

Aerial Pathfinding Reconnaissance Final Presentation

Jason Gilman, Max Griffith, Mark Johnson, Dilanka Weerasinghe

Overview

Goal: Use aerial drone footage to find a safe path for a land vehicle.

Team Members and Responsibilities:

- Dilanka Weerasinghe (Data Collection & Drone Control)
 - Automated drone control and collection of aerial footage
- Mark Johnson (Computer Vision & Mapping)
 - Production of an obstacle map from drone videos
- Max Griffith (Pathfinding & Drone Detection)
 - Determination of vehicle starting location and route
- Jason Gilman (Device Networking & UI)
 - Creation of user interface and network interconnect

Data Collection & Drone Control

Accomplishments:

- Physical Electronics
 - PiCam records interval video and records to a datasheet with timestamp & GPS location
 - Avoidance system mounted to Aerial Drone with sensor hub
 - Land Rover complete with serial connection through Pi3. Not tested.

Simulator

- Drone reads in data file with altitude, camera angle yaw and waypoint locations
- Drone performs safety check arms and takes flight.
- Obstacle avoidance case for GUIDED directions
- Loading commands to vehicle through serial/udp connection.
- Flight distance, directionality and logging completed.

Section of the August (19)

Construction of the August (19)

Const

On data collection yaw set to 270°, video last 5 seconds

On low battery drone logs warning and returns home. If battery is less than 25% land immediately.

Commands sent to PixHawk running ArduCopter firmware.

Computer Vision & Mapping

All stages are complete:

- Moving Object Removal
- Image Stitching
 - Poor result due to changing perspective.
 - Final product will not rely on this feature.
- Depth Map Inference
 - Parameters need tweaking at runtime.
- Depth Map Stitching
 - Custom algorithm developed for this project.
- **Gradient Field Derivation**
- **Obstacle Delineation**

Demo: Moving Object Removal

Demo: Obstacle Detection by Slope Analysis

Computer Vision & Mapping Full Pipeline Example

Pathfinding & Drone Detection

Stages Complete:

- Finding straightforward path
 - · Working as intended
 - Paths not taken for final path are marked as invalid (0)
 - Greedy algorithm taking rightmost one
- Edge cases and error handling
 - Edge cases such as finding cycles have been fixed (infinite loops), improper start/ending positions
- Decrease Resolution from a map

•Only works with evenly divisible pixel widths Random Generated Map

Map with decreased resolution

```
      0,
      0,
      0,
      0,
      0,
      0,
      0,
      0,
      0,
      0,
      0,
      0,
      0,
      0,
      1,
      0,
      1,
      0,
      1,
      0,
      1,
      0,
      1,
      0,
      1,
      1,
      0,
      1,
      1,
      0,
      1,
      1,
      0,
      1,
      1,
      1,
      0,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      1,
      <td
```

Cyclic Path:

```
[1, 1, 1, 1, 1, 0, 1, 1, 0, 1]
[0, 1, 0, 0, 1, 0, 1, 0, 0, 1]
[1, 1, 0, 0, 1, 0, 1, 0, 0, 1]
[0, 1, 0, 0, 1, 0, 1, 0, 0, 1]
[0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0]
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0]
[0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0]
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```

Cyclic Path Solved*:

```
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 1, 0, 0, 0, 1, 0, 0, 0]
[0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0]
[0, 0, 0, 0, 0, 0, 0, 1, 1, 0]
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```

*The starting location is [0,0] and the ending location is [3,6]

Pathfinding & Drone Detection

Map Resolution decreased to output file Example

- 16 by 16 matrix with 2x2 pixels
- Minimizes to 8x8
- Valid path created

Demo Plans:

- Show valid path with edge cases taken care of
- Show different resolutions of differently sized maps

```
[1, 1, 1, 1, 1, 0, 0, 1]
[0, 0, 0, 0, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0]
```

Device Networking & UI

Stages Complete:

- Desktop Application:
 - Mapping functionality based on user's current location
 - Generate navigation instructions for the aerial drone
 - Send navigation instructions, launch flight, and download data from aerial drone through HTTP methods on local wifi network
 - Error handling to prevent invalid operation
 - Full functionality offline
- Aerial Drone Server:
 - Raspberry Pi 3b+ acting as a wireless access point using TL-WN722N wireless module (range ~30 m)
 - Running a lightweight web-server to receive and process communications from the user

