

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

VOORBEREIDENDE EKSAMEN 2022

10842

FISIESE WETENSKAPPE: CHEMIE

VRAESTEL 2

TYD: 3 uur

PUNTE: 150

16 bladsye + 4 inligtingsblaaie + 1 antwoordblad

FISIESE WETENSKAPPE: Vraestel 2

10842A

X05

INSTRUKSIES EN INFORMASIE:

- Hierdie vraestel bestaan uit 9 vrae. Beantwoord AL die vrae in die ANTWOORDBOEK.
 Gebruik die grafiekpapier op die laaste bladsy om VRAAG 5.3.1 en VRAAG 5.3.3 te beantwoord.
- 2. Begin elke vraag op 'n NUWE bladsy.
- 3. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik word.
- 4. Laat EEN reël oop tussen subvrae, byvoorbeeld, tussen VRAAG 2.1 en VRAAG 2.2.
- 5. Jy mag 'n nie-programmeerbare sakrekenaar gebruik.
- 6. Jy mag toepaslike wiskundige instrumente gebruik.
- 7. Jy word aangeraai om die aangehegte INLIGTINGSBLAAIE te gebruik.
- 8. Toon ALLE formules en vervangings in ALLE berekeninge aan.
- 9. Rond die finale numeriese antwoorde af tot 'n minimum van TWEE desimale plekke.
- 10. Gee kort besprekings, ensovoorts waar nodig.
- 11. Skryf netjies en leesbaar.

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

Vier opsies word as moontlike antwoorde op die volgende vrae gegee. Elke vraag het slegs EEN korrekte antwoord. Skryf slegs die letter (A – D) langs die vraagnommers (1.1 tot 1.10) in die ANTWOORDBOEK neer, bv. 1.11 D.

1.1 Oorweeg die gekondenseerde struktuurformule:

CH₃COCH₃

Identifiseer die naam van die funksionele groep in die formule.

- A Karboksielsuur
- B Karboksielgroep
- C Ketoon

- 1.2 Watter van die volgende is die empiriese formule van 1,2-dichloroethane?
 - A CHCℓ
 - B CH₂Cℓ
 - C CHCℓ2

$$D \quad C_2H_4C\ell_2 \tag{2}$$

1.3 Oorweeg die struktuurformule van die organiese verbinding hieronder.

Watter van die volgende stellings oor die verbinding hierbo is KORREK?

- A 2,2,4-trimetielpent-2-ene
- B 2,2,4-trimetielpent-3-ene
- C 2,4,4-trimetielpent-2-ene
- D 2,4,4-trimetielpent-3-ene

- 4
- 1.4 Uit die volgende opsies kies die EEN wat die beste verduidelik waarom katalisators so baie in chemiese reaksies gebruik word:
 - A Katalisators kan gebruik word om die ewewig in die gewenste rigting te dryf.
 - B Katalisators verminder die terugwaartse reaksie.
 - C Katalisators het geen effek op die terugwaartse reaksies nie.
 - D Katalisators veroorsaak dat die voorwaartse en terugwaartse reaksies teen 'n vinniger tempo voortgaan.

(2)

1.5 Bestudeer die volgende grafiek en benoem punt **X** uit die volgende keuses.

- A Aktiveringsenergie
- B Geaktiveerde kompleks
- C Aktiveringskompleks
- D Geaktiveerde energie

(2)

1.6 Die vergelyking hieronder verteenwoordig 'n chemiese reaksie in ewewig in 'n geslote houer.

$$H_2(g) + I_2(g) \Rightarrow 2HI(g)$$
 $\Delta H < 0$

Watter van die volgende veranderinge sal die opbrengs van HI(g) in die bogenoemde reaksie verhoog?

- A Verhoging in die temperatuur
- B Verlaging in die temperatuur
- C Verhoog die druk deur die volume te verminder
- D Verlaag die druk deur die volume te vermeerder
- 1.7 Watter van die volgende oplossings, elk met 'n konsentrasie van 0,1 mol·dm⁻³, het die hoogste pH?
 - A HNO₃(aq)
 - B NH₄Cl(aq)
 - C Na₂CO₃(aq)
 - D CH₃COOH (aq) (2)
- 1.8 'n Oplossing van etanoësuur (asynsuur) word getitreer teen 'n standaard natriumhidroksiedoplossing. Watter van die volgende indikators sal die geskikste vir hierdie titrasie wees?

