```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn import model_selection
from sklearn.metrics import accuracy_score
```

df=pd.read_csv("Employee attrition data.csv")
df.head()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumbe
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	

5 rows × 35 columns

df.describe()

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRate	:
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.000000	
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.891156	
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.329428	
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.000000	
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.000000	
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.000000	
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.750000	
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.000000	

8 rows × 26 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

νατα	columns (total 35 columns);	
#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64

19	MonthlyRate	1470	non-null	int64
20	NumCompaniesWorked	1470	non-null	int64
21	Over18	1470	non-null	object
22	OverTime	1470	non-null	object
23	PercentSalaryHike	1470	non-null	int64
24	PerformanceRating	1470	non-null	int64
25	RelationshipSatisfaction	1470	non-null	int64
26	StandardHours	1470	non-null	int64
27	StockOptionLevel	1470	non-null	int64
28	TotalWorkingYears	1470	non-null	int64
29	TrainingTimesLastYear	1470	non-null	int64
30	WorkLifeBalance	1470	non-null	int64
31	YearsAtCompany	1470	non-null	int64
32	YearsInCurrentRole	1470	non-null	int64
33	YearsSinceLastPromotion	1470	non-null	int64
34	YearsWithCurrManager	1470	non-null	int64

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

df.corr()

<ipython-input-12-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ve df.corr()

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	ŀ
Age	1.000000	0.010661	-0.001686	0.208034	NaN	-0.010145	0.010146	
DailyRate	0.010661	1.000000	-0.004985	-0.016806	NaN	-0.050990	0.018355	
DistanceFromHome	-0.001686	-0.004985	1.000000	0.021042	NaN	0.032916	-0.016075	
Education	0.208034	-0.016806	0.021042	1.000000	NaN	0.042070	-0.027128	
EmployeeCount	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
EmployeeNumber	-0.010145	-0.050990	0.032916	0.042070	NaN	1.000000	0.017621	
EnvironmentSatisfaction	0.010146	0.018355	-0.016075	-0.027128	NaN	0.017621	1.000000	
HourlyRate	0.024287	0.023381	0.031131	0.016775	NaN	0.035179	-0.049857	
Jobinvolvement	0.029820	0.046135	0.008783	0.042438	NaN	-0.006888	-0.008278	
JobLevel	0.509604	0.002966	0.005303	0.101589	NaN	-0.018519	0.001212	
JobSatisfaction	-0.004892	0.030571	-0.003669	-0.011296	NaN	-0.046247	-0.006784	
MonthlyIncome	0.497855	0.007707	-0.017014	0.094961	NaN	-0.014829	-0.006259	
MonthlyRate	0.028051	-0.032182	0.027473	-0.026084	NaN	0.012648	0.037600	
NumCompaniesWorked	0.299635	0.038153	-0.029251	0.126317	NaN	-0.001251	0.012594	
PercentSalaryHike	0.003634	0.022704	0.040235	-0.011111	NaN	-0.012944	-0.031701	
PerformanceRating	0.001904	0.000473	0.027110	-0.024539	NaN	-0.020359	-0.029548	
RelationshipSatisfaction	0.053535	0.007846	0.006557	-0.009118	NaN	-0.069861	0.007665	
StandardHours	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
StockOptionLevel	0.037510	0.042143	0.044872	0.018422	NaN	0.062227	0.003432	
TotalWorkingYears	0.680381	0.014515	0.004628	0.148280	NaN	-0,014365	-0,002693	
TrainingTimesLastYear	-0.019621	0.002453	-0.036942	-0.025100	NaN	0.023603	-0.019359	
WorkLifeBalance	-0.021490	-0.037848	-0.026556	0.009819	NaN	0.010309	0.027627	
YearsAtCompany	0.311309	-0.034055	0.009508	0.069114	NaN	-0.011240	0.001458	
YearsInCurrentRole	0.212901	0.009932	0.018845	0.060236	NaN	-0.008416	0.018007	
YearsSinceLastPromotion	0.216513	-0.033229	0.010029	0.054254	NaN	-0.009019	0.016194	
YearsWithCurrManager	0.202089	-0.026363	0.014406	0.069065	NaN	-0.009197	-0.004999	
26 rows × 26 columns								

df.corr().MonthlyRate.sort_values(ascending=False)

<ipython-input-13-d4025e99262a>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ve df.corr().MonthlyRate.sort_values(ascending=False)

