Cluster Analysis

Nazerfard, Ehsan nazerfard@aut.ac.ir

Summer Sky

https://www.synapticsystems.com/sky/learnsky.html

Major Clustering Approaches

- ✓ Partitioning-based approach
 - Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors.
 - o Typical methods: k-means, k-medoids, CLARA, CLARANS
- Density-based approach
 - Based on connectivity and density functions
 - Typical methods: DBSCAN, OPTICS, DenClue
- Hierarchical approach
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - o Typical methods: Agnes, Diana, BIRCH, CURE, CHAMELEON
- Model-based approach
 - A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
 - Typical methods: EM, SOM

Major Clustering Approaches (cont.)

- Grid-based approach
 - Based on a multiple-level granularity structure
 - Typical methods: STING, CLIQUE, WaveCluster
- Frequent Pattern-based approach
 - Based on the analysis of frequent patterns
 - Typical methods: p-Cluster
- Support Vector approach
 - Based on the idea of mapping data points into higher dimensional feature space via a kernel function.
 - Typical methods: SVC, Kernel K-means
- Graph Theoretic approach
 - Typical methods: Spectral Clustering
- **...**

When K-means clustering fails

Density-based Approach

It is based on connectivity and density functions

Example: DBSCAN

DBSCAN

Density-Based Spatial Clustering of Applications with Noise

Density Definition

- Cluster: maximal set of density-connected points
- Parameters:
 - ε: max radius of the neighborhood
 - o minPts: min # of points in a ϵ -neighborhood of a point
 - The ϵ -neighborhood of a point q:

$$N_{\epsilon}(q) = \{p \text{ in } D \mid d(p,q) \leq \epsilon\}$$

$$\epsilon = 1$$
 unit minPts = 5

Core, Border, and Outlier

- Core point (q): dense neighborhood
- Border point (p'): in cluster, but neighborhood is not dense (reachable by the cluster)
- Outlier/noise: not in a cluster

Density Reachability

- Directly density-reachable (ε, minPts):
 - A point p is density directly-reachable from a point q if:
 - p in $N_{\epsilon}(q)$
 - Core point condition: $|N_{\epsilon}(q)| \ge minPts$

- Density-reachable (ε, minPts):
 - A point p is directly-reachable from a point q if there is a chain of points $p_1, ..., p_n$, $p_1=q$, $p_n=p$ such that p_{i+1} is directly density-reachable from p_i .

The DBSCAN Algorithm

- □ The DBSCAN algorithm (ϵ , minPts):
 - Start with an arbitrary point p from the database
 - Retrieve all density-reachable points from p
 - If p is a core point, a cluster is formed
 - If p is a border point, no points are density reachable from p.
 Thus DBSCAN visits the next points of the database
 - Continue the process until all of the points have been processed.

Example - Original Points

Discovered Clusters

M. Ester et al., A density-based algorithm for discovering clusters in large spatial databases with noise, 1996

Sensitivity to Parameters

- \square minPts = 4
 - o (a) $\epsilon = 0.5$
 - \circ (b) $\epsilon = 0.4$

Further Reading

- The OPTICS Clustering Algorithm
 - M. Ankerst, MM. Breunig, H-P. Kriegel, J. Sander, OPTICS: Ordering Points To Identify the Clustering Structure, ACM SIGMOD international conference on Management of data, pp. 49-60, 1999.

References

- M. Ester, H-P. Kriegel, J. Sander, X. Xu. "<u>A density-based</u> algorithm for discovering clusters in large spatial databases with noise", 1996.
 - [Highest impact paper award, 2014]
- J. Sander, M. Ester, H-P. Kriegel, X. Xu. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications, 1998.

Hierarchical Approach

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Two categories:
 - Agglomerative (bottom-up)
 - Divisive (top-down)

Dendrogram

AGNES (Agglomerative Nesting)
DIANA (Divisive Analysis)

Agglomerative Clustering

- The algorithm:
 - \circ Start with a collection \mathcal{C} on n singleton clusters
 - Each cluster contains one data point: $c_i = \{x_i\}$
 - Repeat
 - Find a pair of clusters that are closest: min $D(c_i, c_j)$
 - Merge the clusters c_i and c_j into a new cluster c_{i+j}
 - Remove c_i and c_j from the collection C, then add c_{i+j}
 - Until only one cluster left

