第一章 张量场可微性

1.1 张量的范数

1.1.1 赋范线性空间

对于一个线性空间 \mathcal{V} ,它总是定义了线性结构:

$$\forall x, y \in \mathcal{V} \text{ } \exists \forall \alpha, \beta \in \mathbb{R}, \quad \alpha x + \beta y \in \mathcal{V}. \tag{1.1}$$

为了进一步研究的需要,我们还要引入**范数**的概念. 所谓"范数",就是对线性空间中任意元素大小的一种刻画. 举个我们熟悉的例子,m 维 Euclid 空间 \mathbb{R}^m 中某个向量的范数,就定义为该向量在 Descartes 坐标下各分量的平方和的平方根.

一般而言,线性空间 $\mathscr V$ 中的范数 $\|\cdot\|_{\mathscr V}$ 是从 $\mathscr V$ 到 $\mathbb R$ 的一个映照,并且需要满足以下三个条件: **1. 非负性**

$$\forall x \in \mathcal{V}, \quad \|x\|_{\mathcal{V}} \geqslant 0 \tag{1.2}$$

以及非退化性

$$\forall x \in \mathcal{V}, \quad \|x\|_{\mathcal{V}} = 0 \iff x = \mathbf{0} \in \mathcal{V}, \tag{1.3}$$

这里的 0 是线性空间 У 中的零元素, 它是唯一存在的.

2. 零元是唯一的,线性空间中的元素 x 与从 0 指向它的向量——对应. 因此,线性空间中的元素也常被称为"向量".

考虑线性空间中的数乘运算. 从几何上看, x 乘上 λ , 就是将 x 沿着原来的指向进行伸缩. 显然有

$$\forall x \in \mathcal{V} \text{ } \exists \forall \lambda \in \mathbb{R}, \quad \|\lambda x\|_{\mathcal{V}} = |\lambda| \cdot \|x\|_{\mathcal{V}}, \tag{1.4}$$

这称为正齐次性.

想要图吗?

3. 线性空间中的加法满足平行四边形法则. 直观地看, 就有

$$\forall x, y \in \mathcal{V}, \quad \|x + y\|_{\mathcal{V}} \leqslant \|x\|_{\mathcal{V}} + \|y\|_{\mathcal{V}}, \tag{1.5}$$

这称为三角不等式.

定义了范数的线性空间称为赋范线性空间.

1.1.2 张量范数的定义

考虑 p 阶张量 $\Phi \in \mathcal{T}^p(\mathbb{R}^m)$, 它可以用逆变分量或协变分量来表示:

$$\boldsymbol{\Phi} = \begin{cases} \boldsymbol{\Phi}^{i_1 \cdots i_p} \, \mathbf{g}_{i_1} \otimes \cdots \otimes \mathbf{g}_{i_p}, \\ \boldsymbol{\Phi}_{i_1 \cdots i_p} \, \mathbf{g}^{i_1} \otimes \cdots \otimes \mathbf{g}^{i_p}, \end{cases}$$
(1.6-a)

其中

$$\left\{ \boldsymbol{\Phi}^{i_1 \cdots i_p} = \boldsymbol{\Phi} \left(\mathbf{g}^{i_1}, \cdots, \mathbf{g}^{i_p} \right). \right. \tag{1.7-a}$$

$$\begin{cases} \boldsymbol{\Phi}^{i_1 \cdots i_p} = \boldsymbol{\Phi} \left(\mathbf{g}^{i_1}, \cdots, \mathbf{g}^{i_p} \right). \\ \boldsymbol{\Phi}_{i_1 \cdots i_p} = \boldsymbol{\Phi} \left(\mathbf{g}_{i_1}, \cdots, \mathbf{g}_{i_p} \right), \end{cases}$$
(1.7-a)

张量的范数定义为

$$\|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})} \triangleq \sqrt{\boldsymbol{\Phi}^{i_{1}\cdots i_{p}}\boldsymbol{\Phi}_{i_{1}\cdots i_{p}}} \in \mathbb{R}.$$
(1.8)

 $i_1\cdots i_p$ 可独立取值,每个又有 m 种取法,所以根号下共有 m^p 项. 注意 $m{\sigma}^{i_1\cdots i_p}$ 与 $m{\sigma}_{i_1\cdots i_p}$ 未必相等,因 而根号下的部分未必是平方和,这与 Euclid 空间中向量的模是不同的.

