

Quantile-Based Maximum Likelihood Training for Outlier Detection

Masoud Taghikhah*¹, Nishant Kumar*¹, Siniša Šegvić², Abouzar Eslami³, Stefan Gumhold¹

¹TU Dresden, ²University of Zagreb – FER, ³Carl Zeiss Meditec AG

Motivation

- > Discriminative Learning often results in false positive for outliers.
- ➤ Prior methods train image classifiers with actual outlier data or synthesize outliers under self-supervised learning.
- > Unsupervised generative modelling of inliers in pixel space has shown limited success for outlier detection.

Method

- ➤ A quantile-based maximum likelihood objective to enhance outlier detection in an inlier image classification setup.
- ➤ Our approach fits a normalizing flow to pre-trained discriminative features, detecting outliers based on log-likelihood.

Stage 1: Discriminative Training

> Train an image classifier using multi-class cross-entropy loss.

Stage 2: Generative Training

➤ Estimate the distribution of inlier features by training normalizing flow on the quantile-based negative log-likelihood loss.

> Generally, quantile-based loss outperforms the mean-based loss.

Stage 3: Model Inference

The test feature is labelled an outlier if its log-likelihood score is below the threshold score.

Results

> Our method outperforms the state-of-the-art unsupervised methods for outlier-aware image classification.

Method	FPR95	AUROC	AUPR
MSP	51.04	90.91	97.92
ODIN	35.71	91.09	97.62
Energy	33.01	91.88	97.83
QuantOD	17.17	96.19	99.15

Inlier: CIFAR-100 Method FPR95 **AUPR AUROC** 93.93 80.41 75.53 MSP 94.23 74.64 77.43 ODIN 73.60 79.56 94.87 Energy 95.48 QuantOD 67.90 82.32

Class-conditional Gaussians

- ➤ We report better outlier detection performance than approaches that estimate class-conditional Gaussians on CIFAR-10.
- ➤ Mahalanobis based class-conditional Gaussian modelling performs better than our approach on CIFAR-100.

Conclusion

- ➤ A new maximum likelihood objective for outlier-aware image classification without needing outlier-awareness during training.
- > Our approach outperforms other unsupervised methods and is competitive with approaches that rely on per-class modelling.

