SSH ile Sistem Yönetimi

Can Erkin Acar

5. Linux ve Özgür Yazılım Şenliği

can.acar@pro-g.com.tr canacar@openbsd.org

İçindekiler

- Neden SSH?
- SSH Protokol Mimarisi
- Temel SSH Kullanımı
- Kimlik Doğrulama Yöntemleri
- Açık Anahtar Kullanımı
- Ajan, TCP ve X11 Yönlendirme
- SSH Kullanan Uygulamalar
- Diğer OpenSSH Özellikleri
- Son Sözler

Neden SSH – Eski Protokoller

- Sunucu ve sistemlere uzaktan erişim ihtiyacı
 - Komut çalıştırma, dosya transferi, otomatik görevler
 - Telnet, FTP, rsh, rexec, rlogin, rcp
- Ağlar eskisi kadar güvenli değil
 - Parola ve erişim bilgilerinin açık iletimi
 - Sistemler arası güven ilişkileri
- Bugün nereye bağlanmak istiyorsunuz?
 - Kandırma saldırıları (spoofing)
 - Aktif bağlantı izleme saldırıları (MITM)

Neden SSH – Gereksinimler

- Eski araçları aratmamalı
 - r* araçları ile aynı kullanım
 - Hem interaktif hem otamatikleştirilmiş görevler
 - Dosya Transferleri
- Kurulum ve kullanım kolay olmalı
 - Ayrı bir altyapı (örn. Kerberos veya PKI) olmadan çalışabilmeli
 - Farklı yönetim bölgeleri arasında çalışabilmeli
- Eski araçlardaki güvenlik problemlerini çözmeli

Neden SSH – Tarihçe

- 1995: Tatu Ylönen r* komutlarının yerini doldurabililen güvenli bir uygulama yazdı.
 - rsh yerine ssh; rcp yerine scp
 - Yıl sonunda dünya çapında 20,000 kullanıcıya ulaştı
 - Şubat 1995'te SSH Communications Inc. Kuruldu
- 1996: SSH-v2 tasarlandı.
 - SSH-v1 ile uyumlu değil
 - Çeşitli protokol zafiyetleri giderildi
- 1999: Son özgür SSH sürümü: 1.2.12
 - OSSH (Björn Grönvall), ardından *OpenSSH* doğdu

Neden SSH – Sonuç

- 2000 yılında yaklaşık 2,000,000 SSH kullanıcısı olduğu tahmin ediliyor.
- 2006 yılında SSH-v2 protokolü standart önerisi RFC 4251 (secsh) olarak yayınlandı.
- Günümüzde işletim sistemlerinin büyük çoğunluğu ve pek çok ağ cihazı *OpenSSH* tabanlı kod ile SSH desteği vermekte.
- Pek çok farklı işletim sistemi için özgür ve ticari SSH istemci ve sunucu desteği bulunmakta.
- İnternet biraz daha güvenli ...

SSH Protokol Mimarisi

- Sunucu ile bağlantı açık anahtar kriptogrifik yöntemleri kullanılarak şifreli olarak oluşturulur.
 - Her sunucunun desteklenen SSH sürümü ve açık anahtar algoritmalari için ayrı birer anahtar çifti vardır.
- Kimlik doğrulama için çeşitli yöntemler kullanılır.
 - Parola, Açık-Anahtar, İnteraktif, GSSAPI, ...
 - Tek bağlantıda farklı yöntemler denenebilir (v2)
- Hedef sistem ile şifreli bir bağlantı oluşturulur
 - Bağlantı üzerinde çok sayıda farklı *kanal* tanımlanabilir (v2).

Temel SSH Kullanımı

- İlerleyen bölümler *OpenSSH* tabanlı anlatılacaktır.
- Sunuş boyunca çeşitli renk kodları kullanılmıştır:
 - Komut isimleri ve referanslar: ssh-keygen(1)
 - Komut satırı anahtarları: -i identity_file
 - Komut örnekleri:
 - ssh -D 8080 canacar@curie.metu.edu.tr
 - Dosyalar: /etc/ssh/sshd_config
 - Yapılandırma Dosyası Seçenekleri
 - sshd_config: Port 22 Varsayılan ayarr
 - ssh_config: Compression yes Değiştirişmiş değer

