AMENDMENTS TO THE CLAIMS:

- 1. (Currently Amended) A Q-switched laser, comprising:
- a polarization-dependent resonant cavity including a fiber chain having a gain medium between narrowband and broadband fiber gratings, at least one of said fiber gratings and said gain medium being formed in a non-polarization maintaining (PM) fiber;

a pump source that couples energy into the fiber chain to pump the gain medium; and

a modulator that applies stress to a non-PM portion of the fiber chain to induce birefringence and switch the cavity Q-factor to alternately store energy in the gain medium and then release the energy in a laser pulse.

- 2. (Original) The Q-switched laser of claim 1, wherein at least a portion of the fiber chain comprises a polarization-dependent fiber.
- 3. (Currently Amended) The Q-switched laser of claim 1, wherein the narrowband fiber grating is formed in a polarization maintaining (PM) fiber creating a pair of reflection bands that correspond to different polarization modes, said broadband grating is formed in the non-PM fiber having a reflection band that is aligned to one of the narrowband grating's reflection bands.
- 4. (Original) The Q-switched laser of claim 1, wherein the modulator comprises a piezoelectric transducer (PZT).
- (Cancelled)
- 6. (Original) The Q-switched laser of claim 1, wherein

the retardance of the birefringence is approximately onequarter wave of the laser pulse.

- 7. (Original) The Q-switched laser of claim 1, wherein the gain medium is formed in an oxide-based multi-component glass fiber and the gratings are formed in passive silica fiber fused at either end of the multi-component glass fiber.
- 8. (Original) The Q-switched laser of claim 1, wherein the length of the resonator is less than 5 cm and the laser pulse is single-frequency.
- 9. (Currently Amended) The Q-switched laser of claim 1, wherein full-width half-maximum of the laser pulse is less than 100 ns, the repetition rate of the laser pulse is at least 1 kHz, and the peak power of the laser pulse is at least 1 W.
- 10. (Currently Amended) The Q-switched laser of claim 1, wherein the modulator applies stress to the non-PM portion of the fiber chain that does not include the gain medium 9, wherein the repetition rate of the laser pulse is at least 1 kHz.
- 11. (Currently Amended) The Q-switched laser of claim 1 9, wherein said fiber chain includes only contiguous section of PM fiber the peak power of the laser pulse is at least 1 w.
- 12. (Currently Amended) A Q-switched laser, comprising: a polarization-dependent resonant cavity comprising,

- a gain fiber,
- a narrowband grating formed in a polarization maintaining (PM) fiber spliced to one end of the gain fiber, said narrowband grating in said PM fiber having two reflection bands that correspond to different polarization modes,
- a broadband grating formed in a <u>non-PM</u> fiber spliced to the other end of the gain fiber, said broadband grating having a reflection band that is aligned to one of the narrowband grating's reflection bands;
- a pump source that couples energy into the resonant cavity to pump the gain fiber; and
- a modulator that applies stress to the <u>non-PM fiber in</u>
 <u>the</u> fiber chain to induce birefringence and switch the
 cavity Q-factor to alternately store energy in the gain
 medium and then release the energy in a laser pulse.
- 13. (Currently Amended) The Q-switched laser of claim 12, wherein the resonant cavity comprises only one section of PM fiber modulator comprises a piezoelectric transducer (PZT).
- 14. (Currently Amended) The Q-switched laser of claim 13
 12, wherein the one section of PM fiber comprises the PM
 fiber in which the narrowband grating is formed spliced to
 a PM gain fiber retardance of the birefringence is
 approximately one quarter wave of the laser pulse.
- 15. (Original) The Q-switched laser of claim 12, wherein the gain fiber is formed of an oxide-based multi-component glass and the gratings are formed in passive silica fiber fused at either end of the multi-component glass fiber.

- 16. (Cancelled)
- 17. (Cancelled)
- 18. (Cancelled)
- 19. (Cancelled)
- 20. (Currently Amended) A Q-switched laser, comprising:
- a resonant cavity including a narrowband reflector having a polarization-dependent reflection band centered at a laser wavelength, a gain medium and a broadband reflector having a reflection band that overlaps the polarization-dependent reflection band so that the cavity has a high Q-factor at the laser wavelength and polarization;
- a pump source that couples energy into the resonant cavity to pump the gain medium; and
- a modulator that affects the polarization of light oscillating in the resonant cavity to reduce the Q-factor to store energy in the gain medium and then return the Q-factor to its high value to release the energy in a laser pulse.
- 21. (Currently Amended) The Q-switched laser of claim 20, wherein the reflectors and gain medium are formed in a fiber chain, said modulator applying stress to a non-polarization maintaining portion of the fiber chain to alter its birefringence and change the polarization of the light.
- 22. (Currently Amended) The Q-switched laser of claim 20

the narrowband reflector fiber grating is formed in a polarization maintaining (PM) fiber creating a pair of reflection bands that correspond to different polarization modes, said broadband reflector grating having a reflection band that is aligned to one of the narrowband reflector's grating's reflection bands.

23. (New) A Q-switched laser, comprising:

a polarization-dependent resonant cavity including a fiber chain having a gain medium between first and second fiber gratings, at least one of said gratings formed in a non-polarization maintaining (PM) fiber;

a pump source that couples energy into the fiber chain to pump the gain medium; and

a modulator that applies stress to a non-PM portion of the fiber chain to induce birefringence and switch the cavity Q-factor to alternately store energy in the gain medium and then release the energy in a laser pulse.

- 24. (New) The Q-switched laser of claim 23, wherein one of the fiber gratings is formed in a PM fiber.
- 25. (New) The Q-switched laser of claim 23, wherein the fiber chain includes only one section of PM fiber including said other grating and/or said gain medium.
- 26. (New) The Q-switched laser of claim 24, wherein said first fiber grating is a narrowband grating that is formed in said PM fiber and said second fiber grating is a broadband grating that is formed in said non-PM fiber.

27. (New) The Q-switched laser of claim 23, wherein the modulator applies stress to the non-PM portion of the fiber chain that does not include the gain medium.