Post P5, pre P6

Bruno Juliá-Díaz (brunojulia@ub.edu)

Dpto. Física Quàntica i Astrofísica

Facultat de Física

Universitat de Barcelona

Curso 2016/2017

Sobre la práctica 5

- +
- > subgauss correcta, en general
- > histograma correcto
- > Problemas con la estructura
 - > Exceso de vectores
 - > Bucles incorrectos
- > Problemas al contar
- > Fallos al extraer información de la simulación
- > Uso de variables de nombres raros

Exceso de vectores

```
PARAMETER(ncalxes=120)
DOUBLE PRECISION, DIMENSION(ndat) :: xdata
DOUBLE PRECISION, DIMENSION(200) :: t
DOUBLE PRECISION, DIMENSION(400) :: delta
DOUBLE PRECISION, DIMENSION(200) :: deltaxx
DOUBLE PRECISION. DIMENSION(200) :: deltavv
DOUBLE PRECISION, DIMENSION(200) :: deltaxxx
DOUBLE PRECISION, DIMENSION(200) :: deltayvv
DOUBLE PRECISION, DIMENSION(200) :: x
DOUBLE PRECISION, DIMENSION(200) :: v
DOUBLE PRECISION, DIMENSION(200) :: x1
DOUBLE PRECISION, DIMENSION(200) :: v1
DOUBLE PRECISION, DIMENSION(200) :: x2
DOUBLE PRECISION, DIMENSION(200) :: y2
DOUBLE PRECISION, DIMENSION(200) :: x3
DOUBLE PRECISION, DIMENSION(200) :: y3
DOUBLE PRECISION, DIMENSION(200) :: x4
DOUBLE PRECISION, DIMENSION(200) :: v4
DOUBLE PRECISION, DIMENSION(ncaixes) :: xhisto
DOUBLE PRECISION. DIMENSION(ncaixes) :: histo
DOUBLE PRECISION, DIMENSION(ncaixes) :: errhis
DOUBLE PRECISION, DIMENSION(9) :: mom
```

```
PARAMETER (ndat=100000)

PARAMETER (ncaixes=120)

PARAMETER(nmol=250)

DIMENSION xgaus(1:ndat), histo(1:ncaixes),errhisto(1:ncaixes)

DIMENSION xhisto(1:ncaixes),xmol(nmol),ymol(nmol)

DIMENSION xmol1(1:200),xmol2(1:200),xmol4(1:200),xmol3(1:200)

DIMENSION ymol1(1:200),ymol2(1:200),ymol4(1:200),ymol3(1:200)

DIMENSION varianca(1:200),final(1:4)

CREEM NOMBRES GAUSSIANS
```

Bucles incorrectos / estructura

```
!SEGUIM.
x0 = 0.d0
v0 = 0.d0
OPEN(50.file='Posicions.dat')
DO k=0.249
              !250 part;cules
DO l=1,200
                   !Reinicialitzem
posiciox(l)=x0
posicioy(l)=y0
ENDDO
WRITE(50,*) 'Part; cula', k+1
DO t=1.199
              !200 instants
posiciox(t+1)=posiciox(t)+xgauss2(t+200*k+1) !No voler
posicioy(t+1)=posicioy(t)+xqauss2(t+200*k+50000+1)
WRITE(50,*) posiciox(t),posicioy(t)
                                          !Escrivim posi
ENDDO
ENDDO
CLOSE(50)
        !Ara volem fer un plot amb les 4 primeres.
DO k=0.3
IF (k.eq.0) THEN
OPEN(100+100*k,file='Posicionsparticula1.dat')
ELSEIF (k.eq.1) THEN
OPEN(100+100*k,file='Posicionsparticula2.dat')
ELSEIF (k.eq.2) THEN
OPEN(100+100*k,file='Posicionsparticula3.dat')
ELSEIF (k.eq.3) THEN
OPEN(100+100*k,file='Posicionsparticula4.dat')
ENDIF
DO l=1,200
posiciox(l)=x0
                   !Reinicialitzem
posicioy(l)=y0
ENDDO
DO t=1,199
              !200 instants
posiciox(t+1)=posiciox(t)+xgauss2(t+200*k+1) !No voler
posicioy(t+1)=posicioy(t)+xgauss2(t+200*k+50000+1)
WRITE(100+100*k,*) posiciox(t),posicioy(t)
                                                 !Escriv
ENDDO
CLOSE(100+100*k)
```

