

TSV991, TSV992, TSV994 TSV991A, TSV992A, TSV994A

Rail-to-rail input/output 20 MHz GBP operational amplifiers

Features

- Low input offset voltage: 1.5 mV max (A grade)
- Rail-to-rail input and output
- Wide bandwidth 20 MHz, stable for gain ≥ 3
- Low power consumption: 820 µA typ
- High output current: 35 mA
- Operating from 2.5 V to 5.5 V
- Low input bias current, 1 pA typ
- ESD internal protection ≥ 5 kV
- Latch-up immunity

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation
- Automotive applications

Description

The TSV991/2/4 family of single, dual and quad operational amplifiers offers low voltage operation and rail-to-rail input and output.

These devices feature an excellent speed/power consumption ratio, offering a 20 MHz gain-bandwidth, stable for gains above 3 (100 pF capacitive load), while consuming only 1.1 mA maximum at 5 V. They also feature an ultra-low input bias current.

These characteristics make the TSV991/2/4 family ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
V _{id}	Differential input voltage (2)	±V _{CC}	V
V _{in}	Input voltage (3)	V _{CC-} -0.2 to V _{CC+} +0.2	V
I _{in}	Input current ⁽⁴⁾	10	mA
T _{stg}	Storage temperature	-65 to +150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁵⁾ (6) SOT23-5 SO-8 MiniSO-8 SO-14 TSSOP14	250 125 190 103 100	°C/W
R_{thjc}	Thermal resistance junction to case SOT23-5 SO-8 MiniSO-8 SO-14 TSSOP14	81 40 39 31 32	°C/W
Tj	Maximum junction temperature	150	°C
<u> </u>	HBM: human body model ⁽⁷⁾	5	kV
	MM: machine model ⁽⁸⁾	400	V
ESD	CDM: charged device model ⁽⁹⁾ SOT23-5, SO-8, MiniSO-8 TSSOP14 SO-14	1500 750 500	V
	Latch-up immunity	200	mA

- Value with respect to V_{DD} pin.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. V_{CC} - V_{in} must not exceed 6 V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. R_{th} are typical values
- 7. Human body model: 100 pF discharged through a 1.5 $k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- 8. Machine model: 200 pF charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor $< 5 \Omega$), done for all couples of pin combinations with other pins floating.
- Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

2/20 Doc ID 12833 Rev 8

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.5 to 5.5	V
V _{icm}	Common mode input voltage range	V _{CC-} -0.1 to V _{CC+} +0.1	V
T _{op}	Operating free air temperature range	-40 to +125	°C

