	Assignment 6 First, we import necessary libraries.
In []:	<pre>import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score import matplotlib.pyplot as plt</pre>
	To load the data, whitespace will be used as the delimiter. And in this step we also specify the column names. To remove missing value, we first replace any '?' in the dataset with NaN and then onvert the 'horsepower' column to float type, as it may contain '?' values which were replaced with NaN. Now we could remove any rows with missing values using dropna().
In []:	<pre>column_names = ['mpg', 'cylinders', 'displacement', 'horsepower', 'weight',</pre>
	<pre>df = df.replace('?', np.nan) df['horsepower'] = df['horsepower'].astype(float) df = df.dropna() print(df.head()) mpg cylinders displacement horsepower weight acceleration \ 0 18.0 8 307.0 130.0 3504.0 12.0</pre>
	1 15.0 8 350.0 165.0 3693.0 11.5 2 18.0 8 318.0 150.0 3436.0 11.0 3 16.0 8 304.0 150.0 3433.0 12.0 4 17.0 8 302.0 140.0 3449.0 10.5 model year origin car name 0 70 1 chevrolet chevelle malibu
	1 70 1 buick skylark 320 2 70 1 plymouth satellite 3 70 1 amc rebel sst 4 70 1 ford torino Step 1: Split the dataset into training and test sets (80, 20).
In []:	For features, we drop "car name" as in Step 2(a) we only use feature 1-7 to fit the linear regression features = ['cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'model year', 'origin'] X = df[features] # Features (1-7) y = df['mpg'] # Target variable (mpg)
	# Split the data into training and test sets (80% train, 20% test) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) Step 2(a): Use all the features (1-7) to fit the linear regression model for feature 8(MPG) using the training set.
	<pre>model = LinearRegression() model.fit(X_train, y_train) LinearRegression()</pre>
In []:	Step 2(b) Report the coefficients, mean squared error and variance score for the model on the test set. # make prediction on the test set y_pred = model.predict(X_test)
	<pre>mse_train = mean_squared_error(y_test, y_pred) r2_train = r2_score(y_test, y_pred) print("Test Set Results:") print("Mean squared error: ", mse_train) print("R-squared score: ", r2_train)</pre>
	<pre># Print the coefficients and intercept of the model print("\nModel Coefficients:") for feature, coef in zip(features, model.coef_): print(f"{feature}: {coef}") print(f"Intercept: {model.intercept_}")</pre> Test Set Results:
	Mean squared error: 10.710864418838362 R-squared score: 0.7901500386760352 Model Coefficients: cylinders: -0.345788833395193 displacement: 0.015108710228018248 horsepower: -0.02130174770550661 weight: -0.006141625063946203
	acceleration: 0.037950006416829773 model year: 0.7677425751829693 origin: 1.6134570704095454 Intercept: -18.499361128724797 Step 3(a) Use each feature alone - to fit a linear regression model on the training set.
	Step 3(b) Report the coefficient, mean squared error and variance score for the model on the test set. Also report the 7 plots of the linear regression models generated on each feature. Each plot should distinctly show the training points, test points and the linear regression line.
In []:	<pre>We could perform 3(a) and 3(b) together to generate the plots results = [] fig, axes = plt.subplots(3, 3, figsize=(20, 20)) axes = axes.ravel() # Flatten the 2D array of axes</pre>
	<pre>for i, feature in enumerate(features): # Step 3(a): Use each feature alone to fit a linear regression model on the training set X = df[[feature]] y = df['mpg'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)</pre>
	<pre>model = LinearRegression() model.fit(X_train, y_train) # Step 3(b): Report metrics on the test set y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred)</pre>
	<pre>r2 = r2_score(y_test, y_pred) # Store results results.append({ 'feature': feature, 'coefficient': model.coef_[0], 'intercept': model.intercept_, 'mse': mse,</pre>
	<pre># Create plot ax = axes[i] ax.scatter(X_train, y_train, color='blue', alpha=0.5, label='Training points') ax.scatter(X_test, y_test, color='red', alpha=0.5, label='Test points')</pre>
	<pre># Sort X_test and y_pred for a smooth line plot X_test_sorted, y_pred_sorted = zip(*sorted(zip(X_test.values.ravel(), y_pred))) ax.plot(X_test_sorted, y_pred_sorted, color='green', label='Linear regression line') ax.set_xlabel(feature) ax.set_ylabel('MPG')</pre>
	<pre>ax.set_title(f'MPG vs {feature}') ax.legend() # Remove any unused subplots for j in range(i+1, len(axes)): fig.delaxes(axes[j])</pre>