Error handling and GUI message

```
spberrypi:~ $ sudo systemctl status aprsAerialServer
aprsAerialServer.service - aprs server
 Loaded: loaded (/etc/systemd/system/aprsAerialServer.service; enabled; vendor preset: enabled)
 Active: active (running) since Sun 2020-11-08 04:59:28 GMT; 18h ago
lain PID: 409 (bash)
 Tasks: 2 (limit: 4915)
CGroup: /system.slice/aprsAerialServer.service
          -409 /bin/bash -c source /home/pi/Desktop/aprs/aprs-aerial-server/env/bin/activate;python /home/pi/Desktop/
          -420 python /home/pi/Desktop/aprs/aprs-aerial-server/aprsAerialServer.py
  08 04:59:30 raspberrypi bash[409]: * Environment: production
                                       WARNING: This is a development server. Do not use it in a production deployme
  08 04:59:30 raspberrypi bash[409]:
                                       Use a production WSGI server instead.
    04:59:30 raspberrypi bash[409]: * Debug mode: off
    04:59:30 raspberrypi bash[409]: * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
     05:14:58 raspberrypi bash[409]: 10.0.0.20 - - [08/Nov/2020 05:14:58] "GET / HTTP/1.1" 200
  08 23:34:37 raspberrypi bash[409]: 10.0.0.20 - - [08/Nov/2020 23:34:37] "POST /uploadInstructions HTTP/1.1" 200
 08 23:35:24 raspberrypi bash[409]: 10.0.0.20 - - [08/Nov/2020 23:35:24] "POST /uploadInstructions HTTP/1.1" 200
v 08 23:36:26 raspberrypi bash[409]: 10.0.0.20 - - [08/Nov/2020 23:36:26] "POST /uploadInstructions HTTP/1.1"
    23:36:47 raspberrypi bash[409]: 10.0.0.20 - - [08/Nov/2020 23:36:47] "POST /uploadInstructions HTTP/1.1"
```

Drone server showing communication with UI

Device Networking & UI

Data Collected:

- Communication latency to back-end and drone servers
- Aerial drone navigation instructions

Demo Plans:

- Walk-through of desktop application
- Display offline/online options
- Demonstration of mapping utility
- Show automated communication to drone server
- Show error handling process

Timing and image size when fetching map assets

_ , , .		_				
10.0.0.1	200	fetch	step3.tsx:76	199 B	264 ms	
10.0.0.1	200	fetch	step4.tsx:99	199 B	2.60 s	

Timing when communicating with drone server

30.61510506006647, -96.35762462809495 30.6150303801994, -96.35762462805874 30.61495570033233,-96.35762462802253 30.614881020465262, -96.35762462798633 30.614806340598193,-96.35762462795013 30.614731660731124, -96.35762462791392 30.614656980864055, -96.35762462787771 30.614582300996986, -96.3576246278415 30.614507621129917, -96.35762462780531 30.614432941262848, -96.3576246277691 30.61435826139578, -96.35762462773289 30.61428358152871,-96.35762462769668 30.61420890166164, -96.35762462766047 30.614134221794572, -96.35762462762426 30.614059541927503,-96.35762462758805 30.613984862060434, -96.35762462755184 30.613910182193365, -96.35762462751563

Generated navigation instructions

Execution Plan

Milestone Assign	Assigned To	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14
Milestone	Assigned To	24-Aug-20	31-Aug-20	7-Sep-20	14-Sep-20	21-Sep-20	28-Sep-20	5-Oct-20	12-Oct-20	19-Oct-20	26-Oct-20	2-Nov-20	9-Nov-20	16-Nov-20	23-Nov-20
Understand Project	All														
Initial planning/research	All														
Draft Conops Report	All														
Source Lab Materials (Drone/Sensors)	All														
Draft FSR Report	All														
Draft ICD Report	All														
Draft Exection Plan	All														
Draft Validation Plan	All														
Prepare Midterm Presentation	All														
Design Server-Side Architecture	Jason														
Remove Moving Obstacles from Data	Mark														
Increase familiarity with Python	Max														
Implement Sever-Side	Jason														
Map Environment from Data	Mark														
Create algorithm for valid accessible path	Max														
Research/Order Parts	Dilanka/Jason														
Create error handling for inaccessible path	Max														
Implement Client-Side/UI	Jason														
Estimate Depth on Path Sections	Mark														
Research Drone SDK / stm32 / Sabretooth	Dilanka														
Add flight mapping functionality	Jason														
Research software interaction with drone	Max														
Design Aerial/Land Electrical Schematics	Dilanka														
Program manual override of drone	Max														
Testing Electrical Off Drones	Dilanka														
Merge Depth Estimates with Map	Mark														
Build Air Drone	Dilanka														
Build Land Drone	Dilanka														
Prepare Status Update Presentation	All														
Implement Server on drone	Jason														
Test Flight of Air Drone	Dilanka														
Normalize Depth Field for Drone Altitude	Mark														
Program movement of drone	Max														<u> </u>
Test Travel of Land Drone	Dilanka														
Communicate with server on drone	Jason														
Derive Gradient Field From Elevation Map	Mark														
Program: Data Retreival of Air Drone	Dilanka														
Test Drone Simulation Programs	Dilanka														
Test Data Retreival From Drone	Dilanka														
Implement Obstacle Delineation	Mark														
Program drone path from map input	Max														
Package Software/Create Installer	Jason														
Prepare Final Presentaion	All														
Test and modify Air system	Dilanka														
Program: Autonomous Flight of Air Drone	Dilanka														
Draft Final Report	All									l			l		

