

<u>Unit 4 Unsupervised Learning (2</u>

8. The K-Means Algorithm: the

Course > weeks)

> <u>Lecture 13. Clustering 1</u> > Specifics

8. The K-Means Algorithm: the Specifics The K-Means Algorithm: the Specifics

And again, looking at this example, we can see what is the problem.

The problem here is that when we decided, when we randomly initialized it, we put points which

are very close to each other.

We put two centroids which are very close to each other.

So maybe one intuition from here is

that if we randomly initialize our centers, we actually may want to spread them around rather than put

them closer together.

And there are algorithms which capture this intuition

Finding the Representative Z

3/3 points (graded)

Find a simplified form of the following equation:

$$rac{\partial}{\partial z_j} \sum_{i \in \mathbb{C}_j} \left\| x^{(i)} - z_j
ight\|^2$$

$$ullet$$
 $\sum_{i\in\mathbb{C}_j}-2\left(x^{(i)}-z_j
ight)$ 🗸

$$^{\bigcirc}\ -2\left(z_{j}-\sum_{i\in\mathbb{C}_{j}}x^{(i)}
ight)$$

$$^{ extstyle }\sum_{i\in\mathbb{C}_j}-(x^{(i)}-z_j)$$

$$\circ$$
 $\sum_{i\in\mathbb{C}_{j}}x^{(i)}$

Now, what is the value of z_j that minimizes the sum?

$$ullet \sum_{i \in C_j} x^{(i)} ullet$$

 \circ $\sum_{i \in C_j} x^{(i)}$

Regarding update of z_i , which of the following statements is true (select all that apply)?

- lacksquare The value of z_j is affected by points $x_i
 otin C_j$
- lacksquare The value of z_j is only affected by points $x_i \in C_j \, lacksquare$
- lacktriangledown The obtained z_j is the centroid (center of mass assuming each $x^{(i)}$ has equal mass) of the jth cluster $m{\checkmark}$

Solution:

Note that

$$z_j = rac{\sum_{i \in C_j} x^{(i)}}{|C_j|}$$

is the center of mass, or centroid, of the jth cluster.

You have used 1 of 3 attempts

Submit

Answers are displayed within the problem

Impact of Intialization

1/1 point (graded)

Remember that the K-Means algorithm is given by

- 1. Randomly select z_1, \ldots, z_k
- 2. Iterate
 - 1. Given z_1, \ldots, z_k , assign each $x^{(i)}$ to the closest z_i , i.e., assign each $x^{(i)}$.
 - 2. Given C_1,\ldots,C_k find the best representatives z_1,\ldots,z_k such that

$$\operatorname{argmin}_{z_1,...,z_k} \sum_{j=1}^k \sum_{i \in C_j} \left\| x^{(i)} - z_j
ight\|^2$$

Which of the following is true about the initialization and output of the K-Means algorithm? Select all those apply.

ightharpoonup Step 2.1 decreases or does not change the cost of clustering output \checkmark

- Step 2.2 decreases or does not change the cost of clustering output

 ✓
- ☑ The clustering output that the K-Means algorithm converges to depends on the intialization ✓

Solution:

While steps 2.1 and 2.2 of the algorithm always decreases the cost or keeps it the same at least, the output of the algorithm largely dependes on the intialization of step 1. Thus, in practice, it is wise to make sure that $z_1, \ldots z_k$ are intialized so that they are well spread out. Another alternative is to try multiple initializations and choose the clustering output that appears the most commonly.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

What if K is 1?

1/1 point (graded)

Now, assume that we are given with K=1 as the number of clusters. Now, does initialization matter at all?

No, because cluster assignment does not change in step 2.1

Yes, because representative selection changes in step 2.2

Solution:

Because if K=1 cluster assignment can never change, initialization does not matter. Also note that the algorithm will converge (have same assignment and same representative from there on) after just 1 iteration.

Submit

You have used 1 of 1 attempt

• Answers are displayed within the problem

Discussion

Hide Discussion

by recent activity ▼

Topic: Unit 4 Unsupervised Learning (2 weeks) :Lecture 13. Clustering 1 / 8. The K-Means Algorithm: the Specifics

Add a Post

Show all posts ▼

There are no posts in this topic yet.

×

Learn About Verified Certificates

© All Rights Reserved