Iterative Methods for Solving Linear Systems

Iterative Methods for Solving Linear Systems

Anne Greenbaum

University of Washington Seattle, Washington

Society for Industrial and Applied Mathematics Philadelphia

F R O N T I E R S

The SIAM series on Frontiers in Applied Mathematics publishes monographs dealing with creative work in a substantive field involving applied mathematics or scientific computation. All works focus on emerging or rapidly developing research areas that report on new techniques to solve mainstream problems in science or engineering.

The goal of the series is to promote, through short, inexpensive, expertly written monographs, cutting edge research poised to have a substantial impact on the solutions of problems that advance science and technology. The volumes encompass a broad spectrum of topics important to the applied mathematical areas of education, government, and industry.

EDITORIAL BOARD

James M. Hyman, Editor-in-Chief, Los Alamos National Laboratory

BOOKS PUBLISHED IN FRONTIERS IN APPLIED MATHEMATICS

Batzel, Jerry J.; Kappel, Franz; Schneditz, Daniel; and Tran, Hien T., Cardiovascular and Respiratory Systems: Modeling, Analysis, and Control

Li, Zhilin and Ito, Kazufumi, *The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains*

Smith, Ralph C., Smart Material Systems: Model Development

lannelli, M.; Martcheva, M.; and Milner, F. A., Gender-Structured Population Modeling: Mathematical Methods, Numerics, and Simulations

Pironneau, O. and Achdou, Y., Computational Methods in Option Pricing

Day, William H. E. and McMorris, F. R., Axiomatic Consensus Theory in Group Choice and Biomathematics

Banks, H. T. and Castillo-Chavez, Carlos, editors, *Bioterrorism: Mathematical Modeling Applications* in Homeland Security

Smith, Ralph C. and Demetriou, Michael, editors, Research Directions in Distributed Parameter Systems Höllig, Klaus, Finite Element Methods with B-Splines

Stanley, Lisa G. and Stewart, Dawn L., Design Sensitivity Analysis: Computational Issues of Sensitivity Equation Methods

Vogel, Curtis R., Computational Methods for Inverse Problems

Lewis, F. L.; Campos, J.; and Selmic, R., Neuro-Fuzzy Control of Industrial Systems with Actuator Nonlinearities

Bao, Gang; Cowsar, Lawrence; and Masters, Wen, editors, Mathematical Modeling in Optical Science

Banks, H. T.; Buksas, M. W.; and Lin, T., Electromagnetic Material Interrogation Using Conductive Interfaces and Acoustic Wavefronts

Oostveen, Job, Strongly Stabilizable Distributed Parameter Systems

Griewank, Andreas, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation

Kelley, C. T., Iterative Methods for Optimization

Greenbaum, Anne, Iterative Methods for Solving Linear Systems

Kelley, C. T., Iterative Methods for Linear and Nonlinear Equations

Bank, Randolph E., *PLTMG: A Software Package for Solving Elliptic Partial Differential Equations. Users' Guide 7.0*

Moré, Jorge J. and Wright, Stephen J., Optimization Software Guide

Rüde, Ulrich, Mathematical and Computational Techniques for Multilevel Adaptive Methods

Cook, L. Pamela, Transonic Aerodynamics: Problems in Asymptotic Theory

Banks, H. T., Control and Estimation in Distributed Parameter Systems

Van Loan, Charles, Computational Frameworks for the Fast Fourier Transform

Van Huffel, Sabine and Vandewalle, Joos, *The Total Least Squares Problem: Computational Aspects and Analysis*

Castillo, José E., Mathematical Aspects of Numerical Grid Generation

Bank, R. E., PLTMG: A Software Package for Solving Elliptic Partial Differential Equations. Users' Guide 6.0

McCormick, Stephen F., Multilevel Adaptive Methods for Partial Differential Equations

Grossman, Robert, Symbolic Computation: Applications to Scientific Computing

Coleman, Thomas F. and Van Loan, Charles, Handbook for Matrix Computations

McCormick, Stephen F., Multigrid Methods

Buckmaster, John D., The Mathematics of Combustion

Ewing, Richard E., The Mathematics of Reservoir Simulation

Copyright © 1997 by Society for Industrial and Applied Mathematics.

10987654

All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th floor, Philadelphia, PA 19104-2688 USA.

Library of Congress Cataloging-in-Publication Data

Greenbaum, Anne.

Iterative methods for solving linear systems / Anne Greenbaum.

p. cm. -- (Frontiers in applied mathematics; 17)

Includes bibliographical references and index.

ISBN 978-0-898713-96-1 (pbk.)

- 1. Iterative methods (Mathematics) 2. Equations, Simultaneous
- -Numerical solutions. I. Title. II. Series.

QA297.8.G74 1997

519.4--dc21

97-23271

Exercise 3.2 is reprinted with permission from K.-C. Toh, *GRMES vs. ideal GMRES*, SIAM Journal on Matrix Analysis and Applications, 18 (1994), pp. 30–36. Copyright 1997 by the Society for Industrial and Applied Mathematics. All rights reserved.

