Neural Network Verification

Neural Network Verification

Neural network f

Scalar output z = f(x)

E.g. in binary classification, $z = s(y^*; \mathbf{x}) - s(y; \mathbf{x})$ for $y \neq y^*$

Property: $f(\mathbf{x}) > 0$ for all $\mathbf{x} \in X$

Outline

- Incomplete Verification
 - Overview
 - Example: Interval Bound Propagation
 - Example: Linear Programming Relaxation

- Complete Verification
 - Branch and Bound
 - Application to verification

Neural Network Verification

Is there an erroneous output?

Non-convexity makes the problem NP-hard

Is there an erroneous output?

Replace by a convex superset

Is there an erroneous output?

Say, non-convex set has no erroneous output

Is there an erroneous output?

Convex superset might give incorrect answer

Useful in practice

Verifiably robust training

Key part of complete verification

How do we construct convex superset?

Outline

- Incomplete Verification
 - Overview
 - Example: Interval Bound Propagation
 - Example: Linear Programming Relaxation

- Complete Verification
 - Branch and Bound
 - Application to verification

Neural Network Verification

Is there an erroneous output?

Inteval Bound Propagation

Is there an erroneous output?

Axis aligned convex superset

$$-2 \le x_1 \le 2$$

$$-2 \le x_2 \le 2$$

$$a_{in} = x_1 + x_2$$

$$a_{out} = max\{a_{in}, 0\}$$

Minimum value of a_{in}? -4

Minimum value of a_{out}? 0

Maximum value of ain? 4

Maximum value of a_{out}? 4

$$-2 \le x_1 \le 2$$

$$-2 \le x_2 \le 2$$

$$b_{in} = x_1 - x_2$$

$$b_{out} = max\{b_{in}, 0\}$$

Minimum value of b_{in}? -4

Minimum value of bout? 0

Maximum value of bin? 4

Maximum value of b_{out}? 4

Minimum value of z? -8

Maximum value of z? 0

$$-2 \le x_1 \le 2$$

$$-2 \le x_2 \le 2$$

$$b_{in} = x_1 - x_2$$

$$b_{out} = max\{b_{in}, 0\}$$

$$z = -a_{out}-b_{out}$$

Outline

- Incomplete Verification
 - Overview
 - Example: Interval Bound Propagation
 - Example: Linear Programming Relaxation

- Complete Verification
 - Branch and Bound
 - Application to verification

s.t.
$$-2 \le x_1 \le 2$$

$$-2 \le x_2 \le 2$$

$$a_{in} = x_1 + x_2$$

$$b_{in} = x_1 - x_2$$

$$a_{out} = max\{a_{in}, 0\}$$

$$b_{out} = max\{b_{in}, 0\}$$

$$z = -a_{out} - b_{out}$$

Linear constraints

Easy to handle

min z

s.t. $-2 \le x_1 \le 2$

 $-2 \le x_2 \le 2$

 $\mathbf{a}_{\mathsf{in}} = \mathbf{x}_1 + \mathbf{x}_2$

 $b_{in} = x_1 - x_2$

 $a_{out} = max\{a_{in}, 0\}$

 $b_{out} = max\{b_{in}, 0\}$

 $z = -a_{out} - b_{out}$

min s.t. $-2 \le x_1 \le 2$

 $-2 \le x_2 \le 2$

 $a_{in} = x_1 + x_2$

 $b_{in} = x_1 - x_2$

 $a_{out} = max\{a_{in}, 0\}$

 $b_{out} = max\{b_{in}, 0\}$

 $z = -a_{out} - b_{out}$

NP-hard problem

Non-linear constraints

Relaxation

$$a_{out} = max\{a_{in},0\}$$
 $a_{in} \in [I,u]$

$$\begin{array}{c} a_{out} \\ u \end{array}$$

$$\begin{array}{c} a_{out} \\ u \end{array}$$

$$\begin{array}{c} a_{in} \\ \end{array}$$

$$\begin{array}{c} Ehlers 2017 \end{array}$$

Replace with convex superset

min
$$z$$

s.t. $-2 \le x_1 \le 2$
 $-2 \le x_2 \le 2$
 $a_{in} = x_1 + x_2$
 $b_{in} = x_1 - x_2$

$$a_{out} = max\{a_{in}, 0\}$$

$$b_{out} = max\{b_{in}, 0\}$$

$$z = -a_{out} - b_{out}$$

Linear Program

min z

s.t. $-2 \le x_1 \le 2$

Several "efficient" solvers

 $-2 \le x_2 \le 2$

 $a_{in} = x_1 + x_2$

 $b_{in} = x_1 - x_2$

 $a_{out} \ge 0$, $a_{out} \ge a_{in}$, $a_{out} \le 0.5a_{in} + 2$

 $b_{out} \ge 0$, $b_{out} \ge b_{in}$, $b_{out} \le 0.5b_{in} + 2$

 $z = -a_{out} - b_{out}$

Outline

- Incomplete Verification
 - Overview
 - Example: Interval Bound Propagation
 - Example: Linear Programming Relaxation

Complete Verification

- Branch and Bound
- Application to verification

Neural Network Verification

Neural network f

Scalar output z = f(x)

E.g. in binary classification, $z = s(y^*; \mathbf{x}) - s(y; \mathbf{x})$ for $y \neq y^*$

Property: $f(\mathbf{x}) > 0$ for all $\mathbf{x} \in X$

Complete methods try to disprove the property

Outline

- Incomplete Verification
 - Overview
 - Example: Interval Bound Propagation
 - Example: Linear Programming Relaxation

- Complete Verification
 - Branch and Bound
 - Application to verification

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

BRANCH: Split the feasible set

2 or more usually disjoint subsets

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

BOUND: Compute upper bounds for each branch

h(v) for any feasible v (adversarial attacks)

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

BOUND: Compute lower bounds for each branch

Convex relaxations (incomplete methods)

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

PRUNE: Any lower bounds greater than 0?