Temel SSH Kullanımı

- SSH Bağlantısı: ssh(1)
 - ssh kullanıcı_adı@uzak_sistem
 - ssh -l kullanıcı_adı uzak_sistem
- Dosya Transferi: scp(1), sftp(1)
 - scp kullanıcı_adı@uzak_sistem:dosya hedef_dosya_dizin
 - scp dosya kullanıcı_adı@uzak_sistem:hedef_dosya_dizin
 - sftp kullanıcı_adı@uzak_sistem
- Sunucu yapılandırma dosyaları
 - Sunucu sshd_config(5): /etc/ssh/sshd_config
 - İstemci ssh_config(5): /etc/ssh/ssh_config
 - Kullanıcı: \$HOME/.ssh/config

Kimlik Doğrulama Yöntemleri

- Parola Tabanlı Kimlik Doğrulama:
 - sshd config: PasswordAuthentication yes
 - sshd_config: KerberosAuthentication no
 - sshd_config: KerberosOrLocalPasswd yes
- Açık Anahtar Kimlik Doğrulama
 - v1: sshd_config: RSAAuthentication yes
 - v2: sshd config: PubkeyAuthentication yes
- Soru-cevap (interaktif) kimlik doğrulama
 - sshd_config: ChallengeResponseAuthentication yes
 - sshd_config: UsePAM no

Kimlik Doğrulama Yöntemleri

- GSSAPI ile kimlik doğrulama
 - sshd_config: GSSAPIAuthentication no
- Host tabanlı kimlik doğrulama
 - v1: sshd config: RhostsRSAAuthentication no
 - v2: sshd config: HostbasedAuthentication no
 - sshd_config: IgnoreRhosts yes
 - sshd config: IgnoreUserKnownHosts no

- Açık anahtar kriptografisi
 - Bir açık (public) bir de gizli (private) anahtar çiftinden oluşur
 - Açık anahtar ile şifrelenen bilgi sadece gizli anahtar ile okunabilir. Bu sayede
- SSH protokolünde her sunucunun desteklenen her protokol için bir anahtar çifti vardır.
 - v1: sshd config: HostKey /etc/ssh/ssh host key
 - v2: sshd_config: HostKey /etc/ssh/ssh_host_rsa_key
 - v2: sshd_config: HostKey /etc/ssh/ssh_host_dsa_key

- Anahtar yönetimi için ssh-keygen(1)
 - Yaratma: ssh_keygen -t rsa -f dosya_ismi
 - Parmakizi: ssh_keygen -1 -f dosya_ismi
- Her istemci tanıdığı sunucuların açık anahtarlarını tutar ve anahtarlar bağlantı sırasında kontrol edilir.
 - ssh config: CheckHostIP yes
 - ssh_config: GlobalKnownHostsFile /etc/ssh/ssh_known_hosts
 - ssh_config: UserKnownHostsFile \$HOME/.ssh/known_hosts
 - ssh config: StrictHostKeyCkecking ask
 - v2: ssh_config: VerifyKostKeyDNS no

• Örnek gizli anahtar

```
----BEGIN RSA PRIVATE KEY----
MIICWQIBAAKBgQDZADyp3kjSBacNOlYzck6BzbSknxqBa/nlCLYgwnM9HIIAv8i+
ztrVcJYROiNftAajixy3BtPQF2z6h2qUoxSE2NgNA3Y+NigdWEnbXVaOs13lKotd
umVi12GoNjibiVBDydQvHDXPiTvOdlBLuyEZWTMhI37Z3hac4VuWFXg1aQIBIwKB
gAxmad3SMAwAUrBMefRPrLb1z87khSv3ip9flWD1KygQQfFqC3ieGyIjsM3IztJE
zS3qsS8HtFUIpyRCQJrHfYPUJd9aiPQvtqe1+WyXMkM5bB+mg9xUXnCMmLPoOmlR
QOkwvpqhU36kYyF7LyiTlTCOYBdDMLL7xpADunfyOhZrAkEA+mi1ZOubbfsJJC1+
2j/KFmvVh82Kg+FMrWcmifzHMAyfYx2VuBsNBWNl6gXwGmYJ4YSDNr1r9cW/4tvX
V3zaRQJBAN3Yku4t8YUwnUOPcCOnLDAN5cC6Q3IPZI2KNUw9oUtTs5GvB1zlmkcR
xKCRFYoIOyMdBtTtMbI+BL1Ai68COtUCQHmgkp67lKMiKQLxhsHHNkVnk5m7mwzb
JT5IC2eYCPoUwnH4bUrLT3elTsIgJCoUTfExvBNGD93GcyULsbzHnTcCQBlalHL9
77dzRSxK6D+stJfHEvF0X3q/7jwPy50vRaI1c5ue+Yb1qztSfN8mhh5nVzc2hHAb
G59Xi4NX1XMWQ/sCQEtXyhz9sRgdBxvJYJjNDBzTUmvaVzAteK2KJlaODnuPjVYo
7b4AfWbhhr8QBNfBSW/kS4GLsUpGAOn5tOb0EOY=
----END RSA PRIVATE KEY-----
```

