קווים כלליים לפתרון תרגיל בית 2

22: 00 תאריך הגשה: יום ראשון, 10/11/2013, עד שעה

<u>:1 שאלה</u>

בשאלה זו תוכיחו את אי-שוויון הממוצעים בדרך שונה מזו שהוכחנו בתרגול. נסתכל על

.חיוביים $a_1, a_2, \dots, a_n \in \mathbb{R}$

- אז מתקיים שוויון בין כל הממוצעים.
 א. הראו כי אם $a_1=a_2=\cdots=a_n$ א. הראו כי אם הראו כי כל אחד הממוצעים נותן בדיוק את האיבר מראה כי כל אחד הממוצעים נותן בדיוק את האיבר
 - ב. כעת, ולהמשך התרגיל, נניח כי לא כל המספרים שווים. הוכיחו כי אם

$$a_1+a_2+\cdots+a_n>n$$
 in $a_1\cdot a_2\cdot \ldots \cdot a_n=1$

-שימוש בכך ש- $(a_1-a_2)^2\neq 0$ אז $a_1\neq a_2$ אז מכיוון שימוש בכך ש- , מכיוון שריים ושימוש בכך ש- . פתיחת סוגריים ושימוש בכך ש- , מכיוון שהמכפלה שווה 1 נובע שקיימים איבר גדול $a_1\cdot a_2=1$ נותנת $a_1+a_2>2$, כנדרש. בשלב האינדוקציה, מכיוון שהמכפלה שווה 1 נובע שקיימים איבר גדול בה"כ $a_1>1$, $a_2<1$ (ע"י פתיחת סוגריים) מ-1 ואחד קטן מ-1, בה"כ $a_1>1$, $a_2<1$ (א"י פתיחת סוגריים) מכפלת הנחת האינדוקציה על a_1 המספרים $a_1\cdot a_2$, a_3 , ..., a_{n+1} שמכפלתם a_1 (*) תיתן שסכומם גדול מ- a_1 , וע"י הצבת (*) נקבל את הדרוש.

ג. הוכיחו כי הממוצע החשבוני של המספרים הנתונים גדול ממש מהממוצע ההנדסי שלהם (רמז: היעזרו בסעיף בי).

נשתמש בסעיף ב: נסמן בb את הממוצע ההנדסי של a_1 המספרים a_1 , ואז המספרים a_1 מקיימים a_1 מקיימים a_2 את התנאי ב- ב a_2 ולכן סכומם גדול מ a_2 . עייי כפל ב a_3 וחילוק ב a_4 נקבל את הדרוש.

ד. הוכיחו כי הממוצע ההנדסי של המספרים הנתונים גדול ממש מהממוצע ההרמוני שלהם (כאן תוכלו להיעזר בסעיף ב׳ או ג׳).

 $(a, \frac{b}{a_1}, \dots, \frac{b}{a_n}, \dots, \frac{b}{a_n})$ נגדיר שוב את $(a, \frac{b}{a_1}, \dots, \frac{b}{a_n}, \dots, \frac{b}{a_n}, \dots, \frac{b}{a_n})$ נגדיר שוב את לכן סכומם גדול מ $(a, \frac{b}{a_n}, \dots, \frac{b}{a_n}, \dots, \frac{b}{a_n})$ נקבל את הדרוש.

<u>: 2</u> שאלה

הוכיחו כי לכל קבוצה לא ריקה וסופית של ממשיים קיים מקסימום.

באינדוקציה : עבור קבוצה בת שני איברים זה ברור, כי מבין , a_1 , בהכרח מתקיים $a_1 \geq a_2$ או $a_2 \geq a_1$ או לקבוצה ,באינדוקציה : עבור קבוצה בת שני איבר בקבוצה, ולכן קיים מקסימום.

לקבוצה בת n+1 איברים, נסתכל על n איברים מתוכה, להם יש מקסימום מהנחת האינדוקציה. לקבוצה בת שני האיברים לקבוצה בת n=2 שהיא המקסימום הנייל והאיבר האחרון בקבוצה המקורית יש מקסימום, מהנחת האינדוקציה עבור n+1 האיברים. הוא בהכרח חסם מלעיל של כל n+1 האיברים, והוא גם איבר בקבוצה, ולכן הוא המקסימום של כל n+1

: 3 שאלה

יהיו A,B קבוצות לא ריקות של ממשיים החסומות מלמעלה.

