Čas 07

1 Teorijski uvod

Definicija 1. Graf $\overline{G} = (V, \overline{E})$, je komplement grafa G pri čemu su dva čvora u i v, iz V, susedna u grafu \overline{G} , $\{u,v\} \in \overline{E}$, ako i samo ako nisu susedna u grafu G, $\{u,v\} \notin E$.

Definicija 2. Graf G je samokomplementirajući ako i samo ako je izomorfan svom komplementu \overline{G} .

Teorema 1. Ako je graf $G=(V,E), |V|=n\geq 1$, samokomplementirajući, tada je

$$n \equiv 0 \pmod{4}$$
 ili $n \equiv 1 \pmod{4}$.

Definicija 3. Neka je dat graf G = (V, E). Graf $L(G) = (V_1, E_1)$, $V_1 = E$, pri čemu su dva čvora susedna u L(G) ako i samo ako su odgovarajuće grane susedne u grafu G, naziva se graf grana ili line graf grafa G.

Postupak za formiranje grafa L(G) za dati graf
 G, može se opisati pomoću sledećih koraka:

- Korak 1. U sredinu svake grane grafa G ucrta se čvor grafa L(G).
- Korak 2. Dobijene čvorove spojimo (novim) granama ako leže na susednim granama u grafu G.

2 Zadaci

Zadatak 1.

- a) Iz kompletnog grafa koji ima 20 čvorova, odstranjeno je njih nekoliko. Dobijeni podgraf ima 66 grana. Koliko je čvorova odstranjeno? Koliko je grana odstranjeno?
- b) Stepen čvorova kompletnog grafa je 7. Odstranjeno je nekoliko grana, tako da stepen svakog čvora postane 5. Koliko je odstranjeno grana?

Rešenje. a) Kompletan graf koji ima 20 čvorova ima 190 grana. To znači da je odstranjeno 124 grana. Dobijeni podgraf je kompletan. Kako on sadrži 66 grana, ima 12 čvorova. Iz kompletnog grafa je odstranjeno 8 čvorova.

b) Kompletan graf čiji je stepen svakog čvora 7 ima n= 8 čvorova i m= 28 grana. Dobijeni delimični graf ima 20 grana, a odstranjeno je 8 grana.

Zadatak 2.

Graf G=(V,E) definisan je skupovima $V=\{1,2,3,4,5\}$ i $E=\{\{1,2\},\{2,3\},\{2,4\},\{3,4\},\{3,5\}\}$. Naći komplement grafa $G,\overline{G}=(V,\overline{E}),$ graf $\hat{G}=(V,E\cup\overline{E}),$ kao i njihove matrice susedstva.

Rešenje. Komplement grafa G = (V, E) je graf $\overline{G} = (V, \overline{E})$, pri čemu je

$$\overline{E} = \{\{1,3\},\{1,4\},\{1,5\},\{2,5\},\{4,5\}\}.$$

Matrice susedstva A, \overline{A} i \hat{A} grafova G, \overline{G} i \hat{G} redom su

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}, \quad \overline{A} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix},$$

$$\hat{A} = A + \overline{A} = J_5 - I_5$$

gde je I_5 jedinična matrica, reda 5×5 , a J_5 matrica reda 5×5 čiji su svi elementi

jedinice. Grafovi G, \overline{G} i \hat{G} su prikazani na slici.

Zadatak 3.

Dokazati da su grafovi G_1 i G_2 izomorfni ako i samo ako su izomorfni njihovi komplementi \overline{G}_1 i \overline{G}_2 .

Rešenje. Neka su $G_1=(V_1,E_1),\,G_2=(V_2,E_2),\,\overline{G}_1=(V_1,\overline{E}_1),\,\overline{G}_2=(V_2,\overline{E}_2),$ i grafovi G_1 i G_2 izomorfni. Tada postoji obostrano-jednoznačno preslikavanje (bijekcija) skupa V_1 u $V_2,\,f:V_1\to V_2$, tako da očuvava susedstvo čvorova. Neka su $x,y\in V_1$ dva proizvoljna čvora. Tada važi

$$\{x,y\} \in \overline{E}_1 \quad \Leftrightarrow \quad \{x,y\} \notin E_1.$$

Budući da funkcija f očuvava susedstvo čvorova, to je

$$\{x,y\} \in E_1 \quad \Leftrightarrow \quad \{f(x),f(y)\} \in E_2.$$

Kako važi i

$$\{f(x), f(y)\} \in E_2 \quad \Leftrightarrow \quad \{f(x), f(y)\} \notin \overline{E}_2,$$

dobijamo

$$\{x,y\} \in \overline{E}_1 \quad \Leftrightarrow \quad \{f(x),f(y)\} \in \overline{E}_2.$$

Dakle, funkcija f očuvava susedstvo čvorova i u grafovima \overline{G}_1 i \overline{G}_2 , tj. grafovi \overline{G}_1 i \overline{G}_2 su izomorfni.

