

计算机组织与体系结构

Computer Architectures

陆俊林

北京大学本科生主干基础课

第四讲 RISC和MIPS指令(1)

本讲要点

首先简介RISC兴起的历程,其次分析MIPS指令的设 计原则和主要特点,然后按照指令格式分类讲解主要的 MIPS指令,本讲主要分析R型和I型的典型指令,其他指令 类型将在下一讲讲解。

阅读教材"COD":第2章,附录E

主要内容

通过学习本课程 了解计算机的发展历程,理解计算机的组成原理,掌握计算机的设计方法

- I RISC的发展变迁
- II MIPS指令的主要特点
- Ⅲ MIPS指令分类说明:R型
- Ⅳ MIPS指令分类说明: I型

RISC的先驱,两位传奇人物

戴维·帕特森 David Patterson 1947年出生

约翰·亨尼西 John Hennessy 1953年出生

John Hennessy

- № 1977年,进入斯坦福大学任职
- № 1981年, 领导RISC微处理器的研究小组
- № 1984年, 共同创立MIPS计算机系统公司
- 1989年~1999年,先后担任斯坦福大学计算机系统实验室主任、计算机系主任和工程学院院长等
- № 2000年至2016年,任斯坦福大学校长
- № 2018年,出任Alphabet董事长

约翰·亨尼斯 John Hennessy 1953年出生

IEEE Medal of Honor "for pioneering the RISC processor architecture and for leadership in computer engineering and higher education"

MIPS公司的商业兴衰

- № 1984年,MIPS计算机系统公司成立
- № 1988年,SGI公司在其计算机产品中采用MIPS处理器
- № 1989年,MIPS第一次上市
- № 1992年, SGI收购MIPS, 更名为MIPS技术公司
- 1998年, MIPS再次上市
- 2012年, Imagination Technologies收购MIPS

- ❷ MIPS处理器广泛应用的领域:
 - 。数字电视、机顶盒、蓝光播放器、游戏机、网络设备等

MIPS指令的发展

1985年,R2000

1990年,R3000

1999年 以MIPS II为基础, 增加了MIPS III/IV/V的部分特性

个人计算领域 CISC vs. RISC

Android activations (est.)

iOS shipments

Windows
Mobile/Phone

Windows PC shipments

个人计算机的市场出货量(2009-2016)

📕 Lenovo 🔚 HP Inc** 📗 Dell 📕 Asus* 📖 Apple 📒 Acer 🔳 Toshiba* 🖡

智能手机的市场出货量(2013-2016)

智能手机操作系统的市场份额(2009-2016)

中国的智能手机市场份额(2014-2016)

主要内容

通过学习本课程 了解计算机的发展历程,理解计算机的组成原理,掌握计算机的设计方法

I RISC的发展变迁

- II MIPS指令的主要特点
- Ⅲ MIPS指令分类说明:R型
- Ⅳ MIPS指令分类说明: I型

MIPS的设计指导思想

● MIPS的全称

Microprocessor without Interlocked Piped Stages

▶ 主要关注点

- 。减少指令的类型
- 。降低指令复杂度

❷ 基本原则

A simpler CPU is a faster CPU.

MIPS指令示例

❷ 装载

。格式: lw \$8,(\$19)

。操作:以19号寄存器的内容为地址,取出存储器中的32位数据,存入8号寄存器

❷ 加法

。格式: add \$10,\$9,\$8

。操作:将8号和9号寄存器的内容相加,结果存入10号寄存器中

▶ 存储

。格式: sw \$10,32(\$19)

。操作:将10号寄存器的内容存入存储器,地址为19号寄存器的内容加32

MIPS的通用寄存器(32个,每个都是32位宽)

编号	名称	用途	编号	名称	用途
0	\$zero	The Constant Value 0	24-25	\$t8-\$t9	Temporaries
1	\$at	Assembler Temporary	26-27	\$k0-\$k1	Reserved for OS Kernel
2-3	\$v0-\$v1	Values for Function Results and Expression Evaluation	28*	\$gp	Global Pointer
4-7	\$a0-a3	Arguments	29*	\$sp	Stack Pointer
8-15	\$t0-\$t7	Temporaries	30*	\$fp	Frame Pointer
16-23*	\$s0-\$s7	Saved Temporaries	31*	\$ra	Return Address

^{*} Preserved across a call

通用寄存器使用示例

以下指令与对应注释中的指令相同

add \$t0,\$s2,\$t0 # add \$8,\$18,\$8

编号	名称	用途
8-15	\$t0-\$t7	Temporaries
16-23	\$s0-\$s7	Saved Temporaries

sw \$t0,40(\$s3) # sw \$8,40(\$19)

MIPS指令示例

假设变量和寄存器的对应关系如下

f
$$\rightarrow$$
 \$s0 g \rightarrow \$s1 h \rightarrow \$s2 i \rightarrow \$s3 j \rightarrow \$s4

$$f = (g + h) - (i + j)$$

```
add $t1, $s3, $s4
add $t2, $s1, $s2
sub $s0, $t2, $t1
```

MIPS指令的主要特点(1)

- ⑤ 固定的指令长度 (32-bit, 即1 word)
 - 。简化了从存储器取指令

x86指令

- 长度不确定
- 最短1个字节
- 长可达15个字节

模型机的CPU和存储器

x86指令不同长度的使用比例

- 整数指令平均长度2.8个字节
- 浮点指令平均长度4.1个字节

MIPS指令的主要特点(2)

只有Load和Store指令可以访问存储器

例如,不支持x86 指令的这种操作:

ADD AX, [3000H]

MIPS指令的主要特点(3)

❷ 简单的寻址模式

。简化了从存储器取操作数

lw \$8,(\$19)
sw \$10,32(\$19)

MOV EBX, 40

MOV AL, BL

MOV ECX, [1000H]

MOV [DI], AX

MOV DX, [BX+SI*2+200H]

MIPS指令的主要特点(4)

- № 指令数量少,指令功能简单
 - 。一条指令只完成一个操作,简化指令的执行过程

影响

- 处理器设计简单
- 处理器运行速度快
- 编程复杂
- 程序代码量大
- 需要优秀的编译器

MIPS指令

OPCOD		E CONVER	RECORD, A	ASCIE:	SYMP	IOLS:		147	S
Mark	11 1095	CENTRE			W.		Deck.	WHEN !	X30211
gorde	Suice	Back	HILLY	(hep)	den.	Chan	man .	shep.	Chir.
51.940	(910)	0.69		mail	1946	dobas	mal	mal	pulse.
m	-	-117	N 700	-	-	765	100		- 12
		100	IN 9911		- 1	300	47	41	- 16
1	400	=3	96 (90.0)		- 1	NYS	99	- 42	- 98
281	809	=d	00-1011	_3	- 3	HTX.	-87	42	.45
70.5	#11C.	mm.2	100,000	-		11111	- 10	- 11	. 10
0.06			100,0111	- 3		DWD	-0.0	40	
Silver !	AFTE :	and.	100-0133			ALK	10	/44	. *
REST.	9040	const.	99-6111	. 7	- 7	1963	-71	47	- 6
e-011			tio time	- 8		80.	123	- 44	. 24
mil4(-e)	pain.		DIC THU	9-	. 18	HT	73	45	
and the	denter)		in 1011			LF	. 19	-	- J
MILLS.	3105		100,1000			YT	- 73	- 6:	. K
enti	Manageria	the second	loc time	- 17	- 1	19	-	- 60	- 5
april.	been by	11-11-3	200 1111	137	. 4	CIE	17	44	9d .
8/8/5		1911.00	De tro	115	- ;	10	3	- 27	9
300	Name .	time of	199 3111				70	- 1	9
en.	9000		ar one	1	17	DCE			
(9)	4040	- 1	Int. 6001		17	DCI	80	35	9
	9610	most.	EC 0011		10	100.0	80	22	
	4010	more pro-	PO. 0011	- 10	- 10	18.0	10	79	÷
			DE COM	21	10	74.54	10	27	- 6
						117.70		76	- 12
			DE 0031		16	8000	90	32	*
		-	SEC TONS		−ii	THE P	10	-51	-÷-
	militar.		E: 100		100	PM.	100	70	
	411		E 100		14	2130	m	Ta	
	200		E 100		- 65	THE.	111	- 6	
			lic iiia	- 14	-1	100	-	-2	-
			DC 1000	29	14	633	10	- 52	
			in 110		14	88	94	26	1
			91 1111		- 17	418	- 10	- 7	
_	-		15.000	-12	- 20	THE	+	-ŵ	
-	4000	on of	10 000		21	4	-	40	
200	200	-	10 00 11		22	1	- 68	43	2
-	200		19-2011		25		-	62	
-	400	01.47	10.000	72	- 31	÷	1111	-11	-
No.	-	- al	10.000		25	- 6	111	60	
-	0.10		10.011		74		1007	44	- 7
	40-0		har étro		27	70.1	103	407	
-			HIT YAM	- 10	- 28	$\overline{}$	100	-6	+
100			iii iiii		25	- 3-	149	40	- î
ten i	311		te terr		24		100	Fix	1
-	active .		19 2010		- 26		107	- 0:	- 6
			110 110	- 62	- 5		100	- 00	-1
			10 110		34		109	442	
me t			100 1000		34		1100	- 50	
-			18 1111		38	- 1	111	16	
1	191	1.13	TOTAL	- 41	717	-1	113	78	- F
ried T	Agen	a mid	11 000		21	1	010	. 15	4
back.	4.14	2.042	11,0610		30	20	1100	11	· F
2021	burbs.	TOTAL.	13.0001	.79	30		119	. 19	
	1-1	201412	fit one	- 11	31	-	7110	- 14	-
100		n. 611 Z	13:0000		331	2	110	. 75	*
had:	0.000	a-ided.	11.000		74		1100	16	*
		a may	21.4650		181	7	110	99	
		Diff.	†11-1966	- 34	-30	_	130		1
meri .		4.39 4	11.7	99	36		100	19	¥
Ti-me		and.	11 1000	194	34		633	- 79	- 10
		a med f	11,100.0		39	10	0.03	- 15	1
		2.07	111111111111111111111111111111111111111	943	- 10	_	178	-31	_
			17.100	65	36	-	123	10	
wicz:									
micri ment		7	10 1000	49	Asi		tin ttr	10	-

