REVIEW: A HEUISTIC FOR BOUNDEDNESS OF RANKS OF ELLIPTIC CURVES

SOOBIN CHO

Notation. For $x = (x_1, ..., x_m)$ and $a = (a_1, ..., a_n)$, the notation $f(x, a) \ll_a g(x, a)$ means that for every fixed a, there exists a positive constant C(a) such that $f(x, a) \leq C(a)g(x, a)$ for all x. Then, $f(x, a) \approx_a g(x, a)$ means that $f(x, a) \ll_a g(x, a)$ and $g(x, a) \ll_a f(x, a)$.

For an abelian group G and $n \in \mathbb{N}$, denote by $G[n] := \{x \in G : nx = 0\}$. For p prime, define $G[p^{\infty}] := \bigcup_{m \in \mathbb{N}} G[p^m]$ and define the p-rank of G to be $\dim_{\mathbb{F}_p} G[p]$.

For a commutative ring R, denote by $M_n(R)$ be the set of $n \times n$ matrices with entries in R. For X > 0, let $M_n(\mathbb{Z})_{\leq X} \subset M_n(\mathbb{Z})$ be the subset of matrices whose entries have absolute value less than or equal to X. We also let $M_n(R)_{\text{alt}}$ be the set of alternating matrices, i.e. $A^T = -A$ and all the diagonal entries are 0.

For a subset $S \subset M_n(\mathbb{Z}_p)$, define $\operatorname{Prob}(S) = \operatorname{Prob}(S|A \in M_n(\mathbb{Z}_p))$ as the probability of S with respect to the normalized Haar measure on the compact group $M_n(\mathbb{Z}_p)$.

1. Introduction and History

It is well known that the set $E(\mathbb{Q})$ of rational points of an elliptic curve E over \mathbb{Q} has the structure of an abelian group. In 1922, Mordell proved that $\mathrm{rk}\ E(\mathbb{Q}) < \infty$. Then, it is natural to ask the question of boundedness:

Conjecture 1. Does there exists a constant B > 0 such that for every elliptic curve E over \mathbb{Q} , one has rk $E(\mathbb{Q}) \leq B$?

In the article, the authors presented a probabilistic model providing a heuristic for the arithmetic of elliptic curves and proved theorems about the model that suggest rk $E(\mathbb{Q}) \leq 21$ for all but finitely many elliptic curves E.

- 1.1. Brief history of boundedness guesses. Many authors have proposed guesses as to whether Conjecture 1 is true, and their thoughts have shifted from positive to negative over time. In 1960, Honda conjectured that even for any abelian variety A over \mathbb{Q} , there is a constant c_A such that $\mathrm{rk}\ A(K) \leq c_A[K:\mathbb{Q}]$ for every number field K not only when $K = \mathbb{Q}$. However, from the mid-1960s to the present, it seems that the common belief is that ranks are unbounded. Here are two possible reasons for this opinion shift towards unboundedness:
- 1. Tate and Shafarevich (1967) and Ulmer (2002) constructed families of elliptic curves over $\mathbb{F}_p(t)$ (not a number field) in which the rank is unbounded.
- 2. The lower bound for the maximum rank of an elliptic curve over \mathbb{Q} has been increasing. The current record is held by Elkies (2006), who found an elliptic curve E over \mathbb{Q} of rank ≥ 28 , and an infinite family of elliptic curves over \mathbb{Q} of rank ≥ 19 .

Some authors have even proposed a rate at which rank grow relative to the conductor N:

SOOBIN CHO

• Ulmer (2002),

$$\limsup_{N\to\infty}\frac{\operatorname{rk}\,E(\mathbb{Q})}{\log N/\log\log N}>0?$$

• Farmer, Gonek and Hughes (2007),

$$\limsup_{N \to \infty} \frac{\operatorname{rk} E(\mathbb{Q})}{\sqrt{\log N \log \log N}} = 1?$$

1.2. **Conjectures for rank** 2 **asymptotics.** We first recall some basic notions in the theory of elliptic curves.

