Important links

Contents

- Important links
- Course learning outcomes
- Deliverables
- · Teaching Team
- Lectures
- Labs
- Installation
- Course communication
- Reference Material
- Policies

DSCI 563 Unsupervised Learning

- Course Jupyter book
- Course GitHub page
- Slack Channel
- Canvas
- Gradescope
- iClicker Cloud (Section 001)
- iClicker Cloud (Section 002)

- YouTube videos
- Class + office hours calendar

This course is about identifying underlying structure in data. We will talk about clustering, data representation (e.g., dimensionality reduction and word embeddings), and recommendation systems.

- ► Click to expand!
- ► Click to expand!
- ► Click to expand!

Format

► Click to expand!

Tentative Lecture Schedule

This course occurs during **Block 5** in the 2021/22 school year.

Lecture	Topic	Assigned videos	Resources and optional readings
0	Course Information		
1	K-Means and intro to GMMs	• Videos: 14.1, 14.2,14.3	 sklearn clustering documentation "Spaghetti Sauce" talk by Malcom Gladwell Visualizing-k-means-clustering Visualizing K-Means algorithm with D3.js Clustering with Scikit with GIFs
2	DBSCAN and Hierarchical Clustering	Videos:15.1, 15.2, 15.3	 Comparison of sklearn clustering algorithms DBSCAN Visualization Clustering with Scikit with GIFs
3	<u>Dimensionality</u> Reduction Intro	 Videos: <u>17.1</u>, <u>17.2</u>, <u>17.3</u> 	 PCA visualization Introduction to Machine Learning with Python book Chapter 3 Mike's PCA video from CPSC 340 StatQuest PCA video
4	More PCA, LSA, NMF, Autoencoders	No videos	
5	Word Vectors, Word Embeddings	• Videos: 18.1, 18.2, 18.3	 Distributed representations of words and phrases and their compositionality Efficient estimation of word representations in vector space word2vec Explained Debiasing Word Embeddings

Lecture	Торіс	Assigned videos	Resources and optional readings
6	Topic modeling	No videos	Dave Blei <u>video lecture</u> , <u>paper</u>
7	Recommender Systems I	No videos	 Collaborative filtering for recommendation systems in Python, by N. Hug How Netflix's Recommendations System Works
8	Recommender Systems II	No videos	• <u>SVDfeature</u>

Datasets

Here is the list of <u>Kaggle</u> datasets we'll use in the lectures.

- A small subset of <u>200 Bird Species with 11,788 Images</u> (available <u>here</u>)
- A tiny subset of <u>Food-101</u> (available <u>here</u>)
- Credit Card Dataset for Clustering
- Countries of the World
- Airline Sentiment
- Jester 1.7M jokes ratings dataset
- Amazon ratings data

If you want to be extra prepared, you may want to download these datasets in advance and save them under the lectures/data directory in your local copy of the repository.

During labs, you will be given time to work on your own or in groups. There will be a lot of opportunity for discussion and getting help during lab sessions.

We are providing you with a conda environment file which is available <u>kere</u>. You can download this file and create a conda environment for the course and activate it as follows.

conda env create -f env-dsci-563.yml
conda activate 563

We've only attempted to install this environment file on a few machines, and you may encounter issues with certain packages from the <code>yml</code> file when executing the commands above. This is not uncommon and may suggest that the specified package version is not yet available for your operating system via <code>conda</code>. When this occurs, you have a couple of options:

- 1. Modify the local version of the yml file to remove the line containing that package.
- 2. Create the environment without that package.
- 3. Activate the environment and install the package manually either with conda install or pip install in the environment.

Note that this is not a complete list of the packages we'll be using in the course and there might be a few packages you will be installing using conda install later in the course. But this is a good enough list to get you started.

- ► Click to expand!
- ► Click to expand!

Please see the general MDS policies.