# Building Predictive Models for Heart Disease

**Alex Teboul** 

Models: Random Forest, Gradient Boosting, AdaBoost, Neural Networks

Data: 2015 BRFSS Survey

### Why should you care about Heart Disease?



- Heart disease is the leading cause of death in the U.S.
- ► 1 in 4 deaths
- ► \$219 Billion
- All across the country

## How do you get Heart Disease?

#### Multiple Risk Factors

- ► Lifestyle + Genetics
- Unhealthy Diet
- Physical Inactivity
- Alcohol
- Smoking
- Obesity
- Diabetes



## Binary Classification: Heart Disease and Heart Attack

Blocked coronary artery Death of heart tissue due to blocked coronary artery

VS.



@ Healthwise, Incorporated

# Part 1: Getting and Cleaning the Data

- ► **Dataset:** Behavioral Risk Factor Surveillance System Survey (BRFSS 2015)
- Initial Feature Selection
- Cleaning
- Addressing Class Imbalance

# **Dataset:** Behavioral Risk Factor Surveillance System Survey (BRFSS 2015)

- U.S. Health Survey by Telephone
- 330 Features
- ► 441,456 Responses
- Health-Related Risk Behaviors
- Chronic Health Conditions
- ML Techniques in Literature



Building Risk Prediction Models for Type 2 Diabetes Using Machine Learning Techniques

| ORIGINAL RESEARCH — Volume 16 — September 19, 2019                                                                                                                                                                                                                                                         |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Zidian Xie, PhD <sup>1,2</sup> ; Olga Nikolayeva, MS <sup>2</sup> ; Jiebo Luo, PhD <sup>3</sup> ; Dongmei Li, PhD <sup>1</sup> (Vic<br>Suppressed cristion for this article: Xie Z, Nikolayeva O, Luo J, Li D. Building Risk Prediction Models for Type 2 Diabetes Using Machine Learning Techniques. Prev |              |
| Abstract                                                                                                                                                                                                                                                                                                   | On This Page |
| Introduction                                                                                                                                                                                                                                                                                               | Abstract     |
| As one of the most prevalent chronic diseases in the United States, diabetes, especially type 2 diabetes, affects                                                                                                                                                                                          | Introduction |

# Initial Feature Selection - Response Variable

- Response Variable / Dependent Variable: (1)
- Respondents that have ever reported having coronary heart disease (CHD) or myocardial infarction (MI)
   "MICHD" Renamed as 'HeartDiseaseorAttack'

#### **Ever had CHD or MI**

CalculatedVari 6.1 Calculated Variables Type: Num

ables:

Column: 1899 SAS Variable Name: \_MICHD

Woightod

Prologue:

Description: Respondents that have ever reported having coronary heart disease (CHD) or myocardial infarction (MI)

| Value | Value Label                                                                       | Frequency | Percentage | Percentage |
|-------|-----------------------------------------------------------------------------------|-----------|------------|------------|
| 1     | Reported having MI or CHD Notes: CVDINFR4=1 OR CVDCRHD4=1                         | 38,633    | 8.83       | 6.42       |
| 2     | Did not report having MI or CHD Notes: CVDINFR4=2 AND CVDCRHD4=2                  | 398,881   | 91.17      | 93.58      |
| BLANK | Not asked or Missing Notes: CVDINFR4=7, 9 OR MISSING OR CVDCRHD4=7, 9, OR MISSING | 3,942     |            |            |

#### Initial Feature Selection - Features

Renamed all features for clarity

- Features / Independent Variables: (22)
- High Blood Pressure HighBP
- ► **High Cholesterol** HighChol, CholCheck
- ► BMI BMI
- Smoking Smoker
- ► Other Chronic Health Conditions Stroke, Diabetes
- Physical Activity PhysActivity
- Diet Fruits, Veggies

- Alcohol Consumption HvyAlcoholConsump
- Health Care AnyHealthcare, NoDocbcCost
- General and Mental Health GenHlth, MentHlth, PhysHlth, DiffWalk
- Demographics Sex, Age, Education, Income

# Cleaning

Used BRFSS Codebook:





