(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum
1. März 2001 (01.03.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/14342 A1

(51) Internationale Patentklassifikation⁷: C07D 235/14, 401/12, 405/10, 409/10, 405/14, 409/14, 401/10, 403/10, 401/14

(21) Internationales Aktenzeichen:

PCT/EP00/08037

(22) Internationales Anmeldedatum:

17. August 2000 (17.08.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

199 39 463.6

20. August 1999 (20.08.1999) D

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BOEHRINGER INGELHEIM PHARMA KG [DE/DE]; D-55216 Ingelheim am Rhein (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): ANDERSKEWITZ, Ralf [DE/DE]; Stromberger Str. 36c, D-55411 Bingen (DE). BRAUN, Christine [DE/CH]; Huob-Strasse 1, CH-6330 Cham (CH). BRIEM, Hans [DE/DE]; Johannes-Calvin-Strasse 11, D-55270 Schwabenheim (DE). **DISSE, Bernd** [DE/DE]; Liebermannstrasse 7, D-55127 Mainz (DE). **HOENKE, Christoph** [DE/DE]; Turnierstrasse 43, D-55218 Ingelheim am Rhein (DE). **JENNEWEIN, Hans-Michael** [DE/DE]; Idsteiner Strasse 14, D-65193 Wiesbaden (DE). **SPECK, Georg** [DE/DE]; In der Bitz 10, D-55218 Ingelheim am Rhein (DE).

(74) Anwalt: LAUDIEN, Dieter; Boehringer Ingelheim GmbH, D-55216 Ingelheim am Rhein (DE).

(81) Bestimmungsstaaten (national): AE, AU, BG, BR, CA, CN, CZ, EE, HR, HU, ID, IL, IN, JP, KR, LT, LV, MX, NO, NZ, PL, RO, SG, SI, SK, TR, UA, US, UZ, VN, YU, ZA.

(84) Bestimmungsstaaten (regional): eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht:

— Mit internationalem Recherchenbericht.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: AMINOCARBONYL-SUBSTITUTED BENZIMIDAZOLE DERIVATIVES, METHOD FOR PRODUCING SAME AND THE USE THEREOF AS MEDICAMENTS

(54) Bezeichnung: AMINOCARBONYL-SUBSTITUIERTE BENZIMIDAZOLDERIVATE, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG ALS ARZNEIMITTEL

(57) Abstract: The invention relates to aminocarbonyl-substituted benzimidazole derivatives of general formula (I), wherein the radicals R¹, R², R³ and R⁴ can have the meanings given in the claims or in the description. The invention also relates to the prodrugs thereof, a method for producing the same and the use of benzimidazole derivatives as medicaments, especially medicaments with tryptase-inhibiting action.

(57) Zusammenfassung: Die Erfindung betrifft aminocarbonyl-substituierte Benzimidazolderivate der allgemeinen Formel (I), worin die Reste R¹, R², R³ und R⁴ die in den Ansprüchen und in der Beschreibung genannten Bedeutungen haben können, deren Prodrugs, Verfahren zu deren Herstellung sowie die Verwendung von Benzimidazolderivaten als Arzneimittel, insbesondere als Arzneimittel mit Tryptase-inhibierender Wirkung.

O 01/14342

Aminocarbonyl-substituierte Benzimidazolderivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel

Die Erfindung betrifft aminocarbonyl-substituierte Benzimidazolderivate der allgemeinen Formel (I)

$$R^3$$
 R^3
 R^2
 R^2
 R^2
 R^3
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

worin die Reste R¹, R², R³ und R⁴ die in den Ansprüchen und in der Beschreibung genannten Bedeutungen haben können, deren Prodrugs, Verfahren zu deren Herstellung sowie die Verwendung von Benzimidazolderivaten als Arzneimittel, insbesondere als Arzneimittel mit Tryptase-inhibierender Wirkung.

Hintergrund der Erfindung

Benzimidazolderivate sind als Wirkstoffe mit wertvollen pharmazeutischen Eigenschaften aus dem Stand der Technik bekannt. So offenbart die Internationale Patentanmeldung WO 98/37075 neben anderen bicyclischen Heterocyclen auch Benzimidazole, die sich aufgrund einer thrombinhemmenden Wirkung zur Vorbeugung und Behandlung venöser und arterieller thrombotischer Erkrankungen wirksam einsetzen lassen.

20 Anders als der vorstehend beschriebenen und im Stand der Technik bereits bekannten Verwendung von Benzimidazolderivaten, liegt der vorliegenden Erfindung die Aufgabe zugrunde, neue Tryptase-Inhibitoren bereitzustellen, die aufgrund ihrer Tryptase-inhibierenden Eigenschaften zur Vorbeugung und Behandlung entzündlicher und/oder allergischer Erkrankungen eingesetzt werden können.

Detaillierte Beschreibung der Erfindung

Überraschenderweise wurde gefunden, daß aminocarbonyl-substituierte Benzimidazolderivate der allgemeinen Formel (I)

$$R^3$$
 R^3
 R^2
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

worin die Reste R¹, R², R³ und R⁴ die nachstehend genannten Bedeutungen tragen können, eine Tryptase-inhibierende Wirkung aufweisen und erfindungsgemäß zur Vorbeugung und Behandlung von Erkrankungen Verwendung finden können, in denen Tryptase-Inhibitoren einen therapeutischen Nutzen entfalten können.

Dementsprechend zielt die vorliegende Erfindung auf die erfindungsgemäße Verwendung von Verbindungen der allgemeinen Formel (I)

$$\mathbb{R}^{3}$$
 \mathbb{R}^{1}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}

zur Herstellung eines Arzneimittels zur Vorbeugung und/oder Behandlung von Krankheiten, in denen Tryptase-Inhibitoren einen therapeutischen Nutzen entfalten können, worin

R¹ C₁-C₁₀-Alkyl, welches gegebenenfalls ein-, zwei- oder dreifach durch eine oder mehrere der Gruppen C₁-C₄-Alkoxy, Phenoxy, Hydroxyphenoxy, C1-C₄-Alkoxy-phenoxy, C₃-C₆-Cycloalkyl, -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NH-CO-(C₁-C₄-Alkyl), -CO-NH₂, -CO-NH-(C₁-C₄-Alkyl) oder -NH-CO-Benzyl substituiert sein kann, oder

20 Phenyl-C₁-C₄-alkyl, wobei der Phenylring gegebenenfalls ein-, zwei-, oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

ein über eine Einfachbindung oder über eine C₁-C₄-Alkylenbrücke verknüpfter
5 oder 6 gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein, zwei
oder drei Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder
Schwefel enthalten kann und der gegebenenfalls ein-, zwei- oder dreifach
durch einen oder mehrere der Reste C₁-C₄-Alkyl, gegebenenfalls durch
C₁-C₄-Alkyl substituiertes Phenyl oder gegebenenfalls durch C₁-C₄-Alkyl
substituiertes Benzyl substituiert sein kann oder an den über zwei benachbarte
Kohlenstoffatome gegebenenfalls ein Benzolring ankondensiert sein kann;

 R^2 -C(=NH)NH₂ oder -CH₂-NH₂;

R³ und R⁴

5

20

25

30

35

gleich oder verschieden,

Wasserstoff, C₁-C₆-Alkyl, welches ein- oder zweifach durch eine oder mehrere der Gruppen COOH, COO-C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₄-Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert sein kann, oder

Phenyl-C₁-C₄-alkyl, wobei die C₁-C₄-Alkylenbrücke gegebenfalls durch Phenyl, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann und wobei der Phenylring gegebenenfalls ein-, zwei-, oder dreifach, direkt oder über eine C₁-C₄-Alkylenbrücke durch einen oder mehrere der Reste C₁-C₄-Alkyl, C₁-C₄-Alkoxy, CF₃, Fluor, Chlor, Brom, COOH, COO-C₁-C₄-Alkyl, -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₄-Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert sein kann, oder

ein direkt oder über eine C₁-C₄-Alkylenbrücke verknüpfter 5-, 6- oder 7gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein, zwei, drei oder
vier Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder
Schwefel enthalten kann und der gegebenenfalls ein-, zwei- oder dreifach
durch einen oder mehrere der Reste C₁-C₄-Alkyl, Phenyl oder Benzyl
substituiert sein kann oder an den über zwei benachbarte Kohlenstoffatome
gegebenenfalls ein Benzolring ankondensiert sein kann, oder

C₃-C₈-Cycloalkyl, Naphthyl oder Phenyl, welches gegebenenfalls ein-, zwei-, oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Phenyloxy, Benzyloxy, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

oder

R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen 5-, 6- oder 7gliedrigen, gesättigten oder ungesättigten Heterocyclus, der ein oder zwei
weitere Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder
Schwefel enthalten kann und der gegebenenfalls durch einen oder mehrere der
Reste C₁-C₄-Alkyl, C₅-C₆-Cycloalkyl, Benzyl, das gegebenenfalls durch C₁C₄-Alkyl substituiert sein kann, Pyridyl oder Phenyl, das gegebenenfalls durch

C₁-C₄-Alkyl-, C₁-C₄-Alkoxy- oder Hydroxy substituiert ist, substituiert sein kann,

bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

Erfindungsgemäß bevorzugt ist die vorstehend genannte Verwendung von Verbindungen der allgemeinen Formel (I) zur Herstellung eines Arzneimittels zur Vorbeugung und/oder Behandlung entzündlicher und/oder allergischer

- 10 Erkrankungen. Besonders bevorzugt ist die eingangs genannte Verwendung der Verbindungen der allgemeinen Formel (I) zur Herstellung eines Arzneimittels zur Vorbeugung und/oder Behandlung von Asthma bronchiale, allergischer Rhinitis, allegischer Conjunctivitis, atopischer Dermatitis, Urticaria, allergischer Otitis, allergischer Magen-Darmerkrankungen, Morbus Crohn, Colitis ulcerosa,
- 15 anaphylaktischer Schock, septischer Schock, Schocklunge (ARDS) und Arthritis. Ferner ist von Interesse die eingangs genannte Verwendung der Verbindungen der allgemeinen Formel (I) zur Herstellung eines Arzneimittels zur Vorbeugung und/oder Behandlung von Fibrosen wie Lungenfibrose, fibrosierende Alveolitis und Narbenbildung, von Kollagneosen wie Lupus erythematodes und Sklerodermie sowie von Arteriosklerose, Psoriasis und Neoplasien.

Eine weitere Aufgabe der vorliegenden Erfindung ist, neue Verbindungen bereitzustellen, die eine Tryptase-inhibierende Wirkung aufweisen und zur Vorbeugung und Behandlung von Erkrankungen, in denen Tryptase-Inhibitoren einen therapeutischen Nutzen entfalten können, Verwendung finden können.

Vorstehende Aufgabe wird gelöst durch die nachfolgend beschriebenen erfindungsgemäßen Verbindungen der allgemeinen Formel (I). Die vorliegende Erfindung betrifft folglich ferner Aminocarbonyl-substituierte Benzimidazolderivate der allgemeinen Formel (I)

$$R^3$$
 R^4
 N
 R^2
 (I)

worin

C1-C10-Ałkyl, welches gegebenenfalls ein-, zwei- oder dreifach durch eine oder mehrere der Gruppen C1-C4-Alkoxy, Phenoxy-, C1-C4-Alkoxy-phenoxy, Hydroxyphenoxy, C3-C6-Cycloalkyl, -NH2, -NH(C1-C4-Alkyl), -N(C1-C4-Alkyl)2, -NH-CO-(C1-C4-Alkyl), -CO-NH2, -CO-NH-(C1-C4-Alkyl) oder -NH-CO-Benzyl substituiert sein kann, oder

Phenyl-C₁-C₄-alkyl, wobei der Phenylring gegebenenfalls ein-, zwei-, oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

10

15

25

30

35

5

ein über eine Einfachbindung oder über eine C₁-C₄-Alkylenbrücke verknüpfter 5 oder 6 gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein, zwei oder drei Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthalten kann und der gegebenenfalls ein-, zwei- oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes Phenyl oder gegebenenfalls durch C₁-C₄-Alkyl substituiertes Benzyl substituiert sein kann oder an den über zwei benachbarte Kohlenstoffatome gegebenenfalls ein Benzolring ankondensiert sein kann;

- 20 R² -C(=NH)NH₂ oder -CH₂-NH₂;
 - R³ C₁-C₆-Alkyl, welches ein- oder zweifach durch eine oder mehrere der Gruppen -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₄-Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert ist, oder

Benzyl, wobei der Phenylring ein- oder zweifach, direkt oder über eine C₁-C₄-Alkylenbrücke durch eine oder mehrere der Gruppen -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₄-Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert ist, oder

Phenyl-C₂-C₄-alkyl, wobei die C₂-C₄-Alkylenbrücke gegebenfalls durch Phenyl, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann und wobei der Phenylring gegebenenfalls ein- oder zweifach, direkt oder über eine C₁-C₄-Alkylenbrücke durch eine oder mehrere der Gruppen -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl,

- -N(Benzyl)₂, -NH-CO-(C₁-C₄-Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert sein kann, oder
- ein über eine C₁-C₄-Alkylenbrücke verknüpfter 5 oder 6 gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein, zwei oder drei Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthalten kann und der gegebenenfalls ein-, zwei- oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, Phenyl oder Benzyl substituiert sein kann;
- 10 R⁴ Wasserstoff, C₁-C₆-Alkyl, welches ein- oder zweifach durch eine oder mehrere der Gruppen COOH, COO-C₁-C₄-Alkyl oder C₃-C₆-Cycloalkyl substituiert sein kann, oder
- Phenyl-C₁-C₄-alkyl, wobei die C₁-C₄-Alkylenbrücke gegebenfalls durch
 Phenyl substituiert sein kann und wobei der Phenylring gegebenenfalls ein-,
 zwei-, oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, C₁-C₄Alkoxy, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert
 sein kann, oder
- C3-C8-Cycloalkyl, Naphthyl oder Phenyl, welches gegebenenfalls ein-, zwei-, oder dreifach durch einen oder mehrere der Reste C1-C4-Alkyl, C1-C4-Alkoxy, Phenyloxy, Benzyloxy, CF3, Fluor, Chlor, Brom, COOH oder COO-C1-C4-Alkyl substituiert sein kann, oder
- ein über eine C₁-C₄-Alkylenbrücke verknüpfter 5-,6- oder 7-gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein Heteroatom ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthält und der gegebenenfalls ein-, zwei- oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, Phenyl oder Benzyl substituiert sein kann oder an den über zwei benachbarte Kohlenstoffatome gegebenenfalls ein Benzolring ankondensiert sein kann, oder
- R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen 5-, 6- oder 7gliedrigen, gesättigten oder ungesättigten Heterocyclus, der ein oder zwei
 weitere Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder
 Schwefel enthält und der gegebenenfalls durch einen oder mehrere der Reste
 C₁-C₄-Alkyl, Benzyl, das gegebenenfalls durch C₁-C₄-Alkyl-substituiert ist,

C₅-C₆-Cycloalkyl, Pyridyl oder Phenyl, das gegebenenfalls einen Rest ausgewählt aus der Gruppe C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Hydroxy trägt, substituiert sein kann,

bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

Bevorzugt sind Verbindungen der allgemeinen Formel (I), worin

unsubstituiertes C₁-C₁₀-Alkyl, oder ein- oder zweifach durch C₁-C₄-Alkoxy, Phenoxy-, C₁-C₄-Alkoxy-phenoxy, Hydroxyphenoxy, C₃-C₆-Cycloalkyl, -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl), -NH-CO-(C₁-C₄-Alkyl), -CO-NH₂, -CO-NH-(C₁-C₄-Alkyl) oder -NH-CO-Benzyl substituiertes C₁-C₄-Alkyl, oder

Phenyl-C₁-C₃-alkyl, wobei der Phenylring gegebenenfalls ein- oder zweifach durch C₁-C₄-Alkyl, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

ein über eine C₁-C₃-Alkylenbrücke verknüpfter 5-, 6- oder 7- gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein oder zwei Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthalten kann und der gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl, Methylphenyl- oder Benzyl substituiert sein kann oder an den über zwei benachbarte Kohlenstoffatome gegebenenfalls ein Benzolring ankondensiert sein kann;

25

30

20

15

 R^2 -C(=NH)NH₂ oder -CH₂-NH₂;

- R³ C₁-C₆-Alkyl, welches ein- oder zweifach durch eine oder mehrere der Gruppen -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₄-Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert ist, oder
- Benzyl, wobei der Phenylring direkt oder über eine C₁-C₄-Alkylenbrücke durch eine der Gruppen -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl,

 -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₄-Alkyl), -C(=NH)NH₂

 oder -NH-C(=NH)NH₂ substituiert ist, oder

10

20

25

30

35

Phenyl- C_2 - C_4 -alkyl, wobei die C_2 - C_4 -Alkylenbrücke gegebenfalls durch Phenyl, COOH oder COO- C_1 - C_4 -Alkyl substituiert sein kann und wobei der Phenylring direkt oder über eine C_1 - C_4 -Alkylenbrücke durch eine der Gruppen -NH₂, -NH(C_1 - C_4 -Alkyl), -N(C_1 - C_4 -Alkyl)₂, -NHPhenyl, -N(Phenyl)₂,

-NHBenzyl, -N(Benzyl)_{2,} -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert sein kann, oder

ein über eine C₁-C₄-Alkylenbrücke verknüpfter 5-, 6- oder 7-gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein oder zwei Heteroatome ausgewählt aus der Gruppe Sauerstoff oder Stickstoff enthalten kann und der gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl oder Benzyl substituiert sein kann;

15 R⁴ Wasserstoff, C₁-C₄-Alkyl, welches durch eine der Gruppen COOH, COO-C₁-C₄-Alkyl oder C₃-C₆-Cycloalkyl substituiert sein kann, oder

Phenyl- C_1 - C_4 -alkyl, wobei die C_1 - C_4 -Alkylenbrücke gegebenfalls durch Phenyl substituiert sein kann und wobei der Phenylring gegebenenfalls einoder zweifach durch einen oder mehrere der Reste C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, CF_3 , Fluor, Chlor, Brom, COOH oder COO- C_1 - C_4 -Alkyl substituiert sein kann, oder

C₃-C₈-Cycloalkyl, Naphthyl oder Phenyl, welches gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Phenyloxy, Benzyloxy, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

ein über eine C₁-C₄-Alkylenbrücke verknüpfter 5-, 6- oder 7-gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein Heteroatom ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthält und der gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl oder Benzyl substituiert sein kann oder an den über zwei benachbarte Kohlenstoffatome gegebenenfalls ein Benzolring ankondensiert sein kann, oder

20

25

R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen 6- oder 7gliedrigen, gesättigten oder ungesättigten Heterocyclus, der ein oder zwei
weitere Heteroatome ausgewählt aus der Gruppe Sauerstoff oder Stickstoff
enthält und der gegebenenfalls durch einen oder mehrere der Reste

Methyl, Ethyl, Propyl, Benzyl, Cyclopentyl, Cyclohexyl, Pyridyl oder Phenyl, das
gegebenenfalls einen Rest ausgewählt aus der Gruppe Methyl, Methoxy,
Ethoxy, Propyloxy oder Hydroxy trägt, substituiert sein kann,
bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate,
ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie
gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), worin R¹ unsubstituiertes C₁-C₁₀-Alkyl, oder durch C₁-C₄-Alkoxy, Phenoxy, C₁-C₄-Alkoxy-phenoxy, Hydroxyphenoxy, C₃-C₆-Cycloalkyl, -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NH-CO-(C₁-C₄-Alkyl), -CO-NH₂, -CO-NH-(C₁-C₄-Alkyl) oder -NH-CO-Benzyl substituiertes C₁-C₄-Alkyl, oder

Phenyl-C₁-C₃-alkyl, wobei der Phenylring gegebenenfalls ein- oder zweifach durch C₁-C₄-Alkyl, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

ein über eine C₁-C₃-Alkylenbrücke verknüpfter, gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl, Methylphenyl- oder Benzyl substituierter Heterocyclus, ausgewählt aus der Gruppe Pyrrol, Pyrrolin, Pyrrolidin, Pyridin, Piperidin, Pyrimidin, Piperazin, Morpholin, Thiomorpholin, Imidazol, Imidazolin, Imidazolidin, Pyrazol, Pyrazolin, Pyrazolidin, Triazol, Furan, Tetrahydrofuran, α-Pyran, γ-Pyran, Dioxolan, Tetrahydropyran, Dioxan, Thiophen, Dihydrothiophen, Thiolan, Dithiolan.

Oxazol, Isoxazol, Thiazol, Isothiazol, Oxadiazol, Benzodioxol, Benzimidazol, Benzthiophen, Benzfuran oder Indol;

 R^2 -C(=NH)NH₂ oder -CH₂-NH₂;

35 R^3 C_1 - C_3 -Alkyl, das durch -NH₂, -NH(C_1 - C_3 -Alkyl), -N(C_1 - C_3 -Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C_1 - C_3 -Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert ist, oder

Benzyl, webei der Phenylring direkt oder über eine Methylenbrücke durch eine der Gruppen -NH₂, -NH(C₁-C₃-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₃-Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert ist, oder

5

10

15

Phenyl-C₂-C₃-alkyl, wobei die C₂-C₃-Alkylenbrücke gegebenfalls durch Phenyl, COOH oder COO-C₁-C₃-Alkyl substituiert sein kann und wobei der Phenylring direkt oder über eine Methylenbrücke durch eine der Gruppen -NH₂, -NH(C₁-C₃-Alkyl), -N(C₁-C₃-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert sein kann, oder

ein über eine C_1 - C_3 -Alkylenbrücke verknüpfter, gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl oder Benzyl substituierter Heterocyclus, ausgewählt aus der Gruppe Pyrrol, Pyrrolin, Pyrrolidin, Pyridin, Piperidin, Pyrimidin, Piperazin, Morpholin, Diazepan, Imidazol, Imidazolin, Imidazolidin, Pyrazol, Pyrazolin, Pyrazolidin, Furan, Tetrahydrofuran, α -Pyran, γ -Pyran, Dioxolan, Tetrahydropyran, Dioxan, Oxazol oder Isoxazol;

20

30

35

R⁴ Wasserstoff, C₁-C₄-Alkyl, welches durch eine der Gruppen COOH, COO-C₁-C₃-Alkyl oder C₃-C₆-Cycloalkyl substituiert sein kann, oder

Phenyl-C₁-C₃-alkyl, wobei die C₁-C₃-Alkylenbrücke gegebenfalls durch
Phenyl substituiert sein kann und wobei der Phenylring gegebenenfalls durch
C₁-C₃-Alkyl, C₁-C₃-Alkoxy, CF₃, Fluor, Chlor, Brom, COOH oder
COO-C₁-C₃-Alkyl substituiert sein kann, oder

C₃-C₈-Cycloalkyl, Naphthyl oder Phenyl, welches gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste C₁-C₃-Alkyl, C₁-C₃-Alkoxy, Phenyloxy, Benzyloxy, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₃-Alkyl substituiert sein kann, oder

ein über eine C₁-C₃-Alkylenbrücke verknüpfter, gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl, Methylphenyl- oder Benzyl substituierter Heterocyclus, ausgewählt aus der Gruppe Pyrrol, Pyrrolin, Pyrrolidin, Pyridin, Piperidin, Pyrimidin, Piperazin, Morpholin, Thiomorpholin, Imidazol, Imidazolin, Imidazolidin, Pyrazol,

Pyrazolin,-Pyrazolidin, Triazol, Furan, Tetrahydrofuran, α -Pyran, γ -Pyran, Dioxolan, Tetrahydropyran, Dioxan, Thiophen, Dihydrothiophen, Thiolan, Dithiolan,

Oxazol, Isoxazol, Thiazol, Isothiazol, Oxadiazol, Benzodioxol, Benzimidazol, Benzthiophen, Benzofuran oder Indol;

oder

5

30

R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen 6- oder 7gliedrigen, gesättigten Heterocyclus, der ein oder zwei weitere
Stickstoff-Heteroatome enthält und der gegebenenfalls durch einen oder
mehrere der Reste Methyl, Ethyl, Propyl, Benzyl, Cyclopentyl, Cyclohexyl,
Pyridyl oder Phenyl, das gegebenenfalls einen Rest ausgewählt aus der
Gruppe Methyl, Methoxy, Ethoxy, Propyloxy oder Hydroxy trägt, substituiert
sein kann,
bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate,
ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie
gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

- 20 Erfindungsgemäß von besonderer Bedeutung sind Verbindungen der allgemeinen Formel (I), worin
- R¹ Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl oder Decyl, oder
 ein Methyl-, Ethyl- oder Propyl-Rest, der durch Methoxy, Ethoxy, Cyclopropyl,
 Cyclopentyl, Cyclohexyl, Phenyl, Methoxyphenoxy, -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NH-CO-Methyl, -CO-NH₂, -CO-NH-Methyl oder -NH-CO-Benzyl substituiert ist, oder
 - Benzyl, das ein- oder zweifach durch Methyl, Ethyl, Propyl, CF₃, Fluor, Chlor, Brom, COOH, COOMe oder COOEt substituiert ist, oder
 - Phenylethyl, daß ein- oder zweifach durch Methyl, Ethyl, Propyl, CF₃, Fluor, Chlor, Brom, COOH, COOMe oder COOEt substituiert ist, oder
- ein über eine Methylen-, Ethylen oder Propylenbrücke verknüpfter, gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl, Methylphenyl- oder Benzyl substituierter Heterocyclus,

ausgewählt aus der Gruppe Pyrrol, Pyrrolidin, Pyridin, Piperidin, Piperazin, Morpholin, Furan, Tetrahydrofuran, Thiophen, Benzodioxol oder Benzimidazol;

 R^2 -C(=NH)NH2 oder -CH2-NH2;

5

- R^3 ein Methyl-, Ethyl- oder Propyl-Rest, der durch -NH2, -NH(C1-C3-Alkyl), -N(C1-C₃-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₃-Alkyl), -NH-CO-Benzyl (?) oder -C(=NH)NH2 substituiert ist, oder
- 10 Benzyl, das direkt oder über eine Methylenbrücke durch eine der Gruppen -NH₂, -NH(C₁-C₃-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₃-Alkyl) oder -C(=NH)NH₂ substituiert ist, oder
- 15 Phenyl-C₂-C₃-alkyl, wobei die C₂-C₃-Alkylenbrücke gegebenfalls durch Phenyl, COOH oder COO-C₁-C₃-Alkyl substituiert sein kann und wobei der Phenylring direkt oder über eine Methylenbrücke durch eine der Gruppen -NH₂, -NH(C₁-C₃-Alkyl), -N(C₁-C₃-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)2 oder -C(=NH)NH2 substituiert sein kann, oder

20

ein über eine Methylen-, Ethylen oder Propylenbrücke verknüpfter, gegebenenfalls ein- oder zweifach durch Methyl, Ethyl, Propyl, Phenyl oder Benzyl substituierter Heterocyclus, ausgewählt aus der Gruppe Pyrrol, Pyrrolidin, Pyridin, Piperidin, Piperazin, Morpholin, Diazepan, Furan, Tetrahydrofuran, Thiophen, Benzodioxol oder Benzimidazol;

25

R⁴ Wasserstoff oder ein Methyl-, Ethyl-, Propyl- oder Butyl-Rest, der durch eine der Gruppen COOH, COOMe, COOEt, Cyclopropyl, Cyclopentyl oder Cyclohexyl substituiert sein kann, oder

30

- Benzyl, das gegebenfalls durch Methyl, Ethyl, Propyl, Methoxy, Ethoxy, CF₃, Fluor, Chlor, Brom, COOH, COOMe oder COOEt substituiert sein kann, oder Phenylethyl, Phenylpropyl, Diphenylpropyl;
- 35

Cyclopropyl, Cyclopentyl, Cyclohexyl, Cyclooctyl, Naphthyl oder Phenyl, das gegebenenfalls durch Methyl, Ethyl, Propyl, Methoxy, Ethoxy, Phenyloxy, Benzyloxy, CF3, Fluor, Chlor, Brom, COOH, COOMe oder COOEt substituiert sein kann, oder

25

30

ein über eine Methylen-, Ethylen oder Propylenbrücke verknüpfter, gegebenenfalls ein- oder zweifach durch Methyl, Ethyl, Propyl, Phenyl oder Benzyl substituierter Heterocyclus, ausgewählt aus der Gruppe Pyrrol, Pyrrolidin, Pyridin, Piperidin, Piperazin, Morpholin, Furan, Tetrahydrofuran, Thiophen, Chinolin, Isochinolin, Benzodioxol oder Benzimidazol; oder

Piazepan-Ring, der gegebenenfalls durch einen der Reste Methyl, Ethyl, Propyl, Cyclopentyl, Cyclohexyl, Pyridyl, Benzyl oder Phenyl, das gegebenenfalls einen Rest ausgewählt aus der Gruppe Methyl, Methoxy Ethoxy, Propyloxy oder Hydroxy trägt, substituiert sein kann, bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

Erfindungsgemäß bevorzugt sind ferner Verbindungen der allgemeinen Formel (I), worin

R¹ Methyl, Ethyl, Propyl, Pentyl oder n-Decyl, oder

ein Methyl-, Ethyl- oder Propyl-Rest, der durch Methoxy, Ethoxy, Cyclopropyl, Cyclopentyl, Cyclohexyl, Phenyl oder Methoxyphenoxy substituiert ist, oder

Benzyl, das ein- oder zweifach durch Methyl, CF₃, COOH, COOMe oder COOEt substituiert ist, oder

ein über eine Methylenbrücke verknüpftes Tetrahydrofuran;

 R^2 -C(=NH)NH₂ oder -CH₂-NH₂;

R³ ein Ethyl- oder Propyl-Rest, der durch -NH₂, -NHMe, -NMe₂, -NHEt, -NEt₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂ oder -C(=NH)NH₂ substituiert

ist, oder

Benzyl, das durch eine der Gruppen -NH2, -CH2-NH2, -NMe2, -NHMe,

-NEt₂, -NHEt, -NH-CO-Me, -CH₂-NH-CO-Me oder -C(=NH)NH₂ substituiert ist, oder

Phenylethyl, wobei die Ethylenbrücke gegebenfalls durch COOH, COOMe oder COOEt substituiert sein kann und wobei der Phenylring durch eine der Gruppen -NH₂, -CH₂-NH₂, -NMe₂, -NHMe, -NEt₂, -NHEt, -NH-CO-Me, -CH₂-NH-CO-Me oder -C(=NH)NH₂ substituiert ist, oder

Phenylpropyl, Diphenylpropyl oder Pyridylmethyl;

10

5

- R⁴ Wasserstoff oder ein Methyl-, Ethyl-, Propyl- oder Butyl-Rest, der durch eine der Gruppen COOH, COOMe, COOEt, Cyclopropyl, Cyclopentyl oder Cyclohexyl substituiert sein kann, oder
- Benzyl, das gegebenfalls durch Methyl, Ethyl, Propyl, Methoxy, Ethoxy, CF₃, Fluor, Chlor, Brom, COOH, COOMe oder COOEt substituiert sein kann, oder Phenyl-ethyl, Phenylpropyl, Diphenylpropyl, oder
- Cyclopentyl, Cyclohexyl, Cyclooctyl, Naphthyl oder Phenyl, das gegebenenfalls durch Methyl, Ethyl, Methoxy, Ethoxy, Phenyloxy oder CF₃ substituiert sein kann, oder

ein über eine Methylenbrücke verknüpftes Pyridin oder Chinolin, oder

25

30

R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen Piperazin- oder Diazepan-Ring, der gegebenenfalls durch einen der Reste Cyclopentyl, Cyclohexyl, Pyridyl, Benzyl oder Phenyl, das gegebenenfalls einen der Reste ausgewählt aus der Gruppe Methyl, Methoxy, Ethoxy, Propyloxy oder Hydroxy trägt, substituiert sein kann, bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie

gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

35

Erfindungsgemäß besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), worin

- R¹ Methyl, Ethyl, Propyl, Pentyl, Phenylethyl, Phenylpropyl, Cyclopropylmethyl, Tetrahydrofuranylmethyl oder Benzyl, das ein- oder zweifach durch CF₃, COOH, COOMe oder COOEt substituiert ist;
- 5 R² -C(=NH)NH₂ oder -CH₂-NH₂, bevorzugt -C(=NH)NH₂;
 - R³ ein Ethyl- oder Propyl-Rest, der durch -NH $_2$, -NHMe, -NMe $_2$, -NHEt, -NEt $_2$, -NHPhenyl, -N(Phenyl) $_2$, -NHBenzyl, -N(Benzyl) $_2$ oder -C(=NH)NH $_2$ substituiert
- ist, oder

