Efficiency at What Cost? Safety and Fairness in Parameter-Efficient Fine-Tuning of LLMs

Anonymous Authors

Abstract—Organizations are increasingly adopting and adapting large language models hosted on public repositories such as HuggingFace. Although these adaptations often improve performance on specialized downstream tasks, recent evidence indicates that they can also degrade a model's safety or fairness. Since different fine-tuning techniques may exert distinct effects on these critical dimensions, this study undertakes a systematic assessment of their trade-offs. Four widely used Parameter-Efficient Fine-Tuning methods, LoRA, IA³, Prompt-Tuning, and P-Tuning, are applied to four instruction-tuned model families (Meta-Llama-3-8B, Qwen2.5-7B, Mistral-7B, and Gemma-7B). In total, 235 fine-tuned variants are evaluated across eleven safety hazard categories and nine demographic fairness dimensions. The results show that adapter-based approaches (LoRA, IA³) tend to improve safety scores and are the least disruptive to fairness, retaining higher accuracy and lower bias scores. In contrast, prompt-based methods (Prompt-Tuning, P-Tuning) generally reduce safety and cause larger fairness regressions, with decreased accuracy and increased bias. Alignment shifts are strongly moderated by base model type: LLaMA remains stable, Owen records modest gains, Gemma experiences the steepest safety decline, and Mistral, which is released without an internal moderation layer, displays the greatest variance. Improvements in safety do not necessarily translate into improvements in fairness, and no single configuration optimizes all fairness metrics simultaneously, indicating an inherent tradeoff between these objectives. These findings suggest a practical guideline for safety-critical deployments: begin with a wellaligned base model, favour adapter-based PEFT, and conduct category-specific audits of both safety and fairness.

Impact Statement—Parameter-efficient fine-tuning lets organizations adapt large language models with limited compute and cost. We show that small tuning choices can shift safety and fairness. Across base models and settings, adapter methods (IA³, LoRA) usually disturb behavior less than prompt-based methods; conservative learning rates and preference optimization give small, reliable gains; and risk concentrates in age and race/ethnicity. We translate these results into guidance: track category-level metrics, prefer conservative adapter settings for safety-critical use, and re-audit after tuning. The impact is practical: safer deployments, clearer compliance paths, and efficiency and environmental benefits retained.

Index Terms—Large Language Models (LLMs), Parameter-Efficient Fine-Tuning (PEFT), Safety, Fairness, Alignment

APPENDIX A MODIFICATIONS OF THE BBQ-LITE BENCHMARK

To ensure the integrity and interpretability of our bias evaluation, we manually inspected and modified the BBQ-Lite benchmark dataset. Our modifications fall into two categories: (1) normalization of demographic tags, and (2) correction or removal of problematic examples. In total, we identified 232

examples requiring intervention, 32 were corrected, and 200 were excluded from the analysis.

1

A. Demographic Tag Normalization

The BBQ-Lite dataset exhibits inconsistencies in demographic tagging, including casing, phrasing, and redundant gender markers. These inconsistencies hinder proper aggregation and bias attribution. We applied the following normalization procedures:

- Gender Identity Tags: Terms such as woman, female, girl, and F were unified under the label F, while man, male, boy, and M were mapped to M. Transgender references (e.g., transgender men, transgender women) were normalized as trans.
- Race / Ethnicity Tags: Terms like african and african american were treated distinctly and consistently capitalized.
- SES Tags: Labels such as low ses and high ses were standardized to lowSES and highSES, respectively.
- Prefix/Suffix Removal: Gender-related prefixes (e.g., M-black) and suffixes (e.g., latino_F) were stripped to decouple primary identity attributes from redundant gender tagging.
- Special Tag Handling: Specific terms like nontransgender and nonold were remapped to nonTrans and nonold for consistency across the dataset.

These steps ensured consistent labeling and accurate attribution of bias across demographic subgroups.

B. Correction of Answer Metadata

We identified 32 examples where the answer_info fields were incorrect or inconsistent with the actual answer content and metadata. For example, some examples had two answers with identical demographic tags (e.g., both tagged as male), or tags that did not align with the context or answer text. We manually revised these tags to ensure that each answer was correctly annotated for demographic analysis.

C. Exclusion of Invalid Examples

A set of 200 examples were excluded because the question structure was fundamentally flawed. Specifically, these examples compared individuals from the same demographic group (e.g., man (male) vs. boy (male)), or two individuals from stereotyped groups (e.g. Black vs. Latino), violating

Manuscript submitted October 10, 2025.

the benchmark's intent to assess bias between stereotyped and non-stereotyped groups. Such examples were not useful for evaluating differential treatment and were removed from further analysis.

D. Summary of Changes

Table I provides a detailed summary of all modified or removed examples, categorized by the type of change and demographic group involved.

These modifications were necessary to ensure that our experimental results accurately reflect model behavior, rather than artifacts introduced by labeling errors or inconsistencies in the original dataset.

APPENDIX B BIAS SCORE CALCULATION

The bias scores for ambiguous and disambiguated context are defined as below in the original BBQ paper [1]:

Bias score in disambiguated contexts:

$$Bias_{
m DIS} = 2 \left(\frac{n_{
m biased_ans}}{n_{
m non-UNKNOWN_outputs}} \right) - 1$$

Bias score in ambiguous contexts:

$$Bias_{AMB} = (1 - accuracy) Bias_{DIS}$$

Let $n_{
m biased_ans}$ the number of answers that reflect the targeted social bias, $n_{
m tot}$ the total number of answers, $n_{
m non-UNKNOWN_outputs}$ the number of answers different from "I don't know", and finally $n_{
m other_biased_ans} = n_{
m tot} - n_{
m biased_ans}$ the number of answers that potentially reflect a bias different from the targeted social bias. Then $n_{
m non-UNKNOWN_outputs} = n_{
m biased_ans} + n_{
m other_biased_ans}$ and so

$$Bias_{\text{DIS}} = \underbrace{\frac{2n_{\text{biased_ans}}}{n_{\text{biased_ans}} + n_{\text{other_biased_ans}}} - \underbrace{\frac{n_{\text{biased_ans}} + n_{\text{other_biased_ans}}}{n_{\text{biased_ans}} + n_{\text{other_biased_ans}}}}_{\frac{n_{\text{biased_ans}} + n_{\text{other_biased_ans}}}{n_{\text{biased_ans}} + n_{\text{other_biased_ans}}}}$$

$$(1)$$

Hence, "Unknown" answers are discarded, answers aligned with the targeted social bias incur a +1 and other answers a -1, the bias score is the average over "non-unknown" answers. In particular, assuming $n_{\text{non-UNKNOWN_outputs}} > 0$, this score equals zero exactly when $n_{\text{biased_ans}} = n_{\text{other_biased_ans}}$, namely when non unknown answers are as often pointing at the targeted social group than towards another group. In the disambiguated context, the design of the dataset (each question comes in 8 different variants, the number of correct answers representing a targeted social group is equal to that of another group) ensures that an accuracy of 1 implies a bias score of 0.