- Removed all Missing Values
- Removed all 'Don't know/Not Sure' and 'Refused to Answer'
- Variables Modified to be Ordinal (1,2,3,4...) or Binary (0,1)
- Final Dataset: 253,680 rows and 22 columns

# Addressing Class Imbalance:



HeartDiseaseorAttack

0.0 229,787

1.0 23,893

50-50

\*HeartDiseaseorAttack

0.0 23,893

1.0 23,893

60-40

\*HeartDiseaseorAttack

0.0 47,786

1.0 23,893

\*Random Subsets from 0 (no Heart Disease) and all 1 (has Heart Disease)

# Part 2: Model Building

- Random Forests
- Gradient Boosting
- AdaBoost
- Neural Networks

#### Random Forests



#### AdaBoost



#### **Gradient Boosting**



#### **Neural Networks**





#### Random Forests

| Dataset       | Model                    | Accuracy        | AUC             | Runtime |
|---------------|--------------------------|-----------------|-----------------|---------|
| Full Dataset  | RF w/ Feature Selection  | 0.89 (+/- 0.00) | 0.74 (+/- 0.01) | 48 sec  |
| 50-50 Dataset | RF w/ Feature Selection  | 0.72 (+/- 0.01) | 0.78 (+/- 0.01) | 10 sec  |
| 60-40 Dataset | RF w/ Feature Selection  | 0.73 (+/- 0.01) | 0.78 (+/- 0.01) | 15 sec  |
| Full Dataset  | RF w/o Feature Selection | 0.90 (+/- 0.00) | 0.82 (+/- 0.01) | 66 sec  |
| 50-50 Dataset | RF w/o Feature Selection | 0.76 (+/- 0.02) | 0.83 (+/- 0.01) | 12 sec  |

- Best Parameter Setting Results Displayed: Different CV and #Trees Tested.
- ☐ 50 trees, 5-fold CV Reported
- Full Dataset Selected: ['BMI', 'GenHlth', 'MentHlth', 'PhysHlth', 'Age', 'Education', 'Income']
- Balanced Datasets Selected: ['HighBP', 'BMI', 'GenHlth', 'MentHlth', 'PhysHlth', 'Age', 'Education', 'Income']



# **Gradient Boosting**

| Dataset       | Model                    | Accuracy        | AUC             | Runtime |
|---------------|--------------------------|-----------------|-----------------|---------|
| Full Dataset  | GB w/ Feature Selection  | 0.91 (+/- 0.00) | 0.85 (+/- 0.01) | 54 sec  |
| 50-50 Dataset | GB w/ Feature Selection  | 0.76 (+/- 0.01) | 0.84 (+/- 0.01) | 8 sec   |
| 60-40 Dataset | GB w/ Feature Selection  | 0.78 (+/- 0.01) | 0.84 (+/- 0.01) | 13 sec  |
| Full Dataset  | GB w/o Feature Selection | 0.91 (+/- 0.00) | 0.85 (+/- 0.01) | 153 sec |

- Best Parameter Setting Results Displayed: n\_estimators, loss, and max\_depth
- ☐ 5-fold CV Reported, 100 estimators, loss='deviance', max\_depth=3
- Full Dataset Selected: ['HighBP', 'HighChol', 'Stroke', 'GenHlth', 'DiffWalk', 'Sex', 'Age']
- 50-50 Selected: ['HighBP', 'HighChol', 'GenHlth', 'Sex', 'Age']
- 60-40 Selected: ['HighBP', 'HighChol', 'Stroke', 'GenHlth', 'Sex', 'Age']



#### AdaBoost

| Dataset       | Model                     | Accuracy        | AUC             | Runtime |
|---------------|---------------------------|-----------------|-----------------|---------|
| Full Dataset  | Ada w/ Feature Selection  | 0.91 (+/- 0.00) | 0.84 (+/- 0.01) | 49 sec  |
| 50-50 Dataset | Ada w/ Feature Selection  | 0.76 (+/- 0.01) | 0.83 (+/- 0.01) | 8 sec   |
| 60-40 Dataset | Ada w/ Feature Selection  | 0.77 (+/- 0.01) | 0.84 (+/- 0.01) | 13 sec  |
| Full Dataset  | Ada w/o Feature Selection | 0.91 (+/- 0.00) | 0.84 (+/- 0.01) | 92 sec  |

