# Review of DFT's Usage

- We have seen that DFT can be used to compute the spectrum of DTFT.
  - Note that CFT (or DTFT) integrates from  $-\infty$  to  $\infty$ , they are not computationally feasible in practice.
- However, what is computed by DFT is only an approximation of the spectrum in most cases.

## Approximations by DFT

- How it approximations?
  - DFT only evaluates in a finite-length rectangle window.
     (windowing effect)
  - DFT only evaluates on discrete-time samples. (aliasing effect).
- So,
  - Approximation of CFT by DFT: both windowing effect and aliasing effect
  - Approximation of DTFT by DFT: only windowing effect.
  - (Approximation of CFT by DTFT: aliasing effect)

# Approximate DTFT by DFT

- DFT is an approximation for DTFT for infinite-long sequences or sequences with the durations longer than the rectangular window.
- Exact recovery case: However, for a finite-duration signal, its DTFT can be exactly recovered by its DFT.
  - In this case, DFT computes the samples of DTFT in the locations  $2\pi k/N$  (k=0,...,(N-1)) in the range  $[0,2\pi]$  along the unit circle in the polar-coordinat plane, where N is the length of the finite-duration signal.
  - To increase the sampling points, zero-padding can be used.

# Approximation by better windowing function

- Instead of the rectangle window, we have mentioned that other windowing functions could be used, so that a better approximation or tradeoff of the spectrum can be achieved.
- One of the major shortcomings of the rectangular window is that its sidelobes are relatively high and could be confused with low amplitude peaks caused by other frequencies.
- See below

## Review of Spectrogram

- A discrete-time version of the short-time Fourier Transform (STFT).
- Separating a discrete-time signal into multiple segments in time, and compute the DFT/FFT for each segment along the time axis.
- The segments can be either non-overlapping or overlapping.
- Spectrogram is a two-dimensional map
- We use rectangular window before, and other window functions can be used as well.

# Example: Spectrogram of a Chirp Signal



# Example: Spectrogram of a male voice saying 'ta ta ta'.



CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=647191

# Example: Spectrogram of a violin playing this recording of a violin playing



# Mainlobe and sidelobes of rectangular window



Figure 13-4: (a) Rectangular time window and (b) its Fourier transform. The part of the plot from  $-2\pi/T$  to  $2\pi/T$  is the *mainlobe*, while the *sidelobes* are evident for  $|\omega| > 2\pi/T$ .

## Effect of rectangular window

The DTFT amplitude of a finite-length sinusoidal signal









## Other Windows

- Instead of rectangular window, other windows could be used as well.
- For example, Hamming window can ease this sidelobe effect at the expense of a wider mainlobe.
- Hamming widow (that utilizes a cosine function):

$$w_H(t) = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\pi}{T}t\right) & 0 \le t \le T \\ 0 & \text{otherwise} \end{cases}$$

 The window does not drop abruptly at the edges like the rectangular window.

# Hamming Windows – Time and Frequency Domain

- In the frequency domain, the mainlobe is twice as that of the rectangular window.
- On the other hand, the sidelobe is pretty much lower.



Figure 13-7: (a) Hamming time window and (b) its Fourier transform magnitude. The part of the plot from  $-4\pi/T$  to  $4\pi/T$  is the *mainlobe*, while the *sidelobes* are hardly visible over the range  $|\omega| > 4\pi/T$ .

# Effect of using Hamming Window

The output of Hamming window then looks like



 Hence, the spectrum is different depending upon the window used.

# Effect of Windowing - Discussion

- No matter using rectangular or Hamming windows, if too much overlap occurs, we will no longer see distinct peaks around each of the original frequencies.
- Eg., an example of using rectangular window:



# **Effect of Windowing**

- Note that the order of sampling and windowing can be exchanged.
- Equivalent systems can be obtained:

C/D (Sampling) first vs.

Windowing first



Figure 13-2: Discrete-time spectrum analysis using time-domain windowing and the DFT. The window w[n] should be a finite-length sequence.



Figure 13-3: Equivalent system for discrete-time spectrum analysis using continuous-time windowing.

# Spectral Analysis

- Previously, we use the right-hand system for discussing the effect of windowing.
- In the following, we use the left-hand system for the study of practical spectral analysis.

Materials are from Boaz Porat's Book.

### Recall: Definition of DFT in Boaz Porat's Book

#### Remark

- There could be different notations from different books.
- The Fourier transform is referred to as DTFT below.

