COMP6714 20t3

Course Info

- LiC: Prof. Wei Wang, K17-507, x51762
 - http://www.cse.unsw.edu.au/~weiw
- Research interests
 - Database + AI
 - Knowledge Graph and NLP
 - Adversarial machine learning
- Homepage: http://www.cse.unsw.edu.au/~cs6714
- Email:
 - piazza (for Q&As): https://piazza.com/class/keps8hkcron4ef
 - Lecture time:
 - Wed 1600 1800
 - Fri 1400 1600
- Consultations:
 - collaborative consultations on piazza
 - weekly consultation in Zoom (TBA)

I will enrol students manually by the end of W1 and again by the end of W2. No need to send emails to me.

Assessment

Assignment 1: 25%

• Project 1: 25%

Final exam: 50%

details to be available later

39FL if final exam mark < 40 (out of 100)

Reminder

- Online learning is even harder to keep up
 - Good time management and planning skill required
- Know the regulation on Academic Integrity and Plagiarism:
- https://student.unsw.edu.au/plagiarism
 - Not an exhaustive list of instances of misconducts
 - Pay attention to:
 - Collusion, including Contract cheating/ghost-writing Copying, including from the Internet

Expectation

- What are expected in this course
 - Many modules covering a broad spectrum of IR/NLP/SE
 - Heavy workload expected: must read and digest the textbook and slides + additional notes
 - Requires substantial algorithm/data structure design/analysis experience & capability + some maths.
 - ML/DL knowledge will be a plus
 - Up-to-date viewpoints, understanding, knowledge (from the academia & industry)
 - − → Plan your time well
- I speak fast
 - − → focus
 - → ask questions you are helping your classmates too
- Review after the lecture

Real Learning

- After
 - You know the answer
 - You forgot
 - You made mistakes
- Life-long learning is inevitable
- Learn the right learning method
 - Rote learning is USELESS

@tnvora QASPire. DOES LEARNING HAPPE AN INTRINSIC NEED TO SYNTHESIZE LEARN LEARNING -> VARIOUS SOURCES ACROSS DISCIPLINES ASKING QUESTIONS GETTING TO MHY ? UNLEARN AN EYE FOR? CONNECT THE PROCESS & PATTERNS SENSE MAKING THROUGH CONTEXTUAL APPLICATION PROBLEM SOLVING GENEROUSLY THROUGH AND RECEIVE LLABORATION GRACIOUSLY

Source: http://qaspire.com/2016/01/18/when-does-real-learning-happen/

Requirements

- Lectures
 - My lecture does not follow closely the textbook, and will try to give you a different perspective whenever possible
- Python notebooks
 - Do the exercise by yourself
 - Very helpful in understanding concepts/algorithms

What's New?

- New contents:
 - some new contents added this semester
 - please let me know the glitches you've found
- Welcome your feedback (throughout the course)

Knowledge Assumed (non-exhaustive)

- Data structures & algorithms:
 - Heap/priority queue: build a heap in O(n) time?
 - Membership query: tradeoffs? worst/avg-case time complexities = ?
 - Recursion:
 - DFS/BFS/Best-first search

Given an array A of integers. Design an algorithm to return two elements x, y in A, such that x + y = 100 if any, and

- 1. the algorithm takes O(n*log(n)) time, or
- 2. the algorithm takes O(n) time

Knowledge Assumed (non-exhaustive)/2

- C/C++ & Python Programming:
 - Pointer
 - sizeof(int) = ? sizeof(p) = ? sizeof(*p) = ? sizeof(str)
 = ?
 - Be able to learn to use new Python libraries and write & debug python programs
 - Quickly learn a python-based framework in this course

Knowledge Assumed (non-exhaustive)/3

CS Architecture

- Memory hierarchy: name the levels?
- Bit representation: binary string for any x? How to obtain the 3rd-5th bits of a byte?

Maths

- Calculus: How to find the minimum/minimal value of a function f(x)?
- Probabilities and statistics: rv; linearity of expectation; indicator variable; number of heads by tossing a biased coin n times; Bayesian theorem
- Linear algebra: inner/dot product of u and v = ? matrix multiplication

Introduction

Search and Information Retrieval

- Search on the Web is a daily activity for many people throughout the world
- Search and communication are most popular uses of the computer
- Applications involving search are everywhere
- The field of computer science that is most involved with R&D for search is information retrieval (IR)

Information Retrieval

- "Information retrieval is a field concerned with the structure, analysis, organization, storage, searching, and retrieval of information." (Salton, 1968)
- General definition that can be applied to many types of information and search applications
- Primary focus of IR since the 50s has been on text and documents

What is a Document?

