模态逻辑

Mepy

版本: T5

更新: 2024年4月13日

1 总览

模态逻辑引入了 \Diamond (或然)与 \Box (必然)两个算子,最一般的诠释业已给出,即模态逻辑是或然与必然的逻辑,对于命题 $P,\Diamond P$ 表示P或然(可能)发生, $\Box P$ 表示P必然发生.不过,必然与或然如何被形式化为 \Diamond 与 \Box 却尚未明晰,这是因为我们要界定何为必然发生,何为或然发生.因此,本篇笔记在引入逻辑的文法之后,立即给出其Kripke 语义.借助Kripke 语义理解模态逻辑后,我们才引入推理系统.不同公理导致模态逻辑的性质不一,我们也进行了一些分析.笔者偏好S4模态逻辑,因此无论是记号抑或是分析内容,都对S4更友好.最新文档地址.

2 文法

我们惯常采用语法糖 $\neg \phi := \phi \to \bot, \phi \leftrightarrow \psi := (\phi \to \psi) \land (\psi \to \phi)$.

3 Kripke 语义

定义 3.1 Kripke 模型 (model) $M ::= (W, \rightsquigarrow, V)$, 其中集合 W 称为世界集, $w \in W$ 称为一个可能世界; $\rightsquigarrow \in W$ 上的二元关系, 即 $\rightsquigarrow \subset W \times W$, 形如 $w \rightsquigarrow w'$; $V : W \to \mathscr{P} \to 2$ 是 w 索引的赋值函数, 陪域 $(2 ::= \{0,1\}, \lor, \land, \to)$ 是二元布尔代数, 其可以被如下延拓为 $\overline{V} : W \to \mathscr{P} \to 2$, 一般也将 \overline{V} 写作 V.

定义 3.2 记全体模型构成集合为 \mathcal{M} ,对于某模型 $\mathcal{M} ::= (W, \leadsto, V) \in \mathcal{M}$,某世界 w,以及某公式 $\phi \in \mathcal{F}$, 若 $\overline{V}(w)(\phi) = 1$,则称模型 \mathcal{M} 中世界 w 满足公式 ϕ ,记作 $\mathcal{M} \models_w \phi$;

若对于任意世界 $w \in W$, 都有 $M \models_w \phi$, 则称模型 M 满足公式 ϕ , 记作 $M \models \phi$; 进一步地, 若对于全体模型的子集 $\mathcal{M}_A \subset \mathcal{M}$ 中任意模型 $M \in \mathcal{N}$, 都有 $M \models \phi$, 则称 ϕ 为 \mathcal{M}_A 类语义下的重言式 (tautology), 记作 $\models_A \phi$, 若 $\mathcal{M}_A = \mathcal{M}$, 则记为 $\models \phi$.

我们只需说明模态算子的语义, 这与世界集 W 上的二元关系 \hookrightarrow 有关系, 我们将 $w \hookrightarrow w'$ 看作可从世界 w 抵达 w', 因此或然 $\Diamond \phi$ 的语义是, 在当前世界 w 中 $\Diamond \phi$ 真当且仅当存在后续世界 w' 满足 ϕ , 这就是 V 的含义; 在当前世界 w 中 $\Box \phi$ 真当且仅当所有后续世界 w' 都满足 ϕ , 类似地用 Λ .

4 道义公理与真值公理

值得注意的是布尔代数 2 是完备格, 因而有任意的 \bigvee , \bigwedge . 让我们讨论极端情况, 如果后续世界 w'不存在时, 对应的语义是什么, 即 \bigvee Ø = 0, \bigwedge Ø = 1: 无论是否有 $M \models_w \phi$, 总有 $M \models_w \neg \Diamond \phi \land \Box \phi$. 这种模态逻辑的语义是极其怪异的, 对应释义为在世界 w 中 ϕ 不可能成立又必然成立! 为此, 我们给模型中的 \rightsquigarrow 添加约束条件, 排除掉后续世界不存在的怪异情形.

定义 4.1 模型 $M := (W, \leadsto, V)$ 称为连续的 (serial), 当且仅当对于任意的 $w \in W$, 总有 w' 使得 $w \leadsto w'$. 注: 此处连续的是 serial 之意, 区别于 continuous.

命题 4.1 设模型 $\mathcal{M} := (W, \leadsto, V)$ 是连续的,则对于任意公式 ϕ ,总有 $\mathcal{M} \models \Box \phi \rightarrow \Diamond \phi$.

