# TIPE : Groupe du Rubik's Cube et produit semi-direct

Armand Perrin

10854

June 7, 2024

## Le Rubik's Cube



# Mouvements légaux



# Problématique

### Problématique:

Comment décrire le groupe du Rubik's Cube à l'aide de groupes connus ?

## Table des matières

- 1 Outils sur les groupes
  - Groupes compléments
  - Produit semi-direct interne
  - Produit semi-direct externe
- 2 Le Groupe du Rubik's cube
  - $\bullet$  Description du groupe du Rubik's cube
  - Positionement des pièces
  - Orientation des pièces

## Table des matières

- ① Outils sur les groupes
  - Groupes compléments
  - Produit semi-direct interne
  - Produit semi-direct externe
- 2 Le Groupe du Rubik's cube
  - Description du groupe du Rubik's cube
  - Positionement des pièces
  - Orientation des pièces

# Groupes compléments

## Définition 1 : (Compléments)

Soit G un groupe de neutre 1 et H,K deux sous-groupes de G. On dit que K est un complément de H dans G si G = HK et  $H \cap K = \{1\}$ .

#### Proposition 1:

Dans ce contexte, K est un complément de H dans G si et seulement si  $\bigcap_{i \in K} H \times K \longrightarrow G$ 

l'application 
$$\varphi: \begin{cases} H \times K & \to & G \\ (h,k) & \mapsto & hk \end{cases}$$
 est bijective.

# Définition 2 : (Sous-groupe normal)

Un sous-groupe H d'un groupe G est dit normal, ou distingué dans G si il est stable par conjugaison par les éléments de G, i.e :

$$\forall g \in G \ \forall h \in H \ ghg^{-1} \in H$$

On le note  $H \triangleleft G$ .

Remarque : On peut montrer facilement que le noyau d'un morphisme de groupe est un sous groupe normal.

#### Produit semi-direct interne

Dans cette partie on fixe G un groupe, H et K des sous groupes de G.

## Définition 3 : (Loi du produit semi-direct interne)

On définit la loi de composition interne  $\cdot$  sur  $H \times K$  par  $\cdot : \begin{cases} (H \times K)^2 & \to & H \times K \\ (h,k),(h',k') & \mapsto & (hkh'k^{-1},kk') \end{cases}$  Elle est bien définie si  $H \triangleleft G$ , on appelle alors produit semi-direct interne et on note  $H \rtimes K$  le couple  $(H \times K, \cdot)$ .

#### Proposition 2:

Si  $H \triangleleft G$  et si K est un complément de H dans G, alors  $H \bowtie K$  est un groupe et  $\varphi : \begin{cases} H \bowtie K & \to & G \\ (h,k) & \mapsto & hk \end{cases}$  est un isomorphisme de groupes.

#### Produit semi-direct externe

Dans cette partie on considère H et K deux groupes quelconques et  $f: K \to \operatorname{Aut}(H), k \mapsto f_k$  un morphisme de K dans  $\operatorname{Aut}(H)$ .

## Définition 4 : (Loi du produit semi-direct externe)

On défini la loi de composition interne  $\cdot_f$  sur  $H \times K$  par  $\cdot_f : \begin{cases} (H \times K)^2 & \to & H \times K \\ (h,k),(h',k') & \mapsto & (hf_k(h'),kk') \end{cases}$  on appelle produit semi-direct

externe relatif à f et on note  $H \rtimes_f K$  le couple  $(H \times K, \cdot_f)$ .

#### Proposition 3:

 $G:=H\rtimes_f K$  est un groupe de neutre (1,1) avec  $(h,k)^{-1}=(f_{k^{-1}}(h^{-1}),k^{-1})$  et si on pose les sous groupes de  $G:H_G:=H\times\{1\},\ K_G:=\{1\}\times K$  ils sont respectivement isomorphes à H et K, de plus  $H_G$  est normal dans G,  $K_G$  est un complément de  $H_G$  dans G et  $G\cong H_G\rtimes K_G$ .

## Proposition 4: (Passage du produit interne au produit externe)

Soient G un groupe, H et K des sous groupes de G avec  $H \triangleleft G$  et K complément de H dans G tels que  $G \cong H \rtimes K$ , notons

$$f: \begin{cases} K & \to & \operatorname{Aut}(H) \\ k & \mapsto & \left(h \mapsto khk^{-1}\right) \end{cases}$$

Alors f est un morphisme de groupes et  $G \cong H \rtimes_f K$ . f est appelé "morphisme de conjuguaison de H par K".

