

INSTITUTO BALSEIRO

Ingreso 2019

Resumen de fórmulas

-Autor:

+ Nadia A. Pizarro.

29 de enero de 2019

Sección: 0.0.0 Ingreso 2019

Índice

1.	Análisis Matemático	3
2.	Mecánica Clásica	5

Sección: 1.1.0

Resumen: En el siguiente artículo hare un resumen de las fórmulas y conceptos que repasaré una vez terminado de estudiar todos los temas, no es un resumen de todo lo que sé ni de todo lo que estudié, espero que también le sirva a alquien más.

1. Análisis Matemático

Derivadas:

- \bullet sen $(x) \to \cos(x)$
- $-\cos(x) \rightarrow -\sin(x)$
- $\operatorname{tg}(x) \to \frac{1}{\cos^2(x)}$
- $\bullet \cot g(x) \to \frac{-1}{\sin^2(x)}$
- \bullet arc sen $(x) \to \frac{1}{\sqrt{1-x^2}}$
- $arc \cos(x) \to \frac{-1}{\sqrt{1-x^2}}$
- $\operatorname{arctg}(x) \to \frac{1}{1+x^2}$

Diferencial:

El valor exacto de un incremento esta dado por $\Delta z = F(x + \Delta x; y + \Delta y) F(x; y)$ Mientras que podemos obtener un valor aproximado con el diferencial: $dz = \frac{\partial F}{\partial x} \cdot dx + \frac{\partial F}{\partial y} \cdot dy$. Podemos decir que $\Delta x = dx$ y $\Delta y = dy$ pero $\Delta z \neq dz$, aunque para valores muy pequeños se aproximan.

Dominio de una función: Debemos restringir el dominio y si se puede graficarlo con las siguientes reglas:

- En los radicales el argumento tiene que ser ≥ 0 .
- El denominador de una fracción debe ser $\neq 0$.
- El argumento del logaritmo debe ser > 0.

Derivada direccional:

Se define la derivada direccional de F con respecto al vector \vec{v} como :

$$\frac{\partial F(x;y)}{\partial \vec{v}} = \frac{\partial F}{\partial x} \cdot \cos(\alpha) + \frac{\partial F}{\partial y} \cdot \sin(\alpha)$$

Si el vector \vec{v} esta normalizado se puede escribir como:

$$\frac{\partial F(x;y)}{\partial \vec{v}} = \nabla F \cdot \vec{v}_n ormalizado$$

Sección: 1.1.0

De no estar normalizado debemos hacerlo como:

$$\vec{v}_{normalizado} = \frac{\vec{v}}{|\vec{v}|}$$

La derivada direccional máxima es cuando la dirección es la del gradiente en ese punto, mientras que la derivada direccional mínima es la misma dirección del gradiente pero de sentido contrario, esto se logra con la multiplicación punto del vector gradiente por el escalar (-1). La derivada direccional nula será usando un vector tal que sea perpendicular al vector en la derivada direccional máxima.

Regla de la cadena mutlivariable: Se divide en los siguientes casos:

■ caso 1: La funcion F tiene como variable de entrada a $t/t \in \Re$, teniendo a dos variables intermedias $x(t) \wedge y(t)/x \wedge y \in \Re$ y teniendo como salida una variable llamada $z/z \in \Re$, se define la derivada de z con respecto a t como:

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

• caso 1 particular: La funcion F tiene como variable de entrada a $x/x \in \Re$, teniendo a dos variables intermedias $x(t) \wedge y(t)/x \wedge y \in \Re$ y teniendo como salida una variable llamada $z/z \in \Re$, se define la derivada de z con respecto a x como:

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} \cdot \frac{dz}{dx} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}$$

• caso 2: La funcion F tiene como variable de entradas a $u \wedge v/u \wedge v \in \Re$, teniendo a dos variables intermedias $x(t) \wedge y(t)/x \wedge y \in \Re$ y como salida una sola variable llamada $z(x,y)/z \in \Re$, se define la derivada parcial de z con respecto a u como:

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}$$

Y se define la derivada parcial de z con respecto a v como:

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}$$

• caso 2 particular: La funcion F tiene como variable de entradas a $u \wedge v/u \wedge v \in \Re$, teniendo a dos variables intermedias $u(t) \wedge y(t)/u \wedge y \in \Re$ y como salida una sola variable llamada $z(x,y)/z \in \Re$, se define la derivada parcial de z con respecto a u como:

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}$$

Y se define la derivada parcial de z con respecto a v como:

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial u} \cdot \frac{\partial y}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}$$

La $\frac{\partial u}{\partial v} = 0$ porque u y v son variables independientes y la derivada de una constante es 0.

