COMP408 - Linear Algebra Dennis Wong

A **vector space** is a set V (the elements of which are called vectors) with an addition and a scalar multiplication satisfying the following properties for all $u, v, w \in V$ and $\alpha, \beta \in R$:

```
(V1) v + w = w + v,

(V2) (u + v) + w = u + (v + w),

(V3) there exists a vector 0 in V such that v + 0 = v,

(V4) for each vector v in V , there exists a vector -v in V such that v + (-v) = 0,

(V5) \alpha(v + w) = \alpha v + \alpha w,

(V6) (\alpha + \beta)v = \alpha v + \beta v,

(V7) (\alpha\beta)v = \alpha(\beta v),

(V8) 1v = v.
```

Example: (Euclidean space) The set $V = \mathbb{R}^n$ is a vector space with usual vector addition and scalar multiplication.

Proof: Let
$$u = [u_1, u_2]^T$$
, $v = [v_1, v_2]^T$ and $w = [w_1, w_2]^T$.

(V1)
$$V + W = [v_1, v_2]^T + [w_1, w_2]^T = [v_1+w_1, v_2+w_2]^T$$

 $= [w_1+v_1, w_2+v_2]^T = W + V;$
(V2) $(u + V) + W = ([u_1, u_2]^T + [v_1, v_2]^T) + [w_1, w_2]^T$
 $= [u_1, u_2]^T + ([v_1, v_2]^T + [w_1, w_2]^T)$
 $= [u_1+v_1+w_1, u_2+v_2+w_2]^T = u + (v + w);$
(V3) The vector $0 = [0, 0]^T$ satisfies the property as $u + 0 = u;$
 $(V4)$ The vector $-v = [-v_1, -v_2]^T$ satisfies the property since $v + -v = [v_1, v_2]^T + [-v_1, -v_2]^T = 0;$

Example: The set $V = R^n$ is a vector space with usual vector addition and scalar multiplication.

Proof (cont): Let
$$u = [u_1, u_2]^T$$
, $v = [v_1, v_2]^T$ and $w = [w_1, w_2]^T$.
(V5) $\alpha(v + w) = \alpha([v_1, v_2]^T + [w_1, w_2]^T) = \alpha[v_1 + w_1, v_2 + w_2]^T$

$$= [\alpha(v_1 + w_1), \alpha(v_2 + w_2)]^T$$

$$= [\alpha v_1 + \alpha w_1, \alpha v_2 + \alpha w_2)]^T$$

$$= \alpha v + \alpha w$$
(V6) $(\alpha + \beta)v = (\alpha + \beta)([v_1, v_2]^T) = [(\alpha + \beta)v_1, (\alpha + \beta)v_2]^T$

$$= \alpha v + \beta v$$
(V7) $(\alpha\beta)v = ([\alpha\beta v_1, \alpha\beta v_2]^T) = \alpha([\beta v_1, \beta v_2]^T) = \alpha(\beta v);$
(V8) $1v = ([1v_1, 1v_2]^T) = v.$

Other examples of vector space include:

- 1. Polynomial space (How?)
- 2. Function space
- 3. Matrix space (introduce in next chapter)
- 4. Many more actually...

If *V* is a vector space, then *V* satisfies most of the properties we discussed previously for vector (addition, scalar multiplication, dot product, basis, span, subspace, dimension, etc).