# **Multiple Linear Regression**

# **Housing Case Study**

#### **Problem Statement:**

Consider a real estate company that has a dataset containing the prices of properties in the Delhi region. It wishes to use the data to optimise the sale prices of the properties based on important factors such as area, bedrooms, parking, etc.

Essentially, the company wants —

- To identify the variables affecting house prices, e.g. area, number of rooms, bathrooms, etc.
- To create a linear model that quantitatively relates house prices with variables such as number of rooms, area, number of bathrooms, etc.
- To know the accuracy of the model, i.e. how well these variables can predict house prices.

So interpretation is important!

# **Step 1: Reading and Understanding the Data**

Let us first import NumPy and Pandas and read the housing dataset

```
In [4]:
```

```
# Supress Warnings
import warnings
warnings.filterwarnings('ignore')
```

```
In [5]:
```

```
import numpy as np
import pandas as pd
```

```
In [6]:
```

```
housing = pd.read_csv("C:/Users/91920/Downloads/Housing.csv")
```

### In [7]:

```
# Check the head of the dataset
housing.head()
```

## Out[7]:

|   | price    | area | bedrooms | bathrooms | stories | mainroad | guestroom | basement | hotwaterh |
|---|----------|------|----------|-----------|---------|----------|-----------|----------|-----------|
| 0 | 13300000 | 7420 | 4        | 2         | 3       | yes      | no        | no       |           |
| 1 | 12250000 | 8960 | 4        | 4         | 4       | yes      | no        | no       |           |
| 2 | 12250000 | 9960 | 3        | 2         | 2       | yes      | no        | yes      |           |
| 3 | 12215000 | 7500 | 4        | 2         | 2       | yes      | no        | yes      |           |
| 4 | 11410000 | 7420 | 4        | 1         | 2       | yes      | yes       | yes      |           |
|   |          |      |          |           |         |          |           |          |           |
| 4 |          |      |          |           |         |          |           |          |           |

Inspect the various aspects of the housing dataframe

## In [8]:

housing.shape

## Out[8]:

(545, 13)

#### In [9]:

```
housing.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):
# Column Non-Null Count

| #  | Column           | Non-Null Count | υτype  |
|----|------------------|----------------|--------|
|    |                  |                |        |
| 0  | price            | 545 non-null   | int64  |
| 1  | area             | 545 non-null   | int64  |
| 2  | bedrooms         | 545 non-null   | int64  |
| 3  | bathrooms        | 545 non-null   | int64  |
| 4  | stories          | 545 non-null   | int64  |
| 5  | mainroad         | 545 non-null   | object |
| 6  | guestroom        | 545 non-null   | object |
| 7  | basement         | 545 non-null   | object |
| 8  | hotwaterheating  | 545 non-null   | object |
| 9  | airconditioning  | 545 non-null   | object |
| 10 | parking          | 545 non-null   | int64  |
| 11 | prefarea         | 545 non-null   | object |
| 12 | furnishingstatus | 545 non-null   | object |

dtypes: int64(6), object(7)
memory usage: 55.5+ KB

#### In [10]:

housing.describe()

## Out[10]:

|       | price        | area         | bedrooms   | bathrooms  | stories    | parking    |
|-------|--------------|--------------|------------|------------|------------|------------|
| count | 5.450000e+02 | 545.000000   | 545.000000 | 545.000000 | 545.000000 | 545.000000 |
| mean  | 4.766729e+06 | 5150.541284  | 2.965138   | 1.286239   | 1.805505   | 0.693578   |
| std   | 1.870440e+06 | 2170.141023  | 0.738064   | 0.502470   | 0.867492   | 0.861586   |
| min   | 1.750000e+06 | 1650.000000  | 1.000000   | 1.000000   | 1.000000   | 0.000000   |
| 25%   | 3.430000e+06 | 3600.000000  | 2.000000   | 1.000000   | 1.000000   | 0.000000   |
| 50%   | 4.340000e+06 | 4600.000000  | 3.000000   | 1.000000   | 2.000000   | 0.000000   |
| 75%   | 5.740000e+06 | 6360.000000  | 3.000000   | 2.000000   | 2.000000   | 1.000000   |
| max   | 1.330000e+07 | 16200.000000 | 6.000000   | 4.000000   | 4.000000   | 3.000000   |

# Step 2: Visualising the Data

Let's now spend some time doing what is arguably the most important step - understanding the data.

- If there is some obvious multicollinearity going on, this is the first place to catch it
- Here's where you'll also identify if some predictors directly have a strong association with the outcome variable

We'll visualise our data using matplotlib and seaborn.

#### In [11]:

```
import matplotlib.pyplot as plt
import seaborn as sns
```

```
Bad key "text.kerning_factor" on line 4 in C:\Users\91920\anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib\_classic_test_patch.mplstyle.

You probably need to get an updated matplotlibrc file from https://github.com/matplotlib/matplotlib/blob/v3.1.3/matplotlibrc.template (https://github.com/matplotlib/matplotlib/blob/v3.1.3/matplotlibrc.template) or from the matplotlib source distribution
```

#### **Visualising Numeric Variables**

Let's make a pairplot of all the numeric variables

## In [12]:

sns.pairplot(housing)
plt.show()



## **Visualising Categorical Variables**

As you might have noticed, there are a few categorical variables as well. Let's make a boxplot for some of these variables.

#### In [11]:

```
plt.figure(figsize=(20, 12))
plt.subplot(2,3,1)
sns.boxplot(x = 'mainroad', y = 'price', data = housing)
plt.subplot(2,3,2)
sns.boxplot(x = 'guestroom', y = 'price', data = housing)
plt.subplot(2,3,3)
sns.boxplot(x = 'basement', y = 'price', data = housing)
plt.subplot(2,3,4)
sns.boxplot(x = 'hotwaterheating', y = 'price', data = housing)
plt.subplot(2,3,5)
sns.boxplot(x = 'airconditioning', y = 'price', data = housing)
plt.subplot(2,3,6)
sns.boxplot(x = 'furnishingstatus', y = 'price', data = housing)
plt.show()
```



We can also visualise some of these categorical features parallely by using the hue argument. Below is the plot for furnishing status with airconditioning as the hue.

#### In [12]:

```
plt.figure(figsize = (10, 5))
sns.boxplot(x = 'furnishingstatus', y = 'price', hue = 'airconditioning', data = housing)
plt.show()
```



# **Step 3: Data Preparation**

- You can see that your dataset has many columns with values as 'Yes' or 'No'.
- But in order to fit a regression line, we would need numerical values and not string. Hence, we need to convert them to 1s and 0s, where 1 is a 'Yes' and 0 is a 'No'.

#### In [13]:

```
# List of variables to map

varlist = ['mainroad', 'guestroom', 'basement', 'hotwaterheating', 'airconditioning', 'pre

