Scilab Textbook Companion for Non-conventional Energy Sources by G. D. Rai¹

Created by
Mohammed Touquer Mohammed Toufique Khan
B.E
Electronics Engineering
Anjuman i islam Kalsekar Technical Campus
College Teacher
None
Cross-Checked by
Chaya Ravindra

July 17, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Non-conventional Energy Sources

Author: G. D. Rai

Publisher: Khanna Publishers

Edition: 1

Year: 2010

ISBN: 8174090738

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
2	Solar radiation and its Measurement	5
3	Solar Energy Collectors	9
6	Wind Energy	14
7	Energy from Biomass	16
8	Geothermal Energy	18
9	Energy from the Oceans	22
10	Chemical Energy Sources	24
12	Magneto Hydro Dynamic Power Generation	29
13	Thermo Electric Power	30
14	Thermionic Generation	37

List of Scilab Codes

Exa 2.4.1	Local solar time and declination
Exa 2.4.2	Angle made by beam radiation
Exa 2.7.1	Average value of Solar radiation on a horizon-
	tal surface
Exa 3.6.1	Solar altitude angle and Incident angle and
	Collector efficiency
Exa 3.9.1	Useful gain and exit fluid temperature and
	collection efficiency
Exa 6.2.1	Torque and axial thrust
Exa 7.15.1	Volume of biogas digester and power available
	from the digester
Exa 8.5.1	Plant efficiency and Heat rate
Exa 8.5.2	Cycle efficiency and Plant Heat Rate 20
Exa 9.3.5.1	Energy Generated
Exa 9.3.6.1	The Yearly Power Output
Exa 10.2.8.1	Reversible Voltage for Hydrogen oxygen fuel
	$cell \dots $
Exa 10.2.8.2	Voltage output and efficiency and heat transfer 24
Exa 10.2.8.3	Voltage output and efficiency and heat trans-
	ferred
Exa 10.2.8.4	Gibbs free energy and Entropy change 26
Exa 10.2.8.5	Heat transfer rates 27
Exa 12.6.1	Open circuit voltage and maximum power out-
	put
Exa 13.2.1	Peltier heats absorbed and rejected 30
Exa 13.3.2	Thomson heat transferred
Exa 13.4.1	Carnot Efficiency

Exa 13.4.2	Maximum generator efficiency and Power Out-	
	put	32
Exa 13.4.3	Maximum efficiency and Thermocouples in	
	series and also Heat input and rejected at full	
	Load	35
Exa 14.4.1	Efficiency of the generator and Carnot effi-	
	ciency	37

Solar radiation and its Measurement

Scilab code Exa 2.4.1 Local solar time and declination

```
1 //Ex2.4.1.; Detremine local solar time and
      declination
\frac{3}{\sqrt{\text{The local solar time}}} = IST - 4(\text{standard time longitude})
      -longitude of location)+Equation of time
      correstion
4 //IST=12h 30min; for the purpose of calculation we
      are writing it as a=12h, b=29 min 60 sec;
5 a=12;
6 b=29.60;
7 //(standard time longitude-longitude of location)=82
       degree 30 \min - 77 degree 30 \min;
8 //for the purpose of calculation we are writing it
      as
9 STL3=82.5-72.5;
10 //Equation of time correstion: 1 min 01 sec
11 //for the purpose of calculation we are writing it
      as
12 c=1.01;
```

Scilab code Exa 2.4.2 Angle made by beam radiation

```
1 //Ex2.4.2.; Calculate anglr made by beam radiation
      with the normal to a flat collector.
2 gama=0; //since collector is pointing due south.
3 //For this case we have equation : cos_(theta_t)=cos
      (fie-s)*cos(delta)*cos(w)+sin(fie-s)*sin(delta)
4 // with the help of cooper eqn on december 1,
5 n = 335;
6 // let
7 a=(360/365)*(284+n); aa=(a*\%pi)/180;
8 //therefore
9 delta=23.45*sin(aa);
10 printf(" delta=%f degree", delta);
11 //Hour angle w corresponding to 9.00 hour=45 Degreew
12 \text{ w=45;} // \text{degree}
13 // let
14 = \cos(((28.58*\%pi)/180) - ((38.58*\%pi)/180)) * \cos(delta)
      *%pi*180^-1)*cos(w*%pi*180^-1);
15 b=sin(delta*\%pi*180^-1)*sin(((28.58*\%pi)/180)
```

```
-((38.58*%pi)/180));

16 //therefore

17 cos_of_theta_t=a+b;

18 theta_t=acosd(cos_of_theta_t);

19 printf("\n theta_t=%f Degree",theta_t);
```

Scilab code Exa 2.7.1 Average value of Solar radiation on a horizontal surface

```
1 //Ex2.7.1.; Determine the average values of radiation
       on a horizontal surface
3 // Declination delta for June 22=23.5 degree, sunrice
        hour angle ws
4 delta=(23.5*%pi)/180;//unit=radians
5 fie=(10*%pi)/180;;//unit=radians
6 //Sunrice hour angle ws=acosd(-tan(fie)*tan(delta))
7 ws=acosd(-tan(fie)*tan(delta));
8 printf(" Sunrice hour angle ws=%f Degree", ws);
9 n=172; //=days of the year (for June 22)
10 //We have the relation for Average insolation at the
        top of the atmosphere
11 //\text{Ho} = (24/\%\text{pi}) * \text{Isc} * [\{1+0.033*(360*n/365)\} * ((\cos (\text{fie})))]
      *\cos(\text{delta})*\sin(\text{ws}) + (2*\%\text{pi*ws}/360)*\sin(\text{fie})*\sin(
      delta))]
12 Isc=1353; //SI unit=W/m^2
13 ISC=1165; / /MKS unit=kcal/hr m<sup>2</sup>
14 // let
15 \ a=24/\%pi;
16 aa=(360*172)/365; aaa=(aa*\%pi)/180;
17 b = \cos(aaa); bb = 0.033*b; bbb = 1+bb;
18 c = (10 * \%pi) / 180; c1 = cos(c);
19 cc = (23.5*\%pi)/180; cc1 = cos(cc);
20 ccc = (94.39 * \%pi) / 180; ccc1 = sin(ccc);
21 c = c1 * cc1 * ccc1;
22 d = (2*\%pi*ws)/360;
```

```
23 e=(10*%pi)/180;e1=sin(e);
24 ee=(23.5*%pi)/180;ee1=sin(ee);
25 e=e1*ee1;
26 //therefoe Ho in SI unit
27 Ho=a*Isc*(bbb*(c+(d*e)));
28 printf("\n SI UNIT->Ho=%f W/m^2",Ho);
29 Hac=Ho*(0.3+(0.51*0.55))
30 printf("\n SI UNIT->Hac=%f W/m^2 day",Hac);
31 ho=a*ISC*(bbb*(c+(d*e)));
32 printf("\n MKS UNIT->Ho=%f kcal/m^2",ho);
33 hac=ho*0.58;
34 printf("\n MKS UNIT->Hac=%f kcal/m^2 day",hac);
35
36 //The values are approximately same as in textbook
```

