

第四章二元关系和函数

等价关系和偏序关系 函数的定义和性质、函数的复合和反函数

郝杰

haojie@bupt.edu.cn

北京邮电大学信息安全中心

4.5 等价关系和偏序关系

- 等价关系的定义与实例
- 等价类及其性质
- 商集与集合的划分
- 等价关系与划分的一一对应
- 偏序关系
- 偏序集与哈斯图
- 偏序集中的特定元素

定义 等价关系

□ 设 R 为 A 上的关系. 如果 R 是自反的、对称的和传递的,则称 R 为 A 上的等价关系. 设 R 是一个等价关系, 若 $\langle x,y \rangle \in R$, 称 x 等价于y, 记做 $x \sim y$.

■ 实例:

设 $A=\{1,2,...,8\}$, 如下定义 A上的关系 R:

$$R = \{ \langle x, y \rangle \mid x, y \in A \land x \equiv y \pmod{3} \},$$

其中 $x \equiv y \pmod{3}$ 叫做 x = y 模3相等,即 x 除以3的余数与 y 除以3的余数相等.

■ 集合A上模3等价关系的关系图

设
$$A = \{1,2,...,8\}, A$$
 上关系
$$R = \{ \langle x,y \rangle | x,y \in A \land x \equiv y \pmod{3} \}.$$

定义 等价类

□ 设 R 非空集合A上的等价关系. 对于 $\forall x \in A$,令

$$[x]_R = \{ y \mid y \in A \land xRy \}$$

称 $[x]_R$ 为 x 关于R 的等价类, 简称为 x 的等价类, 简记为[x].

■实例:

集合 $A=\{1,2,...,8\}$ 上模 3 等价关系的等价类:

$$[1] = [4] = [7] = \{1, 4, 7\};$$

$$[2] = [5] = [8] = \{2, 5, 8\};$$

$$[3] = [6] = \{3, 6\}.$$

等价类

定理 等价类的性质

- \square 设 R 是非空集合 A 上的等价关系,则
 - 1) $\forall x \in A$, [x]是 A 的非空子集.
 - 2) $\forall x, y \in A$, 如果 x R y, 则 [x] = [y].
 - 3) $\forall x, y \in A$, 如果 $x \times y$, 则 [x] 与 [y] 不交.
 - 4) $\cup \{ [x] | x \in A \} = A$,即所有等价类的并集就是A.

等价类

■实例:

集合 $A=\{1,2,...,8\}$ 上模 3 等价关系的等价类:

$$[1] = [4] = [7] = \{1, 4, 7\};$$

 $[2] = [5] = [8] = \{2, 5, 8\};$
 $[3] = [6] = \{3, 6\}.$

- 以上3 类两两不交,且
- $\bullet \ \{1,4,7\} \cup \{2,5,8\} \cup \{3,6\} = \{1,2,\ldots,8\}.$

商集

定理 商集

口 设 R 是非空集合 A 上的等价关系,以R的所有等价 类作为元素的集合称为 A 关于 R 的商集,记做A/R, 即 $A/R = \{ [x]_R | x \in A \}$

■ 实例:

集合 $A=\{1,2,...,8\}$ 上模 3 等价关系 R 的等价类为:

$$[1] = [4] = [7] = \{1, 4, 7\};$$

$$[2] = [5] = [8] = \{2, 5, 8\};$$

$$[3] = [6] = \{3, 6\}.$$

等价关系R的商集为 $A/R = \{ \{1,4,7\}, \{2,5,8\}, \{3,6\} \}.$

集合的划分

定义

- □ 设 A 为非空集合, 若 A 的子集族 π ($\pi \subseteq P(A)$) 满足下面条件:
 - 1) $\emptyset \notin \pi$;
 - 2) $\forall x \forall y (x, y \in \pi \land x \neq y \rightarrow x \cap y = \emptyset);$
 - 3) $\cup \pi = A$.

则称 π 是 A 的一个划分, 称 π 中的元素为 A 的划分块.

