1 Linear Models

1.6 Types of errors

Errors come from: impercise data, mistakes in the model, computational percision,.. We know two types of errors:

• **Absolute** error = approximate value - correct value

$$\Delta x = \overline{x} - x$$

• Relative error = $\frac{\text{absolute err}}{\text{correct value}}$

$$\delta x = \frac{\Delta x}{x}$$

1.2 Mathematical model is **linear**, when the function F is a linear function of the parameters:

$$F(x, a_1, \dots, a_p) = a_1 \phi_1(x) + \dots + a_p \phi_p(x)$$

where ϕ_1, \ldots, ϕ_p are functions of a specific type

1.3 Least squares method Given points

$$\{(x_1, y_1), \dots, (x_m, y_m)\}, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$$

the task is to find a function $F(x, a_1, ..., a_p)$ that is good fit for the data. The values of the parameters $a_1, ..., a_p$ should be chosen so that the equations

$$y_i = F(x, a_1, \dots, a_p), i = 1, \dots, m$$

are satisified or, it this is not possible, that the error is as small as possible.

We use **Least squares method** to determine that the sum od squared errors is as small as possible.

$$\sum_{i=1}^{m} (F(x_i, a_1, \dots, a_p) - y_i)^2$$

1.4 Systems of linear equations

A system of linear equations in the matrix form is given by $A\vec{x} = \vec{b}$, where:

- A is the matrix of coefficients of order $m \times n$ where m is the number of equations and n is the number of unknowns,
- \vec{x} is the vector of unknowns and
- \vec{b} is the right side vector

$$\begin{bmatrix} \phi_1(x_1) & \phi_2(x_1) & \dots & \phi_p(x_1) \\ \phi_1(x_2) & \phi_2(x_2) & \dots & \phi_p(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(x_n) & \phi_2(x_n) & \dots & \phi_p(x_n) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix}$$

1.5 Existance of solutions in linear equations

Let $A = [\vec{a_1}, \dots, \vec{a_n}]$, where $\vec{a_i}$ are vector representing the columns of A. For any vector

$$\vec{x} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix}$$
 the product $A\vec{x}$ is a linear com-

bination $A\vec{x} = \sum_i x_i a_i$. The system is **solvable** iff the vector \vec{b} can be expressed as a linear combination of the columns of A, that

is it is in the column space of $A, \vec{b} \in C(A)$. By adding to the columns of A we obtain the extended matrix of the system:

$$[A|\vec{b}] = [\vec{a_1}, \dots, \vec{a_n}|b]$$

The system $A\vec{x} = \vec{b}$ is solvable iff the rank of A equals the rank of the extended matrix $[A|\vec{b}]$, i.e.:

$$\operatorname{rank} A = \operatorname{rank} [A|\vec{b}] =: r$$

The solution is unique if the rank of the two matrices equals num of unknowns (r = n).

1.6 Properties of squared matrices Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. The following conditions are equivalent and characterize when a matrix A is **invertible** or **nonsingular**:

- The matrix A has an inverse
- $\operatorname{rank} A = n$
- $det(A) \neq 0$
- The null space $N(A) = {\vec{x} : A\vec{x} = 0 \text{ is trivial}}$
- All eigenvalues of A are nonzero
- For each \vec{b} the system of equations $A\vec{x} = \vec{b}$ has perciesly one solution

1.7 Generalized inverse of a matrix $A \in \mathbb{R}^{n \times m}$ is a matrix $G \in \mathbb{R}^{m \times n}$ such that

$$AGA = A$$