Definición 1. Sean X, Y conjuntos. Una función entre X y Y, o de X a Y es una regla de asignación f tal que a cada $x \in X$ le es asignado un único $y \in Y$. En este caso, escribiremos $f: X \to Y$. Si $x \in X$, la asignación para x bajo f se denota por f(x).

Definición 2. Sea $f: X \to Y$ una función. Sea $A \subseteq X$. La imagen de A bajo f es el conjunto

$$f[A] := \{ y \in Y \colon \exists x \in A, \ f(x) = y \}. \tag{1}$$

Sea $B \subseteq Y$. La imagen inversa de B bajo f es el conjunto

$$f^{-1}[B] := \{ x \in X : f(x) \in B \}.$$
 (2)

Proposición 3. Sea $f: X \to Y$ una función $y(U_{\alpha})_{\alpha \in I}$ una familia de conjuntos. Entonces,

- $i) f \left[\bigcup_{\alpha \in I} U_{\alpha} \right] = \bigcup_{\alpha \in I} f \left[U_{\alpha} \right].$
- $ii) \ f \left[\bigcap_{\alpha \in I} U_{\alpha}\right] \subseteq \bigcap_{\alpha \in I} f \left[U_{\alpha}\right].$

Demostración. i) Sea $y \in f\left[\bigcup_{\alpha \in I} U_{\alpha}\right]$. Entonces, existe $x \in \bigcup_{\alpha \in I} U_{\alpha}$ tal que f(x) = y. Luego, existe $\alpha \in I$ tal que $x \in U_{\alpha}$, por lo que $y \in f\left[U_{\alpha}\right]$. Así, $y \in \bigcup_{\alpha \in I} f\left[U_{\alpha}\right]$. Es decir, $f\left[\bigcup_{\alpha \in I} U_{\alpha}\right] \subseteq \bigcup_{\alpha \in I} f\left[U_{\alpha}\right]$.

Sea $y \in \bigcup_{\alpha \in I} f[U_{\alpha}]$. Entonces, existe $\alpha \in I$ tal que $y \in f[U_{\alpha}]$. Luego, existe $x \in U_{\alpha}$ tal que f(x) = y. Pero $x \in \bigcup_{\alpha \in I} U_{\alpha}$. Por lo tanto, $y \in f[\bigcup_{\alpha \in I} U_{\alpha}]$. Por lo tanto, $\bigcup_{\alpha \in I} f[U_{\alpha}] \subseteq f[\bigcup_{\alpha \in I} U_{\alpha}]$.

ii) Sea $y \in f\left[\bigcap_{\alpha \in I} U_{\alpha}\right]$. Entonces, existe $x \in \bigcap_{\alpha \in I} U_{\alpha}$ tal que f(x) = y. Es decir, para todo $\alpha \in I$, $x \in U_{\alpha}$. Luego, para todo $\alpha \in I$, $y \in f\left[U_{\alpha}\right]$. Por lo tanto, $y \in \bigcap_{\alpha \in I} f\left[U_{\alpha}\right]$.

Proposición 4. Sea $f: X \to Y$ una función $y(U_{\alpha})_{\alpha \in I}$ una familia de conjuntos. Entonces,

- $i) f^{-1} \left[\bigcup_{\alpha \in I} U_{\alpha} \right] = \bigcup_{\alpha \in I} f^{-1} \left[U_{\alpha} \right].$
- $ii) f^{-1} \left[\bigcap_{\alpha \in I} U_{\alpha} \right] = \bigcap_{\alpha \in I} f^{-1} \left[U_{\alpha} \right].$

Demostración. Ejercicio.

Ejemplo 5. Sea $f: \mathbb{R} \to \mathbb{R}$ tal que para cada $x \in \mathbb{R}$, $f(x) = x^2$. Sean A := (-1, 2], B := [-3, 0) C := [1, 2]. Calcular f[A], f[B], $f[A \cap B]$ y $f^{-1}[C]$.

Demostración. Si $y \in f[A]$, existe $x \in A$ tal que $x^2 = y$. Es decir, $x \in (-1, 2]$. Entonces, $x^2 \in f[A]$ si y solo si $-1 < x \le 2$. Luego, $1 < x^2 \le 4$. Por lo tanto, f[A] = (1, 4].

Si $y \in f[B]$, existe $x \in B$ tal que $x^2 = y$. Razonando como en el caso anterior, tenemos f[B] = (0, 9].

 $A \cap B = (-1,0)$. Entonces, $f[A \cap B] = (0,1)$. Por otro lado, es importante observar que $f[A] \cap f[B] = (1,3]$. Por lo tanto, $f[A \cap B] \subseteq f[A] \cap f[B]$.

Si $x \in f^{-1}[C]$, existe $y \in C$ tal que $x^2 = y$. Es decir, $x^2 \in [1,2]$. Luego, $1 \le x^2 \le 2$. Aplicando la raíz cuadrada tenemos $1 \le |x| \le \sqrt{2}$. Separando las desigualdades utilizando las propiedades del valor absoluto, $-\sqrt{2} \le x \le -1$ o $1 \le x \le \sqrt{2}$. Por lo tanto, concluimos que $x \in [-\sqrt{2}, -1] \bigcup [1, \sqrt{2}]$.

Definición 6. Sea $f: X \to Y$ una función.

- i) f es inyectiva si para todos $x, y \in X$, si f(x) = f(y), entonces x = y.
- ii) f es suprayectiva si para todo $y \in Y$ existe $x \in X$ tal que f(x) = y.
- iii) f es biyectiva si es inyectiva y suprayectiva.

Ejercicios

- 1. Demostrar la proposición 4.
- 2. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ tal que para cada $x \in \mathbb{R}^2$, $f(x) := 2x_1 x_2$ y sea $B = \{0\}$. Hallar $f^{-1}[B]$.
- 3. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ tal que para cada $x \in \mathbb{R}^2$, $f(x) := x_1^2 x_2^2$ y sean B := 1, C = (-2, 0). Hallar $f^{-1}[B]$ y $f^{-1}[C]$.
- 4. Sea $f: \mathbb{R} \to \mathbb{R}$ tal que para cada $x \in \mathbb{R}$, $f(x) := x^2$. Demostrar que f no es inyectiva ni suprayectiva.
- 5. Sea $f : \mathbb{R} \to \mathbb{R}$ tal que para cada $x \in \mathbb{R}$, $f(x) := x^3$. Demostrar que f es biyectiva.