Matematika Diskrit [KOMS124210] - 2024/2025

12.2. Graf (bagian 2)

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 12 (Mei 2025)

Representasi graf

Matriks ketetanggaan (1)

Matriks ketetanggaan untuk graf dengan n simpul adalah matriks A berukuran $n \times n$, dengan ketentuan:

- indeks baris dan kolomnya adalah simpul-simpul pada graf;
- ▶ nilai entri $a_{ij} = 1$ jika simpul i dan j bertetangga, dan $a_{ij} = 0$ jika simpul i dan j tidak bertetangga.

Matriks ketetanggaan (2)

Matriks ketetanggaan (3)

Latihan: Tentukan derajat setiap simpul graf di atas berdasarkan matriks ketetanggaan-nya.

Matriks ketetanggaan pada graf berbobot

Graf berbobot adalah graf yang memiliki bobot (weight) pada sisi-sisinya.

Matriks insidensi (1)

Matriks insidensi adalah matriks B berukuran $n \times m$, dimana n = |V(G)| dan m = |E(G)|, dimana:

- ▶ baris diindeks dengan V(G) dan kolom diindeks dengan E(G);
- ▶ $b_{ij} = 1$ jika simpul i bersisian dengan sisi j, dan $b_{ij} = 0$ sebaliknya.

Matriks insidensi (2)

List ketetanggaan (1)

Apa kekurangan matriks ketetanggaan dan matriks insidensi?

List ketetanggaan (1)

Apa kekurangan matriks ketetanggaan dan matriks insidensi?

kurang efisien ketika graf-nya "jarang" (sparse)

List ketetanggaan (2)

Graf isomorfik

Graf isomorfik (1)

Dua graf G_1 dan G_2 dikatakan isomorfik jika terdapat korespondensi satu-satu antara simpul-simpul keduanya dan antara sisi-sisi keduanya, sehingga jika sisi e bersisian dengan simpul u dan v di G_1 , maka sisi e' di G_2 yang berkorespondensi dengan e jua bersisian dengan simpul u' (yang berkorespondesi dengan u) dan simpul v' (yang berkorespondensi dengan v).

Graf isomorfik (2)

Graf isomorfik (3)

Graf isomorfik (4)

Graf isomorfik (5)

Bagaimana menyelidiki bahwa dua graf adalah graf-graf yang isomorfik?

- 1. Mempunyai banyaknya simpul yang sama
- 2. Mempunyai banyaknya sisi yang sama
- Mempunyai banyaknya simpul yang sama dengan derajat tertentu

Latihan graf isomorfik (1)

Tentukan apakah pasangan graf berikut adalah graf-graf yang isomorfik!

Latihan graf isomorfik (2)

- 1. Kedua graf pada gambar (a) tidak isomorfik, karena...
- 2. Kedua graf pada gambar (b) isomorfik, karena...

Latihan graf isomorfik (2)

- 1. Kedua graf pada gambar (a) tidak isomorfik, karena...
- 2. Kedua graf pada gambar (b) isomorfik, karena...
- a berkoresponden dengan u;
- b berkoresponden dengan q;
- c berkoresponden dengan r;
- d berkoresponden dengan s;
- e berkoresponden dengan p;
- f berkoresponden dengan t;

Latihan graf isomorfik (3)

Perhatikan matriks ketetangaan dari kedua graf pada gambar (b) tersebut.

Graf planar

Graf planar

Sebuah graf dikatakan planar jika graf tersebut dapat digambarkan pada bidang datar dengan sisi-sisi yang tidak saling memotong.

Graf tidak planar

Graf yang tidak bisa digambar pada bidang datar tanpa ada sisi-sisi yang berpotongan disebut graf tak planar.

Mengecek planaritas graf (1)

Periksa apakah graf berikut adalah graf planar.

Mengecek planaritas graf (1)

Periksa apakah graf berikut adalah graf planar.