Let the discrete-time signal x[n] have finite duration, say in the range  $0 \le n \le N-1$ . The Fourier transform of this signal is

$$X^{\mathrm{f}}(\theta) = \sum_{n=0}^{N-1} x[n]e^{-j\theta n}.$$
 DTFT (4.1)

Let us sample the frequency axis using a total of N equally spaced samples in the range  $[0, 2\pi)$ , so the sampling interval is  $2\pi/N$ ; in other words, we use the frequencies

$$\theta[k] = \frac{2\pi k}{N}, \quad 0 \le k \le N - 1. \tag{4.2}$$

The result is, by definition, the discrete Fourier transform. Mathematically,

$$X^{d}[k] = \{\mathcal{D}x\}[k] = \sum_{n=0}^{N-1} x[n] \exp\left(-\frac{j2\pi kn}{N}\right), \quad 0 \le k \le N-1. \quad \text{DFT}$$
 (4.3)

### Windowing

#### The effect of rectangular window in discrete-time domain:

■ Assume we are given a long, possibly infinite-duration signal y[n]. We pick a relatively short segment of y[n], say

$$x[n] = \begin{cases} y[n], & 0 \le n \le N-1, \\ 0, & \text{otherwise.} \end{cases}$$

■ We can describe the operation of getting x[n] from y[n] as a multiplication of y[n] by a rectangular window,  $w_r[n]$ , that is,

$$x[n] = y[n]w_r[n], \text{ where } w_r[n] = \begin{cases} 1, & 0 \le n \le N-1, \\ 0, & \text{otherwise.} \end{cases}$$

 Recall that multiplication in the time domain equals to convolution in the frequency domain, so

$$X^{\mathrm{f}}(\theta) = \frac{1}{2\pi} \{ Y^{\mathrm{f}} * W_{\mathrm{r}}^{\mathrm{f}} \}(\theta),$$

where  $W_{\mathbf{f}}^{\mathbf{f}}(\theta)$  is the Fourier transform of the rectangular window, given by

$$W_{\rm r}^{\rm f}(\theta) = \sum_{n=0}^{N-1} e^{-j\theta n} = \frac{1-e^{-j\theta N}}{1-e^{-j\theta}} = \frac{\sin(0.5\theta N)}{\sin(0.5\theta)} e^{-j0.5\theta(N-1)}.$$

The function

$$D(\theta, N) = \frac{\sin(0.5\theta N)}{\sin(0.5\theta)}$$

is called the Dirichlet kernel.

Note that this kernel also appeared in the constructing DTFT from DFT for a final-length signal.



**Figure 6.6** The Dirichlet kernel for N=40.

#### Main property of the Dirichlet kernel are as follows

- Its maximum value is N, occurring at  $\theta = 0$ .
- Its zeros nearest to the origin (the two red points in the figure) are at  $\theta = \pm 2\pi/N$ . The region between these two zeros is called the main lobe of the Dirichlet kemel. The main-lobe width is thus  $4\pi/N$ .
- There are additional zeros at  $\{\theta = 2m\pi/N, m = \pm 2, \pm 3, ...\}$ .

## Main property of the Dirichlet kernel (cont.)

- Between every pair of adjacent zeros there is a local maximum or a local minimum, approximately at  $\theta = (2m + 1)\pi/N$ .
- The regions between these zeros are called side lobes.
- The highest-value side lobe (in absolute value) occurs at  $\theta = \pm 3\pi/N$  ((the two blue triangles in the figure) ) and its value (for large N) is approximately  $2N/3\pi$ .
- The ratio (in the log domain) of the highest side lobe to the main lobe is about −13.5 dB.
  - decibel (dB) is a logarithmic unit of the ratio:

$$20 \log_{10} \left( \frac{\left| X^{f}(\theta_{HighestSideLobe}) \right|}{\left| X^{f}(\theta_{MainLobe}) \right|} \right)$$

#### What is the ideal kernel in frequency domain?

Its shall be an impulse function between a single period  $[-\pi, \pi]$ .



• i.e., it should be an impulse train in the DTFT domain, implying the ideal case that the time domain is 1 for all  $n \in [-\infty, \infty]$ .

- Choosing a window w[n] is always a tradeoff between the width of the main lobe and the level of the side lobes.
- In general, the narrower the main lobe, the higher the side lobes, and vice versa.

## **Property of rectangular window:**

- the rectangular window has the narrowest possible main lobe of all windows of the same length, but its side lobes are the highest.
- The side-lobe level of the rectangular window, −13.5 dB, is undesired in most applications.

- The frequency is often drawn via its magnitude in the log domain.
- For rectangular window:



**Figure 6.8** A rectangular window, N = 41: (a) time-domain plot; (b) frequency-domain magnitude plot.

## **Bartlett Window (triangle-shaped)**

- Suppose the desired window length N is an odd number.
- Let  $w_r[n]$  be a rectangular window of length (N+1)/2.
- Define the Bartlett window  $w_t[n]$  from the rectangular window as

$$w_{t}[n] = \frac{2}{N+1} \{w_{t} * w_{t}\}[n] = 1 - \frac{|2n-N+1|}{N+1}, \quad 0 \leq n \leq N-1.$$

■ Since convolving a rectangular window with itself in the time domain is equivalent to squaring in the frequency domain, the corresponding kernel function is then

$$W_{t}^{f}(\theta) = \frac{2}{N+1}D^{2}(\theta, 0.5(N+1))e^{-j0.5\theta(N-1)} = \frac{2\sin^{2}[0.25\theta(N+1)]}{(N+1)\sin^{2}(0.5\theta)}e^{-j0.5\theta(N-1)}.$$
(6.11)

Resulting in a triangle-shaped window in the time domain.



**Figure 6.9** Bartlett window, N = 41: (a) time-domain plot; (b) frequency-domain magnitude plot.

- This window is called the Bartlett window (after its discoverer) or a triangular window (owing to its shape).
- As from its construction, the side-lobe level of the Bartlett window is -27 dB. The width of the main lobe is  $\frac{8\pi}{N+1}$ , which is nearly twice that of a rectangular window of the same length.

## Hann Window (or Hanning window; cosine-shaped)

- Whereas the Bartlett window achieves side-lobe level reduction by squaring, the Hann window achieves a similar effect by summation.
- The kernel function of the Hann window is obtained by adding three Dirichlet kernels, shifted in frequency so as to yield partial cancellation of their side lobes.



**Figure 6.10** Construction of the Hann window from three Dirichlet kernels. Dashed line: center kernel; dot-dashed lines: shifted kernels; solid line: the sum.

The kernel function of Hann window in the frequency is given by

$$W_{\text{hn}}^{f}(\theta) = \left[0.5D(\theta, N) + 0.25D\left(\theta - \frac{2\pi}{N - 1}, N\right) + 0.25D\left(\theta + \frac{2\pi}{N - 1}, N\right)\right]e^{-j0.5\theta(N - 1)}$$

$$= 0.5W_{\text{r}}^{f}(\theta) - 0.25W_{\text{r}}^{f}\left(\theta - \frac{2\pi}{N - 1}\right) - 0.25W_{\text{r}}^{f}\left(\theta + \frac{2\pi}{N - 1}\right). \tag{6.13}$$

Its window function in time domain is

$$w_{\text{hn}}[n] = 0.5 - 0.25 \exp\left(\frac{j2\pi n}{N-1}\right) - 0.25 \exp\left(-\frac{j2\pi n}{N-1}\right)$$
$$= 0.5 \left[1 - \cos\left(\frac{2\pi n}{N-1}\right)\right], \quad 0 \le n \le N-1.$$

- The Hann window is also called the cosine window.
- The side-lobe level of this window is -32 dB and the width of the main lobe is  $\frac{8\pi}{N}$ .



**Figure 6.11** Hann window, N = 41: (a) time-domain plot; (b) frequency-domain magnitude plot.

- The Hann window has a peculiar property: Its two end points are zero.
- When applied to a signal y[n], it effectively deletes the points y[0] and y[N-1].
- This suggests increasing the window length by 2 with respect to the desired N and delete the two end points.
- The modified Hann window thus obtained is

$$w_{\text{hn}}[n] = 0.5 \left\{ 1 - \cos \left[ \frac{2\pi(n+1)}{N+1} \right] \right\}, \quad 0 \le n \le N-1;$$

## Hamming Window (cosine-shaped)

Obtained by a slight modification of the Hann window, which amounts to choosing different magnitudes for the three Dirichlet kernels.

$$w_{\text{hm}}[n] = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right), \quad 0 \le n \le N-1,$$

$$W_{\mathrm{hm}}^{\mathrm{f}}(\theta) = 0.54W_{\mathrm{r}}^{\mathrm{f}}(\theta) - 0.23W_{\mathrm{r}}^{\mathrm{f}}\left(\theta - \frac{2\pi}{N-1}\right) - 0.23W_{\mathrm{r}}^{\mathrm{f}}\left(\theta + \frac{2\pi}{N-1}\right).$$



**Figure 6.12** Construction of the Hamming window from three Dirichlet kernels. Dashed line: center kernel; dot-dashed lines: shifted kernels; solid line: the sum.



