Lecture 12: Gradient

The **gradient** of a function f(x, y) is defined as

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$$
.

For functions of three dimensions, we define

$$\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle.$$

The symbol ∇ is spelled "Nabla" and named after an Egyptian harp. Here is a very important fact:

Gradients are orthogonal to level curves and level surfaces.

Proof. Every curve $\vec{r}(t)$ on the level curve or level surface satisfies $\frac{d}{dt}f(\vec{r}(t)) = 0$. By the chain rule, $\nabla f(\vec{r}(t))$ is perpendicular to the tangent vector $\vec{r}'(t)$.

Because $\vec{n} = \nabla f(p,q) = \langle a,b \rangle$ is perpendicular to the level curve f(x,y) = c through (p,q), the equation for the tangent line is ax + by = d, $a = f_x(p,q)$, $b = f_y(p,q)$, d = ap + bq. Compactly written, this is

$$\nabla f(\vec{x}_0) \cdot (\vec{x} - \vec{x}_0) = 0$$

and means that the gradient of f is perpendicular to any vector $(\vec{x} - \vec{x}_0)$ in the plane. It is one of the most important statements in multivariable calculus. since it provides a crucial link between calculus and geometry. The just mentioned gradient theorem is also useful. We can immediately compute tangent planes and tangent lines:

Compute the tangent plane to the surface $3x^2y + z^2 - 4 = 0$ at the point (1, 1, 1). Solution: $\nabla f(x, y, z) = \langle 6xy, 3x^2, 2z \rangle$. And $\nabla f(1, 1, 1) = \langle 6, 3, 2 \rangle$. The plane is 6x + 3y + 2z = d where d is a constant. We can find the constant d by plugging in a point and get 6x + 3y + 2z = 11.

2 **Problem:** reflect the ray $\vec{r}(t) = \langle 1 - t, -t, 1 \rangle$ at the surface

$$x^4 + y^2 + z^6 = 6.$$

Solution: $\vec{r}(t)$ hits the surface at the time t=2 in the point (-1,-2,1). The velocity vector in that ray is $\vec{v}=\langle -1,-1,0\rangle$ The normal vector at this point is $\nabla f(-1,-2,1)=\langle -4,4,6\rangle=\vec{n}$. The reflected vector is

$$R(\vec{v} = 2 \text{Proj}_{\vec{n}}(\vec{v}) - \vec{v}$$
.

We have $\text{Proj}_{\vec{n}}(\vec{v}) = 8/68\langle -4, -4, 6 \rangle$. Therefore, the reflected ray is $\vec{w} = (4/17)\langle -4, -4, 6 \rangle - \langle -1, -1, 0 \rangle$.

If f is a function of several variables and \vec{v} is a unit vector then $D_{\vec{v}}f = \nabla f \cdot \vec{v}$ is called the **directional derivative** of f in the direction \vec{v} .

The name directional derivative is related to the fact that every unit vector gives a direction. If \vec{v} is a unit vector, then the chain rule tells us $\frac{d}{dt}D_{\vec{v}}f = \frac{d}{dt}f(x+t\vec{v})$.