```
In [1]:
        #!/usr/bin/env python3
        # -*- coding: utf-8 -*-
        Created on Fri May 7 15:37:04 2021
        @author: nacho
        0.00
        #%%
        import statsmodels.api as sm
        import pandas as pd
        import numpy as np
        import matplotlib
        import seaborn as sns; sns.set()
        from scipy import stats
        from matplotlib import pyplot as plt
        sns.set(color codes=True)
        import os, datetime
        from collections import Counter
        from matplotlib.offsetbox import AnchoredText
        import matplotlib.ticker as ticker
        from darts import TimeSeries
        from darts.metrics import mape, mase
        from darts.utils.statistics import check_seasonality, plot_acf, plot_
        residuals analysis
        from darts.models import (
            NaiveSeasonal,
            NaiveDrift,
            Prophet,
            Exponential Smoothing,
            ARIMA,
            AutoARIMA,
            StandardRegressionModel,
            Theta,
            FFT
        import warnings
        warnings.filterwarnings("ignore")
        import logging
        logging.disable(logging.CRITICAL)
        #import movilidad
        import statsmodels.api as sm
        from itertools import product
        import math
        from sklearn.preprocessing import MinMaxScaler
        matplotlib.rcParams['figure.figsize'] = [9.0, 5.0]
```

Importing plotly failed. Interactive plots will not work.

```
In [2]: path = "/home/nacho/Documents/coronavirus/Data_Mexico"
    os.chdir(os.path.join(path))
    delitos_df = pd.read_csv("data/IDEFC_NM_dic2020.csv", encoding='latin
        -1',thousands=',')
    #delitos_df = pd.read_csv("data/IDEFC_NM_mar2021.csv", encoding='latin
        n-1',thousands=',')
    #movilidad = movilidad.return_df()
    df_movilidad = pd.read_csv("data/google_movilidad.csv", index_col='Date')
```

In [3]: delitos_df.head()

Out[3]:

	Año	Clave_Ent	Entidad	Bien jurídico afectado	Tipo de delito	Subtipo de delito	Modalidad	Enero	Febrero
0	2015	1	Aguascalientes	La vida y la Integridad corporal	Homicidio	Homicidio doloso	Con arma de fuego	3	0
1	. 2015	1	Aguascalientes	La vida y la Integridad corporal	Homicidio	Homicidio doloso	Con arma blanca	1	1
2	2015	1	Aguascalientes	La vida y la Integridad corporal	Homicidio	Homicidio doloso	Con otro elemento	0	0
3	2015	1	Aguascalientes	La vida y la Integridad corporal	Homicidio	Homicidio doloso	No especificado	2	0
4	2015	1	Aguascalientes	La vida y la Integridad corporal	Homicidio	Homicidio culposo	Con arma de fuego	0	0
4									

In [4]: df_movilidad.head()

Out[4]:

Unnamed: 0 State Residences

Date			
2020-02-16	2667462	NaN	-1.0
2020-02-17	2667463	NaN	-2.0
2020-02-18	2667464	NaN	-2.0
2020-02-19	2667465	NaN	-1.0
2020-02-20	2667466	NaN	-1.0

```
#%hacer listas de valores unicos
delitos list = delitos df['Tipo de delito'].value counts().index.toli
st()
#%Generar dict de delitos
delitos sum df = pd.DataFrame(index = pd.date_range('2015-01', '2021-
01', freq='M'))
delitos sum df.index.name = 'date'
years = np.arange(2015,2021)
meses = ['Enero', 'Febrero', 'Marzo', 'Abril', 'Mayo', 'Junio', 'Juli
o', 'Agosto', 'Septiembre', 'Octubre', 'Noviembre', 'Diciembre']
#for i in range(len(delitos_sum_df)):
for index, row in delitos sum df.iterrows():
    for delito in delitos list:
        values delito = []
        for year in years:
            for mes in meses:
                value = delitos_df.loc[(delitos_df['Tipo de delito']
== delito) & (delitos_df['Año'] == year), mes].sum()
                values delito.append(value)
        delitos sum df[delito] = values delito
```

```
In [8]: delitos_sum_df
```

Out[8]:

