

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG
SCHOOL OF INFORMATION AND COMMUNICATIONS TECHNOLOGY

CLOUD.

DOTTWA

IT3160 Nhập môn Trí tuệ nhân tạo

Artificial Intelligence

PGS.TS. Lê Thanh Hương Trường Công nghệ thông tin và Truyền thông Đại Học Bách Khoa Hà Nội

ONE LOVE. ONE FUTURE.

Nội dung môn học

- Chương 1 Giới thiệu về Trí tuệ nhân tạo
- Chương 2 Tác tử
- Chương 3 Giải quyết vấn đề
- Chương 4 Logic và suy diễn
- Chương 5 Học máy

Giới hạn của Logic định đề

- Hãy xét ví dụ sau đây:
 - Tuấn là một sinh viên của HUST
 - Mọi sinh viên của HUST đều học môn Đại số
 - Vì Tuấn là một sinh viên của HUST, nên Tuấn học môn Đại số
- Trong logic định đề:
 - Định đề p: "Tuấn là một sinh viên của HUST"
 - Định đề q: "Mọi sinh viên của HUST đều học môn Đại số"
 - Định đề r: "Tuấn học môn Đại số"
 - Nhưng: (trong logic định đề) r không thể suy ra được từ p và q!

Ví dụ về logic vị từ

- Ví dụ nêu trên có thể được biểu diễn trong logic vị từ bởi các biểu thức (logic vị từ) sau
 - HUST Student (Tuan): "Tuấn là một sinh viên của HUST"
 - ∀x:HUST_Student(x) → Studies_Algebra(x): "Mọi sinh viên của HUST đều học môn Đại số"
 - Studies Algebra (Tuan): "Tuấn học môn Đại số"
- Trong logic vị từ, chúng ta có thể chứng minh được:

```
{HUST_Student(Tuan), \forall x:HUST_Student(x) \rightarrow Studies Algebra(x)} \vdash Studies Algebra(Tuan)
```

- Với ví dụ trên, trong logic vị từ:
 - Các ký hiệu *Tuan*, x được gọi là các **phần tử** (*Tuan* là hằng, x là biến)
 - Các ký hiệu HUST_Student và Studies_Algebra là các vị từ
 - Ký hiệu ∀là lượng từ với mọi
 - Các phần tử, các vị từ và các lượng từ cho phép biểu diễn các biểu thức

FOL: Ngôn ngữ (1)

- 4 kiểu ký hiệu (symbols)
 - Hằng (Constants): Các tên của các đối tượng trong một lĩnh vực bài toán cụ thể (ví dụ: Tuan)
 - Biến (Variables): Các ký hiệu mà giá trị thay đổi đối với các đối tượng khác nhau (ví dụ: x)
 - Ký hiệu hàm (Function symbols): Các ký hiệu biểu diễn ánh xạ (quan hệ hàm) từ các đối tương của miền (domain) này sang các đối tượng của miền khác (ví dụ: plus)
 - Các vị từ (Predicates): Các quan hệ mà giá trị logic là đúng hoặc sai (ví dụ: HUST_Student and Studies_Algebra)
- Mỗi ký hiệu hàm hoặc vị từ đều có một tập các tham số
 - Ví dụ: HUST_Student và Studies_Algebra là các vị từ có 1 tham số
 - Ví dụ: plus là một ký hiệu hàm có 2 tham số

FOL: Ngôn ngữ (2)

- Một phần tử (term) được định nghĩa (truy hồi) như sau
 - Một hằng số là một phần tử
 - Một biến là một phần tử
 - Nếu t₁, t₂,...,t_n là các phần tử và f là một ký hiệu hàm có n tham số, thì f(t₁,t₂,...,t_n) là một phần tử
 - Không còn gì khác là một phần tử
- Các ví dụ của phần tử (term)
 - Tuan
 - 2
 - friend(Tuan)
 - friend(x)
 - plus(x,2)

FOL: Language (3)

Các nguyên tử (Atoms)

- Nếu t₁,t₂,...,t_n là các phần tử (terms) và p là một vị từ có n tham số, thì p(t₁,t₂,...,t_n) là một nguyên tử (atom)
- **Ví dụ**: HUST_Studies(Tuan), HUST_Studies(x), Studies_Algebra(Tuan), Studies(x)
- Các biểu thức (Formulas) được định nghĩa như sau
 - Một nguyên tử (atom) là một biểu thức
 - Nếu ϕ và ψ là các biểu thức, thì $\neg \phi$ và $\phi \land \psi$ là các biểu thức
 - Nếu φ là một biểu thức và x là một biến, thì ∀x:φ(x) là một biểu thức
 - Không còn gì khác là một biểu thức
- Lưu ý: $\exists x : \phi(x)$ được định nghĩa bằng $\neg \forall x : \neg \phi(x)$

FOL: Ngữ nghĩa (1)