ORGANICS SARE CONCERNOUS ARES STREET, S.

11-decode (17.3x)				
(i) operatio(vv (ii) ::-	Clark Chinal R	BHC27.219-	05 har (19 has) f -	= progles.
97 BHILDS 211 211 2113	w(Hins)/==	(Bradito)		

IEEE 754 FLOATING POINT

0

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS
D Status Sta

HD - Hearth Sieley, CAF - Star Mode, St. - Stangeler Level, St. - Starting Stability

ĸ	CEPT	ON CC	OUS			
F	-0.0	7 Frame	Case of Exception	Frame	F.7-came	Cause of Enception
Γ	-	-	Statematic Standards		Try.	Mindiguiso Escoption
ľ	4	ARH	Address Toror Escapions (Sout or Inconstruor Sout)	100	91	Eastwar hamation Haraghton
I	9	ABIN	Aldrea teror exception (store)	18	the	Coprocessor Connections and
Ī		/HIL	mar time on testration troub	-13	(De	Archowite Chariffee Enception
ľ	2	(mm)	Solar more	12	77	Trep
ľ	-	744	Femal Exceptors	13	775	Thighly Post Tacabini

5/2E DOSFIESS (10)* for Disk, Communication; 2* for Manuary)
Size	Prize	Prize	Prize	Prize		
Size	Prize	Prize	Prize	Prize		
Size	Prize	Prize	Prize	Prize	Prize	
Size	Prize	Prize	Prize	Prize	Prize	Prize
Size	Prize	Prize	Prize	Prize	Prize	Prize
Size	Prize	Prize	Prize	Prize	Prize	Prize
Size	Prize	Prize	Prize	Prize	Prize	Prize
Size	Prize	Prize	Prize	Prize	Prize	Prize
Size	Prize	Prize	Prize	Prize	Prize	Prize
Size	Prize					
Size	Prize	Prize				

10² 2³ Kilo 10¹¹ 2³ Pen 10² ent) 10¹¹ tent 10² 2³ Mago 10¹¹ 2³ Eta 10² ence 10² dh 10² 2³ Ten 10² 2³ Veta 10² ence 10² dh 10² 2³ Ten 10² 2³ Veta 10² pec 10² and

Copyright 2004 by Claryse, Inc., All rights merced From Patients and Gennery, Company Objections and Genne. 4th ed.

