Limits

alexander

September 26, 2025

when evaluating the limit of a function at a point where direct substitution yields an indeterminate form (such as $\frac{0}{0}$), this indicates a potential discontinuity. in these cases, we can often simplify the function algebraically to obtain a new function g(x) that is continuous at the point x=c. this new function satisfies the condition for point continuity: $\lim_{x\to c} g(x) = g(c)$. the original function f(x), by contrast, may not be defined at x=c, so it lacks this full continuity condition — though the limit $\lim_{x\to c} f(x)$ may still exist. since f(x) and g(x) agree for all $x\neq c$, and g(x) is continuous at c, it is valid to evaluate the limit of f(x) by computing g(c). this reflects the idea of a removable discontinuity, where the limit exists despite the function being undefined at that point.

types of discontinuities:

- removeable: $f(x) = \frac{(x^2-1)}{x-1}$
- jump: the left-hand and right-hand limit at the point exist but are not equal $f(x)=\begin{cases} x+1, & \text{if } x<2\\ 5, & \text{if } x\geq 2 \end{cases}$
- infinite (essential): $f(x) = \frac{1}{x}$
- oscillatory: $f(x) = \sin(\frac{1}{x})$

indeterminate forms:

- \bullet $\frac{0}{0}$
- \bullet $\frac{\infty}{\infty}$
- $0 \times \infty$
- $\infty \infty$
- 0⁰
- $\bullet \infty^0$

algrbraic manipulations limits at infty

limit laws assume that $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ exist, then:

- sum law: $\lim x \to c(f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$
- constant multiple law: for any number k, $\lim_{x\to c} kf(x) = k \lim_{x\to c} f(x)$
- product law: $\lim_{x\to c} f(x)g(x) = (\lim_{x\to c} f(x))(\lim_{x\to c} g(x))$
- quotient law: if $\lim_{x\to c} g(x) \neq 0$, then $\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c} f(x)}{\lim_{x\to c} g(x)}$

continuity at a point: $\lim x \to cf(x) = f(c)$

laws of continuity assume that f(x) and g(x) are continuous at a point x = c. then the following functions area lso continuous at x = c:

- f(x) + g(x) and f(x) g(x)
- kf(x) for any constant k
- f(x)g(x)
- $\frac{f(x)}{g(x)}$ if $g(c) \neq 0$

continuity of composite functions let F(x) = f(g(x)) be a composite function. If g is continuous at x = c and f is continuous at x = g(c), then F(x) is continuous at x = c.

squeeze theorem assume that for $x \neq c$ (in some open interval containing c), $l(x) \leq f(x) \leq u(x)$ and $\lim_{x \to c} l(x) = \lim_{x \to c} u(x) = L$ then $\lim_{x \to c} f(x)$ exists and $\lim_{x \to c} f(x) = L$

$$f(x) = \lim_{\theta \to 0} \frac{\sin(\theta)}{\theta}$$

- 1. consider the unit circle (r=1) centered at the origin. let θ be an angle with $0 < |\theta| < \frac{\pi}{2}$. we want the limit as $\theta \to 0$ from both sides.
- 2. $\operatorname{area}(T_1) < \operatorname{area}(S) < \operatorname{area}(T_2)$
- 3. $\frac{1}{2}\cos(\theta)\sin(|\theta|) < \frac{1}{2}|\theta| < \frac{1}{2}\tan(|\theta|)$
- 4. $\cos(\theta)\sin(|\theta|) < |\theta| < \tan(|\theta|)$
- 5. $\cos(\theta) < \frac{|\theta|}{\sin(|\theta|)} < \frac{\tan(|\theta|)}{\sin(|\theta|)}$
- 6. $\cos(\theta) < \frac{\sin(\theta)}{\theta} < \frac{1}{\cos(\theta)}$
- 7. at $\theta = 0$, all areas equal zero, so the inequalities extend to include equality

8.
$$\cos(\theta) \le \frac{\sin(\theta)}{\theta} \le \frac{1}{\cos(\theta)}$$

9.
$$\lim_{\theta \to 0} \cos(\theta) = 1$$

10.
$$\lim_{\theta \to 0} \frac{1}{\cos(\theta)} = 1$$

11. via the squeeze theorem $\lim_{\theta\to 0} \frac{\sin(\theta)}{\theta} = 1$

$$f(x) = \frac{\cos(\theta) - 1}{\theta}$$

1.
$$\frac{\cos(\theta)-1}{\theta} \cdot \frac{\cos(\theta)+1}{\cos(\theta)+1} = \frac{\cos^2(\theta)-1}{\theta(\cos(\theta)+1)}$$

