

Figure 2.5. Joint probability of u and n_B for Bill and Fred's urn problem, after N=10 draws.

The marginal probability of u is $P(u) = \frac{1}{11}$ for all u. You wrote down the probability of n_B given u and N, $P(n_B | u, N)$, when you solved exercise 2.4 (p.27). [You are doing the highly recommended exercises, aren't you?] If we define $f_u \equiv u/10$ then

$$P(n_B \mid u, N) = \binom{N}{n_B} f_u^{n_B} (1 - f_u)^{N - n_B}.$$
 (2.23)

What about the denominator, $P(n_B | N)$? This is the marginal probability of n_B , which we can obtain using the sum rule:

$$P(n_B | N) = \sum_{u} P(u, n_B | N) = \sum_{u} P(u) P(n_B | u, N).$$
 (2.24)

So the conditional probability of u given n_B is

$$P(u | n_B, N) = \frac{P(u)P(n_B | u, N)}{P(n_B | N)}$$
(2.25)

$$= \frac{1}{P(n_B \mid N)} \frac{1}{11} {N \choose n_B} f_u^{n_B} (1 - f_u)^{N - n_B}. \tag{2.26}$$

This conditional distribution can be found by normalizing column 3 of figure 2.5 and is shown in figure 2.6. The normalizing constant, the marginal probability of n_B , is $P(n_B=3 \mid N=10)=0.083$. The posterior probability (2.26) is correct for all u, including the end-points u=0 and u=10, where $f_u=0$ and $f_u=1$ respectively. The posterior probability that u=0 given $n_B=3$ is equal to zero, because if Fred were drawing from urn 0 it would be impossible for any black balls to be drawn. The posterior probability that u=10 is also zero, because there are no white balls in that urn. The other hypotheses $u=1, u=2, \ldots u=9$ all have non-zero posterior probability.

u	$P(u \mid n_B = 3, N)$
0	0
1	0.063
2	0.22
3	0.29
4	0.24
5	0.13
6	0.047
7	0.0099
8	0.00086
9	0.0000096
10	0

Figure 2.6. Conditional probability of u given $n_B = 3$ and N = 10

Terminology of inverse probability

In inverse probability problems it is convenient to give names to the probabilities appearing in Bayes' theorem. In equation (2.25), we call the marginal probability P(u) the prior probability of u, and $P(n_B | u, N)$ is called the likelihood of u. It is important to note that the terms likelihood and probability are not synonyms. The quantity $P(n_B | u, N)$ is a function of both n_B and u. For fixed u, $P(n_B | u, N)$ defines a probability over n_B . For fixed n_B , $P(n_B | u, N)$ defines the likelihood of u.