Mucho calculo desaprovechado

No se guarda ninguna información relevante

Solo se calcula...1 partícula

Intento, infructuoso, de escribir las posiciones

Problemas al contar

```
FEM CANVI CARIABLE DE GAUSS

DO I=1,250

XCANVI(I)=XGAUSS(I)*DSQRT(DELTA)

YCANVI(I)=XGAUSS(I)*DSQRT(DELTA)

ENDDO

DO DT=2,200

X(DT,I)=X(DT-1,I)+XCANVI(I)*0.01D0/DBLE(DT)

Y(DT,I)=Y(DT-1,I)+YCANVI(I)*0.01D0/DBLE(DT)

ENDDO

WRITE(20,*) X(DT,1),Y(DT,1),X(DT,2),Y(DT,2),X(DT,3),Y(DT,3

C ,X(DT,4),Y(DT,4)

ENDDO

LA GRÀFICA 2 ESTA MALAMENT JA QUE AQUESTA NO POT SER LA TRAJECTO
```

Solamente utiliza 250 de los 100000 números gaussianos ...o 200

```
DO i=1,250
 igauss=1
 DO ind=1,200
   deltaxx(ind)=delta(igauss)
   deltayy(ind)=delta(igauss+1)
    igauss=igauss+2
 ENDDO
 t0 = -0.01
 deltat=0.01
 x0=0
 v0=0
 DO ind=1,200
   t(ind)=t0+deltat*ind
   deltaxxx(ind)=(2.d-7)**(0.5)*deltaxx(ind)
   deltayyy(ind)=(2.d-7)**(0.5)*deltayy(ind)
   x(ind)=x0+deltaxxx(ind)
   v(ind)=v0+deltavvv(ind)
    x0=x(ind)
    v0=v(ind)
```

Problemas al contar

Excesivamente complicado ... probablemente correcto

```
Z = 0
     T = 0.00
     VM = 0.00
     VR = 0.00
NO SÉ PERQUE PERÓ ELS VALORS ALEATORIS NO S'ESTÁN GENERANT CORRE
DSTRA UNA TRAJECTORIA GENERADA ALEATORIAMENT DE MANERA GAUSSIANA
     DO I = 1,200
       T = T + DT
       DO K = 1, NP
         X(K,I) = X(K,I) + VARN*XGAUSS(2*K-1 +Z)
         Y(K,I) = Y(K,I) + VARN*XGAUSS(2*K + Z)
         VM = VM + X(K,I)
        ENDDO
       VALM = VM/NP
       DO R=1,NP
         VR = VR + (X(R,I)-VALM)**2.D0
        ENDDO
       VAR = (VR)/NP
EL CONTADOR Z SIRVE PARA SEGUIR AVANZANDO POR LOS VALORES ALEATO
       WRITE(14,*) X(1,I),Y(1,I),X(15,I),Y(15,I),X(150,I),Y(150,
       X(202,I),Y(202,I)
       write(16,*) T, VAR
       Z = Z + 2*NP
      ENDDO
```

Problemas al contar

Utiliza el mismo número para las 250 partículas en cada paso de tiempo.

Problemas al seguir las partículas

Cuenta correctamente los números gaussianos

No hace que la posición actual sea la anterior más una variable aleatoria x(n,i)=x(n,i-1)+ aleatorio

Figuras que delatan problemas

Figuras que delatan problemas

De donde procede esta gran correlación?

