Andromedan type theory

Andrej Bauer University of Ljubljana Philipp Haselwarter University of Ljubljana

Matija Pretnar University of Ljubljana

Christopher A. Stone Harvey Mudd College

December 4, 2018

Abstract

An outline of the type theory implemented by Andromeda.

1 The declarative formulation

In this section we give the formulation of type theory in a declarative way which minimizes the number of judgments, is better suited for a semantic account, but is not susceptible to an algorithmic treatment.

1.1 Syntax

Contexts:

$$\begin{array}{ll} \Gamma ::= & \bullet & \text{empty context} \\ & \mid & \Gamma, \, x : T & \text{context } \Gamma \text{ extended with } x : T \end{array}$$

Terms (e) and types (T, U):

$$\begin{array}{ccccc} e,T,U ::= & \mathsf{Type} & \mathsf{universe} \\ & \mid & \prod_{(x:T)} U & \mathsf{product} \\ & \mid & \mathsf{Eq}_T(e_1,e_2) & \mathsf{equality} \; \mathsf{type} \\ & \mid & x & \mathsf{variable} \\ & \mid & \lambda x : T_1.T_2 \cdot e & \lambda \text{-abstraction} \\ & \mid & e_1 @^{x:T_1.T_2} \; e_2 & \mathsf{application} \\ & \mid & \mathsf{refl}_T \; e & \mathsf{reflexivity} \end{array}$$

Note that λ -abstraction and application are tagged with extra types not usually seen in type theory. An abstraction $\lambda x:T_1.T_2.e$ specifies not only the type T_1 of x but also the type T_2 of e, where x is bound in T_2 and e. Similarly, an application $e_1 \otimes^{x:T_1.T_2} e_2$ specifies that e_1 and e_2 have types $\prod_{(x:T_1)} T_2$ and T_2 ,

respectively. This is necessary because in the presence of exotic equalities (think "nat \rightarrow bool \equiv nat \rightarrow nat") we must be very careful about β -reductions.

The annotations on an application matter also for determining when two terms are equal. For example, if $X, Y : \mathsf{Type}, f : \mathsf{nat} \to X$ and

$$e : \mathsf{Eq}_{\mathsf{Type}}(\mathsf{nat} {\rightarrow} X, \mathsf{nat} {\rightarrow} Y),$$

then $(f \otimes^{-\operatorname{inat} X} 0) : X$ and $(f \otimes^{-\operatorname{inat} Y} 0) : Y$, so the two identical-but-for-annotations terms have different types and thus cannot be equivalent.

1.2 Judgments

 Γ ctx Γ is a well formed context $\Gamma \vdash e : T$ e is a well formed term of type T in context Γ $\Gamma \vdash e_1 \equiv e_2 : T$ e_1 and e_2 are equal terms of type T in context Γ

The judgement "T is a type in context Γ " is a special case of term formation, namely $\Gamma \vdash T$: Type. Similarly, equality of types is just equality of terms at Type.

1.3 Contexts

$$\frac{\text{CTX-EMPTY}}{\bullet \text{ ctx}} \qquad \frac{\frac{\text{CTX-EXTEND}}{\Gamma \text{ ctx}} \Gamma \vdash T : \text{Type}}{\Gamma, \ x : T \text{ ctx}}$$

1.4 Terms and types

General rules

$$\frac{\Gamma \vdash e : T \qquad \Gamma \vdash T \equiv U : \mathsf{Type}}{\Gamma \vdash e : U} \qquad \frac{\Gamma \vdash T \equiv U : \mathsf{Type}}{\Gamma \vdash x : T}$$

Universe

$$\frac{\Gamma \text{Y-TYPE}}{\Gamma \text{ ctx}} \\ \frac{\Gamma \text{ ctx}}{\Gamma \vdash \text{Type} : \text{Type}}$$

Products

$$\frac{\Gamma\text{Y-PROD}}{\Gamma \vdash T: \mathsf{Type}} \qquad \frac{\Gamma}{\Gamma}, x: T \vdash U: \mathsf{Type} \qquad \frac{\Gamma}{\Gamma}, x: T \vdash e: U}{\Gamma \vdash (\lambda x: T.U \cdot e): \prod_{(x:T)} U}$$

$$\frac{\Gamma\text{ERM-APP}}{\Gamma \vdash e_1: \prod_{(x:T)} U} \qquad \Gamma \vdash e_2: T}{\Gamma \vdash e_1 \ @^{x:T.U} \ e_2: U[e_2/x]}$$

