Chapter 3

Random
Variables and
Probability
Distributions

Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Section 3.1

Concept of a Random Variable

Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Concept of a Random Variable:

In a statistical experiment, it is often very important to allocate numerical values to the outcomes.

Example:

- Experiment: testing two components. (D=defective, N=non-defective)
- Sample space: S={DD,DN,ND,NN}
- Let X = number of defective components when two components are tested.
- Assigned numerical values to the outcomes are:

Sample point	Assigned
(Outcome)	Numerical Value (x)
DD	2
DN	1
ND	1
NN	0

 \square Notice that, the set of all possible values of the random variable X is $\{0, 1, 2\}$.

Definition 3.1

Definition 3.1:

A random variable X is a function that associates each element in the sample space with a real number (i.e., $X : S \rightarrow R$.)

Notation: " X " denotes the random variable.

" x " denotes a value of the random variable X.

Definition 3.1

In an experiment a number is often attached to each outcome.

Definition:

A random variable X is a function defined on S, which takes values on the real axis

 $X: S \rightarrow R$

Sample space Real numbers

Types of RV

A random variable X is called a discrete random variable if its set of possible values is countable, i.e.,

$$x \in \{x_1, x_2, ..., x_n\} \text{ or } x \in \{x_1, x_2, ...\}$$

A random variable X is called a continuous random variable if it can take values on a continuous scale, i.e.,

$$.x \in \{x: a < x < b; a, b \in R\}$$

- In most practical problems:
- A discrete random variable represents count data, such as the number of defectives in a sample of k items.
- A continuous random variable represents measured data, such as height.

Example:

Random variable	Type	
Number of eyes when rolling a dice	discrete	
The sum of eyes when rolling two dice	discrete	oounting.
Number of children in a family	discrete	counting
Age of first-time mother	discrete	
Time of running 5 km	continuous	
Amount of sugar in a coke	continuous	measure
Height of males	continuous	

Section 3.2

Discrete
Probability
Distribution

Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

3.2 Discrete Probability Distributions

- A discrete random variable X assumes each of its values with a certain probability.

Example:

- Experiment: tossing a non-balance coin 2 times independently.
- · H= head, T=tail
- Sample space: S={HH, HT, TH, TT}
- Suppose $P(H)=\frac{1}{2}P(T) \Leftrightarrow P(H)=\frac{1}{3}$ and $P(T)=\frac{2}{3}$
- Let X= number of heads

Sample point	Probability	Value of X
(Outcome)		(x)
НН	$P(HH)=P(H) P(H)=1/3\times1/3=1/9$	2
HT	$P(HT)=P(H) P(T)=1/3\times2/3 = 2/9$	1
TH	$P(TH)=P(T) P(H)=2/3\times1/3=2/9$	1
TT	$P(TT)=P(T) P(T)=2/3\times2/3=4/9$	0

- The possible values of X are: 0, 1, and 2.
- · X is a discrete random variable.

Define the following events:

Event (X=x)	Probability = P(X=x)
(X=0)={TT}	P(X=0) = P(TT)=4/9
(X=1)={HT,TH}	P(X=1) =P(HT)+P(TH)=2/9+2/9=4/9
(X=2)={HH}	P(X=2) = P(HH)= 1/9

• The possible values of X with their probabilities are:

X	0	1	2	Total
P(X=x)=f(x)	4/9	4/9	1/9	1.00

The function f(x)=P(X=x) is called the probability function (probability distribution) of the discrete random variable X.

Definition 3.4

The set of ordered pairs (x, f(x)) is a **probability function**, **probability mass** function, or **probability distribution** of the discrete random variable X if, for each possible outcome x,

1.
$$f(x) \ge 0$$
,

$$2. \sum_{x} f(x) = 1,$$

3.
$$P(X = x) = f(x)$$
.

Example:

For the previous example, we have:

X	0	1	2	Total
f(x)=P(X=x)	4/9	4/9	1/9	$\sum_{x=0}^{2} f(x) = 1$

$$P(X<1) = P(X=0)=4/9$$

 $P(X\le1) = P(X=0) + P(X=1) = 4/9+4/9 = 8/9$
 $P(X\ge0.5) = P(X=1) + P(X=2) = 4/9+1/9 = 5/9$
 $P(X>8) = P(\phi) = 0$
 $P(X<10) = P(X=0) + P(X=1) + P(X=2) = P(S) = 1$

Example 3.3:

A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective and 5 are non-defective.

