3주차 PyTorch로 시작하는 강화학습 입문 Camp

출석: 10명 (조교 2명 제외)

커리큘럼

:: 금 주 진도

Part 1. Basics

2017년 이전 까지의 연구를 "기초"라 표현

- 강화학습 의 기반이 된 아이디어들 MDP, ML
- 가치 기반 방법론들 (Q-Learning, DQN)
- 정책 기반 방법론들(TRPO, PPO)
 - Policy Gradient
 - Policy Optimization
 - Policy Gradient theorem
 - Reinforce
 - Actor Critic
 - Variance reduction for PG
 - A2C
 - Distributed RL

Part 2. Advanced (다양한 주제)

- Off-policy 정책기반 방법론들 (ACER, SAC)
- 탐험 기법들 (엔트로피 정규화, 내적 동기 부여)
- 강화학습과 불확실성 (Distributional DQN)

Part 3. Applications(적용의 확장)

- 모방학습, 역강화 학습 (GAIL, IRL)
- 다중 에이전트 강화 학습(Regret, MCTS)

피드백

- 금일 강의에서는 앞서서 길어질 것이라 예고 했고, 5시 30분에 종료 되었습니다.
- 금일 강의 내용이 수학적, 내용적으로 어려워서 수강생과 강사님 모두 힘들었지만 실습까지 잘 끝냈습니다. 수업분 위기는 매우 좋았습니다. 다만 어려워서 벙쪄있기는 했습니다.
- 강의의 난이도가 어려운게 원래는 이 토픽에 대해서 몇 주는 설명해야하는 거라고 말씀해주셨습니다. 그리고 강의의 방향이 핸즈온으로 바로 뭔가 적용할 수 있게 만드는 것이라고도 말씀하셨습니다. 그래서 오늘 이해가 힘든 것에 대한 부담을 조금 내려놓을 수 있었습니다.
- 금일 실습 코드도 매우 좋았습니다. 코드의 길이에 비해 이해하기가 쉽습니다.
- 다만 실습 환경을 구성할 때 사용하는 API가 여럿 있습니다. 그것에 대한 설명을 그 때 그 때 설명으로 들으니까 복

습할 때 힘든 감이 있습니다. API(ABC, gym)에 관련해서 참고할 수 있는 문서가 있다면 소개해주시면 감사하겠습니다

● 매번 강의가 30 ~ 40분 정도 Delay되어 끝나고 있습니다. 강사님의 문제라기 보다는 절대적으로 시간대비 다뤄 야하는 양이 많은 것 같다는 의견입니다.

강의 내용

● DQN으로 풀 수 **있는** 문제 들

: 주어진 상태에서 가장 큰 가치함수 값을 가지는 행동을 빠르게 고를 수 있는 문제. 행동과 상태 집합의 크기가 그리 크지 않다. TD target 값을 빠르게 구할 수 있다.

TD target -
$$r_t^{*(n)} + \gamma \max_{a \in A} Q_{ heta}(s_{t+1}, a)$$

- DQN으로 풀 수 **없는** 문제 들
 - : 고를 수 있는 행동이 연속적인 경우 (행동 집합이 연속적인 경우)
 - : 고를 수 있는 행동이 많은 경우 (또는 무한한 경우) ... Max 값을 구하기가 힘들기 때문이다.
- ightarrow 오늘 배울 Policy gradient 방법은 상대적으로 행동이 많거나 연속적인 MDP 문제에 대해서 더 적합하다.(다른 말로 High dimension, continuous action 에 대해서 nice하다 표현)
 - 정책 분포를 표현하는 방법
 - o Action 유한 한 경우 Softmax로 정책을 표현
 - 이 행동집합이 연속적인 경우 Gaussian으로 정책 표현
 - o Implicit distribution 4주차에 다룰 예정

Policy Optimization

: MDP 문제에서 RL의 목적은 최적의 정책을 찾는 것이고 최적의 정책은 다음 목적함수를 만족하는 것이다.

$$\max_{ heta} J(\pi_{ heta}) \doteq \max_{ heta} \mathbb{E}_{\pi_{ heta}}[R_0] = \mathbb{E}_{\pi_{ heta}^*}[R_0]$$

