Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability:

$$P(C \mid A) = \frac{P(A,C)}{P(A)}$$

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

Bayes theorem:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

The Good Reverend Bayes

NC STATE UNIVERSITY

CSC 422 / 522

Example of Bayes Theorem

- Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

3

Bayesian Classifiers

- Consider each attribute and class label as random variables
- Given a record with attributes (A₁, A₂,...,A_n)
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes P(C| A₁, A₂,...,A_n)
- Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Bayesian Classifiers

- Approach:
 - compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_1 A_2 \dots A_n) = \frac{P(A_1 A_2 \dots A_n \mid C) P(C)}{P(A_1 A_2 \dots A_n)}$$

- Choose value of C that maximizes $P(C \mid A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$
- How to estimate P(A₁, A₂, ..., A_n | C)?

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

-

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $\ \mathsf{P}(\mathsf{A}_1, \, \mathsf{A}_2, \, ..., \, \mathsf{A}_n \, | \, \mathsf{C}) = \mathsf{P}(\mathsf{A}_1 | \, \mathsf{C}_j) \; \mathsf{P}(\mathsf{A}_2 | \, \mathsf{C}_j) ... \; \mathsf{P}(\mathsf{A}_n | \, \mathsf{C}_j)$
 - Can estimate P(A_i| C_i) for all A_i and C_i.
 - New point is classified to C_j if $P(C_j)$ Π $P(A_i|C_j)$ is maximal.

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- Class: $P(C) = N_c/N$ - e.g., P(No) = 7/10, P(Yes) = 3/10
- For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_{c_k}$$

- where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k
- Examples:

P(Status=Married|No) = 4/7 P(Refund=Yes|Yes)=0

8

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 7

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Discretize the range into bins
 - one binary attribute per bin
 - violates independence assumption
 - Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - ◆ Once probability distribution is known, can use it to estimate the conditional probability P(A₁|c)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{i})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - ◆ sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{\frac{(120-110)^2}{2(2975)}} = 0.0072$$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Example of Naïve Bayes Classifier

Given a Test Record:

$$X = (Refund = No, Married, Income = 120K)$$

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7 P(Refund=No|No) = 4/7P(Refund=Yes|Yes) = 0P(Refund=No|Yes) = 1 P(Marital Status=Single|No) = 2/7 P(Marital Status=Divorced|No)=1/7 P(Marital Status=Married|No) = 4/7 P(Marital Status=Single|Yes) = 2/7 P(Marital Status=Divorced|Yes)=1/7

P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110 If class=Yes: sample mean=90

sample variance=2975 sample variance=25

• P(X|Class=No) = P(Refund=No|Class=No) × P(Married| Class=No) × P(Income=120K| Class=No) $= 4/7 \times 4/7 \times 0.0072 = 0.0024$

P(X|Class=Yes) = P(Refund=No| Class=Yes) × P(Married| Class=Yes) × P(Income=120K| Class=Yes) $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$

Since P(X|No)P(No) > P(X|Yes)P(Yes)Therefore P(No|X) > P(Yes|X)=> Class = No

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Naïve Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

Original: $P(A_i \mid C) = \frac{N_{ic}}{N_c}$

Laplace: $P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$

m - estimate : $P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$

c: number of classes

p: prior probability

m: parameter

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

11

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
ves	no	ves	no	?

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

© Tan,Steinbach, Kumar Introduction to Data Mining

4/18/2004

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

12

Sequential Bayesian Inference

- Consider data attributes one by one
 - Prior probabilities P(C_i)
 - Observe data D_i
 - Updates priors using Bayes Rule:
 - Repeat for other attributes using the resulting posterior probability as the new prior
- If attributes are conditionally independent, same as doing it all at once
- Allows choice of what attribute to observe (test to perform) next in terms of cost/benefit.