NO

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

SELECT: Choose a subproblem

Say, we choose V₂

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

BRANCH: Split the feasible set

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

BOUND: Compute upper bounds

Upper bounds of children are smaller than the parent

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

BOUND: Compute lower bounds

Lower bounds of children are greater than the parent

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

PRUNE: Any lower bounds greater than 0?

YES

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

PRUNE: Any lower bounds greater than 0?

YES

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

SELECT: Choose a subproblem

Say, we choose V_1

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

BRANCH: Split the feasible set

Termination – Case I

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

We find a counter-example

An upper bound that is less than 0

Termination – Case II

Find $\mathbf{v} \in V$ such that $h(\mathbf{v}) \leq 0$

We prove there does not exist $\mathbf{v} \in V$ s.t. $h(\mathbf{v}) \leq 0$

All leaf nodes have lower bound > 0

Outline

- Incomplete Verification
 - Overview
 - Example: Interval Bound Propagation
 - Example: Linear Programming Relaxation

- Complete Verification
 - Branch and Bound
 - Application to verification

Example

Prove that z > -5

$$-2 \le x_1 \le 2$$

$$-2 \le x_2 \le 2$$

$$a_{in} = x_1 + x_2$$

$$b_{in} = x_1 - x_2$$

$$a_{out} = max\{a_{in}, 0\}$$

$$b_{out} = max\{b_{in}, 0\}$$

$$z = -a_{out} - b_{out}$$

$$-2 \le x_1 \le 2$$

$$-2 \le x_2 \le 2$$

$$a_{in} = x_1 + x_2$$

$$b_{in} = x_1 - x_2$$

$$a_{out} = max\{a_{in}, 0\}$$

$$b_{out} = max\{b_{in}, 0\}$$

$$z = -a_{out} - b_{out}$$

Relax all non-linearities

Relaxation

$$a_{out} = max\{a_{in},0\}$$
 $a_{in} \in [I,u]$

$$u \quad a_{in}$$

Replace with convex superset

$$-2 \le x_1 \le 2$$

$$-2 \le x_2 \le 2$$

$$a_{in} = x_1 + x_2$$

$$b_{in} = x_1 - x_2$$

$$a_{out} \ge a_{in}$$
, $a_{out} \ge 0$, $a_{out} \le a_{in}/2+2$

$$b_{out} \ge b_{in}$$
, $b_{out} \ge 0$, $b_{out} \le b_{in}/2+2$

$$z = -a_{out} - b_{out}$$

$$-2 \le x_1 \le 2$$

$$-2 \le x_2 \le 2$$

$$a_{in} = x_1 + x_2$$

$$b_{in} = x_1 - x_2$$

$$a_{out} \ge a_{in}$$
, $a_{out} \ge 0$, $a_{out} \le a_{in}/2+2$

$$b_{out} \ge b_{in}$$
, $b_{out} \ge 0$, $b_{out} \le b_{in}/2+2$

$$z = -a_{out} - b_{out}$$

min z

$$-2 \le x_1 \le 0$$

$$-2 \le x_2 \le 2$$

$$a_{in} = x_1 + x_2$$

$$b_{in} = x_1 - x_2$$

$$a_{out} \ge a_{in}, a_{out} \ge 0, a_{out} \le a_{in}/3+4/3$$

$$b_{out} \ge b_{in}, b_{out} \ge 0, b_{out} \le b_{in}/3+4/3$$

Prune away

$$z_{min} = -2.66$$

$$z = -a_{out} - b_{out}$$

$$0 \le x_1 \le 2$$

$$-2 \le x_2 \le 2$$

$$a_{in} = x_1 + x_2$$

$$b_{in} = x_1 - x_2$$

$$a_{out} \ge a_{in}, a_{out} \ge 0, a_{out} \le 2a_{in}/3+4/3$$

$$b_{out} \ge b_{in}, b_{out} \ge 0, b_{out} \le 2b_{in}/3+4/3$$

$$z = -a_{out} - b_{out}$$

$$0 \le x_1 \le 2$$

$$-2 \le x_2 \le 2$$

$$a_{in} = x_1 + x_2$$

$$b_{in} = x_1 - x_2$$

$$a_{out} \ge a_{in}, a_{out} \ge 0, a_{out} \le 2a_{in}/3+4/3$$

$$b_{out} \ge b_{in}, b_{out} \ge 0, b_{out} \le 2b_{in}/3+4/3$$

$$z = -a_{out} - b_{out}$$

min z

$$0 \le x_1 \le 2$$

$$-2 \le x_2 \le 0$$

$$a_{in} = x_1 + x_2$$

$$b_{in} = x_1 - x_2$$

$$a_{out} \ge a_{in}$$
, $a_{out} \ge 0$, $a_{out} \le a_{in}/2+1$

$$b_{out} \ge b_{in}, b_{out} \ge 0, b_{out} \le b_{in}$$

$$z = -a_{out} - b_{out}$$

Continue until termination

min z

Branch and Bound

Unified framework for complete verification

- Different bounds and bounding algorithms
 - Bound propagation (e.g. β-CROWN)
 - Tight LP relaxations (e.g. <u>disjunctive programming</u>)
 - Efficient solvers (e.g. <u>Stagewise</u>, <u>Active sets</u>)

- Different branching
 - Hand-designed heuristics (e.g. <u>BaBSR</u>)
 - Learning based heuristics (e.g. <u>NN Branching</u>)

Questions?

Jax code for verification:

https://github.com/deepmind/jax_verify