Minimal auf**spannende** Bäume

Nico Haaf und Josua Kugler

19.05.20

Konstruktion verbundener Netzwerke:

- Konstruktion verbundener Netzwerke:
 - Telekommunikation

Abbildung: [Abb4] Haupt-Internetverbindungen des Europäischen Netzwerks

- Konstruktion verbundener Netzwerke:
 - Telekommunikation
 - Wasser- und Elektrizitätsversorgung

 $\textbf{Abbildung:} \ [\texttt{Abb5}] \ Wasserversorgungsnetzwerk \ in \ einer \ Stadt$

- Konstruktion verbundener Netzwerke:
 - Telekommunikation
 - Wasser- und Elektrizitätsversorgung

Sei G=(V,E) ein Graph mit Knotenmenge V und Kantenmenge E.

Sei G=(V,E) ein Graph mit Knotenmenge V und Kantenmenge E.

Definition (Pfad)

$$v_0, v_1, \dots, v_n \in V$$
 mit Kanten $e = (v_{i-1}, v_i) \in E \quad \forall 1 \le i \le n$

Sei G=(V,E) ein Graph mit Knotenmenge V und Kantenmenge E.

Definition (zusammenhängend)

 $\forall v_1, v_2 \in V \exists \mathsf{Pfad} \mathsf{von} \ v_1 \mathsf{nach} \ v_2.$

Definition (Zusammenhangskomponenten)

maximal zusammenhängende Teilgraphen

Sei G=(V,E) ein Graph mit Knotenmenge V und Kantenmenge E.

Definition (zusammenhängend)

 $\forall v_1, v_2 \in V \exists \mathsf{Pfad} \mathsf{von} \ v_1 \mathsf{nach} \ v_2.$

Definition (Zusammenhangskomponenten)

maximal zusammenhängende Teilgraphen

Definition (Kreis)

Ist (v_1, \ldots, v_{n-1}) mit n > 1 ein Pfad, so heißt $(v_0, \ldots, v_{n-1}, v_0)$ Kreis.

Definition (Kreis)

Ist (v_1, \ldots, v_{n-1}) mit n > 1 ein Pfad, so heißt $(v_0, \ldots, v_{n-1}, v_0)$ Kreis.

Definition (Kreis)

Ist (v_1,\ldots,v_{n-1}) mit n>1 ein Pfad, so heißt (v_0,\ldots,v_{n-1},v_0) Kreis.

Definition

Einen Graphen ohne Kreise nennt man azyklisch.

Definition (Grad)

$$d(v) = |\{e \in E | v \in e\}|$$

Definition

Ein Baum ist eine ausdauernde und verholzende Samenpflanze mit einer dominierende Sprossachse, die durch sekundäres Dickenwachstum an Umfang zunimmt.

Nein Spass, jedes Kind weiß, dass das so nicht stimmt. In Wirklichkeit ist das ganz anders.

Definition (Baum)

zusammenhängender, azyklischer Graph

Definition (Baum)

zusammenhängender, azyklischer Graph

Definition (Wald)

Graph, dessen Zusammenhangskomponenten Bäume sind

Definition (Baum)

zusammenhängender, azyklischer Graph

Definition (aufspannender Baum)

Ein aufspannender Baum eines Graphen G ist ein Baum, der alle Knoten von G enthält.

Definition (Baum)

zusammenhängender, azyklischer Graph

Definition (Blatt)

Ein Knoten eines Baums mit Grad 1 heißt Blatt.

Lemma

In einem Baum gibt es genau einen Pfad zwischen zwei Knoten.

Lemma

In einem Baum gibt es genau einen Pfad zwischen zwei Knoten.

Beweis.

• Zusammenhang $\implies \exists$ Pfad.

Lemma

In einem Baum gibt es genau einen Pfad zwischen zwei Knoten.

Beweis.

• Zusammenhang $\implies \exists$ Pfad.

Lemma

In einem Baum gibt es genau einen Pfad zwischen zwei Knoten.

- Zusammenhang $\implies \exists$ Pfad.
- Annahme: Es gibt verschiedene Pfade zwischen v_1 und $v_2 \implies$ Kreis $\implies f$.

Lemma

In einem Baum gibt es genau einen Pfad zwischen zwei Knoten.

- Zusammenhang $\implies \exists$ Pfad.
- Annahme: Es gibt verschiedene Pfade zwischen v_1 und $v_2 \implies$ Kreis $\implies f$.

