6.215/6.255J/15.093J/IDS.200J Optimization Methods

Lecture 4: The Simplex Method II

September 21, 2021

Today's Lecture

Outline

- Review Simplex method
- Dealing with degeneracy
- Revised Simplex method
- The full tableau implementation
- Finding an initial BFS
- The complete algorithm
- Computational efficiency

Review ...

LO in standard form, A full row rank, Basis, Reduced costs

min
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

 $\mathbf{x}^T = (\mathbf{x}_B^T, \mathbf{x}_N^T)$, \mathbf{x}_B basic variables, \mathbf{x}_N non-basic variables

$$Ax = b, \quad A = [B|N]$$

$$\Rightarrow Bx_B + Nx_N = b$$

$$\Rightarrow x_B + B^{-1}Nx_N = B^{-1}b$$

$$\Rightarrow x_B = B^{-1}b - B^{-1}Nx_N$$

$$z = \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x} = \boldsymbol{c}_{B}^{\mathsf{T}} \boldsymbol{x}_{B} + \boldsymbol{c}_{N}^{\mathsf{T}} \boldsymbol{x}_{N}$$

$$= \boldsymbol{c}_{B}^{\mathsf{T}} (\boldsymbol{B}^{-1} \boldsymbol{b} - \boldsymbol{B}^{-1} N \boldsymbol{x}_{N}) + \boldsymbol{c}_{N}^{\mathsf{T}} \boldsymbol{x}_{N}$$

$$= \boldsymbol{c}_{B}^{\mathsf{T}} \boldsymbol{B}^{-1} \boldsymbol{b} + (\boldsymbol{c}_{N}^{\mathsf{T}} - \boldsymbol{c}_{B}^{\mathsf{T}} \boldsymbol{B}^{-1} \boldsymbol{N}) \boldsymbol{x}_{N}$$

 $ar{c}_j = c_j - oldsymbol{c}_B^T oldsymbol{B}^{-1} oldsymbol{A}_j \quad orall j \in N \quad ext{the relevant reduced costs}$

Recap ... The Simplex method

- Start with basis $\boldsymbol{B} = [\boldsymbol{A}_{B(1)}, \dots, \boldsymbol{A}_{B(m)}]$ and a BFS \boldsymbol{x} .
- **②** Compute reduced costs: $\bar{c}_j = c_j \boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{A}_j$, $\forall j \in N$
 - If $\bar{c}_i \geq 0$, $\forall j \in N$; x optimal; stop.
 - Else select $j : \bar{c}_j < 0$.
- **3** Compute basic direction: $d_j = 1$, $\mathbf{d}_B = -\mathbf{B}^{-1}\mathbf{A}_j$.
 - If $d_B \ge 0 \Rightarrow$ cost unbounded; stop
 - Else
- **1** Form a new basis \bar{B} by replacing $A_{B(\ell)}$ with A_j .
- **3** New BFS $\mathbf{y} = \mathbf{x} + \theta^* \mathbf{d}$. $y_j = \theta^*$, $y_{B(i)} = x_{B(i)} + \theta^* d_{B(i)}$, $i \neq \ell$.

The Simplex method

Finite Convergence

Theorem

- $P = \{ x \mid Ax = b, x \ge 0 \} \ne \emptyset$
- Assume that every BFS non-degenerate Then:
- Simplex method terminates after a finite number of iterations
- At termination, we have an optimal basis B or we have a direction $\mathbf{d} : \mathbf{Ad} = 0, \mathbf{d} \ge 0, \mathbf{c}^T \mathbf{d} < 0$ and optimal cost is $-\infty$.

The Simplex method

Degenerate problems

- θ^* can equal zero (why?)
 - \Rightarrow $\mathbf{y} = \mathbf{x}$, although $\bar{\mathbf{B}} \neq \mathbf{B}$.
- Even if $\theta^* > 0$, there might be a tie for

$$\min_{1 \le i \le m, d_{B(i)} < 0} \frac{x_{B(i)}}{-d_{B(i)}}$$

- \Rightarrow next BFS degenerate.
- Conclusion: Finite termination not guaranteed; cycling is possible.

