

Flashback - previously in Math 152

Test for convergence: conditional, absolute or not.

(-i)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$$

$$\text{(-ii) } \sum_{n=1}^{\infty} \frac{2^n}{3^n - n}$$

(-iii)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

(-iv)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(2n-1)!}{2^{2n-1}}$$

Example. Find the interval of convergence of the following series.

1.
$$\sum_{n=0}^{\infty} \frac{(-2)^n x^n}{(2n)!}$$

2.
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} x^{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

$$3. \sum_{n=0}^{\infty} x^n$$

$$4. \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Representations of Functions as Power Series (11.9)

1. **Quote.** "The aim of art is to represent not the outward appearance of things, but their inward significance."

(Aristotle, Ancient Greek philosopher and scientist, 384–322 BC)

- 2. **Problem.** Can we write a function, for example, $f(x) = \frac{1}{1+x}$ as a power series? How about any of those below?
 - $\bullet \ f(x) = \frac{1}{1+x^2}$
 - $f(x) = e^x$

 - $f(x) = \sin x$ $f(x) = \frac{1}{x}$

3. Representation as a series.

Let I be the interval of convergence for the power series $\sum_{n=0}^{\infty} c_n x^n$. For each $x \in I$, let f(x) denote the series; that is,

$$f(x) = \sum_{n=0}^{\infty} c_n x^n, \quad \text{if } x \in I$$

Then we call $\sum_{n=0}^{\infty} c_n x^n$ a **power series representation** of f(x).

4. **Examples.** Find a power series representation of the following functions.

(a)
$$f(x) = \frac{1}{1 + 4x^2}$$

(b) $g(x) = \frac{x}{9 - x^2}$

(b)
$$g(x) = \frac{x}{9 - x^2}$$

5. Theorem (Term-by-term differentiation or integration).

Suppose the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ has radius of convergence R>0. Then, the function f defined by $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ is differentiable on the interval (a-R,a+R) and

(a)
$$f'(x) = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$$

(a)
$$f'(x) = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1}$$

(b) $\int f(x)dx = C + \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$

Both these series have radii of convergence equal to R.

6. **Examples.** Find a power series representation of the following functions.

(a)
$$f(x) = \frac{1}{(1-x)^2}$$

(b)
$$g(x) = \ln(1+x)$$

(c)
$$h(x) = \arctan x$$

(d)
$$\ell(x) = \frac{1}{x}$$

Notes.