BÁO CÁO THỰC HÀNH MÔN NHẬN DANG THỊ GIÁC VÀ ỨNG DỤNG

Họ và tên: Lê Hoàng Dũng

MSHV: CH1501022

Github: https://github.com/lehoangdung0612/VRA.LeHoangDung.CH1501022

BÀI TẬP THỰC HÀNH 3

Q1.

```
function showTrainImageAtN(n)
   if ~exist('n','var')
        disp('Wrong parameters...');
        return
   end

   fprintf('\n Load du lieu train);
   imgAll = loadMNISTImages('./train-images.idx3-ubyte');
   lblAll = loadMNISTLabels('./train-labels.idx1-ubyte');

   figure,
   img = imgAll(:, n);
   img2D = reshape(img, 28, 28); % reshape
   strLabelImage = ['Label:', num2str(lblAll(n))];
   imshow(img2D); % show image
   title(strLabelImage);
end
```



```
function showTestImageAtN(n)
   if ~exist('n','var')
        disp('Wrong parameters...');
        return
   end

fprintf('\n Load du lieu test');
   imgAll = loadMNISTImages('./t10k-images.idx3-ubyte');
   lblAll = loadMNISTLabels('./t10k-labels.idx1-ubyte');

figure,
   img = imgAll(:, n);
   img2D = reshape(img, 28, 28); % reshape
   strLabelImage = ['Label:', num2str(lblAll(n))];
   imshow(img2D); % show image
   title(strLabelImage);
end
```



```
function thongKeImageTrain()
    fprintf('\n Load du lieu');
    lblAll = loadMNISTLabels('./train-labels.idx1-ubyte');

nCol = 10;
    A = zeros([2 nCol]);

for i=1:nCol
    label = i - 1;
    A(1, i) = label;
    A(2, i) = sum(lblAll == label);
end

% print A
    A
    % write csv file
    strFileName = ['D:\Q3', '.csv'];
    csvwrite(strFileName, A);
end
```

0	1	2	3	4	5	6	7	8	9
5923	6742	5958	6131	5842	5421	5918	6265	5851	5949

Q4.

```
function thongKeImageTest()
   fprintf('\n Load du lieu');
   lblAll = loadMNISTLabels('./t10k-labels.idx1-ubyte');
   nCol = 10;
   A = zeros([2 nCol]);
    for i=1:nCol
        label = i - 1;
        A(1, i) = label;
        A(2, i) = sum(lblAll == label);
    end
    % print A
   Α
    % write csv file
    strFileName = ['D:\Q4', '.csv'];
    csvwrite(strFileName, A);
end
```

0	1	2	3	4	5	6	7	8	9
980	1135	1032	1010	982	892	958	1028	974	1009

```
function lblPredictTest = recognizeImageAtN(n)
    if ~exist('n','var')
       disp('Wrong parameters...');
        return
    end
    imgTrainAll = loadMNISTImages('./train-images.idx3-ubyte');
    lblTrainAll = loadMNISTLabels('./train-labels.idx1-ubyte');
   Mdl = fitcknn(imgTrainAll', lblTrainAll);
    imgTestAll = loadMNISTImages('./t10k-images.idx3-ubyte');
    imgTest = imgTestAll(:, n);
    lblPredictTest = predict(Mdl, imgTest');
    figure;
    img2D = reshape(imgTest, 28, 28);
    imshow(img2D);
    strLabelImage = ['Ket qua nhan dang: ', num2str(lblPredictTest)];
    title(strLabelImage);
end
```



```
function checkRecognitionImage(n)
   if ~exist('n','var')
        disp('Wrong parameters...');
        return
    end
    imgTrainAll = loadMNISTImages('./train-images.idx3-ubyte');
    lblTrainAll = loadMNISTLabels('./train-labels.idx1-ubyte');
   Mdl = fitcknn(imgTrainAll', lblTrainAll);
    imgTestAll = loadMNISTImages('./t10k-images.idx3-ubyte');
    lblTestAll = loadMNISTLabels('./t10k-labels.idx1-ubyte');
    imgTest = imgTestAll(:, n);
    lblPredictTest = predict(Mdl, imgTest');
   lblImageTest = lblTestAll(n);
    figure;
    img2D = reshape(imgTest, 28, 28);
    imshow(img2D);
   strLabelImage = 'Ban dau ';
   strLabelImage = [strLabelImage, num2str(lblTestAll(n)), '.'];
   strLabelImage = [strLabelImage, ' Du doan: '];
   strLabelImage = [strLabelImage, num2str(lblPredictTest), '.'];
    if (lblPredictTest == lblImageTest)
        strLabelImage = [strLabelImage, ' Ket qua dung.'];
    else
        strLabelImage = [strLabelImage, ' Ket qua sai.'];
    end
    title(strLabelImage);
end
```

```
function countNumOfLabelWrongKnn(n)
   if ~exist('n','var')
        disp('Wrong parameters...');
        return
    end
    imgTrainAll = loadMNISTImages('./train-images.idx3-ubyte');
    lblTrainAll = loadMNISTLabels('./train-labels.idx1-ubyte');
   Mdl = fitcknn(imgTrainAll', lblTrainAll);
   imgTestAll = loadMNISTImages('./t10k-images.idx3-ubyte');
   lblTestAll = loadMNISTLabels('./t10k-labels.idx1-ubyte');
   nNumbers = size(imgTestAll, 2);
   counter = 0;
   for i=1:nNumbers
        lblTest = lblTestAll(i);
        if num2str(lblTest) == num2str(n)
            imgTest = imgTestAll(:, i);
            lblPredictTest = predict(Mdl, imgTest');
            if lblPredictTest ~= lblTest
                counter = counter + 1;
            end
        end
    end
    fprintf('So luong anh co label nhan dang sai: %d\n', counter);
end
```

