物理设计(数据库存储技术)

单位: 重庆大学计算机学院

数据库设计主要有哪些环节?

二维表如何存储呢?

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	4

图 2-2 course 关系

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

图 2-1 instructor 关系

主要学习目标

- 表记录的存储方式。
- 表结构的存储方式。

思考问题

· 操作系统的数据操作方式,CPU、内存、 硬盘如何进行数据传输的?

• 文件系统如何存储数据的?

一文件组织p.255

讨论:如何在物理 存储介质上组织 数据? 1)数据在物理存储(磁盘)中如何 组织?

物理设计任务:考虑用文件表示逻辑数据模型(数据库模式)的不同方式。

一个数据库被映射到多个不同的文件(file),文件由操作系统来管理,这些文件被永久存储在磁盘上!一个文件在逻辑上被组织成记录的一个序列,记录被映射到磁盘块(block)上。

每个文件(file)被分成定长的存储单元-块(block),块是数据存储和传输的基本单位(默认一般是4-8KB)。

一个块可以包括很多记录(假设一个记录总比块小;对大数据如图片需单独处理和存储),且一个记录的数据不能跨块存储

一文件组织

讨论:每条记录如何进行组织?

定长记录

记录0	10101	Srinivasan	Comp. Sci.	65000
记录1	12121	Wu	Finance	90000
记录2	15151	Mozart	Music	40000
记录3	22222	Einstein	Physics	95000
记录4	32343	El Said	History	60000
记录5	33456	Gold	Physics	87000
记录6	45565	Katz	Comp. Sci.	75000
记录7	58583	Califieri	History	62000
记录8	76543	Singh	Finance	-80000
记录9	76766	Crick	Biology	72000
记录10	83821	Brandt	Comp. Sci.	92000
记录11	98345	Kim	Elec. Eng.	80000

图 10-4 包含 account 记录的文件

数组-包含各变长字段的位置和大小

变长记录

2)定长记录和变 长记录各自的 特点?

二(数据库)文件中记录的组织

讨论:如何在物理存储介质上组织数据库数据?

- 文件中记录的组织方式
- 堆文件: 记录在文件空间中任意放置
- 顺序文件:按一定的顺序在文件中组织记录
- 散列文件:按照散列函数计算值存放相应记录
- 多表簇集文件:不同关系表里的记录存放在同一个文件中。

二 (数据库)文件中记录的组织

1.顺序文件组织p.259

1) 顺序文件在逻辑上 是如何组织数据库数 据(关系)的?

顺序文件的逻辑组织方式:

- 1)将关系中记录按"某属性/组-搜索码"排列
- 2)并用指针将记录依序连接

特点: 按搜索码搜索的效率高-

顺序文件的物理组织方式:

- 1)将关系中记录按搜索码次序进行物理存储
- 2)采用定长记录或变长记录方式
- 3)一个记录的信息不能分存在两

个物理块中

10101	Srinivasan	Comp. Sci.	65000	1
12121	Wu	Finance	90000	1
15151	Mozart	Music	40000	
22222	Einstein	Physics	95000	
32343	El Said	History	60000	-
33456	Gold	Physics	87000	-
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	SW
76543	Singh	Finance	80000	did
76766	Crick	Biology	72000	1
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	- 3

图 10-10 instructor 记录组成的顺序文件

2) 顺序文件 的物理存储如 何实现?

二 (数据库)文件中记录的组织

1.顺序文件组织p.259

记录10

记录11

83821

98345

改善方法(指针管理)

3) 顺序文件 存储的数据 如何更新?

删除记录

1	删除	机插入	记录时间	约卅旬	Ħ
•	大(大	量移动]记录)!		
1	10101	Srinivasan	Comp. Sci.	65000	
	12121	Wu	Finance	90000	8
	70000000	The state of the s	The second second second		_

10101	Srinivasan	Comp. Sci.	65000	1-
12121	Wu	Finance	90000	1
15151	Mozart	Music	40000	
22222	Einstein	Physics	95000	
32343	El Said	History	60000	-
33456	Gold	Physics	87000	-
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	SM
76543	Singh	Finance	80000	lid.
76766	Crick	Biology	72000	1
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	48

图 10-10 instructor 记录组成的顺序文件

考我,二分重找 长我到缺(10较吹的第一个) 在在软里找

头文件 记录0 10101 Srinivasan Comp. Sci. 65000 记录1 记录2 15151 Mozart Music 40000 记录3 22222 Einstein **Physics** 95000 记录4 记录5 33456 Gold **Physics** 87000 记录6 记录7 58583 Califieri History 62000 记录8 Singh 76543 80000 Finance 记录9 Crick 76766 Biology 72000

Comp. Sci.

Elec. Eng.

