

Travelling Salesman Problem Metode clasice si simulated annealing

Prepared for: Camelia Chira, PhD Prepared by: Razvan-Stefan Grecu

10 April 2016 Group: TI 30643

RFFFRAT

Descrierea problemei

Problema comis-voiajorului este o problema de optimizare. Presupunem ca suntem un vanzator ambulant, dintr-un oras oarecare si vrem sa vizitam nu numar de orase dat, si apoi sa ne intoarcem acasa. Se doreste ca efortul depus de comis voiajor sa fie minim. Costul trecerii de la un oras la altul va fi dat de distanta dintre orase (distanta euclidiana in 2D). Deci, orasele vor fi caracterizate de 2 coordonate (x, y). O ruta va avea o lista de orase, astfel incat, distanta parcursa total sa fie minima.

Pentru rezolvarea acestei probleme, vom presupune ca fiecare oras are o legatura cu un alt oras. Initial vom transforma problema dintr-una de minimizare, intr-una de maximizare.

Prezentarea algoritmului

Avand specificatia problemei, cerinta a fost implementarea unor algoritmi clasici pentru rezolvarea acestei probleme dar si utilizarea metodei de racire simulata. In continuare, vor fi prezentati toti algoritmii utilizati pentru rezolvarea problemei. Va fi prezentat pseudocodul si descrieri ale unor metode folosite. Data fiind natura functionala a unei parti vaste a codului, pseudocodul poate sa nu fie foarte diferit de implementarea propriu-zisa.

Simulated annealing

O cautare locala cu anumiti parametri noi, precum temperatura, temperatura minima, factorul de racire...Daca avem o solutie mai rea, in functie de temperatura curenta, o putem accepta sau nu. Pseudocod:

```
while (temperature > minTemperature) {
    while (t < params.iterations) {
        int firstIndex = randomGenerator.nextInt(candidate.cities.indices.first(),
        candidate.cities.indices.last() - 1)
        int lastIndex = randomGenerator.nextInt(firstIndex + 1, candidate.cities.indices.last())
        Route neighbor = create2SwapRoute(candidate, firstIndex, lastIndex)
        if (neighbor.isBetter(candidate)) {
            candidate = neighbor
        } else {
            Double acceptanceProbability =</pre>
```

computeAcceptanceProbability(candidate.totalCostMinimum.doubleValue(),

```
neighbor.totalCostMinimum.doubleValue())

if (acceptanceProbability > randomGenerator.nextUniform(0.0, 1.0)) {

    candidate = neighbor
}

t++

}

t = 0

coolTemperatureLinear()

routes.add(candidate)
}
```

Rezultate experimentale si comparatii

In continuare vor fi prezentate comparatii intre solutii, atat din punctul de vedere al rezultatelor obtinute dar si a timpului de rulare. Temperatura a fost 10000, racirea a fost aplicata liniar, constanta folosita fiind 0,99.

Simulated Annealing results								
Cities	4000/3 - Cost/Time	5000/10 - Cost/Time	5000/50 - Cost/Time					
5	487/3s	487/2s	487/8s					
6	299/1s	313/0.7s	299/4s					
7	271/0.7s	271/0.6s	271/6s					
8	1459/0.8s	1431/0.5s	1411/7s					
9	1774/0.9s	1777/0.5s	1719/9s					
10	1624/0.5s	1598/0.5s	1572/11s					
15	6738/1s	5945/0.8s	5596/16s					

Simulated Annealing results								
Cities	4000/3 - Cost/Time	5000/10 - Cost/Time	5000/50 - Cost/Time					
20 4479/1s		3699/1s	3748/21s					
51 1330/4s		1310/3s	1282/1m					
76	2130/3s	2019/7s	2054/2m					
100	141796/5s	144749/14s	136642/8m					
101	3080/7s	3020/14s	2930/10m					
130	42005/16s	41753/14s	40178/15m					

COMPARISON OF SEARCH RESULTS (COST)								
CITY	EXHAUSTIVE	GREEDY	LOCAL 2-8	LOCAL 3-8	LOCAL Q-8	LOCAL G-8	SIM. ANNEALING	OPTIMUM
5	487.874	487.874	487.874	487.874	487.874	487.874	487.874	487.874
6	299.827	322.263	299.827	299.827	299.827	299.827	299.827	299.827
7	271.751	290.608	271.751	271.751	271.751	271.751	271.751	271.751
8	1411.414	1459.162	1411.414	1411.414	1411.414	1411.414	1411.414	1411.414
9	1719.506	1903.025	1719.506	1789.091	1721.641	1719.506	1721.641	1719.506
10	1548.71	1597.086	1548.71	1550.968	1575.085	1548.71	1575.085	1548.71
15	N/A	4063.898	3837.44	4719.901	3952.441	3837.44	3952.441	?
20	N/A	2680.817	2183.932	3475.636	2332.237	2228.928	2332.237	?
51	N/A	551.523	451.842	872.692	512.176	496.939	512.176	426
76	N/A	661.726	573.098	1575.722	717.646	675.413	717.646	538

COMPARISON OF SEARCH RESULTS (COST)								
CITY	EXHAUSTIVE	GREEDY	LOCAL 2-8	LOCAL 3-8	LOCAL Q-8	LOCAL G-8	SIM. ANNEALING	OPTIMUM
100	N/A	25279.656	22213.735	92350.566	33791.410	26594.061	33791.410	20749
101	N/A	808.463	692.11	2076.557	960.547	799.468	960.547	629
130	N/A	8262.002	6569.871	29329.052	11295.712	8105.293	11295.712	6110

COMPARISON OF SEARCH RESULTS (TIME)								
CITY	EXHAUSTIVE	GREEDY	LOCAL 2-8	LOCAL 3-8	LOCAL Q-8	LOCAL G-8	SIM. ANNEALING	
ITERARTIONS/RESTARTS		50000/25	50000/25	75000/20	NA/1000	10000/1000		
5	159 ms	48 ms	1.56 min	1.05 min	2 min	2 s	36 s	
6	269 ms	3 ms	2.19 min	1.25 min	2.76 min	1 s	46 s	
7	1197 ms	30 ms	2.48 min	0.84 min	3.08 min	1.1 s	55 s	
8	1645 ms	3 ms	2.73 min	0.93 min	3.65 min	1 s	58 s	
9	8328 ms	5 ms	2.94 min	1.21 min	2.95 min	1.2 s	1 min	
10	2.36 min	17 ms	2.61 min	1.10 min	4.10 min	1.4 s	44 s	
15	N/A	10 ms	3.10 min	1.64 min	3.89 min	5.5 s	1.73 min	
20	N/A	12 ms	3.58 min	2.29 min	3.63 min	23 s	2.78 min	
51	N/A	57 ms	10.64 min	5.45 min	17.78 min	9.98 min	5.78 min	
76	N/A	103 ms	24.46 min	14.88 min	19.50 min	0.85 h	12.47 min	
100	N/A	176 ms	17.18 min	26.13 min	23.40 min	2.36 h	14.42 min	
101	N/A	179 ms	55.87 min	26.16 min	23.91 min	2.39 h	13.21 min	
130	N/A	205 ms	54.83 min	38.89 min	35.46 min	12.1 h	17.76 min	