

Predavanje 8

Profesor
Branko Jeren

2006/2007

Model s varijablama stanja

Impulsni odziv linearnih sustava

kraj

Signali i sustavi

Profesor Branko Jeren

14. ožujka 2007.

Predavanje 8 Profesor Branko Jeren

Model s varijablama stanja

Diskretni sustavi—model s varijablama stanja

sustavi—model varijablama stanja Odziv linearnog diskretnog sustava – mode s varijablama

stanja Odziv linearnog kontinuiranog sustava–model varijablama

Impulsni odzi linearnih sustava

Automati s beskonačnim brojem stanja

- nastavljamo razmatranje automata čiji su ulazni i izlazni alfabet te vrijednosti stanja, numerički znakovi, dakle brojevi, pa ih stoga nazivamo automati s beskonačnim brojem stanja
- neka je korak n, u kojem razmatramo sustav, definiran kao trenutak vremena nT, gdje je T razmak između koraka
- vremenski diskretne sustave, s više ulaza i više izlaza, definiramo kao automate s beskonačnim brojem stanja

Slika 1: Sustav kao automat s M ulaza i N izlaza

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model s varijablama stanja

Kontinuirani sustavi—model varijablama

Odziv linearnog diskretnog sustava – mode s varijablama

stanja Odziv linearnog kontinuiranog sustava-model varijablama stanja

Impulsni odziv linearnih sustava

Diskretni sustav kao beskonačni automat

 vremenski diskretan sustav definiramo kao automat, dakle, s petorkom

S = (Stanja, Ulazi, Izlazi, PrijelaznaFunkcija, pocetnoStanje)

za koji neka su:

Stanja = Realni^N Ulazi = Realni^M Izlazni = Realni^K

iziaziii = Keaiiii

pocetnoStanje ∈ Realni^N

 $FunkcijaPrijelaza: Realni^N \times Realni^M \rightarrow Realni^N \times Realni^K$

 za ulaznu M-torku i N-torku koja predstavlja trenutno stanje FunkcijaPrijelaza definira N-torku koja predstavlja naredno stanje, te K-torku koja predstavlja trenutni izlaz

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model s varijablama stanja

Kontinuirani sustavi—model s varijablama

Odziv linearnog diskretnog sustava – model s varijablama

Odziv linearnog kontinuiranog sustava–model s varijablama

Impulsni odziv linearnih sustava Diskretni sustav opisan s varijablama stanja

• FunkcijaPrijelaza se razlaže na funkciju

 $narednoStanje: Realni^N \times Realni^M \rightarrow Realni^N$

 $izlaz: Realni^N \times Realni^M \rightarrow Realni^K$

tako da vrijedi

 $\forall x \in Realni^N, \quad \forall u \in Realni^M,$ FunkcijaPrijelaza(x, u) = (narednoStanje(x, u), izlaz(x, u))

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model s varijablama stanja

sustavi—model varijablama stanja Odziv linearnog diskretnog sustava – mode s varijablama stanja

stanja Odziv linearnog kontinuiranog sustava–model varijablama stanja

Impulsni odziv linearnih sustava

Jednadžbe stanja diskretnog sustava

- funkcije narednoStanje i izlaz omogućavaju izračunavanje narednog stanja i trenutnog izlaza na temelju poznavanja trenutnog stanja i ulaza
- to znači da je za ulazni niz $u(0), u(1), \ldots M$ -torki iz $Realni^M$ moguće izračunati odziv stanja $x(1), x(2), \ldots$ N-torki iz $Realni^N$, kao i odziv sustava $y(0), y(1), \ldots$ K-torki iz $Realni^K$
- dakle

 $\forall n \in Cjelobrojni, n \geq 0,$ x(0) = pocetnoStanje x(n+1) = narednoStanje(x(n), u(n)), jednadžba stanja y(n) = izlaz(x(n), u(n)), izlazna jednadžba

 sustav je potpuno opisan s jednadžbom stanja i izlaznom jednadžbm i ovaj model sustava zovemo model s varijablama stanja

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model s varijablama stanja

Kontinuirani sustavi—model s varijablama

Odziv linearnog diskretnog sustava – model s varijablama

Odziv linearnog kontinuiranog sustava-model varijablama

Impulsni odziv Iinearnih sustava

Model s varijablama stanja

- funkcije *narednoStanje* i *izlaz* određuju je li sustav
 - linearan i vremenski stalan
 - linearan i vremenski promjenljiv
 - nelinearan i vremenski stalan
 - nelinearan i vremenski promjenljiv
- u nastavku analiziramo linearne vremenski stalne sustave

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model s varijablama stanja

Kontinuirani sustavi—model varijablama stanja

Odziv linearnog diskretnog sustava – mode s varijablama stanja

Odziv linearnog kontinuiranog sustava–model : varijablama stania

Impulsni odziv linearnih sustava

Model s varijablama stanja—linearni vremenski stalni sustav 1

- za sustav kažemo da je linearan ako su njegove funkcije narednoStanje i izlaz linearne funkcije i ako je početno stanje x(0)=0 (N-torka čiji su svi emlementi jednaki nula)
- razmotrimo ponovo jednadžbu stanja za sustav sM ulaza i K izlaza i dimenzije N