## Proposition 5: (Isomorphismes de produits semi-direct)

Soient H, H', K, K' des groupes tels que l'on ait des isomorphismes :

$$\varphi: H \to H'$$

$$\psi:K\to K'$$

Soit  $f: K \to \operatorname{Aut}(H), k \mapsto f_k$  un morphisme, et

$$\tilde{f}: \begin{cases} K' & \to \operatorname{Aut}(H') \\ k & \mapsto & \varphi \circ f_{\psi^{-1}(k)} \circ \varphi^{-1} \end{cases}$$

Alors  $\tilde{f}$  est un morphisme et

$$H \rtimes_f K \cong H' \rtimes_{\tilde{f}} K'$$



#### Table des matières

- Outils sur les groupes
  - Groupes compléments
  - Produit semi-direct interne
  - Produit semi-direct externe
- 2 Le Groupe du Rubik's cube
  - Description du groupe du Rubik's cube
  - Positionement des pièces
  - Orientation des pièces

#### Notations

- $S_n$  est le groupe symétrique d'ordre n
- $\mathbb{Z}_n$  le groupe  $(\mathbb{Z}/n\mathbb{Z}, +)$
- G le groupe du rubik's cube constitué de tous les mouvements possibles en démontant et remontant le cube.
- id le neutre de G laissant invariant le cube.
- "l'état final" désigne le cube complété (chaque face n'affiche qu'une couleur).

## Le Rubik's Cube



# Description de G

Chaque mouvement correspond exactement à un état du cube La loi de composition que l'on note multiplicativement sur G envoie (g,g') sur gg', le mouvement qui applique successivement g' puis g au cube. On distingue 3 types de pieces du Rubik's cube :

- les centres
- les arêtes
- les sommets

On observe premièrement que tout mouvement est constitué d'un mouvement sur les arêtes et d'un mouvement sur les sommets.

#### Définition 5:

 $G_a$  : groupe des mouvements sur les arêtes (laissant fixes les sommets)

 $G_s$  : groupe des mouvements sur les sommets (laissant fixes les arêtes)

### Proposition 6:

 $G \cong G_a \times G_s$ .

**Preuve :** On montre que l'application :  $\varphi$  :  $\begin{cases} G_a \times G_s & \longrightarrow G \\ (g_a, g_s) & \longmapsto g_a g_s \end{cases}$  est un isomorphime de groupes. Le fait que  $\varphi$  soit bijective traduit notre précédente observation. C'est un morphisme car par commutativité des éléments de  $G_a$  avec ceux de  $G_s$   $\forall ((g_a, g_s), (g'_a, g'_s)) \in (G_a \times G_s)^2$  :

$$\varphi((g_a, g_s)(g'_a, g'_s)) = \varphi((g_a g'_a, g_s g'_s)) = g_a g'_a g_s g'_s$$
$$= (g_a g_s)(g'_a g'_s) = \varphi(g_a, g_s)\varphi(g_a, g'_s) \square$$

# Positionement des pièces

Il y a 12 arêtes qui peuvent toutes prendre chacune un des 12 emplacements d'arête et 8 sommets qui peuvent tous prendre un des 8 emplacements de sommet.

#### Définition 6:

On définit deux applications  $\sigma_a:G_a\to S_{12}$  et  $\sigma_s:G_s\to S_8$  représentants respectivement les positions des arêtes et des sommets de la manière suivante :

On numérote de 1 à 8 les emplacements de sommets ainsi que les sommets, de telle sorte que dans l'état final, pour  $i=1,\ldots,8$  le sommet i soit en position i. On pose alors  $\sigma_s(g) \in S_8$  l'unique permutation telle que pour  $i=1,\ldots,8$  le sommet  $\sigma_s(g)(i)$  soit en position i après le mouvement g appliqué depuis l'état final.  $\sigma_a$  est définie de manière similaire avec les arêtes.



Figure: Permutation des sommets

## Proposition 7:

 $\sigma_a:G_a\to S_{12}$  et  $\sigma_s:G_s\to S_8$  sont deux morphismes de groupe surjectifs.

