SGS6833: 대기과학

4주 차 강의자료

지난 시간: 온도 / 습도

- 온도의 일변화
- 온도를 결정하는 요인: 위도, 대륙/해양, 해류, 고도 등..
- 습도 값
 - 절대습도
 - 비습
 - 수증기압
 - 상대습도
- 이슬점온도

오늘의 내용

- 안정도
- 구름
- 안개

- 대기안정도는 대류 및 구름생성에 중요한 역할을 함
- 공기의 상승/하강을 일으키는 것은 무엇일까?
 - 힘
 - 에너지상태

Condition of equilibrium (평형상태?)

불안정한 평형상태

- 상상실험: 공기주머니 (탄성이 있는) 를 상승시킨다면..
 - 1. 주변공기의 기압 하강
 - 2. 공기주머니 팽창
 - $3. \Delta W$ 이 증가
 - 4. ΔQ 가 감소 → 온도하강

1. 안정도: a. 건조한 공기

- 즉, 공기를 상승시키면 에너지의 변화 없이 온도 감소 (단열팽창)
- 공기를 하강시키면 에너지 변화 없이 온도 상승 (단열압축)
- 공기 중 수증기의 응결이 없을 때, 공기의 온도는 10 km 상승할 때마다 약 10도 감소한다. → 건조 단열 감률
- 공기 하강은 건조 단열 감 률을 따르는 온도 상승을 일으킨다.

1. 안정도: b. 습한 공기

- 공기의 온도가 낮아지면 포화수증기압도 하강
- 수증기의 유입이 없으면 수증기압은 유지가 됨
- 상대습도 (=수증기압/포화수증기압 x 100%) 상승
- 상대습도가 100%가 되면 응결이 시작됨
- 응결에 따른 잠열 방출
- 고도 상승에 따른 온도 하강이 둔해짐
- 습윤 단열 감률
- 응결된 물방울이 있는 공기의 하강에서 온도의 상승이 그렇지 않은 공기보다 느리다.

1. 안정도: b. 습한 공기

- 습윤 단열 감률은 환경에 따라 다름
- 따뜻한 공기의 습윤 단열 감률은 건조 단열 감률에 비해 작음
 - 따뜻한 공기에서 포화수증기압 변화가 심함
 - 많은 잠열 방출
- 차가운 공기의 습윤 단열 감률은 건조 단열 감률에 비해 많이 작 지 않음
 - 차가운 공기에서 포화수증기압 변화가 약함
 - 적은 잠열 방출

1. 안정도: b. 습한 공기

▼ TABLE 6.1 The Moist Adiabatic Rate for Different Temperatures and Pressures in °C/1000 m and °F/1000 ft

Pressure (mb)	TEMPERATURE (°C)					TEMPERATURE (°F)				
	-40	-20	0	20	40	-40	-5	30	65	100
1000	9.5	8.6	6.4	4.3	3.0	5.2	4.7	3.5	2.4	1.6
800	9.4	8.3	6.0	3.9		5.2	4.6	3.3	2.2	
600	9.3	7.9	5.4			5.1	4.4	3.0		
400	9.1	7.3				5.0	4.0			
200	8.6					4.7				

 대기 중에서 습윤 단열 감률은 10°C per 10 km 에서 3°C per 10 km 사이

- 대기 안정도를 판단할 때엔, 건조 단열 감률 (혹은 습윤 단열 감률)과 환경 기온 감률을 비교한다.
- 공기의 연직 위치가 변화했을 때 원래대로 돌아오려는 경향이 있을 땐, 대기가 안정적(stable)이다.
- 반대로 공기가 계속 운동을 이어가려고 하면 대기가 불안정적 (unstable)이다.
- 결국 환경 기온 감률을 관측을 통해 알 수 있다면 대기 안정도를 판단할 수 있음

1. 안정도: 절대 안정한 (absolutely stable) 대기

1. 안정도: 절대 안정한 (absolutely stable) 대기

- 절대 안정한 대기가 존재할 조건
 - 환경 기온 감률이 작을 때 (지표와 상층에서의 온도차이가 작을 때)
 - 기온역전: 지표부근의 온도가 상층의 온도보다 낮을 때 → 상 당히 안정한 대기
 - 일몰 후 지표면이 장파복사에너지 방출로 차가워질 때
 - 차가운 바람이 지표면 근처로 불어올 때

1. 안정도: 절대 안정한 (absolutely stable) 대기

- 절대 안정한 대기가 존재할 조건
 - 공기의 하강 (단열압축으로 공기층 두께 얕아짐)

고기압 (공기가 하강하는 곳) 에서 나타날 수 있음

1. 안정도: 절대 불안정한 (absolutely unstable) 대기

1. 안정도: 절대 불안정한 (absolutely unstable) 대기

- 절대 불안정한 대기가 존재할 조건
 - 뜨거운 햇빛이 강한 날
- 절대 불안정한 대기층은 보통 지표면 근처 얇은 층에서 나타난다.

