Machine Learning: Fundamentals and Applications

House Price Prediction

Group Members

Harsh Agrawal Jayraj Rameshbhai Kanani Nidhi Singh Sophia Roper

TABLE OF CONTENTS

Discussion of dataset columns and attributes

O4 Heatmap

Find correlation and useful attributes

02

Problem Statement

Why is there a need for the analysis / model

05
Regression Training

Using different regression

algorithms to learn the data

03

EDA

Exploratory data analysis to find useful patterns

06

Conclusion

Conclusions drawn from the data and the models built

Dataset

- This dataset comprises 79 explanatory variables that cover practically every facet of Ames, Iowa's residential dwellings.
- Has 1460 rows and 79 columns related to residential homes
- Target value is Sales Price to predict final price of each home

Problem Statement

When you ask a home buyer to describe their ideal home, they are unlikely to start with the basement ceiling height or the closeness to an east-west railroad. However, the data from this playground competition shows that far more factors influence price negotiations than the number of bedrooms or the presence of a white-picket fence. However, the data in this thesis shows that the number of bedrooms and floors have a greater impact on the price of a home. I also want to use this dataset to anticipate an acceptable home price based on these attributes of the properties.

GOALS

The goal of our Project is to train machine learning models to predict the housing prices and find which aspects of the house influence the housing prices mostly.

EDA Analysis

Correlation Matrix

Obtained correlation between two variable to check the highly correlated variable with its dependent variable

Dropping Columns

Columns with mostly NaN values were dropped, including FireplaceQu, Alley, Id, PoolQC, Fence, and MiscFeature

Using only necessary columns

Eliminated all the least important columns from the dataset

Scatter plot of the sale price

Most of the points are assembled on the bottom. And there seems to be no large outliers in the sale price variable

Observation

- No direct patterns are observed front heatmap.
- Continuous numeric values seem to affect correlation most.
- The column "OverallQual" seems to be directly correlated to the SalePrice

	ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt
ld	1.000000	0.015540	-0.014479	-0.042315	-0.058371	0.008627	-0.022610
MSSubClass	0.015540	1.000000	-0.389466	-0.197903	0.031639	-0.085553	0.021605
LotFrontage	-0.014479	-0.389466	1.000000	0.419714	0.241169	-0.047132	0.107958
LotArea	-0.042315	-0.197903	0.419714	1.000000	0.169876	-0.033113	0.028954
OverallQual	-0.058371	0.031639	0.241169	0.169876	1.000000	-0.189587	0.590761
OverallCond	0.008627	-0.085553	-0.047132	-0.033113	-0.189587	1.000000	-0.437647
YearBuilt	-0.022610	0.021605	0.107958	0.028954	0.590761	-0.437647	1.000000
YearRemodAdd	-0.030239	0.010178	0.082938	0.024308	0.568582	0.024427	0.625905
MasVnrArea	-0.072344	0.040009	0.189769	0.106600	0.419756	-0.174581	0.328897
BsmtFinSF1	-0.013234	-0.069439	0.239734	0.232341	0.230438	-0.068285	0.234207
BsmtFinSF2	0.014964	-0.073834	0.046928	0.138615	-0.081342	0.040598	-0.058987
BsmtUnfSF	-0.014316	-0.147155	0.111368	0.008924	0.297384	-0.169743	0.170077
TotalBsmtSF	-0.024541	-0.264277	0.407566	0.324476	0.547448	-0.243419	0.423763
1stFlrSF	-0.007492	-0.258207	0.453035	0.331295	0.527908	-0.166191	0.311928
2ndFlrSF	-0.005997	0.319176	0.074953	0.075311	0.265906	0.004047	-0.021327
LowQualFinSF	-0.040553	0.024935	0.010748	0.019956	-0.011186	0.047865	-0.165742
GrLivArea	-0.013772	0.078213	0.397260	0.308590	0.610102	-0.115250	0.198778

Snippet of heatmap. Complete heatmap can be found in the notebook

EDA Analysis

Overall Qual

High direct correlation is observed

TotRmsAbvGrd

High direct correlation is observed

$$RMSE(\hat{\theta}) = \sqrt{MSE(\hat{\theta})} = \sqrt{E((\hat{\theta} - \theta)^2)}$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n}}$$

Linear Regression

```
lreg = LinearRegression()
lreg.fit(X_train,y_train)
mse = mean_squared_error(y, lreg.predict(X))
RMSE = math.sqrt(mse/num_data)
print(RMSE)
```

939.6790554728881

Random Forest

```
RF = RandomForestRegressor(n_estimators=500, bootstrap=True, random_state=1, oob_score=True)
RF = RF.fit(X_train, y_train)
y_pred = RF.predict(X)
num_data = X.shape[0]
mse = mean_squared_error(y, y_pred)
RMSE = math.sqrt(mse/num_data)
print(RMSE)
```

403.81078260666123

Gaussian Process

```
kernel = DotProduct() + WhiteKernel()
gp = GaussianProcessRegressor(kernel=kernel,random_state=42)
gp.fit(X_train, y_train)
mse = mean_squared_error(y, gp.predict(X))
RMSE = math.sqrt(mse/num_data)
print(RMSE)
```

1054,74356190732

Xgboost

```
xg_reg = XGBRegressor(max_depth=5, n_estimators=10)
xg_reg.fit(X_train,y_train)
mse = mean_squared_error(y, xg_reg.predict(X))
RMSE = math.sqrt(mse/num_data)
print(RMSE)
```

[14:19:45] WARNING: /workspace/src/objective/regression 1984.8613427728646

Stacking

```
def get stacking():
    # define the base models
   level0 = list()
   #level0.append(('lr', LinearRegression()))
   level0.append(('gp', GaussianProcessRegressor(kernel=kernel,random state=42)))
   level0.append(('rc', RandomForestRegressor(n estimators=500,bootstrap=True,random state=1,oob score=True)))
   level0.append(('xgb', XGBRegressor(max depth=5, n estimators=10)))
   # define meta learner model
   level1 = LinearRegression()
   # define the stacking ensemble
   model = StackingRegressor(estimators=level0, final estimator=level1, cv=5)
   return model
stacked = get stacking()
stacked.fit(X test, y test)
y pred = stacked.predict(X)
num data = X.shape[0]
mse = mean squared error(y, y pred)
RMSE = math.sqrt(mse/num data)
print(RMSE)
```

Models used

Conclusion