	<pre>plt.tight_layout() plt.show() print("Results for each feature:") for result in results: print(f"\nFeature: {result['feature']}") print(f"Coefficient: {result['coefficient']:.4f}") print(f"Intercept: {result['intercept']:.4f}")</pre>
	print(f"Mean Squared Error: {result['mse']:.4f}") print(f"Variance Score (R-squared): {result['r2']:.4f}") MPG vs cylinders MPG vs displacement MPG vs horsepower Taining points Test points
	40 - 35 - 30 - 9 <u>W</u> 25 - 25
	20 - 20 - 20 - 15 - 10 - 10 - 10 - 10 - 10 - 10 - 1
	3 4 5 6 7 8 50 100 150 200 250 300 350 400 450 50 75 100 125 150 175 200 225 displacement horsepower MPG vs weight MPG vs weight MPG vs model year Training points Test points Test points Linear regression line The points Test points
	40 - 40 - 35 - 35 - 30 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 2
	20 - 20 - 20 - 15 - 15 - 10 - 10 - 10 - 10 - 10 - 1
	1500 2000 2500 3000 3500 4000 4500 5000 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 70 72 74 76 78 80 82 weight MPG vs origin 45 - Test points Linear regression line 40 -
	35 - 25 -
	20 - 15 - 10 -
	Results for each feature: Feature: cylinders Coefficient: -3.6522 Intercept: 43.6220
	Mean Squared Error: 21.8140 Variance Score (R-squared): 0.5726 Feature: displacement Coefficient: -0.0622 Intercept: 35.7659 Mean Squared Error: 21.2275 Variance Score (R-squared): 0.5841
	Feature: horsepower Coefficient: -0.1626 Intercept: 40.6061 Mean Squared Error: 22.1532 Variance Score (R-squared): 0.5660
	Feature: weight Coefficient: -0.0079 Intercept: 47.2005 Mean Squared Error: 17.6934 Variance Score (R-squared): 0.6533 Feature: acceleration
	Coefficient: 1.1634 Intercept: 5.5150 Mean Squared Error: 40.0739 Variance Score (R-squared): 0.2149 Feature: model year Coefficient: 1.2941
	Intercept: -75.0219 Mean Squared Error: 37.4228 Variance Score (R-squared): 0.2668 Feature: origin Coefficient: 5.6093 Intercept: 14.8718
	Mean Squared Error: 36.5593 Variance Score (R-squared): 0.2837 Step 4(a) and Step 4(b)
In []:	<pre>features = ['cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'model year', 'origin'] X = df[features] # Features (1-7) y = df['mpg'] # Target variable (mpg) # Initialize lists to store results all_mse = [] all r2 = []</pre>
	<pre>feature_mse = [[] for _ in range(7)] feature_r2 = [[] for _ in range(7)] # Perform 10 iterations for _ in range(10): # Step 1: Split the dataset X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=np.random.randint(0, 1000))</pre>
	<pre># Step 2(a): Use all features model_all = LinearRegression() model_all.fit(X_train, y_train) y_pred_all = model_all.predict(X_test) # Calculate metrics for all features</pre>
	<pre>mse_all = mean_squared_error(y_test, y_pred_all) r2_all = r2_score(y_test, y_pred_all) all_mse.append(mse_all) all_r2.append(r2_all) # Step 3(a): Use each feature alone for i in range(7): model = LinearRegression()</pre>
	<pre>model.fit(X_train.iloc[:, i:i+1], y_train) y_pred = model.predict(X_test.iloc[:, i:i+1]) # Calculate metrics for single feature mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) feature_mse[i].append(mse)</pre>
	<pre>feature_r2[i].append(r2) # Calculate averages avg_all_mse = np.mean(all_mse) avg_all_r2 = np.mean(all_r2) avg_feature_mse = [np.mean(mse) for mse in feature_mse] avg_feature_r2 = [np.mean(r2) for r2 in feature_r2]</pre>
	<pre># Plotting features = ['All'] + features # MSE plot plt.figure(figsize=(12, 6)) plt.plot(range(8), [avg_all_mse] + avg_feature_mse, 'bo-')</pre>
	<pre>plt.xlabel('Features') plt.ylabel('Mean Squared Error') plt.title('Mean Squared Error vs Features') plt.xticks(range(8), features, rotation=45) plt.tight_layout() plt.show()</pre> # R2 score plot
	<pre>plt.figure(figsize=(12, 6)) plt.plot(range(8), [avg_all_r2] + avg_feature_r2, 'ro-') plt.xlabel('Features') plt.ylabel('R2 Score') plt.title('R2 Score vs Features') plt.xticks(range(8), features, rotation=45) plt.tight_layout()</pre>
	<pre># Print results print("Average MSE (All features):", avg_all_mse) print("Average R2 Score (All features):", avg_all_r2) for i, feature in enumerate(features[1:]): # Skip 'All' print(f"{feature} - Average MSE: {avg_feature_mse[i]:.4f}, Average R2 Score: {avg_feature_r2[i]:.4f}")</pre>
	Mean Squared Error vs Features 50 - 45 - 40 -
	Mean Sdrawd Error 30 - 30 - 25 -
	20 - 15 - 10 - 10
	Features R2 Score vs Features
