

Department of Computer Engineering Department of Software Engineering

CENG113 / SENG113 - Computer Programming 1

Fall 2021 - 2022

Lab Guide #11 - Week 12

OBJECTIVE: - Two dimensional arrays

Instructor: Yusuf Evren AYKAÇ

Assistants: Nisanur MÜHÜRDAROĞLU, Yusuf Şevki GÜNAYDIN, Ahmet Esad TOP, Elif ŞANLIALP, Ömer MINTEMUR

1. Write a C program that will initialize the 3 x 5 integer array with the values:

2	12	1	3	65
45	7	11	66	98
8	22	48	18	5

Program should display all of the elements on the screen as in the example run.

Example Run:

5 98 65 3 66 18 48 11 1 12 7 22 8 45 2

2. Write a C program that will initialize a 3 x 5 integer array with the values **DO NOT initialize at the declaration statement** by using loops:

	2	8	14	20	26
Ī	4	10	16	22	28
Ī	6	12	18	24	30

Program should display all of the elements on the screen as in the following example runs.

Example Run A:

30 28 26	Example Run B:
24 22 20	30 24 18 12 6
18 16 14	28 22 16 10 4
12 10 8	26 20 14 8 2
6 4 2	

3. Write a C program that creates a square matrix 3X3 and first of all set major diagonal elements to 1. Then set minor diagonal elements of that matrix to 1. Display as the example run.

Example Run:

MAJOR	.]	DIAGO	MAJOR	ΑN	1D	MINOR	DIAGONAI
1	0	0	1 (C	1		
0	1	0	0 1	1	0		
0	0	1	1 (C	1		

4. Write a C program that reads letters from a text file into a two-dim array. In each column of the array, there is an English word. For example, the word "house" is written in the first column and "choir" is written in the last column. The program will input a number and copy the corresponding word from the two-dim array into a one-dim array. Then the program will display the contents of the one-dim array.

words.txt											
h	t	d	t	С	S	r	j	S	1	С	С
0	r	е	а	1	h	i	u	1	а	а	h
u	а	е	b	а	е	V	d	а	b	b	0
s	i	r	1	s	е	е	g	s	0	1	i
е	n	S	е	s	р	r	е	h	r	е	r

5. Write a C program that reads IDs and 5 quiz grades of several students from **grades.txt**; finds and displays the average of each quiz. Also find the average of each student and write the ID and the average of each student to a new file named **average.txt**.

grades.txt:

Stu_ID	Quiz1	Quiz2	Quiz3	Quiz4	Quiz5
11	45.5	80.5	82	95	55
22	60	50	70	75	55.5
33	40	30.5	10	45	60
44	0	5	10.5	2	10
55	90	85	100	90	93
66	35	89	47.5	94	74
77	20.5	14	12	50	65
88	85	69	74	83	91.5
99	74	45	89	46	38
12	59.5	54	69	87	83

ave	rage.txt contains:	Output show	uld be:
11	71.6		
22	62.1	Quiz Number	Average
33	37.1	1	50.95
44	5.5	2	52.20
55	91.6	3	56.40
66	67.9	4	66.70
77	32.3	5	62.50
88	80.5		
99	58.4		
12	70.5		

- a) Write a function that finds the average of each row of a two-dim array, stores the averages into a one dim array.
- **b)** Write a function that finds the average of **each column** of a two-dim array, stores the averages into a **one dim array**.

Write a C program that reads IDs and 7 quiz grades of 10 students from **grades.txt**; finds and displays the average of each student **part b**. Also displays the ID and the average of each student using the function in **part a**. Then display the ids of students whose average is greater than the input grade.

Example	Run:
---------	------

manpre man	<u>.</u>
STUDENT	ID QUIZ AVERAGE
111	68.1
222	60.5
333	36.1
444	14.2
555	89.0
666	63.9
777	38.2
888	85.9
999	59.7
123	66.7

QUIZ NUMBER	AVERAGE
1	51.0
2	52.2
3	56.4
4	67.2
5	62.5
6	67.3
7	51.2

Enter a grade: 60

The students who are above 60.00 are:

111222555

666

888

123

7. PART A:

Write a C program that reads double numbers from a text file named **matrix.txt** into a two-dim array with the size **7x4** and displays the contents of the array.

matrix.txt
19.8 34.6 7.6 11.2
45.7 24.1 43.1 5.6
6.8 9.0 22.3 1.2
22.4 84.5 76.2 12.1
77.6 54.3 43.7 98.0
45.7 76.3 45.3 5.1
1.5 8.9 12.6 13.7

Example Run:

The con	tents	of the	array	is:
19.8	34.6	7.6	11.2	
45.7	24.1	43.1	5.6	
6.8	9.0	22.3	1.2	
22.4	84.5	76.2	12.1	
77.6	54.3	43.7	98.0	
45.7	76.3	45.3	5.1	
1.5	8.9	12.6	13.7	

PART B:

After you finish Part A, ask the user to enter two row indexes to swap and validate the input (must be between 0 and 7). Then, swap these rows of the array. (Hint: Use a one-dim temprorary array to do the swap operation.)

Example Run:

45.7 76.3 45.3 5.1 1.5 8.9 12.6 13.7

```
The contents of the array is:

19.8 34.6 7.6 11.2

45.7 24.1 43.1 5.6

6.8 9.0 22.3 1.2

22.4 84.5 76.2 12.1

77.6 54.3 43.7 98.0

45.7 76.3 45.3 5.1

1.5 8.9 12.6 13.7

Enter two row indexes to swap: 1 9

Enter two row indexes to swap: -1 4

Enter two row indexes to swap: 0 2

The contents of the array AFTER the swap operation:

6.8 9.0 22.3 1.2

45.7 24.1 43.1 5.6

19.8 34.6 7.6 11.2

22.4 84.5 76.2 12.1

77.6 54.3 43.7 98.0
```