Réseaux de neurones récurrents

ENS'IA

Ensimag 2019-2020

11 mars 2020

Rappel: objectif

Comment approximer cette fonction? \rightarrow Réseau de neurones

Rappel: Sigmoid neuron

$$a_1, ..., a_n \in [0, 1]$$

 $s = \sigma(\sum_{i=0}^n a_i * w_i + b)$ où $\sigma(x) = \frac{1}{1 + e^{-x}}$

Rappel : Réseau de neurones

 \rightarrow Succession de couches de neurones

Rappel: Aspects techniques

Fonctions d'activation:

- sigmoid $\rightarrow a(x) = \frac{1}{1+e^{-x}}$
- ReLU $\rightarrow a(x) = \max(0, x)$
- $\tanh \to a(x) = \tanh x$

Algorithmes d'optimisation:

- Stochastic gradient descent (SGD)
- RMSProp
- Adam

Rappel: en pratique

```
→ Utilisation de Keras
model = Sequential()
model.add(Dense(64, activation = "relu", input_dim=128))
model.add(Dense(64, activation = "relu"))
model.add(Dense(10, activation = "softmax"))
model.summary()
model.compile(loss = loss, optimizer = optimizer, metrics = [metrics])
```

Rappel : Réseau de neurones

 \rightarrow Problème : données liées dans le temps ou $s\acute{e}quences$

 \rightarrow Idée : conserver de l'information d'une donnée à une autre

 \rightarrow Idée : conserver de l'information d'une donnée à une autre

→ Idée : conserver de l'information d'une donnée à une autre

 \rightarrow En pratique : mis à jour et transfert d'un état interne

$$h_t = \tanh (W_{hh}h_{t-1} + W_{hx}x_t)$$

$$y_t = W_{hy}h_t$$

3 matrices à apprendre : W_{hh} , W_{hx} et W_{hy}

Différentes architectures pour différents modèles

Mais malheuresement quelques soucis

Mais malheuresement quelques soucis

Problèmes:

• Disparition de l'information au fur et à mesure par "compression"

Mais malheuresement quelques soucis

Problèmes:

- Disparition de l'information au fur et à mesure par "compression"
- Vanishing Gradient lors de l'apprentissage : apprentissage peu efficace...

LSTM

→ Solution : Long Short Term Memory (1997)

LSTM

 \rightarrow Solution : Long Short Term Memory (1997)

4 parties:

- Forget gate : ce que l'on oublie
- "Input" gate : ce que l'on souhaite avoir
- Update gate : ce que l'on rajoute
- Output gate : ce que l'on sort

RNN - Résumé

Structure:

- Transformation des données : séquences
- Eventuellement word embedding : conversion mot en vecteur
- Recurrent layers
- Réseau classique / Dense layer

Sources

- cs231 Stanford
- http://colah.github.io/
- http://karpathy.github.io/