ΘΕΜΑ 2

2.1.

2.1.Α. Σωστή απάντηση η (α)

Μονάδες 4

2.1.B.

Επιλέγουμε και για τις δύο ποσότητες των ιδανικών αερίων την ίδια θερμοκρασία T_1 και εφαρμόζουμε για κάθε ιδανικό αέριο την καταστατική εξίσωση, οπότε:

$$\begin{split} P_A \cdot V_A &= n_A \cdot R \cdot T_1 \\ P_B \cdot V_B &= n_B \cdot R \cdot T_1 \\ \end{bmatrix} \xrightarrow{n_A = n_B} P_A \cdot V_A = P_B \cdot V_B \Rightarrow \\ \frac{P_A}{P_B} &= \frac{V_B}{V_A} \xrightarrow{V_B < V_A} P_A < P_B \end{split}$$

Μονάδες 8

2.2.

2.2.Α. Σωστή απάντηση η (γ)

Μονάδες 4

2.2.B.

Η σφαίρα εκτελεί οριζόντια βολή. Από την αρχή ανεξαρτησίας των κινήσεων έχουμε:

Στον οριζόντιο άξονα $\, \Sigma \vec{F}_{\!\! x} = 0 , \,$ άρα η συνιστώσα της ταχύτητας έχει μέτρο $v_x = v_0 ,$

ενώ στον κατακόρυφο άξονα $\, \Sigma \vec{F}_{\!y} = m \vec{g} ,$ άρα η συνιστώσα της ταχύτητας έχει μέτρο $v_y = g \cdot t .$

Η ταχύτητα με την οποία η σφαίρα φθάνει στο έδαφος έχει μέτρο:

$$2 \cdot v_0 = \sqrt{v_0^2 + v_y^2} \Rightarrow 2 \cdot v_0 = \sqrt{v_0^2 + g^2 \cdot t^2} \Rightarrow 4 \cdot v_0^2 = v_0^2 + g^2 \cdot t^2 \Rightarrow t^2 = \frac{3 \cdot v_0^2}{g^2}$$
 (1)

Επίσης:

$$h = \frac{1}{2} \cdot g \cdot t^2 \stackrel{\text{(1)}}{\Rightarrow} h = \frac{1}{2} \cdot g \cdot \frac{3 \cdot v_0^2}{g^2} \Rightarrow h = \frac{3 \cdot v_0^2}{2 \cdot g}$$

Μονάδες 9