הוכיחו כי $a+\varepsilon < b$ כך ש $b \in B$ קיים $a \in A$ כך שלכל $\varepsilon > 0$ כך שs>0 א. נניח שקיים s>0 כך שלכל supA < supB

לכל $a \in a$ מתקיים $a \in a$ לכל לכל $a \in a$ מתקיים $a \in a$ מתקיים $a \in a$ מתקיים $a \in a$ הנתון עבור ה- $a \in a$

ב. נניח כעת שלכל $a \in A$ קיימים $a \in B$ ו- $a \in B$ כך ש- $a \in A$ הוכיחו או הפריכו . supA < supB

.(b=1 - ו $arepsilon=rac{1-a}{2}$ נבחר $a\in A$ נבחר (0,1), B=(0,1]: ו- $a\in A$ הטענה לא נכונה, דוגמא נגדית

:4 שאלה

x תהי A קבוצת המספרים הממשיים אינסופי של ממשיים וחסומה. תהי A קבוצת המספרים הממשיים א $A \cap [x,\infty)$ דיק או מכיל מספר סופי של איברים.

 $\inf B$ א. הוכיחו כי קיים

נראה כי B לא ריקה וחסומה מלמטה : לא ריקה כי, למשל, 1+3 נמצא בה (supA קיים כי A חסומה ולא ריקה). חסומה מלמטה, כי למשל infA הוא חסם מילרע שלה (נובע מהגדרת B).

- $\inf B = \min B$: ב. הוכיחו או הפריכו
- . הטענה אין לה מינימום, (0, ∞) איז א היא או אין לה מינימום, לה מינימום, או הטענה לא נכונה, למשל לשל לח $A=\left\{\frac{1}{n}\colon n\in\mathbb{N}\right\}$
- .A אם את דורשים את וחלימות ג. הוכיחו או הפריכו את קיומו של וחל וחל אם אח אם אח הריכו את הפריכו את הכרחי קיום אינפימום, למשל אם $A=\mathbb{R}$ אז נקבל $B=\emptyset$ ובפרט אין אינפימום.

<u>שאלה 5:</u>

 $\{supA_n\}$ הוכחה לדוגמא עבור הסופרמום באים נשים לב כי הקבוצה . $supA=\sup\{\sup a_n\}$, $infA=\inf\{\inf A_n\}$ $N\in\mathbb{N}$ היים אז הקבוצה $Sup\{\sup A_n\}$ לא חסומה, ולכן $Sup\{\sup A_n\}$ קיים. יהי

: כך ש- $a+rac{arepsilon}{2}> sup A_N$ כך ש- $a\in A_N$ כך ש- $a\in A_N$ ושוב מההגדרה קיים, ושוב מההגדרה קיים , $a+rac{arepsilon}{2}> \sup\{sup A_n\}$ כך ש- $a\in A_N$ כדרש. באופן דומה ניתן להוכיח עבור האינפימום.

<u>שאלה 6:</u>

 $\{a_n\}_{n=1}^\infty$ תהי A קבוצה לא ריקה וחסומה מלמעלה של ממשיים. הראו כי קיימת סדרת מספרים A תהי A מתוך A (כלומר, A לכל A לכל A לכל A לכל A ביים A נגדיר A אוריקה וחסומה ולכן קיים A לכל A ביים A נגדיר A (גדיר A ביים A ביים A כך שים לב כי A לכל A ביים A לכל A מהגדרת סופרמום. נשתמש באקסיומת הבחירה, ולכל A נבחר A ביים A כך ש-A לכל A נקבל מהגדרת סופרמום. נשתמש באקסיומת הבחירה, ולכל A נבחר A כלומר A כלומר A כלומר A נקבל מהגדרת A נקבל מהגדרת A נקבל מהגדרת A ביים A ביים A ביים A ביים A כלומר A ביים A ביים A כלומר A ביים A ביים

<u>:7 שאלה</u>

$$.\lim_{n\to\infty}\frac{4n+7}{2n-4}=2:$$
 א. הוכיחו עייפ הגדרה: $\varepsilon>0$ מבחר:
$$\varepsilon>0$$
 מתקיים:
$$\varepsilon>0$$
 מתקיים:
$$\varepsilon>0$$
 מבחר:
$$N=\max\{\left[\frac{15}{\varepsilon}\right]+1,4\}$$

שאלת אתגר – לא להגשה:

ניזכר כי קבוצת מספרים A נקראת בת-מניה אם ניתן להציג את איבריה בסדרה, כלומר ניתן A ניזכר כי קבוצת מספרים $A=\{a_n\}_{n=1}^\infty$ להציג $A=\{a_n\}_{n=1}^\infty$ אינה בסדרה).