Banco de Dados I Álgebra Relacional Primeira Parte

Melise Maria Veiga de Paula

Linguagem de Consulta

- Linguagem de banco de dados usada para recuperar (requisitar) informações em um banco de dados
 - Procedural
 - Álgebra Relacional
 - Não Procedural
 - SQL
 - Cálculo Relacional
 - □ Tupla e domínio
 - QBE

- Linguagem de consulta procedural que define operadores que usam uma ou duas relações como entrada e produzem uma nova relação como resultado
- Seis operadores básicos
 - seleção: σ
 - projeção: ∏
 - lacktriangle renomeação: ho
 - união: ∪
 - diferença de conjuntos: –
 - produto cartesiano: x

Específicas para banco de dados

Operações da teoria dos conjuntos

- Seleção
 - Operação usada para selecionar tuplas de uma relação
 - Filtra as linhas de uma tabela
 - Notação: $\sigma_p(r)$
- p é o predicado da seleção
 - Condição que deve ser satisfeita para que uma determinada tupla apareça no resultado
- r é o argumento
 - Uma relação

Álgebra Relacional Seleção

EMPREGADO	PNOME	MINICIAL	UNOME	SSN	DATANASC	ENDERECO	SEXO	SALARIO	SUPERSSN	DNO
V	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
	James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	null	1

Seleção

- predicado
 - <atributo> op <constante> (idade>10)
 - <atributo> op < atributo> (saldo=desconto)
 - op =, ≠, >, ≥, <, ≤</p>
 - Os termos ou cláusulas podem ser conectados por ∧ (and),
 ∨ (or), ¬ (not)

Álgebra Relacional Seleção

EMPREGADO	PNOME	MINICIAL	UNOME	SSN	DATANASC	ENDERECO	SEXO	SALARIO	SUPERSSN	DNO
	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
	James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	null	1

 $\sigma_{\mathsf{PNOME}} = "\mathsf{John}" \ (\mathsf{EMPREGADO})$

 $\sigma_{SALARIO > 30000}$ (EMPREGADO)

 $\sigma_{SALARIO < 10000 \land SEXO = "F"}$ (EMPREGADO)

 $\sigma_{PNOME = UNOME}$ (EMPREGADO)

Seleção

- Grau da relação resultante de uma seleção é igual ao grau de r
 - Número de atributos do resultado de uma seleção é igual ao número de atributos do argumento da seleção

$$\sigma_{SEXO = "M"}$$
 (EMPREGADO)

A relação resultante da consulta possui os mesmos atributos que a relação empregado

EMPREGADO	PNOME	MINICIAL	UNOME	SSN	DATANASC	ENDERECO	SEXO	SALARIO	SUPERSSN	DNO
	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
	James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	null	1

$\sigma_{\sf SEXO = "M"}$ (EMPREGADO)

PNOME	MINICIAL	UNOME	SSN	DATANASC	ENDERECO	SEXO	SALARIO	SUPERSSN	DNO
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	null	1

- Seleção
 - Operação comutativa

$$\sigma_{cond1}(\sigma_{cond2}(r)) = \sigma_{cond2}(\sigma_{cond1}(r))$$

$$\sigma_{\text{SEXO} = \text{"M"}} (\sigma_{\text{SALARIO}>10000}(\text{EMPREGADO})) =$$

$$\sigma_{SALARIO > 10000}$$
 ($\sigma_{SEXO = "M"}$ (EMPREGADO))

Projeção

- Operação usada para reproduzir uma relação omitindo atributos desnecessários em um contexto
- $\square \Pi_{A1, A2,..., Ak}(r)$
- r é o argumento (uma relação)
- A₁, A₂, ..., A_k são nomes de atributos da relação R
- Resultado é uma relação com k colunas