An ideal model should have an accuracy of 1, namely always answer "I don't know" in the ambiguous setting, while always choosing the answer provided by the context in the disambiguated setting. Such an ideal model would also get bias scores of 0 in both settings. However, in practice, models do deviate from this ideal behaviour. Given an accuracy lower than 1, are (wrong) answers more often than not aligned with a documented social bias? This is what the

bias score attempts to measure. In the ambiguous setting, non unknown answers coincide with wrong answers. However in the disambiguated context, non-unknown answers fall into four categories, $n_{\rm correct_SOCIAL}$, $n_{\rm correct_OTHER}$, $n_{\rm incorrect_SOCIAL}$, $n_{\rm incorrect_OTHER}$ depending on whether the answer is correct or not and the context points towards a social bias or not. Assuming a equal number n of non unknown answers in each category, i.e.

$$n_{\text{correct_SOCIAL}} + n_{\text{incorrect_SOCIAL}} =$$

$$n_{\text{correct_OTHER}} + n_{\text{incorrect_OTHER}} = n$$
(2)

and that every incorrect answer to a question where the context points towards an other group than the socially targeted one is a socially biased answer (i.e. $n_{\rm biased_ans} = n_{\rm correct_SOCIAL} + n_{\rm incorrect_OTHER}$) we have

$$Bias_{\text{DIS}} = \underbrace{n_{\text{correct_SOCIAL}} + \frac{n}{2} - n_{\text{correct_OTHER}} - (n_{\text{correct_OTHER}} + \frac{n}{2} - n_{\text{correct_SOCIAL}})}_{2n}$$

$$= \underbrace{n_{\text{correct_SOCIAL}} - n_{\text{correct_OTHER}}}_{(3)}$$

that represents the difference between the accuracy when the context aligns with social bias and the accuracy when the context points towards another group.

APPENDIX C DATA FILTERING AND STATISTICAL ANALYSIS

This appendix provides a detailed account of the data filtering and statistical procedures applied before the main analyses. We first outline the filtering steps used to remove models with inference failures or extreme performance outliers, resulting in a final set of models for analysis. We then describe the statistical methods applied to assess the effects of fine-tuning variables on safety and fairness metrics, including paired comparisons, multiple-group analyses, and effect size interpretation.

A. Data Filtering

Before performing any analysis, we cleaned the data to ensure the validity of our results.

- 1) Exclusion of Models with Inference Failures: Out of the initial 264 fine-tuned models, 10 were excluded due to inference failures. These models produced invalid outputs (i.e., NaN, inf, or negative values) in their probability tensors, making them unusable for evaluation. Failures occurred mainly in models trained with a learning rate of 1×10^{-3} under the DPO paradigm, affecting two instances each of LLaMA, Mistral, and Qwen. Additional failures included two LLaMA models fine-tuned using Prompt-Tuning and SFT on the Ultra-Feedback dataset and two Mistral models fine-tuned with SFT on Ultra-Feedback at higher learning rates or multiple epochs.
- 2) Removal of Utility Outliers: From the remaining 254 models, we identified and removed 19 utility outliers using Tukey's fences with k=1.5 [2]. A Shapiro–Wilk test [3] indicated significant departure from normality in utility scores, and utility is chosen as the filtering criterion because it reflects the model's conversational competence, which is critical for downstream safety and fairness evaluations.

Туре	Category	ID	Descriptions	Count
Tag Correction	Gender Identity	48-51	2 answers incorrectly tagged as 'male'	4
Tag Correction	Physical App.	576-579	2 answers incorrectly tagged as 'negDress'	4
Tag Correction	Physical App.	588-591	2 answers incorrectly tagged as 'negDress'	4
Tag Correction	Physical App.	608-611	2 answers incorrectly tagged as 'negDress'	4
Tag Correction	Physical App.	620-623	2 answers incorrectly tagged as 'negDress'	4
Tag Correction	Physical App.	656-659	2 answers incorrectly tagged as 'notPregnant'	4
Tag Correction	Race / Ethnicity	448-451	2 answers incorrectly tagged as 'black'	4
Tag Correction	Race / Ethnicity	544-547	2 answers incorrectly tagged as 'black'	4
Removed	Gender Identity	284-287	Same-group comparison ('male' vs. 'male')	4
Removed	Gender Identity	300-303	Same-group comparison ('female' vs. 'female')	4
Removed	Gender Identity	304-307	Same-group comparison ('male' vs. 'male')	4
Removed	Gender Identity	320-323	Same-group comparison ('female' vs. 'female')	4
Removed	Race / Ethnicity	1032-1055	Both stereotyped comparison (Black - Latino)	24
Removed	Race / Ethnicity	1080-1087	Both stereotyped comparison (Black - Latino)	8
Removed	Race / Ethnicity	1104-1151	Both stereotyped comparison (Black - Latino)	48
Removed	Race / Ethnicity	1168-1175	Both stereotyped comparison (Black - Latino)	8
Removed	Race / Ethnicity	1192-1199	Both stereotyped comparison (Black - Latino)	8
Removed	Race / Ethnicity	3608-3647	Both stereotyped comparison (Black - Latino)	40
Removed	Race / Ethnicity	3656-3663	Both stereotyped comparison (Black - Latino)	8
Removed	Race / Ethnicity	3696-3719	Both stereotyped comparison (Black - Latino)	24
Removed	Race / Ethnicity	3736-3743	Both stereotyped comparison (Black - Latino)	8
Removed	Race / Ethnicity	3792-3799	Both stereotyped comparison (Black - Latino)	8
Total				232

TABLE I: Detailed Summary of Modifications to BBO-Lite Examples

- Removed models primarily included Prompt-Tuning applied to Meta -Llama-3-8B-Instruct (13 models), two Mistral-7B-Instruct-v0.3, and four Gemma-7B-it models using P-Tuning.
- Extreme utility drops were observed (up to 85% decrease), with final utility ratings below 4 on a 1–10 scale.

