Gaspare FERRARO

CyberSecNatLab

Matteo ROSSI

Politecnico di Torino

Key Exchange & Diffie-Hellman

License & Disclaimer

License Information

This presentation is licensed under the Creative Commons BY-NC License

To view a copy of the license, visit:

http://creativecommons.org/licenses/by-nc/3.0/legalcode

Disclaimer

- We disclaim any warranties or representations as to the accuracy or completeness of this material.
- Materials are provided "as is" without warranty of any kind, either express or implied, including without limitation, warranties of merchantability, fitness for a particular purpose, and non-infringement.
- Under no circumstances shall we be liable for any loss, damage, liability or expense incurred or suffered which is claimed to have resulted from use of this material.

Prerequisites

Lectures:

- > CR_0.1 Number Theory and modular arithmetic
- > CR_1.1 Introduction to cryptography and classical ciphers

Recap

- At this point we know:
 - How symmetric ciphers work
 - How to protect communications using a shared secret key
- Goal of this lecture:
 - Find a way to exchange keys
 - Expose the possible issues in key-exchange

Outline

- The Key Exchange problem
- The Diffie-Hellman protocol
- Issues

Outline

- The Key Exchange problem
- The Diffie-Hellman protocol
- > Issues

The Key Exchange Problem

- Problem settings:
 - > N users that want to communicate with each others
 - Communication must be independent from the others but in a shared channel:
 - User C can see the messages exchanged by user A and user B
 - User C cannot decrypt them
- Naïve solution: every user stores N-1 different keys shared with every single other user

A Better Solution

- The naïve solution doesn't seem efficient as the number of keys grows quadratically with the number of users
- A better way to solve this problem, is to have a trusted 3rd party (TTP):
 - Every user has to remember a single key to speak with the TTP
 - > The TTP manages the creation of shared keys between users

TTP – Toy Example

- Alice wants to speak with Bob using a TTP, who knows both Alice's key k_a and Bob's key k_b :
 - Alice says to TTP: "I want to talk with Bob"
 - ightharpoonup TTP randomly creates a key k_{AB}
 - > TTP sends to Alice $E(k_A, k_{AB})$ and $E(k_B, k_{AB})$
 - Alice sends to Bob the second one and they start communicating

TTP - Issues

- This kind of scheme has two main problems:
 - > It relies on the TTP being always online
 - The TTP knows all the keys: it is a single point of failure for the whole system
- There are contexts in which TTP makes sense:
 - Inside a company/university or a whatever closed environment
 - A similar reasoning is in fact at the basis of Kerberos (See lecture CP_1.3 - Kerberos)

The Key Exchange Problem

- Key question: can we generate online keys without a TTP?
- Some protocols have been proposed during the years:
 - Merkle puzzles (1974)
 - Diffie-Hellman (1976)
 - > RSA (1977)
 - Identity-based encryption (2001)
 - Functional encryption (2011)

Merkle Puzzles

- Merkle puzzles are a way to exchange keys using block ciphers
 - The idea is that Alice sends N puzzles to Bob, containing the messages "This is message X. This is the symmetrical key Y"
 - Bob randomly choose one of them, solve it, and gives back the number X to Alice
 - Alice and Bob both know which puzzle X Bob solved and its symmetrical key Y, but whoever listen to the conversation do not
- Issue¹: to make this work, the number of puzzles N must be very big
- Issue²: An eavesdropper need only a linear time factor of O(N), compared to Alice and Bob, to find the key exchanged
- Our goal is to have a key exchange algorithm which needs exponential time to be broken

Outline

- The Key Exchange problem
- The Diffie-Hellman protocol
- > Issues

"We stand today on the brink of a revolution in cryptography."

[Whitfield Diffie and Martin Hellman, "New directions in Cryptography", November 1976]

- Diffie and Hellman in 1976 give a better solution using number theory
 - Alice and Bob agree (publicly!) on a prime number p and a generator g in $\{2, 3, ..., p-1\}$
 - > Alice generates a number a in $\{2, 3, ..., p-1\}$ and Bob does the same with b
 - Alice sends the value $A = g^a \mod p$ and, in the same way, Bob sends $B = g^b \mod p$

- > At this point:
 - \triangleright Alice knows a and B
 - Bob knows b and A
 - > They both can calculate $g^{ab}=A^b=B^a \ mod \ p$, that will be their shared key
 - An eavesdropper that only knows $g^a \mod p$ and $g^b \mod p$ can't compute $g^{ab} \mod p$ efficiently!

Example:

- \triangleright Take p=37 and g=2
- \triangleright Alice generates the number 7 and sends $2^7 mod \ 37 = 17$
- \triangleright Bob generates the number 21 and sends $2^{21} mod \ 37 = 29$
- ightharpoonup Both can compute $2^{7*21} = 29^7 = 17^{21} = 8 \mod 37$
- > 8 will be Alice and Bob's shared key

How hard is to break DH?

- It is believed that the only way to break DH is to recover one of a and b, computing so a discrete logarithm
- > The best-known algorithm for discrete logarithms is the General Number Field Sieve (GNFS) that runs in $O(e^{(\sqrt[3]{n})})$

How hard is to break DH?

- To give some practical numbers:
 - Breaking DH with p of 1024 bits is roughly equivalent to break a block cipher with 80-bit security
 - ➤ If p is of 3072 bits it is equivalent to a 128-bit block cipher (like AES-128!)
 - ...and so on
- These numbers are even better in the case of variations of the classic DH: for example, a 256-bit instance of DH over Elliptic Curves is enough to get the security of AES-128

Outline

- The Key Exchange problem
- The Diffie-Hellman protocol
- Issues

Issues

- > There are two main issues in using Diffie-Hellman:
 - Reaching high level of security requires very big keys
 - Diffie-Hellman Protocol is vulnerable to active attacks like the Man-in-the-Middle

Insecurity against Man-in-the-Middle

- An eavesdropper, who can listen and modify the communication, can:
 - > Intercept $g^a mod p$ from Alice and substitute it with $g^{a'} mod p$
 - ightharpoonup Do the same with Bob, using $g^{b'}mod\ p$
 - > Craft the keys $(g^{a'b}mod\ p, g^{ab'}mod\ p)$ (now Alice and Bob have different "shared" keys!)
 - Decrypt every communication, read it, and re-encrypt it with the correct key (without letting know Alice and Bob anything!)

Gaspare FERRARO

CyberSecNatLab

Matteo ROSSI

Politecnico di Torino

Key Exchange & Diffie-Hellman

