

Flight Satisfaction

ANDREEA DIANA GHERGHESCU XIUYUE ZHANG

Project Goal

Build a reliable classification model that can **predict** whether a passenger is satisfied or unsatisfied, based on various features captured from a post-flight survey.

Data Understanding

DATA PROFILING

DATA DISTRIBUTION

DATA PROCESSING

Infer some information about the structure and the context of the data.

Analysis of how values are spread or dispersed within a particular column or dataset.

Extract and keep only the relevant features for modeling. Make sure their values are standardized to match the models.

<class 'pandas.core.frame.DataFrame'> RangeIndex: 103904 entries, 0 to 103903

Data columns (total 25 columns):

Duca	cocumins (cocac 25 cocumins):				
#	Column	Non–Nu	ll Count	Dtype	
0	Unnamed: 0		non-null	int64	
1	id	103904	non-null	int64	
2	Gender	103904	non-null	object	
3	Customer Type	103904	non-null	object	
4	Age	103904	non-null	int64	
5	Type of Travel	103904	non-null	object	
6	Class	103904	non-null	object	
7	Flight Distance	103904	non-null	int64	
8	Inflight wifi service	103904	non-null	int64	
9	Departure/Arrival time convenient	103904	non-null	int64	
10	Ease of Online booking	103904	non-null	int64	
11	Gate location	103904	non-null	int64	
12	Food and drink	103904	non-null	int64	
13	Online boarding	103904	non-null	int64	
14	Seat comfort	103904	non-null	int64	
15	Inflight entertainment	103904	non-null	int64	
16	On-board service	103904	non-null	int64	
17	Leg room service	103904	non-null	int64	
18	Baggage handling	103904	non-null	int64	
19	Checkin service	103904	non-null	int64	
20	Inflight service	103904	non-null	int64	
21	Cleanliness	103904	non-null	int64	
22	Departure Delay in Minutes	103904	non-null	int64	
23	Arrival Delay in Minutes	103594	non-null	float64	
24	caticfaction	103904	non-null	object	
24 Satisfaction 103904 non-nutt object					

We got to know the structure of the dataset, the semantics of each feature, the data type of each column, and whether it contains missing values or not. It is a critical step for data understanding.

Distribution

By checking the distribution of the data, we can get some useful information (like the mean age or the maximum flight distance), so we have a better understanding of different variables.

Data

After data cleaning, we dug into the details. We plotted the correlation map, from which we inferred some useful information, such as the correlation between arrival delay time and departure delay time.

Splitting Training Data and Testing Data

```
[ ] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

[ ] feature_names = X_train.columns

Use the StandardScaler instead of the manual normalization.

scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

In order to build reliable, unbiased, and generalizable machine learning models that perform well, we split the data into a training set (80%) and a testing set (20%).

- training set used for model learning
- testing set used for model evaluation

Data Vizualization in 2D & 3D

We attempted to visualize the data in space, both in 2D and 3D, using **Principal Component Analysis** to infer some information about how the data is distributed across the principal features. Unfortunately, due to the high dimensionality of the original data, no relevant information was obtained.

LOGISTIC REGRESSION

Logistic Regression

The accuracy obtained is **0.87**, making it

the worst-performing of our models.

K-Nearest Neighbors

KNN assigns a label to a data point based on the **majority label of its k closest neighbors** in the feature space.

To get a larger coverage over the space of the k parameter, we used a **randomized search**, which concluded that the best configuration for **k** is 13, with an **accuracy of** 0.92.

Decision Tree

The Decision Tree performed better than expected, with an accuracy value of 0.949, outperforming both the Regressor and the KNN.

Online boarding	0.201621
Inflight wifi service	0.148053
Business	0.086439
Type of Travel	0.085017
Eco	0.061371
Inflight entertainment	0.055681
Seat comfort	0.039635
Ease of Online booking	0.038306
Leg room service	0.035475
Customer Type	0.033994
On-board service	0.029957
Cleanliness	0.025998
Flight Distance	0.023840
Baggage handling	0.023500
Age	0.023253
Checkin service	0.019488
Inflight service	0.019488
Departure/Arrival time convenient	
Gate location	0.012019
Food and drink	0.010446
Departure Delay in Minutes	0.008176
Eco Plus	0.003960
Gender	0.003349

Random

Forest


```
param_grid = {
   'n_estimators': [50, 100, 150],
   'max_depth': [5, 10, 15],
   'min_samples_split': [2, 5],
   'min_samples_leaf': [1, 2]
}
```

The Random Forest Classifier builds multiple Decision Trees and combines their outputs to make more accurate and stable predictions. Each tree is trained on a random subset of the data and considers a random subset of features when splitting nodes, which helps reduce overfitting and improves generalization. The final prediction is made by majority voting among the trees.

First accuracy obtained is **0.959**.

```
Optimal number of features: 18
```

```
param_grid = {
   'n_estimators': [50, 100, 150, 200],
   'max_depth': [5, 10, 15, 20, 25],
   'min_samples_split': [2, 5],
   'min_samples_leaf': [1, 2, 4]
}
```

Accuracy: 0.9629950435493961

Random

Forest

After obtaining the new set of features, we proceeded to retrain the forest with the best parameters, as well as search through a larger grid.

SVC works by finding the hyperplane that best separates the data into different classes with the largest margin, being effective in high-dimensional spaces.

We applied a randomized search and obtained a **0.958 accuracy score**, which is better than how the Decision Tree performed, but it is worse than all the Random Forests we tried.

Support Vector Classifier

```
automl_settings = {
   "time_budget": 360, # in seconds
   "metric": "accuracy",
   "task": "classification",
}
```

```
LGBMClassifier

LGBMClassifier(colsample_bytree=np.float64(0.6578347391758362),
learning_rate=np.float64(0.04179074535827166), max_bin=1023,
min_child_samples=4, n_estimators=589, n_jobs=-1, num_leaves=82,
reg_alpha=np.float64(0.007704104902643929),
reg_lambda=np.float64(0.020229013206102948), verbose=-1)
```

AutoML


```
mlp = MLPClassifier(
   hidden_layer_sizes=(128, 64, 32), → 3 layer architecture
   activation='relu', → introduce non-linearity

solver='adam',
   alpha=0.01, → moderate level of regularization
   learning_rate='adaptive', → lr adjusts based on performance
   max_iter=500,
   random_state=42,
   verbose=True Accuracy: 0.951
```

Multi-Layer

Perceptron

Classifier


```
param_grid = {
   'hidden_layer_sizes': [(256, 128, 64, 32), (128, 64, 32)],
   'activation': ['relu', 'tanh'],
   'alpha': [0.0001, 0.001, 0.01],
   'solver': ['adam'],
   'learning_rate': ['adaptive'],
   'early_stopping': [True]
}
```

Accuracy: 0.958

Light Gradient Boosting Machine Classifier is a fast, efficient gradient boosting framework based on decision trees. Given that it was the model suggested by AutoML, we tried improving it through a grid search.

```
param_grid = {
   'n_estimators': [250, 300],
   'max_depth': [5, 10, 15, -1],
   'learning_rate': [0.01, 0.1],
   'num_leaves': [31, 41],
   'min_child_samples': [5, 10, 15],
   'reg_alpha': [0, 0.1],
   'reg_lambda': [0, 0.1],
}
```

Accuracy: **0.964**, same as the one obtained by AutoML, and the **best** we got out of all models.

Improving LGBM

nona You

Andreea Diana Gherghescu Xiuyue Zhang