

주식 초보자의 리스크 관리를 위한 매수/매도 추천 서비스

주제소개

주제 선정 배경

🖑 주식 시장의 상황

주식 시장이 급격히 안 좋아지며 많은 사람이 투자 손해를 보게 됨

☆ 주식 초보자들의 상황

투자 정보를 알지 못하는 주식 초보자들이 큰 손해를 봄

주식 초보자도 쉽게 참고할 수 있는 투자 인사이트를 제공하기 위한 서비스를 만들자!

주제소개

주제 선정 배경

시계열자료분석팀 주제분석

주식 초보자의 리스크 관리를 위한 매도 / 매수 추천 서비스

주식 등락률에 영향을 미치는 정보를 모델에 입력 → 모델이 매도/매수를 학습 투자자들에게 현재 상황에 따른 매도 또는 매수를 추천!

▶ 투자 시 참고할 수 있는 인사이트를 제공하는 서비스

수집 데이터

SK 하이닉스

신한지주

현대차

다양한 종목에서 응용 가능한 "강건한 모델" 구축을 위해 위 3가지 주식 종목을 분석 대상으로 선정!

수집 데이터

개별 지표

- ✓ 주식 시세 추이 데이터
- ✓ 투자자별 거래 실적 데이터
- ✓ 외국인 보유량 데이터
- ✓ 공매도 데이터
- ✓ 국내 기사 데이터
- ✔ 영문 기사 데이터
- ✓ 네이버 증권 토론방 데이터
- ✓ 네이버 검색량 데이터

(출처) 한국거래소, 네이버 증권, 네이버 데이터랩, 빅카인즈, CNN

공통 지표

- ✓ 코스피 데이터
- ✓ 비트코인 거래 데이터
- ✔ 경제 심리 지수
- ✓ 뉴스 심리 지수
- ✓ 산업 생산 지수

- ✓ 소비자 물가 지수
- ✓ 소비자 신뢰 지수
- ✓ 소비자 심리 지수
- ✓ 실업률
- ✓ 한국은행 기준금리
- ✓ 환율

(출처) 한국거래소, 한국은행 경제통계시스템, KOSIS, invest.com

수집 데이터

개별 지표

- ✓ 주식 시세 추이 데이터
- ✓ 투자자별 거래 실적 데이터
- ✓ 외국인 보유량 데이터
- ✓ 공매도 데이터
- ✓ 국내 기사 데이터
- ✓ 영문 기사 데이터
- ✓ 네이버 증권 토론방 데이터
- ✓ 네이버 검색량 데이터

소비자 불가 지수 소비자 신뢰 지수 소비자 심리 지수

여론 및 투자자 심리에 따른 등락을 파악하기 위해 여론을 반영할 수 있는 데이터 활용!

수집 데이터

개별 지표 공통 지표 ✓ 주식 시세 추이 데이터 ✓ 투자자별 거래 실적 데이터 ✓ 소비자 물가 지수 - 비데이터 ✓ 외국인 보유량 데이터 ✓ 소비자 신뢰 지수 데이터 수집 기간: 2017/06/08 ~ 2023/03/31 ✓ 공매도 데이터 소비자 심리 지수 ✓ 국내 기사 데이터 √ 실업률 네이버 토론방 서비스가 2017/06/08 부터 시작된 관계로/ ✓ 네이버 증권 토론방 데이모든 데이터의 수집 기간을 토론방에 맞춰 수집함 ✓ 환율 ✓ 네이버 검색량 데이터

3 데이터 전처리

국내 기사 데이터 감성 분석

분석 데이터

2017-06-08 ~ 2023-03-31까지의 종목별 기사 제목 데이터

날짜	제목	label
2017-06-08	[fnRASSI] 장마감, 거래소 하락 종목	-1
2017-06-08	'오늘의 증시 메모 [6월 8일]	0
l l		
2023-03-31	신한금융 "데이터센터 전력 재생에너지로 조달 "	1
2023-03-31	신한금융, 데이터센터 전력 100% 재생 에너지 추진	1

날짜	기사 감성 점수
2017-06-08	0.148148
2017-06-09	0.142857
2023-03-30	0.166667
2023-03-31	0.384615

경제 뉴스 기사로 학습한 BERT 모델을 통해 <mark>라벨링</mark>

3 데이터 전처리

외국 기사 데이터 감성 분석

기사 데이터 CNN에서 크롤링 한 2017년 7월부터 2023년 3월까지 총 9995행의 데이터

날짜	제목	score
2017-07-19	US general warns of … control killer …	-0.6908
2017-07-21	Pompeo signals want for N. Korea …	0.0772
l l	:	
2023-03-25	How Al turned the ancient sport of Go …	0
2023-03-29	US & South Korea stage joint military …	0

