1.2 30pts 做法

显然,旋转后的序列只有n种。我们直接枚举,每次O(n)计算。取最小值即可。时间复杂度 $O(n^2)$ 。

1.3 70pts 做法

记旋转 i 次后的健美值为 ans_i 。我们单独考虑序列中的每一个元素。对于所有 $i \in [1, n]$,若 $s_i < i$,则:

- (1) 对 $ans_0, ans_1, \dots, ans_{i-s_i-1}, ans_{i-s_i}$ 分别产生 $i s_i, i s_i 1, \dots, 1, 0$ 的贡献。
- (2) 对 $ans_{i-s_i+1}, ans_{i-s_i+2}, \cdots, ans_{i-2}, ans_{i-1}$ 分别产生 $1, 2, \cdots, s_i-2, s_i-1$ 的贡献。
- (3) 对 $ans_i, ans_{i+1}, \cdots, ans_{n-2}, ans_{n-1}$ 分别产生 $n-s_i, n-s_{i-1}, \cdots, i-s_{i+2}, i-s_{i+1}$ 的贡献。

 $s_i > i$ 及 $s_i = i$ 时处理类似。

容易发现,所产生的贡献均为一段连续的上升(下降)区间,我们只需要考虑实现一个支持区间递增加(减)的算法即可。

一个直观的做法:线段树。

每个节点维护三个 tag,分别代表区间加,递增(减)加。然后在叶子节点维护权值。注意下放递增(减)加 tag 时要同时打上区间加 tag。大力调试即可,时间复杂度 $O(n \cdot logn)$ 。

1.4 100pts 做法

事实上,在这里用线段树显得很浪费,因为我们并不需要在线查询 ans 的值,所以有 更优秀的算法来解决这一问题。

首先简单回顾一下如何快速对序列进行区间加:

假如要对数组 a 在区间 [l,r] 上加上 w,记 $a_n = \sum_{i=1}^n a_i'$,那么我们只需把 a_l' 加上 w,把 a_{r+1}' 减去 w,最后统计 a' 的前缀和即可。

对于本题,我们可以将区间 [l,r] 递增加拆开成把区间 [l,r] 加上一个常数,再分别加上 $1,2,\cdots,r-l+1$ 。前者我们直接应用上面的方法。对于后者,我们设辅助数组 d,f,记 $d_n = \sum_{i=1}^n f_i$,然后我们将 $f_{l...r}$ 加上 1,将 f_{r+1} 减去 (r-l+1)。最后统计答案时将 ans_i 加上 d_i 即可。区间递减加的处理类似。

这样每次修改是 O(1) 的,最后统计答案是 O(n) 的。总时间复杂度为 O(n)。