Moto rettilineo

Moto rotatorio

$\overrightarrow{\Delta s}$	spostamento	$\Delta \overrightarrow{\vartheta}$	spostamento angolare
$\overrightarrow{v} = \frac{\overrightarrow{\Delta s}}{\Delta t}$	velocità	$\overrightarrow{\omega} = \frac{\Delta \overrightarrow{9}}{\Delta t}$	velocità angolare
$\overrightarrow{a} = \frac{\Delta \overrightarrow{v}}{\Delta t}$	accelerazione	$\overrightarrow{\alpha} = \frac{\overrightarrow{\Delta \omega}}{\Delta t}$	accelerazione angolare
m	massa	I	momento d'inerzia
\overrightarrow{F}	forza	$\overrightarrow{\mathrm{M}}$	momento della forza
$\overrightarrow{F} = m \overrightarrow{a}$	2ª legge di Newton	$\overrightarrow{M} = I \stackrel{\longrightarrow}{\alpha}$	2 ^a legge di Newton
$L = \overrightarrow{F} \cdot \Delta \overrightarrow{s}$	lavoro	$L = \overrightarrow{M} \times \Delta \overrightarrow{\vartheta}$	lavoro
$P = \overrightarrow{F} \cdot \overrightarrow{v}$	potenza	$P = \overrightarrow{M} \times \overrightarrow{\omega}$	potenza
$E_c = \frac{1}{2} \text{ m v}^2$	energia cinetica	$E_{c} = \frac{1}{2} I \omega^{2}$	energia cinetica
$\Delta E_c = \overrightarrow{F} \cdot \Delta \overrightarrow{s}$	teor. dell'en. cinetica	$\Delta E_c = \overrightarrow{M} \times \Delta \overrightarrow{\vartheta}$	teor. dell'en. cinetica
$\overrightarrow{p} = \overrightarrow{v}$	quantità di moto	$\overrightarrow{L} = I \overrightarrow{\omega}$	momento angolare
$\overrightarrow{F} = \frac{\Delta \overrightarrow{p}}{\Delta t}$	2ª legge di Newton	$\overrightarrow{M} = \frac{\Delta \overrightarrow{L}}{\Delta t}$	2ª legge di Newton
$\overrightarrow{I} = \overrightarrow{F} \Delta t$	impulso	$\overrightarrow{J} = \overrightarrow{M} \Delta t$	impulso angolare
$\overrightarrow{1} = \Delta \overrightarrow{p}$	teor. della q.tà di moto	$\overrightarrow{\mathbf{J}} = \Delta \overrightarrow{\mathbf{L}}$	teor. del mom. angolare

Formule di collegamento fra moto rettilineo e moto rotatorio

$\overrightarrow{\Delta s} = \overrightarrow{\Delta 9} \times \overrightarrow{r}$	$\Delta s = \Delta \vartheta r$
$\overrightarrow{v} = \overrightarrow{\omega} \times \overrightarrow{r}$	$v = \omega r$
$\overrightarrow{a_t} = \overrightarrow{\alpha} \times \overrightarrow{r}$	$a_t = \alpha \ r$
$\overrightarrow{a_c} = \overrightarrow{\omega} \times \overrightarrow{v} = \overrightarrow{\omega} \times \left(\overrightarrow{\omega} \times \overrightarrow{r} \right)$	$a_c = \omega^{\text{2}} \; r = v^{\text{2}} / r$
$\overrightarrow{\mathbf{M}} = \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$	$M=r\;F\;sen\;\beta_{rF}$
$\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p} = \overrightarrow{m} \overrightarrow{r} \times (\overrightarrow{\omega} \times \overrightarrow{r})$	$L=m\;r^{2}\;\omega=m\;v\;r$

 $I = m r^2$ mom. d'inerzia del punto materiale

 $I = \sum m_i \; r_i{}^{\textbf{2}} \qquad \qquad \text{mom. d'inerzia del corpo rigido}$

 $I = I_{CM} + m r_{CM}^2$ teorema di Steiner