13.7.2. Chi-square Test of Goodness of Fit. A very powerful test for testing the significance of the discrepancy between theory and experiment was given by Prof. Karl Pearson in 1900 and is known as "Chi-square test of goodness of fit." It enables us to find if the deviation of the experiment from theory is just by chance or is it really due to the inadequacy of the theory to fit the observed data.

If O_i , (i = 1, 2, ..., n) is a set of observed (experimental) frequencies and E_i (i = 1, 2, ..., n) is the corresponding set of expected (theoretical or hypothetical) frequencies, then Karl Pearson's chi-square, given by

$$\chi^2 = \sum_{i=1}^n \left[\frac{(O_i - E_i)^2}{E_i} \right], \qquad \left(\sum_{i=1}^n O_i \approx \sum_{i=1}^n E_i \right) \dots (13.15)$$

follows chi-square distribution with (n-1) d.f.

- 2. Conditions for the Validity of χ^2 -test. χ^2 -test is an approximate test for large values of n. For the validity of chi-square test of 'goodness of fit' between theory and experiment, the following conditions must be satisfied:
 - (i) The sample observations should be independent.
- (ii) Constraints on the cell frequencies, if any, should be linear, e.g., $\sum n_i = \sum \lambda_i$ or $\sum O_i = \sum E_i$.
 - (iii) N, the total frequency should be reasonably large, say, greater than 50.
- (iv) No theoretical cell frequency should be less than 5. (The chi square distribution is essentially a continuous distribution but it cannot maintain its character of continuity if cell frequency is less than 5). If any theoretical cell frequency is less than 5, then for the application of χ^2 -test, it is pooled with the preceding or succeeding frequency so that the pooled frequency is more than 5 and finally adjust for the d.f. lost in pooling.
- 3. It may be noted that the χ^2 -test depends only on the set of observed and expected frequencies and on degrees of freedom (d.f.). It does not make any assumptions regarding the parent population from which the observations are taken. Since χ^2 defined in (13.8) does not involve any population parameters, it is termed as a statistic and the test is known as Non-Parametric Test or Distribution-Free Test.

Example 13.11. The following figures show the distribution of digits in numbers chosen at random from a telephone directory:

Digits: 0 1 2 3 4 5 6 7 8 9 Total
Frequency: 1026 1107 997 966 1075 933 1107 972 964 853 10,000

Test whether the digits may be taken to occur equally frequently in the directory.

Solution. Here we set up the *null hypothesis* that the digits occur equally frequently in the directory.

Under the null hypothesis, the expected frequency for each of the digits 0, 1,2, ..., 9 is 10000/10 = 1000. The value of χ^2 is computed as follows:

CALCULATIONS FOR χ^2

Digits	Observed Frequency (O)	Expected Frequency (E)	$(O-E)^2$	(O- E) ² /E
0	1026	1000	676	0.676
1	1107	1000	11449	11.449
2	997	1000	9	0.009
3	966	1000	1156	1.156
4	1075	1000	5625	5-625
5	933	1000	4489	4-489
6	1107	1000	11449	11-449
7	972	1000	784	· 0·784
8	964	1000	1296	1.296
9	853	1000	21609	21.609
Total	10,000	10,000		58-542

$$\therefore \qquad \chi^2 = \sum \left[\frac{(O-E)^2}{E} \right] = 58.542$$

The number of degrees of freedom = 10 - 1 = 9, (since we are given 10 frequencies subjected to only one linear constraint $\sum O = \sum E = 10,000$).

The tabulated $\chi^2_{0.05}$ for 9 d.f. = 16.919

Since the calculated χ^2 is much greater than the tabulated value, it is highly significant and we reject the null hypothesis. Thus we conclude that the digits are not uniformly distributed in the directory.

Example 13.12. The following table gives the number of aircraft accidents that occurs during the various days of the week. Find whether the accidents are uniformly distributed over the week.

Days ... Sun. Mon. Tues. Wed. Thus. Fri. Sat. No. of accidents ... 14 16 8 12 11 9 14 (Given: the values of chi-square significant at 5, 6, 7, d.f. are respectively 11.07, 12.59, 14.07 at the 5% level of significance.

Solution. Here we set up the null hypothesis that the accidents are uniformly distributed over the week.

