GONI: PRIMES REPRESENTED BY BINARY QUADRATIC FORMS

PETE L. CLARK, JACOB HICKS, HANS PARSHALL, AND KATHERINE THOMPSON

1. Introduction

An imaginary quadratic discriminant is a negative integer Δ which is 0 or 1 modulo 4. For a given imaginary quadratic discriminant Δ , let $C(\Delta)$ be the set of $\mathrm{SL}_2(\mathbb{Z})$ -equivalence classes of primitive positive definite integral binary quadratic forms of discriminant Δ . Then $C(\Delta)$ is a finite set [1, Thm. 2.13] which, when endowed with Gauss's composition law, becomes a finite abelian group, the class group of discriminant Δ [1, Thm. 3.9].

Thus a form q of discriminant Δ determines an element $[q] \in C(\Delta)$. A quadratic form q is **ambiguous** if $[q]^2 = 1$. For a $q = \langle A, B, C \rangle$, the form $\overline{q} = \langle A, -B, C \rangle$ represents the inverse of [q] in $C(\Delta)$ [1, Thm. 3.9]. Note that q and \overline{q} are $SL_2(\mathbb{Z})$ -equivalent: $\overline{q}(x,y) = q(x,-y)$, so q and \overline{q} represent the same integers.

A discriminant Δ is **idoneal** if every $q \in C(\Delta)$ is ambiguous; this holds iff $C(\Delta) \cong (\mathbb{Z}/2\mathbb{Z})^r$ for some $r \in \mathbb{N}$. A quadratic form is **idoneal** if its discriminant is idoneal. A discriminant Δ is **bi-idoneal** if $C(\Delta) \cong (\mathbb{Z}/4\mathbb{Z}) \oplus (\mathbb{Z}/2\mathbb{Z})^r$ for some $r \in \mathbb{N}$. A quadratic form q is **bi-idoneal** if Δ is bi-idoneal and q is not ambiguous.

A full congruence class of primes is the set of all primes $p \nmid 2\Delta$ with $p \equiv n \pmod{N}$ for fixed coprime positive integers n and N. We say q is **regular** if the set of primes $p \nmid 2\Delta$ represented by q is a union of full congruence classes.

Recall Fermat's Two Squares Theorem: an odd prime p is of the form $x^2 + y^2$ iff $p \equiv 1 \pmod 4$. In our terminology then the form $q(x,y) = x^2 + y^2$ is regular. Indeed, much classical work on quadratic forms can be phrased as showing that certain specific binary quadratic forms represent full congruence classes of primes, or are regular. Among primitive, positive definite, integral binary quadratic forms, how many are regular? How many represent full congruence classes of primes? Remarkably, this problem has recently been solved (conditionally on GRH) but the answer does not appear explicitly in the literature. Here it is:

Theorem 1. Let q be a primitive, positive definite integral binary quadratic form.

- a) The following are equivalent:
- (i) q is regular.
- (ii) q represents a full congruence class of primes.
- (iii) q is either idoneal or bi-idoneal.
- b) There are at least 425 and at most 432 imaginary quadratic discriminants which are either idoneal or bi-idoneal. These 425 known discriminants give rise to precisely 2779 $SL_2(\mathbb{Z})$ -equivalence classes of regular forms: see Table 1.
- $c) \ \ \textit{The list of idoneal and bi-idoneal discriminants of part b)} \ \ \textit{is complete among}$

all imaginary quadratic discriminants Δ with $|\Delta| \leq 80604484$. Assuming the Riemann Hypothesis for Dedekind zeta functions of imaginary quadratic fields, there are precisely 425 imaginary discriminants which are idoneal or bi-idoneal.

For these 2779 regular forms, it is natural to ask for *explicit* congruence conditions, as in Fermat's Two Squares Theorem. The following result accomplishes this.

Theorem 2. Let $q = \langle A, B, C \rangle$ be one of the 2779 primitive, positive definite integral binary quadratic forms in Table 1, and let $\Delta = B^2 - 4AC$ be the discriminant of q. For a prime $p \nmid 2\Delta$, the following are equivalent:

- a) The quadratic form $q \mathbb{Z}$ -represents p: there are $x, y \in \mathbb{Z}$ with q(x, y) = p.
- b) All of the following conditions hold:
- (i) $\left(\frac{\Delta}{p}\right) = 1$.
- (ii) For each odd prime $m \mid \Delta$, if $m \nmid A$, then $(\frac{p}{m}) = (\frac{A}{m})$, and if $m \nmid C$, then $(\frac{p}{m}) = (\frac{C}{m})$.
- (iii) If $16 \mid \Delta$ and $2 \nmid A$, then $p \equiv A \pmod{4}$. If $16 \mid \Delta$ and $2 \nmid C$, then $p \equiv C \pmod{4}$.
- (iv) If $32 \mid \Delta$ and $2 \nmid A$, then $p \equiv A \pmod{8}$. If $32 \mid \Delta$ and $2 \nmid C$, then $p \equiv C \pmod{8}$.

We will prove Theorem 1: more precisely, we will deduce it from Gauss's genus theory together with results of Meyer, Weinberger, Louboutin, Kaplan-Williams and Voight. We do this mostly for completeness and perspective. Our main goal is quite different: we will give a new proof of Theorem 2 using none of Gauss's genus theory but instead using elementary ideas from the **Geometry of Numbers**. Our methods build on the classical proof of the Two Squares Theorem via Minkowski's Convex Body Theorem and its recent generalization to the 65 principal idoneal forms $x^2 + Dy^2$ of T. Hagedorn [6], although it is simpler to use the sharp bounds on minima of binary quadratic forms which go back to Lagrange and Legendre.

We may compare the two methods as follows: let q be a binary form of discriminant Δ , and let $p \nmid 2\Delta$ be a prime. To analyze the question of whether q represents p, genus theory begins with the observation that $(\frac{\Delta}{p}) = 1$ iff some $q' \in C(\Delta)$ represents p and attempts to rule out the representation of p by all forms $q' \neq q$. Our method begins with a small multiple theorem: if $(\frac{\Delta}{p}) = 1$, then q represents some multiple kp of p with k bounded in terms of Δ and via a combination of elimination and reduction attempts to show that we may take k = 1. Our method is more computational – at present it is more a technique than a theory – and the reasons for its success in all 2779 cases are rather mysterious! However, one can use the technique in settings where the genus theory of binary forms does not apply: in [3] and [4] some of us use these ideas to establish universality of most (but not yet all) of the 112 positive definite quaternary universal forms of square discriminant. In [5], the first author extends the method to a technique for proving representation theorems for certain quadratic forms in 2d variables over a normed Dedekind domain.

This work was done in the context of a VIGRE Research Group at the University of Georgia throughout the 2011-2012 academic year. The group was led by the first author, with participants the other three authors together with Christopher Drupieski (postdoc), Brian Bonsignore, Harrison Chapman, Lauren Huckaba, David Krumm, Allan Lacy Mora, Nham Ngo, Alex Rice, James Stankewicz, Lee Troupe, Nathan Walters (doctoral students) and Jun Zhang (masters student).

2. Proof of Theorem 1

2.1. Part a).

- (i) \implies (ii): By [1, Thm. 9.12], q represents infinitely many prime numbers. Having established this, the implication is immediate.
- (ii) \Longrightarrow (iii): Suppose that there are coprime integers n and N such that for all primes p, if $p \nmid 2\Delta$ and $p \equiv n \pmod{N}$, then q represents p. By [9, Thm. 2], if q is ambiguous then Δ is idoneal hence so is q; whereas if q is not ambiguous then Δ is bi-idoneal and hence since q is not ambiguous so is q.
- (iii) \Longrightarrow (i): Let $G(\Delta) = C(\Delta)/C(\Delta)^2$, and let $r: C(\Delta) \to G(\Delta)$ be the quotient map. The fibers of r are called **genera**; they are cosets of $C(\Delta)^2$, the **principal genus**. Let $c = \#C(\Delta)/\#G(\Delta)$. Thus Δ is identified iff c = 1 and bi-identified iff c = 2. For $q \in C(\Delta)$, we define g(q) to be the set of $n \in (\mathbb{Z}/\Delta\mathbb{Z})^{\times}$ which are represented by q. We will need the following tenets of genus theory:
- For all $q, q' \in C(\Delta)$, $g(q) = g(q') \iff r(q) = r(q')$ [1, pp. 53-54].
- If $q \in C(\Delta)^2$, then g(q) is a subgroup, H, of $(\mathbb{Z}/\Delta\mathbb{Z})^{\times}$ [1, Lem. 2.24, Thm. 3.15].
- For all $q \in C(\Delta)$, g(q) is a coset of H in $(\mathbb{Z}/\Delta\mathbb{Z})^{\times}$ [1, Lem. 2.24, Thm. 3.15].
- Let n be a positive integer which is relatively prime to 2Δ . Then there is $q \in C(\Delta)$ representing n iff $\left(\frac{\Delta}{n}\right) = 1$ [1, Thm. 2.16].

In particular, let $p \nmid 2\Delta$ be an odd prime. Then if $\left(\frac{\Delta}{p}\right) = -1$, no $q \in C(\Delta)$ represents p, whereas if $\left(\frac{\Delta}{p}\right) = 1$, then some $q \in C(\Delta)$ represents p, and if $q, q' \in C(\Delta)$ both represent p, then r(q) = r(q').

Suppose Δ is idoneal, let $q \in C(\Delta)$, and let $p \nmid 2\Delta$ be a prime. If q represents p then $p \in g(q)$; conversely, if $p \in g(q)$ then $\left(\frac{\Delta}{p}\right) = 1$, so some $q' \in C(\Delta)$ represents p and any such q' must lie in the same genus as q. But since Δ is idoneal, c = 1, and q is the only form in r(q). Thus q represents p iff $p \in g(q)$, so q is regular.

Suppose Δ is bi-idoneal, let $q \in C(\Delta)$ be a nonambiguous form, and let $p \nmid 2\Delta$ be a prime. As above, if q represents p then $p \in g(q)$; conversely, if $p \in g(q)$ then some $q' \in r(q)$ represents p. But since c = 2, $r(q) = \{[q], [\overline{q}]\} = \{[q], [q]^{-1}\}$, and q and \overline{q} represent the same primes. Thus q represents p iff $p \in g(q)$, so q is regular.

Remark 2.1: That (ii) \implies (iii) for fundamental discriminants was first proven by Kusaba [10] using class field theory. In [9] the general case is proved using Gauss's genus theory together with a theorem of Meyer [12] See [7] for a proof of Meyer's theorem and a second proof of (ii) \implies (iii), both using class field theory.

2.2. Part b).

That the total number of idoneal and bi-idoneal discriminants lies between 425 and 432 is [14, Thm. 8.2]. The known 425 discriminants give rise to 2779 idoneal and bi-idoneal forms: see the Appendix.

2.3. Part c).

This is [14, Prop. 5.1] and [14, Thm. 8.6]. The latter result builds on work of Weinberger [15] and Louboutin [11].

3. A SMALL MULTIPLE THEOREM

In this section (only) we consider not necessarily positive definite forms.

Theorem 3. Let $q = \langle A, B, C \rangle$ be a real binary form with discriminant Δ .

- a) If $\Delta < 0$, there are integers x and y, not both zero, such that $|q(x,y)| \leq \sqrt{\frac{|\Delta|}{3}}$.
- b) If $\Delta > 0$, there are integers x and y, not both zero, such that $|q(x,y)| \leq \sqrt{\frac{\Delta}{5}}$.

Proof. The core of the proof is the following "reduction lemma": if x_0, y_0 are coprime integers with $q(x_0, y_0) = M \neq 0$, then there are $b, c \in \mathbb{R}$ such that q is $\mathrm{SL}_2(\mathbb{Z})$ -equivalent to $Mx^2 + bxy + cy^2$ with $-|M| < b \leq |M|$. For the details, see e.g. [8, Thm. 453, Thm. 454].

A lattice $\Lambda \subset \mathbb{R}^N$ is the set of all \mathbb{Z} -linear combinations of an \mathbb{R} -basis $\mathfrak{b} = \{v_1, \ldots, v_N\}$ for \mathbb{R}^N . If $M_{\mathfrak{b}} \in M_N(\mathbb{R})$ has columns v_1, \ldots, v_N , then $\Lambda = M_{\mathfrak{b}}\mathbb{Z}^N$.

Proposition 4. Let $q = \langle A, B, C \rangle$ be a form of discriminant Δ . Let p be an odd prime with $(\frac{\Delta}{p}) = 1$. Then there is an index p sublattice $\Lambda_p \subset \mathbb{Z}^2$ such that for all $(x,y) \in \Lambda_p$, $q(x,y) \equiv 0 \pmod{p}$.

Proof. If $p \mid A$, take $\Lambda_p = \begin{bmatrix} 1 & 0 \\ 0 & p \end{bmatrix} \mathbb{Z}^2$. Then for all $(x,y) \in \Lambda_p$, (x,y) = (s,pt) for some $s,t \in \mathbb{Z}$. If $p \nmid A$, by the quadratic formula in $\mathbb{Z}/p\mathbb{Z}$, there exists $r \in \mathbb{Z}$ with $Ar^2 + Br + C \equiv 0 \pmod{p}$. We set $\Lambda_p = M_p\mathbb{Z}^2$ for $M_p = \begin{bmatrix} p & r \\ 0 & 1 \end{bmatrix}$. For all $(x,y) \in \Lambda_p$, (x,y) = (ps + rt,t) for some $s,t \in \mathbb{Z}$. Thus, in either case, $q(x,y) \equiv 0 \pmod{p}$. \square

Theorem 5. Let $q = \langle A, B, C \rangle$ be integral of discriminant Δ . Let p be an odd prime with $(\frac{\Delta}{p}) = 1$.

- a) If q is positive definite, there are $x,y,z\in\mathbb{Z}$ with q(x,y)=kp and $1\leq k\leq \sqrt{\frac{|\Delta|}{3}}$.
- b) If $\Delta > 0$, there are $x, y, z \in \mathbb{Z}$ with q(x, y) = kp and $1 \le |k| \le \sqrt{\frac{\Delta}{5}}$.

Proof. By Proposition 4, there is an index p sublattice $\Lambda_p = M_p \mathbb{Z}^2 \subset \mathbb{Z}^2$ with $q(x,y) \equiv 0 \pmod{p}$ for all $(x,y) \in \Lambda_p$. Thus the quadratic form $q'(x,y) = q(M_p(x,y))$ has discriminant $(\det M_p)^2 \Delta = p^2 \Delta$ and is such that $q'(x,y) \equiv 0 \pmod{p}$ for all $(x,y) \in \mathbb{Z}^2$. Apply Theorem 3 to q': if q is positive definite, there are integers x and y, not both zero, such that $|q(M_p(x,y))| = |q'(x,y)| \leq \left(\sqrt{\frac{|\Delta|}{3}}\right)p$.

Thus q(x,y)=kp with $1\leq |k|\leq \sqrt{\frac{|\Delta|}{3}};$ since q is positive definite, k>0. If $\Delta>0,$ there are integers x and y, not both zero, such that $|q(M_p(x,y))|=|q'(x,y)|\leq \left(\sqrt{\frac{\Delta}{5}}\right)p,$ so q(x,y)=kp with $1\leq |k|\leq \sqrt{\frac{\Delta}{5}}.$

Remark 3.1: Taking $q = \langle 1, 1, 1 \rangle$ (resp. $\langle 1, 1, -1 \rangle$) shows that the bound in Theorem 5a) (resp. Theorem 5b) is sharp.

4. 2779 Regular Forms

In this section we will use Theorem 5 to prove Theorem 2.

Henceforth "forms" are primitive, positive definite integral binary quadratic forms.

4.1. Necessity.

Proposition 6. Let $q = \langle A, B, C \rangle$ be a form with discriminant Δ . Let p be an odd prime not dividing Δ . Suppose there exist $x, y \in \mathbb{Z}$ with q(x, y) = p. Then p satisfies conditions (i) - (iv) from Theorem 2.

Proof. Since $\Delta(\langle A, B, C \rangle) = \Delta(\langle C, B, A \rangle)$, we may assume in $m \nmid A$ in part (ii) and $2 \nmid A$ in parts (iii) and (iv); otherwise, q would not be primitive.

(i) If both x and y were divisible by p, $p^2 \mid q(x,y) = p$, a contradiction. If $p \nmid y$, $A(xy^{-1})^2 + B(xy^{-1}) + C \equiv 0 \pmod{p}$. Let $r \in \mathbb{Z}$ with $r \equiv xy^{-1} \pmod{p}$. Then

$$(2Ar + B)^2 = 4A(Ar^2 + Br + C) + B^2 - 4AC \equiv \Delta \pmod{p}$$

As $p \nmid \Delta$, we conclude $(\frac{\Delta}{p}) = 1$. The case $p \nmid x$ follows similarly.

(ii) Let m be an odd prime such that $m \mid \Delta$ and $m \nmid A$. Via a change of variables we can diagonalize q over $\mathbb{Z}/m\mathbb{Z}$ as $\langle A, 0, C - B^2(4A)^{-1} \rangle$, so there are $w, z \in \mathbb{Z}$ with

$$p = q(x, y) \equiv Aw^2 + (C - B^2(4A)^{-1})z^2 \pmod{m}$$
.

Multiplying by 4A gives $4Ap \equiv 4A^2w^2 \pmod{m}$. Hence $p \equiv Aw^2 \pmod{m}$. It follows that $(\frac{p}{m}) = (\frac{A}{m})$.

(iii) Suppose $2 \nmid A$ and $\Delta \equiv 0 \pmod{16}$. We have $B^2 \equiv 4AC \pmod{16}$, so $B = 2B_0$ for some $B_0 \in \mathbb{Z}$. Then $4(B_0^2 - AC) \equiv 0 \pmod{16}$, so $B_0^2 - AC \equiv 0 \pmod{4}$.

Case 1: B_0 is odd. Then $A \equiv C \equiv \pm 1 \pmod{4}$. Now, $Ax^2 + 2B_0xy + Cy^2 = p$, so $x^2 + y^2 \equiv p \equiv 1 \pmod{2}$, and $x \not\equiv y \pmod{2}$. If $y \equiv 0 \pmod{2}$, $p \equiv A \pmod{4}$ as claimed. Similarly if $x \equiv 0 \pmod{2}$, $p \equiv C \pmod{4}$. But since $A \equiv C \pmod{4}$, $p \equiv A \pmod{4}$ as claimed.

Case 2: B_0 is even. Then $AC \equiv 0 \pmod{4}$. As $2 \nmid A$, $C \equiv 0 \pmod{4}$. Hence, $Ax^2 \equiv p \pmod{4}$, and so $p \equiv A \pmod{4}$ as claimed.

(iv) Suppose $2 \nmid A$ and $\Delta \equiv 0 \pmod{32}$. Put $B = 2B_0$, so $B_0^2 - AC \equiv 0 \pmod{8}$. Case 1: B_0 is odd, Then $A \equiv C \pmod{2}$ and in fact $A \equiv C \pmod{8}$. Thus $x^2 + y^2 \equiv p \equiv 1 \pmod{2}$, so $x \not\equiv y \pmod{2}$. If $y \equiv 0 \pmod{2}$, set $y = 2y_0$. Then $Ax^2 + 4y_0(B_0x + Cy_0) = p$. If y_0 is even, then $Ax^2 \equiv A \equiv p \pmod{8}$. If instead y_0 is odd, then since B_0 , x, and x are odd, x are odd, x are odd, x and x are odd, x are odd, x and x are odd, x are odd, x are odd.

Case 2: B_0 is even. Put $B_0 = 2B_1$ and $C = 4C_0$, so $B_1^2 \equiv AC_0 \pmod{2}$ and

$$p = Ax^{2} + Bxy + Cy^{2} = Ax^{2} + 4y(B_{1}x + C_{0}y).$$

Thus x is odd and $x^2 \equiv 1 \pmod{8}$. If y is even, then $p \equiv Ax^2 \equiv A \pmod{8}$. If y is odd then either $B_1 \equiv C_0 \equiv 0 \pmod{2}$ so $p \equiv Ax^2 \equiv A \pmod{8}$ or $B_1 \equiv C_0 \equiv 1 \pmod{2}$, so $B_1x + C_0y$ is even and once again $p \equiv Ax^2 \equiv A \pmod{8}$.

4.2. Sufficiency.

Our proof that (b) implies (a) in Theorem 2 is handled individually for each of the 2779 forms. For each form, we apply a three step process. First, we use Theorem 5 to demonstrate that our form represents a small multiple of a prime. In the second step, we *eliminate* certain multiples from consideration. In the final step, we *reduce* the remaining multiples to find a representation of p.

Example 4.1: Consider $q = \langle 3, 3, 5 \rangle$ with $\Delta = -51$. Let p be an odd prime not dividing Δ that satisfies conditions (i) - (iv) of Theorem 2.

Step 1: From condition (i) of Theorem 2, $(\frac{\Delta}{n}) = 1$. Apply Theorem 5: there are

 $x, y, k \in \mathbb{Z}$ with q(x, y) = kp and $1 \le k \le \sqrt{\frac{51}{3}} = 4.123...$

Step 2 (Elimination): We will show that the cases k = 2 and k = 3 cannot occur.

- Suppose q(x,y)=2p. Then x and y are both even, so $q(x,y)=2p\equiv 0\pmod 4$, contradicting the fact that p is odd.
- Suppose q(x,y)=3p. Then $q(x,y)\equiv 5y^2\equiv 0\pmod 3$, so $3\mid y$. Hence, $q(x,y)\equiv 3x^2\equiv 3p\pmod 9$, so $\left(\frac{p}{3}\right)=1$. As $3\mid \Delta$, from condition (ii) of Theorem $2, \left(\frac{p}{3}\right) = \left(\frac{5}{3}\right) = -1$: contradiction.

