

				Sub	ject	Coc	de: 1	LEE	401
Roll No:									

Printed Page: 1 of 2

BTECH (SEM IV) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions in brief. 2*10 = 20

Q no.	Question	CO
a.	Identify the value of x in the expression $(56.1A)_{16} = (x)_8$.	1
b.	Perform the subtraction (101101-100110) ₂ using 2's complement method.	1
c.	Compare serial adder and parallel adder.	2
d.	What is difference between combinational and sequential circuits.	2
e.	The content of 4 bit register is initially 1101. The register is sifted six time to right with the serial input being 101101. What is the content of the register after sixth shift?	3
f.	If in an edge triggered JK flip flop, J=1, K=1 and Q=1, when the clock pulse goes HIGH, what would be the next sate of Q.	3
g.	Define critical race and non-critical race conditions.	4
h.	Differentiate synchronous and asynchronous sequential circuits.	4
i.	Write the advantage and disadvantages of TTL and CMOS logic family	5
j.	Explain fan-in and fan-out in logic families.	5

SECTION B

2. Attempt any three of the following: 10*3 = 30

. A	ttempt any three of the following:	– 3 0
Q no.	Question	СО
a.	Simplify the following Boolean function using K-map and also draw the	1
	simplified logic circuit using basic logic gates.	
	$f(A,B,C,D) = \sum_{m} (0,1,5,6,12,13,14) + d(2,4)$	
b.	Implement the function $Y(A, B, C, D) = \sum_{m} (0,1,2,5,8,13,14)$ using 8:1	2
	multiplexer. Consider A, B, C as the select lines.	
c.	Differentiate between synchronous and asynchronous counters. Design a 2	3
	bit synchronous UP counter.	
d.	An asynchronous sequential circuit with two excitation function with two	4
	feedback loop is given as: $Y_1 = xy_1 + \overline{x}y_2$; $Y_2 = x\overline{y}_1 + \overline{x}y_2$	
	(i) Draw the logic diagram of the circuit.	
	(ii) Derive the transition table & obtain the flow table	
e.	Differentiate RAM and ROM. Explain various types of ROM.	5

SECTION C

3. Attempt any *one* part of the following:

10*1 = 10

Q no.	Question	CO
a.	Explain Error detecting and Error correcting codes. A seven-bit Hamming	
	code coming out of a transmission line is 1000010. What was the original code transmitted? Consider the even parity check.	
b.	Express the design of Ex-OR gate with the help of	1
	(i) NAND gates only and (ii) NOR gates only	

Roll No: Subject Code: KEE401

BTECH (SEM IV) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

4. Attempt any *one* part of the following:

10*1 = 10

Printed Page: 2 of 2

Q no.	Question	CO
a.	Explain the design of a Full adder, with its truth table and Boolean	2
	expression.	
b.	Design a Binary Code to Gray code Converter, Also show its truth table,	2
	Boolean expression and logic diagram.	

5. Attempt any *one* part of the following:

10*1 = 10

Q no.	Question	CO
a.	Discuss the Race around condition of JK flip flop. How JK flip-flop can be	3
	used as T flip-flop, Explain the design procedure.	
b.	Analyze RS flip -flop using NAND-NAND logic and obtain its	3
	characteristic equation and excitation table. Explain how will you convert	
	it in D Flip-flop.	

6. Attempt any *one* part of the following:

10*1 = 10

,.	Γ	titempt any one part of the following.	10					
Q	no.	Question	CO					
a.		Implement the circuit defined by the following transition table with a NOR 4						
		SR Latch. Also show the implementation with NAND SR latch.						
		x_1x_2	Nil					
		y 00 01 11 10),					
b.		Write the design procedure for clocked sequential circuits and implement 4 the following state diagram.						
		000						
		1/0						
		0/0 11 0/0						
		1/0						

7. Attempt any *one* part of the following:

10*1 = 10

Q no.	Question	CO
a.	Explain PLA and PAL. Implement the given Boolean function with a PLA.	5
	$Y_1(A,B,C) = \sum_{m} (4,5,7); \qquad Y_2(A,B,C) = \sum_{m} (3,5,7)$	
b.	Construct the following logic gates from NMOS and PMOS logic Families (i) NAND (ii) NOR	5