CLAIMS

We claim:

1	1. A method of reducing the shop time of locomotives at a locomotive
2	maintenance facility comprising:
3	providing data gathering systems onboard a locomotive and a historical data
4	base of locomotive system data on a plurality of similar locomotives
5	said data base being stored off-board of said locomotive, and said
6	locomotive system data being selected from the group consisting of
7	ambient air temperature, train notch, total track and force power, total
8	voltage, total amps, software versions, engine RPM, engine
9	temperature, crankcase pressure, dynamic braking, battery voltage, and
10	voltage and amperage for all auxiliary motors;
11	obtaining onboard locomotive systems data with said onboard data gathering
12	systems during operation of said locomotive, prior to arrival of said
13	locomotive at a locomotive maintenance facility for scheduled
4	maintenance;
15	transmitting said onboard systems data via wireless communications to a
16	remote data center prior to arrival of said locomotive at said
17	maintenance facility;
18	prior to arrival of said locomotive at said maintenance facility, comparing said
19	onboard system data with said historical data base to determine
20	whether any of said onboard system data is out of a predetermined
21	range or is within said predetermined range, but exhibiting a trend
22	toward being out of said range;
23	prior to arrival of said locomotive at said maintenance facility, assigning a
24	least one fault code corresponding to at least one system fault based or
25	said onboard systems data being either out of said range or exhibiting a
26	trend toward being out of said range, said at least one fault code being
27	selected from the group consisting of overcurrents, flashovers
28	crankcase overtemperatures, crankcase overpressures, communication
29	failures, electrical ground failures, air conditioner converter failures

propulsion system faults, auxiliary system faults, propulsion motor 30 faults, auxiliary motor faults, auxiliary system charging faults, engine 31 cooling system faults, oil system faults, control wiring faults, and 32 microelectronics faults; 33 prior to arrival of said locomotive at said maintenance facility, determining 34 any maintenance and repair operations to be performed when said 35 36 inbound locomotive arrives at said maintenance facility, in response to said at least one fault code; and 37 communicating said determination of maintenance and repair operations to 38 said maintenance facility before said locomotive arrives at said 39 maintenance facility. 40

- The method recited in claim 1, further comprising classifying each said maintenance and repair operation into a classification selected from the group consisting of required, advisable, and optional operations, prior to arrival of said locomotive at said maintenance facility.
- 3. The method recited in claim 1, wherein said onboard systems data is determined to be within said predetermined range, but exhibiting a trend toward being out of range, by comparing a series of values for a given parameter over a period of time.
- 1 4. The method recited in claim 1, wherein said historical data base is 2 comprised, at least in part, of data collected from prior downloads of onboard systems 3 data.
- 5. The method recited in claim 1, wherein said remote data center is located at said remote maintenance facility.

A system for reducing the shop time of locomotives at a locomotive 2 maintenance facility comprising: a plurality of data gathering systems onboard a locomotive, said data gathering 3 systems being adapted to obtain onboard locomotive systems data 4 during operation of said locomotive, prior to arrival of said locomotive 5 6 at a locomotive maintenance facility for scheduled maintenance; a computer off-board of said locomotive, said computer storing a historical 7 data base of locomotive system data on a plurality of similar 8 locomotives, said locomotive system data being selected from the 9 group consisting of ambient air temperature, train notch, total track and 10 force power, total voltage, total amps, software versions, engine RPM, 11 engine temperature, crankcase pressure, dynamic braking, battery 12 voltage, and voltage and amperage for auxiliary motors; 13 a wireless communication system, said wireless communication system being 14 adapted to transmit said onboard systems data to a remote data center 15 prior to arrival of said locomotive at said maintenance facility; 16 data comparison software adapted to compare said onboard system data with 17 said historical data base prior to arrival of said locomotive at said 18 19 maintenance facility, to determine whether any of said onboard system data is out of a predetermined range or is within said predetermined 20 21 range, but exhibiting a trend toward being out of said range; 22 fault code assignment software adapted to assign, prior to arrival of said locomotive at said maintenance facility, at least one fault code 23 corresponding to at least one system fault based on said onboard 24 systems data being either out of said range or exhibiting a trend toward 25 being out of said range, said at least one fault code being selected from 26 consisting of overcurrents, flashovers, crankcase 27 overtemperatures, crankcase overpressures, communication failures, 28 electrical ground failures, air conditioner converter failures, propulsion 29 system faults, auxiliary system faults, propulsion motor faults, 30

6.

1

31

auxiliary motor faults, auxiliary system charging faults, engine cooling

32	system faults, oil system faults, control wiring faults, and
33	microelectronics faults; and
34	diagnostic software adapted to determine, prior to arrival of said locomotive at
35	said maintenance facility, any maintenance and repair operations to be
36	performed when said inbound locomotive arrives at said maintenance
37	facility, in response to said at least one fault code;
38	wherein said wireless communication system is adapted to transmit said
39	determination of maintenance and repair operations to said remote data
40	center prior to arrival of said locomotive at said maintenance facility.

7. The system recited in claim 6, further comprising classification software adapted to classify each said maintenance and repair operation into a classification selected from the group consisting of required, advisable, and optional operations, prior to arrival of said locomotive at said maintenance facility.

- 8. The system recited in claim 6, wherein said data comparison software determines that said onboard systems data is within said predetermined range, but exhibiting a trend toward being out of range, by comparing a series of values for a given parameter over a period of time.
- 9. The system recited in claim 6, wherein said historical data base is comprised, at least in part, of data collected from prior downloads of onboard systems data.
- 1 10. The system recited in claim 6, wherein said remote data center is 2 located at said remote maintenance facility.