Análisis Inteligente de Datos - Tarea 2

Iván González - Diego Salazar

Regresión Lineal Ordinaria

Dataset: Prostate Cancer

Conjunto de Datos

- Dataset compuesto de 97 muestras: 67 de entrenamiento y 30 de pruebas.
- Atributos predictores (8):
 - Lcavol: Logaritmo volumen de cáncer. Variable de punto flotante.
 - Lweight: Logaritmo del peso de la próstata. Variable de punto flotante.
 - Age: Edad del paciente. Variable entera.
 - Lbph: Logaritmo de la cantidad de hiperplasia prostática benigna. Variable de punto flotante.
 - Svi: Invasión vesículo seminal. Variable entera.
 - Lcp: Logaritmo de la penetración capsular. Variable de punto flotante.
 - Gleason: Calificación de Gleason. Variable entera.
 - Pgg45: Porcentaje de Gleason 4 ó 5. Variable entera.
- Respuesta: lpca (nivel de antígeno prostático cancerígeno). Variable de punto flotante.

Preprocesamiento de datos

- Estandarización
 - Predictores con varianza igual a 1. Útil cuando se quiere que los coeficientes de la regresión sean comparables entre sí, especialmente cuando los predictores son cantidades físicas distintas o tienen una escala distinta.
- Agregar columna de 1s al dataset
 - Desplazar el intercepto fuera del origen (distinto de cero)

Pesos y Z score

Atributo	Peso	Z score	
intercept	2.465	27.359	
Icavol	0.676	5.320	
lweight	0.262	2.727	
svi	0.304	2.448	
lbph	0.209	2.038	
pgg45	0.266	1.723	
gleason	-0.021	-0.145	
age	-0.141	-1.384	
lcp	-0.287	-1.851	

- Usando la distribución de probabilidad t-student, con una significancia del 5% y con 67 - 9 = 58 grados de libertad, se tiene un intervalo de confianza igual a [-1.672, 1.672].
- Aquellas variables cuyo z score se encuentre dentro del intervalo, no existirá suficiente evidencia que demuestre su relación con la respuesta.

Error de predicción y Cross Validation

• Con k folds, con k = 5, 6, 7, 8, 9, 10:

K	5	6	7	8	9	10	
MSE	0.957	0.957	0.895	0.880	0.819	0.757	

MSE set de pruebas: 0.521

Hipótesis de normalidad de los errores

Selección de atributos

Forward stepwise selection

- Set de testing, mínimo MSE con cuatro atributos:
 - o lcavol, lweight, svi más el intercepto

Backward stepwise selection

- Set de testing, mínimo MSE con cuatro atributos:
 - o lcavol, lweight, svi más el intercepto

Regularización

Regularization path Ridge Regression

Regularization path Lasso Regression

Ridge Regression: MSE vs Alpha parameter

Lasso Regression: MSE vs Alpha parameter

Mejores parámetros de regularización

Método	Rango វ៉	Mejor válor	mse
Ridge	[10 ⁻² , 10 ²]	2.330	0.752
Lasso	[10 ⁻² , 10 ¹]	0.010	0.759

Predicción de Utilidades de Películas

- Matriz sparce de 276222 columnas
 - Una matriz demasiado grande como para manipular con librerías corrientes.
 - Se opera con *csr_matrix* para aprovechar las propiedades de dicha matriz.
 - Para preservar dispersión, no se centra y se opera con intercepto no nulo.
- Cada columna contiene metada o texto asociado a crítica de películas

- Datos volumen de utilidades por lugar de proyección
 - Al poseer un mayor volumen de datos, se comienzan las pruebas aquí.
 - Se hacen pruebas regularizando mediante LASSO y Ridge
 - Se evita el uso de LASSO por por problemas de convergencia y lentitud computacional.

Método general para operar

- Se aplican principios de machine learning
 - Se generan varios modelos con Ridge o LASSO a partir de los datos de entrenamiento.
 - Se calcula el MSE asociado a partir de los datos de validación y se elige el modelo con menor
 MSE.
 - Se calcula el coeficiente R² final a partir de los datos de test.

Datos volumen de utilidades por lugar de proyección

Método	Alfas (rango)	Alfa (elegido)	MSE (mín)	R²
Ridge	[0.1 , 0.2 , ,1.0]	0.900	96214654.36	0.242
Ridge	LogSpaced [-1, 0.9] N=10	3.005	96215832.02	0.242
Ridge	1000	1000	6109517.21	0.242
Lasso	[0.7, 0.8, 0.9]	0.7	139681061.77	0.079
Lasso	1000	1000	140348785.28	0.114
Lasso	1,000,000	1,000,000	154630228.53	0.033

- Datos volumen de utilidades por lugar de proyección
 - No hay resultados satisfactorios con ninguno de los dos métodos.
 - Demasiado lento hacer cada prueba: ¡hasta 2 horas iterando sobre 10 alfas!
 - Se prueba con los datos para el total de utilidades por película.
 - Se aprovecha de que el set es más pequeño para converger más rápido a las respuestas.

Datos volumen total de utilidades

Método	Alfas (rango)	Alfa (elegido)	MSE (mín)	R²	
Ridge	[0.1 , 0.2 , ,1.0]	0.2	150449.52E9	0.515	

- Datos volumen total de utilidades
 - Mayor precisión inmediata
 - Problema: No se puede lograr un resultado mucho mejor:

- Datos volumen total de utilidades:
 - Haciendo múltiples tests sobre alfas entre 0 y 3000 (sin intercepto para reducir tiempo)
 - Entre 0 y 600 no existe mayor diferencia
 en coef. de determinación.
 - o Sobre 600, R² comienza a decrecer
 - No se puede lograr R² ≥ 0.75
 con Ridge.
 - Lasso tarda demasiado para hacer
 Tests suficientes.
 - Falta poder computacional para
 Resolver problema

