중2 5단원

1. 다음 그림의 평행사변형 ABCD에서 $\angle A$, $\angle D$ 의 이등분 선이 \overline{BC} 와 만나는 점을 각각 E, F라 한다. $\overline{AB}=6$, $\overline{AD}=8$, $\angle OEC=115\,^\circ$ 일 때, x+y의 값은?

- ① 119
- ② 129
- ③ 139
- 4 149
- **⑤** 159
- 2. 그림과 같은 평행사변형 ABCD에 대해 \langle 보기 \rangle 에서 옳은 것을 모두 고르면? (단, 점 O는 두 대각선 AC와 BD의 교점이다.)

<보기>

- $\neg . \overline{AB} = \overline{DA}$
- $\perp . \ \overline{AB}//\overline{CD}$
- \Box . $\overline{OB} = \overline{OC}$
- $\exists . \ \overline{AC} \bot \overline{BD}$
- \Box . $\angle B = \angle D$
- $_{-}$ $_{-}$
- ① 7, L, [
- ② ∟, ⊏, ≥
- ③ ∟, ≥, □
- ④ ㄷ, ㄹ, ㅂ
- ⑤ ㄴ, ㅁ, ㅂ
- 3. 다음 그림의 평행사변형 ABCD에서 \overline{DF} 는 $\angle D$ 의 이등분 선이고, $\overline{AE}\bot\overline{DF}$ 일 때, \overline{FE} 의 길이는?

- ① 1cm
- ② 2cm
- ③ 3cm
- (4) 4 cm
- (5) 5 cm

4. 다음은 '평행사변형의 두 쌍의 대변의 길이는 각각 같다.' 를 설명하는 과정이다. ⑦~@에 알맞은 것끼리 짝지어진 것 은?

평행사변형 ABCD에서 대각선 AC를 그으면

 $\triangle ABC$ 와 $\triangle CDA$ 에서

 $\overline{AB}//\overline{DC}$ 이고, $\overline{AD}//\overline{BC}$ 이므로

 $\angle BAC = \angle DCA (\bigcirc)$

∠ *ACB* = ① (엇각)

 \overline{AC} 는 공통인 변

 $\triangle ABC \equiv \triangle CDA (\bigcirc)$

따라서 $\overline{AB} = \overline{CD}$, $\overline{BC} = \boxed{2}$ 이므로

평행사변형 *ABCD*의 두 쌍의 대변의 길이는 각각 같다.

- ① \bigcirc 동위각 \bigcirc \angle DCA \bigcirc ASA합동 \bigcirc \overline{DA}
- ② \bigcirc 동위각 \bigcirc \angle CAD \bigcirc SAS합동 \bigcirc \overline{DA}
- ③ \bigcirc 엇각 \bigcirc \angle DCA \bigcirc SSS합동 \bigcirc \overline{DC}
- ④ ① 엇각 $\mathbb{Q} \angle CDA$ $\mathbb{Q} SAS$ 합동 $\mathbb{Q} \overline{DC}$
- ⑤ \bigcirc 엇각 \bigcirc \angle CAD \bigcirc ASA합동 \bigcirc \overline{DA}
- 5. 평행사변형 ABCD에서 $\angle A: \angle B=3:2$ 이고, \overline{AP} 는 $\angle DAB$ 의 이등분선일 때, $\angle APC$ 의 크기는?

- ① 120°
- ② 126°
- 3 130°
- 4 136°
- ⑤ 140°
- 6. 평행사변형 ABCD에서 x와 y의 값으로 잘 짝지어진 것은?

- ① x = 55, y = 4
- ② x = 60, y = 4
- ③ x = 60, y = 5
- 4 x = 65, y = 4
- ⑤ x = 65, y = 5

 $\overline{AC}+\overline{BD}=38\,\mathrm{cm}$ 일 때, $\triangle AOD$ 의 둘레의 길이는?

- ① 27 cm
- ② 26 cm
- ③ 25 cm
- 4 24 cm
- ⑤ 23 cm
- 8. 다음 그림과 같은 평행사변형 ABCD에서 $\angle A$ 의 이등분 선이 \overline{BC} 와 만나는 점이 E이고 $\angle AEB = 56$ 일 때, $\angle D$ 의 크기는?

- ① 60°
- ② 68°
- 3 70°
- 4 72°
- ⑤ 78°
- 9. 다음 그림과 같은 평행사변형 \overline{ABCD} 에서 $\overline{BC} = 2\overline{AB}$ 이고 $\overline{BM} = \overline{MC}$ 일 때, $\angle x$ 의 크기는?

- ① 60°
- 2 70°
- 3 80°
- (4) 85°
- ⑤ 90°
- 10. 그림과 같은 평행사변형에서 x+y의 값은?

- ① 11
- ② 28
- 3 67
- 4 124
- (5) 180

7. 평행사변형 ABCD 두 대각선의 교점을 O라고 하자. 11. 평행사변형 ABCD에서 두 대각선의 교점을 O라고 하자. \overline{AC} + \overline{BD} = 22 cm일 때, $\triangle AOD$ 의 둘레의 길이는?

- ① 18 cm
- ② 19cm
- 3 20 cm
- 4 21 cm
- ⑤ 22 cm
- 12. 평행사변형 ABCD에서 점 E는 \overline{CD} 의 중점이고, \overline{AE} 의 연장선과 \overline{BC} 의 연장선이 만나는 점을 F, \overline{AB} =8, \overline{AD} =6 이라 할 때, \overline{BF} 의 길이는?

- ① 11
- 2 12
- ③ 13 **⑤** 15
- 4 14
- 13. 평행사변형 ABCD에서 $\angle B$ 의 이등분선이 변 CD의 연 장선과 만나는 점을 점 E라고 하자. \overline{AB} =7, \overline{BC} =10일 때, \overline{DE} 의 길이는?

- 1.5
- $\bigcirc 2$
- 32.5
- (4) 3
- **⑤** 3.5

14. 평행사변형 ABCD에서 x, y의 값은?

- ① x = 4, y = 7
- ② x = 6, y = 3
- 3 x = 7, y = 4
- 4 x = 7, y = 5
- ⑤ x = 9, y = 5
- 15. 다음 그림의 평행사변형 ABCD에서 \overline{DE} 가 $\angle D$ 의 이동 분선이고, \overline{AB} = 7cm, \overline{AD} = 12cm일 때, \overline{BE} 의 길이는?

- ① 5cm
- ② $\frac{11}{2}$ cm
- 3 6 cm
- $4 \frac{13}{2} \text{ cm}$
- ⑤ 7cm
- 16. 그림과 같이 평행사변형 ABCD에서 $\overline{AB} = 8 \, \mathrm{cm}$, \overline{BC} = $12 \, \mathrm{cm}$ 이고 \overline{BE} , \overline{DF} 는 각각 $\angle B$, $\angle D$ 의 이동분선일 때, \overline{BF} 의 길이는?

- ① 1cm
- ② 2 cm
- 3 3 cm
- 4 cm
- ⑤ 5cm
- 17. 그림과 같은 평행사변형 ABCD에서 $\angle A$ 와 $\angle B$ 의 크기 의 비가 5:4일 때, ∠*D*의 크기는?

- ① 60°
- 270°
- 3 80°
- 4) 90°
- ⑤ 100°

18. 그림과 같은 $\Box ABCD$ 에서 두 대각선의 교점이 O이고, $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$ 일 때, $\angle BCD$ 의 크기는?

- ① 85°
- ② 90°
- ③ 95°
- (4) 100°
- ⑤ 105°
- 19. 평행사변형 ABCD에서 x+y의 값은?

- 1 70
- ② 72
- 3 73
- 4 77
- (5) 78
- 20. 평행사변형 ABCD에서 점 O는 두 대각선의 교점일 때, $\triangle AOD$ 의 둘레의 길이는?

- ① 24
- ② 26
- 3 28
- **4** 30
- ⑤ 32
- 21. 평행사변형 ABCD에서 점 O는 두 대각선의 교점이며, $\angle A = 110^{\circ}$, $\angle OCD = 70^{\circ}$, $\overline{BO} = 5 \text{ cm}$ 이다. 이때 x + a의 값은?

- ① 35
- 2 40
- 3 45
- **4** 50
- **⑤** 55

22. 평행사변형 ABCD에서 $\angle A$ 의 이등분선과 \overline{DC} 의 연장선 이 만나는 점을 E라고 할 때, $\angle ABC$ 의 크기는?

- ① 55°
- ② 60°
- 365°
- (4) 70°
- ⑤ 75°
- 23. 평행사변형 ABCD에서 $\angle A$ 와 $\angle B$ 의 이등분선이 만나는 점을 P라고 할 때, $\angle y \angle x$ 의 크기는?

- ① 20°
- ② 30°
- ③ 40°
- ④ 50°
- ⑤ 60°
- **24.** 평행사변형 *ABCD*에서 ∠*ABO*=40°, ∠*DCO*=60°이 고, ∠*OBC*:∠*OCB*=2:3일 때, ∠*OBC*의 크기는?

- ① $32\degree$
- ② 48°
- 350°
- ④ 52°
- ⑤ 60°
- 25. 그림의 평행사변형 ABCD에서 $\overline{AB}=10\,\mathrm{cm}$, $\overline{BD}=18\,\mathrm{cm}$ 이고 $\triangle OAB$ 의 둘레의 길이가 $24\,\mathrm{cm}$ 일 때, \overline{AC} 의 길이는? (단, 점 O는 두 대각선의 교점이다.)

- ① 5cm
- ② 10 cm
- ③ 11 cm
- 4 12 cm
- ⑤ 15 cm
- 26. 그림과 같은 평행사변형 ABCD에서 a+b-x의 값은?

- ① 59
- ② 61
- 3 66
- **4** 70
- **⑤** 75
- 27. 다음 그림과 같은 평행사변형 ABCD에서 \overline{BC} 의 길이를 구하면?

- ① 16
- 2 17
- ③ 18
- 4) 19
- (5) 20
- 28. 다음 그림과 같은 평행사변형 ABCD에서 x값은?

1 6

- 2 7
- 3 8
- **4** 9
- **⑤** 10
- 29. 평행사변형 ABCD의 설명으로 옳지 않은 것은? (단, 점 O는 두 대각선의 교점)
 - ① $\overline{AD} = \overline{AB}$
- $\bigcirc \overline{AO} = \overline{CO}$
- \bigcirc $\angle ABC = \angle CDA$
- $\textcircled{4} \angle BAC = \angle DCA$
- \bigcirc $\triangle AOD \equiv \triangle COB$

30. 평행사변형 ABCD에서 두 대각선의 교점을 O라 하고, $\angle BAC = 50\degree$, $\angle BDC = 40\degree$ 일 때, $\angle x + \angle y$ 의 크기는?

- ① 80°
- ② 85°
- ③ 90°
- (4) 95°
- ⑤ 100°

- ① 60
- 2 64
- 3 66
- **4**) 68
- (5) 70
- 32. 평행사변형 ABCD의 둘레의 길이는 $28\,\mathrm{cm}$ 이고, $\overline{AB}:\overline{AD}\!\!=\!3\!:\!4$ 일 때, \overline{CD} 의 길이는?
 - ① 3cm
- ② 4cm
- 3 5cm
- 4 6cm
- ⑤ 8cm
- 33. 평행사변형 ABCD의 둘레의 길이가 $28\,\mathrm{cm}$ 이고, $\overline{AD}:\overline{DC}=4:3$ 일 때, \overline{BC} 의 길이는?

- ① 2cm
- ② 4 cm
- 3 6cm
- 4 8cm
- ⑤ 10 cm

34. 평행사변형 ABCD에서 $\angle ADB = 42^\circ$, $\angle ACB = 56^\circ$ 일 때, y+z의 값은?

- ① 82
- ② 83
- 3 84
- 4 85
- **⑤** 86
- 35. 그림의 평행사변형 ABCD에서 두 대각선의 교점을 O라 할 때, 옳지 않은 것은?

- ① $\overline{OA} = \overline{OC}$
- ② $\angle DAC = \angle BCA$
- \bigcirc $\overline{AB} = \overline{DC}, \overline{AB}//\overline{DC}$
- $\textcircled{4} \angle A = \angle C, \angle B = \angle D$
- \bigcirc $\triangle A + \triangle B = 180^{\circ}$, $\triangle A + \triangle C = 180^{\circ}$
- 36. 평행사변형 ABCD에서 $\angle A: \angle B=1:2$ 일 때, $\angle A$ 의 크 기는?
 - ① 30°
- ② 40°
- ③ 50°
- 4) 60°
- ⑤ 70°
- 37. 평행사변형 ABCD에서 $\angle A$, $\angle B$ 의 이등분선이 \overline{BC} , \overline{AD} 와 만나는 점을 각각 E, F라고 할 때, $\angle x$ 의 크기는?

- ① 140°
- ② 145 $^{\circ}$
- 3150°
- 4 155°
- ⑤ 160°

38. 평행사변형 ABCD에서 $\angle ABC = 70^{\circ}$, $\overline{AC} = 16$, $\overline{AD} = 12$ 일 때, 옳은 것은?

- ① $\overline{AO} = 8$
- $\bigcirc \overline{DO} = 8$
- $\overline{3} \overline{AB} = 12$
- $4) \angle ADB = 35^{\circ}$
- \bigcirc $\angle BCD = 100^{\circ}$
- 39. 그림과 같은 평행사변형 ABCD에서 점 O는 두 대각선 의 교점이고, $\overline{CD}=14\,\mathrm{cm}$, $\overline{AC}=16\,\mathrm{cm}$, $\overline{BD}=20\,\mathrm{cm}$ 일 때, $\triangle OAB$ 의 둘레의 길이는?

- ① 32 cm
- ② 34 cm
- ③ 36 cm
- 4 38 cm
- ⑤ 40 cm
- 40. 평행사변형 ABCD에서 $\overline{AD} = \overline{AE}$, $\angle DAE = 30\,^{\circ}$ 일 때, $\angle BAE$ 의 크기는?

- ① 65°
- ② 70°
- 3 75°
- 4 80°
- ⑤ 85°
- 41. $\Box ABCD$ 에서 $\overline{AB} = 5$, $\overline{CD} = 5$, $\overline{AD} = 7$, $\overline{BC} = 7$, $\angle A = 130\degree$ 일 때, x의 값은?

- 1 45
- $\bigcirc 50$
- 3 55
- 4 60
- **⑤** 65

42. 다음 그림의 평행사변형 ABCD에서 $\angle A$ 와 $\angle B$ 의 이등 분선의 교점이 O이고 $\angle BFD = 145\,^{\circ}$ 일 때, $\angle AEC$ 의 크기는?

- ① 120°
- ② $125\degree$
- 4 135°
- \bigcirc 140 $^{\circ}$
- 43. 평행사변형 ABCD에서 두 대각선의 교점을 O라 하고, \overline{AD} = $9\,\mathrm{cm}$, \overline{AC} = $11\,\mathrm{cm}$, \overline{BD} = $15\,\mathrm{cm}$ 일 때, ΔBCO 의 둘레 의 길이는?

- ① 17.5 cm
- ② 19cm
- ③ 22 cm
- 4 23.5 cm
- ⑤ 24 cm
- 44. 평행사변형 ABCD에서 $\angle A$ 와 $\angle C$ 의 이등분선이 \overline{BC} , \overline{AD} 와 만나는 점을 각각 E, F라 한다. \overline{AD} = $18\,\mathrm{cm}$, \overline{AB} = $14\,\mathrm{cm}$, $\angle B$ = $60\,^{\circ}$ 일 때, $\Box AECF$ 의 둘레의 길이는?

- ① 20 cm
- ② 24 cm
- ③ 28 cm
- 4 32 cm
- ⑤ 36 cm

45. 그림의 평행사변형 ABCD에서 $\angle D=70\,^\circ$, $\angle APB=90\,^\circ$ 이고 $\angle DAP=\angle BAP$ 일 때, $\angle PBC$ 의 크기는?

- ① 35°
- \bigcirc 40 $^{\circ}$
- 345°
- 4 50°
- (5) 55°
- 46. 다음 그림과 같은 평행사변형 ABCD에서 $\angle x$ 의 크기를 바르게 적은 것은?

- ① (a): 65, (b): 95
- ② (a): 65, (b): 100
- ③ (a): 65, (b): 105
- (a): 70, (b): 100
- ⑤ (a): 70, (b): 105
- 47. 그림과 같은 $\square ABCD$ 에서 $\angle A = \angle C$, $\angle B = \angle D$ 일 때, x의 값은?

① 1

② 2

- 3 3
- 4
- **⑤** 5
- 48. 그림과 같은 평행사변형 ABCD에서 \overline{AF} 와 \overline{DE} 는 각각 $\angle A$ 와 $\angle D$ 의 이등분선이다. 평행사변형 ABCD의 둘레의 길이가 $30\,\mathrm{cm}$ 이고, $\overline{AB}:\overline{AD}=2:3$ 일 때, \overline{EF} 의 길이를 구하면?

- ① 6cm
- ② 5 cm
- 3 4 cm
- 4 3cm
- ⑤ 2 cm

49. 평행사변형 ABCD에서 $\angle B$ 의 이등분선이 변 CD의 연 장선과 만나는 점을 E라고 할 때 x의 값은?

① 1

② 2

3

4

- **⑤** 5
- 50. 그림과 같은 평행사변형 ABCD의 두 대각선의 교점을 O라 하면 \overline{AO} = $4\,\mathrm{cm}$, \overline{BO} = $8\,\mathrm{cm}$ 이다. $\angle DBC$ 의 이등분선 과 \overline{AD} 의 연장선의 교점을 E라 할 때, \overline{DE} 의 길이는?

- ① 14 cm
- ② 15cm
- ③ 16 cm
- 4 17cm
- ⑤ 18 cm
- 51. 그림과 같이 평행사변형 ABCD에서 $\overline{AD}=5$, $\overline{BD}=6$ 일 때, x+y의 값은?

- 1 8
- 2 9
- 3 10
- 4 11
- **⑤** 12

52. 다음 그림과 같은 평행사변형 ABCD에서 $\angle A$ 와 $\angle B$ 의 크기의 비가 5:4일 때, $\angle C$ 의 크기는?

- ① 80°
- ② 85°
- 3 90°
- 4 95°
- \bigcirc 100 $^{\circ}$
- 53. 그림과 같이 평행사변형 ABCD에서 $\overline{CD}=12\,\mathrm{cm}$, $\angle D=70\,^\circ$ 일 때, x+y의 값을 구하면?

