

Parte 4

Algumas funções SQL

Luciano Melo profluciano.melo @fiap.com.br

FUNÇÕES SQL

Functions de Manipulação de Maiúsculas e Minúsculas

Estas functions convertem letras maiúsculas em minúsculas e vice-versa em strings de caracteres:

Function	Resultado
LOWER('SQL Course')	sql course
UPPER('SQL Course')	SQL COURSE
INITCAP('SQL Course')	Sql Course

Exemplo:

Exiba o número, o nome e o número de departamento do funcionário Higgins:

```
SELECT employee_id, last_name, department_id
FROM employees
WHERE last_name = 'higgins';
no rows selected

SELECT employee_id, last_name, department_id
FROM employees
WHERE LOWER(last_name) = 'higgins';
```

EMPLOYEE_ID	LAST_NAME	DEPARTMENT_ID
205 Higgins		110

Functions de Manipulação de Caracteres

Estas functions manipulam strings de caracteres:

Function	Resultado
CONCAT('Hello', 'World')	HelloWorld
SUBSTR('HelloWorld',1,5)	Hello
LENGTH('HelloWorld')	10

Funções aplicada a números

- ROUND: Arredonda o valor até o decimal especificado
- TRUNC: Trunca o valor até o decimal especificado
- MOD: Retorna o resto da divisão

Function	Resultado
ROUND(45.926, 2)	45.93
TRUNC(45.926, 2)	45.92
MOD(1600, 300)	100

A tabela DUAL

DUAL é uma tabela fictícia que pode ser usada para exibir resultados de functions e cálculos.

```
SELECT ROUND (45.923, 2), ROUND (45.923, 0)
FROM
       DUAL;
SELECT TRUNC (45.923), TRUNC (45.215)
FROM
       DUAL:
SELECT MOD (10, 2), MOD (10, 3)
       DUAL;
FROM
SELECT last name, salary, MOD(salary, 5000)
FROM employees
       job id = 'SA REP';
WHERE
```


Função NVL

Converte um valor nulo em um valor real:

- É possível usar os tipos de dados de data, caractere e número.
- A correspondência entre os tipos de dados é necessária:
 - NVL(commission pct,0)
 - NVL(hire_date,'01-JAN-97')
 - NVL(job_id,'No Job Yet')

Exemplos:

LAST_NAME	SALARY	NVL(COMMISSION_PCT,0)	AN_SAL
King	24000	0	288000
Kochhar	17000	0	204000
De Haan	17000	0	204000
Hunold	9000	0	108000
Ernst	6000	0	72000
Lorentz	4200	0	50400
Mourgos	5800	0	69600
Rajs	3500	0	42000
20 rows selected.) (2

Expressão CASE

		⊕ Nível Salarial
19 David	Sales	Nível A
20 David	IT	Nível B
21 David	Sales	Nível A
22 Den	Purchasing	Nível A
23 Diana	IT	Nível B
24 Donald	Shipping	Nível C
25 Douglas	Shipping	Nível C
26 Eleni	Sales	Nível A
27 Elizabeth	Sales	Nível A
28 Ellen	Sales	Nível A
29 Gerald	Sales	Nível A
30 Girard	Shipping	Nível C
31 Guy	Purchasing	Nível C
32 Harrison	Sales	Nível A
33 Hazel	Shipping	Nivel C

Função TO_CHAR

Usada para converter números ou datas em caracter

```
TO_CHAR( value [, format_mask] )
```

Quando o valor é uma data, use o formato (mascara) de data

```
SELECT TO_CHAR(SYSDATE, 'DD/MM/YYYY') FROM DUAL;
SELECT TO_CHAR(SYSDATE, 'DD-Mon-YYYY HH24:MI:SS') FROM DUAL,
```

Quando o valor é um número, use o formato para números

```
SELECT TO_CHAR(100000/2, '$999G990D00') FROM DUAL;
```


Função TO_NUMBER

Usada para converter uma string em número

```
TO_NUMBER( value [, format_mask] )
```

Exemplo

```
SELECT TO_NUMBER('$9,500.55','$999,999.99') FROM DUAL;
```


Função TO_DATE

Usada para converter uma string em uma data

```
TO_DATE( value [, format_mask] )
```

Exemplos

```
SELECT TO_DATE('10-Jun-2022', 'DD-Mon-YYYY') FROM DUAL;

SELECT TO_DATE('10/06/2022 10:30','DD/MM/YYYY HH24:MI') FROM DUAL;
```

→ Lembre-se que um campo do tipo date no Oracle guarda data, hora, minutes e segundos

Função TO_NUMBER

Usada para converter uma string em número

```
TO_NUMBER( value [, format_mask] )
```

Exemplo

```
SELECT TO_NUMBER('$9,500.55','$999,999.99') FROM DUAL;
```


Aprofunde seu conhecimento ...

