一、 資料預處理

1. 匯入資料

1.1 匯入資料

2. 需要 One-hot encoding 的類別行欄位整理

1.2 需要one-hot encoding的類別型欄位

1.3 將需要做onehot encoding的欄位做成一表格

227]:	<pre>1 v nominal_df = df[['school','sex','address','famsize','Pstatus','schoolsup','famsup','paid','activities','num 2</pre>											'nursery						
227]:	execu	ted in 37r	ns, fin	ished 22:0	3:48 2020-	12-19												
/]:		school	sex	address	famsize	Pstatus	schoolsup	famsup	paid	activities	nursery	higher	internet	romantic	Mjob	Fjob	reason	guardian
	0	GP	F	U	GT3	А	yes	no	no	no	yes	yes	no	no	at_home	teacher	course	mother
	1	GP	F	U	GT3	Т	no	yes	no	no	no	yes	yes	no	at_home	other	course	father
	2	GP	F	U	LE3	Т	yes	no	yes	no	yes	yes	yes	no	at_home	other	other	mother
	3	GP	F	U	GT3	Т	no	yes	yes	yes	yes	yes	yes	yes	health	services	home	mother
	4	GP	F	U	GT3	Т	no	yes	yes	no	yes	yes	no	no	other	other	home	father
	390	MS	М	U	LE3	Α	no	yes	yes	no	yes	yes	no	no	services	services	course	other
	391	MS	М	U	LE3	Т	no	no	no	no	no	yes	yes	no	services	services	course	mother
	392	MS	М	R	GT3	Т	no	no	no	no	no	yes	no	no	other	other	course	other
	393	MS	М	R	LE3	Т	no	no	no	no	no	yes	yes	no	services	other	course	mother
	394	MS	М	U	LE3	Т	no	no	no	no	yes	yes	yes	no	other	at_home	course	father

395 rows × 17 columns

▼ 1.4 執行one hot encoding

28]:	2 data_dummies													
	execute	ed in 76ms, f	finished 22:03:	49 2020	-12-19									
8]:		school_GP	school_MS	sex_F	sex_M	address_R	address_U	famsize_GT3	famsize_LE3	Pstatus_A	Pstatus_T	 Fjob_other	Fjob_services	Fjob_teach
	0	1	0	1	0	0	1	1	0	1	0	 0	0	
	1	1	0	1	0	0	1	1	0	0	1	 1	0	
	2	1	0	1	0	0	1	0	1	0	1	 1	0	
	3	1	0	1	0	0	1	1	0	0	1	 0	1	
	4	1	0	1	0	0	1	1	0	0	1	 1	0	
	390	0	1	0	1	0	1	0	1	1	0	 0	1	
	391	0	1	0	1	0	1	0	1	0	1	 0	1	
	392	0	1	0	1	1	0	1	0	0	1	 1	0	
	393	0	1	0	1	1	0	0	1	0	1	 1	0	
	394	0	1	0	1	0	1	0	1	0	1	 0	0	

3. 合併所有資料

1.5 將處理後的資料與原資料concat起來

1 2	df_n		pd.	concat([df,dat	a_dumm	ies],a	xis=1	1)						
executed in 57ms, finished 22:03:49 2020-12-19															
	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 Fjob_other	Fjob_services	Fjob_teacher	reason_course	reason_home
0	GP	F	18	U	GT3	Α	4	4	at_home	teacher	 0	0	1	1	0
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 1	0	0	1	0
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 1	0	0	0	0
3	GP	F	15	U	GT3	Т	4	2	health	services	 0	1	0	0	1
4	GP	F	16	U	GT3	Т	3	3	other	other	 1	0	0	0	1
390	MS	М	20	U	LE3	Α	2	2	services	services	 0	1	0	1	0
391	MS	М	17	U	LE3	Т	3	1	services	services	 0	1	0	1	0
392	MS	М	21	R	GT3	Т	1	1	other	other	 1	0	0	1	0
393	MS	М	18	R	LE3	T	3	2	services	other	 1	0	0	1	0
394	MS	М	19	U	LE3	Т	1	1	other	at_home	 0	0	0	1	0