30

35

Benzyl, das durch eine der Gruppen -NH₂, -CH₂-NH₂, -NMe₂, -NHMe, -NEt₂, -NHEt, -NH-CO-Me, -CH₂-NH-CO-Me oder -C(=NH)NH₂ substituiert ist, oder

Phenylethyl, wobei die Ethylenbrücke durch COOH, COOMe oder COOEt substituiert ist und wobei der Phenylring eine der Gruppen -NH₂, -CH₂-NH₂, -NMe₂, -NHMe, -NEt₂, -NHEt, -NH-CO-Me, -CH₂-NH-CO-Me oder -C(=NH)NH₂ trägt, oder Phenylpropyl, Diphenylpropyl oder Pyridylmethyl;

20 R⁴ Wasserstoff oder ein Methyl-, Ethyl-, Propyl- oder Butyl-Rest, der durch eine der Gruppen COOH, COOMe, COOEt oder Cyclohexyl substituiert sein kann, oder

Phenyl, das gegebenenfalls durch Methyl, Ethyl, Methoxy, Ethoxy, Phenyloxy oder CF₃ substituiert sein kann, oder

Benzyl, Phenylethyl, Phenylpropyl, Diphenylpropyl, Cyclohexyl, Cyclooctyl oder Naphthyl, oder

ein über eine Methylenbrücke verknüpftes Pyridin oder Chinolin, oder

R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen Piperazin- oder Diazepan-Ring, der gegebenenfalls durch einen der Reste Cyclopentyl, Cyclohexyl, Pyridyl, Benzyl oder Phenyl, das gegebenenfalls einen Rest ausgewählt aus der Gruppe Methyl, Methoxy, Ethoxy, Propyloxy oder Hydroxy trägt, substituiert sein kann,

bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

5

Von besonderer Bedeutung sind erfindungsgemäß Verbindungen der allgemeinen Formel (I), worin

R¹ Methyl;

10

- R² -C(=NH)NH₂ oder -CH₂-NH₂, bevorzugt -C(=NH)NH₂;
- R³ Ethyl, das durch -NH₂, -NMe₂, -NHPhenyl, -NHBenzyl, -N(Benzyl)₂, Pyrrolidin, Piperidin, Diazepan oder -C(=NH)NH₂ substituiert ist, Benzyl, das durch eine der Gruppen -CH₂-NH₂, -NMe₂ oder -C(=NH)NH₂ substituiert ist, Phenylethyl, wobei die Ethylenbrücke durch COOH, COOMe oder COOEt substituiert ist und wobei der Phenylring eine der Gruppen -CH₂-NH-CO-Me oder -C(=NH)NH₂ trägt, Diphenylpropyl oder Pyridylmethyl;
- 20 R⁴ Wasserstoff oder ein Methyl- oder Ethyl-Rest, der gegebenfalls durch eine der Gruppen COOH oder COOEt substituiert sein kann, Propyl, Butyl oder Phenyl, das gegebenenfalls durch Methyl, Ethyl, Methoxy, Ethoxy, Phenyloxy oder CF₃ substituiert sein kann, Benzyl, Phenylethyl, Phenylpropyl, Diphenylpropyl, Cyclohexyl, Cyclooctyl, Naphthyl, Pyridylmethyl oder Chinolinylmethyl oder

R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen Piperazin- oder Diazepan-Ring, der durch einen der Reste Benzyl, Cyclopentyl, Cyclohexyl oder Phenyl, das gegebenenfalls einen Rest ausgewählt aus der Gruppe Methyl, Ethoxy, Propyloxy oder Hydroxy trägt, substituiert ist, bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

35

30

Erfindungsgemäß bedeutsam sind ferner Verbindungen der allgemeinen Formel (I), worin

- R¹ Methyl;
- R^2 -C(=NH)NH₂;
- 5 R³ Ethyl, das durch -NH₂, -NHPhenyl, -NHBenzyl, -N(Benzyl)₂, Pyrrolidin, Piperidin, Diazepan oder -C(=NH)NH₂ substituiert ist, Benzyl, das durch -C(=NH)NH₂ substituiert ist oder Diphenylpropyl;
- R⁴ Wasserstoff, Methyl, Propyl, Butyl, Benzyl oder Phenyl, das gegebenenfalls
 durch Ethyl oder Phenyloxy substituiert sein kann, Phenylethyl, Cyclohexyl oder Cyclooctyl, oder

R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen Piperazin-Ring, der durch einen Rest ausgewählt aus der Gruppe Cyclopentyl, Cyclohexyl, Phenyl, Methylphenyl, Ethoxyphenyl oder Propoxyphenyl substituiert ist, oder einen Diazepan-Ring, der durch Methylphenyl substituiert ist, bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

20

Von besonderer Bedeutung sind ferner die erfindungsgemäßen Verbindungen der allgemeinen Formel (I), worin

R¹ Methyl;

25

35

- R^2 -C(=NH)NH₂;
- R³ Ethyl, das durch -NH₂, -NHBenzyl, -N(Benzyl)₂, Pyrrolidin, Piperidin, Diazepan oder -C(=NH)NH₂ substituiert ist, Benzyl, das durch -C(=NH)NH₂ substituiert ist oder Diphenylpropyl;
 - R⁴ Wasserstoff, Methyl, Butyl oder Phenyl, das gegebenenfalls durch Ethyl oder Phenyloxy substituiert sein kann, Phenylethyl, Cyclohexyl oder Cyclooctyl, bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

Als erfindungsgemäß besonders bevorzugte Verbindungen seien beispielsweise genannt:

- 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-(2-phenylethyl)-amid;
- 5 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-[2-N',N'-dibenzylamino)ethyl]-N-phenyl-amid;
 - 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-(3-phenoxy-phenyl)-amid;
- 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2amidinoethyl)-N-phenyl-amid;
 - 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-cyclooctyl-amid;
 - 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-(3-ethyl-phenyl)-amid;
- 15 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- [N-(2-(N'-benzylamino)-ethyl)-N-cyclohexyl-amid];
 - 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N-(2-amino-ethyl)-N-cyclohexyl-amid];
- 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(3,3-diphenylpropyl)-amid;
 - 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(4-amidino-benzyl)-N-methyl-amid;
 - 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-iso-butyl-amid;
- 25 2-{2-[4-(Amino-hydroximino-methyl) phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(cyclohexyl)-piperazid];
 - 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- [N'-(2-methyl-phenyl)-diazepid];
- Neben den vorstehend genannten Verbindungen der allgemeinen Formel (I) zielt die vorliegende Erfindung ferner auf Verbindungen, die aufgrund einer in vivo abspaltbaren Funktionalität erst nach ihrer Einnahme durch den Patienten vom Organismus in die therapeutisch wirksamen Verbindungen der allgemeinen Formel (I) überführt werden. Solche Verbindungen werden als Prodrugs bezeichnet. Ein weiterer Aspekt der vorliegenden Erfindung zielt entsprechend auf Prodrugs der allgemeinen Formel (II)

$$\mathbb{R}^{4}$$
 \mathbb{N}
 \mathbb{N}

worin

R¹ und R⁴ die vorstehend genannten Bedeutungen aufweisen können und

die vorstehend genannten Bedeutungen aufweisen kann oder C₁-C₄-Alkyl bedeutet, welches durch einen Rest ausgewählt aus der Gruppe

-C(=NOH)NH₂, -C(=NCOO-C₁-C₄-alkyl)NH₂ oder

-C(=NCOO-C₁-C₄-alkyl-Phenyl)NH₂ substituiert ist;

10

15

5

R⁵ Hydroxy, -COO-C₁-C₈-Alkyl oder -COO-C₁-C₄-Alkyl-Phenyl, wobei in der vorstehend genannten Gruppe der Phenylring jeweils durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiert sein kann, bedeuten kann, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

Bevorzugt sind Prodrugs der allgemeinen Formel (II), worin R¹, R³ und R⁴ die vorstehend genannten Bedeutungen aufweisen können und Propyloxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Propyloxycarbonyl, Butyloxycarbonyl, Pentyloxycarbonyl, Hexyloxycarbonyl, Benzyloxycarbonyl, bedeuten kann, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate,

ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

25

Ein weiterer Aspekt der vorliegenden Erfindung zielt auf Verbindungen der allgemeinen Formel (III)

$$\mathbb{R}^4$$
 \mathbb{N}
 \mathbb{N}

in der die Reste R¹, R³ und R⁴ die vorstehende Bedeutung aufweisen können.

Die Verbindungen der allgemeinen Formel (III), stellen wertvolle Zwischenprodukte zur Herstellung der erfindungsgemäßen aminocarbonyl-substituierten Benzimidazol-Derivate der allgemeinen Formel (I) sowie der der erfindungsgemäßen Prodrugs der allgemeinen Formel (II) dar.

5

Als Alkylgruppen (auch soweit sie Bestandteil anderer Reste sind) werden verzweigte und unverzweigte Alkylgruppen mit 1bis 10 Kohlenstoffatomen bevorzugt 1 – 6, besonders bevorzugt 1-4 Kohlenstoffatomen betrachtet, beispielsweise werden genannt: Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl und Octyl. Sofern nicht anders genannt, sind von den vorstehend genannten Bezeichnungen Propyl, Butyl, Pentyl, Hexyl, Heptyl und Octyl sämtliche der möglichen isomeren Formen umfaßt. Beispielsweise umfaßt die Bezeichnung Propyl die beiden isomeren Reste n-Propyl und iso-Propyl, die Bezeichnung Butyl n-Butyl, iso-Butyl, sec. Butyl und tert.-Butyl, die Bezeichnung Pentyl, iso-Pentyl, Neopentyl etc. Gegebenfalls werden zur Bezeichnung der vorstehend genannten Alkylreste auch gängige Abkürzungen wie Me für Methyl, Et für Ethyl etc. verwendet.

Als Cycloalkylreste mit 3 - 8 Kohlenstoffatomen werden beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyxclooctyl bezeichnet. Als Halogen wird im allgemeinen Fluor, Chlor, Brom oder Jod bezeichnet.

Als Beispiele für N-verknüpfte cyclische Reste der allgemeinen Formel NR³R⁴ werden genannt: Pyrrol, Pyrrolin, Pyrrolidin, 2-Methylpyrrolidin, 3-Methylpyrrolidin, Piperidin, Piperazin, Morpholin, Thiomorpholin, Imidazol, Imidazolin, Imidazolidin, Pyrazol, Pyrazolin, Pyrazolidin oder Diazepan, die wie in den Definitionen angegeben substituiert sein können.

Als 5- ,6- oder 7-gliedrige, gesättigte oder ungesättigte Heterocyclen, die als Heteroatome Stickstoff, Sauerstoff oder Schwefel enthalten können, werden, soweit in den Definitionen nicht anders beschrieben beispielsweise Furan, Tetrahydrofuran, Tetrahydrofuranon, γ-Butylrolacton, α-Pyran, γ-Pyran, Dioxolan, Tetrahydropyran, Dioxan, Thiophen, Dihydrothiophen, Thiolan, Dithiolan, Pyrrol, Pyrrolin, Pyrrolidin, Pyrazol, Pyrazoli, Pyrazolidin, Imidazol, Imidazolin, Imidazolidin, Triazol, Tetrazol, Pyridin, Piperidin, Pyridazin, Pyrimidin, Pyrazin, Piperazin, Triazin, Tetrazin, Morpholin, Thiomorpholin, Diazepan, Oxazol, Isoxazol, Oxazin, Thiazol, Isothiazol, Thiadiazol, Oxadiazol, Pyrazolidin genannt, wobei der Heterocyclus wie in den Definitionen angegeben substituiert sein kann.

"=O" bedeutet ein über eine Doppelbindung verknüpftes Sauerstoffatom.

Die Synthese aminocarbonyl-substituierter Benzimidazol-Derivate der Formel (I) sowie die der Prodrugs der allgemeinen Formel (II) gelingt in Anlehnung an aus dem Stand der Technik bekannte synthetische Zugänge. Diesbezüglich sei beispielsweise auf die bereits eingangs genannte Internationale Patentanmeldung WO 98/37075 verwiesen, auf die an dieser Stelle inhaltlich Bezug genommen wird.

Ein möglicher Zugang zu den erfindungsgemäßen Verbindungen in Anlehnung an und unter Verwendung von konventionellen chemischen Synthesemethoden ist schematisch im Folgenden dargestellt (Schema 1).

Schema 1:

5 In einem ersten Syntheseschritt (Stufe i, Schema 1) gelingt ausgehend von 4-Halogen-3-nitro-benzoesäure-derivaten durch Aminolyse mit geeignet substituierten primären Aminen die Synthese von 4-Amino-3-nitrobenzoesäure-derivaten. Die Umsetzung erfolgt in geeigneten organischen Lösemitteln wie beispielsweise Dimethylsulfoxid, N,N-Dimethylformamid, N-Methylpyrrolidon oder gegebenenfalls auch in Wasser bei Raumtemperetur oder in einem Temperaturbereich von 30-80°C,

- 5 bevorzugt 40-50°C. Die so erhaltenen Aminobenzoesäure-Verbindungen werden über konventionelle Standardverfahren in die entsprechenden Alkylester. vorzugsweise in die entsprechenden Methylester oder Ethylester überführt (Stufe ii. Schema 1). Die Reduktion der Nitro-gruppe zu den Diaminobenzoesäurealkylestern gelingt vorzugsweise durch katalytische Hydrierungen gemäß Stufe iii (Schema 1).
- 10 Als Katalysator kommt vorzugsweise Palladium in Betracht. Besonders bevorzugt ist als Katalysator Palladium auf Kohle (5%). Durch Umsetzung der so erhaltenen Diaminobenzoesäureester mit p-Cyanophenylpropionsäure in Gegenwart dehydratisierender Reagentien wird gemäß Stufe v (Schema 1) der Benzimidazolheterocyclus gebildet. Die Umsetzung wird gegebenenfalls in einem
- 15 Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan durchgeführt. Als dehydratisierende Mittel kommen beispielsweise in Betracht Chlorameisensäureisobutylester, Orthokohlensäuretetraethylester, Orthoessigsäuretrimethylester, 2,2-Dimethoxypropan, Tetramethoxysilan,
- 20 Phosphoroxychlorid, Thionylchlorid, Trimethylchlorsilan, Phosphortrichlorid, Phosphorpentoxid, 1,2-Dihydro-2-ethoxy-chinolin-1-carbonsäureethylester (EEDQ), 1,2-Dihydro-2-i-propyloxy-chinolin-1-carbonsäure-i-propylester (IIDQ), N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid, N,N'-Dicyclohexylcarbodiimid/1-Hydroxy-benztriazol, 2-(1H-Benzotriazol-1-yl)-
- 25 1,1,3,3-tetramethyluronium-tetrafluorborat, 2-(1H-Benzotriazol-1-yl)-1,1,3,3tetramethyluronium-tetrafluorborat/1-Hydroxy-benztriazol, N.N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff. Gegebenenfalls kann sich der Zusatz einer Base wie Pyridin, 4-Dimethylaminopyridin, N-Methyl-morpholin oder Triethylamin als zweckmäßig erweisen. Die Umsetzung erfolgt üblicherweise bei
- 30 Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 110°C.
 - Die gemäß Stufe v (Schema 1) erhältlichen Benzimidazolderivate der allgemeinen Formel (III) sind entweder direkt aus den vorstehend genannten
- 35 Benzimidazolcarbonsäureestern zugänglich oder werden über die entsprechenden Carbonsäuren oder Carbonsäurehalogenide erhalten.

WO 01/14342 PCT/EP00/08037

24

Werden die gemäß Stufe iv (Schema 1) erhaltenen Carbonsäureester unter Standardbedingungen (protisches organisches Lösemittel wie beispielsweise Methanol, Ethanol oder Isopropanol, gegebenenfalls in Gegenwart von Wasser in Anwesenheit von Basen wie Hydroxiden oder Carbonaten der Alkali- und

- 5 Erdalkalimetalle) verseift, führt dies zu den entsprechenden freien Carbonsäuren. Üblicherweise wird diese Verseifung bei Temperaturen zwischen 0-40°C, bevorzugt bei 10-30°C durchgeführt. Gegebenenfalls kann die Synthese aber auch bei erhöhter Temperatur (>50°C bis Rückflußtemperatur) durchgeführt werden.
 - Erfindungsgemäß bevorzugt ist als Lösemittel ein Methanol-Wasser-gemisch. Als
- 10 Base gelangt bevorzugt Natriumhydroxid zur Anwendung. Die Umsetzung der so erhaltenen Säure mit den Aminen H-NR³R⁴ zu den Verbindungen der allgemeinen Formel (III) wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol,
 - Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan oder in dem entsprechenden
- 15 Amin H-NR³R⁴, gegebenenfalls in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutvlester. Orthokohlensäuretetraethylester, Orthoessigsäuretrimethylester, 2,2-Dimethoxypropan, Tetramethoxysilan, Thionylchlorid, Trimethylchlorsilan, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid,
- 20 N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid, N,N'-Dicyclohexylcarbodiimid/1-Hydroxy-benztriazol, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat, 2-(1H-Benzotriazol-1-yl)-1,1,3,3tetramethyluronium-tetrafluorborat/1-Hydroxy-benztriazol, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, und gegebenenfalls unter Zusatz 25 einer Base wie Pyridin, 4-Dimethylaminopyridin, N-Methyl-morpholin oder Triethylamin zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C,

vorzugsweise bei Temperaturen zwischen 0 und 100°C, durchgeführt.

Die Synthese der Verbindungen der allgemeinen Formel (III) ausgehend von den gemäß Schema 1 (Stufe iv) erhaltenen Carbonosäureestern oder von den entsprechenden Carbonsäurechloriden wird entweder in dem entsprechenden Amin H-NR³R⁴ als Lösungsmittel, oder mit dem Amin H-NR³R⁴ in Gegenwart eines Lösemittels wie Methylenchlorid, Ether oder Ethylacetat und vorzugsweise in Gegenwart einer tertiären organische Base wie Triethylamin, N-Ethyl-diisopropylamin 35 oder N-Methyl-morpholin bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 40 und 100°C, durchgeführt.

WO 01/14342 PCT/EP00/08037

25

Eine Verbindung der allgemeinen Formel (I) erhält man beispielsweise durch Behandlung einer Verbindung der allgemeinen Formel (III, Schema 1, Stufe vi) mit einem entsprechenden Alkohol wie Methanol, Ethanol, n-Propanol, Isopropanol oder Benzylalkohol gegebenenfalls im Gemisch mit einem anderen organischen

- Lösungsmittel wie beispielsweise Chloroform, Nitrobenzol oder Toluol in Gegenwart einer Säure wie Salzsäure oder durch Umsetzung eines entsprechenden Amids mit einem Trialkyloxoniumsalz wie Triethyloxonium-tetrafluorborat in einem Lösemittel wie Methylenchlorid, Tetrahydrofuran oder Dioxan bei Temperaturen zwischen -10 und 50°C, vorzugsweise jedoch bei 0-20°C. Alternativ dazu lassen sich die
- Verbindungen der allgemeinen Formel (I) erhalten durch Umsetzung einer Verbindung der allgemeinen Formel (III, Schema 1, Stufe vi) mit Schwefelnukleophilen wie z.B. Schwefelwasserstoff, Ammonium- bzw. Natriumsulfid, Natriumhydrogensulfid, Kohlenstoffdisulfid, Thioacetamid oder Bistrimethylsilylthioether gegebenenfalls in Gegenwart von Basen wie Triethylamin,
- Ammoniak, Natriumhydrid oder Natriumalkoholat in Lösungsmitteln wie Methanol, Ethanol, Wasser, Tetrahydrofuran, Pyridin, Dimethylformamid oder 1,3-Dimethylimidazolidin-2-on bei 20-100 °C und anschließende Behandlung mit einem geeigneten Methylierungsmittel wie z.B. Methyliodid oder Dimethylsulfat in einem Lösungsmittel wie Acetonitril oder Aceton bei Temperaturen zwischen -10 und 50°C,
- vorzugsweise jedoch bei 0-20°C und anschließende Behandlung mit Ammoniak, Ammoniumcarbonat oder Ammoniumchlorid in einem geeigneten Alkohol, wie beispielsweise Methanol, Ethanol, Isopropanol etc. bei Temperaturen zwischen -10 und 50°C, vorzugsweise jedoch bei 0-20°C.
- 25 Ferner sind die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) zugänglich durch Behandlung einer Verbindung der allgemeinen Formel (III) mit Lithiumhexamethyldisilazid in einem geeigneten organischen Lösungsmittel wie z.B. Tetrahydrofuran bei Temperaturen zwischen –20 und 50 °C, vorzugsweise jedoch bei 0-20 °C und anschließende Hydrolyse mit verdünnter Salzsäure bei 0-5 °C.
- 30 Ein weiterer alternativer Zugang zu Verbindungen der allgemeinen Formel (I) gelingt durch Behandlung einer Verbindung der allgemeinen Formel (III) mit Ammoniumchlorid und Trimethylaluminium in einem geeigneten organischen Lösungsmittel wie z.B. Toluol bei Temperaturen zwischen 20 und 150 °C, vorzugsweise jedoch bei 110 °C.

35

Eine Verbindung der allgemeinen Formel (II) erhält man beispielsweise durch Behandlung einer Verbindung der allgemeinen Formel (III, Schema 1, Stufe vii) mit Hydroxylamin in Gegenwart von Carbonaten oder Alkoholaten der Alkali- oder Erdalkalimetalle in Lösemitteln wie Methanol, Ethanol, n-Propanol oder Isopropanol gegebenenfalls im Gemisch mit Dioxan oder Tetrahydrofuran. Die Alkoholate können dargestellt werden aus den jeweiligen Alkalimetallen oder Metallhydriden und dem entsprechenden Alkohol. Die Reaktion wird vorzugsweise bei 20-100°C,

- 5 besonders bevorzugt bei der Siedetemperatur des verwendeten Lösemittels durchgeführt.
 - Verbindungen der allgemeinen Formel (II) sind alternativ zugänglich durch Behandlung einer Verbindung der allgemeinen Formel (III, Schema 1, Stufe vii) mit einem entsprechenden Alkohol wie Methanol, Ethanol, n-Propanol, Isopropanol oder
- 10 Benzylalkohol in Gegenwart einer Säure wie Salzsäure oder durch Umsetzung eines entsprechenden Amids mit einem Trialkyloxoniumsalz wie Triethyloxonium-tetrafluorborat in einem Lösemittel wie Methylenchlorid. Tetrahydrofuran oder Dioxan bei Temperaturen zwischen -10 und 50°C,
 - vorzugsweise jedoch bei 0-20°C und anschließende Behandlung mit Hydroxylamin
- in Gegenwart von Basen in einem geeigneten Alkohol, wie Methanol, Ethanol, Isopropanol etc. bei Temperaturen zwischen -10 und 50°C, vorzugsweise jedoch bei 0-20°C.
- Eine Verbindung der allgemeinen Formel (I) erhält man beispielsweise durch 20 Behandlung einer Verbindung der allgemeinen Formel (II, Schema 1, Stufe viii) mit Wasserstoff in Gegenwart von Hydrierkatalysatoren wie Raney-Nickel oder Rhodium/Aluminiumoxid in Wasser oder Methanol gegebenenfalls unter Zusatz von Säuren wie Salzsäure oder Methansulfonsäure oder durch Behandlung mit Wasserstoff in Gegenwart von Palladium/Kohle in Essigsäure/Essigsäureanhydrid 25 bei 20-50 °C und 1-5 bar Wasserstoffdruck, bevorzugt bei Raumtemperatur und Normaldruck.
- Acyl- oder Alkoxycarbonyl-Prodrugs der Verbindung mit der allgemeinen Formel (I) erhält man durch Umsetzung der Verbindungen der allgemeinen Formel (I) mit den 30 entsprechenden Säurechloriden in Gegenwart von Basen wie z.B. Triethylamin, N-Methylmorpholin, Diethylisopropylamin oder DBU in einem geeigneten Lösungsmittel wie Methylenchlorid, Chloroform, Tetrahydrofuran, Acetonitril, Dimethylformamid oder Dimethylsulfoxid.
- 35 Alternativ zu vorstehend genannter Methodik können die erfindungsgemäßen Verbindungen auch an einem polymeren Träger über einen Festphasensynthetischen Zugang erhalten werden. Der synthetische Zugang über Festphasensynthese, wie er in exemplarischer und den Kern der Erfindung als nicht

beschränkend anzusehenden Art und Weise in Schema 2 skizziert ist, ist vor allem für solche erfindungsgemäßen Verbindungen von Interesse, in denen der Rest R³ endständig Amino-substituiert ist.

mit R3: -X-NH₂; R4: -CH₂-R4

In einem ersten Syntheseschritt (Schema 2, Stufe i) erfolgt die Umsetzung eines Harz gebundenen Diamins. Als Harze kommen üblicherweise in Betracht Trityl-, 2-Chlortrityl-, 4-Methoxytrityl-Harze mit Polymermatrices von guervernetztem

5 Polystyrol oder Tentagel oder auch Synphase™ crowns. Zur Durchführung des Syntheseschritts gemäß Schema 2 (Stufe i) wird erfindungsgemäß wie folgt vorgangen. 2-4 Äquivalente des Diamins, basierend auf der Harzbeladung, werden in einem organischen Lösemittel ausgewählt aus der Gruppe Dichlormethan Tetrahydrofuran, 1,2-Dichlorethan oder Dimetyhlformamid gelöst. Die Lösung wird 10 zu dem Tritylharz gegeben und für 2-16 h bei Raumtemperatur gerührt. Anschließend wird das Harz abfiltriert und mehrmals mit trockenem Pyridin oder auch einem Gemisch aus Dichlormethan / Diisopropylamin und Dichlormethan oder trockenem Diethylether gewaschen. Das Harz wird bis zur Gewichtskonstanz im

Vakuum getrocknet.

werden.

15 In einem zweiten Verfahrensschritt (Schema 2, Stufe ii) wird das an das Harz gekoppelte Diamin im Sinne einer reduktiven Aminierung mit den Aldehyden R⁴-CHO, wobei R⁴ die vorstehend definierten Bedeutungen aufweisen kann, umgesetzt. Hierzu wird erfindungsgemäß wie folgt vorgegangen. 2-10 Äquivalente des Aldehyds R⁴-CHO, gelöst in Tetramethylorthoformiat / Dichlormethan oder 20 Dichlormethan oder Dichlormethan / Dimethylformamid oder Dimethylformamid oder 1,2-Dichlormethan, werden zu Diamin beladenem Harz, suspendiert in Tetramethylorthoformiat oder Dichlormethan, Dimethylformamid, 1,2-Dichlormethan, 1-Methyl-2-pyrrolidon (jeweils mit Tetramethylorthoformiat Zusatz) gegeben und 2-12 h bei 0-30°C geschüttelt. Anschließend wird das Harz gewaschen und mit einer 25 Lösung von Natriumtriacetoxyborhydrid oder Natriumcyanborhydrid in Dichlormethan oder DMF oder 1,2-Dichlormethan bei 0-30°C versetzt und 2-24 h geschüttelt.

Im dritten Syntheseschritt erfolgt die Umsetzung des an das Harz gekuppelten 30 Amins mit 4-Chlor-3-nitrobenzoylchlorid im Sinne einer Acylierungsreaktion (Schema 2, Stufe iii). Hierzu wird erfindungsgemäß wie folgt vorgegangen. Das Harz wird in Dichlormethan oder Dimethylformamid oder 1,2-Dichlormethan oder 1-Methyl-2pyrrolidon oder Tetrahydrofuran mit Basenzusatz wie Triethylamin oder Diisopropylethylamin oder Pyridin suspendiert und bei Raumtemperatur mit einer 35 Lösung von 4-Chlor-3-nitro-benzoylchlorid in Dichlormethan oder 1,2-Dichlorethan oder 1-Methyl-2-pyrrolidon oder Dimethylformamid oder Tetrahydrofuran versetzt und 1 - 12 h bei Raumtemperatur geschüttelt. Anschließend wird abfiltriert und mit verschiedenen Lösungsmitteln gewaschen. Alternativ zu der in Schema 2

Alternativ kann der Aldehyd und das Reduktionsmittel direkt zum Harz zugegeben

exemplarisch dargestellten Vorgehensweise ist an Stelle des 4-Chlor-3-nitrobenzoylchlorids auch beispielsweise 4-Fluor-3-nitro-benzoylchlorid einsetzbar.
Nachfolgend erfolgt eine Nucleophile Substitution am an das Harz gekoppelten
Benzoesäureamid durch die primären Amine R¹-NH₂.(Schema 2, Stufe iv). Hierzu
wird erfindungsgemäß wie folgt vorgegangen. Das Harz, in DiisopropylethylaminLösung oder in 1-Methyl-2-pyrrolidon oder Dimethylformamid (20% v/v) suspendiert,
wird mit einer Lösung eines Amins R¹-NH₂ in 1-Methyl-2-pyrrolidon oder
Dimethylforrmamid versetzt und 2-24 h in einem Temperaturbereich von 50-110°C
erhitzt. Nach Abkühlen auf Raumtemperatur wird das Harz abfiltriert und mit
verschiedenen Lösungsmitteln gewaschen.

Die Reduktion der Nitrogruppe führt gemäß Stufe v (Schema 2) zu den an das Harz gekoppelten Diaminobenzoesäureamiden. Hierzu wird erfindungsgemäß wie folgt vorgegangen. Das Harz wird in Dimethylformamid oder 1-Methyl-2-pyrrolidon suspendiert, mit 5-50 Äquivalenten 1.0 M SnCl₂ –Lösung in Dimethylformamid oder in 1-Methyl-2-pyrrolidon versetzt und 12-48 h bei Raumtemperatur geschüttelt.

Anschließend wird das Harz abfiltriert und intensiv mit verschiedenen Lösungsmitteln gewaschen. Alternativ zur Reduktion mit vorstehend genannten SnCl₂-Lösungen kann die Umsetzung auch beispielsweise mit Natriumborhydrid/Cu(acac)₂ (cat.) oder Na₂S₂O₄ in protischen organischen

Lösungsmitteln wie Alkoholen, vorzugsweise in Ethanol, durchgeführt werden. Durch Umsetzung mit den Aldehyden R²-C₆H₄-CH₂CH₂-CHO nach Stufe vi (Schema 2) werden im Sinne einer oxidativen Cyclisierung die Harz-gekuppelten Benzimidazolheterocyclen erhalten. Hierzu wird erfindungsgemäß wie folgt vorgegangen. Das Harz wird in Tetrahydrofuran oder Dioxan oder 1-Methyl-2-

25 pyrrolidon suspendiert, mit einer Lösung eines Aldehyds R²-C₆H₄-CH₂CH₂-CHO in THF oder Dioxan oder 1-Methyl-2-pyrrolidon versetzt und 12-48 h bei Raumtemperatur unter Luftsauerstoff geschüttelt. Anschließend wird das Harz abfiltriert und gewaschen.

