UFES - DEPARTAMENTO DE MATEMÁTICA SEGUNDA PROVA - CÁLCULO 2

Professora: Jaqueline da Costa Ferreira

Nome:

DATA:30.11.2022

Questão	Nota	Valor
1.a		2.0
2. ^a		2.0
3. ^a		2.0
4 . <i>a</i>		2.0
5. ^a		2.0
Total		10.0

- 1. Os pontos A = (3, 6, -7), B = (-5, 2, 3) e C = (4, -7, -6) são vértices de um triângulo. Escreva equações paramétricas da reta que contém a mediana relativa ao vértice C.
- 2. As equações $r: X = t\alpha(1,2,4)$ e s: X = (1,0,-2) + s(-1,-1,-1) descrevem os movimentos de duas partículas. Determine o valor de α para que haja colisão das partículas. Em que instante ela ocorre e em que ponto P?
- 3. Sejam r: X = (1, -1, 2) + t(2, 1, -1) e s: X = (0, 0, -1) + s(1, 2m, m) retas . Estude, segundo valores de m:
 - (a) $r \in s$ são paralelas.
 - (b) $r \in s$ são concorrentes.
 - (c) $r \in s$ são reversas.
- 4. Obtenha uma equação geral do plano π que:
 - (i) contém os pontos P = (1, 1, -1) e Q = (2, 1, 1);
 - (ii) dista 1 da reta r: X = (1,0,2) + t(1,0,2), isto é, $d(\pi,r) = 1$.
- 5. Considere seção cônica cuja equação é dada por $9x^2 18x + 4y^2 = 27$.
 - (a) Complete quadrados e identifique qual é a cônica.
 - (b) Faça um esboço.
 - (c) O(s) foco(s) está($\tilde{a}o$) paralelos ao eixo x ou y? Quais as coordenadas do(s) foco(s)?

Boa Prova

- $d(r, P) = \frac{||\overrightarrow{AP} \wedge \overrightarrow{u}||}{||\overrightarrow{u}||}$, A ponto qualquer pertencente a reta $r: P_0 + t\overrightarrow{u}$.
- $d(\pi, P) = \frac{|\overrightarrow{AP} \cdot \overrightarrow{n}|}{||\overrightarrow{n}||}$, A ponto qualquer pertencente ao plano $\pi : ax + by + cz + d = 0$.
- $d(s,r) = \frac{|\overrightarrow{AP}.\overrightarrow{u} \wedge \overrightarrow{v}|}{||\overrightarrow{u} \wedge \overrightarrow{v}||}$, P qualquer ponto de $r: X = P_1 + t\overrightarrow{v}$ e A ponto qualquer pertencente ao plano π que contém a reta $s: X = P_2 + t\overrightarrow{u}$ e a direção \overrightarrow{v} .
- $d(r,\pi) = \frac{|\overrightarrow{AP}.\overrightarrow{n}|}{||\overrightarrow{n}||}$, A ponto qualquer pertencente ao plano π e P qualquer ponto da reta r.