1. Prove that the subset relation \subseteq on all subsets of \mathbb{Z} is a partial order but not a total order.

The subset relation \subseteq on all subsets of \mathbb{Z} is defined such that for any $A, B \subset \mathbb{Z}$, we have $A \subseteq B$ if and only if $x \in A \Rightarrow x \in B$.

A partial order is a binary relation R that is (a) reflexive; (b) antisymmetric; and (c) transitive:

- 1. **Reflexive:** A binary relation $R \subseteq A \times A$ is reflexive if a R a for all $a \in A$. To show that the subset relation \subseteq is reflexive, we must show that for all $A \subset \mathbb{Z}$, we have $A \subseteq A$. This is clearly the case since $x \in A$ $\Rightarrow x \in A$.
- 2. **Anti-Symmetric:** A binary relation $R \subseteq A \times A$ is anti-symmetric if a R b and b R a imply a = b. The subset relation \subseteq is anti-symmetric as per the definition of set equality. We say that two sets A and B are equal if and only if $A \subseteq B$ and $B \subseteq A$. Thus the definition of set equality coincides with the definition of anti-symmetry in this case. So clearly, if we have $A \subseteq B$ and $B \subseteq A$ for $A, B \subset \mathbb{Z}$, we must have A = B as per the definition of set equality.

More formally, $A \subseteq B$ implies that $x \in A \Rightarrow x \in B$, and likewise $B \subseteq A$ implies that $x \in B \Rightarrow x \in A$. Hence, if $A \subseteq B$ and $B \subseteq A$ with $A, B \subset \mathbb{Z}$, then $x \in A \Rightarrow x \in B$ and $x \in B \Rightarrow x \in A$ and so the two sets contain the same elements, and we say that A = B.

3. **Transitive:** A binary relation $R \subseteq A \times A$ is transitive if a R b and b R c imply a R c for all $a, b, c \in A$. Suppose we know that $A \subseteq B$ and $B \subseteq C$ with $A, B, C, \subset \mathbb{Z}$, so that $x \in A \Rightarrow x \in B$ and $x \in B \Rightarrow x \in C$. Hence if $x \in A$ we can conclude that $x \in C$, and we can write $A \subseteq C$, so the subset relation \subseteq is transitive. This establishes the subset relation \subseteq on all subsets of \mathbb{Z} as a partial order.

The partial order \subseteq on all subsets of \mathbb{Z} would be a total order if for every $A, B \subset \mathbb{Z}$, we have $A \subseteq B$ or $B \subseteq A$. Clearly this is not the case since we could choose $A = \{1, 3, 5\}$ and $B = \{2, 4, 6\}$, and clearly both $A \not\subseteq B$ and $B \not\subseteq A$. Consequently, the subset relation \subseteq on all subsets \mathbb{Z} is not a total order.

2. Show that for any positive integer n, the relation "equivalent modulo n" is an equivalence relation on the integers. (We say that $a \equiv b \mod n$ if there exists an integer q such that a - b = qn). Into what equivalence classes does this relation partition the integers?

We have the relation $R = \{(a, b) : a, b \in \mathbb{Z} \text{ and } a - b = qn \text{ where } q, n \in \mathbb{Z}\}.$ To show that R is an equivalence relation we must show that it is (a) reflexive; (b) symmetric; and (c) transitive:

- 1. **Reflexive:** A binary relation $R \subseteq A \times A$ is reflexive if a R a for all $a \in R$. Clearly, (a, a) since a a = 0 and $0 \in \mathbb{Z}$, so R is reflexive.
- 2. **Symmetric:** A binary relation $R \subseteq A \times A$ is symmetric if a R b implies b R a for all $a, b \in A$. Suppose that (a, b). Then we can write a b = qn where $q, n \in \mathbb{Z}$. Multiplying this expression by -1, we have b a = (-q)n, with $-q \in \mathbb{Z}$. Hence (b, a), and R is symmetric.
- 3. **Transitive:** A binary relation $R \subseteq A \times A$ is transitive if a R b and b R c imply a R c. Suppose that we have (a,b) and (b,c). Then we can write a-b=qn and b-c=rn for $q,r,n\in\mathbb{Z}$. Combining these two expressions we get a-c=(q+r)n, with $q+r\in\mathbb{Z}$. Hence (a,b) and (b,c) imply (a,c), and R is transitive.

For any $a \in \mathbb{Z}$, the equivalence class $[a] = \{b \in \mathbb{Z} : a R b\}$ will look like $[a] = \{..., a - 2n, a - n, a, a + n, a + 2n, ...\}$, with the set \mathbb{Z} being partitioned into n equivalence classes.

For example, choosing n = 3, we have the following equivalence classes:

$$[0] = \{..., -6, -3, 0, 3, 6, ...\}$$

$$[1] = {..., -5, -2, 1, 4, 7, ...}$$

$$[2] = {..., -4, -1, 2, 5, 8, ...}$$

- 3. Give examples of relations that are
 - (a) reflexive and symmetric but not transitive;
 - (b) reflexive and transitive but not symmetric;
 - (c) symmetric and transitive but not reflexive;
- (a) reflexive and symmetric but not transitive;

The relation R on the reals \mathbb{R} defined by $R = \{(x, y) : |x - y| < 2\}$ is reflexive and symmetric, but not transitive:

(a) Reflexive: For any $x \in \mathbb{R}$, we have (x, x) since |x - x| = 0 < 2.

- (b) Symmetric: For any $x, y \in \mathbb{R}$, (x, y) implies that |x y| < 2. Since |x y| = |y x|, we have that |x y| < 2 implies |y x| < 2. We conclude that (x, y) implies (y, x) and that R is symmetric.
- (c) Transitive: Consider that $(9,8) \in R$ since |9-8|=1<2, and that $(8,7) \in R$ since |8-7|=1<2. However, $(9,7) \not\in R$ since $|9-7|=2 \not<2$. Hence (a,b) and (b,c) does not imply that (a,c), and consequently R is not transitive.
- (b) reflexive and transitive but not symmetric;

The relation \leq on the integers \mathbb{Z} is reflexive and transitive, but not symmetric:

- (a) Reflexive: For any integer $a \in \mathbb{Z}$, we have $a \leq a$.
- (b) Symmetric: For any $a, b \in \mathbb{Z}$, $a \leq b$ does not necessarily imply that $b \leq a$. For example, $1 \leq 3$, but $3 \nleq 1$.
- (c) Transitive: For any $a, b, c \in \mathbb{Z}$, if $a \leq b$ and $b \leq c$ then $a \leq c$.
- (c) symmetric and transitive but not reflexive;

The relation R on the integers \mathbb{Z} defined by $R = \{(1,1), (1,2), (2,1), (2,2)\}$ is symmetric and transitive, but not reflexive.

- (a) Reflexive: A binary relation $R \subseteq A \times A$ is reflexive if a R a for all $a \in A$. In this case, R is not reflexive since $3 \in \mathbb{Z}$ but $(3,3) \notin R$.
- (b) Symmetric: A binary relation $R \subseteq A \times A$ is symmetric if a R b implies b R a for all $a, b \in A$. Consider the following cases:
 - i. $(1,1) \Rightarrow (1,1)$ since $(1,1) \in R$;
 - ii. $(1,2) \Rightarrow (2,1)$ since $(2,1) \in R$;
 - iii. $(2,1) \Rightarrow (1,2)$ since $(1,2) \in R$;
 - iv. $(2,2) \Rightarrow (2,2)$ since $(2,2) \in R$.

There is no other ordered pair (a, b) with $a, b \in \mathbb{Z}$ where $(a, b) \in R$. Based on the four cases enumerated above, we conclude that R is symmetric.

- (c) Transitive: A binary relation $R \subseteq A \times A$ is transitive if a R b and b R c imply a R c for all $a, b, c \in A$. Consider the following cases:
 - i. $(1,1) \land (1,1) \Rightarrow (1,1)$ since $(1,1) \in R$;
 - ii. $(1,1) \land (1,2) \Rightarrow (1,2)$ since $(1,2) \in R$;
 - iii. $(1,2) \land (2,1) \Rightarrow (1,1)$ since $(1,1) \in R$;

```
iv. (1,2) \land (2,2) \Rightarrow (1,2) since (1,2) \in R;
v. (2,1) \land (1,1) \Rightarrow (2,1) since (2,1) \in R;
vi. (2,1) \land (1,2) \Rightarrow (2,2) since (2,2) \in R;
vii. (2,2) \land (2,1) \Rightarrow (2,1) since (2,1) \in R;
viii. (2,2) \land (2,2) \Rightarrow (2,2) since (2,2) \in R.
```

There is no other combination of ordered pairs (a, b), (b, c) with $a, b, c \in \mathbb{Z}$ where $(a, b), (b, c) \in R$. Based on the eight cases enumerated above, we conclude that R is transitive.

4. Let S be a finite set, and let R be an equivalence relation on $S \times S$. Show that if in addition R is antisymmetric, then the equivalence classes of S with respect to R are singletons.

From the definition of equivalence class, we have $[a] = \{b \in S : a R b\}$. Because R is an equivalence relation, we know that R is reflexive, symmetric and transitive. We proceed as follows:

- 1. Since R is reflexive, we have $a \in [a]$;
- 2. Suppose further that $b \in [a]$, so that a R b;
- 3. Since R is symmetric, we have $a R b \Rightarrow b R a$.

Since a R b and b R a, and since R is anti-symmetric, we conclude that a = b. Hence, the equivalence classes of S with respect to R are singletons.

5. Professor Narcissus claims that if a relation R is symmetric and transitive, then it is also reflexive. He offers the following proof. By symmetry, a R b implies b R a. Transitivity, therefore, implies a R a. Is the professor correct?

No, the professor is not correct. In Exercise 5.3(c) above, we have given an example of a relation that is symmetric and transitive, but not reflexive.

The error is that in order for a relation to be reflexive, we must have a R a for $all a \in A$, while in order for it to be symmetric, we need not have a R b for every pair of elements $a, b \in A$. Rather, symmetry implies that if a R b, then we have b R a, but there may be numerous ordered pairs (a, b) for which $(a, b) \notin R$ even though R is symmetric.

As an example, the = relation on the integers \mathbb{Z} is an equivalence relation, so we know that it is reflexive, symmetric and transitive. Because it is reflexive, we have a = a for all $a \in \mathbb{Z}$. Moreover, since it is symmetric, we

know that if we have a=b for $a,b\in\mathbb{Z}$, then it necessarily follows that b=a. However, there are numerous ordered pairs (a,b) with $a,b\in\mathbb{Z}$ for which $(a,b)\notin R$, for example (3,5) since $3\neq 5$.

The Professor's error lies in assuming that just because he found an ordered pair $(a,b) \in R$ for which symmetry holds, that this implies that reflexivity must hold for all $a \in A$, which is not necessarily the case.