Sustainable Smart City Assistant

Open Source AI Companion using IBM Granite LLM

1. INTRODUCTION

1.1 Project Overview

The *Sustainable Smart City Assistant* is an open-source, Al-powered platform designed to deliver contextual, real-time, and eco-centric information about cities and villages. Built using "IBM Granite-3.3-2b-instruct model", The assistant is accessible via a user-friendly Streamlit frontend, backed by a FastAPI server and deployed via a secure ngrok.

1.2 Purpose

the application aims to serve both local citizens and travelers byoffering insights into city conditions, sustainability tips, real-time weather, policy generation, andmore.

Unlike traditional smart city dashboards, this system emphasizes usability for **every citizen**, making it useful for: • * Travelers exploring new places

- * Daily learners and curious minds
- * Environmental enthusiasts
- * City planners and feedback contributors

The assistant brings together AI capabilities and urban information systems into one friendly, conversational interface.

2. IDEATION PHASE

2.1 Problem Statement

<u>Ideation Phase</u> <u>Define the Problem Statements</u>

Date	14 jun 2025
Team ID	LTVIP2025TMID32673
Project Name	Sustainable Smart City Assistant AI by using IBM
	granite LLM
Maximum Marks	2 Marks

Customer Problem Statement Template:

Problem	I am	I'm trying to	But	Because	Which makes me feel
Statement (PS)	(Customer)				
PS-1	a city resident	live sustainably and make smart lifestyle choices	I struggle to find relevant, real-time, and personaliz ed data about my city's environme nt and services	current systems lack Al integration, adaptability, and a unified platform	frustrated and disconnected from efforts to build a greener future
PS-2	a city planner or municipal officer	efficiently manage city resources, infrastructure, and citizen engagement for sustainable growth	I am limited by fragmente d data systems, reactive planning, and low public participati on	there is no Al-driven assistant to support peaple to find new policy updates	overwhelmed and under-equipped to meet sustainability goals

2.2 Empathy Map Canvas

Ideation Phase Empathize & Discover

Date	14 jun 2025
Team ID	LTVIP2025TMID32673
Project Name	Sustainable Smart City Assistant AI by using IBM granite LLM
Maximum Marks	4 Marks

SAYS:	THINKS:
- "I want real-time updates about traffic, air quality, and water usage." - "Why isn't there a single place where I can get all city-related alerts?" - "It would be great to reduce my energy bills and carbon footprint." - "I care about sustainability, but I don't always know what steps to take."	- "Is my neighborhood doing enough to go green?" - "Are city services using AI to improve our daily lives or just collecting data?" - "I'd love if city planning considered resident feedback more." - "Technology should make city life easier and more sustainable."
DOES:	FEELS:
- Checks multiple apps/websites for transport, pollution, and utility data.	- Frustrated by fragmented or outdated public data.
- Participates in community groups or forums discussing urban issues.	- Concerned about rising pollution and climate impact.
- Looks for ways to recycle, conserve energy, or reduce waste.	- Empowered when they can contribute to a smarter, greener city.
- Uses digital tools to monitor electricity and water usage.	- Curious about how AI can help them live more sustainably.
PAINS:	GAINS:
- Lack of centralized, AI-powered guidance on sustainable actions.	- Personalized insights on reducing energy usage or travel emissions.
- Overwhelming or unclear data from various city systems.	- Real-time AI assistant that integrates data from transport, utilities, and environment.
- Uncertainty about the accuracy or privacy of smart city technologies.	- Transparent, ethical AI systems that explain their actions.

2.3 Brainstorming

Ideation Phase Brainstorm & Idea Prioritization Template

Date	15 jun 2025
Team ID:	LTVIP2025TMID32673
Project Name:	Sustainable Smart City Assistant AI by using IBM
	granite LLM
Maximum Marks	4 Marks

Brainstorm & Idea Prioritization Template:

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Problem Statement Selected:

Urban areas are growing rapidly, causing increased environmental challenges, inefficient resource utilization, traffic congestion, and lack of sustainable living practices. The selected problem is to design a Sustainable Smart City Assistant that integrates technology to promote eco-friendly urban living, enhance public services, and reduce environmental impact using data-driven and Al-enabled solutions with the help of IBM granite LLM.

