FORMAL LANGUAGES & AUTOMATA

3.1.1. Consider the grammar $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S, A\},$$

$$\Sigma = \{a, b\},$$

$$R = \{S \rightarrow AA,$$

$$A \rightarrow AAA,.$$

$$A \rightarrow a,$$

$$A \rightarrow bA,$$

$$A \rightarrow Ab\}.$$

- (a) Which strings of L(G) can be produced by derivations of four or fewer steps?
- (b) Give at least four distinct derivations for the string babbab.
- (c) For any m, n, p > 0, describe a derivation in G of the string $b^m a b^n a b^p$.

ANSWER:

- a) aa, baa, aba, aab, aaa
- b) $S \rightarrow AA \rightarrow bAA \rightarrow bAAb \rightarrow bAAbAb \rightarrow babbAb \rightarrow babbab$
 - $S \rightarrow AA \rightarrow bAA \rightarrow bAAb \rightarrow bAAbAb \rightarrow bAbbAb \rightarrow babbab$
 - $S \rightarrow AA \rightarrow bAA \rightarrow bAbA \rightarrow babA \rightarrow babAb \rightarrow babbab$
 - $S \rightarrow AA \rightarrow AAb \rightarrow bAbA \rightarrow baAb \rightarrow babAb \rightarrow babbAb \rightarrow babbab$
- c) $S \rightarrow AA$
 - \rightarrow m bmAA
 - \rightarrow ⁿ b^mAbⁿA
 - \rightarrow ^p b^mAbⁿAb^p
 - → b^mabⁿAb^p
 - → b^mabⁿab^p

3.1.2. Consider the grammar (V, Σ, R, S) , where V, Σ , and R are defined as follows:

$$\begin{split} V &= \{a,b,S,A\}, \\ \Sigma &= \{a,b\}, \\ R &= \{S \rightarrow aAa, \\ S \rightarrow bAb, \\ S \rightarrow e, \\ A \rightarrow SS\}. \end{split}$$

Give a derivation of the string *baabbb* in *G*. (Notice that, unlike all other context-free languages we have seen so far, this one is very difficult to describe in English.)

ANSWER:

- $S \rightarrow bAb$
- \rightarrow bSSb
- → baAbSb
- → baSSaSb
- → baSaSb
- → baaSb
- → baabSAbb
- → baabSSbb
- → baabSbb
- → baabbb
- 3.1.3. Construct context-free grammars that generate each of these languages.
 - (a) $\{wcw^R:w\in\{a,b\}^*\}$
 - (b) $\{ww^R : w \in \{a, b\}^*\}$
 - (c) $\{w \in \{a, b\}^* : w = w^R\}$

ANSWER:

a)
$$G=(v, \Sigma, R, S) \Rightarrow V=\{a,b,S\}$$

 $\Sigma=\{a,b\}$
 $R=\{S\rightarrow aSa, S\rightarrow bSb, S\rightarrow c\}$

b)
$$G=(v,\sum,R,S) \Rightarrow V=\{a,b,S\}$$

 $\sum = \{a,b\}$
 $R = \{S \rightarrow aSa, S \rightarrow bSb, S \rightarrow c\}$

c)
$$G=(v, \Sigma, R, S) \Rightarrow V=\{a,b,S\}$$

 $\Sigma=\{a,b\}$
 $K=\{S\rightarrow aSa, S\rightarrow bSb, S\rightarrow a, S\rightarrow b, S\rightarrow c\}$

3.1.5. Consider the context-free grammar $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S, A, B\},$$

$$\Sigma = \{a, b\},$$

$$R = \{S \rightarrow aB,$$

$$S \rightarrow bA,$$

$$A \rightarrow a,$$

$$A \rightarrow aS,$$

$$A \rightarrow BAA,$$

$$B \rightarrow b,$$

$$B \rightarrow bS,$$

$$B \rightarrow ABB\}.$$

- (a) Show that $ababba \in L(G)$.
- (b) Prove that L(G) is the set of all nonempty strings in $\{a,b\}$ that have equal numbers of occurrences of a and b.

ANSWER:

a)
$$S \rightarrow aB \rightarrow abS \rightarrow abaB \rightarrow ababS \rightarrow ababbA \rightarrow ababba$$

b)
$$w(S) = 0$$

c)
$$w(a) = w(A) = 1$$

d)
$$w(b) = w(B) = -1$$

e)
$$w(S) = 0 = w(aB)$$

f)
$$w(S) = 0 = w(aB)$$

g)
$$w(A) = 1 = w(a)$$

h)
$$w(A) = 1 = w(aS)$$

i)
$$w(A) = 1 = w(BAA)$$

$$i)$$
 $w(B) = -1 = w(b)$

k)
$$w(B) = -1 = w(bS)$$

I)
$$w(B) = -1 = w(ABB)$$