	Indikator	pH reeks van die indikator
Α	Fenolftaleïen	8,3 – 10
В	Metieloranje	3,1 – 4,4
С	Broomtimolblou	6,0 – 7,6
D	Universele indikator	Verander kleur oor 'n wye reeks pH waardes

FISIESE WETENSKAPPE: CHEMIE	6
(Vraestel 2) 10842/22	

1.9 Watter van die volgende gee die rigting, sowel as die medium, korrek waarin elektrone in 'n galvaniese sel beweeg?

	RIGTING	MEDIUM
Α	katode na anode	soutbrug
В	anode na katode	eksterne draad
С	katode na anode	eksterne draad
D	anode na katode	soutbrug

(2)

- 1.10 Watter van die volgende halfreaksies vind plaas by die katode tydens die elektrolise van 'n gekonsentreerde NaCl oplossing?
 - $A \hspace{0.5cm} 2H_2O \rightarrow O_2(g) + 4H^+ + 4e^-$
 - B Na⁺ + e⁻ \rightarrow Na
 - C $2C\ell^{-} \rightarrow C\ell_2 + 2e^{-}$

D
$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$

(2)

[20]

FISIESE WETENSKAPPE: CHEMIE	7
(Vraestel 2) 10842/22	-

VRAAG 2 (Begin op 'n nuwe bladsy.)

Die volgende tipes formules verteenwoordig organiese verbindings. Bestudeer die tabel hieronder en beantwoord die vrae wat volg.

A	H H H H H-C-C-C-O H H H	В	H — C — H — C — H	С	H O OH
D	СН₃СНОНСН₃	Е	2,4-dimetielpent-1-ene	F	2-metielpropan-2-ol
G	Н — Н — — — — — — — — — — — — — — — — —	} (}	H—Ç—H H————————————————————————————————		

2.1 Van die tabel hierbo, beskou verbinding **B**. Skryf die:

2.2 'n Alkohol en 'n suur word verhit in die teenwoordigheid van gekonsentreerde swaelsuur om verbinding **B** te vorm. Skryf die:

2.2.2 Name van die alkohol en die organiese suur neer wat gebruik word om verbinding **B** te maak (2)

2.2.3 Naam van die proses wat hier plaasvind neer (1)

FISIESE WETENSKAPPE: CH	IEMIE	8
(Vraestel 2)	10842/22	

2.3	Van di	e tabel hierbo, oorweeg verbinding C .	
	2.3.1	Skryf die naam van die funksionele groep van verbinding C neer.	(1)
	2.3.2	Aan watter homoloë reeks behoort verbinding C?	(1)
	2.3.3	Onderskei tussen die terme funksionele groep en homoloë reeks.	(2)
2.4	Van di	e tabel hierbo, oorweeg verbindings A, D en F .	
	2.4.1	Skryf die homoloë reeks waaraan hulle behoort, neer.	(1)
	2.4.2	Verbinding A en D is isomere. As watter tipe isomere sal hulle geklassifiseer word?	(1)
	2.4.3	Teken die struktuurformule vir verbinding F .	(3)
2.5	Skryf	die:	
	2.5.1	IUPAC naam vir verbinding G neer.	(3)
	2.5.2	struktuurformule van verbinding E neer.	(2) [21]

VRAAG 3 (Begin op 'n nuwe bladsy.)

3.1 Bestudeer die volgende twee strukture en beantwoord die vrae wat volg.

- 3.1.1 Verbinding **A** en **B** is funksionele isomere. Definieer die term *funksionele isomeer*. (2)
- 3.1.2 Skryf die IUPAC-naam van verbinding **B** neer. (2)
- 3.1.3 Hoe vergelyk die kookpunt van **A** met dié van PENTAN-1-OL? Skryf slegs GROTER AS, GELYK AAN of LAER AS, neer. (1)
- 3.1.4 Verduidelik jou antwoord op VRAAG 3.1.3 volledig deur te verwys na die tipe intermolekulêre kragte teenwoordig in elk van hierdie verbindings.
- 3.1.5 Hoe sal die dampdruk van verbinding **B** vergelyk met dié van PENTAN-1-OL? Skryf slegs HOËR AS, LAER AS of GELYK AAN, neer. Verduidelik die antwoord volledig. (3)
- 3.2 Leerders gebruik verbindings **C** tot **E**, om EEN faktor wat die **kookpunt** van organiese verbindings beïnvloed, te ondersoek.