# Defining the map function
def binary_map(x):
    return x.map({'yes': 1, "no": 0})

# Applying the function to the housing list
housing[varlist] = housing[varlist].apply(binary_map)
```

#### In [14]:

```
# Check the housing dataframe now
housing.head()
```

## Out[14]:

|   | price    | area | bedrooms | bathrooms | stories | mainroad | guestroom | basement | hotwaterh   |
|---|----------|------|----------|-----------|---------|----------|-----------|----------|-------------|
| 0 | 13300000 | 7420 | 4        | 2         | 3       | 1        | 0         | 0        |             |
| 1 | 12250000 | 8960 | 4        | 4         | 4       | 1        | 0         | 0        |             |
| 2 | 12250000 | 9960 | 3        | 2         | 2       | 1        | 0         | 1        |             |
| 3 | 12215000 | 7500 | 4        | 2         | 2       | 1        | 0         | 1        |             |
| 4 | 11410000 | 7420 | 4        | 1         | 2       | 1        | 1         | 1        |             |
| 4 |          |      |          |           |         |          |           |          | <b>&gt;</b> |

## **Dummy Variables**

The variable furnishingstatus has three levels. We need to convert these levels into integer as well.

For this, we will use something called dummy variables.

### In [15]:

```
# Get the dummy variables for the feature 'furnishingstatus' and store it in a new variable
status = pd.get_dummies(housing['furnishingstatus'])
```

#### In [16]:

```
# Check what the dataset 'status' Looks like
status.head()
```

#### Out[16]:

|   | furnished | semi-furnished | unfurnished |
|---|-----------|----------------|-------------|
| 0 | 1         | 0              | 0           |
| 1 | 1         | 0              | 0           |
| 2 | 0         | 1              | 0           |
| 3 | 1         | 0              | 0           |
| 4 | 1         | 0              | 0           |

Now, you don't need three columns. You can drop the furnished column, as the type of furnishing can be identified with just the last two columns where —

- 00 will correspond to furnished
- 01 will correspond to unfurnished
- 10 will correspond to semi-furnished

#### In [15]:

```
# Let's drop the first column from status df using 'drop_first = True'
status = pd.get_dummies(housing['furnishingstatus'], drop_first = True)
```

#### In [16]:

```
# Add the results to the original housing dataframe
housing = pd.concat([housing, status], axis = 1)
```

#### In [17]:

```
# Now Let's see the head of our dataframe.
housing.head()
```

#### Out[17]:

| bedrooms | bathrooms | stories | mainroad | guestroom | basement | hotwaterheating | airconditioning |
|----------|-----------|---------|----------|-----------|----------|-----------------|-----------------|
| 4        | 2         | 3       | 1        | 0         | 0        | 0               | 1               |
| 4        | 4         | 4       | 1        | 0         | 0        | 0               | 1               |
| 3        | 2         | 2       | 1        | 0         | 1        | 0               | 0               |
| 4        | 2         | 2       | 1        | 0         | 1        | 0               | 1               |
| 4        | 1         | 2       | 1        | 1         | 1        | 0               | 1               |
| •        |           |         |          |           |          |                 | •               |

#### In [18]:

```
# Drop 'furnishingstatus' as we have created the dummies for it
housing.drop(['furnishingstatus'], axis = 1, inplace = True)
```

## In [19]:

```
housing.head()
```

## Out[19]:

|   | price    | area | bedrooms | bathrooms | stories | mainroad | guestroom | basement | hotwaterhe  |
|---|----------|------|----------|-----------|---------|----------|-----------|----------|-------------|
| 0 | 13300000 | 7420 | 4        | 2         | 3       | 1        | 0         | 0        |             |
| 1 | 12250000 | 8960 | 4        | 4         | 4       | 1        | 0         | 0        |             |
| 2 | 12250000 | 9960 | 3        | 2         | 2       | 1        | 0         | 1        |             |
| 3 | 12215000 | 7500 | 4        | 2         | 2       | 1        | 0         | 1        |             |
| 4 | 11410000 | 7420 | 4        | 1         | 2       | 1        | 1         | 1        |             |
| 4 |          |      |          |           |         |          |           |          | <b>&gt;</b> |

# Step 4: Splitting the Data into Training and Testing Sets

As you know, the first basic step for regression is performing a train-test split.

```
In [20]:
```

```
from sklearn.model_selection import train_test_split

# We specify this so that the train and test data set always have the same rows, respective
#np.random.seed(0)

df_train, df_test = train_test_split(housing, train_size = 0.7, test_size = 0.3, random_sta
```

## **Rescaling the Features**

As you saw in the demonstration for Simple Linear Regression, scaling doesn't impact your model. Here we can see that except for area, all the columns have small integer values. So it is extremely important to rescale the variables so that they have a comparable scale. If we don't have comparable scales, then some of the coefficients as obtained by fitting the regression model might be very large or very small as compared to the other coefficients. This might become very annoying at the time of model evaluation. So it is advised to use standardization or normalization so that the units of the coefficients obtained are all on the same scale. As you know, there are two common ways of rescaling:

- 1. Min-Max scaling
- 2. Standardisation (mean-0, sigma-1)

This time, we will use MinMax scaling.

```
In [21]:
```

```
from sklearn.preprocessing import MinMaxScaler
```

```
In [22]:
```

```
scaler = MinMaxScaler()
```

```
In [23]:
```

```
# Apply scaler() to all the columns except the 'yes-no' and 'dummy' variables
num_vars = ['area', 'bedrooms', 'bathrooms', 'stories', 'parking', 'price']

df_train[num_vars] = scaler.fit_transform(df_train[num_vars])
```

## In [24]:

df\_train.head()

## Out[24]:

|     | price    | area     | bedrooms | bathrooms | stories  | mainroad | guestroom | basement | hc |
|-----|----------|----------|----------|-----------|----------|----------|-----------|----------|----|
| 359 | 0.169697 | 0.155227 | 0.4      | 0.0       | 0.000000 | 1        | 0         | 0        |    |
| 19  | 0.615152 | 0.403379 | 0.4      | 0.5       | 0.333333 | 1        | 0         | 0        |    |
| 159 | 0.321212 | 0.115628 | 0.4      | 0.5       | 0.000000 | 1        | 1         | 1        |    |
| 35  | 0.548133 | 0.454417 | 0.4      | 0.5       | 1.000000 | 1        | 0         | 0        |    |
| 28  | 0.575758 | 0.538015 | 0.8      | 0.5       | 0.333333 | 1        | 0         | 1        |    |

In [25]:

df\_train.describe()

## Out[25]:

|       | price      | area       | bedrooms   | bathrooms  | stories    | mainroad   | guestroom  | b  |
|-------|------------|------------|------------|------------|------------|------------|------------|----|
| count | 381.000000 | 381.000000 | 381.000000 | 381.000000 | 381.000000 | 381.000000 | 381.000000 | 38 |
| mean  | 0.260333   | 0.288710   | 0.386352   | 0.136483   | 0.268591   | 0.855643   | 0.170604   |    |
| std   | 0.157607   | 0.181420   | 0.147336   | 0.237325   | 0.295001   | 0.351913   | 0.376657   |    |
| min   | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.000000   |    |
| 25%   | 0.151515   | 0.155227   | 0.200000   | 0.000000   | 0.000000   | 1.000000   | 0.000000   |    |
| 50%   | 0.221212   | 0.234424   | 0.400000   | 0.000000   | 0.333333   | 1.000000   | 0.000000   |    |
| 75%   | 0.345455   | 0.398099   | 0.400000   | 0.500000   | 0.333333   | 1.000000   | 0.000000   |    |
| max   | 1.000000   | 1.000000   | 1.000000   | 1.000000   | 1.000000   | 1.000000   | 1.000000   |    |
| 4     |            |            |            |            |            |            |            | •  |

## In [27]:

df\_train.corr()

## Out[27]:

|                 | price     | area      | bedrooms  | bathrooms | stories   | mainroad  | guestroom | ba |
|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----|
| price           | 1.000000  | 0.532025  | 0.349825  | 0.524246  | 0.409464  | 0.319208  | 0.265877  | 0  |
| area            | 0.532025  | 1.000000  | 0.097462  | 0.163446  | 0.069274  | 0.308272  | 0.155665  | 0  |
| bedrooms        | 0.349825  | 0.097462  | 1.000000  | 0.346925  | 0.419582  | 0.012655  | 0.089488  | 0  |
| bathrooms       | 0.524246  | 0.163446  | 0.346925  | 1.000000  | 0.295689  | 0.031716  | 0.150982  | 0  |
| stories         | 0.409464  | 0.069274  | 0.419582  | 0.295689  | 1.000000  | 0.129427  | 0.068088  | -0 |
| mainroad        | 0.319208  | 0.308272  | 0.012655  | 0.031716  | 0.129427  | 1.000000  | 0.106875  | 0  |
| guestroom       | 0.265877  | 0.155665  | 0.089488  | 0.150982  | 0.068088  | 0.106875  | 1.000000  | 0  |
| basement        | 0.200743  | 0.106971  | 0.120618  | 0.120857  | -0.155313 | 0.067937  | 0.367345  | 1  |
| notwaterheating | 0.141202  | 0.037719  | 0.085818  | 0.112732  | -0.001538 | -0.003779 | 0.018394  | 0  |
| airconditioning | 0.433162  | 0.215888  | 0.161890  | 0.228315  | 0.279779  | 0.056375  | 0.130300  | 0  |
| parking         | 0.352081  | 0.365658  | 0.120363  | 0.138241  | 0.009708  | 0.200389  | -0.010240 | 0  |
| prefarea        | 0.344543  | 0.279878  | 0.076503  | 0.061584  | 0.072192  | 0.191465  | 0.161877  | 0  |
| semi-furnished  | 0.078917  | -0.040753 | 0.049111  | 0.065987  | -0.001883 | 0.012254  | 0.000632  | 0  |
| unfurnished     | -0.270114 | -0.131524 | -0.125921 | -0.128192 | -0.088199 | -0.129101 | -0.017198 | -0 |

localhost:8888/notebooks/Machine Learning/4- Multiple Linear Regression Housing Case Study.ipynb

#### In [26]:

