<u>CoT-TL:</u> Low-Resource Temporal Knowledge Representation of Planning Instructions Using Chain-of-Thought Reasoning

Kumar Manas^{1,2}, Stefan Zwicklbauern², Adrian Paschke^{2,3}

¹Continental AG, ²Freie Universität Berlin, ³Fraunhofer FOKUS

For more information contact: kumar.manas@fu-berlin.de

Fig: CoT-TL workflow from natural language to LTL for Planning

Motivation

- Autonomous agents for custom robotics need to follow user instructions.
- Natural language is ambiguous.
- Logical formalisms such as Linear Temporal Logic (LTL) are more concrete.
- CoT-TL bridges the gap between *human language and desired* robot planning.
- But LLMs need data and <u>we address this data scarcity problem</u> and logical formalism via LLMs with other NLP tools!!

Problem and Solution

Custom and diverse nature of robotic applications require tools that can translate human requirements into planning instructions understood by robots.

- Tool to translate English into LTL via LLM prompting and semantic roles labels
 - No need for LLM fine-tuning or multi-stage translation

- Assist LLM via chain of thought → Interpretable output
- Problem Hallucination 🕾
 - Mitigation by Automata and syntax checking ©
- Automata Check by Spot: Check if the CoT-TL generated formula is feasible for the autonomous agent.
- Semantic Role Label (SRL): Determine sequence of action and intermediate step

References:

- 1. Pan, Jiayi et al. "Data-Efficient Learning of Natural Language to Linear Temporal Logic Translators for Robot Task Specification." (2023)
- 2. Duret-Lutz, Alexandre et al. "From Spot 2.0 to Spot 2.10: What's New?" ArXiv abs/2206.11366 (2022).
- 3. Liu, Jason et al. "Grounding Complex Natural Language Commands for Temporal Tasks in Unseen Environments." (2023).

Prompt Design:

Results & Takeaway:

- Only 6 shot prompts are used to generate LTL translation.
- Use at least one prompt for each unique LTL structure.

E.g., if the prompt has only seen structure with 2 propositions, then the model might struggle with structure like $F(A \land B \lor C)$.