Note that we cannot hope to eliminate the possibility of k = 4: indeed, we want to show that there are $x,y\in\mathbb{Z}$ such that q(x,y)=p, and then necessarily q(2x, 2y) = 4p. (The same holds for any value of k which is a perfect square.) Step 3 (Reduction): We must show that a representation of 4p by q implies a representation of p by q. In this case, this is easy: suppose q(x,y) = 4p. Then as above x and y are both even, so $q(\frac{x}{2}, \frac{y}{2}) = p$.

In Lemmas 7 and 8, we collect a number of congruence restrictions that apply assuming a form q represents kp. In particular, for our 2779 forms, we use Lemma 7 in the elimination step and Lemma 8 in the reduction step.

Lemma 7 (Elimination). Let $q = \langle A, B, C \rangle$ be a form of discriminant Δ . Let $p \nmid 2\Delta$ be a prime. Suppose there are $x, y, k \in \mathbb{Z}, k \geq 1$, with q(x, y) = kp.

- a) Let $a \in \mathbb{Z}$, a > 1. Suppose $2^{a+2} \mid \Delta$ and $2^a \mid B$. If $p \equiv A \pmod{2^a}$, then k is a square modulo 2^a .
- b) If k is even, A, C are odd, $B \equiv 0 \pmod{4}$ and $A + C \not\equiv 2 \pmod{4}$, then $4 \mid k$.

- c) Let m be an odd prime dividing Δ . If $(\frac{p}{m}) = (\frac{A}{m})$, then k is a square modulo m.
 d) Let m be an odd prime dividing k. If $(\frac{\Delta}{m}) = -1$ or $m^2 \mid \Delta$, then $m^2 \mid k$.
 e) Let m be an odd prime dividing $\gcd(\Delta, k)$ such that $m^2 \nmid k$. If $(\frac{p}{m}) = (\frac{A}{m})$ then ${k/m \choose m} = {-\Delta/m \choose m}.$

Proof. a) Since $\Delta \equiv B^2 \equiv 0 \pmod{2^{a+2}}$, and A is odd, $2^a \mid C$. Then $kp \equiv Ax^2 \equiv$ $px^2 \pmod{2^a}$, and since p is odd, this implies $k \equiv x^2 \pmod{2^a}$.

- b) We have $q(x,y) \equiv Ax^2 + Cy^2 \equiv A(x^2 y^2) \equiv kp \pmod{4}$. Since k is even, $x \equiv y$ (mod 2) and thus $kp \equiv A(x^2 - y^2) \equiv 0 \pmod{4}$. Since p is odd, $4 \mid k$.
- c) Via a change of variables we can diagonalize q over $\mathbb{Z}/m\mathbb{Z}$ as $\langle A, 0, C-B^2(4A)^{-1} \rangle$, so there are $w, z \in \mathbb{Z}$ with

$$kp = q(x, y) \equiv Aw^2 + (C - B^2(4A)^{-1})z^2 \pmod{m}$$
.

Thus $4Akp \equiv 4A^2w^2 \pmod{m}$, implying $kp \equiv Aw^2 \pmod{m}$. As $(\frac{p}{m}) = (\frac{A}{m}) \neq 0$, k is a square modulo m.

d) Suppose first that $(\frac{\Delta}{m}) = -1$. We have $q(x,y) \equiv 0 \pmod{m}$. If $m \nmid y$, then $q(xy^{-1},1) \equiv 0 \pmod{m}$, so Δ is a square modulo m: contradiction. So $m \mid y$. Then $Ax^2 \equiv 0 \pmod{m}$, and $m \nmid A$, since otherwise $\Delta \equiv B^2 \pmod{m}$. Hence $m \mid x$. Then $m^2 \mid q(x,y) = kp$, and since $(\frac{\Delta}{p}) = 1$, we have $p \neq m$ and $m^2 \mid k$.

Next suppose $m^2 \mid \Delta$. If $m \mid \gcd(A, C)$, since $m \mid \Delta$ we would also have $m \mid B$, contradicting the primitivity of q. We may assume without loss of generality that $m \nmid A$. As $B^2 - 4AC \equiv 0 \pmod{m}$, $C \equiv B^2(4A)^{-1} \pmod{m}$. Hence, $Ax^2 + Bxy + B^2(4A)^{-1}y^2 \equiv 0 \pmod{m}$, so by multiplying through by 4A,

$$4A^2x^2 + 4ABxy + B^2y^2 \equiv (2Ax + By)^2 \equiv 0 \pmod{m}$$
.

Since m is prime, $2Ax + By \equiv 0 \pmod{m}$, so $4A^2x^2 + 4ABxy + B^2y^2 \equiv 0 \pmod{m^2}$. As $B^2 - 4AC \equiv 0 \pmod{m^2}$, we have $B^2(4A)^{-1} \equiv C \pmod{m^2}$. Then

$$4Akp \equiv 4A^2x^2 + 4ABxy + B^2y^2 \equiv 0 \pmod{m^2}$$
.

Since $p \nmid \Delta$, $m \neq p$. Then m does not divide 4Ap, so $m^2 \mid k$.

e) Since $m \mid \Delta$ and $p \nmid \Delta$, $m \neq p$. We may write $\Delta = m\Delta_0$ and $k = mk_0$ with $\Delta_0, k_0 \in \mathbb{Z}$ and $m \nmid k_0$. Then

$$Ax^2 + Bxy + Cy^2 \equiv mk_0p \pmod{m^2}.$$

As in part d),

$$Ax^{2} + Bxy + (B^{2}(4A)^{-1})y^{2} \equiv 0 \pmod{m^{2}}$$
.

Subtracting gives

$$(C - B^2(4A^{-1}))y^2 \equiv mk_0p \pmod{m^2}$$
.

Since $gcd(m, k_0p) = 1$, it follows that $m \nmid y$. Multiplying through by 4A, we get

$$-m\Delta_0 y^2 \equiv (4AC - B^2)y^2 \equiv 4Amk_0 p \pmod{m^2}.$$

Then
$$(4Ak_0p + \Delta_0y^2)m \equiv 0 \pmod{m^2}$$
, so $4Apk_0 \equiv -\Delta_0y^2 \pmod{m}$. It follows that $(\frac{-\Delta_0}{m}) = (\frac{-\Delta_0y^2}{m}) = (\frac{4Apk_0}{m}) \equiv (\frac{A}{m})(\frac{p}{m})(\frac{k_0}{m}) = (\frac{k_0}{m})$.

Lemma 8 (Reduction). Let $q = \langle A, B, C \rangle$ have discriminant Δ . Let p be an odd prime not dividing Δ . Suppose there exist $x, y, k \in \mathbb{Z}$ with q(x, y) = kp and $k \geq 1$. a) Let $a \in \mathbb{Z}$ with $a \geq 1$. If $p \equiv A \pmod{2^a}$, then $q(x, y) \equiv Ak \pmod{2^a k}$. b) Let $a \in \mathbb{Z}$ with $a \geq 0$, and let $m \mid \Delta$ be an odd prime. If $m^{2a} \mid k$, $m^{2a+1} \nmid k$, and $(\frac{p}{m}) = (\frac{A}{m})$, then we have $(\frac{q(x,y)/m^{2a}}{m}) = (\frac{Ak/m^{2a}}{m})$.

Proof. a) Write
$$p = 2^a \ell + A$$
. Then $q(x, y) \equiv k(2^a \ell + A) \equiv Ak \pmod{2^a k}$.
b) Write $k = m^{2a} k_0$. Then $(\frac{q(x, y)/m^{2a}}{m}) = (\frac{k_0 p}{m}) = (\frac{Ak_0}{m})$.

Proof of b) \implies **a) in Theorem 2**: Let $q = \langle A, B, C \rangle$ be one of the 2779 regular forms, and let $p \nmid 2\Delta$ be a prime satisfying conditions (i) - (iv) from Theorem 2.

Step 1: By Theorem 5 there are $x, y, k \in \mathbb{Z}$ with q(x, y) = kp and $1 \le k \le \sqrt{\frac{|\Delta|}{3}}$.

Step 2 (Elimination): For each $k \in \{2, \dots, \lfloor \sqrt{\frac{|\Delta|}{3}} \rfloor\}$, suppose q(x,y) = kp. If k does not satisfy the conditions of Lemma 7, we have a contradiction. We similarly have a contradiction if k does not satisfy the conditions imposed on it by applying Lemma 7 to the equivalent forms $q(y,x) = \langle C, B, A \rangle$ and $q(x+y,x+2y) = \langle A+B+C, 2A+3B+4C, A+2B+4C \rangle$. We eliminate these k from consideration.

Step 3 (Reduction): For each $k \in \{2, \ldots, \lfloor \sqrt{\frac{|\Delta|}{3}} \rfloor\}$ that was not eliminated in Step 2, assume q(x,y) = kp. Using a computer, we implemented the following algorithm to verify that a reduction to a representation of p by q is possible in every case. First, we construct the finite set of matrices

$$\mathcal{M} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{Z}) \mid a \ge 0, \ q(a,c) = kA \text{ and } q(b,d) = kC \right\}$$

by enumerating the representations of kA and kC by q. Given $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}$,

$$q(M(x,y)) = kAx^{2} + (2abA + (ad + bc)B + 2cdC)xy + kCy^{2}.$$

Thus q(M(x,y)) = kq(x,y) iff 2abA + (ad + bc)B + 2cdC = kB. Computer calculations shows that in each case there exists some $M \in \mathcal{M}$ such that q(M(x,y)) = kq(x,y). Fixing such an M, we further check whether for each $(x,y) \in \mathbb{Z}^2$ with $q(x,y) \equiv 0 \pmod{k}$ that also satisfies the congruence restrictions imposed by Lemma 8, the pair $(x_0,y_0) = M(x,y)$ satisfies $x_0 \equiv y_0 \equiv 0 \pmod{k}$. It suffices to check this condition modulo $k\Delta$, which leads to a finite search. In all cases this search successfully produces such an $M \in \mathcal{M}$. We can then can set $x_0 = kw$ and $y_0 = kz$, so $q(M(x,y)) = q(kw,kz) = k^2p$ and q(w,z) = p.

Example 4.2: Consider $q=\langle 2,1,7\rangle$ with $\Delta=-55$. Let p be an odd prime not dividing Δ that satisfies conditions (i) - (iv) of Theorem 2.

Step 1: From condition (i) of Theorem 2, $(\frac{\Delta}{p}) = 1$. Thus, applying Theorem 5 yields $x, y, k \in \mathbb{Z}$ with q(x, y) = kp and $1 \le k \le \sqrt{\frac{55}{3}} = 4.28...$.

Step 2: By Lemma 7c), k is a square modulo 5. As $(\frac{2}{5}) = (\frac{3}{5}) = -1$, $k \in \{1, 4\}$.

Step 3: Suppose q(x,y)=4p. One might try to argue, as in Example 4.1, that both x and y are even. However, this need not be the case: e.g. q represents 7 and $q(3,1)=4\cdot 7$. Applying the algorithm described above we obtain

$$\mathcal{M} = \left\{ \begin{bmatrix} 1 & -3 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} \right\}.$$

Set $M=\begin{bmatrix}1&-3\\-1&-1\end{bmatrix}$. Set $(x_0,y_0)=M(x,y)=(x-3y,-x-y)$ and note $q(x_0,y_0)=4q(x,y)=16p$. If we knew $x_0\equiv y_0\equiv 0\pmod 4$, then we could divide through by 4 to obtain an integer representation of p. Certainly we need only consider $(x,y)\in\mathbb{Z}^2$ with $q(x,y)\equiv 0\pmod 4$. Further, since we're assuming $(\frac{p}{5})=(\frac{2}{5})=-1$ and $(\frac{p}{11})=(\frac{2}{11})=-1$, condition (ii) of Theorem 2 implies we need only consider $(x,y)\in\mathbb{Z}^2$ with $(\frac{q(x,y)}{5})=(\frac{4p}{5})=-1$ and $(\frac{q(x,y)}{11})=(\frac{4p}{11})=-1$. By an exhaustive search modulo 220, we verify the only such $(x,y)\in\mathbb{Z}^2$ yield $x_0\equiv y_0\equiv 0\pmod 4$. Setting $x_0=4w$ and $y_0=4z$, we have $q(x_0,y_0)=32w^2+16wz+224z^2=16p$. Dividing through by 16, we get $q(w,z)=2w^2+wz+7z^2=p$.

References

- [1] D.A. Cox, Primes of the Form $x^2 + ny^2$, John Wiley & Sons Inc., 1989.
- [2] C.F. Gauss, Disquisitiones Arithmeticae (English Edition), trans. A.A. Clarke, Springer-Verlag, 1986.
- [3] P.L. Clark, J. Hicks, K. Thompson and N. Walters, GoNII: Universal quaternary quadratic forms, submitted.
- [4] J. Hicks and K. Thompson, GoNIII: More universal quaternary quadratic forms, in preparation.
- [5] P.L. Clark, Geometry of numbers explained, in preparation.
- [6] T.R. Hagedorn, Primes of the Form $x^2 + ny^2$ and the Geometry of (Convenient) Numbers, preprint.
- [7] F. Halter-Koch, Representation of prime powers in arithmetical progressions by binary quadratic forms. Les XXIIèmes Journées Arithmetiques (Lille, 2001). J. Théor. Nombres Bordeaux 15 (2003), no. 1, 141-149.

- [8] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers. Sixth edition. Revised by D. R. Heath-Brown and J. H. Silverman. Oxford, 2008.
- [9] P. Kaplan and K.S. Williams, Representation of Primes in Arithmetic Progression by Binary Quadratic Forms, Journal of Number Theory (1993), 61-67.
- [10] T. Kusaba, Remarque sur la distribution des nombres premiers. C. R. Acad. Sci. Paris Sér. A-B 265 1967 A405-A407.
- [11] S. Louboutin, Minorations (sous l'hypothèse de Riemann généralisée) des nombres de classes des corps quadratiques imaginaires. Application. C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 12, 795-800.
- [12] A. Meyer, Über einen Satz von Dirichlet. J. Reine Angew. Math. 103 (1888), 98-117.
- [13] W. A. Stein et al., Sage Mathematics Software (Version 4.7.1), The Sage Development Team, 2011, http://www.sagemath.org
- [14] J. Voight, Quadratic forms that represent almost the same primes, Math. Comp. 76 (2007), 1589-1617.
- [15] P.J. Weinberger, Exponents of the class groups of complex quadratic fields. Acta Arith. 22 (1973), 117-124.

Appendix

In Table 1, we list the reduced representative for each of the 2779 $SL_2(\mathbb{Z})$ equivalence classes of regular forms. The discriminants were calculated by Voight in [14]. We redid this calculation, and in so doing found a minor error of tabulation which Voight confirmed. The forms were generated using the Sage software package [13].

Table 1: Repr	resentatives for	or 2779	$\mathrm{SL}_2(\mathbb{Z})$ -e	quivalence	Classes	of Regu	lar Forms
$\langle A, B, C \rangle$		$\langle A, B \rangle$	$C \setminus I$	$ \Lambda $	(A. B.	$C \setminus \bot$	$ \Lambda $

$ \Delta $	$\langle A, B, C \rangle$	$ \Delta $	$\langle A, B, C \rangle$	$ \Delta $	$\langle A, B, C \rangle$	$ \Delta $	$\langle A, B, C \rangle$
3	$\langle 1, 1, 1 \rangle$	4	$\langle 1, 0, 1 \rangle$	7	$\langle 1, 1, 2 \rangle$	8	$\langle 1, 0, 2 \rangle$
11	$\langle 1, 1, 3 \rangle$	12	$\langle 1, 0, 3 \rangle$	15	$\langle 1, 1, 4 \rangle$	15	$\langle 2, 1, 2 \rangle$
16	$\langle 1, 0, 4 \rangle$	19	$\langle 1, 1, 5 \rangle$	20	$\langle 1, 0, 5 \rangle$	20	$\langle 2, 2, 3 \rangle$
24	$\langle 1, 0, 6 \rangle$	24	$\langle 2, 0, 3 \rangle$	27	$\langle 1, 1, 7 \rangle$	28	$\langle 1, 0, 7 \rangle$
32	$\langle 1, 0, 8 \rangle$	32	$\langle 3, 2, 3 \rangle$	35	$\langle 1, 1, 9 \rangle$	35	$\langle 3, 1, 3 \rangle$
36	$\langle 1, 0, 9 \rangle$	36	$\langle 2, 2, 5 \rangle$	39	$\langle 2, \pm 1, 5 \rangle$	40	$\langle 1, 0, 10 \rangle$
40	$\langle 2, 0, 5 \rangle$	43	$\langle 1, 1, 11 \rangle$	48	$\langle 1, 0, 12 \rangle$	48	$\langle 3, 0, 4 \rangle$
51	$\langle 1, 1, 13 \rangle$	51	$\langle 3, 3, 5 \rangle$	52	$\langle 1, 0, 13 \rangle$	52	$\langle 2, 2, 7 \rangle$
55	$\langle 2, \pm 1, 7 \rangle$	56	$\langle 3, \pm 2, 5 \rangle$	60	$\langle 1, 0, 15 \rangle$	60	$\langle 3, 0, 5 \rangle$
63	$\langle 2, \pm 1, 8 \rangle$	64	$\langle 1, 0, 16 \rangle$	64	$\langle 4, 4, 5 \rangle$	67	$\langle 1, 1, 17 \rangle$
68	$\langle 3, \pm 2, 6 \rangle$	72	$\langle 1, 0, 18 \rangle$	72	$\langle 2, 0, 9 \rangle$	75	$\langle 1, 1, 19 \rangle$
75	$\langle 3, 3, 7 \rangle$	80	$\langle 3, \pm 2, 7 \rangle$	84	$\langle 1, 0, 21 \rangle$	84	$\langle 2, 2, 11 \rangle$
84	$\langle 3, 0, 7 \rangle$	84	$\langle 5, 4, 5 \rangle$	88	$\langle 1, 0, 22 \rangle$	88	$\langle 2, 0, 11 \rangle$
91	$\langle 1, 1, 23 \rangle$	91	$\langle 5, 3, 5 \rangle$	96	$\langle 1, 0, 24 \rangle$	96	$\langle 3, 0, 8 \rangle$
96	$\langle 4, 4, 7 \rangle$	96	$\langle 5, 2, 5 \rangle$	99	$\langle 1, 1, 25 \rangle$	99	$\langle 5, 1, 5 \rangle$
100	$\langle 1, 0, 25 \rangle$	100	$\langle 2, 2, 13 \rangle$	112	$\langle 1, 0, 28 \rangle$	112	$\langle 4, 0, 7 \rangle$
115	$\langle 1, 1, 29 \rangle$	115	$\langle 5, 5, 7 \rangle$	120	$\langle 1, 0, 30 \rangle$	120	$\langle 2, 0, 15 \rangle$
120	$\langle 3, 0, 10 \rangle$	120	$\langle 5, 0, 6 \rangle$	123	$\langle 1, 1, 31 \rangle$	123	$\langle 3, 3, 11 \rangle$
128	$\langle 3, \pm 2, 11 \rangle$	132	$\langle 1, 0, 33 \rangle$	132	$\langle 2, 2, 17 \rangle$	132	$\langle 3, 0, 11 \rangle$
132	$\langle 6, 6, 7 \rangle$	136	$\langle 5, \pm 2, 7 \rangle$	144	$\langle 5, \pm 4, 8 \rangle$	147	$\langle 1, 1, 37 \rangle$
147	$\langle 3, 3, 13 \rangle$	148	$\langle 1, 0, 37 \rangle$	148	$\langle 2, 2, 19 \rangle$	155	$\langle 3, \pm 1, 13 \rangle$
156	$\langle 5, \pm 2, 8 \rangle$	160	$\langle 1, 0, 40 \rangle$	160	$\langle 4, 4, 11 \rangle$	160	$\langle 5, 0, 8 \rangle$
160	$\langle 7, 6, 7 \rangle$	163	$\langle 1, 1, 41 \rangle$	168	$\langle 1, 0, 42 \rangle$	168	$\langle 2, 0, 21 \rangle$
168	$\langle 3, 0, 14 \rangle$	168	$\langle 6, 0, 7 \rangle$	171	$\langle 5, \pm 3, 9 \rangle$	180	$\langle 1, 0, 45 \rangle$
180	$\langle 2, 2, 23 \rangle$	180	$\langle 5, 0, 9 \rangle$	180	$\langle 7, 4, 7 \rangle$	184	$\langle 5, \pm 4, 10 \rangle$
187	$\langle 1, 1, 47 \rangle$	187	$\langle 7, 3, 7 \rangle$	192	$\langle 1, 0, 48 \rangle$	192	$\langle 3, 0, 16 \rangle$
192	$\langle 4, 4, 13 \rangle$	192	$\langle 7, 2, 7 \rangle$	195	$\langle 1, 1, 49 \rangle$	195	$\langle 3, 3, 17 \rangle$
195	$\langle 5, 5, 11 \rangle$	195	$\langle 7, 1, 7 \rangle$	196	$\langle 5, \pm 2, 10 \rangle$	203	$\langle 3, \pm 1, 17 \rangle$
208	$\langle 7, \pm 4, 8 \rangle$	219	$\langle 5, \pm 1, 11 \rangle$	220	$\langle 7, \pm 2, 8 \rangle$	224	$\langle 3, \pm 2, 19 \rangle$
224	$\langle 5, \pm 4, 12 \rangle$	228	$\langle 1, 0, 57 \rangle$	228	$\langle 2, 2, 29 \rangle$	228	$\langle 3, 0, 19 \rangle$
228	$\langle 6, 6, 11 \rangle$	232	$\langle 1, 0, 58 \rangle$	232	$\langle 2, 0, 29 \rangle$	235	$\langle 1, 1, 59 \rangle$
235	$\langle 5, 5, 13 \rangle$	240	$\langle 1, 0, 60 \rangle$	240	$\langle 3, 0, 20 \rangle$	240	$\langle 4, 0, 15 \rangle$
240	$\langle 5, 0, 12 \rangle$	252	$\langle 8, \pm 6, 9 \rangle$	256	$\langle 5, \pm 2, 13 \rangle$	259	$\langle 5, \pm 1, 13 \rangle$
260	$\langle 3, \pm 2, 22 \rangle$	260	$\langle 6, \pm 2, 11 \rangle$	264	$\langle 5, \pm 4, 14 \rangle$	264	$\langle 7, \pm 4, 10 \rangle$
267	$\langle 1, 1, 67 \rangle$	267	$\langle 3, 3, 23 \rangle$	275	$\langle 3, \pm 1, 23 \rangle$	276	$\langle 5, \pm 2, 14 \rangle$
276	$\langle 7, \pm 2, 10 \rangle$	280	$\langle 1, 0, 70 \rangle$	280	$\langle 2, 0, 35 \rangle$	280	$\langle 5, 0, 14 \rangle$
280	$\langle 7, 0, 10 \rangle$	288	$\langle 1, 0, 72 \rangle$	288	$\langle 4, 4, 19 \rangle$	288	$\langle 8, 0, 9 \rangle$
288	$\langle 8, 8, 11 \rangle$	291	$\langle 5, \pm 3, 15 \rangle$	292	$\langle 7, \pm 4, 11 \rangle$	308	$\langle 3, \pm 2, 26 \rangle$
308	$\langle 6, \pm 2, 13 \rangle$	312	$\langle 1, 0, 78 \rangle$	312	$\langle 2, 0, 39 \rangle$	312	$\langle 3, 0, 26 \rangle$