Lemma

In einem Baum gibt es genau einen Pfad zwischen zwei Knoten.

- Zusammenhang $\implies \exists$ Pfad.
- Annahme: Es gibt verschiedene Pfade zwischen v_1 und $v_2 \implies$ Kreis $\implies f$.

Lemma

In einem Baum gibt es genau einen Pfad zwischen zwei Knoten.

- Zusammenhang $\implies \exists$ Pfad.
- Annahme: Es gibt verschiedene Pfade zwischen v_1 und $v_2 \implies$ Kreis $\implies f$.

Lemma

Ein Baum ist minimal zusammenhängend und maximal kreisfrei.

Lemma

Ein Baum ist minimal zusammenhängend und maximal kreisfrei.

Beweis.

Kante entfernen

Lemma

Ein Baum ist minimal zusammenhängend und maximal kreisfrei.

- Kante entfernen
 - → Pfad unterbrochen

Lemma

Ein Baum ist minimal zusammenhängend und maximal kreisfrei.

Beweis.

Kante entfernen

⇒ Pfad unterbrochen Lemma ¹ nicht mehr zusammenhängend

Lemma

Ein Baum ist minimal zusammenhängend und maximal kreisfrei.

Beweis.

Kante entfernen

⇒ Pfad unterbrochen

Lemma 1 nicht mehr zusammenhängend

Kante hinzufügen

Lemma

Ein Baum ist minimal zusammenhängend und maximal kreisfrei.

Beweis.

Kante entfernen

⇒ Pfad unterbrochen

Lemma 1 nicht mehr zusammenhängend

- Kante hinzufügen
 - ⇒ neuer Weg

Lemma

Ein Baum ist minimal zusammenhängend und maximal kreisfrei.

Beweis.

Kante entfernen

⇒ Pfad unterbrochen

Lemma 1 nicht mehr zusammenhängend

Kante hinzufügen

Lemma

Ein Baum mit n Knoten besitzt n-1 Kanten.

Lemma

Ein Baum mit n Knoten besitzt n-1 Kanten.

Beweis.

- Induktionsanfang:
 - 1 Knoten \implies 0 Kanten

a

Lemma

Ein Baum mit n Knoten besitzt n-1 Kanten.

- Induktionsanfang:
 1 Knoten ⇒ 0 Kanten
- Induktionsschritt: $k \to k+1$ Knoten $\implies +1$ Kante, sonst Kreis.

Lemma

Ein Baum mit n Knoten besitzt n-1 Kanten.

- Induktionsanfang:
 1 Knoten ⇒ 0 Kanten
- Induktionsschritt: $k \to k+1$ Knoten $\implies +1$ Kante, sonst Kreis.

Lemma

In einem Baum gibt es genau einen Pfad zwischen zwei Knoten.

Lemma

Ein Baum ist minimal zusammenhängend und maximal kreisfrei.

Lemma

Ein Baum mit n Knoten besitzt n-1 Kanten.

Sei ein G=(E,K) ein vollständiger Graph (n Konten und $\binom{n}{2}$ Kanten). Sei t(n) die Anzahl und T die Menge der aufspannenden Bäume. Seien die Konten von G von 1 bis n durchnummeriert.

Sei ein G=(E,K) ein vollständiger Graph (n Konten und $\binom{n}{2}$ Kanten). Sei t(n) die Anzahl und T die Menge der aufspannenden Bäume. Seien die Konten von G von 1 bis n durchnummeriert.

Theorem

Es gilt:
$$t(n) = n^{n-2}$$
.

Theorem

Es gilt:
$$t(n) = n^{n-2}$$
.

Beweis.

 \bullet Abb: $T \xrightarrow{\sim}$ Menge der (n-2) -Tupel, Einträge aus $\{1,...,n\}.$

Theorem

Es gilt: $t(n) = n^{n-2}$.

- $\bullet \ \, \mathsf{Abb} \colon T \xrightarrow{\sim} \mathsf{Menge} \ \mathsf{der} \ (n-2) \ \mathsf{-Tupel}, \ \mathsf{Eintr\"{a}ge} \ \mathsf{aus} \ \{1,...,n\}.$
- Zuordnung durch Prüfer-Code

- Abb: $T \xrightarrow{\sim}$ Menge der (n-2) -Tupel, Einträge aus $\{1,...,n\}$.
- Zuordnung durch Prüfer-Code
- • Finde Knoten Grad 1 mit minimaler Nummer v. Nachbar von v ist a_1 .
 - Entferne v und indizierte Kante. Gehe zu (1), führe n-2 mal aus. Gesuchtes Tupel ist $(a_1,...,a_{n-2})$.