MBPS Reference Data Card

- purp

1.2

14

MIPS指令的基本格式

▶ R: Register, 寄存器

I: Immediate, 立即数

● J: Jump, 无条件转移

R	opcode			rs		rt		rd		shamt		funct
	31	26	25	21	20	16	15	11	10	6	5	0

I	opcode		rs		rt		immediate			
	31	26	25	21	20	16	15		0	

J	opc	ode		address	
	31	26	25		0

不同维度的指令分类(示例)

运算指令	add rd, rs, rt sll rd, rt, shamt	addi rt,rs,imm slti rt,rs,imm	
访存指令	/	lw rt, imm(rs) sw rt, imm(rs)	
分支指令	jr rs	beq rs, rt, imm	j addr
	R型指令	I型指令	J型指令

主要内容

通过学习本课程 了解计算机的发展历程,理解计算机的组成原理,掌握计算机的设计方法

- RISC的发展变迁
- MIPS指令的主要特点
- Ⅲ MIPS指令分类说明:R型
- MIPS指令分类说明: I型

不同维度的指令分类(示例)

运算指令	add rd, rs, rt sll rd, rt, shamt	addi rt,rs,imm slti rt,rs,imm	
访存指令		lw rt, imm(rs) sw rt, imm(rs)	
分支指令	jr rs	beq rs, rt, imm	j addr
	R型指令	I型指令	J型指令

R型指令的格式(1)

- ▶ R型指令格式包含6个域
 - 。2个6-bit域,可表示0~63的数
 - 。 4个5-bit域, 可表示0~31的数

用于指定指令的类型。对于所有R型指令,该域的值均为0

opcode

与opcode域组合,精确地 指定指令的类型

funct

6-bit 5-bit 5-bit 5-bit 6-bit

R	opc	opcode		rs		rt		rd		namt	funct	
	31	26	25	21	20	16	15	11	10	6	5	0

R型指令的格式(2)

- rs Source Register
 - 。通常用于指定第一个源操作数所在的寄存器编号
- rt Target Register
 - 。通常用于指定第二个源操作数所在的寄存器编号
- rd Destination Register
 - 。通常用于指定目的操作数(保存运算结果)的寄存器编号
- № 5-bit的域可表示0~31,对应32个通用寄存器

	6-bit opcode		6-bit 5-bit			,	5-bit			5-bit		5-	bit	6-bit		
R			opcode rs				rt		rd		shamt		funct			
	31 26		25	25 21 20			16	15 11		11	10 6		5 0		0	

R型指令的格式(3)

- shamt shift amount
 - 。用于指定移位指令进行移位操作的位数
 - 。5-bit的域可表示0~31,对于32-bit数,更多移位没有实际意义
 - 。对于非移位指令,该域设为0

	6-bit	t	ţ	5-bit		5-bit			5-bit			5-bit		6-bit		
R	opco	de		rs			rt			rd		sha	mt	1	funct	
	31	26	25		21	20		16	15		11	10	6	5		0

R型指令的编码示例(1)

- add \$8,\$9,\$10 # R[rd]=R[rs]+R[rt]
 - 。 查指令编码表得到:

opcode =
$$0$$
, funct = 32 , shamt = 0 (非移位指令)

。根据指令操作数得到:

$$rd = 8$$
 (目的操作数), $rs = 9$ (第一个源操作数)

	0000	000	0	1001	(01010			1000)	000	000	100000		
R	opco	ode		rs		rt			rd		sha	mt	1	funct	
	31	26	25	21	20		16	15		11	10	6	5		0

R型指令的编码示例(2)

⑤ sll \$8,\$9,10 # R[rd]=R[rt]<<shamt
</pre>

21 20

。 查指令编码表得到:

opcode = 0, funct = 0, rs = 0 (未使用的寄存器)

。根据指令操作数得到:

rd = 8 (目的操作数)

rt = 9 (源操作数)

