

CALCOLO

 $\mathbb{P}[a \leq X \leq b]$ pnorm(q=b, mean= μ , sd= σ) - pnorm(q=a, mean= μ , sd= σ)

occhio a non mettere la varianza

spazio campionario: lancio di un dado a 6 facce Ω={1,2,3.4.5.6}

 $f(x) = rac{1}{b-a}$ $X \sim U(a,b)$ $(a,b)\,$ intervallo in cui tutti hanno la stessa $F(x) = \mathbb{P}[X \leq x] = \frac{x-a}{b-a} \qquad \mathbb{E}[X] = \frac{a+b}{2} \quad \mathrm{Var}[X] = \frac{(b-a)^2}{12}$ $\mathbb{P}[X \leq x] \; \mathrm{punif}(\mathsf{q=x, min=a, max=b})$

Distribuzioni continue

NORMALE $X \sim N(\mu,\sigma^2)$ μ "parametro di posizione", rappresenta la media rappresenta la media $f(x) = \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ $\mathbb{E}[X] = \mu$ $\mathrm{Var}[X] = \sigma^2$ n grande e prob. alta: $np(1-p) \geq 10$ Standard $Z = rac{X - \mu}{\sqrt{\sigma^2}} \sim N(0,1)$

Appr. Binomiale $\operatorname{Bin}(n,p) pprox N(np,np(1-p))$ correzione di continuità: aggiungere e sottrarre 0.5 per $\mathbb{P}[X>x]=p$ | qnorm(p, mean= μ , sd= σ) $extsf{-}$ includere gli estremi pnorm(q=x, mean= μ , sd= σ) \leftarrow

popolazioni senza

 $X \sim Ig(N,m,n)$ m Elementi della popolazione con la caratteristica di interesse

 $n\,$ Numero di estrazioni

 $\mathbb{P}[X=k] = rac{inom{m}{k} \cdot inom{N-m}{n-k}}{inom{N}{n}}$ $m{k}$ Numero di elementi con la caratteristica tra gli n estratti $\mathbb{E}[X] = n \frac{m}{N}$ $\operatorname{Var}[X] = n \frac{m}{N} \cdot \frac{N-m}{N} \cdot \frac{N-n}{N-1}$

 $\mathbb{E}[X=x]=rac{1}{n}$ $\mathbb{E}[X]=rac{x_1+x_n}{2}$ $\mathrm{Var}[X]=rac{n^2-1}{12}$

Distribuzioni discrete

 $\{x_1,\ldots,x_n\}$

tutti con stessa

N Numero di elementi della popolazione

 $X \sim U\{x_1,\ldots,x_n\}$

UNIFORME

IPERGEOMETRICA

 $\mathbb{P}[X=k]$ dhyper(k, m, N-m, n) $\mathbb{P}[X \leq k]$ phyper(k, m, N-m, n)