Álgebra Relacional Projeção

EMPREGADO

PNOME	MINICIAL	UNOME	SSN	DATANASC	ENDERECO	SEXO	SALARIO	SUPERSSN	DNO
Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Jennifer		Wallace	987654321	1941-06-20	291 Berry,Bellaire,TX	F	43000	888665555	4
Ramesh		Narayan	666884444	1962-09-15	975 FireOak,Humble,TX	М	38000	333445555	5

$\Pi_{PNOME,MINICIAL}(EMPREGADO)$

PNOME	MINICIAL
Franklin	Т
Jennifer	
Ramesh	

- Composição de operações
 - Expressão da álgebra relacional
 - O argumento das consultas pode ser uma expressão
 - Conceito análogo a uma expressão aritmética

$$\Pi_{PNOME,MINICIAL}(\sigma_{SEXO = "M"}(EMPREGADO))$$

PNOME	MINICIAL
John	В
Franklin	Т
Ramesh	K
Ahmad	٧
James	E

A operação abaixo é comutativa?

$$\Pi_{PNOME,MINICIAL}(\sigma_{SEXO = "M"}(EMPREGADO))$$

A expressão relacional abaixo faz sentido?

$$(\sigma_{SEXO = "M"}(\Pi_{PNOME,MINICIAL}(EMPREGADO)))$$

União

- Notação: r ∪ S
- $r \cup s = \{t \mid t \in r \text{ or } t \in s\}$
- Resultado
 - Todas as tuplas que estão em r ou em s ou em ambas
 - As tuplas duplicadas são eliminadas

Álgebra Relacional União

ALUNO	PN	UN
	Susan	Yao
	Ramesh	Shah
	Johnny	Kohler
	Barbara	Jones
	Amy	Ford
	Jimmy	Wang
	Ernest	Gilbert

INSTRUTOR	PNOME	UNOME
	John	Smith
	Ricardo	Browne
	Susan	Yao
	Francis	Johnson
	Ramesh	Shah

ALUNO U INSTRUTOR

Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert
John	Smith
Ricardo	Browne
Francis	Johnson

União

- As relações precisam ser união-compatíveis
 - r e s precisam ser da mesma aridade (o mesmo número de atributos)
 - Os domínios de atributo precisam ser compatíveis
 - □ A 1ª coluna de r tem o mesmo tipo que a 1ª coluna de s
 - □ A 2ª coluna de r tem o mesmo tipo que a 2ª coluna de s
 - **...**
 - □ A na coluna de r tem o mesmo tipo que a na coluna de s

- Diferença
 - Notação r s
 - $\neg r-s=\{t\mid t\in r \text{ and } t\not\in s\}$
 - Os conjunto devem ser união-compatíveis

Álgebra Relacional Diferença

ALUNO	PN	UN
	Susan	Yao
	Ramesh	Shah
	Johnny	Kohler
	Barbara	Jones
	Amy	Ford
	Jimmy	Wang
	Ernest	Gilbert

INSTRUTOR	PNOME	UNOME
	John	Smith
	Ricardo	Browne
	Susan	Yao
	Francis	Johnson
	Ramesh	Shah

ALUNO - INSTRUTOR

PN	UN
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

INSTRUTOR - ALUNO

PNOME	UNOME
John	Smith
Ricardo	Browne
Francis	Johnson

- Interseção
 - Notação r ∩ s
 - $r \cap s = \{t \mid t \in r \text{ and } t \in s\}$
 - Contém as tuplas que pertencem a r e a s simultaneamente
 - As relações devem ser união-compatíveis
 - Pode ser escrita em função da operação básica diferença
 - $r \cap s = r (r s)$

Interseção

Relação r, s:

Α	В
α	1
α	2
β	1

A B
α 2
β 3

r

S

$$r \cap s$$

Α	В
α	2

Álgebra Relacional BD Banco

- agência (nome_agência, cidade_agência, ativo)
- cliente (nome_cliente, rua_cliente, cidade_cliente)
- conta (número_conta, nome_agência, saldo)
- contaCliente (nome_cliente, número_conta)
- empréstimo (número_empréstimo, nome_agência, quantia)
- emprestimoCliente(nome_cliente, número_empréstimo)