Electrical characteristics TSV99x-TSV99xA

2 Electrical characteristics

Table 3. Electrical characteristics at V_{CC+} = +2.5 V, V_{CC-} = 0 V, V_{icm} = V_{CC} /2, with R_L connected to V_{CC} /2, full temperature range (unless otherwise specified)⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	ormance				ı	
V	Offset voltage TSV99x	$T_{op} = 25^{\circ} C$ $T_{min} < T_{op} < T_{max}$	-	0.1	4.5 7.5	
V _{io}	TSV99xA	$T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$		-	1.5 3	mV
DV _{io}	Input offset voltage drift		-	2	-	μV/°C
I _{io}	Input offset current ⁽²⁾ (V _{out} = V _{CC} /2)	$T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$	-	1 -	10 100	pA
I _{ib}	Input bias current ⁽²⁾ (V _{out} = V _{CC} /2)	$T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$		1 -	10 100	pA
CMR	Common mode rejection ratio 20 log (ΔV _{ic} /ΔV _{io})	0 V to 2.5 V, $V_{out} = 1.25 \text{ V}$, $T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$	58 53	75	-	dB
A _{vd}	Large signal voltage gain	R_L = 10 k Ω V _{out} = 0.5 V to 2 V, T_{op} = 25° C T_{min} < T_{op} < T_{max}	80 75	89 -	-	dB
V _{CC} - V _{OH}	High level output voltage	$\begin{aligned} R_L &= 10 \text{ k}\Omega, T_{min} < T_{op} < T_{max} \\ R_L &= 600 \ \Omega, T_{min} < T_{op} < T_{max} \end{aligned}$		15 45	40 150	mV
V _{OL}	Low level output voltage	$\begin{aligned} R_L &= 10 \text{ k}\Omega, \ T_{min} < T_{op} < T_{max} \\ R_L &= 600 \ \Omega, \ T_{min} < T_{op} < T_{max} \end{aligned}$	-	15 45	40 150	mV
	I _{sink}	$V_o = 2.5 \text{ V}, T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$	18 16	32 -	-	A
l _{out}	I _{source}	$V_0 = 0 \text{ V}, T = 25^{\circ} \text{ C}$ $T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$	18 16	35 -	-	mA
I _{CC}	Supply current (per operator)	No load, $V_{out} = V_{CC}/2$, $T_{min} < T_{op} < T_{max}$	-	0.78	1.1	mA
AC perfo	ormance			•	•	
GBP	Gain bandwidth product	$\begin{aligned} R_L &= 2 \text{ k}\Omega C_L = 100 \text{ pF, f} = 100 \text{ kHz,} \\ T_{op} &= 25^{\circ} \text{ C} \end{aligned}$	-	20	-	MHz
Gain	Minimum gain for stability	Phase margin = 60° , $R_f = 10k\Omega$, $R_L = 2 k\Omega$ $C_L = 100 \ pF$, $T_{op} = 25^{\circ} \ C$		5		V/V
SR	Slew rate	$R_L = 2k\Omega$, $C_L = 100 \text{ pF}$, $T_{op} = 25^{\circ} \text{ C}$	-	10	-	V/µs
e _n	Equivalent input noise voltage	f = 10 kHz, T _{op} = 25° C	-	21	-	<u>nV</u> √Hz
THD+N	Total harmonic distortion	$\begin{aligned} G &= 1, f = 1 \text{kHz}, R_L = 2 \text{k}\Omega, \text{Bw} = 22 \text{kHz}, \\ V_{icm} &= (V_{CC} + 1)/2, V_{out} = 1.1 V_{pp}, \\ T_{op} &= 25^{\circ} \text{C} \end{aligned}$	-	0.0017	-	%

^{1.} All parameter limits at temperatures other than 25° C are guaranteed by correlation.

^{2.} Guaranteed by design.

Table 4. Electrical characteristics at $V_{CC+} = +3.3 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $V_{icm} = V_{CC}/2$, with R_L connected to $V_{CC}/2$, full temperature range (unless otherwise specified)⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfe	ormance					
V	Offset voltage TSV99x	$T_{op} = 25^{\circ} C$ $T_{min} < T_{op} < T_{max}$	-	0.1	4.5 7.5	mV
V _{io}	TSV99xA	$T_{op} = 25^{\circ} C$ $T_{min} < T_{op} < T_{max}$		-	1.5 3	IIIV
DV_io	Input offset voltage drift		-	2	-	μV/°C
I _{io}	Input offset current ⁽²⁾ (V _{out} = V _{CC} /2)	$T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$	-	1 -	10 100	pA
l _{ib}	Input bias current ⁽²⁾ (V _{out} = V _{CC} /2)	$T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$	-	1 -	10 100	pA
CMR	Common mode rejection ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	0 V to 3.3 V, $V_{out} = 1.65 \text{ V}$, $T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$	60 55	78	-	dB
A _{vd}	Large signal voltage gain	$R_L = 10 \text{ k}\Omega$, $V_{out} = 0.5 \text{ V}$ to 2.8 V, $T=25^{\circ}$ C $T_{min} < T_{op} < T_{max}$	80 75	90 -	-	dB
V _{CC} - V _{OH}	High level output voltage	$\begin{aligned} R_L &= 10 \text{ k}\Omega, \ T_{min} < T_{op} < T_{max} \\ R_L &= 600 \ \Omega, \ T_{min} < T_{op} < T_{max} \end{aligned}$		15 45	40 150	mV
V _{OL}	Low level output voltage	$\begin{aligned} R_L &= 10 \text{ k}\Omega, \ T_{min} < T_{op} < T_{max} \\ R_L &= 600 \ \Omega, \ T_{min} < T_{op} < T_{max} \end{aligned}$	ı	15 45	40 150	mV
ı	I _{sink}	$V_o = 3.3 \text{ V}, T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$	18 16	32 -	-	mA
I _{out}	I _{source}	$V_0 = 0 \text{ V}, T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$	18 16	35 -	-	IIIA
I _{CC}	Supply current (per operator)	No load, $V_{out} = V_{CC}/2$, $T_{min} < T_{op} < T_{max}$	-	0.8	1.1	mA
AC perfo	ormance					
GBP	Gain bandwidth product	R_L = 2 k Ω , C_L = 100 pF, f = 100 kHz, T_{op} = 25° C	-	20	-	MHz
Gain	Minimum gain for stability	Phase margin = 60° , $R_f = 10k\Omega$, $R_L = 2 k\Omega$ $C_L = 100 pF$, $T_{op} = 25^{\circ} C$		5		V/V
SR	Slew rate	$R_L = 2 \text{ k}\Omega$ $C_L = 100 \text{ pF, f} = 100 \text{ kHz,}$ $T_{op} = 25^{\circ} \text{ C}$	-	10	-	V/µs
e _n	Equivalent input noise voltage	f = 10 kHz, T _{op} = 25° C	-	21	-	$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
THD+N	Total harmonic distortion	$\begin{aligned} G &= 1, f = 1 \text{kHz}, R_L = 2 \text{k}\Omega, \text{Bw} = 22 \text{kHz}, \\ V_{icm} &= (V_{CC} + 1)/2, V_{out} = 1.9 V_{pp}, \\ T_{op} &= 25^{\circ} C \end{aligned}$	-	0.001	-	%

