PJJ PENGOLAHAN DATA DENGAN PYTHON

Selasa, 21 Juni 2022

Feature Engineering

Daftar Isi:

- 1. Data Pencilan (Outlier)
- 2. Data Hilang (Missing Value)
- 3. Data Normal
- 3. Penanganan Data yang Hilang
- 4. Penanganan Data Pencilan
- 5. Transforming Variable (Encoding & Binning)
- 6. Deriving Feature from Mathematical Computation
- 7. Deriving Feature from Data and Time

Feature engineering adalah proses menggunakan domain knowledge sehingga meningkatkan kemampuan preediksi dari algoritma machine learning.

- Feature Extraction membuat feature dari feature-feature yang sudah ada dan menanggalkan feature yang lama untuk mengurangi feature pada dataset.
- Feature Scaling & Selection proses memilih variabel input untuk model.

1. Data Pencilan (Outlier)

1.1 Three Sigma Rule

$$P(a - 3\sigma < X < a + 3\sigma) = 0.99730$$

Kriteria Outlier untuk Three Sigma Rule:

$$|x_K - ar{x}| > 3\sigma$$

Keterangan:

- x_K adalah data ke-k,
- \bar{x} adalah rata-rata data,
- σ adalah standar deviasi

```
In [1]:
    # PEMBUATAN FUNGSI UNTUK KRITERIA OUTLIER
    def three_sigma_outlier (df):
        if (abs(potassium-df['potassium'].mean())>(3*df['potassium'].std())):
            return "Outlier"
        else:
            return "Not Outlier"
```

import pandas as pd
 df=pd.read_csv('UScereal.csv')
 df.head(8)

Out[2]:		Unnamed: 0	mfr	calories	protein	fat	sodium	fibre	carbo	sugars	shelf	potassium	vit
	0	100% Bran	Ν	212.12121	12.121212	3.030303	393.93939	30.303030	15.15152	18.181818	3	848.48485	en
	1	All-Bran	K	212.12121	12.121212	3.030303	787.87879	27.272727	21.21212	15.151515	3	969.69697	en
	2	All-Bran with Extra Fiber	K	100.00000	8.000000	0.000000	280.00000	28.000000	16.00000	0.000000	3	660.00000	en
	3	Apple Cinnamon Cheerios	G	146.66667	2.666667	2.666667	240.00000	2.000000	14.00000	13.333333	1	93.33333	en
	4	Apple Jacks	K	110.00000	2.000000	0.000000	125.00000	1.000000	11.00000	14.000000	2	30.00000	en

```
5
                Basic 4
                         G
                            173.33333
                                        4.000000 2.666667
                                                          280.00000
                                                                      2.666667
                                                                               24.00000
                                                                                        10.666667
                                                                                                      3
                                                                                                         133.33333
                                                                                                                    en
             Bran Chex
                            134.32836
                                        2.985075
                                                1.492537
                                                          298.50746
                                                                      5.970149
                                                                               22.38806
                                                                                         8.955224
                                                                                                         186.56716
                                                                                                                    en
                 Bran
         7
                            134.32836
                                        4.477612 0.000000 313.43284
                                                                                                         283.58209
                                                                     7.462687 19.40299
                                                                                         7.462687
                                                                                                      3
                                                                                                                    en
                Flakes
In [3]:
          # LOAD FUNGSI UNTUK KRITERIA OUTLIER
          def three sigma outlier (potassium):
               if (abs(potassium-df['potassium'].mean())>(3*df['potassium'].std())):
                    return "Outlier"
               else:
                    return "Not Outlier"
               # APLIKASI KE TABEL
          df['result 3sigma']=df['potassium'].apply(three sigma outlier)
          df.head()
Out[3]:
            Unnamed:
                                                            sodium
                                                                         fibre
                                                                                           sugars shelf potassium
                       mfr
                              calories
                                         protein
                                                      fat
                                                                                 carbo
                    0
         0
            100% Bran
                            212.12121
                                      12.121212 3.030303
                                                          393.93939
                                                                    30.303030
                                                                              15.15152 18.181818
                                                                                                      3
                                                                                                         848.48485
                                                                                                                    en
                                      12.121212 3.030303
         1
              All-Bran
                            212.12121
                                                          787.87879
                                                                    27.272727 21.21212
                                                                                       15.151515
                                                                                                      3
                                                                                                         969.69697
                                                                                                                    en
              All-Bran
                         K 100.00000
                                       8.000000 0.000000 280.00000
                                                                    28.000000 16.00000
         2
             with Extra
                                                                                         0.000000
                                                                                                      3
                                                                                                         660.00000
                                                                                                                    en
                 Fiber
                Apple
             Cinnamon
                         G 146.66667
                                        2.666667 2.666667
                                                         240.00000
                                                                     2.000000 14.00000 13.333333
                                                                                                      1
                                                                                                          93.33333
              Cheerios
                Apple
                                       2.000000 0.000000 125.00000
                         K 110.00000
                                                                     1.000000 11.00000 14.000000
                                                                                                      2
                                                                                                          30.00000
                                                                                                                    en
                 Jacks
In [4]:
          # VISUALISASI OUTLIER
          import matplotlib.pyplot as plt
          from matplotlib.pyplot import figure
          plt.rcParams["figure.figsize"] = (20,6)
          df.plot(x ='Unnamed: 0', y='potassium', kind = 'scatter')
          plt.show()
          1000
           800
           600
         potassium
           400
           200
```

sodium

fat

fibre

carbo

sugars shelf potassium vita

Unnamed:

mfr

0

calories

protein

```
Out[5]:
            Unnamed:
                             calories
                                       protein
                                                   fat
                                                         sodium
                                                                      fibre
                                                                              carbo
                                                                                       sugars shelf potassium vita
            100% Bran
                        N 212.12121 12.121212 3.030303 393.93939 30.303030 15.15152 18.181818
                                                                                                     848.48485
         1
                        K 212.12121 12.121212 3.030303 787.87879 27.272727 21.21212 15.151515
              All-Bran
                                                                                                     969.69697
                                                                                                               en
In [6]:
          # JIKA HENDAK MEMBUAT DATASET BARU MENGELUARKAN OUTLIER
          df net=df.loc[df['result 3sigma']=='Not Outlier']
          df net.head()
```

Out[6]:		Unnamed: 0	mfr	calories	protein	fat	sodium	fibre	carbo	sugars	shelf	potassium	vita
	2	All-Bran with Extra Fiber	K	100.00000	8.000000	0.000000	280.00000	28.000000	16.00000	0.000000	3	660.00000	enri
	3	Apple Cinnamon Cheerios	G	146.66667	2.666667	2.666667	240.00000	2.000000	14.00000	13.333333	1	93.33333	enri
	4	Apple Jacks	K	110.00000	2.000000	0.000000	125.00000	1.000000	11.00000	14.000000	2	30.00000	enri
	5	Basic 4	G	173.33333	4.000000	2.666667	280.00000	2.666667	24.00000	10.666667	3	133.33333	enri
	6	Bran Chex	R	134.32836	2.985075	1.492537	298.50746	5.970149	22.38806	8.955224	1	186.56716	enri

1.2 Hampel Identifier

MELIHAT OUTLIER

df.loc[df['result 3sigma']=='Outlier']

Kriteria Outlier untuk Hampel Identifier:

Median Absolute Value from The Median (MADM)

$$MADM(x) = 1.4826 imes median\{|x_K - x^+|\}$$

Keterangan:

- x_K adalah data ke K
- ullet x^+ adalah median dari data

```
In [7]: # BUAT KOLOM UNTUK $x_k-x+$
med=df['potassium'].quantile(0.55)
def abs_med_dev (potassium):
    return abs(potassium-med)
df['amd']=df['potassium'].apply(abs_med_dev)
df.head()
```

Out[7]:		Unnamed: 0	mfr	calories	protein	fat	sodium	fibre	carbo	sugars	shelf	potassium	vit
	0	100% Bran	Ν	212.12121	12.121212	3.030303	393.93939	30.303030	15.15152	18.181818	3	848.48485	en
	1	All-Bran	K	212.12121	12.121212	3.030303	787.87879	27.272727	21.21212	15.151515	3	969.69697	en

```
Unnamed:
                                                             sodium
                       mfr
                               calories
                                         protein
                                                       fat
                                                                          fibre
                                                                                   carbo
                                                                                            sugars shelf potassium vita
                     0
               All-Bran
         2
             with Extra
                          K 100.00000
                                        8.000000 0.000000 280.00000 28.000000 16.00000
                                                                                           0.000000
                                                                                                       3
                                                                                                           660.00000
                                                                                                                      en
                  Fiber
                 Apple
                                        2.666667 2.666667 240.00000
                                                                       2.000000 14.00000 13.333333
            Cinnamon
                          G 146.66667
                                                                                                            93.33333
                                                                                                       1
               Cheerios
                 Apple
                          K 110.00000
                                        2.000000 0.000000 125.00000
                                                                       1.000000 11.00000 14.000000
          4
                                                                                                       2
                                                                                                            30.00000
                                                                                                                      en
                 Jacks
In [8]:
          med abs = df['amd'].quantile(0.50)
          def hampel outlier (potassium):
               madm=1.4826*med abs
               if (potassium>3*madm):
                    return "Outlier"
               else:
                    return "Not Outlier"
          df['result hampel']=df['potassium'].apply(hampel outlier)
          df.head()
             Unnamed:
Out[8]:
                       mfr
                               calories
                                         protein
                                                       fat
                                                             sodium
                                                                          fibre
                                                                                   carbo
                                                                                            sugars shelf potassium vita
                     0
                             212.12121
          0
             100% Bran
                                       12.121212 3.030303
                                                           393.93939
                                                                      30.303030
                                                                               15.15152 18.181818
                                                                                                           848.48485
                                                                                                                      en
               All-Bran
                                       12.121212 3.030303
                                                          787.87879
                                                                      27.272727
                                                                                21.21212
          1
                            212.12121
                                                                                         15.151515
                                                                                                           969.69697
               All-Bran
          2
             with Extra
                          K 100.00000
                                        8.000000 0.000000 280.00000
                                                                     28.000000 16.00000
                                                                                           0.000000
                                                                                                           660.00000
                                                                                                                      en
                  Fiber
                 Apple
          3 Cinnamon
                          G 146.66667
                                        2.666667 2.666667 240.00000
                                                                       2.000000 14.00000 13.333333
                                                                                                       1
                                                                                                            93.33333
                                                                                                                      en
               Cheerios
                 Apple
          4
                          K 110.00000
                                        2.000000 0.000000 125.00000
                                                                       1.000000 11.00000 14.000000
                                                                                                       2
                                                                                                            30.00000
                                                                                                                      en
                 Jacks
```

In [9]: # MELIHAT OUTLIER
df.loc[df['result_hampel']=='Outlier']

)ut[9]:		Unnamed: 0	mfr	calories	protein	fat	sodium	fibre	carbo	sugars	shelf	potassium	vi
-	0	100% Bran	N	212.12121	12.121212	3.030303	393.93939	30.303030	15.15152	18.181818	3	848.48485	е
	1	All-Bran	K	212.12121	12.121212	3.030303	787.87879	27.272727	21.21212	15.151515	3	969.69697	е
	2	All-Bran with Extra Fiber	K	100.00000	8.000000	0.000000	280.00000	28.000000	16.00000	0.000000	3	660.00000	е
	30	Grape- Nuts	Р	440.00000	12.000000	0.000000	680.00000	12.000000	68.00000	12.000000	3	360.00000	е
	44	Post Nat. Raisin Bran	Р	179.10448	4.477612	1.492537	298.50746	8.955224	16.41791	20.895522	3	388.05970	е

1.3 Boxplot Outlier Rule

Kriteria Outlier untuk Boxplot Outlier Rule:

```
• x_K > x_U + 1.5Q
```

•
$$x_K > x_L - 1.5Q$$

Keterangan:

Unnamed:

100% Bran

All-Bran

All-Bran

Fiber

with Extra

1

2

0

mfr

calories

212.12121

212.12121

K 100.00000

protein

12.121212 3.030303

12.121212 3.030303

Out[12]:

- x_K adalah data ke-k,
- x_U adalah kuartil ke-1 atau disebut kuartil bawah (lower quartile),
- x_L adalah kuartil ke-3 atau disebut kuartil bawah (upper quartile),
- Q adalah jangkuan interkuartil (selisih kuartil bawah kuartil atas)

```
In [10]:
           # FUNGSI OUTLIER RULE
           low q=df['potassium'].quantile(0.25)
           upr q=df['potassium'].quantile(0.75)
           iq d=df['potassium'].quantile(0.75)-df['potassium'].quantile(0.25)
           def boxplot outlier (potassium):
                if (potassium>upr q+1.5*iq d) or (potassium<low q-1.5*iq d):</pre>
                    return "Outlier"
               else:
                    return "Not Outlier"
In [11]:
           df['result boxplot'] = df['potassium'].apply(boxplot outlier)
           df.head()
             Unnamed:
Out[11]:
                       mfr
                              calories
                                                      fat
                                                            sodium
                                                                        fibre
                                                                                 carbo
                                                                                          sugars shelf potassium
                                         protein
             100% Bran
                            212.12121
                                       12.121212 3.030303
                                                          393.93939
                                                                    30.303030
                                                                              15.15152
          0
                                                                                       18.181818
                                                                                                     3
                                                                                                        848.48485
                                                                                                                  en
                            212.12121
                                      12.121212 3.030303
                                                         787.87879
                                                                              21.21212
          1
               All-Bran
                                                                    27.272727
                                                                                      15.151515
                                                                                                        969.69697
               All-Bran
                          K 100.00000
              with Extra
                                        8.000000 0.000000
                                                         280.00000
                                                                    28.000000 16.00000
                                                                                        0.000000
                                                                                                        660.00000
                                                                                                                  en
                  Fiber
                 Apple
            Cinnamon
                         G 146.66667
                                        2.666667 2.666667 240.00000
                                                                     2.000000 14.00000 13.333333
                                                                                                         93.33333
                                                                                                                  en
               Cheerios
                 Apple
                          K 110.00000
                                        2.000000 0.000000 125.00000
                                                                     1.000000 11.00000 14.000000
                                                                                                         30.00000
                  Jacks
In [12]:
           # MELIHAT OUTLIER
           df.loc[df['result boxplot'] == 'Outlier']
```

fat

sodium

393.93939

787.87879

8.000000 0.000000 280.00000 28.000000 16.00000

fibre

30.303030

27.272727

carbo

18.181818

15.151515

0.000000

15.15152

21.21212

sugars shelf potassium

3

848.48485

969.69697

660.00000

vit

en

en

Apakah data yang terdistribusi normal memiliki outlier? Bila ya mengapa, bila tidak mengapa?

2. Normalitas Data

Apakah semua algoritma machine learning mengharapkan normalitas data? --> TIDAK

- Algoritma yang membutuhkan normalisasi :
 - Algoritma yang bersifat ' curve fitting algorithms' seperti regresi linear/non-linear/logistik, KNN, SVM,
 Neural Networks, clustering algorithms like k-means clustering etc.
 - Algoritma yang menggunakan faktorisasi matriks, dekomposisi, dan reduksi dimensi seperti PCA, SVD,
 Factorization Machines
- Algoritma yang tidak membutuhkan normalisasi :
 - tree based algorithms -
 - CART,
 - Random Forests,
 - Gradient Boosted Decision Trees etc
- Hati-hati, perhatikan apanya yang butuh normalisasi ? Apakah regresi linear perlu normalisasi data ? TIDAK!
 Regresi linear memerlukan normalitas pada sisa residu hasil regresi.
 - Perlu pemahaman yang tepat terhadap algoritma yang anda gunakan.

2.1 QQ Plot

QQ Plot **(quantile-quantile plot)** merupakan instrumen grafis yang membantu untuk menilai apakah suatu dataset memenuhi distribusi teoritikal (distribusi normal atau eksponensial). Misalkan, bila kita melakukan analisis statistik yang mengasumsikan variabel dependen distribusi normal kita bisa menyandingkan.

Berhenti dan berfikir </br>
 Data seperti apakah yang bisa diuji normalitasnya menggunakan qqplot?

Untuk memvisualisasikan QQ Plot kita bisa menggunakan library pingouin. Jangan lupa install dulu librarynya : </br>

```
import pingouin as pg
import pandas as pd
import matplotlib.pyplot as plt
fig, ((qplot_sugars, qplot_sodium), (qplot_fibre, qplot_protein)) = plt.subplots(2, 2, fig)
fig.subplots_adjust(hspace=0.5)
qp_sugars = pg.qqplot(df['sugars'], ax=qplot_sugars, dist='norm')
qp_sodium = pg.qqplot(df['sodium'],ax=qplot_sodium, dist='norm')
qp_fibre = pg.qqplot(df['fibre'], ax=qplot_fibre, dist='norm')
qp_protein = pg.qqplot(df['sugars'], ax=qplot_protein,dist='norm')
```


Q-Q Plot

Untuk mengatasi ketaknormalan data bisa menggunakan transformasi variabel, menggunakan

- log transformation,
- square root transformation,

Q-Q Plot

2

• reciprocal transformation,

Berhenti dan berfikir </br>
Mengapa transformasi data umumnya menggunakan log/square root transformation ?

3. Data Hilang (Missing Value)

Misalkan anda melakukan analisis data terhadap data peminjaman BMN di suatu kantor. Dari daftar peminjaman BMN tersebut anda melihat ada suatu list peminjaman sbb :

No	BMN	Nama Peminjam	Jumlah Dipinjam
1	Mobil Avanza	Budi	4
2	Laptop Dell	Ali	3
3	Proyektor Panasonic	Iqbal	8
4	Laptop Asus	Susi	
5	Mesin Fotokopi Konica	Ani	6
21	Laptop Acer	Rudi	
22	Mesin Fotokopi	Ali	6

No	BMN	Nama Peminjam	Jumlah Dipinjam
23	Proyektor Panasonic	Mina	4
87	Mobil Alphard	Susi	3
88	Laptop Lenovo	Mikail	9
100	Mobil Nissan	Joni	

Dari data di atas terlihat ada peminjaman yang hari peminjamannya tidak tercatat. Anda mencari tahu mengapa data tersebut hilang. Operator BMN mengatakan bahwa memang sekitar 5% pencatatan lupa dicatat jumlah barang yang dipinjam. Anda menanyakan apakah 5% tersebut spesifik pada jenis barang tertentu yang dipinjam atau user tertentu. Petugas mengatakan tidak, itu terjadi merata di seluruh pencatatan.

- **Missing Completely at Random (MCAR)** </br>
 Dengan mengasumsikan pernyataan petugas benar, maka kasus di atas dapat dianggap sebagai MCAR, yakni data yang hilang tidak memiliki relasi dengan variabel yang sedang diobservasi.
- **Missing at Random (MAR)** </br> Data tidak hilang secara acak tetapi bisa diprediksi dari variabel-variabel lain yang sedang diobservasi maka kasus tersebut disebut sebagai MAR. Misalkan, data yang hilang bisa diprediksi dari jenis BMN yang diprediksi atau dari orang yang meminjam.
- **Missing Not At Random (MNAR)** </br>
 Bila memiliki pola yang dapat dijelaskan namun diluar variabel yang diobservasi disebut MNAR. Misalkan, data yang hilang dapat diprediksi dari apakah pada tanggal peminjaman hari cerah atau hujan, tetapi kita tidak mengobservasi hal tersebut.

Lebih jauh tentang ini:

Youtube - Missing Data Analysis, Mplus Short Course

Cara untuk melihat data kosong:

- Menggunakan library missingno (jangan lupa install terlebih dahulu)
- menggunakan df.isnull()

```
In [14]:
        df titanic = pd.read csv('https://raw.githubusercontent.com/audit-ti/pjj-pengolahan-data-g
        df titanic.isnull().sum()
Out[14]: PassengerId 0
        Survived
        Pclass
                       0
                       0
        Name
        Sex
                       0
                    177
        Age
        SibSp
                       0
        Parch
        Ticket
                       0
        Fare
                     687
        Cabin
        Embarked
        dtype: int64
In [15]:
        # visualiasi missing value dengan bantuan library
        import pandas as pd
        import missingno as msno
```

df titanic.head()

msno.matrix(df titanic, figsize=(10, 6))

Out[15]:

3. Penanganan atas Data yang Hilang

Ada banyak cara untuk menangani data yang hilang. Sebelum melakukan penanganan perhatikan baik-baik mengapa data hilang?

- 1. Melakukan penghapusan pada observasi yang datanya hilang
- 2. Melakukan imputasi (Imputation berarti menggunakan variabel-variabel data yang ada untuk memprediksi data yang hilang.)

3.1 Menghapus Observasi yang Datanya Hilang

Ini bisa dilakukan dengan list-wise deletion ataupun pair-wise deletion.

In [16]: # Kondisi sebelum penghapusan
 df_titanic.describe()

Out[16]:		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592 0.836071		14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	0.000000 1.000000		0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

3.1.1 Listwise Deletion

Pada listwise deletion suatu row akan dihapus bila salah satu variabel memiliki nilai yang hilang.

```
In [17]: df_titanic.dropna(subset=['Age'], how='any', inplace=True)
    df_titanic.describe()
```

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	714.000000	714.000000	714.000000	714.000000	714.000000	714.000000	714.000000
mean	448.582633	0.406162	2.236695	29.699118	0.512605	0.431373	34.694514
std	259.119524	0.491460	0.838250	14.526497	0.929783	0.853289	52.918930
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	222.250000	0.000000	1.000000	20.125000	0.000000	0.000000	8.050000
50%	445.000000	0.000000	2.000000	28.000000	0.000000	0.000000	15.741700
75%	677.750000	1.000000	3.000000	38.000000	1.000000	1.000000	33.375000
max	891.000000	1.000000	3.000000	80.000000	5.000000	6.000000	512.329200

3.1.2 Pairwise Deletion

Out[17]:

Parwise Deletion digunakan saat prosedur statistik yang anda butuhkan tidak memperbolehkan adanya nilai yang hilang. Misalkan anda memiliki 6 variabel, VAR1, VAR2, ..., VAR6. Secara MCAR, pada VAR3 dan VAR5 terdapat data yang hilang. Untuk itu, pada prosedur statistik sum untuk variabel 3 dan variabel 5, data yang hilang tidak diikutkan. </br>
This is a problematic way to solve a problem. </br>
Namun, metode ini logis ketika misalkan anda memerlukan regresi yang tidak membutuhkan VAR 3 dan VAR 5.

3.2 Single Imputation

Single imputation merupakan prosedur dimana suatu nilai dari elemen data yang hilang digantikan tanpa mendefinisikan model eksplisit untuk memperkirakan data yang hilang tersebut.

3.2.1 Mean/Median/Mode Imputation

mengganti data yang hilang dengan menggunakan rata-rata dari data variabel (exclude data yang hilang).

```
In [18]:
         # fungsi fillna di pandas dapat digunakan untuk imputasi missing values
         # taruh hasilnya di variable baru untuk mempermudah pengamatan
         df titanic['Age mean uni'] = df titanic.Age.fillna(df titanic.Age.mean())
         df titanic['Age median uni'] = df titanic.Age.fillna(df titanic.Age.median())
         df titanic['Age mode uni'] = df titanic.Age.fillna(df titanic.Age.median())
In [19]:
         # mengetahui mean per kelompok sex, kita menggunakan groupby
         df grouped = df titanic[['Sex', 'Age']].groupby(['Sex']).mean()
         df grouped
         # imputasi untuk male group
         # filter kondisi
         condition = df titanic['Sex'] == 'male'
         # tangkap nilai mean untuk laki2
         mean male = df grouped.loc['male','Age']
         # imputasi
         df titanic.loc[condition, 'Age mean multi'] = df titanic.loc[condition, 'Age'].fillna(mean
```

3.3 Multiple Imputation

Multiple imputation merupakan cara untuk memperkirakan data yang hilang dengan memperhatikan faktor ketidakpastian.

Adanya beberapa metode untuk melakukan multiple imputation antara lain:

- KNN or K-Nearest Neighbor imputation
- Multiple Imputation by Chained Equations (MICE) with random forests

3.3.1 Multivariate Imputation via Chained Equations (MICE)

Misalkan kita memiliki variabel $x_1, x_2, x_3, \dots x_n$. Pada dataset anda, variabel x_2 dan x_3 , dan x_5 mengalami beberapa data yang hilang.

- Pada saat anda ingin memunculkan nilai yang hilang dari x_2 maka variabel yang hilang akan diregres terhadap variabel x_1 , x_3 , x_4-x_5
- Pada saat anda ingin memunculkan nilai yang hilang dari x_3 maka variabel yang hilang akan diregres terhadap variabel x_1 , x_2 , $x_4 x_5$
- dst

Secara default, regresi linear digunakan untuk memprediksi nilai yang hilang bila variabel yang diprediksi adalah variabel kontinu dan regresi logistik bila variabel yang hilang adalah variabel kategorikal.

```
Out[20]:
           var1 var2 var3 var4
          NaN
                 2.0 NaN
                            0
            3.0
                4.0 NaN
                            1
        2 NaN NaN NaN
        3 NaN
                3.0 NaN
            5.0
                7.0 8.0
                           2
            2.0
                5.0 7.0
```

```
In [21]: # calling the MICE class
    mice_imputer = IterativeImputer()

# imputing the missing value with mice imputer
    df = mice_imputer.fit_transform(df)
    df_mice = pd.DataFrame(df, columns=['var1', 'var2', 'var3', 'var4'])
    df_mice
```

	var1	var2	var3	var4
0	1.739135	2.000000	7.906731	0.0
1	3.000000	4.000000	7.919353	1.0
2	2.304308	4.235237	7.441668	5.0
3	1.608699	3.000000	7.481066	4.0
4	5.000000	7.000000	8.000000	2.0
5	2.000000	5.000000	7.000000	9.0

Referensi Lain:

Out[21]:

- https://campus.datacamp.com/courses/dealing-with-missing-data-in-python/advanced-imputationtechniques?ex=1
- https://towardsdatascience.com/handling-missing-data-like-a-pro-part-3-model-based-multipleimputation-methods-bdfe85f93087

4. Penanganan Outlier

Ada tiga metode dasar untuk menangani data pencilan :

- 1. Menghapus Pencilan
- 2. Mengganti Nilai Pencilan
- 3. Mengestimasi Nilai Pencilan

Untuk 1 dan 3 bisa dilakukan dengan metode penanganan yang sama dengan penanganan data yang hilang. Untuk metode ke-2 ada beberapa cara yang dapat dilakukan, salah satunya adalah Winsorization.

4.1 Winsorization

merupakan salah satu metode transformasi statistik dengan membatasi nilai-nilai ekstrim data. Disebut Winsorization karena metode ini ditemukan oleh biostatistisi Charles P. Winsor (1895–1951). Strategi umum dari Winsorization adalah dengan menspesifikasi persentil data. Winsorization 90% berarti

- mengganti semua data di bawah 5% persentil menjadi 5%
- mengganti semua data di atas 95% persentil menjadi 95%

```
In [22]:
         # Misalkan kita memiliki list data :
         dataA=[3, 14, 16, 16, 17, 29, 34, 36, 39, 47, 59, 64, 65, 66, 68, 79, 91, 98]
         import numpy as np
         q05=np.quantile(dataA, .05)
         q95=np.quantile(dataA, .95)
         print(q05)
         print (q95)
```

12.350000000000001 92.0499999999998

Maka:

- semua data di bawah 12 akan diganti dengan 12
- semua data di atas 92 akan diganti dengan 92

4.2 Estimasi/Penggantian Outlier Multivariate

Deteksi outlier bedasarkan pengamatan terhadap lebih dari 1 features biasa dikenal dengan multivariate outlier detections.

- k-nearest neighbours
- DBSCAN (Density-Based Spatial Clustering of Applications with Noise-DBSCAN)
- isolation forests

5. Transformasi Variabel

5.1 Encoding

Encoding merupakan metode untuk mengubah data kategorikal ke dalam format bilangan bulat. Ada beberapa macam encoding, antara lain label encoding, binary encoding, hash encoding, target encoding, dll. Untuk melakukan encoding kita bisa menggunakan:

- library LabelEncoder.
- dictionary {}.
- df.Series.map().
- dst.

5.1.1 Label Encoding

Digunakan untuk mengubah sekumpulan label ke dalam format integer sehingga bisa dilakukan komputasi.

```
import pandas as pd

city_name = ['Jakarta', 'Bandung', 'Surabaya', 'Jakarta', 'Bandung', 'Surabaya', 'Pontiana'
df = pd.DataFrame(city_name, columns=['Kota'])
df
```

```
Out[23]: Kota

O Jakarta

Bandung
```

- **2** Surabaya
- 3 Jakarta
- **4** Bandung
- **5** Surabaya
- 6 Pontianak
- **7** Medan
- 8 Makassar
- 9 Jayapura

```
In [24]:  # Import label encoder
from sklearn import preprocessing
```

```
# label_encoder object knows how to understand word labels.
label_encoder = preprocessing.LabelEncoder()

# Encode labels in column 'species'.
df['Kota'] = label_encoder.fit_transform(df['Kota'])
df
```

```
Out[24]: Kota

0 1

1 0

2 6

3 1

4 0

5 6

6 5

7 4

8 3

9 2
```

