Algorithm analysis & design

Sorting Algorithms

Presented By:

T.A. Asmaa Hamad El-saied

E-mail: eng.asmaa134@gmail.com

Agenda

Insertion Sort

- Algorithm
- Analysis of Insertion Sort

Bubble Sort

- Algorithm
- Analysis of Bubble Sort

Selection Sort

- Algorithm
- Analysis of Selection Sort

- Idea: like sorting a hand of playing cards
 - Start with an empty left hand and the cards facing down on the table.
 - Remove one card at a time from the table, and insert it into the correct position in the left hand
 - compare it with each of the cards already in the hand,
 from right to left
 - The cards held in the left hand are sorted

To insert 12, we need to make room for it by moving first 36 and then 24.

Insertion Sort: Example

input array
5 2 4 6 1 3

at each iteration, the array is divided in two sub-arrays:

Insertion Sort : Example

Insertion Sort: pseudo-code

```
Algorithm Insertion-sort(A, n)
    for j \leftarrow 2 to n do
               key \leftarrow A[j]
                 i \leftarrow j - 1
                while i > =1 and A[i] > \text{key do}
                          A[i+1] \leftarrow A[i]
                              i \leftarrow i - 1
                 A[i+1] \leftarrow \text{key}
```

Analysis of Insertion Sort: Running Time

	cost	times
Algorithm Insertion-sort (A,n)	C ₁	n
for $j \leftarrow 2$ to n do	C ₂	n-1
$key \leftarrow A[j]$	C ₃	n-1
$i \leftarrow j - 1$	C ₄	$\sum_{j=2}^{n} t_{j}$
while $i \ge 1$ and $A[i] > \text{key do}$	C ₅	$\sum_{j=2}^{n} (t_j - 1)$
$A[i+1] \leftarrow A[i]$	c_6	$\sum_{j=2}^{n} (t_j - 1)$
$i \leftarrow i - 1$	C ₇	n-1
$A[i+1] \leftarrow \text{key}$	C/	11 1

t_i: # of times the while statement is executed at iteration j

Analysis of Insertion Sort: Running Time

- The running time of the algorithm is the sum of running times for each statement executed; a statement that takes c_i steps to execute and executes n times will contribute c_i n to the total running time.
- To compute T(n), the running time of **INSERTION-SORT** on an input of n values, we sum the products of the *cost* and *times* columns, obtaining

$$T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7(n-1)$$

Best Case Analysis

- The array is already sorted "while i > 0 and A[i] > key"
 - $A[i] \le \text{key}$ upon the first time the **while** loop test is run (when i = j-1)
 - $t_j = 1$

•
$$T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 (n - 1) + c_7 (n - 1)$$

= $(c_1 + c_2 + c_3 + c_4 + c_7)n + (c_2 + c_3 + c_4 + c_5)$
= $an + b = \Theta(n)$

Worst Case Analysis

- The array is in reverse sorted order"while i > 0 and A[i] > key"
 - Always A[i] > key in while loop test
 - Have to compare key with all elements to the left of the j-th position \Rightarrow compare with j-1 elements \Rightarrow t_j = j

• Using
$$\sum_{j=1}^{N} j = \frac{(N+1)N}{2}$$
 $\Longrightarrow \sum_{j=2}^{N} j = \frac{(N+1)N}{2} - 1$ and $\sum_{j=2}^{N} (j-1) = \frac{(N-1)N}{2}$ we have

$$T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 \left(\frac{(n+1)n}{2} - 1\right) + c_5 \left(\frac{(n-1)n}{2}\right) + c_6 \left(\frac{(n-1)n}{2}\right) + c_7 (n - 1)$$

$$= an^2 + bn + c \qquad \text{a quadratic function of n}$$

• $T(n) = \Theta(n^2)$ order of growth in n^2

Bubble sort

Bubble Sort

- Idea:
 - Repeatedly pass through the array
 - Swaps adjacent elements that are out of order

Easier to implement, but slower than Insertion sort

Example

<u>Example</u>

......