^{1.} All parameter limits at temperatures other than 25°C are guaranteed by correlation.

^{2.} Guaranteed by design.

Electrical characteristics TSV99x-TSV99xA

Table 5. Electrical characteristics at $V_{CC+} = +5 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $V_{icm} = V_{CC}/2$, R_L connected to $V_{CC}/2$, full temperature range (unless otherwise specified)⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	ormance			I		
V _{io}	Offset voltage TSV99x	$T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$	-	0.1	4.5 7.5	mV
- 10	TSV99xA	$T_{op} = 25^{\circ} C$ $T_{min} < T_{op} < T_{max}$	-	- -	1.5 3	
DV _{io}	Input offset voltage drift		-	2	-	μV/°C
l _{io}	Input offset current ⁽²⁾ (V _{out} = V _{CC} /2)	$T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$		1 -	10 100	pA
I _{ib}	Input bias current ⁽²⁾ (V _{out} = V _{CC} /2)	$T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$		1 -	10 100	pA
CMR	Common mode rejection ratio 20 log $(\Delta V_{ic}/\Delta V_{io})$	0 V to 5 V, $V_{out} = 2.5 \text{ V}$, $T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{op} < T_{max}$	62 57	82	-	dB
SVR	Supply voltage rejection ratio 20 log ($\Delta V_{cc}/\Delta V_{io}$)	V _{CC} = 2.5 to 5 V	70	86	-	dB
A _{vd}	Large signal voltage gain	$\begin{aligned} R_L &= 10 \text{ k}\Omega \text{ V}_{out} = 0.5 \text{ V to } 4.5 \text{ V, T} = 25^{\circ} \text{ C} \\ T_{min} &< T_{op} < T_{max} \end{aligned}$	80 75	91 -		dB dB
V _{CC} - V _{OH}	High level output voltage	$\begin{aligned} R_L &= 10 \text{ k}\Omega, T_{min} < T_{op} < T_{max} \\ R_L &= 600 \ \Omega, T_{min} < T_{op} < T_{max} \end{aligned}$		15 45	40 150	mV
V _{OL}	Low level output voltage	$\begin{aligned} R_L &= 10 \text{ k}\Omega, T_{min} < T_{op} < T_{max} \\ R_L &= 600 \ \Omega, T_{min} < T_{op} < T_{max} \end{aligned}$	-	15 45	40 150	mV
I _{out}	I _{sink}	$V_o = 5 \text{ V}, T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{amb} < T_{max}$	18 16	32 -	1 1	mA
out	I _{source}	$V_o = 0 \text{ V}, T_{op} = 25^{\circ} \text{ C}$ $T_{min} < T_{amb} < T_{max}$	18 16	35 -		1117
I _{CC}	Supply current (per operator)	No load, $V_{out} = 2.5 \text{ V}$, $T_{min} < T_{op} < T_{max}$	ı	0.82	1.1	mA
AC perfo	ormance					
GBP	Gain bandwidth product	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$, $T_{op} = 25^{\circ} \text{ C}$	1	20	ı	MHz
Gain	Minimum gain for stability	Phase margin = 60°, R_f = 10k Ω , R_L = 2 k Ω , C_L = 100 pF, T_{op} = 25° C		5		V/V
SR	Slew rate	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $T_{op} = 25^{\circ} \text{ C}$	-	10	-	V/µs
e _n	Equivalent input noise voltage	f = 10 kHz, T _{op} = 25° C	-	21	-	$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
THD+N	Total harmonic distortion	$\begin{aligned} G &= 1, f = 1 \text{ kHz}, \ R_L = 2 \text{ k}\Omega, \ Bw = 22 \text{ kHz}, \\ V_{icm} &= (V_{CC} + 1)/2, \ V_{out} = 3.6 \ V_{pp}, \\ T_{op} &= 25^{\circ} \ C \end{aligned}$	-	0.000 7	-	%

