Graph Theory I

By: Ethan Pronev

What is Graph Theory?

Not this kind of graph

In computer science, a graph is a data structure that consists of vertices (also called nodes) and edges

Vertices are distinct points, and edges create links between multiple points

Relevant Terminology

Adjacent - two vertices are adjacent if there is an edge between them

Degree - the degree of a vertex is the number of nodes adjacent to it

Cycle - a path on a graph from a vertex to itself

Types of Graphs

Unweighted/Weighted - Each edge in a graph can have a 'weight' associated with it (in different problems this could represent travel time, distance, cost, etc.)

Directed/Undirected - In some graphs the edges may only be traversed in one direction

Eg. B is connected to A, but A is not connected to B

Types of Graphs

Complete - Every node is adjacent to every other one

Tree - no cycles of edges and nodes (contains n vertices and n-1 edges)

Simple - Simple graphs may not contain vertices adjacent to themselves or multiple edges between the same pair of vertices

simple graph

nonsimple graph with multiple edges

nonsimple graph with loops

How to Represent Graphs in Code

Method 1: Edge List Representation

Essentially a list of every edge in the graph in the form {a,b} where a and b are every pair of nodes that share an edge

Example:

$$E = \{\{6,4\},\{4,5\},\{5,2\},\{2,3\},\{3,4\},\{5,1\},\{1,2\}\}$$

How to Represent Graphs in Code

Method 2: Adjacency Matrix

For n nodes, you would use a n*n 2D array where array[i][j]=true if i and j are adjacent, and array[i][j]=false if they are not

	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0

How to Represent Graphs in Code

Method 3: Adjacency List

An array of vectors is used

array[i] = {a,b,c...} indicates that node i is adjacent to a, b, c...

1	{2,5}
2	{1,3,5}
3	{2,4}
4	{3,5,6}
5	{1,2,4}
6	{ 4 }

Graph Representation - Weighted Graphs

Edge List Representation

Use triplets instead of pairs to store each edge

Form is {a,b,w} where a and b are the nodes and w is the weight

Example: