Zusammenfassung Rechnernetze

Henrik Tscherny

21. Juli 2021

Inhaltsverzeichnis

1	Schichtenmodelle Formeln			
2				
3	Bitübertragungsschicht			
	3.1	Modellierung	4	
	3.2	Kodierung	4	
		3.2.1 Manchester-Kodierung	4	
		3.2.2 4B/5B-Code	5	
	3.3	Multiplexing	5	
4	Sicherungsschicht			
	4.1	ALOHA	6	
	4.2	Carrier Sense Multiple Access (CSMA)	6	
	4.3	Switches	7	
	4.4	Aufbau eines Ethernet-Frames	8	
	4.5	Frames/Rahmen	8	
	4.6	Fehlerkorrektur	9	
5	Veri	mittlungsschicht	10	
	5.1	IP	10	
		5.1.1 Subnetzmask	11	

1 Schichtenmodelle

Aufbau OSI-Schichtenmodell

- Anwendungsschicht Kommunikation zwischen Diensten (RPC, FTP, E-Mail, Telnet, WWW, ...)
- Darstellungsschicht Transformation zwischen Datenformaten, Kompression, Verschlüsselung (AS-CII/EBCDIC, MPEG, MP3, RSA, ...)
- Sitzungssicht Kommunikations- und Dialogsteuerung, Synchronisation (simplex/duplex/halbduplex, Sicherungspunkte, Transaktionen)
- Transportschicht Sichere Ende-zu-Ende-Kommunikation zwischen Prozessen (Multiplex, Bündelung, Flusssteuerung)
- Vermittlungsschicht Wegewahl, Kopplung verschiedener Teilnetze (Anpassung, Abrechnung)
- Sicherungsschicht Rahmenbildung, Übertragungsfehlerbehandlung, Überlastvermeidung (Prüfsummen, Wiederholungen, Flusssteuerung)
- Bitübertragungsschicht Umsetzung in elektrische Signale, mechanische und elektrische Kopplung (RJ45-Stecker, ...)

Note: Oft werden die obersten 3 Sichten des OSI-Schichtenmodells als Anwendungsschicht zusammengefasst

2 Formeln

- B: Bandbreite in Hz
- BR=SR: Baudrate, Signalschritte pro Sekunde in Baud (Bd)
- b: Bitrate
- S: Signalstufen
- SNR: Signal-Rauschabstand
- f_{σ} Grenzfrequenz
- f_a Abtastrate

- QS: Quantisierungsstufen
- v_{phy} : Ausbreitungsgeschwindigkeit (meist $\frac{2}{3}c$)
- τ: Signallaufzeit
- SL: Start Limiter (Präambel + Start Frame Delimiter)
- t_f : Übertragungsdauer
- F: Framegröße
- BR = SR
- $b = SR \cdot ld(S)$
- $SR = \frac{b}{Id(S)}$
- $b < 2 \cdot B \cdot ld(S)$
- $B > \frac{b}{2 \cdot ld(S)}$
- $SNR_{db} = 10 \cdot lg(SNR)$
- $\bullet SNR = 10^{\frac{SNR_{db}}{10}}$
- $b < B \cdot B \cdot ld(1 + SNR)$
- $B > \frac{b}{2 \cdot ld(1 + SNR)}$
- Achtung! Immer schauen dass:

$$b < min\{2 \cdot B \cdot ld(S), B \cdot ld(1 + SNR)\}$$

- $f_a > 2 \cdot f_g$
- $f_g > \frac{1}{2}f_a$
- $f_a = \frac{b}{ld(OS)}$
- $b = f_a \cdot ld(QS)$
- $B_{gesammt} = n \cdot B_{kannal} + (n-1) \cdot B_{abstand}$
- $\bullet \ \tau = \frac{d}{v_{phy}}$
- $t_s = 2\tau$
- $t_f = \frac{SL+F}{h}$

3 Bitübertragungsschicht

3.1 Modellierung

Amplitudenmodulation

- 0: niedrige Amplitude
- 1: große Amplitude
- geringster Aufwand aber kleinste Zuverlässigkeit

Frequenzmodulation

- 0: niedrige Frequenz (z.B. 1 Periode/Takt)
- 1: hohe Frequenz (z.B. 2 Perioden/Takt)
- mittlerer Aufwand und mittlere Zuverlässigkeit

Phasenmodulation

- 0: Phasensprung um $\phi = \pi$ (Signal bounced an x-Achse 1 Bogen auf der gleichen Seite weiter)
- 1: kein Phasensprung
- größter Aufwand aber höchste Zuverlässigkeit

Quadrature Phase Shift Keying (QPSK)

Nutzt Phasensprünge von $\phi \in \{0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\}$ Somit werden 2 Bit pro Signalschritt Kodiert

Quadrature Amplitude Modulation (QAM 16/ QAM 64)