Figuras que delatan problemas

Excesiva casualidad

Excesiva estructura

Unidades

Problemas más sutiles

NO PUC FER 200 PASSOS JA QUE EL MEU ORDINADOR EXPLOTA parameter(TEMPS=20)

Problema grave

El problema en realidad no es pasar de 20 a 200 tiempos sino al pasar de 10000 a 100000 puntos

Lo detectaron en el foro:

Conclusión: revisad vuestras subrutinas y evitad este caso

M'ha passat una cosa curiosa i és que un dels números aleatoris que demano amb rand() dona exactament 0 dins del límit de precisió del double precision (0.00000000000000000). Al fer-ne el logaritme per calcular una distr normal, això dona infinity, causant tota mena de problemes.

Quin criteri creieu millor a seguir per solucionar aquest cas i conservar la màxima aleatorietat?

Possibles solucions són fer un test i posar un 1 a l'última xifra si es dona el cas (0.00000000000001), o cridar a rand() per obtenir un altre número.

Edita | Suprimeix | Contesta

Victor.

caram, si que es curiós si. Fixa't que si treus qualsevol "punt" (regió de mida nul·la) el resultat no es veu afectat. Pots demanar-li que només faci coses si 0<0<1 (sense <=),

В

Mostra el missatge original | Edita | Parteix | Suprimeix | Contesta

Prepráctica 6

Pre-Pràctica 6: Nombres aleatoris 2

Objectius: Métodes de Montecarlo (cru, sampleig d'importància), nombres aleatoris

— Nom del programa principal P6-2016.f. Estructura el programa amb una subroutina per a cada apartat, 1 i 2. Precisió de reals: double precision. Totes les sortides de dades a P6-2016-res.dat.

La práctica tendrá la misma estructura que la prepráctica.

Prepráctica 6

- 1) Integrals Montecarlo 1D. Subroutina montecarlo P6.
 - a) Fes servir el mètode de Montecarlo cru per a calcular les següents integrals definides,

$$I_1 = \int_{-1}^{1} \sqrt{1 - x^2} dx = \pi/2$$

$$I_2 = \int_{-\pi}^{\pi} x^2 \sin^4(x) dx = \frac{1}{32} \pi (8\pi^2 - 15)$$

Muchos números

Per a cadascuna de les integrals, calcula el valor de la integral i el seu error corresponent utilitzant $N=1000,2000,\ldots,1000000$ sumands. Escriu al fitxer de dades 5 columnes: N, I_1 , σ_{I_1} , I_2 i σ_{I_2} . Genera una figura, $\bf P6-2016-fig1.png$ que mostri la convergência dels càlculs dibuixant l'error real comès comparat amb l'error estimat.

- b) Genera 1000000 de nombres gaussians amb valor mitjà igual a zero i variància 1. (fes servir subgaus de P5).
- c) Genera 1000000 de nombres distribuïts segons $p(x) = (2/\pi^2)\sin(x)^2|x|$ amb $x \in [-\pi, \pi]$ (fes servir subair de $\mathbf{P5}$).
- d) Amb els nombres aleatoris generats a b) i c), calcula, fent servir $N=1000,2000,\ldots,1000000$, les integrals següents i escriu: N, els seus valors i errors estimats al fitxer de dades.

$$I_{3} = \int_{-\infty}^{\infty} e^{-x^{2}/2} \frac{1}{\sqrt{2\pi}} \sin^{2}(x) dx,$$

$$I_{4} = \int_{-\infty}^{\infty} e^{-x^{2}/2} \cos^{2}(x) dx,$$

$$I_{5} = \int_{-\pi}^{\pi} \sin^{4}(x) x^{2} dx.$$

Nota: Per I_3 i I_4 utilitza nombres d'1b), per I_5 , d'1c).

Prepráctica 6, formulas para (0,1)

$$\int_0^1 h(x)dx \simeq \frac{1}{N} \sum_{k=1}^N h(x_k)$$

$$\sigma_{H_N} \simeq \frac{1}{\sqrt{N}} \sqrt{\frac{1}{N} \sum_{k=1}^{N} h^2(x_k) - \left(\frac{1}{N} \sum_{k=1}^{N} h(x_k)\right)^2}.$$

A tener en cuenta:

- Es fundamental tener claro cual es la distribución uniforme que utilizaremos y redefinir la "f" como corresponda.

