面向节能的单/多列车优化决策问题

艾鑫 1 杨志巧 2 李金武 3

- 1 三峡大学 理学院
- 2 武汉大学 数学与统计学院
- 3 湖南大学 机械与运载工程学院

2015年12月5日

问题回顾

第一问、单列车节能运行优化控制问题

问题回顾

问题一、单列车节能运行优化控制问题

- 第一小问 请建立计算速度距离曲线的数学模型,计算寻找一条列车 从 A_6 站出发到达 A_7 站的最节能运行的速度距离曲线,其中两车站间的运行时间为 110 秒
- 第二小问 请建立新的计算速度距离曲线的数学模型,计算寻找一条 列车从 A_6 站出发到达 A_8 站的最节能运行的速度距离曲 线,其中要求列车在 A_7 车站停站 45 秒, A_6 站和 A_8 站间 总运行时间规定为 220 秒(不包括停站时间)

第二问、多列车节能运行优化控制问题

问题回顾

第二问、多列车节能运行优化控制问题

第一小问 当 100 列列车以间隔 $H = h_1, \dots, h_{99}$ 从 A_1 站出发,追踪运行,依次经过 A_2 , A_3 ,……到达 A_{14} 站,中间在各个车站停战最少 D_{\min} 秒,最多 D_{\max} 秒。间隔 H 各分量的变化范围是 H_{\min} 秒至 H_{\max} 秒。请建立优化模型并寻找使所有列车运行总能耗最低的间隔 H。要求第一列列车发车时间和最后一列列车的发车时间之间间隔为 $T_0 = 63900$ 秒,且从 A_1 站到 A_{14} 站的总运行时间不变,均为 2086 秒(包括停站时间)。假设所有列车处于同一供电区段。

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

问题回顾

第二问、多列车节能运行优化控制问题

第二小问 接上问,如果高峰时间(早高峰 7200 秒至 12600 秒,晚高峰 43200 至 50400 秒)发车间隔不大于 2.5 分钟且不小于 2 分钟,其余时间发车间隔不小于 5 分钟,每天 240 列。请重新为它们制定运行图和相应的速度距离曲线。

第三问、列车延误后运行优化控制问题

问题回顾

第三问、列车延误后运行优化控制问题

- 第一小问 接上问,若列车 i 在车站 A_j 延误 DT_j^i (10 秒)发车,请建立控制模型,找出在确保安全的前提下,首先使所有后续列车尽快恢复正点运行,其次恢复期间耗能最少的列车运行曲线
- 第二小问 假设 DT_j^i 为随机变量,普通延误($0 < DT_j^i < 10$ s)概率为 20%,严重延误($DT_j^i > 10$ s)概率为 10%(超过 120 秒,接近下一班,不考虑调整),无延误($DT_j^i = 0$)概率为 70%。若允许列车在各站到、发时间与原时间相比提前不超过 10 秒,根据上述统计数据,如何对第二问的控制方案进行调整?

问题求解

第一问、单列车节能运行优化控制问题

模型建立

目标函数的确定

题设给出的目标是使得耗能最少,根据题设可知耗能主要是由于列车行驶需要牵引力,导致发电机就处于耗能状态。查阅相关参考文献 [2] 可知在整个运行过程中所消耗的能量由牵引力来决定,如下所示:

$$E = \int_0^{t_{\text{max}}} F(t) v_t dt$$

注: $t_{\text{max}} = 110$, 因为总的运行时间为 110 秒。

约束条件的确定

约束条件一:由题目所给的数据中可以知道从 A_6 站到 A_7 站的总路程为 1354m,因此整个过程中行走的总路程 $L_{\max}=1354$ m,即:

$$\int_{o}^{t_{\text{max}}} v_t dt = L_{\text{max}}$$

约束条件二: 列车起始时刻和到达 A_7 站时刻的速度均为 0 且在运行的任何时刻速度都不能大于该时刻所处路段的最大速度 $\overline{v_t}$, 即:

$$\begin{cases} v_0 = v_{t_{\text{max}}} = 0\\ v_t \le \overline{v_t} \end{cases}$$

约束条件三:由牛顿学第二定律可知,实际输出的牵引加速度乘以质量等于合外力,即:

$$ma_t = m\frac{dv_t}{dt} = F(t) - B(t) - W(t)$$

第一问模型

综上所述,建立的单列车两个站点之间的最优化模型为:

$$\min \quad E = \int_{o}^{t_{\text{max}}} F(t) v_t dt$$

$$s.t. \begin{cases} \int_{o}^{t_{\text{max}}} v_{t} dt = L_{\text{max}} \\ v_{0} = v_{t_{\text{max}}} = 0 \\ v_{t} \leq \overline{v_{t}} \end{cases}$$

$$ma_{t} = m \frac{dv_{t}}{dt} = F(t) - B(t) - W(t)$$

$$F(t) = k_{t} F_{\text{max}}(t)$$

$$B(t) = k_{b} B_{\text{max}}(t)$$

$$W(t) = [w_{0}(t) + w_{1}(t)] \times g \times m/1000$$

求解算法

• 题目要求在给定的时间内, 使消耗的能量最小

- 题目要求在给定的时间内, 使消耗的能量最小
- 给定时间让能量最小 ⇒ 比较困难

- 题目要求在给定的时间内, 使消耗的能量最小
- 给定时间让能量最小 ⇒ 比较困难
- 给定能量让时间最小 ⇒ 容易求解

- 题目要求在给定的时间内, 使消耗的能量最小
- 给定时间让能量最小 ⇒ 比较困难
- 给定能量让时间最小 ⇒ 容易求解
- 可以将第一个问题转化为第二个问题,首先构造一个能量比较小的 初始解,然后不断的增加能量,直到时间满足要求

为什么能够这么做?

