

- 1. The switch has been in position a for a <u>long time</u>. All transients have died out. At t=0, the switch moves instantaneously to position b.
 - a. At $t=0^-$ (the last instant that the switch is in position a), what is the current through the capacitor?
 - b. At $t=0^-$ (the last instant that the switch is in position a), what is the voltage across the capacitor? -16 V
 - c. At $t=0^+$ (the first instant that the switch is in position b), the current through the capacitor is the same as in Part a. True False
 - d. At $t=0^+$ (the first instant that the switch is in position b), the voltage across the inductor is the same as at $t=0^-$. True False
 - e. At $t=0^+$ (the first instant that the switch is in position b), what is the voltage across the inductor?

12 V; + at right end

2. This is a second-order circuit. There is an initial voltage on the capacitor $v(0^-)=12$ V, and an initial current in the inductor $i_L(0^-)=30$ mA. In order to solve the differential equation for v(t), the following values must be found:

- a. $i_{C}(0^{+})$
- b. $i_R(0^+)$
- c. $dv(t)/dt|_{t=0}^+$

Using what you know about inductors, capacitors, and KCL, find these values.

a.
$$-90 \text{ mA}$$

$$c. -450 \text{ KV/s}$$

- 3a. Find the time constant τ of this circuit. This will require solving the differential equation for the circuit.
- 3b. Then, find only the Thévenin resistance R_{th}of the circuit to the left of the capacitor (consider the capacitor to be the load).
- 3c. Then, compute $R_{th}*C$ and compare to the τ from 3a.

Time constant $\tau = 6.875\text{e-}5 \text{ s}$ $R_{th} \cdot C = 6.875\text{e-}5 \text{ s}$

- 4. The switch has been in the position shown for a <u>long time</u>. Find:
 - a. $i_1(0^+)$
 - b. $i_0(0^+)$
 - c. $v_0(0^+)$
 - d. τ for t=0+
 - e. i_L(0+) for all t>0 (HINT: refer to the Lecture 4 video at 22 minutes.)

- a. $i_L(0^+) = 20$ A
- b. $i_O(0^+) = -4$ A
- c. $v_o(0^+) = -160 \text{ V}$
- d. $\tau = 0.2 \text{ s}$
- e. $i_L(t) = 20 e^{-5t}$

- 5. The switch has been open for a long time. Find:
 - a. $v_{C}(0^{-})$
 - b. $v_{C}(0^{+})$
 - c. v_C(∞)
 - d. $i_{C}(0^{-})$
 - e. $i_{C}(0^{+})$

e. 0.04 mA