

Sequence modeling

Hossam Ahmed Zíad Waleed Marío Mamdouh

Sequence data

Sequence data is data where the **order** of elements is meaningful, and each element depends on previous (and sometimes future) elements in the sequence.

GPS trajectory

Order matters: The position of each element is essential; reordering changes the meaning

Context dependence : Each element is related to previous (and sometimes future) elements

Variable length : Sequences can be of different lengths — not all inputs have the same size.

Sequence modeling challenges

Sequence modeling requires handling variable-length inputs, preserving temporal dependencies and order, aligning inputs and outputs over time, and maintaining long-term memory — all of which are difficult for traditional neural networks.

Model Type	Limitation	
ANNs	 Fixed input size: can't handle variable-length sequences. No memory: each input is treated independently. No temporal awareness. 	
CNNs	 Local receptive fields only capture short-range patterns. Work with grid data and don't expect a sequence. Position is learned indirectly (via filters). Can't model long-term dependencies well. 	

Many to One: Sequence is reduced to a single output — e.g., classifying a full sentence or time-series

One to Many: Fixed input produces a sequence — e.g., image \rightarrow caption generation

Many-to-many: maps input to output sequences, either aligned (same length, e.g., tagging) or unaligned (different length, e.g., translation).

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are neural architectures designed for sequential data, where the model maintains a **hidden state** that is updated at each time step to capture **context and dependencies** across the sequence.

Inference using RNNs

- 1. Takes the current input X_t and the previous hidden state h_{t-1}
- 2. Combine them using learned weight matrices (W, U)
- 3. Applies a non-linear activation function to **update** the hidden state h_t
- 4. Uses the updated hidden state to produce the output y_t

• The hidden state acts like **memory**, carrying information from previous time steps forward.

$$h_t = g(Uh_{t-1} + WX_t)$$
$$y_t = f(Vh_t)$$

Inference using RNNs

- Input vector $X_t \in \mathbb{R}^{n_x}$, is the number of features per time step
 - Then $\mathbb{W} \in \mathbb{R}^{n_h imes n_x}$
- Hidden state $h_t \in \mathbb{R}^{n_h}$, number of hidden units (memory capacity) like the neurons in ANNs.
 - Then $U \in \mathbb{R}^{n_h imes n_h}$
- Output vector $y_t \in \mathbb{R}^{n_y}$, task dependent
 - Then $V \in \mathbb{R}^{n_h imes n_y}$

- h_0 is initialized to be zeros as there is no previous hidden states.
- Weight matrices W, U, V are shared across all time steps
- This is many to many RNN
- https://joshvarty.github.io/VisualizingRNNs/

Limitations of RNNs

Vanishing/Exploding gradients: Gradients shrink or grow exponentially during backpropagation through time, making training unstable or slow.

Short-term memory: Struggles to capture long-range dependencies — important information fades over time.

Sequential computation: Cannot parallelize across time steps — slows training and inference.

Inventions to alleviate RNNs limitations

Invention	Solves	How It Helps
LSTM (Long Short- Term Memory)	Vanishing gradients, long-term memory	Adds gates (forget, input, output) and a cell state to maintain long-term dependencies
GRU (Gated Recurrent Unit)	Like LSTM, but with fewer parameters	Combines forget & input gates into an update gate — simpler, faster training
Bidirectional RNNs	Limited context, one-directional dependency	Processes sequences forward and backward , improving context awareness
Attention Mechanisms	Long-range dependency, fixed memory bottleneck	Allows the model to focus selectively on relevant parts of the sequence
Transformer Architecture	Sequential computation, long-term memory	Replaces recurrence with self-attention , enabling parallelization and better long-range modeling

Long Short-Term memory (LSTM)

• LSTM was introduced to solve the vanishing gradients problem to be able to train deeper RNN and to alleviate the loss of old information in the sequence.

Long Short-Term memory (LSTM)

An LSTM unit consists of a cell state C_t , a hidden state h_t , and three gates (forget, input, output) that control the flow of information to preserve important signals across long sequences.

- Forget gate f_t discards irrelevant past memory
- Input gate i_t decides what new info to store
- Cell state C_t combining information from old and new memory to update the long memory
- Output gate o_t use the updated memory to calculate the next hidden state

Long Short-Term memory (LSTM)

Gate	Function	Equation
Forget Gate	Discards irrelevant past memory	$f_t = \sigma \left(\mathbf{U}_f \mathbf{h}_{t-1} + \mathbf{W}_f X_t + \mathbf{b}_f \right)$ $K_t = C_{t-1} \odot f_t$
Input Gate	Decides what new info to store	$i_{t} = \sigma \left(\mathbf{U}_{i} h_{t-1} + \mathbf{W}_{i} X_{t} + b_{i} \right)$ $g_{t} = tanh(\mathbf{U}_{g} h_{t-1} + \mathbf{W}_{g} X_{t})$ $J_{t} = i_{t} \odot g_{t}$
Cell Update	Combines old and new memory	$C_{t} = C_{t-1} \odot f_{t} + i_{t} \odot g_{t}$ $C_{t} = K_{t} \odot J_{t}$
Output Gate	Controls what memory is revealed	$o_{t} = \sigma \left(\frac{\mathbf{U}_{o} h_{t-1} + \mathbf{W}_{o} X_{t} + \mathbf{b}_{o}}{h_{t}} \right)$ $h_{t} = o_{t} \odot tanh(c_{t})$

IEEE ML S25' training sessions

RNN vs LSTM vs GRU

RNN has no gates and the fewest parameters, making it fast but weak at remembering.

LSTM uses 3 gates (input, forget, output) and a cell state, resulting in 4× the parameters of a simple RNN, GRU uses 2 gates (update and reset), merges the cell and hidden state, and needs 3× the parameters of an RNN.

FCI - Helwan Student Branch

Number of parameters

- To calculate the number of parameters for a recurrent neural network we use this formula
 - W * |GATES| + U * |GATES| + b * |GATES|
 - $W \in \mathbb{R}^{n_h \times n_x}, U \in \mathbb{R}^{n_h \times n_h}$
 - Assuming it's Many-to-One (e.g. Classification) so we don't bother with V
- If we have 64 recurrent unit, and the input vector resulting from the embedding layer 45
 - For Simple RNN (45 * 64) * |1| + (64 * 64) * |1| + 64 * |1| = 7040
 - For LSTM (45 * 64) * |4| + (64 * 64) * |4| + 64 * |4| = 28160
 - For GRU (45 * 64) * |3| + (64 * 64) * |3| + 64 * |3| = 21120
 - In TensorFlow GRUs has two biases for each recurrent unit so
 - (45 * 64) * |3| + (64 * 64) * |3| + 64 * 2 * |3| = 21312

References

- https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
- https://d2l.ai/chapter_recurrent-modern/bi-rnn.html
- https://youtu.be/AsNTP8Kwu80?si=dDL6yuahw1zocxIC
- https://youtu.be/YCzL96nL7j0?si=ZerUz-cTqG-EwMvb

- https://joshvarty.github.io/VisualizingRNNs/
- https://distill.pub/2019/memorization-in-rnns/
- https://damien0x0023.github.io/rnnExplainer/