DATOVÉ STRUKTURY – STROMY

Kurz: Datové struktury a algoritmy / Teoretická informatika

Lektor: Doc. Ing. Radim Burget, Ph.D.

Autor: Doc. Ing. Radim Burget, Ph.D.

Cíl přednášky

- 1. Stromová struktura dat
- 2. Stromy a příbuzné datové struktury
- 3. Implementace stromů
- 4. Procházení stromy
- 5. Vyvážené stromy

Stromová struktura dat

Stromy a vyvážené stromy

Stromová struktura dat

- Stromy prostředek pro reprezentaci informace
- Definice:
 - Strom T je konečná množina nula nebo více prvků (uzlů), z nichž jeden je označen jako kořen r (root) a zbývající uzly jsou rozděleny do $k \ge 0$ disjunktních podmnožin $T_1, T_2, ..., T_k$, které jsou také stromy a jejichž kořeny $r_1, r_2, ..., r_k$ jsou následníky kořene r

Stromy – příklady použití

- Jedna z nejčastějších datových struktur
- jeden z možných způsobů indexování klíčů v databázích (systémech řízení báze dat)
- reprezentace znalostí, stavového prostoru v umělé inteligenci
- metody distribuce klíčů v kryptografii (broadcast encryption)
- jakékoli řazené struktury, množiny, atp.
- popis scény v oblasti zpracování a analýza obrazu, počítačová grafika
- vyhledávací stromy v databázových systémech
- rozhodovací stromy expertní systémy
- organizace adresářů a souborů v souborovém systému OS,
- komprese dat (Hufmannovy kódovací stromy, fraktálová komprese)
- atd.

Stromová struktura dat

- Stromové struktury jsou speciálním případem graf.
- Významné vlastnosti:
 - Neobsahují cykly
 - Pokud jsou vyvážené a seřazené => velice efektivní pro reprezentaci množin, vyhledávání prvků a řazení prvků

Stromy – rozdělení

- Obecný strom
- N-ární strom

Vícecesté stromy (Multiway trees)

- Binární stromy
- Binární vyhledávací stromy
 - AVL stromy
 - Red-black stromy
- R stromy (prostorové vyhledávání)

Obecný strom

Každý uzel libovolný počet potomků

- getData(): vrací data na této pozici.
- Obecné metody:
 - integer getSize()
 - boolean isEmpty()
 - Iterator iterator()
 - Iterable positions()
- Přístupové metody:
 - Node getRoot()
 - Node getThisParent(p)
 - Node children(p)

Dotazovací metody:

boolean isInternal(p)
boolean isLeaf(p)
boolean isRoot(p)

Aktualizační metoda:

element replace (p, o)

Stromy a terminologie

Hloubka vrcholu

- Nechť v uzlem stromu T. Hloubka vrcholu v je počet předků v (s výjimkou v sebe sama)
 - Pokud v je prázdný (null), potom hloubka v je 0
 - Pokud v je kořen, potom hloubka v je 1
 - V opačném případě se hloubka v je hloubka rodiče v + 1.

```
Algorithm depth(T, v):

if kořen je prázdný T then

return 0

else if v je kořenem T then

return 1

else

return 1+depth(T, w), kde w je rodičem v ve
```

```
Algorithm depth(T, v):
```

```
depth \leftarrow 0

while v != null

v = v.parent

depth \leftarrow depth + 1

return depth
```

(Paměťově efektivnější)

- Časová složitost depth(T, v) je O(d_v),
 - kde d_v značí hloubku uzlu v ve stromě T.

stromu T

Velikost stromu – rekurzivní varianta

```
Algorithm size (Node root):
{
    if(root!=NULL)
        return(1 + size(root->child1)
        + size(root->child2) + ... + size(root->childn));
    else return 0;
}
```

Výška stromu

 Hloubka vrcholu: počet předků(včetně sebe).

 Výška stromu: maximální hloubka externího uzlu stromu / podstromu.

 Pokud neobsahuje žádný vrchol, tak je 0
 Depth(D) = 3

Height = MAX[Depth(A), Depth(B), Depth(C), Depth(D), Depth(E), Depth(F), Depth(G), Depth(H), Depth(I)]

Height = MAX[1, 2, 2, 3, 3, 3, 3, 3, 4] = 4

Příklad: Určete výšku podstromů

Výška uzlu v ve stromě T může být určena jako:

```
Algoritmus height1(T):

h \leftarrow 0

for each vertex v in T do

if v is an external node in T then

h \leftarrow \max(h, \operatorname{depth}(T, v))

return h
```

Algoritmus height1 má časovou složitost O(n²)

Výška stromu – efektivní přístup

- Výška uzlu v ve stromu T je rekurzivně definována:
 - Pokud v je listem, potom výška v je 1
 - V opačném případě v je jedna plus maximální výška potomka w.

algoritmus height2 má časovou složitost O(n)

N-ární stromy

- maximálně N potomků
- N je konstanta
- Omezenější nežli obecný strom

Ternární stromy

 Switche některých výrobců přepínaných síťových prvků akcelerují směrovací tabulky pomocí ternárních TCAM tabulek (až 10x zrychlení)

TCAM (Ternary Content Addressable Memory)

Klasický princip je binární:

Binární stromy

- N-ární strom, kde N = 2
- Většina stromových struktur použitých v informatice jsou binární stromy
- Prvky nejsou seřazeny
- Implementace má několik variant (záleží na způsobu použití)
 - Ovlivňuje schopnost se pohybovat v stromové struktuře (výkon)
 - Zvyšuje nároky na paměť

Binární stromy

- Binární stromy: speciální terminologie
 - Každý uzel má nejvýše 2 potomky

- Binární vyhledávací stromy jsou řazené
 - Pro každý uzel x ve stromě platí:
 - Všechny uzly v levém podstromu uzlu x jsou ≤ x
 - Všechny uzly v pravém podstromu uzlu x jsou > x
- Binární stromy mohou být vyvážené
 - Vyvážené stromy mají hloubku ~ log₂(x)
 - Vyvážené stromy mají pro každý uzel téměř stejný počet uzlů v jejich podstromech

 (Definice) Binární vyhledávací stromy jsou stromy, kde musí pro každý uzel platit, že hodnota všech potomků z levého podstromu je menší než hodnota rodiče, a hodnota všech potomků z pravého podstromu je větší než hodnota rodiče.

Tj. Prvky jsou seřazeny

Vychází z binárního stromu

-2

3

- Příklad vyváženého binárního vyhledávacího stromu
- Příklad: Vložte do prázdného stromu prvky 17, 9, 6, 12, 19, 25
- Pozn: Co se stane pokud vložím prvky v pořadí 6, 9, 12, 17, 19, 25 ? Jaký to bude mít dopad na vyhledání

libovolného prvku (výkon)?

Binární vyhledávací stromy - implementace

Node - parent: Node - leftChild: Node - rightChild: Node - dataValue: int Metody get & set BinaryTree - root: Node + insertNode(int value) + removeNode(int value) + findNode(int value): boolean

- Reprezentace stromových struktur:
 - Provázaná datová struktura
 - Rozšiřujeme často o klíč + hodnota (pro jednoduchost toto rozdělení zanedbáváme a budeme předpokládat, že klíč = data)
- Příklad implementujte:
 - Key atribut
 - Data
 - · Left: ukazatel na levý podstrom
 - Right: ukazatel na pravý podstrom
 - p: ukazatel na rodiče(p [root [T]] = NIL)

Binární vyhledávací stromy – implementace

Vyhledávání v BVS

- Provyhledání hodnoty k, prohledáváme BVS odspodu nahoru, kde začínáme v kořenu.
- Další navštívený uzel závisí na hodnotě k a hodonty aktuálního uzlu.
- Pokud soáhneme listu, hodnota neexistuje.
- Příklad: contains(4):

```
Rekurzivní varianta:

Algoritmus TreeSearch(k, v)

if T.isExternal (v)

return v

if k < key(v)

return TreeSearch(k, T.left(v))

else if k = key(v)

return v

else { k > key(v) }

return TreeSearch(k, T.right(v))
```


Nalezení minima / maxima (rekurzivní varianta)

```
NalezniMinimum (T)
{
    if (t_left is not empty)
        return NalezniMinimum(levý podstrom);
    else
        return key(t);
}
```

```
NalezniMaximum (T)
{
    if (t_right is not empty)
       return NalezniMaximum(pravý podstrom);
    else
       return key(t);
}
```


Vložení prvku do prázdného BVS

Algoritmus vložení: rekurzivní varianta

```
Insert (tree, new_item)
if (tree je prázdný)
    vlož na kořen;
else if (shoduje se s aktuálním uzlem)
    nedělej nic; (duplicitní klíč)
else if (nový klíč je menší než aktuální kořen)
    volej rekurzivně insert na levý pod-strom;
else
    volej rekurzivně insert na pravý pod-strom
```

Odstranění prvku

A) Odstranění prvku – nemá žádného potomka?