证明. 留作练习 (提示: 从必然中提取某后续 w' 使或然成立).

定义 4.2 公式 $D := \Box \phi \rightarrow \Diamond \phi$ 称为道义公理 (Deontic Axiom, D), 全体连续模型记作 \mathcal{M}_D , 则 $\models_D D$.

所谓的道义逻辑, 指的是一种必须与许可的逻辑, 其中我们将 $\Box \phi$ 解释成必须做 ϕ , 将 $\Diamond \phi$ 解释成允许做 ϕ , 道义公理解释为: 我们必须做的事情, 是被允许做的事情.

事实上, 即便模型连续, 也并未使得语义符合我们的直观, 这表现为公式 $\Box \phi \to \phi$, 其诠释为 ϕ 必然成立蕴含 ϕ 成立, 这是再合理不过的直观了, 然而存在模型不满足该公式. 反模型的构造可以留给读者, 下面解释原因, 因为从后续世界 w' 的语义中无法推出前驱世界 w 的语义, 除非有某 w'=w, 即 $w \leadsto w$.

定义 4.3 模型 $M := (W, \leadsto, V)$ 称为自反的 (reflexive), 当且仅当对于任意的 $w \in W$, 总有 $w \leadsto w$.

定义 4.4 公式 $T := \Box \phi \rightarrow \phi$ 称为真值公理 (Truth Axiom, T), 全体自反模型记作 \mathcal{M}_T , 则 $\models_T T$.

下面两个命题留给读者验证.

命题 4.2 设模型 $\mathcal{M} := (W, \leadsto, V)$ 是自反的,则对于任意公式 ϕ ,总有 $\mathcal{M} \models \Box \phi \rightarrow \phi$.

命题 4.3 自反模型总是连续的, $P \models_T D$.

5 正规系统

定理 5.1 ϕ , ψ 是任意的公式变量, 以下公式均为重言式:

- 1. (N 公理): $\Box \phi$, 其中 ϕ 是重言式;
- 2. (K 公理): $\Box(\phi \to \psi) \to \Box\phi \to \Box\psi$;
- 3. $\Box \phi \leftrightarrow \neg \Diamond \neg \phi$.

证明. 设任意的模型 $\mathcal{M} = (W, \leadsto, V)$, 世界 $w \in W$,

- 1. 对于重言式 ϕ , 对任意 w' 有 $V(w')(\phi) = 1$, 考虑任意的 $w \rightsquigarrow w'$, 有 $M \models_w \Box \phi$, 显然 $M \models \Box \phi$;
- 2. 设 $V(w)(\Box(\phi \to \psi)) = 1, V(w)(\Box\phi) = 1$, 现证 $V(w)(\Box\psi) = 1$: 对于任意后续世界 w', 总有 $V(w')(\phi \to \psi) = 1, V(w')(\phi) = 1$, 此时必有 $V(w')(\psi) = 1$ 否则与布尔代数关于 \to 的真值表矛盾, 从而 $V(w)(\Box\psi) = 1$;
- 3. 留作练习.

本节接下来的内容只考虑全体模型 \mathcal{M} , 我们来构造这一语义下的自然演绎推理系统. 当文法与规则不涉及 \square 与 \Diamond 时, 推理系统实际上是直觉主义逻辑命题演算以及命题排中律拓展, 即经典逻辑命题演算. 我们在命题演算的基础上添加的只有 3 条规则, 分别是模态排中律, 公理 N 与公理 K.

定义 5.1 推理系统 K 定义如下, 并将 K 及其一致拓展统称为正规系统.

$$\frac{\Gamma \vdash \psi}{\Gamma, P \vdash P} \text{ Var } \frac{\Gamma \vdash \psi}{\Gamma, \phi \vdash \psi} \text{ Weaken } \frac{\Gamma \vdash \tau}{\Gamma \vdash \Gamma} \stackrel{\top \cdot \text{Intro}}{\longrightarrow} \frac{\Gamma, \bot \vdash \phi}{\Gamma, \bot \vdash \phi} \stackrel{\bot \cdot \text{Elim}}{\longrightarrow} \frac{\Gamma, \bot \vdash \phi}{\Gamma, \phi_1 \vdash \phi_2} \stackrel{\bot \cdot \text{Elim}}{\longrightarrow} \frac{\Gamma, \phi_1 \vdash \psi}{\Gamma, \phi_1 \lor \phi_2 \vdash \psi} \vee \cdot \text{Elim}$$