复习一下?? 小节,我们可以用另一组(带括号的)基表示张量Φ:

$$\oint \Phi^{i_1 \cdots i_p} = c^{i_1}_{(\xi_1)} \cdots c^{i_p}_{(\xi_p)} \Phi^{(\xi_1) \cdots (\xi_p)},$$
(1.9-a)

$$\begin{cases} \boldsymbol{\Phi}^{i_{1}\cdots i_{p}} = c_{(\xi_{1})}^{i_{1}}\cdots c_{(\xi_{p})}^{i_{p}}\boldsymbol{\Phi}^{(\xi_{1})\cdots(\xi_{p})}, \\ \\ \boldsymbol{\Phi}_{i_{1}\cdots i_{p}} = c_{i_{1}}^{(\eta_{1})}\cdots c_{i_{p}}^{(\eta_{p})}\boldsymbol{\Phi}_{(\eta_{1})\cdots(\eta_{p})}, \end{cases}$$
(1.9-a)

其中的 $c_{(\varepsilon)}^i = \langle \mathbf{g}_{(\varepsilon)}, \mathbf{g}^i \rangle_{\mathbb{D}^m}, \ c_i^{(\eta)} = \langle \mathbf{g}^{(\eta)}, \mathbf{g}_i \rangle_{\mathbb{D}^m}, \ 它们满足$

$$c_{(\xi)}^{i}c_{i}^{(\eta)} = \delta_{(\xi)}^{(\eta)}.$$
 (1.10)

于是

$$\boldsymbol{\Phi}^{i_{1}\cdots i_{p}}\boldsymbol{\Phi}_{i_{1}\cdots i_{p}}$$

$$= \left(c_{(\xi_{1})}^{i_{1}}\cdots c_{(\xi_{p})}^{i_{p}}\boldsymbol{\Phi}^{(\xi_{1})\cdots(\xi_{p})}\right)\left(c_{i_{1}}^{(\eta_{1})}\cdots c_{i_{p}}^{(\eta_{p})}\boldsymbol{\Phi}_{(\eta_{1})\cdots(\eta_{p})}\right)$$

$$= \left(c_{(\xi_{1})}^{i_{1}}c_{i_{1}}^{(\eta_{1})}\right)\cdots\left(c_{(\xi_{p})}^{i_{p}}c_{i_{p}}^{(\eta_{p})}\right)\boldsymbol{\Phi}^{(\xi_{1})\cdots(\xi_{p})}\boldsymbol{\Phi}_{(\eta_{1})\cdots(\eta_{p})}$$

$$= \delta_{(\xi_{1})}^{(\eta_{1})}\cdots\delta_{(\xi_{p})}^{(\eta_{p})}\boldsymbol{\Phi}^{(\xi_{1})\cdots(\xi_{p})}\boldsymbol{\Phi}_{(\eta_{1})\cdots(\eta_{p})}$$

$$= \boldsymbol{\Phi}^{(\xi_{1})\cdots(\xi_{p})}\boldsymbol{\Phi}_{(\xi_{1})\cdots(\xi_{p})}.$$
(1.11)

它是 Φ 在另一组基下的逆变分量与协变分量乘积之和.

以上结果说明,张量的范数不依赖于基的选取,这就好比用不同的秤来称同一个人的体重,都 将获得相同的结果. 既然如此, 不妨采用单位正交基来表示张量的范数:

$$\|\boldsymbol{\Phi}\|_{\mathcal{T}^{p}(\mathbb{R}^{m})} \triangleq \sqrt{\boldsymbol{\Phi}^{i_{1}\cdots i_{p}}\boldsymbol{\Phi}_{i_{1}\cdots i_{p}}}$$

$$= \sqrt{\boldsymbol{\Phi}^{\langle i_{1}\rangle\cdots\langle i_{p}\rangle}\boldsymbol{\Phi}_{\langle i_{1}\rangle\cdots\langle i_{p}\rangle}}$$

$$=: \sqrt{\sum_{i_{1},\cdots,i_{p}=1}^{m} \left(\boldsymbol{\Phi}_{\langle i_{1},\cdots,i_{p}\rangle}\right)^{2}}.$$
(1.12)

这里的 $\phi_{(i_1,\cdots,i_d)}$ 表示张量 ϕ 在单位正交基下的分量,它的指标不区分上下.

