

1 GACAGAGTGCAGCCTTTCAAGACTCTGTGACACAGTCCCCCTTT
46 GCAAAAATACTTAGCGAGGATCATTACTTTCCAACAGTCGTGTCC
91 AGAGACCTACTTTGTAACACCCGAGGGAAAGTTAACAGTCGTGTCC
136 TTGAAAGGTCTTCTGGAATGTGCAGTAACTTGAGTTCTTCTCT
181 AGTAGCACTGCTAATTGTGTTATAATTGTAGGTCCATGG

226 GGCGATGTATGGGAGATGAATGTGGTCCCAGGCATCCAAACG
MetGlyAspGluCysGlyProGlyGlyIleGlnThr

271 AGGGCTGTGTGGTGTGCTCATGTGGAGGGATGGACTACACTGCAT
ArgAlaValTrpCysAlaHisValGluGlyTrpThrThrLeuHis

316 ACTAACTGTAAGCAGGCCGAGAGACCCAATAACCAGCAGAATTGT
ThrAsnCysLysGlnAlaGluArgProAsnAsnGlnGlnAsnCys

361 TTCAAAGTTGCGATTGGCACAAAGAGTTGTACGACTGGAGACTG
PheLysValCysAspTrpHisLysGluLeuTyrAspTrpArgLeu

406 GGACCTTGGAAATCAGTGTCAAGCCGTGATTCAAAAAGCCTAGAG
GlyProTrpAsnGlnCysGlnProValIleSerLysSerLeuGlu

451 AAACCTCTTGAGTGCATTAAGGGGAAGAAGGTATTCAGGTGAGG
LysProLeuGluCysIleLysGlyGluGluGlyIleGlnValArg

496 GAGATAGCGTGCATCCAGAAAGACAAAGACATTCTGGAGGAGAT
GluIleAlaCysIleGlnLysAspLysAspIleProAlaGluAsp

541 ATCATCTGTGAGTACTTTGAGCCAAAGCCTCTCCTGGAGCAGGCT
IleIleCysGluTyrPheGluProLysProLeuLeuGluGlnAla

586 TGCCTCATTCTTGCCAGCAAGATTGCATCGTGTCTGAATTCT
CysLeuIleProCysGlnGlnAspCysIleValSerGluPheSer

631 GCCTGGTCCGAATGCTCCAAGACCTGCGGCAGCGGGCTCCAGCAC
AlaTrpSerGluCysSerLysThrCysGlySerGlyLeuGlnHis

676 CGGACCGCGTCATGTGGTGGCGCCCCCGCAGTCGGAGGCTCTGGC
ArgThrArgHisValValAlaProProGlnPheGlyGlySerGly

721 TGTCCAAACCTGACGGAGTTCCAGGTGTGCCAATCCAGTCCATGC
CysProAsnLeuThrGluPheGlnValCysGlnSerSerProCys

766 GAGGCCGAGGAGCTCAGGTACAGCCTGCATGTGGGCCCTGGAGC
GluAlaGluGluLeuArgTyrSerLeuHisValGlyProTrpSer

811 ACCTGCTCAATGCCCACTCCGACAAGTAAGACAAGCAAGGAGA
ThrCysSerMetProHisSerArgGlnValArgGlnAlaArgArg

856 CGCGGGAAAGAATAAAGAACGGGAAAAGGACCGCAGCAAAGGAGTA
ArgGlyLysAsnLysGluArgGluLysAspArgSerLysGlyVal

901 AAGGATCCAGAAGCCCCGAGCTTATTAAGAAAAAGAGAACAGA
LysAspProGluAlaArgGluLeuIleLysLysLysArgAsnArg

946 AACAGGCAGAACAGACAAGAGAACAAATATTGGGACATCCAGATT
AsnArgGlnAsnArgGlnGluAsnLysTyrTrpAspIleGlnIle

991 GGATATCAGACCAGAGAGGTTATGTGCATTAACAAGACGGGGAAA
GlyTyrGlnThrArgGluValMetCysIleAsnLysThrGlyLys

1036 GCTGCTGATTTAACGCTTTGCCAGCAAGAGAACAGCTCCAATGACC
AlaAlaAspLeuSerPheCysGlnGlnGluLysLeuProMetThr

1081 TTCCAGTCCTGTGTGATCACCAAAAGAGTGCCAGGTTCCGAGTGG
PheGlnSerCysValIleThrLysGluCysGlnValSerGluTrp

1126 TCAGAGTGGAGCCCCTGCTCAAAAACATGCCATGACATGGTGTCC
SerGluTrpSerProCysSerLysThrCysHisAspMetValSer

1171 CCTGCAGGCACTCGTGTAAAGGACACGAACCATCAGGCAGTTCCC
ProAlaGlyThrArgValArgThrArgThrIleArgGlnPhePro

1216 ATTGGCAGTGAAAAGGAGTGTCAGAATTGAAGAAAAAGAACCC
IleGlySerGluLysGluCysProGluPheGluGluLysGluPro

1261 TGTGTTGCTCTCAAGGAGATGGAGTTGTCCCCTGTGCCACGTATGGC
CysLeuSerGlnGlyAspGlyValValProCysAlaThrTyrGly

1306 TGGAGAACTACAGAGTGGACTGAGTGCCGTGTGGACCCCTTGCTC
TrpArgThrThrGluTrpThrGluCysArgValAspProLeuLeu

1351 AGTCAGCAGGACAAGAGGGCGCCGCAACCAGACGGCCCTCTGTGGA
SerGlnGlnAspLysArgArgGlyAsnGlnThrAlaLeuCysGly

1396 GGGGGCATCCAGACCCGAGAGGGTACTGCGTGCAGGCCAACGAA
GlyGlyIleGlnThrArgGluValTyrCysValGlnAlaAsnGlu

1441 AACCTCCTCTCACAAATTAGTACCCACAAGAACAAAGAACGCTCA
AsnLeuLeuSerGlnLeuSerThrHisLysAsnLysGluAlaSer

1486 AAGCCAATGGACTAAAATTATGCACTGGACCTATCCCTAATACT
LysProMetAspLeuLysLeuCysThrGlyProIleProAsnThr

1531 ACACAGCTGTGCCACATTCCCTGTCCAACGTGAATGTGAAGTTCA
ThrGlnLeuCysHisIleProCysProThrGluCysGluValSer

Fig 1 (continued)

3/35

1576 CCTTGGTCAGCTTGGGGACCTTGTACTTATGAAAATGTAATGAT
ProTrpSerAlaTrpGlyProCysThrTyrGluAsnCysAsnAsp

1621 CAGCAAGGGAAAAAAGGCTCAAAC TGAGGAAGCGGCGCATTACC
GlnGlnGlyLysLysGlyPheLysLeuArgLysArgArgIleThr

1666 AATGAGCCC ACTGGAGGCTCTGGGGTAACCGGAAACTGCCCTCAC
AsnGluProThrGlyGlySerGlyValThrGlyAsnCysProHis

1711 TTACTGGAAGCCATTCCCTGTGAAGAGCCTGCCTGTTATGACTGG
LeuLeuGluAlaIleProCysGluGluProAlaCysTyrAspTrp

1756 AAAGCGGTGAGACTGGGAGACTGCGAGCCAGATAACGGAAAGGAG
LysAlaValArgLeuGlyAspCysGluProAspAsnGlyLysGlu

1801 TGTGGTCCAGGCACGCAAGTTCAAGAGGTTGTGTGCATCAACAGT
CysGlyProGlyThrGlnValGlnGluValValCysIleAsnSer

1846 GATGGAGAAGAACGTTGACAGACAGCTGTGCAGAGATGCCATCTTC
AspGlyGluGluValAspArgGlnLeuCysArgAspAlaIlePhe

1891 CCCATCCCTGTGGCCTGTGATGCCCATGCCCGAAAGACTGTGTG
ProIleProValAlaCysAspAlaProCysProLysAspCysVal

1936 CTCAGCACATGGTCTACGTGGTCCTCCTGCTCACACACCTGCTCA
LeuSerThrTrpSerThrTrpSerSerCysSerHisThrCysSer

1981 GGGAAAACGACAGAACGGAAACAGATACGAGCACGATCCATTCTG
GlyLysThrThrGluGlyLysGlnIleArgAlaArgSerIleLeu

2026 GCCTATGCGGGTGAAGAACGGATT CGCTGTCCAAATAGCAGT
AlaTyrAlaGlyGluGluGlyIleArgCysProAsnSerSer

2071 GCTTGCAAGAACGTACGAAGCTGTAATGAGCATCCTTGCACAGTG
AlaLeuGlnGluValArgSerCysAsnGluHisProCysThrVal

2116 TACCACTGGCAAATGGTCCCTGGGCCAGTGCATTGAGGACACC
TyrHisTrpGlnThrGlyProTrpGlyGlnCysIleGluAspThr

2161 TCAGTATCGTCCTCAACACAACTACGACTTGGAAATGGGAGGCC
SerValSerSerPheAsnThrThrThrTrpAsnGlyGluAla

2206 TCCTGCTCTGTCGGCATGCAGACAAGAAAAGTCATCTGTGTGCGA
SerCysSerValGlyMetGlnThrArgLysValIleCysValArg

2251 GTCAATGTGGGCCAAGTGGACCCAAAAATGTCCCTGAAAGCCTT
ValAsnValGlyGlnValGlyProLysLysCysProGluSerLeu

Fig 1 (continued)

2296 CGACCTGAAACTGTAAGGCCTGTCTGCTCCTGTAAGAAGGAC
ArgProGluThrValArgProCysLeuLeuProCysLysLysAsp

2341 TGTATTGTGACCCATATAGTGAUTGGACATCATGCCCTCTCG
CysIleValThrProTyrSerAspTrpThrSerCysProSerSer

2386 TGTAAAGAACGGGACTCCAGTATCAGGAAGCAGTCTAGGCATCGG
CysLysGluGlyAspSerSerIleArgLysGlnSerArgHisArg

2431 GTCATCATTAGCTGCCAGCCAACGGGGCCGAGACTGCACAGAT
ValIleIleGlnLeuProAlaAsnGlyGlyArgAspCysThrAsp

2476 CCCCTCTATGAAGAGAACGGCTGTGAGGCACCTCAAGCGTGCAA
ProLeuTyrGluGluLysAlaCysGluAlaProGlnAlaCysGln

2521 AGCTACAGGTGGAAGACTCACAAATGGCGCAGATGCCAATTAGTC
SerTyrArgTrpLysThrHisLysTrpArgArgCysGlnLeuVal

2566 CCTTGGAGCGTGCAACAAGACAGCCCTGGAGCACAGGAAGGCTGT
ProTrpSerValGlnGlnAspSerProGlyAlaGlnGluGlyCys

2611 GGGCCTGGCGACAGGCAAGAGCCATTACTTGTGCAAGCAAGAT
GlyProGlyArgGlnAlaArgAlaIleThrCysArgLysGlnAsp

2656 GGAGGACAGGCTGGAATCCATGAGTGCCTACAGTATGCAGGCCCT
GlyGlyGlnAlaGlyIleHisGluCysLeuGlnTyrAlaGlyPro

2701 GTGCCAGCCCTTACCCAGGCCTGCCAGATCCCCTGCCAGGATGAC
ValProAlaLeuThrGlnAlaCysGlnIleProCysGlnAspAsp

2746 TGTCAATTGACCAGCTGGTCCAAGTTTCTTCATGCAATGGAGAC
CysGlnLeuThrSerTrpSerPheSerSerCysAsnGlyAsp

2791 TGTGGTGCAGTTAGGACCAGAAAGCGCACTCTTGTGGAAAAAGT
CysGlyAlaValArgThrArgLysArgThrLeuValGlyLysSer

2836 AAAAAGAACGGAAAAATGTAATAATTCCCATTGTATCCCCTGATT
LysLysLysGluLysCysLysAsnSerHisLeuTyrProLeuIle

2881 GAGACTCAGTATTGTCCTTGTGACAAATATAATGCACAAACCTGTG
GluThrGlnTyrCysProCysAspLysTyrAsnAlaGlnProVal

2926 GGGAACTGGTCAGACTGTATTTACCAGAGGGAAAAGTGGAAAGTG
GlyAsnTrpSerAspCysIleLeuProGluGlyLysValGluVal

2971 TTGCTGGAAATGAAAGTACAAGGAGACATCAAGGAATGCGGACAA
LeuLeuGlyMetLysValGlnGlyAspIleLysGluCysGlyGln

Fig 1 (continued)

5/35

- 3016 GGATATCGTTACCAAGCAATGGCATGCTACGATCAAAATGGCAGG
GlyTyrArgTyrGlnAlaMetAlaCysTyrAspGlnAsnGlyArg
- 3061 CTTGTGGAACATCTAGATGTAACAGCCATGGTTACATTGAGGAG
LeuValGluThrSerArgCysAsnSerHisGlyTyrIleGluGlu
- 3106 GCCTGCATCATCCCCTGCCCTCAGACTGCAAGCTCAGTGAGTGG
AlaCysIleIleProCysProSerAspCysLysLeuSerGluTrp
- 3151 TCCA ACTGGTCGCGCTGCAGCAAGTCCTGTGGGAGTGGTGTGAAG
SerAsnTrpSerArgCysSerLysSerCysGlySerGlyValLys
- 3196 GTTCGTTCTAAATGGCTGCGTGA AAAACCATATAATGGAGGAAGG
ValArgSerLysTrpLeuArgGluLysProTyrAsnGlyGlyArg
- 3241 CCTTGCCCCAAACTGGACCATGTCAACCAGGCACAGGTGTATGAG
ProCysProLysLeuAspHisValAsnGlnAlaGlnValTyrGlu
- 3286 GTTGTCCCATGCCACAGTGACTGCAACCAGTACCTATGGGTACA
ValValProCysHisSerAspCysAsnGlnTyrLeuTrpValThr
- 3331 GAGCCCTGGAGCATCTGCAAGGTGACCTTGTGAATATGCCGGAG
GluProTrpSerIleCysLysValThrPheValAsnMetArgGlu
- 3376 AACTGTGGAGAGGGCGTCAAACCCGAAAAGTGAGATGCATGCAG
AsnCysGlyGluGlyValGlnThrArgLysValArgCysMetGln
- 3421 AATACAGCAGATGCCCTTCTGAACATGTAGAGGATTACCTCTGT
AsnThrAlaAspGlyProSerGluHisValGluAspTyrLeuCys
- 3466 GACCCAGAAGAGATGCCCTGGGCTCTAGAGTGTGCAAATTACCA
AspProGluGluMetProLeuGlySerArgValCysLysLeuPro
- 3511 TGCCCTGAGGACTGTGTGATATCTGAATGGGGTCCATGGACCCAA
CysProGluAspCysValIleSerGluTrpGlyProTrpThrGln
- 3556 TGTGTTTGCCCTGCAATCAAAGCAGTTCCGGCAAAGGTCA
CysValLeuProCysAsnGlnSerSerPheArgGlnArgSerAla
- 3601 GATCCCACAGACAACCAGCTGATGAAGGAAGATCTGCCCTAAT
AspProIleArgGlnProAlaAspGluGlyArgSerCysProAsn
- 3646 GCTGTTGAGAAAGAACCTGTAACCTGAACAAAAACTGCTACCAC
AlaValGluLysGluProCysAsnLeuAsnLysAsnCysTyrHis
- 3691 TATGATTATAATGTAACAGACTGGAGTACATGTCAGCTGAGTGAG
TyrAspTyrAsnValThrAspTrpSerThrCysGlnLeuSerGlu

Fig 1 (continued)

6/35

- 3736 AAGGCAGTTGTGGAAATGGAATAAAAACAAGGATGTTGGATTGT
LysAlaValCysGlyAsnGlyIleLysThrArgMetLeuAspCys
- 3781 GTTCGAAGTGATGGCAAGTCAGTTGACCTGAAATATTGTGAAGCG
ValArgSerAspGlyLysSerValAspLeuLysTyrCysGluAla
- 3826 CTTGGCTTGGAGAAGAACTGGCAGATGAACACGTCCTGCATGGTG
LeuGlyLeuGluLysAsnTrpGlnMetAsnThrSerCysMetVal
- 3871 GAATGCCCTGTGAACGTGTCAGCTTCTGATTGGTCTCCTGGTCA
GluCysProValAsnCysGlnLeuSerAspTrpSerProTrpSer
- 3916 GAATGTTCTCAAACATGTGGCCTCACAGGAAAAATGATCCGAAGA
GluCysSerGlnThrCysGlyLeuThrGlyLysMetIleArgArg
- 3961 CGAACAGTGACCCAGCCCTTCAAGGTGATGGAAGACCATGCCCT
ArgThrValThrGlnProPheGlnGlyAspGlyArgProCysPro
- 4006 TCCCTGATGGACCAGTCCAAACCCCTGCCAGTGAAGCCTTGTAT
SerLeuMetAspGlnSerLysProCysProValLysProCysTyr
- 4051 CGGTGGCAATATGCCAGTGGTCTCCATGCCAAGTGCAGGAGGCC
ArgTrpGlnTyrGlyGlnTrpSerProCysGlnValGlnGluAla
- 4096 CAGTGTGGAGAAGGGACCAGAACAAAGAACATTCTTGTGTAGTA
GlnCysGlyGluGlyThrArgThrArgAsnIleSerCysValVal
- 4141 AGTGATGGGTCAGCTGATTTCAGCAAAGTGGTGGATGAGGAA
SerAspGlySerAlaAspAspPheSerLysValValAspGluGlu
- 4186 TTCTGTGCTGACATTGAACTCATTATAGATGGTAATAAAAATATG
PheCysAlaAspIleGluLeuIleIleAspGlyAsnLysAsnMet
- 4231 GTTCTGGAGGAATCCTGCAGCCAGCCTGCCAGGTGACTTGTAT
ValLeuGluSerCysSerGlnProCysProGlyAspCysTyr
- 4276 TTGAAGGACTGGTCTCCTGGAGCCTGTGTCAGCTGACCTGTGTG
LeuLysAspTrpSerSerTrpSerLeuCysGlnLeuThrCysVal
- 4321 AATGGTGAGGATCTAGGCTTGGTGGAAATACAGGTCAAGATCCAGA
AsnGlyGluAspLeuGlyPheGlyGlyIleGlnValArgSerArg
- 4366 CCGGTGATTATAAGAACTAGAGAATCAGCATCTGTGCCAGAG
ProValIleIleGlnGluLeuAsnGlnHisLeuCysProGlu
- 4411 CAGATGTTAGAAACAAATCATGTTATGATGGACAGTGCTATGAA
GlnMetLeuGluThrLysSerCysTyrAspGlyGlnCysTyrGlu
- 4456 TATAAATGGATGGCCAGTGCCTGGAAAGGGCTTCCCACAGTG
TyrLysTrpMetAlaSerAlaTrpLysGlySerSerArgThrVal