Step-2: Brainstorm, Idea Listing and Grouping

Raw Ideas:

Real-time weather updates
Smart chat assisatnt
smart traffic controll
Water usage tracking and conservation suggestions
Smart grammer cheking for documents
Integration with renewable energy grid
Eco tips to improve nature avareness
feedback collection to estimate real time problems
Smart lighting and utility control in public spaces
Community resource-policy genaration
KPI forcast to estimate energy charges

Grouped Ideas by Theme:

- Environmental Monitoring:
- Live weather updates
- eco tips
- KPI forcast analysis
- -Water usage tracking

- Urban Efficiency:

- Smart policy genarator
- Smart traffic control
- Smart lighting control

- Sustainable Living Support:

- Renewable energy integration
- live updates
- smart chat assistant

- Community Engagement:

- feedback collection
- documents correction

Step-3: Idea Prioritization

Idea	Feasibility	Impact Innovation	Priority
Smart chat assistant	High	High Medium	High
Live weather report	Medium	High Medium	High
documents error correction	Medium	High Medium	High
KPI forcast Medium	Medium	Medium Medium	Medium
Eco tips	High	Medium High	Medium
live city updates	High	Medium High	High
feedback collection	Medium	High Low	High
policy genarator	Low	Medium Medium	High

3. REQUIREMENT ANALYSIS

3.1 Customer Journey map

Persona: Riya, a 28-year-old resident of a smart city, environmentally conscious, uses mobile apps frequently.

Stage	Touchpoints	User Actions	User Goals	Pain Points	How Our AI Solves It
1. Awareness	Social Media, City Ads, NGO Campaigns	Hears about the Smart City Assistant through a local awareness drive	Learn how to contribute to sustainabilit y	Too many disconnecte d apps	Unified AI platform providing guidance on all city services
2. Onboarding	App Store, City Portal, QR Codes	Downloads the app or scans QR on a smart kiosk	Easy sign-up and language-fri endly onboarding	Complex forms, English-only interfaces	Multilingual support, voice-based sign-up, social logins
3. First Use	Mobile App, Website, Kiosk, Voice Interface	Asks for pollution levels, water usage, traffic alerts	Get real-time, personalized sustainabilit y insights	Unreliable data or technical jargons	Real-time integrated IoT data, simple visual insights
4. Daily Use	Notifications , Dashboard, Voice Prompts	Follows AI tips for energy saving, gets alerts, submits issues	Improve personal impact, stay informed	Forgetting to check apps or low engagement	Personalized nudges, gamified sustainabilit y points
5. Feedback Loop	Feedback Form, Chatbot, Support Button	Sends feedback about water supply issues	Feel heard, expect a fix	No acknowledg ment, unclear resolution	Feedback auto-acknow ledged, routed to right department

3.2 Solution Requirement

<u>Project Design Phase-II</u> <u>Solution Requirements (Functional & Non-functional)</u>

Date	20 jun 2025
Team ID	LTVIP2025TMID32673
Project Name	Sustainable Smart City Assistant AI by using IBM
	granite LLM
Maximum Marks	4 Marks

Functional Requirements

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	-
FR-2	User Confirmation	-
FR-3	Dashboard Access	- View energy, water, waste
		usage
		- Access personalized AI
		insights
		- Multilingual support
FR-4	Real-time Alerts	- Pollution level warnings
		- Water leakage or outage
		alerts
		- Traffic congestion
		notifications
FR-5	Feedback Submission	- Feedback form interface
		- Rating service quality
		- Submit suggestions or
		issues
FR-6	Admin Panel	- Monitor system
		performance
		- Access user feedback
		- View predictive
		maintenance alerts

Non-functional Requirements

NFR No.	Non-Functional Requirement	Description
NFR-1	Usability	The interface will be intuitive, responsive, and accessible on mobile, web, and voice platforms.
NFR-2	Security	All user data will be encrypted in transit and at rest. Role-based access control will be enforced.
NFR-3	Reliability	The system will have failover mechanisms and 99.9% uptime.
NFR-4	Performance	The AI assistant will respond to user queries within 2 seconds under average load.
NFR-5	Availability	System will be available 24/7 with monitoring and automatic recovery features.

