Examen de Problemas, Computer Vision. 1 de Junio de 2021

Puntuación: 3 puntos Duración: 40 minutos

Nombre: Apellidos:

Problema 1 (1 punto)

Si empleamos la red VGG-19 como la que vemos en la tabla (E) y asumimos que todas las convoluciones son con padding.

ConvNet Configuration								
A	A-LRN	В	С	D	E			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
input (224 × 224 RGB image)								
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
maxpool								
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
maxpool								
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
maxpool								
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
maxpool								
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
maxpool								
FC-4096								
FC-4096								
FC-1000								
soft-max								

Indica, sin tener en cuenta la parte Fully Connected:

- a) Cuál sería el tamaño mínimo de imagen que admitiría
- b) Calcula el número de parámetros

Problema 2 (1 punto)

Queremos diseñar una U-Net donde el encoder sea una **vgg-19 pre-entrenada** con ImageNet. O sea después de la última **conv3-512** empezaría el decoder. Esta U-Net la vamos a emplear para segmentar la columna vertebral en radiografías. Las radiografías tienen el siguiente tamaño 256x256 y una profundidad de 1 dado que son en escala de grises. Recordad que en la subida (decoder) la profundidad de los mapas se divide por 2 en cada salto.

- a) Cuál sería el tamaño del mapa obtenido justo antes del decoder (a)
- b) Qué tendríamos que hacer antes de introducir nuestra radiografía (b)
- c) Cuál sería el tamaño del mapa en este punto (c)
- d) ¿ Qué error veis en la figura?

Problema 3 (0.5 puntos)

Queremos diseñar una red convolucional para poder hacer reconocimiento de caracteres del alfabeto Cuneiforme:

Alfabeto cuneiforme de Ugarit							
`a	b	▼ gs	¥ b	d d	III 4		
* IF	¥	¥ ÷	¥ -	‡	× M		
⟨₹ ⟩ š	1	m	ď	n	ž.		
y s	T .	p	i.	Ĭ ª	₩ "		
ţ.	w. 🔻	1	∭ ,∹) , u	ŝŢ̂̂̂̂̂̂̂̂̂̂̂̂		

Después de diseñar la red neuronal implementamos el siguiente Data Generator para hacer data augmentation:

```
datagen=ImageDataGenerator(
    rotation_range=10,
    width_shift_range=0.2,
    height_shift_range=0.2,
    zoom_range=0.5,
    horizontal_flip=True,
    vertical_flip=False
)
```

Indica qué problemas podríamos tener al emplear dicho data generator.

Problema 4 (0.5 puntos)

Indica qué modificaciones tendríamos que realizar a esta topología Yolov1 si quisiéramos detectar 5 tipos de objetos diferentes en un grid de 10x10 con la posibilidad de tener 3 bounding box por celda.

Señala sobre la figura los cambios y descríbelos.