

CLASSIFICATION

Classification ,which is the task of <u>assigning objects</u> to one of several **predefined categories**.

Classification is the task of mapping an input attribute set x into its class label y.

• The input data for a classification task is a collection of records.

• Each record, also known as an **instance** or example, is characterized by a tuple (x,y), where x is the attribute set and y a special attribute, designated as the class label (also known as category or target attribute)

- Classification is the task of learning a target function that <u>maps</u> each attribute set x to one of the predefined class labels y.
- The target function is also known informally as a <u>classification</u> model.
- Descriptive Modelling: A classification model can serve as an explanatory tool to distinguish between objects of different classes. A descriptive model summarizes the data.
- ii. Predictive Modelling: A classification model can also be used to predict the class label of unknown records.

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-	Class
	Temperature	Cover	Birth	Creature	Creature	Legs	nates	Label
human	warm-blooded	hair	yes	no	no	yes	no	mammal
python	cold-blooded	scales	no	no	no	no	yes	reptile
salmon	cold-blooded	scales	no	yes	no	no	no	fish
whale	warm-blooded	hair	yes	yes	no	no	no	mammal
frog	cold-blooded	none	no	semi	no	yes	yes	amphibian
komodo	cold-blooded	scales	no	no	no	yes	no	reptile
dragon						·	l,	
bat	warm-blooded	hair	yes	no	yes	yes	yes	mammal
pigeon	warm-blooded	feathers	no	no	yes	yes	no	bird
cat	warm-blooded	fur	yes	no	no	yes	no	mammal
leopard	cold-blooded	scales	yes	yes	no	no	no	fish
shark						10000000		
turtle	cold-blooded	scales	no	semi	no	yes	no	reptile
penguin	warm-blooded	feathers	no	semi	no	yes	no	bird
porcupine	warm-blooded	quills	yes	no	no	yes	yes	mammal
eel	cold-blooded	scales	no	yes	no	no	no	fish
salamander	cold-blooded	none	no	semi	no	yes	yes	amphibian

ii. Predictive Modelling: A classification model can also be used to predict the class label of unknown records.

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-	Class
	Temperature	Cover	Birth	Creature	Creature	Legs	nates	Label
gila monster	cold-blooded	scales	no	no	no	yes	yes	?

- Classification techniques are most suited for predicting or describing data sets with binary or nominal categories.
- They are <u>less effective for ordinal categories</u>(e.g., to classify a person as a member of high-,medium-,or low- income group) because they do not consider the implicit order among the categories.
- Other forms of relationships, such as the subclass-superclass relationships among categories are also ignored.

General Approach

A classification technique (or classifier) is a systematic approach to building classification models from an input data set. Examples include <u>decision tree classifiers</u>, <u>rule-based</u> <u>classifiers</u>, <u>neural networks</u>, <u>support vector machines</u>, <u>and naive</u> <u>Bayes classifier</u>.

Each technique employs a learning algorithm to identify a model that best fits the relationship between the attribute set and class label of the input data.

General Approach

 The model generated by a learning algorithm should both fit the input data well and correctly predict the class labels of records it has never seen before

A key objective of the learning algorithm is to build models with good generalization capability; i.e., models that accurately predict the class labels of previously unknown records.

General Approach

Evaluation of the performance of a classification model is based on the counts of test records correctly and incorrectly predicted by the model. These counts are tabulated in a table known as a confusion matrix.

		Predicted Class		
		Class = 1	Class = 0	
Actual	Class = 1	f_{11}	f_{10}	
Class	Class = 0	f_{01}	f_{00}	

		Predicted Class		
		Class = 1	Class = 0	
Actual	Class = 1	f_{11}	f_{10}	
Class	Class = 0	f_{01}	f_{00}	

Each entry f_{ij} in this table denotes the number of records from class i predicted to be of class j. For instance; f_{01} is the number of records from class 0 incorrectly predicted as class 1. Based on the entries in the confusion matrix, the total number of correct predictions made by the model is $(f_{11}+f_{00})$ and the total number of incorrect predictions is $(f_{10}+f_{01})$.

Although a confusion matrix provides the information needed to determine how <u>well a classification model performs</u>, to compare the performance of different models, a performance metric such to measure **accuracy** is defined as follows:

Accuracy =
$$\frac{\text{Number of correct predictions}}{\text{Total number of predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Equivalently, the performance of a model can be expressed **error rate**, which is given by the following equation:

Error rate =
$$\frac{\text{Number of wrong predictions}}{\text{Total number of predictions}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Most classification algorithms seek models that attain the **highest accuracy**, or equivalently, the **lowest error rate** when applied to the test set.

