

UNTAR untuk INDONESIA

PROBABILITAS (PROBABILITY)

DASAR-DASAR TEORI PROBABILITAS

RUANG SAMPEL (SAMPLE SPACE) DAN KEJADIAN (EVENT)

DEFINISI RUANG SAMPEL

Himpunan semua kemungkinan dari hasil suatu percobaan. Ruang sampel dalam diagram venn dilambangkan sebagai S, yaitu himpunan Alam Semesta

DEFINISI KEJADIAN

Himpunan bagian dari ruang sampel

CONTOH SOAL 1 Berkaitan dengan Ruang Sampel dan Kejadian

• Sebuah percobaan dilakukan dengan wawancara terhadap 2 orang ibu rumah tangga, apakah memasak menggunakan minyak goreng BM.

S= {TY, YY, TT, YT}

MISALKAN: dari percobaan tersebut ada <mark>suatu kejadian A</mark>, bahwa paling sedikit ada seorang ibu yang memasak menggunakan minyak goreng BM

Sebutkan anggota kejadian A

Jawab

Berapa banyaknya anggota kejadian A

Jawab

 n_A =3

LATIHAN SOAL 1B

• Sebuah percobaan dilakukan dengan melakukan wawancara terhadap 3 orang ibu rumah tangga, apakah memasak menggunakan minyak goreng BM.

Sebutkan Ruang Sampel S Jawab

S= {YYY, YYT, YTY, YTT, TYT, TTY, TYY, TTT}

Banyaknya Ruang Sampel S, N= 8

Misal **ada suatu kejadian K,** yang menyebutkan bahwa hanya ada satu ibu rumah tangga yang menggunakan minyak BM.

Banyaknya kejadian K , n_K = 3

LATIHAN SOAL 1

Dari percobaan tersebut mengatakan bahwa semua ibu memasak menggunakan minyak goreng BM

Sebutkan anggota kejadian B: semua ibu memasak menggunakan minyak goreng BM

Jawab

Berapa banyaknya anggota kejadian B

Jawab 1

Sebutkan anggota kejadian L: Hanya ada 2 ibu saja memasak menggunakan minyak goreng BM

L ={ YYT, TYY, YTY}

Berapa banyaknya anggota kejadian L, n_L = 3

LATIHAN SOAL 1

Sebutkan anggota kejadian C: paling banyak ada 2 ibu memasak menggunakan minyak goreng BM

Jawab

C={YYT, YTY, TYY, TTT, YTT, TYT, TTY }

Berapa banyaknya anggota kejadian C

Jawak

 n_C = 7

Sebutkan anggota kejadian W: Hanya ada 2 ibu saja memasak menggunakan minyak goreng BM

W ={ YYT, TYY, YTY}

LATIHAN SOAL 1

Sebutkan anggota kejadian D: Paling sedikit seorang ibu TIDAK memasak menggunakan minyak

Jawab

D= { YTY, TYY, YYT, TTY, TYT, YTT, TTT}

Berapa jumlah anggota kejadian D

Jawab n

 n_D = 7

Sebutkan anggota kejadian C: paling banyak ada 2 ibu memasak menggunakan minyak goreng BM Jawab

C={YYT, YTY, TYY, TTT, YTT, TYT, TTY }

LATIHAN SOAL 2A

 Ada 4 orang sebut namanya adalah A, B, C dan D, yang akan dipilih 2 untuk menjadi juri pada lomba pembuatan Game online. Diketahui A dan B dari Teknik Informatika dan sisanya dari Disain Visual.

Sebutkan Ruang Sampel S

Jawab S= {AB, AC, AD, BC,BD, CD}

Banyaknya Ruang Sampel S, N= 6

❖ Ada suatu kejadian G bahwa Juri harus dari Disaian Visual

Sebutkan anggota kejadian G = {
$$DC$$
} $n_G = 1$

❖ Ada kejadian M bahwa tidak ingin terpilih A

M= { BC, BD, CD}
$$n_M$$
= 3

Misal ada kejadian W, kejadian tersebut menyatakan bahwa dua juri yang terpilih masing – masing dari Teknik Informatika dan dari Disain Visual

