एकक 3

तत्त्वों का वर्गीकरण एवं गुणधर्मों में आवर्तिता CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

उद्देश्य

इस एकक के अध्ययन के पश्चात आप -

- जीवन के विभिन्न क्षेत्रों में रसायन विज्ञान के महत्त्व को समझ सकेंगे:
- तत्त्वों के गुणधर्मों के आधार पर उनके वर्गीकरण की संकल्पना द्वारा आवर्त सारणी के विकास से अवगत हो सकेंगे:
- आवर्त-नियम को समझ सकेंगे;
- आवर्ती वर्गीकरण के लिए परमाणु-संख्या तथा इलेक्ट्रॉनिक विन्यास के आधार की सार्थकता को समझ सकेंगे:
- 100 से अधिक परमाणु-क्रमांकवाले तत्त्वों के लिए IUPAC नाम लिख सकेंगे;
- तत्त्वों को s, p, d एवं f ब्लॉक में वर्गीकृत कर सकेंगे और उनके मुख्य अभिलक्षणों को बता सकेंगे;
- तत्त्वों के भौतिक एवं रासायनिक गुणधर्मों में आवर्ती लक्षणों को पहचान सकेंगे;
- तत्त्वों की अभिक्रियाशीलता की तुलना कर सकेंगे और उन्हें उनकी प्रकृति में उपस्थिति से संबद्ध कर सकेंगे;
- आयनन एंथैल्पी एवं धात्विक लक्षणों के बीच संबंध बता सकेंगे;
- परमाणु से संबंधित कुछ महत्त्वपूर्ण गुणधर्मों, जैसे — आयिनक, परमाणु क्रिन्या आयनन एंथेल्पी, इलेक्ट्रॉन, लब्धि एंथेल्पी, विद्युत् ऋणात्मकता और संयोजकता से संबंधित विचारों को व्यक्त करने के लिए सही वैज्ञानिक शब्दावली का उपयोग कर सकेंगे।

आवर्त सारणी प्रमाणित तौर पर रसायन शास्त्र का अत्यंत महत्त्वपूर्ण विचार है। प्रतिदिन विद्यार्थी को इससे सहायता मिलती है, खोजकर्त्ताओं को नई दिशा मिलती है और व्यवस्थित रूप में संपूर्ण रसायन शास्त्र का संक्षिप्त वर्णन मिलता है। यह इस बात का एक अद्भुत उदाहरण है कि रासायनिक तत्व अव्यवस्थित समूह में बिखरी हुई इकाई नहीं होते, अपितु वे व्यवस्थित समूहों में समानता प्रदर्शित करते हैं। जो लोग यह जानना चाहते हैं कि दुनिया छोटे-छोटे अंशों से कैसे बनी, उनके लिए आवर्त सारणी बहुत उपयोगी है।

ग्लेन टी सीबर्ग

इस एकक में हम वर्तमान आवर्त सारणी का ऐतिहासिक विकास एवं आधुनिक आवर्त-नियम का अध्ययन करेंगे। तत्त्वों का वर्गीकरण परमाणु के इलेक्ट्रॉनिक विन्यास का परिणाम है। अंत में हम तत्त्वों के भौतिक तथा रासायनिक गुणों की आवर्ती प्रवृत्ति पर विचार करेंगे।

3.1 तत्त्वों का वर्गीकरण क्यों आवश्यक है?

अब तक हम यह जान चुके हैं कि तत्त्व सभी प्रकार के पदार्थों की मूल इकाई होते हैं। सन् 1800 में केवल 31 तत्त्व ज्ञात थे। सन् 1865 तक 63 तत्त्वों की जानकारी हो गई थी। आजकल हमें 114 तत्त्वों के बारे में पता है। इनमें से हाल में खोजे गए तत्त्व मानव-निर्मित हैं। वैसे, अभी भी नए तत्त्वों की कृत्रिम रचना के प्रयास जारी हैं। इतने सारे तत्त्वों और उनके असंख्य यौगिकों के रसायन का अध्ययन अलग-अलग कर पाना बहुत कठिन है। इस कठिनाई को दूर करने के लिए वैज्ञानिकों ने तत्त्वों का वर्गीकरण करके इस अध्ययन को संगठित किया और आसान बनाया। इतना ही नहीं, इस संक्षिप्त तरीके से सभी तत्त्वों से संबंधित रासायनिक तथ्यों का अध्ययन तर्कसंगत रूप से तो कर ही सकेंगे, भविष्य में खोजे जाने वाले अन्य तत्त्वों के अध्ययन में भी मदद मिलेगी।

3.2 आवर्त सारणी की उत्पत्ति

तत्त्वों का वर्गीकरण समूहों में और आवर्तिता नियम एवं आवर्त सारणी का विकास वैज्ञानिकों द्वारा अनेक अवलोकनों तथा प्रयोगों का परिणाम है। सर्वप्रथम

सारणी 3.1 डॉबेराइनर के त्रिक

तत्त्व	परमाणु-भार	तत्त्व	परमाणु-भार	तत्त्व	परमाणु-भार
Li	7	Ca	40	C1	35.5
Na	23	Sr	88	Br	80
K	39	Ва	137	I	127

जर्मन रसायनज्ञ जॉन डॉबेराइनर ने सन् 1800 के प्रारंभिक दशकों में इस बात की ओर संकेत किया कि तत्त्वों के गुणधर्मों में निश्चित प्रवृत्ति होती है। सन् 1829 में उन्होंने समान भौतिक एवं रासायनिक गुणों वाले तीन तत्त्वों के समूहों (त्रिकों) की तरफ ध्यान आकर्षित कराया। उन्होंने यह भी पाया कि प्रत्येक त्रिक में बीच वाले तत्त्व का परमाणु-भार शेष दोनों तत्त्वों के परमाणु भार के औसत मान के लगभग बराबर था (सारणी 3.1 को देखें)। साथ ही, मध्य वाले तत्त्व के गुणधर्म शेष दोनों तत्त्वों के गुणधर्मों के मध्य पाए गए।

डॉबेराइनर का 'त्रिक का नियम' कुछ ही तत्त्वों के लिए सही पाया गया। इसलिए इसे महज एक संयोग समझकर इसका विचार छोड़ दिया गया। इसके पश्चात् फ्रांसिसी भूगर्भशास्त्री ए.ई.बी. डी चैनकोरटोइस (A.E.B. de Chancourtois) ने सन् 1862 में तत्त्वों का वर्गीकरण करने का प्रयास किया। उन्होंने तत्त्वों को उनके बढ़ते हुए परमाणु-भार के क्रम में व्यवस्थित किया और तत्त्वों की वृत्ताकार सारणी बनाई, जिसमें तत्त्वों के गुणधर्मों में आवर्ती पुनरावृत्ति को दर्शाया गया। यह भी अधिक ध्यान आकृष्ट नहीं कर सका। अंग्रेज़ रसायनज्ञ जॉन एलेक्जेंडर न्यूलैंड ने सन् 1865 में अष्टक नियम (Law of octaves) को विकसित किया। उन्होंने तत्त्वों को उनके बढ़ते हुए परमाणु-भार के क्रम में व्यवस्थित किया तथा पाया कि किसी भी तत्त्व से प्रारंभ करने पर आठवें तत्त्व के गुण प्रथम तत्त्व के समान थे (सारणी 3.2 देखें)। यह संबंध उसी प्रकार का था, जैसा आठवें संगीतिक स्वर (eight musical note)

का संबंध प्रथम सांगीतिक स्वर के साथ होता है। न्यूलैंड का अष्टक नियम सिर्फ Ca तक के तत्त्वों तक सही प्रतीत हुआ, हालाँकि उस समय इस धारणा को व्यापक मान्यता नहीं मिली, परंतु बाद में रॉयल सोसायटी (लंदन) द्वारा सन् 1887 में न्यूलैंड को डेवी पदक द्वारा पुरस्कृत कर उनके काम को मान्यता दी गई।

रूसी रसायनज्ञ दिमत्री मेंडलीव (1834-1907) तथा जर्मन रसायनज्ञ लोथर मेयर (1830-1895) के सतत् प्रयासों के फलस्वरूप आवर्त-सारणी के विकास में सफलता प्राप्त हुई। स्वतंत्र रूप से कार्य करते हुए दोनों रसायनज्ञों ने सन् 1869 में प्रस्तावित किया कि जब तत्त्वों को उनके बढते हुए परमाण्-भारों के क्रम में व्यवस्थित किया जाता है, तब नियमित अंतराल के पश्चात् उनके भौतिक तथा रासायनिक गुणों में समानता पाई जाती है। लोथर मेयर ने भौतिक गुणों (जैसे- परमाण्वीय आयतन, गलनांक एवं क्वथनांक और परमाणु-भार के मध्य वक्र आलेखित (curve plotting) किया, जो एक निश्चित समुच्चय वाले तत्त्वों में समानता दर्शाता था। सन् 1868 तक लोथर मेयर ने तत्त्वों की एक सारणी का विकास कर लिया, जो आधुनिक आवर्त-सारणी से काफी मिलती-जुलती थी, लेकिन उसके काम का विवरण दिमत्री मेंडलीव के काम के विवरण से पहले प्रकाशित नहीं हो पाया। आधुनिक आवर्त सारणी के विकास में योगदान का श्रेय दिमत्री मेंडेलीव को दिया गया है।

हालाँकि आवर्ती संबंधों के अध्ययन का आरंभ डॉबेराइनर ने किया था, किंतु मेंडलीव ने आवर्त नियम को पहली बार प्रकाशित किया। यह नियम इस प्रकार है —

सारणी 3.2 न्यूलैंड के अष्टक

तत्त्व	Li	Ве	В	С	N	0	F
परमाणु-भार	7	9	11	12	14	16	19
तत्त्व	Na	Mg	Al	Si	P	s	C1
परमाणु-भार	23	24	27	29	31	32	35.5
तत्त्व	K	Ca					
परमाणु-भार	39	40					

"तत्त्वों के गुणधर्म उनके परमाणु भारों के आवर्ती फलन होते हैं।"

मेंडलीव ने तत्त्वों को क्षैतिज पंक्तियों एवं ऊर्ध्वाधार स्तंभों में उनके बढते हुए परमाण-भार के अनुसार सारणी में इस तरह क्रम में रखा कि समान गुणधर्मों वाले तत्त्व एक ही ऊर्ध्वाधर-स्तंभ या समृहों में स्थान पाएँ। मेंडलीव द्वारा तत्त्वों का वर्गीकरण निश्चित तौर पर लोथर मेयर के वर्गीकरण से अधिक विस्तृत था। मेंडलीव ने आवर्तिता के महत्त्व को पूर्ण रूप से समझा और तत्त्वों के वर्गीकरण के लिए अधिक विस्तृत भौतिक एवं रासायनिक गुणधर्मों को आधार माना। विशेष रूप से मेंडलीव ने तत्त्वों द्वारा प्राप्त यौगिकों के मुलानुपाती सुत्रों (empirical formula) तथा उनके गुणधर्मों की समानता को आधार माना। वह यह जानते थे कि यदि परमाण्-भार के क्रम का पूर्णत: पालन किया जाता, तो कुछ तत्त्व उनके द्वारा दिए गए क्रम में आवर्त-सारणी में नहीं रखे जा सकते थे। उन्होंने समान रासायनिक गुण दर्शाने वाले तत्त्वों को आवर्त-सारणी में उचित स्थान देने के लिए उनके परमाण्-भारों के क्रम की उपेक्षा की। उदाहरण के तौर पर- आयोडीन, जिसका परमाणु भार समृह VI के तत्त्व 'टैल्रियम' से कम था, को समृह VII में फ्लुओरीन, क्लोरीन, ब्रोमीन आदि के साथ गुणधर्मों में समानता के आधार पर रखा गया (चित्र 3.1)। उन्होंने समान गुणधर्मों वाले तत्त्वों को एक समूह में रखने की प्राथमिकता को आधार मानते हुए यह प्रस्तावित किया कि कुछ तत्त्व (जो खोजे नहीं गए थे) के लिए सारणी में कुछ रिक्त स्थान छोड दिए गए। उदाहरण के लिए- जब मेंडलीव की आवर्त-सारणी प्रकाशित हुई, तब गैलियम (Gallium) तथा जर्मेनियम

(Germanium) तत्त्वों की खोज नहीं हुई थी। उन्होंने ऐलुमिनियम और सिलकॉन के नीचे एक-एक रिक्त स्थान छोड़ा और इन तत्त्वों का नाम क्रमश: एका-ऐलुमीनियम (Eka-Aluminium) तथा एका-सिलिकॉन (Eka-Silicon) रखा। मेंडेलीव ने न केवल गैलियम और जर्मेनियम तत्त्वों के होने की प्रागुक्ति की, बिल्क इन तत्त्वों के कुछ भौतिक गुणधर्मों का ब्यौरा भी दिया। बाद में खोजे गए इन तत्त्वों के प्रागुक्त गुणधर्मों तथा प्रायोगिक गुणधर्मों को सारणी 3.3 में सूचीबद्ध किया गया है। मेंडलीव की मात्रात्मक प्रागुक्तियों और कालांतर में उनकी सफलता के कारण उन्हें और उनकी आवर्त सारणी को काफी प्रसिद्धि मिली। मेंडलीव की सन् 1905 में प्रकाशित आवर्त सारणी को चित्र 3.1 में दर्शाया गया है।

3.3 आधुनिक आवर्त-नियम तथा आवर्त सारणी का वर्तमान स्वरूप

यहाँ यह बात ध्यान देने योग्य है कि जब मेंडलीव ने आवर्त सारणी का विकास किया, तब रसायनज्ञों को परमाणु की आंतरिक संरचना का ज्ञान नहीं था। बीसवीं शताब्दी के आरंभ में अवपरमाणुक कणों का विकास हुआ। सन् 1913 में अंग्रेज़ भौतिकी वैज्ञानिक हेनरी मोज़ले ने तत्त्वों के अभिलाक्षणिक X- किरण स्पेक्ट्रमों में नियमितता पाई और देखा कि $\sqrt{\nu}$ (जहाँ ν X-किरण की आवृत्ति है) और परमाणु-क्रमांक (Z) के मध्य वक्र आलेखित करने पर एक सरल रेखा प्राप्त होती है, परंतु परमाणु द्रव्यमान तथा $\sqrt{\nu}$ के आलेख में सरल रेखा प्राप्त नहीं होती। अत: मोजले ने दर्शाया कि परमाणु-द्रव्यमान की तुलना में किसी तत्त्व का परमाणु-क्रमांक उस तत्त्व के गुणों को दर्शाने में अधिक सक्षम है। इसी के अनुसार मेंडलीव के

सारणी 3.3 मेंडलीव द्वारा एका-ऐलुमीनियम (गैलियम) तथा एका-सिलिकान (जर्मेनियम) तत्त्वों की प्रागुक्ति

गुण	एका ऐलुमिनियम (भविष्यसूचक तत्त्व)	गैलियम (खोजा गया तत्त्व)	एका सिलिकॉन (भविष्यसूचक तत्त्व)	जर्मेनियम (खोजा गया तत्त्व)
परमाणु-भार	68	70	72	72.6
घनत्त्व / (g/cm³)	5.9	5.94	5.5	5.36
गलनांक /K	निम्न	302.93	उच्च	1231
ऑक्साइड का सूत्र	$\mathrm{E_2O_3}$	Ga ₂ O ₃	EO_2	${ m GeO}_2$
क्लोराइड का सूत्र	ECl ₃	GaCl ₃	ECl_4	GeCl ₄

