

2º Grado Informática Estructura de Computadores 14 de enero de 2019

Test de Teoría (3.0p)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
d	С	С	b	С	С	С	d	d	a	a	b	d	b	a	a	С	d	d	a	С	a	a	b	b	С	b	a	d	С

Test de Prácticas (4.0p)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	С	b	С	С	b	d	d	a	d	a	d	С	b	d	С	a	d	d	b

Las preguntas 16 y 18 tenían lapsus en su redacción que no pudimos detectar a tiempo: kit por entorno, y 2520 por 2025. A todos los que entregaron se les buntúa como acertadas, independientemente de lo que contestaran, independientemente de si contestaron.

Examen de Problemas (3.0p)

La pregunta la tenía un lapsus en su redacción que no pudimos detectar a tiempo: utilizar las dimensiones del array para nombrar el campo, surgiendo la ambigüedad de si se pide un desplazamiento "ficticio" a un elemento inexistente, o desplazamiento "real" al principio del campo de dicho nombre (equivalente al índice 0 del array).

Ambas alternativas puntúan como válidas, siempre que no se mezclen respuestas de una y otra alternativas.

1. Estructuras (0.6 puntos).

Se puntúa 0.06p por cada número (total $0.06 \times 10 = 0.60p$).

a) Alternativas: la que se pretendía redactar, y la que se acepta por el lapsus.

Tipo	Campo	Desplazamiento	Desplazamiento
long	Courses[0].CrsCod;	0	0
char	Courses[0].InstitutionalCrsCod[0/MAX];	8	263
long	Courses[0].DegCod;	264	264
unsigned	Courses[0].Year;	272	272
unsigned	Courses[0].Status;	276	276
long	Courses[0].RequesterUsrCod;	280	280
unsigned	Courses[0].NumUsrs[0/10];	288	328
char	Courses[0].ShrtName[0/MAX];	328	583
char	Courses[0].FullName[0/MAX];	583	838
long	Courses[1].CrsCod;	840	840

b) 256

2. Unidad de Control (0.5 puntos).

Se puntúa 0.05p por pseudo-uinstrucc. (total $0.05 \times 6 = 0.30p$), 0.05p por cada zona dibujo (total $0.05 \times 4 = 0.20p$).

FETCH: MAR := PC; Z := PC+4
 MDR := M[MAR]; PC := Z
 IR := MBR
 goto f(IR)

3. Entrada/Salida (0.8 puntos).

Se puntúa si el programa funciona, o alternativamente 0.1p por cada sentencia (total $0.1 \times 8 = 0.8p$).

```
#define SENSOR
                   A0
#define RED
#define GREEN
                   5
                   3
#define BLUE
void setup()
 pinMode(RED, OUTPUT);
 pinMode(GREEN, OUTPUT);
 pinMode(BLUE, OUTPUT);
void loop()
  // leer el valor del sensor
  int sensorValue = analogRead(SENSOR);
  // mapear el valor del sensor (de 0 a 1023) a un valor de luz (de 0 a 255)
  int light = sensorValue / 4;
  // escribir el valor de luz en el LED RGB
  analogWrite(RED, light);
  analogWrite(GREEN, light);
  analogWrite(BLUE, light);
```

4. Diseño del sistema de memoria (0.5 puntos).

Se puntúa 0.05p por cada zona dibujo (total $0.05 \times 10 = 0.50p$).

5. Memoria cache (0.6 puntos).

Se puntúa 0.1p por cada número (total $0.1 \times 6 = 0.6p$).

MP:
$$1 \text{ TB} = 2^{40} \text{ B}$$

L1-instrucciones: $64 \text{ KB} = 2^{16} \text{ B}$, $64 \text{ B/línea} = 2^6 \text{ B/línea}$, $4 \text{ vías} = 2^2 \text{ líneas/conjunto}$ L1-instrucciones: $2^{16} \text{ B} / 2^6 \text{ B/línea} = 2^{10} \text{ líneas}$, $2^{10} \text{ líneas} / 2^2 \text{ líneas/conjunto} = 2^8 \text{ conjuntos}$ Dirección física de memoria principal desde el punto de vista de L1 (instrucciones):

etiqueta (26)	conjunto (8)	byte (6)
---------------	--------------	-----------------

Tamaño total en bits ocupado por las etiquetas en el directorio L1-instrucciones:

 2^{10} líneas · 26 bits/etiqueta = 2^{10} x26 bits = **26 624 bits**

Tamaño total en bits ocupado por las instrucciones en L1-instrucciones:

 $64 \text{KB/cache} \cdot 8 \text{ bits/B} = 2^{16} \text{x} 2^3 \text{ bits} = 2^{19} \text{ bits} = \frac{524 \ 288 \ bits}{2^{19} \ 2^{19} \ 2^{19}} = 26/2^9 = \frac{5,078\%}{2^{19}}$