COMPUTER SCIENCE & IT

DIGITAL LOGIC

Lecture No. 09

Combinational Circuit

Comparator CKt

$$f(A_1B)=1=\Sigma(0,1,2,3)$$

= $\overline{A}B+\overline{A}B+\overline{A}B+\overline{A}B+\overline{A}B$
= $\overline{A}+\overline{A}$

Q.
$$f_{1}(A_{1}B_{1}C) = \Sigma(2,6,7)$$

 $f_{2}(A_{1}B_{1}C) = \pi(4,5,6,7) = \Sigma(0,1,2,3)$
 $f_{3}(A_{1}B_{1}C) = ?$
 $f_{1} = (f_{1}+f_{2}+f_{3}) = \Sigma(0,1,2,3,4,5,6,7)$
 $f_{3} = f_{1} = (f_{1}+f_{2}+f_{3}) = \Sigma(0,1,2,3,4,5,7)$
 $f_{4} = f_{1}+f_{2} = \Sigma(0,1,2,3,6,7)$
 $f_{5} = \Sigma(4,5) + (0,1,2,3,6,7)$
 $f_{5} = \pi(0,1,2,3,6,7) \rightarrow \max G$
 $f_{5} = \pi(0,1,2,3,6,7) \rightarrow \max G$
 $f_{5} = \pi(0,1,2,3,6,7) \rightarrow \max G$

MUX

What is MUX?

It is a combinational CKt having many i/p lines and one output line & on the banis of select line one of the i/p line is transferred to the O/p line.

1

2:1 MUX

Relation between number of input lines M and number of select

lines N:

Higher order MUX using lower order MUX

• 4:1 Using 2:1 MUX
$$\frac{4}{2} + \frac{2}{2} = 3 = 2^{2}$$

• 8:1 MUX Using 2:1 MUX
$$+2+1=7=2^3-1$$

• 16:1 MUX
$$\frac{\text{Using 2:1 MUX}}{8+4+2+1=15=(2-1)}$$

•
$$2^n: 1 \text{ MUX} \xrightarrow{\text{Using } 2: 1 \text{ MUX}} (2^n)$$

Implement 8: 1 MUX using 2: 1 MUX and design the

complete circuit.

$$32:1 \xrightarrow{4:1} (8+2) \xrightarrow{4:1 \text{ MUX}} + 1(2:1) \text{ MUX} = \frac{11(4:1) \text{ MUX}}{1(4:1) \text{ MUX}} \text{ but } 1(4:1) \text{ MUX}}{\text{ with as } (2:1) \text{ MUX}}$$

$$128:1 \xrightarrow{8:1} (16+2) \times 1 \text{ MUX} + 1(2:1) \text{ MUX} \longrightarrow \frac{19(8:1) \text{ MUX}}{\text{ but } 1(8:1) \text{ MUX}} \text{ with as } (2:1) \text{ MUX}}$$

$$256:1 \xrightarrow{8:1} (32+4) \times 1 \text{ MUX} + 1(4:1) \text{ MUX}$$

$$36(8:1) + 1(8:1) \text{ MUX} \text{ is used as } (4:1) \text{ MUX}$$

$$37(8:1) \text{ MUX}$$

32:1
$$4:1$$

 $32-i/p \rightarrow lines$
 $32-i/p \rightarrow lines$
 $8+2+1(2:1)$
 $4:1$
MUX
 $10(4:1) + 1(4:1) \text{ MUX}$
will be used as $2:1 \text{ MUX}$.

Implementation of Boolean function using MUX

Q. $f(A, B) = \Sigma(0, 1, 2) \rightarrow \text{implement this logical function} = \overline{AB+AB+AB}$

- (i) using 4 : 1 MUX
- (ii) using 2 : 1 MUX

(ii)					
1 (B+B)	-0			Io	I,
<u>B</u> —	-1	Ā·I	B	0	2
	So	+ A.B	В		3
2' 2° A B	A	$= (\overline{A} + \overline{B})$ $= \overline{A} \cdot \overline{B}$		1	<u>B</u>
0 0 0	f(0)B	$S(s) = \overline{A}\overline{B} + \overline{A}B$ $S(s) = \overline{B} + B + B + B$ $S(s) = \overline{B}, \overline{I}_{1} = B$	0-1	→ Ji	=1

#Q.
$$f(A,B,C) = \sum_{i=1}^{n} (0,1,3,4,7)$$
(i) unity 8:1 MUX
(ii) Unity 4:1 MUX

1 0 1 8:1
0 2 8:1
1 4 5 6 6 7 S₂ S₁ S₀

ABC

Q.
$$f(A,B,C,D) = (\overline{A}+B)(\overline{C}+D) = \overline{Z}$$

uning 4:1 MUX.

	Io	Γι	I2	Γ_3
00 AD	0	2	4	6
ol AD		3	5	7
o A D	8	10	12	14
II AD	9	П	13	15
	DA DA+			

$$f(A, 0, 0, 0) = \overline{A} \longrightarrow \overline{J}_0 = \overline{A} \quad f(A, 1, 0, 0) = 1$$

$$f(A, 0, 1, 0) = \overline{A} \quad D \longrightarrow \overline{I}_1 = \overline{A} \quad D \quad f(A, 1, 1, 0) = \overline{D}$$

$$\overline{I}_2 = 1$$

$$\overline{I}_3 = 1$$

- (i) implement it using 8:1 MUX
- (ii) implement it using 4:1 MUX

→ AB as select line

BC as select line

AC as select line

2 Minute Summary

→ MUX

Thank you

Soldiers!

