ARPITA BAYEN TIME SERIES FORECASTING

- 1. Read the data as an appropriate Time Series data and plot the data.
- 2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.
- 3. Split the data into training and test. The test data should start in 1991.
- 4. Build various exponential smoothing models on the training data and evaluate the model using RMSE on the test data.

Other models such as regression, naïve forecast models, simple average models etc. should also be built on the training data and check the performance on the test data using RMSE.

5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.

Note: Stationarity should be checked at alpha = 0.05.

- 6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.
- 7. Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.
- 8. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.
- 9. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

SHOE SALES DATASET

Table 1:First Few rows of the Dataset:

Table 2:Last few rows of the dataset

Table 3:First few rows of the dataset after adding 2 new column – Month and year

Table 4:Statistical description of the Dataset

Table 5:First few rows of training Shoe-Sales dataset

Table 6:First few rows of the test Shoe-Sales dataset

Table 7: First few forecast after simple exponential smoothing

Table 8:First few rows of the dataset after prediction

Table 9: First few rows of the TES Additive

Table 10:First few prediction-TES Multiplicative

Table 11:First few predictions-Linear Regression

Table 12:Naïve forecast first few rows

Table 13:First few rows of Simple Average

Table 14:AR model Result

Table 15:ARMA Result

Table 16:automated ARIMA result

Table 17: Predicted result first few dataset (automated ARIMA)

Table 18:automated SARIMA result

Table 19:Simple Average Prediction of the next 12months

SHOE SALES DATASET

Fig 1:Graph of Shoe-Sales Dataset

Fig 2:Boxplot of the dataset

Fig 3:Yearwise boxplot of shoe sales

Fig 4:Month wise boxplot

Fig 5: Graph of monthly sales across year(Pivot Graph)

Fig 6 :Additive decomposition of shoe sales dataset

Fig 7:Multiplicative decomposition of shoe sales dataset

Fig 8:Training data and Test Data Graph

Fig 9:Simple Exponential Smoothing Prediction with Alpha= 0.605

Fig 10: Alpha=0.594,Beta=0.00027:Double Exponential Smoothing predictions on Test Set

Fig 11: Alpha=0.5722,Beta=0.0104,Gamma=0.2733:Triple Exponential Smoothing predictions on Test Set

Fig 12: Alpha=0.6009, Beta=0.0061, Gamma=0.1757: Triple Exponential Smoothing predictions on Test Set

Fig 13:Linear Regression

Fig 14:Naïve Forecast

Fig 15:Simple Average Forecast

Fig 16:Square root transformed

Fig 17:AR Forecast

Fig 18:ARMA forecast

Fig 19:ARIMA forecast

Fig 20: SARIMA result graph

Fig21:Consolidation Grapdh of all Model

Fig 22:Future 12 months Predicted Graph

Problem 1:You are an analyst in the IJK shoe company and you are expected to forecast the sales of the pairs

of shoes for the upcoming 12 months from where the data ends. The data for the pair of shoe sales

have been given to you from January 1980 to July 1995.

1.READ THE DATA AS AN APPROPRIATE TIME SERIES DATA AND PLOT THE DATA.

- The dataset contains 2 variables and 187 data(rows).
- ❖ 1 Variable is year month and 1 variable is Sales report of the shoes .
- ❖ Year month is object type variable and Shoe-Sales is integer type.
- The year month column is divided to year and month column-now the dataset contains 3 columns.
- There is no null values in the dataset.
- There are no Duplicate values.

Table 1:First Few rows of the Dataset:

	Shoe_Sales
YearMonth	
1980-01-01	85
1980-02-01	89
1980-03-01	109
1980-04-01	95
1980-05-01	91
1980-06-01	95
1980-07-01	96
1980-08-01	128
1980-09-01	124
1980-10-01	111

Table 2:Last few rows of the dataset

	Shoe_Sales
YearMonth	
1995-03-01	188
1995-04-01	195
1995-05-01	189
1995-06-01	220
1995-07-01	274

Table 3:First few rows of the dataset after adding 2 new column –Month and year

	Shoe_Sales	Year	Month
YearMonth			

1980-01-01	85	1980	1
1980-02-01	89	1980	2
1980-03-01	109	1980	3
1980-04-01	95	1980	4
1980-05-01	91	1980	5

Table 4:Statistical description of the Dataset

	count	mean	std	min	25%	50%	75%	max
Shoe-Sales	187.0	246.0	121.0	85.0	144.0	220.0	316.0	662.0
Year	187.0	1987.0	5.0	1980.0	1983.0	1987.0	1991.0	1995.0
Month	187.0	6.0	3.0	1.0	3.0	6.0	9.0	12.0

EDA
Fig 1:Graph of Shoe-Sales Dataset

This is showing how the shoe sales is varying through out the year and months.

