Finding the Equation of a Line Given the Slope and a Point or Two Points

Jonathan R. Bacolod

Sauyo High School

How to Find the Equation of a Line?

Use the formulae:

1. Slope-intercept form: y = mx + b

How to Find the Equation of a Line?

Use the formulae:

- 1. Slope-intercept form: y = mx + b
- 2. Point-slope form: $y y_1 = m(x x_1)$

How to Find the Equation of a Line?

Use the formulae:

- 1. Slope-intercept form: y = mx + b
- 2. Point-slope form: $y y_1 = m(x x_1)$
- 3. Two-point form: $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$

How to Find the Equation of a Line Given the Slope and a Point?

Use the point-slope form: $y - y_1 = m(x - x_1)$

Find the equation of the line with a slope equal to 2 and passes through point (1,3).

Given: m = 2,

Given:
$$m = 2$$
, $(x_1, y_1) = (1, 3)$

Given:
$$m = 2$$
, $(x_1, y_1) = (1, 3)$
 $y - y_1 = m(x - x_1)$

Given:
$$m = 2$$
, $(x_1, y_1) = (1, 3)$
 $y - y_1 = m(x - x_1)$
 $y - 3 = 2(x - 1)$

Given:
$$m = 2$$
, $(x_1, y_1) = (1, 3)$
 $y - y_1 = m(x - x_1)$
 $y - 3 = 2(x - 1)$ Substitution

Given:
$$m = 2$$
, $(x_1, y_1) = (1, 3)$
 $y - y_1 = m(x - x_1)$
 $y - 3 = 2(x - 1)$ Substitution
 $y - 3 = 2x - 2$

Given:
$$m = 2$$
, $(x_1, y_1) = (1, 3)$
 $y - y_1 = m(x - x_1)$
 $y - 3 = 2(x - 1)$ Substitution
 $y - 3 = 2x - 2$ Distributive Property

Given:
$$m = 2$$
, $(x_1, y_1) = (1, 3)$
 $y - y_1 = m(x - x_1)$
 $y - 3 = 2(x - 1)$ Substitution
 $y - 3 = 2x - 2$ Distributive Property
 $v = 2x - 2 + 3$

Given:
$$m = 2$$
, $(x_1, y_1) = (1, 3)$
 $y - y_1 = m(x - x_1)$
 $y - 3 = 2(x - 1)$ Substitution
 $y - 3 = 2x - 2$ Distributive Property

$$y = 2x - 2 + 3$$
 Addition Property

Given:
$$m = 2$$
, $(x_1, y_1) = (1, 3)$
 $y - y_1 = m(x - x_1)$
 $y - 3 = 2(x - 1)$ Substitution
 $y - 3 = 2x - 2$ Distributive Property
 $y = 2x - 2 + 3$ Addition Property
 $y = 2x + 1$

Find the equation of the line with a slope equal to 2 and passes through point (1,3).

Given:
$$m = 2$$
, $(x_1, y_1) = (1, 3)$
 $y - y_1 = m(x - x_1)$
 $y - 3 = 2(x - 1)$ Substitution
 $y - 3 = 2x - 2$ Distributive Property
 $y = 2x - 2 + 3$ Addition Property
 $y = 2x + 1$ Simplification

 \therefore the equation of the line is y = 2x + 1.

Given:
$$m = \frac{2}{3}$$
,

Given:
$$m = \frac{2}{3}$$
, $(x_1, y_1) = (9, 7)$

Given:
$$m = \frac{2}{3}$$
, $(x_1, y_1) = (9, 7)$
 $y - y_1 = m(x - x_1)$

Given:
$$m = \frac{2}{3}$$
, $(x_1, y_1) = (9, 7)$
 $y - y_1 = m(x - x_1)$
 $y - 7 = \frac{2}{3}(x - 9)$

Given:
$$m = \frac{2}{3}$$
, $(x_1, y_1) = (9, 7)$
 $y - y_1 = m(x - x_1)$
 $y - 7 = \frac{2}{3}(x - 9)$ Substitution