- Best Parameter Setting Results Displayed: n\_estimators, learning\_rate
- 5-fold CV Reported, 100 estimators, learning\_rate=0.1
- Full Dataset Selected: ['HighBP', 'HighChol', 'Stroke', 'GenHlth', 'DiffWalk', 'Sex', 'Age']
- 50-50 Selected: ['HighBP', 'HighChol', 'GenHlth', 'Sex', 'Age']
- 60-40 Selected: ['HighBP', 'HighChol', 'Stroke', 'GenHlth', 'Sex', 'Age']



#### Neural Networks

| Dataset       | Model                    | Accuracy        | AUC             | Runtime |
|---------------|--------------------------|-----------------|-----------------|---------|
| Full Dataset  | NN w/ Feature Selection  | 0.91 (+/- 0.00) | 0.84 (+/- 0.01) | 36 sec  |
| 50-50 Dataset | NN w/ Feature Selection  | 0.76 (+/- 0.01) | 0.84 (+/- 0.01) | 18 sec  |
| 60-40 Dataset | NN w/ Feature Selection  | 0.78 (+/- 0.01) | 0.84 (+/- 0.01) | 21 sec  |
| Full Dataset  | NN w/o Feature Selection | 0.91 (+/- 0.00) | 0.85 (+/- 0.01) | 113 sec |

- Best Parameter Setting Results Displayed: solver, activation, alpha
- 5-fold CV Reported, solver='adam', activation='logistic', alpha=0.0001
- Full Dataset Selected: ['HighBP', 'HighChol', 'Stroke', 'GenHlth', 'DiffWalk', 'Sex', 'Age']
- 50-50 Selected: ['HighBP', 'HighChol', 'GenHlth', 'Sex', 'Age']
- 60-40 Selected: ['HighBP', 'HighChol', 'Stroke', 'GenHlth', 'Sex', 'Age']

# To Review

- 4 Models
- w/ Feature Selection
- w/o Feature Selection
- Full Dataset, 50-50, 60-40
- Accuracy, AUC, Runtime

#### Random Forests



#### AdaBoost



#### **Gradient Boosting**



#### **Neural Networks**











#### The Best of the Best

| Dataset       | Model                     | Accuracy        | AUC             | Runtime |
|---------------|---------------------------|-----------------|-----------------|---------|
| Full Dataset  | NN w/ Feature Selection   | 0.91 (+/- 0.00) | 0.84 (+/- 0.01) | 36 sec  |
| 50-50 Dataset | GB w/ Feature Selection   | 0.76 (+/- 0.01) | 0.84 (+/- 0.01) | 8 sec   |
| 60-40 Dataset | GB w/ Feature Selection   | 0.78 (+/- 0.01) | 0.84 (+/- 0.01) | 13 sec  |
| Full Dataset  | Ada w/o Feature Selection | 0.91 (+/- 0.00) | 0.84 (+/- 0.01) | 92 sec  |

- Near identical performance between Gradient Boosting, AdaBoost, and Neural Networks
- ☐ Best Models Selected by Accuracy, AUC, Runtime

# **Important Features**

#### RF Selected Features:

- BMI
- GenHlth
- MentHlt
- PhysHlt
- Age
- Education
- Income

#### GB, Ada, NN Selected Features

- HighBP
- HighChol
- Stroke
- GenHlth
- DiffWalk
- Sex
- Age

# Remember...

Eat Healthy Foods.

Increase your
Physical Activity

Especially Important if you're over age 65!

Don't Forget About your Mental Health, just breath...







# Today we looked into Building Predictive Models for Heart Disease using the BRFSS 2015.

Random Forests, Gradient Boosting, AdaBoost, Neural Networks

| Dataset      | Model                   | Accuracy        | AUC             | Runtime |
|--------------|-------------------------|-----------------|-----------------|---------|
| Full Dataset | NN w/ Feature Selection | 0.91 (+/- 0.00) | 0.84 (+/- 0.01) | 36 sec  |

Alex Teboul

DSC 540: Advanced Machine Learning

Professor: Casey Bennett