С	CH ₃ CH ₂ CH ₂ CH ₃	-1 °C
D	CH ₃ CH ₂ CH ₂ CH ₃	36,1 °C
E	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	69 °C

- 3.2.1 Definieer die term kookpunt. (2)
- 3.2.2 Skryf die onafhanklike veranderlike vir hierdie ondersoek neer. (1)
- 3.2.3 Skryf die tipes Van der Waals-krag neer wat tussen die organiese verbindings voorkom. (1)
- 3.2.4 Skryf die gevolgtrekking wat gemaak kan word oor die **kookpunt** van reguit-ketting alkane.

(2) **[17]**

VRAAG 4 (Begin op 'n nuwe bladsy.)

Die meeste organiese verbindings kan reaksies ondergaan om 'n verskeidenheid organiese verbindings te produseer. Party onvolledige reaksies word hieronder gegee.

- 4.1 Oorweeg reaksie A. Identifiseer en skryf die tipe reaksie wat plaasvind neer. (1)
- 4.2 Reaksie **B** verteenwoordig 'n hidrasie reaksie:
 - 4.2.1 Definieer die hidrasie reaksie. (2)
 - 4.2.2 Skryf die **naam** of **formule** van die katalisator wat vir hierdie reaksie gebruik word. (1)
- 4.3 Tydens reaksie **C** word 'n spesifieke reël gevolg om die hoofproduk te bepaal wanneer HBr bygevoeg word.
 - 4.3.1 Skryf TWEE reaksietoestande vir hierdie reaksie neer. (2)
 - 4.3.2 Gebruik struktuurformules en skryf die gebalanseerde vergelyking vir hierdie reaksie neer. (3)
- 4.4 Identifiseer die tipe reaksie wat plaasvind by:
 - 4.4.1 Reaksie **D** (1)
 - 4.4.2 Reaksie **F** (1)
- 4.5 Reaksie **E** is 'n hidrogenasie reaksie.
 - 4.5.1 Skryf die TWEE reaksiekondisies vir die reaksie neer. (2)
 - 4.5.2 Hierdie reaksie word algemeen in die industrie gebruik. Noem EEN gebruik vir hidrogenasie in die voedselbedryf. (1)

 [14]

VRAAG 5 (Begin op 'n nuwe bladsy.)

5.1 Die grafiek hieronder toon die verandering in potensiële energie vir die reaksie waar kalksteen in kalk verander word. Die gebalanseerde vergelyking vir hierdie reaksie is:

- 5.1.1 Is die voorwaartse reaksie eksotermies of endotermies? (1)
- 5.1.2 Bereken die reaksiewarmte vir die voorwaartse reaksie. (2)
- 5.1.3 Skryf die aktiveringsenergie vir die terugwaartse reaksie neer. (1)
- 5.2 Die volgende grafiek verteenwoordig die aantal deeltjies teen 'n spesifieke hoeveelheid kinetiese energie van die molekules. Die data vir monsters **R** en **S** is by verskillende temperature verkry wat die tempo van reaksie beïnvloed.

FISIESE WETENSKAPPE: CHEMIE	12
(Vraestel 2) 10842/22	

- 5.2.1 Definieer die term tempo van reaksie. (2)
- 5.2.2 Wat verteenwoordig die area regs van lyn **T**? (1)
- 5.2.3 Watter monster was by 'n hoër temperatuur? Skryf slegs MONSTER **R** of MONSTER **S** neer. (1)
- 5.2.4 Verduidelik die antwoord op VRAAG 5.2.3 deur die botsingsteorie te gebruik. (3)
- 5.3 11 g magnesiumlint reageer met 'n 0,25 mol.dm⁻³ soutsuur oplossing by 'n temperatuur van 25 °C volgens die volgende gebalanseerde vergelyking:

 $Mg(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + H_2(g)$

'n Tabel van die resultate word hieronder gegee:

Tyd verloop (minute)	Volume H _{2(g)} (cm³)
0	0
0,5	17
1,0	25
1,5	30
2,0	33
2,5	35
3,0	35

- 5.3.1 Gebruik die grafiekpapier wat op die laaste bladsy van die vraestel gedruk is. Plot 'n grafiek van hierdie resultate. (2)
- 5.3.2 Gebruik die grafiek en verduidelik wat gebeur het met die reaksie tussen 2 minute en 3 minute. (1)
- 5.3.3 In 'n tweede eksperiment het die konsentrasie van die soutsuur verander van 0,25 mol.dm⁻³ na 1 mol.dm⁻³.