3.3 Data Flow Diagram

Project Design Phase-II Data Flow Diagram & User Stories

<u> </u>				
Date	20 jun 2025			
Team ID	LTVIP2025TMID32673			
Project Name	Sustainable Smart City Assistant AI by using IBM			
	granite LLM			
Maximum Marks	4 Marks			

Data Flow Diagram (DFD)

Sustainable Smart City - Architecture Diagram

User Interface Layer (Frontend–HTML/CSS/JavaScript/React/Streammlit)

- City/Village Info Display
- Interactive Map View
- Environmental Insights
- Citizen Engagement Panel

Application Layer (Backend– Python/Flask or Streamiit)

- City Data APIs
- Location-Based Info Services
- Eco Stats & Analytics
- Feedback Handler

Data Layer

- Village/City Information
- Environmental & Infrastruccture Data
- Public Feedback/Reports
- Sensor/Survey Data

Al/Service Layer (Optional - OpenAl API, External APIs)

Entities:

- Citizens
- City Administrator
- Smart City Database
- AI Assistant Interface

System Processes:

- 1. Data Collection from feedbacks
- 2. AI-based Data Processing & Analysis
- 3. User Request Handling (via streamlit)
- 4. Feedback Loop to Government Authority
- 5. Response Generation and Visualization

Data Stores:

- Environmental Data Repository
- User Profile & Preferences
- Feedback Logs
- Usage Statistics

Data Flow Sequence (Narrative)

- 1. Citizens input requests via webapp
- 2. The system fetches real-time data from databases.
- 3. The AI engine processes and returns recommendations .
- 4. Users receive dashboards or text responses.
- 5. Feedback is captured and logged for analysis.
- 6. City authorities access insights and reports for planning.

User Stories

User Type	Functional Requirem ent (Epic)	User Story Number	User Story / Task	Acceptanc e Criteria	Priority	Release
Citizen (Mobile/ Web)	Registrati on	USN-1	As a user, I can register using email and password.	I can log in and access personaliz ed dashboard	High	Sprint-1
Citizen (Mobile/ Web)		USN-2	As a user, I receive a confirmati on email after registratio n.	I can verify and activate my account.	High	Sprint-1
Citizen (Mobile/ Web)	Social Login	USN-3	As a user, I can register using Google or Facebook.	I can log in via my social account.	Medium	Sprint-2
Citizen (Mobile/ Web)	Dashboar d	USN-4	As a user, I can view energy/w ater/wast e usage trends.	Usage data and charts are visible on my dashboard	High	Sprint-2

Citizen (Mobile/ Web)	Alerts	USN-5	As a user, I get real-time alerts on pollution, outages, traffic.	Notificatio ns appear based on my location.	High	Sprint-3
Citizen (Mobile/ Web)	Feedback	USN-6	As a user, I can submit feedback to authoritie s through the app.	Feedback is acknowle dged and logged in system.	Medium	Sprint-3
City Admin	Monitorin g	USN-7	As an admin, I can monitor overall city sustainabi lity metrics.	Admin dashboard shows live analytics.	High	Sprint-2
City Admin	Citizen Feedback	USN-8	As an admin, I can review user-subm itted feedback.	Feedback list is sorted by category and date.	Medium	Sprint-3

3.4 Technology Stack

<u>Project Design Phase-II</u> <u>Technology Stack (Architecture & Stack)</u>

Date	20 jun 2025
Team ID	LTVIP2025TMID32673
Project Name	Sustainable Smart City Assistant AI by using IBM granite LLM
Maximum Marks	4 Marks