集合的划分

■实例:

设 $A = \{a, b, c, d\}$. 给定 $\pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6$ 如下: $\pi_1 = \{ \{a, b, c\}, \{d\} \};$ $\pi_2 = \{ \{a, b\}, \{c\}, \{d\} \};$ $\pi_3 = \{ \{a\}, \{a, b, c, d\} \};$ $\pi_4 = \{ \{a, b\}, \{c\} \};$

 $\pi_5 = \{ \emptyset, \{a, b\}, \{c, d\} \};$

 $\pi_6 = \{ \{a, \{a\}\}, \{b, c, d\} \}.$

等价关系与划分的一一对应

- 商集 A/R 就是 A 的一个划分 (称为由 R 导出的划分),不同的商集对应于不同的划分.
- 任给 A 的一个划分 π , 如下定义 A 上的关系 R: $R = \{\langle x, y \rangle \mid x, y \in A \land x = y \in \pi$ 的同一划分块中} 则 R 为 A 上的等价关系,且该等价关系确定的商集就是 π .

■ 例如:设 $A=\{1,2,3,4\}$,在 $A\times A$ 上定义二元关系R:

$$<,>\in R \Leftrightarrow x+y=u+v,$$

求 R 导出的划分.

解:
$$A \times A = \{<1,1>, <1,2>, <1,3>, <1,4>, <2,1>, <2,2>, <2,3>, <2,4>, <3,1>, <3,2>, <3,3>, <3,4>, <4,1>, <4,2>, <4,3>, <4,4>}. 根据 的 $x + y = 2,3,4,5,6,7,8$ 将 $A \times A$ 划分成7个等价类: $(A \times A)/R = \{ \{<1,1>\}, \{<1,2>,<2,1>\},$ $\{<1,3>, <2,2>, <3,1>\},$ $\{<1,4>, <2,3>, <3,2>, <4,1>\},$ $\{<2,4>, <3,3>, <4,2>\},$ $\{<3,4>, <4,3>\}, \{<4,4>\} \}.$$$

偏序关系

定义 偏序关系

□ 设 R 为 A 上的关系. 如果 R 是自反的、反对称的和传递的,则称 R 为 A 上的偏序关系,简称偏序,记作 \leq . 设 R 是一个偏序关系,若 \leq x, $y>\in R$,记作 \leq x \leq y,读作 \leq x "小于或等于" \leq y.

■实例:

大于等于关系,小于等于关系,整除关系. 集合上的包含关系.

偏序关系

- □ 设 R 为非空集合A上的偏序关系, $x, y \in A$:
 - \triangleright 如果 $x \leq y$ 或者 $y \leq x$, 则称 x = y 可比.
 - \triangleright 如果 $x \leq y$ 并且 $y \neq x$, 则称 x < y.
 - > 如果 x < y且不存在 $z \in A$ 使得 x < z < y, 则称 y 覆盖 x.
- 实例: 集合 *A*={1, 2, 4, 6}, 考虑整除关系.
 - 1与 1, 2, 4, 6 都是可比的.
 - 4和6覆盖2.
 - 2 覆盖 1,4 不覆盖 1.

偏序关系

定义偏序集和全序集

- □ 集合 A 和 A 上的偏序关系 \leq 一起叫做偏序集,记作 $\leq A$, \leq >.
- □ 设<*A*, < >为偏序集, 若对于 \forall *x*, $y \in A$, x与y都是可比的,则称 < 为A上的全序关系, 且称 < A, < >为全序集.

■ 实例:

- \triangleright 幂集P(A)和包含关系构成偏序集<P(A), R_{\subseteq} >.
- \rightarrow 正整数集合和整除关系构成偏序集 $< Z, R_{**} >$.
- ➤ 整数集和小于等于关系构成全序集<Z,≤>.

哈斯图 (Hasse Diagrams)

- □ 利用偏序自反、反对称、传递性简化的关系图
 - ▶ 如果 y 覆盖 x, 则在结点 y 和 x 之间连一条线.
 - > 结点位置按照它们在偏序中的次序从底向上排列.

■ 例如:

<{ 1, 2, 3, 4, 5, 6, 7, 8, 9 }, $R_{\underline{\text{wk}}}$ > <P({a, b, c}), $R_{\underline{c}}$ >

哈斯图 (Hasse Diagrams)

■ 实例:

已知偏序集<A,R>的哈斯图如右图所示,试 求出集合A和关系R的 表达式.

解: $A = \{a, b, c, d, e, f, g, h\}$. $R = I_A \cup \{\langle b, d \rangle, \langle b, e \rangle, \langle b, f \rangle, \langle c, d \rangle,$

$$< c, e>, < c, f>, < d, f>, < e, f>, < g, h> \}.$$

> 全序集的哈斯图?