Exemplos – Consultas BD banco

- Encontre os empréstimos com quantia maior que 1200
- Retorne o número dos empréstimos com quantia maior que 1200
- Retorne os nomes de clientes que tem empréstimo ou conta ou ambos
- Retorne os nomes de clientes que tem empréstimo e não tem conta no banco
- Encontre os empréstimos maiores que 20000 realizados na agência Halfeld
- Encontre os números de conta da agencia Estrela que tenham saldos negativos

Exemplos – Consultas Álgebra Relacional

 Encontre todos os empréstimos com quantia maior que 1200

$$\sigma_{quantia > 1200}$$
 (emprestimo)

 Retorne o número dos empréstimos com quantia maior que 1200

$$\Pi_{\text{número_empréstimo}}$$
 ($\sigma_{\text{quantia}>1200}$ (emprestimo))

 Retorne os nomes de clientes que tem um empréstimo uma conta ou ambos

```
\Pi_{\mathsf{numero\_conta}}(contaCliente) U \Pi_{\mathsf{nome\_cliente}}(emprestimoCliente)
```

Exemplos – Consultas Álgebra Relacional

 Retorne os nomes de clientes que tem um empréstimo e não tem uma conta no banco

```
(\prod_{\text{nome\_cliente}} (\text{emprestimoCliente}) - \prod_{\text{nome\_cliente}} (\text{contaCliente}))
```

 Encontre os empréstimos maiores que 20000 realizados na agência Halfeld

```
\sigma_{\text{quantia}} > 20000 \land \text{nome\_agencia} = \text{"Halfeld"} (emprestimo)
```

 Encontre os números de conta da agencia Estrela que tenham saldos negativos

```
\prod_{\text{numero\_conta}} (\sigma_{\text{saldo} < 0 \land \text{nome\_agencia}} = \text{"Estrela"} (\text{conta}))
```

Produto Cartesiano

- Notação *r* x s
- $r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$

Α	В	
α	1	
β	2	
r		

Α	В	С	D	E
α	1	α	10	а
α	1	β	10	а
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

- Produto Cartesiano (r X s)
 - Resultado
 - Todas as combinações possíveis entre as tuplas de r e de s
 - Número de atributos: número de colunas de r + número de colunas de s
 - Número de tuplas: número de colunas de r * número de colunas de s

Composição das operações

rxs

Α	В	С	D	Ε
α	1	α	10	а
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b

$$\sigma_{A=C}(r \times s)$$

Α	В	С	D	E
α	1	α	10	а
β	2	β	10	а
β	2	β	20	b

BD Empresa

NrMatric	NmFunc	DtAdm	Sexo	CdCargo	CdDepto
0001	Maria	10/12/02	F	C1	D1
0002	João	11/05/07	M	C2	D2
0003	Paulo	12/08/05	M	C3	D1
0004	Fábio	04/06/06	M	C3	D1

CdCargo	NmCargo	Salário
C1	Gerente	10000
C2	Auxiliar de escritório	1500
C3	Analista de Sistemas	6000

CdDepto	NmDepto	Ramal
D1	Informática	1301
D2	Recursos Humanos	1302
D3	Contabilidade	1303

Álgebra Relacional – Produto Cartesiano

- Os nomes e salários dos funcionários
 - Nome é um atributo da relação FUNCIONÁRIO
 - Salário é um atributo da relação CARGO
 - Solução: concatenar atributos da relação FUNCIONÁRIO com relação CARGO
 - Produto cartesiano (FUNCIONARIO x CARGO)
 - FUNCIONARIO x CARGO
 - Possui tuplas que logicamente não fazem sentido
 - Dados da Maria que é uma gerente concatenados com os detalhes do cargo Analista de Sistemas
 - Solução: selecionar somente aquelas tuplas logicamente viáveis