If a school makes a random purchase of 2 of these computers, find the probability distribution of the number of defectives.

Solution:

We need to find the probability distribution of the random variable: X = the number of defective computers purchased.

Experiment: selecting 2 computers at random out of 8

$$n(S) = {8 \choose 2}$$
 equally likely outcomes

$$(X = 0) = \{0D \text{ and } 2N\} \Rightarrow n(X = 0) = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \times \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

$$(X = 1) = \{1D \text{ and } 1N\} \Rightarrow n(X = 1) = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

$$(X = 2) = \{2D \text{ and } 0N\} \Rightarrow n(X = 2) = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \times \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

$$f(0) = P(X = 0) = \frac{n(X = 0)}{n(S)} = \frac{\binom{3}{0} \times \binom{5}{2}}{\binom{8}{2}} = \frac{10}{28}$$

$$f(1) = P(X = 1) = \frac{n(X = 1)}{n(S)} = \frac{\binom{3}{1} \times \binom{5}{1}}{\binom{8}{2}} = \frac{15}{28}$$

$$f(2) = P(X = 2) = \frac{n(X = 2)}{n(S)} = \frac{\binom{3}{2} \times \binom{5}{0}}{\binom{8}{2}} = \frac{3}{28}$$

In general, for x=0,1, 2, we have:

$$f(x) = P(X = x) = \frac{n(X = x)}{n(S)} = \frac{\binom{3}{x} \times \binom{5}{2 - x}}{\binom{8}{2}}$$

The probability distribution of X is:

X	0	1	2	Total
f(x)=P(X=x)	$\boxed{\frac{10}{28}}$	$\frac{15}{28}$	$\frac{3}{28}$	1.00

$$f(x) = P(X = x) = \begin{cases} \frac{\binom{3}{x} \times \binom{5}{2 - x}}{\binom{8}{2}}; & x = 0, 1, 2 \\ 0; & otherwise \end{cases}$$

Definition 3.5

The **cumulative distribution function** F(x) of a discrete random variable X with probability distribution f(x) is

$$F(x) = P(X \le x) = \sum_{t \le x} f(t)$$
, for $-\infty < x < \infty$.

Example:

Find the CDF of the random variable X with the probability function:

X	0	1	2
f(x)	$\frac{10}{28}$	$\frac{15}{28}$	$\frac{3}{28}$

Example:

Find the CDF of the random variable X with the probability function:

X	0	1	2
f(x)	10	<u>15</u>	3
	28	28	28

15/28

Solution:

$$F(x)=P(X \le x)$$
 for $-\infty < x < \infty$

For
$$x < 0$$
: $F(x) = 0$

For
$$0 \le x < 1$$
: $F(x) = P(X = 0) = \frac{10}{28}$

For
$$0 \le x < 1$$
: $F(x) = P(X = 0) = \frac{10}{28}$
For $1 \le x < 2$: $F(x) = P(X = 0) + P(X = 1) = \frac{10}{28} + \frac{15}{28} = \frac{25}{28}$

For x≥2:
$$F(x)=P(X=0)+P(X=1)+P(X=2)=\frac{10}{28}+\frac{15}{28}+\frac{3}{28}=1$$

The CDF of the random variable X is:

$$F(x) = P(X \le x) = \begin{cases} 0 ; x < 0 \\ \frac{10}{28}; 0 \le x < 1 \\ \frac{25}{28}; 1 \le x < 2 \\ 1 ; x \ge 2 \end{cases}$$

Conclusion of CDF

Suppose that the probability function of X is:

X	\mathbf{x}_1	x ₂	X ₃	• • •	X _n
f(x)	$f(x_1)$	$f(x_2)$	$f(x_3)$	•••	f(x _n)
F(x)	$F(x_1)$	$F(x_2)$	$F(x_3)$	•••	$F(x_n)$

Where
$$x_1 < x_2 < ... < x_n$$
. Then:
 $F(x_i) = f(x_1) + f(x_2) + ... + f(x_i)$; $i=1, 2, ..., n$
 $F(x_i) = F(x_{i-1}) + f(x_i)$; $i=2, ..., n$
 $f(x_i) = F(x_i) - F(x_{i-1})$
 $P(X>x_i) = 1 - F(x_i)$