Example

Cluster distance measure: single link

Figure © V. Lavrenko, Lecture on Clustering, University of of Edinburg

Figure © V. Lavrenko, Lecture on Clustering, University of of Edinburg

Figure © V. Lavrenko, Lecture on Clustering, University of of Edinburg

Figure © V. Lavrenko, Lecture on Clustering, University of of Edinburg

Figure © V. Lavrenko, Lecture on Clustering, University of of Edinburg

Cluster Distance Measure

- □ Single link: $D(C_1, C_2) = \min(x_1, x_2)$
 - Distance between the closest elements in clusters
- □ Complete link: $D(C_1, C_2) = \max(x_1, x_2)$
 - Distance between the farthest elements in clusters
- Average link: average all pairwise distances
 - Less affected by outliers
- Centroids: distance between centroids (mean) of clusters
- Ward's method: sum of deviations from the centroid
 - The smaller, the better for merging.

Further Reading

The Birch Clustering Algorithm

 T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very large databases, Proceedings of the ACM SIGMOD international conference on Management of data, SIGMOD, pp 103-114, 1996.

The CHAMELEON Clustering Algorithm

 G. Karypis, E-H. Han, V. Kumar, CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling, IEEE Computer 32(8): 68-75, 1999.

Model-based Approach

- A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
- Example: EM / GM Clustering
 - EM: Expectation–Maximization
 - Gaussian Mixtures

Mixture Models in 1-D

- Case 1
 - Assume the data points come from two Gaussians with <u>unknown parameters</u>
 - We know each point comes from which Gaussian

Mixture Models in 1-D

Case 1

- Assume the data points come from two Gaussians with unknown parameters
- We know each point comes from which Gaussian

$$\mu_b = \frac{x_1 + x_2 + \dots + x_{n_b}}{n_b}$$

$$\sigma_b^2 = \frac{(x_1 - \mu_b)^2 + \dots + (x_n - \mu_b)^2}{n_b}$$

Mixture Models of 1-D

- □ Case 2
 - We don't know the sources
 - We know the parameters of the Gaussians

Mixture Models of 1-D

- Case 2
 - We don't know the sources
 - We know the parameters of the Gaussians

$$P(b \mid x_i) = \frac{P(x_i \mid b)P(b)}{P(x_i \mid b)P(b) + P(x_i \mid a)P(a)}$$

$$P(x_i | b) = \frac{1}{\sqrt{2\pi\sigma_b^2}} \exp\left\{-\frac{(x_i - \mu_i)^2}{2\sigma_b^2}\right\}$$

Expectation-Maximization

- Chicken and egg problem!
 - We need parameters to guess source of points
 - We need to know source to estimate parameters
- EM algorithm
 - Start with two randomly placed Gaussians
 - REPEAT
 - Use the Gaussians to determine which point comes from which Gaussian (Case 2)
 - Adjust parameters to fit points assigned to them (Case 1)
 - UNTIL Convergence

Expectation-Maximization (cont.)

- Chicken and egg problem!
 - We need parameters to guess source of points
 - We need to know source to estimate parameters
- EM algorithm
 - Start with two randomly placed Gaussians
 - REPEAT
 - Use the Gaussians to determine which point comes from which Gaussian (E-step)
 - Adjust parameters to fit points assigned to them (M-step)
 - UNTIL Convergence

EM Visualization

Initialization

EM Visualization (cont.)

Initialization

$$P(x_i | b) = \frac{1}{\sqrt{2\pi\sigma_b^2}} \exp\left\{-\frac{(x_i - \mu_b)^2}{2\sigma_b^2}\right\}$$

$$b_i = P(b | x_i) = \frac{P(x_i | b)P(b)}{P(x_i | b)P(b) + P(x_i | a)P(a)}$$

$$a_i = P(a | x_i) = 1 - b_i$$

EM Visualization (E-Step)

$$P(x_i | b) = \frac{1}{\sqrt{2\pi\sigma_b^2}} \exp\left\{-\frac{(x_i - \mu_b)^2}{2\sigma_b^2}\right\}$$

$$b_i = P(b | x_i) = \frac{P(x_i | b)P(b)}{P(x_i | b)P(b) + P(x_i | a)P(a)}$$

$$a_i = P(a | x_i) = 1 - b_i$$

EM Visualization (M-Step)

Figure © V. Lavrenko, Lecture on Clustering, University of of Edinburg

EM Visualization (E-Step)

Figure © V. Lavrenko, Lecture on Clustering, University of of Edinburg

EM Clustering

- Soft computing clustering
 - Clusters overlap
- K-means clustering is a special case of (hard) EM.
- Sensitive to the initialization
- How to pick K?

