block name 1

 $1.\mathrm{pdf}$

MODELS I SISTEMES DINÀMICS

Llista 1: Aplicacions unidimensionals

- **B.1.** Trobeu els punts fixos i les òrbites de període 2 de les següents funcions. En el cas que apareixin paràmetres, feu-ho en funció d'aquests.
 - (a) * f(x) = 2x(1-x), on $x \in \mathbb{R}$. (c) $f(x) = x^2 + 1$, on $x \in \mathbb{R}$.
 - (b) * $f_c(x) = x^2 + c$, on $x, c \in \mathbb{R}$ (només (d) $f_{a,b}(x) = ax + b$, on $a, b, x \in \mathbb{R}$. punts fixos).
 - (e) $f(x) = 2x^2 5x$, on $x \in \mathbb{R}$.
- B.2. Fent servir anàlisi gràfic, dibuixeu el retrat de fases de
 - (a) $f(x) = x^2, x \in \mathbb{R}$.

- (c) $f_a(x) = ax$, $x \in \mathbb{R}$, pels differents
- (b) $f(x) = x(1-x), x \in \mathbb{R}$.
- valors de $a \in \mathbb{R}$.
- B.3. * Trobeu els punts fixos atractors i les seves conques d'atracció per a la funció $f(x) = \frac{3x - x^3}{2}$, per $|x| \le \sqrt{3}$.
- **B.4.** Per a la funció logística $f_a(x) = ax(1-x)$, calculeu els punts fixos i els cicles de període 2 en funció del paràmetre, i determineu-ne l'estabilitat.
- 1. Estudieu el comportament asimptòtic de la successió $\{x_n\}_{n\in\mathbb{N}}$, pels diferents valors de x_0 indicats.

(a) *
$$x_{n+1} = \frac{\sqrt{x_n}}{2}$$
, $x_0 \ge 0$.

(b)
$$x_{n+1} = \frac{x_n}{2} + \frac{2}{x_n}, x_0 \ge 2.$$

- **2.** Donada la successió $x_{n+1} = \frac{x_n+2}{x_n+1}$,
 - (a) Trobeu el límit $L = \lim_{n \to \infty} x_n$ per a $x_0 \ge 0$.
 - (b) Descriviu el conjunt dels $x_0 < 0$ pels quals el límit $\lim_{n \to \infty} x_n$ existeix i no és igual a L, o bé no existeix. (Per exemple $x_0 = -1$).
- 3. (Examen 2011) Considereu el sistema dinàmic real definit per $x_{n+1} = \frac{x_n}{4} + x_n^3$. Trobeu el comportament asimptòtic de les òrbites per a tota condició inicial $x_0 \in \mathbb{R}$. Justifiqueu rigorosament les vostres afirmacions.
- 4. Demostreu rigurosament que $f(x) = \sin(x)$ té x = 0 com atractor global.
- 5. Demostreu que si $f: \mathbb{R} \to \mathbb{R}$ és derivable, x_0 és un punt fix i $|f'(x_0)| > 1$ llavors x_0 és un punt fix repulsor.
- **6.** Sigui $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^{∞} i sigui x_0 un punt fix tal que $f'(x_0) = 1$. Doneu criteris sobre les derivades d'ordre superior, per determinar el retrat de fase local al voltant de x_0 . Apliqueu-ho a determinar l'estabilitat dels punts fixos de $x^3 - x$.