2010 Ani Seu 101 Ingingoo

Mathematics Methods Unit 3

Calculator Assumed Applications of Ami-Differentiation 1

Time: 45 minutes Total Marks: 45 Your Score: / 45

Question One: [3 marks] CA

The area under the curve $f(x) = 4e^{kx}$ over the domain $f(x) = 4e^{kx}$ over the domain $f(x) = 4e^{kx}$

Determine the value of k.

©2016educationequals 1 www.educationequals.com

Copyright for use in 2016

Mathematics Methods Unit 3

Question Two:

CA

$$f(x) = \sin\left(\frac{x}{2}\right)$$

Consider the function

$$0 \le x \le \pi$$

Sketch f(x) over the domain $0 \le x \le \pi$

Draw rectangles on your graph that can be used to overestimate the area

under over the domain , where

 $0 \le x \le \pi$

Hence approximate the area under the curve over the domain

Calculate the margin of error between your answer in part (c) and the exact $0 \le x \le \pi$ value of the area under the curve over the domain

ni asu rot tdairvno?

www.educationequals.com

(e) Calculate the distance travelled in the third second.
(b) Calculate the change in displacement in the first second.
(c) Calculate when the speed of the particle is 4 m/s .
(b) Determine an expression for the velocity of the particle.
(a) Determine the initial acceleration of the particle.
, where t is time in seconds and $$ is $ms^{\text{-}z}.$ The initial velocity of the particle is -4 m/s.
The acceleration of a particle moving in rectilinear motion is given by $a(t) = -4\cos(2t) + 12t$
Question Three: $[1, 2, 2, 2, 2 = 9 \text{ marks}]$ CA
Mathematics Methods Unit 3
Copyright for use in 2016

©2016educationequals	
(e) Calculate the distance travelled in t	
(d) Calculate the change in displaceme	
(c) Calculate when the speed of the par	
(b) Determine an expression for the ve	
(a) Determine the initial acceleration o	
of the particle is -4 m/s.	
$a_1(1) = 4.008(2t) + 12t$ s in sin is in set t is time in set t is t in set t is t in set t in t	
The acceleration of a particle moving in re	
Question Three: $[1, 2, 2, 2, 2 = 9 \text{ mark}]$	
Mathematics Methods Unit 3	

Copyright for use in 2016

Mathematics Methods Unit 3

Question Four: [2, 2, 3 = 7 marks] CA

 $120 - 0.5x + 0.01x^2$

www.educationequals.com

The marginal cost of producing \boldsymbol{x} units of a certain product is dollars per unit.

- (a) Determine the extra cost associated with producing the 31st item.
- (b) Find the increase in cost if the production level is increased from 200 units to 500 units.

(c) The marginal revenue from producing and selling x units of a certain product $x+2x^2$ is . Determine the profit function if the profit from producing 10 items is \$38.33.

Copyright for use in 2016

Mathematics Methods Unit 3

$$f'(x) = 2ax$$

$$f'(1) = 1$$

$$2a = 1 \checkmark$$

$$a = \frac{1}{2} \checkmark$$

$$\int_{-1}^{2} \frac{1}{2} x^{2} + b \, dx = 10.5$$

$$\left[\frac{x^{3}}{6} + bx\right]_{-1}^{2} = 10.5 \checkmark$$

$$\frac{8}{6} + 2b + \frac{1}{6} - b = 10.5$$

$$\frac{9}{6} + b = 10.5 \checkmark$$

$$b = 9 \checkmark$$

 $f(1) = \frac{1}{2} + 9 = 9.5$

9.5 = 1 + cc = 8.5

13

Oopyright for use in 2016

Mathematics Methods Unit 3

Question Five: **CA** [4 marks]

the domain $x \ge x \ge 0$ Calculate the area enclosed between the two curves $y = \cos x$ $y = 3\sin(2x)$

Draw a sketch to support your solution.

ΚŊ Question Six:[4 marks]

2stinu ∂ si wol9d The area of the shaded region of xq uis $p = \lambda$

Determine the values of a and b.

www.educationequals.com

©2016educationequals

2015 or ose in 2016

 $0 = xb \ xd \text{ nis } p$

Mathematics Methods Unit 3

 $\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

Question Seven: [8 marks]

stinu 3.01 si $2 \ge x \ge 1$ and the xaxis over the domain The area bounded by the curve q + zxv = (x)

K)

. $\sin x = x$ is $\sin x = x$ is $\sin x = x + c$ The equation of the tangent to

Determine the values of a, b and c.

www.educationequals.com 12 ©2016educationequals Copyright for use in 2016

Mathematics Methods Unit 3

Question Seven: [8 marks] CA

$$f(x) = ax^2 + b$$

The area bounded by the curve and the x axis over the domain

$$-1 \le x \le 2$$
 is 10.5 units².

o
$$f(x)$$
 $x = 1$ $y = x + c$

The equation of the tangent to

Determine the values of *a*, *b* and *c*.

©2016educationequals

www.educationequals.com

Copyright for use in 2016

Mathematics Methods Unit 3

Question Five: [4 marks] CA

 $y = 3\sin(2x)$ Calculate the area enclosed between the two curves and $0 \le x \le \pi$ the domain

Draw a sketch to support your solution.