Table 1: Representatives for 2779 $\mathrm{SL}_2(\mathbb{Z})\text{-equivalence Classes of Regular Forms}$

$ \Delta $	$\langle A, B, C \rangle$	$ \Delta $	$\langle A,B,C \rangle$	$ \Delta $	$\langle A,B,C \rangle$	$ \Delta $	$\langle A,B,C \rangle$
312	$\langle 6, 0, 13 \rangle$	315	$\langle 1, 1, 79 \rangle$	315	$\langle 5, 5, 17 \rangle$	315	$\langle 7, 7, 13 \rangle$
315	$\langle 9, 9, 11 \rangle$	320	$\langle 3, \pm 2, 27 \rangle$	320	$\langle 7, \pm 4, 12 \rangle$	323	$\langle 3, \pm 1, 27 \rangle$
328	$\langle 7, \pm 6, 13 \rangle$	336	$\langle 5, \pm 2, 17 \rangle$	336	$\langle 8, \pm 4, 11 \rangle$	340	$\langle 1, 0, 85 \rangle$
340	$\langle 2, 2, 43 \rangle$	340	$\langle 5, 0, 17 \rangle$	340	$\langle 10, 10, 11 \rangle$	352	$\langle 1, 0, 88 \rangle$
352	$\langle 4, 4, 23 \rangle$	352	$\langle 8, 0, 11 \rangle$	352	$\langle 8, 8, 13 \rangle$	355	$\langle 7, \pm 3, 13 \rangle$
360	$\langle 7, \pm 2, 13 \rangle$	360	$\langle 9, \pm 6, 11 \rangle$	363	$\langle 7, \pm 1, 13 \rangle$	372	$\langle 1, 0, 93 \rangle$
372	$\langle 2, 2, 47 \rangle$	372	$\langle 3, 0, 31 \rangle$	372	(6, 6, 17)	384	$\langle 5, \pm 4, 20 \rangle$
384	$\langle 7, \pm 6, 15 \rangle$	387	$\langle 9, \pm 3, 11 \rangle$	388	$\langle 7, \pm 2, 14 \rangle$	400	$\langle 8, \pm 4, 13 \rangle$
403	$\langle 1, 1, 101 \rangle$	403	$\langle 11, 9, 11 \rangle$	408	$\langle 1, 0, 102 \rangle$	408	$\langle 2, 0, 51 \rangle$
408	$\langle 3, 0, 34 \rangle$	408	(6, 0, 17)	420	$\langle 1, 0, 105 \rangle$	420	$\langle 2, 2, 53 \rangle$
420	$\langle 3, 0, 35 \rangle$	420	$\langle 5, 0, 21 \rangle$	420	(6, 6, 19)	420	$\langle 7, 0, 15 \rangle$
420	(10, 10, 13)	420	$\langle 11, 8, 11 \rangle$	427	$\langle 1, 1, 107 \rangle$	427	$\langle 7, 7, 17 \rangle$
435	$\langle 1, 1, 109 \rangle$	435	$\langle 3, 3, 37 \rangle$	435	$\langle 5, 5, 23 \rangle$	435	$\langle 11, 7, 11 \rangle$
448	$\langle 1, 0, 112 \rangle$	448	$\langle 4, 4, 29 \rangle$	448	(7, 0, 16)	448	$\langle 11, 6, 11 \rangle$
456	$\langle 5, \pm 2, 23 \rangle$	456	$\langle 10, \pm 8, 13 \rangle$	468	$\langle 7, \pm 6, 18 \rangle$	468	$\langle 9, \pm 6, 14 \rangle$
475	$\langle 7, \pm 1, 17 \rangle$	480	$\langle 1, 0, 120 \rangle$	480	$\langle 3, 0, 40 \rangle$	480	$\langle 4, 4, 31 \rangle$
480	$\langle 5, 0, 24 \rangle$	480	$\langle 8, 0, 15 \rangle$	480	$\langle 8, 8, 17 \rangle$	480	$\langle 11, 2, 11 \rangle$
480	$\langle 12, 12, 13 \rangle$	483	$\langle 1, 1, 121 \rangle$	483	$\langle 3, 3, 41 \rangle$	483	$\langle 7, 7, 19 \rangle$
483	$\langle 11, 1, 11 \rangle$	504	$\langle 5, \pm 4, 26 \rangle$	504	$\langle 10, \pm 4, 13 \rangle$	507	$\langle 7, \pm 5, 19 \rangle$
520	$\langle 1, 0, 130 \rangle$	520	$\langle 2, 0, 65 \rangle$	520	$\langle 5, 0, 26 \rangle$	520	$\langle 10, 0, 13 \rangle$
528	$\langle 7, \pm 2, 19 \rangle$	528	$\langle 8, \pm 4, 17 \rangle$	532	$\langle 1, 0, 133 \rangle$	532	$\langle 2, 2, 67 \rangle$
532	$\langle 7, 0, 19 \rangle$	532	$\langle 13, 12, 13 \rangle$	544	$\langle 5, \pm 4, 28 \rangle$	544	$\langle 7, \pm 4, 20 \rangle$
552	$\langle 7, \pm 6, 21 \rangle$	552	$\langle 11, \pm 8, 14 \rangle$	555	$\langle 1, 1, 139 \rangle$	555	$\langle 3, 3, 47 \rangle$
555	$\langle 5, 5, 29 \rangle$	555	$\langle 13, 11, 13 \rangle$	564	$\langle 5, \pm 4, 29 \rangle$	564	$\langle 10, \pm 6, 15 \rangle$
568	$\langle 11, \pm 2, 13 \rangle$	576	$\langle 5, \pm 2, 29 \rangle$	576	$\langle 9, \pm 6, 17 \rangle$	580	$\langle 7, \pm 6, 22 \rangle$
580	$\langle 11, \pm 6, 14 \rangle$	592	$\langle 8, \pm 4, 19 \rangle$	595	$\langle 1, 1, 149 \rangle$	595	$\langle 5, 5, 31 \rangle$
595	$\langle 7, 7, 23 \rangle$	595	$\langle 13, 9, 13 \rangle$	600	$\langle 7, \pm 4, 22 \rangle$	600	$\langle 11, \pm 4, 14 \rangle$
603	$\langle 9, \pm 3, 17 \rangle$	612	$\langle 7, \pm 2, 22 \rangle$	612	$\langle 11, \pm 2, 14 \rangle$	616	$\langle 5, \pm 2, 31 \rangle$
616	$\langle 10, \pm 8, 17 \rangle$	624	$\langle 5, \pm 4, 32 \rangle$	624	$\langle 11, \pm 6, 15 \rangle$	627	$\langle 1, 1, 157 \rangle$
627	$\langle 3, 3, 53 \rangle$	627	$\langle 11, 11, 17 \rangle$	627	$\langle 13, 7, 13 \rangle$	640	$\langle 7, \pm 2, 23 \rangle$
640	$\langle 11, \pm 8, 16 \rangle$	651	$\langle 5, \pm 3, 33 \rangle$	651	$\langle 11, \pm 3, 15 \rangle$	660	$\langle 1, 0, 165 \rangle$
660	$\langle 2, 2, 83 \rangle$	660	$\langle 3, 0, 55 \rangle$	660	$\langle 5, 0, 33 \rangle$	660	$\langle 6, 6, 29 \rangle$
660	(10, 10, 19)	660	$\langle 11, 0, 15 \rangle$	660	$\langle 13, 4, 13 \rangle$	667	$\langle 11, \pm 9, 17 \rangle$
672	$\langle 1, 0, 168 \rangle$	672	$\langle 3, 0, 56 \rangle$	672	$\langle 4, 4, 43 \rangle$	672	$\langle 7, 0, 24 \rangle$
672	(8, 0, 21)	672	$\langle 8, 8, 23 \rangle$	672	$\langle 12, 12, 17 \rangle$	672	$\langle 13, 2, 13 \rangle$
708	$\langle 1, 0, 177 \rangle$	708	$\langle 2, 2, 89 \rangle$	708	$\langle 3, 0, 59 \rangle$	708	$\langle 6, 6, 31 \rangle$
715	$\langle 1, 1, 179 \rangle$	715	$\langle 5, 5, 37 \rangle$	715	$\langle 11, 11, 19 \rangle$	715	$\langle 13, 13, 17 \rangle$
720	$\langle 7, \pm 6, 27 \rangle$	720	$\langle 8, \pm 4, 23 \rangle$	723	$\langle 11, \pm 5, 17 \rangle$	736	$\langle 5, \pm 2, 37 \rangle$
736	$(11, \pm 10, 19)$	760	$\langle 1, 0, 190 \rangle$	760	$\langle 2, 0, 95 \rangle$	760	$\langle 5, 0, 38 \rangle$
760	(10, 0, 19)	763	$\langle 13, \pm 11, 17 \rangle$	768	$\langle 7, \pm 4, 28 \rangle$	768	$\langle 13, \pm 8, 16 \rangle$
772	$\langle 11, \pm 8, 19 \rangle$	792	$\langle 9, \pm 6, 23 \rangle$	792	$\langle 13, \pm 12, 18 \rangle$	795	$\langle 1, 1, 199 \rangle$
795	$\langle 3, 3, 67 \rangle$	795	$\langle 5, 5, 41 \rangle$	795	$\langle 15, 15, 17 \rangle$	819	$\langle 5, \pm 1, 41 \rangle$
819	$\langle 9, \pm 3, 23 \rangle$	820	$\langle 11, \pm 4, 19 \rangle$	820	$\langle 13, \pm 8, 17 \rangle$	832	$\langle 7, \pm 6, 31 \rangle$
832	$\langle 11, \pm 2, 19 \rangle$	840	$\langle 1, 0, 210 \rangle$	840	$\langle 2, 0, 105 \rangle$	840	$\langle 3, 0, 70 \rangle$
840	$\langle 5, 0, 42 \rangle$	840	$\langle 6, 0, 35 \rangle$	840	$\langle 7, 0, 30 \rangle$	840	$\langle 10, 0, 21 \rangle$
840	$\langle 14, 0, 15 \rangle$	852	$\langle 7, \pm 4, 31 \rangle$	852	$\langle 14, \pm 10, 17 \rangle$	868	$\langle 11, \pm 10, 22 \rangle$
868	$\langle 13, \pm 4, 17 \rangle$	880	$\langle 7, \pm 4, 32 \rangle$	880	$\langle 13, \pm 2, 17 \rangle$	900	$\langle 9, \pm 6, 26 \rangle$
900	$\langle 13, \pm 6, 18 \rangle$	912	$\langle 8, \pm 4, 29 \rangle$	912	$\langle 11, \pm 10, 23 \rangle$	915	$\langle 7, \pm 3, 33 \rangle$
915	$\langle 11, \pm 3, 21 \rangle$	928	$\langle 1, 0, 232 \rangle$	928	$\langle 4, 4, 59 \rangle$	928	$\langle 8, 0, 29 \rangle$
928	(8, 8, 31)	952	$\langle 11, \pm 4, 22 \rangle$	952	$\langle 13, \pm 6, 19 \rangle$	955	$\langle 7, \pm 5, 35 \rangle$
960	$\langle 1, 0, 240 \rangle$	960	(3, 0, 80)	960	$\langle 4, 4, 61 \rangle$	960	(5, 0, 48)
960	$\langle 12, 12, 23 \rangle$	960	(15, 0, 16)	960	(16, 16, 19)	960	(17, 14, 17)
987	$\langle 11, \pm 5, 23 \rangle$	987	$(13, \pm 1, 19)$	1003	$\langle 11, \pm 3, 23 \rangle$	1008	$(9, \pm 6, 29)$
1008	$\langle 11, \pm 2, 23 \rangle$ $\langle 17, 12, 17 \rangle$	1012	$\langle 1, 0, 253 \rangle$	1012	$\langle 2, 2, 127 \rangle$	1012	$\langle 11, 0, 23 \rangle$
1012		1027	$\langle 7, \pm 3, 37 \rangle$ $\langle 9, \pm 3, 29 \rangle$	1032	$\langle 7, \pm 2, 37 \rangle$	1032	$\langle 14, \pm 12, 21 \rangle$
$1035 \\ 1056$	$\langle 7, \pm 1, 37 \rangle$	1035	. 1 1	1056	$(5, \pm 2, 53)$	1056	$\langle 7, \pm 6, 39 \rangle$ $\langle 14, \pm 2, 19 \rangle$
1092	$\langle 13, \pm 6, 21 \rangle$	1056	$\langle 15, \pm 12, 20 \rangle$	1060	$\langle 7, \pm 2, 38 \rangle$	1060	. , , ,
1092	$\langle 1, 0, 273 \rangle$ $\langle 7, 0, 39 \rangle$	$1092 \\ 1092$	$\langle 2, 2, 137 \rangle \\ \langle 13, 0, 21 \rangle$	$1092 \\ 1092$	$\langle 3, 0, 91 \rangle$ $\langle 14, 14, 23 \rangle$	$1092 \\ 1092$	$\langle 6, 6, 47 \rangle$ $\langle 17, 8, 17 \rangle$
1120	$\langle 1, 0, 39 \rangle$ $\langle 1, 0, 280 \rangle$	1120	$\langle 4, 4, 71 \rangle$	1120	(5, 0, 56)	1120	$\langle 7, 0, 40 \rangle$
1120	(8, 0, 35)	1120	$\langle 8, 8, 37 \rangle$	1120	$\langle 17, 6, 17 \rangle$	1120	$\langle 19, 18, 19 \rangle$
1128	(3, 0, 33) $(11, \pm 4, 26)$	1128	$\langle 13, \pm 4, 22 \rangle$	1131	$\langle 5, \pm 3, 57 \rangle$	1131	$\langle 15, 16, 19 \rangle$
1140	$\langle 7, \pm 6, 42 \rangle$	1140	$\langle 11, \pm 2, 26 \rangle$	1140	$\langle 13, \pm 2, 22 \rangle$	1140	$\langle 14, \pm 6, 21 \rangle$
1152	$\langle 11, \pm 6, 27 \rangle$	1152	$\langle 16, \pm 8, 19 \rangle$	1155	$\langle 1, 1, 289 \rangle$	1155	$\langle 3, 3, 97 \rangle$
1155	$\langle 5, 5, 59 \rangle$	1155	$\langle 7, 7, 43 \rangle$	1155	$\langle 11, 11, 29 \rangle$	1155	$\langle 15, 15, 23 \rangle$
1155	$\langle 17, 1, 17 \rangle$	1155	$\langle 19, 17, 19 \rangle$	1204	$\langle 5, \pm 4, 61 \rangle$	1204	$\langle 10, \pm 6, 31 \rangle$
1227	$\langle 11, \pm 7, 29 \rangle$	1240	$\langle 11, \pm 6, 29 \rangle$	1240	$\langle 17, \pm 16, 22 \rangle$	1243	$\langle 17, \pm 7, 19 \rangle$
1248	$\langle 1, 0, 312 \rangle$	1248	$\langle 3, 0, 104 \rangle$	1248	$\langle 4, 4, 79 \rangle$	1248	$\langle 8, 0, 39 \rangle$
1248	$\langle 8, 8, 41 \rangle$	1248	$\langle 12, 12, 29 \rangle$	1248	$\langle 13, 0, 24 \rangle$	1248	$\langle 19, 14, 19 \rangle$
1275	$\langle 11, \pm 1, 29 \rangle$	1275	$\langle 13, \pm 5, 25 \rangle$	1288	$\langle 13, \pm 8, 26 \rangle$	1288	$\langle 17, \pm 2, 19 \rangle$

Table 1: Representatives for 2779 $\mathrm{SL}_2(\mathbb{Z})\text{-equivalence Classes of Regular Forms}$

