Devoir Surveillé, 9 novembre 2017 Durée 1h30, documents interdits

Exercice 1 – On considère l'anneau $A = \frac{\mathbb{F}_7[X]}{\langle X^3 + 5X^2 + X + 5 \rangle}$.

- 1) Montrer que A n'est pas un corps.
- 2) Soit α la classe de X dans A. Montrer que $\alpha \in A^{\times}$.
- 3) Calculer α^4 , α^6 et α^{12} comme polynômes en α à coefficients dans \mathbb{F}_7 de degrés < 3.
- 4) En déduire l'ordre de α dans A^{\times} .
- 5) À l'aide du théorème chinois déterminer $|A^{\times}|$.
- 6) Établir que l'ordre de tout élément de A^{\times} divise 48. Le groupe A^{\times} est-il cyclique?
- 7) Prouver, sans calculs, que l'ensemble des éléments de A^{\times} d'ordre 48 est non vide.
- 8) Exhiber un tel élément.

Exercice 2 – Soient p un nombre premier et K un corps fini de caractéristique $\neq p$ et de cardinal n. On considère le polynôme $\Phi(X) = X^{p-1} + X^{p-2} + \cdots + 1 \in K[X]$ et P(X) un facteur irréductible de $\Phi(X)$ dans K[X], de degré d. On pose $L = \frac{K[X]}{\langle P(X) \rangle}$ et on note α la classe de X dans L.

- 1) Montrer que $\alpha \in L^{\times}$ et que l'ordre de α dans L^{\times} est égal à p.
- 2) En déduire que $n^d \equiv 1 \mod p$ et que la classe de n dans \mathbb{F}_p notée \overline{n} appartient à \mathbb{F}_p^{\times} .
- 3) On suppose que \overline{n} est un élément primitif de \mathbb{F}_p . Montrer que $\Phi(X)$ est irréductible dans K[X].
- 4) En déduire que si q est un nombre premier tel que la classe de q dans \mathbb{F}_p est un élément primitif de \mathbb{F}_p , alors $\Phi(X)$ est irréductible dans $\mathbb{F}_q[X]$.
- 5) Retrouver ce résultat en utilisant les classes cyclotomiques q-aires modulo p.
- 6) Prouver que $Q(X) = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$ est irréductible dans $\mathbb{F}_3[X]$ et dans $\mathbb{F}_{47}[X]$.
- 7) Combien y a-t-il de polynômes unitaires irréductibles de degré 6 dans $\mathbb{F}_3[X]$?
- 8) Parmi ceux-ci, combien sont primitifs?
- 9) Le polynôme Q(X) est-il irréductible primitif dans $\mathbb{F}_3[X]$?
- 10) Dresser la liste des sous-corps de F36 et établir le schéma des inclusions.
- 11) On identifie \mathbb{F}_{36} à $\frac{\mathbb{F}_3[X]}{\langle Q(X)\rangle}$ et on note β la classe de X dans \mathbb{F}_{36} . Montrer que $x=\beta^4+\beta^2+\beta$ appartient à un sous-corps strict M de \mathbb{F}_{36} que l'on précisera.
- 12) Quel est le polynôme minimal de x sur F₃?
- 13) Calculer la trace de x dans M et dans F₃₆.