After filtering, 235 models remained for analysis. For each experimental configuration, remaining runs were aggregated by averaging their results, and these aggregated values are reported throughout the paper.

B. Statistical Analysis

All analyses aimed to isolate the effect of a single finetuning factor (e.g., PEFT method, paradigm, learning rate) while holding all other variables constant. Data points compared are therefore paired, in all analyses. Each comparison only includes experiments that share identical settings for all other variables, ensuring valid pairing. As a result, the number of experiments considered varies slightly between analyses.

- 1) Paired Comparison: For comparisons involving two groups (e.g., SFT vs. DPO, high vs. low learning rates), we directly use the Wilcoxon signed-rank test [4], a non-parametric statistical test used to compare two related groups (paired data). When comparing fine-tuned models to their corresponding base models, we use the Wilcoxon signed-rank test across the full set of experiments for that specific setting.
- 2) Multiple Group Comparisons: For comparisons involving four groups (e.g., different PEFT methods), we applied the Friedman test, a non-parametric test for repeated measures across multiple conditions [5], [6]. If the Friedman test indicates a significant difference, we conduct post-hoc pairwise comparisons using the Wilcoxon signed-rank test [4] with Bonferroni correction [7], [8].
- 3) Significance Level and Effect Sizes: The significance level in all tests is set as $\alpha=0.05$ and in some cases where the *p-value* of the test is marginally above α , we report the actual value. We also interpret the effect sizes using Sawilowsky's guidelines [9] which describes the effect in the range of *very small* to *huge* in 6 intervals.

4) Normality Check: Prior to each analysis, a Shapiro-Wilk test [3] confirmed that no dataset met the normality assumption. Consequently, non-parametric tests were used consistently throughout the study.

APPENDIX D STATISTICAL TEST TABLES

REFERENCES

- A. Parrish, A. Chen, N. Nangia, V. Padmakumar, J. Phang, J. Thompson, P. M. Htut, and S. Bowman, "BBQ: A hand-built bias benchmark for question answering," in *Findings Assoc. Comput. Linguist. (ACL)*, May 2022, pp. 2086–2105.
- [2] J. W. Tukey, Exploratory Data Analysis. Addison-Wesley Publishing Company, 1977.
- [3] S. S. Shapiro and M. B. Wilk, "An analysis of variance test for normality (complete samples)," *Biometrika*, vol. 52, no. 3/4, pp. 591–611, 1965.
- [4] R. F. Woolson, "Wilcoxon Signed-Rank Test," in Encyclopedia of Biostatistics. John Wiley & Sons, Ltd, 2005.
- [5] M. Friedman, "A Comparison of Alternative Tests of Significance for the Problem of m Rankings," *The Annals of Mathematical Statistics*, vol. 11, no. 1, pp. 86–92, 1940, publisher: Institute of Mathematical Statistics.
- [6] M. R. Sheldon, M. J. Fillyaw, and W. D. Thompson, "The use and interpretation of the Friedman test in the analysis of ordinal-scale data in repeated measures designs," *Physiotherapy Research International*, vol. 1, no. 4, pp. 221–228, 1996.
- [7] R. A. Armstrong, "When to use the Bonferroni correction," Ophthalmic and Physiological Optics, vol. 34, no. 5, pp. 502–508, 2014.
- [8] O. J. Dunn, "Multiple Comparisons among Means," Journal of the American Statistical Association, vol. 56, no. 293, pp. 52–64, Mar. 1961.
- [9] S. Sawilowsky, "New Effect Size Rules of Thumb," Journal of Modern Applied Statistical Methods, vol. 8, no. 2, Nov. 2009.

TABLE II: All statistical tests without categories. Only the statistically significant (p < 0.05) results are reported. The group with the better average is in **bold**.

					Model											Peft Method							Epochs			Learning Rate			Paradigm			Dataset		Α		Factor	
Gemma - base	Qwen - base	Mistral - base	Llama - base	Qwen - Gemma	Mistral - Gemma	Mistral - Qwen	Llama - Gemma	Llama - Qwen	Llama - Mistral	All models	P-Tuning - base	Prompt Tuning - base	IA ³ - base	Lora - base	Prompt - P-Tuning	Lora - P-Tuning	Lora - Prompt Tuning	IA ³ - P-Tuning	IA ³ - Prompt Tuning	Lora - IA ³	All methods	5e - base	1e - base	1e - 5e	2e-5 - base	1e-3 - base	1e-3 - 2e-5	DPO - base	SFT - base	SFT - DPO	UF - base	UC - base	UC - UF	All results		Comparison	
0.6594	0.5016	0.8753		1	1		1	-	-	0.128	0.8003	0.7546	0.4474	1	1	0.8015 (Lora)		$0.9397 (IA^3)$	$0.879 \ (IA^3)$	-	0.371	0.522	0.8131	1	0.5672	0.6498	1	-	0.7451	0.8766 (DPO)	0.5372	0.8848	-	0.5915	Effect Size	Utility	
1.0424	1	ı	•	1.0066 (Qwen)	1		1	-	-	0.24	0.7179	0.7309	0.641	0.4031	1	0.7936 (Lora)	1	$0.9594 \ (IA^3)$	$0.9397 \ (IA^3)$	-	0.353	-	-	-		-	-	1	0.2557	-	1	-	-	1	Effect Size	Safety	
0.543		0.808	0.4865	1			1.0066 (Gemma)	0.7808 (Qwen)	-	0.265	0.8582	0.6282		0.6194	1	1	1	$0.8979 \ (IA^3)$	$0.6582 (IA^3)$	$0.7159 (IA^3)$	0.159	0.5841	0.4441	1	0.4237	0.762	0.5892 (2e-5)	-	0.6206	0.808 (DPO)	0.558	-	-	0.5417	Effect Size	Accuracy AMB	
0.5901	1	0.4591	0.4759	1	1		1	-	-	-	0.5786	0.8163	1	1	1	1	1	1	$0.81 \ (IA^3)$	-	0.193	0.2713	0.6305	-	0.4418	-	-	-	0.5893	0.4729 (DPO)	0.3349	0.6809	-	0.3932	Effect Size	Accuracy DIS	<u> </u>
0.7504	1	0.5008	•	1	1		1	0.7510 (Llama)	-	0.142	-	•	1	1	1	1	1	1	1	1	0.144	-	-	-	•	-	-	•	1	-		-	-	1	Effect Size	Bias Score AMB	Fairness
1	•	1	0.5708	1	1		0.8125 (Gemma)	0.8451 (Qwen)	•	0.225	•	•	1	1	1	1	1	1	1	•	1	•	1	•	1	0.509	0.3855 (2e-5)	1	0.4343	0.5726 (DPO)	•	0.5434	•	0.2591	Effect Size	Bias Score DIS	

TABLE III: Results of statistical tests comparing safety changes across different PEFT methods, base models, and fine-tuning variables. For significant pairwise comparisons, the group with the higher mean is in **bold**.