Question Six: [4 marks] CA

11

The area of the shaded region of below is 6 units2.

Determine the values of *a* and *b*.

0102 ni əsu 101 İdgirtyqoD

Mathematics Methods Unit 3

SOLUTIONS Calculator Assumed Applications of Anti-Differentiation 1

Time: 45 minutes Total Marks: 45 Your Score: \ 45

Question One: [3 marks] CA

The area under the curve $f(x) = 4e^{bx} \qquad \text{over the domain } 0 \le x \le 10$

Determine the value of k.

$$\int_{0}^{10} 4e^{kx} dx = \frac{40}{3} \left(-e^{-3} + 1 \right)$$

$$\frac{de^{10k}}{\sqrt{4e^{kx}}} \int_{10}^{10} = \frac{40}{40} \left(-e^{-3} + 1\right)$$

$$\sqrt{(1+\epsilon^{-6})^{-4}} = \frac{40}{8} = \frac{40}{3}$$

www.educationequals.com

©2016educationequals

Copyright for use in 2016

Mathematics Methods Unit 3

Question Four: [z, z, 3 = 7 marks]

The marginal cost of producing x units of a certain product is dollars per unit.

(a) Determine the extra cost associated with producing the 31^{st} item.

$$C.(30) = 2114$$
 $C.(30) = 150 - 0.2(30) + 0.01(30)^2$

(b) Find the increased in cost if the production level is increased from 200 units to 500 units.

002
$$\xi = xb^{-x}x10.0 + x2.0 - 021 \int_{00z}^{00z}$$

(c) The marginal revenue from producing and selling x units of a certain product $x + 2 \chi^2$

. Determine the profit function if the profit from producing of

CA.

.££.8£\$ si

$$P'(x) = x + 2x^{2} - (120 - 0.5x + 0.01x^{2})$$

$$P'(x) = x + 2x^{2} - (120 - 0.5x + 0.01x^{2})$$

$$P'(x) = \frac{1.99x^{2}}{3} + \frac{2x}{4} - \frac{120x + c}{4}$$

$$P'(x) = \frac{1.99x^{2}}{3} + \frac{3x^{2}}{4} - \frac{120x + c}{4}$$

$$P'(x) = \frac{1.99x^{2}}{3} + \frac{3x^{2}}{4} - \frac{120x + 5}{4}$$

$$P'(x) = \frac{1.99x^{2}}{4} + \frac{3x^{2}}{4} - \frac{120x + 5}{4}$$

www.educationequals.com

©2016educationequals

ОТ

Mathematics Methods Unit 3

Question Two: [2, 2, 3, 3 = 10 marks] CA

$$f(x) = \sin\left(\frac{x}{2}\right)$$

Consider the function

(a) Sketch over the domain $0 \le x \le \pi$

(b) Draw rectangles on your graph that can be used to overestimate the area

$$f(x) \qquad 0 \le x \le \pi \qquad \delta x = \frac{\pi}{6}$$
 under over the domain , where

$$0 \le x \le \pi$$

(c) Hence approximate the area under the curve over the domain

$$Area = \frac{\pi}{6} \left(\sin \left(\frac{\pi}{12} \right) + \sin \left(\frac{\pi}{6} \right) + \sin \left(\frac{\pi}{4} \right) + \sin \left(\frac{\pi}{3} \right) + \sin \left(\frac{5\pi}{12} \right) + \sin \left(\frac{\pi}{2} \right) \right)$$

$$Area = 2.25 units^{2}$$

(d) Calculate the margin of error between your answer in part (c) and the exact $0 \le \chi \le \pi$ value of the area under the curve over the domain .

8

$$\int_{0}^{\pi} \sin\left(\frac{x}{2}\right) dx = 2$$
 2.25 - 2 = 0.25

©2016educationequals

Copyright for use in 2016

Mathematics Methods Unit 3

Question Three: [1, 2, 2, 2, 2 = 9 marks] CA

The acceleration of a particle moving in rectilinear motion is given by $a(t) = -4\cos(2t) + 12t$ a(t), where t is time in seconds and is ms $^{-2}$. The initial velocity of the particle is -4 m/s.

(a) Determine the initial acceleration of the particle.

$$a(0) = -4ms^{-2}$$

(b) Determine an expression for the velocity of the particle.

$$v(t) = \int -4\cos(2t) + 12t \ dt$$

$$v(t) = -2\sin(2t) + 6t^2 + c$$

$$-4 = -2\sin(0) + 6(0)^2 + c$$

$$c = -4$$

$$v(t) = -2\sin(2t) + 6t^2 - 4$$

(c) Calculate when the speed of the particle is 4 m/s.

$$|v(t)| = 4$$
 \checkmark
 $t = 0s, 0.543s, 1.24s$ \checkmark

(d) Calculate the change in displacement in the first second.

$$\int_{0}^{1} v(t) dt = -3.42m$$

(e) Calculate the distance travelled in the third second.

$$\int_{2}^{3} v(t) dt = 35.62m$$