 MonthlyRate
 1.000000

 JobLevel
 0.039563

 EnvironmentSatisfaction
 0.037600

 MonthlyIncome
 0.034814

 Age
 0.028051

 DistanceFromHome
 0.027473

 TotalWorkingYears
 0.026442

 NumCompaniesWorked
 0.017521

EmployeeNumber 0.012648 WorkLifeBalance 0.007963 YearsSinceLastPromotion 0.001567 TrainingTimesLastYear 0.001467 0.000644 JobSatisfaction RelationshipSatisfaction -0.004085 PercentSalaryHike -0.006429 PerformanceRating -0.009811 -0.012815 YearsInCurrentRole HourlyRate -0.015297 JobInvolvement -0.016322 YearsAtCompany -0.023655 Education -0.026084 DailyRate -0.032182 StockOptionLevel -0.034323 YearsWithCurrManager -0.036746 EmployeeCount NaN StandardHours NaN Name: MonthlyRate, dtype: float64

df.isnull().any()

False Age Attrition False BusinessTravel False DailyRate False Department False DistanceFromHome False Education False EducationField False EmployeeCount False EmployeeNumber False EnvironmentSatisfaction False Gender False HourlyRate False JobInvolvement False JobLevel False JobRole False JobSatisfaction False MaritalStatus False MonthlyIncome False MonthlyRate False NumCompaniesWorked False Over18 False OverTime False PercentSalaryHike False ${\tt Performance} {\tt Rating}$ False RelationshipSatisfaction False StandardHours False StockOptionLevel False TotalWorkingYears False TrainingTimesLastYear False WorkLifeBalance False YearsAtCompany False YearsInCurrentRole False YearsSinceLastPromotion False YearsWithCurrManager False

df.isnull().sum()

dtype: bool

0 Age Attrition 0 0 ${\tt BusinessTravel}$ DailyRate 0 Department 0 DistanceFromHome 0 Education 0 EducationField 0 EmployeeCount 0 EmployeeNumber 0 EnvironmentSatisfaction 0 Gender 0 HourlyRate 0 JobInvolvement 0 JobLevel 0 JobRole 0 JobSatisfaction 0 MaritalStatus 0 MonthlyIncome MonthlyRate 0 NumCompaniesWorked 0 0 0ver18 OverTime 0 PercentSalaryHike 0 PerformanceRating 0 Relation ship Satisfaction

```
{\tt Standard Hours}
                                  0
                                  0
     StockOptionLevel
     TotalWorkingYears
                                  0
     TrainingTimesLastYear
     WorkLifeBalance
     YearsAtCompany
                                  0
     YearsInCurrentRole
                                  0
     YearsSinceLastPromotion
                                  0
     YearsWithCurrManager
     dtype: int64
df.OverTime.nunique()
df.OverTime.unique()
     array(['Yes', 'No'], dtype=object)
df.OverTime.value_counts()
            1054
     No
             416
     Name: OverTime, dtype: int64
```

plt.scatter(df["PercentSalaryHike"],df["PerformanceRating"])

<matplotlib.collections.PathCollection at 0x7ad7238f4460>

sns.heatmap(df.corr(),annot=True)

<ipython-input-20-8df7bcac526d>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ve sns.heatmap(df.corr(),annot=True) <Axes: >

Age -1.0100 01:00 DistanceFromHome -30.01.1 0.010.02.49650002502083000366 0.050168269460085020409282030 40501080138859865422020 40402010482101018852526301012

sns.barplot(x=df["Age"],y=df["MonthlyIncome"],ci=0)

<ipython-input-21-3cd0e332144a>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', 0)` for the same effect.

 $sns.barplot(x=df["Age"],y=df["MonthlyIncome"],ci=0) \\ <Axes: xlabel='Age', ylabel='MonthlyIncome'>$

sns.boxplot(df["HourlyRate"])

sns.boxplot(df["MonthlyIncome"])

X=df.drop(columns=["PerformanceRating"],axis=1)
X.head()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumb
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	
5 rows × 34 columns										

X.shape

(1470, 34)

type(X)

pandas.core.frame.DataFrame

y=df["PerformanceRating"]
y.head()

- 0
- 1 4
- 2 3
- 3 3 4 3

Name: PerformanceRating, dtype: int64

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

X["MonthlyIncome"]=le.fit_transform(X["MonthlyIncome"])

X.head()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumb
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	
5 rows × 34 columns										

print(le.classes_)