→ 현재 정책을 기준으로 조금씩 개선(정책에 대한 경사) 하다보면 최적정책을 근사할 수 있지 않을까? Policy Gradient

● 정책 경사

: MDP의 목적함수(방금의 수식; 초기 수확의 기댓값이 가장 큰 정책)를 증가시키는 모수의 방향

$$egin{aligned}
abla_{ heta} J(\pi_{ heta}) &=
abla_{ heta} \mathbb{E}_{\pi_{ heta}}[R_0] \ &= rac{1}{1-\gamma} \mathbb{E}_{\pi_{ heta}}[Q^{\pi}(s,a)
abla_{ heta} \log \pi_{ heta}(a|s)] \end{aligned}$$

- 정책경사 정리
 - Stationary distribution

고정된 정책에 따라 많은 샘플링을 하면 이전 시점과 현 시점의 확률분포가 같아지도록 수렴하는 마코프체인에서 그 확률분포를 stationary distribution이라고 한다. 전체 시간동안 에이전트가 특정 상태에 얼마나머물렀는지 알려준다.

$$d^\pi(s) = (1-\gamma)\mathbb{E}[\sum_{t=0}^\infty \gamma^t 1_{s_t=s}] = (1-\gamma)\sum_{t=0}^\infty P_{\pi_ heta}(s_t=s)$$

$$\sum d^{\pi}(s) = 1$$

o paper link: 목적함수 그레디언트 정리

$$abla_{ heta} J(\pi_{ heta}) =
abla_{ heta} V^{\pi}(s_0)$$

:

$$=rac{1}{1-\gamma}\mathbb{E}_{\pi}[
abla_{ heta}\log\pi_{ heta}(a|s)Q^{\pi}(s,a)]$$

• 정책을 증가시키는 모수의 방향(θ)은 가치가 높은 행동이 선택될 확률을 높이는 방향이다. 이를 계산하는 방법으로 REINFORCEMENT가 가장 첫번째이다.

Policy Gradient 계산

REINFORCE

1. 현재 정책으로 데이터를 만들고, 시뮬레이션으로 얻은 수확 값으로 그레디언트를 계산한다.

$$R_t^{(n)} = \sum_{k=0}^\infty \gamma^k r_{t+k}^{(n)}$$

$$\hat{
abla}_{ heta} J(\pi_{ heta}) pprox rac{1}{1-\gamma} rac{1}{|M|} [
abla_{ heta} \log \pi_{ heta}^{(n)}(a|s) R_t^{(n)}]$$

2. 계산된 Policy gradient로 θ 를 갱신 한다.

$$heta^{(n+1)} o heta^{(n)} + \eta \cdot \hat{
abla}_{ heta} J(\pi_{ heta})$$

:: 데이터를 만드는 정책과 가치함수(여기서는 수확으로)를 계산하는 정책이 같으므로 On-policy learning

Baseline

o 정책경사의 문제점

On-policy learning 이기 때문에 현재 정책이 만든 데이터는 다시 사용하지 못한다. 그래서 현재 정책이 만든 데이터 하나로 한번 가중치를 갱신하게되는데 한 번의 시뮬레이션이 수확의 평균을 잘 측정한다고 하기 어렵고 무엇보다 시점이 늘어날 수록 분산이 커진다는 문제가 있다.

ightarrow 분산을 줄이기 위한 방법으로 Baseline 방법은 가치함수 값에서 b 라는 바이어스를 빼주는 방법을 사용한다.

$$abla_{ heta}J(\pi_{ heta}) = rac{1}{1-\gamma}rac{1}{|M|}[
abla_{ heta}\log\pi_{ heta}(a|s)(Q^{\pi}(s,a)-b)]$$

