Pattern Recognition

- S. S. Samant

Logistic Regression

The function is called logistic function or sigmoid function.

$$\sigma(t) = \frac{e^t}{e^t + 1} = \frac{1}{1 + e^{-t}} \quad \text{Here, y = β_0+β_1x_1$+ β_2x_2$+... = β^Tx}$$

y=1 when
$$\beta^T \mathbf{x} \ge \mathbf{0}$$

y=0 when $\beta^T \mathbf{x} < \mathbf{0}$

Birla Institute of Applied Sciences

विरला इंस्टिट्यूट ऑफ़ अप्लाइड साइंसेस Bhimtal, Distr: Nainital, Uttarakhand- 263136

Logistic Regression – Cost function

For y = 1

$$-log\phi(t)$$
) if $y = 1$

$$-log(1-\sigma(t))$$
 if $y = 0$

Ensemble methods

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

- Suppose there are 5 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 What is the probability that the ensemble classifier makes a wrong prediction?

- Suppose there are 5 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 What is the probability that the ensemble classifier makes a wrong prediction?

$$5C_3(.35)^3(.65)^2 + 5C_4(.35)^4(.65) + 5C_4(.35)^5$$

= 0.24

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 What is the probability that the ensemble classifier makes

a wrong prediction?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 What is the probability that the ensemble classifier makes a wrong prediction?

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$

Generating Ensemble of classifiers

Bagging (bootstrap aggregating)

Boosting

Generating Ensemble of classifiers

- •Bagging (bootstrap aggregating) sampling with replacement
- Boosting boosting weight of wrongly classified samples

Random Forest classifier

- Bagging is performed repeatedly select a random sample with replacement of the training set and fits trees to these samples:
- At each candidate split in the learning process, a random subset of the features is selected
- *Combine* results of individual classifiers built on the samples and subset features
 - Combining classifiers? Ex. voting

Support Vector Machine (SVM)

- SVM was first introduced in 1992
- SVM becomes popular because of its success in handwritten digit recognition
- •SVM is now regarded as an important example of *kernel methods*, one of the key area in machine learning

$$f(x, \mathbf{w}, b) = sign(\mathbf{w} \cdot \mathbf{x} - b)$$

w: weight vector

x: data vector

denotes +1 denotes -1 0 0 0 0 0 0

$$f(x, \mathbf{w}, b) = sign(\mathbf{w} \cdot \mathbf{x} - b)$$

denotes +1

• denotes -1

$$f(x, \mathbf{w}, b) = sign(\mathbf{w} \cdot \mathbf{x} - b)$$

denotes +1

denotes -1

- denotes +1
- denotes -1

 $f(x, \mathbf{w}, b) = sign(\mathbf{w}. \ \mathbf{x} - b)$

• denotes -1

Any of these would be fine..

..but which is best?

Classifier Margin

$$f(x, \mathbf{w}, b) = sign(\mathbf{w} \cdot \mathbf{x} - b)$$

denotes +1

denotes -1

Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

Maximum Margin

- denotes +1
- denotes -1

$$f(x, \mathbf{w}, b) = sign(\mathbf{w} \cdot \mathbf{x} - b)$$

The maximum margin linear classifier is the linear classifier with the, um, maximum margin.

This is the simplest kind of SVM (Called an LSVM)

Linear SVM

0 0

0 0

0

denotes -1

Support Vectors

are those datapoints that the margin pushes up against

$$f(x, w, b) = sign(w. x + b)$$

The maximum margin linear classifier is the linear classifier with the, um, maximum margin.

This is the simplest kind of SVM (Called an LSVM)

Linear SVM

How to calculate the distance from a point to a line?

$$\mathbf{wx} + \mathbf{b} = 0$$

X - Vector

W – Normal Vector

b - Scale Value

- In our case, $w_1^*x_1^+w_2^*x_2^+b=0$,
- thus, $\mathbf{w} = (w_1, w_2), \mathbf{x} = (x_1, x_2)$

Large-margin Decision Boundary

- The decision boundary should be as far away from the data of both classes as possible
 - We should maximize the margin, m
 - Distance between the origin and the line $\mathbf{w}^{t}\mathbf{x}=-\mathbf{b}$ is $\mathbf{b}/||\mathbf{w}||$

Non-linear SVMs: Feature spaces

General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Thank You!