MAT02025 - Amostragem 1

O erro quadrático médio

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2021

▶ Para comparar um estimador enviesado com um estimador imparcial, ou dois estimadores com diferentes valores de enviesamento, um critério útil é o erro quadrático médio (EQM) da estimativa, medido a partir do valor da população que está sendo estimado.

Formalmente

$$\begin{split} EQM(\hat{\theta}) &= & E(\hat{\theta} - \theta)^2 \\ &= & E\{[\hat{\theta} - E(\hat{\theta})] + [E(\hat{\theta}) - \theta]\}^2 \\ &= & E\{[\hat{\theta} - E(\hat{\theta})]^2 + 2[\hat{\theta} - E(\hat{\theta})][E(\hat{\theta}) - \theta] + [E(\hat{\theta}) - \theta]^2\} \\ &= & E\{[\hat{\theta} - E(\hat{\theta})]^2\} + 2[E(\hat{\theta}) - \theta]E[\hat{\theta} - E(\hat{\theta})] + E[E(\hat{\theta}) - \theta]^2 \\ &= & Var(\hat{\theta}) + 2[E(\hat{\theta}) - \theta][E(\hat{\theta}) - E(\hat{\theta})] + [B(\hat{\theta})]^2 \\ &= & Var(\hat{\theta}) + [B(\hat{\theta})]^2. \end{split}$$

lacktriangle Note que se um estimador $\hat{\theta}$ é não enviesado para θ , então

$$EQM(\hat{\theta}) = Var(\hat{\theta}) + [0]^2 = Var(\hat{\theta}) = \sigma_{\hat{\theta}}^2.$$

No exemplo da aula passada, considerando o parâmetro populacional de interesse como a média, μ , temos $EQM(\hat{\mu}) = \sigma_{\hat{\mu}}^2 + B^2$, em que $B = m - \mu$.

- O uso do EQM como critério de precisão de um estimador equivale a considerar equivalentes duas estimativas que têm o mesmo erro quadrático médio.
- lsso não é inteiramente verdadeiro, porque a distribuição de frequência de erros $(\hat{\mu} \mu)$ não será a mesma para dois estimadores, caso eles apresentem viéses de valores diferentes.
- ▶ Entretanto, Hansen, Hurwitz e Madow (1953)¹ mostraram que se B/σ for menor que cerca de 0,5, as duas distribuições de frequência são quase idênticas em relação aos erros absolutos $|\hat{\mu} \mu|$ de tamanhos diferentes.

¹Hansen, M. H., Hurwitz, W. N. e Madow, W. G. (1953) **Sample Survey methods and theory**, John Wiley & Sons, Nova York, Vol. I, pg. 58.

- Mais uma vez suponha que $\hat{\mu}$ tem uma distribuição aproximadamente normal com média $m=\mathrm{E}\left(\hat{\mu}\right)$ e desvio padrão $\sigma=\sigma_{\hat{\mu}}$. Ainda, denote $EQM=EQM(\hat{\mu})=\sigma^2+B^2$.
- Então

$$\begin{split} \Pr\Big(|\hat{\mu} - \mu| \geq k\sqrt{\textit{EQM}}\Big) &= \frac{1}{\sigma\sqrt{2\pi}} \int_{\mu + k\sqrt{\textit{EQM}}}^{\infty} e^{-(\hat{\mu} - m)^2/2\sigma^2} d\hat{\mu} \\ &+ \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\mu - k\sqrt{\textit{EQM}}} e^{-(\hat{\mu} - m)^2/2\sigma^2} d\hat{\mu}. \end{split}$$

Table 1: Proporção de casos em que o valor verdadeiro, μ , não está incluído no intervalo $\hat{\mu} \pm k\sqrt{EQM}$, para diferentes níveis de viés em $\hat{\mu}$

B/σ	$\geq \sqrt{EQM}$	$\geq 1,96\sqrt{\textit{EQM}}$	$\geq 2,576\sqrt{EQM}$
0.0	0.32	0.050	0.0100
0.1	0.32	0.050	0.0100
0.2	0.32	0.050	0.0100
0.3	0.32	0.050	0.0098
0.4	0.32	0.050	0.0095
0.5	0.32	0.049	0.0090
0.6	0.32	0.048	0.0083
1.0	0.35	0.038	0.0041
1.5	0.38	0.021	0.0008
2.0	0.41	0.009	0.0001
2.5	0.42	0.003	-
3.0	0.44	0.001	-

Efeito do viés sobre a probabilidade de um erro maior que k√EQM

Comentários

- Esses resultados, para muitos propósitos práticos, concordam com as interpretações baseadas nos múltiplos correspondentes do desvio padrão quando uma estimativa não enviesada é usada.
 - Ou seja, quando $\sqrt{EQM} = \sqrt{\sigma^2 + B^2} = \sqrt{\sigma^2 + 0} = \sigma$.
- Da aula passada, temos

└─O uso da distribulção normal

O uso da distribuição normal

... a partir das propriedades da curva normal, as chances são

- ▶ 0,32 (cerca de 1 em 3) que o erro absoluto $|\hat{\theta} \theta|$ excede $\sigma_{\hat{\theta}}$.
- ▶ 0,05 (1 em 20) que o erro absoluto $|\hat{\theta} \theta|$ excede 1,96 $\sigma_{\hat{\theta}} \approx 2\sigma_{\hat{\theta}}$.
- ▶ 0,01 (1 em 100) que o erro absoluto $|\hat{\theta} \theta|$ excede 2,58 $\sigma_{\hat{\theta}}$.

Comentários

- Devido à dificuldade de garantir que nenhum viés insuspeitado entre nas estimativas, geralmente falaremos da precisão de uma estimativa em vez de sua acurácia (exatidão).
- A acurácia se refere ao tamanho dos desvios da verdadeira média μ , enquanto a precisão se refere ao tamanho dos desvios da média m obtida pela aplicação repetida do procedimento de amostragem.

Comentários

Pergunta: o que podemos concluir sobre $\hat{\theta}_1$, $\hat{\theta}_2$ e $\hat{\theta}_3$?

Exercícios

Exercícios

Para casa

► Atividade de avaliação I.

Próxima aula

- Amostragem aleatória simples;
- Definições e notação.

Por hoje é só!

Bons estudos!

