Dancing in Pairs

Bob is a dance teacher and he started dance classes recently. He observes a strange attendance pattern among his students. Initially, there are no students. On day *i*, a new student starts attending the class. The student stops attending the class, if and only if he has attended the class for *i* consecutive days. Also, the student resumes attending the class, if and only if he has not attended the class for *i* consecutive days.

We denote the student who starts coming on day i as student i. To mark attendance, o denotes present and x denotes absent.

The schedule for the student 3 from day 1 is as follows:

XX000XXX000XXX000XXX...

(Student 3 starts attending the class from day 3, and stops attending from day 6, and then starts attending from day 9, and so on.)

The schedule for the student 5 from day 1 is as follows. xxxxoooooxxxxxxoooooxxxxxx...

Bob wants his students to dance in pairs. However, if the number of students coming on day i is odd, then there will be someone who can't find a partner. So Bob wants to know if the number of students coming on day i is even or odd. We denote the number of students coming on day i as N(i). Please find out whether N(i) is even or odd.

Input format

The first line contains an integer, T, which denotes the number of test cases. For each test case, there is an integer i

Output Format

For each test case, if N(i) is even, then print even. If N(i) is odd, then print one line odd.

Constraints

 $1 \le T \le 100$ $1 \le i \le 10^{18}$

Sample Input

Sample Output

odd			
odd			
odd			
odd odd odd even			

Explanation

The number of students coming on day 1 is 1: only student #1 attends the class. So N(1)=1 and it is odd. The number of students coming on day 2 is 1: student #2, so n(2)=1 and it is odd.

The number of students coming on day 3 is 3: student #1, student #2, and student #3. So N(3)=3 and it

IC	α	าก	

The number of students coming on day 4 is 2: student #3 and student #4. So N(4)=2 and it is even.