- 将此问题推广为一个多目标规划问题
 - 目标一: min t
 - 目标二: min E
- 运行方案 $(t, E) \Longrightarrow P(t, E)$
- 多目标规划: Pareto front C(非劣解集)

为什么能够这么做?

- 原问题: 给定时间 t_n ,求 $E_{min} \Longrightarrow$ 求 $t = t_n$ 与 C 的交点对应的运行方案
- 如果我们能够给出能量较小的初始解 (t_1, E_1) ,然后逐步添加能量,直到 $t = t_n$,即求得原问题的运行方案

为什么能够这么做?

- 原问题: 给定时间 t_n , 求 $E_{\min} \Longrightarrow$ 求 $t = t_n$ 与 C 的交点
- 如果我们能够给出能量较小的初始解 (t_1, E_1) ,然后逐步添加能量,直到 $t = t_n$

考虑一个理想的情况

下面考虑一个理想的情况,即 假设:

- 速度限制 $v_{\rm max}$ 为常数
- 阻力 r 也为常数

优化模型

$$\min \quad E = \int_0^{t_{\text{max}}} k_t(t) v(t) F(t) dt$$

$$s.t. \begin{cases} m \frac{dv(t)}{dt} = k_t F - k_b B - r \\ L = \int_0^{t_{\text{max}}} v(t) dt \\ v(0) = v_0, \quad v(t_{\text{max}}) = v_T \\ k_t \in [0, 1], k_b \in [0, 1], v \le v_{\text{max}} \end{cases}$$

Pontryagin 最大值原理

根据 Pontryagin 最大值原理, 前述优 化模型可以转化为最大化下面的哈密 顿函数:

$$H = \frac{p_1}{v} \times (k_t F - k_b B - r) + p_2 v - k_t v F$$

其中 p_1 应该满足下面的微分方程:

$$\frac{dp_1}{ds} = -\frac{\partial H}{\partial v}$$

求解结果

顿函数:
$$H = \frac{p_1}{v} \times (k_t F - k_b B - r) + p_2 v - k_t v F$$
 其中 p_1 应该满足下面的微分方程:
$$\frac{dp_1}{dt} = -\frac{\partial H}{\partial t}$$

$$\frac{dp_1}{dt} = -\frac{\partial H}{\partial t}$$

$$\frac{dp_1}{dt} = \frac{\partial H}{\partial t}$$

Pontryagin 最大值原理

求解结果与四个阶段相对应:

最大加速
$$k_t = 1, k_b = 0$$
 巡航 $k_t \in [0, 1], k_b = 0$

巡航
$$k_t = 0, k_b \in [0, 1]$$

惰行
$$k_t = 0, k_b = 0$$

最大制动
$$k_t = 0, k_b = 1$$

Pontryagin 最大值原理

最大值原理结论

对于理想情况,所有"能量最小"和"时间最短"问题的最优解都是由:最大牵引、巡航、 惰行和最大制动组成。

回到实际情况

- 实际情况下,不同路段的速度 限制是不一样的
- 实际路况(坡度、曲率)是随 图:不同路段,速度限制不一样。着路段变化的
- 基本阻力与速度相关

求解初始解

初始解求法

首先将列车最大加速到速度为 50km/h, 然后使列车惰行, 在要到达终点时按最大制动进行制动。

- 加速到 50km/h 是因为一般速度限制都大于等于 50km/h
- 实际过程中发现,部分路段阻力过大,因此在惰行的时候要设置一个加速度下限
- 具体的制动点是通过检测是否遇到制动曲线来确定的

制动点的确定

什么是制动曲线?

制动曲线是在某一点,以该点的目标速度按照最大制动逆推出来的速度-路程曲线。在列车行驶过程中,一旦列车的速度-路程曲线遇到制动曲线就要立刻进行最大制动。

图:制动曲线示意图

一个实际的初始解

图: 初始解示意图

初始解的逐步修正

得到初始解后,以速度限制对路程进行分区,使得在每个分区内的 速度限制都是一样的。

图: 分区示意图

初始解的逐步修正

一般得到的初始解的时间是大于所规定的运行时间,所以需要多分配一小份能量 ΔE ,对初始解进行逐步修正,直到达到目标运行时间为止。

能量分配准则

设总路程按照速度限制分成了 N 个子区间,逐次将分配的能量 ΔE 分配到各个子区间。对于分配能量的区间按照已分配到的总能量,按照:最大加速、巡航、惰行、最大制动的策略计算运行方案。因此可以得到每一个区间的节省时间 Δt_i ,将能量 ΔE 分配给节省时间最多的区间。

多站点情况

对于多站点情况,可以看做是两站点情况的一个特例