The Simplex method

Avoiding cycling

 Cycling can be avoided by carefully selecting which variables enter and exit the basis.

- One example:
 - among all variables $\bar{c}_j < 0$, pick the smallest subscript;
 - among all variables eligible to exit the basis, pick the one with the smallest subscript.

Revised Simplex method

Practical Implementation

- **3** Start with (feasible) basis $\boldsymbol{B} = [\boldsymbol{A}_{B(1)}, \dots, \boldsymbol{A}_{B(m)}]$ and \boldsymbol{B}^{-1}
- **3** Compute $\mathbf{p}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$, $\bar{c}_j = c_j \mathbf{p}^T \mathbf{A}_j$ for all (nonbasic indices) j.
 - If $\bar{c}_j \geq 0$ for all j; x optimal; Stop.
 - Else select $j : \bar{c}_j < 0$.
- **3** Compute $\mathbf{u} \doteq -\mathbf{d}_B = \mathbf{B}^{-1} \mathbf{A}_j$. (Note this is just $u_i = -d_B(i)$)
 - If $u < 0 \Rightarrow$ cost unbounded; Stop
 - Else
- $\theta^* = \min_{1 \le i \le m, u_i > 0} \frac{x_{B(i)}}{u_i} \doteq \frac{x_{B(\ell)}}{u_\ell}$
- Form a new basis \bar{B} by replacing $A_{B(\ell)}$ with A_j .
- **1** $y_i = \theta^*, y_{B(i)} = x_{B(i)} \theta^* u_i, i \neq \ell.$
- **②** Efficiently compute \bar{B}^{-1} by transforming $[B^{-1}|u]$ into $[\bar{B}^{-1}|e_{\ell}]$ (where e_{ℓ} is the unit vector in \Re^m with a 1 in its ℓ^{th} row)

Step 7: Updating the inverse of a matrix - how?

• Suppose that we start at a BFS with basic indices B and basis matrix

$$\boldsymbol{B} = [\boldsymbol{A}_{B(1)}, \dots, \boldsymbol{A}_{B(m)}]$$
 with inverse \boldsymbol{B}^{-1} .

- We have a simplex iteration in which $B(\ell)$ leaves in favor of $j \notin B$.
- New basic indices $\bar{B} = (B(1), \dots, B(\ell-1), j, B(\ell+1), \dots, B(m))$ with basis matrix

$$ar{ extbf{\textit{B}}} = [extbf{\textit{A}}_{ extit{\textit{B}}(1)}, \ldots, extbf{\textit{A}}_{ extit{\textit{B}}(\ell-1)}, ar{ extbf{\textit{A}}_{j}}, extbf{\textit{A}}_{ extit{\textit{B}}(\ell+1)}, \ldots, extbf{\textit{A}}_{ extit{\textit{B}}(m)}].$$

• How do we compute the inverse of \bar{B} ?

6.255J © 2021 (MIT)

Updating the inverse of a matrix - explanation

• It turns out that B^{-1} is a close approximation to \bar{B}^{-1} :

$$B^{-1}\bar{B} = [e_1, \dots, e_{\ell-1}, u, e_{\ell+1}, \dots, e_m]$$

- At most m "row operations" necessary to transform $B^{-1}\bar{B}$ into an identity matrix I (in matrix form this corresponds to finding Q so that $QB^{-1}\bar{B}=I$, which then implies that $\bar{B}^{-1}=QB^{-1}$)
- ullet The same row operations convert $[oldsymbol{B}^{-1}|oldsymbol{u}]$ into $[ar{oldsymbol{B}}^{-1}|oldsymbol{e}_\ell]$

6.255J © 2021 (MIT)