समूहों तथा श्रेणियों में तत्त्वों की आवर्तिता

SERIES					GROU	PS OF ELEME	NTS		
	0	I	II	III	IV	v	VI	VII	VIII
1 2 3	Helium He 4.0 Neon Ne	Hydrogen H 1.008 Lithium Li 7.03 Sodium Na	Beryllium Be 9.1 Magnesium Mg	Boron B 11.0 Aluminium	Carbon C 12.0 Silicon Si	Nitrogen N 14.04 Phosphorus	Oxygen O 16.00 Sulphur S	Fluorine F 19.0 Chlorine Cl	8
4 5	Argon Ar 38	Potassium K 39.1 Copper Cu 63.6	24.3 Calcium Ca 40.1 Zinc Zn 65.4	Scandium Sc 44.1 Gallium Ga 70.0	Titanium Ti 48.1 Germanium Ge 72.3	Vanadium V 51.4 Arsenic As 75	32.06 Chromium Cr 52.1 Selenium Se 79	35.45 Manganese Mn 55.0 Bromine Br 79.95	Iron Cobalt Nickel Fe Co Ni (Cu) 55.9 59 59
6 7	Krypton Kr 81.8	Rubidium Rb 85.4 Silver Ag 107.9	Strontium Sr 87.6 Cadmium Cd 112.4	Yttrium Y 89.0 Indium In 114.0	Zirconium Zr 90.6 Tin Sn 119.0	Niobium Nb 94.0 Antimony Sb 120.0	Molybdenum Mo 96.0 Tellurium Te 127.6	Iodine I 126.9	Ruthenium Rhodium Palladium Ru Rh Pd (Ag) 101.7 103.0 106.5
8	Xenon Xe 128	Caesium Cs 132.9	Barium Ba 137.4	Lanthanum La 139	Cerium Ce 140			-	
10 11	-	- Gold Au 197.2	- Mercury Hg 200.0	Ytterbium Yb 173 Thallium Tl 204.1	- Lead Pb 206.9	Tantalum Ta 183 Bismuth Bi 208	Tungsten W 184	-	Osmium Iridium Platinum Os Ir Pt (Au) 191 193 194.9
12	-	-	Radium Ra 224	-	Thorium Th 232	-	Uranium U 239		
	R	R₂O	RO	R ₂ O ₃	RO 2 HIC RH 4	R ₂ O ₅	INE OXIDES RO3 IS HYDROGEN (RH2	R ₂ O ₇ COMPOUNDS RH	RO ₄

चित्र 3.1: मेंडलीव द्वारा प्रकाशित आवर्त सारणी

आवर्त नियम का संशोधन किया गया। इसे **आधुनिक आवर्त** नियम कहते हैं। यह इस प्रकार है —

'तत्त्वों के भौतिक तथा रासायनिक गुणधर्म उनके परमाणु-क्रमांकों के आवर्ती फलन होते हैं।' (The physical and chemical properties of the elements are periodic functions of their atomic numbers.)

आवर्त नियम के द्वारा प्राकृतिक रूप से पाए जाने वाले 94 तत्त्वों में उल्लेखनीय समानताएँ मिलीं। ऐक्टीनियम और प्रोटोक्टीनियम की भाँति नेप्ट्यूनियम और प्लूटोनियम भी यूरेनियम के अयस्क पिच ब्लैंड में पाए गए। इससे अकार्बनिक रसायन शास्त्र में प्रोत्साहन मिला और कृत्रिम अल्पायु वाले तत्त्वों की खोज हुई।

आप पहले पढ़ चुके हैं कि किसी तत्त्व का परमाणु क्रमांक उस तत्त्व के नाभिकीय आवेश (प्रोटॉनों की संख्या) या उदासीन परमाणु में उपस्थित इलेक्ट्रॉनों की संख्या के बराबर होता है। इसके पश्चात् क्वांटम संख्याओं की सार्थकता और इलेक्ट्रॉनिक विन्यासों की आवर्तिता को समझना सरल हो जाता है। अब यह स्वीकार कर लिया गया है कि आवर्त नियम तत्त्वों तथा उनके यौगिकों के भौतिक तथा रासायनिक गुणों का फलन है, जो तत्त्वों के इलेक्ट्रॉनिक विन्यास पर आधारित है।

समय-समय पर आवर्त-सारणी के विभिन्न रूप प्रस्तुत किए गए हैं। कुछ रूप तत्त्वों की रासायनिक अभिक्रियाओं तथा संयोजकता पर बल देते हैं, जबिक कुछ अन्य इलेक्ट्रॉनिक विन्यास पर। इसका आधुनिक स्वरूप (जिसे आवर्त सारणी का दीर्घ स्वरूप कहते हैं) बहुत सरल तथा अत्यंत उपयोगी है और इसे चित्र 3.2 में दर्शाया गया है। क्षैतिज पंक्तियों (जिन्हें मेंडलीव ने 'श्रेणी' कहा है) को आवर्त (periods) कहा जाता है और ऊर्ध्वाधर स्तंभों को वर्ग (group) कहते हैं। समान बाह्य इलेक्ट्रॉन विन्यास वाले तत्त्वों को ऊर्ध्वाधर स्तंभों में रखा जाता है, जिन्हें 'वर्ग' या 'परिवार' कहा जाता है। IUPAC के अनुमोदन के अनुसार, वर्गों को पुरानी पद्धति IA...VIIA, VIII, IB...VII B, के स्थान पर उन्हें 1 से 18 तक की संख्याओं में अंकित करके निरूपित किया गया है।

आवर्त-सारणी में कुल सात आवर्त हैं। आवर्त-संख्या

आवर्त में तत्त्व की अधिकतम मुख्य क्वांटम संख्या (n) को दर्शाती है। प्रथम आवर्त में 2 तत्त्व उपस्थित हैं। इसके बाद के आवर्तों में क्रमश: 8, 8, 18, 18 और 32 तत्त्व हैं। सातवाँ आवर्त अपूर्ण आवर्त है। सैद्धांतिक रूप से छठवें आवर्त की तरह इसमें तत्त्वों की अधिकतम संख्या क्वांटम संख्याओं के आधार पर 32 ही होगी। इस रूप में आवर्त-सारणी के छठवें एवं सातवें आवर्त के क्रमश: लेन्थेनाइड और ऐक्टिनाइड के 14-14 तत्त्व नीचे अलग से दर्शाए जाते रहे हैं।*

3.4 100 से अधिक परमाणु-क्रमांक वाले तत्त्वों का नामकरण

पूर्व में परंपरागत रूप से नए तत्त्वों का नामकरण उन तत्त्वों के शोधकर्ताओं के नाम पर कर दिया जाता था तथा प्रस्तावित नाम का समर्थन आई.यू.पी.ए.सी. (International Union of Pure and Applied Chemistry) द्वारा कर दिया जाता था। परंतु हाल ही में इस मुद्दे पर विवाद हो गया। उच्च परमाणु-क्रमांक वाले नए तत्त्व इतने अस्थिर होते हैं कि उनकी केवल सुक्ष्म मात्रा (और कभी-कभी तो केवल कुछ परमाणु मात्र ही) प्राप्त होती हैं। इन तत्त्वों के संश्लेषण और विशेष गुणों के अध्ययन के लिए महँगे तथा आधनिक उपकरणों और प्रयोगशाला की आवश्यकता होती है। विश्व की कुछ ही प्रयोगशालाओं में स्पर्धा की भावना से ऐसा काम होता है। कभी-कभी वैज्ञानिक बिना विश्वसनीय आँकड़े इकट्ठे किए, नए तत्त्वों की खोज का दावा करने के लिए लालायित हो जाते हैं। उदाहरण के तौर पर-अमेरिकी और रूसी, दोनों ही देशों के वैज्ञानिकों ने 104 परमाण्-क्रमांक वाले तत्त्व की खोज का दावा किया। अमेरिकी वैज्ञानिक ने इसे 'रदरफोर्डियम' (Rutherfordium) तथा रूसी वैज्ञानिकों ने इसे 'कुरशाटोवियम' (Kurchatovium) नाम दिया। इस तरह की कठिनाई को दूर करने के लिए IUPAC ने सुझाव दिया कि जब तक तत्त्व की खोज सिद्ध न हो जाए और नाम का समर्थन न हो जाए, तब तक शुन्य एवं 1 से 9 तक संख्याओं के लिए संख्यात्मक मूल (numerical root) का प्रयोग करते हुए इनके नामों को परमाणु क्रमांकों के आधार पर सीधे दिया जाए। इसे सारणी 3.4 में दिया गया है।

* ग्लेन टी सीबर्ग के कार्य की शुरुआत बीसवीं शताब्दी के लगभग मध्य (सन् 1940) में प्लूटोनिया की खोज से हुई। इसके बाद यूरेनियम के बाद वाले (94 से लेकर 102 तक) तत्त्वों में आवर्त-सारणी में बदलाव आया और ऐक्टिनाइड को लैन्थेनाइड के नीचे रखा गया। सन् 1951 में सीबर्ग को रसायन शास्त्र का नोबेल पुरस्कार उनके काम के लिए दिया गया। उन्हें आदर देने के लिए तत्त्व-संख्या 106 का नाम 'सीबर्गियम' (Sg) रखा गया।

f- Inner transition elements

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Länthanoids	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
$4f^{n}5d^{0-1}6s^{2}$	$4f^25d^06s^2$	$4f^35d^06s^2$	$4f^45d^06s^2$	$4f^{5}5d^{0}6s^{2}$	$4f^{6}5d^{0}6s^{2}$	$4f^{7}5d^{0}6s^{2}$	$4f^{7}5d^{1}6s^{2}$	$4f^95d^96s^2$	$4f^{10}5d^{0}6s^{2}$	$4f^{11}5d^{0}6s^{2}$	$4f^{12}5d^{0}6s^{2}$	$4f^{13}5d^{0}6s^{2}$	$4f^{14}5d^{0}6s^{2}$	$4f^{14}5d^{1}6s^{2}$
**	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinoids	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
$5f^{n}6d^{0-2}7s^{2}$	$5f^{0}6d^{2}7s^{2}$	$5f^26d^17s^2$	$5f^36d^17s^2$	$5f^46d^17s^2$	5f6d07s2	$5f^{7}6d^{0}7s^{2}$		$5f^{9}6d^{0}7s^{2}$	$5f^{10}6d^{0}7s^{2}$	$5f^{11}6d^{0}7s^{2}$	$5f^{12}6d^07s^2$	$5f^{13}6d^07s^2$	$5f^{14}6d^{0}7s^{2}$	$5f^{14}6d^{1}7s^{2}$

चित्र 3.2 तत्त्वों के परमाणु-क्रमांक तथा तलस्थ अवस्था इलेक्ट्रॉनिक विन्यास के साथ आवर्त सारणी का दीर्घ रूप। सन् 1984 के IUPAC के अनुमोदन के अनुसार वर्गों को 1 से 18 तक दर्शाया गया है। इस प्रकार का संकेतन वर्गों I **A**–VII**A**, VIII, I **B**–VII **B** एवं O से प्रदर्शित करने की पुरानी पद्धित को प्रतिस्थापित करता है।

सारणी 3.4 तत्त्वों के IUPAC नामकरण हेतु संकेतन

अंक	नाम	संक्षिप्त रूप
0	nil	n
1	un	u
2	bi	b
3	tri	t
4	quad	q
5	pent	p
6	hex	h
7	sept	s
8	oct	0
9	enn	e

मूलों को अंकों के क्रम में एक साथ रखा जाता है, जिससे क्रमांक प्राप्त होता है तथा अंत में 'इअम' (ium) जोड़ दिया जाता है। 100 से ऊपर परमाणु क्रमांक वाले तत्त्वों के IUPAC नाम सारणी 3.5 में दर्शाए गए हैं।

इस प्रकार, नए तत्त्व को पहले अस्थायी नाम और तीन अक्षर वाला प्रतीक दिया जाता है। बाद में हर देश के IUPAC प्रतिनिधि के मतदान से स्थायी नाम तथा प्रतीक दिया जाता है। स्थायी नाम में उस देश का या प्रदेश का नाम हो सकता है, जहाँ इस तत्त्व की खोज हुई है अथवा श्रद्धा प्रकट करने के लिए किसी प्रसिद्ध वैज्ञानिक का नाम हो सकता है। परमाणु-क्रमांक 118 तक तत्त्वों की खोज हो चुकी है। सभी तत्त्वों के अधिकृत IUPAC नामों की घोषणा हो चुकी है।

उदाहरण 3.1

120 परमाणु क्रमांक वाले तत्त्व का IUPAC नाम तथा प्रतीक (symbol) क्या होगा?

हल

सारणी 3.4 के अनुसार 1, 2 तथा 0 अंकों के लिए मूल (root) क्रमश: un, bi तथा nil होंगे। अत: 120 परमाणु-क्रमांक वाले तत्त्व का नाम Unbinilum तथा प्रतीक Ubn होगा।

सारणी 3.5 परमाणु-क्रमांक 100 से अधिक वाले तत्त्वों का नामकरण

परमाणु-क्रमांक	नाम	प्रतीक	IUPAC अधिकृत नाम	IUPAC प्रतीक
101	Unnilunium	Unu	Mendelevium	Md
102	Unnilbium	Unb	Nobelium	No
103	Unniltrium	Unt	Lawrencium	Lr
104	Unnilquadium	Unq	Rutherfordium	Rf
105	Unnilpentium	Unp	Dubnium	Db
106	Unnilhexium	Unh	Seaborgium	Sg
107	Unnilseptium	Uns	Bohrium	Bh
108	Unniloctium	Uno	Hassium	Hs
109	Unnilennium	Une	Meitnerium	Mt
110	Ununnilium	Uun	Darmstadtium	Ds
111	Unununnium	Uuu	Rontgenium	Rg
112	Ununbium	Uub	Copernicium	Cn
113	Ununtrium	Uut	Nihonium	Nh
114	Ununquadium	Uuq	Flerovium	Fl
115	Ununpentium	Uup	Moscovium	Mc
116	Ununhexium	Uuh	Livermorium	Lv
117	Ununseptium	Uus	Tennessine	Ts
118	Ununoctium	Uuo	Oganesson	Og

3.5 तत्त्वों के इलेक्ट्रॉनिक विन्यास तथा आवर्त-सारणी

पिछले एकक में हमने यह जाना कि किसी परमाणु में इलेक्ट्रॉन की पहचान चार क्वांटम संख्याओं से की जा सकती है। मुख्य क्वांटम संख्या (n) परमाणु के मुख्य ऊर्जा स्तर, जिसे 'कोश' (shell) कहते हैं, को व्यक्त करती है। हमने यह भी जाना कि किस तरह परमाणु में इलेक्ट्रॉन भिन्न-भिन्न उप-कोशों में भरे जाते हैं, जिन्हें हम s, p, d, f कहते हैं। परमाणु में इलेक्ट्रॉनों के वितरण को ही उसका 'इलेक्ट्रॉनिक विन्यास' कहते हैं। किसी तत्त्व की आवर्त सारणी में स्थिति उसके भरे जानेवाले अंतिम कक्षक की क्वांटम-संख्याओं को दर्शाती है। इस भाग में हम दीर्घाकार आवर्त सारणी तथा तत्त्वों के इलेक्ट्रॉनिक विन्यास के मध्य सीधे संबंध के बारे में जानकारी प्राप्त करेंगे।

