Série 2013

Procédures de qualification Installatrice-électricienne CFC Installateur-électricien CFC

Connaissances professionnelles écrites

Pos. 2.1 Bases technologiques

Nom, prénom	N° de candidat	Date

Temps: 30 minutes

Auxiliaires: Recueil de formules sans exemple de calcul, calculatrice de poche (sans base

de données), règle, compas, équerre et rapporteur.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Pour des exercices avec des réponses à choix multiples, pour chaque réponse fausse il sera déduit le même nombre de points que pour une réponse exacte.

- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.

- S'il manque de la place, la solution peut être écrite au dos de la feuille.

Barème: Nombres de points maximum: 23,0

22,0 -	23 N	Points = Note	6,0
•	•		0,0
20,0 -	21,5	Points = Note	5,5
17,5 -	19,5	Points = Note	5,0
15,0 -	17,0	Points = Note	4,5
13,0 -	14,5	Points = Note	4,0
10,5 -	12,5	Points = Note	3,5
8,5 -	10,0	Points = Note	3,0
6,0 -	8,0	Points = Note	2,5
3,5 -	5,5	Points = Note	2,0
1,5 -	3,0	Points = Note	1,5
0,0 -	1,0	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Signature des	Points	Note
expertes / experts:	obtenus	

Délai d'attente:	Cette épreuve d'examen ne peut pas être utilisée librement comme exercice
	avant le 1 ^{er} septembre 2014.

Créé par: Groupe de travail USIE examen de fin d'apprentissage

Installatrice-électricienne CFC / Installateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exer	Exercices				
1.	Un conteneur de forme cylindrique est rempli de 10 litres d'eau. Quelle est la hauteur du cylindre, sachant que son diamètre intérieur est de 220 mm ?	2			
2.	Le rotor d'un générateur (symbolisé par le conducteur) coupe les lignes de forces du champ magnétique produit par l'aimant permanent. a) Dessinez la direction du déplacement du rotor (Effet générateur).	3			
	a) Dessinez la direction du deplacement du fotor (Effet generateur).				
	 b) Dessinez le sens du courant dans le conducteur (un point ou une croix) sachant qu'il se déplace dans la direction indiquée par le vecteur (Effet générateur). 				
	S N				
	c) Indiquez la polarité des pôles (Effet générateur).				

Exer							maximal		
3.	Une charge a une puis Calculez la puissance supérieure à la tension	de cette charge						2	
4.	La résistance, la bobir une tension de 12 V / Pour chacun des trois Déterminez l'évolution Sur chacune des ligne	50 Hz et à une t composants, ur du courant pou	ension de 12 V n courant a été n r la deuxième m	DC. nesure esure	é. (?A)		nent à	3	
				Le courant augmente	Le courant diminue	Le courant reste le même	ll n'y a pas de courant		
		12 V/50 Hz 1 A	12 V DC ? A						
		12 V/50 Hz ? A	12 V DC 0,5 A						
		12 V/50 Hz ? A	12 V DC 0 A						
							·		

Exer	cices	Nombre d maximal	e points obtenus
5.	a) Quel est le nom du circuit représenté ? b) Citez un exemple d'application utilisant ce circuit.	2	
6.	Une pompe refoule 3 m³ d'eau par minute d'une profondeur de 50 m. Calculer la puissance utile du moteur électrique relié à la pompe sachant que le rendement de la pompe est de 75%.	3	

Exer	cices	Nombre o	le points obtenus
7.	Une palette de briques produit, dans le câble d'une grue de construction, une force de traction de 3'600 N. Quelle est la masse de la palette ?	1	
8.	Un fusible Diazed desserré a une résistance de passage de 0,8 Ω. Quelle est l'énergie calorifique produite au point de contact, si le circuit est parcouru par un courant de 25 A pendant 15 minutes.	2	

Exer	cices	Nombre d maximal	e points obtenus
_	◆ ——8 m——	•	
9.		3	
	Pour la salle à manger illustrée, un client désire un éclairage sur chacune des six tables. Il désire utiliser comme moyen d'éclairage une ampoule économique par table (fluocompacte) de 20 W / 1'150 lm. Le rendement de cet éclairage est de 40%.		
	a) Quel sera l'éclairement moyen obtenu compte tenu des désirs du client ?		
	b) Comment évaluez-vous le niveau d'éclairage de la pièce ? Cochez une réponse.		
	L'éclairement moyen est bien choisi.		
	L'éclairement moyen est trop faible.		
	L'éclairement moyen est trop grand.		
	c) Par quel facteur se modifie l'éclairement moyen, si sur chaque table on installe deux ampoules économiques ?		

Exer	cices	Nombre o	e points obtenus
10.	La tension à vide $\rm U_0$ d'une cellule NiCd est de 1,36 V. En charge, lorsqu'elle débite un courant de 50 mA, la tension à ses bornes chute à 1,25 volts.	2	
	a) Calculez la résistance interne R _i .		
	b) Calculez la résistance de charge R		
	Total	23	