^{1.} All parameter limits at temperatures other than 25°C are guaranteed by correlation.

^{2.} Guaranteed by design.

Figure 1. Input offset voltage distribution at $T = 25^{\circ} C$ Input offset voltage distribution at $T = 125^{\circ} C$

40 Vcc=5V Vicm=2.5V Tamb=125°C 30 Quantity of parts 20 10 0 L -5 -4 0 2 3 4 -3 -2 -1 Input offset Voltage (mV)

Figure 3. Supply current vs. input common mode voltage at $V_{CC} = 2.5 \text{ V}$

Figure 4. Supply current vs. input common mode voltage at $V_{CC} = 5 \text{ V}$

Figure 5. Output current vs. output voltage at Figure 6. $V_{CC} = 2.5 \text{ V}$

Output current vs. output voltage at V_{CC} = 5 V

Electrical characteristics TSV99x-TSV99xA

Figure 7. Voltage gain and phase vs frequency at $V_{CC} = 5 \text{ V}$ and $V_{icm} = 0.5 \text{ V}$

Figure 8. Voltage gain and phase vs frequency at $V_{CC} = 5 \text{ V}$ and $V_{icm} = 2.5 \text{ V}$

Figure 9. Positive slew rate

Figure 10. Negative slew rate

Figure 11. Distortion + noise vs. frequency

Figure 12. Distortion + noise vs. output voltage

Figure 13. Noise vs. frequency

Thomas denivation in the property of the prope

Figure 14. Supply current vs. supply voltage

3 Application information

3.1 Driving resistive and capacitive loads

These products are low-voltage, low-power operational amplifiers optimized to drive rather large resistive loads above 2 $k\Omega$

The TSV99x are not unity gain stable. To ensure proper stability they must be used in a gain configuration, with a minimum gain of -3 or +4.

However, they can be used in a *follower* configuration by adding a small in-series resistor at the output, which drastically improves the stability of the device (*Figure 15* shows the recommended in-series resistor values). Once the in-series resistor value has been selected, the stability of the circuit should be tested on bench and simulated with the simulation model.

Figure 15. In-series resistor vs. capacitive load when TSV99x used in follower configuration

Figure 16. Peaking versus capacitive load, with or without feedback capacitor in inverting gain configuration

Another way to improve stability and reduce peaking is to add a capacitor in parallel with the feedback resistor. As shown in *Figure 16*, the feedback capacitor drastically reduces the peaking versus capacitive load (inverting gain configuration, gain = -2).

3.2 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

3.3 Macromodel

An accurate macromodel of the TSV99x is available on STMicroelectronics' web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV99x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, *but it does not replace on-board measurements*.

Package information TSV99x-TSV99xA

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

4.1 SOT23-5 package information

Figure 17. SOT23-5 package mechanical drawing

Table 6. SOT23-5 package mechanical data

	Dimensions								
Ref.		Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α	0.90	1.20	1.45	0.035	0.047	0.057			
A1			0.15			0.006			
A2	0.90	1.05	1.30	0.035	0.041	0.051			
В	0.35	0.40	0.50	0.013	0.015	0.019			
С	0.09	0.15	0.20	0.003	0.006	0.008			
D	2.80	2.90	3.00	0.110	0.114	0.118			
D1		1.90			0.075				
е		0.95			0.037				
Е	2.60	2.80	3.00	0.102	0.110	0.118			
F	1.50	1.60	1.75	0.059	0.063	0.069			
L	0.10	0.35	0.60	0.004	0.013	0.023			
K	0 degrees		10 degrees						

4.2 MiniSO-8 package information

Figure 18. MiniSO-8 package mechanical drawing

Table 7. MiniSO-8 package mechanical data

	Dimensions								
Ref.		Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α			1.1			0.043			
A1	0		0.15	0		0.006			
A2	0.75	0.85	0.95	0.030	0.033	0.037			
b	0.22		0.40	0.009		0.016			
С	0.08		0.23	0.003		0.009			
D	2.80	3.00	3.20	0.11	0.118	0.126			
E	4.65	4.90	5.15	0.183	0.193	0.203			
E1	2.80	3.00	3.10	0.11	0.118	0.122			
е		0.65			0.026				
L	0.40	0.60	0.80	0.016	0.024	0.031			
L1		0.95			0.037				
L2		0.25			0.010				
k	0°		8°	0°		8°			
ccc			0.10			0.004			

4.3 SO-8 package information

Figure 19. SO-8 package mechanical drawing

Table 8. SO-8 package mechanical data

	Dimensions								
Ref.		Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α			1.75			0.069			
A1	0.10		0.25	0.004		0.010			
A2	1.25			0.049					
b	0.28		0.48	0.011		0.019			
С	0.17		0.23	0.007		0.010			
D	4.80	4.90	5.00	0.189	0.193	0.197			
Е	5.80	6.00	6.20	0.228	0.236	0.244			
E1	3.80	3.90	4.00	0.150	0.154	0.157			
е		1.27			0.050				
h	0.25		0.50	0.010		0.020			
L	0.40		1.27	0.016		0.050			
L1		1.04			0.040				
k	0		8°	1°		8°			
ccc	_		0.10			0.004			

4.4 TSSOP14 package information

Figure 20. TSSOP14 package mechanical drawing

Table 9. TSSOP14 package mechanical data

	Dimensions								
Ref.		Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α			1.20			0.047			
A1	0.05		0.15	0.002	0.004	0.006			
A2	0.80	1.00	1.05	0.031	0.039	0.041			
b	0.19		0.30	0.007		0.012			
С	0.09		0.20	0.004		0.0089			
D	4.90	5.00	5.10	0.193	0.197	0.201			
Е	6.20	6.40	6.60	0.244	0.252	0.260			
E1	4.30	4.40	4.50	0.169	0.173	0.176			
е		0.65			0.0256				
L	0.45	0.60	0.75	0.018	0.024	0.030			
L1		1.00			0.039				
k	0°		8°	0°		8°			
aaa			0.10			0.004			

4.5 SO-14 package information

Figure 21. SO-14 package mechanical drawing

Table 10. SO-14 package mechanical data

	Dimensions							
Def		Millimeters			Inches			
Ref.	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	1.35		1.75	0.05		0.068		
A1	0.10		0.25	0.004		0.009		
A2	1.10		1.65	0.04		0.06		
В	0.33		0.51	0.01		0.02		
С	0.19		0.25	0.007		0.009		
D	8.55		8.75	0.33		0.34		
E	3.80		4.0	0.15		0.15		
е		1.27			0.05			
Н	5.80		6.20	0.22		0.24		
h	0.25		0.50	0.009		0.02		
L	0.40		1.27	0.015		0.05		
k			8° (r	nax.)		•		
ddd			0.10			0.004		