Table-1: Components & Technologies

S.No	Component	Description	Technology

1	User Interface	Citizen interface for web, mobile, chatbot, and voice UIs	HTML, CSS, Streamlit
2	Application Logic-1	Logic to process user requests and route queries	Python (FastAPI), Flask
3	Application Logic-2	Natural language speech-to-text for voice interface	Google colab ,weather API
4	Application Logic-3	AI-based assistant interface for contextual interaction	IBM granite LLM, Dialogflow
5	Database	Stores user profiles, queries, feedback, and usage logs	PostgreSQL
6	Cloud Database	Cloud-hosted backup and analytics-ready DB	Straemlit
7	File Storage	Storage for documents, feedback screenshots, reports	IBM Cloud Storage
8	External API-1	Pollution and weather data retrieval	OpenWeatherMap API, AQICN API
9	External API-2	Address validation and Aadhar verification	UIDAI Aadhar API, Google Maps API
10	Machine Learning Model	Predictive analytics for usage trends and sustainability	Scikit-learn, TensorFlow, XGBoost
11	Infrastructure	Hybrid deployment (local testing and cloud deployment)	Local: Ubuntu VM; Cloud: AWS EC2, GCP VM

Table-2: Application Characteristics

S.No	Characteristics	Description	Technology
1	Open-Source Frameworks	Use of community-support ed ML/NLP and web frameworks	Flask, FastAPI, Streamlit
2	Security Implementations	Authentication, encryption, API key protection, access control	, HTTPS, OAuth2, IAM, SHA-256, OWASP-10
3	Scalable Architecture	Microservices with containerization for flexible scaling across services	REST APIs
4	Availability	Multi-zone cloud	github

	with load balancer,	
	auto-healing groups	

4. PROJECT DESIGN

4.1 Problem Solution Fit

Project Design Phase

<u>Problem – Solution Fit Template</u>

- Toblem Solution He Template				
Date	14 jun 2025			
Team ID	LTVIP2025TMID32673			
Project Name	Sustainable Smart City Assistant AI by using IBM granite LLM			
Maximum Marks	2 Marks			

Problem – Solution Fit Canvas

Section	Details
Target Group / User	Urban city planners, municipal authorities, residents of smart cities, sustainability consultants, and civic tech startups.
Current Behavior / Habits	Urban systems often operate in silos (e.g., waste, traffic, water), leading to inefficiencies. Citizens lack unified access to information and personalized suggestions on sustainability actions.
Problem(s) Observed	 Lack of real-time data integration across city services. Inefficient energy/water usage. Citizens unaware of their environmental impact. Poor feedback loops between cities and residents.
Why is this a Problem?	Leads to resource wastage, low citizen engagement in sustainability goals, increased carbon footprint, and difficulty in achieving SDG targets and smart city KPIs.
Existing Alternatives	 Standalone apps for energy, transport, or waste management. Manual reporting dashboards. Government helplines. Legacy GIS and ERP systems in

	municipalities.
Problems with Alternatives	 Disconnected systems and data. No AI-driven insights or automation. Limited real-time interactivity. Low user-friendliness and poor adoption by citizens.
Proposed Solution	A conversational AI platform that unifies city service data (IoT, GIS, ERP) and provides real-time recommendations, alerts, insights, and predictive analytics to both citizens and city administrators.
Unique Value Proposition	 One AI assistant for all smart city needs. Personalized sustainability coaching. Seamless citizen-government communication. Interoperability with existing smart infrastructure.
Solution Benefits	 Encourages greener lifestyles through personalized nudges. Enables predictive maintenance and smarter planning. Increases civic engagement. Reduces operational costs.
Solution Adoption Channels	 Integration into official city apps/websites. Smart kiosks, digital billboards. Voice assistants (Alexa, Google Home). Collaborations with green startups and NGOs.

4.2 Proposed Solution

<u>Project Design Phase</u> <u>Proposed Solution Template</u>

Date	14 jun 2025
Team ID	LTVIP2025TMID32673
Project Name	Sustainable Smart City Assistant AI by using IBM granite LLM
Maximum Marks	2 Marks

Proposed Solution Template:

S.No.	Parameter	Description
-------	-----------	-------------

1	Problem Statement (Problem to be solved)	Smart cities lack integrated, intelligent systems that can provide real-time, personalized sustainability guidance to citizens while supporting city planners with predictive analytics and cross-domain insights, leading to inefficiencies, low engagement, and poor resource optimization.
2	Idea / Solution description	The solution is an AI-powered assistant that consolidates data from smart city infrastructure (IoT sensors, GIS, utilities) to provide real-time alerts, sustainability recommendations, urban insights, and two-way communication between city authorities and residents. It can be accessed via mobile apps, kiosks, or voice interfaces.
3	Novelty / Uniqueness	- Unified conversational AI for all smart city services Personalized sustainability insights using granite LLM - Integration across departments (traffic, waste, energy) via interoperable APIs Predictive analytics for city maintenance and planning.
4	Social Impact / Customer Satisfaction	- Increases citizen awareness and participation in sustainability goals Improves quality of urban life through efficient resource usage Provides faster access to services and information Empowers marginalized groups by offering multilingual, accessible AI interfaces.