Nach Abspaltung vom Harz sind so die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) zugänglich (Schema 2, Stufe vii). Zur Abspaltung wird erfindungsgemäß wie folgt vorgegangen. Das Harz wird mit Trifluoressigsäure (10 - 70% v/v) in Dichlormethan, 1h bei Raumtemperatur geschüttelt und abgesaugt. Anschließend wird das zurückbleibende Harz nochmals mit Trifluoressigsäure (10-70% v/v) in Dichlormethan versetzt, abgesaugt und die vereinigten Filtrate im

Vakuum eingeengt. Nach Behandlung des Harzrückstandes mit einem Gemisch aus Dichlormethan / Methanol wird nach 1 h Schütteln bei Raumtemperatur abfiltriert. Die Filtrate und die erhaltenen Rückstande werden vereinigt und im Vakuum zur Trockene eingeengt. Im Folgenden werden exemplarische Vorgehensweisen zur Herstellung der erfindungsgemäßen Verbindungen detaillierter beschrieben. Die nachfolgenden Beispiele dienen ausschließlich der detaillierteren Erläuterung, ohne den 5 Gegenstand der Erfindung zu beschränken.

<u>Beispiel 1:</u> 2-[2-(4-Amidinophenyl)ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(pyridin-3-yl-methyl)-N-methyl-amid-hydrochlorid

10

a) 4-Methylamino-3-nitrobenzoesäure:

20 g (100 mmol) 4-Chlor-3-nitro-benzoesäure werden in 80 mL 40 %iger wäßriger Methylaminlösung aufgenommen, 15 h bei Raumtemperatur und 1.5 h bei 40 – 50 °C gerührt. Nach dem Abkühlen wird mit Essigsäure angesäuert. Die sich bildenden Kristalle werden abfiltriert, mit kaltem Wasser gewaschen und getrocknet. Ausbeute: 18.2 g (93 %); Schmp.: > 220 °C

b) 4-Methylamino-3-nitro-benzoesäure-methylester:

9.8 g (50 mmol) 4-Methylamino-3-nitro-benzosäure werden in 50 mL DMF mit K₂CO₃ (14 g) versetzt. Zu dieser Suspension werden innerhalb von 10 min. unter Rühren 5 mL Dimethylsulfat zugetropft. Die Temperatur steigt dabei auf ca. 35 °C an. Es wird 15 Minuten gerührt und anschließend für 0.5 h auf 60 °C erhitzt. Nach dem Abkühlen wird mit Wasser verdünnt, der ausgefallene Feststoff abfiltriert, mit Wasser gewaschen und getrocknet. Ausbeute: 9.8 g (93 %); Schmp.: 138-140 °C;

25

c) 3-Amino-4-methylamino-benzoesäure-methylester:

71 g 4-Methylamino-3-nitro-benzoesäure-methylester (338 mmol) werden in 1,4 L Methanol und 67 mL konzentrierter wässriger Salzsäure in Gegenwart von 15 g Pd/C (5%) bei 2-5 bar unter Raumtemperatur hydriert. Nach Abfiltrieren des Katalysators und Abdestillieren des Lösemittels im Vakuum wird der Rückstand in 200 mL Wasser aufgenommen, mit Ethylacetat überschichtet und mit 50-%iger wässriger Kaliumcarbonatlösung alkalisch gestellt. Das Produkt wird in die organische Phase extrahiert, diese wird nochmals mit Wasser gewaschen und abschließend über Natriumsulfat getrocknet. Nach Abdestillieren des größten Teils

des Lösemittels im Vakuum wird mit Diethylether versetzt und abgekühlt. Die entstehenden Kristalle werden abfiltriert. Ausbeute: 54 g (81 %); Schmp.: 215-220 °C (Zersetzung);

- d) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-methylester: 7.5 g 3-Amino-4-methylamino-benzoesäure-methylester (42 mmol) und 7.3 g p-Cyano-phenylpropionsäure (42 mmol) werden in 50 mL Phosphoroxychlorid aufgenommen und 2 h unter Rückfluß erhitzt. Nach dem Abkühlen wird das überschüssige Phosphoroxychlorid mit Eiswasser zersetzt. Es wird mit Ethylacetat überschichtet und mit Kaliumcarbonat unter Rühren alkalisch gestellt. Die organische Phase wird abgetrennt, mit Wasser gewaschen und getrocknet. Nach Abdestillieren des größten Teils des Lösemittels im Vakuum wird abgekühlt. Die ausfallenden Kristalle werden abfiltriert und mit kaltem Ethylacetat oder Diethylether gewaschen. Ausbeute: 8.5 g (63 %); Schmp.: 148-150 °C;
- 15 Masse: ber.: [319], gef.: [M+H][†] 320, [M+Na][†] 342, [2M+H][†] 639;
 ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 8.18 (7H, m, aryl-H); 3.86 (3H, s, OCH₃);
 3.75 (3H, s, aryl-N-CH₃); 3.26 (4H, s, aryl-CH₂-CH₂-).
 - e) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure:
- 5.0 g 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-methylester (15.7 mmol) werden in 50 mL Methanol aufgenommen, mit 20 mL wässriger Natriumhydroxidlösung (1N) versetzt und 0.5h unter Rückfluß gekocht. Es wird mit 20 mL wässriger Salzsäure (1N) versetzt und mit Wasser verdünnt. Die ausfallenden Kristalle werden abfiltriert, mit Wasser, Aceton und Ether gewaschen.
- 25 Das erhaltene Rohprodukt wird aus Dimethylformamid umkristallisiert. Ausbeute: 4.5 g (94 %); Schmp.: > 220 °C;
 - f) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(pyridin-3-yl-methyl)-N-methyl-amid:
- 30 1.2 g 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure (4 mmol), 3-(Methylaminomethyl)-pyridin (0.49 g, 4 mmol) und 0,7 mL N-Methylmorpholin werden in 20 mL Dimethylformamid aufgenommen. Anschließend werden 1.6 g O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumtetrafluoroborat (= TBTU; 5 mmol) zugesetzt und 16 h bei RT gerührt. Nach dem Verdünnen mit 75 mL
- 25 Ethylacetat wird mit gesättigter, wässriger Natriumhydrogencarbonatlösung und mit Wasser gewaschen und über Natriumsulfat getrocknet. Nach Abdestillieren des größten Teils des Lösemittels wird der ausfallende Niederschlag abfiltriert und mit Ether gewaschen. Ausbeute: 1.2 g (73 %); Schmp.: 150-153 °C;

g) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(pyridin-3-yl-methyl)-N-methyl-amid-hydrochlorid:

1.1 g 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N-(pyridin-3-yl-methyl)-N-methyl-amid (2.7 mmol) werden in 25 mL einer gekühlten und bei 0 °C gesättigten, ethanolischen HCl-Lösung aufgenommen. Es wird bis zur vollständigen Auflösung des Eduktes gerührt und die Temperatur ca. 12h bei 0-5 °C gehalten. Das Ethanol wird bei maximal 40 °C abdestilliert und der Rückstand in 30 mL einer bei 0 °C gesättigten, ethanolischen Ammoniak-Lösung aufgenommen. Es wird 1h bei Raumtemperatur und 2h bei 40-50 °C gerührt, mit weiteren 10 mL vorstehend gennater Ammoniak-Lösung versetzt, 1 h unter Rückfluß gekocht und 12h bei Raumtemperatur stehen gelassen. Die ausgefallenen anorganischen Salze werden abfiltriert, das Filtrat auf die Hälfte eingeengt und mit 50 mL Aceton verdünnt. Die ausgefallenen Kristalle werden abfiltriert und mit Aceton gewaschen.

Ausbeute: 1,0 g (80%); Schmp.: > 220 °C
 Masse: ber.: [426], gef.: [M+H][†] 427, [M+2H]^{2†} 214;
 ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 8.64-7.26 (11H, m, aryl-/pyridyl-H); 4.79 (2H, s, N-CH₂-); 3.72 (3H, s, aryl-N-CH₃); 3.30 (4H, s, aryl-CH₂-CH₂-); 3.02 (3H, s, CO-N-CH₃).

20

Beispiel 2: 2-[2-(4-Amidinophenyl)ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-[2-(N,N-dibenzylamino)ethyl]-N-cyclohexyl-amid-dihydrochlorid

- a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäurechlorid:
- 7.0g (23 mmol) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure (erhältlich gemäß Beispiel 1, Stufe e), 2 Tropfen Diemthylformamid und 70 mL Thionylchlorid werden 3h unter Rückfluß gekocht. Das überschüssige Thionylchlorid wird abdestilliert und der verbleibende feste Rückstand in Acetonitril/Diethylether aufgenommen und filtriert. Der abfiltrierte Feststoff wird mit Diethylether gewaschen.
 30 Ausbeute: 7.8 g (94 %);
 - b) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-[2-(N',N'-dibenzylamino)-ethyl]-N-cyclohexyl-amid:

3.2 g N',N'-Dibenzyl-N-cyclohexyl-ethylendiamin (10 mmol) und 3 mL N-Methylmorpholin werden in 75 mL Ethylacetat unter Rühren bei RT portionsweise mit 4.0 g (11 mmol) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäurechlorid versetzt. Es wird 0.5h bei 40-50 °C gerührt, nach dem Abkühlen auf Wasser gegossen und mit Ethylacetat extrahiert. Die organische Phase wird mit verdünnter wässriger Natriumhydroxid-Lösung und mit Wasser gewaschen, über Natriumsulfat getrocknet und der größte Teil des Lösemittels im Vakuum abdestilliert. Es wird mit Diethylether verdünnt und abgekühlt. Die ausgefallenen Kristalle werden abfiltriert und mit Diethylether gewaschen.

10 Ausbeute: 5.7 g (94 %); Schmp.: 124-126 °C;

c) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-[2-(N',N'-dibenzylamino)-ethyl]-N-cyclohexyl-amid-dihydrochlorid:
Die Umsetzung erfolgte ausgehend von 9.4 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1methyl-benzimidazol-5-yl-carbonsäure-N-[2-(N',N'-dibenzylamino)-ethyl]-N-cyclohexyl-amid in Analogie zu Beispiel 1, Stufe g. Das Produkt wird erhalten durch Kristallisation aus Aceton mit etwas Wasser. Ausbeute: 67 %;
Schmp.: 140-148 °C (Dihydrochlorid, enthält Kristallwasser);
Masse: ber.: [626], gef.: [M+H]* 627, [M+2H]²* 314;
20 ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.35, 9.10 (4H, 2s, C(=NH2*)NH2); 7.86-

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.35, 9.10 (4H, 2s, C(=NH₂+)NH₂); 7.86-7.01 (17H, m, aryl-H); 3.66, 2.60 (4H, 2m, N-CH₂-CH₂-N); 3.75 (3H, s, aryl-N-CH₃); 3.62 (1H, m, N-cyclohexyl-H); 3.26 (4H, s, aryl-CH₂-CH₂-); 1.71-054 (10H, m, cyclohexyl).

25 <u>Beispiel 3:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-[2-(N,N-dimethylamino)-ethyl]-N-methyl-amid-dihydrochlorid

- a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-[2-(N,N-dimethylamino)-ethyl]-N-methyl-amid:
- Die Synthese erfolgt in Analogie zu Stufe f (Beispiel 1) durch Umsetzung von 5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure mit N,N,N'-Trimethylethylendiamin. Das Produkt wird aus Ethylacetat/Diethylether kristallisiert. Ausbeute: 62 %; Schmp.: 130-132 °C;

b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-[2-(N,N-dimethylamino)-ethyl]-N-methyl-amid-dihydrochlorid:

Die Umsetzung erfolgte ausgehend von 6 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-[2-(N,N-dimethylamino)-ethyl]-N-methyl-

amid in Analogie zu Beispiel 1, Stufe g. Das Produkt wird erhalten durch Kristallisation aus Aceton und wird mit kaltem Ethanol/Diethylether gewaschen. Ausbeute: 71 %; Schmp.: > 220 °C (Dihydrochlorid);

Masse: ber.: [406], gef.: [M+H]* 407, [2M+H]* 814;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 10.70 (1H, s, H⁺); 9.38, 9.21 (4H, 2s,

-C(=NH₂+)NH₂); 7.89-7.25 (7H, m, aryl-H); 3.80, 3.33 (4H, 2m, N-CH₂-CH₂-); 3.75 (3H, s, aryl-N-CH3); 3.26 (4H, m, aryl-CH₂-CH₂-); 2.99 (3H, s, CO-N-CH₃); 2.80 (6H, s, N-(CH₃)₂).

Beispiel 4: 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-amidino-benzyl)-N-methyl-amid-trihydrochlorid

a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-cyanobenzyl)-N-methyl-amid:

Die Synthese erfolgt in Analogie zu Stufe f (Beispiel 1) durch Umsetzung von 10 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure mit N-(4-Cyanobenzyl)-N-methylamin. Ausbeute: 81%; Schmp.: 138-140 °C;

- b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(4-amidino-benzyl)-N-methyl-amid-trihydrochlorid:
- Die Umsetzung erfolgte ausgehend von 7 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-cyanobenzyl)-N-methyl-amid in Analogie zu Beispiel 1, Stufe g. Das Produkt wird erhalten durch Kristallisation aus Aceton und wird mit kaltem Ethanol/Diethylether gewaschen.

Ausbeute: 68 %; Schmp.: > 220 °C (Trihydrochlorid);

30 Masse: ber.: [467], gef.: [M+H]⁺ 468;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 10.2 (1H, breit, H⁺); 9.52, 9.47, 9.36, 9.31 (8H, 4s, 2 –C(=NH₂⁺)NH₂); 8.00-7.20 (11H, m, aryl-H); 4.77 (2H, s, N-CH₂-); 3.78 (3H, s, aryl-N-CH₃); 3.26 (4H, s, aryl-CH₂-CH₂-); 2.95 (3H, s, CO-N-CH₃).

<u>Beispiel 5:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-amidino-benzyl)-N-ethoxycarbonylmethyl-amid-dihydrochlorid

- a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-cyanobenzyl)-N-ethoxycarbonylmethyl-amid:
 Die Synthese erfolgt in Analogie zu Stufe f (Beispiel 1) durch Umsetzung von 9 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure mit N-(4-cyanobenzyl)-N-ethoxycarbonylmethyl-amin. Die Reinigung des Rohrodukts erfolgt durch Chromatographie an Kieselgel (Dichlormethan:Ethanol = 25:1). Ausbeute: 62%; gelbes Öl;
 - b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(4-amidino-benzyl)-N-ethoxycarbonylmethyl-amid-dihydrochlorid:
- Die Umsetzung erfolgte ausgehend von 4.5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-cyanobenzyl)-N-ethoxycarbonylmethylamid in Analogie zu Beispiel 1, Stufe g. Das Produkt wird erhalten durch Chromatographie an Kieselgel (Dichlormethan:Ethanol = 4:1).

 Ausbeute: 89 %; fester Schaum;
- 20 Masse: ber.: [539], gef.: [M+H]^{$^{+}$} 540; 1 H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.63, 9.54, 9.44, 9.38 (8H, s, 2 C(=NH₂+)NH₂); 8.13-7.30 (11H, m, aryl-H); 4.83 (2H, s, N-CH₂-aryl); 4.19 (2H, s, N-CH₂-C=O); 3.81 (3H, s, aryl-N-CH₃); 3.89 (2H, q, J=7.2 Hz, -O-CH₂-); 3.30 (4H, s, aryl-CH₂-CH₂-); 1.07 (3H, t, J=7.2 Hz, -O-CH₂-CH₃).

<u>Beispiel 6:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-dimethylaminobenzyl)-N-methyl-amid-hydrochlorid

PCT/EP00/08037 WO 01/14342

a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4dimethylaminobenzyl)-N-methyl-amid:

Die Synthese erfolgt in Analogie zu Stufe f (Beispiel 1) durch Umsetzung von 2.3 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure mit N-(4-

36

- 5 dimethylaminobenzyl)-N-methyl-amin. Die Reinigung des Rohrodukts erfolgt durch Chromatographie an Kieselgel (Dichlormethan: Ethanol = 98:2). Ausbeute: 77%;
 - b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(4dimethylaminobenzyl)-N-methyl-amid-hydrochlorid:
- 10 Die Umsetzung erfolgte ausgehend von 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäure-N-(4-dimethylaminobenzyl)-N-methyl-amid in Analogie zu Beispiel 1, Stufe g. Das Produkt wird erhalten durch Chromatographie an Kieselgel (Dichlormethan:Methanol = 9:1). Ausbeute: 62%; fester Schaum; Masse: ber.: [468], gef.: [M+H] 469;
- 15 H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.33, 9.12 (4H, 2s, C(=NH₂+)NH₂); 7.89-6.66 (11H, m, aryl-H); 4.49 (2H, s, N-CH₂-); 3.75 (3H, s, aryl-N-CH₃); 3.27 (4H, s, aryl-CH₂-CH₂-); 2.88 (6H, s, N-(CH₃)₂); 2.85 (3H, s, CO-N-CH₃);.

Beispiel 7: 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-20 N-(2-amidinoethyl)-N-methyl-amid-dihydrochlorid

- a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2cyanoethyl)-N-methyl-amid:
- Die Synthese erfolgt in Analogie zu Stufe f (Beispiel 1) durch Umsetzung von 4 mmol 25 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure mit N-(2cyanoethyl)-N-methyl-amin. Ausbeute: 61%; Schmp.: 150-152°C;
 - b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2amidinoethyl)-N-methyl-amid-dihydrochlorid:
- 30 Die Umsetzung erfolgte ausgehend von 2 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-methyl-amid in Analogie zu Beispiel 1, Stufe g. Das Produkt wird erhalten durch Chromatographie an Kieselgel (Dichlormethan: Methanol = 7:3). Ausbeute: 67%; fester Schaum; Masse: ber.: [405], gef.: [M+H]⁺ 406;

 1 H-NMR (250MHz, CD₃OD): δ [ppm] = 7.70 (7H, m, aryl-H); 3.88, 2.81 (4H, m, N-CH₂-CH₂-); 3.71 (3H, s, aryl-N-CH₃); 3.29 (4H, s, aryl-CH₂-CH₂-); 3.08 (3H, s, CO-N-CH₃).

5 <u>Beispiel 8:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-(chinolin-3-yl-methyl)-amid-dihydrochlorid

a) 3-(Chinolin-3-yl-methyl-amino)-propionitril:

1.3 mL Acrylnitril in 4 mL Ethanol werden zu einer gut gerührten bei maximal 30 °C gehaltenen Lösung von 3-Aminomethyl-chinolin (3.0 g, 19 mmol) in 10 mL Ethanol über einen Zeitraum von ca. 0.5 h zugetropft. Die Mischung wird 16 h bei Raumtemperatur gehalten, 1 h unter Rückfluß gekocht und das Lösemittel im Vakuum abdestilliert. Der Rückstand wird über Kieselgel (Dichlormethan:Methanol 50:1) chromatographiert. Ausbeute: 3.0 g (75%); gelbes Öl;

15

b) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-(chinolin-3-yl-methyl)-amid:
Die Synthese erfolgt in Analogie zu Stufe f (Beispiel 1) durch Umsetzung von 5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure mit 3-(Chinolin-3-yl-methyl-amino)-propionitril. Das erhaltene Rohprodukt wird ohne weitere Reinigung direkt weiter umgesetzt.

- c) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-(chinolin-3-yl-methyl)-amid-dihydrochlorid:
- Die Umsetzung erfolgte ausgehend von 5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-(chinolin-3-yl-methyl)-amid in Analogie zu Beispiel 1, Stufe g. Das Produkt wird erhalten durch Chromatographie an Kieselgel (Dichlormethan:Methanol = 3:1) oder durch Kristallisation aus Methanol/Aceton. Ausbeute: 46%; Schmp.: >220°C;

Beispiel 9: 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-benzyl-amid-dihydrochlorid

- a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-
- 5 cyanoethyl)-N-benzyl-amid:

Die Synthese erfolgt ausgehend von 4.4 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäure durch Umsetzung mit 3-(Benzylamino)-propionitril in Analogie zu Beispiel 1, Stufe f. Das Produkt wird durch Kristallisation aus Essigsäureethylester/Diethylether gereinigt.

10 Ausbeute: 89 %.

Schmp.: 140-148 °C

- b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-benzyl-amid-dihydrochlorid:

Beispiel 10: 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-(3-pyridylmethyl)-amid-dihydrochlorid

- 25 a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-(3-pyridylmethyl)-amid:
 - Die Synthese erfolgt in Analogie zu Stufe f (Beispiel 1) durch Umsetzung von 4.4 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure mit 3-(3-Pyridyl-methyl-amino)-propionitril. Das erhaltene Rohprodukt wird ohne weitere
- 30 Reinigung direkt weiter umgesetzt.

- b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-(3-pyridylmethyl)-amid-dihydrochlorid:
- Ausgehend von 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-
- 5 carbonsäure-N-(2-cyanoethyl)-N-(3-pyridylmethyl)-amid gelingt die Synthese in Analogie zu Beispiel 1 (Stufe g). Die Reinigung des Produkts erfolgt durch Chromatographie über Kieselgel (Dichlormethan:Methanol 7:3) und/oder Kristallisation aus Methanol/Aceton mit Wasser.
 - Ausbeute: 25%; Schmp.: 225-228°C;
- 10 Masse: ber.: [482] gef.: [M+H][†] 483, [M+2H]²⁺ 242; ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.41, 9.27, 9.19, 8.77 (8H, 4s, 2 $C(=NH_2^+)NH_2$); 8.62-7.29 (11H, m, aryl-/pyridyl-H); 4.71 (2H, s, N-CH₂-Ph); 3.78 (3H, s, aryl-N-CH₃); 3.72, 2.78 (4H, 2m, N-CH₂-CH₂); 3.29 (4H, s, aryl-CH₂-CH₂-).

<u>Beispiel 11:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-iso-butyl-amid-dihydrochlorid

- 5 a) 3-(i-Butylamino)-propionitril
 - Die Darstellung erfolgt ausgehend von 40 mmol iso-Butylamin in Analogie zu Stufe a (Beispiel 8). Das erhaltene Produkt wird ohne weitere Reinigung direkt in die nächste Stufe eingesetzt. Ausbeute: 99%;
- b) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-iso-butyl-amid:
 Die Synthese erfolgt ausgehend von 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäurechlorid durch Umsetzung mit 3-(*i*-Butylamino)-propionitril in Analogie zu Beispiel 2, Stufe b. Das Produkt wird ohne Reinigung direkt weiter umgesetzt.
 - c) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-iso-butyl-amid-dihydrochlorid:

Ausgehend von 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-

- carbonsäure-N-(2-cyanoethyl)-N-iso-butyl-amid gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 1 (Stufe g). Ausbeute: 43%; Schmp.: 204-210°C; Masse: ber.: [447] gef.: [M+H]⁺ 448;
 - ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.56, 9.42, 9.36, 8.96 (8H, 4s, 2 $C(=NH_2^+)NH_2$); 8.32-7.27 (7H, m, aryl-H); 3.88, 2.79 (4H, 2m, N-CH₂-CH₂); 3.35
- 25 (2H, m, N-<u>CH</u>₂-CH); 3.32 (4H, s, aryl-CH₂-CH₂-); 1.89 (1H, m, N-CH₂-<u>CH</u>); 0.68 (6H, m, CH(<u>CH</u>₃)₂).

<u>Beispiel 12:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(3-phenylpropyl)-amid-hydrochlorid

5 a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(3-phenylpropyl)-amid:

Die Synthese erfolgt ausgehend von 6.2 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäure durch Umsetzung mit 3-Phenylpropylamin in Analogie zu Beispiel 1, Stufe f. Das Produkt wird ohne Reinigung direkt weiter umgesetzt. Ausbeute: 89%;

b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(3-phenylpropyl)-amid-hydrochlorid:

Ausgehend von 5.4 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl15 carbonsäure-N-(3-phenylpropyl)-amid gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 1 (Stufe g). Das Produkt wird durch Chromatographie über Kieselgel (Dichlormethan:Methanol 9:1) gereinigt. Ausbeute: 56%; amorpher Feststoff; Masse: ber. [439,56], gef.: [M+H]⁺ 4400;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.53, 9.33 (4H, 2s, C(=NH₂+)NH₂); 8.65 20 (1H, t, J=5.2 Hz, NHCO); 8.32-7.22 (12H, m, aryl-H); 3.82 (3H, s, aryl-N-CH₃); 3.41, 2.70, 1.88 (6H, 3m, N-CH₂-CH₂-CH₂-); 3.33 (4H, s, aryl-CH₂-CH₂-).

Beispiel 13: 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(3,3-diphenylpropyl)-amid-hydrochlorid

25

a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(3,3-diphenylpropyl)-amid:

Die Synthese erfolgt ausgehend von 6.2 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäure durch Umsetzung mit 3,3-Diphenylpropylamin in

Analogie zu Beispiel 1, Stufe f. Das Produkt wird ohne Reinigung direkt weiter umgesetzt. Ausbeute: 81%;

b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(3,3-

5 diphenylpropyl)-amid-hydrochlorid:

Ausgehend von 5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(3,3-diphenylpropyl)-amid gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 1 (Stufe g). Das Produkt wird durch Chromatographie über Kieselgel (Dichlormethan:Methanol 95:5) gereinigt.

Ausbeute: 43%; Schmp.: 185°C;
 Masse: ber. [515], gef.: [M+H]⁺ 516
 ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 8.63 (1H, t, J=6.2 Hz, NHCO); 8.32-7.25 (17H, m, aryl-H); 7.79 (4h, breit, c(=NH₂⁺)NH₂); 4.15 (1H, t, J=6.8 Hz, -<u>CH</u>Ph₂); 3.81 (3H, s, aryl-N-CH₃); 3.32 (4H, s, aryl-CH₂-CH₂-); 3.26, 2.36 (4H, 2m, N-CH₂-15 CH₂-).

<u>Beispiel 14:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-(N'-phenyl-piperazid)-hydrochlorid

20 a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-(N'-phenyl-piperazid):

Die Synthese erfolgt ausgehend von 6.2 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäure durch Umsetzung mit N-Phenylpiperazin in Analogie zu Beispiel 1, Stufe f. Das Produkt wird ohne weitere Reinigung direkt weiter umgesetzt. Ausbeute: 86%;

b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- (N'-phenyl-piperazid)- hydrochlorid:

Ausgehend von 5.4 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-ylcarbonsäure-(N'-phenyl-piperazid) gelingt die Synthese in Analogie zur Vorschrift
unter Beispiel 1 (Stufe g). Das Produkt wird durch Chromatographie über Kieselgel
(Dichlormethan:Methanol 95:5) gereinigt. Ausbeute: 47%; amorpher Feststoff;
Masse: ber.: [466,59], gef.: [M+H]⁺ 467;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.41, 9.22 (4H, 2s, C(=NH₂+)NH₂); 7.89- 6.79 (12H, m, aryl-H); 3.80 (3H, s, aryl-N-CH₃); 3.69, 3.19 (8H, 2m, piperazinyl); 3.29 (4H, s, aryl-CH₂-CH₂-).

5 <u>Beispiel 15:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(2-methyl-phenyl)-diazepid]-hydrochlorid

- a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(2-methyl-phenyl)-diazepid]:
- Die Synthese erfolgt ausgehend von 6.2 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäure durch Umsetzung mit N-(2-Methylphenyl)-diazepin in Analogie zu Beispiel 1, Stufe f. Das Produkt wird ohne Reinigung direkt weiter umgesetzt.

¹H-NMR (250MHz, CDCl₃): δ [ppm] = 7.87-6.90 (11H, m, aryl-H); 3.96, 3.65, 3.11, 1.94 (10H, 5m, diazacycloheptyl); 3.62 (3H, s, N-CH₃); 3.34, 3.27 (4H, 2m, aryl-CH₂-CH₂); 2.81 (3H, s, aryl-N-CH₃).

- b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- [N'-(2-methyl-phenyl)-diazepid]-hydrochlorid:
- 20 Ausgehend von 2.5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(2-methyl-phenyl)-diazepid] gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 1 (Stufe g). Das Produkt wird durch Chromatographie über Kieselgel (Dichlormethan:Methanol 95:5) gereinigt.

Ausbeute: 48%; amorpher Feststoff;

25 Masse: ber.: [494], gef.: [M+H]⁺ 495;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.42, 9.21 (4H, 2s, C(=NH₂+)NH₂); 7.92-6.87 (11H, m, aryl-H); 3.84-1.65 (10H, 5m, diazacycloheptan); 3.78 (3H, s, aryl-N-CH₃); 3.30 (4H, s, aryl-CH₂-CH₂-); 2.21 (3H, s, aryl-CH₃).

<u>Beispiel 16:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-amidinobenzyl)-N-(3-phenylpropyl)-amid-dihydrochlorid

- 5 a) (4-Cyanobenzyl)-(3-phenyl-propyl)-amin:
 - 3-Phenylpropylamin (2.5 g, 18.5 mmol), 4-Cyanobenzaldehyd (2.2 g, 16.8 mmol) und 0.22 mL Essigsäure in 130 mL Dichlormethan werden unter Rühren mit 11.0g Na[BH(OAc)₃] (51.9 mmol) versetzt. Es wird 1 h bei RT gerührt, das Dichlormethan abdestilliert, in Ethylacetat aufgenommen, mit Wasser versetzt und mit verdünnter
- Salzsäure sauer gestellt. Nachdem keine Gasentwicklung mehr sichtbar ist, wird mit 4 N wässriger Natriumhydroxidlösung alkalisch gestellt, das Amin in die organische Phase extrahiert und die organische Phase mit Wasser gewaschen und getrocknet. Das Lösemittel wird im Vakuum abdestilliert und das verbleibende Rohprodukt (nach ¹H-NMR: 079381, 85 %ig) wird über Kieselgel (Dichlormethan:Petrolether 9:1 bis
- 15 Dichlormethan) chromatographiert.

Ausbeute: 3.6 g (78%).

- b) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-cyanobenzyl)-N-(3-phenylpropyl)-amid:
- Die Synthese erfolgt ausgehend von 15.2 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure durch Umsetzung mit (4-Cyanobenzyl)-(3-phenyl-propyl)-amin in Analogie zu Beispiel 1, Stufe f. Das Produkt wird ohne Reinigung direkt weiter umgesetzt. Ausbeute: >90%;
- c) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(4-amidinobenzyl)-N-(3-phenylpropyl)-amid-dihydrochlorid: Ausgehend von 7.4 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-cyanobenzyl)-N-(3-phenylpropyl)-amid gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 1 (Stufe g). Das Produkt wird durch
- 30 Chromatographie über Kieselgel (Dichlormethan:Methanol 95:5 9:1) gereinigt. Ausbeute: 18%; amorpher Feststoff;

Masse: ber.: [571] gef.: [M+H]* 572;

 1 H-NMR (250MHz, CD₃OD): δ [ppm] = 7.88-6.70 (16H, m, aryl-H); 3.75 (5H, s, N-CH₂-, aryl-N-CH₃); 3.34 (4H, s, aryl-CH₂-CH₂-); 3.50-1.68 (6H, m, N-CH₂-CH₂-CH₂).

