

本章总览 需要提供哪些功能? CPU的功能和结构 对应这些功能需要有哪些结构? 指令周期的概念: 一条指令的执行分为不同的阶段 指令执行过程 数据流:不同阶段要求依次访问的数据序列 指令执行方案: 如何安排多条指令的执行? 如何设置部件之间的连接路径? 数据通路的功能和基本结构 中央处理器 描述指令执行过程中信号和数据在这些路径上的传输 控制器如何指挥整个系统的工作? 控制器的功能和工作原理 控制器的设计一 为什么引入流水线的结构? 指令流水线 有哪些结构? 会产生什么问题? ____/CSKAOYAN.COM

硬布线控制器的设计

确定哪些指令在什么阶段、在什么
条件下会使用到的微操作

1. 分析每个阶段的微操作序列(取值、间址、执行、中断四个阶段)
采用定长机器周期还是不定长机器
周期? 每个机器周期安排几个节拍?

3. 安排微操作时序
如何用3个节拍完成整个机器
周期内的所有微操作?

4. 电路设计

确定每个微操作命令的逻辑表达式,并用电路实现

正道考研/CSKAOYAN.COM

安排微操作时序的原则	
原则一 微操作的 先后顺序不得 随意 原则二 被控对象不同 的微操作	更改
尽量安排在 一个节拍 内完成 原则三 占用 时间较短 的微操作	
尽量 安排在 一个节拍 内完成 并允许有先后顺序	
	王道考研/CSKAOYAN.COM

安排微操作时序-取指周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用 时间较短 的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

(1) PC \rightarrow MAR

(2) 1 → R 存储器空闲即可

(3) M (MAR) → MDR 在(1)之后

(4) MDR → IR 在(3)之后

(5) OP (IR) → ID 在(4)之后

(6) (PC)+1→PC 在(1)之后

王道考研/CSKAOYAN.COM

9

安排微操作时序-取指周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用 时间较短 的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

也就是可以一次同时发出两个微命令。

 T_0 (1) PC \rightarrow MAR

 T_0 (2) 1 \rightarrow R

存储器空闲即可

 T_1 (3) M (MAR) \rightarrow MDR

R 在(1)之后

 T_1 (6) (PC) + 1 \rightarrow PC

在(1)之后

 T_2 (4) MDR \rightarrow IR

在(3)之后

 T_2 (5) OP (IR) \rightarrow ID

在(4)之后

M(MAR)→ MDR 从主存取数据,用时较长,因此必须一个时钟周期才能保证微操作的完成

MDR → IR 是CPU内部寄存器的数据传送,速度很快,因此在一个时钟周期内可以紧接着完成 OP (IR) → ID。

两个微操作占用时 间较短,根据原则 三安排在一个节拍

王道考研/CSKAOYAN.COM

安排微操作时序-间址周期 原则- 微操作的先后顺序不得随意更改 T₀ (1) Ad(IR) → MAR 原则二 被控对象不同的微操作 T₀ (2) 1 → R 尽量安排在 一个节拍内完成 T₁ (3) M (MAR) → MDR 原则三 占用时间较短的微操作 T₂ (4) MDR → Ad(IR) 尽量 安排在一个节拍内完成 并允许有先后顺序

11

```
安排微操作时序-执行周期
原则一 微操作的 先后顺序不得 随意 更改
                                                   ① CLA
                                                                \mathsf{T}_0
                                                                \mathsf{T}_1
                                                    clear
原则二 被控对象不同的微操作
                                                               T_2 0 \rightarrow AC
                                                    ACC清零
        尽量安排在 一个节拍 内完成
                                                   ② COM
原则三 占用 时间较短 的微操作
                                                    complement \mathsf{T}_1
                                                    ACC取反 T_2 \overline{AC} \rightarrow AC
        尽量 安排在 一个节拍 内完成
                                                                \mathsf{T}_0
                                                   ③ SHR
         并允许有先后顺序
                                                                 \mathsf{T_1}
                                                    shift
                                                                T_2 L(AC) \rightarrow R(AC)
                                                    算术右移
                                                                 T_2 AC_0 \rightarrow AC_0
                                                    4 CSL
                                                                 \mathsf{T}_0
                                                                 \mathsf{T_1}
                                                    cyclic shift
                                                                 T_2 R(AC) \rightarrow L(AC), AC<sub>0</sub> \rightarrow AC<sub>n</sub>
                                                    循环左移
⑤ STP
                                                                 \mathsf{T}_0
                                                                 \mathsf{T}_1
                                                    stop
                                                                 T_2 0 \rightarrow G
                                                    停机
                                                                                        王道考研/CSKAOYAN.COM
```


