Offenlegungsschrift ₀₀ DE 3836343 A1

(51) Int. Cl. 4: G 01 N 30/60

B 01 D 15/08

DEUTSCHES PATENTAMT (21) Aktenzeichen: P 38 36 343.7 Anmeldetag: 25. 10. 88

Offenlegungstag: 1. 6.89

30 Unionspriorität: 32 33 31

23.11.87 CH 4551/87

(7) Anmelder:

Hafner, Werner, Flüh, CH; Wasmer, Hermann D., Riehen, CH

(74) Vertreter:

Mitscherlich, H., Dipl.-Ing.; Gunschmann, K., Dipl.-Ing.; Körber, W., Dipl.-Ing. Dr.rer.nat.; Schmidt-Evers, J., Dipl.-Ing.; Melzer, W., Dipl.-Ing., Pat.-Anwälte, 8000 München

② Erfinder: gleich Anmelder

(54) Säulenchromatograph und Verfahren zu dessen Betrieb

Ein mit zwei Längsschlitzen (18) versehenes Stahlgehäuse (1) weist an seinem unteren Ende ein Basissegment (9) auf, das sich über Füße (10) auf den Boden abstützt und mit einer lösungsmitteldurchlässigen Glasfritte (11) versehen ist. Auf das Basissegment (9) stützen sich eine Reihe von Hohlsegmenten (12), welche mit ihren plangeschliffenen Stirnflächen aufeinanderliegen und durch eine am Oberteil des Gehäuses (1) angeordnete Überwurfmutter (4) zusammengepreßt werden.

Die zu untersuchende Substanz wird oberhalb der Glasfritte (11) im Basissegment (9) angeordnet und von dem zwischen den Füßen (10) eindringenden Lösungsmittel nach oben in die von den Hohlsegmenten (12) umschlossene stationäre Phase mitgenommen. Nach erfolgter chromatographischer Trennung wird die durch die Hohlsegmente (12) gebildete Säule zerlegt und die in den einzelnen Hohlsegmenten befindlichen Substanzbestandteile können der welteren Analyse zugeleitet werden.

Beschreibung

Die vorliegende Erfindung betrifft einen Säulenchromatographen gemäß dem Oberbegriff des unabhängigen Patentanspruchs 1. Sie umfaßt ferner ein Verfahren 5 zu dessen Betrieb.

Die zur Zeit bekannten, zur analytischen und präparativen Kapillarchromatographie verwendbaren Säulenchromatographen sind, wie der Fachmann weiß, mit zahlreichen, teils schwerwiegenden Nachteilen behaftet, 10 deren wichtigste sich wie folgt kurz zusammenfassen lassen.

Vom Gesichtspunkte der Wirtschaftlichkeit läßt sich sagen, daß der Lösemittelverbrauch relativ hoch und die Überwachung des Trennverfahrens durch Fachpersonal 15 ziemlich aufwendig ist. Außerdem können die Trennmethoden nicht direkt vom DCDC übernommen oder der HPLC und MPLC angeglichen werden. Die verwendten Apparaturen sind kostspielig und das Verfahren in den liegt die Wiederfindungsrate meist beträchtlich unter 100% aller Komponenten.

Auch die Selektivität der bekannten Säulenchromatographen läßt zu wünschen übrig: So ist es nicht möglich, spezifische Säulenfüllungen für jede Art von Proben, 25 von unpolaren RP-Phasen über Silikagel zu polaren Normal-Phasen, Ionenaustauscher auf Silikagel-Basis, Wide-Pore- und Chiral-Phasen zu realisieren.

Ferner ist in bezug auf die Sicherheit zu beanstanden, daß die bekannten Säulen zum Trockenlaufen oder 30 Überlaufen neigen, da nicht in geschlossenem System mit gesättigter Kammer gearbeitet werden kann. Auch können die bekannten Chromatographiesäulen nicht über Nacht laufen gelassen werden, da die Kapillarwirkung nicht in gesättigter Kammer beibehalten wird. 35 Ferner ist die Explosions- und Brandgefahr durch leichtflüchtige Lösungsmittel nicht zu unterschätzten, wobei in vielen Fällen auch schädliche Emissionen an die Umwelt abgegeben werden.