Under the null hypothesis, the expected frequencies of the accidents on each of the days would be:

$$\chi^{2} = \frac{(14 - 12)^{2}}{12} + \frac{(16 - 12)^{2}}{12} + \frac{(8 - 12)^{2}}{12} + \frac{(12 - 12)^{2}}{12} + \frac{(11 - 12)^{2}}{12} + \frac{(9 - 12)^{2}}{12} + \frac{(14 - 12)^{2}}{12}$$

$$= \frac{1}{12}(4 + 16 + 16 + 0 + 1 + 9 + 4) = \frac{50}{12}$$

$$= 4.17$$

The number of degrees of freedom

= Number of observations – Number of independent constraints.
=
$$7 - 1 = 6$$

The tabulated $\chi^2_{0.05}$ for 6 d.f. = 12.59

Since the calculated χ^2 is much less than the tabulated value, it is highly insignificant and we accept the null hypothesis. Hence we conclude that the accidents are uniformly distributed over the week.

Chi-Square (χ^2) Distribution

Area t	o the	Right	of	Critical	Value
--------	-------	-------	----	----------	-------

Degrees of Freedom 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.01 1 — — 0.001 0.004 0.016 2.706 3.841 5.024 6.635 2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 1 3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 1 4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 1 5 0.412 0.554 0.831 1.145 1.610 9.236 11.071 12.833 15.086 1 6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 1 7 0.989 1.239 1.690 2.167 2.833 12.017 14.067
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 1 3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 1 4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 1 5 0.412 0.554 0.831 1.145 1.610 9.236 11.071 12.833 15.086 1 6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 1 7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 2 8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 2 9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 2 10 2.156 2.558 <
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 2 8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 2 9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 2 10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 2 11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 2 12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 2 13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 2 14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 3
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 23.337 26.217 23.337 26.217 23.337 26.217 23.337 26.217 23.337 26.217 23.337 26.217 23.337 26.217 23.337 26.217 23.217
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 3 17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 3 18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 3 19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 3 20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 3
21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 4 22 8.643 9.542 10.982 12.338 14.042 30.813 33.924 36.781 40.289 4 23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 4 24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 4 25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 4
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 4 27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.194 46.963 4 28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 3 29 13.121 14.257 16.047 17.708 19.768 39.087 42.557 45.722 49.588 3 30 13.787 14.954 16.791 18.493 20.599 40.256 43.773 46.979 50.892 3
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 6 50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154<
90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 12 100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 14

Example 13.14. A survey of 320 families with 5 children each revealed the following distribution:

No. of boys:	5	4	3 .	2	1	0
No. of girls:	0	1	.2	3	4	5
No. of families:	14	56	110	88	40	12

Is this result consistent with the hypothesis that male and female births are equally probable?

Solution. Let us set up the null hypothesis that the data are consistent' with the hypothesis of equal probability for male and female births. Then under the null hypothesis:

$$p = \text{Probability of male birth} = \frac{1}{2} = q$$

$$p(r) = \text{Probability of 'r' male births in a family of 5}$$

$$= \binom{5}{r} p^r q^{5-r} = \binom{5}{r} \left(\frac{1}{2}\right)^5$$

The frequency of r male births is given by:

$$f(r) = N. \ p(r) = 320 \times {5 \choose r} \times {1 \over 2}$$

$$= 10 \times {5 \choose r} \qquad \dots (*)$$

Substituting r = 0, 1, 2, 3, 4 successively in (*), we get the expected frequencies as follows:

$$f(0) = 10 \times 1 = 10,$$
 $f(1) = 10 \times {}^{5}C_{1} = 50$
 $f(2) = 10 \times {}^{5}C_{2} = 100,$ $f(3) = 10 \times {}^{5}C_{3} = 100$
 $f(4) = 10 \times {}^{5}C_{4} = 50,$ $f(5) = 10 \times {}^{5}C_{5} = 10$

CALCULATIONS FOR x2

Observed Frequencies (O)	Expected Frequencies (E)	$(O-E)^2$	$(O-E)^2/E$
14	10	16	1.6000
56	50	36	0.7200
110	100	100	1.0000
88	100	144	1.4400
40	50	100	2.0000
12	10	4	0-4000
Total 320	320		7-1600

$$\chi^2 = \sum \left[\frac{(O-E)^2}{E} \right] = 7.16$$

Tabulated $\chi^2_{0.05}$ for 6 - 1 = 5 d.f. is 11.07.

