Simulation Report 1

Jinxi Liu

November 2, 2017

Introduction

Suppose we have $z_i \sim N(0,1)$, i=1,2 under the null. Their correlation is ρ . We perform a one-sided test with rejection region $\Gamma = \{z \geq 1.645\}$.

We then estimate $FDR(\Gamma)$ by

$$F\hat{D}R(\Gamma) = \frac{\hat{\pi}_0 E[R^0(\Gamma)]}{R(\Gamma) \vee 1} \tag{1}$$

Since we have only two variables and $R(\Gamma) \vee 1$ is observable, we only focus on the numerator of equation(1).

$$\begin{split} E[R^{0}(\Gamma)] &= P\{R^{0}(\Gamma) = 1\} \times 1 + P\{R^{0}(\Gamma) = 2\} \times 2 \\ &= p\{z_{1} > 1.645 \text{ and } z_{2} \le 1.645 \text{ or } z_{2} > 1.645 \text{ and } z_{1} \le 1.645\} \\ &+ p\{z_{1} > 1.645 \text{ and } z_{2} > 1.645\} \times 2 \\ &= \int_{1.645}^{\infty} \int_{-\infty}^{1.645} \frac{\exp(-\frac{1}{2}(\mathbf{z} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{z} - \boldsymbol{\mu}))}{\sqrt{(2\pi)^{2}|\boldsymbol{\Sigma}|}} dz_{1}dz_{2} \times 2 \\ &+ \int_{1.645}^{\infty} \int_{1.645}^{\infty} \frac{\exp(-\frac{1}{2}(\mathbf{z} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{z} - \boldsymbol{\mu}))}{\sqrt{(2\pi)^{2}|\boldsymbol{\Sigma}|}} dz_{1}dz_{2} \times 2 \end{split}$$

$$(2)$$

Figure 1: Numerator of equation(1) vs. correlation when m=2

$$Var[R^{0}(\Gamma)] = E[(R^{0}(\Gamma))^{2}] - (E[R^{0}(\Gamma)])^{2}$$

$$= p\{z_{1} > 1.645 \text{ and } z_{2} \leq 1.645 \text{ or } z_{2} > 1.645 \text{ and}$$

$$z_{1} \leq 1.645\} + p\{z_{1} > 1.645 \text{ and } z_{2} > 1.645\} \times 2^{2}$$

$$- (E[R^{0}(\Gamma)])^{2}$$
(3)

Figure 2: Exact variance of $R^0(\Gamma) \times 1/4$ vs. correlation when m=2

Simulation

Set up:

$$z_1 \sim N(0,1), z_2 \sim N(0.5,1), \rho \in \{0,0.1,...,1\}, n = 200, B = 5000$$

Simulation

Empirical variance:

Figure 4: Variance of # false rejections vs. correlation when m=2

M=3

Exact mean:

Figure 5: Numerator of equation(1) vs. correlation when m=3

Empirical mean:

Figure 6: Mean of # false rejections vs. correlation when m=3

Exact variance:

Figure 7: Exact variance of $R^0(\Gamma) \times 1/4$ vs. correlation when m=3

Empirical variance:

Figure 8: Variance of # false rejections vs. correlation when m=3

Simulation when M=100

```
Set up: z_i \sim N(\mu_i, 1), \mu_i = 0 for i \in \{1, 2, ...90\}, \mu_i = 0.5 for i \in \{91, 92, ..., 100\}. They have equal correlations \rho \in \{0, 0.1, ..., 1\}, n = 200, B = 5000.
```

Simulation when M=100

Empirical mean

Figure 9: Mean of # false rejections vs. correlation when m=100

Simulation when M=100

Empirical variance

Figure 10: Variance of # false rejections vs. correlation when m=100