GIFT-64-128 / GIFT-128-128

- Lightweight Block Cipher -

Ji Yong-Hyeon

Department of Information Security, Cryptology, and Mathematics College of Science and Technology

Kookmin University

February 23, 2024

List of Symbols

Contents

1	Spe	cification	ons																1
	1.1	Key So	chedule and	d Round	d Co	nst	ant	S											2
	1.2	The R	ound Functi	on													 		3
		1.2.1	SubCells																3
		1.2.2	PermBits														 		3
		1.2.3	AddRound	lKey .															4
Α	Gen	eration	of Tables														 		5
	A .1	Round	Constants																5
	A.2	GIFT S	S-BOX																6

Chapter 1

Specifications

Overview

Specification	GIFT-64-128	GIFT-128-128
Block Size (bits)	64	128
Key Size (bits)	128	128
Round Key Size (bits)	32	64
Number of Rounds	28	40
Design Strategy	Substitution-Permutation Network	Substitution-Permutation Network

Table 1.1: Specifications of GIFT-64-128 and GIFT-128-128

1.1 Key Schedule and Round Constants

Rounds	Constants 01, 03, 07, 0F, 1F, 3E, 3D, 3B, 37, 2F, 1E, 3C, 39, 33, 27, 0 1D, 3A, 35, 2B, 16, 2C, 18, 30, 21, 02, 05, 0B, 17, 2E, 1C, 3 31, 23, 06, 0D, 1B, 36, 2D, 1A, 34, 29, 12, 24, 08, 11, 22, 0															
1 - 16	01,	03,	07,	0F,	1F,	3E,	3D,	3B,	37,	2F,	1E,	3C,	39,	33,	27,	0E
17 - 32	1D,	3A,	35,	2B,	16,	2C,	18,	30,	21,	02,	05,	0B,	17,	2E,	1C,	38
33 - 48	31,	23,	06,	0D,	1B,	36,	2D,	1A,	34,	29,	12,	24,	08,	11,	22,	04

Table 1.2: Round Constants generated by 6-bit affine LFSR

```
const u8 rCon[48] = {
1
      0x01U, 0x03U, 0x07U, 0x0FU, 0x1FU, 0x3EU, 0x3DU, 0x3BU,
2
3
      0x37U, 0x2FU, 0x1EU, 0x3CU, 0x39U, 0x33U, 0x27U, 0x0EU,
      0x1DU, 0x3AU, 0x35U, 0x2BU, 0x16U, 0x2CU, 0x18U, 0x30U,
4
      0x21U, 0x02U, 0x05U, 0x0BU, 0x17U, 0x2EU, 0x1CU, 0x38U,
5
      0x31U, 0x23U, 0x06U, 0x0DU, 0x1BU, 0x36U, 0x2DU, 0x1AU,
6
7
      0x34U, 0x29U, 0x12U, 0x24U, 0x08U, 0x11U, 0x22U, 0x04U
8
  };
```

1.2 The Round Function

1.2.1 SubCells

X	11															
GS(x)	1	a	4	С	6	f	3	9	2	d	b	7	5	0	8	е

Table 1.3: Specifications of GIFT Sbox GS

1.2.2 PermBits

The permutation can be expressed as:

$$P_{64}(i) = 4 \cdot \left\lfloor \frac{i}{16} \right\rfloor + 16 \cdot \left\lceil \left(3 \cdot \left\lfloor \frac{i \mod 16}{4} \right\rfloor + (i \mod 4) \right) \mod 4 \right\rceil + (i \mod 4).$$

$$x_{P(i)} \leftarrow x_i$$

for $i \in \{0, ..., n-1\}$.

```
for (u8 i = 0; i < 64; i++) {
   permBits[i] =
      4 * (i / 16) +
      16 * ((3 * ((i % 16) / 4) + (i % 4)) % 4) +
      (i % 4);
   }
}</pre>
```

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$P_{64}(i)$	0	17	34	51	48	1	18	35	32	49	2	19	16	33	50	3
i	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$P_{64}(i)$	4	21	38	55	52	5	22	39	36	53	6	23	20	37	54	7
i	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
$P_{64}(i)$	8	25	42	59	56	9	26	43	40	57	10	27	24	41	58	11
i	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
$P_{64}(i)$	12	29	46	63	60	13	30	47	44	61	14	31	28	45	62	15

