Exploratory Data Analysis and Prediction of IBM Employees.

DataSet Source: https://www.kaggle.com/datasets/rohitsahoo/employee

This dataset have 1058 Rows and 36 Columns.

About Dataset

Education

- 'Below College'
- 'College'
- 'Bachelor'
- 'Master'
- 'Doctor'

EnvironmentSatisfaction

- 'Low'
- 'Medium'
- 'High'
- 'Very High'

JobInvolvement

- 'Low'
- 'Medium'
- 'High'
- 'Very High'

JobSatisfaction

- 'Low'
- 'Medium'
- 'High'
- 'Very High'

PerformanceRating

- 'Low'
- 'Good'
- 'Excellent'

'Outstanding'

RelationshipSatisfaction

- 'Low'
- 'Medium'
- 'High'
- 'Very High'

WorkLifeBalance

- 'Bad'
- 'Good'
- 'Better'
- 'Best'

This notebook is structured as follows:

- Exploratory Data Analysis: In this section, we explore the dataset by taking a look at the feature distributions, how correlated one feature is to the other and create some Seaborn and Plotly visualisations
- Feature Engineering and Categorical Encoding: Conduct some feature engineering as well as encode all our categorical features into dummy variables
- Implementing Machine Learning models: We implement a Random Forest and a Gradient Boosted Model after which we look at feature importances from these respective models

Let's Go.

```
import numpy as np
import pandas as pd
import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

EDA and Prediction of train.csv Dataset.

1. Exploratory Data Analysis.

```
In [3]: data=pd.read_csv('train.csv')
In [75]: #Top 5 Records.
    data.head()
```

Out[75]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Education
	0	41	1	Travel_Rarely	1102	Sales	1	2	Life Sci
	1	49	0	Travel_Frequently	279	Research & Development	8	1	Life Scio
	2	37	1	Travel_Rarely	1373	Research & Development	2	2	(
	3	33	0	Travel_Frequently	1392	Research & Development	3	4	Life Scio
	4	27	0	Travel_Rarely	591	Research & Development	2	1	Me

5 rows × 36 columns

Data quality checks

To look for any null values, we can just invoke the isnull call as follows

In [5]: data.isnull().any()

Out[5]:	Age	False
out[5].	Attrition	False
	BusinessTravel	False
	DailyRate	False
	Department	False
	DistanceFromHome	False
	Education	False
	EducationField	False
	EmployeeCount	False
	EmployeeNumber	False
	EnvironmentSatisfaction	False
	Gender	False
	HourlyRate	False
	JobInvolvement	False
	JobLevel	False
	JobRole	False
	JobSatisfaction	False
	MaritalStatus	False
	MonthlyIncome	False
	MonthlyRate	False
	NumCompaniesWorked	False
	Over18	False
	OverTime	False
	PercentSalaryHike	False
	PerformanceRating	False
	RelationshipSatisfaction	False
	StandardHours	False
	StockOptionLevel	False
	TotalWorkingYears	False
	TrainingTimesLastYear	False
	WorkLifeBalance	False
	YearsAtCompany	False
	YearsInCurrentRole	False
	YearsSinceLastPromotion	False
	YearsWithCurrManager	False
	dtype: bool	

In [6]: data.dtypes