5	Business Model (Revenue	- municipalities with tiered
	Model)	pricing based on population
		size.
		- Licensing to private smart
		city consultants and
		developers.
		- Data analytics dashboards
		sold as premium features.
		- Grants and public-private
		partnerships for smart
		infrastructure development.

4.3 Solution Architecture

<u>Project Design Phase</u> <u>Solution Architecture</u>

Date	14 jun 2025
Team ID	LTVIP2025TMID32673
Project Name	Sustainable Smart City Assistant AI by using IBM granite LLM
Maximum Marks	4 Marks

Solution Architecture Description

The Sustainable Smart City Assistant AI is designed to provide a centralized, intelligent platform that connects urban infrastructure systems with residents and administrators. It enables personalized sustainability insights, operational efficiency, and proactive urban management.

Architecture Overview

Component	Description
User Interfaces	Web, mobile apps, WhatsApp chatbot, and

	city dashboards.
Data Sources	IoT sensors (air quality, water flow, waste bins, traffic), GIS mapping systems, utility usage data (electricity, water), citizen feedback systems.
AI/ML Engine	 Predictive analytics for energy, water, and waste usage. Pattern recognition in citizen behavior. Personalized eco-friendly suggestions using NLP.
Data Integration Layer	granite LLM and middleware that integrate with existing municipal systems (ERP, SCADA, CRM) to unify data across departments.
Backend Services	Microservices for alert generation, recommendation engines, user management, real-time analytics, and reporting.
Cloud Infrastructure	Scalable deployment on streamlit using containerized services (Docker, Kubernetes), real-time databases, and secured storage systems.
Security & Compliance	Role-based access control, data encryption, GDPR compliance, government digital governance standards, and periodic auditing.

Solution Features

- Unified conversational interface for all citizen needs
- Real-time alerts on traffic, pollution, outages, etc.
- Eco tips dashboards with AI-based insights
- Feedback loop between citizens and government bodies
- Predictive weather reports
- Multilingual and inclusive AI interfaces
- -documents or file purification
- -KPI forcast estimation

Development Phases

Phase	Description
Phase 1	Requirement analysis, stakeholder
	consultation, and prototype of AI assistant
Phase 2	Backend integration with smart city data
	sources and GIS/IoT APIs
Phase 3	AI/ML training using collected data,

	development of personalized insight engine
Phase 4	Front-end interfaces (apps, dashboards, kiosks), testing, and feedback loops with pilot communities
Phase 5	Final deployment, scale-up to additional cities, and continuous monitoring/improvement

Solution Requirements

- IBM granite model
- google colab cloud
- Secure IoT data pipelines
- github for project automation
- Municipal cooperation for API/data access
- Citizen onboarding and education initiatives

Architecture Diagram

```
Citizens / Planners

|
Conversational UI <--- (straemlit)

|
AI & Personalization
(Granite Models, Analytics)

|
Data Integration
(FastAPI, Utilities)

|
Cloud Infrastructure
```

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

Agile Sprint Planning

Date	18 jun 2025
Team ID	LTVIP2025TMID32673
Project Name	Sustainable Smart City Assistant AI by using IBM granite LLM
Max marks	5 marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirem ent (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Integratio n	USN-1	As a developer, I can collect and load smart city data (traffic, energy, waste).	3	High	Data Engineeri ng Team
Sprint-1	Data Preproces sing	USN-2	As a data scientist, I can clean and preproces s the data for training.	3	High	AI Team
Sprint-1	Model Design	USN-3	As an AI lead, I can define an AI model	2	Medium	AI Team