Der Mangel an Vielseitigkeit bildet einen weiteren 40 Nachteil, der in der Praxis immer wieder beanstandet

Es ist die Aufgabe der vorliegenden Erfindung, diese Nachteile zu beheben und demgemäß einen Säulenchromatographen vorzuschlagen, welcher gegenüber 45 den konventionellen Systemen eine große Flexibilität in der praktischen Anwendung aufweist und bezüglich der verschiedenen, oben erwähnten Gesichtspunkte einen erheblichen Fortschritt hinsichtlich Zeit- und Kostenersparnis mit sich bringt.

Der erfindungsgemäße Säulenchromatograph ist im kennzeichnenden Teil des unabhängigen Patentanspruchs 1 definiert; die Definition des zu dessen Betrieb dienenden Verfahrens ergibt sich aus Anspruch 9.

Nachstehend wird anhand der Zeichnung ein Ausfüh- 55 rungsbeispiel dieses Chromatographen beschrieben.

Fig. 1 ist eine Perspektivansicht einer Ausführungsform des Säulenchromatographen,

Fig. 2 ist ein Vertikalschnitt desselben,

Fig. 3 ist eine Darstellung des gesamten Gerätes ein- 60 schließlich des den eigentlichen Säulenchromatographen umgebenden Glasgehäuses und

Fig. 4 zeigt perspektivisch ein einzelnes Hohlsegment.

Die Fig. 1 und 2 zeigen ein kreiszylindrisches Gehäu- 65 se 1 aus rostfreiem Stahl, das an seinem oberen Ende offen ist und in dem die Öffnung 2 umgebenden Abschnitt eine Außengewinde 3 aufweist; eine mit Innen-

gewinde 5 und einer zentralen Öffnung 6 versehene Überwurfmutter 4 läßt sich auf das Außengewinde 3 aufschrauben.

Das Gehäuse 1 besitzt an seinem unteren Ende einen einwärts gerichteten Ringflansch 7, auf dem sich der radial nach außen gerichtete Stützflansch 8 eines insgesamt mit 9 bezeichneten Basissegments abstützt. Letzteres ist ein zylindrischer, aus Borsilikat- oder Quarzglas erstellter Behälter, der sich über Füße 10 auf eine Unterlage abstützt und der im Innern, direkt im Anschluß an die oberen Fußkanten, eine scheibenförmige Glasfritte 11 trägt. Diese Glasfritte 11 soll für die verwendete stationäre Phase (z. B. pulverförmiges Kieselgel) undurchlässig sein. Dagegen soll sic die mobile Phase (Lösungsmittel) von außen ins Innere des Basissegmentes 9 eindringen lassen. Die Glasfritte 11 ist im Basissegment durch Verschweißen, Verklemmen oder auf sonstige Weise fest verankert.

Oberhalb des Basissegmentes 9 sind mehrere Hohlmeisten Fällen nicht wirksam reproduzierbar. Auch 20 segmente 12 übereinander so angeordnet, daß deren koaxial übereinander liegende Bohrungen einen zur Aufnahme der stationären Phase dienenden Hohlraum 13 bilden. Jedes Hohlsegment 12 besitzt einen zylindrischen Grundkörper, dessen beide Stirnseiten mit radial nach außen ragenden Ringflanschen F versehen sind (Fig. 4). Die ebenfalls aus Borsilikat- oder Quarzglas bestehenden Hohlsegmente 12 sind an ihren außenliegenden Stirnflächen plangeschliffen, so daß die beim Aufeinandersetzen entstehenden Fugen flüssigkeitsdicht verschlossen sind.

