

<u>Turma</u> : 213	
<u>Nome</u>	Nº Prontuário
Ana Caroline Borges dos Santos	SP3027597
Beatriz Leandro Mazzeu	SP3024482
Giovanna Taliatti Falcão	SP3027601
Igor Domingos da Silva Mozetic	SP3027422
Julia Andrade Dias	SP3027465

Atividade assíncrona nº 1

Resolução

Atividade Assíncrona 1 (a ser entregue até dia 10/10/2020)

- Assistir o vídeo em https://www.youtube.com/watch?v=HolJdaKQBfl
- Resolver, no impresso e em grupo, o seguinte exercício:

Dois blocos A e B de massas m = 1,0 kg e M = 2,0 kg, respectivamente, estão apoiados numa superfície horizontal perfeitamente lisa e ligados por um fio ideal. Uma força horizontal constante de intensidade F = 12 N é aplicada ao bloco B. Determine a intensidade da aceleração dos blocos e a intensidade da força de tração no fio.

Força resultante = massa . aceleração

Fr_a: F_{f/a} = m . a
$$\rightarrow$$
 Fr_a: F_{f/a} = m . a \rightarrow 12 = (m_a + m_b) . a \rightarrow 12 = 3 . a \rightarrow 4_{m/s}² = a Fr_b: 12 - F_{f/b} = m . a \rightarrow Fr_b: 12 - F_{f/b} = m . a \rightarrow Como F_{f/a} = m . a, F_{f/a} = 1kg . 4_{m/s}² \rightarrow F_{f/a} = 4N

Força de tração do fio = massa . aceleração

$$T_{f/a} = 1 \text{kg} . a \rightarrow T_{f/a} = 1 \text{kg} . a \rightarrow 12 = (m_a + m_b) . a \rightarrow 12 = 3 . a \rightarrow 4_{m/s}^2 = a$$

12 - $T_{b/f} = 2 \text{kg} . a \rightarrow 12 - T_{b/f} = 2 \text{kg} . a \rightarrow$
Como $T = 1 \text{kg} . a, T = 1 \text{kg} . 4_{m/s}^2 \rightarrow T = 4 \text{N}$