

Implementation of bioinformatics approaches to predict gene-phenotype interactions using heterogeneous data and machine learning algorithms

Inserm

CeDRE
Antoine TOFFANO
Supervisor: Christophe Héligon

Outline

Dataset and objective

Algorithms

Evaluation

WormBase

- Protein Protein interactions
- Gene Phenotype associations
- Gene Disease associations
- Gene symbols and alternative symbols
- Gene disease by orthology associations
- Gene GO terms associations
- Gene RNA expression (whole individual bulk FPKM)

What should we add in priority?

	Date of paper publication
	Author / Paper
	Type of evidence (eco)
\bigcirc	Chemical Entities (ChEBI)
	Protein data (UniProtKB)
	Phylogeny (Panther)
	Enzyme nomenclature (Expasy)
	Chemical Reactions (RHEA)
	Protein Family (InterPro)
	AlphFold DB Not implemented yet

Train / Test split

Pros

- Easy to avoid bias in test set
- Easy to implement

Cons

Not representative of the evolution of a database

Train on a old version, and test on edges that have been added afterwards.

Train / Test split

Wormbase size aumentation since WB280

Do we need to go back further?

Train / Test split

How much of a problem is this imbalance?

Shared goal: find good embeddings of graph elements

Random Walk

- Runs on CPU
- High time complexity
- Multiple examples of being used on biological data

1 implemented 1 underway

Machine learning - Baseline

- Better time complexity
- Time-tested
- Usually low amount of hyperparameters

1 pipeline implemented: (10 methods)

Deep learning

- Time complexity (?)
- Higher performances (?)
- More recent, often SoTA of a particular dataset

2 methods implemented2 underway

Scoring methods

Goal: compare methods to each other

Hits@1

Hits@10

MRR

Process overview

Benchmarking methods

• Recent advances in network-based methods for disease gene prediction, Ata et al., 2021, 10.1093/bib/bbaa303

Gene-phenotype prediction

Internship goal: Link prediction between gene and phenotype in C. Elegans

Learn 'patterns' in the graph

RDF and semantic web

Integrated Semantic Network

Data is structured in a 'rdf' format and represented as

a **graph**

Object -> Predicate -> Subject

Node1 -> Edge type -> Node2

```
12933 wbdata:go-786 nt:001 wbgene:00000054 .
12934 wbdata:go-786 dcterms:source wbref:00046480 .
12935 wbdata:go-786 ro:0002331 go:0034220 .
12937 wbdata:go-786 sio:000067 go:0008150 .
12938 wbdata:go-786 sio:000772 eco:0000318 .
12939 wbdata:go-786 sio:001403 FLYBASE:FBgn0000036 .
12940 wbdata:go-786 sio:001403 FLYBASE:FBgn0000039 .
12941 wbdata:go-786 sio:001403 FLYBASE:FBgn0039840 .
12942 wbdata:go-786 sio:001403 FLYBASE:FBgn0264908 .
12943 wbdata:go-786 sio:001403 MGI:MGI:95621 .
```


• https://www.americanlaboratory.com/180191-Integration-The-Missing-Link-in-Data-Rich-Research-Interview-With-Robert-Stanley-of-IO-Informatics/

Gene-phenotype prediction

Internship goal: Link prediction between gene and phenotype in *C.Elegans*

Edges: 12 086 627

Nodes: 2 977 525

• Recent advances in network-based methods for disease gene prediction, Ata et al., 2021, 10.1093/bib/bbaa303

Features Selection

Find the most relevant features by using different subsets of the *C.Elegans* dataset

Edges: 12 086 627

Nodes: 2 977 525

• Recent advances in network-based methods for disease gene prediction, Ata et al., 2021, 10.1093/bib/bbaa303

Benchmarking methods

Finally, compare methods on our dataset

To consider:

- Time complexity of the method
- ... On what do we evaluate our methods?

2 approaches:

- Random split
- Time-based split

Thank you for your attention!