날짜	기사 감성 점수
2017-07-14	0.365775
2017-07-15	0.261127
2023-03-30	0.120400
2023-03-31	0.079550

nltk.sentiment.vader을 통해 분석

등락률과 상관관계

순매수_기관,개인,외국인

신한지주

코스피대비, 코스피등락률

신한지주

Y변수 라벨링

Polyserial correlation

X변수와 <mark>등락률</mark>의 상관관계

X변수와 <mark>라벨링 변수</mark>의 상관관계

두 상관관계가 비슷해지는 지점을 기준으로 라벨링!

(a)

3일 등락률: 5% 기준 라벨링

5일 등락률: <mark>5%</mark> 기준 라벨링

3일 후 등락률 <= -5% : 매도 (sell)

3일 후 등락률 >= 5% : 매수 (buy)

Otherwise : 유지 (maintain)

Y변수 라벨링 ; 라벨 Y변수와의 상관계수 비교

신한지주						
순매수_기관 0.3853 기사감성점수 -						
순매수_외국인 0.4744		코스피대비	0.5477			
순매수_개인 -0.6581 코스피등락률 0.5824						

SK 하이닉스						
순매수_기관 0.5056 기사감성점수 0.3647						
순매수_외국인	0.6349	코스피대비	0.6429			
순매수_개인 -0.7541 코스피등락률 0.6449						

현대차						
순매수_기관 0.4678 기사감성점수 0.2508						
순매수_외국인	0.4444	코스피대비	0.5671			
순매수_개인 -0.5798 코스피등락률 0.5799						

해석

양의 상관계수를 갖는 변수들은 해당 변수가 증가할 때, 매수일 확률이 높아지고 매도일 확률은 낮아짐

해석

음의 상관계수를 갖는 변수들은 해당 변수가 증가할 때, 매수일 확률이 낮아지고 매도일 확률은 높아짐

Y변수 라벨링

모든 종목에서 '유지' 대비 '매수' / '매도'의 <mark>클래스 불균형</mark> 심각

전체 정확도는 높지만, 모델 예측이 전체적으로 '유지'에 편향되어 '매수'와 '매도'를 제대로 예측하지 못하는 문제 발생

__ _ . .. _ .

변수선택

[인과관계 검정] [VIF] [Feature Importance] But... 대부분의 경우에선 [KS 검정] [Full Model] Full model의

성능이 가장 좋았다…

모델링 개요

Input

현재 시점의 X변수 (minmax scaled / full model)

Output

앞으로 5일 이내의 주가 등락 예측에 따른 현재 시점에서의 매수/유지/매도 추천

- t+1 시점부터 t+6 시점까지, 5일 동안 등락률이 5%이상 상승할 것으로 예상되면 <mark>매수</mark> 추천
- t+1 시점부터 t+6 시점까지, 5일 동안 등락률이 <mark>5%이상 하락</mark>할 것으로 예상되면 <mark>매도</mark> 추천
- t+1 시점부터 t+6 시점까지, 5일 동안 등락률의 <mark>절댓값이 5% 이내로</mark> 예상되면 <mark>유지</mark> 추천

클래스 불균형이 가장 덜한 SK하이닉스 데이터로 모델 적합 후, 동일한 모델을 3종목 모두에 적용

모델 선정 기준: 매수/매도를 얼마나 잘 맞추는가? (매수/매도 정확도 높은 것 중 f1-score 높은 모델)

고델링과정

optuna score 커스텀

01) 매수, 매도, 유지 정확도의 평균

cm=confusion_matrix(y_test, y_pred) bacc=cm[0,0]/sum(cm[0]) # 매수 정확도 sacc=cm[2,2]/sum(cm[2]) # 매도 정확도 macc=cm[1,1]/sum(cm[1]) # 유지 정확도 rst=np.mean([bacc,sacc,macc])

03 매수, 매도 정확도, F1 Score의 평균

cm=confusion_matrix(y_test, y_pred) bacc=cm[0,0]/sum(cm[0]) # 매수 정확도 sacc=cm[2,2]/sum(cm[2]) # 매도 정확도 f1=sum(scores)/len(scores) rst=np.mean([bacc,sacc,f1]) **02** 매수, 매도 정확도의 평균

cm=confusion_matrix(y_test, y_pred) bacc=cm[0,0]/sum(cm[0]) # 매수 정확도 sacc=cm[2,2]/sum(cm[2]) # 매도 정확도 rst=np.mean([bacc,sacc])

