WHAT IS CLAIMED IS:

		1
		ر ر س
	6	
,	V	70
$\left(\right)$	h	/
		9
		10
		11
	111	1
		2
		1

1

1. A method of determining spatial target probability using a model of multisensory processing by the brain, said method comprising the steps of:

acquiring at least two inputs from a location in a desired environment where a first target is detected;

applying said inputs to a plurality of model units in a map corresponding to a plurality of locations in said environment;

approximating a posterior probability of said first target at each of said model units;

finding a model unit with a highest posterior probability;

choosing a location in said environment corresponding to said model unit with a highest posterior probability as a location of a next target.

- 2. The method as defined in claim 1, wherein said at least two inputs are sensory inputs.
- 3. The method as defined in claim 2, wherein said at least two sensory inputs are video and audio inputs.
- 1 4. The method as defined in claim 1, wherein said posterior probability 2 is a conditional probability of said first target given said at least two inputs.
- 5. The method as defined in claim 4, wherein said posterior probability is computed using Bayes' rule.
 - 6. The method as defined in claim 5, wherein said posterior probability approximated using a sigmoid curve function.

7

8

1

2

is approximated	The method as defined in claim 5, wherein said posterior probability
/2 is approximated	using a linear function.

- 1 8. The method as defined in claim 5, wherein said posterior probability 2 is approximated using a bounded linear function.
- 1 9. The method as defined in claim 4, wherein said posterior probability 2 is approximated using a sigmoid curve function.
 - 10. The method as defined in claim 4, wherein said posterior probability is approximated using a linear function.
 - 11. The method as defined in claim 4, wherein said posterior probability is approximated using a bounded linear function.
 - 12. The method as defined in claim 4, wherein said next target is the same as said first target.
- 1 13. A method of determining spatial target probability using a neural network model of multisensory processing by the brain, said method comprising the steps of:
- training a plurality model units in a map corresponding to a plurality of locations in a desired environment to output a desired value when an actual target is detected;
 - applying at least two inputs from said actual target in said desired environment;
- finding one of said model units with a highest desired value; and choosing a location in said environment corresponding to said model unit with said highest value as a location of said actual target.

	1		14. The method as defined in claim 13, wherein said training step
	2	includes:	·
	3		positioning a training target at a random location in said desired
	4	environment	
	5		acquiring at least two inputs from said training target;
	6		applying said at least two inputs said plurality model units in said map and
	7	obtaining act	al responses of said model units;
	8		generating desired responses for said model units;
	9		finding differences between said actual and desired responses; and
	10		using back-propagation to reduce said differences between said actual and
	11	desired respo	ises.
			•
10087Eec	1		15. A camera apparatus for automatically tracking a target in a known
U	2	environment,	said system comprising:
TU O1	3		at least one audio and at least one video sensors for receiving audio and
5	4/	video signals	from the target;
U	5		a controller for receiving said audio and video signals from said audio and
. IIIIII	4	video sensors	and determining a probability of the target being at a location in the
U	~		sing a program modeling mutisensory processing of the brain;
	8		at least one of a moveable directional audio and video sensor for turning to
1	9,7	a location in	he environment where a target probability is high as determined by said
	10	controller.	
)		
	1		16. The apparatus as defined in claim 15 wherein said modeling program
2	2	approximates	a posterior probability of the target given said audio and video signals from
	3	the target.	
	1		17. The method as defined in claim 16, wherein said posterior

probability is approximated using a linear function.

2

1

2

l

- 18. The method as defined in claim 16, wherein said posterior 1 probability is approximated using a bounded linear function. 2
- 19. The method as defined in claim 16, wherein said posterior 1 probability is approximated using a sigmoid curve function. 2
- The apparatus as defined in claim 15 wherein said modeling program 20. ı approximates Bayes' rule for calculating target probability given said audio and video 2 signals from the target. 3
 - The method as defined in claim 20, wherein said Bayes' rule is 21. approximated using a linear function.
 - The method as defined in claim 15, wherein said Bayes' rule is 22. approximated using a bounded linear function.
 - 23. The method as defined in claim 15, wherein said Bayes' rule is approximated using a sigmoid curve function.
 - The apparatus as defined in claim 15 wherein said modeling program 24. estimates said target probability by training a