This Python program optimizes an equity portfolio by finding the allocation that results in the maximum # Sharpe ratio using Monte Carlo Simulation. It displays the best Sharpe ratios on an Efficient Frontier chart, # and the best allocation numbers on a bar chart. import numpy as np import pandas as pd import matplotlib.pyplot as plt import yfinance as yf # create an equity portfolio stocks = ['AAPL', 'AMZN', 'MSFT', 'GOOG', 'TSLA', 'BTC-USD', 'BRK-B', 'COST'] # get portfolio price data since 1/1/2018 from Yahoo Finance data = yf.download(stocks, start='2018-01-01') # find daily returns data = data['Close'] x = data.pct_change() p_weights = [] p_returns = [] $p risk = \Pi$ p_sharpe = [] # Monte Carlo Simulation count = 1000 for k in range(count): # generate a random allocation wts = np.random.uniform(size = len(x.columns)) wts = wts/np.sum(wts) p_weights.append(wts) # calculate annual returns <u>mean_ret = (x.mean() * wts).sum()*252</u> p_returns.append(mean_ret) # calculate volatility ret = (x * wts).sum(axis = 1)annual_std = np.std(ret) * np.sqrt(252) p risk.append(annual std) #calculate Sharpe ratio sharpe = (np.mean(ret) / np.std(ret))*np.sqrt(252)

find the index of the portfolio with the maximum Sharpe ratio max_ind = np.argmax(p_sharpe)

p_sharpe.append(sharpe)

create an Efficient Frontier chart showing the returns on the Y-axis and volatility on the X-axis.

plt.scatter(p_risk, p_returns, c=p_sharpe, cmap='plasma')
plt.colorbar(label='Sharpe Ratio')

add a color bar for the Sharpe ratio, a red star marker to the chart that # showing the most efficient portfolio with the best Sharpe ratio.

plt.scatter(p_risk[max_ind], p_returns[max_ind], color='r', marker='*', s=500)

plt.show()

display the best allocation using a bar chart s = pd.Series(p_weights[max_ind], index=x.columns) s.plot(kind='bar')

display the best allocation numbers p_weights[max_ind]

array([0.07697208, 0.05355683, 0.09458436, 0.11446065, 0.33803085, 0.00110767, 0.10307572, 0.21821184])