# **TARGET SQL PROJECT**

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset.
  - 1. Data type of columns in a table

# Oder\_items table

| Field name          | Туре      |
|---------------------|-----------|
| order_id            | STRING    |
| order_item_id       | INTEGER   |
| product_id          | STRING    |
| seller_id           | STRING    |
| shipping_limit_date | TIMESTAMP |
| price               | FLOAT     |
| freight_value       | FLOAT     |

String type:- order\_id, product\_id,seller\_id

Integer type: order\_item\_id.

<u>Timestamp type:</u>- shipping\_limit\_date

**Float type:** price, fright\_value

## 2. Time period for which the data is given

We obtain the result by using the min and max functions on order\_purchase\_timestamp column in the orders table.

### Query:

```
1 SELECT
2 | min(order_purchase_timestamp) as start_time_period,
3 | max(order_purchase_timestamp) as end_time_period
4 FROM _`my-sql-project-387303.Brazil_data.orders`
```

## Query result:



# 3. Cities and States of customers ordered during the given period

We can solve it by joining the customers and orders table and get customer\_id, city, state, for the given time period.

#### Query:

```
SELECT

c.customer_id,
c.customer_city,
c.customer_state

FROM __imy-sql-project-387303.Brazil_data.Customer_c

left join _imy-sql-project-387303.Brazil_data.orders_io on c.customer_id = o.customer_id;
```

# Query result:



### **Insights:**

Most Customer orders from the following top 5 cities:



# 2 .In-depth Exploration:

- 1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?
  - a) We can answer the first part of question by looking at the trend starting from 2016 till 2018.

# **Query Result:**



# **Insights:**

We can observe inside the results that there is an increase in the no.of orders and value of orders.

b) We can answer he second part of the question by replicating the same for months over the time period.

```
SELECT t.Month,count(*) Ord_count , Round(sum(t.price)) Ord_value
FROM
(
    select *,
         extract(month from o.order_purchase_timestamp) as Month
    from `my-sql-project-387303.Brazil_data.orders` o
    inner join `my-sql-project-387303.Brazil_data.order_items` oi on
o.order_id=oi.order_id
) t
group by t.month
order by t.month;
```

### Query Result:

| Row | Month ▼ | Ord_count ▼ | Ord_value ▼ |  |
|-----|---------|-------------|-------------|--|
| 1   | 1       | 9163        | 1070343.0   |  |
| 2   | 2       | 9623        | 1091482.0   |  |
| 3   | 3       | 11217       | 1357558.0   |  |
| 4   | 4       | 10659       | 1356575.0   |  |
| 5   | 5       | 12061       | 1502589.0   |  |
| 6   | 6       | 10661       | 1298163.0   |  |
| 7   | 7       | 11611       | 1393539.0   |  |
| 8   | 8       | 12158       | 1428658.0   |  |
| 9   | 9       | 4838        | 624814.0    |  |
| 10  | 10      | 5685        | 713727.0    |  |
| 11  | 11      | 8665        | 1010271.0   |  |
| 12  | 12      | 6309        | 743925.0    |  |

# **Insights:**

As we see that order count is maximum in the following months: march, April, may, june, july, augest.

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

We can get the order count in the specific timing of the day by using CTE, case end and group functions on orders tables.

```
with hour_cte as
(
    select *,
        extract(hour from order_purchase_timestamp) as Hour
    from `my-sql-project-387303.Brazil_data.orders`
)

select t.Time_of_day, count(*) Ord_count
from
(
    select *,
        case
        when Hour between 0 and 6 then 'Dawn'
        when Hour between 7 and 12 then 'Morning'
        when Hour between 13 and 18 then 'Afternoon'
        when Hour between 19 and 23 then 'Night'
```

```
end as Time_of_day
from hour_cte
) t
group by t.time_of_day
order by Ord_count desc;
```

## **Query Result:**

| Row | Time_of_day ▼ | Ord_count | • /   |
|-----|---------------|-----------|-------|
| 1   | Afternoon     |           | 38135 |
| 2   | Night         |           | 28331 |
| 3   | Morning       |           | 27733 |
| 4   | Dawn          |           | 5242  |

# **Insights:**

We can see that from the query results Brazilians tend to order more during afternoon time followed by the night times.