NC STATE UNIVERSITY

CSC 422 /522 Spring 2013 Jon Doyle © 2013

Bipartite Graphs

- Multiple attributes, multiple classifications
- Classifications are probabilistically independent
- Attributes are conditionally independent
- Attribute probabilities depend only the classes exhibiting them
- Attributes with multiple exhibiting classes require joint probabilities $P(D_2 | C_{1}, C_{2}, C_{3})$

Noisy OR

- Simplify by assuming only one classification holds at a time
- Probability that all classifications exhibit the attribute is just the probability that at least one does
- Thus an attribute is absent only if no class exhibits it $1 P(D_2 | C_{1}, C_{2}, C_{3}) = (1 P(D_2 | C_{1})) (1 P(D_2 | C_{2})) (1 P(D_2 | C_{3}))$
- Use class probabilities for the basic data $P_c(D_2 | C_1) = P(D_2 | C_1)$, all other C_i absent
- Reduces probability table size: if N classes and K attributes, from N2^K to NK

Polytrees

- What if classes are interrelated?
- Polytrees
 - At most one path between any two nodes
- Efficient sequential updating possible

NC STATE UNIVERSITY

CSC 422 /522 Spring 2013 Jon Doyle © 2013

The independence hypothesis...

- ... makes computation possible
- ... yields optimal classifiers when satisfied
- ... but is seldom satisfied in practice, as attributes (variables) are often correlated.
- Attempts to overcome this limitation:
 - Bayesian networks, that combine Bayesian reasoning with causal relationships between attributes
 - Decision trees, that reason on one attribute at the time, considering most important attributes first

NC STATE UNIVERSITY

CSC 422 /522 Spring 2013 Jon Doyle © 2013

Bayesian networks

- Directed acyclic graphs
- Absence of link implies conditional independence $P(X_1,...,X_n) = Product P(X_i | parents (X_i))$
- Specify joint probability tables over parents for each node
- Probability A,B,C,D,E all present:
 P(A,B,C,D,E) = P(A) * P(B | A) * P(C | A) * P(D | B,C) * P(E | C)
- Probability A,C,D present and B,E absent: $P(A, \neg B,C,D, \neg E) = P(A) * P(\neg B \mid A) * P(C \mid A) * P(D \mid \neg B,C) *$ $P(\neg E \mid C)$

NC STATE UNIVERSITY

CSC 422 / 522 Jon Doyle © 2013 _..

Computing with partial information

■ Probability that A present and E absent:

$$P(A \mid \overline{E}) = \sum_{B,C,D} P(A,B,C,D,\overline{E})$$

- $= \underset{B,C,D}{\sum} P(A) P(B \mid A) P(C \mid A) P(D \mid B, C) P(E \mid C)$
- $= P(A) \sum_{C} P(C \mid A) P(\overline{E} \mid C) \sum_{B} P(B \mid A) \sum_{D} P(D \mid B, C)$
- Graph separators (e.g. C) correspond to factorizations
- General problem of finding separators is NP-hard
 - $P(A \mid \neg E) = P(A, \neg E)/P(\neg E)$

NC STATE UNIVERSITY

CSC 422 /522 Spring 2013 Jon Doyle © 2013

Bayesian networks

- Each node annotated with conditional probability table
 - Probability of node values given values of parent nodes

(FH, S) $(FH, \sim S)(\sim FH, S)(\sim FH, \sim S)$

LC	0.8	0.5	0.7	0.1
~LC	0.2	0.5	0.3	0.9

 Conditional probability table for the variable LungCancer

NC STATE UNIVERSITY

CSC 422 / 522 Jon Doyle © 2013

Bayesian networks

- Table of joint probability distribution has 2⁶ = 64 entries
- Bayesian network tables have 8 + 4 + 4 + 8 = 24 entries

NC STATE UNIVERSITY

CSC 422 / 522 Jon Doyle © 2013

Bayesian Belief Networks

- Bayesian belief networks allow subsets of the variables to be conditionally independent
- A graphical model of causal relationships
- Several methods for learning Bayesian belief networks
 - Given both network structure and all the variables: easy
 - Given network structure but only some variables
 - When the network structure is not known in advance

NC STATE UNIVERSITY

CSC 422 /522 Spring 2013 Jon Doyle © 2013