NrMatric	NmFunc	DtAdm	Sexo	F.CdCargo	C.CdCargo	NmCargo	Salário
0001	Maria	10/12/02	F	C1	C1	Gerente	10000
0001	Maria	10/12/02	F	C1	C2	Auxiliar de escritório	1500
0001	Maria	10/12/02	F	C1	C3	Analista de Sistemas	6000
0002	João	11/05/07	M	C2	C1	Gerente	10000
0002	João	11/05/07	M	C2	C2	Auxiliar de escritório	1500
0002	João	11/05/07	M	C2	C3	Analista de Sistemas	6000
0003	Paulo	12/08/05	M	C3	C1	Gerente	10000
0003	Paulo	12/08/05	M	C3	C2	Auxiliar de escritório	1500
0003	Paulo	12/08/05	M	C3	C3	Analista de Sistemas	6000
0004	Fábio	04/06/06	M	C3	C1	Gerente	10000
0004	Fábio	04/06/06	M	C3	C2	Auxiliar de escritório	1500
0004	Fábio	04/06/06	M	C3	C3	Analista de Sistemas	6000

NrMatric	NmFunc	DtAdm	Sexo	F.CdCargo	C.CdCargo	NmCargo	Salário
0001	Maria	10/12/02	F	C1	C1	Gerente	10000
0001	Maria	10/12/02	F	C1	C2	Auxiliar de	1500
0004	2.6	10/10/00	-	O1	60	escritório	6000
0001	Maria	10/12/02	F	C1	C3	Analista de Sistemas	6000
0002	João	11/05/07	M	C2	C1	Gerente	10000
0002	João	11/05/07	M	C2	C2	Auxiliar de	1500
						escritório	
0002	João	11/05/07	M	C2	C3	Analista de Sistemas	6000
0003	Paulo	12/08/05	M	C3	C1	Gerente	10000
0003	Paulo	12/08/05	M	C3	C2	Auxiliar de	1500
						escritório	
0003	Paulo	12/08/05	M	C3	C3	Analista de Sistemas	6000
0004	Fábio	04/06/06	M	C3	C1	Gerente	10000
0004	Fábio	04/06/06	M	C3	C2	Auxiliar de	1500
						escritório	
0004	Fábio	04/06/06	M	C3	C3	Analista de Sistemas	6000

Álgebra Relacional – Produto Cartesiano

- Selecionar somente aquelas tuplas logicamente viáveis
 - Tuplas com o mesmo código de cargo
 - Solução: selecionar somente aquelas tuplas logicamente viáveis

^OFuncionario.Cdcargo = Cargo.Cdcargo (FuncionarioXCargo)

NrMatric	NmFunc	DtAdm	Sexo	F.CdCargo	C.CdCargo	NmCargo	Salário
0001	Maria	10/12/02	F	C1	C1	Gerente	10000
0002	João	11/05/07	M	C2	C2	Auxiliar de escritório	1500
0003	Paulo	12/08/05	M	C3	C3	Analista de Sistemas	6000
0004	Fábio	04/06/06	M	C3	C3	Analista de Sistemas	6000

Álgebra Relacional – Produto Cartesiano

 A relação resultante contém todos os atributos de FuncionarioXCargo

Solução: Projeção

πNmFunc, Salario (σFuncionario. Cdcargo = Cargo. Cdcargo (Funcionario X Cargo))