B) Odstranění prvku – má jednoho potomka

C) Odstranění prvku – má oba potomky

- A) Nemá žádného potomka
- B) Má jednoho potomka
- C) Má dva potomky
 - Její součástí jsou kroky A anebo B tzn. podařilo se vám porozumět krokům A) a B)?
 - Existují 2 varianty levá a pravá

C) Odstranění prvku – má oba potomky

Algoritmy pro procházení stromů

• Pre-order: 1 2 3 4 5 6

• In-order: 2 1 4 3 5 6

• Post-order: 2 4 5 3 6 1

+ revresní varianty (zleva doprava)

Algoritmy pro procházení stromů

 Jeli strom binární vyhledávací -> metoda in-order vrací prvky ve správném pořadí: -2 1 2 3 5


```
public class Spustitelna {
    public static void main(String[] args) {
        MujStrom s = new MujStrom();
        s.pridej(5);
        s.pridej(10);
        s.pridej(1);
        s.pridej(15);

        s.vypis();
    }
}
```

```
public void vypis() {
    vypis(koren);
}

private void vypis(Uzel u) {
    if(u == null) {
        return;
    }
    vypis(u.getLevy());
    System.out.println(u.getData());
    vypis(u.getPravy());
}
```

IN-ORDER

Příklad: Průchod stromem In-order

Implementujte binární vyhledávací strom

Algoritmy pro procházení stromů

- Stromy jsou speciálním případem grafu a lze tedy na nich aplikovat veškeré algoritmy pro procházení/vyhledávání v grafech:
 - Prohledávání do hloubky DFS (Depth-First Search)
 - Nejdříve se projde celá větev
 - Prohledávání do šířky BFS (Breadth-First Search)
 - Nejdříve se prochází všichni potomci zkoumaného uzlu
 - Algoritmům procházení grafem se budeme věnovat detailněji později

Prohledávání do hloubky – DFS (Úvod)

Prohledávání do šířky – BFS (Úvod)

Vyvážené vyhledávací stromy

• AVL stromy, Red-Black stromy, (také B-stromy, B+-stromy, 2-3 stromy, 2-3-4 stromy, AA-stromy, (a, b) stromy, B-stromy, ...)

Vyvážený binární vyhledávací strom

- Vyhledávací binární strom
 - Pro každý uzel x ve stromě platí:
 - Všechny uzly v levém podstromu uzlu x jsou ≤ x
 - Všechny uzly v pravém podstromu uzlu x jsou > x
- Vyvážený strom
 - Rozdíl hloubky levého a pravého podstromu každého uzlu je vždy nula nebo jedna.
- Vyvážený binární vyhledávací strom
 - má výšku log₂(n) kde n je počet uzlů
 - Vyhledávání ve stromě tedy znamená přibližně log₂(n) operací

Příklad vyváženého vyhledávacího binárního stromu

Vyvážený binární vyhledávací strom

- Vyvažování po vkládání a mazání je komplexní operace
- Příklady implementace vyvážených binárních vyhledávacích stromů:
 - AVL stromy lépe vyvážené, hrozí problém mnohonásobné rotace
 - Efektivnější vyhledávání, méně efektivní vkládání
 - Red-black stromy zhruba vyvážené, řeší problém mnohonásobné rotace
 - Efektivnější vkládání, méně efektivní vyhledávání

Mnohonásobná rotace

AVL stromy a vkládání

- Vkládání má dvě fáze:
 - Vložení jako u vyhledávacího stromu
 - Následuje kontrola vyváženosti
 - Pokud není strom vyvážený, provede se některá rotace

Vyvážené binární stromy

- Binární strom označíme za dokonale vyvážený, jestliže pro jeho libovolný vrchol v platí, že počet vrcholů v levém a pravém podstromu vrcholu se liší nejvýše o 1.
- Strom je vyvážený, právě když se <u>hloubky obou podstromů</u> každého uzlu připojených k jeho libovolnému vrcholu, liší nejvýše o 1.

Jednoduchá levá rotace – SLR (Single Left Rotation)

Jednoduchá pravá rotace – SRR (Single Right Rotation)

Dvojnásobná levá rotace – DLR (Double Left Rotation)

Dvojnásobná pravá rotace – DRR (Double Right Rotation)

Mějme 5, 7, 8 v BVS? Jak mohou vypadat?

