* Exercice 1 (Cours)

Donner et prouver la propriété sur les cycles (cardinal, caractérisation par les Soit $n \ge 1$. Déterminer la signature de la permutation suivante : orbites).

* Exercice 2 (Cours)

Donner et prouver la propriété concernant la décomposition d'un cycle en transpositions.

* Exercice 3 (Cours)

Donner et prouver la propriété concernant la décomposition d'une permutation en cycles.

* Exercice 4

Soit n > 3.

- 1. Soient $a, b \in \{1, ..., n\}$ avec $a \neq b$ et soit $\sigma \in \mathfrak{S}_n$. Calculer la permutation $\sigma \circ (a \ b) \circ \sigma^{-1}$.
- 2. On appelle centre de \mathfrak{S}_n l'ensemble des permutations $\sigma \in \mathfrak{S}_n$ qui commutent avec toutes les autres permutations. Déterminer le centre de \mathfrak{S}_n .

* Exercice 5

Soit

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 6 & 7 & 1 & 2 & 4 \end{pmatrix}.$$

- 1. Décomposer σ en produit de cycles à supports disjoints.
- 2. Donner la signature de σ .
- 3. Décomposer σ en produit de transpositions.
- 4. Calculer σ^{2022} .

* Exercice 6

Pour les permutations suivantes, décomposer σ_i en produits de cycles disjoints, en produit de transpositions, calculer l'ordre de σ_i , la signature de σ_i , et calculer

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 6 & 2 & 1 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 6 & 9 & 7 & 2 & 5 & 8 & 1 & 3 \end{pmatrix}$$

* Exercice 7

$$\sigma_n = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix}.$$

* EXERCICE 8

Soit n > 2.

- 1. Démontrer que \mathfrak{S}_n est engendré par les transpositions $(1\,2),(1\,3),\ldots,(1\,n)$.
- 2. Démontrer que \mathfrak{S}_n est engendré par les transpositions $(1\,2),(2\,3),\ldots,(n-1\,n)$.
- 3. On considère la transposition $\tau = (1 \ 2)$ et le cycle $\chi = (1 \ 2 \ 3 \ \cdots \ n)$. Calculer $\chi^k \tau \chi^{-k}$. En déduire que que \mathfrak{S}_n est engendré par τ et χ .

* Exercice 9

Soit $n \geq 2$ et $\sigma \in \mathfrak{S}_n$ une permutation ayant k orbites. L'objectif de l'exercice est de prouver que $\varepsilon(\sigma) = (-1)^{n-k}$.

- 1. Prouver par récurrence que la signature d'un cycle de longueur ℓ est $(-1)^{\ell-1}$.
- 2. Utiliser le résultat précédent et la décomposition de σ en produit de cycles à supports disjoints pour prouver que $\varepsilon(\sigma) = (-1)^{n-k}$.

* Exercice 10

Soit $n \in \mathbb{N}^*$ un entier. Si $\sigma \in \mathfrak{S}_n$ est une permutation, on définit $P_{\sigma} \in M_n(\mathbb{R})$ la matrice carrée de taille $n \times n$ par $P_{\sigma} = (\delta_{i,\sigma(j)})_{1 \le i,j \le n}$, où $\delta_{i,j}$ est le symbole de Kronecker.

- 1. Soit $A \in M_n(\mathbb{R})$ une matrice. Calculer AP_{σ} et $P_{\sigma}A$. Que constate-t-on?
- 2. Soient $\sigma, \tau \in \mathfrak{S}_n$ deux permutations. Calculer $P_{\sigma}P_{\tau}$.
- 3. Prouver que la matrice P_{σ} est inversible.

* Exercice 11

Soit $n \geq 3$ un entier. Démontrer que \mathfrak{A}_n est engendré par les cycles de longueur 3.

* Exercice 12

Soit $\sigma = (3 \ 10 \ 7 \ 1 \ 2 \ 6 \ 4 \ 5 \ 12 \ 8 \ 9 \ 11).$

- 1. Combien σ possède-t-elle d'inversions? Que vaut sa signature?
- 2. Décomposer σ en produit de transpositions et retrouver sa signature.
- 3. Déterminer les orbites de σ et calculer σ^{2022} .