Aufgabe 1: Meissner-Effekt (5 Punkte)

Die Stromdichte $\mathbf{j}(\mathbf{x})$ in einem Supraleiter hängt für stationäre Ströme mit dem Vektorpotential $\mathbf{A}(\mathbf{x})$ über die London-Gleichung

 $\mathbf{j}(\mathbf{x}) = -\frac{n_s e^2}{m_c c} \mathbf{A}(\mathbf{x}) \qquad (\nabla \cdot \mathbf{A} = 0)$

zusammen. Dabei ist n_s die superfluide Dichte der Ladungsträger, e die Elementarladung und m_e die Elektronenmasse.

- a) Leiten Sie aus dem Ampère'schen Gesetz unter Verwendung von rot rot = grad div $-\nabla^2$ eine Differentialgleichung für das statische Magnetfeld $\mathbf{B}(\mathbf{x})$ in einem Supraleiter ab.
- b) Lösen Sie die Differentialgleichung für die z-Komponente des Magnetfeldes für einen Supraleiter im Halbraum x>0, mit der Randbedingung, dass im angrenzenden Vakuum x<0 ein homogenes Magnetfeld $\mathbf{B}_0=(0,0,B_0)$ vorhanden sei. Bestimmen Sie die charakteristische Eindringtiefe λ des Feldes als Funktion der superfluiden Dichte n_s und berechnen Sie λ konkret für $n_s=10^{23}\,\mathrm{cm}^{-3}~(e^2/m_ec^2\simeq 10^{-13}~\mathrm{cm})$.

Aufgabe 2: Vakuumdiode (8 Punkte)

In einer Vakuumdiode treten Elektronen aus einer heißen Kathode aus, die sich bei x=0 befinde und das Potential $\phi(0)=0$ habe (siehe Skizze). Sie werden dann auf die Anode bei x=d mit dem Potential $\phi_0>0$ hin beschleunigt. Die Elektronen bauen im Zwischenraum zwischen den beiden Elektronen eine Raumladungsdichte $\rho(x)$ auf, die das elektrische Feld an der Kathode zum Verschwinden bringt. In diesem stationären Zustand fließt ein räumlich und zeitlich konstanter Strom mit Stromdichte -j, j>0. Die Oberfläche der Platten sei unendlich groß, d.h. alle Grössen hängen nur von der Koordinate x ab.

- a) Wie lautet die Poissongleichung für das Potential $\phi(x)$ zwischen den beiden Platten bei gegebener Raumladungsdichte $\rho(x)$?
- b) Welche Geschwindigkeit v(x) besitzt ein Elektron an einem beliebigen Punkt x ($0 \le x \le d$) an dem das Potential den Wert $\phi(x)$ hat, wenn es mit Anfangsgeschwindigkeit Null bei x=0 startet?
- c) Im stationären Zustand ist die Stromdichte $j=-\rho(x)v(x)$ unabhängig von x. Leiten Sie mit den Ergebnissen aus den beiden vorhergehenden Teilaufgaben daraus eine Differentialgleichung für $\phi(x)$ bei einem gegebenem Wert von j ab, in der $\rho(x)$ und v(x) nicht mehr vorkommen.

d) Bestimmen Sie die räumliche Abhängigkeit des Potentials $\phi(x)$ explizit durch Integration der Differentialgleichung.

Hinweis: Multiplizieren Sie die Differentialgleichung mit $\phi'(x)$, um das erste Integral zu erhalten und verwenden Sie, daß bei x=0 sowohl $\phi(x)$ als auch $E=-\phi'(x)$ verschwinden. Das zweite Integral ist dann elementar ausführbar.

Aufgabe 3: Retardiertes Potential (7 Punkte)

In einem unendlich langen geraden Draht entlang der z-Achse werde zur Zeit t=0 ein konstanter Strom mit Stärke I_0 eingeschaltet, d.h. $\mathbf{I}(t)=I_0\theta(t)\cdot\mathbf{e}_z$, wobei $\theta(t)$ gleich Eins ist für t>0 und Null für $t\leq 0$. Das resultierende Vektorpotential

$$\mathbf{A}(\mathbf{x},t) = \frac{1}{4\pi c} \int dz \, \frac{\mathbf{I}(t_r)}{|\mathbf{x} - \mathbf{x}'|}$$

ist bestimmt durch den Strom zur retardierten Zeit $t_r = t - |\mathbf{x} - \mathbf{x}'|/c$ und den Abstand $|\mathbf{x} - \mathbf{x}'| = \sqrt{s^2 + z^2}$ des Beobachtungspunkts im Abstand s > 0 vom Draht von dem Punkt z, von dem aus sich das elektromagnetische Feld ausbreitet (das Problem ist zylindersymmetrisch um die z-Achse, d.h. $\mathbf{A}(\mathbf{x},t)$ hängt nur ab von s und der Zeit t > 0).

- a) Zeigen Sie, dass das Vektorpotential für Abstände $s \ge ct$ identisch verschwindet und dass für s < ct nur der Bereich $|z| < \sqrt{(ct)^2 s^2}$ zum Integral beiträgt.
- b) Berechnen Sie das Vektorpotential A explizit als Funktion des Abstands s und der Zeit t. Hinweis: $\int dz/\sqrt{s^2+z^2} = \ln{(\sqrt{s^2+z^2}+z)}$.
- c) Bestimmen Sie das elektrische Feld $\mathbf{E}(s,t) = -\partial_t \mathbf{A}(s,t)/c$ und das magnetische Feld $\mathbf{B}(s,t) = \nabla \wedge \mathbf{A}(s,t)$ und verifizieren Sie, dass sich im Grenzfall $t \to \infty$ die bekannten statischen Felder eines (neutralen) stromdurchflossenen Drahts ergeben.

Hinweis: Für $\mathbf{A} = \mathbf{A}(s,t)$ gilt in Zylinderkoordinaten s, φ, z

$$\nabla \wedge \mathbf{A} = -\frac{\partial A_z}{\partial s} \cdot \mathbf{e}_{\varphi} + \frac{1}{s} \frac{\partial}{\partial s} (sA_{\varphi}) \cdot \mathbf{e}_{\mathbf{z}}.$$