Answers to Exercises

Stochastic Calculus for Finance II: Continuous-Time Models by Steven E. Shreve

Chapter 3 Brownian Motion

Answers by Aaron Fu

19 April, 2019

Please refer to the book for the exercises themselves. The text in front of each answer serves only as a summary of the question.

Exercise 3.1 For $0 \le t < u_1 < u_2$, show that $W(u_2) - W(u_1)$ is independent of $\mathcal{F}(t)$.

Answer:

- 1. Definition of Brownian motion's filtration (independence of future increment) $\implies W(u_2) W(u_1)$ is independent of $\mathcal{F}(u_1) \implies \sigma(W(u_2) W(u_1))$ is independent of $\mathcal{F}(u_1)$
- 2. Definition of Brownian motion's filtration (information accumulates), $t < u_1 \implies \mathcal{F}(t) \subset \mathcal{F}(u_1)$

By (1) and (2), for any event $A \in \sigma(W(u_2) - W(u_1))$, $B \in \mathcal{F}(t) \subset \mathcal{F}(u_1)$, we have $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \Longrightarrow \sigma(W(u_2) - W(u_1))$ and $\mathcal{F}(t)$ are independent $\Longrightarrow W(u_2) - W(u_1)$ is independent of $\mathcal{F}(t)$.

Exercise 3.2 Show $W^2(t) - t$ is a martingale.

Answer: For $0 \le s < t \le T$, we have

$$\mathbb{E}\left[W^2(t) - t \mid \mathbb{F}(s)\right]$$

$$= \mathbb{E}\left[\left(W(t) - W(s) + W(s)\right)^2 - t \mid \mathbb{F}(s)\right]$$

$$= \mathbb{E}\left[\left(W(t) - W(s)\right)^2 + 2\left(W(t) - W(s)\right)W(s) + W^2(s) - t \mid \mathbb{F}(s)\right]$$

$$= \mathbb{E}\left[\left(W(t) - W(s)\right)^2\right] + 2\mathbb{E}\left[W(t) - W(s)\right]W(s) + W^2(s) - t \qquad \qquad \cdots \text{ independence, take out what is known}$$

$$= (t - s) + 2 \cdot 0 \cdot W(s) + W^2(s) - t \qquad \qquad \cdots \text{ Brownian motion's definition}$$

$$= W^2(s) - s$$

Thus, $W^2(t) - t$ is a martingale.

for discussion, please write to aaron.fu@alumni.ust.hk