Program Locality Homework

Jiupeng Zhang

1. Consider the abc examples in Figure 1. Give the order that has the best locality and show that the order is indeed optimal.

Answer: The order with the best locality and its corresponding *reuse distances* are:

$$rd: \quad \infty \quad 1 \quad \infty \quad 1 \quad \infty \quad 1$$
 $trace: \quad a \quad a \quad b \quad b \quad c \quad c$

The *miss ratio* when c = 1 for the above sequence is:

$$mr(1) = P(rd > 1) = \frac{3}{6} = 0.5.$$

Assume there exists an order with a miss ratio less than 0.5, in other words, we must have less than 3 misses during the access. However, apparently, this is not possible because 3 misses must happen in this example (m = 3) when we first visit a, b and c.

That is to say, for any cache with size $c \ge 1$ in this example, the miss ratio $mr(c) \ge 0.5$, so "a a b b c c" is an optimal order with the best locality.

2. • Prove that in the limit form Xiang formula, we always have fp(0) = 0.

Answer: The limit form Xiang formula is:

$$\lim_{n o\infty}fp(x)=m-\sum_{i=x+1}^\infty{(i-x)P(rt=i)}$$
 For $x=0$, $\lim_{n o\infty}fp(0)=m-\sum_{i=1}^\infty{iP(rt=i)}-$ Eq. 1

Now, consider the infinite long $n=\infty$ trace has a cycle C with a size of c, indicates that all data blocks will be visited in a single loop, such that the size of distinct data blocks m within the whole trace is the same as the m in C.

The *Eq.* 1 defined P(rt = i) as the portion of accesses that have reuse time i, thus

$$\sum_{i=1}^{\infty}iP(rt=i)=\sum_{i=1}^{\infty}irac{rt(i)}{c}$$
 — Eq. 2

As we can see, *c* equals to the number of accesses in within a cycle.

Then, we define $B^j(j \in [1, m])$ as the j_{th} distinct data block in a cycle, so $rt(B^j, i)$ represents the number of accesses on the j_{th} block whose reuse time is i, therefore

$$\sum_{i=1}^{\infty}iP(rt=i)=\sum_{j=1}^{m}\sum_{i=1}^{\infty}irac{rt(B^{j},i)}{c}-$$
 Eq. 3

Combined *Eq.* 3 with *Eq.* 1, so that

$$\lim_{n o\infty}fp(0)=m-\sum_{j=1}^m\sum_{i=1}^\infty irac{rt(B^j,i)}{c}$$
 — Eq. 4

For each distinct data block B, we know that $\sum_{i=1}^{\infty} i \times rt(B,i) = c$, substituting is into Eq. 4, we get $\lim_{n\to\infty} fp(0) = m - \frac{m\times c}{c} = m - m = 0$

Therefore, fp(0) = 0.

 Does the conclusion hold for finite length traces? If yes, give a proof; otherwise, show a counter example.

Answer: The Xiang formula is:

$$\lim_{n o \infty} fp(x) = m - rac{1}{n-x+1} \Big(\sum_{i=x+1}^{n-1} (i-x)rt(i) + \sum_{k=1}^m (f_k-x)I(f_k>x) + \sum_{k=1}^m (l_k-x)I(l_k>x) \Big)$$
 For $x=0$, $\lim_{n o \infty} fp(0) = m - rac{1}{n+1} \Big(\sum_{i=1}^{n-1} i imes rt(i) + \sum_{k=1}^m f_k imes I(f_k>0) + \sum_{k=1}^m l_k imes I(l_k>0) \Big)$

Since
$$\sum_{k=1}^m f_k \times I(f_k > 0) + \sum_{k=1}^m l_k \times I(l_k > 0) = \sum_{k=1}^m (f_k + l_k + rt_k - rt_k)$$
, so $\lim_{n \to \infty} fp(0) = m - \frac{1}{n+1} \Big(\sum_{i=1}^{n-1} i \times rt(i) + \sum_{k=1}^m (f_k + l_k + rt_k - rt_k) \Big)$

For $f_k + l_k + rt_k = n + 1$, we can derive

$$\lim_{n o\infty}fp(0)=m-rac{1}{n+1}\Big(\sum_{i=1}^{n-1}i imes rt(i)+m(n+1)-\sum_{k=1}^{m}rt_k\Big)$$

Besides, as two representatives of total reuse distance in the trace, $\sum_{i=1}^{n-1} i \times rt(i) = \sum_{k=1}^{m} rt_k$, so that

$$\lim_{n o\infty}fp(0)=m-rac{1}{n+1}\Big(m(n+1)\Big)=m-m=0$$

Therefore, for finite length traces, fp(0) = 0.

3. • Show the derivation from P (A, rt = i) in Figure 3 to fp(A, x) in Figure 4.

Answer: Reference from the reuse time distributions in *Figure 3*:

i

$$P(A, rt = i)$$
 $P(B, rt = i)$
 $P(rt = i)$

 1
 $1/3$
 0
 $1/3$

 2
 $1/3$
 0
 $1/3$

 3M
 0
 $1/3$
 $1/3$

$$fp(A,0) = 1 - \left(P(A,rt=1) + 2 \times P(A,rt=2)\right) = 1 - \left(\frac{1}{3} + 2 \times \frac{1}{3}\right) = 0$$
 $fp(A,1) = 1 - P(A,rt=2) = 1 - \frac{1}{3} = \frac{2}{3}$
 $fp(A,2) = fp(A,3 \le x < 3M) = fp(A,x \ge 3M) = 1 - 0 = 1$

• Show the derivation from fp(B, x) to the miss ratio of array B in its single-array cache mrB(c) and the two-array cache mrAB(B,c).

$$egin{aligned} &mr_B(0)=fp(B,1)-fp(B,0)=rac{1}{3}-0=rac{1}{3}\ &mr_B(rac{1}{3})=fp(B,2)-fp(B,1)=rac{2}{3}-rac{1}{3}=rac{1}{3}\ &mr_B(c < M)=fp(B,x+1)-fp(B,x)|_{fp(B,x)=c}=rac{x+1}{3}-rac{x}{3}=rac{1}{3}\ &mr_B(c \geq M)=fp(B,x+1)-fp(B,x)|_{fp(B,x)=c}=M-M=0 \end{aligned}$$

$$egin{aligned} &mr_{AB}(B,0)=fp(B,1)-fp(B,0)=rac{1}{3}-0=rac{1}{3}\ &mr_{AB}(B,1)=fp(B,2)-fp(B,1)=rac{2}{3}-rac{1}{3}=rac{1}{3}\ &mr_{AB}(B,rac{5}{3})=fp(B,3)-fp(B,2)=rac{3}{3}-rac{2}{3}=rac{1}{3}\ &mr_{AB}(B,c\leq M)=fp(B,x+1)-fp(B,x)|_{fp(x)=c}=rac{x+1}{3}-rac{x}{3}=rac{1}{3}\ &mr_{AB}(B,c>M)=fp(B,x+1)-fp(B,x)|_{fp(x)=c}=M-M=0 \end{aligned}$$