Newton's Method (III)

Math 426

University of Alaska Fairbanks

September 11, 2020

What's a Taylor polynomial?

Newton's Method Recap

Want to solve

$$f(x) = 0.$$

With a guess x_1 for the root location we instead solve where the linearization centered at x_1 has a root. $x_1 = \infty$

$$L(x) = f(x_1) + f'(x_1)(x - x_1)$$

$$L(x) = 0 \implies x = x_1 - \frac{f(x_1)}{f'(x_1)}.$$

Iterates:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k)}$$

$$f(x_k)$$

$$f(x_k)$$

What could possibly go wrong?

$$f(x) = x^2 - 2$$

$$f(x) = x^2 - 2$$

$$x_{k+1} = x_k + \frac{f(x_k)}{f'(x_k)}$$

$$7x_k$$

$$f(x) = x^2 - 2$$

$$x_{k+1} = x_k + \frac{f(x_k)}{f'(x_k)}$$

$$x_{k+1} = x_k - \frac{x_k^2 - 2}{2x_k}$$

$$f(x) = x^{2} - 2$$

$$x_{k+1} = x_{k} + \frac{f(x_{k})}{f'(x_{k})}$$

$$x_{k+1} = x_{k} - \frac{x_{k}^{2} - 2}{2x_{k}}$$

$$x_{k+1} = x_{k} - \frac{x_{k}}{2} + \frac{2}{2x_{k}} = \frac{x_{k}}{2} + \frac{1}{x_{k}}.$$

$$x_{k+1} = x_{k} - \frac{x_{k}}{2} + \frac{2}{2x_{k}} = \frac{x_{k}}{2} + \frac{1}{x_{k}}.$$

$$x_{k+1} = x_{k} - \frac{x_{k}}{2} + \frac{2}{2x_{k}} = \frac{x_{k}}{2} + \frac{1}{x_{k}}.$$

$$x_{k+1} = x_{k} - \frac{x_{k}}{2} + \frac{2}{2x_{k}} = \frac{x_{k}}{2} + \frac{1}{x_{k}}.$$

$$x_{k+1} = x_{k} - \frac{x_{k}}{2} + \frac{2}{2x_{k}} = \frac{x_{k}}{2} + \frac{1}{x_{k}}.$$

$$x_{k+1} = x_{k} - \frac{x_{k}}{2} + \frac{2}{2x_{k}} = \frac{x_{k}}{2} + \frac{1}{x_{k}}.$$

$$x_{k+1} = x_{k} - \frac{x_{k}}{2} + \frac{2}{2x_{k}} = \frac{x_{k}}{2} + \frac{1}{x_{k}}.$$

$$x_{k+1} = x_{k} - \frac{x_{k}}{2} + \frac{2}{2x_{k}} = \frac{x_{k}}{2} + \frac{1}{x_{k}}.$$

$$x_{k+1} = x_{k} - \frac{x_{k}}{2} + \frac{2}{2x_{k}} = \frac{x_{k}}{2} + \frac{1}{x_{k}}.$$

Size of errors:

Quadratic convergence

rot
$$f(x_k) = 0$$

$$|e_k = x_k - x_k|$$

$$|e_{k+1}| \approx C|e_k|^2$$

$$|e_{k+1}| \approx Ce_k^2 \qquad C|e_k|^2$$

For large ℓ ,

If e_k is small, and C doesn't get in the way, then e_{k+1} is much smaller than e_k .

Convergence of Newton's Method

> trice continuously differentiable Theorem Suppose $f \in C^2(\mathbb{R})$ and $f(x_*) = 0$. If $f'(x_*) \neq 0$ then there is an $\epsilon > 0$ such that if $x_1 \in (x_* - \epsilon, x_* + \epsilon)$ then s if we start close 1. $x_k \rightarrow x_* \bullet$ enough to Kx

$$\chi = 4x$$

$$\xi = k$$

$$\chi_{*} \text{ and } \chi_{k}$$

$$f(x_{*}) = f(x_{k}) + f'(x_{k})(x_{*} - x_{k}) + \frac{1}{2}f''(\xi)(x_{*} - x_{k})^{2}$$

Solve for
$$x_{k}$$

$$f(x_{k}) = f(x_{k}) + f'(x_{k})(x_{k} - x_{k}) + \frac{1}{2}f''(\xi)(x_{k} - x_{k})^{2}$$

$$x_{k} = x_{k} - \frac{f(x_{k})}{f'(x_{k})} + \frac{1}{2}\frac{f''(\xi)}{f'(x_{k})}e_{k}^{2}$$

$$x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})}$$

$$x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})}$$

$$x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})}$$

$$f(x_{*}) = f(x_{k}) + f'(x_{k})(x_{*} - x_{k}) + \frac{1}{2}f''(\xi)(x_{*} - x_{k})^{2}$$

$$x_{*} = x_{k} - \frac{f(x_{k})}{f'(x_{k})} + \frac{1}{2}\frac{f''(\xi)}{f'(x_{k})}e_{k}^{2}$$

$$x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})}$$

$$f(x_{*}) = f(x_{k}) + f'(x_{k})(x_{*} - x_{k}) + \frac{1}{2}f''(\xi)(x_{*} - x_{k})^{\frac{1}{2}}$$

$$x_{*} = x_{k} + \frac{f(x_{k})}{f'(x_{k})} + \frac{1}{2}\frac{f''(\xi)}{f'(x_{k})}e_{k}^{2}$$

$$x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})}$$

$$x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})}$$

$$x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})}$$

$$x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})}e_{k}^{2}.$$

$$x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})}e_{k}^{2}$$

Two Caveats

To get convergence, need

1.
$$f'(x_*) \neq 0$$

2. $x_1 \in (x_* - \epsilon, x_* + \epsilon)$ for some ϵ you don't know. •

Need to start 'near' a root

MATLAB Demo: $x_1 = 1$ and $x_1 = 2$