

Case Study

Sortation Module Diverter Arm Connector Sleeve Improvement

How precision machining solved a tiny misalignment causing big trouble in sortation modules

Problem

Analysis

Solution

Results

The Problem

European OEM Context

A mid-sized European OEM specializing in modular sortation and conveyor systems faced a persistent operational challenge during high-speed parcel sorting operations.

The Challenge: Diverter arms were frequently misaligning during high-speed parcel sorting operations, despite appearing to be minor issues initially.

Cumulative Operational Impacts

- Line Stoppages
 Frequent halts during peak sorting periods
- Maintenance
 Increased frequency of system checks
- Lost Uptime
 Reduced throughput and productivity
- Client Complaints

 Downstream customers reporting issues

Root Cause Analysis

Stainless Steel Connector Sleeve

Used to couple drive shaft with pivoting arm

(§) Key Insight: Not a design flaw in principle, but realworld dynamics exposed a subtle weakness in execution.

Observed Weaknesses

Inner bore with poor concentricity tolerance led to rotational misalignment during operation.

- Sharp Step Transitions
 Created localized stress points and reduced fatigue strength at transition points.
- Progressive Vibration Shift

 Sleeve gradually lost positional accuracy due to cumulative vibration over time.

Q Review of drawings and operational conditions revealed these weaknesses were not addressed in the original design.

Manufacturing Solution

Working from the OEM's updated drawings, we implemented comprehensive improvements:

Enhanced Material

316L stainless steel for **higher vibration fatigue resistance**

Stress Reduction

Multi-radius chamfer transitions minimize stress concentration

Precision Machining

One-pass mill-turn machining ensures full coaxial integrity

Tolerance Control

Internal/external diameters within ±0.01 mm

Result: Fully deburred, assembly-ready delivery — no additional preparation required

Measured Improvements

After implementation of the improved connector sleeve on the OEM's pilot production line, we achieved significant and measurable improvements in operational performance:

Misalignment Incidents

Reduced by approximately **80%** within the first quarter

Maintenance Intervals

Extended from every 2 weeks to every 2+ months

Recovered Uptime

Operations manager reported **10-12 hours/month** of recovered uptime

End-Client Feedback

Parcel pathing complaints **significantly decreased**

Validation & Reliability

Machining Setup & Tolerance Control

- Mill-turn machining in a **single** clamping operation
- 100% CMM inspection for concentricity ≤0.01 mm
- Surface roughness verified to Ra ≤0.8 µm

Accelerated Reliability Testing

- 500 hours at 1.5× nominal operating speed
- Results: **No fatigue cracks**, no measurable drift

Test confirmed design reliability under extreme conditions

Field Validation (18 months)

- Misalignment events reduced by ~80%
- Maintenance intervals
 maintained at 2+ months
- Overall uptime improved by 7-8% in sustained operation

Key Validation Achievements

Production validation confirmed reliability in real-world conditions

Long-term performance maintained over 18 months

Comprehensive testing verified solution effectiveness

Have a Similar Issue?

Common Challenges We Solve

- Unexplained Drift

 Misalignment in moving modules
- Loosening Components
 Sleeves, housings, or bushings
- Excessive Wear
 Faster-than-expected deterioration

We'd be glad to review your drawings and share examples of how small adjustments can bring measurable reliability gains.

Consult With Us

Our engineering team can help identify solutions through:

- **₽** De
- **Design Review**

Optimize structural design

- Tolerance Analysis
 Identify critical dimensions
- Machining Control
 Strict quality verification

Request a Consultation →

No obligation. Expert advice only.