CRITICAL SUBMANIFOLDS OF DIFFERENTIABLE MAPPINGS

BY SAMIR A. KHABBAZ AND EVERETT PITCHER

Communicated by E. Pitcher, August 1, 1966

1. The problems and definitions. There is a general type of problem which contains critical point theory at one extreme, and immersion theory at another. The problems of interest to us lie between these two theories. A glance into their nature is afforded by a simple example to be given following some definitions. Let N^n and M^m denote two differentiable manifolds-with-boundary (perhaps empty) of dimensions n and m respectively, and let $f: N \rightarrow M$ be a continuous function with sufficient differentiability at any stage to allow the discussion to proceed. The deficiency of f at a point x of N is defined by (minimum (n, m)-rank f at x). Then x is said to be an ordinary point of f if f has deficiency zero at x; otherwise x is called a critical point of f. If each point of N is an ordinary point of f, we shall simply say f is ordinary. Note that if f is ordinary and $n \leq m$ then f is just an immersion, while if $n \geq m$ then (in terms of suitable coordinate systems) f is locally a projection.

To proceed with the example, let S^n denote the unit sphere in the (n+1)-dimensional euclidean space R^{n+1} , and consider the map $f: S^n \to R^r$ (induced in this instance by the natural projection R^{n+1} $\rightarrow R^r$), $r \le n$. Then we observe that: (a) the set of critical points of f is confined to the submanifold S^{r-1} of S^n ; (b) $f | (S^n - S^{r-1})$, the restriction of f to the complement of S^{r-1} in S^n , and $f \mid S^{r-1}$ are ordinary; and (c) there exists a map $g: R^r \rightarrow R$ (here the natural projection $R^r \rightarrow R^1$) such that gf and $(gf) | S^{r-1}$ are Morse functions having the same number of critical points. Now if one attempts to replace S^n in the above by a compact manifold N^n and S^{r-1} by a submanifold K of N, one is immediately faced with the questions of which pairs (N, K) are admissible and what types of singularities to expect? Should it be possible to find an $f: N \rightarrow R^r$ satisfying the modified (a) and (b), N-Kmust for instance admit r linearly independent vector fields and Kmust be immersible in R^r ; while the addition of (c) would require that the Euler characteristics of K and N be congruent modulo two. since the number of critical points of a Morse function defined on a compact manifold is congruent modulo two to the Euler characteristic. These are some aspects of problems which we consider.

In this paper we give a condition of a local nature for the set of critical points of f in the deficiency 1 case to be (not just to be con-

fined to) a submanifold of N, and conclude with a section concerning the effect on the structure of N of the existence of a function $f\colon N{\to}R^r$ subject to conditions weaker than (a) and (b) above. The results in this section depend largely on the behavior of $f\mid (N-K)$ and $f\mid K$, and make no essential use of the crucial behavior of f in a neighborhood of K. We shall take up this latter question in a subsequent publication.

We conclude this section with a historical note. The classical critical point theory of Morse is concerned with the case r=1 and M=R.

The remaining case for r=1, namely $f: N^n \rightarrow S^1$, has been discussed for a compact manifold N by one of the writers [3]. The attack consists of lifting f, with greatest economy, to a covering map g in the diagram

The function hg is invariant under the appropriate factor group of $\pi_1(N)$ and ordinary critical point theory can be applied to g on a suitable fundamental domain.

The case r=n, which will be seen to be of special significance, has been treated by Tucker [4]. Fiberings with singularities have been discussed in various terms, for instance [2]. There is also a general spectral theory of maps by Fary [1].

2. **Deficiency 1.** An example of deficiency 1 is the map $(x^1, \dots, x^n) \to (Q(x), x^2, \dots, x^r)$, where Q is a nondegenerate quadratic form and $r \le n$. If Q is a definite form, this is intuitively a "fold" about the plane $Q_{x^1} = 0$, $Q_{x^{r+1}} = 0$, \dots , $Q_{x^n} = 0$. The term "fold" is most intuitive when r = n.