Exercise 5.4 is reprinted with permission from N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, *How fast are nonsymmetric iterations?*, SIAM Journal on Matrix Analysis and Applications, 13 (1994), pp. 778–795. Copyright 1992 by the Society for Industrial and Applied Mathematics. All rights reserved.

Contents

List of	Algor	ithms	xi	
Prefac	e		xiii	
СНАР	TER :	1. Introduction	1	
1.1	Brief	Overview of the State of the Art	3	
	1.1.1	Hermitian Matrices	3	
	1.1.2	Non-Hermitian Matrices	5	
	1.1.3	Preconditioners	6	
1.2				
1.3	Review of Relevant Linear Algebra			
	1.3.1	Vector Norms and Inner Products	7	
	1.3.2	Orthogonality	8	
	1.3.3	Matrix Norms	9	
	1.3.4	The Spectral Radius	11	
	1.3.5	Canonical Forms and Decompositions	13	
	1.3.6	Eigenvalues and the Field of Values	16	
I Kr	ylov S	Subspace Approximations	23	
СНАР	TER :	2. Some Iteration Methods	25	
2.1	Simpl	e Iteration	25	
2.2	Ortho	omin(1) and Steepest Descent	29	
2.3	Ortho	$\operatorname{pmin}(2)$ and CG	33	
2.4	Ortho	odir, MINRES, and GMRES	37	
2.5	Deriva	ation of MINRES and CG from the Lanczos Algorithm	41	
CHAP	TER :	3. Error Bounds for CG, MINRES, and GMRES	49	
3.1	Hermi	itian Problems—CG and MINRES	49	
3.2	Non-H	Hermitian Problems—GMRES	54	