有了这样的表示,很容易就可以验证张量范数符合之前的三个要求.一组数的平方和开根号,必然是非负的.至于非退化性,若范数为零,则所有分量均为零,自然成为零张量;反之,对于零张量,所有分量为零,范数也为零.将 Φ 乘上 λ,则有

$$\|\lambda \boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})} = \sqrt{\sum_{i_{1}, \dots, i_{p}=1}^{m} \left(\lambda \boldsymbol{\Phi}(i_{1}, \dots, i_{p})\right)^{2}}$$

$$= \sqrt{\lambda^{2} \sum_{i_{1}, \dots, i_{p}=1}^{m} \left(\boldsymbol{\Phi}(i_{1}, \dots, i_{p})\right)^{2}}$$

$$= |\lambda| \sqrt{\sum_{i_{1}, \dots, i_{p}=1}^{m} \left(\boldsymbol{\Phi}(i_{1}, \dots, i_{p})\right)^{2}}$$

$$= |\lambda| \cdot \|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}, \qquad (1.13)$$

于是正齐次性也得以验证. 最后,利用 Cauchy-Schwarz 不等式,可有

$$\|\boldsymbol{\Phi} + \boldsymbol{\Psi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}^{2}$$

$$= \sum \left(\boldsymbol{\Phi}_{\langle i_{1}, \dots, i_{p} \rangle} + \boldsymbol{\Psi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2}$$

$$= \sum \left[\left(\boldsymbol{\Phi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2} + 2\boldsymbol{\Phi}_{\langle i_{1}, \dots, i_{p} \rangle} \boldsymbol{\Psi}_{\langle i_{1}, \dots, i_{p} \rangle} + \left(\boldsymbol{\Psi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2}\right]$$

$$= \sum \left(\boldsymbol{\Phi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2} + 2\sum \boldsymbol{\Phi}_{\langle i_{1}, \dots, i_{p} \rangle} \boldsymbol{\Psi}_{\langle i_{1}, \dots, i_{p} \rangle} + \sum \left(\boldsymbol{\Psi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2}$$

$$\leq \|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}^{2} + 2\sqrt{\sum \left(\boldsymbol{\Phi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2}} \sqrt{\sum \left(\boldsymbol{\Psi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2}} + \|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}^{2}$$

$$= \|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}^{2} + 2\|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})} \cdot \|\boldsymbol{\Psi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})} + \|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}^{2}$$

$$= \left(\|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})} + \|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}\right)^{2}. \tag{1.14}$$

两边开方,即为三角不等式.

由此,我们就完整地给出了张量大小的刻画手段.可以看出,它实际上就是 Euclid 空间中向量模的直接推广.

1.1.3 简单张量的范数

根据 ?? 小节中的定义,简单张量是形如 $\xi \otimes \eta \otimes \zeta$ 的张量,其中的 ξ , η , $\zeta \in \mathbb{R}^m$,它是三个向量的张量积. 简单张量的范数为

$$\|\xi \otimes \eta \otimes \zeta\|_{\mathcal{T}^{3}(\mathbb{R}^{m})} = \|\xi\|_{\mathbb{R}^{m}} \cdot \|\eta\|_{\mathbb{R}^{m}} \cdot \|\zeta\|_{\mathbb{R}^{m}}. \tag{1.15}$$

证明: $\xi \otimes \eta \otimes \zeta$ 的逆变分量为

$$(\boldsymbol{\xi} \otimes \boldsymbol{\eta} \otimes \boldsymbol{\zeta})^{ijk} \triangleq \boldsymbol{\xi} \otimes \boldsymbol{\eta} \otimes \boldsymbol{\zeta}(\boldsymbol{g}^{i}, \boldsymbol{g}^{j}, \boldsymbol{g}^{k}) = \boldsymbol{\xi}^{i} \boldsymbol{\eta}^{j} \boldsymbol{\zeta}^{k}. \tag{1.16}$$

