Page No./ Expt.No. Date./ TO DETERMINE YOUNG'S MODULUS OF ELASTICITY OF THE MATERIAL OF A STEEL BAR Dim: To determine the Young's modulus of elasticity of a given material (Stell bar) Apparatus: Pin and microscope aveangement Scale, vernier Callipers, sonew gauge, cheight hanger, material bar er 40d. Theory: - It a light bar of breadth b' and depth 'd' is placed horizontally on two knife-edges separated by a disharre L, and a load of mass m, applied at the mid-point of the bar, puddices a depression l of the bat, then Young's modules You the material of the box is given by Y = 92 m _ 4603l where g is the acceleration due to granity. This is the working formula of the experiments and is valid so long as the slope of the bar ar any point with respect to the unstrained RD position is much less than unity. Here I is determined by measuring the quantities b, of Teacher's Signature

Rigid support Spiritdenel Michaneta scrow Vernier Callipers mas longu (controv) Stell ban

OBSERVATION TABLE

,47.										
SL No.	Load mass	Micus for inc	copic l cosing (cm)	Radius	Load/ Mass	Micros	scopic cueasing	()	Mean (cm)	Depuession Lincon
	0	M.S.R	V·S·R	Total	(2m)	M.S.R	V.S.R	Total (cm)		
1	0	5.50	12	5.50+ (2x0.001) =5.512		5.50	12	5.50+ (12% 001) = 5.512	A = 5.512	A -A = 0
2	50	6.55	10	(5.55+ 0.00(x10) =5.560	50	5.55	(0	(5.55+ 0.001×10) =5.560	B= 5.560	B-A = 0.043
3	100	5.60	10	S.6+ 0.001x10 = 5.610	100	5.60	10	S.60 + 0.001x 5'-610	5-610	c-A 0.097
4	150	5.65	21	\$.65+ 6.001x = 25-21) = 5.671	150-	5.65	21	5.65+ 0.001×21 =5.671	D= 5.671	D-A = 0.159
5	200	5.65	29	(5.65 t. 0.001x29) =5.679	200	5.65	29	5-65+ 0.001 x29 = 5.679		E-A = 0.167
6	250	5.70		5.70+ 0.001×25 =5.725	250	5.7	25	S.7+ 0.001×2 =5.725	- VT25	F-A = 0.215
7	300	5,75	24	5.774	300	5.75	24	5.774	Cn=5.7	Cr-A =0.262
8	350	5.80		5.8+0.00 1 x 23 = 5.833	350	5.8	33	5.80 + 0.001x 33 = 5.83	5.833	j+ -A = 0.321
9	400	5.85	32	5,85t 0,001x32 25.882	400	5.85	32	5.85 t	F= 5.882	T-A = 0.370
io	4 50	5.90	31	5.9*0.000 ×31 = 5.931	450	5.90	31	5.937 5.937	٦ - ١	J-A 20.419
11	500	5.95	31	5.95+ 0.001X 31 =5.981	500	5.95	31	5.95+ 0.001 x	5.981	K-A
n Cit A	. <u>.</u>	ele Bisku	2 gr 5 , 6 74	M	-			5-981		

	Page No./ Date./
L and the mean d	epression l'arrespond
to a lead m. of b,d	, Land lare measur
in om, mingm, g	is expected in confee
and then Y is obtaine	a dyne/cm².
Calculation: Vernier cons	rant of traveling
Calculation: Vernier com	(L.c) =0.001cm
Distence between the	two knife edge (4) 258
Slape puon the guap	sh, DL = 0.419-0.04
	450-50
	,60
	= 0.371
Towns y Modelles Y = 9/3 n	$\approx 9.27 \times 10^{-4}$
Joung's Modellus $y = gL^3 r$	
9=9-8m/82, L=55cm, b=	
d=0.25 cm	
.c og vernier scale = 0.	
Thus	001.cm
7 = 980 × 553	
4 x 1.5 x 0.25 x	19.77×10
Y = 1.88 × 1012 dy	ne fem 2

Teacher's Signature

Late.
VOICE OF THE PARTY
17.

Page No.

Conclusion: The Young's Modulus is 1.88 × 10 dyne [and