Michael Roney

FAMOUS QUOTE

There are known knowns; there are things we know that we know.

There are known unknowns; that is to say, there are things that we now know we don't know.

But there are also unknown unknowns – there are things we do not know we don't know.

-Donald Rumsfeld

Matrix of Wheel/Rail Understanding

KNOWN

We know that we don't know?

VALUABLE

We know that we know

UNKNOWN

DANGEROUS

We don't know that we don't know?

GROWING

We don't know that we know

UNKNOWN

KNOWN

KNOWN

PROGRESSION OF KNOWLEDGE **OVER 30 YEARS**

High rail Low B/H ratios cause rail roll B

WE DIDN'T KNOW WE DIDN'T KNOW?

ROLLING STOCK

- Effects of tread hollows.
- Cost of high impact wheels
- Effects of low truck warp stiffness
- Cost of "bad actor" cars
- How wheel profiles affect curving until they wear in
- Why low speed derailments happen
- Why empty tank cars and loaded grain cars derail

TRACK

- The impact of deviation from stress free temperature
- How non-metallic impurities cause rail failures
- The rail rollover risk from flat rails
- The cost of high friction levels
- Causes of concrete tie abrasion
- The impact of combination and clustered track geometry defects

OPERATIONS

- High risk train marshalling parameters
- Intermodal derailment causes
- Long train longitudinal dynamics
 - Effect of curvature/grade on lateral forces for long trains

WE DIDN'T KNOW WE KNEW

- Wheel profiles can improve steering while also controlling hunting
- Tighter specs. on trucks can improve curve negotiation.
- Wayside detectors can ferret out "bad actor" cars
- Car fleet owners can live with repair codes for wheel impacts.
- Residual stresses are a factor in wheel rim failures
- Low speed wheel climb derailments are preventable

TRACK

- Rail profile grinding can control wheel/rail mismatch
- Preventive rail grinding controls RCF
- Lubrication can dramatically reduce rail wear
- Concrete tie abrasion is manageable
- Tighter rail flaw detection greatly reduces rail failure risk
- Rail neutral temperatures can be managed with good field practice.

OPERATIONS

- Long trains can be run more productively and less destructively with distributed power.
- Train drivers can be assisted with onboard computer algorithms.

• When wheel profiles and "as ground" rail profiles are in sync, there is little "wearing in" and lower wheel/rail wear.

TRACK

- Rail grinding patterns can be dynamically controlled to achieve an optimal rail shape.
- Milling a viable option under the right circumstances
- Friction management has an upside to be used economically over larger territories.
- Track geometry measurement can be autonomous; tighter intervals reduces the need for track inspections
- Non stop rail flaw detection allows tighter test intervals.
- Track is a system where fouled ballast causes track geometry issues which affect occurrence of rail defects.
- Under tie pads can reduce transition issues.
- Rail neutral temperatures can be managed with good field practice.

OPERATIONS

Even long trains can be run autonomously.

CONCLUSION

CIBC	CM	93.99	-0.56	4.1	2968	12.
Cdn Natl Rail	CNR	145.22	-0.26	2.4	1083	20.
Cdn Natrl Res	CNQ	42.55	-0.50	5.5	15156	11.
Cdn Pacific K	CP	111.76	+0.31	0.8	1174	27.
Cdn Tire A NV	CTC.A	173.31	+2.51	4.1	235	11.

JEERS

- Slow pace of change.
- Capital intensive industry with long life of assets
- Market drives short term results over transformative
- R&D delivers long term, not short term financial results
- Regulatory environment requires change management
- Turnover of experienced engineers.

CHEERS

- WRI, AREMA, IHHA provide exchange of best practice
- · There are centres of excellence in MxV and affiliated universities.
- The rail industry is global
- Railway suppliers have been innovative, but need buyers
- Government is supportive of R&D
- Railways are showing progress in safety and productivity

CONTACT US

PHONE

587-438-5676

EMAIL

michael@roneyengineering.com

ADDRESS

550 Charles St. S, Gananoque, ON K7G 1X3

WEBSITE

www.iron-moustache.com

