MATLAB - laboratorium nr 1 - wektory i macierze

- 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter).
 - b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na ekranie.
 - c. Średnik na końcu polecenia pozwala pominąć wyświetlenie wartości na ekranie.
 - d. MATLAB używa nawiasów okrągłych (), nawiasów kwadratowych [] i klamrowych {}, nie są one zamienne.
 - e. Przycisk strzałki w górę i w dół strzałek mogą być użyte do przewijania komend w linii poleceń. Również starą komendę można przypomnieć, wpisując kilka znaków, a następnie strzałkę w górę.
 - f. Możesz skorzystać z pomocy dotyczącej MATLABa lub konkretnej funkcji, wybierając opcję Help lub zaznaczając polecenie i klikając na nim prawym klawiszem myszy

Dokumentację możesz znaleźć też na stronie https://www.mathworks.com/help/

- g. Możesz zakończyć działanie MATLABa, wpisując exit lub quit.
- h. Do czyszczenia linii poleceń służy funkcja clc
- 2. Podstawowe informacje:
 - a. Po uruchomieniu MATLABa pojawia się konsola (Command Window).
 - b. Na konsoli umieszczone są znaki ">>" jest to początek linii poleceń po tych znakach wpisuje się polecenia w języku MATLAB, które następnie są interpretowane przez program
- 3. Wszystko jest macierzą:
 - a. Podstawowym typem danych w MATLABie jest macierz. Nawet pojedyncza liczba jest reprezentowana jako macierz 1x1.
 - b. Macierze więcej niż jednoelementowe tworzymy, podając ich elementy w nawiasach kwadratowych []. Kolumny oddzielamy spacjami zaś wiersze średnikami.
 - c. Przykładowe działania, które można wykonywać na "całych" macierzach:

- mnożenie macierzy : A*B lub mtimes(A,B)
- rozwiązywanie układu xA=B : A/B lub mrdivide(A,B)
- dodawanie i odejmowanie macierzy: A+B, A-B lub plus(A,B) i minus(A,B)
- potęgowanie macierzy: A^B lub mpower(A,B)
- działanie $A \setminus B$: Jeżeli A jest macierzą kwadratową to A \ B oznacza w tyle co inv (A) * B (choć jest obliczana w inny sposób). Jeżeli A jest macierzą nxn i B jest wektorem n elementowym lub macierzą składającą się z kilku takich kolumn, to X = A \ B jest rozwiązaniem równania AX = B przy pomocy algorytmu eliminacji Gaussa.
- transponowanie macierzy: A.' lub transpose(A) oraz A' lub ctranspose(A) (transponowanie i zastapienie wszystkich elementów ich wartościami sprzężonymi)
- odwracanie macierzy: inv(A)
- d. Przykładowe działania, które można wykonywać na elementach macierzy (wyróżniają się one kropką przed operatorem). B może być macierzą o odpowiednich wymiarach lub skalarem:
- dodawanie i odejmowanie macierzy i ich poszczególnych elementów to ta sama operacja, dlatego nie używa się operatora z kropką
- mnożenie elementów macierzy: A.*B lub times(A,B)
- dzielenie elementów macierzy: A./B lub rdivide(A,B)
- dzielenie lewostronne elementów macierzy: A.\B lub ldivide(A,B)
- potęgowanie elementów macierzy: A.^B lub Power(A,B)
- suma elementów w kolumnach | wierszach: sum(A)|sum(A,2)
- średnia elementów w kolumnach | wierszach: mean(A)|mean(A,2)
- wartości własne macierzy: eig(A)
- e. Zakresy liczb:
- **m:n** to zakres liczb m,m+1,m+2...n (zał: m<n)
- **m:s:n** to zakres liczb od m do n z krokiem s (zał: s>0 i n>m lub s<0 i n<m)
- f. Łączenie macierzy i podmacierze:
- mając macierze A i B o właściwych wymiarach, można je połączyć dodając kolumny: [A B] lub wiersze [A;B]
- można też użyć poleceń:
- cat łączenie macierzy wzdłuż określonego wymiaru,

horzcat - łączenie macierzy poziomo (dodawanie kolumn),

vertcat – dołączanie macierzy pionowo (dodawanie wierszy), repmat – wielokrotne powtórzenie macierzy pionowo i poziomo,

blkdiag – konstrukcja macierzy, w której kolejne macierze dołączane są diagonalnie.