同理,它的协变分量为

$$(\boldsymbol{\xi} \otimes \boldsymbol{\eta} \otimes \boldsymbol{\zeta})_{ijk} \triangleq \boldsymbol{\xi} \otimes \boldsymbol{\eta} \otimes \boldsymbol{\zeta} (\boldsymbol{g}_i, \, \boldsymbol{g}_j, \, \boldsymbol{g}_k) = \boldsymbol{\xi}_i \eta_j \boldsymbol{\zeta}_k. \tag{1.17}$$

二者相乘,有

$$(\xi \otimes \eta \otimes \zeta)^{ijk} \cdot (\xi \otimes \eta \otimes \zeta)_{ijk}$$

$$= (\xi^{i} \eta^{j} \zeta^{k}) \cdot (\xi_{i} \eta_{j} \zeta_{k})$$

$$= (\xi^{i} \xi_{i}) \cdot (\eta^{j} \eta_{i}) \cdot (\zeta^{k} \zeta_{k}). \tag{1.18}$$

注意到

$$\|\xi\|_{\mathbb{R}^m}^2 = \langle \xi, \xi \rangle_{\mathbb{R}^m}$$

分别把二者用协变和逆变分量表示:

$$= \left\langle \xi^{i} \mathbf{g}_{i}, \xi_{j} \mathbf{g}^{j} \right\rangle_{\mathbb{R}^{m}}$$

$$= \xi^{i} \xi_{j} \left\langle \mathbf{g}_{i}, \mathbf{g}^{j} \right\rangle_{\mathbb{R}^{m}}$$

$$= \xi^{i} \xi_{i} \delta^{j}_{i} = \xi^{i} \xi_{i}, \qquad (1.19)$$

于是

$$(\boldsymbol{\xi} \otimes \boldsymbol{\eta} \otimes \boldsymbol{\zeta})^{ijk} \cdot (\boldsymbol{\xi} \otimes \boldsymbol{\eta} \otimes \boldsymbol{\zeta})_{ijk} = \|\boldsymbol{\xi}\|_{\mathbb{R}^m}^2 \cdot \|\boldsymbol{\eta}\|_{\mathbb{R}^m}^2 \cdot \|\boldsymbol{\zeta}\|_{\mathbb{R}^m}^2. \tag{1.20}$$

两边开方,即得(1.15)式.

1.2 张量场沿坐标曲线的变化率

在区域 $\mathfrak{D}_x \subset \mathbb{R}^m$ 上,若存在一个自变量用位置刻画的映照

$$\Phi: \mathfrak{D}_{x} \ni x \mapsto \Phi(x) \in \mathcal{T}^{r}(\mathbb{R}^{m}),$$
 (1.21)

则称张量 $\Phi(x)$ ^① 是定义在 \mathfrak{D}_x 上的一个张量场.

下面我们以三阶张量为例. 设在物理域 $\mathfrak{D}_X \subset \mathbb{R}^m$ 和参数域 $\mathfrak{D}_X \subset \mathbb{R}^m$ 之间已经建立了微分同胚 $X(x) \in \mathscr{C}^p(\mathfrak{D}_x; \mathfrak{D}_X)$. 在 X(x) 处,张量场 $\Phi(x)$ 可以用分量形式表示为

$$\boldsymbol{\Phi}(\mathbf{x}) = \boldsymbol{\Phi}_{i}^{ik}(\mathbf{x}) \, \mathbf{g}_{i}(\mathbf{x}) \otimes \mathbf{g}^{i}(\mathbf{x}) \otimes \mathbf{g}_{k}(\mathbf{x}) \in \mathcal{T}^{3}(\mathbb{R}^{m}), \tag{1.22}$$