N	0	1	2	3	4	5	6	7	8	9
	7	6	40	40	38	32	14	36	54	42

```
function createConfusionMatrixKnn()
    imgTrainAll = loadMNISTImages('./train-images.idx3-ubyte');
    lblTrainAll = loadMNISTLabels('./train-labels.idx1-ubyte');
   Mdl = fitcknn(imgTrainAll', lblTrainAll);
    imgTestAll = loadMNISTImages('./t10k-images.idx3-ubyte');
    lblTestAll = loadMNISTLabels('./t10k-labels.idx1-ubyte');
   nNumbers = size(imgTestAll, 2);
   nCol = 10;
   confusionMatrix = zeros(nCol, nCol);
   for i=1:nNumbers
        lblTest = lblTestAll(i);
        imgTest = imgTestAll(:, i);
        lblPredictTest = predict(Mdl, imgTest');
        confusionMatrix(lblTest + 1, lblPredictTest + 1) =
confusionMatrix(lblTest + 1, lblPredictTest + 1) + 1;
   end
   disp('Confusion matrix');
   confusionMatrix
    % write csv file
    strFileName = ['D:\Q71', '.csv'];
   csvwrite(strFileName, confusionMatrix);
end
```

		Predicted Label										
		0	1	2	3	4	5	6	7	8	9	
	0	973	1	1	0	0	1	3	1	0	0	
	1	0	1129	3	0	1	1	1	0	0	0	
	2	7	6	992	5	1	0	2	16	3	0	
Actual	3	0	1	2	970	1	19	0	7	7	3	
Label	4	0	7	0	0	944	0	3	5	1	22	
Test	5	1	1	0	12	2	860	5	1	6	4	
	6	4	2	0	0	3	5	944	0	0	0	
	7	0	14	6	2	4	0	0	992	0	10	
	8	6	1	3	14	5	13	3	4	920	5	
	9	2	5	1	6	10	5	1	11	1	967	

```
function calculatePrecisionOfKnn(NumNeighbors, Distance)
% NumNeighbors
                Number of neighbors to predict
                'euclidean'/ 'seuclidean'/ 'cityblock'/ 'chebychev'/
% Distance
'minkowski'
                  / 'mahalanobis'/ 'cosine'/ 'correlation'/ 'spearman'/
'hamming'/ 'jaccard'
   if ~exist('NumNeighbors','var')
       NumNeighbors = 1;
   end
    if ~exist('Distance','var')
        Distance = 'euclidean';
    end
   imgTrainAll = loadMNISTImages('./train-images.idx3-ubyte');
   lblTrainAll = loadMNISTLabels('./train-labels.idx1-ubyte');
   Mdl = fitcknn(imgTrainAll', lblTrainAll, 'NumNeighbors', NumNeighbors,
'Distance', Distance);
    imgTestAll = loadMNISTImages('./t10k-images.idx3-ubyte');
    lblTestAll = loadMNISTLabels('./t10k-labels.idx1-ubyte');
   nNumbers = size(imgTestAll, 2);
    nCol = 10;
   confusionMatrix = zeros(nCol, nCol);
   for i=1:nNumbers
        lblTest = lblTestAll(i);
        imgTest = imgTestAll(:, i);
        lblPredictTest = predict(Mdl, imgTest');
        confusionMatrix(lblTest + 1, lblPredictTest + 1) =
confusionMatrix(lblTest + 1, lblPredictTest + 1) + 1;
    end
   precision = 0;
   recall = 0;
   accuracy = 0;
    for i=1:nCol
        accuracy = accuracy + confusionMatrix(i, i);
        precision = precision + confusionMatrix(i, i) /
sum(confusionMatrix(i, :));
       recall = recall + confusionMatrix(i, i) / sum(confusionMatrix(:,
i));
   end
   accuracy = 100 * accuracy / nNumbers;
   precision = 100 * precision / nCol;
   recall = 100 * recall / nCol;
    fprintf('\nAccuracy= %s', num2str(accuracy));
   fprintf('\nPrecision= %s', num2str(precision));
   fprintf('\nRecall= %s\n', num2str(recall));
end
```

>> calculatePrecisionOfKnn(1, 'euclidean')

Accuracy= 96.91

Precision= 96.8794

Recall= 96.9148

>> calculatePrecisionOfKnn(1, 'cosine')

Accuracy= 97.23

Precision= 97.1898

Recall= 97.238

>> calculatePrecisionOfKnn(3, 'euclidean')

Accuracy= 97.06

Precision= 97.0273

Recall= 97.0921

>> calculatePrecisionOfKnn(3, 'cosine')

Accuracy= 97.37

Precision= 97.3384

Recall= 97.377