Divergencia: cambio de densidad en el movimiento de una partícula. Se define con la eq: $\nabla \cdot \vec{V} = Div\vec{V}$. En la figura 1 se puede observar que quiere decir el escalar que nos dá de resultado.

Figura 1: Interpretación de la divergencia

Rotacional: Si una función que toma valores de vectores tridimensionales $\vec{\mathbf{v}}(x,y,z)$ tiene como funciones componentes a $v_1(x,y,z)$, $v_2(x,y,z)$ y $v_3(x,y,z)$, entonces el rotacional se calcula de la siguiente manera:

$$\nabla \times \vec{\mathbf{v}} = \left(\frac{\partial v_3}{\partial y} - \frac{\partial v_2}{\partial z}\right)\hat{\mathbf{i}} + \left(\frac{\partial v_1}{\partial z} - \frac{\partial v_3}{\partial x}\right)\hat{\mathbf{j}} + \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}\right)\hat{\mathbf{k}}$$

Tambien se puede calcular como:

$$\nabla \times \vec{\mathbf{v}} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Teorema fundamental del cálculo: Dada unafunción f integrable sobre el intervalo [a,b], definimos F sobre [a,b] por $F(x)=\int_a^x f(t)dt$. Si f es continua en $c \notin (a,b)$, entonces F es derivable en c y F'(c)=f(c).

Plano tangente: La ecuación del plano tangente de la gráfica de una función de dos variables f(x,y) en un punto particular (x_0,y_0) se ve así:

$$T(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

2. Mecánica Clásica

Ley de Newton: La sumatoria de fuerzas sobre un cuerpo equivale a la variación de su momento lineal respecto al tiempo.

Ingreso 2019

$$\sum \vec{F} = \frac{d\vec{p}}{dt} = m\,\frac{d\vec{v}}{dt} + \frac{dm}{dt}\,\vec{v}$$

. Solo en el caso de masa invariante en el tiempo la expresión se reduce a $\sum \vec{F} = m\,\vec{a}$

Análogamente, la sumatoria de torque sobre un cuerpo equivale a la variación temporal de su momento angular, en caso de momento de momento de inercia invariante en el tiempo reducida a $\sum \vec{T} = I \, \vec{\gamma}$

Leyes de Conservación: En todo sistema mecánico considerando un intervalo temporal arbitrario se cumplen las siguientes leyes de conservación.

• Ley de Conservación de la Energía Mecánica. La sumatoria de trabajo ejercido por fuerzas no conservativas es igual a la variación de energía mecánica del sistema.

$$\sum W_{F_{NC}} = \Delta E_M$$

.

• Ley de Conservación del Momento Lineal. La sumatoria de impulso lineal ejercido sobre el sistema por fuerzas externas es igual a la variación del momento lineal del sistema.

$$\sum \vec{J}_{F_{ext}} = \Delta \vec{p}$$

.

• Ley de Conservación del Momento Angular.La sumatoria de impulso angular ejercido sobre el sistema por torque producto de fuerzas externas es igual a la variación del momento angular del sistema.

$$\sum ec{J}_{T_{ext}} = \Delta ec{L}$$

.

Fuerzas Internas: Fuerzas internas son todas aquellas en las que ambas partes del par acción-reacción están aplicadas sobre elementos del sistema.

Fuerzas Conservativas: Fuerza conservativa es toda fuerza asociada a un campo conservativo, por ende puede asociar una función Potencial. ¡insertar referencia a capítulo de análisis matemático¿

Trabajo: Integral de una fuerza aplicada sobre una trayectoria. $W = \int_{\vec{x}_1}^{\vec{x}_2} \vec{F}(\vec{x}) \cdot d\vec{x}$

Impulso Lineal: Integral de la fuerza en el tiempo. $\vec{J} = \int_{t_1}^{t_2} \vec{F}(t) dt$

Impulso Angular: Integral de un torque en el tiempo. $\vec{J}_T = \int_{t_1}^{t_2} \vec{T}(t) dt$