5.2.2 One Hot Encoding

- Pada one hot encoding, kita mengkonversi satu feature menjadi beberapa fitur yang nilainya 0 atau 1.
- Salah satu penggunaaan hot encoding adalah pada saat menggunakan regresi dengan variabel dummy.

```
import pandas as pd

nama_pegawai = ['Ninuk', 'Marwoto', 'Saefudin', 'Hanafi', 'Sawiyah', 'Cecek', 'Lintang']
kota_asal = ['Jakarta', 'Bandung', 'Surabaya', 'Jakarta', 'Medan', 'Makassar', 'Medan']
df = pd.DataFrame(list(zip(nama_pegawai, kota_asal)), columns=['nama_pegawai', 'kota_asal']
df
```

```
Out[25]:
              nama_pegawai kota_asal
           0
                       Ninuk
                                Jakarta
           1
                    Marwoto
                              Bandung
                    Saefudin
                              Surabaya
                      Hanafi
                                Jakarta
                     Sawiyah
                                Medan
                      Cecek Makassar
                     Lintang
                                Medan
```

```
In [26]:
    df_ohe = pd.get_dummies(df['kota_asal'])
    df_ohe
# Join the encoded df
    df_ohe2 = df.join(df_ohe)
    df_ohe2
```

```
Out[26]:
                                        Bandung
                                                 Jakarta
              nama_pegawai kota_asal
                                                           Makassar
                                                                     Medan Surabaya
           0
                                                                   0
                                                                           0
                                                                                      0
                       Ninuk
                                Jakarta
           1
                                               1
                                                        0
                                                                   0
                                                                           0
                                                                                      0
                    Marwoto
                              Bandung
           2
                                               0
                                                        0
                                                                   0
                                                                           0
                    Saefudin
                              Surabaya
                                                                                      1
           3
                      Hanafi
                                Jakarta
                                               0
                                                        1
                                                                   0
                                                                           0
                                                                                      0
                                               0
                                                        0
                                                                   0
                                                                                      0
           4
                     Sawiyah
                                Medan
                                                                           1
           5
                                               0
                                                        0
                                                                   1
                                                                           0
                                                                                      n
                      Cecek
                              Makassar
                                                        0
                                                                   0
                                                                                      0
           6
                                Medan
                     Lintang
In [27]:
            from sklearn.preprocessing import OneHotEncoder
            y = OneHotEncoder(sparse=False)
            y = y.fit transform(df[['kota asal']])
            df y = pd.DataFrame(y)
            df y
Out[27]:
                        2
                             3
                                  4
               0
                    1
              0.0
                       0.0
                           0.0
                                0.0
                  1.0
              1.0
                  0.0
                       0.0
                           0.0
                                0.0
              0.0
                  0.0
                       0.0
                           0.0
                                1.0
              0.0
                       0.0
                           0.0
                                0.0
                  1.0
              0.0
                  0.0
                       0.0
                           1.0
                                0.0
                       1.0
                           0.0
                                0.0
              0.0
                  0.0
              0.0
                  0.0 0.0 1.0 0.0
```

5.2. Binning

Metode transformasi variabel lainnya adalah binning yakni mengkonversi data numeris menjadi kategoris, dengan menggunakan range.

5.2.1 Menggunakan qcut

The pandas documentation describes qcut as a "Quantile-based discretization function." This basically means that qcut tries to divide up the underlying data into equal sized bins. The function defines the bins using percentiles based on the distribution of the data, not the actual numeric edges of the bins. qcut() Selain fungsi cut(), ada juga fungsi qcut() yang dapat digunakan untuk melakukan binning data. Menurut dokumentasi pandas, qcut digambarkan sebagai Quantile-based discretization function. Singkatnya fungsi qcut() ini akan membagi data ke dalam jumlah yang sama. Karena itu, jarak untuk masing-masing bin boleh jadi berbeda satu sama lain.

Di Python, jika kita akan melakukan binning data menjadi 3 bin menggunakan qcut() dapat ditulis sebagai berikut.

data['Harga_binned'] = pd.qcut(data['Harga'], 3)

```
df=pd.read csv('UScereal.csv')
            df.head(4)
Out[28]:
              Unnamed:
                         mfr
                                 calories
                                                          fat
                                                                sodium
                                                                              fibre
                                                                                       carbo
                                                                                                 sugars shelf potassium
                                            protein
              100% Bran
                              212.12121
                                          12.121212 3.030303
                                                              393.93939
                                                                         30.303030
                                                                                    15.15152
                                                                                              18.181818
                                                                                                                848.48485
                                                                                                            3
                                                                                                                           en
                All-Bran
                              212.12121
                                          12.121212 3.030303
                                                                         27.272727
                                                                                    21.21212
                                                              787.87879
                                                                                              15.151515
                                                                                                                969.69697
                                                                                                                           en
```

280.00000

28.000000

16.00000

2.000000 14.00000 13.333333

0.000000

660.00000

93.33333

6. Menciptakan Feature dari Data Waktu

2.666667 2.666667 240.00000

8.000000 0.000000

In [28]:

import pandas as pd

All-Bran with Extra

Fiber

Apple Cinnamon

Cheerios

K 100.00000

G 146.66667

- Terdapat masa dimana pada suatu masalah prediktif, variabel waktu memiliki kontribusi tertentu.
- Misalkan, pada data time series kita menemukan adanya siklus pada hari/bulan/jam tertentu. Untuk itu, kita perlu memunculkan potongan informasi waktu tersebut.

6.1 Mengekstrak Potongan Tanggal atau Waktu dari Timestamp

```
In [29]:
           import pandas as pd
          data waktu=pd.read csv('TPIA.csv')
          data wkt=data waktu[['date', 'previous', 'open price', 'close']].copy()
          data wkt['date'] = pd.to datetime(data wkt['date'])
           data wkt.head()
Out[29]:
                         date
                             previous open_price
                                                   close
            2019-07-29 09:00:28
                                6100.0
                                                  6075.0
                                           6025.0
            2019-08-19 10:00:00
                                7750.0
                                           7750.0 7925.0
            2019-09-19 11:01:00
                                8475.0
                                           8500.0 8425.0
            2019-09-20 10:44:00
                                8425.0
                                           8375.0 8350.0
            2019-10-21 11:00:00
                                9450.0
                                           9450.0 9450.0
In [30]:
           # Mengekstrak tanggal saja
          data wkt['tanggal'] = data wkt['date'].dt.date
          data wkt.head()
```

Out[30]:		date	previous	open_price	close	tanggal
	0	2019-07-29 09:00:28	6100.0	6025.0	6075.0	2019-07-29
	1	2019-08-19 10:00:00	7750.0	7750.0	7925.0	2019-08-19
	2	2019-09-19 11:01:00	8475.0	8500.0	8425.0	2019-09-19
	3	2019-09-20 10:44:00	8425.0	8375.0	8350.0	2019-09-20

```
4 2019-10-21 11:00:00
                                   9450.0
                                               9450.0 9450.0 2019-10-21
In [31]:
            # Mengekstrak jam saja
           data wkt['jam'] = data wkt['date'].dt.time
           data wkt.head()
Out[31]:
                           date previous open_price
                                                       close
                                                                 tanggal
                                                                             jam
          0 2019-07-29 09:00:28
                                   6100.0
                                               6025.0 6075.0 2019-07-29
                                                                         09:00:28
             2019-08-19 10:00:00
                                   7750.0
                                               7750.0 7925.0 2019-08-19
                                                                         10:00:00
            2019-09-19 11:01:00
                                   8475.0
                                               8500.0 8425.0 2019-09-19
                                                                        11:01:00
             2019-09-20 10:44:00
                                                                         10:44:00
                                   8425.0
                                               8375.0 8350.0 2019-09-20
             2019-10-21 11:00:00
                                   9450.0
                                               9450.0 9450.0 2019-10-21 11:00:00
In [32]:
            # Mengekstrak tahun
           data wkt['tahun'] = data wkt['date'].dt.year
           data wkt.head()
Out[32]:
                           date previous open_price
                                                       close
                                                                 tanggal
                                                                             jam tahun
            2019-07-29 09:00:28
                                   6100.0
                                               6025.0
                                                      6075.0
                                                             2019-07-29
                                                                         09:00:28
                                                                                    2019
             2019-08-19 10:00:00
                                   7750.0
                                               7750.0
                                                     7925.0
                                                             2019-08-19
                                                                         10:00:00
                                                                                    2019
             2019-09-19 11:01:00
                                               8500.0 8425.0
                                   8475.0
                                                             2019-09-19
                                                                         11:01:00
                                                                                    2019
             2019-09-20 10:44:00
                                   8425.0
                                               8375.0 8350.0
                                                             2019-09-20
                                                                         10:44:00
                                                                                    2019
                                               9450.0 9450.0 2019-10-21
             2019-10-21 11:00:00
                                   9450.0
                                                                        11:00:00
                                                                                    2019
In [33]:
            # Mengekstrak kuartal
           data wkt['kuartal'] = data wkt['date'].dt.quarter
           data wkt.head()
Out[33]:
                           date
                                 previous open_price
                                                       close
                                                                             jam tahun kuartal
                                                                 tanggal
             2019-07-29 09:00:28
                                   6100.0
                                                      6075.0 2019-07-29
                                                                         09:00:28
                                                                                    2019
                                               6025.0
                                                                                               3
             2019-08-19 10:00:00
                                   7750.0
                                               7750.0 7925.0 2019-08-19
                                                                         10:00:00
                                                                                    2019
                                                                                               3
             2019-09-19 11:01:00
                                   8475.0
                                               8500.0 8425.0 2019-09-19
                                                                         11:01:00
                                                                                    2019
                                                                                               3
             2019-09-20 10:44:00
                                   8425.0
                                               8375.0 8350.0 2019-09-20
                                                                         10:44:00
                                                                                    2019
                                                                                               3
             2019-10-21 11:00:00
                                   9450.0
                                               9450.0 9450.0 2019-10-21 11:00:00
                                                                                    2019
                                                                                               4
In [34]:
            # Mengekstrak tahun
           data wkt['bulan'] = data wkt['date'].dt.month
           data wkt.head()
Out[34]:
                                                                             jam tahun kuartal bulan
                           date previous open_price
                                                       close
                                                                 tanggal
          0 2019-07-29 09:00:28
                                               6025.0 6075.0 2019-07-29 09:00:28
                                                                                   2019
                                                                                               3
                                                                                                      7
                                   6100.0
```

tanggal

close

date previous open_price

```
date previous open_price
                                              close
                                                        tanggal
                                                                          tahun kuartal bulan
                                                                     jam
   2019-08-19 10:00:00
                         7750.0
                                     7750.0 7925.0 2019-08-19
                                                                 10:00:00
                                                                            2019
                                                                                        3
                                                                                               8
2 2019-09-19 11:01:00
                         8475.0
                                     8500.0 8425.0
                                                    2019-09-19
                                                                11:01:00
                                                                            2019
                                                                                        3
                                                                                               9
3 2019-09-20 10:44:00
                         8425.0
                                     8375.0 8350.0 2019-09-20
                                                                 10:44:00
                                                                            2019
                                                                                        3
                                                                                               9
4 2019-10-21 11:00:00
                                     9450.0 9450.0 2019-10-21 11:00:00
                         9450.0
                                                                            2019
                                                                                        4
                                                                                              10
```

In [35]: #Mengekstrak Hari (Langsung di enkoding)
 data_wkt['hari'] = data_wkt['date'].dt.dayofweek
 data_wkt.head()

Out[35]:		date	previous	open_price	close	tanggal	jam	tahun	kuartal	bulan	hari
	0	2019-07-29 09:00:28	6100.0	6025.0	6075.0	2019-07-29	09:00:28	2019	3	7	0
	1	2019-08-19 10:00:00	7750.0	7750.0	7925.0	2019-08-19	10:00:00	2019	3	8	0
	2	2019-09-19 11:01:00	8475.0	8500.0	8425.0	2019-09-19	11:01:00	2019	3	9	3
	3	2019-09-20 10:44:00	8425.0	8375.0	8350.0	2019-09-20	10:44:00	2019	3	9	4
	4	2019-10-21 11:00:00	9450.0	9450.0	9450.0	2019-10-21	11:00:00	2019	4	10	0

In [36]: # Mengoperasikan tanggal
 from datetime import timedelta
 data_wkt['tgl_migdep'] = data_wkt['date'] + timedelta(days=7)
 data_wkt.head()

Out[36]: date previous open_price tanggal jam tahun kuartal bulan hari tgl_migdep close 2019-08-05 2019-07-29 2019-07-0 6100.0 6025.0 6075.0 09:00:28 2019 7 0 3 09:00:28 29 09:00:28 2019-08-19 2019-08-2019-08-26 7750.0 7750.0 7925.0 2019 1 10:00:00 8 10:00:00 19 10:00:00 2019-09-19 2019-09-26 2019-09-8475.0 8500.0 8425.0 11:01:00 2019 9 3 2 3 11:01:00 19 11:01:00 2019-09-20 2019-09-2019-09-27 8375.0 8350.0 3 8425.0 10:44:00 2019 9 10:44:00 20 10:44:00 2019-10-21 2019-10-28 2019-10-9450.0 9450.0 9450.0 11:00:00 2019 10 0 4 4 21 11:00:00 11:00:00

In [37]: # Menghitung jarak
 data_wkt['delta_hari'] = (data_wkt['tgl_migdep'] - data_wkt['date']).dt.days
 data_wkt.head()

Out[37]:		date	previous	open_price	close	tanggal	jam	tahun	kuartal	bulan	hari	tgl_migdep	delta_hari
	0	2019- 07-29 09:00:28	6100.0	6025.0	6075.0	2019- 07-29	09:00:28	2019	3	7	0	2019-08-05 09:00:28	7
	1	2019- 08-19 10:00:00	7750.0	7750.0	7925.0	2019- 08-19	10:00:00	2019	3	8	0	2019-08-26 10:00:00	7

	date	previous	open_price	close	tanggal	jam	tahun	kuartal	bulan	hari	tgl_migdep	delta_hari
2	2019- 09-19 11:01:00	8475.0	8500.0	8425.0	2019- 09-19	11:01:00	2019	3	9	3	2019-09-26 11:01:00	7
3	2019- 09-20 10:44:00	8425.0	8375.0	8350.0	2019- 09-20	10:44:00	2019	3	9	4	2019-09-27 10:44:00	7
4	2019- 10-21 11:00:00	9450.0	9450.0	9450.0	2019- 10-21	11:00:00	2019	4	10	0	2019-10-28 11:00:00	7

7. Menciptakan Feature dari Komputasi Matematis

```
In [38]: data_cmp=data_waktu[['date', 'previous', 'open_price', 'close']].copy()
    data_cmp.head()
```

Out[38]:		date	previous	open_price	close
	0	2019-07-29 09:00:28	6100.0	6025.0	6075.0
	1	2019-08-19 10:00:00	7750.0	7750.0	7925.0
	2	2019-09-19 11:01:00	8475.0	8500.0	8425.0
	3	2019-09-20 10:44:00	8425.0	8375.0	8350.0
	4	2019-10-21 11:00:00	9450.0	9450.0	9450.0

7.1 Operasi antar kolom

```
In [39]: data_cmp['Selisih']=data_cmp['close']-data_cmp['open_price']
    data_cmp.head()
```

Out[39]:		date	previous	open_price	close	Selisih
	0	2019-07-29 09:00:28	6100.0	6025.0	6075.0	50.0
	1	2019-08-19 10:00:00	7750.0	7750.0	7925.0	175.0
	2	2019-09-19 11:01:00	8475.0	8500.0	8425.0	-75.0
	3	2019-09-20 10:44:00	8425.0	8375.0	8350.0	-25.0
	4	2019-10-21 11:00:00	9450.0	9450.0	9450.0	0.0

7.2 Operasi dengan skalar

```
In [40]: data_cmp['add_close']=data_cmp['close']+20000
    data_cmp.head()
```

Out[40]:	date		previous	open_price	close Selisih		add_close
	0	2019-07-29 09:00:28	6100.0	6025.0	6075.0	50.0	26075.0
	1	2019-08-19 10:00:00	7750.0	7750.0	7925.0	175.0	27925.0

	date	previous	open_price	close	Selisih	add_close
2	2019-09-19 11:01:00	8475.0	8500.0	8425.0	-75.0	28425.0
3	2019-09-20 10:44:00	8425.0	8375.0	8350.0	-25.0	28350.0
4	2019-10-21 11:00:00	9450.0	9450.0	9450.0	0.0	29450.0

7.3 Memberikan kategori

```
In [41]:

def ur (selisih):
    if selisih>0:
        return 'Untung'
    elif selisih==0:
        return 'Sama'
    else:
        return 'Rugi'
    data_cmp['kategori']=data_cmp['Selisih'].apply(ur)
    data_cmp.head()
```

Out[41]:	date		previous	open_price	close	Selisih	add_close	kategori
	0	2019-07-29 09:00:28	6100.0	6025.0	6075.0	50.0	26075.0	Untung
	1	2019-08-19 10:00:00	7750.0	7750.0	7925.0	175.0	27925.0	Untung
	2	2019-09-19 11:01:00	8475.0	8500.0	8425.0	-75.0	28425.0	Rugi
	3	2019-09-20 10:44:00	8425.0	8375.0	8350.0	-25.0	28350.0	Rugi
	4	2019-10-21 11:00:00	9450.0	9450.0	9450.0	0.0	29450.0	Sama