MATH410: Homework 6

James Zhang*

March 27, 2024

1. Prove that the following equation has exactly one solution:

$$x^5 + 5x + 1 = 0$$
, $-1 < x < 0$

Proof.

Let $f(x) = x^5 + 5x + 1$. Note that f is continuous and differentiable because it is a polynomial. Note that f(-1) = -3 < 0 and f(0) = 1 > 0. Note that $0 \in (-3, 1)$. By the IVT, $\exists c \in (-1, 0)$ such that f(c) = 0. Now I will show that this c is unique. Assume on the contrary that there are two solutions, such that f(a) = 0 = f(b). By Rolle's Theorem, $\exists z \in (a, b)$ such that f'(z) = 0 but note that

$$f'(x) = 5x^4 + 5$$

and so

$$f'(z) = 5z^4 + 5 = 0 \implies z^4 = -1$$

and so z is not a real number, which is a contradiction. Therefore, the solution c is unique.

^{*}Email: jzhang72@terpmail.umd.edu

2. Suppose that the function $h: \mathbb{R} \to \mathbb{R}$ is strictly monotone differentiable, h'(x) > 0 for all x, and $h(\mathbb{R}) = \mathbb{R}$. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable and define $g(x) = f(h^{-1}(x))$ for all x. Find g'(x).

Proof.

First note that the inverse h^{-1} exists by a theorem because h is strictly monotone, so it is 1-1 and therefore has an inverse. Further note that f and h are differentiable on $\mathbb R$ and so we can apply the Chain Rule to find

$$g'(x) = f'(h^{-1}(x)) \cdot (h^{-1})'(x)$$

Now recall that $h'(x) > 0 \ \forall \ x$, and so we can use the corollary in class which states that

$$(h^{-1})'(x) = \frac{1}{h'(h^{-1}(x))}$$

By substitution,

$$g'(x) = \frac{f'(h^{-1}(x))}{h'(h^{-1}(x))}$$

3. Let $g:\mathbb{R}\to\mathbb{R}$ and $f:\mathbb{R}\to\mathbb{R}$ be differentiable functions and suppose that

$$g(x)f'(x) = f(x)g'(x)$$
 for all x .

If $g(x) \neq 0$ for all x in \mathbb{R} , show that there is some c in \mathbb{R} such that f(x) = cg(x) for all x in \mathbb{R} .

Proof.

We WTS that $\exists c \in \mathbb{R}$ s.t. f(x) = cg(x). Note that in order for the above equation to hold for all x, then if $g(x) \neq 0$, then both $f(x) \neq 0 \,\,\forall \, x$ and $g'(x) \neq x \,\,\forall \, x$, too. Let $h: \mathbb{R} \to \mathbb{R}$ be $h(x) = \frac{f(x)}{g(x)}$. Therefore, it is sufficient now to show that $h(x) = c \,\,\forall \, x$, or in other words, we wish to show that h is constant. Note that h is differentiable because f and g are. By the Identity Criterion, h is constant if and only if $h'(x) = 0 \,\,\forall \, x$. Let us compute h'(x).

$$h'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{(g'(x))^2}$$

by the quotient rule. Note that the numerator is 0 for all x, which is a given and that $g'(x) \neq 0 \ \forall \ x$. Therefore,

$$h'(x) = 0 \ \forall \ x \implies h(x) = c \ \forall \ x$$

by the Identity Criterion, and so we equivalently $f(x) = cg(x) \ \forall \ x$.

4. Let D be the set of nonzero real numbers. Suppose that the functions $g:D\to\mathbb{R}$ and $h:D\to\mathbb{R}$ are differentiable and that

$$g'(x) = h'(x)$$
 for all x in D .

Do the functions $g:D\to\mathbb{R}$ and $h:D\to\mathbb{R}$ differ by a constant? (Hint: Is D an interval?)

Proof.

Recall the Identity Criterion (Differ by a Constant) which states that given some interval I and functions $g: I \to \mathbb{R}$ and $h: I \to \mathbb{R}$, f and g differ by a constant if and only if $g'(x) = h'(x) \ \forall \ x$. Note that D is not an interval. Let us define $g: D \to \mathbb{R}$ and $h: D \to \mathbb{R}$ such that

$$g(x) = \begin{cases} x+2, & x>0\\ x-1, & x<0 \end{cases} \quad \text{and } h(x) = x \; \forall \in D$$

Note that $g'(x) = 1 = h'(x) \ \forall \ x \in D$. However, it is clear that g and h do not differ by a constant. g(-1) = -2 and h(-1) = -1 but g(2) = 4 and h(1) = 1. Thus, we have found a counterexample, and so the functions g and h do not necessarily differ by a constant, as desired.

5. Suppose that $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are each differentiable and that

$$\left\{ \begin{array}{ll} f'(x)=g(x) \quad \text{and} \quad g'(x)=-f(x) \quad \text{ for all } x \\ f(0)=0 \quad \text{and } g(0)=1. \end{array} \right.$$

Prove that

$$[f(x)]^2 + [g(x)]^2 = 1$$
 for all x .

