2.네트워크 연결과 구성요소

2.1 네트워크 연결 구분

- LAN 사용자 내부네트워크
- MAN 하나의 도시를 연결하는 네트워크
- WAN 먼거리에 떨어진 네트워크를 연결하는 네트워크

2.네트워크 연결과 구성요소

LAN

• 비교적 소규모의 네트워크

• 간단한 장비로 연결된 네트워크

• 한 도시를 연결하는 네트워크

MAN

• 자체 인프라를 통해 구축

- 먼 거리의 네트워크
- 통신사업자로부터 회선을 임대

WAN

- 이더넷 기반 전송 기술
- 직접 구축한 네트워크 범위

2.2 네트워크 회선

- 1. 인터넷 회선: 인터넷 접속을 위해 통신사업자와 연결하는 회선
- 2. 전용 회선: 가입자와 통신사업자 간 대역폭을 보장해주는 서비스
 - 저속: 음성 전송기술기반
 - 고속:메트로이더넷
- 3. 인터넷 전용 회선 : 인터넷 연결회선에 대한 통신 대역폭을 보장해주는 상품
- 4. VPN : 가상으로 직접 연결한 것과 같은 효과를 내는 네트워크 기술.
 - 통신 사업자 VPN : 여러 가입자가 하나의 망에 접속하여 공용 회선을 함께 이용
 - 가입자 VPN : 일반사용자가 VPN을 사용하는 것.
- 5. DWDM (파장 분할 다중화): 먼거리 통신에 케이블 포설 비용 및 관리 문제 극복을 위해 개발.

1. 네트워크 인터페이스카드 NIC

컴퓨터를 네트워크에 연결하기위한 하드웨어 장치.

주요 역할

- 직렬화: 전기적 신호를 데이터 신호 또는 데이터신호를 전기적 신호 형태로 변환
- MAC 주소: 네트워크 인터페이스 카드는 MAC 주소를 갖는다.
- 흐름제어

2.케이블

이더넷: 현재 가장 많이 사용하는 네트워크기술.

- 1,000BASE-T / 10GBASE-T : 트위스티드 페어 케이블을 이용하는 기가 이더넷 표준.
- 1,000BASE-SX / 10GBASE-SR : 멀티모드 광케이블 사용. 비교적 짧은 거리
- 1,000BASE-LX / 10GBASE-LR : 싱글모드 광케이블 사용. 비교적 긴 거리

1,000 BASE-T

속도

채널

케이블타입

1000Mbps

단일 채널

트위스티드 페어

2.케이블

케이블본체,커넥터,트랜시버

- 트위스티드 페어 케이블
 쉴드가 있는 STP/FTP 케이블 과 쉴드가 없는 UDP 케이블
 RJ-45 커넥터
 가상화, IP기반 스토리지 대중화로 10G가 대중화 -> 10GBASE-T 기본탑재
- 동축 케이블 케이블 TV, 인터넷 연결을 위해 사용되어 왔다. 최근 10G 이상 고속 연결을 위해서 트랜시버를 통합한 DAC케이블을 많이 사용(동축 케이블)
- 광 케이블 신뢰도가 높고 먼거리 통신이 가능. 싱글모드: 레이저 사용. 멀티모드: LED 사용.

2.케이블

• DAC / AOC 트랜시버와 케이블이 하나로 연결된 케이블

DAC: 동축 케이블 AOC: 광 케이블

• 브레이크 아웃 케이블 하나의 커넥터에서 여러 개로 분할 해주는 케이블. 보통 40G,100G 연결을 여러개의 10G,25G 케이블로 분할하는 용도.

MPO

좁은 공간에 복잡한 케이블을 쉽게 수용하기 위해 고밀도 케이블, 커넥터 사용 여러개의 케이블을 하나의 커넥터로 연결하여 처리가 가능.

3.커넥터

- 트위스티드 페어 케이블: RJ-45
- 광케이블: LC, SC

RJ-45

4. 트랜시버

외부신호 -> 전기 신호

전송기와 수신기를 하나로 합쳐 신호를 송수신할 수 있는 장치

5. 허브

- 1계층에서 동작하는 장비.
- 거리가 멀어질수록 줄어드는 전기신호를 재생성.
- 여러 대의 장비를 연결하는 목적.
- 전기신호를 재생성해 출발지 제외한 모든 포트에 전기신호 전송.

6. 스위치

- 2계층에서 동작하는 장비.
- 허브와 내부 동작 방식은 다르나 여러 장비를 연결, 케이블을 한 곳으로 모아주는 역할.
- 목적지 MAC 주소 위치를 파악하여 목적지가 연결된 포트에만 전기 신호 전송.

7. 라우터

- 컴퓨터 네트워크 간에 데이터 패킷을 전송하는 네트워크 장치.
- 3계층에서 동작. 먼 거리로 통신할 수 있는 프로토콜로 변환.
- 쓸데없는 패킷이 전송되지 않도록 브로드캐스트와 멀티캐스트를 컨트롤.
- 불분명한 주소로 통신할 경우 패킷을 버리며 정확한 방향으로 패킷이 전송될 수 있도록 경로를 지정한다.

8. 로드 밸런서

서버에 가해지는 부하를 여러대의 서버에 분산시켜주는 기술.

주요기능

- NAT
 사설IP 주소를 공인IP 주소로 변경.
- DSR 서버에서 클라이언트로 되돌아가는 경우,목적지 주소를 스위치의 IP 주소가 아닌 클라이언트의 IP 주소로 전달하여 네트워크 스위치를 거치지 않고 바로 클라이언트를 찾아가는 개념.
- 터널링
 데이터를 캡슐화하여 연결된 상호간에만 캡슐화된 패킷을 구별해 데이터를 볼 수 있게 해준다.

8. 로드 밸런서

- L2: 데이터 링크 계층에서 정의된 정보를 바탕으로 로드밸런싱. MAC주소를 이용하여 전달할 서버 결정.
- L3: 네트워크 계층에서 정의된 정보를 바탕으로 로드밸런싱.
 IP주소를 기반으로 스위칭한다.
 L2에 라우팅 기능이 추가 된 것으로 트래픽 체크, 가상 LAN 등의 부가 기능을 제공.
- L4: 전송 계층 정보를 바탕으로 로드 밸런싱.
 IP 주소와 포트 번호를 이용하여 섬세한 라우팅이 가능.
- L7: 응용계층 정보를 바탕으로 로드 밸런싱.
 소프트웨어를 사용하여 비용이 비싸고 가장 섬세한 라우팅이 가능.
 패킷의 내용을 확인하고 그 내용에 따라 로드를 특정 서버에 분해하는 것이 가능.