Analisi Matematica II

Analisi complessa

Virginia De Cicco Sapienza Univ. di Roma

Analisi complessa

Serie di potenze e di Fourier in campo complesso

Serie in campo complesso

In maniera analoga a quanto fatto nei numeri reali si possono dare le nozioni di successioni di funzioni $(f_n(z))_{n\in\mathbb{N}}$ in campo complesso

Esempio:
$$f_n(z)=(iz)^n$$

tende a 0 se $|iz|=|z|<1$,
tende ad 1 se $z=-i$
non converge negli altri punti,

di serie di funzioni $\sum_{n=0}^{+\infty} f_n(z)$ in campo complesso

Esempio:
$$\sum_{n=0}^{+\infty} f_n(z) = \sum_{n=0}^{+\infty} (iz)^n$$
 converge se $|iz| = |z| < 1$ non converge negli altri punti,

i diversi tipi di convergenza.

Serie di potenze in campo complesso

Data una successione a_n di numeri complessi e fissato $z_0 \in \mathbb{C}$

si definisce serie di potenze in campo complesso di punto iniziale z_0 una serie del tipo

$$\sum_{n\geq 0} a_n (z-z_0)^n.$$

I numeri complessi a_n sono detti coefficienti della serie.

Se i coefficienti a_n sono definitivamente nulli (cioè esiste $n_0 \in \mathbb{N}$ tale che $a_n = 0$ per ogni $n > n_0$) la serie si riduce al polinomio

$$\sum_{n=0}^{n_0} a_n (z-z_0)^n = a_0 + a_1 (z-z_0) + \cdots + a_{n_0} (z-z_0)^{n_0}.$$

Serie di potenze in campo complesso

$$\sum_{n\geq 0}a_n(z-z_0)^n.$$

Si osservi che in $z = z_0$ la serie converge e la sua somma è a_0 .

Ricordiamo che per le serie di potenze in campo reale, l'insieme di convergenza è un intervallo di centro il punto iniziale e raggio R.

Nel caso di serie di potenze in campo complesso, l'insieme di convergenza è una palla di centro z_0 e raggio R.

Serie di potenze in campo complesso

Tale R si dice *raggio di convergenza* della serie e si calcola in maniera analoga al caso reale.

Inoltre

1) se
$$R = 0$$
, la serie converge solo per $z = 0$,

2) se
$$0 < R < +\infty$$
,

la serie converge (assolutamente) per |z| < R,

converge totalmente per $|z| \le r$, per ogni r tale che 0 < r < R,

e non converge per |z| > R,

3) se
$$R = +\infty$$
,

la serie converge (assolutamente) in tutto ${\mathbb C}$

e totalmente per $|z| \le r$, per ogni r > 0.

Esempi

1) La serie

$$\sum_{n\geq 0} n! z^n$$

converge solo in z = 0 (R = 0),

2) la serie

$$\sum_{n>0} z^n$$

converge nella palla |z| < 1 (R = 1),

converge totalmente per $|z| \le r$, per ogni r tale che 0 < r < 1,

e in nessun punto della sua frontiera (che è la circonferenza |z|=1),

Esempi

3) la serie

$$\sum_{n>1} \frac{z^n}{n}$$

converge nella palla |z| < 1 (R = 1),

converge totalmente per $|z| \le r$, per ogni r tale che 0 < r < 1,

e in alcuni punti della circonferenza |z|=1 (per esempio nel punto z=-1),

ma non in tutti (non converge per esempio in z=1),

4) la serie

$$\sum_{n>1} \frac{z^n}{n^2}$$

converge totalmente nella palla $|z| \leq 1$ (R = 1)

e dunque in tutti i punti della circonferenza |z|=1 ,

Esempi

5) la serie

$$\sum_{n\geq 0}\frac{z^n}{n!}$$

converge in ogni punto $z\in\mathbb{C}$ $(R=\infty)$

e totalmente per $|z| \le r$, per ogni r > 0.

Olomorfia di una somma di una serie di potenze

Vediamo ora che le serie di potenze sono derivabili termine a termine.

