Dynamic Graph Convolutional Neural Network on ShapeNet's Chairs Class

DGCNN (Dynamic Graph Convolutional Neural Network) operates on ShapeNet's 3D Chairs class model using graph convolutions, extracting relationships among points. By discerning local and global features, it excels in 3D shape classification, segmentation, and retrieval tasks. Leveraging ShapeNet's diverse dataset, DGCNN demonstrates robust performance in understanding and processing complex 3D structures, establishing itself as a formidable model for tasks involving 3D object analysis and recognition.

<u>Mirsha Morningstar</u>

Performance Metrics

FDS_Miniproject_Chairs

~	META	
	runtime	1h 5m 35s

> CONFIG (19 collapsed)

✓ SUMMARY

Evaluation table-file

✓ Train

Accuracy 0.9205 IoU 0.8192

Loss 0.2464

✓ Validation

Accuracy 0.9297

IoU 0.8398

Loss 0.2053

_runtime 3927.847

_step 5

_timestamp 1705861795.381

✓ _wandb

runtime 3925

learning_rate 0.001

Visualisation

Deeper Insights

Created with \heartsuit on Weights & Biases.

https://wandb.ai/team-dubakur/FDS_Miniproject_Chairs/reports/Dynamic-Graph-Convolutional-Neural-Network-on-ShapeNet-s-Chairs-Class--Vmlldzo2NTg5Mjcw