5 <u>Beispiel 17:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-amidinobenzyl)-N-(3,3-diphenylpropyl)-amid-dihydrochlorid

a) (4-Cyanobenzyl)-(3-phenyl-propyl)-amin:

Die Umsetzung erfolgt in analogie zur unter Beispiel 16 (Stufe a) beschriebenen Vorgehensweise ausgehend von 18.5 mmol 3,3-Diphenylpropylamin.Ausbeute: 65%;

- b) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-cyanobenzyl)-N-(3,3-diphenylpropyl)-amid:
- Die Synthese erfolgt ausgehend von 12.1 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1methyl-benzimidazol-5-yl-carbonsäure durch Umsetzung mit (4-Cyanobenzyl)-(3,3diphenyl-propyl)-amin in Analogie zu Beispiel 1, Stufe f. Das Produkt wird ohne
 weitere Reinigung direkt weiter umgesetzt. Ausbeute: >90%;
- c) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(4-20 amidinobenzyl)-N-(3,3-diphenylpropyl)-amid-dihydrochlorid: Ausgehend von 5.4 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-cyanobenzyl)-N-(3,3-diphenylpropyl)-amid gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 1 (Stufe g). Das Produkt wird durch Chromatographie über Kieselgel (Dichlormethan:Methanol 85:15) gereinigt.
- 25 Ausbeute: 26%; amorpher Feststoff;
 Masse: ber.: [647], gef.: [M+H]⁺ 648; [M+2H]²⁺ 325;

 ¹H-NMR (250MHz, CD₃OD): δ [ppm] = 7.85-6.81 (21H, m, aryl-H); 3.80 (3H, s, aryl-N-CH₃); 4.16-2.13 (11H, m, aryl-CH₂-CH₂-, N-CH₂, N-CH₂-CH₂-CH₂-CH).

Beispiel 18: 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-methyl-N-(3-pyridyl)-amid-hydrochlorid

5 a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-methyl-N- (3-pyridyl)-amid:

Die Synthese erfolgt ausgehend von 10 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäurechlorid durch Umsetzung mit N-methyl-N-(3-pyridyl)-amin in Analogie zu Beispiel 2, Stufe b. Das Produkt wird ohne weitere Reinigung direkt weiter umgesetzt.

b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-methyl-N-(3-pyridyl)-amid- hydrochlorid:

Ausgehend von 5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-ylcarbonsäure- N-methyl-N-(3-pyridyl)-amid gelingt die Synthese in Analogie zur
Vorschrift unter Beispiel 1 (Stufe g). Die Reinigung des Produkts erfolgt durch
Chromatographie über Kieselgel (Dichlormethan:Methanol 4:1).

Ausbeute: 22%; Schmp.: >220°C;

Masse: ber.: [412], gef.: [M+H]⁺ 413, [2M+H]⁺ 825;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.30 (4H, s, C(=NH₂+)NH₂); 8.40-7.10 (11H, m, aryl-/pyridyl-H); 3.69 (3H, s, aryl-N-CH₃); 3.42 (3H, s, CO-N-CH₃); 3.21 (4H, s, aryl-CH₂-CH₂-).

Beispiel 19: 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-[2-N',N'-dibenzylamino)ethyl]-N-phenyl-amid- dihydrochlorid

a) N,N-Dibenzyl-N'-phenyl-ethylendiamin wird aus N,N-Dibenzylethanolamin-Hydrochlorid durch Umsetzung mit SOCl₂ in Chloroform und anschließende nukleophile Substitution mit Anilin erhalten. b) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-[2-N',N'-dibenzylamino)ethyl]-N-phenyl-amid:

Die Synthese erfolgt ausgehend von 10.4 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäurechlorid durch Umsetzung mit N,N-Dibenzyl-N'-

- 5 Phenylethylendiamin in Analogie zu Beispiel 2, Stufe b. Das Produkt wird durch Kristallisation aus Diethylether erhalten. Ausbeute: 92%;
 - c) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-[2-N',N'-dibenzylamino)ethyl]-N-phenyl-amid- dihydrochlorid:
- Ausgehend von 8.3 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-[2-N',N'-dibenzylamino)ethyl]-N-phenyl-amid gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 1 (Stufe g). Die Reinigung des Produkts erfolgt durch Chromatographie über Kieselgel (Dichlormethan:Methanol 95:5).

 Ausbeute: 70%; amorpher Feststoff;
- Masse: ber.: [620], gef.: [M+H]⁺ 621, [M+2H]²⁺ 311; ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.34, 9.13 (4H, 2s, C(=NH₂+)NH₂); 7.84-6.90 (22H, m, aryl-H); 4.05, 2.66 (4H, 2t, J=6.2 Hz, N-CH₂-CH₂-N); 3.67 (3H, s, aryl-N-CH₃); 3.57 (4H, s, N-(<u>CH₂-Ph</u>)₂); 3.20 (4H, s, aryl-CH₂-CH₂-).
- 20 <u>Beispiel 20:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-(2-naphthyl)-amid- dihydrochlorid

a) 3-(β-Naphthyl-amino)propionitril:

Die Umsetzung erfolgt ausgehend von 24 mmol 2-Amino-naphthalin in Analogie zu Beispiel 22 (Stufe a). Die Reinigung des N-Cyanoethyl-N-formylnaphthylamins erfolgt durch Kristallisation aus Ethanol (Ausbeute: 68%; Schmp.: 82-84 °C). Das Endprodukt wird aus Ethanol umkristallisiert (Ausbeute: 68%). Schmp.: 96-98 °C;

30 b) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-(2-naphthyl)-amid:

Die Synthese erfolgt ausgehend von 3.8 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-

benzimidazol-5-yl-carbonsäurechlorid durch Umsetzung mit 3-(β-Naphthyl-

amino)propionitril in Analogie zu Beispiel 2, Stufe b. Das Produkt wird durch Kristallisation aus Ethylacetat zugänglich. Ausbeute: 50%; Schmp.: 196-198°C;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 7.85-7.12 (14H, m, aryl-H); 4.19, 2.89 (4H, 2m, N-CH₂-CH₂); 3.55 (3H, s, aryl-N-CH₃); 3.08 (4H, s, aryl-CH₂-CH₂-).

5

c) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-(2-naphthyl)-amid- dihydrochlorid:

Ausgehend von 1.9 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-(2-naphthyl)-amid gelingt die Synthese der

10 Titelverbindung in Analogie zu Beispiel 1(Stufe g).

Ausbeute: 55%; amorpher Feststoff;

Masse: ber.: [517], gef.: [M+H]⁺ 518;

¹H-NMR (250MHz, CD₃OD): δ [ppm] = 7.80-7.12 (14H, m, aryl-H); 4.39, 2.89 (4H,

2m, N-CH₂-CH₂); 3.55 (3H, s, aryl-N-CH₃); 3.15 (4H, s, aryl-CH₂-CH₂-).

15

<u>Beispiel 21:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-phenyl-amid-dihydrochlorid

a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-

20 cyanoethyl)-N-phenyl-amid:

Die Synthese erfolgt ausgehend von 6.6 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäurechlorid durch Umsetzung mit 3-Phenylaminopropionitril in Analogie zu Beispiel 2, Stufe b. Das Produkt wird durch Kristallisation aus Ethylacetat zugänglich. Ausbeute: 70%; Schmp.: 188-190°C;

25

b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-phenyl-amid- dihydrochlorid:

Ausgehend von 4.1 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-phenyl-amid gelingt die Umsetzung in Analogie zu

30 Beispiel 1, Stufe g. Ausbeute: 62%; amorpher Feststoff;

Masse: ber.: [467], gef.: [M+H]⁺ 468;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.48, 9.30, 8,97, 8.60 (8H, 4s, 2 $C(=NH_2^+)NH_2$); 8.00.7.13 (12H, m, aryl-H); 2.82 (4H, 2t, J=6.2 Hz, N-CH₂-CH₂-); 3.71 (3H, s, aryl-N-CH₃); 3.22 (4H, s, aryl-CH₂-CH₂-).

5 <u>Beispiel 22:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-(3-ethyl-phenyl)-amid- dihydrochlorid

a) 3-(3-Ethylphenyl-amino)-propionitril:

6.1 g (50 mmol) 3-Ethylanilin werden in 5 mL Ameisensäure für 5 h auf 100-120 °C 10 erhitzt und nach dem Abkühlen mit 100 mL Ethylacetat versetzt. Anschließend wird mit verdünnter wässriger Salzsäure und mit verdünnter wässriger Natriumhydroxidlösung gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet und das Lösemittel im Vakuum abdestilliert. Der verbleibende Rückstand (6.7 g N-Formyl-3-ethylanilin) wird in 4.6 mL Acrylnitril aufgenommen, mit pulverisiertem Natriumhydroxid (0.2 g) versetzt, 6 h bei 80-90 °C gerührt und 16 h bei Raumtemperatur gehalten. Es wird mit 100 mL Ethylacetat verdünnt und mit Wasser gewaschen. Anschließend wird über Magnesiumsulfat getrocknet und das Lösemittel im Vakuum abdestilliert. Der Rückstand (8.7 g N-Formyl-3-(3-ethylphenyl-amino)-propionitril) wird in 22.5 mL Acetonitril 20 aufgenommen, mit 22.5 mL wässriger Salzsäure (5N) versetzt und 5 h bei 80-90 °C gerührt. Es wird mit 100 mL Ethylacetat verdünnt, auf Wasser gegossen und mit Natriumhydroxid alkalisch gestellt. Die organische Phase wird mit Wasser gewaschen, über Magnesiumsulfat getrocknet und das Lösemittel wird im Vakuum abdestilliert. Das reine Produkt wird durch Chromatographie über Kieselgel 25 (Hexan: Ethylacetat 9:1) gewonnen, Ausbeute: 6.0 g (69%)

b) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-(3-ethyl-phenyl)-amid:

Die Synthese erfolgt ausgehend von 4.5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl30 benzimidazol-5-yl-carbonsäurechlorid durch Umsetzung mit 3-(3-Ethylphenylamino)-propionitril in Analogie zu Beispiel 2, Stufe b. Das Produkt wird durch
Kristallisation aus Ethylacetat zugänglich. Schmp.: 122-124°C;

c) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-(3-ethyl-phenyl)-amid- dihydrochlorid:

Ausgehend von 4.5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-(3-ethyl-phenyl)-amid gelingt die Umsetzung in

5 Analogie zu Beispiel 1, Stufe g.

Ausbeute: 43%; amorpher Feststoff;

Masse: ber.: [495] gef.: [M+H]⁺ 496, [M+2H]²⁺ 249;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.47, 9.30, 9.27, 8.87 (8H, 4s, 2

C(=NH₂+)NH₂); 7.94-6.96 (11H, m, aryl-H); 4.22, 2.82 (4H, 2m, N-CH₂-CH₂); 3.69

10 (3H, s, aryl-N-CH₃); 3.21 (4H, s, aryl-CH₂-CH₂-); 2.51 (2H, q, J=7.6 Hz, -Ph-<u>CH₂-CH₃</u>); 1.01 (3H, t, J=7.6 Hz, -Ph-CH₂-CH₃).

<u>Beispiel 23:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-(3-phenoxy-phenyl)-amid-dihydrochlorid

15

a) 3-(3-Phenoxyphenyl-amino)-propionitril:

Die Umsetzung gelingt analog zur Synthese nach Beispiel 22, Stufe a ausgehend von 3-Phenoxyanilin. Die Reinigung des Produkts erfolgt durch Kristallisation des Hydrochlorides aus Ethylacetat mit etherischer Salzsäurelösung.

20 Ausbeute: 72; Schmp.: 141-146 °C (Hydrochlorid)

b) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-(3-phenoxy-phenyl)-amid:

Die Synthese erfolgt ausgehend von 4.5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäurechlorid durch Umsetzung mit 43-(3-Phenoxyphenylamino)-propionitril in Analogie zu Beispiel 2, Stufe b. Das Produkt wird durch
Kristallisation aus Ethylacetat/Diethylether zugänglich. Schmp.: 125-127°C;

¹H-NMR (250MHz, CDCl₃): δ [ppm] = 7.70-6.53 (16H, m, aryl-H); 4.16, 2.82 (4H, 2t,
J=7.5 Hz, N-CH₂-CH₂); 3.55 (3H, s, aryl-N-CH₃); 3.28, 3.15 (4H, 2m, aryl-CH₂30 CH₂).

c) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-(3-phenoxy-phenyl)-amid-dihydrochlorid:

Ausgehend von 4.5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-(3-phenoxy-phenyl)-amid gelingt die Umsetzung in Analogie zu Beispiel 1, Stufe g. Ausbeute: 23%; amorpher Feststoff;

Masse: ber.: [559] gef.: [M+H]⁺ 560;

 5 'H-NMR (250MHz, CD₃OD): δ [ppm] = 7.75-6.40 (16H, m, aryl-H); 4.30, 2.76 (4H, 2m, N-CH₂-CH₂); 3.73 (3H, s, aryl-N-CH₃); 3.30 (4H, s, aryl-CH₂-CH₂-).

<u>Beispiel 24:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-(2-phenylethyl)-amid- dihydrochlorid

10

a) 3-(Phenethylamino)-propionitril

Die Darstellung erfolgt in Analogie zu Beispiel 8 (Stufe a) ausgehend von 19 mmol Phenethylamin. Ausbeute: 79%;

- b) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-(2-phenylethyl)-amid:
 Die Synthese erfolgt ausgehend von 4.5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäurechlorid durch Umsetzung mit 3-(Phenethylamino)-propionitril in Analogie zu Beispiel 2, Stufe b. Das Produkt wird durch Kristallisation aus Ethylacetat/Diethylether zugänglich. Schmp.: 132-133°C;
- c) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-(2-phenylethyl)-amid-dihydrochlorid
 Ausgehend von 3.8 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-(2-phenylethyl)-amid gelingt die Umsetzung in Analogie zu Beispiel 1, Stufe g. Die Reinigung erfolgt durch Chromatographie über Kieselgel (Dichlormethan:Methanol 4:1 7:3) und/oder Kristallisation
 Methanol/Aceton mit Wasser. Ausbeute: 52%; Schmp.: 185-190°C;
 Masse: ber.: [495] gef.: [M+H]⁺ 496;
- ³⁰ ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.38, 9.26, 9.19, 8.77 (8H, 4s, 2 $C(=NH_2^+)NH_2$); 7.84-6.83 (12H, m, aryl-H); 3.84, 2.78 (4H, 2m, N-CH₂-CH₂); 3.74 (3H, s, aryl-N-CH₃); 3.46, 2.78 (4H, 2m, N-CH₂-CH₂-Ph); 3.26 (4H, s, aryl-CH₂-CH₂-).

<u>Beispiel 25:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-cyclooctyl-amid-dihydrochlorid

a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-

5 cyanoethyl)-N-cyclooctyl-amid:

Die Synthese erfolgt ausgehend von 4.5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäurechlorid durch Umsetzung mit 3-(Cyclooctylamino)-propionitril in Analogie zu Beispiel 2, Stufe b. Das Produkt wird durch Kristallisation aus Ethylacetat zugänglich. Schmp.: 181-183°C;

10

b) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-cyclooctyl-amid-dihydrochlorid:

Ausgehend von 3.8 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-cyclooctyl-amid gelingt die Umsetzung in Analogie zu Beispiel 1, Stufe g. Die Reinigung erfolgt durch Chromatographie über Kieselgel (Dichlormethan:Methanol 4:1) und/oder Kristallisation Methanol/Aceton mit Wasser.

Ausbeute: 47%; Schmp.: 200-210°C; Masse: ber.: [501] gef.: [M+H]⁺ 502;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.33, 9.18, 9.13, 8.77 (8H, 4s, 2

20 C(=NH₂+)NH₂); 7.82-7.01 (8H, m, aryl-H); 3.88 (1H, m, N-CH-Cyclooctyl); 3.74 (3H, s, aryl-N-CH₃); 3.58, 2.79 (4H, 2m, N-CH₂-CH₂); 3.24 (4H, s, aryl-CH₂-CH₂-); 1.95-0.74 (14H, m, cyclooctyl).

Beispiel 26: 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-(4-methyl-phenyl)-amid-dihydrochlorid

a) 3-(p-Toluyl-amino)-propionitril:

- Die Umsetzung gelingt analog zur Synthese nach Beispiel 22, Stufe a ausgehend von 4-Methylanilin. Die Reinigung des Produkts erfolgt durch Chromatographie über Kieselgel (Hexan: Ethylacetat 9:1) und/oder Kristallisation aus Hexan. Ausbeute: 69%;
- b) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-(4-methyl-phenyl)-amid:
 Die Synthese erfolgt ausgehend von 4.5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäurechlorid durch Umsetzung von 3-(p-Toluyl-amino)-propionitril in Analogie zu Beispiel 2, Stufe b. Das Produkt wird durch Kristallisation aus Ethylacetat/Diethylether zugänglich. Schmp.: 149-152°C;
- c) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2-amidinoethyl)-N-(4-methyl-phenyl)-amid-dihydrochlorid:
 Ausgehend von 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-(4-methyl-phenyl)-amid gelingt die Umsetzung in Analogie zu Beispiel 1, Stufe g. Ausbeute: 44 %; Schmp.: 222-225°C; Masse: ber.: [481] gef.: [M+H]⁺ 482;

 1-NMR (250MHz, DMSO-d6): δ [ppm] = 9.41, 9.25, 9.18, 8.80 (8H, 4s, 2 C(=NH₂+)NH₂); 7.89-7.01 (11H, m, aryl-H); 4.15, 2.78 (4H, 2m, N-CH₂-CH₂); 3.67
 (3H, s, aryl-N-CH₃); 3.18 (4H, s, aryl-CH₂-CH₂-); 2.20 (3H, s, aryl-CH₃).

<u>Beispiel 27:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-iso-propyl-amid-dihydrochlorid

a) 3-(i-Propylamino)-propionitril:

- Die Synthese gelingt in Analogie zu Beispiel 8 (Stufe a) ausgehend von 40 mmol iso-Propylamin. Das erhaltene Produkt wird ohne weitergehende Reinigung direkt weiter umgesetzt. Ausbeute: 89%;
- b) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-iso-propyl-amid:

Die Synthese erfolgt ausgehend von 3.1 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäurechlorid durch Umsetzung mit 3-(*i*-Propylamino)-propionitril in Analogie zu Beispiel 2, Stufe b. Das Produkt wird durch Kristallisation aus Ethylacetat/Diethylether zugänglich und direkt in die nächste Stufe eingesetzt.

15

c) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-amidinoethyl)-N-iso-propyl-amid-dihydrochlorid:

Ausgehend von 3.1 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-cyanoethyl)-N-iso-propyl-amid gelingt die Umsetzung in Analogie

zu Beispiel 1, Stufe g. Das Produkt wird durch Chromatographie über Kieselgel (Dichlormethan:Methanol 4:1 – 7:3) und/oder Kristallisation aus Methanol/Aceton mit Wasser gereinigt. Ausbeute: 59%; Schmp.: 195-200°C;

Masse: ber.: [433] gef.: [M+H]* 434;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.93, 9.22, 9.20, 8.80 (8H, 4s, 2

25 C(=NH₂+)NH₂); 7.89-7.19 (7H, m, aryl-H); 3.39 (1H, m, N-<u>CH</u>-Me₂); 3.65, 2.74 (4H, 2m, N-CH₂-CH₂); 3.78 (3H, s, aryl-N-CH₃); 3.29 (4H, s, aryl-CH₂-CH₂-); 1.12 (6H, d, J=6.7 Hz, CH(<u>CH</u>₃)₂).

Beispiel 28: 2-{2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-3-(4-amidinophenyl)-propionsäure-ethyl-ester

a) 2-{2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-3-(4-5 cyanophenyl)-propionsäureethylester:

Die Synthese erfolgt ausgehend von 5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäure durch Umsetzung mit 2-Amino-3-(4-cyanophenyl)-propionsäureethylester in Analogie zu Beispiel 1, Stufe f. Das Produkt wird über Kieselgel chromatographiert (Dichlormethan: Methanol 50:1). Ausbeute: 92%;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 8.26-7.37 (11H, m, aryl-H); 6.87 (1H, m, NHCO); 5.23 (1H, m, NH-<u>CH</u>-); 4.32 (2H, q, J=7.5 Hz, -O-CH₂); 3.86 (3H, s, OCH₃); 3.78 (3H, s, aryl-N-CH₃); 3.56-3.19 (6H, m, aryl-CH₂, aryl-CH₂-CH₂-); 1.31 (3H, t, J=7.5 Hz, -O-CH₂-<u>CH₃</u>).

b) 2-{2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-3-(4-amidinophenyl)-propionsäureethylester:

Ausgehend von 5 mmol 2-{2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-3-(4-cyanophenyl)-propionsäureethylester gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 1 (Stufe g). Das Produkt wird durch

20 Kristallisation aus Ethanol/Ethylacetat gereinigt. Ausbeute: 70%; 1 H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.27, 9.24, 9.06, 9.03 (8H, 4s, 2 $C(=NH_{2}^{+})NH_{2}$); 8.81 (1H, m, NHCO); 8.10-6.90 (11H, m, aryl-H); 4.71 (1H, m, NH- \underline{CH} -); 4.08 (2H, q, J=7.5 Hz, -O-CH₂); 3.72 (3H, s, aryl-N-CH₃); 3.50-3.18 (2H, m, aryl-CH₂); 3.24 (4H, s, aryl-CH₂-CH₂-); 1.16 (3H, t, J=7.5 Hz, -O-CH₂- \underline{CH} 3).

<u>Beispiel 29:</u> 2-{2-{2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonyl-(methylamino)}-3-(4-amidinophenyl)-propionsäure-ethyl-ester -formiat

a) 2-{2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonyl-

5 (methylamino)}-3-(4-cyanophenyl)-propionsäure-ethyl-ester: Die Synthese erfolgt ausgehend von 7 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure durch Umsetzung mit 2-Methylamino-3-(4-cyanophenyl)-propionsäureethylester in Analogie zu Beispiel 1, Stufe f. Das Produkt wird über Kieselgel chromatographiert (Dichlormethan:Methanol 20:1).

10 Ausbeute: 61%:

1.35 (3H, m, -O-CH₂-CH₃). .

¹H-NMR (250MHz, CDCl₃): δ [ppm] = 7.83-7.23 (11H, m, aryl-H); 5.47 (1H, m, N-CH); 4.38 (2H, m, -O-CH₂-); 3.69 (3H, s, aryl-N-CH₃); 3.38, 3.22 (4H, 2m, aryl-CH₂-CH₂); 3.12 (2H, m, aryl-<u>CH₂-CH-</u>); 2.91 (3H, s, CO-N-CH₃); 1.35 (3H, t, -O-CH₂-<u>CH₃</u>).

15

b) 2-{2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonyl-(methylamino)}-3-(4-amidinophenyl)-propionsäure-ethyl-ester:
Ausgehend von 2.8 mmol 2-{2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonyl-(methylamino)}-3-(4-cyanophenyl)-propionsäureethylester gelingt die
20 Synthese in Analogie zur Vorschrift unter Beispiel 1 (Stufe g). Das Produkt wird über Kieselgel chromatographiert (Acetonitril:Dichlormethan:Ameisensäure:Wasser 75:20:7.5:5). Ausbeute: 36%; Schmp.:230°C;
Masse: ber.: [539]/[553], gef.: [M+H]⁺ 540, [M+H]⁺ 554;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 8.17 (1H, s, HCOOH); 8.03-6.94 (11H, m, aryl-H); 5.37 (1H, m, N-CH-); 4.35 (2H, m, -O-CH₂-); 3.90 (3H, s, aryl-N-CH₃); 3.52, 3.39 (4H, 2m, aryl-CH₂-CH₂-); 2.87 (3H, s, CO-N-CH₃); 3.48 (2H, m, aryl-CH₂-CH-);

<u>Beispiel 30:</u> 2-{2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-3-(4-amidinophenyl)-propionsäure -diformiat

Nach Verseifung von 2-{2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-2-(4-amidinobenzyl)-propionsäureethylester (Beispiel 28; 1.55 g, 2.5 mmol) mit überschüssiger wässriger Natriumhydroxidlösung (1N) in Methanol im Verhältnis 1:2 bei Raumtemperatur über 16 h wird mit einer der zugesetzten Natriumhydroxid-Menge entstprechenden Menge wässriger Salzsäurelösung (1N) versetzt und nach dem Abdestillieren des Lösemittels im Vakuum über Kieselgel chromatographiert (Acetonitril:Dichlormethan:Ameisensäure:Wasser 75:20:7.5:5). Ausbeute: 0.55 g (36%); Schmp: 165°C; Masse: ber.: [511], gef.: [M+H]* 512;

1H-NMR (250MHz, CD₃OD): δ [ppm] = 8.07 (2H, s, HCOOH); 7.95-7.32 (11H, m, aryl-H); 4.90 (1H, m, NH-CH); 3.69 (3H, s, aryl-N-CH₃); 3.55-3.12 (6H, m, aryl-CH₂-15 CH₂-1, aryl-CH₂).

<u>Beispiel 31:</u> 2-{2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonyl-methylamino}-3-(4-amidinophenyl)-propionsäure -formiat

- 20 Die Umsetzung gelingt in Analogie zu der unter Beispiel 30 beschriebenen Vorgehensweise ausgehend von 2-{2-[2-(4-Amidinophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonyl-(methylamino)}-3-(4-amidinophenyl)-propionsäure-ethylester (Beispiel 29, 1.7 mmol). Das Produkt wird durch Kristallisation aus Dichlormethan/Methanol erhalten. Ausbeute: >90%; Schmp.: 255°C;
- 25 Masse: ber.: [525], gef.: [M+H]⁺ 526;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 10.20 (1H, s, COOH); 8.61 (1H, s, $\underline{\text{H}}$ COOH); 8.09-6.77 (17H, m, 2 C(=NH)NH₂, aryl-H); 5.37 (1H, m, N-CH-); 3.78 (3H, s, aryl-N-CH₃); 3.33 (4H, s, aryl-CH₂-CH₂-); 2.98 (3H, s, CO-N-CH₃).

5 <u>Beispiel 32:</u> 2-{2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N-(4-amidinobenzyl)-N-carboxymethyl-amid]-diacetat

Die Umsetzung gelingt in Analogie zu der unter Beispiel 30 beschriebenen Vorgehensweise ausgehend vom entsprechenden Ethylester (4.4 mmol).

10 Ausbeute. 48%;

Masse: ber. [511], gef.: [M+H]⁺ 512, [M+2H]²⁺ 256; ¹H-NMR (250MHz, DMSO-d6/CD₃OD): δ [ppm] = 8.17-7.44 (11H, m, aryl-H); 4.65 (2H, s, N-CH₂-); 4.09 (2H, s, N-CH₂-C=O); 3.82 (3H, s, aryl-N-CH₃); 3.57, 3.32 (4H, 2m, aryl-CH₂-CH₂-); 1.86 (6H, s, CH₃-COO).

15

<u>Beispiel 33:</u> 2-{2-[4-(Amino-hydroximino-methyl) phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-N-[2-(N',N'-dimethylamino)-ethyl]-N-methyl-amid

1.0 g (2.8 mmol) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-

20 carbonsäure-[(N',N'-dimethylaminoethyl)-N-methyl-amid] (erhältlich gemäß Beispiel 3, Stufe a), NH₂OH*HCl (0,83g) und Na₂CO₃ (0,65 g) in 50 mL Methanol werden 3 h unter Rückfluß erhitzt. Es werden nochmals NH₂OH*HCl (0,4g) und Na₂CO₃ (0,3 g) hinzugefügt. Nach 1 h Erhitzen unter Rückfluß wird das MeOH abdestilliert, der Rückstand mit Wasser aufgeschlämmt, filtriert, mit Wasser gewaschen und getrocknet. Ausbeute: 59 %.

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.58 (1H, s, OH); 7.56-7.18 (7H, m, aryl-H); 5.77 (2H, s, NH₂); 3.72 (3H, s, aryl-N-CH₃); 3.18 (6H, m, aryl-CH₂-CH₂-; N-CH₂-); 2.98 (3H, s, CO-N-CH₃); 2.43 (2H, m, Me₂-N-C<u>H₂-</u>); 2.16, 2.00 (6H, 2s, N-(CH₃)₂);

<u>Beispiel 34:</u> 2-{2-[2-(4-(Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-6-acetylamino-hexansäure-formiat

a) 2-{2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-6-

5 benzyloxycarbonyl-amino-hexansäurebenzylester:

Die Synthese erfolgt ausgehend von 5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäure durch Umsetzung mit 2-Amino-6-benzyloxycarbonylamino-hexansäurebenzylester in Analogie zu Beispiel 1, Stufe f. Das Produkt wird über Kieselgel chromatographiert (Dichlormethan:Methanol 50:1).

10 Ausbeute: 66%;

b) 2-{2-[2-(4-(Amino-hydroximino-methyl)-phenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-6-benzyloxycarbonylamino-hexansäurebenzylester:

Ausgehend von 3 mmol 2-{2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-

carbonylamino}-6-benzyloxycarbonyl-amino-hexansäurebenzylester gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 33. Als Base wird Kaliumtert.butylat verwendet. Das Produkt wird über Kieselgel chromatographiert (Dichlormethan:Methanol 20:1). Ausbeute: 75%;

20 c) 2-{2-{2-(4-(Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-6-acetylamino-hexansäure-formiat:

1.4 g (2 mmol) 2-{2-[2-(4-(Amino-hydroximino-methyl)-phenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonylamino}-6-benzyloxycarbonylamino-

hexansäurebenzylester werden in 10mL Essigsäure und 2 mL Acetanhydrid

25 aufgenommen und 16 h bei Raumtemperatur gehalten. Das Lösemittel wird im Vakuum abdestilliert und der verbleibende Rückstand in 40 mL Methanol in Gegenwart von 5 %igem Pd/C (0.6 g) bei Normaldruck hydriert. Der Katalysator wird abfiltriert, das Filtrat eingeengt und der Rückstand über Kieselgel (Acetonitril:Dichlormethan:Ameisensäure:Wasser 75:20:7.5:5) chromatographiert.

30 Ausbeute: 0.4 g (35%); Schmp: 158 °C;

Masse: ber.: [492], gef.: [M+H] 493;

¹H-NMR (250MHz, CD₃OD): δ [ppm] = 8.27 (1H, s, \underline{H} COOH); 8.01-7.55 (7H, m, aryl-H); 4.66 (1H, m, N-CH-); 3.78 (3H, s, aryl-N-CH₃); 3.42-3.26 (4H, s, aryl-CH₂-CH₂-);

3.23 (2H, m, -N-CH₂-); 2.02-1.58 (6H, m, -N-CH₂-C \underline{H}_2 -C \underline{H}_2 -C \underline{H}_2 -); 1.92 (3H, s, NH-CO-C \underline{H}_3).

Beispiel 35: 2-{2-[2-(4-(Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-

5 carbonylamino}-2-(4-acetylaminomethyl-phenyl)-propionsäure

a) 2-{2-[2-(4-(Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-3-[4-benzyloxycarbonylaminomethyl-phenyl]-propionsäure-methyl-ester:

Die Synthese erfolgt ausgehend von 1.2 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäure durch Umsetzung mit 2-Amino-3-[4-benzyloxycarbonylaminomethyl-phenyl]-propionsäure-methyl-ester in Analogie zu Beispiel 1,
Stufe f. Das Produkt wird über Kieselgel chromatographiert (Dichlormethan:Methanol
50:1). Ausbeute: 90%;

b) 2-{2-[2-(4-(Amino-hydroximino-methyl)-phenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-3-[4-benzyloxycarbonylaminomethyl-phenyl]-propionsäure-methyl-ester:

Ausgehend von 1 mmol 2-{2-[2-(4-(Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-3-[4-benzyloxycarbonylaminomethyl-phenyl]-propionsäure-methyl-

20 ester gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 33. Als Base wird Kaliumtert.-butylat verwendet. Das Produkt wird über Kieselgel chromatographiert (Dichlormethan:Methanol 20:1). Ausbeute: 74%:

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.57 (1H, s, OH); 8.79 (1H, d, J=7.5 Hz, NH-CH-); 7.79 (1H, t, J=6.5 Hz, NH-CH₂-); 8.18-7.13 (16H, m, aryl-H); 5.76 (2H, s,

- 25 NH₂); 5.04 (2H, s, O-CH₂-); 4.65 (1H, m, NH-<u>CH</u>-); 4.17 (1H, d, J=6.5 Hz, NH-<u>CH</u>₂-); 3.71 (3H, s, -OCH₃); 3.66 (3H, s, aryl-N-CH₃); 3.39 (4H, m, aryl-CH₂-CH₂-); 3.18 (2H, m, aryl-CH₂-).
- c) 2-{2-[2-(4-(Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-2-(4-30 acetylaminomethyl-phenyl)-propionsäure:

Ausgehend von 0.7 mmol 2-{2-[2-(4-(Amino-hydroximino-methyl)-phenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonylamino}-3-[4-benzyloxycarbonylaminomethyl-

phenyl]-propionsäure-methyl-ester gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 34 (letzte Stufe).

