Departamento de Matemática da Universidade de Aveiro

CÁLCULO II - Agrupamento 3

13 de junho de 2018

2.º Teste de Avaliação Discreta

Duração: 2h

Nota: Justifique devidamente as suas respostas. O formulário encontra-se no verso.

- 1. [50] Considere a função f definida em \mathbb{R}^2 por $f(x,y) = x^3 x^2 + xy^2 y^2$.
 - (a) Determine o plano tangente ao gráfico de f no ponto (0, 1, -1).
 - (b) Calcule as derivadas direcionais $D_{\vec{u}}f(0,1)$ segundo um qualquer vetor unitário $\vec{u}=(u_1,u_2).$
 - (c) Determine os pontos críticos de f e classifique-os (minimizante local, maximizante local ou ponto de sela).
- 2. [20] Considere a função f(x,y)=1-x. Justifique que f possui extremos absolutos no círculo $C=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$ e calcule tais extremos.
- 3. [35] Resolva as seguintes equações diferenciais:
 - (a) $y' = (2 y)^2 \operatorname{sen} x$;
 - (b) $(2x\cos y + 3x^2y) dx + (x^3 2y x^2\sin y) dy = 0.$
- 4. [30] Determine a solução geral da equação diferencial $y'' + y' 6y = 50xe^{2x}$. (Sug.: use o método dos coeficientes indeterminados.)
- 5. [40] Considere o problema de Cauchy de primeira ordem

$$y' - y = 2e^t$$
, $y(0) = -1$.

- (a) Determine a solução do problema começando por resolver a equação diferencial através de um fator integrante.
- (b) Resolva o mesmo problema de Cauchy, usando agora transformadas de Laplace.
- 6. [10] Calcule a transformada inversa de Laplace da função $F(s) = \frac{s}{s^2 + 4s + 5}$.
- 7. [15] Considere uma EDO linear de segunda ordem num dado intervalo I:

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = b(x), \quad x \in I.$$
 (1)

Mostre que se g é solução da EDO (1) e h é solução da equação homogénea associada, então g + h é também solução da EDO (1).

Algumas fórmulas de derivação

$(kf)' = kf' \qquad (k \in \mathbb{R})$	$(f^{\alpha})' = \alpha f^{\alpha - 1} f' \qquad (\alpha \in \mathbb{R})$
$(a^f)' = f' a^f \ln a \qquad (a \in \mathbb{R}^+)$	$\left(\log_a f\right)' = \frac{f'}{f \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$
$(\operatorname{sen} f)' = f' \cos f$	$(\cos f)' = -f' \sin f$
$\left(\operatorname{tg} f\right)' = f' \sec^2 f = \frac{f'}{\cos^2 f}$	$\left(\cot g f\right)' = -f' \csc^2 f = -\frac{f'}{\sin^2 f}$
$(\operatorname{arcsen} f)' = \frac{f'}{\sqrt{1 - f^2}}$	$(\arccos f)' = -\frac{f'}{\sqrt{1-f^2}}$
$\left[(\operatorname{arctg} f)' = \frac{f'}{1+f^2} \right]$	$\left(\operatorname{arccotg} f\right)' = -\frac{f'}{1+f^2}$

Algumas transformadas de Laplace

$$F(s) = \mathcal{L}\{f(t)\}(s), \quad s > s_f$$

função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a}, \ s>a$
	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$senh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
	$\frac{s}{s^2 - a^2}, \ s > a $

função	transformada
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda)$
$H_a(t)f(t-a) \ (a>0)$	$e^{-as}F(s)$
$f(at) \ (a > 0)$	$\frac{1}{a} F\left(\frac{s}{a}\right)$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$
$f'(t) \ (n \in \mathbb{N})$	sF(s) - f(0)
$f''(t) \ (n \in \mathbb{N})$	$s^2 F(s) - sf(0) - f'(0)$
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$