ALGEBRA LINIOWA Z GEOMETRIĄ ANALITYCZNĄ

dr Joanna Jureczko

Politechnika Wrocławska Wydział Informatyki i Telekomunikacji Katedra Telekomunikacji i Teleinformatyki Niniejsza prezentacja stanowi jedynie skrypt do wykładu.

Wykład będzie wzbogacony o dodatkowe informacje, tj. dowody

wybranych twierdzeń, przykłady, wskazówki do zadań itp. Dodatkowe informacje dotyczące programu znajdują się w

Karcie Przedmiotu

WYKŁAD 6

Przestrzeń wektorowa, podprzestrzeń Liniowa niezależność wektorów Baza przestrzeni wektorowej

Niech V będzie zbiorem, \mathbb{K} ciałem, + działaniem w zbiorze V oraz niech · będzie mnożeniem elementów zbioru V przez elementy ciała \mathbb{K} . $(V, \mathbb{K}, +, \cdot)$ nazywamy **przestrzenia**

wektorową (*liniową*) nad ciałem
$$\mathbb{K}$$
, jeśli spełnione są warunki $\forall_{v \ w \in V} \ v + w = w + v$

$$\forall_{V,U,w\in V} (v+u)+w=v+(u+w)$$

$$\forall v, u, w \in V \quad (V + u) + w = V + (u + w)$$

$$\bullet \ \forall_{v \in V} \exists_{w \in V} \ v + w = \mathbb{O}$$

$$\forall_{v \in V} \exists_{w \in V} \ v + w = \mathbb{O}$$

$$\forall_{a \in \mathbb{K}} \forall_{v,w \in V} \ a \cdot (u+v) = a \cdot u + a \cdot v$$

$$\forall_{a,b \in \mathbb{K}} \forall_{v \in V} \ (a+b) \cdot v = a \cdot v + b \cdot v$$

$$\forall_{a \in \mathbb{K}} \forall_{v,w \in V} \ a \cdot (b \cdot v) = (ab) \cdot v$$

$$\forall_{a \in \mathbb{K}} \forall_{v,w \in V} \ a$$

$$\forall_{v \in V} \ 1 \cdot v = v$$

Elementy zbioru V nazywamy **wektorami**, a elementy ciała \mathbb{K} nazywamy **skalarami**. Element \mathbb{O} nazywamy **wektorem zerowym**. Element -v nazywamy **wektorem przeciwnym** do elementu $v \in V$

Dla dowolnej liczby $n \in \mathbb{N}$ i dowolnego ciała \mathbb{K} zbiór \mathbb{K}^n wszystkich n-wymiarowych ciągów $[a_1, a_2, ..., a_n]$ tworzy przestrzeń wektorową nad ciałem \mathbb{K} względem działania + oraz \cdot określonych wzorami

- $\bullet \ [a_1, a_2, ..., a_n] + [b_1, b_2, ..., a_n] = [a_1 + b_1, a_2 + b_2, ..., a_n + b_n]$
- $a \cdot [a_1, a_2, ..., a_n] = [a \cdot a_1, a \cdot a_2, ..., a \cdot a_n]$

Niepusty zbiór $W\subseteq V$ nazywamy **podrzestrzenią wektorową** (**liniową**), jeżeli spełnione są warunki

- \bigcirc jeżeli $v_1, v_2 \in W$, to $v_1 + v_1 \in W$,
- 2 jeżeli $v \in W$ oraz $a \in \mathbb{K}$, to $av \in W$.

Warunki powyższe równoważne są warunkowi

jeżeli $v_1, v_2 \in W$ oraz $a, b \in \mathbb{K}$, to $av_1 + bv_2 \in W$.

Mówimy, że wektor v jest **kombinacją liniową wektorów** $v_1,...,v_n \in V$, jeśli istnieją elementy $a_1,...,a_n \in \mathbb{K}$ takie, że

$$V = a_1 V_1 + ... + a_n V_n$$

Elementy $a_1,...,a_n$ nazywamy **współczynnikami kombinacji liniowej**.

Mówimy, że wektory $v_1,...,v_n \in V$ są *liniowo niezależne*, jeśli dla wszelkich skalarów $a_1,...,a_n \in \mathbb{K}$ zachodzi

$$a_1 v_1 + ... + a_n v_n = 0 \Rightarrow a_1 = 0, ..., a_n = 0$$

Układ wektorów nazywamy *układem liniowo zależnym*, jeśli nie jest on liniowo niezależny.

Liniowo niezależny układ \mathscr{B} wektorów przestrzeni liniowej V nazywamy maksymalnym układem liniowo niezależnym, jeśli każdy układ wektorów przestrzeni V zawierający \mathscr{B} i różny od \mathscr{B} jest liniowo zależny.

Bazą przestrzeni wektorowej V nazywamy każdy maksymalny liniowo niezależny układ wektorów tej przestrzeni.

([1,0,0,...,0,0],[0,1,0,...,0,0],...,[0,0,0,...,0,1]).

Bazą kanoniczną (standardową, zero-jedynkową)

przestrzeni wektorowej \mathbb{K}^n nazywamy układ

Fakt 6.1. Niech ${\mathscr B}$ będzie układem wektorów przestrzeni V.

- Następujące warunki są równoważne
- - układ \$\mathscr{B}\$ jest liniowo niezależny i generuje przestrzeń \$V\$, (tzn. każdy wektor z \$V\$ mozna przedstawić w postaci kombinacji liniowej elementów z \$\mathscr{B}\$)
 - $oldsymbol{3}$ każdy wektor przestrzeni V przedstawia się jednoznacznie w postaci kombinacji liniowej wektorów układu z \mathcal{B} .