• Örnek açık anahtar (tek satır)

ssh-rsa

AAAAB3NzaC1yc2EAAAABIwAAAIEA2QA8qd5I0gWnDTpWM3J0gc20pJ8agWv55Qi2IMJzPRyCAL/Ivs7a1XCWETojX7QGo4sctwbT0Bds+odq1KMUhNjYDQN2PjYoHVhJ211WjrNd5SqLXbp1YtdhqDY4m4lQQ8nULxw1z4k79HZQS7shGVkzISN+2d4WnOFb1hV4NWk= canacar@light

• Örnek .ssh/known_hosts (her anahtar tek satır)

192.168.10.2 ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEAqHaPXOqYexD00CHelh70SiSTCUtcIUXvCTgd1zcB
zliF5jxYztuVqamrbThBY3d2ePEwVmkDlcdI/OY0GBzhjCpeuVHY5hmjjajtavYl3NmE
idMSWPBKn2Bfy00+y9Gb6+RPu4NXGE19xPChw9VByBOAW3uvmWg/EcHJzgNu81k=
192.168.10.73 ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAOEAsrrpBZfVZURXi5L95SJ07UazPbYMOByN8mDn2Lya

AAAAB3NzaC1yc2EAAAABIwAAAQEAsrrpBZfVZURXj5L95SJQ7UazPbYMOBvN8mDn2Lvapczy4SUb1w+0j5QQ3rYqQt+vQjiZhc+E9GogEK6Wpj1iz2pocX7eAdXJVNViCscEbbFJpH/EjvpyPBkDLRUh5mrDP1puPSqU0eGYtPqHHDaMbLtPiJKPXQ1CAAPNSPJPNCOqcXgylFd+HpIotrb6m8e0zwrtM501aPwAosp8FI6cf8f6Bigc5oIX2Dkk6Rfz1jbvfPkVopMeMFI0ZY1m55T3/gLRiP0p07ejwSPJ9QxitrmQ2cG63eS2goqnW7p06a139Ej/fPcW+CRxroDAsnhidFf/cq6TP3r7oH0nfEW6yQ==

anoncvs.ca.openbsd.org,129.128.5.191 ssh-rsa
 AAAAB3NzaC1yc2EAAAABIwAAAIEAsQpVyGYI7vjnNUfWBSQe2jq9Fdgv/S4/yvBSIcRh
 PpuyPeU1NxLf9Vey9paxbowhcCyu+xk/Mwz+L15UPg9If2PYNONG7+ayNqTpS+eP6bE6
 rbqtCdFSBEM9zRuZU1n14kGwSgJYQqcT/qDt80Ro8Z+zSh9MCQuLbIrspSKYx88=

Açık Anahtar Kimlik Doğrulama

- Her kullanıcı kendi açık anahtar çift(ler)ini kendisi yönetir. Açık ve özel anahtarlar kullanıcının ev dizininde bulunur:
 - v1: \$HOME/.ssh/identity ve \$HOME/.ssh/identity.pub
 - v2: \$HOME/.ssh/id rsa ve \$HOME/.ssh/id rsa.pub
 - v2: \$HOME/.ssh/id dsa ve \$HOME/.ssh/id dsa.pub
- Kullanıcı hedef sistemde, hedef ev dizininin altındaki .ssh/authorized_keys dosyasına açık anahtarını ekler.
- Kullanıcı anahtarları için uzun ve tahmini zor bir passphrase seçilmelidir.

Açık Anahtar Kimlik Doğrulama

• Örnek .ssh/authorized_keys (her anahtar tek satır)

ssh-rsa

AAAAB3NzaC1yc2EAAAABIwAAAIEA2QA8qd5I0gWnDTpWM3J0gc20pJ8agWv55Qi2IMJz PRyCAL/Ivs7a1XCWETojX7QGo4sctwbT0Bds+odq1KMUhNjYDQN2PjYoHVhJ211WjrNd 5SqLXbp1YtdhqDY4m41QQ8nULxw1z4k79HZQS7shGVkzISN+2d4WnOFb1hV4NWk= canacar@light