Fig 2:Boxplot of the dataset

Fig 3:Yearwise boxplot of shoe sales

The sales increased in the year 1985,1986,1987.

Fig 4:Month wise boxplot

The sales increased during the last few months of the year. Highest sales is in December month.

Fig 5: Graph of monthly sales across year(Pivot Graph)

DECOMPOSITION:

The dataset is decomposed in to additively and multiplicatively

Fig 6 :Additive decomposition of shoe sales dataset

Fig 7:Multiplicative decomposition of shoe sales dataset

Some of the key observations from this analysis:

- a) Trend: 12-months MA is not linear which doesnot shows any trend.
- b) Seasonality: seasonality of 12 months is clearly visible
- c) Irregular Remainder (random): The multiplicative model works as there are no patterns in the residuals

3. SPLIT THE DATA INTO TRAINING AND TEST. THE TEST DATA SHOULD START IN 1991.

The Dataset is splitted into test and train set. The test dataset starts from 1991.

Table 5:First few rows of training dataset

	Shoe-Sales	Year	Month
YearMonth			
1980-01-01	85	1980	1
1980-02-01	89	1980	2
1980-03-01	109	1980	3
1980-04-01	95	1980	4
1980-05-01	91	1980	5

Table 6:First few rows of the test dataset

	Shoe-Sales	Year	Month
YearMonth			
1991-01-01	198	1991	1
1991-02-01	253	1991	2
1991-03-01	173	1991	3
1991-04-01	186	1991	4
1991-05-01	185	1991	5

The Train dataset contains 132 rows and 3 columns

The test dataset contains 55 rows and 3 columns

Fig 8:Training data and Test Data Graph

4. BUILD VARIOUS EXPONENTIAL SMOOTHING MODELS ON THE TRAINING DATA AND EVALUATE, THE MODEL USING RMSE ON THE TEST DATA. OTHER MODELS SUCH AS REGRESSION, NAÏVE FORECAST MODELS, SIMPLE AVERAGE MODELS ETC. SHOULD ALSO BE BUILT ON THE TRAINING DATA AND CHECK THE PERFORMANCE ON THE TEST DATA USING RMSE. (PLEASE DO TRY TO BUILD AS MANY MODELS AS POSSIBLE AND AS MANY ITERATIONS OF MODELS AS POSSIBLE WITH DIFFERENT PARAMETERS.)

1)Simple Exponential Smoothing

Table 7:First few forecast after simple exponential smoothing

132	420.229967
133	420.229967
134	420.229967
135	420.229967
136	420.229967

SES MAPE: 91.42076016336813

 RMSE

SES RMSE(calculated using sklearn): 195.89459510493793 SES RMSE (calculated using statsmodels): 195.89459510493793

2) Double Exponential Smoothing

Table 8:First few rows of the dataset after prediction

132	422.908695
133	425.448566
134	427.988438
135	430.528309
136	433.068181

Fig 10: Alpha=0.594,Beta=0.00027:Double Exponential Smoothing predictions on Test Set

DES MAPE: 122.32528367957886 RMSE:

DES RMSE(calculated using sklearn): 264.82482731601925 DES RMSE (calculated using statsmodels): 264.82482731601925

3)Triple Exponential Smoothing- Holt-Winters - ETS(A, M, M) - Holt Winter's linear method with additive error and seasonal

Table 9:First few rows of the TES Prediction

132	222.794048
133	215.688235
134	243.726457
135	261.300316
136	275.782177

Fig 11: Alpha=0.5722,Beta=0.0104,Gamma=0.2733:Triple Exponential Smoothing predictions on Test Set

TES MAPE: 49.90672694891035

RMSE

TES additive RMSE(calculated using sklearn): 126.38763305091122 TES additive RMSE (calculated using statsmodels): 126.38763305091122

4) Triple Exponential Smoothing- Holt-Winters - ETS(A, M, M) - Holt Winter's linear method with multiplicative error and seasonal

Table 10:First few prediction

132	263.531912
133	245.139749
134	259.792279
135	276.337606
136	272 442200

Fig 12: Alpha=0.6009, Beta=0.0061, Gamma=0.1757: Triple Exponential Smoothing predictions on Test Set

TES MAPE: 48.032997724305226

RMSE:

TES multiplicative RMSE(calculated using sklearn): 122.17854463685187 TES multiplicative RMSE (calculated using statsmodels): 122.17854463685187

5)Linear Regression

For this particular linear regression, we are going to regress the 'Shoe Sales' variable against the order of the occurrence. For this we need to modify our training data before fitting it into a linear regression.