Masse: ber.: [492], gef.: [M+H]* 493;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 10.1 (3H, breit, C(=NH)NH₂); 8.89 (1H, d, J=7.6 Hz, NH-CH); 8.40 (1H, t, J=5.8 Hz, NH-CH₂); 8.23-7.14 (11H, m, aryl-H); 4.69 (1H, m, CH-CH₂-); 4.24 (2H, d, J=5.8 Hz, NH-CH₂); 3.78 (3H, s, OCH₃); 3.69 (3H, s, aryl-N-CH₃); 3.29 (4H, s, aryl-CH₂-CH₂-); 3.15 (2H, m, CH-CH₂-); 1.86 (3H, s, COCH₃).

10 <u>Beispiel 36:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N-(2-(N'-benzylamino)-ethyl)-N-cyclohexyl-amid]-dihydrochlorid:

4.0 g (5.7 mmol) 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-(N',N'-dibenzylamino)-ethyl)-N-cyclohexyl-amid (Beispiel 2)
15 werden in 100 mL Methanol in Gegenwart von 5 %igem Pd/C bei Normaldruck und 40-60 °C hydriert. Der Katalysator wird abfiltriert, das Filtrat eingeengt und der Rückstand über Kieselgel (Dichlormethan/Methanol 9:1 – 7:3) chromatographiert. Ausbeute: 0.6 g (17%).

Masse: ber.: [536], gef.: [M+H]⁺ 537, [M+2H]²⁺ 269; 20 ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.34, 9.80 (4H, 2s, C(=NH₂⁺)NH₂); 7.84-7.10 (12H, m, aryl-H); 4.14, 3.09 (4H, 2m, N-CH₂-CH₂-N); 3.76 (3H, s, aryl-N-CH₃); 3.70 (2H, s, N-CH₂-Ph); 3.47 (1H, m, N-cyclohexyl-H); 3.26 (4H, s, aryl-CH₂-CH₂-);

1.92-0.54 (10H, m, cyclohexyl).

25 Aus dem gleichen Ansatz wurde ferner erhalten:

<u>Beispiel 37:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N-(2-amino-ethyl)-N-cyclohexyl-amid]-dihydrochlorid:

Ausbeute: 0,4 g (13%);

30 Masse: ber.: [446], gef.: [M+H]⁺ 447, [M+2H]²⁺ 224;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 8.56 (4H, breit, C(=NH₂+)NH₂); 7.66-6.98 (7H, m, aryl-H); 3.57 (3H, s, aryl-N-CH₃); 3.45, 2.78 (4H, 2m, N-CH₂-CH₂-N); 3.35 (1H, m, N-cyclohexyl-H); 3.07 (4H, s, aryl-CH₂-CH₂-); 1.49 (2H, s, NH₂); 1.65-0.55 (10H, m, cyclohexyl).

5 <u>Beispiel 38:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-phenylamino-ethyl)-amid-dihydrochlorid

Bei einer analogen Durchführung zu Beispiel 36 wurde ausgehend von 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- [N-(2-(N',N'-

dibenzylamino)-ethyl)-N-phenyl-amid] (Beispiel 19) Beispiel 38 isoliert.

Ausbeute: 7%;

15

Masse: ber. [440], gef.: [M+H]⁺ 441, [M+2H]²⁺ 221; ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 8.20-6.57 (12H, m, aryl-H); 3.78 (3H, s, aryl-N-CH₃); 3.51, 3.26 (4H, 2m, N-CH₂-CH₂-N); 3.32 (4H, s, aryl-CH₂-CH₂-).

<u>Beispiel 39:</u> 2-[2-(4-Aminomethyl-phenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- N-(2 -phenylamino-ethyl)-amid- trihydrochlorid

- a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2 phenylamino-ethyl)-amid:
 - Die Synthese erfolgt ausgehend von 8.2 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäure durch Umsetzung mit N-Phenylethylendiamin in Analogie zu Beispiel 1, Stufe f. Das Produkt wird durch Kristallisation aus Ethylacetat/Diethylether erhalten und ggebenenfalls aus Acetonitril umkristallisiert.
- 25 Ausbeute: 86%; Schmp.: 161-163°C;

 ¹H-NMR (250MHz, CDCl₃): δ [ppm] = 8.24-6-67 (12H, m, aryl-H); 4.21 (1H, breit, NHCO); 3.79, 3.36 (4H, 2m, N-CH₂-CH₂-N); 3.66 (3H, s, aryl-N-CH₃); 3.66, 3.21 (4H, 2m, aryl-CH₂-CH₂-); 1.89 (1H, breit, Ph-<u>NH</u>).
- 30 b) 2-[2-(4-Aminomethyl-phenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure- [N-(2-phenylamino-ethyl)-amid]:

2.0 g (4.7 mmoł) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2 -phenylamino-ethyl)-amid werden in 100 mL Methanol in Gegenwart von ca.
2.5 g Methanol-feuchtem Raney-Nickel bei Raumtemperatur unter Normaldruck hydriert. Der Katalysator wird abfiltriert, mit Methanol gewaschen und das Lösemittel im Vakuum abdestilliert. Der Rückstand wird über Kieselgel (Dichlormethan:Methanol 85:1) chromatographiert, das Trihydrochlorid aus Ethanol/Aceton mit konz. Salzsäure kristallisiert.

Ausbeute: 1.5 g (59%); Schmp: > 220°C;

Masse: ber.: [427], gef.: [M+H]* 428;

'H-NMR (250MHz, DMSO-d6): δ [ppm] = 8.51 (1H, t, J=5.5 Hz, NHCO); 8.15-6.44 (12H, m, aryl-H); 5.71 (1H, t, J=5.5 Hz, -NH-Ph); 3.68 (3H, s, aryl-N-CH₃); 3.65 (2H, s, -N-CH₂-Ph); 3.44, 3.12 (4H, 2m, N-CH₂-CH₂-N); 3.22, 3.16 (4H, 2m, aryl-CH₂-CH₂-); 3.35 (2H, breit, NH₂).

15 <u>Beispiel 40:</u> 2-[2-(4-Aminomethyl-phenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(3,3 -diphenylpropyl)-amid-dihydrochlorid:

Ausgehend von 2.8 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(3,3-diphenylpropyl)-amid (Beispiel 13, Stufe b) gelingt die Synthese in Anlehnung an die Vorschrift gemäß Beispiel 39, Stufe b. Die Umsetzung wird in Gegenwart von 8 g Ammoniak bei 5 bar und 60°C durchgeführt. Der Rückstand wird über Kieselgel (Dichlormethan:Methanol 95:5 – 9:1) chromatographiert.

Ausbeute: 23%; Schmp: 140°C;

Masse: ber.: [502], gef.: [M+H]* 503;

25 ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 8.99 (1H, t, J=5.4 Hz, NHCO); 8.67 (3H, breit NH₃+); 8.50-7.29 (17H, m, aryl-H); 4.29, 4.15, 2.52 (5H, 3m, N-CH₂-CH₂-CH); 4.06 (2H, s, -CH₂-NH₂); 3.68 (3H, s, aryl-N-CH₃); 3.63, 3.39 (4H, 2m, aryl-CH₂-CH₂-).

<u>Beispiel 41:</u> 2-[2-(4-Aminomethyl-phenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(2-methyl-phenyl)-diazepid]- hydrochlorid

5 Ausgehend von 2.5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(2-methyl-phenyl)-diazepid] (Beispiel 15, Stufe b) gelingt die Synthese in Anlehnung an die Vorschrift gemäß Beispiel 39, Stufe b. Die Umsetzung wird in Gegenwart von 8 g Ammoniak bei 5 bar und 60°C durchgeführt. Der Rückstand wird über Kieselgel (Dichlormethan:Methanol 9:1) chromatographiert.

10 Ausbeute: 48%;

Masse: ber.: [481], gef.: [M+H]⁺ 482; 1 H-NMR (250MHz, CD₃OD): δ [ppm] = 8.13-7.24 (11H, m, aryl-H); 4.10 (2H, s, -<u>CH₂-NH₂</u>); 3.95 (3H, s, aryl-N-CH₃); 2.63 (3H, s, aryl-CH₃); 4.06-2.49 (10H, m, diazacycloheptanyl).

15

Beispiel 42: 2-[2-(4-Aminomethyl-phenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-aminomethyl-benzyl)-N-(3-phenylpropyl)-amid-dihydrochlorid:

- 20 Ausgehend von 7.8 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-cyanobenzyl)-N-(3-phenylpropyl)-amid (Beispiel 12, Stufe b) gelingt die Synthese in Anlehnung an die Vorschrift gemäß Beispiel 39, Stufe b. Die Umsetzung wird in Gegenwart von 8 g Ammoniak bei 5 bar und 60°C durchgeführt. Der Rückstand wird über Kieselgel (Dichlormethan:Methanol 95:5 85:15)
- 25 chromatographiert.

Ausbeute: 42%;

Masse: ber.: [545], gef.: [M+H]* 546;

 1 H-NMR (250MHz, DMSO-d6): δ [ppm] = 8.76 (6H, s, 2 –NH $_{3}$ +); 8.15-6.93 (16H, m, aryl-H); 4.68 (2H, s, N-CH $_{2}$ -Ph); 4.08, 4.02 (4H, 2s, CH $_{2}$ -NH $_{2}$); 3.96 (3H, s, aryl-N-CH $_{3}$); 3.34 (4H, s, aryl-CH $_{2}$ -CH $_{2}$ -); 3.16-1.64 (6H, m, N-CH $_{2}$ -CH $_{2}$ -CH $_{2}$ -).

5 <u>Beispiel 43:</u> 2-[2-(4-Aminomethyl-phenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-aminomethylbenzyl)-N-(3,3 -diphenylpropyl)-amid-dihydrochlorid:

Ausgehend von 8.3 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-N-(4-cyanobenzyl)-N-(3,3-diphenylpropyl)-amid (Beispiel 17, Stufe b) gelingt die Synthese in Anlehnung an die Vorschrift gemäß Beispiel 39, Stufe b. Die Umsetzung wird in Gegenwart von 10 g Ammoniak bei 5 bar und 60°C durchgeführt. Der Rückstand wird über Kieselgel (Dichlormethan:Methanol 9:1 – 4:1) chromatographiert. Ausbeute: 36%; Schmp: 140°C; Masse: ber.: [621], gef.: [M+H]⁺ 622, [M+2H]²⁺ 312;

15 ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 8.51 (6H, breit, -NH₃+); 7.74-7.08 (21H, m, aryl-H); 4.66 (2H, s, N-CH₂-); 4.02, 4.00 (4H, 2s, CH₂-NH₂); 3.84 (3H, s, aryl-N-CH₃); 3.84, 3.41, 2.24 (5H, 3m, N-CH₂-CH₂-CH).

Beispiel 44: 2-{2-[4-(Amino-hydroximino-methyl) phenyl}-ethyl}-1-methylbenzimidazol-5-yl-carbonsäure-[N'-(2-methylphenyl)-piperazid]

a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(2-methyl-phenyl)-piperazid]:

Die Synthese erfolgt ausgehend von 7.5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäurechlorid durch Umsetzung mit N-(2-Methylphenyl)piperazin in Analogie zu Beispiel 1, Stufe f. Das Produkt wird über Kieselgel chromatographiert (Dichlormethan:Methanol 50:1). Ausbeute: 58%; b) 2-{2-[4-(Amino-hydroximino-methyl) phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(2-methylphenyl)-piperazid]:

Ausgehend von 5.4 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(2-methyl-phenyl)-piperazid] gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 33. Als Base wird Kaliumtert.-butylat verwendet. Das Produkt wird über Kieselgel chromatographiert (Dichlormethan:Methanol 20:1). Masse: ber.: [496], gef.: [M+H]* 497;

¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.59 (1H, s, OH); 7.66-6.90 (11H, m, aryl-10 H); 5.76 (2H, s, -NH₂); 3.71 (3H, s, N-CH₃); 3.67 (4H, m -CH₂-CH₂-Ph); 3.17, 2.84 (8H, 2m, piperazinyl); 2.26 (3H, s, aryl-N-CH₃).

<u>Beispiel 45:</u> 2-{2-[4-(Amino-hydroximino-methyl) phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(3-methylphenyl)-piperazid]

15

a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(3-methyl-phenyl)-piperazid]:

Die Synthese erfolgt ausgehend von 7.5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäurechlorid durch Umsetzung mit N-(3-

20 Methylphenyl)piperazin in Analogie zu Beispiel 1, Stufe f. Das Produkt wird über Kieselgel chromatographiert (Dichlormethan:Methanol 50:1). Ausbeute: 88%;

b) 2-{2-[4-(Amino-hydroximino-methyl) phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(3-methylphenyl)-piperazid]:

Ausgehend von 6.4 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(3-methyl-phenyl)-piperazid] gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 33. Als Base wird Kaliumtert.-butylat verwendet. Das Produkt wird über Kieselgel chromatographiert (Dichlormethan:Methanol 20:1). Masse: : ber.: [496], gef.: [M+H]⁺ 497;

30 ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.56 (1H, s, OH); 7.66-6.90 (11H, m, aryl-H); 5.76 (2H, s, NH₂); 3.72 (3H, s, N-CH₃); 3.64 (4H, m, -CH₂-CH₂-Ph); 3.17 (8H, m, piperazinyl); 2.25 (3H, s, aryl-N-CH₃).

<u>Beispiel 46:</u> 2-{2-{4-(Amino-hydroximino-methyl) phenyl}-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-(N'-benzyl-piperazid)

a) 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-(N'-benzyl-5 piperazid):

Die Synthese erfolgt ausgehend von 7.5 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methylbenzimidazol-5-yl-carbonsäurechlorid durch Umsetzung mit N-Benzylpiperazin in Analogie zu Beispiel 1, Stufe f. Das Produkt wird über Kieselgel chromatographiert (Dichlormethan:Methanol 50:1). Ausbeute: 91%;

10

b) 2-{2-[4-(Amino-hydroximino-methyl) phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-(N'-benzyl-piperazid):

Ausgehend von 6.6 mmol 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-(N'-benzyl-piperazid) gelingt die Synthese in Analogie zur Vorschrift unter Beispiel 33. Als Base wird Kaliumtert.-butylat verwendet. Das Produkt wird über Kieselgel chromatographiert (Dichlormethan:Methanol 20:1).

Masse: ber.: [496], gef.: [M+H]⁺ 497, [M+2H]²⁺ 249; ¹H-NMR (250MHz, DMSO-d6): δ [ppm] = 9.56 (1H, s, OH); 7.62-7.16 (12H, m, aryl-H); 5.76 (2H, s, NH₂); 3.70 (3H, s, N-CH₃); 3.50 (2H, s, N-CH₂-Ph); 3.39 (4H, m, -20 CH₂-CH₂-Ph); 3.16, 2.39 (8H, 2m, piperazinyl).

In Analogie zu den vorstehend beschriebenen Verfahren wurden ferner die folgenden Verbindungen erhalten:

25 **Beispiel 47:** 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(3-methylphenyl)-piperazid]

<u>Beispiel 48:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(3-ethoxyphenyl)-piperazid]

30

Beispiel 49: 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(3-isopropyloxyphenyl)-piperazid]

15

25

35

- Beispiel 50: 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(cyclopentyl)-piperazid]
- Beispiel 51: 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-5 [N'-(2-methylphenyl)-piperazid]
 - <u>Beispiel 52:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(2-pyridyl)-piperazid]
- 10 <u>Beispiel 53:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(2-methoxyphenyl)-piperazid]
 - <u>Beispiel 54:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(2-ethoxyphenyl)-piperazid]
 - <u>Beispiel 55:</u> 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-benzyl-piperazid]
- Beispiel 56: 2-{2-[4-(Amino-methoxycarbonylimino-methyl)phenyl]-ethyl}-1-methylbenzimidazol-5-yl-carbonsäure-N-phenyl-N-[3-amino-3-methoxycarbonyliminopropyl]-amid
 - <u>Beispiel 57:</u> 2-{2-[4-(Amino-hydroximino-methyl) phenyl]-ethyl}-1-methylbenzimidazol-5-yl-carbonsäure-[N'-(3-hydroxyphenyl)-piperazid]
 - <u>Beispiel 58:</u> 2-{2-[4-(Amino-methoxycarbonylimino-methyl)phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-phenylethyl)-N-[3-amino-3-methoxycarbonylimino-propyl]-amid
- 30 <u>Beispiel 59:</u> 2-{2-[4-(Amino-hydroximino-methyl) phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(2-pyridyl)-piperazid]
 - <u>Beispiel 60:</u> 2-{2-{4-(Amino-hydroximino-methyl) phenyl}-ethyl}-1-methylbenzimidazol-5-yl-carbonsäure-{N'-(cyclohexyl)-piperazid]
 - Beispiel 61: 2-{2-[4-(Amino-hydroximino-methyl) phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(cyclopentyl)-piperazid]

15

- <u>Beispiel 62:</u> 2-{2-[4-(Amino-hydroximino-methyl) phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(2-ethoxy-phenyl)-piperazid]
- Beispiel 63: 2-{2-[4-(Amino-hydroximino-methyl) phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(3-methoxy-phenyl)-piperazid]
 - **Beispiel 64:** 2-{2-{4-(Amino-hydroximino-methyl) phenyl}-ethyl}-1-methylbenzimidazol-5-yl-carbonsäure-[N'-(3-isopropyloxy-phenyl)-piperazid]
- 10 Beispiel 65: 2-{2-[4-(Amino-hydroximino-methyl) phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(3-ethoxy-phenyl)-piperazid]
 - <u>Beispiel 66:</u> 2-{2-[4-(Amino-hydroximino-methyl)phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-N-phenyl-N-[3-amino-3-hydroxyimino-propyl]-amid
 - <u>Beispiel 67:</u> 2-{2-[4-(Amino-hydroximino-methyl)phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-N-(2-phenylethyl)-N-[3-amino-3-hydroxyimino-propyl]-amid
- 20 <u>Beispiel 68:</u> 2-{2-[4-(Amino-hydroximino-methyl) phenyl]-ethyl}-1-methyl-benzimidazol-5-yl-carbonsäure-[N'-(cyclohexyl)-piperazid]

Allgemeine Arbeitsvorschrift zur Synthese der Verbindungen der allgemeinen 25 Formel (I) an der festen Phase:

a) Reduktive Aminierung:

- Eine Suspension aus 0.06 mmol des an das Tritylharz gekoppelten Amins und 300 µl einer 1:1 (v/v) Lösung aus Tetramethylorthoformiat / Dichlormethan wird mit 500 µl einer 0.12 M Lösung der Aldehyde R⁴-CHO in Tetramethylorthoformiat /
- 30 Dichlormethan (1:1 v/v) versetzt und 2 h bei Raumtemperatur geschüttelt. Anschließend wird das Harz abfiltriert und je 2 mal mit 1,5 ml Dichlormethan, Dimethylformamid, Dichlormethan gewaschen.
 - Das Harz wird in 300 µl Dichlormethan suspendiert, mit 1200 µl einer 0.167 M Lösung von Natriumtriacetoxyborhydrid in Dichlormethan versetzt und 12 h bei
- Raumtemperatur geschüttelt. Das Harz wird abfiltriert und je 2 mal mit je 1.5 ml Wasser, Dimethylformamid / Wasser 7:3 (v/v), Dimethylformamid / Wasser / Essigsäure 90:10:5 (v/v/v), Dimethylformamid / Wasser 9:1 (v/v), Dimethylformamid, Dichlormethan gewaschen.

b) Acylierung mit 4-Chlor-3-nitro-benzoylchlorid:

Das Harz, in 500µl Diisopropylethylamin-Lösung (20% in Dichlormethan) suspendiert, wird mit 1000 µl einer 0.2 M Lösung von 4-Chlor-3-nitro-benzoylchlorid in Dichlormethan versetzt und 12 h bei Raumtemperatur geschüttelt. Anschließend wird abfiltriert und 3 mal mit je 1.5 ml Dichlormethan und 1-Methyl-2-pyrrolidon gewaschen.

c) Nucleophile Substitution:

Das Harz, in 500 μl Diisopropylethylamin-Lösung in 1-Methyl-2-pyrrolidon (20% v/v) suspendiert, wird mit 1000 μl einer 0.1 M Lösung eines Amins R¹-NH₂ in 1-Methyl-2-pyrrolidon versetzt und 12 h bei 85°C erhitzt. Nach Abkühlen auf Raumtemperatur wird das Harz abfiltriert und 3 mal mit je 1.5 ml 1-Methyl-2-pyrrolidon und Dimethylformamid gewaschen.

15

d) Reduktion der Nitrogruppe:

Das Harz wird in 500 µl Dimethylformamid suspendiert, mit 1000 µl 1.0 M SnCl₂ – Lösung in Dimethylformamid versetzt und 48 h bei Raumtemperatur geschüttelt. Anschließend wird das Harz abfiltriert und 2 mal mit je 1.5 ml Dimethylformamid, Dioxan, Methanol/NH₄OH 98:2 (v/v), wässriges Methanol (80%), Methanol und Tetrahydrofuran gewaschen.

e) Oxidative Cyclisierung zum Benzimidazol:

Das Harz wird in 500µl Tetrahydrofuran suspendiert, mit 1000µl 0.1M Lösung eines Aldehyds R²-C₆H₄-CH₂CH₂-CHO Lösung in THF versetzt und 48 h bei Raumtemperatur unter Luftsauerstoff geschüttelt. Anschließend wird das Harz abfiltriert und 5 mal mit je 1.5 ml Tetrahydrofuran, Dichlormethan / Methanol 95/5 und Dichlormethan gewaschen.

30 f) Abpaltung des Produktes vom Harz:

Das Harz wird mit 1000 µl Trifluoressigsäure 10% v/v in Dichlormethan, 1h bei Raumtemperatur geschüttelt und abgesaugt. Anschließend wird das zurückbleibende Harz nochmals mit 500µl Trifluoressigsäure 10% v/v in Dichlormethan versetzt abgesaugt und die vereinigten Filtrate im Vakuum eingeengt.

- Nach Behandlung des Harzrückstandes mit 1000 μl Dichlormethan /Methanol 95:5 wird nach 1 h Schütteln bei Raumtemperatur abfiltriert.
 - Die Filtrate und die erhaltenen Rückstande werden vereinigt und im Vakuum zur Trockene eingeengt.

Die nachfolgenden Tabellen fassen weitere erfindungsgemäß synthetisierte Verbindungen der allgemeinen Formel (I) zusammen. Diese sind sowohl in Analogie zu den vorstehend beschriebenen Beispielen 1- 68 als auch gemäß der vorstehend beschriebenen Festphasensynthese erhältlich.

$$R^4$$
 N
 N
 N
 R^2
 (I)

<u>Tabelle 1:</u>
Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

-R²: -C(=NH)NH₂; -R³:
$$\sim$$
 NH₂; \sim NH₂;

bedeuten:

bedeuten:					
Bei- spiel	-R1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
69	n-Decyl-	686	-	343	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(3-methoxy- benzyl)-amid
70	OEt	632	633	317	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-methoxy-benzyl)-amid
71	N(n-Butyl) ₂	715	716	358	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-methoxybenzyl)-amid
72	H-N-Benzyl	721	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(3- methoxybenzyl)-amid
73		656	657	329	2-[2-(4-Amidinophenyl)ethyl]-1-(2-cyclohexylethyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-methoxybenzyl)-amid
74	\nearrow	600	601	-	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(3-methoxybenzyl)-amid

				_	
75		650	-	326	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenylethyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-methoxybenzyl)-amid
76	Ci	684	-	•	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlomhenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-methoxybenzyl)-amid
77	Me	650	_	326	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-methoxybenzyl)-amid
78	N _{Me}	657	658	329	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-methoxybenzyl)-amid
79	Ph N-Benzyl	809	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-methoxybenzyl)-amid
80	Me Me	762	763	381	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-methoxybenzyl)-amid
81		673	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-[4-(amino-methyl)- benzyl]-N-(3-methoxybenzyl)-amid
82	√ ₀	630	631	-	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(3- methoxybenzyl)-amid
83		642	-	- ·	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(3-methoxybenzyl)-amid
84		680	681	641	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-methoxybenzyl)-amid

Tabelle 2:

5

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

-R²: -C(=NH)NH₂; -R³:
$$\longrightarrow$$
 NH₂. -R⁴: n-Butyl

	•				
Bei- spiel	-R1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
85	n-Decyl-	622	623	311	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-n-butyl-amid
86	OEt	568	569	276	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-n-butyl-amid
87	N(n-Butyl) ₂	651	652	326	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N- n-butyl-amid
88	H-N-Benzyl	657	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N- n-butyl-amid
89		592	-	_	2-[2-(4-Amidinophenyl)ethyl]-1-(2-cyclohexylethyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-n-butyl-amid
90	\supset	536	-	-	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N- n-butyl-amid
91		586	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl- ethyl)-benzimidazol-5-yl-carbonsäure-N- [4-(amino-methyl)-benzyl]-N-n-butyl-amid
92	cı	620	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-n-butyl-amid
93	Me	586	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-n-butyl-amid
94	N _{Me}	593	594	-	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-n-butyl-amid
95	PhN-Benzyl	745	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-n-butyl-amid
96	N N Me	698	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-n-butyl-amid
97		609	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-[4-(amino-methyl)- benzyl]-N-n-butyl-amid

98	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	566	-	-	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-n-butyl-amid
99	√(s)	578	-	290	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-n-butyl-amid
100		616	-	309	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N- n-butyl-amid

Tabelle 3:

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

$$-\mathsf{R}^2: -\mathsf{C}(=\mathsf{NH})\mathsf{NH}_2; \quad -\mathsf{R}^3: \qquad \qquad -\mathsf{R}^4: \qquad \qquad -\mathsf{R}^4: \qquad \qquad \mathsf{NH}_2: \qquad \mathsf{N$$

peder	ACTI.				
Bei- spiel	-R1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
101	n-Decyl-	656	657	329	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-benzyl-amid
102	OEt	602	603	-	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-benzyl-amid
103	N(n-Butyl) ₂	685	686	343	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-benzyl-amid
104	H N Benzyl	691	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-benzyl-amid
105		626	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-benzyl-amid
106	~	570	-	-	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-benzyl-amid
107		620	621	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl- ethyl)-benzimidazol-5-yl-carbonsäure-N- [4-(amino-methyl)-benzyl]-N-benzyl-amid
108	cı	654	-	_	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-benzyl-amid

,					T
109	<u></u> ————————————————————————————————————	620	621	-	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-benzyl-amid
110	N _{Me}	627	628	314	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-benzyl-amid
111	Ph N-Benzyl	779	-	391	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl- 4-phenyl-piperidin-4-yl)-methyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-benzyl-amid
112	N N Me	732	733	367	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsaure-N-[4-(amino-methyl)-benzyl]-N-benzyl-amid
113		643	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-[4-(amino-methyl)- benzyl]-N-benzyl-amid
114	√ 0	600	601	-	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-benzyl-amid
115	\searrow_s	612	613	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-benzyl-amid
116		650	651	326	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-benzyl-amid

Tabelle 4:

5

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

$$-R^2$$
: $-C(=NH)NH_2$; $-R^3$:

Bei- spiel	-R1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
117	n-Decyl-	657	658	329	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(2-pyridyl)-amid

118	OEt	603	604	302	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-pyridyl)-amid
119	N(n-Butyl) ₂	686	-	344	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-pyridyl)-amid
120	H N Benzyl	692	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(2-pyridyl)-amid
121		627	628	314	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(2-pyridyl)-amid
122		571	-	286	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(2-pyridyl)-amid
123		621		311	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenylethyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-pyridyl)-amid
124	cı	655	-	329	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-pyridyl)-amid
125		621	_	311	2-[2-(4-Amidinophenyl)ethyl]-1-(4- methylbenzyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(2-pyridyl)-amid
126	Ne	628	-	315	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-pyridyl)-amid
127	Ph_N-Benzyl	780	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-pyridyl)-amid
128	N N Me	733	734	367	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-pyridyl)-amid
129		644	645	323	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-[4-(amino-methyl)- benzyl]-N-(2-pyridyl)-amid
130	√0>	601	-	301	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(2-pyridyl)-amid

131	\(\sigma_s\)	613	-	307	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(2-pyridyl)-amid
132		651	652	326	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-pyndyl)-amid

Tabelle 5:

5 Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

-R²: -C(=NH)NH₂; -R³:
$$\longrightarrow$$
 NH₂: -R⁴: \longrightarrow NH₂:

Bei- spiel	-R ¹	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
133	n-Decyl-	657	658	329	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(3-pyridyl)-amid
134	OEt	603	604	302	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-pyridyl)-amid
135	N(n-Butyl) ₂	686	687	344	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-pyridyl)-amid
136	H-N-Benzyl	692	-	347	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(3-pyridyl)-amid
137		627	-	314	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(3-pyridyl)-amid
138	~	571	572	286	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(3-pyridyl)-amid
139		621	<u>-</u>	311	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenylethyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-pyridyl)-amid

			,		
140		655	-	629	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-
į	/(′ }Cı				chlomhenyi)ethyi]-benzimidazol-5-yl-
					carbonsäure-N-[4-(amino-methyl)-benzyl]-
					N-(3-pyridyl)-amid
141		621	622	311	2-[2-(4-Amidinophenyl)ethyl]-1-(4-
	//				methylbenzyl)-benzimidazol-5-yl-
	/ 🖃		1		carbonsäure-N-[4-(amino-methyl)-benzyl]-
					N-(3-pyridyl)-amid
142		628	-	315	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-
					methylpyrrolidin-2-yl)-ethyl]-benzimidazol-
	N N N N N N N N N N N N N N N N N N N				5-yl-carbonsäure-N-[4-(amino-methyl)-
ŀ	Мe				benzyl]-N-(3-pyridyl)-amid
143	Ph	780	-	_	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-
	/──X N—Benzyl				4-phenyl-piperidin-4-yl)-methyl]-
					benzimidazol-5-yl-carbonsäure-N-[4-
]		(amino-methyl)-benzyl]-N-(3-pyridyl)-amid
144		733	-	367	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-
	\]	methylphenyl)-piperazin-1-yl]-propyl}-
					benzimidazol-5-yl-carbonsäure-N-[4-
	Me [′]				(amino-methyl)-benzyl]-N-(3-pyridyl)-amid
145		644	645	323	2-[2-(4-Amidinophenyl)ethyl]-1-[3-
' '	\ _n ò	• • •	• .•	""	(morpholin-4-yl)-propyl}-benzimidazol-5-
				1	yl-carbonsäure-N-[4-(amino-methyl)-
					benzyl]-N-(3-pyridyl)-amid
146		601	_	301	2-[2-(4-Amidinophenyl)ethyl]-1-
		:		•	(tetrahydrofuran-2-yl-methyl)-
	`o´		ł	1	benzimidazol-5-yl-carbonsäure-N-[4-
	}	l			(amino-methyl)-benzyl]-N-(3-pyridyl)-amid
147	7	613	614	307	2-[2-(4-Amidinophenyl)ethyl]-1-(2-
	ا <i>ک</i> ر کا			1	thiophenyl-methyl)-benzimidazol-5-yl-
	S		1		carbonsäure-N-[4-(amino-methyl)-benzyl]-
		l			N-(3-pyridyl)-amid
148	0	651	-	326	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-
]	}		benzodioxol-5-yl-methyl)-benzimidazol-5-
		İ		1	yl-carbonsäure-N-[4-(amino-methyl)-
					benzyl]-N-(3-pyridyl)-amid

