1. 1.1
$$P(x=1) = {2 \choose 1} \frac{1}{4} \cdot \frac{3}{4}$$

 $P(x=2) = \frac{1}{4^2} = \frac{1}{16}$
 $P(x=3) = 6$

1.2
$$P(x=1) = \frac{3}{4}$$

 $P(x=2) = \frac{1}{4}$
1.3 $P(x=1|\text{one is S}) = \frac{\frac{6}{16}}{\frac{1}{16}} = \frac{1}{7}$
 $P(x=2|\text{one is S}) = \frac{\frac{1}{16}}{\frac{7}{16}} = \frac{1}{7}$

2.2.1
$$P(X=1) = (\frac{1}{2})$$

 $P(X=5) = (\frac{1}{2})^{4}(\frac{1}{2})$
 $P(X=10) = (\frac{1}{2})^{9}(\frac{1}{2})$

2.2 $\frac{1}{2}$ -> only occurs when boy is the first baby

3.3.1 $f = P(x) = \frac{\binom{18}{x}\binom{28}{12-x}}{\binom{46}{12}}$

3.2.
$$P(X=12) = (\frac{18}{12})(\frac{28}{0}) = (\frac{12}{12})(\frac{12}{12})$$

3.3 $P(X=6) = (\frac{18}{6})(\frac{28}{6})$

4.2.0 -> only 1 ball is new now

5.6
$$P(x=a+leas+1)=1-\frac{3b}{40}\frac{3y}{3p}\frac{3y}{3p}\frac{33}{3p}$$

5.2 $P(x=a+leas+2)=\frac{3b}{40}\frac{3y}{3p}\frac{3y}{3p}\frac{3y}{3p}$

6.1. $\frac{1}{n!}=P(perfect)$

6.2. $P(m persons)=\frac{1}{n!}$. $\frac{(n-m)!}{n!}=\frac{(n-m)!}{n!}$

7. $P(correct)=P(linput flipped & cutput flipped)$
 $P(linput not flipped & cutput not flipped)$
 $P(linput not flipped)$

This
$$(2)$$
 2^k
9. = $P(1 - P(a|| success)) = 1 - p^n$
10. $\lambda = 100/hr$
 $t = 1 hr$
 $k = 1 \leftarrow threshold$
 $P = e^{-100} 100 = e^{-\lambda t} (\lambda t)^k$