Hynebru n 16.10.2024

13–19 окт.	7	Электромагнитная индукция. Теорема взаимности. Магнитная энергия.	7.1 ⁰ 7.1 7.31	10.1 5.29 5.30 7.58 7.88	5.28 T9 7.64 6.50 8.47	
---------------	---	---	---------------------------------	--------------------------------------	------------------------------------	--

57.1

7.1. Медный диск радиусом $a=10\,\mathrm{cm}$ вращается в однородном магнитном поле, делая $100\,\mathrm{ofopotob}$ в секунду. Индукция магнитного поля направлена перпендикулярно к плоскости диска и равна $B=10^4\,\mathrm{\Gamma c}$. Две щетки, одна на оси диска, другая на окружности, соединяют диск с внешней цепью, в которую включены реостат с сопротивлением $R=10\,\mathrm{Om}$ и амперметр, сопротивлением которого можно пренебречь. Что показывает амперметр?

$$\partial A = Fdr = \frac{q}{c}$$
 and $Brdv$

$$\Rightarrow A = \frac{2\pi \partial B}{e} q \int rdv = \frac{\# \partial B}{e} \alpha^2 q$$

Padoma ompigeneurce paynoemero noneuguenos:

$$a = \frac{A}{q} + \frac{40Ba'}{c}$$

Ombun: 0,314 A

571°

 $^{0}7.1$. Определить давление магнитного поля на стенки длинного соленоида кругового сечения, в котором создано магнитное поле $B=10\,$ Тл. Какова при этом должна быть поверхностная плотность тока i?

<u>Ответ:</u> $P \approx 400$ атм, i = 80 кА/см.

Dono. Pernenue:

$$B = 10 \text{ Ta}$$
 flore brympu exhibiting:

 $U = 7$ $B = \frac{4H}{C}i$ a $i = \frac{CB}{4H} = \frac{3.10^{\circ} \cdot 10.10^{\circ}}{4H} = \frac{6 \cdot 10.10^{\circ}}{4H} = \frac{3.10^{\circ} \cdot 10.10^{\circ}}{4H} = \frac{3.10^{\circ}}{4H} =$

Apouglegen bepayerance repensement enmon connough byons pagnyer na pacemoenur dr.

The sman parama none
$$SA = \int \int SN = dN = (\omega_1 - \omega_2^0) \int SN$$
.

$$J = \rho = \omega_1 = \frac{(\overline{R}, \overline{B})}{8H} = \frac{B^0}{8H} = \frac{(10.10^{11})^2}{8H} \quad \text{an} \quad \text{an$$

Ombern 400 at u; 80 mA

7.31. В опытах А. Д. Сахарова сверхсильные магнитные поля получались взрывным сжатием отрезка проводящей цилиндрической трубы, внутри которой создано начальное магнитное поле с индукци-

ей B_0 . Определить индукцию поля B в трубе в момент максимального сжатия, если $B_0=5\cdot 10^4$ Гс, начальный внутренний радиус трубы R=5 см, радиус в момент максимального сжатия r=0.5 см. Оболочку, окружающую магнитное поле, считать идеально проводящей. Определить также давление P, необходимое для получения такого сжатия.

Davo.

Bo = 5.104 le

R = 5 cm

r= 0,5 em

B=1

P-3

Penetur,

expansent markiment nomon (mornina o coxp. MP):

My mpagnolyment jagane, gabrenne, oragerbarre M17 na

anno durandes.

D= B+ . Into me godnemue nytho npumagnoans, umoth nasyums momes

Ombum: B = 5.10° Te; P = 10° amm.