Calculated value of χ^2 is less than the tabulated value, it is not significant at 5% level of significance and hence the null hypothesis of equal probability for male and female births may be accepted.

Independence of Attributes.

Example 13.6. Two sample polls of votes for two candidates A and B for a public office are taken, one from among the residents of rural areas. The results are given in the table. Examine whether the nature of the area is related to voting preference in this election.

Votes for Area	A	В	Total
Rural	620	380	1000
Urban	550	450	1000
Total	1170	830	2000

Solution. Under the *null hypothesis* that the nature of the area is independent of the voting preference in the election, we get the observed frequencies as follows:

$$E(620) = \frac{1170 \times 1000}{2000} = 585,$$
 $E(380) = \frac{830 \times 1000}{2000} = 415,$
 $E(550) = \frac{1170 \times 1000}{2000} = 585,$ and $E(450) = \frac{830 \times 1000}{2000} = 415$

Aliter. In a 2×2 contingency table, since

andi

$$d.f. = (2 - 1)(2 - 1) = 1$$

only one of the cell frequencies can be filled up independently and the remaining will follow immediately, since the observed and theoretical marginal totals are fixed. Thus having obtained any one of the theoretical frequencies, (say), E(620) = 585, the remaining theoretical frequencies can be easily obtained as follows:

$$E(380) = 1000 - 585 = 415$$
, $E(550) = 1170 - 585 = 585$.
 $E(450) = 1000 - 585 = 415$

$$\therefore \qquad \chi^2 = \sum \left[\frac{(O-E)^2}{E} \right] = \frac{(620 - 585)^2}{585} + \frac{(380 - 415)^2}{415} + \frac{(550 - 585)^2}{585} + \frac{(450 - 415)^2}{415}$$
$$= (35)^2 \left[\frac{1}{585} + \frac{1}{415} + \frac{1}{585} + \frac{1}{415} \right]$$
$$= (1225)[2 \times 0.002409 + 2 \times 0.001709] = 10.0891$$

Tabulated $\chi^2_{0.05}$ for (2-1)(2-1)=1 d.f. is 3.841. Since calculated χ^2 is much greater than the tabulated value, it is highly significant and null hypothesis is rejected at 5% level of significance. Thus we conclude that nature of area is related to voting preference in the election.

• Q) Out of 8000 graduates in a town 800 are females, out of 1600 graduate employee 120 are females. Use chi-square to determine if any distinction is made in appointment on the basis of gender. Value of chi square at 5 % level for one degree of freedom is 3.84.

Null Hypothesis: There is no distinction in appointment on the basis of gender.

Alternate hypothesis: the distinction is made on the basis of gender.

TABLE NO.	OBSERVED	FREQUENCIES
-----------	----------	-------------

EXPECTED FREQUENCIES

	Employed	Not employed	Total	Employed	Not employed	Total
Male	1480	5720	7200	$\frac{7200 \times 1600}{8000}$	7200 – 1440	7200
	100	680	900	= 1440	= 5760 6400 - 5760	
Female	120	660	800	1600 – 1440 = 160	= 640	800
Total	1600	6400	8000	1600	6400	8000

TABLE 15-8 : CALCULATIONS FOR χ^2

100000000000000000000000000000000000000	Frequency		BENYSON			
Class	Observed (f_i)	Expected $(f_i - e_i)$ (e_i)		$\frac{(f_i - e_i)^2}{e_i}$	$\chi^2 = \sum \frac{(f_i - e_i)^2}{e_i}$	
Male employed	1480	1440	40	$\frac{1600}{1440} = 1.11$	= 13.89 d.f. = $(2-1)(2-2)$	
Male unemployed	5720	5760	- 40	$\frac{1600}{5760} = 0.28$	= 1	
Female employed	120	160	-40	$\frac{1600}{160} = 10.00$		
Female unemployed	680	640	40	$\frac{1600}{640} = 2.50$	for 1 $d.f. = 3.841$.	