Fig 1 (continued)

7/35

- 4501 TGGTGTCAAAGTCAGATGGTATAATGTAACAGGGGGCTGCTTG
TrpCysGlnArgSerAspGlyIleAsnValThrGlyGlyCysLeu
- 4546 GTGATGAGCCAGCCTGATGCCGACAGGTCTTGTAAACCCACCCTG
ValMetSerGlnProAspAlaAspArgSerCysAsnProProCys
- 4591 AGTCAACCCCACTCGTACTGTAGCGAGACAAAAACATGCCATTGT
SerGlnProHisSerTyrCysSerGluThrLysThrCysHisCys
- 4636 GAAGAAGGGTACACTGAAGTCATGTCTTCTAACAGCACCCCTGAG
GluGluGlyTyrThrGluValMetSerSerAsnSerThrLeuGlu
- 4681 CAATGCACACTTATCCCCGTGGTGGTATTACCCACCATGGAGGAC
GlnCysThrLeuIleProValValLeuProThrMetGluAsp
- 4726 AAAAGAGGAGATGTGAAAACCAGTCGGGCTGTACATCCAACCCAA
LysArgGlyAspValLysThrSerArgAlaValHisProThrGln
- 4771 CCCTCCAGTAACCCAGCAGGACGGGAAGGACCTGGTTCTACAG
ProSerSerAsnProAlaGlyArgGlyArgThrTrpPheLeuGln
- 4816 CCATTTGGGCCAGATGGGAGACTAAAGACCTGGTTACGGTGT
ProPheGlyProAspGlyArgLeuLysThrTrpValTyrGlyVal
- 4861 GCAGCTGGGGCATTTGTGTTACTCATCTTATTGTCTCCATGATT
AlaAlaGlyAlaPheValLeuLeuIlePheIleValSerMetIle
- 4906 TATCTAGCTTGCAAAAAGCAAAGAAACCCAAAGAAGGCAAAAC
TyrLeuAlaCysLysLysProLysLysProGlnArgArgGlnAsn
- 4951 AACCGACTGAAACCTTAACCTTAGCCTATGATGGAGATGCCGAC
AsnArgLeuLysProLeuThrLeuAlaTyrAspGlyAspAlaAsp
- 4996 ATGTAACATATAACTTTCTGGCAACAACCAGTTCGGCTTCT
Met

Fig 1 (continued)

5041 GACTTCATAGATGTCCAGAGGCCACAACAAATGTATCCAAACTGT
5086 GTGGATTAAAATATTTAATTAAAGGGCATCATAAAGA
5131 CAAGAGTAAAATCATACTGCCACTGGAGATATTAAGACAGTAC
5176 CACTTATATACAGACCCTAACCGTGAGAATTATAGGAGATTAG
5221 CTGAATACATGCTGCATTCTGAAAGTTTATGTCATCTTCTGA
5266 AATCTACCGACTGAAAAACCACTTCTCATCTAAAAAATAATGGT
5311 GGAATTGGCCAGTTAGGATGCCTGATACAAGACCGTCTGCAGTGT
5356 TAATCCATAAAACTTCCTAGCATGAAGAGTTCTACCAAGATCTC
5401 CACAATACTATGGTCAAATTAAACATGTGTACTCAGTTGAATGACA
5446 CACATTATGTCAGATTATGTACTGCTAATAAGCAATTAAACAA
5491 TGCATAACAAATAAACTCTAACGCTAACGAGAAAATCCACTGAATA
5536 AATTCAAGCATCTTGGTGGTCATGGTAGATTATTGACCTGCAT
5581 TTCAGAGACAAAGCCTTTTAAGACTTCTTGTCTCTCTCCAA
5626 AGTAAGAATGCTGGACAAGTACTAGTGTCTTAGAAGAACGAGTCC
5671 TCAAGTTCACTTTATAGGGTAATTGTCTGGAAAACTAATTT
5716 ACTTGTGTTAATACAATACGTTCTACTTCCCTGATTTCAAAC
5761 TGGTTGCCTGCATCTTTGCTATATGGAAGGCACATTGGCA
5806 CTATATTAGTGCAGCACGATAGGCGCTAACAGTATTGCCATAG
5851 AAACTGCCTCTTTCATGTGGGATGAAGACATCTGTGCCAAGAGT
5896 GGCATGAAGACATTTGCAAGTTCTGTATCCTGAAGAGAGTAAAG
5941 TTCAGTTGGATGGCAGCAAGATGAAATCAGCTATTACACCTGCT
5986 GTACACACACTTCCTCATCACTGCAGCCATTGTGAAATTGACAAC
6031 ATGGCGGTAAATTAAAGTGTGAAGTCCTTAACCCCTTAACCCCTCT
6076 AAAAGGTGGATTCTCTAGTTGGTTGTAATTGTTCTTGAAAGGC
6121 TGTTATGACTAGATTATTTGTTATCTTGTTAAGAAAAAA
6166 AAAAAGAAAAAGGAACTGGATGTCTTTTAATTGAGCAGATGG
6211 AGAAAATAATAATGTATCAATGACCTTGTAACTAAAGGAAAAAA
6256 AAAAAGGGATTCTCTGAGGGAGTTCCCTCTGTGATTCCCAGTTCA
6301 GATTGAATGTCTGTCTGCAGGCAGTTATTCAAAATCCATAGTC
6346 TTTNGCCTTCTCACTGGAAAATTGA

Fig 1 (continued)

1 CACCCCTCTGCCTGCCAGCCCCATCGCTTCCCCTTGAG
46 CCTCCTGCTGGCCACTGGCTGGATCAGGACACCAGTGATGGTA
91 AGTGCTGGCCCAGACTGAAGCTCGGAGAGGCACTCTGCTTGCCTA
136 GCGTCACAGTCTTAGCTCCAACTGTCTGGCTCCAGTCTCCCT
181 TGCTTCCCAGATCCCAGACTCTAGCCCCAGCCCCGTCTTTCAC
226 CAGCTCCTGGGACCCCTACGCAATCTGCGCCTGCGTCTCATCAGTC
271 GCCCCACATGTAACTGTATCTACAACCAGCTGCACCAGCGACACC
316 TGTCCAACCCGGCCCGGCCTGGGATGCTATGTGGGGCCCCCAGC
361 CTGGGGTGCAGGGCCCTGTCAGGTCTGATAGGGAGAAGAGAAGG
406 AGCAGAAGGGGAGGGGCTAACCCCTGGGCTGGGGTTGGACTCAC
451 AGGACTGGGGGAAAGAGCTGCAATCAGAGGGTGTCTGCCATAGCT
496 GGGCTCAGGCATCTGTCCTGGCTTGTGCTGGCTCCAGGGAG
541 ATTCCGGGGGCCCTGTGCTGTGCCTCGAGCCTGACGGACACTGGG
586 TTCAGGCTGGCATCATCAGCTTGCATCAAGCTGTGCCAGGAGG
631 ACGCTCCTGTGCTGACCAACACAGCTGCTCACAGTTCTGGC
676 TGCAGGCTCGAGTTCAGGGGCAGTTCTGGCCAGAGCCCAG

721 AGACCCCGGAGATGAGTGATGAGGACAGCTGTGTAGCCTGTGGAT
MetSerAspGluAspSerCysValAlaCysGlyS

766 CCTTGAGGACACCGAGGTCCCCAGGCAGGAGCACCCCTCCCCATGGC
erLeuArgThrAlaGlyProGlnAlaGlyAlaProSerProTrpP

811 CCTGGGAGGCCAGGCTGATGCACCAGGGACAGCTGGCCTGTGGCG
rOTrpGluAlaArgLeuMetHisGlnGlyGlnLeuAlaCysGlyG

856 GAGCCCTGGTGTCAAGAGGAGGCCGGTGCTAACTGCTGCCACTGCT
lyAlaLeuValSerGluGluAlaValLeuThrAlaAlaHisCysP

901 TCAATGGGCCAGGCCAGAGGAATGGAGCGTAGGGCTGGGA
heAsnGlyArgGlnAlaProGluGluTrpSerValGlyLeuGlyT

946 CCAGACCGGAGGAGTGGGGCCTGAAGCAGCTCATCCTGCATGGAG
hrArgProGluGluTrpGlyLeuLysGlnLeuIleLeuHisGlyA

991 CCTACACCCACCCTGAGGGGGCTACGACATGCCCTCTGCTGC
laTyrThrHisProGluGlyGlyTyrAspMetAlaLeuLeuL

1036 TGGCTCAGCCTGTGACACTGGGAGCCAGCCTGCCGGCCCTCTGCC
euAlaGlnProValThrLeuGlyAlaSerLeuArgAlaLeuCysL

1081 TGCCCTATTTGACCACCACTGCCTGATGGGAGCGTGGCTGG
euProTyrPheAspHisHisLeuProAspGlyGluArgGlyTrpV

1126 TTCTGGGACGGGCCAGGAGCAGGCATCAGCTCCCTCCAGA
alLeuGlyArgAlaArgProGlyAlaGlyIleSerSerLeuGlnT

1171 CAGTGCCCGTGACCCCTCCTGGGGCCTAGGGCCTGCAGCCGGCTGC
hrValProValThrLeuLeuGlyProArgAlaCysSerArgLeuH

1216 ATGCAGCTCCTGGGGGTGATGGCAGCCCTATTCTGCCGGGGATGG
isAlaAlaProGlyGlyAspGlySerProIleLeuProGlyMetV

1261 TGTGTACCAGTGCTGTGGGTGAGCTGCCAGCTGTGAGGGCCTGT
alCysThrSerAlaValGlyGluLeuProSerCysGluGlyLeuS

1306 CTGGGGCACCACTGGTGCATGAGGTGAGGGCACATGGTTCTGG
erGlyAlaProLeuValHisGluValArgGlyThrTrpPheLeuA

1351 CCGGGCTGCACAGCTCGGAGATGCTTGCCAAGGCCCCGCCAGGC
laGlyLeuHisSerPheGlyAspAlaCysGlnGlyProAlaArgP

1396 CGGCGGTCTTCACCGCGCTCCCTGCCTATGAGGACTGGGTCAAGCA
roAlaValPheThrAlaLeuProAlaTyrGluAspTrpValSerS

1441 GTTTGGACTGGCAGGTCTACTTCGCCGAGGAACCAGAGCCCCGAGG
erLeuAspTrpGlnValTyrPheAlaGluGluProGluProGluA

1486 CTGAGCCTGGAAGCTGCCCTGGCCAACATAAGCCAACCAACCAGCT
laGluProGlySerCysLeuAlaAsnIleSerGlnProThrSerC

1531 GCTGACAGGGGACCTGCCATTCTCAGGACAAGAGAATGCAGGCA
ys

1576 GGCAAATGGCATTACTGCCCTGTCCTCCCCACCCCTGTCATGTGT

1621 GATTCCAGGCACCAGGGCAGGCCAGAACGCCCAGCAGCTGTGGGA

1666 AGGAACCTGCCCTGGGGCCACAGGTGCCCTCCCCACCCCTGCAGG

1711 ACAGGGGTGTCTGTGGACACTCCCACACCCAACCTCTGCTACCAAG

1756 CAGGCGTCTCAGCTTCCCTCCTTACCCCTTCAGATAACAATC

1801 ACGCCAGCCCCGTTGTTGAAAATTCTTTGGGGGGCAGC

1846 AGTTTCCTTTAAACTAAATAATTGTTACAAATAGACT

1891 TTAG

Fig. 2 (continued)

11/35

1 GCGGATCCTCACACGACTGTGATCCGATTCTTCCAGCGGCTTC
46 GCAACCAAGCGGGTCTTACCCCCGGTCCTCCGCCTCCAGTCCT
91 CGCACCTGGAACCCCAACGTCCCCGAGAGTCCCCGAATCCCCGCT

136 CCCAGGCTACCTAACGAGGATGAGCGGTGCTCCGACGGCCGGGGCA
MetSerGlyAlaProThrAlaGlyAla

181 GCCCTGATGCTCTGCCGCCACCGCCGTGCTACTGAGCGCTCAG
AlaLeuMetLeuCysAlaAlaThrAlaValLeuLeuSerAlaGln

226 GGC GGACCCGTGCAGTCCAAGTCGCCGCCGCTTGCGTCCCTGGGAC
GlyGlyProValGlnSerLyssSerProArgPheAlaSerTrpAsp

271 GAGATGAATGTCCTGGCGCACGGACTCCTGCAGCTCGGCCAGGGG
GluMetAsnValLeuAlaHisGlyLeuLeuGlnLeuGlyGlnGly

316 TGC CGGAACACC GGAGCGCACCGCAGTCAGCTGAGCGCGCTGGG
CysAlaAsnThrGlyAlaHisProGlnSerAlaGluArgAlaGly

361 GCG CGCCTGAGCGCGTGC GGCTCCGCCTGTCAAGGGAAACCGAGGGG
AlaArgLeuSerAlaCysGlySerAlaCysGlnGlyThrGluGly

406 TCCACCGACCTCCGTTAGCCCCCTGAGAGGCCGGTGGACCCTGAG
SerThrAspLeuProLeuAlaProGluSerArgValAspProGlu

451 GTC CTTCACAGCCTGCAGACACA ACTCAAGGCTCAGAACAGCAGG
ValLeuHisSerLeuGlnThrGlnLeuLysAlaGlnAsnSerArg

496 ATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCACCTG
IleGlnGlnLeuPheHisLysValAlaGlnGlnGlnArgHisLeu

541 GAGAAGCAGCACCTGCGAATT CAGCATCTGC AAAGCCAGTTGGC
GluLysGlnHisLeuArgIleGlnHisLeuGlnSerGlnPheGly

586 CTCCTGGACCACAAGCACCTAGACCATGAGGTGGCCAAGCCTGCC
LeuLeuAspHisLysHisLeuAspHisGluValAlaLysProAla

631 CGAAGAAAGAGGCTGCCCGAGATGGCCCAGCCAGTTGACCCGGCT
ArgArgLysArgLeuProGluMetAlaGlnProValAspProAla

676 CACAATGTCAGCCGCCTGCACCGGCTGCCAGGGATTGCCAGGAG
HisAsnValSerArgLeuHisArgLeuProArgAspCysGlnGlu

721 CTGTTCCAGGTTGGGGAGAGGCAGAGTGGACTATTGAAATCCAG
LeuPheGlnValGlyGluArgGlnSerGlyLeuPheGluIleGln

766 CCTCAGGGGTCTCCGCCATT TTGGTGAAC TGCAAGATGACCTCA
ProGlnGlySerProProPheLeuValAsnCysLysMetThrSer

Fig. 3

12/35

811 GATGGAGGCTGGACAGTAATT CAGAGGCGCCACGATGGCTCAGTG
 AspGlyGlyTrpThrValIleGlnArgArgHisAspGlySerVal

 856 GACTTCAACCGGCCCTGGGAAGCCTACAAGGCAGGGTTGGGGAT
 AspPheAsnArgProTrpGluAlaTyrLysAlaGlyPheGlyAsp

 901 CCCCCACGGCGAGTTCTGGCTGGGTCTGGAGAAGGTGCATAGCATG
 ProHisGlyGluPheTrpLeuGlyLeuGluLysValHisSerMet

 946 ATGGGGGACCGAACAGCCGCTGGCCGTGCAGCTGCGGGACTGG
 MetGlyAspArgAsnSerArgLeuAlaValGlnLeuArgAspTrp

 991 GATGGCAACGCCGAGTTGCTGCAGTTCTCCGTGCACCTGGGTGGC
 AspGlyAsnAlaGluLeuLeuGlnPheSerValHisLeuGlyGly

 1036 GAGGACACGGCCTATAGCCTGCAGCTCACTGCACCCGTGGCCGGC
 GluAspThrAlaTyrSerLeuGlnLeuThrAlaProValAlaGly

 1081 CAGCTGGGCCACCACCGTCCCACCCAGCGGCCTCTCCGTACCC
 GlnLeuGlyAlaThrThrValProProSerGlyLeuSerValPro

 1126 TTCTCCACTTGGGACCAGGATCACGACCTCCGCAGGGACAAGAAC
 PheSerThrTrpAspGlnAspHisAspLeuArgArgAspLysAsn

 1171 TGCGCCAAGAGCCTCTGGAGGCTGGTGGTTGGCACCTGCAGC
 CysAlaLysSerLeuSerGlyGlyTrpTrpPheGlyThrCysSer

 1216 CATTCCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACAGCAG
 HisSerAsnLeuAsnGlyGlnTyrPheArgSerIleProGlnGln

 1261 CGGCAGAACGTTAAGAAGGAAATCTTCTGGAAAGACCTGGCGGGGC
 ArgGlnLysLeuLysLysGlyIlePheTrpLysThrTrpArgGly

 1306 CGCTACTACCCGCTGCAGGCCACCACCATGTTGATCCAGCCCAG
 ArgTyrTyrProLeuGlnAlaThrThrMetLeuIleGlnProMet

 1351 GCAGCAGAGGCAGCCTCTAGCGTCCTGGCTGGCCTGGTCCCAG
 AlaAlaGluAlaAlaSer

 1396 GCCCACGAAAGACGGTACTCTGGCTCTGCCAGGGATGTGGCC
 1441 GTTCCCTGCCTGGCAGGGCTCCAAGGAGGGCCATCTGGAAAC

 1486 TTGTGGACAGAGAAGAAGACCAAGCAGACTGGAGAAGCCCCCTTG
 1531 AGTGCAGGGGGCTGCATGCCTGCCTGAGATCGAGGCTGCA
 1576 GGATATGCTCAGACTCTAGAGGCAGGGACCAAGGGCATGGAGCT
 1621 TCACTCCTGCTGGCCAGGGAGTTGGGACTCAGAGGGACCACTT
 1666 GGGGCCAGCCAGACTGGCCTCAATGGCGGACTCAGTCACATTGAC
 1711 TGACGGGGACCAGGGCTTGTGTGGTCAGAGCGCCCTCATGGTG
 1756 CTGGTGCTGTTGTGTAGGTCCCCTGGGACACAAGCAGGCC
 1801 AATGGTATCTGGCGGAGCTCACAGAGTTGGAAATAAAAGCAA
 1846 CCTCAGAAC