(क) आवर्त में इलेक्ट्रॉनिक विन्यास

आवर्त मुख्य ऊर्जा या बाह्य कोश के लिए n का मान बताता है। आवर्त सारणी में प्रत्येक उत्तरोत्तर आवर्त (successive period) की पूर्ति अगले उच्च मुख्य ऊर्जा स्तर n=1, n=2आदि से संबंधित होती है। यह देखा जा सकता है कि प्रत्येक आवर्त में तत्त्वों की संख्या, भरे जानेवाले ऊर्जा-स्तर में उपलब्ध परमाण्-कक्षकों की संख्या से दुगुनी होती है। इस प्रकार प्रथम आवर्त (n=1) का प्रारंभ सबसे निचले स्तर (1s) के भरने से शुरू होता है। उसमें दो तत्त्व होते हैं। हाइड्रोजन का विन्यास $(1s^1)$ तथा हीलियम $(1s^2)$ है। इस प्रकार, प्रथम कोश (K कोश) पूर्ण हो जाता है। दूसरा आवर्त <math>(n=2) लीथियम से आरंभ होता है (Li= $1s^2,2s^1$), जिसमें तीसरा इलेक्ट्रॉन 2sकक्षक में प्रवेश करता है। अगले तत्त्व बेरिलियम में चार इलेक्ट्रॉन उपस्थित होते हैं। इसका इलेक्ट्रॉनिक विन्यास ($1s^2,2s^2$) है। इसके बाद बोरॉन तत्त्व से शुरू करते हुए जब हम निऑन तत्त्व तक पहुँचते हैं, तो 2p कक्षक पूर्ण रूप से इलेक्ट्रॉनों से भर जाता है। इस प्रकार L कोश निऑन $(2s^2\ 2p^6)$ तत्त्व के साथ पूर्ण हो जाता है। अत: दूसरे आवर्त में तत्त्वों की संख्या आठ होती है। आवर्त सारणी का तीसरा आवर्त (n=3)सोडियम तत्त्व के साथ प्रारंभ होता है, जिसमें इलेक्ट्रॉन 3s कक्षक में जाता है। उत्तरोत्तर 3s एवं 3p कक्षकों में इलेक्ट्रॉनों के भरने के पश्चात् तीसरे आवर्त में तत्त्वों की संख्या सोडियम से ऑर्गन तक कुल मिलाकर आठ हो जाती है।

चौथे आवर्त (n=4) का प्रारंभ पोटैशियम से, 4s कक्षक के भरने के साथ होता है। यहाँ यह बात महत्त्वपूर्ण है कि 4pकक्षक के भरने से पूर्व ही 3d कक्षक का भरना शुरू हो जाता है, जो ऊर्जात्मक (energetically) रूप से अनुकृल है। इस प्रकार, हमें तत्त्वों की 3d संक्रमण-श्रेणी (3d transtitian series) प्राप्त हो जाती है। यह स्केन्डियम (Scandium : Z = 21) से प्रारंभ होती है, जिसका इलेक्ट्रॉनिक विन्यास $3d^1 4s^2$ होता है। 3d कक्षक जिंक (Zn.Z=30) पर पूर्ण रूप से भर जाता है, जिसका इलेक्ट्रॉनिक विन्यास $3d^{10} 4s^2$ है। चौथा आवर्त 4p कक्षकों के भरने के साथ क्रिप्ट्रॉन (Krypton) पर समाप्त होता है। कुल मिलाकर चौथे आवर्त में 18 तत्त्व होते हैं। पाँचवाँ आवर्त (n = 5) रूबिडियम से शुरू होता है, चौथे आवर्त के समान है। उसमें 4d इट्रियम (ytrrium, Z=39) से 4d संक्रमण श्रेणी (4d transition series) शुरू होती है। यह आवर्त 5p कक्षकों के भरने पर जीनॉन (Xenon) पर समाप्त होता है। छठवें आवर्त (n=6) में 32 तत्त्व होते हैं। उत्तरोत्तर इलेक्ट्रॉन 6s, 4f, 5d तथा 6p कक्षकों में भरे जाते हैं। 4f कक्षकों का भरना सीरियम (cerium, Z=58) से शुरू होकर ल्यूटीशियम (Lutetium, Z=71) पर समाप्त होता है। इसे 4f आंतरिक संक्रमण श्रेणी या लेन्थेनॉयड श्रेणी (Lenthanoid Series) कहते हैं।

सातवाँ आवर्त (n=7) छठवें आवर्त के समान है, जिसमें इलेक्ट्रॉन उत्तरोत्तर 7s, 5f, 6d और 7p कक्षक में भरते हैं। इनमें कृत्रिम विधियों (artificial methods) द्वारा मानव-निर्मित रेडियोधर्मी तत्त्व हैं। सातवाँ आवर्त 118वें परमाणु क्रमांक वाले (अभी खोजे जाने वाले) तत्त्व के साथ पूर्ण होगा, जो उत्कृष्ट गैस-परिवार से संबंधित होगा।

ऐक्टिनियम (Actinium, Z = 89) के पश्चात् 5f कक्षक भरने के फलस्वरूप 5f आंतरिक संक्रमण-श्रेणी (5f inner transition series) प्राप्त होती है। इसे 'ऐक्टिनॉयड श्रेणी' (Actinoid Series) कहते हैं। 4f तथा 5f आंतरिक संक्रमण-श्रेणियों को आवर्त सारणी के मुख्य भाग से बाहर रखा गया है, तािक इसकी संरचना को अक्षुण्ण रखा जा सके और

साथ ही समान गुणधर्मों वाले तत्त्वों को एक ही स्तंभ में रखकर वर्गीकरण के सिद्धांत का भी पालन किया जा सके।

उदाहरण 3.2

आवर्त सारणी के पाँचवें आवर्त में 18 तत्त्वों के होने की व्याख्या आप किस प्रकार करेंगे?

हल

जब n=5 होता है, तो l=0,1,2,3 होता है। उपलब्ध कक्षकों 4d, 5s और 5P की ऊर्जाओं के बढ़ने का क्रम इस प्रकार है— 5s<4d<5d में कुल मिलाकर 9 कक्षक उपलब्ध हैं। इनमें अधिकतम 18 इलेक्ट्रॉन भरे जा सकते हैं। इसीलिए आवर्त 5 में 18 तत्त्व होते हैं।

(ख) वर्गवार इलेक्ट्रॉनिक विन्यास

एक ही वर्ग या ऊर्ध्वाधर स्तंभ में उपस्थित तत्त्वों के संयोजकता कोश इलेक्ट्रॉनिक विन्यास समान होते हैं। इनके बाह्य कक्षकों में उपस्थित इलेक्ट्रॉनों की संख्या एवं गुणधर्म भी समान होते हैं। उदाहरण के लिए वर्ग 1 के तत्त्वों (क्षार धातुओं) का संयोजकता कोश इलेक्ट्रॉनिक विन्यास ns^1 होता है, जैसा नीचे दिखाया गया है। इस प्रकार यह स्पष्ट हो जाता है कि किसी तत्त्व के गुणधर्म उसके परमाणु-क्रमांक पर निर्भर करते हैं, न

3.6 इलेक्ट्रॉनिक विन्यास और तत्त्वों के प्रकार (**s,p,d,f** ब्लॉक)

आवर्त वर्गीकरण का सैद्धांतिक मूलाधार 'ऑफबाऊ का सिद्धांत' (Aufbau Principle) तथा परमाणुओं का इलेक्ट्रॉनिक विन्यास है। आवर्त सारणी के ऊर्ध्वाधर स्तंभों (vertical columns) में स्थित तत्त्व एक वर्ग (Group) अथवा परिवार (family) की रचना करते हैं, और समान रासायनिक गुणधर्म दर्शाते हैं। यह समानता इसलिए होती है, क्योंकि इन तत्त्वों के बाह्यतम कोश

में इलेक्ट्रॉनों की संख्या और वितरण एक ही प्रकार का होता है। इन तत्त्वों का विभाजन चार विभिन्न **ब्लॉकों s,p,d** और **f** में किया जा सकता है, जो इस बात पर निर्भर करता है कि किस प्रकार के कक्षक इलेक्ट्रॉनों द्वारा भरे जा रहे हैं। इसे चित्र 3.3 में दर्शाया गया है।

इस प्रकार के वर्गीकरण में दो अपवाद देखने को मिलते हैं। पहला अपवाद हीलियम का है। उसे s- ब्लॉक के तत्त्वों में संबद्ध होना चाहिए, परंतु इसका स्थान आवर्त सारणी में वर्ग 18 के तत्त्वों के साथ p- ब्लॉक में है। इसका औचित्य इस आधार पर है कि हीलियम का संयोजी कोश (valance shell) पूरा भरा हुआ है (He=1s²), जिसके फलस्वरूप यह उत्कृष्ट गैसों के अभिलक्षणों को प्रदर्शित करती है। दूसरा अपवाद हाइड्रोजन का है। इसमें केवल एक s- इलेक्ट्रॉन है (H=1s¹)। इस प्रकार इसका स्थान वर्ग 1 में क्षारीय धातुओं के साथ होना चाहिए। दूसरी ओर, यह एक इलेक्ट्रॉन ग्रहण करके उत्कृष्ट गैस (हीलियम) का इलेक्ट्रॉनिक विन्यास प्राप्त कर सकती है। इस प्रकार इसका व्यवहार वर्ग 17 (हैलोजेन परिवार) की भाँति हो सकता है। चूँकि यह एक विशेष स्थिति है, अत: हाइड्रोजन को आवर्त सारणी में सबसे ऊपर अलग से स्थान देना अधिक तर्कसंगत माना गया है (चित्र 3.2 और 3.3 को देखें)।

अब आवर्त सारणी में दिखाए गए चार प्रकार के तत्त्वों के मुख्य लक्षणों की चर्चा हम करेंगे। इन तत्त्वों के बारे में अधिक जानकारी का विवरण बाद में दिया जाएगा। उनके लक्षणों की चर्चा करने के लिए जिस शब्दावली का उपयोग किया गया है, उसका वर्गीकरण भाग 3.7 में किया गया है।

3.6.1 s- ब्लॉक के तत्त्व

वर्ग 1 के तत्त्वों (क्षारीय धातुओं) तथा वर्ग 2 के तत्त्वों (क्षारीय मृदा धातुओं) के बाह्यतम कोश के सामान्य इलेक्ट्रॉनिक विन्यास क्रमश: ns^1 तथा ns^2 हैं। इन दोनों वर्गों के तत्त्व आवर्त सारणी के s- ब्लॉक से संबद्ध हैं। ये सभी क्रियाशील धातुएँ हैं। इनके आयनन एंथैल्पी के मान कम होते हैं। ये तत्त्व सरलतापूर्वक

परमाणु-संख्या	प्रतीक	इलेक्ट्रॉनिक विन्यास
3	Li	1s²2s¹ अथवा [He]2s¹
11	Na	1s²2s²2p⁶3s¹ अथवा [Ne]3s¹
19	K	1s²2s²2p⁶3s²3p⁶4s¹ अथवा [Ar]4s¹
37	Rb	1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶5s¹ अथवा [Kr]5s¹
55	Cs	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 5s ² 5p ⁶ 6s ¹ अथवा [Xe]6s ¹
87	Fr	[Rn]7s ¹

	s-BL	OCK
1s	1	2
2s	Li	Ве
3s	Na	Mg
4s	K	Ca
5s	Rb	Sr
6s	Cs	Ba
75	Fr	Ra

					d-B	LOCK	(
	3	4	5	6	7	8	9	10	11	12
3d	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
4 <i>d</i>	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd
5d	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg
6d	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn

		P	-BLC	OCK		
	13	14	15	16	17	18
						He
	В	С	N	0	F	Ne
	Al	Si	P	S	Cl	Ar
,	Ga	Ge	As	Se	Br	Kr
	In	Sn	Sb	Te	I	Xe
	Tl	Pb	Bi	Po	At	Rn
	Nh	FI	Mc	Lv	Ts	Og

चित्र 3.3 विभिन्न कक्षकों के भरने के आधार पर आवर्त सारणी में तत्त्वों के प्रकार। तत्वों को मोटे तौर पर धातु

बाह्यतम इलेक्ट्रॉन त्यागने के पश्चात् 1+ आयन (क्षारीय धातुओं में) या 2+ आयन (मृदा क्षारीय धातुओं में) बना लेते हैं। वर्ग में नीचे की ओर जाने पर इन धातुओं के धात्विक लक्षण तथा अभिक्रियाशीलता में वृद्धि होती है। अधिक अभिक्रियाशील होने के कारण वे प्रकृति में शुद्ध रूप में नहीं पाई जाती हैं। लीथियम और बेरीलियम को छोड़कर s- ब्लॉक के तत्त्वों के यौगिक मुख्य रूप से आयनिक होते हैं।

3.6.2 p-ब्लॉक के तत्त्व

आवर्त सारणी के p- ब्लॉक में वर्ग 13 से लेकर वर्ग 18 तक के तत्त्व सिम्मिलित हैं। p- ब्लॉक के तत्त्वों और s- ब्लॉक के तत्त्वों को संयुक्त रूप से निरूपक तत्त्व (Representative elements) या मुख्य वर्ग के तत्त्व (Main Group Elements) कहा जाता है। प्रत्येक आवर्त में इनका बाह्यतम इलेक्ट्रॉनिक विन्यास ns^2 , np^1 से ns^2 , np^6 तक परिवर्तित होता है। प्रत्येक आवर्त ns^2 , np^6 , उत्कृष्ट गैस के इलेक्ट्रॉनिक विन्यास के साथ समाप्त होता है। उत्कृष्ट गैसों में संयोजी कोश में सभी कक्षक इलेक्ट्रॉनों से पूरे भरे होते हैं। इलेक्ट्रॉनों को हटाकर या जोडकर इस स्थायी व्यवस्था को बदलना बहुत कठिन होता है। इसीलिए उत्कृष्ट गैसों की रासायनिक अभिक्रियाशीलता बहुत कम होती है। उत्कृष्ट गैसों के परिवार से पहले अधातुओं के रासायनिक रूप से दो महत्त्वपूर्ण वर्ग हैं। ये वर्ग हैं 17वें वर्ग के हैलोजेन (Halogens) तथा 16वें वर्ग के तत्त्व 'चाल्कोजेन' (Chalcogen)। इन दो वर्गों के तत्त्वों की उच्च ऋणात्मक इलेक्ट्रॉन लब्धि एंथैल्पी (negative electron gain enthalpy) होती है। ये तत्त्व आसानी से क्रमश: एक या दो इलेक्ट्रॉन ग्रहण कर स्थायी उत्कृष्ट गैस इलेक्ट्रॉनिक विन्यास प्राप्त कर लेते हैं। आवर्त में बाईं से दाईं ओर बढने पर तत्त्वों के अधात्विक लक्षणों में वृद्धि होती है तथा किसी वर्ग में ऊपर से नीचे की तरफ जाने पर धात्विक लक्षणों में वृद्धि होती है।

3.6.3 d- ब्लॉक के तत्त्व (संक्रमण तत्त्व)

आवर्त सारणी के मध्य में स्थित वर्ग 3 से वर्ग 12 वाले तत्त्व a - ब्लॉक के तत्त्व कहलाते हैं। इस ब्लॉक के तत्त्वों की पहचान इनके आंतरिक a - आर्बिटल में इलेक्ट्रॉनों के भरे जाने के आधार पर की जाती है। यही कारण है कि ये तत्त्व a-ब्लॉक के तत्त्व कहलाते हैं। इन तत्त्वों का सामान्य इलेक्ट्रॉनिक विन्यास $(n-1) d^{1-10} n s^{0-2}$ है। ये सभी तत्त्व धातुएँ हैं। इन तत्त्वों के आयन प्राय: रंगीन होते हैं तथा परिवर्ती संयोजकता एवं अनुचुंबकीयता प्रदर्शित करते हैं, और उत्प्रेरक के रूप में प्रयुक्त होते हैं। Zn, Cd तथा Hg के सामान्य