THEOREM 1. If x_0 is a critical point of $f: \mathbb{R}^n \to \mathbb{R}^r$, $n \ge r$, of deficiency 1 and if the critical point of $F = \lambda_i f^i$, with multipliers $\lambda \ne 0$, at x_0 is non-degenerate, then the critical points of f near x_0 form a manifold of dimension r-1.

PROOF. A change in coordinates in R^n and R^r reduces the problem to the case in which $x_0 = 0$, $f'_{x^j}(0) = 0$, $\left| f'_{x^px^q}(0) \right| \neq 0$ with p, q = 1, 2, \cdots , r-1, and there is no solution except (c) = (0) for the system $c_n f^p_{x^j}(0) = 0$. Then the equations

$$v_p f_{x^j}^p + u f_{x^j}^r = 0,$$

 $v_p v_p + u^2 = 1$

admit solutions $x^j = \phi^j(v)$, (and also, for reference, $u = \psi(v)$), by virtue of the implicit function theorem, with (x, u, v) near (0, 1, 0). Further the solution defines a manifold as required. To see this, note that $v_p f_x^p(\phi) + \psi f_x^p(\phi) = 0$ so that

$$f_{x^{j}}^{q}(\phi) + v_{z}f_{x^{j}x^{h}}^{p}\phi_{v_{q}}^{h} + \psi_{v_{h}}f_{x^{j}}^{r}(\phi) + \psi f_{x^{j}x^{h}}^{r}\phi_{v_{q}}^{h} = 0.$$

At the initial solution $f_{x^j}^q(0) + f_{x^jxh}^r(0)\phi_{t_q}^h(0) = 0$. If there were numbers $(c) \neq (0)$ such that $\phi_{t_q}^h(0)c_q = 0$, it would follow that $c_q f_{x^j}^q(0) = 0$, contrary to hypothesis.

3. Relationship to Stiefel-Whitney classes. The following conventions will be used throughout. Let N denote an n-dimensional compact connected differentiable manifold, let K denote a compact kdimensional differentiable submanifold-with-boundary of N, and let N-K denote the complement of K in N. Unless the contrary is implied, we shall use the singular cohomology theory with coefficient domain \mathbb{Z}_2 . If V is an n-plane bundle over X and Y is a subspace of X we shall denote by V Y the restriction of V to Y. As usual $w_i(V)$ and $\bar{w}_i(V)$ will respectively denote the *i*th Stiefel-Whitney class and the dual ith Stiefel-Whitney class of V; while w(V) and $\bar{w}(V)$ will denote the corresponding total classes. If M is a differentiable manifold with boundary, $\tau(M)$ will denote the tangent bundle of M; and $w_i(M)$ will denote $w_i(\tau(M))$ the ith Stiefel class of M, etc. Finally P^m will denote the real m-dimensional projective space, and R^r will denote the r-dimensional euclidean space. We will always assume that $n \geq r$.

For the purposes of the following theorem let L be a disjoint union of compact submanifolds-with-boundary of N having maximum dimension k.

THEOREM 2. With L and N as above, assume that there exists an ordinary mapping $f: N-L \rightarrow R^r$. Then $w_j(N) = 0$ for all j satisfying n-r < j < n-k.

PROOF. The fact that f is ordinary implies that $\tau(N-L)$ is the Whitney sum of an (n-r)-plane bundle and a trivial r-plane bundle. Hence $w_i(N-L)=0$ for t>n-r. Moreover it follows from Poincaré duality that $H^i(N, N-L)=0$ for t< n-k, so that $i^*\colon H^i(N)\to H^i(N-L)$ is a monomorphism in this range. The proposition follows since $w_j(N-L)=i^*(w_j(N))$.

COROLLARY. Suppose that n, j, k and r are integers satisfying n-r < j < n-k and that the binomial coefficient $C_{n+1,j}$ is odd. (For example for $n=2^n-2$ and $k \le r-2$ any j strictly between n-r and n-k will do). Then there exists no ordinary mapping $f: (P^n-L) \to R^r$.

For the next theorem recall that if K is immersible in R^r , then $\bar{w}_i(K) = 0$ for i > r - k.

THEOREM 3. Let K be a compact (not necessarily connected) k-dimensional submanifold-with-boundary of N, and assume that:

- (1) $w_1(N) = \cdots = w_{n-r}(N) = 0$ if n > r,
- (2) $w_{n-k}(N) = 0$ if k < n,
- (3) $\bar{w}_i(K) = 0$ for all positive i > n k,
- (4) there exists an ordinary mapping $f: (N-K) \rightarrow \mathbb{R}^r$. Then the characteristic ring of N is trivial (i.e. $w_s(N) \cdot w_t(N) = 0$ for all s > 0 and t > 0).

Proof. Fixing a Riemannian metric on N, let W be the normal bundle of K in N, and write $\tau(N) | K$ as the Whitney sum $\tau(K) \oplus W$. Then (1), (2), (4), Theorem 2, and the naturality of the w_i 's imply that w(W)w(K) = 1 + terms of degree greater than n - k. Since W is an (n-k)-plane bundle this implies in view of (3) that $\bar{w}(K) = w(W)$ and hence $w(\tau(N)|K) = 1$. Thus $i^*(w_i(N)) = 0$ for $i \ge 1$, where $i^*: H^i(N)$ $\rightarrow H^i(K)$ is induced by inclusion. Let T be a small compact tubular neighbourhood of K in N, (if k=n let T=K), and let C be the closure of N-T. Now suppose integers s and t exist which contradict the conclusion of the theorem. Since the inclusion $K \rightarrow T$ is a homotopy equivalence we conclude from the last equation that there exists an element a_s in $H^s(N, T)$ mapping onto $w_s(N)$ under the map $H^s(N, T)$ $\rightarrow H^s(N)$ induced by inclusion. Next, as in the proof of Theorem 2, the fact that $f \mid C$, more correctly $f \mid (C \cap (N-K))$, is ordinary implies that $w_i(C) = 0$ for i > n - r; and since $\tau(C) = \tau(N) \mid C$ it follows from (1) that w(C) = 1. Again there is an element a_t in $H^t(N, C)$ mapping onto $w_t(N)$ under the natural map $H^t(N, C) \rightarrow H^t(N)$. However $a_s \cdot a_t$ $\in H^{s+t}(N, T \cup C) = 0$, which contradicts $w_s(N) \cdot w_t(N) \neq 0$ by the naturality of cup products.

COROLLARY. Suppose that K is an (n-1)-dimensional compact submanifold of P^n where n is an odd integer not of the form 2^a-1 , a an integer. Then there exists no differentiable mapping $f: P^n \rightarrow R^n$ such that $f|(P^n-K)$ and f|K are ordinary.

The proof of the following theorem is similar to that of Theorem 3 and is more straightforward. Note that if a compact orientable (r-1)-dimensional manifold M is immersible in \mathbb{R}^r then w(M) = 1.

THEOREM 4. Let K be a k-dimensional compact submanifold-with-boundary of N and assume further that: (1) w(K) = 1, and (2) for some integers s and t satisfying $s \ge n - r + 1$ and $t \ge n - k + 1$ we have $w_s(N) \cdot w_t(N) \ne 0$. Then there exists no ordinary mapping $f: (N - K) \rightarrow R^r$.

COROLLARY. Suppose n has the form $2^{n}-2$, a>2; and suppose that K is a compact orientable (r-1)-dimensional submanifold of P^{n} where $2r \ge n+3$. Then there exists no differentiable mapping $f: P^{n} \rightarrow R^{r}$ such that f|(N-K) and f|K are ordinary.

BIBLIOGRAPHY

- 1. I. Fary, Valeurs critiques et algêbres spectrales d'une application, Ann. of Math. 63 (1956), 437-490.
- 2. D. Montgomery and H. Samelson, Fiberings with singularities, Duke Math. J. 13 (1946), 51-56.
- 3. E. Pitcher, Critical points of a map to a circle, Proc. Nat. Acad. Sci. U.S.A. 25 (1939), 428-431.
- 4. A. W. Tucker, Branched and folded coverings, Bull. Amer. Math. Soc. 42 (1936), 859-862.

LEHIGH UNIVERSITY