$\begin{array}{c} P \ vs \ NP \\ for \ the \ (formalist\mbox{-}leaning) \ mathematician \end{array}$

Dominic van der Zypen

1. Introduction

I have long had an iffy feeling about the formulation of the **P** vs **NP** problem. I sort-of know Turing machines, I have a vague concept of what is "a class of problems", and I have heard many times that **NP** is the class of problems for which a solution can be checked in polynomial time for correctness.

All my ifs-and-buts add to a quite shaky view - and I decided to get to the bottom of things and provide a rigorous and (hopefully) mathematically appealing definition of Turing machines, languages, and the like.

2. Configurations

Let ω denote the first infinite ordinal (which can be thought of as \mathbb{N} , the set of non-negative integers). Recall that each $n \in \omega$ is an *ordinal*, that is, $0 := \emptyset$ and for n > 0, its members are the numbers $0, \ldots, n-1$, so $n = \{0, \ldots, n-1\}$. We write n^{ω} for the collection of all maps $f : \omega \to n$.

Our first central concept, the **configuration**, is the mathematical model of the notion of the **tape** of the Turing machine, together with the **writing head** and the **internal state** of the machine.

We fix a finite set Q such that $Q \cap \omega = 0$ and refer to Q as the set of states. Q has two special states, called *accept* and *reject*.

Definition 2.1. A configuration is a triple $C = (q, h, t) \in Q \times \omega \times 3^{\omega}$ (where $3 = \{0, 1, 2\}$) such that the sequence (function) $t : \omega \to 3$ is eventually constant with value 2. (This means that there is $N \in \omega$ such that c(k) = 2 for all $k \in \omega$ with $k \geq N$.) The collection of configurations over the set of states Q is denoted by Config(Q).

Remarks. The letter t stands for "tape". We interpret 2 as being the *blank* symbol. The *value* symbols are 0 and 1. The blank symbol 2 can be used to separate "input strings" consisting of 0,1. The value $h \in \omega$ can be thought of as the position of the *head* of the Turing machine, and $q \in Q$ is the current state.

3. Turing machines

We are ready for the central notion – maybe of computer science:

Definition 3.1. A Turing machine is a tuple (Q, δ) , such that

- Q is a finite set with $Q \cap \omega = \emptyset$ containing two special elements accept and reject, and
- $\delta: Q \times \{0,1,2\} \to Q \times \{0,1,2\} \times \{-1,1\}$ is a function with the following property: if $q \in \{reject, accept\}$ and $b \in \{0,1,2\}$, then $\delta(q,b) = (q,b,-1)$. If $\delta(q,b) = (q',b',s)$ for $q,q' \in Q, b,b' \in \{0,1,2\}$ and $s \in \{-1,1\}$ we write
 - $-\operatorname{state}(\delta(q,b)) = q',$
 - output($\delta(q, b)$) = b', and
 - $\text{step}(\delta(q, b)) = s \in \{-1, 1\}.$

The function δ is called the *transition function* and can be looked at as the "clockwork" of the Turing machine.

Time for the synthesis: combining configurations and Turing machines!

We need the following *convention*: if $n \in \omega$, define the function pred : $\omega \to \omega$ by $0 \mapsto 0$ and $n \mapsto n-1$ for $n \in \omega \setminus \{0\}$. By slight abuse of notation, we write n-1 instead of pred(n) for all $n \in \omega$.

Definition 3.2. Let $T = (Q, \delta)$ be a Turing machine, T induces a configuration map

$$\mathfrak{C}_T: \operatorname{Config}(Q) \to \operatorname{Config}(Q)$$

in the following way:

If $C = (q, h, c) \in \text{Config}(Q)$ then $\mathfrak{C}_T((q, h, c)) = (q', h', c')$ where

- $q' = \text{state}(\delta(q, c(h))), ^1$
- $h' = h + \text{step}(\delta(q, c(h)))$, and ²
- $c': \omega \to \{0, 1, 2\}$ is defined by $c'(h) = \operatorname{output}(\delta(q, c(h)))$ and c'(x) = c(x) for all $x \in \omega \setminus \{h\}$.

¹recall that c(h) is the value of the configuration at head position h.

²remember that step $(\delta(q, c(h))) \in \{0, 1\}$, and 0 - 1 = 0 in our convention.

³that is c' agrees with c except possibly on the head position h.