Back to our example

Back to our example

B =
$$\{A_1, A_3, A_6, A_7\}$$
, BFS: $\mathbf{x} = (2, 0, 2, 0, 0, 1, 4)^T$

$$m{B} = \left[egin{array}{cccc} 1 & 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 \end{array}
ight], \quad m{B}^{-1} = \left[egin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \ 1 & -1 & 0 & 0 & 0 \ -1 & 1 & 1 & 0 & 0 \ -1 & 1 & 0 & 1 \end{array}
ight]$$

$$\bar{\boldsymbol{c}}^T = (0, 7, 0, 2, -3, 0, 0)$$

$$(u_1, u_2, u_3, u_4)^T = \mathbf{B}^{-1} \mathbf{A}_5 = (1, -1, 1, 1)^T$$

$$\theta^* = \min\left(\tfrac{2}{1},\tfrac{1}{1},\tfrac{4}{1}\right) = 1$$

$$\Rightarrow$$
 A₆ exits the basis ($\ell = 3$, $B(3) = 6$)

Back to our example

"...Efficiently compute $\bar{\pmb{B}}^{-1}$ by transforming $[\pmb{B}^{-1}|\pmb{u}]$ into $[\bar{\pmb{B}}^{-1}|\pmb{e}_\ell]$..."

$$[\boldsymbol{B}^{-1}|\boldsymbol{u}] = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & -1 & 0 & 0 & -1 \\ -1 & 1 & 1 & 0 & 1 \\ -1 & 1 & 0 & 1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 & 1 \\ 0 & 0 & -1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow ar{m{B}}^{-1} = \left[egin{array}{ccccc} 1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 \ -1 & 1 & 1 & 0 \ 0 & 0 & -1 & 1 \end{array}
ight]$$

Updating the inverse of a matrix - practical issues

- Numerical Stability
 - ${\it B}^{-1}$ needs to be computed from scratch once in a while, as errors accumulate
- Sparsity
 - \boldsymbol{B}^{-1} is represented in terms of sparse triangular matrices (LU decomposition).

Instead of simply maintaining and updating \mathbf{B}^{-1} , we maintain and update the $m \times (n+1)$ matrix $\mathbf{B}^{-1}[\mathbf{b}|\mathbf{A}]$, called the simplex tableau.

Augmenting it with a top row (the zeroth row), we have:

$-\boldsymbol{c}_{B}^{T}\boldsymbol{B}^{-1}\boldsymbol{b}$	$c^{T} - c_{B}^{T} B^{-1} A$
$B^{-1}b$	${m B}^{-1}{m A}$

or, in more detail,

$-\boldsymbol{c}_B^T \boldsymbol{x}_B$	$ar{c}_1$	 \bar{c}_n
$x_{B(1)}$		
:	$oldsymbol{\mathcal{B}}^{-1}oldsymbol{\mathcal{A}}_1$	 $B^{-1}A_n$
$X_{B(m)}$		

min
$$-10x_1 - 12x_2 - 12x_3$$

s.t. $x_1 + 2x_2 + 2x_3 + x_4 = 20$
 $2x_1 + x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + x_3 + x_6 = 20$
 $x_1, \dots, x_6 > 0$

BFS:
$$\mathbf{x} = (0, 0, 0, 20, 20, 20)^T$$

 $\mathbf{B} = [\mathbf{A}_4, \mathbf{A}_5, \mathbf{A}_6]$

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆
	0	-10		-12	0	0	0
$x_4 =$	20	1	2	2	1	0	0
$x_5 =$		2*	1	2	0	1	0
$x_6 =$		2	2	1	0	0	1

$$\bar{\boldsymbol{c}}^T = \boldsymbol{c}^T - \boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{A} = (-10, -12, -12, 0, 0, 0)$$

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆
	100	0	-7	-2	0	5	0
$x_4 =$	10	0	1.5	1*	1	-0.5	0
$x_1 =$	10	1	0.5	1	0	0.5	0
$x_6 =$	0	0	1	-1	0	-1	1