Example:

In the previous example,
P(0.5 < X ≤ 1.5) = F(1.5) – F(0.5) =
$$\frac{25}{28} - \frac{10}{28} = \frac{15}{28}$$

Example: Flip three coins $X : \# \text{ heads } X : S \rightarrow \{0,1,2,3\}$

Outcome	Value of X	Probability function	Cumulative dist. Func.
TTT	X=0	f(0) = P(X=0) = 1/8	F(0) = P(X < 0) = 1/8
нтт, ттн, тнт	X=1	f(1) = P(X=1) = 3/8	$F(1) = P(X \le 1) = 4/8$
HHT, HTH, THH	X=2	f(2) = P(X=2) = 3/8	$F(2) = P(X \le 2) = 7/8$
ННН	X=3	f(3) = P(X=3) = 1/8	$F(3) = P(X \le 3) = 1$

Example: Flip three coins $X : \# \text{ heads } X : S \rightarrow \{0,1,2,3\}$

Outcome	Value of X	Probability function	Cumulative dist. Func.
TTT	X=0	f(0) = P(X=0) = 1/8	$F(0) = P(X \le 0) = 1/8$
нтт, ттн, тнт	X=1	f(1) = P(X=1) = 3/8	$F(1) = P(X \le 1) = 4/8$
ННТ, НТН, ТНН ННН	X=2 X=3	f(2) = P(X=2) = 3/8 f(3) = P(X=3) = 1/8	$F(2) = P(X \le 2) = 7/8$ $F(3) = P(X \le 3) = 1$

Probability function:

Cumulative distribution function:

Section 3.3

Continuous Probability Distributions

Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Continuous random variable

A *continuous random variable* is one that can assume an **uncountable** number of values.

- → We cannot list the possible values because there is an infinite number of them.
- → Because there is an infinite number of values, the probability of each individual value is virtually 0.

Thus, we can determine the probability of a *range of values* only.

For any continuous random variable, X, there exists a non-negative function f(x), called the **probability density function** (p.d.f) through which we can find probabilities of events expressed in term of X.

P(a < X < b) =
$$\int_{a}^{b} f(x) dx$$

= area under the curve
of f(x) and over the
interval (a,b)

$$P(X \in A) = \int f(x) dx$$
= area under the curve of f(x) and over the region A

Definition 3.6

The function f(x) is a **probability density function** (pdf) for the continuous random variable X, defined over the set of real numbers, if

- 1. $f(x) \ge 0$, for all $x \in R$.
- $2. \int_{-\infty}^{\infty} f(x) \ dx = 1.$
- 3. $P(a < X < b) = \int_a^b f(x) dx$.

Note:

For a continuous random variable X, we have:

- 1. $f(x) \neq P(X=x)$ (in general)
- 2. P(X=a) = 0 for any $a \in R$
- 3. $P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b)$

4.
$$P(X \in A) = \int_{A} f(x) dx$$

Continuous Random Variables

- In addition to a CDF, every *Continuous R.V.* has a probability *density* function (PDF).
- The PDF is defined by using the CDF and taking its derivative: $f(x) = \frac{d}{dx}F(x)$
- Using this, given any set A, we can write that the probability X takes a value in A is

$$\int_A f(x)dx$$

Example 3.6:

Suppose that the error in the reaction temperature, in °C, for a controlled laboratory experiment is a continuous random variable X having the following probability density function:

$$f(x) = \begin{cases} \frac{1}{3}x^2; -1 < x < 2\\ 0; elsewhere \end{cases}$$

- Verify that (a) $f(x) \ge 0$ and (b) $\int f(x) dx = 1$ -00
- **Find P(0<X≤1)**

Solution:

X = the error in the reaction temperature in °C.

X is continuous r. v.

$$f(x) = \begin{cases} \frac{1}{3}x^2; -1 < x < 2\\ 0; elsewhere \end{cases}$$

1. (a) $f(x) \ge 0$ because f(x) is a quadratic function.

1. (a) $f(x) \ge 0$ because f(x) is a quadratic function.

(b)
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{-1} 0 dx + \int_{-1}^{2} \frac{1}{3} x^{2} dx + \int_{2}^{\infty} 0 dx$$
$$= \int_{-1}^{2} \frac{1}{3} x^{2} dx = \left[\frac{1}{9} x^{3} \middle| x = 2 \right]$$
$$= \frac{1}{9} (8 - (-1)) = 1$$

1. (a) $f(x) \ge 0$ because f(x) is a quadratic function.