Equality types

$$\frac{ \overset{\text{TY-EQ}}{\Gamma \vdash T : \text{Type}} \quad \Gamma \vdash e_1 : T \quad \Gamma \vdash e_2 : T }{\Gamma \vdash \mathsf{Eq}_T(e_1, e_2) : \mathsf{Type} } \qquad \frac{ \overset{\text{TERM-REFL}}{\Gamma \vdash e : T} }{\Gamma \vdash \mathsf{refl}_T \ e : \mathsf{Eq}_T(e, e) }$$

1.5 Equality

General rules

$$\begin{array}{c} \text{EQ-REFL} \\ \frac{\Gamma \vdash e : T}{\Gamma \vdash e \equiv e : T} \end{array} \qquad \begin{array}{c} \text{EQ-SYM} \\ \frac{\Gamma \vdash e_1 \equiv e_1 : T}{\Gamma \vdash e_1 \equiv e_2 : T} \end{array} \qquad \begin{array}{c} \text{EQ-TRANS} \\ \frac{\Gamma \vdash e_1 \equiv e_2 : T}{\Gamma \vdash e_1 \equiv e_3 : T} \end{array} \qquad \begin{array}{c} \Gamma \vdash e_1 \equiv e_3 : T \\ \hline \Gamma \vdash e_1 \equiv e_3 : T \end{array}$$

Equality reflection

$$\frac{\Gamma \vdash e : \mathsf{Eq}_T(e_1, e_2)}{\Gamma \vdash e_1 \equiv e_2 : T}$$

Computations

$$\begin{array}{c} \text{PROD-BETA} \\ \Gamma \vdash T_1 \equiv U_1 : \mathsf{Type} \qquad \Gamma, \ x \colon T_1 \vdash T_2 \equiv U_2 : \mathsf{Type} \\ \Gamma, \ x \colon T_1 \vdash e_1 \ \colon T_2 \qquad \Gamma \vdash e_2 \ \colon U_1 \\ \hline \Gamma \vdash \left((\lambda x \colon T_1 . T_2 . e_1) \ @^{x \colon U_1 . U_2} \ e_2 \right) \equiv e_1[e_2/x] \colon T_2[e_2/x] \end{array}$$

Extensionality

$$\begin{split} \frac{\Gamma \vdash e_1' \, : \, \mathsf{Eq}_T(e_1, e_2) \qquad \Gamma \vdash e_2' \, : \, \mathsf{Eq}_T(e_1, e_2)}{\Gamma \vdash e_1' \equiv e_2' \, : \, \mathsf{Eq}_T(e_1, e_2)} \\ \\ \frac{\Gamma \vdash e_1' \equiv e_2' \, : \, \mathsf{Eq}_T(e_1, e_2)}{\Gamma \vdash e_1 \, : \, \prod_{(x:T)} U \qquad \Gamma \vdash e_2 \, : \, \prod_{(x:T)} U} \\ \frac{\Gamma, \, x \, : \, T \vdash (e_1 \, @^{x:T.U} \, x) \equiv (e_2 \, @^{x:T.U} \, x) \, : \, U}{\Gamma \vdash e_1 \equiv e_2 \, : \, \prod_{(x:T)} U} \end{split}$$

1.5.1 Congruences

Type formers

$$\begin{split} \frac{\Gamma \vdash T_1 \equiv U_1 : \mathsf{Type} \qquad \Gamma, \, x : T_1 \vdash T_2 \equiv U_2 : \mathsf{Type}}{\Gamma \vdash \prod_{(x:T_1)} T_2 \equiv \prod_{(x:U_1)} U_2 : \mathsf{Type}} \\ \frac{\mathsf{CONG-EQ}}{\Gamma \vdash T \equiv U : \mathsf{Type}} \qquad \frac{\Gamma \vdash e_1 \equiv e_1' : T}{\Gamma \vdash \mathsf{Eq}_T(e_1, e_2) \equiv \mathsf{Eq}_U(e_1', e_2') : \mathsf{Type}} \end{split}$$

Products

$$\begin{split} \frac{\Gamma \vdash T_1 \equiv U_1 : \mathsf{Type} \qquad \Gamma, \, x : T_1 \vdash T_2 \equiv U_2 : \mathsf{Type} \qquad \Gamma, \, x : T_1 \vdash e_1 \equiv e_2 : T_2}{\Gamma \vdash (\lambda x : T_1 . T_2 . e_1) \equiv (\lambda x : U_1 . U_2 . e_2) : \prod_{(x : T_1)} T_2} \\ \frac{\Gamma \vdash T_1 \equiv U_1 : \mathsf{Type} \qquad \Gamma, \, x : T_1 \vdash T_2 \equiv U_2 : \mathsf{Type}}{\Gamma \vdash e_1 \equiv e_1' : \prod_{(x : T_1)} T_2 \qquad \Gamma \vdash e_2 \equiv e_2' : T_1}{\Gamma \vdash (e_1 \ @^{x : T_1 . T_2} \ e_2) \equiv (e_1' \ @^{x : U_1 . U_2} \ e_2') : T_2[e_2/x]} \end{split}$$

