National University of Computer and Emerging Sciences Karachi Campus

Design an	d Analysis of Algorithm	s (CS2009) Final Exam Pa	Final Exam Paper Part-A			
Date: Dec 2 Course Inst		Total Time (M	•			
Dr. Fahad S Ms. Anaum	mad Atif Tahir, Dr. Nasir Udo nerwani, Dr. Farrukh Salim S Hamid, Mr. Syed Faisal Ali, I Minhal Raza, Mr. Abu Zohra	haikh, Total Questio Mr. Sandesh	10 ns: 2			
Roll No	Section	Student Signature				

CLO #2: To analyze complexities of different algorithms using asymptotic notations, complexity classes, and standard complexity function

Question 1: [0.125 for each column * 4 = 0.5/part, 0.5 *10 = 5 Marks]

Problems	Algorithm Identified	Worst Case Complexity	Spac e	Design Technique and Data Structures
Set of critical servers or routers that need to be monitored or secured to ensure all connections are covered.	Vertex Cover	$ \frac{O(2^n x n^2)}{/O(n+m)} $	O(n)/O(n + m)	NPC Approximation Algo/Brute Force Graphs with Adjacency List
To graduate, students must take courses in a sequence that respects prerequisite relationships. To determines the order in which courses should be	Topological Sort	O(E+V)	O(V)	Reverse DFS Traversal/Greedy Approach/Graph with Adjacency list
Multiplying adjacency matrices to compute paths of different lengths.	Matrix Chain Multiplication	$O(n^3)$	$O(n^2)$	Dynamic Programming with 2D Arrays
Optimizing the placement of environmental sensors to cover all critical areas with the fewest sensors possible.	Set Cover	$ \frac{O(2^m x m)}{/O(m.n)} $	O(m+n)/O(m)	Brute Force/Greedy Approximation NPC Algorithm with Arrays
Detect words that are like those in the dictionary, enabling efficient spelling correction.	KMP Algorithm	O(n+m)	O(m)	Brute Force with Arrays
To allocate non- conflicting tasks or jobs to resources, ensuring that no two tasks that share common resources are assigned to the same time slot.	Independent Set	$O(2^n)/O(n)$	O(n)	Brute Force/Greedy Approximation Graphs with Adjacency List
To find intersections between roads or pipelines, which is important for optimizing traffic flow or planning infrastructure	Line Intersection Algorithm	$O(n^2)$	O(n)	Geometric Algorithm CCW Approach with Sets/Array's/Vectors

National University of Computer and Emerging Sciences

Karachi Campus

Searching for a target element in	Binary Search	O(logn)	O(logn)	Divide and Conquer
a sorted dataset (e.g., a contact				with Arrays
in a sorted phonebook).				
Organizing a shuffled deck of	Merge Sort	O(nlogn)	O(nlogn)	Divide and Conquer
numbers into ascending order.				with Arrays
Choosing a mix of food items	KnapSack	O(n*w)	O(n*w)	Dynamic
that meet nutritional	Problem			Programming with 1D
requirements within a budget or				and 2D Arrays

CLO #2: To analyze complexities of different algorithms using asymptotic notations, complexity classes, and standard complexity function

Question 2 (A): [3 Points] For each of the following questions, indicate whether it is T (True) or F (False) and justify using some examples e.g. assuming a function?

```
1. f(n) = O(g(n)) if and only if g(n) = \Omega(f(n))
If f(n) = n and g(n) = n^2 then n is O(n^2) and n^2 is \Omega(n)
```

True

2. if $f(n) \ge 0$ and g(n) > 0, then f(n) can belong to O(g(n)), $\Omega(g(n))$, or $\theta(g(n))$

if f(n) = n and $g(n) = n^2$ then $f(n) \in O(g(n))$ because $n \le n^2$ for large n

True

3. if f(n) = g(n) + h(n) and $g(n) \in \theta(h(n))$, then $f(n) = \theta(g(n))$

g(n) = n and h(n) = n^2 then g(n) = $\theta(h(n))$ because n grows slower than n^2 and both functions are asymptotically related. F(n) = g(n) + h(n) = n + n^2

False

Question 2 (B): [2 Points] Compute the time complexity of the following. Show all steps clearly