전까서명

■ 전자서명(Electronic Signature)

- 서명자를 확인하고 <u>서명자가 해당 전자문서에 서명했다는 사실을</u> 나타내는 데 이용하려고, 특정 전자문서에 첨부되거나 논리적으로 결합된 전자적 형태의 정보
 - * 종이 문서에 자필로 서명하거나 도장을 찍는 행위를 디지털 환경에서 구현한 것
 - ⇒ 도장(개인키) 자체를 상대방에게 주는 것이 아니라, 도장을 찍은 흔적(전자서명)만 전달하는 것임

■ 전자서명의 꾸요 기능 및 특징

- 전자서명은 일반 서명과 동일한 법적 효력을 가집니다 (대한민국에서는 「전자서명법」에 의해 효력이 부여됨).
 - * 1) 서명자 인증 (신분 증명)
 - 서명을 한 사람이 누구인지 그 신원을 명확하게 확인할 수 있음
 - 공개키 암호화 방식(PKI) 등 기술을 사용하여 서명자의 신원을 보장함
 - * 2) 무결성 보장 (위변조 방지)
 - 문서가 서명된 후 변경되지 않았음을 증명함
 - 문서의 고유한 해시값(Hash)을 생성하고 이를 서명자의 개인키로 암호화하여 서명에 포함시키는데, 문서 내용이 단 1비트라도 바뀌면 해시값도 완전히 달라져 서명이 무효가 됨
 - * 3) <u>부인 방지</u>
 - 서명자가 나중에 "나는 이 문서에 서명하지 않았다"라고 주장하는 것을 막아줌
 - 서명이 유효하다는 것은 개인키를 가진 당사자가 서명했다는 것을 기술적으로 증명하기 때문임

■ 전자서명과 디지털 서명의 관계

- 전자서명(Electronic Signature)이 디지털 서명(Digital Signature)을 포괄하는 <u>상위 개념</u>
 - 전자서명(Electronic Signature)
 - * 포괄적인 개념으로, 디지털 문서에 동의나 승인을 나타내는 <u>모든 전자적인</u> 행위(예: 문서에 타이핑된 이름, 스캔된 서명 이미지, 클릭으로 동의)
 - 디지털 서명(Digital Signature)
 - * 전자서명의 한 종류로, <u>공개키 암호화 기술(PKI)을 기반으로</u> 하여 서명자 인증, 무결성, 부인 방지 등의 강력한 보안 기능을 제공하는 기술적인 방법

구분	전자서명 (Electronic Signature)	디지털 서명 (Digital Signature)
개념		공개키 암호화 기술(PKI)을 사용한 보안성이 강화된 특정 유형의 전자서명
범위	모든 형태의 전자적 서명 (상위 개념)	전자서명 중 기술적 표준을 따르는 형태 (하위 개념)
		공인(또는 공동)인증서로 생성된 서명, 디지털 인증서를 기반으로 하는 서명
		암호화를 통해 무결성과 부인 방지가 확실하게 보장됨 (고수준 보안)

일반적으로 비대칭 암호 방식(공개키 암호)의 기본적인 용도

- 데이터 기밀정(Confidentiality) 확보
 - ⇒ 공개키로 암호화, 개인키로 복호화
- 데이터 무결성 및 인증(Integrity & Authentication) 확보 (전자 서명)
 - ⇒ 개인키로 암호화, 공개키로 복호화(검증)
 - ⇒ 공개키로 복호화하는 과정은 <u>암호문 내용의 기밀성을 확보하는 것이</u> 목적이 아니라, 암호문이 <u>특정 개인키 소유자(발신자)에 의해 생성되었음을 공개적으로 확인(검증)하는</u> 것이 목적임

