中国科学技术大学 2017-2018 学年第一学期考试试卷

考试科目:_	数字逻辑电路	得分:	

- 一、简答题(每题8分,共40分)
- 1. 用卡诺图求逻辑函数 $Y(A,B,C,D) = \sum m(2,3,4,5,6,7,12,13) + d(10,14,15)$ 的最简与或式和最简与或非式。

2. 电路如图 1-1(a)所示。试对应图 1-1(b)所示时钟信号 CLK 和输入 A 的波形,画出 Q_1 、 Q_2 和输出 Y 的波形,设触发器的初始状态均为 Q0。

2017-2018 学年第一学期 第1页(共6页)

3. 图 1-2 中门电路均为 CMOS 逻辑门,分别写出输出 Y_1 和 Y_2 的逻辑函数式。

4.74HC191 是同步十六进制加/减计数器,将74HC191 设计成十二进制减法计数器,标出借位输出端。74HC191 的功能表和框图见表 1-1 和图 1-3。

CLK	S'	LD'	U'/D	工作状态
×	1	1	×	保持
×	×	0	×	预置数 (异步)
1	0	1	0	加法计数
1	0	1	1	减法计数

表 1-1

图 1-3

5. 图 1-4 是某 PROM 电路编程后的点阵图。(1) 列出数据表;(2) 若把地址 A_1, A_0 看作输入,数据 D_3, D_2, D_1, D_0 作为输出,分别写出 D_3, D_2, D_1, D_0 的表达式。

2017-2018 学年第 一 学期 第 2 页(共 6 页)

二、组合电路分析与设计(每题10分,共20分)

1. 电路如图 2-1 所示,(1) 写出输出的逻辑函数式;(2) 列出真值表,说明电路的逻辑功能。

图 2-1

2. 用 4 选 1 数据选择器设计一个组合电路。输入 ABC 为 3 位二进制数,当输入能被 3 整除时输出 Z=1,否则 Z=0。数据选择器的功能表和框图见表 2-1 和图 2-2。

(注: 0 可被任何数整除)

(177)						
S'	A_{l}	A_0	Y			
1	×	×	0			
0	0	0	D_0			
0	0	1	$D_{\scriptscriptstyle 1}$			
0	1	0	D_2			
0	1	1	D_3			
表 2-1						

图 2-2

- 三、时序电路分析与设计(每题15分,共30分)
- 1. 分析图 3-1 所示时序逻辑电路,写出电路的驱动方程和状态方程,列出状态转换表,画出状态转换图,检查电路能否自启动,说明电路的功能。

- 2. 用上升沿触发的 D 触发器和门电路设计一个可控计数器,A 是控制端,Y 是输出端。当 A=0 时状态转换图如图 3-2(a)所示,当 A=1 时状态转换图如图 3-2(b)所示。
 - (1) 求电路的状态方程、输出方程和驱动方程;(2) 画出逻辑图。

四、脉冲电路分析(10分)

电路如图 4-1(a)所示,(1)已知 v_I 的波形如图 4-1(b) 所示,求 v_{O1} 输出脉冲的宽度并画出 v_{O1} 的波形;(2)若 555 定时器输出的高电平为 14V,输出电阻可忽略不计,求 v_{O1} 为高电平时 v_{O2} 输出波形的周期。