Solar Energy Collectors

Scilab code Exa 3.6.1 Solar altitude angle and Incident angle and Collector effici

```
1 //Ex3.6.1.; calculate: solar altitude anglr, Incident
      angle, Collector efficiency
3 //Solar declination : delta
4 n=1
5 delta=23.45*sin((360/365)*(284+n));
6 printf(" Solar declination delta=%f degree", delta);
7 fie=22; // degree
8 //solar hour angle ws=0, (at mean of 11:30 and 12:30)
9 \text{ ws} = 0;
10 //Solar altitude anglr alpha is given by
11
12 // alpha = asind (((cos(fie)*cos(delta)*cos(ws)) + (sin(
      fie ) * sin ( delta ) ) )
13 // let
14 \ a = \cos((22*\%pi)/180)*\cos((-23*\%pi)/180)*\cos(0);
15 b=\sin((22*\%pi)/180)*\sin((-23*\%pi)/180);
16 //therefore
17 sin_alpha=a+b;
18 printf("n \sin_a p \ln a = \% f", sin_alpha);
19 alpha=asind(sin_alpha);
```

```
20 printf("\n aplha=\%f Degree",alpha);
21 //Incident angle
22 theta=(180/2)-alpha;
23 printf("\n Incident angle=%f Degree", theta);
24 //Rb is given by
25 Rb=((\cos(((22*\%pi)/180)-(37*\%pi)/180)*\cos((-23*\%pi)
      /180)*\cos(0)+(\sin(((22*\%pi)/180)-(37*\%pi)/180)*
      sin((-23*\%pi)/180)))/sin_alpha;
26 printf("\n Rb=\%f", Rb);
27 // Effective absorptance product is <t.alpha>=t.alpha
      / 1-(1-alpha)*pd
28 pd=0.24; // Diffuse reflectance for two glass covers
29 // let TA = < t.alpha >
30 TA = (0.88*0.90)/(1-(1-0.90)*pd);
31 printf("\n Effective absorptance product is <t.alpha
      >=\%f", TA);
32 //Solar radiation intensity (consider beam radiation
      only)
33 / \text{Hb} = 0.5 \text{ ly/mm} = 0.5 \text{ cal/cm}^2 * \text{min}
34 Hb=((0.5*10^4)/10^3)*60; //unit=kcal/m^2 hr
35 printf("\n Hb=\%f kcal/m^2 hr", Hb);
36 Hb=Hb*1.163; // unit=W/m^2 hr; [since 1 kcal =
      1.163 watt]
37 printf("\n Hb=%f W/m<sup>2</sup> hr", Hb);
38 //S = Hb*Rb*< t.alpha>
39 S = Hb * Rb * TA;
40 printf("\n S=\%f W/m^2 hr",S);
41 \text{ s=S/1.163};
42 printf("\n S=%f kcal/m<sup>2</sup> hr",s);
43 //Useful gain
44 //qu = FR(S-UL*(Tfi-Ta))
45 qu=0.810*(s-(6.80*(60-15)))
46 printf("n qu = \%f kcal/m^2 hr",qu);
47 / Qu = FR(S - UL * (Tfi - Ta))
48 Qu=0.810*(S-(7.88*(60-15)))
49 printf("\n qu=\%f W/m^2 hr",Qu);
50 // Collection Efficiency : nc=(qu/(Hb*Rb))*100;
51 nc = (28.07/(300*Rb))*100;
```