	Robo	Homicidio	Lesiones	Secuestro	Feminicidio	Daño a la propiedad	Allanamiento de morada	Evasión de presos
date								
2015- 01-31	55171	2548	15022	89	32	9468	908	9
2015- 02-28	52765	2529	15953	108	30	9493	813	7
2015- 03-31	56378	2511	17458	76	31	10313	1030	10
2015- 04-30	52897	2563	18197	85	35	10007	1011	6
2015- 05-31	54041	2773	18838	96	28	10347	1102	13
2020- 08-31	49490	3779	15366	78	76	9888	1127	12
2020- 09-30	50114	3452	15886	69	78	10158	1092	6
2020- 10-31	52899	3697	16682	63	74	11307	1216	13
2020- 11-30	49293	3601	15250	55	82	10065	987	7
2020- 12-31	48674	3610	14874	57	77	10623	1006	7

72 rows × 40 columns

```
In [7]: #%generar df con cada delito con su corr y trend
    df_dsct = pd.DataFrame(list(product(delitos_list)), columns=['delito'
])
    df_dsct['corr'] = ""
    df_dsct['trend'] = ""
    #%Generar df por delito por estado y su porcentaje de crecimento res
    pecto al año pasado
    for delito in delitos_list:
        df_delito = delitos_sum_df[delito]
        trend = df_delito.resample('Y').sum().pct_change()[-1]
        if np.isinf(trend):
            trend = math.inf
        df_dsct.loc[df_dsct['delito'] == delito, ['trend']] = trend
```

```
In [10]: #%corr con movilidad
df_corr_movilidad = df_movilidad[df_movilidad['State'].isnull()]

for delito in delitos_list:
    df_delito = delitos_sum_df[delito]
    movilidad_spec = df_corr_movilidad.loc[(df_corr_movilidad.index >
'2020-02-15') & (df_corr_movilidad.index < '2021-01-01')]
    movilidad_spec.index = pd.to_datetime(movilidad_spec.index)
    movilidad_spec = movilidad_spec['Residences'].resample('M').sum()
    df_delito = df_delito.loc['2020-02':]
    corr = stats.pearsonr(movilidad_spec, df_delito)[0]
    df_dsct.loc[df_dsct['delito'] == delito, ['corr']] = corr</pre>
```

```
In [11]: #%limpiar df
    df_dsct = df_dsct.sort_values(by=['corr'],ignore_index=True, ascendin
    g = False)
```

In [12]: df_dsct

trend	corr	delito	
0.273585	0.253194	Violencia de género en todas sus modalidades d	0
0.0128676	0.114857	Trata de personas	1
0.224678	-0.0445427	Otros delitos que atentan contra la vida y la	2
-0.275862	-0.0929915	Tráfico de menores	3
-0.228951	-0.137224	Electorales	4
-0.0349346	-0.294743	Homicidio	5
0.103448	-0.322076	Rapto	6
2	-0.33408	Incesto	7
-0.38149	-0.376247	Secuestro	8
0.0469647	-0.415299	Violencia familiar	9
0.00598255	-0.448734	Despojo	10
-0.0888482	-0.458547	Extorsión	11
0.0650299	-0.464545	Otros delitos contra la familia	12
-0.0937357	-0.48649	Contra el medio ambiente	13
-0.114685	-0.491871	Aborto	14
-0.00212314	-0.510792	Feminicidio	15
0.269723	-0.51251	Otros delitos que atentan contra la libertad y	16
-0.0415755	-0.52436	Fraude	17
-0.204724	-0.531599	Evasión de presos	18
-0.0975869	-0.618816	Allanamiento de morada	19
0.149973	-0.660255	Violación equiparada	20
-0.0986362	-0.669984	Abuso de confianza	21
0.0923498	-0.702535	Narcomenudeo	22
-0.0834429	-0.715252	Otros delitos que atentan contra la libertad p	23
0.0370788	-0.726916	Otros delitos contra la sociedad	24
-0.0791874	-0.734469	Otros delitos contra el patrimonio	25
-0.0979789	-0.743516	Violación simple	26
-0.275944	-0.760239	Incumplimiento de obligaciones de asistencia f	27
-0.051297	-0.787718	Amenazas	28
0.331589	-0.798168	Acoso sexual	29
-0.141287	-0.823498	Daño a la propiedad	30
-0.0525269	-0.830544	Otros delitos del Fuero Común	31
-0.135075	-0.837164	Lesiones	32
0.117566	-0.837453	Corrupción de menores	33
-0.250142	-0.850414	Falsedad	34