安排微操	作时序-中断周期
原则一 微操作的 先后顺序不得 随意 更改原则二 被控对象不同 的微操作 尽量安排在 一个节拍 内完成原则三 占用 时间较短 的微操作 尽量 安排在 一个节拍 内完成并允许有先后顺序	T_0 (1) a \rightarrow MAR T_0 (2) 1 \rightarrow W 存储器空闲即可 T_0 (3) 0 \rightarrow EINT 硬件关中断 T_1 (4) (PC) \rightarrow MDR 内部数据通路空闲即可 T_2 (5) MDR \rightarrow M(MAR) 在(3)之后 T_2 (6) 向量地址 \rightarrow PC 在(3)之后
设计步骤: 1. 分析每个阶段的微操作序列 2. 选择CPU的控制方式 3. 安排微操作时序 4. 电路设计	这些操作由中断隐指令完成 注:中断隐指令不是一条指令,而是指一条指令的 中断周期由硬件完成的一系列操作 中断周期的三个任务: 1.保存断点 2.形成中断服务程序的入口地址 3.关中断
	王道考研/CSKAOYAN.COM

				组台	予逻 维	设计							
				计步骤 列出护	: 操作时间	司表	非访	存指令					
工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	T ₀		$PC \longrightarrow MAR$	1	1	1	1	1	1	1	1	1	1
			1 → R	1	1	1	1	1	1	1	1	1	1
	T ₁		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1	1	1	1	1
FE			$(PC)+1 \longrightarrow PC$	1	1	1	1	1	1	1	1	1	1
取指	T ₂		$MDR \rightarrow IR$	1	1	1	1	1	1	1	1	1	1
			$OP(IR) \rightarrow ID$	1	1	1	1	1	1	1	1	1	1
		I_2	I	1→ IND P	政策					1	1	1	1
		Ī	1 → EX	1	1	1	1	1	1	1	1	1	1
间:	址特征		执行献发	9f 55					•	王道	考研/CS	SKAOY	AN.COM

				计步骤 列出打	: 操作时间	司表	非访る	存指令)				
工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	T ₀		$Ad(IR) \rightarrow MAR$						1	1	1	1	1
IND			1 → R						1	1	1	1	1
间址	T_1		$M(MAR) \rightarrow MDR$						1	1	1	1	1
			MDR→Ad (IR)						1	1	1	1	1
	T ₂	ĪŅD	$1 \longrightarrow EX$						1	1	1	1	1
间址	周期标	志	河的为及河址。 1曲/执行	当间	it Hol	4							

组合逻辑设计 设计步骤: 1. 列出操作时间表 工作
 2. 写出微 操作命令的 最简表达式
 工作 周期 标记
 状态 STA LDA JMP BAN 节拍 微操作命令信号 CLA COM ADD 条件 $Ad(IR) \rightarrow MAR$ 1 1 1 T_0 $1 \rightarrow R$ 1 1 $1 \longrightarrow W$ 1 1 $M(MAR) \rightarrow MDR$ 1 T_1 EX $AC \rightarrow MDR$ 1 执行 (AC)+(MDR)→AC 1 $MDR \rightarrow M(MAR)$ 1 $MDR \longrightarrow AC$ 1 T_2 $0 \longrightarrow AC$ 1 $\overline{AC} \longrightarrow AC$ 1 $Ad(IR) \rightarrow PC$ 1 A_0 $Ad(IR) \rightarrow PC$ 1 王道考研/CSKAOYAN.COM

18

			_		作信	J 5/5							
工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	т		$PC \longrightarrow MAR$	1	1	1	1	1	1	1	1	1	1
FE	T ₀		1 → R	1	1	1	1	1	1	1	1	1	1
取指	T ₁		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1	1	1	1	1
IND	I ₁		1 K						-	-	-	_	· -
间址	T_1		$M(MAR) \longrightarrow MDR$						1	1	1	1	1
1 4.22	•			ı				I	ı	ı	, -	ı	1
			EX	1	$l \rightarrow W$	-				1			
			执行 T ₁	M(M	AR)→	MDR			1		1		
M (FE.	MAR` Γ ₁ + IN) →M D·T ₁ (/	DR微操作命令的逻 ADD+STA+LDA+JM	辑表达 IP+BA	式: N)+E	X·T ₁ (A	ADD+L	.DA)					

硬布线控制器的设计

设计步骤:

- 1. 分析每个阶段的微操作序列
- 选择CPU的控制方式
 安排微操作时序
- 4. 电路设计
 - (1) 列出操作时间表
 - (2)写出微操作命令的最简表达式
 - (3)画出逻辑图

硬布线控制器的特点:

指令越多,设计和实现就越复杂,因此一般用于 RISC (精简指令集系统) 如果扩充一条新的指令,则控制器的设计就需要大改,因此扩充指令较困难。 由于使用纯硬件实现控制,因此执行速度很快。微操作控制信号由组合逻辑电路即时产生。

王道考研/CSKAOYAN.COM