Kako je $\overline{\overline{G}}=G,$ na osnovu prethodno dokazanog sledi da važi i suprotan smer.

Zadatak 4.

Ispitati da li su grafovi prikazani na sledećoj slici izomorfni. U slučaju potvrdnog odgovora naći odgovarajući izomorfizam.

Rešenje. Komplementi grafova G_1 i G_2 su prikazani na sledećoj slici.

Ispitujemo da li su grafovi \overline{G}_1 i \overline{G}_2 izomorfni. Ako bi postojao izomorfizam između grafova \overline{G}_1 i \overline{G}_2 , tada bi važilo $f(\{3,5,7\})=\{2,4,8\}$, jer su čvorovi 3, 5, 7 stepena nula u \overline{G}_1 i čvorovi 2, 4, 8 su stepena nula u \overline{G}_2 . Kako je čvor 6 jedini čvor stepena tri u \overline{G}_1 i čvor 3 jedini čvor stepena tri u \overline{G}_2 , mora da važi f(6)=3. Budući da su čvorovi 4 i 7 jedini čvorovi stepena jedan u grafovima \overline{G}_1 i \overline{G}_2 redom, važi f(4)=7. Kako čvor 1 nije povezan sa čvorom 6 u \overline{G}_1 i čvor 5 nije povezan sa čvorom 3 u \overline{G}_2 , mora da važi f(1)=5. Funkcija

$$f = \left(\begin{array}{cccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 2 & 7 & 4 & 3 & 8 & 1 \end{array}\right)$$

je izomorfizam između grafova \overline{G}_1 i \overline{G}_2 . Na osnovu prethodnog zadatka sledi da su grafovi G_1 i G_2 izomorfini i traženi izomorfizam je takođe f.

Zadatak 5.

Ako u grafu G=(V,E), $|V|=n\geq 3$, tačno dva čvora imaju isti stepen, dokazati da jedan od grafova G ili \overline{G} ima tačno jedan izolovani čvor.

Rešenje. Pretpostavimo da graf G ima dva izolovana čvora. Zbog uslova u zadatku graf G ne može da ima više od dva izolovana čvora. Kako u grafu G tačno dva čvora imaju isti stepen, a to su u ovom grafu dva izolovana čvora, svi ostali čvorovi imaju različite stepene. Broj čvorova koji nisu izolovani je n-2 i njihovi stepeni pripadaju skupu $\{1,2,\ldots,n-3\}$, čime smo dobili kontradikciju. Dakle, graf G ne može da ima dva izolovana čvora.

Ako graf G ima jedan izolovani čvor, zadatak je rešen. Zato pretpostavimo da graf G nema izolovanih čvorova. Stepen svakog čvora grafa G uzima vrednost iz skupa $\{1,2,\ldots,n-1\}$. Stepen čvora v u grafu \overline{G} jednak je n-1-d(v), gde je d(v) stepen čvora v u grafu G. Iz uslova da tačno dva čvora imaju isti stepen, sledi da postoji čvor x u grafu G čiji je stepen n-1. Tada je stepen čvora x u \overline{G} jednak nula i za graf \overline{G} takođe važi da tačno dva čvora imaju isti stepen. Pokazali smo da graf sa ovom osobinom ne može da ima više od jednog izolovanog čvora. Dakle, jedan od grafova G ili \overline{G} ima tačno jedan izolovani čvor.

Zadatak 6.

U jednom razredu je n učenika, $n \geq 3$. Ako u ovom razredu postoje tačno dva učenika koji imaju isti broj prijatelja u razredu, tada postoji jedan učenik u razredu kome su ili svi prijatelji ili nema ni jednog prijatelja među preostalim učenicima.

