

neural network

Dropout regularization

Regularizing your

Dropout regularization

특정 확률로 노드들을 제거하고(ingoing/outgoing 에지를 제거) 훨씬 작은 네트워크를 얻는다. 트레이닝에서는 이 작은 네트워크에서 백프로퍼게이션 하는 것이다. 이걸 매 training example마다 수행하면 학습할 때마다 이런 줄어든 NN 중에 하나로 학습하는 셈이 되는 것이다.

그래서 직관적으로 생각해보면, 각 example에 대해 매번 작은 네트워크로 학습시키니까 오버피팅이 줄어드는 것이라고 볼 수 있다. 가장 일반적인 구형법을 소개한다

Implementing dropout ("Inverted dropout")

결론은... different training example에 대해 다른 히든 유닛을 zero out하므로, 같은 트레이닝셋에 대해 여러번 학습을 시키면 랜덤하게 다른 히든 유닛을 제거하게 된다.

Making predictions at test time

No dop out Early ABAN BB Early ABAN BB Frediction of LOIZED APART HOLD.

$$\int \frac{\partial u}{\partial x} = \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \int \frac{\partial u}{\partial x} dx = \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \int \frac{\partial u}{\partial x} dx = \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \int \frac{\partial u}{\partial x} dx = \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \int \frac{\partial u}{\partial x} dx = \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \int \frac{\partial u}{\partial x} dx = \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \int \frac{\partial u}{\partial x} dx = \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \int \frac{\partial u}{\partial x} dx = \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \int \frac{\partial u}{\partial x} dx = \int \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + \int \frac{\partial u}{\partial$$

Regularizing your neural network

Understanding dropout

드랍아웃이 대체 왜 regularizer로 잘 동작하는걸까?

Why does drop-out work?

앞에서 봤던 것처럼 첫번째 intuition은 매번 작은 네트워크로 학습시키니까 regularizing effect를 갖게 되는 것이고 두번째 intuition은 이래에서

응형은 그냥 keep_prob 1로 돌려보고 J가 잘 감소하면

그때 드랍아웃 적용하는 식으로 해결한다고 함

Intuition: Can't rely on any one feature, so have to spread out weights. Shrink weights. 고로 L2 랑 비슷한 효과를 낼 수 있다. weights를 spread하는 것은 weight를 shrink하는 효과가 있고 *x*\$\dagger{2} *x*\$\dagger{3} 4.0 소하지 않기 때문에 J가 감소하는지 디버깅하는 용도로 쓰기 어렵다는 점

> w2가 제일은 매트릭스일거고 파라미터가 제일 많은 레이어일거다. 고로 이 레이어의 keep.prob을 상대적으로 작게 줘야한다. (0.5) Andrew Ng