$$\forall n \in Cjelobrojni_+$$

 $x(n+1) = narednoStanje(x(n), u(n))$

 za linearnu funkciju narednoStanje ovu jednadžbu možemo raspisati kao

Profesor Branko Jeren

Diskretni sustavi-model s variiablama

stanja

diskretnog s variiablama

Model s varijablama stanja—linearni vremenski stalni sustav 2

prethodne jednadžbe pišemo sažetije, u matričnom zapisu,

$$\begin{bmatrix} x_{1}(n+1) \\ x_{2}(n+1) \\ \vdots \\ x_{N}(n+1) \end{bmatrix} = \begin{bmatrix} \alpha_{1,1} & \alpha_{1,2} & \dots & \alpha_{1,N} \\ \alpha_{2,1} & \alpha_{2,2} & \dots & \alpha_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{N,1} & \alpha_{N,2} & \dots & \alpha_{N,N} \end{bmatrix} \begin{bmatrix} x_{1}(n) \\ x_{2}(n) \\ \vdots \\ x_{N}(n) \end{bmatrix} - \begin{bmatrix} \alpha_{1,N+1} & \dots & \alpha_{1,N+M} \\ \alpha_{2,N+1} & \dots & \alpha_{2,N+M} \\ \alpha_{2,N+1} & \dots & \alpha_{2,N+M} \end{bmatrix} \begin{bmatrix} u_{1}(n) \end{bmatrix}$$

$$+ \begin{bmatrix} \alpha_{1,N+1} & \dots & \alpha_{1,N+M} \\ \alpha_{2,N+1} & \dots & \alpha_{2,N+M} \\ \vdots & \ddots & \vdots \\ \alpha_{N,N+1} & \dots & \alpha_{N,N+M} \end{bmatrix} \begin{bmatrix} u_1(n) \\ \vdots \\ u_M(n) \end{bmatrix}$$

odnosno

$$x(n+1) = Ax(n) + Bu(n)$$

sustavi školska godina 2006/2007 Predavanje 8

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model s varijablama stanja

Kontinuirani sustavi—model varijablama stanja

Odziv linearnog diskretnog sustava – mod s varijablama

Odziv linearnog kontinuiranog sustava–model varijablama stanja

Impulsni odziv linearnih sustava

st

Model s varijablama stanja—linearni vremenski stalni sustav 3

 za linearnu funkciju narednoStanje jednadžba stanja se može pisati kao

$$x(n+1) = narednoStanje(x(n), u(n)) = Ax(n) + Bu(n)$$
gdje su

$$x(n+1)$$
, vektor narednog stanja dimenzije $N \times 1$
 $x(n)$, vektor trenutnog stanja dimenzije $N \times 1$
 $u(n)$, vektor ulaza dimenzije $M \times 1$
 $A = [a_{i,j}]$, matrica dimenzije $N \times N$
 $B = [b_{i,j}]$, matrica dimenzije $N \times M$

• na isti način, za linearnu funkciju *izlaz*, možemo pisati

$$y(n) = izlaz(x(n), u(n)) = Cx(n) + Du(n)$$

$$uz$$
 $C = [c_{i,j}],$ matrica dimenzije $K \times N$
 $D = [d_{i,j}],$ matrica dimenzije $K \times M$

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model s varijablama

varijablama stanja Kontinuirani sustavi—model

stanja Odziv linearnog diskretnog sustava – model s varijablama stanja

Odziv linearnog kontinuiranog sustava-model : varijablama stanja

Impulsni odziv Iinearnih sustava

Linearni vremenski diskretni sustavi-[A,B,C,D] prikaz

 model s varijablama stanja diskretnog vremenski stalnog linearnog sustava je

 $Stanja = Realni^N, Ulazi = Realni^M, Izlazi = Realni^K,$ $\forall n \in Cjelobrojni_+$

$$x(n+1) = Ax(n) + Bu(n)$$

$$y(n) = Cx(n) + Du(n)$$

 odziv stanja, odziv sustava i ulazni signal su vektori dimenzije N odnosno dimenzije K i dimenzije M a suglasno tome su matrice A, B, C, D odgovarajućih dimenzija

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model s varijablama stanja

Kontinuirani sustavi—model s varijablama stanja

Odziv linearnog diskretnog sustava – mode s varijablama stania

Odziv linearnog kontinuiranog sustava–model s varijablama stanja

Impulsni odzi linearnih sustava

Linearni vremenski diskretni sustavi-[A,B,C,D] prikaz

 model s varijablama stanja diskretnog vremenski stalnog linearnog sustava je

 $Stanja = Realni^N$, $Ulazi = Realni^M$, $Izlazi = Realni^K$, $\forall n \in Cjelobrojni_+$

$$x(n+1) = Ax(n) + Bu(n)$$

$$y(n) = Cx(n) + Du(n)$$

- matrice A, B, C, D možemo označiti kao¹
 - A matrica sustava (matrica dinamike sustava)
 - B ulazna matrica
 - C izlazna matrica
 - D ulazno-izlazna matrica
- u slučaju vremenski promjenljivih sustava matrice
 A, B, C, D sadrže elemente koji su vremenske funkcije

 $^{^1}$ najčešće u literaturi ali ima i drugih imena $\square imes imes \square imes o o ar{z} imes o ar{z}$

2006/2007 Predavanje 8

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model s varijablama

varijablama stanja Kontinuirani

stanja
Odziv linearnog
diskretnog

sustava – mode s varijablama stanja

Odziv linearnoj kontinuiranog sustava-model varijablama stanja

Impulsni odziv linearnih sustava [A,B,C,D] prikaz linearnih vremenski diskretnih sustava – primjer

- u drugom predavanju dan je primjer diskretnog sustava koji modelira izračun potrebnog broja knjiga u sveučilišnoj skriptarnici
- sustav je bio matematički modeliran jednadžbom diferencija

$$y(n) + 0.2y(n-1) + 0.04y(n-2) = u(n)$$

Slika 2: Blok dijagram vremenski diskretnog sustava – primjer

sustavi školska godina 2006/2007 Predavanie 8

Profesor Branko Jeren

Model s varijablama stanja

Diskretni sustavi—model s varijablama

stanja Kontinuirani sustavi—model

stanja Odziv linearnog diskretnog sustava – mode s varijablama

Odziv linearnog kontinuiranog sustava–model varijablama

Impulsni odziv linearnih sustava

- s y(n) je označen broj knjiga koje treba naručiti, y(n-1) i y(n-2) je broj knjiga naručen prije godinu, odnosno dvije godine dana, a u(n) je broj upisanih studenata
- opravdano je za varijable stanja izabrati $x_1(n) = y(n-2)$ i $x_2(n) = y(n-1)$

