Licence MIASHS

Travaux Dirigés de Géométrie

1ère année-S1

Fiche n° 3

EXERCICE 1

Dans \mathbb{R}^3 , on considère : $\vec{a} = (1, 2, 3), \vec{b} = (4, 5, 6), \vec{c} = (7, 8, 9); \vec{u} = (2, 2, 1), \vec{v} = (1, 1, -1), \vec{w} = (0, 1, 1);$ $\vec{A} = \left(-3, \frac{2}{3}, 1\right), \vec{B} = \left(3, -\frac{1}{3}, 2\right), \vec{C} = (27, -1, 36); \vec{U} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right), \vec{V} = \left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right), \vec{W} = \left(-\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{6}, -\frac{\sqrt{6}}{3}\right).$

- 1. Les vecteurs \vec{a} et \vec{b} sont-ils colinéaires? Les vecteurs \vec{a}, \vec{b} et \vec{c} sont-ils coplanaires?
- **2.** Peut-on exprimer \vec{c} comme Combinaison Linéaire de \vec{a} et \vec{b} ? \vec{v} comme C. L. de \vec{a}, \vec{b} et \vec{c} ?
- **3.** Les vecteurs \vec{u} , \vec{v} et \vec{w} sont-ils coplanaires? Peut-on exprimer \vec{a} comme C. L. de \vec{u} , \vec{v} et \vec{w} ? (α, β, γ) de \mathbb{R}^3 comme C. L. de \vec{u}, \vec{v} et \vec{w} ? \vec{a} comme Combinaison Linéaire de \vec{u} et \vec{v} ?
- **4.** Le triplet $(\vec{A}, \vec{B}, \vec{C})$ forme-t-il une base de \mathbb{R}^3 ? $(\vec{U}, \vec{V}, \vec{W})$ forme-t-il une base orthonormée de \mathbb{R}^3 ?
- **5.** Calculer $\overrightarrow{u} \wedge (\overrightarrow{v} \wedge \overrightarrow{w})$ puis $(\overrightarrow{u} \wedge \overrightarrow{v}) \wedge \overrightarrow{w}$. Qu'en déduisez-vous?

EXERCICE 2

L'espace \mathbb{R}^3 est rapporté à un repère $(O, \vec{i}, \vec{j}, \vec{k})$.

- **1.** On considère le point U = (-1, 2, -3) et les vecteurs $\vec{a} = (-2, 5, 1), \vec{b} = (3, 1, -4)$.
- 1.1. Donner une équation cartésienne du plan \mathcal{A} passant par U et dirigé par \vec{a} et \vec{b} .
- **1.2.** Donner une représentation paramétrique du plan \mathcal{B} d'équation cartésienne 21x + 5y + 17z = 240.
- 1.3. Donner les positions relatives et l'intersection de \mathcal{A} et \mathcal{B} .
- **2.** On considère le point V = (7,5,4) et le vecteur $\vec{c} = (1,2,3)$.
- **2.1.** Donner une représentation paramétrique de la droite $\mathcal C$ passant par V et dirigée par $\vec c$.
- **2.2.** Donner les positions relatives et l'intersection de \mathcal{B} et \mathcal{C} .
- **2.3.** Déterminer les positions relatives et l'intersection de \mathcal{C} et de la droite (UV).
- **3.** Soit \mathcal{R} le plan d'équation cartésienne x + y + z = 0.
- **3.1.** Donner les positions relatives et l'intersection de \mathcal{B} et \mathcal{R} . On note $\mathcal{D} = \mathcal{B} \cap \mathcal{R}$.
- **3.2.** Donner les positions relatives et l'intersection de $\mathcal C$ et $\mathcal D.$

EXERCICE 3

Dans l'espace \mathbb{R}^3 , on note (x, y, z) les coordonnées dans le repère ou la base canonique.

- 1. A = (0, 1, -1), B = (2, -5, 8), C = (1, 1, -1) sont-ils alignés? Donner une représentation paramétrique pour la droite (AB) puis pour le plan (ABC). Montrer que $\mathcal{D} = \{(2x-2, 5-2x, -7+3x), x \in \mathbb{R}\}$, est une droite du plan (ABC). Le point D = (4, -2, 7) appartient-il à ce plan?
- **2.** A = (1, 0, 2), B = (2, 1, 3/2), C = (3, 2, 1), D = (-1, 3, 2), E = (-1, -7, 4), sont-ils coplanaires?
- 3. Déterminer le plan \mathcal{P} contenant les droites $\mathcal{D} = \begin{cases} x = 4 3t \\ y = 2 3t \\ z = -5 t \end{cases}$ $t \in \mathbb{R}$ et $\mathcal{D}' = \begin{cases} x = 4 + 3r \\ y = -2 r \\ z = 6r \end{cases}$
- 4. Donner une équation cartésienne du plan \mathcal{P} passant par A=(3,-2,5) et parallèle au plan \mathcal{Q} d'équation cartésienne Q: 2x + y - 3z + 7 = 0.

EXERCICE 4

Dans l'espace \mathbb{R}^3 , on note (x,y,z) les coordonnées dans le repère ou la base canonique.

- 1. Donner un point et deux vecteurs directeurs du plan \mathcal{P}_1 d'équation cartésienne : x + 2y + z = 1.
- 2. Donner deux points distincts et un vecteur normal du plan \mathcal{P}_2 d'équation cartésienne : 2x + 3y z = 4.
- 3. Donner les positions relatives des plans \$\mathcal{P}_1\$ et \$\mathcal{P}_2\$.
 4. Résoudre dans \$\mathbb{R}^3\$ le système \$\begin{cases} x + 2y + z = 1 \ 2x + 3y z = 4 \end{cases}\$ et interpréter géométriquement l'ensemble des solutions.
 5. Donner une représentation paramétrique du plan \$\mathcal{P}_3\$ d'équation cartésienne : \$3x + y z = 2\$.
- **6.** Résoudre dans \mathbb{R}^3 le système $\begin{cases} x+2y+z=1\\ 2x+3y-z=4\\ 3x+y-z=2 \end{cases}$ et interpréter géométriquement ses solutions.
- 7. Soient $a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3$ neuf réels quelconques, montrer que $\begin{vmatrix} b_1 & b_2 & b_3 \end{vmatrix}$
- 8. Montrer que trois plans sont sécants en un point si et seulement si leurs vecteurs normaux ne sont pas coplanaires.