Table 1.4: Specifications of GIFT-64 Bit Permutation

```
const u8 permBits[64] = {
1
2
       0x00U, 0x11U, 0x22U, 0x33U, 0x30U, 0x01U, 0x12U, 0x23U,
       0x20U, 0x31U, 0x02U, 0x13U, 0x10U, 0x21U, 0x32U, 0x03U,
3
       0x04U, 0x15U, 0x26U, 0x37U, 0x34U, 0x05U, 0x16U, 0x27U,
4
       0x24U, 0x35U, 0x06U, 0x17U, 0x14U, 0x25U, 0x36U, 0x07U,
5
       0x08U, 0x19U, 0x2AU, 0x3BU, 0x38U, 0x09U, 0x1AU, 0x2BU,
6
7
       0x28U, 0x39U, 0x0AU, 0x1BU, 0x18U, 0x29U, 0x3AU, 0x0BU,
       0x0CU, 0x1DU, 0x2EU, 0x3FU, 0x3CU, 0x0DU, 0x1EU, 0x2FU,
8
9
       0x2CU, 0x3DU, 0x0EU, 0x1FU, 0x1CU, 0x2DU, 0x3EU, 0x0FU
10
   };
11
12
   const u8 invPermBits[64] = {
       0x00U, 0x05U, 0x0AU, 0x0FU, 0x10U, 0x15U, 0x1AU, 0x1FU,
13
       0x20U, 0x25U, 0x2AU, 0x2FU, 0x30U, 0x35U, 0x3AU, 0x3FU,
14
       0x0CU, 0x01U, 0x06U, 0x0BU, 0x1CU, 0x11U, 0x16U, 0x1BU,
15
16
       0x2CU, 0x21U, 0x26U, 0x2BU, 0x3CU, 0x31U, 0x36U, 0x3BU,
       0x08U, 0x0DU, 0x02U, 0x07U, 0x18U, 0x1DU, 0x12U, 0x17U,
17
       0x28U, 0x2DU, 0x22U, 0x27U, 0x38U, 0x3DU, 0x32U, 0x37U,
18
19
       0x04U, 0x09U, 0x0EU, 0x03U, 0x14U, 0x19U, 0x1EU, 0x13U,
       0x24U, 0x29U, 0x2EU, 0x23U, 0x34U, 0x39U, 0x3EU, 0x33U
20
21
   };
```

1.2.3 AddRoundKey

Appendix A

Generation of Tables

A.1 Round Constants

```
Note (LFSR).
```

```
c_5 \parallel c_4 \parallel c_3 \parallel c_2 \parallel c_1 \parallel c_0 \leftarrow c_4 \parallel c_3 \parallel c_2 \parallel c_1 \parallel c_0 \parallel (c_5 \oplus c_4 \oplus 1)
```

```
void generate_round_constants(u8 rCon[48]) {
2
       u8 state = 0x01;
3
       rCon[0] = state;
4
5
       for (u8 i = 1; i < 48; i++) {
           bool new_bit =
6
7
                ((rCon[i-1] >> 5) \& 0x01) ^
8
                ((rCon[i-1] >> 4) \& 0x01) \land 0x01;
9
           state <<= 1;
           state |= new_bit;
10
11
12
           rCon[i] = state & 0x3F; // 3F = 0011 1111
       }
13
14
  }
```

A.2 GIFT S-BOX

```
void generate_sbox(u8 S[16]) {
1
2
      bool buffer[4], tmp;
3
      for (u8 i = 0; i < 16; i++) {
4
5
          buffer[0] = (i >> 0) & 1;
          buffer[1] = (i >> 1) \& 1;
6
7
          buffer[2] = (i >> 2) & 1;
8
          buffer[3] = (i >> 3) \& 1;
9
          buffer[1] = buffer[1] ^ (buffer[0] & buffer[2]);
10
                    = buffer[0] ^ (buffer[1] & buffer[3]);
11
12
          buffer[2] = buffer[2] ^ (tmp
                                             | buffer[1]);
          buffer[0] = buffer[3] ^ buffer[2];
13
          buffer[1] = buffer[1] ^ buffer[0];
14
15
          buffer[0] = !(buffer[0]);
          16
          buffer[3] = tmp;
17
18
          S[i] = (u8)buffer[3] << 3
19
          (u8)buffer[2] << 2 |
20
          (u8)buffer[1] << 1 |
21
22
          (u8) buffer [0];
23
      }
24
  }
```

Bibliography

- [1] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present Towards Reaching the Limit of Lightweight Encryption (Full version). Temasek Laboratories, Nanyang Technological University, Singapore; School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore; School of Computer Science and Engineering, Nanyang Technological University, Singapore; NTT Secure Platform Laboratories, Japan; LASEC, École Polytechnique Fédérale de Lausanne, Switzerland. Emails: bsubhadeep@ntu.edu.sg, emailpandey@gmail.com, thomas.peyrin@ntu.edu.sg, SSIM011@e.ntu.edu.sg, Todo.Yosuke@lab.ntt.co.jp, Sasaki.Yu@lab.ntt.co.jp
- [2] Subhadeep Banik, Andrey Bogdanov, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, Elmar Tischhauser, and Yosuke Todo, "SUNDAE-GIFT v1.0," Nanyang Technological University, Singapore and Temasek Labs@NTU, Singapore and LASEC, Ecole Polytechnique Fédérale de Lausanne, Switzerland and Technical University of Denmark, Denmark and Cybercrypt A/S, Denmark and NTT Secure Platform Laboratories, Japan, 2023. Note: Emails: thomas.peyrin@ntu.edu.sg, crypto.s.m.sim@gmail.com, subhadeep.banik@epfl.ch, anbog@dtu.dk, elmar@cybercrypt.com, Sasaki.Yu@lab.ntt.co.jp, yosuke.todo.xt@hco.ntt.co.jp.