Predicting Diabetes

Utlizing Machine learning practices to analyze and predict diabetes

Author: Scott Bamford

Main Objective of Analysis:

Being able to Predict the outcome of our data (Diabetes DataFrame)

Explaination of the Dataset

Dataset consists of 9 Columns, 5 of these columns are categorical (All Nominal), and the other 4 are Continuous.

Columns	Data Type	Type of Data (Python)
gender	Nominal	String
age	Ordinal	Float
hypertension	Nominal	int64
heart_disease	Nominal	int64
smoking_history	Nominal	int64
bmi	Continuous	Float
HbA1c_level	Continuous	Float
blood_glucose_level	Continuous	Float
diabetes	Nominal	Nominal

My goal is to be able to predict Diabetes in this dataset based upon the features that are present.

Data Exploration And Data Cleaning Explaination

Currently the cleaning of the data shows that Age, has a couple of mislabels, as well as both Gender and Smoking history will need to be incoded into a numeric version of itself.

Diving deeper into the Age issue, it is found that there are 991 rows where the output is below 0. The reason why this is an issue is primarily having to do with the consideration that Age is going to be Ordinal and cannot have Decimal values. Normally I would've accepted this an continued forward, Which (I tested) and I do not beleive that this would provide enough evidence or analysis for the data as a whole esepcially since all 991 are below the age of 1 as well as do not have diabetes. So i have deceided to remove them from the dataset itself.

Reason for Excluding 991

After testing the data specifically with the 991 for a basic summary we get the following results. With Hyper Paramater tuning (35,7) which was the same for both With and without 991

Score	train	test
accuracy	0.971899	0.969000
precision	1.000000	1.000000
recall	0.669400	0.635294
f1	0.801965	0.776978

In Comparision to the outcome utilizing without the 991

Score	train	test
accuracy	0.971638	0.969000
precision	1.000000	1.000000
recall	0.669361	0.639535
f1	0.801936	0.780142

This was optimized for Accuracy, and cleary what is shown here is that there isn't a difference in TESTING OUTPUT RESULTS ACCORDING TO Accuracy, but what is is most improatnt is the balancing error or score, which I am using F1, and without 991 it produces a slightly better score.

Model selection

I have decided to utlize Decision tree, Random Forest, Random Tree and Bagging

Decision Tree

In order to decide the best hyper paramters one must chose what Score we will be using inorder to produce the optmized version of these outputs, these outputs can be: Accuracy, Recall, and F1 and precision

These are the outputs of these tests

Accuracy Optimized - Hyperparamters (node_count - 35, max depth - 7)

score	train	test
accuracy	0.971638	0.969000
precision	1.000000	1.000000
recall	0.669361	0.639535
f1	0.801936	0.780142

F1 Optimized - Hyperparamters (node_count - 87, max depth - 9)

score	train	test
accuracy	0.971944	0.968000
precision	0.995276	0.982143
recall	0.676135	0.639535
f1	0.805237	0.774648

Recall Optimized - Hyperparamaters (node count - 9097, max depth - 31)

score	train	test
accuracy	0.997686	0.947000
precision	0.999268	0.685393
recall	0.973734	0.709302
f1	0.986336	0.697143

Precision Optimized - Hyperparamaterse (node count - 3, max depth - 1)

score	train	test
accuracy	0.947344	0.942000
precision	1.000000	1.000000
recall	0.386142	0.325581
f1	0.557147	0.491228

Results Interpretation

Based upon the needs of the data which is to say, we want to have as many positive results that are correct than negative results since this is a PREDICTION OF DIABETIES, you would rather have more people be diagnosed and not have it then not be diagnosed and have it. So moving forward we will be utilizing the Recall Optimized results, allhough it produces a significantly lower F1 score, our goal is to opimize the minimizing of false negatives there for that is the result we will be using.

Random Forest Vs ExtraTrees (For Comparison for Randomness)

Random Forest Results

n_trees	oob
15.0	0.034489
20.0	0.033990

n_trees	oob
30.0	0.033276
40.0	0.032899
50.0	0.033011
100.0	0.032297
150.0	0.032124
200.0	0.031981
300.0	0.031859
400.0	0.031696
500.0	0.031502
600.0	0.031533
700.0	0.031431

Deciding on Choosing 300 as the number of trees

with the Scores being

Score	train	test
accuracy	0.997839	0.969000
precision	0.998784	0.966102
recall	0.975992	0.662791
f1	0.987257	0.786207

Extra Trees

n_trees	oob
15.0	0.037089
20.0	0.035753
30.0	0.034357
40.0	0.033541
50.0	0.033256
100.0	0.032328
150.0	0.031910
200.0	0.031859

n_trees	oob
300.0	0.031818
400.0	0.031736
500.0	0.031706
600.0	0.031696
700.0	0.031757

Decided on utilizing 150 as the n_estimator

Score	train	test
accuracy	0.997829	0.965000
precision	0.998541	0.918033
recall	0.976111	0.651163
f1	0.987199	0.761905

Results Interpretation

The choice to utilize Extra Trees as well was in order to provide additional context as well as prevent overfitting more apprantly since we didn't want this to over fit. Buyt as you can see, the randomness although prvent over fitting more readily didn't provide a signficant decrease or increase in accuracy score. Although the Addition of Extra Tree (more randomness) allowed for a similar Out of Box Error rate, but at a lower amount of trees needed.

Boosting

Error Curve for Gradient Boosting Classifier

n_trees	error
15.0	0.031
25.0	0.031
50.0	0.031
100.0	0.033
200.0	0.034
400.0	0.034

The results show we should use 50 for number of Trees

After Optimizing Hyperparamter Tuning for Learning Rate and Subsample Got 0.1 learning rate and 0.25 subsample

Score	train	test
accuracy	0.971730	0.969000
precision	0.996829	1.000000
recall	0.672570	0.639535
f1	0.803208	0.780142

Confusion Matrix

Results Interpretation

Bosting again seems to have yeilded simalar results to the others tests, athough it would be apparent to see that with these result it makes the depth of trees lower than normal,

Final Model Selection

Best Suited Model - random Forests based upon the results as well as this being both a classification model as well as something that can be used in tandom with a lot of "Categorical" features.

Chosen - Random Forest

Decision Tree - Accuracy	Random Forest	Extra Trees	Boosting
0.969000	0.969000	0.965000	0.969000
1.000000	0.966102	0.918033	1.000000

Decision Tree - Accuracy	Random Forest	Extra Trees	Boosting
0.639535	0.662791	0.651163	0.639535
0.780142	0.786207	0.761905	0.780142

Confusion Matrix For Model - Random Forest

ROC AUC Score

From these finding s it would appear with a 96% accuracy, utilizing Random Forests we're able to get a pretty accuracte prediction based upon the 9 features provided by this dataset. Although I do believe this value iteself could be raised specifically the F1 score, the goal of the dataset and the study wasn't to get optimal F1 but instead get best Accuracy, the secondary objective when Accuracy was tied (as it was here) was to look at the results holestically (through the F1).

Major flaws so far are

- 1. Lack of Well spread out data (0.9 Non Diabietes to 0.1 diabetes)
- 2. Only 9 features (Could use a lot more especially since they do not provide as much context as possible since 5 of the 9 are Categorical by nature)

Next Steps

The next steps from this model would be to add additional features, as well as potentially looking into adding Location. This could be a major factor as well type of job (employment) and the type of employment could be an additional thing to add if this would be possible on top of this survey.