Tae Eun Kim Autumn 2019

Practice problems for comprehensive final exam.

Problem 1. (True/false)

(True/False) Circle T if the statement is ALWAYS true; circle F otherwise. No explanation is required.

(a) (T/F) f(x) = x + 1 and $g(x) = \frac{x^2 - 1}{x - 1}$ are the same functions.

They have different domains.

(b) (T/F) If $\lim_{h\to 0} \frac{f(3+h)-f(3)}{h}$ exists, then f is continuous at 3.

Because differentiability implies continuity.

(c) (T/\widehat{E}) If f has a vertical asymptote x = -3, then $\lim_{x \to -3} f(x) = \infty$.

Counter example: $\lim_{N \to -3} f(x) = -\infty$

(d) (T/F) A function may possess three distinct horizontal asymptotes.

Because we can have <u>at most</u> two distinct limits at infinity!

(e) (T/F) Let f be continuous on [1,3). If f(1) = -2 and f(3) = 5, then the equation f(x) = 0 must have a solution between 1 and 3.

Counter example:

5 . continuous on [1:3) V

Select correct answers. A question may have multiple correct answers. No partial credit is given for this problem.

- (a) At what point(s) c does the conclusion of the Mean Value Theorem hold for $f(x) = x^3$ on the interval [-3, 3]?

 - C. 0
 - D. $1/\sqrt{3}$
 - $(E) \sqrt{3}$
 - F. None of the above
- $f'(c) = \frac{f(3) f(-3)}{3 (-3)} = \frac{27 + 27}{6} = 9$
 - \Rightarrow 30²= 9
 - \Rightarrow $c = \pm \sqrt{3}$
- (b) The equation of the line that represents the linear approximation to the function $f(x) = \ln(x)$ at a=1 is

 - C. y = -x 1
 - D. y = -x + 1
 - E. None of the above
- L(x) = f(x) + f(x)(x-1)= 0 + (x-1)

 - $y = \sqrt{-1}$

- (c) Let $f(x) = \sqrt[3]{x}$ and let L(x) be the linear approximation of f(x) at a = 64.
 - i. Select the figure which includes the correct graph of L(x).
 - A.
 - 4 2 20 40 80
- (B)
 - 60 80
- C.
 - L(x)40 80

- ii. If L(50) is used to approximate $\sqrt[3]{50}$,
 - (A) it gives an overestimate.
 - B. it gives an underestimate.
 - C. it gives an exact value of $\sqrt[3]{50}$.
 - D. it cannot be determined.

Problem 3. (Limit computation)

(a) Evaluate the following limits. You may use L'Hôpital's rule.

i.
$$\lim_{x \to 0} \frac{e^{x} - 1 - x}{x^{2}} \qquad \left(\begin{array}{c} \frac{o}{o} \\ \hline 0 \end{array} \right)$$

$$\stackrel{L'H}{=} \left[\overline{t_{1}} \frac{e^{x} - 1}{2x} \right] \qquad \left(\begin{array}{c} \frac{o}{o} \\ \hline 0 \end{array} \right)$$

$$\stackrel{L'H}{=} \left[\overline{t_{1}} \frac{e^{x}}{2x} \right]$$

$$\stackrel{L'H}{=} \frac{e^{x}}{2x}$$

$$= \boxed{\frac{1}{2}}$$

ii.
$$\lim_{x \to \infty} \left(\frac{x+3}{x}\right)^x$$

$$= \lim_{x \to \infty} \left(1 + \frac{3}{x}\right)$$

$$=$$

iii.
$$\lim_{x \to -\infty} \frac{\sqrt{16x^6 + 8x^3 - 4}}{3x^3 - 7x}$$

$$= |_{\overline{1}M} \frac{\sqrt{x^6 (1b + 8/x^3 - 4/x^6)}}{x^3 (3 - 7/x^2)}$$

$$= |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)}$$

$$= |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)}$$

$$= |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)}$$

$$= |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{x^6 \sqrt{1b + 8/x^3 - 4/x^6}}}}{x^3 (3 - 7/x^2)} = |_{\overline{7}M} \frac{\sqrt{x^6 \sqrt{x^6 \sqrt{x$$

$$| x^{b} = \sqrt{(x^{3})^{2}}$$

$$= | x^{3} | = -x^{3}$$
Since it eventually
is negative as $x \to -\infty$

(b) A table of values for f(x) and f'(x), along with a graph of a function g(x) is shown below.