इलेक्ट्रॉनिक विन्यास (n-1) $d^{10}ns^2$ होते हुए भी ये धातुएँ संक्रमण तत्त्वों के बहुत-से लक्षणों को प्रदर्शित नहीं करती हैं। d-ब्लॉक के तत्त्व रासायनिक तौर पर अतिक्रियाशील s-ब्लॉक के तत्त्वों तथा कम क्रियाशील 13वें तथा 14वें वर्गों के तत्त्वों के बीच एक प्रकार से सेतु का कार्य करते हैं। इसी कारण d-ब्लॉक के तत्त्वों को 'संक्रमण तत्त्व' भी कहते हैं।

3.6.4 *f*- ब्लॉक के तत्त्व

(आंतरिक संक्रमण तत्त्व)

मुख्य आवर्त सारणी में नीचे जिन तत्त्वों को दो क्षैतिज पंक्तियों में रखा गया है, उन्हें लैन्थेनॉयड ($_{58}\mathrm{Ce} - _{72}\mathrm{Lu}$) तथा ऐक्टीनॉयड ($_{90}{
m Th} - _{103}{
m Lr}$) कहते हैं। इन श्रेणियों के तत्त्वों की पहचान इनके सामान्य इलेक्ट्रॉनिक विन्यास $[(n-2)f^{1-}$ $^{14}(n-1)d^{0-1}ns^2$] द्वारा की जाती है। इन तत्त्वों में अंतिम इलेक्ट्रॉन ƒ उप-कोश में भरता है। इसी आधार पर इन श्रेणियों के तत्त्वों को **f-ब्लॉक के तत्त्व** (आंतरिक संक्रमण तत्त्व) कहते हैं। ये सभी तत्त्व धातुएँ हैं। प्रत्येक श्रेणी में तत्त्वों के गण लगभग समान हैं। प्रारंभिक ऐक्टीनॉयड श्रेणी के तत्त्वों की अनेक संभावित ऑक्सीकरण अवस्थाओं के फलस्वरूप इन तत्त्वों का रसायन इनके संगत लैन्थैनॉयड श्रेणी के तत्त्वों की तुलना में अत्यधिक जटिल होता है। ऐक्टीनॉयड श्रेणी के तत्त्व रेडियोधर्मी (Radioactive) होते हैं। बहुत से ऐक्टीनॉयड तत्त्वों को नाभिकीय अभिक्रियाओं द्वारा नैनोग्राम (Nenogram) या उससे भी कम भाग में प्राप्त किया गया है। इन तत्त्वों के रसायन का अध्ययन पर्ण रूप से नहीं हो पाया है। यरेनियम के बाद वाले तत्त्व 'परायूरेनियम तत्त्व' कहलाते हैं।

उदाहरण 3.3

परमाणु क्रमांक 117 एवं 120 वाले तत्त्वों की खोज अब तक नहीं हो पाई है। बताएँ कि इन तत्त्वों का स्थान आवर्त सारणी के किस परिवार/वर्ग में होना चाहिए तथा प्रत्येक का इलेक्ट्रॉनिक विन्यास क्या होगा?

हल

चित्र 3.2 में दी गई सारणी से स्पष्ट है कि परमाणु क्रमांक 117 वाले तत्त्व का स्थान आवर्त सारणी में हैलोजेन परिवार (वर्ग 17) में At के नीचे होगा तथा इसका इलेक्ट्रॉनिक विन्यास [Rn] $5f^{14}6d^{10}7s^27p^5$ होगा। परमाणु क्रमांक 120 वाले तत्त्व का स्थान वर्ग 2 (क्षारीय मृदा धातुएँ) में Ra के नीचे होगा तथा इसका इलेक्ट्रॉनिक विन्यास [Uuol $8s^2$ होगा।

3.6.5 धातु, अधातु और उप-धातु

तत्वों कें s-,p-,d तथा f-ब्लॉकों में वर्गीकरण के अलावा इनके गुणों के आधार पर मौटे तौर पर इन्हें धातुओं तथा अधातुओं में विभाजित किया जा सकता है (चित्र 3.3)। ज्ञात तत्त्वों में 78 प्रतिशत से अधिक संख्या धातुओं की है, जो आवर्त सारणी की बाईं ओर स्थित हैं। धातुएँ कमरे के ताप पर सामान्यतया ठोस होती हैं। [मर्करी इसका अपवाद है, गैलियम और सीजियम के गलनांक भी बहुत कम, क्रमश: 303K और 302K हैं।] धातुओं के गलनांक एवं क्वथनांक उच्च होते हैं। ये ताप तथा विद्युत् के सुचालक होते हैं। ये आघातवर्ध्य (हथौड़े से पीटने पर पतली चादर में ढाले जा सकने वाले) तथा तन्य (जिसके तार खींचे जा सकते हैं) होते हैं। दूसरी अधातुएँ आवर्त सारणी के दाईं ओर स्थित हैं। दीर्घ आवर्त सारणी में किसी वर्ग में तत्त्वों के धात्विक गुणों में ऊपर से नीचे की ओर जाने पर वृद्धि होती है और आवर्त में बाईं ओर से दाईं ओर जाने पर धात्विक गुण कम होते जाते हैं। अधातएँ कक्षताप पर ठोस एवं गैस होती हैं। इनके गलनांक तथा क्वथनांक कम होते हैं (बोरोन और कार्बन अपवाद हैं)। ये ताप तथा विद्युत् के अल्प चालक हैं। बहुत से अधात्विक ठोस भंगुर (Brittle) होते हैं। ये ही अघात और तन्य नहीं होते हैं। तत्त्वों के धात्विक से अधात्विक गुणों में परिवर्तन असंलग्न (abrupt) नहीं होता है, बल्कि यह परिवर्तन टेढी-मेढी रेखा (Zig-Zag line) के रूप में देखने को मिलता है। (चित्र 3.3) आवर्त सारणी से विकर्ण (टेढी-मेढी) रेखा के सीमावर्ती स्थित जर्मेनियम, सिलिकॉन, आर्सेनिक, ऐन्टेमनी तथा टेलुरियम तत्त्व, धातुओं एवं अधातुओं- 'दोनों के अभिलक्षण दर्शाते हैं। इस प्रकार के तत्त्वों को उप-धातु' (Metalloid) कहते हैं।

उदाहरण 3.4

परमाणु क्रमांक और आवर्त सारणी में स्थिति को ध्यान में रखते हुए निम्नलिखित तत्त्वों को उनके बढ़ते हुए धात्विक लक्षण के क्रम में व्यवस्थित कीजिए— Si, Be, Mg, Na एवं P

हल

आवर्त सारणी के वर्ग में ऊपर से नीचे की ओर जाने पर तत्त्वों के धात्विक गुणों में वृद्धि होती है तथा आवर्त में बाईं से दाईं ओर बढ़ने पर धात्विक गुणों में कमी होती है। इस आधार पर दिए गए तत्त्वों के बढ़ते हुए धात्विक लक्षण का क्रम इस प्रकार होगा—

P < Si < Be < Mg < Na

3.7 तत्त्वों के गुण-धर्मों में आवर्तिता

आवर्त सारणी में यदि हम ऊपर से नीचे की तरफ जाएँ या बाईं से दाईं ओर जाएँ, तो तत्त्वों के भौतिक तथा रासायनिक गणों में एक प्रारूप दिखाई देता है। उदाहरणार्थ- किसी आवर्त में रासायनिक क्रियाशीलता प्रथम वर्ग के धातुओं में बहुत ज्यादा है, मध्य तक पहुँचकर यह कम हो जाती है और वर्ग 17 के अधातुओं पर पहुँचने पर बढकर बहुत ज्यादा हो जाती है। इसी तरह निरूपक तत्त्वों के समृह में (जैसे- क्षारीय धातुओं में) आवर्त सारणी में ऊपर से नीचे जाने पर क्रियाशीलता बढती है, जबिक अधातुओं के समृह में (जैसे- हैलोजन परिवार) ऊपर से नीचे जाने पर क्रियाशीलता घटती है। तत्त्वों के गुणधर्मों में ऐसा क्यों हो रहा है और इस आवर्तिता को हम कैसे समझाएं? इन सभी प्रश्नों के उत्तर देने के लिए हमें परमाण की संरचना के सिद्धांत एवं परमाणु के गुणधर्मों की ओर ध्यान देना होगा। इस भाग में हम भौतिक एवं रासायनिक गुणधर्मों की आवर्तिता की विवेचना करेंगे और उन्हें इलेक्ट्रॉन की संख्या तथा ऊर्जा-स्तर को लेकर समझाएँगे।

3.7.1 भौतिक गुणधर्मों की प्रवृत्ति

तत्त्वों के कई भौतिक गुण (जैसे— गलनांक, क्वथनांक, संलयन एवं वाष्पीकरण) ऊष्पा, परमाणवीकरण—ऊर्जा आदि सभी आवर्ती परिवर्तन दर्शाते हैं। इस अनुभाग में हम परमाणु एवं आयनिक क्रिज्याएँ, आयनन एंथैल्पी (Ionization Enthalpy), इलेक्ट्रॉन लब्धि एंथैल्पी (Electron Gain Enthalpy) और इलेक्ट्रॉन ऋणात्मकता (Electronegativity) में आवर्त प्रवृत्ति का अध्ययन करेंगे।

(क) परमाणु त्रिज्या

परमाणु के आकार का सही-सही निर्धारण बहुत ही जटिल है, जबिक एक गेंद की त्रिज्या आसानी से नापी जा सकती है। क्या आपको इसका कारण मालूम है? पहली बात तो यह है कि परमाणु की त्रिज्या बहुत छोटी (मात्र 1.2×10⁻¹⁰m) होती है। परमाणु के चारों ओर इलेक्ट्रॉन अभ्र (electron cloud) की कोई स्पष्ट सीमा निर्धारित नहीं है। अत: परमाणु का आकार सही तरह से निर्धारित नहीं किया जा सकता। दूसरे शब्दों में— परमाणु त्रिज्या सही नहीं नापी जा सकती। प्रायोगिक विधि के आधार पर परमाणु के आकार का निर्धारण संभव नहीं है। संयुक्त अवस्था में परमाणुओं के बीच की दूरी की जानकारी के आधार पर परमाणु-आकार का आकलन किया जा सकता

है। एकल आबंध (Single Bond) द्वारा जुड़े हुए सहसंयोजक अणुओं (covalent molecules) में उपस्थित दो अधात्विक परमाणुओं के नाभिक के बीच की दूरी ज्ञात कर ली जाती है तथा इस (दुरी) के आधार पर **सहसंयोजक त्रिज्या** (covalent Radius) का आकलन किया जाता है। उदाहरण के तौर पर-क्लोरीन अणु के लिए बंध दूरी (bond length) का मान 198 pm निर्धारित किया गया है। इस मान का आधा, (99 pm), क्लोरीन की परमाण त्रिज्या होगी। धातुओं की धात्विक त्रिज्या (Metalic Radius) का मान धात्विक क्रिस्टल में स्थित धातु कोरों की अंतरा नाभिकीय दूरी (Internuclear distance) का आधा होता है। कॉपर धातु में दो संलग्न कॉपर परमाणुओं के बीच की दूरी 256 pm है। अत: कॉपर के लिए धात्विक त्रिज्या का मान 256 pm का आधा, अर्थात् 128 pm होगा। इस पस्तक में सहसंयोजी त्रिज्या तथा धात्विक त्रिज्या के लिए केवल परमाण्वीय त्रिज्या (Atomic Radius) का प्रयोग किया गया है। चाहे वह तत्त्व हो या धात या अधात, परमाण्वीय त्रिज्या को x-किरणों तथा अन्य स्पैक्टोस्कोपिक विधि से नापा जा सकता है।

कुछ तत्त्वों के लिए परमाणु त्रिज्या का मान सारणी 3.6 (क) में दिया गया है।

दो प्रकार की प्रवृत्तियाँ स्पष्ट रूप से देखने को मिलती हैं, जिनकी व्याख्या हम नाभिकीय आवेश तथा ऊर्जास्तर से कर सकते हैं। आवर्त में दाईं ओर बढने पर परमाण्-आकार घटता है, जैसा द्वितीय आवर्त के तत्त्वों के परमाण-आकार से स्पष्ट है (सारणी 3.6 क का अवलोकन करें)। इस प्रवत्ति का कारण यह है कि आवर्त में दाईं ओर बढने पर बाह्य इलेक्ट्रॉन एक ही संयोजी कोश में स्थित हैं, परंतु उनके नाभिकीय आवेश में हुई वृद्धि के फलस्वरूप बाह्य इलेक्ट्रॉनों का आकर्षण नाभिक की ओर बढ़ता जाता है. जिसके कारण परमाण त्रिज्या घट जाती है। आवर्त सारणी के वर्गों में परमाणु-क्रमांक के साथ-साथ परमाणु त्रिज्याओं में भी नियमित रूप से वृद्धि होती है, जैसा क्षारीय धातुओं तथा हैलोजेन तत्त्वों के लिए सारणी 3.6 (ख) में दर्शाया गया है। वर्ग में जब हम नीचे की ओर बढते हैं, तो मुख्य क्वांटम संख्या (n) का मान बढता है तथा संयोजी इलेक्ट्रॉन (valence electron) नाभिक से दूर होता जाता है, इसलिए कि आंतरिक ऊर्जा-स्तर इलेक्ट्रॉनों से भरे होते हैं, जो कवच के रूप में बाह्य इलेक्टॉनों पर नाभिक का आकर्षण कम कर देते हैं। फलस्वरूप परमाणु का आकार बढता जाता है, जो परमाणु त्रिज्या के रूप में परिलक्षित होता है।

ध्यान देने की आवश्यकता है कि यहाँ उत्कृष्ट गैसों की परमाणु त्रिज्या पर विचार नहीं किया गया है। एकल परमाणु होने के कारण उनकी अबंधित त्रिज्या बहुत अधिक है। इसलिए उत्कृष्ट गैसों की तुलना दूसरे तत्त्वों की सहसंयोजक त्रिज्या से न करके वान्डरवाल्स त्रिज्या से करनी चाहिए।

सारणी 3.6 (क)	आवर्त में	परमाणु	त्रिज्या के	मान ((पीकोमीटर) ((pm)
			_				_

परमाणु (आवर्त 🛚)	Li	Ве	В	С	N	О	F
परमाणु त्रिज्या	152	111	88	77	74	66	64
परमाणु (आर्वत III)	Na	Mg	Al	Si	P	s	C1
परमाणु त्रिज्या	186	160	143	117	110	104	99

सारणी 3.6 (ख) वर्ग में परमाणु त्रिज्या का मान (पीकोमीटर)

परमाणु (वर्ग I)	परमाणु त्रिज्या	परमाणु (वर्ग 17)	परमाणु त्रिज्या
Li	152	F	64
Na	186	C1	99
K	231	Br	114
Rb	244	I	133
Cs	262	At	140

चित्र 3.4 (क) द्वितीय आवर्त में परमाणु क्रमांक के साथ तत्त्वों की परमाणु त्रिज्या में परिवर्तन

