- Self-triggered control (cf.: Event-triggered control)
 - Controller decides action signal and next observation time
 - (State feedback) control low function: $\pi(s) = [a(s) \quad \tau(s)]$

• Reinforcement learning for optimal self-triggered control π^*

$$\pi^*(s) = \operatorname{argmax}_{\pi} J(\pi)$$

$$J(\pi) = \mathbb{E}_{s_0}[V^{\pi}(s_0)]$$

$$V^{\pi}(s) = \sum_{i=0}^{\infty} \gamma^i r_i^{\pi}$$

$$r_i^{\pi} = -\int_{t_k}^{t_{k+1}} s(t)^T Qs(t) dt - \tau_i a_i^T R a_i + \lambda \tau_i$$

- Assume every *i-th* step's access to data tuple (s_t, r_i^{π})
- Assume the system to be control affine

$$\dot{s} = f(s) + g(s)a$$

- How to get π^* ?
 - Parametrize the function as $\pi_{\theta^{\pi}}$ (express with NN)
 - Use gradient method to update NN, with policy gradient $\nabla_{\theta^{\pi}} J(\theta^{\pi})$

$$\nabla_{\theta}\pi J(\pi_{\theta}\pi)$$

- Policy function has 2 elements : $\pi(s) = [a(s) \quad \tau(s)]$
 - Divide policy network into 2 parametrized function

• θ^{π} expresses the combined network

$$\theta^{\pi} = \begin{bmatrix} \theta^a & \theta^{\tau} \end{bmatrix}$$

- Theme for master thesis
 - Research the relation between $\nabla_{\theta^a} J(\theta^{\pi})$, $\nabla_{\theta^{\tau}} J(\theta^{\pi})$ limited to this problem (RL for self-triggered control)
- Analytical calculation
 - By the definition of $J(\theta^{\pi})$, focus on $\nabla_{\theta}V^{\theta^{\pi}}(s)$

•
$$\nabla_{\theta} V^{\theta^{\pi}}(s) = \nabla_{\theta} [r(s, \pi(s|\theta^{\pi})) + \gamma V^{\theta^{\pi}}(s'(\theta^{\pi}))]$$

 $= \nabla_{\theta} r(s, \pi(s|\theta^{\pi})) + \gamma \nabla_{\theta} \{V^{\theta^{\pi}}(s'(\theta^{\pi}))\}$

1st element is gradient for step reward

$$\nabla_{\theta} a r (s, \pi(s|[\theta^a, \theta^\tau])) = \nabla_{\theta} a a(s|\theta^a) \nabla_a r(s, [a\ \tau])|_{a=a(s|\theta^a), \tau=\tau(s|\theta^\tau)}$$

$$\nabla_{\theta} \tau r (s, \pi(s|[\theta^a, \theta^\tau])) = \nabla_{\theta} \tau \tau(s|\theta^\tau) \nabla_\tau r(s, [a\ \tau])|_{a=a(s|\theta^a), \tau=\tau(s|\theta^\tau)}$$

• Calculate $\nabla_a r(s, u)|_{u=\pi(s|\theta^{\pi})}$, $\nabla_{\tau} r(s, u)|_{u=\pi(s|\theta^{\pi})}$

- Analytical calculation
 - $\nabla_{\theta} V^{\pi_{\theta}}(s) = \nabla_{\theta} r(s, \pi(s|\theta^{\pi})) + \gamma \nabla_{\theta} \{V^{\theta^{\pi}}(s'(\theta^{\pi}))\}$
 - 2^{nd} element is gradient for $V^{\theta^{\pi}}$ at next state
 - When parameter θ changes
 - $V^{\theta^{\pi}}(\cdot)$ changes
 - $s'(\theta^{\pi})$ changes
 - How to calculate this gradient ...?

$$\gamma \nabla_{\theta} \{ f^{\theta} (g(\theta)) \} = \lim_{h \to 0} \frac{f^{\theta+h} (g(\theta+h)) - f^{\theta} (g(\theta+h))}{h}$$
$$+ \lim_{h \to 0} \frac{f^{\theta} (g(\theta+h)) - f^{\theta} (g(\theta))}{h}$$