*note economic variables at state and national level were winsorized (capped at 5th and 95th percentiles)

*this is because covid created levels of these variables that were historically never seen (such as high unemployment rates)

 st capping at previous historical high levels reduces outlier influence and overfitting

Forecasting Presidential Elections

Code **▼**

Perebibowei Azazi

21 May, 2022

Set up our file and download the needed packages

Hide

```
#set working directory to load file
setwd("C:/Users/coold/Desktop/geecodes")

#Load dataset
fundamental.data<-read.csv("fundamental_data_election.csv", stringsAsFactors=F, header
=T)</pre>
```

#note data is at level of state x election year, which is what we need #it has 561 rows which is 51 (states plus DC) x 11 elections since 1980 including 2020 #variables in data set

Code

*note economic variables at state and national level were winsorized (capped at 5th and 95th percentiles)

*this is because covid created levels of these variables that were historically never seen (such as high unemployment rates)

*capping at previous historical high levels reduces outlier influence and overfitting

```
'``r
#explore dataset
dim(fundamental.data); colnames(fundamental.data); head(fundamental.data)
```

[1] 561 36

```
[1] "election_date"
                                     "election year"
   [3] "democratic_vote_share_adj" "republican_vote_share_adj"
                                     "state name"
##
   [5] "state"
                                     "electoral votes"
##
   [7] "region"
   [9] "PVI"
                                     "state_unemployment"
## [11] "state_house_price"
                                     "state_med_income"
## [13] "state_personal_income"
                                     "nat_gdp"
## [15] "nat_nonfarm_payroll"
                                     "nat ind production"
## [17] "nat personal exp"
                                     "nat personal inc"
## [19] "nat_price_index"
                                     "stock_market"
## [21] "age_under_18"
                                     "age_18_to_40"
## [23] "age_40_to_65"
                                     "age 65 plus"
                                     "gender_female"
## [25] "gender_male"
                                     "race_black"
## [27] "race_white"
## [29] "educ_hs_or_less"
                                     "educ_less_than_4_yrs"
                                     "nonurban"
## [31] "educ_ba_or_post_grad"
## [33] "urban"
                                     "density"
## [35] "net_approval"
                                     "incumbent"
```

```
##
     election_date election_year democratic_vote_share_adj
## 1
        1980-11-04
                             1980
                                                   0.3270081
## 2
        1984-11-06
                             1984
                                                   0.3094409
## 3
        1988-11-08
                             1988
                                                   0.3783668
                             1992
## 4
        1992-11-03
                                                   0.4342574
## 5
        1996-11-05
                             1996
                                                   0.3957150
                             2000
## 6
        2000-11-07
                                                   0.3206305
     republican vote share adj state state name region electoral votes
                                                                                 PVI
##
## 1
                     0.6729919
                                          Alaska
                                   ΑK
                                                    West
                                                                        3 -0.1985722
## 2
                     0.6905591
                                   ΑK
                                          Alaska
                                                    West
                                                                       3 -0.2446591
## 3
                     0.6216332
                                   ΑK
                                          Alaska
                                                    West
                                                                       3 -0.2082752
## 4
                     0.5657426
                                   ΑK
                                          Alaska
                                                    West
                                                                       3 -0.1733584
## 5
                     0.6042850
                                   ΑK
                                          Alaska
                                                    West
                                                                       3 -0.1917490
## 6
                     0.6793695
                                   ΑK
                                          Alaska
                                                    West
                                                                        3 -0.2776207
     state unemployment state house price state med income state personal income
##
                    9.6
## 1
                               -0.02285655
                                                          NA
                                                                         0.11258024
                    9.5
## 2
                                0.04419252
                                                          NA
                                                                         0.05524476
## 3
                    8.2
                                0.15857913
                                               -0.003911774
                                                                         0.04613674
##
                    8.4
                                0.03406087
                                                0.029301684
                                                                         0.04065257
## 5
                    7.5
