6	Schart
Nome:	abaulo
Métodos Matemáticos	I

4^Ω Teste

(7/05/2008)

R.A.: _

(Atenção: Procure responder todas as questões nesta folha. Use o verso e evite folhas soltas.)

1. (1.15.13 plus) Considere a seqüência aproximante de $\delta(x)$ abaixo

$$f_n(x) = \frac{n}{2\cosh^2 nx}$$
.

- (a) (1.5 Ponto) Esboce o gráfico de $f_n(x)$ e mostre que $\int_{-\infty}^{\infty} f_n(x) dx = 1$ para todo n.
- (b) (1.5 Ponto) Calcule a função $g_n(x) = \int_{-\infty}^x f_n(s) ds$ e esboce o seu gráfico.
- (c) (1 Ponto) Esboce o gráfico da função correspondente a $\lim_{n\to\infty} g_n(x)$.
- (d) (3 Pontos) Suponha que você necessita aproximar $\theta(x)$ pela seqüência $g_n(x)$ com erro inferior a ϵ para $x \ge x_0 > 0$. Determine o valor mínimo necessário de n.
- 2. Considere a seqüência aproximante de $\delta(x)$ abaixo

$$f_n(x) = \begin{cases} 0, & |x| \ge 1/2n, \\ n, & |x| < 1/2n. \end{cases}$$

- (a) (2 Pontos) Calcule a função $g_n(x) = \int_{-\infty}^x f_n(s) ds$ e faça o seu gráfico em detalhes.
- (b) (1 Ponto) Esboce o gráfico da função correspondente a $\lim_{n\to\infty} g_n(x)$.

