Problema 802. Construir el triángulo cuyos datos son: $a, m_a, b-c$ (Aclaración del director: en este problema, m_a es la mediana del vértice A).

Santamaría, J. (2017): Comunicación personal. Julián Santamaría Tobar es profesor de Dibujo del IES La Serna de Fuenlabrada.

Solución de Ercole Suppa.

Análisis.

A partir de la relación conocida

$$4m_a^2 + a^2 = 2b^2 + 2c^2$$

tenemos que

$$4m_a^2 + a^2 = (b+c)2 + (b-c)^2 \tag{\star}$$

Por (\star) , conociendo a, m_a y b-c podemos encontrar b+c. Entonces de b+c y b-c podemos obtener b y c. Tenemos por tanto, la siguiente:

Construcción.

- dibujar un segmento PQ de longitud $2m_a$;
- dibujar el segmento QR de longitud a y perpendicular a PQ;
- dibujar el semicírculo γ_1 de diámetro $PR = \sqrt{4m_a^2 + a^2}$;
- dibujar el círculo γ_2 con centro en P y radio b-c;
- construir el punto $S = \gamma_1 \cap \gamma_2$;
- construir el punto medio M de PS;
- construir el punto medio N de SR;
- dibujar el círculo γ_3 con centro en S y radio $SM = \frac{b-c}{2}$;

 $\bullet\,$ observamos que SR=b+c y luego

$$NU = NS + SU = \frac{b+c}{2} + \frac{b-c}{2} = b$$

$$NV = NS - SV = \frac{b+c}{2} - \frac{b-c}{2} = c$$

 \bullet conociendo los tres lados $BC=a,\,CA=b,\,AB=c$ el triángulo $\triangle ABC$ se puede construir fácilmente

DISCUSIÓN.

El problema admite una solución si b-c < a y $4m_a^2 + a^2 - (b-c)^2 > 0.$ $\hfill \Box$