<시간이 지나면서 분산이 커지는 예>

$$\begin{split} &\nabla_{\theta} J(\pi_{\theta}) = \frac{1}{1 - \gamma} \mathbb{E}_{\pi} [\nabla_{\theta} \log \pi_{\theta}(a|s) (Q^{\pi}(s, a) - b(s))] \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{\pi} [\nabla_{\theta} \log \pi_{\theta}(a|s) (Q^{\pi}(s, a))] - \frac{1}{1 - \gamma} \mathbb{E}_{\pi} [\nabla_{\theta} \log \pi_{\theta}(a|s) (b(s))] \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{\pi} [\nabla_{\theta} \log \pi_{\theta}(a|s) (Q^{\pi}(s, a))] - \frac{1}{1 - \gamma} \sum_{s \in S} \sum_{a \in A} d^{\pi}(s) \pi(a|s) \nabla_{\theta} \log \pi_{\theta}(a|s) b(s) \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{\pi} [\nabla_{\theta} \log \pi_{\theta}(a|s) (Q^{\pi}(s, a))] - \frac{1}{1 - \gamma} \mathbb{E}_{\pi} [\nabla_{\theta} \log \pi_{\theta}(a|s) (b(s))] \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{\pi} [\nabla_{\theta} \log \pi_{\theta}(a|s) (Q^{\pi}(s, a))] - \frac{1}{1 - \gamma} \sum_{s \in S} d^{\pi}(s) \sum_{a \in A} \nabla_{\theta} \pi(a|s) b(s) \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{\pi} [\nabla_{\theta} \log \pi_{\theta}(a|s) (Q^{\pi}(s, a))] - \frac{1}{1 - \gamma} \sum_{s \in S} d^{\pi}(s) \nabla_{\theta} \sum_{a \in A} \pi(a|s) b(s) \end{split}$$

여기서 Bias는 heta와 무관하기 때문에 Gradient의 Appoximation이 동일하다.

$$=rac{1}{1-\gamma}\mathbb{E}_{\pi}[
abla_{ heta}\log\pi_{ heta}(a|s)(Q^{\pi}(s,a))]$$

그리고 실제로 분산도 작아진다. paper link

Actor Critic

시뮬레이션의 길이가 길어지면 분산은 자연스레 증가한다. Actor Critic에서는 가치함수 따로 학습하여 실제 수확 대신학습한 가치함수 값으로 그레디언트를 계산한다. 중간에서 그레디언트를 계산한다.

$$abla_{ heta} J(\pi_{ heta}) = rac{1}{1-\gamma} \mathbb{E}_{\pi} [
abla_{ heta} \log \pi_{ heta}(a|s) Q_{\phi}(s,a)]$$

Advantage Actor Critic

Baseline 방법을 더하고 Bias 값을 학습하는 상태가치 함수값을 사용하면 수식은 다음과 같고 행동가치함수에서 상태가치함수를 빼면 행동에 대한 이익함수(Advatage) 함수가 된다.

$$abla_{ heta} J(\pi_{ heta}) pprox rac{1}{1-\gamma} rac{1}{|M|} \sum_{i \in M} [
abla_{ heta} \log \pi_{ heta}(a|s) (Q_{\phi}(s,a) - V_{\psi}(s_i))].$$

이렇게 되면 두 개의 가치함수에 대해 학습이 필요할텐데 가치함수 간의 관계를 이용하면 다음처럼 나타내고 상태가치함 수 하나만 학습하면 된다.

$$egin{aligned}
abla_{ heta} J(\pi_{ heta}) &pprox rac{1}{1-\gamma} rac{1}{|M|} \sum_{i \in M} [
abla_{ heta} \log \pi_{ heta}(a|s)(r_i + V_{\psi}(s_{i+1}) - V_{\psi}(s_i))] \end{aligned}$$

여기서 계산된 PG를 이용해 파라미터를 갱신한다.

Generalized Advantage Estimator (GAE)

MC장점: 모든 s,a 쌍에 대해 영향을 주고 이점이 학습 수렴에 도움을 줄 수 있다.

MC단점: 에피소드의 끝까지 가야하기 때문에 분산이 커진다. 그리고 중간에 학습을 할 수 없다.

TD장점: 중간에 학습을 할 수 있고, 분산이 작아진다.

TD단점: 딱 하나의 수확으로 그 때 s,a에 영향을 주고 그게 첫번째 s에 대해 영향을 못준다. long-term한 시그널을 줄수 없다.