Teorema

La somma

$$S(z) = \sum_{n \geq 0} a_n (z - z_0)^n$$

di una serie di potenze è una funzione olomorfa dove è definita

(cioè nel suo cerchio di convergenza $B_R(z_0) = \{z \in \mathbb{C} : |z-z_0| < R\}$)

e per ogni $z \in B_R(z_0)$ si ha

$$S'(z) = \sum_{n>1} na_n(z-z_0)^{n-1}.$$

Olomorfia di una somma di una serie di potenze

Iterando il procedimento, dal teorema precedente si ha

$$S''(z) = \sum_{n>2} n(n-1)a_n(z-z_0)^{n-2}$$

e per ogni $k \in \mathbb{N}$

$$S^{(k)}(z) = \sum_{n > k} n(n-1) \dots (n-k+1) a_n (z-z_0)^{n-k}$$

da cui ponendo $z=z_0$ si ha

$$S^{(k)}(z_0) = k! a_k$$

e quindi

$$a_k = \frac{S^{(k)}(z_0)}{k!}.$$

Olomorfia di una somma di una serie di potenze

Ne segue l'unicità dello sviluppo in serie di potenze, ossia:

se

$$S(z) = \sum_{n \geq 0} a_n (z - z_0)^n$$

è la somma di una serie convergente definita in $B_R(z_0)$,

allora necessariamente si ha che

$$a_n=\frac{S^{(n)}(z_0)}{n!}.$$

e dunque

$$S(z) = \sum_{n \geq 0} \frac{S^{(n)}(z_0)}{n!} (z - z_0)^n, \quad |z - z_0| < R,$$

cioè la serie di potenze coincide con la serie di Taylor associata alla sua funzione somma S(z).

Sviluppi

Ricordiamo infine che alcuni sviluppi classici noti per le funzioni reali valgono ancora in ambito complesso:

$$\frac{1}{1-z}=\sum_{n\geq 0}z^n,\quad |z|<1,$$

$$e^z = \sum_{n \geq 0} \frac{z^n}{n!}, \quad z \in \mathbb{C},$$

$$senz = \sum_{n \ge 0} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \quad z \in \mathbb{C},$$

$$cosz = \sum_{n>0} (-1)^n \frac{z^{2n}}{(2n)!}, \quad z \in \mathbb{C},$$

Sviluppi

$$\mathit{senhz} = \sum_{n \geq 0} \frac{z^{2n+1}}{(2n+1)!}, \quad z \in \mathbb{C},$$

$$coshz = \sum_{n \geq 0} \frac{z^{2n}}{(2n)!}, \quad z \in \mathbb{C},$$

$$arctgz = \sum_{n \geq 0} (-1)^n rac{z^{2n+1}}{2n+1}, \quad |z| < 1,$$

$$Log(z+1) = \sum_{n\geq 0} (-1)^n \frac{z^{n+1}}{n+1}, \quad |z| < 1.$$

Appello del 22 febbraio 2011

Domanda a risposta multipla

Lo sviluppo di Taylor in $z_0=0$ della funzione $f(z)=\frac{1}{4+z}$ è

a)
$$\sum_{n>0} \frac{1}{2^{n+2}} z^n$$

b)
$$\sum_{n>0} \frac{(-1)^n}{2^{n+2}} z^n$$

c)
$$\sum_{n\geq 0} \frac{(-1)^n}{2^{2n+2}} z^n$$

d)
$$\sum_{n>0} \frac{1}{2^{2n+2}} z^n$$
.

Soluzione : c)

Appello del 9 marzo 2011

Domanda a risposta multipla

L'insieme di convergenza della seguente serie

$$\sum_{n=0}^{+\infty} \frac{1}{n^{-|e^z|}}, \quad z \in \mathbb{C}$$

è

- a) tutto \mathbb{C} b) l'insieme vuoto c) un semipiano
- d) un cerchio.

Soluzione : b)

Appello del 10 novembre 2017

- (i) Sia dia la definizione di convergenza puntuale per una serie di funzioni.
- (ii) Sia assegnata la seguente serie in campo complesso:

$$\sum_{n=0}^{+\infty} \frac{2^{2n}}{(z+i)^n}.$$

Se ne determini l'insieme di convergenza E, fornendone una rappresentazione grafica sul piano complesso.