Fig. 3 (continued)

13/35

1 GGTAGCCGACGCCGGCGCGTGCACCTGCCCTCTGCTC
 46 GCCTTGAAAATGGAAAAGATGCTCGCAGGCTGCTTCTGCTGATC
 MetGluLysMetLeuAlaGlyCysPheLeuLeuIle
 91 CTCGGACAGATCGTCCTCCTCCCTGCCGAGGCCAGGGAGCGGTCA
 LeuGlyGlnIleValLeuLeuProAlaGluAlaArgGluArgSer
 136 CGTGGGAGGTCCATCTCTAGGGGCAGACACGCTCGGACCCACCCG
 ArgGlyArgSerIleSerArgGlyArgHisAlaArgThrHisPro
 181 CAGACGGCCCTCTGGAGAGTTCTGTGAGAACAAAGCGGGCAGAC
 GlnThrAlaLeuLeuGluSerSerCysGluAsnLysArgAlaAsp
 226 CTGGTTTCATCATTGACAGCTCTCGCAGTGTCAACACCCATGAC
 LeuValPheIleIleAspSerSerArgSerValAsnThrHisAsp
 271 TATGCAAAGGTCAAGGAGTTCATCGTGGACATCTTGCATTCTTG
 TyrAlaLysValLysGluPheIleValAspIleLeuGlnPheLeu
 316 GACATTGGCCTGATGTCACCCGAGTGGGCCTGCTCCAATATGGC
 AspIleGlyProAspValThrArgValGlyLeuLeuGlnTyrGly
 361 AGCACTGTCAAGAATGAGTTCTCCCTCAAGACCTTCAAGAGGAAG
 SerThrValLysAsnGluPheSerLeuLysThrPheLysArgLys
 406 TCCGAGGTGGAGCGTGCTGTCAAGAGGATGCGGCATCTGTCCACG
 SerGluValGluArgAlaValLysArgMetArgHisLeuSerThr
 451 GGCACCATGACTGGCTGGCCATCCAGTATGCCCTGAACATCGCA
 GlyThrMetThrGlyLeuAlaIleGlnTyrAlaLeuAsnIleAla
 496 TTCTCAGAACGAGAGGGGCCGGCCCTGAGGGAGAATGTGCCA
 PheSerGluAlaGluGlyAlaArgProLeuArgGluAsnValPro
 541 CGGGTCATAATGATCGTGACGGATGGGAGACCTCAGGACTCCGTG
 ArgValIleMetIleValThrAspGlyArgProGlnAspSerVal
 586 GCCGAGGTGGCTGCTAAGGCACGGGACACGGGCATCCTAATCTT
 AlaGluValAlaAlaLysAlaArgAspThrGlyIleLeuIlePhe
 631 GCCATTGGTGTGGGCCAGGTAGACTTCAACACCTTGAAGTCCATT
 AlaIleGlyValGlyGlnValAspPheAsnThrLeuLysSerIle
 676 GGGAGTGAGCCCCATGAGGACCATGTCTCCTGTGGCCAATTTC
 GlySerGluProHisGluAspHisValPheLeuValAlaAsnPhe
 721 AGCCAGATTGAGACGCTGACCTCCGTGTTCCAGAAGAAGTTGTGC
 SerGlnIleGluThrLeuThrSerValPheGlnLysLysLeuCys

Fig. 4

14/35

766 ACGGCCACATGTGCAGCACCTGGAGCATAACTGTGCCACTTC
ThrAlaHisMetCysSerThrLeuGluHisAsnCysAlaHisPhe

811 TGCATCAACATCCCTGGCTCATACGTCTGCAGGTGCAAACAAAGGC
CysIleAsnIleProGlySerTyrValCysArgCysLysGlnGly

856 TACATTCTCAACTCGGATCAGACGACTTGCAGAATCCAGGATCTG
TyrIleLeuAsnSerAspGlnThrThrCysArgIleGlnAspLeu

901 TGTGCCATGGAGGACCACAACTGTGAGCAGCTCTGTGTGAATGTG
CysAlaMetGluAspHisAsnCysGluGlnLeuCysValAsnVal

946 CCGGGCTCCTCGTCTGCAGTGCTACAGTGGCTACGCCCTGGCT
ProGlySerPheValCysGluCysTyrSerGlyTyrAlaLeuAla

991 GAGGATGGGAAGAGGTGTGGCTGTGGACTACTGTGCCTCAGAA
GluAspGlyLysArgCysValAlaValAspTyrCysAlaSerGlu

1036 AACCAACGGATGTGAACATGAGTGTGTAAATGCTGATGGCTCCTAC
AsnHisGlyCysGluHisGluCysValAsnAlaAspGlySerTyr

1081 CTTTGCCAGTGCCATGAAGGATTGCTCTAACCCAGATGAAAAAA
LeuCysGlnCysHisGluGlyPheAlaLeuAsnProAspGluLys

1126 ACGTGCACAAAGATAGACTACTGTGCCTCATCTAACATGGATGT
ThrCysThrLysIleAspTyrCysAlaSerSerAsnHisGlyCys

1171 CAGTACGAGTGTGTTAACACAGATGATT CCTATT CCTGCCACTGC
GlnTyrGluCysValAsnThrAspAspSerTyrSerCysHisCys

1216 CTGAAAGGCTTACCCCTGAATCCAGATAAGAAAACCTGCAGAAGG
LeuLysGlyPheThrLeuAsnProAspLysLysThrCysArgArg

1261 ATCAAACACTGTGCACTGAACAAACCGGGCTGTGAGCATGAGTGC
IleAsnTyrCysAlaLeuAsnLysProGlyCysGluHisGluCys

1306 GTCAACATGGAGGAGAGCTACTACTGCCGCTGCCACCGTGGCTAC
ValAsnMetGluGluSerTyrTyrCysArgCysHisArgGlyTyr

1351 ACTCTGGACCCCAATGGCAAACCCCTGCAGCCGAGTGGACCACTGT
ThrLeuAspProAsnGlyLysProCysSerArgValAspHisCys

1396 GCACAGCAGGACCATGGCTGTGAGCAGCTGTGTCTAACACGGAG
AlaGlnGlnAspHisGlyCysGluGlnLeuCysLeuAsnThrGlu

1441 GATTCCCTCGTCTGCCAGTGCTCAGAAGGCTCCTCATCAACGAG
AspSerPheValCysGlnCysSerGluGlyPheLeuIleAsnGlu

Fig. 4 (continued)

15/35

1486 GACCTCAAGACCTGCTCCGGGTGGATTACTGCCTGCTGAGTGAC
AspLeuLysThrCysSerArgValAspTyrCysLeuLeuSerAsp

1531 CATGGTTGTGAATACTCCTGTGTCAACATGGACAGATCCTTGCC
HisGlyCysGluTyrSerCysValAsnMetAspArgSerPheAla

1576 TGTCAAGTGTCCCTGAGGGACACGTGCTCCGCAGCGATGGAAAGACG
CysGlnCysProGluGlyHisValLeuArgSerAspGlyLysThr

1621 TGTGCAAAATTGGACTCTTGTGCTCTGGGGGACCACGGTTGTGAA
CysAlaLysLeuAspSerCysAlaLeuGlyAspHisGlyCysGlu

1666 CATT CGTGTGTAAGCAGTGAAGATTGCTTGCTGCCAGTGCTTT
HisSerCysValSerSerGluAspSerPheValCysGlnCysPhe

1711 GAAGGTTATATACTCCGTGAAGATGGAAAAACCTGCAGAAGGAAA
GluGlyTyrIleLeuArgGluAspGlyLysThrCysArgArgLys

1756 GATGTCTGCCAAGCTATAGACCATGGCTGTGAACACACATTGTGTG
AspValCysGlnAlaIleAspHisGlyCysGluHisIleCysVal

1801 AACAGTGACGACTCATACACGTGCGAGTGCTGGAGGGATTCCGG
AsnSerAspAspSerTyrThrCysGluCysLeuGluGlyPheArg

1846 CTCACTGAGGATGGGAAACGCTGCCGAATTCTCTCAGGGAAAGGAT
LeuThrGluAspGlyLysArgCysArgIleSerSerGlyLysAsp

1891 GTCTGCAAATCAACCCACCATGGCTGCGAACACACATTGTGTTAAT
ValCysLysSerThrHisHisGlyCysGluHisIleCysValAsn

1936 AATGGGAATTCTTACATCTGCAAATGCTCAGAGGGATTGTTCTA
AsnGlyAsnSerTyrIleCysLysCysSerGluGlyPheValLeu

1981 GCTGAGGACGGAAGACGGTGCAAGAAATGCACTGAAGGCCAATT
AlaGluAspGlyArgArgCysLysLysCysThrGluGlyProIle

2026 GACCTGGTCTTGATCGATGGATCCAAGAGTCTGGAGAAGAG
AspLeuValPheValIleAspGlySerLysSerLeuGlyGluGlu

2071 AATTTGAGGTGCGTAAGCAGTTGTCACTGGAATTATAGATTCC
AsnPheGluValValLysGlnPheValThrGlyIleIleAspSer

2116 TTGACAATTCCCCAAAGCCGCTCGAGTGGGGCTGCTCCAGTAT
LeuThrIleSerProLysAlaAlaArgValGlyLeuLeuGlnTyr

2161 TCCACACAGGTCCACACAGAGTTCACTCTGAGAAACTCAACTCA
SerThrGlnValHisThrGluPheThrLeuArgAsnPheAsnSer

2206 GCCAAAGACATGAAAAAGCCGTGGCCCACATGAAATACATGGGA
AlaLysAspMetLysLysAlaValAlaHisMetLysTyrMetGly

Fig. 4 (continued)

2251 AAGGGCTCTATGACTGGGCTGGCCCTGAAACACATGTTGAGAGA
LysGlySerMetThrGlyLeuAlaLeuLysHisMetPheGluArg

2296 AGTTTTACCCAAGGAGAACGGGCCAGGCCCTTCCACAAGGGT
SerPheThrGlnGlyGluGlyAlaArgProLeuPheHisLysGly

2341 GCCCAGAGCAGCCATTGTGTTCACCGACGGACGGCTCAGGATGA
AlaGlnSerSerHisCysValHisArgArgThrGlySerGly

2386 CGTCTCCGAGTGGGCCAGTAAAGCCAAGGCCAATGGTATCACTAT

2431 GTATGCTGTTGGGTAGGAAAAGCCATTGAGGAGGAACATAAAGA

2476 GATTGCCTCTGAGCCCACAAACAAGCATCTCTTCTATGCCGAAGA

2521 CTTCAGCACAATGGATGAGATAAGTAAAAACTCAAGAAAGGCAT

2566 CTGTGAAGCTCTAGAAGACTCCGATGGAAGACAGGACTCTCCAGC

2611 AGGGGAACGTGCCAAAACGGTCCAACAGCCAACAGAACTTGAGCC

2656 AGTCACCATAAATATCCAAGACCTACTTCTGTTCTAATTTGC

2701 AGTGCAACACAGATATCTGTTGAAGAAGACAATCTTACGGTC

2746 TACACAAAAGCTTCCCATTCAACAAACCTTCAGGAAGCCCTTT

2791 GGAAGAAAAACACGATCAATGCAAATGTGAAAACCTTATAATGTT

2836 CCAGAACCTTGCCTAACGAAGAAGTAAGAAAATTACACAGCGCTT

2881 AGAAGAAATGACACAGAGAATGGAAGCCCTGGAAAATCGCCTGAG

2926 ATACAGATGAAGATTAGAAATCGCGACACATTGTAGTCATTGTA

2971 TCACGGATTACAATGAACGCAGTGCAGAGCCCCAAAGCTCAGGCT

3016 ATTGTTAAATC

Fig. 4 (continued)

17/35

1 GGTAGCCGACGCCGGCGCGTGTACCTTGCCCCTTTGCTC
46 GCCTTGAAAATGGAAAAGATGCTCGCAGGCTGCTTCTGCTGATC
MetGluLysMetLeuAlaGlyCysPheLeuLeuIle
91 CTCGGACAGATCGTCCTCCTCCCTGCGAGGCCAGGGAGCGGTCA
LeuGlyGlnIleValLeuLeuProCysGluAlaArgGluArgSer
136 CGTGGGAGGTCCATCTCTAGGGCAGACACGCTCGAACCCACCG
ArgGlyArgSerIleSerArgGlyArgHisAlaArgThrHisPro
181 CAGACGGCCCTCTGGAGAGTTCTGTGAGAACAAAGCGGGCAGAC
GlnThrAlaLeuLeuGluSerSerCysGluAsnLysArgAlaAsp
226 CTGGTTTCATCATTGACAGCTCTCGCAGTGTCAACACCCATGAC
LeuValPheIleIleAspSerSerArgSerValAsnThrHisAsp
271 TATGCAAAGGTCAAGGAGTTCATCGTGGACATCTTGCAATTCTG
TyrAlaLysValLysGluPheIleValAspIleLeuGlnPheLeu
316 GACATTGGTCCTGATGTCACCCGAGTGGGCCTGCTCCAATATGGC
AspIleGlyProAspValThrArgValGlyLeuLeuGlnTyrGly
361 AGCACTGTCAAGAATGAGTTCTCCCTCAAGACCTTCAAGAGGAAG
SerThrValLysAsnGluPheSerLeuLysThrPheLysArgLys
406 TCCGAGGTGGAGCGTGCTGTCAAGAGGATGGGCATCTGTCCACG
SerGluValGluArgAlaValLysArgMetArgHisLeuSerThr
451 GGCACCATGACTGGCTGGCCATCCAGTATGCCCTGAACATCGCA
GlyThrMetThrGlyLeuAlaIleGlnTyrAlaLeuAsnIleAla
496 TTCTCAGAACAGAGGGGGCCGGCCCTGAGGGAGAATGTGCCA
PheSerGluAlaGluGlyAlaArgProLeuArgGluAsnValPro
541 CGGGTCATAATGATCGTGACGGATGGGAGACCTCAGGACTCCGTG
ArgValIleMetIleValThrAspGlyArgProGlnAspSerVal
586 GCCGAGGTGGCTGCTAACGGCACGGGACACGGCATCTTAATCTT
AlaGluValAlaAlaLysAlaArgAspThrGlyIleLeuIlePhe
631 GCCATTGGTGTGGCCAGGTAGACTCAACACCTTGAAAGTCCATT
AlaIleGlyValGlyGlnValAspPheAsnThrLeuLysSerIle
676 GGGAGTGAGCCCCATGAGGACCATGTCTCCTGTGGCCAATTTC
GlySerGluProHisGluAspHisValPheLeuValAlaAsnPhe
721 AGCCAGATTGAGACGCTGACCTCCGTGTTCCAGAAGAAGTTGTGC
SerGlnIleGluThrLeuThrSerValPheGlnLysLysLeuCys

