriano b) L'altezza dell'albero dei cammini minimi radicato in v_1 è 2
 - c) Il grafo non è bipartito d) Il grafo è planare
- 10. Dato il grafo G in figura, qual è il peso del minimo albero ricoprente del sottografo di G indotto dai vertici $\{v_1, v_2, v_3, v_4\}$?
 - a) 3
 - c) 49 d) Non è definito perché il grafo è disconnesso

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										