- Existem várias outras funções Oracle para caracteres, números, datas, etc
- Aritmética de datas no Oracle

Pesquise sobre Funções de única Linha (Single Row Functions)

Referências

Single-Row Functions:

https://docs.oracle.com/en/database/oracle/oracle-database/21/sqlrf/Single-Row-Functions.html#GUID-B93F789D-B486-49FF-B0CD-0C6181C5D85C

https://beginner-sql-tutorial.com/oracle-functions.htm

Parte 5

Funções de Grupo

Luciano Melo profluciano.melo @fiap.com.br

FUNÇÕES SQL

Funções de Grupo

Funções de Grupo

As funções de grupo operam em conjuntos de linhas para gerar um resultado por grupo!

EMPLOYEES

DEPARTMENT_ID	SALARY
90	24000
90	17000
90	17000
60	9000
60	6000
60	4200
50	5800
50	3500
50	3100
50	2600
50	2500
80	10500
80	11000
80	8600
	7000
10	4400

Salário máximo na tabela EMPLOYEES

20 rows selected.

Funções de Grupo

Exemplos de funções de grupos

- **AVG** → Média
- **COUNT** → Totalizador (quantidade)
- $\mathbf{MAX} \rightarrow \mathbf{Maior} \ \mathsf{valor}$
- MIN \rightarrow Menor valor
- **SUM** → Somatório dos valores
- Entre outras ...

Funções de Grupo

- Exemplos de funções de grupos
 - **AVG** → Média
 - COUNT → Totalizador (quantidade)
 - MAX → Maior valor
 - MIN \rightarrow Menor valor
 - SUM → Somatório dos valores
 - Entre outras ...
- Sintaxe

```
SELECT [column,] group_function(column), ...

FROM table
[WHERE condition]
[GROUP BY column]
[ORDER BY column];
```


Funções de Grupo

As funções AVG, MAX, MIN e SUM podem ser usadas para dados numéricos.

```
SELECT AVG(salary), MAX(salary),
MIN(salary), SUM(salary)

FROM employees
WHERE job_id LIKE '%REP%';
```

AVG(SALARY)	MAX(SALARY)	MIN(SALARY)	SUM(SALARY)
8150	11000	6000	32600

Funções de Grupo

As funções MIN e MAX também podem ser usadas para datas e caracteres.

SELECT	MIN(hire	date),	MAX(hire	date)
FROM	emplo	yees;		

MIN(HIRE_	MAX(HIRE_
17-JUN-87	29-JAN-00

Funções de Grupo

FUNÇÃO COUNT

COUNT (*) retorna o número de linhas de uma tabela:

```
SELECT COUNT(*)

FROM employees
WHERE department_id = 50;

COUNT(*)
```

COUNT (expr) retorna o número de linhas com valores não nulos para expr:

SELECT COUNT(commission pct)

FROM employees
WHERE department_id = 80;

COUNT(COMMISSION_PCT)

Funções de Grupo

Funções de grupos e valores NULOS:

As funções de grupo ignoram valores nulos. Se for necessário, use a função NVL para incluí-los.

Considerando os valores nulos com a função NVL

```
SELECT AVG(NVL(commission_pct, 0))
FROM employees;

AVG(NVL(COMMISSION_PCT,0))

.0425
```


Funções de Grupo

Criando mais de um grupo de resultados

EMPLOYEES

DEPARTMENT_ID	SALARY	
10	4400	4400
20	13000	9500
20	6000	9500
50	5800	
50	3500	
50	3100	3500
50	2500	
50	2600	
60	9000	
60	6000	6400
60	4200	
80	10500	
80	8600	10033
80	11000	
90	24000	
90	17000	

Salário médio na tabela **EMPLOYEES**

para cada

departamento

DEPARTMENT_ID	AVG(SALARY)
10	4400
20	9500
50	3500
60	6400
80	10033.3333
90	19333.3333
110	10150
	7000

20 rows selected.

Oracle Copyright © 2004 www.fiap.com.br

Funções de Grupo

- Para criar grupos, use a cláusula GROUP BY.
- Todas as colunas da lista SELECT que não são funções de grupo devem estar incluídas na cláusula GROUP BY.

```
SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id;
```

DEPARTMENT_ID	AVG(SALARY)
10	4400
20	9500
50	3500
60	6400
80	10033.3333
90	19333.3333
110	10150
	7000

8 rows selected.

Funções de Grupo

Criando mais de um grupo de resutlados

EMPLOYEES

DEPARTMENT_ID	JOB_ID	SALARY	
90	AD_PRES	24000	
90	AD_VP	17000	
90	AD_VP	17000	
60	IT_PROG	9000	
60	IT_PROG	6000	
60	IT_PROG	4200	_
50	ST_MAN	5800	A
50	ST_CLERK	3500	S
50	ST_CLERK	3100	E
50	ST_CLERK	2600	r
50	ST_CLERK	2500	a
80	SA_MAN	10500	d
80	SA_REP	11000	u
80	SA_REP	8600	
20	MK_REP	6000	
110	AC_MGR	12000	
110	AC_ACCOUNT	8300	

Adicione os salários à tabela EMPLOYEES para cada cargo, agrupados por departamento

DEPARTMENT_ID	JOB_ID	SUM(SALARY)
10	AD_ASST	4400
20	MK_MAN	13000
20	MK_REP	6000
50	ST_CLERK	11700
50	ST_MAN	5800
60	IT_PROG	19200
80	SA_MAN	10500
80	SA_REP	19600
90	AD_PRES	24000
90	AD_VP	34000
110	AC_ACCOUNT	8300
110	AC_MGR	12000
	SA_REP	7000

13 rows selected.