$ \Delta $	$\langle A, B, C \rangle$	$ \Delta $	$\langle A,B,C \rangle$	$ \Delta $	$\langle A,B,C \rangle$	$ \Delta $	$\langle A,B,C \rangle$
1312	$\langle 7, \pm 2, 47 \rangle$	1312	$\langle 13, \pm 12, 28 \rangle$	1320	$\langle 1, 0, 330 \rangle$	1320	$\langle 2, 0, 165 \rangle$
1320	$\langle 3, 0, 110 \rangle$	1320	$\langle 5, 0, 66 \rangle$	1320	$\langle 6, 0, 55 \rangle$	1320	$\langle 10, 0, 33 \rangle$
1320	(11, 0, 30)	1320	(15, 0, 22)	1332	$\langle 9, \pm 6, 38 \rangle$	1332	$\langle 18, \pm 6, 19 \rangle$
1344	$\langle 5, \pm 4, 68 \rangle$	1344	$\langle 11, \pm 8, 32 \rangle$	1344	$\langle 15, \pm 6, 23 \rangle$	1344	$\langle 17, \pm 4, 20 \rangle$
1360	$\langle 8, \pm 4, 43 \rangle$	1360	$\langle 11, \pm 2, 31 \rangle$	1380	(1, 0, 345)	1380	$\langle 2, 2, 173 \rangle$
1380	$\langle 3, 0, 115 \rangle$	1380	$\langle 5, 0, 69 \rangle$	1380	$\langle 6, 6, 59 \rangle$	1380	$\langle 10, 10, 37 \rangle$
1380	$\langle 15, 0, 23 \rangle$	1380	$\langle 19, 8, 19 \rangle$	1387	$\langle 13, \pm 11, 29 \rangle$	1395	$\langle 13, \pm 3, 27 \rangle$
1395	$\langle 17, \pm 13, 23 \rangle$	1408	$\langle 13, \pm 10, 29 \rangle$	1408	$\langle 16, \pm 8, 23 \rangle$	1411	$\langle 5, \pm 3, 71 \rangle$
1428	$\langle 1, 0, 357 \rangle$	1428	$\langle 2, 2, 179 \rangle$	1428	$\langle 3, 0, 119 \rangle$	1428	$\langle 6, 6, 61 \rangle$
1428	$\langle 7, 0, 51 \rangle$	1428	$\langle 14, 14, 29 \rangle$	1428	$\langle 17, 0, 21 \rangle$	1428	$\langle 19, 4, 19 \rangle$
1435	$\langle 1, 1, 359 \rangle$	1435	$\langle 5, 5, 73 \rangle$	1435	$\langle 7, 7, 53 \rangle$	1435	$\langle 19, 3, 19 \rangle$
1440	$\langle 7, \pm 4, 52 \rangle$	1440	$\langle 9, \pm 6, 41 \rangle$	1440	$\langle 11, \pm 10, 35 \rangle$	1440	$\langle 13, \pm 4, 28 \rangle$
1443	$\langle 11, \pm 3, 33 \rangle$	1443	$\langle 17, \pm 11, 23 \rangle$	1467	$\langle 9, \pm 3, 41 \rangle$	1488	$\langle 8, \pm 4, 47 \rangle$
1488	$\langle 17, \pm 12, 24 \rangle$	1507	$\langle 13, \pm 1, 29 \rangle$	1540	(1, 0, 385)	1540	$\langle 2, 2, 193 \rangle$
1540	$\langle 5, 0, 77 \rangle$	1540	$\langle 7, 0, 55 \rangle$	1540	$\langle 10, 10, 41 \rangle$	1540	$\langle 11, 0, 35 \rangle$
				1555		1560	
1540	$\langle 14, 14, 31 \rangle$	1540	(22, 22, 23)		$\langle 17, \pm 3, 23 \rangle$		$\langle 7, \pm 6, 57 \rangle$
1560	$\langle 14, \pm 8, 29 \rangle$	1560	$\langle 17, \pm 2, 23 \rangle$	1560	$(19, \pm 6, 21)$	1600	$\langle 13, \pm 8, 32 \rangle$
1600	$\langle 17, \pm 10, 25 \rangle$	1632	(1, 0, 408)	1632	(3, 0, 136)	1632	$\langle 4, 4, 103 \rangle$
1632	$\langle 8, 0, 51 \rangle$	1632	$\langle 8, 8, 53 \rangle$	1632	$\langle 12, 12, 37 \rangle$	1632	$\langle 17, 0, 24 \rangle$
1632	$\langle 23, 22, 23 \rangle$	1635	$\langle 11, \pm 9, 39 \rangle$	1635	$\langle 13, \pm 9, 33 \rangle$	1659	$\langle 5, \pm 1, 83 \rangle$
1659	$\langle 15, \pm 9, 29 \rangle$	1672	$\langle 7, \pm 6, 61 \rangle$	1672	$\langle 14, \pm 8, 31 \rangle$	1680	$\langle 8, \pm 4, 53 \rangle$
1680	$\langle 11, \pm 6, 39 \rangle$	1680	$\langle 13, \pm 6, 33 \rangle$	1680	$\langle 19, \pm 12, 24 \rangle$	1683	$\langle 7, \pm 5, 61 \rangle$
1683	$\langle 9, \pm 3, 47 \rangle$	1716	$\langle 5, \pm 2, 86 \rangle$	1716	$\langle 10, \pm 2, 43 \rangle$	1716	$\langle 15, \pm 12, 31 \rangle$
1716	$(17, \pm 16, 29)$	1752	$\langle 13, \pm 4, 34 \rangle$	1752	$\langle 17, \pm 4, 26 \rangle$	1768	$\langle 11, \pm 6, 41 \rangle$
1768	$(22, \pm 16, 23)$	1771	$\langle 5, \pm 3, 89 \rangle$	1771	$\langle 13, \pm 7, 35 \rangle$	1780	$\langle 13, \pm 12, 37 \rangle$
1780	$(19, \pm 14, 26)$	1792	$\langle 11, \pm 10, 43 \rangle$	1792	$\langle 16, \pm 8, 29 \rangle$	1824	$\langle 5, \pm 4, 92 \rangle$
1824	$\langle 13, \pm 10, 37 \rangle$	1824	$\langle 15, \pm 6, 31 \rangle$	1824	$\langle 20, \pm 4, 23 \rangle$	1827	$\langle 17, \pm 3, 27 \rangle$
1827	$(19, \pm 15, 27)$	1848	(1, 0, 462)	1848	(2, 0, 231)	1848	(3, 0, 154)
1848	$\langle 6, 0, 77 \rangle$	1848	$\langle 7, 0, 66 \rangle$	1848	$\langle 11, 0, 42 \rangle$	1848	$\langle 14, 0, 33 \rangle$
1848	(21, 0, 22)	1860	$\langle 7, \pm 4, 67 \rangle$	1860	$\langle 13, \pm 8, 37 \rangle$	1860	$\langle 14, \pm 10, 35 \rangle$
1860	$(21, \pm 18, 26)$	1920	$\langle 11, \pm 4, 44 \rangle$	1920	$\langle 13, \pm 2, 37 \rangle$	1920	$\langle 16, \pm 8, 31 \rangle$
1920	$\langle 17, \pm 16, 32 \rangle$	1947	$\langle 13, \pm 9, 39 \rangle$	1947	$\langle 17, \pm 5, 29 \rangle$	1992	$\langle 13, \pm 6, 39 \rangle$
1992	$\langle 23, \pm 20, 26 \rangle$	1995	$\langle 1, 1, 499 \rangle$	1995	$\langle 3, 3, 167 \rangle$	1995	$\langle 5, 5, 101 \rangle$
1995	(7, 7, 73)	1995	$\langle 15, 15, 37 \rangle$	1995	$\langle 19, 19, 31 \rangle$	1995	$\langle 21, 21, 29 \rangle$
1995	$\langle 23, 11, 23 \rangle$	2016	$\langle 5, \pm 2, 101 \rangle$	2016	$\langle 13, \pm 8, 40 \rangle$	2016	$\langle 19, \pm 6, 27 \rangle$
2016	$(20, \pm 12, 27)$	2020	$\langle 11, \pm 2, 46 \rangle$	2020	$\langle 22, \pm 2, 23 \rangle$	2035	$\langle 7, \pm 3, 73 \rangle$
2035	$\langle 19, \pm 13, 29 \rangle$	2040	$\langle 7, \pm 2, 73 \rangle$	2040	$\langle 13, \pm 12, 42 \rangle$	2040	$\langle 14, \pm 12, 39 \rangle$
2040	$\langle 21, \pm 12, 26 \rangle$	2067	$\langle 11, \pm 1, 47 \rangle$	2067	$\langle 19, \pm 17, 31 \rangle$	2080	$\langle 1, 0, 520 \rangle$
2080	(4, 4, 131)	2080	$\langle 5, 0, 104 \rangle$	2080	$\langle 8, 0, 65 \rangle$	2080	(8, 8, 67)
2080	$\langle 13, 0, 40 \rangle$	2080	(20, 20, 31)	2080	$\langle 23, 6, 23 \rangle$	2088	$\langle 9, \pm 6, 59 \rangle$
2088	$\langle 18, \pm 12, 31 \rangle$	2100	$\langle 11, \pm 10, 50 \rangle$	2100	$\langle 17, \pm 12, 33 \rangle$	2100	$\langle 19, \pm 16, 31 \rangle$
2100	$\langle 22, \pm 10, 25 \rangle$	2112	$\langle 7, \pm 4, 76 \rangle$	2112	$\langle 17, \pm 12, 33 \rangle$ $\langle 17, \pm 8, 32 \rangle$	2112	$\langle 19, \pm 4, 28 \rangle$
2112	$\langle 21, \pm 18, 29 \rangle$	2115	$\langle 9, \pm 3, 59 \rangle$	2115	$\langle 13, \pm 11, 43 \rangle$	2128	$\langle 8, \pm 4, 67 \rangle$
2128	$\langle 13, \pm 2, 41 \rangle$	$\frac{2113}{2139}$	$\langle 5, \pm 1, 107 \rangle$	2139	$\langle 15, \pm 11, 45 \rangle$ $\langle 15, \pm 9, 37 \rangle$	2163	$\langle 11, \pm 9, 51 \rangle$
2163	$\langle 17, \pm 9, 33 \rangle$	$\frac{2139}{2208}$	$\langle 7, \pm 2, 79 \rangle$	2208	$\langle 11, \pm 6, 51 \rangle$	2208	$\langle 17, \pm 6, 33 \rangle$
2208		$\frac{2208}{2212}$	$\langle 17, \pm 10, 34 \rangle$	2212		2244	
	$\langle 21, \pm 12, 28 \rangle$				$(19, \pm 12, 31)$		$(5, \pm 4, 113)$
2244	$(10, \pm 6, 57)$	2244	$\langle 15, \pm 6, 38 \rangle$	2244	$\langle 19, \pm 6, 30 \rangle$	2272	$\langle 11, \pm 4, 52 \rangle$
2272	$\langle 13, \pm 4, 44 \rangle$	$\frac{2275}{2280}$	$(19, \pm 9, 31)$	2275	$\langle 23, \pm 5, 25 \rangle$	2280	$\langle 7, \pm 4, 82 \rangle$
2280	$\langle 14, \pm 4, 41 \rangle$		$\langle 17, \pm 10, 35 \rangle$	2280	$(21, \pm 18, 31)$	2340	$\langle 11, \pm 6, 54 \rangle$
2340	$\langle 19, \pm 4, 31 \rangle$	2340	$(22, \pm 6, 27)$	2340	$\langle 23, \pm 12, 27 \rangle$	2368	$\langle 19, \pm 8, 32 \rangle$
2368	$\langle 23, \pm 22, 31 \rangle$	2392	$\langle 7, \pm 4, 86 \rangle$	2392	$\langle 14, \pm 4, 43 \rangle$	2400	$\langle 7, \pm 6, 87 \rangle$
2400	$\langle 11, \pm 8, 56 \rangle$	2400	$\langle 21, \pm 6, 29 \rangle$	2400	$(25, \pm 20, 28)$	2436	$(5, \pm 2, 122)$
2436	$(10, \pm 2, 61)$	2436	$(15, \pm 12, 43)$	2436	$(23, \pm 18, 30)$	2451	$\langle 5, \pm 3, 123 \rangle$
2451	$\langle 15, \pm 3, 41 \rangle$	2464	$\langle 5, \pm 4, 124 \rangle$	2464	$\langle 17, \pm 16, 40 \rangle$	2464	$\langle 19, \pm 14, 35 \rangle$
2464	$\langle 20, \pm 4, 31 \rangle$	2475	$\langle 23, \pm 3, 27 \rangle$	2475	$\langle 25, \pm 15, 27 \rangle$	2496	$\langle 5, \pm 2, 125 \rangle$
2496	$\langle 11, \pm 10, 59 \rangle$	2496	$(15, \pm 12, 44)$	2496	$(20, \pm 12, 33)$	2520	$\langle 9, \pm 6, 71 \rangle$
2520	$\langle 17, \pm 8, 38 \rangle$	2520	$\langle 18, \pm 12, 37 \rangle$	2520	$\langle 19, \pm 8, 34 \rangle$	2580	$\langle 11, \pm 4, 59 \rangle$
2580	$\langle 17, \pm 2, 38 \rangle$	2580	$\langle 19, \pm 2, 34 \rangle$	2580	$\langle 22, \pm 18, 33 \rangle$	2632	$\langle 19, \pm 16, 38 \rangle$
2632	$\langle 23, \pm 6, 29 \rangle$	2640	$\langle 8, \pm 4, 83 \rangle$	2640	$\langle 13, \pm 8, 52 \rangle$	2640	$\langle 19, \pm 18, 39 \rangle$
2640	$(24, \pm 12, 29)$	2667	$\langle 17, \pm 11, 41 \rangle$	2667	$\langle 23, \pm 1, 29 \rangle$	2688	$\langle 13, \pm 4, 52 \rangle$
2688	$\langle 16, \pm 8, 43 \rangle$	2688	$\langle 17, \pm 10, 41 \rangle$	2688	$\langle 23, \pm 16, 32 \rangle$	2715	$\langle 7, \pm 1, 97 \rangle$
2715	$\langle 21, \pm 15, 35 \rangle$	2755	$\langle 13, \pm 1, 53 \rangle$	2755	$\langle 17, \pm 13, 43 \rangle$	2760	$\langle 11, \pm 10, 65 \rangle$
2760	$\langle 13, \pm 10, 55 \rangle$	2760	$\langle 22, \pm 12, 33 \rangle$	2760	$\langle 26, \pm 16, 29 \rangle$	2772	$\langle 13, \pm 6, 54 \rangle$
2772	$\langle 17, \pm 4, 41 \rangle$	2772	$\langle 26, \pm 6, 27 \rangle$	2772	$\langle 27, \pm 24, 31 \rangle$	2788	$\langle 19, \pm 10, 38 \rangle$
2788	$\langle 23, \pm 8, 31 \rangle$	2832	$\langle 8, \pm 4, 89 \rangle$	2832	$\langle 24, \pm 12, 31 \rangle$	2880	$\langle 7, \pm 2, 103 \rangle$
2880	$\langle 23, \pm 8, 32 \rangle$	2880	$\langle 27, \pm 24, 32 \rangle$	2880	$\langle 27, \pm 12, 28 \rangle$	2907	$\langle 27, \pm 21, 31 \rangle$
2907	$\langle 27, \pm 15, 29 \rangle$	2968	$\langle 13, \pm 10, 59 \rangle$	2968	$\langle 26, \pm 16, 31 \rangle$	3003	$\langle 1, 1, 751 \rangle$
3003	$\langle 3, 3, 251 \rangle$	3003	$\langle 7, 7, 109 \rangle$	3003	$\langle 11, 11, 71 \rangle$	3003	$\langle 13, 13, 61 \rangle$
3003	$\langle 21, 21, 41 \rangle$	3003	$\langle 29, 19, 29 \rangle$	3003	$\langle 31, 29, 31 \rangle$	3040	$\langle 1, 0, 760 \rangle$
3040	$\langle 4, 4, 191 \rangle$	3040	$\langle 5, 0, 152 \rangle$	3040	$\langle 8, 0, 95 \rangle$	3040	$\langle 8, 8, 97 \rangle$
	, ,		,				

Table 1: Representatives for 2779 $\mathrm{SL}_2(\mathbb{Z})\text{-equivalence Classes of Regular Forms}$

$ \Delta $	$\langle A, B, C \rangle$	$ \Delta $	$\langle A, B, C \rangle$	$ \Delta $	$\langle A, B, C \rangle$	$ \Delta $	$\langle A, B, C \rangle$
3040	(19, 0, 40)	3040	$\langle 20, 20, 43 \rangle$	3040	(29, 18, 29)	3060	$\langle 9, \pm 6, 86 \rangle$
3060	$\langle 11, \pm 8, 71 \rangle$	3060	$\langle 18, \pm 6, 43 \rangle$	3060	$\langle 22, \pm 14, 37 \rangle$	3108	$\langle 11, \pm 4, 71 \rangle$
3108	$\langle 13, \pm 8, 61 \rangle$	3108	$(22, \pm 18, 39)$	3108	$\langle 26, \pm 18, 37 \rangle$	3168	$\langle 9, \pm 6, 89 \rangle$
3168	$\langle 13, \pm 2, 61 \rangle$	3168	$\langle 19, \pm 10, 43 \rangle$	3168	$\langle 23, \pm 12, 36 \rangle$	3172	$(19, \pm 18, 46)$
3172		3192		!			
	$\langle 23, \pm 18, 38 \rangle$		$\langle 11, \pm 8, 74 \rangle$	3192 3220	$\langle 17, \pm 2, 47 \rangle$	3192	$\langle 22, \pm 8, 37 \rangle$
3192	$\langle 31, \pm 30, 33 \rangle$	3220	$\langle 11, \pm 6, 74 \rangle$	l .	$\langle 13, \pm 2, 62 \rangle$	3220	$\langle 22, \pm 6, 37 \rangle$
3220	$(26, \pm 2, 31)$	3243	$\langle 17, \pm 15, 51 \rangle$	3243	$(19, \pm 5, 43)$	3315	(1, 1, 829)
3315	$\langle 3, 3, 277 \rangle$	3315	$\langle 5, 5, 167 \rangle$	3315	$\langle 13, 13, 67 \rangle$	3315	$\langle 15, 15, 59 \rangle$
3315	$\langle 17, 17, 53 \rangle$	3315	$\langle 29, 7, 29 \rangle$	3315	$\langle 31, 23, 31 \rangle$	3355	$\langle 13, \pm 5, 65 \rangle$
3355	$\langle 23, \pm 7, 37 \rangle$	3360	$\langle 1, 0, 840 \rangle$	3360	$\langle 3, 0, 280 \rangle$	3360	$\langle 4, 4, 211 \rangle$
3360	$\langle 5, 0, 168 \rangle$	3360	$\langle 7, 0, 120 \rangle$	3360	$\langle 8, 0, 105 \rangle$	3360	$\langle 8, 8, 107 \rangle$
3360	$\langle 12, 12, 73 \rangle$	3360	$\langle 15, 0, 56 \rangle$	3360	(20, 20, 47)	3360	$\langle 21, 0, 40 \rangle$
3360	$\langle 24, 0, 35 \rangle$	3360	(24, 24, 41)	3360	(28, 28, 37)	3360	$\langle 29, 2, 29 \rangle$
3360	(31, 22, 31)	3432	$\langle 17, \pm 6, 51 \rangle$	3432	$\langle 19, \pm 8, 46 \rangle$	3432	$\langle 23, \pm 8, 38 \rangle$
3432	$\langle 31, \pm 28, 34 \rangle$	3480	$\langle 13, \pm 2, 67 \rangle$	3480	$\langle 19, \pm 4, 46 \rangle$	3480	$\langle 23, \pm 4, 38 \rangle$
3480	$(26, \pm 24, 39)$	3507	$\langle 13, \pm 9, 69 \rangle$	3507	$\langle 23, \pm 9, 39 \rangle$	3520	$\langle 7, \pm 6, 127 \rangle$
3520	$\langle 13, \pm 4, 68 \rangle$	3520	$\langle 17, \pm 4, 52 \rangle$	3520	$(28, \pm 20, 35)$	3588	$(11, \pm 8, 83)$
3588	$\langle 17, \pm 4, 53 \rangle$	3588	$(22, \pm 14, 43)$	3588	$\langle 33, \pm 30, 34 \rangle$	3627	$\langle 9, \pm 3, 101 \rangle$
3627	$(11, \pm 5, 83)$	3640	$(11, \pm 10, 85)$	3640	$(17, \pm 10, 55)$	3640	$(22, \pm 12, 43)$
3640	$\langle 31, \pm 24, 34 \rangle$	3648	$(11, \pm 2, 83)$	3648	$(23, \pm 20, 44)$	3648	$(29, \pm 8, 32)$
3648	$\langle 32, \pm 24, 33 \rangle$	3712	$\langle 16, \pm 8, 59 \rangle$	3712	$(31, \pm 16, 32)$	3795	$\langle 13, \pm 1, 73 \rangle$
3795	$\langle 17, \pm 9, 57 \rangle$	3795	$\langle 19, \pm 9, 51 \rangle$	3795	$\langle 29, \pm 27, 39 \rangle$	3808	$\langle 11, \pm 8, 88 \rangle$
3808	$\langle 13, \pm 12, 76 \rangle$	3808	$\langle 19, \pm 12, 52 \rangle$	3808	$\langle 29, \pm 22, 37 \rangle$	3828	$\langle 7, \pm 6, 138 \rangle$
3828	$\langle 14, \pm 6, 69 \rangle$	3828	$\langle 21, \pm 6, 46 \rangle$	3828	$\langle 23, \pm 6, 42 \rangle$	3840	$\langle 16, \pm 8, 61 \rangle$
3840	$\langle 17, \pm 6, 57 \rangle$	3840	$\langle 19, \pm 6, 51 \rangle$	3840	$\langle 23, \pm 22, 47 \rangle$	3843	$\langle 9, \pm 3, 107 \rangle$
3843	$\langle 17, \pm 13, 59 \rangle$	4020	$\langle 13, \pm 6, 78 \rangle$	4020	$\langle 17, \pm 14, 62 \rangle$	4020	$\langle 26, \pm 6, 39 \rangle$
4020	$\langle 31, \pm 14, 34 \rangle$	4032	$\langle 9, \pm 6, 113 \rangle$	4032	$\langle 11, \pm 4, 92 \rangle$	4032	$\langle 23, \pm 4, 44 \rangle$
4032	$\langle 29, \pm 12, 36 \rangle$	4048	$\langle 8, \pm 4, 127 \rangle$	4048	$\langle 17, \pm 10, 61 \rangle$	4123	$\langle 17, \pm 5, 61 \rangle$
4123	$\langle 29, \pm 13, 37 \rangle$	4128	$\langle 7, \pm 4, 148 \rangle$	4128	$(21, \pm 18, 53)$	4128	$\langle 23, \pm 14, 47 \rangle$
4128	$\langle 28, \pm 4, 37 \rangle$	4180	$\langle 17, \pm 6, 62 \rangle$	4180	$\langle 23, \pm 12, 47 \rangle$	4180	$\langle 29, \pm 24, 41 \rangle$
4180	$\langle 31, \pm 6, 34 \rangle$	4260	$\langle 13, \pm 2, 82 \rangle$	4260	$\langle 23, \pm 8, 47 \rangle$	4260	$\langle 26, \pm 2, 41 \rangle$
4260	$(31, \pm 24, 39)$	4323	$\langle 19, \pm 3, 57 \rangle$	4323	$\langle 23, \pm 1, 47 \rangle$	4368	$\langle 8, \pm 4, 137 \rangle$
4368	$\langle 17, \pm 16, 68 \rangle$	4368	$(23, \pm 18, 51)$	4368	$\langle 24, \pm 12, 47 \rangle$	4420	$(7, \pm 2, 158)$
4420	$\langle 14, \pm 2, 79 \rangle$	4420	$\langle 19, \pm 8, 59 \rangle$	4420	$\langle 35, \pm 30, 38 \rangle$	4440	$\langle 11, \pm 2, 101 \rangle$
4440		4440		4440		4452	
4440 4452	$\langle 19, \pm 14, 61 \rangle$	4440 4452	$\langle 22, \pm 20, 55 \rangle$	4452	$(33, \pm 24, 38)$		$\langle 11, \pm 6, 102 \rangle$
	$\langle 17, \pm 6, 66 \rangle$		$(22, \pm 6, 51)$!	$\langle 33, \pm 6, 34 \rangle$	4480	$(16, \pm 8, 71)$
4480	$\langle 17, \pm 12, 68 \rangle$	4480	$(19, \pm 2, 59)$	4480	$(32, \pm 16, 37)$	4488	$\langle 13, \pm 6, 87 \rangle$
4488	$(26, \pm 20, 47)$	4488	$(29, \pm 6, 39)$	4488	$(31, \pm 10, 37)$	4512	$\langle 11, \pm 8, 104 \rangle$
4512	$\langle 13, \pm 8, 88 \rangle$	4512	$(31, \pm 18, 39)$	4512	$(33, \pm 30, 41)$	4515	$\langle 13, \pm 3, 87 \rangle$
4515	$\langle 19, \pm 11, 61 \rangle$	4515	$(23, \pm 19, 53)$	4515	$(29, \pm 3, 39)$	4680	$(9, \pm 6, 131)$
4680	$(18, \pm 12, 67)$	4680	$(23, \pm 14, 53)$	4680	$(31, \pm 30, 45)$	4740	$\langle 11, \pm 10, 110 \rangle$
4740	$(22, \pm 10, 55)$	4740	$(29, \pm 4, 41)$	4740	$(33, \pm 12, 37)$	4788	$\langle 9, \pm 6, 134 \rangle$
4788	$(13, \pm 10, 94)$	4788	$\langle 18, \pm 6, 67 \rangle$	4788	$(26, \pm 10, 47)$	4960	$\langle 11, \pm 10, 115 \rangle$
4960	$\langle 17, \pm 2, 73 \rangle$	4960	$\langle 23, \pm 10, 55 \rangle$	4960	$(29, \pm 12, 44)$	4992	$(16, \pm 8, 79)$
4992	$(19, \pm 10, 67)$	4992	$(29, \pm 24, 48)$	4992	$(32, \pm 16, 41)$	5083	$\langle 19, \pm 3, 67 \rangle$
5083	$\langle 31, \pm 1, 41 \rangle$	5115	$\langle 7, \pm 3, 183 \rangle$	5115	$(17, \pm 11, 77)$	5115	$\langle 21, \pm 3, 61 \rangle$
5115	$\langle 35, \pm 25, 41 \rangle$	5152	$\langle 13, \pm 10, 101 \rangle$	5152	$\langle 17, \pm 4, 76 \rangle$	5152	$\langle 19, \pm 4, 68 \rangle$
5152	$\langle 31, \pm 26, 47 \rangle$	5160	$\langle 13, \pm 12, 102 \rangle$	5160	$\langle 17, \pm 12, 78 \rangle$	5160	$\langle 26, \pm 12, 51 \rangle$
5160	$(34, \pm 12, 39)$	5187	$(11, \pm 7, 119)$	5187	$\langle 17, \pm 7, 77 \rangle$	5187	$(29, \pm 27, 51)$
5187	$(33, \pm 15, 41)$	5208	$\langle 19, \pm 6, 69 \rangle$	5208	$\langle 23, \pm 6, 57 \rangle$	5208	$\langle 37, \pm 34, 43 \rangle$
5208	$\langle 38, \pm 32, 41 \rangle$	5280	$\langle 1, 0, 1320 \rangle$	5280	(3, 0, 440)	5280	$\langle 4, 4, 331 \rangle$
5280	(5, 0, 264)	5280	(8, 0, 165)	5280	(8, 8, 167)	5280	$\langle 11, 0, 120 \rangle$
5280	$\langle 12, 12, 113 \rangle$	5280	(15, 0, 88)	5280	(20, 20, 71)	5280	$\langle 24, 0, 55 \rangle$
5280	$\langle 24, 24, 61 \rangle$	5280	$\langle 33, 0, 40 \rangle$	5280	$\langle 37, 14, 37 \rangle$	5280	$\langle 40, 40, 43 \rangle$
5280	$\langle 41, 38, 41 \rangle$	5355	$\langle 9, \pm 3, 149 \rangle$	5355	$\langle 13, \pm 1, 103 \rangle$	5355	$\langle 23, \pm 21, 63 \rangle$
5355	$\langle 31, \pm 15, 45 \rangle$	5412	$\langle 13, \pm 10, 106 \rangle$	5412	$\langle 23, \pm 4, 59 \rangle$	5412	$\langle 26, \pm 10, 53 \rangle$
5412	$(39, \pm 36, 43)$	5440	$\langle 11, \pm 4, 124 \rangle$	5440	$\langle 31, \pm 4, 44 \rangle$	5440	$\langle 32, \pm 24, 47 \rangle$
5440	$\langle 32, \pm 8, 43 \rangle$	5460	$\langle 1, 0, 1365 \rangle$	5460	$\langle 2, 2, 683 \rangle$	5460	$\langle 3, 0, 455 \rangle$
5460	$\langle 5, 0, 273 \rangle$	5460	$\langle 6, 6, 229 \rangle$	5460	$\langle 7, 0, 195 \rangle$	5460	(10, 10, 139)
5460	$\langle 13, 0, 105 \rangle$	5460	$\langle 14, 14, 101 \rangle$	5460	$\langle 15, 0, 91 \rangle$	5460	$\langle 21, 0, 65 \rangle$
5460	$\langle 26, 26, 59 \rangle$	5460	$\langle 30, 30, 53 \rangle$	5460	$\langle 35, 0, 39 \rangle$	5460	$\langle 37, 4, 37 \rangle$
5460	$\langle 42, 42, 43 \rangle$	5467	$\langle 19, \pm 9, 73 \rangle$	5467	$\langle 31, \pm 19, 47 \rangle$	5520	$\langle 8, \pm 4, 173 \rangle$
5520	$\langle 19, \pm 16, 76 \rangle$	5520	$\langle 24, \pm 12, 59 \rangle$	5520	$\langle 37, \pm 20, 40 \rangle$	5712	$\langle 8, \pm 4, 179 \rangle$
5712	$\langle 19, \pm 8, 76 \rangle$	5712	$\langle 24, \pm 12, 61 \rangle$	5712	$\langle 29, \pm 28, 56 \rangle$	5952	$\langle 17, \pm 10, 89 \rangle$
5952	$\langle 29, \pm 14, 53 \rangle$	5952	$\langle 32, \pm 24, 51 \rangle$	5952	$\langle 32, \pm 8, 47 \rangle$	6160	$\langle 8, \pm 4, 193 \rangle$
6160	$\langle 23, \pm 2, 67 \rangle$	6160	$\langle 31, \pm 28, 56 \rangle$	6160	$\langle 40, \pm 20, 41 \rangle$	6195	$\langle 11, \pm 3, 141 \rangle$
6195	$\langle 31, \pm 25, 55 \rangle$	6195	$\langle 33, \pm 3, 47 \rangle$	6195	$\langle 37, \pm 13, 43 \rangle$	6240	$\langle 7, \pm 2, 223 \rangle$
6240	$\langle 17, \pm 4, 92 \rangle$	6240	$\langle 19, \pm 12, 84 \rangle$	6240	$\langle 21, \pm 12, 76 \rangle$	6240	$\langle 23, \pm 4, 68 \rangle$
6240	$\langle 28, \pm 12, 57 \rangle$	6240	$\langle 29, \pm 16, 56 \rangle$	6240	$\langle 35, \pm 30, 51 \rangle$	6307	$\langle 19, \pm 1, 83 \rangle$
6307	$\langle 23, \pm 15, 71 \rangle$	6420	$\langle 11, \pm 2, 146 \rangle$	6420	$\langle 22, \pm 2, 73 \rangle$	6420	$\langle 31, \pm 20, 55 \rangle$
			, , ,	•			

