Apuntes de Leyes de Newton

IBC Lonngi Delgado Juan Carlos

Primera Ley de Newton

Dinámica: Rama de la física que se encarga del estudio del movimiento de los cuerpos, considerando las causas que lo provocan (Fuerza).

Primera Ley de Newton: Todo cuerpo permanecerá en estado de reposo o de Movimiento Rectilíneo Uniforme (MRU a velocidad constante), a menos que exista un agente externo (Fuerza) que lo saque de dicha condición.

Nodo ó Nudo: Es un punto donde convergen 3 o más cuerdas sometidas a fuerzas de tensión. Por lo general centro del eje cartesiano.

Diagrama de Cuerpo Libre: Es la representación gráfica de cada una de las fuerzas que actúan sobre un punto o un nodo o una masa.

Masa (m): es la cantidad de materia contenida en un cuerpo y se mide en Kg para el sistema internacional de unidades(S.I.) o sistema M.K.S.

Peso (w): Es la fuerza de atracción gravitacional que ejerce la tierra sobre los cuerpos y se mide en N para el S.I. de unidades o M.K.S.

Peso y masa son diferentes

Para calcular (w), se utiliza w=mg y sus unidades en S.I. $\left(kg\left(\frac{m}{s^2}\right)=\left(\frac{Kg\bullet m}{s^2}\right)=N..Newton\right)$

g= aceleración de la gravedad en S.I., es de 9.81 m/s 2 y en sistema ingles es de 32.2 ft/s 2

Segunda ley de Newton

La aceleración de un objeto es directamente proporcional a la <u>fuerza neta</u> actuando sobre el, e inversamente proporcional a la masa del objeto.

$$\vec{a} = \frac{\vec{F}_{net}}{m}$$
, donde $\vec{F}_{net} = \sum \vec{F}$

$$\vec{F}_{net} = m\vec{a}$$

Unidad de la fuerza en el SI de unidades:

1 newton =
$$1 \text{ N} = 1 \text{ (kg)(m/s}^2) = 1 \text{ kg m/s}^2$$

Movimiento Rectilineo Uniformemente Acelerado (MRUA)

En la mayoría de los casos, la velocidad de un objeto cambio mientras este se mueve. La Razón a la cual cambia la velocidad con respecto al tiempo se le llama aceleración.

 X_0 _y X_f Corresponde a distancias inicial y final respectivamente para el cuerpo o partícula Vo y Vf Corresponde a velocidad y final respectivamente para el cuerpo o partícula La aceleración posee las unidades de m/s^2 para el sistema internacional de unidades S.I.

$$si...V_o < V_f.....la..aceleracion..a..es..positiva...V_0 < V_f \Rightarrow a(+)$$

$$si...V_o > V_f.....la.$$
 aceleracion.a.es. negativa.. $V_0 > V_f \Rightarrow a(-)$

$$si...V_o = V_f....la.$$
 aceleracion.a.es..cero..... $V_0 = V_f \Rightarrow a = 0 \Rightarrow \Rightarrow$..es..un.M.R.U.

Expresiones matemáticas para MRUA y para MRU

Partiendo de condiciones iniciales y finales para un movimiento MRUA para el intervalo de tiempo

	MRU (Mov. Rectilíneo uniforme)	MRUA (Mov. Rectilíneo uniformemente acelerado)	
Ecuación de posición	$x_f = x_0 + v \cdot (t - t_0)$	$x_f = x_0 + v_0(t_f - t_0) + \frac{1}{2} \cdot a \cdot (t - t_0)^2$	Ecuación de posición
Ecuación de la velocidad	$v = \frac{x_f - x_0}{t_f - t_0}$	Ecuación de la velocidad (también llamada «Ecuación de la velocidad instantánea») $ \begin{matrix} v_f \!=\! v_0 \!+\! a \!\cdot\! (t \!-\! t_0) \\ v_f^2 \!=\! v_0^2 \!+\! 2 \!\cdot\! a \!\cdot\! (x_f \!-\! x_0)^2 \end{matrix} $	Ecuaciones de la velocidad
		Ecuación de la velocidad media $v_{med} = \frac{x_f - x_0}{t_f - t_0}$	
Ecuación de la aceleración	NO THENE	$a = \frac{v_f - v_0}{t_f - t_0}$	Ecuación de la aceleración