Fig. 5

766 ACGGCCACATGTGCAGCACCTGGAGCATAACTGTGCCCACTTC
ThrAlaHisMetCysSerThrLeuGluHisAsnCysAlaHisPhe

811 TGCATCAACATCCCTGGCTCATACGTCTGCAGGTGCAAACAAGGC
CysIleAsnIleProGlySerTyrValCysArgCysLysGlnGly

856 TACATTCTCAACTCGGATCAGACGACTTGCAGAATCCAGGATCTG
TyrIleLeuAsnSerAspGlnThrThrCysArgIleGlnAspLeu

901 TGTGCCATGGAGGACCACAACTGTGAGCAGCTCTGTGTGAATGTG
CysAlaMetGluAspHisAsnCysGluGlnLeuCysValAsnVal

946 CCGGGCTCCTCGTCTCGAGTGCTACAGTGGCTACGCCCTGGCT
ProGlySerPheValCysGluCysTyrSerGlyTyrAlaLeuAla

991 GAGGATGGGAAGAGGTGTGGCTGTGGACTACTGTGCCTCAGAA
GluAspGlyLysArgCysValAlaValAspTyrCysAlaSerGlu

1036 AACCAACGGATGTGAACATGAGTGTGAAATGCTGATGGCTCCTAC
AsnHisGlyCysGluHisGluCysValAsnAlaAspGlySerTyr

1081 CTTTGCCAGTGCCATGAAGGATTGCTCTAACCCAGATGAAAAAA
LeuCysGlnCysHisGluGlyPheAlaLeuAsnProAspGluLys

1126 ACGTGCACAAAGATAGACTACTGTGCCTCATCTAACATGGATGT
ThrCysThrLysIleAspTyrCysAlaSerSerAsnHisGlyCys

1171 CAGTACGAGTGTGTTAACACAGATGATT CCTATT CCTGCCACTGC
GlnTyrGluCysValAsnThrAspAspSerTyrSerCysHisCys

1216 CTGAAAGGCTTACCCCTGAATCCAGATAAGAAAACCTGCAGAAGG
LeuLysGlyPheThrLeuAsnProAspLysLysThrCysArgArg

1261 ATCAAACACTGTGCACTGAACAAACCGGGCTGTGAGCATGAGTGC
IleAsnTyrCysAlaLeuAsnLysProGlyCysGluHisGluCys

1306 GTCAACATGGAGGAGAGCTACTACTGCCGCTGCCACCGTGGCTAC
ValAsnMetGluGluSerTyrTyrCysArgCysHisArgGlyTyr

1351 ACTCTGGACCCCAATGGCAAACCCCTGCAGCCGAGTGGACCACTGT
ThrLeuAspProAsnGlyLysProCysSerArgValAspHisCys

1396 GCACAGCAGGACCATGGCTGTGAGCAGCTGTGTCTAACACGGAG
AlaGlnGlnAspHisGlyCysGluGlnLeuCysLeuAsnThrGlu

1441 GATTCTCGTCTGCCAGTGCTCAGAAGGCTTCCTCATCAACGAG
AspSerPheValCysGlnCysSerGluGlyPheLeuIleAsnGlu

1486 GACCTCAAGACCTGCTCCC GG GTGGATTACTGCCTGCTGAGTGAC
AspLeuLysThrCysSerArgValAspTyrCysLeuLeuSerAsp

Fig. 5 (continued)

1531 CATGGTTGTGAATACTCCTGTGTCAACATGGACAGATCCTTGCC
HisGlyCysGluTyrSerCysValAsnMetAspArgSerPheAla

1576 TGTCA GTGT CCTGAGGGACACGTGCTCCGCAGCGATGGGAAGACG
CysGlnCysProGluGlyHisValLeuArgSerAspGlyLysThr

1621 TGTGCAAAATTGGACTCTTGTGCTCTGGGGACCACGGTTGTGAA
CysAlaLysLeuAspSerCysAlaLeuGlyAspHisGlyCysGlu

1666 CATT CGTGTAAAGCAGTGAAGATT CGTTGTGCCAGTGCTT
HisSerCysValSerSerGluAspSerPheValCysGlnCysPhe

1711 GAAGGTTATATACTCCGTGAAGATGGAAAAACCTGCAGAAGGAAA
GluGlyTyrIleLeuArgGluAspGlyLysThrCysArgArgLys

1756 GATGTCTGCCAAGCTATAGACCATGGCTGTGAACACACATTGTGTG
AspValCysGlnAlaIleAspHisGlyCysGluHisIleCysVal

1801 AACAGTGACGACTCATACACGTGCGAGTGCTGGAGGGATTCCGG
AsnSerAspAspSerTyrThrCysGluCysLeuGluGlyPheArg

1846 CTCACTGAGGATGGAAACGCTGCCGAATTCTCAGGGAAGGAT
LeuThrGluAspGlyLysArgCysArgIleSerSerGlyLysAsp

1891 GTCTGCAAATCAACCCACCATGGCTGCGAACACACATTGTGTTAAT
ValCysLysSerThrHisGlyCysGluHisIleCysValAsn

1936 AATGGGAATT CCTACATCTGCAAATGCTCAGAGGGATTGTTCTA
AsnGlyAsnSerTyrIleCysLysCysSerGluGlyPheValLeu

1981 GCTGAGGACGGAAGACGGTGCAAGAAATGCACTGAAGGCCAATT
AlaGluAspGlyArgArgCysLysCysThrGluGlyProIle

2026 GACCTGGTCTTGTGATCGATGGATCCAAGAGTCTGGAGAAGAG
AspLeuValPheValIleAspGlySerLysSerLeuGlyGluGlu

2071 AATTTGAGGT CGTGAAAGCAGTTGTC ACTGGAATTATAGATTCC
AsnPheGluValValLysGlnPheValThrGlyIleIleAspSer

2116 TTGACAATTC CCCCCAAAGCCGCTCGAGTGGGCTGCTCCAGTAT
LeuThrIleSerProLysAlaAlaArgValGlyLeuLeuGlnTyr

2161 TCCACACAGGTCCACACAGAGTTCACTCTGAGAAACTTCAACTCA
SerThrGlnValHisThrGluPheThrLeuArgAsnPheAsnSer

2206 GCCAAAGACATGAAAAAGCCGTGGCCCACATGAAATACATGGGA
AlaLysAspMetLysLysAlaValAlaHisMetLysTyrMetGly

Fig. 5 (continued)

20/35

- 2251 AAGGGCTCTATGACTGGGCTGGCCCTGAAACACATGTTGAGAGA
LysGlySerMetThrGlyLeuAlaLeuLysHisMetPheGluArg
- 2296 AGTTTTACCCAAGGAGAACGGGCCAGGCCCTTCCACAAGGGTG
SerPheThrGlnGlyGluGlyAlaArgProPheSerThrArgVal
- 2341 CCCAGAGCAGCCATTGTGTTCACCGACGGACGGCTCAGGATGAC
ProArgAlaAlaIleValPheThrAspGlyArgAlaGlnAspAsp
- 2386 GTCTCCGAGTGGGCCAGTAAAGCCAAGGCCATGGTATCACTATG
ValSerGluTrpAlaSerLysAlaLysAlaAsnGlyIleThrMet
- 2431 TATGCTGTTGGGTAGGAAAAGCCATTGAGGAGGAACATAAGAG
TyrAlaValGlyValGlyLysAlaIleGluGluGluLeuGlnGlu
- 2476 ATTGCCTCTGAGCCCACAAACAAGCATCTCTTCTATGCCAAGAC
IleAlaSerGluProThrAsnLysHisLeuPheTyrAlaGluAsp
- 2521 TTCAGCACAAATGGATGAGATAAGTAAAAACTCAAGAAAGGCATC
PheSerThrMetAspGluIleSerGluLysLeuLysLysGlyIle
- 2566 TGTGAAGCTCTAGAAGACTCCGATGGAAGACAGGACTCTCCAGCA
CysGluAlaLeuGluAspSerAspGlyArgGlnAspSerProAla
- 2611 GGGGAACGCCAAAAACGGTCCAACAGCCAACAGAAATCTGAGCCA
GlyGluLeuProLysThrValGlnGlnProThrGluSerGluPro
- 2656 GTCACCATAAATATCCAAGACCTACTTCTGTTCTAATTTGCA
ValThrIleAsnIleGlnAspLeuLeuSerCysSerAsnPheAla
- 2701 GTGCAACACAGATATCTGTTGAAGAAGACAATCTTACGGTCT
ValGlnHisArgTyrLeuPheGluGluAspAsnLeuLeuArgSer
- 2746 ACACAAAAGCTTCCCATTCAACAAAACCTTCAGGAAGCCCTTG
ThrGlnLysLeuSerHisSerThrLysProSerGlySerProLeu
- 2791 GAAGAAAAACACGATCAATGCAAATGTGAAAACCTTATAATGTTG
GluGluLysHisAspGlnCysLysCysGluAsnLeuIleMetPhe
- 2836 CAGAACCTTGCAAACGAAGAAGTAAGAAAATTAACACAGCGCTTA
GlnAsnLeuAlaAsnGluGluValArgLysLeuThrGlnArgLeu
- 2881 GAAGAAATGACACAGAGAACGGAGCCCTGGAAAATCGCCTGAGA
GluGluMetThrGlnArgMetGluAlaLeuGluAsnArgLeuArg
- 2926 TACAGATGAAGATTAGAAATCGCGACACATTGTAGTCATTGTAT
TyrArg

Fig. 5 (continued)

2971	CACGGATTACAATGAACGCAGTGCAGAGCCCCAAAGCTCAGGCTA
3016	TTGTTAAATCAATAATGTTGTGAAGTAAAACAATCAGTACTGAGA
3061	AACCTGGTTGCCACAGAACAAAGACAAGAAGTATACTAAGCTT
3106	GTATAAATTATCTAGGAAAAAAATCCTCAGAATTCTAAGATGA
3151	ATTTACCCAGGTGAGAATGAATAAGCTATGCAAGGTATTTGTAAT
3196	ATACTGTGGACACAACCTTGCTCTGCCTCATCCTGCCTTAGTGTG
3241	CAATCTCATTGACTATACGATAAAAGTTGCACAGTCTTACTTCT
3286	GTAGAACACTGGCCATAGGAAATGCTGTTTTGTACTGGACTT
3331	TACCTTGATATATGTATGGATGTATGCATAAAATCATAGGACA
3376	TATGTACTTGTGGAACAAGTGGATTTTATACAATATTAAAAT
3421	TCACCACCTCAGAGAAAAGTAAAAAA

Fig. 5 (continued)

22/35

1 CGGCCCTCTCACACTCCTGCCCTGCTGATGTGGAACGGGGTTTG
46 GGGTTCTGCAGGGCTATTGTCTGCGCTGGGAAGGGACAGGCCG
91 GGACCGGGACCTCCGCTCGCAGCCGGCGACCAGCAGGACAGCT

136 GGCCTGAAGCTCAGAGCCGGGGCGTGCGCCATGGCCCCACACTGG
MetAlaProHisTrp

181 GCTGTCTGGCTGGCAGCAAGGCTGTGGGCCTGGGCATTGGG
AlaValTrpLeuLeuAlaAlaArgLeuTrpGlyLeuGlyIleGly

226 GCTGAGGTGTGGTGGAACCTTGTGCCCGTAAGACAGTGTCTTCT
AlaGluValTrpTrpAsnLeuValProArgLysThrValSerSer

271 GGGGAGCTGGCCACGGTAGTACGGCGTTCTCCCAGACCAGCATC
GlyGluLeuAlaThrValValArgArgPheSerGlnThrGlyIle

316 CAGGACTTCCTGACACTGACGCTGACGGAGCCCCTGGGCTTCTG
GlnAspPheLeuThrLeuThrLeuThrGluProThrGlyLeuLeu

361 TACGTGGCGCCCGAGAGGCCCTGTTGCCTTCAGCATGGAGGCC
TyrValGlyAlaArgGluAlaLeuPheAlaPheSerMetGluAla

406 CTGGAGCTGCAAGGAGCGATTCCTGGGAGGCCCGTGGAGAAAG
LeuGluLeuGlnGlyAlaIleSerTrpGluAlaProValGluLys

451 AAGACTGAGTGTATCCAGAAAGGAAGAACAAACCAGACCGAGTGC
LysThrGluCysIleGlnLysGlyLysAsnAsnGlnThrGluCys

496 TTCAACTTCATCCGCTTCCTGCAGCCCTACAATGCCTCCCACCTG
PheAsnPheIleArgPheLeuGlnProTyrAsnAlaSerHisLeu

541 TACGTCTGTGGCACCTACGCCTTCCAGCCCAAGTGCACCTACGTC
TyrValCysGlyThrTyrAlaPheGlnProLysCysThrTyrVal

586 AACATGCTCACCTTCACTTGGAGCATGGAGAGTTGAAGATGGG
AsnMetLeuThrPheThrLeuGluHisGlyGluPheGluAspGly

631 AAGGGCAAGTGTCCCTATGACCCAGCTAACGGCCATGCTGGCCTT
LysGlyLysCysProTyrAspProAlaLysGlyHisAlaGlyLeu

676 CTTGTGGATGGTGAGCTGTACTCGGCCACACTCAACAACTTCCTG
LeuValAspGlyGluLeuTyrSerAlaThrLeuAsnAsnPheLeu

721 GGCACGGAACCCATTATCCTGCGTAACATGGGCCACCACCTCC
GlyThrGluProIleIleLeuArgAsnMetGlyProHisSerSer

Fig. 6

766 ATGAAGACAGAGTACCTGGCCTTGGCTAACGAAACCTCACTT
MetLysThrGluTyrLeuAlaPheTrpLeuAsnGluProHisPhe

811 GTAGGCTCTGCCTATGTACCTGAGAGGGTGGCCTGCTGTGGACA
ValGlySerAlaTyrValProGluArgValGlyLeuLeuTrpThr

856 ATGGCATACTCTTCCAGCCCTAGGAGGGCTCCTAACAGTG
MetAlaTyrSerLeuProAlaLeuGlyGlyLeuLeuThrVal

901 TAACTTATTGTGTCCCCCGGTATTTATTGTTGTAAATATTTGAG

946 TATTTTATATTGACAAATAAA

Fig. 6 (continued)

24/35

1 GGCACCAGGCCTTCCGGAGAGACGCAGTCGGCTGCCACCCCGGGA M
46 TGGGTGGCTGGTGCCAGACCGTCGCGCGGGCAGCGCCCCCGGA etGlyArgTrpCysGlnThrValAlaArgGlyGlnArgProArgT
91 CGTCTGCCCTCCCAGCGCGGTGCCCTGCTGCTGCTGCTTCTGT hrSerAlaProSerArgAlaGlyAlaLeuLeuLeuLeuLeuL
136 TGCTGAGGTCTGCAGGTTGCTGGGGCGCAGGGAAAGCCCCGGGG euLeuArgSerAlaGlyCysTrpGlyAlaGlyGluAlaProGlyA
181 CGCTGTCCACTGCTGATCCCAGCGACCAGAGCGTCCAGTGTGTCC laLeuSerThrAlaAspProAlaAspGlnSerValGlnCysValP
226 CCAAGGCCACCTGTCCTTCCAGCCGGCTGCCCTCTGGCAGA roLysAlaThrCysProSerSerArgProArgLeuLeuTrpGlnT
271 CCCCAGACCACCCAGACACTGCCCTCGACCACCATGGAGACCCAAT hrProThrThrGlnThrLeuProSerThrThrMetGluThrGlnP
316 TCCCAGTTCTGAAGGCAAAGTCGACCCATAACGCTCCTGTGGCT heProValSerGluGlyLysValAspProTyrArgSerCysGlyP
361 TTTCTACGAGCAGGACCCCACCCTCAGGGACCCAGAACCGTGG heSerTyrGluGlnAspProThrLeuArgAspProGluAlaValA
406 CTCGGCGGTGGCCCTGGATGGTCAGCGTGCAGGGCAATGGCACAC laArgArgTrpProTrpMetValSerValArgAlaAsnGlyThrH
451 ACATCTGTGCCGGCACCATCATTGCCTCCCAGTGGTGCTGACTG isIleCysAlaGlyThrIleIleAlaSerGlnTrpValLeuThrV
496 TGGCCCAGTGCCTGATCTGGCGTGATGTTATCTACTCAGTGAGGG alAlaHisCysLeuIleTrpArgAspValIleTyrSerValArgV
541 TGGGGAGTCCGTGGATTGACCAAGATGACGCAGACGCCCTCCGATG alGlySerProTrpIleAspGlnMetThrGlnThrAlaSerAspV
586 TCCCAGGTGCTCCAGGTCAATGCATAGCAGGTACCGGGCCAGC alProValLeuGlnValIleMetHisSerArgTyrArgAlaGlnA
631 GGTTCTGGCTGGGTGGGCCAGGCCAACGACATGGCCTCCTCA rgPheTrpSerTrpValGlyGlnAlaAsnAspIleGlyLeuLeuL
676 AGCTCAAGCAGGAACTCAAGTACAGCAATTACGTGCGGCCATCT ysLeuLysGlnGluLeuLysTyrSerAsnTyrValArgProIleC

Fig. 7

721 GCCTGCCTGGCACGGACTATGTGTTGAAGGACCATTCCCGCTGCA
ysLeuProGlyThrAspTyrValLeuLysAspHisSerArgCyst

766 CTGTGACGGGCTGGGGACTTCCAAGGCTGACGGCATGTGGCCTC
hrValThrGlyTrpGlyLeuSerLysAlaAspGlyMetTrpProG

811 AGTTCCGGACCATTCAAGGAGAAGGAAGTCATCATCCTGAACAAACA
lnPheArgThrIleGlnGluLysGluValIleIleLeuAsnAsnL

856 AAGAGTGTGACAATTCTACCACAACTCACCAAAATCCCCACTC
ysGluCysAspAsnPheTyrHisAsnPheThrLysIleProThrL

901 TGGTTCAGATCATCAAGTCCCAGATGATGTGCGGAGGACACCC
euValGlnIleIleLysSerGlnMetMetCysAlaGluAspThrH

946 ACAGGGAGAACGTTCTGCTATGAGCTAACTGGAGAGGCCCTGGTCT
isArgGluLysPheCysTyrGluLeuThrGlyGluProLeuValC

991 GCTCCATGGAGGGCACGTGGTACCTGGTGGGATTGGTGAGCTGGG
ysSerMetGluGlyThrTrpTyrLeuValGlyLeuValSerTrpG

1036 GTGCAGGCTGCCAGAAGAGCGAGGCCACCCATCTACCTACAGG
lyAlaGlyCysGlnLysSerGluAlaProProIleTyrLeuGlnV

1081 TCTCCTCCTACCAAACACTGGATCTGGACTGCCTAACGGGCAGG
alSerSerTyrGlnHisTrpIleTrpAspCysLeuAsnGlyGlnA

1126 CCCTGGCCCTGCCAGCCCCATCCAGGACCCTGCTCCTGGCACTCC
laLeuAlaLeuProAlaProSerArgThrLeuLeuAlaLeuP

1171 CACTGCCCTCAGCCTCCTGCTGCCCTCTGACTCTGTGTGCCCT
roLeuProLeuSerLeuLeuAlaAlaLeu

1216 CCCTCACTTGTGGGCCCTTGCCTCCGTGCCAGGTTGCTGTG
1261 GGTGCAGCTGTACAGCCCTGAGAGTCAGGGTGGAGATGAGGTGC
1306 TCAATTAAACATTACTGTTCCATGTAAAAAAAAAAAAAAA
1351 AAAAAAAA

