STAR VS SNOWFLAKE SCHEMA

Feature	Star Schema	Snowflake Schema
Structure	Denormalized	Normalized
Joins	Fewer joins	More joins
Query Performance	Faster (due to fewer joins)	Slower (due to multiple joins)
Storage Space	Requires more storage (duplicate data)	More efficient storage (less redundancy)
Complexity	Simple and straightforward	More complex due to multiple related tables
Use Case	Best for fast, simple reporting	Best for complex queries with large datasets
Maintenance	Easier to maintain	Requires more effort to manage relationships
Dimension Tables	Single-level, wide tables	Multi-level, with sub-dimensions (e.g., city > state > country)
Example	Sales dashboard: customer, product, date, store	Financial reports with country > region > store location

STAR SCHEMA

```
4
 5
      -- 1. Dimension Table: Date
       -- ---------
7
      CREATE OR REPLACE TABLE dim_date (
 8
           date_id INT PRIMARY KEY,
9
           date DATE,
10
           month VARCHAR (10),
11
           quarter VARCHAR(10),
12
          year INT
13
      );
14
15
       INSERT INTO dim_date VALUES
      (1, '2025-01-15', 'January', 'Q1', 2025),
(2, '2025-03-12', 'March', 'Q1', 2025),
16
17
      (3, '2025-06-20', 'June', 'Q2', 2025),
18
      (4, '2025-09-01', 'September', 'Q3', 2025),
19
       (5, '2025-12-25', 'December', 'Q4', 2025);
20
21
22
      SELECT * FROM dim_date;
23
```

Δυ -- ------

→ Results

✓ Chart

#	DATE_ID	(L) DATE	A MONTH	A QUARTER	# YEAR
1	1	2025-01-15	January	Q1	2025
2	2	2025-03-12	March	Q1	2025
3	3	2025-06-20	June	Q2	2025
4	4	2025-09-01	September	Q3	2025
5	5	2025-12-25	December	Q4	2025

```
-- 2. Dimension Table: Customer

CREATE OR REPLACE TABLE dim_customer (
    customer_id INT PRIMARY KEY,
    name VARCHAR(100),
    gender VARCHAR(10),
    age INT,
    city VARCHAR(50)
);

INSERT INTO dim_customer VALUES
(101, 'Ayesha', 'Female', 28, 'Hubli'),
(102, 'Karan', 'Male', 33, 'Pune'),
(103, 'Zara', 'Female', 24, 'Chennai'),
(104, 'Rohit', 'Male', 39, 'Delhi'),
(105, 'Fatima', 'Female', 30, 'Hyderabad');

SELECT * FROM dim_customer;
```

	# CUSTOMER_ID	A NAME	A GENDER	# AGE	A CITY
1	101	Ayesha	Female	28	Hubli
2	102	Karan	Male	33	Pune
3	103	Zara	Female	24	Chennai
4	104	Rohit	Male	39	Delhi
5	105	Fatima	Female	30	Hyderabad

	# PRODUCT_ID	A PRODUCT_NAME	A CATEGORY	A BRAND	# PRICE
1	201	LED TV	Electronics	Sony	32000.00
2	202	Refrigerator	Appliances	Whirlpool	22000.00
3	203	Saree	Clothing	Biba	2500.00
4	204	Wrist Watch	Accessories	Fossil	8000.00
5	205	Smartphone	Electronics	Redmi	18000.00

	# STORE_ID	A STORE_NAME	A LOCATION	A REGION
	301	Fmall Hubli	Hubli	Karnataka
2	302	Fmall Dharwad	Dharwad	Karnataka
3	303	Fmall Pune	Pune	Maharashtra
4	304	Fmall Chennai	Chennai	Tamil Nadu
5	305	Fmall Hyderabad	Hyderabad	Telangana

```
-- 5. Fact Table: Sales
CREATE OR REPLACE TABLE fact_sales (
    sale_id INT PRIMARY KEY,
    date_id INT,
   customer_id INT,
    product_id INT,
    store_id INT,
    quantity INT,
    total_amount NUMBER(10,2),
    FOREIGN KEY (date_id) REFERENCES dim_date(date_id),
    FOREIGN KEY (customer_id) REFERENCES dim_customer(customer_id),
    FOREIGN KEY (product_id) REFERENCES dim_product(product_id),
    FOREIGN KEY (store_id) REFERENCES dim_store(store_id)
);
INSERT INTO fact_sales VALUES
(401, 1, 101, 201, 301, 1, 32000),
(402, 2, 102, 202, 302, 1, 22000),
(403, 3, 103, 203, 303, 2, 5000),
(404, 4, 104, 204, 304, 1, 8000),
(405, 5, 105, 205, 305, 1, 18000);
```

```
107 SELECT * FROM fact_sales;
```


# SALE_ID	# DATE_ID	# CUSTOMER_ID	# PRODUCT_ID	# STORE_ID	# QUANTITY	# TOTAL_AMOUNT
401	1	101	201	301	1	32000.00
402	2	102	202	302	1	22000.00
403	3	103	203	303	2	5000.00
404	4	104	204	304	1	8000.00
405	5	105	205	305	1	18000.00

```
109 --TOTAL SALES BY REGION

110 SELECT s.region, SUM(f.total_amount) AS total_sales|
111 FROM fact_sales f

112 JOIN dim_store s

113 ON f.store_id = s.store_id

114 GROUP BY s.region;
```


A REGION	#	TOTAL_SALES
Karnataka		54000.00
Maharashtra		5000.00
Tamil Nadu		8000.00
Telangana		18000.00

```
--TOTAL SALES BY PRODUCT CATEGORY

SELECT p.category, SUM(f.total_amount) AS total_sales
FROM fact_sales f

JOIN dim_product p

ON p.product_id = f.product_id

GROUP BY p.category;
```

→ Results

→ Chart

	A CATEGORY	# TOTAL_SALES
i	Electronics	50000.00
	Clothing	5000.00
	Accessories	800.00
	Appliances	22000.00

```
--MONTHLY SALES SUMMARY

SELECT d.month, d.year, SUM(f.total_amount) AS monthly_sales
FROM fact_sales f

JOIN dim_date d

ON d.date_id = f.date_id
GROUP BY d.month, d.year

ORDER BY d.year, d.month;
```

→ Results

✓ Chart

A MONTH	# YEAR	# MONTHLY_SALES
December	2025	18000.00
January	2025	32000.00
June	2025	5000.00
March	2025	22000.00
September	2025	8000.00

```
--TOP CUSTOMERS BY PURCHASE

SELECT c.name, SUM(f.total_amount) AS total_spent
FROM fact_sales f

JOIN dim_customer c

ON c.customer_id = f.customer_id

GROUP BY c.name

ORDER BY total_spent DESC LIMIT 5;
```

→ Results

→ Chart

	A NAME	# TOTAL_SPENT
1	Ayesha	32000.00
2	Karan	22000.00
3	Fatima	18000.00
4	Rohit	8000.00
5	Zara	5000.00

```
139
          -- SALES BY PRODUCT AND REGION
  140
          SELECT p.product_name, s.region, SUM(f.total_amount) AS sales
  141
          FROM fact_sales f
  142
           JOIN dim_product p
  143
          ON p.product_id = f.product_id
  144
           JOIN dim_store s
  145
          ON s.store_id = f.store_id
  146
          GROUP BY p.product_name, s.region;
  147
  → Results

✓ Chart

      A PRODUCT_NAME
                                                   A REGION
                                                                                         # SALES
 1
     LED TV
                                                  Karnataka
                                                                                                                     32000.00
     Refrigerator
                                                  Karnataka
                                                                                                                     22000.00
 3
     Saree
                                                  Maharashtra
                                                                                                                      5000.00
 4
     Wrist Watch
                                                  Tamil Nadu
                                                                                                                      8000.00
                                                                                                                     18000.00
     Smartphone
                                                  Telangana
В
      -- SALES BY MALE FEMALE %
9
      SELECT
0
          c.gender,
1
          SUM(f.total_amount) AS total_sales,
2
          ROUND(SUM(f.total_amount) * 100.0 / (SELECT SUM(total_amount) FROM fact_sales), 2) AS percentage
3
      FROM fact_sales f
4
      JOIN dim_customer c ON f.customer_id = c.customer_id
5
      GROUP BY c.gender;

→ Chart

Results
                                                                                    # PERCENTAGE
 A GENDER
                                        # TOTAL_SALES
```

SNOWFLAKE SCHEMA

55000.00

30000.00

64.71

35.29

Female

Male

SELECT * FROM dim_quarter;

```
→ Results

→ Chart

    # QUARTER_ID
                                                                  A QUARTER_NAME
                                                                  Q1
1
                                                              1
2
                                                              2
                                                                  Q2
3
                                                              3
                                                                  Q3
4
                                                              4
                                                                  04
5
                                                              5
                                                                  Year-End
```

```
-- 2. Normalized Date Dimension
-- -----
CREATE OR REPLACE TABLE dim_date (
   date_id INT PRIMARY KEY,
   full_date DATE,
   month_name VARCHAR(10),
   year INT,
   quarter_id INT,
   FOREIGN KEY (quarter_id) REFERENCES dim_quarter(quarter_id)
);
INSERT INTO dim_date VALUES
(1, '2025-01-12', 'January', 2025, 1),
(2, '2025-03-05', 'March', 2025, 1),
(3, '2025-06-15', 'June', 2025, 2),
(4, '2025-09-21', 'September', 2025, 3),
(5, '2025-12-31', 'December', 2025, 4);
-- -----
```

199 | SELECT * FROM dim_date; 200

→ Results

✓ Chart

# DATE_ID		© FULL_DATE	A MONTH_NAME	# YEAR	# QUARTER_ID
	1	2025-01-12	January	2025	i
	2	2025-03-05	March	2025	1
	3	2025-06-15	June	2025	2
	4	2025-09-21	September	2025	3
	5	2025-12-31	December	2025	4

```
201
      -- -----
202
      -- 3. Sub-dimension: Region
203
      204
      CREATE OR REPLACE TABLE dim_region (
205
          region_id INT PRIMARY KEY,
206
          region_name VARCHAR(50)
207
      );
208
209
      INSERT INTO dim_region VALUES
210
      (1, 'Karnataka'),
      (2, 'Telangana'),
211
212
      (3, 'Maharashtra'),
213
      (4, 'Goa'),
      (5, 'Tamil Nadu');
214
215
216
216
      SELECT * FROM dim_region;
```

217

→ Results → Chart # REGION_ID A REGION_NAME Karnataka 1 2 2 Telangana 3 3 Maharashtra 4 5 5 Tamil Nadu

```
-- 4. Normalized Store Dimension
-- ------------------
CREATE OR REPLACE TABLE dim_store (
    store_id INT PRIMARY KEY,
    store_name VARCHAR(100),
   location VARCHAR(100),
    region_id INT,
   FOREIGN KEY (region_id) REFERENCES dim_region(region_id)
);
INSERT INTO dim_store VALUES
(101, 'Mega Hubli', 'Hubli', 1),
(102, 'Bel Circle', 'Belgaum', 1),
(103, 'Techno Park', 'Hyderabad', 2),
(104, 'Ocean Mall', 'Panaji', 4),
(105, 'Market Square', 'Chennai', 5);
```

```
SELECT * FROM dim_store;
```

→ Chart

Results

# STORE_ID	A STORE_NAME	A LOCATION	# REGION_ID
101	Mega Hubli	Hubli	
102	Bel Circle	Belgaum	
103	Techno Park	Hyderabad	
104	Ocean Mall	Panaji	
105	Market Square	Chennai	

```
-- -----
-- 5. Customer Dimension
-- -----
CREATE OR REPLACE TABLE dim_customer (
    customer_id INT PRIMARY KEY,
    name VARCHAR(100),
    gender VARCHAR(10),
    age INT,
    city VARCHAR(50)
);
INSERT INTO dim_customer VALUES
(201, 'Amit', 'Male', 27, 'Hubli'),
(202, 'Sana', 'Female', 31, 'Delhi'),
(203, 'Raj', 'Male', 29, 'Goa'),
(204, 'Neha', 'Female', 22, 'Mumbai'),
(205, 'Faizan', 'Male', 35, 'Bangalore');
```

SELECT * FROM dim_customer;

CUSTOMER_ID	A NAME	A GENDER	# AGE	A CITY
201	Amit	Male	27	Hubli
202	Sana	Female	31	Delhi
203	Raj	Male	29	Goa
204	Neha	Female	22	Mumbai
205	Faizan	Male	35	Bangalore

SELECT * FROM dim_product;

Results	~	Chart
---------	---	-------

# PRODUCT_ID	A PRODUCT_NAME	A CATEGORY	A BRAND	# PRICE
301	Smart TV	Electronics	Samsung	24000.00
302	Fridge	Electronics	LG	15000.00
303	Lipstick	Cosmetics	Lakme	500.00
304	Shoes	Footwear	Nike	4500.00
305	Headphones	Electronics	Boat	1900.00

```
-- 7. Fact Table
-- -----
CREATE OR REPLACE TABLE fact_sales (
   sale_id INT PRIMARY KEY,
   date_id INT,
   customer_id INT,
   product_id INT,
   store_id INT,
   quantity INT,
   total_amount NUMBER(10,2),
   FOREIGN KEY (date_id) REFERENCES dim_date(date_id),
   FOREIGN KEY (customer_id) REFERENCES dim_customer(customer_id),
   FOREIGN KEY (product_id) REFERENCES dim_product(product_id),
   FOREIGN KEY (store_id) REFERENCES dim_store(store_id)
);
INSERT INTO fact_sales VALUES
(401, 1, 201, 301, 101, 2, 48000),
(402, 2, 202, 302, 102, 1, 15000),
(403, 3, 203, 304, 103, 2, 9000),
(404, 4, 204, 303, 104, 3, 1500),
(405, 5, 205, 305, 105, 1, 1900);
```

302 | select * from fact_sales;

# SALE_ID	# DATE_ID	# CUSTOMER_ID	# PRODUCT_ID	# STORE_ID	# QUANTITY	# TOTAL_AMOUNT
401	1	201	301	101	2	48000.00
402	2	202	302	102	1	15000.00
403	3	203	304	103	2	9000.00
404	4	204	303	104	3	1500.00
405	5	205	305	105	1	1900.00