```
int64
        Age
Out[6]:
        Attrition
                                       int64
        BusinessTravel
                                     object
        DailyRate
                                      int64
                                     object
        Department
        DistanceFromHome
                                      int64
        Education
                                      int64
        EducationField
                                     object
        EmployeeCount
                                      int64
        EmployeeNumber
                                      int64
        EnvironmentSatisfaction
                                      int64
        Gender
                                     object
        HourlyRate
                                      int64
        JobInvolvement
                                      int64
        JobLevel
                                      int64
        JobRole
                                     object
        JobSatisfaction
                                      int64
        MaritalStatus
                                     object
        MonthlyIncome
                                      int64
        MonthlyRate
                                      int64
        NumCompaniesWorked
                                      int64
        Over18
                                     object
        OverTime
                                     object
        PercentSalaryHike
                                      int64
        PerformanceRating
                                      int64
        RelationshipSatisfaction
                                      int64
        StandardHours
                                      int64
        StockOptionLevel
                                       int64
        TotalWorkingYears
                                      int64
        {\tt Training Times Last Year}
                                      int64
        WorkLifeBalance
                                       int64
        YearsAtCompany
                                      int64
        YearsInCurrentRole
                                       int64
        YearsSinceLastPromotion
                                      int64
        YearsWithCurrManager
                                      int64
        dtype: object
        categorical=data.select dtypes('object')
In [7]:
         print(categorical.columns)
        Index(['BusinessTravel', 'Department', 'EducationField', 'Gender', 'JobRole',
                'MaritalStatus', 'Over18', 'OverTime'],
               dtype='object')
        numerical=data.select dtypes('int64','float64')
In [9]:
         print(numerical.columns)
        Index(['Age', 'Attrition', 'DailyRate', 'DistanceFromHome', 'Education',
                'EmployeeCount', 'ÉmployeeNumber', 'EnvironmentSatisfaction',
                'HourlyRate', 'JobInvolvement', 'JobLevel', 'JobSatisfaction',
                'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked',
                'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction',
                'StandardHours', 'StockOptionLevel', 'TotalWorkingYears',
                'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany',
                'YearsInCurrentRole', 'YearsSinceLastPromotion',
                'YearsWithCurrManager'],
               dtype='object')
```

Distribution of the dataset:

Generally one of the first few steps in exploring the data would be to have a rough idea of how the features are distributed with one another. To do so, I shall invoke the familiar kdeplot function from the Seaborn plotting library and this generates bivariate plots as follows:

```
In [10]: sns.kdeplot(data['Age'])
Out[10]: <Axes: xlabel='Age', ylabel='Density'>
```



```
In [11]: sns.distplot(data['Age'])
Out[11]: <Axes: xlabel='Age', ylabel='Density'>
```



```
In [16]: fig, ax=plt.subplots(5,2,figsize=(9,9))
    sns.distplot(data['TotalWorkingYears'],ax=ax[0,0])
    sns.distplot(data['MonthlyIncome'],ax=ax[0,1])
    sns.distplot(data['YearsAtCompany'],ax=ax[1,0])
    sns.distplot(data['DistanceFromHome'],ax=ax[1,1])
    sns.distplot(data['YearsWithCurrManager'],ax=ax[2,0])
    sns.distplot(data['YearsSinceLastPromotion'],ax=ax[2,1])
    sns.distplot(data['PercentSalaryHike'],ax=ax[3,0])
    sns.distplot(data['YearsAtCompany'],ax=ax[3,1])
    sns.distplot(data['YearsSinceLastPromotion'],ax=ax[4,0])
    sns.distplot(data['TrainingTimesLastYear'],ax=ax[4,1])
    plt.tight_layout()
    plt.show()
```


In [17]: sns.histplot(data=data,x='BusinessTravel')

Out[17]: <Axes: xlabel='BusinessTravel', ylabel='Count'>

In [18]: sns.histplot(data=data,x='Department')

Out[18]: <Axes: xlabel='Department', ylabel='Count'>

Research & DevelopmentHuman Resources
Department

```
In [19]: sns.histplot(data=data,y='EducationField')
```

Out[19]: <Axes: xlabel='Count', ylabel='EducationField'>


```
In [22]: bins=[0,18,35,np.inf]
    labels=['Student','Freshers/Junior','Senior']
    data['AgeGroup']=pd.cut(data['Age'],bins,labels=labels)
    sns.histplot(data=data,y='AgeGroup')
```

Out[22]: <Axes: xlabel='Count', ylabel='AgeGroup'>

In [23]: sns.histplot(data=data,y='Gender')

Out[23]: <Axes: xlabel='Count', ylabel='Gender'>

In [24]: sns.histplot(data=data,y='JobRole')

Out[26]: <Axes: xlabel='Over18', ylabel='Count'>


```
In [27]: sns.histplot(data=data,x='OverTime')
```

Out[27]: <Axes: xlabel='OverTime', ylabel='Count'>