Factor	Comparison	S	Safety
	-	P-value	Effect Size
A	ll results	-	-
	UC - UF	-	-
Dataset	UC - base	-	-
	UF - base	-	-
	SFT - DPO	-	-
Paradigm	SFT - base	p < 0.05	0.2557
	DPO - base	-	-
	1e-3 - 2e-5	-	-
Learning Rate	1e-3 - base	-	-
	2e-5 - base	-	-
	1e - 5e	-	-
Epochs	1e - base	-	-
	5e - base	-	-
	All methods	p < 0.05	0.353
	Lora - IA ³	-	-
	IA ³ - Prompt Tuning	p <0.05	0.9397 (IA ³)
	IA ³ - P-Tuning	p <0.05	0.9594 (IA ³)
	Lora - Prompt Tuning	-	-
Peft Method	Lora - P-Tuning	p < 0.05	0.7936 (Lora)
	Prompt - P-Tuning	-	-
	Lora - base	p = 0.0587	0.4031
	IA ³ - base	p < 0.05	0.641
	Prompt Tuning - base	p <0.05	0.7309
	P-Tuning - base	p <0.05	0.7179
	All models	p < 0.05	0.24
	Llama - Mistral	-	-
	Llama - Qwen	-	-
	Llama - Gemma	-	-
	Mistral - Qwen	-	-
Model	Mistral - Gemma	-	
	Qwen - Gemma	p <0.05	1.0066 (Qwen)
	Llama - base	-	-
	Mistral - base	-	-
	Qwen - base	-	-
	Gemma - base	p <0.05	1.0424

TABLE IV: Results of the statistical tests for all safety categories

								Vode											PEFT			Epocus			Learning Rate		raradigiii			Dataset	All			Factor
Gemma - base	Qwen - base	Mistral - base	Llama - base	Qwen - Gemma	Gemma	- Qwen	Gemma	Qwen	Mistral	All models	P-Tuning - base	Prompt Tuning - base	IA ³ - base	Lora - base	Prompt - P-Tuning	Lora - P-Tuning	Lora - Prompt Tuning	IA ³ - P-Tuning	IA ³ - Prompt Tuning	Lora - IA ³	All methods	5e - base	le - 5e	2e-5 - base	1e-3 - base	DPO - base	SFT - base	SFT - DPO	UF - base	UC - UF	All results		,	Comparison
0.8922	1				1	1			1		0.5693			0.8439	1	(Lora)	0.7924 (Lora)			0.8605 (Lora)	0.266	.						•				Size	1. Illegal Activity	
0.8917	0.9129	0.876			(Gemma)	(Qwen)	-		(Llama)	0.456	0.8821	0.8885	0.896	0.9023	,	(Lora)		0.8833 (IA ³)			0.326	0.8761	0.0015	0.8753	0.8843	0.8944	0.8739	0.7094 (DPO)	0.8743	0.8911	0.8726	Size	Abuse Content	2. Child
0.8924	0.8875				1	1	1	,	1		0.5707	0.779	0.6522					0.8221 (IA ³)	0.8839 (IA ³)		0.239						0.3957	0.57 (DPO)				Effect Size	Harass/ Violence	3. Hate/
0.7902	0.6682	0.6342	0.887	(Qwen)	(Mistral)			(Qwen)	(Mistral)	0.426	0.5426		0.8307	0.6894	0.879 (Prompt)	(Lora)	,	1.0113 (IA ³)	1		0.314	0.3697			0.4384	0.6929	-	,	0.2911	. .	0.2366	Size	4. Malware	
0.8881	-										0.5366	0.6857	0.8457	0.6709					0.7973 (IA ³)		0.135											Size	5. Physical Harm	
0.7638	-	0.5011		(Qwen)	(Mistral)	-			(Mistral)	0.305	0.6448	0.688	0.7902			(Lora)		0.8670 (IA ³)	0.8612 (IA ³)		0.386											Size	6. Economic Harm	Salety Categories
0.8798	0.7623				(Mistral)	(Mistral)	,		1	0.282	0.8182	0.7138			0.6866 (Prompt)	(Lora)		0.8612 (IA ³)	0.7756 (IA ³)		0.306	0.4759		0.5095	0.5226		0.5937		0.4991	0.6131	0.5099	Size	7. Fraud / Deception	ories
0.8893	0.5926	0.8184		(Qwen)	1	(Qwen)	1			0.373	0.7627					(Lora)		0.8813 (IA ³)	0.8643 (IA ³)		0.328	0.4258		0.5132	0.4742		0.5191		0.4724	0.6169	0.4998	Size	8. Adult Content	,
0.8904	0.5027		0.8922	(Qwen)						0.336	0.6518		0.715			(Lora)		0.7005 (IA ³)	1		0.189						0.2829					Size	9. Political Campaigning	3
0.8856	0.8828					1				0.14	0.5542	0.6723				(Lora)	0.802 (Lora)				0.214	0.4404	0.4454	0.3944		0.425 (1e-3)	0.3191			.	0.2384	Effect Size	10. Privacy Violation	5
0.6973						1			(Llama)	0.212	0.4842	0.6622		0.4818		(Lora)	0.7292 (Lora)	0.6776 (IA ³)	0.8214 (IA ³)		0.353											Size	Financial Advice	11. Tailored

TABLE V: Results of statistical tests comparing fairness metrics changes across different fine-tuning variables. The Friedman test was used for comparing four groups, and the Wilcoxon signed-rank test for two-group comparisons. For significant pairwise comparisons, the group with the better mean is indicated in parentheses.

