AD-A248 000

92-06596

Member Agencies:

United States Coast Guard Naval Sea Systems Command Maritime Administration American Bureau of Shipping Military Sealift Command

Address Correspondence to:

Secretary, Ship Structure Committee U.S. Coast Guard (G-MTH) 2100 Second Street S.W. Washington, D.C. 20593-0001 PH: (202) 267-0003

An Interagency Advisory Committee
Dedicated to the Improvement of Marine Structures

August 28, 1991

SSC-352 SR-1311

MARINE STRUCTURAL STEEL TOUGHNESS DATA BANK (ABRIDGED EDITION)

A substantial amount of toughness data for commonly used marine steels is available to ship designers. The information, however, did not exist in a comprehensive database that users could access. The Ship Structure Committee recognized the need for a convenent source of materials design data and sponsored the development of the Marine Structural Steel Toughness Data Bank.

The data bank contains approximately 1,000 records representing 10,000 tests of eleven marine steels. The complete report has nearly 2,000 pages of documentation. In this abridged edition, we are providing data extracts from all principal sections of the report. The complete report was published in four volumes and is available from the National Tachnical Information Service. A computer based version of the data bank may be accessed through the developers. We trust that this information will prove to be quite useful.

U.E. H

A. E. HENN

Rear Admiral, U.S. Coast Guard Chairman, Ship Structure Committee Accesion For

NTIS CRA&I
DTIC TAB
Unappropried
Unappropri

5v ______

A-1

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
	2. Sovernment Accession No.	3. Recipient's Catalog No.
SSC-352 (Abridged)		
, ,		ĺ
4. Title and Subtitle	<u></u>	5. Report Date
		August 31, 1990
Marine Structural Steel		<u> </u>
Toughness Data Bank		6. Performing Organization Code
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		49641/MPDN 90-1
		8. Performing Organization Report No.
7. Author(s)		o. renorming Organization Report No.
J. G. Kaufman and Martin	Prager	SR - 1311
		J 3K - 1311
9. Performing Organization Name and Addre	: 3 5	10. Work Unit No. (TRAIS)
National Materials Prope		11. Contract or Grant No.
Materials Properties Cou	ncil, 2540 Olentangy River	
Rd., P.O. Box 02224, Col		DTCG23-86-C-20062
110, 110, Box 02224, 001		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address		Final Report
Ship Structure Committee		randr Report
U.S. Coast Guard (G-M)		
, , ,		
2100 Second St., SW		14. Sponsoring Agency Code
Washington, DC 20593		GM
15 Supplementary Notes		

16. Abstruct

The Ship Structures Committee has sponsored the development of a data bank covering the toughness of steels for marine applications. Effort focused on the identification and procurement of sources of data containing quantitative toughness data, and the development from those data of a well-documented computerized data bank available to a wide range of engineers and material scientists. Included were raw data from material suppliers and data from papers and technical reports published by a variety of organizations.

Sponsored by the Ship Structure Committee and its member agencies.

The principal focus was on Tensile, Charpy V notched bar impact values, fracture toughness (JIc), NDTT, and DT energies; other toughness parameters were included if available for the same lots of material. The materials include steels identified by the Project Technical Committee representing the sponsoring agencies.

About 1000 records representing approximately 10,000 tests of eleven steels are included in this prototype version of the data bank. Standard procedures now exist for efficient addition of data for other alloys and properties.

17. Key Words	18. D	istribution Statement		
Steel, Toughness, Charpy, Marine Applications, Data 1	Bank U	vailable from: Vational Techni V.S. Department Springfield, VA	of Commerce	
19. Security Classif, (of this report)	20. Security Classif. (of t	this page)	21. No. of Pages	22. Price
Unclassified	Unclassified		339	

METRIC CONVERSION FACTORS

	Symptol		•	•	=	S É				Zui	፞ቜ	Ē					;	5 ₽					11 02	ĸ	¥	3		, Pr				;*			2		ر 100	
E Meesures	To Find		E Ches	inches	10.0	sp.e.	!			square inches	squere yards	aquare miles	9CLB3					Dounds	short tons				thurd ounces	pints	quarts	gallons	cubic feet	cubic yards		-		Fahrenheit	temperature	•		200 200	90 90	
rsions from Metric	Multiply by	LENGTH	3	₽.0	3.3		3		ANEA	9.16	1.2		2.5			MASS (weight)	}	0.035		•		VOLUME	0 03	2.1	90:	0.26	35	1.3			ILMPERATURE (CARCI)	9.5 (then	add 32)		986	80 120	20 140	
Approximate Conversions from Motric Messures	When You Know	Ţ	a valeuri II im	centimeters	meters	meters	S LOI BLOTTE		ļ	square centimeters	square meters	square kilometers	hecteres (10,000 m ²)			-		grams	second (1000 kg)	Ru acci spinsi		-	and Hollings	S 60 3 4 1 1	11013	2502-1	Cubic meters	Cubic meters		,		,	Lersius Lengerature		of 32	_	0 02 00 00 00 00 00 00 00 00 00 00 00 00	
	Symbol		1		E	E	E			7	~ _E	~₅	2					.	<u>5</u> .	-				€ -			- [~] E	Ē									ı	
nninti sz	zz		allialia - os	11)		81 !!!!		21 	91	: 	, S1	! !		: } }}}	E 1	i 1,557	15	İmi	tr	iaiil	ot	999	6 	, Jiji		· 17;	د الله	iliy s	9	140	S		•	ε		Z	T and	
' ' ' 			.1,1,1	' '	 ''	7	' '	' ')' '.	l' '	l'	'I'	'	'l'	'	' ' 5	 '}'	' '	` `	' '	l' •	' ' 	'['	 '		' 3	' ' '	'	' }'	! '	3	' '	' '	' '	1	' '	nche	5
		Sympol				E 5	E	ş					~E	, E	2			æ	, 5	`-				Ē	Ē	Ē				. Ē	-€			J,				
Measures		Te Find				Contimeters	meters	kilometers			Square centimeters	square meters	Square melers	Square kilometers	hectares			50,800	hilograms	tonnes				millifiters	milliliters	militiers	liters	5		Cubic pieters	cubic meters			Celsus	temperature		in familiar	
arsions to Metric		Mattigfy by	LENGTH		•	30	6.0	.	4864	Anta	5.9	60.0	8.0	5.6	₽.0		MASS (weight)	28	0.45	6.0		VOLUME		S	ž	90	0.24	(₩.0	£	B.6	0.76	TEMPERATURE (exect)	THE PARTY OF THE P	5 9 (after	Subtracting	7	the state of the season of the	
Approximate Conversions to Motric Mossures		When You Know				inches	sp.e.k	3.40 E			section exercises	Square feet	squere yards	square miles	acres			OUNCE:3	Bounds	short tons	(2000 lb)			teaspoons	(ablespoons	fluid ounces	sdno	pints	Quarts	defluos cubic feer	cubic yards	TEMP		f ahrenheit	temperature		The second of th	
		Sympo				<u> </u>	. 7	Ē			~ <u>e</u>	· ~=	۾''	~ Ē					: =	•				ds)	Tbsp	10 OZ	υ	ā	-		, P.							

Contents

1	Introduction	j	L
2	Scope	1	l
3	Materials Included in Marine Toughness Data Bank	2	2
4	Types of Data (Properties) Covered in the Program	4	1
5	Format Development	5	5
6	Sources of Data	E	3
7	Procedures Employed in Building the Data Bank	e	3
8	Summary	7	ŗ
9	References in the Report	7	7
	Annex I: Summary and Directory of Data Sheets 10.1 Summary and General Description of Marine Toughness Data Bank 10.2 Table A - List of Alloys and Directory for Data Bank 10.3 Table B - Explanation of Material Codes 10.4 Table C - Symbols and Abbreviations Used in Data Bank 10.5 Table D - List Abbreviations for Data Source References:	12 13 14 17	1 2 3 4 7
11	Annex II: Martuf on MPD Network	18	•
12	Annex III: Data Collection Formats	20)
13	Data Presentations for Marine Materials ABS-B ABS-EH32 ABS-EH36 A36 CG A537M A572 Gr50 A588 A710 BS4360 Gr50D HY80	200 210 310 710 730 760 800 940 138 165	00 00 00 00 00 00 00 00 00 00 500
	HY100	195	50

A Marine Structural Toughness Data Bank Ship Structures Committee Final Report

1 Introduction

Despite the substantial number of data available on the toughness of a wide variety of steels which may be used for marine applications, including several important studies by the Ship Structures Research Committee, there has been no comprehensive source to which one might go to readily find well-documented numeric data for the full range of materials and types of data of interest. The Ship Structures Committee and the U.S. Coast Guard recently took the steps needed to begin the establishment of such a source, with first priority given to toughness data for high strength, low allow steels.

This handbook provides the initial compilation for the Marine Structural Toughness Data Bank, a summary of data from about 10,000 tensile and toughness tests of hundreds of samples representing eleven steels of importance for marine applications.

The result of this program is not only a source of reliable and well-documented numeric data on the toughness of steels, but also the nucleus of a system which may be expanded to include other properties of these steels and other materials which might be considered for such applications. The source will be of value to all segments of the Marine Industry, commercial and military, and to a number of other industry groups which utilize these steels, as well as to the Steel Industry itself.

Also of significant consequence, the program has been carried out in a manner and with procedures and standards compatible with those in use in the development of machine-readable databases by groups such as the National Materials Property Data Network, Inc. (the MPD Network), a network of worldwide sources of data (Refs. 1,2). This assures the opportunity for easy and direct interface and interchange of data with many other sources of numeric materials data.

As an added advantage, new searchers who might be looking for the type of data contained herein but are unaware of the Marine Structural Toughness Data Bank will be directed to it via the online version being established under the name MARTUF on the MPD Network. Such users also have access to many other sources of materials data. For additional information on this mode of access to the Marine Structural Toughness Data Bank, please refer to Annex I to this document.

2 Scope

The scope of this program was the development of a data bank on the toughness of steels which may be considered for marine applications such as ship hulls and drilling structures. Eleven steels of importance to the member organizations of the Ship Structures Committee are included. Data from a variety of types of toughness tests were included in the database, including Charpy impact, fracture toughness, nil-ductility transition, and drop-weight tear tests. The emphasis of this project was on the collection of data, not its detailed analysis, though efforts were made to assure that problems with identity of individual lots or incomplete reporting of test data were dealt with.

The Marine Toughness Data Bank was developed both in hard copy, as summarized in this document, and in machine readable form. It is available in a searchable online version on the MPD Network (where it is referred to as MARTUF; see Annex II and Ref 1,2). It is also available on PC disks in the original Lotus 123 format in which it was assembled from the Ship Structures Committee. It is not searchable in this format.

3 Materials Included in Marine Toughness Data Bank

The scope of materials considered for inclusion in this data bank was established by the Technical Committee representing the Ship Structures Committee. The original list of materials with the priorities provided is shown in Table 1. The individual priorities for the materials within group 1 are those specifically provided by the Technical Committee; priority numbers within groups 2 and 3 were assigned arbitrarily for convenient reference.

Also shown in Table 1 are alternative designations by which these materials are often identified. Their detailed material property and chemical composition requirements are presented in Table 2, with the order in which the material are presented revised to group like alloys (based upon composition and properties) together. Together these two tables illustrate several important features which had a significant bearing upon the program, viz.:

- 1. The specifications and properties for these materials overlap to a great extent,
- 2. It is difficult to be certain which materials are completely equivalent and which are significantly different, and
- 3. A great amount of information is required in building a database for such materials to provide users with the background necessary to assure than useful and valid comparisons are being made.

This problem has been recognized previously, especially in regard to comparisons with steels covered by foreign specifications. Early and Himes (Refs 3, 4, 5) confronted the problem and determined that in comparing specifications and individual steels themselves it is necessary to consider the composition limits, material property limits, fabrication practices and resultant microstructures, specific quality assurance requirements before drawing conclusions on this matter. They further concluded that several U.S. and foreign steels widely considered to be equivalent were indeed not so when all of these factors were considered.

It was not possible within the constraints of this program to determine without question the relative equivalence of all of the lots of materials for which data were obtained and included in this reference source. Therefore in all cases the identities given individual lots of material in this data bank are those provided by the original investigators plus those from the Unified Numbering System Guide (Ref. 6).

However it is clear from Table 2 that there are several groups of similar materials included in the Marine Toughness Data Bank, notably:

- High strength, low alloy steels A514, HY80 and HY100 containing primarily Ni, Cr, Mn and Mo;
- High strength, low alloy steel A710 and HSLA 80 containing primarily Cu, Ni, Cr and Mo;
- Medium to high strength low alloy steels A537, CG-537, A656, A737, ABS-EH36, and API 5L containing primarily Mn; and
- Medium strength low alloy steels A36, A572, A588, A633, A678, BS4360 and ABS-B and E, also containing primarily Mn.

Within each of the groups the primary alloying elements largely overlap, and their distinctiveness arises from differences in minor alloying elements and mechanical property requirements.

In the course of this work it was determined that it is appropriate to include certain "equivalent" alloys in the high priority list (making due allowance for tensile strengths, overlapping compositions, etc.). This was based in part on commercial practices.

Priority Alloy	Equivalent
HY80	A543 GrC CL1
A710 GrA	A736
ABS EH36	A737 Gr B
A514E	A517E
HY100	A543 GrC CL2
API5LX60	A572

Given the conditions above and the sources and types of data included within the scope of the search, data were placed into the data bank for the following materials:

ABS-B	A36	A710/A710-A	BS4360 Gr 50D
ABS-EH32	A572 Gr 50	HY80	CG A537M (A537 Cl 1)
ABS-EH36	A588 Gr A	HY100	

These represent 10 of the top 15 priority alloys requested by the Technical Committee, and one (A572) within the second priority set.

Alloying Identification Scheme: It was found convenient when logging the data for inclusion in the data bank to use a three-part identification scheme, in which the first three digits identify the alloy (with a direct relationship to the priority listing provided by the technical Committee); the second set of three digits identifying the specific heat; and the final two digits identifying whether the test sample was parent (base) metal, weld metal or heat-affected zone (HAZ), plus in the latter case the approximate distance of the tested HAZ area from the weld fusion line, i.e., where the base of the notch or precracked tip is positioned 1, 3, 5, etc. mm from the edge of weld deposit. Thus,

```
XXX.YYY.ZZ
where
    XXX.
                    -Alloy Identifier, from priority code (Table 1)
         YYY.
                    -Heat Number, sequential number
              ZZ
                    -Sample Descriptor, as follows:
                    .01 - Base Metal
                    .02 - On fusion line
                    .03 - 1 mm into HAZ
                    .04 - 3 mm into HAZ
                    .05 - 5 mm into HAZ
                    .06 - 7 mm into HAZ
                    .07 - 9 mm into HAZ
                    .08 - 11 mm into HAZ
                    .09 - All weld metal
```

In recording this data for retention on the computer, every effort was made to preserve as much detail as possible about the preparation of the specimens tested. It is hoped that this will permit studies to be made of the effects of compositional materials or process variables on performance. This is required recording ingot position, welding parameters, specimen location, information about prior staining and postwelding heat treatment.

In order to maintain the individuality of material information records which differed only slightly, letters or numbers were added to the Material Codes. For example, when the top and bottom of the ingot were studied T or B was added. If severall strain-aging conditions were examined, S1, S2, etc. were noted. Multiple welds were recorded as A, B, C, D, etc.

One should be alert to those variables which may distinguish among the property records. For example, one may wish to search for deposit properties, in which case only ".09" records are of interest, or seek information about the fusion line, in which case records including ".02" (and possibly .03) will be of interest. The database offers the potential for studying differences in performance of the root pass or the last pass, or at the mid thickness, distinguishing between when it is or is not the weld root. Thus one must be careful not to mix weld data indiscriminately.

It goes without saying that distinctions between LT and TL specimens of the base metal need to be preserved. This was required as well for the weld deposit. It should be noted that L for the deposit was defined as the direction of travel. Since specimens were usually oriented perpendicular to the weld, a toughness measurement was usually described as TL in the deposit. At the fusion line and in the heat affected zone, the base metal specimens would all be transverse to the weld, but the TL orientation designated for the deposit would be switched to LT in the HAZ if the rolling direction were perpendicular to the welding direction.

It must be recognized that all position indicators and other descriptors of location relative to the fusin line or root or surface of the specimen are approximate. Nevertheless, considering all the variables provided for in the database may offer an explanation for some of the scatter in weldment performance observed. The reader should be acquainted with the data recording format if an in-depth study of materials or processing variables is intended.

4 Types of Data (Properties) Covered in the Program

The types of data sought for the data bank included the following:

- Material characterization (including actual composition, fabrication information and weld procedures, where appropriate)
- Tensile properties
- Fracture toughness, from KIc and JIc tests
- Charpy V notched bar impact values
- Nil ductility transition temperature
- Dynamic tear energy

Other types of toughness data were also sought, providing test results for at least one of the types above were also presented, and provision for a wide variety of types was made in the schema for the basic structure of the database (Table 4, described in Section V) These additional types of data included:

- Precracked Charpy impact
- Precracked Charpy slow bend
- · MRL crack arrest

- ESSO crack arrest
- Double TT crack arrest
- Wide plate tensile test
- Drop weight tear energy

Several other types of test data were also considered, including the Tearing Modulus, T, but the lack of standard test methods for such parameters led to their being dropped from further study. Interest was expressed in the inclusion of modulus of elasticity values at one point, but it was excluded because the types of tensile tests for which data were being input did not provide reliable measures of modulus in accordance with ASTM standards (ASTM Standard Method E 111).

In fact, during the collections of data, the vast majority of test results located and included within the data bank were from Charpy V notched bar impact tests; 643 of the 1017 records compiled contained Charpy data) Only relatively few fracture mechanics data (12 records, all JIc, and all representing HY80 and HY100) were found. The lack of fracture mechanics parameters found is undoubtedly related to the relatively tough nature of this general class of materials under conditions above their ductile-to- brittle transition temperature.

Table 3 is an "occurrence table" for the data bank, a matrix illustrating the various types of test records for the individual materials. The specific data associated with the various type of tests which were included in the database, and the meaning of the abbreviations are explained in Table 4, the data bank format (see Section V).

5 Format Development

The development of the overall format for the Marine Toughness Data Bank was an evolutionary process. A working format was established at the beginning of the program, covering the whole span of material characterization and test results sought, and the collection of data begun. Dr. Martin Prager. Executive Director of the Materials Properties Council (MPC), was responsible for locating, compiling and evaluating the data. Over the following six-to-twelve months, various examples arose in which more detailed description of the materials or of welding processes or of certain types of test results were required. The result was several iterations in format development, some changes involving only refinements, but others very substantive improvements in documentation of the materials or test data.

The final format established for the data bank is illustrated in Table 4; it is basically a very broad, very long spread sheet, with the material description/test data relationship being basically hierarchical in nature, and with the various segments held together in a relational fashion around the material identifier code discussed above.

Three specific things were considered in establishing the data format: (1) the description and characterization of the materials for which data are shown in the system, (2) the data elements for the individual tests, and (3) the styles of presentation of the data when accessed following its compilation and inclusion in the database.

Considerable attention was given to the need to have adequate background on the materials so that comparisons of performance characteristics may be made reliably. The impact of such considerations is the inclusion of much more information than is likely to be desired by most users most of the time. However the result is the ability to track down a great amount of additional detail

for those situations where it may be necessary to ensure that comparisons are meaningful. Examples include the elemental composition of individual lots, the fabrication histories of the individual lots, and the procedures used in producing the welded samples.

A major advantage of the particular format in Table 5 is its essential consistency with those of other databases being built by MPC and MPD Network for steels for other applications, notably the STEELTUF database (7). Utilization of such a format, even with substantial modification, assures the ability to expand, combine and/or compare readily with these other sources.

Compilation of Data: In order to maximize the efficiency and consistency of compilation of data for this data bank, standard data collection formats were developed. The format used for this purpose in the current program is presented in Table 5.

6 Sources of Data

The sources of data used in building the data bank included:

- Raw test results from ABS
- Raw rest results from material suppliers
- Individual test results from papers and technical reports published by:
 - ASTM Special Technical Publications and Journals
 - Materials Properties Council
 - Naval Research laboratories
 - Welding Research Council
 - Electric Power Research Institute
 - Ship Structures Committees
 - American Welding Society
 - Nippon Kokan
 - United Kingdom Atomic Energy Association
 - American Society of Mechanical Engineers
 - Universities

7 Procedures Employed in Building the Data Bank

The following basic steps were employed in building the MARTUF database:

- 1. Identification and procurement of data sources.
- 2. Review of document and completion of data compilation formats.
- 3. Transcription of data from source to LOTUS 1-2-3 tabular format from information on compilation formats.
- 4. Development of a mapping program, and loading of file from LOTUS 1-2-3 tabular format to a main-frame machine-readable database.

5. Mapping of the machine-readable form to print hardcopy handbook quality compilations.

The machine-readable version of the data bank was built and maintained at Stanford University in the SPIRES database management system (dbms). This software was developed at Stanford for library management and bibliographic search and retrieval purposes.

Preparation of the hardcopy database was accomplished under subcontract to Mr. William L. Anderson, of Elements Research, Inc., 2850 Middlefield Rd. #126, Palo Alto, CA 94306. The document was typeset in TeX and PostScript.¹

8 Summary

The Ship Structures Committee has sponsored the development of a data bank covering the toughness of steels for marine applications. Effort focused on the identification and procurement of sources of data containing quantitative toughness data, and the development from those data of a well-documented computerized data bank available to a wide range of engineers and material scientists. Included were raw data from material suppliers and data from papers and technical reports published by a variety of organizations.

The principal focus was on Tensile, Charpy V notched bar impact values, fracture toughness (JIc), NDTT, and DT energies; other toughness parameters were included if available for the same lots of material. The materials include steels identified by the Project Technical Committee representing the sponsoring agencies.

About 1000 records representing approximately 10,000 tests of eleven steels are included in this prototype version of the data bank. Standard procedures now exist for efficient addition of data for other alloys and properties.

9 References in the Report

- 1. J. G. Kaufman, "Sources and Standards for Computerized Materials Property Data and Intelligent Knowledge Systems", Engineering with Computers, ASME, Vol. 4, pp 75-85, 1988, New York, NY.
- 2. J. G. Kaufman, "The National Materials Property Data Network, Inc. A Cooperative Approach to a Critical National Resource", Proceedings of the First International Symposium on Computerization of Material Property Data, November, 1987, Philadelphia, PA.
- 3. NBSIR 82-2481, "Analysis of Foreign and Domestic Material Specifications for Ships Components", U.S Dept. of Commerce, National Bureau of Standards, October 1981 (Issued April, 1982), Washington, DC.
- 4. NBSIR 83-2692, "Evaluation Criteria for Comparing Domestic and Foreign Material Specifications", U.S. Dept of Commerce, National Bureau of Standards, March, 1983 (issued May, 1983), Washington, DC.

¹LOTUS and 1-2-3 are trademarks of Lotus Development Corporation.

SPIRES is a trademark of Leland Stanford, Jr. University.

TEX is a trademark of the American Mathematical Society.

PostScript is a trademark of Adobe Systems Incorporation.

- 5. H. Himes and J. G. Early, "Evaluation Criteria for Comparison of Foreign and Domestic Material Specifications", Journal of Testing and Evaluation, May, 1983, ASTM, Philadelphia, PA.
- 6. "Metals and Alloys in the Unified Numbering System", SAE HS J1086, ASTM DS-56C, Fourth Edition, April, 1986.
- Grattidge et al, "Materials Information for Science and Technology (MIST): Project Overview", NBS Special Publication 726, U.S. Dept of Commerce, National Bureau of Standards, November, 1986.

TABLE 1

MARINE STRUCTURAL TOUGHNESS DATA BANK

COMMON	ASTM SPEC	UNS NUMBER	PRIORITY
NAME	<u> </u>	110.2011	
ну80	A543 Gr C(1)	K31820	1-1
A710-A	A710 Gr A	K20747	1-2
CG A537M	A537 C1 1	K12437	1-3
ABS-B	A131 Gr B	K02102	1-4
API 5L Gr X70	-	-	1-5
HSLA 80	•	-	1-6
ABS-EH36	A131 Gr EH36	K11852	1-7
A514E	A514 Gr E	K21604	1-8
A36	A36	-	1~9
BS 4360 Gr 50D	-	-	1~10
HY100	_	K32045	1-11
A588-81 Gr A	A588 GR A	K11430	1-12
A588 Gr B	A588 Gr B	K12043	1-12
A588 Gr C	A588 Gr C	K11538	1-12
A537-A	A537 Gr A	K02400	1-13
API 5L Gr X60		-	1-14
A656-70	A656 Gr 70	K11804	1~15
A572 Gr 50	A572 Gr 50	-	2-1
A678 Gr D	A678 Gr D	-	2-2
DIN 17100 St 52.3	-	-	2-3
JIS G3016	-	-	2-4
ABS-E	A131 Gr E	K01801	2-5
ABS DH36	A131 Gr DH36	-	2-6
A514A	A514 Gr A	K11856	3-1
A514F	A514 Gr F	K11576	3-2
A514P	A514 Gr P	K21650	3-3
A537-1	A537 Cl 1	K12437	3-4
A537-2	A537 Cl 2	K12437	3-5
A588	A588	K12040	3-6
A588-71 Gr F	A588 Gr F	K11541	3-7
ABS-CS	A131 Gr CS	K01601	3-8
ABS-DS	A131 Gr DS	K01601	3-9
ABS-AH32	A131 Gr AH32	K11846	3-10
ABS-EH32	A131 Gr EH32	K11846	3-11

Priorities: 1-1,2 etc Technical Committee Priority 1 List
Technical Committee Priority 2 List
Other Grades of Alloys in Priority 1 List

Table 2 - Comparisons of Tensile Property and Composition Limits For Some Steels of Interest For Marine Applications

,	.FIED	MINIMUM	1				SPECIFI	ED CONT	051770	N. ele	ment.	per ce	nt			
		S OI YP		•	.Ho		P	5	51		Ni		cr		No	
ALLOY DESIGNATIONS	ksi	ksi		Min.				Nex.					Max.			-
A514 Gr E	100	90	0.20	0.12	0.70	0.40	0.035	0.040	0.20	. . .	-	-	2.00	1.40	0.60	0.40
A517 Gr E	115	100	0.20	0.12	0.70	0.40	0.035	0.040	0.35	0.20			2.00	1.40	0.60	0.40
A54) Type C Class 2	115	100	0.23	-	0.40	-	0.020	0.020	0.40	0.20	3.25	2.25		1.20	0.60	0.45
MA-100		100	0.20	-	0.40	0.10	0.025	0.025	0.35	0.15	3.50	2.25	1.80	1.00	0.60	0.20
WY-80		80	0.18	-	0.40	0.10	0.025	0.025	0.35	0.15	3.25	2.00	1.50	1.00	0.60	0.20
A543 Type C Class 1	105	85	0.23	-	0.40	-	0.020	0.020	0.40	0.20	3.25	2.25	1.80	1.20	0.50	0.45
A710 Gr A Class 2	72	65	0.07	_	0.70	0.40	0.025	0.025	0.40	-	1.00	0.70	0.90	0.60	0.25	0.15
A710 Gr A Class 3	85	75	0.07	-	0.70	0.40	0.023	0.025	0.40	-	1.00		0.90	0.60	0.25	0.15
HSLA 80 (MIL-S-24645)	• >	80	0.07	-	0.70	0.40	0.025	0.010	0.70		1.00	0.70	0.90	9.60	0.25	
H2TY 80 (MIT-2-54842)			0.07	•	0.70	0.40	0.023	0.010	0.70	-	1.00	0.70	0.90	9.60	0.23	0.15
CG-537M			0.16	-	1.50	0.90	0.035	0.040	0.35	0.15	0.25	-	0.25	-	0.00	-
A537/A537M Class 1	70	50	0.24	-	1.35	0.70	0.035	0.040	0.50	0.15	0.25	-	0.25	•	0.08	-
A537/A537M Class 2	80	60	0.24	-	1.35	0.70	0.035	0.040	0.50	0.15	0.25	-	0.25	-	0.08	-
ABS EH36	71	51	0.18	_	1.60	0.90	0.040	0.040	0.50	0.10	0.40		0.25		0.08	-
A737 Gr C	80	60	0.22	-	1.50	1.15	0.035	0.030	0.50	0.15	-	-			-	-
A656 Gr 70	80	70	0.18	-	1.65	•	0.025	0.035	0.35	-		-		-	0.35	
API SL Gr X60	•••		1		1.60	_	0.040	0.050			0.50	-			1	
API 5L Gr X70			0.15	-	1.60		1		ì				۱ -	•	1	
2. 32 0. 2.0					1								İ		ŧ	
A36	58	36	0.25	-	1.20	0.80	0.040	0.050	-	-	-	-		•	!	
854360 Gr 50D			0.15	-	1.35	0.80	0.040	0.050	0.30	0.15	0.50	0.25	0.50	0.30	-	-
A588 Gr C	70	50	0.15	•	1 1.35	0.80	0.040	0.050	0.30	0.15	0.50	0.25	0.50	0.30	-	-
MS-B/ABS Gr B	50	34	0.21	•	1.10	0.80	0.040	0.040	0.35	_	-	-	-	-	-	-
													Į.		ł	
A572 Gr 50 Type 1	65	30	0.23	-	1.65	•	0.040	0.050	0.40	•	•	•	-	-	-	•
A633 Gr A	63	42	0.18	-	1.35	1.00	0.040	0.050	0.50	0.15	-	-	-	-	-	-
A678 Gr C	90	70	0.22	-	1.60	1.00	0.040	0.050	0.50	0.20	-	-	-	-] -	-
ABS E	50	34	0.10	-	1.35	0.70	0.040	0.040	0.35	0.10	-	-		•	-	-

	SPECIFIED										elemen	t. Per c	nt		
		S OI YP	ى _ ك			<u>.</u>	Ct (1		_11	_	_1	_	لقہ		_
ALLOY DESIGNATIONS	ks1	kei	Max.	Min,	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Min.	Hax.	Mi
A514 Gr Z	100	90	1		} -	•		•	0.10	0.04	0.005	0.0015		} .	
A517 Gr E	115	100	0.40	0.20	-	•	i -	-	0.10	0.04	0.01	0.00	-	1 -	
A543 Type C Class 2	115	100	-	-	0.03	-	l -	•	-	-	-	-	-	Į.	
HY-100		100	0.25	-	í -	-		-	-	•	-	•	-		
HY-80		€0	0.25	•	-	-	-	•	-	-	i -	-	-	1 -	
A543 Type C Class 1	105	85	-	•	0.03	•	-	-	-	•	-	-	-	ł	
A710 Gr A Class 2	72	65	1.30	1.00	-	_	0.02		-		-	-	_		
A710 Gr A Class 3	85	75	1.30	1.00	-	-	0.02	-	-	-	-	-	-	ı	
HSLA 80 (MIL-5-24645)		80	1.30	1.00	Ì		}				1			ĺ	
CG-517H			0.35			-	١.		-	_	-	-	-	١.	
A537/A537M Class 1	70	50	0.35	•	-	-	-	-	-	-	-	-	-		
A537/A537M Class 2	80	60	0.35	-	-	•	-	-		-	-	-	-	-	
ABS EH36	71	51	0.35	•	0.10	•	0.05	-	-	-	-	•	•	١ .	
A737 Gr C	80	60	-	-	0.11	0.04	0.05		-	•		- 1	-	0.030	
A656 Gr 70	80	70	-	•	-	•	0.07	0.020	-	•	•	-	0.02	0.030	0.1
API 5L Gr X60			i		0.02	-	0.05	-	-	-	-	•	-	-	
API 5L Gr X70			1	I	0.10	-	0.05	•	-	•	٠ -	•	-	-	
A36	58	16	l		1		1		!					ļ	
B54360 Gr 50D			0.50	0.20	0.10	0.01	-	•	-	•	-	-	-	-	
A588 Gr C	70	50	0.50	0.20	0.10	0.01	-	-	-	-	-	-	-	i -	
MS-B/ABS Gr B	50	34	-	-	-	•	٠ -	-	-	-	-	•	-	i -	
A572 Gr 50 Type 1	65	50	-	0.20	-			0.005	-	-			-		
A633 Gr A	63	42] -	-	-	-	0.05	-	•	-	-	-	-		
A678 GF C	90	70	-	9.20		-	-	-	-	-	-	-	-	-	
ABS E	50	34	-	-	١.	•	-	-		-	-	-	•	-	

Note: Where composition or tensile properties vary with thickness, values are for 1-in. plate

10 Annex I: Summary and Directory of Data Sheets

Summary and General Introduction

Table A - List of Alloys and Directory for Data Bank

Table B - Explanation of Material Codes

Table C - List of Abbreviations and Symbols in Data Tables

Table D - List Abbreviations for Data References

10.1 Summary and General Description of Marine Toughness Data Bank

The Marine Toughness Data Bank is a compilation of raw, individual test data for steels of interest to the marine industry. The data are organized in the attached pages by alloy and where possible by grade of the alloy. Data for individual lots of material are collected together, with a cover page providing the background identification, composition, fabricating history, and, in the case of welds, the weld procedures. Also included on the initial cover page for each individual lot are the tensile properties whenever those were available. Following the tensile properties are one or more of the following types of test results:

- Tensile tests per ASTM Method E 8
- Charpy V-notched bar impact (CVN) tests per ASTM Method E 23
- Fracture toughness (J-integral, JIc) tests per ASTM Method E 813
- Nil-ductility-transition temperature (NDTT) tests per ASTM Method E 208
- Dynamic tear (DT) tests per ASTM Method E 604
- Drop weight tear test per ASTM Method E 436

over a range (more than two) temperatures, the data are plotted as a function of temperature on uniform sized plots so that data from may be readily compared from lot to lot and alloy to alloy.

In general, the data are presented in the original units systems (SI - International Standard, or Engineering) in which they were reported. However, once again to facilitate comparisons, all plots are presented to uniform scales with both sets of units present. There were a few cases in which older metric unit systems were utilized, and in these cases, the values are converted to the SI system for presentation.

The information on the following pages will provide additional assistance in interpreting certain of the abbreviations and codes used in compiling the data.

10.2 Table A - List of Alloys and Directory for Data Bank

Alloy Designation	Material Code	Page Number
	(See Table B)	
ABS-B	004	1000
ABS-EH32	032	2000
ABS-EH36	007	2100
A36	009	3100
CG A537M	003	7100
A537 CL1	003	7300
A572 Gr 50	016	7600
A588	012	8000
A710	002	9400
BS4360 Gr 50D	010	13800
HY80	001	16600
HY106	009	19500

10.3 Table B - Explanation of Material Codes

In logging the data for inclusion in the Marine Toughness Data Bank, a three-part identification scheme was used, in which:

- the first three digits identify the alloy;
- the second set of three digits identify the specific heat; and
- the final two digits identify whether the test sample was parent (base) metal, weld metal or heat-affected zone (HAZ), plus in the latter case the approximate distance of the HAZ from the weld line. In the case of welds, it was often useful to add one or more letters to document some other welding variable such as a postweld thermal treatment.

Thus, the complete material code for unwelded materials would be of the following form:

```
XXX.YYY.01
Where:
    XXX. -Alloy Identifier, from priority code (Table 1)
    YYY. -Heat Number, sequential number

And for a welded material it would be of this form:
```

```
XXX.YYY.ZZWWW
w.here
    XXX.
                         -Alloy Identifier, from priority code (Table 1)
         YYY.
                         -Heat Number, sequential number
              ZZ
                         -Sample Descriptor, as follows:
                              .01 - Base Metal
                              .02 - On fusion line
                              .03 - 1 mm into HAZ
                              .04 - 3 mm into HAZ
                              .05 - 5 mm into HAZ
                              .06 - 7 mm into HAZ
                              .07 - 9 mm into HAZ
                              .08 - 11 mm into HAZ
                              .09 - All weld metal
```

WWW -Weld descriptors

A - As welded

S - Stress relieved after welding

In either case (parent/base material or weld), one or more numbers may follow these codes (without any space) indicating different pieces or minor variations in treatments, which may be deduced by looking at the detailed composition, fabrication or welding history.

10.4 Table C - Symbols and Abbreviations Used in Data Bank Abbreviations for Heat Treatment and Final Processing:

A	Austenitized
В	Brine quenched
C	Cold rolled
D	Double normalized
F	Hot rolled
G	Hot forged
K	Aged
N	Normalized
P	Thermo-mechanical process
R	Continuous rolled
Q	Quenched
Q S	Stress-relieved
T	Tempered
W	Welded

Abbreviations for Alloying Elements:

C	Carbon	Mn	Manganese
P	Phosphorus	S	Sulfur
Si	Silicon	Cr	Chromium
Ni	Nickel	Mo	Molybdenum
\mathbf{V}	Vanadium	Cu	Copper
Cb	Columbium	Ti	Titanium
В	Boron	Al	Aluminum
N	Nitrogen		

Abbreviations for Welding Procedures:

Weld type:	SAW	Submerged arc weld
	SMAW	Shielded metal arc weld
	TSAW	Tandem shielded submerged arc weld
	ESW	Electroslag weld
	NGESW	Narrow gap electroslag weld
Weld position:	IG	Downhand
	1G	Downhand
	2G	Horizontal
	3G	Vertical
	4G	Overhead

Abbreviations for Location of Test Sample:

T	Top	В	Bottom
1 -	TOP	112	Doctor

Abbreviations for Specimen Orientation:

For tensile specimens:

| L | Longitudinal | T | Long Transverse | S | Short Transverse

For all other specimens: two letter codes are used, with the first letter indicating the direction normal to the fracture plane; and the second letter indicating the expected direction of crack growth on the fracture plane.

The letters are:	L	Longitudinal
		Long transverse
	S	Short transverse

The common combinations are: L-T, L-S
T-L, T-S
S-L, S-T

Abbreviations for Table Column Headings:

Break? Did specimen fracture completely? CODIC Critical COD CODi Initial COD CVN Energy Charpy V Energy Crack lgth Curve Curve Shape DT Energy Dynamic Tear Energy
CODi CVN Energy Crack lgth Curve CODi Charpy V Energy Crack Length Curve Shape
CVN Energy Charpy V Energy Crack lgth Crack Length Curve Curve Shape
Crack lgth Crack Length Curve Shape
Curve Shape
l =
DT Energy Dynamic Tear Energy
E Tensile Modulus
Filler Alloy
Frac Apear Appearance
Fracture? Did Specimen Fracture?
Gage Lngth Gage Length
Inv Basis Reason for Invalid
Is Valid? Valid KIc?
JI Initial JI
Jmax Maximum J, Jmax
Lat Expans Lateral Expansion
Load Rate Loading Rate
Load Type Loading Type
NDTT Nil Ductility Transition Temperature
Notch Prep Notch Preparation
Orien Orientation
RA Reduction in Area
Shear Fracture
Spec Thick Specimen Thickness
Spec Type Specimen Type
Split? Did Specimen Split?
Std Method Standard Method Designation
Std Year Year Standard Issued
TYP Tensile Yield Point
TYS Tensile Yield Strength
TYS Offset Tensile Strength Offset
Tear Mod Tearing Modulus
Test Temp Test Temperature
UTS Tensile Strength
Uniform El Uniform Elongation

10.5 Table D - List Abbreviations for Data Source References:

- 004-2 "Approval Testing of Ship Steel Grades A, B, D and E, Produced via the Continuous Slab Caster Process," Australian Iron and Steel Property Ltd., 1980
- 007-1 Kobe Steel Reports on "Quantitative Examination for Approval of Higher Strength Hull Structural Steel Plate Quench and Temper Type," to ABS, Kobe Steel Ltd., Kakogawa Plant, 1972
- 007-4 Sumitomo Test Report on "Approval of Higher Strength Hull Steel Plates Rolled from Contiguously Cast Slab" to ABS, Sumitomo Metal Industries Ltd., Kashima Steel Works, November 1972
- 1010 Lukens Steel Company, Data Report Project 1010
- 1211 Lukens Steel Company, Data Report Project 1211
- 3200 Lukens Steel Company, Data Report Project 3200
- 3201 Lukens Steel Company, Data Report Project 3201
- 3202 Lukens Steel Company, Data Report Project 3202
- 3400 Lukens Steel Company, Data Report Project 3400
- 3530 Lukens Steel Company, Data Report Project 3530
- ARMCO-MPC ARMCO Steel Data Submitted for MPC Survey
- KONKOL-1 Konkol, P. J., Effects of Long-Time Post Weld Heat Treatment on the Properties of Constructional Steels, WRC Bulletin 330, January 1988
- METZ/MPC-13 Metz, P. O., "Toughness of C-Mn Structural Steels," in Fracture Toughness of Wrought and Cast Steels, ASME Publication MPC-13, 1980
- RP1120 Lukens Steel Company, Data Report Project RP1120
- S-1971 "Sumitomo Metal Industries Approval Test Report of Hull and Steel Plates Rolled from Continuously Cast Slab, Grades A, R, B, C, D and E," Sumitomo Metal Industries Ltd., Wakavama Steel Works, April 15, 1971
- SH-01 Properties of Normalized Steel Plates (Equivalent to BS4360 Gr. 50D) with Z Properties, Sumitomo Heavy Industries
- SSC276 Francis, P. H., Cook, T. S. and Nagy, A., <u>Fracture Behavior Characterization of Ship Steels and Weldments</u>, SSC-276, Final Report on Project SR-1224 (Fracture Criteria), Ship Structures Committee, U. S. Coast Guard Headquarters, 1978
- USN-1 U. S. Navy First Article Qualification Processing Information for Indicated Heat
- USN 4/7 U. S. Navy Technical Report, MPC Archival Record 4/7
- USN 5/7 U. S. Navy Technical Report, MPC Archival Record 5/7

- USN 5/9 U. S. Navy Technical Report, MPC Archival Record 5/9
- USN 6/9 U. S. Navy Technical Report, MPC Archival Record 6/9
- USN 7/9 U. S. Navy Technical Report, MPC Archival Record 7/9
- USN 8/9 U. S. Navy Technical Report, MPC Archival Record 8/9
- USN 9/9 U. S. Navy Technical Report, MPC Archival Record 9/9
- WELLMAN-WRC Wellman, G. W. et al, "Specimen Thickness Effects for Elastic Plastic CTOD Fracture Specimens of an A36 Steel," WRC Bulletin 328, Nov. 1987
- WJ 3/87 "Welded HY-80 Steel for Australian Warships," Welding Journal 66(3), March 1987, pp. 33-44
- WJ 7/87 Rodgers, K. J. and Lochhead, J. C., "Self-Shielded Flux Cored Arc Welding The Route to Good Fracture Toughness," Welding Journal 66(7), July 1987, pp. 49-59

11 Annex II: Martuf on MPD Network

As noted in the body of this document, a machine-readable and searchable version of the Marine Structural Toughness Data Bank, known as MARTUF, has been developed and is accessible via the National Materials Property Data Network (MPD Network) on STN International. For more information, contact:

J. G. Kaufman, President National Materials Property Data Network, Inc. 2540 Olentangy River Road Columbus, Ohio 43202

12 Annex III: Data Collection Formats

The following pages contain formats used during the collection of data for the Marine Toughness Data Bank.

FORMATS.	
	Entered intoWK1
	linesto
Informat	tion included Wild. Ten. FT. CV. NDT, DWT, DT, MRL
WORKSHEE	its for u. s. coast guard database (based on marindos: 12/30/8/)
	PROPERTIES OF STEELS FOR MARINE APPLICATIONS
BACKGROU	Material Code
*0-1a	Common material name
	UNS design.rn.an.y.
0-1c	ASTM specification no.
	AISI design.rn.an.y. Military specn.rn.an.y. Other designationn.rn.an.y.
0-le	Military specn.rn.an.y.
0-17	Other designation n.r. n.a. n.y. Base Metal WM-Wrought metal CM-Cast metal WJ-Welded joint only
*0-2b	Basic Form P-Dlate A-Angle C-Channel W-Web of shape
0 25	T-Pipe B-Bar S-Shape F-Flange of shape
*0-3	Base Metal WM-Wrought metal CM-Cast metal WJ-Welded Joint Only Basic Form P-Plate A-Angle C-Channel W-Web of shape T-Pipe B-Bar S-Shape F-Flange of shape n.r. n.a. n.y. Thickness mm in See n.y.
0-4	Composition type S-refer to specification N-nominal (not measured)
	A-actual;
0-433	Composition Position T-Top. B-Bottom, L-Ladle, W-Weld
	n.r a.ay.
0-4a-c	Actual Composition See
0-4p	Composition Comments
• •	Total Processing (Choose letters to indicate steps and order of treatment)
	(Choose letters to indicate steps and order of treatment)
	Reprine guenched from A Deservational process
	C-cold working R-continuous rolled
	D-double normalized Q-quenched
	F-hot rolled S-stress relieved
	G-hot forged
	(Choose letters to indicate steps and order of treatment) A-austenitized N-norr and Process C-cold working R-continuous rolled D-double normalized O-quenched F-hot rolled S-stress relieved G-hot forged T-tempered K-aged N-r. n.a.
*0-6	Producen's Heat Lot Number
0.0	n.r. n.a. n.y. <u>See</u>
0-7	Producer (name of producing company)n.rn.an.y.
0-7á	
0-8 0-9	Add Crond Titl Oring Toll
0.3	n.r. n.an.y.
*0-10	Source of data/reference
0-11	Molting practice D.F. D.B. D.V.
0-12	Ingot position top middle bottom cont. castn.rn.an.y. Killingn.rn.an.y.
0-13	
0-14	Process temp. degl degl degl degl degl degl degl degl
0-15	Process time hr n.r. n.a. n.y. See
0-16	n.r. n.a. n.y. See Process time hr n.r. n.a. n.y. See Rolling conditions % reduction, total n.r. n.a. n.y.
*0-17	final processing stons (USP BDP OT TWO (ELLETS)
	A-austenitized N-normalized B-brine guenched from A P-thermo-mechanical process
	B-brine quenched from A P-thermo-mechanical process C-cold working R-continuous rolled
	C-cold working R-continuous rolled D-double normalized Q-quenched
	F-hot rolled S-stress relieved
	G-hot forged
	G-hot forged T-tempered K-aged W-welded
0-18	Final heat treat temp. degC _degF _degK
	n.rn.an.ysee
0-19	Final heat treat time hr n.r. n.a. n.y. See
0-20	Cold work strain \$n.rn.an.ySee
0-21	nr na n.v.
0-22	n.rn.an.y. S/R or Aging timehrn.rn.an.ySee
0-22	landing or the property of the

₩-0	Material Key
W-1	Weld Code
W-2	Welding Process
	SAWNGGMA GMA ESW
	SMA NGSAW GTA EBW
	FCA TSAW PAW n.r. n.y.
W-3	Base Metal Thickness _mm _ in _ n.r n.a n.y.
W-4	Welding Position n.r. n.a. n.y.
W-5	Preheat tempdegCdegFdegKn.rn.an.y.
W~6	Gap mm in n.r. n.a. n.y.
₩-7	Interpass tempdegCdegFdegKn.rn.an.y.
W-8	Number of passesn.r. n.an.y.
W-9	Welding filler, Spec. and Grade
W~10	Welding Filler Trade Name
W-11	Carbon Content
W-12	Carbon contentn.rn.an.y.
W-12	Filler size mm in n.r. n.a. n.y.
	Shielding Gas A He M-mixedn.rn.an.y.
W-14	Voltage volts n.r. n.a. n.y.
W-15	Amperage amps n.r. n.a. n.y.
W-16	Polarity
W-17	Travel Speedin/minmm/minn.rn.an.y.
W-18	Heat Input/passKJoules/mmKJoules/inn.rn.an.y.
W-19	Joint PrepV _U _KS.BD.VD.UN.G
W~20	Number of sides welded 1 2 n.r. n.a. n.y.
W-21	Welded Specimen Codes
	Location relative to weld: (See below)
	09-Weld Metal
	02-Fusion Line
	03-1mm HAZ
	04-3mm HAZ
	05-5mm HAZ
	06-7mm HAZ
	07-9mm HAZ
	08-11mm HAZ
	10-Transverse Section Test (All Zones)
	11-50%WM-50%HAZ
W-22	Location relative to surface: (See below)
	F-Final surface
	R-Back surface (root)
	M-Mid thickness (not root)
	C-Mid thickness (root)
	B-Back surface (not root)
	N-Full cross section
	n.rn.a. n.y.
W-23	Postweld heat treat.temp (See below)degCdegFdegK
	n.rn.an.y.
W-24	
	Post-weld heat treatment timehr (See below)
W_ 26	
W-25	Flux type
W-26	Flux Trade Name
₩~27	Is actual weld deposit reported in 0-4? YesNon.y.
M-0	Material Key Code (See total number below)

W-0				
MATERIAL KEY CO	DE W-21 Loc/Weld	W-22 Location	W-23 PWHT Temp deg	W-24 PWHT Time hr.
			deg	hr.
			deg	hr.
			deg	hr.
· · _			deg	hr.
			deg	hr.
			deg	hr.
' '	- -		deg	hr.
			deg	<u>h</u> r.
			deg	hr.
			deg	hr. hr.
			deg deg	hr.
			deg	hr.
			deg	hr,
			deg	hr.

1-0	Material Key
1-1	Type of test-tension
1-2	Test sample position man and a contract
	Surface, 0/4T Quarter-thickness, 1/4T 3/8 thickness Mid thickness, 1/2T Opposite surface, 1T Third quarter thickness, 3/4T Orientation of specimen D. D. D. D. D. D. D. D. D. D. D. D. D.
	3/8 thickness Mid thickness 1/2T
	Opposite surface 17 Third quarter thickness 3/47
*1-3	Orientation of specimen n.r. n.a. n.v. See
	Orientation of specimenn.rn.an.ySee L (longitudinal) _T (long transverse) _S (short transverse)
1-4	Type of specimen n.r. n.a. n.v. See
	Type of specimen n.r. n.a. n.y. See Cylindrical Rectangular Full-section
1-5	Specimen diameter of thickness mm in the
	n.r. n.a. n.v.
1-6	Gage length nem in See n.r. n.a. n.y.
	n.r. n.a. n.y.
1-7	Rate of application of stress MPa/sec Ksi/sec in/in/sec
	_n.r. n.a. n.y. See
*1-8	Rate of application of stress MPa/sec Ksi/sec in/in/sec
	n.r. n.a. n.v.
*1-9	Tensile strength MPa Ksi Søø
	n.r. n.a. n.y. Offset % for TYS measurement % See
1-10	Offset % for TYS measurement % See
	n.r. n.a. n.y.
*1-11	Tensile yield strengthMPaKsiSee
	_n.rn.an.y.
1-12	Tensile yield strength MPa Ksi See n.r. n.a. n.y. Tensile yield point MPa Ksi See
	n.r. n.a. n.v.
1-13	Uniform elongation % See
	_n.rn.an.y.
1-14	Total elongation\$ See
	_n.rn.an.y.
1-15	Reduction of area%See
	n.rn.an.y.
1-16	Modulus of elasticityMPa*10**6Ksi, etcSee
	Total elongation \$ See
1-17	Standard ASTM or other standard
	n.rn.an.y.
1-18	Year of issue of test standard 19 See
	_n.rn.an.y.

2-0	Material Key
*2-1	Type of test (fracture toughness)
2-2	Position of specimen n.r. n.a. n.v. See
	Surface, 0/4T Quarter-thickness, 1/4T
	3/8 thickness Mid thickness 1/2T
	Opposite surface 1T Third quarter thickness, 3/4T
*2-3	Orientation of specimen See
	1-T 1-S 1-D T-I
	Full-thickness Surface, 0/4T 3/8 thickness Opposite surface, 1T Orientation of specimen L-T T-S T-S R-C R-C N-r. Type of specimen Compact Compact Deep notch bend DCB Thickness, 1/4T Quarter-thickness, 1/4T Mid thickness, 1/2T Third quarter thickness, 3/4T See L-C L-R T-L C-R C-R C-R Bend WOL Thickness of specimen In See
*2-4	Type of sperimen nr na ny See
•	Compact Side-grouped compact Rend
	Deep notch hand DCR
*2-5	Thickness of specimen mm in See
	_n.rn.an.y.
2-6	Initial crack length, averagemminSee
2 0	Tirrelat Crack Tenger, average
2-6a	a/W n n n n n n n n n n n n n n n n n n n
2-7	a/W See n.r. n.a. n.y. Type of loading Slow Intermediate High Rate
£ ,	ny a ny Cae
2-8	
2 0	Trade of Today Trade
*2-9	Test temperature deat deak RT (200)
. ,	
*2-10	KO nr. na nv See
2-11	KIC Dr. Da Dy See
*2-12	Valid measure of KIC? Ves no See
	Test temperature
*2-13	If invalid, reason See
	(T)thickness (CL)crack length (FP)fatigue precrack
2-14	
- •	n.r. n.a. n.v.
2-15	Keported stress intensity factor from Jic units Myanmonu.b
	n.rn.an.ySee Method of J1C Calculationn.rn.an.ySee
2-16	Method of JIC Calculation n.r. n.a. n.y. See
	per Standmodified Standother:
2-17	Initiation crack opening displacement mm in See
	nr na nv
2-18	Critical CTOD mm in See
	n.r. n.a. n.y.
2-18a	Is Critical CTODc-cleavageu-cleavage preceded by tearingm-fibrous
2-19	Initiation J valueunits See
	n,r, n.a. n,v,
2-20	Maximum J valueunitsSee
	_n.rn.an.y.
2-20a	n.r. n.a. n.y. No. of J specimens See n.r. n.a. n.y. Tearing modulus units See
2-21	Tearing modulus units See
2-22	Standard ASTM or other standard:
	Standard ASTM or other standard:
2-23	Year of issue of test standard 19 See
	_n.rn.an.y.
	·

3-0	Material Key
*3-1	Type of test: CVN-Charpy V notched bar impact PCV-Precracked Charpy V notched bar impact
3-2	
3-2	Position of specimen n.r. n.a. n.y. See
	Surface, 0/4TQuarter-thickness, 1/4T
	3/8 thickness,3/8T Mid thickness,1/2T Opposite surface,1T Third quarter thickness, 3/4T
*3-3	Type of specimen See
	Full: full-width Charpy V 1/2W: One-half width Charpy V
	2W: Twice-width Charpy V 1/4W: One-quarter width Charpy V
*3-4	2W: Twice-width Charpy V Orientation of specimen 2W: One-quarter width Charpy V See
	L-T T-L L-C L-R L-S
	L-T T-L L-C L-R L-S T-S S-L S-T C-L C-R R-C n.r. n.a. n.y. Test temperature degC degF degK RT(20C)
*3-5	Test temperature dedC dedE dedK RT(20C)
	The state of the s
3-6	n.r. n.a. n.y. See Total energy to fracture J Ft-Lb See Lateral expansion mm mils See
	Total energy to tracture of the see
3-7	Lateral expansion man miles See
3-8	Shear fracture% Brittle fracture%See
	_n.rn.an.y.
3-9	Did specimen fracture completelyyesnoassumed
	_n.rn.an.ySee
3-10	Did specimen exhibit splitting yes no See
	n.rn.an.y.
3-11	Standard ASTM or other standard
	Standard ASTM or other standard
3-12	Year of issue of test standard 19 See
J 12	
	_n.rn.an.y.

0	Material Key
1	Type of test: MRL Crack arrest
2	Position of specimenn.rn.an.ySee
	Surface 0/4T Quarter-thickness 1/4T
	Surface, 0/4T Quarter-thickness, 1/4T Mid thickness, 1/2T
	Opposite surface, 17 Third quarter thickness, 3/47
3	Type of specimen DCB
-	
4	Thickness of specimen - See
•	Thickness of specimenmminSee
5	n.rn.an.y.
9	Orientation of SpecimenSee
	L-T L-S L-C L-R T-L
	<u>I-S</u> <u>S-L</u> <u>S-T</u> <u>C-L</u> <u>C-R</u>
_	R-C n.r n.a n.y.
6	Orientation of specimen See L-T _L-S _L-C _L-R _T-L T-S _S-L _S-T _C-L _C-R R-C _n.r. _n.a. _n.y.
	n.rn.an.ySee
7	Rate of loadingSlowIntermediate _ High _See
	n.rn.an.y.
В	KQ n.r. n.a. n.y. See
9	KQn.rn.an.ySee
	n.r. n.a. n.y.
10	Reason for invaliditythicknessSee
	_n.rn.an.y.
11	Crack arrest stress intensity See
_	n.r. n.a. n.v
12	Standard MTZA MTZA brabnetz
	Standard ASTM or other standard n.rn.an.y.
13	Year of issue of test standard 19See
	n.rn.an.y.

13 Data Presentations for Marine Materials

Data presentations of all marine materials begin on page 1000. A brief table of contents is:

ABS-B	1000
ABS-EH32	20 00
ABS-EH36	210 0
A36	3 100
CG A537M	7100
A537 CL1	73 00
A572 Gr50	76 00
A588	
A710	94 00
BS4360 Gr50D	
HY80	16500
HY100	19500

On each report, background information and material properties are grouped into categories: Description, Composition. Fabrication History, Weld, and Property Measurements. Constant information is not repeated, but a note refers the reader to a previous page. Material property plots show both SI and traditional engineering units. A complete index appears at the end on page I (roman numerial). All nonnumeric values are indexed twice: as "value variable" and as "variable, value".

Material ABS-B

Description	n							
Material Code			1T N	Material Name ABS-B				
UNS				* C	ther Designat	ion		
Type Wrought Metal			tal F	Form Plate				
Thickness			25.0 m	nm C	omposition T	ype		Actual
Compositio	n Position .				ot ID			
•			S-19					ļ
Composit								
C			0.140	% N	ſn			0.79 %
Р			0.018					
Si			0.25		۲			
		• · · · • · · · • • • •			10			•
v					u	•		
_				* T	i			•
В					d			
ł .			0.0072		ther Compon			,
Fabricatio				***************************************				
Heat Treatn	nent			F P	roducer			Sumitomo
Year Produ	ced	.	19	71 A	ddl Info			None
Source	<i></i>		Sumitor		delting Practic			
t .			Conc		Lilling Process			
_			930 de		rocess Time			,
	•		89	_	inal Processin			
_					inal Time	_		. 1
					Aging Temperature			
	Aging Time *			ocation				
Property I	Measureme	nts						
			Tens	ile C	age Length			•
					ensile Strengt			
_					niform Elong			
					tandard Metho			
Standard Ye				•				
Position	Orient		Spec Thick	Test Temp	UTS	TYP	Elongation	RA
	!	1	mm	degC	kgf/mm2	kgf/mm2	%	%
1/2T	L	Flat	25	Room	45.9	30.5	30.1	66.5
1/2T	Ĺ	Flat	25	Room	47.7	33.0	26.3	69.2
1/2T	T	Flat	25	Room	46.8	31.9	29.1	68.1
1/2T	T	Flat	25	Room	48.5	33.0	26.2	68.1
-,	T	Round	•	Room	45.8	32.8	30.0	71.6
•	; 1	Nouno						

Material ABS-B

Description	n							
Material Code			1B	Material Name ABS-B				
UNS				*	Other Designat	ion		
Type Wrought Metal				Form				
Thickness			25.0 m		Composition T			
Composition	n Position .				Lot ID			
Reference		<u></u>	S-19					
Composit								
C			0.140	%	Mn			0.08 %
P			0.018	%	s			. 0.013 %
Si	<i></i> .		0.24		Cr 0.02 %			
								_
1				*	Cu			. 0.040 %
Сь				* '	Γi			*
В				*	Al			. 0.002 %
		<u></u>		%	Other Compone	ents		. None %
Fabricatio	n History							
Heat Treatm	nent			F	Producer			Sumitomo
Year Produc	ced		19	71	Addl Info None			
Source	Source Sumitomo				Melting Practic	e		BOF
Ingot Position	o n		Conc	ast]	Killing Process Silicon			
Process Ten	nperature		930 deg	gC 1	Process Time			*
Rolling Con	ditions		89	%	Final Processin	g		A,R
				*]	Final Time			
Cold Work	Strain			*	Aging Temperature			
Aging Time	·		<u> </u>	* 1	Location	<u> </u>	<u> </u>	B
Property N	<i>l</i> leasureme	nts						
					Gage Length	·	<i></i>	•
					Tensile Strengt			
					Uniform Elong			
1	Tensile Modulus *					od		•
Standard Ye		<u> </u>		*				
Position	Orient	Spec Type	Spec Thick	Test Tem	•	TYP	Elongation	RA
			mm	degC	kgf/mm2	kgf/mm2	%	%
1/2T	L	Flat	25	Room	47.5	30.2	32.3	64.0
1/2T	L	Flat	25	Room	48.2	30.7	26.0	63.7
1/2T	T	Flat	25	Room	47.4	30.2	29.8	63.7
1/2T	T	Flat	25	Room	47.7	30.2	28.0	63.3
	T	Round	*	Room	47.5	31.5	30.9	66.3
•	T	Round	*	Room	47.5	32.2 •	30.9	67.7

Material ABS-B

Description	
Material Code	Material Name ABS-B
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness	Composition Type Actual
Composition Position	Lot ID
Reference S-1971	
Composition	
C 0.140 %	Mn 0.79 %
P 0.018 %	S 0.013 %
Si 0.25 %	Cr 0.02 %
Ni *	Mo *
v	Cu 0.040 %
Сь *	Ti*
B *	Al 0.002 %
N 0.0072 %	Other Components None %
Fabrication History	
Heat Treatment F	Producer Sumitomo
Year Produced	Addl Info None
Source Sumitomo	Melting Practice BOF
Ingot Position Concast	Killing Process Silicon
Process Temperature 930 degC	Process Time
Rolling Conditions 89 %	Final Processing A,R
Final Temperature *	Final Time *
Cold Work Strain *	Aging Temperature *
Aging Time *	Location
Property Measurements	
Test Type Charpy V Impact	Position 1/4T
Specimen Type *	Lateral Expansion
Did Specimen Fracture? Assumed	Did Specimen Split?
Standard Method *	Standard Year

Orien	Test Temp	CVN Energy	Shear
Ì	degC	kgf-m	%
L-T o	-40	0.6	6
L-T o	-40	2.1	12
L-T o	-4 0	3.0	12
L-T o	-30	0.8	11
L-T o	-30	2.6	17
L-T o	-30	4.2	23
L-T o	-20	5.3	31
L-T o	-20	6.4	29
L-T °	-20	6.8	36
L-T o	-15	7.1	32
L-T o	-15	7.2	32
L-T o	-15	7.2	36
L-T o	-10	7.4	40
L-T o	-10	9.5	55
L-T o	-10	9.9	54
L-T o	0	10.6	56
L-T o	0	13.7	69

Material ABS-B

Page 1000.4

(continued)

Orien	Test Temp	CVN Energy	Shear
	degC	kgf-m	%
L-T o	0	8.1	47
L-T o	20	15.1	81
L-T o	20	15.9	85
L-T o	20	7.2	82
L-T o	40	16.1	91
L-T o	40	16.3	89
L-T o	40	16.6	91
T-L ^	-4 0	1.8	9
T-L A	-40	2.0	12
T-L ^	-40	2.1	12
T-L A	-30	2.4	17
T-L ^	-30	2.4	17
T-L ^	-30	2.4	17
T-L ^	-20	2.6	21
T-L A	-20	2.9	17
T-L ^	-20	3.1	25
T-L ^	-15	3.0	24
T-L A	-15	3.1	29
T-L A	-15	3.6	24
T-L ^	-10	3.0	32
T-L A	-10	3.1	31
T-L △	-10	3.5	34
T-L A	0	3.4	33
T-L ^	0	3.7	35
T-L A	0	3.9	40
T-L △	20	5.9	56
T-L 4	20	5.9	63
T-L ^	20	6.4	59
T-L 4	40	7.2	81
T-L ^	40	7.8	87
T-L 4	40	7.8	88

^{* -} not reported

Material ABS-B

Description			
Material Code	004.001.01T	Material Name	ABS-B
UNS	*	Other Designation	*
Type	Wrought Metal	Form	Plate
Thickness	25.0 mm	Composition Type	Actual
Composition Position	*		
Reference	S-1971		

Test Temperature degC

Material ABS-B Page 1000.6

Description	
Material Code	Material Name ABS-B
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness	Composition Type Actual
Composition Position	Lot ID J131267
Reference S-1971	
Composition	
C 0.140 %	Mn 0.08 %
P 0.018 %	S 0.013 %
Si 0.24 %	Cr 0.02 %
Ni*	Mc *
V *	Cu 0.040 %
Cb *	Ti
B *	A1 0.002 %
N 0.0074 %	Other Components None %
Fabrication History	
Heat Treatment F	Producer Sumitomo
Year Produced	Addl Info None
Source Sumitomo	Melting Practice BOF
Ingot Position Concast	Killing Process Silicon
Process Temperature 930 degC	Process Time
Rolling Conditions 89 %	Final Processing A,R
Final Temperature *	Final Time
Cold Work Strain *	Aging Temperature*
Aging Time *	Location B
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type	Lateral Expansion *
Did Specimen Fracture? Assumed	Did Specimen Split?
Standard Method *	Standard Year *

Orien	Test Temp	CVN Energy	Shear
	degC	kgf-m	%
L-T o	-40	0.6	97
L-T o	-40	0.7	94
L-T o	-40	1.4	73
L-T o	-30	0.3	94
L-T o	-30	0.9	89
L-T o	-30	2.3	91
L-T o	- 2 0	2.3	83
L-T o	-2 0	3.1	80
L-T o	-2 0	7.2	71
L-T o	-15	1.2	8 6
L-T o	-15	4.9	77
L-T o	-15	5.2	7 7
L-T o	-10	3.9	80
L-T o	-10	4.4	80
L-T o	-10	5.6	74
L-T o	0	10.0	51
L-T o	0	8.4	58

Material ABS-B

Page 1000.7

Orien	Test Temp	CVN Energy	Shear
	degC	kgf-m	%
L-T °	0	8.5	57
L-T o	20	12.2	29
L-T o	20	13.2	31
L-T o	20	14.5	26
L-T o	40	14.5	19
L-T o	40	15 3	14
L-T °	40	15.9	17
T-L △	-4 0	0.7	97
T-L ^	-40	0.9	94
T-L ^	-40	1.5	94
T-L ^	-30	1.0	91
T-L △	-30	1.8	88
T-L ^	-30	2.7	83
T-L ^	-20	2.0	83
T-L ⁴	-20	2.9	80
T-L ^	-20	2.9	85
T-L △	-15	2.9	80
T-L ^	-15	3.5	78
T-L ^	-15	3.7	80
T A	-10	3.4	80
T-L ^	-10	3.4	80
T-L ^	-10	3.6	80
T-L 4	0	4.0	66
T-L ^	0	4.0	70
T-L 4	0	4.6	66
T-L ^	20	5.9	52
T-L ^	20	6.1	46
T-L ^	20	6.1	47
T-L △	40	7.4	32
T-L △	40	7.7	35
T-L ^Δ	40	7.8	35

^{* -} not reported

Material ABS-B

Page 1000.8

Description		
Material Code	B Material Name	ABS-B
UNS		
Type Wrought Meta		
Thickness		
Composition Position	* Lot ID	J131267
Reference S-197	1	

Test Temperature degC

^{* -} not reported

Material ABS-B

Page 1000.9

Description	
Material Code 004.001.01TS1	Material Name ABS-B
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness	Composition Type Actual
Composition Position *	Lot ID
Reference S-1971	
Composition	
C 0.140 %	Mn 0.79 %
P 0.018 %	\$ 0.013 %
Si 0.25 %	Cr 0.02 %
Ni *	Mo
v •	Cu 0.040 %
Cb *	Ti * :
B *	Al 0.002 %
N 0.0072 %	Other Components None %
Fabrication History	
Heat Treatment F	Producer Sumitomo
Year Produced	Addl Info None
Source Sumitomo	Melting Practice BOF
Ingot Position Concast	Killing Process Silicon
Process Temperature 930 degC	Process Time
Rolling Conditions 89 %	Final Processing A,R
Final Temperature *	Final Time
Cold Work Strain 5 %	Aging Temperature 350 degC
Aging Time 1.5 hr	Location T
Property Measurements	
Test Type Charpy V Impact	Position 1/4T
Specimen Type *	Lateral Expansion *
Did Specimen Fracture? Assumed	Did Specimen Split?
Standard Method *	Standard Year *

<u> </u>	<u> </u>	Standard Year	
Orien	Test Temp	CVN Energy	Shear
	degC	kgf-m	%
L-T o	-40	0.3	0
L-T o	-40	0.3	1
L-T o	-40	0.3	2
L-T o	-20	0.3	6
L-T o	-20	0.5	6
L-T o	-20	0.5	6
L-T o	-10	0.6	9
L-T o	-10	1.1	12
L-T o	-10	2.3	15
L-T o	0	1.0	11
L-T o	0	1.4	14
L-T o	0	2.4	18
L-T o	20	4.5	27
L-T o	20	4.5	27
L-T o	20	5.2	30
L-1	40	5.2	48
L-T	40	5.8	48

Material ABS-B

Page 1000.10

Orien	Test Temp	CVN Energy	Shear
	degC	kgf-m	%
L-T o	40	7.0	58
L-T o	60	11.5	82
L-T o	60	11.8	84
L-T o	60	8.5	76
L-T o	80	13.9	87
L-T o	80	14.7	100
L-T o	80	14.9	100

^{* -} not reported

Material ABS-B

Page 1000.11

Description	
Material Code	Material Name ABS-B
UNS*	Other Designation
Type Wrought Metal	Form Plate
Thickness	Composition Type Actual
Composition Position	Lot ID
Reference S-1971	

Test Temperature degC

^{* -} not reported

Material ABS-B Page 1000.12

1.01TS2	Material Name	ABS-B
*	Other Designation	*
ht Metal	Form	Plate
25.0 mm	Composition Type	Actual
*	Lot ID	J131267
S-1971		
	See Page 1000.9	
F	Producer	Sumitomo
. 1971	Addl Info	None
ımitomo	Melting Practice	BOF
Concast	Killing Process	Silicon
30 degC	Process Time	*
. 89%	Final Processing	A,R
*	Final Time	*
. 10 %	Aging Temperature	250 degC
_ 1.0 hr	Location	T
/ Impact	Position	1/4T
*	Lateral Expansion	*
Assumed	Did Specimen Split?	
	1.01TS2 tht Metal 25.0 mm S-1971 F 1971 unitomo Concast 30 degC 89 % 10 % 1.0 hr / Impact Assumed	* Other Designation ht Metal Form 25.0 mm Composition Type Lot ID S-1971 See Page 1000.9 F Producer 1971 Addl Info unitomo Melting Practice Concast Killing Process 30 degC Process Time 89 % Final Processing * Final Time 10 % Aging Temperature 1.0 hr Location / Impact Position Lateral Expansion Did Specimen Split?

<u> </u>		Stalidard I car		٠	
i	Orien	Test Temp	CVN Energy	Shear	
į	_	degC	kgf-m	%	
	L-T o	-40	0.3	0	
	L-T o	-40	0.3	0	
	L-T o	-40	0.3	0	
	L-T o	-20	0.4	2	
	L-T o	-20	0.6	2	
	L-T o	-20	0.6	2	
į	L-T o	-10	0.7	9	
ĺ	L-T o	-10	0.8	11	
	L-T o	-10	0.9	9	
	L-T o	0	0.8	11	
	L-T o	0	0.9	11	
	L-T o	0	1.6	11	
	L-T o	20	2.1	21	
	L-T o	20	3.5	27	
	L-T o	20	4.0	29	
	L-T o	40	3.9	36	
	L-T o	40	4.6	36	
	L-T o	40	5.7	47	
ĺ	L-T o	60	13.0	100	
į	L-T o	60	13.3	100	
	L-T ∘	60	13.4	86	
	L-T o	80	13.4	100	
	L-T o	80	13.4	100	
į	L-T o	80	13.7	100	

^{• -} not reported

Material ABS-B

Page 1000.13

Description		
Material Code	01TS2 Material Name	ABS-B
UNS	* Other Designation	
Type Wrough	nt Metal Form	Plate
Thickness 2		
Composition Position	* Lot ID	J131267
Reference	S-1971	

Test Temperature degC

Material ABS-B

Page 1000.14

Description	
Material Code	Material Name ABS-B
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness	Composition Type Actual
Composition Position	Lot ID
<u>Reference</u> S-1971	
Composition	See Page 1000.9
Fabrication History	
Heat Treatment F	Producer Sumitomo
Year Produced	Addl Info None
Source Sumitomo	Melting Practice BOF
Ingot Position Concast	Killing Process Silicon
Process Temperature 930 degC	Process Time
Rolling Conditions	Final Processing A,R
Final Temperature *	Final Time
Cold Work Strain *	Aging Temperature *
Aging Time *	Location
Property Measurements	
Test Type Nil Ductilty Transition	Position 0/4T
Specimen Type P-1	Filler Alloy *
Passes 1	Standard Method E 208
Standard Year 1969	

Orien	Test Temp	Break?	NDTT
Orien		Dicak:	(NDII (
	degC		
L	-20	Yes	No
L	-20	Yes	No
L	-20	Yes	No
L	-15	No	Yes
L	-15	No	Yes
L	-15	Yes	Yes
L	-10	No	No
L	-10	No	No
L	-10	No	No

^{• -} not reported

Material ABS-B

Page 1100.1

Description				
Material Code	004.002.01.1	Material Name	:	ABS-B
UNS		Other Designa	tion	* :
Type W	rought Metal	Form		Plate
Thickness	50 mm	Composition 7	Гуре	Actual
Composition Position	Ladle	Lot ID		641661
Reference	004-2			
Composition				
c	0.13 %	Mn		1.02 %
P	0.015 %	S		0.011 %
Si	0.25 %	Cr		0.03 %
Ni	0.02 %	Mo		0.005 %
v		Cu		0.015 %
Сь		Ti		*
В	*	Al		0.03 %
N		Other Compor	nents	
Fabrication History				
Heat Treatment	*	Producer		Australia
Year Produced	1979	Addl Info		None
Source	Australia	Melting Practice		BOF
Ingot Position	Concast	Killing Process		Fully
Process Temperature	870 degC	Process Time		
Rolling Conditions	81 %	Final Processing		A,R
Final Temperature		Final Time .		
Cold Work Strain		Aging Temperature		*
Aging Time	*	Location		*
Property Measurements				
Test Type	Tensile	Position		
Specimen Type	*	Specimen Thickness		
Gage Length	200 mm	Loading Rate		*
Tensile Strength Offset		Tensile Yield Strength		
Uniform Elongation *		Tensile Modulus		
Standard Method *		Standard Year	<u> </u>	*
Orient Test Temp	UTS	TYP	Elongation	RA
degC	MPa	MPa	%	%
L 20	440	282	31	68
T 20	444	258	28	67
T 20	444	288	30	67

Material ABS-B

Page 1100.2

Description			
Material Code	004.002.01.1	Material Name	ABS-B
UNS	*	Other Designation	
Type	Wrought Metal	Form	Plate
Thickness	50 mm	Composition Type	Actual
Composition Position	Ladle	Lot ID	641661
Reference	004-2		
Composition		See Page 1100.1	
Fabrication History		See Page 1100.1	
Property Measurements			
Test Type	Charpy V Impact	Position	1/4T
Specimen Type	Full	Lateral Expansion	
Did Specimen Fracture?	Yes	Did Specimen Split?	*
Standard Method		Standard Year	

Orien	Test Temp	CVN Energy	Shear
	degC	Joules	%
L-T °	-40	18	15
L-T °	-40	44	20
L-T o	-40	45	15
L-T °	-40	45	15
L-T °	-40	73	75
L-T o	-40	9 0	30
L-T o	-30	117	40
L-T o	-30	29	20
L-T o	-30	38	30
L-T °	-30	56	25
L-T o	-30	62	35
L-T °	-30	9 0	45
L-T o	-2 0	104	55
L-T °	-20	113	50
L-T o	-20	128	5 0
L-T o	-20	129	60
L-T °	-20	68	35
L-T o	-20	96	50
L-T o	-10	105	50
L-T o	-10	110	55
L-T o	-10	123	60
L-T o	-10	130	65
L-T o	-10	134	65
L-T o	-10	144	70
L-T o	0	104	55
L-T o	0	116	60
L-T o	0	117	65
L-T o	0	133	65
L-T o	0	143	80
L-T o	0	186	100
L-T o	10	126	70
L-T o	10	130	75
L-T o	10	130	75
L-T o	10	136	90

Material ABS-B

Page 1100.3

Orien	Test Temp	CVN Energy	Shear
	degC	Joules	%
L-T o	10	138	70
L-T o	10	139	70
L-T o	20	143	75
L-T o	20	144	95
L-T o	20	148	85
L-T o	20	154	85
L-T o	20	156	90
L-T o	20	182	100
L-T o	40	155	90
L-T o	40	168	100
L-T o	40	168	100
L-T °	40	170	100
L-T o	40	170	100
L-T o	40	172	100
T-L ^	-4 0	18	15
T-L ^	-40	20	15
T-L 4	-40	25	18
T-L 4	-40	26	20
T-L 4	-40	32	20
T-L A	-40	36	25
T-L A	-30	32	30
T-L ^	-30	32 34	30
T-L ^	-30	35	30
T-L -	-30	33 37	
T-L 4	-30	37 39	35 35
T-L 4	-30	42	35
T-L 4	-20	40	35
T-L ^Δ	-20	40	35 35
T-L ^	-20	40	35
T-L 4	-20 -20	42	35
T-L 4	-20	42	35
T-L ^	-20 -20	42	
			45
T-L ^ T-L ^	-10 -10	41	40 40
T-L A	-10	46 50	35
T-L -	-10 -10	50	45
	-10 -10		
		53 59	50
· ~	-10		45
	0	54	60
	0	55	60
T-L A	0	68	55
T-L ^	0	71	55
T-L A	0	71	55
T-L A	0	72	65
T-L A	20	68	65
T-L ^	20	70	75
T-L 4	20	76	65

⁽continued)

Material ABS-B

Page 1100.4

Orien	Test Temp	CVN Energy	Shear
	degC	Joules	%
T-L ^	20	78	75
T-L ^	20	80	80
T-L △	20	89	90
T-L ^	40	100	85
T-L △	40	100	95
T-L ^	40	106	100
T-L ^	40	110	100
T-L △	40	96	90
T-L ^	40	96	95
T-L △	60	102	100
T-L ^	60	102	95
T-L ^	60	104	100
T-L ^	60	108	100
T-L 4	60	108	98
T-L ^	60	87	98

^{• -} not reported

Material ABS-B

Page 1100.5

Description			
Material Code	004.002.01.1	Material Name	ABS-B
UNS	*	Other Designation	* '
Type	Wrought Metal	Form	Plate
Thickness	50 mm	Composition Type	Actual
Composition Position	Ladle	Lot ID	641661
Reference	004-2		

Test Temperature degC

^{* -} not reported

Material ABS-B

Page 1100.6

Description		
Material Code	01.1 Material Name	ABS-B
UNS	* Other Designation	*
Type Wrought M	1ctal Form	Plate
Thickness 50		,
Composition Position L		
Reference 0	04-2	
Composition	See Page 1100 1	
Fabrication History	See Page 1100.1	
Property Measurements		
Test Type Nil Ductilty Trans.	ition Position	0/4T
Specimen Type	P-1 Filler Alloy	Hardex-N
1 asses		E 208
Standard Year	. *	

Orien
 Test Temp degC
 Break?
 NDTT

 T
 -30
 Yes
 No

 T
 -25
 No
 Yes

 T
 -20
 No
 No

Material ABS-EH32

Page 2000.1

Description	
Material Code	Material Name ABS-EH32
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference METZ/MPC13	
Composition	
C 0.16 %	Mn 1.25 %
P 0.015 %	S 0.025 %
Si 0.21 %	Cr 0.11 %
Ni 0.074 %	Mo 0.02 %
V 0.045 %	Cu 0.12 %
Cb	Ti *
B *	A1 0.04 %
N	Other Components
Fabrication History	
Heat Treatment *	Producer Armco
Year Produced *	Addl Info None
Source Armco	Melting Practice *
Ingot Position *	Killing Process Fully
Process Temperature*	Process Time *
Rolling Conditions *	Final Processing N
Final Temperature*	Final Time*
Cold Work Strain *	Aging Temperature
Aging Time *	Location *
Property Measurements	
Test Type Tensile	Position
Specimen Type	Specimen Thickness
Gage Length 2 in	Loading Rate
Tensile Strength Offset *	Tensile Yield Strength *
Uniform Elongation *	Tensile Modulus
Standard Method *	Standard Year
Orient Test Temp UTS	TYP Elongation RA

			- Dumbara rec		
Orient	Test Temp	UTS	TYP	Elongation	RA
	degF	ksi	ksi	%	%
L	-40	82.0	52.7	38	68
L	-40	82.2	56.0	37	68
L	0	78.6	51.4	38	68
L	0	79.1	51.9	37	68
L	32	75.9	49.8	37	70
L	32	76.8	50.2	38	68
L	75	72.9	49.1	36	69
L	75	74.0	50.7	36	7 0
Т	-40	81.7	54.6	37	65
Т	-40	81.9	50.8	38	66
Т	0	78.9	53.1	39	65
Т	0	79.0	53.0	36	65
Т	32	76.2	51.0	36	65
T	32	76.8	51.1	38	66
Т	75	72.7	48.8	35	66

Material ABS-EH32

Page 2000.2

Orient	Test Temp	UTS	TYP	Elongation	RA
	degF	ksi	ksi	%	%
T	75	73.0	*	35	67

^{* -} not reported

Material ABS-EH32

Description						
Material Code		032.00	1.01	Material Name		. ABS-EH32
UNS *			. *	Other Designation	. <i></i>	*
Type		Wrought M	fetal 1	Form		Plate
Thickness		• • • • • • • • • • • • • • • • • • • •	1 in	Composition Type		Actual
Composition P	osition		. *]	Lot ID		*
Reference	<u></u>	METZ/MP	C13			
Composition	1			See Page 2000.1		
Fabrication I	History			See Page 2000.1		
Property Me	asurements		· · · · · · · · · · · · · · · · · · ·			
Test Type .		Fracture Tough	ness]	Position	. 	1/2T
Specimen Type	e	Double Notch I	Bend :	Specimen Thickness		5/8 in
Crack Length				Loading Type		
Loading Rate				KIc		
Valid KIc?		.	. *	Reason for Invalid		*
JIc			. *	KJc		*
JIcpr				Maximum J, Jmax		
Tearing Modul	lus		. *	Standard Method		*
Standard Year		· · · · · · · · · · · · · · · · · · ·	. *			
Orien	Test Temp	KQ	CODi	CODIc	Curve	JI
	degF	ksi*in**0.5	mils	mils		in-lb/in2
L-T	-166	70.6	1.2	1.2	Cleavage	257
L-T	-166	79.0	1.8	1.8	Cleavage	372
L-T	-150	73.0	2.0	2.0	Cleavage	379
L-T	-150	77.0	4.0	4.0	Cleavage	847
L-T	-130	71.8	6.8	19.0	Unstable	417
L-T	-130	72.7	2.2	2.2	Cleavage	278
L-T	-112	66.9	5.0	33.0	Unstable	1085
L-T	-112	67.1	11.0	40.0	Unstable	1375
L-T	-40	59.6	16.0	44.0	Maximum	1800
L-T	-40	59.7	15.0	40.0	Maximum	1805
L-T	0	52.6	16.0	37.0	Maximum	1695
L-T	0	56.3	12.0	39.0	Maximum	1475
L-T	32	53.0	15.0	39.0	Maximum	1530
L-T	32	53.7	14.0	30.0	Maximum	1570
L-T	75	49.6	14.0	41.0	Maximum	1465
L-T	75	51.7	16.0	36.0	Maximum	1550

^{• -} not reported

Material ABS-EH32

Description	
Material Code	Material Name ABS-FH32
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID
Reference METZ/MPC13	
Composition	See Page 2000.1
Fabrication History	See Page 2000.1
Property Measurements	
Test Type Charpy V Impact	Position 1/2T
Specimen Type Full	Did Specimen Fracture? Yes
Did Specimen Split? *	Standard Method
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-125	3.0	2.0	0
L-T o	-125	7.0	4.0	0
L-T o	-100	10.0	8.0	0
L-T o	-100	*	13.0	0
L-T o	-75	13.5	14.0	2
L-T o	-75	19.0	19.0	2
L-T ○	-50	33.0	31.0	30
L-T o	-50	48.0	48.0	80
L-T o	-4 0	35.0	32.0	40
L-T o	-4 0	38.0	37.0	50
L-T o	-4 0	40.0	38.0	60
L-T o	-4 0	*	38.0	60
L-T o	0	51.0	47.0	80
L-T o	Ú	67.5	60.0	100
L-T o	32	66.0	62.0	100
L-T o	32	70.0	64.0	100
L-T o	75	71.0	65.0	100
L-T o	75	72.0	70.0	100
T-L ^	-125	5.0	4.0	0
T-L ^	-125	7.0	5.0	0
T-L A	-100	15.0	13.0	0
T-L △	-100	15.0	14.0	0
T-L A	-75	16.5	16.0	1
T-L ^	-75	22.0	23.0	5
T-L ^	-50	28.5	30.0	30
T-L ^	-50	32.5	33.0	40
T-L ^	-4 0	32.0	33.0	50
T-L ^	-4 0	32.5	34.0	70
T-L △	-4 0	37.0	37.0	60
T-L A	-4 0	38.5	39.0	60
T-L ^	0	47.5	50.0	90
T-L 4	0	*	55.0	100
7-L A	32	55.0	56.0	100
T-L A	32	57.5	57.0	100

Material ABS-EH32

Page 2000.5

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
T-L ^	75	56.0	60.5	100
T-L ^	75	58.0	58.5	100

^{* -} not reported

Material ABS-EH32

Page 2000.6

Description			
Material Code	032.001.01	Material Name	ABS-EH32
UNS	*	Other Designation	*
Type	Wrought Metal	Form	
Thickness	1 in	Composition Type	
Composition Position	*		
Reference			

Test Temperature degC

Material ABS-EH32

Description	
Material Code	Material Name ABS-EH32
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID *
Reference METZ/MPC13	
Composition	See Page 2000.1
Fabrication History	See Page 2000.1
Property Measurements	
Test Type Nil Ductilty Transition	Position
Filler Alloy *	Passes *
Orientation *	Standard Method E 208
Standard Year *	

Spec Type	Test Temp	Break?	NDTT
	degF		
P-3	-50	Yes	Yes
P-1	-40	Yes	Yes

Material ABS-EH32

Description	···		-
Material Code	032.001.01	Material Name	ABS-EH32
UNS	*	Other Designation	
Type	Wrought Metal	Form	
Thickness	1 in	Composition Type	
Composition Position	*	Lot ID	
Reference	METZ/MPC13		
Composition		See Page 2000.1	
Fabrication History		See Page 2000.1	
Property Measurements			
Test Type	Dynamic Tear	Position	1/2T
Specimen Type	Dynamic Tear	Specimen Thickness	5/8 in
Loading Rate	High ksi/sec	Standard Method	E 604
Standard Year	*		

Notch Prep	Orien	Test Temp	DT Energy	Frac Apear
		degF	ft-lb	%
Pressed	L-T °	-80	41	<5
Pressed	L-T o	-80	47	<5
Fatigued	L-T ≎	-6 0	67	10
Fatigued	L-T o	-6 0	75	10
Pressed	L-T o	-60	71	<5
Pressed	L-T ∘	-6 0	72	<5
Fatigued	L-T o	-4 0	82	20
Fatigued	L-T o	-40	92	20
Pressed	L-T ∘	-40	91	5
Pressed	L-T o	-4 0	93	5
Pressed	L-T o	-20	140	40
Pressed	L-T o	-20	168	40
Fatigued	L-T ∘	0	347	50
Fatigued	L-T o	0	377	50
Pressed	L.T ∘	0	178	40
Pressed	L-T o	0	235	50
Pressed	L-T o	15	348	75
Pressed	L-T o	15	642	95
Fatigued	L-T o	32	655	95
Fatigued	L-T o	32	667	100
Pressed	L-T o	32	621	100
Pressed	L-T o	32	671	100
Pressed	L-T o	50	657	100
Pressed	L-T o	50	666	100
Fatigued	L-T o	72	658	100
Fatigued	L-T o	72	673	100
Pressed	L-T o	72	600	100
Pressed	L-T o	72	643	100
Fatigued	L-T c	212	644	100
Pressed	L-T o	212	579	100
Pressed	L-T o	212	604	100

^{* -} not reported

Material ABS-EH32

Description			
Material Code	032.001.01	Material Name	ABS-EH32
UNS	*	Other Designation	
Type	Wrought Metal	Form	
Thickness	1 in	Composition Type	Actual
Composition Position	*	Lot ID	
Reference			

Test Temperature degC

^{* -} not reported

Material ABS-EH36

Material Code 007.001.01T Material Name ABS-EH36 UNS * Other Designation * Type Wrought Metal Form Plate Thickness 12 mm Composition Type Actual Composition Top Lot ID KB6479 Reference 007-1 WB6479 Composition Composition 1.10 % P 0.14 % Mn 1.10 % P 0.18 % S 0.015 % Si 0.19 % Cr 0.01 % Ni 0.02 % Mo * V * * Cu 0.02 % Cb * Ti * * V * * Al 0.038 % * N * * Al 0.038 % * None * * Al 0.038 % * None * * Al 0.038 % *	Description	
Type	Material Code	Material Name ABS-EH36
Thickness		
Composition Position Top Reference O07-1	Type Wrought Metal	Form Plate
Reference 007-1 Composition 0.14 % Mn 1.10 % P 0.018 % S 0.015 % Si 0.19 % Cr 0.01 % Ni 0.02 % Mo * V * Cu 0.02 % Cb * Ti * B * Al 0.038 % N 0.006 % Other Components None % Fabrication History Heat Treatment * Producer Kobe Year Produced 1972 Addl Info None % Fugot Position Top Killing Process Fully Process Temperature 850 degC Process Time * Rolling Conditions 90 % Final Processing Q.T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * Propert		Composition Type Actual
Composition 0.14 % Mn 1.10 % P 0.018 % S 0.015 % Si 0.19 % Cr 0.01 % Ni 0.02 % Mo * V * Cu 0.02 % Cb * Ti * B * Al 0.038 % N 0.006 % Other Components None % Fabrication History Heat Treatment * Producer Kobe Year Produced 1972 Addl Info None % Fabrication History Fingot Position None None Source Kobe Melting Practice BOF Ingot Position Top Killing Process Fully Process Temperature 850 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature <	Composition Position Top	Lot ID
Composition 0.14 % Mn 1.10 % P 0.018 % S 0.015 % Si 0.19 % Cr 0.01 % Ni 0.02 % Mo * V * Cu 0.02 % Cb * Ti * B * Al 0.038 % N 0.006 % Other Components None % Fabrication History Heat Treatment * Producer Kobe Year Produced 1972 Addl Info None % Fabrication History Fingot Position None None Source Kobe Melting Practice BOF Ingot Position Top Killing Process Fully Process Temperature 850 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature <	Reference	
P 0.018 % S 0.015 % Si 0.19 % Cr 0.01 % Ni 0.02 % Mo * V * Cu 0.02 % Cb * Ti * B * Al 0.038 % N 0.006 % Other Components None % Fabrication History Heat Treatment * Producer Kobe Year Produced 1972 Addl Info None % Year Produced 1972 Addl Info None Source Kobe Melting Practice BOF Ingot Position Top Killing Process Fully Process Temperature 850 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Temperature * *	Composition	
Si 0.19 % Cr 0.01 % Ni 0.02 % Mo * V * Cu 0.02 % Cb * Ti * B * Al 0.038 % N 0.006 % Other Components None % Fabrication History Heat Treatment * Producer Kobe Year Produced 1972 Addl Info None Source Kobe Meluing Practice BOF Ingot Position Top Killing Process Fully Process Temperature 850 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Temperature * * Aging Temperature * * <t< td=""><td>C 0.14 %</td><td>Mn 1.10 %</td></t<>	C 0.14 %	Mn 1.10 %
Ni 0.02 % Mo * V * Cu 0.02 % Cb * Ti * B * Al 0.038 % N 0.006 % Other Components None % Fabrication History Heat Treatment * Producer Kobe Year Produced 1972 Addl Info None Source Kobe Meluing Practice BOF Ingot Position Top Killing Process Fully Process Temperature 850 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * Property Measurements * * Test Type Full Specimen Thickness 12 mm Gage Length * Loading Rate *	P 0.018 %	S 0.015 %
V * Cu 0.02 % Cb * Ti * B * Al 0.038 % N 0.006 % Other Components None % Fabrication History Heat Treatment * Producer Kobe Year Produced 1972 Addl Info None Source Kobe Melting Practice BOF Ingot Position Top Killing Process Fully Process Temperature 850 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * * * Property Measurements * Test Type Tensile Position * Specimen Type Full Specimen Thickness 12 mm Gage Length * Loading Rate	Si 0.19 %	Cr 0.01 %
Cb * Ti * B * Al 0.038 % N 0.006 % Other Components None % Fabrication History Heat Treatment * Producer Kobe Year Produced 1972 Addl Info None Source Kobe Melting Practice BOF Ingot Position Top Killing Process Fully Process Temperature 850 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * Property Measurements * * Test Type Tensile Position * Specimen Type Full Specimen Thickness 12 mm Gage Length * Loading Rate * Tensile Strength Offset * <	Ni 0.02 %	Mo *
B * Al 0.038 % N 0.006 % Other Components None % Fabrication History Fabrication History Heat Treatment * Producer Kobe Year Produced 1972 Addl Info None Source Kobe Melting Practice BOF Ingot Position Top Killing Process Fully Process Temperature 850 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * Property Measurements Test Type Tensile Position * Specimen Type Full Specimen Thickness 12 mm Gage Length * Loading Rate * Tensile Strength Offset * Tensile Yield Strength * Unifo	v *	Cu 0.02 %
N 0.006 % Other Components None % Fabrication History Heat Treatment * Producer Kobe Year Produced 1972 Addl Info None Source Kobe Melting Practice BOF Ingot Position Top Killing Process Fully Process Temperature 850 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * Property Measurements * * Test Type Tensile Position * Specimen Type Full Specimen Thickness 12 mm Gage Length * Loading Rate * Tensile Strength Offset * Tensile Yield Strength * Uniform Elongation * Reduction in Area * Tensile Modulus * Standard Method *	Cb *	Ti *
Fabrication History Heat Treatment	B *	Al 0.038 %
Fabrication History Heat Treatment	N	Other Components
Year Produced1972Addl InfoNoneSourceKobeMelting PracticeBOFIngot PositionTopKilling ProcessFullyProcess Temperature850 degCProcess Time*Rolling Conditions90 %Final ProcessingQ,TFinal Temperature680 degCFinal Time2/3 hrCold Work Strain*Aging Temperature*Aging Time*Location*Property MeasurementsTest TypeTensilePosition*Specimen TypeFullSpecimen Thickness12 mmGage Length*Loading Rate*Tensile Strength Offset*Tensile Yield Strength*Uniform Elongation*Reduction in Area*Tensile Modulus*Standard Method*		
SourceKobeMeluing PracticeBOFIngot PositionTopKilling ProcessFullyProcess Temperature850 degCProcess Time*Rolling Conditions90 %Final ProcessingQ,TFinal Temperature680 degCFinal Time2/3 hrCold Work Strain* Aging Temperature*Aging Time* Location*Property MeasurementsTest TypeTensilePosition*Specimen TypeFullSpecimen Thickness12 mmGage Length* Loading Rate*Tensile Strength Offset* Tensile Yield Strength*Uniform Elongation* Reduction in Area*Tensile Modulus* Standard Method*	Heat Treatment	Producer Kobe
Ingot PositionTop Process TemperatureKilling ProcessFullyProcess Temperature850 degCProcess Time*Rolling Conditions90 %Final ProcessingQ,TFinal Temperature680 degCFinal Time2/3 hrCold Work Strain*Aging Temperature*Aging Time*Location*Property MeasurementsTest TypeTensilePosition*Specimen TypeFullSpecimen Thickness12 mmGage LengthLoading Rate*Tensile Strength Offset*Tensile Yield Strength*Uniform Elongation*Reduction in Area*Tensile Modulus*Standard Method*	Year Produced	Addl Info None
Process Temperature850 degCProcess Time*Rolling Conditions90 %Final ProcessingQ,TFinal Temperature680 degCFinal Time2/3 hrCold Work Strain* Aging Temperature*Aging Time* Location*Property MeasurementsTest TypeTensilePosition*Specimen TypeFullSpecimen Thickness12 mmGage LengthLoading Rate*Tensile Strength Offset* Tensile Yield Strength*Uniform Elongation* Reduction in Area*Tensile Modulus* Standard Method*	Source Kobe	Melung Practice BOF
Rolling Conditions90 %Final ProcessingQ,TFinal Temperature680 degCFinal Time2/3 hrCold Work Strain* Aging Temperature*Aging Time* Location*Property MeasurementsTest TypeTensilePosition*Specimen TypeFullSpecimen Thickness12 mmGage Length* Loading Rate*Tensile Strength Offset* Tensile Yield Strength*Uniform Elongation* Reduction in Area*Tensile Modulus* Standard Method*	Ingot Position Top	Killing Process Fully
Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * Property Measurements Test Type Tensile Position * Specimen Type Full Specimen Thickness 12 mm Gage Length * Loading Rate * Tensile Strength Offset * Tensile Yield Strength * Uniform Elongation * Reduction in Area * Tensile Modulus * Standard Method *	Process Temperature 850 degC	Process Time
Cold Work Strain	Rolling Conditions 90 %	Final Processing Q,T
Aging Time * Location * Property Measurements Test Type Tensile Position * Specimen Type Full Specimen Thickness 12 mm Gage Length Loading Rate * Tensile Strength Offset Tensile Yield Strength * Uniform Elongation Reduction in Area * Tensile Modulus Standard Method *	Final Temperature 680 degC	Final Time
Property MeasurementsTest TypeTensilePosition*Specimen TypeFullSpecimen Thickness12 mmGage Length*Loading Rate*Tensile Strength Offset*Tensile Yield Strength*Uniform Elongation*Reduction in Area*Tensile Modulus*Standard Method*	Cold Work Strain *	Aging Temperature *
Property MeasurementsTest TypeTensilePosition*Specimen TypeFullSpecimen Thickness12 mmGage Length*Loading Rate*Tensile Strength Offset*Tensile Yield Strength*Uniform Elongation*Reduction in Area*Tensile Modulus*Standard Method*	Aging Time *	Location
Specimen TypeFullSpecimen Thickness12 mmGage Length* Loading Rate*Tensile Strength Offset* Tensile Yield Strength*Uniform Elongation* Reduction in Area*Tensile Modulus* Standard Method*	Property Measurements	
Gage Length	Test Type Tensile	Position
Tensile Strength Offset	Specimen Type Full	Specimen Thickness
Uniform Elongation * Reduction in Area * Tensile Modulus * Standard Method *	Gage Length *	Loading Rate
Tensile Modulus * Standard Method *	Tensile Strength Offset *	Tensile Yield Strength *
	Uniform Elongation *	Reduction in Area
Standard Year *		Standard Method *
	Standard Year *	

Orient	Test Temp	UTS	TYP	Elongation
	degC	kgf/mm2	kgf/mm2	%
L	20	54.1	44.4	24.0
T	20	53.2	44.0	21.5

Material ABS-EH36

Description		
Material Code	Material Name	ABS-EH36
UNS *	Other Designation	
Type Wrought Metal	Form	Plate
Thickness 12 mm	Composition Type	Actual
Composition Position Bottom	Lot ID	. KB6479
Reference 007-1		
Composition		
C 0.12 %	Mn	1 39 %
P 0.016 %	S	የ ፡14 %
Si 0.18 %	Cr ,	0.01 %
Ni 0.02 %	Mo	*
V *	Cu	0.02 %
Cb *	Ti	* '
B *	Al	0.041 %
N 0.005 %	Other Components	None %
Fabrication History		
Heat Treatment A,F,A,F,Q,T	Producer	Kobe
Year Produced	Adal Info	
Source Kobe	Melung Practice	BOF
Ingot Position Bottom	Killing Process	Fully
Process Temperature 910 degC	Process Time	
Rolling Conditions 90 %	Final Processing	Q,T
Final Temperature	Final Time	
Cold Work Strain	Aging Temperature	
Aging Time *	Location	*
Property Measurements		
Test Type Tensile	Position	
Specimen Type Full	Specimen Thickness	12 mm
Gage Length *	Loading Rate	*
Tensile Strength Offset *	Tensile Yield Strength	
Uniform Elongation *	Reduction in Area	*
Tensile Modulus *	Standard Method	
Standard Year *		
Orient Tool Town I II'	TC TVD Florgation	7

Orient	Test Temp	UTS	TYP	Elongation
	degC	kgf/mm2	kgf/mm2	%
L	20	52.6	42.8	26.0
Т	20	51.6	43.0	22.0

Material ABS-EH36

Description	
Material Code	T Material Name ABS-EH36
UNS	* Other Designation *
Type Wrought Me	al Form Plate
Thickness	m Composition Type Actual
Composition Position T	p Lot ID KB6479
Reference 007	-1
Composition	
C 0.14	% Mn 1.10 %
P 0.018	
Si 0.19	% Cr 0.01 %
Ni 0.02	% Mo *
V	* Cu 0.02 %
Сь	* Ti *
B	* Al 0.038 %
N 0.006	% Other Components None %
Fabrication History	
Heat Treatment	* Producer Kobe
Year Produced	72 Addl Info None
Source Ko	be Melting Practice BOF
Ingot Position	p Killing Process Fully
Process Temperature 850 de	C Process Time
Rolling Conditions 90	% Final Processing Q,T
Final Temperature 680 de	C Final Time
Cold Work Strain	* Aging Temperature *
Aging Time	* Location
Property Measurements	
Test Type Charpy V Impa	
Specimen Type F	4
Did Specimen Fracture? Assum	• •
Standard Method	Standard Year
Orien Test Te	DD CVN Energy Shear

<u> </u>	<u> </u>	Standard Year	
Orien	Test Temp	CVN Energy	Shear
	degC	kgf-m	%
L-T °	-100	1.6	10
L-T °	-100	1.8	10
L-T o	-100	2 .2	10
L-T o	-80	3.0	25
L-T o	-80	3.4	25
L-T o	-80	4.7	30
L-T o	-6 0	12.5	60
L-T o	-6 0	13.4	65
L-T o	-60	13.9	65
L-T o	-40	21.8	100
L-T o	-4 0	23.4	100
L-T o	-4 0	24.0	100
L-T o	-30	23.4	100
L-T o	-30	24.0	100
L-T o	-30	24.2	100
L-T o	-20	23.4	100
L-T o	-20	23.4	100

Material ABS-EH36

Page 2100.4

Orien	Test Temp	CVN Energy	Shear
	degC	kgf-m	%
L-T ∘	-20	24.2	100
L-T o	-10	24.0	100
L-T o	-10	24.0	100
L-T o	-10	24.2	100
L-T o	0	23.9	100
L-T o	0	23.9	100
L-T o	0	24.6	100
T-L △	-100	0.9	5
T-L ^	-100	1.1	10
T-L ^	-100	1.6	10
T-L △	-80	2.8	30
T-L ^	-80	2.9	30
T-L ^	-80	3.7	40
T-L A	-6 0	5.1	85
T-L ^	-60	5.5	85
T-L △	-6 0	5.9	80
T-L A	-40	10.3	100
T-L ^	-4 0	11.2	100
T-L ^	-40	9.9	100
T-L ^	-30	11.0	100
T-L △	-30	11.5	100
T-L △	-30	11.7	100
T-L △	-20	11.2	100
T-L △	-20	11.5	100
T-L A	-20	11.7	100
T-L △	-10	10.8	100
T-L ^	-10	11.2	100
T-L △	-10	11.5	100
T-L ^	0	11.0	100
T-L ^	0	11.5	100
T-L ^	0	9,9	100

^{• -} not reported

Material ABS-EH36

Description			
Material Code	007.001.01T	Material Name	ABS-EH36
UNS	*	Other Designation	*
Type	Wrought Metal	Form	
Thickness		Composition Type	-
Composition Position		Lot ID	
Reference	007-1		

Test Temperature degC

^{• -} not reported

Material ABS-EH36

Material Code 007.001.01B Material Name ABS-EH36 UNS * Other Designation * Type Wrought Metal Form Plate Thickness 12 mm Composition Type Actual Composition Position Bottom Lot ID KB6479 Composition Composition Composition Composition Type Actual Composition Reference Actual Colon Type Actual Colon Type<	Description			
Type Wrought Metal Thickness Form Plate Composition Type Actual Composition Position Bottom Lot ID KB6479 Reference 007-1 Composition Value Lot ID KB6479 Composition 007-1 Value Value Value Composition 0.12 % Mn 1.09 % P 0.016 % S 0.014 % Si 0.18 % Cr 0.01 % Ni 0.02 % Mo * Cb * Ti * B * Al 0.041 % N 0.005 % Other Components None % Fabrication History Heat Treatment A.F.A.F.Q.T Producer Kobe Year Produced 1972 Addl Info None % Fabrication History Heat Treatment A.F.A.F.Q.T Producer Kobe Year Produced 1972 Addl Info None Source Kobe Melting Practice BOF Ingot Position Bottom <td>Material Code</td> <td> 007.001.01B</td> <td></td> <td></td>	Material Code	007.001.01B		
Thickness 12 mm Composition Type Actual KB6479 Reference 007-1 Lot ID KB6479 Composition C 0.012 % Mn 1.09 % P 0.016 % S 0.014 % Si 0.18 % Cr 0.01 % Ni 0.02 % Mo * V * Cu 0.02 % Cb * Ti * B * Al 0.041 % N 0.005 % Other Components None % Fabrication History Heat Treatment A,F,A,F,Q,T Producer Kobe Year Produced 1972 Addl Info None % Fabrication History Kobe Melting Practice BOF Ingot Position Bottom Killing Process Fully Process Temperature 910 degC Process Time * Rolling Conditions 90 % Final Processing Q.T Final Temperature 680 degC Final Time			Other Designation	*
Composition Reference Bottom 007-1 Lot ID KB6479 Composition Co	Type	Wrought Metal	Form	Plate
Reference 007-1 Composition Name 1.09 % P 0.016 % S 0.014 % Si 0.18 % Cr 0.01 % Ni 0.02 % Mo * V * Cu 0.02 % Cb * Ti * B * Al 0.041 % N 0.005 % Other Components None % Fabrication History Heat Treatment A,F,A,F,Q,T Producer Kobe Year Produced 1972 Addl Info None % Fabrication History Kobe Melting Process BOF Ingot Position Bottom Killing Process BOF Ingot Position Bottom Killing Process Fully Process Temperature 910 degC Process Time * Rolling Conditions 90 % Final Processing Q.T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain	Thickness	12 mm	Composition Type	Actual
Composition 0.12 % Mn 1.09 % P 0.016 % S 0.014 % Si 0.18 % Cr 0.01 % Ni 0.02 % Mo * V * Cu 0.02 % Cb * Ti * B * Al 0.041 % N 0.005 % Other Components None % Fabrication History None % * Addl Info None % Fear Produced 1972 Addl Info None % Year Produced 1972 Addl Info None % Ingot Position Bottom Killing Practice BOF Ingot Position Bottom Killing Process Fully Process Temperature 910 degC Process Time * Rolling Conditions 90 % Final Processing Q.T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature *	Composition Position	Bottom	Lot ID	KB6479
Composition 0.12 % Mn 1.09 % P 0.016 % S 0.014 % Si 0.18 % Cr 0.01 % Ni 0.02 % Mo * V * Cu 0.02 % Cb * Ti * B * Al 0.041 % N 0.005 % Other Components None % Fabrication History None % * Addl Info None % Fear Produced 1972 Addl Info None % Year Produced 1972 Addl Info None % Ingot Position Bottom Killing Practice BOF Ingot Position Bottom Killing Process Fully Process Temperature 910 degC Process Time * Rolling Conditions 90 % Final Processing Q.T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature *	Reference	007-1		
P 0.016 % S 0.014 % Si 0.18 % Cr 0.01 % Ni 0.02 % Mo * V * Cu 0.02 % Cb * Ti * B * Al 0.041 % N 0.005 % Other Components None % Fabrication History Heat Treatment A,F,A,F,Q,T Producer Kobe Year Produced 1972 Addl Info None Source Kobe Melting Practice BOF Ingot Position Bottom Killing Process Fully Process Temperature 910 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 4 Aging Temperature * Aging Time * Location * Property Measurements * Position 1/4T Specimen Type Charpy V Impact Position Aging Temperature <				
Si 0.18 % Cr 0.01 % Ni 0.02 % Mo * V * Cu 0.02 % Cb * Ti * B * Al 0.041 % N 0.005 % Other Components None % Fabrication History Heat Treatment A.F.A.F.Q.T Producer Kobe Year Produced 1972 Addl Info None Source Kobe Melting Practice BOF Ingot Position Bottom Killing Process Fully Process Temperature 910 degC Process Time * Rolling Conditions 90 % Final Processing Q.T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * * Property Measurements Test Type Charpy V Impact Position 1/4T	C	0.12 %	Mn	1.09 %
Ni 0.02 % Mo * V * Cu 0.02 % Cb * Ti * B * Al 0.041 % N 0.005 % Other Components None % Fabrication History Heat Treatment A,F,A,F,Q,T Producer Kobe Year Produced 1972 Addl Info None Source Kobe Melting Practice BOF Ingot Position Bottom Killing Process Fully Process Temperature 910 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * * Property Measurements Test Type Charpy V Impact Position 1/4T Specimen Type Full Lateral Expansion * </td <td>P</td> <td> 0.016 %</td> <td>S</td> <td> 0.014 %</td>	P	0.016 %	S	0.014 %
No.	Si	0.18 %	Cr	0.01 %
Cb * Ti * B * Al 0.041 % N 0.005 % Other Components None % Fabrication History Heat Treatment A,F,A,F,Q,T Producer Kobe Year Produced 1972 Addl Info None Source Kobe Melting Practice BOF Ingot Position Bottom Killing Process Fully Process Temperature 910 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * Property Measurements * Position 1/4T Specimen Type Charpy V Impact Position 1/4T Specimen Fracture? Assumed Did Specimen Split? *	Ni	0.02 %	Mo	*
B * A1 0.041 % N 0.005 % Other Components None % Fabrication History Heat Treatment A,F,A,F,Q,T Producer Kobe Year Produced 1972 Addl Info None Source Kobe Melting Practice BOF Ingot Position Bottom Killing Process Fully Process Temperature 910 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * Property Measurements * Position 1/4T Specimen Type Charpy V Impact Position 1/4T Specimen Type Full Lateral Expansion * Did Specimen Split? *	v	•	Cu	0.02 %
N 0.005 % Other Components None % Fabrication History Heat Treatment A,F,A,F,Q,T Producer Kobe Year Produced 1972 Addl Info None Source Kobe Melting Practice BOF Ingot Position Bottom Killing Process Fully Process Temperature 910 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * Property Measurements * Position 1/4T Specimen Type Full Lateral Expansion * Did Specimen Fracture? Assumed Did Specimen Split? *	Сь		Ti	*
Fabrication HistoryHeat TreatmentA,F,A,F,Q,TProducerKobeYear Produced1972Addl InfoNoneSourceKobeMelting PracticeBOFIngot PositionBottomKilling ProcessFullyProcess Temperature910 degCProcess Time*Rolling Conditions90 %Final ProcessingQ,TFinal Temperature680 degCFinal Time2/3 hrCold Work Strain*Aging Temperature*Aging Time*Location*Property MeasurementsTest TypeCharpy V ImpactPosition1/4TSpecimen TypeFullLateral Expansion*Did Specimen Fracture?AssumedDid Specimen Split?*	В	*	Al	0.041 %
Heat Treatment A,F,A,F,Q,T Producer Kobe Year Produced 1972 Addl Info None Source Kobe Melting Practice BOF Ingot Position Bottom Killing Process Fully Process Temperature 910 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2//3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * Property Measurements Test Type Charpy V Impact Position 1/4T Specimen Type Full Lateral Expansion * Did Specimen Split? *	N	0.005 %	Other Components	None %
Year Produced1972Addl InfoNoneSourceKobeMelting PracticeBOFIngot PositionBottomKilling ProcessFullyProcess Temperature910 degCProcess Time*Rolling Conditions90 %Final ProcessingQ,TFinal Temperature680 degCFinal Time2/3 hrCold Work Strain*Aging Temperature*Aging Time*Location*Property Measurements*Position1/4TSpecimen TypeFullLateral Expansion*Did Specimen Fracture?AssumedDid Specimen Split?*	Fabrication History			-
SourceKobeMelting PracticeBOFIngot PositionBottomKilling ProcessFullyProcess Temperature910 degCProcess Time*Rolling Conditions90 %Final ProcessingQ,TFinal Temperature680 degCFinal Time2/3 hrCold Work Strain*Aging Temperature*Aging Time*Location*Property Measurements*Position1/4TSpecimen TypeFullLateral Expansion*Did Specimen Fracture?AssumedDid Specimen Split?*	Heat Treatment	A,F,A,F,Q,T	Producer	Kobe
Ingot PositionBottomKilling ProcessFullyProcess Temperature910 degCProcess Time*Rolling Conditions90 %Final ProcessingQ,TFinal Temperature680 degCFinal Time2/3 hrCold Work Strain* Aging Temperature*Aging Time* Location*Property Measurements*Test TypeCharpy V ImpactPosition1/4TSpecimen TypeFullLateral Expansion*Did Specimen Fracture?AssumedDid Specimen Split?*	Year Produced	1972		
Process Temperature 910 degC Process Time * Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * Property Measurements * Test Type Charpy V Impact Position 1/4T Specimen Type Full Lateral Expansion * Did Specimen Fracture? Assumed Did Specimen Split? *				
Rolling Conditions 90 % Final Processing Q,T Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * Property Measurements * Position 1/4T Specimen Type Full Lateral Expansion * Did Specimen Fracture? Assumed Did Specimen Split? *			Killing Process	Fully
Final Temperature 680 degC Final Time 2/3 hr Cold Work Strain * Aging Temperature * Aging Time * Location * Property Measurements * Position 1/4T Specimen Type Full Lateral Expansion * Did Specimen Fracture? Assumed Did Specimen Split? *	Process Temperature	910 degC		
Cold Work Strain * Aging Temperature * Location * Property Measurements Test Type Charpy V Impact Position 1/4T Specimen Type Full Lateral Expansion * Did Specimen Split? *				
Aging Time * Location * Property Measurements Test Type Charpy V Impact Position 1/4T Specimen Type Full Lateral Expansion * Did Specimen Fracture? Assumed Did Specimen Split? *	Final Temperature	680 degC		
Property Measurements Test Type Charpy V Impact Position 1/4T Specimen Type Full Lateral Expansion * Did Specimen Fracture? Assumed Did Specimen Split? *	Cold Work Strain			
Property Measurements Test Type Charpy V Impact Position 1/4T Specimen Type Full Lateral Expansion * Did Specimen Fracture? Assumed Did Specimen Split? *	Aging Time	<u> </u>	Location	*
Specimen TypeFullLateral Expansion*Did Specimen Fracture?AssumedDid Specimen Split?*				
Did Specimen Fracture? Assumed Did Specimen Split?				
Did Specimen Fracture? Assumed Did Specimen Split? * Standard Method * Standard Year *				
Standard Method	Did Specimen Fracture?	Assumed	•	
	Standard Method	<u> </u>	Standard Year	*

<u> </u>	<u> </u>	Standard Year	
Orien	Test Temp	CVN Energy	Shear
	degC	kgf-m	%
L-T o	-100	1.6	10
L-T o	-100	1.6	10
L-T o	-100	1.8	10
L-T o	-80	5.0	40
L-T o	-80	7.3	45
L-T °	-80	8.6	45
L-T o	-60	13.5	50
L-T o	-60	17.3	70
L-T o	-60	18.0	75
L-T °	-40	23.8	100
L-T ∘	-40	24.6	100
L-T o	-40	25.0	100
L-T o	-30	28.7	100
L-T o	-30	31.9	100
L-T o	-30	34.6	100
L-T o	-20	29.1	100
L-T o	-20	30.3	100

Material ABS-EH36

Page 2100.7

Orien	Test Temp	CVN Energy	Shear
	degC	kgf-m	%
L-T °	-20	31.7	100
L-T o	-10	30.1	100
L-T o	-10	30.1	100
L-T o	-10	30.1	100
L-T o	0	30.5	100
L-T o	0	31.2	100
L-T o	0	34.4	100
T-L △	-100	1.6	10
T-L ^	-100	1.6	10
T-L ^	-100	1.8	10
T-L ^	-80	2.8	20
T-L △	-80	2.9	20
T-L A	-80	3.3	20
T-L ^	-60	3.8	40
T-L A	-60	4.2	45
T-L △	-60	4.4	45
T-L ^	-40	5.9	75
T-L ^	-40	6.3	75
T-L A	-40	6.9	75
T-L ^	-30	7.2	80
T-L A	-30	7.3	85
T-L A	-30	7.6	85
T-L △	-20	7.8	90
T-L ^	-20	8.2	90
T-L A	-20	8.8	95
T-L A	-10	8.4	95
T-L 4	-10	9.0	100
T-L A	-10	9.0	100
T-L A	0	9.0	100
T-L A	0	9.7	100
T-L A	0	9.9	100

^{* -} not reported

Material ABS-EH36

Description	
Material Code	Material Name ABS-EH36
UNS *	Other Designation
Type Wrought Metal	Form Plate
Thickness 12 mm	Composition Type Actual
Composition Position Bottom	Lot ID KB6479
Reference 007-1	

Test Temperature degC

^{* -} not reported

Material ABS-EH36

Page 2200.1

Description	
Material Code	Material Name ABS-EH36
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness	Composition Type Actual
Composition Position Top	Lot ID KB6479
Reference	
Composition	
C 0.14 %	Mn 1.09 %
P 0.017 %	S 0.015 %
Si 0.19 %	Cr 0.01 %
Ni 0.02 %	Mo *
v *	Си 0.02 %
Сь *	Ti *
B *	Al 0.039 %
N	Other Components *
Fabrication History	
Heat Treatment A,F,A,F,Q,T	Producer Kobe
Year Produced	Addl Info None
Source Kobe	Melting Practice BOF
Ingot Position Top	Killing Process Fully
Process Temperature 1055 degC	Process Time
Rolling Conditions 85 %	Final Processing Q,T
Final Temperature 640 degC	Final Time
Cold Work Strain	Aging Temperature *
Aging Time	Location
Property Measurements	
Test Type Tensile	Position*
Specimen Type Full	Specimen Thickness
Gage Length	Loading Rate
Tensile Strength Offset	Tensile Yield Strength *
Uniform Elongation	Reduction in Area *
Tensile Modulus *	Standard Method *
Standard Year	

Orient	Test Temp	UTS	TYP	Elongation
	degC	kgf/mm2	kgf/mm2	%
L	20	53.7	41.6	26.0
T	20	54.3	41.4	22.0

Material ABS-EH36

Page 2200.2

Description	
Material Code	Material Name ABS-EH36
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness	Composition Type Actual
Composition Position Bottom	Lot ID KB6479
Reference	
Composition	
C 0.12 %	Mn 1.05 %
P 0.015 %	S 0.015 %
Si 0.19 %	Cr 0.01 %
Ni 0.02 %	Mo *
V	Cu 0.02 %
Cb *	Ti * !
B *	A1 0.040 %
N0.005 %	Other Components *
Fabrication History	
Heat Treatment *	Producer Kobe
Year Produced	Addl Info None
Source Kobe	Melting Practice BOF
Ingot Position Bottom	Killing Process Fully
Process Temperature 1060 degC	Process Time
Rolling Conditions 85 %	Final Processing Q,T
Final Temperature 640 degC	Final Time 1 hr
Cold Work Strain *	Aging Temperature *
Aging Time *	Location
Property Measurements	
Test Type Tensile	Position*
Specimen Type Full	Specimen Thickness
Gage Length*	Loading Rate *
Tensile Strength Offset *	Tensile Yield Strength
Uniform Elongation	Reduction in Area *
Tensile Modulus *	Standard Method *
Standard Year *	

Orient	Test Temp	UTS	TYP	Elongation
	degC	kgf/mm2	kgf/mm2	%
L	20	52.2	40.4	26.5
T	20	52.1	39.5	28.5

Material ABS-EH36

Page 2200.3

Description	
Material Code	Material Name ABS-EH36
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness	Composition Type Actual
Composition Position Top	Lot ID KB6479
Reference 007-1	
Composition	
C 0.14 %	Mn 1.09 %
P 0.017 %	S 0.015 %
Si 0.19 %	Cr 0.01 %
Ni 0.02 %	Mo *
V *	Cu 0.02 %
Cb *	Ti
B *	A1 0.039 %
N 0.006 %	Other Components
Fabrication History	
Heat Treatment A,F,A,F,Q,T	Producer Kobe
Year Produced	Addl Info None
Source Kobe	Melting Practice BOF
Ingot Position Top	Killing Process Fully
Process Temperature 1055 degC	Process Time *:
Rolling Conditions 85 %	Final Processing Q,T
Final Temperature 640 degC	Final Time 1 hr
Cold Work Strain	Aging Temperature *
Aging Time	Location *
Property Measurements	
Test Type Charpy V Impact	Position 1/4T
Specimen Type Full	Lateral Expansion *
Did Specimen Split? *	Standard Method *
Standard Year *	

ear <u></u>	<u> </u>	·		
Orien	Test Temp	CVN Energy	Shear	Fracture?
	degC	kgf-m	%	
L-T o	-100	0.8	5	Yes
L-T o	-100	1.4	10	Yes
L-T o	-100	1.9	10	Assumed
L-T o	-80	2.1	20	Yes
L-T o	-80	3.3	20	Yes
L-T o	-80	5.2	20	Yes
L-T o	-60	3.7	40	Yes
L-T o	-60	4.8	45	Yes
L-T o	-60	7.2	80	Yes
L-T o	-4 0	21.9	100	Yes
L-T o	-4 0	23.1	100	Yes
L-T o	-4 0	24.1	100	Yes
L-T o	-30	21.9	100	Yes
L-T o	-30	22.6	100	Yes
L-T o	-30	23.6	100	Yes
L-T o	-20	22.6	100	Yes
L-T o	-20	24.1	100	Yes

Material ABS-EH36

Page 2200.4

Orien	Test Temp	CVN Energy	Shear	Fracture?
	degC	kgf-m	%	
L-T o	-20	27.9	100	Yes
L-T o	-10	20.7	100	Yes
L-T o	-10	21.1	100	Yes
L-T o	-10	23.3	100	Yes
L-T o	0	22.8	100	Yes
L-T o	0	24.1	100	Yes
L-T o	0	24.8	100	Yes
T-L A	-100	0.8	10	Yes
T-L A	-100	1.1	10	Yes
T-L 4	-100	1.6	10	Yes
T-L 4	-80	1.4	20	Yes
T-L 4	-80	1.8	20	Yes
T-L A	-80	2.1	20	Yes
T-L A	-60	2.8	30	Yes
T-L 4	-6 0	3.3	30	Yes
T-L 4	-60	3.7	30	Yes
T-L 4	40	7.3	80	Yes
T-L ^	-4 0	7.8	70	Yes
T-L A	-40	8.2	85	Yes
T-L 4	-30	6.5	70	Yes
T-L 4	-30	8.6	95	Yes
T-L △	-30	9.7	95	Yes
T-L 4	-20	7.2	90	Yes
T-L 4	-20	8.0	95	Yes
T-L 4	-20	9.0	95	Yes
T-L A	-10	9.5	100	Yes
T-L ^	-10	9.7	100	Yes
T-L △	-10	9.7	100	Yes
T-L ^	0	10.3	100	Yes
T-L ^	0	10.8	100	Yes
T-L ^	0	9.5	100	Yes

^{* -} not reported

Material ABS-EH36

Page 2200.5

Description			
Material Code	007.002.01T	Material Name	ABS-EH36
UNS	*	Other Designation	*
Type	Wrought Metal	Form	
Thickness	25 mm	Composition Type	Actual
Composition Position	Top	Lot ID	KB6479
Reference	007-1		

Test Temperature degC

^{* -} not reported

Material ABS-EH36

Page 2200.6

Description	· · · · · · · · · · · · · · · · · · ·		
Material Code	007.002.01B	Material Name	ABS-EH36
UNS	*	Other Designation	*
Type	Wrought Metal	Form	Plate
Thickness	25 mm	Composition Type	Actual
Composition Position	Bottom	Lot ID	
Reference	007-1		
Composition			
C		Mn	1.05 %
P	0.015 %	S	0.015 %
Si	0.19 %	Cr	0.01 %
Ni	0.02 %	Mo	
v	*	Cu	0.02 %
Съ	*	Ti	
B	*	Al	
<u>N</u>		Other Components	*
Fabrication History			
Heat Treatment	*	Producer	Kobe
Year Produced	1972	Addl Info	None
Source	Kobe	Melting Practice	BOF
Ingot Position	Bottom	Killing Process	Fully
Process Temperature	1060 degC	Process Time	
Rolling Conditions	85 %	Final Processing	Q,T
Final Ten perature		Final Time	
Cold Work Strain		Aging Temperature	
Aging Ti: 1e	<u> </u>	Location	*
Propert / Measurements			
Test Type		Position	1/4T
Specimer Type		Lateral Expansion	*
Did Spec men Fracture?		Did Specimen Split?	
Standard Method	<u> </u>	Standard Year	•
On	en Test Temp	CVN Energy Shear	٦

<u> </u>	<u> </u>	Standard Year	<u> </u>
Orien	Test Temp	CVN Energy	Shear
	degC	kgf-m	%
L-T o	-100	0.8	10
L-T o	-100	1.9	10
L-T o	-100	2.6	10
L-T o	-80	2.1	15
L-T o	-80	2.4	15
L-T o	-80	3.8	15
L-T o	-60	14.0	70
L-T o	-60	19.9	75
L-T o	-6 0	20.2	80
L-T o	-40	29.1	100
L-T o	-40	30.7	100
L-T o	-40	34.8	100
L-T o	-30	28.7	100
L-T o	-30	32.4	100
L-T o	-30	32.6	100
L-T ○	-20	33.0	100
L-T o	-20	33.7	100

Material ABS-EH36

Page 2200.7

(continued)

Orien	Test Temp	CVN Energy	Shear
	degC	kgf-m	%
L-T o	-20	33.9	100
L-T o	-10	33.2	100
L-T o	-10	35.0	100
L-T ∘	-10	35.7	100
L-T o	0	32.1	100
L-T o	0	32.6	100
L-T o	0	35.2	100
T-L ^	-100	0.6	5
T-L A	-100	1.1	5
T-L ^	-100	1.9	5
T-L ^	-80	2.1	15
T-L △	-80	2.1	15
T-L △	-80	2.6	15
T-L ^	-60	3.1	35
T-L A	-60	3.5	40
T-L △	-6 0	4.6	40
T-L ^	-40	5.6	70
T-L △	-40	5.6	70
T-L ^	-40	7.2	75
T-L △	-30	6.9	75
T-L ^	-30	8.0	80
T-L ^	-30	8.8	80
T-L ^	-20	7.6	90
T-L A	-20	9.5	95
T-L ^	-20	9.7	100
T-L ^	-10	11.5	100
T-L -	-10	9.5	95
T-L ^	-10	9.9	95
T-L ^	0	10.3	100
T-L ^	0	10.3	100
T-L ^	0	10.8	100

^{* -} not reported

Material ABS-EH36

Page 2200.8

Description			
Material Code	007.002.01B	Material Name	ABS-EH36
UNS	*	Other Designation	
Type	Wrought Metal	Form	
Thickness	25 mm	Composition Type	
Composition Position	Bottom	Lot ID	
Reference			

Test Temperature degC

^{* -} not reported

Material A36

Page 3100.1

Description				
Material Code	Mat Mat	erial Name		A36
UNS	 Other 	er Designation .		
Type Wrought Meta	l For	Form		
Thickness 1 in	n Con	position Type		Actual
Composition Position				
Reference KONKUL-				
Composition				
C 0.21 9	6 Mn			1.17 %
P 0.011 9				
Si 0.04 9	6 Cr			0.05 %
Ni 0.03 9	6 Mo			0.01 %
V				
Сь	a Ti			*
B	* Al			<0.002 %
N 0.003 9	c Othe	er Components	<u> </u>	None %
Fabrication History				
Heat Treatment				
Year Produced	• Add	l Info		
Source US Stee	l Mel	ting Practice		*
Ingot Position	• Kill	ing Process		
Process Temperature	Proc	ess Time		•
Rolling Conditions		l Processing		A,R
Tillar Temperature	 Final 	l Time		
Cold Work Strain	• Agi	ng Temperature		
Aging Time	* Loc	ation	<u> </u>	*
Property Measurements				
Test Type Tensil				
Specimen Type Cylindrica	•	cimen Thickness		0.357 in
Gage Length 1.4 i	n Loa	ding Rate		*
Tensile Strength Offset 0.2 %				
Tensile Modulus	 Star 	idard Method		*
Standard Year	•			
Orient Test Temp UTS	TYS	TYP	Elongation	RA
degF ksi	ksi	ksi	%	%
* Room 71.1	38.9	•	34.8	70.8

Description	
Material Code	Material Name
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	
Composition	See Page 3100.1
Fabrication History	See Page 3100.1
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature 350 degF	Passes 15
Filler Specification E7018	Filler Name *
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage ***	Polarity *
Travel Speed	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time 1 hr
Flux Type	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year	

ear		<u> </u>	<u> </u>			
	Orien	Test Temp	CVN Energy	Lat Expans	Shear	Ī
		degF	ft-lb	mils	%	
	L-T o	-50	10	12	10	1
	L-T o	-50	15	13	10	1
	L-T o	-25	11	12	20	
	L-T o	-25	93	90	45	
İ	L-T o	0	106	88	70	
	L·T o	0	43	38	70	
	L-T o	0	8	12	15	
	L-T o	25	118	78	85	
į	L-I o	25	35	32	60	
Ì	L-T ○	25	97	76	50	1
İ	L-T o	50	123	87	85	
	L-T o	50	96	78	75	

^{* -} not reported

Material A36

Page 3100.3

Description	, 		
Material Code	009.002.02AS1	Material Name	. A36
UNS	*	Other Designation	
Type	Welded Joint	Form	
Thickness			
Composition Position		Lot ID	
Reference	KONKUL-1		

Test Temperature degC

Material A36

Page 3100.4

Description	
Material Code	Material Name A36
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	
Composition	See Page 3100.1
Fabrication History	See Page 3100.1
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature 350 degF	Passes
Filler Specification E7018	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage	Polarity *
Travel Speed	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time 5 hr
Flux Type	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-50	5	7	5
L-T o	-50	7	9	10
L-T o	-25	15	15	35
L-T o	-25	59	48	30
L-T o	-25	96	79	70
L-T o	0	25	22	45
L-T o	0	65	51	70
L-T o	0	86	79	75
L-T o	50	110	93	100
L-T o	50	94	86	80

^{* -} not reported

Material A36 Page 3100.5

Description		
Material Code	2 Material Name	A36
UNS	* Other Designation	
Type Welded Joir		
Thickness 1 i	n Composition Type	Actual
Composition Position	* Lot ID	
Reference KONKUL-	1	

Test Temperature degC

^{* -} not reported

Description	
Material Code	Material Name A36
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 3100.1
Fabrication History	See Page 3100.1
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature 350 degF	Passes
Filler Specification £7018	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed ***	Heat Input/Pass
Joint Preparation K-Groove	Number of Sides 2
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 1 hr
Flux Type *	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? ssumed
Did Specimen Split? *	Standard Method
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	filb	mils	%
L-T o	-50	11	12	15
L-T o	-50	5	5	10
L-T o	-25	18	20	75
L-T o	-25	7	8	20
L-T ○	-25	81	61	75
L-T o	0	77	61	65
L-T o	0	80	65	75
L-T o	5 0	71	54	75
L-T o	5 0	90	74	50
L-T o	75	121	86	16
L-T o	75	125	89	90

^{* -} not reported

Page 3100.7

Material A36

Description Material Code		Material Nature Other Designation	
UNS		Form	Plate
Thickness Composition Position	1 in	Composition Type	
	KONKIII -1		

Test Temperature degC

^{* -} not reported

Page 3100.8

Material A36

Description	
Material Code 009.002.02AA	Material Name
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 3100.1
Fabrication History	See Page 3100.1
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature 350 degF	Passes
Filler Specification E7018	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas ***	Voltage *
Amperage ***	Polarity *
Travel Speed *	Heat Input/Pass
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp	Post-Weld Heat Time
Flux Type	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T °	-50	5	1	5
L-T o	-50	9	9	10
L-T o	-25	25	15	30
L-T o	-25	42	32	40
L-T o	-25	7	6	15
L-T o	0	15	19	20
L-T o	0	19	17	45
L-T °	0	21	25	25
L-T o	25	102	67	75
1.10	25	33	30	70
L-T o	25	54	40	35
L-T o	5 0	109	78	90
L-T o	50	111	72	90

Description	-		
Material Code	009.002.02AA	Material Name	A36
UNS	*	Other Designation	*
Type	Welded Joint	Form	Plate
Thickness	1 in	Composition Type	Actual
Composition Position	*	Lot ID	*
Reference	KONKUL-1		

^{* -} not reported

Material A36

Page 3100.10

Description	
Material Code 009.002.02AS4	Material Name A36
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position •	Lot ID*
Reference KONKUL-1	
Composition	See Page 3100.1
Fabrication History	See Page 3100.1
Weld	
Weld Code 009.002.02AS4	Weld Type SMA
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes 15
Filler Specification E7018	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed*	Heat Input/Pass
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 5 hr
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year *	

ear	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-50	11	10	15
L-T °	-50	17	14	10
L-T o	-25	28	26	30
L-T o	-25	8	10	20
L-T o	-25	8	6	20
L-T o	0	118	96	55
L-T o	0	11	16	15
L-T o	0	21	22	45
L-T o	25	115	75	85
L-T C	25	83	69	75
L-T o	50	123	90	80
L-T o	50	61	52	85

Material A36

Page 3100.11

Description		
Material Code 009.002.0	02AS4 Material Name	A36
UNS	* Other Designation	*
Type Welde	-	
Thickness	1 in Composition Type	Actual
Composition Position		
Reference KONI		

Test Temperature degC

Description	
Material Code	Material Name
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID
Reference KONKUL-1	
Composition	
C 0.21 %	Mn 1.17 %
P 0.011 %	S 0.022 %
Si 0.04 %	Cr 0.05 %
Ni 0.03 %	Mo 0.01 %
V	Cu 0.04 %
Cb<0.005 %	Ti *
B *	Al
N 0.003 %	Other Components None %
Fabrication History	
Heat Treatment *	Producer US Steel
Year Produced*	Addl Info *
Source US Steel	Melting Practice *
Ingot Position	Killing Process
Process Temperature *	Process Time
Rolling Conditions *	Final Processing A,R
Final Temperature *	Final Time
Cold Work Strain	Aging Temperature *
Aging Time *	Location *
Weld	
Weld Code	Weld Type SAW
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap
Interpass Temperature 350 degF	Passes 7
Filler Specification F72-EM12K	Filler Name
Filler Carbon Content	Filler Metal Size
Shielding Gas	Voltage
Amperage	Polarity *
Travel Speed	Heat Input/Pass 74 KJ/in
Joint Preparation V Groove	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp *	Post-Weld Heat Time *
Flux Type	Flux Name *

Material A36

Page 3200.2

(continued)

Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-75	5	4	10
L-T o	-75	6	6	15
L-T o	-50	23	21	35
L-T o	-50	46	34	30
L-T o	-25	20	24	35
L-T o	-25	57	42	45
L-T o	0	75	58	65
L-T o	0	76	60	75
L-T o	50	105	7 9	90
L-T o	50	109	82	95

^{• -} not reported

Material A36

Description	
Material Code	Material Name A36
UNS *	
	Form Plate
	Composition Type Actual
	Lot ID
Reference KONKUL-1	

Test Temperature degC

^{* -} not reported

Material A36

Description	
Material Code	Material Name
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	
Composition	See Page 3200.1
Fabrication History	See Page 3200.1
Weld	
Weld Code 009.002.02BW	Weld Type SAW
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature 350 degF	Passes 7
Filler Specification F72-EM12K	Filler Name *
Filler Carbon Content *	Filler Metal Size
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed	Heat Input/Pass 74 KJ/in
Joint Preparation V Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp *	Post-Weld Heat Time
Flux Type *	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

Cal	<u></u> <u></u>			
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%c
L-T C	-100	12	8	10
L-T o	-100	5	4	10
L-T o	-75	20	13	25
L-T o	-75	35	25	20
L-T o	-50	23	22	35
L-T o	-50	27	25	30
L-T o	-25	55	45	30
L-T o	-25	63	49	35
L-T o	0	105	78	80
L-T o	0	70	62	70
L-T o	50	121	85	95
L-T o	50	125	88	95

Material A36

Description			
Material Code	009.002.02BW	Material Name	. A36
UNS		Other Designation	*
Type	. Welded Joint	Form	
Thickness	1 in		
Composition Position		Lot ID	
Reference			;

Test Temperature degC

^{* -} not reported

Description	}
Material Code	Material Name A36
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID
Reference KONKUL-1	
Composition	See Page 3200.1
Fabrication History	See Page 3200.1
Weld	
Weld Code 009.002.025\$1	Weld Type SAW
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature 350 degF	Passes 7
Filler Specification F72-EM12K	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage	Polarity *
Travel Speed *	Heat Input/Pass
Joint Preparation V Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time 1 hr
Flux Type	Flux Name*
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year *	

ear	<u> <u></u></u>			
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T °	-100	2	1	5
L-T o	-100	3	1	5
L-T o	-75	21	11	10
L-T o	-75	63	53	40
L-T o	-75	8	4	5
L-T o	-50	10	11	20
L-T C	-50	45	40	35
L-T o	-50	5	6	10
L-T o	-25	21	14	25
L-T o	-25	86	60	60
L-T o	0	108	77	90
L-T o	0	115	88	95
L-T o	5 0	109	73	100
L-T o	50	139	87	100

^{* -} not reported

Material A36

Page 3200.7

Description	
Material Code	Material Name
UNS*	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID *
Reference KONKUL-1	

Test Temperature degC

^{* -} not reported

Description	
Material Code	Material Name
UNS *	Other Designation*
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 3200.1
Fabrication History	See Page 3200.1
Weld	
Weld Code	Weld Type SAW
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature	Passes 7
Filler Specification F72-EM12K	Filler Name *
Filler Carbon Content *	Filler Metal Size *
Shielding Gas ***	Voltage *
Amperage *	Polarity *
Travel Speed *	Heat Input/Pass 74 KJ/in
Joint Preparation V Groove	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp	Post-Weld Heat Time
Flux Type *	Flux Name*
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%€
L-T O	-1(X)	11	13	20
L-T o	-100	8	10	25
L-T o	-75	29	22	35
L-T o	-75	39	33	40
L-T o	-50	36	38	45
L-T o	-50	65	57	55
L-T o	0	100	79	85
L-T o	0	104	74	90
L-T o	5 0	120	84	95
L-T o	50	138	91	100

^{* -} not reported

Material A36

Description			
Material Code	009.002.09BS2	Material Name	A36
UNS	*	Other Designation	*
Type	Welded Joint	Form	Plate
Thickness	1 in	Composition Type	Actual
Composition Position	*	Lot ID	
Reference	KONKUL-1		

Test Temperature degC

Description	
Material Code	Material Name
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 3200.1
Fabrication History	See Page 3200.1
Weld	
Weld Code	Weld Type SAW
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap
Interpass Temperature	Passes 7
Filler Specification F72-EM12K	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage ***	Polarity *
Travel Speed*	Heat Input/Pass 74 KJ/in
Joint Preparation V Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time 5 hr
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-75	3	3	5
L-T o	-75	5	6	10
L-T o	-50	11	12	25
L-T o	-50	5	7	15
L-T o	-25	45	35	45
L-T o	-25	7	9	20
L-T o	0	142	87	100
L-T o	0	21	23	15
L-T o	0	98	73	90
L-T o	50	113	70	90
L-T o	50	126	77	85

^{* -} not reported

Description			
Material Code	009.002.02BS2	Material Name	A36
UNS	*	Other Designation	*
Type	Welded Joint	Form	,
Thickness		Composition Type	,
		Lot ID	
Reference			

Test Temperature degC

^{* -} not reported

Description	
Material Code	Material Name A36
UNS*	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID *
Reference KONKUL-1	
Composition	See Page 3200.1
Fabrication History	See Page 3200.1
Weld	
Weld Code 009.002.09BS3	Weld Type SAW
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature	Passes 7
Filler Specification F72-EM12K	Filler Name *
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed *	Heat Input/Pass 74 KJ/in
Joint Preparation V Groove	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 1 hr
Flux Type *	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year *	

Cai	<u> </u>	·		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-100	22	17	20
L-T o	-100	8	8	15
L-T o	-75	11	14	20
L-T o	-75	20	29	25
L-T o	-50	18	21	40
L-T o	-50	30	30	45
L-T o	-25	66	5 6	45
L-T o	-25	78	59	50
L-T o	0	101	74	85
L-T o	0	94	70	65
L-T o	50	122	85	90
L-T o	50	138	90	95

Page 3200.13

Material A36

Description			
Material Code	009.002.09BS3	Material Name	A36
UNS	*	Other Designation	*
Type	Welded Joint	Form	
Thickness	1 in	Composition Type	Actual
Composition Position	*	Lot ID	*
Reference	KONKUL-1		

Test Temperature degC

^{* -} not reported

Description	
Material Code	Material Name A36
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 3200.1
Fabrication History	See Page 3200.1
Weld	
Weld Code 009.002.02BS3	Weld Type SAW
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature	Passes
Filler Specification F72-EM12K	Filler Name *
Filler Carbon Content *	Filler Metal Size **
Shielding Gas *	Voltage *
Amperage	Polarity *
Travel Speed*	Heat Input/Pass 74 KJ/in
Joint Preparation V Groove	Number of Sides 1
Location wrt Weld Fusion line	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 1 hr
Flux Type *	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
1	degF	ft-lb	mils	η_c
L-T o	-75	3	5	10
L-T o	-75	5	6	10
L-T o	-50	15	13	25
L-T o	-50	35	25	30
L-T o	-25	101	73	80
L-T o	-25	108	60	75
L-T o	0	120	73	80
L-T o	0	135	80	100
L-T o	50	120	71	90
L-T o	50	132	78	95

^{* -} not reported

Material A36

Description		
Material Code	Material Name	A36
UNS *	Other Designation	
Type Welded Joint	Form	
Thickness 1 in	Composition Type	
Composition Position	Lot ID	
Reference KONKUL-1		

Test Temperature degC

^{• -} not reported

Description	
Material Code	Material Name A36
UNS*	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *:
Reference KONKUL-1	
Composition	See Page 3200.1
Fabrication History	See Page 3200.1
Weld	
Weld Code 009,002,09BS4	Weld Type SAW
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature	Passes 7
Filler Specification F72-EM12K	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed *	Heat Input/Pass 74 KJ/in
Joint Preparation V Groove	Number of Sides
Location wrt Weld	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 5 hr
Flux Type*	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year *	

۲	<u>aı</u>	. <u> </u>	<u> </u>		
	Orien	Test Temp	CVN Energy	Lat Expans	Shear
		degF	ft-lb	mils	%
	L-T o	-100	4	4	10
	L-T ○	-100	8	8	10
	L-T ○	-75	15	18	20
	L-T ∘	-75	9	12	25
	L-T ○	-50	38	34	35
	L-T ∘	-50	43	36	40
	L-T o	-25	81	68	65
	L-T ∘	-25	94	76	75
į	L-T o	0	111	80	80
	L-T °	0	113	80	50
į	L-T °	50	157	80	100
i	L-T o	50	165	86	100

^{* -} not reported

Material A36

Description			
Material Code	009.002.09BS4	Material Name	A36
UNS	*	Other Designation	*
Type	Welded Joint	Form	
Thickness	1 in	Composition Type	•
Composition Position			
Reference			

Test Temperature degC

^{• -} not reported

Description	
Material Code	Material Name A36
UNS*	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 3200.1
Fabrication History	See Page 3200.1
Weld	
Weld Code 009.002.02BS4	Weld Type SAW
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature	Passes 7
Filler Specification F72-EM12K	Filler Name *
Filler Carbon Content *	Filler Metal Size *
Shielding Gas ***	Voltage *
Amperage *	Polarity *
Travel Speed*	Heat Input/Pass 74 KJ/in
Joint Preparation V Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 5 hr
Flux Type*	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year *	

<u>car</u>			·		· · · · · · · · · · · · · · · · · · ·
	Orien	Test Temp	CVN Energy	Lat Expans	Shear
		degF	ft-lb	mils	%
	L-T o	-75	2	3	5
1	L-T o	-75	2	3	5
	L-T o	-50	5	8	10
	L-T o	-50	6	8	20
1	L-T o	-25	13	9	20
	L-T o	-25	5	3	10
	L-T o	0	42	37	40
	L-T o	0	67	57	35
	L-T o	50	119	79	90

^{* -} not reported

Description			
Material Code	009.002.02BS4	Material Name	A36
UNS	*	Other Designation	*
Type	Welded Joint	Form	Plate
Thickness		Composition Type	
Composition Position	*	Lot ID	*
Reference	KONKUL-1		

Test Temperature degC

^{• -} not reported

Description	
Material Code	Material Name A36
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 3200.1
Fabrication History	See Page 3200.1
Weld	
Weld Code 009.002.09BS1	Weld Type SAW
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature 350 degF	Passes 7
Filler Specification F72-EM12K	Filler Name
Filler Carbon Content *	Filler Metal Size*
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed*	Heat Input/Pass
Joint Preparation V Groove	Number of Sides 1
Location wrt Weld	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-100	12	8	10
L-T o	-100	5	4	10
L-T o	-75	20	13	25
L-T o	-75	35	25	20
L-T o	-50	23	22	35
L-T o	-50	27	25	30
L-T o	-25	55	45	30
L-T o	-25	63	49	35
L-T o	0	105	78	80
L-T o	0	70	62	70
L-7 °	50	121	85	95
L-T °	50_	125	88	95

^{* -} not reported

Description			
Material Code	009.002.09BS1	Material Name	A36
UNS	*	Other Designation	*
Type	. Welded Joint	Form	
Thickness	1 in	Composition Type	Actual
Composition Position	*	Lot ID	*
Reference	KONKUL-1		

Test Temperature degC

^{* -} not reported

Material CG A537M

Description	~			
Material Code	01	Material Name CG A53		
UNS	*	Other Designation Grad	ie B	
Type Wrought Me	tal	Form	late	
Thickness 1.058	in	Composition Type Ac	tual	
Composition Position	*	Lot ID		
Reference SSC-2	76			
Composition				
C 0.15	%	Mn 1.20	0 %	
P 0.01	%	S 0.02	1 %	
Si 0.40		Cr 0.23	3 %	
Ni 0.13		Mo 0.04	4 %	
v	*	Cu 0.08	8 % '	
Cb	*	Ti	*	
B	*	Al 0.00	- 1	
N	*	Other Components Non-		
Fabrication History				
Heat Treatment Q	T,(Producer Arr	mco	
Year Produced	*	Addl Info		
Source SW	RI	Melting Practice	*	
Ingot Position	*	Killing Process		
Process Temperature	*	Process Time	. *	
Rolling Conditions	*	Final Processing	Q,T	
Final Temperature	*	Final Time		
Cold Work Strain	*	Aging Temperature	. *	
Aging Time	*	Location		
Property Measurements				
Test Type Tens	ile	Position	1/4T	
Specimen Type Rou		Specimen Thickness 0.25		
Gage Length 1.0		Loading Rate		
Tensile Strength Offset		Uniform Elongation		
Tensile Modulus		Standard Method		
Standard Year	*			
Orient Test Temp UTS	TYS	TYP Elongation RA		
degF ksi	ksi	ksi % %		
L Room 82	61.8	* 29.7 73.9		

^{• -} not reported

Material CG A537M

Description	
Material Code	Material Name CG A537M
UNS *	Other Designation Grade B
Type Wrought Metal	Form Plate
Thickness 1.058 in	Composition Type Actual
Composition Position	Lot ID
Reference SSC-276	
Composition	See Page 7100.1
Fabrication History	See Page 7100.1
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method E 23
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-80	24	0.039	45
L-T o	-80	32	0.041	34
L-T o	-80	38	0.026	32
L-T °	-4 0	70	0.069	100
L-T °	-4 0	75	0.058	62
L-T o	-4 0	78	0.071	100
L-T °	0	74	0.071	100
L-T o	0	76	0.067	100
L-T °	0	78	0.064	100
L-T °	32	74	0.067	100
L-T o	32	74	0.071	100
L-T o	32	75	0.065	100
L-T °	75	79	0.066	100
L-T o	75	80	0.075	100
L-T o	75	82	0.065	100

^{• -} not reported

Material CG A537M

Description		
Material Code	Material Name	CG A537M
UNS *	Other Designation	Grade B
Type Wrought Metal	Form	Plate
Thickness 1.058 in	Composition Type	Actual
Composition Position **	Lot ID	*:
Reference SSC-276		

^{* -} not reported

Material CG A537M

Description	
Material Code	Material Name CG A537M
UNS *	Other Designation Grade B
Type Wrought Metal	Form Plate
Thickness 1.058 in	Composition Type Actual
Composition Position	Lot ID *
Reference SSC-276	
Composition	See Page 7100.1
Fabrication History	See Page 7100.1
Property Measurements	
Test Type Nil Ductilty Transition	Position 0/4T
Specimen Type P-3	Filler Alloy Hardex-N
Passes *	Standard Method E 208
Standard Year *	

Orien	Test Temp	Break?	NDTT
	degF		
L	-90	Yes	No
L	-80	No	No
L	-80	Yes	No No
L	-70	No	No
L	-70	Yes	Yes
L _	-60	No	No

Material CG A537M

Description			
Material Code		Material Name	CG A537M
UNS	*	Other Designation	Grade B
Type	Wrought Metal	Form	Plate
Thickness	1.058 in	Composition Type	Actual
Composition Position	*	Lot ID	*
Reference	SSC-276		
Composition		See Page 7100.1 See Page 7100.1	
Fabrication History		See Page 7100.1	
Property Measurements			
Test Type	Dynamic Tear	Position	0/4T
Specimen Type	Dynamic Tear	Notch Preparation	Pressed
Specimen Thickness	5/8 in	Loading Rate	
Appearance	*	Standard Method	E 604
Standard Year	1976		

Orien	Test Temp	DT Energy			
	degF	ft-lb			
L-T o	-110	35			
L-T o	-80	70			
L-T o	-40	320			
L-T °	0	665			
L-T o	72	790			
L-T o	120	885			
T-L ^	-100	55			
T-L 4	0	420			
T-L △	75	420			

^{• -} not reported

Material CG A537M

Description	
Material Code	Material Name CG A537M
UNS *	Other Designation Grade B
Type Wrought Metal	Form Plate
Thickness	Composition Type Actual
Composition Position *	
Reference SSC-276	

Test Temperature degC

^{• -} not reported

Material CG A537M

Description							
1		003.002.0	01				
UNS *			*	Othe	r Designation .		i,
		Wrought Met		Form			
				Com	position Type .		Actual
				Lot I	D		*
Reference	<u> </u>	<u></u>	*				
Composition							
				Mn			
		0.01	%	S .			0.019 %
Si		0.33	%	Cr			0.21 %
Ni		0.25	%	Mo			0.06 %
V			*	Cu			0.14 %
Cb			*	Ti			*
В			*	Αl			0.02 %
N	. <u> </u>		*	Othe	r Components		None %_
Fabrication H							
Heat Treatment		Q	T,(Prod	lucer		Armco
Year Produced			*	Add	l Info	. .	None
Source		SW	RI	Mel	ing Practice		*
Ingot Position			*	Killi	ng Process		* !
Process Temper	rature		*	Proc	ess Time		
Rolling Conditi	ons		*	Final Processing Q,			Q,T
Final Temperat	ure		*	Final Time			
Cold Work Stra	i in		*	Agir	ng Temperature		*
Aging Time	<u> </u>	<u> </u>	*	Loca	ation	<u> </u>	*
Property Mea	surements						
Test Type		Tens	ile	Posi	tion		1/4T
		Rou		Spec	imen Thickness		0.250 in
Gage Length		1.00	in	Loading Rate			
			*	Uniform Elongation			
, –			*		•		
Standard Year		<u> </u>	*				
Orient	Test Temp	UTS	TYS		TYP	Elongation	RA
	degF	ksi	ksi		ksi	%	%
L	Room	89.6	69.0		*	22.7	68.7

^{* -} not reported

Material CG A537M

Description			
Material Code	003.002.01	Material Name	CG A537M
UNS	*	Other Designation	Grade B
Type	Wrought Metal	Form	Plate
Thickness	1 in	Composition Type	Actual
Composition Position		Lot ID	
Reference	*		·
Composition		See Page 7200.1	
Fabrication History		See Page 7200.1	
Property Measurements			
Test Type	Charpy V Impact	Position	1/4T
Specimen Type	Full	Did Specimen Fracture?	
Did Specimen Split?	*	Standard Method	•
Standard Year			

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-80	27.0	0.025	46
L-T o	-80	28.0	0.028	51
L-T o	-80	34.0	0.033	61
L-T o	-40	47.0	0.041	85
L-T ○	-4 0	49.0	0.045	100
L-T o	-4 0	52.5	0.048	100
L-T o	0	49.5	0.048	100
L-T o	0	56.0	0.048	100
L-T o	0	80.0	0.064	100
L-T ○	32	53.0	0.047	100
L-T o	32	53.0	0.049	100
L-T o	32	54.0	0.051	100
L-T o	75	49.5	0.049	100
L-T o	75	50.0	0.050	100
L-T o	75	55.0	0.051	100

^{• -} not reported

Material CG A537M

Description			
Material Code	003.002.01	Material Name	CG A537M
UNS		Other Designation	
Type	Wrought Metal	Form	and the second s
Thickness	1 in	Composition Type	:
Composition Position	*	Lot ID	
Reference			

Test Temperature degC

^{• -} not reported

Material CG A537M

Description	
Material Code	Material Name CG A537M
UNS *	Other Designation Grade B
Type Wrought Metal	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference *	
Composition	See Page 7200.1
Fabrication History	See Page 7200.1
Property Measurements	
Test Type Nil Ductilty Transition	Position 0/4T
Specimen Type P-3	Filler Alloy Hardex-N
Passes *	Standard Method E 208
Standard Year *	

Orien	Test Temp	Break?	NDTT
	degF		
L	-90	Yes	No
L	-80	No	No
L	-80	Yes	No.
L	-70	Yes	Yes
L	-60	No	No

^{* -} not reported

Material CG A537M

Description			
Material Code	003.002.01	Material Name	CG A537M
UNS	*	Other Designation	Grade B
Type	Wrought Metal	Form	
Thickness	1 in	Composition Type	Actual
Composition Position	*	Lot ID	
Reference	*		
Composition Eabrication History		See Page 7200.1	
Fabrication History		See Page 7200.1	
Property Measurements			
Test Type	Dynamic Tear	Position	0/4T
Specimen Type	Dynamic Tear	Notch Preparation	Pressed
Specimen Thickness	5/8 in	Loading Rate	
Appearance	*	Standard Method	E 604
Standard Year	1976		

	1770	
Orien	Test Temp	DT Energy
	degF	ft-lb
L-T o	-110	45
L-T o	-80	90
L-T o	-4 0	195
L-T o	-20	350
L-T o	0	540
L-T o	72	550
T-L a	-100	95
T-L △	0	665
T-L △	75	640

Material CG A537M

Description	
Material Code	Material Name CG A537M
UNS *	Other Designation Grade B
Type Wrought Metal	Form Plate
Thickness 1 in	
	Lot ID *
Reference *	

Test Temperature degC

^{* -} not reported

Material CG A537M

Description							i
Material Code		003.002.	09	Mate	rial Name		CG A537M
UNS			•	Other	Designation .		Grade B
Type		Welded Jo	int	Form			Plate
Thickness		1	in	Comp	oosition Type		Actual
Composition Po	sition		*	Lot I	D		*
Reference	<u> </u>	<u> </u>	*				
Composition					age 7200.1		
Fabrication H	ictory			See F	age 7200.1		
Weld							
Weld Code		003.002.	09	Weld	Type		SAW
Base Metal Thic	ckness	1.0	in	Weld	ing Position		Downhand
Preheat Temper	ature	150 de	gF	Meta	l Gap		0 in
Interpass Tempe	erature	300 de	gF	Passe	s		*
•							
Filler Carbon C	ontent		*	Filler	Metal Size		5/32 in
Shielding Gas			*				
Amperage		475 am	ps				
Travel Speed .		18 in/n	nin				
Joint Preparatio	n	Double V-Groo	ve				i
Location wrt W	eld	11mm in H	٩Z				
Post-Weld Heat	Temp		*	Post-	Weld Heat Time		
			*	Flux	Name		Linc 860
Weld Composit	ion Reported? .		No				
Property Mea	surements						
Test Type		Tens	ile				
1		Rou		Spec	imen Thickness		0.250 in
		1.25			•	• • • • • • • • • • • • • • • • • • • •	·
			*	Unife	orm Elongation		*
Tensile Modulu	s		*	Stand	lard Method		E 8
Standard Year	<u> </u>		*				
Orient	Test Temp	UTS	TYS		TYP	Elongation	RA
	degF	ksi	ksi		ksi	%	%
L	Room	71.1	86.6		*	16.2	61.2

Material CG A537M

Description	
Material Code	Material Name CG A537M
UNS *	Other Designation Grade B
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference *	
Composition	See Page 7200.1
Fabrication History	See Page 7200.1
Weld	
Weld Code	Weld Type SAW
Base Metal Thickness 1.0 in	Welding Position Downhand
Preheat Temperature 150 degF	Metal Gap 0 in
Interpass Temperature	Passes *
Filler Specification *	Filler Name Armco W18
Filler Carbon Content *	Filler Metal Size 5/32 in
Shielding Gas *	Voltage 30 volts
Amperage	Polarity DCRP
Travel Speed	Heat Input/Pass 50 KJ/in
Joint Preparation Double V-Groove	Number of Sides
Location wrt Weld	Location wrt Surface
Post-Weld Heat Temp *	Post-Weld Heat Time *
Flux Type *	Flux Name Linc 860
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 1/4T
Specimen Type Full	Shear Fracture *
Did Specimen Fracture? *	Did Specimen Split?
Standard Method ***	Standard Year

<u> </u>	 	Standard Tear	
Orien	Test Temp	CVN Energy	Lat Expans
	degF	ft-lb	mils
L-T o	-100	11.0	0.013
L-T o	-100	14.5	0.015
L-T o	-100	15.5	0.017
L-T o	-60	29.5	0.031
L-T ∘	-60	30.5	0.031
L-T o	-60	31.5	0.033
L-T o	-20	44.5	0.043
L-T o	-20	47.0	0.045
L-T o	-20	48.0	0.045
L-T o	32	54.5	0.052
L-T o	32	57.0	0.057
L-T o	32	62.0	0.047
L-T o	75	64.0	0.063
L-T o	75	66.0	0.066
L-T o	75	69.0	0.067

^{• -} not reported

Material CG A537M

Page 7200.9

Description			
Material Code	003.002.09.1	Material Name	CG A537M
UNS		Other Designation	Grade B
Type	Welded Joint	Form	
Thickness			
		Lot ID	*
Reference	*		

Test Temperature degC

^{* -} not reported

Material CG A537M

Description			
Material Code		Material Name	CG A537M
UNS	*	Other Designation	Grade B
Type	Welded Joint	Form	Plate
Thickness	1 in	Composition Type	Actual
Composition Position	*	Lot ID	*
Reference			
Composition		See Page 7200.1	
Fabrication History		See Page 7200.1	
Weld		See Page 7200.8	
Property Measurements	Ŝ		
Test Type	Nil Ductilty Transition	Position	0/4T
Specimen Type	P-3	Filler Alloy	Hardex-N
Passes		Standard Method	E 208
Standard Year	*		

Orien	Test Temp	Break?	NDTT
	degF		
L	-100	No	No
L	-100	No	No.
L	-60	No	No

Material CG A537M

Description	
Material Code	Material Name CG A537M
UNS *	Other Designation Grade B
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID*
Reference *	
Composition	See Page 7200.1
Fabrication History	See Page 7200.1
Weld	See Page 7200.8
Property Measurements	
Test Type Dynamic Tear	Position 0/4T
Specimen Type Dynamic Tear	Notch Preparation Pressed
Specimen Thickness 5/8 in	Loading Rate *
Appearance **	Standard Method E 604
Standard Year	

Orien	Test Temp	DT Energy
	degF	ft-lb
T-L O	-80	100
T-L o	-40	180
T-L o	0	440
T-L o	75	700
T-L o	120	670

^{* -} not reported

Material CG A537M

Description			
Material Code	003.002.09.1	Material Name	CG A537M
UNS	*	Other Designation	Grade B
Type	Welded Joint	Form	Plate
Thickness	1 in	Composition Type	Actual
Composition Position	*	Lot ID	
Reference			

Test Temperature degC

^{* -} not reported

Material CG A537M

Description	
Material Code	Material Name CG A537M
UNS *	Other Designation Grade B
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID *
Reference *	
Composition	See Page 7200.1
Fabrication History	See Page 7200.1
Weld	
Weld Code	Weld Type SAW
Base Metal Thickness 1.0 in	Welding Position Downhand
Preheat Temperature	Metal Gap 0 in
Interpass Temperature 300 degF	Passes
Filler Specification *	Filler Name Armco W18
Filler Carbon Content	Filler Metal Size 5/32 in
Shielding Gas *	Voltage 30 volts
Amperage	Polarity DCRP
Travel Speed	Heat Input/Pass 50 KJ/in
Joint Preparation Double V-Groove	Number of Sides
Location wrt Weld 1mm in HAZ	Location wrt Surface
Post-Weld Heat Temp *	Post-Weld Heat Time *
Flux Type	Flux Name Linc 860
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Shear Fracture *
Did Specimen Fracture?	Did Specimen Split?
Standard Method	Standard Year **

<u> </u>	<u> </u>	Standard_rear	
Orien	Test Temp	CVN Energy	Lat Expans
	degF	ft-lb	mils
L-T °	-100	15.5	0.014
L-T o	-100	16.0	0.016
L-T ○	-100	24.0	0.023
L-T o	-6 0	31.0	0.029
L-T o	-60	31.5	0.031
L-T o	-6 0	32.5	0.032
L-T o	-20	47.0	0.044
L-T o	-2 0	48.0	0.045
L-T o	-20	50.0	0.046
L-T o	32	50.0	0.049
L-T o	32	55.0	0.051
L-T o	32	56.5	0.052
L-T ∘	75	47.0	0.047
L-T o	75	48.5	0.050
L-T o	75	52.0	0.052

^{• -} not reported

Material CG A537M

Description			
Material Code	003.002.03.1	Material Name	CG A537M
UNS	*	Other Designation	Grade B
Type	. Welded Joint	Form	Plate
Thickness	1 in	Composition Type	Actual
Composition Position			
Reference	*		

Material CG A537M

Description	
Material Code	Material Name CG A537M
UNS *	Other Designation Grade B
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference *	
Composition	See Page 7200.1
Fabrication History	See Page 7200.1
Weld	See Page 7200.13
Property Measurements	
Test Type Dynamic Tear	Position 0/4T
Specimen Type Dynamic Tear	Notch Preparation Pressed
Specimen Thickness 5/8 in	Loading Rate
Appearance *	Standard Method E 604
Standard Year 1976	

Orien	Test Temp degF	DT Energy ft-lb
L-T o	-80	65
L-T o	0	465
1.T O	75	550

Material CG A537M

Description		,	
Material Code	003.002.03.1	Material Name	CG A537M
UNS	*	Other Designation	Grade B
Type	Welded Joint	Form	
Thickness	1 in	Composition Type	Actual
		Lot ID	
Reference			

Test Temperature degC

^{* -} not reported

Material A537 CL1

Description					·		
Material Code		003.003.0	1	Mate	erial Name	<i></i>	A537 CL1
UNS			*	Oth	er Designation .		
Type		Wrought Met	al	For	n		Plate
Thickness		3/4	in	Con	position Type	<i></i>	Actual
Composition Po	osition		*	Lot	ID		D3791-2B
Reference		LR320)1				
Composition				-			
C	·	0.20	%	Mn			1.28 %
P			•	S .			0.021 %
			•	Cr			*
L			•				
1			*	Cu		• • • • • • • • • • • • •	
ľ			•				
			*			· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	*			<u> </u>	
Fabrication F	listory						
i e	•		N	Proc	iucer		Lukens
1		197		Add	l Info		
ł		Lukei		Melting Practice			
			*		•		
5		. ,	*		_		
_			*				
, -			*		_		
			*				
			*	_		<u></u>	
Property Mea	surements						
		Tensi	le	Posi	tion		1/4T
		Cylindric					
•							
			*				
_			•		~		
Standard Year *		*					
Orient	Test Temp	UTS	TYS		TYP	Elongation	RA
	degF	ksi	ksi		ksi	%	%
L	80	83.7	54.2		54.2	27.8	63.1
L	80	84.2	52.4		53.6	28.0	62.2
T	80	84.2	55.9		62.0	27.3	61.7
Т	80	84.2	56.3		61.2	28.5	63.6

^{• -} not reported

Material A537 CL1

Description	
Material Code	Material Name A537 CL1
UNS *	Other Designation
Type Wrought Metal	Form Plate
Thickness	Composition Type Actual
Composition Position	Lot ID
Reference LR3201	
Composition	See Page 7300.1
Fabrication History	See Page 7300.1
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Standard Method *	Standard Year

ta	ndard Method	 	*	Standard Year	<u>r</u>	<u> </u>	. *
	Orien	Test Temp	CVN Energy	Lat Expans	Shear	Split?	\top
		degF	ft-lb	mils	%		
	L-T o	-180	5	3	0	*	7
	L-T o	-160	7	5	0	*	
	L-T o	-140	8	5 5	0	•	
	L-T o	-120	12	9	0	*	İ
	L-T o	-100	24	19	10	*	
	L-T ○	-80	26	23	17	*	
	L-T o	-70	27	25	19	*	
	L-T o	-60	38	33	27		
	L-T o	-50	36	34	33	*	
	L-T o	-4 0	41	37	44	*	-
	L-T o	-30	54	48	47	*	
	L-T o	-20	54	47	52		
	L-T o	-10	54	51	65	•	
	L-T o	0	68	57	72	•	
	L-T o	10	80	72	100	Yes	
	L-T o	20	80	7 0	100	*	
	L-T o	40	81	72	100	Yes	
	L-T o	60	86	74	100	*	
	L-T o	74	85	76	100	Yes	
	L-T o	100	81	70	100	Yes	-
	T-L ^	-180	4	3 5	0	•	-
	T-L ^	-160	7	5	0	*	
	T-L ^	-140	10	6	0	•	
	T-L ^	-120	12	10	0	*	ŀ
	T-L ^	-100	13	13	6	•	
	T-L ^	-80	16	15	11	•	1
	T-L △	-70	19	20	15	*	
	T-L ^	-60	23	23	27	•	
	T-L ^	-50	21	23	30	*	
	T-L ^	-40	23	26	40	*	ĺ
	T-L ^	-30	27	29	47	•	
ı	T-L A	-20	33	34	60	*	
	T-L 4	-10	34	36	52	•	
	T-L ^	0	38	38	66	•	
	T-L ^	10	41	41	75	Yes	

Material A537 CL1

Page 7300.3

(continued)

Orien	Test Temp degF	CVN Energy ft-lb	Lat Expans mils	Shear %	Split?
T-L ^	20	48	50	95	*
T-L ^	40	49	49	99	•
T-L ^	60	49	52	100	
T-L △	74	48	49	100	•
T-L △	100	51	51	100	*

^{• -} not reported

Material A537 CL1

Description			
Material Code		Material Name	A537 CL1
UNS	*	Other Designation	
Type	Wrought Metal	Form	
Thickness		Composition Type	Actual
Composition Position		Lot ID	
Reference	LR3201		

Test Temperature degC

^{* -} not reported

Material A537 CL1

Description			
Material Code	003.003.01	Material Name	A537 CL1
UNS		Other Designation	*
Type Wro	ught Metal	Form	
Thickness	3/4 in	Composition Type	. Actual
Composition Position		Lot ID	
Reference	LR3201		:
Composition		See Page 7300.1	
Fabrication History		See Page 7300.1	
Property Measurements			
Test Type Dyr	namic Tear	Position	1/2T
Specimen Type Dyr	namic Tear	Notch Preparation	Pressed
Specimen Thickness		Loading Rate	
Standard Method		Standard Year	*

<u> </u>		Standard rear	
Orien	Orien Test Temp		Frac Apear
	degF	ft-lb	%
L-T °	-75	20	10
L-T o	-50	80	17
L-T o	-25	90	27
L-T o	0	185	45
L-T °	10	315	52
L-T °	25	440	71
L-T o	35	400	63
L-T o	50	720	98
L-T o	75	710	100
L-T o	100	740	100
T-L △	-75	20	10
T-L ^	-50	65	20
T-L ^	-25	85	25
T-L ^	0	200	53
T-L ^	10	230	55
T-L ^	25	310	74
T-L △	35	410	95
T-L ^	50	460	98
T-L ^	75	440	100
T-L ^	100	440	100

^{* -} not reported

Material A537 CL1

Description	
Material Code	Material Name
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness	Composition Type Actual
Composition Position **	Lot ID
Reference LR3201	

Test Temperature degC

^{• -} not reported

Material A537 CL1

Description							
							i
					_		
Type		Wrought M	letal	Forn	n		Plate
	osition			Lot 1	ID		
	<u></u>	KONKU	TL-1				
Composition							
C		0.1	8 %	Mn			1.15 %
P		0.00	8 %	S .			0.02 %
Si		0 <i>.</i> 2	9 %	Cr			0.09 %
Ni		0.2	2 %	Mo			0.04 %
V		<0.00	2 %	Cu			0.26 %
Cb		<0.00	5 %	Ti			*
B			*	Al			0.019 %
N		0.01	1 %	Othe	er Components	<u> </u>	None %
Fabrication H	listory						
Heat Treatment			. *	Proc	lucer		US Steel
Year Produced			*	Add	Info		*
Source		US S	Steel	Mel	ting Practice		*
Ingot Position			*	Killi	ing Process		Si-Al
Process Temper	rature		. *	Proc	ess Time		*
Rolling Conditi	ons		*	Fina	l Processing		N
Final Temperate	ure		. *	Fina	l Time		*
Cold Work Stra	iin .		*				
Aging Time	<u> </u>		. *	_	~ .	 	
Property Mea							
Test Type		Te	nsile	Posi	tion		1/4T
Specimen Type Cylindrical			Spec	cimen Thickness		0.357 in	
Gage Length 1.4 in			-				
Tensile Strength Offset 0.2 %							
	IS						
Standard Year			*		•		
Orient	Test Temp	UTS	TYS		TYP	Elongation	RA
	degF	ksi	ksi		ksi	%	%
	T T CO T				*	31.6	· -

Material A537 CL1

Description		
Material Code 013.004.02	AW	Material Name A537 CL1
UNS	. *	Other Designation
Type Welded J	loint	Form Plate
Thickness	1 in	Composition Type Actual
Composition Position	. *	Lot ID *
Reference KONKU	ЛL-1	
mposition		See Page 7400.1
Fabrication History		See Page 7400.1
Weld		
Weld Code	AW	Weld Type SMA
Base Metal Thickness	1 in	Welding Position Downhand IG
Prcheat Temperature 50 c	degF	Metal Gap 0 in
Interpass Temperature	legF	Passes
Filler Specification E8018	8-C3	Filler Name
Filler Carbon Content	. *	Filler Metal Size
Shielding Gas	. *	Voltage *
Amperage	. *	Polarity *
Travel Speed	. *	Heat Input/Pass
Joint Preparation K-Gro	oove	Number of Sides
Location wrt Weld Fusion	line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp	. *	Post-Weld Heat Time *
Flux Type	. *	Flux Name *
Weld Composition Reported?	No	
Property Measurements		
Test Type Charpy V Im		Position 3/4T
Specimen Type	Full	Did Specimen Fracture? Assumed
Did Specimen Split?		Standard Method *
Standard Year	. *	

Cal		-		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-125	10	6	20
L-T o	-125	11	8	25
L-T o	-100	17	13	35
L-T o	-100	20	14	30
L-T o	-100	8	6	25
L-T o	-75	23	17	45
L-T o	-75	25	20	50
L-T o	-50	42	34	80
L-T o	-50	52	39	75
L-T o	0	53	46	85
L-T o	0	60	48	90
L-T o	50	64	55	100
L-T o	50	65	58	100

^{* -} not reported

Material A537 CL1

Description			
Material Code	013.004.02AW	Material Name	A537 CL1
UNS	*	Other Designation	*
Type	Welded Joint	Form	and the second s
Thickness	1 in	Composition Type	Actual
Composition Position	*	Lot ID	
Reference			

Test Temperature degC

^{* -} not reported

Material A537 CL1

Description	
Material Code	Material Name A537 CL1
UNS*	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 7400.1
Fabrication History	See Page 7400.1
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes
Filler Specification E8018-C3	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed*	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

<u>c</u>	ar	<u> </u>		·		_
	Orien	Test Temp	CVN Energy	Lat Expans	Shear	1
		degF	ft-lb	mils	%	ļ
	L-T o	-150	10	5	25	1
	L-T o	-150	7	4	20	
	L-T o	-125	11	8	30	
	L-T ∘	-125	12	9	20	1
	L-T o	-100	18	10	40	
	L-T o	-100	26	20	35	١
	L-T ∘	-75	20	17	35	
	L-T o	-75	39	33	75	
	L-T ○	-50	55	42	85	
	L-T o	-50	60	58	100	-
	L-T ○	0	55	59	95	
	L-T o	0	58	58	100	
	L-T o	50	66	58	1.5	
	L-T o	50	70	54	98	-

^{* -} not reported

Material A537 CL1

Description Material Code 013.004.02AS1 UNS +	
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position KONKUL-1	

Test Temperature degC

^{* -} not reported

Material A537 CL1

Description	
Material Code	Material Name
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	
Composition	See Page 7400.1
Fabrication History	See Page 74()0.1
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes
Filler Specification E8018-C3	Filler Name
Filler Carbon Content *	Filler Metal Size
Shielding Gas *	Voltage
Amperage*	Polarity *
Travel Speed	Heat Input/Pass
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time
Flux Type	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-150	5	3	15
L-T °	-150	6	4	20
L-T o	-125	20	16	20
L-T o	-125	25	22	65
L-T °	-125	28	22	35
L-T o	-100	19	14	45
L-T o	-100	25	24	75
L-T o	-75	35	27	70
L-T o	-75	36	33	70
L-T °	-50	35	29	65
L-T o	-50	35	33	70
L-T o	0	59	59	100
L-T °	0	62	59	100
L-T o	50	53	49	100
L-T o	50	59	56	99

^{• -} not reported

Material A537 CL1

Description	0 1 10 1 00 1 00		
Material Code		Material Name	A537 CL1
UNS		Other Designation	*:
Type	Welded Joint	Form	
Thickness	1 in	Composition Type	
Composition Position	*	Lot ID	
Reference	KONKUL-1		

Test Temperature degC

^{* -} not reported

Material A537 CL1

Description	
Material Code 013.004.02AS3	Material Name A537 CL1
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	
Composition	See Page 7400.1
Fabrication History	See Page 7400.1
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes 15
Filler Specification E8018-C3	Filler Name
Filler Carbon Content *	Filler Metal Size
Shielding Gas **	Voltage *
Amperage *	Polarity *
Travel Speed*	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 1 hr
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-125	11	9	25
L-T o	-125	21	19	35
L-T o	-125	21	20	30
L-T o	-100	10	9	25
L-T O	-100	13	14	25
L-T o	-100	15	16	25
L-T °	-75	26	25	70
L-T o	-75	44	40	70
L-T o	-50	35	36	70
L-T o	-50	55	52	80
L-T o	0	53	54	98
L-T O	0	62	58	100
L-T o	5 0	62	54	100
L-T o	50	70	68	100

^{* -} not reported

Material A537 CL1

Page 7400.9

Description	
Material Code	Material Name A537 CL1
UNS *	Other Designation
Type Welded Joint	-
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	

Test Temperature degC

^{* -} not reported

Material A537 CL1

Page 7400.10

Description	
Material Code	Material Name A537 CL1
UNS *	Other Designation*
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 7400.1
Fabrication History	See Page 7400.1
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness 1 in	Welding Position Downhand IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes 15
Filler Specification E8018-C3	Filler Name
Filler Carbon Content *	Filler Metal Size
Shielding Gas *	Voltage *
Amperage	Polarity *
Travel Speed	Heat Input/Pass
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 5 hr
Flux Type	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-150	13	14	15
L-T o	-150	7	6	5
L-T o	-125	15	18	40
L-T o	-125	17	22	25
L-T o	-100	16	22	45
L-T o	-100	23	27	40
L-T o	-75	23	26	45
L-T °	-75	49	37	70
L-T o	-75	51	48	100
L-T o	-50	45	44	80
L-T o	-50	47	44	75
L-T o	0	62	59	100
L-T °	0	65	60	100
L-T o	50	50	49	100
L-T o	50	66	59	100

^{• -} not reported

Material A537 CL1

Page 7400.11

Description	
Material Code 013.004.02AS4	Material Name A537 CL1
UNS *	Other Designation
Type Welded Joint	-
Thickness 1 in	
Composition Position *	Lot ID *
Reference KONKUL-1	

Test Temperature degC

^{• -} not reported

Material A572 Gr50

Description					
Material Code	016.001.010	Ą	Material Name	<i>.</i>	A572 Gr50
UNS		*	Other Designation	n	*
Type	Wrought Met	al	Form		Plate
Thickness	1 i	n	Composition Typ	œ	Actual
Composition Position		*	Lot ID		*
Reference	KONKUL	1			
Composition		·-·			
C	0.20	%	Mn		1.24 %
P	0.004	%	S		0.024 %
Si	0.02 9	%	Cr		0.02 %
Ni	0.04 (%	Mo	. 	0.01 %
v					
Cb	<0.005	%	Ti		*
B				• • • • • • • • • • • • • • • • • • • •	
N	0.005	%	Other Componer	ts	*
Fabrication History					
Heat Treatment		*	Producer		US Steel
Year Produced		•	Addl Info	<i></i> .	*
Source US Steel		el	Melting Practice		
Ingot Position					
Process Temperature			•		
Rolling Conditions		•	Final Processing		A,R
Final Temperature		*	Final Time		
Cold Work Strain		*	Aging Temperate	ıre	
Aging Time			~ ~	<u></u>	
Property Measurements					
Test Type	Tensi	e	Position		1/4T
Specimen Type			Specimen Thick	ness	0.357 in
Gage Length	•		•		
Tensile Strength Offset				ion	
Tensile Modulus		*	_	l	
Standard Year		*			
Orient Test Temp	UTS	TYS	TYP	Elongation	RA
degF	ksi	ksi	ksi	%	%
L Room	87.9	58.7		26.9	66

Material A572 Gr50

Description	
Material Code	Material Name A572 Gr50
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID *
Reference KONKUL-1	
Composition	See Page 7600.1
Fabrication History	See Page 7600.1
Weld	
Weld Code 016.001.09AA	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature 350 degF	Passes 16
Filler Specification E7018	Filler Name *
Filler Carbon Content	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp *	Post-Weld Heat Time
Flux Type *	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

vai	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-75	10	11	10
L-T o	-75	14	11	10
L-T o	-50	10	12	15
L-T o	-50	29	23	10
L-T o	-25	15	19	30
L-T o	-25	20	23	30
L-T o	0	30	30	40
L-T o	0	70	58	40
L-T o	25	62	5 6	50
L-T o	25	83	70	60
L-T o	50	102	82	75
L-T o	50	68	58	6 0
L-T o	75	109	93	90
L-T o	75	110	89	80

Material A572 Gr50

Description	
Material Code	Material Name
UNS*	Other Designation
Type Welded Joint	-
	Composition Type Actual
	Lot ID *
Reference KONKUL-1	

Test Temperature degC

^{* -} not reported

Material A572 Gr50

Description		
Material Code	2AA	Material Name
UNS	*	Other Designation *
Type Welded	Joint	Form Plate
Thickness	1 in	Composition Type Actual
Composition Position	. *	Lot ID
Reference KONK	UL-1	
Composition		See Page 7600.1
Fabrication History		See Page 7600.1
Weld		
Weld Code 016.001.0	2AA	Weld Type SMA
Base Metal Thickness	1 in	Welding Position IG
Preheat Temperature 50	degF	Metal Gap 0 in
Interpass Temperature	degF	Passes 16
Filler Specification E	7018	Filler Name *
Filler Carbon Content	. *	Filler Metal Size *
Shielding Gas	. *	Voltage *
Amperage	. *	Polarity *
Travel Speed		Heat Input/Pass 34 KJ/in
Joint Preparation K-Gr	roove	Number of Sides
Location wrt Weld Fusion	n line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp		Post-Weld Heat Time *
Flux Type		Flux Name *
Weld Composition Reported?	No	
Property Measurements		
Test Type Charpy V In	npact	Position 3/4T
Specimen Type	Full	Did Specimen Fracture? Assumed
Did Specimen Split?		Standard Method *
Standard Year		

ear	<u> </u>	<u></u> <u></u> <u>.</u>				
	Orien	Test Temp	CVN Energy	Lat Expans	Shear	7
		degF	ft-lb	mils	%	1
	L-T o	-100	29	18	20	7
	L-T o	-100	5	3	10	l
	L-T o	-75	75	46	30	
	L-T o	-75	8	7	10	ı
	L-T o	-50	33	25	30	İ
	L-T o	-50	8	10	15	ı
	L-T o	-25	121	75	40	-
1	L-T o	-25	124	80	50	1
	L-T o	0	103	79	65	1
	L-T o	0	45	39	55	
	L-T o	25	63	54	50	ı
	L-T o	25	81	65	75	١
	L-T o	50	65	51	60	
	L-T o	50	90	73	9 0	-

^{* -} not reported

Material A572 Gr50

Description			
Material Code	016.001.02AA	Material Name	A572 Gr50
UNS	*	Other Designation	*
Type	Welded Joint	Form	Plate
Thickness	1 in	Composition Type	Actual
Composition Position	*	Lot ID	*
Reference	KONKUL-1		

Material A572 Gr50

Description	
Material Code 016.001.09AS1	Material Name A572 Gr50
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 7600.1
Fabrication History	See Page 7600.1
Weld	
Weld Code 016.001.09AS1	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes 16
Filler Specification E7018	Filler Name
Filler Carbon Content *	Filler Metal Size **
Shielding Gas	Voltage *
Amperage *	Polarity *
Travel Speed *	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp! 100 degF	Post-Weld Heat Time 1 hr
Flux Type *	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year *	

드		 	·			
	Orien	Test Temp	CVN Energy	Lat Expans	Shear	Ī
		degF	ft-lb	mils	%	
	L-T °	-100	6	6	10	
	L-T o	-100	9	10	10	
	L-T o	-75	11	11	10	l
	L-T o	-75	28	24	15	İ
	L-T o	-50	61	54	30	
	L-T °	-50	65	54	30	
	L-T o	-25	74	66	40	ĺ
	L-T o	-25	92	87	50	
	L-T o	0	82	67	60	
	L-T o	0	95	88	65	ĺ
	L-T o	25	121	9 0	70	
	L-T o	25	91	76	70	
	L-T o	50	112	92	85	
	L-T o	50	116	96	90	

^{* -} not reported

Material A572 Gr50

Description			
Material Code	016.001.09AS1	Material Name	A572 Gr50
UNS	•	Other Designation	•
Type	Welded Joint	Form	Plate
Thickness	1 in	Composition Type	Actual
Composition Position	*	Lot ID	
Reference	KONKUL-1		

Test Temperature degC

^{* -} not reported

Material A572 Gr50

Description	!
Material Code	Material Name A572 Gr50
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	
Composition	See Page 7600.1
Fabrication History	See Page 7600.1
Weld	
Weld Code 016.001.02AS1	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes
Filler Specification E7018	Filler Name
Filler Carbon Content *	Filler Metal Size **
Shielding Gas *	Voltage *
Amperage *	Polarity
Travel Speed*	Heat Input/Pass
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time 1 hr
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method
Standard Year	

ar	<u> </u>	· · · · · · · · · · · · · · · · · · ·			
Orien	Test Temp	CVN Energy	Lat Expans	Shear	1
	degF	ft-lb	mils	%	١
L-T o	-100	50	33	30	1
L-T o	-100	6	4	10	
L-T o	-75	10	7	10	
L-T o	-75	25	16	30	
L-T o	-50	10	13	30	l
L-T o	-50	30	26	20	Ì
L-T o	-25	7	9	20	
L-T o	-25	93	66	40	
L-T o	0	14	13	25	1
L-T o	0	90	63	50	
L-T o	25	25	20	20	ĺ
L-T o	25	73	57	6 0	
L-T o	5 0	123	92	98	
L-T o	50	137	88	98	

^{• -} not reported

Material A572 Gr50

Description			
Material Code	016.001.02AS1	Material Name	A572 Gr50
UNS		Other Designation	•
Type	Welded Joint	Form	E
Thickness		Composition Type	Actual
Composition Position	*		· ·
Reference	KONKUL-1		

Test Temperature degC

Material A572 Gr50

Description	
Material Code	Material Name A572 Gr50
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID *
Reference KONKUL-1	
Composition	See Page 7600.1
Fabrication History	See Page 7600.1
Weld	
Weld Code 016.001.09AS2	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes
Filler Specification E7018	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed *	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time
Flux Type	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method
Standard Year *	

<u>ear</u>	<u> </u>	<u>. • </u>		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-75	10	12	15
L-T o	-75	7	13	10
L-T o	-50	10	19	15
L-T o	-50	14	17	20
L-T o	-50	50	42	25
L-T o	-25	51	49	80
L-T o	-25	79	67	65
L-T o	0	91	75	65
L-T o	0	96	81	60
L-T o	25	100	82	70
L-T o	25	107	80	65
L-T o	50	100	87	80
L-T o	50	111	92	80
L-T o	75	120	94	100

^{* -} not reported

Material A572 Gr50

Description	
Material Code	Material Name
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	_

Test Temperature degC

Material A572 Gr50

Description		
Material Code	016.001.02AS2	Material Name A572 Gr50
UNS	· · · · · · · · · · · · · · · · · · ·	Other Designation
Туре	Welded Joint	Form Plate
Thickness		Composition Type Actual
Composition Position		Lot ID
Reference	KONKUL-1	
Composition		See Page 7600.1
Fabrication History		See Page 7600.1
Weld		
Weld Code	016.001.02AS2	Weld Type SMA
Base Metal Thickness	1 in	Welding Position IG
Preheat Temperature	50 degF	Metal Gap 0 in
Interpass Temperature	350 degF	Passes 16
Filler Specification	E7018	Filler Name
Filler Carbon Content	*	Filler Metal Size *
Shielding Gas	*	Voltage *
Amperage		Polarity *
Travel Speed		Heat Input/Pass
Joint Preparation	K-Groove	Number of Sides
Location wrt Weld	Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp	1100 degF	Post-Weld Heat Time 5 hr
Flux Type		Flux Name
Weld Composition Reported?	No	
Property Measurements		
Test Type		Position 3/4T
Specimen Type	Full	Did Specimen Fracture? Assumed
Did Specimen Split?		Standard Method *
Standard Year		

ear	<u> </u>	<u>. </u>		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T °	-50	5	4	5
L-T o	-50	5	7	10
L-T o	-25	19	22	35
L-T o	-25	35	35	55
L-T o	-25	7	10	25
L-T o	0	24	25	60
L-T o	0	60	47	45
L-T o	25	7 0	55	40
L-T o	25	80	57	35
L-T °	50	40	38	65
L-T o	50	48	49	70
L-T o	75	25	29	40
L-T o	100	100	72	90
L-T o	100	95	68	90

^{* -} not reported

Material A572 Gr50

Description			
Material Code	016.001.02AS2	Material Name	A572 Gr50
UNS		Other Designation	*
Type	Welded Joint	Form	
Thickness	1 in	Composition Type	Actual
Composition Position	*		
Reference			

Test Temperature degC

Material A572 Gr50

Description	
Material Code	Material Name A572 Gr50
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID *
Reference KONKUL-1	
Composition	See Page 7600.1
Fabrication History	See Page 7600.1
Weld	
Weld Code 016.001.09AS3	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes 16
Filler Specification E7018	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas	Voltage *
Amperage *	Polarity *
Travel Speed*	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time
Flux Type	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year *	

ear	<u> </u>	*		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-75	10	6	5
L-T o	-75	11	9	10
L-T o	-50	25	22	20
L-T o	-50	25	24	20
L-T o	-25	13	22	15
L-T o	-25	56	48	30
L-T o	-25	60	54	35
L-T o	0	35	40	40
L-T o	0	36	39	40
L-T o	25	30	35	45
L-T o	25	83	69	60
L-T o	50	84	68	60
L-T ∩	50	86	75	65
L-11 0	100	115	93	100

^{* -} not reported

Material A572 Gr50

Description			
Material Code	016.001.09AS3	Material Name	A572 Gr50
UNS	*	Other Designation	
Type	Welded Joint	Form	
Thickness			
		Lot ID	
Reference			

Test Temperature degC

Material A572 Gr50

Description	
Material Code	Material Name
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 7600.1
Fabrication History	See Page 7600.1
Weld	
Weld Code 016.001.02AS3	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes 16
Filler Specification	Filler Name
Filler Carbon Content	Filler Metal Size *
Shielding Gas	Voltage *
Amperage *	Polarity *
Travel Speed*	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 1 hr
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year	

zar		<u> </u>		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-75	6	14	10
L-T o	-75	7	6	10
L-T o	-50	25	19	20
L-T o	-50	6	5	10
L-T o	-25	123	73	65
L-T o	-25	25	17	20
L-T o	-25	60	39	40
L-T °	0	10	12	20
L-T o	0	47	36	40
L-T °	25	114	79	40
L-T °	25	82	53	45
L-T o	50	105	61	65
L-T o	50	57	42	60
L-T o	_ 75	121	76	70

Material A572 Gr50

Description			
Material Code	016.001.02AS3	Material Name	A572 Gr50
UNS		Other Designation	
Type	Welded Joint		
Thickness	1 in	Composition Type	Actual
Composition Position			
Reference			

Test Temperature degC

^{• -} not reported

Material A572 Gr50

Description	
Material Code	Material Name
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID *
Reference KONKUL-1	
Composition	See Page 7600.1
Fabrication History	See Page 7600.1
Weld	
Weld Code 016.001.09AS4	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes
Filler Specification E7018	Filler Name
Filler Carbon Content *	Filler Metal Size **
Shielding Gas *	Voltage*
Amperage *	Polarity *
Travel Speed*	Heat Input/Pass
Joint Preparation K-Groove	Number of Sides
Location wrt Weld	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp	Post-Weld Heat Time 5 hr
Flux Type *	Flux Name*
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year	

C	ar <u>.</u>	<u> </u>	<u>. </u>			
	Orien	Test Temp	CVN Energy	Lat Expans	Shear	
		degF	ft-lb	mils	%	
	L-T o	-50	15	15	15	
	L-T ∘	-50	59	49	35	
	L-T o	-50	9	13	15	
	L-T o	-25	17	22	45	
	L-T o	-25	38	36	35	
	L-T ∘	0	50	53	45	
	L-T ∘	0	80	64	65	
	L-T o	0	84	69	65	l
	L-T o	25	100	78	60	
	L-T o	25	90	74	60	
	L-T o	50	118	95	75	
	L-T o	50	43	46	55	
	L-T o	75	123	86	80	

^{• -} not reported

Material A572 Gr50

Description	
Material Code	Material Name A572 Gr50
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	

Test Temperature degC

^{* -} not reported

Material A572 Gr50

Description	
Material Code	Material Name
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	
Composition	See Page 7600.1
Fabrication History	See Page 7600.1
Weld	
Weld Code 016.001.02AS4	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes 16
Filler Specification E7018	Filler Name
Filler Carbon Content *	Filler Metal Size
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed	Heat Input/Pass
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 5 hr
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year *	

_	<u>ai</u>	<u> </u>				
	Orien	Test Temp	CVN Energy	Lat Expans	Shear	7
		degF	ft-lb	mils	%	1
	L-T o	-50	11	8	10	٦
	L-T o	-50	21	14	15	
	L-T o	-50	6	8	10	Ì
	L-T o	-25	11	10	40	
	L-T o	-25	30	28	35	1
	L-T o	0	156	90	100	
	L-T o	0	16	15	25	
	L-T o	0	78	55	70	
	L-T o	25	125	72	80	
	L-T o	25	90	61	60	
	L-T o	50	159	98	100	
	L-T o	50	167	86	100	

^{* -} not reported

Material A572 Gr50

Description		
Material Code	Material Name A572	2 Gr50
UNS •	Other Designation	•
Type Welded Joint	Form	
Thickness 1 in	Composition Type	Actual
Composition Position *		
Reference KONKUL-1		

Test Temperature degC

^{* -} not reported

Material A572 Gr50

Description	
Material Code 016.001.09BA	Material Name A572 Gr50
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	i
Composition	
C 0.20 %	Mn 1.24 %
P 0.004 %	S 0.024 %
Si 0.02 %	Cr 0.02 %
Ni 0.04 %	Mo 0.01 %
V 0.089 %	Cu 0.04 %
Cb	Ti
B *	Al
N 0.005 %	Other Components *
Fabrication History	
Heat Treatment *	Producer US Steel
Year Produced *	Addl Info *:
Source US Steel	Melting Practice
Ingot Position *	Killing Process
Process Temperature *	Process Time
Rolling Conditions	Final Processing A,R
Final Temperature *	Final Time
Cold Work Strain *	Aging Temperature *
Aging Time *	Location
Weld	
Weld Code 016.001.09BA	Weld Type SAW
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap
Interpass Temperature	Passes 9
Filler Specification E70-EA2	Filler Name
Filler Carbon Content *	Filler Metal Size
Shielding Gas	Voltage
Amperage *	Polarity
Travel Speed	Heat Input/Pass
Joint Preparation V Groove	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp *	Post-Weld Heat Time
Flux Type	Flux Name *
Weld Composition Reported? No	

Material A572 Gr50

Page 7700.2

(continued)

Property Measurements			
Test Type	Charpy V Impact	Position	3/4T
Specimen Type	Full	Did Specimen Fracture?	Assumed
Did Specimen Split?		Standard Method	
Standard Year			!

