Contents

1.	INTRODUCTION	2
	Installation	
	APP: "SLM_DATA_PROCESSING"	
	APP: "CONSTRUCT_PSF"	
	APP: "ABERRATION_MEASUREMENT"	
6.	EXAMPLES	13
7.	ACKNOWLEDGEMENTS	14
8.	References	14

1. INTRODUCTION

The MATLAB app allows to evaluate single molecule localization microscopy data in the form of tiff image stacks (time series) taken in a total internal reflection fluorescence (TIRF) microscope. It estimates 3D position, signal and background level for each individual molecule.

To avoid localization biases, the app allows the user to measure optical aberrations present in the microscope by taking a z-stack of a small (e.g. 100 nm) fluorescent bead. This feature makes it also possible to evaluate data taken with engineered PSFs (e.g. using a cylindrical lens).

The app consists of three parts that can be also run individually:

"SMLM_data_processing.mlapp"	The main app
"construct_PSF.mlapp"	A sub-app to construct point spread functions, which can be loaded into and used in the main app
"aberration_measurement.mlapp"	A sub-app to estimate pupil phase aberrations from a previously recorded z-stack of a single fluorescent bead

2. INSTALLATION

Unpack the zip archive and double click on the apps to install them in Matlab. They will appear in the MATLAB "apps" bar. When executing the apps, be sure that the Matlab path is set to the path where the folders "example data" and "user data" are located. The latter contains files that characterize the PSF, objective lenses, cameras and aberrations. Otherwise, the app fails to load the default PSF at startup.

Name	Änderungsdatum	Тур	Größe
example data	03.04.2023 09:35	Dateiordner	
user data	03.04.2023 09:35	Dateiordner	
aberration_measurement.mlappinstall	19.04.2023 11:12	MATLAB App Insta	12.602 KB
Construct PSF.mlappinstall	18.04.2023 16:50	MATLAB App Insta	382 KB
documentation.docx	24.04.2023 15:52	Microsoft Word-D	60 KB
SMLM_data_processing.mlappinstall	24.04.2023 15:36	MATLAB App Insta	577 KB

3. APP: "SLM_DATA_PROCESSING"

a. General workflow

The app consists of three tabs: "define PSF", "prelocalization" and "precise localization". The general workflow comprises:

- the definition of the PSF that persisted when the raw image data was recorded (in tab: "define PSF")
- processing the raw image data using Thunderstorm (2D localization) and saving the results as csv-table. Note that the correct pixel size must be set in Thunderstorm under "camera settings". The other parameters there are not relevant.
- loading the raw image data + Thunderstorm csv-table into the app (in tab: "prelocalization")
- performing precise 3D localization (in tab: "precise localization")

b. Detailed explanations of the app

Fig. 3.1 shows the "define PSF" tab as it should appear at startup.

The text box contains info about the PSF such as name, defocus value, oversampling value, the used camera and objective lens. The image on the right allows one to inspect the PSF for all z-values it supports.

Fig. 3.1 The "define PSF" tab of the main app. It allows the user to load and inspect point spread functions (PSF) created by the app "construct_PSF.mlapp".

reset to default	loads the default PSF. To replace the default PSF by a user-defined one, you have to construct it in "construct_PSF.mlapp" and save it as "default_PSF.mat" in the folder ".\user data\PSFs".
calc. loc. precision	displays the expected localization precision of the PSF using Cramér Rao lower
	bounds.
construct new PSF	launches the app "construct_PSF.mlapp"

Fig. 3.2 shows the "prelocalization" tab as it should appear at startup.

Fig. 3.2 The "prelocalization" tab of the main app. Here you can load the raw image stack and perform the pre-localization ("preloc"). Alternatively, you can load 2D localization results (a csv file) from Thunderstorm to be used as preloc data.

load SMLM image stack	For importing the raw image stack in tiff format
preloc setup	To make settings for the prelocalization algorithm, such as filter size and minimum distances between adjacent molecules. To check if your settings make sense, the detected molecules of the currently shown frame in "camera image" will be highlighted.
pun preloc	Starts the preloc algorithm.
load TS data (csv) & crop molecules	This is an alternative to using the prelocalization algorithm. You can perform a 2D localization in Thunderstorm (TS), export the results table there and load it into this app. The table should contain the columns "id", "frame", "x / nm", "y/nm". After data import, single molecule images are cropped from the raw image stack,
	using the position information in the TS table. Therefore, the correct pixel size must be also set in Thunderstorm under "camera settings".
show random molecule	Shows a random molecule to verify if they have been cropped correctly: The molecule should appear in the center of the small image.
data filtering	Removes molecules detected in Thunderstorm that are too closely spaced. A threshold (minimum) distance can be specified in "d_min (AU)", which is given in Airy units (AU = 1.22 * λ_{em} /NA)
save preloc data	Saves the stack of cropped molecules and the table as mat-file. The mat-file contains two variables, a 3D array ("images") and a 2D array ("positions").
load preloc data	Previously generated preloc data can be loaded here. The data can then be processed in the "precise localization" tab. It can also be filtered again using "remove closely spaced molecules".

Fig. 3.3 shows the "precise localization" tab as it appears at startup.

Fig. 3.3 The "precise localization" tab

Performs 3D fine localization using a Levenberg Marquardt algorithm and
maximum likelihood estsimation for Poissonian noise.
The "fraction" setting defines the fraction of the total preloc data that will be
processed. E.g. if your preloc table contains 1000 molecules, setting the fraction to
10% will process molecules form 1 to 100.
The table is automatically filled afer the precise localization has finished.
Description of columns:
"ID" and "frame" denote the molecule identification number and the raw image
stack frame number which contains the molecule. The data is copied from the
Thunderstorm table.
x/y/z contain estimated molecule positions in nm.
signal/BG contain estimated signal and background level in photons. Note that the
photon number corresponds to the estimated number of photons that are
collected and transmitted by the objective lens (NOT the number of photons in
the actual single molecule image, which is smaller)
LLR Log-Likelihood ratio; this provides a measure for the fit quality. The smaller
this number the better the fit.
Allows basic data filtering. A minimum/maximum values for certain fit parameters
can be defined. Note that "apply filter" must be clicked in order to perform the
filtering process.
Saves the shown table "precise 3D localization results" in csv format and a mat file
containing the used PSF. Note that also info about the used camera and objective
lens are part of the PSF definition, so this info is stores as well.
For importing and visualizing previously processed data, or data that has been
drift-corrected in Thunderstorm.

c. Drift correction

The app cannot correct the data for x-y drifts that occurred during the measurement. For drift correction, follow these steps:

- Export the final data table by clicking on "save data (csv table & info file)"
- Import the csv table in Thunderstorm and perform the drift correction there
- Export from Thunderstorm again and import data in the app for visualization

4. APP: "CONSTRUCT_PSF"

You can construct new PSFs here for use in "SLM_data_processing.mlapp". It is also possible to modify existing PSFs. The PSF of your microscope depends on your microscope objective, camera, emission wavelength of your fluorophore and phase aberrations that may be present in your system.

The objective properties are defined in the "Objective lens" tab shown in Fig. 3.1.

Fig. 4.1 The "objective lens" tab

Name	Choose a name of your liking.	
Immersion medium	Immersion medium of your objective lens.	
Magnification	gnification Total system magnification. Note that if you have a home-built system the magnification may deviate from the one specified on the objective (E.g. if you are using an Olympus lens with magnification M together with a 200 mm focal length tube lens, your magnification is $\frac{M}{100} \cdot 200$.	
NA	Numerical aperture specified on your objective lens.	
T_s-pol, T_p-pol	Polynomial coefficients that model pupil amplitude transmissions for the s- and p-polarizations (spolarization <i>normal</i> to plane defined by incident ray and surface) of the objective lens. Enter coefficients in descending order, separated by a comma or a blank; e.g. a4, a3, a2, a1, a0. The parameters a0 should be always 1, the odd parameters should be always zero.	

The camera parameters are defined in the "Camera" tab show in Fig. 4.2. The parameters should be specified on the data sheet of your camera.

Fig. 4.2 The "Camera" tab.

Name	Choose a name of your liking.
Pixel size (μm)	Physical size of a camera pixel in micrometer.
QE (%)	Quantum efficiency of your camera at the wavelength you are using
Baseline (counts)	This value is an "offset" (measured in counts) that the camera automatically adds to
	all of your images in order to prevent negative values.
Amp.	The amplification parameter defines how many digital counts result from one created
(electrons/count)	electron in a pixel.
EM-gain	The electron-multiplying gain is only required for EMCCD cameras. Set this value to 1
	if you work with a CMOS camera.
Readnoise	The number of noise electrons produced in each pixel when they are read out.
(electrons RMS)	

The 3D PSF can be finally generated in the "PSF" tab shown in Fig. 4.3. The axial range of the PSF covers z-values from 0 (= the coverslip surface) to $\frac{\lambda_{em}}{3}$.

Fig. 4.3 The "PSF" tab.

-
Activate this checkbox if you want to add phase aberrations to the PSF.
Then you can load an aberration file by clicking on "load aberrations".
Aberrations can be measured from a z-stack of a small fluorescent bead. To start the
corresponding app, click on "fit aberrations" (find more in chapter 5).
The sidelength (x-y size) of the PSF in pixels. It should be large enough to safely
contain the PSF (no cropping), but not larger.
This value determines the size at which single molecule images are cropped from the
raw image stack (see APP: "SLM_DATA_PROCESSING" chapter 3): The sidelength of
the cropped molecule images is N_image – 2.
Axial shift of your objective lens with respect to the coverslip surface during data
recording (e.g. if you are using "off-focus" imaging as described in Refs. [1, 2]).
Positive values denote shifts towards the sample.
Max. z position that the calculated PSF includes.
Refractive index of your sample (i.e. the buffer solution).
Peak emission wavelength of your fluorophore.
The oversampling-factor determines the spatial resolution at which the PSF should be
calculated. If the camera pixel size divided by the magnification is much larger than
~100 nm, if can make sense to set this value to 2. This will avoid localization biases,
but the fitting time will increase.
Calculates the PSF and displays the result in the box on the right.
displays the expected localization precision of the PSF using Cramér Rao lower
bounds.
You can load previously defined PSFs for editing.
You can save the PSF here to be used later in "SMLM_data_processing.mlapp".

5. APP: "ABERRATION_MEASUREMENT"

This app can be either run independently or called from the "construct_PSF.mlapp" by clicking on "fit aberrations" in the "PSF" tab. It allows the user to estimate the phase aberrations present in the imaging system from a z-stack of a single small fluorescent bead (e.g. "PS Speck" microbeads from Thermo Fisher Scientific).

a. Taking the z-stack of a single fluorescent bead

The beads should be dried onto a coverslip of the same thickness as used later in the biological experiments, then covered by water or a mounting medium and finally glued onto a glass slide (e.g. using nail polish). Make sure that the beads are sparsely distributed, since it is required to record only a single one of them. According to our experience, good x-y-z dimensions of the stack are roughly 5 μ m x 5 μ m x 2-3 μ m, with an axial spacing of around 200 nm.

It is important that the first image in the stack corresponds to the smallest distance between objective and bead and that this distance gradually increases for the following frames. This is important because the PSF it not mirror-symmetric with respect to the x-y plane, in particular if you are using astigmatic PSFs.

When taking the z-stack, it is further important to obtain a **really good** signal-to-noise ratio, as too much noise creates erroneous fits. Take especially care in frames where the bead appears out of focus. Since the fit algorithm normalizes every single frame of the z-stack, you can choose different camera exposure times for the individual frames. For instance you can choose short exposure times for images where the bead appears in focus and longer ones when it appears out of focus. In this case, activate the "norm. each layer" option, which normalizes each layer (in the recorded and simulated stacks) individually (see. Fig. 5.1).

The table below contains a full exemplary stack (13 images ranging from $z = -1.3 \mu m$ to $z = +1.3 \mu m$ around the bead.

b. Detailed explanations of the app

Fig. 5.1 shows the panel of the app as it appears at startup.

Fig. 5.1 The "Measurement of Aberrations" app.

Figure 5.2. After a fit, the results are shown on the right panels.

z-increment (µm)	Axial interspacing between two successively taken frames of the z-stack
emission	Peak emission wavelength of the microbead. Note that this value can be different
wavelength (μm)	from the wavelength parameter set in the app "PSF_construction.mlapp" (i.e. the
	wavelength you are using in your actual experiments).
bead diam. (μm)	Diameter of the microbeads you are using. The diameter of your microbeads should
	be as small as possible. A diameter of $\lambda_{em}/4$ should be fine.
RI fluid	Refractive index of the solution your beads are embedded in (e.g. mounting medium
	or water). Note that this value can be different from the "RI sample" parameter in the
	app "PSF construction.mlapp".
load objective	Load objective file. This field gets auto-filled if you call the app from
	"PSF_construction.mlapp" by clicking there on "fit aberrations".
load camera	Load camera file. This field gets auto-filled if you call the app from
load camera	"PSF_construction.mlapp" by clicking there on "fit aberrations".
load z-stack	For importing the image z-stack of a single fluorescent bead. A frontal projection of
IDau Z-Stack	
	your stack and x-y-sice will be shown in the two "Measurement" image panels on the left.
anlaulata :l -l	
calculate model	Calculates the theoretical, aberration free PSF according to the parameters specified.
	Frontal projection and x-y slice of the theoretical PSF will be shown in the two
••	"Simulation" images panels in the center.
max. iter	maximal allowed iteration number of the fit algorithm before it aborts.
Max. rad. Zernike	Maximum radial polynomial order of the Zernikes considered in the fit.
order	
Gamma	Influences the error metric, which is defined as $M = \sum_{s} \left(\frac{s^{\gamma}}{\sum s^{\gamma}} - \frac{E^{\gamma}}{\sum E^{\gamma}}\right)^2$
	S simulated 3D stack of bead; Eexperimental 3D stack of bead
	Experience shows that gamma = 0.5 is about optimal. To high gamma values tend to
	lead to erroneous fits.
μ_z_rel	Relative strength of z emission dipoles in the bead. If the bead is excited from the
P v.	front, the z-dipoles emit less light than x- and y-dipoles. In this case, $\mu_z = 1$.
Fit ampl transm.	Choose this option to fit also the pupil transmission. In this case, a radial polynomial
The differential to the second	up to 6 th deg. is used to model a radially symmetric amplitude transmission mask (=3
	additional fitting parameters). If the objective properties already contain transmission
	parameters, it should not be activated.
Norm. each layer	Normalizes each intensity image of the experimental and simulated stacks
Horini Cacii layer	individually. Activate this option if varying recording times have been used in a single
	stack recording.
Fit	Starts the fitting procedure. It typically takes around 1 minute. The fit uses a "trust-
116	region-reflective" algorithm that tries to minimize the metric <i>M</i> by varying the Zernike
	magnitudes (and optionally amplitude parameters) in the objective pupil.
sava abarrations	The results will be shown in the panels below the "Fit" button.
save aberrations	You can save the aberration file to be later loaded into the app
	"PSF_construction.mlapp" by clicking on the button "load aberration file" in the "PSF"
	tab.
load aberrations	For loading previous fit results. An additional fit execution uses these values as start
	parameters.
Center PSF	Removes the Zernike magnitudes for tip (Z2), tilt (Z3) and high-NA defocus to center
	the PSF in the coordinate system.

6. EXAMPLES

The folder ".\example data\synthetic testdata" contains computer-generated image stacks of molecules, which you can use to practice the entire SMLM procedure. The folder further contains the PSF and objective mat-files that are compatible with these stacks.

You should be able to get a result similar as shown in Fig. 6.1 if you process the image stack "spiral_8fold_dz=10nm_R=100nm_s2000_bg20.tif" The ground truth object consist of eight molecules aligned along a spiral with 100 nm radius in x-y. Each molecule is "on" in 10% of the frames (randomly chosen) and "off" in the others. The z-positions of the molecules range from z=10 nm to z=80 nm in steps of 10 nm. In this example, I applied an LLR filter of 80, which removed many fits on images where more than one molecule was in an "on" state.

 $\textit{Fig. 6.1 Result of processing the synthetic testdata file} \ \textit{,TS_8fold_spiral_R=100nm_dz=10nm_s2000_bg20.tif''}.$

7. ACKNOWLEDGEMENTS

The following third-party software packages are used in our apps:

• ZernikeCalc.m

Robert Gray, (2023). ZernikeCalc (https://www.mathworks.com/matlabcentral/fileexchange/33330-zernikecalc), MATLAB Central File Exchange. Retrieved April 26, 2023.

We would like to thank the authors for sharing their work.

8. REFERENCES

- 1. Zelger, P., L. Bodner, L. Velas, G.J. Schütz, and A. Jesacher, *Defocused imaging exploits supercritical-angle fluorescence emission for precise axial single molecule localization microscopy.* Biomedical Optics Express, 2020. **11**(2): p. 775-790.
- Zelger, P., L. Bodner, M. Offterdinger, L. Velas, G.J. Schütz, and A. Jesacher, Three-dimensional single molecule localization close to the coverslip: a comparison of methods exploiting supercritical angle fluorescence. Biomedical Optics Express, 2021. 12(2): p. 802-822.