CSCI 6100 Machine Learning From Data Fall 2018

HOMEWORK 3 Daniel Southwick 661542908 southd@rpi.edu

Exercise 1.13

(a) There will be two cases when h(x) makes an error approximating f(x). One is when y = f(x) and h(x) approximates correctly and one is when $y \neq f(x)$ and h(x) approximates incorrectly. In both cases h(x) will approximates f(x). So the error it makes:

$$P[error] = \mu * \lambda + (1 - \mu) * (1 - \lambda)$$

(b) When the performance of h(x) is independent of μ , we know that P[error] must be independent of μ

$$P[error] = \mu * \lambda + (1 - \mu) * (1 - \lambda) = 2 * \mu * \lambda - \mu - \lambda + 1$$

So $2 * \mu * \lambda - \mu = 0$ Thus $\mu = 0.5$

Exercise 2.1

- (a) Positive Rays: $m_H(N) = N + 1$. $m_H(1) = 1 + 1 = 2$, $m_H(2) = N + 2 = 3 < 2^2 = 4$, so 2 is a breakpoint for H
- (b)Positive Intervals: $m_H(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$, $m_H(2) = \frac{1}{2} \times 2^2 + \frac{1}{2} \times 2 + 1 = 4 = 4$, $m_H(3) = \frac{1}{2} \times 3^2 + \frac{1}{2} \times 3 + 1 = 4 = 7 < 2^3 = 8$, so 3 is a breakpoint for H
 - (c) Convex Set: $m_H(N) = 2^N = 2^N$. There's no breakpoints since $m_H(N) = 2^N$

Exercise 2.2

- (a)
- (i) Positive Rays: From Exercise 2.1, $m_H(N) = N + 1$ with break point k = 2,

$$m_H(N) = 2 + 1 = 3 \le \binom{N}{0} + \binom{N}{1} = N + 1 = 3$$

Thus the theorem holds

(ii) Positive Intervals: From Exercise 2.1, $m_H(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$ with break point k = 3,

$$m_H(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 = 7 \le \binom{N}{0} + \binom{N}{1} + \binom{N}{2} = \frac{1}{2}N^2 + \frac{1}{2}N + 1 = 7$$

Thus the theorem holds

- (iii)Convex Sets: From Exercise 2.1, $m_H(N) = 2^N$ with no break point. Thus no bound exists.
- (b) $m_H(N) = N + 2^{\lfloor N/2 \rfloor}$. There exists breakpoints k such that $m_H(k) < 2^k$. But from the theorem, for $N \leq k$, we can find a polynomial bound on $m_H(N)$ so $\lim_{x \to \infty} \frac{1}{N} log m_H(N) = 0$, but for actual $m_H(N)$, $\lim_{x \to \infty} \frac{1}{N} log m_H(N) = \frac{1}{2} log 2$, which is inconsistence with the hypothesis. Thus, $m_H(N)$ cannot be bounded by any polynomial and there does not exist any hypothesis set.

Exercise 2.3

- (a) Positive Rays: From Exercise 2.1, Smallest Breakpoint is 2, then $d_{vc} = 2 1 = 1$
- (b) Positive Intervals: From Exercise 2.1, Smallest Breakpoint is 3, then $d_{vc} = 3 1 = 2$
- (c) Convex Sets: From Exercise 2.1, Smallest Breakpoint is 2, then $d_{vc} = \infty 1 = \infty$

Exercise 2.6

$$(a)E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$$
 For the testing error (E_{out}) :
$$M = 1, N = 200, \delta = 0.05, \text{ so error bound } \sqrt{\frac{1}{2\times200}\ln\frac{2\times1}{\delta}} = 0.096$$

For the training error (E_{in}) :

$$M=1000, N=400, \delta=0.05$$
, so error bound $\sqrt{\frac{1}{2\times400}\ln\frac{2\times1000}{\delta}}=0.115$
Thus E_{in} has a higher error bar.

(b) If we reserve more examples for testing, we can find a better fitted g, but then there are also less examples as training set, then the testing of g could be come useless with a large $E_{test}(g)$ and E_{out} could not be approximate to 0 since we did not find a good g to begin with.

Problem 1.11

(a)

For the CIA application: the in-sample error:

$$E_{in} = \frac{1}{N} \sum_{i=1}^{N} (1 * C_{[h(x_i)=-1, f(x_i)=+1]} + 1000 * C_{[h(x_i)=+1, f(x_i)=-1]})$$

$$(C_{[n]} = 1 \text{ if } n \text{ is true, else } 0.)$$

For the Supermarket application: the in-sample error:

$$E_{in} = \frac{1}{N} \sum_{i=1}^{N} (10 * C_{[h(x_i)=-1, f(x_i)=+1]} + 1 * C_{[h(x_i)=+1, f(x_i)=-1]})$$

$$(C_{[n]} = 1 \text{ if } n \text{ is true, else } 0.)$$

Problem 1.12

(a)

$$E_{in}(h) = \sum_{i=1}^{N} (h - y_n)^2$$

$$= Nh^2 - 2h \sum_{i=1}^{N} y_n + \sum_{i=1}^{N} (y_n)^2$$

$$= N(h - \frac{1}{N} \sum_{i=1}^{N} y_n)^2 + \sum_{i=1}^{N} y_n^2 - \frac{1}{N} (\sum_{i=1}^{N} y_n)^2$$

Since both $\sum_{i=1}^{N} y_n^2$ and $\frac{1}{N} (\sum_{i=1}^{N} y_n)^2$ terms are constant, so $min(E_{in})$ reach its minimum when $h = \frac{1}{N} \sum_{i=1}^{N} y_i$.

(b)

$$E_{in}(h) = \sum_{n=1}^{N} |h - y_n|$$

We know that N data points are in the order of $y_1 \leq y_2 \leq y_3 \leq ... \leq y_N$, we suppose h lies between y_k and y_{k+1} . Now, if N > 2k, $y_1, y_2, ..., y_k, h, y_{k+1}, y_{k+2}, ..., y_{N-k+1}, ..., y_N$, then:

$$E_{in}(h) = \sum_{i=1}^{k} (y_{N-i+1} - y_n) + \sum_{i=k+1}^{N-k} |y_i - h|$$

If $N < 2k, y_1, y_2, ..., y_{N-k}, y_{N-k+1}, ..., y_k, h, y_{k+1}, ..., y_N$, then:

$$E_{in}(h) = \sum_{i=1}^{N-k} (y_{N-i+1} - y_n) + \sum_{i=N-k+1}^{k} |y_i - h|$$

If h moves to the left direction, then the first term decrease and the second term stays the same. So when $E_{in}(h)$ achieves its minimum, hmoves toward the middle position. So if N is odd, h equals to the median of the N data points, $h = y_{\frac{N+1}{2}}$; If N is even, h is between $y_{\frac{N}{2}}$ and $y_{\frac{N}{2}+1}$. Either case, half the data points are at most h_{med} and half the data points are at least h_{med} , thus the estimate will be in h_{med}

(c) If y_N is perturbed to $y + \epsilon$, where $\epsilon \to \infty$, h_{mean} will grow to unbounded. However, h_{med} will stay the same. h_{med} will always lie between $y_{N/2}$ and $y_{N/2+1}$ when N is even, or equal to $y_{N/2+1}$ when N is odd.