- 111
- ② 115
- 3 120
- 4 122
- ⑤ 125
- 54. 그림에서 $\square ABCD$ 는 평행사변형이다. $\angle BAD$ 와 $\angle ADC$ 의 크기의 비가 5:4일 때, $\angle x$ 의 크기로 알맞은 것은?

- ① 60°
- ② 65°
- 3 70°
- 4 75°
- ⑤ 80°
- 55. 다음 그림과 같은 평행사변형 ABCD에서 $\angle A = 98^{\circ}$, $\overline{DC} = \overline{EC}$ 일 때, $\angle ECB$ 의 크기는?

- ① $16\degree$
- ② 64°
- 3 78°
- 4 82°
- ⑤ 98°

56. 그림과 같은 평행사변형 ABCD에서 \overline{CD} 의 길이는?

- ① 2 cm
- ② 4cm
- 3 6cm
- (4) 8 cm
- ⑤ 10 cm
- 57. 그림과 같은 평행사변형 ABCD에서 \overline{CD} 의 중점을 M, \overline{AM} 의 연장선과 \overline{BC} 의 연장선의 교점을 P라고 하자. \overline{AD} = $4 \mathrm{cm}$ 일 때, \overline{BP} 의 길이는?

- ① 7cm
- 2 8 cm
- 3 9cm
- 4 10cm
- ⑤ 11 cm

58. 그림과 같이 평행사변형 ABCD에서 $\angle A$, $\angle D$ 의 이등분 선과 \overline{BC} 의 교점을 각각 E, F라 하고 \overline{AE} 와 \overline{DF} 의 교점을 검 G라 하면 $\angle EGF = 90\,^\circ$ 이다. $\overline{AB} = 5\,\mathrm{cm}$, $\overline{AD} = 8\,\mathrm{cm}$ 일 때, \overline{EF} 의 길이는?

- ① 1cm
- ② 2 cm
- 3 3cm
- 4 cm
- ⑤ 5cm

59. 다음 그림의 평행사변형 ABCD에서 $\angle x + \angle y$ 의 크기를 구하여라.

- ① 100°
- 2110°
- 3120°
- (4) 130°
- ⑤ 140°
- 60. 평행사변형 ABCD에서 $\angle EDC = \frac{1}{3} \angle ADC$ 인 점 E를 변 BC 위에 잡고, A에서 \overline{DE} 에 내린 수선의 발을 G라 한다. $\angle BAG = 72\,^\circ$ 일 때, $\angle B$ 의 크기를 구하면?

- ① 50°
- \bigcirc 54 $^{\circ}$
- ③ 56°
- (4) 60°
- ⑤ 64°
- 61. $\Box ABCD$ 가 평행사변형이 되는 것만을 \langle 보기 \rangle 에서 고른 것은? (단, 점 O는 두 대각선 AC, BD의 교점이다.)
 - \neg . $\angle A = 120^{\circ}$, $\angle B = 60^{\circ}$, $\overline{AD}//\overline{BC}$
 - \bot . $\angle A + \angle B = 180^{\circ}$, $\angle A + \angle D = 180^{\circ}$
 - \Box . \overline{AO} =5cm, \overline{BO} =4cm, \overline{CO} =5cm, \overline{DO} =4cm
 - $\equiv . \overline{AB} = 4 \text{ cm}. \overline{BC} = 4 \text{ cm}. \overline{CD} = 6 \text{ cm}. \overline{DA} = 6 \text{ cm}$
 - □. \overline{AD} =8cm, \overline{BC} =8cm, $\angle DAC$ =60°, $\angle BCA$ =60°
 - ① 7, L, Z
- ② ¬, ⊏, □
- ③ ∟, ⊏, ≥
- ④ ∟, ⊏, □
- ⑤ ㄷ, ㄹ, ㅁ
- 62. 다음 중 $\Box ABCD$ 가 평행사변형이 되는 것은? (단, 점 O는 두 대각선의 교점이다.)
 - ① $\overline{AB}//\overline{DC}$, $\overline{AB} = \overline{DC} = 4 \text{ cm}$
 - ② $\overline{AB} = \overline{BC} = 5 \text{ cm}, \overline{CD} = \overline{DA} = 7 \text{ cm}$
 - $\overline{AB} = 5 \text{ cm}, \overline{BC} = 7 \text{ cm}, \overline{CD} = 5 \text{ cm}$
 - $\textcircled{4} \angle A = 110^{\circ}, \angle B = 70^{\circ}, \angle C = 70^{\circ}$
 - $\bigcirc \overline{OA} = 4 \text{ cm}, \overline{OB} = 6 \text{ cm}, \overline{OC} = 6 \text{ cm}, \overline{OD} = 4 \text{ cm}$

63. 다음은 □*ABCD*가 평행사변형일 때, □*EBFD*가 평행사 변형임을 설명하는 과정이다. (가)~(마) 중 옳은 것은?

 $\overline{AB} = \boxed{(7)} \cdots \bigcirc$

 $\angle BAE = \boxed{(\ \ \)} \cdots \bigcirc$

 $\angle BEA = \angle DFC \cdots \bigcirc$

①, ①, ©에서

 $\triangle ABE =$ (다) 이므로 $\overline{BE} =$ (라) \cdots ②

 $\angle BEF = \boxed{(마)}$ 이므로 $\overline{BE}/\sqrt{(라)} \cdots$ \bigcirc

②, ◎에서 한 쌍의 대변이 평행하고 그 길이가 같다.

따라서, □*EBFD*는 평행사변형이다.

- ① (7): \overline{AD}
- ② (나): ∠ DCF
- ③ (다) : $\triangle ADE$
- ④ (라) : \overline{CD}
- ⑤ (□): ∠ *DEF*
- 64. $\Box ABCD$ 에서 $\overline{AD}//\overline{BC}$ 이고 $\overline{AD}=\overline{BC}$ 일 때, $\Box ABCD$ 가 평행사변형임을 설명하는 과정이다. 다음 빈 칸에 알맞은 것을 써넣은 것은?

- $\square ABCD$ 에서 대각선 AC를 그으면,
- $\triangle ABC$ 와 $\triangle CDA$ 에서

 $\overline{BC} = \boxed{(7)}$

..... ⊖

∠ACB= (나)

.....∟

(다) 는 공통이다. ······ ©

○, ○, ○에 의하여

 $\triangle ABC \equiv \triangle CDA (SAS$ 합동)이므로

 $\angle BAC = (라)$ 이다.

따라서 평행선과 엇각의 성질에 의하여

 $\overline{AB}//$ (P)

즉, 두 쌍의 대변이 각각 평행하므로

 $\square ABCD$ 는 평행사변형이다.

① (7): \overline{CD}

② (나): ∠ACD

③ (다) : \overline{AB}

④ (라): ∠ DCA

 \bigcirc (\square); \overline{AD}

65. 다음 중 그림의 사각형 *ABCD*가 평행사변형이 될 수 <u>없</u> 는 것은? (단, *O*는 두 대각선의 교점이다.)

- ① $\overline{AB} = \overline{DC}$, $\overline{AD}//\overline{BC}$
- $\bigcirc \overline{AD}//\overline{BC}, \overline{AB}//\overline{DC}$
- $\overline{AB} = \overline{DC}$. $\overline{AD} = \overline{BC}$
- $\bigcirc \overline{OA} = \overline{OC}, \overline{OB} = \overline{OD}$
- \bigcirc $\angle A = \angle C, \angle B = \angle D$

66. □ ABCD가 평행사변형이 되지 않는 것은?

- ① $\overline{AB}//\overline{DC}$, $\overline{AB} = \overline{DC} = 3 \text{ cm}$
- ② $\overline{AB} = \overline{BC} = 7 \text{ cm}, \ \overline{AC} \perp \overline{BD}$
- \bigcirc $\triangle A = \triangle C = 60^{\circ}, \triangle B = 120^{\circ}$
- $\overline{AB} = \overline{DC} = 3 \text{ cm}, \overline{AD} = \overline{BC} = 5 \text{ cm}$
- \bigcirc $\triangle A = 120^{\circ}$, $\triangle B = 60^{\circ}$, $\overline{AD} = \overline{BC} = 5 \text{ cm}$

67. 다음의 사각형이 평행사변형이 되는 이유로 옳은 것은?

- ① 두 쌍의 대변이 각각 평행하다.
- ② 두 쌍의 대변의 길이가 각각 같다.
- ③ 두 쌍의 대각의 크기가 각각 같다.
- ④ 한 쌍의 대변이 평행하고 그 길이가 같다.
- ⑤ 두 대각선이 서로 다른 것을 이등분한다.

68. 사각형에서 평행사변형이 되기 위한 조건이 <u>아닌</u> 것은?

- ① 두 대각선이 서로 수직이다.
- ② 두 쌍의 대변이 각각 평행하다.
- ③ 두 쌍의 대변의 길이가 각각 같다.
- ④ 두 쌍의 대각의 크기가 각각 같다.
- ⑤ 한 쌍의 대변이 평행하고 그 길이가 같다.

69. □ *ABCD*가 평행사변형인 것을 <보기>에서 모두 고른 것은? (단, 점 *O*는 두 대각선의 교점이다.)

- ① 7, ∟
- ② 7, ⊏
- ③ ∟, ⊏
- ④ ∟, ≥
- ⑤ ⊏, ≥

70. □*ABCD*가 평행사변형인 것은? (단, 점 *O*는 두 대각선 의 교점이다.)

- ① $\angle A = \angle D = 120^{\circ}$, $\angle B = \angle C = 60^{\circ}$
- ② $\overline{AO} = \overline{BO} = 3 \text{ cm}$. $\overline{CO} = \overline{DO} = 5 \text{ cm}$
- ③ $\overline{AB} = \overline{CD} = 6 \text{ cm}$, $\overline{AD} = \overline{BC} = 4 \text{ cm}$
- 4 $\overline{AB} = \overline{BC} = 4 \text{ cm}, \overline{AD} = \overline{DC} = 5 \text{ cm}$
- $\overline{AB} = \overline{AD} = 5 \text{ cm}$. $\overline{BC} = 7 \text{ cm}$. $\overline{AD} / \overline{BC}$

71. 다음 중 $\Box ABCD$ 가 보기에서 평행사변형인 것을 모두 찾으면?

- $\neg . \overline{AB} = 5 \text{ cm}, \overline{BC} = 5 \text{ cm}, \overline{CD} = 8 \text{ cm}, \overline{DA} = 8 \text{ cm}$
- \perp . $\overline{AB}//\overline{DC}$, $\overline{AB}=6$ cm, $\overline{DC}=6$ cm
- \Box . $\angle A = 60^{\circ}$. $\angle B = 120^{\circ}$. $\overline{AD} = 7 \text{ cm}$. $\overline{BC} = 7 \text{ cm}$
- \exists . $\angle A = 100^{\circ}$, $\angle B = 80^{\circ}$
- ① ¬. ∟
- ② ∟, ⊏
- ③ ∟, ⊏, ≥
- ④ 7, ∟, ≥
- ⑤ 7, ∟, ⊏, ≥

72. 사각형 ABCD가 평행사변형이 되지 않는 것은?

- ① $\overline{AB} = \overline{BC} = 5 \text{ cm}, \ \overline{AC} \perp \overline{BD}$
- ② $\overline{AB}//\overline{DC}$. $\overline{AB} = \overline{DC} = 5 \text{ cm}$
- \bigcirc $\angle A = \angle C = 70^{\circ}, \angle B = 110^{\circ}$
- 4 $\overline{AB} = \overline{DC} = 4 \text{ cm}, \overline{AD} = \overline{BC} = 5 \text{ cm}$
- $\triangle A = 120^{\circ}$, $\angle B = 60^{\circ}$, $\overline{AD} = \overline{BC} = 6 \text{ cm}$

73. 그림과 같이 사각형 ABCD가 평행사변형이 되는 조건 인 것을 고르면? (단, 점 O는 두 대각선의 교점이다.)

- ① $\angle BAD = \angle ADC$
- ② $\overline{OA} = \overline{OC} = 4 \text{ cm}, \ \overline{OB} = \overline{OD} = 6 \text{ cm}$
- $\overline{AB} = \overline{BC} = 6 \text{ cm}, \ \overline{CD} = \overline{DA} = 10 \text{ cm}$
- 4 $\angle BAD = 100^{\circ}$, $\angle ABC = 70^{\circ}$, $\angle BCD = 100^{\circ}$
- \bigcirc $\triangle BAD + \triangle BCD = 180^{\circ}$, $\triangle ABC = \triangle ADC$
- 74. 다음 보기 중 $\Box ABCD$ 가 평행사변형인 것을 모두 고르면? (단, 점 O는 두 대각선의 교점이다.)

<보기>

- \neg . $\angle A = \angle C = 100^{\circ}$, $\angle B = 80^{\circ}$
- \bot . $\overline{AB} = \overline{CD} = 5 \text{ cm}$, $\overline{BC} = \overline{DA} = 3 \text{ cm}$
- \Box . $\overline{OA} = \overline{OC} = 4 \text{ cm}$. $\overline{OB} = \overline{OD} = 5 \text{ cm}$
- $\equiv \overline{AB} = \overline{AD} = 7 \text{ cm}, \ \overline{BC} = 8 \text{ cm}, \ \overline{AD} / / \overline{BC}$
- ① ¬, ∟
- ② 7, ⊏
- ③ ∟, ⊏
- ④ ¬, ∟, ⊏
- ⑤ ㄴ, ㄷ, ㄹ
- 75. 항상 평행사변형이 되는 것이 <u>아닌</u> 것은?

- 76. $\Box ABCD$ 가 평행사변형이 <u>아닌</u> 것은? (단, 점 O는 두 대각선의 교점이다.)
 - ① $\overline{AB} = \overline{DC} = 3 \text{ cm}, \ \overline{AD} / / \overline{BC}$
 - ② $\overline{AB} = \overline{DC} = 7 \text{ cm}, \overline{AB} / / \overline{DC}$
 - ③ $\overline{OA} = \overline{OC} = 3 \text{ cm}, \overline{OB} = \overline{OD} = 5 \text{ cm}$
 - 4 $\overline{AB} = \overline{DC} = 2 \text{ cm}, \ \angle A + \angle D = 180^{\circ}$
 - \bigcirc $\angle B = \angle D = 100^{\circ}$, $\angle A = \angle C = 80^{\circ}$

- 77. 다음 중 $\Box ABCD$ 가 평행사변형이 되지 <u>않는</u> 것은? (단, 점 O는 두 대각선의 교점)
 - ① $\angle A = \angle C$, $\angle B = \angle D$
 - ② $\overline{AD}//\overline{BC}$, $\overline{AD} = \overline{BC}$
 - \bigcirc $\overline{AB} = \overline{CD}, \overline{AD} = \overline{BC}$
 - 4 $\overline{AC} = \overline{BD}$, $\overline{AC} \perp \overline{BD}$
 - $\overline{AC} = 2\overline{AO}, \overline{BD} = 2\overline{BO}$
- 78. $\Box ABCD$ 가 평행사변형이 되는 조건으로 옳은 것만을 $\langle 보기 \rangle$ 에서 있는 대로 모두 고른 것은?

<보기>

- $\neg. \ \overline{AB}//\overline{CD}, \ \overline{AB} = \overline{CD}$
- \vdash . $\overline{AB} = \overline{AD}$. $\overline{CD} = \overline{BC}$
- \Box . $\angle A = \angle C = 70^{\circ}$, $\angle B = \angle D = 110^{\circ}$
- $\exists . \overline{AB} = \overline{AD}, \angle A = 110^{\circ}, \angle B = 70^{\circ}$
- \Box . $\angle DBC = \angle ADB = 50^{\circ}$, $\overline{AB} = \overline{CD} = 8 \text{ cm}$
- ① ¬, ⊏
- ② ∟, ≥
- ③ ∟, □
- ④ ¬, ⊏, ≥
- ⑤ ⊏, ⊇, □
- 79. 다음 그림과 같은 평행사변형 ABCD에서 $\angle B$, $\angle D$ 의 이등분선이 \overline{AD} , \overline{BC} 와 만나는 점을 각각 M, N이라 할 때, MBND가 평행사변형임을 설명하는 과정이다. (가)~(다) 에 알맞은 것은?

- $\angle B = \angle D$ 이므로 $\angle MBN = \angle MDN \cdots$
- $\angle AMB = \angle MBN()$ (엇각)······
- ∠ DNC= (가) (엇각)······⑤
- ⊙, ⓒ, ⓒ에 의하여
- ∠ AMB = (나)
- $\angle DMB = 180^{\circ} \angle AMB$

= 180° - ∠ DNC= (다) ······②

- ⊙, ②에 의하여 □*MBND*는 평행사변형이다.
- ① (7}) ∠ NDC
- ② (7}) ∠ *MDN*
- ③ (나) 40°
- ④ (나) 45°
- ⑤ (다) ∠ DAB

80. 그림에서 $\Box ABCD$ 가 평행사변형인 이유는?

- ① 두 쌍의 대변이 각각 평행해서
- ② 두 대각선이 서로를 이등분해서
- ③ 두 쌍의 대변의 길이가 각각 같아서
- ④ 두 쌍의 대각의 크기가 각각 같아서
- ⑤ 한 쌍의 대변이 평행하고, 그 길이가 같아서
- 81. 그림과 같은 사각형 ABCD가 평행사변형이 되기 위한 조건이 <u>아닌</u> 것은? (단, 점 O는 두 대각선 AC, BD의 교점이다.)

- ① $\overline{AB}//\overline{CD}$, $\overline{AB} = \overline{CD} = 7 \text{ cm}$
- ② $\overline{AB} = \overline{AD} = 6 \text{ cm}, \overline{BC} = \overline{CD} = 4 \text{ cm}$
- $\overline{AO}=3 \text{ cm}, \overline{BO}=4 \text{ cm}, \overline{CO}=3 \text{ cm}, \overline{DO}=4 \text{ cm}$
- 4 $\overline{AB} = 5 \text{ cm}$, $\overline{BC} = 7 \text{ cm}$, $\overline{CD} = 5 \text{ cm}$, $\overline{AD} = 7 \text{ cm}$
- \bigcirc $\triangle BAD = \triangle DCB = 130^{\circ}$ $\triangle ABC = \triangle ADC = 50^{\circ}$
- 82. 사각형 *ABCD*가 평행사변형인 것을 모두 고르면? (정답 2개)

83. 평행사변형 ABCD에서 \overline{BD} 와 \overline{AC} 의 교점을 O, $\square ABOE$ 가 평행사변형일 때, \overline{AD} 와 \overline{EO} 의 교점을 F라 한다. \overline{AB} = $10\,\mathrm{cm}$, \overline{BC} = $12\,\mathrm{cm}$ 일 때, \overline{FD} + \overline{FO} 의 값을 구하면?

- ① 11 cm
- ② 12 cm
- ③ 13 cm
- 4 14 cm
- ⑤ 15 cm
- 84. 평행사변형 ABCD의 두 대각선의 교점을 O라고 할 때, $\triangle OBC$ 의 넓이가 $7\,\mathrm{cm}^2$ 이라면 평행사변형 ABCD의 넓이 는?

- ① 7cm²
- ② 14 cm²
- $3 21 \,\mathrm{cm}^2$
- $40 28 \, \text{cm}^2$
- (5) 35 cm²
- 85. 그림에서 $\Box AEBO$ 와 $\Box ABCD$ 는 모두 평행사변형이다. $\triangle EAO$ 의 넓이가 $16\,\mathrm{cm}^2$ 일 때, $\Box ABCD$ 의 넓이는?

- \bigcirc 48 cm²
- $256 \,\mathrm{cm}^2$
- $364 \, \text{cm}^2$
- $40.72 \, \text{cm}^2$
- $5 \ 80 \, \text{cm}^2$

86. 다음 그림과 같은 평행사변형 ABCD에서 점 F는 \overline{DC} , 점 E는 \overline{BC} 의 연장선 위에 있다. 이때, \overline{BC} = \overline{CE} , \overline{DC} = \overline{CF} 이고, $\triangle AOB$ 의 넓이가 $12\,\mathrm{cm}^2$ 일 때, $\square BFED$ 의 넓이를 구하면?

- ① 120 cm²
- $296\,\mathrm{cm}^2$
- $3 72 \text{ cm}^2$
- $48 \, \text{cm}^2$
- (5) 36 cm²
- 87. 평행사변형 ABCD에서 삼각형 OAB의 넓이가 $6 \, \mathrm{cm}^2$ 일 때, 평행사변형 ABCD의 넓이는? (단, 점 O는 두 대각선 의 교점이다.)

- ① 18 cm^2
- ② $20 \, \text{cm}^2$
- $3 22 \, \text{cm}^2$
- $4 24 \, \text{cm}^2$
- $5 26 \, \text{cm}^2$
- 88. 그림에서 평행사변형 ABCD의 넓이가 $20 \, \mathrm{cm}^2$ 일 때, 색 칠한 부분의 넓이는?

- \bigcirc 8 cm²
- $2 10 \, \text{cm}^2$
- $312 \,\mathrm{cm}^2$
- 4 14 cm²
- ⑤ 16 cm²

89. 그림과 같은 평행사변형 ABCD의 내부에 있는 한 점 P에 대하여 $\triangle PAB=25$, $\triangle PCD=9$, $\triangle PDA=7$ 일 때, $\triangle PBC$ 의 넓이는?

- ① 23
- ② 24
- 3 25
- **(4)** 26
- ⑤ 27
- 90. 다음 그림과 같은 평행사변형 ABCD의 두 대각선의 교점을 O라 하고, 점 O를 지나는 직선이 \overline{AD} , \overline{BC} 와 만나는 점을 각각 P, Q라 하자. $\square ABCD$ 의 넓이가 $24\,\mathrm{cm}^2$ 일 때, 색칠한 부분의 넓이를 구하면?

- \bigcirc 4 cm²
- 25 cm^2
- 36 cm^2
- 4 7 cm^2
- ⑤ 8 cm²
- 91. 그림은 사각형에 조건이 하나씩 추가되어 정사각형이 되는 과정을 나타낸 것이다. ① ~ @에 알맞은 조건으로 옳은 것은?

- ① 〇 : 이웃하는 두 내각의 크기가 같다.
- ② ①: 나머지 한 쌍의 대변이 평행이다.
- ③ <table-cell-rows> : 두 대각선이 서로 수직으로 만난다.
- ④ ②: 두 대각선은 서로 다른 것을 이등분한다.
- ⑤ 🗇 : 두 대각선의 길이가 같다.

92. 다음에서 x+y의 값은? (단, 점 *O*는 대각선의 교점)

- 1) 40
- 2 46
- 3 54
- **(4)** 58
- (5) 60
- $\overline{AE} = 4 \,\mathrm{cm}$. ABCD에서 $\overline{AF} = 6 \,\mathrm{cm}$. 93. 정사각형 $\angle EOF = 90$ °일 때, $\Box ABCD$ 의 넓이는?

- (1) 49 cm²
- ② $64 \, \text{cm}^2$
- $3 81 \, \text{cm}^2$
- $96 \, \text{cm}^2$
- $5 100 \, \text{cm}^2$
- 94. 마름모 ABCD에서 두 대각선의 교점을 O라 할 때, ∠ OCB, ∠ ODC의 크기는?

 $\angle OCB$

∠ *ODC*

- ① 45°
- $35\,^\circ$
- ② 45°

- $45\degree$
- 3 50°
- $35\,^\circ$
- 4 55°

- $45\,^\circ$
- ⑤ 55°
- $35\,^{\circ}$

95. 그림과 같은 마름모 ABCD에서 점 O는 두 대각선 AC, BD의 교점이다. $\angle ABO = 25$ 일 때, $\angle x$ 의 크기는?

- (1) 45°
- ② 50°
- ③ 55°
- (4) 60°
- ⑤ 65°
- 96. 마름모 ABCD에서 두 대각선의 교점을 O라 하고, x, y의 값을 각각 a, b라 할 때, a+b의 값은?

- ① 43
- 2 44
- 3 45
- 46
- ⑤ 47
- 97. 평행사변형 ABCD에서 네 내각의 이등분선의 교점을 각 각 E, F, G, H라고 할 때, $\Box EFGH$ 에 대한 설명으로 <보 기> 중 옳은 것을 모두 고른 것은?

< <u>보</u> 기	>

- $\neg . \overline{EF} \bot \overline{FG}$
- \vdash . $\overline{EG}\bot\overline{FH}$
- \sqsubseteq . $\overline{EF} = \overline{FG}$
- $\exists . \overline{EG} = \overline{FH}$
- \Box . \angle *HEG*= \angle *HGE*
- ① ¬, ∟
- ② ¬, ≥
- ③ ∟, ⊏
- ④ ⊏, □
- ⑤ ≥, □

98. $\overline{AD}//\overline{BC}$ 인 등변사다리꼴 ABCD에서 $\overline{AB}=6\,\mathrm{cm},$ $\overline{BC}=11\,\mathrm{cm},$ $\overline{AD}=5\,\mathrm{cm}$ 일 때, $\angle\,B$ 의 크기는?

- ① 40°
- ② 45°
- 350°
- 4 55°
- 99. 그림의 직사각형 ABCD에서 점 O는 두 대각선의 교점 이다. \overline{AC} = $14\,\mathrm{cm}$, $\angle\,BDC$ = $55\,^\circ$ 일 때, x와 y의 값은?

- ① $x = 6 \text{ cm}, y = 30^{\circ}$
- ② $x = 8 \text{ cm}, y = 35^{\circ}$
- $3 x = 7 \text{ cm}, y = 30^{\circ}$
- $4 x = 8 \text{ cm}, y = 30^{\circ}$
- ⑤ $x = 7 \text{ cm}, y = 35^{\circ}$
- 100. 마름모 ABCD의 꼭것점 A에서 \overline{BC} 에 내린 수선의 발을 E라 하고, \overline{AE} 와 \overline{BD} 의 교점을 F라 할 때, $\angle AFD$ 의 크기는?

- ① 65°
- ② 70°
- 3 75°
- 4 80°
- ⑤ 85°
- 101. 정사각형 \overline{ABCD} 에 대한 설명으로 옳지 않은 것은? (단, 점 O는 \overline{AC} 와 \overline{BD} 의 교점이다.)
 - ① $\overline{AC} \perp \overline{BD}$
 - ② $\overline{AC} \neq \overline{BD}$
 - \bigcirc $\angle ABO = 45^{\circ}$
 - 4 $\overline{AO} = \overline{BO} = \overline{CO} = \overline{DO}$

102. 그림과 같이 반지름의 길이가 $4 \, \mathrm{cm}$ 인 원 O 위의 한 점 B를 꼭짓점으로 하는 직사각형 OABC를 만들었을 때, \overline{AC} 의 길이를 구하면?

- ① 1cm
- ② 2 cm
- ③ 3cm
- 4 4 cm
- (5) 5 cm
- 103. 마름모 ABCD에서 $\angle A$ 의 삼등분선이 \overline{BC} , \overline{CD} 와 만나는 점이 각각 E, F이고 $\angle A: \angle B=4:1$ 일 때, $\angle AFC$ 의 크기는?

- ① 66°
- ② 74°
- ③ 82°
- 4 84°
- ⑤ 96°
- 104. 다음 마름모 ABCD에서 두 대각선의 교점을 O라고 하자. $\overline{BE} = \overline{BF}$ 일 때, \overline{BO} 의 길이는?

- ① 9
- 2 10
- 3 11
- 4 12
- ⑤ 13

105. 정사각형 ABCD의 넓이는?

- ① $32 \, \text{cm}^2$
- $2 34 \, \text{cm}^2$
- $36 \,\mathrm{cm}^2$
- 4 38 cm²
- (5) $40 \, \text{cm}^2$

106. 평행사변형 ABCD에서 네 내각의 이등분선의 교점을 각각 E, F, G, H라고 할 때, $\Box EFGH$ 는 어떤 사각형이 며, $\angle HEF$ 의 크기는 얼마인가?

- ① 사다리꼴, 80°
- ② 평행사변형, 100°
- ③ 마름모, 90°
- ④ 직사각형, 90°
- ⑤ 정사각형, 60°

107. 다음 중 여러 가지 사각형에 대한 설명으로 옳지 <u>않은</u> 것은?

- ① 두 대각선이 서로 수직인 직사각형은 정사각형이다.
- ② 두 대각선이 서로 수직인 평행사변형은 직사각형이다.
- ③ 두 대각선의 길이가 서로 같은 마름모는 정사각형이다.
- ④ 한 쌍의 대변이 서로 평행한 사각형은 사다리꼴이다.
- ⑤ 한 내각의 크기가 90도이고 이웃하는 두 변의 길이가 서로 같은 평행사변형은 정사각형이다.

108. 평행사변형 ABCD가 정사각형이 될 조건은? (단, 점 O는 두 대각선의 교점이다.)

- ① $\angle A = 90^{\circ}$
- $\bigcirc \overline{AB} = \overline{AD}$
- \bigcirc $\overline{AC} \perp \overline{BD}$
- $\overline{AO} = \overline{OB}$
- \bigcirc $\angle A = 90^{\circ}$, $\overline{AC} \perp \overline{BD}$

109. 그림은 직사각형 모양의 통영 연이다. 직사각형 ABCD에서 두 대각선의 교점을 O라고 할 때, $\overline{AB} = 80\,\mathrm{cm}$, $\overline{BC} = 60\,\mathrm{cm}$, $\overline{AC} = 100\,\mathrm{cm}$ 이다. 옳은 것을 모두 고르면? (정답 2개)

- ① $\overline{AD} = 60 \, \text{cm}$
- ② \overline{BO} = 60 cm
- ③ $\triangle OBC$ 는 정삼각형
- 4 $\triangle ABO \neq \triangle ADO$
- \bigcirc $\triangle ABC \equiv \triangle BAD$

110. 다음 그림의 사각형 *ABCD*는 직사각형이다. 정사각형 이 되기 위해 충족되어야 하는 조건을 고르면?

- ① $\overline{AC} \perp \overline{BD}$
- ② $\angle A = 90^{\circ}$
- \bigcirc $\overline{OA} = \overline{OC}$
- $\overline{OB} = \overline{OD}$
- 111. 여러 가지 사각형 사이의 관계를 나타낸 것이다. ⑦~⑩ 에 알맞은 조건으로 옳은 것은?

- ① 🗇 이웃하는 두 내각의 크기가 같다.
- ② ① 다른 한 쌍의 대변이 평행하다.
- ③ © 한 내각의 크기가 90°이다.
- ④ ② 이웃하는 두 변의 길이가 같다.
- ⑤ 🗇 한 쌍의 대변이 평행하다.

112. 평행사변형 ABCD가 직사각형이 되는 조건은?

- ① $\overline{DO} = 4 \text{ cm}$
- ② $\overline{AC} = 6 \text{ cm}$
- $\overline{AD} = 8 \text{ cm}$
- (4) $\angle A = 90^{\circ}$
- (5) $\angle AOB = 90^{\circ}$

113. 사각형에 대한 설명으로 옳은 것을 <보기>에서 있는 대로 고른 것은?

<보기>

- ㄱ. 평행사변형은 사다리꼴이다.
- L. 한 내각의 크기가 90°인 마름모는 정사각형이다.
- 다. 이웃한 두 변의 길이가 같은 평행사변형은 마름모이다.
- 리. 평행하지 않은 두 대변의 길이가 서로 같은 사다리꼴은 등변 사다리꼴이다.
- ① ¬, ∟
- ② ∟, ≥
- ③ 7, ∟, ⊏
- ④ ∟, ⊏, ≥
- ⑤ 7, ∟, ⊏, ≥

114. 평행사변형 *ABCD*가 직사각형이 되도록 하는 조건으로 옳지 <u>않은</u> 것은?

- ① $\overline{AC} = \overline{BD}$
- ② $\overline{OC} = \overline{OD}$
- \bigcirc $\angle OBC = \angle OCB$
- \bigcirc $\triangle ABC = \triangle DAB$
- \bigcirc $\angle ABD = \angle ADB$

115. 여러 가지 사각형에 대한 설명 중 옳지 않은 것은?

- ① 정사각형은 사다리꼴이다.
- ② 직사각형은 평행사변형이다.
- ③ 사다리꼴의 두 대각선은 길이가 같다.
- ④ 마름모의 두 대각선은 서로를 수직이등분한다.
- ⑤ 두 대각선의 길이가 같은 평행사변형은 직사각형이다.

116. 다음 중 두 대각선이 서로를 수직이등분하는 사각형을 모두 고르면? (정답 2개)

- ① 등변사다리꼴
- ② 평행사변형
- ③ 직사각형
- ④ 마름모
- ⑤ 정사각형

117. 〈보기〉는 여러 가지 사각형 사이의 관계를 나타낸 것이다. ⑦ ~ ⑩에 해당하는 조건으로 옳은 것은?

- ① 🗇 한 쌍의 대변의 길이가 같다.
- ② ① 한 쌍의 대변이 평행하다.
- ③ 🕒 한 내각의 크기가 90°이다.
- ④ ② 이웃하는 두 변의 길이가 같다.
- ⑤ 🔘 두 대각선은 서로 다른 것을 이동분 한다.

118. 평행사변형 ABCD에서 두 대각선의 교점을 O라고 할 때, 옳게 이야기하고 있는 학생만을 있는 대로 고르면?

태형 : $\overline{AB} = \overline{BC}$ 이면 마름모야.

석진 : $\overline{AB} \perp \overline{BC}$ 이면 마름모야.

지민 : $\overline{AC} = \overline{BD}$ 이면 직사각형이야.

남준 : $\overline{AB} = \overline{BC}$ 이고 $\overline{AC} \perp \overline{BD}$ 이면 정사각형이야.

- ① 석진, 남준
- ② 지민, 남준
- ③ 태형, 석진
- ④ 태형, 지민
- ⑤ 태형, 지민, 남준

119. 평행사변형 ABCD에서 네 내각의 이등분선의 교점을 각각 E, F, G, H라고 할 때, $\Box EFGH$ 에 대한 설명으로 옳은 것만을 \langle 보기 \rangle 에서 있는 대로 고르면?

- 가. 두 대각선의 길이가 같다.
- 나. 네 변의 길이가 모두 같다.
- 다. 두 대각선은 서로를 이등분한다.
- 라. 네 내각의 크기가 모두 90°이다.
- 마. 두 대각선은 서로를 수직이등분한다.
- ① 가, 다
- ② 가, 다, 라
- ③ 가, 다, 마
- ④ 나, 다, 마
- ⑤ 가, 나, 다, 라, 마

120. 그림과 같은 평행사변형 *ABCD*가 마름모가 되는 조건 을 <보기>에서 있는 대로 고른 것은?

<보기>

- $\neg . \overline{AB} = 5 \text{ cm}$
- \bot . $\angle BAD = 90^{\circ}$
- \Box . $\angle AOB = 90^{\circ}$
- \exists . $\angle ABO = \angle CBO$
- \Box . $\angle BAO = \angle ABO$
- ы. $\overline{BO} = \overline{DO}$
- ① ¬, ∟
- ② п, н
- ③ ∟, ⊏, ≥
- ④ ⊏, □, н
- ⑤ 7, ㄷ, ㄹ
- 121. 그림과 같은 평행사변형 ABCD가 직사각형이 되는 조건이 <u>아닌</u> 것은? (단, 점 O는 두 대각선의 교점이다.)

- ① $\angle B = 90^{\circ}$
- ② $\overline{AC} = \overline{BD}$
- $\bigcirc \overline{AO} = \overline{BO}$
- $\bigcirc A = \angle D$
- 122. □ 안에 들어갈 사각형으로 알맞게 연결된 것은?

(기)

(나)

- 직사각형
- 마름모
- ② 마름모
- 직사각형
- ③ 사다리꼴
- 직사각형
- ④ 마름모
- 사다리꼴
- ⑤ 사다리꼴
- 마름모

123. 직사각형 ABCD에서 두 대각선의 교점을 O라고 할 때, \overline{BD} 의 길이는?

1) 8

- 2 10
- 3 12
- (4) 14
- (5) 16
- 124. 다음 그림과 같은 직사각형 ABCD에서 $\angle ADO = 40^{\circ}$ 일 때, $\angle x$ 의 크기는?

- ① 40°
- ② 50° ④ 70°
- 360°
- ⑤ 80°
- 125. 다음 그림과 같은 등변사다리꼴 ABCD에서 x의 값을 바르게 적은 것은?

- ① (a): 50, (b): 100
- ② (a): 50, (b): 105
- ③ (a): 55, (b): 100
- (a): 55, (b): 105
- (5) (a): 60, (b): 100
- 126. 다음 마름모 ABCD에서 내부의 한 점 E에 대하여 $\overline{EC}=\overline{ED},\ \angle\ CED=100\,^\circ$, $\angle\ EDA=30\,^\circ$ 일 때, $\angle\ BCE$ 의 크기는?

- ① 50°
- ② 55°
- 3 60°
- 4 65°
- ⑤ 70°

127. 직사각형 ABCD의 꼭것점 A에서 대각선 BD에 내린 수선의 발을 H라 하고, $\angle ABD$ 의 이동분선이 \overline{AD} , \overline{AH} 와 만나는 점을 각각 E, F라고 한다. \overline{AE} =5cm, \overline{EF} =6cm, \overline{BF} =7cm라고 할 때, \overline{AF} 의 길이는?

- ① 4 cm
- ② 5 cm
- ③ 6cm
- 4 7cm
- ⑤ 8cm
- 128. 정사각형 ABCD에서 \overline{AC} 는 대각선이고 $\angle BPC = 64$ ° 일 때, $\angle ADP$ 의 크기는?

- ① 19°
- ② 20°
- 321°
- 4 22°
- ⑤ 23°
- 129. 마름모 ABCD에서 두 대각선의 교점이 O이다. $\angle OCD = 50$ $^{\circ}$ 일 때, x의 값은?

- ① 30°
- ② 35°
- 340°
- 45°
- ⑤ 50°

130. 마름모 ABCD에서 x, y의 값은? (단, 점 O는 두 대각 선의 교점이다.)

- ① x = 3, y = 48
- ② x = 5, y = 42
- 3 x = 3, y = 42
- (4) x = 5, y = 48
- ⑤ x = 3, y = 52
- 131. 다음 그림의 정사각형 ABCD에서 대각선 AC 위에 한점 P가 있다. $\angle BPC = 75$ 일 때, $\angle ABP$ 의 크기는?

- ① 22°
- 24°
- 326°
- 4 28°
- ⑤ 30°
- 132. 그림과 같은 직사각형 ABCD를 꼭짓점 C가 꼭짓점 A에 오도록 접었다. $\angle GAF = 18$ 일 때, $\angle DFE$ 의 크기는?

- ① $126\degree$
- 2127°
- 4 129°
- ⑤ 130°

133. 평행사변형 ABCD에서 x+y의 값은?

- ① 94
- 2 96
- ③ 98
- **4**) 100
- **⑤** 102
- 134. 그림의 정사각형 ABCD에서 \overline{CD} 위의 점 E에 대하여 \overline{AE} 와 \overline{BD} 가 만나는 점을 F라고 할 때, $\angle BFC$ 의 크기는?

- ① 50°
- ② 56°
- 365°
- ④ 73°
- ⑤ 78°
- 135. 그림과 같은 마름모 ABCD에서 대각선 BD의 삼등분 점을 E, F라고 하자. $\overline{AE} = \overline{BE}$ 일 때, $\angle BAE$ 의 크기는?

- ① 8°
- 2 15°
- ③ 30°
- 4 38°
- (5) 45°
- 136. 다음 중 옳은 것은? (정답 3개)
 - ① 평행사변형의 이웃하는 변의 길이를 같게 해주면 마름모가 된다.
 - ② 모든 직사각형은 평행사변형이다.
 - ③ 평행사변형의 대각선의 길이를 같게 해주면 마름모가 된다.
 - ④ 모든 정사각형은 마름모이다.
 - ⑤ 사다리꼴의 대각선의 길이를 같게 해주면 직사각형이 된다.

137. 직사각형 ABCD에서 두 대각선의 교점을 O라고 할 때, x+y의 값은?

- 1 40
- 2 45
- 350
- 4) 55
- **⑤** 60
- 138. 직사각형 \overline{ABCD} 에서 두 대각선의 교점을 O라 하고, $\overline{AC}=12\,\mathrm{cm},\ \overline{CD}=8\,\mathrm{cm}$ 일 때, $\triangle\,OAB$ 의 둘레의 길이는?

- ① 16 cm
- ② 17cm
- ③ 18 cm
- 4 19cm
- ⑤ 20 cm
- 139. 마름모 ABCD의 각 변의 중점을 E, F, G, H라 할 때, 다음 $\Box EFGH$ 에 대한 설명 중 옳은 것을 모두 고르면? (정답 2개)

- ① 네 변의 길이가 같다.
- ② 두 대각선이 직교한다.
- ③ 두 대각선의 길이가 같다.
- ④ 네 각의 크기가 모두 같다.
- ⑤ 이웃하는 두 변의 길이가 같다.

140. 〈보기〉 중 항상 성립하는 것을 모두 고른 것은?

- ㄱ. $\overline{AC} \perp \overline{BD}$ 인 평행사변형 ABCD는 마름모이다.
- ㄴ. 네 변의 길이가 같은 사각형은 두 대각선의 길이도 같다.
- \subset . \angle C = 90 ° 인 평행사변형 ABCD는 직사각형이다.
- ㄹ. \overline{AB} = \overline{BC} 인 평행사변형 ABCD는 직사각형이다.
- ㅁ. $\overline{AC}=\overline{BD}$, $\angle B=90\,^{\circ}$ 인 평행사변형 ABCD는 정사각형이다.
- ① ¬, ⊏
- ② ∟, ≥
- ③ ∟, □
- ④ ¬, ⊏, □
- ⑤ ∟, ≥, □
- 141. 그림과 같은 평행사변형 *ABCD*가 직사각형이 되는 조건은? (단, 점 *O*는 두 대각선의 교점이다.)

- ① $\overline{AC} = \overline{BD}$
- ② $\overline{AO} = \overline{CO}$
- \bigcirc $\overline{AC} \perp \overline{BD}$
- \bigcirc $\angle ABO = \angle CDO$

142. 다음 중 옳지 않은 것은?

- ① 마름모는 평행사변형이다.
- ② 이웃하는 두 변의 길이가 같은 직사각형은 정사각형이다.
- ③ 한 각이 90°인 평행사변형은 직사각형이다.
- ④ 대각선이 수직으로 만나는 평행사변형은 마름모이다.
- ⑤ 대각선의 길이가 같은 직사각형은 정사각형이다.
- 143. 다음 중 평행사변형 ABCD가 직사각형이 되기 위한 조건을 $\langle \mbox{보기} \rangle$ 에서 모두 고른 것은? (단, 점 O는 두 대각선의 교점이다.)

- $\neg. \ \overline{AC} = \overline{BD}$
- \bot . AB = AD
- $\sqsubset . \ \overline{AC} \bot \overline{BD}$
- \exists . $\angle A = \angle B$
- ① ¬, ∟
- ② ¬. ⊏
- ③ ¬. ≥
- ⑤ ⊏, ≥
- ④ ∟, ⊏

144. 평행사변형 *ABCD*가 직사각형이 될 조건을 다음 보기 중에서 모두 고르면?

<보기>

- \neg . $\angle A = 90^{\circ}$
- \vdash . $\overline{AC} \perp \overline{BD}$
- \Box . $\overline{AD} = \overline{DC}$
- =. $\overline{AC} = \overline{BD}$
- ① ¬, ∟
- ② 7. =
- ③ ∟, ⊏
- ④ □, ⊇
- ⑤ 7, ⊏, ≥
- 145. 여러 가지 사각형의 성질에 대한 설명 중 옳지 <u>않은</u> 것 은?
 - ① 한 내각의 크기가 90°인 마름모는 정사각형이다.
 - ② 두 대각선이 서로 수직인 직사각형은 정사각형이다.
 - ③ 대각의 크기의 합이 180°인 평행사변형은 직사각형이다.
 - ④ 이웃하는 두 변의 길이가 같은 평행사변형은 마름모이다.
 - ⑤ 두 대각선이 서로 다른 것을 수직이등분하는 평행사변형은 정사 각형이다.
- 146. 그림의 평행사변형 *ABCD*에서 네 내각의 이등분선의 교점을 각각 *E, F, G, H*라고 할 때, 사각형 *EFGH*에 대한 설명으로 옳은 것은?

- ① ∠*BAD*와 ∠*ABC*의 크기의 합은 90°이다.
- ② ∠ AEB의 크기는 95°이다.
- ③ 사각형 *EFGH*는 직사각형이다.
- ④ 사각형 *EFGH*는 마름모이다.
- ⑤ 사각형 *EFGH*는 정사각형이다.
- 147. 〈보기〉중 두 대각선의 길이가 같은 사각형끼리 짝지어 진 것은?

	<보기>
ㄱ. 사다리꼴	ㄴ. 평행사변형
ㄷ. 직사각형	ㄹ. 마름모
ㅁ. 정사각형	
	0

- ① ¬, ∟
- ② ¬, ≥
- ③ ∟, ⊏
- ④ ⊏, □
- ⑤ ≥, □

148. 그림에서 $\Box ABCD$ 는 평행사변형이고 네 내각의 이등분 선의 교점을 각각 E, F, G, H라 할 때, $\Box EFGH$ 가 정사 각형이 되기 위한 조건으로 알맞은 것은?

- ① $\overline{EF} = \overline{HG}$
- ② $\overline{EH} = \overline{FG}$
- \bigcirc $\overline{EH} = \overline{HG}$
- \bigcirc $\angle EHG = \angle GHE$
- \bigcirc $\angle EHG = \angle HGF$
- 149. 학생들이 여러 가지 사각형에 대한 생각을 이야기 하고 있다. 옳지 않은 말을 한 학생은?
 - 철수 : 정사각형은 직사각형이야.
 - 영희 : 정사각형은 평행사변형이기도 해.
 - 민수 : 직사각형이라고 해서 항상 평행사변형은 아니야.
 - 아영 : 마름모는 평행사변형이야.
 - 동욱 : 마름모는 네 변의 길이가 모두 같다.
 - ① 철수
- ② 영희
- ③ 민수
- ④ 아영
- ⑤ 동욱
- 150. 다음 그림과 같은 평행사변형 ABCD에 대하여 다음 중 옳지 않은 것은? (단, 점 O는 두 대각선의 교점이다.)

- ① $\overline{AC} = \overline{BD}$ 이면 $\Box ABCD$ 는 직사각형이다.
- ② $\overline{AB} = \overline{AD}$ 이면 $\Box ABCD$ 는 마름모이다.
- ③ $\angle A = 90$ ° 이면 $\Box ABCD$ 는 직사각형이다.
- ④ $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$ 이면 $\Box ABCD$ 는 직사각형이다.
- ⑤ $\overline{AC} = \overline{BD}$, $\overline{AC} \perp \overline{BD}$ 이면 $\Box ABCD$ 는 정사각형이다.

151. $\overline{DC}//\overline{AF}$ 이고 $\overline{BE}:\overline{EF}=3:5$ 이다. $\triangle DBE$ 의 넓이가 $15\,\mathrm{cm}^2$ 일 때, $\Box ADEC$ 의 넓이는?

- \bigcirc 22 cm²
- 23 cm^2
- $3 24 \,\mathrm{cm}^2$
- $40.25\,\mathrm{cm}^2$
- ⑤ $26 \, \text{cm}^2$
- 152. $\triangle ABC$ 에서 변 BC의 연장선 위에 점 E가 있고, $\overline{AC}//\overline{DE}$ 일 때, <보기>에서 옳은 것만을 있는 대로 고르 시오.

<보기>

- \neg . $\triangle ACD = \angle ACE$
- \bot . $\triangle ACD = \triangle AED$
- \Box . $\triangle AFD = \triangle CFE$
- \exists . $\triangle ABE = \Box ABCD$
- ① ¬, ⊏
- ② L, ⊏
- ③ ¬, ≥
- ④ ¬, ∟, ≥
- ⑤ ¬, ⊏, ≥
- 153. $\triangle ABF$ 에서 $\overline{DC}//\overline{AF}$ 이고, $\overline{BE}:\overline{EF}=2:3$ 이다. $\triangle DBE$ 의 넓이가 $14\,\mathrm{cm}^2$ 일 때, $\Box ADEC$ 의 넓이는?

- ① $14 \, \text{cm}^2$
- $2 16 \,\mathrm{cm}^2$
- $3 20 \,\mathrm{cm}^2$
- $40^{\circ} 21 \, \text{cm}^2$
- ⑤ $24 \, \text{cm}^2$

154. 평행사변형 ABCD에서 \overline{AD} 의 연장선 위에 점 E를 잡고 \overline{BE} 와 \overline{CD} 의 교점을 F라 하자. $\square ABCD=120$, $\triangle FBC=40$, $\triangle DCE=30$ 일 때, $\triangle DFE$ 의 넓이는?

1 5

- 2 8
- 3 10
- 4 12
- ⑤ 15
- 155. 그림과 같이 평행사변형 ABCD에서 점 M은 선분 \overline{BC} 의 중점이고, 점 P는 \overline{AM} 과 \overline{BD} 의 교점이다. $\overline{AP}:\overline{PM}=2:1$ 이고 $\triangle BPM=10\,\mathrm{cm}^2$ 일 때, 평행사변형 ABCD의 넓이는?

- ① 110 cm²
- ② $120 \, \text{cm}^2$
- $3130\,\mathrm{cm}^2$
- 40 cm^2
- $5150\,\mathrm{cm}^2$
- 156. 그림에서 $\overline{DC}//\overline{AF}$ 이고, $\overline{BE}:\overline{EF}=3:4$ 이다. $\square ADEC$ 의 넓이가 $12\,\mathrm{cm}^2$ 일 때, $\triangle DBE$ 의 넓이는?

- \bigcirc 9 cm²
- $2 12 \,\mathrm{cm}^2$
- $316\,\mathrm{cm}^2$
- $\frac{27}{4}$ cm²

157. $\overline{AB}//\overline{CD}$ 인 사다리꼴 ABCD에서 두 대각선의 교점을 O라 하자. \overline{BE} 는 \overline{EC} , $\triangle ABD$ = $45~{\rm cm}^2$, $\triangle AOD$ = $20~{\rm cm}^2$ 일 때 $\triangle OEC$ 의 넓이는?

- ① $10 \, \text{cm}^2$
- ② 11 cm²
- $312.5\,\mathrm{cm}^2$
- $415 \, \text{cm}^2$
- $(5) 20 \, \text{cm}^2$
- 158. 그림에서 $\overline{AC}//\overline{DE}$ 이고, $\Box ABCD = 24 \, \mathrm{cm}^2$, $\triangle ABC = 10 \, \mathrm{cm}^2$ 일 때, $\triangle ACE$ 의 넓이는?

- $\bigcirc 10\,\mathrm{cm}^2$
- ② 11 cm²
- $312 \,\mathrm{cm}^2$
- 4 13 cm²
- 159. $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서 두 대각선의 교점을 O라고 하자. $\triangle ABC$ 의 넓이가 $46~\mathrm{cm}^2$, $\triangle DOC$ 의 넓이가 $18~\mathrm{cm}^2$ 일 때, $\triangle OBC$ 의 넓이는?

- \bigcirc 26 cm²
- 28 cm^2
- $30 \, \text{cm}^2$
- $4 \ 32 \, \text{cm}^2$
- $5 34 \, \text{cm}^2$

160. 평행사변형 ABCD에서 $\overline{AP}:\overline{PD}=1:2$, $\overline{AC}//\overline{PQ}$ 이고 $\square ABCD$ 의 넓이가 $60~\mathrm{cm}^2$ 일 때, $\triangle BCQ$ 의 넓이는?

- $\bigcirc 10\,\mathrm{cm}^2$
- ② 11 cm²
- $312 \,\mathrm{cm}^2$
- $4 13 \, \text{cm}^2$
- ⑤ 14 cm²
- 161. 마름모 ABCD에서 \overline{AC} = $12\,\mathrm{cm}$, \overline{BD} = $15\,\mathrm{cm}$ 이고, \overline{BC} 위의 점 P에 대하여 \overline{BP} : \overline{PC} = 3:2일 때, \triangle OPD의 넓이는?

- ① $\frac{27}{2}$ cm²
- ② $\frac{27}{4}$ cm²
- $3 \frac{45}{2} \text{ cm}^2$
- $4 \ 27 \, \text{cm}^2$
- ⑤ 45 cm²
- 162. 다음 그림과 같은 $\triangle ABC$ 의 넓이가 $35\,\mathrm{cm}^2$ 이고, $\overline{BD}:\overline{DC}=3:4$, $\overline{AE}:\overline{ED}=1:3$ 일 때, 어두운 부분의 넓이를 구하면?

- ① $19 \, \text{cm}^2$
- ② $18 \, \text{cm}^2$
- $317 \,\mathrm{cm}^2$
- 4 16 cm²
- ⑤ $15 \, \text{cm}^2$

163. 다음 그림에서 $\overline{AC}//\overline{DE}$, $\overline{BC}=\overline{CE}$ 이고, $\Box ABCD=30\,\mathrm{cm}^2$ 일 때, $\triangle ACE$ 의 넓이는?

- $\bigcirc 10\,\mathrm{cm}^2$
- $215\,\mathrm{cm}^2$
- $3 20 \,\mathrm{cm}^2$
- $40.25\,\mathrm{cm}^2$
- $30 \, \text{cm}^2$
- 164. $\triangle ABC$ 에서 점 M은 \overline{AB} 의 중점이다. 꼭짓점 C에서 \overline{AB} 에 내린 수선의 발을 P라 하고, $\overline{PC}/\overline{MD}$ 일 때, $\triangle DPB$ 의 넓이는?

- ① $15 \,\mathrm{cm}^2$
- $20\,\mathrm{cm}^2$
- $325\,\mathrm{cm}^2$
- 40 cm^2
- $\bigcirc 35\,\mathrm{cm}^2$
- 165. 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서 $\overline{AB}//\overline{EC}$, $\overline{AE}//\overline{BD}$ 이고, $\overline{AD}=4\,\mathrm{cm}$, $\overline{BC}=6\,\mathrm{cm}$, $\overline{DC}=3\,\mathrm{cm}$, $\angle\,BCD=90\,^\circ$ 일 때, $\triangle\,AED$ 의 넓이는?

- \bigcirc 3 cm²
- 26 cm^2
- \Im 9 cm²
- $412 \, \text{cm}^2$
- 515 cm^2

166. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서 $\overline{AO}:\overline{CO}=1:2$ 이고 $\triangle COD$ 의 넓이는 $20\,\mathrm{cm}^2$ 일 때, $\triangle ABD$ 의 넓이는?

