An Exploration of the Z-Transform

Gabriel Mancino-Ball

Winona State University

April 13^{th} , 2017

St. John's PME Conference

Outline

- 1. What is Transform Theory?
- 2. Classical Z-Transform
- 3. Asymptotic Analysis
- 4. Conclusion

What is Transform Theory?

Definition and Translation

Definition

Transform Theory is the idea of changing the domain of a problem (e.g. calculus to algebra)

Definition and Translation

Definition

Transform Theory is the idea of changing the domain of a problem (e.g. calculus to algebra)

Translation

Basically makes hard problems "easier"

1. Fourier Transform (e.g. time domain to frequency domain)

- 1. Fourier Transform (e.g. time domain to frequency domain)
- 2. Laplace Transform

- 1. Fourier Transform (e.g. time domain to frequency domain)
- 2. Laplace Transform
- 3. Z-Transform

- 1. Fourier Transform
- 2. Laplace Transform
- 3. Z-Transform

The Laplace Transform

The Laplace Transform

• Used to solve linear constant-coefficient differential equations

Use Laplace Transform:

$$\alpha y'' + \beta y' + \gamma y = \delta(t)$$

Use Laplace Transform:

$$\alpha y'' + \beta y' + \gamma y = \delta(t)$$

Use Z-Transform:

$$\alpha a_{n-2} + \beta a_{n-1} + \gamma a_n = \delta(n)$$

Fibonacci Sequence:

 $1, 1, 2, 3, 5, 8, 13, \dots$

Fibonacci Sequence:

$$1, 1, 2, 3, 5, 8, 13, \dots$$

$$\Rightarrow$$
 $a_{n-2} + a_{n-1} = a_n \in$

Fibonacci Sequence:

$$1, 1, 2, 3, 5, 8, 13, \dots$$

$$\Rightarrow a_{n-2} + a_{n-1} = a_n \quad \Leftarrow$$

$$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right]$$

Fibonacci Sequence:

$$\Rightarrow$$
 $a_{n-2} + a_{n-1} = a_n \in$

$$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right]$$

Proof.

Fibonacci Sequence:

$$1, 1, 2, 3, 5, 8, 13, \dots$$

$$\Rightarrow a_{n-2} + a_{n-1} = a_n \Leftarrow$$

$$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$$

Proof.

Use the Z-Transform!

Classical Z-Transform

Question How does your radio equalizer work?

Question

How does your radio equalizer work?

Answer

Linear Time Invariant Systems

Question

How does your radio equalizer work?

Answer

Linear Time Invariant Systems

Question

How does your radio equalizer work?

Answer

Linear Time Invariant Systems

$$(x*h)_n = y_n$$

$$(x * h)_n = ?$$

$$(x * h)_n = ?$$

• Take
$$x = (2764.6z, -3.52 \times 10^9 z^2, 1.35 \times 10^{15} z^3, -2.45 \times 10^{20} z^4, \dots)$$

$$(x * h)_n = ?$$

• Take
$$x = (2764.6z, -3.52 \times 10^9 z^2, 1.35 \times 10^{15} z^3, -2.45 \times 10^{20} z^4, \dots)$$

• Apply $h = (1, -3.82 \times 10^6 z, 2.43 \times 10^{12} z^2, -6.2 \times 10^{17} z^3, \dots)$

$$(x * h)_n = ?$$

• Take
$$x = (2764.6z, -3.52 \times 10^9 z^2, 1.35 \times 10^{15} z^3, -2.45 \times 10^{20} z^4, \dots)$$

• Apply
$$h = (1, -3.82 \times 10^6 z, 2.43 \times 10^{12} z^2, -6.2 \times 10^{17} z^3, \dots)$$

HARD...

Use Z-Transform!

$$(x * h)_n = ?$$

- $x_n = (-1)^n \cdot \frac{(440 \cdot 2\pi)^{2n+1} z^{n+1}}{(2n+1)!}$ $h_n = (-1)^n \cdot \frac{(440 \cdot 2\pi)^{2n} z^n}{(2n)!}$

$$(x*h)_n =?$$

- $x_n = (-1)^n \cdot \frac{(440 \cdot 2\pi)^{2n+1} z^{n+1}}{(2n+1)!}$ $h_n = (-1)^n \cdot \frac{(440 \cdot 2\pi)^{2n} z^n}{(2n)!}$

Definition

The Z-Transform of a sequence a is given by

$$\mathcal{Z}(a) = \sum_{n=0}^{\infty} a_n z^n$$

$$(x*h)_n = ?$$

$$Z(x) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{(440 \cdot 2\pi)^{2n+1} z^{n+1}}{(2n+1)!} z^n$$

$$(x*h)_n = ?$$

$$Z(x) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{(440 \cdot 2\pi)^{2n+1} z^{n+1}}{(2n+1)!} z^n$$
$$= \sum_{n=0}^{\infty} (-1)^n \cdot \frac{(440 \cdot 2\pi)^{2n+1} z^{2n+1}}{(2n+1)!}$$

$$(x*h)_n = ?$$

$$Z(x) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{(440 \cdot 2\pi)^{2n+1} z^{n+1}}{(2n+1)!} z^n$$
$$= \sum_{n=0}^{\infty} (-1)^n \cdot \frac{(440 \cdot 2\pi)^{2n+1} z^{2n+1}}{(2n+1)!}$$
$$= \sin(880\pi z)$$

$$(x * h)_n = ?$$

 $\bullet \ \mathcal{Z}(x) = \sin(880\pi z)$

$$(x * h)_n = ?$$

- $\mathcal{Z}(x) = \sin(880\pi z)$
- $\mathcal{Z}(h) = \cos(880\pi z)$

$$(x * h)_n = ?$$

- $\mathcal{Z}(x) = \sin(880\pi z)$
- $\mathcal{Z}(h) = \cos(880\pi z)$

$$Z(x*h) \equiv Z(x) \cdot Z(h)$$

$$(x * h)_n = ?$$

- $\mathcal{Z}(x) = \sin(880\pi z)$
- $\bullet \ \mathcal{Z}(h) = \cos(880\pi z)$

$$Z(x * h) \equiv Z(x) \cdot Z(h)$$

$$\Rightarrow Z(x) \cdot Z(h) = \sin(880\pi z) \cos(880\pi z) = \frac{1}{2} \sin(1760\pi z)$$

Example 1

$$(x * h)_n = ?$$

Applying the inverse Z-Transform yields:

$$y_n = \frac{1}{2} (-1)^n \frac{(1760\pi)^{2n+1} z^{n+1}}{(2n+1)!}$$

In Practice

• Taking 1000 samples per second yields:

Play: x_n Play: $x_n * h_n$

Example 2

$$(?*h)_n = y_n$$

Example 2

$$(?*h)_n = y_n$$

• Multiply both sides by h^{-1} to get $?_n = (y * h^{-1})_n$

- The Z-Transform, $Z: \widetilde{m} \to \widetilde{M}$, is a **field isomorphism**
- This means an algebra structure is preserved

Proof.

$$Z(a)Z(b) = \left(\sum_{k=0}^{\infty} a_k z^k\right) \left(\sum_{k=0}^{\infty} b_k z^k\right)$$

9

Proof.

$$Z(a)Z(b) = \left(\sum_{k=0}^{\infty} a_k z^k\right) \left(\sum_{k=0}^{\infty} b_k z^k\right)$$

= $(a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \dots)(b_0 + b_1 z + b_2 z^2 + b_3 z^3 + \dots)$

ç

Proof.

$$Z(a)Z(b) = \left(\sum_{k=0}^{\infty} a_k z^k\right) \left(\sum_{k=0}^{\infty} b_k z^k\right)$$

= $(a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \dots) (b_0 + b_1 z + b_2 z^2 + b_3 z^3 + \dots)$
= $(a_0 b_0) + (a_0 b_1 + a_1 b_0) z + (a_0 b_2 + a_1 b_1 + a_2 b_0) z^2 + \dots$

Proof.

$$Z(a)Z(b) = \left(\sum_{k=0}^{\infty} a_k z^k\right) \left(\sum_{k=0}^{\infty} b_k z^k\right)$$

$$= (a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \dots)(b_0 + b_1 z + b_2 z^2 + b_3 z^3 + \dots)$$

$$= (a_0 b_0) + (a_0 b_1 + a_1 b_0)z + (a_0 b_2 + a_1 b_1 + a_2 b_0)z^2 + \dots$$

$$= Z(a * b)$$

9

Asymptotic Analysis

 $1. \ \ \text{``Little-oh''} \ \ \text{notation} \ \to \ \ \text{``Equivalence''}$

- 1. "Little-oh" notation \rightarrow "Equivalence"
- 2. Ritt's Theorem \rightarrow "Mapping tool"

- 1. "Little-oh" notation \rightarrow "Equivalence"
- 2. Ritt's Theorem \rightarrow "Mapping tool"
- 3. Computations with divergent series \rightarrow "Practical use"

- 1. "Little-oh" notation
- 2. Ritt's Theorem
- 3. Computations with divergent series

$$F(x) = xe^{x^2} \frac{1}{\text{erfc}}(x) = \frac{2}{\sqrt{\pi}} xe^{x^2} \int_x^{\infty} e^{-t^2} dt$$

$$F(x) = xe^{x^2} \frac{1}{\text{erfc}}(x) = \frac{2}{\sqrt{\pi}} xe^{x^2} \int_x^{\infty} e^{-t^2} dt$$

$$F(x) = xe^{x^2} \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} xe^{x^2} \int_x^{\infty} e^{-t^2} dt$$

$$F(x) \approx \frac{1}{\sqrt{\pi}} \sum_{i=0}^{\infty} \frac{(-1)^i (2i+1)!!}{(2x^2)^i}$$

$$S_n := \frac{1}{\sqrt{\pi}} \sum_{i=0}^n \frac{(-1)^i (2i+1)!!}{(2x^2)^i}$$

X	F(x)	S_1	S_2	<i>S</i> ₃	S_4	S_5	S_{10}	S_n
1	0.42758	-0.2821	1.8336	-5.57	27.75	-155.5	6.92×10^{6}	6.7×10^{18}
2	0.51079	0.3526	0.4849	0.3691	0.4993	0.3203	5.697	5.3×10^{6}
5	0.55352	0.5303	0.5337	0.5332	0.5333	0.5333	0.5333	0.5400
10	0.5614	0.5557	0.5559	0.5559	0.5559	0.5559	0.5559	0.5587

X	F(x)	S_1	S_2	S_3	S_4	S_5	S_{10}	S_n
1	0.42758	-0.2821	1.8336	-5.57	27.75	-155.5	6.92×10^{6}	6.7×10^{18}
2	0.51079	0.3526	0.4849	0.3691	0.4993	0.3203	5.697	5.3×10^{6}
5	0.55352	0.5303	0.5337	0.5332	0.5333	0.5333	0.5333	0.5400
10	0.5614	0.5557	0.5559	0.5559	0.5559	0.5559	0.5559	0.5587

X	F(x)	S_1	S_2	S_3	S_4	S_5	S_{10}	S_n
1	0.42758	-0.2821	1.8336	-5.57	27.75	-155.5	6.92×10^{6}	6.7×10^{18}
2	0.51079	0.3526	0.4849	0.3691	0.4993	0.3203	5.697	5.3×10^{6}
5	0.55352	0.5303	0.5337	0.5332	0.5333	0.5333	0.5333	0.5400
10	0.5614	0.5557	0.5559	0.5559	0.5559	0.5559	0.5559	0.5587

• We used a divergent series to compute these!

ullet The Asymptotic Z-Transform, $Z_{as}: m \to M,$ is also a **field** isomorphism

Conclusion

Future Work

 \bullet Deepen complex analysis understanding

Future Work

- Deepen complex analysis understanding
- Explore more complicated LTI systems

Future Work

- Deepen complex analysis understanding
- Explore more complicated LTI systems
- Use asymptotic methods on other divergent series

References

- Bleistein, Norman; Handelsman, Richard. "Asymptotic Expansion of Integrals" (1986). Dover Publications, INC.
- Champagne, Scott Jude. "The asymptotic Z-transform" (2005). LSU Master's Theses. 3680.
- Brown, James; Churchill, Ruel. "Complex Variables and Applications (7th Edition)" (2004). McGraw-Hill Companies, INC.

Special Thanks to Dr. Lee Windsperger and Dr. Joyati Debnath

Special Thanks to Dr. Lee Windsperger and Dr. Joyati Debnath

THANK YOU FOR COMING

QUESTIONS?