Tercera Ley de Newton (fuerza Normal)

Tercera Ley de Newton: A toda fuerza de acción (Peso w) le corresponde una fuerza de reacción (Normal N) de igual magnitud pero en sentido contrario

Diagrama de Fuerzas sobre un cuerpo de masa m

Ejercicio 1 No. 3 del libro Resnick

 $F_e = 1.021 \times 10^{-15} N$

Un electrón viaja en línea recta desde el cátodo de un tubo al vacío hasta el ánodo, que está a una longitud de 1.5 cm de distancia. Comienza con velocidad de cero y llega al ánodo a una velocidad de 5.8×10^6 m/s. (Considerar que el $m_{electrón} = 9.11 \times 10^{-31}$ kg y permanece constante).

- a) Calcular la fuerza eléctrica (Fe) sobre el electrón.
- b) Calcular la fuerza gravitacional sobre el electrón (Peso).

el..peso..w

Ejercicio 2 25 del Resnick

Una esfera cargada de 2.8x10 $^{-4}$ kg de masa está suspendida de una cuerda. Una fuerza eléctrica actúa horizontalmente sobre la esfera de modo que la cuerda forma un ángulo de $\theta=33^{\circ}$ con la vertical cuando esta en reposo. Hallar:

- a) la fuerza eléctrica sobre la esfera
- b) La tensión en la cuerda

Si el sistema se encuentra en reposo o en equilibrio, tenemos que $\Sigma Fy = 0, \Sigma Fx = 0$

$$\Sigma Fx = 0$$

$$Fe \cos 0^{\circ} + T \cos 123^{\circ} + w \cos 270^{\circ} = 0$$

$$Fe - 0.544T + 0 = 0$$

$$Fe = 0.544T - - - 1$$

$$\Sigma Fy = 0$$

$$Fe sen0^{\circ} + Tsen123^{\circ} + wsen270^{\circ} = 0$$

$$0 + 0.8386T - w = 0$$

$$T = \frac{w}{0.8386} = \frac{mg}{0.8386}$$

$$T = \frac{(0.00028kg)(9.81m/s^{2})}{0.8386}$$

$$T = 3.275x10^{-3}N$$

Sustituy endo. T..en.. 1

$$Fe = 0.544T - - - 1$$

$$Fe = 0.544(3.275x10^{-3} N)$$

$$Fe = 1.781x10^{-3} N$$

Ejercicio 3 12 del Resnick

Una cierta fuerza (F) da al objeto m_1 una aceleración de $12m/s^2$. La misma fuerza da al objeto m_2 una aceleración de 3.3 m/s^2 . ¿Qué aceleración daría la fuerza a un objeto cuya masa sea la suma de m_1 y m_2 ?.

$$Para....m_1$$

$$F = m_1 a$$

$$F = \left(12 \frac{m}{s^2}\right) (m_1)$$

$$m_1 = \frac{F}{12} - - - -1$$

 $Para...m_2$

$$F = m_2 a$$

$$F = \left(3.3 \frac{m}{s^2}\right) (m_2)$$

$$m_2 = \frac{F}{3.3} - - - -2$$

 $Para...m_3$

$$F = m_3 a_3$$

$$F = a_3 (m_1 + m_2) - - - 3$$

$$F = a_3(m_1 + m_2) - - - 3$$

$$F = a_3 \left(\frac{F}{12} + \frac{F}{3.3} \right)$$

Factorizando..F

$$F = (F)a_3 \left(\frac{1}{12(m/s^2)} + \frac{1}{3.3(m/s^2)}\right)$$

$$1 = a_3 \left(\frac{17}{44} \frac{s^2}{m} \right)$$

$$a_3 = \frac{44}{17} \frac{m}{s^2}$$

$$a_3 = 2.588 \frac{m}{s^2}$$

Ejercicio 4 36 del Resnick

Una persona arrastra una caja y ejerce una fuerza F=450N sobre la cuerda, la cual esta inclinada a 38° sobre la horizontal. El suelo ejerce una fuerza de resistencia (fricción Nw) a la izquierda de 125N como se muestra en la figura. Calcular:

- a) La aceleración de la caja si su masa es de 96 kg
- b) La fuerza Normal que ejerce el piso sobre el bloque (fuerza de reacción)

Diagrama de fuerzas o de cuerpo libre D.C.L.

$$F = ma$$

sobre..eje..el..X..es...el..movimiento

$$\Sigma F_x = (+)ma$$

 $F\cos 38^{\circ} + Fr\cos 180^{\circ} + N\cos 90^{\circ} + w\cos 270^{\circ} = ma$

$$0.7880(450N) - 125N + 0 + 0 = (96kg)a$$

$$a = \frac{354.604N - 125N}{96kg}$$

$$a = 2.391 \frac{m}{s^2}$$

Cálculo de la Fuerza Normal

$$F = ma$$

$$\Sigma F_{v} = ma_{v}$$

 $sobre...el..eje.Y..no..hay..movimiento.. \Rightarrow a_y = 0m/s^2$

ya..que.todo.movimiento..en.,eje..X..no..en..eje..Y

$$\Sigma F_{y} = m(0)_{y}$$

 $Frsen 180^{\circ} + Fsen 38^{\circ} + Nsen 90^{\circ} + wsen 270^{\circ} = 0$

$$0 + 0.6155F + N - w = 0$$

w = mg..(peso..del..bloque)

$$0 + 0.6155(450N) + N - (96kg)\left(9.81\frac{m}{s^2}\right) = 0$$

$$N = 941.76N - 276.975N$$

$$N = 664.785N$$

Esta.. fuerza.. la.. ejerce.. el.. piso.. sobre.. el.. bloque

es..decir..la..fuerza..de..REACCIÓN

Ejercicio 5 55 del Resnick

Tres bloques están unidos como se muestra en la figura, sobre una mesa horizontal carente de fricción y son jalados hacia la derecha con una fuerza F=6N. Si m_1 =4Kg, m_2 =2kg y m_3 =4kg calcular:

a) La aceleración del sistema

Prácticamente todo el sistema y los tres bloques se mueven a la derecha en un solo sentido y por lo tanto se ven afectados por la misma aceleración, por lo tanto se puede considerar como una sola masa total $M_{Total} = (m_1 + m_2 + m_3)$ que va a la derecha.

$$F = ma$$

$$sobre..el..eje..X..es..el..movimiento..de..todos..los..bloques$$

$$F_x = M_{total}a_x(+)$$

$$F_x = (m_1 + m_2 + m_3)a$$

$$a_x = \frac{F_x}{(m_1 + m_2 + m_3)}$$

$$a_x = \frac{6N}{(4 + 2 + 4)kg} \Rightarrow \Rightarrow a = 0.6 \frac{m}{s^2}$$

Cálculo de la tensión T_1 de los cables y tomamos como base bloque m_1

Fuerza de Acción

$$F = ma$$

$$sobre..el..eje..X....es..el..movimiento..del..bloque..m_1$$

$$\Sigma Fx = m_1 a_x (+)$$

$$T_1 \cos 0^\circ = \left(4kg\right) \left(0.6 \frac{m}{s^2}\right)$$

$$T_1 = \left(2.4 \frac{kgm}{s^2}\right) \Longrightarrow \Longrightarrow T_1 = 2.4N$$

