In the Name of the Father: Inheritance Systems and the Dynamics of State Capacity

Èric Roca Fernández

GREQAM Aix-Marseille Université

December 12th, 2018

State capacity

State capacity

- Key concept in political sciences.
- Measures how far-reaching and capable states are at enforcing compliance of individuals.
 - o Douga et al. (2001), Ottervik (2013).
- Proxied by tax collection because "effective political systems should be able to extract resources, aggregate them, and use them for national purposes".
 - o Walder (1995).

Motivation

- State capacity is related to economic prosperity.
- Countries with longer histories of state-level institutions fare better in economic terms:
 - Chanda et al. (2007), Dincecco and Katz (2014) and Borcan et al. (2017).
- State capacity brings about property rights, market-supporting institutions and judicial systems.
- These indirectly affect economic growth.
 - Valeri et al. (2002), Besley and Persson (2017), Fukuyama (2012).

State capacity determinants

- Conflict for the control of resources.
 - $\circ~$ State capacity raises tax-collection efficiency \to increases victory prospects.
 - Besley and Persson (2008, 2009), Dincecco and Katz (2014), Lagerlöf (
- Power alternance and probability of continued rule.
 - Opposed groups can alternate in power and make transfers to their people. Building state capacity increases tax collection efficiency and the potential transfers to the group in power.
 - Besley and Persson (2008, 2009, 2013).
- Country wealth:
 - o It allows for greater expenditures on state capacity.
 - Besley and Persson (2009), Lagerlöf (2014).
- Other determinants:
 - Demand for public goods, political representativeness, homogeneity within a country.
 - Besley and Persson (2009), Persson and Tabellini (2004), Johnson and Koyama (2014), Gennaioli and Voth (2015).

This paper

What it does

 Theoretical analysis showing how gender equality in inheritance access affects the development of state capacity at its early stages.

Contribution

- Proposes a new, institutional factor.
- Inheritance rules and their degree of gender equality.
- Importance of the marriage market for landed heirs in fostering state building.
 - Generates a wealth effect.

This paper

- In the short run: gender-egalitarian inheritance norms boost state capacity.
 - New result, opposed to the literature.
- In the long run: gender-biased inheritance rules generate higher levels of state capacity.

Key elements of the model

- Dynastic continuity
 - Association between landholding and family name.
 - o An heiress stops dynastic continuity.
 - Heiresses brought lands to their husbands, who controlled them.
 - It dissociates wife's family name from landholdings.
 - Of utmost importance for medieval rulers. Dynastic continuity
- Inheritance rules
 - Male-cognatic primogeniture: the oldest brother inherits.
 - · Prefers men over women.
 - Historically used.
 - Absolute primogeniture: the oldest sibling inherits.
 - Treats both genders alike.
 - We exogenously fix inheritance rules, and these cannot be changed.

Key elements of the model

- Inter-state marriages
 - Common in medieval time.
 - Habakkuk (1995), Clay (1068), Girouard (1978).
 - o Increased estate size: heiresses "brought land to husbands".
 - Holt (1985), Rodrigues (1007), Debris (2005).
 - Generate a wealth effect: larger polities invest more in state capacity.
 Akin to Lagerlöf (2014).

Mechanisms

Male-cognatic primogeniture

Higher prob. of dynastic continuation ↑ state capacity Men are more likely to inherit.

Dynastic continuity was valued.

Less inter-state marriages ↓ state capacity

Men are overrepresented in the marriage market.

Absolute primogeniture

Lower prob. of dynastic continuations \downarrow state capacity

Men and women are equally likely to inherit

More inter-state marriages ↑ state capacity

More marriages can be arranged.

Wealth effect through land merging is higher.

The model: utiliy

- OLG framework.
- Large region divided into manors. Each manor is ruled by a Lord.
- Multiple Lords live for two periods and make decisions when adult.
- A homogeneous final good is produced using land: $Y_t^i = x_t^i$
- Utility:

$$\mathcal{U}_t^i = \log\left(c_t^i\right) + \gamma\log\left(x_{t'}^i\right)$$

- γ Prob. of dynastic continuation.
 - Depends on inheritance rules.
- $x_{t'}^{i}$ Landholdings the heir will receive.
- All Lords seek to expand their landholdings to transmit more to their heirs.
- Continuous conflict we model later.

The model: conflict

- From utility: Lords want to increase their landholdings.
- At each period, Lords battle all-against-all.
- A contest function determines the outcome of war:

$$x_{t'}^{i} = \frac{\left(1 + A_{t}^{i} + g_{t}^{i}\right) b_{t}^{i \phi}}{\sum_{i} \left(1 + A_{t}^{i} + g_{t}^{i}\right) b_{t}^{i \phi}} \sum_{i} x_{t}^{i}$$

• The number of soldiers b_t^i and state capacity $(A_t^i + g_t^i)$ affect the outcome of war.

Assumption

All Lords take the behaviour of competitors as given.

