CORRIGÉ DU DEVOIR MAISON N°3

Nom: Prénom: Classe:

EXERCICE N°1 (11 points)

La survie des éléphants d'Afrique est menacée par le braconnage (chasse illégale).

Partie A

En l'absence de braconnage, on estime le taux de croissance de la population d'éléphants d'Afrique à 1,5% par an. Pour tout entier naturel n, on note u_n l'effectif de cette population pour l'année 2013+n en l'absence de braconnage. La population totale d'éléphants d'Afrique était estimée à $470\,000$ individus en 2013.

1) Calculer le nombre d'éléphants d'Afrique en 2014 en l'absence de braconnage.

 $470\ 000 \times 1,015 = 477\ 050$

En 2014, en l'absence de braconnage, il y aurait eu 477 050 éléphants

2) Donner la nature de la suite (u_n) et en préciser le premier terme et la raison.

Une augmentation de 1,5% correspond à un Coefficient Multiplicateur CM valant 1,015. Ainsi, pour passer d'un terme au suivant, on multiplie toujours par 1,015.

La suite (u_n) est donc géométrique de raison q=1,015 et de premier terme $u_0=470\,\,000$

3) Donner l'expression de u_n en fonction de n.

Pour tout entier naturel n, $u_n = u_0 \times q^n$ Donc $u_n = 470\ 000 \times 1,015^n$

4) Estimer le nombre d'éléphants d'Afrique en 2028 dans ces conditions.

2028 = 2013 + 15, il s'agît donc de calculer u_{15} .

Or: $u_{15} = 470\ 000 \times 1,015^{15} \approx 587\ 609$

Dans ces conditions, il devrait y avoir, en 2028, 587 609 éléphants

Partie B

5) Actuellement, un éléphant d'Afrique est tué tous les quarts d'heure par le braconnage. Justifier qu'environ 35 000 éléphants d'Afrique sont tués chaque année par le braconnage. On considérera qu'une année a 365 jours.

```
4 \times 24 \times 365 = 35040
```

On peut donc affirmer qu'environ 35 000 éléphants d'Afrique sont tués chaque année.

Si un éléphant est tué chaque quart d'heure alors 4 éléphants sont tués chaque heure.

Il y a 24 heures dans un jour et 365 jours dans l'année.

6) À l'aide d'un tableur, on a obtenu les résultats suivants, arrondis à 0,1 (les effectifs de la population d'éléphants tiennent compte du braconnage).

Année	2013	2014	2015	2016	2017	2018
Effectif (en milliers d'individus)	470,0	442,1	413,7	384,9	355,7	326,0

Année	2019	2020	2021	2022	2023
Effectif (en milliers d'individus)	295,9	265,3	243,3	202,9	170,9

Dans une interview accordée en 2013, le Fonds mondial pour la nature s'alarme : « si l'on ne réagit pas, la population d'éléphants d'Afrique aura baissé de près de 64 % en dix ans ». Justifier cette affirmation par un calcul.

On calcul le taux d'évolution de 2013 à 2023 :

$$\frac{170,9-470}{470} \approx -0.64 \text{ à } 0.01 \text{ près}$$

soit une baisse d'environ 64 % ce qui confirme l'affirmation.

7) On considère l'algorithme suivant.

7.a) Programmer cet algorithme et donner le résultat qui s'affiche.

L'algorithme affiche : 2029

https://landatome.pagesperso-orange.fr/00_seconde/02_python/install_python.html

7.b) Comment l'interpréter ?

À partir de 2029, il n'y aura plus d'éléphants en Afrique.

1 n = 2013 2 u = 470000 3 while u > 0: 4 n = n+1 5 u = u*1.015-35000 6 print(n) Soit f la fonction définie sur $\mathbb{R}\setminus\{0\}$ par $f(x) = \frac{6}{x} + 2.3$.

1) Déterminer les limites de f aux bornes de son ensemble de définition.

(rappel: $\mathbb{R}\setminus[0] =]-\infty$; $0[\overset{\smile}{\cup}]0$; $+\infty[$, il y a donc 4 bornes...)

Pour
$$x \neq 0$$
, $f(x) = \frac{6}{x} + 2,3 = 6 \times \frac{1}{x} + 2,3$

Limite en −∞

$$\lim_{x \to -\infty} \frac{1}{x} = 0 \quad \text{d'où} \quad \lim_{x \to -\infty} 6 \times \frac{1}{x} = 0 \quad \text{et donc} \quad \lim_{x \to -\infty} f(x) = 2,3$$

Limite en 0

$$\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty \quad \text{d'où} \quad \lim_{\substack{x \to 0 \\ x < 0}} 6 \times \frac{1}{x} = -\infty \quad \text{et donc} \quad \lim_{\substack{x \to 0 \\ x < 0}} f(x) = -\infty$$

■ Limite en 0⁺

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty \quad \text{d'où} \quad \lim_{\substack{x \to 0 \\ x > 0}} 6 \times \frac{1}{x} = +\infty \quad \text{et donc} \quad \boxed{\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty}$$

■ Limite en +∞

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \quad \text{d'où} \quad \lim_{x \to +\infty} 6 \times \frac{1}{x} = 0 \quad \text{et donc} \quad \boxed{\lim_{x \to +\infty} f(x) = 2,3}$$

2) Calculer f'(x) pour tout réel x différent de 0.

$$f(x) = \frac{6}{x} + 2,3$$

$$f(x) = 6 \times \frac{1}{x} + 2,3$$

$$f'(x) = 6 \times \frac{-1}{x^2} + 0$$

$$f'(x) = \frac{-6}{x^2}$$

3) Étudier le signe de f'(x) sur $\mathbb{R}\setminus\{0\}$.

Pour tout $x \in \mathbb{R} \setminus \{0\}$, $x^2 > 0$ et donc $\frac{-6}{x^2} < 0$

		\mathcal{A}	
X	$-\infty$	0	+∞
f'(x)			

4) En déduire le tableau de variation complet (il faut y mettre les limites également) de la f.

x	$-\infty$)	+∞
f'(x)	_	_	
f(x)	2,3	+∞	2,3