

18.03SC Unit 1 Exam

1. (a) In a perfect environment, the population of Norway rat that breeds on the MIT [8] campus increases by a factor of $e \simeq 2.718281828459045...$ each year. Model this natural 828459045... each year. $\frac{df}{dt} = kf \qquad C = fo$ $f = Ce^{kt} \qquad f = foe^{kt} \qquad k = 1.$... of [4] growth by a differential equation.

What is the growth rate *k*?

(b) MIT is a limited environment, with a maximal sustainable Norway rat population of [4] R = 1000 rats. Write down the logistic equation modeling this. (You may use "k" for the natural growth rate here if you failed to find it in (a).)

r=-r(1-1500)k

(c) The MIT pest control service intends to control these rats by killing them at a constant [8] rate of a rats per year. If it wants to limit the rat population to 75% of the maximal sustainable population, what rate *a* it should aim for (in rats per year)?

(= ((1- (500) - Q

- **2.** For the autonomous equation $\dot{x} = x(x-1)(x+2)$, please sketch:
- (a) the phase line, identifying the critical points and whether they are stable, unstable, or [4] neither.
- **(b)** at least one solution of each basic type (so that every solution is a time-translate of one [4] you have drawn)

Below is a diagram of a direction field of the differential equation $y' = (1/4)(x - y^2)$. On it please plot and label:

(c) the nullcline

 $0 = \frac{1}{2}(x - y^2)$ [3]

(d) at least two quite different solutions

 $\int_{-\infty}^{2} = \frac{1}{\sqrt{2}}$ [3]

(e) the separatrix (if there is one)

- $\chi = \alpha \omega^2$ [3]
- (f) True or false: If y(x) is a solution with a minimum, then for all large enough x, y(x) < [3]

 \sqrt{x} . (No explanation needed: just circle one.)

(2 - 4 = 5 50 at mr

[10]

3. (a) Use Euler's method with stepsize h = 1/2 to estimate the value at x = 3/2 of the [10] solution to y' = x + y such y(0) = 1.

y=4.25

(b) Find the solution of $t\dot{x} + x = \cos t$ such that $x(\pi) = 1$.

24 = 24 + 9x 3(t2+x)de = xt 2t = 3int + C 2 = 3int + C 2(T) = C = T 2(T) = T 2 = T 2 = T

[3]

[3]

[3]

[3]

[3]

[5]

4. (a) Find real *a*, *b* such that
$$\frac{1}{3+2i} = a + bi$$
.

$$\frac{1}{(3+2i)(3-2i)} = \frac{3-2i}{9+4} = \frac{3}{13} - \frac{2}{13}i$$

(b) Find real r, θ such that $1 - i = re^{i\theta}$.

(c) Find real a, b such that $(1-i)^8 = a + bi$.

$$(1-i)^{8} = (52e^{-i\frac{\pi}{4}})^{8}$$

$$= |6e^{-i2\pi}|$$

$$= |6|(1) = |6|$$

$$= |6|(1) = |6|$$

$$= |6|(1) = |6|$$

$$= |6|(1) = |6|$$

$$= |6|(1) = |6|$$
(3)

(d) Find real a, b such that b > 0 and a + bi is a cube root

$$b = 0, a = -1$$

(e) Find real a, b such that $e^{\ln 2 + i\pi} = a + bi$.

$$e^{\ln 2}e^{i\pi}$$
 $2e^{i\pi} = -2$
 $a=-2, b=0$

(f) Write $f(t) = 2\cos(4t) - 2\sin(4t)$ in the form $A\cos(\omega t - \phi)$.

=
$$[2, 2i]$$
 $[i8n]$
= $2\pi e^{i\frac{\pi}{4}} \cdot e^{i4t}$
= $2\pi e^{i(\frac{\pi}{4}+4t)} = 252 \left(col(\frac{\pi}{4}+4t)+i8in(\frac{\pi}{4}+4t)\right)$
 $A = 252 \quad \omega = 4, \quad \Phi = -\frac{\pi}{4}$

[5]

[5]

[5]

[5]

5. (a) Find a particular solution to the equation $\dot{x} + 3x = e^{2t}$.

(b) Find the solution to the same equation such that x(0) = 1.

(c) Write down a linear equation with exponential right hand side of which $\dot{x} + 3x = \cos(2t)$ is the real part.

(d) Find a particular solution to the equation $\dot{x} + 3x = \cos(2t)$.

MIT OpenCourseWare http://ocw.mit.edu

 $i24e^{i2t} + 34e^{i2t} = e^{i2t}$ A(3+i2) = 1 $A = \frac{1}{3+i2}$ $= \frac{3}{13} - \frac{2}{13}i$

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.