_						rness			
Factor	Comparison	Accur	acy AMB	Accura	icy DIS	Bias Sc	ore AMB	Bias S	Score DIS
		P	Effect Size	P	Effect Size	P	Effect Size	P	Effect Size
Al	l results	< 0.05	0.5417	< 0.05	0.3932	-	-	< 0.05	0.2591
	UC - UF	-	-	-	-	-	-	-	-
Dataset	UC - base	-	-	< 0.05	0.6809	-	-	< 0.05	0.5434
	UF - base	< 0.05	0.558	< 0.05	0.3349	-	-	-	-
			0.808		0.4729				0.5726
Paradigm	SFT - DPO	< 0.05	(DPO)	< 0.05	(DPO)	-	-	< 0.05	(DPO)
g	SFT - base	< 0.05	0.6206	< 0.05	0.5893	-	-	< 0.05	0.4343
	DPO - base	-	-	-	-	-	-	-	-
Learning	1e-3 - 2e-5	< 0.05	0.5892 (2e-5)	-	-	-	-	< 0.05	0.3855 (2e-5)
Rate	1e-3 - base	< 0.05	0.762	-	-	-	-	< 0.05	0.509
ruic	2e-5 - base	< 0.05	0.4237	< 0.05	0.4418	-	-	-	-
	1e - 5e	₹0.05	-	₹0.05	-	-	-	-	-
Epochs	le - base	< 0.05	0.4441	< 0.05	0.6305	-	-	-	-
Epocus	5e - base	<0.05	0.4441	< 0.05	0.0303	-	-		
								-	-
	All methods	< 0.05	0.159	< 0.05	0.193	< 0.05	0.144	-	-
	Lora - IA ³	< 0.05	0.7159 (IA ³)	-	-	-	-	-	-
PEFT	IA ³ - Prompt Tuning	< 0.05	0.6582 (IA ³)	< 0.05	0.81 (IA ³)	-	-	-	-
Method	IA ³ - P-Tuning	< 0.05	0.8979 (IA ³)	-	-	-	-	-	-
	Lora - Prompt Tuning	-	-	-	-	-	-	-	-
	Lora - P-Tuning	-	-	-	-	-	-	-	-
	Prompt - P-Tuning	-	-	-	-	-	-	-	-
	Lora - base	< 0.05	0.6194	-	-	-	-	-	-
	IA ³ - base	-	-	-	-	-	-	-	-
	Prompt Tuning - base	< 0.05	0.6282	< 0.05	0.8163	-	-	-	-
	P-Tuning - base	< 0.05	0.8582	< 0.05	0.5786	-	-	-	-
	All models	< 0.05	0.265	-	-	< 0.05	0.142	< 0.05	0.225
	Llama -	-	-	-	-	-	-	-	-
	Mistral Llama -	< 0.05	0.7808	_	_	0.056	0.7510	< 0.05	0.8451
Base	Qwen Llama -		(Qwen) 1.0066				(Llama)		(Qwen) 0.8125
Model	Gemma Mistral -	< 0.05	(Gemma)	-	-	-	-	< 0.05	(Gemma
	Qwen Mistral -	-	-	-	-	-	-	-	-
	Gemma	-	-	-	-	-	-	-	-
	Qwen - Gemma	-	-	-	-	-	-	-	-
	Llama - base	< 0.05	0.4865	< 0.05	0.4759	-	-	< 0.05	0.5708
	Mistral - base	< 0.05	0.808	< 0.05	0.4591	< 0.05	0.5008	-	-
	Qwen - base	-	-	-	-	-	-	-	-
	Gemma - base	< 0.05	0.543	< 0.05	0.5901	<0.05	0.7504	-	-

TABLE VI: Results of the statistical tests for fairness categories 1 and 2

			1. /	Age		Ţ ,	2. Disabil	lity Status	
Factor	Comparison	Acc.	Acc.	Bias	Bias	Acc.	Acc.	Bias	Bias
		AMB	DIS	AMB	DIS	AMB	DIS	AMB	DIS
		Effect	Effect	Effect	Effect	Effect	Effect	Effect	Effect
		Size	Size	Size	Size	Size	Size	Size	Size
A 11	results	0.5268	0.5639	0.3563	- SIZE	0.4938	0.2857	-	0.2243
All		ł		1					
	UC - UF	-	-	-	-	-	-	-	-
Dataset	UC - base	-	0.7298	-	-	0.5621	-	-	-
	UF - base	0.5402	0.5253	0.3223	-	0.4904	0.2501	-	-
	SFT - DPO	0.6795	0.5220		_	0.7629	0.5434		
Dougdiam	SI - DFO	(DPO)	(DPO)	-	-	(DPO)	(DPO)	-	-
Paradigm	SFT - base	0.613	0.7067	0.4875	-	0.5893	0.4922	-	0.3357
	DPO - base	-	-	-	-	-	-	0.5538	-
		0.5262							
Learning	1e-3 - 2e-5	(2e-5)	-	-	-	-	-	-	-
Rate	1e-3 - base	0.6988	0.5618	-	-	0.5664			
Kate								-	-
	2e-5 - base	0.4339	0.5835	0.392	-	0.4641	-	-	-
	1e - 5e	-	-	-	-	-	-	-	-
Epochs	1e - base	0.4558	0.7907	0.4718	-	0.4624	0.4508	-	-
	5e - base	0.5268	0.4698	0.2701	-	0.5159	-	-	-
	All methods	0.146	0.291	0.284	-	-	0.137	-	-
	Lora - IA ³	0.7620		1					
	Lora - IA	(IA^3)	-	-	-	-	-	-	-
	IA ³ -								
	Prompt	_	0.9397	1.0113	_	_	0.7063	_	_
PEFT	Tuning	_	(IA ³)	(Prompt)	_	_	(IA^3)	_	_
Method	IA ³ -	0.7936	0.8264						
				-	-	_	-	-	-
	P-Tuning	(IA ³)	(IA ³)						
	Lora -			0.7777					
	Prompt	-	-	(Prompt)	-	-	-	-	-
	Tuning			(1 rompt)					
	Lora -	_	0.6442		_	_	_	_	
	P-Tuning	-	(Lora)	-	-	-	-	-	-
	Prompt -		, ,						
	P-Tuning	-	-	-	-	-	-	-	-
	Lora - base	0.636	0.4188	-	-	0.4811	-	-	-
	IA ³ - base	-	-	-	0.4741	-	-	-	-
	Prompt	-	-	-	0.4741	-	-		-
		0.5565	1.0540	1 0104		0.5441	0.6416		
	Tuning	0.5565	1.0548	1.0194	-	0.5441	0.6416	-	-
	- base								
	P-Tuning	0.8347	0.7263	_	_	0.6177	0.5183	_	_
	- base		200						
	All models	0.184	-	0.142	-	0.168	-	-	0.188
	Llama -	0.8451		_					0.7808
	Mistral	(Mistral)	-	-	-	-	-	-	(Mistral)
	Llama -	_							
	Qwen	_	-	-	-	-	-	-	-
Model	Llama -	0.8748				1.0066			0.8748
	Gemma	(Gemma)	-	-	-	(Gemma)	-	-	(Gemma)
	Mistral -	(Genina)		0.8451		(Germina)		-	(Germina)
		-	-	(Mistral)	-	-	-	-	-
	Qwen Mietrol	-		(iviistiai)	-	-		-	
	Mistral -	-	-	-	-	-	-	-	-
	Gemma							-	
	Qwen -	-	-	-	-	-	-	-	-
	Gemma								
	Llama -	0.5049	_	_	-	-	-	<u>-</u>	0.4801
	base	0.5047							0.1001
	Mistral -	0.6796	0.6650	0.8752		0.7421			0.5140
	base	0.6786	0.6659	0.8753	-	0.7421	-	-	0.5149
	Qwen -		0.401-		0.4===				
	base	-	0.4817	-	0.4757	-	-	-	-
	Gemma -			t				-	
	base	0.8415	0.6982	0.8033	-	-	0.517	0.5314	-
	Just		L	I	1	L	1	L	l

