C2 16/1	1W7									
Question 1										
Pr(a,	, xn / B) = Pr	(مرا مو	(x_n, β)	By (X2	∫∝ _g	≪'n	(B)	 Pr	(\(\times \)	13
when n=2, f	r(d, d2 B) = B	(0,1,00°,8).b	(05/1B)	product	t viule:			 -		
when $n=3$ [$r(\alpha_1,\alpha_2,\alpha_3 \beta) = r(\alpha_1,\alpha_2,\alpha_3 \beta) = r(\alpha_1,\alpha_2,\alpha_3 \beta)$	Pr(0,102,00)	3,8) Pr(<	, a B)	2					
		1r (011 050	שיאוגר מי							
when n=n-1	(x, au, x, - x, B)	= R (X1, 8/B))							

Gawon Kim

when
$$n=n+1$$

$$P_{n}(x_{1}, \alpha_{2}, \alpha_{3} - \alpha_{n} \mid \beta) = P_{n}(x_{1}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \dots, \alpha_{n}, \beta) P_{n}(x_{1}, \alpha_{3}, \alpha_{3}, \dots, \alpha_{n}, \beta)$$

$$P_{n}(x_{1}, \alpha_{2}, \alpha_{3}, \dots, \alpha_{n}, \beta) = P_{n}(x_{1}, \alpha_{3}, \alpha_{3}, \alpha_{3}, \dots, \alpha_{n}, \beta) P_{n}(x_{1}, \alpha_{3}, \dots, \alpha_{n}, \beta)$$

$$P_{n}(x_{1}, \alpha_{2}, \alpha_{3}, \dots, \alpha_{n}, \beta) = P_{n}(x_{1}, \alpha_{3}, \alpha_{3}, \dots, \alpha_{n}, \beta) P_{n}(x_{1}, \alpha_{3}, \dots, \alpha_{n}, \beta)$$

$$P_{n}(x_{1}, \alpha_{2}, \alpha_{3}, \dots, \alpha_{n}, \beta) = P_{n}(x_{1}, \alpha_{3}, \alpha_{3}, \dots, \alpha_{n}, \beta) P_{n}(x_{1}, \alpha_{3}, \dots, \alpha_{n}, \beta)$$

$$P_{n}(x_{1}, \alpha_{2}, \alpha_{3}, \dots, \alpha_{n}, \beta) = P_{n}(x_{1}, \alpha_{3}, \alpha_{3}, \dots, \alpha_{n}, \beta) P_{n}(x_{1}, \alpha_{3}, \dots, \alpha_{n}, \beta)$$

$$P_{n}(x_{1}, \alpha_{2}, \alpha_{3}, \dots, \alpha_{n}, \beta) P_{n}(x_{1}, \alpha_{3}, \dots, \alpha_{n}, \beta)$$

$$P_{n}(x_{1}, \alpha_{2}, \alpha_{3}, \dots, \alpha_{n}, \beta) P_{n}(x_{1}, \alpha_{3}, \dots, \alpha_{n}, \beta)$$

$$P_{n}(x_{1}, \alpha_{3}, \dots, \alpha_{n}, \beta) P_{n}(x_{1}, \alpha_{3}, \dots, \alpha_{n}, \beta)$$

$$P_{n}(x_{1}, \alpha_{3}, \dots, \alpha_{n}, \beta) P_{n}(x_{1}, \dots, \alpha_{n}, \beta)$$

$$P_{n}(x_{1}, \alpha_{3}, \dots, \alpha_{n}, \beta) P_{n}(x_{1}, \dots, \alpha_{n}, \beta)$$

$$= \operatorname{Rr}(\alpha_1 \mid \alpha_1, \beta)$$

$$= \operatorname{Rr}(\alpha_1 \mid \alpha_2, \beta)$$

$$= \operatorname{Rr}(\alpha_1 \mid \alpha_2, \beta)$$

$$= \operatorname{Rr}(\alpha_1 \mid \alpha_2, \beta)$$

Heep
$$= \beta_r(\alpha_i) \alpha_i \beta_i$$

Heep $= \beta_r(\alpha_i) \alpha_i \beta_i$
Heep $= \beta_r(\alpha_i) \alpha_i \beta_i$

Question 2
$$P(positive | oil) = 0.9$$

$$P(oil) = 0.5$$

$$P(Notivel | Stas) = 0.2$$

$$P(Notivel | Stas) = 0.3$$

$$P(Oil) = P(Positive) = P(Positive | Oil) = P(Positive | Oil) = P(Positive | Oil) = P(Positive | Oil) + P(Positive | Stas) = 0.54$$

$$P(Positive) = P(Positive | Oil) = (0.5)(0.9) = 0.54$$

$$P(Positive) = P(Positive | Oil) = (0.5)(0.9) = 0.6 3 3 2 2 3$$

$$P(Positive) = P(Positive | Oil) = 0.5 4$$

FT

Ť

-0.625

P(W. ^ &) =

P(W2/2)

P(Ng No)=

p(a)

M(x) = { W. W. W. W.

т

T

0 + 0,125 +0,5

P(W1(x)+P(W2/0)+P(W3/x)

Τ

Ť F

Wo

W,

W_a W3

T 下 下 FF F T

0