31

shamt = 10 (移位数)

26 25

R	opcode	rs	rt	rd	shamt	funct
	000000	00000	01001	01000	01010	000000

16 15

11 10

6 5

主要内容

通过学习本课程 了解计算机的发展历程,理解计算机的组成原理,掌握计算机的设计方法

- I RISC的发展变迁
- II MIPS指令的主要特点
- Ⅲ MIPS指令分类说明:R型
- Ⅳ MIPS指令分类说明: I型

不同维度的指令分类(示例)

运算指令	add rd, rs, rt sll rd, rt, shamt	addi rt,rs,imm slti rt,rs,imm	
访存指令		lw rt, imm(rs) sw rt, imm(rs)	
分支指令	jr rs	beq rs, rt, imm	j addr
	R型指令	I型指令	J型指令

I型指令的格式(1)

- ▶ R型指令只有一个5-bit域表示立即数,范围为0~31
- 常用的立即数远大于这个范围,因此需要新的指令格式
- ▶ I型指令的大部分域与R型指令相同

	6-bi	t	,	5-bit		5-bit	_				16-k	oit		
I	opco	de		rs		rt				i	.mmed:	iate)	
	31	26	25	21	20		16	15						0
	6-bi	t		5-bit		5-bit		,	5-bit		5-b	it	6-b	it
R	opco	de		rs		rt			rd		sha	mt	func	ct
	31	26	25	21	20		16	15		11	10	6	5	0

I型指令的格式(2)

- opcode
 - 。用于指定指令的操作类型(但没有funct域)
- rs Source Register
 - 。指定第一个源操作数所在的寄存器编号
- rt Target Register
 - 。指定用于目的操作数(保存运算结果)的寄存器编号
 - 。对于某些指令,指定第二个源操作数所在的寄存器编号

	6-0	DIT		5-DIT			5-DIT			16-bit	
ı	opco	ode		rs			rt			immediate	
	31	26	25		21	20		16	15	C)

I型指令的格式(3)

- immediate
 - 。16-bit的立即数,可以表示216个不同数值
 - 。对于访存指令,如lw rt, *imm*(rs) 通常可以满足访存地址偏移量的需求(-32768~+32767)
 - 。对于运算指令,如addi rt,rs,imm 无法满足全部需求,但大多数时候可以满足需求

	6-	bit	,	5-bit			5-bit			16-bit	
I	opc	ode		rs			rt			immediate	
	31	26	25		21	20	1	6	15		<u> </u>

I型指令的编码示例(1)

- ② addi \$21,\$22,-50 # \$21=\$22+(-50)
 - 。 查指令编码表得到:

$$opcode = 8$$

。分析指令得到:

rs = 22 (源操作数寄存器编号)

rt = 21 (目的操作数寄存器编号)

immediate = -50 (立即数)

001000 10110 10101 1111 1111 1100 111	001000	10110	10101	1111	1111	1100	1110
---------------------------------------	--------	-------	-------	------	------	------	------

I	opcod	le		rs		rt		immediate
	31	26	25	21	20	16	15	0

I型指令的编码示例(2)

- \bigcirc **lw** \$21,-50(\$22) # \$21=Mem[\$22+(-50)]
 - 。 查指令编码表得到:

opcode =
$$35$$

。分析指令得到:

rs = 22 (源操作数寄存器编号)

rt = 21 (目的操作数寄存器编号)

immediate = -50 (立即数)

100011 10110 10101 1111 1111 1100

I	opco	de		rs		rt		immediate	
	31	26	25	21	20	16	15		0

I型指令的编码示例(3)

- ⑤ slti \$21,\$22,-50 # \$21=(\$22<(-50))?1:0</pre>
 - 。 查指令编码表得到:

$$opcode = 10$$

。分析指令得到:

rs = 22 (源操作数寄存器编号)

rt = 21 (目的操作数寄存器编号)

immediate = -50 (立即数)

001010 10110 10101 1111 1111 1100 1110

I	opco	de		rs		rt		immediate	
	31	26	25	21	20	16	15		0

本讲到此结束,谢谢 欢迎继续学习本课程

计算机组织与体系结构 Computer Architectures 主讲: 陆俊林