		<i>x</i> ₁			<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆
	120	0	-4	0	2	4	0
$x_3 =$	10	0	1.5	1	1	-0.5	0
$x_1 =$	0	1	-1	0	-1	1	0
$x_6 =$	10	0	2.5*	0	1	-1.5	1

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
					3.6		
$x_3 =$	4	0	0	1	0.4	0.4	-0.6
$x_1 =$	4	1	0	0	0.4 -0.6 0.4	0.4	0.4
$x_2 =$	4	0	1	0	0.4	-0.6	0.4

Comparison of implementations

	Full tableau	Revised simplex		
Memory	O(mn)	$O(m^2)$		
Worst-case time	O(mn)	O(mn)		
Best-case time	O(mn)	$O(m^2)$		

"Back to Square 1": Finding an initial BFS

• **Goal:** Obtain a BFS of Ax = b, $x \ge 0$ or decide that the problem is infeasible.

• Special case: $\mathbf{b} \ge 0$, $\mathbf{A}\mathbf{x} \le \mathbf{b}$, $\mathbf{x} \ge 0$

$$\Rightarrow \mathbf{A}\mathbf{x} + \mathbf{s} = \mathbf{b}, \ \mathbf{x}, \mathbf{s} \ge 0$$

$$s = b, x = 0$$

Artificial variables

$$\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b},\ \boldsymbol{x}\geq 0$$

- **②** Multiply some rows with -1 to insure $b \ge 0$.
- ② Introduce artificial variables y, start with initial y = b, x = 0, and apply simplex to auxiliary problem $\min_{v_1 + v_2 + \ldots + v_m} v_1 + v_2 + \ldots + v_m$

s.t.
$$Ax + y = b$$

 $x, y \ge 0$

- **3** If $cost > 0 \Rightarrow problem infeasible; stop.$
- If cost = 0 and no artificial variable is in the basis, then a BFS was found.
- **3** Else, all $y_i^* = 0$, but some are still in the basis. Say we have $\mathbf{A}_{B(1)}, \dots, \mathbf{A}_{B(k)}$ in basis k < m. There are m k additional columns of \mathbf{A} to form a basis.

Artificial variables

$$\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b},\ \boldsymbol{x}\geq 0$$

- **1** Multiply some rows with -1 to insure $b \ge 0$.
- ② Introduce artificial variables y, start with initial y = b, x = 0, and apply simplex to auxiliary problem

min
$$y_1 + y_2 + ... + y_m$$

s.t. $Ax + y = b$
 $x, y \ge 0$

- **3** If $cost > 0 \Rightarrow problem infeasible; stop.$
- **3** Else, all $y_i^* = 0$, but some are still in the basis. Say we have $\mathbf{A}_{B(1)}, \dots, \mathbf{A}_{B(k)}$ in basis k < m. There are m k additional columns of \mathbf{A} to form a basis.
- **1** Drive artificial variables out of the basis: If ℓ th basic variable is artificial examine ℓ th row of $B^{-1}A$. If all elements $=0 \Rightarrow$ row redundant. Otherwise pivot with $\neq 0$ element.

min
$$x_1 + x_2 + x_3$$

 $s.t.$ $x_1 + 2x_2 + 3x_3 = 3$
 $-x_1 + 2x_2 + 6x_3 = 2$
 $4x_2 + 9x_3 = 5$
 $3x_3 + x_4 = 1$
 $x_1, \dots, x_4 \ge 0$.

min

$$s.t.$$
 $x_1 + 2x_2 + 3x_3$ $+ x_5$ $= 3$
 $-x_1 + 2x_2 + 6x_3$ $+ x_6$ $= 2$
 $4x_2 + 9x_3$ $+ x_7$ $= 5$
 $3x_3 + x_4$ $+ x_8 = 1$

