NAME [UCID	
--------	--	------	--

- 1. Answer all four questions. Maximum mark is 18.
- 2. Show your work as much as possible, within time and space constraints.
- 1. (2 marks) Consider the statement below. Is anything wrong with the statement? If so, what is wrong?

An n type semiconductor has a bandgap of 0.7 eV. The Fermi level is located 0.4 eV below the conduction band.

2. (2 marks) Consider the regulator shown below. Using $100~\Omega < R < 200~\Omega$ and $C > 300~\mu F$ satisfies all the constraints. Initially you choose $R = 150~\Omega$ and some appropriate capacitance. If you now replace the 150 Ω resistor by $180~\Omega$, what happens to the power dissipated by the Zener diode.

- (a) Increases
- (b) Stays the same
- (c) Decreases
- (d) Depends on C

3. (2 marks) The figure below shows the input and output of a rectifier with a smoothing capacitor C. The maximum load current is I_L and frequency is f leading to an approximate ripple of I_L/fC . Answer the two questions next to the figure.

- (i) Mark the peak-to-peak ripple on the figure.
- (ii) How does the actual ripple relate to I_L/fC (hint: no math needed)
- (a) Actual ripple is larger
- (b) Actual ripple is smaller
- 4. (12 marks) (a) In updoped silicon, what is the probability of finding a hole at an energy 20kT below the conduction band?
- (b) How should you dope (acceptor/donor and concentration) silicon to get the Fermi level 0.8 eV below the conduction band?
- (c) What is the minority carrier and its concentration in the silicon after doping as in (b)?
- (d) To the doped silicon from (b), $10^{14}/\text{cm}^3$ donors are added. What are the final majority and minority carrier concentrations?

n	=	$rac{N_D-N_A}{2}+\sqrt{\left(rac{N_D-N_A}{2} ight)^2+n_i^2}$			$\frac{8\pi m_n \sqrt{2m_n(E - E_C)}}{h^3}$
		$N_D - N_A$ if $N_D - N_A > 10n_i$	$D_V(E)$	=	$\frac{8\pi m_p \sqrt{2m_p(E_V - E)}}{h^3}$ $\frac{1}{1 + e^{(E - E_F)/kT}}$
p	=	$\frac{N_A - N_D}{2} + \sqrt{\left(\frac{N_A - N_D}{2}\right)^2 + n_i^2}$	f(E)	=	$\frac{1}{1 + e^{(E - E_F)/kT}}$
	=	$N_A - N_D$ if $N_A - N_D > 10n_i$	Constants		
np	=	n_i^2	k	=	$1.38 \times 10^{-23} \ J/K$
n	=	$N_C e^{-(E_C - E_F)/kT}$	h	=	$6.63 \times 10^{-34} Js$
p	=	$N_V e^{-(E_F - E_V)/kT}$	q	=	$1.60 \times 10^{-19} C$
		$(2\pi m_m kT)^{3/2}$	@300K		
N_C	=	$2\left(\frac{2\pi m_n kT}{h^2}\right)^{3/2}$			26~meV
		$2\left(\frac{2\pi m_p kT}{h^2}\right)^{3/2}$	$\frac{kT}{q}$	=	26~mV
${\rm Silicon@300K}$			${\tt Germanium@300K}$		
N_C	=	$2.8 \times 10^{19}/cm^3$	N_C	=	$1.0 \times 10^{19}/cm^3$
N_V	=	$1.0 \times 10^{19}/cm^3$			$6.0 \times 10^{18}/cm^3$
n_i	=	$1.0 \times 10^{10}/cm^3$	n_i	=	$2.0\times10^{13}/cm^3$

 $E_g = 0.67 eV$

 $E_g = 1.1 \, eV$

IAME	UCID	
------	------	--

- 1. Answer all four questions. Maximum mark is 18.
- 2. Show your work as much as possible, within time and space constraints.
- 1. (2 marks) Consider the statement below. Is anything wrong with the statement? If so, what is wrong?

An p type semiconductor has a bandgap of 0.7 eV. The Fermi level is located 0.4 eV above the valence band.

2. (2 marks) Consider the regulator shown below. Using $100~\Omega < R < 200~\Omega$ and $C > 300~\mu F$ satisfies all the constraints. Initially you choose $R = 150~\Omega$ and some appropriate capacitance. If you now replace the 150 Ω resistor by $120~\Omega$, what happens to the power dissipated by the Zener diode.

- (a) Increases
- (b) Stays the same
- (c) Decreases
- (d) Depends on C

3. (2 marks) The figure below shows the input and output of a rectifier with a smoothing capacitor C. The maximum load current is I_L and frequency is f leading to an approximate ripple of I_L/fC . Answer the two questions next to the figure.

- (i) Mark the peak-to-peak ripple on the figure.
- (ii) How does the actual ripple relate to I_L/fC (hint: no math needed)
- (a) Actual ripple is larger
- (b) Actual ripple is smaller
- 4. (12 marks) (a) In updoped silicon, what is the probability of finding a hole at an energy 20kT below the conduction band?
- (b) How should you dope (acceptor/donor and concentration) silicon to get the Fermi level 0.8 eV below the conduction band?
- (c) What is the minority carrier and its concentration in the silicon after doping as in (b)?
- (d) To the doped silicon from (b), $10^{14}/\text{cm}^3$ donors are added. What are the final majority and minority carrier concentrations?

n	=	$\frac{N_{D}-N_{A}}{2}+\sqrt{\left(rac{N_{D}-N_{A}}{2} ight)^{2}+n_{i}^{2}}$	$D_C(E)$	=	$\frac{8\pi m_n \sqrt{2m_n(E - E_C)}}{h^3}$
	=	$N_D - N_A$ if $N_D - N_A > 10n_i$	$D_V(E)$	=	$\frac{8\pi m_p \sqrt{2m_p(E_V - E)}}{h^3}$
p	=	$rac{N_A-N_D}{2}+\sqrt{\left(rac{N_A-N_D}{2} ight)^2+n_i^2}$			$\frac{1}{1 + e^{(E - E_F)/kT}}$
	=	$N_A - N_D$ if $N_A - N_D > 10n_i$	Constants		
np	=	n_i^2	k	=	$1.38 \times 10^{-23} \ J/K$
n	=	$N_C e^{-(E_C - E_F)/kT}$	h	=	$6.63 \times 10^{-34} Js$
p	=	$N_V e^{-(E_F - E_V)/kT}$	q	=	$1.60 \times 10^{-19} C$
		$(2\pi m_n kT)^{3/2}$	@300K		
N_C	=	$2\left(\frac{2\pi m_n kT}{h^2}\right)^{3/2}$	kT	=	26~meV
		$2\left(\frac{2\pi m_p kT}{h^2}\right)^{3/2}$	$\frac{kT}{q}$	=	26~mV
Silicon@300K		,	Germanium@300K		
N_C	=	$2.8 \times 10^{19}/cm^3$	N_C	=	$1.0 \times 10^{19}/cm^3$
N_V	=	$1.0 \times 10^{19}/cm^3$			$6.0 \times 10^{18}/cm^3$
n_i	=	$1.0 \times 10^{10}/cm^3$	n_i	=	$2.0\times10^{13}/cm^3$

 $E_g = 0.67 \, eV$

 $E_g = 1.1 \, eV$