

Prueba T y Z

Inferencia estadística

Instructor: Juan Luis Palacios Soto

palacios.s.j.l@gmail.com

Contenido

- Concepto de inferencia estadística
- 2 La Prueba T
- La Prueba Z
- 4 La prueba T apareada

Definición (Inferencia Estadística)

Es una rama de la Estadística encargada de hacer generalizaciones, predicciones, inducciones a partir del análisis muestral.

 $\bar{x} \approx \mu$ $S^2 \approx \sigma^2$ $S \approx \sigma$

Uso de la prueba T

Se trata de una prueba estadística para demostrar una hipótesis sobre la media poblacional. A saber:

- Se utiliza la prueba T de una muestra para averiguar si la media poblacional toma o no cierto valor. Es decir, se toma como hipótesis nula el enunciado " H_0 : la media poblacional real vale A" ($H_0: \mu = \mu_0$).
- Se utiliza cuando la muestra proviene de una distribución normal, hay menos de 30 elementos y se desconoce la desviación estándar poblacional σ.
- También se puede aplicar cuando el tamaño de la muestra es mayor o igual a 30, pero se sigue desconociendo la desviación estándar poblacional. El supuesto de normalidad se cumple por el Teorema del Límite Central
- ullet En general la prueba T tiene colas más pesadas.

Ver Geogebra.

Null

H₀: $\mu = 500$

Alternate

H₁: $\mu \neq 500$

 H_1 : μ < 500

 H_1 : $\mu > 500$

Proceso de investigación

Los pasos para la aplicación de la prueba T son:

- Seleccionar el nivel de significación. Este es denotado por α . Generalmente $\alpha=0.01$, $\alpha=0.05$ o $\alpha=0.10$. Esto representa la probabilidad de rechazar la hipótesis nula cuando es verdadera (Error Tipo I). Por ejemplo, un nivel de significación de 0.05 indica un riesgo del 5 % de concluir que existe una diferencia entre los resultados del estudio y la hipótesis nula cuando en realidad no hay ninguna diferencia. Al número $1-\alpha$ se le llama **nivel de confianza**.
- ② Encontrar el valor crítico. Este es denotado por $t_{n-1,\alpha}$. Antiguamente se usaba una tabla de T. Se seleccionaba la columna basado en α y la fila basado en los grados de libertad, que en este caso es n-1 (siendo n el tamaño de la muestra).
- Calcular el valor t. Se refiere a calcular el número $t=\frac{\bar x-\mu}{S/\sqrt n}$, donde $\bar x$ es la media muestral, μ la media poblacional desconocida, S la desviación estándar muestral y n el tamaño de la muestra.
- Comparar y decidir. Si $|t| \ge t_{n-1,\alpha}$, rechazamos H_0 . En caso contrario, "aceptamos" H_0 (porque en realidad diríamos que no hay evidencia suficiente en la muestra para rechazar la hipótesis nula).

Distribución t de student

Prueba T en Excel

Uso de la prueba ${\it Z}$

Se trata de una prueba estadística para demostrar una hipótesis sobre la media poblacional. Un supuesto es que la muestra tomada sigue una distribución normal.

- lacktriangle Se utiliza la prueba Z de una muestra para averiguar si la media poblacional toma o no cierto valor. Es decir, se toma como hipótesis nula el enunciado ${}^{\prime}H_0$: la media poblacional real vale A^{\prime} .
- Se utiliza cuando la muestra tiene más de 30 elementos (con varianza poblacional conocida o no). O bien cuando hay menos de 30 elementos en la muestra, pero se conoce la desviación estándar poblacional σ.

Null

H₀: μ = 500

Alternate

H₁: $\mu \neq 500$

 H_1 : μ < 500

 H_1 : $\mu > 500$

Proceso de investigación

- Seleccionar el nivel de significación. Este es denotado por α . Generalmente $\alpha=0.01$, $\alpha=0.05$ o $\alpha=0.10$. Esto representa la probabilidad de rechazar la hipótesis nula cuando es verdadera. Por ejemplo, un nivel de significación de 0.05 indica un riesgo del 5 % de concluir que existe una diferencia entre los resultados del estudio y la hipótesis nula cuando en realidad no hay ninguna diferencia. Al número $1-\alpha$ se le llama nivel de confianza.
- Encontrar el valor crítico. Este es denotado por z_{α} . Antiguamente se usaba una tabla de Z. Se seleccionaba la columna basado en α .
- Calcular un parámetro. Se refiere a calcular el número $Z=rac{ar x-\mu}{\sigma/\sqrt n}$ con los datos de la muestra.
- Comparar y decidir. Si $|Z| \ge z_{\alpha}$, rechazamos H_0 . En caso contrario, diremos que no hay suficiente evidencia para rechazar la hipótesis nula a partir de la información muestral.

Distribución Z

Proceso en Excel

Proceso de investigación

Los pasos para la aplicación de la prueba T pareada son:

- Seleccionar el nivel de significación. Este es denotado por α . Generalmente $\alpha=0.01$, $\alpha=0.05$ o $\alpha=0.10$. Esto representa la probabilidad de rechazar la hipótesis nula cuando es verdadera.
- ullet Encontrar el valor crítico. Este es denotado por $t_{n-1,lpha}$.
- Calcular un parámetro. Se refiere a calcular el número $T=\dfrac{\bar{d}-D}{S_{diff}/\sqrt{n}}$ con los datos de la muestra.
- Comparar y decidir. Si $|T| \ge t_{n-1,\alpha}$, rechazamos H_0 . En caso contrario, diremos que no hay suficiente evidencia para rechazar la hipótesis nula a partir de la información muestral.

Proceso en Excel

