Functional Dependency

Functional Dependency

A "good" database schema should not lead to update anomalies.

- update anomalies,
- functional dependencies,
- Armstrong Axioms,
- closures.

Update Anomalies

Redundancy in a database means storing a piece of data more than once.

Redundancy is often useful for efficiency and semantic reasons, but creates the potential for consistency problems.

A poor redundancy control may cause update anomalies.

Consider the example relation below (adapted from "An Introduction to Database Systems" by Desai):

STUDENTS					
Name	Course	Phone_no	Major	Prof	Grade
Jones	353	237-4539	Comp Sci	Smith	А
Ng	329	427-7390	Chemistry	Turner	В
Jones	328	237-4539	Comp Sci	Clark	В
Martin	456	388-5183	Physics	James	А
Dulles	293	371-6259	Decision Sci	Cook	С
Duke	491	823-7293	Mathematics	Lamb	В
Duke	356	823-7293	Mathematics	Bond	UN
Jones	492	237- 4539	Comp Sci	Cross	UN
Baxter	379	839-0827	English	Broes	С

Modification anomalies: e.g. Jones's phone number appears 3 times. When a phone number is changed, it must be changed in all 3 places, or the data will be inconsistent.

Update Anomalies

Insertion anomalies:

- If Jones enrolls in another course, and a different phone number is entered, again the data will be inconsistent.
- Also, if the only way that the association between course and professor is stored in this relation, we can only enter the association when someone enrolls in the course.

Deletion anomalies: If the last student in a course is deleted, the association between professor and course is lost.

Functional dependencies

A function f from S_1 to S_2 has the property

if
$$x, y \in S_1$$
 and $x = y$, then $f(x) = f(y)$.

A generalization of keys to avoid design flaws violating the above rule.

Let X and Y be sets of attributes in R.

X (functionally) determines $Y, X \rightarrow Y$, iff $t_1[X] = t_2[X]$ implies $t_1[Y] = t_2[Y]$.

i.e.,
$$f(t(X)) = t[Y]$$

We also say $X \rightarrow Y$ is a *functional* dependency, and that Y is *functionally* dependent on X.

X is called the *left side*, Y the *right side* of the dependency.

Examples

- For every Name, there is a unique Phone_no and Major, assume Name is unique;
- For every Course, there is a unique Prof;
- For every Name and Course, there is a unique Grade.

In this example:

$$\{Name\} \rightarrow \{Phone_no, Major\}$$

 $\{Course\} \rightarrow \{Prof\}$
 $\{Name, Course\} \rightarrow \{Grade\}$

We can also show these in a diagram like this one:

Notice that other FD's follow from these:

$$\{Name\} \rightarrow \{Major\}$$
 $\{Course, Grade\} \rightarrow \{Prof, Grade\}$

Functional dependencies

Let *F* be a set of FD's.

Definition 1: $X \to Y$ is inferred from F (or that F infers $X \to Y$), written in

$$F \models X \rightarrow Y$$

if any relation instance satisfying F must also satisfy $X \to Y$.

Impossible to list every relation to verify if $X \to Y$ is inferred from F.

A set ρ of derivation rules are required, such that:

a $X \rightarrow Y$ is inferred from F according to Definition 1 iff it can be derived using ρ .

Armstrong's axioms (1974)

Notation: If X and Y are sets of attributes, we write XY for their union.

e.g.
$$X = \{A, B\}, Y = \{B, C\}, XY = \{A, B, C\}$$

F1 (Reflexivity) If $X \supseteq Y$ then $X \rightarrow Y$.

F2 (Augmentation) $\{X \rightarrow Y\} = XZ \rightarrow YZ$.

F3 (Transitivity) $\{X \to Y, Y \to Z\} = X \to Z$.

F4 (Additivity) $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$.

F5 (Projectivity) $\{X \rightarrow YZ\} = X \rightarrow Y$.

F6 (Pseudotransitivity) $\{X \rightarrow Y, YZ \rightarrow W\} = XZ \rightarrow W$.

Example: Given $F = \{A \rightarrow B, A \rightarrow C, BC \rightarrow D\}$, derive $A \rightarrow D$:

$$1. A \rightarrow B \text{ (given)}$$

$$2. A \rightarrow C$$
 (given)

$$3. A \rightarrow BC$$
 (by F4, from 1 and 2)

$$4. BC \rightarrow D$$
 (given)

5.
$$A \rightarrow D$$
 (by F3, from 3 and 4)

F4 (Additivity)
$$\{X \rightarrow Y, X \rightarrow Z\} = X \rightarrow YZ$$
.

F5 (Projectivity)
$$\{X \rightarrow YZ\} = X \rightarrow Y$$
.

F6 (Pseudotransitivity)
$$\{X \rightarrow Y, YZ \rightarrow W\} = XZ \rightarrow W$$
.

In fact, F4, F5, and F6 can be derived from F1-F3.

Example: Prove $\{X \rightarrow Y, X \rightarrow Z\} = X \rightarrow YZ$.