(ख) आयनी त्रिज्या

यदि परमाणु से एक इलेक्ट्रॉन निकाल दिया जाए तो धनायन बनता है, जबकि एक इलेक्ट्रॉन मिल जाए, तो परमाणु ऋणायन बन जाता है। आयनी त्रिज्या का आकलन आयनिक क्रिस्टल में स्थित धनायनों एवं ऋणायनों के बीच की दूरी के निर्धारण के आधार पर किया जा सकता है। साधारणतया तत्त्वों की आयनी त्रिज्या भी परमाणु त्रिज्या की प्रवृत्ति ही दर्शाती है। धनायन आकार में अपने जनक परमाण् (parent atom) से छोटा होता है, क्योंकि इसमें इलेक्टॉनों की संख्या कम होती है, जबिक नाभकीय आवेश, जनक परमाणु जैसा ही रहता है। ऋणायन का आकार जनक परमाणु से अधिक होता है, क्योंकि एक या अधिक अतिरिक्त इलेक्ट्रॉन होने से इलेक्ट्रॉनों में प्रतिकर्षण बढता है और प्रभावी नाभिकीय आवेश में कमी आती है। उदाहरण के तौर पर- फ्लुओराइड आयन की आयनी त्रिज्या (F^-) 136 pm है, जबिक फ्लुओरीन की परमाणु त्रिज्या केवल 64 pm है। दूसरी ओर, सोडियम तत्त्व की परमाणु त्रिज्या 186 pm और Na+ आयन की त्रिज्या का मान 95 pm है।

जब परमाणुओं तथा आयनों में इलेक्ट्रॉनों की संख्या समान होती है, तो ये समइलेक्ट्रॉनों स्पीशीज (Isoelectronic species)* कहलाते हैं। समइलेक्ट्रॉनी स्पीशीज के उदाहरण हैं $O^{2-},F^{-},Na^{+},Mg^{2+},O^{2-}$ । प्रत्येक स्पीशीज में इलेक्ट्रॉनों की संख्या 10 है। प्रत्येक स्पीशीज की त्रिज्याएं भिन्न-भिन्न होंगी,

चित्र 3.4 (ख) परमाणु क्रमांकों के साथ क्षारीय धातुओं तथा हैलोजेनों की परमाणु त्रिज्याओं में परिवर्तन

क्योंकि प्रत्येक का नाभिकीय आवेश भिन्न है। अधिक धनावेशित धनायन की आयनी त्रिज्या का मान कम होगा, क्योंकि इनके नाभिक तथा इलेक्ट्रॉनों के बीच आकर्षण अधिक होगा। अधिक ऋणावेशित ऋणायन की आयनी त्रिज्या का मान अधिक होगा, क्योंकि इलेक्ट्रॉनों के बीच संपूर्ण प्रतिकर्षण का प्रभाव नाभिकीय आवेश से अधिक हो जाएगा तथा आयन का आकार बढ जाएगा।

उदाहरण 3.5

निम्नलिखित स्पीशीज़ में किसकी त्रिज्या अधिकतम तथा किसकी त्रिज्या न्यूनतम होगी?

Mg, Mg²⁺,Al, Al³⁺

हल

आवर्त में बाईं से दाईं ओर बढ़ने पर परमाणु त्रिज्या का का मान घटता है। धनायन का आकार उसके जनक परमाणु की तुलना में छोटा होता है। समइलेक्ट्रॉनिक स्पीशीज़ में अधिक नाभिकीय आवेश वाली स्पीशीज़ की त्रिज्या छोटी होती है।

अत: अधिकतम आकार वाली स्पीशीज Mg तथा न्यूनतम आकार वाली स्पीशीज Al^{3+} होगी।

(ग) आयनन एन्थैल्पी

तत्त्वों द्वारा इलेक्ट्रॉन त्यागने की मात्रात्मक प्रकृति 'आयनन

^{*} समइलेक्ट्रॉनी स्पीशीज़— दो या दो से अधिक स्पीशीज़ जिनमें अणुओं और वैलेन्सी इलेक्ट्रॉनों की संख्या समान हो तथा समान संरंचना हो चाहे तत्वों की कोई भी प्रकृति हो।

एन्थैल्पी' कही जाती है। तलस्थ अवस्था (Ground State) में विलगित गैसीय परमाणु (Isolated Gaseous Atom) से बाह्यतम इलेक्ट्रॉन को बाहर निकालने में जो ऊर्जा लगती है, उसे 'तत्त्व की आयनन एन्थैल्पी' कहते हैं। दूसरे शब्दों में तत्त्व (X) की प्रथम आयनन एन्थैल्पी का मान रासायनिक प्रक्रम 3.1 में एन्थैल्पी परिवर्तन $\Delta_i H$ के बराबर होगा।

$$X(g) \rightarrow X^{\dagger}(g) + e^{-} \tag{3.1}$$

आयनन एन्थैल्पी को सामान्यतया किलो जूल प्रतिमोल (kJ mol-1) इकाई में व्यक्त किया जाता है। सर्वाधिक शिथिलता से बंधे दूसरे इलेक्ट्रॉन को पृथक् करने के लिए दी गई ऊर्जा को 'द्वितीय आयनन एन्थैल्पी' कहते हैं। इस एन्थैल्पी का मान रासायनिक प्रक्रम (3.2) के संपन्न होने में प्रयुक्त ऊर्जा के बराबर होता है।

$$X^{+}(g) \to X^{2+}(g) + e^{-}$$
 (3.2)

परमाणु से इलेक्ट्रॉन को पृथक् करने में हमेशा ऊर्जा की आवश्यकता होती है। अत: आयनन एन्थैल्पी हमेशा धनात्मक होती है। तत्त्व के द्वितीय आयनन एन्थैल्पी का मान उसके प्रथम आयनन एन्थैल्पी से अधिक होता है, क्योंकि उदासीन परमाणु की तुलना में धनावेशित आयन से इलेक्ट्रॉन को पृथक् करना अधिक कठिन होता है। इसी प्रकार तृतीय आयनन एन्थैल्पी का मान द्वितीय आयनन एन्थैल्पी के मान से अधिक होगा। 'आयनन एन्थैल्पी' पद को यदि विनिर्दिष्ट (Specified) नहीं किया गया है, तो इसे प्रथम आयनन एन्थैल्पी समझना चाहिए।

परमाणु क्रमांक 60 तक वाले तत्त्वों की प्रथम आयनन एन्थैल्पी का वक्र चित्र 3.5 में दर्शाया गया है। ग्राफ में आवर्तिता असाधारण है। इस चित्र से यह स्पष्ट है कि वक्र (curve) के उच्चिष्ठ (maxima) पर उत्कृष्ट गैसें हैं, जो पूर्ण इलेक्ट्रॉन कोश (closed electron shell) रखती हैं तथा इनके इलेक्ट्रॉनिक विन्यास बहुत ही स्थायी हैं। दूसरी ओर वक्र के निम्निष्ठ (Minima) पर क्षारीय धातुएं स्थित हैं तथा इन धातुओं की आयनन एन्थैल्पी का मान कम होता है। यही कारण है कि क्षारीय धातुएं अति क्रियाशील होती हैं। इसके अतिरिक्त हम देखेंगे कि आवर्त में बाईं से दाईं तरफ बढ़ने पर तत्त्वों के प्रथम आयनन एन्थैल्पी के मानों में सामान्यतया वृद्धि होती है तथा जब हम वर्ग में नीचे की ओर बढ़ते हैं, तब उनके मानों में कमी आती है। इस प्रकार की प्रवृत्ति द्वितीय आवर्त के तत्त्वों तथा प्रथम वर्ग के क्षारीय धातुओं में क्रमश: चित्र 3.6 (क) और 3.6 (ख) में स्पष्ट रूप से दिखती है। इसका कारण दो तथ्यों

चित्र. 3.5 1 से 60 परमाणु-क्रमांकों वाले तत्त्वों के प्रकम आयनन ऐंथेल्पी के मात्रों में परिवर्तन

पर आधारित है— (i) नाभिक तथा इलेक्ट्रॉनों के मध्य आकर्षण और (ii) इलेक्ट्रॉनों के मध्य प्रतिकर्षण।

तत्त्वों में क्रोडीय इलेक्ट्रॉनों (core elctrons) की स्थिति नाभिक तथा संयोजी इलेक्टॉन के बीच आ जाने के फलस्वरूप संयोजी इलेक्ट्रॉन नाभिक से परिरक्षित (shielded) या आवरित (Screened) हो जाता है। इस प्रभाव को 'परिरक्षण-प्रभाव' (shielding Effect) या 'आवरण-प्रभाव' (Screening Effect) कहते हैं। आवरण-प्रभाव के कारण परमाणु के संयोजी इलेक्ट्रॉनों द्वारा अनुभव किया गया प्रभावी नाभिकीय आवेश (Effective Nuclear charge) नाभिक में उपस्थित वास्तविक नाभकीय आवेश (Actual Nuclear charge) से कम हो जाता है। उदाहरणार्थ- लीथियम का बाह्यतम 2s इलेक्टॉन (संयोजी इलेक्ट्रॉन) उसके आंतरिक 1s क्रोड इलेक्ट्रॉनों द्वारा आवरण-प्रभाव का अनुभव करता है। फलस्वरूप लीथियम का संयोजी इलेक्ट्रॉन वास्तविक +3 धनावेश से कम प्रभाव का धनावेश अनुभव करेगा। आवरण-प्रभाव उस परिस्थिति में अत्यधिक प्रभावी होता है, जब आंतरिक कोश के कक्षक पूर्ण रूप से भरे होते हैं। इस प्रकार की स्थिति हम क्षारीय धातुओं में पाते हैं, जिसमें एकाकी ns^1 इलेक्ट्रॉन (n = बाह्यतम कोश) से पहले कोश में उत्कष्ट गैस का इलेक्टॉन-विन्यास होता है।

जब हम द्वितीय आवर्त में लीथियम से फ्लुओरीन की ओर बढ़ते हैं, तब क्रमश: इलेक्ट्रॉन एक ही मुख्य क्वांटम ऊर्जा-स्तर के कक्षकों में भरते हैं तथा नाभिक पर आंतरिक क्रोड इलेक्ट्रॉनों (Inner Core Electrons) द्वारा डाले गए आवरण-प्रभाव में इतनी वृद्धि नहीं होती कि नाभिक तथा इलेक्ट्रॉन के बीच बढ़ते हुए आकर्षण को पूरित (compen-

Fig. 3.6 (क) द्वितीय आवर्त के तत्त्वों के प्रथम आयनन एंथैल्पी मान, उन तत्त्वों के परमाणु–क्रमांक का फलन (ख) क्षारीय धातुओं के प्रथम आयनन एंथैल्पी मान उनके परमाणु का फलन

sate) कर सके। ऐसी परिस्थित में बढ़ते हुए नाभिकीय आवेश द्वारा बाह्यतम इलेक्ट्रॉन पर डाला गया आकर्षण-प्रभाव आवरण-प्रभाव की तुलना में अधिक हो जाता है। फलस्वरूप बाह्यतम इलेक्ट्रॉन अधिक दृढ़ता से बंध जाते हैं तथा आवर्त में आगे बढ़ने पर तत्त्वों के आयनन एन्थैल्पी के मानों में वृद्धि होती जाती है। वर्ग में नीचे की ओर बढ़ने पर बाह्यतम इलेक्ट्रॉन नाभिक से अधिक दूरी पर रहते हैं तथा आंतरिक इलेक्ट्रॉन के कारण नाभिक पर आवरण- प्रभाव अधिक होता है। ऐसी दशा में वर्ग में नीचे की ओर बढ़ने पर नाभिकीय आवेश की तुलना में आवरण-प्रभाव अधिक महत्त्वपूर्ण हो जाता है। इस कारण बाह्यतम इलेक्ट्रॉन को निकालने के लिए कम ऊर्जा की आवश्यकता होती है तथा वर्ग में नीचे की ओर बढ़ने पर तत्त्वों के आयनन एन्थैल्पी का मान घटता जाता है।

चित्र 3.6 (क) से स्पष्ट है कि बोरॉन (Z=5) के प्रथम आयनन एन्थैल्पी का मान बेरिलियम (Z=4) के प्रथम आयनन एन्थैल्पी के मान से कम है, जबिक बोरॉन का नाभिकीय आवेश अधिक है। जब हम एक ही मुख्य क्वांटम ऊर्जा-स्तर पर विचार करते हैं, तो s-इलेक्ट्रॉन p-इलेक्ट्रॉन की तुलना में नाभिक की ओर अधिक आकर्षित रहता है। बेरिलियम में बाह्यतम इलेक्ट्रॉन, जो अलग किया जाएगा, वह s-इलेक्ट्रॉन होगा, जबिक बोरॉन में बाह्यतम इलेक्ट्रॉन (जो अलग किया जाएगा, वह) p- इलेक्ट्रॉन होगा। उल्लेखनीय है कि नाभिक की ओर 2s-इलेक्ट्रॉन का भेदन (penetration) 2p- इलेक्ट्रॉन की ओर 2s-इलेक्ट्रॉन का भेदन (penetration) 2p- इलेक्ट्रॉन

की तुलना में अधिक होता है। इस प्रकार बोरॉन का 2p-इलेक्ट्रॉन बेरिलियम के 2s-इलेक्ट्रॉन की तुलना में आंतरिक क्रोड इलेक्ट्रॉनों द्वारा अधिक परिरक्षित (Shielded) होता है। अत: बेरिलियम के 2s- इलेक्ट्रॉन की तुलना में बोरॉन का 2p- इलेक्ट्रॉन अधिक आसानी से पृथक् हो जाता है। अत: बेरिलियम की तुलना में बोरॉन के प्रथम आयनन एन्थैल्पी का मान कम होगा। दूसरी अनियमितता हमें ऑक्सीजन तथा नाइट्रोजन के प्रथम आयनन एन्थैल्पी के मानों में देखने को मिलती है। ऑक्सीजन के लिए प्रथम आयनन एन्थेल्पी का मान नाइटोजन के प्रथम आयनन एन्थैल्पी के मान से कम है। इसका कारण यह है कि नाइट्रोजन में तीनों बाह्यतम 2p-इलेक्ट्रॉन विभिन्न p-कक्षकों में वितरित है (हुंड का नियम), जबिक ऑक्सीजन के चारों 2p-इलेक्ट्रॉनों में से दो 2p-इलेक्ट्रॉन एक ही 2p-आर्बिटल में हैं। फलत: इलेक्ट्रॉन प्रतिकर्षण बढ जाता है। फलस्वरूप नाइट्रोजन के तीनों 2p-इलेक्ट्रॉनों में से एक इलेक्ट्रॉन को पृथक् करने की बजाय ऑक्सीजन के चारों 2p-इलेक्ट्रॉनों में से चौथे इलेक्ट्रॉन को अलग करना आसान हो जाता है।

उदाहरण 3.6

तीसरे आवर्त के तत्त्वों Na, Mg और Si की प्रथम आयनन एन्थेल्पी $\Delta_i H$ का मान क्रमश: 496, 737 और 786 kJ mol^{-1} है। पूर्वानुमान कीजिए कि ऐलुमीनियम का प्रथम $\Delta_i H$ मान 575 या 760 kJ mol^{-1} में से किसके अधिक पास होगा, इसका उचित कारण बताइए।

हल

यह 575 kJ mol^{-1} के अधिक पास होगा। ऐलुमीनियम का मान मैग्नीशियम के मान से कम होना चाहिए, क्योंकि नाभिक से 3p - इलेक्ट्रॉन 3s - इलेक्ट्रॉनों के द्वारा परिरक्षित होते हैं।

(घ) इलेक्ट्रॉन लब्धि एन्थैल्पी

जब कोई उदासीन गैसीय परमाणु (X) इलेक्ट्रॉन ग्रहण कर ऋणायन (anion) में परिवर्तित होता है, तो इस प्रक्रम में हुए एन्थैल्पी परिवर्तन को उस तत्त्व की 'इलेक्ट्रॉन लिब्ध एन्थैल्पी' ($\Delta_{\rm eg}H$) कहते हैं। यह एन्थैल्पी इस तथ्य की माप कही जा सकती है कि किस सरलता से परमाणु इलेक्ट्रॉन को ग्रहण करके ऋणायन बना लेता है। यह समीकरण 3.3 में दर्शाया गया है—

$$X(g) + e^{-} \rightarrow X^{-}(g)$$
 (3.3)

