DS 2

vendredi 8 avril 2022 - 9h - 10h

Durée : 55 minutes. Le barème est indicatif.

Le poly de cours est autorisé. Les calculatrices ne sont pas autorisées. Les notes manuscrites sont interdites. Cartables en bas de l'amphi.

Exercice 1. (6 Points)

On considère le polynôme $P(X) = 2X^9 - 4X^8 + 6X^7 - 10X^6 + 10X^5 - 10X^4 + 10X^3 - 6X^2 + 4X - 2$. Un logiciel donne $P(X) = 2(X-1)^3(X^2+1)^2(X^2+X+1)$.

- 1. Justifier que la réponse donnée par le logiciel est une décomposition en polynômes irréductibles dans $\mathbb{R}[X]$ (on ne demande pas de vérifier qu'il s'agit bien de celle de P).
- 2. En déduire la factorisation de P en polynômes irréductibles dans $\mathbb{C}[X]$.

Exercice 2. (4 points)

Factoriser le polynôme $Q(X) = X^4 - 3iX^3 - (1+3i)X^2$. On remarquera deux racines évidentes et on donnera après la factorisation la liste de ses racines.

Exercice 3. (4 points) On considère les deux matrices
$$A = \begin{pmatrix} 0 & -1 & 3 & 4 \\ 1 & 2 & -3 & 4 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 0 & -1 & -1 \\ -1 & 0 & 0 \end{pmatrix}$

Calculer celui des deux produits AB ou BA qui est bien défini.

Exercice 4. (6 Points)

Soit $\alpha \in \mathbb{R}$. On considère le polynôme $P(X) = X^5 - \alpha X^2 - \alpha X + 1$.

- 1. Montrer que -1 est racine de P(X).
- 2. (a) En effectuant la division euclidienne du polynôme P(X) par $X^2 + 2X + 1$, montrer que l'on trouve comme quotient $Q(X) = X^3 2X^2 + 3X \alpha 4$ et comme reste $R(X) = (\alpha + 5)X + \alpha + 5$.
 - (b) En déduire la valeur de α pour laquelle le polynôme $P(X) = X^5 \alpha X^2 \alpha X + 1$ est divisible par $X^2 + 2X + 1$.
 - (c) Dans ce cas, quel est alors l'ordre de multiplicité de la racine -1? Justifier cette réponse.