NmFunc	Salário
Maria	10000
João	1500
Paulo	6000
Fábio	6000

- Junção θ (teta)
 - Alternativa para simplificar consultas que exigem produto cartesiano
 - \square $r \bowtie_{\theta} s = \sigma_{\theta}(r \times s)$
 - A condição θ é definida comparando qualquer par de atributos de r e s que tenham o mesmo domínio. Veja o exemplo:
 - r = (A, B, C, D) e s = (E, B, D)
 - Supondo que B e D sejam atributos com o mesmo domínio nas duas relações
 - Um exemplo de junção seria:
 - $r\bowtie_{r.D=s.D} s = \sigma_{r.D=s.D} (r \times s)$
 - No exemplo, o critério de junção (θ) é r.D = s.D e a tabela resultante contém todos os atributos de r e de s (A, B, C, D, E)
 - O critério de junção poderia envolver qualquer operador. Poderia ter

$$\theta = r.D > s.D$$

- Junção Natural
 - Quando θ for um operador de igualdade e envolver todos os atributos comuns.
 - Junção natural
 - seleção executada em um produto cartesiano considerando apenas as tuplas das duas relação que possuem valores iguais para os atributos em comum

$$r \bowtie s = \sigma_{r.A1} = s.A1,..., r.An = s.An(r \times s)$$

Com R \cap S = A1, ...,AN

- Junção Natural
 - □ emprestimo ⋈ emprestimoCliente
 - Quais são os atributos em comum entre as relações emprestimo e emprestimoCliente?
 - numero_emprestimo

emprestimo ⋈ emprestimoCliente

П

omprestimo.numero_emprestimo = emprestimoCliente.numero_emprestimo (emprestimo x emprestimoCliente))

Esta junção faz sentido?

- Junção Natural
 - Suponha duas tabelas
 - Funcionario(cod,nome,numDept)
 - Departamento(numero,nome,descricao)
 - Quais são os atributos comuns entre as duas tabelas?
 - Nome
 - Logo,

Funcionario ⋈ Departamento

ofuncionario.nome = departamento.nome (Funcionario x Departamento))

Esta junção faz sentido!!

- Junção
 - Suponha duas tabelas
 - Funcionario(cod,nome,numDept)
 - Departamento(numero,nome,descricao)
 - Neste caso, o critério de junção deveria ter sido especificado explicitamente

Funcionario ⋈ Funcionario.numDept = Departamento.numero Departamento

σ_{numDept = numero}(Funcionario x Departamento))

Álgebra Relacional BD Banco

- agência (nome_agência, cidade_agência, ativo)
- cliente (nome_cliente, rua_cliente, cidade_cliente)
- conta (número_conta, nome_agência, saldo)
- contaCliente (nome_cliente, número_conta)
- empréstimo (número_empréstimo, nome_agência, quantia)
- emprestimoCliente(nome_cliente, número_empréstimo)

Junção Natural é associativa

$$\neg r \bowtie (s \bowtie t) = (r \bowtie s) \bowtie t$$

cliente (nmCliente, rua, cidade) conta (numConta, nmAgencia, saldo) contaCliente(numConta, nmCliente)

cliente ⋈ (conta ⋈ contaCliente)

_

(cliente ⋈ conta) ⋈ contaCliente

Junção Natural

cliente (nmCliente, rua, cidade) conta (numConta, nmAgencia, saldo)contaCliente(numConta, nmCliente)

```
cliente (nmCliente, rua, cidade)
(100, Rua A, Muriae)
(200, Rua B, Alfenas)
```

```
conta (numConta, nmAgencia, saldo)
(C1, Primavera, 20000)
(C2, Central, 10000)
```

```
contaCliente (numConta, nmCliente)
(C1, 100)
(C2,200)
```

cliente ⋈ (conta ⋈ contaCliente)

cliente ⋈ (conta ⋈ contaCliente)

```
cliente (nmCliente, rua, cidade)
(100, Rua A, Muriae) e (200, Rua B, Alfenas)
```

```
conta (numConta, nmAgencia, saldo)
(C1, Primavera, 20000) e (C2, Central, 10000)
```

contaCliente (numConta, nmCliente) (C1, 100) e (C2,200)

conta ⋈ contaCliente =

(numConta, nmAgencia, saldo, nmCliente)

(C1, Primavera, 20000, 100)