Further Reading

- The SOM and Spectral Clustering Algorithms
- Grid-based Clustering
- Subspace Clustering
- Collaborative Clustering
- **.**..

Measuring Clustering Quality

- Some issues when dealing with cluster validation:
 - Clustering tendency
 - Number of clusters required
 - How well it fits the data, without reference to any external information (labels).
 - Comparing the cluster analysis with any external information.
 - We compare two different clusters to determine which one is better.

Measuring Clustering Quality (cont.)

- Unsupervised measure (internal)
 - Cluster cohesion & cluster separation
 - SSE, Silhouette coefficient
- Supervised measure (external)
 - Entropy, Purity, Rand index
 - We can also use the clustering results to solve another problem, such as classification.
- Relative approach
 - Combination of supervised and unsupervised approaches.

Measuring Clustering Quality (cont.)

Clustering quality:

User inspection

$$\Rightarrow SSE = \sum_{j=1}^{k} \sum_{x \in C_j} \left| \left| x - \mu_j \right| \right|^2$$

Purity

Entropy

$$\epsilon_{to}$$

$$E_{total}(\Omega) = \sum_{w \in \Omega} \frac{m_w}{m} \times E(w)$$

Silhouette Index

$$\rightarrow$$

Purity

- We assign a label to each cluster based on the most frequent class in it.
- The purity becomes the number of correctly matched class and cluster labels divided by the number of total data points.

Purity (cont.)

$$Purity = \frac{cluster\ A + cluster\ B + cluster\ c}{total} = \frac{4 + 5 + 3}{17} = 0.71$$

Entropy

Total clustering entropy:

$$E_{total}(\Omega) = \sum_{w_i \in \Omega} \frac{m_{w_i}}{m} \times E(w_i),$$
 where $\Omega = \{w_1, w_2, ..., w_k\},$
$$m_{w_i} \text{ is the number of points in cluster } w_i,$$

$$m \text{ is the total number of points}$$

 \square Entropy of a single cluster w_i :

$$E(w_i) = -\sum_{c \in C} \frac{|w_{i,c}|}{m_{w_i}} \times \log_2 \frac{|w_{i,c}|}{m_{w_i}}$$
,

where c is a class in the set C of all classes, $|w_{i,c}|$ is the number of points classified as c in cluster w_i

Entropy (cont.)

$$E(w_A) = -\frac{4}{6}\log_2\frac{4}{6} - \frac{1}{6}\log_2\frac{1}{6} - \frac{1}{6}\log_2\frac{1}{6} = 1.25$$

$$E(w_B) = -\frac{5}{6}\log_2\frac{5}{6} - \frac{1}{6}\log_2\frac{1}{6} = 0.65$$

$$E(w_C) = -\frac{3}{5}\log_2\frac{3}{5} - \frac{1}{5}\log_2\frac{1}{5} - \frac{1}{5}\log_2\frac{1}{5} = 1.37$$

Entropy (cont.)

$$E_{total}(\Omega) = 1.07$$

$$E_{total}(\Omega) = 1.43$$

Entropy (cont.)

The smaller values of overall entropy indicates a better clustering.

$$E_{total}(\Omega) = 1.07$$

$$E_{total}(\Omega) = 1.43$$

Further Reading

- □ Silhouette index
- Normalized Mutual Information (NMI)
- Rand index
- . . .

References

- Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and Techniques, 3rd edition, 2006.
- M. Ankerst, MM. Breunig, H-P. Kriegel, J. Sander, OPTICS: Ordering Points To Identify the Clustering Structure, ACM SIGMOD international conference on Management of data, pp. 49-60, 1999.
- M. Ester, H-P. Kriegel , J. Sander, X. Xu. "A density-based algorithm for discovering clusters in large spatial databases with noise", 1996.
- J. Sander, M. Ester, H-P. Kriegel, X. Xu. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications, 1998.
- T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very large databases, Proceedings of the ACM SIGMOD international conference on Management of data, SIGMOD, pp 103-114, 1996.
- □ G. Karypis, E-H. Han, V. Kumar, CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling, IEEE Computer 32(8): 68-75, 1999.