International Olympiad in Informatics 2015

26th July - 2nd August 2015 Almaty, Kazakhstan Day 2

sorting

Language: it-IT

Ordinamento

Aizhan possiede una sequenza di N interi $S[0], S[1], \ldots, S[N-1]$ composta da numeri distinti da 0 a N-1, e sta provando ad ordinarla in ordine crescente tramite scambi di coppie di elementi. Anche il suo amico Ermek scambierà alcune coppie di elementi — ma non necessariamente in un modo utile alla nostra protagonista.

Ermek e Aizhan modificheranno la sequenza in una serie di round. In ciascun round prima Ermek farà uno scambio, e poi Aizhan ne farà un altro. Più precisamente, la persona che sta facendo lo scambio sceglierà due indici validi e scambierà gli elementi situati in quegli indici. I due indici non devono necessariamente essere distinti: se sono uguali, un elemento verrà scambiato con sé stesso, il che non modifica la sequenza.

Aizhan sa che a Ermek non importa di ordinare la sequenza S, però sa esattamente fin dall'inizio quali sono gli indici che sceglierà. Ermek ha intenzione di partecipare ad M round di scambi, numerati da 0 a M-1, e per ogni round i Ermek sceglierà gli indici X[i] e Y[i].

Dato che Aizhan vuole ordinare la sequenza, se si accorge che è già ordinata all'inizio di un round terminerà l'intero processo. Data la sequenza originale \boldsymbol{S} e gli indici che verranno scelti da Ermek, il tuo compito è trovare una sequenza di scambi che Aizhan può usare per ordinare la sequenza \boldsymbol{S} . Inoltre, in alcuni subtask è richiesto di trovare la sequenza di scambi più corta possibile. Si può assumere che sia sempre possibile ordinare la sequenza \boldsymbol{S} in \boldsymbol{M} round o meno.

Nota: se Aizhan vede che la sequenza S è ordinata dopo lo scambio di Ermek, può scegliere di scambiare due indici uguali (per esempio, 0 e 0), facendo sì che la sequenza risulti ordinata anche dopo l'intero round, e raggiungendo così il suo obiettivo. Inoltre, se la sequenza iniziale è già ordinata, il minimo numero di round necessari per ordinarla è 0.

Esempio 1

Supponiamo che:

- La sequenza iniziale sia S = 4, 3, 2, 1, 0.
- Ermek partecipi a M = 6 scambi.
- Le sequenze X e Y che descrivono gli indici scelti da Ermek siano X = 0, 1, 2, 3, 0, 1 e Y = 1, 2, 3, 4, 1, 2. In altre parole, le coppie di indici che Ermek intende scegliere sono (0, 1), (1, 2), (2, 3), (3, 4), (0, 1), e (1, 2).

In questo caso Aizhan può riordinare la sequenza S nella sequenza 0, 1, 2, 3, 4 in tre round, scegliendo gli indici (0, 4), (1, 3), e(3, 4).

La seguente tabella mostra come Ermek e Aizhan modificano la sequenza.

Round	Giocatore	Indici scambiati	Se que nza
inizio			4, 3, 2, 1, 0
0	Ermek	(0,1)	3, 4, 2, 1, 0
0	Aizhan	(0,4)	0, 4, 2, 1, 3
1	Ermek	(1,2)	0, 2, 4, 1, 3
1	Aizhan	(1,3)	0, 1, 4, 2, 3
2	Ermek	(2,3)	0, 1, 2, 4, 3
2	Aizhan	(3,4)	0, 1, 2, 3, 4

Esempio 2

Supponiamo che:

- La sequenza iniziale sia S = 3, 0, 4, 2, 1.
- Ermek partecipi a M = 5 scambi.
- Le coppie di indici scelte da Ermek siano (1, 1), (4, 0), (2, 3), (1, 4), e(0, 4).

Anche in questo caso Aizhan può riordinare la sequenza S in tre round, ad esempio scegliendo le coppie di indici (1,4), (4,2), e (2,2), come descritto nella tabella seguente.

Round	Giocatore	Indici scambiati	Sequenza
inizio			3, 0, 4, 2, 1
0	Ermek	(1,1)	3, 0, 4, 2, 1
0	Aizhan	(1,4)	3, 1, 4, 2, 0
1	Ermek	(4,0)	0, 1, 4, 2, 3
1	Aizhan	(4,2)	0, 1, 3, 2, 4
2	Ermek	(2,3)	0, 1, 2, 3, 4
2	Aizhan	(2,2)	0, 1, 2, 3, 4

Implementazione

Ti verrà fornita la sequenza S, il numero M e le sequenze di indici X e Y. Calcola una sequenza di scambi che Aizhan può usare per ordinare la sequenza S. Inoltre, nei subtask S e S la sequenza trovata dovrà essere la più corta possibile.

Dovrai implementare la funzione findSwapPairs:

- findSwapPairs (N, S, M, X, Y, P, Q) Questa funzione verrà chiamata dal grader esattamente una volta.
 - lacktriangleq N: la lunghezza della sequenza S.
 - S: un array contenente la sequenza iniziale S.

- M: il numero di scambi che Ermek ha intenzione di fare.
- X, Y: due array di interi di lunghezza M, tali che per $0 \le i \le M-1$, nel round i Ermek scambierà i numeri posti negli indici X[i] e Y[i].
- P, Q: due array di interi, in cui dovrai inserire una possibile sequenza di scambi che Aizhan può fare per ordinare la sequenza S. Se R è la lunghezza della sequenza che il tuo programma ha trovato, per ogni $0 \le i \le M-1$ gli indici che Aizhan dovrebbe scegliere nel round i devono essere memorizzati in P[i] e Q[i]. Puoi assumere che gli array P e Q siano già stati allocati a M elementi ciascuno.
- Questa funzione dovrà restituire il valore R (definito sopra).

Subtask

subtask	punti	N	M	vincoli su X, Y	vincoli su R
1	8	$1 \le N \le 5$	$M = N^2$	X[i] = Y[i] = 0 per ogni i	$R \leq M$
2	12	$1 \le N \le 100$	M = 30N	X[i] = Y[i] = 0 per ogni i	$R \leq M$
3	16	$1 \le N \le 100$	M = 30N	X[i] = 0, Y[i] = 1 per ogni i	$R \leq M$
4	18	$1 \le N \le 500$	M = 30N	nessuno	$R \leq M$
5	20	$6 \le N \le 2000$	M=3N	nessuno	minimo possibile
6	26	$6 \leq N \leq 200000$	M=3N	nessuno	minimo possibile

Puoi assumere che esista sempre una soluzione che richiede M o meno round.

Grader di prova

Il grader di prova legge l'input dal file sorting. in nel formato seguente:

- riga 1: N
- riga 2: S[0] ... S[N 1]
- riga **3**: M
- righe $4, \ldots, M + 3$: X[i] Y[i]

Il grader di prova stampa il seguente output:

- lacktriangledown riga 1: il valore R restituito da findSwapPairs
- riga 2 + i, per $0 \le i < R$: P[i] Q[i]