First-order ODE

Solution of the 1st order ODE with the following format:

$$y' = S(x, y)$$

The slope is defined as S(x, y), which is a function of both x and y.

In this problem, S(x, y) = x + y and we use the following notation:

 x_i : the starting value of x, at the beginning step.

h: the step size.

 $x_{i+1} = x_i + h$: the value of x at the end of the step.

 $y_i = y(x_i)$: the starting value of y at the beginning of the step.

 $y_{i+1} = y(x_{i+1})$: the value of y at the end of the step.

 $S(x_i, y_i)$: the slope evaluated at (x_i, y_i) .

Euler method:	Midpoint method:
$K_0 = hS(x_i, y_i)$	$K_0 = hS(x_i, y_i)$
$y_{i+1} = y_i + K_0$	$K_0 = hS(x_i, y_i)$ $K_1 = hS(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_0)$
	$y_{i+1} = y_i + K_1$
Backward Euler method:	4 th -order Runge-Kutta method:
$K_0 = hS(x_i, y_i)$	$K_0 = hS(x_i, y_i)$
$K_1 = hS(x_i + h, y_i + K_0)$	$K_{1} = hS(x_{1} + \frac{1}{2}h_{1}x_{2} + \frac{1}{2}K_{2})$
$y_{i+1} = y_i + K_1$	$K_{0} = hS(x_{i}, y_{i})$ $K_{1} = hS(x_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}K_{0})$ $K_{2} = hS(x_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}K_{0})$
	$K_2 = hS(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_1)$
Heun's method:	
$K_0 = hS(x_i, y_i)$ $K_1 = hS(x_i + h, y_i + K_0)$	$K_3 = hS(x_i + \overline{h}, y_i + K_2)$ $y_{i+1} = y_i + \frac{1}{6}(K_0 + 2K_1 + 2K_2 + K_3)$
	$y_{i+1} = y_i + \frac{1}{6}(K_0 + 2K_1 + 2K_2 + K_3)$
$y_{i+1} = y_i + \frac{1}{2}(K_0 + K_1)$	