Progress Update 1

Rohit Prasanna

Real-Time Prediction and Classification of Flare Events

Short Overview

- Goal of Project
 - Create a real-time predictor of flare events (solar flares, CMEs) based on sun images taken by SDO
 - Predicts time and type of flare (intensity and/or CME likelihood)
 - Potential secondary path of light curve extension
 - Extract relevant features from light curves for prediction

Research Updates

- Begun data collection from SDO website
 - Web scraping from 2010-2017
 - 4 filtergrams with 1 hour cadence
 - HMIBMagnetogram
 - AIA 1600
 - AIA 94
 - AIA 193
- Code shown on next slide.

Research Updates

```
SDO Available From: 2010/05/21
#GOES Flare Available From: 17/06/28
Overlap of about 7 years.
# TODO: Add data of Solar Flare times and intensities --> pair 24 hours images before with flare events
# TODO: Find CME dataset and research into CME intensities
# TODO: Next Step: Feature Extraction on Magnetogram
from bs4 import BeautifulSoup
import requests
import os
import shutil
def add_image(image):
   # print(os.path.exists(parent dir + 'images/'))
   filename = year + month + day + "_" + image[9:15] + "_" + image[21:]
   if not os.path.exists(parent dir + 'images/'):
        os.mkdir(os.path.join(parent_dir, 'images/'))
    folderpath = "images/" + filename
    r = requests.get(url + image, stream = True)
   r.raw.decode_content = True
   with open(folderpath, 'wb') as f:
        shutil.copyfileobj(r.raw, f)
    # print(image)
    pass
```

Updated Filters and Google Drive

	20130701_235455_HMII.jpg 🐣	me	Nov 28, 2021	150 KB
	20130701_234500_HMIB.jpg 🚢	me	Nov 28, 2021	374 KB
**	20130701_231407_0193.jpg 🚢	me	Nov 28, 2021	139 KB
**	20130701_230153_1600.jpg 🚢	me	Nov 28, 2021	212 KB
**	20130701_230126_0094.jpg 🚢	me	Nov 28, 2021	376 KB
*	20130701_225455_HMII.jpg 🐣	me	Nov 28, 2021	150 KB
**	20130701_224500_HMIB.jpg 🐣	me	Nov 28, 2021	375 KB
**	20130701_221407_0193.jpg 🚢	me	Nov 28, 2021	139 KB
*	20130701_220217_1600.jpg 🐣	me	Nov 28, 2021	215 KB
**	20130701_220102_0094.jpg	me	Nov 28, 2021	377 KB
**	20130701_215455_HMII.jpg 🚢	me	Nov 28, 2021	149 KB
**	20130701_214500_HMIB.jpg 🚢	me	Nov 28, 2021	375 KB
	20130701_211355_0193.jpg 🐣	me	Nov 28, 2021	139 KB

HMII Contiuum Filtergram Added

05/21/2010 - 07/01/2013 so far

Preprocessing

Current Preprocessing:

- Made background transparent (made green here to visualize)
- Collected Active Regions
 - regions of high magnetic activity, leading to solar activity

To Implement:

- Region Bounding
- Reduce Limb Importance
- Research Active Region Implementation (boxed)

Data Compilation

THE ASTROPHYSICAL JOURNAL

SUPPLEMENT SERIES

OPEN ACCESS

A Machine-learning Data Set Prepared from the NASA Solar Dynamics Observatory Mission

Richard Galvez¹, David F. Fouhey², Meng Jin^{3,4}, Alexandre Szenicer⁵,

Andrés Muñoz-Jaramillo⁶ (D), Mark C. M. Cheung^{3,7} (D), Paul J. Wright⁸ (D), Monica G. Bobra⁷ (D),

Yang Liu⁷ D, James Mason⁹ + Show full author list

Published 2019 May 8 • © 2019. The American Astronomical Society.

The Astrophysical Journal Supplement Series, Volume 242, Number 1

Citation Richard Galvez et al 2019 ApJS 242 7

Collaborations

Attempt at finding Solar Flare Occurrence data past 2017

Collaborations

- Dr. Naoto Nishizuka (Kyoto University)
 - Feature Extraction and Flare Event Expert
 - Provided general advice on project and gave many helpful links/resources
 - Explained her relevant feature extraction process
 - Insight into how I may go about my light curve portion of project later on once
 I'm able to replicate findings
 - HMII Filter

Collaborations

- Dr. Komei Sugiura (Keio University)
 - Machine Learning Expert
 - Provided advice regarding my machine learning model (specifically relevant feature extraction portion)
 - CNN-LSTM Gradcam
 - CNN-LSTM Attention
- To get a larger move on my project:
 - Work on relevant feature extraction in parallel after reading a few papers regarding
 SHARP parameters and emailing more researchers
 - Use traditional feature extraction of images and get a very basic machine learning model in place

- Dr. William Pesnell (SDO Project Manager)
 - Awaiting secondary response
 - O Has emailed me back

Further Collaborations

First Name	Last Name	Email	Article Name
Rohit	Prasanna	927220@lene.org	Test Email Sending
Ronit	Prasanna	837329@lcps.org	rest Email Sending
Monica	Bobra	mbobra@stanford.edu	Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Ma
Sebastien	Coudvidat	couvidat@stanford.edu	Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Ma
Stathis	llonidis	ilonidis@stanford.edu	Predicting Coronal Mass Ejections Using Machine Learning Methods
Robert	Erdélyi	robertus@sheffield.ac.uk	CME Arrival Time Prediction Using Convolutional Neural Network
Yimin	Wang	yimin.wang@shef.ac.uk	CME Arrival Time Prediction Using Convolutional Neural Network
Ye	Jiang	ye.jiang@sheffield.ac.uk	CME Arrival Time Prediction Using Convolutional Neural Network
Jiajia	Liu	jj.liu@shef.ac.uk	CME Arrival Time Prediction Using Convolutional Neural Network
Xiantong	Wang	xtwang@umich.edu	Predicting Solar Flares with Machine Learning: Investigating Solar Cycle Dep
Yang	Chen	ychenang@umich.edu	Identifying Solar Flare Precursors Using Time Series of SDO/HMI Images an
Ward	Manchester	chipm@umich.edu	Predicting Solar Flares with Machine Learning: Investigating Solar Cycle Dec

Near Future Work

- Research more into relevant feature extraction and successfully extract features from one magnetogram
 - o compare to SHARP database
- Research into the scientific theory behind CMEs and their characteristics
 - Edit filter grams based on results
 - Locate dataset
- Compile full data and attach flare event labels (almost complete)

