Understanding Seasonal variation plots

Étienne Bourbeau

1D distribution plots

Every variable is looked at in five different ways:

1D Distribution

Every variable is looked at in five different ways:

1. 1D distribution of the variable

- Good first glance at distribution
- Can check the rates make sense

1D distributions

Every variable is looked at in five different ways:

2. 1D CDF distributions for each year

Ensure we cover full range of the variable

1D Distributions

Ratio Plots

Red line here means: 2011 Rates x 2012 Livetime 2012 Counts

Main plots used to gauge the variation

Ratio is computed as follow: $R = \frac{C_i \cdot r_{i,ref}}{C_{ref}}$

C: Event count in season T: Livetime of the season

where
$$r_{i,ref} = \frac{L_{ref}}{L_i}$$

2D plots

4. Reduced Chi2 Tables

• Sensitive to statistically significant differences in **normalisation**

Sum over non-empty bins *i* (comparison year)

$$\chi_{y,ref}^{2} = \frac{1}{n_{dof}} \sum_{i} \frac{\left(C_{i,y} - C_{i,ref}\right)^{2}}{C_{i,ref} + C_{i,y}}$$

for $C_{i,y} > 10$ and $C_{i,ref} \neq 0$

occasional disagreements fine, several high χ^2 regions need more scrutiny

2D plots

5. Kolmogorov-Smirnov Test

- Sensitive to statistically significant differences in distribution shapes
- Main plots for making decisions

we want high p-values