```
# Let's check the correlation coefficients to see which variables are highly correlated
plt.figure(figsize = (16, 10))
sns.heatmap(df_train.corr(), annot = True)
plt.show()
```



As you might have noticed, area seems to the correlated to price the most. Let's see a pairplot for area vs price.

## In [30]:

```
plt.figure(figsize=[6,6])
plt.scatter(df_train.area, df_train.price)
plt.show()
```



So, we pick area as the first variable and we'll try to fit a regression line to that.

# Dividing into X and Y sets for the model building

## In [28]:

```
y_train = df_train.pop('price')
X_train = df_train
```

#### In [30]:

```
print(y_train)
print(X_train)
359
       0.169697
19
       0.615152
159
       0.321212
35
       0.548133
28
       0.575758
526
       0.048485
53
       0.484848
350
       0.175758
79
       0.424242
520
       0.060606
Name: price, Length: 381, dtype: float64
          area bedrooms bathrooms
                                         stories mainroad
                                                              guestroom
                                                                          basement
\
359
     0.155227
                      0.4
                                  0.0
                                        0.000000
                                                           1
                                                                        0
                                                                                   0
19
     0.403379
                      0.4
                                  0.5
                                        0.333333
                                                           1
                                                                        0
                                                                                   0
                                                                                   1
159
     0.115628
                      0.4
                                  0.5
                                        0.000000
                                                           1
                                                                        1
35
     0.454417
                      0.4
                                  0.5
                                        1.000000
                                                           1
                                                                        0
                                                                                   0
                                                                                   1
28
     0.538015
                      0.8
                                  0.5
                                        0.333333
                                                           1
                                                                        0
. .
           . . .
                      . . .
                                   . . .
                                              . . .
                                        0.000000
526
     0.118268
                      0.2
                                  0.0
                                                           1
                                                                        0
                                                                                   0
53
     0.291623
                      0.4
                                  0.5
                                        1.000000
                                                           1
                                                                        0
                                                                                   0
350
     0.139388
                      0.2
                                  0.0
                                        0.333333
                                                           1
                                                                        0
                                                                                   0
79
     0.366420
                      0.4
                                  0.5
                                        0.666667
                                                           1
                                                                        1
                                                                                   0
520
     0.516015
                      0.2
                                  0.0
                                        0.000000
                                                           1
                                                                        0
                                                                                   0
     hotwaterheating
                        airconditioning
                                            parking
                                                      prefarea
                                                                  semi-furnished
359
                     0
                                                              0
                                                                                0
                                        0
                                           0.333333
19
                     0
                                        1
                                           0.333333
                                                              1
                                                                                1
159
                     0
                                        1
                                           0.000000
                                                              0
                                                                                0
35
                     0
                                        1
                                           0.666667
                                                              0
                                                                                0
                     1
                                                               0
28
                                        0
                                           0.666667
                                                                                0
526
                     0
                                        0
                                           0.000000
                                                               0
                                                                                0
53
                     0
                                        1
                                           0.666667
                                                               0
                                                                                1
350
                     1
                                           0.333333
                                                               0
                                                                                1
79
                     0
                                                               0
                                                                                0
                                        1
                                           0.000000
520
                                           0.000000
                                                               0
                                                                                0
     unfurnished
359
                1
19
                0
                0
159
35
                0
28
                1
526
                1
                0
53
350
                0
79
                0
520
                1
[381 rows x 13 columns]
```

# Step 5: Building a linear model

Fit a regression line through the training data using statsmodels. Remember that in statsmodels, you need to explicitly fit a constant using  $sm.add\_constant(X)$  because if we don't perform this step, statsmodels fits a regression line passing through the origin, by default.

#### In [32]:

```
import statsmodels.api as sm

# Add a constant
X_train_lm = sm.add_constant(X_train[['area']])

# Create a first fitted model
lr = sm.OLS(y_train, X_train_lm).fit()
```

#### In [33]:

```
# Check the parameters obtained
lr.params
```

#### Out[33]:

const 0.126894
area 0.462192
dtype: float64

## In [34]:

```
# Let's visualise the data with a scatter plot and the fitted regression line
plt.scatter(X_train_lm.iloc[:, 1], y_train)
plt.plot(X_train_lm.iloc[:, 1], 0.127 + 0.462*X_train_lm.iloc[:, 1], 'r')
plt.show()
```



## In [36]:

X\_train\_lm

#### Out[36]:

|     | const | area     |
|-----|-------|----------|
| 359 | 1.0   | 0.155227 |
| 19  | 1.0   | 0.403379 |
| 159 | 1.0   | 0.115628 |
| 35  | 1.0   | 0.454417 |
| 28  | 1.0   | 0.538015 |
|     |       |          |
| 526 | 1.0   | 0.118268 |
| 53  | 1.0   | 0.291623 |
| 350 | 1.0   | 0.139388 |
| 79  | 1.0   | 0.366420 |
| 520 | 1.0   | 0.516015 |

381 rows × 2 columns

## In [35]:

```
X_train_lm.iloc[:, 1]
```

## Out[35]:

```
359
       0.155227
       0.403379
19
159
       0.115628
35
       0.454417
28
       0.538015
526
       0.118268
53
       0.291623
350
       0.139388
79
       0.366420
520
       0.516015
```

Name: area, Length: 381, dtype: float64

### In [33]:

```
# Print a summary of the linear regression model obtained
print(lr.summary())
```

|                                             | OLS Regression Results |         |        |        |        |         |             |       |       |          |  |
|---------------------------------------------|------------------------|---------|--------|--------|--------|---------|-------------|-------|-------|----------|--|
| =======================================     | ======                 | ======  | =====  | ====   | ===    | =====   | ========    | ====: | ===== | ======   |  |
| Dep. Variable: 83                           |                        |         | р      | rice   |        | R-squa  | red:        |       |       | 0.2      |  |
| Model:                                      |                        |         |        | OLS    |        | Adj. R  | -squared:   |       |       | 0.2      |  |
| 81<br>Method:                               | st Squ                 | ares    |        | F-stat | istic: |         |             | 14    |       |          |  |
| 9.6 Date:                                   |                        | Tue. 09 | Oct    | 2018   |        | Prob (  | F-statistic | ) :   |       | 3.15e-   |  |
| 29                                          |                        |         |        |        |        | ·       |             | , •   |       |          |  |
| Time:<br>23                                 |                        |         | 13:0   | 2:46   |        | Log-Li  | kelihood:   |       |       | 227.     |  |
| No. Observation 0.5                         | ns:                    |         |        | 381    |        | AIC:    |             |       |       | -45      |  |
| Df Residuals:                               |                        |         |        | 379    |        | BIC:    |             |       |       | -44      |  |
| 2.6<br>Df Model:                            |                        |         |        | 1      |        |         |             |       |       |          |  |
| Covariance Type                             | e:                     |         | nonro  | _      |        |         |             |       |       |          |  |
| ==========                                  | =====                  | =====   |        | ====   | ==     | =====   | =======     | ====: | ===== | ======   |  |
| ==                                          | _                      |         |        |        |        |         |             |       |       |          |  |
| 5]                                          |                        |         |        |        |        |         | P> t        | -     |       |          |  |
|                                             |                        |         |        |        |        |         |             |       |       |          |  |
| const<br>52                                 | 0.1269                 | (       | 0.013  |        | 9.     | 853     | 0.000       | 0     | .102  | 0.1      |  |
| area                                        | 0.4622                 | (       | 0.038  | 1      | L2.    | 232     | 0.000       | 0     | .388  | 0.5      |  |
| 36                                          |                        |         |        |        |        |         |             |       |       |          |  |
| =======================================     | ======                 | ======  | =====  | =====  |        | =====   |             | ====: | ===== | ======   |  |
| Omnibus:                                    |                        |         | 67     | .313   |        | Durbin  | -Watson:    |       |       | 2.0      |  |
| 18 Prob(Omnibus):                           |                        |         | 0      | .000   |        | Jarque  | -Bera (JB): |       |       | 143.0    |  |
| 63<br>Skew:                                 |                        |         | 0      | .925   |        | Prob(J  | B):         |       |       | 8.59e-   |  |
| 32<br>Kurtosis:                             |                        |         | E      | .365   |        | Cond.   | No          |       |       | 5.       |  |
| 99                                          |                        |         |        |        |        |         |             |       |       |          |  |
| =======================================     | =====                  | =====   | =====  | ====   | -=-    |         | ========    | ====: | ===== | ======   |  |
| Warnings:<br>[1] Standard Eductly specified |                        | ssume 1 | that t | he co  | ova    | ariance | matrix of 1 | the e | rrors | is corre |  |
| cci, specifica                              | •                      |         |        |        |        |         |             |       |       |          |  |

## Adding another variable

The R-squared value obtained is 0.283. Since we have so many variables, we can clearly do better than this. So let's go ahead and add the second most highly correlated variable, i.e. bathrooms.

## In [34]:

```
# Assign all the feature variables to X
X_train_lm = X_train[['area', 'bathrooms']]
```

#### In [35]:

```
# Build a linear model
import statsmodels.api as sm
X_train_lm = sm.add_constant(X_train_lm)
lr = sm.OLS(y_train, X_train_lm).fit()
lr.params
```

## Out[35]:

const 0.104589 area 0.398396 bathrooms 0.298374

dtype: float64

## In [36]:

```
# Check the summary
print(lr.summary())
```

| OLS Regression Results                                                                                |            |        |       |                |        | ======= |
|-------------------------------------------------------------------------------------------------------|------------|--------|-------|----------------|--------|---------|
| ==                                                                                                    |            |        |       |                |        |         |
| Dep. Variable:                                                                                        | I          | price  | R-sq  | uared:         |        | 0.4     |
| Model:                                                                                                |            | OLS    | Adj.  | R-squared:     |        | 0.4     |
| 77<br>Method:                                                                                         | Least Sq   | uares  | F-st  | atistic:       |        | 17      |
| 4.1 Date:                                                                                             |            |        |       | (F-statistic): |        | 2.51e-  |
| 54                                                                                                    | -          |        |       |                |        |         |
| Time:<br>24                                                                                           | 13:0       | 02:47  | Log-  | Likelihood:    |        | 288.    |
| No. Observations:                                                                                     |            | 381    | AIC:  |                |        | -57     |
| <pre>0.5 Df Residuals:</pre>                                                                          |            | 378    | BIC:  |                |        | -55     |
| 8.6<br>Df Model:                                                                                      |            | 2      |       |                |        |         |
| Covariance Type:                                                                                      | nonre      | obust  |       |                |        |         |
|                                                                                                       | ========   | ====== | ===== | =========      |        | ======= |
| ==<br>CO                                                                                              | ef std err |        | t     | P> t           | [0.025 | 0.97    |
| 5]                                                                                                    |            |        |       |                | -      |         |
|                                                                                                       |            |        |       |                |        |         |
| const 0.10                                                                                            | 46 0.011   | 9      | .384  | 0.000          | 0.083  | 0.1     |
| 27<br>area 0.39                                                                                       | 84 0.033   | 12     | .192  | 0.000          | 0.334  | 0.4     |
| 63 bathrooms 0.29                                                                                     | 84 0.025   | 11     | .945  | 0.000          | 0.249  | 0.3     |
| 47                                                                                                    | 0.023      |        | • 243 | 0.000          | 0.243  | 0.5     |
| ==                                                                                                    | ========   | =====  | ====  | ==========     | ====== | ======  |
| Omnibus:                                                                                              | 6          | 2.839  | Durb  | in-Watson:     |        | 2.1     |
| 57<br>Prob(Omnibus):                                                                                  | (          | 0.000  | Jarq  | ue-Bera (JB):  |        | 168.7   |
| 90<br>Skew:                                                                                           |            | 0.784  | Droh  | (JB):          |        | 2.23e-  |
| 37                                                                                                    |            |        |       | ` ,            |        | 2.236-  |
| Kurtosis:<br>17                                                                                       |            | 5.859  | Cond  | . No.          |        | 6.      |
| =======================================                                                               | ========   |        | ===== | ==========     |        | ======= |
| ==                                                                                                    |            |        |       |                |        |         |
| Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. |            |        |       |                |        |         |

We have clearly improved the model as the value of adjusted R-squared as its value has gone up to 0.477 from 0.281. Let's go ahead and add another variable, bedrooms.

## In [37]:

```
# Assign all the feature variables to X
X_train_lm = X_train[['area', 'bathrooms','bedrooms']]
```

## In [38]:

```
# Build a linear model
import statsmodels.api as sm
X_train_lm = sm.add_constant(X_train_lm)
lr = sm.OLS(y_train, X_train_lm).fit()
lr.params
```

## Out[38]:

dtype: float64

## In [39]:

```
# Print the summary of the model
print(lr.summary())
```

|                                         | OLS Regression Results |      |          |       |          |        |               |            |       |        |             |
|-----------------------------------------|------------------------|------|----------|-------|----------|--------|---------------|------------|-------|--------|-------------|
| ======================================= | =====                  | ==== | ======   | ====  |          | =====  | ====          | :======    | :===  | ====== | :======     |
| Dep. Variable:                          |                        |      | ŗ        | orice | <u> </u> | R-squ  | uared         | l <b>:</b> |       |        | 0.5         |
| Model:                                  |                        |      |          | OLS   | 5        | Adj.   | R-sq          | uared:     |       |        | 0.5         |
| 01                                      |                        |      | + C      |       |          |        |               |            |       |        | 12          |
| Method:<br>8.2                          |                        | L    | east Squ | iares | •        | F-ST   | atist         | 110:       |       |        | 12          |
| Date:<br>57                             |                        | Tue, | 09 Oct   | 2018  | 3        | Prob   | (F-s          | tatistic   | :):   |        | 3.12e-      |
| Time:                                   |                        |      | 13:6     | 02:47 | ,        | Log-l  | Likel         | ihood:     |       |        | 297.        |
| 76<br>No. Observatio                    | ns:                    |      |          | 381   | _        | AIC:   |               |            |       |        | -58         |
| 7.5                                     |                        |      |          |       |          |        |               |            |       |        |             |
| Df Residuals:<br>1.7                    |                        |      |          | 377   | ,        | BIC:   |               |            |       |        | -57         |
| Df Model:                               |                        |      |          | 3     | }        |        |               |            |       |        |             |
| Covariance Type                         | e:<br>                 |      | nonro    |       |          |        |               |            |       |        |             |
| ==                                      |                        |      |          |       |          |        |               |            |       |        |             |
|                                         | coe                    | f    | std err  |       |          | t      |               | P> t       |       | [0.025 | 0.97        |
| 5]                                      |                        |      |          |       |          |        |               |            |       |        |             |
|                                         |                        |      |          |       |          |        |               |            |       |        |             |
| const<br>77                             | 0.041                  | 4    | 0.018    |       | 2.       | 292    |               | 0.022      |       | 0.006  | 0.0         |
| area<br>55                              | 0.392                  | 2    | 0.032    |       | 12.      | 279    |               | 0.000      |       | 0.329  | 0.4         |
| bathrooms                               | 0.260                  | 9    | 0.026    |       | 10.      | 033    |               | 0.000      |       | 0.209  | 0.3         |
| 11<br>bedrooms                          | 0.1819                 | 9    | 0.041    |       | 4.       | 396    |               | 0.000      |       | 0.101  | 0.2         |
| 63                                      |                        |      |          |       |          |        |               |            |       |        |             |
|                                         | =====:                 | ==== | ======   | ====  | -==      | :====: | ====          | ======     | :===: | ====== |             |
| ==<br>Omnibus:                          |                        |      | 56       | 0.037 | ,        | Durbi  | in-Wa         | itson:     |       |        | 2.1         |
| 36                                      |                        |      |          |       |          |        |               |            |       |        |             |
| Prob(Omnibus):                          |                        |      | (        | 0.000 | )        | Jarqu  | ue-Be         | ra (JB):   |       |        | 124.8       |
| 06                                      |                        |      | _        |       |          |        | /= <b>5</b> \ |            |       |        | <b>-</b> 00 |
| Skew:<br>28                             |                        |      | (        | 648   | 5        | Prob   | (JR):         |            |       |        | 7.92e-      |
| Kurtosis:                               |                        |      |          | .487  | ,        | Cond   | . No.         |            |       |        | 8.          |
| 87                                      |                        |      |          |       |          |        |               |            |       |        |             |
| ======================================= | _=====                 | -=== | _======  | =     | -==      | .====: | _====         |            |       | _===== | :=======    |
|                                         |                        |      |          |       |          |        |               |            |       |        |             |

## Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

We have improved the adjusted R-squared again. Now let's go ahead and add all the feature variables.

## Adding all the variables to the model

```
In [37]:
```

```
# Check all the columns of the dataframe
housing.columns
```

#### Out[37]:

### In [38]:

```
#Build a linear model
import statsmodels.api as sm
X_train_lm = sm.add_constant(X_train)
lr_1 = sm.OLS(y_train, X_train_lm).fit()
lr_1.params
```

#### Out[38]:

| 0.020033  |
|-----------|
|           |
| 0.234664  |
| 0.046735  |
| 0.190823  |
| 0.108516  |
| 0.050441  |
| 0.030428  |
| 0.021595  |
| 0.084863  |
| 0.066881  |
| 0.060735  |
| 0.059428  |
| 0.000921  |
| -0.031006 |
|           |
|           |

## In [39]:

## print(lr\_1.summary())

| OLS Regression Results                 |         |           |             |          |         |      |
|----------------------------------------|---------|-----------|-------------|----------|---------|------|
| ==<br>Dep. Variable:                   |         | price     | R-squared:  |          |         | 0.6  |
| 81<br>Model:                           |         | 0LS       | Adj. R-squa | anod:    |         | 0.6  |
| 70                                     |         | ULS       | Auj. K-Squa | ireu.    |         | 0.0  |
| Method:<br>40                          | Leas    | t Squares | F-statistic | ::       |         | 60.  |
| Date:<br>83                            | Tue, 14 | Dec 2021  | Prob (F-sta | tistic): | 8.8     | 83e- |
| Time:<br>79                            |         | 01:12:18  | Log-Likelih | nood:    | :       | 381. |
| No. Observations: 5.6                  |         | 381       | AIC:        |          |         | -73  |
| Df Residuals:                          |         | 367       | BIC:        |          |         | -68  |
| 0.4<br>Df Model:                       |         | 13        |             |          |         |      |
| Covariance Type:                       |         | nonrobust |             |          |         |      |
| ======                                 | _       |           | ========    |          |         | ==== |
| 0.975]                                 | coef    | std err   | t           | P> t     | [0.025  |      |
|                                        |         |           |             |          |         |      |
| <br>const                              | 0.0200  | 0.021     | 0.955       | 0.340    | -0.021  |      |
| 0.061                                  | 0.0200  |           | 0.333       |          |         |      |
| area<br>0.294                          | 0.2347  | 0.030     | 7.795       | 0.000    | 0.175   |      |
| bedrooms 0.119                         | 0.0467  | 0.037     | 1.267       | 0.206    | -0.026  |      |
| bathrooms 0.234                        | 0.1908  | 0.022     | 8.679       | 0.000    | 0.148   |      |
| stories<br>0.146                       | 0.1085  | 0.019     | 5.661       | 0.000    | 0.071   |      |
| mainroad<br>0.079                      | 0.0504  | 0.014     | 3.520       | 0.000    | 0.022   |      |
| guestroom<br>0.057                     | 0.0304  | 0.014     | 2.233       | 0.026    | 0.004   |      |
| basement<br>0.043                      | 0.0216  | 0.011     | 1.943       | 0.053    | -0.000  |      |
| hotwaterheating<br>0.127               | 0.0849  | 0.022     | 3.934       | 0.000    | 0.042   |      |
| airconditioning 0.089                  | 0.0669  | 0.011     | 5.899       | 0.000    | 0.045   |      |
| parking<br>0.096                       | 0.0607  | 0.018     | 3.365       | 0.001    | 0.025   |      |
| prefarea<br>0.083                      | 0.0594  | 0.012     | 5.040       | 0.000    | 0.036   |      |
| semi-furnished 0.024                   | 0.0009  | 0.012     | 0.078       | 0.938    | -0.022  |      |
| unfurnished<br>-0.006                  | -0.0310 | 0.013     | -2.440      | 0.015    | -0.056  |      |
| ====================================== | ======= | 93.687    | Durbin-Wats |          | ======= | 2.0  |

12/14/21, 1:16 PM 4- Multiple Linear Regression Housing Case Study - Jupyter Notebook

Prob(Omnibus): 0.000 Jarque-Bera (JB): 304.

17

Skew: 1.091 Prob(JB): 6.14e-

67

Kurtosis: 6.801 Cond. No. 1

4.6

\_\_\_\_\_\_

==

## Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.



Looking at the p-values, it looks like some of the variables aren't really significant (in the presence of other variables).

Maybe we could drop some?

We could simply drop the variable with the highest, non-significant p value. A better way would be to supplement this with the VIF information.

## **Checking VIF**

Variance Inflation Factor or VIF, gives a basic quantitative idea about how much the feature variables are correlated with each other. It is an extremely important parameter to test our linear model. The formula for calculating VIF is:

$$VIF_i = \frac{1}{1 - R_i^2}$$

#### In [40]:

# Check for the VIF values of the feature variables.

from statsmodels.stats.outliers\_influence import variance\_inflation\_factor

#### In [41]:

```
# Create a dataframe that will contain the names of all the feature variables and their res
vif = pd.DataFrame()
vif['Features'] = X_train.columns
vif['VIF'] = [variance_inflation_factor(X_train.values, i) for i in range(X_train.shape[1])
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

#### Out[41]:

|    | Features        | VIF  |
|----|-----------------|------|
| 1  | bedrooms        | 7.33 |
| 4  | mainroad        | 6.02 |
| 0  | area            | 4.67 |
| 3  | stories         | 2.70 |
| 11 | semi-furnished  | 2.19 |
| 9  | parking         | 2.12 |
| 6  | basement        | 2.02 |
| 12 | unfurnished     | 1.82 |
| 8  | airconditioning | 1.77 |
| 2  | bathrooms       | 1.67 |
| 10 | prefarea        | 1.51 |
| 5  | guestroom       | 1.47 |
| 7  | hotwaterheating | 1.14 |

## In [43]:

```
X_train.shape[1]
```

## Out[43]:

13

### In [42]:

```
[ i for i in range(X_train.shape[1])]
```

## Out[42]:

```
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
```

```
In [44]:
[variance_inflation_factor(X_train.values, i) for i in range(X_train.shape[1])] # coloum va
Out[44]:
[4.672431227793009,
7.334389784233085,
 1.6665120091225607,
 2.701091923665566,
 6.021773605401158,
 1.4691060005063157,
 2.015021565600942,
 1.1358604562890016,
 1.7708466990969685,
 2.122672173883017,
 1.5071065114121442,
 2.1881722464928153,
 1.8227179542187855]
In [ ]:
```

We generally want a VIF that is less than 5. So there are clearly some variables we need to drop.

## Dropping the variable and updating the model

As you can see from the summary and the VIF dataframe, some variables are still insignificant. One of these variables is, semi-furnished as it has a very high p-value of 0.938. Let's go ahead and drop this variables

```
In [45]:
```

```
# Dropping highly correlated variables and insignificant variables
X = X_train.drop('semi-furnished', 1,)
```

## In [49]:

Χ

## Out[49]:

|     | area     | bedrooms | bathrooms | stories  | mainroad | guestroom | basement | hotwaterheat |
|-----|----------|----------|-----------|----------|----------|-----------|----------|--------------|
| 359 | 0.155227 | 0.4      | 0.0       | 0.000000 | 1        | 0         | 0        |              |
| 19  | 0.403379 | 0.4      | 0.5       | 0.333333 | 1        | 0         | 0        |              |
| 159 | 0.115628 | 0.4      | 0.5       | 0.000000 | 1        | 1         | 1        |              |
| 35  | 0.454417 | 0.4      | 0.5       | 1.000000 | 1        | 0         | 0        |              |
| 28  | 0.538015 | 0.8      | 0.5       | 0.333333 | 1        | 0         | 1        |              |
|     |          |          |           |          |          |           |          |              |
| 526 | 0.118268 | 0.2      | 0.0       | 0.000000 | 1        | 0         | 0        |              |
| 53  | 0.291623 | 0.4      | 0.5       | 1.000000 | 1        | 0         | 0        |              |
| 350 | 0.139388 | 0.2      | 0.0       | 0.333333 | 1        | 0         | 0        |              |
| 79  | 0.366420 | 0.4      | 0.5       | 0.666667 | 1        | 1         | 0        |              |
| 520 | 0.516015 | 0.2      | 0.0       | 0.000000 | 1        | 0         | 0        |              |

381 rows × 12 columns

**→** 

## In [46]:

```
# Build a third fitted model
X_train_lm = sm.add_constant(X)
lr_2 = sm.OLS(y_train, X_train_lm).fit()
```

## In [47]:

# Print the summary of the model
print(lr\_2.summary())

| OLS Regression Results                  |         |           |             |           |          |  |
|-----------------------------------------|---------|-----------|-------------|-----------|----------|--|
| ==<br>Dep. Variable:                    |         |           | R-squared:  |           | 0.6      |  |
| 81<br>Model:                            |         | ·         | ·           | anad.     |          |  |
| Model:<br>71                            |         | OLS       | Adj. R-squa | ireu:     | 0.6      |  |
| Method:<br>61                           | Leas    | t Squares | F-statistic | ::        | 65.      |  |
| Date:<br>83                             | Tue, 09 | Oct 2018  | Prob (F-sta | ntistic): | 1.07e-   |  |
| Time:<br>79                             |         | 13:02:48  | Log-Likelih | nood:     | 381.     |  |
| No. Observations: 7.6                   |         | 381       | AIC:        |           | -73      |  |
| Df Residuals:<br>6.3                    |         | 368       | BIC:        |           | -68      |  |
| Df Model:                               |         | 12        |             |           |          |  |
| Covariance Type:                        |         | nonrobust |             |           |          |  |
| ======================================= | ======= | =======   |             |           | ======== |  |
| ======                                  | coef    | std err   | t           | P> t      | [0.025   |  |
| 0.975]                                  |         |           |             | . 1 - 1   | <b>.</b> |  |
|                                         |         |           |             |           |          |  |
| const<br>0.058                          | 0.0207  | 0.019     | 1.098       | 0.273     | -0.016   |  |
| area<br>0.293                           | 0.2344  | 0.030     | 7.845       | 0.000     | 0.176    |  |
| bedrooms<br>0.119                       | 0.0467  | 0.037     | 1.268       | 0.206     | -0.026   |  |
| bathrooms<br>0.234                      | 0.1909  | 0.022     | 8.697       | 0.000     | 0.148    |  |
| stories<br>0.146                        | 0.1085  | 0.019     | 5.669       | 0.000     | 0.071    |  |
| mainroad<br>0.079                       | 0.0504  | 0.014     | 3.524       | 0.000     | 0.022    |  |
| guestroom<br>0.057                      | 0.0304  | 0.014     | 2.238       | 0.026     | 0.004    |  |
| basement<br>0.043                       | 0.0216  | 0.011     | 1.946       | 0.052     | -0.000   |  |
| hotwaterheating<br>0.127                | 0.0849  | 0.022     | 3.941       | 0.000     | 0.043    |  |
| airconditioning<br>0.089                | 0.0668  | 0.011     | 5.923       | 0.000     | 0.045    |  |
| parking<br>0.096                        | 0.0608  | 0.018     | 3.372       | 0.001     | 0.025    |  |
| prefarea<br>0.083                       | 0.0594  | 0.012     | 5.046       | 0.000     | 0.036    |  |
| unfurnished<br>-0.012                   | -0.0316 | 0.010     | -3.096      | 0.002     | -0.052   |  |
| ======================================= | ======= |           |             |           |          |  |
| Omnibus:<br>92                          |         | 93.538    | Durbin-Wats | son:      | 2.0      |  |
| Prob(Omnibus):                          |         | 0.000     | Jarque-Bera | a (JB):   | 303.8    |  |