			C			1
			for citizen engageme			
			nt &			
			resource			
			usage.			
Sprint-1	Dashboar	USN-4	As a	2	Medium	UI/UX
F	d Setup		developer,			Devs
			I can			
			create			
			HTML UI			
			for			
			displaying			
			insights.			
Sprint-2	Model	USN-5	As a data	5	High	AI Team
	Training &		scientist, I			
	Testing		can train			
			the ML			
			model and			
			test			
			performan			
			ce.			
Sprint-2	Integratio	USN-6	As a dev, I	3	High	Full Stack
	n		can			Team
			integrate			
			the model			
			with the			
			frontend dashboard			
			uasiiboaru			
Sprint-2	Deployme	USN-7	As an	5	High	DevOps
Sprint-2	nt	0311-7	engineer, I]	Illigii	Team
			can deploy			Team
			the			
			assistant			
			via Flask			
			to a			
			server.			
Sprint-2	Feedback	USN-8	As a user, I	2	Medium	Backend
_	Logging		can give			Devs
			feedback			
			to the city			
			authority			
			through			
	Į		chatbot.			

Project Tracker, Velocity & Burndown Chart (4 Marks)

Sprint	Total Story	Sprint Start	Sprint End	Story Points	Sprint
	Points	Date	Date	Completed	Release Date
			(Planned)	-	
Sprint-1	10	15 jun 2025	21 jun 2025	10	27 jun 2025
Sprint-2	15	21 jun 2025	27 jun 2025	15	27jun 2025

Velocity Calculation

Total Story Points: 25

Total Sprints: 2

Velocity = $25 \div 2 = 12.5$ story points per sprint

Daily Average Velocity = $12.5 \div 6 = 2.08$ story points/day

Suggested Burndown Chart Data

Day	Planned SP Remaining	Actual SP Remaining
Day 1	25	25
Day 2	20	22
Day 3	15	18
Day 4	10	13
Day 5	5	5

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

<u>Functional & Performance Testing Template</u>

Model Performance Test

Date	16 jun 2025
Team ID	LTVIP2025TMID32673
Project Name	Sustainable Smart City Assistant AI by using IBM
	granite LLM
Maximum Marks	

Test Scenarios & Results

Test					
Case	Scenario (What to	Test Steps (How		Actual	
ID	test)	to test)	Expected Result	Result	Pass/Fail
				Valid	Pass
				inputs	
		Enter valid and	Valid inputs	accepted,	
	Text Input Validation	invalid text in input	accepted, errors for	errors for	
FT-01	(e.g., topic, job title)	fields	invalid inputs	invalid	
				Accepts	Pass
				valid	
	Number Input	Enter numbers	Accepts valid values,	values,	
	Validation (e.g., word	within and outside	shows error for	error for	
FT-02	count, size, rooms)	the valid range	out-of-range	invalid	
				Correct	Pass
				sustainabi	
				lity	
	Content Generation	Provide complete	Correct content is	suggestio	
	(e.g., blog, resume,	inputs and click	generated based on	ns are	
FT-03	design idea)	"Generate"	input	shown	

				connects	Pass
		Check if ngork link		successful	
	Colab Connection	is correct and	/chat responds	ly with	
FT-04	Check	model responds	successfully	valid key	
				Average	Pass
		Use a timer to		response	
		check content	Should be under 3	time 2.5	
PT-01	Response Time Test	generation time	seconds	seconds	
				Consistent	Pass
				performa	
		Send multiple calls	stable,should not	nce across	
PT-02	Speed Test	at the same time	slow down	requests	
				Handled	Pass
				up to 50	
		Upload multiple	Should work	files	
	File Upload Load	PDFs and check	smoothly without	without	
PT-03	Test (e.g., PDFs)	processing	crashing	lag	

7. RESULTS

7.1 Output Screenshots

Mater City Updates

- * Fetch latest info like weather, news, temperature
- * Input: City name
- * Output: JSON response with `description`, `temp`

Chat Assistant

- * Ask anything from tourist help to culture tips
- * Output: Friendly and localized answer from AI

½ Eco Tips

* Actionable, emoji-enhanced sustainability ideas ,Example: "Plant herbs in your balcony to save trips to the store!

