MAT-266, 2° Semestre 2014 Certamen 1. Octubre 17, 2014 Tiempo: 90 Minutos

Nombre:
Rol:
Profesor: Felipe Osorio.

1. Suponga $Y \sim \mathcal{N}_n(\theta \mathbf{1}_n, \sigma^2 \mathbf{I}_n)$ y denote por \mathbf{H}_n la matriz Helmert de orden n, definida en forma particionada como

$$m{H}_n = egin{pmatrix} rac{1}{\sqrt{n}} \, \mathbf{1}^ op \ m{A}^ op \end{pmatrix}, \qquad ext{tal que} \qquad m{H}_n^ op m{H}_n = m{H}_n m{H}_n^ op = m{I}_n.$$

a. (10 pts) Determine la distribución de $\mathbf{Z} = \mathbf{H}_n \mathbf{Y}$.

b. (15 pts) Obtenga la distribución condicional de $\mathbf{A}^{\top}\mathbf{Y}$ dado $\sqrt{n}\,\overline{Y}$.

2. (25 pts) (Restricciones lineales estocásticas) Considere la transformación lineal

$$\begin{pmatrix} \boldsymbol{Y} \\ \boldsymbol{g} \end{pmatrix} = \begin{pmatrix} \boldsymbol{X} \\ \boldsymbol{G} \end{pmatrix} \boldsymbol{\beta} + \begin{pmatrix} \boldsymbol{\epsilon} \\ \boldsymbol{u} \end{pmatrix},$$

donde Y y g son vectores $n \times 1$ y $q \times 1$, respectivamente, $X \in \mathbb{R}^{n \times p}$, $G \in \mathbb{R}^{q \times p}$, β es vector p-dimensional y ϵ , u son vectores aleatorios independientes, con $E(\epsilon) = 0$, E(u) = 0, y

$$\operatorname{Cov}\begin{pmatrix} \boldsymbol{\epsilon} \\ \boldsymbol{u} \end{pmatrix} = \sigma^2 \begin{pmatrix} \boldsymbol{I}_n & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Omega} \end{pmatrix}, \quad \sigma^2 > 0.$$

Sea

$$\widehat{\boldsymbol{\beta}} = \boldsymbol{b} + (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{G}^{\top} (\boldsymbol{\Omega} + \boldsymbol{G} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{G}^{\top})^{-1} (\boldsymbol{g} - \boldsymbol{G} \boldsymbol{b}),$$

donde $\boldsymbol{b} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y}$. Muestre que $\hat{\boldsymbol{\beta}}$ es insesgado y calcule su matriz de covarianza.

3. (25 pts) Sea \boldsymbol{X} un vector aleatorio $p \times 1$ tal que $E(\boldsymbol{X}\boldsymbol{X}^{\top})$ y $E(\boldsymbol{X}\boldsymbol{X}^{\top}\otimes \boldsymbol{X}\boldsymbol{X}^{\top})$ existen. Considere $E(\boldsymbol{X}) = \boldsymbol{\mu}$, $Cov(\boldsymbol{X}) = \boldsymbol{\Sigma}$ y asuma que \boldsymbol{A} y \boldsymbol{B} son matrices simétricas de orden $p \times p$. Muestre que

$$\begin{aligned} \operatorname{Cov}(\boldsymbol{X}^{\top}\boldsymbol{A}\boldsymbol{X},\boldsymbol{X}^{\top}\boldsymbol{B}\boldsymbol{X}) &= \operatorname{tr}\{(\boldsymbol{A}\otimes\boldsymbol{B})\operatorname{E}(\boldsymbol{X}\boldsymbol{X}^{\top}\otimes\boldsymbol{X}\boldsymbol{X}^{\top})\} \\ &- \{\operatorname{tr}(\boldsymbol{A}\boldsymbol{\Sigma}) + \boldsymbol{\mu}^{\top}\boldsymbol{A}\boldsymbol{\mu}\}\{\operatorname{tr}(\boldsymbol{B}\boldsymbol{\Sigma}) + \boldsymbol{\mu}^{\top}\boldsymbol{B}\boldsymbol{\mu}\}. \end{aligned}$$

Sugerencia: Note que

$$\boldsymbol{X}^{\top}\boldsymbol{A}\boldsymbol{X}\boldsymbol{X}^{\top}\boldsymbol{B}\boldsymbol{X} = \operatorname{tr}\{(\boldsymbol{X}^{\top}\otimes\boldsymbol{X}^{\top})(\boldsymbol{A}\otimes\boldsymbol{B})(\boldsymbol{X}\otimes\boldsymbol{X})\}.$$

4. (25 pts) Sea $Y \sim \mathcal{N}_n(\mathbf{0}, I_n)$ y considere A, B matrices idempotentes, tales que $AB = BA = \mathbf{0}$. Muestre la independencia conjunta entre $Y^{\top}AY$, $Y^{\top}BY$ y $Y^{\top}(I - A - B)Y$.