                                0.05039039
                                                 0.100617258
                                                                         0.04010450
## 6
                    6.4
                                0.02109267
                                                0.028231769
                                                                         0.07388679
##
         nat gdp nat nonfarm payroll nat ind production nat personal exp
## 1 0.018649251
                         0.001921102
                                             -0.01353780
                                                                0.08695548
                                              0.05470637
## 2 0.008208628
                         0.044702041
                                                                0.03402432
## 3 0.013324958
                         0.031391479
                                              0.02748743
                                                                0.04170927
## 4 0.010431647
                         0.009012337
                                              0.03548821
                                                                0.02671888
## 5 0.010383820
                         0.023575206
                                              0.05754997
                                                                0.02441489
## 6 0.006228896
                         0.016019499
                                              0.02125280
                                                                0.02527845
##
     nat personal inc nat price index stock market age under 18 age 18 to 40
## 1
           0.01742324
                           0.10485133 0.479768786
                                                        0.3337604
                                                                     0.4434330
## 2
           0.06024577
                           0.04154303 -0.002724796
                                                        0.3261277
                                                                     0.4599665
## 3
           0.03716257
                           0.04246101 -0.042194093
                                                        0.3353670
                                                                     0.4047260
## 4
           0.03026867
                           0.03120464
                                       0.153225806
                                                        0.3187151
                                                                     0.3690193
           0.03929598
                           0.03253090
                                        0.328930818
                                                        0.3107793
## 5
                                                                     0.3715097
## 6
           0.04835777
                           0.03444181 0.107893388
                                                        0.3438298
                                                                     0.3361665
##
     age 40 to 65 age 65 plus gender male gender female race white race black
        0.1906253 0.03218136
                                               0.4755597 0.7816126 0.02895366
## 1
                                 0.5244403
## 2
        0.1854212
                   0.02848461
                                 0.5304949
                                               0.4695051 0.7598859 0.03885189
## 3
        0.2177040
                  0.04220304
                                 0.5085276
                                               0.4914724 0.7435135 0.04036799
## 4
        0.2605948
                   0.05167083
                                 0.5079881
                                               0.4920119 0.7433641 0.05436533
## 5
        0.2777853
                   0.03992571
                                 0.5182073
                                               0.4817927
                                                           0.7973348 0.05019038
        0.2705758 0.04942803
                                               0.4933173 0.7472945 0.04158266
## 6
                                 0.5066827
##
     educ_hs_or_less educ_less_than_4_yrs educ_ba_or_post_grad nonurban
                                                                                urban
## 1
           0.4616605
                                 0.2359848
                                                      0.04672580 1.0000000 0.0000000
## 2
           0.4439632
                                 0.2288924
                                                      0.05806418 1.0000000 0.0000000
## 3
           0.4345118
                                 0.2280362
                                                      0.06653076 0.5462505 0.4537495
## 4
           0.4195310
                                 0.2474633
                                                      0.07484090 0.4999388 0.5000612
## 5
           0.3288643
                                 0.2629508
                                                      0.15960407 0.4975909 0.5024091
```

```
## 6
           0.3204781
                                 0.2381668
                                                       0.15231834 0.5181572 0.4818428
##
       density net approval incumbent
## 1 0.6466675
                   -18.13502
## 2 0.7332402
                   -21.82420
                                     -1
## 3 0.8810425
                   -17.84319
                                      0
## 4 0.8470510
                    21.79688
                                     -1
## 5 1.0040763
                    19.63401
                                      1
## 6 1.0967949
                    20.19180
                                      0
```

```
#date to partition train and test data sets
test.election.date<-2020
train<-fundamental.data[fundamental.data$election_year<test.election.date,]
test<-fundamental.data[fundamental.data$election_year==test.election.date,]</pre>
```

Hide

#train mixed effects model; specify fixed effects predictors and random intercepts f or error simulations