Die Gesamthöhe des Gehäuses 1 und der aus den einzelnen Hohlsegmenten 12 gebildeten Säule sind so aufeinander abgestimmt, daß das oberste Hohlsegment um ein geringes Maß "a" über die Gehäuseoberkante hinausragt. Wenn nun nach der Zwischenlage einer Dichtung 14 die Überwurfmutter 4 auf das Gehäuse 1 aufgeschraubt wird, preßt dieselbe die Hohlsegmentsäule zusammen und gewährleistet dadurch die gewünschte Flüssigkeitsdichtheit.

Wie Fig. 4 zeigt, wird das die Hohlsegmentsäule enthaltende Gehäuse 1 vorzugsweise innerhalb eines Glasgehäuses 15 angeordnet, das mit einem eingeschliffenen, Gasdichtheit gewährleistenden Deckel 16 verschließbar ist und dessen Unterteil als Lösungsmittelreservoir 17 dient

Diese unkompliziert aufgebaute Apparatur wird bei Durchführung einer Kapillarchromatographie wie folgt

Die zu untersuchende Substanz, welche quantitativ analytisch und/oder präparativ auf ihre Bestandteile untersucht werden soll, wird zunächst mit einem bekannten Füllstoff vermischt und erforderlichenfalls getrocknet. Das trockene Substanz-Füllstoffgemisch wird nun in das Basissegment 9 eingefüllt. Nun wird das Basissegment 9 mit seinem Abstützflansch 8 ins Gehäuse 1 eingehängt, worauf die Hohlsegmente 12 über dem Basissegment 9 aufgebaut werden und der dadurch gebildete Hohlraum 13 mit der stationären Phase (z. B. Kieselgel) gefüllt wird. Nach dem Aufsetzen des Dichtungsringes 14 auf das oberste Hohlsegment 12 wird die Überwurfmutter 4 aufgeschraubt. Die chromatographische Säule ist damit betriebsbereit.

Die Zugabe der mobilen Phase (Lösungsmittel) kann beispielsweise dadurch erfolgen, daß das Gehäuse 1 mit dem unten herausragenden Basissegment 9 in eine mit Lösungsmittel gefüllte Wanne gestellt wird. Bei der in Fig. 3 dargestellten bevorzugten Ausführungsform wird das gesamte Gehäuse 1 in dem Glasgehäuse 15 unterge-

50

bracht, so daß das in dessen unterem Teil befindliche Lösungsmittel durch die zwischen den Füßen 10 befindlichen Zwischenräume Z zur Fritte 11 gelangen kann und, diese durch Kapillarwirkung durchdringend, ins Innere des Basissegmentes vordringt.

Das in der stationären Phase nach oben wandernde Lösungsmittel nimmt nun die in der zu untersuchenden Substanz enthaltenen Bestandteile mit, die sich nun, wie dem Fachmann bekannt ist, aufgrund ihrer unterschiedlichen Wandergeschwindigkeiten auf verschiedenen 10 Säulenhöhen, das heißt innerhalb verschiedener Hohlsegmente 12, absetzen.

Nachdem die Trennung der Substanz in ihre Bestandteile abgeschlossen ist, wird die Hohlsegmentsäule in die Einzelsegmente 12 zerlegt, die sich dank ihrer Konfiguration bequem und sauber von den Nachbarsegmenten abstreifen lassen.

Das beschriebene Verfahren bietet unter anderem den Vorteil, daß nach erfolgter chromatographischer Trennung die einzelnen Bestandteile separat verfügbar 20 sind. Die in benachbarten Hohlsegmenten 12 eng beieinanderliegenden Substanzbestandteile können mit den betreffenden Anteilen der stationären Phase gesammelt und mit neuen Lösungsmittelgemischen auf eine neue Trennung vorbereitet werden.

Die im Basissegment 9 enthaltene Substanz kann auch nach erfolgter Trennung noch in bezug auf nicht kapillaraktive Bestandteile untersucht werden.

Wie die Versuchspraxis bereits zeigte, können mit der beschriebenen chromatographischen Methode sämtliche eingangs von den konventionellen Verfahren aufgezählten Nachteile behoben werden. Die damit erzielten Vorteile lassen sich folgendermaßen kurz zusammenfassen:

Wirtschaftlichkeit

- Weniger als 95% des bisherigen Lösemittelverbrauches.
- Keine Überwachung.
- Trennmethoden k\u00f6nnen direkt vom DC \u00fcbernommen oder der HPLC und MPLC angeglichen werden.
- Im Gegensatz zu oft kostspieligen Apparaturen einfache Ausstattung, problemlose Anwendung 45 und trotzdem wirksam reproduzierbar.
- Wiederfindungsrate von nahezu 100% von allen Komponenten.
- Multiple Wiederverwendbarkeit der Segmente.

Selektivität

Spezifische Säulenfüllungen für jede Art von
 Farben, von unpolaren RP-Phasen über Silikagel
 zu polaren Normal-Phasen, Ionenaustauscher auf
 Silikagel-Basis, Wide-For- und Chiral-Phasen.

Sicherheit

- Kein Trocken- oder Überlaufen der Säule, da in 60 geschlossenem System mit gesättigter Kammer gearbeitet werden kann.
- Kann über Nacht laufengelassen werden, da die Kapillarwirkung am Ende der Säule (wie bei der DC) in gesättigter Kammer aufgehoben wird.
- Keine Explosions- und Brandgefahr durch leichtflüchtige Lösemittel, das heißt auch keine Emission in die Umwelt.

- Kein Arbeiten unter Druck.

Vielseitig

— Für Probemengen von ein paar Milligramm bis zu ca. 2,5 Gramm (unterschiedlich je nach Trennproblem) steht die geeignete Säule zur Verfügung. Größere Säulen für mehr Kapazität und größere Probemengen sind auf Wunsch lieferbar.

Starke Kapazität

— Trennung präparative Probenmengen durch J. T. Baker BAKERBOND 40 µm standartisiertes, neutral gewaschenes Silikagel und BAKERBOND spezifische, genau definierte gebundene Phasen.

Hohe Auflösung

 Die gleichförmig kompakte Konzentration der BAKERBOND gebundenen Phasen und die reinen Kornfraktionen garantieren eine optimale Auflösung auch von komplexen Stoffgemischen.

Reproduzierbar

- Immer gleiche Bedingungen durch die gesättigte Kammer.
- Strenge Produktions- und Qualitätskontrollen garantieren die gleichbleibende, hochwertige Beschaffenheit der BAKERBOND Adsorbentien.

Ein weiterer Vorteil der beschriebenen Vorrichtung ist darin zu sehen, daß ohne Anwendung von Druck auch die stationäre Phase mit Korngrößen unter 40 µ verwendet werden können. Im Versuch hat sich gezeigt, daß extreme Korngrößen von beispielsweise 5 µ problemlos eingesetzt werden können. Die Verwendung druckverstärkter Gefäße entfällt.

Gemäß einem bevorzugten Verfahren wird die zu trennende Substanz zunächst in einem geeigneten Lösungsmittel aufgelöst und anschließend mit der gewählten stationären Phase gemischt. Dieses Gemisch wird nun getrocknet und dann trocken in das Basissegment 9 eingefüllt.

Der praktische Einsatz des beschriebenen Gerätes sei nachstehend anhand zweier Anwendungsbeispiele erläutert, welche auf der Verwendung einer Hohlsegmentsäule mit 16 Hohlsegmenten beruhen.

Beispiel 1

Testfarbstoffgemisch Mercknummer Art 9354 1 ml Merckfarbstoff wird mit

10 ml Methylenchlorid (Dichlormethan) versetzt und mit

10 g Silikagel Baker (40 μm) Nr. 7024 vermischt, gut durchgeschüttelt und am Rollverdampfer zur Trockne eingedampft. Der trockene Kolbeninhalt wird nach Vorschrift in das Bodensegment 9 eingefüllt, dasselbe in das Gehäuse 1 eingelegt und mit den leeren Hohlsegmenten 12, zur gewünschten Chromatographieröhre, durch Verpressen aufgebaut. Die Chromatographiersäule wird mit der gleichen Qualität Sorbens, wie oben angegeben, aufgefüllt und durch Klopfen verfestigt. Die Säule ist für die Auftrennung bereit. Die Entwicklung erfolgt in der Glaskammer mittels Methylenchlorid. Wenn alle Hohlsegmente 12 vollgesogen sind, wird die Apparatur aus der Verspannung gelöst und die Hohl-

BNSDOCID: <DE_____3836343A1_I_>

segmente 12 einzeln hochgeschoben und plan abgestreift. Jedes Hohlsegment 12 wird in einem separaten Becherglas deponiert, in Methylenchlorid durch Schwenken extrahiert und die überstehenden Lösungen werden der DC-Probe unterworfen. Gleich Qualitäten werden zusammengebracht und genutscht, nachgewaschen, konzentriert oder zur Trockne eingedampft.

Das Probeaufnahmesegment erlaubt die verzehrungsfreie Nachprüfung allfällig stationär gebliebener

Probesubstanzen.

Die Einsparung der Lösemittelmengen ist sehr erheblich.

Beispiel 2

Auftrennung einer Serumlösung, welche Cholesterinester, Triglyceride und Cholesterin enthält.

Extraktionsmittel, Methylenchlorid und Toluol im Verhältnis 5:2 dh. 75 ml Methylenchlorid mit 30 ml Toluol

Herstellung der Säule nach vorgängig aufgezeichneter Vorschrift (Probebeispiel Nr. 1).

Auftrennung in der Säule mit obigem Methylenchlorid-Toluol-Verhältnis. Aufarbeiten nach Vorschrift (Probebeispiel Nr. 1). DC-Kontrolle mittels Methylenchlorid-Toluol im vorgegebenen Verhältnis. Entwicklung der DC-Platten zur Sichtbarmachung: Molybdatophosphorsäure in Ethanol als Sprühreagens.

Der besondere Vorteil dieses Chromatographie-Systems liegt darin, daß mittels einer Glaskammer die ganze Segmentchromatographie (Trocken-Segment-Chromatographie) in inerter Gasatmosphäre durchgeführt werden kann. Als weiterer Nutzen erweist sich, daß auch leichtsiedende Lösungsmittelgemische in diesem Verfahren nicht verdampfen respektive sich in der Prozentualität kaum verändern und/oder die Umwelt bela-

Über diese Kapillarchromatographie werden in allen Versuchen ganz erhebliche Lösemittelmengen eingespart. Eine Konditionierung der Säule entfällt gänzlich. 40 Durch die Verpressung der Segmente beim Zuschrauben des Stahlgehäuses wird ein seitliches Auslaufen verhindert respektive abgeschottet. Die Säule selbst ist oben geöffnet (Öffnung 6), um den Luft- oder Gasaustritt infolge des kapillaren Flüssigkeitsaufzugs zu gestatten, wobei auch in einer geschlossenen Kammer, wie im vorgängigen Beispiel beschrieben, das Volumen sich nicht verändert.

Das anhand der Zeichnung beschriebene Ausführungsbeispiel kann vom Fachmann im Rahmen des Erfindungsgedankens weitgehend abgewandelt werden. So wäre es für die Durchführung chromatographischer Trennverfahren mit kürzeren Säulen beispielsweise möglich, das Gehäuse 1 mit nur wenigen Hohlsegmenten 12 auszustatten, während der verbleibende Gehäuseraum bis zur Überwurfmutter 4 mit Füllstücken ausgefüllt würde. Auf diese Weise kann das gleiche Gehäuse 1 für unterschiedlich hohe Säulen verwendet werden.

Je nach Bedarf können mehrere der in der Zeichnung gezeigten Säulen — gleicher oder unterschiedlicher 60 Größe — durch geeignete Kupplungselemente miteinander verbunden werden. Dadurch ergeben sich vielfältige Kombinationsmöglichkeiten, so daß beispielsweise zwei Säulen à 4 bzw. 8 Segmenten zu einer 12-Segmentsäule verbunden werden können.

Das Kupplungselemnt ist vorzugsweise eine mit Innengewinde versehene Schraubmuffe, die sich auf die mit Außengewinde versehenen Endabschnitte der Säulen aufschrauben läßt.

Das in Fig. 4 gezeigte Segment kann auch aus Vollglas bestehen, wobei die zwischen den beiden Ringflanschen (F) bestehende Nut durch eine Vollwand ausgefüllt ist.

Patentansprüche

1. Säulenchromatograph zur analytischen und/oder präparativen Kapillarchromatographie, mit einer zur Aufnahme der stationären Phase bestimmten Säule aus vorzugsweise mindestens teilweise lichtdurchlässigem Material, dadurch gekennzeichnet, daß die Säule mehrere Hohlsegmente (12) umfaßt, welche mit ihren ringförmigen Stirnflächen dichtend übereinanderliegen und einen die stationäre Phase aufnehmenden Hohlraum (13) umgrenzen, und daß sich das unterste Hohlsegment auf ein Basissegment (9) abstützt, das für die zu untersuchende Substanz einen Aufnahmeraum aufweist, welcher nach außen an mindestens einer Stelle durch ein Wandteil (11) verschlossen ist, das zwar für die mobile Phase durchlässig, für die stationäre Phase aber undurchlässig ist, wobei die durch sämtliche Hohlsegmente (12) gebildete Säule zwecks Abdichtung der zwischen zwei aneinandergrenzenden Hohlsegmenten befindlichen Fugen durch eine AnpreBvorrichtung (1/4) zusammengehalten ist.

2. Säulenchromatograph nach Anspruch 1, dadurch gekennzeichnet, daß jedes der Hohlsegmente (12) einen kreiszylindrischen Grundkörper aufweist, dessen beide Stirnflächen mit radial nach außen ragenden Ringflanschen (F) versehen sind.

3. Säulenchromatograph nach Anspruch 2, dadurch gekennzeichnet, daß die Hohlsegmente (12) aus Borsilikatglas oder Quarzglas erstellt und deren aufeinanderliegende Stirnflächen im Hinblick auf die erforderliche Dichtheit plangeschliffen bzw. mit einem O-Ring aus Teflon versehen sind.

4. Säulenchromatograph nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Basissegment (9) ebenfalls einen zylindrischen Aufnahmeraum für den untersten Teil der säulenförmigen stationären Phase aufweist, der nach unten durch eine scheibenförmige Fritte (11), vorzugsweie Glasfritte, abgeschlossen ist, wobei der Zugang der außerhalb des Basissegments (9) zuzugebenden mobilen Phase zum Innern des Basissegments (9) durch die Zwischenräume (Z) mindestens zweier voneinander beabstandeter Stützfüße (10) und die genannte Fritte (11) erfolgt.

5. Säulenchromatograph nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Anpreßvorrichtung ein sämtliche Hohlsegmente (12) umgrenzendes Gehäuse (1) aus lösungsmittelresistentem Material ist, das an seinem oberen, offenen Ende eine Überwurfmutter (4) und an seinem unteren Ende einen radial einwärts gerichteten Ringflansch (7) zur Aufnahme eines am oberen Rand des Basissegmentes (9) angeordneten Hängeflansch (8)

6. Säulenchromatograph nach Anspruch 5, dadurch gekennzeichnet, daß das Gehäuse (1) ein kreiszylindrisches Stahlgehäuse ist, das auf einem Großteil seiner Gesamthöhe mit zwei diametral einander gegenüberliegenden Schlitzen (18) zum Herausheben der Hohlsegmente (12) bzw. zur Funktionskontrolle versehen ist.