\boldsymbol{x}	f(x)	f'(x)
1	2	3
2	4	1
3	6	5

Compute the following or state "DNE". There is no partial credit for this problem.

i.
$$\frac{d}{dx}g(x)$$
 at $x = 5$

DNE Since the graph of
$$g(x)$$
 has a corner at $x = 5$.

ii.
$$\frac{d}{dx}g(f(x))$$
 at $x=2$
$$g'(f(2)) f'(2) = g'(4) = \boxed{0}$$

iii.
$$f^{-1}(6)$$
 = 3

iv.
$$\frac{d}{dx}f^{-1}(x)$$
 at $x = 6$

$$\frac{1}{\int (f^{-1}(6))} = \frac{1}{\int (3)} = \boxed{\frac{1}{5}}$$

v.
$$\frac{d}{dx} [f(x)e^{g(x)}]$$
 at $x = 3$

$$f'(3) e^{g(3)} + f(3) g'(3) e^{g(3)}$$

$$= 5 e^{3} + 6 \cdot 0 \cdot e^{3} = 5 e^{3}$$

Problem 4. (Integral exercises)

Compute the following integrals.

(a)
$$\frac{d}{dx} \int_{0}^{\pi/2} \sin^7 t \, dt = \boxed{\bigcirc}$$

(b)
$$\int_0^{\pi/2} \frac{d}{dx} (\sin^7 x) dx \qquad \stackrel{\text{FTC 2}}{=} \qquad \left[S_{1}^{\pi} x^7 \right]_0^{\pi/2}$$

$$= S_{1}^{\pi} \left(\sqrt[\pi]{2} \right) - S_{1}^{\pi} \left(0 \right) = \boxed{1}$$

$$(d) \int_{-1}^{1} \frac{\theta^{5} + \sin \theta}{\sqrt{1 + \cos^{2} \theta}} d\theta \qquad \equiv \qquad 0$$
Symmetric odd
Therval

(e)
$$\int (4x-6)\sqrt{x^2-3x} \, dx = \int 2\sqrt{u} \, du$$

$$= \int 2\sqrt{u} \, du$$

$$= 2 \cdot \frac{1}{3}u^{\frac{3}{2}} + C$$

$$= \frac{4}{3}(x^2-3x) + C$$

$$(f) \int_{0}^{\pi/4} \frac{1 + \tan \theta}{\sec \theta} d\theta = \int_{0}^{\pi/4} \frac{1}{\sec \theta} d\theta + \int_{0}^{\pi/4} \frac{\tan \theta}{\sec \theta} d\theta$$

$$= \int_{0}^{\pi/4} \frac{1 + \tan \theta}{\sec \theta} d\theta + \int_{0}^{\pi/4} \frac{\tan \theta}{\sec \theta} d\theta$$

$$= \int_{0}^{\pi/4} \frac{1 + \tan \theta}{\sec \theta} d\theta + \int_{0}^{\pi/4} \frac{\tan \theta}{\sec \theta} d\theta$$

$$= \left[\sin \theta \right]_{0}^{\pi/4} + \left[-\cos \theta \right]_{0}^{\pi/4}$$

$$= \left(\frac{\sqrt{2}}{2} - 0 \right) + \left(1 - \frac{\sqrt{2}}{2} \right) = \boxed{1}$$

Consider the three functions, g, f, and h, defined on the interval (-2,2). Given that

$$g(x) = \cos(\pi x)$$
, $h(x) = x^2 + 1$ and $g(x) \le f(x) \le h(x)$,

answer the following questions.

(a) Sketch and label the graph of g and h, and a possible graph of f.

(b) Use the Squeeze Theorem to evaluate $\lim_{x\to 0} f(x)$.

$$\lim_{N\to\infty} g(N) = \cos(0) = 1$$

$$\lim_{n\to\infty} h(n) = 0^{2} + 1 = 1$$

o $g(x) \le f(x) \le h(x)$ (Given) $\lim_{x \to 0} g(x) = \cos(0) = 1$ $\lim_{x \to 0} h(x) = 0^{2} + 1 = 1$ $\lim_{x \to 0} h(x) = 0^{2} + 1 = 1$

(c) Evaluate

$$\lim_{x \to 0} \frac{g(x) - 1}{h(x) - 1}$$

(Write "does not exist" only if the limit does not exist and is neither $+\infty$ nor $-\infty$.)

$$= \lim_{\eta \to 0} \frac{\cos(\pi \eta) - 1}{\eta^2} \quad {\binom{"o"}{o"}}$$

$$= \lim_{\eta \to 0} \frac{-\pi \sin(\pi \eta)}{2\eta} \quad {\binom{"o"}{o"}}$$

$$= \lim_{\eta \to 0} \frac{-\pi \sin(\pi \eta)}{2\eta} \quad {\binom{"o"}{o"}}$$

$$= \lim_{\eta \to 0} \frac{-\pi \sin(\pi \eta)}{2\eta} \quad {\binom{"o"}{o"}}$$

Problem 6. (1-D motion)

Consider the motion of a particle moving on a straight line whose velocity v is described in the graph below:

Assume that s(0) = 0.

(a) Determine the displacement between t = 0 and t = 7.

$$(displacement) = \int_{0}^{7} v(t) dt = 0$$

(b) Determine the distance traveled between t = 0 and t = 7.

$$(distance) = \int_0^7 |v(t)| dt = 5$$

(c) Determine the position function, s(t), for $5 \le t \le 7$.

$$S(t) = S(5) + \int_{5}^{t} \underbrace{V(s)}_{=1} ds = 2 + [-s]_{5}^{t} = [-t+7]$$

(d) Determine the acceleration, a(t), for 5 < t < 7.

Since
$$V(t) = -1$$
 for $5 < t < 7$, $a(t) = V'(t) = 0$.

The figure shows a right triangle in the first quadrant. One side of the triangle is on the x-axis; its hypotenuse runs from the origin to a point on the parabola $y = 4 - x^2$. Find the coordinates that maximize the area of the triangle.

In your solution:

- State explicitly the domain of objective function.
- Be sure to justify that your answer indeed yields the maximal area.

Set-up

- constraint : y = 4 1
- objective function: $A = \frac{1}{2} \chi y$ $\Rightarrow A(\chi) = \frac{1}{2} \chi (4 \chi^2)$ Domain: (0, 2)

Calculus

$$A'(x) = x - \frac{3}{2}x^2 = 0$$

$$N = \pm \sqrt{\frac{4}{3}} = \pm \frac{2}{\sqrt{3}}$$

There is only one interior critical point $n = \frac{2}{\sqrt{3}}$.

2. Derivative fest

$$A''(n) = -3n$$

$$A''(\frac{2}{\sqrt{3}}) = -2\sqrt{3} < 0$$

: A (n) attains a local maximum at $n = \frac{2}{\sqrt{3}}$

Conclusion

Since AGU has a unique local maximum at $N = \frac{2}{\sqrt{3}}$, it attains the global maximum at

$$\lambda = \frac{2}{\sqrt{3}}$$

$$y = 4 - \frac{4}{3} = \frac{8}{3}$$

Problem 8. (More integrals)

Suppose that $\int_{-1}^{2} f(x) dx = 4$. Assume that f is **odd**.

(a) Evaluate $\int_{1}^{2} f(x) dx$.

Note that
$$\int_{-1}^{2} f \alpha y \, dx = \int_{-1}^{2} f \alpha y \, dx + \int_{-1}^{2} f \alpha y \, dx$$
thus,
$$\int_{-1}^{2} f \alpha y \, dx = 4$$

(b) Which average value of f is larger, the one over [-1,2] or the one over [1,2]? Explain.

(average of
$$f$$
) = \widehat{f} [-1,2] = $\frac{1}{2-(-1)} \int_{-1}^{2} f(n) dx = \frac{4}{3}$
(average of f) = \widehat{f} [1,2] = $\frac{1}{2-1} \int_{1}^{2} f(n) dn = 4$
So, \widehat{f} [1,2] > \widehat{f} [1,2] = $\frac{1}{2-1} \int_{1}^{2} f(n) dn = 4$
(c) Evaluate $\int_{0}^{2\ln 2} e^{x} f(e^{x}-2) dx$.

$$\int_{0}^{2\ln 2} e^{x} dx = e^{x} dx$$

$$\frac{du = e^{\lambda} d\lambda}{2 \ln^2 \left(\frac{2}{2}\right)}$$