$$\frac{\Gamma, \phi_1 \vdash \phi_1 \lor \phi_2}{\Gamma, \phi_1, \phi_2 \vdash \phi_1 \land \phi_2} \stackrel{\wedge \cdot \text{Intro}}{\longrightarrow} \frac{\Gamma, \phi_1 \land \phi_2 \vdash \phi_1}{\Gamma, \phi_1 \land \phi_2 \vdash \phi_1} \stackrel{\wedge \cdot \text{Elim}}{\longrightarrow} \frac{\Gamma, \phi_1 \land \phi_2 \vdash \phi_1}{\Gamma \vdash \psi} \stackrel{\wedge \cdot \text{Elim}}{\longrightarrow} \frac{\Gamma \vdash \phi}{\Gamma \vdash \psi} \rightarrow \cdot \text{Elim}$$

$$\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \leftrightarrow \neg \neg \phi} \stackrel{\rightarrow \cdot \text{Intro}}{\longrightarrow} \frac{\Gamma \vdash \phi \rightarrow \psi}{\Gamma \vdash \psi} \rightarrow \cdot \text{Elim}$$

$$\frac{\Gamma \vdash \phi \leftrightarrow \neg \neg \phi}{\Gamma \vdash \Box \phi \leftrightarrow \neg \Diamond \neg \phi} \stackrel{\rightarrow \cdot \text{ModalLem}}{\longrightarrow} \frac{\vdash \phi}{\vdash \Box \phi} \stackrel{\rightarrow \cdot \text{Niom}N}{\longrightarrow} \frac{\Gamma \vdash \Box \phi \rightarrow \psi}{\vdash \Box \phi \rightarrow \Box \psi} \stackrel{\rightarrow \cdot \text{Niom}N}{\longrightarrow} \frac{\Lambda \times \text{Niom}N}{\square}$$

为了获得更多的经典逻辑直觉,我们下面来证明一些命题:

命题 5.2 对于任意公式 ϕ, ψ , 总有 \vdash $(\phi \rightarrow \psi) \leftrightarrow (\neg \phi \lor \psi)$.

证明. 对于 \rightarrow , 我们只给出 $\phi \rightarrow \psi \vdash \neg \neg (\neg \phi \lor \psi)$, 后者结合排中律立刻有前者: $\Gamma := \phi \rightarrow \psi, \neg (\neg \phi \lor \psi)$

$$\frac{\Gamma, \phi \vdash \phi \qquad \Gamma \vdash \phi \to \psi}{\Gamma, \phi \vdash \psi} \qquad \Gamma \vdash (\neg \phi \lor \psi) \to \bot$$

$$\frac{\Gamma, \phi \vdash \neg \phi \lor \psi}{\Gamma, \phi \vdash \neg \phi \lor \psi} \qquad \Gamma \vdash (\neg \phi \lor \psi) \to \bot$$

$$\frac{\Gamma \vdash \neg \phi}{\Gamma \vdash \neg \phi \lor \psi} \qquad \Gamma \vdash (\neg \phi \lor \psi) \to \bot$$

$$\Gamma ::= \phi \to \psi, \neg (\neg \phi \lor \psi) \vdash \bot$$

$$\phi \to \psi \vdash \neg \neg (\neg \phi \lor \psi)$$

至于 ←, 不必借助排中律, 其证明也显见, 如下:

$$\begin{array}{c|c} \neg \phi, \phi \vdash \phi & \neg \phi, \phi \vdash \phi \to \bot & \neg \phi, \phi, \bot \vdash \psi \\ \hline \neg \phi, \phi \vdash \bot & \neg \phi, \phi \vdash \bot \to \psi \\ \hline \neg \phi, \phi \vdash \psi & \\ \hline \neg \phi \lor \psi, \phi \vdash \psi \\ \hline \neg \phi \lor \psi \vdash \phi \to \psi \\ \end{array}$$

命题 5.3 (对偶原理) 对于任意公式 ϕ , 总有 $\vdash \neg \phi \leftrightarrow \phi^*$, 其中运算 ϕ^* 归纳定义如下:

特别地, 我们有 \vdash ($\phi \rightarrow \psi$) \leftrightarrow ($\neg \psi \rightarrow \neg \phi$).