... 각각의 장점을 아우룰 수 있는 것 - GAE

- TD *n*
 - *n*-step consistency

$$A^\pi(s_t,a_t)\simeq r_t+\gamma V^\pi(s_{t+1})-V^\pi(s_t)=\delta^1_t$$
 $A^\pi(s_t,a_t)\simeq r_t+\gamma r_{t+1}+\gamma^2 V^\pi(s_{t+2})-V^\pi(s_t)=\delta^2_t$ $A^\pi(s_t,a_t)\simeq r_t+\cdots+\gamma r_{t+n-1}+\gamma^n V^\pi(s_{t+n})-V^\pi(s_t)=\delta^n_t$ 는 t+n 시점의 데이터가 주는 정보를 뜻한다.

ullet TD λ 위의 δ^n_t 를 각 $\lambda^{(n-1)}$ 곱하여 더하면 (기하평균)

$$0 o (\delta^1_t imes \lambda^0 + \delta^2_t imes \lambda^1 + \dots + \delta^n_t imes \lambda^{n-1}) \simeq rac{1 - \lambda^n}{1 - \lambda} A^\pi(s_t, a_t)$$

이를 재배열하면

$$rac{1-\lambda^n}{1-\lambda}A^\pi(s_t,a_t) = \gamma^0\lambda^0(\lambda^0+\lambda^1+\cdots+\lambda^{n-1})\delta_t^1+\gamma\lambdarac{1-\lambda^{n-1}}{1-\lambda}A^\pi(s_{t+1},a_{t+1})$$

$$A^\pi(s_t,a_t) = \gamma_t^1 + \gamma \lambda rac{1-\lambda^{n-1}}{1-\lambda} A^\pi(s_{t+1},a_{t+1})$$

마지막 수식이 Generalized Advantage Extimator이다. paper link

Advantage actor critic(A2C) with GAE

현재 정책으로 만든 에피소드로 GAE 가치함수의 target을 다음 처럼 만든다.

$$A^\pi(s_i,a_i) = \delta_i^1 + \gamma \lambda A^\pi(s_{i+1},a_{i+1})$$

그리고 상태가치 함수를 학습한다.

$$\min_{\psi} \sum_{i \in M} (r_i + \gamma A^{\pi}(s_{i+1}, a_{i+1}) + \gamma V_{\psi}(s_{i+1}) - V_{\psi}(s_i))^2$$

위에서 구한 수확을 기반으로 PG를 계산다.

$$abla_{ heta} J(\pi_{ heta}) pprox rac{1}{1-\gamma} rac{1}{|M|} \sum_{i \in M} [
abla_{ heta} \log \pi_{ heta}(a|s) (A^{\pi}(s_{i+1}, a_{i+1}))]$$

이 그레디언트로 파라미터를 업데이트한다.

Proximal Policy Optimization (PPO)

Policy Gradient에서 Policy evaluation 와 Policy Improvement

- -TD target을 만들고 오차를 줄이며 가치함수를 갱신
- -정책경사정리에 따라서 더 좋은 행동의 확률을 높이는 방향을 학습

이 때, 정책경사정리 가 실제로 더 좋은 정책을 만들지 않을 수 있다. 파라미터가 업데이트하면서 리턴도 바꾸지만 정책도 바꾸고 이에 따라 의도치 않은 변경을 불러올 수 있다. 변화량의 제약을 두는 법의 필요성(Regularization)

• Natural Policy Gradient

파라미터의 구를 설정하고 그 구안에서 가장 빠르게 목적함수가 증가하는 방향으로 정책을 갱신한다.

$$egin{aligned}
abla_{ heta} J(\pi_{ heta}) &= rg \max_{\Delta: ||\Delta|| \leq \delta} J(\pi_{ heta+\Delta}) pprox rg \max J(\pi_{ heta}) + \Delta^\intercal
abla_{ heta} J(\pi_{ heta}) + rac{1}{2} \Delta^\intercal \Delta^\intercal & < 0 \|\lambda\| > \end{aligned}$$

$$abla_{ heta} J(\pi_{ heta}) = rg \max_{\Delta: D_{KL}(\pi_{ heta} || \pi_{ heta + \delta}) \leq \delta} J(\pi_{ heta + \Delta})$$