[1009 1051 1052 ... 19943 19973 19999]

```
mapping=dict(zip(le.classes_,range(len(le.classes_))))
mapping
      7484: 943,
      7491: 944,
      7510: 945,
      7525: 946,
      7547: 947,
      7553: 948,
       7596: 950,
      7625: 951,
      7632: 952,
      7637: 953,
      7639: 954.
      7642: 955.
      7644: 956,
      7654: 957,
      7655: 958,
       7725: 959,
      7756: 960,
      7779: 961,
      7823: 962,
      7847: 963.
      7861: 964.
      7879: 965,
      7880: 966,
      7898: 967,
      7918: 968,
      7945: 969,
      7969: 970,
      7978: 971,
      7988: 972,
      7991: 973.
      8008: 974.
      8020: 975,
      8095: 976,
      8103: 977,
      8120: 978,
      8161: 979,
      8189: 980,
      8224: 981,
      8237: 982,
      8268: 983,
      8321: 984.
      8346: 985,
      8376: 986,
      8380: 987,
      8381: 988,
      8392: 989,
      8396: 990,
      8412: 991,
      8446: 992,
      8463: 993,
      8474: 994.
      8500: 995,
      8564: 996,
      8578: 997
      8606: 998,
      8620: 999,
X = df.drop(['Attrition', 'BusinessTravel', 'EducationField', 'OverTime'], axis=1) # Features
y =df['Attrition']
\label{eq:condition} \textbf{X['Department'] = preprocessing.LabelEncoder().fit\_transform(X['Department'])}
X['Education'] = preprocessing.LabelEncoder().fit_transform(X['Education'])
\label{eq:continuous} \textbf{X['JobRole']} = \texttt{preprocessing.LabelEncoder().fit\_transform(X['JobRole'])}
X['Gender'] = preprocessing.LabelEncoder().fit_transform(X['Gender'])
X['MaritalStatus'] = preprocessing.LabelEncoder().fit_transform(X['MaritalStatus'])
X['Over18'] = preprocessing.LabelEncoder().fit_transform(X['Over18'])
Scaler = StandardScaler()
X = Scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.2, random_state = 2)
print(X.shape)
print(X_train.shape)
print(X_test.shape)
```

```
(1470, 31)
     (1176, 31)
     (294, 31)
from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
models = [] # ML Models
models.append(("Random Forest", RandomForestClassifier()))
\verb|models.append| (("Logistic Regression", Logistic Regression(solver='liblinear')))| \\
models.append(("SVM", svm.SVC(kernel='linear')))
n folds = 5
results = []
for name, model in models:
    kfold = model_selection.KFold(n_splits=n_folds)
    print("Testing model:", name)
    # Cross Validation Score
    cv_results = model_selection.cross_val_score(model, X_train, y_train, cv=kfold, scoring="f1_weighted", verbose=0, n_jobs=-1)
    # Fitting the Model
    model.fit(X\_train,y\_train)
    # Model Predictions and Finding Accuracy
    train_pred = model.predict(X_train)
    Training_score = accuracy_score(train_pred,y_train)
    test_pred = model.predict(X_test)
    Test_score = accuracy_score(test_pred,y_test)
    results.append(cv_results)
    msg = f"Cross_Val Mean: {cv_results.mean()}, Training Accuracy: {Training_score}, Testing Accuracy: {Test_score}"
    print(msg + "\n")
     Testing model: Random Forest
     Cross_Val Mean: 0.7974876748112971, Training Accuracy: 1.0, Testing Accuracy: 0.8469387755102041
     Testing model: Logistic Regression
     Cross_Val Mean: 0.8219775205615518, Training Accuracy: 0.8656462585034014, Testing Accuracy: 0.8571428571
     Testing model: SVM
     Cross_Val Mean: 0.7660141990060427, Training Accuracy: 0.8392857142857143, Testing Accuracy: 0.8367346938775511
from \ sklearn.metrics \ import \ accuracy\_score, classification\_report
accuracy_score(test_pred,y_test)
     0.8367346938775511
print(classification_report(y_test,test_pred))
                   precision
                              recall f1-score
                                                   support
                        0.84
                                1.00
                                            0.91
               No
                                                        246
              Yes
                        0.00
                                  0.00
                                            0.00
                                                        48
                                            0.84
                                                        294
         accuracy
        macro avg
                                  0.50
                        0.42
                                            0.46
                                                        294
     weighted avg
                        0.70
                                  0.84
                                            0.76
                                                        294
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are
       _warn_prf(average, modifier, msg_start, len(result))
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are
       _warn_prf(average, modifier, msg_start, len(result))
     /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are
       _warn_prf(average, modifier, msg_start, len(result))
    4
```

pd.crosstab(y_test,test_pred)

1 6	N NI-	
No	246	
Yes	48	