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T O	-150	5	3	5
L-T o	-150	5	6	5
L-T o	-75	11	8	5
L-T o	-75	16	17	5
L-T o	-50	19	14	15
L-T o	-50	19	15	5
L-T o	-25	22	16	10
L-T o	-25	25	20	10
L-T o	0	31	28	30
L-T o	0	37	35	30
L-T o	25	36	33	36
L-T o	25	45	43	50
L-T o	50	37	50	60
L-T o	50	43	44	50
L-T o	75	50	49	70

^{* -} not reported

Material A572 Gr50

Description		
Material Code	Material Name	A572 Gr50
UNS *	Other Designation	
Type Welded Joint	Form	
Thickness 1 in	Composition Type	
Composition Position *		
Reference KONKUL-1		

Test Temperature degC

^{• -} not reported

Material A572 Gr50

Description	
Material Code	Material Name A572 Gr50
UNS •	Other Designation
Type Welded Joint	Form Plate
Thickness	Composition Type Actual
Composition Position	Lot ID *
Reference KONKUL-1	
Composition	See Page 7700.1
Fabrication History	See Page 7700.1
Weld	
Weld Code 016.001.02BA	Weld Type SAW
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature	Passes 9
Filler Specification E70-EA2	Filler Name
Filler Carbon Content *	Filler Metal Size
Shielding Gas	Voltage *
Amperage *	Polarity
Travel Speed	Heat Input/Pass
Joint Preparation V Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp *	Post-Weld Heat Time *
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year *	

cai	<u> </u>			
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-150	7	10	5
L-T o	-150	8	3	5
L-T o	-125	14	7	10
L-T o	-125	15	8	10
L-T o	-100	49	32	30
L-T °	-100	66	40	35
L-T °	-75	55	39	35
L-T o	-75	65	45	35
L-T o	-50	32	23	20
L-T o	-50	55	39	30
L-T °	-25	69	47	40
L-T o	-25	85	62	50
L-T °	0	106	74	80
L-T o	0	87	66	75

^{* -} not reported

Material A572 Gr50

Description Material Code 016.001.02BA UNS **	Material Name A572 Gr50 Other Designation *
Type Welded Joint Thickness 1 in	Form Plate Composition Type Actual
Composition Position Reference KONKUL-1	Lot ID

Test Temperature degC

^{* -} not reported

Material A572 Gr50

Description	
Material Code	Material Name A572 Gr50
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID
Reference KONKUL-1	
Composition	See Page 7700.1
Fabrication History	See Page 7700.1
Weld	
Weld Code 016.001.09BS1	Weld Type SAW
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature	Passes 9
Filler Specification E70-EA2	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas **	Voltage *
Amperage *	Polarity *
Travel Speed	Heat Input/Pass 75 KJ/in
Joint Preparation V Groove	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time
Flux Type *	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

ear		· ·		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-75	10	8	10
L-T o	-75	8	6	5
L-T o	-50	17	13	20
L-T o	-50	23	13	20
L-T o	-25	18	17	35
L-T o	-25	22	24	30
L-T o	0	24	24	20
L-T o	0	40	36	25
L-T o	25	45	45	35
L-T o	25	46	44	40
L-T °	50	37	37	40
L-T o	50	61	58	65
L-T o	75	60	61	75
L-T o	75	65	63	65

^{* -} not reported

Material A572 Gr50

Description	
Material Code	Material Name A572 Gr50
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
	Lot ID *
Reference KONKUL-1	

Test Temperature degC

^{* -} not reported

Material A572 Gr50

Description	
Material Code	Material Name A572 Gr50
UNS •	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID *
Reference KONKUL-1	
Composition	See Page 7700.1
Fabrication History	See Page 7700.1
Weld	
Weld Code	Weld Type SAW
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature 350 degF	Passes 9
Filler Specification E70-EA2	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas	Voltage *
Amperage	Polarity *
Travel Speed*	Heat Input/Pass
Joint Preparation V Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp	Post-Weld Heat Time
Flux Type	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year *	

zau	<u> </u>			
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-125	6	4	5
L-T o	-125	6	7	5
L-T o	-100	45	29	20
L-T o	-100	8	4	10
L-T o	-75	11	8	15
L-T o	-75	55	36	25
L-T o	-50	30	23	30
L-T o	-50	45	33	30
L-T o	-25	58	42	40
L-T o	-25	81	6 0	70
L-T o	0	54	44	40
L-T o	0	75	50	70
L-T o	50	95	74	70
L-T o	50	95	76	70

^{* -} not reported

Material A572 Gr50

Description	
Material Code	Material Name
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID *
Reference KONKUL-1	

Test Temperature degC

^{* -} not reported

Material A572 Gr50

Description	
Material Code	Material Name
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	
Composition	See Page 7700.1
Fabrication History	See Page 7700.1
weid	
Weld Code	Weld Type SAW
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature	Passes 9
Filler Specification E70-EA2	Filler Name
Filler Carbon Content *	Filler Metal Size*
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed	Heat Input/Pass 75 KJ/in
Joint Preparation V Groove	Number of Sides
Location wrt Weld	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp	Post-Weld Heat Time 5 hr
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method*
Standard Year *	

ear		<u> </u>	*		
	Orien	Test Temp	CVN Energy	Lat Expans	Shear
		degF	ft-lb	mils	%c
	L-T o	-50	20	16	15
	L-T o	-50	6	5	5
	L-T o	-25	11	12	15
	L-T o	-25	20	21	15
	L-T o	-25	38	34	25
	L-T °	0	10	13	20
	L-T o	0	37	36	30
	L-T o	0	41	39	30
	L-T o	25	27	33	35
	L-T o	25	30	31	25
	L-T o	50	55	53	70
	L-T o	50	60	55	75
	L-T o	75	58	61	80
1	L-T o	75	63	57	65
	L-T °	100	62	63	80

^{* -} not reported

Material A572 Gr50

Description	
Material Code	Material Name A572 Gr50
UNS*	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	
Reference KONKUL-1	

Test Temperature degC

^{* -} not reported

Material A572 Gr50

Description	
Material Code	Material Name A572 Gr50
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 7700.1
Fabrication History	See Page 7700.1
Weld	
Weld Code 016.001.02BS2	Weld Type SAW
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature 350 degF	Passes 9
Filler Specification E70-EA2	Filler Name *
Filler Carbon Content *	Filler Metal Size *
Shielding Gas	Voltage *
Amperage *	Polarity *
Travel Speed	Heat Input/Pass 75 KJ/in
Joint Preparation V Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time 5 hr
Flu. Type*	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year *	

<u> </u>	 			
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-75	10	7	5
L-T o	-75	14	9	5
L-T o	-50	30	21	15
L-T o	-50	53	38	30
L-T o	-50	72	74	35
L-T o	-25	25	20	15
L-T o	-25	34	27	25
L-T o	0	61	45	50
L-T o	0	74	54	45
L-T o	25	87	66	65
L-T o	25	88	61	60
L-T o	50	105	78	100
L-T o	50	89	73	85

^{* -} not reported

Material A572 Gr50

Description			······································
Material Code	5.001.02BS2	Material Name	A572 Gr50
UNS		Other Designation	
Type V	Velded Joint	Form	
Thickness	1 in	Composition Type	Actual
Composition Position		· · · · · · · · · · · · · · · · · · ·	
Reference	KONKUL-1		

Test Temperature degC

^{* -} not reported

Material A572 Gr50

Description	
Material Code	Material Name A572 Gr50
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 7700.1
Fabrication History	See Page 7700.1
Weld	
Weld Code 016.001.09BS3	Weld Type SAW
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature	Passes 9
Filler Specification E70-EA2	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voluage *
Amperage *	Polarity *
Travel Speed *	Heat Input/Pass
Joint Preparation V Groove	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 1 hr
Flux Type	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? * *	Standard Method *
Standard Year *	

ear	 <u> </u>	·		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-25	11	12	10
L-T o	-25	28	25	15
L-T o	-25	8	13	15
L-T o	0	33	41	25
L-T o	0	35	35	30
L-T o	0	44	40	25
L-T o	25	40	40	35
L-T o	25	48	42	55
L-T o	50	58	5 3	55
L-T o	50	60	57	60
L-T o	72	45	49	60
L-T o	72	46	48	60
L-T o	100	52	57	70
L-T o	100	65	68	80

Material A572 Gr50

Description		
Material Code 016.001.09BS3	Material Name	A572 Gr50
UNS *	Other Designation	•
Type Welded Joint	Form	
Thickness 1 in	Composition Type	Actual
Composition Position		
Reference KONKUL-1		

Test Temperature degC

^{* -} not reported

Material A572 Gr50

Description	
Material Code	Material Name A572 Gr50
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	
Composition	See Page 7700.1
Fabrication History	See Page 7700.1
Weld	
Weld Code 016.001.02BS3	Weld Type SAW
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature	Passes 9
Filler Specification E70-EA2	Filler Name *
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage	Polarity *
Travel Speed	Heat Input/Pass 75 KJ/in
Joint Preparation V Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time
Flux Type	Flux Name*
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year •	

Ç	<u>ar</u>	<u> </u>				
	Orien	Test Temp	CVN Energy	Lat Expans	Shear	7
		degF	ft-lb	mils	%	İ
	L-T o	-100	12	9	5	1
	L-T o	-100	6	5	5	
	L-T o	-75	15	8	10	
	L-T ∘	-75	51	37	25	
	L-T o	-50	61	42	25	
	L-T ○	-50	80	55	30	
	L-T o	-25	53	41	35	
	L-T o	-25	72	54	40	1
	L-T o	-25	91	63	5 0	ĺ
	L-T o	0	42	31	35	İ
	L-T o	0	55	47	5 0	
	L-T o	0	82	65	60	

^{* -} not reported

Material A572 Gr50

Page 7700.17

Description		
Material Code	Material Name	A572 Gr50
UNS *	Other Designation	*
Type Welded Joint	Form	i
Thickness 1 in	Composition Type	Actual
Composition Position		i
Reference KONKUL-1		

Test Temperature degC

^{* -} not reported

Material A572 Gr50

Description	
Material Code	Material Name A572 Gr50
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID
Reference KONKUL-1	
Composition	See Page 7700.1
Fabrication History	See Page 7700.1
Weld	
Weld Code 016.001.09BS4	Weld Type SAW
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature 350 degF	Passes 9
Filler Specification E70-EA2	Filler Name
Filler Carbon Content *	Filler Metal Size
Shielding Gas *	Voltage *
Amperage **	Polarity *
Travel Speed	Heat Input/Pass
Joint Preparation V Groove	Number of Sides
Location wrt Weld	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time
Flux Type *	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year *	

cai	<u> </u>	·		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T c	-25	11	12	15
L-T o	-25	20	17	15
L-T o	-25	9	12	15
L-T o	0	18	24	20
L-T o	0	21	18	15
L-T ∘	0	8	18	20
L-T o	25	40	38	20
L-T o	25	46	46	20
L-T o	50	32	34	40
L-T o	50	46	45	40
L-T o	72	50	55	85
L-T o	72	51	54	60
L-T o	100	56	56	70
L-T o	100	57	59	80

^{* -} not reported

Material A572 Gr50

Description			
Material Code	016.001.09BS4	Material Name	A572 Gr50
UNS			
Type	Welded Joint	<u> </u>	
		Composition Type	Actual
		Lot ID	
Reference	KONKUL-1		

^{• -} not reported

Material A572 Gr50

Description	
Material Code	Material Name
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	
Composition	See Page 7700.1
Fabrication History	See Page 7700.1
Weld	
Weld Code 016.001.02BS4	Weld Type SAW
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 5/16 in
Interpass Temperature	Passes 9
Filler Specification E70-EA2	Filler Name
Filler Carbon Content *	Filler Metal Size
Shielding Gas *	Voltage *
Amperage	Polarity *
Travel Speed	Heat Input/Pass 75 KJ/in
Joint Preparation V Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 5 hr
Flux Type	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

Cai	<u> </u>	<u> </u>	<u> </u>			_
	Orien	Test Temp	CVN Energy	Lat Expans	Shear	
		degF	ft-lb	mils	%	
	L-T O	-100	3	3	5	
	L-T ∘	-100	4	0	5	
1	L-T ∘	-75	5	2	5	
	L-T o	-75	67	46	30	
	L-T o	-50	20	14	10	
	L-T o	-50	85	58	40	
	L-T o	-25	44	31	20	
	L-T o	-25	58	41	40	
	L-T o	-25	80	57	30	
	L-T °	0	52	38	30	
	L-T o	0	52	41	30	
	L-T o	0	80	56	50	
	L-T o	50	113	83	85	
	L-T o	50	120	86	80	
	L-T o	72	114	86	100	

Material A572 Gr50

Description			
Material Code	016.001.02BS4	Material Name	A572 Gr50
UNS	*	Other Designation	
Type	Welded Joint	Form	
Thickness	1 in	Composition Type	Actual
Composition Position		Lot ID	
Reference	KONKUL-1		

Test Temperature degC

^{* -} not reported

Material A588 Page 8000.1

Description	
Material Code	Material Name
UNS *	Other Designation Grade A
Type Welded Joint	Form Plate
Thickness 3 in	Composition Type Actual
Composition Position *	Lot ID
Reference OGC-1	
Composition	
C 0.18 %	Mn 1.20 %
P 0.01 %	S 0.02 %
Si 0.37 %	Cr 0.56 %
Ni 0.16 %	Mo * ;
v	Cu 0.32 %
Сь *	Ti *
B *	A1 0.009 %
N	Other Components None %
Fabrication History	
Heat Treatment	Producer US Steel
Year Produced*	Addl Info None
Source OGC	Melting Practice *
Ingot Position *	Killing Process *
Process Temperature *	Process Time
Rölling Conditions *	Final Processing
Final Temperature *	Final Time *
Cold Work Strain	Aging Temperature *
Aging Time	Location
Weld	
Weld Code 012.001.09A	Weld Type ESW
Base Metal Thickness 3 in	Welding Position Vertical
Preheat Temperature *	Metal Gap 1.25 in
Interpass Temperature *	Passes
Filler Specification	Filler Name LindeWS
Filler Carbon Content 0.09 %	Filler Metal Size *
Shielding Gas *	Voltage
Amperage 850 amps	Polarity * '
Travel Speed *	Heat Input/Pass
Joint Preparation Smooth Butt	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp *	Post-Weld Heat Time
Flux Type	Flux Name Hobart201
Weld Composition Reported? No	·

Material A588

Page 8000.2

(continued)

Property Measurements	
Test Type Charpy V Impact	Specimen Type Full
Lateral Expansion *	Shear Fracture *
Did Specimen Fracture? Yes	Did Specimen Split? No
Standard Method *	Standard Year

Standard Year			
Position	Orien	Test Temp	CVN Energy
		degF	ft-lb
1/4T	T-L o	-6 5	2.0
1/4T	T-L o	-65	2.0
1/2T	T-L o	-4 0	2.2
1/2T	T-L c	-40	2.2
1/2T	T-L °	-20	3.0
1/2T	T-L o	-20	3.4
1/4T	T-L o	-20	2.0
1/2T	T-L o	0	4.0
1/2T	T-L o	0	7.0
1/4T	T-L o	0	3.0
1/4T	T-L o	0	4.0
1/2T	T-L o	32	7.0
1/2T	T-L o	32	8.0
1/2T	T-L o	50	10.0
1/2T	T-L o	5 0	19.0
1/4T	T-L o	50	14.0
1/4T	T-L o	50	16.5
1/2T	T-L o	68	34.5
1/2T	T-L o	68	42.5
1/4T	T-L o	68	20.0
1/4T	T-L o	68	21.0
1/2T	T-L o	100	45.0
1/2T	T-L o	100	49.0
1/4T	T-L o	104	61.0
1/4T	T-L o	104	63.0
1/2T	T-L o	150	62.0
1/2T	T-L o	150	64.0
1/4T	T-L o	160	68.0
1/4T	T-L o	160	71.0
1/2T	T-L o	200	72.0

^{• -} not reported

Material A588 Page 8000.3

Description			
Material Code	012.001.09A	Material Name	A588
UNS	*	Other Designation	Grade A
Type	Welded Joint	Form	Plate
Thickness		Composition Type	Actual
Composition Position	*	Lot ID	
Reference	OGC-1		

^{* -} not reported

Material A588

Page 8000.4

Description	
Material Code	Material Name
UNS *	Other Designation Grade A
Type Welded Joint	Form Plate
Thickness 3 in	Composition Type Actual
Composition Position	Lot ID *
Reference OGC-1	
Composition	See Page 8000.1
Fabrication History	See Page 8000.1
Weld	
Weld Code 012.001.03A	Weld Type ESW
Base Metal Thickness	Welding Position Vertical
Preheat Temperature *	Metal Gap 1.25 in
Interpass Temperature *	Passes *
Filler Specification *	Filler Name LindeWS
Filler Carbon Content 0.09 %	Filler Metal Size
Shielding Gas *	Voltage 38 volts
Amperage 850 amps	Polarity *
Travel Speed*	Heat Input/Pass
Joint Preparation Smooth Butt	Number of Sides
Location wrt Weld	Location wrt Surface Mid thickness not root
Post-Weld Heat Temp *	Post-Weld Heat Time
Flux Type *	Flux Name Hobart201
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Lateral Expansion
Shear Fracture *	Did Specimen Fracture? Yes
Did Specimen Split? No	Standard Method
Standard Year	CONTRACTOR

	<u> </u>	
Orien	Test Temp	CVN Energy
	degF	ft-lb
T-L o	-40	1.5
T-L o	-4 0	1.5
T-L o	-20	3.3
T-L o	-20	3.6
T-L o	0	2.0
T-L o	0	2.7
T-L o	32	4.0
T-L o	50	3.0
T-L o	50	3.0
T-L o	68	16.0
T-L o	68	5.0
T-L o	100	12.0
T-L o	100	13.0
T-L o	150	27.0
T-L o	200	41.5
T-L o	200	75.0

^{• -} not reported

Material A588

Page 3000.5

esignation Grade A
Plate ition Type Actual

Test Temperature degC

^{* -} not reported

Material A588 GrA

Description	-			··· -	
Material Code	2.005.010A	Material Name	.	A588 G	ìrA
UNS	*	Other Designa	tion		*
Type Wr	ought Metal	Form	Pl	ate	
Thickness	1 in	Composition 7	Гуре	Act	ual
Composition Position	*	Lot ID			*
Reference	KONKUL-1				
Composition					
C	. 0.200 %	Mn	<i></i>	1.000	%
P	. 0.007 %	S		0.026	%
Si	. 0.460 %	Cr		0.61 0) %
Ni	. 0.200 %	Mo	. <i></i>	0.030) %
v	0.087 %	Cu		0.330) %
Сь	<0.005 %	Ti	.		*
В	*	Al		0.024	%
N	0.007 %	Other Components			*
Fabrication History					
Heat Treatment	<i></i> *	Producer		US St	eel
Year Produced		Addl Info			*
Source	. US Steel	Melting Practice			*
Ingot Position		Killing Process			*
Process Temperature	*	Process Time			*
Rolling Conditions	*	Final Processing			N
Final Temperature	*	Final Time .			*
Cold Work Strain	*	Aging Temper	rature		*
Aging Time	*	Location	<u> </u>	<u> </u>	*
Property Measurements					
Test Type					/4T
Orientation	*	Specimen Type Cyl		Cylindri	ical
Specimen Thickness	0.357 in	Gage Length			
Loading Rate	*	Tensile Streng	th Offset	0.2	2 %
Uniform Elongation		Tensile Modu	lus		*
Standard Method	*	Standard Year			*
Test Temp UTS	TYS	TYP	Elongation	RA	
degF ksi	ksi	ksi	%	%	
Room 92.1	63.4	*	28.1	67.3	

Material A588 GrA

Description	
Material Code	Material Name
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	
Composition	See Page 9200.1
Fabrication History	See Page 9200.1
Weld	
Weld Code 012.005.09AA	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes 19
Filler Specification E8018C-2	Filler Name *
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed *	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp *	Post-Weld Heat Time *
Flux Type	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

ear		·		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-150	15	17	20
L-T o	-125	14	12	40
L-T o	-125	20	17	40
L-T °	-100	25	19	40
L-T o	-100	29	29	45
L-T °	-75	30	28	45
L-T o	-75	42	33	50
L-T o	-50	38	33	60
L-T o	-50	48	40	65
L-T o	0	51	50	80
L-T o	0	54	46	80
L-T o	75	60	56	98
L-T o	75	65	66	98
L-T o	125	62	59	78
L-T o	125	71	72	78

^{* -} not reported

Material A588 GrA

Description			
Material Code	012.005.09AA	Material Name	A588 GrA
UNS		Other Designation	
Type	Welded Joint	Form	Plate
Thickness	1 in	Composition Type	Actual
Composition Position		Lot ID	*
Reference	KONKUL-1		

Test Temperature degC

^{* -} not reported

Material A588 GrA

Description	
Material Code	Material Name A588 GrA
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID
Reference KONKUL-1	
Composition	See Page 9200.1
Fabrication History	See Page 9200.1
Weld	
Weld Code 012.005.02AA	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes 19
Filler Specification E8018C-2	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage *	Polarity
Travel Speed	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp *	Post-Weld Heat Time *
Flux Type	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year *	

<i></i>	<u> </u>			
Orien	Test Temp	CVN Encigy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T °	-100	11	6	10
L-T o	-100	15	9	20
L-T o	-75	21	15	40
L-T o	-75	25	14	45
L-T o	-50	24	21	50
L-T o	-50	30	24	50
L-T o	0	39	24	60
L-T o	0	58	32	60
L-T o	75	57	40	98
L-T o	75	80	47	98
L-T o	125	48	34	98
L-T o	125	78	45	98

Material A588 GrA

Description			
Material Code	012.005.02AA	Material Name	A588 GrA
UNS	•	Other Designation	
Type	Welded Joint	Form	
Thickness		Composition Type	Actual
Composition Position	*	Lot ID	
Reference	KONKUL-1		

Test Temperature degC

^{* -} not reported

Material A588 GrA

Description	
Material Code	Material Name A588 GrA
UNS*	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID *
Reference KONKUL-1	
Composition	See Page 9200.1
Fabrication History	See Page 9200.1
Weld	= = = = = = = = = = = = = = = = = = =
Weld Code	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature 330 degF	Passes
Filler Specification E8018C-2	Filler Name *
Filler Carbon Content *	Filler Metal Size **
Shielding Gas	Voltage *
Amperage*	Polarity *
Travel Speed*	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time 1 hr
Flux Type*	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

ar		· _ •		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-150	10	8	10
L-T °	-150	15	9	10
L-T °	-125	14	15	20
L-T o	-100	23	21	40
L-T o	-100	29	25	40
L-T °	-75	25	24	40
L-T o	-75	32	28	45
L-T o	-50	30	41	40
L-T o	-50	45	35	50
L-T °	0	65	56	70
L-T °	0	68	56	70
L-T °	75	74	65	98
L-T o	75	76	72	98
L-T o	125	72	70	98
L-T °	125	86	82	98

^{* -} not reported

Material A588 GrA

Description	
Material Code	Material Name A588 GrA
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	

Test Temperature degC

Material A588 GrA

Description	
Material Code	Material Name A588 GrA
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 9200.1
Fabrication History	See Page 9200.1
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes 19
Filler Specification E8018C-2	Filler Name *
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage	Polarity *
Travel Speed	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time 1 hr
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

<u>ar</u>	<u> </u>			
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T °	-125	7	2	5
L-T o	-75	19	12	35
L-T o	-75	20	11	30
L-T o	-50	19	15	40
L-T o	-50	22	16	45
L-T o	-25	27	14	50
L-T o	-25	42	26	50
L-T ∘	0	47	30	60
L-T o	υ	52	34	70
L-T o	75	39	31	90
L-T o	75	45	33	95
L-T o	100	46	45	95
L-T o	100	48	40	95
L-T o	125	43	35	98
L-T °	125	67	61	98

^{* -} not reported

Material A588 GrA

Description		· · · · · · · · · · · · · · · · · · ·	·
Material Code	012.005.02AS1	Material Name	A588 GrA
UNS	*	Other Designation	* 1
Type		Form	
Thickness		Composition Type	Actual
Composition Position	*	Lot ID	,
Reference	KONKUL-1		

Test Temperature degC

Material A588 GrA

Description	
Material Code	Material Name A588 GrA
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID
Reference KONKUL-1	
Composition	See Page 9200.1
Fabrication History	See Page 9200.1
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes 19
Filler Specification E8018C-2	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage	Polarity *
Travel Speed	Heat Input/Pass
Joint Preparation K-Groove	Number of Sides
Location wrt Weld	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time 5 hr
Flux Type *	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

<u>ear</u>		<u> </u>		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-125	17	18	25
L-T o	-125	24	24	25
L-T o	-100	38	22	25
L-T o	-100	41	33	30
L-T o	-75	24	26	35
L-T o	-75	38	3 3	45
L-T o	-50	42	44	45
L-T o	-50	43	43	45
L-T o	-25	53	47	60
L-T o	-25	60	58	75
L-T o	0	71	60	75
L-T o	0	74	57	70
L-T o	25	78	67	95
L-T o	25	88	73	100

^{* -} not reported

Material A588 GrA

Description	
Material Code	Material Name A588 GrA
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	

Test Temperature degC

Material A588 GrA

Description	
Material Code	Material Name A588 GrA
UNS •	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID
Reference KONKUL-1	
Composition	See Page 9200.1
Fabrication History	See Page 9200.1
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes
Filler Specification E8018C-2	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas ***	Voltage *
Amperage *	Polarity *
Travel Speed *	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1100 degF	Post-Weld Heat Time 5 hr
Hux Type	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year *	

<u>ear</u>	<u></u>	*		
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-100	11	10	20
L-T o	-100	18	18	20
L-T o	-75	16	11	25
L-T o	-75	16	14	30
L-T o	-50	25	22	45
L-T o	-50	26	24	40
L-T o	-50	34	28	50
L-T °	-25	25	22	35
L-T o	-25	27	25	35
L-T o	0	47	35	75
L-T o	0	48	39	60
L-T o	25	70	52	95
L-T o	25	73	50	60
L-T o	50	60	46	85
L-T o	50	85	58	100

^{* -} not reported

Material A58° GrA

Description			
Material Code	012.005.02AS2	Material Name	A588 GrA
UNS	*	Other Designation	*
Type	Welded Joint	Form	Plate
Thickness	1 in	Composition Type	Actual
Composition Position		Lot ID	*
Reference			

Test Temperature degC

^{* -} not reported

Material A588 GrA

Description	
Material Code	Material Name A588 GrA
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID
Reference KONKUL-1	
Composition	See Page 9200.1
Fabrication History	See Page 9200.1
Weld	
Weld Code 012.005.09AS3	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature 330 degF	Passes 19
Filler Specification E8018C-2	Filler Name
Filler Carbon Content *	Filler Metal Size
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed *	Heat Input/Pass
Joint Preparation K-Groove	Number of Sides
Location wrt Weld	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time
Flux Type	Flux Name*
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year	

ear	<u> </u>			
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-150	4	6	10
L-T °	-150	7	10	10
L-T o	-125	15	17	20
L-T o	-125	17	19	15
L-T o	-100	27	27	30
L-T o	-100	30	29	25
L-T o	-100	37	24	35
L-T o	-75	33	30	30
L-T o	-75	35	30	30
L-T o	-50	43	40	45
L-T o	-50	57	55	50
L-T °	-25	48	47	60
L-T o	-25	60	54	60
L-T o	0	74	67	90
L-T o	0	78	54	90

^{* -} not reported

Material A588 GrA

Description	
Material Code	Material Name A588 GrA
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID
Reference KONKUL-1	

Material A588 GrA

Description	
Material Code	Material Name A588 GrA
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 9200.1
Fabrication History	See Page 9200.1
Weld	
Weld Code 012.005.02AS3	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes 19
Filler Specification E8018C-2	Filler Name *
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed *	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 1 hr
Flux Type	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T °	-100	16	11	25
L-T o	-100	8	10	20
L-T o	-75	23	20	40
L-T o	-75	34	22	35
L-T o	-75	50	32	35
L-T o	-50	104	57	60
L-T o	-50	26	50	45
L-T o	-50	78	53	55
L-T °	-2 5	31	28	55
L-T o	-25	76	55	75
L-T o	0	58	46	75
L-T o	0	76	52	80
L-T o	0	80	56	95
L-T o	25	80	59	99
L-T o	25	97	68	100

^{* -} not reported

Material A588 GrA

Description			
Material Code	012.005.02AS3	Material Name	A588 GrA
UNS	*	Other Designation	* ;
Type	Welded Joint	Form	
Thickness		Composition Type	Actual
Composition Position			
Reference	KONKUL-1		

Test Temperature degC

^{* -} not reported

Material A588 GrA

Description	
Material Code	Material Name A588 GrA
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position *	Lot ID *
Reference KONKUL-1	
Composition	See Page 9200.1
Fabrication History	See Page 9200.1
Weld	
Weld Code 012.005.09AS4	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature 330 degF	Passes 19
Filler Specification E8018C-2	Filler Name
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed	Heat Input/Pass 34 KJ/in
Joint Preparation K-Groove	Number of Sides
Location wrt Weld	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 5 hr
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year *	

ear	<u> </u>			
Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-100	11	13	20
L-T o	-100	8	13	15
L-T o	-75	18	20	25
L-T o	-75	27	30	25
L-T o	-50	40	41	50
L-T o	-50	46	43	45
L-T o	-25	46	46	55
L-T o	-25	70	63	75
L-T o	0	61	53	70
L-T o	0	66	51	80
L-T °	0	79	68	85
L-T o	25	73	65	85
L-T o	25	75	68	85
L-T °	50	90	75	98
L-T o	50	90	83	98

^{* -} not reported

Material A588 GrA

Description			
Material Code	012.005.09AS4	Material Name	A588 GrA
UNS	*	Other Designation	
Type	Welded Joint	Form	
Thickness	1 in	Composition Type	Actual
		Lot ID	
Reference			

Test Temperature degC

^{* -} not reported

Material A588 GrA

Description	· · · · · · · · · · · · · · · · · · ·
Material Code	Material Name
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
Composition Position	Lot ID
Reference KONKUL-1	_
Composition	See Page 9200.1
Fabrication History	See Page 9200.1
Weld	
Weld Code 012.005.02AS4	Weld Type SMA
Base Metal Thickness 1 in	Welding Position IG
Preheat Temperature 50 degF	Metal Gap 0 in
Interpass Temperature	Passes
Filler Specification E8018C-2	Filler Name
Filler Carbon Content *	Filler Metal Size **
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed	Heat Input/Pass
Joint Preparation K-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Mid thickness at root
Post-Weld Heat Temp 1200 degF	Post-Weld Heat Time 5 hr
Flux Type *	Flux Name*
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

-ai					
Orien	Test Temp	CVN Energy	Lat Expans	Shear	
	degF	ft-lb	mils	%	
L-T °	-125	10	12	15	
L-T o	-125	11	11	10	
L-T o	-100	18	13	25	
L-T o	-100	18	15	30	
L-T o	-100	31	22	25	
L-T o	-75	32	30	45	
L-T o	-75	33	24	40	
L.T o	-75	46	27	35	
L-T o	-50	72	52	80	
L-T o	-50	73	51	75	
L-T o	-50	77	53	65	
L-T o	-25	76	54	75	
L-T °	-25	86	56	80	
L-T o	0	82	55	90	
L-T o	0	89	66	100	

Material A588 GrA

Description	
Material Code	Material Name A588 GrA
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 1 in	Composition Type Actual
	Lot ID *
Reference KONKUL-1	

Test Temperature degC

^{* -} not reported

Material A710 Page 9400.1

Description					·		
Material Code		002.001.03	1A1	Mat	erial Name		A710
UNS			. *	Other Designation Class I			
Type		Wrought M	letal				Plate
Thickness		5/1	6 in				Actual
Composition P	osition		*				
Reference	<u> </u>	<u> </u>	. *				
Composition							
C		0.0	4 %	Mn			0.50 %
P		0.0	1 %	S .		.	0.01 %
Si		0.2	8 %	Cr			0.73 %
Ni		0.9	1 %	Mo			0.20 %
v			•	Cu 1.2			1.24 %
Сь		0.0	3 %	Ti			*
B			*	Al '			
N	<u> </u>	<u> </u>	*	Oth	er Components	<u> </u>	*
Fabrication H	History						
	t			Pro	ducer		
Year Produced			. *	Addl Info None			None
Source			*	Melting Practice			*
Ingot Position			*	Killing Process			*
Process Tempe	erature		. *	Pro	cess Time		*
Rolling Condit	ions		*	Fina	al Processing		K
Final Temperat	ture	1100 d	legF	Fina	al Time		
Cold Work Strain *			*	Aging Temperature *			
Aging Time			*	Loc	ation		*
Property Mea							
Test Type	• • • • • • • • • • • • • • • • • • • •	Ter	ısile	Pos	ition		*
Specimen Type							
-				Loa	ding Rate		*
	th Offset						
	us			Star	ndard Method	· • • • • • • • • • • • • • • • • • • •	*
Standard Year		<u> </u>	*			· · · · · · · · · · · · · · · · · · ·	
Orient	Test Temp	UTS	TY	S	TYP	Elongation	RA
	degF	ksi	ks		ksi	%	%
T	Room	101	90	.5	*	18	*

Material A710 Page 9400.2

Description	
Material Code	Material Name
UNS *	Other Designation
Type Wrought Metal	Form Plate
Thickness	Composition Type Actual
Composition Position	Lot ID
Reference *	
Composition Eabrication History	See Page 9400.1
Fabrication History	See Page 9400.1
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type	Shear Fracture **
Did Specimen Fracture? Assumed	Did Specimen Split? *
Standard Method *	Standard Year *

				<u> </u>	
	Orien	Test Temp	CVN Energy	Lat Expans	Ī
	;	degF	ft-lb	mils	
	L-T o	-50	75	77	
	L-T o	-50	76	81	
	L-T o	-50	82	83	İ
	T-L △	-50	23	32	
	T-L △	-50	24	32	
	T-L △	-50	25	35	

Material A710

Page 9400.3

Description	
Material Code	Material Name
UNS *	Other Designation
Type Wrought Metal	Form Plate
Thickness 5/16 in	Composition Type Actual
Composition Position	Lot ID 57221
Reference *	

Test Temperature degC

^{* -} not reported

Material A710 Page 9500.1

Description							
Material Code		002.001.0	1B1	Mate	erial Name		A710
				Other Designation			Class 2
Туре		Wrought M	letal	Forn	n		Plate
Thickness			/8 in	Con	position Type		Actual
Composition Po	osition		*				
Reference	<u> </u>	· · · · · · · · · · · · · · · · · · ·	. *				
Composition							
C		0.0	4 %	Mn			0.50 %
P		0.0	1 %	S .			0.01 %
Si		0.2	8 %	Cr			0.73 %
Ni	• • • • • • • • • • • • • • • • • • •	0.9	1 %	Mo		· · · · · · · · · · · · · · · · · · ·	0.20 %
v		· · · · · · · · · · · · · · · · · · ·		Cu			1.24 %
Cb		0. 0	3 %	Ti	<i></i>		*
B			*	Al			*
N			*	Othe	er Components		*
Fabrication H							
Heat Treatment			Q,K	Prod	ucer		*
Year Produced			. *	Add	Info		None
Source			. *	Meli	ing Practice		
				Killi	ng Process		
Process Temper	rature		. *	Proc	ess Time	. 	
Rolling Conditi	ons		*	Fina	l Processing		K
Final Temperate	ure	1200 d	legF	Fina	1 Time		*
Cold Work Stra	in		*	Agir	g Temperature		*
Aging Time .	· · · · · · · · · · · · · · · · · · ·		*	Loca	ition	<u> </u>	
Property Mea	surements					-	
Test Type		Ter	nsile	Posi	tion		*
Specimen Type			. *	* Specimen Thickness			3/8 in
Gage Length .		<i>.</i>	2 in	n Loading Rate			
Tensile Strengtl	n Offset		. *	Uniform Elongation			
Tensile Modulus *			. *				
Standard Year		<u> </u>	*				
Orient	Test Temp	UTS	TYS		TYP	Elongation	RA
	degF	ksi	ksi		ksi	%	%
T	Room	74.5	70.1		*	28	*

Material A710 Page 9500.2

Description	
Material Code	Material Name A710
UNS *	Other Designation Class 2
Type Wrought Metal	Form Plate
Thickness	Composition Type Actual
Composition Position *	Lot ID 57221
Reference *	
Composition	See Page 9500.1
Fabrication History	See Page 9500.1
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type	Shear Fracture
Did Specimen Fracture? Assumed	Did Specimen Split? *
Standard Method	Standard Year

Orien
 Test Temp degF
 CVN Energy ft-lb
 Lat Expans mils

 L-T °
 -50
 194
 78

 L-T °
 -50
 198
 85

 L-T °
 -50
 200
 90

Material A710

Page 9500.3

Description			
Material Code	002.001.01B1	Material Name	A710
UNS	*	Other Designation	Class 2
Type	Wrought Metal	Form	Plate
Thickness	3/8 in	Composition Type	Actual
Composition Position			
Reference	*		

^{• -} not reported

Material A710 Page 9500.4

Description				*			
Material Code		002.001.0	1B2	Mat	erial Name		A710
UNS			. *	Other Designation			Class 2
Type		Wrought M	letal				
Thickness			4 in	Con	position Type		Actual
Composition Position	n		*				
Reference		<u> </u>	. *				
Composition				See	Page 9500.1		
Fabrication Histor	ry						
Heat Treatment			Q,K	Proc	lucer		
Year Produced			. *				
Source			. *	Mel	ting Practice		*
Ingot Position			•	Kill	ing Process		*
Process Temperature			. *	Proc	ess Time		
Rolling Conditions			*	Fina	l Processing		K
Final Temperature		1100 c	legF				
Cold Work Strain .			*	Agir	ng Temperature		
Aging Time		<u> </u>	. *			<u></u>	
Property Measure	ments						
Test Type		Ter	nsile	Posi	tion	· · · · · · · · · · · · · · · · · · ·	
Specimen Type			. *	Spec	cimen Thickness		4 in
Gage Length			2 in	Loading Rate			
Tensile Strength Offs	set		. *	Uniform Elongation			
Tensile Modulus		• • • • • • • • • • • • •	. •				
Standard Year		 					
Orient Te	est Temp	UTS	TYS		TYP	Elongation	RA
	degF	ksi	ksi		ksi	%	%
T	Room	79.7	61.9		*	30	*

Material A710

Page 9500.5

Description	
Material Code	Material Name A710
UNS *	Other Designation
Type Wrought Metal	Form Plate
Thickness 4 in	Composition Type Actual
Composition Position	Lot ID 57221
Reference *	
Composition	See Page 9500.1
Fabrication History	See Page 9500.4
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type	Shear Fracture *
Did Specimen Fracture? Assumed	Did Specimen Split? *
Standard Method*	Standard Year

Orien	Test Temp	CVN Energy	Lat Expans
	degF	ft-lb	mils
L-T °	-50	135	92
L-T o	-50	140	94
L-T o	-50	144	96

Material A710 Page 9500.6

Description			
Material Code	002.001.01B2	Material Name	A710
UNS	**	Other Designation	Class 2
Type	Wrought Metal	Form	
Thickness	4 in	Composition Type	
Composition Position	*		
Reference			

^{• -} not reported

Material BS4360 Gr50D

Material Code	Description	
Type Wrought Metal Thickness Form Plate Composition Type Yes Composition Position 1/4T Lot ID Yes Reference SHI-OI Version Type Yes Composition 0.12 % Mn 1.38 % P 0.011 % S 0.001 % Si 0.38 % Cr 0.02 % Ni 0.15 % Mo 0.01 % V 0.006 % Cu 0.18 % Cb 0.024 % Ti 0.015 % B <0.0001 %	Material Code	,
Thickness		Other Designation BS4360 Gr50D
Composition Position 1/4T Reference SHI-01	Type Wrought Metal	Form Plate
Reference		Composition Type Yes
Composition C 0.12 % Mn 1.38 % P 0.011 % S 0.000 % Si 0.38 % Cr 0.02 % Ni 0.15 % Mo 0.01 % V 0.006 % Cu 0.18 % Cb 0.024 % Ti 0.015 % B <0.0001 %	Composition Position 1/4T	Lot ID *
Composition C 0.12 % Mn 1.38 % P 0.011 % S 0.000 % Si 0.38 % Cr 0.02 % Ni 0.15 % Mo 0.01 % V 0.006 % Cu 0.18 % Cb 0.024 % Ti 0.015 % B <0.0001 %	Reference SHI-01	
P 0.011 % S 0.001 % Si 0.38 % Cr 0.02 % Ni 0.15 % Mo 0.01 % V 0.006 % Cu 0.18 % Cb 0.024 % Ti 0.015 % B <0.0001 %	Composition	
Si 0.38 % Cr 0.02 % Ni 0.15 % Mo 0.01 % V 0.006 % Cu 0.18 % Cb 0.024 % Ti 0.015 % B <0.0001 %		Mn 1.38 %
Ni 0.15 % Mo 0.01 % V 0.006 % Cu 0.18 % Cb 0.024 % Ti 0.015 % B <0.0001 %	P 0.011 %	S 0.001 %
V 0.006 % Cu 0.18 % Cb 0.024 % Ti 0.015 % B <0.0001 %	Si 0.38 %	Cr 0.02 %
Cb 0.024 % Ti 0.015 % B <0.0001 %	Ni 0.15 %	Mo 0.01 %
B <0.0001 % A1 0.029 % N 0.0057 % Other Components * Fabrication History Heat Treatment * Producer Sumitomo Year Produced * Addl Info None Source Sumitomo Melting Practice * Ingot Position * Killing Process * Process Temperature * Process Time * Rolling Conditions * Final Processing N,A Final Temperature * Final Time * Cold Work Strain * Aging Temperature 600 degC Aging Time 1 hr Location * Property Measurements * * Test Type Tensile Position * Specimen Type Flat Specimen Thickness 10 mm Gage Length 200 mm Loading Rate * Tensile Strength Offset * Tensile Yield Strength * Elongation	V 0.006 %	Cu 0.18 %
N0.0057 %Other ComponentsFabrication HistoryHeat Treatment* ProducerSumitomoYear Produced* Addl InfoNoneSourceSumitomoMelting Practice*Ingot Position* Killing Process*Process Temperature* Process Time*Rolling Conditions* Final ProcessingN,AFinal Temperature* Final Time*Cold Work Strain* Aging Temperature600 degCAging Time1 hrLocation*Property Measurements*Test TypeTensilePosition*Specimen TypeFlatSpecimen Thickness10 mmGage Length200 mmLoading Rate*Tensile Strength Offset* Tensile Yield Strength*Elongation* Reduction in Area*Tensile Modulus* Standard Method*	Сь 0.024 %	Ti 0.015 %
Fabrication History Heat Treatment	B<0.0001 %	Al 0.029 %
Fabrication History Heat Treatment	N 0.0057 %	Other Components *
Year Produced * Addl Info None Source Sumitomo Melting Practice * Ingot Position * Killing Process * Process Temperature * Process Time * Rolling Conditions * Final Processing N,A Final Temperature * Final Time * Cold Work Strain * Aging Temperature 600 degC Aging Time 1 hr Location * Property Measurements Test Type Tensile Position * Specimen Type Flat Specimen Thickness 10 mm Gage Length 200 mm Loading Rate * Tensile Strength Offset * Tensile Yield Strength * Elongation * Reduction in Area * Tensile Modulus * Standard Method *	Fabrication History	
Year Produced * Addl Info None Source Sumitomo Melting Practice * Ingot Position * Killing Process * Process Temperature * Process Time * Rolling Conditions * Final Processing N,A Final Temperature * Final Time * Cold Work Strain * Aging Temperature 600 degC Aging Time 1 hr Location * Property Measurements Test Type Tensile Position * Specimen Type Flat Specimen Thickness 10 mm Gage Length 200 mm Loading Rate * Tensile Strength Offset * Tensile Yield Strength * Elongation * Reduction in Area * Tensile Modulus * Standard Method *	Heat Treatment *	Producer Sumitomo
Ingot Position		Addl Info None
Process Temperature Process Time Sinal Process Time Sinal Processing N,A Final Temperature Final Time Sinal Ti	Source Sumitomo	Melting Practice *
Rolling Conditions	Ingot Position *	Killing Process
Final Temperature	Process Temperature *	Process Time
Cold Work Strain*Aging Temperature600 degCAging Time1 hrLocation*Property MeasurementsTest TypeTensilePosition*Specimen TypeFlatSpecimen Thickness10 mmGage Length200 mmLoading Rate*Tensile Strength Offset*Tensile Yield Strength*Elongation*Reduction in Area*Tensile Modulus*Standard Method*	Rolling Conditions	Final Processing
Aging Time1 hrLocation*Property MeasurementsTest TypeTensilePosition*Specimen TypeFlatSpecimen Thickness10 mmGage Length200 mmLoading Rate*Tensile Strength Offset*Tensile Yield Strength*Elongation*Reduction in Area*Tensile Modulus*Standard Method*	Final Temperature *	Final Time *
Property MeasurementsTest TypeTensilePosition*Specimen TypeFlatSpecimen Thickness10 mmGage Length200 mmLoading Rate*Tensile Strength Offset*Tensile Yield Strength*Elongation*Reduction in Area*Tensile Modulus*Standard Method*	Cold Work Strain *	Aging Temperature 600 degC
Property MeasurementsTest TypeTensilePosition*Specimen TypeFlatSpecimen Thickness10 mmGage Length200 mmLoading Rate*Tensile Strength Offset*Tensile Yield Strength*Elongation*Reduction in Area*Tensile Modulus*Standard Method*	Aging Time 1 hr	Location
Specimen TypeFlatSpecimen Thickness10 mmGage Length200 mmLoading Rate*Tensile Strength Offset* Tensile Yield Strength*Elongation* Reduction in Area*Tensile Modulus* Standard Method*	Property Measurements	
Specimen TypeFlatSpecimen Thickness10 mmGage Length200 mmLoading Rate*Tensile Strength Offset* Tensile Yield Strength*Elongation* Reduction in Area*Tensile Modulus* Standard Method*	Test Type Tensile	Position
Tensile Strength Offset		Specimen Thickness 10 mm
Elongation * Reduction in Area * Tensile Modulus * Standard Method *	Gage Length 200 mm	Loading Rate *
Tensile Modulus * Standard Method *	Tensile Strength Offset *	Tensile Yield Strength
	Elongation	Reduction in Area
Standard Year *	Tensile Modulus *	Standard Method *
	Standard Year *	

Orient	Test Temp	UTS	TYP	Uniform El
	degC	N/mm2	kgf/mm2	%
L	20	501	371	35.3
L	20	503	370	34.0
Т	20	498	368	33.6
Т	20	503	374	33.7

^{* -} not reported

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Wrought Metal	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID *
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	
Heat Treatment **	Producer Sumitomo
Year Produced	Addl Info None
Source Sumitomo	Melting Practice *
Ingot Position *	Killing Process
Process Temperature *	Process Time •
Rolling Conditions **	Final Processing N
Final Temperature	Final Time
Cold Work Strain *	Aging Temperature *
Aging Time *	Location
Property Measurements	
Test Type Tensile	Position
Specimen Type Flat	Specimen Thickness 10 mm
Gage Length 200 mm	Loading Rate *
Tensile Strength Offset *	Tensile Yield Strength
Elongation *	Reduction in Area *
Tensile Modu'us	Standard Method *
Standard Year	

Orient	Test Temp	UTS	TYP	Uniform El
	degC	N/mm2	kgf/mm2	%
L	20	514	378	33.4
L	20	514	381	35.1
Т	20	508	383	31.7
T	20	511	382	31.9

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS •	Other Designation BS4360 Gr50D
Type Wrought Metal	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID *
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	
Heat Treatment *	Producer Sumitomo
Year Produced	Addi Info None
Source Sumitomo	Melting Practice *
Ingot Position	Killing Process
Process Temperature *	Process Time
Rolling Conditions	Final Processing N,A
Final Temperature	Final Time *
Cold Work Strain *	Aging Temperature 600 degC
Aging Time 1 hr	Location *
Property Measurements	
Test Type Charpy V Impact	Specimen Type
Lateral Expansion *	Shear Fracture *
Did Specimen Fracture?	Did Specimen Split?
Standard Method *	Standard Year *

,	<u> </u>	· · · · · · · · · · · · · · · · · · ·	Standard Year	<u>, , , , , , , , , , , , , , , , , , , </u>	
	Position	Orien	Test Temp	CVN Energy	ĺ
	•		degC	Joules	
	1/2T	L-T o	-60	189	
	1/4T	L-T ○	-6 0	216	
	1/2T	L-T o	-40	225	
	1/4T	L-T o	-40	272	ĺ
	1/2T	L-T o	-20	242	ĺ
	1/4T	L-T o	-20	294	
	1/2T	T-L A	-60	144	ĺ
	1/4T	T-L 4	-6 0	215	
	1/2T	T-L ^	-40	200	ĺ
	1/4T	T-L A	-40	251	l
	1/2T	T-L A	-20	234	İ
	1/4T	T-L A	-20	274	l

^{• -} not reported

Material BS4360 Gr50D

Description			
Material Code	010.001.010S	Material Name	BS4360 Gr50D
UNS	*	Other Designation	BS4360 Gr50D
Type	Wrought Metal	Form	Plate
Thickness	_	Composition Type	Yes
Composition Position		Lot ID	
Reference	SHI-01		

Test Temperature degC

^{* -} not reported

Material BS4360 Gr50D

Description		
Material Code	010.001.010A	Material Name BS4360 Gr50D
UNS	*	Other Designation BS4360 Gr50D
Type	Wrought Metal	Form Plate
Thickness		Composition Type Yes
Composition Position		Lot ID *
Reference	SHI-01	
Composition		See Page 13800.1
Fabrication History		
Heat Treatment		Producer Sumitomo
Year Produced	*	Addl Info None
Source	Sumitomo	Melting Practice
Ingot Position		Killing Process
Process Temperature	*	Process Time
Rolling Conditions	*	Final Processing
Final Temperature		Final Time *
Cold Work Strain	*	Aging Temperature
Aging Time	*	Location
Property Measurements		
Test Type	Charpy V Impact	Specimen Type
Lateral Expansion	*	Shear Fracture *
Did Specimen Fracture?		Did Specimen Split? *
Standard Method	*	Standard Year *

<u> </u>		Standard I Car	<u>'</u>
Position	Orien	Test Temp	CVN Energy
		degC	Joules
1/2T	L-T o	-60	128
1/4T	L-T o	-60	223
1/2T	L-T o	-40	266
1/4T	L-T o	-4 0	244
1/2T	L-T o	-20	277
1/4T	L-T o	-20	251
1/2T	T-L △	-60	115
1/4T	T-L ^	-60	211
1/2T	T-L △	-4 0	220
1/4T	T-L △	-40	245
1/2T	T-L △	-20	273
1/4T	T-L 4	-20	272

Material BS4360 Gr50D

Description			
Material Code	010.001.010A	Material Name	BS4360 Gr50D
UNS		Other Designation	BS4360 Gr50D
Туре	Wrought Metal	Form	Plate
Thickness	25 mm	Composition Type	Yes
Composition Position	1/4T	Lot ID	
Reference	SHI-01		

Test Temperature degC

^{* -} not reported

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS	Other Designation BS4360 Gr50D
Type Wrought Metal	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID *
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	See Page 13800.5
Property Measurements	
Test Type Nil Ductilty Transition	Position 0/4T
Specimen Type P-1	Filler Alloy
Passes	Orientation*
Standard Method E 208	Standard Year *

	L 200	induit i cai
Test Temp	Break?	NDTT
degC		
-65	Yes	No
-65	Yes	No
-65	Yes	No
-60	No	Yes
-60	Yes	Yes
-60	Yes	Yes
-55	No	No
-55	No	No
-55	No	No

^{* -} not reported

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Welded Joint	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID *
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	See Page 13800.5
Weld	
Weld Code 010.001.09AFA	Weld Type SMA
Base Metal Thickness	Welding Position Downhand
Preheat Temperature 100 degC	Metal Gap 3 mm
Interpass Temperature 250 degC	Passes *
Filler Specification	Filler Name L-50N
Filler Carbon Content *	Filler Metal Size 3.2 mm
Shielding Gas*	Voltage 24 volts
Amperage	Polarity *
Travel Speed	Heat Input/Pass 12.5 KJ/cm
Joint Preparation	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface Final surface
Post-Weld Heat Temp *	Post-Weld Heat Time *
Flux Type *	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 1/2T
Specimen Type Full	Lateral Expansion *
Shear Fracture *	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year	Tomp CVN Energy

Orien	Test Temp	CVN Energy
	degC	Joules
T-L o	-40	120
T-L o	-4 0	127
T-L o	-4 0	169
T-L o	-20	162
T-L o	-20	166
T-L o	-20	171

^{• -} not reported

Material BS4360 Gr50D

Description Material Code UNS	010.001.09AFA	Material Name BS4360 Gr50D Other Designation BS4360 Gr50D
Type	Welded Joint	Form Plate Composition Type Yes
Thickness		Lot ID
Reference	SHI-01	

Test Temperature de C

^{* -} not reported

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Welded Joint	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID *
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	See Page 13800.5
Weld	
Weld Code 010.001.02AFA	Weld Type SMA
Base Metal Thickness 25 mm	Welding Position Downhand
Preheat Temperature 100 degC	Metal Gap 3 mm
Interpass Temperature 250 degC	Passes
Filler Specification *	Filler Name L-50N
Filler Carbon Content *	Filler Metal Size
Shielding Gas	Voltage 24 volts
Amperage 100-140 amps	Polarity *
Travel Speed	Heat Input/Pass
Joint Preparation 1/2 V-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Final surface
Post-Weld Heat Temp	Post-Weld Heat Time *
Flux Type*	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 1/2T
Specimen Type Full	Lateral Expansion *
Shear Fracture	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year *	

٠		·		
	Orien	Test Temp	CVN Energy	Ī
		degC	Joules	
	T-L o	-40	180	
	T-L o	-40	80	
	T-L o	-40	93	
	T-L o	-20	194	
	T-L o	-20	290	
	T-L o	-20	290	

Material BS4360 Gr50D

			
Description Material Code UNS		Material Name Other Designation	BS4360 Gr50D BS4360 Gr50D
Type		Form	Plate
Thickness		Composition Type	Yes
Composition Position	1/4T	Lot ID	• • • • • • • • • • • •
Reference			

Test Temperature degC

^{• -} not reported

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Welded Joint	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	See Page 13800.5
Weld	
Weld Code 010.001.03AFA	Weld Type SMA
Base Metal Thickness	Welding Position Downhand
Preheat Temperature 100 degC	Metal Gap 3 mm
Interpass Temperature	Passes *
Filler Specification *	Filler Name L-50N
Filler Carbon Content *	Filler Metal Size
Shielding Gas *	Voltage 24 volts
Amperage 100-140 amps	Polarity *
Travel Speed	Heat Input/Pass
Joint Preparation 1/2 V-Groove	Number of Sides
Location wrt Weld	Location wrt Surface Final surface
Post-Weld Heat Temp *	Post-Weld Heat Time *
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 1/2T
Specimen Type Full	Lateral Expansion *
Shear Fracture	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year *	

Orien	Test Temp	CVN Energy	
	degC	Joules	
T-L o	-40	238	1
T-L o	-40	240	
T-L o	-40	291	١
T-L o	-20	279	ļ
T-L o	-20	289	١
T-L o	-20	292	l

^{* -} not reported

Material BS4360 Gr50D

Description			
Material Code	010.001.03AFA	Material Name	BS4360 Gr50D
UNS	•	Other Designation	BS4360 Gr50D
Type	Welded Joint	Form	Plate
Thickness	25 mm	Composition Type	Yes
Composition Position		Lot ID	
Reference	SHI-01		

^{* -} not reported

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Welded Joint	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	See Page 13800.5
Weld	
Weld Code 010.001.04AFA	Weld Type SMA
Base Metal Thickness	Welding Position Downhand
Preheat Temperature 100 degC	Metal Gap 3 mm
Interpass Temperature	Passes
Filler Specification *	Filler Name I50N
Filler Carbon Content *	Filler Metal Size 3.2 mm
Shielding Gas *	Voltage 24 volts
Amperage 100-140 amps	Polarity
Travel Speed	Heat Input/Pass 12.5 KJ/cm
Joint Preparation 1/2 V-Groove	Number of Sides
Location wrt Weld 3mm in HAZ	Location wrt Surface Final surface
Post-Weld Heat Temp *	Post-Weld Heat Time
Flux Type	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 1/2T
Specimen Type Full	Lateral Expansion *
Shear Fracture *	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method *
Standard Year	

	Orien	Test Temp	CVN Energy	
		degC	Joules	
	T-L o	-40	148	
	T-L o	-4 0	239	
	T-L o	-4 0	292	
	T-L o	-20	259	
	T-L o	-20	289	
ļ	T-L o	-20	292	

^{• -} not reported

Material BS4360 Gr50D

Description			
Material Code	010.001.04AFA	Material Name	BS4360 Gr50D
UNS		Other Designation	BS4360 Gr50D
Type	Welded Joint	Form	
Thickness		Composition Type	Yes
Composition Position		Lot ID	
Reference			

Test Temperature degC

^{* -} not reported

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Welded Joint	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID *
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	See Page 13800.5
Weld	
Weld Code 010.001.05AFA	Weld Type SMA
Base Metal Thickness	Welding Position Downhand
Preheat Temperature 100 degC	Metal Gap 3 mm
Interpass Temperature 250 degC	Passes
Filler Specification *	Filler Name L-50N
Filler Carbon Content *	Filler Metal Size 3.2 mm
Shielding Gas *	Voltage 24 volts
Amperage 100-140 amps	Polarity
Travel Speed	Heat Input/Pass 12.5 KJ/cm
Joint Preparation 1/2 V-Groove	Number of Sides
Location wrt Weld 5mm in HAZ	Location wrt Surface Final surface
Post-Weld Heat Temp *	Post-Weld Heat Time
Flux Type *	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 1/2T
Specimen Type Full	Lateral Expansion *
Shear Fracture	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year	

_				
	Orien	Test Temp	CVN Energy	Ī
		degC	Joules	
	T-L o	-4 0	229	
	T-L o	-4 0	258	l
	T-L o	-40	272	
	T-L o	-20	272	
	T-L o	-20	292	
	T-L o	-20	292	

^{* -} not reported

Material BS4360 Gr50D

Description			
Material Code	010.001.05AFA	Material Name	BS4360 Gr50D
UNS	*		
Type	Welded Joint	Form	
Thickness		Composition Type	Yes
Composition Position		Lot ID	*
Reference	SHI-01		

Test Temperature degC

^{* -} not reported

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Welded Joint	Form Plate
Thickness	Composition Type Yes
Composition Position	Lot ID
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	See Page 13800.5
Weld	
Weld Code 010.001.11AFA	Weld Type SMA
Base Metal Thickness	Welding Position Downhand
Preheat Temperature 100 degC	Metal Gap 3 mm
Interpass Temperature	Passes *
Filler Specification *	Filler Name L-50N
Filler Carbon Content *	Filler Metal Size
Shielding Gas *	Voltage 24 volts
Amperage 100-140 amps	Polarity *
Travel Speed	Heat Input/Pass 12.5 KJ/cm
Joint Preparation	Number of Sides
Location wrt Weld 50% weld, 50% HAZ	Location wrt Surface Final surface
Post-Weld Heat Temp *	Post-Weld Heat Time *
Flux Type	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Lateral Expansion*
Shear Fracture *	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year *	

Orien	Test Temp	CVN Energy
	degC	Joules
T-L o	-40	121
T-L o	-4 0	145
T-L o	-4 0	98
T-L o	-20	205
T-L o	-20	207
T-L o	-20	283

Material BS4360 Gr50D

Description			
Material Code	010.001.11AFA	Material Name	BS4360 Gr50D
UNS	*	Other Designation	BS4360 Gr50D
Type	Welded Joint	Form	Plate
Thickness		Composition Type	Yes
Composition Position		Lot ID	
Reference	SHI-01		!

Test Temperature degC

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Welded Joint	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	See Page 13800.5
Weld	
Weld Code 010.001.09ABA	Weld Type SMA
Base Metal Thickness	Welding Position Downhand
Preheat Temperature	Metal Gap 3 mm
Interpass Temperature	Passes
Filler Specification *	Filler Name L-50N
Filler Carbon Content *	Filler Metal Size 3.2 mm
Shielding Gas *	Voltage 24 volts
Amperage 100-140 amps	Polarity *
Travel Speed	Heat Input/Pass 12.5 KJ/cm
Joint Preparation 1/2 V-Groove	Number of Sides
Location wrt Weld	Location wrt Surface Back surface not root
Post-Weld Heat Temp *	Post-Weld Heat Time
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Lateral Expansion *
Shear Fracture	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year *	

Orien	Test Temp	CVN Energy
	degC	Joules
T-L O	-40	101
T-L o	-40	58
T-L o	-4 0	80
T-L o	-20	129
T-L o	-20	151
T-L o	-20	179

^{* -} not reported

Material BS4360 Gr50D

Description			
Material Code	010.001.09ABA	Material Name	BS4360 Gr50 ^r
UNS	*	Other Designation	BS4360 Gr50D
Type	Welded Joint	Fonn	Plate
Thickness	25 mm	Composition Type	Yes
Composition Position		Lot ID	* 1
Reference			

Test Temperature degC

^{* -} not reported

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Welded Joint	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID *
Reference SHI-01	
Composition	See Page 138(0).1 See Page 138(0).5
Fabrication History	See Page 13800.5
Weld	
Weld Code 010.001.02ABA	Weld Type SMA
Base Metal Thickness	Welding Position Downhand
Preheat Temperature 100 degC	Metal Gap 3 mm
Interpass Temperature 250 degC	Passes
Filler Specification *	Filler Name L-50N
Filler Carbon Content *	Filler Metal Size 3.2 mm
Shielding Gas *	Voltage 24 volts
Amperage 100-140 amps	Polarity *
Travel Speed	Heat Input/Pass 12.5 KJ/cm
Joint Preparation	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Back surface not root
Post-Weld Heat Temp *	Post-Weld Heat Time *
Flux Type *	Flux Name*
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 3/4T
Specimen Type Full	Lateral Expansion *
Shear Fracture *	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method
Standard Year *	

Orien	Test Temp	CVN Energy
}	degC	Joules
T-L o	-4 0	115
T-L o	-40	52
T-L o	-4 0	71
T-L o	-20	131
T-L o	-20	172
T-L o	-20	210

Material BS4360 Gr50D

Description			
Material Code	010.001.02ABA	Material Name	BS4360 Gr50D
UNS	*	Other Designation	
Type	Welded Joint	Form	,
Thickness	25 mm	Composition Type	Yes
Composition Position		Lot ID	
Reference			!

Test Temperature degC

^{* -} not reported

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Welded Joint	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID *
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	See Page 13800.5
Weld	
Weld Code 010.001.09AFS	Weld Type SMA
Base Metal Thickness	Welding Position Downhand
Preheat Temperature 100 degC	Metal Gap 3 mm
Interpass Temperature	Passes*
Filler Specification	Filler Name L-50N
Filler Carbon Content *	Filler Metal Size
Shielding Gas *	Voltage
Amperage 100-140 amps	Polarity*
Travel Speed	Heat Input/Pass 12.5 KJ/cm
Joint Preparation	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface Final surface
Post-Weld Heat Temp 600 degC	Post-Weld Heat Time 1 hr
Flux Type	Flux Name *
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Lateral Expansion
Shear Fracture *	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year *	

Orien	Test Temp	CVN Energy
	degC	Joules
T-L o	-40	152
T-L o	-4 0	159
T-L o	-4 0	166
T-L o	-20	157
T-L o	-20	204
T-L o	-20	216

Material BS4360 Gr50D

Description			
Material Code	010 001 094FS	Material Name	BS4360 Gr50D
UNS			
Type		Form	
Thickness		Composition Type	Yes
Composition Position		Lot ID	*
Reference			

Test Temperature degC

^{* -} not reported

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Welded Joint	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	See Page 13800.5
Weld	
Weld Code 010.001.02AFS	Weld Type SMA
Base Metal Thickness	Welding Position Downhand
Preheat Temperature 100 degC	Metal Gap 3 mm
Interpass Temperature	Passes
Filler Specification	Filler Name L-50N
Filler Carbon Content *	Filler Metal Size 3.2 mm
Shielding Gas *	Voltage 24 volts
Amperage 100-140 amps	Polarity *
Travel Speed	Heat Input/Pass 12.5 KJ/cm
Joint Preparation 1/2 V-Groove	Number of Sides
Location wrt Weld Fusion line	Location wrt Surface Final surface
Post-Weld Heat Temp 600 degC	Post-Weld Heat Time 1 hr
Flux Type	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Lateral Expansion *
Shear Fracture	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year *	

	<u> </u>	<u> </u>	
	Orien	Test Temp	CVN Energy
l		degC	Joules
ľ	T-L °	-40	115
	T-L o	-4 0	124
	T-L o	-4 0	176
1	T-L o	-20	131
	T-L o	-20	155
1	T-I 0	-20	220

Material BS4360 Gr50D

Description			
Material Code	. 010.001.02AFS	Material Name	BS4360 Gr50D
UNS	*	Other Designation	BS4360 Gr50D
Type	Welded Joint	Form	
Thickness		Composition Type	Yes
Composition Position		Lot ID	
Reference	SHI-01		

Test Temperature degC

^{• -} not reported

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Welded Joint	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID *
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	See Page 13800.5
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness	Welding Position Downhand
Preheat Temperature 100 degC	Metal Gap 3 mm
Interpass Temperature	Passes
Filler Specification	Filler Name L-50N
Filler Carbon Content *	Filler Metal Size 3.2 mm
Shielding Gas *	Voltage 24 volts
Amperage 100-140 amps	Polarity *
Travel Speed	Heat Input/Pass 12.5 KJ/cm
Joint Preparation 1/2 V-Groove	Number of Sides
Location wrt Weld 1mm in HAZ	Location wrt Surface Final surface
Post-Weld Heat Temp 600 degC	Post-Weld Heat Time 1 hr
Flux Type *	Flux Name
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 1/2T
Specimen Type Full	Lateral Expansion *
Shear Fracture *	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method *
Standard Year *	

Orien	Test Temp	CVN Energy
	degC	Joules
T-L o	40	279
T-L o	-40	291
T-L o	-40	292
T-L o	-20	294
T-L o	-20	294
T-L o	-20	294

^{* -} not reported

Material BS4360 Gr50D

Description			
Material Code	010.001.03AFS	Material Name	BS4360 Gr50D
UNS		Other Designation	BS4360 Gr50D
Type	Welded Joint	Form	1
Thickness	25 mm	Composition Type	Yes
Composition Position		Lot ID	
Reference	SHI-01		i

Test Temperature degC

^{• -} not reported

Material BS4360 Gr50D

Description	
Material Code 010.001.04AFS	Material Name BS4360 Gr50D
UNS	Other Designation BS4360 Gr50D
Type Welded Join	Form Plate
Thickness	Composition Type Yes
Composition Position 1/47	Lot ID *
Reference SHI-0	
Composition	See Page 13800.1
Fabrication History	See Page 13800.5
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness 25 mm	Welding Position Downhand
Preheat Temperature 100 degC	Metal Gap 3 mm
Interpass Temperature	Passes
Filler Specification	Filler Name L-50N
Filler Carbon Content	Filler Metal Size
Shielding Gas	Voltage
Amperage 100-140 amp	Polarity *
Travel Speed 15-20 cm/min	Heat Input/Pass 12.5 KJ/cm
Joint Preparation 1/2 V-Groove	Number of Sides
Location wrt Weld 3mm in HAZ	Location wrt Surface Final surface
Post-Weld Heat Temp 600 deg@	Post-Weld Heat Time ! hr
Flux Type	Flux Name *
Weld Composition Reported? No)
Property Measurements	
Test Type Charpy V Impac	t Position
Specimen Type Ful	Lateral Expansion
Shear Fracture	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year	

Orien	Test Temp	CVN Energy
	degC	Joules
T-L O	-4 0	233
T-L o	-4 0	249
T-L o	-4 0	240
T-L o	-2 0	279
T-L o	-20	294
T-L o	-20	294

Material BS4360 Gr50D

Description			
Material Code	010.001.04AFS	Material Name	BS4360 Gr50D
UNS	*	Other Designation	BS4360 Gr50D
Type	Welded Joint	Form	Plate
Thickness		Composition Type	Yes
Composition Position	1/4T	Lot ID	
Reference	SHI-01		

Test Temperature degC

^{• -} not reported

Material BS4360 Gr50D

Description	· · · · · · · · · · · · · · · · · · ·
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Welded Joint	Form Plate
Thickness	Composition Type Yes
Composition Position 1/4T	Lot ID *
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	See Page 13800.5
Weld	
Weld Code	Weld Type SMA
Base Metal Thickness	Welding Position Downhand
Frcheat Temperature	Metal Gap 3 mm
Interpass Temperature 250 degC	Passes
Filler Specification	Filler Name L-50N
Filler Carbon Content *	Filler Metal Size 3.2 mm
Shielding Gas *	Voltage 24 volts
Amperage 100-140 amps	Polarity *
Travel Speed	Heat Input/Pass 12.5 KJ/cm
Joint Preparation 1/2 V-Groove	Number of Sides
Location wrt Weld 5mm in HAZ	Location wrt Surface Final surface
Post-Weld Heat Temp 600 degC	Post-Weld Heat Time 1 hr
Flux Type *	Flux Name *:
Weld Composition Reported? No	
Property Measurements	
Test Type Charpy V Impact	Position 1/2T
Specimen Type Full	Lateral Expansion
Shear Fracture *	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method
Standard Year	T L CVALE

Orien	Test Temp	CVN Energy
	degC	Joules
T-L o	-40	246
T-L o	-4 0	253
T-L o	-4 0	256
T-L o	-20	218
T-L o	-20	219
T-L o	-20	257

^{• -} not reported

Material BS4360 Gr50D

Description			
Material Code	010.001.05AFS	Material Name	BS4360 Gr50D
UNS	*	Other Designation	BS4360 Gr50D
Type	Welded Joint	Form	Plate
Thickness		Composition Type	Yes
Composition Position		Lot ID	*
Reference	SHI-01		

Test Temperature degC

^{* -} not reported

Material BS4360 Gr50D

Page 13800.34

Description	, , , , , , , , , , , , , , , , , , ,		<u> </u>
Material Code	010.001.09ANA	Material Name	BS4360 Gr50D
UNS		Other Designation	BS4360 Gr50D
Type	Welded Joint	Form	
Thickness		Composition Type	
Composition Position		Lot ID	*
Reference			
Composition		Can Daga 12800 1	
Fabrication History			
Heat Treatment	*	Producer	Sumitomo
Year Produced	,	Addl Info	None
Source	Sumitomo	Melting Practice	
Ingot Position		Killing Process	
Process Temperature	*	Process Time	
Rolling Conditions		Final Processing	
Final Temperature		Final Time	
Cold Work Strain		Aging Temperature	
Aging Time		Location	
Weld			
Weld Code	010.001.09ANA	Weld Type	SMA
Base Metal Thickness		Welding Position	
Preheat Temperature		Metal Gap	
Interpass Temperature	_	Passes	
Filler Specification	_	Filler Name	
Filler Carbon Content		Filler Metal Size	
Shielding Gas		Voltage	
Amperage		Polarity	
Travel Speed		Heat Input/Pass	
Joint Preparation		Number of Sides	
Location wrt Weld		Location wrt Surface	
Post-Weld Heat Temp		Post-Weld Heat Time	
	*	Flux Name	
Weld Composition Reported			
Property Measurements			
Test Type		Position	
Orientation	_	Specimen Type	
Specimen Thickness		Crack Length	
Loading Type		Loading Rate	
KQ		KIc	
Valid KIc?		Reason for Invalid	
Jic		KJc	
	*	Initial COD	
•	*	Initial JI, JI	
	*	Tearing Modulus	
Standard Method		Standard Year	
Surrent Gritalion	Test Temp	CODIc	
	degC	mm	
	-30	0.57	
	-30	0.57	

0.681.26

-30

-30

(continued)

Material BS4360 Gr50D

Page 13800.35

(continued)

Test Temp	CODIc
degC	mm
-10	1.42
-10	1.50
-10	1.54

^{* -} not reported

Material BS4360 Gr50D

Page 13800.36

Description	
Material Code 010.001.02ANA	Material Name BS4360 Gr50
UNS	Other Designation BS4360 Gr50
Type Welded Joint	
Thickness	
Composition Position 1/47	
Reference SHI-01	
Composition	
Fabrication History	See Page 138(X).34
Weld	
Weld Code 010.001.02ANA	Weld Type SM
Base Metal Thickness 25 mm	· · · · · · · · · · · · · · · · · · ·
Preheat Temperature 100 degC	· · · · · · · · · · · · · · · · · · ·
Interpass Temperature 250 degC	
Filler Specification	
Filler Carbon Content	
Shielding Gas •	Voltage 24 vol
Amperage 100-140 amps	
Travel Speed 15-20 cm/min	
Joint Preparation 1/2 V-Groove	
Location wrt Weld Fusion line	
Post-Weld Heat Temp	
•	
Flux Type • Weld Composition Reported? No	
Property Measurements	
fest Type Fracture Toughness	Position
Orientation •	Specimen Type
Specimen Thickness 25 mm	
Loading Type	Loading Rate
KQ •	Kic
Valid KIc?	Reason for Invalid
Jlc	KJc
Jlepr •	Initial COD
Curve Shape	Initial JI, JI
Maximum J, Jinax	Tearing Modulus
Standard Method BS5762	
Test Tem	CODIC
degC	mm
-30	0.17
-30	0.17
-30	0.29
-30	0.00

-10

-10 -10 0.49 0.85 1.31

Material BS4360 Gr50D

Description	
Material Code	Material Name BS4360 Gr50D
UNS *	Other Designation BS4360 Gr50D
Type Wrought Metal	Form Plate
Thickness	Composition Type Yes
Composition Position	Lot ID
Reference SHI-01	
Composition	See Page 13800.1
Fabrication History	See Page 13800.34
Weld	
Weld Code 010.001.010A	Weld Type *
Base Metal Thickness	Welding Position*
Preheat Temperature *	Metal Gap *
Interpass Temperature *	Passes
Filler Specification *	Filler Name
Filler Carbon Content *	Filler Metal Size*
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed ***	Heat Input/Pass
Joint Preparation *	Number of Sides
Location wrt Weld *	Location wrt Surface *
Post-Weld Heat Temp *	Post-Weld Heat Time
Flux Type	Flux Name *
Weld Composition Reported?	
Property Measurements	
Test Type Fracture Toughness	Position
Orientation *	Specimen Type
Specimen Thickness	Crack Length *
Loading Type *	Loading Rate *
KQ *	Klc *
Valid KIc?	Reason for Invalid *
Jlc *	KJc *
Jlcpr *	Initial COD *
Curve Shape *	Initial JI, JI
Maximum J, Jmax *	Tearing Modulus *
Standard Method BS3762	Standard Year *
Test Temp	CODIc

Test Temp	CODIc
degC	mm
-30	>4.03
-30	>4.04
-30	>4.15

Material HY80 Page 16500.1

Description	
Material Code	Material Name HY80
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 50 mm	Composition Type Actua
Composition Position *	Lot ID
Reference WJ,3/87	
Composition	
C 0.0a0 %	Mn
P 0.013 %	S
S ₁ 0.32 %	Cr 0.15 %
Ni 1.80 %	Mo 0.4(14)
V	Cu
Cc *	Ti
B	Al *
N - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Other Components
* Fabrication History	
Heat Treatment	Producer Burg
Year Produced *	Addl Info None
Source P&EStat	Melting Practice
Ingot Position *	Killing Process
Process Temperature *	Process Time
Rolling Conditions	Final Processing
Final Temperature *	Final Time
Cold Work Strain	Aging Temperature
Aging Time	Location
77.010	
Weld Code	Weld Type SMA
Base Metal Thickness 32 mm	Welding Position Downham
Preheat Temperature	Metal Gap 0 n.m
interpass Temperature 150 degC	Passes >40
Filler Specification E10018	Filler Name
Filler Carbon Content 0.06 %	Filler Metal Size 4 mm
Shielding Gas	Voltage 23-26 volta
Amperage 160-200 amps	Polarity DC
Travel Speed 160-300 mm/min	Heat Input/Pass 25 KJ/cn
Joint Preparation Double V-Groove	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface
Post-Wald Heat Temp	Post-Weld Heat Time
Flux Type Basic	Flux Name
W.C.P. Composition Reported Sec.	Tiux Ivaine

Material HY80

Page 16500.2

(continued)

Test Type Specimen Typ Gage Length Tensile Streng Tensile Modu Standard Year	easurements be gth Offset lus	Cylino 23.6	irical 5 mm 	Position Specimen Thickness Loading Rate Uniform Elongation Standard Method		5.9 mm	
Orient	Test Temp	UTS	TYS	TYP	Elongation	RA	
	degC	MPa	MPa	MPa	%	%	
L	-18	793	738	*	21.5	62	

^{* -} not reported

Material HY80 Page 16500.3

Description	
Material Code	Material Name HY80
UNS *	Other Designation *
Type Welded Joint	Form ptara
Thickness 50 mm	Composition Type A
Composition Position	Lot ID
Reference WJ,3/87	
Composition	See Page 16500.1
Fabrication History	See Page 16500.1
Weld	See Page 16500.1
Property Measurements	
Test Type Charpy V Impact	Position 0/4T
Specimen Type Full	Lateral Expansion
Shear Fracture *	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method E 23
Standard Year 1981	

_	 	1701		
	Orien	Test Temp	CVN Energy	ļ
		degC	Joules	İ
	T-L o	-40	65	1
	T-L o	-40	70	l
	T-L o	-4 0	81	ļ
	T-L o	-18	105	İ
	T-L o	-18	110	١
	T-L o	-18	119	١
	T-L °	0	111	ĺ
	T-L o	0	117	١
	T-L o	0	119	l

^{* -} not reported

Material HY80

Description	
Material Code	Material Name HY80
UNS *	Other Designation*
Type Welded Joint	Form Plate
Thickness	Composition Type Actual
Composition Position	
Reference WJ,3/87	

Test Temperature degC

^{* -} not reported

Material HY80 Page 16500.5

Description	
Material Code	Material Name HY80
UNS*	Other Designation *
Type Welded Joint	Form Plate
Thickness 50 mm	Composition Type Actual
Composition Position	Lot ID
Reference WJ,3/87	
Composition	
C 0.080 %	Mn 1.24 %
P 0.013 %	S 0.007 %
Si 0.44 %	Cr 0.13 %
Ni 2.10 %	Mo 0.40 %
V 0.017 %	Cu 0.020 %
Cb *	Ti *
B *	Al *
N	Other Components *
Fabrication History	See Page 16500.1
Weld	
Weld Code	Weld Type SMA
Base Meta! Thickness	Welding Position Downhand
Preheat Temperature 150 degC	Metal Gap
Interpass Temperature 150 degC	Passes>40
Filler Spec fication E10018	Filler Name
Filler Cart on Content 0.08 %	Filler Metal Size 4 mm
Shielding Gas	Voltage
Amperage	Polarity DC
Travel Speed 160-300 mm/min	Heat Input/Pass
Joint Preguration Double V-Groove	Number of Sides
Location of Weld 11mm in HAZ	Location wrt Surface
Post-Well, Heat Temp	Post-Weld Heat Time
Flux Type Basic	Flux Name *
Weld Composition Reported? Yes	
Property Measurements	
Test Type Tensile	Position
Specimer Type Cylindrical	Specimen Thickness 5.9 mm
Gage Ler 1th 23.6 mm	Loading Rate
Tensile S rength Offset	Uniform Elongation
Tensile Nodulus	Standard Method E 8
Standard 'ear 1981	
	YS TYP Elongation RA
1	Pa MPa % %
	28.0 68

Material HY80 Page 16500.6

Description	
Material Code	Material Name HY80
UNS*	Other Designation
Type Welded Joint	Form Plate
Thickness 50 mm	Composition Type Actual
Composition Position	Lot ID
Reference WJ,3/87	
Composition	See Page 16500.5
Fabrication History	See Page 16500.1
Weld	See Page 16500.5
Property Measurements	
Test Type Charpy V Impact	Position 0/4T
Specimen Type Full	Lateral Expansion
Shear Fracture *	Did Specimen Fracture? Assumed
Did Specimen Split? **	Standard Method E 23
Standard Year 1981	

	• • • • • • • • • • • • • • • • • • • •	
Orien	Test Temp	CVN Energy
	degC	Joules
T-L o	-40	101
T-L o	-4 0	103
T-L o	-4 0	96
T-L o	-18	103
T-L o	-18	111
T-L o	0	122
T-L o	0	124
T-L o	0	126

Material HY80 Page 16500.7

Description			
Material Code	001.001.09F	Material Name	HY80
UNS		Other Designation	*
Type	Welded Joint	Form	
Thickness		Composition Type	Actual
Composition Position		· · · · · · · · · · · · · · · · · · ·	
Reference			

^{* -} not reported

Material HY80 Page 16600.1

Description							
•		001.002	2.01	Mate	erial Name		HY80
				Other Designation			
		Wrought M		Form			
• •		1.		Composition Type			
		· · · · · · · · · · · · · · · · · · ·					
•		<u> </u>		Lot ID B			D 755555
Composition			120				
		0.1	7 0%	Mo			0.28 %
		0.00					
		2.4					
_							
			_				
		<u></u>	<u> </u>	Othe	er Components		fgp,Al %
Fabrication H	-			_			
					lucer		
					ll Info		
		Lul			ting Practice		
					ing Process		
•					cess Time		
_					al Processing		
					il Time		
Cold Work Stra	in		*		ng Temperature		
Aging Time	<u> </u>	<u> </u>	<u> </u>	Loc	ation	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u> </u>
Property Mea	surements						
Test Type		Fracture Tough	ness		ition		
Specimen Type				Spe	cimen Thickness		1.5 in
Crack Length			. *	Loa	ding Type		
Loading Rate			. *	KQ			*
				Vali	id KIc?		
Reason for Inva	ılid		. *				
					r		
					dard Method		
•							
Orien	Test Temp		CODI	-	JI	Jmax	Tear Mod
0.70.	degF	in	in	-	in-lb/in**2		in-lb/in**2
L-T	72	0.0236	0.0360		4346	4315	260.2
L-T	72	0.0186	0.0349		3841	4195	306.1
T-L	72	0.0167	0.0251		2568	2923	230.8
T-L	75	0.0171	0.0251		2724	2841	218.4
S-L	73	0.0171	0.0233		1786	2098	181.7
	12	· '			1	1	ì
S-L		0.0131	0.0220		1971	2465	229.8

^{* -} not reported

Material HY80

Description	
Material Code	Material Name HY80
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness 1.5 in	Composition Type Actual
Composition Position	Lot ID B9353-3
Reference 1120	
Composition	See Page 166(0).1
Fabrication History	See Page 16600.1
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type *	Did Specimen Fracture?
Did Specimen Split? *	Standard Method *
Standard Year *	

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
L-T o	-320	6	2	5
L-T o	-255	24	12	16
L-T o	-250	23	12	11
L-T o	-240	25	15	17
L-T °	-230	33	20	24
L-T o	-220	24	15	21
L-T o	-210	27	16	27
L-T o	-200	35	26	36
L-T o	-180	46	32	42
L-T o	-160	55	40	55
L-T o	-140	61	46	72
L-T o	-120	73	55	88
L-T °	-100	79	57	95
L-T o	-80	80	62	100
L-T o	-6 0	83	63	100
L-T o	-4 0	84	64	100
L-T o	-20	88	69	100
L-T o	0	90	67	100
L-T o	20	82	62	100
L-T o	76	86	70	100
T-L ^	-320	6	2	5
T-L ^	-255	28	14	11
T-L ^	-240	38	21	19
T-L △	-220	4.5	27	30
T-L ^	-210	66	44	44
T-L ^	-200	9 6	58	60
T-L ^	-190	70	45	52
T-L ^	-180	85	54	5 5
T-L ♠	-160	97	63	77
T-L ↑	-150	107	69	85
T-L ^	-140	119	78	90
T-L ^	-120	122	80	100
T-L A	-100	121	81	100
T-L A	-80	136	88	100

Material HY80 Page 16600.3

(continued)

Orien	Test Temp	CVN Energy	Lat Expans	Shear
	degF	ft-lb	mils	%
T-L ^	-60	130	79	100
T-L 4	-40	140	87	100
T-L △	-20	139	87	100
T-L △	0	132	86	100
T-L △	20	136	88	100
T-L 4	76	137	90	100

^{• -} not reported

Material HY80

Description			
Material Code	001.002.01	Material Name	HY80
UNS	*	Other Designation	*
Type		Form	P 'te
Thickness	1.5 in	Composition Type	Actual
Composition Position	*	Lot ID	В9353-3
Reference			

Test Temperature degC

Material HY80 Page 16600.5

Description						
Material Code		001.002.01	Material Name			
UNS	• • • • • • • • • • • • • • • •		Other Design	ation		
Туре	v	Vrought Metal	Form		Plate	
Thickness		1.5 in	Composition	Type	Actual	
Composition Position	n	*	Lot ID		B9353-3	
Reference	<u> </u>	1120				
Composition			See Page 166	00.1		
Fabrication Histor	ry		See Page 166	00.1		
Property Measure	ments					
Test Type		Tensile	Position *			
Specimen Type		*	Specimen Thickness			
Gage Length		*	Loading Rate		• • • • • • • • • • • • • • • • • • • •	
Tensile Strength Offs	s et	*				
Uniform Elongation			Tensile Modu	ılus	*	
Standard Method		*	Standard Yea	<u>r</u>	*	
Orient	Test Temp	UTS	TYS	Elongation	RA	
	degF	ksi	ksi	%	%	
L	80	106.8	92.2	23.8	72.1	
L	80	106.8	93.2	23.7	72.1	
T	80	106.8	86.7	24.3	76.6	
T	80	107.3	90.7	23.9	75.4	

^{* -} not reported

Material HY80

Description		
Material Code	001.002.01	Material Name HY80
UNS	*	Other Designation
Type	Wrought Metal	Form Plate
Thickness	1.5 in	Composition Type Actual
Composition Position		Lot ID
Reference		
Composition		See Page 16600.1
Fabrication History		See Page 16600.1
Property Measurements		
Test Type	. Dynamic Tear	Position
Specimen Type	Dynamic Tear	Notch Preparation
Specimen Thickness	0.625 in	Loading Rate
Standard Method	*	Standard Year *

Orien	Test Temp	DT Energy	Frac Apear
Onen		ft-lb	
	degF		%
LTO	-225	35	5
L-T o	-200	40	14
L-T o	-175	100	22
L-T o	-150	215	33
L-T o	-125	265	42
L-T o	-110	515	69
L-T o	-100	570	79
L-T ○	-75	690	99
L-T o	-50	695	100
L-T o	-25	720	100
T-L △	-225	30	10
T-L 4	-200	40	13
T-L A	-175	95	22
T-L ^	-150	260	38
T-L 4	-135	510	52
T-L A	-125	635	64
T-L △	-100	860	77
T-L △	-75	1100	88
T-L △	-50	1390	100
T-L △	<u>-25</u>	1400	100

^{* -} not reported

Material HY80

Description	
Material Code	Material Name HY80
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness 1.5 in	Composition Type Actual
Composition Position	Lot ID B9353-3
Reference 1120	

Test Temperature degC

^{• -} not reported

Material HY100

Description	<u> </u>						
Material Code		011.00	1.01	Material Name		HY100	
UNS			. *	Other Designation			
Type		Wrought M	letal	Form			
Thickness		-	2 in	Composition Type		Actual	
Composition Pe	osition	• • • • • • • • • • • • • • • • • • • •	. *	Lot ID			
Composition							
		0.1	7 %	Mn		0.40 %	
		0.00		S			
Si		0.3	31 %	Cr			
		3.1		Mo			
)1 %	Cu			
			-	Ti			
				Al			
		<u> </u>		Other Components			
Fabrication F			·	Calci Components		11011 c /t	
	-		ОТ	Producer		Lukens	
				Addl Info			
		Lu Lu		Melting Practice			
				Killing Process			
		1650		Process Time *			
				Final Processing Q,T			
		1050		Final Time*			
				Aging Temperature			
				Location •			
Property Mea						***	
		Te	nsile	Specimen Type			
				Gage Length			
Loading Rate				Tensile Strength Of			
					Uniform Elongation *		
				Standard Method .			
		<u> </u>	_				
Position		Test Temp	UTS	TYS	Elongation	RA	
		degF	ksi	ksi	%	%	
()/4T	L	75	123.3	110.1	22	71.6	
0/4T	L	75	123.3	110.2	22	71.6	
0/4T	L	75	123.3	110.3	22	71.6	
1/2T	L	75	122.6	109.3	21	71.0	
1/2T	<u> </u>	75	122.8	109.4	21	71.1	
1/2T	L	75	123.1	109.5	21	71.3	
0/4T	Т	75	123.6	109.8	19	58.6	
0/4T	Т	75	123.7	110.3	19	58.7	
0/4T	T	75	123.8	110.8	19	58.8	
	T	75	122.8	109.6	20	59.8	
1/2T			,	1 -4			
1/2T 1/2T	Т	75	122.9	109.3	20	59.8	

^{* -} not reported

Material HY100

Description	
Material Code	Material Name HY100
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness 2 in	Composition Type Actual
Composition Position	Lot ID B5761-2R
Reference 3530	
Composition	See Page 19500.1
Fabrication History	See Page 19500.1
Property Measurements	
Test Type Dynamic Tear	Specimen Type Dynamic Tear
Notch Preparation Pressed	Specimen Thickness 0.625 in
Loading Rate *	Standard Method *
Standard Year *	

Position	Orien	Test Temp	DT Energy	Frac Apear
		degF	ft-lb	%
0/4T	L-T o	-240	100	3
1/2T	L-T ∘	-240	220	8
0/4T	L-T ∘	-220	95	6
1/2T	L-T ∘	-220	95	11
0/4T	L-T o	-180	90	9
1/2T	L-T ○	-180	100	19
0/4T	L-T ○	-160	180	27
1/2T	L-T o	-160	220	45
0/4T	L-T o	-140	265	37
1/2T	L-T o	-140	450	72
0/4T	L-T o	-120	320	47
1/2T	L-T o	-120	620	81
0/4T	L-T o	-80	840	100
1/2T	L-T o	-80	790	100
0/4T	L-T o	-40	760	100
1/2T	L-T o	-40	810	100
0/4T	L-T o	0	815	100
1/2T	L-T o	0	820	100
0/4T	L-T o	30	875	100
1/2T	L-T o	30	925	100
0/4T	T-L ^	-240	45	3
1/2T	T-L A	-240	80	3
0/4T	T-L 4	-220	75	6
1/2T	T-L A	-220	150	14
0/4T	T-L A	-180	90	17
1/2T	T-L A	-180	150	23
0/4T	T-L ·	-160	95	16
1/2T	T-L ^	-160	140	34
0/4T	T-L 🛕	-140	125	30
1/2T	T-L A	-140	195	51
0/4T	T-L A	-120	200	50
1/2T	T-L 4	-120	270	64
0/4T	T-L 4	-80	325	100
1/2T	T-L ^	-80	420	100

Material HY100

Page 19500.3

(continued)

Position	Orien	Test Temp	DT Energy	Frac Apear
		degF	ft-lb	%
0/4T	T-L ^Δ	-40	350	100
1/2T	T-L ^	-4 0	475	100
0/4T	T-L ^	0	60 0	100
1/2T	T-L ^	0	470	100
0/4T	T-L △	30	410	100
1/2T	T-L △	30	500	100

^{* -} not reported

Material HY100

Description	
Material Code	Material Name HY100
UNS *	Other Designation*
Type Wrought Metal	Form Plate
Thickness 2 in	Composition Type Actual
Composition Position	Lot ID B5761-2R
Reference 3530	

Test Temperature degC

^{* -} not reported

Material HY100

Description							
Material Code	Code 011.001.01			terial Name	HY100		
UNS *			. * Oth	Other Designation			
Type Wrought Metal			letal For	m		Plate	
				nposition Type		Actual	
Composition Po	sition		. * Lot	ID		B5761-2R	
Reference	<u> </u>		3530				
Composition			See	Page 19500.1			
Fabrication H	istory		See	Page 19500.1			
Property Mea	surements						
				cimen Type			
•	racture?		. * Star	ndard Method		•	
Standard Year		<u> </u>	<u> </u>			·	
Position	Orien	Test Temp	CVN Energy	Lat Expans	Shear	Split?	
		degF	ft-lb	mils	%		
0/4T	L-T °	-320	8	2	6	No	
1/2T	L-T °	-320	8	2	8	No	
0/4T	L-T °	-255	23	8	12	No	
1/2T	L-T ∘	-255	33	15	21	No .	
C/4T	L-T o	-240	21	10	14	No	
1/2T	L-T o	-240	22	9	21	No	
1/2T	L-T °	-230	36	20	32	Yes	
0/4T	L-T o	-220	29	12	19	No	
1/2T	L-T °	-220	50	29	46	Yes	
0/4T	L-T °	-200	35	19	30	No	
1/2T	L-T o	-200	54	32	48	Yes	
0/4T	L-T o	-180	42	24	38	No	
1/2T	L-T °	-180	67	41	75	Yes	
0/4T	L-T °	-170	46	29	50	No	
0/4T	L-T °	-160	53	35	55	No .	
1/2T	L-T °	-160	71	46	77	Yes	
0/4T	L-T o	-140	62	40	65	Yes	
1/2T	L-T o	-140	85	57	94	Yes	
0/4T	L-T o	-120	80	53	99	Yes	
1/2T	L-T °	-120	88	58	99	Yes	
0/4T	L-T °	-90	80	52	100	Yes	
1/2T	L-T °	-90	99	63	100	Yes	
0/4T	L-T ○	-6 0	86	58	100	Yes	
1/2T	L-T °	-60	100	66	100	Yes	
0/4T	L-T o	0	85	56	100	Yes	
1/2T	L-T ○	0	101	63	100	Yes	
0/4T	L-T o	30	87	65	100	Yes	
1/2T	L-T o	30	106	66	100	Yes	
0/4T	L-T o	74	85	64	100	Yes	
1/2T	L-T o	74	103	73	100	Yes	
0/4T	T-L A	-320	10	2	8	No	
1/2T	T-L 4	-320	8	2	8	No	
0/4T	T-L A	-255	19	6	11	No	
1/2T	T-L ^	-255	18	6	18	No -	
0/4T	T-L 4	-240	9	6	11	No	

Material HY100

Page 19500.6

(continued)

Position	Orien	Test Temp	CVN Energy	Lat Expans	Shear	Split?
		degF	ft-lb	mils	%	_
1/2T	T-L ^	-240	20	9	21	No
0/4T	T-L ^	-230	18	5	14	No
0/4T	T-L ^	-220	20	8	19	No
1/2T	T-L 4	-220	24	12	26	No
0/4T	T-L ^	-200	18	8	22	No
1/2T	T-L 4	-200	30	18	40	No
0/4T	T-L -	-180	23	14	33	No
1/2T	T-L -	-180	31	21	49	No
1/2T	T-L 📤	-170	42	27	56	No
0/4T	T-L 4	-160	24	16	40	No
1/2T	T-L A	-160	45	30	68	No
0/4T	T-L ^	-140	37	27	72	No
1/2T	T-L 📤	-140	47	32	78	No
0/4T	T-L A	-120	37	28	72	No
1/2T	T-L 4	-120	52	39	92	No
0/4T	T-L ^	-90	46	34	98	No
1/2T	T-L A	-9 0	58	40	100	No
0/4T	T-L 4	-60	46	35	100	No
1/2T	T-L A	-60	61	45	100	No
0/4T	T-L A	0	48	36	100	No
1/2T	T-L A	0	60	45	100	No
0/4T	T-L ^	30	50	38	100	No
1/2T	T-L 🌢	30	62	45	100	No
0/4T	T-L A	74	50	42	100	No
1/2T	T-L A	74	66	52	100	No

^{* -} not reported

Material HY100

Description	
Material Code	Material Name HY100
UNS *	Other Designation *
Type Wrought Metal	Form Plate
Thickness 2 in	Composition Type Actual
Composition Position	The state of the s
Reference	

Test Temperature degC

Material HY100

Description					
Material Code 011.003	3.01				1
UNS	=	Other Desig	gnation .		*
Type Wrought M	letal				
Thickness 2.					
Composition Position		ot ID			L467OV559
Reference USN	6/9				
Composition				- <u></u>	
C 0.1					
P 0.01	1 %				
Si					· ·
Ni 7.0	2 %				
V <0.00	1 %	շս			0.23 %
Cb	•	ï			<0.01 % ·
B	*	M			•
N	*	ther Com	ponents	<u> </u>	None %
Fabrication History					
Heat Treatment					
Year Produced					
Source U		_			
Ingot Position	•				
Process Temperature					
Rolling Conditions	*		_		
Final Temperature					
Cold Work Strain		-	•		
Aging Time	<u> </u>	ocation .	<u> </u>	<u> </u>	*
Property Measurements					
Test Type Ter					
Specimen Type Cylindi					
Gage Length					
Tensile Strength Offset 0.					
Tensile Modulus 29.0 ksi*10		Standard M	lethod .		E 8
	1969				
Orient Test Temp UTS	TYS	7	ΥP	Elongation	RA
degF ksi	ksi		ksi	%	<u>%</u>
T Room 113.4	99.0	L	*	25	72

Material HY100 Page 19600.2

Description		
Material Code	011.003.01	Material Name HY100
UNS		Other Designation *
Type	Wrought Metal	Form Plate
Thickness	2.0 in	Composition Type Actual
Composition Position	*	Lot ID L467OV559
Reference	USN 6/9	
Composition		See Page 19600.1
Fabrication History		See Page 19600.1
Property Measurement	S	
Test Type	Fracture Toughness	Position
Specimen Type	Compact Tension	Specimen Thickness 1.0 in
Crack Length	· · · · · · · · · · · · · · · · · · ·	Loading Type
Loading Rate	*	KQ
KIc	*	Valid KIc?
Reason for Invalid		KJc *
Jlcpr	Modified Standard	Initial COD
Critical COD	*	Curve Shape *
Initial JI, JI	* * * * * * * * * * * * * * * * * * * *	Maximum J, Jmax *
Standard Method		Standard Year *
	Orien Test Temp	Uc Tear Mod

Orien	Test Temp	JIc	Tear Mod
	degF	in-lb/in2	in-lb/in**2
T-L	Room	7 73	67
T-L	Room	830	65
T-L	Room	912	64
T-1.	Room	949	49

^{* -} not reported

Material HY100

Description	HV100
Material Code	Material Name HY100
UNS*	Other Designation
Type Wrought Metal	Form Plate
Thickness 2.0 in	Composition Type Actual
Composition Position	Lot ID L467OV559
Reference USN 6/9	
Composition	See Page 19600.1
Fabrication History	See Page 19600.1
Property Measurements	
Test Type Charpy V Impac	Position
Specimen Type Ful	Lateral Expansion
Shear Fracture	Did Specimen Fracture? Assumed
Did Specimen Split?	Standard Method E 23
Standard Year 1972	<u> </u>

Orien
 Test Temp degF
 CVN Energy ft-lb

 T-L °
 -120
 116

 T-L °
 -120
 34

^{* -} not reported

Material HY100

Description			
Material Code	011.003.01	Material Name	HY100
UNS		Other Designation	•!
Туре	Wrought Metal	Form	
Thickness	2.0 in	Composition Type	Actual
Composition Position		Lot ID	
Reference	USN 6/9		

Test Temperature degC

^{• -} not reported

Material HY100

Description	
Material Code 011.003.01	Material Name HY100
UNS *	Other Designation
Type Wrought Metal	Form Plate
Thickness 2.0 in	Composition Type Actual
Composition Position	Lot ID
Reference USN 6/9	
Composition	See Page 19600.1
Fabrication History	See Page 19600.1
Property Measurements	
Test Type	Position *
Specimen Type Dynamic Tear	Notch Preparation Pressed
Specimen Thickness 0.625 in	Loading Rate *
Appearance *	Standard Method E 604
Standard Year 1980	

Orien	Test Temp	DT Energy	
	degF	ft-lb	
T-L O	0	1085	
T-L O	0	1220	

Material HY100

Description			
Material Code	011.003.01	Material Name	HY100
UNS	*	Other Designation	
Type W	rought Metal	Form	
Thickness	•	Composition Type	
Composition Position			
Reference			

Test Temperature degC

^{• -} not reported

Material HY100 Page 19600.7

Description	
Material Code	Material Name HY100
UNS *	Other Designation*
Type Welded Joint	Form Plate
Thickness 2.0 in	Composition Type Actual
Composition Position	Lot ID FRO
Reference USN 6/9	
Composition	
C 0.07 %	Mn 1.13 %
P 0.013 %	S 0.014 %
Si *	Cr 0.15 %
Ni 3.49 %	Mo 0.45 %
V<0.001 %	Cu 0.03 %
Cb *	Ti <a><0.01 %
B *	Al *
N*	Other Components None %
Fabrication History	
Heat Treatment Q,T,W	Producer *
Year Produced *	Addl Info None
Source USN	Melting Practice*
Ingot Position *	Killing Process
Process Temperature *	Process Time*
Rolling Conditions *	Final Processing
Final Temperature *	Final Time *
Cold Work Strain *	Aging Temperature *
Aging Time	Location
Weld	
Weld Code 011.003.09A	Weld Type SMA
Base Metal Thickness	Welding Position Downhand
Preheat Temperature *	Metal Gap *
Interpass Temperature *	Passes
Filler Specification M22000/10	Filler Name
Filler Carbon Content *	Filler Metal Size
Shielding Gas *	Voltage
Amperage *	Polarity
Travel Speed *	Heat Input/Pass
Joint Preparation *	Number of Sides
Location wrt Weld	Location wrt Surface
Post-Weld Heat Temp *	Post-Weld Heat Time
Flux Type	Flux Name
Weld Composition Reported? Yes	

Material HY100

Page 19600.8

(continued)

Property Me	asurements					
Test Type		Te	nsile	Position		*
Specimen Type	e	Cylind	rical	Specimen Thickness		0.250 in
Gage Length		1	.0 in	Loading Rate		. 0.002 in/min
Tensile Streng	th Offset	0	.2 %	Uniform Elongation	n	*
Tensile Modul	us	29.9 ksi*10	0**3	Standard Method		E8
Standard Year	<u> </u>	<u> </u>	1969			
Orient	Test Temp	UTS	TYS	TYP	Elongation	RA
	degF	ksi	ksi	ksi	%	%
L	Room	126.5	117.3	*	20	64

^{* -} not reported

Material HY100 Page 19600.9

Description		
Material Code	011.003.09A	Material Name HY100
UNS	*	Other Designation
Type	Welded Joint	Form Plate
Thickness	2.0 in	Composition Type Actual
Composition Position	*	Lot ID FRO
Reference	USN 6/9	
Composition		See Page 19600.7
Fabrication History		See Page 19600.7
Weld		See Page 19600.7
Property Measurements		
Test Type	Fracture Toughness	Position
Specimen Type	Compact Tension	Specimen Thickness 1.0 in
Crack Length	*	Loading Type
Loading Rate	*	KQ *
Klc		Valid KIc? *
Reason for Invalid		KJc *
Jlepr	Modified Standard	Initial COD *
Critical COD	*	Curve Shape *
Initial JI, JI	*	Maximum J, Jmax *
Standard Method		Standard Year *

:	<u> </u>	G13	Sunding 1 cd	<u> </u>	•
	Orien	Test Temp	Jic	Tear Mod	i
		degF	in-lb/in2	in-lb/in**2	
	T-L	Room	210	25	
	T-L	Room	246	14	ı
	T-L	Room	302	21	i
	T-L	Room	313	24	
	T-L	Room	401	8	
	T-L	Room	424	13	
	T-L	Room	438	21	ĺ
	T-L	Room	445	19	
	T-I	Room	526	1 13	!

^{* -} not reported

Material HY100

Description		
Material Code	Material Name	HY100
UNS*	Other Designation	
Type Welded Joint	Form	
Thickness 2.0 in	Composition Type	
Composition Position	Lot ID	FRO
Reference USN 6/9		
Composition	See Page 19600.7	
Fabrication History	See Page 19600.7	
Weld	See Page 19600.7	
Property Measurements		
Test Type Charpy V Impact	Position	•
Specimen Type Full	Lateral Expansion	
Shear Fracture *	Did Specimen Fracture?	
Did Specimen Split?	Standard Method	E 23
Standard Year 1972		

Orien	Test Temp	CVN Energy
	degF	ft-lb
T-L o	-60	47
T-L o	-6 0	55
T-L o	0	56
T-L o	0	68

Material HY100

Description			
Material Code	011.003.09A	Material Name	HY100
UNS	*	Other Designation	*
Type	Welded Joint	Form	
Thickness	2.0 in	Composition Type	Actual
Composition Position	*	Lot ID	FRO
Reference	USN 6/9		

Test Temperature degC

^{• -} not reported

Material HY100

Description	
Material Code	Material Name HY100
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 2.0 in	Composition Type Actual
Composition Position *	Lot ID FRO
Reference USN 6/9	
Composition	See Page 19600.7
Fabrication History	See Page 19600.7
Weld	See Page 19600.7
Property Measurements	
Test Type Dynamic Tear	Position
Specimen Type Dynamic Tear	Notch Preparation Pressed
Specimen Thickness 0.625 in	Loading Rate
Appearance *	Standard Method E 604
Standard Year 1980	

Orien	Test Temp degF	DT Energy ft-lb
T-L O	0	520
T-L o	0	580

Material HY100

Description Material Code	011 003 09A	Material Name HY100
UNS	*	Other Designation
Type	Welded Joint	Form Plate
Thickness		Composition Type Actual
Composition Position		Lot ID FRO

Test Temperature degC

^{* -} not reported

Material HY100

Description	
Material Code	Material Name HY100
UNS	Other Designation
Type Welded Joint	Form Plate
Thickness 2.0 in	Composition Type Actual
Composition Position *	Lot ID FRP
Reference USN 6/9	
Composition	
C 0.07 %	Mn 1.26 %
P 0.018 %	S 0.006 %
Si *	Cr 0.16 %
Ni 3.58 %	Mo 0.44 %
V <0.001 %	Cu 0.04 %
Сь *	Ti<0.01 %
B *	Al *
N *	Other Components None %
Fabrication History	See Page 19600.7
Weld	
Weld Code 011.003.09B	Weld Type SMA
Base Metal Thickness 2.0 in	Welding Position Downhand
Preheat Temperature *	Metal Gap
Interpass Temperature *	Passes *
Filler Specification M22000/10	Filler Name *
Filler Carbon Content *	Filler Metal Size *
Shielding Gas *	Voltage *
Amperage *	Polarity *
Travel Speed *	Heat Input/Pass *
Joint Preparation *	Number of Sides
Location wrt Weld 11mm in HAZ	Location wrt Surface *
Post-Weld Heat Temp *	Post-Weld Heat Time
Flux Type *	Flux Name *
Weld Composition Reported? Yes	Tiux Ivanic
Property Measurements	
Test Type Tensile	Position
Specimen Type Cylindrical	Specimen Thickness 0.250 in
Gage Length Cymianical	Loading Rate 0.002 in/min
Tensile Strength Offset 0.2 %	Uniform Elongation *
Tensile Modulus 29.5 ksi*10**3	
	Standard Method E 8
Standard Year 1969	VC T TVD I SI
	YS TYP Elongation RA
	si ksi % %
L Room 126.0 12	1.0 * 16 59

^{* -} not reported

Material HY100

Description	· · · · · · · · · · · · · · · · · · ·		
Material Code	011.003.09B	Material Name	HY100
UNS	*	Other Designation	 * .
Type	Welded Joint	Form	Plate
Thickness	2.0 in	Composition Type	Actual
Composition Position	*	Lot ID	FRP
Reference	USN 6/9		
Composition		See Page 19600.14	
Fabrication History		See Page 19600.7	
Weld		See Page 19600.14	
Property Measurements			
Test Type	Fracture Toughness	Position	
Specimen Type	Compact Tension	Specimen Thickness	1.0 in
Crack Length	*	Loading Type	I
Loading Rate	*	KQ	
KIc	*	Valid KIc?	
Reason for Invalid	*	KJc	*
JIcpr	Modified Standard	Initial COD	
Critical COD	*	Curve Shape	*
Initial JI, JI	*	Maximum J, Jmax	*
Standard Method	813	Standard Year	*

		<u></u> 613	Standard real	<u> </u>
ļ	Orien	Test Temp	JIc	Tear Mod
		degF	in-lb/in2	in-lb/in**2
	T-L	Room	329	19
T-L		Room	338	27
	T-L	Room	387	20
ļ	T-L	Room	416	13
	T-L	Room	456	16
	T-L	Room	457	16
	T-L	Room	487	14
	T-L	Room	494	16
	T-L	Room	506	15
	T-L	Room	523	15
	T-L	Room	588	17

^{• -} not reported

Material HY100

Page 19600.16

Description	
Material Code	Material Name HY100
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 2.0 in	Composition Type Actual
Composition Position	Lot ID FRP
Reference USN 6/9	
Composition	See Page 19600.14
Fabrication History	See Page 19600.7
Weld	See Page 19600.14
Property Measurements	
Test Type Charpy V Impact	Position *
Specimen Type Full	Lateral Expansion *
Shear Fracture *	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method E 23
Standard Year 1972	

 Orien
 Test Temp degF
 CVN Energy ft-lb

 T-L °
 0
 54

Material HY100

Description	
Material Code	Material Name HY100
UNS *	Other Designation *
Type Welded Joint	Form Plate
Thickness 2.0 in	Composition Type Actual
Composition Position	
Reference USN 6/9	!

Test Temperature degC

^{* -} not reported

Material HY100

Description	
Material Code 011.003.09B	Material Name HY100
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 2.0 in	Composition Type Actual
Composition Position *	Lot ID FRP
Reference USN 6/9	
Composition	See Page 19600.14
Fabrication History	See Page 19600.7
Weld	See Page 19600.14
Property Measurements	
Test Type Charpy V Impact	Position
Specimen Type Full	Lateral Expansion
Shear Fracture *	Did Specimen Fracture? Assumed
Did Specimen Split? *	Standard Method E 23
Standard Year 1972	

Orien	Test Temp	CVN Energy
	degF	ft-lb
T-L °	-60	52
T-L o	-60	53
T-L o	0	55

Material HY100

Description			
Material Code	011.003.09B	Material Name	HY100
UNS	*	Other Designation	 * .
Type	Welded Joint	Form	Plate
Thickness	2.0 in	Composition Type	Actual
Composition Position	*	Lot ID	FRP
Reference	USN 6/9		:

Test Temperature degC

^{* -} not reported

Material HY100 Page 19600.20

Description	
Material Code	Material Name HY100
UNS *	Other Designation
Type Welded Joint	Form Plate
Thickness 2.0 in	Composition Type Actual
Composition Position *	Lot ID FRP
Reference USN 6/9	
Composition	See Page 19600.14
Fabrication History	See Page 19600.7
Weld	See Page 19600.14
Property Measurements	
Test Type Dynamic Tear	Position
Specimen Type Dynamic Tear	Notch Preparation Pressed
Specimen Thickness 0.625 in	Loading Rate *
Appearance *	Standard Method E 604
Standard Year 1980	

Orien	Test Temp degF	DT Energy ft-lb
T-L o	0	485
T-L o	0	616

Material HY100 Page 19600.21

Description			
Material Code	011.003.09B	Material Name	HY100
UNS		Other Designation	*
Type	Welded Joint	Form	Plate
Thickness	2.0 in	Composition Type	Actual
Composition Position		Lot ID	FRP
Reference	USN 6/9		

Test Temperature degC

^{* -} not reported

```
0 Lot ID
                                                                         19200.1. 19300.1. 19400.1. 19600.7. 19600.14
                3800.1-3800.4
004-2 Reference
                          1100.1-1100.2, 1100.5-1100.6,
                                                               1/2 V-Groove Joint Preparation
                                                                                                             13800.8-
                                                                         13800.36, 13900.1, 13900.4-13900.26, 14000.1-
          1200.1-1200.2, 1200.5-1200.6, 1300.1-1300.2, 1300.5-
          1300.6, 1400.1-1400.2, 1400.5-1400.6, 1500.1-1500.2,
                                                                         14000 22
          1500.5-1500.6, 1600.1-1600.2, 1600.5-1600.6, 1700.1-
                                                               1211 Reference
                                                                                       9000.1-9000.2, 9000.5-9000.9, 9100.1-
          1700.2, 1700.5-1700.6, 1800.1-1800.2, 1800.5-1800.6,
                                                                         9100.3, 9100.6-9100.9
                                                               14320 Lot ID
          1900.1-1900.2, 1900.5-1900.6
                                                                                     3600.1-3600.4
007-1 Reference
                          2100.1-2100.8, 2200.1-2200.8,
                                                               14453 Lot ID
                                                                                     4500.1-4500.4
                                                               14460 Lot ID
          2300.1-2300.8, 2400.1-2400.20, 2500.1-2500.18,
                                                                                     3300 1-3300.4
                                                               14490 Lot ID
          2600.1-2600.20, 2700.1-2700.18
                                                                                     5700.1-5700.3
                                                               14500 Lot ID
007-4 Reference
                          2800.1-2800.8, 2900.1-2900.8,
                                                                                     6000.1-6000.3
                                                               1/4T Composition Position
          3000.1-3000.8
                                                                                                      13800.1-13800.37.
1 Lot ID
                                                                         13900.1-13900.26, 14000.1-14000.23
                3900.1-3900.3
                                                               1/4T Location wrt Surface
1010 Reference
                        7800.1-7800.6, 7900.1-7900.6
                                                                                                        7200.7-7200.8.
1120 Reference
                        16600.1-16600.7
                                                                         7200.13
                                                               17754 Lot ID
                                                                                     5800.1-5800.3, 6100.1-6100.3
11672 Lot ID
                      3400.1-3400.4
11682 Lot ID
                                                               17777 Lot ID
                      4600.1-4600.3
                                                                                     6200.1-6200.3
11692 Lot ID
                                                               17846 Lot ID
                                                                                     5900.1-5900.3
                      4200.1-4200.3
                                                               18553 Lot ID
11mm in HAZ Location wrt Weld
                                                                                     6300.1-6300.3
                                               2500.16
                                                               1969 Standard Year
          2700.16, 3200.1, 3200.8, 3200.12, 3200.16, 3200.20,
                                                                                             1000.14, 18600.1, 18800.1,
                                                                         18900.1, 19000.2, 19100.2, 19200.2, 19300.2, 19400.2,
          6400.4, 6400.10, 6400.16, 6500.1, 6600.1, 6700.1,
          6800.1, 7200.7-7200.8, 7500.1, 7500.6, 7500.12,
                                                                         19600.1, 19600.8, 19600.14
                                                               1971 Year Produced
                                                                                             1000.1-1000.3, 1000.6, 1000.9,
          7500.16, 7500.20, 7600.2, 7600.6, 7600.10, 7600.14.
                                                                         1000.12-1000.14
          7600.18, 7700.1, 7700.6, 7700.10, 7700.14, 7700.18,
                                                               1972 Standard Year
          8000.1, 8100.1, 8200.1, 8300.1, 8500.1, 8600.1,
                                                                                             18600.3, 18700.2, 18800.3,
                                                                         18900.3, 19600.3, 19600.10, 19600.16-19600.18
          8700.1, 8800.1, 9200.2, 9200.6, 9200.10, 9200.14,
                                                               1972 Year Produced
                                                                                             2100.1-2100.3, 2100.6, 2200.1-
          9200.18, 9300.1, 9300.6, 9300.10, 9300.14, 9300.18,
          9700.7, 9900.7, 10200.4, 10200.8, 10500.4, 10800.4,
                                                                         2200.3, 2200.6, 2300.1-2300.3, 2400.1-2400.3, 2400.6.
                                                                         2400.9, 2400.12, 2400.15, 2400.18, 2500.1, 2600.1-
          10900.4, 11000.4, 11500.4, 12300.4, 12300.8, 12300.12,
          13800.8, 13800.20, 13800.24, 13800.34, 13900.1,
                                                                         2600.3, 2600.6, 2600.9, 2600.12, 2600.15, 2600.18,
          13900.14, 13900.24, 14000.1, 14000.4, 14000.14,
                                                                         2700.1, 2800.1-2800.3, 2800.6, 2900.1-2900.3, 2900.6,
                                                                         3000.1-3000.3, 3000.6
          14200.1, 14200.4 - 14200.6, 14200.16 - 14200.18, 14200.28,\\
          14200.38-14200.40, 14300.1, 14300.4-14300.6, 14300.16- 1976 Standard Year
                                                                                               7100.5, 7200.5, 7200.11,
                                                                         7200.15
          14300.18, 14300.28, 14300.38-14300.40, 14400.1,
          14400.4-14400.6, 14400.16-14400.18, 14400.28,
                                                               1976 Year Produced
                                                                                             15300.1, 15400.1, 16000.1,
                                                                         16200.1
          14400.38-14400.40, 14500.1, 14500.4-14500.6, 14500.16,
          14500.26, 14500.36, 14600.1, 14600.4-14600.6, 14600.16, 1977 Year Produced
                                                                                              16100.1, 16600.1
                                                               1978 Year Produced
                                                                                              7300.1, 15500.1, 15600.1,
          14600.26, 14600.36, 14700.1-14700.3, 14700.6-
                                                                         15900.1
          14700.8, 14700.11-14700.12, 14700.15-14700.17,
                                                               1979 Standard Year
                                                                                             7000.2, 14700.2, 14700.11,
          14700.20-14700.21, 14700.24-14700.26, 14800.1-
                                                                         14700.20, 14800.2, 14800.11, 14800.20, 14900.2,
          14800.3, 14800.6-14800.8, 14800.11-14800.12, 14800.15-
          14800.17, 14800.20-14800.21, 14800.24-14800.26,
                                                                         14900.11, 15000.2, 15000.11, 15000.20, 15100.2,
                                                                         15100.11, 15100.20, 15200.2, 15200.11
          14900.1-14900.3, 14900.6-14900.8, 14900.11-14900.12,
          14900.15-14900.17, 15000.1-15000.3, 15000.6-15000.8,
                                                               1979 Year Produced
                                                                                               1100.1, 1200.1, 1300.1,
                                                                         1400.1, 1500.1, 1600.1, 1700.1, 1800.1, 1900.1,
          15000.11-15000.12, 15000.15-15000.17, 15000.20-
                                                                         15700.1, 15800.1, 16300.1, 16400.1
          15000.21, 15000.24-15000.26, 15100.1-15100.3,
                                                               1980 Standard Year
          15100.6-15100.8, 15100.11-15100.12, 15100.15-
                                                                                             18600.5, 18700.4, 18800.5,
                                                                         18900.5, 19600.5, 19600.12, 19600.20
          15100.17, 15100.20-15100.21, 15100.24-15100.26,
          15200.1-15200.3, 15200.6-15200.8, 15200.11-15200.12,
                                                               1980 Year Produced
                                                                                              9000.1, 9100.1
```

