Goal of model evaluation: Determine how well a model building procedure will work for our data. In mind: dater follows serve prob. dist. DEP 1 prob. To form an estimate of how well a model created by a certain procedure will work on inferseen data. Train/Validation/test data Validation train model building test model optimize over a hypor-parete (tuninic pareneter)

> eval, metric) hypor-paweth) final model final metric = estimate a model this procedured will perform on new dater At the end of the day:
you'll build model using all data X-validation: this has the same problems.

(>) jost a fencier way of estimating perfement I data) V-fdd X-validatia (fold) (fold z) ... foldy For V= 1,--- V procedure:

procedure: For V=1,V fit on all but fold k meevalute on fold k
final metric = mean (MES)
To optnize over a hyperparaveter Nested X-validation:
Nosterl X-validation
Nested X-vallaanigh; when loop
procedue: For V=1,, V
data This and evaluate using X-validation on all Ent fld v n over hyper param 100 p The final mode
(fdv)) Devalare an fold to me
pool ad x-validate final metric = avg (mrs).
Bias/Variance Tradeoff
Laymens Terms:
Bias: error incoms b/e me approx. a complime real life prenonena

dist. Sample: $MSE = \frac{1}{N} \sum_{n=1}^{N} (y_n - \hat{y}_n)^2$ [Sample MSE] Cexpected & Less touth $Var(\hat{f}) \leftarrow variability of \hat{f}$ $y = f(x) \text{ and } \hat{y} = \hat{f}(x)$ $MSE = E[(f-\hat{f})^2]$ = E[((f-E[f]+(E[f]-f))] $= \mathbb{E}\left[\left(\hat{f} - \mathbb{E}(\hat{f})\right)^{2} + \left(\mathbb{E}(\hat{f}) - \hat{f}\right)^{2} + 2\left(\hat{f} - \mathbb{E}\hat{f}\right)\left(\mathbb{E}\hat{f} - \hat{f}\right)\right]$ $= \left(\hat{f} - \mathbb{E}(\hat{f})\right)^{2} + \mathbb{E}\left[\left(\hat{f} - \mathbb{E}\hat{f}\right)^{2}\right] Var(\hat{f})$ +2(f-Ef)

Sample size clensity:

More data tends to reduce variance. MSE variona // Myta N=10 bias N=100 more data = more flexible veasonerble high flex N = 100_-N = 3