Assignment 1

Weishi Wang, ID 260540022

January 26, 2018

Problem 1. Use a truth table to determine if each statement is a tautology, contradiction, or contingency.

(a)
$$(P \lor Q) \Rightarrow \neg P$$

(b)
$$(P \Leftrightarrow Q) \land (Q \Leftrightarrow R) \Rightarrow (P \Leftrightarrow R)$$

(c) $[(P \oplus Q) \oplus \neg Q] \Leftrightarrow P$, where $P \oplus Q$ is defined by the following truth table:

$$\begin{array}{c|cccc} P & Q & P \oplus Q \\ \hline T & T & F \\ T & F & T \\ F & T & F \\ F & F & F \\ \end{array}$$

Solution. Solution for problem 1:

Thus, this is a contingency.

(b)

P	Q	R	$P \Leftrightarrow Q$	$Q \Leftrightarrow R$	$P \Leftrightarrow R$	$(P \Leftrightarrow Q) \land (Q \Leftrightarrow R)$	$(P \Leftrightarrow Q) \land (Q \Leftrightarrow R) \Rightarrow (P \Leftrightarrow R)$
\overline{T}	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T
T	F	T	F	F	T	T	T
T	F	F	F	T	F	F	T
F	T	T	F	T	F	F	T
F	T	F	F	F	T	T	T
F	F	T	T	F	F	F	T
F	F	F	T	T	T	T	T

Thus, This is a tautology.

(c)

P	Q	$P \oplus Q$	$\neg Q$	$(P \oplus Q) \oplus \neg Q$	$ [(P \oplus Q) \oplus \neg Q] \Leftrightarrow P$
\overline{T}	T	F	F	F	F
T	F	T	T	F	F
F	T	T	F	T	F
F	F	F	T	T	F
		!	'		

Thus, this is a contradiction.

Problem 2. Verify the following statements using only identities (see the list posted on MyCourese). Show all of your work and name the identity or identites used in each step.

(a)
$$\lceil (P \Rightarrow Q) \land P \rceil \Rightarrow Q \text{ is a tautology}$$

$$(b) \neg (P \land Q) \land (Q \Rightarrow P) \equiv \neg Q$$

$$(c) \neg [(P \lor Q) \lor [(Q \lor \neg R) \land (P \lor R)]] \equiv \neg P \land \neg Q$$

Solution. Solution for problem 2:

(a)

```
\begin{split} & [(P \Rightarrow Q) \land P] \Rightarrow Q \\ & \equiv [(\neg P \lor Q) \land P] \Rightarrow Q \text{ (Conditional)} \\ & \equiv [(\neg P \land P) \lor (Q \land P)] \Rightarrow Q \text{ (Distributive)} \\ & \equiv [(\mathbb{F}) \lor (Q \land P)] \Rightarrow Q \text{ (Complement)} \\ & \equiv (Q \land P) \Rightarrow Q \text{ (Identity)} \\ & \equiv \neg (Q \land P) \lor Q \text{ (Conditional)} \\ & \equiv \neg (Q \land P) \lor Q \text{ (DeMorgan's laws)} \\ & \equiv \neg Q \lor Q \lor \neg P \text{ (Associative)} \\ & \equiv \mathbb{T} \lor \neg P \text{ (Complement)} \\ & \equiv \mathbb{T} \text{ (Domination)} \end{split} Thus, this is indeed a tautology.
```

(b)

$$\begin{array}{l} \neg(P \land Q) \land (Q \Rightarrow P) \\ \equiv (\neg P \lor \neg Q) \land (Q \Rightarrow P) \text{ (DeMorgan's laws)} \\ \equiv (\neg P \lor \neg Q) \land (\neg Q \lor P) \text{ (Conditional)} \\ \equiv \neg Q \lor (\neg P \land P) \text{ (Factorization)} \\ \equiv \neg Q \lor \mathbb{F} \text{ (Complement)} \\ \equiv \neg Q \text{ (Identity)} \end{array}$$