证明. 对 ϕ^* 归纳即可, 我们只讨论模态算子的分支, 对于 $\vdash \Box \phi \leftrightarrow \neg \Diamond \phi^*$, 使用归纳假设 $\vdash \phi \leftrightarrow \neg \phi^*$ 应证明 $\vdash \Box \phi \leftrightarrow \neg \Diamond \neg \phi$, 这是公理; 对于 $\vdash \Diamond \phi \leftrightarrow \neg \Box \phi^*$, 应证明 $\vdash \neg \neg \Diamond \neg \neg \phi \leftrightarrow \neg \Box \neg \phi$, 类似易证.

定义 5.2 含有 $\phi_1, ..., \phi_n$ 的公式 $A_{\phi_1, ..., \phi_n}$, 公式 $\neg A_{\neg \phi_1, ..., \neg \phi_n}^*$ 称为其对偶公式, 记作 A^{∂} .

 $K^{\partial} ::= \Box(\psi \to \phi) \to \Diamond \psi \to \Diamond \phi$, 方便起见, 我们对调 ϕ, ψ 位置, 令 $K^{\partial} ::= \Box(\phi \to \psi) \to \Diamond \phi \to \Diamond \psi$

推论 (对偶原理) 如果 A 是公理, 那么 A^{∂} 可推, 即 $\vdash_A A^{\partial}$; 反之亦有 $\vdash_{A^{\partial}} A$.

证明. 从对偶原理知, $\vdash A_{\neg i_1,...,\neg \phi_n} \leftrightarrow \neg A_{\neg \phi_1,...,\neg \phi_n}^*$, 若 $A_{\phi_1,...,\phi_n}$ 是公理, 即任取 $\phi_1,...,\phi_n$, 均有 $\vdash A_{\phi_1,...,\phi_n}$, 那么也有 $\vdash \neg A_{\phi_1,...,\phi_n}^*$. 不妨代入 $\neg \phi_1,...,\neg \phi_n$, 此时有 $\vdash A^{\partial}$.

公理 K 的对偶原理直接导致了如下导出规则:

定理 5.4 如下导出规则可靠 (Sound), 其证明由公理 N 与公理 K 及其对偶 K^{∂} 直接给出:

$$\frac{\vdash \phi \to \psi}{\vdash \Box \phi \to \Box \psi} \Box \text{-Functor} \qquad \frac{\vdash \phi \to \psi}{\vdash \Diamond \phi \to \Diamond \psi} \Diamond \text{-Functor}$$

导出规则的命名是有意的,我们已将 \Box , \Diamond 看作 \mathscr{F} 上的自函子了,只不过这需要一些范畴论知识,留给有兴趣的读者赏玩. 这里只提几句,我们将 $\vdash \phi \to \psi$ 的证明树视为等价的 (即证明无关性 proof-irrelevance),从而态射 $\phi \to \psi$ 若要存在则必唯一,因此 \Box , \Diamond 的函子性便能得证. 某些公理 A_{ϕ} 可以视为自然变换 A, 给出从对象 ϕ 到态射 A_{ϕ} 的映射,例如 $D ::= \Box \phi \to \Diamond \phi : \Box \to \Diamond$, $T ::= \Box \phi \to \phi : \Box \to \mathbf{Id}$.

定理 5.5 系统 K 是可靠的 (Sound), 即对于任意公式 ϕ , 如果 $\vdash \phi$, 那么 $\models \phi$.

定理 5.6 系统 K 是完备的 (Complete), 即对于任意公式 ϕ , 如果 $\models \phi$, 那么 $\models \phi$.

可靠性的证明只需对证明序列 $\vdash \phi$ 进行归纳,而完备性较为复杂,此处省略.

6 公理 D 与公理 T 对应的模态逻辑

我们已经见过两个额外的公理了, 他们分别是公理 D 与公理 T. 为了区分, 我们将系统 K 的推理符号记作 \vdash_K , 将公理 D 与公理 T 分别加入系统中, 就得到了两个正规系统 \vdash_D 与 \vdash_T .

定义 6.1 我们没有写出 D^{∂} , 这是因为 $D^{\partial} = D$.

$$\frac{}{\Gamma \vdash_{D} \Box \phi \rightarrow \Diamond \phi} \text{Axiom} D \qquad \frac{}{\Gamma \vdash_{T} \Box \phi \rightarrow \phi} \text{Axiom} T \qquad \frac{}{\Gamma \vdash_{T} \phi \rightarrow \Diamond \phi} \text{Axiom} T^{\partial}$$

在语义上,满足公理 T 的模型总满足公理 D; 在推理系统上,从公理 T 能推出公理 D: **命题 6.1** 对于任意的 ϕ , $\vdash_T D$.