The model: budget constraint

- Budget constraint:
 - Two types of income:
 - \circ Part of production the Lord reserves for himself: ψ
 - Taxation on commoners part:

$$c_{t}^{i} + p_{b}b_{t}^{i} + p_{g}g_{t}^{i} = \psi Y_{t}^{i} + (1 - \psi) \frac{A_{t}^{i} + g_{t}^{i}}{1 + A_{t}^{i} + g_{t}^{i}} Y_{t}^{i}$$

 $egin{array}{lll} p_b & {
m Cost \ of \ hiring \ a \ soldier} & A_t^i & {
m State \ capacity \ level.} \ p_g & {
m Cost \ of \ increasing \ state \ cap.} & g_t^i & {
m Investment \ in \ state \ cap.} \ \psi & {
m Share \ of \ prod. \ Lords \ keep.} & Y_t^i & {
m Production \ of \ Lord \ }i. \end{array}$

Optimal choices

$$b_{t}^{i} = B\left(g_{t}^{i}\right) = \begin{cases} \frac{\gamma\phi(Y_{t}^{i}(A_{t}^{i} + g_{t}^{i} + \psi) - p_{b}g_{t}^{i}(A_{t}^{i} + g_{t}^{i} + 1))}{p_{b}(A_{t}^{i} + g_{t}^{i} + 1)(\gamma\phi + 1)} & \text{if } g_{t}^{i} > 0\\ \frac{\gamma Y_{t}^{i}\phi(A_{t}^{i} + \psi)}{(A_{t}^{i} + 1)p_{b}(\gamma\phi + 1)} & \text{if } g_{t}^{i} = 0 \end{cases}$$

$$g_{t}^{i} = G\left(g_{t}^{i}\right) = \max\left\{0, g \mid G_{1}\left(g\right) = 0\right\}.$$

$$(1)$$

• Properties:

- \circ State capacity building increases with the probability of dynastic continuation γ .
- \circ State capacity building increases with wealth Y_t^i , and marriages dynamically increase wealth.

Timing and dynamics

- Timing:
 - Lords decide b_t^i and g_t^i .
 - War takes place.
 - Lords offspring inherit and marry.
- Marriages:
 - Prefer wealthier spouses.
 - But distance between potential spouses below a threshold.
 - Outcome: positive assortative mating, softened by the restriction.
 - When marrying:
 - Landholdings are merged.
 - State capacity of thew landholding is the weighted average of its constituents.

The effects of inheritance systems

- Suppose a Lord has $\Phi \geq 1$ children.
- Prob. of dynastic continuation; direct effect on state-building:
 - Male-cognatic primogeniture: the dynasty continues as long as the Lord has at least one son: $\gamma^M=1-0.5^{\Phi}$
 - \circ Absolute primogeniture: the dynasty continues if the first born is a son: $\gamma^A=0.5$
 - More investments in state capacity under male-cognatic primogeniture.
- Marriages; indirect, wealth effect on state-building:
 - Male-cognatic primogeniture: male more likely to inherit: $1-0.5^{\circ}$.
 - Men are overrepresented in the marriage market for landed heirs.
 - Absolute primogeniture: equal probability for both genders.
 - \circ Same number of men and women in the marriage market \to more marriages.
 - More investments in state capacity under absolute primogeniture.
- Resort to simulations to determine the path of state capacity.

Simulations: parametrisation

Value	Source
5/12	Slicher and Hendrik (1963).
3	Russell (1958).
$1 + 1/10^{11}$	Arbitrarily set to have slow transitions.
1.375	Banegas (2010) and Sánchez et al. (2003).
1.2	Banegas (2010) and Verdès (2004).
7/8	$\gamma^{M} = 1 - 0.5^{\Phi}.$
1/2	$\gamma^{A} = 1 - 0.5$.
0.01	1/100 of the minimum initial size.
	$5/12$ 3 $1+1/10^{11}$ 1.375 1.2 $7/8$ $1/2$

- Short run: higher levels of state capacity under absolute primogeniture.
- Long run: higher levels of state capacity under male-cognatic primogeniture.

- The wealth effect dominates in the short run.
 - Faster process of unification under absolute primogeniture due to marriages.
 - In general, theory indicates that higher probability of continued rule fosters state capacity.
- *However* the possible number of marriages is limited.
- Eventually, these take place under male-cognatic primogeniture.
 - The wealth distribution becomes similar over time across inheritance rules.
 - $\circ~$ When this is the case, the effect of γ dominates.

Conclusions

- Theoretical model exploring the evolution of state capacity at its early stages.
- Introduces inheritances as an institutional factor explaining its evolution.
- Focuses on the effect of gender equality embedded in inheritance rules.

- Gender equality fosters state-building in the short run,
- despite offering lower probability of continued rule.
- This result highlights the importance of the wealth effect.
- In the long run, gender-discriminating rules boost state capacity more.
 - Result in line with previous literature.
 - Rationalises the historical use of discriminating inheritance practices.

Dynastic continuity

- The importance of dynastic continuity was critical in medieval time.
- Lords resorted to strategies to avoid facing the exctinction of the dynasty.
- Historical examples:
 - Robert Marmyon specified his heir should "take the name Marmyon" to avoid "extinction [...] and to ensure that its estates would continue in the name of Marmyon", Payling (1992).
 - The Drayton family married an heiress with a non-heir son while bequeathing to a male relative, Payling (2001).
 - The Marquess of Halifax disinherited his daughter and demanded his heir adopted his family name, Clay (1968).
 - Wills specify heirs should adopt testator's family name and bear arms unchanged, Cokayne (1887).