其中的 $g_i(x)$, $g^j(x)$, $g_k(x)$ 都是局部基,而张量分量则定义为²

$$\boldsymbol{\Phi}^{i,k}(\boldsymbol{x}) \triangleq \boldsymbol{\Phi}(\boldsymbol{x}) [\boldsymbol{g}_i(\boldsymbol{x}), \boldsymbol{g}^j(\boldsymbol{x}), \boldsymbol{g}_k(\boldsymbol{x})] \in \mathbb{R}. \tag{1.23}$$

类似地, 当点沿着 x^{μ} -线运动到 $X(x + \lambda e_{\mu})$ 处时, 有

$$\Phi(x + \lambda e_{\mu}) = \Phi_{j}^{i k}(x + \lambda e_{\mu}) g_{i}(x + \lambda e_{\mu}) \otimes g^{j}(x + \lambda e_{\mu}) \otimes g_{k}(x + \lambda e_{\mu}). \tag{1.24}$$

现在研究 $\lambda \to 0 \in \mathbb{R}$ 时的极限

$$\lim_{\lambda \to 0} \frac{\boldsymbol{\Phi}(\mathbf{x} + \lambda \, \boldsymbol{e}_{\mu}) - \boldsymbol{\Phi}(\mathbf{x})}{\lambda} =: \frac{\partial \boldsymbol{\Phi}}{\partial x^{\mu}}(\mathbf{x}) \in \mathcal{T}^{3}(\mathbb{R}^{m}). \tag{1.25}$$

① 类似 " $\boldsymbol{\phi}(\mathbf{x})$ " 的记号在前文也表示张量 $\boldsymbol{\phi}$ 作用在向量 \mathbf{x} 上("吃掉"了 \mathbf{x}),此时有 $\boldsymbol{\phi}(\mathbf{x}) \in \mathbb{R}$,注意不要混淆。符号有限,难免如此,还 望诸位体谅

② 请注意,下式 ϕ 之后的第一个圆括号表示位于 x 处;而后面的方括号则表示作用在这几个向量上.

与之前的向量值映照类似,该极限表示张量场 $\Phi(x)$ 作为一个整体,相对于自变量第 μ 个分量的变 化率. 式中, $\Phi(x + \lambda e_{\mu})$ 已由 (1.24) 式给出. 注意到张量分量实际上就是一个多元函数,于是

$$\Phi_{j}^{ik}(\mathbf{x} + \lambda e_{\mu}) = \Phi_{j}^{ik}(\mathbf{x}) + \frac{\partial \Phi_{j}^{ik}}{\partial x^{\mu}}(\mathbf{x}) \cdot \lambda + e_{j}^{ik}(\lambda) \in \mathbb{R}.$$
 (1.26)

另外, 三个基向量作为向量值映照, 同样可以展开

$$\left\{ g_{i}\left(\mathbf{x} + \lambda e_{\mu}\right) = g_{i}(\mathbf{x}) + \frac{\partial g_{i}}{\partial x^{\mu}}(\mathbf{x}) \cdot \lambda + \boldsymbol{o}_{i}(\lambda) \in \mathbb{R}^{m}, \right.$$
(1.27-a)

$$\begin{cases}
\mathbf{g}_{i}(\mathbf{x} + \lambda \mathbf{e}_{\mu}) = \mathbf{g}_{i}(\mathbf{x}) + \frac{\partial \mathbf{g}_{i}}{\partial x^{\mu}}(\mathbf{x}) \cdot \lambda + \boldsymbol{o}_{i}(\lambda) \in \mathbb{R}^{m}, & (1.27\text{-a}) \\
\mathbf{g}^{j}(\mathbf{x} + \lambda \mathbf{e}_{\mu}) = \mathbf{g}^{j}(\mathbf{x}) + \frac{\partial \mathbf{g}^{j}}{\partial x^{\mu}}(\mathbf{x}) \cdot \lambda + \boldsymbol{o}^{j}(\lambda) \in \mathbb{R}^{m}, & (1.27\text{-b}) \\
\mathbf{g}_{k}(\mathbf{x} + \lambda \mathbf{e}_{\mu}) = \mathbf{g}_{k}(\mathbf{x}) + \frac{\partial \mathbf{g}_{k}}{\partial x^{\mu}}(\mathbf{x}) \cdot \lambda + \boldsymbol{o}_{k}(\lambda) \in \mathbb{R}^{m}. & (1.27\text{-c})
\end{cases}$$

$$\left(\mathbf{g}_{k} \left(\mathbf{x} + \lambda \, \mathbf{e}_{\mu} \right) = \mathbf{g}_{k}(\mathbf{x}) + \frac{\partial \mathbf{g}_{k}}{\partial x^{\mu}}(\mathbf{x}) \cdot \lambda + \boldsymbol{o}_{k}(\lambda) \in \mathbb{R}^{m}. \right)$$
(1.27-c)