#### In [48]:

```
# Calculate the VIFs again for the new model

vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

#### Out[48]:

|    | Features        | VIF  |
|----|-----------------|------|
| 1  | bedrooms        | 6.59 |
| 4  | mainroad        | 5.68 |
| 0  | area            | 4.67 |
| 3  | stories         | 2.69 |
| 9  | parking         | 2.12 |
| 6  | basement        | 2.01 |
| 8  | airconditioning | 1.77 |
| 2  | bathrooms       | 1.67 |
| 10 | prefarea        | 1.51 |
| 5  | guestroom       | 1.47 |
| 11 | unfurnished     | 1.40 |
| 7  | hotwaterheating | 1.14 |

## **Dropping the Variable and Updating the Model**

As you can notice some of the variable have high VIF values as well as high p-values. Such variables are insignificant and should be dropped.

As you might have noticed, the variable bedroom has a significantly high VIF (6.6) and a high p-value (0.206) as well. Hence, this variable isn't of much use and should be dropped.

## In [49]:

```
# Dropping highly correlated variables and insignificant variables
X = X.drop('bedrooms', 1)
```

## In [50]:

```
# Build a second fitted model
X_train_lm = sm.add_constant(X)
lr_3 = sm.OLS(y_train, X_train_lm).fit()
```

## In [51]:

```
# Print the summary of the model
print(lr_3.summary())
```

| OLS Regression Results        |         |                 |             |           |          |      |
|-------------------------------|---------|-----------------|-------------|-----------|----------|------|
| ==<br>Dep. Variable:          |         | price           | R-squared:  |           |          | 0.6  |
| 80<br>Model:                  |         | OLS             | Adj. R-squa | ared:     |          | 0.6  |
| 71<br>Method:<br>31           | Leas    | t Squares       | F-statistic | ::        |          | 71.  |
| Date:<br>84                   | Tue, 09 | Oct 2018        | Prob (F-sta | atistic): | 2.7      | 73e- |
| Time:<br>96                   |         | 13:02:48        | Log-Likelih | nood:     | 3        | 880. |
| No. Observations: 7.9         |         | 381             | AIC:        |           | -        | 73   |
| Df Residuals:<br>0.6          |         | 369             | BIC:        |           | -        | -69  |
| Df Model:<br>Covariance Type: |         | 11<br>nonrobust |             |           |          |      |
|                               |         | :=======        |             |           |          |      |
| <pre> 0.975]</pre>            | coef    | std err         | t           | P> t      | [0.025   |      |
|                               |         |                 |             |           |          |      |
| const<br>0.065                | 0.0357  | 0.015           | 2.421       | 0.016     | 0.007    |      |
| area<br>0.294                 | 0.2347  | 0.030           | 7.851       | 0.000     | 0.176    |      |
| bathrooms<br>0.239            | 0.1965  | 0.022           | 9.132       | 0.000     | 0.154    |      |
| stories<br>0.153              | 0.1178  | 0.018           | 6.654       | 0.000     | 0.083    |      |
| mainroad<br>0.077             | 0.0488  | 0.014           | 3.423       | 0.001     | 0.021    |      |
| guestroom<br>0.057            | 0.0301  | 0.014           | 2.211       | 0.028     | 0.003    |      |
| basement<br>0.045             | 0.0239  | 0.011           | 2.183       | 0.030     | 0.002    |      |
| hotwaterheating<br>0.129      | 0.0864  | 0.022           | 4.014       | 0.000     | 0.044    |      |
| airconditioning<br>0.089      | 0.0665  | 0.011           | 5.895       | 0.000     | 0.044    |      |
| parking<br>0.098              | 0.0629  | 0.018           | 3.501       | 0.001     | 0.028    |      |
| prefarea<br>0.083             | 0.0596  | 0.012           | 5.061       | 0.000     | 0.036    |      |
| unfurnished<br>-0.012         | -0.0323 | 0.010           | -3.169      | 0.002     | -0.052   |      |
|                               |         | :======:        |             |           | :======= | :=== |
| ==<br>Omnibus:<br>97          |         | 97.661          | Durbin-Wats | son:      |          | 2.0  |
| Prob(Omnibus):<br>88          |         | 0.000           | Jarque-Bera | а (ЈВ):   | 32       | 25.3 |

### In [52]:

```
# Calculate the VIFs again for the new model
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

### Out[52]:

|    | Features        | VIF  |
|----|-----------------|------|
| 3  | mainroad        | 4.79 |
| 0  | area            | 4.55 |
| 2  | stories         | 2.23 |
| 8  | parking         | 2.10 |
| 5  | basement        | 1.87 |
| 7  | airconditioning | 1.76 |
| 1  | bathrooms       | 1.61 |
| 9  | prefarea        | 1.50 |
| 4  | guestroom       | 1.46 |
| 10 | unfurnished     | 1.33 |
| 6  | hotwaterheating | 1.12 |
|    |                 |      |

## Dropping the variable and updating the model

As you might have noticed, dropping semi-furnised decreased the VIF of mainroad as well such that it is now under 5. But from the summary, we can still see some of them have a high p-value. basement for instance, has a p-value of 0.03. We should drop this variable as well.

```
In [53]:
```

```
X = X.drop('basement', 1)
```

```
In [54]:
```

```
# Build a fourth fitted model
X_train_lm = sm.add_constant(X)
lr_4 = sm.OLS(y_train, X_train_lm).fit()
```

