STAT 88: Lecture 36

Contents

Section 11.4: Bounds on Correlation Section 11.5: The Error in Regression

Warm up: (Exercise 11.6.3)

Sometimes data scientists want to fit a linear model that has no intercept term. For example, this might be the case when the data are from a scientific experiement in which the attribute X can have values near 0 and there is a physical reason why the response Y must be 0 when X=0.

So let (X, Y) be a random pair and suppose you want to predict Y by an estimator of the form aX for some a. Find the least squares predictor \widehat{Y} among all predictors of this form.

Last time

Least squares regression

Let (X, Y) be a random pair. We write

•
$$E(X) = \mu_X$$
, $SD(X) = \sigma_X$.

•
$$E(Y) = \mu_Y$$
, $SD(Y) = \sigma_Y$.

•
$$E(Y)=\mu_Y,\, \mathrm{SD}(Y)=\sigma_Y.$$
• Correlation
$$r=\frac{E((X-\mu_X)(Y-\mu_Y))}{\sigma_X\sigma_Y}.$$

We wish to find the best fitting line $\widehat{Y} = \widehat{a}X + \widehat{b}$, through the scatter plot at all (X, Y)pairs. We showed that $\widehat{a} = r \frac{\sigma_Y}{\sigma_X} \text{ and } \widehat{b} = \mu_Y - \widehat{a} \cdot \mu_X.$

22 minimize $MSE(ab) = E((Y-(ax+b))^2)$

11.4. Bounds on Correlation

For a random pair (X, Y), the correlation is defined as

$$r = r(X, Y) = \frac{E((X - \mu_X)(Y - \mu_Y))}{\sigma_X \sigma_Y} = E\left(\frac{X - \mu_X}{\sigma_X} \cdot \frac{Y - \mu_Y}{\sigma_Y}\right) = E(X^* Y^*),$$

where X^* and Y^* are standardizations of X and Y respectively.

Our goal is to show that

$$-1 < r < 1$$
.

As a preliminary, find $E(X^*)$, $Var(X^*)$, and $E(X^{*2})$.

Lower Bound We will show that $r = E(X^*Y^*) \ge -1$.

Upper Bound Similarly,

 $\textbf{Other Properties} \quad \text{ We can show } \\$

(a)
$$r(X, Y) = r(Y, X)$$
.

(b)
$$r(aX + b, cY + d) = \begin{cases} r(X, Y) & \text{if } ac > 0 \\ -r(X, Y) & \text{if } ac < 0 \end{cases}$$

Example: (Exercise 11.6.7) Let (X,Y) be a random pair and let r=r(X,Y). Let X^* be X in standard units and let Y^* be Y in standard units.

- (a) Find $r(X^*, Y^*)$.
- (b) Write the equation for \hat{Y}^* , the least squares linear predictor of Y^* , based on X^* .

11.5. The Error in Regression

The error in the regression estimate is called the residual and is defined as

$$D = Y - \widehat{Y}.$$

It is useful to write this in terms of the deviations $D_X = X - \mu_X$ and $D_Y = Y - \mu_Y$.

$$\widehat{Y} = \widehat{a}X + \widehat{b} = \widehat{a}X + \mu_Y - \widehat{a}\mu_X = \widehat{a}(X - \mu_X) + \mu_Y.$$

So,

$$D = Y - \widehat{Y}$$

$$= Y - [\widehat{a}(X - \mu_X) + \mu_Y]$$

$$= Y - \mu_Y - \widehat{a}(X - \mu_X)$$

$$= D_Y - \widehat{a}D_X.$$

What is E(D)?

Mean Squared Error of Regression

The mean squared error of regression is $E((Y - \widehat{Y})^2) = E(D^2)$. Since E(D) = 0, we have $Var(D) = E(D^2)$. Recall $\widehat{a} = r \frac{\sigma_Y}{\sigma_X}$ and $E(D_X D_Y) = r \sigma_X \sigma_Y$.

Let's find Var(D):

$$Var(D) = E(D^2)$$

$$= E(D_Y^2) - 2\widehat{a}E(D_XD_Y) + \widehat{a}^2E(D_X^2)$$

$$= \sigma_Y^2 - 2r\frac{\sigma_Y}{\sigma_X}r\sigma_X\sigma_Y + r^2\frac{\sigma_Y^2}{\sigma_X^2}\sigma_X^2$$

$$= \sigma_Y^2 - 2r^2\sigma_Y^2 + r^2\sigma_Y^2$$

$$= \sigma_Y^2 - r^2\sigma_Y^2$$

$$= (1 - r^2)\sigma_Y^2.$$

So

$$SD(D) = \sqrt{1 - r^2} \sigma_Y$$
.

r As a Measure of Linear Association Note that

$$E(D) = 0$$
 and $SD(D) = \sqrt{1 - r^2} \sigma_Y$.

So if r is close to ± 1 , $\mathrm{SD}(D)$ is close to 0, which implies that Y is close to \widehat{Y} . In other words, Y is close to being a linear function of X.

In the extreme case $r = \pm 1$, SD(D) = 0 and Y is a perfectly linear function of X.

The Residual is Uncorrelated with X We will show that the correlation between X and residual D is zero. Note that

$$r(D,X) = \frac{E((D - \mu_D)(X - \mu_X))}{\sigma_D \sigma_X} = \frac{1}{\sigma_D \sigma_X} E(DD_X),$$

because $\mu_D = 0$. We thus show $E(DD_X) = 0$:

$$E(DD_X) = E((D_Y - \widehat{a}D_X)D_X)$$

$$= E(D_XD_Y) - \widehat{a}E(D_X^2)$$

$$= r\sigma_X\sigma_Y - r\frac{\sigma_Y}{\sigma_X}\sigma_X^2$$

$$= 0.$$