

Introduction and Contents

- Business Understanding
- 2. Data Understanding
- 3. Data Preparation
- 4. Exploratory Data Analysis
- 5. Modeling and Evaluation
- 6. Limitations
- 7. Recommendations
- 8. Next Steps

Background

Goals

Success Criteria

Vision Zero Chicago

Goal: 0 traffic deaths by 2026

Reality:

- 2024 (to-date): 115 traffic deaths
- 2023: **136** traffic deaths

Background

Goals

Success Criteria

• Develop an inferential model

 Assist Chicago DOT (CDOT) in resource allocation "Serious crash"

Fatal or incapacitating

Background

Goals

Success Criteria

Identify top 3 contributing factors

Precision-Recall Area Under the Curve (PR AUC)

Background

Goals

Success Criteria

Precision-Recall Area
 Under the Curve (PR AUC)

Focuses on minority case (serious crashes)

Data Understanding

Source: Chicago Data Portal (updated: Dec 2024)

Datasets:

• Crashes: **900k** records, **48** features

People: ~2M records, 29 features:

• Vehicles: **1.8M** records, **71** features

Linked by: crash_record_id

Data Preparation: Phase 1

- 1. Processed **3** datasets
 - Removed irrelevant features.
 - b. Processed features reducing cardinality
 - c. Handled Null Values
 - d. Reclassified the Target Variable to Binary

Data Preparation: Target Reclassification

Data Preparation: Phase 2

- 3. Stratified Sample
 - a. Subset: **15**% of merged_df
 - b. Kept target classes proportional
 - c. Final dataframe: ~96k records, 16 features, 0 null values

Exploratory Data Analysis: Key Finding

Overrepresented Categories in Serious Crashes:

- Sex: Males
- Lighting: Darkness with lighted roads
- Airbag Deployment

Modeling: Key Components

Standard Modeling Process:

- Train-test-split = Avoids data leakage
- Baseline models for comparison
- Hyperparameter tuning

Modeling: Addressing Issues

- Developing interpretable model
 - White box models (opposite of black box models)

- Addressing class imbalance
 - Oversampling (SMOTE) + class weights

Reminder: Minority class = Serious crashes

Evaluation

Metric (PR AUC): Best Decision Tree = 0.0956

Class Imbalance: Likely contributing to low performance

Focus: Model inference over predictive accuracy

Perfect Performance:

PR AUC = 1.0

Evaluation

Decision Trees: Simple, highlight feature importance

Key Features:

- Airbag Deployment (Not Deployed)
- Sex (*Male*)
- Seasonality (Summer, Winter, Spring)

	Original_Feature	Category	Feature_Importance
0	airbag	Not Deployed	0.0625
1	crash	Unknown/Other	0.0499
2	sex	male	0.0437
3	season	Summer	0.0414
4	season	Winter	0.0397
5	season	Spring	0.0391

Limitations

1. Data Quality: Police-Reported Data

2. Decision Tree Interpretation

3. Computing and Time Constraints

Recommendations

Recommendation 1: Male Trends Analysis

- Research trend among male drivers
- Targeted safety campaign

Recommendations

Recommendation 1: Male Trends Analysis

Recommendation 2: Size Regulation

- Research trend among male drivers
- Targeted safety campaign

- Implement personal vehicle weight fee
- Money raised →
 infrastructure
 projects

Recommendations

Recommendation 1: Male Trends Analysis

Recommendation 2: Size Regulation

Recommendation 3: Airbag Inspection

- Research trend among male drivers
- Targeted safety campaign

- Implement personal vehicle weight fee
- Money raised →
 infrastructure
 projects

Annual airbag safety inspections

Next Steps

1. Investigate male injury trends in crashes

2. Explore key factors contributing to speeding

Github Repository:

https://github.com/ckucewicz/traffic_crash_prediction

Contact Chris Kucewicz at cfkucewicz@gmail.com with additional questions

Additional Visualizations: Airbag Overrepresentation

Additional Visualizations: Male Overrepresentation

Additional Visualizations: Darkness Overrepresentation