KPI Forecasting

- * Smart insights into trends like energy use, waste
- * Charts rendered using Altair

Grammar Correction

- * Al-enhanced proofreading of input content
- * Useful for announcements or blogs

*** Weather Report**

- * Humanized weather overview with emojis
- * Helps travelers or event planners

Policy Generator

- * Converts dense policies into quick summaries
- * Eases understanding for common citizens

Example 2 Feedback System

- * Store and view open-ended feedback
- * Enables community Participation

8. ADVANTAGES & DISADVANTAGES

Advantages

No.	Advantage	Explanation
1	Centralized Smart City	Citizens can access all city
	Interface	services and sustainability
		information through one
		AI-powered platform.
2	Real-Time Data & Alerts	Provides immediate
		insights and alerts (e.g.,
		pollution, traffic, water
		usage) from IoT and sensor
		networks.
3	Personalized	AI tailors tips and
	Recommendations	information to each user,
		enhancing engagement and
		behavioral change.
4	Multilingual & Inclusive	Voice + text interfaces
	Access	support multiple Indian
		languages for diverse user
		groups.
5	Cost & Resource	Enables predictive
	Optimization for City	maintenance, efficient
	Administrators	planning, and automation of
		feedback loops.
6	Scalable Architecture	Designed to expand across
		cities and integrate with
		existing infrastructure via
		APIs.
7	Increased Citizen	Gamified eco-scoring and
	Participation	feedback features motivate
		long-term user engagement.
8	Environmentally Impactful	Supports SDGs by
		encouraging reduced
		consumption, emissions,
		and better civic behavior.

Disadvantages

No.	Disadvantage	Mitigation Strategy
1	High Initial Setup & Integration Cost	Leverage government smart city grants and public-private partnerships
2	Dependency on IoT Infrastructure Availability	Start with cities with basic infrastructure; use hybrid data sources
3	Data Privacy and Security Concerns	Apply strong encryption, role-based access, and compliance with data regulations
4	User Reluctance to Adopt New Tech	Provide onboarding help, community workshops, and voice-based accessibility
5	Maintenance and Continuous Model Training Required	Automate retraining schedules; partner with research institutions for model upkeep

9. CONCLUSION

The *Sustainable Smart City Assistant* is a citizen-focused AI application that blends technologyandsocial good. Built as part of the SmartBridge internship using IBM Granite, it serves as an educational, informative, and eco-conscious digital companion. By using natural language models todrive human interaction, it simplifies civic learning and fosters local engagement. Whether you're a traveler, a curious citizen, or someone passionate about the environment, this assistant gives you **just enough knowledge to care and act smartly..

10. FUTURE SCOPE

Area	Future Scope
1. Geographic Expansion	Extend the assistant's deployment from pilot smart cities to tier-2 and tier-3 cities across India and globally.
2. Feature Enhancements	Integrate more city departments (e.g., healthcare, emergency response, public transport planning) into the AI ecosystem.
3. Multimodal Interaction	Expand accessibility through voice-first interaction, AR/VR city visualizations, and wearable device compatibility.
4. Personal Sustainability AI Coach	Use AI to offer hyper-personalized advice, nudges, and goal tracking for users to reduce their carbon footprint.
5. Predictive Governance	Enable municipal bodies to proactively manage urban challenges (e.g., water shortage, traffic spikes) using AI forecasts.
6. Integration with Smart Homes	Link with home IoT devices for holistic monitoring (e.g., smart meters, HVAC, solar panels).
7. Open Data Platform	Create a public, anonymized data dashboard for researchers, NGOs, and startups to innovate further.
8. Public Engagement & Gamification	Introduce city-wide competitions, green leaderboards, and rewards to foster mass participation.
9. AI-driven Policy Feedback Loop	Analyze citizen behavior and feedback to recommend policy adjustments to urban planners.