20 rows selected.

Funções de Grupo

Para criar mais de um grupo, basta colocar mais de uma coluna na cláusula group by.

```
SELECT department_id dept_id, job_id, SUM(salary)
FROM employees
GROUP BY department id, job id;
```

DEPT_ID	JOB_ID	SUM(SALARY)
10	AD_ASST	4400
20	MK_MAN	13000
20	MK_REP	6000
50	ST_CLERK	11700
50	ST_MAN	5800
60	IT_PROG	19200
80	SA_MAN	10500
80	SA_REP	19600
90	AD_PRES	24000
90	AD_VP	34000
110	AC_ACCOUNT	8300
110	AC_MGR	12000
	SA_REP	7000

13 rows selected.

Funções de Grupo

Filtrando resultados dos grupos

EMPLOYEES

DEPARTMENT_ID	SALARY
90	24000
90	17000
90	17000
60	9000
60	6000
60	4200
50	5800
50	3500
50	3100
50	2600
50	2500
80	10500
80	11000
80	8600
••	
20	6000
110	12000
110	8300

O salário máximo por departamento quando for maior que US\$ 10.000

DEPARTMENT_ID	MAX(SALARY)
20	13000
80	11000
90	24000
110	12000

20 rows selected.

Funções de Grupo

- Para restringer grupos de resultados, use a cláusula HAVING
- As linhas são agrupadas, a função de grupo é executada e então o filtro é aplicado.

```
SELECT department_id, MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary)>10000;
```

DEPARTMENT_ID	MAX(SALARY)
20	13000
80	11000
90	24000
110	12000

Aprofunde seu conhecimento ...

- Funções de grupos são extremamente importantes e muito utilizadas.
- São fundamentais para a parte de análise de dados (analytics) e Bl

Pesquise sobre Funções de Grupo (Aggregate Functions)

Referências

Funções de Grupo:

https://docs.oracle.com/en/database/oracle/oracle-database/21/sqlrf/Aggregate-Functions.html#GUID-62BE676B-AF18-4E63-BD14-25206FEA0848

Pratique: Execute os comandos SELECT abaixo

```
SELECT department_id, sum(salary) Total, avg(salary) Media
Max(salary) Top_salary, min(salary) low_salary FROM employees
GROUP BY department_id
ORDER BY Total desc;
```

```
SELECT department_id, job_id, max(hire_date), min(hire_Date)
FROM employees
GROUP BY department_id, job_id;
```

```
SELECT count(distinct department_id) from employees;
```

```
SELECT manager_id, count(*) from employees
WHERE department_id in (10,20,30,40,80)
FROM JOBs;
```


Exercícios

profluciano.melo@fiap.com.br

Mostrar o nome do departmaento, a soma dos salários, o total de empregados de cada departamento. Ordene o resultado de forma a mostra os departamentos com maior folha salarial primeiro

```
SELECT d.department_name , sum (e.salary) total_salario, count(*) total_emp
FROM EMPLOYEES e JOIN DEPARTMENTS d on (e.department_id = d.department_id)

GROUP BY d.department_name
order by total_salario desc
```

Mostrar o nome do departmaento, o título da profissão, o total de salários e a media dos salários de cada título em cada departamento dos funcionários alocados em departamentos

```
SELECT d.department_name , j.job_title, sum (e.salary) total, avg (e.salary) media

FROM EMPLOYEES e JOIN DEPARTMENTS d on (e.department_id = d.department_id)

JOIN JOBS j on (e.job_id = j.job_id)

GROUP BY d.department_name , j.job_title
```


Mostrar o nome do departmaento, o total de salário e quantos funcionários existem em cada departamento. Para os funcionários não alocados em departamento, o nome do departamento de aparecer como "Sem Alocação"

```
SELECT NVL(d.department_name,'Sem Alocação') department, sum(e.salary), count(*)

FROM EMPLOYEES e LEFT JOIN DEPARTMENTS d on (e.department_id = d.department_id)

GROUP BY NVL(d.department_name,'Sem Alocação')
```

Mostrar o nome da cidate e o total de salários em cada cidade. Liste apenas as cidades cujo total de salários seja superior a 50000

```
SELECT 1.city , sum (e.salary) total_salario

FROM EMPLOYEES e JOIN DEPARTMENTS d on (e.department_id = d.department_id)

JOIN LOCATIONS 1 on (d.location_id = 1.location_id)

GROUP BY 1.city
having sum (e.salary) > 50000
```

Mostrar o nome de todas as cidades que não tem nenhum empregado trabalhando nela