**Figure 6.13** Hamming window, N = 41: (a) time-domain plot; (b) frequency-domain magnitude plot.

- As we see, the side lobes of the sum are lower than those of the Hann window.
- Hamming got the numbers 0.54 and 0.46 by trial and error, seeking to minimize the amplitude of the highest side lobe.
- The side-lobe level of this window is -43 dB, and the width of the main lobe is  $\frac{8\pi}{N}$ .
- The Hamming window is also called the raised-cosine window.

## Blackman Window (sum of two cosine-shaped)

- Hamming window has the lowest possible side-lobe level among all windows based on three Dirichlet kernels.
- The Blackman window uses five Dirichlet kernels, thus reducing the side-lobe level still further.

$$w_b[n] = 0.42 - 0.5 \cos\left(\frac{2\pi n}{N-1}\right) + 0.08 \cos\left(\frac{4\pi n}{N-1}\right), \quad 0 \le n \le N-1,$$

$$\begin{split} W_{\mathrm{b}}^{\mathrm{f}}(\theta) &= 0.42 W_{\mathrm{r}}^{\mathrm{f}}(\theta) - 0.25 W_{\mathrm{r}}^{\mathrm{f}}\left(\theta + \frac{2\pi}{N-1}\right) - 0.25 W_{\mathrm{r}}^{\mathrm{f}}\left(\theta - \frac{2\pi}{N-1}\right) \\ &+ 0.04 W_{\mathrm{r}}^{\mathrm{f}}\left(\theta + \frac{4\pi}{N-1}\right) + 0.04 W_{\mathrm{r}}^{\mathrm{f}}\left(\theta - \frac{4\pi}{N-1}\right). \end{split}$$

- The side-lobe level of the Blackman window is -57 dB and the width of the main lobe is  $\frac{12\pi}{N}$ .
- As in the case of the Hann window, the two end points of the Blackman window are zero, so in practice we can increase *N* by 2 and remove the two end points.



**Figure 6.14** Blackman window, N=41: (a) time-domain plot; (b) frequency-domain magnitude plot.

#### **Kaiser Window**

- The windows described so far are considered as classical.
- They have been derived based on intuition and educated guesses.
- Modern windows are based on optimality criteria; they aim to be best in certain respect, while meeting certain constraints.
- Different optimality criteria give rise to different windows.
- Dolph's criterion: Minimize the width of the main lobe, under the constraint that the window length is fixed and the side-lobe level does not exceed a given maximum value.

■ Kaiser criterion: Minimize the width of the main lobe, under the constraint that the window length is fixed and the energy in the side lobes does not exceed a given percentage of the total energy.

where the energy in the side lobes is defined as the integral of the square magnitude of the kernel function over the range  $[-\pi, \pi]$ , excluding the interval of the main lobe.

#### Kaiser window:

- Of the windows based on these two criteria, the Kaisor window is much more popular than Dolph window.
- Kaiser criterion gives rise to a family of windows that has become, perhaps, the most widely used for modern digital signal processing.

■ The solution of Kaiser's optimization problem is described in terms of the modified Bessel function of order zero. This function is given by the infinite power series

$$I_0(x) = \sum_{k=0}^{\infty} \left(\frac{x^k}{2^k k!}\right)^2.$$

Using this function, the Kaiser window is given by

$$w_{\mathbf{k}}[n] = \frac{I_0 \left[ \alpha \sqrt{1 - \left( \frac{|2n-N+1|}{N-1} \right)^2} \right]}{I_0[\alpha]}, \quad 0 \le n \le N-1.$$

- The parameter  $\alpha$  is used for controlling the tradeoff between main-lobe width and the side-lobe level.
- Higher  $\alpha$  leads to a wider main lobe and lower side lobes.



**Figure 6.15** Properties of the Kaiser window as a function of the parameter  $\alpha$ : (a) main-lobe width, as a multiple of  $2\pi/N$ ; (b) side-lobe level.

■ The following figure depicts the Kaisor window for N=41 and  $\alpha$ =12. In this case the main-lobe width is  $16\pi/N$  and the side-lobe level is -90dB.



**Figure 6.16** Kaiser window, N = 41,  $\alpha = 12$ : (a) time-domain plot; (b) frequency-domain magnitude plot.

## Short-time Fourier Transform (STFT)

- A general extension of spectrum is the shorttime Fourier transform (STFT), where the window slides at every time sites.
- The signal is multiplied by a window function.

$$\mathbf{STFT}\{x(t)\}( au,\omega)\equiv X( au,\omega)=\int_{-\infty}^{\infty}x(t)w(t- au)e^{-j\omega t}\,dt$$

 The CFT of the resulting signal is taken as the window is slid along the time axis, resulting in a two-dimensional representation of the signal.