投资问题

投资问题的建模

问题: m 元钱,n项投资, $f_i(x)$: 将 x 元投入第 i 个项目的效益. 求使得总效益最大的投资方案.

建模:

问题的解是向量 $< x_1, x_2, ..., x_n >$, x_i 是投给项目i 的钱数,i = 1, 2, ..., n. 目标函数 $\max\{f_1(x_1) + f_2(x_2) + ... + f_n(x_n)\}$ 约束条件 $x_1 + x_2 + ... + x_n = m$, $x_i \in \mathbb{N}$

实例

• 实例: 5万元钱, 4个项目 效益函数如下表所示

x	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
0	0	0	0	0
1	11	0	2	20
2	12	5	10	21
3	13	10	30	22
4	14	15	32	23
5	15	20	40	24

子问题界定和计算顺序

子问题界定: 由参数 k 和 x 界定

k: 考虑对项目1, 2, ..., k 的投资

x: 投资总钱数不超过 x

这两个参数与矩阵链相乘问题的参数有什么区别?

原始输入: k = n, x = m

子问题计算顺序:

$$k = 1, 2, ..., n$$

对于给定的 k, x = 1, 2, ..., m

优化函数的递推方程

 $F_k(x)$: x元钱投给前k个项目最大效益

多步判断: 若知道p元钱 $(p \le x)$ 投给前k-1个项目的最大效益 $F_{k-1}(p)$,确定x元钱投给前k个项目的方案

递推方程和边界条件

$$F_k(x) = \max_{0 \le x_k \le x} \{ f_k(x_k) + F_{k-1}(x - x_k) \} \quad k > 1$$

$$F_1(x) = f_1(x)$$

k=1时实例的计算

x	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
0	0	0	0	0
1	11	0	2	20
2	12	5	10	21
3	13	10	30	22
4	14	15	32	23
5	15	20	40	24

k = 1为初值 $F_1(1) = 11, F_1(2) = 12, F_1(3) = 13,$ $F_1(4) = 14, F_1(5) = 15,$

k=2时实例计算

方案(项目2,其他): (1,0), (0,1)

$$F_2(1) = \max\{f_1(1), f_2(1)\} = 11$$

x	$f_1(x)$	$f_2(x)$		
0	0	0		
1	11	0		
2	12	5		
3	13	10		
4	14	15		
5	15	20		

方案: (2,0), (1,1), (0,2)

$$F_2(2) = \max\{f_2(2),F_1(1)+f_2(1),F_1(2)\}=12$$

方案: (3,0), (2,1), (1,2), (0,3)

$$F_2(3) = \max\{f_2(3), F_1(1) + f_2(2), F_1(2) + f_2(1), F_1(3)\} = 16$$

类似地计算

$$F_2(4) = 21$$
, $F_2(5) = 26$

备忘录和解

x	$F_1(x)$	$x_1(x)$	$F_2(x)$	$x_2(x)$	$F_3(x)$	$x_3(x)$	$F_4(x)$	$x_4(x)$
1	11	1	11	0	11	0	20	1
2	12	2	12	0	13	1	31	1
3	13	3	16	2	30	3	33	1
4	14	4	21	3	41	3	50	1
5	15	5	26	4	43	4	61	1

$$x_4(5)=1 \Rightarrow x_4=1, x_3(5-1)=x_3(4)$$

$$x_3(4)=3 \Rightarrow x_3=3$$
, $x_2(4-3)=x_2(1)$

$$x_2(1)=0 \Rightarrow x_2=0$$
, $x_1(1-0)=x_1(1)$

$$x_1(1)=1 \Rightarrow x_1=1$$

解:
$$x_1=1$$
, $x_2=0$, $x_3=3$, $x_4=1$, $F_4(5)=61_{8}$

时间复杂度分析

备忘录表中有m行n列,共计mn项

$$F_k(x) = \max_{0 \le x_k \le x} \{ f_k(x_k) + F_{k-1}(x - x_k) \} \quad k > 1$$

$$F_1(x) = f_1(x)$$

 x_k 有 x+1 种可能的取值,计算 $F_k(x)$ 项 $(2 \le k \le n, 1 \le x \le m)$ 需要:

x+1次加法

x 次比较

时间复杂度分析

对备忘录中所有的项求和:

加法次数
$$\sum_{k=2}^{n} \sum_{x=1}^{m} (x+1) = \frac{1}{2} (n-1)m(m+3)$$

比较次数
$$\sum_{k=2}^{n} \sum_{r=1}^{m} x = \frac{1}{2} (n-1)m(m+1)$$

$$W(n)=O(nm^2)$$

小结

投资问题的动态规划算法

- 用两个不同类型的参数界定子问题
- 优化函数的递推方程及初值
- 根据备忘录中项的计算估计时间复杂度
- 时间复杂度为: *O*(*nm*²)