 Teken 'n nuwe kurwe op dieselfde grafiekpapier om te wys watter effek dit sal hê. Benoem die nuwe kurwe **X**. (2)
- 5.3.4 Aanvaar die molêre gas volume by 25 °C is 24,47 dm³·mol⁻¹. Bereken die volume suur wat in die eerste eksperiment gebruik is toe die reaksie voltooi is.

(4)

VRAAG 6 (Begin op 'n nuwe bladsy.)

6.1 Die gebalanseerde vergelyking hieronder verteenwoordig die reaksie wat ewewig bereik het in 'n verseëlde houer.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H < 0$

Om die opbrengs van ammoniak te verhoog, word aanpassings gemaak aan die temperatuur, druk en konsentrasie van die ewewigsmengsel. Die grafiek hieronder verteenwoordig die resultate wat verkry is.

Identifiseer die verandering wat op elk van die volgende tye aan die ewewigsmengsel aangebring is.

6.1.1
$$t_1$$
 (1)

$$6.1.2 t_2$$
 (1)

6.1.3
$$t_3$$
 (1)

- 6.2 Stel Le Chatelier se beginsel in woorde.
- 6.3. Die druk van die reaksiemengsel in VRAAG 6.1 hierbo word versteur deur die volume van die verseëlde houer te vermeerder.
 - 6.3.1 Hoe sal die verandering die opbrengs van NH₃(g) beïnvloed? Skryf slegs VERHOOG, VERLAAG of BLY DIESELFDE, neer. (1)
 - 6.3.2 Gebruik Le Chatelier se beginsel om die antwoord op VRAAG 6.3.1 te verduidelik. (3)
- 5 mol N₂ en 5 mol H₂ word nou in 'n leë 5 dm³ houer verseël. Ewewig word bereik by 450 °C. By ontleding van die ewewigsmengsel word dit bevind dat die massa van NH₃, 20,4 g is.

Bereken die waarde van die ewewigskonstante(Kc) by 450 °C. (9)

6.5 Die temperatuur word nou verhoog tot 700 °C. Wat sal gebeur met die waarde van Kc by hierdie temperatuur sodra 'n nuwe ewewig bereik is? Skryf slegs BLY DIESELFDE, VERHOOG of VERLAAG, neer.

(2) **[20]**

VRAAG 7 (Begin op 'n nuwe bladsy.)

- 7.1 Definieer die term *suur* volgens die Arrhenius teorie. (2)
- 7.2 Oorweeg die volgende suurbasis reaksies.

X: $HF + H_2O \rightleftharpoons H_3O^+ + F^-$

Y: $HNO_3 + NH_3 \rightleftharpoons NH_4^+ + NO_3^-$

- 7.2.1 Uit reaksies **X** en **Y**, identifiseer die reaksie wat die Arrhenius teorie illustreer. (1)
- 7.2.2 Skryf 'n gebalanseerde vergelyking vir die hidrolise van die NH₄⁺ ione, neer. (3)
- 7.2.3 Sal die gevormde oplossing van VRAAG 7.2.2 suur, alkalies of neutraal wees? Gee 'n rede vir jou antwoord. (2)
- 7.3 'n Natriumhidroksied oplossing word berei deur 4 g natriumhidroksied in water op te los om 'n 500 cm³-oplossing te vorm.
 - 7.3.1 Bereken die konsentrasie van die natriumhidroksied oplossing. (3)
 - 7.3.2 Gedurende 'n titrasie, neutraliseer 12,5 cm³ van die natriumhidroksied oplossing 25 cm³ swaelsuur volgens die volgende gebalanseerde chemiese vergelyking:

$$2NaOH(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + H_2O(\ell)$$

Bereken die pH van die H₂S0₄ oplossing. (7)

[18]

VRAAG 8 (Begin op 'n nuwe bladsy.)

Die galvaniese sel wat in die diagram hieronder voorgestel word, bestaan uit 'n Baelektrode wat in 'n $Ba(NO_3)_2$ -oplossing geplaas is, en 'n Cu-elektrode wat in 'n $Cu(NO_3)_2$ -oplossing geplaas is. Aanvaar dat die sel onder standaardtoestande werk.

8.1	Noem	TWEE standaardtoestande waaronder hierdie sel werk.	(2)
8.2	Watter	halfsel, A of B is die katode? Skryf slegs A of B .	(1)
8.3	Skryf d	ie halfreaksie wat plaasvind in halfsel A.	(2)
8.4	Skryf d	ie selnotasie vir hierdie sel neer.	(3)
8.5	Bereke	n die emk van hierdie sel.	(4)
8.6	bereke	l elkeen van die volgende veranderinge die emk waarde van die sel n in VRAAG 8.5, beïnvloed? Skryf slegs VERHOOG, VERLAAG of ESELFDE, neer.	
	8.6.1	Ammoniumsulfaat word by die bariumnitraat oplossing gevoeg.	(1)
	8.6.2	Die temperatuur van die oplossings is verhoog.	(1) [14]

FISIESE WETENSKAPPE: CHEMI	E	16
(Vraestel 2)	10842/22	10

VRAAG 9 (Begin op 'n nuwe bladsy.)

Die diagram hieronder toon 'n elektrolitiese sel wat gebruik word vir die suiwering van koper.

9.1 Noem die energie-omskakeling wat in hierdie elektrolitiese sel plaasvind. (2)
9.2 Wat sal by die katode waargeneem word? (1)
9.3 Skryf die halfreaksie neer wat by die anode plaasvind. (2)
9.4 Wat sal gebeur met die kleur van die blou koper (II) sulfaat oplossing gebeur soos die reaksie vorder? (1)

TOTAAL: 150

FISIESE WETENSKAPPE:	CHEMIE	17
(Vraestel 2)	10842/22	17

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	Vm	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K
Charge on electron Laai op elektron	e ⁻	-1,6 x 10 ⁻¹⁹ C
Avogadro's number Avogadro se nommer	NA	6,02×10 ²³

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V} \text{ or/of } c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	pH = -log[H3O+]
$E_{cell}^{\theta} = E_{cathode}^{\theta} - E_{anode}^{\theta} / E_{sel}^{\theta} = E_{k}^{\theta}$	$_{ m atode} - E_{ m anode}^{ m heta}$
$E_{cell}^{\theta} = E_{reduction}^{\theta} - E_{oxidation}^{\theta} / E_{sel}^{\theta} =$	$E^{\theta}_{reduksie} - E^{\theta}_{oksidasie}$
$E_{\text{cell}}^{\theta} = E_{\text{oxidisingagent}}^{\theta} - E_{\text{reducingagent}}^{\theta}$	$/E^{\theta}_{sel} = E^{\theta}_{oksideermiddel} - E^{\theta}_{reduseermiddel}$

FISIESE WETENSKAPPE: CHEMIE (Vraestel 2) 10842/22

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

			-	ТАВ	SLE 3	3: T	HE	PER	IODI	C -	ΓAΒL	E.	OF E	LE	MEN	ITS	/TAE	BEL	. 3: L	ÌΕ	PERI	IOD	DIEK	E T.	ABE	LV	'AN E	ELE	MEN	ITE					
	1 (l)		2 (II)		3		4	į	5		6		7		8		9		10		11		12		13 (III)		14 (IV)		15 (V)		16 (VI)		17 (VII)		18 VIII)
Atomic number/																																			
							ŀ	(EY/	SLE	U1	EL			At	oom	get	al																		
	1														\	_																			2
2,1	H														29																				He
	1							Ele	ctro	ne	gativ	/ity	/ \	ത			Sy	mb	ol/																4
	3		4								atiw			ر 9	Cu	•	– si	mh	ool						5		6		7		8		9		10
1,0	Li 7	1,5	Be					Lici	Ku Oi	<i>1</i> C	jativ	πc	'		63,5	5	O,	11110	OOI					2,0	В 11	2,5	C 12	3,0	N 14	3,5	O 16	4,0	F		Ne
	-		9										_		1																		19	L	20
_	11	.	12							Αı	opro	xin	nate	rela	ative	ato	omic	ma	ass/						13		14		15		16		17		18
6,0	Na 23	1,2	Mg 24							•	•													1,5	Aℓ 27	1,8	Si 28	2,1	P 31	2,5	S 32	3,0	Cℓ 35,5		Ar 40
								1		В		ero		ıatı		ato	omn	nas				1								<u> </u>				<u> </u>	
_	19		20	_	21		22		23		24		25 Mar	_	26	_	27	_	28		29		30 7		31	_	32		33	_	34	_	35		36
0,8	K 39	1,0	Ca 40	1,3	Sc 45	1,5	Ti 48	1,6	V 51	1,6	Cr 52	1,5	Mn 55	1,8	Fe 56	1,8	Co 59	1,8	Ni 59	1,9	Cu 63,5	1,6	Zn 65	1,6	Ga 70	1,8	Ge 73	2,0	As 75	2,4	Se 79	2,8	Br 80		Kr 84
																														<u> </u>					
∞	37 Rb	0	38 Sr	2,	39 Y	4,	40 Zr		41 Nb	∞	42 Mo	6	43 Tc	7	44 Ru	7	45 Rh	7	46 Pd	6	47	۲,	48 Cd	۲,	49 In	œί	50 Sn	စ	51 Sb	_	52 Te	2	53		54 Xe
9,0	86	1,0	88	<u> </u>	89	<u>,</u>	91		92	ر 8	96	1,9	10	2,2	101	2,2	103	2,2	106	1,9	Ag 108	۲,	112	۲,	115	<u>,</u>	119	τ,	122	2,1	128	2,5	127		131
	55		56		57		72		73		74		75		76		77		78		79		80		81		82		83	\vdash	84		85		86
7	Cs	6	Ba		La	o,	Hf		Ta		W		Re		Os		lr		Pt		Au		Hg	œ	Tℓ	œ́	Pb	6	Bi	0	Po	2	At		Rn
0,7	133	6,0	137		139	۲,	179		181		184		186		190		192		195		197		201	۲,	204	– ,	207	1,9	209	2,0		2,5			
	87		88		90							<u> </u>																		<u> </u>					
2,0	67 Fr	6,0	88 Ra		89 Ac																														
0	••	0	226		Α0																														
		•				•			58		59		60		61		62		63		64		65		66		67		68	1 [69		70		71
									Се		Pr		Nd		Pm		Sm		Eu		Gd		Tb		Dy		Но		Er		Tm		Yb		Lu
								<u> </u>	140	-	141	↓	144	∤ ∤		4	150	↓	152	↓	157	∤	159	↓ 	163	4	165	4	167	┨	169	4	173	ı þ	175
								-	90	-	91	┨╏	92	┨┞	93	4 }	94	┨	95	4 }	96	┨┠	97	┨┞	98	1	99	┨	100	┨	101	┨	102	ı þ	103
									Th		Pa		U		Np		94 Pu		Am		Cm		Bk		Cf		Es		Fm		Md		No		Lr
									232				238		-												.=						-		=

