WRAPPING UP: 10st & whs (OU topics) have been fit together. See how advanced ideas

course sums -> support spain TOAKS CLASSES

Geometric pic so for:

Deber bunde: MöBIUS STRIF

BASE
MANIFOLD

FLAT COORD ? XHN D-1

PATCAL COORD ? XHN D-1

@ GEOMETRY of MANIFOUDS

G K-FORMS & "CALOULUS" in ourly spaces

GAUGE THEORY: (potential theory)

 $F = dA \leftarrow F_{\mu\nu} dx^{\mu}dx^{\nu} = (\partial_{\mu}A_{\nu}(x)) dx^{\mu}dx^{\nu}$ 1 (factors of 1/2 implicit)

GANGE REDUNDANCY: all physics in Funch Sinvariant under A -> A + (da)

> d(x) is a function: DIPFERENT VALUE @ DIFFERENT SPACETIME POSITIONS.

important: this is very different from votational invariance! (GLOBAL US LOCAL)

a bit more Geometry (to understand Geometry of Groups) I how do we move objects along a manifold?

OK. THAT'S JUST CALOUUS.

What about tensors?

Ea: Vectors live in tangent space @ a point TPM & TPTE M NGED TO COMPARE

8(20) 8(2)

USE INTEGRAL OURVES:

but how do me osubble vectors (TENSORA) spaes?

MEED ADDITIONAL STRUCTURE: Wonection

GR: if you have a meters; there is a systematic way to write metric campatible connection

(COVARIANT DERN)

2. We Will define a different kind of derivative THAT ACAMI COLA 27 tant

LIE DERIVATIVE (in contract to covariant deriv)

V(x) = V+(x) 3/3x+ VEC. FIELD dxm(E)

(2) 8 se D

can thunk of subsequent points on xm(c) as exponentiation of (yar) operation

X+(T0+DT) = X+(T0) + AT dx / T. +...

> looks familiar? exp. of infinitesimal -> Anite house

Y,XY IN A PATCH 75: SUPPOSE WE HAVE 2 VECTOR FIELDS THAT ARE not degenerate wil each other

s i suppose they have integral curves T(c) if(o) Poal: Want to define a desirative of one vector field as me flow along the other.

can compare what happens if we flow in then of us. of then c.

= 7072 [X' X] L = 7072 [Ze' Ze] x L/b subsider = 7072 [Ze' Ze] x L/b Subsider = 7072 [Ze' Ze] x L/b Moutply = 7072 [Ze' Ze] x L/b Moutply = 7072 [Ze' Ze] x L/b

UE BRACKET: COMPARE TANGER VECTORS
THIS COMPARISON IS WELL DEFINED
PROM THE PERSPECTIVE OF INTEGRAL
QUILLES

OPERATOR PICTURE (am-esque) (acts on test than.

XY = (X+2h)(X,2n) = Xh(9+1,3n + Xh1,3h9n

51

6(m)

6(m)

LLANGERSW MICERA . DOES HELL SHO DEBNSS

BUT THAT TERM CANODIS IN (X,Y) = (Xr(3, Y) - Yr (3, XY)) or

) born fide rector field.

BIG ASSUMPTION: indep. vector frebs are integrable Contegral curves Y, P form coordinates 9. SUPFIGENT: [XX] =0 st- X mi curves have const. I mit curve coords NECESCAPY: X(I), X(S) = CI3 K X(K) 1 involutive If. colled FROBENIUS THM.

200 integrability" is a big topic in formal physics.

RECAP: L'E DERIVERVE

Lx f = Xf Dir. DERIV.

1xx1 = 1xx1

Lx 1/2 = ... Def. by LEIBNIZ RULE.

(eg. Lx W is st Lx w(v)] = X[w(v)]

Lx W(V) = (2, W) V + W (2x V)

= (x*(2,w+)+ WN(2+Xu)) V + this is the natural derivative:

need to compace a same tengent space think of X, Y as infiniteerinal flow

application: 180018TRiES: 2×9=0

metric is const. along X from

Symmetry of spacetime.

[eq sym of AdS=]

THE GROUP IS A GROUP ONHAPLIC
V
18 a manifold
(continuous param)
ey $g(\theta) = \begin{pmatrix} c_{\theta} & S_{\theta} \\ -S_{\theta} & c_{\theta} \end{pmatrix} \in S_{\theta}(S)$
tangent vectors @ identity: LIE ALGEBRA
V
TeM
Ces 1

9(0) is a curve on sols). Les g(0)/000 e ALGEBRA

GROUP MULTIPLICATION: gives a way to define translation

let a, geG.

def: Left translation: La: G > G

La(q) = (aq) ∈ q

if we have a map between manifolds

U: M-N

then we can define a push Bravard map

Py: TM -> TN

(DEA): given Y(z) on M s.t. Y(z) is a vector @ Troom, can define Y(z) on M by Y(z) = 4(x(z)) then & to is a vector e Tigory

La 12 preasely a map between manifolds

Def: A VECTOR fleld is LEFT INVARIANT A (La) + V lg = V lag

80 What? We can construct LEFT-INVT, VEC FIELDS
BY PUBLING ELEMBURS of TeG = LIE ALGEBRA

LET: NE Teq, algebra.

then: V(g) = Lg + v

A SEG

Vector e a commo tre Tea

2 > PUSH A DORY OF V TO EVERY TANGENT SPACE TOG IN 9
1'e: we've mapped [TeG -> TG]

the only thing we need is TeG.

LIE BRACKET: CAME from from from every - worked a derivative for vectors. 15 precisely the commutator that we started with on wk. 1. REQUIRED: (La) + [x,T] (g = [x,T]ag Co Rus is true, but not aburous (noncommutating a onl & 12 some of a 1) do: Teg 12 special. l'elements are Generators.

Ti Ti) = Ci *Tx (linear, mudutive)

PAPID ZOOCH ON TO FIG PICCURE

Dy -> sid Dy K

DERIVACIVE

ourintly

def to tend.

Every find emental bear that we know can be described this way

ASSOCIATED

BUNDLE

FIELDS

Topology of Gauge field theories

CONSIDER BOXIAR FIELD IN 111 DWW W/ DOUBLE WELL POT

When the stable is a limit between the stable is some sent when the stable is a limit between the stable is sometiment.

Derrek's thim: no generalization to higher Dim.

huge exception: GAVGE FIRIDS

why? You can be zero energy in many different ways ... GAUGE EQUIU. to MINIMUM ONTRY.

end up my local multor of enadin

Monopole domain wall mostanton (spraleran