#fixed effects specified like a regular linear regression in R as in lm function #random effects specified using a different notation; random intercepts denoted by (1|group_variable)

#for national error use election_year, regional error use region, & state error is r
esidual (since model is at state level)

fundamental.model<-lmer(republican_vote_share_adj~PVI+state_unemployment+nat_gdp+rac e_white+

```
(1|election_year)+(1|region),
data=train)
```

Hide

```
#extract random effects variances from model fit
vote.share.var<-as.data.frame(VarCorr(fundamental.model))
vote.share.var</pre>
```

```
## grp var1 var2 vcov sdcor
## 1 election_year (Intercept) <NA> 0.0017108971 0.04136299
## 2 region (Intercept) <NA> 0.0001570505 0.01253198
## 3 Residual <NA> <NA> 0.0012618683 0.03552279
```

Hide

```
national.error.var<-matrix(vote.share.var$vcov[vote.share.var$grp=="election_year"])
regional.error.var<-matrix(vote.share.var$vcov[vote.share.var$grp=="region"])
state.error.var<-matrix(vote.share.var$vcov[vote.share.var$grp=="Residual"])</pre>
```

```
#set constants for simulation
B<-1000 #number of times to simulate election
n.years<-length(unique(train$election_year))
n.states<-length(unique(train$state))
n.regions<-length(unique(train$region))
df<-n.years-1 #set df for student t simulations as number of elections minus 1
state.region.mapping<-unique(fundamental.data[,c("state","region")])
electoral.votes<-unique(fundamental.data[,c("state","electoral_votes")])</pre>
```

Hide

#simulate election B times

#repeat each row of test dataset B times to create expanded data across all simulati
ons
#note here each columns is therefore one simulation (rows are states + DC)
test.sim<-test[ren(1:nrow(test).times=B).]</pre>

test.sim<-test[rep(1:nrow(test),times=B),]
dim(test.sim)</pre>

[1] 51000 36

Hide

#create matrix of test set predictions; note flag for re.form=NA to set random effec
ts to zero for fixed effects prediction
fund.pred<-predict(fundamental.model,newdata=test.sim,re.form=NA)
pred.rep.share<-matrix(fund.pred,ncol=B)
dim(pred.rep.share); pred.rep.share[1:5,1:5]</pre>

```
## [1] 51 1000
```

```
## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.5372330 0.5372330 0.5372330 0.5372330

## [2,] 0.5981711 0.5981711 0.5981711 0.5981711

## [3,] 0.6014883 0.6014883 0.6014883 0.6014883

## [4,] 0.4996734 0.4996734 0.4996734 0.4996734

## [5,] 0.3141839 0.3141839 0.3141839 0.3141839
```

Hide

```
#simulate random errors at national level
national.error<-rep(rmvt(n=B,sigma=national.error.var,df=df),each=n.states)
national.error<-matrix(national.error,ncol=B)
dim(national.error); national.error[1:5,1:5]</pre>
```

```
## [1] 51 1000
```

```
## [,1] [,2] [,3] [,4] [,5]

## [1,] -0.04747549 0.03905997 0.004522059 0.03948534 0.01179659

## [2,] -0.04747549 0.03905997 0.004522059 0.03948534 0.01179659

## [3,] -0.04747549 0.03905997 0.004522059 0.03948534 0.01179659

## [4,] -0.04747549 0.03905997 0.004522059 0.03948534 0.01179659

## [5,] -0.04747549 0.03905997 0.004522059 0.03948534 0.01179659
```

```
#simulate random errors at regional level
#draw each region B times
region.error<-rmvt(n=n.regions*B,sigma=regional.error.var)
region.error<-matrix(region.error,ncol=B)
dim(region.error); region.error[,1:5]</pre>
```

```
## [1] 4 1000
```

```
## [,1] [,2] [,3] [,4] [,5]

## [1,] -0.006986805 0.07214395 0.007851699 0.02505114 -0.02017292

## [2,] 0.011147960 -0.02858174 0.004441297 0.01653318 0.02043338

## [3,] 0.016583524 -0.07271940 -0.012936375 0.01710879 -0.03293066

## [4,] 0.272587575 0.01003481 0.037868202 0.04496404 -0.02318820
```

