CIR1 - Mathématiques

2015/2016

DEVOIR SURVEILLÉ 6/11/2015

Consignes:

- Pour cette épreuve de 2 heures aucun document n'est autorisé et la calculatrice collège est tolérée.
- Les 4 exercices qu'elle comporte sont indépendants.
- Expliquez vos raisonnements avec un maximum de clarté et avec le vocabulaire adapté.
- Une copie soignée est gage d'une bonne note !

Exercice 1

Soient les quatre assertions suivantes :

(a)
$$\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x+y>0 \ ; \ (b) \ \forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x+y>0$$

(c)
$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y > 0 \ ; \ (d) \exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ y^2 > x$$

- 1. Les assertions a, b, c, d sont-elles vraies ou fausses ?
- 2. Donner leur négation.

Exercice 2

Soit f la fonction définie sur $\mathbb{R} \setminus \{3\}$ dans \mathbb{R} par : $\forall x \in \mathbb{R} \setminus \{3\}$, $f(x) = \frac{2+x}{3-x}$.

- 1. f est-elle injective ? Surjective ?
- 2. Définir le domaine d'existence de la bijection réciproque de f et expliciter la.

Exercice 3

- 1. Pour tout nombre complexe Z, on pose $P(Z) = Z^4 1$.
 - (a) Factoriser P(Z).
 - (b) En déduire les solutions dans l'ensemble \mathbb{C} des nombres complexes de l'équation P(Z) = 0, d'inconnue Z.
 - (c) Déduire de la question précédente les solutions dans $\mathbb C$ de l'équation d'inconnue z:

$$\left(\frac{2z+1}{z-1}\right)^4 = 1$$

2. (a) Le plan (P) est rapporté à un repère orthonormal direct $(O; \overrightarrow{u}; \overrightarrow{v})$. Placer les points A, B et C d'affixes respectives :

$$a = -2$$
, $b = -\frac{1}{5} - \frac{3}{5}i$ et $c = -\frac{1}{5} + \frac{3}{5}i$

- (b) Démontrer que les points O, A, B et C sont situés sur un même cercle que l'on déterminera.
- 3. Placer le point D d'affixe $d=-\frac{1}{2}$. Exprimer sous forme trigonométrique le nombre complexe z' défini par :

$$z' = \frac{a-c}{d-c}$$

En déduire le rapport $\frac{CA}{CD}$.

Quelle autre conséquence géométrique peut-on tirer de l'expression de z^\prime ?

Exercice 4

On considère l'équation différentielle suivante :

(E)
$$y'' - 4y' + 4y = d(x)$$
,

où d est une fonction qui sera précisée plus loin.

- 1. Résoudre l'équation différentielle homogène associée à (E).
- 2. Trouver une solution particulière de (E) lorsque $d(x) = e^{-2x}$ et lorsque $d(x) = e^{2x}$ respectivement.
- 3. Donner la forme générale des solutions de (E) lorsque

$$d(x) = \frac{e^{-2x} + e^{2x}}{4}$$

4. Y-a-t-il des solutions de (E) vérifiant :

$$y'(0) = 1$$

$$y(0) = 0$$