परमाणु द्वारा इलेक्ट्रॉन ग्रहण करने का प्रक्रम ऊष्माक्षेपी (exothermic) अथवा ऊष्माशोषी (endothermic) होगा, यह तत्त्व के स्वभाव पर निर्भर करता है। बहुत-से तत्त्व जब इलेक्ट्रॉन ग्रहण करते हैं, तब ऊर्जा निर्मुक्त होती है। ऐसी अवस्था में इलेक्ट्रॉन लब्धि एन्थैल्पी ऋणात्मक होगी। उदाहरणार्थ—17वें वर्ग के तत्त्वों (हैलोजन) की इलेक्ट्रॉन लब्धि एन्थैल्पी का मान अत्यधिक ऋणात्मक होता है। इसका कारण यह है कि मात्र एक इलेक्ट्रॉन ग्रहण करके वे स्थायी उत्कृष्ट गैस का इलेक्ट्रॉनिक विन्यास प्राप्त कर लेते हैं। इसी तरह उत्कृष्ट गैसों की इलेक्ट्रॉन लब्धि एन्थैल्पी का मान अत्यधिक धनात्मक होता है, क्योंकि इलेक्ट्रॉन को वर्तमान क्वांटम स्तर से अगले क्वांटम

स्तर में प्रवेश करना पड़ता है जो बहुत ही अस्थायी इलेक्ट्रॉनिक विन्यास होगा। उल्लेखनीय है कि उत्कृष्ट गैसों के पहले जो तत्त्व आवर्त सारणी में दाई तरफ ऊपर की ओर स्थित हैं, उनके लिए इलेक्ट्रॉन लिब्ध एन्थेल्पी का मान अत्यधिक ऋणात्मक होता है।

आयनन एन्थैल्पी की तुलना में इलेक्ट्रॉन लब्धि एन्थैल्पी के परिवर्तन का क्रम कम नियमित है। सामान्य नियम के अनुसार आवर्त सारणी के आवर्त में जब हम दाईं तरफ बढते हैं, तब बढते हुए परमाणु क्रमांक के साथ इलेक्ट्रॉन लब्धि एन्थैल्पी अधिक ऋणात्मक होती है। आवर्त सारणी में बाई से दाईं ओर जाने पर प्रभावी नाभिकीय आवेश में वृद्धि होती है। फलस्वरूप छोटे परमाण में इलेक्ट्रॉन का जोडना सरल होता है. क्योंकि प्रविष्ट हुआ इलेक्टॉन धनावेशित नाभिक के सन्निकट होगा। वर्ग में नीचे की ओर बढने पर इलेक्ट्रॉन लब्धि एन्थैल्पी का मान कम ऋणात्मक होता जाता है, क्योंकि परमाणु आकार बढता है तथा प्रविष्ट हुआ इलेक्ट्रॉन नाभिक से दूर होगा। इसी प्रकार की प्रवृत्ति सामान्यतया आवर्त सारणी में देखने को मिलती है। (सारणी 3.7) यहाँ पर इस तथ्य का उल्लेख करना महत्त्वपूर्ण है कि ऑक्सीजन तथा फ्लुओरीन के लिए इलेक्ट्रॉन लब्धि एन्थैल्पी का मान क्रमश: उन्हीं के वर्गों में आगे वाले तत्त्वों से कम ऋणात्मक है। इसका स्पष्टीकरण इस प्रकार है–जब ऑक्सीजन तथा फ्लुओरीन परमाणुओं में इलेक्ट्रॉन प्रवेश करते हैं, तब ग्रहण किया गया इलेक्ट्रॉन निम्न क्वांटम संख्या वाले ऊर्जा स्तर (n = 2) में प्रवेश करता है। इस प्रकार इसी क्वांटम ऊर्जा स्तर में उपस्थित इलेक्ट्रॉनों द्वारा अधिक प्रतिकर्षण होता है। क्वांटम स्तर n=3 (S या Cl) में प्रवेश कराया गया

सारणी 3.7 मुख्य व	गे के कुछ तत्त्व	िको इलेक्ट्रांन लब्धि	े एन्थेल्पी* (kJ mol ⁻¹)
-------------------	------------------	-----------------------	--------------------------------------

वर्ग 1	$\Delta_{eg}H$	वर्ग 16	$oldsymbol{\Delta}_{eg} oldsymbol{H}$	वर्ग 17	$oldsymbol{\Delta}_{eg}oldsymbol{H}$	वर्ग 0	$oldsymbol{\Delta}_{eg}oldsymbol{H}$
H	- 73					He	+ 48
Li	- 60	О	- 141	F	- 328	Ne	+ 116
Na	- 53	S	- 200	C 1	- 349	Ar	+ 96
K	- 48	Se	- 195	Br	- 325	Kr	+ 96
Rb	- 47	Те	- 190	I	- 295	Xe	+ 77
Cs	- 46	Po	- 174	At	- 270	Rn	+ 68

^{*}बहुत सी पुस्तकों में रासायनिक प्रक्रम 3.3 में दर्शाए गए एन्थैल्पी परिवर्तन के ऋणात्मक मान को इलेक्ट्रॉन-बंधुता (Electron Affinity) (A_p) के रूप में परिभाषित किया गया है। परमाणु द्वारा इलेक्ट्रॉन ग्रहण करने पर जब ऊर्जा निर्मुक्त होती है, तब इलेक्ट्रॉन बंधुता को धनात्मक दर्शाया जाता है, जो ऊष्मागतिक की परिपाटी के विपरीत है। यदि किसी परमाणु में इलेक्ट्रॉन देने के लिए बाहर से ऊर्जा देनी पड़ती है, तब इलेक्ट्रॉन बंधुता को ऋणात्मक दर्शाया जाता है। इलेक्ट्रॉन-बंधुता को परम शून्य पर परिभाषित किया जाता है।

इलेक्ट्रॉन, दिक्स्थान (space) में अधिक स्थान घेरता है। इस प्रकार इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण बहुत कम हो जाता है।

उदाहरण 3.7

P,S,Cl तथा F में से किसकी अधिकतम ऋणात्मक इलेक्ट्रॉन लब्धि एन्थैल्पी तथा किसकी न्यूनतम इलेक्ट्रॉन लब्धि एन्थैल्पी होगी? व्याख्या कीजिए।

हल

आवर्त में बाईं से दाईं ओर बढ़ने पर इलेक्ट्रॉन लिब्ध एन्थैल्पी अधिक ऋणात्मक तथा वर्ग में नीचे की ओर बढ़ने पर कम ऋणात्मक होती है। 3p—कक्षक (जो बड़ा है) उसमें इलेक्ट्रॉन प्रवेश कराने की तुलना में जब 2p—कक्षक में इलेक्ट्रॉन प्रवेश कराया जाता है, तब इलेक्ट्रॉन—इलेक्ट्रॉन प्रतिकर्षण अधिक होता है। अतः सर्वाधिक ऋणात्मक इलेक्ट्रॉन लिब्ध एन्थैल्पी क्लोरीन की होगी तथा सबसे कम इलेक्ट्रॉन लिब्ध एन्थैल्पी फॉस्फोरस की होगी।

(च) विद्युत् ऋणात्मकता

परमाणु के रासायनिक यौगिक में सहसंयोजक आबंध के इलेक्ट्रॉन युग्म को अपनी ओर आकर्षित करने की योग्यता का गुणात्मक माप विद्युत् ऋणात्मकता है। आयनन एन्थेल्पी और इलेक्ट्रॉन लब्धि एन्थेल्पी को मापा जा सकता है, किंतु विद्युत्

ऋणात्मकता मापने योग्य नहीं है। फिर भी तत्त्वों की विद्युत् ऋणात्मकता के लिए कई संख्या-सूचक पैमाने (जैसे— पॉलिंग पैमाना, मुलिकन ज़फे पैमाना, अलर्ड राचो पैमाना आदि) का विकास हुआ है। पॉलिंग पैमाना सबसे ज्यादा उपयोग में आता है। अमेरिकी वैज्ञानिक लीनियस पॉलिंग ने सन् 1922 में फ्लुओरीन की विद्युत् ऋणात्मकता को 4.0 आँका। इस तत्त्व की इलेक्ट्रॉनों को अपनी ओर आकर्षित करने की क्षमता सबसे अधिक है। कुछ तत्त्वों की विद्युत् ऋणात्मकता के मान सारणी 3.8 (अ) में दिएगए हैं।

इलेक्ट्रॉन ऋणात्मकता किसी दिए गए तत्त्व के लिए स्थिर नहीं है: इसका मान इस बात पर निर्भर करता है कि यह तत्त्व किस दूसरे तत्त्व से जुड़ा है। हालाँकि यह मापने योग्य राशि नहीं है, फिर भी दो परमाणु आपस में किस प्रकार के बल से जुड़े हैं, इसकी प्रागुक्ति करने का आधार देती है, जिसके बारे में आप आगे जानेंगे।

साधारणतया विद्युत्-ऋणात्मकता आवर्त सारणी में आवर्त में बाईं से दाईं तरफ (Li से F) जाने पर बढ़ती है तथा वर्ग में नीचे (F से At) जाने पर कम होती है। यह प्रवृत्ति कैसे समझाई जाए? क्या विद्युत्-ऋणात्मकता को परमाणु त्रिज्या से संबंधित माना जा सकता है, जो आवर्त में बाई से दाईं ओर जाने पर घटती है तथा वर्ग में नीचे जाने पर बढ़ती है। आवर्त में परमाणु त्रिज्या के कम होने से संयोजी इलेक्ट्रॉनों और नाभिक में आर्कषण बढ़ता है तथा विद्युत्-ऋणात्मकता बढ़ती है। इसी आधार पर जब हम वर्ग में नीचे जाते हैं, तो जैसे-जैसे परमाणु त्रिज्या बढ़ती है, वैसे-वैसे विद्युत्-ऋणात्मकता कम होती जाती है। यह प्रवृत्ति आयनन एन्थैल्पी के समान है।

अब आप विद्युत् ऋणात्मकता एवं परमाणु त्रिज्या का संबंध जान गए होंगे। क्या अब आप विद्युत् ऋणात्मकता और अधातुओं के बीच संबंध की कल्पना कर सकते हैं?

अधातु तत्त्वों में इलेक्ट्रॉन लिब्ध की प्रबल प्रवृत्ति होती है। इसीलिए विद्युत्-ऋणात्मकता का सीधा संबंध अधातु तत्त्वों के गुणधर्मों से है। इस प्रकार आवर्त में तत्त्वों की विद्युत् ऋणात्मकता बढ़ने के साथ ही अधातु गुणधर्मों में वृद्धि होती है (या धातु गुणधर्मों में कमी होती है)। इसी प्रकार वर्गों में नीचे जाने पर तत्त्वों की विद्युत्-ऋणात्मकता कम होने से अधातु

चित्र 3.7 आवर्त सारणी में तत्त्वों की आवर्त प्रवृत्ति

~		C		, 40.	4
सारणा 3.8	(क)	विद्युत्-ऋणात्मकता	का मान	(पाालग	पमाना)
		3 5 -		•	

परमाणु (आवर्त II)	Li	Ве	В	С	N	0	F
विद्युत्-ऋणात्मकता	1.0	1.5	2.0	2.5	3.0	3.5	4.0
परमाणु (आवर्त III)	Na	Mg	A1	Si	P	s	C1
विद्युत्-ऋणात्मकता	0.9	1.2	1.5	1.8	2.1	2.5	3.0

सारणी 3.8 (ख) विद्युत्-ऋणात्मकता का मान (पॉलिंग पैमाना)

परमाणु (वर्ग I)	विद्युत्-ऋणात्मकता का मान	परमाणु (वर्ग 17)	विद्युत्-ऋणात्मकता का मान
Li	1.0	F	4.0
Na	0.9	C1	3.0
K	0.8	Br	2.8
Rb	0.8	I	2.5
Cs	0.7	At	2.2

गुणधर्मों में कमी आती है (या धातु गुणधर्मों में वृद्धि होती है)। इन सभी आवर्त प्रवृत्तियों को संक्षेप में चित्र 3.7 में दर्शाया है।

3.7.2 रासायनिक गुणधर्मों में आवर्त प्रवृत्ति

तत्त्वों के रासायनिक गुणधर्मों में बहुत सारी प्रवृत्तियाँ (जैसे— विकर्ण संबंध (diagonal relationship), अक्रिय युग्म प्रभाव (Inert pair effect), लैंथेनॉयड संकुचन प्रभाव (effect of lanthanoid contraction) इत्यादि पर चर्चा हम आगामी एककों में करेंगे। इस भाग में तत्त्वों की संयोजकता में आवर्तिता एवं दूसरे आवर्त में (Li से F तक) असामान्य गुणधर्मों का अध्ययन हम करेंगे।

(क) संयोजकता में आवर्तिता या ऑक्सीकरण अवस्थाएँ

संयोजकता तत्त्वों का महत्त्वपूर्ण गुणधर्म है। इसे तत्त्व के इलेक्ट्रॉनिक विन्यास के आधार पर समझा जा सकता है। निरूपक तत्त्वों (Representative Elements) की संयोजकता सामान्यतया (हालॉंकि आवश्यक नहीं है) उस तत्त्व के बाह्यतम कोश में उपस्थित इलेक्ट्रॉनों की संख्या के बराबर होती है या आठ की संख्या में से बाह्यतम इलेक्ट्रॉनों की संख्या घटाने पर जो संख्या प्राप्त होती है, वही उस तत्त्व की संयोजकता कहलाती है। संयोजकता के स्थान पर अब ऑक्सीकरण

अवस्था पद का प्रयोग होता है। ऐसे दो यौगिकों पर विचार करते हैं, जिनमें ऑक्सीजन है OF, और Na,OI इन यौगिकों में तीन तत्त्व शामिल हैं, जिनकी विद्युत्-ऋणात्मकता का क्रम F>O>Na है। फ्लुओरीन का बाह्य इलेक्ट्रॉनिक विन्यास $2s^22p^5$ है। इसका प्रत्येक परमाणु OF_2 अणु में ऑक्सीजन के एक इलेक्ट्रॉन के साथ संयोजन करता है, फ्लुओरीन की ऑक्सीकरण अवस्था -1 है, क्योंकि इस अणु में दो फ्लुओरीन परमाणु है ऑक्सीजन का बाह्य इलेक्ट्रॉनिक विन्यास $2s^2 \ 2p^4$ है। यह फ्लुओरीन परमाणु साथ दो इलेक्ट्रॉनों का संयोजन करता है। इसीलिए इसकी ऑक्सीकरण अवस्था +2 है। Na₂O अणु में ऑक्सीजन परमाणु अधिक विद्युत् ऋणात्मक होने के कारण इलेक्ट्रॉन ग्रहण करता है तथा प्रत्येक सोडियम परमाणु एक इलेक्ट्रॉन देता है। अत: ऑक्सीजन ऑक्सीकरण अवस्था -2 को दर्शाता है। दूसरी ओर सोडियम (जिसका बाह्य इलेक्ट्रॉन विन्यास 3s¹ है) एक इलेक्ट्रॉन ऑक्सीजन को देता है और इस प्रकार इसकी ऑक्सीकरण अवस्था +1 है। इलेक्ट्रॉन ऋणात्मकता का ध्यान रखते हुए एक विशेष यौगिक में तत्त्व के किसी परमाणु द्वारा अन्य परमाणु के आवेश की संख्या ग्रहण करने को उसकी 'ऑक्सीकरण अवस्था' कहते हैं।

