

STS7PF30L

P-CHANNEL 30V - 0.016Ω - 7A SO-8 STripFET™ II POWER MOSFET

PRELIMINARY DATA

TYPE	V _{DSS}	R _{DS(on)}	I _D
STS7PF30L	30 V	< 0.021 Ω	7 A

- TYPICAL $R_{DS}(on) = 0.016\Omega$
- STANDARD OUTLINE FOR EASY AUTOMATED SURFACE MOUNT ASSEMBLY
- LOW THRESHOLD DRIVE

DESCRIPTION

This Power Mosfet is the latest development of ST-Microelectronics unique "Single Feature SizeTM" strip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

APPLICATIONS

- BATTERY MANAGEMENT IN NOMADIC EQUIPMENT
- POWER MANAGEMENT IN CELLULAR PHONES

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V_{DGR}	Drain-gate Voltage (R _{GS} = 20 k Ω)	30	V
V _{GS}	Gate- source Voltage	±20	V
I _D	Drain Current (continuous) at T _C = 25°C	7	Α
I _D	Drain Current (continuous) at T _C = 100°C	4.4	Α
I _{DM}	Drain Current (pulsed)	28	Α
P _{TOT}	Total Dissipation at T _C = 25°C	2.5	W

(•) Pulse width limited by safe operating area

Note: For the P-CHANNEL MOSFET actual polarity of voltages and current has to be reversed

December 2002 1/6

THERMAL DATA

Rthj-amb(#)	Thermal Resistance Junction-ambient Max	50	°C/W
Tj	Maximum Lead Temperature For Soldering Purpose Typ	150	°C
T _{stg}	Storage Temperature	-55 to 150	°C

^(#) When mounted on 1 inch² FR4 Board, 2 oz of Cu and t≤10s

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C UNLESS OTHERRWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	30			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μA
	Drain Current (V _{GS} = 0)	V _{DS} = Max Rating, T _C = 125 °C			10	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	1	1.6	2.5	V
R _{DS(on)}	Static Drain-source On	V _{GS} = 10V, I _D = 3.5A	0.011	0.016	0.021	Ω
	Resistance	$V_{GS} = 4.5V, I_D = 3.5A$	0.016	0.022	0.028	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
9fs	Forward Transconductance	$V_{DS} = 10V, I_D = 3.5A$		16		S
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V, } f = 1 \text{ MHz, } V_{GS} = 0$		2600		pF
Coss	Output Capacitance			523		pF
C _{rss}	Reverse Transfer Capacitance			174		pF

2/6

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON(2)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	$V_{DD} = 15V, I_D = 3.5A$		68		ns
t _r	Rise Time	$R_G = 4.7\Omega V_{GS} = 4.5 V$ (Resistive Load, Figure 3)		54		ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} =15 V, I _D = 7 A, V _{GS} = 4.5V		28 8.8 12	38	nC nC nC

SWITCHING OFF(2)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)}		$V_{DD} = 15 \text{ V}, I_D = 3.5 \text{ A},$ $R_G = 4.7\Omega, V_{GS} = 4.5 \text{ V}$		65 23		ns ns
		(Resistive Load, Figure 3)				

SOURCE DRAIN DIODE (2)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				7	Α
I _{SDM} (1)	Source-drain Current (pulsed)				28	Α
V _{SD} (2)	Forward On Voltage	I _{SD} = 7 A, V _{GS} = 0			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 7A, di/dt = 100A/µs, V_{DD} = 24 V, T_j = 150°C (see test circuit, Figure 5)		40 46 2.3		ns nC A

Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
2. Pulse width limited by safe operating area.

A7/.

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

4/6

SO-8 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45	(typ.)		
D	4.8		5.0	0.188		0.196
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S			8 (1	max.)		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

477. 6/6