**Preuve :** On s'occupe ici des sommets, la preuve est similaire pour les arêtes.  $\sigma_s$  est bien surjective dans  $S_8$  (car on considère les mouvement avec démontage du cube). On observe que quelque soit l'état de départ : si l'emplacement i contient le sommet  $a_i$  alors après le mouvement g l'emplacement i contient le sommet  $\sigma_s(g)(a_i)$ .  $\sigma_s$  est donc un morphisme car après le mouvement g' appliqué à l'état final, l'emplacement i contient le sommet  $\sigma_s(g')(i)$ , si on applique ensuite le mouvement g' l'emplacement g' contient alors le sommet  $\sigma_s(g)(\sigma_s(g')(i))$ . Finalement  $\sigma_s(gg') = \sigma_s(g) \circ \sigma_s(g')$ .

# Orientation des pièces

#### Définition 7:

On note  $R_a = Ker(\sigma_a)$  et  $R_s = Ker(\sigma_s)$ .

Il s'agit des sous groupes de G des mouvements de rotation des arêtes et des sommets respectivement.

Formalisons maintenant l'orientation des pièces, chaque emplacement d'arête peut contenir une même arête dans 2 orientation possibles et chaque emplacement de sommet peut contenir un même sommet dans 3 orientations possibles.

#### Définition 8:

On marque une des trois faces de chaque sommet par une étoile et on dit que l'orientation d'un sommet est le nombre de tiers de tours à effectuer (dans le sens trigonométrique) pour faire coincider sa face marquée avec l'étoile de l'état final. Ce qui permet définir pour  $g \in G_s$  l'orientation des sommets comme  $\rho_s(g) = (d_1, \ldots, d_8) \in \mathbb{Z}_3^8$  tel que  $d_i$  soit l'orientation du sommet i en position i après le mouvement g. On défini de même  $\rho_a$  avec les arêtes.

# Marquages des arêtes et des sommets



On peut représenter ces marquage en indiquant les rotations des sommets et arêtes en fonction de la place occupée par la face marquée d'une étoile :



Pour  $n, m \in \mathbb{N}^*$  notons  $F_{n,m}$  le morphisme :

$$\begin{cases} S_n & \longrightarrow & \operatorname{Aut}(\mathbb{Z}_m^n) \\ s & \longmapsto & \left( (x_1, \dots, x_n) \mapsto (x_{s^{-1}(1)}, \dots, x_{s^{-1}(n)}) \right) \end{cases}$$

On s'intéressera en particulier à  $\alpha := F_{8,3}$  et  $\beta := F_{12,2}$ .

#### Lemme 1:

Les applications  $\rho_a:G_a\to\mathbb{Z}_2^{12}$  et  $\rho_s:G_s\to\mathbb{Z}_3^8$  vérifient :

$$\forall g, h \in G_s \quad \rho_s(gh) = \rho_s(g) + \alpha(\sigma_s(g))(\rho_s(h))$$

$$\forall g, h \in G_a \quad \rho_a(gh) = \rho_a(g) + \beta(\sigma_a(g))(\rho_a(h))$$

#### Preuve du lemme

**Preuve :** On traite le cas des sommets, la preuve est similaire pour les arêtes. Soient  $g, h \in G_s$ , notons :

$$\rho_s(h) =: (h_1, \dots, h_8) \in \mathbb{Z}_3^8$$

$$\rho_s(g) =: (g_1, \dots, g_8) \in \mathbb{Z}_3^8$$

On observe que tout mouvement de  $G_s$  peut être réalisé en positionant d'abord les sommets puis en les orientant. Donc il existe  $u, v \in G_s$  tels que  $\rho_s(v) = 0$ ,  $u \in R_s = Ker(\sigma_s)$  et g = uv. Comme v ne fait que permutuer les sommets à orientation fixe, selon la permutation  $\sigma_s(v)$ , on a :

$$\rho_s(vh) = (h_{\sigma_s(v)^{-1}(1)}, \dots, h_{\sigma_s(v)^{-1}(8)}).$$

Notons  $\rho_s(u) =: (u_1, \dots, u_8)$  on constate que l'orientation du sommet i après v est nulle et vaut  $u_i$  après uv donc  $\rho_s(g) = \rho_s(uv) = \rho_s(u)$ .