Definition 1.1. (1) (Quadratic twist) First assume that $char(K) \neq 2$. Let E be an alliptic curve over K of the form:

$$y^2 = x^3 + a_2 x^2 + a_4 x + a_6.$$

Given $d \in K \setminus K^2$, the quadratic twist of E is the curve E_d , defined by the equation:

$$dy^2 = x^3 + a_2 x^2 + a_4 x + a_6.$$

Observe that $E_d(x,y) = 0$ if and only if $E(x,y\sqrt{d}) = 0$. Hence, the two elliptic curves E and E_d are isomorphic over the field extension $K(\sqrt{d}) \cong K[X]/(X^2 - d)$.

Now assume that char(K) = 2. Let E be an elliptic curve over K of the form:

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

Given $d \in K \setminus \{0\}$, the quadratic twist of E is the curve E_d , defined by the equation:

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + (a_{2} + da_{1}^{2})x^{2} + a_{4}x + a_{6} + da_{3}^{2}$$

In this case, we can check that $E_d(x,y) = 0$ if and only if $E(x,y+(a_1x+a_3)\zeta) = 0$ where ζ is any of the solutions of the equation $X^2 + X + d = 0$ in fixed algebraic closure of K. Hence, the two elliptic curves E and E_d are isomorphic over the field extention $K[X]/(X^2 + X + d)$.

- (2) (Fundamental discriminant) $D \in \mathbb{Z}$ is a fundamental discriminant if and only if one of the following statements holds:
 - $D \equiv 1 \pmod{4}$ and is square-free;
 - D = 4m, where $m \equiv 2$ or $3 \pmod{4}$ and m is square-free.

There exists a one-to-one correspondence between the set of fundamental discriminants with the union of set of quadratic fields and \mathbb{Q} , that is, each nontrivial fundamental discriminant is the discriminant of a unique (up to isomorphism) quadratic number field.

(3) ((naive) Height) An elliptic curve E over \mathbb{Q} is isomorphic to the projective closure of a curve $y^2 = x^3 + Ax + B$ for a unique pair of integers (A, B) such that there is no prime p such that $p^4|A$ and $p^6|B$. Define the (naive) height of E by

ht
$$E := \max\{|4A^3|, |27B^2|\}.$$

(4) (Conductor for the simplified form) Let an elliptic curve E over \mathbb{Q} has a Weierstrass equation in the simplified form $y^2 = x^3 + Ax + B$. Let p be a prime in \mathbb{Z} . By reducing each

of the coefficients A and B modulo p, we obtain the equation of a cubic curve \widehat{E} over the finite field \mathbb{F}_p . If \widehat{E} is a non-singular curve, then we say that E has good reduction at p. Else if \widehat{E} has a cusp (i.e. the discriminant of \widehat{E} equals to 0 and $A = 0 \pmod{p}$), then we say that E has additive reduction at p. Otherwise, if \widehat{E} has a node, (i.e. the discriminant of \widehat{E} equals to 0 and $A \neq 0 \pmod{p}$), then we say that E has multiplicative reduction at p.

For each prime $p \in \mathbb{Z}$, define the quantity f_p as follows:

$$f_p = \begin{cases} 0, & \text{if } E \text{ has good reduction at } p, \\ 1, & \text{if } E \text{ has multiplicative reduction at } p, \\ 2, & \text{if } E \text{ has additive reduction at } p, \text{ and } p \neq 2, 3, \\ 2 + \delta_p, & \text{if } E \text{ has additive reduction at } p, \text{ and } p \in \{2, 3\}. \end{cases}$$

Then, the conductor $N_{E/\mathbb{Q}}$ of an elliptic curve E over \mathbb{Q} is defined as

$$N_{E/\mathbb{Q}} := \prod_{p: ext{ prime}} p^{f_p}.$$

Example 1.2. Let E be an alliptic curve over \mathbb{Q} of the form $y^2 = x^3 + Ax + B$ for some constants A and B such that $4A^3 + 27B^2 \neq 0$. Then, for each $d \in \mathbb{Q} \setminus \mathbb{Q}^2$, the quadratic twist of E_d is defined by the equation $dy^2 = x^3 + Ax + B$. We can check that this is equivalent to the equation $y^2 = x^3 + d^2Ax + d^3B$. Hence, we obtain $E_d = \max\{|4d^6A^3|, |27d^6B^2|\} \approx d^6$ for general elliptic curve E over \mathbb{Q} .