如果直接展开,一共有81项,显然过于繁杂,不便操作. 我们将按λ的次数逐次展开. 首先看λ的 零次项:

$$\Phi_{j}^{ik}(\mathbf{x}) \, \mathbf{g}_{i}(\mathbf{x}) \otimes \mathbf{g}^{j}(\mathbf{x}) \otimes \mathbf{g}_{k}(\mathbf{x}), \tag{1.28}$$

这就是 $\Phi(x)$. 然后是 λ 的一次项:

$$\lambda \cdot \left[\frac{\partial \Phi_{j}^{ik}}{\partial x^{\mu}}(\mathbf{x}) \ \mathbf{g}_{i}(\mathbf{x}) \otimes \mathbf{g}^{j}(\mathbf{x}) \otimes \mathbf{g}_{k}(\mathbf{x}) + \Phi_{j}^{ik}(\mathbf{x}) \ \frac{\partial \mathbf{g}_{i}}{\partial x^{\mu}}(\mathbf{x}) \otimes \mathbf{g}^{j}(\mathbf{x}) \otimes \mathbf{g}_{k}(\mathbf{x}) \right]$$

$$+ \Phi_{j}^{ik}(\mathbf{x}) \, \mathbf{g}_{i}(\mathbf{x}) \otimes \frac{\partial \mathbf{g}^{j}}{\partial x^{\mu}}(\mathbf{x}) \otimes \mathbf{g}_{k}(\mathbf{x}) + \Phi_{j}^{ik}(\mathbf{x}) \, \mathbf{g}_{i}(\mathbf{x}) \otimes \mathbf{g}^{j}(\mathbf{x}) \otimes \frac{\partial \mathbf{g}_{k}}{\partial x^{\mu}}(\mathbf{x}) \bigg] . \tag{1.29}$$

剩下的至少是 λ 的两次项, 我们将其统一写作 "res." (即余项).

现在回头看之前的极限 (1.25) 式. λ 的零次项与 $\Phi(x)$ 相互抵消,而一次项就只剩下了系数部 分. 至于余项 res., 则要证明它趋于零. 以

$$\boldsymbol{\Phi}_{i}^{ik}(\mathbf{x}) \cdot \boldsymbol{\sigma}_{i}(\lambda) \otimes \mathbf{g}^{j}(\mathbf{x}) \otimes \mathbf{g}_{k}(\mathbf{x}) \tag{1.30}$$

为例, 我们需要证明它等于 $o(\lambda) \in \mathcal{F}^3(\mathbb{R}^m)$, 即

$$\lim_{\lambda \to 0} \frac{\left\| \boldsymbol{\Phi}_{j}^{i k}(\boldsymbol{x}) \cdot \boldsymbol{\sigma}_{i}(\lambda) \otimes \boldsymbol{g}^{j}(\boldsymbol{x}) \otimes \boldsymbol{g}_{k}(\boldsymbol{x}) \right\|_{\mathcal{T}^{3}(\mathbb{R}^{m})}}{\lambda} = 0 \in \mathbb{R}. \tag{1.31}$$

证明: 这里为了叙述方便,我们将暂时不使用 Einstein 求和约定,而是把求和号显式地写出来.于 是分子部分可以写成

$$\left\| \sum_{i,j,k=1}^{m} \boldsymbol{\Phi}_{j}^{i,k}(\mathbf{x}) \cdot \boldsymbol{o}_{i}(\lambda) \otimes \mathbf{g}^{j}(\mathbf{x}) \otimes \mathbf{g}_{k}(\mathbf{x}) \right\|_{\mathcal{F}^{3}(\mathbb{R}^{m})}$$

