association analysis

by given a set of transactions, find rules that will predict the occurance of an item based on the occurances of other items in the transaction

* implication means cooccurance, not causality

Market-Basket transactions Bread, Milk Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer Bread, Milk, Diaper, Coke

support count (5) = frequency of occurance of an itemset → 5({milk, bread, diaper})=2 association rule = × → y => {milk, diaper} → {beer} support (s) = fraction of transactions that contain both X and Y \Rightarrow s = $\frac{\sigma(\xi_{milk}, bread, diaper_3)}{ITI} = \frac{2}{(X+Y)}$ confidence (c) = measure of how often Y appear in transactions that contain $X \Rightarrow C = \frac{\sigma(\xi_{milk}, bread, diaper_3)}{\sigma(\xi_{milk}, bread_3)} = \frac{2}{3}$

how to find rules ? first find frequent itemset (>minsup), then generate rules from these that have high confidence frequent itemset generation strategies

· reducing number of condidates = for ditems, 2d candidates

saprior; principle = if an itemset is frequent, then all of its subsets must also be frequent

s anti-monotone property = support of an itemset never exceeds the support of its subsets

· if AB is not frequent, ABC, ABCD, ABCDE -> all its supersets are also not frequent (prune)

minsup=3

if every subset is considered; $\binom{6}{1} + \binom{6}{2} + \binom{6}{3} = \boxed{\boxed{11}}$ $\frac{\text{Diaper 4}}{6}$

after this SBread, Diaper, Milk only only Use Fk-1 x Fx-1 method b+b+1=13

with support-based prining, 6+6+4 = 16 subsets are considered

-> candidate generation: Fk-1 x Fk-1 method

Merge (ABC, ABD) = ABCD merge if first k items one some

b) do not merge ACD, ABD -> must have some prefix

alternate Fk-1 x Fk-1 method

Merge (ABC, BCD) = ABCD marge if last k items of first one are same with the first k items of second one support counting of candidate items = instead of matching each transaction against every candidate, match with hash buckets for transactions with length 3 $3 = \frac{12358}{12358} = \frac{12358}{1$

rule generation = from frequent itemsets, find the ones that have confidence > minconf Sfor $\{A,B,C,D\}$ \Rightarrow A \Rightarrow BCD B \Rightarrow ACD ... $\binom{4}{1} + \binom{4}{2} + \binom{4}{3} = 14$ possible rules

bif this below the minimum confidence, no need to check rest, eliminate, prune

complexity of apriori = increases with decrease of support threshold

maximal frequent itemset = if none of itemset's immediate supersets (one level up) is frequent

support threshold=	5	4	3
request itemsets =	F	E,F,J,EF	C,CD,D
maximal itemsets =	F	EF,5	COEF,J

closed itemset = if none of an itemsets immediate supersets has the same support as X

interestigness measure = X -> 7
Contingency table

must be high

	Coffee	\overline{Coffee}	
Tea	150	50	200
\overline{Tea}	650	150	800
	800	200	1000

means people who drink tea, are more likely to drink coffee than not to drink confidence = ((coffee | tea) = 150/200 = 0.75 P(coffee) = 809/100 = 0.8 Contradiction

means knowing that a person dinks tea reduces the probability that helshe drinks coffee shouldn't reduce

* confidence (x→Y) > support(Y): otherwise rule will be misleading

 $P(X,Y) > P(X) \times P(Y) \rightarrow X k Y$ positively correlated

 $P(x,y) < P(x) \times P(y) \rightarrow X & y$ regatively correlated

 $f(x,y) = f(x) \times f(y) \rightarrow X k y$ are independent \Rightarrow confidence $(X \rightarrow Y) = support(Y) \Rightarrow P(Y|X) = P(Y)$

lift= P(Y|x) - 1 if they are independent -> used to measure the importance of a rule >> they are same if they are independent

interest = $\frac{p(x,y)}{}$ $\rightarrow 1$ if they are independent P(X).P(7)

invarient measures to inverse = cosine, jaccard, confidence

non-varient measures to inverse = correlation, interest /lift, odds ratio > they don't change simpson's paradox = observed relationship in data may be influenced by the presence of hidden variables > recovery rate in hospitals, hidden variable = young or old patients

cross support and H-confidence > when caviar is not bought frequently, but when someone buys conf (caviar → milk) -> very high milk, mostly buys cavier -> hard to catch to rule because conf (milk -> caviar) -> very low support of caviar is too low, not frequent itemset h conf(x)

h-confidence = min conf of any association rule formed from itenset $X \longrightarrow s(x) / max & s(x_i)$

cross-support = min & s(xi)} / max & s(xi)}

hypercliques items in the itemset are strongly correlated > not necessarily frequent itemsets