- Abb: $T \xrightarrow{\sim}$ Menge der (n-2) -Tupel, Einträge aus $\{1,...,n\}$.
- Zuordnung durch Prüfer-Code
- • Finde Knoten Grad 1 mit minimaler Nummer v. Nachbar von v ist a_1 .
 - 2 Entferne v und indizierte Kante. Gehe zu (1), führe n-2 mal aus. Gesuchtes Tupel ist $(a_1,...,a_{n-2})$.
- Suche minimales b_1 nicht in $(a_1,...,a_{n-2})$. Dies ergibt Kante b_1a_1 .
 - Suche das minimale $b_2 \neq b_1$ nicht in $(a_2, ..., a_{n-2})$, usw.

$$(a_1, \dots, a_{n-2}) = (2, 2, 7, 7, 1, 5, 3, 1, 1, 4, 4, 5)$$

 $(b_1, \dots, b_i) = (6)$

$$(a_1, \dots, a_{n-2}) = (2, 2, 7, 7, 1, 5, 3, 1, 1, 4, 4, 5)$$

 $(b_1, \dots, b_i) = (6, 8)$

$$(a_1, \dots, a_{n-2}) = (2, 2, 7, 7, 1, 5, 3, 1, 1, 4, 4, 5)$$
$$(b_1, \dots, b_i) = (6, 8, 2)$$

$$(a_1, \dots, a_{n-2}) = (2, 2, 7, 7, 1, 5, 3, 1, 1, 4, 4, 5)$$

 $(b_1, \dots, b_i) = (6, 8, 2, 9)$

$$(a_1, \dots, a_{n-2}) = (2, 2, 7, 7, 1, 5, 3, 1, 1, 4, 4, 5)$$

 $(b_1, \dots, b_i) = (6, 8, 2, 9, 7)$

$$(a_1, \dots, a_{n-2}) = (2, 2, 7, 7, 1, 5, 3, 1, 1, 4, 4, 5)$$

$$(b_1, \dots, b_i) = (6, 8, 2, 9, 7, 10)$$
5
6
8
7
10

$$(a_1, \dots, a_{n-2}) = (2, 2, 7, 7, 1, 5, 3, 1, 1, 4, 4, 5)$$

$$(b_1, \dots, b_i) = (6, 8, 2, 9, 7, 10, 11)$$

$$5$$

$$3$$

$$|$$

$$|$$

$$8$$

$$7$$

$$10$$

$$11$$

$$(a_{1}, \dots, a_{n-2}) = (2, 2, 7, 7, 1, 5, 3, 1, 1, 4, 4, 5)$$

$$(b_{1}, \dots, b_{i}) = (6, 8, 2, 9, 7, 10, 11, 3)$$

$$5$$

$$6$$

$$8$$

$$7$$

$$10$$

$$9$$

$$1$$

$$3$$

$$1$$

$$11$$

$$(a_1, \dots, a_{n-2}) = (2, 2, 7, 7, 1, 5, 3, 1, 1, 4, 4, 5)$$

$$(b_1, \dots, b_i) = (6, 8, 2, 9, 7, 10, 11, 3, 12)$$

$$5$$

$$6$$

$$8$$

$$7$$

$$10$$

$$9$$

$$1$$

$$3$$

$$12$$

$$11$$

$$(a_1, \dots, a_{n-2}) = (2, 2, 7, 7, 1, 5, 3, 1, 1, 4, 4, 5)$$

$$(b_1, \dots, b_i) = (6, 8, 2, 9, 7, 10, 11, 3, 12, 1)$$

$$5$$

$$6$$

$$8$$

$$7$$

$$10$$

$$9$$

$$1$$

$$3$$

$$12$$

$$4$$

$$(a_1, \dots, a_{n-2}) = (2, 2, 7, 7, 1, 5, 3, 1, 1, 4, 4, 5)$$

$$(b_1, \dots, b_i) = (6, 8, 2, 9, 7, 10, 11, 3, 12, 1, 13)$$

$$\begin{array}{c} & & & & & \\ & & & \\ & &$$

$$(a_1, \dots, a_{n-2}) = (2, 2, 7, 7, 1, 5, 3, 1, 1, 4, 4, 5)$$

 $(b_1, \dots, b_i) = (6, 8, 2, 9, 7, 10, 11, 3, 12, 1, 13, 4)$

$$(a_1, \dots, a_{n-2}) = (2, 2, 7, 7, 1, 5, 3, 1, 1, 4, 4, 5)$$

 $(b_1, \dots, b_i) = (6, 8, 2, 9, 7, 10, 11, 3, 12, 1, 13, 4,)$

Die letze Kante ergibt sich aus $f_i = d_i - 1$, in diesem Fall: (5, 14)