J = 2

Bubble Sort : pseudo-code

```
Algorithm Bubble-sort(A, n)

for i ← 1 to n-1 do

for j ← 1 to n-i do

if A[j] > A[j +1] then

exchange A[j] ↔ A[j-1]
```


Bubble-Sort Running Time

```
Algorithm Bubble-sort(A, n)

for i \leftarrow 1 to n-1 do

for j \leftarrow 1 to n-i do

if A[j] > A[j+1] then

exchange A[j] \leftrightarrow A[j-1]
```

$$\begin{array}{ccc} \textit{cost} & \textit{Times} \\ \textit{C}_1 & \textit{n} \\ & c_2 & \sum_{\substack{i=1\\n-1}}^{n-1} (n-i+1) \\ & c_3 & \sum_{\substack{i=1\\n-1}}^{n-1} (n-i) \\ & c_4 & \sum_{i=1}^{n-1} (n-i) \end{array}$$

$$T(n) = c_1(n) + c_2 \sum_{i=1}^{n-1} (n-i+1) + c_3 \sum_{i=1}^{n-1} (n-i) + c_4 \sum_{i=1}^{n-1} (n-i)$$

$$= \Theta(n) + (c_2 + c_3 + c_4) \sum_{i=1}^{n-1} (n-i)$$

$$where \quad \sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i = n^2 - \frac{n(n+1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

$$Thus, T(n) = \Theta(n^2)$$

Best Case Analysis

The array is already sorted

$$T(n) = c_1(n+1) + c_2 \sum_{i=1}^{n-1} (n-i+1) + c_3 \sum_{i=1}^{n-1} (n-i)$$

$$= \Theta(n) + (c_2 + c_3) \sum_{i=1}^{n} (n-i)$$

$$where \sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i = n^2 - \frac{n(n+1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

$$Thus, T(n) = \Theta(n^2)$$

Worst Case Analysis

The array is in reverse sorted order

$$T(n) = c_1(n+1) + c_2 \sum_{i=1}^{n} (n-i+1) + c_3 \sum_{i=1}^{n} (n-i) + c_4 \sum_{i=1}^{n} (n-i)$$

$$= \Theta(n) + (c_2 + c_3 + c_4) \sum_{i=1}^{n} (n-i)$$

$$where \sum_{i=1}^{n} (n-i) = \sum_{i=1}^{n} n - \sum_{i=1}^{n} i = n^2 - \frac{n(n+1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

$$Thus, T(n) = \Theta(n^2)$$

Analysis of Bubble-Sort

- In any cases, (worse case, best case or average case) to sort the list in ascending order the number of comparisons between elements is the same.
- Best case : $O(n^2)$
- Average case: O(n²)
- Worst case: O(n²)
- How to optimize bubble sort in case sorted array?

Selection sort

Selection Sort

Idea:

- Find the smallest element in the array
- Exchange it with the element in the first position
- Find the second smallest element and exchange it with the element in the second position
- Continue until the array is sorted

Example

8	4	6	9	2	3	1
1	4	6	9	2	3	8
1		6				8
1	2	3	9		6	

1	2	3	4	9	6	8
1	2	3	4	6	9	8
1	2	3	4	6	8	9
1	2	3	1	6	8	9

Selection Sort

```
Algorithm Selection-sort (A, n)
 for j \leftarrow 1 to n - 1 do
           smallest \leftarrow j
              for i \leftarrow j + 1 to n do
                     if A[i] < A[smallest]</pre>
                                then smallest \leftarrow i
              exchange A[j] \leftrightarrow A[smallest]
```

Analysis of Selection Sort: running time

```
Algorithm Selection-sort (A, n)
 for j \leftarrow 1 to n - 1 do
           smallest \leftarrow j
              for i \leftarrow j + 1 to n do
                     if A[i] < A[smallest]</pre>
                                then smallest \leftarrow i
               exchange A[j] \leftrightarrow A[smallest]
```

```
times
cost
  C<sub>1</sub>
 c_2 n-1
 C_3 \sum_{i=1}^{n-1} (n-j+1)
 C4 \sum_{i=1}^{n-1} (n-j)
  C_5 \sum_{i=1}^{n-1} (n-j)
  c_6 n-1
```

$$T(n) = c_1 n + c_2 (n-1) + c_3 \sum_{j=1}^{n-1} (n-j+1) + c_4 \sum_{j=1}^{n-1} (n-j) + c_5 \sum_{j=1}^{n-1} (n-j) + c_6 (n-1) = \Theta(n^2)$$

Best Case Analysis

$$T(n) = c_1 n + c_2 (n-1) + c_3 \sum_{j=1}^{n-1} (n-j+1) + c_4$$

$$\sum_{j=1}^{n-1} (n-j) + c_6 (n-1) = \Theta(n^2)$$

Worst Case Analysis

where
$$\sum_{j=1}^{n-1} (n-j) = \sum_{j=1}^{n-1} n - \sum_{j=1}^{n-1} j = n^2 - \frac{n(n+1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

Thus, $T(n) = \Theta(n^2)$

Summary

Bubble sort and Insertion sort –

Average and worst case time complexity: n^2

Best case time complexity: n when array is already sorted.

Worst case: when the array is reverse sorted.

Selection sort –

Best, average and worst case time complexity: n^2 which is independent of distribution of data.

#