4. 篩選要丟入模型的 X 與 y 欄位

1.6 整理成丟入模型需使用的X與y

```
Out[230]:
         age Medu Fedu traveltime studytime failures famrel freetime goout Dalc ... Fjob_other Fjob_services Fjob_teacher reason_course reason_hom
               4 2 2 0 4 3 4 1 ...
                                                 0
                                                        0
       1 17
                         2
                             0
                         3
       3 15
            4 2
                             0 3
                                     2 2
                                                  0
      4 16 3 3 1 2 0 4 3 2 1 ...
      390 20 2 2 1 2 2 5 5 4 4 ...
      391 17
                             0
                                        5
                                           3 ...
                                                  0
                                                               0
            3
      392 21 1 1
                         1 3 5 5 3 3 ...
                                                  1
                                                        0
                                                              0
      393 18
                     3
                          1
                             0
                                                        0
                                                               0
      394 19 1 1 1 1 0 3 2 3 3 ...
      395 rows × 59 columns
executed in 32ms, finished 22:03:51 2020-12-19
Out[231]:
         age Medu Fedu traveltime studytime failures famrel freetime goout Daic ... Fjob_other Fjob_services Fjob_teacher reason_course reason_ho
      0 18 4 4 2 2 0 4 3 4 1 ...
       1 17
                         2
                             0
                                     3
                                        3
                                                        0
            1 1 1 2
      2 15
                             3
                                4
                                    3
                                        2
                                                               0
       3 15
               2
                         3
                             0
                                3
      390 20 2 2 1 2 2 5
      391 17
                         1
                             0
                                                               0
      392 21 1 1 1 1 3 5 5 3 3 ...
      393 18
               2
                    3
                         1
                             0
                                                        0
                                                               0
            3
                                           3 ...
      394 19 1 1 1 1 0 3 2 3 3 ...
                                                  0
                                                        0
                                                               0
      395 rows × 58 columns
executed in 19ms, finished 22:03:51 2020-12-19
Out[232]:
        G3
      0 6
       1 6
      1.7 轉換丟入模型的值之型態
executed in 6ms, finished 22:03:52 2020-12-19
```

二、 切割訓練&測試資料集,並將資料及標準化

→ train_test_split(X,y,test_size = 0.3, random_state= 3)

▼ 1.8 train test 切割

三、 PCA 降維 > 以 linear regression 為標準選取最佳維度

```
In [270]: 1 v ## PCAPPPP

from sklearn.decomposition import PCA

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score

mse_scores_train = []
mse_scores_train = []
r2_scores_train = []
r2_scores_train = []
coef = []
times = [x for x in range(1,50)]
for i in times:

pca = PCA(n_components = i)
X_train_pca = pca.fit_transform(X_train_std)
X_test_pca = pca.transform(X_train_std)
X_test_pca = pca.transform(X_train_std)

x_t slr = LinearRegression()

slr = LinearRegression()

slr.fit(X_train_pca,y_train)
coef_append(slr.coef_)
y_train_pred = slr.predict(X_train_pca)
y_test_pred = slr.predict(X_test_pca)

mse_scores_train.append(mean_squared_error(y_train,y_train_pred))
mse_scores_train.append(r2_score(y_train,y_train_pred))
r2_scores_train.append(r2_score(y_train,y_train_pred))
r2_scores_train.append(r2_score(y_test,y_test_pred))
executed in 239ms_finished 2209:16 2000-12-19
```

→ MSE (train 為藍色, test 為紅色):

→ R2 (train 為藍色, test 為紅色):

→ 選取最佳 n_components = 43

四丶 n components=43下 模型最佳結果

1. linear regression:

✓ 模型與參數設定:

✓ 特徵 coef 與誤差指標:

```
In [286]:
                  slr = LinearRegression()
                   slr.fit(X_train_pca,y_train)
                   print(slr.coef_)
                   y train pred = slr.predict(X train pca)
                   y_test_pred = slr.predict(X_test_pca)
              9 w
                  print('MSE train: %.3f, test: %.3f'%(
             10
                                 mean_squared_error(y_train,y_train_pred),
             11
                                 mean_squared_error(y_test,y_test_pred)))
             12 v
                   print('R^2 train: %.3f, test: %.3f'%(
             13
                                 r2_score(y_train,y_train_pred),
                                 r2_score(y_test,y_test_pred)))
            executed in 21ms, finished 01:08:06 2020-12-20
            [-7.23303109e-01 5.92078494e-01 3.53591634e-01 -1.03462784e-02
              -1.11829403e+00 -8.52503155e-01 -1.73132565e-02 -5.76414966e-02 1.08645955e-01 3.79415104e-01 4.41537498e-01 4.84176606e-01
               2.33082463e-01 -7.20205994e-01 8.09238286e-01 6.76578777e-01
              1.06157272e+00 3.32525535e-02 1.73931996e-01 -6.82317313e-02 1.99488047e-01 -1.70579178e-01 4.10256092e-01 -7.58427263e-01
```

MSE train: 3.339, test: 3.595 R^2 train: 0.839, test: 0.831

2. Ridge regression

- ✓ 調參情況 (gamma):

 - → MSE(左圖) 與 R2(右圖) 折線圖 (train 為藍色, test 為紅色):

✓ 模型與參數設定:(alpha = 1)

```
In [293]: 1 ridge executed in 12ms, finished 01:10:58 2020-12-20
```