- wydobywanie elementu macierzy, znajdującego się w i-tym wierszu i jtej kolumnie: **A(i,j)**
- wydobywanie podmacierzy (podaje się najpierw zakres wierszy a potem kolumn): A(a:b,c:d)
- wydobywanie całego wiersza: A(i,:)
- wydobywanie całej kolumny: A(:,j)
- dla macierzy o większym wymiarze używa się ":", gdy chce się wydobyd wszystkie elementy konkretnej współrzędnej, np. **A(:,1,:)**
- A(:) zamienia macierz na wektor jednowymiarowy
- g. Macierze specjalne:
- macierz zerowa: zeros
- macierz jedynkowa: **ones**
- macierz jednostkowa: **eye**
- macierz losowa: rand, randn
- macierz diagonalna: diag
- kwadrat magiczny: magic
- najwiekszy z wymiarów macierzy: length
- ilosc wymiarów: **ndims**
- ilosc elementów: numel
- wymiary macierzy: size

Zadanie 1: Utwórz wektory a, b oraz c, o 3 elementach. Wykonaj na nich następujące działania (wynik zapisz do nowej zmiennej):

- oblicz sumy i różnice wektorów (wszystkie kombinacje)
- oblicz iloczyn skalarny wektorów i sprawdź, czy działanie to jest przemienne (pytanie: czy jest przemienne w ogólności?)
- oblicz iloczyn wektorowy axb, bxa. Czy iloczyn wektorowy jest działaniem przemiennym?
- Oblicz objętość równoległościanu rozpiętego na wektorach a, b, c.
 Wykorzystaj w tym celu iloczyn mieszany trzech wektorów. Czy wartość iloczynu zależy od kolejności wektorów?

Zadanie 2: Utwórz macierze kwadratowe A, B wymiaru 3x3.

Wykonaj na nich następujące działania (wynik zapisz do nowej zmiennej):

- oblicz sumę i różnicę macierzy
- transponuj macierze A i B
- oblicz iloczyn macierzy A*B (czy mnożenie macierzy jest przemienne?)
- oblicz wyznacznik macierzy A i B
- znajdź macierz odwrotną do A oraz do B (o ile istnieją; pytanie: kiedy macierz kwadratowa jest odwracalna?)
- uzasadnij, że macierze uzyskane w poprzednim podpunkcie rzeczywiście są macierzami odwrotnymi do A i B

Zadanie 3: Utwórz macierz C, której wiersze są wektorami a, b, c z zadania 1. Utwórz macierz D, której kolumny są wektorami a, b, c z zadania 1. Oblicz wyznaczniki tych macierzy.

Zadanie 4: Utwórz wektory wierszowe a1, a2 o czterech elementach. Utwórz macierz jednostkową wymiaru 2x2 o nazwie A1 oraz dowolną macierz górnotrójkątną wymiaru 2x2 o nazwie A2. Połącz wektory a1, a2 oraz macierze A1, A2 w jedną macierz wg schematu:

Tu wstaw wektor a1	
Tu wstaw wektor a2	
Tu wstaw macierz A1	Tu wstaw macierz A2

Oblicz wyznacznik oraz znajdź macierz odwrotną (o ile jest to możliwe) do tak powstałej macierzy.

Do osobnych zmiennych zapisz:

- pierwszą kolumnę macierzy
- trzeci wiersz macierzy
- drugi i trzeci element czwartego wiersza macierzy
- podmacierz od elementu (2,2) do elementu (3,4).

Zadanie domowe:

Zadanie 5: Wygeneruj ciąg 10 liczb naturalnych. Wykorzystaj funkcje wbudowane, aby otrzymać wymiar/długość/liczbę elementów otrzymanego wektora. Zapisz obliczone wartości do odpowiednich zmiennych.

Utwórz dowolną macierz wymiaru 2x4 i powtórz obliczenia.

Jaka jest różnica między funkcjami length i size?

Zadania domowe:

Zadanie 6: Na wektorach z zadania 1 wykonaj następujące działania:

- wektor a posortuj rosnąco
- wektor b posortuj malejąco.

Na macierzach z zadania 2 wykonaj działania:

- elementy macierzy A posortuj rosnąco
- elementy macierzy B posortuj malejąco
- oblicz wartości własne macierzy A oraz posortowanej macierzy A.

Zadanie 7: Utwórz kwadrat magiczny o wymiarze 7x7. Oblicz sumę elementów w wybranych trzech wierszach i wybranych trzech kolumnach.