Problem A. GCD Arrays

Time limit 2000 ms **Mem limit** 262144 kB

Consider the array a composed of all the integers in the range [l,r]. For example, if l=3 and r=7, then a=[3,4,5,6,7].

Given l, r, and k, is it possible for gcd(a) to be greater than 1 after doing the following operation at most k times?

- Choose 2 numbers from a.
- Permanently remove one occurrence of each of them from the array.
- Insert their product back into *a*.

gcd(b) denotes the greatest common divisor (GCD) of the integers in b.

Input

The first line of the input contains a single integer t ($1 \le t \le 10^5$) — the number of test cases. The description of test cases follows.

The input for each test case consists of a single line containing 3 non-negative integers l, r, and k ($1 \le l \le r \le 10^9$, $0 \le k \le r - l$).

Output

For each test case, print "YES" if it is possible to have the GCD of the corresponding array greater than 1 by performing at most k operations, and "NO" otherwise (case insensitive).

Sample 1

Input	Output
9	NO
1 1 0	NO
3 5 1	YES
13 13 0	YES
4 4 0	YES
3 7 4	YES
4 10 3	NO
2 4 0	NO
1 7 3	YES
1 5 3	

Note

For the first test case, a=[1], so the answer is "NO", since the only element in the array is 1.

For the second test case the array is a=[3,4,5] and we have 1 operation. After the first operation the array can change to: [3,20], [4,15] or [5,12] all of which having their greatest common divisor equal to 1 so the answer is "NO".

For the third test case, a=[13], so the answer is "YES", since the only element in the array is 13.

For the fourth test case, a=[4] , so the answer is "YES", since the only element in the array is 4.