Table 1: Representatives for 2779 $\mathrm{SL}_2(\mathbb{Z})\text{-equivalence Classes of Regular Forms}$

$ \Delta $	$\langle A,B,C \rangle$	$ \Delta $	$\langle A,B,C \rangle$	$ \Delta $	$\langle A, B, C \rangle$	$ \Delta $	$\langle A, B, C \rangle$
6420	$\langle 33, \pm 24, 53 \rangle$	6435	$\langle 9, \pm 3, 179 \rangle$	6435	$\langle 17, \pm 5, 95 \rangle$	6435	$\langle 19, \pm 5, 85 \rangle$
6435	$\langle 37, \pm 15, 45 \rangle$	6528	$\langle 16, \pm 8, 103 \rangle$	6528	$\langle 23, \pm 2, 71 \rangle$	6528	$\langle 32, \pm 16, 53 \rangle$
6528	$\langle 37, \pm 24, 48 \rangle$	6580	$\langle 11, \pm 8, 151 \rangle$	6580	$\langle 17, \pm 4, 97 \rangle$	6580	$\langle 22, \pm 14, 77 \rangle$
6580	$\langle 34, \pm 30, 55 \rangle$	6612	$\langle 17, \pm 16, 101 \rangle$	6612	$\langle 23, \pm 14, 74 \rangle$	6612	$\langle 34, \pm 18, 51 \rangle$
6612	$(37, \pm 14, 46)$	6688	$\langle 7, \pm 2, 239 \rangle$	6688	$\langle 28, \pm 12, 61 \rangle$	6688	$\langle 31, \pm 16, 56 \rangle$
6688	$(37, \pm 34, 53)$	6708	$(23, \pm 10, 74)$	6708	$(29, \pm 22, 62)$	6708	$(31, \pm 22, 58)$
6708	$(37, \pm 10, 46)$	6720	$(11, \pm 10, 155)$	6720	$(13, \pm 12, 132)$	6720	$(19, \pm 14, 91)$
6720	$(31, \pm 10, 55)$	6720	$(32, \pm 24, 57)$	6720	$\langle 32, \pm 8, 53 \rangle$	6720	$\langle 33, \pm 12, 52 \rangle$
6720	$(39, \pm 12, 44)$	6820	$(19, \pm 18, 94)$	6820	$(29, \pm 16, 61)$	6820	$\langle 37, \pm 32, 53 \rangle$
6820	$\langle 38, \pm 18, 47 \rangle$	6840	$\langle 9, \pm 6, 191 \rangle$	6840	$\langle 18, \pm 12, 97 \rangle$	6840	$\langle 29, \pm 2, 59 \rangle$
6840	$\langle 43, \pm 30, 45 \rangle$	7008	$\langle 13, \pm 8, 136 \rangle$	7008	$\langle 17, \pm 8, 104 \rangle$	7008	$\langle 39, \pm 18, 47 \rangle$
7008	$\langle 43, \pm 42, 51 \rangle$	7035	$\langle 11, \pm 7, 161 \rangle$	7035	$\langle 23, \pm 7, 77 \rangle$	7035	$\langle 31, \pm 23, 61 \rangle$
7035	$\langle 33, \pm 15, 55 \rangle$	7072	$\langle 11, \pm 10, 163 \rangle$	7072	$\langle 23, \pm 14, 79 \rangle$	7072	$\langle 29, \pm 2, 61 \rangle$
7072	$\langle 41, \pm 12, 44 \rangle$	7140	$\langle 13, \pm 6, 138 \rangle$	7140	$\langle 19, \pm 2, 94 \rangle$	7140	$\langle 23, \pm 6, 78 \rangle$
7140	$\langle 26, \pm 6, 69 \rangle$	7140	$\langle 29, \pm 20, 65 \rangle$	7140	$\langle 37, \pm 36, 57 \rangle$	7140	$\langle 38, \pm 2, 47 \rangle$
7140	$\langle 39, \pm 6, 46 \rangle$	7315	$\langle 13, \pm 11, 143 \rangle$	7315	$\langle 29, \pm 15, 65 \rangle$	7315	$\langle 31, \pm 1, 59 \rangle$
7315	$(37, \pm 23, 53)$	7392	$\langle 1, 0, 1848 \rangle$	7392	$\langle 3, 0, 616 \rangle$	7392	$\langle 4, 4, 463 \rangle$
7392	$\langle 7, 0, 264 \rangle$	7392	(8, 0, 231)	7392	(8, 8, 233)	7392	$\langle 11, 0, 168 \rangle$
7392	$\langle 12, 12, 157 \rangle$	7392	(21, 0, 88)	7392	(24, 0, 77)	7392	$\langle 24, 24, 83 \rangle$
7392	$\langle 28, 28, 73 \rangle$	7392	(33, 0, 56)	7392	$\langle 43, 2, 43 \rangle$	7392	$\langle 44, 44, 53 \rangle$
7392		7395		7395			
7395	⟨47, 38, 47⟩	7480	$(7, \pm 5, 265)$	7480	$\langle 21, \pm 9, 89 \rangle$	7395 7480	$(31, \pm 13, 61)$
7480	$(35, \pm 5, 53)$!	$\langle 19, \pm 14, 101 \rangle$		$\langle 23, \pm 8, 82 \rangle$		$(38, \pm 24, 53)$
	$(41, \pm 8, 46)$	7540	$\langle 17, \pm 12, 113 \rangle$	7540	$(23, \pm 2, 82)$	7540	$(34, \pm 22, 59)$
7540	$\langle 41, \pm 2, 46 \rangle$	7755	$\langle 7, \pm 1, 277 \rangle$	7755	$\langle 19, \pm 15, 105 \rangle$	7755	$(21, \pm 15, 95)$
7755	$(35, \pm 15, 57)$	7968	$\langle 13, \pm 12, 156 \rangle$	7968	$\langle 23, \pm 6, 87 \rangle$	7968	$(29, \pm 6, 69)$
7968	$(39, \pm 12, 52)$	7995	$\langle 19, \pm 17, 109 \rangle$	7995	$\langle 23, \pm 3, 87 \rangle$	7995	$(29, \pm 3, 69)$
7995	$\langle 37, \pm 21, 57 \rangle$	8008	$(17, \pm 4, 118)$	8008	$(29, \pm 24, 74)$	8008	$(34, \pm 4, 59)$
8008	$(37, \pm 24, 58)$	8052	$(19, \pm 2, 106)$	8052	$(31, \pm 16, 67)$	8052	$\langle 38, \pm 2, 53 \rangle$
8052	$(41, \pm 36, 57)$	8160	$\langle 7, \pm 4, 292 \rangle$	8160	$(13, \pm 2, 157)$	8160	$(21, \pm 18, 101)$
8160	$\langle 28, \pm 4, 73 \rangle$	8160	$\langle 35, \pm 10, 59 \rangle$	8160	$(39, \pm 24, 56)$	8160	$(41, \pm 32, 56)$
8160	$\langle 43, \pm 28, 52 \rangle$	8320	$\langle 16, \pm 8, 131 \rangle$	8320	$\langle 23, \pm 12, 92 \rangle$	8320	$\langle 31, \pm 22, 71 \rangle$
8320	$(32, \pm 16, 67)$	8352	$\langle 9, \pm 6, 233 \rangle$	8352	$\langle 31, \pm 24, 72 \rangle$	8352	$\langle 36, \pm 12, 59 \rangle$
8352	$\langle 37, \pm 26, 61 \rangle$	8512	$\langle 13, \pm 4, 164 \rangle$	8512	$\langle 32, \pm 24, 71 \rangle$	8512	$\langle 32, \pm 8, 67 \rangle$
8512	$\langle 41, \pm 4, 52 \rangle$	8547	$\langle 17, \pm 15, 129 \rangle$	8547	$\langle 23, \pm 3, 93 \rangle$	8547	$\langle 31, \pm 3, 69 \rangle$
8547	$\langle 43, \pm 15, 51 \rangle$	8580	$\langle 7, \pm 4, 307 \rangle$	8580	$\langle 14, \pm 10, 155 \rangle$	8580	$\langle 21, \pm 18, 106 \rangle$
8580	$\langle 29, \pm 2, 74 \rangle$	8580	$\langle 31, \pm 10, 70 \rangle$	8580	$\langle 35, \pm 10, 62 \rangle$	8580	$\langle 37, \pm 2, 58 \rangle$
8580	$\langle 42, \pm 18, 53 \rangle$	8680	$\langle 13, \pm 2, 167 \rangle$	8680	$\langle 26, \pm 24, 89 \rangle$	8680	$\langle 29, \pm 22, 79 \rangle$
8680	$\langle 43, \pm 36, 58 \rangle$	8715	$\langle 19, \pm 5, 115 \rangle$	8715	$\langle 23, \pm 5, 95 \rangle$	8715	$\langle 41, \pm 31, 59 \rangle$
8715	$\langle 43, \pm 33, 57 \rangle$	8835	$\langle 11, \pm 3, 201 \rangle$	8835	$\langle 33, \pm 3, 67 \rangle$	8835	$\langle 41, \pm 29, 59 \rangle$
8835	$\langle 43, \pm 25, 55 \rangle$	8932	$\langle 13, \pm 8, 173 \rangle$	8932	$(19, \pm 6, 118)$	8932	$\langle 26, \pm 18, 89 \rangle$
8932	$\langle 38, \pm 6, 59 \rangle$	9108	$\langle 9, \pm 6, 254 \rangle$	9108	$\langle 17, \pm 2, 134 \rangle$	9108	$\langle 18, \pm 6, 127 \rangle$
9108	$\langle 34, \pm 2, 67 \rangle$	9120	$\langle 7, \pm 6, 327 \rangle$	9120	$\langle 17, \pm 14, 137 \rangle$	9120	$(21, \pm 6, 109)$
9120	$(28, \pm 20, 85)$	9120	$(31, \pm 26, 79)$	9120	$(35, \pm 20, 68)$	9120	$\langle 41, \pm 8, 56 \rangle$
9120	$(51, \pm 48, 56)$	9240	$(13, \pm 4, 178)$	9240	$(17, \pm 12, 138)$	9240	$(23, \pm 12, 102)$
9240	$(26, \pm 4, 89)$	9240	$(34, \pm 12, 69)$	9240	$(37, \pm 26, 67)$	9240	$(39, \pm 30, 65)$
9240	$(46, \pm 12, 51)$	9568	$\langle 7, \pm 6, 343 \rangle$	9568	$(28, \pm 20, 89)$	9568	$\langle 43, \pm 8, 56 \rangle$
9568	$(53, \pm 48, 56)$	9867	$(29, \pm 15, 87)$	9867	$\langle 37, \pm 7, 67 \rangle$	9867	$\langle 43, \pm 25, 61 \rangle$
9867	$\langle 47, \pm 35, 59 \rangle$	10080	$(9, \pm 6, 281)$	10080	$(17, \pm 16, 152)$	10080	$(19, \pm 16, 136)$
10080	$(36, \pm 12, 71)$	10080	$\langle 37, \pm 24, 72 \rangle$	10080	$(43, \pm 38, 67)$	10080	$(45, \pm 30, 61)$
10080	$(47, \pm 42, 63)$	10528	$(19, \pm 6, 139)$	10528	$(23, \pm 12, 116)$	10528	$\langle 29, \pm 12, 92 \rangle$
10528	$(41, \pm 38, 73)$	10560	$(13, \pm 10, 205)$	10560	$(19, \pm 2, 139)$	10560	$(29, \pm 24, 96)$
10560	$(32, \pm 24, 87)$	10560	$(32, \pm 8, 83)$	10560	$(39, \pm 36, 76)$	10560	$\langle 41, \pm 10, 65 \rangle$
10560	$(52, \pm 36, 57)$	10920	$(11, \pm 6, 249)$	10920	$(19, \pm 10, 145)$	10920	$(22, \pm 16, 127)$
10920	$(29, \pm 10, 95)$	10920	$\langle 33, \pm 6, 83 \rangle$	10920	$(38, \pm 28, 77)$	10920	$(55, \pm 50, 61)$
10920	$\langle 57, \pm 48, 58 \rangle$	10948	$\langle 37, \pm 2, 74 \rangle$	10948	$\langle 41, \pm 32, 73 \rangle$	10948	$\langle 43, \pm 24, 67 \rangle$
10948	$\langle 47, \pm 12, 59 \rangle$	11040	$\langle 11, \pm 2, 251 \rangle$	11040	$\langle 13, \pm 6, 213 \rangle$	11040	$\langle 29, \pm 26, 101 \rangle$
11040	$\langle 33, \pm 24, 88 \rangle$	11040	$\langle 39, \pm 6, 71 \rangle$	11040	$\langle 43, \pm 22, 67 \rangle$	11040	$\langle 44, \pm 20, 65 \rangle$
11040	$\langle 52, \pm 20, 55 \rangle$	11067	$\langle 13, \pm 3, 213 \rangle$	11067	$\langle 37, \pm 25, 79 \rangle$	11067	$\langle 39, \pm 3, 71 \rangle$
11067	$\langle 47, \pm 5, 59 \rangle$	11328	$\langle 31, \pm 24, 96 \rangle$	11328	$\langle 32, \pm 24, 93 \rangle$	11328	$\langle 32, \pm 8, 89 \rangle$
11328	$\langle 43, \pm 14, 67 \rangle$	11715	$\langle 17, \pm 7, 173 \rangle$	11715	$\langle 29, \pm 1, 101 \rangle$	11715	$\langle 43, \pm 29, 73 \rangle$
11715	$\langle 51, \pm 27, 61 \rangle$	11872	$\langle 13, \pm 6, 229 \rangle$	11872	$\langle 31, \pm 30, 103 \rangle$	11872	$\langle 41, \pm 10, 73 \rangle$
11872	$(52, \pm 20, 59)$	12160	$(16, \pm 8, 191)$	12160	$(29, \pm 22, 109)$	12160	$\langle 32, \pm 16, 97 \rangle$
12160	$\langle 43, \pm 40, 80 \rangle$	12180	$\langle 13, \pm 12, 237 \rangle$	12180	$\langle 17, \pm 14, 182 \rangle$	12180	$\langle 26, \pm 14, 119 \rangle$
12180	$(34, \pm 14, 91)$	12180	$(37, \pm 20, 85)$	12180	$(39, \pm 12, 79)$	12180	$(51, \pm 48, 71)$
12180	$\langle 54, \pm 14, 51 \rangle$	12768	$\langle 11, \pm 6, 291 \rangle$	12768	$\langle 17, \pm 4, 188 \rangle$	12768	$\langle 31, \pm 2, 103 \rangle$
12768	$\langle 33, \pm 6, 97 \rangle$	12768	$(37, \pm 16, 88)$	12768	$\langle 44, \pm 28, 77 \rangle$	12768	$\langle 47, \pm 4, 68 \rangle$
12768	$(51, \pm 30, 67)$	12915	$\langle 9, \pm 3, 359 \rangle$	12915	$\langle 19, \pm 9, 171 \rangle$	12915	$\langle 45, \pm 15, 73 \rangle$
12915	$(53, \pm 21, 63)$	13195	$\langle 11, \pm 7, 301 \rangle$	13195	$\langle 43, \pm 7, 77 \rangle$	13195	$\langle 47, \pm 23, 73 \rangle$
13195	$(55, \pm 15, 61)$	13440	$\langle 16, \pm 8, 211 \rangle$	13440	$\langle 29, \pm 4, 116 \rangle$	13440	$\langle 31, \pm 18, 111 \rangle$
13440	$(32, \pm 16, 107)$	13440	$(37, \pm 18, 93)$	13440	$\langle 41, \pm 34, 89 \rangle$	13440	$\langle 47, \pm 40, 80 \rangle$
10110	(02, 210, 101/	1 10110	(0., 210,00)	1 10110	(11, 101,00)	1 10110	(11, 110,00)

Table 1: Representatives for 2779 $\mathrm{SL}_2(\mathbb{Z})\text{-equivalence Classes of Regular Forms}$

13728 (3, ±6, 11) 13728 (37, ±6, 93) 13728 (31, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13728 (33, ±6, 11) 13860 (43, ±6, 16) 13860 (43, ±6, 16) 13860 (43, ±6, 16) 13860 (43, ±6, 16) 13860 (43, ±6, 16) 13860 (43, ±6, 16) 13860 (43, ±6, 16) 13860 (43, ±6, 16) 13860 (43, ±6, 16) 13860 (43, ±6, 16) 13860 (43, ±6, 16) 13860 (44, ±6, 16) 13860 (44, ±6, 16) 14860 (44, ±6, 16)	$ \Delta $	$\langle A, B, C \rangle$	$ \Delta $	$\langle A,B,C \rangle$	$ \Delta $	$\langle A,B,C \rangle$	$ \Delta $	$\langle A,B,C \rangle$
13728		1 / / /				* . ' . '		1 . 1 . 1
$\begin{array}{c} 13860 & (31,\pm 20,115) \\ 13860 & (62,\pm 42,63) \\ 13920 & (39,\pm 30,95) \\ 13920 & (41,\pm 26,83) \\ 13920 & (61,\pm 54,69) \\ 14280 & (33,\pm 30,115) \\ 14280 & (44,\pm 14,83) \\ 14280 & (33,\pm 30,115) \\ 14280 & (46,\pm 16,79) \\ 14280 & (55,\pm 30,66) \\ 14280 & (54,\pm 6,89) \\ 14500 & (41,\pm 6,89) \\ 14500 & (41,\pm 6,89) \\ 14600 & (55,\pm 20,68) \\ 14820 & (17,\pm 2,\pm 18) \\ 14820 & (29,\pm 12,129) \\ 14820 & (31,\pm 41,81) \\ 14820 & (29,\pm 12,129) \\ 14820 & (31,\pm 41,81) \\ 14820 & (31,\pm 41,81) \\ 14820 & (31,\pm 41,81) \\ 14820 & (41,\pm 12,81) \\ 14820 & (41,$								
13860						1 / . /		
13920			I		1		1	
13920				. , , , ,				1 / . /
14280 (33, \pm 30, 116) 14280 (46, \pm 16, 79) 14280 (47, \pm 14, 217) 14280 (55, \pm 30, 69) 14560 (41, \pm 20, 81) 14560 (31, \pm 14, 119) 14560 (31, \pm 14, 119) 14560 (55, \pm 30, 68) 14560 (43, \pm 24, 88) 14560 (44, \pm 20, 85) 14560 (55, \pm 20, 68) 14560 (55, \pm 20, 68) 14560 (32, \pm 17, 114, 116) 14763 (43, \pm 21, 87) 14763 (53, \pm 21, 717) 14763 (55, \pm 20, 89) 14820 (17, \pm 21, 218) 14820 (29, \pm 12, 129) 14820 (34, \pm 21, 109) 14820 (56, \pm 30, 48) 14820 (51, \pm 30, 14820 (51, \pm 41, \pm 30) 17220 (42, \pm 41, 181, 101) 17220 (42, \pm 41, 181, 102) 17220 (62, \pm 58, 83) 17472 (17, \pm 24, 96) 17472 (23, \pm 41, 141) 17472 (32, \pm 46, 83) 17472 (32, \pm 48, 148) 17472 (51, \pm 46, 83) 17472 (52, \pm 46, 83) 17472 (51, \pm 48, 148) 17560 (57, \pm 49, 148) 17562 (53, \pm 42, 33) 18720 (39, \pm 56, 34, 148) 17562 (47, \pm 40, 104) 17552 (52, \pm 12, 87) 17562 (53, \pm 42, 33) 18720 (39, \pm 56, 34, 148) 17562 (47, \pm 56, 148) 17562 (57, \pm 56, 148) 1								
$ \begin{array}{c} 14280 & (59,\pm 36,66) & 14560 & (41,\pm 42,85) & 14560 & (45,\pm 42), 85) \\ 14560 & (55,\pm 20,68) & 14763 & (23,\pm 7,161) \\ 14763 & (59,\pm 39,69) & 14820 & (17,\pm 2,218) \\ 14820 & (43,\pm 12,87) & 14820 & (47,\pm 28,83) \\ 14820 & (59,\pm 44,71) & 16192 & (17,\pm 12,184) \\ 14820 & (59,\pm 44,71) & 16192 & (17,\pm 14,241) \\ 16192 & (61,\pm 20,68) & 16555 & (29,\pm 27,149) \\ 16555 & (47,\pm 41,97) & 17220 & (17,\pm 16,257) \\ 17220 & (34,\pm 18,129) & 17220 & (43,\pm 18,129) \\ 17220 & (34,\pm 18,129) & 17220 & (43,\pm 18,129) \\ 17220 & (34,\pm 18,129) & 17220 & (43,\pm 18,102) \\ 17220 & (34,\pm 18,129) & 17220 & (47,\pm 2,257) \\ 17472 & (36,\pm 36,60) & 17760 & (11,\pm 4,404) \\ 17472 & (32,\pm 8,137) & 17472 & (47,\pm 2,457) \\ 17472 & (34,\pm 4,101) & 17760 & (47,\pm 10,95) \\ 17760 & (44,\pm 4,101) & 17760 & (47,\pm 10,95) \\ 177952 & (53,\pm 42,33) & 18720 & (9,\pm 6,521) \\ 18720 & (36,\pm 12,31) & 18720 & (9,\pm 6,521) \\ 18720 & (36,\pm 12,31) & 18720 & (45,\pm 30,109) \\ 18720 & (36,\pm 12,31) & 18720 & (45,\pm 30,109) \\ 18720 & (34,\pm 14,19) & 19320 & (51,\pm 48,80) \\ 19320 & (41,\pm 1,19) & 19320 & (51,\pm 48,106) \\ 19320 & (41,\pm 1,13) & 19320 & (11,\pm 1,2,388) \\ 19380 & (39,\pm 30,130) & 19380 & (33,\pm 3,31,29) \\ 19380 & (39,\pm 30,130) & 19380 & (33,\pm 3,31,29) \\ 19380 & (39,\pm 30,130) & 19380 & (34,\pm 3,31,29) \\ 19380 & (39,\pm 30,130) & 19380 & (34,\pm 3,31,29) \\ 19635 & (59,\pm 47,80) & 19635 & (44,\pm 4,103) \\ 19635 & (41,\pm 3,12) & 19635 & (44,\pm 3,12) \\ 19635 & (41,\pm 3,12) & 19635 & (44,\pm 3,12) \\ 19635 & (41,\pm 3,12) & 19635 & (43,\pm 3,23) \\ 19635 & (41,\pm 3,12) & 19635 & (43,\pm 3,21) \\ 19636 & (59,\pm 47,80) & 19636 & (43,\pm 4,373) \\ 19635 & (41,\pm 4,313) & 19635 & (43,\pm 4,373) \\ 19635 & (41,\pm 4,313) & 19635 & (43,\pm 4,373) \\ 19636 & (44,\pm 4,10) & 19636 & (44,\pm 4,10) \\ 19636 & (59,\pm 4,48,14) & 19636 & (44,\pm 4,11,14) \\ 19636 & (69,\pm 4,48,14) & 19636 & (44,\pm 4,14,14) \\ 19636 & (69,\pm 4,48,14) & 19636 & (44,\pm 4,14,14) \\ 19636 & (69,\pm 4,48,14) & 19636 & (44,\pm 4,14,14) \\ 19636 & (69,\pm 4,48,14) & 19636 & (44,\pm 4,14,14,14) \\ 19636 & (69,\pm 4,48,14) & 19636 & (44,\pm 4,14,14,14) \\ 19636 & (69,\pm 4,48,14) & 19636 & (44$!	1 / . / . /	1			
$ \begin{array}{c} 14560 & (41,\pm6,89) \\ 14560 & (55,\pm20,68) \\ 14560 & (55,\pm20,68) \\ 14763 & (55,\pm20,68) \\ 14820 & (17,\pm2,128) \\ 14820 & (59,\pm30,69) \\ 14820 & (13,\pm12,87) \\ 14820 & (59,\pm34,71) \\ 16192 & (61,\pm20,68) \\ 17220 & (31,\pm4,139) \\ 17220 & (31,\pm4,139) \\ 17220 & (31,\pm4,139) \\ 17220 & (31,\pm4,139) \\ 17220 & (62,\pm58,83) \\ 17472 & (17,\pm2,\pm57) \\ 17472 & (17,\pm2,\pm57) \\ 17472 & (17,\pm24,96) \\ 17472 & (31,\pm30,69) \\ 17472 & (32,\pm8,137) \\ 17472 & (41,\pm4,109) \\ 17760 & (61,\pm28,76) \\ 17952 & (37,\pm20,124) \\ 17952 & (37,\pm20,124) \\ 17952 & (33,\pm21,36) \\ 18720 & (36,\pm21,313) \\ 18720 & (36,\pm21,314) \\ 18720 & (72,\pm48,73) \\ 19320 & (41,\pm4,149) \\ 19320 & (41,\pm4,149) \\ 19320 & (41,\pm4,419) \\ 19320 $			I		1		1	
$ \begin{array}{c} 14560 & (55,\pm20,68) & 14763 & (23,\pm7,161) & 14763 & (47,\pm29,83) & 14763 & (53,\pm27,17) \\ 14820 & (34,\pm12,87) & 14820 & (47,\pm28,83) & 14820 & (51,\pm36,79) & 14820 & (58,\pm46,73) \\ 14820 & (59,\pm44,71) & 16192 & (17,\pm14,241) & 16192 & (32,\pm8,127) \\ 16192 & (61,\pm20,68) & 16555 & (29,\pm27,149) & 16195 & (32,\pm24,131) & 16192 & (32,\pm8,127) \\ 16192 & (61,\pm20,68) & 16555 & (29,\pm27,149) & 16555 & (37,\pm13,113) & 16555 & (31,\pm34,139) \\ 17220 & (34,\pm18,129) & 17220 & (34,\pm18,102) & 17220 & (51,\pm18,86) & 17220 & (58,\pm56,85) \\ 17220 & (62,\pm58,83) & 17472 & (17,\pm2,\pm57) & 17472 & (32,\pm10,191) & 17472 & (32,\pm41,141) \\ 17472 & (32,\pm8,137) & 17472 & (47,\pm24,96) & 17472 & (51,\pm36,92) & 17472 & (59,\pm46,83) \\ 17760 & (44,\pm4,101) & 17760 & (47,\pm10,95) & 17760 & (55,\pm40,88) & 17760 & (57,\pm48,88) \\ 17760 & (44,\pm4,101) & 17760 & (47,\pm10,95) & 17760 & (55,\pm40,88) & 17760 & (57,\pm48,88) \\ 17760 & (33,\pm42,33) & 18720 & (9,\pm6,521) & 18720 & (33,\pm18,27) & 18720 & (37,\pm20,148) \\ 17952 & (37,\pm20,124) & 17952 & (39,\pm12,166) & 18792 & (31,\pm21,318) & 18720 & (37,\pm20,148) & 19320 & (37,\pm20,148) & 19320 & (37,\pm20,148) & 19320 & (37,\pm20,148) & 19320 & (34,\pm41,13) & 19320 & (41,\pm4,119) & 19320 & (31,\pm4,33,31) & 18720 & (32,\pm48,207) & 18720 & (31,\pm20,148) & 19320 & (37,\pm68,82) & 19380 & (39,\pm30,130) & 19380 & (36,\pm2,131) & 19380 & (39,\pm30,130) & 19380 & (33,\pm3,20,215) & 19380 & (36,\pm2,2,191) & 19380 & (36,\pm2,191) & 19380 & (36,\pm2,1$								*
$ \begin{vmatrix} 14763 & \langle 59, \pm 39, 69 \rangle & 14820 & \langle 17, \pm 2, 18 \rangle & 14820 & \langle 29, \pm 12, 129 \rangle & 14820 & \langle 58, \pm 46, 73 \rangle \\ 14820 & \langle 59, \pm 44, 71 \rangle & 16192 & \langle 17, \pm 14, 241 \rangle & 16192 & \langle 32, \pm 24, 131 \rangle & 16192 & \langle 32, \pm 8, 127 \rangle \\ 16192 & \langle 61, \pm 20, 68 \rangle & 16555 & \langle 29, \pm 27, 149 \rangle & 16555 & \langle 37, \pm 13, 113 \rangle & 16192 & \langle 32, \pm 8, 127 \rangle \\ 16555 & \langle 47, \pm 41, 97 \rangle & 17220 & \langle 17, \pm 16, 257 \rangle & 17220 & \langle 29, \pm 8, 149 \rangle & 17220 & \langle 31, \pm 4, 139 \rangle \\ 17220 & \langle 62, \pm 58, 83 \rangle & 17472 & \langle 17, \pm 2, 257 \rangle & 17472 & \langle 23, \pm 10, 191 \rangle & 17472 & \langle 32, \pm 4, 187 \rangle \\ 17472 & \langle 32, \pm 8, 137 \rangle & 17472 & \langle 47, \pm 24, 96 \rangle & 17472 & \langle 33, \pm 10, 191 \rangle & 17472 & \langle 32, \pm 24, 141 \rangle \\ 17472 & \langle 68, \pm 36, 69 \rangle & 17760 & \langle 11, \pm 4, 404 \rangle & 17760 & \langle 11, \pm 36, 92 \rangle & 17472 & \langle 32, \pm 46, 83 \rangle \\ 17472 & \langle 68, \pm 36, 69 \rangle & 17760 & \langle 11, \pm 4, 404 \rangle & 17760 & \langle 61, \pm 28, 76 \rangle & 17952 & \langle 13, \pm 12, 348 \rangle \\ 17952 & \langle 37, \pm 20, 124 \rangle & 17952 & \langle 39, \pm 12, 116 \rangle & 17952 & \langle 29, \pm 12, 156 \rangle & 17952 & \langle 31, \pm 20, 148 \rangle \\ 18720 & \langle 63, \pm 42, 93 \rangle & 18720 & \langle 9, \pm 6, 521 \rangle & 18720 & \langle 23, \pm 18, 207 \rangle & 18720 & \langle 34, \pm 2, 109 \rangle \\ 18720 & \langle 72, \pm 48, 73 \rangle & 19320 & \langle 17, \pm 14, 287 \rangle & 19320 & \langle 29, \pm 20, 170 \rangle & 19320 & \langle 34, \pm 20, 18 \rangle \\ 19330 & \langle 41, \pm 14, 119 \rangle & 19320 & \langle 13, \pm 4, 373 \rangle & 19380 & \langle 32, \pm 30, 130 \rangle & 19380 & \langle 32, \pm 30, 130 \rangle & 19380 & \langle 32, \pm 30, 130 \rangle & 19380 & \langle 32, \pm 28, 92 \rangle & 19320 & \langle 58, \pm 20, 85 \rangle \\ 19330 & \langle 89, \pm 66, 86 \rangle & 19653 & \langle 19, \pm 7, 259 \rangle & 19635 & \langle 31, \pm 9, 19, 19 \rangle & 19635 & \langle 47, \pm 4, 19, 19 \rangle & 19320 & \langle 47, \pm 4, 19, 19 \rangle \\ 19635 & \langle 99, \pm 37, 89 \rangle & 20020 & \langle 19, \pm 14, 266 \rangle & 20020 & \langle 32, \pm 6, 18 \rangle & 20020 & \langle 37, \pm 16, 137 \rangle \\ 19635 & \langle 99, \pm 37, 89 \rangle & 20020 & \langle 19, \pm 14, 266 \rangle & 20020 & \langle 32, \pm 12, 18 \rangle & 20020 & \langle 37, \pm 16, 137 \rangle \\ 19635 & \langle 99, \pm 12, 76 \rangle & 1120 & \langle 16, \pm 2, 8, 103 \rangle & 120 & \langle 32, \pm 2, 19, 19 \rangle \\ 19635 & \langle 99, \pm 12, 76 \rangle & 1120 & \langle 66, \pm 2, 28, 103 \rangle & 120$			1		1		1	1 / / /
$\begin{array}{c} 14820 & (43,\pm 12,87) & 14820 & (77,\pm 14,84) & (16192 & (32,\pm 44,131) & 16192 & (32,\pm 8,127) \\ 16192 & (61,\pm 20,68) & 16555 & (29,\pm 27,149) & 16555 & (37,\pm 13,13) & 16555 & (41,\pm 3,101) \\ 16555 & (47,\pm 41,97) & 17220 & (43,\pm 18,102) & 17220 & (22,\pm 8,149) & 17220 & (34,\pm 18,129) & 17422 & (32,\pm 8,137) & 17472 & (47,\pm 24,96) & 17472 & (32,\pm 10,191) & 17472 & (32,\pm 8,137) & 17472 & (47,\pm 24,96) & 17472 & (51,\pm 36,92) & 17472 & (59,\pm 46,83) & 17760 & (44,\pm 4,101) & 17760 & (47,\pm 10,95) & 17760 & (55,\pm 40,88) & 17760 & (57,\pm 48,88) & 17760 & (53,\pm 42,33) & 18720 & (34,\pm 12,348) & 17952 & (37,\pm 20,124) & 17952 & (33,\pm 12,348) & 17952 & (37,\pm 20,124) & 17952 & (33,\pm 12,348) & 17952 & (37,\pm 20,124) & 17952 & (33,\pm 12,348) & 17952 & (37,\pm 20,124) & 17952 & (37,\pm 20,$			1		1			
$ \begin{array}{c} 14820 & (59, \pm 44, 71) & 16 92 & (17, \pm 14, 241) & 16 92 & (32, \pm 24, 131) & 16 95 & (31, \pm 43, 101) \\ 16 955 & (47, \pm 41, 97) & 17220 & (17, \pm 16, 257) & 17220 & (29, \pm 8, 149) & 17220 & (31, \pm 4, 139) \\ 17220 & (32, \pm 18, 17) & 17220 & (17, \pm 16, 257) & 17220 & (29, \pm 8, 149) & 17220 & (31, \pm 4, 139) \\ 17220 & (32, \pm 18, 17) & 17220 & (17, \pm 12, 257) & 17472 & (23, \pm 10, 191) & 17472 & (32, \pm 24, 141) \\ 17472 & (32, \pm 8, 137) & 17472 & (47, \pm 24, 96) & 17472 & (51, \pm 36, 92) & 17472 & (32, \pm 24, 141) \\ 17472 & (88, \pm 36, 69) & 17760 & (11, \pm 4, 404) & 17760 & (19, \pm 10, 235) & 17472 & (33, \pm 18, 137) \\ 17760 & (44, \pm 4, 101) & 17760 & (47, \pm 10, 96) & 17760 & (55, \pm 40, 88) & 17760 & (61, \pm 28, 76) & 17952 & (33, \pm 12, 146) & 17952 & (29, \pm 12, 156) & 17952 & (31, \pm 20, 148) \\ 17760 & (61, \pm 28, 76) & 17952 & (33, \pm 12, 348) & 17952 & (29, \pm 12, 156) & 17952 & (31, \pm 20, 148) \\ 17952 & (37, \pm 20, 124) & 17952 & (33, \pm 12, 348) & 17952 & (23, \pm 18, 207) & 18720 & (36, \pm 12, 131) & 18720 & (9, \pm 6, 521) & 18720 & (23, \pm 18, 207) & 18720 & (67, \pm 24, 72) & 18720 & (72, \pm 48, 73) & 18720 & (9, \pm 6, 521) & 18720 & (53, \pm 28, 92) & 18720 & (67, \pm 24, 72) & 19320 & (41, \pm 4, 119) & 19320 & (31, \pm 4, 33) & 19330 & (11, \pm 4, 139) & 19320 & (53, \pm 28, 92) & 18720 & (67, \pm 24, 72) & 19320 & (31, \pm 20, 145) & 19320 & (31, $		$\langle 59, \pm 39, 69 \rangle$. , , , ,		, , , , ,	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			I		1		1	1 / / /
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		1	1 1 1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1	. , , , ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1 1 1 1		1 / . /		. , , , ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			I		1		1	
$ \begin{array}{c} 17472 & (68,\pm36,69) \\ 17760 & (41,\pm4,101) \\ 17760 & (61,\pm28,76) \\ 17952 & (37,\pm20,124) \\ 17952 & (33,\pm21,33) \\ 18720 & (9,\pm6,521) \\ 18720 & (36,\pm12,131) \\ 18720 & (36,\pm12,131) \\ 18720 & (36,\pm12,131) \\ 18720 & (46,\pm30,109) \\ 18720 & (53,\pm28,92) \\ 18720 & (72,\pm48,73) \\ 19320 & (41,\pm14,119) \\ 19320 & (51,\pm48,106) \\ 19320 & (41,\pm14,119) \\ 19320 & (51,\pm48,106) \\ 19320 & (33,\pm30,130) \\ 19380 & (39,\pm30,130) \\ 19380 & (39,\pm30,130) \\ 19380 & (43,\pm20,115) \\ 19380 & (69,\pm66,66) \\ 19635 & (41,\pm39,129) \\ 19635 & (41,\pm39,129) \\ 19635 & (41,\pm39,129) \\ 19635 & (44,\pm40,124,124) \\ 20020 & (38,\pm14,133) \\ 20020 & (44,\pm14,19) \\ 20020 & (74,\pm58,79) \\ 20640 & (51,\pm24,104) $								
$ \begin{array}{c} 17760 & (44, \pm 4, 101) \\ 17760 & (61, \pm 28, 76) \\ 17952 & (31, \pm 20, 124) \\ 17952 & (37, \pm 20, 124) \\ 17952 & (38, \pm 12, 131) \\ 18720 & (36, \pm 12, 131) \\ 18720 & (36, \pm 12, 131) \\ 18720 & (72, \pm 48, 73) \\ 19320 & (14, \pm 14, 119) \\ 19320 & (51, \pm 48, 106) \\ 19320 & (24, \pm 14, 119) \\ 19320 & (24, \pm 14, 119) \\ 19320 & (34, \pm 20, 145) \\ 19320 & (73, \pm 68, 82) \\ 19380 & (39, \pm 30, 130) \\ 19380 & (39, \pm 30, 130) \\ 19380 & (69, \pm 66, 86) \\ 19635 & (19, \pm 7, 259) \\ 19635 & (31, \pm 9, 159) \\ 19635 & (59, \pm 37, 89) \\ 20020 & (38, \pm 14, 133) \\ 20020 & (74, \pm 58, 79) \\ 20040 & (51, \pm 24, 104) \\ 20020 & (74, \pm 58, 79) \\ 20640 & (51, \pm 24, 104) \\ 20640 & (68, \pm 44, 83) \\ 20640 & (68, \pm 44, 83) \\ 20832 & (41, \pm 18, 129) \\ 20832 & (41, \pm 18, 129) \\ 20832 & (43, \pm 18, 123) \\ 20832 & (41, \pm 18, 129) \\ 20832 & (43, \pm 6, 123) \\ 21120 & (41, \pm 6, 129) \\ 21130 & (41, \pm 6, 129) \\ 21140 & (40, \pm 20, 139) \\ 21840 & (59, \pm 27, 64) \\ 22848 & (76, \pm 60, 87) \\ 22848 & (32, \pm 8, 193) \\ 22660 & (33, \pm 44, 135) \\ 22960 & (37, \pm 6, 82) \\ 22848 & (76, \pm 60, 87) \\ 22848 & (56, 60, 87) \\ 22848 & (76, \pm 60, 87) \\ 23960 & (32, \pm 1, 16, 139) \\ 23960 & (33, \pm 4, 18, 139) \\ 24640 & (67, \pm 4, 19) \\ 24640 & (67, \pm 4,$			I		1	$\langle 51, \pm 36, 92 \rangle$	1	
$ \begin{array}{c} 17760 & (61, \pm 28, 76) \\ 17952 & (37, \pm 20, 124) \\ 17952 & (39, \pm 12, 116) \\ 17952 & (53, \pm 42, 93) \\ 18720 & (36, \pm 12, 31) \\ 18720 & (36, \pm 12, 131) \\ 18720 & (36, \pm 12, 131) \\ 18720 & (36, \pm 12, 131) \\ 18720 & (36, \pm 12, 131) \\ 18720 & (36, \pm 12, 131) \\ 18720 & (36, \pm 12, 131) \\ 18720 & (36, \pm 12, 131) \\ 18720 & (31, \pm 2, 151) \\ 18720 & (72, \pm 48, 73) \\ 19320 & (72, \pm 48, 73) \\ 19320 & (17, \pm 14, 193) \\ 19320 & (51, \pm 48, 106) \\ 19320 & (53, \pm 48, 102) \\ 19320 & (73, \pm 68, 82) \\ 19380 & (39, \pm 30, 130) \\ 19380 & (39, \pm 30, 130) \\ 19380 & (39, \pm 30, 130) \\ 19380 & (44, \pm 19, 124) \\ 19320 & (44, \pm 14, 119) \\ 19380 & (46, \pm 26, 109) \\ 19380 & (44, \pm 29, 115) \\ 19380 & (44, \pm 29, 115) \\ 19380 & (44, \pm 29, 124) \\ 19380 & (44, \pm 39, 122) \\ 19380 & (44, \pm 39, 122) \\ 19635 & (41, \pm 39, 122) \\ 19635 & (41, \pm 39, 122) \\ 19635 & (41, \pm 39, 122) \\ 19635 & (41, \pm 39, 122) \\ 19635 & (41, \pm 39, 122) \\ 19635 & (41, \pm 41, 119) \\ 20020 & (44, \pm 41, 134) \\ 20020 & (44, \pm 41, 134) \\ 20020 & (44, \pm 41, 134) \\ 20020 & (44, \pm 41, 134) \\ 20020 & (44, \pm 41, 134) \\ 20040 & (51, \pm 24, 104) \\ 20640 & (51, \pm 24, 104) \\ 20640 & (51, \pm 24, 104) \\ 20640 & (51, \pm 24, 104) \\ 20640 & (51, \pm 24, 104) \\ 20640 & (51, \pm 24, 104) \\ 20632 & (44, \pm 18, 129) \\ 20832 & (44, \pm 18, 129) \\ 20832 & (44, \pm 18, 129) \\ 20832 & (43, \pm 18, 123) \\ 20832 & (44, \pm 18, 129) \\ 20832 & (43, \pm 18, 123) \\ 20832 & (44, \pm 18, 129) \\ 20832 & (44, \pm 18, 129) \\ 20832 & (44, \pm 18, 129) \\ 20832 & (44, \pm 18, 129) \\ 20832 & (44, \pm 12, \pm 28) \\ 20832 & (44, \pm 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,$	17472	$\langle 68, \pm 36, 69 \rangle$	17760	$\langle 11, \pm 4, 404 \rangle$	17760	$\langle 19, \pm 10, 235 \rangle$	17760	$\langle 33, \pm 18, 137 \rangle$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\langle 44, \pm 4, 101 \rangle$		$\langle 47, \pm 10, 95 \rangle$		$\langle 55, \pm 40, 88 \rangle$		$\langle 57, \pm 48, 88 \rangle$
$\begin{array}{c} 17952 (33, \pm 42, 93) 18720 (9, \pm 6, 521) 18720 (53, \pm 28, 92) 18720 (31, \pm 2, 151) \\ 18720 (72, \pm 48, 73) 19320 (17, \pm 14, 287) 19320 (29, \pm 20, 170) 19320 (34, \pm 20, 145) \\ 19320 (41, \pm 14, 119) 19320 (51, \pm 48, 106) 19320 (53, \pm 48, 102) 19320 (58, \pm 20, 85) \\ 19320 (73, \pm 68, 82) 19380 (13, \pm 4, 373) 19380 (23, \pm 20, 215) 19380 (26, \pm 22, 191) \\ 19380 (39, \pm 56, 86) 19635 (19, \pm 7, 259) 19635 (31, \pm 9, 193) 19635 (36, \pm 6, 18) \\ 19380 (89, \pm 66, 86) 19635 (19, \pm 7, 259) 19635 (31, \pm 9, 193) 19635 (37, \pm 7, 133) \\ 19635 (41, \pm 39, 129) 19635 (43, \pm 39, 123) 19635 (53, \pm 9, 93) 19635 (57, \pm 45, 95) \\ 19635 (59, \pm 37, 89) 20020 (19, \pm 14, 266) 20020 (23, \pm 6, 218) 20020 (37, \pm 16, 137) \\ 20020 (38, \pm 14, 133) 20020 (46, \pm 6, 109) 20020 (47, \pm 40, 115) 20020 (37, \pm 16, 137) \\ 20640 (51, \pm 24, 104) 20640 (52, \pm 28, 103) 20640 (61, \pm 10, 85) 20640 (65, \pm 50, 89) \\ 20640 (68, \pm 44, 83) 20832 (49, \pm 12, 276) 20832 (23, \pm 12, 228) 20832 (37, \pm 6, 141) \\ 20832 (41, \pm 18, 129) 20832 (43, \pm 18, 123) 20832 (47, \pm 6, 111) 8832 (57, \pm 12, 92) \\ 20832 (69, \pm 12, 76) 21120 (46, \pm 6, 133) 21120 (48, \pm 4, 133) 21120 (41, \pm 6, 129) 21120 (41, \pm 6, 129) 21120 (43, \pm 6, 123) 21120 (44, \pm 4, 113) 21120 (51, \pm 48, 96) \\ 21140 (71, \pm 40, 80) 21840 (43, \pm 2, 12, 72, 124) (53, \pm 41, 134) (56, \pm 8, 101) \\ 21840 (59, \pm 52, 104) 22080 (19, \pm 6, 291) 22080 (32, \pm 4, 177) 22080 (37, \pm 4, 18, 96) \\ 22080 (76, \pm 44, 79) 22848 (57, \pm 6, 17) 22080 (59, \pm 24, 196) 22848 (32, \pm 8, 193) 24640 (41, \pm 4, 683) 22848 (61, \pm 24, 96) 24640 (61, \pm 24, 197) 22686 (47, \pm 14, 136) (53, \pm 18, 144) 29568 (47, \pm 14, 136) 29568 (47, \pm 14, 136) (37, \pm 4, 136) (37, \pm 4, 136) (38, \pm 4, 136) $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			17952	$\langle 39, \pm 12, 116 \rangle$	17952		17952	$\langle 52, \pm 12, 87 \rangle$
$\begin{array}{c} 18720 & \langle 72, \pm 48, 73 \rangle & 19320 & \langle 17, \pm 14, 287 \rangle & 19320 & \langle 29, \pm 20, 170 \rangle & 19320 & \langle 34, \pm 20, 145 \rangle \\ 19320 & \langle 41, \pm 14, 119 \rangle & 19320 & \langle 51, \pm 48, 106 \rangle & 19320 & \langle 53, \pm 48, 102 \rangle & 19320 & \langle 58, \pm 20, 85 \rangle \\ 19320 & \langle 73, \pm 68, 82 \rangle & 19380 & \langle 13, \pm 4, 373 \rangle & 19380 & \langle 23, \pm 20, 215 \rangle & 19380 & \langle 26, \pm 22, 191 \rangle \\ 19380 & \langle 39, \pm 30, 130 \rangle & 19380 & \langle 43, \pm 20, 115 \rangle & 19380 & \langle 46, \pm 26, 109 \rangle & 19380 & \langle 65, \pm 30, 78 \rangle \\ 19380 & \langle 69, \pm 66, 86 \rangle & 19635 & \langle 19, \pm 7, 259 \rangle & 19635 & \langle 31, \pm 9, 159 \rangle & 19635 & \langle 37, \pm 7, 133 \rangle \\ 19635 & \langle 41, \pm 39, 129 \rangle & 19635 & \langle 43, \pm 39, 123 \rangle & 19635 & \langle 53, \pm 9, 93 \rangle & 19655 & \langle 57, \pm 45, 95 \rangle \\ 19635 & \langle 59, \pm 37, 89 \rangle & 20020 & \langle 19, \pm 14, 266 \rangle & 20020 & \langle 23, \pm 6, 218 \rangle & 20020 & \langle 37, \pm 16, 137 \rangle \\ 20020 & \langle 38, \pm 14, 133 \rangle & 20020 & \langle 46, \pm 6, 109 \rangle & 20020 & \langle 47, \pm 40, 115 \rangle & 20020 & \langle 37, \pm 16, 137 \rangle \\ 20040 & \langle 51, \pm 24, 104 \rangle & 20640 & \langle 13, \pm 2, 397 \rangle & 20640 & \langle 17, \pm 10, 305 \rangle & 20640 & \langle 39, \pm 24, 136 \rangle \\ 20832 & \langle 41, \pm 18, 129 \rangle & 20832 & \langle 43, \pm 18, 123 \rangle & 20832 & \langle 47, \pm 6, 111 \rangle & 20832 & \langle 37, \pm 6, 141 \rangle \\ 20832 & \langle 41, \pm 18, 129 \rangle & 20832 & \langle 43, \pm 18, 123 \rangle & 20832 & \langle 47, \pm 6, 111 \rangle & 20832 & \langle 57, \pm 12, 92 \rangle \\ 20832 & \langle 69, \pm 12, 76 \rangle & 21120 & \langle 43, \pm 6, 123 \rangle & 21120 & \langle 48, \pm 4, 133 \rangle & 21120 & \langle 41, \pm 6, 129 \rangle & 21120 & \langle 41, \pm 6, 129 \rangle & \langle 1124, 46, 62, 129 \rangle & \langle 1124, 46, 129 \rangle & \langle 1124, 46, 123 \rangle & 21120 & \langle 48, \pm 4, 133 \rangle & 21120 & \langle 48, \pm 4, 133 \rangle & \langle 1120, 46, \pm 24, 133 \rangle & \langle $	17952	$\langle 53, \pm 42, 93 \rangle$	18720	$\langle 9, \pm 6, 521 \rangle$	18720	$\langle 23, \pm 18, 207 \rangle$		$\langle 31, \pm 2, 151 \rangle$
$\begin{array}{c} 19320 & \langle 41,\pm 14,119 \rangle & 19320 & \langle 51,\pm 48,106 \rangle & 19320 & \langle 53,\pm 48,102 \rangle & 19320 & \langle 26,\pm 22,191 \rangle \\ 19380 & \langle 39,\pm 30,130 \rangle & 19380 & \langle 43,\pm 4,373 \rangle & 19380 & \langle 46,\pm 26,109 \rangle & 19380 & \langle 66,\pm 23,191 \rangle \\ 19380 & \langle 69,\pm 66,86 \rangle & 19635 & \langle 19,\pm 7,259 \rangle & 19635 & \langle 31,\pm 9,159 \rangle & 19635 & \langle 37,\pm 7,133 \rangle \\ 19635 & \langle 59,\pm 37,89 \rangle & 20020 & \langle 19,\pm 14,266 \rangle & 20020 & \langle 23,\pm 6,218 \rangle & 20020 & \langle 37,\pm 16,137 \rangle \\ 20020 & \langle 74,\pm 58,79 \rangle & 20640 & \langle 13,\pm 2,397 \rangle & 20640 & \langle 17,\pm 10,305 \rangle & 20640 & \langle 39,\pm 24,136 \rangle \\ 20640 & \langle 51,\pm 24,104 \rangle & 20640 & \langle 52,\pm 28,103 \rangle & 20640 & \langle 61,\pm 10,85 \rangle & 20640 & \langle 65,\pm 6,48,33 \rangle \\ 20832 & \langle 41,\pm 18,129 \rangle & 20832 & \langle 19,\pm 12,276 \rangle & 20832 & \langle 23,\pm 12,228 \rangle & 20832 & \langle 37,\pm 6,141 \rangle \\ 20832 & \langle 69,\pm 12,76 \rangle & 21120 & \langle 16,\pm 8,331 \rangle & 21120 & \langle 24,\pm 11,12 \rangle & 20832 & \langle 57,\pm 12,92 \rangle \\ 20120 & \langle 71,\pm 40,80 \rangle & 12440 & \langle 8,\pm 4,633 \rangle & 21120 & \langle 44,\pm 2,229 \rangle & 21840 & \langle 43,\pm 2,127 \rangle & 21840 & \langle 59,\pm 52,104 \rangle \\ 22080 & \langle 76,\pm 44,79 \rangle & 22848 & \langle 19,\pm 6,79 \rangle & 22080 & \langle 32,\pm 24,177 \rangle & 22080 & \langle 77,\pm 28,148 \rangle \\ 22848 & \langle 76,\pm 6,67 \rangle & 22848 & \langle 19,\pm 16,304 \rangle & 22848 & \langle 29,\pm 2,197 \rangle & 22848 & \langle 72,\pm 19,13 \rangle & \langle 72,\pm 44,13 \rangle & \langle 72,\pm 44,13 \rangle \\ 22848 & \langle 76,\pm 6,67 \rangle & 22440 & \langle 41,\pm 4,16 \rangle & 22440 & \langle 41,\pm 4,16 \rangle & 22440 & \langle 41,\pm 4,19 \rangle$		$\langle 36, \pm 12, 131 \rangle$					18720	$\langle 67, \pm 24, 72 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18720		19320	$\langle 17, \pm 14, 287 \rangle$	19320	$\langle 29, \pm 20, 170 \rangle$	19320	$(34, \pm 20, 145)$
$\begin{array}{c} 19380 & (39,\pm30,130) \\ 19380 & (69,\pm66,86) \\ 19635 & (19,\pm7,259) \\ 19635 & (31,\pm9,159) \\ 19635 & (31,\pm9,159) \\ 19635 & (31,\pm9,159) \\ 19635 & (32,\pm4,133) \\ 19635 & (53,\pm9,93) \\ 19635 & (57,\pm45,95) \\ 20020 & (38,\pm14,133) \\ 20020 & (46,\pm6,109) \\ 20020 & (74,\pm58,79) \\ 20640 & (51,\pm24,104) \\ 20640 & (51,\pm24,104) \\ 20640 & (68,\pm44,83) \\ 20832 & (41,\pm18,129) \\ 20832 & (43,\pm18,123) \\ 20832 & (41,\pm16,129) \\ 21120 & (41,\pm6,129) \\ 21120 & (41,\pm6,129) \\ 21120 & (41,\pm6,129) \\ 21120 & (41,\pm6,129) \\ 21120 & (71,\pm40,80) \\ 21840 & (40,\pm20,139) \\ 21840 & (40,\pm20,139) \\ 22840 & (57,\pm54,134) \\ 22808 & (37,\pm34,157) \\ 22080 & (76,\pm44,79) \\ 22848 & (32,\pm8,179) \\ 22848 & (32,\pm8,179) \\ 22848 & (32,\pm8,179) \\ 22848 & (76,\pm60,87) \\ 24640 & (32,\pm8,193) \\ 22846 & (76,\pm60,87) \\ 24640 & (32,\pm8,193) \\ 22846 & (72,\pm44,97) \\ 22848 & (76,\pm60,87) \\ 24640 & (32,\pm4,164,129) \\ 29920 & (92,\pm76,97) \\ 31395 & (47,\pm1,167) \\ 3$	19320	$\langle 41, \pm 14, 119 \rangle$	19320	$(51, \pm 48, 106)$		$\langle 53, \pm 48, 102 \rangle$	19320	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19320	$\langle 73, \pm 68, 82 \rangle$	19380	$\langle 13, \pm 4, 373 \rangle$	19380	$\langle 23, \pm 20, 215 \rangle$	19380	$\langle 26, \pm 22, 191 \rangle$
$\begin{array}{c} 19635 \langle 41, \pm 39, 129 \rangle 19635 \langle 43, \pm 39, 123 \rangle 19635 \langle 55, \pm 9, 93 \rangle 19635 \langle 57, \pm 45, 95 \rangle \\ 20020 \langle 38, \pm 14, 133 \rangle 20020 \langle 46, \pm 6, 109 \rangle 20020 \langle 23, \pm 6, 218 \rangle 20020 \langle 37, \pm 16, 137 \rangle \\ 20020 \langle 74, \pm 58, 79 \rangle 20640 \langle 13, \pm 2, 397 \rangle 20640 \langle 17, \pm 10, 305 \rangle 20640 \langle 39, \pm 24, 136 \rangle \\ 20640 \langle 68, \pm 44, 83 \rangle 20832 \langle 19, \pm 12, 276 \rangle 20832 \langle 23, \pm 12, 228 \rangle 20832 \langle 37, \pm 6, 141 \rangle \\ 20832 \langle 41, \pm 18, 129 \rangle 20832 \langle 43, \pm 18, 123 \rangle 20832 \langle 47, \pm 6, 111 \rangle 20832 \langle 57, \pm 12, 92 \rangle \\ 20832 \langle 69, \pm 12, 76 \rangle 21120 \langle 16, \pm 8, 331 \rangle 21120 \langle 32, \pm 16, 167 \rangle 21120 \langle 61, \pm 48, 96 \rangle \\ 21120 \langle 41, \pm 6, 129 \rangle 21120 \langle 43, \pm 6, 123 \rangle 21120 \langle 44, \pm 2, 123 \rangle 21840 \langle 42, \pm 2, 123 \rangle \\ 21840 \langle 40, \pm 20, 139 \rangle 21840 \langle 43, \pm 2, 127 \rangle 21840 \langle 53, \pm 46, 113 \rangle 21840 \langle 56, \pm 28, 101 \rangle \\ 22080 \langle 37, \pm 34, 157 \rangle 22080 \langle 19, \pm 6, 291 \rangle 22080 \langle 32, \pm 41, 177 \rangle 22080 \langle 32, \pm 8, 173 \rangle \\ 22080 \langle 76, \pm 44, 79 \rangle 22848 \langle 19, \pm 16, 304 \rangle 22848 \langle 61, \pm 24, 96 \rangle \\ 22848 \langle 76, \pm 66, 87 \rangle 24640 \langle 23, \pm 4, 268 \rangle 24640 \langle 32, \pm 4, 19 \rangle \\ 24640 \langle 32, \pm 8, 193 \rangle 24640 \langle 41, \pm 40, 160 \rangle 24640 \langle 59, \pm 50, 115 \rangle 24640 \langle 32, \pm 24, 197 \rangle \\ 24640 \langle 32, \pm 8, 193 \rangle 24640 \langle 41, \pm 40, 160 \rangle 24640 \langle 59, \pm 50, 115 \rangle 24640 \langle 32, \pm 48, 193 \rangle \\ 27360 \langle 72, \pm 24, 97 \rangle 29568 \langle 46, \pm 30, 157 \rangle 27360 \langle 59, \pm 4, 116 \rangle 27360 \langle 79, \pm 48, 193 \rangle \\ 27360 \langle 72, \pm 24, 97 \rangle 29568 \langle 46, \pm 24, 157 \rangle 29920 \langle 32, \pm 16, 328 \rangle 29920 \langle 79, \pm 16, 149, 116 \rangle \\ 29920 \langle 92, \pm 76, 97 \rangle 31395 \langle 17, \pm 15, 465 \rangle 31395 \langle 11, \pm 16, 184 \rangle \\ 29920 \langle 59, \pm 8, 136 \rangle 29020 \langle 67, \pm 30, 115 \rangle 29568 \langle 33, \pm 18, 141 \rangle 29568 \langle 73, \pm 56, 112 \rangle \\ 29920 \langle 92, \pm 76, 97 \rangle 31395 \langle 17, \pm 15, 465 \rangle 31395 \langle 17, \pm 46, 112 \rangle \\ 29920 \langle 92, \pm 76, 97 \rangle 31395 \langle 17, \pm 15, 465 \rangle 31395 $	19380	$\langle 39, \pm 30, 130 \rangle$	19380	$\langle 43, \pm 20, 115 \rangle$	19380	$\langle 46, \pm 26, 109 \rangle$	19380	$\langle 65, \pm 30, 78 \rangle$
$\begin{array}{c} 19635 & (56, \pm 37, 89) & 20020 & (19, \pm 14, 266) & 20020 & (23, \pm 6, 218) & 20020 & (37, \pm 16, 137) \\ 20020 & (38, \pm 14, 133) & 20020 & (46, \pm 6, 109) & 20020 & (47, \pm 40, 115) & 20020 & (61, \pm 54, 94) \\ 20020 & (74, \pm 58, 79) & 20640 & (13, \pm 2, 397) & 20640 & (61, \pm 10, 85) & 20640 & (63, \pm 24, 136) \\ 20640 & (51, \pm 24, 104) & 20640 & (52, \pm 28, 103) & 20640 & (61, \pm 10, 85) & 20640 & (68, \pm 44, 83) \\ 20832 & (41, \pm 18, 129) & 20832 & (43, \pm 18, 123) & 20832 & (23, \pm 12, 228) & 20832 & (37, \pm 6, 141) \\ 20832 & (69, \pm 12, 76) & 21120 & (16, \pm 8, 331) & 21120 & (32, \pm 16, 167) & 21120 & (37, \pm 28, 148) \\ 21120 & (41, \pm 6, 129) & 21120 & (43, \pm 6, 123) & 21120 & (38, \pm 24, 113) & 21120 & (37, \pm 28, 148) \\ 21120 & (71, \pm 40, 80) & 21840 & (8, \pm 4, 683) & 21840 & (24, \pm 12, 229) & 21840 & (37, \pm 8, 148) \\ 21840 & (40, \pm 20, 139) & 21840 & (43, \pm 2, 127) & 21840 & (53, \pm 46, 113) & 21840 & (56, \pm 28, 101) \\ 22080 & (37, \pm 34, 157) & 22080 & (57, \pm 6, 97) & 22080 & (32, \pm 24, 177) & 22080 & (37, \pm 70, 95) \\ 22080 & (76, \pm 44, 79) & 22848 & (19, \pm 16, 304) & 22848 & (29, \pm 2, 197) & 22848 & (73, \pm 72, 96) \\ 22848 & (76, \pm 60, 87) & 24640 & (23, \pm 4, 268) & 24640 & (31, \pm 6, 199) & 24640 & (32, \pm 8, 133) & 24640 & (41, \pm 40, 160) & 27360 & (59, \pm 4, 16) & 27360 & (36, \pm 12, 191) \\ 27360 & (43, \pm 26, 163) & 27360 & (9, \pm 6, 761) & 27360 & (29, \pm 4, 236) & 27360 & (36, \pm 12, 191) \\ 27360 & (47, \pm 4, 18, 159) & 29568 & (46, 8, 43) & 29920 & (43, \pm 4, 172) & 29920 & (53, \pm 48, 152) & 29920 & (67, \pm 30, 115) & 29920 & (23, \pm 16, 323) & 29568 & (47, \pm 11, 16, 134) \\ 29920 & (53, \pm 48, 152) & 29920 & (67, \pm 30, 115) & 29920 & (23, \pm 16, 328) & 29920 & (41, \pm 16, 184) \\ 29920 & (53, \pm 48, 152) & 29920 & (67, \pm 30, 115) & 29920 & (23, \pm 16, 328) & 29920 & (41, \pm 16, 184) \\ 29920 & (53, \pm 48, 152) & 29920 & (67, \pm 30, 115) & 29920 & (23, \pm 16, 323) & 29568 & (43, \pm 4, 172) \\ 39315 & (55, \pm 25, 157) & 33915 & (17, \pm 15, 155) & 31395 & (41, \pm 19, 209) & 33915 & (47, \pm 11, 16, 164) & 36960 & (41, \pm 1, 10, 10) & 36960 & (41,$		$\langle 69, \pm 66, 86 \rangle$	19635	$\langle 19, \pm 7, 259 \rangle$	19635	$\langle 31, \pm 9, 159 \rangle$	19635	$\langle 37, \pm 7, 133 \rangle$
$\begin{array}{c} 20020 \langle 38, \pm 14, 133 \rangle \\ 20020 \langle 74, \pm 58, 79 \rangle \\ 20040 \langle 51, \pm 24, 104 \rangle \\ 20640 \langle 52, \pm 28, 103 \rangle \\ 20640 \langle 68, \pm 44, 83 \rangle \\ 20640 \langle 68, \pm 44, 83 \rangle \\ 20632 \langle 69, \pm 12, 76 \rangle \\ 20832 \langle 41, \pm 18, 129 \rangle \\ 20832 \langle 41, \pm 18, 129 \rangle \\ 20832 \langle 69, \pm 12, 76 \rangle \\ 20120 \langle 43, \pm 18, 123 \rangle \\ 20832 \langle 69, \pm 12, 76 \rangle \\ 20120 \langle 43, \pm 18, 123 \rangle \\ 20832 \langle 69, \pm 12, 76 \rangle \\ 20120 \langle 43, \pm 18, 123 \rangle \\ 20832 \langle 69, \pm 12, 76 \rangle \\ 20120 \langle 43, \pm 6, 123 \rangle \\ 21120 \langle 41, \pm 6, 129 \rangle \\ 21120 \langle 41, \pm 6, 129 \rangle \\ 21120 \langle 43, \pm 6, 123 \rangle \\ 21120 \langle 41, \pm 6, 129 \rangle \\ 21120 \langle 43, \pm 6, 123 \rangle \\ 21120 \langle 44, \pm 22, 139 \rangle \\ 21200 \langle 71, \pm 40, 80 \rangle \\ 21840 \langle 40, \pm 20, 139 \rangle \\ 21840 \langle 40, \pm 20, 139 \rangle \\ 21840 \langle 59, \pm 52, 104 \rangle \\ 22080 \langle 37, \pm 34, 157 \rangle \\ 22080 \langle 37, \pm 34, 157 \rangle \\ 22080 \langle 37, \pm 34, 157 \rangle \\ 22080 \langle 76, \pm 44, 79 \rangle \\ 22848 \langle 49, \pm 12, \pm 1$	19635	$(41, \pm 39, 129)$	19635	$\langle 43, \pm 39, 123 \rangle$	19635	$\langle 53, \pm 9, 93 \rangle$	19635	$\langle 57, \pm 45, 95 \rangle$
$ \begin{array}{c} 20020 \langle 74, \pm 58, 79 \rangle \\ 20640 \langle 51, \pm 24, 104 \rangle \\ 20640 \langle 68, \pm 44, 83 \rangle \\ 20632 \langle 69, \pm 44, 83 \rangle \\ 20832 \langle 41, \pm 18, 129 \rangle \\ 20832 \langle 69, \pm 12, 76 \rangle \\ 21120 \langle 16, \pm 8, 331 \rangle \\ 21120 \langle 41, \pm 6, 129 \rangle \\ 21120 \langle 43, \pm 6, 123 \rangle \\ 21120 \langle 41, \pm 6, 129 \rangle \\ 21120 \langle 43, \pm 6, 123 \rangle \\ 21120 \langle 71, \pm 40, 80 \rangle \\ 21840 \langle 89, \pm 4, 633 \rangle \\ 21840 \langle 40, \pm 20, 139 \rangle \\ 21840 \langle 43, \pm 18, 129 \rangle \\ 20800 \langle 37, \pm 5, 144 \rangle \\ 22884 \langle 69, \pm 12, 76 \rangle \\ 21120 \langle 71, \pm 40, 80 \rangle \\ 21840 \langle 8, \pm 4, 633 \rangle \\ 21840 \langle 40, \pm 20, 139 \rangle \\ 21840 \langle 43, \pm 6, 123 \rangle \\ 22840 \langle 59, \pm 52, 104 \rangle \\ 22980 \langle 37, \pm 6, 97 \rangle \\ 22980 \langle 37, \pm 6, 141 \rangle \\ 22848 \langle 32, \pm 4, 79 \rangle \\ 22848 \langle 32, \pm 4, 79 \rangle \\ 22848 \langle 32, \pm 8, 179 \rangle \\ 22848 \langle 32, \pm 8, 193 \rangle \\ 24640 \langle 32, \pm 8, 193 \rangle \\ 24640 \langle 32, \pm 8, 193 \rangle \\ 24640 \langle 67, \pm 4, 97 \rangle \\ 29568 \langle 47, \pm 4, 8, 96 \rangle \\ 27360 \langle 72, \pm 24, 97 \rangle \\ 29568 \langle 43, \pm 26, 163 \rangle \\ 27360 \langle 72, \pm 24, 97 \rangle \\ 29568 \langle 33, \pm 48, 152 \rangle \\ 29920 \langle 53, \pm 48, 152 \rangle \\ 29920 \langle 53, \pm 48, 152 \rangle \\ 29920 \langle 67, \pm 48, 96 \rangle \\ 29920 \langle 53, \pm 48, 152 \rangle \\ 29920 \langle 67, \pm 30, 15, 1395 \rangle \\ 47, \pm 1, 167, 97 \rangle \\ 29568 \langle 47, \pm 1, 167, 97 \rangle \\ 29568 \langle 47, \pm 1, 167, 97 \rangle \\ 29568 \langle 43, \pm 26, 163 \rangle \\ 27360 \langle 72, \pm 24, 97 \rangle \\ 29568 \langle 43, \pm 26, 163 \rangle \\ 27360 \langle 72, \pm 24, 97 \rangle \\ 29568 \langle 43, \pm 4, 89, 6 \rangle \\ 29920 \langle 53, \pm 48, 152 \rangle \\ 29920 \langle 67, \pm 30, 115 \rangle \\ 29920 \langle 53, \pm 48, 152 \rangle \\ 29920 \langle 67, \pm 30, 157 \rangle \\ 29920 \langle 67, \pm 30, 157 \rangle \\ 29920 \langle 53, \pm 48, 152 \rangle \\ 29920 \langle 67, \pm 30, 157 \rangle $	19635	$\langle 59, \pm 37, 89 \rangle$	20020	$(19, \pm 14, 266)$	20020	$\langle 23, \pm 6, 218 \rangle$	20020	$\langle 37, \pm 16, 137 \rangle$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20020	$\langle 38, \pm 14, 133 \rangle$	20020	$\langle 46, \pm 6, 109 \rangle$	20020	$\langle 47, \pm 40, 115 \rangle$	20020	$\langle 61, \pm 54, 94 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20020	$\langle 74, \pm 58, 79 \rangle$	20640	$\langle 13, \pm 2, 397 \rangle$	20640	$(17, \pm 10, 305)$	20640	$(39, \pm 24, 136)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20640	$\langle 51, \pm 24, 104 \rangle$	20640	$(52, \pm 28, 103)$	20640	$(61, \pm 10, 85)$	20640	$\langle 65, \pm 50, 89 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20640	$\langle 68, \pm 44, 83 \rangle$	20832	$(19, \pm 12, 276)$	20832	$(23, \pm 12, 228)$	20832	$(37, \pm 6, 141)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20832	$\langle 41, \pm 18, 129 \rangle$	20832	$\langle 43, \pm 18, 123 \rangle$	20832	$\langle 47, \pm 6, 111 \rangle$	20832	$\langle 57, \pm 12, 92 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20832	$\langle 69, \pm 12, 76 \rangle$	21120	$\langle 16, \pm 8, 331 \rangle$	21120	$(32, \pm 16, 167)$	21120	$(37, \pm 28, 148)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21120	$(41, \pm 6, 129)$	21120	$\langle 43, \pm 6, 123 \rangle$	21120	$\langle 48, \pm 24, 113 \rangle$	21120	$(61, \pm 48, 96)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21120	$\langle 71, \pm 40, 80 \rangle$	21840	$\langle 8, \pm 4, 683 \rangle$	21840	$(24, \pm 12, 229)$	21840	$(37, \pm 8, 148)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21840	$\langle 40, \pm 20, 139 \rangle$	21840	$\langle 43, \pm 2, 127 \rangle$	21840	$(53, \pm 46, 113)$	21840	$(56, \pm 28, 101)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21840	$\langle 59, \pm 52, 104 \rangle$	22080	$(19, \pm 6, 291)$	22080	$(32, \pm 24, 177)$	22080	$\langle 32, \pm 8, 173 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22080	$(37, \pm 34, 157)$	22080	$\langle 57, \pm 6, 97 \rangle$	22080	$\langle 59, \pm 24, 96 \rangle$	22080	$\langle 71, \pm 70, 95 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22080	$\langle 76, \pm 44, 79 \rangle$	22848	$(19, \pm 16, 304)$	22848	$\langle 29, \pm 2, 197 \rangle$	22848	$(32, \pm 24, 183)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22848	$\langle 32, \pm 8, 179 \rangle$	22848		22848	$\langle 61, \pm 24, 96 \rangle$	22848	$\langle 73, \pm 72, 96 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22848	$\langle 76, \pm 60, 87 \rangle$	24640	$\langle 23, \pm 4, 268 \rangle$	24640	$\langle 31, \pm 6, 199 \rangle$	24640	$\langle 32, \pm 24, 197 \rangle$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24640	$\langle 32, \pm 8, 193 \rangle$	24640	$(41, \pm 40, 160)$	24640	$(59, \pm 50, 115)$		$\langle 61, \pm 2, 101 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\langle 67, \pm 4, 92 \rangle$		$\langle 9, \pm 6, 761 \rangle$		$\langle 29, \pm 4, 236 \rangle$	l .	$\langle 36, \pm 12, 191 \rangle$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27360			$\langle 45, \pm 30, 157 \rangle$		$\langle 59, \pm 4, 116 \rangle$		$\langle 72, \pm 48, 103 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\langle 72, \pm 24, 97 \rangle$	I			$\langle 32, \pm 16, 233 \rangle$	I	$\langle 43, \pm 4, 172 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\langle 47, \pm 18, 159 \rangle$		$\langle 48, \pm 24, 157 \rangle$		$\langle 53, \pm 18, 141 \rangle$		$\langle 73, \pm 56, 112 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29568	$\langle 83, \pm 48, 96 \rangle$	29920	$\langle 19, \pm 10, 395 \rangle$	29920	$\langle 23, \pm 16, 328 \rangle$	29920	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29920	$\langle 53, \pm 48, 152 \rangle$	29920		29920	$\langle 76, \pm 28, 101 \rangle$	29920	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\langle 92, \pm 76, 97 \rangle$				$(31, \pm 15, 255)$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31395	$\langle 47, \pm 1, 167 \rangle$	31395	$(51, \pm 15, 155)$	31395	$(61, \pm 9, 129)$	31395	$(71, \pm 49, 119)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31395	$\langle 85, \pm 15, 93 \rangle$	32032	$(17, \pm 8, 472)$	32032	$(29, \pm 10, 277)$	32032	$\langle 37, \pm 26, 221 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32032	$\langle 59, \pm 8, 136 \rangle$	32032	$(68, \pm 60, 131)$	32032	$(71, \pm 42, 119)$	32032	$(79, \pm 68, 116)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32032	$(89, \pm 50, 97)$	33915	$(11, \pm 3, 771)$	33915	$\langle 33, \pm 3, 257 \rangle$	33915	$(41, \pm 19, 209)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33915	$(55, \pm 25, 157)$	33915	$(61, \pm 1, 139)$	33915	$(67, \pm 11, 127)$	33915	$(77, \pm 63, 123)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$!					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\langle 52, \pm 4, 167 \rangle$	34720	$\langle 65, \pm 30, 137 \rangle$	34720	$\langle 79, \pm 44, 116 \rangle$	34720	$\langle 89, \pm 48, 104 \rangle$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$\langle 13, \pm 8, 712 \rangle$		$\langle 17, \pm 10, 545 \rangle$	36960	$\langle 23, \pm 22, 407 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\langle 37, \pm 22, 253 \rangle$		$\langle 39, \pm 18, 239 \rangle$	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	36960	$\langle 65, \pm 60, 156 \rangle$	36960	$\langle 67, \pm 52, 148 \rangle$	36960		36960	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36960	$\langle 85, \pm 10, 109 \rangle$	36960	$\langle 89, \pm 8, 104 \rangle$	36960	$\langle 91, \pm 70, 115 \rangle$	36960	$\langle 92, \pm 68, 113 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			40755	$\langle 23, \pm 1, 443 \rangle$	40755	$\langle 31, \pm 17, 331 \rangle$	40755	$\langle 41, \pm 9, 249 \rangle$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40755	$\langle 43, \pm 3, 237 \rangle$	40755	$\langle 69, \pm 45, 155 \rangle$		$\langle 79, \pm 3, 129 \rangle$	40755	$\langle 83, \pm 9, 123 \rangle$
					1			
$43680 \qquad \langle 61, \pm 22, 181 \rangle \mid 43680 \qquad \langle 67, \pm 2, 163 \rangle \mid 43680 \qquad \langle 76, \pm 20, 145 \rangle \mid 43680 \qquad \langle 77, \pm 56, 152 \rangle$, , , , ,	43680	$\langle 57, \pm 18, 193 \rangle$
	43680	$\langle 61, \pm 22, 181 \rangle$	43680	$\langle 67, \pm 2, 163 \rangle$	43680	$\langle 76, \pm 20, 145 \rangle$	43680	$\langle 77, \pm 56, 152 \rangle$

Table 1: Representatives for 2779 $\mathrm{SL}_2(\mathbb{Z})\text{-equivalence Classes of Regular Forms}$

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \Delta $	$\langle A, B, C \rangle$	$ \Delta $	$\langle A, B, C \rangle$	$ \Delta $	$\langle A, B, C \rangle$	$ \Delta $	$\langle A, B, C \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. , , ,				. , , ,		. , , ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. , , , ,		. , , , ,		\ / / /
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. , , , ,		. , , , ,		. , , , ,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57120	$\langle 69, \pm 60, 220 \rangle$	57120	$(77, \pm 28, 188)$	57120	$(79, \pm 32, 184)$	57120	$\langle 88, \pm 72, 177 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57120	$\langle 88, \pm 16, 163 \rangle$	57120	$(89, \pm 14, 161)$	57120	$(92, \pm 60, 165)$	57120	$\langle 109, \pm 66, 141 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57120	$\langle 115, \pm 60, 132 \rangle$	77280	$\langle 17, \pm 6, 1137 \rangle$	77280	$(29, \pm 18, 669)$	77280	$\langle 41, \pm 28, 476 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77280	$\langle 51, \pm 6, 379 \rangle$	77280	$(53, \pm 10, 365)$	77280	$(68, \pm 28, 287)$	77280	$\langle 73, \pm 10, 265 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77280	$(85, \pm 40, 232)$	77280	$(87, \pm 18, 223)$	77280	$(107, \pm 98, 203)$	77280	$\langle 109, \pm 108, 204 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77280	$\langle 116, \pm 76, 179 \rangle$	77280	$\langle 119, \pm 28, 164 \rangle$	77280	$\langle 123, \pm 54, 163 \rangle$	77280	$\langle 136, \pm 96, 159 \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77280	$\langle 136, \pm 40, 145 \rangle$	87360	$(32, \pm 24, 687)$	87360	$(32, \pm 8, 683)$	87360	$(37, \pm 16, 592)$
$87360 \qquad \langle 127, \pm 4, 172 \rangle 87360 \langle 129, \pm 90, 185 \rangle 87360 \langle 139, \pm 40, 160 \rangle 87360 \langle 148, \pm 132, 177 \rangle$	87360	$\langle 43, \pm 4, 508 \rangle$	87360	$(53, \pm 14, 413)$	87360	$(59, \pm 14, 371)$	87360	$(96, \pm 72, 241)$
	87360	$(96, \pm 24, 229)$	87360	$(101, \pm 56, 224)$	87360	$\langle 111, \pm 90, 215 \rangle$	87360	$\langle 113, \pm 92, 212 \rangle$
$87360 \langle 159, \pm 120, 160 \rangle$	87360	$\langle 127, \pm 4, 172 \rangle$	87360	$\langle 129, \pm 90, 185 \rangle$	87360	$(139, \pm 40, 160)$	87360	$\langle 148, \pm 132, 177 \rangle$
	87360	$\langle 159, \pm 120, 160 \rangle$						