7. Säulenchromatograph nach Anspruch 5, dadurch gekennzeichnet, daß die Säule außer den zur Aufnahme der stationären Phase bestimmten Hohlsegmenten (12) eine Anzahl von Füllstücken enthält, so daß das gleiche Gehäuse für eine beliebig hohe Hohlsegmentsäule verwendbar ist, indem der zwischen dem obersten Hohlsegment und der Überwurfmutter (4) verbleibende Raum durch Füllstükke überbrückt wird.

8. Säulenchromatograph nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß das die Hohlsegmentsäule enthaltende Gehäuse (1) innerhalb eines zweiten, gasdicht verschließbaren Gehäuses (15) angeordnet ist, dessen unterer Abschnitt (17) als Reservoir für die mobile Phase dient, derart, daß der Chromatograph auch in einem inerten Gasmedium arbeiten kann und/oder die unerwünschte Verflüchtigung leichtflüchtiger mobiler Phasen verhindert wird.

 Verfahren zum Betrieb des Säulenchromatographen nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß

a) die zu trennende Substanz mit einem Füllstoff gemischt und erforderlichenfalls getrocknet wird,

b) das trockene Substanz-Füllstoffgemisch in das Basissegment eingefüllt wird,

c) die Hohlsegmentsäule über dem Basissegment aufgebaut und mit der stationären Phase gefüllt wird,

d) die Hohlsegmentsäule mittels der Anpreßvorrichtung einschließlich dem Basissegment dichtend zusammengepreßt wird,

e) die Hohlsegmentsäule mit ihrem unteren Abschnitt, dem aus derselben herausragenden 35 Basissegment, in die mobile Phase eingetaucht wird, so daß die Bestandteile der zu trennenden Substanz durch die mobile Phase vom Basissegment aus aufsteigend durch Kapillarwirkung auf die einzelnen Segmente der Hohlseg-40 mentsäule verteilt werden, worauf

f) die Hohlsegmentsäule zerlegt und die einzelnen Hohlsegmente einschließlich Basissegment mit ihrem Anteil der den jeweiligen Substanzbestandteil enthaltenden stationären 45 Phase der Auswertung zugeführt werden.

10. Verfahren nach Anspruch 9, wobei vor Durchführung der Säulen-Chromatographie ein Vorversuch, z. B. im Dünnschichtverfahren, vorgenommen wurde, dadurch gekennzeichnet, daß die im Vorversuch verwendete Lösung auch zur Durchführung der Segmentsäulen-Kapillarchromatographie verwendet wird.

11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß nach erfolgter chromatographischer 55 Trennung eventuell eng in benachbarten Hohlsegmenten beieinanderliegende Substanzbestandteile mit den betreffenden Anteilen der stationären Phase gesammelt und mit neuen Lösungsmittelgemischen auf eine neue Trennung vorbereitet werden.
12. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß nach erfolgter chromatographischer Trennung die im Basissegment enthaltene Substanz in bezug auf nicht kapillaraktive Bestandteile untersucht wird.

13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß die zu trennende Substanz zunächst in einem geeigneten Lösungs-

mittel aufgelöst, anschließend mit der gewählten stationären Phase gemischt und schließlich getrocknet und in das Basissegment eingefüllt wird. - Leerseite -

Patentanmeldung vom 25. Okt. 1988 Nummer: Werner HAFNER, Hermann D. WASMER Int. Cl.⁴: "Säulenchromatograph und Verfahren zu dess Anmeldetag:

Offenlegungstag:

38 36 343 G 01 N 30/60 25. Oktober 1988 1. Juni 1989

3836343

BEST AVALABLE COPY

STST AVAILABLE COLD.