Slika 3: Izbor varijabli stanja – primjer

Profesor Branko Jeren

Model s varijablama stanja

Diskretni sustavi—model s varijablama stanja

Kontinuirani sustavi—model varijablama

Odziv linearnog diskretnog sustava – mode s varijablama

Odziv linearnog kontinuiranog sustava–model varijablama stanja

Impulsni odziv linearnih sustava [A,B,C,D] prikaz linearnih vremenski diskretnih sustava – primjer

• iz $y(n-2)=x_1(n)$ i $y(n-1)=x_2(n)$, odnosno blokovskog dijagrama, slijede izlazna i jednadžbe stanja

$$\begin{cases} x_1(n) = y(n-2) \\ x_2(n) = y(n-1) \end{cases} \Rightarrow \begin{cases} y(n) = -0.04x_1(n) - 0.2x_2(n) + u(n) \\ x_1(n+1) = x_2(n) \\ x_2(n+1) = y(n) \end{cases}$$

$$x_1(n+1) = x_2(n) x_2(n+1) = -0.04x_1(n) - 0.2x_2(n) + u(n) y(n) = -0.04x_1(n) - 0.2x_2(n) + u(n)$$

$$\underbrace{\begin{bmatrix} x_1(n+1) \\ x_2(n+1) \end{bmatrix}}_{\times (n+1)} = \underbrace{\begin{bmatrix} 0 & 1 \\ -0.04 & -0.2 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1(n) \\ x_2(n) \end{bmatrix}}_{\times (n)} + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{B} u(n)$$

$$y(n) = \underbrace{\begin{bmatrix} -0.04 & -0.2 \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} x_1(n) \\ x_2(n) \end{bmatrix}}_{Y(n)} + \underbrace{1}_{D} \cdot u(n)$$

Predavanje 8 Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model varijablama stanja

Kontinuirani sustavi—model s varijablama stanja

Odziv linearnog diskretnog sustava – mode s varijablama

Odziv linearnog kontinuiranog sustava–model varijablama stania

Impulsni odziv Iinearnih sustava

Model s varijablama stanja za kontinuirane sustave 1

- i ovdje definiramo varijable stanja kao interne varijable sustava
- za poznate varijable stanja i poznate ulazne signale određen je bilo koji signal u sustavu dakle i svi izlazi
- na primjeru RLC mreže biti će pokazano da se svi signali mreže mogu prikazati kao linearna kombinacija nezavisnih napona na kapacitetima i struja induktiviteta koje definiramo kao stanja mreže

Predavanie 8 Profesor Branko Jeren

Kontinuirani sustavi-model s variiablama stanja

diskretnog

Model s varijablama stanja za kontinuirane sustave 2

Slika 4: Primjer RLC mreže

- definiraju se varijable stanja $x_1(t)$ kao struja induktiviteta i $x_2(t)$ kao napon na kapacitetu
- neka su poznate vrijednosti $x_1(t)$, $x_2(t)$ i u(t), za neki trenutak t, i tada možemo odrediti sve moguće signale mreže (napone i struje)
- neka su za neki t vrijednosti trenutnih stanja $x_1 = 1$ i $x_2 = 17$, te trenutna vrijednost ulaza u = 17

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—mode varijablama stanja

Kontinuirani sustavi—model s varijablama stanja

Odziv linearnog diskretnog sustava – mode s varijablama

Odziv linearnog kontinuiranog sustava–model s varijablama stanja

Impulsni odziv linearnih sustava

Model s varijablama stanja za kontinuirane sustave 3

Slika 5: Primjer RLC mreže

$$\begin{array}{lll} i_2 = x_1 + i_3 \\ R_2 i_2 = x_2 - R_3 i_3 & \Rightarrow i_3 = \frac{x_2 - R_2 x_1}{R_2 + R_3} & \Rightarrow i_3 = 3 \\ i_2 = x_1 + i_3 & \Rightarrow i_2 = \frac{R_3 x_1 + x_2}{R_2 + R_3} & \Rightarrow i_2 = 4 \\ v_1 = R_1 x_1 & \Rightarrow v_1 = R_1 x_1 & \Rightarrow v_1 = 1 \\ v_2 = R_2 i_2 & \Rightarrow v_2 = \frac{R_2 (R_3 x_1 + x_2)}{R_2 + R_3} & \Rightarrow v_2 = 8 \\ v_3 = R_3 i_3 & \Rightarrow v_3 = \frac{R_3 (x_2 - R_2 x_1)}{R_2 + R_3} & \Rightarrow v_3 = 9 \\ v_L = u - v_1 - v_2 & \Rightarrow v_L = u - R_1 x_1 - \frac{R_2 (R_3 x_1 + x_2)}{R_2 + R_3} & \Rightarrow v_L = 8 \end{array}$$

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—mode varijablama stanja

Kontinuirani sustavi—model s varijablama stanja

diskretnog sustava – mode s varijablama stanja

Odziv linearnog kontinuiranog sustava–model s varijablama stanja

Impulsni odziv linearnih sustava

Model s varijablama stanja za kontinuirane sustave 4

Slika 6: Primjer RLC mreže

iz

$$u(t) = L\frac{dx_1(t)}{dt} + R_1x_1(t) + R_2i_2(t) \Rightarrow$$

$$R_1(R_2 + R_3) + R_2R_3 + R_2 + R_3 +$$

 $\frac{dx_1(t)}{dt} = -\frac{R_1(R_2 + R_3) + R_2R_3}{L(R_2 + R_3)}x_1(t) - \frac{R_2}{L(R_2 + R_3)}x_2(t) + \frac{1}{L}u(t)$