Scilab code Exa 3.9.1 Useful gain and exit fluid temperature and collection effici

```
1 //calculate the useful gain, exit fluid temperature
      and collection efficiency
2 //Optical properties are estimated as
3 p=0.85;
4 / (T. alpha) = 0.77; let A = (T. alpha)
5 \quad A = 0.77
6 \text{ gama} = 0.94;
7 Do = 0.06;
8 L=8; //unit=meter, //L=length of concentrator
9 W=2; //W=width of concentrator in meter
10 dco=0.09; //dco=diameter of transpaarent cover
11 Ar= %pi*Do*L; //Ar=area of the receiver pipe
12 A_alpha=(W-dco)*L;//aperture area of the
      concentration
13 Cp=0.30; //unit=kcal/kg degree calcius
14 m=400; //unit=kg/hr, m=flow rate
15 HbRb=600; // unit=kcal/hr m^2
16 Tfi=150; //degree calcius
17 T_alpha=25; //degree calcius
18 //Heat transfer coefficient from fluid inside to
      surroundings,
19 Uo = 5.2; //unit = kcal/hr - m^2
20 //Heat transfer coefficient from absorber cover
      surface to surroundings,
21 UL=6; // unit=kcal/hr-m^2
22 F = (Uo/UL);
23 //Heat removed factor FR is
```

```
24 //FR = ((m*Cp)/(Ar*UL))*(1-(%e^--((Ar*UL*F)/(m*Cp))))
25 //let X=(m*Cp)/(Ar*UL); Y=(\%e^--((Ar*UL*F)/(m*Cp)))
26 X = (m*Cp)/(1.51*UL*0.86);
27 Y = %e^{(-1/X)};
28 FR = X * 0.86 * (1 - Y);
29 //Absorbed solar energy is
30 S = HbRb*p*gama*A;
31 printf (" Area of the receiver pipe Ar= \%f=1.51 m<sup>2</sup> \
      n A_aplha= %f m^2=collection efficiency factor ",
      Ar, A_alpha);
32 printf("\n value of F = \%f", F);
33 printf("\n Heat removed factor FR=%f \n Absorbed
      solar energy is \n S=\%f kcal/Hr m^2 \ldots (MKS) ",
      FR,S);
                        1 \text{ kcal/Hr m}^2 = 1.16298 \text{ W/m}^2
34 //for unit in S.I.
35 s= S*1.16298; //in W/m<sup>2</sup>
36 printf("\n S=\%f W/m^2....(SI)",s);
37 //the values of F, FR will be same in any unit, since
      they are factors (dimensionless)
  //Useful Gain=Qu=A_alpha*FR*(S-((Ar*UL)/A_alpha)*(
      Tfi-T_alpha))
39 //In MKS unit
40 Qu=A_alpha*FR*(S-((1.51*UL)/A_alpha)*(Tfi-T_alpha))
41 printf("\n useful gain in (MKS) Qu=\%f kcal/hr", Qu);
42 //IN SI unit
43 qu=A_alpha*FR*(s-((1.51*6.98)/A_alpha)*(Tfi-T_alpha)
      )//UL=6.98 W/m^2 degree celcius
44 printf("\n useful gain in (SI) Qu=%f Watt",qu);
45 //the exit fluid temperature can be obtained from
46 tci=150; //degree celcius
47 tco=tci+(Qu/(m*Cp));//from Qu=mCp(tco-tc); where,
      tco=collector fluid temp. at outlet, tci=Fluid
      inlet temp.
48 n = (Qu/(16*HbRb))*100; //ncollector=Qu/(A_alpha*HbRb)
49 printf("\n collector fluid temp. at outlet tco=%f
      degree celcius \n ncollector = \%f percent ",tco,n
      );
```

51 //The values/results/answers is approximate in the text book to the real calculated value

Wind Energy

Scilab code Exa 6.2.1 Torque and axial thrust

```
1 / Ex.6.2.1.
2 //For air, the value of gas constant
3 R=0.287 //unit=kj/kg K
4 //T=15 in degreecalcius
5 T=15+273; //in kalvin
6 RT=0.287*10^3*288;
7 P=1.01325*10^5; //unit=Pa; at 1 atm
8 Vi=15; //unit=m/s
9 \text{ gc} = 1;
10 D=120; //turbine diameter; unit=m
11 N=40/60;
12 //Air density
13 p=(P/RT);
14 printf("Air density p=\%f kg/M<sup>3</sup>",p);
15 //1] Total_power= Ptotal=p*A*Vi^3/2*gc
16 //power density =Ptotal/A=p*Vi^3/2*gc
17 power_density = (1/(2*gc))*(p*Vi^3);
18 //2] Maximum_power_density=Pmax/A=8*p*Vi^3/27*gc
19 Maximum_power_density=(8/(27*gc))*(p*Vi^3);
20 printf("\n power density = P total/A = \%f W/m^2 \n
     Maximum power density=Pmax/A= %f W/m^2",
```

```
power_density, Maximum_power_density);
21 //3] Assuming n=35%
22 n=0.35;
23 / let P/A=x
24 x=n*(power_density);
25 printf("\n P/A=\%f W/m^2",x);
26 //4 Total power P= power density * Area
27 Total_power_P=724*(%pi/4)*(D^2) // Total power P=
      power density *(\%pi/4)*D^2
28 printf("\n Total_power_P=\%f watt=\%f*10^-3 kW",
      Total_power_P, Total_power_P);
29 //5] Torgue at maximum efficiency
30 Tmax = (2/(27*gc))*((1.226*D*Vi*Vi*Vi)/N); //Tmax
      =(2/(27*gc))*((p*D*Vi*Vi*Vi)/N);
31 printf("\n Torgue at maximum efficiency=%f Newton",
      Tmax)
32 //and maximum axial thurst
33 Fxmax=(3.14/(9*gc))*1.226*D^2*Vi^2; //Fxmax = (\%pi/(9*
      gc))*p*D^2*Vi^2;
34 printf("\n maximum axial thurst=\%f Newton", Fxmax);
```

Energy from Biomass

Scilab code Exa 7.15.1 Volume of biogas digester and power available from the dige

```
1 //Ex7.15.1; calculate volume of biogas digester and
      power available from the digester
2 //Mass of the dry input
3 M0=2*5; //M0=2.5 \text{ kg/day} * 5
4 pm=50; // unit=kg/m^3
5 tr=20;//retention time in days
6 C=0.24; // unit=m^3 per kg; Biogas yeild.
7 n=0.6; // efficiency of burner
8 Hm=28; //unit=MJ/m^3//combustion of methane
9 Fm=0.8; //methane proportional
10 // Fluid volume Vf is =M0/pm
11 Vf = MO/pm;
12 printf (" Mass of the dry input M0=%f kg/day \n Fluid
       volume Vf = \%f \text{ m}^3 / \text{day}, MO, Vf);
13 //for expression Vd=Vftr, the digester volume is
14 Vd=Vf*tr;
15 printf("\n Vd=%f m^3", Vd);
16 //volume of biogas is Vb=C*M0= biogas yield input *
      mass of dry input
17 Vb = C * MO;
18 printf("\n volume of biogas is Vb=\%f \text{ m}^3 / \text{day}", Vb);
```