- Một phép diễn giải (interpretation) của một biểu thức φ
 được biểu diễn bằng cặp < D,I>
- Miền giá trị (Domain) ${\mathcal D}$ là một tập khác rỗng
- Hàm diễn giải (Interpretation function) I là một phép gán giá trị đối với mỗi hằng, ký hiệu hàm, và ký hiệu vị từ – sao cho:
 - Đối với hằng c: $I(c) \in \mathcal{D}$
 - Đối với ký hiệu hàm (có n tham số) f: $I(f): \mathcal{D}^n \to \mathcal{D}$
 - Đối với ký hiệu vị từ (có n tham số) P: I(P): $\mathcal{D}^n \to \{\text{true, false}\}$

FOL: Ngữ nghĩa (2)

- Diễn giải đối với một biểu thức logic vị từ. Giả sử ϕ , ψ và λ là các biểu thức vị từ
 - Nếu ϕ là $\neg \psi$, thì $I(\phi)=$ sai nếu $I(\psi)=$ đúng, và $I(\phi)=$ đúng nếu $I(\psi)=$ sai
 - Nếu ϕ là $(\psi \wedge \lambda)$, thì $I(\phi)=$ sai nếu $I(\psi)$ hoặc $I(\lambda)$ là sai, và $I(\phi)=$ true nếu cả $I(\psi)$ và $I(\lambda)$ là đúng
 - Giả sử $\forall x : \phi(x)$ là một biểu thức, thì $I(\forall x : \phi(x)) = \text{đúng nếu } I(\phi) \text{ (d)} = \text{đúng với mọi giá trị d} \in \mathcal{D}$

Lượng tử logic Với mọi

- Cú pháp của lượng tử logic Với mọi (universal quantifier):
 ∀<Biến₁,...,Biến₂>: <Mệnh đề>
- Ví dụ: Tất cả (mọi) sinh viên đang ngồi học trong lớp K4 đều chăm chỉ

```
\forall x: Ngoi\_trong\_lop(x,K4) \rightarrow Cham\_chi(x)
```

- Mệnh đề (∀x: P) là đúng trong một mô hình m, khi và chỉ khi P đúng với x là mỗi (mọi) đối tượng trong mô hình đó
- Tức là, mệnh đề (∀x: P) tương đương với sự kết hợp (và) của tất cả các trường hợp của P

```
Ngoi\_trong\_lop(Hue,K4) \rightarrow Cham\_chi(Hue)
\land Ngoi\_trong\_lop(Cuong,K4) \rightarrow Cham\_chi(Cuong)
\land Ngoi\_trong\_lop(Tuan,K4) \rightarrow Cham\_chi(Tuan)
```


Lượng tử logic Tôn tại

- Cú pháp của lượng tử logic Tồn tại (existential quantifier):
 ∃<Biến₁,...,Biếnₙ>: <Mệnh đề>
- Ví dụ: Tồn tại (có) sinh viên đang ngồi học trong lớp K4, và là sinh viên chăm chỉ:

```
\exists x: Ngoi\_trong\_lop(x,K4) \land Cham\_chi(x)
```

- Mệnh đề (∃x: P) là đúng trong một mô hình m, khi và chỉ khi
 P là đúng với x là một đối tượng trong mô hình đó
- Tức là, mệnh đề (∃x: P) tương đương với phép tuyển (hoặc) của các trường hợp của P

```
Ngoi_trong_lop(Hue,K4) ∧ Cham_chi(Hue)

∨ Ngoi_trong_lop(Cuong,K4) ∧ Cham_chi(Cuong)

∨ Ngoi_trong_lop(Tuan,K4) ∧ Cham_chi(Tuan)

∨ ...
```


Các đặc điểm của các lượng từ logic

- Tính hoán vị:
 - (∀x ∀y) là tương đương với (∀y ∀x)
 - (∃x ∃y) là tương đương với (∃y ∃x)
- Tuy nhiên, $(\exists x \forall y)$ **không** tương đương với $(\forall y \exists x)$
 - ∃x ∀y: Yeu(x,y) "Trên thế giới này, tồn tại (có) một người mà người đó yêu quý tất cả mọi người khác"
 - ∀y ∃x: Yeu(x,y) "Trên thế giới này, mọi người đều được ít nhất một người khác yêu thích"
- Mỗi lượng từ logic (∃ hoặc ∀) đều có thể được biểu diễn bằng lượng từ kia
 - (∀x: Thich(x,Kem)) là tương đương với (¬∃x: ¬Thich(x,Kem))
 - (∃x: Thich(x,BongDa)) là tương đương với (¬∀x: ¬Thich(x,BongDa))

Sử dụng logic vị từ

Biểu diễn các phát biểu trong ngôn ngữ tự nhiên

 "x là anh/chị/em của y" tương đương với "x và y là anh em ruột"

```
\forall x,y: Anh\_chi\_em(x,y) \leftrightarrow Anh\_em\_ruot(x,y)
```

 "Mẹ của c là m" tương đương với "m là phụ nữ và m là bậc cha mẹ của c"

```
\forallm,c: Me(c) = m \leftrightarrow (Phu\_nu(m) \land Cha\_me(m,c))
```

Quan hệ "anh em ruột" có tính chất đối xứng
 ∀x,y: Anh_em_ruot(x,y) ↔ Anh_em_ruot(y,x)