2006/2007 Predavanje 8

Profesor Branko Jeren

Kontinuirani sustavi-model s variiablama stanja

diskretnog s variiablama

Model s varijablama stanja za kontinuirane sustave 5

iz
$$C \frac{dx_2(t)}{dt} = -i_3(t) \Rightarrow$$

$$\frac{dx_2(t)}{dt} = \frac{R_2}{C(R_2 + R_3)} x_1(t) - \frac{1}{C(R_2 + R_3)} x_2(t)$$

pišemo jednadžbu stanja

$$\begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \end{bmatrix} = \underbrace{\begin{bmatrix} -\frac{R_{1}(R_{2}+R_{3})+R_{2}R_{3}}{L(R_{2}+R_{3})} & -\frac{R_{2}}{L(R_{2}+R_{3})} \\ \frac{R_{2}}{C(R_{2}+R_{3})} & -\frac{1}{C(R_{2}+R_{3})} \end{bmatrix}}_{A} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix} + \underbrace{\begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix}}_{B} u(t)$$

odnosno

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model varijablama stanja

Kontinuirani sustavi—model s varijablama stanja

Odziv linearnog diskretnog sustava – mode s varijablama stania

Odziv linearnog kontinuiranog sustava–model varijablama stanja

Impulsni odziv linearnih sustava

Model s varijablama stanja za kontinuirane sustave 6

- neka sustav ima tri izlaza i neka su to struje sve tri grane: $y_1(t) = x_1(t)$, $y_2(t) = i_2(t)$ i $y_3(t) = i_3(t)$
- iz prije izračunatog slijedi

$$\begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{R_3}{R_2 + R_3} & \frac{1}{R_2 + R_3} \\ -\frac{R_2}{R_2 + R_3} & \frac{1}{R_2 + R_3} \end{bmatrix}}_{C} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}}_{D} u(t)$$

odnosno

$$y(t) = Cx(t) + Du(t)$$

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model varijablama stanja

Kontinuirani sustavi—model s varijablama stanja

diskretnog sustava – model s varijablama stanja Odziv linearnog kontinuiranog sustava–model s varijablama

Impulsni odziv Iinearnih sustava

Linearni vremenski kontinuirani sustavi—[A,B,C,D] prikaz

 model s varijablama stanja kontinuiranog vremenski stalnog linearnog sustava je

 $Stanja = Realni^N$, $Ulazi = Realni^M$, $Izlazi = Realni^K$, $\forall t \in Realni$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(n) = Cx(t) + Du(t)$$

 odziv stanja, odziv sustava i ulazni signal su vektori dimenzije N odnosno K i M, a suglasno tome su matrice A, B, C, D odgovarajućih dimenzija

2006/2007 Predavanje 8

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model varijablama stanja

Kontinuirani sustavi—model varijablama stanja

Odziv linearnog diskretnog sustava – model s varijablama stania

Odziv linearnog kontinuiranog sustava–model s varijablama stania

Impulsni odziv linearnih sustava Odziv linearnog diskretnog sustava – [A, B, C, D] prikaz

 model s varijablama stanja diskretnog vremenski stalnog linearnog sustava je, kako je pokazano,

 $Stanja = Realni^N, Ulazi = Realni^M, Izlazi = Realni^K,$ $<math>\forall n \in C$ jelobrojni

$$x(n+1) = Ax(n) + Bu(n)$$

$$y(n) = Cx(n) + Du(n)$$

odziv sustava možemo rješiti korak po korak

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model varijablama stanja

Kontinuirani sustavi—model varijablama stanja

Odziv linearnog diskretnog sustava – model s varijablama stania

Odziv linearnog kontinuiranog sustava-model s varijablama stania

Impulsni odz linearnih sustava

Odziv linearnog diskretnog sustava – [A, B, C, D] prikaz

• neka je x(0) = pocetnoStanje

$$n = 0, \quad x(1) = Ax(0) + Bu(0)$$

$$n = 1, \quad x(2) = Ax(1) + Bu(1)$$

$$= A[Ax(0) + Bu(0)] + Bu(1)$$

$$= A^2x(0) + ABu(0) + Bu(1)$$

$$n = 2, \quad x(3) = Ax(2) + Bu(2)$$

$$= A[A^2x(0) + ABu(0) + Bu(1)] + Bu(2)$$

$$= A^3x(0) + A^2Bu(0) + ABu(1) + Bu(2)$$

možemo napisati odziv stanja za n-ti korak

$$x(n) = A^{n}x(0) + \sum_{m=0}^{n-1} A^{n-1-m}Bu(m), \quad \forall n > 0$$

odziv stanja se naziva i trajektorija stanja

Predavanje 8 Profesor Branko Jeren

Model s varijablam stanja

varijablama stanja Kontinuirani sustavi—model

Odziv linearnog diskretnog sustava – model s varijablama

stanja Odziv linearnog kontinuiranog sustava—model s varijablama

Impulsni odziv linearnih sustava

Odziv linearnog diskretnog sustava – [A, B, C, D] prikaz

za izračunati odziv stanja, slijedi iz,

$$y(n) = Cx(n) + Du(n),$$

i odziv sustava

$$y(n) = \begin{cases} Cx(0) + Du(0), & n = 0 \\ CA^{n}x(0) + \sum_{m=0}^{n-1} CA^{n-1-m}Bu(m) + Du(n), & n > 0 \end{cases}$$

• totalni odziv sustava moguće je interpretirati kao zbroj odziva nepobuđenog sustava (u(n) = 0) i odziva mirnog sustava (x(0) = 0)

$$y(n) = \underbrace{CA^{n}x(0)}_{\text{odziv nepobuđenog sustava, } u(n)=0} + \sum_{m=0}^{n-1} CA^{n-1-m}Bu(m) + Du(n), \quad n > 0$$
odziv mirnog sustava, $x(0)=0$