# Q3) Evolution of E-commerce orders in the Brazil region:

1) Get month on month orders by states

This can be obtained from the Customer, order\_items table and using group by states and months of purchase time\_stamp

# Query result:

| Row | customer_state ▼ ↑ | Month ▼ | Ord_count ▼ | ord_value ▼ |
|-----|--------------------|---------|-------------|-------------|
| 1   | AC                 | 1       | 10          | 1473.0      |
| 2   | AC                 | 2       | 9           | 652.0       |
| 3   | AC                 | 3       | 4           | 554.0       |
| 4   | AC                 | 4       | 9           | 1585.0      |
| 5   | AC                 | 5       | 10          | 3459.0      |
| 6   | AC                 | 6       | 7           | 814.0       |
| 7   | AC                 | 7       | 14          | 2089.0      |
| 8   | AC                 | 8       | 7           | 1085.0      |
| 9   | AC                 | 9       | 5           | 1787.0      |
| 10  | AC                 | 10      | 6           | 735.0       |

# 2) Distribution of customers across the states in Brazil

This can be obtained by joining customers, order, order\_items table and using group by states and aggregating on count of orders and sum of price of orders placed.

# **Query Results:**

| Row | customer_state ▼ | Ord_count ▼ | Ord_value ▼ |
|-----|------------------|-------------|-------------|
| 1   | SP               | 47449       | 5202955.0   |
| 2   | RJ               | 14579       | 1824093.0   |
| 3   | MG               | 13129       | 1585308.0   |
| 4   | RS               | 6235        | 750304.0    |
| 5   | PR               | 5740        | 683084.0    |
| 6   | SC               | 4176        | 520553.0    |
| 7   | BA               | 3799        | 511350.0    |
| 8   | DF               | 2406        | 302604.0    |
| 9   | GO               | 2333        | 294592.0    |
| 10  | FS               | 2256        | 275037.0    |

# **Insights:**

As we can see from the results most orders have came from SP then RJ followed by MG.

- Q4). Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
  - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment\_value" column in payments table:

```
with yr17_cte as
(
    select t.year,sum(t.payment_value) ord_cost
    from
    (
        select
            extract (month from o.order_purchase_timestamp) Month,
            extract (year from o.order_purchase_timestamp) Year,
            p.payment_value
    from `my-sql-project-387303.Brazil_data.orders` o
    inner join `my-sql-project-387303.Brazil_data.payments` p on o.order_id =
p.order_id
    )t
    where t.year = 2017 and t.month <=8
    group by t.year</pre>
```

```
),
yr18_cte as
 select x.year, sum(x.payment_value) ord_cost
    select
          extract (month from o.order_purchase_timestamp) Month,
          extract (year from o.order_purchase_timestamp) Year,
          p.payment_value
    from `my-sql-project-387303.Brazil_data.orders` o
    inner join `my-sql-project-387303.Brazil_data.payments` p on o.order_id =
p.order_id
 ) x
 where x.year = 2018 and x.month <=8
 group by x.year
select y17. Year Yr2017,
      y18.Year Yr2018,
       round (((y18.ord_cost - y17.ord_cost)/y17.ord_cost)*100,2) per_incr_ord_cost
from yr17_cte as y17,yr18_cte as y18;
```

#### Query result:

| Row | Yr2017 ▼ | . // | Yr2018 | · // | per_incr_ord_cost |
|-----|----------|------|--------|------|-------------------|
| 1   |          | 2017 |        | 2018 | 136.98            |

#### Insights:

There is 137% increase in cost of orders from 2017 to 2018.

#### 2. Mean & Sum of price and freight value by customer state.

This can be obtained by joining customers, orders, order\_items table and using group by states and aggregating on avg.sum of price placed and avg.sum of frieght\_value.

## Query Results:

| Row | customer_state ▼ | Mean_price ▼ | Sum_price ▼ | Mean_freight_value | sum_freight_value |
|-----|------------------|--------------|-------------|--------------------|-------------------|
| 1   | AC               | 174.0        | 15983.0     | 40.0               | 3687.0            |
| 2   | AL               | 181.0        | 80315.0     | 36.0               | 15915.0           |
| 3   | AM               | 135.0        | 22357.0     | 33.0               | 5479.0            |
| 4   | AP               | 164.0        | 13474.0     | 34.0               | 2789.0            |
| 5   | BA               | 135.0        | 511350.0    | 26.0               | 100157.0          |
| 6   | CE               | 154.0        | 227255.0    | 33.0               | 48352.0           |
| 7   | DF               | 126.0        | 302604.0    | 21.0               | 50625.0           |
| 8   | ES               | 122.0        | 275037.0    | 22.0               | 49765.0           |
| 9   | GO               | 126.0        | 294592.0    | 23.0               | 53115.0           |
| 10  | MA               | 145.0        | 119648.0    | 38.0               | 31524.0           |

#### Insights:

Mean price is highest for the state with code PB, Sum price is highest for the state code SP, Mean freight value is highest for the state code PB, Sum freight value is highest for state code SP

- Q5) Analysis on sales, freight and delivery time
- 1. Calculate days between purchasing, delivering and estimated delivery

This can be calculated using the orders table and the columns purchase\_timestamp, delivery\_date, estimated\_delivery\_date.

# Query:

```
select
    order_id,
    order_purchase_timestamp,
    order_estimated_delivery_date,
    order_delivered_customer_date,
    timestamp_diff(order_estimated_delivery_date,order_purchase_timestamp,day) as
ETA_days,
    timestamp_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
No_delivery_days,
    timestamp_diff(order_delivered_customer_date,order_estimated_delivery_date,day)
as Late_days
from `my-sql-project-387303.Brazil_data.orders`;
```

#### **Query Result:**



#### **Insights:**

The following are the top 10 orders where delivery delay was close to 6 months than the expected delivery days.

| Row | order_id ▼                 | order_purchase_timestamp ▼ | order_estimated_delivery_date 🔻 | order_delivered_customer_date 🔻 | ETA_days ▼ | No_delivery_days 🔻 | Late_days ▼ |
|-----|----------------------------|----------------------------|---------------------------------|---------------------------------|------------|--------------------|-------------|
| 1   | ca07593549f1816d26a572e06  | 2017-02-21 23:31:27 UTC    | 2017-03-22 00:00:00 UTC         | 2017-09-19 14:36:39 UTC         | 28         | 209                | 181         |
| 2   | 1b3190b2dfa9d789e1f14c05b  | 2018-02-23 14:57:35 UTC    | 2018-03-15 00:00:00 UTC         | 2018-09-19 23:24:07 UTC         | 19         | 208                | 188         |
| 3   | 440d0d17af552815d15a9e41a  | 2017-03-07 23:59:51 UTC    | 2017-04-07 00:00:00 UTC         | 2017-09-19 15:12:50 UTC         | 30         | 195                | 165         |
| 4   | 0f4519c5f1c541ddec9f21b3bd | 2017-03-09 13:26:57 UTC    | 2017-04-11 00:00:00 UTC         | 2017-09-19 14:38:21 UTC         | 32         | 194                | 161         |
| 5   | 285ab9426d6982034523a855f  | 2017-03-08 22:47:40 UTC    | 2017-04-06 00:00:00 UTC         | 2017-09-19 14:00:04 UTC         | 28         | 194                | 166         |
| 6   | 2fb597c2f772eca01b1f5c561b | 2017-03-08 18:09:02 UTC    | 2017-04-17 00:00:00 UTC         | 2017-09-19 14:33:17 UTC         | 39         | 194                | 155         |
| 7   | 47b40429ed8cce3aee9199792  | 2018-01-03 09:44:01 UTC    | 2018-01-19 00:00:00 UTC         | 2018-07-13 20:51:31 UTC         | 15         | 191                | 175         |
| 8   | 2fe324febf907e3ea3f2aa9650 | 2017-03-13 20:17:10 UTC    | 2017-04-05 00:00:00 UTC         | 2017-09-19 17:00:07 UTC         | 22         | 189                | 167         |
| 9   | 2d7561026d542c8dbd8f0daea  | 2017-03-15 11:24:27 UTC    | 2017-04-13 00:00:00 UTC         | 2017-09-19 14:38:18 UTC         | 28         | 188                | 159         |

2. Find time\_to\_delivery & diff\_estimated\_delivery.

This can be calculated using the orders table and the columns purchase\_timestamp, delivery\_date, estimated\_delivery\_date.