2.
$$\sin^2(\theta) = 1 - \cos^2(\theta) \Rightarrow -\sin^2(\theta) = \cos^2(\theta) - 1$$

3.
$$-\frac{\sin^2(\theta)}{\theta(\cos(\theta)+1)} = -\frac{\sin(\theta)}{\theta} \cdot \frac{\sin(\theta)}{\cos(\theta)+1}$$

4.
$$\lim_{\theta \to 0} \frac{\cos(\theta) - 1}{\theta} = -1 \cdot 0 \cdot \frac{1}{2} = 0$$

5.

6.

intermediate value theorem: if f(x) is continuous on a closed interval [a, b] and $f(a) \neq f(b)$, then for every value M between f(a) and f(b), there exists at least one value $c \in (a, b)$ such that f(c) = M.

existence of zeros: if f(x) is continuous on [a,b] and if f(a) and f(b) are nonzero and have opposite signs, then f(x) has a zero in (a,b).

we can locate zeroes of functions to arbitrary accuracy using the **bisection** method.

$$f(x) = \cos^2(x) - 2\sin(\frac{x}{4})$$

$$f(0) = 1 > 0, \ f(2) \approx -0.786 < 0$$

we can guarantee that f(x) = 0 has a solution in (0,2), we can locate a zero more accurately by dividing [0,2] into two intervals [0,1] and [1,2], one of these must contain a zero of f(x), to determine which, we evalutate f(x) at the midpoint m = 1, a calculator gives $f(1) \approx -0.203 < 0$, and since f(0) = 1, we see that f(x) takes opposite signs at the endpoints of [0,1], therefore, (0,1) must contain a zero, we discard [1,2] because both f(1) and f(2) are negative, the bisection method consists of continuing this process until we narrow down the location of the zero to the desired accuracty.

the size of the gap:

recall that the distance from f(x) to L is |f(x) - L| it is convenient to refer to the quantity |f(x) - L| as the gap between the value f(x) and the limit L lets reexamine the basic trigonometric limit $\lim_{x\to 0} \frac{\sin(x)}{x}$. so 1 tells us that the gap |f(x) - 1| gets arbitrarily small when x is sufficiently close by not equal to 0. suppose we want the gap |f(x) - 1| to be less than 0.2. how close to 0 must x

be? |f(x)-1|<0.2 if 0<|x|<1. if we insist instead that the gap be smaller than 0.004, we can check by zooming in |f(x)-1|<0.004 if 0<|x|<0.15. it would seem that this process can be continued: by zooming in on the graph, we can find a small interval around c=0 where the gap |f(x)-1| is smaller than any prescribed positive number. to express this in a precise fasion, we follow time-honored tradition and use the greek letters ϵ (epsilon) and δ (delta to denote small numbers specifying the size of the gap and the quantity |x-c|, respectively. in our case, c=0 and |x-c|=|x-0|=|x|. The precise meaning is that for every choice of $\epsilon>0$, there exists some δ (depending on ϵ) such that $|\frac{\sin(x)}{x}-1|<\epsilon$ if $0<|x|<\delta$. the number δ tells us how close is sufficiently close for a give ϵ .

formal definition of a limit:

suppose that f(x) is defined for all x in an open interval containing c (but not necessarily at x = c). then

$$\lim_{x\to c} f(x) = L$$

if for all $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - L| < \epsilon \text{ if } 0 < |x - c| < \delta$$

four rigorous definitions of the limit:

- $\lim_{x\to a} f(x) = L$ means $\forall \epsilon > 0, \exists \delta > 0 : 0 < |x-a| < \delta \Rightarrow |f(x) L| < \epsilon$
- $\lim_{x\to\infty} f(x) = L$ means $\forall \epsilon > 0, \exists N > 0 : x > N \Rightarrow |f(x) L| < \epsilon$
- $\lim_{x\to a} f(x) = \infty$ means $\forall M > 0, \exists \delta > 0 : 0 < |x-a| < \delta \Rightarrow f(x) > M$
- $\lim_{x\to\infty} f(x) = \infty$ means $\forall M > 0, \exists N > 0 : x > N \Rightarrow f(x) > M$