Course code	Course title		L	T	P	С
BPHY101L	Engineering Physics		3	х	х	3
Pre-requisite	12 th of equivalent		Syllabus version			
		v. 01.00				

Course Objectives

- 1. To explain the dual nature of radiation and matter.
- 2. To apply Schrödinger's equation to solve finite and infinite potential problems and apply quantum ideas at the nanoscale.
- 3. To understand the Maxwell's equations for electromagnetic waves and apply the concepts to semiconductors for engineering applications.

Course Outcome

Photodetectors: PN and PIN

Module:8

Contemporary Topics

Guest lectures from Industry and, Research and Development Organisations

At the end of the course the student will be able to

- 1. Comprehend the phenomenon of waves and electromagnetic waves.
- 2. Understand the principles of quantum mechanics.
- 3. Apply quantum mechanical ideas to subatomic domain.
- 4. Appreciate the fundamental principles of a laser and its types.
- 5. Design a typical optical fiber communication system using optoelectronic devices.

Introduction to waves Module:1 Waves on a string - Wave equation on a string (derivation) - Harmonic waves- reflection and transmission of waves at a boundary - Standing waves and their eigenfrequencies - waves with dispersion Superposition of waves and Fourier method (qualitative) - Wave packet - phase velocity and group velocity. **Electromagnetic waves** Module:2 7 hours Physics of divergence - gradient and curl - surface and volume integral - Maxwell Equations (Qualitative) -Continuity equation for current densities - Displacement current - Electromagnetic wave equation in free space - Plane electromagnetic waves in free space - Hertz's experiment. Elements of quantum mechanics Module:3 7 hours Need for Quantum Mechanics: Idea of Quantization (Planck and Einstein) - Compton effect (Qualitative) de Broglie hypothesis - justification of Bohr postulate - Davisson-Germer experiment - Wave function and probability interpretation - Heisenberg uncertainty principle - Gedanken experiment (Heisenberg's microscope) - Schrödinger wave equation (time dependent and time independent). Module:4 Applications of quantum mechanics 6 hours Eigenvalues and eigenfunction of particle confined in one dimensional box - Basics of nanophysics -Quantum confinement and nanostructures - Tunnel effect (qualitative) and scanning tunneling microscope. Lasers Module:5 6 hours Laser characteristics - spatial and temporal coherence - Einstein coefficients and their significance -Population inversion - two, three and four level systems - Pumping schemes - threshold gain coefficient -Components of a laser - He-Ne, Nd:YAG and CO₂ lasers and their engineering applications. Propagation of EM waves in optical fibers Module:6 5 hours Introduction to optical fiber communication system - light propagation through fibers - Acceptance angle -Numerical aperture - V-parameter - Types of fibers - Attenuation - Dispersion-intermodal and intramodal. Application of fiber in medicine - Endoscopy. Module:7 **Optoelectronic devices** 5 hours

Introduction to semiconductors - direct and indirect bandgap - p-n junction, Sources: LED and laser diode,

2 hours

			Total Lecture ho	ours:	45 hours						
Te	xt Book(s)									
1.		,	University Physics	s with Mo	odern Physics 2020 15 th Edition						
''	H. D. Young and R. A. Freedman, University Physics with Modern Physics, 2020, 15 th Edition, Pearson, USA.										
2.		D. K. Mynbaev and Lowell L. Scheiner, Fiber Optic Communication Technology, 2011, Pearson,									
	USA										
Re	Reference Books										
1.	H. J. Pain, The Physics of vibrations and waves, 2013, 6 th Edition, Wiley Publications, India.										
2.	R. A. Se	. A. Serway, J. W. Jewett, Jr, Physics for Scientists and Engineers with Modern Physics, 2019, 10 th									
		Edition, Cengage Learning, USA.									
3.	K. Krane, Modern Physics, 2020, 4 th Edition, Wiley Edition, India.										
4.	M.N.O. Sadiku, Principles of Electromagnetics, 2015, 6 th Edition, Oxford University Press, India.										
5.	W. Silfvast, Laser Fundamentals, 2012, 2 nd Edition, Cambridge University Press, India.										
Mo	Mode of Evaluation: Written assignment, Quiz, CAT and FAT										
-											
	Recommended by Board of Studies 26-06-2021										
App	proved by	Academic Council	No. 62	Date	15-07-2021						