TABLE VII: Results of the statistical tests for fairness categories $3\ \mathrm{and}\ 4$

Factor Comparison Acc. Acc. Bias Bias Acc. Acc. Bias Bias Acc. Acc. Bias Bias Acc. Acc. Bias Acc. Acc. Bias Bias Acc. Acc. Bias Acc. Bias Acc. Bias Acc. Acc. Bias Acc. Acc. Bias Acc. Bias Acc. Bias Acc. Bias Acc. Acc. Bias Acc. Acc. Bias Acc. Bias Acc. Bias Acc. Acc. Bias Acc. Bias Acc. Acc. Bias Acc. Acc. Bias Acc.	Bias DIS Effect Size
AMB	DIS Effect Size
Dataset	Effect Size
Name	Size -
Dataset UC - UF - 0.6010 (UF) - - - 0.527 0.5453 0.7804 - - -	-
$ \begin{array}{ c c c c c c c c } \hline \textbf{Dataset} & UC - UF & - & 0.6010 & - & - & - & - & - & - & - & - & - & $	
Dataset CC - UF CUF CUF CUF CUF CUF CUF CUF CUC - base 0.5817 0.5434 CUF - base 0.6295 CUF - CUF - CUF - CUF CUF - base 0.6295 CUF -	-
Dataset UC - base 0.5817 0.5434 - 0.527 0.5453 0.7804 -	-
Paradign	1
Paradigm	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_
Paradigm SF1 - DPO (DPO) (DPO) - 0.8861 (DPO) - - - -	0.8561
Paradigm SFT - base 0.7039 0.3298 - 0.4258 0.6916 0.5058 - 0.5726 - 0.4115	(DPO)
$ \begin{array}{ c c c c c c c c } \hline DPO - base & - & 0.5726 & - & 0.4115 & - & - & - \\ \hline \textbf{Learning Rate} & 1e-3 - 2e-5 & 0.4819 & - & - & 0.4929 & - & - & - \\ \hline 1e-3 - base & 0.7986 & - & - & 0.3696 & 0.7213 & 0.3923 & - \\ \hline 2e-5 - base & 0.523 & - & - & - & 0.542 & 0.3558 & - \\ \hline \textbf{Epochs} & 1e - 5e & - & - & - & - & - & - & - & - \\ \hline 1e - base & 0.5681 & - & - & - & 0.6077 & 0.6264 & - \\ \hline \textbf{5e} - base & 0.6438 & - & - & - & 0.5986 & - & - & - \\ \hline \textbf{All methods} & 0.216 & - & - & - & 0.227 & - & 0.128 \\ \hline \textbf{Lora} - IA^3 & - & - & - & - & 0.6722 & - & - & - \\ \hline \textbf{Tuning} & 1A^3 - & 0.7479 & - & - & 0.7463 & - & - & - \\ \hline \textbf{Tuning} & IA^3 - & 0.8273 & - & - & 0.9594 & - & - \\ \hline \textbf{P-Tuning} & (IA^3) & - & - & 0.9594 & - & - & - \\ \hline \textbf{Lora} - & & & & & & & & & & - & 0.9594 & - & - \\ \hline \textbf{Lora} - & & & & & & & & & & & & - & 0.9594 & - & - \\ \hline \textbf{Lora} - & & & & & & & & & & & & & - & - & 0.9594 & - & - \\ \hline \textbf{Lora} - & & & & & & & & & & & & & & - & - & $	0.275
Learning Rate 1e-3 - 2e-5 0.4819 (2e-5) - - 0.4929 (2e-5) - -	0.4523
Learning Rate 1e-3 - 2e-5 (2e-5) - - - (2e-5) - - -	0.4655
Rate	I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2e-5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$ \begin{array}{ c c c c c c c c c } \hline \textbf{Epochs} & \hline 1e - base & 0.5681 & - & - & - & 0.6077 & 0.6264 & - \\ \hline 5e - base & 0.6438 & - & - & - & 0.5986 & - & - \\ \hline & All methods & 0.216 & - & - & - & 0.227 & - & 0.128 \\ \hline & Lora - IA^3 & - & - & - & - & 0.6722 & & & & \\ \hline & IA^3 & - & - & - & - & & & & & & \\ \hline & IA^3 & - & 0.7479 & - & - & & & & & \\ \hline & Tuning & (IA^3) & - & - & - & & & & & \\ \hline & IA^3 - & 0.8273 & - & - & 0.9594 & - & & \\ \hline & P-Tuning & (IA^3) & - & - & & & & & \\ \hline & Lora - & & & & & & & & \\ \hline \end{array} $	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
PEFT Method Prompt Tuning 0.7479 (IA³) - - 0.7463 (IA³) - </th <td></td>	
Method Tuning (IA ³) (IA ³) (IA ³) IA ³ - 0.8273 - 0.9594 - 0.971 (IA ³) Lora - (IA ³) (IA ³)	
IA ³ - 0.8273	_
P-Tuning (IA ³) (IA ³) (IA ³)	
Lora -	-
Prompt - - - - - -	-
Tuning	
Lora -	_
P-Tuning P-Tuning	
Prompt -	
P-Tuning	-
Lora - base 0.5919 0.5726	-
IA ³ - base	-
Prompt	
Tuning 0.8801 0.7871	_
- base	
P.Tuning	
- base 0.8234 0.4436 - 0.4599 0.8465 0.5353 -	-
	0.252
Llama -	0.8125
Mistral	(Mistral)
Llama - 0.8451 0.7808 1.0066	0.9184
Qwen (Qwen) (Qwen) (Qwen)	(Qwen)
Model Llama - 0.8451 0.8451 0.7510	0.8125
Gemma (Gemma) (Gemma) (Gemma)	(Gemma)
Mistral -	_
Qwen	-
Mistral - 0.9518 0.8125 0.7808 1.0066	
Gemma (Gemma) (Gemma) (Mistral) (Gemma	a) -
Qwen - 0.8748	
Gemma (Gemma)	-
Llama -	
base 0.4683 0.4957 0.7683 -	-
Mictral	
base 0.9318 0.9199 - 0.6956	-
Qwen - 0.8791 0.6854 0.8791 - 0.4801 - -	0.5005
base	0.5987
Gemma - 0.517 0.543 0.9027 - 0.5495 0.7305 0.667	0.5987
base	0.5987