# Query:

# **Query Results:**

| Row | order_id ▼                 | time_to_delivery 🔻 | diff_estimated_delive |
|-----|----------------------------|--------------------|-----------------------|
| 1   | 1950d777989f6a877539f5379  | 30                 | 12                    |
| 2   | 2c45c33d2f9cb8ff8b1c86cc28 | 30                 | -28                   |
| 3   | 65d1e226dfaeb8cdc42f66542  | 35                 | -16                   |
| 4   | 635c894d068ac37e6e03dc54e  | 30                 | -1                    |
| 5   | 3b97562c3aee8bdedcb5c2e45  | 32                 | 0                     |
| 6   | 68f47f50f04c4cb6774570cfde | 29                 | -1                    |
| 7   | 276e9ec344d3bf029ff83a161c | 43                 | 4                     |
| 8   | 54e1a3c2b97fb0809da548a59  | 40                 | 4                     |

3. Group data by state, take mean of freight\_value, time\_to\_delivery, diff\_estimated\_delivery

This can be obtained by joining customers, orders, order\_items table and using group by states and aggregating on avg of freight\_value, time\_to\_delivery, diff\_estimated\_delivery.

```
select
      t.customer_state,
      round(avg(t.freight_value))Mean_freight_value,
      round(avg(t.time_to_delivery))Mean_time_to_delivery,
      round(avg(t.diff_estimated_delivery)) Mean_diff_estimated_delivery
from
 select *,
        timestamp_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
time_to_delivery,
        timestamp_diff(order_delivered_customer_date,order_estimated_delivery_date,
day) as diff_estimated_delivery
 from `my-sql-project-387303.Brazil_data.Customer` c
 inner join `my-sql-project-387303.Brazil_data.orders` o on
c.customer_id=o.customer_id
 inner join `my-sql-project-387303.Brazil_data.order_items` oi on o.order_id =
oi.order_id
) t
group by t.customer_state
order by t.customer_state
```

# **Query results:**

| Row | customer_state ▼ | Mean_freight_value | Mean_time_to_delive | Mean_diff_estimated |
|-----|------------------|--------------------|---------------------|---------------------|
| 1   | AC               | 40.0               | 20.0                | -20.0               |
| 2   | AL               | 36.0               | 24.0                | -8.0                |
| 3   | AM               | 33.0               | 26.0                | -19.0               |
| 4   | AP               | 34.0               | 28.0                | -17.0               |
| 5   | BA               | 26.0               | 19.0                | -10.0               |
| 6   | CE               | 33.0               | 21.0                | -10.0               |
| 7   | DF               | 21.0               | 13.0                | -11.0               |
| 8   | ES               | 22.0               | 15.0                | -10.0               |
| 9   | GO               | 23.0               | 15.0                | -11.0               |
| 10  | MA               | 38.0               | 21.0                | -9.0                |

# **Insights:**

Mean freight value is highest for state with code PB

Mean time to delivery is highest for state with code RR

Mean difference in estimated delivery is highest for state with code AL

Mean freight value is lowest for state with code SP

Mean time to delivery is lowest for state with code SP

Mean difference in estimated delivery is lowest for state with code AC.

- 4 Sort the data to get the following:
  - a. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

# **Highest Avg freight value**

### Query:

```
select
      t.customer_state,
      round(avg(t.freight_value)) Mean_freight_value,
      round(avg(t.freight_value)) Mean_time_to_delivery,
      round(avg(t.diff_estimated_delivery)) Mean_diff_estimated_delivery
from
 select *,
        timestamp_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
time_to_delivery,
        timestamp_diff(order_delivered_customer_date,order_estimated_delivery_date,
day) as diff_estimated_delivery
 from `my-sql-project-387303.Brazil_data.Customer` c
 inner join `my-sql-project-387303.Brazil_data.orders` o on
c.customer_id=o.customer_id
  inner join `my-sql-project-387303.Brazil_data.order_items` oi on o.order_id =
oi.order_id
) t
group by t.customer_state
order by Mean_freight_value desc
limit 5;
```