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model varijablama stanja

Kontinuirani sustavi—model varijablama

Odziv linearnog diskretnog sustava – model s varijablama stania

Odziv linearnog kontinuiranog sustava-model s varijablama stania

Impulsni odziv Iinearnih sustava

Odziv linearnog diskretnog sustava – [A, B, C, D] prikaz

• dokažimo, indukcijom, kako je izraz za odziv stanja korektno određen, i kako on daje korektnu vrijednost i za n+1 korak

uvrštenjem

$$x(n) = A^{n}x(0) + \sum_{m=0}^{n-1} A^{n-1-m}Bu(m)$$

u

$$x(n+1) = Ax(n) + Bu(n)$$

slijedi

$$x(n+1) = A[A^{n}x(0) + \sum_{m=0}^{n-1} A^{n-1-m}Bu(m)] + Bu(n)$$

Profesor Branko Jeren

Model s varijablam stanja

sustavi—model varijablama stanja Kontinuirani sustavi—model

Odziv linearnog diskretnog sustava – model s varijablama stania

Odziv linearnog kontinuiranog sustava—model s varijablama stanja

Impulsni odziv linearnih sustava

Odziv linearnog diskretnog sustava – [A, B, C, D] prikaz

$$x(n+1) = A^{n+1}x(0) + \sum_{m=0}^{n-1} A^{n-m}Bu(m) + Bu(n)$$

$$x(n+1) = A^{n+1}x(0) + \sum_{m=0}^{n} A^{n-m}Bu(m)$$

• što predstavlja izraz na desnoj strani odziva stanja izračunat za n+1, pa je indukcijom pokazano kako je korektno određen izraz za odziv stanja i kako vrijedi za $\forall n>0$

$$x(n) = A^{n}x(0) + \sum_{m=0}^{n-1} A^{n-1-m}Bu(m)$$

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model varijablama stanja

Kontinuirani sustavi—model varijablama

Odziv linearnog diskretnog sustava – model s varijablama stania

Odziv linearnog kontinuiranog sustava-model s varijablama stanja

Impulsni odziv linearnih sustava Odziv linearnog diskretnog sustava – [A, B, C, D] prikaz

• finalno, za MIMO diskretni sustav zadan s $Stanja = Realni^N$, $Ulazi = Realni^M$, $Izlazi = Realni^K$, $\forall n \in Cjelobrojni, x(0) = pocetnoStanje$

$$x(n+1) = Ax(n) + Bu(n)$$

$$y(n) = Cx(n) + Du(n)$$

odziv stanja i odziv sustava su

$$x(n) = A^{n}x(0) + \sum_{m=0}^{n-1} A^{n-1-m}Bu(m), \qquad n > 0$$
$$y(0) = Cx(0) + Du(0)$$
$$y(n) = CA^{n}x(0) + \sum_{m=0}^{n-1} CA^{n-1-m}Bu(m) + Du(n), \qquad n > 0$$

kraj

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model varijablama stanja

Kontinuirani sustavi—model varijablama

Odziv linearnog diskretnog sustava – model s varijablama stania

Odziv linearnog kontinuiranog sustava-model : varijablama stania

Impulsni odziv linearnih sustava Odziv linearnog diskretnog sustava – [A, B, C, D] prikaz

• za sustav s jednim ulazom i jednim izlazom (SISO) vrijedi

 $Stanja = Realni^N, Ulazi = Realni, Izlazi = Realni, \\ \forall n \in Cjelobrojni$

$$x(n+1) = Ax(n) + Bu(n)$$

$$y(n) = Cx(n) + Du(n)$$

• B postaje vektor dimenzije $[N \times 1]$, C postaje vektor dimenzije $[1 \times N]$, a D skalar

Predavanje 8
Profesor
Branko Jeren

Model s varijablam stanja

Diskretni sustavi—mode varijablama stanja

Kontinuirani sustavi—model varijablama

Odziv linearnog diskretnog sustava – model s varijablama stania

Odziv linearnog kontinuiranog sustava-model s varijablama stanja

Impulsni odziv linearnih sustava

- definiraju se i razmatraju četiri slučaja
 - odziv stanja mirnog sustava, x(0) = 0

$$x(n) = \sum_{m=0}^{n-1} A^{n-1-m} Bu(m), \qquad n > 0$$

• odziv stanja nepobuđenog sustava, u(n) = 0

$$x(n)=A^nx(0), \qquad n>0$$

• odziv mirnog sustava, x(0) = 0

$$y(n) = \begin{cases} Du(0), & n = 0\\ \sum_{m=0}^{n-1} CA^{n-1-m}Bu(m) + Du(n), & n > 0 \end{cases}$$

• odziv stanja nepobuđenog sustava, u(n) = 0

$$y(n) = \begin{cases} Cx(0), & n = 0 \\ CA^nx(0), & n > 0 \end{cases}$$

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model varijablama stanja Kontinuirani

Kontinuirani sustavi—model varijablama stanja

Odziv linearnog diskretnog sustava – model s varijablama stania

Odziv linearnog kontinuiranog sustava–model : varijablama stanja

Impulsni odziv linearnih sustava

Fundamentalna matrica

• odziv stanja nepobuđenog sustava, u(n) = 0, je

$$x(n)=A^nx(0), \qquad n>0$$

- u slučaju nepobuđenog sustava matrica Aⁿ prevodi sustav iz početnog stanja u stanje u koraku n
- matricu A^n nazivamo prijelazna matrica (state transition matrix) ili fundamentalna matrica i označavamo je $\Phi(n)$, dakle.

$$\Phi(n)=A^n, \qquad n>0$$

način izračuna fundamentalne matrice biti će kasnije razmatran

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model varijablama stanja

Kontinuirani sustavi—model s varijablama

Odziv linearnog diskretnog sustava – mode s varijablama

Odziv linearnog kontinuiranog sustava-model s varijablama stanja

Impulsni odziv linearnih sustava

Odziv linearnog kontinuiranog sustava – [A, B, C, D] prikaz

 model s varijablama stanja, kontinuiranog vremenski stalnog linearnog sustava, je

$$Stanja = Realni^N, Ulazi = Realni^M, Izlazi = Realni^K, \ \forall t \in Realni, \quad x(t_0) = pocetnoStanje$$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