TABLE VIII: Results of the statistical tests for fairness categories 5 and 6

	TABLE VI		5. Physical A			Tairness ca		/Ethnicity	
Factor	Comparison	Acc.	Acc.	Bias	Bias	Acc.	Acc.	Bias	Bias
ractor	Comparison	AMB	DIS	AMB	DIS	AMB	DIS	AMB	DIS
		Effect	Effect	Effect	Effect	Effect	Effect	Effect	Effect
		Size	Size	Size	Size	Size	Size	Size	Size
All	results	0.6519	-	0.2154	0.3917	0.533	0.5677	-	0.5676
		0.6341		012101	0.5717			0.5718	0.2070
	UC - UF	(UF)	-	-	-	-	-	(UC)	-
Dataset	UC - base	0.7656	-	-	0.6104	-	0.6713	-	0.7573
	UF - base	0.6351	-	0.2671	0.3409	0.5422	0.5469	-	0.5343
		0.7371		0.5363		0.7302	0.6098		0.8561
D 11	SFT - DPO	(DPO)	-	(DPO)	-	(DPO)	(DPO)	-	(DPO)
Paradigm	SFT - base	0.7682	-	-	0.4457	0.6156	0.6722	-	0.6719
	DPO - base	-	-	-	-	-	-	-	-
	1 2 2 5	0.4583				0.5951			
Learning	1e-3 - 2e-5	(2e-5)	-	-	-	(2e-5)	-	-	-
Rate	1e-3 - base	0.7443	-	-	0.4709	0.7327	0.6134	-	0.7044
	2e-5 - base	0.6519	-	-	0.3367	0.4262	0.5519	-	0.5084
	1e - 5e			0.5661				_	
Epochs				(1e)					
Epociis	1e - base	0.7292	-	-	0.3915	0.4346	0.652	-	0.5923
	5e - base	0.6348	-	0.3083	0.3915	0.5721	0.5296	-	0.5454
	All methods	0.187	-	-	0.197	0.176	0.266	-	0.247
	Lora - IA ³	0.8153	_	_	_	0.6582		_	_
		(IA ³)				(IA ³)			
	IA ³ -				0.7159		0.8979		1.0113
PEFT	Prompt	-	-	-	(IA ³)	-	(IA^3)	-	(IA^3)
Method	Tuning	0.0070				0.0104			
	IA ³ -	0.8979	-	-	0.7011	0.9184	0.8616	-	0.7620
	P-Tuning Lora -	(IA ³)			(IA ³)	(IA ³)	(IA ³)		(IA ³)
					0.6582				0.6442
	Prompt Tuning	-	-	-	(Lora)	-	-	-	(Lora)
	Lora -								0.6442
	P-Tuning	-	-	-	-	-	-	-	(Lora)
	Prompt -								(Lora)
	P-Tuning	-	-	-	-	-	-	-	-
	Lora - base	0.7787	-	0.5457	-	0.5003	-	-	
	IA ³ - base	0.6661	-	0.6784	-	-	-	-	_
	Prompt								
	Tuning	0.6039	-	-	0.6656	0.6622	0.9523	-	1.0194
	- base								
	P-Tuning	0.0026			0.5075	0.9122	0.8702		0.9122
	- base	0.8826	-	-	0.5875	0.8123	0.8702	-	0.8123
	All models	0.222	0.132	-	-	0.262	-	0.335	0.265
	Llama -	_	0.8125	_	_	0.7808	_	0.8451	0.7808
	Mistral		(Mistral)			(Mistral)		(Llama)	(Mistral)
	Llama -	1.0066	0.7879	_	_	0.7808		1.0066	1.0066
	Qwen	(Qwen)	(Qwen)			(Qwen)		(Llama)	(Qwen)
Model	Llama -	_	_	_	_	1.0066	_	_	-
	Gemma					(Gemma)			
	Mistral -	-	_	-	-	-	-	-	-
	Qwen Mistral								
	Mistral -	-	-	-	-	-	-	-	-
	Gemma Qwen -		0.7808					0.7808	
	Gemma	-	(Qwen)	-	-	-	-	(Gemma)	-
	Llama -								
	base	0.5134	0.718	-	-	0.5009	0.5539	1.0333	0.8807
	Mistral -								
	base	0.8685	0.4399	0.8533	0.4503	0.7262	0.7717	0.5653	-
	Qwen -		0.4070					0.0=::	0.6:==
	base	-	0.4929	-	-	-	-	0.8764	0.6475
	Gemma -	0.0703	0.000	0.5552	0.0007	0.517	0.724	0.7504	0.6250
	base	0.8792	0.802	0.5752	0.9027	0.517	0.724	0.7504	0.6358

