Roboty przemysłowe – laboratorium

I SERIA

Temat 1: Wyznaczenie równań kinematyki prostej układu manipulacyjnego.

Celem ćwiczenia jest wyznaczenie równań kinematyki prostej układu manipulacyjnego wskazanego przez prowadzącego. Równania określa się zgodnie z zasadą Denavita-Hantenberga. Przekształcenia cząstkowe można realizować za pomocą procesora symbolicznego MAPLE/ Matlab Symbolic Math Toolbox. Wynikowe równania należy wykorzystać do opracowania m-funkcji kinDirXXX.m), która będzie testowana w środowisku MATLAB.

Zadania do wykonania

1. Zapoznać się ze strukturą układu kinematycznego, która jest współcześnie szeroko rozpowszechniona w nowoczesnych robotach przemysłowych.

Rys. Struktura kinematyczna

2. Przeanalizuj dane w tabeli parametrów robota.

Nr przegubu	a [mm]	d[mm]	∝ [stopień]	θ [stopień]
0	300	0	90	0
1	1000	0	0	-90
2	250	0	90	0
3	0	1300	-90	0
4	0	0	90	0
5	0	200	0	0

- 3. Na podstawie tabeli przygotować macierze Denavita- Hantenberga A_i^{i-1} .
- 4. Wyznaczyć równania kinematyki prostej jako $T_3^0=A_1^0A_2^1A_3^2$ oraz $T_5^0=A_1^0A_2^1A_3^2A_4^3A_5^4\;.$
- 5. Zapisać wektor translacji p^0 tablicy T_3^0 oraz T_5^0 w postaci trzech równań składowych.
- 6. Wyznaczyć kąty Eulera dla macierzy T_3^0 oraz T_5^0 .

$$Euler = R_{z}(\varphi)R_{y'}(\theta)R_{z''}(\psi)$$

$$\varphi = Atan2(a_{y}, a_{z})$$

$$\theta = Atan2(\cos(\varphi)a_{x} + \sin(\varphi)a_{y}, a_{z})$$

$$\psi = Atan2(-\sin(\varphi)n_{x} + \cos(\varphi)n_{y}, -\sin(\varphi)o_{x} + \cos(\varphi)o_{y})$$

- 7. Opracować m-funkcję kinDirXXX.m (kinDirXXX.cpp) na podstawie wektora, translacji oraz kątów Eulera. XXX oznacza nazwę struktury kinematycznej.
- 8. Sprawdzić równanie kinematyki prostej podając na wejście liniowe funkcje dla zmiennych przegubowych q_1,q_2,q_3 . Wykreślić przebieg składowych wektora translacji.
- 9. Wykreślić przestrzeń roboczą, przyjmując, że dwie ostatnie zmienne przegubowe (kiść) przyjmują wartość 0.
- 10. Opracować wnioski z ćwiczenia.