[M+H]; #[M+2H]²⁺

Tabelle 6:

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

$$-R^2: -C(=NH)NH_2; \quad -R^3: \qquad \qquad -R^4: \qquad \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad -R^4: \qquad \\ NH_2: \qquad \\$$

peder	1(C) 1.	,			
Bei- spiel	-R1	ber. [M]	gef.*	Gef. #	Chemische Bezeichnung
149	n-Decyl-	662	663	-	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N- cyclohexylmethyl-amid
150	OEt	608	•	-	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-cyclohexylmethyl-amid
151	N(n-Butyl) ₂	691	-	346	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-cyclohexylmethyl-amid
152	H N Benzyl O	697	_	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N- cyclohexylmethyl-amid
153		632	-4	- .	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-cyclohexylmethyl-amid
154	7	576	-	-	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-cyclohexylmethyl-amid
155		626	•	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenylethyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-cyclohexylmethyl-amid
156	cı	660	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-cyclohexylmethyl-amid
157	Me	626	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-cyclohexylmethyl-amid
158	N	633	<u>-</u>	•	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-cyclohexylmethyl-amid

159	Ph N—Benzyl	785	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-cyclohexylmethyl-amid
160	N-N-Me	662	663	-	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-cyclohexylmethyl-amid
161		649	_	•	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-[4-(amino-methyl)- benzyl]-N-cyclohexylmethyl-amid
162		606	•	-	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N- cyclohexylmethyl-amid
163		618	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-cyclohexylmethyl-amid
164		656	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-cyclohexylmethyl-amid

^{*[}M+H]*; #[M+2H]2+

Tabelle 7:

5

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

$$-\mathsf{R}^2: -\mathsf{C}(=\mathsf{NH})\mathsf{NH}_2; \quad -\mathsf{R}^3: \quad \bigvee_{\mathsf{NH}_2} \quad -\mathsf{R}^4: \quad \bigwedge_{\mathsf{NH}_2} \quad -\mathsf{R}^4: \quad -\mathsf{R}^4: \quad \bigwedge_{\mathsf{NH}_2} \quad -\mathsf{R}^4: \quad -\mathsf{R}^4$$

Bei- spiel	-R1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
165	n-Decyl-	684	-	343	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(3- phenylpropyl)-amid
166	OEt	630	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-phenylpropyl)-amid

167	N(n-Butyl) ₂	714	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-phenylpropyl)-amid
168	H Benzyl	719	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(3- phenylpropyl)-amid
169		654	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(3-phenylpropyl)-amid
170	abla	598	_	-	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(3-phenylpropyl)-amid
171		648	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenylethyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-phenylpropyl)-amid
172	cı	682	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-phenylpropyl)-amid
173	/————Me	648	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-phenylpropyl)-amid
174	N _{Me}	655		328	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-phenylpropyl)-amid
175	Ph N-Benzyl	807	-	•	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-phenylpropyl)-amid
176	N-N-N-Me	760	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-phenylpropyl)-amid

177	\ \ __\	671	ı	336	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-[4-(amino-methyl)- benzyl]-N-(3-phenylpropyl)-amid
178	\$	628	-	-	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(3- phenylpropyl)-amid
179	\searrow s	640	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(3-phenylpropyl)-amid
180		678	•	•	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-phenylpropyl)-amid

^{*[}M+H]*; #[M+2H]2+

Tabelle 8:

5 Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

$$-R^2$$
: $-C(=NH)NH_2$; $-R^3$: $-R^4$: $-R^4$: $-R^4$:

Deger	iten:		·		
Bei- spiel	_{-R} 1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
181	n-Decyl-	690	691	-	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(4-chlorbenzyl)- amid
182	OEt	636	637	319	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(4-chlorbenzyl)-amid
183	N(n-Butyl) ₂	719	720	360	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(4-chlorbenzyl)-amid
184	H-N-Benzyl	726	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(4-chlorbenzyl)- amid
185		644	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(4-chlorbenzyl)-amid

186	~	604	605	-	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(4-chlorbenzyl)-amid
187		654	-	_	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl- ethyl)-benzimidazol-5-yl-carbonsäure-N- [4-(amino-methyl)-benzyl]-N-(4- chlorbenzyl)-amid
188	cı	688	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(4-chlorbenzyl)-amid
189	——————Me	654	_	-	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(4-chlorbenzyl)-amid
190	√ N _{Me}	661	662	331	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(4-chlorbenzyl)-amid
191	Ph N-Benzyl	766	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(4-chlorbenzyl)-amid
192	N N Me	766	-	384	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(4-chlorbenzyl)-amid
193		677	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-[4-(amino-methyl)- benzyl]-N-(4-chlorbenzyl)-amid
194	√ 0	634	635	-	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(4-chlorbenzyl)- amid
195	\searrow_{s}	646	647	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(4-chlorbenzyl)-amid
196		684	685	-	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(4-chlorbenzyl)-amid

[M+H]; #[M+2H]²⁺

<u>Tabelle 9:</u>
Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

$$-R^2$$
: $-C(=NH)NH_2$; $-R^3$: $-R^4$: $-R^4$: $-R^4$: $-R^4$: $-R^4$:

bedeu	iten:				
Bei- spiel	_{-R} 1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
197	n-Decyl-	724	725	363	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(3- trifluormethylbenzyl)-amid
198	OEt	670	671	336	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-trifluormethylbenzyl)-amid
199	N(n-Butyl) ₂	753	754	377	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-trifluomethylbenzyl)-amid
200	H-N-Benzyl	847	-	424	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(3- trifluormethylbenzyl)-amid
201		753	754	377	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(3-trifluormethylbenzyl)-amid
202	~	638	639	320	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(3-trifluormethylbenzyl)-amid
203		688	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl- ethyl)-benzimidazol-5-yl-carbonsäure-N- [4-(amino-methyl)-benzyl]-N-(3- trifluormethylbenzyl)-amid
204	ci	722	-	362	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlomhenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-trifluormethylbenzyl)-amid
205	Me	688	-	345	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-trifluormethylbenzyl)-amid
206	√ N _{Me}	695	-	348	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-trifluormethylbenzyl)-amid

207	Ph N-Benzyl	847	_	424	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl- 4-phenyl-piperidin-4-yl)-methyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(3- trifluormethylbenzyl)-amid
208	N N Me	800	801	401	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-trifluormethylbenzyl)-amid
209		711	712	356	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-[4-(amino-methyl)- benzyl]-N-(3-trifluormethylbenzyl)-amid
210	√ ∘	668	669	335	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(3- trifluormethylbenzyl)-amid
211	S	680	681	•	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(3-trifluomethylbenzyl)-amid
212		718	719	340	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(3-trifluormethylbenzyl)-amid

^{*[}M+H]*; #[M+2H]2+

Tabelle 10:

5 Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

Bei- spiel	-R1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
213	n-Decyl-	674	675	338	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(2-fluorbenzyl)- amid
214	OEt	620	621	310	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-fluorbenzyl)-amid

					To 20 44 4 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10
215	N(n-Butyl) ₂	703	704	352	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-
					N-(2-fluorbenzyl)-amid
216	Ĥ	709	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3-
	N. Benzyl				(benzylcarbonylamino)-propyl]-
					benzimidazol-5-yl-carbonsäure-N-[4-
	0				(amino-methyl)-benzyl]-N-(2-fluorbenzyl)-
					amid
217		644	645	323	2-[2-(4-Amidinophenyl)ethyl]-1-(2-
	\nearrow				cyclohexylethyl)-benzimidazol-5-yl-
		i			carbonsäure-N-[4-(amino-methyl)-benzyl]-
040		550		007	N-(2-fluorbenzyl)-amid
218	$\overline{}$	558	559	287	2-[2-(4-Amidinophenyl)ethyl]-1-
	, ,				cyclopropylmethyl-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-
					N-(2-fluorbenzyl)-amid
219		638			2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl-
213		030	_	_	ethyl)-benzimidazol-5-yl-carbonsäure-N-
					[4-(amino-methyl)-benzyl]-N-(2-
					fluorbenzyl)-amid
220		672	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-
	,−-(' > −−cι				chlorphenyl)ethyl]-benzimidazol-5-yl-
					carbonsäure-N-[4-(amino-methyl)-benzyl]-
					N-(2-fluorbenzyl)-amid
221		638	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(4-
	/Me				methylbenzyl)-benzimidazol-5-yl-
	, <u> </u>				carbonsäure-N-[4-(amino-methyl)-benzyl]-
000		C45		200	N-(2-fluorbenzyl)-amid
222		645	-	323	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-
	∕ N				methylpyrrolidin-2-yl)-ethyl]-benzimidazol- 5-yl-carbonsäure-N-[4-(amino-methyl)-
	Me				benzyl]-N-(2-fluorbenzyl)-amid
223	Ph 🖳	797		399	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-
223	N-Benzyl	191	-	399	4-phenyl-piperidin-4-yl)-methyl]-
	/				benzimidazol-5-yl-carbonsäure-N-[4-
					(amino-methyl)-benzyl]-N-(2-fluorbenzyl)-
	•				amid
224		750	751	376	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-
	\N				methylphenyl)-piperazin-1-yl]-propyl}-
					benzimidazol-5-yl-carbonsäure-N-[4-
	Me				(amino-methyl)-benzyl]-N-(2-fluorbenzyl)-
					amid
225		620	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3-
	\				(morpholin-4-yl)-propyl]-benzimidazol-5-
				. •	yl-carbonsäure-N-[4-(amino-methyl)-
200		640			benzyl]-N-(2-fluorbenzyl)-amid
226		618	-	_	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)-
	√ ₀∕				tetranydroturan-2-yr-metnyr)- benzimidazol-5-yl-carbonsäure-N-[4-
					(amino-methyl)-benzyl]-N-(2-fluorbenzyl)-
					amid
					I

227	V _s)	630	631	307	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(2-fluorbenzyl)-amid
228		668	•	-	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-fluorbenzyl)-amid

^{*[}M+H]*; #[M+2H]2+

5 <u>Tabelle 11:</u>

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

$$-R^2$$
: $-C(=NH)NH_2$; $-R^3$: $-R^4$:

pedec					
Bei- spiel	-R1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
229	n-Decyl-	706	707	-	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(2- naphthylmethyl)-amid
230	OEt	652	653	319	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-naphthylmethyl)-amid
231	N(n-Butyl) ₂	735	-	369	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-naphthylmethyl)-amid
232	H N Benzyl O	741	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(2- naphthylmethyl)-amid
233		676	677	339	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(2-naphthylmethyl)-amid
234	~	620	621	303	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(2-naphthylmethyl)-amid
235		670	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenylethyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-naphthylmethyl)-amid

	· · · · · · · · · · · · · · · · · · ·		· —		
236		704	-	353	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-naphthylmethyl)-amid
237	Me	670	671	328	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-naphthylmethyl)-amid
238	N _{Me}	677	678	389	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-naphthylmethyl)-amid
239	Ph N-Benzyl	829	-	416	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-naphthylmethyl)-amid
240	N-N-Me	782	783	391	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-naphthylmethyl)-amid
241	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	693	-	347	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-[4-(amino-methyl)- benzyl]-N-(2-naphthylmethyl)-amid
242		650	<u>-</u>	-	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-(2- naphthylmethyl)-amid
243	\searrow_s	662	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-(2-naphthylmethyl)-amid
244		700	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-(2-naphthylmethyl)-amid

^{*[}M+H]*; #[M+2H]2+

Tabelle 12:

5

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

Bei- spiel	-R1	ber. [M]	gef.*	Gef. #	Chemische Bezeichnung
245	n-Decyl-	638	639	320	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-[4-(methoxycarbonyl)- benzyl]-amid
246	OEt	584	585	293	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-[4-(methoxycarbonyl)-benzyl]-amid
247	N(n-Butyl) ₂	667	668	334	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-[4-(methoxycarbonyl)-benzyl]-amid
248	H Benzyl	673	674	337	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-[4-(methoxycarbonyl)- benzyl]-amid
249		608	609	305	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-[4- (methoxycarbonyl)-benzyl]-amid
250		552	553	277	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-[4- (methoxycarbonyl)-benzyl]-amid
251		602	603	302	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl- ethyl)-benzimidazol-5-yl-carbonsäure-N- (2-aminoethyl)-N-[4-(methoxycarbonyl)- benzyl]-amid
252	cı	636	637	319	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4- chlorphenyl)ethyl]-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-[4- (methoxycarbonyl)-benzyl]-amid
253	/—()—Me	602	603	302	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-[4-(methoxycarbonyl)-benzyl]-amid
254	N _{Me}	609	610	305	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-[4-(methoxycarbonyl)-benzyl]-amid
255	Ph N-Benzyl	761	-	381	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-[4-(methoxycarbonyl)-benzyl]-amid

256	N-N-N-Me	714	715	358	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-[4-(methoxycarbonyl)-benzyl]-amid
257		625	626	313	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-(2-aminoethyl)-N-[4- (methoxycarbonyl)-benzyl]-amid
258		582	583	292	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-[4-(methoxycarbonyl)- benzyl]-amid
259		594	595	298	2-[2-(4-Amidinophenyl)ethyl]-1-(2-thiophenyl-methyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-[4-(methoxycarbonyl)-benzyl]-amid
260		632	633	317	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-[4-(methoxycarbonyl)-benzyl]-amid

[M+H]; #[M+2H]²⁺

Tabelle 13:

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

-R²: -C(=NH)NH₂; -R³: -NH₂; -R⁴: -OM

Bei- spiel	_{-R} 1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
261	n-Decyl-	610	611	306	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(3-methoxybenzyl)-amid
262	OEt	556	557	279	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-methoxybenzyl)-amid
263	N(n-Butyl) ₂	639	640	320	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-methoxybenzyl)-amid
264	H N Benzyl O	645	-	323	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl}- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(3-methoxybenzyl)-amid

					- ·
265		580	581	291	2-[2-(4-Amidinophenyl)ethyl]-1-(2-cyclohexylethyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-methoxybenzyl)-amid
266	\nearrow	524	525	263	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(3- methoxybenzyl)-amid
267		574	575	288	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl- ethyl)-benzimidazol-5-yl-carbonsäure-N- (2-aminoethyl)-N-(3-methoxybenzyl)-amid
268	cı	608	609	305	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-methoxybenzyl)-amid
269	Me	574	575	288	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-methoxybenzyl)-amid
270	N Me	581	582	291	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-methoxybenzyl)-amid
271	PhN—Benzyl	733	734	367	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl- 4-phenyl-piperidin-4-yl)-methyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(3-methoxybenzyl)-amid
272	N-N-Me	686	687	344	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-methoxybenzyl)-amid
273		597	598	299	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-(2-aminoethyl)-N-(3- methoxybenzyl)-amid
274		554	555	278	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(3-methoxybenzyl)-amid
275	\searrow_s	566	567	284	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(3- methoxybenzyl)-amid
276		604	605	303	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-methoxybenzyl)-amid

Tabelle 14:

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

 $-R^2$: $-C(=NH)NH_2$; $-R^3$: $-NH_2$ $-R^4$: n-Butyl

peder	alen.	·		Y	
Bei- spiel	-R1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
277	n-Decyl-	546	-	274	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-n-butyl-amid
278	OEt	492	-	247	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-n-butyl-amid
279	N(n-Butyl) ₂	575	-	288	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N- n-butyl-amid
280	H Benzyl	581	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N- n-butyl-amid
281	·	516	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-n-butyl- amid
282		460	461	231	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N- n-butyl- amid
283		510	•	256	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl- ethyl)-benzimidazol-5-yl-carbonsäure-N- (2-aminoethyl)-N-n-butyl-amid
284	CI	545	•	272	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N- n-butyl-amid
285	Me	510	-	255	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-n-butyl-amid
286	N Me	517	-	259	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-n-butyl-amid
287	Ph N-Benzyl	669	-	335	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-n-butyl-amid

288	N N Me	622	-	312	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-n-butyl-amid
289		533	-	268	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-(2-aminoethyl)-N-n- butyl-amid
290		490	491	246	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-n-butyl-amid
291	$\searrow_{\mathbb{S}}$	502	-	252	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-n-butyl- amid
292		540	-	271	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N- n-butyl-amid

^{*[}M+H]*; #[M+2H]2+

Tabelle 15:

5

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

 $-R^2$: $-C(=NH)NH_2$; $-R^3$: $-NH_2$; $-R^4$:

Bei- spiel	-R ¹	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
293	n-Decyl-	580	581	291	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-benzyl-amid
294	OEt	526	527	264	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-benzyl-amid
295	N(n-Butyl) ₂	609	610	305	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-benzyl-amid
296	H N Benzyl	615	-	308	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-benzyl-amid
297		550	551	276	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-benzyl- amid

		<u> </u>	45-7		
298	$\nearrow \bigcirc$	494	·495	248	cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-benzyl- amid
299		544	545	273	ethyl)-benzimidazol-5-yl-carbonsäure-N- (2-aminoethyl)-N-benzyl-amid
300		578	579	290	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-benzyl-amid
301	Me	544	545	273	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-benzyl-amid
302	N Me	551	552	276	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-benzyl-amid
303	Ph N-Benzyl	703	-	352	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl- 4-phenyl-piperidin-4-yl)-methyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-benzyl-amid
304	N—N—Me	656	657	329	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-benzyl-amid
305		567	568	284	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-(2-aminoethyl)-N- benzyl-amid
306	5	524	525	263	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-benzyl-amid
307	\searrow_{s}	536	537	269	thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-benzyl- amid
308		574	575	288	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-benzyl-amid

Tabelle 16:

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

 $-R^2$: $-C(=NH)NH_2$; $-R^3$: $-NH_2$; $-R^4$:

bedeu	iten:				
Bei- spiel	-R ¹	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
309	n-Decyl-	581	582	291	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(2-pyridyl)-amid
310	OEt	527	528	264	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-pyridyl)-amid
311	N(n-Butyl) ₂	610	611	306	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-pyridyl)-amid
312	H N Benzyl O	616	617	309	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(2-pyridyl)-amid
313		551	552	276	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(2- pyridyl)-amid
314	$\nearrow \triangleleft$	495	496	248	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(2- pyridyl)-amid
315		545	546	273	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl- ethyl)-benzimidazol-5-yl-carbonsäure-N- (2-aminoethyl)-N-(2-pyridyl)-amid
316	cı	579	580	291	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-pyridyl)-amid
317	Me	545	546	273	2-[2-(4-Amidinophenyl)ethyl]-1-(4- methylbenzyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(2- pyridyl)-amid
318	N	552	553	277	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-pyridyl)-amid
319	Ph N-Benzyl	704	-	353	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-pyridyl)-amid

320	N-N-N-Me	657	658	329	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-pyridyl)-amid
321		568	569	285	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-(2-aminoethyl)-N-(2- pyridyl)-amid
322	S	525	526	263	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(2-pyridyl)-amid
323	\searrow_s	537	538	269	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(2- pyridyl)-amid
324		575	576	288	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-pyridyl)-amid

^{*[}M+H]*; #[M+2H]2+

Tabelle 17:

5

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

 $-R^2$: $-C(=NH)NH_2$; $-R^3$: $-NH_2$; $-R^4$:

	20011,				
Bei- spiel	_{-R} 1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
325	n-Decyl-	581	582	291	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(3-pyridyl)-amid
326	OEt	527	528	264	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-pyridyl)-amid
327	N(n-Butyl) ₂	610	611	306	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-pyridyl)-amid
328	H-N-Benzyl	616	617	309	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(3-pyridyl)-amid
329		551	552	276	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(3- pyridyl)-amid

		,			
330	$\nearrow \bigcirc$	495	496	248	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(3- pyridyl)-amid
331		545	546	273	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenylethyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-pyridyl)-amid
332	cı	579	580	291	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-pyridyl)-amid
333	——————Me	545	546	273	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-pyridyl)-amid
334	√ Ne Me	552	553	277	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-pyridyl)-amid
335	Ph_N-Benzyl	704		353	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-pyridyl)-amid
336	N N Me	657	658	329	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-pyridyl)-amid
337		568	569	285	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-(2-aminoethyl)-N-(3- pyridyl)-amid
338	√ 0	525	526	263	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(3-pyridyl)-amid
339	\searrow_s	537	538	269	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(3- pyridyl)-amid
340		575	576	288	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-pyridyl)-amid

Tabelle 18:

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

peder	1011.		·		· · · · · · · · · · · · · · · · · · ·
Bei- spiel	-R ¹	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
341	n-Decyl-	586	587	294	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-cyclohexylmethyl-amid
342	OEt	532	533	267	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-cyclohexylmethyl-amid
343	N(n-Butyl) ₂	615	616	308	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-cyclohexylmethyl-amid
344	N Benzyl	621	622	311	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-cyclohexylmethyl-amid
345		556	557	279	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N- cyclohexylmethyl-amid
346	abla	500	501	251	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N- cyclohexylmethyl-amid
347		550	551	276	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenylethyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-cyclohexylmethyl-amid
348	cı	584	585	293	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4- chlorphenyl)ethyl]-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N- cyclohexylmethyl-amid
349	Me	550	551	276	2-[2-(4-Amidinophenyl)ethyl]-1-(4- methylbenzyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N- cyclohexylmethyl-amid
350	N. Me	557	558	279	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-cyclohexylmethyl-amid
351	Ph N-Benzyl	708	-	355	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-cyclohexylmethyl-amid

352	N N Me	662	663	332	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-cyclohexylmethyl-amid
353		573	574	287	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-(2-aminoethyl)-N- cyclohexylmethyl-amid
354		530	531	266	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-cyclohexylmethyl-amid
355		542	543	272	2-[2-(4-Amidinophenyl)ethyl]-1-(2-thiophenyl-methyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-cyclohexylmethyl-amid
356		580	581	291	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-cyclohexylmethyl-amid

^{*[}M+H]*; #[M+2H]²⁺

Tabelle 19:

5 Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

Bei- spiel	-R1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
357	n-Decyl-	608	-	305	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(3-phenylpropyl)-amid
358	OEt	554	-	278	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-phenylpropyl)-amid
359	N(n-Butyl) ₂	637	-	319	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-phenylpropyl)-amid
360	H Benzyl	643	_	322	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(3-phenylpropyl)-amid

			·		
361		578	ļ -	290	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(3- phenylpropyl)-amid
362	\nearrow	522	-	262	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(3- phenylpropyl)-amid
363		572	-	287	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl- ethyl)-benzimidazol-5-yl-carbonsäure-N- (2-aminoethyl)-N-(3-phenylpropyl)-amid
364	cı	606	607	304	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-phenylpropyl)-amid
365	Me	572	-	287	2-[2-(4-Amidinophenyl)ethyl]-1-(4- methylbenzyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(3- phenylpropyl)-amid
366	Ne	579	-	290	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-phenylpropyl)-amid
367	Ph N—Benzyl	731	-	366	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl- 4-phenyl-piperidin-4-yl)-methyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(3-phenylpropyl)-amid
368	N N Me	643	644	323	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-phenylpropyl)-amid
369		595	-	298	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-(2-aminoethyl)-N-(3- phenylpropyl)-amid
370	√°	552	553	277	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(3-phenylpropyl)-amid
371	S	564	-	283	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(3- phenylpropyl)-amid
372		602	•	302	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-phenylpropyl)-amid

[M+H]; #[M+2H]²⁺

Tabelle 20:

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

$$-R^2$$
: $-C(=NH)NH_2$; $-R^3$: $-R^4$: $-R^4$:

bedeuten:

5

5.				_		
	Bei- spiel	-R1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
	373	n-Decyl-	615	616	308	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(4-chlorbenzyl)-amid
	374	OEt	560	561	281	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(4-chlorbenzyl)-amid
	375	N(n-Butyl) ₂	643	644	323	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(4-chlorbenzyl)-amid
	376	H Benzyl	649	650	326	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(4-chlorbenzyl)-amid
	377		584	585	293	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(4- chlorbenzyl)-amid
	378	$\nearrow \bigcirc$	528	529	265	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(4- chlorbenzyl)-amid
	379		578	579	290	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl- ethyl)-benzimidazol-5-yl-carbonsäure-N- (2-aminoethyl)-N-(4-chlorbenzyl)-amid
	380	CI	613	-	307	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4- chlorphenyl)ethyl]-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(4- chlorbenzyl)-amid
	381	—————Me	578	579	290	2-[2-(4-Amidinophenyl)ethyl]-1-(4- methylbenzyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(4- chlorbenzyl)-amid
	382	N Me	585	586	294	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(4-chlorbenzyl)-amid
	383	Ph N-Benzyl	737	738	370	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(4-chlorbenzyl)-amid

384	Me Me	690	691	346	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(4-chlorbenzyl)-amid
385	\\C>	601	602	302	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-(2-aminoethyl)-N-(4- chlorbenzyl)-amid
386		558	559	280	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(4-chlorbenzyl)-amid
387	\searrow_s	570	571	286	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(4- chlorbenzyl)-amid
388		608	609	305	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(4-chlorbenzyl)-amid

^{*[}M+H]+; #[M+2H]2+

Tabelle 21:

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

-R²: -C(=NH)NH₂; -R³: -NH₂ -R⁴: -R⁴: -R⁴:

Dedet		, .		 	
Bei- spiel	-R1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
389	n-Decyl-	648	649	325	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(3-trifluormethylbenzyl)- amid
390	OEt	594	595	298	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-trifluormethylbenzyl)-amid
391	N(n-Butyl) ₂	677	678	339	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-trifluormethylbenzyl)-amid
392	H N Benzyl O	683	684	342	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(3-trifluormethylbenzyl)- amid

	· · · · · · · · · · · · · · · · · · ·		,		·
393		618	619	310	2-[2-(4-Amidinophenyl)ethyl]-1-(2-
				ļ	cyclohexylethyl)-benzimidazol-5-yl-
			1	1	carbonsäure-N-(2-aminoethyl)-N-(3-
		ļ			trifluormethylbenzyl)-amid
394		562	563	282	2-[2-(4-Amidinophenyl)ethyl]-1-
		ł	ŀ		cyclopropylmethyl-benzimidazol-5-yl-
1	·				carbonsäure-N-(2-aminoethyl)-N-(3-
					trifluormethylbenzyl)-amid
395		612	613	307	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl-
	(0,2	0.0	00,	ethyl)-benzimidazol-5-yl-carbonsäure-N-
1	·/ \/		[(2-aminoethyl)-N-(3-trifluormethylbenzyl)-
				ļ	amid
396		646	647	324	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-
330	CI	070	07'	524	chlorphenyl)ethyl]-benzimidazol-5-yl-
	/ \/ 5.				carbonsäure-N-(2-aminoethyl)-N-(3-
					trifluormethylbenzyl)-amid
207		640	642	307	
397		612	613	30/	2-[2-(4-Amidinophenyl)ethyl]-1-(4-
	Me				methylbenzyl)-benzimidazol-5-yl-
					carbonsäure-N-(2-aminoethyl)-N-(3-
					trifluormethylbenzyl)-amid
398		619	620	310	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-
	~ 人?	ŀ			methylpyrrolidin-2-yl)-ethyl]-benzimidazol-
	/ V N				5-yl-carbonsäure-N-(2-aminoethyl)-N-(3-
	Me				trifluormethylbenzyl)-amid
399	Ph	771	772	386	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-
	∕—\ N–Benzyl		`		4-phenyl-piperidin-4-yl)-methyl]-
	/ 👉				benzimidazol-5-yl-carbonsäure-N-(2-
					aminoethyl)-N-(3-trifluormethylbenzyl)-
					amid
400		724	725	363	2-[2-(4-Amidinophenyl)ethyl]-1-(3-[4-(2-
700	\ _N N-{}	127	1,23	303	methylphenyl)-piperazin-1-yl]-propyl}-
					benzimidazol-5-yl-carbonsäure-N-(2-
	Me				aminoethyl)-N-(3-trifluomethylbenzyl)-
1	IVIC				, , ,
					amid
401	. —	635	636	318	2-[2-(4-Amidinophenyl)ethyl]-1-[3-
	\				(morpholin-4-yl)-propyl]-benzimidazol-5-
					yl-carbonsäure-N-(2-aminoethyl)-N-(3-
					trifluormethylbenzyl)-amid
402		592	593	297	2-[2-(4-Amidinophenyl)ethyl]-1-
	\smile				(tetrahydrofuran-2-yl-methyl)-
	0				benzimidazol-5-yl-carbonsäure-N-(2-
1					aminoethyl)-N-(3-trifluormethylbenzyl)-
	İ				amid
403	<i>[</i>]	604	605	303	2-[2-(4-Amidinophenyl)ethyl]-1-(2-
,55		557			thiophenyl-methyl)-benzimidazol-5-yl-
	`s'				carbonsäure-N-(2-aminoethyl)-N-(3-
					trifluormethylbenzyl)-amid
404		642	643	322	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-
704		042	043	SZZ	benzodioxol-5-yl-methyl)-benzimidazol-5-
					yl-carbonsäure-N-(2-aminoethyl)-N-(3-
1	~ ~ 0				
			l		trifluomethylbenzyl)-amid

[M+H]; #[M+2H]²⁺

Tabelle 22:

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

-R²: -C(=NH)NH₂; -R³: ____NH₂; -R⁴: _____

peder	iteri.				
Bei- spiel	-R1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
405	n-Decyl-	598	599	300	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(2-fluorbenzyl)-amid
406	OEt	544	545	273	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-fluorbenzyl)-amid
407	N(n-Butyl) ₂	627	628	314	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-fluorbenzyl)-amid
408	H Benzyl	633	634	317	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(2-fluorbenzyl)-amid
409		568	569	285	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(2- fluorbenzyl)-amid
410		512	513	257	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(2- fluorbenzyl)-amid
411		562	563	282	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl- ethyl)-benzimidazol-5-yl-carbonsäure-N- (2-aminoethyl)-N-(2-fluorbenzyl)-amid
412	cı	596	597	299	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-fluorbenzyl)-amid
413	—————Me	562	563	282	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-fluorbenzyl)-amid
414	N _{Me}	569	570	285	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpymolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-fluorbenzyl)-amid
415	Ph N-Benzyl	721	722	361	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-fluorbenzyl)-amid

416	Me Me	674	675	338	2-[2-(4-Amidinophenyl)ethyl]-1-[3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-fluorbenzyl)-amid
417		585	586	293	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-(2-aminoethyl)-N-(2- fluorbenzyl)-amid
418		542	543	272	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(2-fluorbenzyl)-amid
419		554	555	278	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(2- fluorbenzyl)-amid
420		592	593	297	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-fluorbenzyl)-amid

Tabelle 23:

Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

 $-R^2$: $-C(=NH)NH_2$; $-R^3$:

Bei- spiel	_{-R} 1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
421	n-Decyl-	630	631	316	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(2-naphthylmethyl)-amid
422	OEt	576	577	289	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-naphthylmethyl)-amid
423	N(n-Butyl) ₂	659	660	330	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-naphthylmethyl)-amid
424	H N Benzyl O	665	666	333	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(2-naphthylmethyl)-amid
425		600	601	301	2-[2-(4-Amidinophenyl)ethyl]-1-(2-cyclohexylethyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-naphthylmethyl)-amid