Rešenje. Pridružimo zadatku graf G, pri čemu su čvorovi učenici. Dva čvora su susedna u grafu G ako su odgovarajući učenici prijatelji. Na osnovu prethodnog zadatka jedan od grafova G ili \overline{G} ima tačno jedan izolovani čvor. Ako G ima tačno jedan izolovani čvor, tada tada postoji jedan učenik koji nema ni jednog prijatelja među preostalim učenicima. U suprotnom, ako \overline{G} ima tačno jedan izolovani čvor, tada postoji čvor koji je povezan sa svim čvorovima u grafu G. Dakle, postoji jedan učenik u razredu kome su svi prijatelji.

Zadatak 7.

Dat je graf $G=(V,E),\,|V|=n\geq 6.$ Dokazati da bar jedan od grafova G ili \overline{G} sadrži ciklus dužine 3.

Rešenje. Kako je unija grafova G i \overline{G} kompletan graf sa više od pet čvorova, to je zbir stepena proizvoljnog čvora v u grafovima G i \overline{G} veći od 4. Tada je stepen čvora v veći od 2 bar u jednom grafu G ili \overline{G} . Pretpostavimo da je stepen čvora v veći od 2 u grafu G. Neka su x,y,z susedi čvora v u grafu G. Ako neka od grana $\{x,y\},\{x,z\}$ i $\{y,z\}$ pripada skupu grana grafa G, tada postoji ciklus dužine 3 u grafu G. U suprotnom, sve tri grane pripadaju skupu grana grafa G, te postoji ciklus $x \to y \to z \to x$ dužine 3 u grafu G.

Zadatak 8.

Dokazati da je kontura C_5 samokomplementirajući graf.

Rešenje. Na sledećoj slici prikazani su grafovi C_5 i njegov komplement \overline{C}_5 .

Izomorfizam između grafova C_5 i \overline{C}_5 definiše se sa

$$f = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 2 & 4 \end{array}\right) = (2\ 3\ 5\ 4).$$

Zadatak 9.

Ako je graf $G=(V,E),\ |V|=n,\ n\equiv 1\ ({\rm mod}\ 4),$ samokomplementirajući, dokazati da sadrži čvor stepena $\frac{n-1}{2}.$

 $\mathbf{Re\check{s}enje}$. Podelimo čvorove grafa G u tri podskupa:

$$V_1 = \left\{ v \in V \mid d(v) < \frac{n-1}{2} \right\},\,$$

$$V_2 = \left\{ v \in V \mid d(v) = \frac{n-1}{2} \right\},$$

$$V_3 = \left\{ v \in V \mid d(v) > \frac{n-1}{2} \right\}.$$

Dokazaćemo da je skup V_2 neprazan. Neka je f izomorfizam između grafova G i \overline{G} . Kako je G samokomplementirajući graf, imamo da su stepeni čvorova v i f(v) u grafovima G i \overline{G} , redom, jednaki. Sledi

$$d(v) = n - 1 - d(f(v)).$$

Ako je $v \in V_1$, tada je $f(v) \in V_3$. Dakle, funkcija f slika skup V_1 u V_3 . Slično, funkcija f slika skup V_3 u V_1 . Zaključujemo da važi $|V_1| = |V_3|$, te je broj čvorova skupa G jednak $|V_1| + |V_2| + |V_3| = 2|V_1| + |V_2|$. Kako je n neparan broj, imamo da je broj elemenata skupa V_2 neparan broj, tj. V_2 je neprazan skup. Dakle, postoji čvor čiji je stepen $\frac{n-1}{2}$.

Zadatak 10.

Naći graf
 grana grafa G=(V,E) definisanog skupovima $V=\{1,2,3,4,5\}$
i $E=\{\{1,2\},\{1,3\},\{1,5\},\{2,4\},\{3,4\},\{3,5\}\}$. Prikazati ove grafove u ravni. Naći njihove matrice incidentnosti, matrice susedstva, matrice susedstva po granama i matrice rastojanja. Naći dijametar, radijus, centar i periferiju ovih grafova.

Rešenje. Kako graf G=(V,E) ima šest grana, graf grana L(G) ima šest čvorova. Označimo ih redom sa $x_1=\{1,2\},\ x_2=\{1,3\},\ x_3=\{1,5\},\ x_4=\{2,4\},\ x_5=\{3,4\},\ x_6=\{3,5\}.$ Skup grana $E'=\{l_1,l_2,l_3,l_4,l_5,l_6,l_7,l_8,l_9\}$ je definisan sa $l_1=\{x_1,x_2\},\ l_2=\{x_1,x_3\},\ l_3=\{x_1,x_4\},\ l_4=\{x_2,x_3\},\ l_5=\{x_2,x_5\},\ l_6=\{x_2,x_6\},\ l_7=\{x_3,x_6\},\ l_8=\{x_4,x_5\},\ l_9=\{x_5,x_6\}.$ Grafovi G i L(G) su prikazani na sledećoj slici.