1. 안정도: 조건부 불안정한 (conditionally unstable) 대기

1. 안정도: 조건부 불안정한 (conditionally unstable) 대기

- 수증기의 응결이 없을 땐, 공기에게 안정한 대기
- 수증기의 응결이 발생하면 공기에게 불안정한 대기
- 환경 기온 감률이 건조 단열 감률과 습윤 단열 감률 사이일 때 조 건부 불안정한 대기
- 대류권은 대체로 조건부 불안정한 대기

- 환경 기온 감률이 클 때
 - 즉 상층 공기가 차가워 지거나 하층 공기가 따뜻해 질 때
 - 상층 공기가 차가워 지는 방법
 - 1. 차가운 바람이 불어올 때
 - 2. 상층 공기 또는 구름에서 장파복사에너지 방출이 클 때
 - 하층 공기가 따뜻해 지는 법
 - 1. 낮 시간 태양 단파 복사에너지에 의한 가열
 - 2. 따뜻한 공기가 하층대기로 유입
 - 3. 공기가 따뜻한 지역을 지날 때

- 공기의 상승
 - 공기 상승 시 단열 팽창으로 공기층이 두꺼워짐

- 공기의 혼합
 - 공기의 상/하강 운동을 일으키는 힘이 있을 때 단열팽창/압축이 발생
 - 상승 공기는 단열팽창으로 온도 하강
 - 하강 공기는 단열 압축 으로 온도 상승
 - 환경 기온 감률이 커짐

- 하부에서 포화가 된, 상부에 서는 불포화 된 안정한 공기 층이 상승할 때
 - 하부의 포화된 공기는 습윤 단열 감률을 따라 온도 감 소가 적음
 - 상층의 불포화된 공기는 건
 조 단열 감률을 따라 온도
 감소

- 구름은 공기가 상승하여 차가워지고 응결이 일어날 때 발생
- 공기를 상승시키는 작용
 - 1. 지표면의 가열로 인한 대류
 - 2. 지형에 의한 상승
 - 3. 공기의 수렴에 의한 상승
 - 4. 전선에서의 공기 상승

- 1. 지표면의 가열로 인한 대류
 - 지표면의 특성 상 햇빛에 의한 가역이 다를 수 있음
 - 뜨거워진 곳에서 상승
 - 상승 시 주위의 건조하고 차가운 공기와 섞이면서 상 승기류가 느려짐
 - 응결이 일어날 때 구름 생 성

- 1. 지표면의 가열로 인한 대류
 - 구름 주위 공기는 하강: 구름 주위의 파란 하늘
 - 하강하는 공기가 구름입자
 의 증발을 촉진시켜 소멸하는 작용을 하기도 함
 - 하강하는 공기가 상승한 공 기의 자리를 채움
 - 구름이 태양의 열 차단 →
 상승 억제

1. 지표면의 가열로 인한 대류: 구름의 높이는 어떻게 결정되나?

- 1. 지표면의 가열로 인한 대류
 - 구름의 높이는 어떻게 결정되나?
 - 대기 안정도와 수증기의 양, 그리고 온도에 따라 응결고도 및 구름 두께가 결정됨
 - 안정한 성층권으로 인해 구름이 대류권을 벗어나기 어려움

1. 지표면의 가열로 인한 대류

- 1. 지표면의 가열로 인한 대류: 물 위에서도 일어날 수 있음
 - 따뜻한 물 위로 차가운 공기가 지나갈 때

- 1. 지표면의 가열로 인한 대류: 물 위에서도 일어날 수 있음
 - 저녁이 되어 상층의 공기가 차가워질 때

Note: Vertical Scale Stretched × 4 Relative to Horizontal Scale Island Outlined by Black Circle

1. 지표면의 가열로 인한 대류: 오늘따라 구름이 낮은 것 같아.

$$H = 125(T - T_d)$$

2. 지형에 의한 상승

- 이동하는 공기가 지형으로 인해 상승할 때 온도가 하강하고 응결이 발생 → 구름 생성
- 커다란 공기 덩어리가 긴 산맥을 만날 때 발생

2. 지형에 의한 상승

2. 지형에 의한 상승

- 지형으로 인해 공기의 파동 발생
- 반복적인 상승/하강운동으로 인해 온도가 응결점 이하로 내려가면 구 름 생성
- 비행시 어려운 상황 발생 가능

3. 다른 구름 생성 방법: 공기의 수렴, 혹은 전선

Skew-T diagram