04) 매수, 매도의 정확도, 정밀도의 평균

cm=confusion_matrix(y_test, y_pred)
bacc=cm[0,0]/sum(cm[0]) # 매수 정확도
sacc=cm[2,2]/sum(cm[2]) # 매도 정확도
bpre=cm[0,0]/np.sum(cm, axis=0)[0] #매수 정밀도
spre= cm[2,2]/np.sum(cm, axis=0)[2] #매도 정밀도
rst=np.mean([bacc,sacc,bpre,spre])

고델링과정

시도한 모델

모델 종류

- LSTM
- CNN
- SVM
- Logistic regression
- 나이브 베이즈
- XGB
- LGBM
- LSTM 회귀
- LSTM-CNN

할일을 눈앞에 산더미처럼 쌓아 놓으니 더 하기 싫어진다

SK 하이닉스 기준 4가지 score로 optuna 진행해 최적의 모델 선택

최종 모델 소개

XGB classifier

데이터 : SK 하이닉스

변수: Full Model

평가지표: custom한 optuna score

분류: 다중 분류(매수, 매도, 유지)

LSTM regressor

데이터 : SK 하이닉스

변수 : VIF로 선별된 변수

특징: 라벨 인코딩 한 결과를

회귀로 예측하고

Threshold 결정 함수로 분류

XGB Classifier

1. 변수 선택

데이터 : SK 하이닉스 •••••

클래스 불균형이 가장 심하지 않은 SK하이닉스 데이터를 기준으로

하이퍼파라미터 튜닝 후 나머지 종목에 적용할 예정!

변수 : Full Model

변수

X: '종가', '대비', '등락률', '거래량', '거래대금', '시가총액', '외국인 보유수량', '외국인 지분율', '토론방', '순매수_기관', '순매수_기라', '남도량', '기사감성점수', '뉴스심리지수', '비트코인종가', '비트코인종가', '비트코인종가', '비트코인종가', '비트코인종가', '코스피종가', '코스피등락률', '코스피거래량', '코스피거래대금', '코스피시가총액', '한은금리', '원/미국달러', '원/위안', '원/일본엔(100엔)', '원/유로', '경제심리지수(원계열)', '경제심리지수(순환변동치)', '산업생산지수', '물가상승률', '소비자신뢰지수', '소비자심리지수', '경제활동참가율(%)', '실업률(%)', '고용률(%)', '코스피대비'

Y: 'day5_label'

XGB Classifier

2. 라벨인코딩

target label (day5_label)에 대한 라벨인코딩 진행

buy(매수)	0
maintain(유지)	1
sell(매도)	2

3. MinMax Scaling

$$\frac{x - Min(X)}{Max(X) - Min(X)}$$

- 모든 연속형 X 변수에 대해서 MinMax scaling 진행
- 변수의 범위를 바꿔주는 정규화 스케일링 (범위: [0, 1])
- 종목 간 스케일 차이를 줄여 동일한 하이퍼파라미터에 적합하기 위함

XGB Classifier

3. Expanding Window CV

n_spilits = 4 인 Expanding Window CV 활용!

Split 횟수가 많아지면 validation set의 크기가 작아지기 때문에, 하나의 validation set에서의 클래스 불균형이 너무 심각해지는 문제를 예방하기 위함

XGB Classifier

4. 클래스 가중치

각 클래스별 비율의 역수를 클래스별 샘플 가중치로 활용! class_weights = class_weight.compute_sample_weight(class_weight='balanced', y=y_train)

▶ 불균형한 학습 데이터에 대해 클래스별 샘플 가중치를 계산해주는 함수

xgb_model=xgb.XGBClassifier(**params, random_state = 42)
xgb_model.fit(x_train, y_train, sample_weight=classes_weights)

이런 식으로 fit 함수에서 활용 가능!

