Qspice KSKelvin Symbol Explanation

KSKelvin Kelvin Leung

Created on 9-3-2023 Last Updated on 10-14-2023

Ideal Opamp

Qspice: Opamp_Ideal.qsym

Ideal Operation Amplifier - Overview

Qspice: ComptrOD_Ideal.qsym

- Ideal Opamp Sub-Circuit
 - opamp.sub in LTspice library

* Copyright © Linear Technology Corp. 1998, 1999, 2000. All rights reserved. subckt opamp 1 2 3

G1 0 3 2 1 {Aol}

R3 3 0 1.

C3 3 0 {Aol/GBW/6.28318530717959}

.ends opamp

Opamp equivalent formula

$$V_{output} = Z(R_3, C_3) \times Aol \times I_{G1}$$

 $V_{output} = (R_3 / / \frac{1}{j\omega C_3}) \times Aol \times (V_p - V_n)$

Opamp.sub Equivalent Schematic

Ideal Operation Amplifier – Parameters of Symbol

Qspice: ComptrOD_Ideal.qsym

Ideal Operation Amplifier - Simulation Example

Parent - opamp_ideal (.ac).qsch

Parent - opamp_ideal (.tran).qsch

Ideal Comparator

Qspice: Comptr_Ideal.qsym

Qspice: ComptrOD_Ideal.qsym

Qspice : Comptr_Ideal_Supply.qsym

3 type of Ideal Comparators Overview

Qspice: Comptr_Ideal.qsym / Comptr_Ideal_Supply.qsym / ComptrOD_Ideal.qsym

Ideal Comparator (Vdd/Vss) Comptr_Ideal_Supply.qsym

Ideal Comparator (Open Drain) ComptrOD_Ideal.qsym

3 type of Ideal Comparators – Simulation Results

Qspice: Parent - Comparator.qsch

Control System

Gain, Different, PID and Signal Limiter

Qspice: Gain.qsym

Qspice: Different.qsym

Qspice: PID.qsym

Qspice: Signal_Limiter.qsym

Gain and Different

Qspice : Gain.qsym / Difference.qsym

- Gain
 - $V_{out} = Av \times V_{input}$

- Difference
 - $V_{out} = V_{+} V_{-}$

PID Controller and Signal Limiter

Qspice: PID.qsym / Signal_Limiter.qsym

- PID Controller
 - $V_{out} = K_p V_{error} + K_i \int V_{error} dt + K_d \frac{dV_{error}}{dt}$ X1

 PID

 err

 Kp=1

 Ki=1

 Kd=1

- Signal Limiter
 - limit(x,y,z) | intermediate value of x, y, and z, equivalent to min(max(x,y),z)

Control System Symbol : Transient Simulation Example

Parent - PID CloseLoop (.tran).qsch

Delay

Qspice: Delay.qsym

- Delay
 - Reason for Implementation
 - Qspice B-source not offers delay function before 09/22/2023, but after that, Mike Engelhardt implemented delay(input,time) for arbitrary behavioral sources.
 - Concept of Design
 - T1 : Td (delay) in ideal transmission line determines signal delay time
 - R1: To prevent signal reflection, transmission line must terminate with Zo
 - B1: To prevent loading effect when using delay block
 - Symbol of delay.qsym

SrcXXX Special Voltage Source and Potentiometer

Qspice: Scrxxxx.qsym / Potentiometer.qsym

ScrXXX

- SrcPulse.qsym
- SrcSawtooth.qsym
- SrcTriangle.qsym
- SrcStep.qsym
- SrcRamp.qsym

Potentiometer

- Symbol: Potentiometer.qsym
- Ratio is limited to [1m,0.999]
- Sub-circuit script

.subckt VR + - m params: Rt=1k ratio=0.5 .param w = limit(1m,ratio,0.999) R1 + m (1-w)*Rt R2 m - (w)*Rt .ends VR

