The natex package

Nathan Phillips

February 16, 2024

Abstract

A collection of commands focused on consistent notation for engineering and physics applications. The repository for this package can be found at: https://github.com/amilkyboi/natex.

Contents

1	Incl	uded Packages	2
2	Con	nmands	3
	2.1	Automated Bracing	3
	2.2	Vector Notation	3
	2.3	Dirac Notation	3
	2.4	Matrix Notation	4
	2.5	Linear Operators	4
		Probability	
	2.7	Other	5
	2.8	Constants	5

1 Included Packages

This package requires and includes the amssymb, bm, braket, mathtools, and physics2 packages. Only the ab module is loaded for physics2.

2 Commands

2.1 Automated Bracing

Command	Usage	Output	Definition
\abs	\abs{x}	x	absolute value
\norm	$\operatorname{norm}\{x\}$	x	norm
\eval	$\ensuremath{\texttt{eval}}\{x\}\{a\}\{b\}$	$x _a^b$	evaluation limits
\order	$\operatorname{x^2}$	$\mathcal{O}(x^2)$	order of magnitude
\comm	$\comm{x}{y}$	[x, y]	commutator
\acomm	$\acomm{x}{y}$	$\{x,y\}$	anticommutator
\pb	\pb{x}{y}	$\{x,y\}$	Poisson bracket

2.2 Vector Notation

Command	Usage	Output	Definition
\vb	\vb{x}	\boldsymbol{x}	bold vector
\vu	$vu{x}$	$\boldsymbol{\hat{x}}$	unit vector
\vdot	$\vb{x} \vdot \vb{y}$	$x \cdot y$	dot product
\vcrs	$\vb{x} \vcrs \vb{y}$	x imes y	cross product
\grad	\grad{x}	∇x	gradient
\divr	\divr{\vb{x}}	$ abla \cdot x$	divergence
\curl	$\curl{\vb{x}}$	$oldsymbol{ abla} imes x$	curl
\slap	\slap{x}	$\nabla^2 x$	scalar Laplacian
\vlap	$\displaystyle \vlap{\vb{x}}$	$oldsymbol{ abla}^2oldsymbol{x}$	vector Laplacian
\dalem	\dalem		d'Alembertian
\del	\del	∇	del

2.3 Dirac Notation

Command	Usage	Output	Definition
\ev	\ev{x}	$\langle x \rangle$	expectation value
\ip	$\inf\{x\}\{y\}$	$\langle x y\rangle$	inner product
\op	$\op{x}{y}$	$ x\rangle \langle y $	outer product

2.4 Matrix Notation

Command	Usage	Output	Definition
/pmx	\pmx{1 & 2 \\ 3 & 4}	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$	parenthetical matrix
\bmx	\bmx{1 & 2 \\ 3 & 4}	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	bracketed matrix
\vmx	\vmx{1 & 2 \\ 3 & 4}	$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$	vertical matrix
\cmx	\cmx{1 & 2 \\ 3 & 4}	$ \begin{cases} 1 & 2 \\ 3 & 4 \end{cases} $	curly matrix
\tr	\tr \pmx{1 & 2 \\ 3 & 4}	$\operatorname{tr}\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$	trace
\tp	\tp{A}	A^{T}	transpose
\cc	\cc{A}	A^*	complex conjugate
\hc	\hc{A}	A^{\dagger}	Hermitian conjugate

2.5 Linear Operators

Command	Usage	Output	Definition
\sop	$sop{x}$	\hat{x}	scalar operator
\vop	\vop{x}	$\boldsymbol{\hat{x}}$	vector operator

2.6 Probability

Command	Usage	Output	Definition
\erf	\erf	erf	error function
\erfc	\erfc	erfc	complementary error function

2.7 Other

Command	Usage	Output	Definition
∖Re	\Re	Re	real part
\Im	\Im	Im	imaginary part
\defn	\defn	:=	defined as
_	x_{text}	x_{text}	upright subscript

2.8 Constants

Command	Usage	Output	Definition
\img	\img	i	imaginary unit
\eul	\eul	e	Euler's number