Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER

PART NUMBER: NJM2712

MANUFACTURER: NEW JAPAN RADIO CO., LTD.

Bee Technologies Inc.

Spice Model


```
*$
* PART NUMBER:NJM2712
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (c) Bee Technologies Inc. 2007
.Subckt NJM2712 OUT1 -IN1 +IN1 V- +IN2 -IN2 OUT2 V+
X U1
       +IN1 -IN1 V+ V- OUT1 NJM2712_ME
X U2
       +IN2 -IN2 V+ V- OUT2 NJM2712_ME
.ends NJM2712
.subckt NJM2712 ME 1 2 3 4 5
 c1 11 12 25.0E-12
 c2 6 7 61.200E-13
 dc 5 53 dy
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
 dp 4 3 dx
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
 fb 7 99 poly(5) vb vc ve vlp vln 0 5.06296E3 -1E3 1E3 5E3 -5E3
 ga 6 0 11 12 33.929E-3
 gcm 0 6 10 99 33.529E-6
 iee 3 10 dc 7.8040E-3
 hlim 90 0 vlim 1k
 q1 11 2 13 qx1
 q2 12 1 14 qx2
 r2 6 9 100.00E3
 rc1 4 11 29.473
 rc2 4 12 29.473
 re1 13 10 22.830
 re2 14 10 22.830
 ree 10 99 250.628E3
 ro1 8 5 70
 ro2 7 99 35
 rp 3 4 155.29
 vb 9 0 dc 0
 vc 3 53 dc 1.7979
 ve 54 4 dc 1.7979
 vlim 7 8 dc 0
 vlp 91 0 dc 20
vln 0 92 dc 20
.model dx D(ls=800.00E-18
.model dy D(Is=800.00E-18 Rs=1m)
.model qx1 PNP(Is=800.00E-18 Bf=1.7807E3)
.model gx2 PNP(Is=836.50E-18 Bf=2.1497E3 CJC=58.179E-12)
.ends
*$
```

Output Voltage Swing

Simulation result

Evaluation circuit

Output Voltage Swing	Measurement	Simulation	%Error
+Vout(V)	+1.500	+1.4991	-0.060
-Vout(V)	-1.500	-1.4991	-0.060

Input Offset Voltage

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Vos (mV)	2	1.9977	-0.115

Slew Rate

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Slew Rate(v/us)	260	251.798	-3.155

Input current

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
lb(uA)	2.000	2.0004	0.020
lbos(nA)	350.000	355.534	1.581

Open Loop Voltage Gain

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Av-dc(dB)	75.000	75.131	0.175

Unity Gain Bandwidth

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
f-0dB(MHz)	180	173.814	-3.437

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

CMRR=20*LOG(5708.868/(1.1879/0.2)) = 59.656 dB

	Measurement	Simulation	%Error
CMRR(dB)	60	59.656	-0.573

Remark Output Voltage Swing

Before

Remark Input Offset Voltage

Before

Remark Slew Rate

Before

Remark Input current

Before

Remark Open Loop Voltage Gain

Before

Remark Unity Gain Bandwidth

Before

Remark Common-Mode Rejection Voltage gain

Before

