AAMEG - MATEMÁTICA DISCRETA

O presente questionário é um resultado do projeto de ensino "Ações de apoio à melhoria do ensino de Matemática Discreta", que foi concluído e associado ao programa "Ações de Apoio à Melhoria do Ensino de Graduação (AAMEG)", sob a coordenação da Pró-Reitoria de Graduação (PROGRAD). Este formulário tem como propósito primordial identificar as principais questões enfrentadas pelos estudantes de Matemática Discreta, com enfoque específico no conteúdo de demonstração direta com implicação.

_^ 111	idica uma pergunta oprigatoria		
1.	E-mail *		
2.	Nome: *		0 pontos
3.	Matrícula: *		0 pontos
4.	1. Tendo como base o enunciado a seguir, "Demons demonstração direta, que para todo x, y, z, w \in Z, se então y²+x² é ímpar.", e considerando que a demons da seguinte forma: "Sejam k, l, m, n \in Z elementos p arbitrários,", qual alternativa melhor representa o questão.	x² = 4z e y² = 4w+1 tração seja iniciada articulares e	* 1 ponto
	Marcar apenas uma oval.		
	☐ l²+k² é ímpar.		
	k² é ímpar e l² é ímpar.		
	$y^2+x^2=2^*(\phi)+1$, onde $\phi\in Q$.		
	$k^2 = 4m e l^2 = 4n+1$.		

5. 2. Considerando uma demonstração direta com implicação, no qual sabe- * 1 ponto se que k é par e que o objetivo é demonstrar que (k+1)² é ímpar, qual alternativa melhor representa o objetivo parcial da questão.

Marcar apenas uma oval.

- $(k+1)^2$ = 2*(φ)+1, onde φ ∈ Z.
- $k \in Z$.
- k é ímpar.
- k+1 é ímpar.
- $k = 2*(\varphi)$, onde $\varphi \in Z$.
- 6. 3. Qual das alternativas a seguir representa corretamente a definição de * 1 ponto ímpar?

Marcar apenas uma oval.

- $\forall x \in R, x \notin \text{impar} \leftrightarrow \exists r \in Z, \exists s \in Z-\{0\}, x = r/s$
- \forall x \in R, x \in $(mpar \leftrightarrow \exists r \in R, x= 2r+1)$
- $\forall x \in Z, x \in \text{impar} \leftrightarrow \exists r \in Z, x = 2r$
- $\forall x \in Z, x \in \text{impar} \leftrightarrow \exists r \in Z-\{0\}, x=2r+1$
- $\forall x \in Z, x \in \text{impar} \leftrightarrow \exists r \in Z, x = 2r+1$

/.	demonstração direta, que para todo x∈ Z, se x é ímpar então x³ é ímpar.", selecione a alternativa que representa corretamente o início da demonstração.
	Marcar apenas uma oval.
	"Seja k ∈ Z um elemento particular e arbitrário, tal que k é ímpar. Logo pela definição de ímpar sabemos que existe a ∈ Z, tal que k = 2a.".
	"Seja k ∈ Q um elemento particular e arbitrário, tal que k é par. Logo pela definição de par sabemos que existe a ∈ Z, tal que k = 2a + 1.".
	"Seja k ∈ Z um elemento particular e arbitrário, tal que k é ímpar. Logo pela definição de ímpar sabemos que existe a ∈ Z, tal que k = 2a + 1.".
	"Seja k ∈ Z um elemento particular e arbitrário, tal que k é par. Logo pela definição de par sabemos que existe a ∈ Z, tal que k = 2a.".
	"Seja k ∈ Z um elemento particular e arbitrário, tal que k é ímpar. Logo pela definição de ímpar sabemos que existe a ∈ Z, tal que k³ = 2a + 1.".
8.	 5. Considerando que uma demonstração começa da seguinte forma: * 1 ponto "Sejam k, l ∈ Z, dois elementos particulares e arbitrários, tal que k+l é par." Qual das seguintes alternativas seria a próxima etapa dessa demonstração:
	Marcar apenas uma oval.
	Logo, pela definição de par, sabemos que existem a, b ∈ Z, tal que k = 2a e l = 2b.
	Logo, pela definição de par, sabemos que existe a ∈ Z, tal que k = 2a e l = 2a.
	Logo, pela definição de par, sabemos que existe a ∈ Z, tal que k+l = 2a.
	Dado que k+l é par, podemos inferir que k e l são ímpares. Logo, pela definição de ímpar, sabemos que existem a, $b \in Z$, tal que k = $2a+1$ e l = $2b+1$.
	Temos que: k + I = 2a.

Este conteúdo não foi criado nem aprovado pelo Google.

Google Formulários