Lecture 4 Segment 2

Calculating correlations

- Important topics
 - Pearson product-moment correlation coefficient (r)
 - Covariance

- Correlation coefficient (r)
 - Pearson product-moment correlation coefficient
- r = the degree to which X and Y vary together, relative to the degree to which X and Y vary independently
- r = (covariance of X & Y) / (variance of X & Y)

- Here comes the math!
- Formulae for *r*
 - Raw score formula
 - z-score formula

• Let's quickly review calculations from Lecture 2 on descriptive statistics

Linsanity!

Jeremy Lin (10 games)

Points per game	(X-M)	(X-M) ²
28	5.3	28.09
26	3.3	10.89
10	-12.7	161.29
27	4.3	18.49
20	-2.7	7.29
38	15.3	234.09
23	0.3	0.09
28	5.3	28.09
25	2.3	5.29
2	-20.7	428.49
M = 227/10 = 22.7	M = 0/10 = 0	M = 922.1/10 = 92.21

Results

- M = mean = 22.7
- SD = $\overline{\text{standard deviation}} = 9.6$
- SD^2 = variance = 92.21

Notation

- M = mean
- SD = standard deviation
- SD^2 = variance (also known as \overline{MS})
 - MS stands for Mean Squares
 - SS stands for Sum of Squares

Just one new concept ©

• SP = Sum of cross Products

Just one new concept ©

- Review: To calculate SS
 - For each subject in the sample, calculate their deviation score
 - $(X M_x)$
 - Square the deviation scores
 - $(X M_x)^2$
 - Sum the squared deviation scores
 - $SS_x = \Sigma[(X M_x)^2] = \Sigma[(X M_x) \times (X M_x)]$

Just one new concept ©

- To calculate SP
 - For each subject in the sample, calculate their deviation scores on both X and Y
 - $(X M_x)$
 - $(Y M_v)$
 - Then, for each subject, multiply the deviation score on X by the deviation score on Y
 - $(X M_x) \times (Y M_v)$
 - Then sum the "cross products"
 - SP = $\Sigma[(X M_x) \times (Y M_y)]$

Raw score formula:

$$r = SP_{xy} / \sqrt{SS_x SS_y}$$

$$SS_x = \Sigma(X - M_x)^2 = \Sigma[(X - M_x)(X - M_x)]$$

$$SS_y = \Sigma(Y - M_y)^2 = \Sigma[(Y - M_y)(Y - M_y)]$$

$$SP_{xy} = \Sigma[(X - M_x)(Y - M_y)]$$

Raw score formula continued:

$$r = SP_{xy} / \sqrt{SS_x SS_y}$$

$$r = \Sigma[(X - M_{x})(Y - M_{y})] / \sqrt{\Sigma(X - M_{x})^{2} \Sigma(Y - M_{y})^{2}}$$

z-score formula:

$$r = \Sigma(z_x z_y) / N$$

$$z_x = (X - M_x) / SD_x$$

$$z_y = (Y - M_y) / SD_y$$

$$SD_{x} = \sqrt{\Sigma(X - M_{x})^{2} / N}$$

$$SD_{y} = \sqrt{\Sigma(Y - M_{y})^{2} / N}$$

z-score formula continued:

$$z_x = (X - M_x) / SD_x$$
$$z_y = (Y - M_y) / SD_y$$

$$SD_{x} = \sqrt{\Sigma(X - M_{x})^{2} / N}$$

$$SD_{y} = \sqrt{\Sigma(Y - M_{y})^{2} / N}$$

Proof of equivalence:

$$\begin{split} z_{x} &= (X - M_{x}) / \sqrt{\Sigma (X - M_{x})^{2} / N} \\ z_{y} &= (Y - M_{y}) / \sqrt{\Sigma (Y - M_{y})^{2} / N} \\ r &= \Sigma \left\{ \left[(X - M_{x}) / \sqrt{\Sigma (X - M_{x})^{2} / N} \right] \right. \\ &\left. \left[(Y - M_{y}) / \sqrt{\Sigma (Y - M_{y})^{2} / N} \right] \right\} / N \end{split}$$

Proof of equivalence continued:

$$r = \Sigma \{ [(X - M_x) / \sqrt{\Sigma(X - M_x)^2 / N}]$$

$$[(Y - M_y) / \sqrt{\Sigma(Y - M_y)^2 / N}] \} / N$$

$$r = \Sigma [(X - M_x)(Y - M_y)] / \sqrt{\Sigma(X - M_x)^2 \Sigma(Y - M_y)^2}$$

$$r = SP_{xy} / \sqrt{SS_x SS_y}$$

Variance and covariance

- Variance = MS = SS / N
- Covariance = COV = SP / N

- Correlation is standardized COV
 - Standardized so the value is in the range -1 to 1

Note on the denominators

- Correlation for descriptive purposes
 - Divide by N
- Correlation for inferential purposes
 - Divide by N-1

Correlations 2: Review

- Important topics
 - Pearson product-moment correlation coefficient (r)
 - Covariance

Image in slide 6 is from Nathaniel S. Butler, NBAE/Getty Images.

© 2012 Andrew Conway