Universität Potsdam SS2020: Übung 12 Institut für Physik und Astronomie V: Feldmeier Abgabe am 9. Juli 2020, 24 Uhr Schwarz¹

Übungsaufgaben zur theoretischen Mechanik²

20 Punkte

<u>1.</u> Poisson-Klammer und Jacobi-Identität

2 Punkte

X,Y,Z seien Funktionen der generalisierten Koordinaten q_k und der kanonisch konjugierten Impulse p_k . f sei die Anzahl der Freiheitsgrade.

Beweisen Sie: Die Poissonklammer erfüllt die Jacobi-Identität

$${X, {Y, Z}} + {Y, {Z, X}} + {Z, {X, Y}} = 0.$$

<u>2.</u> Poisson-Klammer

4 Punkte

al Formulieren Sie die kanonischen Gleichungen mit Poissonklammern.

b] Man zeige, dass die komplexe Amplitude $a = \frac{m\omega q + ip}{\sqrt{2\omega m}}$ des harmonischen Oszillators $H = \frac{p^2}{2\omega m} + \frac{m\omega^2}{2\omega m}$ die Poriohung (a. a*) – vi erfüllt. Man geige dass Q = a

lators $H = \frac{p^2}{2m} + \frac{m\omega^2}{2}q^2$ die Beziehung $\{a, a^*\} = -i$ erfüllt. Man zeige, dass Q = a und $P = ia^*$ kanonische Koordinaten sind.

3. Poisson-Klammern

6 Punkte

Gegeben sei ein Einteilchenproblem. Die drei Komponenten des Drehimpulses des Teilchen seien L_i . Berechnen Sie die folgenden Poisson-Klammern (kartesische Koordinaten, $\vec{r} = (x_1, x_2, x_3), r = |\vec{r}|$):

$$\{L_i, x_j\}, \qquad \{L_i, p_j\}, \qquad \{L^2, L_j\}, \qquad \{L_i, (\vec{r} \cdot \vec{p})\}, \qquad \{p_i, r^m\}$$

Hinweis: Verwenden Sie das ε_{ijk} -Symbol.

¹udo.schwarz@uni-potsdam.de

²http://www.astro.physik.uni-potsdam.de/~afeld/2020SSMechanik.html http://www.astro.physik.uni-potsdam.de/~afeld/

4. Drehungen 8 Punkte

- a) Die Matrix a_{ij} bezeichne die Basis-Transformation $\hat{e}'_i = a_{ij} \hat{e}_j$. Zeigen Sie, dass aus den Orthonomierungsbedingungen für die kartesische Basis $\hat{e}_i \cdot \hat{e}_j = \delta_{ij}$ und $\hat{e}'_i \cdot \hat{e}'_j = \delta_{ij}$ die a_{ij} -Matrizen der orthogonalen Gruppe O(n) angehören. Welche Eigenschaft der Transformationsmatrizen kann man aus den beiden Bedingungen $a_{ik} a_{jk} = \delta_{ij}$ und $a_{ki} a_{kj} = \delta_{ij}$ ablesen? Erinnerung: Für die orthogonale Gruppe ist $O^tO = OO^t = 1$. Für das Skalarprodukt gilt die Formel $(a, Ob) = (O^t a, b)$.
- b) Zeigen Sie (per Index-Rechnung), dass Drehmatrizen orthogonal sind.
- c) Klassifizieren Sie die beiden Matrizen. Sind es Drehmatrizen?

$$A = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}; B = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

d) Gegeben seien die Vektoren $x, x', y, y, ' \in \mathbb{R}^n$, die sich durch Drehungen mittels Orthogonalmatrizen O gemäß x' = Ox und y' = Oy transformieren. Es gelte y = Ax. Wie ist die quadratische Matrix A zu transformieren, damit y' = A'x' (Kovarianz) gilt ? Beweisen Sie $A' = OAO^T$.