XGB Classifier

5. Optuna 하이퍼파라미터 튜닝

XGBoost Classifier 하이퍼파라미터 max_depth : 트리의 최대 깊이, 깊어질수록 복잡한 모델 learning_rate : 학습율 n_estimators : 트리의 개수 min_child_weight : 분기에 필요한 최소 hessian 가중치, 작을수록 복잡한 모델 • gamma : 분기에 필요한 최소한의 loss 감소 비율, 작을수록 복잡한 모델 subsample : 각 트리마다의 데이터 샘플링 비율 colsample_bytree : 각 트리마다의 feature 샘플링 비율 reg_alpha:L1 가중치, 작을수록 복잡한 모델 reg_lambda:L2 가중치, 작을수록 복잡한 모델

최종모델 XGB Classifier

5. Optuna 하이퍼파라미터 튜닝

정 거래 손익에 직접적 영향을 줄 수 있는 '매수', '매도'를 잘 맞추는 모델을 만들기 위해 클래스 개수가 많은 유지를 제외한 매수, 매도의 정확도를 평가 지표에 포함

P + T / 모델이 과도하게 매수, 매도로만 예측하는 것을 예방하고 P '유지'에 대한 예측력도 유지하기 위햬, 매수, 매도의 정밀도를 평가 지표에 포함

Optuna 평가 지표

매수 정확도, 매수 정밀도, 매도 정확도, 매도 정밀도의 평균

회종모델

XGB Classifier

5. Optuna 하이퍼파라미터 튜닝

투자자별 순매수량, 비트코인변동, 토론방 게시글 수, 뉴스심리지수, 기사 보도량, 기사감성점수, 검색어량

투자자별 순매수량 데이터와 여론 및 투자자 심리 관련 데이터가 중요한 변수로 작용

회종모델

XGB Classifier

5. Optuna 하이퍼파라미터 튜닝

산업생산지수, 경제활동참가율, 실업률, 코스피, 경제심리지수, 고용률, 물가상승률, 한은금리, ···

반면, 거시경제 관련 데이터는 상대적으로 덜 중요한 변수로 나타남

XGB Classifier

6. 예측

with test set

[SK하이닉스]

```
======== SK 하이닉스 =======
[[27 7 3]
[45 90 63]
[6 7 33]]
```

전체 정확도 : 0.5338078291814946 전체 f1-score : 0.5563170430999059

매수 정확도 : 0.7297297297297 매도 정확도 : 0.717391304347826 유지 정확도 : 0.45454545454545453

F1 score: 0.56

매수 정확도: 0.73

매도 정확도: 0.72

[현대차]

```
======== 현대차 =======
[[ 2 1 0]
[ 24 117 11]
[ 0 3 3]]
```

전체 정확도 : 0.7577639751552795 전체 f1-score : 0.8229783067649851

매수 정확도 : 0.666666666666666

매도 정확도 : 0.5

유지 정확도 : 0.7697368421052632

F1 score: 0.82

매수 정확도: 0.66

매도 정확도: 0.5

[신한지주]

========= 신한지주 ======= [[10 8 1] [40 163 37] [0 13 13]]

전체 정확도 : 0.6526315789473685 전체 f1-score : 0.6975956808520171

매수 정확도 : 0.5263157894736842

매도 정확도 : 0.5

유지 정확도 : 0.67916666666666667

F1 score: 0.69

매수 정확도: 0.52

매도 정확도: 0.5

회종모델

LSTM Regressor

1. 변수 선택

데이터: SK 하이닉스

변수 : VIF를 통해서 선별한 변수

변수

X: '경제심리지수(순환변동치)','시가총액','비트코인종가','원/미국달러','소비자심리지수','코스피거래대금','순매수_개인', ' 순매수_외국인','산업생산지수','코스피거래량','뉴스심리지수','원/유로','토론방','실업률(%)','원/일본엔(100엔)', '거래량',' 기사감성점수','외국인 보유수량','코스피등락률','경제활동참가율(%)','검색어','보도량','순매수_기관','비트코인거래량', '비트코인변동', '5일 등락률'

Y: 'day5_label'

LSTM Regressor

2. 라벨인코딩

target label (day5_label)에 대한 라벨인코딩 진행

buy(매수)	0
maintain(유지)	1
sell(매도)	2

3. MinMax Scaling

$$\frac{x - Min(X)}{Max(X) - Min(X)}$$

- 모든 연속형 X 변수에 대해서 MinMax scaling 진행
- 변수의 범위를 바꿔주는 정규화 스케일링 (범위 : [0, 1])
- 분류 모델보다 회귀 모델에 적합

LSTM Regressor

3. Window dataset 생성

EXAMPLE) window size = 3

sliding window

날짜	비트코인종가	실업률	거래량	검색어	보도량	 day5_label	
2017-07-11	2324.3	3.4	3187332	8.10396	58	 1	
2017-07-12	2403.1	3.4	3462150	8.16834	65	 1	X_train[0]
2017-07-13	2362.4	3.4	5432312	11.22361	90	 1	
2017-07-14	2234.2	3.4	2931832	9.64898	72	 0	y_train[0]
2017-07-17	2233.4	3.4	2804598	9.12856	50	 0	
2017-07-18	2320.2	3.4	2066194	7.92513	76	 1	
2017-07-19	2282.6	3.4	2009799	7.69511	42	 1	
2017-07-20	2866.0	3.4	1647153	7.71154	31	 1	