				,	· · · · · · · · · · · · · · · · · · ·
426		544	545	273	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(2- naphthylmethyl)-amid
427		594	595	298	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl- ethyl)-benzimidazol-5-yl-carbonsäure-N- (2-aminoethyl)-N-(2-naphthylmethyl)-amid
428	cı	628	629	315	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlomhenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-naphthylmethyl)-amid
429	Me	594	595	298	2-[2-(4-Amidinophenyl)ethyl]-1-(4-methylbenzyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-naphthylmethyl)-amid
430	N _{Me}	601	602	301	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-naphthylmethyl)-amid
431	Ph N-Benzyl	753	-	378	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl-4-phenyl-piperidin-4-yl)-methyl]-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-naphthylmethyl)-amid
432	N N Me	706	707	354	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-naphthylmethyl)-amid
433		617	618	309	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-(2-aminoethyl)-N-(2- naphthylmethyl)-amid
434	√	574	575	288	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-(2- aminoethyl)-N-(2-naphthylmethyl)-amid
435	√s)	586	-	294	2-[2-(4-Amidinophenyl)ethyl]-1-(2- thiophenyl-methyl)-benzimidazol-5-yl- carbonsäure-N-(2-aminoethyl)-N-(2- naphthylmethyl)-amid
436		624	625	313	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-(2-aminoethyl)-N-(2-naphthylmethyl)-amid

<u>Tabelle 24:</u>
Erfindungsgemäße Verbindungen der allgemeinen Formel (I) worin

$$-R^2$$
: $-C(=NH)NH_2$; $-R^3$: $-R^4$: $-R^4$: OME

bedeuten:					
Bei- spiel	-R1	ber. [M]	gef.*	gef.#	Chemische Bezeichnung
437	n-Decyl-	714	715	358	2-[2-(4-Amidinophenyl)ethyl]-1-n-decyl- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-[4- (methoxycarbonyl)-benzyl]-amid
438	OEt	660	661	331	2-[2-(4-Amidinophenyl)ethyl]-1-(3-ethoxy-propyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-[4-(methoxycarbonyl)-benzyl]-amid
439	N(n-Butyl) ₂	743	744	373	2-[2-(4-Amidinophenyl)ethyl]-1-(3-di-n-butylaminopropyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-[4-(methoxycarbonyl)-benzyl]-amid
440	H Benzyl	749	-	1	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (benzylcarbonylamino)-propyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-[4- (methoxycarbonyl)-benzyl]-amid
441		684	_	343	2-[2-(4-Amidinophenyl)ethyl]-1-(2- cyclohexylethyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-[4-(methoxycarbonyl)-benzyl]-amid
442	$\nearrow \bigcirc$	628	629	315	2-[2-(4-Amidinophenyl)ethyl]-1- cyclopropylmethyl-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-[4-(methoxycarbonyl)-benzyl]-amid
443		678	-	340	2-[2-(4-Amidinophenyl)ethyl]-1-(2-phenyl- ethyl)-benzimidazol-5-yl-carbonsäure-N- [4-(amino-methyl)-benzyl]-N-[4- (methoxycarbonyl)-benzyl]-amid
444	cı	712	713	357	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(4-chlorphenyl)ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-[4-(methoxycarbonyl)-benzyl]-amid
445	Me	678	-	340	2-[2-(4-Amidinophenyl)ethyl]-1-(4- methylbenzyl)-benzimidazol-5-yl- carbonsäure-N-[4-(amino-methyl)-benzyl]- N-[4-(methoxycarbonyl)-benzyl]-amid
446	N Me	685	-	343	2-[2-(4-Amidinophenyl)ethyl]-1-[2-(1-methylpyrrolidin-2-yl)-ethyl]-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-[4-(methoxycarbonyl)-benzyl]-amid

447	Ph - N-Benzyl	837	-	-	2-[2-(4-Amidinophenyl)ethyl]-1-[(1-benzyl- 4-phenyl-piperidin-4-yl)-methyl]- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-[4- (methoxycarbonyl)-benzyl]-amid
448	N—N—Me	790	791	396	2-[2-(4-Amidinophenyl)ethyl]-1-{3-[4-(2-methylphenyl)-piperazin-1-yl]-propyl}-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-[4-(methoxycarbonyl)-benzyl]-amid
449		701	702	351	2-[2-(4-Amidinophenyl)ethyl]-1-[3- (morpholin-4-yl)-propyl]-benzimidazol-5- yl-carbonsäure-N-[4-(amino-methyl)- benzyl]-N-[4-(methoxycarbonyl)-benzyl]- amid
450		658	659	330	2-[2-(4-Amidinophenyl)ethyl]-1- (tetrahydrofuran-2-yl-methyl)- benzimidazol-5-yl-carbonsäure-N-[4- (amino-methyl)-benzyl]-N-[4- (methoxycarbonyl)-benzyl]-amid
451	S	670	•	-	2-[2-(4-Amidinophenyl)ethyl]-1-(2-thiophenyl-methyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-[4-(methoxycarbonyl)-benzyl]-amid
452		708	709	347	2-[2-(4-Amidinophenyl)ethyl]-1-(1,3-benzodioxol-5-yl-methyl)-benzimidazol-5-yl-carbonsäure-N-[4-(amino-methyl)-benzyl]-N-[4-(methoxycarbonyl)-benzyl]-amid

[M+H]; #[M+2H]2+

Die vorstehend aufgeführten massenspektroskopischen Daten wurden über MS-ESI (Electrospray Ionisation) bestimmt.

5

Die erfindungsgemäßen Verbindungen zeichnen sich durch ihre Tryptaseinhibierende Wirksamkeit aus. Besagte Fähigkeit, die Tryptase zu inhibieren, wurde
gemäß der nachfolgenden Testbeschreibung untersucht.

Die Bestimmung wird in Tris HCI Puffer (100 mM), der zusätzlich Calcium (5 mM)

und Heparin (100 mg/ml) enthält, bei pH 7.4 durchgeführt. Als Standard wird rh beta
Tryptase eingesetzt, die beispielsweise von Promega käuflich zu erwerben ist. Als
Substrat dient N-p-Tosyl-Gly-Pro-Lys-para-nitroanilin in einer Konzentration von 0.6

mM. Das Substrat wird durch Tryptase verdaut wobei p-Nitroanilin entsteht, das bei
405 nm gemessen werden kann. Üblicherweise wird eine Inkubationszeit von 5

Minuten und eine Inkubationstemperatur von 37°C gewählt. Als Enzymaktivität werden 0.91 U/ml eingesetzt. Die Bestimmung erfolgt in einem Autoanalyser (Cobas Bio) der Firma Hofmann LaRoche. Die potentiellen Hemmsubstanzen werden in Konzentrationen von 10 μM im Screening eingesetzt, wobei die Hemmung der

Tryptase in Prozent angegeben wird. Bei über 70 % Hemmung wird die IC₅₀ bestimmt (Konzentration bei der 50% der Enzymaktivität gehemmt ist). Nach 5-minütiger Vorinkubation der potentiellen Hemmsubstanzen, wird das Substrat zum Starten der Reaktion zugegeben, wobei die Bildung von p-Nitroanilin nach 5

5 Minuten, nach Testung der Linearität, als Maß für die Enzymaktivität genommen wird.

Die nach Durchführung des vorstehend beschriebenen Tests erhaltenen Daten (% Inhibition) sind für die erfindungsgemäßen Verbindungen in Tabelle 25

zusammengefaßt. Die sich für die erfindungsgemäßen Verbindungen ergebenden IC50-Werte sind Tabelle 26 zu entnehmen.

Tabelle 25:

rabelle 25:	
Beispiel	% Inhibition (10µM)
70	63
71	58
72	69
74	66
75	60
76	58
80	53
81	69
82	61
86	72
87	59
88	70
90	67
91	62
93	56
96	55
97	56
98	67
99	58
100	67
103	60
104	74
106	58
107	65
113	56
114	58
118	71
119	57
120	74
121	52
120 121 122 123	57 74 52 70
123	60

	·
Beispiel	% Inhibition (10µM)
124	55
125	63
128	51
129	63
130	77
134	69
135	64
136	74
137	52
138	72
139	76
140	63
144	54
145	73
146	65
147	51
150	60
152	65
154	63
155	57
161	56
162	60
166	57
167	52
168	66
169	52
170	57
173	51
177	68
178	51
182	67
183	56
·	·

Fortsetzung Tabelle 25:

Fonsetzung	i abelle 25:
Beispiel	% Inhibition (10µM)
184	72
186	60
187	63
193	59
194	61
198	63
200	69
202	58
203	53
209	61
210	59
214	54
216	65
219	51
225	58
226	64
230	61
231	54
232	58
233	53
235	52
237	52
241	69
242	63
262	58
266	61
274	57
278	83
279	60
280	59
282	65
283	59

Beispiel	% Inhibition (10µM)
284	55
288	65
290	70
291	75
294	69
295	55
296	51
298	57
304	51
306	62
307	57
310	70
312	55
314	61
322	51
323	59
326	51
330	54
342	75
346	51
352	51
354	58
355	51
358	77
359	59
362	74
369	57
370	53
371	55
374	62
375	58
378	52

Fortsetzung Tabelle 25:

% Inhibition (10µM)
59
55
55
60
52
52
51
54
58
59
64
59
52
53
52
72

Tabelle 26 faßt-die für erfindungsgemäße Verbindungen erhalten IC50 Bindungswerte zusammen. Diese wurden wie vorstehend ausgeführt ermittelt.

Tabelle 26:

Beispiel	ΙC ₅₀ [μ M]
1	0,887
2	0,153
3	0,66
4	0,081
5	0,245
1 2 3 4 5 6	0,571 0,67
7	0,67
8 9	0,201
9	0,14
10	0,316
11 12	0,086
12	0,479
15 16	0,098
16	0,1545
17	0,1069
18	0,312
19	0,032
20	0,31
21 22 . 23	0,051
22	0,056
. 23	0,049
24	0,016
25	0,055
26	0,168
27	0,153
29	0,158
36	0,067
37	0,068
38	0,113
40	0,192
41	0,1725
42	0,836
43	0,836 0,319 0,118
47	0,118
48	0,147
49	0,152

Beispiel	IC ₅₀ [μΜ]
50	0,176
51	0,231
52	0,231
53	0,241
54	0,305
55	0,346
70	0,422
86	0,135
102	0,369
107	0,344
118	0,304
122	0,515
134	0,231
138	0,431
150	0,292
166	0,274
198	0,458
202	0,822
214	0,335
230	0,153
234	0,76
262	0,284
266	0,641
278	0,251
294	0,35
310	0,253
314	0,771
326	0,288
330	0.503
342	0,275
358	0,169
390	0,402
406	0,392
410	0,392 0,626
422	0,364

ī

Die erfindungsgemäßen Tryptase-Inhibitoren können oral, transdermal, inhalativ oder parenteral verabreicht werden. Die erfindungsgemäßen Verbindungen liegen hierbei als aktive Bestandteile in üblichen Darreichungsformen vor, beispielsweise in Zusammensetzungen, die im wesentlichen aus einem inerten pharmazeutischen 5 Träger und einer effektiven Dosis des Wirkstoffs bestehen, wie beispielsweise Tabletten, Dragées, Kapseln, Oblaten, Pulver, Lösungen, Suspensionen. Emulsionen, Sirupe, Suppositorien, transdermale Systeme etc.. Eine wirksame Dosis der erfindungsgemäßen Verbindungen liegt bei einer oralen Anwendung zwischen 1 und 100, vorzugsweise zwischen 1 und 50, besonders bevorzugt zwischen 5-30 10 mg/Dosis, bei intravenöser oder intramuskulärer Anwendung zwischen 0,001 und 50, vorzugsweise zwischen 0,1 und 10 mg/Dosis. Für die Inhalation sind erfindungsgemäß Lösungen geeignet, die 0,01 bis 1,0, vorzugsweise 0,1 bis 0,5 % Wirkstoff enthalten. Für die inhalative Applikation ist die Verwendung von Pulvern bevorzugt. Gleichfalls ist es möglich, die erfindungsgemäßen Verbindungen als 15 Infusionslösung, vorzugsweise in einer physiologischen Kochsalzlösung oder Nährsalzlösung einzusetzen.

Die erfindungsgemäßen Verbindungen können allein oder in Kombination mit anderen erfindungsgemäßen Wirkstoffen, gegebenenfalls auch in Kombination mit weiteren pharmakologisch aktiven Wirkstoffen, zur Anwendung gelangen. Geeignete Anwendungsformen sind beispielsweise Tabletten, Kapseln, Zäpfchen, Lösungen, Säfte, Emulsionen oder dispersible Pulver. Entsprechende Tabletten können beispielsweise durch Mischen des oder der Wirkstoffe mit bekannten Hilfsstoffen, beispielsweise inerten Verdünnungsmitteln, wie Calciumcarbonat, Calciumphosphat oder Milchzucker, Sprengmitteln, wie Maisstärke oder Alginsäure, Bindemitteln, wie Stärke oder Gelatine, Schmiermitteln, wie Magnesiumstearat oder Talk, und/oder Mitteln zur Erzielung des Depoteffektes, wie Carboxymethylcellulose, Celluloseacetatphthalat, oder Polyvinylacetat erhalten werden. Die Tabletten können auch aus mehreren Schichten bestehen.

30

Entsprechend können Dragees durch Überziehen von analog den Tabletten hergestellten Kernen mit üblicherweise in Drageeüberzügen verwendeten Mitteln, beispielsweise Kollidon oder Schellack, Gummi arabicum, Talk, Titandioxid oder Zucker, hergestellt werden. Zur Erzielung eines Depoteffektes oder zur Vermeidung von Inkompatibilitäten kann der Kern auch aus mehreren Schichten bestehen. Desgleichen kann auch die Drageehülle zur Erzielung eines Depoteffektes aus mehreren Schichten bestehen wobei die oben bei den Tabletten erwähnten Hilfsstoffe verwendet werden können.

Säfte der erfindungsgemäßen Wirkstoffe beziehungsweise Wirkstoffkombinationen können zusätzlich noch ein Süßungsmittel, wie Saccharin, Cyclamat, Glycerin oder Zucker sowie ein geschmacksverbesserndes Mittel, z.B. Aromastoffe, wie Vanillin oder Orangenextrakt, enthalten. Sie können außerdem Suspendierhilfsstoffe oder Dickungsmittel, wie Natriumcarboxymethylcellulose, Netzmittel, beispielsweise Kondensationsprodukte von Fettalkoholen mit Ethylenoxid, oder Schutzstoffe, wie p-Hydroxybenzoate, enthalten.

- Injektionslösungen werden in üblicher Weise, z.B. unter Zusatz von Konservierungsmitteln, wie p-Hydroxybenzoaten, oder Stabilisatoren, wie Alkalisalzen der Ethylendiamintetraessigsäure hergestellt und in Injektionsflaschen oder Ampullen abgefüllt.
- Die eine oder mehrere Wirkstoffe beziehungsweise Wirkstoffkombinationen enthaltenden Kapseln können beispielsweise hergestellt werden, indem man die Wirkstoffe mit inerten Trägern, wie Milchzucker oder Sorbit, mischt und in Gelatinekapseln einkapselt.
- 20 Geeignete Zäpfchen lassen sich beispielsweise durch Vermischen mit dafür vorgesehenen Trägermitteln, wie Neutralfetten oder Polyäthylenglykol beziehungsweise dessen Derivaten, herstellen.

Eine therapeutisch wirksame Tagesdosis beträgt zwischen 1 und 800 mg, bevorzugt 10 - 300 mg pro Erwachsener.

Die nachfolgenden Beispiele illustrieren die vorliegende Erfindung ohne sie jedoch in ihrem Umfang zu beschränken:

Pharmazeutische Formulierungsbeispiele

A)	<u>Tabletten</u>	pro Tablette
5	Wirkstoff	100 mg
	Milchzucker	140 mg
	Maisstärke	240 mg
	Polyvinylpyrrolidon	15 mg
	Magnesiumstearat	<u>5 mg</u>
10		500 mg

Der feingemahlene Wirkstoff, Milchzucker und ein Teil der Maisstärke werden miteinander vermischt. Die Mischung wird gesiebt, worauf man sie mit einer Lösung von Polyvinylpyrrolidon in Wasser befeuchtet, knetet, feuchtgranuliert und trocknet.

15 Das Granulat, der Rest der Maisstärke und das Magnesiumstearat werden gesiebt und miteinander vermischt. Das Gemisch wird zu Tabletten geeigneter Form und Größe verpreßt.

B)	<u>Tabletten</u>	<u>pro Tabl</u>	<u>ette</u>
20			
	Wirkstoff	80 mg	
	Maisstärke	190 mg	
	Milchzucker	55 mg	
	Mikrokristalline Cellulose	35 mg	
25	Polyvinylpyrrolidon	15 mg	
	Natrium-carboxymethylstärke	23 mg	
	Magnesiumstearat	2mg	
		400 mg	

- Der feingemahlene Wirkstoff, ein Teil der Maisstärke, Milchzucker, mikrokristalline Cellulose und Polyvinylpyrrolidon werden miteinander vermischt, die Mischung gesiebt und mit dem Rest der Maisstärke und Wasser zu einem Granulat verarbeitet, welches getrocknet und gesiebt wird. Dazu gibt man die Natriumcarboxymethylstärke und das Magnesiumstearat, vermischt und verpreßt das
- 35 Gemisch zu Tabletten geeigneter Größe.

C) (<u>Dragées</u>	pro	<u>Dragée</u>
	Wirkstoff	5	mg
	Maisstärke	41,5	mg
5	Milchzucker	30	mg
	Polyvinylpyrrolidon	3	mg
	Magnesiumstearat	_ 0,5	mg
		80	mg

- Der Wirkstoff, Maisstärke, Milchzucker und Polyvinylpyrrolidon werden gut gemischt und mit Wasser befeuchtet. Die feuchte Masse drückt man durch ein Sieb mit 1 mm-Maschenweite, trocknet bei ca. 45°C und schlägt das Granulat anschließend durch dasselbe Sieb. Nach dem Zumischen von Magnesiumstearat werden auf einer Tablettiermaschine gewölbte Dragéekerne mit einem
- Durchmesser von 6 mm gepreßt. Die so hergestellten Dragéekerne werden auf bekannte Weise mit einer Schicht überzogen, die im wesentlichten aus Zucker und Talkum besteht. Die fertigen Dragées werden mit Wachs poliert.

D)	<u>Kapseln</u>	<u>pro Kapsel</u>
20		
	Wirkstoff	50 mg
	Maisstärke	268,5 mg
	Magnesiumstearat	<u>1,5 mg</u>
		320 mg

Substanz und Maisstärke werden gemischt und mit Wasser befeuchtet. Die feuchte Masse wird gesiebt und getrocknet. Das trockene Granulat wird gesiebt und mit Magensiumstearat gemischt. Die Endmischung wird in Hartgelatinekapseln Größe 1 abgefüllt.

30

E) <u>Ampullenlösung</u>

	Wirkstoff	50	mg
	Natriumchlorid	50	mg
35	Aqua pro inj.	5	ml

Der Wirkstoff wird bei Eigen-pH oder gegebenenfalls bei pH 5,5 bis 6,5 in Wasser gelöst und mit Natriumchlorid als Isotonans versetzt. die erhaltene Lösung wird

pyrogenfrei filtriert und das Filtrat unter aseptischen Bedingungen in Ampullen abgefüllt, die anschließend sterilisiert und zugeschmolzen werden. Die Ampullen enthalten 5 mg, 25 mg und 50 mg Wirkstoff.

5 F) Suppositorien

Wirkstoff	50	mg
Adeps solidus	<u>1650</u>	mg
	1700	mg

10

Das Hartfett wird geschmolzen. Bei 40°C wird die gemahlene Wirksubstanz homogen dispergiert. Es wird auf 38°C abgekühlt und in schwach vorgekühlte Suppositorienformen ausgegossen.

15

Patentansprüche

1) Verwendung von Verbindungen der allgemeinen Formel (I)

$$R^3$$
 R^4
 R^3
 R^2
 R^2
 R^2

zur Herstellung eines Arzneimittels zur Vorbeugung und/oder Behandlung von Krankheiten, in denen Tryptase-Inhibitoren einen therapeutischen Nutzen entfalten können, worin

10 R¹ C₁-C₁₀-Alkyl, welches gegebenenfalls ein-, zwei- oder dreifach durch eine oder mehrere der Gruppen C₁-C₄-Alkoxy, Phenoxy, Hydroxyphenoxy, C1-C₄-Alkoxy-phenoxy, C₃-C₆-Cycloalkyl, -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NH-CO-(C₁-C₄-Alkyl), -CO-NH₂, -CO-NH-(C₁-C₄-Alkyl) oder -NH-CO-Benzyl substituiert sein kann, oder

Phenyl-C₁-C₄-alkyl, wobei der Phenylring gegebenenfalls ein-, zwei-, oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

ein über eine Einfachbindung oder über eine C₁-C₄-Alkylenbrücke verknüpfter 5 oder 6 gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein, zwei oder drei Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthalten kann und der gegebenenfalls ein-, zwei- oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, gegebenenfalls durch
 C₁-C₄-Alkyl substituiertes Phenyl oder gegebenenfalls durch C₁-C₄-Alkyl substituiertes Benzyl substituiert sein kann oder an den über zwei benachbarte Kohlenstoffatome gegebenenfalls ein Benzolring ankondensiert sein kann;

 R^2 -C(=NH)NH₂ oder -CH₂-NH₂;

R³ und R⁴

30

gleich oder verschieden, Wasserstoff, C₁-C₆-Alkyl, welches ein- oder zweifach durch eine oder mehrere der Gruppen COOH, COO-C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₄-Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert sein kann, oder

5

10

Phenyl-C₁-C₄-alkyl, wobei die C₁-C₄-Alkylenbrücke gegebenfalls durch Phenyl, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann und wobei der Phenylring gegebenenfalls ein-, zwei-, oder dreifach, direkt oder über eine C₁-C₄-Alkylenbrücke durch einen oder mehrere der Reste C₁-C₄-Alkyl, C₁-C₄-Alkoxy, CF₃, Fluor, Chlor, Brom, COOH, COO-C₁-C₄-Alkyl, -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₄-Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert sein kann, oder

15

ein direkt oder über eine C₁-C₄-Alkylenbrücke verknüpfter 5-, 6- oder 7gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein, zwei, drei oder
vier Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder
Schwefel enthalten kann und der gegebenenfalls ein-, zwei- oder dreifach
durch einen oder mehrere der Reste C₁-C₄-Alkyl, Phenyl oder Benzyl
substituiert sein kann oder an den über zwei benachbarte Kohlenstoffatome
gegebenenfalls ein Benzolring ankondensiert sein kann, oder

25

30

35

20

C₃-C₈-Cycloalkyl, Naphthyl oder Phenyl, welches gegebenenfalls ein-, zwei-, oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Phenyloxy, Benzyloxy, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

oder

R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen 5-, 6- oder 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus, der ein oder zwei weitere Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthalten kann und der gegebenenfalls durch einen oder mehrere der Reste C₁-C₄-Alkyl, C₅-C₆-Cycloalkyl, Benzyl, das gegebenenfalls durch C₁-C₄-Alkyl substituiert sein kann, Pyridyl oder Phenyl, das gegebenenfalls durch C₁-C₄-Alkyl-, C₁-C₄-Alkoxy- oder Hydroxy substituiert ist, substituiert sein kann,

WO 01/14342 PCT/EP00/08037

121

bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

2) Aminocarbonyl-substituierte Benzimidazolderivate der allgemeinen Formel (I)

$$R^4$$
 N
 R^2
 (I)

worin

C₁-C₁₀-Alkyl, welches gegebenenfalls ein-, zwei- oder dreifach durch eine 5 R¹ oder mehrere der Gruppen C₁-C₄-Alkoxy, Phenoxy-, C₁-C₄-Alkoxy-phenoxy, Hydroxyphenoxy, C₃-C₆-Cycloalkyl, -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NH-CO-(C₁-C₄-Alkyl), -CO-NH₂, -CO-NH-(C₁-C₄-Alkyl) oder -NH-CO-Benzyl substituiert sein kann, oder

10

Phenyl-C₁-C₄-alkyl, wobei der Phenylring gegebenenfalls ein-, zwei-, oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

15

20

ein über eine Einfachbindung oder über eine C₁-C₄-Alkylenbrücke verknüpfter 5 oder 6 gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein, zwei oder drei Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthalten kann und der gegebenenfalls ein-, zwei- oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes Phenyl oder gegebenenfalls durch C₁-C₄-Alkyl substituiertes Benzyl substituiert sein kann oder an den über zwei benachbarte Kohlenstoffatome gegebenenfalls ein Benzolring ankondensiert sein kann;

 R^2 .-C(=NH)NH2 oder -CH2-NH2;

25

R3 C₁-C₆-Alkyl, welches ein- oder zweifach durch eine oder mehrere der Gruppen -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₄-Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH2 substituiert ist, oder

30

Benzyl, wobei der Phenylring ein- oder zweifach, direkt oder über eine C₁-C₄-Alkylenbrücke durch eine oder mehrere der Gruppen -NH₂. -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl,

10

15

20

25

30

35

-N(Benzyl)₂, -NH-CO-(C₁-C₄-Alkyl), -C(=NH)NH₂ oder --NH-C(=NH)NH₂ substituiert ist, oder

Phenyl-C₂-C₄-alkyl, wobei die C₂-C₄-Alkylenbrücke gegebenfalls durch Phenyl, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann und wobei der Phenylring gegebenenfalls ein- oder zweifach, direkt oder über eine C₁-C₄-Alkylenbrücke durch eine oder mehrere der Gruppen -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₄-Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert sein kann, oder

ein über eine C₁-C₄-Alkylenbrücke verknüpfter 5 oder 6 gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein, zwei oder drei Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthalten kann und der gegebenenfalls ein-, zwei- oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, Phenyl oder Benzyl substituiert sein kann;

R⁴ Wasserstoff, C₁-C₆-Alkyl, welches ein- oder zweifach durch eine oder mehrere der Gruppen COOH, COO-C₁-C₄-Alkyl oder C₃-C₆-Cycloalkyl substituiert sein kann, oder

Phenyl-C₁-C₄-alkyl, wobei die C₁-C₄-Alkylenbrücke gegebenfalls durch Phenyl substituiert sein kann und wobei der Phenylring gegebenenfalls ein-, zwei-, oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, C₁-C₄-Alkoxy, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

C₃-C₈-Cycloalkyl, Naphthyl oder Phenyl, welches gegebenenfalls ein-, zwei-, oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Phenyloxy, Benzyloxy, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

ein über eine C₁-C₄-Alkylenbrücke verknüpfter 5-,6- oder 7-gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein Heteroatom ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthält und der gegebenenfalls ein-, zwei- oder dreifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, Phenyl oder Benzyl substituiert sein kann oder an den über zwei

benachbarte Kohlenstoffatome gegebenenfalls ein Benzolring ankondensiert sein kann, oder

- R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen 5-, 6- oder 7-5 gliedrigen, gesättigten oder ungesättigten Heterocyclus, der ein oder zwei weitere Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthält und der gegebenenfalls durch einen oder mehrere der Reste C₁-C₄-Alkyl, Benzyl, das gegebenenfalls durch C₁-C₄-Alkyl-substituiert ist, C5-C6-Cycloalkyl, Pyridyl oder Phenyl, das gegebenenfalls einen Rest 10 ausgewählt aus der Gruppe C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Hydroxy trägt, substituiert sein kann, bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate. ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie 15 gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.
 - 3) Verbindungen der allgemeinen Formel (I) gemäß Anspruch 2, worin
- R^1 unsubstituiertes C₁-C₁₀-Alkyl, oder 20 ein- oder zweifach durch C₁-C₄-Alkoxy, Phenoxy-, C₁-C₄-Alkoxy-phenoxy, Hydroxyphenoxy, C₃-C₆-Cycloalkyl, -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)2, -NH-CO-(C1-C4-Alkyl), -CO-NH2, -CO-NH-(C1-C4-Alkyl) oder -NH-CO-Benzyl substituiertes C₁-C₄-Alkyl, oder
- 25 Phenyl-C₁-C₃-alkyl, wobei der Phenylring gegebenenfalls ein- oder zweifach durch C₁-C₄-Alkyl, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder
- ein über eine C₁-C₃-Alkylenbrücke verknüpfter 5-, 6- oder 7- gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein oder zwei Heteroatome 30 ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthalten kann und der gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl, Methylphenyl- oder Benzyl substituiert sein kann oder an den über zwei benachbarte Kohlenstoffatome gegebenenfalls ein Benzolring ankondensiert sein kann: 35
 - R² -C(=NH)NH2 oder -CH2-NH2;

R³ C₁-C₆-Alkyl, welches ein- oder zweifach durch eine oder mehrere der Gruppen -NH₂, -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyi, -N(Benzyi)2, -NH-CO-(C1-C4-Alkyi), -C(=NH)NH2 oder -NH-C(=NH)NH₂ substituiert ist, oder

5

Benzyl, wobei der Phenylring direkt oder über eine C₁-C₄-Alkylenbrücke durch eine der Gruppen -NH2, -NH(C1-C4-Alkyl), -N(C1-C4-Alkyl)2, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₄-Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH2 substituiert ist, oder

10

Phenyl-C₂-C₄-alkyl, wobei die C₂-C₄-Alkylenbrücke gegebenfalls durch Phenyl, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann und wobei der Phenylring direkt oder über eine C1-C4-Alkylenbrücke durch eine der Gruppen -NH2, -NH(C1-C4-Alkyl), -N(C1-C4-Alkyl)2, -NHPhenyl, -

N(Phenyl)2, 15

> -NHBenzyl, -N(Benzyl)₂ -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert sein kann, oder

20

ein über eine C₁-C₄-Alkylenbrücke verknüpfter 5-, 6- oder 7-gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein oder zwei Heteroatome ausgewählt aus der Gruppe Sauerstoff oder Stickstoff enthalten kann und der gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl oder Benzyl substituiert sein kann;

25 R⁴ Wasserstoff, C₁-C₄-Alkyl, welches durch eine der Gruppen COOH, COO-C₁-C₄-Alkyl oder C₃-C₆-Cycloalkyl substituiert sein kann, oder

30

Phenyl-C₁-C₄-alkyl, wobei die C₁-C₄-Alkylenbrücke gegebenfalls durch Phenyl substituiert sein kann und wobei der Phenylring gegebenenfalls einoder zweifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, C₁-C₄-Alkoxy, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

35

C3-C8-Cycloalkyl, Naphthyl oder Phenyl, welches gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Phenyloxy, Benzyloxy, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

ein über eine C₁-C₄-Alkylenbrücke verknüpfter 5-, 6- oder 7-gliedriger, gesättigter oder ungesättigter Heterocyclus, der ein Heteroatom ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthält und der gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl oder Benzyl substituiert sein kann oder an den über zwei benachbarte Kohlenstoffatome gegebenenfalls ein Benzolring ankondensiert sein kann, oder

10 R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen 6- oder 7gliedrigen, gesättigten oder ungesättigten Heterocyclus, der ein oder zwei
weitere Heteroatome ausgewählt aus der Gruppe Sauerstoff oder Stickstoff
enthält und der gegebenenfalls durch einen oder mehrere der Reste
Methyl, Ethyl, Propyl, Benzyl, Cyclopentyl, Cyclohexyl, Pyridyl oder Phenyl, das
gegebenenfalls einen Rest ausgewählt aus der Gruppe Methyl, Methoxy,
Ethoxy, Propyloxy oder Hydroxy trägt, substituiert sein kann,
bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate,
ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie
gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

20

30

35

5

- 4) Verbindungen der allgemeinen Formel (I) gemäß Anspruch 2 oder 3, worin
- unsubstituiertes C₁-C₁₀-Alkyl, oder durch C₁-C₄-Alkoxy, Phenoxy,

 C₁-C₄-Alkoxy-phenoxy, Hydroxyphenoxy, C₃-C₆-Cycloalkyl, -NH₂,

 -NH(C₁-C₄-Alkyl), -N(C₁-C₄-Alkyl)₂, -NH-CO-(C₁-C₄-Alkyl), -CO-NH₂,

 -CO-NH-(C₁-C₄-Alkyl) oder -NH-CO-Benzyl substituiertes C₁-C₄-Alkyl, oder

Phenyl-C₁-C₃-alkyl, wobei der Phenylring gegebenenfalls ein- oder zweifach durch C₁-C₄-Alkyl, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₄-Alkyl substituiert sein kann, oder

ein über eine C₁-C₃-Alkylenbrücke verknüpfter, gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl, Methylphenyl- oder Benzyl substituierter Heterocyclus, ausgewählt aus der Gruppe Pyrrol, Pyrrolin, Pyrrolidin, Pyridin, Piperidin, Pyrimidin, Piperazin, Morpholin, Thiomorpholin, Imidazol, Imidazolin, Imidazolidin, Pyrazol, Pyrazolin, Pyrazolidin, Triazol, Furan, Tetrahydrofuran, α-Pyran, γ-Pyran,

Dioxolan, Tetrahydropyran, Dioxan, Thiophen, Dihydrothiophen, Thiolan, Dithiolan.