- 1) $X \rightarrow Y$ is given.
- 2) $XX \rightarrow XY$ (by F2); that is, $X \rightarrow XY$
- 3) $X \rightarrow Z$ is given.
- 4) $XY \rightarrow YZ$ (by F2)
- 5) $X \rightarrow YZ$ (by F3, 2) and 4))

Armstrong's axioms

We can prove that Armstrong's axioms are sound and complete:

Sound: if *F* derives $A \rightarrow B$ by using Armstrong's axioms, then $F \models A \rightarrow B$ by Definition 1.

Complete: if $F = M \rightarrow N$ by Definition 1, then F derives $M \rightarrow N$ by using Armstrong's axioms.

Algorithm to Check a FD

Given F, how do we check if $X \rightarrow Y$ is in F^+ ?

 F^+ denotes the smallest set of FD's that

- contains *F*, and
- is *closed* under Armstrong's axioms.

 F^+ is the *closure* of F.

$$F = \{ A \rightarrow B, B \rightarrow C, A \rightarrow C \}$$

F⁺ always has an exponential size regarding |F|.

Too expensive to compute F^+ to verify a membership.

Instead we can compute the *closure* X^+ of X under F, X^+ is the largest set of attributes functionally determined by X.

It can be proven (using additivity) that

S1:
$$X^+ = \cup_{\forall X \to A \in F} + A.$$

S2:
$$X \rightarrow Y \subseteq F^+$$
 iff (if and only if) $Y \subseteq X^+$.

Example:

```
F = \{ A \rightarrow B, BC \rightarrow D, A \rightarrow C \}, compute \{A\}^+
1<sup>st</sup> scan of F:
X^+ := \{A\}
X^+ := \{A, B\}
X^+ := \{A, B, C\}
2<sup>nd</sup> scan of F:
X^+ := \{A, B, C, D\}
3<sup>rd</sup> scan of F: no change, therefore the algorithm terminates.
\{A\}^+ := \{A, B, C, D\}
```

Algorithm to compute X⁺

```
X^{+} := X;
change := true;
while change do
           begin
           change := false;
           for each FD W \rightarrow Z in F do
                      begin
                      if (W \subseteq X^+) and (Z \nsubseteq X^+) then do
                                 begin
                                 X^+ := X^+ \cup Z;
                                 change := true;
                                 end
                      end
           end
```

Algorithm to Compute a Candidate Key

Given a relational schema *R* and a set *F* of functional dependencies on *R*.

A key *X* of *R* must have the property that $X^+ = R$.

Algorithm to compute a candidate key

Step 1: Assign *X* a superkey in F.

Step 2: Iteratively remove attributes from X while retaining the property $X^+ = R$ till no reduction on X.

The remaining *X* is a key.

Example:

$$R = \{A, B, C, D\}$$
 and $F = \{A \rightarrow B, BC \rightarrow D, A \rightarrow C\}$

 $X = \{A, B, C\}$ if the left hand side of F is a super key.

A cannot be removed because $\{BC\}^+ = \{B, C, D\} \neq R$

B can be removed because $\{AC\}^+ = \{A, B, C, D\} = R$ $\longrightarrow X = \{A, C\}$

C can be further removed because $\{A\}^+ = \{A, B, C, D\}$ $\longrightarrow X = \{A\}$

Given a relational schema R and a set F of functional dependencies on R, the algorithm to compute all the candidate keys is as follows:

```
T := \emptyset
Main:
     X := S where S is a super key which does not contain any candidate key in T
     remove := true
     While remove do
          For each attribute A \in X
          Compute \{X-A\}^+ with respect to F
          If \{X-A\}^+ contains all attributes of R then
               X := X - \{A\}
          Else
               remove := false
     T := T \cup X
```

Repeat *Main* until no available S can be found. Finally, T contains all the candidate keys.

Example:

$$F = \{A \rightarrow B, BC \rightarrow A, D \rightarrow E\}$$

Example:

R(A, B, C, D, E)

 $F = \{A \rightarrow B, BC \rightarrow A, D \rightarrow E\}$

Step 1:

Let $X := \{A, B, C, D\}$

Step 2:

Try to remove A

$${B, C, D}^+ = {A, B, C, D, E}$$

Thus $X := \{B, C, D\}$

Step 3:

Try to remove B, C, D

$$\{C, D\}^+ = \{C, D, E\}$$

$$\{B, D\}^+ = \{B, D, E\}$$

$$\{B, C\}^+ = \{A, B, C\}$$

Thus cannot be removed

So {B, C, D} is a candidate key and add to T

Step 4:

Find another superkey

Let
$$X := \{A, C, D\}$$

Step 5:

Try to remove A, C, D

$$\{C, D\}^+ = \{C, D, E\}$$

$$\{A, D\}^+ = \{A, B, D, E\}$$

$${A, C}^+ = {A, B, C}$$

Thus cannot be removed

So {A, C, D} is another candidate key and add to T

Step 6:

Cannot find any other super keys,

So candidate keys are {B, C, D} and {A, C, D}