		<i>X</i> ₁	<i>X</i> ₂	X3	<i>X</i> 4	<i>X</i> 5	<i>X</i> ₆	<i>X</i> 7	<i>X</i> 8
				-21					
$x_5 =$	3	1	2	3	0	1	0	0	0
$x_6 =$	2	-1	2	6	0	0	1	0	0
<i>x</i> ₇ =	5	0	4	9	0	0	0	1	0
<i>x</i> ₈ =	3 2 5 1	0	0	3	1*	0	0	0	1

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>X</i> ₆	X7	<i>X</i> 8
	-10	0	-8	-18	0	0	0	0	1
<i>x</i> ₅ =	3	1	2	3	0	1	0	0	0
			2	6	0	0	1		
x ₇ =	5	0	4	9	0	0	0	1	0
x ₄ =	1	0	0	3*	1	0	0	0	1

		<i>X</i> ₁	X2	Х3	X4	<i>X</i> 5	<i>X</i> ₆	X7	X8
	-4	0	-8	0	6	0	0	0	7
$x_5 =$	2 0 2	1	2	0	-1	1	0	0	-1
$x_6 =$	0	-1	2*	0	-2	0	1	0	-2
<i>x</i> ₇ =	2	0	4	0	-3	0	0	1	-3
$x_3 =$	1/3	0	0	1	1/3	0	0	0	1/3

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	X ₄	<i>X</i> 5	<i>X</i> ₆	X7	<i>X</i> 8
	-4	-4	0	0	-2	0	4	0	-1
		2*							
$x_2 =$	0	-1/2	1	0	-1	0	1/2	0	-1
<i>x</i> ₇ =	2	2	0	0	1	0	-2	1	1
$x_3 =$	1/3	0	0	1	1/3	0	0	0	1/3

A complete algorithm for LO

Phase I:

- **9** By multiplying some of the constraints by -1, change the problem so that $b \ge 0$.
- ② Introduce y_1, \ldots, y_m , if necessary, and apply the simplex method to $\min \sum_{i=1}^m y_i$.
- If cost> 0, original problem is infeasible; STOP.
- If cost= 0, a feasible solution to the original problem has been found.
- Orive artificial variables out of the basis, potentially eliminating redundant rows.

A complete algorithm for LO

Phase II:

- Let the final basis and tableau obtained from Phase I be the initial basis and tableau for Phase II.
- Ompute the reduced costs of all variables for this initial basis, using the cost coefficients of the original problem.
- 3 Apply the simplex method to the original problem.

A complete algorithm for LO

Possible outcomes

- Infeasible: Detected at Phase I.
- A has linearly dependent rows: Detected at Phase I, eliminate redundant rows.
- **1** Unbounded (cost = $-\infty$): detected at Phase II.
- Optimal solution: Terminate at Phase II in optimality check.

The big-M method

An alternative method

 Similar but with a different cost function to start with ... combines the two phases into one:

min
$$\sum_{j=1}^{n} c_{j}x_{j} + M \sum_{i=1}^{m} y_{i}$$
s.t.
$$\mathbf{A}\mathbf{x} + \mathbf{y} = \mathbf{b}$$

$$\mathbf{x}, \mathbf{y} \ge 0$$

• M needs to be chosen carefully ...

Computational efficiency of the simplex method

Exceptional practical behavior: linear in m or n

Worst case?

Computational efficiency of the simplex method

Exceptional practical behavior: linear in m or n

Worst case?

Consider

$$\begin{array}{ll} \max & x_n \\ \text{s.t.} & \epsilon \leq x_1 \leq 1 \\ & \epsilon x_{i-1} \leq x_i \leq 1 - \epsilon x_{i-1}, \qquad i = 2, \dots, n \end{array}$$

Computational efficiency

worst case

Computational efficiency

Theorem

- The feasible set has 2ⁿ vertices
- The vertices can be ordered so that each one is adjacent to and has lower cost than the previous one.
- There exists a pivoting rule under which the simplex method requires $2^n 1$ changes of basis before it terminates.