Oxazol, Isoxazol, Thiazol, Isothiazol, Oxadiazol, Benzodioxol, Benzimidazol, Benzthiophen, Benzfuran oder Indol;

5

10

15

20

25

30

 R^2 -C(=NH)NH₂ oder -CH₂-NH₂;

 R^3 C_1 - C_3 -Alkyl, das durch -NH₂, -NH(C_1 - C_3 -Alkyl), -N(C_1 - C_3 -Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C_1 - C_3 -Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert ist, oder

Benzyl, wobei der Phenylring direkt oder über eine Methylenbrücke durch eine der Gruppen -NH₂, -NH(C₁-C₃-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₃-Alkyl), -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert ist, oder

Phenyl-C₂-C₃-alkyl, wobei die C₂-C₃-Alkylenbrücke gegebenfalls durch Phenyl, COOH oder COO-C₁-C₃-Alkyl substituiert sein kann und wobei der Phenylring direkt oder über eine Methylenbrücke durch eine der Gruppen -NH₂, -NH(C₁-C₃-Alkyl), -N(C₁-C₃-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -C(=NH)NH₂ oder -NH-C(=NH)NH₂ substituiert sein kann, oder

ein über eine C₁-C₃-Alkylenbrücke verknüpfter, gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl oder Benzyl substituierter Heterocyclus, ausgewählt aus der Gruppe Pyrrol, Pyrrolin, Pyrrolidin, Pyridin, Piperidin, Pyrimidin, Piperazin, Morpholin, Diazepan, Imidazol, Imidazolin, Imidazolidin, Pyrazol, Pyrazolin, Pyrazolidin, Furan, Tetrahydrofuran, α-Pyran, γ-Pyran, Dioxolan, Tetrahydropyran, Dioxan, Oxazol oder Isoxazol;

- R⁴ Wasserstoff, C₁-C₄-Alkyl, welches durch eine der Gruppen COOH, COO-C₁-C₃-Alkyl oder C₃-C₆-Cycloalkyl substituiert sein kann, oder
- Phenyl-C₁-C₃-alkyl, wobei die C₁-C₃-Alkylenbrücke gegebenfalls durch Phenyl substituiert sein kann und wobei der Phenylring gegebenenfalls durch C₁-C₃-Alkyl, C₁-C₃-Alkoxy, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₃-Alkyl substituiert sein kann, oder

10

15

30

C₃-C₈-Cycloalkyl, Naphthyl oder Phenyl, welches gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste C₁-C₃-Alkyl, C₁-C₃-Alkoxy, Phenyloxy, Benzyloxy, CF₃, Fluor, Chlor, Brom, COOH oder COO-C₁-C₃-Alkyl substituiert sein kann, oder

ein über eine C₁-C₃-Alkylenbrücke verknüpfter, gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl, Methylphenyl- oder Benzyl substituierter Heterocyclus, ausgewählt aus der Gruppe Pyrrol, Pyrrolin, Pyrrolidin, Pyridin, Piperidin, Pyrimidin, Piperazin, Morpholin, Thiomorpholin, Imidazol, Imidazolin, Imidazolidin, Pyrazol, Pyrazolin, Pyrazolidin, Triazol, Furan, Tetrahydrofuran, α-Pyran, γ-Pyran, Dioxolan, Tetrahydropyran, Dioxan, Thiophen, Dihydrothiophen, Thiolan, Dithiolan.

Oxazol, Isoxazol, Thiazol, Isothiazol, Oxadiazol, Benzodioxol, Benzimidazol, Benzthiophen, Benzofuran oder Indol;

oder

20 R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen 6- oder 7gliedrigen, gesättigten Heterocyclus, der ein oder zwei weitere
Stickstoff-Heteroatome enthält und der gegebenenfalls durch einen oder
mehrere der Reste Methyl, Ethyl, Propyl, Benzyl, Cyclopentyl, Cyclohexyl,
Pyridyl oder Phenyl, das gegebenenfalls einen Rest ausgewählt aus der

Gruppe Methyl, Methoxy, Ethoxy, Propyloxy oder Hydroxy trägt, substituiert
sein kann,
bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate,
ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie
gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

5) Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 2-4, worin

R¹ Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl oder Decyl, oder ein Methyl-, Ethyl- oder Propyl-Rest, der durch Methoxy, Ethoxy, Cyclopropyl, Cyclopentyl, Cyclohexyl, Phenyl, Methoxyphenoxy, -NH₂, -NH(C₁-C₄-Alkyl), -

15

20

25

30

35

N(C₁-C₄-Alkyl)₂, -NH-CO-Methyl, -CO-NH₂, -CO-NH-Methyl oder -NH-CO-Benzyl substituiert ist, oder

Benzyl, das ein- oder zweifach durch Methyl, Ethyl, Propyl, CF₃, Fluor, Chlor, Brom, COOH, COOMe oder COOEt substituiert ist, oder

Phenylethyl, daß ein- oder zweifach durch Methyl, Ethyl, Propyl, CF₃, Fluor, Chlor, Brom, COOH, COOMe oder COOEt substituiert ist, oder

ein über eine Methylen-, Ethylen oder Propylenbrücke verknüpfter, gegebenenfalls ein- oder zweifach durch einen oder mehrere der Reste Methyl, Ethyl, Propyl, Phenyl, Methylphenyl- oder Benzyl substituierter Heterocyclus, ausgewählt aus der Gruppe Pyrrol, Pyrrolidin, Pyridin, Piperidin, Piperazin, Morpholin, Furan, Tetrahydrofuran, Thiophen, Benzodioxol oder Benzimidazol;

 R^2 -C(=NH)NH₂ oder -CH₂-NH₂;

ein Methyl-, Ethyl- oder Propyl-Rest, der durch -NH₂, -NH(C₁-C₃-Alkyl), -N(C₁-C₃-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₃-Alkyl), -NH-CO-Benzyl (?) oder -C(=NH)NH₂ substituiert ist, oder

Benzyl, das direkt oder über eine Methylenbrücke durch eine der Gruppen -NH₂, -NH(C₁-C₃-Alkyl), -N(C₁-C₄-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂, -NH-CO-(C₁-C₃-Alkyl) oder -C(=NH)NH₂ substituiert ist, oder

Phenyl-C₂-C₃-alkyl, wobei die C₂-C₃-Alkylenbrücke gegebenfalls durch Phenyl, COOH oder COO-C₁-C₃-Alkyl substituiert sein kann und wobei der Phenylring direkt oder über eine Methylenbrücke durch eine der Gruppen -NH₂, -NH(C₁-C₃-Alkyl), -N(C₁-C₃-Alkyl)₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂ oder -C(=NH)NH₂ substituiert sein kann, oder

ein über eine Methylen-, Ethylen oder Propylenbrücke verknüpfter, gegebenenfalls ein- oder zweifach durch Methyl, Ethyl, Propyl, Phenyl oder Benzyl substituierter Heterocyclus, ausgewählt aus der Gruppe Pyrrol, Pyrrolidin, Pyridin, Piperidin, Piperazin, Morpholin, Diazepan, Furan, Tetrahydrofuran, Thiophen, Benzodioxol oder Benzimidazol;

30

- R⁴ Wassersteff oder ein Methyl-, Ethyl-, Propyl- oder Butyl-Rest, der durch eine der Gruppen COOH, COOMe, COOEt, Cyclopropyl, Cyclopentyl oder Cyclohexyl substituiert sein kann, oder
- Benzyl, das gegebenfalls durch Methyl, Ethyl, Propyl, Methoxy, Ethoxy, CF₃, Fluor, Chlor, Brom, COOH, COOMe oder COOEt substituiert sein kann, oder Phenylethyl, Phenylpropyl, Diphenylpropyl;
- Cyclopropyl, Cyclopentyl, Cyclohexyl, Cyclooctyl, Naphthyl oder
 Phenyl, das gegebenenfalls durch Methyl, Ethyl, Propyl, Methoxy, Ethoxy,
 Phenyloxy, Benzyloxy, CF₃, Fluor, Chlor, Brom, COOH, COOMe oder COOEt substituiert sein kann, oder
- ein über eine Methylen-, Ethylen oder Propylenbrücke verknüpfter,
 gegebenenfalls ein- oder zweifach durch Methyl, Ethyl, Propyl, Phenyl oder
 Benzyl substituierter Heterocyclus, ausgewählt aus der Gruppe Pyrrol,
 Pyrrolidin, Pyridin, Piperidin, Piperazin, Morpholin, Furan, Tetrahydrofuran,
 Thiophen, Chinolin, Isochinolin, Benzodioxol oder Benzimidazol;
 oder
- R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen Piperazin- oder Diazepan-Ring, der gegebenenfalls durch einen der Reste Methyl, Ethyl, Propyl, Cyclopentyl, Cyclohexyl, Pyridyl, Benzyl oder Phenyl, das gegebenenfalls einen Rest ausgewählt aus der Gruppe Methyl, Methoxy Ethoxy, Propyloxy oder Hydroxy trägt, substituiert sein kann, bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.
 - 6) Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 2-5, worin
 - R¹ Methyl, Ethyl, Propyl, Pentyl oder n-Decyl, oder
- ein Methyl-, Ethyl- oder Propyl-Rest, der durch Methoxy, Ethoxy, Cyclopropyl, Cyclopentyl, Cyclohexyl, Phenyl oder Methoxyphenoxy substituiert ist, oder

Benzyl, das ein- oder zweifach durch Methyl, CF₃, COOH, COOMe oder COOEt substituiert ist, oder

ein über eine Methylenbrücke verknüpftes Tetrahydrofuran;

5

15

20

 R^2 -C(=NH)NH₂ oder -CH₂-NH₂;

ist, oder

R³ ein Ethyl- oder Propyl-Rest, der durch -NH₂, -NHMe, -NMe₂, -NHEt, -NEt₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂ oder -C(=NH)NH₂

10 substituiert

Benzyl, das durch eine der Gruppen -NH₂, -CH₂-NH₂, -NMe₂, -NHMe, -NEt₂, -NHEt, -NH-CO-Me, -CH₂-NH-CO-Me oder -C(=NH)NH₂ substituiert ist, oder

Phenylethyl, wobei die Ethylenbrücke gegebenfalls durch COOH, COOMe oder COOEt substituiert sein kann und wobei der Phenylring durch eine der Gruppen -NH₂, -CH₂-NH₂, -NMe₂, -NHMe, -NEt₂, -NHEt, -NH-CO-Me, -CH₂-NH-CO-Me oder -C(=NH)NH₂ substituiert ist, oder

Phenylpropyl, Diphenylpropyl oder Pyridylmethyl;

R⁴ Wasserstoff oder ein Methyl-, Ethyl-, Propyl- oder Butyl-Rest, der durch eine
 der Gruppen COOH, COOMe, COOEt, Cyclopropyl, Cyclopentyl oder
 Cyclohexyl substituiert sein kann, oder

Benzyl, das gegebenfalls durch Methyl, Ethyl, Propyl, Methoxy, Ethoxy, CF₃, Fluor, Chlor, Brom, COOH, COOMe oder COOEt substituiert sein kann, oder Phenyl-ethyl, Phenylpropyl, Diphenylpropyl, oder

Cyclopentyl, Cyclohexyl, Cyclooctyl, Naphthyl oder Phenyl, das gegebenenfalls durch Methyl, Ethyl, Methoxy, Ethoxy, Phenyloxy oder CF₃ substituiert sein kann, oder

35

30

ein über eine Methylenbrücke verknüpftes Pyridin oder Chinolin, oder

R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen Piperazin- oder Diazepan-Ring, der gegebenenfalls durch einen der Reste Cyclopentyl, Cyclohexyl, Pyridyl, Benzyl oder Phenyl, das gegebenenfalls einen der Reste ausgewählt aus der Gruppe Methyl, Methoxy, Ethoxy, Propyloxy oder Hydroxy trägt, substituiert sein kann, bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate.

bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

10

15

5

- 7) Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 2-6, worin
- R¹ Methyl, Ethyl, Propyl, Pentyl, Phenylethyl, Phenylpropyl, Cyclopropylmethyl, Tetrahydrofuranylmethyl oder Benzyl, das ein- oder zweifach durch CF₃, COOH, COOMe oder COOEt substituiert ist;
- R^2 -C(=NH)NH₂ oder -CH₂-NH₂;
- ein Ethyl- oder Propyl-Rest, der durch -NH₂, -NHMe, -NMe₂, -NHEt, -NEt₂, -NHPhenyl, -N(Phenyl)₂, -NHBenzyl, -N(Benzyl)₂ oder -C(=NH)NH₂ substituiert

ist, oder

Benzyl, das durch eine der Gruppen -NH $_2$, -CH $_2$ -NH $_2$, -NMe $_2$, -NHMe, -NEt $_2$, -NHEt, -NH-CO-Me, -CH $_2$ -NH-CO-Me oder -C(=NH)NH $_2$ substituiert ist, oder

Phenylethyl, wobei die Ethylenbrücke durch COOH, COOMe oder COOEt substituiert ist und wobei der Phenylring eine der Gruppen -NH₂, -CH₂-NH₂, -NMe₂, -NHMe, -NEt₂, -NHEt, -NH-CO-Me, -CH₂-NH-CO-Me oder -C(=NH)NH₂ trägt, oder

30

35

25

Phenylpropyl, Diphenylpropyl oder Pyridylmethyl;

R⁴ Wasserstoff oder ein Methyl-, Ethyl-, Propyl- oder Butyl-Rest, der durch eine der Gruppen COOH, COOMe, COOEt oder Cyclohexyl substituiert sein kann, oder

Phenyl, das gegebenenfalls durch Methyl, Ethyl, Methoxy, Ethoxy, Phenyloxy oder CF₃ substituiert sein kann, oder

Benzyl, Phenylethyl, Phenylpropyl, Diphenylpropyl, Cyclohexyl, Cyclooctyl oder Naphthyl, oder

ein über eine Methylenbrücke verknüpftes Pyridin oder Chinolin, oder

R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen Piperazin- oder Diazepan-Ring, der gegebenenfalls durch einen der Reste Cyclopentyl, Cyclohexyl, Pyridyl, Benzyl oder Phenyl, das gegebenenfalls einen Rest ausgewählt aus der Gruppe Methyl, Methoxy, Ethoxy, Propyloxy oder Hydroxy trägt, substituiert sein kann, bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

15

10

5

- 8) Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 2-7, worin
- R¹ Methyl;

20

25

- R^2 -C(=NH)NH₂ oder -CH₂-NH₂;
- R³ Ethyl, das durch -NH₂, -NMe₂, -NHPhenyl, -NHBenzyl, -N(Benzyl)₂, Pyrrolidin, Piperidin, Diazepan oder -C(=NH)NH₂ substituiert ist, Benzyl, das durch eine der Gruppen -CH₂-NH₂, -NMe₂ oder -C(=NH)NH₂ substituiert ist, Phenylethyl, wobei die Ethylenbrücke durch COOH, COOMe oder COOEt substituiert ist und wobei der Phenylring eine der Gruppen -CH₂-NH-CO-Me oder -C(=NH)NH₂ trägt, Diphenylpropyl oder Pyridylmethyl;
- 30 R⁴ Wasserstoff oder ein Methyl- oder Ethyl-Rest, der gegebenfalls durch eine der Gruppen COOH oder COOEt substituiert sein kann, Propyl, Butyl oder Phenyl, das gegebenenfalls durch Methyl, Ethyl, Methoxy, Ethoxy, Phenyloxy oder CF₃ substituiert sein kann, Benzyl, Phenylethyl, Phenylpropyl, Diphenylpropyl, Cyclohexyl, Cyclooctyl, Naphthyl, Pyridylmethyl oder Chinolinylmethyl oder
 - R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen Piperazin- oder Diazepan-Ring, der durch einen der Reste Benzyl, Cyclopentyl, Cyclohexyl

oder Phenyl, das gegebenenfalls einen Rest ausgewählt aus der Gruppe Methyl, Ethoxy, Propyloxy oder Hydroxy trägt, substituiert ist, bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

- 9) Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 2-8, worin
- 10 R¹ Methyl;

5

25

- R^2 -C(=NH)NH₂;
- R³ Ethyl, das durch -NH₂, -NHPhenyl, -NHBenzyl, -N(Benzyl)₂, Pyrrolidin,

 Piperidin, Diazepan oder -C(=NH)NH₂ substituiert ist, Benzyl, das durch
 -C(=NH)NH₂ substituiert ist oder Diphenylpropyl;
- R⁴ Wasserstoff, Methyl, Propyl, Butyl, Benzyl oder Phenyl, das gegebenenfalls durch Ethyl oder Phenyloxy substituiert sein kann, Phenylethyl, Cyclohexyl oder Cyclooctyl, oder
 - R³ und R⁴ bilden gemeinsam mit dem Stickstoffatom einen Piperazin-Ring, der durch einen Rest ausgewählt aus der Gruppe Cyclopentyl, Cyclohexyl, Phenyl, Methylphenyl, Ethoxyphenyl oder Propoxyphenyl substituiert ist, oder einen Diazepan-Ring, der durch Methylphenyl substituiert ist, bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.
- 30 10) Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 2-9, worin
 - R¹ Methyl;
- 35 R^2 -C(=NH)NH₂;

- R³ Ethyl, das-durch -NH₂, -NHBenzyl, -N(Benzyl)₂, Pyrrolidin, Piperidin, Diazepan oder -C(=NH)NH₂ substituiert ist, Benzyl, das durch -C(=NH)NH₂ substituiert ist oder Diphenylpropyl;
- 5 R⁴ Wasserstoff, Methyl, Butyl oder Phenyl, das gegebenenfalls durch Ethyl oder Phenyloxy substituiert sein kann, Phenylethyl, Cyclohexyl oder Cyclooctyl, bedeuten können, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

11) Prodrugs der allgemeinen Formel (II)

worin

10

15

20

25

R¹ und R⁴ die in den Ansprüchen 2-10 genannten Bedeutungen aufweisen können;

die in den Ansprüchen 2-10 genannten Bedeutungen aufweisen kann oder C₁-C₄-Alkyl bedeutet, welches durch einen Rest ausgewählt aus der Gruppe -C(=NOH)NH₂, -C(=NCOO-C₁-C₄-alkyl)NH₂ oder -C(=NCOO-C₁-C₄-alkyl-Phenyl)NH₂ substituiert ist;

R⁵ Hydroxy, -COO-C₁-C₈-Alkyl oder -COO-C₁-C₄-Alkyl-Phenyl, wobei in der vorstehend genannten Gruppe der Phenylring jeweils durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiert sein kann, bedeuten kann, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

- 12) Prodrugs der allgemeinen Formel (II) gemäß Anspruch 11, worin
- 30
 R¹ und R⁴ die in den Ansprüchen 2-10 genannten Bedeutungen aufweisen können;
 - R³ die in den Ansprüchen 2-10 genannten Bedeutungen aufweisen kann

oder C₁-G₄-Alkyl bedeutet, welches durch einen Rest ausgewählt aus der Gruppe -C(=NOH)NH₂, -C(=NCOOMethyl)NH₂, -C(=NCOOEthyl)NH₂, -C(=NCOOPropylyl)NH₂ oder -C(=NCOO-Benzyl)NH₂ substituiert ist;

5 R⁵ Hydroxy, Methoxycarbonyl, Ethoxycarbonyl, Propyloxycarbonyl, Butyloxycarbonyl, Pentyloxycarbonyl, Hexyloxycarbonyl, Benzyloxycarbonyl, bedeuten kann, gegebenenfalls in Form ihrer Tautomeren, ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

10

13) Zwischenprodukte der allgemeinen Formel (III)

$$\mathbb{R}^3$$
 \mathbb{C}^{N}
 \mathbb{C}^{N}
 \mathbb{C}^{N}
 \mathbb{C}^{N}

in der die Reste R¹, R³ und R⁴ die in den Ansprüchen 2-12 genannten 15 Bedeutungen aufweisen können.

- 14) Verwendung von Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 2-10 zur Herstellung eines Arzneimittels zur Vorbeugung und/oder Behandlung von Krankheiten, in denen Tryptase-Inhibitoren einen therapeutischen Nutzen entfalten können.
- 15) Verwendung von Prodrugs der allgemeinen Formel (II) gemäß einem der Ansprüche 11 oder 12 zur Herstellung eines Arzneimittels zur Vorbeugung und/oder Behandlung von Krankheiten, in denen Tryptase-Inhibitoren einen therapeutischen Nutzen entfalten können.
 - 16) Pharmazeutische Zusammensetzung gekennzeichnet durch einen Gehalt einer oder mehrer Verbindungen gemäß einem der Ansprüche 1-12.
- 30 17) Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I)

$$\mathbb{R}^4$$
 \mathbb{N}
 \mathbb{R}^3
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2

worin die Reste R¹, R², R³ und R⁴ die in den Ansprüchen 2-10 genannten Bedeutungen haben können, dadurch gekennzeichnet, daß eine Verbindung der allgemeinen Formel (III)

$$\mathbb{R}^{4}$$
 \mathbb{N}
 \mathbb{C}
 \mathbb{N}
 \mathbb{C}
 \mathbb{N}
 \mathbb{C}
 \mathbb{C}

in der die Reste R¹, R³ und R⁴ die in den Ansprüchen 2-10 genannten Bedeutungen haben können, direkt in die Verbindungen der allgemeinen Formel (I) überführt wird.

10 18) Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I)

$$R^3$$
 R^4
 N
 R^2
 R^2
 R^2
 R^3
 R^2

worin die Reste R¹, R², R³ und R⁴ die in den Ansprüchen 2-10 genannten Bedeutungen haben können, dadurch gekennzeichnet, daß eine Verbindung der allgemeinen Formel (II)

worin die Reste R¹ und R⁴ die in den Ansprüchen 2-10 genannten Bedeutungen aufweisen können und die Reste R³ und R⁵ die in den Ansprüchen 11 und 12 genannten Bedeutungen aufweisen können, in die Verbindungen der allgemeinen Formel (I) überführt wird.

15

5

19) Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (II)

worin die Reste R¹ und R⁴ die in den Ansprüchen 2-10 genannten Bedeutungen aufweisen können und die Reste R³ und R⁵ die in den Ansprüchen 11 und 12 genannten Bedeutungen aufweisen können, dadurch gekennzeichnet, daß eine Verbindung der allgemeinen Formel (III)

$$\mathbb{R}^{4}$$
 \mathbb{N}
 in der die Reste R¹, R³ und R⁴ die in den Ansprüchen 2-10 genannten Bedeutungen haben können, in eine Verbindung der allgemeinen Formel (II) überführt wird.

20) Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I)

$$R^3$$
 R^4
 R^3
 R^2
 R^2
 R^2
 R^3
 R^2

worin die Reste R¹, R², R³ und R⁴ die in den Ansprüchen 2-10 genannten Bedeutungen haben können, dadurch gekennzeichnet, daß die Synthese durch Umsetzung an einem polymeren Träger (Harz) erfolgt und die folgenden Syntheseschritte umfaßt:

- Kupplung eines Diamins an den polymeren Träger,
- Reduktive Aminierung unter Umsetzung mit einem Aldehyd R4-CHO,
- Acylierung mit Fluor- oder Chlornitrobenzoylchlorid,
- Nucleophile Substitution mit einem Amin R¹-NH₂,
- Reduktion,

15

20

25

Oxidative Cyclisierung und

WO 01/14342 PCT/EP00/08037

139

- Abspaltung der Verbindungen der allgemeinen Formel (I) vom polymeren Träger.

5

a classii IPC 7	FICATION OF SUBJECT C07D235/14 C07D409/14		C07D405/1 C07D403/1		C07D405/14
According to	International Patent Class	affication (IPC) or to both	national classification	n and IPC	
	SEARCHED				
Minimum do IPC 7	cumentation searched (cl CO7D	assification system follow	ved by classification	ву тьо ю)	
Documentat	ion searched other than m	inimum documentation to	othe extent that suc	h documents are included in	the fields searched
Electronic de	eta base consulted during	the international search	(name of data base	and, where practical, search	terms used)
EPO-In	ternal, CHEM A	ABS Data			
C. DOCUME	ENTS CONSIDERED TO I	BE RELEVANT			
Category *	Citation of document, wi	th indication, where appr	ropriate, of the relev	ant passages	Relevant to claim No.
A	PHARMA) 27 cited in th claims 1.1	5 A (BOEHRINGE August 1998 (ne application 12,13; example 1,51,52,60-63	(1998-08-27 n es)	1,2,11, 13-19
Furt	her documents are listed in	n the continuation of box	C.	Patent family member	rs are listed in annex.
"A" docume consider to docume which citation "O" docume other to docume later to	ent defining the general statement defining the general statement to be of particular relatement but published or date and which may throw doubt is cited to establish the pun or other special reason (sent referring to an oral diameans ent published prior to the links the priority date claims actual completion of the in	ate of the art which is no levance in or after the international sometimes on priority claim(s) or ublication date of another (as specified) closure, use, exhibition of the mational filing date bend	ot ed יי יר יר יר יר יר יר יר יר יר יר יר יר י	or priority date and not in- cited to understand the pri invention (* document of particular rele- cannot be considered nov- involve an inventive step to document of particular rele- cannot be considered to in- document is combined with	nvolve an inventive step when the th one or more other such docubeing obvious to a person skilled same patent family
1	3 November 200	00		20/11/2000	
Name and	NL - 2280 HV Rijsw	ice, P.B. 5818 Patentlaar ijk 040, Tx. 31 651 epo ni,	12	Authorized officer Hass, C	

information on patent family members

Patent document cited in search report	Publication date	Patent femily member(s)	Publication date
WO 9837075 A	27-08-1998	DE 19706229 A	20-08-1998
	4. 4. 1. 1.	DE 19751939 A	22-07-1999
		AU 6399198 A	09-09-1998
		BG 103655 A	29-02-2000
		CN 1248251 T	22-03-2000
		EP 0966454 A	29-12-1999
		HR 980082 A	31-10-1998
		NO 993945 A	15-10-1999
		PL 335154 A	10-04-2000
		US 6087380 A	11-07-2000

INTERNATIONALER RECHERCHENBERICHT

	THE PER ANNEL PURIOCCECENCY AND CO		
IPK 7	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C07D235/14 C07D401/12 C07D405/	10 CO7D409/10 C	07D405/14
2000	CO7D409/14 CO7D401/10 CO7D403/		
Nach der Int	ternationalen Patentidassifikation (IPK) oder nach der nationalen Klas	sifikation und der IPK	
	RCHIERTE GEBIETE		
	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbol	θ)	
IPK 7	C07D		Ī
Rechembler	te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	veit diese unter die recherchierten Ge	eblete fallen
1,001,0101,01	to about their zam minosoproson generalization		
Während de	er internationalen Recherche konsultierte elektronische Datenbank (Na	ame der Datenbank und evtl. verwen	ndete Suchbegriffe)
FPO-In	ternal, CHEM ABS Data		
[CI O III	ternar, onen Abo bata		
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	der in Betracht kommenden Teile	Betr. Anspruch Nr.
Ratogorio	Dezectificing Con vocational and g, control of the		
	A CONTRACTOR THE THE THE THE THE THE THE THE THE THE	7.14	1 0 11
Α	WO 98 37075 A (BOEHRINGER INGELHE		1,2,11,
	PHARMA) 27. August 1998 (1998-08-	2/)	13-19
	in der Anmeldung erwähnt		
	Ansprüche 1,12,13; Beispiele	77 122	
	36,37,40,41,51,52,60-63,66,71,72,	77,133	
			[
i			
1			
			ŀ
ļ			
ļ			
			·
	tere Veröffentlichungen sind der Fortsetzung von Feld C zu lehmen	X Siehe Anhang Patentfamille	
* Besonder	e Kategorien von angegebenen Veröffentlichungen :	T' Spätere Veröffentlichung, die nac	h dem Internationalen Anmeldedatum
'A' Veröffe	ntlichung, die den allgemeinen Stand, der Technik definiert,	oder dem Prioritätsdatum veröffe Anmektung nicht kollidiert, sonde	ern nur zum Verständnis des der
	licht als besondere bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen	Erfindung zugrundellegenden Pr Theorie angegeben ist	fnzips oder der ihr zugrundellegenden
Anme	Idedatum veröffentlicht worden ist	'X" Veröffentlichung von besonderer	Bedeutung; die beanspruchte Erfindung
1 echeir	ntlichung, die geelgnet ist, einen Prioritätaanspruch zweifelhaft er- nen zu lassen, oder durch die das Veröffentlichungsdatum einer	erfinderlacher Tätligkeit beruhend	iffentlichung nicht als neu oder auf d betrachtet werden
ander	en im Recherchenbericht genannten Veröffentlichung belegt werden -	Y' Veröffentlichung von besonderer	Bedeutung: die beanspruchte Erfindung
ausge		kann nicht als auf erfinderischer werden, wenn die Veröffentlichu	ng mit einer oder mehreren anderen
O Veröfte	entlichung, die sich auf eine mündliche Offenbarung, Benutzung, eine Ausstellung oder andere Maßnahmen bezieht	Veröffentlichungen dieser Kateg diese Verbindung für einen Fach	orle in Verbindung gebracht wird und
'P' Veriffe	ontichung, die vor dem Internationalen. Anmeldedatum, aber nach	"&" Veröffentlichung, die Mitglied den	
	seanspruchten Prioritätsdatum veröffentlicht worden ist Abschlusses der Internationalen Recherche	Absendedatum des International	len Recherchenberichts
Datum des	ADSCRIGGES DOLLING MANAGEMENT CONTROL		
۱,	3. November 2000	20/11/2000	
		20, 22, 2000	
Name und	Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter	
1	Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Hass, C	

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9837075 A	27-08-1998	DE 19706229 A	20-08-1998
		DE 19751939 A	22-07-1999
		AU 6399198 A	09-09-1998
		BG 103655 A	29-02-2000
		CN 1248251 T	22-03-2000
		EP 0966454 A	29-12-1999
		HR 980082 A	31-10-1998
		NO 993945 A	15-10-1999
		PL 335154 A	10-04-2000
		US 6087380 A	11-07-2000