#### Preuve du lemme

Or puisque u laisse en place tous les sommets, et que les rotations des sommets sont cycliques :

$$\rho_s(uvh) = (u_1 + h_{\sigma_s(v)^{-1}(1)}, \dots, u_8 + h_{\sigma_s(v)^{-1}(8)}) = \rho_s(u) + \alpha(\sigma_s(v))(\rho_s(h))$$

or

$$\sigma_s(g) = \sigma_s(uv) = \sigma_s(u)\sigma_s(v) = \sigma_s(v)$$

donc

$$\rho_s(gh) = \rho_s(g) + \alpha(\sigma_s(g))(\rho_s(h)) \quad \Box$$

#### Proposition 8:

 $\rho_a: G_a \to \mathbb{Z}_2^{12} \text{ et } \rho_s: G_s \to \mathbb{Z}_3^8 \text{ sont surjectives, et } P_a:=Ker(\rho_a) \text{ et } P_s:=Ker(\rho_s) \text{ sont des sous groupes respectivement compléments de } R_a \text{ et } R_s \text{ dans } G_a \text{ et dans } G_s.$ 

**Preuve :** La surjectivité est claire puisque l'on peut orienter chaque arête et chaque sommet indépendamment.

 $P_a$  est un sous groupe de  $G_a$ :

- $id \in P_a$
- Soient  $g, h \in P_a$  on a d'après le lemme 1 :

$$\rho_a(gh) = \rho_a(g) + \alpha(\sigma_a(g))(\rho_a(h))$$
  
= 0 + \alpha(\sigma\_a(g))(0) = 0 donc  $gh \in P_a$ .

• Soit 
$$g \in P_a$$
  $0 = \rho_a(g^{-1}g) = \rho_a(g^{-1}) + \alpha(\sigma_a(g^{-1}))(\rho(g))$   
d'où  $\rho_a(g^{-1}) = 0$ .

On démontre ensuite que  $P_a$  est complément de  $R_a$  dans  $G_a$ : Soit  $q \in R_a \cap P_a$  puisque  $q \in G_a$ , q n'agit que sur les arêtes or  $g \in R_a = Ker(\sigma_a)$  donc g laisse les positions des arêtes invariantes et  $g \in P_a = Ker(\rho_a)$  donc g laisse les orientations des arêtes invariantes. On observe qu'un mouvement de  $G_a$  est entièrement déterminé par son action sur les orientations et les positions des arêtes, donc nécessairement g = id. Donc  $R_a \cap P_a = \{id\}$ . On observe de plus (comme dans le lemme 1) que tout mouvement  $g \in G_a$  s'écrit comme uv, la composition d'un mouvement  $v \in P_a$  agissant uniquement sur les positions par un mouvement  $u \in R_a$  agissant uniquement sur les orientations. Finalement  $P_a$  est bien complément de  $R_a$  dans  $G_a$ . On traite de même le cas des sommets.

### Proposition 9:

Les applications restreintes

$$\sigma_{s|P_s}: P_s \to S_8$$

$$\rho_{s|R_s}: R_s \to \mathbb{Z}_3^8$$

$$\sigma_{a|P_a}: P_a \to S_{12}$$

$$\rho_{a|R_a}: R_a \to \mathbb{Z}_2^{12}$$

sont des isomorphismes de groupe.



**Preuve :**  $\sigma_{s|P_s}$  est un morphisme de groupe car c'est la restriction de  $\sigma_s$  au sous groupe  $P_s$ .

Injectivité : Soit  $g \in Ker(\sigma_{s|P_s})$  on a

 $Ker(\sigma_{s|P_s}) = Ker(\sigma_s) \cap P_s = R_s \cap P_s$  Or d'après la proposition 8  $P_s$  est complément de  $R_s$ , donc g = id.

Surjectivité : Soit  $\gamma \in S_8$ ,  $\sigma_s$  est surjective dans  $S_8$  d'après la proposition 7, donc il existe  $g \in G_s$  tel que  $\sigma_s(g) = \gamma$ . Or puisque  $P_s$  est complément de  $R_s$  dans  $G_s$ ,  $\exists u \in R_s, v \in P_s$  tel que g = uv. Alors :

$$\sigma_{s|P_s}(v) = id \circ \sigma_s(v) = \sigma_s(u) \circ \sigma_s(v) = \sigma_s(uv) = \gamma.$$

 $\sigma_{s|P_s}$  est bien un isomorphisme.

