1 Contrôlabilité

Si l'ensemble des états que l'on peut atteindre en partant de zéro est l'espace d'états entier, alors le système est dit complètement contrôlable. (On peut aller partout)

1.1 Matrice de contrôlabilité

$$P_c = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$$
$$\det(P_c) \neq 0 \longrightarrow \text{Contrôlable}$$

1.2 Définition

Le système $\dot{x}(t) = Ax(t) + Bu(t)$ est complètement contrôlable si pour x(0) = 0 et pour tout état x^* , il existe un temps fini t^* et une entrée continue par morceaux u(t) dans $[0, t^*]$ telle que $x(t^*) = x^*$

1.3 Théorème

Un système à temps continu (discret) est complètement contrôlable si, est seulement si, la matrice de contrôlabilité: $M = [B, AB, A^2B, ..., A^{n-1}B]$ est de rang n (rang plein)

1.4 Forme canonique contrôlabilité

Une équation différentielle d'ordre n peut être remappée en un système de n équations du premier ordre

$$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y = u$$
On pose y=x1

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_3 \\ \vdots \\ \dot{x}_{n-1} &= x_n \\ \dot{x}_n &= -a_1 x_n - \ldots - a_n x_1 + u \end{aligned}$$

On a donc

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix}$$

$$b = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}, c = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Le système (A,b,c) a des propriétés intéressantes, La dernière ligne est composée des coefficients du polynôme caractéristique

$$\Delta_A(\lambda) = \det(\lambda I - A) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n$$

Tout système complètement contrôlable est équivalent à un système sous forme canonique de contrôlabilité

1.5 Transformation

Il est possible de mettre tout système complètement contrôlable sous sa forme canonique par une simple transformation $x = P_c z$ avec $P_c = [b|Ab|...|A^{n-1}b]$ On obtient $\bar{A} = P_c^{-1}AM$ qui est la forme canonique compagnon de contrôlabilité

1.6 Rétroaction

1.6.1 Contrôle en boucle ouverte

- la fonction d'entrée est déterminée par un process externe
- exemple: un feu de circulation à cycle fixe

1.6.2 Contrôle en boucle fermée

- la commande est déterminée par le comportement du système
- exemple: un thermostat
- La boucle fermée est plus facile à réaliser
- La boucle fermée requiert du temps de calcul

1.7 Retour d'état

$$u(t) = Kz(t)$$

La dynamique de la boucle ouverte est A - BK (ou A + BK, c'est égal car on va déterminer les valeurs de K).

1.7.1 Théorème

Soit (A, B) un système complètement contrôlable. Alors, pour tout choix d'un polynôme $p(\lambda)$ d'ordre n $p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + ... + a_0$, il existe une matrice réelle K telle que le polynôme caractéristique de est A + BK est $p(\lambda)$