✓ 特徵 coef 與誤差指標:

```
In [292]:
                ridge = Ridge(alpha=1).fit(X train,y train) ## alpha = 1
                ridge.fit(X_train_pca,y_train)
                print(ridge.coef_)
                y_train_pred = ridge.predict(X_train_pca)
                y_test_pred = ridge.predict(X_test_pca)
           9
                print('MSE train: %.3f, test: %.3f'%(
           10
                            mean_squared_error(y_train,y_train_pred),
           11
                            mean_squared_error(y_test,y_test_pred)))
           12
                print('R^2 train: %.3f, test: %.3f'%(
           13
                            r2_score(y_train,y_train_pred),
           14
                            r2_score(y_test,y_test_pred)))
          executed in 22ms, finished 01:10:53 2020-12-20
          [-7.22781136e-01 5.91473184e-01 3.53166326e-01 -1.03334937e-02
            -1.11684144e+00 -8.51280623e-01 -1.72872367e-02 -5.75525348e-02
            1.08452569e-01 3.78733825e-01 4.40670068e-01 4.83203209e-01
```

```
-1.11684144e+00 -8.51280623e-01 -1.72872367e-02 -5.75525348e-02  
1.08452569e-01 3.78733825e-01 4.40670068e-01 4.83203209e-01  
2.32580106e-01 -7.18623851e-01 8.07332285e-01 6.74925417e-01  
1.05879147e+00 3.31619037e-02 1.73441653e-01 -6.80247543e-02  
1.98837902e-01 -1.70022373e-01 4.08886983e-01 -7.55589514e-01  
-1.11763969e-01 -2.65468089e-01 6.80536961e-03 -6.87494871e-01  
3.25672463e-02 1.29848702e-01 7.46162131e-01 1.61863353e-02  
1.42696781e-01 -1.46829081e-01 2.79547989e-01 -5.92946338e-01  
-6.66915192e-01 -1.77620369e-01 -4.19379512e-02 6.18730891e-01  
-1.72770876e+00 1.69372204e-14 -1.72682162e-15]  
MSE train: 3.340, test: 3.597  
R^2 train: 0.839, test: 0.831
```

3. Lasso Regression

- ✓ 調參情況(alpha):

 - → MSE(左圖) 與 R2(右圖) 折線圖 (train 為藍色, test 為紅色):

✓ 模型與參數設定:(alpha = 0.01)

✓ 特徵 coef 與誤差指標:

```
In [298]:
                  lasso = Lasso(alpha=0.01).fit(X_train,y_train)
                  lasso.fit(X_train_pca,y_train)
                  print(lasso.coef_)
                  y_train_pred = lasso.predict(X_train_pca)
                  y_test_pred = lasso.predict(X_test_pca)
             8
             9
                  print('MSE train: %.3f, test: %.3f'%(
            10
                               mean_squared_error(y_train,y_train_pred),
            11
                               mean_squared_error(y_test,y_test_pred)))
            12
                  print('R^2 train: %.3f, test: %.3f'%(
            13
                               r2_score(y_train,y_train_pred),
            14
                               r2_score(y_test,y_test_pred)))
           executed in 33ms, finished 01:15:44 2020-12-20
           [-7.21309912e-01 5.89253927e-01 3.50267845e-01 -6.93157345e-03
             -1.11470431e+00 -8.48539493e-01 -1.31590497e-02 -5.33752272e-02
              1.03724468e-01 3.74450320e-01 4.36104617e-01 4.78616673e-01
             2.27121060e-01 -7.14129496e-01 8.02722289e-01 6.69817666e-01 1.05432275e+00 2.56635695e-02 1.66127807e-01 -5.98310350e-02
             1.90502048e-01 -1.61457513e-01 4.01001946e-01 -7.48052913e-01
            -1.01677224e-01 -2.55692203e-01 0.00000000e+00 -6.78025182e-01
             1.98378398e-02 1.17386668e-01 7.36090269e-01 1.23703443e-03 1.27474333e-01 -1.29452291e-01 2.61741993e-01 -5.75978823e-01
             -6.48154825e-01 -1.51015548e-01 -7.25732365e-03 5.80609813e-01
            -1.69374669e+00 0.00000000e+00 -0.00000000e+00]
           MSE train: 3.345, test: 3.598
           R^2 train: 0.839, test: 0.831
```