Jawaban:

Mengecek planaritas graf (2)

Periksa apakah graf berikut adalah graf planar.

Teorema Kuratowski (1)

Teorema (Kasimir Kuratowski)

Graf G merupakan graf yang tidak planar jika dan hanya jika graf tersebut memuat subgraf yag isomorfik atau homeomorfik dengan K_5 atau $K_{3,3}$.

Teorema Kuratowski (2)

Periksa apakah graf berikut adalah graf planar.

Teorema Kuratowski (2)

Homeomorfisma graf

Dua graf G_1 dan G_2 dikatakan homeomorfik jika salah satu dari kedua graf dapat diperoleh dari graf yang lain dengan cara "menyisipkan" dan/atau "menghilangkan" secara berulang-ulang simpul berderajat dua.

Contoh graf tidak planar (1)

Contoh graf tidak planar (2)

Dual graf

Dual gari graf

Misalkan G adalah sebuah graf planar. Bagaimana membuat graf dual G^* dari G?

- ▶ Untuk setiap muka (face) f di G buatlah sebuah simpul v^* yang merupakan simpul untuk G^* .
- Dua simpul e_1^* dan e_2^* di G^* dihubungkan dengan sebuah sisi jika dan hanya jika kedua muka yang bersesuaian dengan kedua sisi tersebut di G memiliki setidaknya sebuah batas muka yang sama.

Ketunggalan dual graf? (1)

Misalkan *G* adalah sebuah graf planar. Apakah dual dari *G* tunggal? Mungkinkah *G* memiliki dua graf dual?

Ketunggalan dual graf? (1)

Misalkan G adalah sebuah graf planar. Apakah dual dari G tunggal? Mungkinkah G memiliki dua graf dual?

Perhatikan contoh berikut: Tentukan dual dari masing-masing graf berikut

Ketunggalan dual graf? (2)

Penerapan dual graf

Figure: Dual graf digunakan pada penyelesaian permasalahan peta

Proyek

Penugasan

- Bentuklah kelompok beranggotakan 3-4 orang (sehingga terdapat 6 kelompok)
- 2. Setiap kelompok memilih satu dari 6 topik berikut (tidak boleh sama).
 - 2.1 Lintasan/sirkuit Euler
 - 2.2 Lintasan/sirkuit Hamilton
 - 2.3 Lintasan terpendek (shortest path)
 - 2.4 Traveling Salesman Problem (TSP)
 - 2.5 Chinese Postman Problem
 - 2.6 Pewarnaan graf
- 3. Buatlah ulasan terkait dengan topik yang dipilih, serta video presentasi dengan durasi ± 30 menit.
- 4. Waktu pengerjaan: ± 1 minggu
- 5. Pada minggu berikutnya, setiap kelompok diwajibkan untuk memberikan penilaian kepada kelompok lain.

Rubrik penilaian

Poin-poin yang harus dinilai dari kelompok lain adalah:

- Kesesuaian Isi dengan Topik (25%)
 Apakah materi sesuai dengan topik dan mencakup seluruh aspek penting?
- 2. **Kejelasan dan Ketepatan Penjelasan (20%):** Apakah penjelasan runtut, mudah dipahami, dan didukung dengan ilustrasi relevan?
- 3. **Kualitas Video Presentasi (15%):** Apakah visual dan audio jelas serta durasi sesuai (±30 menit)?
- 4. Kolaborasi dan Pembagian Tugas (15%): Apakah semua anggota berkontribusi dan kolaborasi terlihat jelas?
- 5. Kreativitas dan Inovasi (15%): Apakah terdapat elemen kreatif seperti simulasi, animasi, atau studi kasus?
- 6. **Kemampuan Menjawab Pertanyaan (10%):** Apakah kelompok dapat menunjukkan pemahaman?

Setiap kelompok memberikan nilai dalam skala 1–10 untuk setiap kriteria. Nilai akhir dihitung berdasarkan bobot masing-masing.