(c)

$$\begin{split} &\neg[(P \lor Q) \lor [(Q \lor \neg R) \land (P \lor R)]] \\ &\equiv \neg[[(P \lor Q) \lor (Q \lor \neg R)] \land [(P \lor Q) \lor (P \lor R)]] \text{ (Distributive)} \\ &\equiv \neg[(P \lor Q \lor Q \lor \neg R) \land (P \lor Q \lor P \lor R)] \text{ (Associative)} \\ &\equiv \neg[(P \lor Q \lor \neg R) \land (P \lor Q \lor R)] \text{ (Idempotent)} \\ &\equiv \neg[(P \lor Q) \lor (\neg R \land R)] \text{ (Factorization)} \\ &\equiv \neg[(P \land Q) \lor \mathbb{F}] \text{ (Complement)} \end{aligned}$$

$$\begin{array}{l} \equiv \neg (P \vee Q) \ (Identity) \\ \equiv \neg P \wedge \neg Q \ (DeMorgan's \ laws) \end{array}$$

Problem 3. Of the following conditional and biconditional statements, which are true and which are false? Briefly justify your answers.

- (a) π is an integer if and only if $\sqrt{e+3}$ is a vowel.
- (b) 0 > 1 whenever 2 + 2 = 4.
- (c) If (a) implies (b), then pigs cannot fly.

Solution. Solution for problem 3:

(a)

Let $P = \sqrt[n]{e+3}$ is a vowel" and $Q = \pi$ is an integer".

The statement claims that $P \Leftrightarrow Q$.

$$P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$$

$$\equiv (\neg P \lor Q) \land (\neg Q \lor P)$$

 $\neg P = "\sqrt{e+3}$ is not a vowel". This statement is true.

So $(\neg P \lor Q)$ is true.

Also, $\neg Q =$ " π is not an integer". This statement is also true.

So $(\neg Q \lor P)$ is true as well.

Therefore, $(\neg P \lor Q) \land (\neg Q \lor P)$ is true

Thus, $P \Leftrightarrow Q$ is true.

The statement is true.

(b)

Let P = "2 + 2 = 4" and Q = "0 > 1".

The statement claims that $P \Rightarrow Q$.

$$P \Rightarrow Q \equiv \neg P \vee Q$$

 $\neg P = "2 + 2 \neq 4"$, which is false.

Also, since 0 < 1, Q is false.

$$\neg P \, \vee \, Q \equiv \mathbb{F} \, \vee \, \mathbb{F} \equiv \mathbb{F}$$

Thus, $P \Rightarrow Q$ is false.

The statement is false.

(c)

Let P = "(a)", Q = "(b)" and R = "pigs cannot fly"

The statement claims that $(P \Rightarrow Q) \Rightarrow R$.

$$P \Rightarrow Q \equiv \neg P \lor Q$$
,

From (a) and (b), we know that (a) is true and (b) is false.

Therefore, P is true and Q is false.

$$\begin{array}{l} \neg P \text{ is false.} \\ P \Rightarrow Q \equiv \neg P \vee Q \equiv \mathbb{F} \vee \mathbb{F} \equiv \mathbb{F} \\ \text{Then,} \\ (P \Rightarrow Q) \Rightarrow R \\ \equiv \mathbb{F} \Rightarrow R \\ \equiv \neg \mathbb{F} \vee R \\ \equiv \mathbb{T} \vee R \\ \equiv \mathbb{T} \end{array}$$

$$\equiv \mathbb{T} \text{ The statement is true.}$$

Problem 4. Symbolize the following English sentences in logic, using the abbreviation scheme provided.

- (a) "Thunder only happens when it's raining."
- T: thunder happens; R: it's raining
- (b) "For every positive integer n there is a prime number that is bigger than n but at most 2n."
- $I(x): x \ is \ a \ positive \ integer; \ P(x): x \ is \ a \ prime \ number; \ B(x,y): x \ is \ bigger \ than \ y.$
- (c) "Goldbach's Conjecture is true if every even integer greater than 2 can be written as the sum of two primes."
- G: Goldbach's Conjecture is true; E(x): x is an even integer; T(x): x is greater than 2; P(x): x is the sum of two primes.

Solution. Solution for problem 4:

(a)

 $R \Rightarrow T$

(b)

$$\forall$$
 n I(n) \exists x [P(x) \land B(x,n) \land ¬ B(x,2n)]

(c)

$$\forall \ x \ [(E(x) \land T(x) \land P(x)) \Rightarrow G]$$