## Spellcheck

**Acknowledgements :** Most slides are based on : J&M's Speech and NLP. I Other sources are acknowledged separately in individual slides.

## Two key problems

• Problem 1: Words have a grammar, just as sentences do. How do we map variants of words to their root forms?

• Problem 2: How do we overcome spelling errors?

Corresponding to each of these problems, there is Science + Engineering

## Some questions

• Why is correcting spelling errors important?

• Why are spelling errors made?

• What are the categories of spelling errors?

• What factors can we exploit to recover from them?

## Some questions

- Why is correcting spelling errors important?
  - Human errors in typing (search engines)
    - How rampant are spelling errors?
  - OCR
  - Speech-to-text
- Why are spelling errors made?
  - Homophones
  - No neat mapping between structure and pronunciation of words

## Britney Spears

## Categories of spelling errors

- Non-words
  - Seperate for separate
- Words
  - Dessert for desert
  - Piece for peace

An important question: Is context available?

## Categories of spelling errors

- Non-words
  - Seperate for separate
- Words
  - Dessert for desert
  - Piece for peace

An important question: Is context available?

#### An alternative classification:

- -- Typographic errors (homologous errors because of keyboard)
- -- Cognitive errors

# How can we recover from spelling errors?

- Edit distance
- Keyboard
- Pronunciation
- Context
- Syntax
- Source-specific issues
  - OCR : cl and d

## Two classes of systems

• Spelling error detection

• Spelling error correction

## Typing errors

- Single error mis-spellings
  - Insertion
  - Deletion
  - Substitution
  - Transposition

#### OCR errors

- Correct:
  - The quick brown fox jumps over the lazy dog.
- Recognized:
  - 'lhe q~ick brown foxjurnps over tb l azy dog.
  - Substitutions
  - Multisubstitutions (framing errors)
  - Space deletions
  - Space insertions
  - Failures

#### Other issues...

• You may be right, the document may be wrong...

• Google may be unfair to newcomers...

[@100040030:2...]

- bcolb Theoretic ML Systactic) ML Keys Keys Ow keys abchecheb abccbcbcbb



{ap, pa} Vpap aple }ap, pl, le}

CHANNEL disease

W13T Sper che ch CONSISTENCY BASED ) icq nos s 1 likelihor P(t1c). P(c) posterior

P(+10). P(9) P(clt) P(t) COWCX Generative process Likelihood -P/d1 5) P(P.15) & P(S/P.). P(P.)

## Subproblems.

Jennate Candidates.

Sopriorertination

Sikelihood extimated

Caple -> Sable apple maple.

postings file

Plole) & Pltlc)

types: no. of distinct works tokens: no. of work interpretations.

"the man chase the monty"

V = 4 N = 5

Smoothing.



Revised estimate of prior after smoothing Detection

Considere

Granidate

Riv

Bayasin Stikelihood

SC



Rel: set 1 relient signations. | Ret neel ) Precision: 1 Rot neul Rel &

### Candidate corrections

t: acress

|        | Transformation |         |        |            |               |  |  |  |  |  |  |  |
|--------|----------------|---------|--------|------------|---------------|--|--|--|--|--|--|--|
|        |                | Correct | Error  | Position   |               |  |  |  |  |  |  |  |
| Error  | Correction     | Letter  | Letter | (Letter #) | Type          |  |  |  |  |  |  |  |
| acress | actress        | t       | -      | 2          | deletion      |  |  |  |  |  |  |  |
| acress | cress          | -       | a      | 0          | insertion     |  |  |  |  |  |  |  |
| acress | caress         | ca      | ac     | 0          | transposition |  |  |  |  |  |  |  |
| acress | access         | c       | r      | 2          | substitution  |  |  |  |  |  |  |  |
| acress | across         | o       | e      | 3          | substitution  |  |  |  |  |  |  |  |
| acress | acres          | _       | 2      | 5          | insertion     |  |  |  |  |  |  |  |
| acress | acres          | -       | 2      | 4          | insertion     |  |  |  |  |  |  |  |



## Prior probabilities

Assoc. Press (88) ... 44 million

Likelihood.



## Estimating p(t|c)

del[x,y] : xy typed as x ins[x,y] : x typed as xy sub[x,y] : y was typed as x trans[x,y] : xy typed as yx C -> t Gover to the

$$P(t|c) = \begin{cases} \frac{\frac{\operatorname{der}[c_{p-1},c_p]}{\operatorname{count}[c_{p-1},c_p]}}{\frac{\operatorname{ins}[c_{p-1},c_p]}{\operatorname{count}[c_{p-1}]}}, & \text{if deletion} \\ \frac{\frac{\operatorname{ins}[c_{p-1},c_p]}{\operatorname{count}[c_{p-1}]}}{\frac{\operatorname{sub}[t_p,c_p]}{\operatorname{count}[c_p]}}, & \text{if insertion} \\ \frac{\operatorname{trans}[c_p,c_{p+1}]}{\operatorname{count}[c_pc_{p+1}]}, & \text{if transposition} \end{cases}$$

(971) (4-14p)

sub[X, Y] = Substitution of X (incorrect) for Y (correct)

| X  |     |    |    |    | 50  | LID [ 2 | <b>x</b> , 1 | 1  | Sub | SHL | utiv |    | (cor |     |    | <i>(Li)</i> i |   | - ( | .011 | ···) |    |   |     |   |    |   |
|----|-----|----|----|----|-----|---------|--------------|----|-----|-----|------|----|------|-----|----|---------------|---|-----|------|------|----|---|-----|---|----|---|
|    | а   | ь  | С  | d  | e   | f       | g            | ħ  | i   | j   | k    | 1  | m    | n   | 0  | p             | q | r   | S    | t    | u  | V | w   | x | у  | Z |
| a  | 0   | 0  | 7  | 1  | 342 | 0       | 0            | 2  | 118 | 0   | 1    | 0  | 0    | 3   | 76 | 0             | 0 | 1   | 35   | 9    | 9  | 0 | 1   | 0 | 5  | Ô |
| b  | 0   | 0  | 9  | 9  | 2   | 2       | 3            | 1  | 0   | 0   | 0    | 5  | 11   | 5   | 0  | 10            | 0 | 0   | 2    | 1    | 0  | 0 | 8   | 0 | 0  | 0 |
| c  | 6   | 5  | 0  | 16 | 0   | 9       | 5            | 0  | 0   | 0   | 1    | 0  | 7    | 9   | 1  | 10            | 2 | 5   | 39   | 40   | 1  | 3 | 7   | 1 | 1  | 0 |
| d  | 1   | 10 | 13 | 0  | 12  | 0       | 5            | 5  | 0   | 0   | 2    | 3  | 7    | 3   | 0  | 1             | 0 | 43  | 30   | 22   | 0  | 0 | 4   | 0 | 2  | 0 |
| c  | 388 | 0  | 3  | 11 | 0   | 2       | 2            | 0  | 89  | 0   | 0    | 3  | 0    | 5   | 93 | 0             | 0 | 14  | 12   | 6    | 15 | 0 | 1   | 0 | 18 | 0 |
| f  | 0   | 15 | 0  | 3  | 1   | 0       | 5            | 2  | 0   | 0   | 0    | 3  | 4    | 1   | 0  | 0             | 0 | 6   | 4    | 12   | 0  | 0 | 2   | 0 | 0  | 0 |
| g  | 4   | 1  | 11 | 11 | 9   | 2       | 0            | 0  | 0   | 1   | 1    | 3  | 0    | 0   | 2  | 1             | 3 | 5   | 13   | 21   | 0  | 0 | 1   | 0 | 3  | 0 |
| h  | 1   | 8  | 0  | 3  | Û   | 0       | 0            | 0  | 0   | 0   | 2    | 0  | 12   | 14  | 2  | 3             | 0 | 3   | 1    | 11   | 0  | 0 | 2   | 0 | 0  | 0 |
| i  | 103 | 0  | 0  | 0  | 146 | 0       | 1            | 0  | 0   | 0   | 0    | 6  | 0    | 0   | 49 | 0             | 0 | 0   | 2    | 1    | 47 | 0 | 2   | 1 | 15 | 0 |
| _j | 0   | 1  | 1  | 9  | 0   | 0       | 1            | 0  | 0   | 0   | 0    | 2  | 1    | 0   | 0  | 0             | 0 | 0   | 5    | 0    | 0  | 0 | 0   | 0 | 0  | 0 |
| k  | 1   | 2  | 8  | 4  | 1   | 1       | 2            | 5  | 0   | 0   | 0    | 0  | 5    | 0   | 2  | 0             | 0 | 0   | 6    | 0    | 0  | 0 | . 4 | 0 | 0  | 3 |
| 1  | 2   | 10 | 1  | 4  | 0   | 4       | 5            | 6  | 13  | 0   | 1    | 0  | 0    | 14  | 2  | 5             | 0 | 11  | 10   | 2    | 0  | 0 | 0   | 0 | 0  | 0 |
| m  | 1   | 3  | 7  | 8  | 0   | 2       | 0            | 6  | 0   | 0   | 4    | 4  | 0    | 180 | 0  | 6             | 0 | 0   | 9    | 15   | 13 | 3 | 2   | 2 | 3  | 0 |
| n  | 2   | 7  | 6  | 5  | 3   | 0       | 1            | 19 | 1   | 0   | 4    | 35 | 78   | 0   | 0  | 7             | 0 | 28  | 5    | 7    | 0  | 0 | 1   | 2 | 0  | 2 |
| 0  | 91  | 1  | 1  | 3  | 116 | 0       | 0            | 0  | 25  | 0   | 2    | 0  | 0    | 0   | 0  | 14            | 0 | 2   | 4    | 14   | 39 | 0 | 0   | 0 | 18 | 0 |
| р  | 0   | 11 | 1  | 2  | 0   | 6       | 5            | 0  | 2   | 9   | 0    | 2  | 7    | 6   | 15 | 0             | 0 | 1   | 3    | 6    | 0  | 4 | 1   | 0 | 0  | 0 |
| q  | 0   | 0  | 1  | 0  | 0   | 0       | 27           | 0  | 0   | 0   | 0    | 0  | 0    | 0   | 0  | 0             | 0 | 0   | 0    | 0    | 0  | 0 | 0   | 0 | 0  | 0 |
| ř  | 0   | 14 | 0  | 30 | 12  | 2       | 2            | 8  | 2   | 0   | 5    | 8  | 4    | 20  | 1  | 14            | 0 | 0   | 12   | 22   | 4  | 0 | 0   | 1 | 0  | 0 |
| s  | 11  | 8  | 27 | 33 | 35  | 4       | 0            | 1  | 0   | 1   | 0    | 27 | 0    | 6   | 1  | 7             | 0 | 14  | 0    | 15   | 0  | 0 | 5   | 3 | 20 | 1 |
| t  | 3   | 4  | 9  | 42 | 7   | 5       | 19           | 5  | 0   | 1   | 0    | 14 | 9    | 5   | 5  | 6             | 0 | 11  | 37   | 0    | 0  | 2 | 19  | 0 | 7  | 6 |
| u  | 20  | 0  | 0  | 0  | 44  | 0       | 0            | 0  | 64  | 0   | 0    | 0  | 0    | 2   | 43 | 0             | 0 | 4   | 0    | 0    | 0  | 0 | 2   | 0 | 8  | 0 |
| v  | 0   | 0  | 7  | 0  | 0   | 3       | 0            | 0  | 0   | 0   | 0    | 1  | 0    | 0   | 1  | 0             | 0 | 0   | 8    | 3    | 0  | 0 | 0   | 0 | 0  | 0 |
| w  | 2   | 2  | 1  | 0  | 1   | 0       | 0            | 2  | 0   | 0   | 1    | 0  | 0    | 0   | 0  | 7             | 0 | 6   | 3    | 3    | 1  | 0 | 0   | 0 | 0  | 0 |
| х  | 0   | 0  | 0  | 2  | 0   | 0       | 0            | 0  | 0   | 0   | 0    | 0  | 0    | 0   | 0  | 0             | 0 | 0   | 9    | 0    | 0  | 0 | 0   | 0 | 0  | 0 |
| y  | 0   | 0  | 2  | 0  | 15  | 0       | 1            | 7  | 15  | 0   | 0    | 0  | 2    | 0   | 6  | 1             | 0 | 7   | 36   | 8    | 5  | 0 | 0   | 1 | 0  | 0 |
| z  | 0   | 0  | 0  | 7  | 0   | 0       | 0            | 0  | 0   | 0   | 0    | 7  | 5    | 0   | 0  | 0             | 0 | 2   | 21   | 3    | 0  | 0 | 0   | 0 | 3  | 0 |