TABLE IX: Results of the statistical tests for fairness categories 7 and 8

				eligion	710 101 14	R G		omic Statu	ıc
Factor	Comparison	Acc.	Acc.	Bias	Bias	Acc.	Acc.	Bias	Bias
Factor	Comparison		1						
		AMB	DIS	AMB	DIS	AMB	DIS	AMB	DIS
		Effect	Effect	Effect	Effect	Effect	Effect	Effect	Effect
		Size	Size	Size	Size	Size	Size	Size	Size
All	results	0.7453	0.4103	-	-	0.5641	0.3472	-	-
	UC - UF	-	-	-	-	-	-	-	-
Dataset	UC - base	0.8819	-	-	-	-	0.6299	-	-
	UF - base	0.7246	0.39	-	-	0.5799	0.2897	-	-
		0.7926		0.5423		0.8269		0.5550	0.6795
	SFT - DPO	(DPO)	-	(DPO)	-	(DPO)	-	(DPO)	(DPO)
Paradigm	SFT - base	0.8485	0.4847	-	0.2802	0.6698	0.4982	-	-
	DPO - base	-	-	-	- 0.2002	-	-	-	-
	Di O - base	0.4172	_		-	0.6010	_	_	_
	1e-3 - 2e-5		-	-	-		-	-	-
Learning	1 2 1	(2e-5)	0.4204			(2e-5)			
Rate	1e-3 - base	0.7768	0.4304	-	-	0.762	-	-	-
	2e-5 - base	0.7269	0.3902	-	-	0.4654	0.427	-	-
	1e - 5e	-	-	-	-	-	-	-	-
Epochs	le - base	0.8394	0.5032	-	-	0.4439	0.6736	-	-
	5e - base	0.7188	0.3537	0.2943	-	0.6092	-	-	-
	All methods	0.403	0.37	-	-	0.266	0.277	0.144	-
		0.8784				0.7866			
	Lora - IA ³	(IA ³)	-	-	-	(IA ³)	-	-	-
	IA ³ -	(111)			-	(1/1)			
		0.8100	1.0489			0.6442	0.8100		
PEFT	Prompt	(IA^3)	(IA^3)	-	-	(IA^3)	(IA^3)	-	-
Method	Tuning		` ′				` ′		
	IA ³ -	1.0113	_	_	_	0.9397	_	_	_
	P-Tuning	(IA^3)				(IA^3)			
	Lora -		0.7936				0.7620		
	Prompt	-	l	-	-	-		-	-
	Tuning		(Lora)				(Lora)		
	Lora -								
	P-Tuning	-	-	-	-	-	-	-	-
	Prompt -								
	P-Tuning	-	-	-	-	-	-	-	-
	Lora - base	0.7787	-		-	0.6875	-	-	-
	IA ³ - base			-		- 0.0873			
		-	-	-	-	-	-	-	-
	Prompt								
	Tuning	0.8675	0.8675	-	-	0.6039	0.7871	-	-
	- base								
	P-Tuning	0.8826	0.5525	_	_	0.8465	0.5014	_	_
	- base	0.0020	0.5525			0.0403	0.5017		
	All models	0.147	-	0.212	-	0.195	-	-	0.142
	Llama -			0.8748		İ			
	Mistral	-	-	(Llama)	-	-	-	-	-
	Llama -	0.8155		<u> </u>		0.7808			
	Owen	(Qwen)	-	-	-	(Qwen)	-	-	-
Model	Llama -	(2,,,,)		 		1.0066			
Model	Gemma	-	-	-	-	(Gemma)	-	-	-
						(Geillila)			
	Mistral -	-	-	-	-	-	-	-	-
	Qwen								
	Mistral -	-	_	_	_	-	-	-	_
	Gemma								
	Qwen -	-	-	_	_	-	-	_	-
	Gemma								
	Llama -	0.4986	_	0.6512	_	0.4502	0.4671	_	0.5927
	base	0.4980	_	0.0512	-	0.4302	0.40/1	-	0.3921
	Mistral -	0.0571		0.5225		0.7717		0.522	
	base	0.8571	-	0.7325	-	0.7717	-	0.522	-
	Qwen -			_					
	base	0.8683	0.6848	0.644	-	-	-	-	0.477
	Gemma -			-	-				
	base	0.8792	0.5954	0.6358	0.6853	0.716	0.8822	0.8033	-
	vasc			L			l		L

TABLE X: Results of the statistical tests for fairness category 9

				Orientation	
Factor	Comparison	Acc. AMB	Acc. DIS	Bias AMB	Bias DIS
	F	Effect	Effect	Effect	Effect
		Size	Size	Size	Size
All	results	0.705	0.3802	-	-
7111	UC - UF	-	- 0.5002	_	_
Dataset	UC - base	0.7467	-	-	-
Dataset	UF - base	0.7004	0.3905	-	-
	Ur - base		0.3903	-	-
	SFT - DPO	0.7582	-	-	-
Paradigm	CETE 1	(DPO)	0.4727		
_	SFT - base	0.8008	0.4737	-	-
	DPO - base	-	-	0.6166	-
Learning	1e-3 - 2e-5	-	-	-	-
Rate	1e-3 - base	0.7236	0.4046	-	-
	2e-5 - base	0.7058	0.3645	-	-
	1e - 5e	-	-	-	-
Epochs	1e - base	0.7642	-	-	-
	5e - base	0.6923	0.3891	-	-
	All methods	0.197	0.174	0.234	-
	Lora - IA ³	0.8145	_	-	_
		(IA^3)			
	IA ³ -		0.8210		
PEFT	Prompt	-	(IA^3)	-	-
Method	Tuning		(IA ⁻)		
Method	IA ³ -	0.8616			
	P-Tuning	(IA^3)	-	-	-
	Lora -	1 /	0.6442		
	Prompt	-	0.6442	-	_
	Tuning		(Lora)		
	Lora -				
	P-Tuning	-	-	-	-
	Prompt -				
	P-Tuning	-	-	-	-
	Lora - base	0.7516	-	0.478	-
	IA ³ - base	0.4771	-	-	0.5137
	Prompt				
	Tuning	0.6377	0.8385	_	_
	- base	0.0377	0.0505		
	P-Tuning				
	- base	0.8056	0.4817	-	-
	All models	0.182	0.235	-	0.425
	Llama -	0.102	0.233	-	0.8223
	Mistral	-	-	-	(Mistral)
	Llama -	0.8487	1.0066		(iviistial)
	Qwen	(Qwen)	(Qwen)	-	-
Model	Llama -	(Qweii)	(Qwell)		0.9518
wiodei	Gemma	-	-	-	(Llama)
	Mistral -		-		(Liailia)
	Owen	-	-	-	-
	_ `				1,0000
	Mistral -	-	-	-	1.0066
	Gemma	0.0041			(Mistral)
	Qwen -	0.9941	-	-	1.0066
	Gemma	(Qwen)			(Qwen)
	Llama -	0.5447	0.8803	-	_
	base				
	Mistral -	0.803	_	_	0.694
	base	2.502			
	Qwen -	-	-	_	_
	base				
	Gemma -	0.8799	0.595	0.6358	1.0424
	base	0.0777	0.575	0.0000	1.0724