MATH110BH Homework 6

Boran Erol

February 2024

1 Problem 1

Lemma 1.1. Let M be a cyclic (left) R-module. Then, there is an (left)-ideal I of R such that $M \cong R/I$.

Proof. Let M be a cyclic (left) R-module. By lecture, there is a submodule N of R such that $M \cong R/N$. Since every submodule of R is an ideal of R, we conclude the proof.

2 Problem 2

Lemma 2.1. Let R be a commutative ring and M, N be R-modules. Then, $Hom_R(M, N)$ is an R-module.

Proof. Let's first show that $Hom_R(M, N)$ is an Abelian group using addition of functions. Let $f, g \in Hom_R(M, N)$ and $x, y \in M$. It suffices to show that f + g is a module homomorphism from M to N. Then, (f + g)(x + y) = f(x + y) + g(x + y) = f(x) + f(y) + g(x) + g(y) = f(x) + g(x) + f(y) + g(y) = (f + g)(x) + (f + g)(y). Let $a \in R$ and $x \in M$. Then, a(f + g)(x) = a(f(x) + g(x)) = af(x) + ag(x) = f(ax) + g(ax) = (f + g)(ax). The fact that it's Abelian follows immediately from the commutativity of R.

Let's now prove that $Hom_R(M, N)$ is an R-module.

Let $r \in R$, $f, g \in Hom_R(M, N)$ and $x \in M$. Then, r(f+g)(x) = r(f(x) + g(x)) = rf(x) + rg(x), where the last equality holds because N is an R-module.

Let $r, s \in R$, $f \in Hom_R(M, N)$ and $x \in M$. Then, $(r + s) \cdot f(x) = rf(x) + sf(x)$, again because N is an R-module.

Similarly, (rs)f = r(sf) and $1 \cdot f = f$ follows from the fact that N is an R-module.

3 Problem 3

Lemma 3.1. Let M be a (left) R-module and N be a submodule of M. If N and M/N are finitely generated, M is finitely generated.

Proof. Let $\{a_1, a_2, ..., a_n\}$ be a generating set for N and $\{b_1, b_2, ..., b_n\}$ be a generating set for M/N. Let f be the canonical surjective module homomorphism from M to M/N. Since f is surjective, for every non-zero $\hat{x} \in M/N$, there exists $x \in M$ such that $f(x) = \hat{x}$. For every b_i , pick some c_i such that $f(c_i) = b_i$. We'll prove that $\{a_1, a_2, ..., a_n, c_1, c_2, ..., c_m\}$ is a generating set for M. Let $x \in M$. We have the following two cases:

Case 1: $x \in N$. Then, $x = r_1 a_1 + r_2 a_2 + ... + r_n a_n$ for some $r_1, r_2, ..., r_n$ in R.

Case 2: $x \in M - N$. Then, \hat{x} is non-zero in M/N, so there are $r_{n+1}, r_{n+2}, ..., r_{m+n}$ such that $\hat{x} = r_{n+1}b_1 + ..., +r_{m+n}b_m$. Pulling back using f, we have that $x = r_{n+1}c_1 + ... + r_{n+m}c_m$.

4 Problem 4

Lemma 4.1. Let M be a left R-module. Then, $Hom_R(R, M)$ and M are isomorphic as groups.

Proof. First of all, notice that setting f(1) = x for any $x \in M$ fully determines f since f(r) = rf(1) = rx by module axioms.

Recall from Problem 3 that $Hom_R(R, M)$ is an Abelian group using addition of functions. Consider the following map $\phi: Hom_R(R, M) \to M$ defined by $f \mapsto f(1)$. Clearly, $x \mapsto f$ s.t. f(1) = x is an inverse map. Clearly, ϕ is surjective. We thus conclude the proof.

5 Problem 5

Lemma 5.1. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a right R-module homomorphism. Then, there exists a unique matrix $A \in M_{mxn}(\mathbb{R})$ such that $f(x) = A \cdot x$.