Neka su B, A, C, D i L(B), L(A), L(C), L(D), redom, matrica incidentnosti, matrica susedstva, matrica susedstva po granama i matrica rastojanja grafa G

i grafa L(G). Tada je

$$E = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1$$

Dijametri grafova G i L(G) su d(G) = d(L(G)) = 2. Radijusi grafova G i L(G) su r(G) = r(L(G)) = 2. Svi čvorovi grafa G čine njegov centar, i svi čvorovi grafa L(G), takođe čine njegov centar.

Zadatak 11.

Koristeći postupak za formiranje grafa grana, formirati graf grana za grafove prikazane na sledećoj slici.

Rešenje. Grafovi grana L(G) i L(H), formirani pomoću postupka, prikazani su na sledećoj slici, pri čemu su grane grafova G i H isprekidane linije.

Zadatak 12.

Da li graf G prikazan na sledećoj slici može biti graf grana nekog grafa?

Rešenje. Označimo čvorove grafa G na sledeći način:

Pretpostavimo da postoji graf G_1 takav mu da je graf G graf grana. Čvoru l_1 grafa G pridružimo granu u grafu G_1 , $l_1 = \{1, 2\}$. Čvorovi l_1 i l_2 su susedni u G, pa čvoru l_2 pridružimo, na primer, granu $l_2 = \{1, 3\}$. Čvor l_4 je susedan sa čvorom l_1 , ali nije sa l_2 , pa čvoru l_4 moramo da pridružimo granu $l_4 = \{2, 4\}$.

Čvor l_5 je susedan sa čvorom l_1 , pa bi jedan od čvorova koji su incidentni sa granom l_5 u grafu G_1 morao da bude 1 ili 2. Tada bi grana l_5 bila susedna ili sa granom l_2 ili sa granom l_4 , što je nemoguće. Dakle, graf G ne može da bude graf grana nekog grafa.

Zadatak 13.

Grafovi $G=(V_1,E_1)$ i $H=(V_2,E_2)$ definisani su skupovima $V_1=\{1,2,3\},$ $V_2=\{4,5\},$ $E_1=\{\{1,2\},\{1,3\},\{2,3\}\}$ i $E_2=\{\{4,5\}\}.$ Naći graf, sa minimalnim brojem čvorova, T=(V,E), za koji je $G\oplus H$ graf grana, tj. $L(T)=G\oplus H.$

Rešenje. Označimo čvorove grafa $G \oplus H$ redom sa l_1, l_2, l_3, l_4, l_5 i l_6 , kao na sledećoj slici.

Grafu L(T) odgovara matrica susedstva L(C),

$$L(C) = \left[egin{array}{cccccc} 0 & 1 & 0 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 & 1 \ 0 & 1 & 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 & 1 & 0 \end{array}
ight],$$

koja je ujedno matrica susedstva po granama nepoznatog grafa T. Grane l_2 i l_6 su susedne u grafu T, sa granom l_1 , ali međusobno nisu susedne, te možemo uzeti da je

$$l_1 = \{x_1, x_2\}, \quad l_2 = \{x_1, x_3\} \quad i \quad l_6 = \{x_2, x_4\}.$$

Grana l_5 je susedna sa granama l_1 i l_6 , a nije susedna sa granom l_2 , te je $l_5 = \{x_2, x_5\}$. Grana l_3 je susedna sa granama l_2 i l_6 , a nije susedna sa granama l_1 i l_5 , te mora biti $l_3 = \{x_3, x_4\}$. Grana l_4 je susedna sa granama l_2 , l_3 i l_5 , a nije susedna sa granama l_1 i l_6 , te mora biti $l_4 = \{x_3, x_5\}$. Traženi graf T = (V, E) definisan je skupovima $V = \{x_1, x_2, x_3, x_4, x_5\}$ i $E = \{\{x_1, x_2\}, \{x_1, x_3\}, \{x_3, x_4\}, \{x_3, x_5\}, \{x_2, x_5\}, \{x_2, x_4\}\}$.

Na sledećoj slici prikazan je graf T, i nije teško zaključiti da je $T=K_{2,3}$.