Vyvážená varianta:

Nevyvážené varianty:

Jednoduché příklady – varianta do / anebo \

Výsledek po vyvážení pomocí AVL:

Jednoduché příklady – varianta do < anebo >

Výsledek po vyvážení pomocí AVL:

Kontrola vyváženosti

Kontrola vyváženosti

Příklad: Vyvažování stromů

- Vložte prvky do prázdného vyhledávacího stromu (vyvažovaného algoritmem AVL) v tomto pořadí:
- Jednoduché příklady:
 - 4, 6, 8
 - 7, 4, 1
 - 5, 3, 4
 - 6, 9, 8

Pokročilejší příklady:

- 5, 3, 8, 10, 12
- 7, 4, 8, 10, 13
- 8, 3, 10, 5, 4, 7

Extrémní příklad:

• 52, 8, 2, 11, 18, 36, 39, 38, 28, 71, 61, 66, 67, 58, 75, 87, 72, 95

Vložte: 10, 5, 2

Jednoduché příklady

• 4, 6, 8; **7, 4, 1**; 5, 3, 4; **6, 9, 8**

Pokročilejší příklady

• 5, 3, 8, 10, 12; **7, 4, 8, 10, 13**; 8, 3, 10, 5, 4, 7

Pokročilejší příklad

52, 8, 2, 11, 18, 36, 39, 38, 28, 71, 61, 66, 67, 58, 75, 87, 72, 95

Red-Black stromy

Pro Red-Black stromy platí tato pravidla:

- Každý uzel je vždy červený nebo černý
- Kořen stromu je černý
- Všechny listy jsou černé
- · Oba potomci červeného uzlu jsou černé
- Každá cesta z libovolného uzlu do jeho podřízených listů obsahuje stejný počet černých uzlů

Red – Black stromy – ukázka

Red - Black stromy

Odkazy na příklady

Red-Black stromy nebudou součástí příkladu v rámci zkoušky (je ale nutné vědět co to je).

Více informací:

- Animace binárních vyhledávacích stromů
- · Vkládání do Red Black stromu nejhorší případ
- Zdrojové kódy Red Black stromu v Javě a mnoho dalších

Prohledávání do šířky - algoritmus

Prohledávání do šířky – BFS – Implementace

Jak se dostanu ze stavu 7 do stavu 6 s nejmenším počtem tahů?

Prohledávání do šířky – BFS - Implementace

Prohledávání do šířky – BFS - Implementace

Prohledávání do hloubky - algoritmus

Prohledávání do hloubky – DFS - Implementace

Jak se dostanu ze stavu 7 do stavu 6 (existuje taková cesta) ?

Prohledávání do hloubky – DFS - Implementace

Prohledávání do hloubky – DFS - Implementace

Binární vyhledávací strom - shrnutí

Operace nad BVS:

SEARCH

• MINIMUM	O(h)	
 MAXIMUM 	O(h)	h výška stromu
• INSERT	O(h)	$h = log_2(n)$

O(h)

• DELETE O(h)

• BFS O(v+e) V ... počet vrcholů

• DFS O(v+e) e ... počet hran

Výška náhodně postaveného binárního vyhledávacího stromu na n různých klíčích je O(2 log₂ n)

Aritmetický výrazový strom

- Binární strom asociovaný s aritmetickým výrazem:
 - · Interní uzly: operátory
 - Externí uzly: operandy
- Příklad: Aritmetický výrazový strom pro výraz

$$(2 \times (a - 1) + (3 \times b))$$

Rozhodovací stromy

- Binární rozhodovací strom asociovaný s rozhodovacím procesem
 - Vnitřní uzly: otázka s odpovědí ano/ne
 - Listy: rozhodnutí

Příklad: rozhodnutí o jídle

Huffmanovo kódování

- Huffmanovo kódování je technika pro bezeztrátovou kompresi dat.
- Konvertuje znaky vstupního souboru do bitových řetězců různé délky.

Význam prohledávání stromů

- Přestože byl algoritmus představen z pohledu teorie, má mnoho praktických využití – zejména v kombinaci s grafy (budeme se jimi zabývat později)
- Mnoho problémů lze převést do podoby stromové struktury

představen

Příklad I.

- Pracujeme na projektu pro analýzu sémantického obsahu textových dokumentů. Vytvořme filtr, který získá seznam vyskytujících se slov v seřazeném pořadí.
- Analyzovat se budou miliony dokumentů
- Lineární struktury (lineární složitost odstrašující případ)
- Hash výkonnostně dobré, neřadí
- TreeSet správná volba

Příklad II.