- ① 10 cm²
- ② $20 \, \text{cm}^2$
- 30 cm^2
- 40 cm^2
- ⑤ 50 cm²
- 167. 마름모 ABCD에서 $\overline{AC}=10cm$, $\overline{BD}=16cm$ 이고, \overline{BC} 위의 점 P에 대하여 $\overline{BP}:\overline{PC}=3:5$ 일 때, 삼각형 DBP의 넓이는?

- ① $14 \, cm^2$
- ② $15 \, cm^2$
- $316 \, cm^2$
- $4 17 \, cm^2$
- ⑤ $18 \, cm^2$
- 168. 그림과 같은 평행사변형 ABCD에서 점 F는 \overline{AB} 의 연장선 위의 점이고 $\triangle DEC = 18\,\mathrm{cm}^2$, $\square ABCD = 64\,\mathrm{cm}^2$ 일 때, $\triangle EFC$ 의 넓이는?

- \bigcirc 8 cm²
- ② 10 cm^2
- 312 cm^2
- 4 14 cm²
- 516 cm^2

169. 그림에서 $\overline{AC}//\overline{ED}$ 이고, $\overline{BC}:\overline{CD}=3:1$ 이다. $\triangle ABC$ 의 넓이가 $12\,\mathrm{cm}^2$ 일 때, $\square ABCE$ 의 넓이는?

- ① 14 cm²
- ② 15 cm^2
- 316 cm^2
- (4) 17 cm²
- 170. \overline{BC} = $12\,\mathrm{cm}$ 인 $\triangle ABC$ 에서 \overline{DC} = $\frac{1}{3}\,\overline{BC}$ 인 점 D를 변 BC 위에 잡고, A에서 내린 수선의 발을 F라 하면, \overline{AF} = $8\,\mathrm{cm}$ 이다. $\overline{AF}/\overline{ED}$ 인 점 E를 변 AC 위에 잡았을 때, $\triangle EFC$ 의 넓이를 구하면?

- ① 14 cm²
- $2 16 \,\mathrm{cm}^2$
- $318 \,\mathrm{cm}^2$
- $(4) 20 \, \text{cm}^2$
- $5 24 \, \text{cm}^2$
- 171. $\overline{DC}//\overline{AF}$ 이고, $\overline{BE}:\overline{EF}=3:4$ 이다. $\triangle DBE$ 의 넓이가 $5\,\mathrm{cm}^2$ 일 때, $\Box ADEC$ 의 넓이는?

- ① $\frac{40}{7}$ cm²
- $2 \frac{35}{6} cm^2$
- 36 cm^2
- $\frac{25}{6}$ cm²

172. 그림에서 $\overline{AC}//\overline{DE}$ 일 때, $\Box ABCD$ 의 넓이는?

- \bigcirc 8 cm²
- 2 9 cm^2
- $310 \, \text{cm}^2$
- 41 cm^2
- (5) 12 cm²
- 173. 직선 l 위의 두 점 C, D를 연결한 선분 CD을 한 변으로 하여 오각형 ABCDE를 그렸다. 점 B에서 선분 AC와 평행한 직선, 점 E에서 선분 AD와 평행한 직선을 그어 직선 l과 만나는 점을 각각 F, G라고 하고, \overline{FC} =3, \overline{CD} =5, \overline{DG} =4, 점 A와 직선 l 사이의 거리가 8일 때, 오각형 ABCDE의 넓이는?

- ① 48
- 2 60
- 3 72
- 4 84
- **⑤** 96
- 174. $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서 점 O는 두 대각선의 교점이다. $\overline{AO}:\overline{CO}=1:2$ 이고 $\triangle AOB=4$ 일 때, $\Box ABCD$ 의 넓이는?
 - ① 10
- ② 12
- 3 14
- (4) 16
- **⑤** 18
- 18
- 175. 그림에서 $\overline{AC}//\overline{DE}$ 이고 $\triangle ABC = 18 \, \mathrm{cm}^2$, $\triangle ACE = 16 \, \mathrm{cm}^2$ 일 때, $\Box ABCD$ 의 넓이를 구하면?

- $\bigcirc 30\,\mathrm{cm}^2$
- $2^{34}\,\mathrm{cm}^2$
- $3 40 \, \text{cm}^2$
- $40.52 \, \text{cm}^2$
- $56 \, \text{cm}^2$

176. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서 두 대각선의 교점을 O라고 하자. $\triangle ABC = 25 \, \mathrm{cm}^2$, $\triangle OBC = 12 \, \mathrm{cm}^2$ 일 때, $\triangle DOC$ 의 넓이는?

- ① 12 cm^2
- $2 13 \,\mathrm{cm}^2$
- 314 cm^2
- 4) 15 cm²
- \bigcirc 16 cm²
- 177. 그림과 같은 평행사변형 ABCD에서 \overline{AD} 의 연장선 위에 임의의 점 E를 잡고 \overline{BE} 와 \overline{DC} 의 교점을 F라 하자. $\Box ABCD = 120 \, \mathrm{cm}^2, \ \Delta FBC = 40 \, \mathrm{cm}^2, \ \Delta DCE = 30 \, \mathrm{cm}^2$ 일 때, ΔDFE 의 넓이를 구하면?

- $\bigcirc 10\,\mathrm{cm}^2$
- $215\,\mathrm{cm}^2$
- $317 \,\mathrm{cm}^2$
- $4) 19 \text{ cm}^2$
- 178. 그림에서 $\overline{AC}//\overline{DE}$ 이고 $\triangle ABE = 16 \, \mathrm{cm}^2$, $\triangle ABC = 7 \, \mathrm{cm}^2$ 일 때, $\triangle ACD$ 의 넓이를 구하면?

- \bigcirc 7 cm²
- 2 8 cm^2
- 3 9 cm^2
- 40 cm^2
- ⑤ 11 cm²

179. 다음 그림의 평행사변형 ABCD에서 \overline{AB} 위의 점 E와 \overline{AD} 위의 점 F에 대하여 $\overline{EF}//\overline{BD}$ 이다. 다음 삼각형 중 나머지 넷과 넓이가 <u>다른</u> 것은?

- ① $\triangle BCE$
- \bigcirc $\triangle BDF$
- \bigcirc $\triangle EBD$
- \bigcirc $\triangle FCD$
- 180. 그림과 같이 사각형 ABCD에서 \overline{AC} 를 긋고, 점 D를 지나면서 \overline{AC} 와 평행한 직선이 \overline{BC} 의 연장선과 만나는 점을 E라고 하자.

 $\angle\,AFC=90\,^\circ$, $\overline{AF}=5$, $\overline{BE}=8$ 일 때, 사각형 ABCD의 넓이는?

- 1 20
- 22 24
- 3 28
- **4** 36
- ⑤ 42

중2 5단원

1) [정답] ⑤

[해설] $\angle A + \angle D = 180^{\circ}$ 이므로 $\angle OAD + \angle ADO = 90^{\circ}$ 이코 $\angle AOD = \angle EOF = 90^{\circ}$ $\angle FEO = 180^{\circ} - 115^{\circ} = 65^{\circ}$ $\triangle EOF$ 에서 $\angle EFO = 180^{\circ} - (90^{\circ} + 65^{\circ}) = 25^{\circ}$ $\therefore \angle x = 180^{\circ} - 25^{\circ} = 155^{\circ}$ $\overline{AD}//\overline{BC}$ 이므로 $\angle DAE = \angle BEA$, $\angle ADF = \angle CFD$ $\angle BAE = \angle BEA$, $\angle CDF = \angle CFD$ 이므로 $\overline{AB} = \overline{BE} = \overline{CF} = 6$, $\overline{BF} = 6 - y$ $\overline{BC} = \overline{BF} + \overline{CF} = 6 - y + 6 = 8$ $\therefore y = 4$ $\therefore x + y = 155 + 4 = 159$

2) [정답] ⑤

[해설] <u>¬. $\overline{AB} = \overline{DC}$ </u> <u>□. $\overline{OB} = \overline{OD}$ </u> **□.** 평행사변형의 두 대각선은 직교하지 않는다. 따라서 <보기>에서 옳은 것은 ㄴ, ㅁ, ㅂ이다.

3) [정답] ④

4) [정답] ⑤

[해설] \bigcirc 엇각, \bigcirc \angle CAD, \bigcirc ASA합동, \bigcirc \overline{DA}

5) [정답] ②

[해설] $\angle A + \angle B = 180$ ° 이므로 $\angle A = 180$ ° × $\frac{3}{5} = 108$ ° $\angle DAP = \frac{1}{2} \times 108$ ° = 54 ° 이므로 $\angle BPA = \angle DPA = 54$ ° (엇각) $\therefore \angle APC = 180$ ° -54 ° = 126 °

6) [정답] ④

[해설] $x = \angle D = 65^{\circ}$ $y = \overline{AB} = 4 \text{ (cm)}$

7) [정답] ①

[해설] $\overline{AO} = \overline{CO}$, $\overline{BO} = \overline{DO}$ 이므로 $\overline{AO} + \overline{DO} = \frac{1}{2}(\overline{AC} + \overline{BD}) = \frac{1}{2} \times 38 = 19 \text{ (cm)}$ 따라서 $\triangle AOD$ 의 둘레의 길이는 $\overline{AO} + \overline{DO} + \overline{AD} = 19 + 8 = 27 \text{ (cm)}$

8) [정답] ②

[해설] $\overline{AD}//\overline{BC}$ 이므로 $\angle DAC = \angle AEB = 56$ ° (엇각) $\angle A = 2 \angle DAE = 2 \times 56$ ° = 112 °

$$\angle A + \angle D = 180$$
 ° 이므로
 $\angle D = 180$ ° -112 ° $= 68$ °

9) [정답] ⑤

[해설] $\overline{AB} = \overline{BM}$ 이므로 $\angle BAM = \angle BMA$ $\angle BMA = \angle MAD$ (엇각) $\therefore \angle BAM = \angle DAM$ 또, $\overline{CM} = \overline{CD}$ 이므로 $\angle CMD = \angle CDM$ $\angle CMD = \angle ADM$ (엇각) $\therefore \angle CDM = \angle ADM$ 한편, $\angle A + \angle D = 180°$ 이므로 $\angle DMA + \angle ADM = 90°$ $\triangle AMD$ 에서 $\angle x = 180° - (\angle DMA + \angle ADM) = 180° - 90° = 90°$

10) [정답] ③

[해설] x=7, $\angle y=60$ ° ∴ x+y=67

11) [정답] ②

[해설] $\overline{AO} = \overline{CO}$, $\overline{BO} = \overline{DO}$ 이므로 $\overline{AO} + \overline{DO} = \frac{1}{2}(\overline{AC} + \overline{BD}) = \frac{1}{2} \times 22 = 11 \text{ (cm)}$ 따라서 $\triangle AOD$ 의 둘레의 길이는 8 + 11 = 19 (cm)

12) [정답] ②

[해설] $\triangle ADE$ 와 $\triangle FCE$ 에서 $\overline{DE} = \overline{CE} \quad \cdots \bigcirc \bigcirc$ $\angle AED = \angle FEC (맞꼭지각) \quad \cdots \bigcirc$ $\angle ADE = \angle FCE (엇각) \quad \cdots \bigcirc$ $\bigcirc, \ \bigcirc, \ \bigcirc \bigcirc$ 의해 $\triangle ADE \equiv \triangle FCE (ASA$ 합동) $\stackrel{\frown}{\Rightarrow}, \ \overline{AD} = \overline{CF} = 6$ $\therefore \ \overline{BF} = \overline{BC} + \overline{CF} = 6 + 6 = 12$

13) [정답] ④

[해설] $\overline{AB}//\overline{CE}$ 이므로 $\angle ABE = \angle CEB$ (엇각) $\triangle BCE$ 에서 $\angle CBE = \angle CEB$ 이므로 $\overline{BC} = \overline{CE} = 10$ $\therefore \overline{DE} = 10 - 7 = 3$

14) [정답] ③

[해설] 평행사변형의 성질에 의해 $\overline{AD} = \overline{BC}$, $\overline{AB} = \overline{DC}$ $\therefore x = 7, y = 4$

15) [정답] ①

[해설] $\overline{AD}//\overline{BC}$ 이므로 $\angle ADE = \angle CED$ 따라서 $\angle CDE = \angle CED$ 이므로 $\triangle CDE$ 는 $\overline{CD} = \overline{CE}$ 인 이등변삼각형이다. $\therefore \overline{BE} = 12 - 7 = 5$ (cm)

16) [정답] ④

[해설] \overline{DC} = \overline{AB} = 8cm $\overline{AD}//\overline{BC}$ 이므로 $\angle EDF$ = $\angle CFD$ 즉, $\angle CDF$ = $\angle CFD$ 이므로 \overline{CD} = \overline{CF} = 8cm $\therefore \overline{BF}$ = 12-8=4(cm)

17) [정답] ③

[해설] $\angle A + \angle B = 180$ ° 이므로 $\angle B = 180$ ° × $\frac{4}{9} = 80$ °

$$\therefore \angle D = \angle B = 80^{\circ}$$

18) [정답] ③

[해설] $\triangle ABD$ 에서 $\angle BAD = 180\degree - 40\degree - 45\degree = 95\degree$ 이때, 두 대각선이 서로를 이등분하므로 $\square ABCD$ 는 평행사변형이다. $\therefore \angle BCD = \angle BAD = 95\degree$

19) [정답] ②

[해설]
$$\overline{AB} = \overline{DC}$$
이므로 $x = 12$
 $\angle B + \angle C = 180$ ° 이므로
 $y = 180$ ° -120 ° $= 60$ °
 $\therefore x + y = 12 + 60 = 72$

20) [정답] ①

[해설]
$$\overline{AD} = \overline{BC}$$
이므로 $2x = x + 5$ $\therefore x = 5$
$$\overline{AO} = \frac{1}{2} \overline{AC} = \frac{1}{2} \times 12 = 6$$

$$\overline{DO} = \frac{1}{2} \overline{BD} = \frac{1}{2} \times 16 = 8$$
 따라서 $\triangle AOD$ 의 둘레의 길이는 $6 + 8 + 10 = 24$

21) [정답] ③

[해설]
$$\angle A = \angle D$$
이므로 $110\degree = 70\degree + a\degree$
 $\therefore a = 40$
 $\overline{BO} = \overline{DO}$ 이므로 $x = 5$
 $\therefore x + a = 5 + 40 = 45$

22) [정답] ④

[해설]
$$\overline{AB}//\overline{DC}$$
이므로 $\angle BAE = \angle DEA = 55$ ° $\angle A = 55$ ° $\times 2 = 110$ °, $\angle A + \angle B = 180$ ° 이므로 $\angle ABC = 180$ ° -110 ° $= 70$ °

23) [정답] ②

[해설]
$$\angle A + \angle B = 180^{\circ}$$
이므로 $\angle BAP + \angle ABP = 90^{\circ}$ $\therefore \angle y = 90^{\circ}$ $\overline{AD}//\overline{BC}$ 이므로 $\angle DAE = \angle BEA = 60^{\circ}$ $\angle A = 2 \times 60^{\circ} = 120^{\circ}$ 이므로 $\angle x = 180^{\circ} - 120^{\circ} = 60^{\circ}$ $\therefore \angle y - \angle x = 90^{\circ} - 60^{\circ} = 30^{\circ}$

24) [정답] ①

[해설]
$$\angle OBC = 2k$$
, $\angle OCB = 3k$ 라 하면 $\angle B + \angle C = 180\degree$ 이므로 $(40\degree + 2k) + (60\degree + 3k) = 180\degree$ $5k = 80\degree$ $\therefore k = 16\degree$ $\therefore \angle OBC = 2k = 2 \times 16\degree = 32\degree$

25) [정답] ②

[해설]
$$\overline{BO} = \frac{1}{2} \times 18 = 9 \text{ (cm)}$$

 $\triangle OAB$ 의 둘레의 길이가 24 (cm) 이므로
 $\overline{OA} + 9 + 10 = 24$ $\therefore \overline{OA} = 5 \text{ (cm)}$
 $\therefore \overline{AC} = 2\overline{OA} = 2 \times 5 = 10 \text{ (cm)}$

26) [정답] ③

[해설]
$$\overline{AD} = \overline{BC}$$
이므로 $4x - 7 = 2x + 3$ $\therefore x = 5$ $\overline{AD}//\overline{BC}$ 이므로 $\angle BCA = \angle DAC = a$ (엇각) $\angle ABC + \angle BCD = 180$ 이므로

$$(41 ° +b) + (68 ° +a) = 180 ° : a+b=71$$

 $\therefore a+b-x=71-5=66$

27) [정답] ③

[해설]
$$\overline{AB} = \overline{DC}$$
이므로 $3x + 5 = 2x + 8$ $\therefore x = 3$ $\therefore \overline{BC} = \overline{AD} = 4 \times 3 + 6 = 18$

28) [정답] ①

[해설]
$$\overline{AD} = \overline{BC}$$
이므로 $x+2=8$ $\therefore x=6$

29) [정답] ①

[해설] ①
$$\overline{AD} = \overline{BC}$$
, $\overline{AB} = \overline{DC}$

30) [정답] ③

[해설]
$$\overline{AB}//\overline{DC}$$
이므로
$$\angle DCA = \angle BAC = 50 \circ ()$$
 (엇각)
$$\Delta BCD$$
에서
$$\angle x + (\angle y + 50 \circ) + 40 \circ = 180 \circ$$
이므로
$$\angle x + \angle y = 90 \circ$$

31) [정답] ⑤

[해설]
$$x = \overline{BC} = 6$$

 $y = \frac{1}{2} \overline{BD} = \frac{1}{2} \times 8 = 4$
 $z + \angle C = 180$ °이므로 $z = 180$ ° -120 ° $= 60$ °
 $\therefore x + y + z = 6 + 4 + 60 = 70$

32) [정답] ④

[해설]
$$\overline{AB} + \overline{AD} = \frac{1}{2} \times 28 = 14 \text{ (cm)}$$
 $\overline{AB} : \overline{AD} = 3 : 4$ 이므로 $\overline{CD} = \overline{AB} = \frac{3}{7} (\overline{AB} + \overline{AD}) = \frac{3}{7} \times 14 = 6 \text{ (cm)}$