Equality types

$$\frac{\Gamma \vdash e_1 \equiv e_2 : T \qquad \Gamma \vdash T \equiv U : \mathsf{Type}}{\Gamma \vdash \mathsf{refl}_T \ e_1 \equiv \mathsf{refl}_U \ e_2 : \mathsf{Eq}_T(e_1, e_1)}$$

2 Algorithmic version

Andromeda should be thought of as a programming language for deriving judgments. At the moment the language is untyped. We can hope to have it *simply typed* one day.

2.1 Syntax

Expressions:

$$E ::= \mathsf{Type}$$
 universe $\mid x$ variable

Computations:

$$\begin{array}{lll} C ::= & \mathsf{return} \ E & \mathsf{pure} \ \mathsf{expressions} \\ & | \ \mathsf{let} \ x := C_1 \ \mathsf{in} \ C_2 & \mathsf{let} \ \mathsf{binding} \\ & | \ C :: E & \mathsf{ascription} \\ & | \ \prod_{(x:E)} C & \mathsf{product} \\ & | \ \mathsf{Eq}(C,C) & \mathsf{equality} \ \mathsf{type} \\ & | \ \lambda x : E \cdot C & \lambda \text{-abstraction} \\ & | \ \mathsf{EC} & \mathsf{application} \\ & | \ \mathsf{refl} \ C & \mathsf{reflexivity} \end{array}$$

The result of a computation is a value, which is a pair (e,T) where e and T are terms of type theory, as described in Section 1.1. The correctness guarantee which we want is that a computation only ever evaluates to derivable judgments.

2.1.1 Operational semantics

Operational semantics is given by two versions of evaluation of computations, called inference and checking, of the forms:

Inference:
$$\Gamma$$
; $\eta \vdash C \Rightarrow (e, T)$
Checking: Γ ; $\eta \vdash C \Leftarrow T \mapsto e$

These are read as "in the given context Γ and environment η command C infers that e has type T" and "in the given context Γ and environment η command C checks that e has the given type T."

[EXPLAIN THAT AN ENVIRONMENT MAPS VARIABLES TO VALUES.]

$$\begin{split} & \frac{\Gamma; \, \eta \vdash C \Rightarrow (e, U) \qquad \Gamma; \, \eta \vdash T \approx U}{\Gamma; \, \eta \vdash C \Leftarrow T \mapsto e} \qquad & \overset{\text{INFER-TYPE}}{\Gamma; \, \eta \vdash \text{return Type}} \Rightarrow (\mathsf{Type}, \mathsf{Type}) \\ & \frac{\Gamma; \, \eta \vdash C \leftarrow T \mapsto e}{\Gamma; \, \eta \vdash C_1 \leftarrow \mathsf{Type} \mapsto T_1 \qquad \Gamma, \, x \colon T_1; \, \eta \vdash C_2 \leftarrow \mathsf{Type} \mapsto T_2} \\ & \frac{\Gamma; \, \eta \vdash \Gamma_1 \leftarrow \Gamma_1 \leftarrow \Gamma_1, \, x \colon T_1; \, \eta \vdash C_2 \leftarrow \Gamma_1, \, \tau_2, \, \tau_1; \, \tau_2, \, \tau_2; \, \tau_2, \, \tau_2; \, \tau_1; \, \tau_2, \, \tau_1; \, \tau_2, \, \tau_2; \, \tau_2, \, \tau_1; \, \tau_2, \, \tau_1; \, \tau_2, \, \tau_2; \, \tau_2; \, \tau_1; \, \tau_2, \, \tau_2; \, \tau_1; \, \tau_2, \, \tau_2; \, \tau_2; \, \tau_1; \, \tau_2, \, \tau_2; \, \tau_2; \, \tau_2; \, \tau_1; \, \tau_2, \, \tau_2; \, \tau_2; \, \tau_1; \, \tau_2, \, \tau_2; \, \tau_2; \, \tau_2; \, \tau_2; \, \tau_1; \, \tau_2, \, \tau_2; \, \tau_2; \, \tau_2; \, \tau_2; \, \tau_2; \, \tau_1; \, \tau_2, \, \tau_2; \, \tau_2$$

Inference of $Eq(C_1, C_2)$ keeps the type of the first argument.