- V rámci Real-time protokolu chodí každou sekundu přibližně 50 paketů. Jelikož jsou pakety přenášeny skrze UDP protokol, je potřeba zajistit: řazení, eliminaci duplicit
- Možnosti:
- Pole anebo seznamy (vyhledávání či řazení časově náročné)
- HashSet (výkonostně dobré, neřadí prvky)
- TreeSet (správná volba)

Shrnutí

- · Obecný, n-ární, binární
- Vyhledávací
- Vyvážený

strom

- Operace nad stromy:
 - Vkládání, odstranění, vyhledávání
- Průchody:
 - In-order, pre-order, post-order
 - DFS
 - BFS (po úrovních)
- Vyvažování:
 - AVL vyvažování
 - V praxi se používá: Red-Black strom (vědět, že existuje + umět srovnat, nebude předmětem zkoušení)

K zamyšlení

1 4 = **8**

- Proč nastává ClassCastException?
 - = nemohu přetypovat na třídu java.lang.Comparable
 - A jak ji opravit?

```
public class Car {
    public int vin;
}
```

(Vehicle Identification Number)

```
TreeSet<Car> mySet = new TreeSet<>();
mySet.add(new Car());
```

```
Exception in thread "main" <a href="mainto:java.lang.ClassCastException">java.lang.Comparable</a> at java.util.TreeMap.compare(Unknown Source) at java.util.TreeMap.put(Unknown Source) at java.util.TreeSet.add(Unknown Source) at java.util.TreeSet.add(Unknown Source) at cz.vutbr.feec.dsa.Runnable.main(<a href="mainto:Runnable.java:8">Runnable.java:8</a>)
```

Děkuji za pozornost

 Převeďte binární vyhledávací strom na seřazený obousměrně vázaný seznam. Nesmí být vytvářena nová paměť, pouze lze měnit ukazatele

DBEAFCG

- Nalezněte nejhlubší uzel v binárním stromu.
- Napište funkci, která rozhodne, zdali je binární strom vyvážený.
- Nalezněte všechny uzly ve vzdálenosti k od kořene.
- Zig-zag průchod stromem

- · Ze seřazeného pole vytvořte binární vyhledávací strom
- Ověřte, že všechny listy stromu jsou stejné úrovně

- Napište funkci k určení, zda daný binární strom (odlišná celá čísla) je platný binární vyhledávací strom.
 - Složitější problém
 - Přímá rekurze nefunguje.

- Napište funkci pro průchod binárním vyhledávacím stromem
 - bez rekurze / zásobníku / paměti navíc.
 - Tip můžete rozšířit strukturu dat uzlu. Do uzlu však nemůžete přidat navštívené pole.

Vytiskněte strom jako:

(Rodič (leftchild (leftchild, rightchild), rightchild (leftchild, rightchild)))

- Napište kód pro Huffmanovo kódování
- Pozn: Hufmanovo kódování je stromová struktura

Char	četnost	
E	125	
Т	125 93	
Α	80	
О І	76	
I	76 73	
N	71	
N S R H	65	
R	61	
Н	55	
L	41	
D	40	
C U	31	
U	40 31 27	

Slučte 2 stromy tak, aby vznikl binární vyhledávací strom

 Najděte nejdelší po sobě jdoucí sekvenci v binárním rozhodovacím stromě.

Příklad

Nejdelší je 3, 4, 5 odpověď je tedy 3.

- Nalezněte nejbližšího společného předchůdce v binárním stromu
 - Určete vzdálenost mezi dvěma uzly v binárním stromu (obecném, nejen vyhledávacím)
- Rozhodněte, zdali dva binární stromy jsou identické, či nikoli

Rovnost dvou stromů

- Navrhněte algoritmus, který ověří, že dva binární stromy jsou identické.
- Nelze alokovat novou paměť, pouze jednorozměrné pomocné reference.

Řešení: Otázka z přijímacího pohovoru

Char	Freq	Fixed	Huff
Е	125	0000	110
Т	93	0001	011
Α	80	0010	000
0	76	0011	001
I	73	0100	1011
Ν	71	0101	1010
5	65	0110	1001
R	61	0111	1000
Н	55	1000	1111
L	41	1001	0101
D	40	1010	0100
С	31	1011	11100
U	27	1100	11101
Total	838	4.00	3.62