(C2, Central, 10000,200)

cliente ⋈ (conta ⋈ contaCliente)

cliente (nmCliente, rua, cidade) (100, Rua A, Muriae) e (200, Rua B, Alfenas)

conta ⋈ contaCliente =

(numConta, nmAgencia, saldo, nmCliente) (C1, Primavera, 20000,100) (C2, Central, 10000,200)

cliente ⋈ (conta ⋈ contaCliente) =

(nmCliente,rua,cidade,numConta, nmAgencia, saldo) (100, Rua A, Muriae, C1, Primavera, 20000) (200, Rua B, Alfenas, C2, Central, 10000)

(cliente ⋈ conta) ⋈ contaCliente

cliente (nmCliente, rua, cidade) conta (numConta, nmAgencia, saldo) contaCliente(numConta, nmCliente)

cliente ⋈ conta Mas cliente e conta não possuem atributos em comum

. . . .

Junção Natural

```
\neg r \bowtie s com R \cap S = Ø, então r \bowtie s = r x s
```

cliente (nmCliente, rua, cidade) conta (numConta, nmAgencia, saldo) contaCliente(numConta, nmCliente)

cliente ⋈ conta = (nmCliente, rua, cidade, numConta, nmAgencia, saldo)

(cliente ⋈ conta)⋈ contaCliente

```
cliente (nmCliente, rua, cidade)
(100, Rua A, Muriae) e (200, Rua B, Alfenas)
```

conta (numConta, nmAgencia, saldo) (C1, Primavera, 20000) e (C2, Central, 10000)

cliente ⋈ conta = cliente X conta (nmCliente, rua, cidade, numConta, nmAgencia, saldo) (100, Rua A, Muriae, C1, Primavera, 20000) (100, Rua A, Muriae, C2, Central, 10000) (200, Rua B, Alfenas, C1, Primavera, 20000) (200, Rua B, Alfenas, C2, Central, 10000)

(cliente ⋈ conta)⋈ contaCliente

```
cliente ⋈ conta
(nmCliente, rua, cidade, numConta, nmAgencia, saldo)
(100, Rua A, Muriae, C1, Primavera, 20000)
(100, Rua A, Muriae, C2, Central, 10000)
(200, Rua B, Alfenas, C1, Primavera, 20000)
(200, Rua B, Alfenas, C2, Central, 10000)
```

contaCliente (numConta, nmCliente) (C1, 100) e (C2,200)

```
(cliente ⋈ conta)⋈ contaCliente
(nmCliente, rua, cidade, numConta, nmAgencia, saldo)
(100, Rua A, Muriae, C1, Primavera, 20000, C1, 100)
(100, Rua A, Muriae, C2, Central, 10000, C1, 100)
(200, Rua B, Alfenas, C1, Primavera, 20000, C2,200)
(200, Rua B, Alfenas, C2, Central, 10000, C2,200)
```

(cliente ⋈ conta)⋈ contaCliente

```
(cliente ⋈ conta) ⋈ contaCliente
(nmCliente, rua, cidade, numConta, nmAgencia, saldo)
(100, Rua A, Muriae, C1, Primavera, 20000, C1, 100)
(100, Rua A, Muriae, C2, Central, 10000, C1, 100)
(200, Rua B, Alfenas, C1, Primavera, 20000, C2,200)
(200, Rua B, Alfenas, C2, Central, 10000, C2,200)
```

```
(cliente ⋈ conta) ⋈ contaCliente
(nmCliente, rua, cidade, numConta, nmAgencia, saldo)
(100, Rua A, Muriae, C1, Primavera, 20000, C1, 100)
(200, Rua B, Alfenas, C2, Central, 10000, C2,200)
```

- Junção Natural
 - \neg r \bowtie s com R \cap S = \emptyset , então r \bowtie s = rxs

cliente ⋈ (conta ⋈ contaCliente) = (nmCliente,rua,cidade,numConta, nmAgencia, saldo) (100, Rua A, Muriae, C1, Primavera, 20000) (200, Rua B, Alfenas, C2, Central, 10000)