5 Ordering information

Table 11. Order codes⁽¹⁾

Order code	Temperature range	Package	Packing	Marking
TSV991ILT		SOT23-5		K130
TSV991AILT		30123-5	Tape & reel	K129
TSV992IST		MiniSO-8	таре а теег	K132
TSV992AIST		IVIII II SO-6		K135
TSV992ID TSV992IDT		SO-8	Tube Tape & reel	V992I
TSV992AID TSV992AIDT		30-6	Tube Tape & reel	V992AI
TSV994IPT		TSSOP14	Tape & reel	V994I
TSV994AIPT		1330714	таре а теег	V994AI
TSV994ID TSV994IDT		SO-14 ⁽¹⁾	Tube Tape & reel	V994I
TSV994AID TSV994AIDT	-40° C to +125° C	30-14	Tube Tape & reel	V994AI
TSV991IYLT ⁽²⁾		SOT23-5	Tono 9 wool	K149
TSV991AIYLT ⁽²⁾		Automotive grade	Tape & reel	K150
TSV992IYDT ⁽²⁾		SO-8	Tape & reel	V992IY
TSV992AIYDT ⁽²⁾		Automotive grade	Tape & reel	V992AY
TSV992IYST ⁽²⁾		MiniSO-8	Tono 9 rool	K149
TSV992AIYST ⁽²⁾		Automotive grade	Tape & reel	K150
TSV994IYDT ⁽²⁾		SO-14 ⁽¹⁾	Tape & reel	V994IY
TSV994AIYDT ⁽²⁾		Automotive grade	Tape & reel	V994AY
TSV994IYPT ⁽²⁾		TSSOP14	Tape & reel	V994IY
TSV994AIYPT ⁽²⁾		Automotive grade	ιαμε α ιεει	V994AY

All packages are Moisture Sensitivity Level 1 as per Jedec J-STD-020-C, except SO-14 which is Jedec level 3.

^{2.} Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

TSV99x-TSV99xA Revision history

6 Revision history

Table 12. Document revision history

Date	Revision	Changes
31-Jul-2006	1	Preliminary data release for product under development.
07-Nov-2006	2	Final version of datasheet.
12-Dec-2006	3	Noise and distortion figures added.
07-Jun-2007	4	ESD tolerance modified for SO-14, CDM in <i>Table 1: Absolute maximum ratings</i> . Automotive grade commercial products added in <i>Table 11: Order codes</i> . Note about SO-14 added in <i>Table 11: Order codes</i> . Limits in temperature added in <i>Section 2: Electrical characteristics</i> .
11-Feb-2008	5	Corrected MiniSO-8 package information. Corrected footnote for automotive grade order codes in order code table. Improved presentation of package information.
25-May-2009	6	Added input current information in table <i>Table 1: Absolute maximum ratings</i> . Added <i>Chapter 3: Application information</i> . Updated all packages in <i>Chapter 4: Package information</i> . Added new order codes: TSV991IYLT, TSV991AIYLT, TSV992IYST, TSV992AIYST, TSV994IYPT, TSV994AIYPT in <i>Table 11: Order codes</i> .
19-Oct-2009	7	Added A versions of devices in title on cover page. Added parameters for full temperature range in <i>Table 3</i> , <i>Table 4</i> , <i>Table 5</i> . Removed <i>gain margin</i> and <i>phase margin</i> parameters in <i>Table 3</i> , <i>Table 4</i> and <i>Table 5</i> . These parameters have been replaced by the <i>gain</i> parameter (minimum gain for stability). Added <i>Figure 14</i> and <i>Figure 16</i> .
14-Jan-2010	8	Added parameters for full temperature range in <i>Table 3</i> , <i>Table 4</i> and <i>Table 5</i> . Modified <i>Note 2</i> relative to automotive grade in <i>Table 11: Order codes</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

20/20 Doc ID 12833 Rev 8

