Mục lục

1	Biên cô ngâu nhiên và xác suất							
	1.1	Khái niệm	1					
	1.2	Mô hình xác suất cổ điển	3					
	1.3	Mô hình xác suất hình học	7					
	1.4	Công thức cộng và nhân xác suất	ç					
	1.5	Công thức xác suất đầy đủ và công thức Bayes	15					
	1.6	Dãy thử Bernoulli	17					
2	Đại	Đại lượng ngẫu nhiên						
	2.1	Khái niệm	23					
	2.2	Hàm phân bố xác suất	26					
	2.3	Hàm phụ thuộc đại lượng ngẫu nhiên	28					
	2.4	Các đặc trưng số của đại lượng ngẫu nhiên	31					
	2.5	Các phân bố xác suất thường gặp	37					
3	Véc	Véctơ ngẫu nhiên						
	3.1	Khái niệm	46					
	3.2	Hàm phân bố xác suất đồng thời	50					
	3.3	Xác định luật phân bố thành phần	52					
	3.4	Các đại lượng ngẫu nhiên độc lập	53					
	3.5	Phân bố có điều kiện	55					
	3.6	Tổng các đại lượng ngẫu nhiên	59					
	3.7	Momen tương quan và Hệ số tương quan	63					
4	Các	định lý giới hạn	70					
5	Mẫu và phân bố mẫu							
	5.1	Mẫu ngẫu nhiên đơn giản	74					
	5.2	Các đặc trưng mẫu	75					
	5.3	Các phân bố thường gặp trong thống kê	80					

Mục lục ii

	5.4 Phân bố mẫu	. 82				
6	Ước lượng tham số	84				
7 Kiểm định giả thuyết thống kê						
	7.1 Khái niệm	. 86				
	7.2 Kiểm định giả thuyết về giá trị trung bình và xác suất	. 87				
	7.3 Tiêu chuẩn phù hợp χ^2	. 94				
8	Tương quan và hồi quy	107				
	8.1 Hồi quy	. 107				
	8.2 Hồi quy tuyến tính	. 108				
	8.3 Dữ liệu lớn và học máy	. 112				
1	Biến cố ngẫu nhiên và xác suất					
2	Đại lượng ngẫu nhiên	125				
3	Véctơ ngẫu nhiên					
4	Các định lý giới hạn					
5	Mẫu và phân bố mẫu					
7	Kiểm định giả thuyết thống kê					
8	Tương quan và hồi quy	144				
Phụ lục						
A	Python	146				
	A.1 Thư viện, môđun, phương thức	. 146				

Chương 6

Ước lượng tham số

Mở đầu: số người vào siêu thị trong 1 ngày là đại lượng ngẫu nhiên có phân bố Poisson với tham số $\lambda > 0$ (λ chưa biết):

Im X = {0, 1, 2, ...}

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$
.

Yêu cầu: xác định λ (đánh giá, ước lượng). Mặt khác $EX = \lambda$, $DX = \lambda$ nên thay vì ước lượng λ ta ước lượng EX hoặc DX.

Thông tin: mẫu ngẫu nhiên $(X_1, X_2, ..., X_n)$ rút từ X, với X_i là số người vào siêu thị trong ngày bất kì.

Định nghĩa 6.1. Đại lượng ngẫu nhiên $\theta^* = \theta^*(X_1, X_2, ..., X_n)$ gọi là ước lượng không chệch của θ nếu $E\theta^* = \theta$.

Định nghĩa 6.2. Khoảng ngẫu nhiên $\left(\theta_1^*, \theta_2^*\right)$ gọi là khoảng tin cậy của θ với độ tin cậy γ nếu P $\left(\theta_1^* < \theta < \theta_2^*\right) \geq \gamma$.

Tham số		Kiểu ước lượng	Ghi chú
THAIH SU	<i>U'LKC</i>	Khoảng tin cậy với độ tin cậy γ	$\gamma <$ 1, $pprox$ 1, $X \sim N$
EX	\overline{X}	$DX = \sigma^2 \tilde{da} \text{biết} \qquad \left(\overline{X} - z_0 \frac{\sigma}{\sqrt{n}}, \overline{X} + z_0 \frac{\sigma}{\sqrt{n}} \right)$	$\Phi(z_0) = \frac{1+\gamma}{2} \ (*)$
		DX chưa biết $(\overline{X} - t_0 \frac{S}{\sqrt{n-1}}, \overline{X} + t_0 \frac{S}{\sqrt{n-1}})$	$t_0 = t_{1-\gamma}^{n-1}$
DX	S' ²	$(\frac{nS^2}{\chi^2\left(\frac{1-\gamma}{2},n-1\right)},\frac{nS^2}{\chi^2\left(\frac{1+\gamma}{2},n-1\right)})$	
p = P(A)	$p^* = \frac{m}{n}$		Như (∗) và <i>n</i> ≫ 1
,			(6.1)

Ví dụ 6.1. Tìm
$$z_0$$
 theo (*) với γ = 95% \Rightarrow Φ (z_0) = $\frac{1+0.95}{2}$ = 0.975 \Rightarrow z_0 = 1.96.

```
from scipy.stats import norm
norm.ppf(0.975)
```

Tóm tắt về Python