根据范数的三角不等式,有

$$\leq \sum_{i,j,k=1}^{m} \left\| \boldsymbol{\Phi}_{j}^{i,k}(\boldsymbol{x}) \cdot \boldsymbol{\sigma}_{i}(\lambda) \otimes \boldsymbol{g}^{j}(\boldsymbol{x}) \otimes \boldsymbol{g}_{k}(\boldsymbol{x}) \right\|_{\mathcal{T}^{3}(\mathbb{R}^{m})}$$

再利用正齐次性,可得

$$= \sum_{i,j,k=1}^{m} \left| \boldsymbol{\Phi}_{j}^{ik}(\boldsymbol{x}) \right| \cdot \left\| \boldsymbol{\sigma}_{i}(\boldsymbol{x}) \otimes \boldsymbol{g}^{j}(\boldsymbol{x}) \otimes \boldsymbol{g}_{k}(\boldsymbol{x}) \right\|_{\mathcal{F}^{3}(\mathbb{R}^{m})}$$

代入简单张量的范数, 便有

$$= \sum_{i,j,k=1}^{m} \left| \boldsymbol{\Phi}_{j}^{i k}(\boldsymbol{x}) \right| \cdot \left\| \boldsymbol{\sigma}_{i}(\lambda) \right\|_{\mathbb{R}^{m}} \cdot \left\| \boldsymbol{g}^{j}(\boldsymbol{x}) \right\|_{\mathbb{R}^{m}} \cdot \left\| \boldsymbol{g}_{k}(\boldsymbol{x}) \right\|_{\mathbb{R}^{m}}. \tag{1.32}$$

这几项中只有 $\| \boldsymbol{o}_i(\lambda) \|_{\mathcal{F}^3(\mathbb{R}^m)}$ 与 λ 有关. 于是

$$\lim_{\lambda \to 0} \frac{\left\| \boldsymbol{\Phi}_{j}^{i,k}(\mathbf{x}) \cdot \boldsymbol{\sigma}_{i}(\lambda) \otimes \mathbf{g}^{j}(\mathbf{x}) \otimes \mathbf{g}_{k}(\mathbf{x}) \right\|_{\mathcal{F}^{3}(\mathbb{R}^{m})}}{\lambda}$$

$$= \sum_{i,j,k=1}^{m} \left| \boldsymbol{\Phi}_{j}^{i,k}(\mathbf{x}) \right| \cdot \left\| \mathbf{g}^{j}(\mathbf{x}) \right\|_{\mathbb{R}^{m}} \cdot \left\| \mathbf{g}_{k}(\mathbf{x}) \right\|_{\mathbb{R}^{m}} \cdot \lim_{\lambda \to 0} \frac{\left\| \boldsymbol{\sigma}_{i}(\lambda) \right\|_{\mathbb{R}^{m}}}{\lambda}$$

根据定义,最后的极限为零,因此

$$=0. (1.33)$$

类似地,其他七十多项也都是 λ 的一阶无穷小量.而有限个无穷小量之和仍为无穷小量,于是 res. \rightarrow 0.

综上, 我们有

$$\frac{\partial \boldsymbol{\Phi}}{\partial x^{\mu}}(\boldsymbol{x}) \coloneqq \lim_{\lambda \to 0} \frac{\boldsymbol{\Phi}(\boldsymbol{x} + \lambda e_{\mu}) - \boldsymbol{\Phi}(\boldsymbol{x})}{\lambda}
= \left(\frac{\partial \boldsymbol{\Phi}_{j}^{i k}}{\partial x^{\mu}} \boldsymbol{g}_{i} \otimes \boldsymbol{g}^{j} \otimes \boldsymbol{g}_{k} + \boldsymbol{\Phi}_{j}^{i k} \frac{\partial \boldsymbol{g}_{i}}{\partial x^{\mu}} \otimes \boldsymbol{g}^{j} \otimes \boldsymbol{g}_{k} + \boldsymbol{\Phi}_{j}^{i k} \boldsymbol{g}_{i} \otimes \frac{\partial \boldsymbol{g}^{j}}{\partial x^{\mu}} \otimes \boldsymbol{g}_{k} + \boldsymbol{\Phi}_{j}^{i k} \boldsymbol{g}_{i} \otimes \boldsymbol{g}^{j} \otimes \boldsymbol{g}_{k} + \boldsymbol{\Phi}_{j}^{i k} \boldsymbol{g}_{i} \otimes \boldsymbol{g}^{j} \otimes \boldsymbol{g}_{k}\right) (\boldsymbol{x}).$$
(1.34)