Se ne calcoli la somma $\forall z \in E$.

Appello del 10 novembre 2017

(ii) Sia assegnata la seguente serie in campo complesso:

$$\sum_{n=0}^{+\infty} \frac{2^{2n}}{(z+i)^n}.$$

Se ne determini l'insieme di convergenza E, fornendone una rappresentazione grafica sul piano complesso.

Se ne calcoli la somma $\forall z \in E$.

Soluzione:

$$\left|\frac{2^2}{z+i}\right| < 1 \quad sse \quad |z+i| > 4$$

$$\sum_{n=0}^{+\infty} \frac{2^{2n}}{(z+i)^n} = \frac{1}{1 - \frac{4}{z+i}} = \frac{z+i}{z+i-4}$$

Esercizi

Si sviluppi la seguente funzione in serie di Taylor centrata nel punto $z_0 = 1$, specificandone l'insieme di convergenza.

$$f(z) = e^{(z-1)^2}$$

Soluzione : Utilizzando lo sviluppo in serie di potenze dell'esponenziale in campo complesso si ha che

$$e^{(z-1)^2} = \sum_{n=0}^{+\infty} \frac{(z-1)^{2n}}{n!}.$$

Tale serie ha raggio di convergenza ∞ e dunque lo sviluppo in serie di Taylor vale $\forall z \in \mathbb{C}$.

Esercizi

Si sviluppi la seguente funzione in serie di Taylor centrata nel punto $z_0 = 3$, specificandone l'insieme di convergenza.

$$f(z)=\frac{1}{z-2i}$$

Soluzione:

Utilizzando lo sviluppo della serie geometrica si ha che

$$\frac{1}{z-2i} = \frac{1}{z-3+3-2i} = \frac{1}{3-2i} \frac{1}{1-\left(-\frac{z-3}{3-2i}\right)}$$

$$1 \xrightarrow{+\infty} (z-3)^n \xrightarrow{+\infty} (z-3)^n$$

$$=\frac{1}{3-2i}\sum_{n=0}^{+\infty}(-1)^n\frac{(z-3)^n}{(3-2i)^n}=\sum_{n=0}^{+\infty}(-1)^n\frac{(z-3)^n}{(3-2i)^{n+1}}.$$

Esso converge se

$$\left|\frac{z-3}{3-2i}\right| < 1 \Leftrightarrow |z-3| < |3-2i| = \sqrt{13}$$

cioè nel cerchio di centro $z_0 = 3$ e di raggio $\sqrt{13}$.

Esercizi

Si sviluppi la seguente funzione in serie di Taylor centrata nel punto $z_0 = -2$, specificandone l'insieme di convergenza.

$$f(z)=\frac{2}{z}$$

Soluzione:

Utilizzando la serie geometrica si ha che

$$f(z) = \frac{2}{z} = \frac{2}{z+2-2} = -\frac{2}{2\left(1-\frac{z+2}{2}\right)} = -\sum_{n=0}^{+\infty} (-1)^n \frac{(z+2)^n}{2^n}.$$

Esso converge se

$$\left|\frac{z+2}{2}\right| < 1 \Leftrightarrow |z+2| < 2$$

cioé nel cerchio di centro $z_0 = -2$ e di raggio 2.

Ricordiamo che si definisce nel campo complesso l'esponenziale nel seguente modo:

$$e^z := e^x(\cos y + i \sin y)$$
 $\forall z = x + iy \in \mathbb{C}$

e guindi

$$e^{inx} = \cos nx + i \sin nx$$
.

Ciò consente di scrivere una serie trigonometrica

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos nx + b_n \sin nx)$$

nella forma

$$\sum_{n=0}^{+\infty} \gamma_n e^{inx}, \quad x \in \mathbb{R}.$$
 (1)

che chiamiamo serie bilatera.