Ejemplo:

$$\int_{1}^{5} x dx = 4 \int_{1}^{5} \frac{x}{4} dx = \langle 4x \rangle_{x \in U(1,5)} = 4 \times 3 = 12$$

Prepráctica 6

Estructura de un código de montecarlo "crudo", sencilla:

```
Inicializo a cero los comandos para sumar

Comienzo un bucle para hacer sumas
    Saco un numero aleatorio uniforme en (a,b), x
    Acumulo el valor de f(x)
    Acumulo el valor de f(x)**2 (necesario para el error)
Acabo el bucle

Calculo el promedio de f(x)
Calculo el promedio de f(x)**2

El promedio de f(x) es el valor de la integral aproximado
Para cacular el error necesito el número de sumandos y los dos
promedios anteriores
```

Prepráctica 6

Modificaciones razonables a esta estructura. ¿Que ocurre si enlugar de un número de sumandos nos piden que hagamos calculos con varios?

```
Inicializo a cero los comandos para sumar
Comienzo un bucle para hacer sumas
    Saco un numero aleatorio uniforme en (a,b), x
   Acumulo el valor de f(x)
   Acumulo el valor de f(x)^{**2} (necesario para el error)
   Miro si el numero de sumandos parciales es el que quiero
       Si es así (con el número de sumandos que tenga):
           Calculo el promedio de f(x)
           Calculo el promedio de f(x)^{**2}
Acabo el bucle
Calculo el promedio de f(x)
Calculo el promedio de f(x)**2
Caculo el error usando ambos promedios
```

Prepráctica 6, integral multidimensional

Fent servir els nombres aleatoris generats a 1b) (via COMMON) calcula la següent integral utilitzant per a cada càlcul $N=1000,2000,\ldots,200000$ sumands. Escriu al fitxer de dades el nombre de sumands, N, el valor d' I_6 i l'error estimat amb el mètode de Montecarlo. Fes una figura mostrant la convergència del resultat, incloent com a títol el resultat final amb el seu error, $\bf P6-2016-fig2.png$.

$$I_{6} = \int_{-\infty}^{\infty} dx_{1} \int_{-\infty}^{\infty} dx_{2} \int_{-\infty}^{\infty} dx_{3} \int_{-\infty}^{\infty} dx_{4} \int_{-\infty}^{\infty} dx_{5} g(x_{1}, x_{2}, x_{3}, x_{4}, x_{5})$$
amb
$$g(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) = (x_{1}^{2}x_{2}^{2}\cos(x_{4}) + x_{3}^{2}(1 + x_{1}) + \cos(x_{4})^{2}x_{5}^{2}) e^{-(x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + x_{5}^{2})}$$

La estructura es idéntica.

La única diferencia es que el número de sumandos no coincide con el número de números aleatórios

Inciso sobre gnuplot

¿Cómo hacer varias figuras a partir del mismo fichero de datos?

- Pon los comentarios con un # en la primera columna
- Separa los bloques con 2 lineas en blanco, por ejemplo

Write(14,*)
Write(14,*)

etc

- gnuplot considera el primer bloque como "index 0", los siguientes, index 1, index 2, etc.

Ejemplo de fichero.dat:

```
Dos lineas en
# apartado 1
              p(d)
                            error p(d)
                                                            blanco
                                0.5
                               0.3
# apartado 2
                                 x1
   X
    0.5
                               40
                                            40.34
   0.8
                               35
                                             42.2
Gnuplot> plot "fichero.dat" index 0 u 1 : 2 :3 w e
Gnuplot > plot "fichero.dat" index 1 u 3:5
```

B. Juliá-Díaz, Física Computacional 2016/2017

Inciso sobre nombres de variables

En la medida de lo posible evitad utilizar nombres de variables de 1 solo caracter. Lo óptimo serian unos 4 caracteres:

```
Itemps
Kpart
Icont

Xposi(ndat)
Yposi(ndat)
```