Given:
$$m = \frac{2}{3}$$
, $(x_1, y_1) = (9, 7)$
 $y - y_1 = m(x - x_1)$
 $y - 7 = \frac{2}{3}(x - 9)$ Substitution
 $y - 7 = \frac{2}{3}x - 6$

Given:
$$m = \frac{2}{3}$$
, $(x_1, y_1) = (9, 7)$
 $y - y_1 = m(x - x_1)$
 $y - 7 = \frac{2}{3}(x - 9)$ Substitution

$$y - 7 = \frac{2}{3}x - 6$$
 Distributive Property

Given:
$$m = \frac{2}{3}$$
, $(x_1, y_1) = (9, 7)$
 $y - y_1 = m(x - x_1)$
 $y - 7 = \frac{2}{3}(x - 9)$ Substitution
 $y - 7 = \frac{2}{3}x - 6$ Distributive Property
 $y = \frac{2}{3}x - 6 + 7$

Given:
$$m = \frac{2}{3}$$
, $(x_1, y_1) = (9, 7)$

$$y-y_1=m(x-x_1)$$

$$y-7=\frac{2}{3}(x-9)$$
 Substitution

$$y - 7 = \frac{2}{3}x - 6$$
 Distributive Property

$$y = \frac{2}{3}x - 6 + 7$$
 Addition Property

Given:
$$m = \frac{2}{3}$$
, $(x_1, y_1) = (9, 7)$

$$y-y_1=m(x-x_1)$$

$$y-7=\frac{2}{3}(x-9)$$
 Substitution

$$y - 7 = \frac{2}{3}x - 6$$
 Distributive Property

$$y = \frac{2}{3}x - 6 + 7$$
 Addition Property

$$y = \frac{2}{3}x + 1$$
 Simplification

$$\therefore$$
 the equation of the line is $y = \frac{2}{3}x + 1$.

Find the equation of the line parallel to y = 3x - 2 and passes through point (1, -1).

```
Find the equation of the line parallel to y = 3x - 2 and passes through point (1, -1).
Given: m = 3,
```

Find the equation of the line parallel to y = 3x - 2 and passes through point (1, -1). Given: m = 3, $(x_1, y_1) = (1, -1)$

Find the equation of the line parallel to y = 3x - 2 and passes through point (1, -1). Given: m = 3, $(x_1, y_1) = (1, -1)$ $y - y_1 = m(x - x_1)$

Find the equation of the line parallel to y = 3x - 2 and passes through point (1, -1). Given: m = 3, $(x_1, y_1) = (1, -1)$ $y - y_1 = m(x - x_1)$ y - (-1) = 3(x - 1)

Find the equation of the line parallel to y = 3x - 2 and passes through point (1, -1). Given: m = 3, $(x_1, y_1) = (1, -1)$ $y - y_1 = m(x - x_1)$ y - (-1) = 3(x - 1) Substitution

Find the equation of the line parallel to y = 3x - 2 and passes through point (1, -1). Given: m = 3, $(x_1, y_1) = (1, -1)$ $y - y_1 = m(x - x_1)$ y - (-1) = 3(x - 1) Substitution y + 1 = 3x - 3

Find the equation of the line parallel to y = 3x - 2 and passes through point (1, -1). Given: m = 3, $(x_1, y_1) = (1, -1)$ $y - y_1 = m(x - x_1)$ y - (-1) = 3(x - 1) Substitution y + 1 = 3x - 3 Distributive Property

v = 3x - 3 - 1

Find the equation of the line parallel to y = 3x - 2 and passes through point (1, -1). Given: m = 3, $(x_1, y_1) = (1, -1)$ $y - y_1 = m(x - x_1)$ y - (-1) = 3(x - 1) Substitution y + 1 = 3x - 3 Distributive Property

Find the equation of the line parallel to y = 3x - 2 and passes through point (1, -1).

Given:
$$m = 3$$
, $(x_1, y_1) = (1, -1)$

$$y-y_1=m(x-x_1)$$

$$y-(-1)=3(x-1)$$
 Substitution

$$y + 1 = 3x - 3$$

$$y = 3x - 3 - 1$$

Subtraction Property

Find the equation of the line parallel to y = 3x - 2 and passes through point (1, -1).

Given:
$$m = 3$$
, $(x_1, y_1) = (1, -1)$

$$y-y_1=m(x-x_1)$$

$$y-(-1)=3(x-1)$$
 Substitution

$$y + 1 = 3x - 3$$

$$y + 1 = 3x - 3$$
 Distributive Property

$$y = 3x - 3 - 1$$

$$y = 3x - 4$$

Subtraction Property

Find the equation of the line parallel to y = 3x - 2 and passes through point (1, -1).

Given:
$$m = 3$$
,

$$(x_1, y_1) = (1, -1)$$

$$y-y_1=m(x-x_1)$$

$$y - (-1) = 3(x - 1)$$

Substitution

$$y + 1 = 3x - 3$$

Distributive Property

$$y = 3x - 3 - 1$$

Subtraction Property

$$y = 3x - 4$$

Simplification

 \therefore the equation of the line is y = 3x - 4.

How to Find the Equation of a Line Given Two Points?

Use the two-point form: $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$

Write the equation of the line containing (1,1) and (3,-1).

Write the equation of the line containing (1, 1) and (3, -1).

Given: $(x_1, y_1) = (1, 1)$,

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

Substitution

Write the equation of the line containing (1,1) and (3,-1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{-2} = \frac{x-1}{2}$$

Substitution

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{-2} = \frac{x-1}{2}$$

Substitution

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{-2} = \frac{x-1}{2}$$

Find the LCM:

Substitution

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{-2} = \frac{x-1}{2}$$

Find the LCM: -2 =

Substitution

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{-2} = \frac{x-1}{2}$$

Find the LCM: -2 = (2)

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{-2} = \frac{x-1}{2}$$

Find the LCM:
$$-2 = (2) (-1)$$

Substitution

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{-2} = \frac{x-1}{2}$$

Find the LCM:

$$-2 = (2) (-1)$$

Substitution

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{-2}=\frac{x-1}{2}$$

Find the LCM:

Substitution

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{-2} = \frac{x-1}{2}$$

Find the LCM:

$$-2 = (2) (-1)$$

 $2 = (2)$

Substitution

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{-2} = \frac{x-1}{2}$$

Find the LCM:

$$\begin{array}{rcl}
-2 & = & (2) & (-1) \\
2 & = & (2)
\end{array}$$

Substitution

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{-2} = \frac{x-1}{2}$$

Find the LCM:

$$\begin{array}{rcl}
-2 & = & (2) & (-1) \\
2 & = & (2)
\end{array}$$

$$LCM = (2)$$

Substitution

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

-<u>Z</u> Find the LCM:

$$-2 = (2) (-1)$$

$$2 = (2)$$

$$LCM = (2) (-1) =$$

Substitution

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1), (x_2, y_2) = (3, -1)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{2} = \frac{x-1}{2}$$

Find the LCM:

$$-2 = (2) (-1)$$

2 = (2)

$$2 = (2)$$

$$LCM = (2) (-1) = -2$$

Substitution

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1),$$
 $(x_2, y_2) = (3, -1)$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{-2} = \frac{x-1}{2}$$

$$-2\left\lceil\frac{y-1}{-2}\right\rceil = -2\left\lceil\frac{x-1}{2}\right\rceil$$

Substitution

Write the equation of the line containing (1, 1) and (3, -1).

Given:
$$(x_1, y_1) = (1, 1),$$
 $(x_2, y_2) = (3, -1)$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-1}{-1-1} = \frac{x-1}{3-1}$$

$$\frac{y-1}{2} = \frac{x-1}{2}$$

$$-2\left\lceil \frac{y-1}{-2} \right\rceil = -2\left\lceil \frac{x-1}{2} \right\rceil$$
 Multiplication

Substitution

$$-2\left[\frac{y-1}{-2}\right] = -2\left[\frac{x-1}{2}\right]$$
 Multiplication

$$-2\left[\frac{y-1}{-2}\right] = -2\left[\frac{x-1}{2}\right]$$
 Multiplication
$$y-1=-x+1$$

$$-2\left[\frac{y-1}{-2}\right] = -2\left[\frac{x-1}{2}\right]$$
 Multiplication

$$y - 1 = -x + 1$$

Distributive Property

$$-2\left[\frac{y-1}{-2}\right] = -2\left[\frac{x-1}{2}\right]$$
 Multiplication
$$y-1=-x+1$$
 Distributive Prove
$$y=-x+1+1$$

Distributive Property

$$-2\left[\frac{y-1}{-2}\right] = -2\left[\frac{x-1}{2}\right]$$
 Multiplication $y-1=-x+1$ Distributive Pro

y = -x + 1 + 1

Distributive Property Addition Property

$$-2\left[\frac{y-1}{-2}\right] = -2\left[\frac{x-1}{2}\right]$$
 Multiplication
$$y-1=-x+1$$
 Distributive Property
$$y=-x+1+1$$
 Addition Property
$$y=-x+2$$

Distributive Property Addition Property

$$-2\left[\frac{y-1}{-2}\right] = -2\left[\frac{x-1}{2}\right]$$
 Multiplication
$$y-1=-x+1$$
 Distributive Property
$$y=-x+1+1$$
 Addition Property
$$y=-x+2$$
 Simplification

 \therefore the equation of the line is y = -x + 2.

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given: $(x_1, y_1) = (2, 4)$,

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4), (x_2, y_2) = (1, 0)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4), (x_2, y_2) = (1, 0)$$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

Substitution

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$

Substitution

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$

Substitution

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$

Find the LCM:

Substitution

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$

Find the LCM:

Substitution

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$
and the LCM:

Substitution

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$
and the LCM:

Substitution

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$

Find the LCM:

$$\begin{array}{rcl}
-1 & = & (-1) \\
-A & - &
\end{array}$$

Substitution

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$

Find the LCM:

$$\begin{array}{rcl}
-1 & = & (-1) \\
-4 & = & (-1)
\end{array}$$

Substitution

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$

Find the LCM:

$$\begin{array}{rcl}
-1 & = & (-1) \\
-4 & = & (-1) & (2^2)
\end{array}$$

Substitution

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$

Find the LCM:

$$\begin{array}{rcl}
-1 & = & (-1) \\
-4 & = & (-1) & (2^2)
\end{array}$$

Substitution

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$

Find the LCM:

$$-1 = (-1)$$

 $-4 = (-1) (2^2)$

Substitution

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

Substitution

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$

Simplification

Find the LCM:

$$\begin{array}{rcl}
-1 & = & (-1) \\
-4 & = & (-1) & (2^2)
\end{array}$$

$$LCM = (-1) (2^2) =$$

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4), (x_2, y_2) = (1, 0)$$

$$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

Substitution

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$

Simplification

Find the LCM:

$$\begin{array}{rcl}
-1 & = & (-1) \\
-4 & = & (-1)
\end{array}$$

$$LCM = (-1) (2^2) = -4$$

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$

$$-4\left[\frac{y-4}{-4}\right] = -4\left[\frac{x-2}{-1}\right]$$

Substitution

Write the equation of the line that passes through (2,4) and whose x-intercept is 1.

Given:
$$(x_1, y_1) = (2, 4)$$
, $(x_2, y_2) = (1, 0)$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-4}{0-4} = \frac{x-2}{1-2}$$

$$\frac{y-4}{-4} = \frac{x-2}{-1}$$

$$-4\left[\frac{y-4}{-4}\right] = -4\left[\frac{x-2}{-1}\right]$$
 Multiplication

Substitution

$$-4\left\lceil \frac{y-4}{-4} \right\rceil = -4\left\lceil \frac{x-2}{-1} \right\rceil$$
 Multiplication

$$-4\left[\frac{y-4}{-4}\right] = -4\left[\frac{x-2}{-1}\right]$$
 Multiplication
$$y-4 = 4x-8$$

$$-4\left[\frac{y-4}{-4}\right] = -4\left[\frac{x-2}{-1}\right]$$
 Multiplication

$$y - 4 = 4x - 8$$

Distributive Property

$$-4\left[\frac{y-4}{-4}\right] = -4\left[\frac{x-2}{-1}\right]$$
 Multiplication $y-4=4x-8$ Distributive Pr

Distributive Property

$$y=4x-8+4$$

$$-4\left[\frac{y-4}{-4}\right] = -4\left[\frac{x-2}{-1}\right]$$
 Multiplication

$$y - 4 = 4x - 8$$

$$y = 4x - 8 + 4$$

Distributive Property

Addition Property

$$-4\left[\frac{y-4}{-4}\right] = -4\left[\frac{x-2}{-1}\right]$$
 Multiplication
$$y-4=4x-8$$
 Distributive Property
$$y=4x-8+4$$
 Addition Property
$$y=4x-4$$
 Simplification

 \therefore the equation of the line is y = 4x - 4.

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given: $(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

Substitution

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1)$$
, $(x_2, y_2) = (1, -3)$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

$$\frac{y+1}{-2} = \frac{x+7}{8}$$

Substitution

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

$$\frac{y+1}{-2} = \frac{x+7}{8}$$

Substitution

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

$$\frac{y+1}{-2} = \frac{x+7}{8}$$
Find the LCM:

Substitution

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

$$\frac{y+1}{-2} = \frac{x+7}{8}$$
Find the LCM:

Substitution

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

$$\frac{y+1}{-2} = \frac{x+7}{8}$$
Find the LCM:
-2 = (2)

Substitution

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

$$\frac{y+1}{-2} = \frac{x+7}{8}$$
Find the LCM:
 $-2 = (2) (-1)$

Substitution

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

$$\frac{y+1}{-2} = \frac{x+7}{8}$$
Find the LCM:
 $-2 = (2) (-1)$

Substitution

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

$$\frac{y+1}{-2} = \frac{x+7}{8}$$
Find the LCM:

Find the LCM:

$$-2 = (2) (-1)$$

 $8 = (2^3)$

Substitution

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

$$-3 - (-1)$$
 $1 - (-7)$

$$\frac{y+1}{-2} = \frac{x+7}{8}$$

$$\begin{array}{rcl}
-2 & = & (2) & (-1) \\
8 & - & (2^3)
\end{array}$$

Substitution

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

$$\frac{y+1}{-2} = \frac{x+7}{8}$$
Find the LCM:

$$-2 = (2) (-1)$$

8 = (2^3)

Substitution

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

$$\frac{y+1}{-2} = \frac{x+7}{8}$$
Find the LCM:

$$-2 = (2) (-1)$$

8 = (2^3)

$$LCM = (2^3)$$

Substitution

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-(-1)}{-3-(-1)} = \frac{x-(-7)}{1-(-7)}$$

Substitution

$$\frac{y+1}{-2} = \frac{x+7}{8}$$
Find the LCM:

Find the LCM:
$$-2 = (2) (-1)$$

$$8 = (2^3)$$

$$LCM = (2^3) (-1) =$$

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

Substitution

$$\frac{y+1}{-2} = \frac{x+7}{8}$$
Find the LCM:

Find the LCM:

$$-2 = (2) (-1)$$

 $8 = (2^3)$
 $-10 = -8$

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y-(-1)}{-3-(-1)} = \frac{x-(-7)}{1-(-7)}$$

$$\frac{7}{-3} - (-1) = \frac{7}{1 - (-7)}$$

$$\frac{y+1}{-2}=\frac{x+7}{8}$$

$$-8\left[\frac{y+1}{-2}\right] = -8\left[\frac{x+7}{8}\right]$$

Substitution

Write the equation of the line passing through the points (-7, -1) and (1, -3).

