UMJETNA INTELIGENCIJA – 1. MI – 2009/2010

1. ...

2. Stablo se pretražuje algoritmom iterativnog pretraživanja u dubinu. Faktor grananja stabla je b=8. Do dubine d=64 potražuje se 1MB memorije. Do koje dubine se dođe uz istu memorijsku potrošnju, ali s algoritmom pretraživanja u širinu (bez liste posjećenih stanja i bez rekonstrukcije puta)?

3. ...

- 4. Konjuktivni normalni oblik formule $\neg(\neg(P\leftrightarrow Q)\rightarrow\neg R)$ je:
- 5. Zadane su premise:
 - Zemlja je ravna ploča (R)
 - Bruto plaće rastu (B)
 - Ako raste proizvodnja (P), onda bruto plaće rastu ili onda proizvodnja ne raste
 - Djeca vole kolače (K), no bruto plaće ne rastu
 - Proizvodnja raste ako danas nije četvrtak (C) i ako djeca vole kolače

Logička premisa je:

- a) Djeca vole kolače ako i samo ako Zemlja nije ravna ploča
- b) Danas nije četvrtak
- c) Zemlja nije ravna ploča
- d) Ako je danas četvrtak, Zemlja je ravna ploča
- e) Danas je četvrtak i proizvodnja raste
- f) Proizvodnja raste ako i samo ako djeca vole kolače
- 6. Zadane su premise (B ∨ A) i (¬A ∨ ¬B ∨ C). Razrješavanjem ovih premisa rezolucijskim pravilom dobiva se rezolventa koja je logički ekvivalentna formuli:
 - a) $C \vee C$
 - b) $C \leftrightarrow A$
 - c) $C \rightarrow (B \land \neg B)$
 - d) $A \rightarrow (B \land C)$
 - e) $B \rightarrow A$
 - f) $C \rightarrow (C \lor \neg B)$

7. ...

UMJETNA INTELIGENCIJA – 1. MI – 2009/2010

- 8. Zadane su premise: $\neg C \land \neg H$, $G \to \neg (E \to F)$, $A \to (B \lor \neg D)$, $\neg G \leftrightarrow H$, $E \to (C \lor D \lor F)$. Iz navedenog skupa premisa deduktivno slijedi:
 - a) A
 - b) B
 - c) $H \rightarrow D$
 - d) C
 - e) $D \rightarrow C$
 - f) $A \vee B$
- 9. Prostor stanja pretražuje se algoritmom A* i pohlepnim algoritmom najbolji prvi. Zadano je succ(a)={(b,3),(c,2)} , succ(b)={(d,2)} , succ(c)={(d,6)} , succ(d)=0. Ciljni čvor je d, h(d)=0. Prvi element liste otvorenih čvorova je čvor a. Za koje vrijednosti algoritam A* pronalazi optimalan put, dok algoritam najbolji prvi ne pronalazi (pretpostaviti leksikografski poredak između čvorova)?
 - a) h(b)=8, h(c)=2
 - b) h(b)=1, h(c)=2
 - c) h(b)=7, h(c)=1
 - d) h(b)=3, h(c)=2
 - e) h(b)=1, h(c)=6
 - f) h(b)=2, h(c)=4
- 10. ...
- 11. Definiran je skup stanja $S=\{a,b,c,d,e,f\}$. Zadane su duljine prijelaza i funkcije prijelaza: $succ(a)=\{(b,6),(d,2)\}$, $succ(b)=\{(c,3),(d,5)\}$, $succ(c)=\{(d,4),(f,1)\}$, $succ(d)=\{(e,2)\}$, $succ(e)=\{(b,1),(f,6)\}$, succ(f)=0 , h(a)=9 , h(b)=2 , h(c)=1 , h(d)=7 , h(e)=2 , h(f)=0. Odrediti sadržaj otvorenih čvorova O i zatvorenih čvorova C nakon šestog koraka izvođenja algoritma A^* . U nultom koraku O=[(a,0)], C=0.
- 12. ...
- 13. Vrijedi F1, ..., Fn ⊨ G ako i samo ako:
 - a) \models (F1 $\land ... \land$ Fn \land G)
 - b) \vdash (F1 \land ... Fn) \rightarrow G

UMJETNA INTELIGENCIJA – 1. MI – 2009/2010

Machete

- c) \models (F1 $\vee ... \vee$ Fn) \rightarrow G
- d) \vdash (F1 $\land ... \land$ Fn \land G)
- e) $\models \neg (F1 \land ... \land Fn \land \neg G)$
- f) \models (F1 $\land ... \land$ Fn) \rightarrow G
- 14. Zadana je slagalica sa sljedećim početnim pozicijama elemenata (brojeva):
 - $\begin{bmatrix} 1 & 5 & 2 \\ 4 & 3 \\ 7 & 8 & 6 \end{bmatrix}$

Ciljni poredak elemenata je sljedeći:

 $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 \end{bmatrix}$

Ako je h najoptimističnija heuristika, što od navedenog može biti vrijednost od h(s), i to ona najobavještenija?

- a) 1
- b) 3
- c) 0
- d) 9
- e) 6
- f) 4
- 15. Funkcijom succ definirani su prijelazi između stanja (a,b,c,d,e,f): succ(a)={b,c} , succ(b)={c,d} , succ(c)={b,d,e} , succ(d)={a,e} , succ(e)={f} , succ(f)={d}. Ciljni čvor je f. Pretpostavimo leksikografski poredak čvorova. Slijedom ... , c, c, d, b, d čvorove će ispitivati:
 - a) Ograničeno pretraživanje u dubinu (k=2)
 - b) Ograničeno pretraživanje u dubinu (k=3)
 - c) Ograničeno pretraživanje u dubinu (k=4)
 - d) Iterativno pretraživanje u dubinu
 - e) Pretraživanje u dubinu
 - f) Pretraživanje u širinu