# Query result:

| Row | customer_state ▼ | Mean_freight_value | Mean_time_to_delive | Mean_diff_estimated |
|-----|------------------|--------------------|---------------------|---------------------|
| 1   | PB               | 43.0               | 43.0                | -12.0               |
| 2   | RR               | 43.0               | 43.0                | -17.0               |
| 3   | RO               | 41.0               | 41.0                | -19.0               |
| 4   | AC               | 40.0               | 40.0                | -20.0               |
| 5   | PI               | 39.0               | 39.0                | -11.0               |

# **Lowest Avg Freight Value:**

# Query:

```
select
      t.customer_state,
      round(avg(t.freight_value)) Mean_freight_value,
      round(avg(t.freight_value)) Mean_time_to_delivery,
      {\color{red} \textbf{round}(avg(t.diff\_estimated\_delivery))} \ \ \textbf{Mean\_diff\_estimated\_delivery}
from
  select *,
        timestamp_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
time_to_delivery,
        timestamp_diff(order_delivered_customer_date,order_estimated_delivery_date,
day) as diff_estimated_delivery
  from `my-sql-project-387303.Brazil_data.Customer` c
  inner join `my-sql-project-387303.Brazil_data.orders` o on
c.customer_id=o.customer_id
  inner join `my-sql-project-387303.Brazil_data.order_items` oi on o.order_id =
oi.order_id
) t
group by t.customer_state
order by Mean_freight_value
limit 5;
```

# **Query result:**

| Row | customer_state ▼ | Mean_freight_value | Mean_time_to_delive | Mean_diff_estimated |
|-----|------------------|--------------------|---------------------|---------------------|
| 1   | SP               | 15.0               | 15.0                | -10.0               |
| 2   | PR               | 21.0               | 21.0                | -13.0               |
| 3   | RJ               | 21.0               | 21.0                | -11.0               |
| 4   | DF               | 21.0               | 21.0                | -11.0               |
| 5   | MG               | 21.0               | 21.0                | -12.0               |

**b)** Top 5 states with highest/lowest average time to delivery

# **Highest Avg time to delivery**

```
select
      t.customer_state,
      round(avg(t.freight_value)) Mean_freight_value,
      round(avg(t.freight_value)) Mean_time_to_delivery,
      round(avg(t.diff_estimated_delivery)) Mean_diff_estimated_delivery
from
 select *,
        timestamp_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
time_to_delivery,
        timestamp_diff(order_delivered_customer_date,order_estimated_delivery_date,
day) as diff_estimated_delivery
 from `my-sql-project-387303.Brazil_data.Customer` c
 inner join `my-sql-project-387303.Brazil_data.orders` o on
c.customer_id=o.customer_id
 inner join `my-sql-project-387303.Brazil_data.order_items` oi on o.order_id =
oi.order_id
) t
group by t.customer_state
order by Mean_time_to_delivery desc
limit 5;
```

# **Query Result:**

| Row | customer_state ▼ | Mean_freight_value | Mean_time_to_delive | Mean_diff_estimated |
|-----|------------------|--------------------|---------------------|---------------------|
| 1   | PB               | 43.0               | 43.0                | -12.0               |
| 2   | RR               | 43.0               | 43.0                | -17.0               |
| 3   | RO               | 41.0               | 41.0                | -19.0               |
| 4   | AC               | 40.0               | 40.0                | -20.0               |
| 5   | PI               | 39.0               | 39.0                | -11.0               |

## **Lowest Avg time to delivery**

```
select
    t.customer_state,
    round(avg(t.freight_value)) Mean_freight_value,
    round(avg(t.freight_value)) Mean_time_to_delivery,
    round(avg(t.diff_estimated_delivery)) Mean_diff_estimated_delivery

from
(
    select *,
        timestamp_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
time_to_delivery,
```

```
timestamp_diff(order_delivered_customer_date,order_estimated_delivery_date,
day) as diff_estimated_delivery
  from `my-sql-project-387303.Brazil_data.Customer` c
  inner join `my-sql-project-387303.Brazil_data.orders` o on
c.customer_id=o.customer_id
  inner join `my-sql-project-387303.Brazil_data.order_items` oi on o.order_id =
oi.order_id
)t
group by t.customer_state
order by Mean_time_to_delivery
limit 5;
```