	0.8 - 0.7 - 0.6 -
	0.5 - 28 0.4 - 0.4 -
	0.2 - Ball Grinner's Autocompany of the Control of
	Features Average MSE (All features): 11.386986211633822 Average R2 Score (All features): 0.8078693976294702 cylinders - Average MSE: 22.5303, Average R2 Score: 0.6244 displacement - Average MSE: 20.9065, Average R2 Score: 0.6508
	horsepower - Average MSE: 24.1047, Average R2 Score: 0.5965 weight - Average MSE: 18.0376, Average R2 Score: 0.6980 acceleration - Average MSE: 48.9343, Average R2 Score: 0.1842 model year - Average MSE: 38.8036, Average R2 Score: 0.3504 origin - Average MSE: 40.1432, Average R2 Score: 0.3226 1. Based upon the linear models you generated, which feature appears to be most predictive for the target feature? Note that you can answer this
	question based upon the output provided for the linear models Looking at the R-squared values for each feature from Step 2(b) cylinders: 0.5726 displacement: 0.5841 horsepower: 0.5660 weight: 0.6533 acceleration: 0.2149 model year: 0.2668 origin: 0.2837
	The feature with the highest R-squared value is "weight" with a score of 0.6533. This means that the weight of the vehicle explains about 65.33% of the variance in the MPG (miles per gallon) when used as the sole predictor in a linear regression model. 1. Suppose you need to select two features for a linear regression model to predict the target feature. Which two features would you select? Why?
	Based on the model output, I would choose Weight and Model Year. Weight: Highest R-squared (0.6533) Lowest MSE (17.6934)
	 This feature performs best on both metrics, making it an obvious choice. Model Year: While it has a lower R-squared (0.2668), it's not the lowest
	 Its MSE (37.4228) is significantly better than acceleration and only slightly worse than origin More importantly, it likely provides information that's complementary to weight Reasons for this selection: Complementary information: Model year likely provides information that's distinct from weight. While weight captures physical characteristics of the car, model year can capture technological improvements and changes in fuel efficiency standards over time.
	 car, model year can capture technological improvements and changes in fuel efficiency standards over time. Potential for capturing trends: The auto industry has generally trended towards better fuel efficiency over time due to technological advancements and regulations. Model year could capture this trend. Avoiding multicollinearity: By choosing model year instead of displacement or cylinders (which have higher R-squared), we potentially reduce multicollinearity issues, as model year is less likely to be strongly correlated with weight. Balance of metrics: While displacement and cylinders have higher R-squared values, their MSE values are also higher. Model year offers a lower MSE,
	which directly measures the average squared difference between predicted and actual values. In summary, this combination of weight and model year should provide a good balance of predictive power (from weight) and capturing temporal trends in fuel efficiency (from model year), while maintaining relatively low prediction error as measured by MSE.
	 1. Examine all the plots and numbers you have, do you have any comments on them? Do you find any surprising trends? Do you have any idea about what might be causing this surprising trend in the data? This is a descriptive question meant to encourage you to interpret your results and express yourself. There's a clear split in the predictive power of the features. Weight, displacement, cylinders, and horsepower have much higher R-squared values (between 0.56 and 0.65) compared to origin, model year, and acceleration (between 0.21 and 0.28). This suggests that the physical characteristics of
	 the car (especially those related to size and power) are more predictive of MPG than other factors. Acceleration has the lowest R-squared (0.2149) and highest MSE (40.0739) among all features, which is counterintuitive. Even more surprisingly, it has a positive coefficient (1.1634), suggesting that cars with better acceleration tend to have slightly better MPG. Why it's impressive: This challenges the common assumption that faster cars are always less fuel-efficient. It hints at complex engineering trade-offs and suggests that manufacturers have found ways to improve performance without sacrificing fuel economy.