АиСД, пилотный поток. Лекция 1.

Определение. Вероятностное пространство — тройка объектов $(\Omega, 2^{\Omega}, \mathsf{P})$, где

- Ω множество элементарных исходов;
- 2^{Ω} множество событий (где каждое событие некий набор исходов);
- $\mathsf{P}:\Omega\to[0,1]$ функция, сопоставляющая каждому исходу вероятность его наступления. При этом $\sum_{\omega\in\Omega}\mathsf{P}(\omega)=1.$

Замечание. Все приводимые в данном курсе утверждения о вероятности справедливы лишь для вероятностных пространств с конечным множеством элементарных исходов.

Пусть $A \in 2^{\Omega}$ — некое событие. Будем обозначать вероятность события A как P(A).

Вероятность события равна сумме вероятностей входящих в него элементарных исходов, то есть $\mathsf{P}(A) = \sum_{\omega \in A} \mathsf{P}(\omega).$

Определение. Событие A называется *невозможеным*, если P(A) = 0.

Определение. Событие A называется достоверным, если P(A) = 1.

Определение. P(A|B) обозначает *условную вероятность*, то есть вероятность наступления события A при условии наступления события B.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Определение. События A и B называются *независимыми*, если B не является невозможным и P(A|B) = P(A).

Если А и В независимы, справедлива следующая формула:

$$P(A \cap B) = P(A) \cdot P(B)$$

Определение. События A_1, A_2, \dots, A_n называются *независимыми в совокупности*, если $\forall I \subseteq \{1, 2, \dots, n\}$ $\prod_{i \in I} \mathsf{P}(A_i) = \mathsf{P}(\bigcap_{i \in I} A_i)$

Замечание. Попарной независимости событий A_1, A_2, \ldots, A_n недостаточно для того, чтобы они были независимыми в совокупности. Контрпример: при броске двух игральных кубиков событие A_1 определим как «выпало чётное значение на первом кубике», событие A_2 как «выпало чётное значение на втором кубике», а событие A_3 как «сумма значений на кубиках чётная». События попарно независимы, но если одновременно наступают любые два из них, третье становится достоверным.

Определение. События A и B называются *несовместными*, если $\mathsf{P}(A|B) = 0.$

Определение. Множество $\{A_1,A_2,\ldots,A_n\}$ называется *полной группой событий*, если $\forall i\neq j\ \mathsf{P}(A_i\cap A_j)=0$ и $\mathsf{P}(\bigcup A_i)=1$

Если S — полная группа событий, то верно следующее утверждение:

$$\forall B \in 2^{\Omega} \ \mathsf{P}(B) = \sum_{A \in S} B \cap A = \sum_{A \in S} \mathsf{P}(B|A) \cdot \mathsf{P}(A)$$