Proof. Consider the standard bases for R^n and R^m . Notice that $f(x) = x_1 f(e_1) + ... + x_n f(e_n)$ since f is a module homomorphism. Let A be such that the ith column of A is the column vector $f(e_i)$. Notice that $A \cdot x = x_1 f(e_1) + ... + x_n f(e_n)$, so $f(x) = A \cdot x$. A is unique because the columns of A are fully determined by $f(e_i)$.

6 Problem 6

Lemma 6.1. Let R be a commutative ring and $I \subseteq R$ be an ideal. If I is a free R-module, I is principal.

Proof. Let β be a finite basis for I. Assume by contradiction that β has at least two elements. Let $s_1, s_2 \in \beta$. Then, $s_2s_1 - s_1s_2 = 0$, which contradicts the linear independence of β . We thus conclude the proof.

7 Problem 7

Lemma 7.1. \mathbb{Q} is not a free \mathbb{Z} -module.

Proof. Recall from a previous homework exercise that the rational numbers can only be generated using infinitely many elements.

Assume by contradiction that there's some basis $\{q_1, q_2, ..., \}$ for \mathbb{Q} . Without loss of generality, we can take all q_i to be positive and in simplified form.

We'll now prove that any set containing two rational number is independent, reaching a contradiction. Let $q_1 = \frac{a_1}{b_1}$ and $q_2 = \frac{a_2}{b_2}$. Notice that $b_1 a_2 \cdot q_1 + -b_2 a_1 \cdot q_2 = 0$. We therefore conclude the proof.

8 Problem 8

Lemma 8.1. Every free finitely generated R-module has a finite basis.

Proof. Let M be a free finitely generated R-module. Let $x_1, ..., x_n$ be a generating set for M and β be a (possibly infinite) basis for M.

Since β is generating, every x_i can be written as a finite combination of elements in β . Then, putting all of these elements together, we get a finite set such that the span of this set includes $x_1, ..., x_n$. This set is independent since it's a subset of β and generating, so we conclude the proof.

9 Problem 9

Let M be a (left) R-module and $I \subsetneq R$ be an ideal of R. Let IM be the submodule generated by products of the form sx for all $s \in I$ and $x \in M$.

Lemma 9.1. Assume IM = 0. Then, M admits the structure of an R/I-module.

Proof. Let $x \in M$ and $s \in R - I$. Define $(s + I) \cdot x = s \cdot x$.

Let's first show that this is well-defined. Let $r, s \in R$ such that $r \neq s$ and r + I = s + I. Then, $r - s \in I \implies (r - s) \cdot x = 0 \implies r \cdot x = s \cdot x$.

Let's now show that the four module axioms hold.

Since I is not a unit ideal, $1 \notin I$. Then, $\forall x \in M : (1+I) \cdot x = x$.

Let
$$r, s \in R-I$$
 and $x \in M$. Then, $((r+I)(s+I))(x) = (rs+I) \cdot x = (rs) \cdot x = r \cdot (s \cdot x) = (r+I)((s+I) \cdot x)$.

Let
$$r \in R - I$$
 and $x, y \in M$. Then, $(r+I)(x+y) = r \cdot (x+y) = r \cdot x + r \cdot y = (r+I) \cdot x + (r+I) \cdot y$.

Let
$$r, s \in R-I$$
 and $x \in M$. Then, $(r+I+s+I) \cdot x = (r+s+I) \cdot x = (r+s) \cdot x = r \cdot x + s \cdot x = (r+I) \cdot x + (s+I) \cdot x$.

Lemma 9.2. M/IM admits the structure of a (left) module over the factor ring R/I.

Proof. Since M/IM is an R-module, M/IM is an additive Abelian group.

We define $(r+I)\cdot (x+IM)=rx+IM$. Let's first show that this is well-defined. Let $r,s\in R$ such that $r\neq s$ and r+I=s+I and $x,y\in M$ such that $x\neq y$ and x+IM=y+IM. Then, $r-s\in I$ and $x-y\in IM$.