हाइड्राइड तथा ऑक्साइड में तत्त्वों की संयोजकता की आवर्त प्रवृत्ति (Periodic Trend) को सारणी 3.9 में दर्शाया गया है। तत्त्वों के रासायनिक व्यवहार में इस तरह की आवर्त प्रकृतियों को इस पुस्तक में अन्यत्र भी चर्चा की गई है। बहुत

समूह	1	2	13	14	15	16	17	18
संयांजी इलेक्ट्रॉन की संख्या	1	2	3	4	5	6	7	8
संयोजकता	1	2	3	4	3,5	2,6	1,7	0,8

से तत्त्व ऐसे भी हैं, जो परिवर्ती संयोजकता (Variable Valency) प्रदर्शित करते हैं। परिवर्ती संयोजकता संक्रमण तत्त्वों एवं ऐक्टीनॉयड तत्त्वों का एक विशेष अभिलक्षण है। इसका अध्ययन हम बाद में करेंगे।

उदाहरण 3.8

आवर्त सारणी का उपयोग करते हुए, निम्नलिखित युग्मों वाले तत्त्वों के संयोग से बने यौगिकों के अणु-सूत्र की प्रागुक्ति (prediction) कीजिए— (क) सिलिकॉन एवं ब्रोमीन और (ख) ऐलुमिनियम तथा सल्फर

हल

- (क) सिलिकॉन आवर्त सारणी के 14वें वर्ग का तत्त्व है, जिसकी संयोजकता 4 है। ब्रोमीन, जो 17वें वर्ग (हैलोजन परिवार) का सदस्य है, की संयोजकता 1 है। अत: यौगिक का अणुसूत्र SiBr, होगा।
- (ख) आवर्त सारणी में 13वें वर्ग का तत्त्व ऐलुमिनियम है, जिसकी संयोजकता 3 है। सल्फर 16वें वर्ग का तत्त्व है, जिसकी संयोजकता 2 है। अत: ऐलुमिनियम तथा सल्फर से बने यौगिक का अणु सूत्र Al_2S_3 होगा।

(ख) द्वितीय आवर्त के तत्त्वों के गुणधर्मों में असंगतता प्रत्येक वर्ग के प्रथम तत्त्व वर्ग 1 (लीथियम), वर्ग 2 (बेरिलियम) और वर्ग 13-17 (बोरॉन से फ्लुओरीन) अपने वर्ग के अन्य सदस्यों से अनेक पहलुओं में भिन्न हैं। उदाहरणार्थ— लीथियम अन्य क्षारीय धातुओं से तथा बेरिलियम अन्य क्षारीय मृदा धातुओं से भिन्न यौगिक बनाते हैं, जिनमें निश्चित तौर पर सहसंयोजक बंध होते हैं, जबिक अन्य सदस्य प्रधानतया आयिनक यौगिक बनाते हैं। वास्तव में लीथियम तथा बेरिलियम क्रमश: अगले वर्गों के द्वितीय तत्त्व (जैसे— मैगनीशियम और ऐलुमिनियम) से अधिक मिलते है। आवर्त गुणधर्मों में इस तरह की तुल्यता को 'विकर्ण संबंध' (Diagonal Relationship) कहते हैं।

s- और p- ब्लॉक के तत्त्वों के समूह में अन्य सदस्यों की तुला। में प्रथम तत्त्व के भिन्न रासायिनक व्यवहार के क्या कारण हो सकते हैं? इनका असामान्य व्यवहार इन कारणों से होता है— तत्त्वों का छोटा आकार, अधिक आवेश/त्रिज्या अनुपात तथा अधिक विद्युत्—ऋणात्मकता वर्गों के प्रथम सदस्य में सिर्फ चार संयोजक कक्षक (2s और 2p) बंध बनाने के लिए प्राप्य होते हैं, जबिक वर्गों के द्वितीय सदस्य हेतु 9 संयोजक कक्षक होते हैं (3s, 3p, 3d)। फलस्वरूप हर वर्ग के प्रथम सदस्य के लिए अधिकतम सहसंयोजकता चार है। उदाहरणार्थ— बोरान केवल $[BF_4]$ - बना सकता है, जबिक वर्ग के अन्य सदस्य अपने संयोजक कोश का विस्तार इलेक्ट्रॉनों के चार से अधिक जोड़ों को स्थान देने के लिए कर सकते हैं। उदाहरणार्थ— ऐलुमिनियम $[AIF_4]$ 3- बनाता है। इतना ही नहीं, p- ब्लॉक

सारणी 3.9 यौगिकों के सूत्रों द्वारा दर्शाए गए तत्त्वों की संयोजकता में आवर्त-प्रवृत्ति

समूह	1	2	13	14	15	16	17
हाइड्राइड	LiH		B_2H_6	CH ₄	NH ₃	H ₂ O	HF
का सूत्र	NaH	CaH ₂	AlH_3	SiH ₄	PH_3	H ₂ S	HC1
	KH			GeH ₄	AsH_3	H ₂ Se	HBr
				SnH ₄	SbH ₃	H ₂ Te	HI
ऑक्साइड	Li ₂ O	MgO	B_2O_3	CO_2	N_2O_3, N_2O_5		-
का सूत्र	Na ₂ O	CaO	Al_2O_3	SiO ₂	P ₄ O ₆ , P ₄ O ₁₀	SO ₃	Cl_2O_7
	K ₂ O	SrO	Ga ₂ O ₃	${\rm GeO}_2$	As_2O_3 , As_2O_5	SeO ₃	-
		BaO	In_2O_3	SnO ₂	$\mathrm{Sb_2O_3}$, $\mathrm{Sb_2O_5}$	TeO ₃	-
				PbO ₂	Bi ₂ O ₃ –	_	

गुण	तत्त्व				
धात्विक त्रिज्या M/ pm	Li	Ве	В		
	152	111	88		
	Na	Mg	A1		
	186	160	143		
	Li	Ве			
आयनी त्रिज्या M ⁿ⁺ / pm	76	31			
	Na	Mg			
	102	72			

के तत्त्वों में समूहों के प्रथम सदस्य स्वयं से एवम् द्वितीय आवर्त के अन्य सदस्यों से $p_\pi - p_\pi$ बंध बनाने की प्रबल योग्यता रखते हैं (जैसे-C = C, C \equiv C, N = N, N \equiv N, C = N, C \equiv N), जबिक वर्गों के उत्तरवर्ती सदस्य ऐसा नहीं कर पाते हैं।

उदाहरण 3.9

क्या ऐलुमिनियम के यौगिक Al $[Cl(H_2O)_5]^{2^+}$ में ऐलुमिनियम की ऑक्सीकरण अवस्था (oxidation state) और सहसंयोजकता समान है?

हल

ऐलुमिनियम की ऑक्सीकरण अवस्था +3 और सहसंयोजकता 6 है।

3.7.3 रासायनिक अभिक्रियाशीलता तथा आवर्तिता

हमने कुछ मौलिक गुणों (जैसे—परमाणु एवम् आयनन त्रिज्या, आयनन एन्थैल्पी, इलेक्ट्रॉन लिब्ध एन्थैल्पी और संयोजकता) में आवर्त प्रवृत्ति का अध्ययन किया। अब तक हम यह जान गए हैं कि आवर्तिता इलेक्ट्रॉनिक विन्यास से संबंधित है। भौतिक एवं रासायनिक गुणधर्म तत्त्वों के इलेक्ट्रॉनिक विन्यास की अभिव्यक्ति है। तत्त्वों के इन मौलिक गुणों और रासायनिक गुणों में संबंध खोजने की कोशिश अब हम करेंगे।

हम जानते हैं कि आवर्त में बाईं से दाईं ओर जाने पर परमाणु एवं आयनिक त्रिज्या घटती है। फलस्वरूप आवर्त में आयनन एन्थैल्पी साधारणतया बढ़ती है (कुछ अपवादों को छोड़कर, जिसका विवरण भाग 3.7.1—क में दिया है) तथा इलेक्ट्रॉन लब्धि एन्थैल्पी और अधिक ऋणात्मक हो जाती है। आवर्त में सबसे बाईं ओर स्थित तत्त्व की आयनन एन्थैल्पी सबसे कम है और सबसे दाईं ओर के तत्त्व की इलेक्ट्रॉन लब्धि एन्थैल्पी सबसे अधिक ऋणात्मक है। (नोट-उत्कृष्ट गैसों में पूर्णतः भरे कोश होते हैं। उनकी इलेक्ट्रॉन लिख्य एंथैल्पी का मान धनात्मक होता है)। आवर्त सारणी में दोनों छोरों पर सबसे अधिक और मध्य में सबसे कम रासायनिक क्रियाशीलता होती है। इस प्रकार सबसे बाईं ओर अधिकतम रासायनिक क्रियाशीलता (क्षारीय धातुओं में) इलेक्ट्रॉन खोकर धनायन बनाकर प्रदर्शित होती है और सबसे दाईं ओर (हैलोजन परिवार) इलेक्ट्रॉन प्राप्त कर ऋणायन बनाकर प्रदर्शित होती है। इस गण का संबंध तत्त्वों के अपचयन तथा उपचयन

व्यवहार से करेंगे. जिसे आप बाद में पढेंगे। तत्त्वों की धात्विक तथा अधात्विक विशेषता का इससे सीधा संबंध है। आवर्त में बाईं ओर से दाईं ओर जाने पर धात्विक गुण में कमी और अधात्विक गुण में बढोतरी होती है। तत्त्वों की रासायनिक क्रियाशीलता उनकी ऑक्सीजन और हैलोजन से क्रिया कराकर प्रदर्शित की जा सकती है। यहाँ ऑक्सीजन से तत्त्वों की अभिक्रिया पर हम विचार करेंगे। आवर्त के दोनों किनारों के तत्त्व ऑक्सीजन से सरलतापर्वक संयोग करके ऑक्साइड बनाते हैं। सबसे बाईं ओर के तत्त्वों के साधारण ऑक्साइड सबसे अधिक क्षारीय होते हैं (उदाहरणार्थ- Na₂O) और जो सबसे दाईं ओर हैं, उनके ऑक्साइड सबसे अम्लीय (उदाहरणार्थ– Cl₂O₂) तथा मध्य के तत्त्वों के ऑक्साइड उभयधर्मी (उदाहरणार्थ- Al₂O₃, As₂O₃) या उदासीन (उदाहरणार्थ-CO, NO, NoO) होते हैं। उभयधर्मी (amphoteric) ऑक्साइड क्षारों के साथ अम्लीय और अम्लों के साथ क्षारीय व्यवहार करते हैं, जबिक उदासीन ऑक्साइड में अम्ल या क्षार का गुण नहीं होता है।

उदाहरण 3.10

जल से रासायनिक अभिक्रिया द्वारा दर्शाएं कि ${
m Na_2O}$ एक क्षारीय एवं ${
m Cl_2O_7}$ एक अम्लीय ऑक्साइड है।

हल

 $m Na_2O$ जल से अभिक्रिया करके प्रबल क्षार बनाता है, जबिक $m Cl_2O_7$ प्रबल अम्ल बनाता है।

 $2\text{Na} + \text{H}_2\text{O} \rightarrow 2\text{NaOH}$

 $Cl_2O_7 + H_2O \rightarrow 2HClO_4$

क्षारीय या अम्लीय गुण का परीक्षण आप लिटमस पत्र से कर सकते हैं।

निरूपक तत्त्वों की तुलना में संक्रमण धातुओं $(3d \ \mbox{श्रेणी})$ का आवर्त में परमाणु त्रिज्या का परिर्वतन बहुत कम है। परमाणु त्रिज्या में परिर्वतन आंतरिक संक्रमण धातुओं $(4f \mbox{श्रेणी})$ के लिए और भी कम है। आयनन एन्थैल्पी s- और p- ब्लॉक के तत्त्वों के मध्य है। परिणामस्वरूप ये तत्त्व वर्ग 1 और 2 की धातुओं की तुलना में कम विद्युत्धनीय हैं।

मुख्य वर्ग के तत्त्वों में उनके परमाणु-क्रमांक बढ़ने से सामान्यतया परमाणु तथा आयनी त्रिज्या बढ़ती है। फलत: धीरे-धारे आयनन एन्थेल्पी घटती है और इलेक्ट्रॉन लब्धि एन्थेल्पी में नियमित कमी (कुछ अपवाद तीसरे आवर्त के तत्त्वों में हैं, जिन्हें भाग 3.7.1—घ में दर्शाया गया है।) होती है। इस प्रकार वर्ग में नीचे जाने पर धात्विक गुण बढ़ता है और अधात्विक गुण घटता है। इस प्रवृत्ति को उनके उपचयन तथा अपचयन के गुण से जोड़ा जा सकता है, जिसे आप बाद में पढ़ेंगे। संक्रमण तत्त्वों की प्रवृत्ति इसके विपरीत है। इसे हम परमाणु आकार और आयनन एन्थेल्पी से समझ सकते हैं।

सारांश

इस एकक में आपने आवर्त नियम और आवर्त सारणी के विकास का अध्ययन किया है। मेंडलीव आवर्त सारणी परमाणु द्रव्यमान पर आधारित थी। आधुनिक आवर्त सारणी में तत्त्वों की व्यवस्था उनके बढ़ते हुए परमाणु क्रमांक के क्रम में सात क्षैतिज पंक्तियों (आवर्त) और 18 ऊर्ध्वाधर स्तंभों (वर्ग या परिवार) में की है। आवर्त में परमाणु क्रमांक क्रमश: बढ़ता है, जबिक वर्ग में वह एक पैटर्न से बढ़ता है। एक वर्ग के तत्त्वों में समान संयोजी कोश (Valence Shell) इलेक्ट्रॉनिक विन्यास होता है। इसीलिए ये समान रासायनिक गुणधर्मों को दर्शाते हैं। एक ही आवर्त के तत्त्वों में बाई से दाई ओर जाने पर इलेक्ट्रॉनों की संख्या में वृद्धि होती है। अत: इनकी संयोजकता (Valencies) भिन्न होती है। आवर्त सारणी में इलेक्ट्रॉनिक विन्यास के आधार पर चार प्रकार के तत्त्वों की पहचान की गई है। ये तत्त्व हैं— s- ब्लॉक तत्त्व, p- ब्लॉक तत्त्व, d- ब्लॉक तत्त्व तथा f- ब्लॉक तत्त्व। 1s कक्षक में एक इलेक्ट्रॉन होने के कारण आर्वत सारणी में हाइड्रोजन का स्थान अद्वितीय है। ज्ञात तत्त्वों में 78 प्रतिशत से अधिक संख्या धातुओं की है। अधातुओं की संख्या 20 प्रतिशत से कम है, जो आवर्त सारणी में दाईं ओर शीर्ष पर स्थित हैं। ऐसे तत्त्व, जो धातुओं और अधातुओं के सीमावर्ती हैं, अर्ध-धातुएं (Semi metals) या उप-धातुएं (Metaloids) कहलाते हैं (जैसे— Si, Ge, As)। वर्ग में नीचे की ओर बढ़ने पर तत्त्वों के धात्विक गुणों में वृद्धि होती है। बाई से दाईं ओर जाने पर आवर्त में धात्विक गुण में कमी आती है। तत्त्वों के भौतिक तथा रासायनिक गुण उनके परमाणु क्रमांक के साथ आवर्तित होते हैं।