Fig. 7 (continued)

26/35

CACCCCTCTGCCCTGCCCCAGCCCGCCCATCGCTTCCCCTTGAGCCTCCTGCTGGGCCACTGGCTGGATCAGGACACC
 81
 AGTGATGGTAAGTGCTGGCCAGACTGAAGCTCGGAGAGGCACTCTGCTTCCCAGCGTCACAGTCTTAGCTCCAACTG
 161
 TCCTGGCTTCCAGTCTCCCTGCTTCCCAGACTCTAGCCCCAGCCCCGTCTTTACAGCTCCTGGGACCC
 241
 TACGCAATCTGCCCTGCGTCTCATCAGTCGCCCCACATGTAAGTATCTACAACCAGCTGCACCAGCGACACCTGTCC
 321
 AACCCGGCCGGCTGGATGCTATGTGGGGCCCCAGCCTGGGTGCAGGGCCCTGTCAGGTCTGATAAGGAGAAGA
 401
 GAAGGAGCAGAAGGGGAGGGCCTAACCTGGCTGGGGTTGGACTCACAGGACTGGGGAAAGAGCTGCAATCAGAGG
 481
 GTGTCTGCCATAGCTGGCTCAGGCATCTGCTTGGCTTGGCTCCAGGGAGATTCCGGGGCCCTGTGCTG
 561
 TGCCCTCGAGGCTGACGGACACTGGGTTCAAGGCTGGCATCATCAGCTTGCATCAAGCTGTGCCAGGAGGACGCTCCTGT
 641
 GCTGCTGACCAACACAGCTGTCACAGTTCCTGGCTGCAGGCTCGAGTTCAAGGGGAGCTTCTGGCCAGAGCCAG
 721
 AGACCCCGGAGATGAGTGTGAGGACAGCTGTGTAGCCTGTGGATCCTTGAGGACAGCAGGTCCCAGGCAGGAGCACCC
 MetSerAspGluAspSerCysValAlaCysGlySerLeuArgThrAlaGlyProGlnAlaGlyAlaPro
 801
 TCCCCATGGCCCTGGGAGGCCAGGCTGATGCACCAGGGACAGCTGGCCTGTGGCGGAGCCCTGGTGTAGAGGAGGCGGT
 SerProTrpProTrpGluAlaArgLeuMetHisGlnGlyGlnLeuAlaCysGlyGlyAlaLeuValSerGluGluAlaVa
 881
 GCTAACTGCTGCCACTGCTCATTGGCGCCAGGCCAGAGGAATGGAGCGTAGGGCTGGGACCAGACCGGAGGAGT
 1LeuThrAlaAlaHisCysPheIleGlyArgGlnAlaProGluGluTrpSerValGlyLeuGlyThrArgProGluGluT
 961
 GGGGCCTGAAGCAGCTCATCCTGCATGGAGCCTACACCCACCCAGGGGGCTACGACATGGCCCTCCTGCTGCTGGCC
 rpGlyLeuLysGlnLeuIleLeuHisGlyAlaTyrThrHisProGluGlyGlyTyrAspMetAlaLeuLeuLeuAla
 1041
 CAGCCTGTGACACTGGGAGCCAGCCTGCGGCCCTCTGCCTGCCCTATGCTGACCACCACTGCCTGATGGGGAGCGTGG
 GlnProValThrLeuGlyAlaSerLeuArgProLeuCysLeuProTyrAlaAspHisHisLeuProAspGlyGluArgG1
 1121
 CTGGGTTCTGGGACGGGCCAGGAGCAGGCATCAGCTCCCTCCAGACAGTGCCTGACCCTCCTGGGCCTAGGG
 yTrpValLeuGlyArgAlaArgProGlyAlaGlyIleSerSerLeuGlnThrValProValThrLeuLeuGlyProArgA
 1201
 CCTGCAGCCGGCTGCATGCAGCTCTGGGGTGATGGCAGCCCTATTCTGCCGGGATGGTGTGTACAGTGCTGTGGGT
 laCysSerArgLeuHisAlaAlaProGlyGlyAspGlySerProIleLeuProGlyMetValCysThrSerAlaValGly
 1281
 GAGCTGCCAGCTGTGAGGTGAGCCCCAGGCCACACCTAACCTAACAGGCCCTGGCATCCCTCACCAATAGCTC
 GluLeuProSerCysGluValSerProArgProProHisLeuThr
 1361
 AAGAACGGACCTTCAGGCTGGCCTCTGGACCCACCTCCCACCTGAAGCTAAGCCTTTGCCAATTAGCCCCAAACA
 1441
 GCCAG

Fig. 8

27/35

- 1 CTTAACAGCCACTTGTTCATCCCACCTGGCATTAGGTTGACTT
- 46 CAAAGATGCCTCAGTTACTGCAAAACATTAATGGGATCATCGAGG
MetProGlnLeuLeuGlnAsnIleAsnGlyIleIleGluA
- 91 CCTTCAGGCGCTATGCAAGGACGGAGGGCAACTGCACAGCGCTCA
laPheArgArgTyrAlaArgThrGluGlyAsnCysThrAlaLeuT
- 136 CCCGAGGGGAGCTGAAAAGACTCTGGAGCAAGAGTTGCCGATG
hrArgGlyGluLeuLysArgLeuGluGlnGluPheAlaAspV
- 181 TGATTGTGAAACCCCACGATCCAGCAACTGTGGATGAGGTCTGC
alIleValLysProHisAspProAlaThrValAspGluValLeuA
- 226 GTCTGCTGGATGAAGACCACACAGGGACTGTGGAATTCAAGGAAT
rgLeuLeuAspGluAspHisThrGlyThrValGluPheLysGluP
- 271 TCCTGGTCTTAGTGTAAAGTTGCCAGGCCTGTTCAAGACAC
heLeuValLeuValPheLysValAlaGlnAlaCysPheLysThrL
- 316 TGAGCGAGAGTGCTGAGGGAGCCTGCGGCTCTCAAGAGTCTGGAA
euSerGluSerAlaGluGlyAlaCysGlySerGlnGluSerGlyS
- 361 GCCTCCACTCTGGGCCTCGCAGGAGCTGGCGAAGGACAGAGAA
erLeuHisSerGlyAlaSerGlnGluLeuGlyGluGlyGlnArgS
- 406 GTGGCACTGAAGTGGGAAGGGCGGGAAAGGGCAGCATTATGAGG
erGlyThrGluValGlyArgAlaGlyLysGlyGlnHisTyrGluG
- 451 GGAGCAGCCACAGACAGGCCAGCAGGGTCCAGAGGGCAGAACAA
lySerSerHisArgGlnSerGlnGlnGlySerArgGlyGlnAsnA
- 496 GGCCTGGGTTTCAGACCCAGGGTCAGGCCACTGGCTCTGCGTGGG
rgProGlyValGlnThrGlnGlyGlnAlaThrGlySerAlaTrpV
- 541 TCAGCAGCTATGACAGGCAAGGCTGAGTCCCAGAGCCAGGAAAGAA
alSerSerTyrAspArgGlnAlaGluSerGlnSerGlnGluArgI
- 586 TAAGCCCGCAGATAAACTCTGGCAGACAGAGCAGACCCAGA
leSerProGlnIleGlnLeuSerGlyGlnThrGluGlnThrGlnL
- 631 AAGCTGGAGAAGGCAAGAGGAATCAGACAACAGAGATGAGGCCAG
ysAlaGlyGluGlyLysArgAsnGlnThrThrGluMetArgProG
- 676 AGAGACAGCCACAGACCAGGGAACAGGACAGAGCCCACCA
luArgGlnProGlnThrArgGluGlnAspArgAlaHisGlnThrG

Fig. 9

28/35

721 GTGAGACTGTGACTGGATCTGGAACTCAGACCCAGGCAGGTGCCA
 lyGluThrValThrGlySerGlyThrGlnThrGlnAlaGlyAlaT
 766 CCCAGACTGTGGAGCAGGACAGCAGCCACCAGACAGGAAGCACCA
 hrGlnThrValGluGlnAspSerSerHisGlnThrGlySerThrS
 811 GCACCCAGACACAGGAGTCCACCAATGGCCAGAACAGAGGGACTG
 erThrGlnThrGlnGluSerThrAsnGlyGlnAsnArgGlyThrG
 856 AGATCCACGGTCAAGGCAGGAGCCAGACCAGCCAGGCTGTGACAG
 luIleHisGlyGlnGlyArgSerGlnThrSerGlnAlaValThrG
 901 GAGGACACACTCAGATAACAGGCAGGGTCACACACCGAGACTGTGG
 lyGlyHisThrGlnIleGlnAlaGlySerHisThrGluThrValG
 946 AGCAGGACAGAACCAAACGTAAAGCCACGGAGGGCTAGAGAAC
 luGlnAspArgSerGlnThrValSerHisGlyGlyAlaArgGluG
 991 AGGGACAGACCCAGACGCAGCCAGGCAGTGGTCAAAGATGGATGC
 llnGlyGlnThrGlnThrGlnProGlySerGlyGlnArgTrpMetG
 1036 AAGTGAGCAACCTGAGGCAGGAGAGACAGTACCGGGAGGACAGG
 llnValSerAsnProGluAlaGlyGluThrValProGlyGlyGlnA
 1081 CCCAGACTGGGGCAAGCACTGAGTCAGGAAGGCAGGAGTGGAGCA
 laGlnThrGlyAlaSerThrGluSerGlyArgGlnGluTrpSerS
 1126 GCACTCACCAAGGCGCTGTGTGACAGAACGGCAGGGAGACAGAC
 erThrHisProArgArgCysValThrGluGlyGlnGlyAspArgG
 1171 AGCCCACAGTGGTGGTGAGGAATGGGTTGATGACCACTCAAGGG
 llnProThrValValGlyGluGluTrpValAspAspHisSerArgG
 1216 AGACAGTGATCCTCAGGCTGGACCAGGGCAACTTGCATACCAAGTG
 luThrValIleLeuArgLeuAspGlnGlyAsnLeuHisThrSerV
 1261 TTTCCTCAGCACAGGCCAGGATGCAGCCCAGTCAGAACAGAAC
 alSerSerAlaGlnGlyGlnAspAlaAlaGlnSerGluGluLysA
 1306 GAGGCATCACAGCTAGAGAGCTGTATTCTACTTGAGAACCA
 rgGlyIleThrAlaArgGluLeuTyrSerTyrLeuArgSerThrL
 1351 AGCCATGACTTCCCCACTCCAATGTCCAGTACTGGAAGAACACA
 ysPro
 1396 GCTGGAGAGAGTTGGCTTGTCCCTGCATGGCCAATCCAGTGGGTG
 1441 CATCCCTGGACATCAGCTCTCATTATGCAGCTCCCTTTAGGT
 1486 CTTTCTCAATGAGATAATTCTGCAAGGAGCTTCTATCCTGAAC
 1531 TCTTCTTCTTACCTGCTTGGGTGCAGACCCCTCTCAGGAGCAG
 1576 GAAGACTCAGAACAAAGTCACCCCTT

Fig. 9 (continued)

29/35

1. 11618130.0.184_Cura_108
2. 11618130.0.27_Cura_56

116181300184_cura_108	MSDEDSCVACGSLRTAGPQAGAPSPWPWEARLMHQGLACGGALVSEEAVLTAAHCF-IGR
11618130027_cura_56	MSDEDSCVACGSLRTAGPQAGAPSPWPWEARLMHQGLACGGALVSEEAVLTAAHCF-NGR
116181300184_cura_108	QAPEEWSVGLGTRPEEWGLKQLILHGAYTHPEGGYDMALLLQAQPVTLGASLRPLCLPYA
11618130027_cura_56	QAPEEWSVGLGTRPEEWGLKQLILHGAYTHPEGGYDMALLLQAQPVTLGASLRPLCLPYF
116181300184_cura_108	DHHLPDGERGVLRGAGGISSLQTVPVTLLGPRACSRLLHAAPGGDGSPILPGMVCTS
11618130027_cura_56	DHHLPDGERGVLRGAGGISSLQTVPVTLLGPRACSRLLHAAPGGDGSPILPGMVCTS
116181300184_cura_108	AVGELPSCEVSPPRPHT~
11618130027_cura_56	AVGELPSCEGLSGAPLYHEVRGTWFLAGLHSFGDACQGPARYPAVFTALPAYEDWVSSLDW
116181300184_cura_108	~
11618130027_cura_56	QVYFAEEPEPEAEPGSCLANISQPTSC

Fig. 10

30/35

Sequences analyzed:

1. 14578444-0-47_Cura_56
2. 14578444-0-143Cura_56

14578444047_cura_56	MEKMLAGCFLLILGQIVLLP	EARERSRGRSISRGRHARTHPOQTALLESSCENKRADLVF
145784440143_cura_56	MEKMLAGCFLLILGQIVLLPA	EARERSRGRSISRGRHARTHPOQTALLESSCENKRADLVF
14578444047_cura_56	IIDSSRSVNTHDYAKVKEFIIVDILQFLDIGPDVTRVGLLQYGSTVKNEFSLKTFKRKSSEV	IIDSSRSVNTHDYAKVKEFIIVDILQFLDIGPDVTRVGLLQYGSTVKNEFSLKTFKRKSSEV
145784440143_cura_56	ERAVKRMRLSTGTMTGLAIQYALNIAFSEAEGARPLRENVPRVIMIVT	ERAVKRMRLSTGTMTGLAIQYALNIAFSEAEGARPLRENVPRVIMIVT
14578444047_cura_56	DGRPQDSVAEV	DGRPQDSVAEV
145784440143_cura_56	ERAVKRMRLSTGTMTGLAIQYALNIAFSEAEGARPLRENVPRVIMIVT	ERAVKRMRLSTGTMTGLAIQYALNIAFSEAEGARPLRENVP
14578444047_cura_56	AAKARDTGILIFAIGVGQVDFNTLKSIGSEPHEDHVFLVANFSQIETLT	AAKARDTGILIFAIGVGQVDFNTLKSIGSEPHEDHVFLVANFSQIETLT
145784440143_cura_56	SQIETLTSVFQKKLCTAH	SQIETLTSVFQKKLCTAH
14578444047_cura_56	MCSTLEHNCAHTFCINIPGSYYVCRCKQGYILNSDQTT	MCSTLEHNCAHTFCINIPGSYYVCRCKQGYILNSDQTT
145784440143_cura_56	CRIQDLCAMEDHNCEQLCVNVPGS	CRIQDLCAMEDHNCEQLCVNVPGS
14578444047_cura_56	FVCECYSGYALAEDGKRCVAVDYCASENHGCHECVNADGSYLYCQCHEGFALNPDEKTCT	FVCECYSGYALAEDGKRCVAVDYCASENHGCHECVNADGSYLYCQCHEGFALNPDEKTCT
145784440143_cura_56		

Fig. 11

31/35

14578444047_cura_56	KIDYCASSNNGCQYECVNNTDDSYSCHCLKGFTLNPDKKTCCRINYCALNKPGCEHECVNM
145784440143_cura_56	KIDYCASSNNGCQYECVNNTDDSYSCHCLKGFTLNPDKKTCCRINYCALNKPGCEHECVNM
14578444047_cura_56	EESYYCRCHRGGYTLDPNGKPCSRVDHCAQQDHGCEQQLCLNTEDSFVCQCSEGFLINEDLK
145784440143_cura_56	EESYYCRCHRGGYTLDPNGKPCSRVDHCAQQDHGCEQQLCLNTEDSFVCQCSEGFLINEDLK
14578444047_cura_56	TCSRVDYCLLSDHGCEYSVNMDRSFACQCPEGHVLRSRGKTCAKLDSCALGDHGCEHSC
145784440143_cura_56	TCSRVDYCLLSDHGCEYSVNMDRSFACQCPEGHVLRSRGKTCAKLDSCALGDHGCEHSC
14578444047_cura_56	VSSEDSFVCQCFCFGYILREDGKTCRRKDVCQAIDHGCEHICVNNSDDSYTCECLEGFRLTE
145784440143_cura_56	VSSEDSFVCQCFCFGYILREDGKTCRRKDVCQAIDHGCEHICVNNSDDSYTCECLEGFRLTE
14578444047_cura_56	DGKRCRISSGKDVKCKSTHHGCEHICVNNGNSYICKCSEGFLVLAEDGRRCKKCTEGPIDLV
145784440143_cura_56	DGKRCRISSGKDVKCKSTHHGCEHICVNNGNSYICKCSEGFLVLAEDGRRCKKCTEGPIDLV
14578444047_cura_56	FVIDGSKSLLGEENFEVVKQFVTGIDSLTISPKAARVGLLQYSTQVHTEFTLRFNNSAKD
145784440143_cura_56	FVIDGSKSLLGEENFEVVKQFVTGIDSLTISPKAARVGLLQYSTQVHTEFTLRFNNSAKD
14578444047_cura_56	MKKAVAHMKYMGKGSMTGLALKHMFERSFTQEGEARPLFHKGAQSSHCVHRRTGSG~~~
145784440143_cura_56	MKKAVAHMKYMGKGSMTGLALKHMFERSFTQEGEARPLFHKGAQSSHCVHRRTGSG~~~
14578444047_cura_56	WASKAKANGITMYAVGVGKAIEELQEIASEPTNKHLYFAEDFSTMDEISEKLKKGICEA
145784440143_cura_56	WASKAKANGITMYAVGVGKAIEELQEIASEPTNKHLYFAEDFSTMDEISEKLKKGICEA
14578444047_cura_56	LEDSDGRQDSPAGELPKTVQQPTESEPVTINIQDLLCSNFAVQHRYLFEEEDNLRLRSTQK
145784440143_cura_56	LEDSDGRQDSPAGELPKTVQQPTESEPVTINIQDLLCSNFAVQHRYLFEEEDNLRLRSTQK
14578444047_cura_56	LSHSTKPSGSPLEEKHDQCKCENLIMFQNLANEEVRKLTQRLEEMTQRMEALENRLRYR
145784440143_cura_56	LSHSTKPSGSPLEEKHDQCKCENLIMFQNLANEEVRKLTQRLEEMTQRMEALENRLRYR

