Oppgaver for kapittel 0

0.1.1

- a) Skriv opp de tre første partallene. Lag en rekursiv og en eksplisitt formel for det i-te partallet.
- **b)** Skriv opp de tre første oddetallene. Lag en eksplisitt formel for det *i*-te oddetallet.

0.1.2

Finn det eksplisitte uttrykket til den aritmetiske følgen når du vet at

- a) $a_1 = 3 \text{ og } a_4 = 30$
- **b)** $a_1 = 5 \text{ og } a_{11} = -25$
- c) $a_3 = 14 \text{ og } a_5 = 26$

0.1.3

Finn det eksplisitte uttrykket til den geometriske følgen når du vet at

- a) $a_1 = \frac{1}{2} \text{ og } a_2 = \frac{1}{6}$
- **b)** $a_1 = 5 \text{ og } a_4 = 40$

0.2.1

a) Bruk figuren under til å forklare at summen S_n av de n første naturlige tallene er gitt ved

$$S_n = \frac{n(n+1)}{2}$$

b) Skriv opp summen av det første, de to første og de tre første oddetallene. Bruk en lignende figur som i oppgave a) til å vise at summen S_n av de n første oddetallene er

$$S_n = n^2$$

0.2.2

Finn S_{10} for rekkene:

a)
$$7 + 13 + 19 + 25 + \dots$$
 b) $1 + 9 + 17 + 25 + \dots$

0.2.3

Gitt rekken

$$8 + 11 + 14 + \dots$$

For hvilken n er summen av rekken lik 435?

0.2.4

Bruk summen av en aritmetisk rekke til å vise at ligningen gitt i Eksempel 3 på s. ?? er sann.

0.2.5

Gitt rekken

$$3 + 12 + 48 + \ldots + 768$$

Finn summen av rekken.

0.2.6

En geometrisk rekke har $a_1 = 2$ og k = 3.

a) Vis at summen S_n kan skrives som:

$$S_n = 3^n - 1$$

- b) Regn ut summen for de tre første leddene.
- c) For hvilken n er $S_n = 728$?

0.2.7

Du ønsker å spare penger i en bank som gir 2% månedlig rente. Du sparer ved å foreta et innskudd den 1. i hver måned, og du starter 01.01.2017.

- a) Skriv rekken som viser hvor mye penger du har i banken 01.05.2017. Innskuddet 01.05 skal tas med.
- **b)** Sett opp et uttrykk P(n) som viser hvor mye penger du har i banken n måneder etter 01.01.2017, medregnet innskuddet samme måned.

0.2.8

Gitt den uendelige rekken

$$4+1+\frac{1}{4}+\dots$$

- a) Forklar hvorfor rekken er konvergent.
- b) Finn summen av den uendelige rekken.

0.2.9

- a) Skriv det uendelige desimaltallet 0.999... som en uendelig geometrisk rekke.
- b) Forklar hvorfor rekken er konvergent og bruk dette faktumet til å finne summen av rekken.

0.2.10

Gitt den uendelige rekken

$$\frac{1}{3} + \frac{1}{3}(x-2) + \frac{1}{3}(x-2)^2 + \dots$$

- a) For hvilke x er rekken konvergent?
- **b)** For hvilken x er $S_n = \frac{2}{9}$?
- c) For hvilken x er $S_n = \frac{1}{6}$?

0.3.1

Vis ved induksjon at for alle $n \in \mathbb{N}$ er

a)
$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$

b)
$$1 + 2 + 2^2 + \ldots + 2^{n-1} = 2^n - 1$$

c)
$$4 + 4^2 + 4^3 + \ldots + 4^n = \frac{4}{3}(4^n - 1)$$

d)
$$1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(2n+1)(n+1)}{6}$$

0.3.2

Vis ved induksjon at $n(n^2 + 2)$ er delelig med 3 for alle $n \in \mathbb{N}$.

0.3.3

a) Vis ved induksjon at:

$$\frac{1\cdot 2}{1}\cdot \frac{1\cdot 2\cdot 3\cdot 4}{1\cdot 2\cdot 3}\cdot \dots \cdot \frac{(2n)!}{(2n-1)!} = 2^n n!$$

Hint:
$$(2(k+1))! = (2k+1)!(2k+2)$$
.

b) Hvordan kan venstresiden i a) skrives enklere? Utfør induksjonsbeviset på nytt etter forenklingen.

Gruble 0

Målet med denne oppgaven er å, uten bruk av induksjon, vise at summen av n kvadrater er gitt ved følgende formel:

$$\sum_{i=1}^{n} i^2 = \frac{n(2n+1)(n+1)}{6} \tag{I}$$

a) Forklar hvorfor vi kan skrive

$$1^2 + 2^2 + 3^2 + \dots = 1 + (1+3) + (1+3+5) + \dots$$

Hint: se opg. 0.2.1 b).

b) Ut ifra det du fant i a), forklar at

$$\sum_{i=1}^{n} i^{2} = n + \sum_{i=1}^{n} (n-i)(2i+1)$$

c) Skriv ut alle kjente summer fra b) og løs ligningen med hensyn på $\sum_{i=1}^{n} i^2$, du skal da komme fram til (I).