(b)
$$\frac{\partial m{J}_{
m naive-softmax}}{\partial m{v}_c}$$
 & Pot2t. $m{J}_{
m naive-softmax}$ (Va, 0, U)

$$|J = -\log \frac{1}{\sqrt{6}} = -\log \frac{\sqrt{\sqrt{1}}}{\sqrt{2}} = \left[u^{T} v_{e} - \log \frac{1}{\sqrt{2}} e^{u^{T} v_{e}} \right]$$

$$\frac{\partial J}{\partial v_{e}} = -\left[U_{o} - \frac{Z_{e}U^{\dagger}v_{e}}{Z_{e}U^{\dagger}v_{e}} \right] = \sum_{t \neq 0} \hat{y}_{t} \cdot U_{t} - U_{o}, \quad (U_{o} = V^{\dagger} \cdot y_{t})^{\dagger} \hat{y}$$

$$= \underbrace{V^{\dagger}(\hat{y} - y_{e})}_{Z_{e}U^{\dagger}v_{e}} = \underbrace{V^{\dagger$$

$$-\left[1-\frac{1}{100}e^{\frac{1}{10}x}\right]\circ U = -\left[U-\frac{1}{100}e^{\frac{1}{10}x}\right]$$

$$(\mathcal{C})$$
 $rac{\partial J_{ ext{naive-softmax}}}{\partial u_w}$ $\stackrel{\mathbf{z}}{=}$ 7 $\stackrel{\mathbf{\dot{o}}}{=}$ $\stackrel{\mathbf{\dot{c}}}{=}$

$$\frac{\partial J}{\partial u_{w}} = \int \frac{\partial Z}{\partial u_{w}}, \frac{\partial Z}{\partial u_{w}} = V_{c}$$

is
$$w = 0$$
, $-\left[v_c - \frac{e^{v_c}v_c}{\sum_{t \in V} e^{v_t}v_c}\right] = -v_c\left[1 - \hat{y}_o\right]$

$$\frac{\partial V}{\partial U_{\omega}} = \frac{\partial V_{\omega}}{\partial U_{\omega}}, \quad \frac{\partial U_{\omega}}{\partial U_{\omega}} = \frac{\partial V_{\omega}}{\partial U_{\omega}} =$$

$$\left(\text{d} \right) \quad \sigma(x) = \frac{1}{1+e^{-x}} = \frac{e^x}{e^x+1} \qquad \qquad \text{if scalar 3} \quad \text{left.}$$

$$\frac{d\sigma\alpha}{dx} = \frac{e^{x}(e^{x}+1) - e^{x} \cdot e^{x}}{(e^{x}+1)^{2}} = \frac{e^{x}}{(e^{x}+1)^{2}} = \frac{e^$$

$$(f)$$
 $J(v_c, w_{t+j}, U)$ 는 $J_{\text{naive-softmax}}(v_c, w_{t+j}, U)$ 으로 가정하자 (참고: Negative Sampling 의 loss 도 같은 방법으로 구할 수 있다) . 이 때 $J_{\text{skip-gram}}$ 의 U , v_c , v_w 에 대한 편미분을 각각 구하라.

(i)
$$\partial \boldsymbol{J}_{\text{skip-gram}}(\boldsymbol{v}_c, w_{t-m}, \dots, w_{t+m}, \boldsymbol{U})/\partial \boldsymbol{U}$$

(ii)
$$\partial \boldsymbol{J}_{\text{skip-gram}}(\boldsymbol{v}_c, w_{t-m}, \dots, w_{t+m}, \boldsymbol{U}) / \partial \boldsymbol{v}_c$$

(iii)
$$\partial \mathbf{J}_{\text{skip-gram}}(\mathbf{v}_c, w_{t-m}, \dots, w_{t+m}, \mathbf{U})/\partial \mathbf{v}_w$$
 when $w \neq c$

답은 $\partial J(v_c, w_{t+j}, U)/\partial U$ 와 $\partial J(v_c, w_{t+j}, U)/\partial v_c$ 를 이용하여 기술하라.

$$= -\log \prod_{\substack{-M \leq j \leq M \\ (j \neq 0)}} P(W_{t+j} | W_{t} | V) \qquad (i \cdot C = W_{t})$$

$$= \sum_{\substack{-M \leq j \leq M \\ (j \neq 0)}} -\log \frac{W_{t+j} V_{c}}{\sum_{i} W_{i}^{T} V_{c}} = \sum_{\substack{-M \leq j \leq M \\ (j \neq 0)}} J(V_{c}, W_{t+j}, V)$$

using this, if
$$\int_{Skip} gmm (V_c, W_{t-m}, ..., W_{t+m}, V) = F$$
,

ci) $\partial F / \partial V = \sum_{\substack{M \in S \in M \\ (J \neq 0)}} \partial J (V_c, W_{t+j}, V) / \partial V$

cii) $\partial F / \partial V_c = \sum_{\substack{M \in S \in M \\ (J \neq 0)}} \partial J (V_c, W_{t+j}, V) / \partial V_c$

(iii) $\partial F / \partial V_c = \sum_{\substack{M \in S \in M \\ (J \neq 0)}} \partial J (V_w, W_{t+j}, V) / \partial V_w (w \neq c)$

there's no $V_w = \sum_{\substack{M \in S \in M \\ (J \neq 0)}} \partial J (V_w, W_{t+j}, V) / \partial V_w (w \neq c)$