Validation Plan

Legend	Complete	Incomplete

		Drone follows waypoint from data	
	Aerial Drone flies from Point A to Point B	file w/ interups	
	Drone stops at midpoint locations on the map	Drone Stablize, autofocus, record &	
	and records video and GPS location	save	
	Drone does not takeoff with failed	Failure to lauch without udp / serial	
	connection/ prearm checks	connection	
Data Collection		Drone RTL on < 40%; Drone Lands on <	
and Drone Control	Low Battery Warning & Exit	30%	
and brone control	Add wp during flight and guided travel		
		Controller has switch that changes	
	Drone stops at user shutoff switch from AUTO to manu	from AUTO to manual	
	Land Drone Functional with Directions	Land drone is built and programmed	
	Drone detects obstacles & Avoides Dectection 0.05-3m, not of	Dectection 0.05-3m, not operational	
	Electrical Systems Connected	No Pixhawk Power	
	System Built & Power On	No flight controller and battery	

Data Collection and Drone Control - Dilanka

	The system produces depth maps with fewer	Invalid points do not appear after the	
	than 1% of negative data points	filtering stage. 0%	
	A change in elevation of <2% of drone altitude	Measured manually; can not be	
	results in >10 disparity	detected. 1.26%->12	
	The system can identify changes in elevation	Measured manually; object was 1.6%	
Computer Vision	which account for <0.1% of the image area	altitude with 15 disparity. 0.003%	
and Mapping	Depth estimation occurs at a speed of >1MP/s	Coloulated automatically 4 CARP/s	
	for each image in a pair	Calculated automatically. 1.6 MP/s	
	Depth maps are merged to an accuracy of	Measured manually; average over 14	
	<0.5% of output map width	trials. 0.26%	
		Th	
	Image stitching correctly throws an exception	The error is caught from return value	
	when insufficient image data is provided	and raised as an exception	

Computer Vision and Mapping - Mark

	<u> </u>	Given a feasible path, if there is a valid path, it will be found 100% of	
	Greedy Algorithm given a feasible path	the time	
	Edge cases such as Incorrect Start/End position	If the start/end cases are not	
	causes program to end and output no map and	accurate, the program will not run	
	error statements	and output a map of 0s	
Pathfinding and		If a cyclic path is found, the program	
Drone Detection		will solve the cyclic path, retracing	
Dione Detection		its steps once the same point is found	
	Handling Cyclic paths	twice	
	Changing Resolution of given map given pixel	Works with 0 even division. 16 / 4,	
	width	8/4, 100/50 etc	
	Updating Algorithm to handle weighted paths		

Pathfinding and Drone Detection - Max

Device Networking and UI	Fetch user's current location via geolocation api call (internet required) in under 5s Fetch map images in under 5s (offline assets served by back-end) Error handling and message provided in GUI to prevent crash and inform user Create drone navigation instructions accurate within 1 Meter	avg time to fetch = 145 ms size of data = 442 B avg time to fetch = 253ms avg size of data = 76.3 kB Error messages will be presented if the user attempts invalid operation	
	Communicate with drone's server in under 10s	avg time to post data = 2.91 s avg size of data = 388.38 kB	
	Install software via encapsulated windows installer	create a single application containing all functionality and dependencies	

Device Networking and UI - Jason

Questions?