```
In [29]: sns.histplot(data=data,x='MaritalStatus')
```

Out[29]: <Axes: xlabel='MaritalStatus', ylabel='Count'>

In [31]: sns.histplot(data=data,x='Attrition')

Out[31]: <Axes: xlabel='Attrition', ylabel='Count'>

Correlation of Features

The next tool in a data explorer's arsenal is that of a correlation matrix. By plotting a correlation matrix, we have a very nice overview of how the features are related to one another. For a Pandas dataframe, we can conveniently use the call .corr which by default provides the Pearson Correlation values of the columns pairwise in that dataframe.

In this correlation plot, I will use the Plotly library to produce a interactive Pearson correlation matrix via the Heatmap function as follows:

```
In [33]: cor_mat=data.corr()
    mask=np.array(cor_mat)
    mask[np.tril_indices_from(mask)]=False
    fig=plt.gcf()
    fig.set_size_inches(60,12)
    sns.heatmap(data=cor_mat,mask=mask,square=True,annot=True,cbar=True,cmap="crest")

Out[33]: <Axes: >
```



```
Index(['Age', 'Attrition', 'BusinessTravel', 'DailyRate', 'Department',
                  'DistanceFromHome', 'Education', 'EducationField', 'EmployeeCount',
                  'EmployeeNumber', 'EnvironmentSatisfaction', 'Gender', 'HourlyRate', 'JobInvolvement', 'JobLevel', 'JobRole', 'JobSatisfaction',
                  'MaritalStatus', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked',
                  'Over18', 'OverTime', 'PercentSalaryHike', 'PerformanceRating',
                  'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel',
                  'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance',
                  'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion',
                  'YearsWithCurrManager', 'AgeGroup'],
                 dtype='object')
          continious=['Age','DailyRate','HourlyRate','MonthlyIncome','MonthlyRate','TotalWorking
In [35]:
          for var in continious:
In [42]:
               # BoxPlot...
               plt.figure(figsize=(10,5))
               plt.subplot(1,2,1)
               fig=data.boxplot(column=var)
               fig.set_xlabel(var)
               # HistPlot...
               plt.subplot(1,2,2)
               fig=data[var].hist(bins=20)
               fig.set_ylabel('No. of Employees')
               fig.set_xlabel(var)
               plt.show()
                                                           100
           60
                                                            80
           50
                                                        No. of Employees
                                                            60
           40
                                                            40
           30
                                                            20
           20
                                                             0
                                                                  20
                                                                           30
                                                                                    40
                                                                                             50
                                 Age
                                                                                                     60