Definition

Ein Graph G=(V,E) mit einer Funktion $w:E\to\mathbb{R}$ heißt gewichteter Graph.

Definition

Ein Graph G=(V,E) mit einer Funktion $w:E\to\mathbb{R}$ heißt gewichteter Graph.

Definition

Der minimale Spannbaum G'=(V,E') eines gewichteten, zusammenhängenden Graphen G=(V,E) ist ein aufspannender Baum, für den

$$\sum_{e \in E'} w(e)$$

minimal ist.

Tiefensuche

```
Eingabe: ungewichteter, zusammenhängender
Graph G = (V, E), Startknoten v \in V
Ausgabe: aufspannender Baum von G
       Markiere v.
(1)
(2)
       while ∃ unmarkierte Knoten
(3)
          if \exists unmarkierte Kanten e = (v, w)
(4)
             if w markiert then entferne e aus G.
(5)
                          else markiere e und w.
                          Setze v = w.
(6)
          else
(7)
             Setze v auf den zuletzt markierten
             Knoten.
```


else

else

else

else

else

Tiefensuche Korrektheitsbeweis

Beweis.

ullet G' ist zusammenhängend: Induktion, w ist immer mit v verbunden.

Tiefensuche Korrektheitsbeweis

- ullet G' ist zusammenhängend: Induktion, w ist immer mit v verbunden.
- G' ist kreisfrei: Induktion, durch Hinzufügen entstehen keine Kreise.

Tiefensuche Korrektheitsbeweis

- ullet G' ist zusammenhängend: Induktion, w ist immer mit v verbunden.
- G' ist kreisfrei: Induktion, durch Hinzufügen entstehen keine Kreise.
- G' enthält alle Knoten: Sonst Widerspruch zum Zusammenhang von G.

Grundlegende Definitionen

Sei S eine endliche Menge und $U \subseteq P(S)$ Familie von Teilmengen.

Grundlegende Definitionen

Sei S eine endliche Menge und $U \subseteq P(S)$ Familie von Teilmengen.

Definition

Das Paar M=(S,U) heißt **Matroid** und U die Familie der **unabhängigen Mengen** von M, wenn gilt:

Grundlegende Definitionen

Sei S eine endliche Menge und $U \subseteq P(S)$ Familie von Teilmengen.

Definition

Das Paar M=(S,U) heißt **Matroid** und U die Familie der **unabhängigen Mengen** von M, wenn gilt:

Definition

Eine maximale unabhängige Menge heißt eine Basis des Matroids. Alle Basen enthalten die gleiche Anzahl von Elementen, der Rang r(M) des Matroids.

Begriffsverwandtschaft mit Matrix:

• $S \cong$ Menge der Spaltenvektoren einer Matrix.

- $S \cong$ Menge der Spaltenvektoren einer Matrix.
- $U \cong \text{Menge der linear unabhängigen Systeme bestehend aus}$ Vektoren $\in S$.

- $S \cong$ Menge der Spaltenvektoren einer Matrix.
- $U \cong \text{Menge der linear unabhängigen Systeme bestehend aus}$ Vektoren $\in S$.
- Basis ≅ maximal linear unabhängiges System (Basis des Bildes der Matrix).

- $S \cong$ Menge der Spaltenvektoren einer Matrix.
- $U \cong Menge der linear unabhängigen Systeme bestehend aus Vektoren <math>\in S$.
- Basis ≅ maximal linear unabhängiges System (Basis des Bildes der Matrix).
- Rang \cong Anzahl der Vektoren einer Basis, Rang der Matrix.

$$\begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

$$U = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$$

$$S = \{ \overbrace{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}, \overbrace{\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}}, \overbrace{\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}}, \overbrace{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}} \}$$

$$\underline{e} = \{a, b, c\}$$

$$\operatorname{rang}(S, U) = 3$$

Sei $W\subseteq P(E)$ die Familie der Kantenmenge aller Wälder eines Graphen G=(V,E).

