Roll No:

Section: ___

Experiment No. 03

Lab 03 -Python Operators.

Lab Objectives:

1. Python Operators

1. Python Operators

Operators are used to perform operations on variables and values. Python divides the operators in the following groups:

- 1. Arithmetic operators
- 2. Assignment operators
- 3. Comparison operators
- 4. Logical operators
- 5. Identity operators
- 6. Membership operators
- 7. Bitwise operators

1.1 Python Arithmetic Operators

Arithmetic operators are used with numeric values to perform common mathematical operations:

Operator	Name	Example
+	Addition	x + y
-	Subtraction	x - y
**	Multiplication	x * y
1	Division	x / y
%	Modulus	x % y
**	Exponentiation	x ** y
//	Floor division or Integer division	x // y

Student Name: __ Roll No: ___ Section: ___ **Program 1:** Practicing with math operators # Math Operators in Python # taking two values a = 10b = 22# Using sum operator print ("Sum is:", a+b) # Using subtract operator print ("Difference is:", a-b) # Using multiplication operator print ("Product is:", a*b) # Using division operator print ("Division is:" a/b) # Using integer division operator print ("Integer Division is:" a//b) # Using power operator print ("Raised to the Power is:", a**b) # Using modulo operator print ("Remainder is:", a%b) **Output:**

Roll No:

Section:

1.2 Python Assignment Operators

Assignment operators are used to assign values to variables:

Operator	Example	Same As
=	x = 5	x = 5
+=	x += 3	x = x + 3
-=	x -= 3	x = x - 3
*=	x *= 3	x = x * 3
/=	x /= 3	x = x / 3
%=	x %= 3	x = x % 3
//=	x //= 3	x = x // 3
**=	x **= 3	x = x ** 3
& =	x &= 3	x = x & 3
=	x = 3	$x = x \mid 3$
^=	x ^= 3	x = x ^ 3
>>=	x >>= 3	x = x >> 3
<<=	x <<= 3	x = x << 3

Program 2: Write a program to use assignment operators

x = 5

x += 3

print(x)

x = 5

x = 3

print(x)

x = 5

x *= 3

print(x)

x = 5 x

/= 3

print(x)

x = 5

x%=3

print(x)

x = 5

x//=3

Student Name:	Roll No:	Section:
print(x)		
_		
x = 5		
x **= 3		
print(x)		
·· _ 5		
x = 5 x &= 3		
print(x)		
x = 5 x		
= 3		
print(x)		
print(ii)		
x = 5		
x ^= 3		
print(x)		
x = 5		
x >>= 3		
print(x)		
x = 5		
$x \ll 3$		
print(x)		
Ontro		
Output:		

Roll No:

Section: ___

1.3 Python Comparison Operators

Comparison operators are used to compare two values:

==	Equal	x == y
!=	Not equal	x != y
>	Greater than	x > y
<	Less than	x < y
>=	Greater than or equal to	x >= y
<=	Less than or equal to	x <= y

Program 3: Write a program to perform comparison operators.

```
x = 20
```

$$y = 15$$

```
print("X is equal to Y:", x == y)
print("X is not equal to Y:", x != y)
print("X is Greater than Y:",x > y)
print("X is Less than Y:",x < y)
print("X is Greater than or equal to Y:",x >= y)
print("X is Less than or equal to Y:",x <= y)
```

Output:

Roll No:

Section: ___

1.4 Python Logical Operators

Logical operators are used to combine conditional statements:

Operator	Description Example		
and	Returns True if both statements are true	x < 5 and x < 10	
or	Returns True if one of the statements is true	x < 5 or x < 4	
not	Reverse the result, returns False if the result is true	not(x < 5 and x < 10)	

Program 4: Write a program to perform logical operators.

$$x = 15$$

print(x > 13 and x < 20)
 $x = 25$
print(x > 23 or x < 24)
 $x = 35$
print(not(x > 33 and x < 40))

Output:

1.5 Python Identity Operators

Identity operators are used to compare the objects, not if they are equal, but if they are actually the same object, with the same memory location:

Operator	Description	Example
is	Returns true if both variables are the same object	x is y
is not	Returns true if both variables are not the same object	x is not y

Student Name: ___ Roll No: ___ Section: ____ Program 5: Write a program to perform identity operator. x = ["ahmed", "bashir"] y = ["ahmed", "bashir"] z = xprint(x is z)print(x is y)print(x == y)**Output: Program 6: Performing is not identity operation.** x = ["ahmed", "bashir"] y = ["ahmed", "bashir"] z = xprint(x is not z) print(x is not y) print(x <> y)**Output:**