Given:
$$(x_1, y_1) = (-7, -1), (x_2, y_2) = (1, -3)$$

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$

$$\frac{y - (-1)}{-3 - (-1)} = \frac{x - (-7)}{1 - (-7)}$$

Substitution

$$\frac{y+1}{-2} = \frac{x+7}{8}$$

Simplification

$$-8\left[\frac{y+1}{-2}\right] = -8\left[\frac{x+7}{8}\right]$$
 Multiplication

$$-8\left[\frac{y+1}{-2}\right] = -8\left[\frac{x+7}{8}\right]$$
 Multiplication

$$-8\left[\frac{y+1}{-2}\right] = -8\left[\frac{x+7}{8}\right]$$
 Multiplication $4y+4=-x-7$

$$-8\left[\frac{y+1}{-2}\right] = -8\left[\frac{x+7}{8}\right]$$
 Multiplication

$$4y + 4 = -x - 7$$

Distributive Property

$$-8\left[\frac{y+1}{-2}\right] = -8\left[\frac{x+7}{8}\right]$$
 Multiplication

$$4y+4=-x-7$$
 Distributive Pr

$$4v=-x-7-4$$

Distributive Property

$$-8\left[\frac{y+1}{-2}\right] = -8\left[\frac{x+7}{8}\right]$$
 Multiplication
 $4y+4=-x-7$ Distributive Pr
 $4y=-x-7-4$ Subtraction F

Distributive Property Subtraction Property

$$-8\left[\frac{y+1}{-2}\right] = -8\left[\frac{x+7}{8}\right]$$
 Multiplication $4y+4=-x-7$ Distributive Properties $4y=-x-7-4$ Subtraction For $4y=-x-11$

Distributive Property Subtraction Property

$$-8\left[\frac{y+1}{-2}\right] = -8\left[\frac{x+7}{8}\right]$$
 Multiplication $4y+4=-x-7$ Distributive Properties $4y=-x-7-4$ Subtraction Properties $4y=-x-11$ Simplification

Distributive Property Subtraction Property Simplification

$$-8\left[\frac{y+1}{-2}\right] = -8\left[\frac{x+7}{8}\right]$$
 Multiplication
$$4y+4=-x-7$$
 Distributive Pr
$$4y=-x-7-4$$
 Subtraction P
$$4y=-x-11$$
 Simplification
$$\frac{4y}{4}=\frac{-x}{4}-\frac{11}{4}$$

Distributive Property Subtraction Property Simplification

$$-8\left[\frac{y+1}{-2}\right] = -8\left[\frac{x+7}{8}\right]$$
 Multiplication

$$4y+4=-x-7$$
 Distributive Properties Figure 1

$$4y = -x - 7 - 4$$

$$4y = -x - 11$$

$$\frac{4y}{4} = \frac{-x}{4} - \frac{11}{4}$$

Distributive Property

Subtraction Property

Simplification

Division Property

$$-8\left[\frac{y+1}{-2}\right] = -8\left[\frac{x+7}{8}\right]$$
 Multiplication

Distributive Property

Subtraction Property

Simplification

Simplification

Division Property

$$4y + 4 = -x - 7$$

 $4y = -x - 7 - 4$

4y = -x - 11

 $\frac{4y}{4} = \frac{-x}{4} - \frac{11}{4}$

 $y = -\frac{1}{4}X - \frac{11}{4}$

∴ the equation of the line is $y = -\frac{1}{4}x - \frac{11}{4}$.

How to Find the Equation of a Line?

Use the formulae:

1. Slope-intercept form: y = mx + b

How to Find the Equation of a Line?

Use the formulae:

- 1. Slope-intercept form: y = mx + b
- 2. Point-slope form: $y y_1 = m(x x_1)$

How to Find the Equation of a Line?

Use the formulae:

- 1. Slope-intercept form: y = mx + b
- 2. Point-slope form: $y y_1 = m(x x_1)$
- 3. Two-point form: $\frac{y y_1}{y_2 y_1} = \frac{x x_1}{x_2 x_1}$

How to Find the Equation of a Line Given the Slope and a Point?

Use the point-slope form: $y - y_1 = m(x - x_1)$

How to Find the Equation of a Line Given Two Points?

Use the two-point form:
$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

Thank you for watching.