偏序集的特定元素

定义

- □ 设<A, <>为偏序集, $B \subseteq A$. 若 $\exists y \in B$,
- 1) 使得 $\forall x (x \in B \rightarrow y \leq x)$ 成立, 则称 $y \rightarrow B$ 的最小元.
- 2) 使得 $\forall x (x \in B \rightarrow x \leq y)$ 成立, 则称 y 为 B 的最大元.
- 3) 使得 $\neg\exists x (x \in B \land x \prec y)$ 成立, 则称 $y \rightarrow B$ 的极小元.
- 4) 使得 $\neg\exists x (x \in B \land y \prec x)$ 成立, 则称 $y \rightarrow B$ 的极大元.

偏序集的特定元素

定义

- □ 设<A, <>为偏序集, $B \subseteq A$, 若 $\exists y \in B$.
- 1) 使得 $\forall x(x \in B \rightarrow x \leq y)$ 成立, 则称 $y \rightarrow B$ 的上界.
- 2) 使得 $\forall x(x \in B \rightarrow y \leq x)$ 成立, 则称 $y \rightarrow B$ 的下界.
- 3) 使得 $C = \{y \mid y \to B \text{ 的上界}\}$, 则称 C 的最小元为 B 的最小上界 或 上确界.
- 4) 使得 *D*={*y*|*y*为 *B* 的下界}, 则称 *D* 的最大元为 *B* 的最大下界 或 下确界.

取
$$B = \{2, 3\}$$

偏序集的特定元素

■ 实例 设偏序集<A, <>如下图所示,求 A 的极小元、最小元、极大元、最大元. 设 $B = \{b, c, d\}$,求 B 的下界、上界、下确界、上确界.

4.6 函数的定义与性质

- 函数的定义
 - 函数定义

 - 函数的像
- 函数的性质
 - 函数的单射、满射、双射性
 - 构造双射函数

函数定义

定义

- □ 设 F 为二元关系,若 $\forall x \in \text{dom} F$ 都存在唯一的 $y \in \text{ran} F$ 使 xFy 成立,则称 F 为函数.
- 口 对于函数F, 如果有 xFy, 则记作 y = F(x), 并称 y 为 F 在 x 的函数值.
- 实例: $F_1 = \{\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \langle x_3, y_2 \rangle\}$. $F_2 = \{\langle x_1, y_1 \rangle, \langle x_1, y_2 \rangle\}$. F_1 是函数, F_2 不是函数.

函数相等

 \square 设F, G为函数, 则

$$F = G \Leftrightarrow F \subseteq G \land G \subseteq F$$

- \Box 如果两个函数 F 和 G 相等,则:
 - \triangleright domF = domG
 - \rightarrow 对于 $\forall x \in \text{dom} F = \text{dom} G$, 有 F(x) = G(x)
- 实例: 如下两函数不相等, 由于 $dom F \subset dom G$. $F(x)=(x^2-1)/(x+1)$; G(x)=x-1.

MA 到 B的函数

定义

- \Box 设A,B 为集合,如果函数f满足
 - 1. dom f = A;
 - 2. $ran f \subseteq B$.

则称 f 为从 A 到 B 的函数, 记作 $f: A \rightarrow B$.

定义

口 所有从 A 到 B 的函数的集合记作 B^A , 读作 "B 上 A", 即

$$B^A = \{ f \mid f: A \rightarrow B \}.$$

- □ 计数: $|A|=m, |B|=n, 且m, n>0, |B^A|=n^m.$
- 实例: 函数 $f: N \rightarrow N$, f(x)=2x 是从 N 到 N 的函数.
- 实例: 设 $A = \{1, 2, 3\}, B = \{a, b\}, 求 B^A$.

解: $B^A = \{f_0, f_1, \dots, f_7\}$, 其中 $f_0 = \{<1,a>,<2,a>,<3,a>\}, f_1 = \{<1,a>,<2,a>,<3,b>\}$ $f_2 = \{<1,a>,<2,b>,<3,a>\}, f_3 = \{<1,a>,<2,b>,<3,b>\}$ $f_4 = \{<1,b>,<2,a>,<3,a>\}, f_5 = \{<1,b>,<2,a>,<3,b>\}$ $f_6 = \{<1,b>,<2,b>,<3,a>\}, f_7 = \{<1,b>,<2,b>,<3,b>\}$

函数的像

定义

- 口 设函数 $f: A \to B, A_1 \subseteq A, \text{则} A_1 \triangleq f$ 下的像是 $f(A_1) = \{ f(x) \mid x \in A_1 \}.$
 - 当 $A_1 = A$ 时,称 $f(A_1) = f(A) = ranf$ 是函数的像.
- ◆ 注意: 函数值 $f(x) \in B$, 而像 $f(A_1) \subseteq B$.