Fig. 11 (continued)

32/35

Fig. 12

Fig. 13

Normal & Tumor Tissues

	11696905	16406477.0.206	21433858	21637262.0.64
Endothelial cells	3.5	0.0	6.6	0.0
Endothelial cells (treated)	2.9	0.0	2.0	0.0
Pancreas	9.4	3.1	1.2	0.0
Pancreatic ca. CAPAN 2	3.7	0.0	0.3	0.0
Adipose	60.7	0.3	22.5	0.8
Adrenal gland	18.0	0.0	3.2	0.2
Thyroid	13.8	0.0	4.6	2.4
Salivary gland	0.0	0.6	0.7	36.3
Pituitary gland	2.2	0.6	4.0	1.4
Brain (fetal)	3.1	0.5	6.9	0.7
Brain (whole)	4.4	0.7	24.5	0.3
Brain (amygdala)	17.2	0.1	5.0	0.4
Brain (cerebellum)	1.6	1.2	41.8	1.4
Brain (hippocampus)	9.3	0.8	10.4	0.6
Brain (hypothalamus)	5.7	10.0	2.3	0.5
Brain (substantia nigra)	33.2	0.7	5.2	0.1
Brain (thalamus)	22.7	0.5	5.2	0.0
Spinal cord	21.8	0.3	4.0	1.5
CNS ca. (glio/astro) U87-MG	2.2	0.0	1.0	0.0
CNS ca. (glio/astro) U-118-MG	4.5	0.0	1.5	0.0
CNS ca. (astro) SW1783	0.0	0.0	0.7	0.0
CNS ca.* (neuro; met) SK-N-AS	2.7	0.0	12.6	0.1
CNS ca. (astro) SF-539	0.2	0.0	0.0	0.0
CNS ca. (astro) SNB-75	1.3	0.0	0.6	0.0
CNS ca. (glio) SNB-19	0.6	0.0	0.8	0.2
CNS ca. (glio) U251	0.2	0.0	3.6	0.1
CNS ca. (glio) SF-295	6.2	0.1	0.2	0.0
Heart	10.7	0.1	1.3	0.1
Skeletal muscle	18.4	0.0	0.2	0.2
Bone marrow	11.1	0.0	0.1	0.0
Thymus	7.3	0.9	2.5	0.5
Spleen	2.9	0.1	1.4	0.0
Lymph node	4.3	0.1	1.3	0.1

Fig. 14

Normal & Tumor Tissues	11696905	16406477.0.206	21433858	21637262.0.64
Colon (ascending)	1.3	0.2	5.1	1.3
Stomach	5.4	0.2	5.7	0.0
Small intestine	7.0	0.2	1.7	0.0
Colon ca. SW480	0.4	0.0	0.0	0.1
Colon ca.* (SW480 met) SW620	0.1	0.0	0.0	0.0
Colon ca. HT29	0.4	0.0	0.0	0.1
Colon ca. HCT-116	4.4	0.0	0.0	0.0
Colon ca. CaCo-2	1.1	0.1	0.1	0.0
Colon ca. HCT-15	11.0	0.2	0.3	0.2
Colon ca. HCC-2998	0.0	0.0	1.3	0.0
Gastric ca.* (liver met) NCI-N87	4.9	0.3	1.9	0.0
Bladder	18.8	0.1	10.8	0.1
Trachea	4.8	0.0	2.2	100.0
Kidney	7.3	0.4	13.1	0.1
Kidney (fetal)	11.0	1.8	29.5	0.1
Renal ca. 786-0	0.4	0.0	0.0	0.0
Renal ca. A498	56.3	0.0	0.0	0.1
Renal ca. RXF 393	2.7	0.0	0.1	0.0
Renal ca. ACHN	1.0	0.0	0.1	0.1
Renal ca. UO-31	1.8	0.0	0.4	0.1
Renal ca. TK-10	13.4	0.5	0.2	0.1
Liver	74.7	0.7	2.1	0.1
Liver (fetal)	27.7	1.2	0.9	0.0
Liver ca. (hepatoblast) HepG2	7.4	0.0	0.0	0.0
Lung	9.9	0.0	2.9	0.0
Lung (fetal)	1.5	1.5	3.0	0.0
Lung ca. (small cell) LX-1	0.4	0.0	0.0	0.0
Lung ca. (small cell) NCI-H69	0.5	0.1	9.3	0.5
Lung ca. (s.cell var.) SHP-77	0.6	0.4	100.0	1.7
Lung ca. (large cell) NCI-H460	20.6	0.3	66.9	0.6
Lung ca. (non-sm. cell) A549	3.3	0.0	15.5	0.1
Lung ca. (non-s.cell) NCI-H23	7.4	0.5	9.0	0.0
Lung ca. (non-s.cell) HOP-62	32.1	0.1	1.5	0.1
Lung ca. (non-s.cell) NCI-H522	11.0	0.6	0.0	0.0
Lung ca. (squam.) SW 900	3.3	0.9	6.1	0.1

Fig. 14 (continued)

Normal & Tumor Tissues	11696905.0	16406477.0.206	21433858.0	21637262.0.64
Mammary gland	30.4	1.5	12.2	0.0
Breast ca.* (pl. effusion) MCF-7	4.8	0.0	0.0	0.0
Breast ca.* (pl. effusion) MDA-MB-231	2.2	0.0	0.0	0.1
Breast ca.* (pl. effusion) T47D	9.8	0.1	0.9	0.6
Breast ca. BT-549	9.2	0.1	1.2	0.3
Breast ca. MDA-N	1.3	0.0	0.0	0.0
Ovary	6.0	0.3	9.7	0.0
Ovarian ca. OVCAR-3	1.6	0.1	0.8	0.1
Ovarian ca. OVCAR-4	1.9	0.0	0.0	0.0
Ovarian ca. OVCAR-5	7.1	0.3	6.9	0.6
Ovarian ca. OVCAR-8	1.3	2.7	2.7	0.0
Ovarian ca. IGROV-1	0.7	0.2	5.0	0.0
Ovarian ca.* (ascites) SK-OV-3	2.5	0.0	0.2	0.0
Myometrium	2.3	0.0	41.2	1.2
Uterus	6.3	0.6	25.7	0.1
Placenta	100.0	0.0	94.0	0.1
Prostate	13.3	0.1	3.4	0.1
Prostate ca.* (bone met) PC-3	7.9	1.7	0.2	0.2
Testis	14.3	100.0	37.1	4.0
Melanoma Hs688(A).T	1.4	0.0	0.0	0.0
Melanoma* (met) Hs688(B).T	5.3	0.0	0.0	0.0
Melanoma UACC-62	0.6	0.0	0.0	0.0
Melanoma M14	0.9	0.1	0.3	0.2
Melanoma LOX IMVI	1.0	0.0	0.0	0.1
Melanoma* (met) SK-MEL-5	0.0	0.0	8.7	0.0
Melanoma SK-MEL-28	100.0	0.0	0.0	0.0

Fig. 14 (continued)

AUG 22 2002

Drawings

Figure 15. Nucleotide Sequence for CG106318-01.

>CG106318-01 4810 nt
GTCCATGGGGCGATGTATGGGAGATGAATGTGGTCCGGAGGCATCCAAACGAGGGCTG
TGTGGTGTGCTCATGTGGAGGGATGACTACACTGCATACTAAGCAGGCCGAGA
GACCAATAACCAGCAGAATTGTTCAAAGTTGCGATTGGCACAAAGAGTTGTACGACT
GGAGACTGGGACCTTGGAAATCAGTGTCAAGCCGTGATTTCAAAAGCCTAGAGAACCTC
TTGAGTGCATTAAGGGGAGAAGGATTTCAGGTGAGGGAGATAGCGTGCATCCAGAAAG
ACAAAGACATTCCTGCGGAGGATATCATCTGTGAGTACTTGAGGCCAAGCCTCTCTGG
AGCAGGCTTGCCTCATTCCTGCCAGCAAGATTGCATCGTGTCAATTCTGCCTGGT
CCGAATGCTTCAAGACCTCGCCAGCGGGCTCCAGCACCCGACGCGTCATGTGGGGCGC
CCCCGAGTTCGGAGGCTCGGCTGTCACCAAAACCTGACGGAGTTCCAGGTGTGCCAATCCA
GTCCATGCGAGGCCGAGGAGCTCAGGTACAGCCTGCATGTGGGCCCTGGAGCACCTGCT
CAATGCCCACTCCCAGCAAGTAAGACAAGCAAGGAGACGCCGGAGAATAAAAGAACGGG
AAAAGGACCGCAGCAAAGGAGTAAAGGATCCAGAAGGCCCGAGCTTAAAGAAAAAGA
GAAACAGAAACAGGCAGAACAGACAAGAGAACAAATATTGGGACATCCAGATTGGATATC
AGACCAGAGAGGTTATGTGATTAACAAAGACGGGAAAGCTGCTGATTTAAGCTTTGCC
AGCAAGAGAAAGCTTCAATGACCTTCAGTCCTGTGTGATCACCAAAGAGTGCAGGTTT
CCGAGTGGTCAAGGTGGAGCCCTGCTCAAAACATGCCATGACATGGTGTCCCCCTGCAG
GCACTCGTAAAGGACACGAACCATCAGGCAGTTTCCATTGGCAGTGAAGAGGAGTGTG
CAGAATTGAAAGAAAAGAACCTGTTGTCTCAAGGAGATGGAGTTGCCCCCTGTGCCA
CGTATGGCTGGAGAACTACAGAGTGGACTGAGTGCCTGTGGACCCCTTGCTCAGTCAGC
AGGACAAGAGGCCGCGCAACCAGACGCCCTCTGTGGAGGGGATCCAGACCCGAGAGG
TGTACTGCGTGCAGGCCAACGAAAAACCTCCTCACAATTAGTACCCACAAGAACAAAG
AAGCCTCAAAGCCAATGGACTTAAATTATGCACTGGACCTATCCCTAACTACACAGC
TGTGCCACATTCTTGTCCAATGAAATGTGAAGTTCACCTGGTCAGCTGGGACCTT
GTACTTATGAAAATCTGAAATGTCAGCAAGGGAAAAGGCTTCAAAGTGGAGGAGC
GCATTACCAATGAGCCACTGGAGGCTCTGGGTAACCGGAAACTGCCCTCACTTACTGG
AAGCCATTCTGTGAAGAGCCTGCCGTATTGACTGGAAAGCGGTGAGACTGGAGACT
GCGAGCCAGATAACGGAAAGGAGTGTGGTCCAGGCACGCAAGTTCAAGAGGTTGTGCA
TCAACAGTGATGGAGAAGAAGATTGACAGACAGCTGTGCAGAGATGCCATCTCCCCATCC
CTGTGGCCTGTGATGCCCATGCCGAAAGACTGTGTGCTCAGCACATGGTCTACGTGGT
CCTCCTGCTCACACACCTGCTCAGGGAAAACGACAGAAGGGAAACAGATACGAGCACGAT
CCATTCTGGCTATGCGGGTGAAGAAGGTTGAAATTGCGTCCAAATAGCAGTGCTTGC
AAGAAGTACGAAGCTGTAAATGAGCATCTTGCACAGTGTACACTGGCAAACACTGGTCC
GGGGCCAGTGCTTGTGAGGACACCTCAGTATGCTCTTCAACACAACACTGACTTGGATG
GGGAGGCCCTCTGTCTGCGCATGCAGACAAGAAAAGTCATCTGTGTGCGAGTCATG
TGGGCCAAGTGGGACCCAAAAATGCTCTGAAAGCCTCGACCTGAAACTGTAAGGCC
GTCTGCTCCTGTAAAGAAGGACTGTATTGTGACCCCATATAGTGAUTGGACATCATGCC
CCTCTTGTGTAAGAAGGGACTCCAGTATCAGGAAGCAGCTAGGATCGGTCATCA
TTCAGCTGCCAGCAACGGGGCCGAGACTGCACAGATCCCTCTATGAAGAGAACGGC
GTGAGGGACCTCAAGCGTCCAAAGCTACAGGTGGAGACTCACAAATGGCGCAGATGCC
AATTAGTCCCTGGAGCGTCAACAAAGACGCCCTGGAGCACAGGAAGGCTGTGGCCTG
GGCGACAGGAAGGCCATTACTGTGCGCAAGCAAGATGGAGGACAGGCTGGAAATCCATG
AGTGCCTACAGTATGCAGGCCCTGTGCCAGCCCTACCCAGGCTGCCAGATCCCTGCC
AGGATGACTGCAATTGACCAGCTGGCCAAGTTTCTTATGCAATGGAGACTGTGGT
CAGTTAGGACCAAGAAGCGCACTTGTGGAAAAAGTAAAAAGAAGGAAAATGAAAA
ATTCCTTGTATCCCTGATTGAGACTCAGTATTGCTCTGTGACAAATATAATGCA
AACCTGTGGGAACTGGTCAAGACTGTATTTCACAGGAGGGAAAAGTGGAGTTGCTGG
GAATGAAAGTACAAGGAGACATCAAGGAATGCCAGAACAGGATATGTTACCAAGCAATGG
CATGCTACGATCAAATGGCAGGCCCTGGAAACATCTGAGATGTAACAGCCATGGTACA
TTGAGGAGGCCCTGCACTATCCCTGCCCTCAGACTGCAAGCTCAGTGAGTGGTCCA
GGTCGCGCTGCAAGCTGTGGAGTGGTGTGAAGGTTGCTTAAATGGCTGCGTG
AAAAACCATATAATGGAGGAAGGCCCTGCCCAAACCTGGACCATGTCAACCAGGCAGG
TGTATGGTTGCCATGCCACAGTGAUTGCCACAGTACCTATGGGTACAGAGGCC
GGAGCATCTGCAAGGTGACCTTGTGAATATGCCGGAGAACCTGAGAGGGCGTGCAA
CCCGAAAAGTGAAGATGCAGAATACAGCAGATGCCCTCTGAACATGTAGAGGATT
ACCTCTGTGACCCAGAAGAGATGCCCTGGGCTAGAGTGTGCAAAATTACCATGCC
AGGACTGTGTATCTGAATGGGGTCCATGGACCCAAATGTGTTTGCCTTGCAATCAA
GCAGTTCCGGCAAAGGTCAAGCTGATCCCATGACACAACCGACTGATGAAGGAAGATCTT
GCCCTAATGCTGTTGAGAAGAACCCGTAAACCTGAACAAAAGTGTACCAACTATGATT
ATAATGTAACAGACTGGAGTACATGTCAGCTGAGTGTGAGAAGGCAGTTGTGGAAATGGAA
AAAAACAAAGGATGTTGATTGTGTCAGTGAAGTGTGACCTGAAATATT

GTGAAGCGCTTGGCTTGGAGAAGAACTGGCAGATGAACACGTCTGCATGGTGGAAATGCC
 CTGTGAACTGTCAGCTTCTGATTGGCTCCTGGTCAGAATGTTCAAAACATGTGGCC
 TCACAGGAAAATGATCCGAAGACGAACAGTGACCCAGCCCCCTCAAGGTGATGGAAGAC
 CATGCCCTCCCTGATGGACCAGTCCAACCCCTGCCAGTGAGCCTGTTATCGGTGGC
 AATATGGCCAGTGGCTCCATGCCAAGTGCAGGAGGCCAGTGTGGAGAAGGGACAGAA
 CAAGGAACATTCTTGCTAGTAAGTGTAGGGTCAGCTGATGATTCAGCAAAGTGGTGG
 ATGAGGAATTCTGTGCTGACATTGAACTCATTATAGATGGTAAATAAAATATGGTCTGG
 AGGAATCTGCAGCCAGCCTGCCAGGTGACTGTTATTTGAAGGACTGGTCTCCCTGGA
 GCCTGTGTCAGCTGACCTGTGTAATGGTGGAGGATCTAGGCTTGGTGAATACAGGTCA
 GATCCAGACCCGGTGAATTACAAGAACATAGAGAATCAGCATGTGCCAGAGCAGATGT
 TAGAAAACAAAATCATGTTATGATGGACAGTGTATGAATATAATGGATGCCAGTGCTT
 GGAAGGGCTCTCCCGAACAGTGTGGTCAAAGGTCAAGTGGTATAAATGTAACAGGGG
 GCTGCTTGGTGTAGGCCAGCCTGATGCCAGGGCTTGTAAACCACCGTAGTCAAC
 CCCACTCGTACTGTAGCGAGACAAAACATGCCATTGTGAAGAAGGGTACACTGAAGTCA
 TGTCTCTAACAGCACCCCTTGAGCAATGCACACTTATCCCCGTGGTGGTATTACCCACCA
 TGGAGGACAAAAGAGGAGATGTGAAACAGTCGGGCTGTACATCCAACCCAAACCCCA
 GTAACCCAGCAGGAGCAGGGAGGACTGGTTTACAGCCATTGGGCAAGATGGGAGAC
 TAAAGACCTGGTTACGGTGTAGCAGCTGGGGCATTTGTGTTACTCATTTATTGTCT
 CCATGATTTATCTAGCTGCAAAAGCCAAAGAAACCCCAAAGAAGGCAAACACCGAC
 TGAACACCTTAAACCTTAGCCTATGATGGAGATGCCGACATGTAACATATAACTTCTG
 GCAACAACCA (SEQ ID NO: 40)

