1. A particle is trapped in a harmonic oscillator potential. We know that at t = 0, the particle can be represented by the wavefunction

$$\Psi(x,0) = A (2\psi_0(x) + 5\psi_2(x)),$$

where ψ_0 and ψ_2 are the stationary-state solutions for n=0 and n=0, respectively.

(a) Normalize $\Psi(x,0)$.

$$1 = \langle \Psi(x,0) | \Psi x, 0 \rangle$$

$$= A^{2} (4\langle \psi_{0} | \psi_{0} \rangle + 25\langle \psi_{2} | \psi_{2} \rangle + 20\langle \psi_{0} | \psi_{2} \rangle)$$

$$= 29A^{2}.$$

Thus, $A = \sqrt{1/29}$.

(b) Construct $\Psi(x,t)$ and then determine $|\Psi(x,t)|^2$. Will $\langle x \rangle$ depend on time? The complete wavefunction is given by

$$\Psi(x,t) = \sqrt{\frac{1}{29}} (2\Psi_0 + 5\Psi_2),$$

where Ψ_n represents $\psi_n(x)\phi_n(t)$. Thus,

$$\begin{aligned} |\Psi(x,t)|^2 &= \frac{1}{29} \left(2\Psi_0^* + 5\Psi_2^* \right) \left(2\Psi_0 + 5\Psi_2 \right) \\ &= \frac{1}{29} \left(4 \left| \Psi_0 \right|^2 + 2\Psi_0^* \Psi_2 + 5\Psi_2^* \Psi_0 + 25 \left| \Psi_2 \right|^2 \right) \\ &= \frac{1}{29} \left(4 \left| \psi_0 \right|^2 + 20\psi_0 \psi_2 \left(e^{-2i\omega t} + e^{2i\omega t} \right) + 25 \left| \psi_2 \right|^2 \right) \\ &= \frac{1}{29} \left(4 \left| \psi_0 \right|^2 + 10\psi_0 \psi_2 \cosh(2i\omega t) + 25 \left| \psi_2 \right|^2 \right) \end{aligned}$$

2. Consider the stationary states of the harmonic oscillator. As straightforwardly as	
possi	ible, compute the following quantities for the nth stationary state $\psi_n(x)$.
(a)	$\langle x \rangle$
(b)	$\langle x^2 \rangle$
(c)	$\langle p angle$
(d)	$\langle p^2 \rangle$
(e)	$\langle T \rangle$
(f)	Is the Heisenberg uncertainty principle satisfied for all values of n ?

3. A particle in a harmonic oscillator potential is described by the normalized wavefunction

$$|\Psi(x,0)\rangle = \frac{1}{\sqrt{5}}|1\rangle + \frac{2}{\sqrt{5}}|2\rangle,$$

where $|n\rangle$ represents the *n*th stationary state.

- (a) What is $|\Psi(x,t)\rangle$?
- (b) What is the expectation value for energy?
- (c) What is $\langle x(t) \rangle$?