Geothermal Energy

Scilab code Exa 8.5.1 Plant efficiency and Heat rate

```
1 //Ex8.5.1.; calculate: steam flow rate, cooling water
      flow, plant efficiency, Heat rate
2
3 //Enthalpy at point 1 at (31 \text{ kg/cm}^2) = 669.6 \text{ kcal/kg}
4 //H1=H2=H3, enthalpy remain constant during
      throttling
5 H1=669.7; //unit = kcal/kg
6 H2=669.7; //unit = kcal/kg
7 H3=669.7; //unit = kcal/kg
8 //At point 3,
9 P3=9.55; // unit= kg/cm<sup>2</sup>
10 //specific volume
11 vs3=0.22; // unit = m^3/kg
12 //Entropy
13 \quad S3 = 1.580
14 T3=190; //unit=degree C, (degree of superheat=13
      degree C)
15 / S4_s \text{ at } 0.34 \text{ kg/cm}^2 = S3
16 / x4_s = 0.838
17 //and H4_s=hs+xL
18 \text{ H4_s} = 72 + (0.838 * 556)
```

```
19 printf(" H4_s=\%f kcal/kg", H4_s)
20 //Isentropic turbine work=H3-H4_s
21 \quad ITW=H3-H4_s;
22 printf("\n Isentropic turbine work=%f kcal/kg",ITW);
23 // Actual turbine work
24 \text{ ATW} = 0.80 * \text{ITW};
25 printf("\n Actual turbine work=\%f kcal/kg",ATW);
26 \text{ H4} = 669.7 - \text{ATW};
27 printf("\n H4=\%f kcal/kg", H4)
28 h5_6=72; //unit= kcal/kg; (Ignoring pump work)
29 //sensible heat
                       h7=h5=25 \text{ kcal/kg}
30 h5=25; // unit=kcal/kg
31 h7=25; //unit=kcal/kg
32 //Turbine steam flow
33 TSF = (250*0.860*10^6)/(ATW*0.9);
34 printf("\n Turbine steam flow=\%f kg/hr", TSF);
35 / let
36 \text{ m4} = \text{TSF};
37 //Turbine volume flow
38 \text{ TVF} = (\text{TSF}/60) * \text{vs3};
39 printf("\n Turbine volume flow=\%f m<sup>3</sup>/min", TVF);
40 //cooling water flow m7:m7(h5_6-h7)=m4(H4-h5_6)
41 m7 = ((H4-h5_6)/(h5_6-h7))*m4;
42 printf("\n cooling water flow m7=\%f kg/hr", m7);
43 Heat_added=H1-h5_6;
44 printf("\n Heat_added=%f kcal/kg", Heat_added);
45 //plant efficiency = (Actual Turbine work*nmg)/Heat
      added
46 //nmg=combined mechanical and electrical efficiency
      of turbine-generator
47 \text{ nmg} = 0.90;
48 Plant_efficiency=(ATW*nmg)/Heat_added;
49 plant_efficiency=Plant_efficiency*100;
50 printf("\n Plant Efficiency nplant=%f persent",
      plant_efficiency);
51 // Plant heat rate = (860 * Heat_added) / net_work
52 / \text{net_work} = 105.36 * 0.90
53 Plant_heat_rate = (860/Plant_efficiency);
```

Scilab code Exa 8.5.2 Cycle efficiency and Plant Heat Rate

```
1 //Ex8.5.2.; calculate: hot water flow, condenser
      cooling water flow, cycle efficiency, plant heat
      rate.
2 H1=669.6; //unit=kcal/kg
3 H2=669.6; //unit=kcal/kg
4 //pressure at point 2, is 10.5 kg/cm<sup>2</sup>; thus,
5 T2=195; //unit=degree celcius; (14 degree celcius of
      superheat)
6 \text{ s2=1.567};
7 \text{ vsup} = 0.27;
8 \text{ x3s} = 0.832;
9 H3s=535; //unit=kcal/kg
10 //Isentropic turbine work
11 ITW=H2-H3s;
12 printf(" Isentropic turbine work=%f kcal/kg",ITW);
13 // Actual turbine work
14 ATW = 0.65 * ITW;
15 printf("\n Actual turbine work=%f kcal/kg", ATW);
16 \text{ H3} = 669.6 - \text{ATW};
17 printf ("\n H3=%f kcal/kg", H3)
18 / h_4 - 5 (ignore bpump work)
19 h4 = 72.4; //unit = kcal/kg
20 //h6 at 27 degree c
21 h6=27; //unit=kcal/kg
```

```
22 //Turbine steam flow or hot water flow=power output/
      actual turbine work
23 TSF = (10*10^6*0.86) / ATW;
24 printf("\n Turbine steam flow or hot water flow=%f
     kg/hr", TSF);
25
  // consider cooling water flow m4:m3*(H3-h4)=m4(h4-
     h6)
26 //or
27 \text{ m4} = ((582.11 - 72.4) * 0.983 * 10^5) / (72.4 - 27);
28 printf("\n cooling water flow=\%f kg/hr", m4);
29 Heat_added=H1-h4
30 printf("\n Heat_added=%f kcal/kg", Heat_added);
31 //plant efficiency=Turbine work/Heat added
32 Plant_efficiency=(ATW/Heat_added);
33 plant_efficiency=Plant_efficiency*100;
34 printf("\n Plant Efficiency=%f persent",
      plant_efficiency);
35 //Plant heat rate=860/Plant Efficiency
36 Plant_heat_rate=860/Plant_efficiency;
37 printf("\n Plant heat rate=%f kcal/kWh",
     Plant_heat_rate);
38
39
40 //The value of m3=14.03*10^5 is given wrong in the
      text book; the actual value is m3=11.03*10^5
```

