Support Vector Machines

CSE 446: Machine Learning Slides by Emily Fox + Kevin Jamieson + others Presented by Anna Karlin

May 1, 2019

Linear classifiers—Which line is better?

f(xi,yi)) xie Rd

yiel-1,+13

find linear decision

boundary

with the largest

margin possible

find w & b

that gives largest 16

©2018 Kevin Jamieson

Maximizing the margin for linearly separable data

Given hyperplane, what is margin?

xx.w+b=0

Distance from x_0 to hyperplane defined by $x^T w + b = 0$?

$$\lambda^{2} = -1 \qquad (x^{2} - x^{2}) \cdot \frac{\|m\|}{m} = \frac{\|x^{2} - x^{2}\|}{\|m\|} > 2$$

$$\lambda^{2} = -1 \qquad (x^{2} - x^{2}) \cdot \frac{\|m\|}{m} = \frac{\|m\|}{x^{2} - x^{2}} > 2$$

$$\lambda^{2} = -1 \qquad (x^{2} - x^{2}) \cdot \frac{\|m\|}{m} = \frac{\|m\|}{x^{2} - x^{2}} > 2$$

$$A:\left(\frac{\|\omega\|}{x^{1}\circ m+p}\right) > 2$$

Given hyperplane, what is margin?

6

Our optimization problem

Final version

Solvable efficiently – quadratic programming problem

Optimal Hyperplane (reparameterized)

$$\min_{w,b} ||w||_2^2$$
subject to $y_i(x_i^T w + b) \ge 1 \quad \forall i$

22

What are support vectors?

What if data are not linearly separable?

What if data are still not linearly separable?

Courtesy Mehryar Mohri

What if data are still not linearly separable?

Courtesy Mehryar Mohri

What if data are still not linearly separable?

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$
 ξ_i
 $\mathbf{w} \cdot \mathbf{x} + b = +1$
 $\mathbf{w} \cdot \mathbf{x} + b = -1$

Courtesy Mehryar Mohri

$$\min_{\mathbf{w},b,\xi} |\mathbf{w}||^2 + C \sum_{i} \xi_{i}$$

$$y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) \ge 1 - \xi_{i} \quad \forall i$$

$$\xi_{i} \ge 0 \quad \forall i.$$

+ [[max (0, 1-y; (w.x; +b))

13

Final objective

$$\frac{1}{n} \sum_{i=1}^{n} (1 - y_i((\mathbf{w}^T \mathbf{x}_i + b))_+ + \lambda ||\mathbf{w}||_2^2$$

$$\frac{1}{n} \sum_{i=1}^{n} (1 - y_i((\mathbf{w}^T \mathbf{x}_i + b))_+ + \lambda ||\mathbf{w}||_2^2$$

Hinge loss

• Hinge loss: $\ell((\mathbf{x}, y), \mathbf{w}) = (1 - y(\mathbf{w}^T \mathbf{x} + b))_+$

Subgradient of hinge loss:

$$d=1$$

$$d=1$$

$$y(\omega x+b) > 1$$

$$y(\omega x+b^{2})^{7} = \frac{1}{1-y(\omega x+b)} > 0$$

neasures correctness
down predicts

CSE 446: Machine Learning

Minimizing regularized hinge loss (aka SVMs)

- Given a dataset: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$
- Minimize regularized hinge loss: $\frac{1}{n} \sum_{i} (1 y_i ((\mathbf{w}^T \mathbf{x}_i + b))_+ + \lambda ||\mathbf{w}||_2^2$

©2017 Emily Fox CSE 446: Machine Learning

Subgradient descent for hinge minimization

- Given data: $(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\ldots,(\mathbf{x}_n,y_n)$
- Want to minimize:

$$\frac{1}{n} \sum_{i=1}^{n} \ell((\mathbf{x}_i, y_i), \mathbf{w}) + \lambda ||\mathbf{w}||_2^2 = \frac{1}{n} \sum_{i} (1 - y_i((\mathbf{w}^T \mathbf{x}_i + b))_+ + \lambda ||\mathbf{w}||_2^2$$

- As we've discussed, subgradient descent works like gradient descent:
 - But if there are multiple subgradients at a point, just pick (any) one:

$$\partial_{\mathbf{w}}\ell((\mathbf{x},y),\mathbf{w}) = \mathbb{I}\{y(\mathbf{w}^{T}\mathbf{x}+b) \leq 1\}(-y\mathbf{x})\}$$
subgradient. \overrightarrow{g} is a subgradient at ω for $f()$

$$f(\omega') > f(\omega) + \overrightarrow{g} \circ (\omega' - \omega)$$

Subgradient descent for hinge minimization

· Given data:

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

Want to minimize:

$$\frac{1}{n} \sum_{i=1}^{n} \ell((\mathbf{x}_i, y_i), \mathbf{w}) + \lambda ||\mathbf{w}||_2^2 = \frac{1}{n} \sum_{i} (1 - y_i((\mathbf{w}^T \mathbf{x}_i + b))_+ + \lambda ||\mathbf{w}||_2^2$$

- As we've discussed, subgradient descent works like gradient descent:
 - But if there are multiple subgradients at a point, just pick (any) one:

$$\mathbf{w}_{t+1} := \mathbf{w}_{t} - \eta \left(\frac{1}{n} \sum_{i=1}^{n} \partial_{\mathbf{w}} \ell((\mathbf{x}_{i}, y_{i}), \mathbf{w}) + 2\lambda \mathbf{w}_{t} \right)$$

$$= \mathbf{w}_{t} - \eta \left(\frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \{ y(\mathbf{w}_{t} \cdot \mathbf{x}_{i} + b) \leq 1 \} (-y_{i} \mathbf{x}_{i}) + 2\lambda \mathbf{w}_{t} \right)$$

$$= \mathbf{w}_{t} + \eta \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \{ y(\mathbf{w}_{t} \cdot \mathbf{x}_{i} + b) \leq 1 \} (y_{i} \mathbf{x}_{i}) - \eta 2\lambda \mathbf{w}_{t}.$$

SVM

(Sub)gradient Descent Update

$$\begin{split} \mathbf{w}_{t+1} &:= \mathbf{w}_t - \eta \left(\frac{1}{n} \sum_{i=1}^n \partial_{\mathbf{w}} \ell((\mathbf{x}_i, y_i), \mathbf{w}) + 2\lambda \mathbf{w}_t \right) \\ &= \mathbf{w}_t - \eta \left(\frac{1}{n} \sum_{i=1}^n \mathbb{I}\{y(\mathbf{w}_t \cdot \mathbf{x}_i + b) \le 1\}(-y_i \mathbf{x}_i) + 2\lambda \mathbf{w}_t \right) \\ &= \mathbf{w}_t + \eta \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{y(\mathbf{w}_t \cdot \mathbf{x}_i + b) \le 1\}(y_i \mathbf{x}_i) - \eta 2\lambda \mathbf{w}_t. \end{split}$$

SGD update

$$\mathbf{w}_{t+1} := \mathbf{w}_t + \eta \mathbb{I}\{y(\mathbf{w}_t \cdot \mathbf{x}_i + b) \le 1\}(y_i \mathbf{x}_i) - \eta 2\lambda \mathbf{w}_t$$

Machine learning problems

Given i.i.d. data set:

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

 Find parameters w to minimize average loss (or regularized version):

$$\frac{1}{n}\sum_{i=1}^n \ell_i(\mathbf{w})$$

Squared loss:

Logistic loss:

Hinge loss:

$$\ell_i(\mathbf{w}) = (y_i - x_i^T \mathbf{w})^2$$

$$\ell_i(\mathbf{w}) = \log(1 + \exp(-y_i \mathbf{x}_i^T \mathbf{w}))$$

$$\ell_i(\mathbf{w}) = \max\{0, 1 - y_i \mathbf{x}_i^T \mathbf{w}\}$$

Courtesy Killian Weinberger

What you need to know...

- Maximizing margin
- Derivation of SVM formulation
- Non-linearly separable case
 - Hinge loss
 - a.k.a. adding slack variables
- Can optimize SVMs with SGD
 - Many other approaches possible