LSTM Regressor

3. Window dataset 생성

Window size = 10으로 window dataset 생성

기존 data size : (1409, 27)

→ window sliding 적용

data size : (1399, <mark>10,</mark> 27)

į

window size

4. train, validation, test split

data size: (1399, 10, 27)

Train set: (1120, 10, 27)

Validation set: (140, 10, 27)

Test set : (139, 10, 27)

회종모델

LSTM Regressor

5. LSTM Regressor

with train set

hidden_size	2
num_layers	1
learning_rate	0.0001
loss function	MSE loss
optimizer	Adam
epoch	8000

데이터의 y label은 0, 1, 2로 구성된 범주형 변수지만 회귀를 통해서 예측
→ 최적의 모델 체크포인트로 저장

LSTM Regressor

5. LSTM Regressor

• with validation set

각 예측값을 범주형 데이터로 분리하기 위한 threshold(경계값) 결정

	매도 정확도	매수 정확도	유지 정확도	매도 정밀도	매수 정밀도	f1 score	평균
조합 1	0	0	Χ	0	0	Χ	
조합 2	0	0	0	Χ	Χ	Χ	★BEST★
조합 3	0	0	Χ	Χ	Χ	0	
조합 4	0	0	0	Χ	Χ	0	

Threshold 함수의 역할

- 1. Validation set 기준, 매수 정확도, 매도 정확도, 유지 정확도의 평균이 최대가 되는 조합으로 threshold 결정
 - 2. 결정된 threshold 바탕으로 매수/매도/유지 예측 자동화

LSTM Regressor

6. 예측

with test set

[신한지주]

```
------- 신한지주 ------
[[ 23 15 0]
[ 24 529 62]
[ 1 15 39]]
```

전체 정확도 : 0.8347457627118644 전체 f1-score : 0.8503657789754228

매수 정확도 : 0.6052631578947368 매도 정확도 : 0.7090909090909091 유지 정확도 : 0.8601626016260162

F1 score: 0.85

매수 정확도: 0.61

매도 정확도: 0.71

[SK하이닉스]

======= SK하이닉스 ======= [[104 18 0] [113 313 45] [3 27 76]]

전체 정확도 : 0.7052932761087267 전체 f1-score : 0.7165113879684445

매수 정확도 : 0.8524590163934426 매도 정확도 : 0.7169811320754716 유지 정확도 : 0.6645435244161358

F1 score: 0.72

매수 정확도 : 0.85

매도 정확도: 0.67

[현대차]

======== 현대차 ======= [[9 9 3] [47 248 57] [4 7 14]]

전체 정확도 : 0.6809045226130653 전체 f1-score : 0.7416229778038823

매수 정확도 : 0.42857142857142855

매도 정확도 : 0.56

유지 정확도 : 0.7045454545454546

F1 score: 0.74

매수 정확도: 0.43

매도 정확도: 0.56

예측 결과 시각화

빨간색 지점을 기준으로 5일 이내 주가가 5% 이상 상승될 전망

▶ 매수 추천

예측 결과 시각화

빨간색 지점을 5일 이후 시점으로 이동한 결과, 대체로 주가가 국소적 극대를 기록하는 지점에 잘 매칭됨!

예측 결과 시각화

파란색 지점을 기준으로 5일 이내 주가가 5% 이상 하락할 전망

▶ 매도 추천

예측 결과 시각화

파란색 지점을 5일 이후 시점으로 이동한 결과, 대체로 주가가 국소적 극소를 기록하는 지점에 잘 매칭됨!

의의 및 한계

의의

- 등락률 예측을 위한 데이터로 정형 및 비정형 데이터 및 다양한 데이터를 사용하여 유의미한 결과 도출
- 주식 데이터의 특성(imbalanced data, time series data)을 반영하여 분석 진행
- 도메인에 크게 영향을 받지 않고 일정한 정확도를 보이는 강건한 모델

한계

- 실생활에 적용하기 위해서는 데이터 수집 자동화 필요
- 데이터셋으로 사용했던 3가지 종목 외에 더 다양한 종목에 적용 가능한지 시험해보지 않은 것

감사합니다!!!!

지금까지

짱시계열이였습니다~~