15200.15-15200.17, 16500.1, 16500.5, 19000.1, 19100.1,

1981 Standard Year

16500.2-16500.6

```
1981 Year Produced
                              17400.1, 17400.11, 17400.20
                                                                       14500.22, 14500.32, 14500.42, 14600.12, 14600.22,
1982 Year Produced
                              12600.1, 16700.1, 16700.11.
                                                                       14600.32, 14600.42
                                                             40574 Lot ID
          16700.20, 16800.1, 16800.5, 16900.1, 16900.5, 17000.1,
                                                                                   12000.1-12000.3, 12100.1-12100.3,
          17000.7, 17100.1, 17100.11, 17200.1, 17200.17,
                                                                       12200.1-12200.3
                                                             41509 Lot ID
          17200.32, 17300.1, 17300.11, 17500.1, 17500.11,
                                                                                   10200.1-10200.11
          17600.1, 17600.5, 17700.1, 17700.11, 17700.20,
                                                             42252 Lot ID
                                                                                   10800.1-10800.7, 10900.1-10900.7.
          17800.1, 17800.5, 17900.1, 17900.17, 17900.32,
                                                                       11000.1-11000.7
                                                             43731 Lot ID
          18000.1, 18000.7, 18100.1, 18100.7, 18200.1, 18200.11.
                                                                                   5400.1-5400.3
                                                             43752 Lot ID
          18200.20, 18300.1, 18300.17, 18300.32, 18400.1,
                                                                                   3500.1-3500.4
          18400.11, 18400.20, 18500.1, 18500.5, 19500.1
                                                             47444 Lot ID
                                                                                   11200.1-11200.6
                                                             47574 Lot ID
1983 Year Produced
                              7800.1, 7900.1
                                                                                  9600.1-9600.7, 9700.1-9700.10, 9800.1-
1984 Year Produced
                              12500.1, 12700.1
                                                                       9800 3
1987 Standard Year
                               7800.2, 9000.6, 9100.2,
                                                             48160 Lot ID
                                                                                    9900.1-9900.10, 10000.1-10000.5,
          12500.2, 12600.2, 12700.2, 15700.2, 15800.2, 15900.2,
                                                                       10100.1-10100.5
                                                             48682 Lot ID
                                                                                   11500.1-11500.7, 11600.1-11600.3
1G Welding Position
                                                             4G Welding Position
                              14800.11-14800.12, 14800.15-
                                                                                            14800.1-14800.3, 14800.6
          14800.17
                                                                       14800.8, 14900.11-14900.12, 14900.15-14900.17
1mm in HAZ Location wrt Weld
                                                             50% weld, 50% HAZ Location wrt Weld
                                               2500.4.
                                                                                                                  13800.18,
          2700.4, 6400.7, 6400.13, 6400.19-6400.21, 6500.4,
                                                                       13900.12
                                                             50054 Lot ID
          6600.4, 6700.4, 6800.4, 7200.13, 8000.4, 8100.4,
                                                                                   10300.1-10300.3, 10400.1-10400.3,
          8200.4. 8300.4. 8500.4. 8600.4. 8700.4. 8800.4.
                                                                       10500.1-10500.7
                                                             52100 Lot ID
          13800.12, 13800.28, 13900.6, 13900.18, 14000.8,
                                                                                   12400.1-12400.3
                                                             52110 Lot ID
          14000.18, 14200.10, 14200.22, 14200.32, 14200.44,
                                                                                   12300.1-12300.15
          14300.10, 14300.22, 14300.32, 14300.44, 14400.10,
                                                             52765 Lot ID
                                                                                   5600.1-5600.3
                                                             52797 Lot ID
          14400.22, 14400.32, 14400.44, 14500.10, 14500.20,
                                                                                   5500.1-5500.3
          14500.30, 14500.40, 14600.10, 14600.20, 14600.30,
                                                             54614 Lot ID
                                                                                   11100.1-11100.4
                                                             55946 Lot ID
         14600.40
                                                                                   11800.1~11800.6, 11900.1~11900.6
2/3 Specimen Type
                                                             57053 Lot ID
                              9400.2, 9600.2
                                                                                   11700.1-11790.6
2G Welding Position
                                                             57221 Lot ID
                              14700.11-14700.12, 14700.15-
                                                                                   9400.1-9400.3, 9500.1-9500.6
                                                             58568 Lot ID
          14700.17, 14800.20-14800.21, 14800.24-14800.26
                                                                                   11300.1-11300.3, 11400.1-11400.3
3200 Reference
                                                             59609 Lot ID
                                                                                   10300.4-10300.6, 10600.1-10600.4,
                        12600.1-12600.14
3201 Reference
                                                                       10700.1-10700.7
                       15400.1-15400.6, 15700.1-15700.3,
                                                             5mm in HAZ Location wrt Weld
          15700.6-15700.8, 15800.1-15800.3, 15800.6-15800.8,
                                                                                                           2500.10,
         15900.1-15900.6, 16000.1-16000.6, 16100.1-16100.3,
                                                                       2700.10, 13800.16, 13800.32, 13900.10, 13900.22,
                                                                       14000.12, 14000.22, 14200.14, 14200.26, 14200.36,
          16100.6-16100.8, 16200.1-16200.6, 16300.1-16300.6
3202 Reference
                                                                       14200.48, 14300.14, 14300.26, 14300.36, 14300.48,
                       15300.1-15300.6, 15500.1-15500.2,
          15500.5-15500.7, 15600.1-15600.6, 16400.1-16400.6
                                                                       14400.14, 14400.26, 14400.36, 14400.48, 14500.14,
3/4 Specimen Type
                             9500.2, 9500.5, 9700.2, 9700.5-
                                                                       14500.24, 14500.34, 14500.44, 14600.14, 14600.24,
                                                                       14600.34, 14600.44
         9700.9, 9800.2, 9900.2, 9900.5-9900.9, 10200.2-
                                                             60865 Lot ID
         10200.10, 11300.2, 11400.2, 11500.2, 11600.2, 11700.2,
                                                                                   4300.1~4300.3
                                                             60868 Lot ID
         11700.5
                                                                                   3700.1-3700.4, 4400.1-4400.4
3400 Reference
                                                             641661 Lot ID
                        12500.1-12500.6, 12700.1-12700.7
                                                                                    1100.1-1100.2, 1100.5-1100.6, 1200.1-
3530 Reference
                        19500.1-19500.7
                                                                       1200.2, 1200.5-1200.6, 1300.1-1300.2, 1300.5-1300.6
                                                             641662 Lot ID
                                                                                    1400.1-1400.2, 1400.5-1400.6, 1500.1-
3G Welding Position
                              14700.20-14700.21, 14700.24-
                                                                       1500.2, 1500.5-1500.6, 1600.1-1600.2, 1600.5-1600.6
         14700.26, 14900.1-14900.3, 14900.6-14900.8, 15000.20-
         15000.21, 15000.24-15000.26, 15100.1-15100.3,
                                                             642696 Lot ID
                                                                                    1800.1-1800.2, 1800.5-1800.6, 1900.1-
         15100.6-15100.8, 15100.20-15100.21, 15100.24-
                                                                       1900.2, 1900.5-1900.6
                                                             642697 Lot ID
         15100.26, 15200.11-15200.12, 15200.15-15200.17
                                                                                    1700.1-1700.2, 1700.5-1700.6
                                                             7mm in HAZ Location wrt Weld
3mm in HAZ Location wrt Weld
                                                                                                           2500.13,
                                                                       2700 13
         2700.7, 13800.14, 13800.30, 13900.8, 13900.20,
         14000.10, 14000.20, 14200.12, 14200.24, 14200.34,
                                                             813 Standard Method
                                                                                             18600.2, 18700.1, 18800.2,
         14200.46, 14300.12, 14300.24, 14300.34, 14300.46,
                                                                       18900.2, 19600.2, 19600.9, 19600.15
```

14400.12, 14400.24, 14400.34, 14400.46, 14500.12.

```
1400.6, 1500.1-1500.2, 1500.5-1500.6, 1600.1-1600.2,
                                                                         1600.5-1600.6, 1700.1-1700.2, 1700.5-1700.6, 1800.1-
A Lot ID
                  5200.1-5200.4
                                                                         1800.2, 1800.5-1800.6, 1900.1-1900.2, 1900.5-1900.6
A0161 Lot ID
                       7800.1-7800.6
                                                               ABS-EH32 Material Name
                                                                                                       2000.1-2000.9
A1579-2AA Lot ID
                              15900.1-15900.6
                                                                ABS-EH36 Material Name
                                                                                                        2100 1-2100 8
A36 Material Name
                                3100.1-3100.11, 3200.1-
                                                                         2200.1-2200.8, 2300.1-2300.8, 2400.1-2400.20, 2500.1-
          3200.21, 3300.1~3300.4, 3400.1~3400.4, 3500.1~
                                                                         2500.18, 2600.1-2600.20, 2700.1-2700.18, 2800.1-
          3500.4, 3600.1-3600.4, 3700.1-3700.4, 3800.1-3800.4,
                                                                         2800.8, 2900.1-2900.8, 3000.1-3000.8
          3900.1-3900.3, 4000.1-4000.3, 4100 1-4100.3, 4200.1-
                                                               A,F Heat Treatment
                                                                                                2800.2, 2800.6, 2900.1-
          4200.3, 4300.1-4300.3, 4400.1-4400.4, 4500.1-4500.4,
                                                                         2900.3, 2900.6, 3000.1-3000.3, 3000.6
          4600.1-4600.3, 4700.1-4700.3, 4800.1-4800.3, 4900.1-
                                                               A,F,A,F,Q,T Heat Treatment
                                                                                                         2100.2, 2100.6,
          4900.3, 5000.1-5000.4, 5100.1-5100.4, 5200.1-5200.4,
                                                                         2200.1-2200.3. 2300.1-2300.3. 2400.1-2400.3. 2400.6.
          5300.1-5300.4, 5400.1-5400.3, 5500.1-5500.3, 5600.1-
                                                                         2400.9, 2400.12, 2400.15, 2400.18, 2500.1
          5600.3, 5700.1-5700.3, 5800.1-5800.3, 5900.1-5900.3,
                                                               A.F.N Heat Treatment
                                                                                                  2800 1-2800 3
          6000.1 - 6000.3, 6100.1 - 6100.3, 6200.1 - 6200.3, 6300.1 -
                                                               A.K Heat Treatment
                                                                                              12800.1.12900.1.13000.1.
          6390.3, 6400.1-6400.23, 6500.1-6500.5, 6600.1-
                                                                         13100.1, 13200.1, 13300.1, 13400.1, 13500.1, 13600.1,
          6600.5, 6700.1-6700.5, 6800.1-6800.6, 6900.1-6900.2,
          7000.1-7000.2, 7000.5-7000.6
                                                               Al-killed Killing Process
                                                                                                   2800.1-2800.3, 2800.6,
A537 CL1 Material Name
                                     7300.1-7300.6, 7400.1-
                                                                         2900.1-2900.3, 2900.6, 3000.1-3000.3, 3000.6
          7400.11, 7500.1-7500.21
                                                               A.Q.T Final Processing
                                                                                                    16700.1. 16700.11.
A572 Gr50 Material Name
                                        7600.1-7600.21.
                                                                         16700.20, 16800.1, 16800.5, 16900.1, 16900.5, 17000.1,
          7700.1-7700.21, 7800.1-7800.6, 7900.1-7900.6
                                                                         17000.7, 17100.1, 17100.11, 17200.1, 17200.17,
A588 GrA Material Name
                                        9200.1-9200.21.
                                                                         17200.32, 17300.1, 17300.11, 17400.1, 17400.11,
          9300.1~9300.21
                                                                         17400.20, 17500.1, 17500.11, 17600.1, 17600.5,
A588 Material Name
                                 8000.1-8000.5, 8100.1-
                                                                         17700.1, 17700.11, 17700.20, 17800.1, 17800.5,
          8100.5, 8200.1-8200.5, 8300.1-8300.5, 8400.1-8400.2,
                                                                         17900.1, 17900.17, 17900.32, 18000.1, 18000.7,
          8500.1-8500.5,8600.1-8600.5,8700.1-8700.5,8800.1-
                                                                         18100.1, 18100.7, 18200.1, 18200.11, 18200.20,
          8800.5, 8900.1-8900.2, 9000.1-9000.2, 9000.5-9000.9,
                                                                         18300.1, 18300.17, 18300.32, 18400.1, 18400.11,
          9100.1-9100.3, 9100.6-9100.9
                                                                         18400.20, 18500.1, 18500.5
A6175-8 Lot ID
                         16100.1-16100.3, 16100.6-16100.8
                                                               A,Q,T Heat Treatment
                                                                                                 16700.1.16700.11.16700.20.
A6670-3A Lot ID
                            16400.1-16400.6
A6670-3B Lot ID
                                                                         16800.1, 16800.5, 16900.1, 16900.5, 17000.1, 17000.7,
                           16300 1-16300 6
                                                                         17100.1, 17100.11, 17200.1, 17200.17, 17200.32,
A710 Material Name
                                 9400.1-9400.3, 9500.1-
          9500.6, 9600.1-9600.7, 9700.1-9700.10, 9800.1-
                                                                         17300.1, 17300.11, 17400.1, 17400.11, 17400.20,
                                                                         17500.1, 17500.11, 17600.1, 17600.5, 17700.1, 17700.11,
          9800.3, 9900.1-9900.10, 10000.1-10000.5, 10100.1-
                                                                         17700.20, 17800.1, 17800.5, 17900.1, 17900.17,
          10100.5, 10200.1-10200.11, 10300.1-10300.6, 10400.1-
                                                                         17900.32, 18000.1, 18000.7, 18100.1, 18100.7, 18200.1,
          10400.3, 10500.1-10500.7, 10600.1-10600.4, 10700.1-
                                                                         18200.11, 18200.20, 18300.1, 18300.17, 18300.32,
          10700.7, 10800.1-10800.7, 10900.1-10900.7, 11000.1-
                                                                         18400.1, 18400.11, 18400.20, 18500.1, 18500.5
          11000.7, 11100.1-11100.4, 11200.1-11200.6, 11300.1-
                                                               A,R Final Processing
                                                                                                1000.1-1000.3, 1000.6,
          11300.3, 11400.1-11400.3, 11500.1-11500.7, 11600.1-
                                                                         1000.9, 1000.12-1000.14, 1100.1, 1200.1, 1300.1,
          11600.3, 11700.1-11700.6, 11800.1-11800.6, 11900.1-
                                                                         1400.1, 1500.1, 1600.1, 1700.1, 1800.1, 1900.1,
          11900.6, 12000.1-12000.3, 12100.1-12100.3, 12200.1-
                                                                         3100.1, 3200.1, 3300.1, 3400.1, 3500.1, 3600.1,
          12200.3, 12300.1-12300.15, 12400.1-12400.3, 12700.1-
                                                                         3700.1, 3800.1, 3900.1, 4000.1, 4100.1, 4200.1,
          12700.7. 12800.1-12800.5. 12900.1-12900.5. 13000.1-
                                                                         4300.1, 4400.1, 4500.1, 4600.1, 4700.1, 4800.1,
          13000.5, 13100.1-13100.5, 13200.1-13200.3, 13300.1-
                                                                         4900.1, 5000.1, 5100.1, 5200.1, 5300.1, 5400.1,
          13300.5, 13400.1-13400.5, 13500.1-13500.5, 13600.1-
                                                                         5500.1, 5600.1, 5700.1, 5800.1, 5900.1, 6000.1,
          13600.5, 13700.1-13700.3
A710-A Material Name
                                                                         6100.1, 6200.1, 6300.1, 7000.1, 7600.1, 7700.1,
                                  12500.1-12500.6, 12600.1-
                                                                         7800.1. 7900.1
         12600 14
                                                               Armco D&M Source
                                                                                                3700.1, 3800.1, 3900.1,
ABS Sec43 Standard Method
                                          2800.3, 2800.6,
                                                                         4000.1, 4100.1, 4200.1, 4300.1, 4400.1, 4500.1,
         2900.3, 2900.6, 3000.3, 3000.6
                                                                         4600.1, 4700.1, 4800.1, 4900.1, 5000.1, 5100.1,
ABS-B Material Name
                                 1000.1-1000.14, 1100.1-
                                                                         5200.1, 5300.1, 5400.1, 5500.1, 5600.1, 5700.1,
         1100.2, 1100.5-1100.6, 1200.1-1200.2, 1200.5-1200.6,
                                                                         5800.1, 5900.1, 6000.1, 6100.1, 6200.1, 6300.1
         1300.1-1300.2.1300.5-1300.6.1400.1-1400.2.1400.5-
```

```
Armco Producer
                           2000.1, 3300.1, 3400.1, 3500.1,
                                                                          17100.6, 17100.9, 17100.12, 17100.15, 17100.18,
                                                                          17200.2, 17200.8, 17200.13, 17200.18, 17200.23,
          3600.1, 3700.1, 3800.1, 3900.1, 4000.1, 4100.1,
          4200.1, 4300.1, 4400.1, 4500.1, 4600.1, 4700.1,
                                                                          17200.28, 17200.33, 17200.38, 17200.43, 17300.2,
          4800.1, 4900.1, 5000.1, 5100.1, 5200.1, 5300.1,
                                                                          17300.6, 17300.9, 17300.12, 17300.15, 17300.18,
          5400.1, 5500.1, 5600.1, 5700.1, 5800.1, 5900.1,
                                                                          17400.2, 17400.6, 17400.9, 17400.12, 17400.15,
          6000.1, 6100.1, 6200.1, 6300.1, 7100.1, 7200.1
                                                                          17400.18, 17400.21, 17400.24, 17400.27, 17500.2,
Armco Source
                         2000.1, 3300.1, 3400.1, 3500.1,
                                                                          17500.6, 17500.9, 17500.12, 17500.15, 17500.18,
                                                                          17600.2, 17600.6, 17700.2, 17700.6, 17700.9, 17700.12,
Armco W18 Filler Name
                                    7200.7~7200.8, 7200.13,
                                                                          17700.15, 17700.18, 17700.21, 17700.24, 17700.27,
                                                                          17800.2, 17800.6, 17900.2, 17900.8, 17900.13, 17900.18,
          10900.4-10900.6, 11500.4-11500.6
Armco W24 Filler Name
                                       10200.4-10200.6,
                                                                          17900.23, 17900.28, 17900.33, 17900.38, 17900.43,
          10800.4-10800.6, 11000.4-11000.6, 12300.4-12300.6
                                                                          18000.2, 18000.8, 18100.2, 18100.8, 18200.2, 18200.6,
Armco W25 Filler Name
                                     9900.7~9900.9
                                                                          18200.9, 18200.12, 18200.15, 18200.18, 18200.21,
Armco-MPC Reference
                                                                          18200.24, 18200.27, 18300.2, 18300.8, 18300.13,
                                   3300.1-3300.4, 3400.1-
          3400.4, 3500.1-3500.4, 3600.1-3600.4, 3700.1-3700.4,
                                                                          18300.18, 18300.23, 18300.28, 18300.33, 18300.38,
          3800.1-3800.4, 3900.1-3900.3, 4000.1-4000.3, 4100.1-
                                                                          18300.43, 18400.2, 18400.6, 18400.9, 18400.12,
          4100.3, 4200.1-4200.3, 4300.1-4300.3, 4400.1-4400.4,
                                                                          18400.15, 18400.18, 18400.21, 18400.24, 18400.27,
          4500.1 - \! 4500.4, 4600.1 - \! 4600.3, 4700.1 - \! 4700.3, 4800.1 -
                                                                          18500.2, 18500.6, 18600.3, 18700.2, 18800.3, 18900.3,
          4800.3, 4900.1-4900.3, 5000.1-5000.4, 5100.1-5100.4.
                                                                          19000.4, 19100.4, 19200.4, 19300.4, 19400.4, 19600.3,
          5200.1-5200.4, 5300.1-5300.4, 5400.1-5400.3, 5500.1-
                                                                          19600.10, 19600.16-19600.18
          5500.3, 5600.1-5600.3, 5700.1-5700.3, 5800.1-5800.3,
                                                                Australia Producer
                                                                                              1100.1, 1200.1, 1300.1, 1400.1,
          5900.1-5900.3,6000.1-6000.3,6100.1-6100.3,6200.1-
                                                                          1500.1, 1600.1, 1700.1, 1800.1, 1900.1
          6200.3. 6300.1-6300.3
                                                                Australia Source
                                                                                           1100.1, 1200.1, 1300.1, 1400.1,
Assumed Did Specimen Fracture?
                                                                          1500.1, 1600.1, 1700.1, 1800.1, 1900.1
          1000.6, 1000.9, 1000.12, 2100.3, 2100.6, 2300.3,
                                                                \mathbf{B}
          2300.6, 2400.3, 2400.6, 2400.9, 2400.12, 2400.15,
                                                                B Location
          2400.18, 2500.2-2500.4, 2500.7, 2500.10, 2500.13,
                                                                                    1000.2, 1000.6
          2500.16, 2600.3, 2600.6, 2600.9, 2600.12, 2600.15,
                                                                B0469-2C Lot ID
                                                                                           15400.1-15400.6, 16200.1-16209.6
                                                                B1038-2B Lot ID
          2600.18, 2700.2-2700.4, 2700.7, 2700.10, 2700.13,
                                                                                            18600.1-18600.6
                                                                B-1088-3 Lot ID
          2700.16, 3100.2-3100.10, 3200.2-3200.20, 7100.2,
                                                                                           18800.1-18800.6
          7300.2, 7400.2-7400.10, 7500.2-7500.20, 7600.2-
                                                                B-1088-5 Lot ID
                                                                                           18900.1-18900.6
                                                                B1908-3 Lot ID
          7600.20, 7700.2-7700.20, 9200.2-9200.20, 9300.2-
                                                                                         15500.1-15500.2, 15500.5-15500.7
          9300.20, 9400.2, 9500.2, 9500.5, 9600.2, 9600.5,
                                                                B1908-5A Lot ID
                                                                                            15600.1-15600.6
                                                                B1908-5B Lot ID
          9700.2, 9700.5-9700.9, 9800.2, 9900.2, 9900.5-
                                                                                           15800.1-15800.3, 15800.6-15800.8
                                                                B5761-2R Lot ID
          9900.9, 10100.2, 10200.2-10200.10, 10300.2, 10300.5,
                                                                                            19500.1-19500.7
          10400.2, 10500.2-10500.6, 10600.1, 10700.2-10700.4,
                                                                B8478-3 Lot ID
                                                                                          17800.1-17800.7
          10800.2-10800.6, 10900.2-10900.6, 11000.2-11000.6,
                                                                B8490-2 Lot ID
                                                                                          17500.1-17500.19
          11100.1, 11200.2, 11200.5, 11300.2, 11400.2, 11500.2-
                                                                B8563-4 Lot ID
                                                                                          17300.1-17300.19
                                                                B8601-5 Lot ID
          11500.6, 11600.2, 11700.2, 11700.5, 11900.2, 12000.2,
                                                                                          17100.1-17100.19
                                                                B8687-1 Lot ID
          12100.2, 12200.2, 12300.2-12300.14, 12400.2, 13800.8-
                                                                                          17600.1-17600.7
          13800.32, 13900.2-13900.22, 14000.4-14000.22,
                                                                B8740-2 Lot ID
                                                                                          17200.1-17200.46
          14700.4-14700.6, 14700.9, 14700.13-14700.15, 14700.18, B8740-3 Lot ID
                                                                                          16700.1-16700.28
          14700.22-14700.24, 14700.27, 14800.4-14800.6,
                                                                B8817-1 Lot ID
                                                                                          18400.1-18400.28
          14800.9, 14800.13-14800.15, 14800.18, 14800.22-
                                                                B9353-3 Lot ID
                                                                                          16600.1-16600.7
          14800.24, 14800.27, 14900.4-14900.6, 14900.9, 14900.13- B9671-1E Lot ID
                                                                                            12600.1-12600.14
          14900 15 14900 18,15000.4-15000.6,15000.9,15000.13- Back surface at root Location wrt Surface
          15000.15, 15000.18, 15000.22-15000.24, 15000.27,
                                                                          14200.16, 14200.38, 14300.16, 14300.38, 14400.16,
          15100.4-15100.6, 15100.9, 15100.13-15100.15, 15100.18.
                                                                          14400.38, 14500.16-14500.24, 14500.36-14500.44,
          15100.22-15100.24, 15100.27, 15200.4-15200.6,
                                                                          14600.16-14600.24, 14600.36-14600.44, 14700.8,
          15200.9, 15200.13-15200.15, 15200.18, 16500.3,
                                                                          14700.17, 14700.26, 14800.8, 14800.17, 14800.26,
          16500.6, 16700.2, 16700.6, 16700.9, 16700.12, 16700.15,
                                                                          14900.8, 14900.17, 15000.8, 15000.17, 15000.26,
          16700.18, 16700.21, 16700.24, 16700.27, 16800.2.
                                                                          15100.8, 15100.17, 15100.26, 15200.8, 15200.17
          16800.6, 16900.2, 16900.6, 17000.2, 17000.8, 17100.2,
```

Back surface not root Location wrt Surface 14600.2-14600.5, 14700.2, 14700.11, 14700.20, 14800.2, 13800.20-13800.22.14200.18-14200.26.14200.40-14800.11, 14800.20, 14900.2, 14900.11, 15000.2, 14200.48, 14300.18-14300.26, 14300.40-14300.48, 15000.11, 15000.20, 15100.2, 15100.11, 15100.20, 14400.18-14400.26, 14400.40-14400.48 15200.2, 15200.11 Basic Flux Type **Bunge Producer** 16500.1, 16500.5 16500.1 **BL55 Flux Name** 13900.1, 13900.4-13900.26, 14000.4-14000.22, 14300.1-14300.48, 14400.1-14400.48, 14500.1-14500.47, 14600.1-14600.47 C Lot ID 4000.1-4000.3 **BOF** Melting Practice 1000.1-1000.3, 1000.6, C4771-39A Lot ID 18500.1-18500.7 1000.9, 1000 12-1000 14, 1100.1, 1200.1, 1300.1, C5830 Lot ID 16000.1-16000.6 1400.1, 1500.1, 1600.1, 1700.1, 1800.1, 1900.1, C5830-5T Lot ID 15300.1-15300.6 2100.1-2100.3, 2100.6, 2200.1-2200.3, 2200.6, 2300.1-C-9283-11 Lot ID 18700.1-18700.5 2300.3, 2400.1-2400.3, 2400.6, 2400.9, 2400.12, CG A537M Material Name 7100.1~7100.6. 2400.15, 2400.18, 2500.1, 2600.1-2600.3, 2600.6, 7200.1-7200.16 2600.9, 2600.12, 2600.15, 2600.18, 2700.1 Charpy V Impact Test Type 1000.3.1000.6. **Bottom Composition Position** 2100.2, 2100.6-1000.9, 1000.12, 1100.2, 1200.2, 1300.2, 1400.2, 2100.8, 2200.2, 2200.6-2200.8, 2300.2, 2400.2, 1500.2, 1600.2, 1700.2, 1800.2, 1900.2, 2000.4, 2400.6-2400.8, 2400.12-2400.14, 2400.18-2400.20, 2100.3, 2100.6, 2200.3, 2200.6, 2300.3, 2300.6, 2600.2, 2600.6-2600.8, 2600.12-2600.14, 2600.18-2400.3, 2400.6, 2400.9, 2400.12, 2400.15, 2400.18, 2600.20, 2800.2, 2800.6-2800.8, 2900.2, 2900.6-2500.2-2500.4, 2500.7, 2500.10, 2500.13, 2500.16, 2900.8, 3000.2, 3000.6-3000.8 2600.3, 2600.6, 2600.9, 2600.12, 2600.15, 2600.18, **Bottom Ingot Position** 2100.2, 2100.6, 2200.2, 2700.2-2700.4, 2700.7, 2700.10, 2700.13, 2700.16. 2200.6, 2300.2, 2400.2, 2400.6, 2400.12, 2400.18, 2800.3, 2800.6, 2900.3, 2900.6, 3000.3, 3000.6, 2600.2, 2600.6, 2600.12, 2600.18, 16700.20, 16800.5, 3100.2-3100.10, 3200.2-3200.20, 3300.2, 3400.2, 16900.5, 17000.7, 17100.11, 17200.32, 17300.11, 3500.2, 3600.2, 3700.2, 3800.2, 3900.2, 4000.2, 17400.20, 17500.11, 17600.5, 17700.20, 17800.5, 4100.2, 4200.2, 4300.2, 4400.2, 4500.2, 4600.2, 17900.32, 18000.7, 18100.7, 18200.20, 18300.32, 4700.2, 4800.2, 4900.2, 5000.2, 5100.2, 5200.2, 5300.2, 5400.2, 5500.2, 5600.2, 5700.2, 5800.2, 18400.20, 18500.5 BS131H2 Standard Method 14700.4-14700.6, 5900.2, 6000.2, 6100.2, 6200.2, 6300.2, 6400.1, 14700.9. 14700.13-14700.15. 14700.18. 14700.22-6400.4, 6400.7, 6400.10, 6400.13, 6400.16, 6400.19-14700.24, 14700.27, 14800.4-14800.6, 14800.9, 14800.13-6400.21, 6500.2-6500.4, 6600.2-6600.4, 6700.2-14800.15, 14800.18, 14800.22-14800.24, 14800.27, 6700.4, 6800.2-6800.4, 6900.1, 7000.5, 7100.2, 14900.4-14900.6, 14900.9, 14900.13-14900.15, 14900.18, 7200.2, 7200.8, 7200.13, 7300.2, 7400.2~7400.10, 15000.4-15000.6, 15000.9, 15000.13-15000.15, 15000.18, 7500.2-7500.20, 7600.2-7600.20, 7700.2-7700.20, 15000.22-15000.24, 15000.27, 15100.4-15100.6, 7800.3, 7900.3, 8000.2-8000.4, 8100.2-8100.4, 8200.2-15100.9, 15100.13-15100.15, 15100.18, 15100.22-8200.4, 8300.2-8300.4, 8400.1, 8500.2-8500.4, 8600.2-15100.24, 15100.27, 15200.4-15200.6, 15200.9, 15200.13-8600.4, 8700.2-8700.4, 8800.2-8800.4, 8900.1, 9000.2, 15200.15, 15200.18 9100.3, 9200.2-9200.20, 9300.2-9300.20, 9400.2, BS4360 Gr50D Material Name 13800 1-9500.2, 9500.5, 9600.2, 9600.5, 9700.2, 9700.5-13800.37, 13900.1-13900.26, 14000.1-14000.23, 9700.9, 9800.2, 9900.2, 9900.5-9900.9, 10000.2, 14100.1-14100.10, 14200.1-14200.49, 14300.1-14300.49, 10100.2, 10200.2-10200.10, 10300.2, 10300.5, 10400.2, 14400.1-14400.49, 14500.1-14500.47, 14600.1-14600.47, 10500.2-10500.6, 10600.1, 10700.2-10700.4, 10800.2-14700.1-14700.28, 14800.1-14800.28, 14900.1-14900.19, 10800.6, 10900.2-10900.6, 11000.2-11000.6, 11100.1, 15000.1-15000.28, 15100.1-15100.28, 15200.1-15200.19, 11200.2, 11200.5, 11300.2, 11400.2, 11500.2-11500.6, 15300.1-15300.6, 15400.1-15400.6, 15500.1-15500.2, 11600.2, 11700.2, 11700.5, 11800.2, 11803.5, 11900.2-15500.5-15500.7, 15600.1-15600.6, 15700.1-15700.3, 11900.4, 12000.2, 12100.2, 12200.2, 12300.2-12300.14, 15700.6-15700.8, 15800.1-15800.3, 15800.6-15800.8, 12400.2, 12500.3, 12600.3, 12600.6, 12700.3, 12800.2, 15900.1-15900.6, 16000.1-16000.6, 16100.1-16100.3, 12900.2, 13000.2, 13100.2, 13200.2, 13300.2, 13400.2, 16100.6-16100.8, 16200.1-16200.6, 16300.1-16300.6, 13500.2, 13600.2, 13700.2, 13800.3-13800.5, 13800.8-16400.1-16400.6 13800.32, 13900.2-13900.22, 14000.4-14000.22, BS5762 Standard Method 7000.2, 13800.34-14100.5-14100.9, 14200.6-14200.48, 14300.6-14300.48, 13800.37, 13900.24-13900.26, 14200.2-14200.5, 14400.6-14400.48, 14500.6-14500.44, 14600.6-14600.44, 14300.2-14300.5, 14400.2-14400.5, 14500.2-14500.5, 14700.4-14700.6, 14700.9, 14700.13-14700.15, 14700.18,

Index VI

```
14700.22-14700.24, 14700.27, 14800.4-14800.6,
                                                                           1700.5-1700.6, 1800.1-1800.2, 1800.5-1800.6, 1900.1-
          14800.9, 14800.13-14800.15, 14800.18, 14800.22-
                                                                           1900.2, 1900.5-1900.6, 15500.1-15500.2, 15500.5-
          14800.24, 14800.27, 14900.4-14900.6, 14900.9, 14900.13-
                                                                           15500.7, 15600.1-15600.6, 16700.1-16700.28, 16800.1-
          14900.15, 14900.18, 15000.4-15000.6, 15000.9, 15000.13-
                                                                           16800.7, 16900.1-16900.7, 17000.1-17000.11, 17100.1-
          15000 15, 15000.18, 15000.22-15000.24, 15000.27,
                                                                           17100.19, 17200.1-17200.46, 17300.1-17300.19,
          15100.4-15100.6, 15100.9, 15100.13-15100.15, 15100.18,
                                                                           17400.1-17400.28, 17500.1-17500.19, 17600.1-17600.7,
          15100.22-15100.24, 15100.27, 15200.4-15200.6,
                                                                           17700.1-17700.28, 17800.1-17800.7, 17900.1-17900.46,
          15200.9, 15200.13-15200.15, 15200.18, 15300.2,
                                                                           18000.1-18000.11, 18100.1-18100.11, 18200.1-18200.28,
          15400.2, 15500.2, 15600.2, 15700.3, 15800.3, 15900.3,
                                                                           18300.1-18300.46, 18400.1-18400.28, 18500.1-18500.7
                                                                      Top
          16000.2, 16100.3, 16200.2, 16300.2, 16400.2, 16500.3,
                                                                                2100.1-2100.5, 2200.1-2200.5, 2300.1-2300.8,
          16500.6, 16600.2, 16700.2, 16700.6, 16700.9, 16700.12,
                                                                           2400.1-2400.5, 2400.9-2400.11, 2400.15-2400.17,
          16700.15, 16700.18, 16700.21, 16700.24, 16700.27,
                                                                           2500.1-2500.18, 2600.1-2600.5, 2600.9-2600.11,
                                                                           2600.15~2600.17, 2700.1~2700.18, 2800.1~2800.5,
          16800.2, 16800.6, 16900.2, 16900.6, 17000.2, 17000.8,
                                                                           2900.1-2900.5, 3000.1-3000.5
          17100.2, 17100.6, 17100.9, 17100.12, 17100.15,
          17100.18, 17200.2, 17200.8, 17200.13, 17200.18,
                                                                Concast Ingot Position
                                                                                                   1000.1-1000.3, 1000.6,
          17200.23, 17200.28, 17200.33, 17200.38, 17200.43,
                                                                           1000.9, 1000.12-1000.14, 1100.1, 1200.1, 1300.1,
          17300.2, 17300.6, 17300.9, 17300.12, 17300.15,
                                                                           1400.1, 1500.1, 1600.1, 1700.1, 1800.1, 1900.1,
          17300.18, 17400.2, 17400.6, 17400.9, 17400.12,
                                                                           2800.1-2800.3, 2800.6, 2900.1-2900.3, 2900.6, 3000.1-
                                                                           3000.3, 3000.6
          17400.15, 17400.18, 17400.21, 17400.24, 17400.27,
                                                                 Curve Shape
          17500.2, 17500.6, 17500.9, 17500.12, 17500.15,
                                                                     Cleavage
          17500.18, 17600.2, 17600.6, 17700.2, 17700.6, 17700.9,
                                                                                       14800.20, 14900.11
          17700.12, 17700.15, 17700.18, 17700.21, 17700.24,
                                                                     Maximum
                                                                                        15000.2, 15000.20
          17700.27, 17800.2, 17800.6, 17900.2, 17900.8, 17900.13,
                                                                Cylindrical Specimen Type
                                                                                                          3100.1, 7000.1.
                                                                           7300.1, 7400.1, 7600.1, 7800.1, 7900.1, 9000.1,
          17900.18, 17900.23, 17900.28, 17900.33, 17900.38,
          17900.43, 18000.2, 18000.8, 18100.2, 18100.8, 18200.2,
                                                                           9100.1, 9200.1, 12500.1, 12600.1, 12700.1, 14700.3,
          18200.6, 18200.9, 18200.12, 18200.15, 18200.18,
                                                                           14700.8, 14700.12, 14700.17, 14700.21, 14700.26,
          18200.21, 18200.24, 18200.27, 18300.2, 18300.8,
                                                                           14800.3, 14800.8, 14800.12, 14800.17, 14800.21,
                                                                           14800.26, 14900.3, 14900.8, 14900.12, 14900.17,
          18300.13, 18300.18, 18300.23, 18300.28, 18300.33,
          18300.38, 18300.43, 18400.2, 18400.6, 18400.9,
                                                                           15000.3, 15000.8, 15000.12, 15000.17, 15000.21,
          18400.12, 18400.15, 18400.18, 18400.21, 18400.24,
                                                                           15000.26, 15100.3, 15100.8, 15100.12, 15100.17,
                                                                           15100.21, 15100.26, 15200.3, 15200.8, 15200.12,
          18400.27, 18500.2, 18500.6, 18600.3, 18700.2, 18800.3,
          18900.3, 19000.4, 19100.4, 19200.4, 19300.4, 19400.4,
                                                                           15200.17, 15300.1, 15400.1, 15500.1, 15606.1, 15700.1,
                                                                           15800.1, 15900.1, 16000.1, 16100.1, 16200.1, 16300.1,
          19500.5, 19600.3, 19600.10, 19600.16-19600.18
Cleavage Curve Shape
                                                                           16400.1, 16500.2, 16500.5, 18600.1, 18800.1, 18900.1,
                                  14800.20, 14900.11
Compact Specimen Type
                                                                           19000.2, 19100.2, 19200.2, 19300.2, 19400.2, 19600.1,
                                     7800.2, 9000.6, 9100.2,
          12500.2, 12600.2, 12700.2, 15700.2, 15800.2, 15900.2,
                                                                           19600.8, 19600.14
          16100.2
Compact Tension Specimen Type
          18700.1, 18860.2, 18900.2, 19000.3, 19100.3, 19200.3,
                                                                D2580-4 Lot ID
                                                                                          17400.1-17400.28
                                                                D3007-3 Lot ID
          19300.3, 19400.3, 19600.2, 19600.9, 19600.15
                                                                                          15700.1-15700.3, 15700.6-15700.8
                                                                D3631-7L Lot ID
Composition Position
                                                                                            16900.1-16900.7
     1/4T
                 13800.1~13800.37, 13900.1~13900.26, 14000.1~
                                                                D3667-3M Lot ID
                                                                                             17000.1-17000.11
                                                                D3703-4B Lot ID
          14000 23
                                                                                             16800.1-16800.7
     Bottom
                    2100.2, 2100.6-2100.8, 2200.2, 2200.6-
                                                                D3710-42B Lot ID
                                                                                              17900.1-17900.46
                                                                D3791-2B Lot ID
          2200.8, 2300.2, 2400.2, 2400.6-2400.8, 2400.12-
                                                                                             7300.1-7300.6
          2400.14, 2400.18-2400.20, 2600.2, 2600.6-2600.8,
                                                                D3974-1B Lot ID
                                                                                             18200.1-18200.28
                                                                D3975-3E Lot ID
                                                                                            17700.1-17700.28
          2600.12-2600.14, 2600.18-2600.20, 2800.2, 2800.6-
          2800.8, 2900.2, 2900.6-2900.8, 3000.2, 3000.6-
                                                                D4030-4A Lot ID
                                                                                             18300.1-18300.46
                                                                D4179-3B Lot ID
          3000.8
                                                                                             7900.1-7900.6
                                                                D6274-4 Lot ID
    Ladle
                  1100.1-1100.2, 1100.5-1100.6, 1200.1-
                                                                                           9000.1-9000.2, 9000.5-9000.9,
          1200.2, 1200.5-1200.6, 1300.1-1300.2, 1300.5-1300.6,
                                                                           9100.1-9100.3, 9100.6-9100.9
                                                                D6873-1A Lot ID
          1400.1-1400.2, 1400.5-1400.6, 1500.1-1500.2, 1500.5-
                                                                                             12500.1-12500.6
                                                                D6873-1B Lot ID
          1500.6, 1600.1-1600.2, 1600.5-1600.6, 1700.1-1700.2,
                                                                                             12700.1-12700.7
```

Did Specimen Fracture?

1000.3, 1000.6, 1000.9, 1000.12, 2100.3, Assumed 2100.6, 2300.3, 2300.6, 2400.3, 2400.6, 2400.9, 2400.12, 2400.15, 2400.18, 2500.2-2500.4, 2500.7, 2500.10, 2500.13, 2500.16, 2600.3, 2600.6, 2600.9, 2600.12, 2600.15, 2600.18, 2700.2-2700.4, 2700.7, 2700.10, 2700.13, 2700.16, 3100.2-3100.10, 3200.2-3200.20, 7100.2, 7300.2, 7400.2-7400.10, 7500.2-7500.20, 7600.2-7600.20, 7700.2-7700.20, 9200.2-9200.20, 9300.2-9300.20, 9400.2, 9500.2, 9500.5, 9600.2, 9600.5, 9700.2, 9700.5-9700.9, 9800.2, 9900.2, 9900.5-9900.9, 10100.2, 10200.2-10200.10, 10300.2, 10300.5, 10400.2, 10500.2-10500.6, 10600.1, 10700.2-10700.4, 10800.2-10800.6, 10900.2-10900.6, 11000.2-11000.6, 11100.1, 11200.2, 11200.5, 11300.2, 11400.2, 11500.2-11500.6, 11600.2, 11700.2, 11700.5, 11900.2, 12000.2, 12100.2, 12200.2, 12300.2-12300.14. 12400.2, 13800.8-13800.32, 13900.2-13900.22, 14000.4-14000.22. 14700.4-14700.6, 14700.9, 14700.13-14700.15, 14700.18, 14700.22-14700.24, 14700.27, 14800.4-14800.6, 14800.9, 14800.13-14800.15, 14800.18, 14800.22-14800.24, 14800.27, 14900.4-14900.6, 14900.9, 14900.13-14900.15, 14900.18, 15000.4~ 15000.6, 15000.9, 15000.13-15000.15, 15000.18, 15000.22-15000.24, 15000.27, 15100.4-15100.6, 15100.9, 15100.13-15100.15, 15100.18, 15100.22-15100.24, 15100.27, 15200.4-15200.6, 15200.9, 15200.13-15200.15, 15200.18, 16500.3, 16500.6, 16700.2, 16700.6, 16700.9, 16700.12, 16700.15, 16700.18, 16700.21, 16700.24, 16700.27, 16800.2, 16800.6, 16900.2, 16900.6, 17000.2, 17000.8, 17100.2, 17100.6, 17100.9 17100.12 17100.15 17100.18 17200.2 17200.8, 17200.13, 17200.18, 17200.23, 17200.28, 17200.33, 17200.38, 17200.43, 17300.2, 17300.6, 17300.9, 17300.12, 17300.15, 17300.18, 17400.2, 17400.6, 17400.9, 17400.12, 17400.15, 17400.18, 17400.21, 17400.24, 17400.27, 17500.2, 17500.6, 17500.9, 17500.12, 17500.15, 17500.18, 17600.2, 17600.6, 17700.2, 17700.6, 17700.9, 17700.12, 17700.15, 17700.18, 17700.21, 17700.24, 17700.27, 17800.2, 17800.6, 17900.2, 17900.8, 17900.13, 17900.18, 17900.23, 17900.28, 17900.33, 17900.38, 17900.43, 18000.2, 18000.8, 18100.2, 18100.8, 18200.2, 18200.6, 18200.9, 18200.12, 18200.15, 18200.18, 18200.21, 18200.24, 18200.27, 18300.2, 18300.8, 18300.13, 18300.18, 18300.23, 18300.28, 18300.33, 18300.38, 18300.43, 18400.2, 18400.6, 18400.9, 18400.12, 18400.15, 18400.18, 18400.21, 18400.24, 18400.27, 18500.2, 18500.6, 18600.3, 18700.2, 18800.3, 18900.3, 19000.4, 19100.4, 19200.4, 19300.4, 19400.4, 19600.3, 19600.10, 19600.16-19600.18

Yes 1100.2, 1200.2, 1300.2, 1400.2, 1500.2, 1600.2, 1700.2, 1800.2, 1900.2, 2000.4, 2200.6, 2900.3,

```
VII
          2900.6, 3300.2, 3400.2, 3500.2, 3600.2, 3700.2,
          3800.2, 3900.2, 4000.2, 4100.2, 4200.2, 4300.2,
          4400.2, 4500.2, 4600.2, 4700.2, 4800.2, 4900.2.
          5000.2, 5100.2, 5200.2, 5300.2, 5400.2, 5500.2,
          5600.2, 5700.2, 5800.2, 5900.2, 6000.2, 6100.2,
          6200.2, 6300.2, 6400.1, 6400.4, 6400.7, 6400.10,
          6400.13, 6400.16, 6400.19-6400.21, 6500.2-6500.4,
          6600.2-6600.4, 6700.2-6700.4, 6800.2-6800.4, 6900.1,
          8000.2-8000.4, 8100.2-8100.4, 8200.2-8200.4, 8300.2-
          8300.4, 8400.1, 8500.2-8500.4, 8600.2-8600.4, 8700.2-
          8700.4, 8800.2-8800.4, 8900.1, 14100.5-14100.9
Did Specimen Split?
              8000.2-8000.4.8100.2-8100.4.8200.2-8200.4.
          8300.2-8300.4, 8400.1, 8500.2-8500.4, 8600.2-8600.4,
          8700.2-8700.4, 8800.2-8800.4, 8900.1
DO733-1D Lot ID
                            18000.1-18000.11
Double Notch Bend Specimen Type
          7000.2, 14700.2, 14700.11, 14700.20, 14800.2, 14800.11,
          14800.20, 14900.2, 14900.11, 15000.2, 15000.11.
          15000.20, 15100.2, 15100.11, 15100.20, 15200.2,
          15200.11
Double U-Groove Joint Preparation
                                                   10800.4-
```

10800.6, 10900.4-10900.6, 11000.4-11000.6, 12300.4-12300.6

No

Double V-Groove Joint Preparation 7200.7-7200.8, 7200.13, 10500.4-10500.6, 11500.4-11500.6, 12300.8-12300.14.14500.1-14500.47,14600.1-14600.47, 16500.1, 16500.5

Downhand IG Welding Position 2500.1. 2500.4, 2500.7, 2500.10, 2500.13, 2500.16, 2700.1, 2700.4, 2700.7, 2700.10, 2700.13, 2700.16, 3100.2-3100.10, 3200.1, 3200.4-3200.20, 7400.2-7400.10, 7500.1, 7500.4-7500.20, 14200.1-14200.48, 14300.1-14300.48, 14400.1-14400.48, 14500.1-14500.47, 14600.1-14600.47

Downhand Welding Position 7200.7-7200.8, 7200.13, 13800.8-13800.36, 13900.1, 13900.4-13900.26, 14000.1-14000.22, 16500.1, 16500.5, 19000.1, 19100.1, 19200.1, 19300.1, 19400.1, 19600.7, 19600.14

DTNSRDC Producer 19000.1, 19100.1, 19200.1 Dynamic Tear Specimen Type 2000.8, 7100.5, 7200.5, 7200.11, 7200.15, 7300.5, 7800.5, 7900.5, 9000.7, 9100.7, 12500.5, 12600.9-12600.13, 12700.6, 12800.4, 12900.4, 13000.4, 13100.4, 13300.4, 13400.4, 13500.4, 13600.4, 15300.5, 15400.5, 15500.6, 15600.5, 15700.7, 15800.7, 15900.5, 16000.5, 16100.7, 16200.5, 16300.5, 16400.5, 16600.6, 17000.5, 17000.10, 17200.5, 17200.10.17200.15.17200.20.17200.25.17200.30. 17200.35, 17200.40, 17200.45, 17900.5, 17900.10, 17900.15, 17900.20, 17900.25, 17900.30, 17900.35, 17900.40, 17900.45, 18000.5, 18000.10, 18100.5, 18100.10, 18300.5, 18300.10, 18300.15, 18300.20, 18300.25, 18300.30, 18300.35, 18300.40, 18300.45,

18600.5, 18700.4, 18800.5, 18900.5, 19000.6, 19100.6, 9300.20 E8018 Filler Specification 19200.6, 19300.6, 19400.6, 19500.2, 19600.5, 19600.12, 10500.4-10500.6 19600.20 E8018-C1 Filler Specification 12300.8-12300.14 **Dynamic Tear Test Type** E8018C-2 Filler Specification 2000.8, 7100.5, 7200.5, 9200.2-9200.20, 9700.7-9700.9 7200.11, 7200.15, 7300.5, 7800.5, 7900.5, 9000.7, E8018-C3 Filler Specification 9100.7, 12500.5, 12600.9-12600.13, 12700.6, 12800.4, 7400.2-7400.10 E813 Standard Method 12900.4. 13000.4. 13100.4. 13300.4. 13400.4. 13500.4. 7800.2. 7900.2. 9000.6. 13600.4, 15300.5, 15400.5, 15500.6, 15600.5, 15700.7, 9100.2, 12500.2, 12700.2, 15700.2, 15800.2, 15900.2, 15800.7, 15900.5, 16000.5, 16100.7, 16200.5, 16300.5, 16100.2, 19000.3, 19100.3, 19200.3, 19300.3, 19400.3 EF2-F2 Filler Specification 16400.5, 16600.6, 17000.5, 17000.10, 17200.5, 17200.10, 7500.1, 7500.4-7500.20 17200.15, 17200.20, 17200.25, 17200.30, 17200.35, 17200.40, 17200.45, 17900.5, 17900.10, 17900.15, electric furnace Melting Practice 5400.1. 17900.20, 17900.25, 17900.30, 17900.35, 17900.40, 5500.1, 5600.1 17900.45, 18000.5, 18000.10, 18100.5, 18100.10, ESW Weld Type 6400.4, 6400.7, 6500.1, 6500.4, 8000.1, 8000.4, 8600.1, 8600.4 18300.5, 18300.10, 18300.15, 18300.20, 18300.25, 18300.30, 18300.35, 18300.40, 18300.45, 18600.5, F 18700.4, 18800.5, 18900.5, 19000.6, 19100.6, 19200.6, F Heat Treatment 19300.6, 19400.6, 19500.2, 19600.5, 19600.12, 19600.20 1000.1-1000.3, 1000.6, 1000.9, 1000.12-1000.14, 7800.1, 7900.1 F72-EM12K Filler Specification 3200.1, 3200.4-E 208 Standard Method 1000.14, 1100.6, 1200.6, 3200.20 F96 Flux Type 1300.6, 1400.6, 1500.6, 1600.6, 1700.6, 1800.6, 7500.1, 7500.4-7500.20 1900.6, 2000.7, 3300.1, 3400.1, 3500.1, 3600.1, FCA Weld Type 14700.1-14700.3, 14700.6-14700.8, 3700.1, 3800.1, 3900.1, 4000.1, 4100.1, 4200.1, 14700.11-14700.12, 14700.15-14700.17, 14700.20-14700.21, 14700.24-14700.26, 14800.1-14800.3, 4300.1, 4400.1, 4500.1, 4600.1, 4700.1, 4800.1, 14800.6-14800.8, 14800.11-14800.12, 14800.15-4900.1, 5000.1, 5100.1, 5200.1, 5300.1, 5400.1, 5500.1, 5600.1, 5700.1, 5800.1, 5900.1, 6000.1, 14800.17, 14800.20-14800.21, 14800.24-14800.26, 6100.1, 6200.1, 6300.1, 7100.4, 7200.4, 7200.10, 14900.1-14900.3, 14900.6-14900.8, 14900.11-14900.12,... 13800.7 14900.15-14900.17, 15000.1-15000.3, 15000.6-15000.8, E 23 Standard Method 7100.2, 16500.3, 16500.6, 15000.11-15000.12, 15000.15-15000.17, 15000.20-18600.3, 18700.2, 18800.3, 18900.3, 19000.4, 19100.4, 15000.21, 15000.24-15000.26, 15100.1-15100.3, 19200.4, 19300.4, 19400.4, 19600.3, 19600.10, 19600.16-15100.6-15100.8, 15100.11-15100.12, 15100.15-19600.18 15100.17, 15100.20-15100.21, 15100.24-15100.26, E 604 Standard Method 15200.1-15200.3, 15200.6-15200.8, 15200.11-15200.12, 2000.8, 7100.5, 7200.5, 15200.15-15200.17 7200.11, 7200.15, 18600.5, 18700.4, 18800.5, 18900.5, Filler Allov 19000.6, 19100.6, 19200.6, 19300.6, 19400.6, 19600.5, Hardex-N 19600.12, 19600.20 1100.6, 1200.6, 1300.6, 1400.6, 1500.6, E 8 Standard Method 7100.1, 7200.1, 7200.7, 1600.6, 1700.6, 1800.6, 1900.6, 7100.4, 7200.4, 16500.2, 16500.5, 18600.1, 18800.1, 18900.1, 19000.2, 7200.10 Filler Name 19100.2, 19200.2, 19300.2, 19400.2, 19600.1, 19600.8, Armco W18 7200.7-7200.8, 7200.13, 10900.4-19600.14 E Lot ID 5300.1-5300.4 10900.6, 11500.4-11500.6 E10018 Filler Specification 16500.1, 16500.5 Armco W24 10200.4-10200.6, 10800.4-10800.6, E11018-M Filler Specification 11000.4-11000.6, 12300.4-12300.6 9900.7-9900.9, 10200.8-10200.10 Armco W25 9900.7-9900.9 E22000/1E E22000/1E Filler Name 19100.1, 19200.1, 19300.1, 19400.1 19100.1, 19200.1, 19300.1, 19400.1 Hobart25P 6400.4, 6400.7, 6400.10, 6400.13, E318 Standard Method 6500.1, 6500.4, 6600.1, 6600.4 12600.2 L-50N E7018 Filler Specification 13800.8-13800.36, 14200 1-14200.48 3100.2-3100.10, 7600.2-LindeWS 8000.1, 8000.4, 8100.1, 8100.4, 8200.1, 7600.20 E70-EA2 Filler Specification 7700.1, 7700.4-8200.4, 8600.1, 8600.4, 8700.1, 8700.4 7700.20 Nk203NiC 14700.1-14700.3, 14700.6-14700.8, E72-EW-W Filler Specification 14700.11-14700.12, 14700.15-14700.17, 14700.20-9300.1.9300.4-

```
14700.1, 14800.1, 14900.1, 15000.1, 15100.1.
          14700.21, 14700.24-14700.26, 14800.1-14800.3,
          14800.6-14800.8, 14800.11-14800.12, 14800.15-
                                                                          15200.1
                                                                     K
          14800.17, 14800.20-14800.21, 14800.24-14800.26,
                                                                             9400.1, 9500.1, 9500.4, 9600.1, 9700.1, 9700.4,
          14900.1-14900.3, 14900.6-14900.8, 14900.11-14900.12.
                                                                          9800.1, 9900.1, 9900.4, 9900.7, 10000.1, 10100.1,
          14900.15-14900.17, 15000.1-15000.3, 15000.6-15000.8,
                                                                           10200.1, 10300.1, 10300.4, 10400.1, 10500.1, 10600.1,
          15000 11-15000.12, 15000.15-15000.17, 15000.20-
                                                                           10700.1, 10700.4, 10800.1, 10900.1, 11000.1, 11100.1,
                                                                           11200.1, 11200.4, 11300.1, 11400.1, 11500.1, 11600.1,
          15000.21, 15000.24-15000.26, 15100.1-15100.3,
                                                                           11700.1, 11800.1, 11800.5, 11900.1, 11900.4, 12000.1,
          45100.6-15100.8, 15100.11-15100.12, 15100.15-
                                                                           12100.1, 12200.1, 12300.1, 12400.1
          15100.17, 15100.20-15100.21, 15100.24-15100.26,
          15200.1-15200.3, 15200.6-15200.8, 15200.11-15200.12,
                                                                             2000.1.2800.1-2800.3.2800.6.2900.1-2900.3.
          15200 15-15200.17
                                                                          2900.6, 3000.1-3000.3, 3000.6, 7300.1, 7400.1,
     TW8544
                                                                           7500.1, 9000.1, 9100.1, 9200.1, 9300.1, 13800.2,
                     6400.16, 6400.19-6400.21, 6700.1, 6700.4,
                                                                           13800.5, 13900.1, 14000.4, 14100.1, 14200.1, 14300.1,
          6800.1, 6800.4, 8300.1, 8300.4, 8500.1, 8500.4,
                                                                           14400.1, 14500.1, 14600.1, 15300.1, 15400.1, 15700.1,
          8800.1, 8800.4
     W36
                                                                           15800.1, 15900.1, 16000.1, 16100.1, 16200.1, 16300.1
                13900.1, 13900.4-13900.26, 14000.1-14000.22,
                                                                     N,A
          14300.1 14300 48, 14400.1-14400 48, 14500.1-14500.47,
                                                                                 13800.1-13800.3, 14100.4-14100.5
          14600.1-14600.47
                                                                     N,C,A
                                                                                    14100.7-14100.9
Filler Specification
                                                                     Q,K
                                                                                 12500.1, 12700.1
     E10018
                                                                      Q,T
                                                                                2100.1-2100.3, 2100.6, 2200.1-2200.3, 2200.6,
                    16500.1, 16500.5
     E11018-M
                        9900.7-9900.9, 10200.8-10200.10
                                                                           2300.1-2300.3, 2400.1-2400.3, 2400.6, 2400.9, 2400.12,
     E7018
                  3100.2-3100.10, 7600.2-7600.20
                                                                           2400.15, 2400.18, 2500.1, 2600.1-2600.3, 2600.6,
     E70-EA2
                       7700.1, 7700.4-7700.20
                                                                           2600.9, 2600.12, 2600.15, 2600.18, 2700.1, 7100.1,
     E72-EW-W
                          9300.1, 9300.4-9300.20
                                                                           7200.1, 12600.1, 16400.1, 18600.1, 18700.1, 18800.1,
                                                                           18900.1, 19500.1, 19600.1
     E8018
                  10500.4-10500.6
     E8018-C1
                                                                      Q,T,W
                                                                                    19600.7
                       12300.8-12300.14
     E8018C-2
                       9200.2-9200.20, 9700.7-9700.9
                                                                               19000.1, 19100.1, 19200.1, 19300.1, 19400.1
                                                                 Final surface Location wrt Surface
     E8018-C3
                                                                                                                  11500.4-
                       7400.2-7400.10
     EF2-F2
                    7500.1, 7500.4-7500.20
                                                                           11500.6, 12300.4-12300.14, 13800.8-13800.18, 13 J.24-
     F72-EM12K
                                                                           13800.32, 13900.1, 13900.4-13900.22, 14000.4-
                          3200.1, 3200.4-3200.20
     M22000/10
                                                                           14000.22, 14200.6-14200.14, 14200.28-14200.36,
                          19600.7, 19600.14
     M22000/1E
                                                                           14300.6-14300.14, 14300.28-14300.36, 14400.6-
                          19000.1
                                                                           14400.14, 14400.28-14400.36, 14500.6-14500.14,
     PFH-60A
                       2500.1. 2500.4, 2500.7, 2500.10, 2500.13,
                                                                           14500.26-14500.34, 14600.6-14600.14, 14600.26-
          2500.16, 2700.1, 2700.4, 2700.7, 2700.10, 2700.13,
                                                                           14600.34, 14700.3, 14700.12, 14700.21, 14800.3,
                                                                           14800.12, 14800.21, 14900.3, 14900.12, 15000.3,
Final Processing
     A.Q.T
                   16700.1, 16700.11, 16700.20, 16800.1.
                                                                           15000.12, 15000.21, 15100.3, 15100.12, 15100.21,
                                                                           15200.3, 15200.12
          16800.5, 16900 1, 16900.5, 17000.1, 17000.7, 17100.1,
                                                                 Flat Specimen Type
                                                                                                13800.1-13800.2
          17100.11, 17200.1, 17200.17, 17200.32, 17300.1,
                                                                 Flat Welding Position
                                                                                                  9700.7-9700.9, 9900.7-
          17300.11, 17400.1, 17400.11, 17400.20, 17500.1,
          17500.11, 17600.1, 17600.5, 17700.1, 17700.11,
                                                                           9900.9, 10200.4-10200.10, 10800.4-10800.6, 10900.4-
                                                                           10900.6, 11000.4-11000.6, 11500.4-11500.6, 12300.4-
          17700.20, 17800.1, 17800.5, 17900.1, 17900.17,
          17900.32, 18000.1, 18000.7, 18100.1, 18100.7, 18200.1,
                                                                           12300.6
                                                                 Flux Name
          18200.11, 18200.20, 18300.1, 18300.17, 18300.32,
          18400.1, 18400.11, 18400.20, 18500.1, 18500.5
                                                                      BL55
                                                                                  13900.1, 13900.4-13900.26, 14000.4-14000.22,
                 1000.1-1000.3, 1000.6, 1000.9, 1000.12-
                                                                           14300.1-14300.48, 14400.1-14400.48, 14500.1-14500.47,
                                                                           14600.1-14600.47
          1000.14, 1100.1, 1200.1, 1300.1, 1400.1, 1500.1,
          1600.1, 1700.1, 1800.1, 1900.1, 3100.1, 3200.1,
                                                                      Hobart201
                                                                                         6400.4, 6400.7, 6400.10, 6400.13,
                                                                           6400.16, 6400.19-6400.21, 6500.1, 6500.4, 6600.1,
          3300.1,\ 3400.1,\ 3500.1,\ 3600.1,\ 3700.1,\ 3800.1.
          3900.1, 4000.1, 4100.1, 4200.1, 4300.1, 4400.1,
                                                                           6600.4, 6700.1, 6700.4, 6800.1, 6800.4, 8000.1,
                                                                           8000.4, 8100.1, 8100.4, 8200.1, 8200.4, 8300.1,
          4500.1, 4600.1, 4700.1, 4800.1, 4900.1, 5000.1,
                                                                           8300.4, 8500.1, 8500.4, 8600.1, 8600.4, 8700.1,
          5100.1, 5200.1, 5300.1, 5400.1, 5500.1, 5600.1,
          5700 1, 5800.1, 5900.1, 6000.1, 6100.1, 6200.1,
                                                                           8700.4, 8800.1, 8800.4
          6300.1, 7000.1, 7600.1, 7700.1, 7800.1, 7900.1
                                                                      Linc 860
                                                                                       7200.7-7200.8, 7200.13
```

