Data Mining and Machine Learning

TESLA

Inessa Khaneeva, Jakob Kampik, Mariem Guebibia

Intro explanation approach

Task

"Predict which tweets are about a real disaster and which are not".

Our approach:

- First EDA.
- Then, work on iterations to improve accuracy.

EDA 1

Training data

- 6471 observations
- 5 features
- "Id", "keyword", "location", "text", "target"
- Types: Int 64, object

Base rate: 0.5719

→ not hard to find but hard to tell apart

EDA 2

Most common keywords

Most common locations

1st Iteration Data Cleaning

1st Iteration Prediction

2nd Iteration more Data Cleaning

HTML Chunks https*\S+ @\S #\S+ \'\w+ $\w^*\d+\w^*$ **\s{2,}**

2nd Iteration Prediction

Our Highest Accuracy 🎉

Score: 0.811

Classifier: Logistic regression without cross-validation

Determinants:

- Simple cleaning
- Simple classifier

3rd Iteration: Improving classifiers

Goal:

- Improve accuracy further

Considerations:

- More sophisticated classifiers
- Dimensionality reduction

3rd iteration: More classifiers

Goal:

- Improve accuracy further

Considerations:

- Less sophisticated classifiers
- Better generalization

Conclusion

Reflection:

More sophisticated classifiers did not improve the code.

Logistic regression without Cross validation delivered the highest accuracy.

Table of Images

Duplicate Tweets: https://www.datanovia.com/en/lessons/identify-and-remove-duplicate-data-in-r/

Lemmatization: https://medium.com/swlh/introduction-to-stemming-vs-lemmatization-nlp-8c69eb43ecfe

Logistic Regression: https://www.youtube.com/watch?v=yIYKR4sgzl8

Cross Validation: https://medium.com/@rj322198/cross-validation-in-machine-learning-c677653ea475

Random Forest: https://levelup.gitconnected.com/random-forest-regression-209c0f354c84

TD-IDF: Lecture Slides by Prof. Vlachos

Grid Search:

https://medium.com/@cjl2fv/an-intro-to-hyper-parameter-optimization-using-grid-search-and-random-search-d73b9834ca0a

PCA: https://medium.com/analytics-vidhya/a-deep-dive-into-principal-component-analysis-pca-4e8a6d5a6386

kNN: https://www.kdnuggets.com/2020/11/most-popular-distance-metrics-knn.html

Decision trees: https://www.kdnuggets.com/2020/04/visualizing-decision-trees-python.html