Nutzt 4/16 Phasensprünge d.h. 4/6 Bit pro Signalschritt

3.2 Kodierung

3.2.1 Manchester-Kodierung

- Non-Return-to-Zero (NRZI)
- selbsttaktender Code

- hoher Overhead 100% (Netto = 0.5 Bitrate)
- Pegeländerung in der Mitte jedes Taktes als Sync
- 1: keine Pegeländerung an Intervallende
- 0: Pegeländerung an Intervallende
- eingesetzt bei Ethernet
- Fehlererkennung auf Signalebene

3.2.2 4B/5B-Code

- erweitert Manchester Code
- geringerer Overhead (25%)
- 4 Datenbits werden auf 5 Bits abgebildet
- es dürfen nie mehr als 3 Nullen aufeinander folgen

3.3 Multiplexing

- Frequenzmultiplex: getrennte Frequenzbändern mit Sperrbändern dazwischen
- orthogonales Frequenzmultiplex: Überlagerung verschiedener Frequenzbänder ohne Sperrbänder, benötigt FFT zur Trennung beim Empfänger
- Zeitmultiplex: Teilnehmer erhalten zyklisch Sendezeit
- statisches Zeitmultiplex: Feste Reihenfolge und Länge der Sendezeit für jeden Teilnehmer
- Codemultiplex (CDM): alle Teilnehmer senden zugleich aber mit verschiedener Kodierung
- Wellenmultiplex (WDM): alle Teilnehmer senden zugleich aber über verschiedene Wellenlängen, benötigt Hardware zum Wiederauskoppeln

4 Sicherungsschicht

Carrierless Amplitude / Phase System Frequenzband wird statisch in für verschiedene Funktionen reserviert (z.B. up/download)
Trennung mit festen Schutzabständen

Discrete Multitone Aufteilung des Bandes in 247 Subbänder mit je 4kHz Breite dynamisches Kombinieren und Zuteilen der Subbänder nach Bedarf

4.1 ALOHA

- Kommunikation erfolgt über Zentrale Station
- Zwei Frequenzen für Hin- und Rückrichtung
- Zentrale sendet Quittung zu Sender wenn erhalten
- wenn keine Quittung eintrifft wird erneut gesendet
- 18% des Kanaldurchsatzes

Sloted ALOHA

- senden nur zu Beginn eines Taktes
- 36% des Kanaldurchsatzes

4.2 Carrier Sense Multiple Access (CSMA)

- Abhören des Kanals vor Sendevorgang wenn kein Signal sende, sonnst warte
- Trotzdem Kollision mögl. wenn beide gleichzeitig beginnen
- nonpersistent CSMA: nicht sofortiges Erneutsenden sondern warten für eine zufällige Zeitspanne
- p-persistent CSMA: Prüfe Kanal mit Wahrscheinlichkeit p sonnst warte einen Takt

CSMA mit Collision Detection (CD)

• Mithören auf Kanal während des Sendens

- Dadurch schnelle Reaktion bei Kollision möglich (ohne warten auf Quittung)
- Minimale Rahmenlänge für Sendevorgang 2τ mit τ = Signallaufzeit
 - $-t_0$ A Startet Übertragung
 - $-t_0 + \tau t_1$ B B Startet Übertragung bevor die von A eintrifft
 - ₀ + τ Signal von A erreicht B -> Kollision wird von B erkannt
 - $-t_0 + 2\tau t_1$ Signal von B erreicht A -> Kollision wird von A erkannt
- Senden eines JAM-Signals bei erkannter Kollision an den Kommunikationspartner
- NOTE: Heute werden alle möglichen Kollisionen im Switch behandelt wodurch CSMA/CD keine Rolle mehr spielt zur Überlastkontrolle werden dabei PAUSE-Packete mit angegebener Wartezeit verwendet

4.3 Switches

Cut-Through Switches

- Sofortiges Weiterleiten nach ermitteln der MAC-Adresse
- Weiterleiten ohne Zwischenspeicherung
- geringe Verzögerung
- keine Fehlerkorrektur oder anpassen der Datenrate

Store-and-Forward Switches

- Frames werden im Switch gepuffert
- Frames können zwischenverarbeitet werden Fehlerkorrektur etc.
- große Verzögerung

Adaptive Switching / Intelligent Switching

- Arbeitet wie Cut-Through Switch aber speichert lokale Kopie der Frames
- Überprüfung auf Fehler nach Weiterleitung
- wenn zu viele Fehler auftreten wird in einen Store-and-Forward betrieb gewechselt

Fragment-free Switching

- Packete werden auf Mindetgrößte überprüft
- erkennen von Kollisionsüberresten

4.4 Aufbau eines Ethernet-Frames

4.5 Frames/Rahmen

- Bildet Einheit zur Datenübertragung / Fehlererkennung / Fehlerkorrektur
- feingranulare Fehlerbehandlung
- Steuerinformation mit Header und Trailer

- Frames werden durch Frame Delimiter getrennt
 - -> Problem wenn FD (111111) 6x1 in Nutzdaten vorkommt

_

- Bitstuffing: Füge nach jeden aufeinanderfolgenden 5 Einsen im Payload eine 0 ein
- Bytestuffing: Füge vor jeden im Payload auftretenden FD ein ESC-Byte ein, tritt ein ESC-Byte im Payload auf so füge davor auch ein ESC-Byte ein

4.6 Fehlerkorrektur

Hamming-Distanz

- minimale Anzahl unterschiedlicher Bits zwischen 2 Quellwörtern
- erkennbare Fehler: d-1
- korrigierbare Fehler: $\lfloor \frac{d-1}{2} \rfloor$

Paritäts-Bit

- Anhängen eines Bits an jede Bitfolge, sodass die Summe der Einsen gerade ist
- Horizontale und Vertikale Paritätsbildung ermöglichen das Feststellen der genauen Fehlerstelle (wie in einer Matrix)

Cyclic Redundancy Check

- G(X): Generator polynom
- r: Grad von P_p
- P_D : Datenpolynom
- R: Rahmen (binäre Repräsentation von P_D
- m: Anzahl der Bits im R (Grad von $P_D + 1$)

SENDEN

• Hänge r Nullen an R an = $x^r P_D$

- Teile $x^r P_D$ durch G(X) mod 2
- Ziehe den Rest von $x^r P_D$ ab (XOR) = P_S
- Sende Quellwort + P_S

Empfangen

- Teile P_E durch G(X) mod 2
- wenn Ergebnis = 0 Fehlerfreie Übertragung

5 Vermittlungsschicht

Shortest-Path-Routing

• Dijkstra Algorithmus

5.1 IP

- identifiziert einen Host innerhalb eines Netzwerks
- ein Host kann mehrere IP's haben

Unterschiede	IPv4	IPv6
Adressierungsmethode	Eine numerische Adresse. Ihre binären Bits werden durch einen Punkt (.) getrennt	Eine alphanumerische Adresse, deren binäre Bits durch einen Doppelpunkt (:) getrennt sind.
Adresstypen	Unicast, Broadcast und Multicast.	Unicast, Multicast und Anycast.
Adress-Maske	Wird für ein bestimmtes Netzwerk vom Host-Teil verwendet	Nicht verwendet
Anzahl der Header- Felder	12	8
Länge der Header- Felder	20	40
Checksum	Hat Checksum-Felder	Hat keine Checksum-Felder
Anzahl der Klassen	Klasse A bis E	Unbegrenzte Anzahl von IP-Adressen
Konfiguration	IP-Adressen und Routen müssen zugewiesen werden	Die Konfiguration ist optional, je nach benötigten Funktionen
VLSM	Unterstützt	Nicht Unterstützt
Fragmentierung	Erledigt durch Senden und Weiterleiten von Routen	Durch den Absender erledigt
Routing Information Protocol	Unterstützt durch Routed-Daemon.	IPv6 wird vom RIP nicht unterstützt. Daher verwendet es statische Routen.
Netzwerk- Konfiguration	Manuell oder mit DHCP	Autokonfiguration
SNMP	Protokoll, das für die Systemverwaltung verwendet wird	SNMP unterstützt kein IPv6
Mobilität und Interoperabilität	Relativ eingeschränkte Netzwerktopologien zur Einschränkung von Mobilität und Interoperabilität.	IPv6 bietet Interoperabilität und Mobilitätsfunktionen, die in Netzwerkgeräte eingebettet sind.
DNS-Records	Pointer (PTR) Records, IN-ADDR.ARPA DNS- Domain	Pointer (PTR) Records, IP6.ARPA DNS-Domain
IP-zu-MAC-Resolution	Broadcast-ARP	Multicast Neighbor Solicitation
Mapping	Verwendet ARP (Address Resolution Protocol) zur Zuordnung zur MAC-Adresse	Verwendet NDP (Neighbour Discovery Protocol) zur Zuordnung zur MAC-Adresse
Quality of Service (QoS)	QoS ermöglicht es, Paketpriorität und Bandbreite für TCP/IP-Anwendungen anzufordern	Derzeit unterstützt die IBM-Implementierung von QoS kein IPv6

Abbildung 1: Unterschied zwischen IPv4 und IPv6

5.1.1 Subnetzmask

- Jedes Subnetz erhält eine Netzadresse, welche aus dem ersten Teil (variable Länge) einer Hostadresse des Netzes gebildet wird
- keine neuen Netzwerkadressen erforderlich

- Subnetzadressen müssen außerhalb der Organisation nicht bekannt sein
- Routingtabellen wird klein gehalten
- CIDR Notation: IP/x wobei x der Subnetz-Anteil in Bits ist Bsp: 192.168.0.1/24 -> 32-24 = 8 Host Bits -> [192.168.0.1 - 192.168.0.255]
- gibt an welcher Teil der IP das Netz / den Host identifiziert
- Anz. Hosts = $2^{32-CIDR} \lfloor \frac{32-CIDR}{8} \rfloor$

6 Transportschicht