Cálculo de la tensión de los cables y tomamos como base al bloque m2

$$F = ma$$

$$sobre..el..eje..X..es..el..movimiento..de..s$$

$$\Sigma F_x = m_2 a$$

$$T_2 \cos 0^\circ + T_1 \cos 180^\circ = (m_2)(a)(+)$$

$$T_2 - T_1 = (2kg)\left(0.6\frac{m}{s^2}\right)$$

$$T_2 - T_1 = 1.2N$$

$$T_2 = 1.2N + T_1$$

$$T_2 = 1.2N + 2.4N \Rightarrow \Rightarrow T_2 = 3.6N$$

Ejercicio 6 53 del Resnick (Maquina de Attwood) ó Principio de Elevador

Un hombre de 12kg de masa, desciende al suelo desde una altura de 12m sujetando una cuerda que pasa por una polea fija sin fricción atado a un saco de Arena de 8 kg de masa; calcular:

- a) La aceleración del sistema
- b) La tensión de la cuerda
- c) Con que velocidad llega el hombre al suelo

Diagrama de Cuerpo libre para la masa del hombre

Todo el movimiento es en el eje de las Y, el saco sube, por lo tanto la aceleración es positiva; lapersona que va a descender con la misma aceleración pero negativa.

Ecuación..para..el..saco Ecuación..para..la..persona

F = ma sobre..el..eje.Y..es..el..movimiento del,, saco..pero..sube $\Sigma F_{y} = m_{1}a_{y}(+)$ $Tsen90^{\circ} + w_{1}sen270^{\circ} = (m_{1})(a)$ $T - m_{1}g = (m_{1})(a)$ $T = m_{1}a + m_{1}g - ---1$ F = ma sobre...el..eje.Y..es..el..movimiento..de la..persona $\Sigma F_{y} = m_{2}a(-)$ $Tsen90^{\circ} + w_{2}sen270^{\circ} = -(m_{2})(a)$ $T - m_{2}g = -(m_{2})(a)$ $T = m_{2}g - m_{2}a - ---2$

Igualando 1 con 2 considerando que es la misma tensión para ambos, tenemos que:

$$m_{1}a + m_{1}g = m_{2}g - m_{2}a$$

Agrupando

 $m_{1}a + m_{2}a = m_{2}g - m_{1}g$
 $a(m_{1} + m_{2}) = g(m_{2} - m_{1})$
 $a = \frac{g(m_{2} - m_{1})}{m_{1} + m_{2}} - --3$
 $m_{2} = masa..de..persona$
 $m_{1} = masa..de..saco$
 $m_{2} > m_{1}$
 $m_{2} = masa..de..saco$
 $m_{3} > m_{1}$
 $m_{3} = masa..de..saco$
 $m_{4} = masa..de..saco$
 $m_{5} > m_{1}$
 $a = \frac{9.81m/s^{2}(12 - 8)kg}{(12 + 8)kg}$
 $a = 1.962m/s^{2}$

b) Cálculo de las tensiones, se puede calcular con las ecuaciones 1 ó 2

$$T = m_1 a + m_1 g - - - - 1$$

$$T = m_2 g - m_2 a - - - - 2$$

$$T = (8kg)(1.962m/s^2) + (8kg)(9.81m/s^2)$$

$$T = 94.176N$$

$$T = 94.176N$$

$$T = 94.176N$$

c) Condiciones de arranque para la masa de la persona (m_2) que va ir bajando y consideramos como nivel de referencia el piso.

De las ecuaciones de Cinemática, tenemos que:

$$-2a(Y_f - Y_o) = (V_{f_y})^2 - (Vo_y)^2$$

$$V_f^2 = -2a(Y_f - Y_0) + (Vo_y)^2$$

$$V_f^2 = -2(1.962m/s^2)(0m - 12m) + (0m/s)^2$$

$$V_f = \sqrt{47.088m^2/s^2}$$

$$V_f = 6.862m/s$$

La persona llega a piso con una velocidad de 6.86m/s desde una altura de 12m ó el saco sube a una velocidad de 6.82m/s y llega a una altura de 12m con respecto al piso.

Ejercicio 7 problema del Tippens

Para el siguiente sistema, calcular:

- a) La aceleración del sistema
- b) Las tensiones de las cuerdas

Considerar que el bloque m_1 y la mesa no presentan fricción y tampoco existe fricción en las poleas.

