Theory of Computation

Homework 1

Qing-Cheng Li R01922024

September 29, 2012

2 Problem 2

Suppose $S=\{S_1,S_2,...,S_n\}$, we can use 0 and 1 to represent S_n , let $S_n=s_{n1}s_{n2}...s_{nm}$ where $s_{n1},s_{n2},...,s_{nm}$ is 0 or 1. And let length of string " $s_{n1}s_{n2}...s_{nm}$ " = L_n , the longest length = L_{max} , $\Sigma=\{\triangleright,\sqcup,0,1\}$, $K=\{s,q_1,q_2,...,q_{L_{max}}\}$, then we can build a Turing Machine M:

$p \in K$,	$\sigma \in \Sigma$	$\mid\mid \delta(p,\sigma)$
s	Ц	$\parallel ("no", \sqcup, -)$
\mathbf{S}	\triangleright	$(s, \triangleright, \rightarrow)$
\mathbf{s}	0	If there is $s_{k1} = 0$, k from 1 to n, $(q_1, 0, \rightarrow)$
		else (" no ", $0, -$)
\mathbf{s}	1	If there is $s_{k1} = 1$, k from 1 to n, $(q_1, 1, \rightarrow)$
		else (" no ", 1, $-$)
$\overline{q_1}$	Ш	If there is $L_k = 1$, k from 1 to n, ("yes", \sqcup , $-$)
		else(" no ", \sqcup , $-$)
q_1	0	If there is $s_{k2} = 0$, k from 1 to n, $(q_2, 0, \rightarrow)$
		else (" no ", $0, -$)
q_1	1	If there is $s_{k2} = 1$, k from 1 to n, $(q_2, 1, \rightarrow)$
		else (" no ", 1, $-$)
$\overline{q_{L_{max}}}$	Ш	$("yes", \sqcup, -)$
$q_{L_{max}}$	0	$egin{array}{ccc} (``yes",\sqcup,-) \ (``no",0,-) \ (``no",1,-) \end{array}$
$q_{L_{max}}$	1	$\parallel ("no", 1, -)$

We can find that for every natural number S_n in S, $M(S_n) = "yes"$, and natural numbers that are not in S will result in "no". So S is recursive.