Protein Sequence for CG106318-01 ORF Start: 18 ORF Stop: 4782 Frame: 3

Protein Sequence:

>CG106318-01-prot 1588 aa
 MGDECAGPGGIQTRAWCAHVEGWTLHTNCKQAERPNNNQQNCFKVCDWHELYDWRLGPW
 NQCQPVISKSLEKPLECIKGEEGIQVREIACIQKDKDIPAEIDIIEYFEPKPPLQEACLI
 PCQQDCIVSEFSAWSECSKTCGSGLQHRTTRHVVAPPQFGGSGCPNLTEFQVCQSSPCEAE
 ELRYSLHVGPWSTCSMPHSRQRVQARRGKNUKEREKDRSKGVKDPEARELIKKNRNRQ
 NRQENKYWDIQGYQTREVCMINKTKGAADLSFCQQEKLPMTFQSCVITKECQVSEWSEW
 SPCSKTCHDMVSPAGTRVRTRTIRQFPIGSEKECPFEKEPCLSQGDGVVPCATYGWRT
 TEWTECRVDPLLSQQDKRRGNQTAALCGGGIQTREVYCVQANENLLSQLSTHKNKEASKPM
 DLKLCTGPPIPNTTQLCHIPCPTCEVSPWSAWGPCTYENCNDQQGKKGFKLRKRRITNEP
 TGGSGVTGNCPHLLEAIPCEEPACYDWKAVERLGDCEDPNGKECPGTQVQEVCINSDGE
 EVDRQLCRDAIFPIPACDAPCPKDCVLSTWSTWSSCSHTCSGKTEGKQIRARSILAYA
 GEEGGIRCPNSALQEVRSRSCNEHPCTVYHWQTGPWGQCIEDTSVSSFTTTWNGEASCS
 VGMQTRKVICVRVNVGQVGPKKCPESLRPETVRPCLLPCKKDCIVTPYSDWTSCPSSCKE
 GDSSIRKQSRHRVIIQLPANGGRDCTDPLYEEKACEAPQACQSYRWKTHKWRRQLVPWS
 VQQDSPGAQEGCGPGRQARAITCRKQDGQQAGIHECLQYAGPVALTQACQIPCQDDCQL
 TSWSKFSSCNGDCGAVRTRKRTLGVSKKKKECKKNSHLYPLIETQYCPCKDYNQAPVGNW
 SDCLPEGKVVELLGMVKQGDIKECGQGYRYQAMACYDQNGLVETSRCNSHGYIEEACI
 IPCPSDCKLSEWSNWSRCSKSCGSGVKVRSKWLREKPYNGGRCPKLDHVNQAQVYEVVP
 CHSDCNQYLWTEPWISICKTFVNMRGENCGEGVQTRKVRCMQNTADGPSEHVEDYLCDPE
 EMPLGSRVCKLPCPEDCVISEWGPWTQCVLPCNQSSFRQRSADPIQPADEGRSCPNAVE
 KEPCNLNKNCYHYDYNVTDWSTCQLSEKAVCGNGIKTRMLDCVRSRGKSVDLKYCEALGL
 EKNWQMNTSCMVECPVNQCLSDWSPWSECSQTGCLTGKMRRTVTQPFQGDGRPCPSLM
 DQSKPCPVKPCYRWQYQGWSPCQVQEACQCEGTRTRNISCVSDSADDFSKVVDEFCA
 DIELIIDGNKNMVLEESCSQPCPGDCYKLWDWSSWSLCQLTCVNGEDLGFGGIQVRSRPI
 IQELENQHLCPEQMLETKSCYDGQCYEYKWMASAWKGSSRTWCQRSDDINVTGGCLVMS
 QPDADRSCNPPCSQPHSYCSETKTCHCEEGYTEVMSSNSTLEQCTLIPVVLPTMEDKRG
 DVKTSRAVHPTQPSSNPAGRGRTWFLQPFGPDGRLKTVVYVAAGAFVLLIFIVSMIYLA
 CKKPKKPQRRQNNRLKPPLTAYDGDADM (SEQ ID NO: 41)

Figure 16. Nucleotide and Protein Sequences for CG50817-04.

>CG50817-04 1447 nt

GC GGAC ACCAGT GATG CTC TGG ACCT ACG CAAT CTG CCG CTG CT CATC AGTC GC
CCC ACAT GTAA CTGT ATCT ACA ACCAG CTG CACC AGCG ACAC CTGT CC AACCC GGCC CG
CCT GGG ATG CTAT GTGGGG CCCC AGC CTGGGT GCAGGG CCCC GTCA CGGT CTG ATAG
GGAGA AGAGA AGGAG CAGA AGGGAGGGC TAAC CCTGGCTGGGTTGGACTCACAG
GA CTGGGG AAAGAG CTG CAAT CAGAGGGT GTCTGCC ATAG CTGGCT CAGG CATCTG TC
CTTGGCTT GTGC CTGGCT CCAGGGAG ATTCCGGGG CCTGTG CTGTG CCGT GAGC CT
GACGGAC ACTGGGTCAGGCTGGCATCATCAGCTTGATCAAGCTGTGCCAGGAGGAC
GCT CCTGTG CTGCTG ACCAACACAGCTGCTCACAGTTCCTGGCTG CAGGCTGAGTTCA
GGGGCAGCTT CCTGGCCAGAGCCCAGAGACCCGGAGATGAGT GATGAGGACAGCTGT
GTAGCCTGTGGATCCTTGAGGACAGCAGGTCCCAGGCAGGAGCACCCCTCCC ATGGCC
TGGGAGGCCAGGCTGATGCACCAGGGACAGCTGGCTGTGGCGGAGCCTGGTGTAGAG
GAGGCGGTGCTAACTGCTGCCACTGCTCATTGGCGCCAGGGCCCAGAGGAATGGAGC
GTAGGGCTGGGACCAGACCGGAGGAGTGGG CCTGAAGCAGCTCATCCTGCATGGAGCC
TACACCCACCC TGAGGGGGCTACGACATGGCCCTCTGCTGCTGGCCAGCCTGTGACA
CTGGGAGCCAGCCTGC GGGCCCTCTGCTGCCCTATGCTGACCA CACCTGCCTGATGGG
GAGCGTGGCTGGGCTCTGGGACGGCCGCCAGGAGCAGGCATCAGCTCCCTCCAGACA
GTGCCCGTGACCCCTCTGGG CCTAGGGCTG CAGCCGGCTG CATGCAGCTCTGGGGT
GATGGCAGCCCTATTCTGCCGGGATGGTGTACCA GTGCTGTGGGTGAGCTGCCAGC
TGTGAGGCCAACCAACCAGCTGCTGACAGGGGACCTGGCCATTCTCAGGAACAAGAGAAT
GCAGGCAGGCAAATGGCATTACTGCCCTGTCCTCCCCACCC TGCTGATGTGATTCAG
GCACCAAGGGCAGGCCAGAAGCCCAGCAGCTGGGAAGGAACCTGCTGGGCCACAGG
TGCCCACTCCCCACCC TGCAAGGACAGGGGTGTCTGTGGACACTCCCACACCAACTCTGC
TACCAAGCAGGCGTCTCAGCTT CCTCTCTTACCC TTCA GATA CAAATCAGCCAGC
CACGTTGTTT GAAAATTCTTTTGGGGGGCAGCAGTT CCTTTTAAACTAA
ATAAATT (SEQ ID NO:42)

Protein Sequence for CG50817-04 ORF Start: 520 ORF Stop: 1192 Frame: 1

Protein Sequence:

>CG50817-04-prot 224 aa

MSDEDSCVACGSLRTAGPQAGAPSPWPWEARLMHQQLACGGALVSEEAVLTAAHCFIGR
QAPEEWSVGLGTRPEEWGLKQLILHGAYTHPEGGYDMALLLLAQPVTLGASLRPLCLPYA
DHHL PDGERGVVLGRARPGAGISSLQTVPTLLPRACSRLHAAPGGDGSPILPGMVCTS
AVGELPSCEANQPAADRGPGHSQEQQENAGRQMALLPLSSPPCHV (SEQ ID NO:43)

Figure 17. Nucleotide and Protein Sequences for CG50817-05.

. Nucleotide sequence encoding the Peptidase-like protein of the invention.

>CG50817-05
CGCTGGGCCTCTGCTGATGCTGCTGAGCTCCCTGGTGTCTCGCTGGTTCTGCTAC 60
CTGGCCTGGATCCTGTTCTCGTCTATGATTCTGATTGTTGTATCACCACTAT 120
GCTATCAACGTGAGCCTGATGTGGCTCAGTTCCCGAAGGTCCAAGAACCCCCAGGGCAA 180
CCCAAGCCTCAGGAGGGCAACACAGTCCTGGCGAGTGGCCCTGGCAGGCCAGTGAGG 240
AGGCAAGGAGCCCACATCTGCAGCGGCTCCCTGGTGGCAGACACCTGGGTCTACTGCT 300
GCCCACTGCTTGAAAAGGCAGCAGCAACAGAACTGAATTCTGCGTGAGGGACTCAGCC 360
CCTGGGGCCGAAGAGGGTGGGGTGGCTGCCCTGCAGTTGCCAGGGCTATAACCCTAC 420
AGCCAGGGCTCAGACCTGGCCCTGCTGCAGCTGCCACCCACGACCCACACACCCCTC 480
TGCCTGCCCAAGCCCCATCGCTTCCCTTGAGCCTCCTGCTGGGCCACTGGCTGG 540
GATCAGGACACCACTGATGCTCTGGACCCCTACGCAATCTGCCCTGCGTCTCATCAGT 600
CGCCCCACATGTAACGTATCTACAACCAGCTGCACCAGCAGCACCTGTCCAACCCGGCC 660
CGGCCTGGGATGCTATGTTGGGCCCCAGCCTGGGTGCAGGGCCCTGTAGGGAGAT 720
TCCGGGGGCCCTGTGCTGCTGCCTGAGCCTGACGGACACTGGGTTAGGCTGGCATCATC 780
AGCTTGCACTCAAGCTGTGCCAGGAGGACGCTCTGTGCTGACCAACACAGCTGCT 840
CACAGTTCCCTGGCTGCAGGCTCGAGTTCAGGGGGCAGCTTCCCTGGCCAGAGCCCAGAG 900
ACCCCGGAGATGAGTGTAGGAGCACAGCTGTAGCCTGTGGATCCTTGAGGACAGCAGGT 960
CCCCCAGGAGGAGCACCCCTCCCATGGCCCTGGGAGGCCAGGCTGATGCACCAGGGACAG 1020
CTGGCCTGTGGCGGAGCCCTGGTGTAGAGGAGGGGGCTGCTAAGTGTGCCACTGCTTC 1080
ATTGGGCGCCAGGCCCCAGAGGAATGGAGCGTAGGGCTGGGGACCAGACCCGGAGGAGTGG 1140
GGCCTGAAGCAGCTCATCCTGCATGGAGCCTACACCCACCCCTGAGGGGGCTACGACATG 1200
GCCCTCCTGCTGCTGGCCAGCCTGTGACACTGGGAGGCCAGCCTGCCGCCCTCTGCCTG 1260
CCCTATGCTGACCACCACTGCCCTGATGGGGAGCGTGGCTGGTTCTGGGACGGGCCGC 1320
CCAGGAGCAGGCATCAGCTCCCTCCAGACAGTCCCCGTGACCCCTCTGGGGCTAGGGCC 1380
TGAGCCGGCTGATGCAGCTCCCTGGGGTGATGGCAGCCCTATTCTGCCGGGATGGTG 1440
TGTACCACTGCTGTGGGTGAGCTGCCAGCTGTGAGGCCAACCAACCAGCTGCTGACAGG 1500
GGACCTGGCCATTCTCAGGAACAAGAGAATGCAGGCAGGAAATGGCATTACTGCCCTG 1560
TCCTCCCCACCCCTGTCATGTGATTCCAGGC 1592
(SEQ ID NO:44)

Protein sequence encoded by the coding sequence shown above.

>CG50817-05
MLLSSLVSLAGSVYLAWILFFVLYDFCIVCITYAINVSLMWLSFRKVQEPPQGPKPQEG 60
NTVGEWPWQASVRRQGAHICSGSLVADTVVLTAAHCFEKAAATELNCSVRSAPGAEEV 120
GVAALQLPRAYNHYSQGSDLALLQLAHPTTHPLCLPQPAHRFPFGASCWATGWDQDTSD 180
APGLRLNRLRLISRPTCNCIYNQLHQRLSNPARPGMLCGGPQPGVQGPCQGDGGPVL 240
CLEPDGHWVQAGIISFASSCAQEDAPVLLNTAAHSSWLQARVQGAAFLAQSPETPEMSD 300
EDSCVACGSLRTAGPQAGAPSPWPWEARLMHQQLACGGALVSEEAVLTAAHCFIGRQAP 360
EEWSVGLGTRPEEWGLKQLILHGAYTHPEGGYDMALLLAQPVTLGASLRPLCLPYADHH 420
LPDGERGWVLGRARPAGISSLQTPVTLLGPRACSRLHAAPGGDGSPILPGMVCTSAVG 480
ELPSCEANQPAADRGPGHSQEKENAGRQMALLPLSSPPCHV 521
(SEQ ID NO:45)

Figure 18. Nucleotide and Protein Sequences for CG50817-06.

Nucleotide sequence encoding the Peptidase-like protein of the invention.

>CG50817-06
AGCGACACCTGTCCAACCCGGCCGGCCTGGGATGCTATGTGGGGCCCCCAGCCTGGGG 60
TGCAGGGCCCTGTCAAGGAGATTCCGGGGCCCTGTGCTGTGCCTCGAGCCTGACGGAC 120
ACTGGGTTCAAGGCTGGCATCATCAGCTTGATCAAGCTGTGCCAGGAGGACGCTCCTG 180
TGCTGCTGACCAACACAGCTGCTCACAGTTCCTGGCTGCAGGCTCGAGTCAGGGGCAG 240
CTTCCTGGCCCAGAGCCCAGAGACCCGGAGATGAGTGATGAGGACAGCTGTGTAGCCT 300
GTGGATCCTGAGGAACAGCAGGCCCCAGGCAGGAGCACCCCTCCATGGCCCTGGGAGG 360
CCAGGCTGATGCACCAGGGACAGCTGGCCTGTGGGGAGCCCTGGTGTAGAGGAGGCAGG 420
TGCTAAGTGTGCCACTGCTTCATTGGGCGCCAGGGCCCAGAGGAATGGAGCGTAGGGC 480
TGGGGACCAGACCGGGAGGTGGGCCTGAAGCAGCTCATCCTGCATGGAGCCTACACCC 540
ACCTGAGGGGGGCTACGACATGGCCCTCTGCTGCTGGCCAGCCTGTGACACTGGGAG 600
CCAGCCTGGGGCCCTCTGCCTGCCCTATGCTGACCACCACCTGCCTGATGGGGAGCGTG 660
GCTGGGTTCTGGGACGGGCCAGGGCCCTGCAGCCGGCTGCATGCAGCTCCCTGGGGGTGATGGCA 720
TGACCCCTCCTGGGGCCTAGGGCTGCAGCCGGCTGCATGCAGCTCCCTGGGGGTGATGGCA 780
GCCCTATTCTGCCGGGGATGGTGTGTACCAAGTGTGGTGGAGCTGCCAGCTGTGAGG 840
CCAACCAACCAGCTGCTGACAGGGGACCTGGCCATTCTCAGGAACAAGAGAACAGGCA 900
GGCAAATGGCATTACTGCCCTGCTCCCTCCCCACCCCTGTATGTGTGATTCCAGGCACCAAG 960
GGCAGGCCAGAACCCAGCAGCTGTGGGAAGGAACCTGCCTGGGCCACAGGTGCCAC 1020
TCCCCACCTGCAGGAACAGGGGTGTCTGTGGAACACTCCCACACCCAACCTGCTACCAAG 1080
CAGCGTCTCAGCTTCCCTCCTTACCCCTTCAGATAACATCACGCCAGCCACGTTG 1140
TTTGAAAATTTCTTTGGGGGCAGCAGTTCCCTTTAAACTAAATAAATT 1200
(SEQ ID NO:46)

Protein sequence encoded by the coding sequence shown above.

>CG50817-06
MLCGGPQPGVQGPCQGDGGPVLCLEPDGHWVQAGIISFASSCAQEDAPVLLNTAAHSS 60
WLQARVQGAFLAQSPETPEMSDEDSCVACGSRLTAGPQAGAPSPWPWEARLMHQQLAC 120
GGALVSEEAVLTAAHCFIGRQAPEEWSVGLGTRPEEWGLKQLILHGAYTHPEGGYDMALL 180
LLAQPVTLGASLRPLCLPYADHHLPDGERGVVLGRARPGAGISSLQTVPVTLLGPRACSR 240
LHAAPGGDGSPILPGMVCCTSAVGELPSCEANQPAADRGPGHSQEKENAGRQMALLPLSSP 300
PCHV
(SEQ ID NO:47)

Figure 19. Nucleotide and Protein Sequences For CG51099-03.

Nucleotide sequence encoding the Serine Protease-like protein of the invention.

