Concavité vs Convexité

$$\operatorname{Si} f''(x) > 0 \implies \text{f est convexe (ressemble à un u)}$$

 $\operatorname{Si} f''(x) < 0 \implies \text{f est concave (ressemble à un n)}$

Nombres duaux

Un nombre dual est de la forme

$$a + b\epsilon$$
 avec $\epsilon^2 = 0$

$$\frac{a+b\epsilon}{c+d\epsilon} = \frac{a}{c} + \frac{bc-ad}{c^2}\epsilon$$
 Lorsque $c \neq 0$ indéfinit lorsque $c = 0$

$$(u+v\epsilon)^k = u^k + ku^{(k-1)}v\epsilon$$

$$F(u+v\epsilon) = F(u) + vF'(u)\epsilon$$

Série de Taylor

$$T_n(x,a) = \sum_{k=0}^n rac{f^k(a)}{k!} (x-a)^k$$

Exemple

$$a=0, \ f(x)=\sin(x), \qquad f(a)=f(0)=0, \ f'(x)=\cos(x), \qquad f'(a)=f'(0)=1, \ f''(x)=-\sin(x), \qquad f''(a)=f''(0)=0, \ f^{(3)}(x)=-\cos(x), \qquad f^{(3)}(a)=f^{(3)}(0)=-1.$$

La série de Taylor sera :

Tháoria

$$T_{3}(x,0) = \frac{f^{(0)}(0)(x-0)^{0}}{0!} + \frac{f^{(1)}(0)(x-0)^{1}}{1!} + \frac{f^{(2)}(0)(x-0)^{2}}{2!} + \frac{f^{(3)}(0)(x-0)^{3}}{3!}$$

$$= \frac{\sin(0)(x-0)^{0}}{0!} + \frac{\cos(0)(x-0)^{1}}{1!} + \frac{-\sin(0)(x-0)^{2}}{2!} + \frac{-\cos(0)(x-0)^{3}}{3!}$$

$$= \frac{0*1}{1} + \frac{1*x}{1} + \frac{0*x^{2}}{2} + \frac{-1*x^{3}}{6}$$

$$= 0 + x + 0 - \frac{x^{3}}{3}$$

$$= x - \frac{1}{3}x^{3}$$

Si f est égale à sa série de Taylor développé a point x_0 , dans un interval autour de x_0 , alors on dit que f est analytique sur cette interval.

Si f est égale à une série infinie sur un intervalle alors cette série est celle de Taylor pour \mathbf{x}_0

Formules en Algèbre Linéaire

Norme d'un Vecteur

La norme d'un vecteur $\mathbf{v} = egin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix}$ (aussi appelée longueur ou module) se calcule avec

la formule Euclidienne:

$$||\mathbf{v}||=\sqrt{v_1^2+v_2^2+\cdots+v_n^2}$$

Produit Vectoriel de Deux Vecteurs

Le produit vectoriel de deux vecteurs en 3 dimensions ($\mathbf{a}=\begin{bmatrix}a_1\\a_2\\a_3\end{bmatrix}$) et ($\mathbf{b}=\begin{bmatrix}b_1\\b_2\\b_3\end{bmatrix}$) est

donné par :

$$\mathbf{a} imes \mathbf{b} = egin{array}{ccc|c} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ \end{array} = egin{array}{ccc|c} a_2b_3 - a_3b_2 \ a_3b_1 - a_1b_3 \ a_1b_2 - a_2b_1 \ \end{array}$$

Le résultat du produit vectoriel est un vecteur perpendiculaire aux deux vecteurs (${f a}$) et (${f b}$).

Angle entre Deux Vecteurs

L'angle (θ) entre deux vecteurs (\mathbf{a}) et (\mathbf{b}) peut être trouvé en utilisant le produit scalaire :

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \, ||\mathbf{b}||}$$

où:

- ($\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$) est le produit scalaire de (\mathbf{a}) et (\mathbf{b}).
- ($||\mathbf{a}||$) et ($||\mathbf{b}||$) sont les normes (longueurs) de (\mathbf{a}) et (\mathbf{b}), respectivement.

Pour obtenir l'angle (θ), on prend l'arccosinus :

$$heta = \cos^{-1}\left(rac{\mathbf{a}\cdot\mathbf{b}}{||\mathbf{a}||\,||\mathbf{b}||}
ight)$$

Multiplication de Matrices

Pour multiplier deux matrices (A) et (B), le nombre de colonnes de (A) doit être égal au nombre de lignes de (B). Si (A) est une matrice de dimension ($m \times n$) et (B) une matrice de dimension ($n \times p$), la matrice résultante ($C = A \times B$) aura la dimension ($m \times p$).

La formule générale pour la multiplication de matrices est :

$$C_{ij} = \sum_{k=1}^n A_{ik} B_{kj}$$

Exemple de Multiplication de Matrices et de Transposée

$$A = egin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{pmatrix} \quad ext{(dimension } 2 imes 3)$$

$$B = egin{pmatrix} 7 & 8 \ 9 & 10 \ 11 & 12 \end{pmatrix} \quad ext{(dimension } 3 imes 2)$$

Comme A est de dimension 2×3 et B est de dimension 3×2 , nous pouvons les multiplier. La matrice résultante $C = A \times B$ aura la dimension 2×2 .

Calcul de $C = A \times B$

Chaque élément C_{ij} de C est calculé en prenant le produit scalaire de la i-ème ligne de A avec la j-ème colonne de B.

$$C_{11} = (1)(7) + (2)(9) + (3)(11) = 7 + 18 + 33 = 58$$
 $C_{12} = (1)(8) + (2)(10) + (3)(12) = 8 + 20 + 36 = 64$
 $C_{21} = (4)(7) + (5)(9) + (6)(11) = 28 + 45 + 66 = 139$
 $C_{22} = (4)(8) + (5)(10) + (6)(12) = 32 + 50 + 72 = 154$

Ainsi, la matrice résultante C est :

$$C = A imes B = egin{pmatrix} 58 & 64 \ 139 & 154 \end{pmatrix}$$

Transposée des Matrices

La transposée d'une matrice A est obtenue en échangeant ses lignes et colonnes. Si A est une matrice 2×3 , alors A^T (la transposée de A) sera une matrice 3×2 . De même, si B est une matrice 3×2 , alors B^T sera une matrice 2×3 .

1. Transposée de A:

$$A^T=egin{pmatrix}1&4\2&5\3&6\end{pmatrix}$$

2. Transposée de
$$B$$
:
$$B^T = \begin{pmatrix} 7 & 9 & 11 \\ 8 & 10 & 12 \end{pmatrix}$$