33) [정답] ④

[해설]
$$\overline{AB} = \overline{DC}$$
, $\overline{AD} = \overline{BC}$ 이므로 $\overline{AD} + \overline{DC} = 14$ (cm)
 $\therefore \overline{BC} = \overline{AD} = \frac{4}{7} \times 14 = 8$ (cm)

34) [정답] ①

[해설]
$$\angle CBD = \angle ADB = 42^{\circ}$$
 (엇각) $\angle B + \angle C = 180^{\circ}$ 이므로 $(y+42^{\circ}) + (56^{\circ} + z) = 180^{\circ}$ $\therefore y+z=82^{\circ}$

35) [정답] ⑤

[해설] ⑤
$$\angle A + \angle B = 180^{\circ}$$
, $\angle A = \angle C$

36) [정답] ④

[해설]
$$\angle A + \angle B = 180$$
 ° 이므로 $\angle A = 180$ ° × $\frac{1}{3}$ = 60 °

37) [정답] ⑤

[해설]
$$\overline{AD}//\overline{BC}$$
이므로 $\angle AFB = \angle CBF$ 즉, $\angle ABF = \angle AFB$ 이므로 $\angle AEB = 180\degree - 110\degree = 70\degree$ $\overline{AD}//\overline{BC}$ 이므로 $\angle AEB = \angle EAF = 70\degree$ $\therefore \angle BAF = 140\degree$

$$\Delta ABF$$
에서

$$\angle AFB = \frac{180° - 140°}{2} = 20°$$

 \therefore $\angle x = 180^{\circ} - 20^{\circ} = 160^{\circ}$

38) [정답] ①

[해설] ①
$$\overline{AO} = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 16 = 8$$

39) [정답] ①

[해설]
$$\overline{AB} = \overline{DC} = 14 \text{ cm}$$

$$\overline{AO} = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 16 = 8 \text{ (cm)}$$

$$\overline{BO} = \frac{1}{2}\overline{BD} = \frac{1}{2} \times 20 = 10 \text{ (cm)}$$

따라서 $\triangle OAB$ 의 둘레의 길이는 14+8+10=32 (cm)

40) [정답] ③

[해설]
$$\triangle ADE$$
에서 $\angle ADE = \frac{180\degree - 30\degree}{2} = 75\degree$ $\angle BAD + \angle ADE = 180\degree$ 이므로

 $\angle BAD + 75^{\circ} = 180^{\circ}$ $\therefore \angle BAD = 105^{\circ}$

 $\therefore \angle BAE = 105^{\circ} - 30^{\circ} = 75^{\circ}$

41) [정답] ②

[해설]
$$\angle A + \angle B = 180$$
 ° 이므로 $\angle x = 180$ ° -130 ° $= 50$ °

42) [정답] ②

[해설]
$$\overline{AD}//\overline{BC}$$
이므로

$$\angle CBF = \angle AFB = 180^{\circ} - 145^{\circ} = 35^{\circ}$$

$$\angle A + \angle B = 180^{\circ}$$
이므로 $\angle OAB + \angle OBA = 90^{\circ}$

$$\triangle OAF$$
이 서 $\angle OAF = 180^{\circ} - (90^{\circ} + 35^{\circ}) = 55^{\circ}$

∠*BEO*=∠*FAO*=55°(엇각)이므로

 $\angle AEC = 180 \degree - 55 \degree = 125 \degree$

43) [정답] ③

[해설]
$$\overline{BO} = \frac{1}{2}\overline{BD} = \frac{1}{2} \times 15 = \frac{15}{2}$$
 (cm)

$$\overline{CO} = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 11 = \frac{11}{2} \text{ (cm)}$$

 $\overline{BC} = \overline{AD} = 9 \text{ (cm)}$

따라서 $\triangle BCO$ 의 둘레의 길이는

 $\frac{15}{2} + \frac{11}{2} + 9 = 22 \text{ (cm)}$

44) [정답] ⑤

[해설] $\overline{AD}//\overline{BC}$ 이므로 $\angle DAE = \angle BEA$ (엇각)

 $\triangle ABE$ 에서 $\angle BAE = \angle BEA$

즉, $\overline{BA} = \overline{BE}$, $\angle ABE = 60^{\circ}$ 이므로

 $\triangle ABE$ 는 한 변의 길이가 14cm인 정삼각형이다.

같은 방식으로 $\triangle CDF$ 도

한 변의 길이가 14cm인 정삼각형이다.

 $\overline{AE} = \overline{BE} = \overline{FD} = \overline{CF} = 14$ cm,

 $\overline{CE} = \overline{AF} = 18 - 14 = 4 \text{ (cm)}$

따라서 $\square AECF$ 의 둘레의 길이는

 $(14+4) \times 2 = 36 \text{ (cm)}$

45) [정답] ①

[해설]
$$\angle A + \angle D = 180$$
 ° 이므로

$$\angle A = 180\degree - 70\degree = 110\degree$$

$$\angle PAB = \frac{1}{2} \angle A = \frac{1}{2} \times 110^{\circ} = 55^{\circ}$$

$$\triangle ABP$$
에서 $\angle ABP = 180\degree - (90\degree + 55\degree) = 35\degree$
 $\angle B = \angle D$ 이므로 $\angle PBC = 70\degree - 35\degree = 35\degree$

46) [정답] ⑤

[해설]
$$(a)$$
에서 $\angle B+\angle C=180$ ° 이므로

$$50^{\circ} + (60^{\circ} + \angle x) = 180^{\circ}$$

$$\therefore \angle x = 70^{\circ}$$

$$(b)$$
에서 $\angle B+ \angle C=180$ °이므로

$$\angle\,B\,{=}\,180\,^{\circ}\,{-}\,100\,^{\circ}\,{=}\,80\,^{\circ}$$

$$\therefore \angle x = 25^{\circ} + 80^{\circ} = 105$$

47) [정답] ④

격격 겉으므로 평맹사면영이다
$$7=x+3$$
 $\therefore x=4$

48) [정답] ④

[해설] $\square ABCD$ 의 둘레의 길이가 $30\,\mathrm{cm}$ 이므로

 $\overline{AB} + \overline{AD} = 15 \text{ cm}$

또,
$$\overline{AB}:\overline{AD}=2:3$$
이므로 $\overline{AB}=15\times\frac{2}{5}=6$ (cm),

$$\overline{AD} = 15 \times \frac{3}{5} = 9 \text{ (cm)}$$

 $\overline{AD}//\overline{BC}$ 이므로 $\angle DAE = \angle BEA$ (엇각),

 $\angle ADF = \angle CFD$ (엇각)

 \leq , $\angle BAE = \angle BEA$, $\angle CDF = \angle CFD$

 $\therefore \overline{AB} = \overline{BE} = 6 \text{ cm}, \overline{CD} = \overline{CF} = 6 \text{ cm}$

EF = 6 + 6 - 12 = 3 (cm)

49) [정답] ②

[해설] $\overline{AB}//\overline{CE}$ 이므로 $\angle ABE = \angle CEB$ (엇각)

즉,
$$\angle EBC = \angle CEB$$
이므로 $\overline{BC} = \overline{CE}$

$$x+5=(2x+1)+2$$
 에서

$$-x = -2$$
 $\therefore x = 2$

50) [정답] ③

[해설]
$$\overline{AE}//\overline{BC}$$
이므로

$$\angle AEB = \angle CBE$$
(엇각) ··· ①

 \overline{BE} 는 $\angle DBC$ 의 이등분선이므로

 $\angle DBE = \angle CBE \quad \cdots \bigcirc$

⑤, ⓒ에 의해 ∠DBE = ∠DEB이므로

$$\overline{BD} = \overline{ED} \circ | \overline{\Box} \overline{BD} = 2\overline{BO} = 2 \times 8 = 16 \text{ (cm)}$$

 $\therefore \overline{DE} = 16 \text{ (cm)}$

51) [정답] ①

[해설] 평행사변형은 두 대변의 길이가 각각 같으므로

$$x = \overline{AD} = 5$$

또, 두 대각선이 서로 다른 것을 이등분하므로

$$y = \overline{OD} = \frac{1}{2}\overline{BD} = \frac{1}{2} \times 6 = 3$$

$$x + y = 5 + 3 = 8$$

52) [정답] ⑤

$$\angle A = 180^{\circ} \times \frac{5}{9} = 100^{\circ}, \ \angle B = 180^{\circ} \times \frac{4}{9} = 80^{\circ}$$

$$\therefore \angle C = \angle A = 100^{\circ}$$

53) [정답] ④

[해설]
$$x = \overline{DC} = 12$$
cm

$$\angle$$
 $C+$ \angle $D=$ 180 ° 이므로 $y=$ 180 ° 70 ° $=$ 110 °

$$\therefore x + y = 12 + 110 = 122$$

54) [정답] ⑤

[해설]
$$\angle A + \angle D = 180$$
 ° 이므로 $\angle A = 180$ ° × $\frac{5}{9} = 100$ ° $\angle C = \angle A = 100$ ° 이므로 $\angle x = 180$ ° -100 ° $= 80$ °

55) [정답] ④

[해설]
$$\angle A + \angle D = 180$$
 ° 이므로 $\angle D = 180$ ° -98 ° $= 82$ ° $\triangle CDE$ 에서 $\angle DCE = 180$ ° -2×82 ° $= 16$ ° $\angle A = \angle C$ 이므로 $\angle ECB = 98$ ° -16 ° $= 82$ °

56) [정답] ⑤

[해설]
$$\overline{AD} = \overline{BC}$$
이므로 $2x+5=3x-2$ 에서 $-x=-7$ $\therefore x=7$ $\overline{CD} = \overline{AB} = 7+3=10 \text{ (cm)}$

57) [정답] ②

[해설]
$$\triangle ADM$$
과 $\triangle PCM$ 에서 $\overline{DM} = \overline{CM}$, $\angle ADM = \angle PCM$ (엇각), $\angle AMD = \angle PMC$ (맞꼭지각)이므로 $\triangle ADM = \triangle PCM$ (ASA합동) $\overline{AD} = \overline{PC} = 4$ (cm) $\therefore \overline{BP} = 4 + 4 = 8$ (cm)

58) [정답] ②

[해설]
$$\overline{AD}//\overline{BC}$$
이므로 $\angle DAE = \angle BEA$, $\angle ADF = \angle CFD$ 즉, $\angle BAE = \angle BEA$, $\angle CDF = \angle CFD$ 이므로 $\overline{AB} = \overline{BE} = 5 \text{ (cm)}$, $\overline{CD} = \overline{CF} = 5 \text{ (cm)}$ $\therefore \overline{EF} = 5 + 5 - 8 = 2 \text{ (cm)}$

59) [정답] ④

[해설]
$$\angle DAE = \angle AEB = 50^{\circ}$$
 (엇각) $\angle A + \angle D = \angle x + \angle y + 50^{\circ} = 180^{\circ}$ $\therefore \angle x + \angle y = 130^{\circ}$

60) [정답] ②

[해설]
$$\angle B = \angle ADC = x$$
라 하면 $\angle EDC = \frac{1}{3} \angle ADC = \frac{1}{3}x$, $\angle ADG = \frac{2}{3}x$ $\triangle AGD$ 에서 $\angle DAG = 180 \degree - \left(90 \degree + \frac{2}{3}x\right) = 90 \degree - \frac{2}{3}x$ $\angle A + \angle D = 180 \degree$ 이므로 $72 \degree + \left(90 \degree - \frac{2}{3}x\right) + x = 180 \degree$ $\therefore x = 54 \degree$ $\therefore \angle B = 54 \degree$

61) [정답] ④

[해설] ∟. 두 쌍의 대각의 크기가 각각 같다. □. 두 대각선이 서로 다른 것을 이등분한다. □. 한 쌍의 대변이 평행하고 그 길이가 같다. 따라서 □ABCD가 평행사변형인 것은 ㄴ, ㄷ, ㅁ이다.

62) [정답] ①

[해설] ① 한 쌍의 대변이 평행하고 그 길이가 같다.

63) [정답] ②

[해설] (가) \overline{DC}

(나) ∠DCF

(다) $\triangle CDF$ (라) \overline{DF}

 $(\Box \vdash) \angle DFE$

64) [정답] ④

[해설] (가) \overline{DA} (나) $\angle CAD$ (다) \overline{AC} (라) $\angle DCA$ (마) \overline{DC}

65) [정답] ①

[해설] ② 두 쌍의 대변이 각각 평행하다.

- ③ 두 쌍의 대변의 길이가 각각 같다.
- ④ 두 대각선이 서로 다른 것을 이등분한다.
- ⑤ 두 대각의 크기가 각각 같다.

66) [정답] ②

[해설] ① 한 쌍의 대변이 평행하고 그 길이가 같다.

- ③ 두 쌍의 대각의 크기가 각각 같다.
- ④ 두 쌍의 대변의 길이가 각각 같다.
- ⑤ $\angle A=120\,^\circ$, $\angle B=60\,^\circ$ 이면 $\overline{AD}//\overline{BC}$ 이므로 한 쌍의 대변이 평행하고 그 길이가 같다.

67) [정답] ⑤

[해설] 두 대각선이 서로 다른 것을 이등분한다.

68) [정답] ①

[해설] ① 두 대각선이 서로 다른 것을 이등분한다.

69) [정답] ④

[해설] L. 두 대각선이 서로 다른 것을 이등분한다. a. 두 쌍의 대각의 크기가 각각 같다.

70) [정답] ③

[해설] ③ 두 쌍의 대변의 길이가 각각 같다.

71) [정답] ②

72) [정답] ①

[해설] ② 한 쌍의 대변이 평행하고 그 길이가 같다.

- ③ 두 쌍의 대각의 크기가 각각 같다.
- ④ 두 쌍의 대변의 길이가 각각 같다.
- ⑤ $\angle A + \angle B = 180$ °이면 $\overline{AD}//\overline{BC}$ 이므로 한 쌍의 대변이 평행하고 그 길이가 같다.

73) [정답] ②

[해설] ② 두 대각선이 서로 다른 것을 이등분한다.

74) [정답] ④

[해설] ㄱ. 두 쌍의 대각의 크기가 각각 같다. ㄴ. 두 쌍의 대변의 길이가 각각 같다. ㄷ. 두 대각선이 서로 다른 것을 이등분한다.

75) [정답] ①

[해설] ② 두 쌍의 대변이 각각 평행하다.

- ③ 두 대각선이 서로 다른 것을 이등분한다.
- ④ 한 쌍의 대변이 평행하고 그 길이가 같다.
- ⑤ 두 쌍의 대변의 길이가 각각 같다.

76) [정답] ①

[해설] ② 한 쌍의 대변이 평행하고 그 길이가 같다.

- ③ 두 대각선이 서로 다른 것을 이등분한다.
- ④ $\angle A + \angle D = 180\,^{\circ}$ 이면 $\overline{AB}//\overline{DC}$ 이므로
- 한 쌍의 대변이 평행하고 그 길이가 같다.
- ⑤ 두 쌍의 대각의 크기가 각각 같다.

77) [정답] ④

[해설] ① 두 쌍의 대각의 크기가 각각 같다.

- ② 한 쌍의 대변이 평행하고 그 길이가 같다.
- ③ 두 쌍의 대변의 길이가 각각 같다.
- ⑤ 두 대각선이 서로 다른 것을 이동분한다.

78) [정답] ①

[해설] ㄱ. 한 쌍의 대변이 평행하고 그 길이가 같다. ㄷ. 두 쌍의 대각의 크기가 각각 같다.

79) [정답] ②

[해설] (가) $\angle MDN$, (나) $\angle DNC$, (다) $\angle BND$

80) [정답] ⑤

[해설] $\angle BAC$, $\angle DCA$ 는 엇각이고, $\angle BAC = \angle DCA$ 이면 $\overline{AB}//\overline{DC}$ 따라서 $\Box ABCD$ 는 한 쌍의 대변이 평행하고 그 길이가 같으므로 평행사변형이다.

81) [정답] ②

[해설] ① 한 쌍의 대변이 평행하고 그 길이가 같다.

- ③ 두 대각선이 서로 다른 것을 이등분한다.
- ④ 두 쌍의 대변의 길이가 각각 같다.
- ⑤ 두 쌍의 대각의 크기가 각각 같다.

82) [정답] ①. ④

[해설] ① 두 쌍의 대각의 크기가 각각 같다. ④ 두 쌍의 대변이 각각 평행하다.

83) [정답] ①

[해설] □*ABOE*는 평행사변형이므로

 $\overline{EO} = \overline{AB} = 10 \text{ cm}$

한편, $\square AODE$ 에서

 $\overline{AE}//\overline{DO}$... \bigcirc

 \overline{BO} = \overline{DO} , \overline{AE} = \overline{BO} 이므로 \overline{AE} = \overline{DO} … \square

- ①, ⓒ에 의해
- □ *AODE*는 한 쌍의 대변이 평행하고
- 그 길이가 같으므로 평행사변형이다.

$$\overline{FO} = \frac{1}{2}\overline{EO} = \frac{1}{2} \times 10 = 5 \text{ (cm)}$$

$$\overline{FD} = \overline{AF} = \frac{1}{2}\overline{AD} = \frac{1}{2} \times 12 = 6 \text{ (cm)}$$

 $\therefore \overline{FD} + \overline{FO} = 6 + 5 = 11 \text{ (cm)}$

84) [정답] ④

[해설] $\triangle OBC = \frac{1}{4} \square ABCD$ 이므로

$$7 = \frac{1}{4} \square ABCD \quad \therefore \quad \square ABCD = 28 \text{ (cm}^2)$$

85) [정답] ③

[해설] $\square AEBO = 2\Delta EAO = 2 \times 16 = 32 \text{ (cm}^2)$

$$\triangle ABO = \frac{1}{2} \square AEBO = \frac{1}{2} \times 32 = 16 \text{ (cm}^2)$$

 $\therefore \Box ABCD = 4\triangle ABO = 4\times 16 = 64 \text{ (cm}^2)$

86) [정답] ②

[해설] $\triangle AOB = 12 \text{ cm}^2$ 이므로

 $\square ABCD = 4\triangle AOB = 4\times 12 = 48 \text{ (cm}^2)$ 한편, $\square BFED$ 에서 $\overline{BC} = \overline{CE}$, $\overline{DC} = \overline{CF}$ 로 두 대각선이 서로 다른 것을 이등분하므로 평행사변형이다.

$$\therefore \Box BFED = 4\triangle BCD = 4 \times \left(\frac{1}{2}\Box ABCD\right)$$
$$= 4 \times \left(\frac{1}{2} \times 48\right) = 96 \text{ (cm}^2\text{)}$$

87) [정답] ④

[해설] $\square ABCD = 4 \triangle OAB = 4 \times 6 = 24 \text{ (cm}^2)$

88) [정답] ②

[해설]
$$\triangle ABP + \triangle CDP = \frac{1}{2} \square ABCD$$
이므로
색칠한 부분의 넓이는 $\frac{1}{2} \times 20 = 10 \, (\mathrm{cm}^2)$

89) [정답] ⑤

[해설] $\triangle PAB + \triangle PCD = \triangle PAD + \triangle PBC$ 이므로 $25 + 9 = 7 + \triangle PBC$ $\therefore \triangle PBC = 27$

90) [정답] ③

[해설] $\triangle AOP$ 와 $\triangle COQ$ 에서 $\overline{AO} = \overline{CO}$, $\angle PAO = \angle QCO$ (엇각), $\angle AOP = \angle COQ$ (맞꼭지각)이므로 $\triangle AOP = \triangle COQ$ (ASA합동) $\therefore \triangle AOP = \triangle COQ$ 따라서 색칠한 부분의 넓이는 $\triangle POD + \triangle COQ = \triangle POD + \triangle AOP = \triangle AOD$ $= \frac{1}{4} \Box ABCD = \frac{1}{4} \times 24 = 6 \text{ (cm}^2)$

91) [정답] ②

[해설] ⑦ 한 쌍의 대변이 평행하다. ◎ 한 내각의 크기가 90°이거나

두 대각선의 길이가 같다.