Energy from the Oceans

Scilab code Exa 9.3.5.1 Energy Generated

```
1 //Ex9.3.5.1.; Calculate Energy generated
2 R=12; //unit=m; R is the range
3 r=3;//unit=m; the head below turbine stops operating
4 time = (44700/2);
5 A=30*10^6;
6 g = 9.80;
7 p=1025;
8 //The total theoretical work W=integrate ('1', 'w', R, r
9 W=(g*p*A*((R^2)-(r^2)))/2;
10 printf(" W=%f ",W);
11 //The average power generated
12 Pav=W/time;//unit=watts
13 printf("\n The average power generated=%f watts", Pav
     );
14 pav=(Pav/1000) *3600; // unit=kWh
15 printf("\n The average power generated=%f kWh",pav)
16 //the energy generated
17 Energy_generated=pav*0.73
18 printf("\n Energy generated=%f kWh", Energy_generated
     );
```

Scilab code Exa 9.3.6.1 The Yearly Power Output

```
1 //Ex9.3.6.1; calculate power in h.p. at any instant
     and the yearly power output
2 A=0.5*10^6; //unit=m
3 h0=8.5; //unit=m
4 t=3*3600 / unit=s; since t=3 hr
5 p=1025; //unit=kg/m^3
6 h=8; // unit=m
7 n0=0.70; // efficiency of the generator; 70%
8 //volume of the basin=Ah0
9 volume_of_the_basin=A*h0;
10 // Average discharge Q=volume/time period
11 Q = (A*h0)/t;
12 printf(" volume of the basin=%f m^3 \n Average
      discharge Q=\%f m^3 /s", volume_of_the_basin,Q);
13 //power at any instant
14 P = ((Q*p*h)/75)*n0;
15 printf("\n power at any instant P=\%f h.p.",P);
16 //The total energy in kWh/tidal cycle
17 E=P*0.736*3;
18 printf("\n The total energy in kWh/tidal cycle E=%f"
      ,E);
19 //Total number of tidal cycle in a year=705
20 printf("\n Total number of tidal cycle in a year=705
     ");
21 //Therefore Total output per annum
22 Total_output_per_annum=E*705;
23 printf("\n Total output per annum=%f kWh/year",
     Total_output_per_annum);
24
25 //The value of "power of instant" in a text book is
     misprinted.
```

Chemical Energy Sources

Scilab code Exa 10.2.8.1 Reversible Voltage for Hydrogen oxygen fuel cell

Scilab code Exa 10.2.8.2 Voltage output and efficiency and heat transfer

```
3 //1] voltage output of cell
4 del_G=-237.3*10^3; // Joules/gm-mole of H2
5 n=2;
6 F=96500; //Faraday's constant
7 E=-del_G/(n*F);
8 printf(" E=%f volts",E);
9 //2] Efficiency
10 / \text{nmax} = \text{del}_{\text{W}} \text{max} / - (\text{del}_{\text{H}}) 25 \text{ degree celcuis} = -(\text{del}_{\text{G}})
      T/(-del_{-}H)25
11 del_G_at298k = -56690; //unit = kcal/kg mole
12 del_H_at298k = -68317; //unit = kcal/kg mole
13 nmax=del_G_at298k/del_H_at298k ,
14 printf("\n nmax=\%f",nmax);
15 //3 Electric work output per mole
16 F = (96500/4.184);
17 del_Wrever=(n*F*E);
18 printf("\n Electric work output per mole=%f kcal/kg
      mole", del_Wrever);
19 //4 Heat transfer to the surroundings
20 //the heat transfer is Q=T*del-s=del_H_at298k-
      del_Gat298k
21 Q=del_H_at298k-del_G_at298k;
22 printf("\n The heat transfer is Q=\%f kcal/kg mole",Q
      );
23 //The negative sign indicates that the heat is
      removed from the cell and transferred to the
      surrounding
24
25 //value of "Electric work output per mole" is
      approximate in the text book to the real
      calculated value
```

Scilab code Exa 10.2.8.3 Voltage output and efficiency and heat transferred

1 //Ex10.2.8.3; The heat transferred to the surrounding

```
2 del_G_at298k = -237191; //unit = kJ/kg mole
3 del_H_at298k = -285838; //unit = kJ/kg mole
4 \text{ ne=2};
5 F=96500; //Faraday 's constant
6 E=-del_G_at298k/(ne*F);
7 printf(" E=%f volts",E);
8 nmax=del_G_at298k/del_H_at298k,
9 printf("\n nmax=\%f", nmax);
10 nmax=nmax*100;
11 printf("=%f persent",nmax);
12 // Electric work output per mole of the fule is We=-
      del_G kJ/kg mole
13 We=del_G_at298k; //kJ/kg mole
14 printf("\n Electric work output per mole of the fule
       is We=%f kJ/kg mole", We);
15 //since there is 1 mol os H2O for each mole of fule,
      there is also a work output of 237191 kJ/kg mole
16 //Heat transferred is Q=T*del-s=del_H_at298k-
      del_Gat298k
17 Q=del_H_at298k-del_G_at298k;
18 printf("\n The heat transfer is Q=\%f kJ/kg mole",Q);
19 //The negative sign indicates that the heat is
     removed from the cell and transferred to the
      surrounding
20
21 //value of "Electric work output per mole" is
      misprinted in the text book.
```

Scilab code Exa 10.2.8.4 Gibbs free energy and Entropy change

```
1 //Ex10.2.8.4; calculate del_G, del_S, del_H;
2
3 //We have the relation del_G=-n*F*E
4 //where, del_G=gibbs free energy of the system at 1
atm and temperature(T)
```

```
5 n=1;//numbers of electons transferred per molecule
      of reactant
6 E=0.0455; //volts; e.m.f. of the cell
7 F=96500; //Faraday 's constant
8 / let X=dE/dT
9 X = 0.000338;
10 del_G=-n*F*E;
11 printf(" del_G=\%f joules", del_G);
12 //del_S = Entropy change of the system at
      temperature T and press p=1 atm in the case
13 del_S=n*F*(X); // del_S=n*F*(dE/dT)
14 printf("\n del_S=\%f joules/deg.",del_S);
15 //And entropy change is given by the relation del_H=
     nF[T(dE/dT)-E]
16 T=298;
17 del_H=n*F*((T*X)-E);
18 printf("\n del_H=%f joule", del_H);
19
20
21 //value are taken approximate in the text book to
      the real calculated value
```

Scilab code Exa 10.2.8.5 Heat transfer rates

```
//Ex10.2.8.5; heat transfer rate would be involved
under these circumstances

del_G_at25degree_celcius=-195500; // unit=cal/gm mole
del_H_at25degree_celcius=-212800; // unit=cal/gm mole
F=(96500/4.184); // since F=96500 coulombs/gm-mole
n=8
E_at25degree_celcius=-del_G_at25degree_celcius/(n*F); // Joules/coulomb
printf(" E_at25degree_celcius=%f volts=1.060 volts",
E_at25degree_celcius);
```

```
9 //Max. efficiency nmax=del_Wmax/-(del_H)at25 degree
       celcuis = -(del_G)T/(-del_H)25
10 nmax=del_G_at25degree_celcius/
      del_H_at25degree_celcius;
11 printf("\n nmax=\%f",nmax);
12 //voltage efficiency nv=on load voltage/open circuit
       voltage=Operating voltage/Theoretical voltage
13 Theoretical_voltage=1.060/0.92;
14 printf("\n Theoretical_voltage=%f volts",
      Theoretical_voltage);
15 //power developed=100 \text{ kW} = 100 * 10^3 \text{ W}
16 power_developed = (100*10^3)*0.86; //unit=kcal/hr;
      since 1 watt=1 joule/sec=0.86 kcal/hr
17 printf("\n power_developed=\%f kcal/hr",
     power_developed);
18 \text{ del}_{G} = -195500;
19 //Required flow rate of Methane
20 R_F_R_0_M = (power_developed*16)/del_G; //kg/hr;
21 / (methane moles) = 16
22 printf("\n flow rate of Methane=%f kg/hr", R_F_R_O_M)
23 //Heat transfer Q=T8del_s=del_H+del_w=del_H-del_G
24 Q=del_H_at25degree_celcius-del_G_at25degree_celcius;
25 printf("\n The heat transfer is Q=\%f kcal/kg mole",Q
     );
26
27 //The value are approximate in the text book to the
      real calculated value
  //value of "Required flow rate of methane" is wrong
      in the text book.
29 //value of "Heat transfer" is wrong in the text book
```

Magneto Hydro Dynamic Power Generation

Scilab code Exa 12.6.1 Open circuit voltage and maximum power output

```
//Ex12.6.1.; calculate open circuit voltage and
    maximum power output

B=2; // flux density; unit=Wb/m^2
u=10^3; // average gas velocity; unit=m/second

d=0.50; // distance between plates; unit=m

E0=B*u*d; // Open ccircuit voltage
printf(" Open ccircuit voltage E0=%f Volts", E0);
    // Generator resistance; Rg=d/sigma*A

sigma=10; // Gaseous conductivity; unit=Mho/m

A=0.25; // Plate Area; unit=m^2
Rg=d/(sigma*A);
printf("\n Generator resistance Rg=%f Ohm", Rg);
// Maximum power
Maximum_power=(E0^2)/(4*Rg);
printf("\n Maximum_power=%f watts", Maximum_power);
```

Thermo Electric Power

Scilab code Exa 13.2.1 Peltier heats absorbed and rejected

```
1 //Ex13.2.1.; Peltier heats absorbed and rejected
2 // peltier coefficients at these junctions are
      aplha_p_1 - 2 = alpha_s_1 - 2*T
\frac{3}{\sqrt{\text{Let A}=\text{alpha}_{s_1}-2}} at \frac{373}{\sqrt{\text{k}=55*10^{-}-6}} v/degree_k and
       B=alpha_s_1-2 at 273 k=50*10^-6 v/degree_k
4 A = (55*10^-6);
5 B = (50*10^-6);
6 T1=373; //k
7 T2=273; //k
8 I=10*10^-3; // current; unit=Ampere
9 alpha_p_1_2_at_373k=A*T1;
10 alpha_p_1_2_at_273k=B*T2;
11 printf(" alpha_p_1_2at_373k=\%fW/amp \setminus n
      alpha_p_1_2at_273k=\%fW/amp, alpha_p_1_2at_373k
      =A*T1,alpha_p_1_2_at_273k=B*T2);
12 // Peltier heats absorned and rejected to be
13 q2_peltier=alpha_p_1_2_at_373k*I;
14 q1_peltier=alpha_p_1_2_at_273k*I;
15 printf("\n q2_peltier=\%f w \n q1_peltier=\%f W',
      q2_peltier,q1_peltier);
16 c=q2_peltier-q1_peltier;
```

Scilab code Exa 13.3.2 Thomson heat transferred

```
//Ex.13.3.2.; Find the thomson heat transferred
//Ex.13.3.2.; Find the thomson heat transferred
//Ex.13.3.2.; Find the thomson heat transferred
//Let D=dalpha_s1/dT;
D=5.4*10^-3; // unit=micro V/degree k^2
T1=273; // unit=k
T2=373; // unit=k
I=10*10^-3; // unit=A
//Thomson coefficient sigma, varies with temp.
//sigma_1_of_T=-T*D; unit=V/degree k
//The thomson heat is given by equation
//qth=I*Integration of sigma_1_of_T w.r.t. T
Integration=integrate('T', 'T', T1, T2);
the I*D*Integration;
printf("The THOMSON HEAT=%f micro W", qth);
```

Scilab code Exa 13.4.1 Carnot Efficiency

```
5 \text{ Z=2*(10^--3)}; //1/\text{degree k}; //\text{Figure of merit for the}
      material
6 M_{\text{optimum}} = (1 + ((Z/2) * (TH + TC)))^0.5;
7 printf(" M_optimum=%f", M_optimum);
8 // Efficiency of the thermoelectric generator is n
      = (((TH-TC)/TH)*((M_optimum-1)/(M_optimum+(TC/TH))
      )*100;
9 a = ((TH - TC)/TH);
10 b=(M_optimum-1)/(M_optimum+(TC/TH));
11 n=a*b*100;
12 printf("\n Efficiency of the thermoelectric
      generator is n=%f persent",n);
13 //where as efficiency of the carnot cycle (
      reversible) nc = ((TH-TC)/TH)*100
14 nc=a*100;
15 printf("\n Efficiency of the carnot cycle (
      reversible) nc=%f persent",nc);
```

Scilab code Exa 13.4.2 Maximum generator efficiency and Power Output

```
//Ex13.4.12.; Calculare maximum generator efficiency
and the efficiency for maximum power, power output

//seedbeck coefficient(alpha_s); unit=volts/degree
celcius

alpha_s1=-190*10^-6; //n-type

alpha_s2=190*10^-6; //p-type

// Specific resistivity(p); unit=Ohm-cm

p1=1.45*10^-3; //n-type

p2=1.8*10^-3; //p-type

// Figure of merit(Z); unit=degree k^-1

Z1=2*10^-3; //n-type

Z2=1.7*10^-3; //p-type

Z2=1.7*10^-3; //p-type
```

```
14 //conductivity (n-type),
15 k1=(alpha_s1^2)/(p1*Z1);
16 //similarly
17 k2=(alpha_s2^2)/(p2*Z2);
18 printf(" Conductivity k1=%f W/cm degree celcius \n
      Conductivity k2=%f W/cm degree celcius", k1, k2);
19 //Z_{opt} = ((alpha_s1 - alpha_s2)^2)/[(p1*k1)^2 + (p2*k2)]
      ^2];
20 / let
21 a = (alpha_s1 - alpha_s2)
22 b = (p1 * k1)
23 c = (p2*k2)
24 \text{ A=} sqrt(b)
25 B = sqrt(c)
26 C = (A + B);
27 //therefore
28 \ Z_opt = (a/C)^2;
29 printf("\n Z_opt=%f degree k",Z_opt);
30 //Thermal conductance
31 A1=2.3; //\text{cm}^2
32 A2=1.303; //\text{cm}^2
33 11=1.5; //cm
34 \ 12 = 0.653; //cm
35 K = ((k1*A1)/11) + ((k2*A2)/12)
36 printf("\n Thermal conductance K=%f W/degree celcius
      ",K);
37 //R=Resistance of the generator=R1+R2
38 R = ((p1*11)/A1) + ((p2*12)/A2);
39 printf("\n Resistance of the generator R=\%f ohm",R);
40 TH=923; //unit=k
41 TC=323; //unit=k
42 M_{opt} = (1 + ((Z_{opt}/2) * (TH + TC)))^0.5;
43 printf("\n M_opt=%f ohm", M_opt);
44 RL=M_opt*R;
45 printf("\n RL=%f ohms", RL);
46 //Optimum efficiency n_{opt} = (((TH-TC)/TH) * ((M_{opt}-1))
      /(M_{opt}+(TC/TH)))*100;
47 aa=((TH-TC)/TH);
```

```
48 //taking M_opt=1.43
49 b=(1.43-1)/(1.43+(TC/TH));
50 \text{ n_opt=aa*b*100};
51 printf("\n Optimum efficiency n_opt=\%f persent",
      n_opt);
52 //efficiency for max. power output n= (TH-TC)/TH)*m
      /[((1+m)^2/TH)*(KR/alpha_s_12^2)+(1+m)-(TH-TC)/2]
      TH)
53 // Efficiency power output
54 / RL = R i.e. m = 1
\frac{1}{55} // let ab=(1+m)^2/TH; ac=(KR/alpha_s_12^2); ad=(TH-TC)
      /2TH
56 \text{ m} = 1;
57 \text{ ab}=4/\text{TH};
58 \text{ ac=1/Z_opt};
59 \text{ ad}=\text{aa}/2;
60 n_max = [aa/(ab*ac+2-ad)]*100;
61 printf("\n max. power output n_max %f persent",n_max
62 / Power output P_opt=I^2*RL=alpha_s12^2(TH-TC)*RL/(R
      +RL)^2 = alpha_s12^2(TH-TC)/(1+M_opt)^2*RL
63 // let at=alpha_s12^2(TH-TC); mi=(1+M_opt)^2*RL
64 at=a*a*(TH-TC)*(TH-TC);
65 \text{ ml} = (1+1.43)*(1+1.43)*2.63*10^-3
66 P_opt=at/ml;
67 printf("\n Power output P_opt=%f watts", P_opt);
68 //for max. power P<sub>max</sub> (RL=R)
69 //P_{\text{max}} = alpha_s12^2(TH-TC)*RL/(r+RL)^2 = alpha_s12^2(
      TH-TC)RL*4RL
70 P_max=at/(4*1.84*10^-3);
71 printf("\n max. power P_max=%f watts", P_max);
72
73
74 //Many calcuating mistak are there in a following
      example, which is corrected in program.
```