92000

80000

图 10-7 删除了第 1、4 和 6 条记录的图 10-4 中的文件

Brandt

Kim

0101	Srinivasan	Comp. Sci.	65000	-
2121	Wu	Finance	90000	-
5151	Mozart	Music	40000	1
2222	Einstein	Physics	95000	1
2343	El Said	History	60000	
3456	Gold	Physics	87000	1
5565	Katz	Comp. Sci.	75000	80.3
8583	Califieri	History	62000	00
6543	Singh	Finance	80000	-
6766	Crick	Biology	72000	-
3821	Brandt	Comp. Sci.	92000	. +
8345	Kim	Elec. Eng.	80000	8

图 10-11 执行插人后的顺序文件

插入记录

但需定期执行重组!

2.多表聚集文件组织p.260

4) 什么是多表聚集文件, 物理存储如何实现, 有何好处?

多表聚集文件组织:是指将多个关系的数据组织在一个文件中 (它们的记录相互交织在一起)

departmentdept_namebuildingbudgetComp. Sci.Taylor100000PhysicsWatson70000

dent name IDsalary name instructo Comp. Sci. Srinivasan 65000 10101 **Physics** 33456 Gold 87000 45565 Katz Comp. Sci. 75000 Comp. Sci 83821 Brandt 92000

(优缺点分

近)

department 和
Instructor 的
多表聚集文件!

Comp. Sci.	Taylor	100000
\) 45564	Katz	75000
J 10101	Srinivasan	65000
83821	Brandt	92000
Physics	Watson	70000
33456	Gold	87000

注意: 实现多表聚集文件组织, 需底层操作系统配合,实现对文件的管理(只有大

型数据库系统才支持)

5)多表聚集文件组织方式的优点和不足?

*多表聚集文件组织的优缺点p.261

优点:

Good for queries involving *department* instructor, and for queries involving one single department and its instructors

不足:

Bad for queries involving only *department* results in variable size records

改进思路:

Can add pointer chains to link records of a particular relation

Comp. Sci.	Taylor	100000	
45564	Katz	75000	
10101	Srinivasan	65000	
83821	Brandt	92000	/
Physics	Watson	70000	
33456	Gold	87000	

3.物理设计的任务

前面,介绍了大型数据库管理系统(DBMS)支持的文件中记录的物理存储方式,实际上都是由DBMS自动实现对用户定义好的逻辑数据(关系)的自动存储,似乎物理存储对用户是透明的,就像大家上机所感受的一样。

数据库应用设计人员还需要做物理设计工作吗,如何做?数据库物理设计(应用开发中)的主要工作:

1) 在定义关系模式时, 需要确定采用定长还是变长记录;

(通过确定采用的属性类型,因有变长属性)

2) 对每个关系模式,需要确定影响记录存放次序的搜索码;

(根据常用/重要的查询要求,确定主码或建聚集索引Cluster Index)

3) 对每个关系模式,需要确定是否还需要建立辅助索引文件;

(根据常用/重要的查询要求,确定建哪些索引Index)

4) 对具有连接条件的一组关系模式,需要确定是否采用多表聚集文件存储;

(根据多表连接上重要应用查询快速访问需要)

5) 对应用的所有关系模式,需要确定应当划分为多少个数据库来存储;

(根据关系模式间相关性、应用相关性、数据保密需要、数据库备份需要等)

6) 实际应用中,物理设计到底做什么?

三 数据字典

讨 论:RDBMS 管理什么数 据?

根据右边案例,分析 RDBMS会存储哪些数 据?

自描述

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	4

图 2-2 course 关系

ID.	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

图 2-1 instructor 关系

1)什么是元数 据?

2)数字典存储什

么信息?

到目前为止,我们只考虑了关系本身的表示。一个关系数据库系统需要维护关于关系的数据,如 关系的模式等。一般来说,这样的"关于数据的数据"称为元数据(metadata)。

关于关系的关系模式和其他元数据存储在称为数据字典(data dictionary)或系统目录(system catalog)的结构中。系统必须存储的信息类型有:

- 关系的名字。
- 每个关系中属性的名字。 View(虚表的
- 属性的域和长度。
- 在数据库上定义的视图的名字和这些视图的定义。
- 完整性约束(例如, 码约束)。

此外, 很多系统为系统的用户保存了下列数据:

- 授权用户的名字。
- 关于用户的授权和账户信息。 查询优化的
- 用于认证用户的密码或其他信息。

● 用于以证用户的密码或具他信息。 其 础 数据库可能还会存储关于关系的统计数据和描述数据。例如:

每个关系中元组的总数。

每个关系所使用的存储方法(例如,聚簇或非聚簇)。

反映物理存储的

情况

3)数字典存储的 作用?

数据字典也会记录关系的存储组织(顺序、散列或堆),和每个关系的存储位置:是RDBMS和DBA

- 如果关系存储在操作系统文件中,数据字典将会记录包含每个关系的文件名。管理
- 如果数据库把所有关系存储在一个文件中、数据字典可能将包含每个关系中i透滤的敏速器f 跟链 表这样的数据结构中。

特点:关系数据库管理系统-RDBMS,采

用自描述方式!

