Optimization: Maxima & Minima

Monday, 28 April 2025 10:47 am

Maximum and Minimum Values

Some of the most important applications of differential calculus are *optimization problems*, in which we are required to find the optimal (best) way of doing something. Here are examples of such problems that we will solve in this chapter:

- What is the shape of a can that minimizes manufacturing costs?
- What is the maximum acceleration of a space shuttle? (This is an important question to the astronauts who have to withstand the effects of acceleration.)
- What is the radius of a contracted windpipe that expels air most rapidly during a cough?
- At what angle should blood vessels branch so as to minimize the energy expended by the heart in pumping blood?

FIGURE 1

- **1 Definition** Let c be a number in the domain D of a function f. Then f(c) is the
- absolute maximum value of f on D if $f(c) \ge f(x)$ for all x in D.
- absolute minimum value of f on D if $f(c) \le f(x)$ for all x in D.

- **2** Definition The number f(c) is a
- local maximum value of f if $f(c) \ge f(x)$ when x is near c.
- local minimum value of f if $f(c) \le f(x)$ when x is near c.

EXAMPLE 1 The function $f(x) = \cos x$ takes on its (local and absolute) maximum value of 1 infinitely many times, since $\cos 2n\pi = 1$ for any integer n and $-1 \le \cos x \le 1$ for all x. Likewise, $\cos(2n+1)\pi = -1$ is its minimum value, where n is any integer.

EXAMPLE 2 If $f(x) = x^2$, then $f(x) \ge f(0)$ because $x^2 \ge 0$ for all x. Therefore f(0) = 0 is the absolute (and local) minimum value of f. This corresponds to the fact that the origin is the lowest point on the parabola $y = x^2$. (See Figure 4.) However, there is no highest point on the parabola and so this function has no maximum value.

FIGURE 4
Minimum value 0, no maximum

EXAMPLE3 From the graph of the function $f(x) = x^3$, shown in Figure 5, we see that this function has neither an absolute maximum value nor an absolute minimum value. In fact, it has no local extreme values either.

Rolle's Theorem Let f be a function that satisfies the following three hypotheses:

- f is continuous on the closed interval [a, b].
- 2. f is differentiable on the open interval (a, b).
- 3. f(a) = f(b)

Then there is a number c in (a, b) such that f'(c) = 0.

The Mean Value Theorem Let f be a function that satisfies the following hypotheses:

- f is continuous on the closed interval [a, b].
- 2. f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

1

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

or, equivalently,

2

$$f(b) - f(a) = f'(c)(b - a)$$

The Closed Interval Method To find the *absolute* maximum and minimum values of a continuous function f on a closed interval [a, b]:

- **1**. Find the values of f at the critical numbers of f in (a, b).
- **2.** Find the values of *f* at the endpoints of the interval.
- The largest of the values from Steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.
- V EXAMPLE 4 The graph of the function

$$f(x) = 3x^4 - 16x^3 + 18x^2 \qquad -1 \le x \le 4$$

is shown in Figure 6. You can see that f(1) = 5 is a local maximum, whereas the absolute maximum is f(-1) = 37. (This absolute maximum is not a local maximum because it occurs at an endpoint.) Also, f(0) = 0 is a local minimum and f(3) = -27 is both a local and an absolute minimum. Note that f has neither a local nor an absolute maximum at x = 4.

$$f(x) = x^3 - 3x^2 + 1$$
 $-\frac{1}{2} \le x \le 4$

SOLUTION Since f is continuous on $\left[-\frac{1}{2}, 4\right]$, we can use the Closed Interval Method:

$$f(x) = x^3 - 3x^2 + 1$$

$$f'(x) = 3x^2 - 6x = 3x(x - 2)$$

Since f'(x) exists for all x, the only critical numbers of f occur when f'(x) = 0, that is, x = 0 or x = 2. Notice that each of these critical numbers lies in the interval $\left(-\frac{1}{2}, 4\right)$. The values of f at these critical numbers are

$$f(0) = 1$$
 $f(2) = -3$

The values of f at the endpoints of the interval are

$$f\left(-\frac{1}{2}\right) = \frac{1}{8} \qquad f(4) = 17$$

Comparing these four numbers, we see that the absolute maximum value is f(4) = 17 and the absolute minimum value is f(2) = -3.

Increasing/Decreasing Test

- (a) If f'(x) > 0 on an interval, then f is increasing on that interval.
- (b) If f'(x) < 0 on an interval, then f is decreasing on that interval.

The First Derivative Test Suppose that c is a critical number of a continuous function f

- (a) If f' changes from positive to negative at c, then f has a local maximum at c.
- (b) If f' changes from negative to positive at c, then f has a local minimum at c.
- (c) If f' does not change sign at c (for example, if f' is positive on both sides of c or negative on both sides), then f has no local maximum or minimum at c.

What Does f'' Say About f?

Definition If the graph of f lies above all of its tangents on an interval I, then it is called **concave upward** on I. If the graph of f lies below all of its tangents on I, it is called **concave downward** on I.

Concavity Test

- (a) If f''(x) > 0 for all x in I, then the graph of f is concave upward on I.
- (b) If f''(x) < 0 for all x in I, then the graph of f is concave downward on I.

Definition A point P on a curve y = f(x) is called an **inflection point** if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

The Second Derivative Test Suppose f'' is continuous near c.

- (a) If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.
- (b) If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.

EXAMPLE 6 Discuss the curve $y = x^4 - 4x^3$ with respect to concavity, points of inflection, and local maxima and minima. Use this information to sketch the curve.

SOLUTION If
$$f(x) = x^4 - 4x^3$$
, then

$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)$$

$$f''(x) = 12x^2 - 24x = 12x(x-2)$$

To find the critical numbers we set f'(x) = 0 and obtain x = 0 and x = 3. To use the Second Derivative Test we evaluate f'' at these critical numbers:

$$f''(0) = 0$$
 $f''(3) = 36 > 0$

Since f'(3) = 0 and f''(3) > 0, f(3) = -27 is a local minimum. Since f''(0) = 0, the Second Derivative Test gives no information about the critical number 0. But since f'(x) < 0 for x < 0 and also for 0 < x < 3, the First Derivative Test tells us that f does not have a local maximum or minimum at 0. [In fact, the expression for f'(x) shows that f decreases to the left of 3 and increases to the right of 3.]

Since f''(x) = 0 when x = 0 or 2, we divide the real line into intervals with these numbers as endpoints and complete the following chart.

Interval	f''(x) = 12x(x-2)	Concavity
(-∞, 0) (0, 2) (2, ∞)	+ - +	upward downward upward