### **Query Result:**

| Row | customer_state ▼ | Mean_freight_value | Mean_time_to_delive | Mean_diff_estimated |
|-----|------------------|--------------------|---------------------|---------------------|
| 1   | SP               | 15.0               | 15.0                | -10.0               |
| 2   | PR               | 21.0               | 21.0                | -13.0               |
| 3   | RJ               | 21.0               | 21.0                | -11.0               |
| 4   | DF               | 21.0               | 21.0                | -11.0               |
| 5   | MG               | 21.0               | 21.0                | -12.0               |

C) Top 5 states where delivery is really fast/ not so fast compared to estimated date

# Highest Avg diff\_estimated\_delivery

```
select
      t.customer_state,
      round(avg(t.freight_value)) Mean_freight_value,
      round(avg(t.freight_value)) Mean_time_to_delivery,
      round(avg(t.diff_estimated_delivery)) Mean_diff_estimated_delivery
from
 select *.
        timestamp_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
time_to_delivery,
        timestamp_diff(order_delivered_customer_date,order_estimated_delivery_date,
day) as diff_estimated_delivery
 from `my-sql-project-387303.Brazil_data.Customer` c
 inner join `my-sql-project-387303.Brazil_data.orders` o on
c.customer_id=o.customer_id
  inner join `my-sql-project-387303.Brazil_data.order_items` oi on o.order_id =
oi.order_id
)t
group by t.customer_state
order by Mean_diff_estimated_delivery desc
limit 5;
```

### **Query Results:**

| Row | customer_state ▼ | Mean_freight_value | Mean_time_to_delive | Mean_diff_estimated |
|-----|------------------|--------------------|---------------------|---------------------|
| 1   | AL               | 36.0               | 36.0                | -8.0                |
| 2   | SE               | 37.0               | 37.0                | -9.0                |
| 3   | MA               | 38.0               | 38.0                | -9.0                |
| 4   | SP               | 15.0               | 15.0                | -10.0               |
| 5   | BA               | 26.0               | 26.0                | -10.0               |

## **Lowest Avg time to delivery**

# **Query:**

```
select
      t.customer_state,
      round(avg(t.freight_value)) Mean_freight_value,
      round(avg(t.freight_value)) Mean_time_to_delivery,
      round(avg(t.diff_estimated_delivery)) Mean_diff_estimated_delivery
from
  select *,
        timestamp_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
time_to_delivery,
        timestamp_diff(order_delivered_customer_date,order_estimated_delivery_date,
day) as diff_estimated_delivery
  from `my-sql-project-387303.Brazil_data.Customer` c
  inner join `my-sql-project-387303.Brazil_data.orders` o on
c.customer_id=o.customer_id
  inner join `my-sql-project-387303.Brazil_data.order_items` oi on o.order_id =
oi.order_id
group by t.customer_state
order by Mean_diff_estimated_delivery
limit 5;
```

# **Query Result:**

| Row | customer_state ▼ | Mean_freight_value | Mean_time_to_delive | Mean_diff_estimated |
|-----|------------------|--------------------|---------------------|---------------------|
| 1   | AC               | 40.0               | 40.0                | -20.0               |
| 2   | AM               | 33.0               | 33.0                | -19.0               |
| 3   | RO               | 41.0               | 41.0                | -19.0               |
| 4   | RR               | 43.0               | 43.0                | -17.0               |
| 5   | AP               | 34.0               | 34.0                | -17.0               |

## **Q6.** Payment type analysis:

1. Month over Month count of orders for different payment types

This can be obtained by joining orders and payments table and extracting month from purchase timestamp column to group by payment type and month and aggregate on count.