Table 11:First few predictions

	Shoe-Sales	Year	Month	time
YearMonth				
1991-01-01	198	1991	1	133
1991-02-01	253	1991	2	134
1991-03-01	173	1991	3	135
1991-04-01	186	1991	4	136
1991-05-01	185	1991	5	137

Fig 13:Linear Regression

LR MAPE: 122.14075782294853

RMSE:

LR RMSE(calculated using sklearn): 264.51679449469304 LR RMSE (calculated using statsmodels): 264.51679449469304

6) Naïve Forecasting

For this particular naive model, we say that the prediction for tomorrow is the same as today and the prediction for day after tomorrow is tomorrow and since the prediction of tomorrow is same as today, therefore the prediction for day after tomorrow is also today.

Table 12:Naïve forecast first few rows

133	253.0
134	253.0
135	173.0
136	186.0
137	185.0

Fig 14:Naïve forecast

Naive Approach MAPE: 29.172387135547105

RMSE:

Naive Approach RMSE(calculated using sklearn): 84.64840135437794
Naive Approach RMSE (calculated using statsmodels): 84.64840135437794

7)Simple Average

For this particular simple average method, we will forecast by using the average of the training values.

Table 13:First few rows of Simple Average

	Shoe-Sales	Year	Month	mean_forecast
YearMonth				
1991-01-01	198	1991	1	250.575758
1991-02-01	253	1991	2	250.575758
1991-03-01	173	1991	3	250.575758
1991-04-01	186	1991	4	250.575758

	Shoe-Sales	Year	Month	mean_forecast
YearMonth				
1991-05-01	185	1991	5	250.575758

Fig 15:Simple Average Prediction

RMSE:

For Simple Average forecast on the Test Data, RMSE is 63.985

5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.

CHECKING FOR STATIONARITY

Checking for Stationarity using Augmented Dickey-Fuller.

DF test statistic is -1.717

```
DF test p-value is 0.4222
Critical Values:
1%: -3.469
5%: -2.878
```

From the test we can see that ADF statistics value is more than critical values so we fell to reject the null hypothesis. and p value is also greater than 0.05, so we fell to reject the null hypothesis. The dataset is non stationary.

Now we need to change the data to stationary by square root transformation

ADF Test Value after square root transformation:

```
DF test statistic is -3.375
DF test p-value is 0.0119
Critical Values:
    1%: -3.469

5%: -2.878

10%: -2.576
```

From the test we can see that ADF statistic is less than the critical values which means we can reject the null hypothesis. P value is also less than 0.05 which means we can reject the null hypothesis. The data is stationary.

8) Auto Regressive Model

Table 14: Auto Regressive result with AIC (3,0,0)

```
SARIMAX Results
______
Dep. Variable:
                Shoe Sales No. Observations:
132
             ARIMA(3, 0, 0) Log Likelihood
Model:
275.023
           Tue, 14 May 2024 AIC
Date:
560.046
Time:
                 22:56:37 BIC
574.460
Sample:
                     0
                       HQIC
565.903
                   - 132
Covariance Type:
                    opg
______
```

========			=======					
0.975]	coef	std err	Z	P> z	[0.025			
0.975]								
_								
const 19.351	15.2093	2.113	7.197	0.000	11.067			
ar.L1 0.854	0.6982	0.080	8.762	0.000	0.542			
ar.L2 0.291	0.0555	0.120	0.463	0.643	-0.180			
ar.L3 0.354	0.1754	0.091	1.927	0.054	-0.003			
sigma2 4.522	3.7274	0.405	9.197	0.000	2.933			
========	========	========	=======	========	=======================================			
=								
======	========	========	=======	========				
Ljung-Box 8.67	(L1) (Q):		0.08	Jarque-Bera	(JB):			
Prob(Q): 0.01			0.78	Prob(JB):				
	asticity (H):		3.92	Skew:				
Prob(H) (to 4.25	wo-sided):		0.00	Kurtosis:				
========		========	=======		=======================================			
MAPE: AR MAPE: 39.94486632014559 RMSE: Auto Regression RMSE(calculated using sklearn): 99.35376352725396 Auto Regression RMSE (calculated using statsmodels): 99.35376352725396								
11.00 1.0910.	10.00							

Fig 17:

9)ARMA Forecast

Table 15:ARMA result with AIC (3, 0, 3) SARIMAX Results

==========				=====			
=							
Dep. Variable: 132		Shoe_Sal	es	No. Ob	servations:		
Model: 270.771	Ā	ARIMA(3, 0,	3)	Log Li	kelihood		-
Date: 557.541	Tue	e, 14 May 20	24	AIC			
Time:		23:00:	20	BIC			
580.604 Sample:			0	HQIC			
566.913		- 1	.32				
Covariance Type	:	O	ppg				
=======================================					===========		
=							
0.975]	coei	std err		Z	P> z	[0.025	
_							
const 1 19.555	5.0886	2.279	6	.621	0.000	10.622	
	0.3077	0.111	-2	.767	0.006	-0.526	-
	0.4236	0.058	7	.276	0.000	0.309	

ar.L3 0.925	0.7561	0.086	8.760	0.000	0.587	
ma.L1	1.0145	0.230	4.408	0.000	0.563	
1.466 ma.L2	0.4400	0.248	1.775	0.076	-0.046	
0.926 ma.L3	-0.3924	0.132	-2.976	0.003	-0.651	_
0.134 sigma2	3.3952	0.829	4.095	0.000	1.770	
5.020						======
=						
========		========		========		======
===== Ljung-Box (5.92	L1) (Q):		0.08	Jarque-Bera	(JB):	
Prob(Q): 0.05			0.77	Prob(JB):		
	sticity (H):		3.56	Skew:		
Prob(H) (tw 3.96	ro-sided):		0.00	Kurtosis:		
========	:========			========	:=======	======
=====						

ARMA MAPE: 40.2921322267284

RMSE:

Auto Regression Moving Average RMSE(calculated using sklearn): 99.07071607091686
Auto Regression Moving Average RMSE (calculated using statsmodels): 99.07071607091686

Fig 18:ARMA Forecast

6. BUILD AN VERSION OF THE ARIMA/SARIMA MODEL IN WHICH THE

PARAMETERS ARE SELECTED USING THE LOWEST AKAIKE INFORMATION CRITERIA (AIC) ON THE

TRAINING DATA AND EVALUATE THIS MODEL ON THE TEST DATA USING RMSE.

10) ARIMA forecast with AIC (3,1,2)

Table 16:ARIMA r	esult	S	SARIMAX	Resi	ılts					
=======================================	======		=====	=====	=====	======		:=====	=====	====
Dep. Variable:		Shoe_S	Sales	No.	Obse	rvations	S:			
Model: 258.419	AI	RIMA(3, 1	., 2)	Log	Like	lihood			-	
Date: 528.838	Tue,	. 14 May	2024	AIC						
Time: 546.089		23:0	1:43	BIC						
Sample: 535.848			0	HQIO	C					
		-	132							
Covariance Type:			opg							
=										
=										
0.975]	coef	std err		Z		P> z	[0	0.025		

_						
ar.L1	-0.3453	0.090	-3.857	0.000	-0.521	_
0.170						
ar.L2	-0.9996	0.010	-100.110	0.000	-1.019	_
0.980	0 2400	0 000	4 202	0.000	0 400	
ar.L3 0.186	-0.3422	0.080	-4.283	0.000	-0.499	_
ma.L1	0.0283	0.068	0.415	0.678	-0.105	
0.162	0.0203	0.000	0.110	0.070	0.103	
ma.L2	0.9904	0.132	7.497	0.000	0.732	
1.249						
sigma2	2.9014	0.454	6.384	0.000	2.011	
3.792						
=======================================	=========	=======				======
=======		=======		========		=======
=====						
Ljung-Box	(L1) (Q):		0.05	Jarque-Bera	(JB):	
18.97						
Prob(Q):			0.82	Prob(JB):		
0.00	7		4 72	0.1		
-0.56	dasticity (H):		4.73	Skew:		
	two-sided):		0.00	Kurtosis:		
4.49	3 3.1.3.3.4 ·		3.00	1.0100010.		
=======	=========	======				
=====						

Warnings:

 $\[1\]$ Covariance matrix calculated using the outer product of gradients (complex-step).