式中, $\partial g_i/\partial x^{\mu}(x)$ 可以用 Christoffel 符号表示:

$$\frac{\partial \mathbf{g}_i}{\partial x^{\mu}}(\mathbf{x}) = \Gamma^{s}_{\mu i} \, \mathbf{g}_s(\mathbf{x}). \tag{1.35}$$

因此(1.34)式的第二项

$$\Phi_{j}^{ik}(\mathbf{x}) \frac{\partial \mathbf{g}_{i}}{\partial x^{\mu}}(\mathbf{x}) \otimes \mathbf{g}^{j}(\mathbf{x}) \otimes \mathbf{g}_{k}(\mathbf{x})$$

$$= \Gamma_{\mu i}^{s} \Phi_{j}^{ik}(\mathbf{x}) \mathbf{g}_{s}(\mathbf{x}) \otimes \mathbf{g}^{j}(\mathbf{x}) \otimes \mathbf{g}_{k}(\mathbf{x})$$

i 和 s 都是哑标,不妨进行一下交换:

$$= \Gamma^{i}_{us} \Phi^{s}_{i}^{k}(\mathbf{x}) \, \mathbf{g}_{i}(\mathbf{x}) \otimes \mathbf{g}^{j}(\mathbf{x}) \otimes \mathbf{g}_{k}(\mathbf{x}). \tag{1.36}$$

同样,后面的两项也可进行类似的处理.这样便有

$$\frac{\partial \boldsymbol{\Phi}}{\partial x^{\mu}}(\boldsymbol{x}) := \lim_{\lambda \to 0} \frac{\boldsymbol{\Phi}(\boldsymbol{x} + \lambda \boldsymbol{e}_{\mu}) - \boldsymbol{\Phi}(\boldsymbol{x})}{\lambda} \\
= \left[\left(\frac{\partial \boldsymbol{\Phi}_{j}^{i k}}{\partial x^{\mu}} + \Gamma_{\mu s}^{i} \boldsymbol{\Phi}_{j}^{s k} - \Gamma_{\mu j}^{s} \boldsymbol{\Phi}_{s}^{i k} + \Gamma_{\mu s}^{k} \boldsymbol{\Phi}_{j}^{i s} \right) \boldsymbol{g}_{i} \otimes \boldsymbol{g}^{j} \otimes \boldsymbol{g}_{k} \right] (\boldsymbol{x})$$

$$=: \nabla_{\mu} \Phi_{j}^{i k}(\mathbf{x}) \, \mathbf{g}_{i}(\mathbf{x}) \otimes \mathbf{g}^{j}(\mathbf{x}) \otimes \mathbf{g}_{k}(\mathbf{x}), \tag{1.37}$$

式中,我们称 $\nabla_{\mu} \Phi_{j}^{i \ k}(\mathbf{x}) \in \mathbb{R}$ 为张量分量 $\Phi_{j}^{i \ k}(\mathbf{x})$ 相对于 \mathbf{x}^{μ} 的**协变导数**,其定义为:

$$\nabla_{\mu} \boldsymbol{\Phi}_{j}^{i k}(\boldsymbol{x}) \triangleq \frac{\partial \boldsymbol{\Phi}_{j}^{i k}}{\partial x^{\mu}}(\boldsymbol{x}) + \Gamma_{\mu s}^{i} \boldsymbol{\Phi}_{j}^{s k}(\boldsymbol{x}) - \Gamma_{\mu j}^{s} \boldsymbol{\Phi}_{s}^{i k}(\boldsymbol{x}) + \Gamma_{\mu s}^{k} \boldsymbol{\Phi}_{j}^{i s}(\boldsymbol{x}). \tag{1.38}$$