Distributed File Systems & Emerging Storage Technologies

PRESENT BY: BOM BAHADUR BK

LEVEL: MASTER

NEPAL COLLEGE OF INFORMATION TECHNOLOGY (NCIT)

BALKUMARI, LALITPUR

Introduction

• What is a Distributed File System?

- A file system that allows storing and accessing files across multiple servers.
- Designed for scalability, fault tolerance, and high availability.

Emerging Storage Technologies:

 Innovations like DNA, holographic, and quantum storage aim to revolutionize data storage for the future.

Hadoop Distributed File System (HDFS)

Overview:

- Designed for big data processing using Hadoop.
- Stores large files across multiple machines.

• Key Features:

- Fault tolerance (replication of data blocks).
- Scalability (handles petabytes of data).
- High throughput for large datasets.

Use Cases:

 Big data analytics, log processing, and data warehousing.

Ceph

Overview:

- A unified distributed storage system providing object, block, and file storage.
- Open-source and highly scalable.

Key Features:

- Decentralized architecture (no single point of failure).
- Self-healing and self-managing.
- Supports petabytes of data.

Use Cases:

Cloud storage, virtualization, and backup systems.

Google File System (GFS)

Overview:

- Proprietary distributed file system developed by Google.
- Designed for large-scale data processing.

• Key Features:

- Master-slave architecture.
- High fault tolerance through replication.
- Optimized for large files and sequential reads/writes.

Use Cases:

 Google Search, YouTube, and other Google services.

Comparison of HDFS, Ceph, and GFS

Feature	HDFS	Ceph	GFS
Architecture	Master-Slave	Decentralized	Master-Slave
Scalability	High	Very High	Very High
Fault Tolerance	Replication	Self-Healing	Replication
Use Case	Big Data Analytics	Cloud Storage	Google Services

DNA Storage

Overview:

- Uses synthetic DNA molecules to store digital data.
- Extremely high density and longevity (thousands of years).

Key Features:

- 1 gram of DNA can store ~215 petabytes of data.
- Energy-efficient and compact.

Challenges:

High cost and slow read/write speeds.

Use Cases:

Long-term archival storage, scientific research.

Holographic Storage

Overview:

 Uses lasers to store data in 3D holograms within a photosensitive medium.

Key Features:

- High storage density and fast data access.
- Potential for terabytes of data in a single disc.

Challenges:

Expensive and complex technology.

Use Cases:

 Data archiving, medical imaging, and multimedia storage.

Quantum Storage

Overview:

- Uses quantum mechanics principles to store and process data.
- Quantum bits (qubits) enable superposition and entanglement.

• Key Features:

- Potential for exponentially higher storage capacity.
- Enables quantum computing and secure data transmission.

Challenges:

 Requires extremely low temperatures and is still in experimental stages.

Use Cases:

Quantum computing, cryptography, and advanced research.

Comparison of Emerging Storage Technologies

Feature	DNA Storage	Holographic Storage	Quantum Storage
Capacity	Extremely High	High	Exponentially High
Speed	Slow	Fast	Ultra-Fast (theoretical)
Cost	High	High	Very High
Maturity	Experimental	Developing	Experimental

Thank You So Much! Have a great time...