## In [55]:

## print(lr\_4.summary())

| OLS Regression Results                  |         |           |             |          |        |     |
|-----------------------------------------|---------|-----------|-------------|----------|--------|-----|
| ==<br>Dep. Variable:                    |         | price     | R-squared:  |          |        | .6  |
| 76                                      |         | ·         | ·           |          |        |     |
| Model:<br>67                            |         | OLS       | Adj. R-squa | red:     | 0      | .6  |
| Method:                                 | Leas    | t Squares | F-statistic | :        | 77     | 7.  |
| 18<br>Date:                             | Tue, 09 | Oct 2018  | Prob (F-sta | tistic): | 3.136  | e - |
| 84                                      | -       | 12.02.40  |             | ,<br>,   | 270    | 0   |
| Time:<br>51                             |         | 13:02:49  | Log-Likelih | 000:     | 378    | 5.  |
| No. Observations: 5.0                   |         | 381       | AIC:        |          | -73    | 3   |
| Df Residuals:                           |         | 370       | BIC:        |          | -69    | Э   |
| 1.7<br>Df Model:                        |         | 10        |             |          |        |     |
| Covariance Type:                        |         | nonrobust |             |          |        |     |
| ======================================= | ======= | =======   |             | =======  |        | ==  |
| =====                                   | coef    | std err   | t           | P> t     | [0.025 |     |
| 0.975]                                  |         |           |             |          | -      |     |
|                                         |         |           |             |          |        |     |
| const                                   | 0.0428  | 0.014     | 2.958       | 0.003    | 0.014  |     |
| 0.071<br>area                           | 0.2335  | 0.030     | 7.772       | 0.000    | 0.174  |     |
| 0.293                                   |         |           | ·           |          |        |     |
| bathrooms<br>0.244                      | 0.2019  | 0.021     | 9.397       | 0.000    | 0.160  |     |
| stories                                 | 0.1081  | 0.017     | 6.277       | 0.000    | 0.074  |     |
| 0.142<br>mainroad                       | 0.0497  | 0.014     | 3.468       | 0.001    | 0.022  |     |
| 0.078                                   |         |           | 37.100      | 0,000    | 0.022  |     |
| guestroom<br>0.065                      | 0.0402  | 0.013     | 3.124       | 0.002    | 0.015  |     |
| hotwaterheating<br>0.130                | 0.0876  | 0.022     | 4.051       | 0.000    | 0.045  |     |
| airconditioning<br>0.090                | 0.0682  | 0.011     | 6.028       | 0.000    | 0.046  |     |
| parking<br>0.098                        | 0.0629  | 0.018     | 3.482       | 0.001    | 0.027  |     |
| prefarea 0.087                          | 0.0637  | 0.012     | 5.452       | 0.000    | 0.041  |     |
| unfurnished<br>-0.014                   | -0.0337 | 0.010     | -3.295      | 0.001    | -0.054 |     |
|                                         | ======= | =======   |             | =======  |        | ==  |
| ==<br>Omnibus:<br>99                    |         | 97.054    | Durbin-Wats | on:      | 2.     | .0  |
| Prob(Omnibus):                          |         | 0.000     | Jarque-Bera | (JB):    | 322    | .0  |
| Skew:<br>70                             |         | 1.124     | Prob(JB):   |          | 1.186  | ∋-  |
| Kurtosis: 0.3                           |         | 6.902     | Cond. No.   |          | =      | 1   |

\_\_\_\_\_

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
4
```

### In [56]:

```
# Calculate the VIFs again for the new model
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

#### Out[56]:

|   | Features        | VIF  |
|---|-----------------|------|
| 3 | mainroad        | 4.55 |
| 0 | area            | 4.54 |
| 2 | stories         | 2.12 |
| 7 | parking         | 2.10 |
| 6 | airconditioning | 1.75 |
| 1 | bathrooms       | 1.58 |
| 8 | prefarea        | 1.47 |
| 9 | unfurnished     | 1.33 |
| 4 | guestroom       | 1.30 |
| 5 | hotwaterheating | 1.12 |

Now as you can see, the VIFs and p-values both are within an acceptable range. So we go ahead and make our predictions using this model only.

# Step 7: Residual Analysis of the train data

So, now to check if the error terms are also normally distributed (which is infact, one of the major assumptions of linear regression), let us plot the histogram of the error terms and see what it looks like.

```
In [57]:
```

```
y_train_price = lr_4.predict(X_train_lm)
```

#### In [58]:

```
# Plot the histogram of the error terms
fig = plt.figure()
sns.distplot((y_train - y_train_price), bins = 20)
fig.suptitle('Error Terms', fontsize = 20)  # Plot heading
plt.xlabel('Errors', fontsize = 18)  # X-label
```

C:\Users\admin\Anaconda3\lib\site-packages\matplotlib\axes\\_axes.py:6462: Us erWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'd ensity' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

#### Out[58]:

Text(0.5,0,'Errors')



## **Step 8: Making Predictions Using the Final Model**

Now that we have fitted the model and checked the normality of error terms, it's time to go ahead and make predictions using the final, i.e. fourth model.

#### Applying the scaling on the test sets

```
In [59]:
```

```
num_vars = ['area', 'bedrooms', 'bathrooms', 'stories', 'parking','price']

df_test[num_vars] = scaler.transform(df_test[num_vars])
```

```
In [60]:
```

```
df_test.describe()
```

#### Out[60]:

|      | price      | area       | bedrooms   | bathrooms  | stories    | mainroad   | guestroom  | b  |
|------|------------|------------|------------|------------|------------|------------|------------|----|
| coun | 164.000000 | 164.000000 | 164.000000 | 164.000000 | 164.000000 | 164.000000 | 164.000000 | 16 |
| mear | 0.263176   | 0.298548   | 0.408537   | 0.158537   | 0.268293   | 0.865854   | 0.195122   |    |
| sto  | 0.172077   | 0.211922   | 0.147537   | 0.281081   | 0.276007   | 0.341853   | 0.397508   |    |
| mir  | 0.006061   | -0.016367  | 0.200000   | 0.000000   | 0.000000   | 0.000000   | 0.000000   |    |
| 25%  | 0.142424   | 0.148011   | 0.400000   | 0.000000   | 0.000000   | 1.000000   | 0.000000   |    |
| 50%  | 0.226061   | 0.259724   | 0.400000   | 0.000000   | 0.333333   | 1.000000   | 0.000000   |    |
| 75%  | 0.346970   | 0.397439   | 0.400000   | 0.500000   | 0.333333   | 1.000000   | 0.000000   |    |
| max  | 0.909091   | 1.263992   | 0.800000   | 1.500000   | 1.000000   | 1.000000   | 1.000000   |    |
| 4    |            |            |            |            |            |            |            | •  |

#### Dividing into X\_test and y\_test

```
In [61]:
```

```
y_test = df_test.pop('price')
X_test = df_test
```

#### In [62]:

```
# Adding constant variable to test dataframe
X_test_m4 = sm.add_constant(X_test)
```

#### In [63]:

```
# Creating X_test_m4 dataframe by dropping variables from X_test_m4

X_test_m4 = X_test_m4.drop(["bedrooms", "semi-furnished", "basement"], axis = 1)
```

## In [64]:

```
# Making predictions using the fourth model
y_pred_m4 = lr_4.predict(X_test_m4)
```

# **Step 9: Model Evaluation**

Let's now plot the graph for actual versus predicted values.

#### In [65]:

```
# Plotting y_test and y_pred to understand the spread

fig = plt.figure()
plt.scatter(y_test, y_pred_m4)
fig.suptitle('y_test vs y_pred', fontsize = 20)  # Plot heading
plt.xlabel('y_test', fontsize = 18)  # X-label
plt.ylabel('y_pred', fontsize = 16)
```

## Out[65]:

Text(0,0.5,'y\_pred')



We can see that the equation of our best fitted line is:

 $price = 0.236 \times area + 0.202 \times bathrooms + 0.11 \times stories + 0.05 \times mainroad + 0.04 \times guestroom + 0.0629 \times parking + 0.0637 \times prefarea - 0.0337 \times unfurnished$ 

**→** 

Overall we have a decent model, but we also acknowledge that we could do better.

We have a couple of options:

- 1. Add new features (bathrooms/bedrooms, area/stories, etc.)
- 2. Build a non-linear model