3	(a)		the deformation of a wire under tension, define
		(i)	stress,
			[1
		(ii)	strain.
			[1
	(b)		vire is fixed at one end so that it hangs vertically. The wire is given an extension x by pending a load F from its free end. The variation of F with x is shown in Fig. 3.1.
			0

Fig. 3.1

The wire has cross-sectional area $9.4 \times 10^{-8} \, \text{m}^2$ and original length $2.5 \, \text{m}$.

(i)	Describe how measurements can be taken to determine accurately the cross-sectional area of the wire.
	[3]

	(ii)	Determine the Young modulus E of the material of the wire.
		<i>E</i> = Pa [2]
	(iii)	Fig. 3.1 to calculate the increase in the energy stored in the wire when the load is
	()	increased from 2.0 N to 4.0 N.
		increase in energy = J [2]
(c)		e wire in (b) is replaced by a new wire of the same material. The new wire has twice the gth and twice the diameter of the old wire. The new wire also obeys Hooke's law.
		Fig. 3.1 , sketch the variation with extension x of the load F for the new wire from $x = 0$ to 0.80 mm. [2]
		[Total: 11]