Half-reactions/	Halfr	eaksies	Ε ^θ (v)						
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87						
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81						
H ₂ O ₂ + 2H ⁺ +2e ⁻	=	2H ₂ O	+1,77						
MnO ₄ + 8H ⁺ + 5e ⁻	=	$Mn^{2+} + 4H_2O$	+ 1,51						
Cl ₂ (g) + 2e ⁻	=	2Cℓ ⁻	+ 1,36						
Cr ₂ O ²⁻ ₇ + 14H ⁺ + 6e ⁻	=	$2Cr^{3+} + 7H_2O$	+ 1,33						
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H ₂ O	+ 1,23						
MnO ₂ + 4H ⁺ + 2e ⁻	=	$Mn^{2+} + 2H_2O$	+ 1,23						
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20						
$Br_2(\ell) + 2e^-$	=	2Br⁻	+ 1,07						
NO - + 4H+ + 3e-	=	$NO(g) + 2H_2O$	+ 0,96						
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85						
Ag+ + e⁻	=	Ag	+ 0,80						
NO - + 2H+ + e-	=	$NO_2(g) + H_2O$	+ 0,80						
s Fe³+ + e⁻	=	Fe ²⁺	+ 0,77						
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H ₂ O ₂	+ 0,68						
$l_2 + 2e^-$		2l ⁻	+ 0,54						
1 ₂ + 2e Cu⁺ + e⁻	=	Cu	+ 0,54						
SO ₂ + 4H ⁺ + 4e ⁻	=								
=	=	S + 2H ₂ O	+ 0,45						
$2H_2O + O_2 + 4e^{-}$	=	4OH⁻	+ 0,40						
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34						
2- SO ₄ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17						
Cu ²⁺ + e ⁻	=	Cu ⁺	+ 0,16						
Sn⁴+ + 2e⁻	=	Sn ²⁺	+ 0,15						
S + 2H⁺ + 2e⁻	\rightleftharpoons	$H_2S(g)$	+ 0,14						
2H⁺ + 2e⁻	=	H ₂ (g)	0,00						
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06						
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	- 0,13						
Sn ²⁺ + 2e⁻	=	Sn	- 0,14						
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	- 0,27						
Co ²⁺ + 2e ⁻	=	Co	- 0,28						
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	- 0,40						
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41						
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44						
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74						
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76						
2H₂O + 2e⁻	=	$H_2(g) + 2OH^-$	- 0,83						
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91						
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18						
$A\ell^{3+} + 3e^{-}$	=	Αℓ	- 1,66						
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36						
Na⁺ + e⁻	=	Na	- 2,71						
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87						
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89						
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90						
Cs+ + e-	=	Cs	- 2,92						
K⁺ + e⁻	=	K	- 2,93						
Li⁺ + e⁻	=	Li	- 3,05						

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS/ TABEL 4B: STANDAARD REDUKSIEPOTENSIALE

TOLL 40. OTAINDA	-1112	REDUKSIEF	- LIVOIA
Half-reactions	Ε ^θ (v)		
Li⁺ + e⁻	=	Li	- 3,05
K⁺ + e⁻	=	K	- 2,93
Cs⁺ + e⁻	=	Cs	- 2,92
Ba ²⁺ + 2e ⁻	=	Ba	- 2,90
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ca ²⁺ + 2e⁻	=	Ca	- 2,87
Na+ + e-	=	Na	- 2,71
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
Aℓ³+ + 3e ⁻	=	Αℓ	- 1,66
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Co ²⁺ + 2e ⁻	=	Co	- 0,28
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06
2H⁺ + 2e⁻	=	H ₂ (g)	0,00
S + 2H ⁺ + 2e ⁻	=	H ₂ S(g)	+ 0,14
Sn⁴+ + 2e⁻	=	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16
2- SO ₄ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
2H ₂ O + O ₂ + 4e ⁻	=	4OH⁻	+ 0,40
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45
Cu+ + e-	=	Cu	+ 0,52
I ₂ + 2e ⁻	=	2I ⁻	+ 0,54
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H_2O_2	+ 0,68
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77
NO - + 2H+ + e-	=	$NO_2(g) + H_2O$	+ 0,80
Ag⁺ + e⁻	=	Ag	+ 0,80
Hg²+ + 2e⁻	=	Hg(ℓ)	+ 0,85
NO - + 4H+ + 3e-	=	$NO(g) + 2H_2O$	+ 0,96
$Br_2(\ell) + 2e^{-}$	=	2Br⁻	+ 1,07
Pt ²⁺ + 2 e ⁻	÷	Pt	+ 1,20
MnO ₂ + 4H ⁺ + 2e ⁻	÷	$Mn^{2+} + 2H_2O$	+ 1,23
O ₂ (g) + 4H ⁺ + 4e ⁻	÷	2H₂O	+ 1,23
2- Cr ₂ O ₇ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
Cl ₂ (g) + 2e ⁻	=	2C{-	+ 1,36
_ MnO ₄ + 8H+ + 5e ⁻	=	$Mn^{2+} + 4H_2O$	+ 1,51
H ₂ O ₂ + 2H ⁺ +2 e ⁻	=	2H₂O	+1,77
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87

Increasing reducing ability/Toenemende reduserende vermoë

FISIESE WETENSKAPPE:	CHEMIE	21
(Vraestel 2)	10842/22	

Naam: _____

5.3 Grafiek wat die verhouding tussen die volume H₂(g) en tyd aandui