>CG51099-03

CGGAGAGACCGAGTCGGCTGCCACCCGGGATGGGTCGCTGGTGCAGACCGTCGCGCG	60
GGGCAGCBBBBBGGACGTCTGCCCTCCCGGCCGGTGCCCTGCTGCTGCTTCTG	120
TTGCTGAGGTCTGCAGGTTGCTGGGCGCAGGGAAAGCCCCGGGGCGTGTCCACTGCT	180
GATCCCAGCCGACCAGAGCGTCCAGTGTGCCAAGGCCACCTGTCCCTCACGCCGGCT	240
CGCCTCTCTGGCAGACCCGACCACCCAGACACTGCCCTGACCACCATGGAGACCAA	300
TTCCCAGTTCTGAAGGCAAAGTCGACCCATACCGCTCTGTGGCTTCTACGAGCAG	360
GACCCACCCCTCAGGGACCCAGAACGGCGTGGCTCGCGGTGGCCCTGGATGGTCAGCGT	420
CGGGCCAATGGCACACACATCTGTGCCGGCACCATCATGCCCTCCAGTGGGTGCTGACT	480
GTGGCCCCTGCCTGATCTGGCGTGTATCTACTCAGTGAGGGTGGGGAGTCGCTGG	540
ATTGACCAAGATGACGCAACGCCCTCCGATGTCCCCTGCTCCAGGTATCATGCAAGC	600
AGGTACCGGGCCCAGCGTTCTGGCTCTGGTGGGCCAGGCCAACGACATGCCCTCCTC	660
AAGCTCAAGCAGGAACACTAAGTACAGCAATTACGTGCCGCATCTGCCCTGCTGGCAC	720
GACTATGTGTGAAGGACCATTCGGCTGCACTGTGACGGGCTGGGACTTCAAGGCT	780
GACGGCATGTGGCCTCAGTTCCGGACCATTCAAGGAGAACGGAGTCATCATCTGAACAA	840
AAAGAGTGTACAATTCTACCAACCTCACAAAATCCCCACTCTGGTTCAAGATCATC	900
AAGTCCCAGATGATGTGCGGAGGACACCCACAGGGAGAACGTTCTGCTATGAGCTAACT	960
GGAGAGGCCCTGGCTGCTCCATGGAGGGCACGTGGTACCTGGTGGATTGGTGAGCTGG	1020
GGTGCAGGCTGCCAGAACAGCGAGGCCACCCATCTACCTACAGGTCTCCCTACCAA	1080
CACTGGATCTGGACTGCCCTCACGGCAGGCCCTGCCAGCCCCATCCAGGACC	1140
CTGCTCTGGCACTCCACTGCCCTCAGCCTCCTGACTCTGTGTGCC	1200
TCCCTCACTTGTGA	1214

(SEQ ID NO:48)

Protein sequence encoded by the nucleotide sequence shown above.

>CG51099-03

MGRWCQTVARGQRPRTSAPSRAVALLLRLSAGCWGAGEAPGALSTADPADQSVQCV	60
PKATCPSSRPLLWQTPPTQLPSTTMETQFPVSEGKVDPYRSCGFSYEQDPTLRDPEAV	120
ARRWPWMVSRANGTHICAGTIIASQWVLTVAHCLIWRDVYISVRVGSPWIDQMTQTASD	180
VPVLQVIMHSRYRAQRFWSWVGQANDIGLLKLKQELKYSNYVRPCLPGTDYVLKDHSRC	240
TVTGWLGSKADGMWPQFRTIQEKEVIILNNKECDNFYHNFTRIPLVQIIKSQMMCAEDT	300
HREKFCYELTGEPLVCSMEGTWYLVGLVSWGAGCQKSEAPPIYLQVSSYQHWIWDCLNGQ	360
ALALPAPSRTLLALPLPLSLLAAL	385 (SEQ ID NO:49)

Figure 20. Nucleotide and Protein Sequences For CG57051-04.

Nucleotide sequence encoding the Angiopoietin-like protein, CG57051-04.

>CG57051-04
TGGGATCCTCACACGACTGTGATCCGATTCTTCAGCGGTTCTGCAACCAAGCGGGT 60
CTTACCCCCGGTCCTCCCGTGCTCCAGTCCTCGCACCTGGAACCCAACGTCCCCGAGAG 120
TCCCCGAATCCCCGCTCCAGGCTACCTAAAGAGGATGAGCGGTGCTCCGACGGCCGGGC 180
AGCCCTGATGCTCTGCCCGGCCACCGCCGTGCTACTGAGCGCTAGATCTGGACCCGTGCA 240
GTCCAAGTCGCCCGCCTTGCCTGGGACGAGATGAATGTCCCTGGCGCACGGACTCCT 300
GCAAGCTGGCCAGGGGCTGCGCGAACACCGCGAGCGCACCCGAGTCAGCTGAGCGCGCT 360
GGAGCGGCGCCTGAGCGCGTGCGGGTCCCGCTGTCAAGGGAACCGAGGGGTCACCCGACCT 420
CCCGTTAGCCCCCTGAGAGCGGGTGGACCTGAGGTCTTCACAGCCTGCAGACACAAC 480
CAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCCACAAGGTGGCCCAGCAGCAGCGGCA 540
CCTGGAGAACGAGCACCTGCGAATTCAAGCATCTGCAAAGCCAGTTGGCTCCTGGACCA 600
CAAGCACCTAGACCATGAGGTGGCCAAGCCTGCCCCAGAAAAGAGGCTGCCCGAGATGGC 660
CCAGCCAGTTGACCCGGCTACAATGTCAGCCGCTGCACCGAGGCTGGGGTTGGCAC 720
CTGCAGCCATTCAACCTCAACGCCAGTACTTCCGCTCCATCCCACAGCAGCGGCAGAA 780
GCTTAAGAAGGGATCTTCTGGAAGACCTGGCGGGGCCGCTACTACCCGCTGCAGGCCAC 840
CACCATGTTGATCCAGCCCCATGGCAGCAGAGGCAGCCTCTAGCGTCTGGCTGGCCTG 900
GTCCCAGGCCACGAAAGACGGTACTCTGGCTCTG 937 (SEQ ID NO:50)

Protein sequence encoded by the nucleotide sequence shown above.

>CG57051-04
MSGAPTAGAALMLCAATAVLLSARSQPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAE 60
RTSQLSALERLSACGSACQGTEGSTDPLAPESRVDPEVLHSLQTQLKAQNSRIQQLF 120
HKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKRLPEMAQPVDPAHNCSR 180
LHRGWWFGTCSHSNLNGQYFRSIPQQRKQLKGIFWKWRGRYYPLQATTMLIQPMAAEA 240
AS 242 (SEQ ID NO:51)

Figure 21. Nucleotide and Protein Sequences For CG57051-05.

Nucleotide sequence encoding the Angiopoietin-like protein, CG57051-05.

>CG57051-05	
CTTCGTCTCCAGTCTCGCACCTGGAACCCAAACGTCCCCGAGAGTCCCCGAATCCCCGC	60
<u>TCC CAGGCTACCTAACGAGGATGAGCGGGCCTCCGACGGCGGGGAGCCCTGATGCTCTG</u>	120
CGCCGCCACC CGCGTGTACTGAGCGCTCAGGGGGACCCGTGCA GTCCAAGTCGCCCG	180
CTTGCGTCTGGGACGAGATGAATGTCTGGCGACGGACTCTGCAGCTCGGCCAGGG	240
GCTGCGGAACACCGGGAGCGCACCCGAGTCAGCTGAGCGCCTGGAGCGGCCCTGAG	300
CGCGTGGGGTCCGCTGTCAAGGGAAACCGAGGGTCCACCGACCTCCGTTAGCCCCTGA	360
GAGCCGGGTGGACCCCTGAGGTCTTCACAGCCTGAGACACA ACTCAAGGCTCAGAACAG	420
CAGGATCCAGCAACTCTTCCACAAGGTGGCC CAGCAGCAGCGCAC TGAGAAGCAGCA	480
CCTGCGAATT CAGCATCTGCAAAGCCAGTTGGCTCTGGACCACAAGCACCTAGACCA	540
TGAGGGTGGCAAGCCTGCCGAAGAAAAGAGGCTGCCGAGATGGCC CAGCAGTTGACCC	600
GGCTCACAATGTCA GCGCCTGCACCATGGAGGCTGGACAGTAATT CAGAGGCGCCACGA	660
TGGCTCAGTGGACTTCAACGGCCCTGGGAAGCCTACAAGGCGGGTTGGGGATCCCCA	720
CGCGAGTTCTGGCTGGGCTGGAGAAGGTGCA TAGCATATGGGGACCGCAACAGCCG	780
CCTGGCGTGCAGCTGGGACTGGGATGGCAAGCCGAGTTGCTGCAGTTCTCCGTGCA	840
CCTGGGTGGCGAGGACACGGCCTATGCCCTGCAGCTACTGCACCCGTGGCGGCCAGCT	900
GGGCGCCACCACCGTCCCACCCAGCGGCCCTCTCCGTACCCCTCTCCACT TGGGACCAGGA	960
TCACGACCTCCGCAAGGGACAAGAACTGCGCCAAGAGCCTCTCTGGAGGCTGGTTGG	1020
CACTGCAGCCATTCCAACCTCAACGGCCAGTACTCCGCTCATCCCACAGCAGCGCA	1080
GAAGCTTAAGAAGGAAATCTTCTGGAAAGACCTGGGGGGCCGACTACCCGCTGCAGGC	1140
CACCA CATGTGATCCAGCCC ATGGCAGCAGAGG CAGCCTCTAGCGTCTGGCTGGC	1200
<u>CTGGTCCCAGGGCCACGAAGAGGTGACTCTGGCTCTG</u> 1239 (SEQ ID NO:52)	

Protein sequence for Angiopoietin-like protein, CG57051-05.

>CG57051-05	
MSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAE	60
RTRSQLSALERLSACGSACQGTEGSTDPLAPESRVDPEVLHSLQTQLKAQNSRIQQLF	120
HKVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEGGKPARRKRLPEMAQPVDPAHNVR	180
LHHGGWTVIQRHRDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSIMGDRNSRLAVQLR	240
DWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPSSGLSVPFSTWDQDHDLRRD	300
KNCAKSLSGGWWFGTC SHSNLNGQYFRSI PQQRQLKKGIFWKWGRYYPHQATTMLIQ	360
PMAEEAAS 368 (SEQ ID NO:53)	

Figure 22. Nucleotide and Protein Sequences For CG57051-02.

Nucleotide sequence encoding the Angiopoietin-like protein of the invention.

>CG57051_02
TGCGGATCCTCACACGACTGTGATCCGATTCTTCCAGCGGCTTCTGCAACCAAGCGGGT 60
CTTACCCCCGGCTCCCGCTCTCCAGTCCTCGCACCTGGAACCCAAACGTCGGAGAG 120
TCCCCGAATCCCCGCTCCCAGGCTACCTAAGAGGATGAGCGGTGCTCCGACGGCCGGGC 180
AGCCCTGATGCTCTGCGCCGCCACCGCCGTGCTACTGAGCGCTAGATCTGGACCCGTGCA 240
GTCCAAGTCGCCCGCTTGCCTGGACGAGATGAATGTCCTGGCGCACGGACTCCT 300
GCAGCTCGGCCAGGGCTGCGGAACACCGGGAGCGCACCCGAGTCAGCTGAGCGCGCT 360
GGAGCGGCGCCTGAGCGGTGCGGGTCCGGCTGTCAGGGAACCGAGGGGTCACCGACT 420
CCCGTTAGCCCCCTGAGAGCGGGTGGACCCCTGAGGTCTTCACAGCCCTGAGACACA 480
CAAGGCTCAGAACAGCAGGATCCAGCAACTCTTCACAAAGGTGGCCCAGCAGCAGCGGA 540
CCTGGAGAACAGCACCTGCGAATTCAAGCATCTGCAAAGCCAGTTGGCCTCTGGACCA 600
CAAGCACCTAGACCATGAGGTGGCAAACCTGCCAAGAAAAGAGGCTGCCAGATGGC 660
CCAGCCAGTTGACCGGCTCACAAATGTCAGCCGCTGCACCATGGAGGCTGGACAGTAAT 720
TCAGAGGCGCACGATGGCTCAATGGACTTCAACCCGGCTGGAGAACGGCTACAAGGCGG 780
GTTGGGGATCCCCACGGCGAGTCTGGCTGGGCTGGAGAACGGTGCATAGCATCACGGG 840
GGACCGCAACACGGCGCTGGCGTAGCTGGGGACTGGATGGCAACCCGGAGTTGCT 900
GCAGTTCTCCGTGCACCTGGGTGGCGAGGACACGGCCTATAGCCTGAGCTCACTGCACC 960
CGTGGCCGGCAGCTGGGCCACCGTCCCACCCAGCGGGCTCTCCGTACCCCTCTC 1020
CACTTGGGACCAGGATCACGGACCTCGCAGGGACAAGAACTGCGCCAAGAGCCTCTG 1080
CCCATCGGTGGCTAAAGACCTGACCATGTTCCCTCTCCCCTGACCCCGCAGGAGGCTG 1140
GTGGTTTGGCACCTGCAGCATTCAACCTCAACGGCCAGTACTTCCGCTCCATCCCACA 1200
GCAGCGGCAGAAGCTTAAGAAGGAATCTTCTGAAAGACCTGGCGGGGCCACTACCC 1260
GTCAGGCCACCACTGTTGATCCAGCCATGGCAGCAGAGGCAGCCTCTAG 1315
(SEQ ID NO:54)

Protein sequence for CG57051-02.

>CG57051_02
MSGAPTAGAALMLCAATAVLLSARSGPVQSKSPRFASWDEMNVLAHGLLQLGQGLREHAE 60
RTRSQLSALERLSACGSACQGTEGSTDLPLAPESRVDPEVLHSLQTQLKAQNSRIQQLF 120
HKVAQQQRHLEKQHLRIQHLQSQFGLLDHKLDHEVAKPARRKRLPEMAQPVDPAHNCSR 180
LHHGGWTVIQRRHDGSMDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLR 240
DWDGNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPSSGLSVPFSTWDQDHDLRRD 300
KNCAKSLSAPSVAQRPDHVPSPLTPAGGWFGTCSHSNLNGQYFRSIPQQRQKLKKGIFW 360
KTWRGRYYPLQATTMLIQPMAEAAS 386 (SEQ ID NO:55)

Figure 23. Nucleotide and Protein Sequences For CG57051-03.

Nucleotide sequence encoding the Angiopoietin-like protein, CG57051-03.

>CG57051-03	
CCCCGAGAGTCCCCGAATCCCCGCTCCAGGCTACCTAAGAGGATGAGCGGTGCTCCGAC	60
GGCCGGGGCAGCCCTGATGCTCTGCGCCGCCACCGCCGTGCTACTGAGCGCTCAGGGCGG	120
ACCCGTGCAGTCCAAGTCGCCGCGCTTGCCTGGACGAGATGAATGCTCTGGCGCA	180
CGGACTCCTGCAGCTCGGCCAGGGGCTGCGCGAACACGCGAGCGCACCCGAGTCAGCT	240
GAGCGCGCTGGAGCGGCCCTGAGCGCTGCGGGTCCGCTGTCAGGGAACCGAGGGGTC	300
CACCGACCTCCCGTAGCCCTGAGAGCGGGTGACCGTCAAGGTCTTACAGCCTGCA	360
GACACAACCTAAGGCTCAGAACAGCAGGATCCAGCAACTCTCCACAAGGTGGCCCAGCA	420
GCAGCGGCACCTGGAGAACAGCAGCACCTGCGAAATTAGCATCTGCAAAGCCAGTTGGCCT	480
CCTGGACCACAAGCACCTAGACCATGAGGTGGCAAGCCTGCCGAAGAAAGAGGCTGCC	540
CGAGATGGCCCAGCCAGTTGACCCGGCTCACAAATGTCAGCCGCTGCACCATGGAGGCTG	600
GACAGTAATTAGAGGCGCACGATGGCTCAGTGGACTTCAACCGGCCCTGGGAAGCCTA	660
CAAGGCGGGGTTGGGATCCCCACGGCGAGTTCTGGCTGGCTGGAGAACGGTCCATAG	720
CATCACGGGGGACCGAACAGCCGCTGGCGTCACTGGGACTGGGATGACAACGC	780
CGAGTTGCTGCAGTTCTCCGTGACCTGGTGGCGAGAACGGCTATAGCCTGCAGCT	840
CACTGCACCCGTGGCGGCCAGCTGGCGCCACCGTCCCCACCGCCTCTCCGT	900
ACCTCTCCCCACTGGGACAGGATCACGACCTCCGCAGGGACAAGAACTGCCCAAGAG	960
CCTCTGGAGGCTGGGGTTGGCACCTGCGAGCCATTCAACCTCAACGCCAGTACTT	1020
CCGCTCCATCCCACAGCAGCGGAGAACGTTAAGAAGGGAAATCTCTGGAGACCTGGCG	1080
GGGGCGCTACTACCCGCTGCAGGCCACCCATGTTGATCCAGCCATGGCAGCAGAGGC	1140
AGCCTCTAG	1150 (SEQ ID NO:56)

Protein sequence for CG57051-03.

>CG57051-03	
MSGAPTAGAALMLCAATAVLLSAQGGPVQSFKSPFASWDEMNVLAHGLLQLGQGLREHAE	60
RTRSQLSALERLRLSACGSACQGTEGSTDLPLAPESRVDPEVLHSLSQTQLKAQNSRIQQLF	120
HKVAQQQRHLEKQHLRIQHLSQFGLLDHKHLDHEVAKPARRKRLPEMAQPVDPAHNVR	180
LHHGGWTVIQRRHDGSVDFNRPWEAYKAGFGDPHGEFWLGLEKVHSITGDRNSRLAVQLR	240
DWDDNAELLQFSVHLGGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFTWDQDHDLRRD	300
KNCAKSLSGGWWFGTCSHSNLNGQYFRSI PQQRQKLKKGI FWKTWRGRYYPLQATTMLIQ	360
PMAAEAAS	368 (SEQ ID NO:57)