Deducción de las ecuaciones

Ecuación..para..m₁

$$F = ma$$

$$sobre..eje..y..el..movimiento \qquad F = \\ \Sigma F_y = m_1 a_y \qquad sobre \\ T_1 sen 90^\circ + w_1 sen 270^\circ = -(m_1)(a_y) \qquad \Sigma F_x \\ T_1 - m_1 g = -(m_1)(a_y) \qquad T_1 color \\ T_1 + m_1 a_y = m_1 g \qquad T_2 - \\ T_1 + 4a = (4kg)(9.81m/s^2) \qquad T_2 - \\ T_1 + 4a = 39.24N - - - - 1$$

Ecuación..para..m₂

$$F = ma$$

$$sobre..eje..x..el..movimiento$$

$$\Sigma F_x = m_2 a_x$$

$$T_1 \cos 180^\circ + T_2 \cos 0^\circ = -(m_2)(a_x)$$

$$T_2 - T_1 = -(1kg)(a)$$

$$T_2 - T_1 = -a - - - - 2$$

Ecuación..para..m₃

$$F = ma$$

sobre..eje..y..el..movimiento

$$\Sigma F_{v} = m_{3}a$$

$$T_2 sen 90^\circ + w_3 sen 270^\circ = (m_3)(a)(+)$$

$$T_2 - w_3 = m_3 a$$

$$T_2 - m_3 a = (m_3)(g)$$

$$T_2 - 2a = (2kg)(9.81m/s^2)$$

$$T_2 - 2a = 19.62N - - - - 3$$

Resolviendo..el..sistema

$$T_1 + 4a = 39.24N - - - - 1$$

$$T_2 - T_1 = -a - - - - 2$$

$$T_2 - 2a = 19.62N - - - - 3$$

$$a = 2.8028 m/s^2$$

$$T_1 = 28.0288 N$$

$$T_2 = 25.2256 N$$

Ejercicio 8 problema 56 del Resnick

Dos bloques están en contacto sobre una mesa carente de fricción, se aplica una fuerza horizontal sobre la masa m_1 . Hallar a) la aceleración del sistema b) la fuerza de contacto entre las dos masas (Normal entre m_1 y m_2) si $m_1 = 2.3$ kg, $m_2 = 1.2$ kg y F = 3.2 N.

Solución

a) Si consideramos que no existe fricción y que m_1 y m_2 se comportan como una sola masa, muy parecido al ejercicio 55 del Resnick, tenemos que:

$$F = ma$$

$$sobre..eje..x..el..movimiento$$

$$F_x = M_{total}a$$

$$F_x = (m_1 + m_2)a(+) \Rightarrow \Rightarrow \Rightarrow a = \frac{F_x}{(m_1 + m_2)}$$

$$a = \frac{3.2N}{(2.3kg + 1.2kg)} \Rightarrow \Rightarrow a = 0.9142 \frac{m}{s^2}$$

b) Para el cálculo de la fuerza de contacto entre m_1 y m_2 se requiere el diagrama de cuerpo libre del cuerpo m_1 y considerando que viaja a la derecha, tenemos que:

$$F = ma$$

$$sobre..eje..x..el..movimiento$$

$$\Sigma F_x = m_1 a(+)$$

$$F \cos 0^\circ + N_{21} \cos 180^\circ = m_1 a$$

$$F - N_{21} = m_1 a$$

$$N_{21} = F - m_1 a \Longrightarrow N_{21} = 3.2N - (2.3kg)(0.91428m/s^2) \Longrightarrow N_{21} = 1.0971N$$

Planos Inclinados Ejercicio 8 Problema 43 del Resnick

Una caja de m=110 kg está siendo empujada a velocidad constante por la rampa de 34° que se muestra en la figura.

- a) ¿Qué fuerza horizontal F se requiere?
- b) ¿Cuál es la fuerza ejercida por la rampa sobre la caja?

