Analysis HW3

(1) Let L be a limit point of the sequence $(x^{(n)})_{n=m}^{\infty}$. Consider $B(L, \epsilon)$ for any $\epsilon > 0$. Then $\exists n \geq m$ such that $d(x^{(n)}, L) < \epsilon \Rightarrow x^{(n)} \in B(L, \epsilon) \cap S$. So $B(L, \epsilon) \cap S \neq \emptyset$ and L is an adherent point of S.

Now consider the sequence $x_1 = 1, x_i = 0$ for $i \ge 2$. Then $\overline{S} = \{1, 0\}$ Set L = 1. For $\epsilon = \frac{1}{2} > 0$, N = 2, see that $\forall n \ge N$ we have

$$d(x^{(n)}, L) = d(0, 1) = 1 \not< \frac{1}{2}$$

. Hence L is not a limit point of this sequence and the converse is false.

(2) (a) Reflexive:

For some Cauchy sequence $(x_n)_{n=1}^{\infty}$ in X, $\lim_{n\to\infty} d(x_n, x_n) = \lim_{n\to\infty} 0 = 0$. Hence $\lim_{n\to\infty} x_n = \lim_{n\to\infty} x_n$.

Symmetry:

For some Cauchy sequences $(x_n)_{n=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$ in X such that $LIM_{n\to\infty}x_n = LIM_{n\to\infty}y_n$, $\lim_{n\to\infty} d(x_n,y_n) = \lim_{n\to\infty} d(y_n,x_n)$. Hence $LIM_{n\to\infty}y_n = LIM_{n\to\infty}x_n$.

Transitive:

For some Cauchy sequences $(x_n)_{n=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$, $(z_n)_{n=1}^{\infty}$ in X such that $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$ and $\lim_{n\to\infty} y_n = \lim_{n\to\infty} z_n$, note that $0 \le \lim_{n\to\infty} d(x_n, z_n) \le \lim_{n\to\infty} (d(x_n, y_n) + d(y_n, z_n)) = 0$ by the triangle inequality. Hence $\lim_{n\to\infty} d(x_n, z_n) = 0$ and $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n$.

We conclude that the equality relation of the formal limit is an equivalence relation.

(b) We first verify that the limit exists. Given two Cauchy sequences $(x_n)_{n=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$ in X, by definition we can find m > n such that $d(x_n, x_m) < \frac{\epsilon}{2}$ and $d(y_n, y_m) < \frac{\epsilon}{2}$. Then, by the triangle inequality we obtain $d(x_m, y_m) - d(x_n, y_n) \le d(x_n, x_m) + d(y_n, y_m) < \epsilon$. Thus $(d(x_n, y_n))_{n=1}^{\infty}$ is Cauchy in \mathbb{R} with the usual metric, which is complete, so $\lim_{n \to \infty} d(x_n, y_n)$ exists.

Next we show that this distance does not depend on the choice of representatives. Let $(x_n)_{n=1}^{\infty}$, $(x'_n)_{n=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$ be Cauchy sequences in X such that $\lim_{n\to\infty} x_n = \lim_{n\to\infty} x'_n$. Then $\lim_{n\to\infty} d(x'_n, y_n) \leq \lim_{n\to\infty} (d(x'_n, x) + d(x_n, y_n)) = \lim_{n\to\infty} d(x_n, y_n)$. But also, $\lim_{n\to\infty} d(x_n, y_n) \leq \lim_{n\to\infty} (d(x_n, x'_n) + d(x'_n, y_n)) = \lim_{n\to\infty} d(x'_n, y_n)$. Hence we have $\lim_{n\to\infty} d(x_n, y_n) = \lim_{n\to\infty} d(x'_n, y_n)$

 $\Rightarrow d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n, \mathrm{LIM}_{n\to\infty}y_n) = d_{\overline{X}}(\mathrm{LIM}_{n\to\infty}x_n', \mathrm{LIM}_{n\to\infty}y_n).$

Now we show that $d_{\overline{X}}$ is a metric.

For any Cauchy sequence $(x_n)_{n=1}^{\infty}$ in X, $d_{\overline{X}}(\text{LIM}_{n\to\infty}x_n, \text{LIM}_{n\to\infty}x_n) = \lim_{n\to\infty} d(x_n, x_n) = 0$.

For any Cauchy sequences $(x_n)_{n=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$ in X such that $LIM_{n\to\infty}(x_n) \neq LIM_{n\to\infty}(y_n)$, $d_{\overline{X}}(LIM_{n\to\infty}x_n, LIM_{n\to\infty}y_n) = \lim_{n\to\infty} d(x_n, y_n) > 0$.

For any Cauchy sequences $(x_n)_{n=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$ in X, $d_{\overline{X}}(\text{LIM}_{n\to\infty}x_n, \text{LIM}_{n\to\infty}y_n) = \lim_{n\to\infty} d(x_n, y_n) = \lim_{n\to\infty} d(y_n, x_n) = d_{\overline{X}}(\text{LIM}_{n\to\infty}y_n, \text{LIM}_{n\to\infty}x_n)$

- (c)
- (d)
- (e)
- (f)
- (3) (a) $\partial(A \cup B) \supseteq \partial A \cup \partial B$ is trivial. We prove that $\partial(A \cup B) \subseteq \partial A \cup \partial B$. Suppose $\exists x \in \partial(A \cup B)$ such that $x \notin \partial A \cup \partial B$. $\forall r > 0$, $B(x,r) \cap (A \cup B) \neq \emptyset$. Also, $\overline{A} \cap \overline{B} = \emptyset$, so for a given r, exactly one of $B(x,r) \cap A \neq \emptyset$, $B(x,r) \cap B \neq \emptyset$ must be true. Since $x \notin \partial A$, $\exists r_1 > 0$ such that $B(x,r_1) \cap A = \emptyset$. Then $B(x,r_1) \cap B \neq \emptyset$. However, $B(x,r_1) \subseteq B(x,r)$ for any $r \geq r_1$. Thus $B(x,r) \cap B \neq \emptyset$ and $B(x,r) \cap A = \emptyset$ for any $A \subseteq A \cup A \cap B$ and $A \subseteq A \cap A \cap B \cap B$ and $A \subseteq A \cup A \cap B \cap B$ and $A \subseteq A \cup A \cap B$ a
 - (b)
- (4)
- (5)
- (6)