40.016: The Analytics Edge Week 2 Lecture 2

PRINCIPAL COMPONENT ANALYSIS: AN INDEX OF SOCIAL PROGRESS

Term 5, 2022

Opinion

'We're No. 28! And Dropping!'

A measure of social progress finds that the quality of life has dropped in America over the last decade, even as it has risen almost everywhere else.

2020 Social Progress Index

https://youtu.be/UdMNuzIIois

Social Progress Index

The Social Progress Index is a well-established measure, published since 2013, that is meant to catalyze improvement and drive action by presenting social outcome data in a useful and reliable way. Composed of multiple dimensions, the Social Progress Index can be used to benchmark success and provide a holistic, transparent, outcome-based measure of a countrys well-being that is independent of economic indicators. Policymakers, businesses, and countries citizens alike can use it to compare their country against others on different facets of social progress, allowing the identification of specific areas of strength or weakness.

- taken from the Methodology summary

Figure 1 / Social Progress Index Component-Level Framework

Figure 2 / Social Progress Index Indicator-Level Framework

Key questions

- What can we understand about social progress from the raw data?
- Can we identify where the major differences in social progress occurs?
- 3 Can we propose some kind of social progress index from our analysis.

Supervised learning vs. Unsupervised learning

	Supervised learning	Unsupervised learning			
Data	Data is labelled. Output: y ,	Unlabelled data. Only input:			
	input: x_1, \ldots, x_p .	x_1,\ldots,x_p .			
Goal	Predicting the response,	Not direct. Understanding			
	classifying, etc.	the structure. Clustering, di-			
		mension reduction			
Assessment	Break into training and test	Difficult			
	sets and validate				
Methods	Regression (linear, logistic,	PCA, SVD, k-means, hierar-			
), Random forests, deci-	chichal clustering,			
	sion trees,				

Principal Component Analysis

We observe the $n \times p$ data matrix:

$$egin{aligned} oldsymbol{x} = \begin{bmatrix} x_{11} & \dots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{np} \end{bmatrix} =: \begin{bmatrix} \underline{x}_1^\mathsf{T} \\ \vdots \\ \underline{x}_n^\mathsf{T} \end{bmatrix} \end{aligned}$$

- \bullet n = number of observations
- p = number of features
- 3 X_1, \ldots, X_p = the feature variables

PCA

Can we find Z_1, \ldots, Z_q with q << p such that

$$\begin{split} Z_1 &= \phi_{11} X_1 + \phi_{21} X_2 + \ldots + \phi_{p1} X_p = \underline{X}^\mathsf{T} \underline{\phi}_1, \\ &\vdots \\ Z_q &= \phi_{1q} X_1 + \phi_{2q} X_2 + \ldots + \phi_{pq} X_p = \underline{X}^\mathsf{T} \underline{\phi}_q, \end{split}$$

PCA: linear algebra

- **1** Any real symmetric $p \times p$ matrix A has p orthonormal eigenvectors $\underline{v}_1, \dots, \underline{v}_p$ and associated eigenvalues $\lambda_1, \dots, \lambda_p$ respectively such that for $1 \le i, j \le p$,

 - $2 \underline{v}_i^\mathsf{T} \underline{v}_i = 1,$

Moreover, $\underline{v}_i \in \mathbb{R}^p$ and $\lambda_i \in \mathbb{R}$.

PCA: approach 1

PCA: approach 2

PCA: approach 2

PCA: how many?

PCA: limitations?

Albeit being quite useful, we need to keep in mind certain limitations.

- PCA depends on the scaling of the variables and hence one needs to scale the variables, essentially bringing them all down to the same scale.
- We assume that a linear relationships between variables can explain the total variability.
- The eventual principal components loses some interpretability.

Resources

- https://www.datacamp.com/community/tutorials/pca-analysis-r
- https://towardsdatascience.com/ principal-component-analysis-pca-101-using-r-361f4c53a9ff
- http://www.sthda.com/english/articles/ 31-principal-component-methods-in-r-practical-guide/ 112-pca-principal-component-analysis-essentials/
- Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1. 10. Springer series in statistics, New York.

	Score	Rank AE	Rank SPI		Score	Rank AE	Rank SPI		Score	Rank AE	Rank S
Switzerland	6.86	1	6	United Kingdom	5.69	21	20	Ethiopia	-5.43	144	145
Norway	6.81	2	1	Spain	5.65	22	19	Angola	-5.45	145	151
Denmark	6.76	3	2	Estonia	5.63	23	24	Mali	-5.46	146	150
Sweden	6.65	4	5	Slovenia	5.51	24	22	Sierra Leone	-5.49	147	134
Finland	6.51	5	3	Portugal	5.47	25	21	Mozambique	-5.67	148	142
Iceland	6.42	6	9	United States	5.34	26	28	Pakistan	-5.88	149	141
Luxembourg	6.4	7	14	Greece	5.24	27	27	Madagascar	-5.93	150	148
Japan	6.3	8	13	Czechia	5.18	28	25	Congo, Republic of	-6.1	151	149
Canada	6.23	9	7	Malta	4.99	29	30	Guinea-Bissau	-6.46	152	152
Germany	6.22	10	11	Singapore	4.91	30	29	Papua New Guinea	-6.8	153	153
Netherlands	6.16	11	10	Lithuania	4.76	31	32	Niger	-6.93	154	157
New Zealand	6.09	12	4	Poland	4.53	32	31	Afghanistan	-7.05	155	155
Australia	6.09	13	8	Israel	4.47	33	33	ongo, Democratic Republic of	-7.26	156	156
Ireland	6.02	14	12	Costa Rica	4.42	34	37	Guinea	-7.65	157	154
Belgium	5.9	15	16	Uruguay	4.34	35	38	Burundi	-8	158	158
Italy	5.88	16	23	Slovakia	4.22	36	36	Eritrea	-9.03	159	160
Cyprus	5.78	17	26	Latvia	4.15	37	35	Somalia	-9.47	160	159
Austria	5.75	18	15	Croatia	4.13	38	39	Chad	-10.13	161	162
a, Republic of	5.73	19	17	Chile	3.78	39	34	South Sudan	-10.18	162	163
France	5.69	20	18	Barbados	3.67	40	42	Central African Republic	-11.07	163	161