Table 17:Predicted result first few dataset(ARIMA)

1991-01-01	412.252023
1991-02-01	384.645964
1991-03-01	371.673697
1991-04-01	365.577944
1991-05-01	362.713509

MAPE:

84.21653124542891

RMSE:

ARIMA RMSE(calculated using sklearn): 182.160170240246
ARIMA RMSE (calculated using statsmodels): 182.160170240246

Fig 19: ARIMA forecast

11) SARIMA

Table 18- SARIMA result

SARIMAX Results							
	:====== :=		=======	=======			
Dep. Variable:				У	No. Observations:		
Model: -173.183	SARIMAX	$X(3, 1, 0) \times$	(3, 0, [1, 2], 12)	Log Likelihood		
Date: 364.366			Tue, 14 Ma	y 2024	AIC		
Time: 387.062			23	:08:16	BIC		
Sample: 373.526				0	HQIC		
Covariance Type:				- 132 opg			
0.975]	coef s	std err	z	======= P> z	[0.025		
- ar.L1 -0.	3540	0.095	-3.741	0.000	-0.539 -		
0.169 ar.L2 0. 0.228	0366			0.707			

ar.L3 0.203	0.0320	0.087	0.367	0.714	-0.139	
ar.S.L12 1.974	0.8112	0.593	1.367	0.172	-0.352	
ar.S.L24 1.574	0.1302	0.737	0.177	0.860	-1.314	
ar.S.L36	0.0928	0.247	0.375	0.707	-0.392	
ma.S.L12 0.899	-0.5044	0.716	-0.704	0.481	-1.908	
ma.S.L24 0.886	-0.3298	0.620	-0.532	0.595	-1.546	
sigma2 3.876	2.2287	0.840	2.652	0.008	0.581	
=======		=======	=======		=======	=======
Ljung-Box (2.01	L1) (Q):		0.00	Jarque-Bera	(JB):	
Prob(Q):			0.99	Prob(JB):		
	sticity (H):		1.19	Skew:		
Prob(H) (tw 3.72	ro-sided):		0.63	Kurtosis:		
========			=======	========	=======	=======

=====

Warnings:

 $\ensuremath{[1]}$ Covariance matrix calculated using the outer product of gradients (complex-step).

MAPE SARIMA:

38.983993532156866

1980

1982

1984

1986

1988

Years

1990

1992

1994

1996

RMSE:

SARIMA RMSE(calculated using sklearn): 92.1066303464584 SARIMA RMSE (calculated using statsmodels): 92.1066303464584

7. BUILD A TABLE (CREATE A DATA FRAME) WITH ALL THE MODELS BUILT ALONG WITH THEIR

CORRESPONDING PARAMETERS AND THE RESPECTIVE RMSE VALUES ON THE TEST DATA.

	RMSE (sklearn)	RMSE (statsmodel	MAPE
AutoRegression(3,0,0)	99.353764	99.353764	39.944866
AutoRegression Moving Average(ARMA(3,0,3)	99.070716	99.070716	40.292132
ARIMA(3,1,2)	182.16017	182.160170	84.216531
	0		

SARIMA(3,1,2)(3,0,2,12)	92.106630	92.106630	38.983994
Alpha=0.605,SES	195.89459	195.894595	91.420760
	5		
Alpha=0.594,Beta=0.00027,DES	264.82482	264.824827	122.32528
	7		4
Alpha=0.5722,Beta=0.0104,Gamma=0.2733,TE	126.38763	126.387633	49.906727
S Additive	3		
Alpha=0.6009,Beta=0.0061,Gamma=0.1757,TE	122.17854	122.178545	48.032998
S Multiplicative	5		
Linear RegressionOnTime	264.51679	264.516794	122.14075
	4		8
Naive Approach	84.648401	84.648401	29.172387

Fig 21:Consolidated graph of all models

From this consolidated result We can see that Naïve Approach model has the lowest RMSE value and MAPE value.2nd lowest is the SARIMA value.It is the best model to predict for shoe sales .

8.BASED ON THE MODEL-BUILDING EXERCISE, BUILD THE MOST OPTIMUM MODEL(S) ON THE COMPLETE

DATA AND PREDICT 12 MONTHS INTO THE FUTURE WITH APPROPRIATE CONFIDENCE INTERVALS/BANDS.

Table 19:Prediction using SARIMA Model

	Shoe_Sales		
1995-08-01	240.234233		
1995-09-01	218.654236		
1995-10-01	227.131167		
1995-11-01	257.170779		
1995-12-01	236.259481		
1996-01-01	228.727932		
1996-02-01	317.641622		
1996-03-01	313.573962		
1996-04-01	319.337549		
1996-05-01	299.325629		
1996-06-01	363.070595		
1996-07-01	449.716634		

Fig 22:Future 12 months forecasted(using SARIMA)

FINDINGS AND SUGGESTIONS:

1)There are outliers in the month of April and May which tells us that some sales were unsual. 2)In the 2nd half of each year the sales increases. December has the highest sales which may be due to holiday season. 3)The sales can be increased by advertising more and launching new shoes . 4)Discount should be added in the off season (when the sales decreases) to increase the sales.