(cliente ⋈ conta) ⋈ contaCliente (nmCliente,rua, cidade,numConta,nmAgencia,saldo) (100, Rua A, Muriae, C1, Primavera, 20000, C1, 100) (200, Rua B, Alfenas, C2, Central, 10000, C2,200)

Junção externa

- Extensão da operação junção que evita a perda de informações
- Faz a junção natural e acrescenta ao resultado as tuplas de uma relação que não se relacionam com as tuplas da outra relação

nome_funcionário	rua	Cidade
Coyote	Toon	Hollywood
Rabbit	Tunnel	Carrotville
Smith	Revolver	Death Valley
Williams	Seaview	Seattle

nome_funcionário	nome_agência	salário
Coyote	Mesa	1500
Rabbit	Mesa	1300
Gates	Redmond	5300
Williams	Redmond	1500

funcionario

tempoIntegral

funcionario

nome_funcionário	rua	Cidade
Coyote	Toon	Hollywood
Rabbit	Tunnel	Carrotville
Smith	Revolver	Death Valley
Williams	Seaview	Seattle

nome_funcionário	nome_agência	salário
Coyote	Mesa	1500
Rabbit	Mesa	1300
Gates	Redmond	5300
Williams	Redmond	1500

tempoIntegral

nome_funcionário	Rua	cidade	nome_agēncia	salário
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500

- Junção externa esquerda (primeira relação)
 - Junção natural mais as tuplas da relação da esquerda que não estão relacionadas com a segunda relação

funcionario

nome_funcionário	rua	Cidade
Coyote	Toon	Hollywood
Rabbit	Tunnel	Carrotville
Smith	Revolver	Death Valley
Williams	Seaview	Seattle

mpoIntegra

nome_funcionário	nome_agência	salário
Coyote	Mesa	1500
Rabbit	Mesa	1300
Gates	Redmond	5300
Williams	Redmond	1500

tempoIntegral

funcionario

nome_funcionário	rua	Cidade
Coyote	Toon	Hollywood
Rabbit	Tunnel	Carrotville
Smith	Revolver	Death Valley
Williams	Seaview	Seattle

nome_funcionário	nome_agência	salário
Coyote	Mesa	1500
Rabbit	Mesa	1300
Gates	Redmond	5300
Williams	Redmond	1500

tempoIntegral

nome_funcionário	Rua	cidade	nome_agência	salário
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	nulo	nulo

- Junção externa direita (segunda relação)
 - Junção natural mais as tuplas da relação da direita que não estão relacionadas com a primeira relação

funcionario

nome_funcionário	rua	Cidade
Coyote	Toon	Hollywood
Rabbit	Tunnel	Carrotville
Smith	Revolver	Death Valley
Williams	Seaview	Seattle

mpoIntegra

nome_funcionário	nome_agência	salário
Coyote	Mesa	1500
Rabbit	Mesa	1300
Gates	Redmond	5300
Williams	Redmond	1500

funcionario |

tempoIntegral

funcionario

nome_funcionário	rua	Cidade
Coyote	Toon	Hollywood
Rabbit	Tunnel	Carrotville
Smith	Revolver	Death Valley
Williams	Seaview	Seattle

nome_funcionário	nome_agência	salário
Coyote	Mesa	1500
Rabbit	Mesa	1300
Gates	Redmond	5300
Williams	Redmond	1500

tempoIntegral

nome_funcionário	Rua	cidade	nome_agência	salário
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Gates	Nulo	nulo	Redmond	5300