CHAP	TER 4. Effects of Finite Precision Arithmetic	61
4.1	Some Numerical Examples	62
4.2	The Lanczos Algorithm	63
4.3	A Hypothetical MINRES/CG Implementation	64
4.4	A Matrix Completion Problem	66
	4.4.1 Paige's Theorem	67
	4.4.2 A Different Matrix Completion	68
4.5	Orthogonal Polynomials	71
CHAP	TER 5. BiCG and Related Methods	77
5.1	The Two-Sided Lanczos Algorithm	77
5.2	The Biconjugate Gradient Algorithm	79
5.3	The Quasi-Minimal Residual Algorithm	80
5.4	Relation Between BiCG and QMR	84
5.5	The Conjugate Gradient Squared Algorithm	88
5.6	The BiCGSTAB Algorithm	90
5.7	Which Method Should I Use?	92
CHAP	TER 6. Is There a Short Recurrence for a Near-Optima	al
	proximation?	97
6.1°	The Faber and Manteuffel Result	97
6.2	Implications	102
CHAP	TER 7. Miscellaneous Issues	105
7.1	Symmetrizing the Problem	105
7.2	Error Estimation and Stopping Criteria	107
7.3	Attainable Accuracy	109
7.4	Multiple Right-Hand Sides and Block Methods	113
7.5	Computer Implementation	115
II Pı	reconditioners	117
~~~ · ~	ompro o o de la	110
CHAP	TER 8. Overview and Preconditioned Algorithms	119
CHAP	TER 9. Two Example Problems	125
9.1	The Diffusion Equation	125
	9.1.1 Poisson's Equation	
9.2	The Transport Equation	134
CHAP	TER 10. Comparison of Preconditioners	147
10.1	Jacobi, Gauss–Seidel, SOR	147
	10.1.1 Analysis of SOR	149
	The Perron-Frobenius Theorem	156
	Comparison of Regular Splittings	
	Regular Splittings Used with the CG Algorithm	

Contents ix

10.5	Optim	al Diagonal and Block Diagonal Preconditioners	165
CHAP	TER 1	1. Incomplete Decompositions	171
11.1	Incom	plete Cholesky Decomposition	171
	-	ed Incomplete Cholesky Decomposition	
CHAP	TER 1	12. Multigrid and Domain Decomposition Meth-	-
ods			183
12.1	Multig	rid Methods	183
	12.1.1	Aggregation Methods	184
	12.1.2	Analysis of a Two-Grid Method for the Model Problem.	187
	12.1.3	Extension to More General Finite Element Equations	193
	12.1.4	Multigrid Methods	193
	12.1.5	Multigrid as a Preconditioner for Krylov Subspace Meth-	
		ods	197
12.2	Basic 1	Ideas of Domain Decomposition Methods	197
		Alternating Schwarz Method	
		Many Subdomains and the Use of Coarse Grids	201
	12.2.3	Nonoverlapping Subdomains	203
Refere	nces		205
$\mathbf{Index}$			213

### List of Algorithms

Algorithm 1.	Simple Iteration	26
Algorithm 2	Conjugate Gradient Method (CG)	35
Algorithm 3	Generalized Minimal Residual Algorithm (GMRES) .	41
Algorithm 4	Minimal Residual Algorithm (MINRES)	44
Algorithm 5	Quasi-Minimal Residual Method (QMR)	83
Algorithm 6	BiCGSTAB	91
Algorithm 7	. CG for the Normal Equations (CGNR and CGNE)	105
Algorithm 8	Block Conjugate Gradient Method (Block CG)	114
Algorithm 2	P. Preconditioned Conjugate Gradient Method (PCG)	121
Algorithm 4	P. Preconditioned Minimal Residual Algorithm	
	(PMINRES)	122

#### Preface

In recent years much research has focused on the efficient solution of large sparse or structured linear systems using iterative methods. A language full of acronyms for a thousand different algorithms has developed, and it is often difficult for the nonspecialist (or sometimes even the specialist) to identify the basic principles involved. With this book, I hope to discuss a few of the most useful algorithms and the mathematical principles behind their derivation and analysis. The book does not constitute a complete survey. Instead I have tried to include the most useful algorithms from a practical point of view and the most interesting analysis from both a practical and mathematical point of view.

The material should be accessible to anyone with graduate-level knowledge of linear algebra and some experience with numerical computing. The relevant linear algebra concepts are reviewed in a separate section and are restated as they are used, but it is expected that the reader will already be familiar with most of this material. In particular, it may be appropriate to review the QR decomposition using the modified Gram–Schmidt algorithm or Givens rotations, since these form the basis for a number of algorithms described here.

Part I of the book, entitled Krylov Subspace Approximations, deals with general linear systems, although it is noted that the methods described are most often useful for very large sparse or structured matrices, for which direct methods are too costly in terms of computer time and/or storage. No specific applications are mentioned there. Part II of the book deals with Preconditioners, and here applications must be described in order to define and analyze some of the most efficient preconditioners, e.g., multigrid methods. It is assumed that the reader is acquainted with the concept of finite difference approximations, but no detailed knowledge of finite difference or finite element methods is assumed. This means that the analysis of preconditioners must generally be limited to model problems, but, in most cases, the proof techniques carry over easily to more general equations. It is appropriate to separate the study of iterative methods into these two parts because, as the reader will see, the tools of analysis for Krylov space methods and for preconditioners are really quite different. The field of preconditioners is a much broader one, since xiv Preface

the derivation of the preconditioner can rely on knowledge of an underlying problem from which the linear system arose.

This book arose out of a one-semester graduate seminar in Iterative Methods for Solving Linear Systems that I taught at Cornell University during the fall of 1994. When iterative methods are covered as part of a broader course on numerical linear algebra or numerical solution of partial differential equations, I usually cover the overview in section 1.1, sections 2.1–2.4 and 3.1, and some material from Chapter 5 and from Part II on preconditioners.

The book has a number of features that may be different from other books on this subject. I hope that these may attract the interest of graduate students (since a number of interesting open problems are discussed), of mathematicians from other fields (since I have attempted to relate the problems that arise in analyzing iterative methods to those that arise in other areas of mathematics), and also of specialists in this field. These features include:

- A brief overview of the state of the art in section 1.1. This gives the reader an understanding of what has been accomplished and what open problems remain in this field, without going into the details of any particular algorithm.
- Analysis of the effect of rounding errors on the convergence rate of the conjugate gradient method in Chapter 4 and discussion of how this problem relates to some other areas of mathematics. In particular, the analysis is presented as a matrix completion result or as a result about orthogonal polynomials.
- Discussion of open problems involving error bounds for GMRES in section 3.2, along with exercises in which some recently proved results are derived (with many hints included).
- Discussion of the transport equation as an example problem in section 9.2. This important equation has received far less attention from numerical analysts than the more commonly studied diffusion equation of section 9.1, yet it serves to illustrate many of the principles of non-Hermitian matrix iterations.
- Inclusion of multigrid methods in the part of the book on preconditioners (Chapter 12). Multigrid methods have proved extremely effective for solving the linear systems that arise from differential equations, and they should not be omitted from a book on iterative methods. Other recent books on iterative methods have also included this topic; see, e.g., [77].
- A small set of recommended algorithms and implementations. These are enclosed in boxes throughout the text.

This last item should prove helpful to those interested in solving particular problems as well as those more interested in general properties of iterative

Preface xv

methods. Most of these algorithms have been implemented in the Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods [10], and the reader is encouraged to experiment with these or other iterative routines for solving linear systems. This book could serve as a supplement to the Templates documentation, providing a deeper look at the theory behind these algorithms.

I would like to thank the graduate students and faculty at Cornell University who attended my seminar on iterative methods during the fall of 1994 for their many helpful questions and comments. I also wish to thank a number of people who read through earlier drafts or sections of this manuscript and made important suggestions for improvement. This list includes Michele Benzi, Jim Ferguson, Martin Gutknecht, Paul Holloway, Zděnek Strakoš, and Nick Trefethen.

Finally, I wish to thank the Courant Institute for providing me the opportunity for many years of uninterrupted research, without which this book might not have developed. I look forward to further work at the University of Washington, where I have recently joined the Mathematics Department.

Anne Greenbaum Seattle