전짜서명의 원리 - 개인키를 사용해서 서명하는 것

□ 전자서명(DSA, Digital Signature Algorithm)의 핵심 원리 요약

- 메시지에 디지털 서명을 생성하고 검증하는 알고리즘
 - * '이 메시지를 내가 보냈다는 증거'를 수학적으로 만들어내는 방식임
- 전자서명은 세 단계로 이루어지며, 개인키의 비밀 유지와 공개키를 통한 검증임
- 공개키로 암호화된 메시지를 복호화한다는 것은 메시지가 해당 공개키와 쌍을 이루는 개인키로 암호화되었다는 것을 증명하기 위함
 - * 송신자 A가 자신의 개인키로 암호화하고, 수신자 B가 A의 공개키로 복호화하여 검증하는 과정

1. 서명 생성 (개인키의 역할)

- 주체 : 서명을 하는 사람 (사용자)
- 원리
- * 서명할 문서(예: 이체 내용)의 내용을 "요약(해시)"함
- * 요약된 정보(해시 값)를 나의 비밀 도장인 개인키(P_r)로 암호화함
- * 결과(전자서명 S) : 암호화된 요약 정보자(개인키(P_r) 자체는 절대 밖으로 나가지 않음)
- 예
- * 개인키 (x) : 서명을 만들 때 사용하는 <u>비밀 숫자</u>
- * 공개키 (y) : 서명을 검증할 때 사용하는 공개 숫자
- * 예시 : Alice는 개인키 x=7을 가지고 있고, 공개키 y=23을 공개
- * 서명 생성 (Alice가 메시지를 보낼 때)
 - 개인키와 랜덤값으로 서명(r, s)을 만듬
 - 메시지 해시 : 메시지 "Hello"를 SHA-1 같은 해시 함수로 처리
 - → 해시값 H = 12345
 - 랜덤 수 k 선택 : Alice는 k=5 같은 임의의 수를 선택
 - * 1) 서명 계산
 - $r = (g^k \mod p) \mod q \rightarrow r = 8$
 - $-s = (k^{-1} \times (H + x \times r)) \mod q \rightarrow s = 12$
 - * 2) 서명 결과

2. 서명 첨부 및 전송

- 주체 : 서명을 하는 사람
- 원리
- * 원래의 문서와 전자서명(S)을 함께 상대방(은행)에게 보냄(이때, <u>공개키(P_u)가 담긴</u> 인증서도 함께 보냄)
- 예
- * Alice는 메시지와 함께 (r=8, s=12)를 Bob에게 보냄

3. 서명 검증 (공개키의 역할)

- 주체 : 서명을 받는 사람 (은행)
- 원리 :
 - * 은행은 내가 보낸 <u>공개키(P_u)를 사용하여 전자서명(S)을 복호화함</u> → 원래의 요약 값(H_1)이 나옴
 - * 은행은 받은 원래 문서를 똑같은 방식으로 자체적으로 요약 → 새로운 요약 값(H_2)이 나옴
 - * 만약 H_1과 H_2가 일치하면
 - * "이 서명은 이 공개키에 해당하는 개인키를 가진 사람만 만들 수 있다." (신원 보증)
 - * "문서가 전송 중에 위변조되지 않았다." (무결성 보장)
- 예
- * 서명 검증 (Bob이 메시지를 받을 때)
 - 1) 메시지 해시 : Bob도 "Hello"를 해시 → H = 12345
 - 2) 계산
 - * $\mathbf{w} = \mathbf{g}^{-1} \mod \mathbf{q} \rightarrow \mathbf{w} = 3$
 - * $u1 = H \times w \mod q \rightarrow u1 = 2$
 - * $u2 = r \times w \mod q \rightarrow u2 = 4$
 - * $v = ((g^u1 \times y^u2) \mod p) \mod q \rightarrow v = 8$
 - 3) 검증
 - * 공개키로 계산한 값이 r과 같으면, 서명이 진짜임을 확인
 - * v == r → 8 == 8 → 서명 유효!!!!!
- * 공개키(Public Key)를 이용한 복호화는 주로 전자 서명(Digital Signature)의 검증 과정에서 사용