STAT 510 Homework 6

Due Date: 11:00 A.M., Wednesday, February 28

- 1. Consider the plant density example discussed in slide set 6.
 - (a) For each of the tests in the ANOVA table on slide 38, provide a vector \mathbf{c} so that a test of $H_0: \mathbf{c}'\boldsymbol{\beta} = 0$ would yield the same statistic and p-value as the ANOVA test. (You can use R to help you with the computations like we did on slides 45 and 46 of slide set 6.) Label these vectors $\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3$, and \mathbf{c}_4 for the linear, quadratic, cubic, and quartic tests, respectively.
 - (b) Are $c'_1\beta$, $c'_2\beta$, $c'_3\beta$, and $c'_4\beta$ contrasts? Explain.
 - (c) Are $c'_1\beta$, $c'_2\beta$, $c'_3\beta$, and $c'_4\beta$ orthogonal? Explain.
- 2. Suppose H is a symmetric matrix. Prove that H is non-negative definite if and only if all its eigenvalues are non-negative. (If you wish, you may use the Spectral Decomposition Theorem in your proof.)
- 3. Consider the model

$$y_i = \mu + |x_i|\epsilon_i,$$

where for $i=1,\ldots,n,$ y_i is the response for observation i, μ is an unknown real-valued parameter, x_i is the ith known nonzero observation of an explanatory variable, $\epsilon_1,\ldots,\epsilon_n$ are independent and identically distributed as $N(0,\sigma^2)$, and $\sigma^2>0$ is an unknown variance component. Provide an expression for the best linear unbiased estimator of μ . Simplify your answer as much as possible.

4. Consider the Gauss-Markov model with normal errors $y = X\beta + \epsilon$, where $\epsilon \sim N(0, \sigma^2 I)$. For any nonsingular $p \times p$ matrix B, the model can be reparameterized by

$$X\beta = XB^{-1}B\beta = W\alpha$$
, where $W = XB^{-1}$ and $\alpha = B\beta$.

From a previous homework problem, we know the column spaces of X and W are identical so that $y = X\beta + \epsilon$ and $y = W\alpha + \epsilon$ are the same models. Suppose C is a $q \times p$ matrix of rank q < p. Then there exists a $(p - q) \times p$ matrix A such that

$$oldsymbol{B} = \left[egin{array}{c} oldsymbol{A} \\ oldsymbol{C} \end{array}
ight]$$
 has rank p and is therefore nonsingular.

Then we can write

$$oldsymbol{B}oldsymbol{eta} = \left[egin{array}{c} oldsymbol{A} \ oldsymbol{C}oldsymbol{eta} \end{array}
ight] oldsymbol{eta} = \left[egin{array}{c} oldsymbol{lpha}_1 \ oldsymbol{lpha}_2 \end{array}
ight] = oldsymbol{lpha},$$

where $\alpha_1 = A\beta$ and $\alpha_2 = C\beta$. If we let W_1 be the matrix consisting of the first p-q columns of $W = XB^{-1}$ and W_2 be the matrix consisting of the last q columns of $W = XB^{-1}$, then

$$oldsymbol{W}oldsymbol{lpha} = [oldsymbol{W}_1, oldsymbol{W}_2] \left[egin{array}{c} oldsymbol{lpha}_1 \ oldsymbol{lpha}_2 \end{array}
ight] = oldsymbol{W}_1oldsymbol{lpha}_1 + oldsymbol{W}_2oldsymbol{lpha}_2.$$

Now consider testing

$$H_0: C\beta = 0 \text{ vs. } H_A: C\beta \neq 0.$$

- (a) Rewrite these hypotheses in terms of the α parameter vector.
- (b) If you wanted to fit a reduced model corresponding to the null hypothesis, what model matrix would you use?

- (c) Consider the unbalanced experiment described in slide set 8. Assume the full model given on slide 6. Provide a matrix C for testing the main effect of time.
- (d) Provide a matrix A so that

$$B = \left[egin{array}{c} A \ C \end{array}
ight]$$

is a 4×4 matrix of rank 4.

- (e) Provide a model matrix for a reduced model that corresponds to the null hypothesis of no time main effect.
- (f) Find the error sum of squares for the reduced and full models.
- (g) Find the degrees of freedom associated with the sums of squares in part (f).
- (h) Compute the *F*-statistic for testing the null hypothesis of no time main effect using the sums of squares and degrees of freedom computed in parts (f) and (g).

5. Suppose

$$\left[\begin{array}{c} y_1 \\ y_2 \end{array}\right] \sim N\left(\left[\begin{array}{c} \mu \\ \mu \end{array}\right], \left[\begin{array}{c} 1/4 & 0 \\ 0 & 1 \end{array}\right]\right).$$

- (a) A linear unbiased estimator of μ has the form $\mathbf{a}'\mathbf{y} = a_1y_1 + a_2y_2$ for some real-valued constants a_1 and a_2 . What has to be true about a_1 and a_2 in order for $\mathbf{a}'\mathbf{y} = a_1y_1 + a_2y_2$ to be unbiased?
- (b) Write a simplified expression for the variance of $a'y = a_1y_1 + a_2y_2$ in terms of a_1 and a_2 .
- (c) Use the result of part (a) to write the answer to part (b) in terms of a single variable.
- (d) Use parts (a) through (c) and a calculus-based argument to derive the BLUE of μ .
- (e) Use the result on slide 12 of slide set 10 to derive the BLUE of μ .