Lógica Computacional

LEI, 2023/2024 FCT UNL

Aula Prática 7

Semântica da Lógica de Primeira Ordem.

1. Interpretação de termos e fórmulas.

Considere a assinatura $\Sigma = (SF, SP)$ onde:

- $SF_0 = \{zero\}, SF_1 = \{suc\}, SF_2 = \{\oplus, \otimes\}$ e;
- $SP_1 = \{Par, Impar\}, SP_2 = \{Eq, Meq\}.$

Considere também a estrutura de interpretação $Nat = (\mathbb{N}_0, I)$, sendo:

- $\underline{zero}_I = 0$;
- $\underline{suc}_I: \mathbb{N}_0 \to \mathbb{N}_0 \text{ tal que } \underline{suc}_I(n) = n+1;$
- $\underline{\oplus}_I : \mathbb{N}_0^2 \to \mathbb{N}_0 \text{ tal que } \underline{\oplus}_I(n,m) = n+m;$
- $\otimes_I : \mathbb{N}_0^2 \to \mathbb{N}_0$ tal que $\otimes_I(n,m) = n \times m$;
- $\underline{Par}_I: \mathbb{N}_0 \to \{0,1\}$ tal que $\underline{Par}_I(n) = 1$ sse n é par;
- $\underline{Impar}_I: \mathbb{N}_0 \to \{0,1\}$ tal que $\underline{Impar}_I(n) = 1$ sse n é impar;
- $Eq: \mathbb{N}_0^2 \to \{0,1\}$ tal que $\underline{Eq}_I(n,m) = 1$ sse n=m;
- $Meq_{_{I}}: \mathbb{N}_{0}^{2} \rightarrow \{0,1\}$ tal que $Meq_{_{I}}(n,m)=1$ sse $n \leq m.$

Assuma a atribuição $\rho: X \to \mathbb{N}_0$ tal que $\rho(n) = 3$ e $\rho(m) = 2$.

- (a) Determine a interpretação dos seguintes termos em Nat.
 - i. $[zero]_{Nat}^{\rho}$
 - ii. $[n]_{Nat}^{\rho}$
 - iii. $[suc(n)]^{\rho}_{Nat}$
 - iv. $\llbracket \oplus (suc(zero), m) \rrbracket_{\mathsf{Nat}}^{\rho}$
 - v. $[\otimes(\oplus(m,suc(n)),\oplus(suc(zero),m))]^{\rho}_{Nat}$
- (b) Determine se são verdadeiras as afirmações seguintes.
 - i. Nat, $\rho \Vdash Meq(zero, n)$;
 - ii. Nat, $\rho \Vdash Meq(m, \oplus(suc(zero), m));$
 - iii. Nat, $\rho \Vdash Eq(n,m) \land Meq(n,suc(n));$
 - iv. Nat, $\rho \Vdash Par(n) \to Impar(n)$;
 - v. Nat, $\rho \Vdash \exists n \, Impar(suc(n));$
 - vi. Nat, $\rho \Vdash \exists n \, Eq(suc(n), zero);$
 - vii. Nat, $\rho \Vdash \forall n \, Eq(suc(n), m);$
 - viii. Nat, $\rho \Vdash \forall n \neg Eq(suc(n), zero)$.

2. Consequência semântica

Verifique se são verdadeiras as seguintes afirmações.

- (a) $\{P(y)\} \models \forall x P(x)$
- (b) $\{\exists x P(x)\} \models \forall x P(x)$
- (c) $\{\exists x P\} \models \forall x P$
- (d) $\{ \forall x \, P(x) \to \forall x \, Q(x) \} \models \forall x \, (P(x) \to Q(x))$
- (e) $\{ \forall x (P(x) \lor Q(x)) \} \models \forall x P(x) \lor \forall x Q(x) \}$
- (f) $\{\exists x P(x) \land \exists x Q(x)\} \models \exists x (P(x) \land Q(x))$
- (g) $\{\exists x (P(x) \land Q(x))\} \models \exists x P(x) \land \exists x Q(x)$
- (h) $\{ \forall x (\neg (P(x) \land Q(x))) \} \models \forall x \neg P(x) \land \forall x \neg Q(x) \}$
- (i) $\{ \forall x (P(x) \rightarrow \neg Q(x)), \neg Q(a) \} \models P(a)$
- (j) $\{ \forall x (P(x) \rightarrow \neg Q(x)), P(a) \} \models \neg Q(a)$
- (k) $\{ \forall x (P(x) \to Q(x)), \forall x (Q(x) \to R(x)) \} \models \forall x (P(x) \to R(x))$
- (1) $\{\exists x (\varphi \wedge \psi)\} \models \exists x \varphi \wedge \exists x \psi$
- (m) $\{ \forall x \varphi \land \forall x \psi \} \models \forall x (\varphi \land \psi)$
- (n) $\{\exists x \varphi \lor \exists x \psi\} \models \exists x (\varphi \lor \psi)$
- (o) $\{\exists x \neg \varphi\} \models \neg \forall x \varphi$
- (p) $\{ \forall x \neg \varphi \} \models \neg \exists x \varphi$

Se $x \notin VL(\psi)$:

- (q) $\{\forall_x (\varphi \wedge \psi)\} \models \forall_x \varphi \wedge \psi$
- (r) $\{\forall_x (\varphi \lor \psi)\} \models \forall_x \varphi \lor \psi$
- (s) $\{\exists_x (\varphi \wedge \psi)\} \models \exists_x \varphi \wedge \psi$
- (t) $\{\exists_x (\varphi \lor \psi)\} \models \exists_x \varphi \lor \psi$