证明.
$$\vdash_T D: \Box \phi \xrightarrow{T} \phi \xrightarrow{T^{\partial}} \Diamond \phi$$

7 公理 B、公理 4 与公理 5

下面将介绍公理 B、公理 4 与公理 5, 我们仍先从语义视角介绍公理, 然后再建立其推理系统.

简要地说, 公理 B 对应 \hookrightarrow 的对称性, 公理 4 对应传递性, 公理 5 对应欧几里得性, 这些公理与性质由如下陈述, 对应的证明留给读者证明.

定义 7.1 记公式 $B := \phi \to \Box \Diamond \phi$, 其对偶 $B^{\partial} := \Diamond \Box \phi \to \phi$, 全体对称模型记作 \mathcal{M}_B ; 模型 $\mathcal{M} := (W, \leadsto, V)$ 是对称的 (symmetric), 当且仅当对任意 $w \leadsto w'$, 总有 $w' \leadsto w$.

定义 7.2 记公式 $4 := \Box \phi \to \Box \Box \phi$, 其对偶 $4^{\partial} := \Diamond \Diamond \phi \to \Diamond \phi$, 全体传递模型记作 \mathcal{M}_4 ; 模型 $\mathcal{M} := (W, \leadsto, V)$ 是传递的 (transitive), 当且仅当对任意 $w \leadsto w', w' \leadsto w''$, 总有 $w \leadsto w''$.

定义 7.3 记公式 $5 := \Diamond \phi \to \Box \Diamond \phi$, 其对偶 $5^{\partial} := \Diamond \Box \phi \to \Box \phi$, 全体欧几里得模型记作 \mathcal{M}_5 ; 模型 $\mathcal{M} := (W, \leadsto, V)$ 是欧几里得的 (Euclidean), 当且仅当对任意 $w \leadsto w_1, w \leadsto w_2$, 总有 $w_1 \leadsto w_2$.

命题 7.1 设模型 $\mathcal{M} := (W, \leadsto, V)$ 是对称的,则总有 $\mathcal{M} \models \phi \to \Box \Diamond \phi$,即 $\models_B B$.

命题 7.2 设模型 $\mathcal{M} := (W, \leadsto, V)$ 是传递的,则总有 $\mathcal{M} \models \Box \phi \rightarrow \Box \Box \phi$,即 $\models_4 4$.

命题 7.3 设模型 $\mathcal{M} := (W, \leadsto, V)$ 是欧几里得的,则总有 $\mathcal{M} \models \Diamond \phi \rightarrow \Box \Diamond \phi$,即 $\models_5 5$.

我们从语义的角度给出公理之间的联系,即如下命题:

命题 7.4 $\models_{B4} 5, \models_{B5} 4$, 即 $\mathcal{M}_{B4} = \mathcal{M}_{B5} = \mathcal{M}_{B45}$.

- 1. (\models_{B4} 5): 设模型 $\mathcal{M} ::= (W, \leadsto, V)$ 是对称传递的, 现证 \mathcal{M} 也是欧几里得的, 任取 $w \leadsto w_1, w \leadsto w_2$, 结合对称性知 $w_1 \leadsto w$, 结合传递性知 $w_1 \leadsto w_2$;
- 2. (\models_{B5} 4): 设模型 $\mathcal{M} ::= (W, \leadsto, V)$ 是对称欧几里得的, 现证 \mathcal{M} 也是传递的, 任取 $w \leadsto w', w' \leadsto w''$, 结合对称性知 $w' \leadsto w$, 结合欧几里得性知 $w \leadsto w''$.

现在让我们建立推理系统:

$$\frac{}{\Gamma \vdash_{B} \phi \to \Box \Diamond \phi} \xrightarrow{\text{Axiom} B} \frac{}{\Gamma \vdash_{B} \Diamond \Box \phi \to \phi} \xrightarrow{\text{Axiom} B^{\partial}}$$

$$\frac{}{\Gamma \vdash_{A} \Box \phi \to \Box \Box \phi} \xrightarrow{\text{Axiom} 4} \frac{}{\Gamma \vdash_{A} \Diamond \Diamond \phi \to \Diamond \phi} \xrightarrow{\text{Axiom} 4^{\partial}}$$

$$\frac{}{\Gamma \vdash_{5} \Diamond \phi \to \Box \Diamond \phi} \xrightarrow{\text{Axiom} 5} \frac{}{\Gamma \vdash_{5} \Diamond \Box \phi \to \Diamond \phi} \xrightarrow{\text{Axiom} 5^{\partial}}$$

公理间在模型语义上有联系,在推理系统中亦然.