                                 Age
                                                                                  Age
```


In [43]: data['TotalWorkingYears'].describe() count 1058.000000 Out[43]: mean 11.435728 8.016429 std min 0.000000 25% 6.000000 50% 10.000000 75% 16.000000 40.000000 max Name: TotalWorkingYears, dtype: float64

In [44]: categorical.head()

Out[44]:		Bus	inessTravel	Departm	ent Ed	ucationField	Gender	JobRole	MaritalStat	us Over18	OverTime
	0	Т	ravel_Rarely	S	ales	Life Sciences	Female	Sales Executive	Sing	gle Y	Ye
	1	Travel	_Frequently	Researc Developm		Life Sciences	Male	Research Scientist	Marri	ed Y	No
	2	Т	ravel_Rarely	Researc Developm		Other	Male	Laboratory Technician	Sing	gle Y	Ye
	3	Travel	_Frequently	Researc Developm		Life Sciences	Female	Research Scientist	Marri	ed Y	Ye
	4	Т	ravel_Rarely	Researc Developm		Medical	Male	Laboratory Technician	Marri	ed Y	Nι
4					-		-				•
In [45]:	da	ıta_ca	t=pd.get	_dummies(categor	rical)					
In [46]:	da	ıta_ca	t.head()								
Out[46]:		Busin	essTravel_N	Non- avel	nessTrave	el_Travel_Free	quently	BusinessTrav	vel_Travel_Rai	Depart rely	ment_Hun Resour
	0			0			0			1	
	1			0			1			0	
	2			0			0			1	
	3			0			1			0	
	4			0			0			1	
	5 r	ows ×	29 colum	ns							
4)							•
In [47]:	ทเ	meric	al.head()							
Out[47]:		Age	Attrition	DailyRate	Distanc	eFromHome	Educat	ion Employ	eeCount Em	nployeeNum	ber Envir
	0	41	1	1102		1		2	1		1
	1	49	0	279		8		1	1		2
	2	37	1	1373		2		2	1		4
	3	33	0	1392		2		4	1		5 7
		27	0	591		2		1	1		1
	5 r	ows ×	27 colum	ns							
4											•
In [49]:	da	ta_fi	.nal=pd.co	oncat([nui	merical	,data_cat]	, axis=	1)			
In [50]:	da	ıta_fi	nal.head	()							

Out[50]:		A4	tuitian Dai	la Data Dieta a sa Fra		Faluantina	FlaveaCave	t Frankriaski		Facility.
		ige At	trition Dai	lyRate DistanceFro	тноте	Education	EmployeeCoun	Employeent	ımber	ENVI
	0	41	1	1102	1	2		1	1	
	1	49	0	279	8	1		1	2	
	2	37	1	1373	2	2		1	4	
	3	33	0	1392	3	4		1	5	
	4	27	0	591	2	1		1	7	
	5 row	/s × 56	columns							
4	_	_	_							•
T [50]		.								
In [52]:		a_fina a_fina		nal.drop('Attrit	ion',axi	S=1)				
Out[52]:		Λαο	DailyPate	DistanceFromHom	o Educat	ion Emplo	waaCaunt Emn	lovooNumbor	Enviro	nmon
		Age	DallyKate	Distancerioniiioni	Luucat	ion Emplo	yeecount Linp	loyeertuilibei	LIIVIIO	
	0		1100			_				
		41	1102		1	2	1	1		
	1		279		8	1	1	2		
		49								
	1	49	279		8	1	1	2		
	1	49 2 37 3 33	279 1373		8	1 2	1	2		
	1 2 3	49 2 37 3 33 4 27	279 1373 1392		8 2 3	1 2 4	1 1 1	2 4 5		
	1 2 3 4	49 2 37 3 33 4 27 	279 1373 1392 591		8 2 3 2	1 2 4 1	1 1 1 1	2 4 5 7		
	1 2 3 4	49 2 37 3 33 4 27 5 57	279 1373 1392 591		8 2 3 2 	1 2 4 1	1 1 1 1 	2 4 5 7 		
	1 2 3 4 	49 2 37 3 33 4 27 57 4 49	279 1373 1392 591 405		8 2 3 2 	1 2 4 1 	1 1 1 1 	2 4 5 7 1483		
	1 2 3 4 1053	49 2 37 3 33 4 27 57 4 49 3 34	279 1373 1392 591 405 1490	1	8 2 3 2 1	1 2 4 1 2 4	1 1 1 1 1	2 4 5 7 1483 1484		
	1053 1054	49 2 37 3 33 4 27 5 57 4 49 6 34 6 28	279 1373 1392 591 405 1490 829	1	8 2 3 2 1 7	1 2 4 1 2 4 3	1 1 1 1 1 1	2 4 5 7 1483 1484 1485		
	1053 1054 1055 1056	49 2 37 3 33 4 27 57 4 49 5 34 6 28 7 29	279 1373 1392 591 405 1490 829 1496	1	8 2 3 2 1 7 5	1 2 4 1 2 4 3 3 3	1 1 1 1 1 1 1	2 4 5 7 1483 1484 1485 1486		

Build Basline Models

target=data['Attrition']

In [56]:

```
from sklearn.model_selection import train_test_split
In [58]:
         from sklearn.linear_model import LogisticRegression
          from sklearn.tree import DecisionTreeClassifier
         from sklearn.neighbors import KNeighborsClassifier
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.naive_bayes import GaussianNB
         from sklearn.svm import SVC
          from sklearn.metrics import accuracy score, classification report
         X_train,X_test,y_train,y_test = train_test_split(data_final , target ,test_size=0.2, )
In [60]:
In [61]:
         X_train.shape
         (846, 55)
Out[61]:
In [62]:
         X_test.shape
         (212, 55)
Out[62]:
In [65]:
         model=RandomForestClassifier()
         model.fit(X_train,y_train)
         y_pred=model.predict(X_test)
          print('Accuracy : ', accuracy_score(y_test,y_pred))
         print(classification_report(y_test,y_pred))
         Accuracy: 0.8915094339622641
                       precision
                                     recall f1-score
                                                        support
                    0
                             0.89
                                       0.99
                                                 0.94
                                                            182
                    1
                             0.89
                                       0.27
                                                 0.41
                                                             30
                                                 0.89
                                                            212
             accuracy
                             0.89
                                       0.63
                                                 0.68
                                                            212
            macro avg
                                       0.89
                                                            212
                             0.89
                                                 0.87
         weighted avg
         model=LogisticRegression()
In [67]:
         model.fit(X_train,y_train)
         y_predictions=model.predict(X_test)
          print('Accuracy:',accuracy_score(y_test,y_predictions))
         print(classification_report(y_test,y_predictions))
         Accuracy: 0.8632075471698113
                                     recall f1-score
                       precision
                                                        support
                    0
                             0.86
                                       1.00
                                                 0.93
                                                            182
                    1
                             1.00
                                       0.03
                                                 0.06
                                                             30
                                                 0.86
                                                            212
             accuracy
                             0.93
                                       0.52
                                                 0.50
                                                            212
            macro avg
                                                            212
         weighted avg
                             0.88
                                       0.86
                                                 0.80
         model=DecisionTreeClassifier()
In [69]:
         model.fit(X_train,y_train)
         y_predictions = model.predict(X_test)
          print('Accuracy : ',accuracy_score(y_test,y_predictions))
          print(classification_report(y_test,y_predictions))
```

```
Accuracy: 0.7830188679245284
                      precision recall f1-score
                                                     support
                   0
                           0.89
                                    0.86
                                              0.87
                                                        182
                   1
                           0.28
                                    0.33
                                              0.30
                                                         30
            accuracy
                                              0.78
                                                        212
                                                        212
                           0.58
                                    0.60
                                              0.59
            macro avg
                           0.80
                                    0.78
                                                        212
         weighted avg
                                              0.79
In [71]:
         model = KNeighborsClassifier()
         model.fit(X_train,y_train)
         y_predictions = model.predict(X_test)
         print('Accuracy', accuracy_score(y_test,y_predictions))
         print(classification_report(y_test,y_predictions))
         Accuracy 0.8254716981132075
                      precision recall f1-score
                                                     support
                           0.86
                   0
                                    0.95
                                              0.90
                                                        182
                   1
                                    0.07
                           0.18
                                              0.10
                                                         30
            accuracy
                                              0.83
                                                        212
                          0.52
                                    0.51
                                              0.50
                                                        212
            macro avg
                           0.76
                                    0.83
                                                        212
         weighted avg
                                              0.79
In [73]:
         model = SVC()
         model.fit(X_train,y_train)
         model_predictions = model.predict(X_test)
         print('Accuracy : ', accuracy score(y test,y predictions))
         print(classification_report(y_test,y_predictions))
         Accuracy: 0.8254716981132075
                      precision recall f1-score support
                           0.86
                                    0.95
                                              0.90
                                                        182
                   1
                                    0.07
                           0.18
                                              0.10
                                                         30
                                              0.83
                                                        212
            accuracy
                           0.52
                                    0.51
                                              0.50
                                                        212
            macro avg
                           0.76
                                    0.83
                                              0.79
                                                        212
         weighted avg
```

Insights

In above I use some Machine Learning Algorithm to find the Accuracy Score of Test data and Predict Data:

1. First I use a Train-Test Split to evaluate a machine learning model's ability to predict a certain outcome accurately when exposed to real-world data it's never seen before. In a train-test split, I split an original dataset into two subsets—a training dataset and a testing dataset. Depending on the nature and complexity of the data. Then find a Predict data and move to next step.

- 1. Next I use a Five Machine Learning Algorithm i.e. :
- "Random Forest Classifier" where Accuracy is 0.8915094339622641
- "Logistic Regression" where Accuracy is 0.8632075471698113
- "Decision Tree Classifier" where Accuracy is 0.7830188679245284
- "K Neighbours Classifier" where Accuracy is 0.8254716981132075
- "SVC" where Accuracy is 0.8254716981132075

In []: