

Neural Envelope Coding in Middle-aged Humans with Normal Audiograms

PURDUE INSTITUTE FOR INTEGRATIVE NEUROSCIENCE Where science meets engineering

Homeira Islam Kafi¹, Alexandra Mai², Kelsey Dougherty², Anna Hagedorn², Hari Bharadwaj^{1,2} ¹Weldon School of Biomedical Engineering, and ²Department of Speech, Language, & Hearing Sciences, Purdue University, West Lafayette, IN

Background

- Emerging evidence from human postmortem temporal bones suggest that cochlear synaptopathy is a primary form of age-related hearing damage [1]. However the physiological and perceptual consequences of such damage is unknown.
- The present study sought to investigate envelope coding in middleaged listeners with normal audiograms using Electroencephalography (EEG)-based Envelope-Following Responses (EFRs). Envelope coding is thought to be important to speech perception.
- A previous study from our lab [2] using Auditory Brainstem Responses (ABRs) and Middle-Ear Muscle Reflexes (MEMRs) [see 3] showed that middle-aged listeners (aged 36 – 60 years) showed reduced ABR wave I responses (not shown) and weaker MEMRs (shown below) despite audiograms matched in mean and median thresholds with a younger group. The present study was done on a subset of the same cohort of listeners.

Data from Mai et al. (In Preparation)[2]

Hypothesis

- Age-related cochlear synaptopathy can contribute to degraded coding of temporal information, particularly envelopes, in the ascending auditory pathway, even before symptoms of classic presbycusis are manifested.
- Based on the greater vulnerability of low-spontaneous rate auditory nerve fibers to synaptopathy [4], Bharadwaj et al. [5] hypothesized that EFRs at moderate-to-high sound levels and shallow modulation depths may be particularly affected by synaptopathy.
- The present study thus sought to quantify the effect of changing modulation depth on the EFRs as a function of age.

Illustration of the hypothesis from Bharadwaj et al. [5]

Stimulus and Experiment Design

Data from Wang et al. Neurosci, 2019 (N=40)

- The design was inspired from previous study where multiband modulated tones was used to measure neural activity in a cochlear-place-specific manner, with minimal contributions from off-frequency locations [6]
- Stimulus was 1 second long with 0.1 second jitter and presented monaurally at an intensity level of 74.77dB SPL (70 dB SPL for each carrier band)
- Data was collected using 32 channel BioSemi EEG cap and EFR was extracted for analysis.

Human Subjects

- Experiment was run in a cohort of listeners with a wide age range (18-60)
- The young (18-35 years) and MA (36-60 years) groups were matched in mean and median audiograms up to 8 kHz.
- For statistical analysis, age was treated as a continuous variable, whereas group-level data are shown for illustrations.

Summary & Future Work

- Decline in EFR was greater for shallower modulation depth for middle-aged humans is consistent with the loss of low-SR fibers. Changes in the central auditory system (e.g., midbrain) with age may also be a contributing factor.
- These results corroborate the previous ABR and MEMR findings in the same cohort that cochlear synaptopathy may be widespread in middle-aged humans.
- Ongoing work aims to characterize the effect of the degraded AM coding on speech perception for middle-aged individuals.

Acknowledgements

This study was supported by the National Institutes of Health (NIH) grant R01DC015989 to HB.

Results - EFR variations are well accounted for by age and stimulus factors

Mixed Effects Model Results

(Type II Wald F tests, with Kenward-Roger df)

Significance code: ***<0.001, **<0.01, *<0.05

Variable	F	df	Denom. df	P
Audiogram	0.0909	1	560.18	0.763115
Frequency	88.0480	2	517.62	< 2.2e-16 ***
Age	1.1123	1	104.78	0.294000
Mod. Depth	219.1102	1	510.00	< 2.2e-16 ***
Age : Mod. Depth	7.0580	1	510.00	0.008138 **

- The EFR was modeled as a function of thresholds, audiometric frequency, age, modulation depth, and their interactions.
- This linear mixed model accounted for most of the variance in the EFR amplitudes across individuals and measurement conditions (R=0.92).

Result – Significant age-by-modulation depth interaction effects

N=103 ears, 79 individuals

- from 100% Decline in EFR modulation depth was greater for individuals in the MA group despite matching audiograms (and accounting for residual audiometric variations) and the effects of carrier/modulation frequency.
- Differences between young and MA individuals were similar across 2, 4 and 8 kHz, although EFRs were weaker in both groups at higher frequencies.

References

- Wu, P. Z., Liberman, L. D., Bennett, K., De Gruttola, V., O'Malley, J. T., & Liberman, M. C. (2019). Primary neural degeneration in the human
- cochlea: evidence for hidden hearing loss in the aging ear. Neuroscience, 407, 8-20. Mai, A. R., Ginsberg, H., Flesher, B., Dougherty, K., Hagedorn, A. N., Simpson, J. M., Heinz, M. G., & Bharadwaj, H. M. (In preparation). Physiological assays of suprathreshold hearing are consistent with widespread deafferentation of the auditory periphery. [Presented at the meeting of the Acoustical Society of America, Louisville, KY, May 2019].
- Bharadwaj, H. M., Mai, A. R., Simpson, J. M., Heinz, M. G., & Shinn-Cunningham, B. G. (2019). Non-invasive assays of cochlear synaptopathy – Candidates and considerations. *Neuroscience*, 407, 53–66.
- Schmiedt, R. A., Mills, J. H., & Boettcher, F. A. (1996). Age-related loss of activity of auditory-nerve fibers. *Journal of Neurophysiology*, 76(4), 2799–2803
- Bharadwaj, H. M., Verhulst, S., Shaheen, L., Liberman, M. C., & Shinn-Cunningham, B. G. (2014). Cochlear neuropathy and the coding of supra-threshold sound. Frontiers in systems neuroscience, 8, 26.
- Wang, L., Bharadwaj, H., & Shinn-Cunningham, B. (2019). Assessing Cochlear-Place Specific Temporal Coding Using Multi-Band Complex Tones to Measure Envelope-Following Responses. *Neuroscience*, 407, 67–74.