Eight ways to prove - Part 1

Nghia Doan

November 5, 2023

In this article, we explore different topics of geometry, each helps us to find a way for the same problem.

Example (IMO 2014, Problem 4)

Let P and Q be on segment BC of an acute triangle ABC such that $\angle PAB = \angle BCA$, $\angle CAQ = \angle ABC$. Let M and N be points on lines AP and AQ, respectively, such that P and Q are midpoints of AM and AN, respectively. Prove that the intersection S of BM and CN is on the circumference of $\triangle ABC$.

1st proof based on angle chasing and Cyclic Quadrilaterals. First, $\angle PAB = \angle BCA = \angle C$, and $\angle CAQ = \angle ABC = \angle B$. Thus $\triangle PBA \sim \triangle QAC \sim \triangle ABC$.

Thus, $\frac{PB}{PA} = \frac{QA}{QC}$, or $\frac{PB}{PM} = \frac{QN}{QC}$ (1).

Now, $\angle BPM = \angle PAB + \angle PAB = \angle B + \angle C = \angle QAC + \angle QCA = \angle NQC$ (2).

From (1) and (2) $\triangle BPM \sim \triangle NQC$, so $\angle SBC = \angle MBP$, $\angle SCB = \angle NCQ$.

Thus, $\triangle BSC \sim \triangle BPM$, or $\angle BSC = \angle BPM = \angle B + \angle C = 180^{\circ} - \angle A$.

Therefore ABSC is cyclic and S is on the circle (ABC).

 2^{nd} proof based on similarity and Cyclic Quadrilaterals. First, $\angle PAB = \angle BCA = \angle C$, $\angle CAQ = \angle ABC = \angle B$. Thus $\triangle PBA \sim \triangle QAC \sim \triangle ABC$.

Now, extend AB and AC to intersect line MN at Y and Z, respectively.

Since Q, P are median segment, thus $MN \parallel BC$. Therefore $\triangle AMY \sim \triangle ABP \sim \triangle CAQ \sim \triangle ZAN$.

B is the midpoint of AY in $\triangle AMY$, C is the midpoint of ZA in $\triangle ZAN$. By similarity $\angle BNY = \angle CNA$.

Therefore $\angle SBC = \angle BMN = \angle CNQ$, so BQSN is cyclic, thus $\angle NSB = \angle NQB = \angle CQA = \angle A$. Hence, $\angle BSC = 180^{\circ} - \angle A$, ABSC is cyclic and S is on the circle (ABC). 3^{rd} proof based on rigid transformations. First, $\angle PAB = \angle BCA = \angle C$, $\angle CAQ = \angle ABC = \angle B$. Thus $\triangle PBA \sim \triangle QAC \sim \triangle ABC$,

$$\frac{AP}{AB} = \frac{AC}{BC}, \ \frac{AQ}{AC} = \frac{AB}{BC} \Rightarrow AP = AQ.$$

Thus, we can reflect the triangle ANC over the line BC to be A'N'C', then translate it by the vector QP to be A"N"C". Then segment $AM \equiv N"A"$.

P is still the midpoint of $AM \equiv N$ " A", and $\angle BPA = \angle CQA = 180^{\circ} - \angle C$ " PA. Thus C", C, P, Q, B are collinear.

In quadrilateral AC" A" B, $\angle C$ " $BA = \angle C$ " A" A, thus it is cyclic, therefore $\angle A$ " $BA + \angle A$ " C" $A = 180^\circ$. Thus $\angle ABS + \angle ACS = 180^\circ$. Therefore ABSC is cyclic and S is on the circle (ABC).

 4^{th} proof based on Homothety. Let X and Y be the midpoint of AB and AC, respectively. Let Z be the intersection of PX and QY. $\angle PAB = \angle BCA = \angle C$, $\angle CAQ = \angle ABC = \angle B$. Thus $\triangle PBA \sim \triangle QAC$, thus $\angle BXP = \angle AYQ$. Therefore AXZY is cyclic.

The homothety $\mathcal{H}_{(A,2)}$ (center A and factor 2) sends X,Y,P,Q to B,C,M,N, respectively. $S=MB\cap NC$ ($MB\cap NC$ denotes the intersection of MB and NC) thus it is the image of $PX\cap QY=Z$. AXZY is cyclic. ABSC is similar to AXZY and therefore cyclic, too. Hence, S is on circle (ABC). \square