What is claimed is:

- 1. In an ultra-low dielectric film for a copper interconnect prepared using an organic or inorganic matrix and a cyclodextrin-based template for pore formation, the improvement comprises: said ultra-low dielectric film is prepared by coating with an organic-inorganic mixed solution containing in an organic solvent 40-70 vol% of a polyalkyl silsesquioxane precursor or its copolymer as the matrix and 30-60 vol% of acetylcyclodextrin nanoparticles as the template.
- 2. The ultra-low dielectric film for a copper interconnect according to claim 1, wherein said polyalkyl silsesquioxane copolymer is a copolymer of alkyltrialkoxysilane and α, ω -bistrialkoxysilylalkane.
- 3. The ultra-low dielectric film for a copper interconnect according to claim 2, wherein said polyalkyl silsesquioxane copolymer is a copolymer of methyltrimethoxysilane and α , ω -bistrimethoxysilylethane or a copolymer of methyltrimethoxysilane and α , ω -bistriethoxysilylethane.
- 4. The ultra-low dielectric film for a copper interconnect according to claim 1, wherein said acetylcyclodextrin is represented by the following formula 3:

$$\mathbb{R}_{1}$$
 \mathbb{R}_{2}
 \mathbb{R}_{3}
 \mathbb{R}_{3}
 \mathbb{R}_{3}
 \mathbb{R}_{3}
 \mathbb{R}_{3}

20

5

10

15

5

wherein n is an integer of 6-8; R_1 , R_2 and R_3 are independently a hydrogen atom or an acetyl group; and at least one of R_1 , R_2 and R_3 is an acetyl group.

- 5. The ultra-low dielectric film for a copper interconnect according to claim 4, wherein said acetylcyclodextrin is selected from the group consisting of triacetyl- α -cyclodextrin, triacetyl- β -cyclodextrin, triacetyl- γ -cyclodextrin, diacetyl- α -cyclodextrin, diacetyl- β -cyclodextrin, diacetyl- γ -cyclodextrin, monoacetyl- α -cyclodextrin, monoacetyl- β -cyclodextrin and monoacetyl- γ -cyclodextrin.
- 6. The ultra-low dielectric film for a copper interconnect according to claim 1, wherein said organic solvent is selected from the group consisting of dimethylformamide (DMF), dimethylacrylamide (DMA) and dimethylsulfoxide (DMSO).
- 7. The ultra-low dielectric film for a copper interconnect according to any one of claims 1-6, wherein said ultra-low dielectric film has a maximum porosity of 60% and a minimum dielectric constant of 1.5.