Sprawozdanie 5.

Diagonalizacja macierzy metodą potęgową

Mirosław Kołodziej

08.04.2021

1. Wstęp teoretyczny

1.1 Wartości i wektory własne

Liczbę zespoloną λ nazywamy wartością własną macierzy kwadratowej A, jeżeli istnieje niezerowy wektor \vec{v} taki, że:

$$A\vec{v} = \lambda\vec{v}$$

Każdy niezerowy wektor \vec{v} spełniający powyższe równanie nazywamy wektorem własnym macierzy A odpowiadającym wartości własnej λ .

1.2 Iloczyn tensorowy

Wynikiem iloczynu tensorowego dwóch wektorów o wymiarach n i m jest macierz $n \times m$ i jest on określony w następujący sposób:

$$a \otimes b = ab^{T} = \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{bmatrix} \cdot \begin{bmatrix} \beta_{1} & \beta_{2} & \cdots & \beta_{m} \end{bmatrix} = \begin{bmatrix} \alpha_{1}\beta_{1} & \alpha_{1}\beta_{2} & \cdots & \alpha_{1}\beta_{m} \\ \alpha_{2}\beta_{1} & \alpha_{2}\beta_{2} & \cdots & \alpha_{2}\beta_{m} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}\beta_{1} & \alpha_{n}\beta_{2} & \cdots & \alpha_{n}\beta_{m} \end{bmatrix}$$

2. Problem

Na początku utworzyliśmy macierz kwadratową A rzędu n=7, której elementy są określone wzorem:

$$A_{i,j} = \frac{1}{\sqrt{2 + |i - j|}},$$

gdzie: i, j = 0, 1, 2, ..., n - 1. Macierz jest symetryczna, więc ma wszystkie wartości własne rzeczywiste, podobnie jak składowe wektorów własnych.

Następnie wyznaczyliśmy iteracyjnie wartości własne przy pomocy metody potęgowej według poniższego algorytmu:

```
\begin{aligned} W_0 &= A & (inicjalizacja\ macierzy\ iterującej) \\ for(k=0;\ k < K_{val};\ k++) \{ \\ x_k^0 &= [1,1,...,1] & (inicjalizacja\ wektora\ startowego) \\ for(i=1;\ i \leq IT_{MAX};\ i++) \{ \\ x_k^{i+1} &= W_k x_k^i \\ \lambda_k^i &= \frac{(x_k^{i+1})^T\ x_k^i}{(x_k^i)^T\ x_k^i} \\ \lambda_k^i &= \frac{x_k^{i+1}}{\|x_k^{i+1}\|_2} \\ x_k^i &= \frac{x_k^{i+1}}{\|x_k^{i+1}\|_2} \\ \} \\ W_{k+1} &= W_k - \lambda_k x_k^i \big(x_k^i\big)^T & (iloczyn\ tensorowy) \\ \} \end{aligned}
```

gdzie: k to numer wyznaczanej wartości własnej, i to numer iteracji, A to macierz pierwotna, W_k to macierz iteracji, λ_k^i przybliżenie k-tej wartości własnej w i-tej iteracji, x_k^i to i-te przybliżenie k-tego wektora własnego, $K_{val}=n$ to liczba wartości własnych do wyznaczenia, a $IT_MAX=12$ to maksymalna liczba iteracji dla każdego k.

Dla każdego k zapisywaliśmy do pliku kolejne przybliżenia wartości własnych λ_k^i . W kolumnach macierzy X dopisywaliśmy wyznaczone wektory własne:

$$X = [x_1, x_2, ..., x_{n-1}]$$

Następnie wyznaczyliśmy postać macierzy D zdefiniowanej jako:

$$D = X^T A X$$

i zapisaliśmy ją do pliku.