Junção externa completa

 Junção natural mais as tuplas das duas relações que não estão relacionadas

funcionario

nome_funcionário	rua	Cidade
Coyote	Toon	Hollywood
Rabbit	Tunnel	Carrotville
Smith	Revolver	Death Valley
Williams	Seaview	Seattle

tempoIntegra

nome_funcionário	nome_agência	salário
Coyote	Mesa	1500
Rabbit	Mesa	1300
Gates	Redmond	5300
Williams	Redmond	1500

funcionario _____

tempoIntegral

funcionario

nome_funcionário	rua	Cidade
Coyote	Toon	Hollywood
Rabbit	Tunnel	Carrotville
Smith	Revolver	Death Valley
Williams	Seaview	Seattle

nome_funcionário	nome_agência	salário
Coyote	Mesa	1500
Rabbit	Mesa	1300
Gates	Redmond	5300
Williams	Redmond	1500

tempoIntegral

nome_funcionário	Rua	cidade	nome_agência	salário
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	nulo	nulo
Gates	Nulo	nulo	Redmond	5300

BD Empresa

funcionario

]	NrMatric	NmFunc	DtAdm	Sexo	CdCargo	CdDepto
	0001	Maria	10/12/02	F	C1	D1
(0002	João	11/05/07	M	C2	D2
(0003	Paulo	12/08/05	M	C2	D1
(0004	Fábio	04/06/06	M	C3	D1

cargo

CdCargo	NmCargo	Salário
C1	Gerente	10000
C2	Auxiliar de escritório	1500
C3	Analista de Sistemas	6000

departamento

CdDepto	NmDepto	Ramal
D1	Informática	1301
D2	Recursos Humanos	1302
D3	Contabilidade	1303

- Renomeação
 - \square Notação $\rho_{x}(E)$
 - Retorna a expressão E sob o nome X
 - Permite nomear resultados das expressões de álgebra relacional
 - Se uma expressão de álgebra relacional E tiver aridade n, então
 - $\rho_{x(A1, A2,..., An)}(E)$
 - retorna o resultado da expressão E com o nome x, e com os atributos renomeados para A1, A2,..., An

- Renomeação
 - $\rho_c(cargo)$
 - Retorna a relação cargo com o nome C
 - $\neg \rho_{c(C1, C2, C3)}(cargo)$
 - Retorna a relação cargo com o nome c e os atributos
 - CdCargo, NmCargo e Salário com os nomes C1, C2, C3 respectivamente
 - $\neg \rho_{(C1, C2, C3)}(cargo)$
 - Retorna a relação cargo com o nome original mudando os nomes dos atributos para C1, C2 e C3.

Atribuição

- □ A operação atribuição (←) fornece uma maneira conveniente de expressar consultas complexas
- Retorne o nome dos funcionário e o nome dos cargos de cada um deles

FC ← FuncionarioXCargo

$$\mathsf{FCReal} \leftarrow \sigma_{Funcionario.Cdcargo=Cargo.Cdcargo}(FC)$$

Resultado $\leftarrow \pi_{NmFunc,NmCargo}(FCReal)$

BD Empresa

NrMatric	NmFunc	DtAdm	Sexo	CdCargo	CdDepto
0001	Maria	10/12/02	F	C1	D1
0002	João	11/05/07	M	C2	D2
0003	Paulo	12/08/05	M	C3	D1
0004	Fábio	04/06/06	M	C3	D1

CdCargo	NmCargo	Salário
C1	Gerente	10000
C2	Auxiliar de escritório	1500
C3	Analista de Sistemas	6000

CdDepto	NmDepto	Ramal
D1	Informática	1301
D2	Recursos Humanos	1302
D3	Contabilidade	1303

Consultas – BD Empresa

- Obter o nome de todos os funcionários do departamento 'D1'.
- O nome dos funcionários que ganham mais de \$500
- Obter o nome do funcionário e no nome do respectivo departamento de todos os funcionários
- Retornar os nomes dos cargos dos funcionários do sexo feminino
- Os nomes de todos os funcionários com cargo de 'Gerente'
- Retornar o nome, o nome do departamento e o salário de todos os gerentes
- Retorne o nome do cargo e o nome dos funcionários do cargo incluindo os cargos que não têm funcionários.