Lemma

Ist G = (V, E) Graph, so ist M = (E, W) ein Matroid.

Sei $W\subseteq P(E)$ die Familie der Kantenmenge aller Wälder eines Graphen G=(V,E).

Lemma

Ist G = (V, E) Graph, so ist M = (E, W) ein Matroid.

Beweis.

Axiom 1

Sei $W\subseteq P(E)$ die Familie der Kantenmenge aller Wälder eines Graphen G=(V,E).

Lemma

Ist G = (V, E) Graph, so ist M = (E, W) ein Matroid.

- Axiom 1
- Axiom 2

Sei $W\subseteq P(E)$ die Familie der Kantenmenge aller Wälder eines Graphen G=(V,E).

Lemma

Ist G = (V, E) Graph, so ist M = (E, W) ein Matroid.

Beweis.

• Wälder W=(V,A), W'=(V,B) mit #B=#A+1. Zusammenhangskomponenten $T_1,...,T_m$, Eckenmengen $V_1,...,V_m$, Kantenmengen $A_1,...,A_m$.

Sei $W \subseteq P(E)$ die Familie der Kantenmenge aller Wälder eines Graphen G = (V, E).

Lemma

Ist G = (V, E) Graph, so ist M = (E, W) ein Matroid.

- Wälder W=(V,A), W'=(V,B) mit #B=#A+1. Zusammenhangskomponenten $T_1,...,T_m$, Eckenmengen $V_1,...,V_m$, Kantenmengen $A_1,...,A_m$.
- Nun: $\#A_i = \#V_i 1$, $V = V_1 \cup ... \cup V_m$, $A = A_1 \cup ... \cup A_m$. $\#B > \#A \implies \exists$ Kante $k \in B$, die V_s , V_t verbindet. Dann ist $W'' = (V, A \cup k)$ Wald.

Das Matroid M = (V, W)

b

b

a c

Nico Haaf und Josua Kugler

Matroide und Graphen - Folgerungen

Korollar

Basen von M = (E, W) sind die aufspannenden Wälder.

Matroide und Graphen - Folgerungen

Korollar

Basen von M = (E, W) sind die aufspannenden Wälder.

Korollar

Rang des Matroids ist r(M)=#V-t, wobei t die Anzahl der Komponenten von G ist.

Algorithmus von Kruskal

```
Eingabe: gewichteter Graph G=(V,E), Funktion w:E\to\mathbb{R} Ausgabe: minimaler Spannbaum G'(V,E') von G
(1) while |E'|<|V|-t
(2) betrachte Kante e aus G mit w(e)=\min_{e\in E}w(e)
(3) if G' mit e azyklisch then e von G zu G'
(4) else entferne e in G
```


while |E'| < |V| - 1

betrachte Kante e aus G mit

$$w(e) = \min_{e \in E} w(e),$$

Setze

$$E = E \setminus \{e\}$$

$$E' = E' \cup \{e\}$$

while |E'| < |V| - 1betrachte Kante e aus G mit

$$w(e) = \min_{e \in E} w(e),$$

Setze

$$E = E \setminus \{e\}$$

$$E' = E' \cup \{e\}$$

while
$$|E'| < |V| - 1$$

betrachte Kante e aus G mit

$$w(e) = \min_{e \in E} w(e),$$

Setze

$$E = E \setminus \{e\}$$

$$E' = E' \cup \{e\}$$

while
$$|E'| < |V| - 1$$

betrachte Kante e aus G mit

$$w(e) = \min_{e \in E} w(e),$$

Setze

$$E = E \setminus \{e\}$$

$$E' = E' \cup \{e\}$$

Algorithmus von Kruskal in Matroidsprache

Theorem

M=(E,W) Matroid mit Gewichtsfunktion $w:E\to\mathbb{R}.$ Algorithmus liefert minimalen Spannbaum:

- Sei $A_0 = \emptyset \in W$.
- ② Ist $A_i = \{a_1, ..., a_i\} \subseteq E$, so sei $X_i = \{e \in E \setminus A_i \mid A_i \cup \{e\} \in W\}$. Falls $X_i = \emptyset$, so ist A_i gesuchte Basis. Andernfalls wähle ein $a_{i+1} \in X_i$ mit minimalem Gewicht, und setze $A_{i+1} = A_i \cup \{a_{i+1}\}$. Iteriere (2).

