Linear Data Analysis Supervised Learning - Perceptron Rule

Cain Susko

Queen's University School of Computing

March 28, 2022

a Perceptron Model of Neurons

this lecture will explore the perceptron algorithm. A perceptron is a binary, artificial representation of a neuron.

given an augmented weight vector \hat{w} , the:

- Augmented data 'vector' is \hat{x}_i
- Label for \hat{x}_i (y_i) is either 0 or 1
- linear weighted sum is $u_i = \hat{x}_i^{\top} \hat{w}$
- \hat{x}_i predicted in class 1 if and only if $u_i \geq 0$
- Output is q_i which is 0 or 1 (binary function)

The objective of the Perceptron Algorithm is to find a hyperplane that puts all the data with label 1 in the positive half-space and data with label 0 in the negative half-space.

Perceptron: Basic Algorithm

The Preceptron was first created by Rosenblatt in 1959 and is the earliest known example of machine learning. Rosenblatt's key assumption was: to iteratively update vector \hat{w} , use only *mis*-classified data.

His Key result from this technique was that: if the training 'vectors' \hat{x}_i are linearly separable, then the perceptron rule will converge.

b Deriving the Perceptron Rule

given:

Hyperplane	\hat{w}
Observation	\hat{x}_i
Label	$y_i \in \{0, 1\}$

Suppose the logic of the Perceptron Rule is as follows:

$$(y_i = 1) \land (q_i = 1)$$

The corresponding action is thus:

$$\hat{w} \leftarrow \hat{w}$$

There are 4 cases which can be caused:

Logic	Action	Case
$(y_i = 1) \land (q_i = 1)$	$\hat{w} \leftarrow \hat{w}$	TP
$(y_i = 0) \land (q_i = 0)$	$\hat{w} \leftarrow \hat{w}$	TN
$(y_i = 1) \land (q_i = 0)$	$\hat{w} \leftarrow \hat{w} + \hat{x}_i$	TP
$(y_i = 0) \land (q_i = 1)$	$\hat{w} \leftarrow \hat{w} - \hat{x}_i$	FP

Note: the error for data-point i is equal to:

$$e_i =^{def} y_i - q_i$$

such that the respective errors for the above table are:

Error
$$e_i = 0$$

$$e_i = 0$$

$$e_i = 1$$

$$e_i = -1$$

Thus, the Perceptron Rule for iterating through all data-points i is:

$$\hat{w}_k \leftarrow \hat{w}_{k-1} + e_i \hat{x}_i$$

c Pseudocode For The Perceptron Rule

This section will explore the Perceptron Rule in pseudocode.

For Linearly separable data, the Perceptron Rule:

- is Guaranteed to converge
- can be initialized with a random weight vector
- has the complexity of O(m) for m data-vectors

For general data the Perceptron Rule:

- can find a local optimum
- may not converge but can oscillate locally
- has no requirement for 'good' separation.

Note: this process finds a hyperplane, rather than the best \mathbb{H}

Batch Learning

For m observations, the augmented design matrix is: $\hat{X} \in \mathbb{R}^{m \times (n+1)}$ where the calculation per data vector is:

$$\hat{w}_k = \hat{w}_{k-1} + \hat{x}_i(y_i - q_i)$$

But if one were to gather the labels into \vec{y} and the output into \vec{q} , the formula for batch iteration of the Perceptron Rule is:

$$\hat{w}_k = \hat{w}_{k-1} + \hat{X}^\top (\vec{y} - \vec{q})$$

d Perceptron Rule for Iris Data

Given the Iris data for the length data and width of 2 classes of plants and a random start vector \hat{w} , the Perceptron Rule creates the following hyperplane:

From different starting vectors, we get different hyperplanes as the Perceptron Rule only finds a **local** optimum.

Because of this lack of certainty for the fit of these hyperplanes, we will have to introduce a factor of optimization to the Rule.

Perceptron Summary

- we use the augmented weight vector \hat{w}
- it is simple, fast computation
- linear algebra is fundamental to this rule
- it also extends to multi-class problems

There are some limitations to the Perceptron Rule, however:

- peculiar convergence to hyperplane
- data must be linearly separable

Learning Outcomes

Students should now be able to:

- transform data to augmented form
- implement basic perceptron algorithm
- test algorithm on simple data