H

```
Linc 880
                      11500.4-11500.6
                                                                            9100.3, 9200.2-9200.20, 9300.2-9300.20, 10100.2,
     Linc 882
                      10900.4-10900.6
                                                                            10300.2, 10300.5, 10400.2, 10500.2-10500.6, 10600.1,
     Linde166p
                        10200.4-10200.6, 10800.4-10800.6,
                                                                            10706.2-10700.4.10800.2-10800.6.10900.2-10900.6.
           11000.4 - 11000.6, 12300.4 - 12300.6
                                                                            11000.2-11000.6, 11100.1, 11200.2, 11200.5, 11500.4-
     Linde709-5
                         9900.7-9900.9
                                                                            11500.6, 11800.2, 11800.5, 11900.2-11900.4, 12000.2,
     US-43
                   2500.1, 2500.4, 2500.7, 2500.10, 2500.13,
                                                                            12100.2, 12200.2, 12300.2-12300.14, 12400.2, 12500.3,
          2500.16, 2700.1, 2700.4, 2700.7, 2700.10, 2700.13.
                                                                            12600.3, 12600.6, 12700.3, 12800.2, 12900.2, 13000.2,
          2700.16
                                                                            13100.2, 13200.2, 13300.2, 13400.2, 13500.2, 13600.2,
Flux Type
                                                                            13700.2, 13800.8-13800.32, 13900.2-13900.22, 14100.5-
     Basic
                  16500.1, 16500.5
                                                                            14100.9, 14700.4-14700.6, 14700.9, 14700.13-14700.15,
     F96
                7500.1, 7500.4-7500.20
                                                                            14700.18.14700.22-14700.24.14700.27 * 4800.4-
Fracture Toughness Test Type
                                             2000.3.76.3.2.
                                                                            14800.6, 14800.9, 14800.13-14800.15, .800.18,
          7800.2, 7900.2, 9000.6, 9100.2, 12500.2, 12600.2,
                                                                            14800.22--14800.24, 14800.27, 14900.4--14900.6,
          12700.2, 13800.34-13800.37, 13900.24-13900.26,
                                                                            14900.9, 14900.13-14900.15, 14900.18, 15000.4-
          14000.2-14000.3, 14100.3, 14200.2-14200.5, 14300.2-
                                                                            15000.6, 15000.9, 15000.13-15000.15, 15000.18,
          14300.5, 14400.2-14400.5, 14500.2-14500.5, 14600.2-
                                                                            15000.22-15000.24, 15000.27, 15100.4-15100.6,
          14600.5, 14700.2, 14700.11, 14700.20, 14800.2,
                                                                            15100.9, 15100.13-15100 15, 15100.18, 15100.22-
          14800.11, 14800.20, 14900.2, 14900.11, 15000.2,
                                                                            15100.24, 15100.27, 15200.4-15200.6, 15200.9, 15200.13-
          15000.11, 15000.20, 15100.2, 15100.11, 15100.20,
                                                                            15200.15, 15200.18, 15300.2, 15400.2, 15500.2,
          15200.2, 15400.11, 15700.2, 15800.2, 15900.2, 16100.2,
                                                                            15600.2, 15700.3, 15800.3, 15900.3, 16000.2, 16100.3,
          16600.1, 18600.2, 18700.1, 18800.2, 18900.2, 19000.3,
                                                                            16200.2, 1:300.2, 16400.2, 16500.3, 16500.6, 16700.2,
          19100.3, 19200.3, 19300.3, 19400.3, 19600.2, 19600.9,
                                                                            16700.6, 16700.9, 16700.12, 16700.15, 16700.18,
          19600.15
                                                                            16700.21, 16700.24, 16700.27, 16800.2, 16800.6,
FRM Lot ID
                      19000.1-19000.7
                                                                            16900.2, 16900.6, 17000.2, 17000.8, 17100.2, 17100.6,
FRN Lot ID
                      19100.1-19100.7
                                                                            17100.9, 17100.12, 17100.15, 17100.18, 17200.2,
FRO Lot ID
                      19600.7-19600.13
                                                                            17200.8, 17200.13, 17200.18, 17200.23, 17200.28,
FRP Lot ID
                      19600.14-19600.21
                                                                            17200.33, 17200.38, 17200.43, 17300.2, 17300.6,
Full cross section Location wrt Surface
                                                       13800.34-
                                                                            17300.9, 17300.12, 17300.15, 17300.18, 17400.2,
          13800.36, 13900.24-13900.26, 14000.1-14000.3,
                                                                            17400.6, 17400.9, 17400.12, 17400.15, 17400.18,
          14200.1-14200.5, 14300.1-14300.5, 14400.1-14400.5,
                                                                            17400.21, 17400.24, 17400.27, 17500.2, 17500.6,
          14500.1-14500.5, 14600.1-14600.5, 14600.46-14600.47
                                                                            17500.9, 17500.12, 17500.15, 17500.18, 17600.2,
Full Specimen Type
                                 1100.2, 1200.2, 1300.2,
                                                                            17600.6, 17700.2, 17700.6, 17700.9, 17700.12, 17700.15,
          1400.2, 1500.2, 1600.2, 1700.2, 1800.2, 1900.2,
                                                                            17700.18, 17700.21, 17700.24, 17700.27, 17800.2,
          2000.4, 2100.1-2100.3, 2100.6, 2200.1-2200.3, 2200.6,
                                                                            17800.6, 17900.2, 17900.8, 17900.13, 17900.18,
          2300.1 - 2300.3, 2300.6, 2400.1 - 2400.3, 2400.6, 2400.9,
                                                                            17900.23, 17900.28, 17900.33, 17900.38, 17900.43,
          2409.12, 2400.15, 2400.18, 2500.2-2500.4, 2500.7,
                                                                            1800.) 2, 18000.8, 18100.2, 18100.8, 18200.2, 18200.6,
          2500.10, 2500.13, 2500.16, 2600.1-2600.3, 2600.6,
                                                                            18200.9, 18200.12, 18200.15, 18200.18, 18200.21,
          2600.9, 2600.12, 2600.15, 2600.18, 2700.2~2700.4,
                                                                            18200.24. 18200.27, 18300.2, 18300.8, 18300.13.
          2700.7, 2700.10, 2700.13, 2700.16, 2800.3, 2800.6,
                                                                            18300.18, 18300.23, 18300.28, 18300.33, 18300.38,
          2900.3, 2900.6, 3000.3, 3000.6, 3100.2-3100.10,
                                                                            18300.43, 18400.2, 18400.6, 18400.9, 18400.12,
          3200.2-3200.20, 3700.2, 3800.2, 3900.2, 4000.2,
                                                                            18400.15, 18400.18, 18400.21, 18400.24, 18400.27,
          4100.2, 4200.2, 4300.2, 4400.2, 4500.2, 4600.2,
                                                                            18500.2, 18500.6, 18600.3, 18700.2, 18800.3, 18900.3,
          4700.2, 4800.2, 4900.2, 5000.2, 5100.2, 5200.2,
                                                                            19000.4, 19100.4, 19200.4, 19300.4, 19400.4, 19500.5,
          5300.2, 5400.2, 5500.2, 5600.2, 5700.2, 5800.2,
                                                                            19600.3, 19600.10, 19600.16-19600.18
                                                                  Fully Killing Process
          5900.2, 6000.2, 6100.2, 6200.2, 6300.2, 6400.1,
                                                                                                    1100.1, 1200.1, 1300.1,
          6400.4, 6400.7, 6400.10, 6400.13, 6400.16, 6400.19-
                                                                            1400.1, 1500.1, 1600.1, 1700.1, 1800.1, 1900.1,
          6400.21, 6500.2-6500.4, 6600.2-6600.4, 6700.2-
                                                                            2000.1, 2100.1-2100.3, 2100.6, 2200.1-2200.3, 2200.6,
          6700.4, 6800.2-6800.4, 6900.1, 7000.5, 7100.2,
                                                                            2300.1-2300.3, 2400.1-2400.3, 2400.6, 2400.9, 2400.12,
          7200.2, 7200.8, 7200.13, 7300.2, 7400.2-7400.10,
                                                                            2400.15, 2400.18, 2500.1, 2600.1-2600.3, 2600.6,
                                                                            2600.9, 2600.12, 2600.15, 2600.18, 2700.1
          7500.2-7500.20, 7600.2-7600.20, 7700.2-7700.20,
                                                                  Fusion line Location wrt Weld
          7800.3, 7900.3, 8000.2-8000.4, 8100.2-8100.4, 8200.2-
                                                                                                              2500.1.2700.1.
          8200.4, 8300.2-8300.4, 8400.1, 8500.2-8500.4, 8600.2-
                                                                            3100.2-3100.10, 3200.4-3200 6, 3200.10, 3200.14,
```

3200.18, 7400.2-7400.10, 7500.4, 7500.8-7500.10,

8600.4, 8700.2-8700.4, 8800.2-8800.4, 8900.1, 9000.2,

G

H

10700.1, 10700.4, 10800.1, 10900.1, 11000.1, 11100.1, 7500.14, 7500.18, 7600.4, 7600.8, 7600.12, 7600.16, $7600.20,\,7700.4,\,7700.8,\,7700.12,\,7700.16,\,7700.20,$ 11200.1, 11200.4, 11300.1, 11400.1, 11500.1, 11600.1, 9200.4, 9200.8, 9200.12, 9200.16, 9200.20, 9300.4, 11700.1, 11800.1, 11800.5, 11900.1, 11900.4, 12000.1, 12100.1, 12200.1, 12300.1, 12400.1, 12500.1, 12700.1 9300.8, 9300 12, 9300.16, 9300.20, 9700.9, 9900.9, 10200.6, 10200.10, 10500.6, 10800.6, 10900.6, 11000.6, 7100.1, 7200.1, 12600.1, 15300.1, 15400.1, 11500.6, 12300.6, 12300.10, 12300.14, 13800.10, 15500.1, 15600.1, 16400.1, 18600.1, 18700.1, 18800.1, 13800.22, 13800.26, 13800.36, 13900.4, 13900.16, 18900.1, 19500.1, 19600.1 Q,T,W13900.26, 14000.3, 14000.6, 14000.16, 14200.3-19600.7 W 14200.5, 14200.8, 14200.20, 14200.30, 14200.42, 19000.1, 19100.1, 19200.1, 19300.1, 19400.1 14300.3-14300.5, 14300.8, 14300.20, 14300.30, 14300.42, HIFAB Source 14700.1, 14800.1, 14900.1, 15000.1, 14400.3-14400.5, 14400.8, 14400.20, 14400.30, 14400.42, 15100.1, 15200.1 14500.3-14500.5, 14500.8, 14500.18, 14500.28, 14500.38, Hobart201 Flux Name 6400.4, 6400.7, 6400.10. 14600.3-14600.5, 14600.8, 14600.18, 14600.28, 14600.38 6400.13, 6400.16, 6400.19-6400.21, 6500.1, 6500.4, FVD Lot ID 6600.1, 6600.4, 6700.1, 6700.4, 6800.1, 6800.4, 19200.1-19200.7 **FXF** Lot ID 19400.1-19400.7 8000.1, 8000.4, 8100.1, 8100.4, 8200.1, 8200.4, **FXG Lot ID** 8300.1, 8300.4, 8500.1, 8500.4, 8600.1, 8600.4, 19300.1-19300.7 8700.1, 8700.4, 8800.1, 8800.4 Hobart25P Filler Name 6400.4, 6400.7, 6400.10, G Lot ID 4100.1-4100.3 6400.13, 6500.1, 6500.4, 6600.1, 6600.4 **G9011 Lot ID** 2300.1-2300.8 HY100 Material Name 19500.1-19500.7, 19600.1-**G9837 Lot ID** 2600.1-2600.20, 2700.1-2700.18 19600.21 HY80 Material Name 16500.1-16500.7, 16600.1-16600.7, 16700.1-16700.28, 16800.1-16800.7, 16900.1-H Final Processing 14700.1, 14800.1, 14900.1, 16900.7, 17000.1-17000.11, 17100.1-17100.19, 17200.1-15000.1, 15100.1, 15200.1 17200.46, 17300.1-17300.19, 17400.1-17400.28, H Lot ID 5000.1-5000.4 17500.1 - 17500.19, 17600.1 - 17600.7, 17700.1 - 17700.28,Hardex-N Filler Alloy 1100.6, 1200.6, 1300.6, 17800.1 - 17800.7, 17900.1 - 17900.46, 18000.1 - 18000.11.1406.6, 1500.6, 1600.6, 1700.6, 1800.6, 1900.6, 18100.1-18100.11, 18200.1-18200.28, 18300.1-18300.46, 7100.4, 7200.4, 7200.10 18400.1-18400.28, 18500.1-18500.7, 18600.1-18600.6, Heat Treatment 18700.1-18700.5, 18800.1-18800.6, 18900.1-18900.6, A.F 2800.2, 2800.6, 2900.1-2900.3, 2900.6, 3000.1-19000.1-19000.7, 19100.1-19100.7, 19200.1-19200.7, 3000.3, 3000.6 19300.1-19300.7, 19400.1-19400.7 A,F,A,F,Q,T2100.2, 2100.6, 2200.1-2200.3, T 2300.1-2300.3. 2400.1-2400.3, 2400.6, 2400.9, 2400.12, 2400.15, 2400.18, 2500.1 I Loading Type 18600.2, 18700.1, 18800.2, 18900.2, A,F,N2800.1-2800.3 19000.3, 19100.3, 19200.3, 19300.3, 19400.3, 19600.2, 12800.1, 12900.1, 13000.1, 13100.1, 13200.1, A.K 19600.9, 19600.15 13300.1, 13400.1, 13500.1, 13600.1, 13700.1 I Lot ID 5100.1-5100.4 A,Q,T16700.1, 16700.11, 16700.20, 16800.1, IG Welding Position 7600.2-7600.20 7700.1. 16800.5, 16900.1, 16900.5, 17000.1, 17000.7, 17100.1, 7700.4-7700.20, 9200.2-9200.20, 9300.1, 9300.4-17100.11, 17200.1, 17200.17, 17200.32, 17300.1, 9300.20, 14700.1-14700.3, 14700.6-14700.8, 15000.1-17300.11, 17400.1, 17400.11, 17400.20, 17500.1, 15000.3, 15000.6-15000.8, 15000.11-15000.12, 15000.15- $17500.11,\ 17600.1,\ 17600.5,\ 17700.1,\ 17700.11,$ 15000.17, 15100.11-15100.12, 15100.15-15100.17, 17700.20, 17800.1, 17800.5, 17900.1, 17900.17, 15200.1-15200.3, 15200.6-15200.8 17900.32, 18000.1, 18000.7, 18100.1, 18100.7, 18200.1, Ingot Position 18200.11.18200.20.18300.1.18300.17,18300.32, **Bottom** 2100 2, 2100.6, 2200.2, 2200.6, 2300.2, 18400.1, 18400.11, 18400.20, 18500.1, 18500.5 2400.2, 2400.6, 2400.12, 2400.18, 2600.2, 2600.6, 1000.1-1000.3, 1000.6, 1000.9, 1000.12-1000.14, 2600.12, 2600.18, 16700.20, 16800.5, 16900.5, 17000.7, 7800.1, 7900.1 17100.11, 17200.32, 17300.11, 17400.20, 17500.11, 7300.1, 9000.1, 9100.1, 15700.1, 15800.1, 15900.1, 17600.5, 17700.20, 17800.5, 17900.32, 18000.7, 16000.1, 16100.1, 16200.1, 16300.1 18100.7, 18200.20, 18300.32, 18400.20, 18500.5 Q,K9400.1, 9500.1, 9500.4, 9600.1, 9700.1, 9700.4. Concast 1000.1-1000.3, 1000.6, 1000.9, 1000.12-9800.1, 9900.1, 9900.4, 9900.7, 10000.1, 10100.1, 1000.14, 1100.1, 1200.1, 1300.1, 1400.1, 1500.1, 10200.1, 10300.1, 10300.4, 10400.1, 10500.1, 10600.1,

1600.1, 1700.1, 1800.1, 1900.1, 2800.1-2800.3, 15100.1-15100.3, 15100.6-15100.8, 15100.11-15100.12, 2800.6, 2900.1-2900.3, 2900.6, 3000.1-3000.3, 3000.6 15100.15-15100.17, 15100.20-15100.21, 15100.24-Mid 16700.11, 17200.17, 17400.11, 17700.11, 15100.26, 15200.1-15200.3, 15200.6-15200.8, 15200.11-17900.17, 18200.11, 18300.17, 18400.11 15200.12, 15200.15-15200.17 Top 2100.1-2100.3, 2200.1-2200.3, 2300.1-2300.3, K 2400.1-2400.3, 2400.9, 2400.15, 2500.1, 2600.1-2600.3, 2600.9, 2600.15, 2700.1, 16700.1, 16800.1, K Final Processing 9400.1, 9500.1, 9500.4, 9600.1, 16900.1, 17000.1, 17100.1, 17200.1, 17300.1, 17400.1, 9700.1, 9700.4, 9800.1, 9900.1, 9900.4, 9900.7, 17500.1, 17600.1, 17700.1, 17800.1, 17900.1, 18000.1, 10000.1, 10100.1, 10200.1, 10300.1, 10300.4, 10400.1, 18100.1, 18200.1, 18300.1, 18400.1, 18500.1 10500.1, 10600.1, 10700.1, 10700.4, 10800.1, 10900.1, 11000.1, 11100.1, 11200.1, 11200.4, 11300.1, 11400.1, T. 11500.1, 11600.1, 11700.1, 11800.1, 11800.5, 11900.1, J131267 Lot ID 1000.1-1000.14 11900.4, 12000.1, 12100.1, 12200.1, 12300.1, 12400.1 **JIcpr** K Killing Process 5400.1, 5500.1, 5600.1, 5700.1, Modified Standard 18600.2, 18700.1, 18800.2, 5800.1, 5900.1, 6000.1, 6100.1, 6200.1, 6300.1 K1325 Lot ID 18900.2, 19000.3, 19100.3, 19200.3, 19300.3, 19400.3, 2400.1-2400.20, 2500.1-2500.18 19600.2, 19600.9, 19600.15 k21-6425 Lot ID 3000.1-3000.8 Per Standard 7800.2, 7900.2, 9000.6, 9100.2, K21-7102 Lot ID 2900.1-2900.8 12500.2, 12600.2, 12700.2, 15700.2, 15800.2, 15900.2, K22-6296 Lot ID 2800.1-2800.8 KB6479 Lot ID 16100.2 2100.1-2100.8, 2200.1-2200.8 JISZ3121 Standard Method K-Groove Joint Preparation 14600.46-14600.47 3100.2-3100.10, Joint Preparation 7400.2-7400.10, 7600.2-7600.20, 9200.2-9200.20, 1/2 V-Groove 13800.8-13800.36, 13900.1, 9300.1, 9300.4-9300.20, 14200.1-14200.48, 14300.1-13900.4-13900.26, 14000.1-14000.22 14300.48, 14400.1-14400.48 Double U-Groove Killing Process 10800.4-10800.6.10900.4-Al-killed 10900.6, 11000.4-11000.6, 12300.4-12300.6 2800.1-2800.3, 2800.6, 2900.1-2900.3, Double V-Groove 7200.7-7200.8, 7200.13, 2900.6, 3000.1-3000.3, 3000.6 Fully 10500.4-10500.6, 11500.4-11500.6, 12300.8-12300.14, 1100.1, 1200.1, 1300.1, 1400.1, 1500.1, 14500.1-14500.47, 14600.1-14600.47, 16500.1, 16500.5 1600.1, 1700.1, 1800.1, 1900.1, 2000.1, 2100.1-K-Groove 3100.2-3100.10, 7400.2-7400.10, 7600.2-2100.3, 2100.6, 2200.1-2200.3, 2200.6, 2300.1-7600.20, 9200.2-9200.20, 9300.1, 9300.4-9300.20, 2300.3, 2400.1-2400.3, 2400.6, 2400.9, 2400.12, 14200.1-14200.48, 14300.1-14300.48, 14400.1-14400.48 2400.15, 2400.18, 2500.1, 2600.1-2600.3, 2600.6, No Groove 2600.9, 2600.12, 2600.15, 2600.18, 2700.1 6600.1, 6600.4, 6700.1, 6700.4, K 6800.1, 6800.4, 8100.1, 8100.4, 8200.1, 8200.4, 5400.1, 5500.1, 5600.1, 5700.1, 5800.1, 5900.1, 8300.1, 8300.4, 8500.1, 8500.4, 8700.1, 8700.4, 6000.1, 6100.1, 6200.1, 6300.1 Si-Al 7400.1, 7500.1 8800.1. 8800.4 Silicon 1000.1-1000.3, 1000.6, 1000.9, 1000.12-Smooth Butt 6400.4, 6400.7, 6400.10, 6400.13, 1000.14 6400.16, 6400.19-6400.21, 6500.1, 6500.4, 8000.1, SK 3300.1, 3400.1, 3500.1, 3600.1, 3700.1, 3800.1, 8000.4, 8600.1, 8600.4, 10200.4-10200.6 U Groove 2500.1, 2500.4, 2500.7, 2500.10, 3900.1, 4000.1, 4100.1, 4200.1, 4300.1, 4400.1, 4500.1, 4600.1, 4700.1, 4800.1, 4900.1, 5000.1, 2500.13, 2500.16, 2700.1, 2700.4, 2700.7, 2700.10, 2700.13, 2700.16 5100.1, 5200.1, 5300.1 V Groove 3200.1, 3200.4-3200.20, 7500.1, 7500.4-Kobe Producer 2100.1-2100.3, 2100.6, 2200.1-2200.3, 2200.6, 2300.1~2300.3, 2400.1~2400.3, 2400.6, 7500.20, 7700.1, 7700.4-7700.20, 9700.7-9700.9, 9900.7-9900.9, 10200.8-10200.10, 14700.1-14700.3, 2400.9, 2400.12, 2400.15, 2400.18, 2500.1, 2600.1-14700.6-14700.8, 14700.11-14700.12, 14700.15-2600.3, 2600.6, 2600.9, 2600.12, 2600.15, 2600.18, 2700.1 14700.17, 14700.20-14700.21, 14700.24-14700.26, Kobe Source 2100.1-2100.3, 2100.6, 2200.1-2200.3, 14800.1-14800.3, 14800.6-14800.8, 14800.11-14800.12, 2200.6, 2300.1-2300.3, 2400.1-2400.3, 2400.6, 2400.9, 14800.15-14800.17, 14800.20-14800.21, 14800.24-14800.26, 14900.1-14900.3, 14900.6-14900.8, 14900.11-2400.12, 2400.15, 2400.18, 2500.1, 2600.1-2600.3, 14900.12, 14900.15-14900.17, 15000.1-15000.3, 2600.6, 2600.9, 2600.12, 2600.15, 2600.18, 2700.1 KONKUL-1 Reference 3100.1-3100.11, 3200.1-15000.6-15000.8, 15000.11-15000.12, 15000.15-15000.17, 15000.20-15000.21, 15000.24-15000.26, 3200.21, 7400.1-7400.11, 7500.1-7500.21, 7600.1-

XIII

14400.40-14400.48

Final surface 11500.4-11500.6, 12300.4-12300.14, 7600.21, 7700.1-7700.21, 9200.1-9200.21, 9300.1-13800.8-13800.18, 13800.24-13800.32, 13900.1, 9300.21 13900.4-13900.22, 14000.4-14000.22, 14200.6-14200.14, $14200.28 \hbox{-} 14200.36, 14300.6 \hbox{-} 14300.14, 14300.28 \hbox{-}$ L467OV559 Lot ID 19600.1-19600.6 14300.36, 14400.6-14400.14, 14400.28-14400.36, L-50N Filler Name 13800.8-13800.36, 14200.1-14500.6-14500.14, 14500.26-14500.34, 14600.6-14200.48 14600.14, 14600.26-14600.34, 14700.3, 14700.12, Ladle Composition Position 1100.1-1100.2, 14700.21, 14800.3, 14800.12, 14800.21, 14900.3, 1100.5-1100.6, 1200.1-1200.2, 1200.5-1200.6, 1300.1-14900.12, 15000.3, 15000.12, 15000.21, 15100.3, 1300.2, 1300.5-1300.6, 1400.1-1400.2, 1400.5-1400.6, 15100.12, 15100.21, 15200.3, 15200.12 1500.1-1500.2, 1500.5-1500.6, 1600.1-1600.2, 1600.5-Full cross section 13800.34-13800.36, 13900.24-1600.6, 1700.1-1700.2, 1700.5-1700.6, 1800.1-1800.2, 13900.26, 14000.1-14000.3, 14200.1-14200.5, 14300.1-1800.5 - 1800.6, 1900.1 - 1900.2, 1900.5 - 1900.6, 15500.1 -14300.5, 14400.1-14400.5, 14500.1-14500.5, 14600.1-15500.2, 15500.5-15500.7, 15600.1-15600.6, 16700.1-14600.5, 14600.46-14600.47 16700.28, 16800.1-16800.7, 16900.1-16900.7, 17000.1-Mid thickness at root 3100.2-3100.10, 17000.11, 17100.1-17100.19, 17200.1-17200.46, 7400.2-7400.10, 7600.2-7600.20, 9200.2-9200.20, 17300.1 - 17300.19, 17400.1 - 17400.28, 17500.1 - 17500.19,9900.7-9900.9, 10200.4-10200.6 17600.1-17600.7, 17700.1-17700.28, 17800.1-17800.7, Mid thickness not root 2500.1. 2500.4. 17900.1-17900.46, 18000.1-18000.11, 18100.1-18100.11, 2500.7, 2500.10, 2500.13, 2500.16, 2700.1, 2700.4, 18200.1-18200.28, 18300.1-18300.46, 18400.1-18400.28, 2700.7, 2700.10, 2700.13, 2700.16, 3200.1, 3200.4-18500.1-18500.7 3200.20, 6400.4, 6400.7, 6400.10, 6400.13, 6400.16, Linc 860 Flux Name 7200.7-7200.8, 7200.13 6400.19-6400.21, 6500.1, 6500.4, 6600.1, 6600.4, Linc 880 Flux Name 11500.4-11500.6 6700.1, 6700.4, 6800.1, 6800.4, 7500.1, 7500.4-Linc 882 Flux Name 10900.4-10900.6 7500.20, 7700.1, 7700.4-7700.20, 8000.1, 8000.4, Linde166p Flux Name 10200.4-10200.6, 10800.4-8100.1, 8100.4, 8200.1, 8200.4, 8300.1, 8300.4, 10800.6, 11000.4-11000.6, 12300.4-12300.6 8500.1, 8500.4, 8600.1, 8600.4, 8700.1, 8700.4, Linde709-5 Flux Name 9900.7-9900.9 8800.1, 8800.4, 9300.1, 9300.4-9300.20, 9700.7-LindeWS Filler Name 8000.1, 8000.4, 8100.1, 9700.9, 10200.8-10200.10, 14700.6, 14700.15, 14700.24, 8100.4, 8200.1, 8200.4, 8600.1, 8600.4, 8700.1, 14800.6, 14800.15, 14800.24, 14900.6, 14900.15, 8700.4 15000.6, 15000.15, 15000.24, 15100.6, 15100.15, Loading Type 15100.24, 15200.6, 15200.15 18600.2, 18700.1, 18800.2, 18900.2, 19000.3, Surface 14700.1, 14700.11, 14700.20, 14800.1, 19100.3, 19200.3, 19300.3, 19400.3, 19600.2, 19600.9, 14800.11, 14800.20, 14900.1, 14900.11, 15000.1, 19600.15 15000.11, 15000.20, 15100.1, 15100.11, 15100.20, Slow 2000.3, 7000.2, 14700.2, 14700.11, 14700.20, 15200.1, 15200.11 14800.2, 14800.11, 14800.20, 14900.2, 14900.11, Location wrt Weld 15000.2, 15000.11, 15000.20, 15100.2, 15100.11, 11mm in HAZ 2500.16, 2700.16, 3200.1, 15100.20, 15200.2, 15200.11 3200.8, 3200.12, 3200.16, 3200.20, 6400.4, 6400.10, Location 6400.16, 6500.1, 6600.1, 6700.1, 6800.1, 7200.7-В 1000.2, 1000.6 7200.8, 7500.1, 7500.6, 7500.12, 7500.16, 7500.20, T 1000.1-1000.3, 1000.9, 1000.12-1000.14 7600.2, 7600.6, 7600.10, 7600.14, 7600.18, 7700.1, Location wrt Surface 7700.6, 7700.10, 7700.14, 7700.18, 8000.1, 8100.1, 1/4T 7200.7-7200.8, 7200.13 8200.1, 8300.1, 8500.1, 8600.1, 8700.1, 8800.1, Back surface at root 14200.16, 14200.38, 9200.2, 9200.6, 9200.10, 9200.14, 9200.18, 9300.1, 14300.16, 14300.38, 14400.16, 14400.38, 14500.16-9300.6, 9300.10, 9300.14, 9300.18, 9700.7, 9900.7, 14500.24, 14500.36-14500.44, 14600.16-14600.24, 10200.4, 10200.8, 10500.4, 10800.4, 10900.4, 11000.4, 14600.36-14600.44, 14700.8, 14700.17, 14700.26, 11500.4, 12300.4, 12300.8, 12300.12, 13800.8, 13800.20, 14800.8, 14800.17, 14800.26, 14900.8, 14900.17, 13800.24, 13800.34, 13900.1, 13900.14, 13900.24, 15000.8, 15000.17, 15000.26, 15100.8, 15100.17, 14000.1, 14000.4, 14000.14, 14200.1, 14200.4-15100.26, 15200.8, 15200.17 14200.6, 14200.16-14200.18, 14200.28, 14200.38-Back surface not root 13800.20-13800.22, 14200.40, 14300.1, 14300.4-14300.6, 14300.16-14200.18-14200.26, 14200.40-14200.48, 14300.18-14300.18, 14300.28, 14300.38-14300.40, 14400.1, 14300.26, 14300.40-14300.48, 14400.18-14400.26, 14400.4-14400.6, 14400.16-14400.18, 14400.28,

```
14400.38-14400.40, 14500.1, 14500.4-14500.6, 14500.16,
                                                                      14500.28, 14500.38, 14600.3-14600.5, 14600.8, 14600.18,
     14500.26, 14500.36, 14600.1, 14600.4-14600.6, 14600.16,
                                                                      14600.28, 14600.38
     14600.26, 14600.36, 14700.1-14700.3, 14700.6-
                                                                 Transverse
                                                                                    14500.46-14500.47, 14600.46-14600.47
     14700.8. 14700.11-14700.12. 14700.15-14700.17.
                                                           Lot ID
     14700.20-14700.21, 14700.24-14700.26, 14800.1-
                                                                0
                                                                        3800 1-3800 4
     14800.3, 14800.6-14800.8, 14800.11-14800.12, 14800.15-
                                                                1
                                                                        3900.1-3900.3
     14800.17, 14800.20-14800.21, 14800.24-14800.26,
                                                                11672
                                                                              3400.1-3400.4
     14900.1-14900.3, 14900.6-14900.8, 14900.11-14900.12,
                                                                11682
                                                                              4600.1-4600.3
                                                                11692
     14900.15-14900.17, 15000.1-15000.3, 15000.6-15000.8,
                                                                              4200.1-4200.3
     15000.11-15000.12, 15000.15-15000.17, 15000.20-
                                                                14320
                                                                              3600.1-3600.4
     15000.21, 15000.24-15000.26, 15100.1-15100.3.
                                                                14453
                                                                              4500.1-4500.4
     15100.6-15100.8, 15100.11-15100.12, 15100.15-
                                                                14460
                                                                              3300.1-3300.4
                                                                14490
     15100.17, 15100.20-15100.21, 15100.24-15100.26,
                                                                              5700.1-5700.3
     15200.1-15200.3, 15200.6-15200.8, 15200.11-15200.12,
                                                                14500
                                                                              6000.1-6000.3
                                                                17754
     15200.15-15200.17, 16500.1, 16500.5, 19000.1, 19100.1,
                                                                              5800.1-5800.3, 6100.1-6100.3
     19200.1, 19300.1, 19400.1, 19600.7, 19600.14
                                                                17777
                                                                              6200.1-6200.3
1mm in HAZ
                      2500.4, 2700.4, 6400.7, 6400.13,
                                                                17846
                                                                              5900.1-5900.3
     6400.19-6400.21, 6500.4, 6600.4, 6700.4, 6800.4,
                                                                18553
                                                                              6300.1-6300.3
                                                                40574
     7200.13, 8000.4, 8100.4, 8200.4, 8300.4, 8500.4,
                                                                              12000.1-12000.3, 12100.1-12100.3, 12200.1-
     8600.4, 8700.4, 8800.4, 13800.12, 13800.28, 13900.6,
                                                                      12200.3
                                                                41509
                                                                              10200.1-10200.11
     13900.18, 14000.8, 14000.18, 14200.10, 14200.22,
                                                                42252
     14200.32, 14200.44, 14300.10, 14300.22, 14300.32,
                                                                             10800.1-10800.7, 10900.1-10900.7, 11000.1-
     14300.44, 14400.10, 14400.22, 14400.32, 14400.44,
                                                                      11000.7
     14500.10, 14500.20, 14500.30, 14500.40, 14600.10,
                                                                43731
                                                                              5400.1-5400.3
                                                                43752
     14600.20, 14600.30, 14600.40
                                                                              3500.1-3500.4
3mm in HAZ
                      2500.7, 2700.7, 13800.14, 13800.30,
                                                                47444
                                                                              11200.1-11200.6
                                                                47574
     13900.8, 13900.20, 14000.10, 14000.20, 14200.12,
                                                                              9600.1-9600.7, 9700.1-9700.10, 9800.1-
     14200.24. 14200.34, 14200.46, 14300.12, 14300.24,
                                                                      9800.3
                                                                48160
     14300.34, 14300.46, 14400.12, 14400.24, 14400.34,
                                                                             9900.1-9900.10, 10000.1-10000.5, 10100.1-
                                                                      10100.5
     14400.46, 14500.12, 14500.22, 14500.32, 14500.42,
                                                                48682
     14600.12, 14600.22, 14600.32, 14600.42
                                                                              11500.1-11500.7, 11600.1-11600.3
50% weld, 50% HAZ
                                                                50054
                                                                              10300.1-10300.3, 10400.1-10400.3, 10500.1-
                                13800.18, 13900.12
5mm in HAZ
                                                                      10500.7
                        2500.10, 2700.10, 13800.16,
     13800.32, 13900.10, 13900.22, 14000.12, 14000.22,
                                                                52100
                                                                              12400.1-12400.3
                                                                52110
     14200.14. 14200.26, 14200.36, 14200.48, 14300.14,
                                                                              12300.1-12300.15
     14300.26, 14300.36, 14300.48, 14400.14, 14400.26,
                                                                52765
                                                                              5600.1-5600.3
                                                                52797
                                                                              5500.1-5500.3
     14400.36, 14400.48, 14500.14, 14500.24, 14500.34,
                                                                54614
     14500.44, 14600.14, 14600.24, 14600.34, 14600.44
                                                                              11100.1-11100.4
7mm in HAZ
                                                                55946
                       2500.13, 2700.13
                                                                              11800.1-11800.6, 11900.1-11900.6
Fusion line
                    2500.1, 2700.1, 3100.2-3100.10,
                                                                57053
                                                                              11700.1-11700.6
                                                                57221
     3200.4-3200.6, 3200.10, 3200.14, 3200.18, 7400.2-
                                                                              9400.1-9400.3, 9500.1-9500.6
     7400.10, 7500.4, 7500.8-7500.10, 7500.14, 7500.18,
                                                                58568
                                                                              11300.1-11300.3, 11400.1-11400.3
                                                                59609
                                                                              10300.4-10300.6, 10600.1-10600.4, 10700.1-
     7600.4, 7600.8, 7600.12, 7600.16, 7600.20, 7700.4,
     7700.8, 7700.12, 7700.16, 7700.20, 9200.4, 9200.8,
                                                                      10700.7
                                                                60865
     9200.12, 9200.16, 9200.20, 9300.4, 9300.8, 9300.12,
                                                                              4300.1-4300.3
     9300.16, 9300.20, 9700.9, 9900.9, 10200.6, 10200.10,
                                                                60868
                                                                              3700.1-3700.4, 4400.1-4400.4
                                                                641661
     10500.6, 10800.6, 10900.6, 11000.6, 11500.6, 12300.6.
                                                                               1100.1-1100.2, 1100.5-1100.6, 1200.1-
                                                                      1200.2, 1200.5-1200.6, 1300.1-1300.2, 1300.5-1300.6
     12300.10, 12300.14, 13800.10, 13800.22, 13800.26,
                                                                641662
     13800.36, 13900.4, 13900.16, 13900.26, 14000.3,
                                                                               1400.1-1400.2, 1400.5-1400.6, 1500.1-
     14000.6, 14000.16, 14200.3-14200.5, 14200.8, 14200.20,
                                                                      1500.2, 1500.5-1500.6, 1600.1-1600.2, 1600.5-1600.6
                                                                642696
     14200.30, 14200.42, 14300.3-14300.5, 14300.8, 14300.20,
                                                                               1800.1-1800.2, 1800.5-1800.6, 1900.1-
     14300.30, 14300.42, 14400.3-14400.5, 14400.8, 14400.20,
                                                                      1900.2. 1900.5-1900.6
     14400.30, 14400.42, 14500.3~14500.5, 14500.8, 14500.18,
                                                                642697
                                                                               1700.1-1700.2, 1700.5-1700.6
```

A 5200.1-5200.4	G 4100.1–4100.3
A0161 7800.1–7800.6	G9011 2300.1-2300.8
A1579-2AA 15900.1-15900.6	G9837 2600.1-2600.20, 2700.1-2700.18
A6175-8 16100.1-16100.3, 16100	·
A6670-3A 16400.1-16400.6	I 5100.1-5160.4
A6670-3B 16300.1-16300.6	J131267 1000.1-1000.14
B0469-2C 15400.1–15400.6, 162	
B1038-2B 18600.1-18600.6	k21-6425 3000.1-3000.8
B-1088-3 18800.1–18800.6	K21-7102 2900.1-2900.8
B-1088-5 18900.1-18900.6	K22-6296 2800.1-2800.8
B1908-3 15500.1–15500.2, 15500	****
B1908-5A 15600.1~15600.6	L467QV559 19600.1-19600.6
B1908-5B 15800.1–15800.3, 158	-
B5761-2R 19500.1-19500.7	P 4900.1–4900.3
B8478-3 17800.1-17800.7	S 4800.1–4800.3
B8490-2 17500.1-17500.19	T 4700.1-4700.3
B8563-4 17300.1-17300.19	LR3201 Reference 7300.1-7300.6
B8601-5 17100.1-17100.19	Lukens Producer 7300.1, 7800.1, 7900.1, 9000.1,
B8687-1 17600.1-17600.7	9100.1, 12500.1, 12600.1, 12700.1, 15300.1, 15400.1,
B8740-2 17200.1-17200.46	15500.1, 15600.1, 15700.1, 15800.1, 15900.1, 16000.1,
B8740-3 16700.1-16700.28	16100.1, 16200.1, 16300.1, 16400.1, 16600.1, 19500.1
B8817-1 18400.1-18400.28	Lukens Source 7300.1, 7800.1, 7900.1, 9000.1,
B9353-3 16600.1–16600.7	9100.1, 12500.1, 12600.1, 12700.1, 15300.1, 15400.1,
B9671-1E 12600.1-12600.14	15500.1, 15600.1, 15700.1, 15800.1, 15900.1, 16000.1,
C 4000.1-4000.3	16100.1, 16200.1, 16300.1, 16400.1, 16600.1, 19500.1
C4771-39A 18500.1-18500.7	3 <i>5</i>
	N /I
C5830 16000.1-16000.6	${f M}$
C5830 16000.1-16000.6 C5830-5T 15300.1-15300.6	M22000/10 Filler Specification 19600.7, 19600.14
C5830-5T 15300.1-15300.6	M22000/10 Filler Specification 19600.7, 19600.14
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 19000.1
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 19000.1
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700.3	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6–15700.8 001.001.09B 16500.1–16500.4
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6–15700.8 001.001.09B 16500.1–16500.4 001.001.09F 16500.5–16500.7
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6–15700.8 001.001.09B 16500.1–16500.4 001.001.09F 16500.5–16500.7 001.002.01 16600.1–16600.7 001.003.01B1 16700.20–16700.22 001.003.01B2 16700.26–16700.28
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6-15700.8 001.001.09B 16500.1-16500.4 001.001.09F 16500.5-16500.7 001.002.01 16600.1-16600.7 001.003.01B1 16700.20-16700.22 001.003.01B2 16700.26-16700.28 001.003.01BM 16700.23-16700.25
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6-15700.8 001.001.09B 16500.1-16500.4 001.001.09F 16500.5-16500.7 001.002.01 16600.1-16600.7 001.003.01B1 16700.20-16700.22 001.003.01B2 16700.26-16700.28 001.003.01BM 16700.23-16700.25 001.003.01M1 16700.11-16700.13
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6-15700.8 001.001.09B 16500.1-16500.4 001.001.09F 16500.5-16500.7 001.002.01 16600.1-16600.7 001.003.01B1 16700.20-16700.22 001.003.01B2 15700.26-16700.28 001.003.01BM 16700.23-16700.25 001.003.01M1 16700.11-16700.13 001.003.01M2 16700.17-16700.19
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6–15700.8 001.001.09B 16500.1–16500.4 001.002.01 16600.1–16600.7 001.003.01B1 16700.20–16700.22 001.003.01B2 15700.26–16700.28 001.003.01BM 16700.23–16700.25 001.003.01M1 16700.11–16700.13 001.003.01M2 16700.17–16700.19 001.003.01MM 16700.14–16700.16
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46 D4179-3B 7900.1-7900.6	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6–15700.8 001.001.09B 16500.1–16500.4 001.002.01 16600.5–16500.7 001.002.01 16600.1–16600.7 001.003.01B1 16700.20–16700.22 001.003.01B2 16700.26–16700.28 001.003.01BM 16700.23–16700.25 001.003.01M1 16700.11–16700.13 001.003.01M2 16700.17–16700.19 001.003.01MM 16700.14–16700.16 001.003.01T1 16700.1–16700.4
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6-15700.8 001.001.09B 16500.1-16500.4 001.002.01 16600.1-16600.7 001.003.01B1 16700.20-16700.22 001.003.01B2 16700.26-16700.28 001.003.01BM 16700.23-16700.25 001.003.01M1 16700.11-16700.13 001.003.01M2 16700.17-16700.19 001.003.01MM 16700.11-16700.16 001.003.01T1 16700.1-16700.4
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46 D4179-3B 7900.1-7900.6 D6274-4 9000.1-9000.2, 9000.5-8 9100.3, 9100.6-9100.9	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6–15700.8 001.001.09B 16500.1–16500.4 001.002.01 16600.1–16600.7 001.003.01B1 16700.20–16700.22 001.003.01B2 15700.26–16700.28 001.003.01BM 16700.23–16700.25 001.003.01M1 16700.11–16700.13 001.003.01M2 16700.17–16700.19 001.003.01MM 16700.14–16700.16 001.003.01T1 16700.1–16700.4 0000.9,9100.1– 001.003.01TM 16700.5–16700.7
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46 D4179-3B 7900.1-7900.6 D6274-4 9000.1-9000.2, 9000.5-8 9100.3, 9100.6-9100.9 D6873-1A 12500.1-12500.6	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6-15700.8 001.001.09B 16500.1-16500.4 001.002.01 16600.1-16600.7 001.003.01B1 16700.20-16700.22 001.003.01B2 16700.26-16700.28 001.003.01BM 16700.23-16700.25 001.003.01M1 16700.11-16700.13 001.003.01M2 16700.17-16700.19 001.003.01MM 16700.14-16700.16 001.003.01T1 16700.1-16700.4 0000.9, 9100.1- 001.003.01TM 16700.5-16700.7 001.004.01B2 16800.5-16800.7
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46 D4179-3B 7900.1-7900.6 D6274-4 9000.1-9000.2, 9000.5-8 9100.3, 9100.6-9100.9 D6873-1A 12500.1-12500.6 D6873-1B 12700.1-12700.7	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6-15700.8 001.001.09B 16500.1-16500.4 001.002.01 16600.1-16600.7 001.003.01B1 16700.20-16700.22 001.003.01B2 15700.26-16700.28 001.003.01BM 16700.23-16700.25 001.003.01M1 16700.11-16700.13 001.003.01M2 16700.17-16700.19 001.003.01MM 16700.14-16700.16 001.003.01T1 16700.1-16700.4 0000.9,9100.1- 001.003.01TM 16700.5-16700.7 001.004.01B2 16800.5-16800.7 001.004.01T1 16800.1-16800.4
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46 D4179-3B 7900.1-7900.6 D6274-4 9000.1-9000.2, 9000.5-8 9100.3, 9100.6-9100.9 D6873-1A 12500.1-12500.6	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6–15700.8 001.001.09B 16500.1–16500.4 001.002.01 16600.1–16600.7 001.003.01B1 16700.20–16700.22 001.003.01BM 16700.23–16700.25 001.003.01MM 16700.11–16700.13 001.003.01MM 16700.17–16700.19 001.003.01MM 16700.14–16700.16 001.003.01T1 16700.1–16700.4 0000.9, 9100.1– 001.003.01TM 16700.5–16700.7 001.004.01B2 16800.5–16800.7 001.004.01T1 16800.1–16800.4 001.005.01B2 16900.5–16900.7
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46 D4179-3B 7900.1-7900.6 D6274-4 9000.1-9000.2, 9000.5-8 9100.3, 9100.6-9100.9 D6873-1A 12500.1-12500.6 D6873-1B 12700.1-12700.7 D0733-1D 18000.1-18000.11	M22000/10 Filler Specification M22000/1E Filler Specification Material Code 0.6-15700.8 001.001.09B 16500.1-16500.4 001.002.01 16600.1-16600.7 001.003.01B1 16700.20-16700.22 001.003.01BM 16700.23-16700.25 001.003.01M1 16700.11-16700.13 001.003.01M2 16700.17-16700.19 001.003.01MM 16700.14-16700.16 001.003.01T1 16700.1-16700.4 0000.9,9100.1- 001.003.01TM 16700.5-16700.7 001.004.01B2 16800.5-16800.7 001.004.01T1 16800.1-16800.4 001.005.01T1 16900.1-16900.4
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46 D4179-3B 7900.1-7900.6 D6274-4 9000.1-9000.2, 9000.5-8 9100.3, 9100.6-9100.9 D6873-1A 12500.1-12500.6 D6873-1B 12700.1-12700.7 D0733-1D 18000.1-18000.11 E 5300.1-5300.4 FRM 19000.1-19000.7	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6-15700.8 001.001.09B 16500.1-16500.4 001.002.01 16600.1-16600.7 001.003.01B1 16700.20-16700.22 001.003.01B2 16700.26-16700.28 001.003.01BM 16700.11-16700.13 001.003.01M1 16700.17-16700.19 001.003.01MM 16700.14-16700.16 001.003.01T1 16700.1-16700.4 001.003.01T1 16700.8-16700.10 001.003.01TM 16700.8-16700.10 001.003.01TM 16700.5-16800.7 001.004.01B2 16800.5-16800.7 001.005.01B2 16900.5-16900.7 001.005.01T1 16900.1-16900.4 001.005.01T1 16900.1-16900.4
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46 D4179-3B 7900.1-7900.6 D6274-4 9000.1-9000.2, 9000.5-8 9100.3, 9100.6-9100.9 D6873-1A 12500.1-12500.6 D6873-1B 12700.1-12700.7 D0733-1D 18000.1-18000.11 E 5300.1-5300.4 FRM 19000.1-19000.7	M22000/10 Filler Specification 19600.7, 19600.14 M22000/1E Filler Specification 19000.1 Material Code 0.6–15700.8 001.001.09B 16500.5–16500.7 001.002.01 16600.1–16600.7 001.003.01B1 16700.20–16700.22 001.003.01B2 16700.26–16700.28 001.003.01BM 16700.21–16700.13 001.003.01M1 16700.11–16700.13 001.003.01M2 16700.17–16700.19 001.003.01MM 16700.14–16700.16 001.003.01T1 16700.1–16700.4 001.003.01TM 16700.5–16700.7 001.004.01B2 16800.5–16800.7 001.004.01B1 16900.5–16900.7 001.005.01B2 16900.5–16900.7 001.005.01B1 16900.1–16900.4 001.005.01B1 16900.1–16900.4 001.006.01B2 17000.7–17000.11 001.006.01B1 17000.1–17000.6
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46 D4179-3B 7900.1-7900.6 D6274-4 9000.1-9000.2, 9000.5-8 9100.3, 9100.6-9100.9 D6873-1A 12500.1-12500.6 D6873-1B 12700.1-12700.7 D0733-1D 18000.1-18000.11 E 5300.1-5300.4 FRM 19000.1-19100.7 FRN 19100.1-19100.7 FRO 19600.7-19600.13	M22000/10 Filler Specification M22000/1E Filler Specification M22000/1E Filler Specification Material Code 0.6–15700.8 001.001.09B
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46 D4179-3B 7900.1-7900.6 D6274-4 9000.1-9000.2, 9000.5-8 9100.3, 9100.6-9100.9 D6873-1A 12500.1-12500.6 D6873-1B 12700.1-12700.7 D0733-1D 18000.1-18000.11 E 5300.1-5300.4 FRM 19000.1-19000.7 FRN 19100.1-19100.7 FRO 19600.7-19600.13 FRP 19600.14-19600.21	M22000/10 Filler Specification M22000/1E Filler Specification M22000/1E Filler Specification Material Code 0.6–15700.8 001.001.09B 16500.1–16500.4 001.001.09F 16500.5–16500.7 001.002.01 16600.1–16600.7 001.003.01B1 16700.20–16700.22 001.003.01B2 16700.26–16700.28 001.003.01BM 16700.11–16700.13 001.003.01M1 16700.11–16700.19 001.003.01MM 16700.14–16700.16 001.003.01T1 16700.1–16700.4 001.003.01TM 16700.5–16700.7 001.004.01B2 16800.5–16800.7 001.004.01B1 16900.1–16800.4 001.005.01B2 16900.5–16900.7 001.005.01B1 16900.1–16900.4 001.006.01B2 17000.7–17000.11 001.006.01B1 17000.1–17000.6 001.007.01B1 17100.11–17100.13 001.007.01B2 17100.17–17100.19
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46 D4179-3B 7900.1-7900.6 D6274-4 9000.1-9000.2, 9000.5-8 9100.3, 9100.6-9100.9 D6873-1A 12500.1-12500.6 D6873-1B 12700.1-12700.7 D0733-1D 18000.1-18000.11 E 5300.1-5300.4 FRM 19000.1-19000.7 FRO 19600.7-19600.13 FRP 19600.14-19600.21 FVD 19200.1-19200.7	M22000/10 Filler Specification M22000/1E Filler Specification M22000/1E Filler Specification Material Code 0.6–15700.8 001.001.09B 16500.1–16500.4 001.002.01 16600.1–16600.7 001.002.01 16600.1–16600.7 001.003.01B1 16700.20–16700.22 001.003.01BM 16700.23–16700.25 001.003.01M1 16700.11–16700.13 001.003.01M1 16700.17–16700.19 001.003.01MM 16700.11–16700.4 001.003.01T1 16700.1–16700.4 001.003.01T1 16700.5–16700.7 001.003.01TM 16700.5–16700.7 001.004.01B2 16800.5–16800.7 001.004.01B1 16900.5–16900.7 001.005.01B2 16900.5–16900.7 001.005.01B1 17000.1–17000.6 001.007.01B1 17100.11–17100.13 001.007.01B2 17100.17–17100.19 001.007.01BM 17100.14–17100.19
C5830-5T 15300.1-15300.6 C-9283-11 18700.1-18700.5 D2580-4 17400.1-17400.28 D3007-3 15700.1-15700.3, 15700 D3631-7L 16900.1-16900.7 D3667-3M 17000.1-17000.11 D3703-4B 16800.1-16800.7 D3710-42B 17900.1-17900.46 D3791-2B 7300.1-7300.6 D3974-1B 18200.1-18200.28 D3975-3E 17700.1-17700.28 D4030-4A 18300.1-18300.46 D4179-3B 7900.1-7900.6 D6274-4 9000.1-9000.2, 9000.5-8 9100.3, 9100.6-9100.9 D6873-1A 12500.1-12500.6 D6873-1B 12700.1-12700.7 D0733-1D 18000.1-18000.11 E 5300.1-5300.4 FRM 19000.1-19000.7 FRN 19100.1-19100.7 FRO 19600.7-19600.13 FRP 19600.14-19600.21	M22000/10 Filler Specification M22000/1E Filler Specification M22000/1E Filler Specification Material Code 0.6–15700.8 001.001.09B 16500.1–16500.4 001.001.09F 16500.5–16500.7 001.002.01 16600.1–16600.7 001.003.01B1 16700.20–16700.22 001.003.01B2 16700.26–16700.28 001.003.01BM 16700.11–16700.13 001.003.01M1 16700.11–16700.19 001.003.01MM 16700.14–16700.16 001.003.01T1 16700.1–16700.4 001.003.01TM 16700.5–16700.7 001.004.01B2 16800.5–16800.7 001.004.01B1 16900.1–16800.4 001.005.01B2 16900.5–16900.7 001.005.01B1 16900.1–16900.4 001.006.01B2 17000.7–17000.11 001.006.01B1 17000.1–17000.6 001.007.01B1 17100.11–17100.13 001.007.01B2 17100.17–17100.19

001.007.01TM	17100.5-17100.7	001.016.01B2	18000.7-18000.11
001.008.01B1	17200.32-17200.36	001.016.01T1	18000.1-18000.6
001.008.01B2	17200.42-17200.46	001.017.01B2	18100.7-18100.11
001.008.01BM	17200.37-17200.41	001.017.01T1	18100.1-18100.6
001.008.01M1	17200.17-17200.21	001.018.01B1	18200.20-18200.22
001.008.01M2	17200.27-17200.31	001.018.01B2	18200.26-18200.28
001.008.01MM	17200.22-17200.26	001.018.01BM	
001.008.01T1	17200.1-17200.6	001.018.01M1	18200.11-18200.13
001.008.01T2	17200.12-17200.16	001.018.01M2	18200.17-18200.19
001.008.01TM	17200.7-17200.11	001.018.01MM	
001.009.01B1	17300.11-17300.13	001.018.01T1	18200.1-18200.4
001.009.01B2	17300.17-17300.19	001.018.01T2	18200.8-18200.10
001.009.01BM	17300.14-17300.16	001.018.01TM	18200.5-18200.7
001.009.01T1	17300.1-17300.4	001.019.01B1	18300.32-18300.36
001.009.01T2	17300.8-17300.10	001.019.01B2	18300.42-18300.46
001.009.01TM	17300.5-17300.7	001.019.01BM	18300.37-18300.41
001.010.01B1	17400.20-17400.22	001.019.01M1	18300.17-18300.21
001.010.01B2	17400.26-17400.28	001.019.01M2	18300.27-18300.31
001.010.01BM	17400.23-17400.25	001.019.01MM	
001.010.01M1	17400.11-17400.13	001.019.01T1	18300.1-18300.6
001.010.01M2	17400.17-17400.19	001.019.01T2	18300.12-18300.16
001.010.01MM	17400.14-17400.16	001.019.01TM	18300.7-18300.11
001.010.01T1	17400.1-17400.4	001.020.01B1	18400.20-18400.22
001.010.01T2	17400.8-17400.10	001.020.01B2	18400.26-18400.28
001.010.01TM	17400.5-17400.7	001.020.01BM	18400.23-18400.25
001.011.01B1	17500.11-17500.13	001.020.01M1	18400.11-18400.13
001.011.01B2	17500.17-17500.19	001.020.01M2	18400.17-18400.19
001.011.01BM	17500.14-17500.16	001.020.01MM	
001.011.01T1	17500.1-17500.4	001.020.01T1	18400.1-18400.4
001.011.01T2	17500.8-17500.10	001.020.01T2	18400.8-18400.10
001.011.01TM	17500.5-17500.7	001.020.01TM	18400.5-18400.7
001.012.01B2	17600.5-17600.7	001.021.01B2	18500.5-18500.7
001.012.01T1	17600.1-17600.4	001.021.01T1	18500.1-18500.4
001.013.01B1	17700.20-17700.22	001.023.01	18600.1-18600.6
001.013.01B2	17700.26-17700.28	001.024.01	18700.1-18700.5
001.013.01BM	17700.23-17700.25	001.025.01	18800.1-18800,6
001.013.01M1	17700.11-17700.13	001.026.01	18900.1-18900.6
001.013.01M2	17700.17-17700.19	001.027.09	19000.1-19000.7
001.013.01MM	17700.14-17700.16		19100.1-19100.7
001.013.01T1	17700.1-17700.4	001.029.09	19200.1-19200.7
001.013.01T2	17700.8-17700.10	001.030.09	19300.1-19300.7
001.013.01TM	17700.5-17700.7		19400.1-19400.7
001.014.01B2	17800.5~17800.7	002.001.01A1	9400.1-9400.3
001.014.01T1	17800.1-17800.4	002.001.01B1	9500.1~9500.3
001.015.01B1	17900.32-17900.36	002.001.01B2	9500.4-9500.6
001.015.01B2	17900.42~17900.46	002.002.01A1	9600.1-9600.3
001.015.01BM	17900.37-17900.41	002.002.01A2	9600.4~9600.7
001.015.01M1	17900.17-17900.21	002.002.01B1	9700.1-9700.3
001.015.01M2	17900.27~17900.31	002.002.01B2	9700.4-9700.6
001.015.01MM	17900.22-17900.26	002.002.01C1	9800.1-9800.3
001.015.01T1	17900.1-17900.6	002.002.02B2	9700.9-9700.10
001.015.01T2	17900.12-17900.16	002.002.09B2	9700.7-9700.8
001.015.01TM	17900.7~17900.11	002.003.01A1	9900.1~9900.3

	2020 + 2000 2	002.017.01C1 12400.1-12400.3
002.003.01A2	9900.4-9900.6	002.018.01 12500.1-12500.6
002.003.01B1	10000.1-10000.5	002.019.01 12600.1-12600.2, 12600.13-12600.14
002.003.01C1	10100.1~10100.5	002.019.01B 12600.6-12600.8, 12600.11-12600.12
002.003.02A1	9900.9-9900.10	002.019.01T 12600.3-12600.5, 12600.9-12600.10
002.003.09A1	9900.7-9900.8	002.020.01 12700.1-12700.7
002.004.01A1	10200.1-10200.3	002.021.01 12800.1-12800.5
002.004.02AAA	10200.10-10200.11	002.022.01 12900.1-12900.5
002.004.02ABA	10200.6-10200.7	002.023.01 13000.1-13000.5
002.004.09AAA	10200.8-10200.9	002.024.01 13100.1-13100.5
002.004.09ABA	10200.4-10200.5	002.025.01 13200.1-13200.3
002.005.01A1	10300.1-10300.3	002.026.01 13300.1-13300.5
002.005.01B1	10400.1-10400.3	002.027.01 13400.1-13400.5
002.005.01C1	10500.1-10500.3	002.028.01 13500.1-13500.5
002.005.02C	10500.6~10500.7	002.029.01 13600.1-13600.5
002.005.09C	10500 4-10500.5	002.030.01 13700.1-13700.3
002.006.01A1	10300.4-10300.6	003.001.01 7100.1-7190.6
002.006.01B1	10600.1-10600.4	003.002.01 7200.1-7200.6
002.006.01C1	10700.1-10700.3	003.002.03.1 7200.13-7200.16
002.006.01C2	10700.4-10700.7	003.002.09 7200.7
002.007.01A1	10800.1-10800.3	003.002.09.1 7200.8-7200.12
002.007.01B1	10900.1~10900.3	003.003.01 7300.1-7300.6
002.007.01C1	11000.1-11000.3	004.001.01B 1000.2, 1000.6–1000.8
002.007.02AAA	10800.6~10800.7	004.001.01T 1000.1-1000.5, 1000.14
002.007.02BAA	10900.6-10900.7	004.001.01TS1 1000.9-1000.11
002.007.02CAA	11000.6-11000.7	004.001.01TS2 1000.12-1000.13
002.007.09AAA	10800.4-10800.5	004.002.01.1 1100.1-1100.2, 1100.5-1100.6
002.007.09BAA	10900.4~10900.5	004.002.01.1 1100.1-1100.2 1100.6 110
002.007.09CAA	11000.4-11000.5	004.002.01.6 1300.1-1300.2, 1300.5-1300.6
002.008.01C1	11100.1-11100.4	004.003.01.1 1400.1-1400.2, 1400.5-1400.6
002.009.01B1	11200.1-11200.3	004.003.01.2 1500.1-1500.2, 1500.5-1500.6
002.009.01B2	11200.4-11200.6	004.003.01.7 1600.1-1600.2, 1600.5-1600.6
002.010.01B1	11300.1-11300.3	004.004.01.1 1700.1-1700.2, 1700.5-1700.6
002.010.01C1	11400.1-11400.3	004.005.01.1 1800.1-1800.2, 1800.5-1800.6
002.011.01B1	11500.1-11500.3	004.005.01.7 1900.1-1900.2, 1900.5-1900.6
002.011.01C1	11600.1-11600.3	007.001.01B 2100.2, 2100.6-2100.8
002.011.02B1	11500.6-11500.7	007.001.01T 2100.1-2100.5
002.011.09B1	11500.4-11500.5	007.002.01B 2200.2, 2200.6-2200.8
002.012.01B1	11700.1-11700.3	007.002.01T 2200.1-2200.5
002.012.01B2 002.013.01B1	11700.4-11700.6	007.003.01B 2300.2, 2300.6-2300.8
002.013.01B1 002.013.01B2	11800.1~11800.4 11800.5~11800.6	007.003.01T 2300.1-2300.5
002.013.01B2 002.013.01C1		007.004.01B 2400.2, 2400.6-2400.8, 2400.12-
	11900.1-11900.3 11900.4-11900.6	2400.14, 2400.18–2400.20
002.013.01C2 002.014.01B1		007.004.01T 2400.1-2400.5, 2400.9-2400.11,
	12000.1-12000.3	2400.15-2400.17
002.014.01C1	12100.1-12100.3	007.004.02.1 2500.1-2500.3
002.015.01C1	12200.1-12200.3	007.004.03.1 2500.4-2500.6
002.016.01C1	12300.1~12300.3	007.004.04.1 2500.7-2500.9
002.016.02CAA	12300.14~12300.15	007.004.05.1 2500.10-2500.12
002.016.02CAS	12300.10-12300.11	007.004.06.1 2500.13-2500.15
002.016.02CBA	12300.6-12300.7	007.004.09.1 2500.16-2500.18
002.016.09CAA		007.005.01B 2600.2, 2600.6-2600.8, 2600.12-
002.016.09CAS	12300.8-12300.9	2600.14, 2600.18-2600.20
002.016.09CBA	12300 4-12300 5	Prints I Prints In Prints