② 이웃하는 두 변의 길이가 같다.

또는 두 대각선이 서로 수직이다.

② 이웃하는 두 변의 길이가 같다. 또는 두 대각선이 서로 수직이다.

92) [정답] ①

[해설]
$$x = \overline{CO} + \overline{DO} + \overline{CD} = 6 + 7 + 9 = 22$$

 $y = \frac{1}{2} \times 6 \times 6 = 18$
 $\therefore x + y = 22 + 18 = 40$

93) [정답] ⑤

[해설] $\triangle AOE$ 와 $\triangle DOF$ 에서 $\angle EAO = \angle FDO = 45^{\circ} \cdots \bigcirc$ $\overline{AO} = \overline{DO} \cdots \bigcirc$ $\angle EOA + \angle AOF = 90^{\circ},$ $\angle AOF + \angle FOD = 90^{\circ} \cap \Box \Box \Box$ $\angle EOA = \angle FOD \cdots \bigcirc$ \bigcirc , \bigcirc , \bigcirc \bigcirc \bigcirc 의해 $\triangle AOE = \triangle DOF (SAS합동)$ $\overline{AE} = \overline{DF} = 4 \operatorname{cm} \cap \Box \Box \Box$ $\therefore \Box ABCD = 10 \times 10 = 100 (\operatorname{cm}^2)$

94) [정답] ⑤

[해설] $\overline{AB} = \overline{BC}$ 이므로 $\angle OCB = \angle BAC = 55^\circ$ $\angle COD = 90^\circ$ 이므로 $\triangle COD$ 에서 $\angle ODC = 180^\circ - (90^\circ + 55^\circ) = 35^\circ$

95) [정답] ⑤

[해설] $\triangle ABO$ 에서 $\angle BAO = 180 \degree - (90 \degree + 25 \degree) = 65 \degree$ $\therefore \angle x = \angle BAO = 65 \degree$

96) [정답] ③

[해설] $a = x = \overline{CD} = 9$ $\angle OCD = \angle OAB = 54^\circ$, $\angle AOB = 90^\circ$ $\triangle OAB$ 에서 $\angle OBA = 180^\circ - (90^\circ + 54^\circ) = 36^\circ$ $b = y = \angle OBA = 36$ $\therefore a + b = 9 + 36 = 45$

97) [정답] ②

[해설] $\angle A + \angle B = 180\,^\circ$ 이므로 • + $\times = 90\,^\circ$ 즉, $\angle EFG = \angle FGH = \angle GHE = \angle HEF = 90\,^\circ$ 인 □EFGH는 직사각형이다. $\therefore \overline{EF} \bot FG$, $\overline{EG} = \overline{FH}$

98) [정답] ⑤

AB D에서 AB에 평행한 선분을 긋고 BC와 만나는 점을 P라 하자.

 $\square ABPD$ 는 두 쌍의 대변이 평행하므로 $\square ABPD$ 는 평행사변형이다. 즉 $\overline{AB} = \overline{DP} = 6 \mathrm{cm}$, $\overline{AD} = \overline{BP} = 5 \mathrm{cm}$ $\triangle DPC$ 에서 $\overline{DP} = \overline{PC} = \overline{DC} = 6 \mathrm{cm}$ 이므로 $\triangle DPC$ 는 정삼각형이다.

 $\therefore \angle B = \angle DPC = 60^{\circ}$

99) [정답] ⑤

[해설] $x = \frac{1}{2}\overline{BD} = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 14 = 7 \text{ (cm)}$ $y = \angle ADO = 90 \text{ }^{\circ} - 55 \text{ }^{\circ} = 35 \text{ }^{\circ}$

100) [정답] ②

[해설] $\angle B + \angle C = 180\,^{\circ}$ 이므로 $\angle B = 180\,^{\circ} - 140\,^{\circ} = 40\,^{\circ}$ $\angle ABD = \angle CBD = \frac{1}{2} \angle B = \frac{1}{2} \times 40\,^{\circ} = 20\,^{\circ}$ $\triangle ABE$ 에서 $\angle BAE = 180\,^{\circ} - (90\,^{\circ} + 40\,^{\circ}) = 50\,^{\circ}$ $\angle AFD = \triangle ABF$ 의 외각이므로 $\angle AFD = \angle BAF + \angle ABF = 50\,^{\circ} + 20\,^{\circ} = 70\,^{\circ}$

101) [정답] ②

[해설] ② $\overline{AC} = \overline{BD}$

102) [정답] ④

[해설] \overline{OB} 는 원 O의 반지름이므로 \overline{OB} =4cm $\Box OABC$ 는 직사각형이므로 두 대각선의 길이가 같다.
∴ \overline{AC} = \overline{OB} =4(cm)

103) [정답] ④

[해설] ∠A+∠B=180°이므로

 $\angle A = 180\,^{\circ} imes rac{4}{5} = 144\,^{\circ}$, $\angle B = 36\,^{\circ}$ $\angle DAF = rac{1}{3} imes 144\,^{\circ} = 48\,^{\circ}$ $\triangle ADF$ 에서 $\angle D = \angle B = 36\,^{\circ}$ 이고 $\angle AFC \succeq \triangle ADF$ 의 외각이므로 $\angle AFC = \angle DAF + \angle D = 48\,^{\circ} + 36\,^{\circ} = 84\,^{\circ}$

104) [정답] ④

[해설] $\overline{BF} = \overline{BE} = 8 \, \mathrm{cm}$ $\angle BEF = \angle DCF \, (\cite{Start})$, $\angle BFE = \angle DFC \, (\cite{Start})$ 이므로 $\angle DCF = \angle DFC \,$ 이다.
즉, $\overline{DF} = \overline{DC} = 16 \, \mathrm{cm}$ $\overline{BD} = 16 + 8 = 24 \, (\mathrm{cm})$ $\therefore \overline{BO} = \frac{1}{2} \times 24 = 12 \, (\mathrm{cm})$

105) [정답] ①

[해설] $\overline{AC} = \overline{BD} = 2\overline{OD} = 2 \times 4 = 8 \text{ (cm)}$ $\therefore \Box ABCD = \frac{1}{2} \times 8 \times 8 = 32 \text{ (cm}^2)$

106) [정답] ④

[해설] $\angle A + \angle B = 180\,^\circ$ 이므로 $\angle BAE + \angle ABE = 90\,^\circ$: $\angle HEF = \angle AEB = 90\,^\circ$ (맞꼭지각) 나머지 각 또한 같은 방식으로 $\angle EFG = \angle FGH = \angle GHE = 90\,^\circ$ 이다. : $\Box EFGH$ 는 직사각형

107) [정답] ②

[해설] ② 두 대각선이 서로 수직인 평행사변형은 마름모이다.

108) [정답] ⑤

[해설] 평행사변형 *ABCD*가 정사각형이 되는 경우는 다음 두 가지이다.

(i) $\angle A = 90^{\circ}$, $\overline{AC} \perp \overline{BD}$

(ii) $\overline{AB} = \overline{BC}$, $\overline{AC} = \overline{BD}$

109) [정답] ①, ⑤

[해설] ① \overline{AD} = \overline{BC} = 60 cm

② $\overline{BD} = \overline{AC} = 100 \text{ cm}, \overline{BO} = \frac{1}{2} \overline{BD} = 50 \text{ (cm)}$

③ $\overline{OB} = \overline{OC} = 50 \, \mathrm{cm}$ 이므로 $\triangle OBC$ 는 이등변삼각형이다. ④ $\overline{OB} = \overline{OD}$ 이므로 $\triangle ABO = \triangle ADO$ ⑤ $\triangle ABC$ 와 $\triangle BAD$ 에서 $\overline{AC} = \overline{BD}$, $\angle ABC = \angle BAD = 90^\circ$, \overline{AB} 는 공통이므로 $\triangle ABC \equiv \triangle BAD (SAS$ 합동) 따라서 옳은 것은 ①, ⑤이다.

110) [정답] ①

[해설] 직사각형에서 두 대각선이 서로 직교하거나 이웃하는 두 변의 길이가 같으면 정사각형이다.

111) [정답] ④

[해설] ① ○ - 다른 한 쌍의 대변이 평행하다.

② 🕒 - 한 내각의 크기가 90°이다.

③ 🗇 - 이웃하는 두 변의 길이가 같다.

⑤ □ - 한 내각의 크기가 90°이다.

112) [정답] ④

[해설] 평행사변형 ABCD에서 $\angle A = 90$ °이거나 $\overline{AC} = \overline{BD}$ 이면 직사각형이 된다.

113) [정답] ⑤

[해설] 기. 평행사변형은 두 쌍의 대변이 각각 평행한 사각형, 사다리꼴은 한 쌍의 대변이 평행한 사각형이므로 평행사변 형은 사다리꼴이라 할 수 있다.

L. 한 내각의 크기가 90°이거나

두 대각선의 길이가 같은 마름모는 정사각형이다.

다. 이웃한 두 변의 길이가 같거나

두 대각선이 서로 직교하는 평행사변형은 마름모이다.

리. 등변사다리꼴은 두 밑각의 크기가 같은 사다리꼴이고, 평행하지 않는 두 변의 길이가 같다.

114) [정답] ⑤

[해설] ⑤ $\angle ABD = \angle ADB$ 이면 $\Box ABCD$ 는 마름모이다.

115) [정답] ③

[해설] ③ 사다리꼴의 대각선의 길이는 같지 않지만 등변사다리꼴의 대각선의 길이는 같다.

116) [정답] ④, ⑤

[해설] 두 대각선이 서로 다른 것을 수직이등분하는 사각형은 마름모와 정사각형이다.

117) [정답] ④

[해설] ① ⊙ - 다른 한 쌍의 대변이 평행하다.

② © - 한 내각의 크기가 90°이거나

두 대각선의 길이가 같다.

③ 🗅 - 이웃하는 두 변의 길이가 같거나

두 대각선이 직교한다.

⑤ 🗇 - 한 내각의 크기가 90°이거나

두 대각선의 길이가 같다.

118) [정답] ④

[해설] $\overline{AC}=\overline{BD}$ 와 $\overline{AB}\perp\overline{BC}$ 은 직사각형이 되게 하는 성질이다. $\overline{AB}=\overline{BC}$ 와 $\overline{AC}\perp\overline{BD}$ 은 모두 마름모가 되게 하는 성질이다. 따라서 옳게 이야기하고 있는 학생은 태형, 지민이다.

119) [정답] ②

[해설]

 $\angle A + \angle B = \angle B + \angle C = 180$ 이므로 $\angle BAE + \angle ABE = \angle HBC + \angle HCB = 90$ 이므로 $\angle HEF = \angle EHG = \angle HGF = \angle GFE = 90$ 이므로 □ EFGH는 직사각형이다. 따라서 직사각형에 대한 설명은 가, 다, 라이다.

120) [정답] ⑤

[해설] 평행사변형이 마름모가 되려면 이웃하는 두 변의 길이가 같거나 두 대각선이 수직으로 만나야 한다.

121) [정답] ⑤

[해설] ⑤ $\overline{AB} = \overline{BC}$ 이면 $\square ABCD$ 는 마름모이다.

122) [정답] ①

[해설] 평행사변형에서 한 내각이 직각이거나 두 대각선의 길이가 같으면 직사각형이다. 평행사변형에서 이웃하는 두 변의 길이가 같거나 두 대각선이 서로 직교하면 마름모이다.

123) [정답] ⑤

[해설] \overline{AO} = \overline{CO} 이므로 x+4=4x-8, -3x=-12 \therefore x=4 \overline{AO} = 4+4=8, \overline{AC} = \overline{BD} 이므로 \overline{BD} = $2\overline{AO}$ = $2\times 8=16$

124) [정답] ⑤

[해설] $\angle ODC = 90\degree - 40\degree = 50\degree$ $\overrightarrow{OD} = \overrightarrow{OC}$ 이므로 $\angle OCD = \angle ODC = 50\degree$ $\therefore \angle x = 180\degree - 2 \times 50\degree = 80\degree$

125) [정답] ②

[해설] (a)에서 $\overline{AD}/\overline{BC}$ 이므로 $\angle BCA = \angle DAC = 25^{\circ}$ $\angle x = \angle DCB = 50^{\circ}$ (b)에서 $\angle B = \angle C = 75^{\circ}$ 이고, $\angle A + \angle B = 180^{\circ}$ 이므로 $\angle x = 180^{\circ} - 75^{\circ} = 105^{\circ}$

126) [정답] ⑤

[해설] ΔECD 에서

$$\angle ECD = \angle EDC = \frac{180\degree - 100\degree}{2} = 40\degree$$
 $\angle BCD + \angle CDA = 180\degree \circ]$ 므로
 $\angle BCD = 180\degree - 70\degree = 110\degree$
 $\therefore \angle BCE = 110\degree - 40\degree = 70\degree$

127) [정답] ②

[해설] $\triangle BFH$ 에서 $\angle FBH+\angle BFH=90\,^\circ$ $\triangle ABE$ 에서 $\angle ABE+\angle AEB=90\,^\circ$ $\angle ABE=\angle HBF$ 이므로 $\angle AEB=\angle BFH$ \cdots ① $\angle AFE=\angle BFH(맞꼭지각) \cdots ⑥$ ①, ⑥에 의해 $\angle AFE=\angle AEF$ $\therefore \overline{AF}=\overline{AE}=5$ (cm)

128) [정답] ①

[해설] $\angle BCP = 45\,^\circ$ 이므로 $\triangle BCP$ 에서 $\angle PBC = 180\,^\circ - (45\,^\circ + 64\,^\circ) = 71\,^\circ$ $\angle ABP = 19\,^\circ$ $\triangle ABP$ 와 $\triangle ADP$ 에서 $\overline{AB} = \overline{AD}, \ \angle BAP = \angle DAP = 45\,^\circ, \ \overline{AP}$ 는 공통이므로 $\triangle ABP \equiv \triangle ADP(SAS$ 합동) 즉, $\angle ABP = \angle ADP$ $\therefore \ \angle ADP = 90\,^\circ - 71\,^\circ = 19\,^\circ$

129) [정답] ③

[해설] $\angle OAB = \angle OCD = 50^{\circ}$ (엇각) $\angle BOA = 90^{\circ}$ 이므로 $\angle OBA = 180^{\circ} - (90^{\circ} + 50^{\circ}) = 40^{\circ}$ $\therefore x = 40^{\circ}$

130) [정답] ②

[해설] BO = DO이므로 x = 5 $\angle BOC = 90$ °이므로 $\angle y = 180$ ° -(90 ° +48 °) =42 °

131) [정답] ⑤

[해설] $\triangle ABC$ 에서

$$\angle BAC = \frac{1}{2} \times \angle BAD = \frac{1}{2} \times 90^{\circ} = 45^{\circ}$$

 $\angle BPC$ 는 $\triangle ABP$ 의 외각이므로 $\angle BPC = \angle BAP + \angle ABP$ $\therefore \angle ABP = 75\degree - 45\degree = 30\degree$

132) [정답] ①

[해설] $\angle AEF = \angle CEF$ (접은각), $\angle AFE = \angle CEF$ (엇각)이므로 $\angle AFE = \angle AEF$ $\angle GAE = 90\degree$ 이므로 $\angle FAE = 90\degree - 18\degree = 72\degree$ $\angle AFE = \frac{180\degree - 72\degree}{2} = 54\degree$ $\therefore \angle x = 180\degree - 54\degree = 126\degree$

133) [정답] ②

[해설] $\overline{AD} = \overline{BC}$ 이므로 4x - 11 = 2x + 1 2x = 12 $\therefore x = 6$ $\overline{AD} = 4 \times 6 - 11 = 13 \text{ (cm)}$ 이므로 $\overline{AB} = \overline{AD}$ 즉, $\Box ABCD$ 는 마름모이다. $\therefore y = 90^{\circ}$ $\therefore x + y = 6 + 90 = 96$

134) [정답] ④

[해설] $\triangle ABF$ 와 $\triangle CBF$ 에서 $\overline{AB} = \overline{CB}, \ \angle ABF = \angle CBF = 45^{\circ},$ $\overline{BF} \vdash \overline{S} = \overline{S} \circ \Box = \overline{S} \circ ABF = \overline{S} \circ CBF (SAS$ 합동) 즉, $\angle BFA = \angle BFC$ $\angle BAF = 90^{\circ} - 28^{\circ} = 62^{\circ} \circ \Box = \overline{S} \circ BFC = 180^{\circ} - (45^{\circ} + 62^{\circ}) = 73^{\circ}$

135) [정답] ③

[해설] $\triangle ABE$ 와 $\triangle ADF$ 에서 $\overline{AB} = \overline{AD}$, $\angle ABE = \angle ADF$, $\overline{BE} = \overline{DF}$ 이므로 $\triangle ABE = \triangle ADF$ (SAS합동) 즉, $\overline{AE} = \overline{AF}$ $\triangle AEF$ 에서 $\overline{AE} = \overline{AF} = \overline{EF}$ 이므로 $\angle AEF = 60^\circ$ $\angle BAE = x$ 라 하면 $\angle ABE = \angle BAE = x$ 이고 $\angle AEF = \triangle ABE$ 의 외각이므로 $\angle AEF = \angle ABE + \angle BAE = 2x = 60^\circ$ $\therefore x = 30^\circ$

136) [정답] ①, ②, ④

[해설] ③ 평행사변형의 대각선의 길이를 같게 해 주면 직사각형이 된다. ⑤ 사다리꼴의 대각선의 길이를 같게 해 주면 등변사다리꼴이 된다.