Scilab code Exa 13.4.3 Maximum efficiency and Thermocouples in series and also Hea

```
1 //Ex.13.4.3; maximum efficiency, no. of thermocouple
      in series, open ckt voltage, heat i/p and reject at
       full load.
3 kA=0.02; //unit=watt/cm degree kelvin
4 kB=0.03;//unit=watt/cm degree kelvin
5 pA=0.01; // unit=ohm cm
6 pB=0.012; //unit=ohm cm
7 TH=1500;//unit=degree kelvin
8 TC=1000; // unit=degree kelvin
9 AA = 43.5; //unit = cm^2
10 AB=48.6; //unit=cm^2
11 LA=0.49; //unit=cm
12 LB=0.49; //unit=cm
13 I=20*48.6; // Current density in the element limited
      to, I = 20 \text{ amp/cm}^2
14 output=100; // unit=kW
15 //alpha_SAB at 1250 degree kelvin=0.0012 volt/degree
       kelvin=alpha_SA-alpha_SB
16 alpha_SAB=0.0012; // unit=volt/degree kelvin
17 / let
18 b=(pA*kA);
19 c=(pB*kB);
20 A = sqrt(b);
21 B=sqrt(c);
22 C = (A + B);
23 //figure of merit
Z=(alpha_SAB/C)^2;
25 printf(" Z=\%f degree k^-1",Z);
26 M = (1 + ((Z/2) * (TH + TC)))^0.5;
27 printf("\n M=\%f",M);
28 // let
```

```
29 aa=((TH-TC)/TH);
30 bb = (M-1)/(M+(TC/TH));
31 //1 MAx. efficiency of a thermoelectric converter
      is given by n_max = ((TH-TC)/TH) * [(M-1)/(M+(TC/TH))
      * 100;
32 \, \text{n_max} = \text{aa} * \text{bb} * 100;
33 printf("\n Maximum efficiency n_max=%f persent",
      n_max);
34 / 2 No. of thermocouple in series
35 V=alpha_SAB*(TH-TC);
36 printf("\n V=\%f volt", V);
37 R=((pA*LA)/AA)+((pB*LB)/AB); //since R=RA+RB=((pA*LA)/AB)
      )/AA) + ((pB*LB)/AB);
38 printf("\n R=%f ohm",R);
39 VL = V - (R * I);
40 printf("\n VL=%f volt", VL);
41 //NTCS=total voltage required/voltage required by
      one couple
42 NTCS=115/VL;
43 printf("\n No. of thermocouple in series=\%f",NTCS);
44 //3] Open circuit voltage
45 \quad \text{OCV=V} * 309;
46 printf("\n Open circuit voltage=%f volt", OCV)
47 / 4 Heat input and reject at full load.
48 // Heat input at full load. = output/efficency
      =100/0.091
49 HIFL=output/(n_max/100);
50 printf("\n Heat input at full load=%f kW", HIFL)
51 // Heat reject at full load. =Heat input-Work output
52 HRFL=HIFL-output;
53 printf("\n Heat reject at full load=%f kW", HRFL)
54
55
56
57 //The value of "pB" is misprinted
58 //The values are taken in the text book is
      approximately equal to calculated values
```

Thermionic Generation

Scilab code Exa 14.4.1 Efficiency of the generator and Carnot efficiency

```
1 //Ex.14.4.1.; Calculate the efficiency of the
      generator and also compare with the carnot
      efficiency
3 //cathode work funtion
4 flux_c=2.5; // unit=volts
5 //anode work funtion
6 flux_a=2; //unit=volts
7 //Temp. of cathode
8 Tc = 2000; //unit = degree k
9 //Temp. of surrounding
10 Ts=1000; // unit=degree k
11 //plasma potentail drop
12 flux_p=0.1; //unit=volts
13 //Net output voltage
14 V=flux_c-flux_a-flux_p
15 printf(" V=\%f volt",V);
16 //charge of an electron
17 e=1.6*10^-19; //unit=coulomb
18 //boltzmann constant
19 k=1.38*10^-23; //unit=joule/degree kelvin
```

```
20 A=1.20*10^6;
21 //one electron volt=1.6*10^--19 joule
22 //The net current in the generator J=J_{cathode}
      J_anode
23 //let EC=e^{(-flux_c/k*Tc)}
24 EC=%e^{-(1.6*10^{-19*flux_c})/(k*Tc)};
25 J_cathode=A*(Tc*Tc)*EC;//J_cathode=A*Tc^2*e^(-flux_c
      /k*Tc)
26 printf("\n J_cathode=\%f amp/m^2", J_cathode);
27 //let EA=e^(-flux_c/k*Ts)
28 EA = %e^{(-(1.6*10^{-19*flux_a})/(k*Ts))};
29 J_anode = A*(Ts^2)*EA; //J_cathode = A*Ts^2*e^(-flux_c/k*)
      Ts)
30 printf("\n J_anode=\%f amp/m^2", J_anode);
31 //The net current can be taken =Jc, as Ja can be
      neglected in comparison with Jc
32 J=J_cathode;
33 printf("\n J=\%f amp/m<sup>2</sup>",J);
34 //The heat supplied to the cathode Qc/Ac=J(flux_c
      +((2*k*Tc)/e))+samestion of sigma*(Tc^4-Ts^4)
\frac{35}{\text{let QA=Qc/Ac}}; and
36 \quad a=2.5+((2*1.38*10^-23*2000)/(1.6*10^-19));
37 b = J*a;
38 c = (0.2*5.67*(10^-12)*(10^-4)*((2000^4)-(1000^4)));
39 //therefore
40 QA=b+c; //\sin ce: QA=(J*(2.5+((2*(1.38*10^--23)*2000*)
      /(1.6*10^{-}-19))))+(0.2*5.67*(10^{-}-12)*(10^{-}-4)
      *((2000^4) - (1000^4))
41 printf("\n The heat supplied to the cathode Qc/Ac=%f
       watt/m^2" ,QA);
42 //efficiency of the generator
43 ng = ((J*V)/(7.026*10^6))*100;
44 printf("\n ng=\%f persent",ng);
45 //carnot efficiency this device
46 T1 = 2000;
47 T2 = 1000;
48 T = 2000;
49 nc = ((T1-T2)/T)*100;
```