ssh-dss

AAAAB3NzaC1kc3MAAACBALLstc7xqhX66BFIUj68gtm83e4c0C1wznkKvVKhL08Rhz2KBStCa/53vFAZC83vkCw01k/duxA+AUlIQg0J6rA/zn4ZmtwJSZaRYyFyUg/D+0IGUJFeRlbiEU32MZT3IXikyjqbG69W6AnkmFmVbeQimLWK2ESD0adANp8vku/bAAAAFQCIrGpk5GQJolVWb4WvKaCn0UV1pQAAAIBb8P3mCKvx+eAKpPg9XMPHrYmOxofwDHxQaMPIjqbgWB04hyJXHwwpD1+nAfFtU3SNVdaCWqdKiQnOoBvng6qBAZf1C1SB4Pdxsq3d69T5kLzfmUwsqKj1c6AmgqUF85xI90xbT+5HTUN5aVLAZvVr5WW39zxuExwX2tgabXfgaQAAAIAxekiDePcKc/Fh1JMXqAEFbgNDmm+QbpkRDsC7XYLJjCPtw48vFAhkkQhW1L1V3tbjXCXks3IntJkYI70umFUEod+//u3v0bwBuq9yCovxIs2b9C1bVWLNBnHCZDm+gz0iiec7dCcq1j70pJ+pViUfIy1ce67lmeQU8ieMj6PpBQ== canacar@curie

Ajan Kullanımı

- Kullanıcının gizli anahtarlarını oturum boyunca saklamak için ssh-agent(1) ajanı kullanılır
 - Passphrase sadece anahtarı ajana yüklerken kullanılır.
 - Ajanda yüklü gizli anahtarlar için ssh bağlantısı sorgusuz gerçekleşir.
- Ajan arka planda çalışır, ssh komutu ajana erişmek için SSH_AUTH_SOCK çevre değişkenini kullanır.
 - eval `ssh-agent`
- Ajan üzerindeki anahtarların yönetimi ssh-add(1) komutu ile gerçekleştirilir.

Ajan Yönlendirme

- SSH bağlantılarında istemcideki ajana olan bağlantı da uzak sistemden erişilecek şekilde yönlendirilebilir: -A
 - -ssh -A uzak_sistem
- Uzak sistem de istemcideki ajanı kullanacaktır:

TCP Yönlendirme

- Kurulan SSH bağlantısı üzerinden TCP bağlantılarını her iki yönde de aktarır.
- Sunucu üzerinde izin vermek gerekebilir
 - sshd_config: AllowTcpForwarding yes
- Üç farkli şekilde yönlendirme yapılabilir
 - Yerel: -L [bind address:]port:host:hostport
 - Uzak: -R [bind address:]port:host:hostport
 - Dinamik: -D [bind_address:]port

TCP Yönlendirme – Yerel

- -L [bind_address:]port:host:hostport
 - bind_address: istemci dinleme adresi
 - port: istemcideki yerel port numarası
 - host: TCP bağlantısının hedef adresi
 - hostport: hedef port numarası

TCP Yönlendirme – Uzak

- -R [bind_address:]port:host:hostport
 - bind_address: sunucu dinleme adresi
 - port: suncudaki yerel port numarası
 - host: TCP bağlantısının hedef adresi
 - hostport: hedef port numarası

TCP Yönlendirme – Dinamik

- -D [bind_address:]port
 - bind_address: istemci dinleme adresi
 - port: istemcideki socks_proxy servisi verilecek olan yerel port numarası
- SOCKS protokolü ile farklı hedefler ...

TCP Yönlendirme – Kullanım

- Çeşitli bağlantıların güvenliğini sağlama: -L, -R
- Sadece uzak sistemden erişilebilecek kaynaklara erişim: -D, -L, -R
- TCP yönlendirmenin varsayılan kurulumda açık olması bir zafiyet yaratmamaktadır. Kabuk erişimi olan kullanıcılar başka yöntemlerle de port yönlendirmesi yapabilirler.
- Kullanıcılara kısıtlı bir kabuk ile erişim verdiğiniz durumlarda TCP yönlendirme kapatılmalıdır
 - anoncvs, authpf, scponly ...