Then,
$$(r-s)x \in IM$$
, so $(r+I) \cdot (x+IM) = (s+I) \cdot (x+IM)$.

Similarly,
$$r(x - y) \in IM$$
, so $(r + I) \cdot (x + IM) = (r + I) \cdot (y + IM)$.

Let's now show that the four module axioms hold.

As in the previous lemma, 1 + I is the identity element.

Let $r, s \in R$ and $x \in M$. Then,

$$((r+I)(s+I)) \cdot (x+IM) = (rs+I) \cdot x = (rs) \cdot x = r \cdot (s \cdot x) = (r+I) \cdot ((s+I) \cdot (x+IM))$$

$$((r+I)+(s+I))\cdot(x+IM) = (r+s+I)\cdot x = (r+s)\cdot x = r\cdot x + s\cdot x = (r+I)\cdot(x+IM) + (s+I)\cdot(x+IM)$$

Lastly, let $r \in R$ and $x, y \in M$. Then,

$$(r+I)\cdot(x+IM+y+IM) = r\cdot(x+y) = r\cdot x + r\cdot y = (r+I)\cdot(x+IM) + (r+I)\cdot(y+IM)$$

Lemma 9.3. Let M be a free R-module. Then, M/IM is a free R/I-module.

Proof. Let S be a basis for M. We'll prove that $\hat{S} = \{s + IM : s \in S\}$ is a basis for M/IM.

Let $x \in M$. Then, there exists $r_1, ..., r_n$ and $s_1, ..., s_n$ such that

$$x = r_1 s_1 + \dots + r_n s_n$$

Then,

$$x + IM = (r_1 + I) \cdot (s_1 + IM) + \dots + (r_n + I) \cdot (s_n + IM)$$

Thus, \hat{S} generates M/IM. Now, let $r_1,...,r_n \in R$ and $s_1,...,s_n \in S$ such that

$$(r_1 + I) \cdot (s_1 + IM) + \dots + (r_n + I) \cdot (s_n + IM) = 0$$

Then,

$$r_1 s_1 + \dots + r_n s_n = 0$$

By the linear independence of S, $r_i = 0$ for all i. Thus, \hat{S} is also independent.

Lemma 9.4. Let R be a nonzero commutative ring. If $R^n \cong R^m$, n = m.

Proof. Let R be a non-zero commutative ring and I be a maximal ideal of R. Then, R/I is a field. Since $R^n \cong R^m$, $IR^n \cong IR^m$ by using the existing isomorphism. Then, $R^n/IR^n \cong R^m/IR^m$. Notice that these are modules over R/I, so they're isomorphic vector spaces. R^n/IR^n has a basis of n elements and R^m/IR^m has a basis of m elements. Since isomorphic vector spaces have the same dimension, n=m.

10 Problem 10

Lemma 10.1. Let A be an Abelian group and $f \in End(A)$. A admits a Z[x]-module structure with $x \cdot a = f(a)$.

Proof. We check all four properties of modules.

A is an Abelian group by assumption, so the first condition is trivially satisfied.

For constant polynomials f(x) = b for some $b \in \mathbb{Z}$ define $f \cdot a = ba$. Then, define $x \cdot a = f(a)$. Since End(A) is a ring, any polynomial in Z[x] is an endomorphism (since it's a composition and addition of f).

This immediately produces $\forall a \in A : f \cdot a = a$ where f is the map that's 1 everywhere.

Let $f \in End(A)$ and $x, y \in A$. Since f is a group homomorphism, f(x+y) = f(x) + f(y).

Let $f, g \in End(A)$ and $a \in A$. Since End(A) is an additive Abelian group, (f + g)(a) = f(a) + g(a).

Let $f, g \in End(A)$ and $a \in A$. By the associativity of composition, (fg)(a) = f(g(a)).

We have thus satisfied all properties of a module.