maucea mochemicai leienses

Plant defense response

Hypersensitive Response

Cell death

How do plants defend against bacteria that enter the cell?

- Plants have a general response to infection anti-microbial molecules (secondary metabolites, phytoalexins)
- Plants respond to specific infections through the Hypersensitive Response (PCD) rapid accumulation of reactive oxygen species (directly kill pathogen)
 - Induction of defense genes (pathogenesis-related proteins)

Plant Defense Response

- Hypersensitive response
- Production of reactive oxygen species
- Cell wall fortification
- Production of antimicrobial metabolites (phytoalexins)
- Defense signal transduction
- Synthesis of enzymes harmful to pathogen (eg. chitinases, glucanases)

Plant Defense Response

Compatible interaction → disease Incompatible interaction → resistance

plant defense gene activation

3 aspects of response:

- Hypersensitive
- Local
- Systemic

Relative Timing

Responses of invaded cell(s) Browning/autofluorescence Oxidative reactions Callose deposition Intracellular rearrangements Hypersensitive cell death etc.

Local gene activation Phenylpropanoid pathways Pathogenesis-related (PR) proteins Phytoalexins etc.

Systemic gene activation 1.3-β-Glucanases Chitinases Other PR proteins etc.

rapid

rapid/ intermediate

intermediate/ slow

Elicitors of defense responses

- Any substance that has the capability of activating defense responses in plants
- Include components of the cell surface as well as excreted metabolites

Elicitors

General

- a) Oligosaccharide elicitors
- b) Protein/peptide elicitors

Race specific

a) avr gene products

Plant disease resistance genes

- Encode proteins that recognize Avr-genedependent ligands
- Activate signaling cascade(s) that coordinate the initial plant defense responses to impair pathogen ingress
- Capacity for rapid evolution of specificity
- Common feature of resistance proteins is a leucinerich repeat

Classes of resistance proteins

Gene-for-gene resistance

- For resistance to occur, complementary pairs of dominant genes, one in the host and the other in the pathogen, are required (incompatibility)
- A loss or alteration to either the plant resistance (R) gene or the pathogen avirulence (Avr) gene leads to disease (compatibility)

Interactions involved in R gene -Avr gene incompatibility

Host plant genotype

		R1 r2	r1 R2
Pathogen genotype	Avr1, avr2	-	С
	avr1, Avr2	С	1

Deviations from gene-for-gene concept

- One R gene may confer specificity to more than one ligand
 - RPM1 in Arabidopsis confers resistance against P.syringae expressing either avrRpm1 and avrB

- More than one R gene may exist for a given Avr gene
 - Pto and Prf genes encode biochemically distinct components of the same pathway
 - Two genes at the Cf-2 locus furnish identical functions

(Bent, 1996)

Guard hypothesis

- Key points
- a) An effector acting as a virulence factor has a target(s) in the host
- b) By manipulating or altering this target(s) the effector contributes to pathogen success in susceptible host genotypes
- c) Effector perturbation of a host target generates a "pathogen induced modified self" molecular pattern, which activates the corresponding NB-LRR protein, leading to ETI

(Jones et al., 2006)

Guard hypothesis

Programmed cell death

Programmed cell death is a genetically regulated process of cell suicide that is central to the development, homeostasis and integrity of multicellular organisms

General mechanism of three PCDs in plants

Necrosis vs apoptosis

Purpose of cell death

- Cells that are produced in excess
- Cell that have no function
- Cells that are produced in excess
- Cell that develop improperly
 - Cell that have finished their function
 - Cells that are harmful

Hypersensitive response

- Rapid, localized plant cell death upon contact with avirulent pathogens. HR is considered to be a key component of multifaceted plant defense responses to restrict attempted infection by avirulent pathogens
- Rapid within 24 h
- Not always needed for resistance
 - HR also contributes to the establishment of the long-lasting systemic acquired resistance against subsequent attack by a broad range of normally virulent pathogens

HR Includes:

- oxidative bust (production of reactive oxygen species)
- Disruption of cell membranes
- opening of ion channels
- Cross linking of phenolics with cell wall component
- Production of anti-microbial phytoalexins and PR protein
- apoptosis (programmed cell death)

The Hypersensitive Response

- Bacteria like *Pseudomonas syringae* inject effector proteins (bacterial avirulence and virulence proteins) into plant cells using the <u>Type-III</u> secretion system.
- Plants that are resistant to the bacteria have resistance proteins that recognize the effector proteins and cause the infected cell to commit suicide (apoptosis/PCD/Hypersensitive Response)
- prevents the bacteria from infecting the rest of the plant by directly killing them and depleting nutrients