BYZANTINE AGREEMENT

Byzantine Agreement

- Suppose 3 generals (A,B,C), one of whom may be traitor
- · General A knows he's loyal
- Take majority vote?
- But traitor may be saying different things to A and other loyal general
- Lower bound: Need at least 4 generals if 1 traitor
- Generally: Need 3f+1 processors if f are faulty

70

70

Byzantine Agreement

- Assume wlog general sending orders to lieutenants
- Give commanders ability to sign their messages
- Assume no more than f failures, and f+2 commanders

Protocol

- Round 1:
 - General broadcasts his order (true or false) to all lieutenants
- Round *i*, for loyal commander:
 - Consider any messages with i-1 signatures received in previous round
 - Record any orders signed by the general
 - Commander adds his signature to each message, and broadcasts result to all other processes
 - Repeat this round f times for total f+1 rounds

72

72

Protocol

- After f+1 rounds, each loyal commander considers the orders he has recorded:
 - If empty, or conflicting orders, then choose default decision
 - If exactly one order, then execute that order

Why does this work?

- Suppose general is loyal
 - Broadcasts order in first round
 - But lieutenants do not know if he is loyal
 - Therefore run for f more rounds
- Disloyal general would:
 - Relay conflicting orders via disloyal lieutenants
 - Orders delivered to loyal lieutenants in last round
 - But protocol requires f+1 rounds, f+1 signatures
 - So orders relayed through at least one loyal lieutenant

80

80

Observations

- Complexity of protocol:
 - O(N2) messages on each round!
 - All Byzantine protocols are expensive
- Rabin: randomized protocols
 - Each process has a form of coin available to it
 - Can flip coin in each round
 - With randomness, very rapid agreement "with high probability" in very little time