137) [정답] ①

[해설] $x = \frac{1}{2}\overline{AC} = \frac{1}{2}\overline{BD} = \frac{1}{2} \times 10 = 5$ $\overline{OB} = \overline{OC} \cap \Box \Box \Box \angle OCB = \angle OBC = 35^{\circ}$ $\angle y = \angle OCB = 35^{\circ} () 건)$ $\therefore x + y = 35 + 5 = 40$

138) [정답] ⑤

[해설] \overline{AO} = \overline{BO} = $\frac{1}{2}\overline{AC}$ = $\frac{1}{2}\times12$ =6(cm) 따라서 $\triangle OAB$ 의 둘레의 길이는 8+6+6=20(cm)

139) [정답] ③, ④

[해설] □ *EFGH*는 직사각형이다. 따라서 네 각의 크기가 모두 같고, 두 대각선의 길이가 같다.

140) [정답] ①

[해설] ㄴ. 네 변의 길이가 같은 사각형은 마름모이고, 마름모는 두 대각선이 서로 다른 것을 수직이등분한다. $a. \overline{AB} = \overline{BC}$ 인 평행사변형 ABCD는 마름모이다. $a. \overline{AC} = \overline{BD}$, $\angle B = 90^\circ$ 인 평행사변형 ABCD는 직사각형이다. 따라서 옳은 것은 ㄱ, ㄷ이다.

141) [정답] ①

[해설] 평행사변형이 직사각형이 되는 조건은 $\overline{AC}=\overline{BD}$ 이거나 $\angle A=90\,^\circ$

142) [정답] ⑤

[해설] ⑤ 직사각형은 항상 두 대각선의 길이가 같다.

143) [정답] ③

[해설] 평행사변형이 직사각형이 되려면 한 내각의 크기가 90°이거나 두 대각선의 길이가 같아야 한다.

144) [정답] ②

[해설] 평행사변형 ABCD가 직사각형이 될 조건은 $\angle A = 90\,^\circ$ 또는 $\overline{AC} = \overline{BD}$ 이다.

145) [정답] ⑤

[해설] ⑤ 두 대각선이 서로 다른 것을 수직이등분하는 평행사변형은 마름모이다.

146) [정답] ③

[해설] $\angle A = \angle C$, $\angle B = \angle D$ 이고, $\angle A + \angle B = 180$ ° 이므로 $\angle AEB = \angle BHC = \angle CGD = \angle AFD = 90$ ° 따라서 $\Box EFGH$ 는 직사각형이다.

147) [정답] ④

[해설] <보기> 중에서 두 대각선의 길이가 같은 사각형은 직사각형, 정사각형이다.

148) [정답] ③

[해설] ∠A+∠B=180°이므로
∠BAE+∠ABE=∠CBH+∠BCH=90°
□EFGH는 네 내각의 크기가
모두 90°이므로 직사각형이다.
따라서 직사각형이 정사각형이 되려면
이웃하는 두 변의 길이가 같거나
두 대각선이 직교해야 한다.
따라서 정사각형이 되기 위한 조건은 EH= HG

149) [정답] ③

[해설] 직사각형은 항상 평행사변형이므로 옳지 않은 말을 한 학생은 민수이다.

150) [정답] ④

[해설] ④ $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$ 는 평행사변형의 성질이다.

151) [정답] ④

[해설] $\overline{DC}//\overline{AF}$ 이므로 $\triangle ADC = \triangle FDC$ $\square ADEC = \triangle DEC + \triangle ADC = \triangle DEC + \triangle DCF$ $= \triangle DEF$ $\triangle BDF$ 에서 $\overline{BE}: \overline{EF} = 3:5$ 이므로 $\triangle DBE: \triangle DEF = 3:5$ $15: \triangle DEF = 3:5$ $\therefore \triangle DEF = 25 \text{ (cm}^2)$ $\therefore \square ADEC = \triangle DEF = 25 \text{ (cm}^2)$

152) [정답] ⑤

[해설] ㄱ. $\overline{AC}//\overline{DE}$ 이므로 $\triangle ACD = \triangle ACE$ $\triangle AED = \triangle CED$

 \Box . $\triangle ACD = \triangle ACE$ 이므로 $\triangle AFD = \triangle CFE$

 \exists . $\Box ABCD = \triangle ABC + \triangle ACD$

 $= \triangle ABC + \triangle ACE = \triangle ABE$

따라서 옳은 것은 기, 디, 리이다.

153) [정답] ④

[해설] $\overline{DC}//\overline{AF}$ 이므로 $\triangle DCA = \angle DCF$ $\triangle BFD$ 에서 $\overline{BE}:\overline{EF}=2:3$ 이므로

 $\triangle DBE: \triangle DEF = 2:3, 14: \triangle DEF = 2:3$

 $\therefore \triangle DEF = 21$

 $\therefore \Box ADEC = \triangle DEC + \triangle DCA$

 $= \Delta DEC + \Delta DCF$

 $= \Delta DEF = 21 \text{ (cm}^2)$

154) [정답] ③

[해설] $\overline{AD}//\overline{BC}$ 이므로 $\triangle CDE = \triangle BDE = 30$

$$\triangle BCD = \frac{1}{2} \Box ABCD = \frac{1}{2} \times 120 = 60$$

 $\triangle BCF = 40$ 이므로 $\triangle BFD = 60 - 40 = 20$

 $\therefore \triangle DFE = \triangle BDE - \triangle BFD = 30 - 20 = 10$

155) [정답] ②

[해설] $\triangle ABM$ 에서 $\overline{AP}: \overline{PM}=2:1$ 이므로

 $\triangle ABP: \triangle BPM = 2:1$

ABP: 10 = 2:1 $ABP = 20 \text{ (cm}^2)$

 $\triangle ABP = \frac{1}{4} \Box ABCD \circ \Box \Box \Box$

 $\square ABCD = 4\triangle ABM = 4 \times 30 = 120 \text{ (cm}^2)$

156) [정답] ①

[해설] $\overline{DC}/\overline{AF}$ 이므로 $\triangle ADC = \triangle FDC$

 $\Box ADEC = \triangle DEC + \triangle ADC = \triangle DEC + \triangle FDC$

 $= \Delta DEF = 12 \text{ cm}^2$

한편, $\overline{BE}: \overline{EF} = 3:4$ 이므로

 $\triangle DBE: \triangle DEF = 3:4$

 $\triangle DBE$: 12 = 3:4 $\therefore \triangle DBE$ = 9 (cm²)

157) [정답] ①

[해설] $\overline{AB}//\overline{CD}$ 이므로 $\triangle ABD = \triangle ABC = 45 \,\mathrm{cm}^2$

 $\triangle AOD = 20 \,\mathrm{cm}^2$ 이므로 $\triangle BOC = 20 \,\mathrm{cm}^2$

 $\triangle BOC$ 에서 $\overline{BE} = \overline{CE}$ 이므로

 $\triangle OEC = \frac{1}{2} \triangle OBC = \frac{1}{2} \times 20 = 10 \text{ (cm}^2)$

158) [정답] ⑤

[해설] $\overline{AC}//\overline{DE}$ 이므로

 $\triangle ACE = \triangle ACD = \Box ABCD - \triangle ABC$

 $= 24 - 10 = 14 \text{ (cm}^2\text{)}$

159) [정답] ②

[해설] $\triangle ABO = \triangle DCO$ 이므로

 $\triangle OBC = \triangle ABC - \triangle ABO = \triangle ABC - \triangle DCO$ $=46-18=28 \text{ (cm}^2)$

160) [정답] ①

[해설] $\overline{AB}//\overline{DC}$ 이므로 $\triangle BCQ = \triangle ACQ$ $\overline{AC}//\overline{PQ}$ 이므로 $\triangle ACQ = \triangle ACP$

$$\therefore \triangle BCQ = \triangle ACP = \frac{1}{3} \triangle ACD$$
$$= \frac{1}{3} \times \left(\frac{1}{2} \Box ABCD\right) = \frac{1}{3} \times \left(\frac{1}{2} \times 60\right)$$
$$= 10 \text{ (cm}^2)$$

161) [정답] ①

[해설] $\square ABCD = \frac{1}{2} \times 12 \times 15 = 90 \text{ (cm}^2)$

$$\Delta BCD = \frac{1}{2} \Box ABCD = \frac{1}{2} \times 90 = 45 \text{ (cm}^2)$$

 $\overline{BP}: \overline{CP} = 3:20$

$$\triangle BPD = \frac{3}{5} \triangle BCD = \frac{3}{5} \times 45 = 27 \text{ (cm}^2)$$

 $\overline{BO} = \overline{DO} \circ | \Box = \overline{\exists}$

$$\triangle OPD = \frac{1}{2} \triangle BPD = \frac{1}{2} \times 27 = \frac{27}{2} \text{ (cm}^2)$$

162) [정답] ⑤

[해설] $\triangle ACD = \frac{4}{7} \triangle ABC = \frac{4}{7} \times 35 = 20 \text{ (cm}^2)$

$$\therefore \triangle CDE = \frac{3}{4} \triangle ACD = \frac{3}{4} \times 20 = 15 \text{ (cm}^2)$$

163) [정답] ②

[해설] $\overline{AC}//\overline{DE}$ 이므로 $\triangle ACD = \triangle ACE$

 $\square ABCD = \triangle ABC + \triangle ACD$

 $= \triangle ABC + \triangle ACE$

 $= \triangle ABE$

즉, $\triangle ABE = 30 \,\mathrm{cm}^2$

 $\overline{BC} = \overline{CE}$ 이므로

$$\triangle ACE = \frac{1}{2} \triangle ABE = \frac{1}{2} \times 30 = 15 \text{ (cm}^2)$$

164) [정답] ①

[해설] $\overline{PC}//\overline{MD}$ 이므로 $\triangle PDM = \triangle CDM$ $\triangle DPB = \triangle PDM + \triangle DMB = \triangle CDM + \triangle DMB$

$$= \Delta CMB = \frac{1}{2} \times 5 \times 6 = 15 \text{ (cm}^2)$$

165) [정답] ③

[해설] $\overline{AE}//\overline{BD}$ 이므로 $\triangle AED = \triangle AEB$

 $\overline{AB}//\overline{EC}$ 이므로 $\triangle AEB = \triangle ABC$

$$\therefore \triangle AED = \triangle ABC = \frac{1}{2} \times 6 \times 3 = 9 \text{ (cm}^2)$$

166) [정답] ③

[해설] \overline{AO} : \overline{CO} =1:2이므로 $\triangle AOD$: $\triangle COD$ =1:2

 $\triangle AOD: 20 = 1:2$ 에서 $\triangle AOD = 10 \text{ (cm}^2)$

 $\triangle AOB = \triangle COD = 20 \text{ (cm}^2) \circ] = 2$

 $\triangle ABD = 20 + 10 = 30 \text{ (cm}^2)$

167) [정답] ②

[해설] $\square ABCD = \frac{1}{2} \times 16 \times 10 = 80 \text{ (cm}^2)$

 $\triangle BCD = \frac{1}{2} \Box ABCD = \frac{1}{2} \times 80 = 40 \text{ (cm}^2)$

 $\overline{BP}: \overline{PC} = 3:5$ 이므로 $\triangle BPD: \triangle CPD = 3:5$

$$\triangle BPD = \frac{3}{8} \triangle BCD = \frac{3}{8} \times 40 = 15 \text{ (cm}^2\text{)}$$

168) [정답] ④

[해설] $\overline{AF}//\overline{DC}$ 이므로 $\triangle CDF = \triangle CDA$

$$\triangle CDA = \frac{1}{2} \square ABCD$$
이므로

$$\triangle CDF = \triangle CDE + \triangle EFC = \frac{1}{2} \square ABCD$$

18+
$$\triangle EFC = \frac{1}{2} \times 64$$

∴ $\triangle EFC = 14 \text{ (cm}^2)$

169) [정답] ③ [해설] $\overline{AC}//\overline{ED}$ 이므로 $\triangle ACE = \triangle ACD$ $\triangle ABD$ 에서 $\overline{BC}:\overline{CD}=3:1$ 이므로

 $\triangle ABC: \triangle ACD = 3:1$

 $12: \triangle ACD = 3:1 \quad \therefore \ \triangle ACD = 4 \ (\text{cm}^2)$

 $\therefore \Box ABCE = \triangle ABC + \triangle ACE$

 $= \triangle ABC + \triangle ACD = 12 + 4 = 16 \text{ (cm}^2)$

170) [정답] ②

[해설]
$$\overline{CD} = \frac{1}{3}\overline{BC} = \frac{1}{3} \times 12 = 4 \text{ (cm)}$$

 $\overline{AF}//\overline{ED}$ 이므로 $\triangle EFD = \triangle EAD$ $\therefore \triangle EFC = \triangle EFD + \triangle EDC$

 $= \triangle EAD + \triangle EDC = \triangle ADC$

$$=\frac{1}{2} \times 4 \times 8 = 16 \text{ (cm}^2)$$

171) [정답] ⑤

[해설] $\overline{DC}//\overline{AF}$ 이므로 $\triangle ADC = \triangle FDC$ 따라서 색칠한 부분의 넓이는

 ΔDEF 의 넓이와 같다.

 $\overline{BE}: \overline{EF}=3:4$ 이므로 $\triangle BDE: \triangle DEF=3:4$ 이고

$$5: \triangle \textit{DEF} = 3:4 \quad \therefore \ \triangle \textit{DEF} = \frac{20}{3}$$

따라서 $\square ADEC$ 의 넓이는 $\frac{20}{3}$ cm²이다.

172) [정답] ①

[해설] $\overline{AC}//\overline{DE}$ 이므로 $\triangle ACD = \triangle ACE$

 $\Box ABCD = \triangle ABC + \triangle ACD$

 $= \triangle ABC + \triangle ACE$

 $= \triangle ABE$

 $=\frac{1}{2}\times 8\times 2$

 $= 8 (cm^2)$

173) [정답] ①

[해설] $\overline{BF}//\overline{AC}$ 이므로 $\triangle ABC = \angle AFC$

 $\overline{AD}//\overline{EG}$ 이므로 $\triangle ADE = \triangle ADG$ 따라서 오각형 ABCDE의 넓이는

 $\triangle ABC + \triangle ACD + \triangle ADE$

 $= \triangle AFC + \triangle ACD + \triangle ADC$

 $= \triangle AFG$

 $=\frac{1}{2}\times12\times8$

=48

174) [정답] ⑤

 \overline{AO} : \overline{CO} =1:2이므로 $\triangle AOB$: $\triangle BOC$ =1:2

 $4: \triangle BOC = 1: 2$ 에서 $\triangle BOC = 8$ $\triangle ABC = \triangle DBC = 12$ 이므로 $\triangle COD = 4$ $\triangle COD: \triangle BOC = 4: 8 = 1: 2$ 이므로 $\overline{DO}: \overline{BO} = 1: 2$ 이고, $\triangle AOD: \triangle COD = 1: 2$ $\triangle AOD: 4 = 1: 2$ 에서 $\triangle AOD = 2$ $\therefore \Box ABCD = 2 + 4 + 4 + 8 = 18$

175) [정답] ②

[해설] $\overline{AC}//\overline{DE}$ 이므로 $\triangle ACD = \triangle ACE = 16 \text{ (cm}^2)$

 $\therefore \Box ABCD = \triangle ABC + \triangle ACD$

 $= \triangle ABC + \triangle ACE = \triangle ABE$

 $= 18 + 16 = 34 \text{ (cm}^2)$

176) [정답] ②

[해설] $\overline{AD}//\overline{BC}$ 이므로 $\triangle ABC = \triangle DBC = 25 \, \mathrm{cm}^2$ $\triangle OBC = 12 \, \mathrm{cm}^2$ 이므로

 $\triangle DOC = 12 \text{ cm}^2$ $\triangle DOC = 25 - 12 = 13 \text{ (cm}^2)$

177) [정답] ①

[해설] $\Delta BCD = \frac{1}{2} \square ABCD = \frac{1}{2} \times 120 = 60 \text{ (cm}^2)$

 $\Delta BDF = 60 - 40 = 20 \text{ (cm}^2)$

 $\overline{AE}//\overline{BC}$ 이므로 $\triangle DEB = \triangle DEC = 30 \,\mathrm{cm}^2$

 $\triangle DEB = \triangle BDF + \triangle DFE = 30$

 $20 + \triangle DFE = 30$ $\therefore \triangle DFE = 10 \text{ (cm}^2\text{)}$

178) [정답] ③

[해설] $\overline{AC}//\overline{DE}$ 이므로 $\triangle ACD = \triangle ACE$

 $\triangle ABE = \triangle ABC + \triangle ACE$

 $= \triangle ABC + \triangle ACD$ 이므로

 $\triangle ACD = \triangle ABE - \triangle ABC = 16 - 7 = 9 \text{ (cm}^2)$

179) [정답] ④

[해설] $\overline{AB}//\overline{DC}$ 이므로 $\triangle BCE = \triangle EBD$

 $\overline{EF}//\overline{BD}$ 이므로 $\triangle EBD = \triangle BDF$

 $\overline{AD}//\overline{BC}$ 이므로 $\triangle BDF = \triangle FCD$

 $\therefore \triangle BCE = \triangle EBD = \triangle BDF = \triangle FCD$

180) [정답] ①

[해설] $\overline{AC}//\overline{DE}$ 이므로 $\triangle ACD = \triangle ACE$

 $\therefore \Box ABCD = \triangle ABC + \triangle ACD$

 $= \triangle ABC + \triangle ACE$

 $= \triangle ABE$

 $=\frac{1}{2}\times 8\times 5=20$