- odziv stanja, odziv sustava i ulazni signal su vektori dimenzije N odnosno K i M, a suglasno tome su matrice A, B, C, D odgovarajućih dimenzija
- odziv sustava određuje se rješavanjem jednadžbi sustava

2006/2007 Predavanje 8

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model varijablama stanja

Kontinuirani sustavi—model varijablama stania

Odziv linearnog diskretnog sustava – mode s varijablama

Odziv linearnog kontinuiranog sustava-model s varijablama stanja

Impulsni odziv linearnih sustava

Odziv linearnog kontinuiranog sustava – [A, B, C, D] prikaz

• prvo se rješava diferencijalna jednadžba

$$\dot{x}(t) = Ax(t) + Bu(t)$$

• množenjem obje strane jednadžbe s matricom e^{-At} , s lijeva,

$$e^{-At}\dot{x}(t) = e^{-At}Ax(t) + e^{-At}Bu(t)$$

• te prebacivanjem člana $e^{-At}Ax(t)$ na lijevo

$$\underbrace{e^{-At}\dot{x}(t) - e^{-At}Ax(t)}_{\frac{d}{dt}(e^{-At}x(t))} = e^{-At}Bu(t)$$

• pa slijedi

$$\frac{d}{dt}(e^{-At}x(t)) = e^{-At}Bu(t)$$

Predavanje 8

Profesor
Branko Jeren

Model s varijablama stanja

Diskretni sustavi—model varijablama stanja

Kontinuirani sustavi—model varijablama stania

Odziv linearnog diskretnog sustava – mode s varijablama

Odziv linearnog kontinuiranog sustava-model s varijablama stanja

Impulsni odziv linearnih sustava Odziv linearnog kontinuiranog sustava – [A, B, C, D] prikaz

ullet integriranjem obje strane u intervalu t_0 do t slijedi

$$\int_{t_0}^t \frac{d}{d\tau} (e^{-A\tau} x(\tau)) d\tau = \int_{t_0}^t e^{-A\tau} Bu(\tau) d\tau$$

odnosno

$$e^{-At}x(t) - e^{-At_0}x(t_0) = \int_{t_0}^t e^{-A\tau}Bu(\tau)d\tau$$

množenjem obje strane s matricom e^{At}, s lijeva,

$$x(t) - e^{At}e^{-At_0}x(t_0) = e^{At}\int_{t_0}^t e^{-A\tau}Bu(\tau)d\tau$$

• slijedi izraz za odziv stanja kontinuiranog sustava

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model : varijablama stanja

Kontinuirani sustavi—model varijablama

Odziv linearnog diskretnog sustava – mode s varijablama

Odziv linearnog kontinuiranog sustava-model s varijablama stanja

Impulsni odziv linearnih sustava

Odziv linearnog kontinuiranog sustava – [A, B, C, D] prikaz

uvrsti li se izračunati odziv stanja u izlaznu jednadžbu

$$y(t) = Cx(t) + Du(t)$$

slijedi odziv sustava

$$y(t) = Ce^{A(t-t_0)}x(t_0) + \int_{t_0}^{t} Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

ili

$$y(t) = Ce^{A(t-t_0)}x(t_0) + \int_{t_0}^{t} [Ce^{A(t-\tau)}B + D\delta(t-\tau)]u(\tau)d\tau$$

2006/2007 Predavanje 8 Profesor Branko Jeren

Model s

stanja
Diskretni
sustavi—moc

varijablama stanja Kontinuirani sustavi—model

sustavi—model : varijablama stanja

Odziv linearnog diskretnog sustava – mode s varijablama stania

Odziv linearnog kontinuiranog sustava-model s varijablama stanja

Impulsni odziv linearnih sustava Odziv linearnog kontinuiranog sustava – [A, B, C, D] prikaz

• za $t_0 = 0$ odziv stanja je

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

• a odziv sustava

$$y(t) = Ce^{At}x(0) + \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

Profesor Branko Jeren

Model s varijablam stanja

Diskretni sustavi—model varijablama stanja

Kontinuirani sustavi—model varijablama

Odziv linearnog diskretnog sustava – mode s varijablama

Odziv linearnog kontinuiranog sustava-model s varijablama stanja

Impulsni odziv Iinearnih sustava

- i ovdje se definiraju i razmatraju četiri slučaja
 - odziv stanja mirnog sustava, x(0) = 0

$$x(t) = \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$

• odziv stanja nepobuđenog sustava, u(t)=0

$$x(t)=e^{At}x(0)$$

• odziv mirnog sustava, x(0) = 0

$$y(t) = \int_0^t [Ce^{A(t-\tau)}B + D\delta(t-\tau)]u(\tau)d\tau$$

• odziv nepobuđenog sustava, u(t) = 0

$$y(t) = Ce^{At}x(0)$$

2006/2007

Model s varijablama stanja

Diskretni sustavi—model varijablama stanja

Kontinuirani sustavi—model : varijablama stanja

Odziv linearnog diskretnog sustava – mode s varijablama

Odziv linearnog kontinuiranog sustava-model s varijablama stanja

Impulsni odziv linearnih sustava

Fundamentalna matrica kontinuiranih sustava

ullet odziv stanja nepobuđenog sustava, u(t)=0, je

$$x(t)=e^{At}x(0)$$

- u slučaju nepobuđenog sustava matrica e^{At} prevodi sustav iz početnog stanja u stanje u trenutku t
- matricu e^{At} nazivamo prijelazna (state transition matrix) ili fundamentalna matrica i označavamo je $\Phi(t)$

Model s varijablam: stanja

Impulsni odzi linearnih

Impulsni odziv diskretnih linearnih sustava

Konvolucijska sumacija Konvolucijska sumacija *SISO*

kraj

Impulsni odziv linearnih diskretnih sustava 1

• odziv mirnog, x(0) = 0, sustava s jednim ulazom i jednim izlazom, SISO sustav, izveden je kao:

 $Stanja = Realni^N, Ulazi = Realni, Izlazi = Realni,$ $<math>\forall n \in C$ jelobrojni

$$x(n+1) = Ax(n) + Bu(n)$$

$$y(n) = Cx(n) + Du(n)$$

$$y(n) = \begin{cases} Du(0), & n = 0\\ \sum_{m=0}^{n-1} CA^{n-1-m}Bu(m) + Du(n), & n > 0 \end{cases}$$

Signali i sustavi školska godina 2006/2007 Predavanje 8

Profesor Branko Jeren

Model s varijablama stanja

Impulsni odzi

Impulsni odziv diskretnih linearnih sustava

Konvolucijska sumacija Konvolucijska sumacija *SISO*

kraj

Impulsni odziv linearnih diskretnih sustava 2

• pobudimo li, mirni, *SISO* sustav s jediničnim impulsom $u(n) = \delta(n)$ odziv je:

$$y(n) = \begin{cases} D\delta(0), & n = 0\\ \sum_{m=0}^{n-1} CA^{n-1-m}B\delta(m) + D\delta(n), & n > 0 \end{cases}$$

odnosno

$$y(n) = h(n) = \begin{cases} 0, & n < 0 \\ D, & n = 0 \\ CA^{n-1}B, & n > 0 \end{cases}$$

• odziv mirnog sustava, x(0) = 0, na pobudu jediničnim impulsom $u(n) = \delta(n)$ nazivamo impulsni odziv i označavamo kao h(n)

Model s varijablama stanja

Impulsni odzi linearnih sustava

Impulsni odziv diskretnih

Konvolucijska sumacija

Konvolucijska sumacija SISC sustava

krai

Konvolucijska sumacija 1

• za ovako određeni impulsni odziv, h(0) = D i $h(n) = CA^{n-1}B$, izraz za odziv mirnog sustava transformiramo u oblik

$$y(n) = \sum_{m=0}^{n-1} CA^{n-1-m}Bu(m) + Du(n), \quad n \ge 0$$

$$y(n) = \sum_{m=0}^{n-1} h(n-m)u(m) + Du(n), \quad n \geq 0$$

i finalno

$$y(n) = \sum_{m=0}^{n} h(n-m)u(m), \quad n \geq 0$$

- linearni mirni sustav, x(n) = 0, potpuno je opisan svojim impulsnim odzivom h(n)
- dakle, poznavanjem h(n), moguće je odrediti odziv linearnog sustava na bilo koju pobudu (3)

Model s varijablam stanja

Impulsni odziv

Impulsni odziv diskretnih

Konvolucijska sumacija Konvolucijska sumacija SISC

krai

Konvolucijska sumacija 2

MIMO sustav je zadan s

 $Stanja = Realni^N, Ulazi = Realni^M, Izlazi = Realni^K,$ $<math>\forall n \in C$ jelobrojni

$$x(n+1) = Ax(n) + Bu(n)$$

$$y(n) = Cx(n) + Du(n)$$

i pobuđen jediničnim impulsom na svakom od M ulaza, $u(n) = \delta(n)$

 odziv ovako pobuđenog, mirnog, MIMO sustava izračunava se na isti način kao u slučaju SISO sustava pa možemo pisati

$$y(n) = H(n) = \begin{cases} 0, & n < 0 \\ D, & n = 0 \\ CA^{n-1}B, & n > 0 \end{cases}$$

školska godina

Model s varijablam stanja

Impulsni odzi Iinearnih

Impulsni odziv diskretnih

Konvolucijska sumacija

Konvolucijska sumacija *SISC* sustava

kraj

Konvolucijska sumacija 3

• H(n) je matrica dimenzije $[K \times M]$,

$$H(n) = \begin{bmatrix} h_{11}(n) & h_{12}(n) & \dots & h_{1M}(n) \\ h_{21}(n) & h_{22}(n) & \dots & h_{2M}(n) \\ \vdots & \vdots & \ddots & \vdots \\ h_{K1}(n) & h_{K2}(n) & \dots & h_{KM}(n) \end{bmatrix}$$

- $h_{ij}(n)$ je impulsni odziv i-tog izlaza na pobudu na j-tom ulazu, uz x=0 i $u_j(n)=0$ na svim ulazima osim na i-tom
- matricu H(n) zovemo matrica impulsnog odziva
- konvolucijska sumacija za MIMO sustav je

$$y(n) = \sum_{m=0}^{n} H(n-m)u(m), \quad n \geq 0$$

Model s varijablama stanja

Impulsni odzi linearnih

sustava Impulsni odziv

linearnih susta Konvolucijska sumacija

Konvolucijska sumacija SISC

kraj

Konvolucijska sumacija 4

za miran SISO sustav definiran svojim impulsnim odzivom i

$$u(n) = 0, \quad \forall n < 0$$

 $h(n) = 0, \quad \forall n < 0$

konvolucijska sumacija je

$$y(n) = \sum_{m=-\infty}^{\infty} h(n-m)u(m), \quad n \in C$$
jelobrojni

• supstitucijom k = n - m slijedi alternativni prikaz

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)u(n-k), \quad n \in C$$
jelobrojni

