

Australian ① CHAIN: Enhancing Generalization in Data-Efficient GANs via lips CHitz continuity constrAI ned Normalization

Yao Ni[†], Piotr Koniusz^{§,†}

FreGAN

FastGAN-D_{bi}

+CHAIN

†The Australian National University §Data61**VCSIRO** firstname.lastname@anu.edu.au

Summary

Background: Limited data in GANs causes discriminator overfitting and unstable training. Batch Normalization (BN) boosts generalization and training stability but is rarely used in data-efficient GAN discriminators as it impairs performance. Goal: Integrate BN into data-efficient GAN discriminators.

Contributions:

- We derive a new error bound emphasizing reduced discriminator weight gradients to enhanced GAN generalization.
- We find that BN in the discriminator tends to cause gradient explosion due to its centering and scaling steps.
- We design CHAIN by replacing BN's centering and scaling steps with 0-mean regularization and adaptive RMS normalization. We show that CHAIN improves stability and generalization of GANs by reducing feature and weight gradients.

Pipeline

Y: $B \times d \times H \times W$ size; lbd:hyperparameter λ CHAIN_batch(Y, p, lbd, eps=1e-5): reg = Y.mean([0,2,3]).square().sum() * (p * 1bd)= (torch.rand(*Y.shape[:2], 1, 1) < p) * 1.0psi_s = Y.square().mean([0,2,3], keepdim = True) psi = (psi_s + eps).sqrt() psi_min = psi.min().detach() $Y_{arms} = (1 - M) * Y + M * (Y / psi * psi_min)$

CHAIN: 0MR & ARMS <u>0-Mean Regularization loss:</u>

Adaptive Root Mean Square normalization: $ARMS(Y) = (1 - M) \odot Y + M \odot \frac{Y}{2} \cdot \psi_{min}$

 $\boldsymbol{M} \sim \mathcal{B}(p)$. $\boldsymbol{\mu}, \boldsymbol{\psi}$ are mean and root mean square of feature map Y.

 $p \in [0,1]$: Bernoulli probability and ℓ^{0MR} strength, updated with $r(\boldsymbol{x}) = \mathbb{E}[\text{sign}(D(\boldsymbol{x}))], p_{t+1} = p_t + \Delta_p \cdot \text{sign}(r(\boldsymbol{x}) - \tau).$

CHAIN is applied separately to real and fake data batches.

 \boldsymbol{x} : Real image. B_l : l-th block. C_S : Conv. in skip branch. D: Discriminator. τ : A predefined threshold. Δ_p : A small value. \mathcal{B} : Bernoulli noise. λ : Hyperparameter.

Method

Lowering real/fake discrepancy aids generalization:

GAN generalization error: $\epsilon_{gan} \leq 2d_{\mathcal{H}}(\mu, \hat{\mu}_n) + 2d_{\mathcal{H}}(\nu_n^*, \hat{\nu}_n)$ $d_{\mathcal{H}}$: discrepancy of D. $\mu, \hat{\mu}_n$: unseen/seen real data. $\nu_n^*, \hat{\nu}_n$: ideal/seen fake. $\nu_n^* \approx$ $\hat{\mu}_n$ implies lowering real/fake gap reduces $\epsilon_{\rm gan}$. μ inaccessible, thus we derive $\epsilon_{\rm gan}^{\rm nn}$.

Lowering weight gradient norms of D aids generalization:

$$\epsilon_{\text{gan}}^{\text{nn}} \leq 2\omega \left(\|\nabla_{\boldsymbol{\theta}_d}\|_2 + \|\widetilde{\nabla}_{\boldsymbol{\theta}_d}\|_2 \right) + 4R\left(\frac{\|\boldsymbol{\theta}_d\|_2^2}{\omega^2}, \frac{1}{n} \right) + \omega^2 \left(|\lambda_{\text{max}}^{\boldsymbol{H}}| + |\lambda_{\text{max}}^{\boldsymbol{\widetilde{H}}}| \right)$$

 $\epsilon_{\text{gan}}^{\text{nn}}$: ϵ_{gan} on neural networks, $\omega > 0$. θ_d : D's weights. ∇_{θ_d} , λ_{max}^H : real gradient, top Hessian eigenvalue. ∇_{θ_d} , λ_{\max}^H : fake versions. R: related to $\|\boldsymbol{\theta}_d\|_2^2$ and data size n.

Separate BN reduces discrepancy but enlarges gradient:

transform:Y = AW centering: $Y = Y - \mu$ scaling: $Y = Y / \sigma$

(Centering) similarity dropping causes feature divergence:

 $\mathbb{E}_{\boldsymbol{y}_1,\boldsymbol{y}_2} \left[\cos(\boldsymbol{y}_1,\boldsymbol{y}_2) \right] \geqslant \mathbb{E}_{\boldsymbol{y}_1,\boldsymbol{y}_2} \left[\cos(\boldsymbol{y}_1,\boldsymbol{y}_2) \right] = 0$ $y_1, \overset{c}{y}_1$: pre- & post-centering features. Features similar in early layers diverge in later layers.

(Scaling) unbounded Lipschitz causes gradient explosion:

 $\|\operatorname{diag}(1/\boldsymbol{\sigma})\|_{\operatorname{lc}} = 1/\sigma_{\min}$

Lipschitz constant (lc) is large when $\sigma_{\min} = \min_c \sigma_c$, is small.