函数的性质

定义

- \Box 设函数 $f: A \rightarrow B$.
- 1) 若 ran f = B, 则称 $f: A \rightarrow B$ 是满射的.
- 2) 若对于 $\forall x_1, x_2 \in A, x_1 \neq x_2$, 都有 $f(x_1) \neq f(x_2)$, 则 称 $f: A \rightarrow B$ 是单射的.
- 3) 若 $f: A \rightarrow B$ 既是满射又是单射的,则称 $f: A \rightarrow B$ 是双射的.
- ◆ 注意:
 - f 满射意味着: $\forall y \in B$, 都 $\exists x \in A$ 使得 f(x) = y.
 - f 单射意味着: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

函数的性质

■ 实例

判断下面函数是否为单射,满射,双射的,为什么?

1)
$$f: R \rightarrow R, f(x) = -x^2 + 2x - 1$$

2)
$$f: Z^+ \to R$$
, $f(x) = \ln x$, Z^+ 为正整数集

3)
$$f: \mathbb{R} \to \mathbb{Z}, f(x) = \lfloor x \rfloor$$

4)
$$f: R \to R, f(x) = 2x+1$$

5)
$$f: R^+ \to R^+$$
, $f(x) = (x^2 + 1)/x$, 其中 R^+ 为正实数集.

函数的性质

- 解: 1) f: R \rightarrow R, $f(x) = -x^2+2x-1$ 在 x = 1 取得极大值 0. 既不单射也不满射.
 - 2) $f: Z^+ \to R$, $f(x) = \ln x$ 单调上升, 是单射. 但不满射, $ranf = \{\ln 1, \ln 2, ...\}$.
 - 3) $f: R \to Z, f(x) = \lfloor x \rfloor$ 满射, 但不单射, 例如 f(1.5)=f(1.2)=1.
 - 4) $f: R \rightarrow R$, f(x) = 2x+1 满射、单射、双射, 因为它是单调的并且ran f = R.
 - 5) $f: \mathbb{R}^+ \to \mathbb{R}^+$, $f(x) = (x^2+1)/x$ 有极小值 f(1) = 2. 该函数既不单射也不满射.

4.7 函数的复合与反函数

- 函数的复合
 - 函数复合的定理
 - 函数复合的性质
- 反函数
 - 反函数存在的条件
 - 反函数的性质

函数复合

定理

- \square 设F, G是函数, 则 $F \circ G$ 也是函数, 且满足
- 1) $\operatorname{dom}(F \circ G) = \{ x \mid x \in \operatorname{dom} G \land G(x) \in \operatorname{dom} F \};$
- 2) 对于 $\forall x \in \text{dom}(F \circ G)$ 有 $F \circ G(x) = F(G(x))$.
- □ 推论1 设F, G, H为函数, 则 ($F \circ G$) $\circ H$ 和 $F \circ (G \circ H)$ 都是函数, 且 ($F \circ G$) $\circ H = F \circ (G \circ H)$
- □ 推论2 设 $f: B \rightarrow C$, $g: A \rightarrow B$, 则 $f \circ g: A \rightarrow C$, 且对 $f \lor x \in A$ 都有 $f \circ g(x) = f(g(x))$.

函数复合运算的性质

定理

- \square 设 $f: B \rightarrow C, g: A \rightarrow B$.
- 1) 如果f,g都是满射的,

则 $f \circ g : A \to C$ 也是满射的.

2) 如果f,g 都是单射的,

则 $f \circ g : A \to C$ 也是单射的.

3) 如果f,g 都是双射的,

则 $f \circ g : A \to C$ 也是双射的.

