Проводник в электрическом поле

Проводником является вещество с большим количеством свободных носителей заряда. При малейшей силе, действующей на эти носители, внутри проводника возникает электрический ток.

Отсюда следует, что для равновесия зарядов в проводнике необходимо выполнение двух условий: 1) внутри проводника $\vec{E}=0$ и 2) напряженность на поверхности проводника направлена по нормали к поверхности.

Из этих двух условий следует, что при сообщении проводнику заряда q, он распределяется по поверхности. Аналогичный вывод можно сделать, учитывая, что заряды одного знака отталкиваются и стремятся распределиться с наименьшей объемной плотностью. Отсюда, в частности, следует тот факт, что заряды распределяются по поверхности проводника с постоянной поверхностной плотностью σ .

Потенциал проводника совпадает с потенциалом его поверхности. Требуется найти величину, связывающую потенциал и заряд на проводнике. Такой коэффициент пропорциональности называется электроемкостью проводника C:

$$q = C\varphi \tag{1}$$

ф равен работе по перемещению единичного заряда из бесконечности на поверхность проводника, а электроемкость численно равна заряду, увеличивающему потенциал проводника на единицу.

Заряд, распределенный по поверхности проводника, можно представить как систему зарядов. Ее потенциальная энергия, как известно, равна:

$$W_p = \frac{1}{2} \sum_{i}^{n} q_i \varphi_i \tag{2}$$

Но поверхность проводника эквипотенциальна, поэтому энергия представима в виде:

$$W_p = \frac{q\varphi}{2} \tag{3}$$

Раскрыв потенциал через электроемкость проводника, получим:

$$W_p = \frac{q\varphi}{2} = \frac{q^2}{2C} \tag{4}$$

Аналогично можно раскрыть и заряд:

$$W_p = \frac{C\varphi^2}{2} \tag{5}$$