X11 Yönlendirme

- Uzaktaki bir grafik uygulamaya erişim
 - Sunucu: Sizin Bilgisayarınız
 - İstemci: Uzak sistem
- Klasik X11 erişimi:
 - sunucu üzerinde erişim ayarı
 - .Xauthority, xhost, xauth, ...
 - istemci üzerinden uygulamayı çalıştırma
 - DISPLAY=sunucu:0 xterm
 - TCP port 6000 üzerinden sifresiz bağlantı

X11 Yönlendirme – SSH üzerinden

- Hedef sshd ile X11 tüneli kurulur
 - sshd_config: X11Forwarding yes
- Farklı X11 Kimlik doğrulama anahtarı
 - sshd_config: XAuthLocation ...
- Uzak sistemde: DISPLAY=localhost:10.0
 - sshd_config: X11UseLocalhost yes
 - sshd config: X11DisplayOffset 10
- Ugulama çalıştırılır
 - X11 protokolü mesajları SSH üzerinden aktarılır

X11 Yönlendirme – Güvenlik

- X11 istemcileri diğer istemcilere erişebilir
 - Pencere içeriğine erişim
 - Klavye ve fare izleme
 - Uzak sistemde dosyalarınızı okuyabilen birisi (örn. root) X11 sunucunuza da erişebilir
- X11 protokolü SECURITY eklentileri
 - İstemcileri Güvenilir ve Güvenilmez diye ayırır
 - Güvenilmeyen istemciler Güvenilir istemcilerin verilerine erişemez.

X11 Yönlendirme – Kullanım

- SSH üzerinden X11 erişimi:
 - ssh -X istemci
- İstemcide X11 SECURITY desteği varsa:
 - Güvenilmez: ssh -f -X istemci xterm
 - Güvenilir: ssh -f -Y istemci xterm
 - Güvenilmez bağlantılar: 20 dakika
 - Yapılandırma Dosyası Ayarları
 - ssh_config: ForwardX11Trusted no
 - ssh_config: ForwardX11 no

SSH Kullanan Uygulamalar – CVS

- CVS popüler bir sürüm yönetim sistemidir. Pek çok özgür yazılım projesi CVS üzerinde geliştirilmektedir.
- Uzak CVS sunucularına bağlantı SSH üzerinden gerçekleştirilebilir:
 - cvs -d user@sunucu:/repo checkout
- Bazı CVS kurulumlarında CVS_RSH cevre değişkenini SSH kullanacak şekilde değiştirmek gerekebilir.
 - CVS_RSH=/usr/bin/ssh

SSH Kullanan Uygulamalar – rsync

- rsync gelişmiş bir dosya senkronizasyon aracıdır.
 - http://rsync.samba.org/
- Sadece değişiklikleri aktarabildiği için iki dizin arası senkronizasyon çok hızlı gerçekleşir.
- scp(1) benzeri bir şekilde SSH üzerinden rsync(1) kullanmak mümkündür:
 - rsync -azP user@sunucu:kaynak_dizin .
- Eski sürümlerde RSYNC_RSH cevre değişkenini SSH kullanacak şekilde değiştirmek gerekebilir.
 - RSYNC_RSH=/usr/bin/ssh

SSH Kullanan Uygulamalar – VNC

- VNC uzaktan masaüstü erişimi için yaygın kullanılan bir protokoldür.
- Protokol erişim bilgilerini ve oturum içeriğini şifrelemeden aktarır. Şifreleme için modern VNC istemcilerinde SSH desteği bulunmaktadır.
 - vncviever -via <sunucu> <hedef>
- Bu sayede VNC bağlantısının sunucuya kadar şifreli gitmesini sağlanır.
 - SSH'ın TCP yönlendirme özelliği kullanılır
 - VNC *uzak sistem modunda* çalışır
 - Sunucu hedef arası bağlantı şifreli olmayacaktır

Diğer OpenSSH Özellikleri

- SmartCard desteği
 - SSH RSA özel anahtarları için bir smart-card okuyucu kullanabilmektedir.
 - SmartCard desteği derleme sırasında aktif hale getirilmelidir.
- VPN özelliği
 - Yeni sürümde tun(4) arabirimi kullanılarak iki sistem arasında ağ bağlantısı kurma özelliği sağlanmıştır
- Yüksek Güvenlik
 - Privilege Separation tekniği ile sshd(4) sunucusunun root yetkileri ile çalışan bölümü küçültülmüştür.

Son Sözler

- OpenSSH, OpenBSD projesi tarafından geliştirilmektedir.
 - milyonlarca kullanıcı
 - ticari ve ücretsiz pek çok işletim sistemi ve ağ cihazları
- Geçtiğimiz aylarda projen maddi destek isteğinde bulunmuştur.
 - Projenin sunucu, ağ ve elektrik ihtiyaçları
 - Yıllık OpenBSD geliştirici toplantıları (hackathon)
 - Kullanıcılar ve çeşitli projelerden çok miktarda destek ve bağış gelmiştir. Çok teşekkürler.
 - Hiçbir Linux/UNIX sisteminden destek gelmemiştir.

Teşekkürler ...

http://www.openssh.com/