命题 7.5 $\vdash_{B4} 5, \vdash_{B5} 4$, 证明如下图所示:

$$\vdash_{B4} 5 : \Diamond \phi \xrightarrow{B_{\Diamond \phi}} \Box \Diamond \Diamond \phi \xrightarrow{\Box 4^{\partial}_{\phi}} \Box \Diamond \phi$$

$$\vdash_{B5} 4 : \Box \phi \xrightarrow{B_{\Box \phi}} \Box \Diamond \Box \phi \xrightarrow{\Box 5^{\partial}_{\phi}} \Box \Box \phi$$

1: the Modal Lattice

8 正规系统之间的关系

如上图所示, 不同的公理扩展之间存在包含关系, 例如 $T \to D$ 意味着系统 T 包含着系统 D. 注意观察, 关于 (D,T) 与 (B,4,5) 之间并不正交, D 层处缺失了 DB45, T 层处缺失了 T45 与 TB45.

这是因为缺失的 DB45、T45 以及 TB45 与 T5 都等价, 由如下命题确保:

命题 8.1 \models_{DB4} T, 设模型 $M ::= (W, \leadsto, V)$ 是连续对称传递的, 任取 $w \in W$, 由连续性保证存在某 $w' \in W$, 使得 $w \leadsto w'$, 由对称性有 $w' \leadsto w$, 由传递性有 $w \leadsto w$, 即模型 M 也是自反的.

$$\vdash_{DB4} T: \Box \phi \xrightarrow{4} \Box \Box \phi \xrightarrow{D_{\Box \phi}} \Diamond \Box \phi \xrightarrow{B^{\partial}} \phi$$

命题 8.2 $\models_{T5} B$, 设模型 $\mathcal{M} ::= (W, \leadsto, V)$ 是自反欧几里得的, 任取 $w \leadsto w'$, 由自反性有 $w \leadsto w$, 由欧几里得性有 $w' \leadsto w$, 即模型 \mathcal{M} 也是对称的.

$$\vdash_{T5} B: \phi \xrightarrow{T^{\partial}} \Diamond \phi \xrightarrow{5} \Box \Diamond \phi$$

有了这两个命题之后, 我们来最后讨论 45 与 B45 的关系, 事实上二者是真包含关系, 我们可以构造一个模型来验证这一点. 由于 $\models_{T5} B$, 显然我们的模型不能包含自反性条件, 此时容易构造:

例 8.1 模型 $\mathcal{M} := (\{w_1, w_2\}, \leadsto, V)$, 其中 \leadsto 如下图所示, 容易验证 $\mathcal{M} \in \mathcal{M}_{45}$ 以及 $\mathcal{M} \notin \mathcal{M}_{B45}$.

$$w_1 \longrightarrow w_2$$

值得注意的是,上述提到的推理系统 \vdash_A 相对于其语义 \vdash_A 是可靠且完备的,只是没有给出证明;另外,习惯上把公理 N, K, T 的聚集记作 S,例如 S4 指的是含有公理 N, K, T,4 的模态逻辑系统,这是因为存在非正规的模态逻辑系统,只是本文并不涉及. 本文后续仍将继续使用类似于 T4 的记号.

9 T4 模态词的规约

借助模态排中律,可以将公式中的否定词 ¬ 向左提取, 即 $\vdash \Box \neg \phi \rightarrow \neg \Diamond \phi$, $\vdash \Diamond \neg \phi \rightarrow \neg \Box \phi$; 再根据命题排中律,可以将否定词 ¬ 规约剩余至多一个, 最终得到形如 F 或 ¬F 的形式, 其中 $F \in \{\Box, \Diamond\}^*$ 称为模态词串. 对于模态词 F 以及命题变量 $P \in \mathcal{P}$, 若将 F P 规定为原子命题, 则模态逻辑可以规约为一个命题逻辑. 在模态逻辑系统中, 模态词串有无穷多个. 然而在本文探讨的一些系统中, 模态词串在逻辑等价下只有有限个等价类, 计算等价类代表元的过程, 称作规约.

我们先讨论 T4, 再讨论其他系统.

命题 9.1 在系统 \vdash_{T_4} 中, 如下可推:

由上述命题, 模态词串可被规约为7种情形, 分别是●,□,◊,□◊,◊□,□◊□,◊□◊.

 T^{∂} 与 4^{∂} 共同说明了 \Diamond 的单子性 (monadicity), 从这个角度上, T4 是一个好系统.

10 K5 模态词的规约

引理 10.1 $\vdash \Box \phi \rightarrow (\Box \psi \rightarrow \Box (\phi \land \psi))$, 进而 $\vdash \Box \phi \land \Box \psi \rightarrow \Box (\phi \land \psi)$.

证明. 如下图所示:

$$\vdash \phi \longrightarrow \psi \rightarrow (\phi \rightarrow \psi)$$

$$\vdash \Box \phi \longrightarrow \Box (\psi \rightarrow (\phi \rightarrow \psi)) \xrightarrow{K_{\psi,\phi \rightarrow \psi}} \Box \psi \rightarrow \Box (\phi \rightarrow \psi)$$

定理 10.2 (划一定理) $\vdash U, \vdash U^{\partial}$, 其中:

$$U_{\phi,\psi} ::= (\Diamond \phi \to \Box \psi) \to (\Box \phi \to \Box \psi), U_{\phi,\psi}^{\partial} ::= \neg U_{\neg \psi,\neg \phi}^* = (\Diamond \phi \to \Box \psi) \to (\Diamond \phi \to \Diamond \psi).$$

证明. 由对偶原理有 $\vdash (\Diamond \phi \to \Box \psi) \to (\Box \neg \phi \lor \Box \psi)$, 下证 $\vdash (\Box \neg \phi \lor \Box \psi) \to (\Box \phi \to \Box \psi)$:

$$\frac{ \begin{array}{c} -\neg\phi \wedge \phi \rightarrow \psi \\ \hline -\neg\phi, \Box\phi \vdash \Box(\neg\phi \wedge \phi) \end{array} \begin{array}{c} -\neg\phi \wedge \phi \rightarrow \psi \\ \hline -\Box(\neg\phi \wedge \phi) \rightarrow \Box\psi \end{array} \begin{array}{c} \text{Axiom} N \\ \hline \hline \Box\neg\phi, \Box\phi \vdash \Box\psi \\ \hline \Box\neg\phi \vdash \Box\phi \rightarrow \Box\psi \end{array} \begin{array}{c} \Box\psi, \Box\phi \vdash \Box\psi \\ \hline \Box\psi \vdash \Box\phi \rightarrow \Box\psi \end{array}$$

命题 10.3 在系统 \vdash_{K5} 中, 如下可推:(其对偶定理留作练习)

由上述命题, 模态词串可被规约为 7 种情形, 分别是 ●, □, ◊, □◊, ◊□, □□, ◊◊.

标注?的态射在语义上是重言式, 推理系统上的证明较难想到, 详见杂录关于 T5 与 K5 的关系.

11 D5 模态词的规约

命题 11.1 在系统 \vdash_{D5} 中, 如下可推, 且模态词串可被规约为 5 种情形, 分别是 \bullet , □, ⋄, □□, ⋄⋄:

12 *K*45 模态词的规约

命题 12.1 在系统 \vdash_{K45} 中, 如下可推, 且模态词串可被规约为 5 种情形, 分别是 \bullet , □, ⋄, □⋄, ⋄□:

13 T5 模态词的规约

命题 13.1 在系统 \vdash_{T5} 中, 如下可推, 且模态词串可被规约为 3 种情形, 分别是 \bullet , □, ♦:

14 杂录

1 修改自 2022slides, 关于一阶谓词以及自然语言的诠释等内容, 此处不再复述. 关于 T5 与 K5, 应有如下, 参考: https://philosophy.stackexchange.com/questions/75634/

$$\frac{\vdash_{T5} \phi}{\vdash_{K5} \Box \phi} \qquad \qquad \frac{\vdash_{T5} \phi}{\vdash_{K5} \Diamond \phi}$$

关于直觉主义下的 S4, 可以参考如下文献:

- 1. STLC/S4: https://www.cs.cmu.edu/fp/papers/mscs00.pdf
- 2. MLTT/S4: https://dl.acm.org/doi/10.1145/3341711