Ascription only has an infer rule, and will always switch to a checking phase. It breaks the inward information flow and has to use the check-infer when encountered during checking.

$$\frac{\eta(x) = (e,T)}{\Gamma; \; \eta \vdash \mathsf{return} \; x \Rightarrow (e,T)}$$

CHECK- λ -TAGGED

$$\begin{array}{c} \Gamma; \ \eta \vdash U \leadsto^* \prod_{(x:U_1)} U_2 \not \leadsto \\ \frac{\Gamma; \ \eta \vdash E \Leftarrow \mathsf{Type} \mapsto T_1 \qquad \Gamma; \ \eta \vdash T_1 \approx U_1 \qquad \Gamma, \ x \colon T_1; \ \eta \vdash C \Leftarrow U_2 \mapsto e}{\Gamma; \ \eta \vdash \lambda x \colon E \cdot C \Leftarrow U \mapsto \lambda x \colon U_1 . U_2 \cdot e} \end{array}$$

$$\frac{\Gamma; \ \eta \vdash U \leadsto^* \prod_{(x:U_1)} U_2 \not\leadsto \qquad \Gamma, \ x:U_1; \ \eta \vdash C \Leftarrow U_2 \mapsto e}{\Gamma; \ \eta \vdash \lambda x \cdot C \Leftarrow U \mapsto \lambda x:U_1.U_2 \cdot e}$$

$$\frac{\Gamma; \ \eta \vdash E \Leftarrow \mathsf{Type} \mapsto U_1 \qquad \Gamma, \ x \colon\! U_1; \ \eta(x) \coloneqq (x, U_1) \vdash C \Rightarrow (e, U_2)}{\Gamma; \ \eta \vdash \lambda x \colon\! E \cdot C \Rightarrow (\lambda x \colon\! U_1 \cdot U_2 \cdot e, \prod_{(x \colon\! U_1)} U_2)}$$

$$\frac{\Gamma(x:U_1)}{\Gamma;\; \eta \vdash E \Rightarrow (e_1,T)} \qquad \Gamma;\; \eta \vdash T \leadsto^* \prod_{(x:U_1)} U_2 \not \leadsto \qquad \Gamma;\; \eta \vdash C \Leftarrow U_1 \mapsto e_2}{\Gamma;\; \eta \vdash E \, C \Rightarrow (e_1 \, @^{x:U_1.U_2} \, e_2, U_2[e_2/x])}$$

$$\frac{\Gamma; \ \eta \vdash C \Rightarrow (e_2, U)}{\Gamma; \ \eta \vdash E \Leftarrow \prod_{(::U)} T \mapsto e_1}{\Gamma; \ \eta \vdash E \leftarrow T \mapsto e_1 \ @^{::U:T} \ e_2}$$

$$\frac{\Gamma; \ \eta \vdash C \Rightarrow (e,T)}{\Gamma; \ \eta \vdash \operatorname{refl} \ C \Rightarrow (\operatorname{refl}_T \ e, \operatorname{Eq}_T(e,e))}$$

CHECK-REFL

$$\begin{array}{c} \Gamma; \ \eta \vdash T \leadsto^* \mathsf{Eq}_U(e_1, e_2) \not \leadsto \\ \underline{\Gamma; \ \eta \vdash C \Leftarrow U \mapsto e \qquad \Gamma; \ \eta \vdash e \approx e_1 \Leftarrow U \qquad \Gamma; \ \eta \vdash e \approx e_2 \Leftarrow U} \\ \overline{\Gamma; \ \eta \vdash \mathsf{refl} \ C \Leftarrow T \mapsto \mathsf{refl}_T \ e} \end{array}$$

$$\frac{\Gamma; \ \eta \vdash C_1 \Rightarrow (e_1, U) \qquad \Gamma; \ \eta(x) := (e, U) \vdash C_2 \Leftarrow T \mapsto e_2}{\Gamma; \ \eta \vdash \text{let } x := C_1 \text{ in } C_2 \Leftarrow T \mapsto e_2}$$

$$\frac{\Gamma}{\Gamma;\; \eta \vdash C_1 \Rightarrow (e_1, U)} \qquad \Gamma;\; \eta(x) := (e, U) \vdash C_2 \Rightarrow (e_2, T)}{\Gamma;\; \eta \vdash \mathsf{let}\; x := C_1 \;\mathsf{in}\; C_2 \Rightarrow (e_2, T)}$$

TODO: check the freshness (and other side-conditions?).