(b)
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{-1} 0 dx + \int_{-1}^{2} \frac{1}{3} x^{2} dx + \int_{2}^{\infty} 0 dx$$

$$= \int_{-1}^{2} \frac{1}{3} x^{2} dx = \left[\frac{1}{9} x^{3} \middle| x = 2 \right]$$

$$= \frac{1}{9} (8 - (-1)) = 1$$

2.
$$P(0 < X \le 1) = \int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{1}{3} x^{2} dx$$

$$= \left[\frac{1}{9} x^{3} \middle| \begin{array}{c} x = 1 \\ x = 0 \end{array} \right]$$

$$= \frac{1}{9} (1 - (0))$$

$$= \frac{1}{9}$$

The **cumulative distribution function** F(x) of a continuous random variable X with density function f(x) is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$
, for $-\infty < x < \infty$.

Result:

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

Example 3.6:

Suppose that the error in the reaction temperature, in °C, for a controlled laboratory experiment is a continuous random variable X having the following probability density function:

$$f(x) = \begin{cases} \frac{1}{3}x^2; -1 < x < 2\\ 0; elsewhere \end{cases}$$

- 1.Find the CDF
- 2. Using the CDF, find $P(0 < X \le 1)$.

Solution:

$$f(x) = \begin{cases} \frac{1}{3}x^2; -1 < x < 2\\ 0; elsewhere \end{cases}$$

$$\mathbf{F(x)} = \int_{-\infty}^{x} \mathbf{f(t)} \, dt = \int_{-\infty}^{x} 0 \, dt = 0$$

For -1≤x<2:

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{-1} 0 dt + \int_{-1}^{x} \frac{1}{3} t^{2} dt$$

$$= \int_{-1}^{x} \frac{1}{3} t^{2} dt$$

$$= \left[\frac{1}{9} t^{3} \mid t = x \atop t = -1 \right] = \frac{1}{9} (x^{3} - (-1)) = \frac{1}{9} (x^{3} + 1)$$

For $x \ge 2$:

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{-1} 0 dt + \int_{-1}^{2} \frac{1}{3} t^{2} dt + \int_{2}^{x} 0 dt = \int_{-1}^{2} \frac{1}{3} t^{2} dt = 1$$

-2.0 -1.0 00 1.0 2.0 x

Therefore, the CDF is:

$$F(x) = P(X \le x) = \begin{cases} 0 ; x < -1 \\ \frac{1}{9}(x^3 + 1) ; -1 \le x < 2 \\ 1 ; x \ge 2 \end{cases}$$

For x≥2:

$$\mathbf{F(x)} = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{-1} 0 dt + \int_{-1}^{2} \frac{1}{3} t^{2} dt + \int_{2}^{x} 0 dt = \int_{-1}^{2} \frac{1}{3} t^{2} dt = 1$$

Therefore, the CDF is:

$$F(x) = P(X \le x) = \begin{cases} 0 ; x < -1 \\ \frac{1}{9}(x^3 + 1) ; -1 \le x < 2 \\ 1 ; x \ge 2 \end{cases}$$

$$\frac{2}{9} - \frac{1}{9} = \frac{1}{9}$$

$$area = P(-\infty \le X \le +\infty)$$
$$= \int_{-\infty}^{+\infty} f(x) dx$$

Section 3.4

Joint Probability Distributions

Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Motivation

When we record more than one characteristic from each population unit, the outcome variable is multivariate, e.g.

Example:

A bridge hand (13 cards) is selected from a deck of 52 cards.

X = the number of spades in the hand.

Y = the number of hearts in the hand.

In this example we will define:

$$p(x,y) = P[X = x, Y = y]$$

The possible values of X are 0, 1, 2, ..., 13 The possible values of Y are also 0, 1, 2, ..., 13 and $X + Y \le 13$.