• pa vrijedi

$$y = h * u = u * h$$
 odnosno $y(n) = (h * u)(n) = (u * h)(n)$

2006/2007

Model s varijablam stania

Impulsni odzi

Impulsni odziv diskretnih linearnih sustav

Konvolucijska sumacija Konvolucijska

sustava

Konvolucijska sumacija 5

- ovdje se izvodi izraz za konvolucijsku sumaciju SISO sustava na manje formalan način
- pokazuje se kako se odziv vremenski stalnog linearnog sustava može promatrati kao linearna kombinacija impulsnih odziva
- pobudni signal se može prikazati kao niz impulsa pa će onda odziv linearnog sustava biti linearna kombinacija impulsnih odziva na svaki od ovih impulsa

sustavi školska godina 2006/2007 Predavanje 8

Profesor Branko Jeren

Model s varijablam stanja

Impulsni odzi linearnih sustava

diskretnih linearnih susta Konvolucijska sumacija

Konvolucijska sumacija SISO sustava

kraj

Primjer određivanja impulsnog odziva vremenski diskretnog sustava

neka je vremenski diskretan sustav zadan s jednadžbom diferencija

$$y(n) - 0.75y(n-1) = u(n)$$

- ovaj sustav možemo prikazati s modelom s varijablama stanja
- izaberemo x(n)=y(n-1) pa su jednadžba stanja i izlazna jednadžba

$$x(n+1) = \underbrace{0.75}_{A} x(n) + \underbrace{1}_{B} u(n)$$
$$y(n) = \underbrace{0.75}_{C} x(n) + \underbrace{1}_{D} u(n)$$

Signali i sustavi školska godina 2006/2007 Predavanje 8

Profesor Branko Jeren

Model s varijablam stanja

linearnih

diskretnih linearnih sustav Konvolucijska

Konvolucijska sumacija SISO sustava

kraj

Primjer određivanja impulsnog odziva vremenski diskretnog sustava

• prije je pokazano da je impulsni odziv mirnog sustava, x(0) = 0, dakle odziv na $u(n) = \delta(n)$

$$h(n) = \begin{cases} 0, & n < 0 \\ D, & n = 0 \\ CA^{n-1}B, & n > 0 \end{cases}$$

za
$$A = 0.75, B = 1, C = 0.75, D = 1$$

$$h(n) = \begin{cases} 0, & n < 0 \\ 1, & n = 0 \\ 0.75 \cdot 0.75^{n-1} \cdot 1 = 0.75^n, & n > 0 \end{cases}$$

sustavi školska godina 2006/2007 Predavanje 8

Profesor Branko Jeren

Model s varijablam stanja

Impulsni odz linearnih

Impulsni odziv diskretnih linearnih susta Konvolucijska sumacija

Konvolucijska sumacija *SISO* sustava

kraj

Primjer određivanja impulsnog odziva vremenski diskretnog sustava

- do istog rezultata smo mogli doći i izravnim rješavanjem polazne jednadžbe za y(-1)=0 i $u(n)=\delta(n)$, bilo kojom metodom
- ovdje ćemo to učiniti metodom izračunavanja korak po korak

$$y(n) = 0.75y(n-1) + \delta(n)$$

 $h(n) = 0.75h(n-1) + \delta(n)$

za n=0,1,2,...

$$h(0) = 0.75y(-1) + 1 = 1$$

$$h(1) = 0.75h(0) + 0 = 0.75 \cdot 1 = 0.75$$

$$h(2) = 0.75h(1) + 0 = 0.75 \cdot 0.75 = 0.75^{2}$$

$$h(3) = 0.75h(2) + 0 = 0.75 \cdot 0.75^{2} = 0.75^{3}$$

$$h(4) = 0.75h(3) + 0 = 0.75 \cdot 0.75^{3} = 0.75^{4}$$

$$\dots \qquad \dots$$

$$h(n) = 0.75h(n-1) + 0 = 0.75 \cdot 0.75^{n-1} = 0.75^{n}$$

2006/2007

Model s varijablam stanja

Impulsni odzi linearnih

sustava Impulsni odziv

diskretnih linearnih sustav Konvolucijska sumacija

Konvolucijska sumacija SISO sustava

kraj

Primjer određivanja impulsnog odziva vremenski diskretnog sustava

Slika 7: Impulsni odziv sustava y(n) - 0.75y(n-1) = u(n)

Profesor Branko Jeren

Model s varijablam stanja

Impulsni odzi linearnih

Impulsni odziv diskretnih linearnih sustav Konvolucijska sumacija Konvolucijska sumacija SISO

sustava

Diskretni signal kao suma jediničnih impulsa

svaki niz može biti prikazan uz pomoć sume jediničnih impulsa

• uz definiciju za pomak jediničnog impulsa možemo pisati

$$u(n) = .5\delta(n) + .3\delta(n-1) + .1\delta(n-2) + .3\delta(n-3) + .5\delta(n-4)$$

• razmotrimo odziv linearnog, vremenski stalnog, diskretnog sustava na niz impulsa

Signali i sustavi školska godina 2006/2007 Predavanje 8

Profesor Branko Jeren

Impulsni odziv

Konvoluciiska sumacija SISO sustavá

Odziv sustava na niz impulsa

Slika 8: Konvolucijska sumacija SISO sustava

Model s varijablam stanja

Impulsni odz linearnih sustava

Impulsni odziv diskretnih linearnih sustav Konvolucijska sumacija Konvolucijska sumacija SISO

sustava

Konvolucijska sumacija

diskretni signal možemo prikazati kao zbroj niza impulsa

$$u = \dots + u(-1)\delta(n+1) + u(0)\delta(n) + u(1)\delta(n-1) + u(2)\delta(n-2) + u(3)\delta(n-3) \dots \Rightarrow u = \sum_{m=-\infty}^{\infty} u(m)\delta(n-m)$$

• odziv sustava na jednični impuls $\delta(n)$ je h(n), pa za linearni sustav vrijedi svojstvo homogenosti

$$u(m)\delta(n-m) \rightarrow u(m)h(n-m)$$

odziv na pobudu nizom u je

$$y = \ldots + u(-1)h(n+1) + u(0)h(n) + u(1)h(n-1) + u(2)h(n-2) + u(3)h(n-3) \ldots \Rightarrow$$

$$y(n) = \sum_{m=-\infty}^{\infty} u(m)h(n-m)$$

[kraj]

sustavi školska godina 2006/2007 Predavanje 8

Profesor Branko Jeren

Model s varijablama stanja

Impulsni odziv linearnih

kraj