 $M(E,W) \ {\rm Matroid}, \ w \ {\rm Gewichtung}.$ $A_0=\emptyset, \ X_0=E.$ In unserem Beispiel: i=0 $A_0=\emptyset$

 $X_0 = \{(a,b), (b,c), (a,c), (a,e), (c,e), (e,d)\}$

while $X_i \neq \emptyset$ $a_i \in X_{i-1} \text{ mit minimalem Gewicht.}$ $A_i = A_{i-1} \cup \{a_i\}$ $X_i = \{e \in E \setminus A_i | A_i \cup \{e\} \in W\}$ i++

In unserem Beispiel:

$$i = 1$$

 $A_1 = \{(a, b)\}$
 $X_1 = \{(b, c), (a, c), (a, e), (c, e), (e, d)\}$

while
$$X_i \neq \emptyset$$

$$a_i \in X_{i-1} \text{ mit minimalem Gewicht.}$$

$$A_i = A_{i-1} \cup \{a_i\}$$

$$X_i = \{e \in E \setminus A_i | A_i \cup \{e\} \in W\}$$

$$i++$$

In unserem Beispiel:

$$i = 2$$

$$A_2 = \{(a, b), (a, c)\}$$

$$X_2 = \{(a, e), (c, e), (e, d)\}$$

Grundlagen

while
$$X_i \neq \emptyset$$

$$a_i \in X_{i-1} \text{ mit minimalem Gewicht.}$$

$$A_i = A_{i-1} \cup \{a_i\}$$

$$X_i = \{e \in E \setminus A_i | A_i \cup \{e\} \in W\}$$

$$i++$$

In unserem Beispiel:

$$i = 3$$

 $A_3 = \{(a, b), (a, c), (e, d)\}$
 $X_3 = \{(a, e), (c, e)\}$

while
$$X_i \neq \emptyset$$

$$a_i \in X_{i-1} \text{ mit minimalem Gewicht.}$$

$$A_i = A_{i-1} \cup \{a_i\}$$

$$X_i = \{e \in E \setminus A_i | A_i \cup \{e\} \in W\}$$

$$i++$$

In unserem Beispiel:

$$i = 4$$

 $A_4 = \{(a, b), (a, c), (e, d), (c, e)\}$
 $X_4 = \emptyset$

Beweis.

• Sei $A = \{a_1, ..., a_r\}$ die erhaltene Menge.

- Sei $A = \{a_1, ..., a_r\}$ die erhaltene Menge.
- Axiom 3 \implies A ist Basis.

- Sei $A = \{a_1, ..., a_r\}$ die erhaltene Menge.
- Axiom 3 \implies A ist Basis.
- Konstruktion und Axiom 2 $\implies w(a_1) \leq ... \leq w(a_r)$.

- Sei $A = \{a_1, ..., a_r\}$ die erhaltene Menge.
- Axiom 3 \implies A ist Basis.
- Konstruktion und Axiom 2 $\implies w(a_1) \leq ... \leq w(a_r)$.
- Angenommen $B = \{b_1,...,b_r\}$ wäre eine Basis mit w(B) < w(A) mit $w(b_1) \leq ... \leq w(b_r)$. Dann existiert minimaler Index i mit $w(b_i) < w(a_i)$ wobei $i \geq 2$ gilt.

- Sei $A = \{a_1, ..., a_r\}$ die erhaltene Menge.
- Axiom 3 \implies A ist Basis.
- Konstruktion und Axiom 2 $\implies w(a_1) \leq ... \leq w(a_r)$.
- Angenommen $B = \{b_1, ..., b_r\}$ wäre eine Basis mit w(B) < w(A) mit $w(b_1) \le ... \le w(b_r)$. Dann existiert minimaler Index i mit $w(b_i) < w(a_i)$ wobei $i \ge 2$ gilt.
- $A_{i-1} = \{a_1,...,a_{i-1}\}, \ B_i = \{b_1,...,b_i\}$ unabhängige Mengen. Axiom 3 $\implies \exists \ b_j \in B_i \setminus A_{i-1} \text{ sodass } A_{i-1} \cup \{b_j\} \in U$. Nun $w(b_j) \leq w(b_i) < w(a_i) \implies \text{Widerspruch}.$