Joint probability function (discrete)

Definition:

Let X and Y be two discrete random variables. The joint probability function f(x,y) for X and Y Is defined by

1. $f(x,y) \ge 0$ for all x og y

$$_{2.\sum_{x}\sum_{y}}f(x,y)=1$$

3. P(X = x, Y = y) = f(x,y) (the probability that both X = x and Y = y)

For a set A in the xy plane: $P((X,Y) \in A) = \sum_{(x,y) \in A} f(x,y)$

Two ballpoint pens are selected at random from a box that contains 3 blue pens, 2 red pens, and 3 green pens. If X is the number of blue pens selected and Y is the number of red pens selected, find

- (a) the joint probability function f(x, y),
- (b) $P[(X,Y) \in A]$, where A is the region $\{(x,y)|x+y\leq 1\}$.

Two ballpoint pens are selected at random from a box that contains 3 blue pens, 2 red pens, and 3 green pens. If X is the number of blue pens selected and Y is the number of red pens selected, find

- (a) the joint probability function f(x, y),
- (b) $P[(X,Y) \in A]$, where A is the region $\{(x,y)|x+y \leq 1\}$.

Solution (a):

$$f(x,y) = \frac{\binom{3}{x}\binom{2}{y}\binom{3}{2-x-y}}{\binom{8}{2}},$$

for
$$x = 0, 1, 2$$
; $y = 0, 1, 2$; and $0 \le x + y \le 2$.

			\overline{x}		Row
	f(x,y)	0	1	2	Totals
	0	$\frac{3}{28}$	$\frac{9}{28}$	$\frac{3}{28}$	$\begin{array}{r} \frac{15}{28} \\ \frac{3}{7} \end{array}$
y	1	$\begin{array}{c c} \frac{3}{28} \\ \frac{3}{14} \end{array}$	$\frac{9}{28}$ $\frac{3}{14}$	0	$\frac{3}{7}$
	2	$\frac{1}{28}$	0	0	$\frac{1}{28}$
Column Totals		$\frac{5}{14}$	$\frac{15}{28}$	$\frac{3}{28}$	1

Two ballpoint pens are selected at random from a box that contains 3 blue pens, 2 red pens, and 3 green pens. If X is the number of blue pens selected and Y is the number of red pens selected, find

- (a) the joint probability function f(x, y),
- (b) $P[(X,Y) \in A]$, where A is the region $\{(x,y)|x+y \leq 1\}$.

Solution (b):

$$P[(X,Y) \in A] = P(X + Y \le 1) = f(0,0) + f(0,1) + f(1,0)$$

= $\frac{3}{28} + \frac{3}{14} + \frac{9}{28} = \frac{9}{14}$.

Marginal probability function

Definition:

$$X = S1, Y = S2$$

Let X and Y denote two discrete random variables with joint probability function

$$p(x,y) = P[X = x, Y = y]$$

Then

 $p_X(x) = P[X = x]$ is called the marginal probability function of X.

and

 $p_{Y}(y) = P[Y = y]$ is called the marginal probability function of Y.

Marginal probability function

Note: Let y_1, y_2, y_3, \dots denote the possible values of Y.

$$p_{X}(x) = P[X = x, Y = S_{2}]$$

$$= P[\{X = x, Y = y_{1}\} \cup \{X = x, Y = y_{2}\} \cup ...]$$

$$= P[X = x, Y = y_{1}] + P[X = x, Y = y_{2}] + ...$$

$$= p(x, y_{1}) + p(x, y_{2}) + ...$$

$$= \sum_{j} p(x, y_{j}) = \sum_{y} p(x, y)$$

Thus the marginal probability function of X, $p_X(x)$ is obtained from the joint probability function of X and Y by summing p(x,y) over the possible values of Y.

Marginal probability function

Also

$$p_{Y}(y) = P[X = S_{1}, Y = y]$$

$$= P[\{X = x_{1}, Y = y\} \cup \{X = x_{2}, Y = y\} \cup ...]]$$

$$= P[X = x_{1}, Y = y] + P[X = x_{2}, Y = y] + ...$$

$$= p(x_{1}, y) + p(x_{2}, y) + ...$$

$$= \sum_{i} p(x_{i}, y) = \sum_{x} p(x, y)$$

Definition: Marginal

Probability Mass Functions

If X and Y are discrete random variables with joint probability mass function $f_{XY}(x, y)$, then the marginal probability mass functions of X and Y are

$$f_X(x) = P(X = x) = \sum_y f_{XY}(x, y)$$
 and $f_Y(y) = P(Y = y) = \sum_x f_{XY}(x, y)$ (5-2)

where the first sum is over all points in the range of (X, Y) for which X = x and the second sum is over all points in the range of (X, Y) for which Y = y