Infatti ricordiamo che

$$\cos nx = \frac{e^{inx} + e^{-inx}}{2}, \qquad \sin nx = \frac{e^{inx} - e^{-inx}}{2i}$$

da cui si ha

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos nx + b_n \sin nx) = \gamma_0 + \sum_{n=1}^{+\infty} (\gamma_n e^{inx} + \gamma_{-n} e^{-inx}) = \sum_{n=-\infty}^{+\infty} \gamma_n e^{inx}$$

dove

$$\gamma_0 = \frac{a_0}{2}, \qquad \gamma_n = \frac{a_n}{2} + \frac{b_n}{2i} = \frac{a_n - ib_n}{2}, \qquad \gamma_{-n} = \frac{a_n}{2} - \frac{b_n}{2i} = \frac{a_n + ib_n}{2}.$$

Inoltre

$$a_n = \gamma_n + \gamma_{-n}$$
 $b_n = i(\gamma_n - \gamma_{-n}).$

Supponiamo che la serie bilatera converga assolutamente (basta supporre che le due serie numeriche

$$\sum_{n=0}^{+\infty} |\gamma_n|, \quad \sum_{n=-\infty}^{-1} |\gamma_n|$$

siano convergenti); sia f(x) la sua somma (che è 2π -periodica),

$$f(x) = \sum_{n=-\infty}^{+\infty} \gamma_n e^{inx},$$

allora necessariamente, dalla formula nota per i coefficienti di Fourier e dalla forma di γ_n , si ha per ogni $n\in\mathbb{Z}$

$$\gamma_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} f(x) dx.$$

I coefficienti γ_n così ottenuti si dicono coefficienti di Fourier di f e la serie

$$\sum_{n=-\infty}^{+\infty} \gamma_n e^{inx}, \quad x \in \mathbb{R}.$$

si dice serie di Fourier in forma esponenziale.

Osserviamo infine che e^{inx} è un sistema ortogonale; infatti

$$\int_{-\pi}^{\pi} e^{imx} e^{-inx} dx$$

è nullo se $n \neq m$ ed è uguale a 2π se n = m.

Appello del 20 febbraio 2009

Si scriva la serie di Fourier in forma esponenziale della funzione, periodica di periodo 2π , definita in $[-\pi,\pi[$ da

$$f(x) = \begin{cases} 2 & x \in [-\pi, 0[\\ 1 & x \in [0, \pi[, \infty[$$

calcolandone esplicitamente i coefficienti.

$$\gamma_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} f(x) dx = \frac{1}{2\pi} \left(2 \int_{-\pi}^{0} e^{-inx} dx + \int_{0}^{\pi} e^{-inx} dx \right)$$
$$= \frac{1}{2\pi} \left(2 \int_{-\pi}^{0} e^{-inx} dx + \int_{0}^{\pi} e^{-inx} dx \right)$$

Appello del 20 febbraio 2009

Soluzione:

$$\gamma_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} f(x) dx = \frac{1}{2\pi} \left(2 \int_{-\pi}^{0} e^{-inx} dx + \int_{0}^{\pi} e^{-inx} dx \right)$$
$$= \frac{1}{2\pi} \left(2 \int_{-\pi}^{0} e^{-inx} dx + \int_{0}^{\pi} e^{-inx} dx \right)$$
$$= \frac{1}{2\pi} \left(-2 \frac{1}{i n} [1 - (-1)^n] - \frac{1}{i n} [(-1)^n - 1] \right) = \frac{1}{2\pi i} \frac{1}{n} ((-1)^n - 1).$$

Appello del 20 febbraio 2009

La serie di Fourier in forma esponenziale della funzione data è

$$\begin{split} \gamma_0 + \sum_{n=1}^{+\infty} (\gamma_n e^{inx} + \gamma_{-n} e^{-inx}) = &^{k=-n} \\ \gamma_0 + \sum_{n=1}^{+\infty} \gamma_n e^{inx} + \sum_{k=-\infty}^{-1} \gamma_k e^{ikx} = \sum_{n=-\infty}^{+\infty} \gamma_n e^{inx} \\ \frac{3}{2} + \frac{1}{2\pi i} \sum_{n=1}^{+\infty} \frac{1}{n} ((-1)^n - 1) e^{inx} + \frac{1}{2\pi i} \sum_{n=-\infty}^{-1} \frac{1}{n} ((-1)^n - 1) e^{inx}. \end{split}$$