3. Wyniki

3.1 Wartości własne λ_k

i k	0	1	2	3	4	5	6
1	3,589159	0,000548	0,000019	0,000001	0,000001	0,000000	0,000000
2	3,595821	0,282512	0,121709	0,086595	0,086595	0,000000	0,000000
3	3,595860	0,284531	0,122242	0,086595	0,086595	0,170944	0,000002
4	3,595860	0,284903	0,122514	0,086596	0,086595	0,170974	0,098154
5	3,595860	0,284972	0,122650	0,086600	0,086595	0,170974	0,098154
6	3,595860	0,284985	0,122719	0,086784	0,086595	0,170974	0,098154
7	3,595860	0,284987	0,122753	0,095231	0,086595	0,170974	0,098154
8	3,595860	0,284988	0,122770	0,312156	0,086595	0,170974	0,098154
9	3,595860	0,284988	0,122778	0,577366	0,086595	0,170974	0,098154
10	3,595860	0,284988	0,122782	0,590103	0,086595	0,170974	0,098154
11	3,595860	0,284988	0,122784	0,590384	0,086595	0,170974	0,098154
12	3,595860	0,284988	0,122785	0,590390	0,086595	0,170974	0,098154

3.3 Macierz $D = X^T A X$

```
\begin{bmatrix} 3,5958 & -1,1890 \cdot 10^{-13} & 2,2586 \cdot 10^{-15} & -2,7756 \cdot 10^{-17} & -2,1242 \cdot 10^{-15} & 1,6653 \cdot 10^{-16} & -2,8449 \cdot 10^{-16} \\ -1,1890 \cdot 10^{-13} & 0,2850 & -6,2527 \cdot 10^{-6} & -2,2825 \cdot 10^{-12} & -3,8166 \cdot 10^{-9} & -6,9389 \cdot 10^{-18} & 2,0817 \cdot 10^{-17} \\ 2,1649 \cdot 10^{-15} & -6,2527 \cdot 10^{-6} & 0,1228 & -8,9226 \cdot 10^{-7} & -3,2911 \cdot 10^{-4} & -3,0690 \cdot 10^{-13} & 1,7347 \cdot 10^{-18} \\ 2,2204 \cdot 10^{-16} & -2,2825 \cdot 10^{-12} & -8,9226 \cdot 10^{-7} & 0,5904 & -2,9696 \cdot 10^{-4} & -3,6950 \cdot 10^{-14} & -9,1940 \cdot 10^{-17} \\ -2,2204 \cdot 10^{-15} & -3,8166 \cdot 10^{-9} & -3,2911 \cdot 10^{-4} & -2,9696 \cdot 10^{-4} & 0,0866 & -2,4514 \cdot 10^{-10} & -4,4843 \cdot 10^{-15} \\ 2,2204 \cdot 10^{-16} & -1,3878 \cdot 10^{-17} & -3,0687 \cdot 10^{-13} & -3,7026 \cdot 10^{-14} & -2,4514 \cdot 10^{-10} & 0,1710 & -3,6219 \cdot 10^{-8} \\ -2,2204 \cdot 10^{-16} & 6,9389 \cdot 10^{-17} & -2,2551 \cdot 10^{-17} & 1,3878 \cdot 10^{-17} & -4,5242 \cdot 10^{-15} & -3,6219 \cdot 10^{-8} & 0,0982 \end{bmatrix}
```

3.2 Wykresy kolejnych przybliżeń znalezionych wartości własnych λ_k

4. Wnioski

Wyznaczyliśmy iteracyjnie diagonalizację macierzy metodą potęgową. Obliczyliśmy za jej pomocą wartości własne oraz macierz $D=X^TAX$. Im większa była obecna iteracja, tym dokładniejsze otrzymywaliśmy wyniki. Możemy zauważyć, że stabilizowały się one po różnej ilości iteracji – najmniej wystarczyły dwie, ale najwięcej dziewięć. Macierz D, którą wyznaczyliśmy, jest zbliżona do diagonalnej – elementy poza przekątną są bliskie zeru. Aby otrzymać dokładniejszy wynik, musielibyśmy zwiększyć liczbę iteracji. Wartości są jednak zadowalające, co świadczy o skuteczności użytej przez nas metody.