SOL Server中的系统数据库

数据库存储机制

讨

论: RDBMS

元数据如何

管理?

一个简单的ER图示:

- 一个数据库对应n个块
- 一个数据库 多个表

数据库存储机制

• Create table?

教指库系院表

name

abc

test

数据库存储机制

- Insert
- Delete
- Update

• 找到块,插入,块满了,再申请一个块

• 更新、删除

这些sql语句是 如何处理数据 的?

数据库缓冲区

1. 数据库缓冲区及作用P. 262

福二流

需要建立数据库 缓冲区吗, 为何能. 提高访问效率?

数据库系统的一个主要目标就是尽量减少磁盘和 存储器之间传输的块数目。减少磁盘访问次数的一种 方法是在主存储器中保留尽可能多的块。这样做的目 标是最大化要访问的块已经在主存储器中的几率,这 样就不再需要访问磁盘。

- 1) CPU处理信息快捷,但从磁盘读取记录缓慢.
- 2) 缓冲区一次I/0读多硬盘上多个记录(按块), 可明显减少磁盘I/0开销(连续读-节省时间); 例如: 查询所有学生的记录:
- 3) 缓冲区中的记录,可能为多个应用所需要, 可明显减少磁盘I/0开销(重复读-浪费时间)。 例如: 大家同时查询奥运会最新100米跑成绩

因为在主存储器中保留所有的块是不可能的,所以需要管理主存储器中用于存储块的可用空间的 分配。缓冲区(buffer)是主存储器中用于存储磁盘块的拷贝的那一部分。每个块总有一个拷贝存放在磁 盘上,但是在磁盘上的拷贝可能比在缓冲区中的拷贝旧。负责缓冲区空间分配的子系统称为缓冲区管 理器(buffer manager)。

18

事

可的

主磁

区管

良

2.数据库缓冲区管理器P.262

2)如何管理数据库 缓冲区?

图表描述:

文字描述:

当数据库系统中的程序需要磁盘上的块时,它向缓冲区管理器发出请求(即调用)。如果这个块已 经在缓冲区中,缓冲区管理器将这个块在主存储器中的地址传给请求者。如果这个块不在缓冲区中, 缓冲区管理器首先在缓冲区中为这个块分配空间,如果需要的话,会把其他块移出主存储器,为这个 新块腾出空间。移出的块仅当它自从最近一次写回磁盘后被修改过才被写回磁盘。然后缓冲区管理器 把请求的块从磁盘读入缓冲区,并将这个块在主存储器中的地址传给请求者。缓冲区管理器的内部动 作对发出磁盘块请求的程序是透明的。

3.缓冲区替换策略P.263

图 10-17 计算连接的过程

3.缓冲区替换策略P.263

3) 如何确定缓冲区中的无用区块?

对缓冲区中的块替换策略而言,目标是减少对磁盘的访问。对通用程序来说,精确预言哪个块将被访问是不可能的。因此,操作系统使用过去的块访问模式来预言未来的访问。通常我们假定最近访问过的块最有可能再一次被访问。因此,如果必须替换一个块,则替换最近访问最少的块。这种方法称为最近最少使用(Least Recently Used, LRU)块替换策略。

数据库: 假设该例子中的两个关系存储在不同的文件中。在这个例子中,我们可以看到,一旦 instructor 中的一个元组处理过,这个元组就不再需要了。因此一旦处理完 instructor 元组构成的一个完整的块,这个块就不再需要存储在主存储器中了,尽管它刚刚使用过。一旦 instructor 块中最后一个元组处理完毕,就应该命令缓冲区管理器释放这个块所占用的空间。这个缓冲区管理策略称为立即丢弃(toss-immediate)策略。

数据库: 现在考虑包含 department 元组的块。对 instructor 关系中的每个元组,我们需要检查 department 元组的每个块。当一个 department 块处理完毕后,我们知道这个块要到所有其他 department 块处理完才会被再次访问。因此,最近最常使用的 department 块将是最后一个要再次访问的块,最近最少使用的 department 块是接着要访问的块。这个假设正好与构成 LRU 策略基础的假设相反。实际上,上述过程中块替换的最优策略是最近最常使用(Most Recently Used, MRU)策略。如果必须从缓冲区中移除一个 department 块,MRU 策略将选择最近最常使用的块(当块被使用时不能被替换)。

随堂小测试

- 在文件中,记录有哪两种方式表示,对于记录的集合如何组织?
- 什么是元数据? 元数据如何存储?

课堂小结和作业安排

- 基本知识:
- 定长记录与变长记录
- 文件中记录的组织方式
- 数据字典,元数据存储机制
- 数据库缓冲区
- 延展性学习:
 - opengauss的存储技术
- 作业

第10章习题: 10.4, 10.15, 10.18。

下一讲的学习内容

学习任务: 各种索引技术

- •数据库中索引的作用
- •主要索引技术(顺序索引、B+树索引、散列)
- •索引技术之间的区别