我的分析與比較

模型	参數 設定	MSE	R2	各特徵相關性(參數)
linear	預設	Train: 3.339 Test: 3.595	Train: 0.839 Test: 0.831	[-7.23303109e-01 5.92078494e-01 3.53591634e-01 -1.03462784e-02 -1.11829403e+00 -8.52503155e-01 -1.73132565e-02 -5.76414966e-02 1.08645955e-01 3.79415104e-01 4.41537498e-01 4.84176606e-01 2.33082463e-01 -7.20205994e-01 8.09238286e-01 6.76578777e-01 1.06157272e+00 3.32525535e-02 1.73931996e-01 -6.82317313e-02 1.99488047e-01 -1.70579178e-01 4.10256092e-01 -7.58427263e-01 -1.12198390e-01 -2.66497191e-01 6.44171963e-03 -6.90650968e-01 3.26794071e-02 1.30411678e-01 7.49890900e-01 1.62749527e-02 1.43526986e-01 -1.47805551e-01 2.81554760e-01 -5.97588964e-01 -6.72892768e-01 -1.79450293e-01 -4.24730511e-02 6.29746176e-01 -1.78454985e+00 1.35114495e+13 1.33687847e+13]
Ridge	alpha = 1	Train: 3.340 Test: 3.597	Train: 0. 839 Test: 0. 831	[-7.22781136e-01 5.91473184e-01 3.53166326e-01 -1.03334937e-02 -1.11684144e+00 -8.51280623e-01 -1.72872367e-02 -5.75525348e-02 1.08452569e-01 3.78733825e-01 4.40670068e-01 4.83203209e-01 2.32580106e-01 -7.18623851e-01 8.07332285e-01 6.74925417e-01 1.05879147e+00 3.31619037e-02 1.73441653e-01 -6.80247543e-02 1.98837902e-01 -1.70022373e-01 4.08886983e-01 -7.55589514e-01 -1.11763969e-01 -2.65468089e-01 6.80536961e-03 -6.87494871e-01 3.25672463e-02 1.29848702e-01 7.46162131e-01 1.61863353e-02 1.42696781e-01 -1.46829081e-01 2.79547989e-01 -5.92946338e-01 -6.66915192e-01 -1.777620369e-01 -4.19379512e-02 6.18730891e-01 -1.72770876e+00 1.69372204e-14 -1.72682162e-15]
Lasso	alpha = 0.01	Train: 3.345 Test: 3.598	Train: 0.839 Test: 0.831	[-7.21309912e-01 5.89253927e-01 3.50267845e-01 -6.93157345e-03 -1.11470431e+00 -8.48539493e-01 -1.31590497e-02 -5.33752272e-02 1.03724468e-01 3.74450320e-01 4.36104617e-01 4.78616673e-01 2.27121060e-01 -7.14129496e-01 8.02722289e-01 6.69817666e-01 1.05432275e+00 2.56635695e-02 1.66127807e-01 -5.98310350e-02 1.90502048e-01 -1.61457513e-01 4.01001946e-01 -7.48052913e-01 -1.01677224e-01 -2.55692203e-01 0.00000000e+00 -6.78025182e-01 1.98378398e-02 1.17386668e-01 7.36090269e-01 1.23703443e-03 1.27474333e-01 -1.29452291e-01 2.61741993e-01 -5.75978823e-01 -6.48154825e-01 -1.51015548e-01 -7.25732365e-03 5.80609813e-01 -1.69374669e+00 0.00000000e+00 -0.00000000e+00]

● (加分題)有關於共線性的問題?

→分析:

整理結果後發現,基本上三者回歸模型之評估指標表現都相差不大,但模型卻是各有不同的特點:

- 1. linear regression:這就是我們一般聽到的線性迴歸模型,它考慮了所有的特徵與預測結果的相關性,因此模型也很容易受到離群值的影響而有誤差。 另外,多個特徵丟入模型也可能容易造成 overfitting 或是模型效能不佳的結果,就是我們一般所說的「共線性」的問題。
- 2. Ridge regression: 這是為了解決共線性所延伸出來的一種方法,它使用 L2 正規化,避免模型複雜度太高以及過度配適的問題,適合較低維稠密的特

- 徵。在選取特徵時,會將影響預測成果相關性越大的特徵之相關係數調整愈大,反之,則愈小,因此,通常在做模型時會首選 Ridge 而非 Lasso。
- 3. Lasso regression:這是為了解決共線性所延伸出來的一種方法,它使用 L1 正規化,避免模型過度配適的問題,適合較高維稀疏的特徵,例如特徵很多時卻只有一小部分是真正重要的,則選擇此方法建模。在選取特徵時,會使某些係數變為 0,因此也可能影響模型預測正確性。但 Lasso 也有較好地理解性,因為使用較少特徵,也較好解釋模型。

→ 結論:

從這次的建模成果可以看到,三者的預測準確程度都差不多,且從相關係數也可以觀察到特徵之間存在著共線性的關係。例如:Lasso 將一些較不重要的特徵之係數轉為 0,卻還是對預測結果未有什麼影響。但值得注意的是,我們觀察了只會將不重要特徵之權重調低的 Ridge 方法,它採取的特徵雖較Lasso 來得多與雜,卻有比 Lasso 來得稍微好一點點的表現,此點也印證了上面我們對模型方法所做的分析。