* f(x) (3 continuous at x=2

$$\therefore \text{ of in } f(x) = f(2) \left(\frac{c}{o}\right) \text{ four}$$

$$\frac{3}{x+2} \frac{\sqrt{2} \times +5 - \sqrt{x+7}}{x-2} = k$$

$$\frac{1}{2x+5} = \frac{\sqrt{2x+5} - \sqrt{x+7}}{x+2} \times \frac{\sqrt{2x+5} + \sqrt{x+7}}{\sqrt{2x+5} + \sqrt{x+7}} = k$$

$$\frac{\sqrt{(2x+5)^2 (\pi+7)^2}}{(\pi-2)(\sqrt{2x+5}+(\pi+7))} = k$$

$$\frac{1}{x-2} \frac{(2x-5)-(x+7)}{(x-2)(\sqrt{2x+5}+\sqrt{x+7})} = k$$

$$\frac{-2 \times +5 - x - 7}{x + 2 (x - 2)(2x + 5 + /x + 7)} = k$$

$$= \int_{x\to 2}^{2\pi} \frac{(x-2)}{(x-2)(\sqrt{2x+5} + \sqrt{x+7})} = k$$

$$4 \rightarrow 2 \frac{1}{2x+5} + \sqrt{x+7} = k$$

$$\frac{1}{\sqrt[3]{alan}} \left[\sqrt{2x+5} + \sqrt{x+7} \right] = k$$

$$\frac{1}{\sqrt{2(3)+5}} + \sqrt{2+7} = k$$

$$\Rightarrow \frac{1}{3+3} = k \Rightarrow \frac{1}{6} = k$$
Other

EXERCISE 1.5

$$\Rightarrow ||^2 = 9 - \chi^2$$

$$\Rightarrow \forall = \pm \sqrt{9-x^2}$$

$$\Rightarrow x \leq 3, -x \leq 3$$

Table:

X	-3	-2	-1	0	1	2	3
y	0	:t2.2	+ 2.8	±3	± 2.8	±2.2	0

Scale: One big square along n-anis=1 unit

Conc big square along y-anis = 1 unit

Multiplying by 16, we get $\chi^2 + 4y^2 = 16 \Rightarrow 4y^2 = 16 - \chi^2 \Rightarrow y = \frac{16 - \chi^2}{4} \Rightarrow y = \pm \frac{\sqrt{16 - \chi^2}}{2}$ > y will be Real 4 16-72 70 => 16 > 72 => 22 = 16 ラ ー4 ミル 兰 4

Table:

	~						·····		
x	-4	-3	-2	-1	0	1	2)	3	4
8		#1.3	±1.7	土1.9	#21	±1.9	<i>±1.</i> 7	± 1.3	0

Scale: One big bequate along n-ants = 2 units One big square along y-axis = 1 unit.

(ii) y=2x

£	/ 0-	_					.
	7C	-1	-0.5	O	70.5		
Ī	B	C·I	0.4		2.7	7.4	}
\\ \S\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	cales e big	squale	along x-aux	u=0.5 u=1	81.8 7 6 5	y=e2x	
		X.		-1 -0:	2		·

171	0		2.	_3	4
बिर	-1	0	· · · · · · · · · · · · · · · · · · ·	2	3
181		1	3	5	7

Scale: One big isquare along x-axis = 1 unit

(ii) x = , Seco, y = tano, where o & a perameter.

$$\Rightarrow 1 = \chi^2 + y^2 \Rightarrow y^2 = \chi^2 - 1 \Rightarrow y = \pm \sqrt{\chi^2 - 1}$$

						
×	-3	-2	-1	1	2	3
7	±2.8	土いフ	٥	0	±1.7	±2.8
-				- 14	L	

(i),
$$y = \frac{\chi^2 - 4}{\chi - 2}$$
, $\chi \neq 2$
= $\frac{(\chi - 2)(\chi + 2)}{\chi - 2}$, $\chi \neq 2$
= $\chi + 2$, $\chi \neq 2$

The given function is not defined at n=2

n	-2	-2	-1	ð		3	-4	5	
7	-1	0	. 1	2	3	5	6	7	L

Scole: On big sequere along x-axis = 2 units.
Om big sequere along y-axis = 2 units.

÷, iv

We draw the graphs of y=x and y= Sinzx

FA Y=Sm2x

*	-180	-150	- I 20°	-90°	-60°	-3 o [†]	0	30	60°	900	120	150	180
K	0	0.9	+0.9	0	-0.9	-0.9	0	0.9	0.9	0	-0.9	-0.9	ı)

For y=x

×	-130°	0	180°
8	-3./	0	3.1

180° = T Rad = 3.1 Rad.

Scale One big Aquale along x -anis = 60°

1 = x cuts the curve &= Sinzx at x =-55°,0,55°

```
9.40

(ii) \frac{x}{2} = \cos x

- T = x = x

We draw the graphs of 3 = \frac{x}{2} and 3 = \cos x

For 3 = \cos x
```

×	-180	-156	-120	-90	<0°	1300	10	130	165	1900	120°	1500	180
8	-1	-0.9	-0.5	0	0.5	0.9	1	0.9	0.5	0	0.5	- 0.9	
	-		~			-		-					

For $y = \frac{x}{2}$

×	-/80°	0.	180°
y	-1.6	0	1.6

Scale: One big square along namis = 60° One big square along yanis = 1 unit.

iii) 2x = tann, $-\frac{x}{2} \le n \le \frac{\pi}{2}$ We draw the graphs of y = 2n and y = tann

For 8 = Zoux

Section 1	2	-900	-750	-60	-43.0	- 30	-150	0	1500	30	450	600	75°	900
		00						0	0:3	0.6	1	1-7	3.7	00