Proof.

Let us create a function $h: \mathbb{R} \to \mathbb{R}$ such that $h(x) = |f(x)|^2 + |g(x)|^2 \, \forall x$. Note that h is differentiable because f and g are. Now note that $|f(x)|^2 = f(x)$ and $|g(x)|^2 = g(x)^2 \, \forall x$. Therefore, $h(x) = f(x)^2 + g(x)^2$. By the Identity Criterion, h is constant if and only if $h'(x) = 0 \, \forall x$. Let us compute h'(x).

$$h'(x) = 2f(x)f'(x) + 2g(x)g'(x) \ \forall \ x$$

by the Chain Rule twice. Let us show that this derivative is 0. Recall that f'(x) = g(x) and $g'(x) = -f(x) \, \forall x$ by the given. Note that g(x) and f'(x) are the same sign for all x, and f(x) and f'(x) are different signs for all x.

$$\frac{g(x)}{f'(x)} = \frac{-f(x)}{g'(x)} = 1 \ \forall \ x$$

Therefore, by cross multiplying the above,

$$g(x)g'(x) = -f(x)f'(x) \implies g(x)g'(x) + f(x)f'(x) = 0$$

Multiplying the above by 2 we obtain h'(x)

$$h'(x) = 2g(x)g'(x) + 2f(x)f'(x) = 0 \ \forall \ x$$

Therefore, $h'(x) = 0 \ \forall \ x$ and so by the Identity Criterion, h(x) is a constant for all x. Specifically, $h(x) = 1 \ \forall \ x$ because at x = 0,

$$h(x) = |f(0)|^2 + |g(x)|^2 = 0 + 1 = 1$$

Therefore, $h(x) = 1 \ \forall \ x$ as desired.

6. Suppose that the functions $f:[a,b] \to \mathbb{R}$ and $g:[a,b] \to \mathbb{R}$ are continuous and that their restrictions to the open interval (a,b) are differentiable. Also suppose that $|f'(x)| \ge |g'(x)| > 0$ for all x in (a,b). Prove that

$$|f(u) - f(v)| \ge |g(u) - g(v)|$$
 for all u, v in $[a, b]$.

Proof.

Let $u, v \in [a, b]$ such that u < v. Note that f and g satisfy the conditions of the Cauchy Mean Value Theorem, which gives us that

$$\exists c \in (u, v) \text{ s.t. } \frac{f'(c)}{g'(c)} = \frac{f(u) - f(v)}{g(u) - g(v)}$$

Equivalently, we can wrap both sides of the equation in absolute value and the equality still holds

$$\frac{|f'(c)|}{|g'(c)|} = \frac{|f(u) - f(v)|}{|g(u) - g(v)|}$$
$$|f(u) - f(v)| = \frac{|f'(c)|}{|g'(c)|}|g(u) - g(v)|$$

Note that $|f'(x)| \ge |g'(x)| > 0 \ \forall \ x \implies \frac{|f'(x)|}{|g'(x)|} \ge 1 \ \forall \ x$. Therefore,

$$|f(u) - f(v)| \ge |g(u) - g(v)| \ \forall \ u, v \in [a, b]$$

as desired.

7. Suppose a < b are positive real numbers and $f : [a,b] \to \mathbb{R}$ is continuous and its restriction to (a,b) is differentiable. Prove that there is a real number $c \in (a,b)$ for which

$$\frac{af(b) - bf(a)}{a - b} = f(c) - cf'(c).$$

Proof.

First let us define two auxiliary functions $f:[a,b]\to\mathbb{R}$ and $g:[a,b]\to\mathbb{R}$ such that $g(x)=\frac{f(x)}{x}$ and $h(x)=\frac{1}{x}\ \forall\ x$. Note that both f,g are continuous on [a,b] and differentiable on (a,b) because f is, and we are told that 0< a< b. Therefore, the conditions for the Cauchy Mean Value Theorem are satisfied, and so

$$\exists c \in (a, b) \text{ s.t. } \frac{g'(c)}{h'(c)} = \frac{g(b) - g(a)}{h(b) - h(a)}$$

Observe that $g'(x) = \frac{xf'(x) - f(x)}{x^2}$ by the quotient rule and $g'(x) = -\frac{1}{x^2}$ by the power rule. Substituting known values, we get

$$\frac{\frac{1}{c^2}(cf'(c) - f(c))}{-\frac{1}{c^2}} = \frac{\frac{f(b)}{b} - \frac{f(a)}{a}}{\frac{1}{b} - \frac{1}{a}}$$

$$f(c) - c'f(c) = \frac{\frac{1}{ab}(af(b) - bf(a))}{\frac{1}{ab}(a - b)}$$

$$f(c) - cf'(c) = \frac{af(b) - bf(a)}{a - b}$$

as desired.