Roll No:

Section:

1.6 Python Membership Operators

Membership operators are used to test if a sequence is presented in an object:

Operator	Description Example	
in	Returns True if a sequence with the specified value is present in the object	x in y
not in	Returns True if a sequence with the specified value is not present in the object	x not in y

Program 7: Performing 'in' membership operation.

```
x = ["wasim", "lubaid", "shahroz", "usman", "faisal", "farhan"]
print("faisal" in x)
```

Output:

Program 8: Performing 'not in' membership operation.

 $x = \hbox{\tt ["wasim", "lubaid", "shahroz", "usman", "faisal", "farhan"]}$

print("parkash" not in x)

Output:

Student Name:	Roll No:	Section:

Program 9: You are planning to throw a small bird at a distance d, with time t, and height h to some structure. Write a code in which you will use the physical quantities such as initial velocity, final velocity, angle in radians, gravity, height, sling shot etc.

```
import math
# User inputs
velocity = float(input('Give me a velocity to fire at (in m/s): '))
angle = float(input('Give me an angle to fire at: '))
distance = float(input('Give me how far away you are from the structure: '))
height = float(input('Give me the height of the structure (in meters): '))
slingshot = 5 #Height of slingshot in meters
gravity = 9.8 #Earth gravity
# Converting angles to radians
angleRad = math.radians(angle)
# Computing our x and y coordinate
x = math.cos(angleRad)
y = math.sin(angleRad)
# Calculations
time = distance/(velocity * x)
vx = x
vy = y + (-9.8 * time)
final Velocity = math.sqrt((vx ** 2) + (vy ** 2))
```

Output:

Roll No:

Section: ___

Programming Exercise

Solving real world problems of physics. Today we will focus on how we can solve the real world problems by using Python programming language. So for this, I am giving you the formulas of physics and you have to write the code to find the answers.

Question 1. A ball at the end of a string is revolving uniformly in a horizontal circle of radius 2 meters at constant angular speed 10 rad/s. Determine the magnitude of the linear velocity of a point located:

- (a) 0.5 meters from the center
- (b) 1 meter from the center
- (c) 2 meters from the center

<u>Known:</u> Radius (r) = 0.5 meters, 1 meters, 3 meters, The angular speed = 10 radians/second

Wanted: The linear velocity

Formula: $v = r \omega$

Question 2. The blades in a blender rotate at a rate of 5000 rpm. Determine the magnitude of the linear velocity:

- (a) a point located 5 cm from the center
- (b) a point located 10 cm from the center

Known: Radius (r) = 5 cm and 10 cm

The angular speed (ω) = 5000 revolutions / 60 seconds = 83.3 revolutions / second = (83.3)(6.28 radian) / second = 523.3 radians / second

Wanted: The magnitude of the linear velocity

Formula: $v = r \omega$

Question 3. A point on the edge of a wheel 30 cm in radius, around a circle at constant speed 10 meters/second.

What is the magnitude of the angular velocity?

Known: Radius (r) = 30 cm = 0.3 meters, The linear velocity (v) = 10 meters/second

Wanted: the angular velocity

Formula: $v = r \omega$

Question 4. A car with tires 50 cm in diameter travels 10 meters in 1 second. What is the angular speed?

Known:

Radius (r) = 0.25 meter, The linear speed of a point on the edge of tires (v) = 10 meters/second

Wanted: The angular speed

Formula: $v = r \omega$

Question 5. The angular speed of wheel 20 cm in radians is 120 rpm. What is the distance if the car travels in 10 seconds.

Known: Radius (r) = 20 cm = 0.2 meters

The angular speed = 120 rev / 60 seconds = 2 rev / second = (2)(6.28) radians / second = 12.56 radians / second

Wanted: distance Formula: $v = r \omega$

Question 6: A car is running at a velocity of 50 miles per hour and the driver accelerates the car by 10 miles/hr². How far the car travels from this point in the next 2 hours, if the acceleration is constant. Formula: v = u + at

Question 7: A Stone is dropped freely from a height of 100 feet. With what velocity will it hit the ground? (Neglect the air resistance and assume the acceleration due to gravity is 32ft/s^2). Formula: $v^2 - u^2 = 2 \text{as}$