函数复合运算的性质

□证明:

- 1) $\forall c \in C$, 由 $f: B \to C$ 的满射性, $\exists b \in B$ 使得 f(b)=c. 对这个b, 由 $g: A \to B$ 的满射性, $\exists a \in A$ 使得 g(a)=b. 由合成定理有 $f \circ g(a)=f(g(a))=f(b)=c$. 从而证明了 $f \circ g: A \to C$ 是满射的.
- 2) 对于任意 $x_1, x_2 \in A$, 且 $x_1 \neq x_2$.

由于 $g: A \rightarrow B$ 单射, 得 $g(x_1) \neq g(x_2)$, 且 $g(x_1), g(x_2) \in \text{dom} f$.

再由 $f: B \rightarrow C$ 单射, 有 $f(g(x_1)) \neq f(g(x_2))$.

即 $f \circ g(x_1) \neq f \circ g(x_2)$. 故 $f \circ g : A \rightarrow C$ 是单射的.

3)由(1)和(2)得证.

函数的逆

□ 任给函数 F, 它的逆 F^{-1} 是二元关系,但不一定是函数,例如:

$$F = \{ \langle a, b \rangle, \langle c, b \rangle \}, F^{-1} = \{ \langle b, a \rangle, \langle b, c \rangle \}.$$

- 口 任给单射函数 $f: A \rightarrow B$, 则 f^{-1} 是函数, 且是从 ran f 到 A 的双射函数, 但不一定是从 B 到 A 的 双射函数.
- 实例:

$$f: N \to N, f(x) = 2x,$$

 $f^{-1}: ran f \to N, f^{-1}(x) = x/2$

函数的逆

定理

- □ 设 $f: A \rightarrow B$ 是双射的,则 $f^{-1}: B \rightarrow A$ 也是双射的.
- 证明: 因为f是函数,所以 f^{-1} 是关系,且 $\operatorname{dom} f^{-1} = \operatorname{ran} f = B, \quad \operatorname{ran} f^{-1} = \operatorname{dom} f = A,$ 对于任意的 $y \in B = \operatorname{dom} f^{-1}$, 假设有 $x_1, x_2 \in A$ 使得 $< y, x_1 > \in f^{-1} \land < y, x_2 > \in f^{-1}$

成立,则由逆的定义有

$$< x_1, y> \in f \land < x_2, y> \in f$$

根据 f 的单射性可得 $x_1 = x_2$, 从而证明了 f^{-1} 是函数. f^{-1} 一定是满射的. 下面证明 f^{-1} 的单射性. 若存在 $y_1, y_2 \in B$ 使得 $f^{-1}(y_1) = f^{-1}(y_2) = x$, 从而有 $\langle y_1, x \rangle \in f^{-1} \land \langle y_2, x \rangle \in f^{-1} \Rightarrow \langle x, y_1 \rangle \in f \land \langle x, y_2 \rangle \in f \Rightarrow y_1 = y_2$.

反函数的定义及性质

定义

- □ 对于双射函数 f: $A \rightarrow B$, 称 f^{-1} : $B \rightarrow A$ 是 f 的反函数.
- ◆ 反函数的性质
- \triangleright 设 $f: A \rightarrow B$ 是双射的,则

$$f^{-1} \circ f = I_B, \ f \circ f^{-1} = I_A.$$

 \rightarrow 对于双射函数 $f: A \rightarrow A$,有

$$f^{-1} \circ f = f \circ f^{-1} = I_A$$
.

■ 实例: 设 f: $R \rightarrow R$, g: $R \rightarrow R$

$$f(x) = \begin{cases} x^2 & x \ge 3 \\ -2 & x < 3 \end{cases} \qquad g(x) = x + 2$$

求 $f \circ g, g \circ f$. 如果 $f \cap g$ 存在反函数, 求出它们的反函数.

解: 设 $f \circ g$: $R \rightarrow R$,

$$g \circ f \colon R \rightarrow R$$

$$f \circ g(x) = \begin{cases} (x+2)^2 & x \ge 1 \\ -2 & x < 1 \end{cases} \quad g \circ f(x) = \begin{cases} x^2 + 2 & x \ge 3 \\ 0 & x < 3 \end{cases}$$

 $f: R \rightarrow R$ 不存在反函数.

 $g: R \rightarrow R$ 是双射的, 它的反函数是

$$g^{-1}$$
: $R \rightarrow R$, $g^{-1}(x) = x-2$

□ 作业

- **> 4.16**
- **> 4.19**
- > 4.24
- **>** 4.25