Seminární úlohy 5

- **1.** Do krystalické látky tvořené atomy typu **X** byla přimíchána malá příměs ve formě atomů typu **Y**. Každý atom zkoumané látky má ve svém nejbližším okolí *n*=6 stejně vzdálených atomů a atomy typu **X** a **Y** obsazují polohy v krystalu zcela nahodile (nedochází tedy např. k nějakému shlukování). Experimentální metodou jaderné magnetické rezonance jsme dokázali rozlišit dva signály:
 - a) Jeden intenzivní signál (o intenzitě I_a), který odpovídá případům, kdy byl atom **X** obklopen 6 atomy typu **X** (černé atomy); intenzita I_a je tedy přímo úměrná počtu situací na obrázku:

b) a jeden slabý signál (o intenzitě I_b) odpovídající případům, kdy je atom \mathbf{X} obklopen 5 atomy typu \mathbf{X} a jedním atomem příměsi \mathbf{Y} (světle obarvený atom);

intenzita I_b je tak přímo úměrná počtu těchto situací na obrázku:

Poměr intenzity signálu v případech b) vůči intenzitě signálu případů a) je: $I_b/I_a = 0,012$. Vypočítejte koncentraci c příměsi \mathbf{Y} (koncentraci atomů \mathbf{Y} v látce).

Řešení:

[Použijeme binomické rozdělení. Koncentrace příměsi **Y** v látce $c \sim 0,002$.]

2. Geigerův-Müllerův detektor umístěný v blízkosti radioaktivního vzorku cesia (obsahující isotop 137 Cs) naměřil během jedné hodiny 28 800 událostí – rozpadů \mathfrak{B}^- . Vypočítejte pravděpodobnost p, že během jedné sekundy detekuje **právě šest** událostí. Radionuklid 137 Cs má dlouhý poločas rozpadu (cca 30 let) a vzorek obsahuje obrovské množství těchto radioaktivních jader.

Řešení:

[Použijeme Poissonovo rozdělení. Pravděpodobnost, že dojde k 6 rozpadům za sekundu je $p \sim 0.1221$.]