Fix an elliptic curve E over \mathbb{Q} . Let d range over fundamental discriminants in \mathbb{Z} . Given $r \in \mathbb{Z}_{\geq 0}$ and D > 0, define

$$\begin{split} N_{\geq r}(D) &:= \# \{d : |d| \leq D, \text{ rk } E_d(\mathbb{Q}) \geq r \}, \\ N_{\geq r, \text{ even}}(D) &:= \# \{d : |d| \leq D, \text{ rk } E_d(\mathbb{Q}) \geq r, \text{ and } w(E_d) = +1 \}, \\ N_{\geq r, \text{ odd}}(D) &:= \# \{d : |d| \leq D, \text{ rk } E_d(\mathbb{Q}) \geq r, \text{ and } w(E_d) = -1 \}, \end{split}$$

where $w(E_d) \in \{-1, +1\}$ is the global root number of E_d .

Conjecture 2. Does it hold that

$$N_{\geq 2, \text{ even}}(D) = D^{3/4 + o(1)}$$
?

In other words, the prediction is that for d such that $w(E_d) = +1$, the probability that $\mathrm{rk}\ E_d(\mathbb{Q}) \geq 2$ should be about $d^{3/4+o(1)}/d \simeq d^{-1/4}$. Since $\mathrm{ht}\ E_d \asymp d^6$ by Example 1.2, this prediction corresponds to a probability of $h^{-1/24}$ for an elliptic curve of height h.

Remark 1.3. (a) The Birch and Swinnerton-Dyer conjecture would imply the parity conjecture,

Conjecture 3. Does it hold that

$$w(E) = (-1)^{\operatorname{rk} E(\mathbb{Q})}$$
?

Let E be an elliptic curve over \mathbb{Q} with w(E) = +1. Then, it is known that for a weight 3/2 cusp form $f = \sum a_n q^n$ such that for all odd fundamental discriminants d < 0 coprime

4 SOOBIN CHO

to the conductor of E, we have $a_{|d|} = 0$ if and only if $L(E_d, 1) = 0$. If the BSD conjecture is true, then the condition $L(E_d, 1) = 0$ is equivalent to $\operatorname{ord}_{s=1}L(E_d, s) \geq 2$, which is equivalent to $\operatorname{rk} E_d(\mathbb{Q}) \geq 2$. The Ramanujan conjecture predicts that $a_|d|$ is an integer satisfying $|a_|d| \leq |d|^{1/4+o(1)}$. Hence, heuristically, we can expect that $a_|d| = 0$ occurs with "probability" $|d|^{-1/4+o(1)}$ and hence $N_{\geq 2, \text{ even}}(D) \simeq \sum_{|d| \leq D} |d|^{-1/4+o(1)} \simeq |D|^{3/4+o(1)}$.

(b) Conrey, Keating, Rubinstein and Snaith used random matrix theory to get a developed conjecture, that is, there exist constants $c_E, e_E \in \mathbb{R}$ such that

Conjecture 4.

$$N_{\geq 2, \text{ even}}(D) = (c_E + o(1))D^{3/4}(\log D)^{e_E}$$
?

On the other hand, Watkins developed a variant for the family of all elliptic curves over \mathbb{Q} , that is, there exists a constant $c_0 > 0$ such that

Conjecture 5.

$$\#\{E: \text{ht } E \leq H, \text{ rk } E_d(\mathbb{Q}) \geq 2, \text{ and } w(E_d) = +1\} = (c_0 + o(1))H^{19/24}(\log H)^{3/8}?$$

An elementary seive argument shows that

$$\#\{E : \text{ht } E \le H\} = (\kappa + o(1))H^{5/6},$$

where $\kappa := 2^{4/3} 3^{-3/2} \zeta(10)^{-1}$. Hence, the Conjecture 5 is related to Conjecture 4 through the equation that 19/24 = 5/6 - 1/24.