	delito	corr	trend
35	Abuso sexual	-0.852041	-0.0528254
36	Falsificación	-0.853735	-0.291809
37	Delitos cometidos por servidores públicos	-0.859945	0.0181463
38	Hostigamiento sexual	-0.866934	-0.0586022
39	Robo	-0.933648	-0.211102

```
In [13]:
         #%specific scaler
         def spec scaler(series, minv, maxv):
             series = series.values.reshape(-1, 1)
             scaler = MinMaxScaler(feature_range=(minv, maxv))
             scaler = scaler.fit(series)
             normalized_series = scaler.transform(series)
             return normalized_series
         #%prediction
         def predict_series(df_delito_state, delito):
             df_pred = df_delito_state.copy()
             df pred = pd.DataFrame(df pred)
             df_pred['Year'] = pd.date_range('2015-01', '2021-01', freq='M')
             series = TimeSeries.from_dataframe(df_pred, 'Year', delito)
             #train, val = series.split_before(pd.Timestamp('20200201'))
             train, val = series.split_before(pd.Timestamp('20191230'))
             model = Prophet()
             #model = ExponentialSmoothing()
             model.fit(train)
             prediction = model.predict(len(val))
             prediction = prediction.pd_dataframe()
             prediction[prediction < 0] = 0
             return prediction
```

```
In [14]: #%plot df dsct
         for index in [0,1,2,-1,-2,-3,-4,-5]:
             index delito state = df dsct.iloc[index,:]
             delito = index_delito state.loc['delito']
             df delito = delitos sum df[delito]
             decom = sm.tsa.seasonal decompose(df delito, model = 'additive')
             movilidad spec = df corr movilidad.loc[df corr movilidad.index <</pre>
         '2021-01-01']
             movilidad spec.index = pd.to datetime(movilidad spec.index)
             movilidad spec = movilidad spec['Residences'].resample('M').sum()
             #plot
             fig, ax = plt.subplots()
             ax.plot(movilidad spec.index, spec scaler(series = movilidad spec
                                                        minv = df delito.loc[df
         delito.index > '2020-02-15'].resample('M').sum().min(),
                                                        maxv = df delito.loc[df
         delito.index > '2020-02-15'].resample('M').sum().max()),
                     label = 'movilidad residencial **proporcional al delito',
                     linestyle = ':',
                     color = 'black',
                     linewidth=2)
             ax.plot(decom.trend.index, decom.trend.values, label = 'Tendenci
         a', linestyle='--', color='blue')
             ax.plot(decom.trend.index, df delito.resample('M').sum(), label =
         'Suma mensual del delito', color='red')
             ax.set title(delito+' en la República Mexicana '+
                           '\n'+'correlación del delito con movilidad: '+str(ro
         und(df_dsct.iloc[index,:]['corr'], 2))+
                           '\n'+'tendencia del delito respecto al año anterior:
         '+str(round(df dsct.iloc[index,:]['trend'], 2)))
             df pred = predict series(df delito, delito)
             ax.plot(df_pred.index,
                     df_pred.values,
                     label = 'predicción',
                     color = 'green')
             ax.legend(loc='upper left')
             plt.plot()
```


Trata de personas en la República Mexicana correlación del delito con movilidad: 0.11 tendencia del delito respecto al año anterior: 0.01

Otros delitos que atentan contra la vida y la integridad corporal en la República Mexicana correlación del delito con movilidad: -0.04 tendencia del delito respecto al año anterior: 0.22

Robo en la República Mexicana correlación del delito con movilidad: -0.93 tendencia del delito respecto al año anterior: -0.21

Hostigamiento sexual en la República Mexicana correlación del delito con movilidad: -0.87 tendencia del delito respecto al año anterior: -0.06

Delitos cometidos por servidores públicos en la República Mexicana correlación del delito con movilidad: -0.86 tendencia del delito respecto al año anterior: 0.02

Falsificación en la República Mexicana correlación del delito con movilidad: -0.85 tendencia del delito respecto al año anterior: -0.29

Abuso sexual en la República Mexicana correlación del delito con movilidad: -0.85 tendencia del delito respecto al año anterior: -0.05

In []: