Air Quality Map

Facoltà di Ingegneria dell'informazione, informatica e statistica Corso di Laurea in Informatica

Culaon Gianluca

Presentazione Scenario

Composizione dell'Aria

Se nell'aria sono presenti altre sostanze, queste definiscono l'inquinamento atmosferico.

La qualità dell'aria si riferisce quindi alla concentrazione di tali sostanze estranee nell'aria.

Perché Tracciarne la Qualità?

La maggior parte degli inquinanti atmosferici è dannosa per la salute umana oltre ad avere un impatto negativo sugli ecosistemi e sul clima.

Secondo l'OMS, 9 persone su 10 a livello globale respirano aria inquinata, ciò è la causa di oltre 7 milioni di morti all'anno e 5.000 miliardi di dollari di danni economici annui.

Come Tracciarne la Qualità?

La qualità dell'aria viene monitorata attraverso le stazioni di monitoraggio, le quali catturano ed analizzano campioni di aria fornendo dati sulla sua composizione chimica e sugli inquinanti in essa presenti.

Inquinanti Tracciati

Gli inquinanti maggiormente tracciati sono:

- Particolato (pm2.5 / pm10)
- Monossido di carbonio (CO)
- Biossido di azoto (NO2)
- Ozono (O3)
- Biossido di zolfo (SO2)

Come Determinare la Qualità

Per determinare la qualità dell'aria di una zona si utilizza un indicatore chiamato Air Quality Index (AQI).

$$I_{\rm p} = \frac{I_{\rm Hi} - I_{\rm LO}}{\rm BP_{\rm Hi} - BP_{\rm Lo}} \times (\rm C_p - BP_{\rm Lo}) + I_{\rm Lo}$$

Il risultato rappresenta il sub-index di un inquinante. L'AQI di una zona è pari al maggior sub-index calcolato.

Tabella Valori Riferimento AQI (EPA)

Daily AQI Color	Levels of Concern	Values of Index	Description of Air Quality
Green	Good	0 to 50	Air quality is satisfactory, and air pollution poses little or no risk.
Yellow	Moderate	51 to 100	Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution.
Orange	Unhealthy for Sensitive Groups	101 to 150	Members of sensitive groups may experience health effects. The general public is less likely to be affected.
Red	Unhealthy	151 to 200	Some members of the general public may experience health effects; members of sensitive groups may experience more serious health effects.
Purple	Very Unhealthy	201 to 300	Health alert: The risk of health effects is increased for everyone.
Maroon	Hazardous	301 and higher	Health warning of emergency conditions: everyone is more likely to be affected.

Progetto

Air Quality Map

Air Quality Map è una Web App che mette a disposizione degli utenti una mappa divisa per nazioni e/o stati/regioni colorati in base all'AQI.

Colorazione Mappa

Per poter colorare la mappa è necessario:

- Ottenere i dati
- Manipolare i dati
- Creare il geoJSON finale

I file GeoJSON sono un formato di dati geospaziali basato su JSON utilizzato per rappresentare dati geografici, come punti, linee e poligoni.

```
map.on("load", () \Rightarrow {
 let show = false;
 map.style.stylesheet.layers.forEach(function (layer) {
  if (layer.type === "symbol") { ···
  });
 map.addSource("aqi", {
   type: "geojson",
   data: dataR,
  });
  map.addLayer({
   id: "state-aqi",
   source: "aqi",
   minzoom: zoomThreshold,
   type: "fill",
    paint: {
      "fill-color": [
        "interpolate",
        ["linear"],
        ["get", "AQI"],
        ...colorsLayers,
      "fill-opacity": [
      "case",
        ["boolean", ["feature-state", "hover"], false],
        1,
        0.75,
      "fill-outline-color": "rgba(0, 0, 0, 1)",
```

Funzionalità Mappa

La mappa è interattiva cià significa che ogni zona ha effetti di hover e di click.

- Hover: crea un popup per la visualizzazione immediata dei dati più rilevanti.
- Click: determina l'apertura della sidebar.

Sidebar

Sidebar

Elementi contenuti all'interno della sidebar:

- Informazioni base
- AQI ed AQI history
- Grafici inquinanti
- Dati meteorologici
- Parte analitica applicazione

Sidebar – Parte Analitica

La parte analitica di questa applicazione riguarda l'analisi multivariata, ovvero un approccio statistico che studia le relazioni tra più variabili contemporaneamente, in questo caso tra inquinanti e temperatura. Può essere effettuata in diversi modi, per questo progetto sono state utilizzate le seguenti tecniche:

- Matrice di correlazione
- Regressione lineare
- Regressione multipla

Parte Analitica – Regressione Multipla

La regressione multipla è una tecnica statistica che consente di analizzare le relazioni complesse tra variabili.

Nel contesto di questa applicazione è stata utilizzata per esplorare come gli inquinanti atmosferici influenzino la temperatura.

Regressione Multipla - Formula

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n + \varepsilon$$

$$\beta_0 = \bar{Y} - \beta_1 \bar{X}_1 - \beta_2 \bar{X}_2 - \ldots - \beta_n \bar{X}_n$$

$$\beta_1 = \frac{\sum_{i=1}^{N} (X_{1i} - \bar{X}_1)(Y_i - \bar{Y})}{\sum_{i=1}^{N} (X_{1i} - \bar{X}_1)^2}$$

$$\beta_2 = \frac{\sum_{i=1}^{N} (X_{2i} - \bar{X}_2)(Y_i - \bar{Y})}{\sum_{i=1}^{N} (X_{2i} - \bar{X}_2)^2}$$

:

$$\beta_n = \frac{\sum_{i=1}^{N} (X_{ni} - \bar{X}_n)(Y_i - \bar{Y})}{\sum_{i=1}^{N} (X_{ni} - \bar{X}_n)^2}$$

Regressione Multipla - Obiettivo

Disattivando ed attivando gli inquinanti tramite la legenda del grafico, la regressione viene ricalcolata sul sottogruppo di inquinanti rimanenti.

Pannello di Controllo

Pannello di Controllo

Il pannello di controllo racchiude tutte le funzionalità end-to-user.

Livello del Vento

 Air Quality Map
 26/10/2023
 Pagina 22

Locazione delle Stazioni (Formato Dots)

Funzionalità di Sliding Temporale

Requisiti non Funzionali

Requisiti non Funzionali

Oltre a queste funzionalità principali, sono state sviluppati requisiti non funzionali quali:

- Modalità notte
- Modalità daltonici
- Finestre modali di spiegazione

Architettura e Tecnologie

Architettura

La web app è classicamente suddivisa in:

- Front-end: parte che l'utente vede e con la quale interagisce.
- Back-end: parte nascosta all'utenza ma che si occupa di far funzionare correttamente l'applicazione.

Front-end

Per il front-end è stato scelto di utilizzare:

- React: Libreria open-source basata su javascript che sfrutta la divisione in componenti per creare codice riutilizzabile, efficiente e manutenibile.
- Redux: Libreria javascript che permette la gestione di uno stato globale.

Back-end

Per il back-end è stato scelto di utilizzare:

- Express: Framework basato su node.js per la creazione di endpoint per il routing.
- Mongodb: Database noSQL.

Diagramma di sequenza

API & Librerie

Le librerie ed API di maggior utilizzo sono state:

- API AirNow (EPA)
- Libreria Mapbox
- Libreria turf
- Librerie matematiche quali math.js e regression.js

Sviluppi futuri

Sviluppi

L'applicazione è migliorabile:

- Dati Real time
- Estensione servizio a tutto il globo
- Estensione database e funzionalità

GRAZIE PER L'ATTENZIONE