Algorithmus von Prim

Eingabe: zusammenhängender, gewichteter Graph G = (V, E),

Funktion $w: E \to \mathbb{R}$, Startknoten $v \in V$

Ausgabe: minimaler Spannbaum G'(V, E') von G

- $(1) \qquad V' = \{v\}$
- $(2) \quad \text{while } |V'| < |V|$
- (3) betrachte Kante $e \in \{(w,u)|w \in V', u \notin V'\}$ mit minimalem Gewicht
- (4) $E = E \setminus \{e\}, E' = E' \cup \{e\}, V' = V' \cup \{u\}$

 $\frac{|5|}{e}$

$$V' = \{v\}$$

while
$$|V'| < |V|$$
 Wähle

$$e \in \{(v, u) \in E | v \in V', u \notin V'\},\$$

 $\operatorname{mit} w(e)$ minimimal. Setze dann

$$E=E\setminus\{e\},$$

$$E' = \underline{E'} \cup \{\underline{e}\},$$

$$V' = \underline{V'} \cup \{\underline{w}\}$$

while
$$|V'| < |V|$$
 Wähle

$$e \in \{(v, u) \in E | v \in V', u \notin V'\},\$$

 $\operatorname{mit} w(e)$ minimimal. Setze dann

$$E = E \setminus \{e\},$$

$$E' = E' \cup \{e\},$$

$$V' = V' \cup \{w\}$$

$$\begin{array}{c|c} \textbf{while} & |V'| < |V| \\ & \text{W\"{a}hle} \end{array}$$

$$e \in \{(v, u) \in E | v \in V', u \notin V'\},\$$

 $\operatorname{mit} w(e)$ minimimal. Setze dann

$$E = E \setminus \{e\},$$

$$E' = E' \cup \{e\},$$

$$V' = V' \cup \{w\}$$

 $\frac{|5}{e}$

b

while
$$|V'| < |V|$$
 Wähle

$$e \in \{(v, u) \in E | v \in V', u \notin V'\},\$$

mit w(e) minimimal. Setze dann

$$E = E \setminus \{e\},$$

$$E' = E' \cup \{e\},$$

$$V' = V' \cup \{w\}$$

c

Negative Gewichte

Abbildung: Graph mit negativen Gewichten

Abbildung: Graph mit negativen Gewichten

- Negative Gewichte (Kruskal)
- Computernetzwerke und Steiner-Bäume

Abbildung: [Abb2] Steiner Bäume

Abbildung: [Abb3] Computerchip Platine

- Negative Gewichte (Kruskal)
- Computernetzwerke und Steiner-Bäume
- Traveling-Salesman-Problem

Abbildung: [Abb6] Traveling-Salesman-Problem

Abbildung: [Abb7] Traveling-Salesman-Problem

- Negative Gewichte (Kruskal)
- Computernetzwerke und Steiner-Bäume
- Traveling-Salesman-Problem (Approximation)

Abbildungsverzeichnis

- Abb1 : Ma, Wen-Jong; Hu, Chin-Kun; Amritkar, Ravindra. (2004). Stochastic dynamical model for stock-stock correlations. Physical review. E, Statistical, nonlinear, and soft matter physics. 70. 026101. 10.1103/PhysRevE.70.026101.
- Abb2: Martin Janecke, https://prlbr.de/2019/euclidean-steiner-trees-in-regular-polygons/
- Abb3: Bild von Michael Schwarzenberger auf Pixabay.
- Abb4: Hillmann, Peter; Stiemert, Lars; Rodosek, Gabi; Rose, Oliver. (2015). Dragoon: Advanced modelling of IP geolocation by use of latency measurements. 438-445. 10.1109/ICITST.2015.7412138.
- Abb5 : Balut, Alicja; Brodziak, Rafał; Bylka, Jędrzej; Zakrzewski, Przemysław. (2019). Ranking Approach to Scheduling Repairs of a Water Distribution System for the Post-Disaster Response

Abbildungsverzeichnis

Abb6: Johann Dréo, 29 Mai 2006, The ant colony optimization of the travelling salesman problem

Abb7: Derrick Coetzee, 31 December 2005, Minimum spanning tree

Literaturverzeichnis

- 1 J.A.Bondy, U.S.R.Murty, Graph Theory with applications
- 2 Martin Aigner, Diskrete Mathematik, S.123-131
- 3 Martin Aigner, Graphentheorie, S.133-154
- 4 Stephan Hußmann, Brigitte Lutz-Westphal, Diskrete Mathematik erleben