이전 분포와 갱신된 분포 사이의 거리가 커지지 않게 해준다. (Numerical Stability)

$$abla_{ heta} J(\pi_{ heta}) = rg \max_{\Delta:D_{KL}(\pi_{ heta}||\pi_{ heta+\delta}) \leq \delta} J(\pi_{ heta+\Delta})$$

$$pprox rg \max J(\pi_{ heta}) + \Delta^\intercal
abla_{ heta} J(\pi_{ heta}) + rac{1}{2} \Delta^\intercal F_{ heta} \Delta^\intercal$$

$$=F_{ heta}^{-1}
abla_{ heta}J(\pi_{ heta})$$
 ... Natural Gradient 이다.

paper link

$$egin{aligned} F_{ heta}^{-1}
abla_{ heta} J(\pi_{ heta}) &= F_{ heta}^{-1}
abla_{ heta'} \mathbb{E}_{s \sim d^\pi, a \sim \pi_{ heta'}}[A^\pi(s, a)] \ F_{ heta}^{-1}
abla_{ heta} J(\pi_{ heta}) &= F_{ heta}^{-1}
abla_{ heta'} \mathbb{E}_\pi \left[rac{\pi_{ heta'}(s, a)}{\pi_{ heta}(s, a)} A^\pi(s, a)
ight] \end{aligned}$$

현재 Policy에서 Critic 이 알려주는 좋은 정도 만큼 증가한다.

• Natual Policy Gradient 의 계산

Fisher Information Matrix를 계산하는 것

- 매우 큰 행렬의 평균(네트워크 size x 네트워크 사이즈)이기에 표본이 많이 필요
- ㅇ 역행렬 계산이 필요-- 다른 알고리즘이 더 필요하다.
 - K-FAC으로 근사하게 되면 (Natual gradient를 구하는 알고리즘) \rightarrow ACKTR
 - lacktriangle Conjugate Gradient Descent(선형식의 의사역행렬을 구하는 알고리즘) ightarrow TRPO
- Proximal Policy Optimization

Natural Gradient를 사용하는 것은 계산이 복잡하고 시간도 많이 소요된다.

원래 TRPO의 목적함수 에서 실제로 Regulization 역할을 하는 것은 $r_t(\theta)=\dfrac{\pi_{\theta'}(s,a)}{\pi_{\theta}(s,a)}$ 이다. 이 비율을 Clip하게 되면 A_t 가 0보다 클 때는 갱신 후를 많이 키워도 효과가 적을 것이고 A_t 가 0보다 작을 때는 갱신 후를 작게 해도 효과가 적을 것이다.

<Clip 효과>

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

PPO를 GAE와 함께 사용하는 과정은 현재 정책에 따라 데이터를 얻고 GAE를 통해 만든 가치함수의 target

$$A^\pi(s_i,a_i) = \delta_i^1 + \gamma \lambda A^\pi(s_{i+1},a_{i+1})$$

과 상태 가치 함수로 이루워진 TD-error를 최소화 하도록 학습하고,

$$\min_{psi} \sum_{i \in M} (r_i + \gamma A^\pi(s_{i+1}, a_{i+1} + \gamma V_\psi(s_{i+1}) - V_\psi(s_i))^2$$

PPO 목적함수를 최대화 한다.

$$\max_{ heta}\mathbb{E}_{\pi}[\min(r_t(heta)A^{\pi_old}(s,a), clip(r_t(heta), 1-\epsilon, 1+\epsilon)A^{\pi_old}(s,a))]$$

Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million timesteps.

질문

- 행동집합이 더 넓다면 Gaussian을 써도 되는 건가?
 답 :표준편차를 조절하면 넓은 영역도 커버가 가능하다.
- (정책 경사 정리 (PG)부분에서) 현재 정책에 대한 가치함수를 기준으로 학습을 하는 것인가 답: 현재 정책으로 실행한 데이터에 대해서 현재 정책의 가치함수가 높은 방향으로 정책을 갱신한다.
- PG의 계보를 알려주세요

답: PG - NPG, AOARL - TRPO(2015), ACKTR - PPO - DDPG, D4PG

• 실제 데이터가 변화가 급격한, 분산이 큰 데이터의 경우에 Actor Critic을 적용해도 괜찮은가?

답 : 우리가 풀고 있는 것은 MDP문제, 즉 각 행동에 따른 전이 확률이 알든 모르든 고정되어 있는 문제를 풀고 있는 것이기 때문에 그런 상황에서는 가정 자체가 다르다.