Montrons maintenant que  $\rho_{s|R_s}$  est un isomorphisme : Soient  $g, h \in R_s$ ,

$$\rho_s(gh) = \rho_s(g) + \alpha(\sigma_s(g))(\rho_s(h)) = \rho_s(g) + \alpha(id)(\rho_s(h)) = \rho_s(r) + \rho_s(g).$$

 $\rho_{s|P_s}$  est bien un morphisme.

Injectivité : Soit  $g \in Ker(\rho_{s|R_s})$  on a

 $Ker(\rho_{s|R_s}) = Ker(\rho_s) \cap R_s = P_s \cap R_s = \{id\} \text{ donc } g = id.$ 

Surjectivité : Soit  $c \in \mathbb{Z}_3^8$ , la surjectivité de  $\rho_s$  donne l'existence de

 $g \in G_s$ tel que  $\rho_s(g) = c$ . On décompose à nouveau g :  $\exists u \in R_s, v \in P_s$ 

tel que g = uv. Puis  $\rho_{s|P_s}(u) = \rho_s(u) + 0 = \rho_s(u) + \rho_s(v) = \rho_s(uv) = c$ .

On traite de même le cas des arêtes.  $\Box$ 

#### Théorème 1 :

On a:

$$G \cong (\mathbb{Z}_3^8 \rtimes_{\alpha} S_8) \times (\mathbb{Z}_2^{12} \rtimes_{\beta} S_{12})$$

**Preuve :** Montrons que  $G_s \cong \mathbb{Z}_3^8 \rtimes_{\alpha} S_8$ .

D'après la proposition 8,  $P_s$  est un complément de  $R_s$  dans  $G_s$ , de plus  $R_s$  est normal dans  $G_s$  car c'est le noyau de  $\sigma_s$  qui est un morphisme partant de  $G_s$ . Donc d'après la proposition 2,  $G_s \cong R_s \rtimes P_s$ . De plus, si on note  $f: k \mapsto f_k$  le morphisme de conjuguaison de  $R_s$  par  $P_s$ , alors d'après la proposition 4,  $G_s \cong R_s \rtimes_f P_s$ , or d'après la proposition 9  $R_s \cong \mathbb{Z}_3^8$  et  $P_s \cong S_8$ , on note  $\varphi$  et  $\psi$  les isomorphismes respectifs  $\rho_{s|R_s}$  et  $\sigma_{s|P_s}$  ainsi que  $\tilde{f}: s \mapsto \varphi \circ f_{\psi^{-1}(s)} \circ \varphi^{-1}$ . On a alors d'après la proposition 5,  $G_s \cong \mathbb{Z}_3^8 \rtimes_{\tilde{f}} S_8$ .

Il ne reste qu'a vérifier que  $\tilde{f} = \alpha$ . En effet, soient  $s \in S_8, h \in \mathbb{Z}_3^8$ , on a avec le lemme 1 :

$$\begin{split} \tilde{f}(s)(h) &= \varphi(\psi^{-1}(s)\varphi^{-1}(h)\psi^{-1}(s)^{-1}) \\ &= \varphi(\ \psi^{-1}(s)\varphi^{-1}(h)\psi^{-1}(s^{-1})\ ) \\ &= \varphi(\ \psi^{-1}(s)\varphi^{-1}(h)\ ) + \alpha(\psi(\psi^{-1}(s)\varphi^{-1}(h)))(\varphi(\psi^{-1}(s^{-1}))) \\ &= \varphi(\ \psi^{-1}(s)\varphi^{-1}(h)\ ) + \alpha(\varphi^{-1}(h))(0) \\ &= \varphi(\ \psi^{-1}(s)\varphi^{-1}(h)\ ) \\ &= \varphi(\ \psi^{-1}(s)) + \alpha(\psi(\psi^{-1}(s)))(h) \\ &= \alpha(s)(h) \end{split}$$

On procède de même pour montrer que  $G_a \cong \mathbb{Z}_2^{12} \rtimes_{\beta} S_{12}$ . D'après la proposition 6, il en découle que

$$G \cong (\mathbb{Z}_3^8 \rtimes_{\alpha} S_8) \times (\mathbb{Z}_2^{12} \rtimes_{\beta} S_{12}).$$