<u>Trabajo Práctico Nº 2:</u> Números y Operaciones Aritméticas en Binario.

Ejercicio 1.

Convertir los siguientes valores decimales a binario y a hexadecimal:

Decimal	Binario	Hexadecimal	
<mark>27</mark>	<mark>11011</mark>	1B	
54	110110	36	
108	1101100	6C	
542	1000011110	21E	
1084	10000111100	43C	
2013	11111011101	7DD	
2168	100001111000	878	

Ejercicio 2.

Convertir los siguientes valores a decimal:

(a)

$$1000111101010_{(2} = 1 * 2^{12} + 1 * 2^8 + 1 * 2^7 + 1 * 2^6 + 1 * 2^5 + 1 * 2^3 + 1 * 2^1 = 4586.$$

(b)

$$10100111001111000_{(2)} = 1 * 2^{16} + 1 * 2^{14} + 1 * 2^{11} + 1 * 2^{10} + 1 * 2^{9} + 1 * 2^{6} + 1 * 2^{5} + 1 * 2^{4} + 1 * 2^{3} = 85624.$$

(c)

$$FECB_{(16} = 15 * 16^3 + 14 * 16^2 + 12 * 16^1 + 11 * 16^0 = 65227.$$

(d)

$$1B2C_{(16} = 1 * 16^3 + 11 * 16^2 + 2 * 16^1 + 12 * 16^0 = 6956.$$

Ejercicio 3.

Completar la siguiente tabla:

Decimal	Binario	Hexadecimal	
5689	1011000111001	1639	
<mark>896</mark>	1110000000	380	
713	1011001001	2C9	

Ejercicio 4.

Interpretar las siguientes cadenas de dígitos binarios como números codificados en Binario Sin Signo (BSS) o Binario Con Signo (BCS).

Resultado	BSS	BCS		
10000010	130	<mark>-2</mark>		
10110011	179	-51		
0000010	2	2		
00110011	51	51		
10101110	174	-46		

Ejercicio 5.

Realizar las siguientes operaciones de suma y resta indicando el estado de las banderas de Z(cero) y C(carry). Interpretar el resultado obtenido considerando que la operación trabaja con valores binarios que representaban números enteros sin signo. Determinar cuáles resultados son correctos y cuáles no. El resultado de la operación es del mismo tamaño de los operandos, es decir, 8 bits.

	Resultado	ZC	Interpretados como sin signo	¿Correcto?
00000001 + 10000000 =	10000001 ₍₂	00	$\frac{1 + 128 =}{129_{(10)}}$	<mark>Sí</mark>
10000001 + 10000000 =	00000001 ₍₂	01	$\frac{129 + 128 =}{1_{(10)}}$	No
01110000 + 00101111 =	10011111 ₍₂	00	$112 + 47 = 159_{(10)}$	Sí
01000000 + 01000000 =	10000000 ₍₂	00	$64 + 64 = 128_{(10)}$	Sí
11111111 + 00000001 =	00000000 ₍₂	11	$255 + 1 = 0_{(10)}$	No
01111111 + 00000001 =	10000000 ₍₂	00	$127 + 1 = 128_{(10)}$	Sí
11111111 + 11111110 =	11111101 ₍₂	01	$255 + 254 = 253_{(10)}$	No
10011111 + 11110000 =	10001111 ₍₂	01	$159 + 240 = 143_{(10)}$	No
00100000 - 01100000 =	11000000 ₍₂	01	$\frac{32 - 96}{192_{(10)}}$	<mark>No</mark>
01110000 - 01111000 =	11111000 ₍₂	01	112 - 120 = 248 ₍₁₀	No
10110111 - 00011110 =	10011001 ₍₂	00	183 - 30 = 153 ₍₁₀	Sí
01111111 - 11110000 =	10001111 ₍₂	01	127 - 240 = 143 ₍₁₀	No