# Query:

```
select t.payment_type, t.month,count(*) as Ord_count
from
(
    select *,
        extract(month from o.order_purchase_timestamp) as month
    from `my-sql-project-387303.Brazil_data.orders` o
    inner join `my-sql-project-387303.Brazil_data.payments` p on o.order_id = p.order_id
) t
group by t.payment_type, t.month
order by t.payment_type, t.month;
```

## Query result:

| Row | payment_type ▼ | month ▼ | Ord_count ▼ |
|-----|----------------|---------|-------------|
| 5   | UPI "          | 5 ′     | 2035        |
| 6   | UPI            | 6       | 1807        |
| 7   | UPI            | 7       | 2074        |
| 8   | UPI            | 8       | 2077        |
| 9   | UPI            | 9       | 903         |
| 10  | UPI            | 10      | 1056        |
| 11  | UPI            | 11      | 1509        |
| 12  | UPI            | 12      | 1160        |
| 13  | credit card    | 1       | 6103        |

2. Count of orders based on the no. of payment installments

This can be obtained by joining orders and payments table and grouping by payment installments and aggregating on count.

```
select p.payment_installments, count(*) as Ord_count
from `my-sql-project-387303.Brazil_data.orders` o
inner join `my-sql-project-387303.Brazil_data.payments` p on o.order_id=p.order_id
group by p.payment_installments
order by p.payment_installments;
```

## Query Results:

| Row | payment_installment | Ord_count ▼ |
|-----|---------------------|-------------|
| 1   | 0                   | 2           |
| 2   | 1                   | 52546       |
| 3   | 2                   | 12413       |
| 4   | 3                   | 10461       |
| 5   | 4                   | 7098        |
| 6   | 5                   | 5239        |
| 7   | 6                   | 3920        |
| 8   | 7                   | 1626        |
| 9   | 8                   | 4268        |
| 10  | 9                   | 644         |

# **Insights:**

Payments installments periods of 22,23 21 months seems to be the least popular choices.

| Row | payment_installment | Ord_count ▼ |
|-----|---------------------|-------------|
| 1   | 22                  | 1           |
| 2   | 23                  | 1           |
| 3   | 0                   | 2           |
| 4   | 21                  | 3           |
| 5   | 16                  | 5           |
| 6   | 17                  | 8           |
| 7   | 14                  | 15          |
| 8   | 13                  | 16          |
| 9   | 20                  | 17          |
| 10  | 24                  | 18          |

# **Recommendations derived from insights:**

- 1. As most customer orders came from Sao Paulo and Rio de Janeiro, opening more retail stores in these cities will help serve the demand.
- 2. From 2016-2018, we can clearly see an exponential increasing trend of orders, to generalize upon this investing more in Brazil would make sense.
- 3. The sales seem to be soaring in the summer months. The products which are much in demand during this period can identified and inventory for the same can be replenished on a timely basis.
- 4. The orders seem to be at their peak during afternoon times. If it's an online website that's picking up the order details, we need to make sure that the servers are up on running during these busy times to avoid customer dissatisfaction.
- 5. Business has grown by 137% between 2017 and 2018, this clearly indicates the large scope for Target as a retailer in Brazil.
- 6. Mean price of orders is highest in Paraiba state. This means more value products seem to sell more in this state. Hence luxury goods sales can be pushed in this region.
- 7. There are some exception cases where delay in delivery date was close to 6 months more than the promised date. More probe into such orders and products has to be conducted in order to understand the reason behind the delay. We need to identify whether it's normal for certain kinds of goods or is it a one-time delay resulting from supply chain management delays.
- 8. Orders that had the fastest delivery times got good feedback from customers. This clearly emphasizes the need to improve delivery times for all the products across all regions to penetrate the market better.
- 9. Average time to deliver orders is highest in Roraima state. Trying to setup a warehouse stocking all the most sold inventory items can reduce this number.
- 10. Average difference in time between estimated delivery date and actual delivery date is highest in Alagoas state. Probe must be conducted in understanding what went wrong between the time period where goods have already been shipped from the main warehouse and reaching the local warehouse & from local warehouse to the customer through delivery agent.
- 11. The payment type of credit card has the most transactions. Care must be taken to maintain the payment gateway servers functioning at all times in order for the customer to have a smooth payment experience.
- 12. Least popular plans for the installments are for between 21 and 23 months. Target can try to partner with credit card firms to offer more incentive to customer for buying products with installments between the above mentioned period.