W= { AC, AD, BC, BD}

Misal ada kejadian Z, kejadian tersebut menyatakan bahwa tidak ingin dipilih juri dari TekniK Informatika

$$Z = \{CD\}$$

$$n_Z$$
= 1

Misal ada kejadian H, kejadian tersebut menyatakan bahwa jika ada B jangan ada mahasiswa disain visual

$$H = \{AB, AC, AD, CD, \}$$

$$n_H$$
= 4

❖ Ada kejadian M bahwa tidak ingin terpilih A

M= { BC, BD, CD}
$$n_M$$
= 3

LATIHAN SOAL 2B

Ada 4 professional sebut namanya adalah: A, B, C dan D, yang akan dipilih 2 untuk menjadi juri pada lomba pembuatan Game online. Diketahui A dan B dari Teknik Informatika dan sisanya dari Disain Visual. Profesional yang terpilih pertama adalah Juri 1 ditetapkan sebagai Ketua Juri dan sisanya anggota.

S= {AB, BA, AC, AD, BC, BD, CA, CB, CD, DA, DB, DC }

Banyaknya Ruang Sampel S, N=12

❖ Misal ada kejadian X : Tidak ingin ketua Juri dari Disain Visual

X= {AB, BA,AC,AD,BC, BD} Jumlah anggota kejadian X= nX=6

❖ Misal ada kejadian T: C harus terpilih sebagai ketua, karena expert

T= { CA, CD, CB)

Jumlah anggota kejadian T= nT = 3

❖ Misal ada kejadian V: Jika B terpilih ketua, maka D TIDAK bersedia jadi anggota

V= {AB, AC, AD, BA, BC, CA, CB, CD, DA, DB, DC}

Jumlah anggota kejadian V= nV = 11

PERMUTASI DAN KOMBINASI

PERMUTASI

DEFINISI PERMUTASI: Permutasi adalah suatu susunan yang dibentuk oleh keseluruhan atau Sebagian dari sekumpulan benda

Dalil Permutasi -1 : Banyaknya permutasi n benda yang berbeda adalah n!

Misal ada tiga huruf X, Y dan Z, banyaknya permutasi dari 3 huruf tersebut adalah :

$$n! = 3! = 3.2.1 = 6$$

Deskripsikan anggotanya:

Χ	Υ	Z
Χ	Z	Υ
Υ	Χ	Z
Υ	Z	Χ
Z	Χ	Υ
Z	Υ	Χ

PERMUTASI DAN KOMBINASI

PERMUTASI

Dalil Permutasi -2: Banyaknya permutasi akibat pengambilan *r* dari *n* benda yang berbeda adalah

$$nP_r = \frac{n!}{(n-r)!}$$

Misal ada tiga huruf X, Y dan Z, diambil 2, maka banyaknya permutasi adalah :

$$3P_2 = \frac{3!}{(3-2)!} = \frac{3!}{(1)!} = 3! = 3.2.1 = 6$$

Deskripsikan anggotanya:

Υ
X
Z
Х
Z
Υ

$$n = 3 dan r = 2$$

PERMUTASI DAN KOMBINASI

KOMBINASI

DEFINISI KOMBINASI : Kombinasi adalah banyaknya cara yang dibentuk pada pengambilan sebanyak r dari dari n benda yang berbeda **tanpa memperhatikan urutannya** dan dilambangkan dengan $\binom{n}{r}$.

Rumus Kombinasi:
$$\binom{n}{r} = \frac{n!}{r! (n-r)!}$$

Misal ada tiga huruf X, Y dan Z, diambil 2 tanpa memperhatikan urutannya, maka banyaknya kombinasi adalah:

$$\binom{3}{2} = \frac{3!}{2! (3-2)!} = \frac{3 \cdot 2!}{2! (3-2)!} = 3$$

Deskripsikan anggotanya:

()

X Z

Υ

Z

Kembali pada Latihan 2A dan 2B

$$\frac{20!}{17! (3)!} = \frac{20.19.13.17!}{17! (3)!}$$

Catatan Tentang bilangan Factorial

$$8! = 8.7.6.5.4.3.2.1$$
 Artinya: $8! = 8.7.6!$ $8! = 8.7.6!$ $8! = 8.7.6.5.4.3.2.1$ Artinya: $8! = 8.7!$

8! = 8.7.6.5!

Catatan Tentang bilangan Factorial

Atau

Artinya: 7! = 7.6.5.4!

Catatan: 0! = 1