- How we build a decision tree is by asking a series of carefully crafted questions about the attributes of the test record.
- Each time we receive an answer a follow-up question is asked until we reach a conclusion about the class label of the record.
- The series of questions and their possible answers can be organized in the form of a decision tree, which is a hierarchical structure consisting of nodes and directed edge.

The tree has three types of nodes:

- A root node that has no incoming edges and zero or more outgoing edges.
- Internal nodes, each of which has exactly one incoming edge and two or more outgoing edges.
- **Leaf or terminal nodes**, each of which has exactly one incoming edge and no outgoing edges.

- In a decision tree, each leaf node is assigned a class label.
- The non- terminal nodes, which include the root and other internal nodes, contain attribute test conditions to separate records that have different characteristics.

In Hunt's algorithm, a decision tree is grown in a recursive fashion by partitioning the training records into successively purer subsets.

Let D_t be the set of training records that are associated with node t and y: $\{y_1, y_2, ..., y_c\}$ be the class labels

The following is a recursive definition of Hunt's algorithm.

- Step 1: If all the records in D_t belong to the same class y_t , then t is a leaf node labeled as y.
- Step 2: If D_t ; contains records that belong to more than one class, **an** attribute test condition is selected to partition the records into smaller subsets. A child node is created for each outcome of the test condition and the records in D_t are distributed to the children based on the outcomes. The algorithm is then recursively applied to each child node

Example:

binary categorical continuous class

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Example:

Defaulted = No

(a)

Example:

Attribute Selection Measures

An **attribute selection measure** is a heuristic for selecting the splitting criterion that "best" separates a given data partition, *D*, of class-labeled training tuples into individual classes.

Attribute selection measures are also known as **splitting rules** because they determine how the tuples at a given node are to be split.

The attribute selection measure provides **a ranking** for each attribute describing the given training tuples. The attribute having the best score for the measure is chosen as the <u>splitting attribute</u> for the given tuples.

Attribute Selection Measures

The tree node created for partition D is labeled with the splitting criterion, branches are grown for each out- come of the criterion, and the tuples are partitioned accordingly.

Three popular attribute selection measures:

- 1. information gain
- 2. gain ratio, and
- 3. Gini index.

This measure is based on pioneering work by Claude Shannon on information theory, which studied the value or "information content" of messages.

- Let node N represent or hold the tuples of partition D.
- The attribute with the highest information gain is chosen as the splitting attribute for node *N*.

The expected information needed to classify a tuple in *D* is given by:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

where pi is the nonzero probability that an arbitrary tuple in D belongs to class Ci

$$Gain(D, A) = H(D) - \sum_{i=1}^{n} \frac{|D_i|}{|D|} H(D_i)$$

The information gain G(D,A) through the use of the attribute A is determined by the difference of the average information content of the dataset $D = D_1 \cup D_2 \cup \cdots \cup D_n$ divided by the n-value attribute A and the information content I(D) of the undivided dataset.

Example:

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	$middle_aged$	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	$middle_aged$	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

yes

yes

excellent

medium

Example:

yes

yes

income	student	credit_rating	class
high low medium high	no yes no yes	fair excellent excellent fair	yes yes yes yes

medium

medium

yes

class

yes

yes

no

yes

no

fair

excellent

2. Gini Index

Gini index measures the impurity of D, a data partition or set of training tuples, as:

$$Gini(D) = 1 - \sum_{i=1}^{n} (p_i)^2$$

where;

 p_i = probability of an object being classified into a particular class

2. Gini Index

Example 1:

(Continuous variables)

Index	A	В	C	D	E
1	4.8	3.4	1.9	0.2	positive
2	5	3	1.6	1.2	positive
3	5	3.4	1.6	0.2	positive
4	5.2	3.5	1.5	0.2	positive
5	5.2	3.4	1.4	0.2	positive
6	4.7	3.2	1.6	0.2	Positive
7	4.8	3.1	1.6	0.2	positive
8	5.4	3.4	1.5	0.4	positive
9	7	3.2	4.7	1.4	negative
10	6.4	3.2	4.7	1.5	negative
11	6.9	3.1	4.9	1.5	negative
12	5.5	2.3	4	1.3	negative
13	6.5	2.8	4.6	1.5	negative
14	5.7	2.8	4.5	1.3	negative
15	6.3	3.3	4.7	1.6	negative
16	4.9	2.4	3.3	1	negative

2. Gini Index

Example 2: (Categorical variables)

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	$middle_aged$	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no