Joint distribution Marginal probability function

			\overline{x}		Row
	f(x,y)	0	1	2	Totals
	0	$\frac{3}{28}$	$\frac{9}{28}$	$\frac{3}{28}$	$\begin{array}{c} \frac{15}{28} \\ \frac{3}{7} \end{array}$
y	1	$\begin{array}{ c c }\hline \frac{3}{28}\\\hline \frac{3}{14}\\\hline \end{array}$	$\frac{9}{28}$ $\frac{3}{14}$	0	$\frac{3}{7}$
	2	$\frac{1}{28}$	0	0	$\frac{1}{28}$
Column Totals		$\frac{5}{14}$	$\frac{15}{28}$	$\frac{3}{28}$	1

$$\bullet P(Y = 1) = 3/14 + 3/14 + 0 = 3/7$$

$$P(X=2) = 3/28 + 0 + 0 = 3/28$$

Joint distribution (constinuous) Joint density function

Definition:

Let X og Y be two continuous random variables. The joint density function f(x,y) for X and Y is defined by

1.
$$f(x,y) \ge 0$$
 for all x

2.
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$

3. P(a < X < b, c < Y < d) =
$$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

For a region A in the xy-plane: $P[(X,Y) \in A] = \iint_A f(x,y) dxdy$

A privately owned business operates both a drive-in facility and a walk-in facility. On a randomly selected day, let X and Y, respectively, be the proportions of the time that the drive-in and the walk-in facilities are in use, and suppose that the joint density function of these random variables is

$$f(x,y) = \begin{cases} \frac{2}{5}(2x+3y), & 0 \le x \le 1, 0 \le y \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) Verify condition 2 of Definition 3.9. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$
- (b) Find $P[(X,Y) \in A]$, where $A = \{(x,y) \mid 0 < x < \frac{1}{2}, \frac{1}{4} < y < \frac{1}{2}\}.$

Solution

(a) The integration of f(x,y) over the whole region is

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx \, dy = \int_{0}^{1} \int_{0}^{1} \frac{2}{5} (2x + 3y) \, dx \, dy$$

$$= \int_{0}^{1} \left(\frac{2x^{2}}{5} + \frac{6xy}{5} \right) \Big|_{x=0}^{x=1} dy$$

$$= \int_{0}^{1} \left(\frac{2}{5} + \frac{6y}{5} \right) dy = \left(\frac{2y}{5} + \frac{3y^{2}}{5} \right) \Big|_{0}^{1} = \frac{2}{5} + \frac{3}{5} = 1.$$

(b) To calculate the probability, we use

$$\begin{split} P[(X,Y) \in A] &= P\left(0 < X < \frac{1}{2}, \frac{1}{4} < Y < \frac{1}{2}\right) \\ &= \int_{1/4}^{1/2} \int_{0}^{1/2} \frac{2}{5} (2x + 3y) \ dx \ dy \\ &= \int_{1/4}^{1/2} \left(\frac{2x^2}{5} + \frac{6xy}{5}\right) \Big|_{x=0}^{x=1/2} dy = \int_{1/4}^{1/2} \left(\frac{1}{10} + \frac{3y}{5}\right) dy \\ &= \left(\frac{y}{10} + \frac{3y^2}{10}\right) \Big|_{1/4}^{1/2} \\ &= \frac{1}{10} \left[\left(\frac{1}{2} + \frac{3}{4}\right) - \left(\frac{1}{4} + \frac{3}{16}\right) \right] = \frac{13}{160}. \end{split}$$

Joint distribution Marginal density function

Definition:

Let X and Y be two continuous random variables with joint density function f(x,y).

The marginal density function for X is given by

$$g(x) = \int f(x, y) \, dy$$

The marginal density function for Y is given by

$$h(y) = \int_{-\infty}^{\infty} f(x, y) \, dx$$

Joint density f(x,y) for X and Y:

$$f(x,y) = \begin{cases} \frac{2}{5}(2x+3y) & 0 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

Marginal density function for X:

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$= \int_{0}^{1} \frac{2}{5} (2x + 3y) dy$$

$$= \left[\frac{2}{5} 2xy + \frac{1}{5} 3y^{2} \right]_{0}^{1} = \frac{4}{5}x + \frac{3}{5}$$

Joint distribution (Independence)

Definition:

Two random variables X and Y (continuous or discrete) with joint density/probability functions f(x,y) and marginal density/probability functions g(x) and h(y), respectively, are said to be independent if and only if

$$f(x,y) = g(x) h(y)$$
 for all x,y

Joint density f(x,y) for X and Y:

$$f(x,y) = \begin{cases} \frac{2}{5}(2x+3y) & 0 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

Marginal density function for X:

$g(x) = \int_{-\infty}^{\infty} f(x, y) dy$ $= \frac{4}{5}x + \frac{3}{5}$

Are g(x) and h(y) independent?