Ack: Golding paper, 95

## Evaluating Candidates

|   | c       | freq(c) | p(c)       | p(t c)     | p(t c)p(c)             | %         |
|---|---------|---------|------------|------------|------------------------|-----------|
|   | actress | 1343    | .0000315   | .000117    | $3.69 \times 10^{-9}$  | 37%       |
|   | cress   | 0       | .000000014 | .00000144  | $2.02 \times 10^{-14}$ | 0%        |
|   | caress  | 4       | .0000001   | .00000164  | $1.64 \times 10^{-13}$ | 0%        |
|   | access  | 2280    | .000058    | .000000209 | $1.21 \times 10^{-11}$ | 0%        |
| _ | across  | 8436    | .00019     | .0000093   | $1.77 \times 10^{-9}$  | 18%       |
|   | acres   | 2879    | .000065    | .0000321   | $2.09 \times 10^{-9}$  | C 21%     |
|   | acres   | 2879    | .000065    | .0000342   | $2.22 \times 10^{-9}$  | 23% { 44% |
|   | C       | )       |            | t          |                        |           |
|   | acr     | es -    | <b>→</b> 0 | acress     |                        |           |
|   |         | R       |            |            |                        |           |

## Knowledge Source for Confusion matrices

• There are lists available on Wikipedia and from Roger Mitton (http://www.dcs.bbk.ac.uk/~ROGER/corpora.html) and Peter Norvig (http://norvig.com/ngrams/)

## But was that right?

... was called a "stellar and versatile acress whose combination of sass and glamour has defined her...".

## Reference paper:

• Kernighan, M. D., Church, K. W. and Gale, W. A. (1990), "A Spelling Correction Program Based on a Noisy Channel Model", Proceedings of COLING '90, Helsinki

## Building a spellcheck application

- Domain
- Application
  - Tasks and subtasks
- Formalism
- Evaluation
- Knowledge

## Building an NLP application



