

Analysis – 퓨처스리그

영화 관객수 예측

팀 명	팀 원	학 교
우리등의 일그러진 스님	강수현, 여현웅, 한선웅, 김형규	동국대학교

CONTENTS 1

팀 소개

CONTENTS 2

프로젝트 기획

CONTENTS 3

데이터 전 처리

CONTENTS 4

학습 알고리즘

CONTENTS 5

결과 및 결론

CONTENTS 6

참고문헌

팀 소개

팀 소개

- 분야 및 주제 명칭
 - ✓ Analysis 퓨처스리그(영화 관객수 예측)
- 팀 명 및 구성원
 - ✓ 팀명:우리들의 일그러진 스님
 - ✓ 구성원:팀장-강수현/팀원-여현웅,한선웅,김형규
- 구성원 별 역할
 - ✓ 강수현:시계열 데이터 set 전처리
 - ✓ 여현웅:모델개발
 - ✓ 한선웅: 비시계열 데이터 set 전처리
 - ✓ 김형규 : DB 및 ppt 제작

실제 관객이 영화를 선택하는 기준?

그 시기 개봉된 영화 중 끌리는 것

특정 기간에 데이터를 통해 뒷부분의 그래프를 예측 할 수 있다면 총 관객수도 알 수 있지 않을까?

Time Series

Other Data etc

Deep learning

데이터 전처리

- 영화 별 일일 관객수
- 영화 별 일일 상영횟수
- D-Day

Nontime Series Data

- 개봉일
- 제작 국가
- 관람 등급
- 장르
- 개봉 전 평점
- 감독
- 배우

Feature

총 1047 편

Feature	대상 기간	수집 범위
영화별 일 일 관객수		• 관객 수 10,000명
영화별 일 일 상영횟	2015년 ~ 2018년	이상
수		각 영화 별 개봉일 ~ 종영일
D-day		

Data Handling

Feature	범위 조정	결측치 처리
영화별 일일 관객수	0에서 1의 값을 가지도록 스케	개봉전 22일간 또는 개봉후 40
영화별 일일 상영횟수	일링	일간 데이터가 없는 경우 0으로 대체.
D-day	- -	(Zero padding)

Data Handling

랜덤하게 200개의 영화 Data 추출

Data imbalanced 확인

Oversampling 수행 결정

Oversampling

DeepAR: Probabilistic Forecasting with Autoregressive

Recurrent Networks

(Valentin Flunkert, David Salinas, Jan Gasthaus)

 $v_i = i$ 번째 영화에 대한 관객수 평균.

 $z_{i,t} = i$ 번째 영화 t일 차의 관객수.

 $p_i = 모든 영화 데이터셋중 i번째 영화가 선택될 확률$

$$v_i = 1 + \frac{1}{t_o} \sum_{t=1}^{t_o} z_{i,t}$$

$$p_i = \frac{v_i}{\sum v_i}$$

Probabilistic을 기반으로 Sampling 수행

Oversampling

- 관객수가 많은 영화
 - ✓ 선택될 확률 🕇
- 관객수가 낮은 영화
 - ✓ 선택될 확률 ↓
- 임의의 데이터들을 선택
 - → 값들의 평균 계산
- 그 평균을 새롭게 생성한 데이터 로 사용.

Nontime Series Data

Feature

변수	대상 기간	설명	수집한 이유	
Open	_		개봉일	개봉한 요일의 영향이 있을 것이다.
Nation		제작 국 가	언어의 차이가 관객수의 차이를 만들어 낼 것이다.	
Grade	2015년부 터	관람 등 급	영화의 주고객층이 달라지기 때문에 관객 수에 영향을 미칠 것이다.	
Genre	2018년에 개보하 여	장르	인기있는 장르가 따로 있을 것이다.	
Score	- 개봉한 영 화	개봉전 평점	개봉전 영화에 대한 관심	
Director		감독	흥행한 영화를 만들어본 감독은 추후작도 흥행할 가능성이 높을 것이다.	
Actors	·	배우들	인기있는 배우들이 출연한 영화도 인기있 을 것이다.	

Nontime Series Data

Data Handling

Director 최근 3작의 관객 동원 수 평균

Nation (한국, 영미권, 일본, 중국, 기타) Class로 나누고 Label Encoding

Grade (전체, 12세, 15세, 18세, 청불) Class로 나누고 Label Encoding

 Genre
 두개 이상의 장르를 가진 경우 앞의 하나만

 남긴 후 Label Encoding

Score Real Data 사용

Nontime Series Data

Data Handling

• Random Forest의 Feature importance를 확인한 결과 감독의 관객 동원수가 관객수에 중요한 영향을 끼치는 것으로 확인되어 분석에 사용하기로 결정

9 2018-07-04

10 2018-07-05

35 235499

23 235499

결론

	lstm	Seq2seq
	예측 관객수	예측 관객수
너의 결혼식	2,767,164	
나를 차버린 스파이	271,311	
물괴		1,234,491

참고 문헌

참고문헌 및 자료

- (1) http://www.kobis.or.kr/kobis/business/mast/mvie/searchMovieList.do
- (2) https://movie.naver.com/
- (3) Valentin Flunkert, David Salinas, Jan Gasthaus. DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks. arXiv:1704.04110, 2017