Diagrama de cuerpo libre sobre el bloque; para este tipo de ejercicio, se requiere que el movimiento del cuerpo, se considere como el eje X y el peso del cuerpo siempre se dirige de forma vertical descendente: como sube a velocidad constante, la aceleración es de cero a=0.

Ecuaciones

$$F = ma$$

$$sobre..eje..x..a.V = Kte... \Rightarrow ..a = 0$$

$$\Sigma F_x = ma_x$$

$$F \cos 326^\circ + w \cos 236^\circ = m(0)$$

$$0.8290F - 0.5591mg = 0$$

$$F = \frac{0.5591mg}{0.8290}$$

$$F = (0.6744)(110kg)(9.81m/s^2)$$

$$\Rightarrow \Rightarrow F = 727.9N$$

$$F = ma$$

$$sobre..eje..y..no..hay..movimiento$$

$$\Sigma F_y = ma_y.....como..a_y = 0$$

$$Nsen90^\circ + wSen236^\circ + Fsen326^\circ = (m)0$$

$$N - 0.829mg - 0.5591F = 0$$

$$N = 0.829(110kg)(9.81m/s^2) + 0.559(727.9N)$$

$$N = 1301.610N$$

Ejercicio 9 Problema 59 del Resnick

Un bloque de masa m_1 = 3.70kg esta sobre un plano inclinado de ángulo 28° y unido por una cuerda a un segundo bloque de m_2 =1.86kg que cuelga verticalmente como lo indica la figura. Calcular: (Considerar que la rampa y la polea son carentes de fricción)

- a) La aceleración del sistema
- b) La tensión de la cuerda

Solución

Diagrama de cuerpo libre sobre el bloque m_1 ; para este tipo de ejercicio, se requiere que el movimiento del cuerpo, se considere como el eje X y el peso del cuerpo siempre se dirige de forma vertical descendente; la aceleración para este caso no es de cero.

Ecuaciones

$$F = ma$$

$$sobre..eje..x..el..movimiento$$

$$\Sigma F_x = m_1 a(+)$$

$$T \cos 0^\circ + w \cos 242^\circ = m_1 a$$

$$T - 0.4694(3.7kg)(9.81m/s^2) = 3.7kg(a)$$

$$T - 3.7a = 17.040 - - - - 1$$

$$F = ma$$

$$sobre..eje..y$$

$$\Sigma F_y = ma.....como..a = 0$$

$$Nsen90^\circ + wSen242^\circ = 0$$

$$N - 0.8829mg = 0$$

$$N = 0.8829(3.7kg)(9.81m/s^2)$$

$$N = 32.04N$$

La Normal obtenida no permite obtener T y a, por lo tanto se realiza D.C.L. para m_2

Diagrama de Cuerpo libre para la masa m₂

Todo el movimiento es en el eje de las Y y m₂ baja, por lo tanto la aceleración es negativa.

Ecuación..para..el..saco

$$F = ma$$
 Re solviendo..1..con..2
sobre..eje..y..el..movimiento
$$T - 3.7a = 17.04 - - - - 1$$

$$\Sigma F_y = m_2 a$$

$$T + 1.86a = 18.246 - - - - 2$$

$$T = 17.84N$$

$$T - m_2 g = -(m_2)(a)$$

$$T = 17.84N$$

$$a = 0.2169 m/s^2$$

$$T + 1.86a = (1.86kg)(9.81m/s^2)$$

$$T + 1.86a = 18.246 - - - - 2$$

Ejercicios para entregar

Ejercicios 10 y 11

Obtener para c/u de los ejercicios, la aceleración y la tensión de la cuerda; descartar fricción entre superficies y las poleas

Ejercicio 10

Ejercicio 11

15 kg

10 kg

Respuestas: Ejercicio 10 a=4.905m/s² T=14.715N Ejercicio 11 a=3.924m/s² T=58.86N

Ejercicio 12

Un bloque con masa de 0.50 kg viaja con una rapidez de 2.0 m/s en la dirección x sobre una superficie plana sin fricción. Al pasar por el origen, el bloque experimenta durante 1.5 s una fuerza constante de 3.0 N que forma un ángulo de 60° con respecto al eje x. ¿Qué velocidad tiene el bloque al término de este lapso?