CHAIN replaces centering/scaling with 0MR/ARMS:

mean
$$\mu$$
: $\mu_c = \frac{1}{B \times H \times W} \sum_{b,h,w} Y_{b,c,h,w}$

root mean square ψ : $\psi_c = \sqrt{\left(\frac{1}{B \times H \times W} \sum_{b,h,w} Y_{b,c,h,w}^2\right) + \epsilon}$

$\ell^{\text{OMR}}(\boldsymbol{Y}) = \lambda \cdot p \cdot \|\boldsymbol{\mu}\|_2^2$ 0-mean regularization:

Adaptive root mean square normalization:

ARMS
$$(Y) = (1 - M) \odot Y + M \odot \frac{Y}{\psi} \cdot \psi_{\min}, \quad \psi_{\min} = \min_{c} \psi_{c}$$
 $\epsilon = 10^{-5}$. λ : a hyperparameter. p controls ℓ^{OMR} and Bernoulli mask $M \sim \mathcal{B}(p)$

CHAIN reduces gradients of features and weights in D:

$$\|\Delta \boldsymbol{y}_{c}\|_{2}^{2} \leq \|\Delta \dot{\boldsymbol{y}}_{c}\|_{2}^{2} \left(\frac{(1-p)\psi_{c} + p\psi_{\min}}{\psi_{c}}\right)^{2} - \frac{2(1-p)p\psi_{\min}}{B\psi_{c}} (\Delta \dot{\boldsymbol{y}}_{c}^{T} \boldsymbol{\check{y}}_{c})^{2}$$
$$\|\Delta \boldsymbol{w}_{c}\|_{2}^{2} \leq \lambda_{\max}^{2} \|\Delta \boldsymbol{y}_{c}\|_{2}^{2}$$

 $\Delta y_c, \Delta \dot{y}_c$: c-th column of gradient for CHAIN input/output Y, \dot{Y} . λ_{max} : top eigenvalue of A. \check{y}_c : c-th column of $\check{Y} = Y/\psi$. Δw_c : c-th column of grad for W.

Experimental Results

Comparison	with	the s	tate-	of-th	e-ar	t met	hods						
	CIFAR-10						CIFAR-100						
Method	10% data		20% data		100% data		10% data		20% data		100% data		
	IS↑	tFID↓	IS↑	tFID↓	IS↑	tFID↓	IS↑	tFID↓	IS↑	tFID↓	IS↑	tFID	
BigGAN	8.24	31.45	8.74	16.20	9.21	5.48	7.58	50.79	9.94	25.83	11.02	7.86	
+CHAIN	8.63	12.02	8.98	8.15	9.49	4.18	10.04	13.13	10.15	11.58	11.16	6.04	
LeCam+DA	8.81	12.64	9.01	8.53	9.45	4.32	9.17	22.75	10.12	15.96	11.25	6.45	
+CHAIN	8.96	8.54	9.27	5.92	9.52	3.51	10.11	12.69	10.62	9.02	11.37	5.26	
OmniGAN+ADA	7.86	40.05	9.41	27.04	10.24	4.95	8.95	44.65	12.07	13.54	13.07	6.12	
+CHAIN	10.10	6.22	10.26	3.98	10.31	2.22	12.70	9.49	12.98	7.02	13.98	4.02	
Mathad (FID)	Shells	Skul	ls An	imeFac	ce Bre	CaHAl) Mes	sidorS	et1 Po	kemon	ArtPa	inting	
Method (FID↓)	64 imgs	97 im	gs 12	20 imgs	s 16	52 imgs	4(00 imgs	s 83	3 imgs	1000	imgs	
FastGAN	138.50	97.8	7	54.05	(53.83		38.33	۷	15.70	43	.21	

34.61

37.38

28.76

Method	2.59	% Imag	eNet	5%	Image	eNet	10% ImageNet			
viculou	IS↑	tFID↓	vFID↓	IS↑	tFID↓	vFID↓	IS↑	tFID↓	vFID↓	
BigGAN										
-CHAIN	14.68	30.66	29.32	17.34	21.13	19.95	20.45	14.70	13.84	
ADA	7.93	67.84	66.55	11.56	47.56	46.25	14.82	31.75	30.68	
-CHAIN	16.57	23.01	21.90	19.15	16.14	15.17	22.04	12.91	12.17	

Method (FID↓)		100-shot	Animal Face		
Wicthou (TID)	Obama	GrumpyCat	Panda	Cat	Dog
StyleGAN2	80.20	48.90	34.27	71.71	131.90
+CHAIN	28.72	27.21	9.51	38.93	53.27
AdvAug	52.86	31.02	14.75	47.40	68.28
DA	46.87	27.08	12.06	42.44	58.85
InsGen	32.42	22.01	9.85	33.01	44.93
FakeCLR	26.95	19.56	8.42	26.34	42.02
KDDLGAN	29.38	19.65	8.41	31.89	50.22
AugSelfGAN	26.00	19.81	8.36	30.53	48.19
DA+CHAIN	22.87	17.57	6.93	19.58	30.88

iterations ($\times 1000$)

OmniGAN

100 150 195

123.75 84.58

171.35 165.64

78.62 82.47

iterations ($\times 1000$)

OmniGAN+CHAIN

43.14

43.04

38.83

53.48

31.94

50 100 150 195 data and fake data.

iterations ($\times 1000$)

weight gradient norm

6e4