Marginal density function for Y:

$$h(y) = \int_{-\infty}^{\infty} f(x, y) dx$$
$$= \frac{6}{5} y + \frac{2}{5}$$

Conditional Probability

Definition: Let X and Y denote two random variables with joint probability density function f(x,y) and marginal densities $f_X(x)$, $f_Y(y)$ then the conditional density of Y given X = x

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

conditional density of X given Y = y

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

Joint density f(x,y) for X and Y:

$$f(x,y) = \begin{cases} \frac{2}{5}(2x+3y) & 0 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

Conditional probability function for Y given X:

$$f(y \mid x) = \frac{\frac{2}{5}(2x+3y)}{\frac{4}{5}x+\frac{3}{5}}$$

Conditional probability function for X given Y:

$$f(x \mid y) = \frac{\frac{2}{5}(2x+3y)}{\frac{6}{5}y + \frac{2}{5}}$$

Chapter 3

Review

Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

In an experiment a number is often attached to each outcome.

Definition:

A random variable X is a function defined on S, which takes values on the real axis $X: S \rightarrow R$

Sample space Real numbers

The set of ordered pairs (x, f(x)) is a **probability function**, **probability mass** function, or **probability distribution** of the discrete random variable X if, for each possible outcome x,

- 1. $f(x) \ge 0$,
- $2. \sum_{x} f(x) = 1,$
- 3. P(X = x) = f(x).

The **cumulative distribution function** F(x) of a discrete random variable X with probability distribution f(x) is

$$F(x) = P(X \le x) = \sum_{t \le x} f(t)$$
, for $-\infty < x < \infty$.

The **cumulative distribution function** F(x) of a continuous random variable X with density function f(x) is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$
, for $-\infty < x < \infty$.

Result:

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

The function f(x,y) is a **joint probability distribution** or **probability mass** function of the discrete random variables X and Y if

- 1. $f(x,y) \ge 0$ for all (x,y),
- $2. \sum_{x} \sum_{y} f(x, y) = 1,$
- 3. P(X = x, Y = y) = f(x, y).

For any region A in the xy plane, $P[(X,Y) \in A] = \sum_{A} \sum_{A} f(x,y)$.

The function f(x,y) is a **joint density function** of the continuous random variables X and Y if

- 1. $f(x,y) \ge 0$, for all (x,y),
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \ dx \ dy = 1,$
- 3. $P[(X,Y) \in A] = \int \int_A f(x,y) dx dy$, for any region A in the xy plane.

The marginal distributions of X alone and of Y alone are

$$g(x) = \sum_{y} f(x, y)$$
 and $h(y) = \sum_{x} f(x, y)$

for the discrete case, and

$$g(x) = \int_{-\infty}^{\infty} f(x, y) \ dy$$
 and $h(y) = \int_{-\infty}^{\infty} f(x, y) \ dx$

for the continuous case.

Let X and Y be two random variables, discrete or continuous. The **conditional** distribution of the random variable Y given that X = x is

$$f(y|x) = \frac{f(x,y)}{g(x)}$$
, provided $g(x) > 0$.

Similarly, the conditional distribution of X given that Y = y is

$$f(x|y) = \frac{f(x,y)}{h(y)}$$
, provided $h(y) > 0$.

Let $X_1, X_2, ..., X_n$ be n random variables, discrete or continuous, with joint probability distribution $f(x_1, x_2, ..., x_n)$ and marginal distribution $f_1(x_1), f_2(x_2), ..., f_n(x_n)$, respectively. The random variables $X_1, X_2, ..., X_n$ are said to be mutually **statistically independent** if and only if

$$f(x_1, x_2, \dots, x_n) = f_1(x_1) f_2(x_2) \cdots f_n(x_n)$$

for all (x_1, x_2, \ldots, x_n) within their range.