Respuestas: Ejercicio 12 $a=3 \text{ m/s}^2 \text{ V}_f=6.5 \text{ m/s}$

¿Qué desplazamiento presento en ese lapso de tiempo? Respuesta: $X_f = 6.375 \text{ m}$

Fuerza de fricción o fuerza Retardante.

Fuerza de fricción o rozamiento -Leyes de Newton

La fuerza de fricción o fuerza retardante, va en sentido contrario al movimiento del cuerpo y el cálculo de la misma es por medio de la siguiente expresión: $Ff = \mu N$ donde:

N = Fuerza Normal y se mide en Newton en el S.I.

 μ = Coeficiente de fricción y es un valor adimensional (existen 2 coeficientes de fricción)

Existen dos coeficientes de fricción dependiendo de las condiciones de movimiento del cuerpo, es decir, si el cuerpo se encuentra estático a se comienza a mover, se considera el coeficiente de fricción estático $\mu_{\scriptscriptstyle S}$ y si el cuerpo está en pleno movimiento se utiliza el coeficiente de fricción cinético $\mu_{\scriptscriptstyle K}$.

Por lo general, se cumple que $\,\mu_{\scriptscriptstyle S}>\mu_{\scriptscriptstyle K}$

Ejercicio 1 7-7 tippens

Una fuerza horizontal de 20N arrastra un bloque de 4kg a través de un piso, si el coeficiente de fricción cinético es de $\mu_K=0.2$, determinar:

- a) El valor de la fuerza Normal
- b) El valor de la fuerza de fricción ó fuerza RETARDANTE
- c) La aceleración del bloque

Todo..movimiento..en..eje..X

$$\Sigma Fx = ma$$

$$F\cos 0^{\circ} + Ff\cos 180^{\circ} = ma$$

$$F.-Ff = (+)ma$$

$$F - Ff = ma$$

$$a = \frac{F - Ff}{m} - - - -1$$

No..hay..movimiento..en..eje..Y

$$por..lo..tan to..a = 0$$

$$F = ma$$

$$\Sigma F_{v} = ma$$

$$\Sigma F_{v} = m(0)$$

$$Nsen90^{\circ} + wsen180^{\circ} = 0$$

$$N - w = 0$$

$$N = w$$

$$N = mg$$

$$N = \left(4kg\right)\left(9.81\frac{m}{s^2}\right)$$

$$N = 39.24N$$

Fuerza..de..fricción

$$Ff = \mu N$$

$$Ff = \mu_K N$$

$$Ff = (0.2)(39.24N)$$

$$Ff = 7.848N$$

$$a = \frac{F - Ff}{m} - - - -1$$

$$a = \frac{20N - 7.848N}{4kg}$$

$$a = 3.04 \frac{m}{s^2}$$

Ejercicio 2 7-24 tippens

Suponga una fricción de cero en el sistema que se muestra en la figura.

- a) ¿Cuál es la aceleración del sistema?
- b) ¿Cuál es la tensión T en la cuerda de union?. Considerar ausencia de fricción y F=500N

Respuestas $a = 3.57 \text{m/s}^2$ T = 71.5 N

Ejercicio 3 7-37 tippens

Considere dos masas A y B unidas mediante una cuerda y colgadas de una sola polea fija. A) ¿Cuál será la aceleración del sistema?, si la masa A es el doble de la masa B

Respuesta a=3.27m/s².

B) Si consideramos que A=4kg, ¿Cuál es la tensión en la cuerda? Respuesta: T=26.16N

Ejercicio 4 Internet

Considere dos masas m_1 = 3kg y m_2 = 5kg unidas mediante una cuerda y colgadas de una sola polea fija. (considerar que no existe fricción entre m_1 y la mesa)

- a) ¿Cuál será la aceleración del sistema?
- b) ¿Cuál es la tensión de la cuerda?

Respuesta: a=6.13m/s² T=18.39N