Examples:

 web pages, email, books, news stories, scholarly papers, text messages, Word™, Powerpoint™, PDF, forum postings, patents, IM sessions, etc.

Common properties

Significant text content

Mlta-duta

 Some structure (e.g., title, author, date for papers; subject, sender, destination for email)

Documents vs. Database Records

- Database records (or tuples in relational databases) are typically made up of welldefined fields (or attributes)
 - e.g., bank records with account numbers,
 balances, names, addresses, social security
 numbers, dates of birth, etc.
- Easy to compare fields with well-defined semantics to queries in order to find matches
- Text is more difficult

Documents vs. Records

- Example bank database query
 - Find records with balance > \$50,000 in branches
 located in Amherst, MA.
 - Matches easily found by comparison with field values of records
- Example search engine query
 - bank scandals in western mass
 - This text must be compared to the text of entire news stories

Comparing Text

- Comparing the query text to the document text and determining what is a good match is the <u>core issue</u> of information retrieval
- Exact matching of words is not enough
 - Many different ways to write the same thing in a "natural language" like English
 - e.g., does a news story containing the text "bank director in Amherst steals funds" match the query?
 - Some stories will be better matches than others

Dimensions of IR

- IR is more than just text, and more than just web search
 - although these are central
- People doing IR work with different media, different types of search applications, and different tasks

Other Media

- New applications increasingly involve new media
 - e.g., video, photos, music, speech
- Like text, content is difficult to describe and compare
 - text may be used to represent them (e.g. tags)
- IR approaches to search and evaluation are appropriate

Dimensions of IR

Content	Applications	Tasks
Text •	Web search	Ad hoc search
Images	Vertical search	Filtering
Video	Enterprise search	Classification
Scanned docs	Desktop search	Question answering
Audio	Forum search	
Music	P2P search	
35011	Literature search	

Somi-stonetmed

IR Tasks

- Ad-hoc search
 - Find relevant documents for an arbitrary text query
- Filtering (aka information dissemination)
 - Identify relevant user profiles for a new document
- Classification
 - Identify relevant labels for documents
- Question answering
 - Give a specific answer to a question

- Relevance
 - What is it?
 - Simple (and simplistic) definition: A relevant document contains the information that a person was looking for when they submitted a query to the search engine
 - Many factors influence a person's decision about what is relevant: e.g., task, context, novelty, style
 - Topical relevance (same topic) vs. user relevance (everything else)

Relevance

boolean Truffalse > Scree > probabilistic

- Retrieval models define a view of relevance
- Ranking algorithms used in search engines are based on retrieval models
 - Most models describe statistical properties of text rather than linguistic/sevent we have removed
 - i.e. counting simple text features such as words instead of parsing and analyzing the sentences
 - Statistical approach to text processing started with Luhn in the 50s
 - Linguistic features can be part of a statistical model

- Evaluation
 - Experimental procedures and measures for comparing system output with user expectations
 - Originated in Cranfield experiments in the 60s
 - IR evaluation methods now used in many fields
 - Typically use test collection of documents, queries, and relevance judgments
 - Most commonly used are TREC collections
 - Recall and precision are two examples of effectiveness measures

- Users and Information Needs
 - Search evaluation is user-centered
 - Keyword queries are often poor descriptions of actual information needs
 - Interaction and context are important for understanding user intent
 - Query refinement techniques such as query expansion, query suggestion, relevance feedback improve ranking

Web Search

New Challenges

How to obtain data?

Additional features for Web data

100

NLP

- Formal representation of semantics
 - <u>"set" in wordnet</u>,

– Mamihlapinatapai

- Common sense knowledge
 - ⟨
 kittens are cute
 - SJC often experiences delays.
- Inference:
 - The cat ate a mouse → ¬ No carnivores eat animals
 - Pr[A went to Primary School in B → A was born in B] = 0.613

Some of the Things We'll Learn to Do

- Language modelling
 - ... as soon as [???] ...
- Semantic relation
 - Synonyms: aubergine = ???
 - Compound nouns:
 - "apple cake" vs "birthday cake"
 - What about "parsley cake"?
- Sequence modelling
 - "time flies like an arrow"

Text to parse

Course Goals

- To help you to understand search engines, evaluate and compare them, and modify them for specific applications
- Provide broad coverage of the important issues in information retrieval, search engines, and natural language processing
 - includes underlying models and current research directions