Subjectul D. OPTICA

Nr. item	Soluţie/Rezolvare
III.a.	
	$h \cdot v = e \cdot U_s + L$
	$U_s = (h/e) \cdot v - (L/e)$
	trasarea corectă a graficului $U_s=f(v)$.
b.	
	$L = h \cdot v_0$
	din rezultatele experimentale se obține $v_0 = 9.2 \cdot 10^{14} \text{Hz}$
	Rezultat final: $L = 60,72 \cdot 10^{-20} J$
C.	
	$\lambda_{max} = \lambda_0$
	$\lambda_0 = (c/v_0)$
	Rezultat final: $\lambda_{max} = 326 nm$
d.	
	$h \cdot (c/\lambda) = E_c + L \Rightarrow E_c = (h \cdot c/\lambda) - L$ $E_c = m \cdot v_{\text{max}}^2 / 2$
	$E_c = m \cdot v_{\text{max}}^2 / 2$
	$v_{\text{max}} = \sqrt{\frac{2}{m} \left(\frac{h \cdot c}{\lambda} - L \right)}$
	Rezultat final: $v_{\text{max}} = 8,36 \cdot 10^5 \text{m/s}$