11. APPENDIX

Source Code(if any): main.py - Flask Backend "import os from fastapi import FastAPI, HTTPException, Depends from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from sqlalchemy import create_engine, Column, Integer, String from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from dotenv import load_dotenv import requests import json # Load environment variables load_dotenv() COLAB_MODEL_API = os.getenv("COLAB_MODEL_API") # e.g., https://xxxx.ngrok-free.app/chat DATABASE URL = "sqlite:///./app.db" # Database setup engine = create_engine(DATABASE_URL, connect_args={"check_same_thread": False})

```
SessionLocal = sessionmaker(bind=engine, autoflush=False, autocommit=False)
Base = declarative_base()
class Feedback(Base):
  __tablename__ = "feedback"
  id = Column(Integer, primary_key=True, index=True)
  user_id = Column(String, nullable=False)
  message = Column(String, nullable=False)
Base.metadata.create_all(bind=engine)
# FastAPI app
app = FastAPI()
app.add_middleware(
  CORSMiddleware,
  allow_origins=["*"],
  allow_methods=["*"],
  allow_headers=["*"],
)
# DB Dependency
def get_db():
  db = SessionLocal()
```

```
try:
     yield db
  finally:
     db.close()
# Models
class Prompt(BaseModel):
  prompt: str
class TextInput(BaseModel):
  text: str
class FeedbackModel(BaseModel):
  user_id: str
  message: str
class PolicyRequest(BaseModel):
  query: str
  policy_text: str
class AnomalyPayload(BaseModel):
  data: list[float]
# Model call helper
def call_model(prompt: str):
```

```
response = requests.post(COLAB_MODEL_API, json={"prompt": prompt}, timeout=30)
    response.raise_for_status()
    return response.json().get("text", "No response")
  except Exception as e:
    raise HTTPException(status_code=503, detail=f"Model call failed: {e}")
# Endpoints
@app.post("/chat")
def chat_endpoint(payload: Prompt):
  return {"response": call_model(payload.prompt)}
@app.post("/text-correction")
def correct text(payload: TextInput):
                       f"Please correct
                                              the
                                                    grammar
                                                               and
                                                                      spelling
                                                                                     the
                                                                                           following
text:\n\n{payload.text}\n\nReturn only the corrected version."
  return {"corrected_text": call_model(prompt)}
@app.get("/eco-tips")
def eco_tips():
   prompt = "Give a unique and practical eco-friendly tip for urban life. Include an emoji and short
explanation."
  return {"tip": call_model(prompt)}
```

try:

```
@app.post("/forecast-kpi")
def forecast_kpi(payload: AnomalyPayload):
   prompt = f"Given this historical data: {payload.data}, forecast the next 3 values. Return only a
JSON list like: [x, y, z]"
  return {"forecast_next_3_periods": call_model(prompt)}
@app.post("/submit-feedback")
def submit_feedback(fb: FeedbackModel, db=Depends(get_db)):
  entry = Feedback(user_id=fb.user_id, message=fb.message)
  db.add(entry)
  db.commit()
  db.refresh(entry)
  return {"message": "Feedback submitted"}
@app.get("/feedback")
def get_feedback(db=Depends(get_db)):
  items = db.query(Feedback).all()
  return [{"user_id": i.user_id, "message": i.message} for i in items]
@app.post("/policy-summary")
def policy_summary(req: PolicyRequest):
  prompt = f"Summarize the following city policy focusing on '{req.query}':\n{req.policy_text}"
  return {"summary": call_model(prompt)}
```

```
@app.get("/weather")
def weather(city: str):
   prompt = f"Give me the current weather in {city}, including temperature, condition, and suitable
emoji."
  return {"weather": {"description": call_model(prompt)}}
@app.get("/updates")
def city_updates(city: str):
  prompt = (
     f"Give me the latest updates about {city}, including political developments, IT industry news, and
local happenings. "
     "Respond in JSON format like: {\"description\": \"...\", \"temp\": 31}"
  )
  try:
     raw = call_model(prompt)
     try:
       parsed = json.loads(raw) if isinstance(raw, str) else raw
     except json.JSONDecodeError:
       parsed = {"description": raw, "temp": None} # fallback
     return {"updates": parsed}
  except Exception as e:
```

raise HTTPException(status_code=500, detail=f"Al error: {e}"
@app.get("/")
def root():
return {"message": "Smart City Assistant Backend Running"}"
requirements.txt/backend
fastapi,uvicorn,pydantic,requests,streamlit,pandas
Dataset Link
sqlite:///./app.db
GitHub & Project Demo Link
GitHub & Project Demo Link https://github.com/praSHAnTH630490/Smart-City-assistant
-
-