तत्त्वों के परमाणु आकार, आयनन एन्थेल्पी, इलेक्ट्रॉन लब्धि एन्थेल्पी, विद्युत् ऋणात्मकता तथा संयोजकता में आवर्तिता की प्रवृत्ति पाई जाती है। परमाणु त्रिज्या आवर्त में बाई ओर से दाई ओर जाने पर घटती है और वर्ग में परमाणु-क्रमांक बढ़ने पर बढ़ती है। आयनन एन्थेल्पी प्राय: आवर्त में परमाणु-क्रमांक बढ़ने पर बढ़ती है तथा वर्ग में नीचे जाने पर घटती है। विद्युत् ऋणात्मकता की भी यही प्रवृत्ति होती है। इलेक्ट्रॉन लब्धि एन्थेल्पी साधारणतया आवर्त में दाई ओर चलने पर और अधिक ऋणात्मक तथा वर्ग में नीचे जाने पर कम ऋणात्मक होती है। संयोजकता में भी आवर्तिता पाई जाती है। उदाहरण के तौर पर— निरूपक तत्त्वों में संयोजकता या तो बाह्यतम कक्षकों में इलेक्ट्रॉन की संख्या के बराबर अथवा आठ में से इन इलेक्ट्रॉनं की संख्या घटाकर ज्ञात की जाती है। रासायनिक क्रियाशीलता आवर्त के दोनों किनारों पर सबसे अधिक और मध्य में सबसे कम होती है। आवर्त में सबसे दाई ओर रासायनिक अभिक्रियाशीलता इलेक्ट्रॉन को त्यागने की सुगमता (या कम आयनन एन्थेल्पी) के कारण होती है। अधिक क्रियाशील तत्त्व प्रकृति में स्वतंत्र अवस्था में नहीं मिलते। वे प्राय: यौगिकों के रूप में मिलते हैं। किसी आवर्त में बाई ओर के तत्त्व क्षारीय ऑक्साइड बनाते हैं। जा तत्त्व मध्य में हैं, वे उभयधर्मी ऑक्साइड या उदासीन ऑक्साइड बनाते हैं।

अभ्यास

- 3.1 आवर्त सारणी में व्यवस्था का भौतिक आधार क्या है?
- 3.2 मेंडलीव ने किस महत्त्वपूर्ण गुणधर्म को अपनी आवर्त सारणी में तत्त्वों के वर्गीकरण का आधार बनाया? क्या वे उसपर दृढ़ रह पाए?
- 3.3 मेंडलीव के आवर्त नियम और आधुनिक आवर्त नियम में मौलिक अंतर क्या है?
- 3.4 क्वांटम संख्याओं के आधार पर यह सिद्ध कीजिए कि आवर्त सारणी के छठवें आवर्त में 32 तत्त्व होने चाहिए।
- 3.5 आवर्त और वर्ग के पदों में यह बताइए कि Z=14 कहाँ स्थित होगा?
- 3.6 उस तत्त्व का परमाणु क्रमांक लिखिए, जो आवर्त सारणी में तीसरे आवर्त और 17वें वर्ग में स्थित होता है।
- 3.7 कौन से तत्त्व का नाम निम्नलिखित द्वारा दिया गया है?
 - (i) लॉरेन्स बर्कले प्रयोगशाला द्वारा
 - (ii) सी बोर्ग समूह द्वारा
- 3.8 एक ही वर्ग में उपस्थित तत्त्वों के भौतिक और रासायनिक गुणधर्म समान क्यों होते हैं?
- 3.9 'परमाणु त्रिज्या' और 'आयनी त्रिज्या' से आप क्या समझते हैं?
- 3.10 किसी वर्ग या आवर्त में परमाणु त्रिज्या किस प्रकार परिवर्तित होती है? इस परिवर्तन की व्याख्या आप किस प्रकार करेंगे?
- 3.11 समइलेक्ट्रॉनिक स्पीशीज से आप क्या समझते हैं? एक ऐसी स्पीशीज का नाम लिखिए, जो निम्नलिखित परमाणुओं या आयनों के साथ समइलेक्ट्रॉनिक होगी—
 - (i) F-
 - (ii) Ar
 - (iii) Mg²⁺
 - (iv) Rb+
- 3.12 निम्नलिखित स्पीशीज पर विचार कीजिए-
 - N^{3-} , O^{2-} , F^- , Na^+ , Mg^{2+} & Al^{3+}
 - (क) इनमें क्या समानता है?
 - (ख) इन्हें आयनी त्रिज्या के बढ़ते क्रम में व्यवस्थित कीजिए।
- 3.13 धनायन अपने जनक परमाणुओं से छोटे क्यों होते हैं और ऋणायनों की त्रिज्या उनके जनक परमाणुओं की त्रिज्या से अधिक क्यों होती है? व्याख्या कीजिए।
- 3.14 आयनन एन्थैल्पी और इलेक्ट्रॉन लब्धि एन्थैल्पी को परिभाषित करने में विलगित गैसीय परमाणु तथा 'आद्य अवस्था' पदों की सार्थकता क्या है?

3.15 हाइड्रोजन परमाणु में आद्य अवस्था में इलेक्ट्रॉन की ऊर्जा -2.18 × 10⁻¹⁸J है। परमाणिवक हाइड्रोजन की आयनन एन्थैल्पी J mol⁻¹ के पदों में पिरकिलित कीजिए।
[संकेत – उत्तर प्राप्त करने के लिए मोल संकल्पना का उपयोग कीजिए।]

- 3.16 द्वितीय आवर्त के तत्त्वों में वास्तविक आयनन एन्थैल्पी का क्रम इस प्रकार है—Li< B<Be<C<O<N<F<Nel व्याख्या कीजिए कि (i) Be की Δ H, B से अधिक क्यों है?
 - (i) O की $\Delta_i H, N$ और F से कम क्यों है?
- 3.17 आप इस तथ्य की व्याख्या किस प्रकार करेंगे कि सोडियम की प्रथम आयनन एन्थैल्पी मैग्नीशियम की प्रथम आयनन एन्थैल्पी से कम है, किंतु इसकी द्वितीय आयनन एन्थैल्पी मैग्नीशियम की द्वितीय आयनन एन्थैल्पी से अधिक है।
- 3.18 मुख्य समूह तत्त्वों में आयनन एन्थेल्पी के किसी समूह में नीचे की ओर कम होने के कौन से कारक हैं?
- 3.19 वर्ग 13 के तत्त्वों की प्रथम आयनन एन्थैल्पी के मान (KJ mol⁻¹) में इस प्रकार हैं— B A1 Ga In T1 801 577 579 558 589

सामान्य से इस विचलन की प्रवृत्ति की व्याख्या आप किस प्रकार करेंगे?

- 3.20 तत्त्वों के निम्नलिखित युग्मों में किस तत्त्व की इलेक्ट्रॉन लब्धि एन्थैल्पी अधिक ऋणात्मक होगी?
 - (i) O या F
 - (ii) F या Cl
- 3.21 आप क्या सोचते हैं कि O की द्वितीय इलेक्ट्रॉन लब्धि एन्थैल्पी प्रथम इलेक्ट्रॉन लब्धि एन्थैल्पी के समान धनात्मक, अधिक ऋणात्मक या कम ऋणात्मक होगी? अपने उत्तर की पुष्टि कीजिए।
- 3.22 इलेक्ट्रॉन लब्धि एन्थैल्पी और इलेक्ट्रॉन ऋणात्मकता में क्या मूल अंतर है?
- 3.23 सभी नाइट्रोजन यौगिकों में N की विद्युत् ऋणात्मकता पाऊलिंग पैमाने पर 3.0 है। आप इस कथन पर अपनी क्या प्रतिक्रिया देंगे?
- 3.24 उस सिद्धांत का वर्णन कीजिए, जो परमाणु की त्रिज्या से संबंधित होता है-
 - (i) जब वह इलेक्ट्रॉन प्राप्त करता है।
 - (ii) जब वह इलेक्ट्रॉन का त्याग करता है।
- 3.25 किसी तत्त्व के दो समस्थानिकों की प्रथम आयनन एन्थैल्पी समान होगी या भिन्न? आप क्या मानते हैं? अपने उत्तर की पुष्टि कीजिए।
- 3.26 धातुओं और अधातुओं में मुख्य अंतर क्या है?
- 3.27 आवर्त सारणी का उपयोग करते हुए निम्नलिखित प्रश्नों के उत्तर दीजिए-
 - (क) उस तत्त्व का नाम बताइए, जिसके बाह्य उप-कोश में पाँच इलेक्ट्रॉन उपस्थित हों।
 - (ख) उस तत्त्व का नाम बताइए, जिसकी प्रवृत्ति दो इलेक्ट्रॉनों को त्यागने की हो।
 - (ग) उस तत्त्व का नाम बताइए, जिसकी प्रवृत्ति दो इलेक्ट्रॉनों को प्राप्त करने की हो।
 - (घ) उस वर्ग का नाम बताइए, जिसमें सामान्य ताप पर धातु, अधातु, द्रव और गैस उपस्थित हों।

- 3.28 प्रथम वर्ग के तत्त्वों के लिए अभिक्रियाशीलता का बढ़ता हुआ क्रम इस प्रकार है—
 Li < Na < K < Rb < Cs; जबिक वर्ग 17 के तत्त्वों में क्रम
 F>Cl>Br>I है। इसकी व्याख्या कीजिए।
- s-, p-, d- और f- ब्लॉक के तत्त्वों का सामान्य बाह्य इलेक्ट्रॉनिक विन्यास लिखिए।
- 3.30 तत्त्व, जिसका बाह्य इलेक्ट्रॉनिक विन्यास निम्न है, का स्थान आवर्त सारणी में बताइए-
 - (i) $ns^2 np^4$, जिसके लिए n=3 है।
 - (ii) (n-1) d² ns², जब n=4 है तथा
 - (iii) (n-2)f⁷ (n-1) d¹ ns², जब n=6 है।
- 3.31 कुछ तत्त्वों की प्रथम $\Delta_{\rm i} H_1$ और द्वितीय $\Delta_{\rm i} H_2$ आयनन एंथैल्पी (kJ ${
 m mol^{-1}}$ में) और इलेक्ट्रॉन लिब्धि एंथैल्पी ($\Delta_{\rm rg}$ H) (kJ ${
 m mol^{-1}}$ में) निम्निलिखत है—

तत्त्व	$\Delta H_{_1}$	ΔH_2	$\Delta_{eg}H$
I	520	7300	-60
II	419	3051	-48
III	1681	3374	-328
IV	1008	1846	-295
V	2372	5251	+48
VI	738	1451	-40

ऊपर दिए गए तत्त्वों में से कौन-सी

- (क) सबसे कम अभिक्रियाशील धातु है?
- (ख) सबसे अधिक अभिक्रियाशील धातु है?
- (ग) सबसे अधिक अभिक्रियाशील अधातु है?
- (घ) सबसे कम अभिक्रियाशील अधातु है?
- (ङ) ऐसी धातु है, जो स्थायी द्विअंगी हैलाइड (binary halide), जिनका सूत्र MX, (X = हैलोजन) है, बनाता है।
- (च) ऐसी धातु, जो मुख्यत: MX (X = हैलोजन) वाले स्थायी सहसंयोजी हैलाइड बनाती है।
- 3.32 तत्त्वों के निम्नलिखित युग्मों के संयोजन से बने स्थायी द्विअंगी यौगिकों के सूत्रों की प्रगुक्ति कीजिए—
 - (क) लीथियम और ऑक्सीजन
 - (ख) मैगनीशियम और नाइट्रोजन
 - (ग) ऐलुमीनियम और आयोडीन
 - (घ) सिलिकॉन और ऑक्सीजन
 - (ङ) फॉस्फोरस और फ्लुओरीन
 - (च) 71वाँ तत्त्व और फ्लुओरीन

3.33 आधुनिक आवर्त सारणी में आवर्त निम्नलिखित में से किसको व्यक्त करता है?

- (क) परमाणु संख्या
- (ख) परमाण् द्रव्यमान
- (ग) मुख्य क्वांटम संख्या
- (घ) दिगंशी क्वांटम संख्या
- 3.34 आधुनिक आवर्त सारणी के लिए निम्नलिखित के संदर्भ में कौन सा कथन सही नहीं है?
 - (क) p-ब्लॉक में 6 स्तंभ हैं, क्योंकि p-कोश के सभी कक्षक भरने के लिए अधिकतम 6 इलेक्ट्रॉनों की आवश्यकता होती है।
 - (ख) d-ब्लॉक में 8 स्तंभ हैं, क्योंकि d-उप-कोश के कक्षक भरने के लिए अधिकतम 8 इलेक्ट्रॉनों की आवश्यकता होती है।
 - (ग) प्रत्येक ब्लॉक में स्तंभों की संख्या उस उपकोश में भरे जा सकनेवाले इलेक्ट्रॉनों की संख्या के बराबर होती है।
 - (घ) तत्त्व के इलेक्ट्रॉन विन्यास को भरते समय अंतिम भरे जानेवाले इलेक्ट्रॉन का उप-कोश उसके द्विगंशी क्वांटम संख्या को प्रदर्शित करता है।
- 3.35 ऐसा कारक, जो संयोजकता इलेक्ट्रॉन को प्रभावित करता है, उस तत्त्व की रासायनिक प्रवृत्ति भी प्रभावित करता है। निम्नलिखित में से कौन सा कारक संयोजकता कोश को प्रभावित नहीं करता?
 - (क) संयोजक मुख्य क्वांटम संख्या (n)
 - (ख) नाभिकीय आवेश (Z)
 - (ग) नाभिकीय द्रव्यमान
 - (घ) क्रोड इलेक्ट्रॉनों की संख्या
- 3.36 सम इलेक्ट्रॉनिक स्पीशीज़ F-, Ne और Na+ का आकार इनमें से किससे प्रभावित होता है?
 - (क) नाभिकीय आवेश (Z)
 - (ख) मुख्य क्वांटम संख्या (n)
 - (ग) बाह्य कक्षकों में इलेक्ट्रॉन-इलेक्ट्रॉन अन्योन्य क्रिया
 - (घ) ऊपर दिए गए कारणों में से कोई भी नहीं, क्योंकि उनका आकार समान है।
- 3.37 आयनन एन्थैल्पी के संदर्भ में निम्नलिखित में से कौन सा कथन गलत है?
 - (क) प्रत्येक उत्तरोत्तर इलेक्ट्रॉन से आयनन एन्थैल्पी बढ़ती है।
 - (ख) क्रोड उत्कृष्ट गैस के विन्यास से जब इलेक्ट्रॉन को निकाला जाता है, तब आयनन एन्थैल्पी का मान अत्यधिक होता है।
 - (ग) आयनन एन्थैल्पी के मान में अत्यधिक तीव्र वृद्धि संयोजकता इलेक्ट्रॉनों के विलोपन को व्यक्त करता है।
 - (घ) कम n मानवाले कक्षकों से अधिक n मानवाले कक्षकों की तुलना में इलेक्ट्रॉनों को आसानी से निकाला जा सकता है।

- 3.38 B, Al, Mg, K तत्त्वों के लिए धात्विक अभिलक्षण का सही क्रम इनमें कौन सा है?
 - (ক) B > Al > Mg > K
 - (অ) Al > Mg > B > K
 - (η) Mg > Al > K > B
 - (된) K>Mg>Al>B
- 3.39 तत्त्वों B, C, N, F और Si के लिए अधातु अभिलक्षण का इनमें से सही क्रम कौन सा है?
 - (\overline{a}) B > C > Si > N > F
 - (평) Si > C > B > N > F
 - (η) F > N > C > B > Si
 - (घ) F > N > C > Si > B
- 3.40 तत्त्वों F, Cl, O और N तथा ऑक्सीकरण गुणधर्मों के अधार पर उनकी रासायनिक अभिक्रियाशीलता का निम्निलखित में से कौन सा तत्त्वों में है?
 - (ক) F > Cl > O > N
 - (평) F > O > Cl > N
 - (η) Cl > F > O > N
 - (\forall) O > F > N > C1