# What's in a (Data) Type? Meaningful Type Safety for Data Science

Riley Moher

06.12.2021
Data-Driven Decision Making Lab
University of Toronto

# What's in a (Data) Type?

Data Scientists work with Data that represent real-world concepts

Important decisions are made based on data scientists' results

• The nuances of these concepts are reduced to integers, strings, etc



1. How datatypes fail to typify data

2. Why current solutions don't work

3. A framework for meaningful type safety

- 1. How datatypes fail to typify data
  - I. Mereology
  - II. Time
  - III. Provenance

2. Why current solutions don't work

3. A framework for meaningful type safety

# Mereological Troubles

Mereology is part-whole relation

• Legs are part of a table, Toronto is part of Ontario

 Definition of 'eligible' COVID vaccine population changes, comprises new age groups

Mereology not formally defined within the data, needs to be integrated manually

# Time Complications

Time is a common and important factor in most data

Data is observed, collected, updated at specific timepoints

- Time is an additional layer of complexity, mereology changes over time
  - Toronto 1985 vs Toronto 2021

Manual intervention still necessary, time is only values, no reasoning being done

# **Provenance**

- As data is changed, so are the concepts it represents
  - Population vs average population
  - Density = Mass / Volume

- Take Physical Quantities, Units as an example
  - Most approaches just enforce same units and conversion

Bob's Height + Mary's Height : What is this quantity?

- 1. How datatypes fail to typify data
- 2. Why current solutions don't work
  - I. Improving Documentation
  - II. Data Provenance
  - III. Knowledge Modelling
- 3. A framework for meaningful type safety

- 1. How datatypes fail to typify data
- 2. Why current solutions don't work
  - I. Improving Documentation
  - II. Data Provenance
  - III. Knowledge Modelling
- 3. A framework for meaningful type safety

# **Developing Decent Dictionaries**

- To better understand data, we can create better documentation standards
  - A meaningful list of questions to be answered about a given dataset

| Motivation | Composition | Collection<br>Process | Maintenance |
|------------|-------------|-----------------------|-------------|
| ?          | ?           | ?                     | ?           |

- We have a more complete picture of the dataset, however:
  - Description is still in natural language
  - Description is static
  - Description is not machine readable

- 1. How datatypes fail to typify data
- 2. Why current solutions don't work
  - I. Improving Documentation
  - **II.** Data Provenance
  - III. Knowledge Modelling
- 3. A framework for meaningful type safety

# Prospering with Provenance?

To avoid confusion about semantics, keep track of how our data changes

- Provenance is mainly discussed in two forms:
  - Lineage: What is the data's history of operations?
  - Where-provenance: What data sources were combined to arrive here?

- Provenance can give us additional info, however:
  - Provenance information won't warn us of potential errors
  - Provenance information doesn't ensure initial understanding

- 1. How datatypes fail to typify data
- 2. Why current solutions don't work
  - I. Improving Documentation
  - II. Data Provenance
  - III. Knowledge Modelling
- 3. A framework for meaningful type safety

# Opportunity for Ontologies?

- Use an ontology as an interlingua for interoperability
  - Allows us to define one ontology and map others to it
  - Requires knowledge modeling experts to maintain

- Ontology Oriented Programming
  - Ontologies integrated into programming languages
  - These tools are not very mature and unstable

Actual integration varies widely between disciplines & software tools

- 1. How datatypes fail to typify data
- 2. Why current solutions don't work
- 3. A framework for meaningful type safety
  - I. Architecture
  - II. Knowledge Layer
  - III. Typing Layer
  - IV. Interface Layer

- 1. How datatypes fail to typify data
- 2. Why current solutions don't work
- 3. A framework for meaningful type safety
  - I. Architecture
  - II. Knowledge Layer
  - III. Typing Layer
  - IV. Interface Layer

# Framework Architecture



- 1. How datatypes fail to typify data
- 2. Why current solutions don't work
- 3. A framework for meaningful type safety
  - I. Architecture
  - II. Knowledge Layer
  - III. Typing Layer
  - IV. Interface Layer

# **Knowledge Layer**

Formal model of concepts represented in the dataset

Correspondence between program and logic

 Provides justification for modelling decisions, separate ontological commitments from implementation

- 1. How datatypes fail to typify data
- 2. Why current solutions don't work
- 3. A framework for meaningful type safety
  - I. Architecture
  - II. Knowledge Layer
  - III. Typing Layer
  - IV. Interface Layer

# Typing Layer

- Leverage Dependent Typing
  - Construct types which depend on values

Tuples (m,n) where m < n</li>

$$\sum_{m:\mathbb{N}} \sum_{n:\mathbb{N}} ((m < n) = True)$$

The type of operations can enforce pre-conditions, post-conditions

# Meaningful Types

Operations enforce relationships between their operands

- Values change after each operation : Provenance-Integrated
  - Averaging populations produces an "Average Population"

```
Plus : List Disjoint Populations -> Population ...

Subtraction : Pop1, Pop2 BothSameKind -> Population
```

- 1. How datatypes fail to typify data
- 2. Why current solutions don't work
- 3. A framework for meaningful type safety
  - I. Architecture
  - II. Knowledge Layer
  - III. Typing Layer
  - IV. Interface Layer

# Interface Layer

Data Scientists should not need to adopt whole new skillsets

- Logic-Based Type System is integrated into data science tools
  - Pandas: meaningful types library
  - Tableau: meaningful types plugin

- Data Scientist specifies the concepts contained in the data
  - Small additional work upfront will pay dividends

# Forward-Looking Thoughts

A complete framework is a big piece of work

- Data Scientists, Type Theorists, and Knowledge Modellers can learn from each other
  - Bridging the gap enriches us all

- Meaningful Data Science is Important
  - Reduce bias
  - Make informed decisions
  - Save lives