Hide

#replicate regional simulations so that states in same region get same regional erro
r
#this creates correlation among states within a region
head(state.region.mapping)

```
state region
##
## 1
         ΑK
              West
         AL South
## 12
## 23
         AR South
              West
## 34
         ΑZ
## 45
         CA
              West
## 56
         CO
              West
```

Hide

```
region.state.index<-as.numeric(factor(state.region.mapping$region))
region.error<-region.error[region.state.index,]
dim(region.error); data.frame(state.region.mapping,region.error)[1:5,1:5]</pre>
```

```
## [1] 51 1000
```

```
##
     state region
                                      X2
                                                  X3
                          X1
## 1
        ΑK
             West 0.27258758 0.01003481 0.03786820
## 12
        AL South 0.01658352 -0.07271940 -0.01293638
## 23
        AR South 0.01658352 -0.07271940 -0.01293638
             West 0.27258758 0.01003481 0.03786820
## 34
        ΑZ
## 45
             West 0.27258758 0.01003481 0.03786820
        CA
```

```
#simulate random errors at state level
#draw each state B times
state.error<-rmvt(n=n.states*B,sigma=state.error.var,df=df)
state.error<-matrix(state.error,ncol=B)
dim(state.error); state.error[1:5,1:5]</pre>
```

[1] 51 1000

Hide

#calculate vote shares by simulation
#add three simulated errors to predicted republican vote shares
pred.rep.share<-pred.rep.share+national.error+region.error+state.error</pre>

Hide

#calculate win probabilities for republicans by state across simulations
rep.state.win.prob<-apply(pred.rep.share,1,function(x) sum(x>0.5)/length(x))
rep.state.win.prob<-data.frame("state"=electoral.votes\$state,"rep_win_prob"=rep.stat
e.win.prob)
rep.state.win.prob</pre>

##		state	rep_win_prob
##	1	AK	0.710
##	2	AL	0.899
##	3	AR	0.906
##	4	AZ	0.503
##	5	CA	0.025
##	6	CO	0.226
##	7	СТ	0.084
##		DC	0.009
##		DE	0.090
##		FL	0.339
##		GA	0.441
##		HI	0.020
##		IA	0.551
##		ID	0.957
##		IL	0.066
##		IN	0.806
##		KS	0.870
##		KY	0.928
##		LA	0.768
##		MA	0.029
##		MD	0.035
##	22	ME	0.231
##	23	MI	0.270
##	24	MN	0.280
##	25	MO	0.787
##	26	MS	0.685
##	27	MT	0.851
##	28	NC	0.397
##	29	ND	0.957
##		NE	0.914
##		NH	0.337
##		NJ	0.063
##		NM	0.132
##		NV	0.207
##		NY	0.034
##		ОН	0.457
##		OK OB	0.954
##		OR	0.129
##		PA	0.282
##		RI	0.055
##		SC	0.662
##		SD	0.930
##		TN	0.884
##		TX	0.621
##		UT	0.942
##	46	VA	0.201
##	47	VT	0.032

```
## 48 WA 0.073
## 49 WI 0.351
## 50 WV 0.961
## 51 WY 0.979
```

#calculate electoral votes that republicans win by state in each election
rep.EV<-apply(pred.rep.share,2,function(x) sum(electoral.votes\$electoral_votes[x>0.5
]))
length(rep.EV)

```
## [1] 1000
```

Hide

#calculate probability that each party wins the election
winner<-ifelse(rep.EV>=270,"R","D")
prop.table(table(winner))

```
## winner
## D R
## 0.755 0.245
```