CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 15 GENNAIO 2024

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Scrivere una negazione della formula $\exists y \Big(\forall x \big((\varphi(x) \land \psi(y)) \rightarrow (\psi(y) \rightarrow \theta(x)) \big) \Big)$ in cui non appaia il connettivo di implicazione (qui φ , ψ e θ sono predicati unari).

Esercizio 2. Dare una definizione di partizione di un insieme ed enunciare il teorema fondamentale su partizioni e relazioni d'equivalenza. Fornire una partizione di \mathbb{Z} di cardinalità 2^{10} .

Esercizio 3. Determinare i numeri naturali n tali che $2^n < n!$. (Suggerimento: può essere utile fare uso del principio di induzione). Per quali insiemi finiti a si ha $|\mathcal{P}(a)| < |\operatorname{Sym}(a)|$?

Esercizio 4. Si consideri l'operazione $*: (a, b) \in \mathbb{Z}_{10} \times \mathbb{Z}_{10} \mapsto \bar{6}a + b \in \mathbb{Z}_{10}$.

- (i) Decidere se * è associativa, se è commutativa, se (\mathbb{Z}_{10} ,*) ha elementi neutri a sinistra o a destra e, nel caso la domanda abbia senso, quali suoi elementi sono simmetrizzabili. Che tipo di struttura algebrica è (\mathbb{Z}_{10} ,*)?
- (ii) Siano $P = \{\bar{2}a \mid a \in \mathbb{Z}_{10}\}\)$ e $D = \mathbb{Z}_{10} \setminus P$. Per ciascuno di P e D decidere se è una parte chiusa rispetto a * e, nel caso, rispondere, per la corrispondente struttura indotta, alle stesse domande poste al punto precedente per $(\mathbb{Z}_{10}, *)$.

Esercizio 5.

- (i) Stabilire quali tra $[2027]_{2024}$, $[1024]_{2024}$, $[-2]_{2024}$ e $[10001!]_{2024}$ sono invertibili in \mathbb{Z}_{2024} e quali sono divisori dello zero.
- (ii) Calcolare, utilizzando l'algoritmo euclideo, il massimo comun divisore positivo tra 209 e 165 e trovare quindi tutte le soluzioni delle equazioni congruenziali $209x \equiv_{165} 14$ e $165x \equiv_{209} 44$.

Esercizio 6. Siano F l'insieme delle parti finite non vuote di \mathbb{N} e f l'applicazione $x \in F \mapsto \min x + \max x \in \mathbb{N}$.

- (i) Spiegare perché f è ben definita come applicazione;
- (ii) determinare $\overleftarrow{f}(\{2\})$ e $|\overleftarrow{f}(\{2\})|$;
- (iii) f è iniettiva, suriettiva, biettiva?
- (iv) Detto σ il nucleo di equivalenza di f, determinare $[\{2\}]_{\sigma}$.

Sia ora τ la relazione d'ordine in F definita da:

$$\forall x, y \in F \ (x \tau y \iff (x = y \lor f(x) \text{ è un divisore proprio di } f(y))).$$

- (v) Determinare in (F, τ) eventuali elementi minimali, massimali, minimo, massimo. (F, τ) è un reticolo?
- (vi) Posto $M = \{\{1\}, \{2\}, \{2,3,4\}, \{1,3,5,7\}, \{5,6,7\}, \{9\}, \{10,11,15,60,62\}\}$, disegnare un diagramma di Hasse di (M,τ) , verificare se questo è un reticolo e, nel caso, se è distributivo, complementato, booleano.
- (vii) Determinare in (M,τ) una catena massimale C ed un sottoreticolo booleano massimale B.

Esercizio 7. Per ogni primo positivo p, si consideri il polinomio $f_p = (\bar{4}x^3 + x^2 - \bar{2}x - \bar{4})(x + \bar{1}) \in \mathbb{Z}_p[x]$.

- (i) Determinare l'insieme X dei primi p tali che il resto della divisione tra f_p e $x-\bar{2}$ sia $\bar{0}$.
- (ii) Posto $p = \max X$, decomporre f_p in prodotto di polinomi irriducibili in $\mathbb{Z}_p[x]$.
- (iii) f_p ha un divisore irriducibile monico di grado 2? In caso di risposta affermativa, dire quanti ne ha ed esibirne almeno uno.

GEN-24 ES1

Esercizio 1. Scrivere una negazione della formula $\exists y \Big(\forall x \big((\varphi(x) \land \psi(y)) \rightarrow (\psi(y) \rightarrow \theta(x)) \big) \Big)$ in cui non appaia il connettivo di implicazione (qui φ , ψ e θ sono predicati unari).

$$\exists_{\chi} \left(\forall_{x} \left(\left(\varphi(x) \wedge \psi(\chi) \right) \Rightarrow \left(\chi(\chi) \Rightarrow \Theta(\chi) \right) \right) \right)$$

$$\forall_{y} \neg \left(\forall_{x} \left(\left(\varphi(x) \wedge \psi(y) \right) \Rightarrow \left(\chi(y) \Rightarrow \Theta(x) \right) \right) \right)$$

$$\forall_{y} \left(\exists_{x} \neg \left(\left(\varphi(x) \wedge \psi(y) \right) \Rightarrow \left(\chi(y) \Rightarrow \Theta(x) \right) \right) \right)$$

$$\forall \varphi \left(\exists_{\times} \left(\left(\varphi(x) \wedge \psi(y) \right) \wedge \neg \left(\varphi(y) \rightarrow \Theta(x) \right) \right) \right)$$

$$\forall \zeta \left(\exists \times \left((\varphi(x) \wedge \psi(\zeta)) \wedge (\varphi(\zeta) \wedge \neg \Theta(x)) \right) \right)$$

GEN-24 ES 2

Esercizio 2. Dare una definizione di partizione di un insieme ed enunciare il teorema fondamentale su partizioni e relazioni d'equivalenza. Fornire una partizione di \mathbb{Z} di cardinalità 2^{10} .

Defr. Portizione:

$$-\forall a, b \in \times (a \neq b' \Rightarrow a \cap b = \emptyset)$$

Trorema l'anotomentole su portirioni e rel, equirole

Per aya insiene A esiste ma fuione le ettica fo deficita

PARTIZIONE

GEN 24 ES 3 i) Vole per tutt: gl n > 4 ii) PER INDUZIONE 24 < 4! = 16 < 24 m=4

GEN-ZH ES 4

Esercizio 4. Si consideri l'operazione *: $(a, b) \in \mathbb{Z}_{10} \times \mathbb{Z}_{10} \mapsto \overline{6}a + b \in \mathbb{Z}_{10}$.

- (i) Decidere se * è associativa, se è commutativa, se (\mathbb{Z}_{10} , *) ha elementi neutri a sinistra o a destra e, nel caso la domanda abbia senso, quali suoi elementi sono simmetrizzabili. Che tipo di struttura algebrica è (\mathbb{Z}_{10} , *)?
- (ii) Siano $P = \{\bar{2}a \mid a \in \mathbb{Z}_{10}\}$ e $D = \mathbb{Z}_{10} \setminus P$. Per ciascuno di P e D decidere se è una parte chiusa rispetto a * e, nel caso, rispondere, per la corrispondente struttura indotta, alle stesse domande poste al punto precedente per $(\mathbb{Z}_{10}, *)$.

L) ASSOCIATIVITA ? SI

$$\forall_{x,y,z} \in \mathbb{Z}_{10} \left(\times * \left(y * z \right) = \left(\times * y \right) * Z \right)$$

$$\tilde{6} \times + \tilde{6} y + Z = \tilde{6} \left(\tilde{6} \times + y \right) + Z$$

$$\frac{1}{6} \times + \frac{1}{6} + \frac{1}{2} = \frac{1}{36} \times + \frac{1}{6} + \frac{1}{2}$$

COMMUTATIVITA? NO

$$\forall x, y \in \mathbb{Z}_{10} \left(x = y = y \times x \right)$$

PARTE CHIUSA? SI Yx,yeP(xxyeP) 6x + y è poi, perche addissen e moltiplicaien sono porte chiuse ASSOCIATIVA? SI Vende a prime COMMUTATIVA? SI (PEN IL POTERE DELL'AMORE DI CRISTO) $6 \times + y = 6y + \times$ 30+3=18+5 ELEMENTO NEUTRO? 5 6ε+x=× 5 6.5=30=0 6x + S = x potesu mopico oli nunci SIMMETRIZZABILI? SI 6x+l=5 1, -1(9) 9, (9)(1) 6.3+1 = 5 6-1+9=5 5,-5(5) 6.5+5=5 3,-3(7) 7,-7(3) 6.3+7=5 6.7+3=5 STRUTURA ALGER? GRUPPO ABELIANO

GEN-Zh ESS

Esercizio 5.

- (i) Stabilire quali tra $[2027]_{2024}$, $[1024]_{2024}$, $[-2]_{2024}$ e $[10001!]_{2024}$ sono invertibili in \mathbb{Z}_{2024} e quali sono divisori dello zero.
- (ii) Calcolare, utilizzando l'algoritmo euclideo, il massimo comun divisore positivo tra 209 e 165 e trovare quindi tutte le soluzioni delle equazioni congruenziali $209x \equiv_{165} 14$ e $165x \equiv_{209} 44$.

44 = 33.1 + 11

19 = 44+ 33 (1)

i) E un opplierron perchi agni elevito del donino ha un inegin nel codomio

in ({z}) = { {1}, {0,2}, {0,1,2}}

[({2}) = 3

(ic) NIETIVA: NO

SURJETINA: 51

BIETIVA: NO

Vx, y & F (k(x) = R(y) => x=y)

FALSO R ({ 13}) = 2

P ((()) = 2

YyeN]xeF (g= h(x))

iv) [{2}] =: {{0,2}, {4}, {0, 4,2}}

Tutti al clusti el F con cordinalità 2 e con O cone elumento col 203 coprano tutto IN