007.005.01T	2600.1-2600.5, 2600.9-2600.11,	009.033.01	5600.1~5600.3
2600.15-2600.	17	009.034.01	5700.1-5700.3
007.005.02.1	2700.1-2700.3	009.035.01	5800.1-5800.3
007.005.03.1	2700.4-2700.6	009.036.01	5900.1-5900.3
007.005.04.1	2700.7-2700.9	009.037.01	6000.1-6000.3
007.005.05.1	2700.10-2700.12	009.038.01	6100.1-6100.3
007.005.06.1	2700.13-2700.15	009.039.01	6200.1-6200.3
007.005.09.1	2700.16-2700.18	009.040.01	6300.1-6300.3
007.007.01B	2800.2, 2800.6-2800.8	009.041.01	6400.1-6400.3
007.007.01T	2800.1-2800.5	009.041.03A	6400.7-6400.9
007.008.01B	2900.2, 2900.6-2900.8	009.041.03B	6400.13-6400.15
007.008.01T	2900.1-2900.5	009.041.03C	6400.196400.20
007.009.01B	3000.2, 3000.6-3000.8	009.041.03D	6400.21-6400.23
007.009.01T	3000.1-3000.5	009.041.09A	6400.4-6400.6
009.002.010A	3100.1	009.041.09B	6400.10-6400.12
009.002.02AA	3100.8-3100.9	009.041.09C	6400.16-6400.18
009.002.02AS1	3100.2 - 3100.3	009.042.01	6900.1-6900.2
009.002.02AS2	3100.4-3100.5	009.042.03A	6500.4-6500.5
009.002.02AS3	3100.6-3100.7	009.042.03B	6600.4-6600.5
009.002.02AS4	3100.10-3100.11	009.042.03C	6700.4-6700.5
009.002.02BS1	3200.6-3200.7	009.042.03D	6800.4-6800.6
009.002.02BS2	3200.10-3200.11	009.042.09A	6500.1-6500.3
009.002.02BS3	3200.14-3200.15	009.042.09B	6600.1-6600.3
009.002.02BS4	3200.18-3200.19	009.042.09C	6700.1-6700.3
$\mathbf{009.002.02BW}$	3200.4-3200.5	009.042.09D	6800.1-6800.3
009.002.09BS1	3200.20-3200.21	009.043.010A	7000.1-7000.2, 7000.5-7000.6
009.002.09BS2	3200.8-3200.9	010.001.010A	13800.2. 13800.5-13800.7, 13800.37
009.002.09BS3	3200.12-3200.13	010.001.0105	13800.1-13800.4
009.002.09BS4	3200.16-3200.17	010.001.02ABA	
009.002.09BW	3200.1-3200.3	010.001.02AFA	
009.010.01	3300.1-3300.4	010.001.02AFS	13800.26-13800.27
009.011.01	3400.1-3400.4	010.001.02ANA	
009.012.01	3500.1-3500.4	010.001.02BFA	13900.4-13900.5
009.013.01	3600.1-3600.4	010.001.02BFS	13900.16~13900.17
009.014.01	3700.1-3700.4	010.001.02BNA	
009.015.01	3800.1-3800.4	010.001.02CFA	14000.6–14000.7
009.016.01	3900.1-3900.3	010.001.02CFS	14000.16~14000.17
009.017.01	4000.1~4000.3	010.001.02CNA	
009.018.01	4100.1-4100.3	010.001.03AFA	13800.12-13800.13
009.019.01	4200.1-4200.3	010.001.03AFS	13800.28-13800.29
009.020.01	4300 1-4300.3	010.001.03BFA	13900.6-13900.7
000 000 01	4400.1-4400 4	010.001.03BFS	13900.18~13900.19
009.022.01	4500.1-4500.4	010.001.03CFA	14000.8-14000.9
000 000 01	4600.1-4600.3	010.001.03CFS	14000.18~14000.19
000 004 04	4700.1-4700.3	010.001.04AFA	13800.14-13800.15
000 000 01	4800.1 <i>−</i> 480∂.3	010.001.04AFS	13800.30~13800.31
	4900.1-4900.3	010.001.04BFA	13900.8-13900.9
	5000.1-5000.4	010.001.04BFS	13900.20~13900.21
000 000 00	5100.1-5100.4	010.001.04CFA	14000.10~14000.11
000 000 04	5200.1-5200.4	010.001.04CFS	14000.10~14000.11
	5300.1-5300.4	010.001.05AFA	13800.16-13800.17
	5400.1-5400.3	010.001.05AFS	13800.32-13800.33
	5500 1 - 5500.3	010.001.05BFA	13900.10~13900.11
		010.001.00Bf A	13500.10~13500.[]

010.001.05BFS	13900.22-13900.23	010.002.03DFS	14200.32~14200.33
010.001.05CFA	14000.12-14000.13	010.002.03EBA	14300.22-14300.23
010.001.05CFS	14000.22-14000.23	010.002.03EBS	14300.44~14300.45
010.001.09ABA	13800.20-13800.21	010.002.03EFA	14300.10~14300.11
010.001.09AFA	13800.8-13800.9	010.002.03EFS	14300.32-14300.33
010.001.09AFS	13800.24~13800.25	010.002.03FBA	14400.22-14400.23
010.001.09ANA	13800.34	010.002.03FBS	14400.44~14400.45
010.001.09BFA	13900.1-13900.3	010.002.03FFA	14400.10~14400.11
010.001.09BFS	13900.14-13900.15	010.002.03FFS	14400.32-14400.33
010.001.09BNA	13900.24	010.002.03GFA	14500.10-14500.11
010.001.09CFA	14000 4-14000.5	010.002.03GFS	14500.30~14500.31
010.001.09CFS	14000.14~14000.15	010.002.03GRA	14500.20-14500.21
010.001.09CNA	14000.1	010.002.03GRS	14500.40-14500.41
010.001.11AFA	13800.18-13800.19	010.002.03HFA	14600.10-14600.11
010.001.11BFA	13900.12-13900.13	010.002.03HFS	14600.30-14600.31
010.002.010A	14100.1-14100.3	010.002.03HRA	14600.20-14600.21
010.002.010C	14100.5~14100.6	010.002.03HRS	14600.40-14600.41
010.002.010D	14100.7-14100.8	010.002.04DBA	14200.24-14200.25
010.002.010E	14100.9-14100.10	010.002.04DBS	14200.46-14200.47
010.002.010E	14100.4	010.002.04DFA	14200.12-14200.13
010.002.0103 010.002.02DBA	14200.20-14200.21	010.002.04DFS	14200.34-14200.35
010.002.02DBA	14200.42-14200.43	010.002.04EBA	14300.24-14300.25
	14200.42-14200.43	010.002.04EBS	14300.46-14300.47
010.002.02DFA		010.002.04EFA	14300.12-14300.13
010.002.02DFS	14200.30-14200.31	010.002.04EFS	14300.34-14300.35
010.002.02DNA	14200.3	010.002.04FBA	14400.24-14400.25
010.002.02DNS	14200.5	010.002.04FBS	14400.46-14400.47
010.002.02EBA	14300.20-14300.21	010.002.04FFA	14400.12-14400.13
010.002.02EBS	14300.42-14300.43	010.002.04FFS	14400.34-14400.35
010.002.02EFA	14300.8-14300.9	010.002.04113	14500.12-14500.13
010.002.02EFS	14300.30-14300.31	010.002.04GFA	14500.32-14500.33
010.002.02ENA	14300.3	010.002.04GRA	14500.22-14500.23
010.002.02ENS	14300.5	010.002.04GRS	14500.42-14500.43
010.002.02FBA	14400.20-14400.21	010.002.04GRS	14600.12-14600.13
010.002.02FBS	14400.42-14400.43	010.002.04HFA	14600.32-14600.33
010.002.02FFA	14400.8-14400.9	010.002.04HF3 010.002.04HRA	14600.32-14600.33
010.002.02FFS	14400.30-14400.31	010.002.04HRA 010.002.04HRS	14600.42-14600.43
010.002.02FNA	14400.3		
010.002.02FNS	14400.5	010.002.05DBA	14200.26-14200.27
010.002.02GFA	14500.8-14500.9	010.002.05DBS	14200.48-14200.49
010.002.02GFS	14500.28-14500.29	010.002.05DFA	14200.14-14200.15 14200.36-14200.37
010.002.02GNA	14500.3	010.002.05DFS	14300.26-14300.27
010.002.02GNS	14500.5	010.002.05EBA	
010.002.02GRA	14500.18-14500.19	010.002.05EBS	14300.48-14300.49
010.002.02GRS	14500.38-14500.39	010.002.05EFA	14300.14-14300.15
010.002.02HFA	14600.8-14600.9	010.002.05EFS	14300.36-14300.37
010.002.02HFS	14600.28-14600.29	010.002.05FBA	14400.26-14400.27
010.002.02HNA	14600.3	010.002.05FBS	14400.48-14400.49
010.002.02HNS	14600.5	010.002.05FFA	14400.14-14400.15
010.002.02HRA	14600.18-14600.19	010.002.05FFS	14400.36-14400.37
010.002.02HRS	14600 38-14600.39	010.002.05GFA	14500.14-14500.15
010.002.03DBA	14200.22 -14200.23	010.002.05GFS	14500.34-14500.35
010.002.03DBS	14200 44-14200.45	010.002.05GRA	14500.24-14500.25
010.002.03DFA	14200.10-14200.11	010.002.05GRS	14500.44-14500.45

010.003.09BBRA 010.003.09BFA 010.003.09BMA 010.003.09BSA	14700.12-14700.14 14700.15-14700.16 14700.11	010.003.09PMA 010.003.09PSA 010.003.09QBRA	15200.6-15200.7 15200.1 15200.17~15200.19
010.003.09BBRA 010.003.09BFA	14700.12-14700.14		15200.6-15200.7
010.003.09BBRA		010.003.09PMA	
	2 1 1 0 0 1 2 1 1 1 0 0 1 2 0		
O I O. OU J. U J M J M	14700.17~14700.19	010.003.09PFA	15200.3-15200.5
010.003.09ASA	14700.1	010.003.09PBRA	15200.8-15200.10
010.003.09AMA	14700.6-14700.7	010.003.09NSA	15100.20
010.003.09AFA	14700.3-14700.5	010.003.09NMA	15100.24-15100.25
010.003.09ABRA	14700.8-14700.10	010.003.09NFA	15100.21-15100.23
010.002.10HSS	14600.47	010.003.09NBRA	15100.26~15100.28
010.002.10HSA	14600.46	010.003.09MMA 010.003.09MSA	15100.15-15100.16
010.002.10GSS	14500.47	010.003.09MMA	15100.12-15100.14
010.002.10GSA	14500.46	010.003.09MFA	15100.12-15100.14
010.002.09HRS	14600.36-14600.37	010.003.09MBRA	15100.17-15100.19
010.002.09HRA	14600.16-14600.17	010.003.09LSA	15100.0-15100.7
010.002.09HNS	14600.4	010.003.09LMA	15100.6–15100.7
010.002.09HNA	14600.1	010.003.09LFA	15100.3-15100.5
010.002.09HFS	14600.26-14600.27	010.003.09LBRA	15100.8-15100.10
010.002.09HFA	14600.6-14600.7	010.003.09KSA	15000.20
010.002.09GRS	14500.36-14500.37	010.003.09KMA	15000.24-15000.25
010.002.09GRA	14500.16-14500.17	010.003.09KFA	15000.21-15000.23
010.002.09GNS	14500.4	010.003.09KBRA	15000.26-15000.28
010.002.09GNA	14500.1	010.003.09JSA	15000.11
010.002.09GFS	14500.26-14500.27	010.003.09JMA	15000.15-15000.16
010.002.09GFA	14500.6-14500.7	010.003.09JFA	15000.12-15000.14
010.002.09FRS	14400.38-14400.39	010.003.09JBRA	15000.17-15000.19
010.002.09FRA	14400.16-14400.17	010.003.09ISA	15000.1
010.002.09FNS	14400.4	010.003.09IMA	15000.6-15000.7
010.002.09FNA	14400.1	010.003.09IFA	15000.3-15000.5
010.002.09FFS	14400.28-14400.29	010.003.09IBRA	15000.8-15000.10
010.002.09FFA	14400.6-14400.7	010.003.09HSA	14900.11
010.002.09FBS	14400.40-14400.41	010.003.09HMA	14900.15-14900.16
010.002.09FBA	14400.18-14400.19	010.003.09HFA	14900.17~14900.19
010.002.09ERS	14300.38-14300.39	010.003.09HBRA	14900.17~14900.19
010.002.09ERA	14300.16-14300.17	010.003.09GSA	14900.0=14900.7
010.002.09ENS	14300.4	010.003.09GMA	14900.6–14900.7
010.002.09ENA	14300.1	010.003.09GFA	14900.3-14900.5
010.002.09EFS	14300.28-14300.29	010.003.09GBRA	14900.8-14900.10
010.002.09EFA	14300.6-14300.7	010.003.09FSA	14800.24=14800.25
010.002.09EBS	14300.40-14300.41	010.003.09FMA	14800.21-14800.23
010.002.09EBA	14300.18-14300.19	010.003.09FFA	14800.20-14800.28
010.002.09DRS	14200.38-14200.39	010.003.09FBRA	14800.26-14800.28
010.002.09DRA	14200.16-14200.17	010.003.09ESA	14800.11
010.002.09DNS	14200.4	010.003.09EMA	14800.15-14800.16
010.002.09DNA	14200.1	010.003.09EFA	14800.12-14800.14
010.002.09DFS	14200.28-14200.29	010.003.09EBRA	14800.17-14800.19
010.002.09DFA	14200.6-14200.7	010.003.09DSA	14800.1
010.002.09DBS	14200.40-14200.41	010.003.09DMA	14800.6-14800.7
010.002.09DBA	14200.18-14200.19	010.003.09DFA	14800.3–14800.5
010.002.05HRS	14600.44-14600.45	010.003.09DBRA	14800.8-14800.10
010.002.05HRA	14600.24-14600.25	010.003.09CSA	14700.20
010.002.05HFS	14600.34-14600.35	010.003.09CMA	14700.24-14700.25
010.002.05HFA	14600.14-14600.15	010.003.09CFA	14700.21-14700.23
010.002.05HFA	14600 14-14600 15	010 002 0000	1.4500.01.1.45

Index XXI

010.003.09QM		.16	012.005.09AS3	
010.003.09QS			012.005.09AS4	9200.18-9200.19
010.004.01	15300.1-15300.6		012.005.09BA	9300.1-9300.3
010.005.01	15400.1-15400.6		012.005.09BS1	
010.006.01	15500.1-15500.2, 15500.	5-15500.7	012.005.09BS2	
010.007.01	15600.1-15600.6		012.005.09BS3	
010.008.01	15700.1–15700.3, 15700.	6-15700.8	012.005.09BS4	9300.18-9300.19
010.009.01	15800.1-15800.3, 15800.	6-15800.8	013.004.010A	7400.1
010.010.01	15900.1-15900.6		013.004.02AS1	
010.011.01	16000.1-16000.6		013.004.02AS2	
010.012.01	16100.1-16100.3, 16100.	6-16100.8	013.004.02AS3	
010.013.01	16200.1-16200.6		013.004.02AS4	· -
010.014.01	16300.1-16300.6		013.004.02AW	7400.2-7400.3
010.015.01	16400.1-16400.6		013.004.02BA	7500.4-7500.5
011.001.01	19500.1-19500.7		013.004.02BS2	7500.10-7500.11
011.003.01	19600.1-19600.6		013.004.02BS3	7500.14-7500.15
011.003.09A	19600.7-19600.13, 196	800.16-19600.17	013.004.02BS4	7500.187500.19
011.003.09B	19600.14-19600.15, 1	19600.18-	013.004.09BA	7500.1-7500.3
19600.21			013.004.09BS1	7500.6-7500.7
012.001.01	8400.1-8400.2		013.004.09BS2	7500.8-7500.9, 7500.20-7500.21
012.001.03A	8000.4-8000.5		013.004.09B53	7500.12-7500.13
012.001.03B	8106 4-8100.5		013.004.09BS4	7500.16-7500.17
012.001.03C	8200.4-8200.5		016.001.010A	7600.1
012.001.03D	8300 4-8300.5		016.001.02AA	7600.4-7600.5
012.001.03E	8500.4-8500.5		016.001.02AS1	7600.8-7600.9
012.001.09A	8000.1-8000.3		016.001.02AS2	7600.12-7600.13
012.001.09B	8100.1-8100.3		016.001.02AS3	7600.16-7600.17
012.001.09C	8200.1-8200.3		016.001.02AS4	7600.20-7600.21
012.001.09D	8300.1-8300.3		016.001.02BA	7700.4-7700.5
012.001.09E	8500.1-8500.3		016.001.02BS1	7700.8-7700.9
012.002.01	8900.1-8900.2		016.001.02BS2	7700.12-7700.13
012.002.03A	8600.4-8600.5		016.001.02BS3	7700.16-7700.17
012.002.03B	8700.4-8700.5		016.001.02BS4	7700.20-7700.21
012.002.03C	8800.4-8800.5		016.001.09AA	7600.2-7600.3
012.002.09A	8600.1-8600.3		016.001.09AS1	7600.6-7600.7
012.002.09B	8700.1-8700.3		016.001.09AS2	7600.10-7600.11
012.002.09C	8800.1-8800.3		016.001.09AS3	7600.14-7600.15
012.003.01	9000.1-9000.2, 9000.5-9	000.9	016.001.09AS4	7600.18–7600.19
012.004.01	9100.1-9100.3, 9100.6-9	100.9	016.001.09BA	7700.1-7700.3
012.005.010A	9200.1		016.001.09BS1	7700.6–7700.7
012.005.02AA	9200.4-9200.5		016.001.09BS2	7700.10-7700.11
012.005.02AS1	9200.8-9200.9		016.001.09BS3	7700.14-7700.15
012.005.02AS2	9200.12-9200.13		016.001.09BS4	7700.18-7700.19
012.005.02AS3	9200.16-9200.17		016.002.01	7800.1-7800.6
012.005.02AS4	9200.20-9200.21		016.003.01	7900.1-7900.6
012.005.02BA	9300.4-9300.5		032.001.01	2000.1-2000.9
012.005.02BS1	9300.8-9300.9	Ma	terial Name	
012.005.02BS2	9300.12-9300.13		A36 3100.1-3	3100.11, 3200.1~3200.21, 3300.1-
012.005.02BS3	9300.16-9300.17		3300.4, 3400.1-	-3400.4, 3500.1~3500.4, 3600.1–3600.4,
012.005.02BS4	9300.20-9300.21		3700.1-3700.4,	3800.1-3800.4, 3900.1-3900.3, 4000.1-
012.005.09AA	9200.2-9200.3		4000.3, 4100.1-	4100.3, 4200.1-4200.3, 4300.1-4300.3,
012.005.09AS1	9200.6-9200.7		4400.1-4400.4,	4500.1-4500.4, 4600.1-4600.3, 4700.1-
012.005.09AS2	9200.10-9200.11		4700.3, 4800.1-	4800.3, 4900.1–4900.3, 5000.1–5000.4,

XXII Index

```
CG A537M
                                                                                     7100.1-7100.6, 7200.1-7200.16
     5100.1~5100.4, 5200.1~5200.4, 5300.1~5300.4, 5400.1~
                                                                 HY100
     5400.3, 5500.1-5500.3, 5600.1-5600.3, 5700.1-5700.3,
                                                                                19500.1-19500.7, 19600.1-19600.21
     5800.1 - 5800.3, 5900.1 - 5900.3, 6000.1 - 6000.3, 6100.1 -
                                                                 HY80
                                                                              16500.1-16500.7, 16600.1-16600.7, 16700.1-
     6100.3, 6200.1-6200.3, 6300.1-6300.3, 6400.1-6400.23,
                                                                      16700.28, 16800.1-16800.7, 16900.1-16900.7, 17000.1-
     6500.1-6500.5, 6600.1-6600.5, 6700.1-6700.5, 6800.1-
                                                                      17000.11, 17100.1-17100.19, 17200.1-17200.46,
     6800.6, 6900.1-6900.2, 7000.1-7000.2, 7000.5-7000.6
                                                                      17300.1-17300.19, 17400.1-17400.28, 17500.1-17500.19,
A537 CL1
                  7300.1-7300.6, 7400.1-7400.11, 7500.1-
                                                                      17600.1 - 17600.7, 17700.1 - 17700.28, 17800.1 - 17800.7,
     7500.21
                                                                      17900.1-17900.46. 18000.1-18000.11. 18100.1-18100.11.
A572 Gr50
                    7600.1-7600.21, 7700.1-7700.21,
                                                                      18200.1-18200.28, 18300.1-18300.46, 18400.1-18400.28,
     7800.1-7800.6, 7900.1-7900.6
                                                                      18500.1-18500.7, 18600.1-18600.6, 18700.1-18700.5,
A588
            8000.1-8000.5, 8100.1-8100.5, 8200.1-8200.5,
                                                                      18800.1-18800.6, 18900.1-18900.6, 19000.1-19000.7,
     8300.1-8300.5, 8400.1-8400.2, 8500.1-8500.5, 8600.1-
                                                                      19100.1-19100.7, 19200.1-19200.7, 19300.1-19300.7,
     8600.5, 8700.1-8700.5, 8800.1-8800.5, 8900.1-8900.2,
                                                                      19400.1-19400.7
     9000.1 - 9000.2, 9000.5 - 9000.9, 9100.1 - 9100.3, 9100.6 -
                                                            Maximum Curve Shape
                                                                                                15000.2, 15000.20
                                                            Melting Practice
     9100.9
                                                                 BOF
A588 GrA
                   9200.1-9200.21, 9300.1-9300.21
                                                                             1000.1-1000.3, 1000.6, 1000.9, 1000.12-
A710
            9400.1-9400.3, 9500.1-9500.6, 9600.1-9600.7,
                                                                      1000.14, 1100.1, 1200.1, 1300.1, 1400.1, 1500.1,
     9700.1-9700.10, 9800.1-9800.3, 9900.1-9900.10,
                                                                      1600.1, 1700.1, 1800.1, 1900.1, 2100.1-2100.3,
     10000.1 - 10000.5, 10100.1 - 10100.5, 10200.1 - 10200.11,
                                                                      2100.6, 2200.1-2200.3, 2200.6, 2300.1-2300.3, 2400.1-
     10300.1-10300.6, 10400.1-10400.3, 10500.1-10500.7,
                                                                      2400.3, 2400.6, 2400.9, 2400.12, 2400.15, 2400.18,
     10600.1~10600.4, 10700.1~10700.7, 10800.1~10800.7,
                                                                      2500.1, 2600.1-2600.3, 2600.6, 2600.9, 2600.12,
                                                                      2600.15, 2600.18, 2700.1
     10900.1-10900.7, 11000.1-11000.7, 11100.1-11100.4,
                                                                 electric furnace
     11200.1~11200.6, 11300.1-11300.3, 11400.1-11400.3,
                                                                                          5400.1, 5500.1, 5600.1
     11500.1-11500.7, 11600.1-11600.3, 11700.1-11700.6,
                                                                 open hearth
                                                                                      3300.1, 3400.1, 3500.1, 3600.1,
     11800.1-11800.6, 11900.1-11900.6, 12000.1-12000.3,
                                                                      3700.1, 4200.1, 4300.1, 4400.1, 4500.1, 4600.1,
     12100.1-12100.3, 12200.1-12200.3, 12300.1-12300.15,
                                                                      5700.1, 5800.1, 5900.1, 6000.1, 6100.1, 6200.1,
     12400.1-12400.3, 12700.1-12700.7, 12800.1-12800.5,
                                                                      6300.1
                                                            METZ/MPC13 Reference
     12900.1~12900.5, 13000.1~13000.5, 13100.1~13100.5,
                                                                                                   2000.1-2000.9
     13200.1-13200.3, 13300.1-13300.5, 13400.1-13400.5,
                                                            Mid Ingot Position
                                                                                         16700.11, 17200.17, 17400.11,
                                                                      17700.11, 17900.17, 18200.11, 18300.17, 18400.11
     13500 1-13500.5, 13600.1-13600.5, 13700.1-13700.3
A710-A
                                                            Mid thickness at root Location wrt Surface
                12500.1-12500.6, 12600.1-12600.14
ABS-B
                                                                      3100.2 - 3100.10, 7400.2 - 7400.10, 7600.2 - 7600.20,
               1000.1-1000.14, 1100.1-1100.2, 1100.5-
     1100.6, 1200.1-1200.2, 1200.5-1200.6, 1300.1-1300.2,
                                                                      9200.2-9200.20, 9900.7-9900.9, 10200.4-10200.6
                                                            Mid thickness not root Location wrt Surface
     1300.5~1300.6, 1400.1-1400.2, 1400.5-1400.6, 1500.1-
                                                                      2500.1, 2500.4, 2500.7, 2500.10, 2500.13, 2500.16,
     1500.2, 1500.5-1500.6, 1600.1-1600.2, 1600.5-1600.6,
                                                                      2700.1, 2700.4, 2700.7, 2700.10, 2700.13, 2700.16,
     1700.1-1700.2, 1700.5-1700.6, 1800.1-1800.2, 1800.5-
                                                                      3200.1, 3200.4-3200.20, 6400.4, 6400.7, 6400.10,
     1800.6, 1900.1-1900.2, 1900.5-1900.6
ABS-EH32
                    2000.1-2000.9
                                                                      6400.13, 6400.16, 6400.19-6400.21, 6500.1, 6500.4,
ABS-EH36
                   2100.1-2100.8, 2200.1-2200.8, 2300.1-
                                                                      6600.1, 6600.4, 6700.1, 6700.4, 6800.1, 6800.4,
                                                                      7500.1, 7500.4-7500.20, 7700.1, 7700.4-7700.20,
     2300.8, 2400.1-2400.20, 2500.1-2500.18, 2600.1-
     2600.20, 2700.1-2700.18, 2800.1-2800.8, 2900.1-
                                                                      8000.1, 8000.4, 8100.1, 8100.4, 8200.1, 8200.4,
                                                                      8300.1, 8300.4, 8500.1, 8500.4, 8600.3, 8600.4,
     2900.8 3000.1-3000.8
BS4360 Gr50D
                        13800.1-13800.37, 13900.1-
                                                                      8700.1, 8700.4, 8800.1, 8800.4, 9300.1, 9300.4-
                                                                      9300.20, 9700.7-9700.9, 10200.8-10200.10, 14700.6,
     13900.26, 14000.1-14000.23, 14100.1-14100.10,
                                                                      14700.15, 14700.24, 14800.6, 14800.15, 14800.24,
     14200.1~14200.49, 14300.1~14300.49, 14400.1~14400.49,
     14500.1-14500.47, 14600.1-14600.47, 14700.1-14700.28,
                                                                      14900.6, 14900.15, 15000.6, 15000.15, 15000.24.
     14800.1-14800.28, 14900.1-14909.19, 15000.1-15000.28,
                                                                      15100.6, 15100.15, 15100.24, 15200.6, 15200.15
                                                           Minsy Producer
                                                                                      19300.1, 19400.1
     15100.1-15100.28, 15200.1-15200.19, 15300.1-15300.6,
                                                           Modified Standard JIcpr
                                                                                                   18600.2, 18700.1,
     15400.1-15400.6, 15500.1-15500.2, 15500.5-15500.7,
                                                                      18800.2, 18900.2, 19000.3, 19100.3, 19200.3, 19300.3,
     15600.1-15600.6, 15700.1-15700.3, 15700.6-15700.8,
     15800.1-15800.3, 15800.6-15800.8, 15900.1-15900.6,
                                                                      19400.3, 19600.2, 19600.9, 19600.15
     16000.1-16000.6, 16100.1-16100.3, 16100.6-16100.8,
                                                            N
```

16200.1-16200.6, 16300.1-16300.6, 16400.1-16400.6

XXIII

12600.13 12700.6, 12800.4, 12900.4, 13000.4, 13100.4, 2000.1, 2800.1-2800.3, 2800.6, N Final Processing 13300.4. 13400.4. 13500.4. 13600.4. 15300.5. 15400.5. 2900.1 - 2900.3, 2900.6, 3000.1 - 3000.3, 3000.6, 7300.1,15500.6, 15600.5, 15700.7, 15800.7, 15900.5, 16000.5. 7400.1, 7500.1, 9000.1, 9100.1, 9200.1, 9300.1, 16100.7, 16200.5, 16300.5, 16400.5, 17000.5, 17000.10, 13800.2, 13800.5, 13900.1, 14000.4, 14100.1, 14200.1, 17200.5, 17200.10, 17200.15, 17200.20, 17200.25, 14300.1, 14400.1, 14500.1, 14600.1, 15300.1, 15400.1, 17200.30, 17200.35, 17200.40, 17200.45, 17900.5, 15700.1, 15800.1, 15900.1, 16000.1, 16100.1, 16200.1, 17900.10, 17900.15, 17900.20, 17900.25, 17900.30, 16300.1 17900,35, 17900.40, 17900.45, 18000.5, 18000.10, N Heat Treatment 7300.1, 9000.1, 9100.1, 15700.1, 18100.5, 18100.10, 18300.5, 18300.10, 18300.15, 15800.1, 15900.1, 16000.1, 16100.1, 16200.1, 16300.1 18300.20, 18300.25, 18300.30, 18300.35, 18300.40, N8686-5 Lot ID 18100.1-18100.11 18300.45, 18600.5, 18700.4, 18800.5, 18900.5, 19000.6. N,A Final Processing 13800.1-13800.3, 14100.4-19100.6, 19200.6, 19300.6, 19400.6, 19500.2, 19600.5, 14100.5 19600.12, 19600.20 N.C.A Final Processing 14100.7-14100.9 6400.10, 6400.13, 6400.16, NGESW Weld Type 6400.19-6400.21, 6600.1, 6600.4, 6700.1, 6700.4, OGC Source 6400.1, 6500.1, 6600.1, 6700.1, 6800.1. 6800.1, 6800.4, 8100.1, 8100.4, 8200.1, 8200.4, 6900.1, 8000.1, 8100.1, 8200.1, 8300.1, 8400.1, 8300.1, 8300.4, 8500.1, 8500.4, 8700.1, 8700.4, 8500.1, 8600.1, 8700.1, 8800.1, 8900.1 8800.1, 8800.4 6400.1-6400.23, 6500.1-6500.5. OGC-1 Reference Nil Ductilty Transition Test Type 1000.14. 6600.1 - 6600.5, 6700.1 - 6700.5, 6800.1 - 6800.6, 6900.1 -1100.6, 1200.6, 1300.6, 1400.6, 1500.6, 1600.6, 6900.2,8000.1-8000.5,8100.1-8100.5,8200.1-8200.5,1700.6, 1800.6, 1900.6, 2000.7, 3300.1, 3400.1, 8300.1-8300.5, 8400.1-8400.2, 8500.1-8500.5, 8600.1-3500.1, 3600.1, 3700.1, 3800.1, 3900.1, 4000.1, 8600.5, 8700.1 -8700.5, 8800.1 - 8800.5, 8900.1 - 8900.2 4100.1, 4200.1, 4300.1, 4400.1, 4500.1, 4600.1, open hearth Melting Practice 3300.1, 3400.1, 4700.1, 4800.1, 4900.1, 5000.1, 5100.1, 5200.1, 3500.1, 3600.1, 3700.1, 4200.1, 4300.1, 4400.1. 5300.1, 5400.1, 5500.1, 5600.1, 5700.1, 5800.1, 4500.1, 4600.1, 5700.1, 5800.1, 5900.1, 6000.1, 5900.1, 6000.1, 6100.1, 6200.1, 6300.1, 7100.4, 6100.1, 6200.1, 6300.1 $7200.4,\,7200.10,\,10000.5,\,10100.5,\,10600.4,\,10700.7,$ OrStMills Producer 6400.1, 8600.1, 8700.1, 8800.1, 11100.4. 11800.4. 11900.6, 13800.7, 14100.2 8900.1 Nk203NiC Filler Name 14700.1-14700.3, 14700.6-14700.8, 14700.11-14700.12, 14700.15-14700.17, P 14700.20-14700.21, 14700.24-14700.26, 14800.1-P Lot ID 4900.1-4900.3 $14800.3,\,14800.6\!\!-\!14800.8,\,14800.11\!\!-\!14800.12,\,14800.15\!\!-\!$ 1000.14, 1100.6, 1200.6, P-1 Specimen Type $14800.17, 14800.20 \hbox{-} 14800.21, 14800.24 \hbox{-} 14800.26,$ 1300.6, 1400.6, 1500.6, 1600.6, 1700.6, 1800.6, 14900.1-14900.3, 14900.6-14900.8, 14900.11-14900.12, 1900.6, 13800.7, 14100.2 14900.15 - 14900.17, 15000.1 - 15000.3, 15000.6 - 15000.8,P-2 Specimen Type 10600.4, 10700.7, 11100.4, 15000.11 - 15000.12, 15000.15 - 15000.17, 15000.20 --11800.4, 11900.6 15000.21, 15000.24-15000.26, 15100.1-15100.3, P-3 Specimen Type 7100.4, 7200.4, 7200.10, 15100.6-15100.8, 15100.11-15100.12, 15100.15-10000.5, 10100.5 15100.17, 15100.20-15100.21, 15100.24-15100.26, Per Standard JIcpr 7800.2, 7900.2, 9000.6, 9100.2, 15200.1-15200.3.15200.6-15200.8.15200.11-15200.12. 12500.2, 12600.2, 12700.2, 15700.2, 15800.2, 15900.2, 15200.15-15200.17 16100.2 No Did Specimen Split? 8000.2-8000.4, 8100.2-P&EStat Source 16500.1 8100.4, 8200.2-8200.4, 8300.2-8300.4, 8400.1, 8500.2-PFH-60A Filler Specification 2500.1, 2500.4, 8500.4, 8600.2-8600.4, 8700.2-8700.4, 8800.2-8800.4, 2500.7, 2500.10, 2500.13, 2500.16, 2700.1, 2700.4, 8900.1 2700.7, 2700.10, 2700.13, 2700.16 No Groove Joint Preparation 6600.1, 6600.4, 7100.5, 7200.5, Pressed Notch Preparation 6700.1, 1700.4, 6800.1, 6800.4, 8100.1, 8100.4, 7200.11, 7200.15, 7300.5, 7800.5, 7900.5, 9000.7, 8200.1, 8200.4, 8300.1, 8300.4, 8500.1, 8500.4, 9100.7, 12500.5, 12600.9-12600.13, 12700.6, 12800.4, 8700.1, 8700.4, 8800.1, 8800.4 12900.4, 13000.4, 13100.4, 13300.4, 13400.4, 13500.4, None Shielding Gas 10500.4-10500.6 13600.4. 15300.5, 15400.5, 15500.6, 15600.5, 15700.7, Notch Preparation 15800.7, 15900.5, 16000.5, 16100.7, 16200.5, 16300.5. 7100.5, 7200.5, 7200.11, 7200.15, 7300.5, Pressed 16400.5, 17000.5, 17000.10, 17200.5, 17200.10, 7800.5, 7900.5, 9000.7, 9100.7, 12500.5, 12600.9-17200.15, 17200.20, 17200.25, 17200.30, 17200.35,

17200.40, 17200.45, 17900.5, 17900.10, 17900.15, 2600.18, 2700.1, 7100.1, 7200.1, 12600.1, 16400.1, 17900.20, 17900.25, 17900.30, 17900.35, 17900.40, 18600.1, 18700.1, 18800.1, 18900.1, 19500.1, 19600.1 O.T Heat Treatment 7100.1, 7200.1, 12600.1, 17900.45, 18000 5, 18000.10, 18100.5, 18100.10, 15300.1, 15400.1, 15500.1, 15600.1, 16400.1, 18600.1, 18300.5, 18300.19, 18300.15, 18300.20, 18300.25, 18700.1, 18800.1, 18900.1, 19500.1, 19600.1 18300.30, 18300.35, 18300.40, 18300.45, 18600.5, Q,T,W Final Processing 18700.4, 18800.5, 18900.5, 19000.6, 19100.6, 19200.6, 19600.7 19300.6, 19400.6, 19500.2, 19600.5, 19600.12, 19600.20 O.T.W Heat Treatment 19600.7 Producer \mathbf{R} Armco 2000 1, 3300.1, 3400.1, 3500.1, 3600.1, Reference 3700 1, 3800.1, 3900.1, 4000.1, 4100.1. 4200.1, 4300.1, 4400.1, 4500.1, 4600.1, 4700.1, 4800.1, 004-2 1100.1-1100.2, 1100.5-1100.6, 1200.1-4900.1, 5000.1, 5100.1, 5200.1, 5306.1, 5400.1, 1200.2, 1200.5-1200.6, 1300.1-1300.2, 1300.5-1300.6, 5500 1, 5600.1, 5700.1, 5800.1, 5900.1, 6000.1, 1400.1--1400.2, 1400.5--1400.6, 1500.1--1500.2, 1500.5--6100.1, 6200.1, 6300.1, 7100.1, 7200.1 1500.6, 1600.1-1600.2, 1600.5-1600.6, 1700.1-1700.2, Australia 1100.1, 1200.1, 1300.1, 1400.1, 1500.1, 1700.5-1700.6, 1800.1-1800.2, 1800.5-1800.6, 1900.1-1600.1, 1700.1, 1800.1, 1900.1 1900.2, 1900.5~1900.6 Bunge 16500.1 007-1 2100.1-2100.8. 2200.1-2200.8, 2300.1-**DTNSRDC** 19000.1, 19100.1, 19200.1 2300.8, 2400.1-2400.20, 2500.1-2500.18, 2600.1 Kobe 2100 1-2100.3, 2100.6, 2200.1-2200.3, 2200.6, 2600.20, 2700.1-2700.18 2300.1-2300.3, 2400.1-2400.3, 2400.6, 2400.9, 2400.12, 007-4 2800.1 2800.8, 2900.1 2900.8, 3000.1 2400 15, 2400.18, 2500.1, 2600.1-2600.3, 2600.6, 3000.8 2600 9, 2600 12, 2600 15, 2600 18, 2700 1 1010 7800.1-7800.6, 7900.1-7900.6 Lukens 7300.1, 7800.1, 7900.1, 9000.1, 9100.1, 1120 16600.1-16600.7 12500 1, 12600.1, 12700.1, 15300.1, 15400.1, 15500.1, 1211 9000.1-9000.2, 9000.5-9000.9, 9100.1-9100.3, 15600.1, 15700-1, 15800.1, 15900.1, 16000.1, 16100.1, 9100.6-9100 9 16200.1, 16300.1, 16400.1, 16600.1, 19500.1 3200 12600.1-12600.14 Minsv 19300.1, 19400.1 3201 15400.1-15400.6.15700.1-15700.3,15700.6-**OrStMills** 6400.1, 8600.1, 8700.1, 8800.1, 8900.1 15700.8, 15800.1-15800.3, 15800.6-15800.8, 15900.1-Sumitomo 1000.1-1000.3, 1000.6, 1000.9, 1000.12-15900 6 16000 1-16000.6 16100 1-16100.3 16100 6-1000.14, 2800 1 2800.3, 2800.6, 2900.1-2900.3, 16109.8, 16200.1-16200.6, 16300.1-16300.6 2900 6, 3000 1-3000.3, 3000.6, 13800.1-13800.5, 3202 15200.1-15300.6.15500.1-15500.2.15500.5-13800.34, 12900.1, 13900.24, 14000.1, 14000.4, 15500.7, 15600.1-15600.6, 16400.1-16400.6 14100.1, 14100.4 (14100.9, 14200.1, 14300.1, 14400.1, 3400 12500.1-12500.6, 12700.1-12700.7 14500.1, 14600.1 3530 19500 1-19500 7 Armco-MPC US Steel 3100.1, 3200.1, 6500.1, 6600.1, 6700.1, 3300.1-3300.4, 3400.1-3400.4, 6800 1, 6900.1, 7000.1, 7400.1, 7500.1, 7600.1, 3500.1-3500.4, 3600.1-3600.4, 3700.1 -3700.4, 3800.1-770x11, 8000 1, 8100.1, 8200.1, 8300.1, 8400.1, 3800.4, 3900.1-3900.3, 4000.1-4000.3, 4100.1-4100.3, 8500.1, 9200.1, 9300.1 4200 1-4200.3, 4300.1-4300.3, 4400.1-4400.4, 4500.1-4500.4, 4600.1-4600.3, 4700.1-4700.3, 4800.1-4800.3, 4900.1-4900.3, 5000.1-5000.4, 5100.1-5100.4, 5200.1-Q.K Final Processing 12500 1. 12700.1 5200.4, 5300.1-5300.4, 5400.1-5400.3, 5500.1-5500.3, Q.K Heat Treatment 9400.1, 9500.1, 9500.4, 5600.1-5600.3, 5700.1-5700.3, 5800.1-5800.3, 5900.1-9600.1, 9700.1, 9700.4, 9800.1, 9900.1, 9900.4, 5900.3, 6000.1-6000.3, 6100.1-6100.3, 6200.1-6200.3, 9900 7, 10000 1, 10100.1, 10200.1, 10300.1, 10300.4, 6306.1-6300.3 KONKUL-1 3100.1-3100.11, 3200.1-3200.21, 10400.1, 10500.1, 10600.1, 10700.1, 10700.4, 10800.1, 10900.1, 11000.1, 11100.1, 11200.1, 11200.4, 11300.1, 7400.1-7400.11,7500.1-7500.21,7600.1-7600.21, 7700.1-7700.21, 9200.1-9200.21, 9300.1-9300.21 11400 1, 11500.1, 11600.1, 11700.1, 11800.1, 11800.5, LR3201 11900.1, 11900.4, 12000.1, 12100.1, 12200.1, 12300.1, 7300.1-7300.6 METZ/MPC13 12400 1, 12500.1, 12700.1 2000.1-2000.9 Q,T Final Processing 2100.1-2100.3, 2100.6, OGC-1 6400.1 -6400.23, 6500.1 -6500.5, 6600.1 -2200.1 2200.3., 100.6, 2300.1-2300.3, 2400.1-2400.3, 6600.5, 6700.1-6700.5, 6800.1-6800.6, 6900.1-6900.2, 80(*).1-8000.5, 8100.1-8100.5, 82J0.1-8200.5, 8300.1-2400.6, 2400.9, 2400.12, 2400.15, 2400.18, 2500.1. 2600.1-2600.3, 2600.6, 2600.9, 2600.12, 2600.15, 8300.5, 8400.1-8400.2, 8500.1-8500.5, 8600.1-8600.5,

```
8700.1-8700.5, 8800.1-8800.5, 8900.1-8900.2
                                                                          4900.1, 5000.1, 5100.1, 5200.1, 5300.1
                                                                Slow Loading Type
     S-1971
                   1000.1-1000.14
                                                                                               2000.3, 7000.2, 14700.2,
     SHI-01
                    13800.1-13800.37, 13900.1-13900.26,
                                                                          14700.11, 14700.20, 14800.2, 14800.11, 14800.20,
          14000.1~14000.23, 14100.1~14100.10, 14200.1~14200.49,
                                                                          14900.2, 14900.11, 15000.2, 15000.11, 15000.20,
          14300.1-14300.49, 14400.1-14400.49, 14500.1-14500.47,
                                                                          15100.2, 15100.11, 15100.20, 15200.2, 15200.11
          14600.1-14600.47
                                                                SMA Weld Type
                                                                                          3100.2-3100.10, 7400.2-7400.10.
     SSC-276
                     7100.1-7100.6
                                                                          7600.2-7600.20, 9200.2-9200.20, 13800.8-13800.36,
     USN 6/9
                                                                          14200.1-14200.48, 16500.1, 16500.5, 19000.1, 19100.1,
                      18600.1-18600.6, 18700.1-18700.5,
          18800.1-18800.6, 18900.1-18900.6, 19000.1-19000.7,
                                                                          19200.1, 19300.1, 19400.1, 19600.7, 19600.14
                                                                SMAW Weld Type
          19100.1-19100.7, 19200.1-19200.7, 19300.1-19300.7,
                                                                                             9700.7-9700.9, 10200.8-10200.10,
          19400.1-19400.7, 19600.1-19600.21
                                                                          10500.4-10500.6, 12300.8-12300.14
     USN 9/9
                                                                SMAW/SAW Weld Type
                      12800.1~12800.5, 12900.1~12900.5,
                                                                                                     9900.7-9900.9
                                                                Smooth Butt Joint Preparation
          13000.1-13000.5.13100.1-13100.5.13200.1-13200.3.
                                                                                                            6400.4, 6400.7,
                                                                          6400.10, 6400.13, 6400.16, 6400.19-6400.21, 6500.1,
          13300.1-13300.5, 13400.1-13400.5, 13500.1-13500.5,
          13600.1-13600.5, 13700.1-13700.3
                                                                          6500.4, 8000.1, 8000.4, 8600.1, 8600.4, 10200.4-
     USN-1
                   16700.1-16700.28, 16800.1-16800.7, 16900.1-
                                                                          10200.6
          16900.7, 17000.1-17000.11, 17100.1-17100.19, 17200.1-
                                                                Source
          17200.46, 17300.1-17300.19, 17400.1-17400.28,
                                                                    Armco
                                                                                   2000.1, 3300.1, 3400.1, 3500.1, 3600.1
                                                                     Armco D&M
                                                                                          3700.1, 3800.1, 3900.1, 4000.1,
          17500.1 - 17500.19, 17600.1 - 17600.7, 17700.1 - 17700.28,
                                                                          4100.1, 4200.1, 4300.1, 4400.1, 4500.1, 4600.1,
          17800.1-17800.7, 17900.1-17900.46, 18000.1-18000.11,
          18100.1-18100.11, 18200.1-18200.28, 18300.1-18300.46,
                                                                          4700.1, 4800.1, 4900.1, 5000.1, 5100.1, 5200.1,
          18400.1-18400.28, 18500.1-18500.7
                                                                          5300.1, 5400.1, 5500.1, 5600.1, 5700.1, 5800.1,
     WJ,3/87
                      16500.1-16500.7
                                                                          5900.1, 6000.1, 6100.1, 6200.1, 6300.1
     WJ,7/87
                                                                     Australia
                                                                                      1100.1, 1200.1, 1300.1, 1400.1, 1500.1,
                     14700.1-14700.28, 14800.1-14800.28,
          14900.1-14900.19, 15000.1-15000.28, 15100.1-15100.28,
                                                                          1600.1, 1700.1, 1800.1, 1900.1
                                                                    HIFAB
                                                                                    14700.1, 14800.1, 14900.1, 15000.1,
          15200.1-15200.19
Round Specimen Type
                                 2800.1-2800.2, 2900.1-
                                                                         15100.1, 15200.1
          2900.2, 3000.1-3000.2, 7100.1, 7200.1, 7200.7,
                                                                     Kobe
                                                                                 2100.1-2100.3, 2100.6, 2200.1-2200.3, 2200.6,
          14100.1. 14100.4
                                                                          2300.1-2300.3, 2400.1-2400.3, 2400.6, 2400.9, 2400.12,
                                                                          2400.15, 2400.18, 2500.1, 2600.1-2600.3, 2600.6,
                                                                          2600.9, 2600.12, 2600.15, 2600.18, 2700.1
S Lot ID
                                                                     Lukens
                 4800.1-4800.3
                                                                                   7300.1, 7800.1, 7900.1, 9000.1, 9100.1,
S-1971 Reference
                           1000.1-1000.14
                                                                          12500.1, 12600.1, 12700.1, 15300.1, 15400.1, 15500.1,
SAW Weld Type
                                                                          15600.1, 15700.1, 15800.1, 15900.1, 16000.1, 16100.1,
                          2500.1, 2500.4, 2500.7, 2500.10,
                                                                          16200.1, 16300.1, 16400.1, 16600.1, 19500.1
          2500.13, 2500.16, 2700.1, 2700.4, 2700.7, 2700.10,
                                                                     OGC
          2700.13, 2700.16, 3200.1, 3200.4-3200.20, 7200.7-
                                                                                 6400.1, 6500.1, 6600.1, 6700.1, 6800.1,
                                                                          6900.1, 8000.1, 8100.1, 8200.1, 8300.1, 8400.1,
          7200.8, 7200.13, 7500.1, 7500.4-7500.20, 7700.1,
          7700.4-7700.20, 9300.1, 9300.4-9300.20, 10200.4-
                                                                          8500.1, 8600.1, 8700.1, 8800.1, 8900.1
                                                                     P&EStat
                                                                                      16500 1
          10200.6, 10800.4-10800.6, 10900.4-10900.6, 11000.4-
                                                                     Sumitomo
                                                                                       1000.1-1000.3, 1000.6, 1000.9, 1000.12-
          11000.6, 11500.4-11500.6, 12300.4-12300.6, 13900.1,
                                                                          1000.14, 2800.1-2800.3, 2800.6, 2900.1-2900.3,
          13900.4-13900.26, 14300.1-14300.48, 14500.1-14500.47
SHI-01 Reference
                                                                          2900.6, 3000.1-3000.3, 3000.6, 13800.1-13800.5,
                            13800.1-13800.37, 13900.1-
         13900.26. 14000.1-14000.23. 14100.1-14100.10.
                                                                          13800.34, 13900.1, 13900.24, 14000.1, 14000.4,
          14200.1-14200.49, 14300.1-14300.49, 14400.1-14400.49,
                                                                          14100.1, 14100.4-14100.9, 14200.1, 14300.1, 14400.1,
                                                                          14500.1, 14600.1
         14500.1-14500.47, 14600.1-14600.47
                                                                     SWRI
Shielding Gas
                                                                                  7100.1, 7200.1
                                                                     Un Kansas
    None
                                                                                        7000.1
                 10500.4-10500.6
                                                                     US Steel
                                                                                     3100.1, 3200.1, 7400.1, 7500.1, 7600.1,
Si-Al Killing Process
                                7400.1, 7500.1
                                                                          7700.1, 9200.1, 9300.1
Silicon Killing Process
                                  1000.1-1000.3, 1000.6,
                                                                     USN
                                                                                12800.1, 12900.1, 13000.1, 13100.1, 13200.1,
         1000.9, 1000.12-1000.14
                                                                          13300.1, 13400.1, 13500.1, 13600.1, 13700.1, 18600.1,
SK Killing Process
                             3300.1, 3400.1, 3500.1, 360
                                                                          18700.1, 18800.1, 18900.1, 19000.1, 19100.1, 19200.1,
         3700.1, 3800.1, 3900.1, 4000.1, 4100.1, 4200.1,
                                                                          19300.1, 19400.1, 19600.1, 19600.7
         4300.1, 4400.1, 4500.1, 4600.1, 4700.1, 4800.1,
```

```
Specimen Type
     2/3
                9400.2, 9600.2
     3/4
               9500.2, 9500.5, 9700.2, 9700.5-9700.9, 9800.2,
          9900.2, 9900.5-9900.9, 10200.2-10200.10, 11300.2,
          11400.2, 11500.2, 11600.2, 11700.2, 11700.5
     Compact
                       7800.2, 9000.6, 9100.2, 12500.2, 12600.2,
          12700.2, 15700.2, 15800.2, 15900.2, 16100.2
     Compact Tension
                                  18600.2, 18700 1, 18800.2,
          18900.2, 19000.3, 19100.3, 19200.3, 19300.3, 19400.3,
          19600.2, 19600.9, 19600.15
     Cylindrical
                          3100.1, 7000.1, 7300.1, 7400.1,
          7600.1, 7800.1, 7900.1, 9000.1, 9100.1, 9200.1,
          12500.1, 12600.1, 12700.1, 14700.3, 14700.8, 14700.12,
          14700.17, 14700.21, 14700.26, 14800.3, 14800.8,
          14800.12, 14800.17, 14800.21, 14800.26, 14900.3,
          14900.8, 14900.12, 14900.17, 15000.3, 15000.8,
          15000.12, 15000.17, 15000.21, 15000.26, 15100.3,
          15100.8, 15100.12, 15100.17, 15100.21, 15100.26,
          15200.3, 15200.8, 15200.12, 15200.17, 15300.1,
          15400.1, 15500.1, 15600.1, 15700.1, 15800.1, 15900.1,
          16000.1. 16100.1. 16200.1. 16300.1. 16400.1. 16500.2.
          16500.5, 18600.1, 18800.1, 18900.1, 19000.2, 19100.2,
          19200.2. 19300.2. 19400.2. 19600.1. 19600.8. 19600.14
     Double Notch Bend
                                    2000.3, 7000.2, 14700.2,
          14700.11, 14700.20, 14800.2, 14800.11, 14800.20,
          14900.2, 14900.11, 15000.2, 15000.11, 15000.20,
          15100.2, 15100.11, 15100.20, 15200.2, 15200.11
    Dynamic Tear
                             2000.8, 7100.5, 7200.5, 7200.11,
          7200.15, 7300.5, 7800.5, 7900.5, 9000.7, 9100.7,
          12500.5, 12600.9-12600.13, 12700.6, 12800.4, 12900.4,
          13000 4 13100 4 13300 4 13400 4 13500 4 13600 4
          15300.5, 15400.5, 15500.6, 15600.5, 15700.7, 15800.7,
          15900.5, 16000.5, 16100.7, 16200.5, 16300.5, 16400.5,
          16600.6, 17000.5, 17000.10, 17200.5, 17200.10,
          17200.15, 17200.20, 17200.25, 17200.30, 17200.35,
          17200.40, 17200.45, 17900.5, 17900.10, 17900.15,
          17900.20, 17900.25, 17900.30, 17900.35, 17900.40,
          17900.45, 18000.5, 18000.10, 18100.5, 18100.10,
          18300.5, 18300.10, 18300.15, 18300.20, 18300.25,
          18300.30, 18300.35, 18300.40, 18300.45, 18600.5,
          18700.4, 18800.5, 18900.5, 19000.6, 19100.6, 19200.6,
          19300.6, 19400.6, 19500.2, 19600.5, 19600.12, 19600.20
    Flat
                13800.1-13800.2
    Full
                1100.2, 1200.2, 1300.2, 1400.2, 1500.2, 1600.2,
          1700.2, 1800.2, 1900.2, 2000.4, 2100.1-2100.3,
          2100.6, 2200.1-2200.3, 2200.6, 2300.1-2300.3, 2300.6,
          2400.1-2400.3, 2400.6, 2400.9, 2400.12, 2400.15,
          2400.18, 2500.2-2500.4, 2500.7, 2500.10, 2500.13,
          2500.16, 2600.1-2600.3, 2600.6, 2600.9, 2600.12,
          2600.15, 2600.18, 2700.2-2700.4, 2700.7, 2700.10,
          2700.13, 2700.16, 2800.3, 2800.6, 2900.3, 2900.6,
```

3000.3, 3000.6, 3100.2-3100.10, 3200.2-3200.20,

3700.2, 3800.2, 3900.2, 4000.2, 4100.2, 4200.2,

4300.2, 4400.2, 4500.2, 4600.2, 4700.2, 4800.2, 4900.2, 5000.2, 5100.2, 5200.2, 5300.2, 5400.2, 5500.2, 5600.2, 5700.2, 5800.2, 5900.2, 6000.2, 6100.2, 6200.2, 6300.2, 6400.1, 6400.4, 6400.7, 6400.10, 6400.13, 6400.16, 6400.19-6400.21, 6500.2-6500.4, 6600.2-6600.4, 6700.2-6700.4, 6800.2-6800.4, 6900.1, 7000.5, 7100.2, 7200.2, 7200.8, 7200.13, 7300.2, 7400.2-7400.10, 7500.2-7500.20, 7600.2-7600.20, 7700.2-7700.20, 7800.3, 7900.3, 8000.2-8000.4.8100.2-8100.4.8200.2-8200.4.8300.2-8300.4. 8400.1, 8500.2-8500.4, 8600.2-8600.4, 8700.2-8700.4, 8800.2-8800.4, 8900.1, 9000.2, 9100.3, 9200.2-9200.20, 9300.2-9300.20, 10100.2, 10300.2, 10300.5, 10400.2, 10500.2-10500.6, 10600.1, 10700.2-10700.4, 10800.2-10800.6, 10900.2-10900.6, 11000.2-11000.6, 11100.1, 11200.2, 1120° 5, 11500.4-11500.6, 11800.2, 11800.5, 11900.2-11900.4, Proc. 2, 12100.2, 12200.2, 12300.2-12300.14, 12400.2, 12500.3, 12600.3, 12600.6, 12700.3, 12800.2, 12900.2, 13000.2, 13100.2, 13200.2, 13300.2, 13400.2, 13500.2, 13600.2, 13700.2, 13800.8-13800.32.13900.2-13900.22.14100.5-14100.9.14700.4-14700.6, 14700.9, 14700.13-14700.15, 14700.18, 14700.22-14700.24, 14700.27, 14800.4-14800.6, 14800.9, 14800.13-14800.15, 14800.18, 14800.22-14800.24, 14800.27, 14900.4-14900.6, 14900.9, 14900.13-14900.15, 14900.18, 15000.4-15000.6, 15000.9, 15000.13-15000.15, 15000.18, 15000.22-15000.24, 15000.27, 15100.4-15100.6, 15100.9, 15100.13-15100.15, 15100.18, 15100.22-15100.24, 15100.27, 15200.4-15200.6, 15200.9. 15200.13-15200.15. 15200.18. 15300.2. 15400.2, 15500.2, 15600.2, 15700.3, 15800.3, 15900.3, 16000.2, 16100.3, 16200.2, 16300.2, 16400.2, 16500.3, 16500.6, 16700.2, 16700.6, 16700.9, 16700.12, 16700.15, 16700.18, 16700.21, 16700.24, 16700.27, 16800.2, 16800.6, 16900.2, 16900.6, 17000.2, 17000.8, 17100.2, 17100.6, 17100.9, 17100.12, 17100.15, 17100.18, 17200.2, 17200.8, 17200.13, 17200.18, 17200.23, 17200.28, 17200.33, 17200.38, 17200.43, 17300.2, 17300.6, 17300.9, 17300.12, 17300.15, 17300.18, 17400.2, 17400.6, 17400.9, 17400.12, 17400.15, 17400.18, 17400.21, 17400.24, 17400.27, 17500.2, 17500.6, 17500.9, 17500.12, 17500.15, 17500.18, 17600.2, 17600.6, 17700.2, 17700.6, 17700.9, 17700.12, 17700.15, 17700.18, 17700.21, 17700.24, 17700.27, 17800.2, 17800.6, 17900.2, 17900.8, 17900.13, 17900.18, 17900.23, 17900.28, 17900.33, 17900.38, 17900.43, 18000.2, 18000.8, 18100.2, 18100.8, 18200.2, 18200.6, 18200.9, 18200.12, 18200.15, 18200.18, 18200.21, 18200.24, 18200.27, 18300.2, 18300.8, 18300.13, 18300.18, 18300.23, 18300.28, 18300.33, 18300.38, 18300.43, 18400.2, 18400.6, 18400.9, 18400.12, 18400.15, 18400.18, 18400.21, 18400.24, 18400.27, 18500.2, 18500.6, 18600.3, 18700.2, 18800.3, 18900.3,

```
1969
                                                                                  1000.14, 18600.1, 18800.1, 18900.1, 19000.2,
          19000.4, 19100.4, 19200.4, 19300.4, 19400.4, 19500.5,
          19600.3, 19600.10, 19600.16-19600.18
                                                                            19100.2, 19200.2, 19300.2, 19400.2, 19600.1, 19600.8,
                                                                            19600.14
     P.1
               1000.14, 1100.6, 1200.6, 1300.6, 1400.6, 1500.6,
                                                                      1972
          1600.6, 1700.6, 1800.6, 1900.6, 13800.7, 14100.2
                                                                                  18600.3, 18700.2, 18800.3, 18900.3, 19600.3.
     P-2
                                                                            19600.10. 19600.16-19600.18
               10600.4, 10700.7, 11100.4, 11800.4, 11900.6
                                                                      1976
     P-3
                7100.4, 7200.4, 7200.10, 10000.5, 10100.5
                                                                                  7100.5, 7200.5, 7200.11, 7200.15
                                                                      1979
                    2800.1-2800.2, 2900.1-2900.2, 3000.1-
                                                                                  7000.2, 14700.2, 14700.11, 14700.20, 14800.2,
     Round
                                                                            14809.11, 14800.20, 14900.2, 14900.11, 15000.2,
          3000.2, 7100.1, 7200.1, 7200.7, 14100.1, 14100.4
SSC-276 Reference
                                                                            15000.11, 15000.20, 15100.2, 15100.11, 15100.20,
                              7100.1-7100.6
Standard Method
                                                                            15200.2, 15200.11
                                                                      1980
     813
               18600.2, 18700.1, 18800.2, 18900.2, 19600.2,
                                                                                  18600.5, 18700.4, 18800.5, 18900.5, 19600.5,
          19600.9, 19600.15
                                                                            19600.12, 19600.20
                                                                      1981
     ABS Sec43
                          2800.3, 2800.6, 2900.3, 2900.6,
                                                                                   16500.2-16500.6
                                                                      1987
          3000.3, 3000.6
                                                                                   7800.2, 9000.6, 9100.2, 12500.2, 12600.2,
     BS131H2
                       14700.4-14700.6, 14700.9, 14700.13-
                                                                            12700.2, 15700.2, 15800.2, 15900.2, 16100.2
          14700.15, 14700.18, 14700.22-14700.24, 14700.27,
                                                                 Sumitomo Producer
                                                                                                 1000.1-1000.3, 1000.6, 1000.9,
                                                                            1000.12-1000.14, 2800.1-2800.3, 2800.6, 2900.1-
          14800.4-14800.6, 14800.9, 14800.13-14800.15, 14800.18,
                                                                            2900.3, 2900.6, 3000.1-3000.3, 3000.6, 13800.1-
          14800.22-14800.24, 14800.27, 14900.4-14900.6,
          14900.9. 14900.13-14900.15. 14900.18. 15000.4-
                                                                            13800.5, 13800.34, 13900.1, 13900.24, 14000.1,
          15000.6, 15000.9, 15000.13-15000.15, 15000.18,
                                                                            14000.4, 14100.1, 14100.4-14100.9, 14200.1, 14300.1,
          15000.22-15000.24, 15000.27, 15100.4-15100.6,
                                                                            14400.1, 14500.1, 14600.1
                                                                 Sumitomo Source
          15100.9. 15100.13-15100.15, 15100.18, 15100.22-
                                                                                             1000.1-1000.3, 1000.6, 1000.9,
                                                                            1000.12-1000.14, 2800.1-2800.3, 2800.6, 2900.1-
          15100.24, 15100.27, 15200.4-15200.6, 15200.9, 15200.13-
          15200.15, 15200.18
                                                                            2900.3, 2900.6, 3000.1-3000.3, 3000.6, 13800.1-
     BS5762
                                                                            13800.5, 13800.34, 13900.1, 13900.24, 14000.1,
                    7000.2, 13800.34-13800.37, 13900.24-
                                                                            14000.4, 14100.1, 14100.4-14100.9, 14200.1, 14300.1,
          13900.26, 14200.2-14200.5, 14300.2-14300.5, 14400.2-
                                                                            14400.1, 14500.1, 14600.1
          14400.5, 14500.2-14500.5, 14600.2-14600.5, 14700.2,
                                                                  Surface Location wrt Surface
                                                                                                            14700.1, 14700.11.
          14700.11, 14700.20, 14800.2, 14800.11, 14800.20,
                                                                            14700.20, 14800.1, 14800.11, 14800.20, 14900.1,
          14900.2, 14900.11, 15000.2, 15000.11, 15000.20,
          15100.2, 15100.11, 15100.20, 15200.2, 15200.11
                                                                            14900.11, 15000.1, 15000.11, 15000.20, 15100.1,
     E 208
                                                                            15100.11, 15100.20, 15200.1, 15200.11
                  1000.14, 1100.6, 1200.6, 1300.3, 1400.6,
                                                                  SWRI Source
                                                                                         7100.1, 7200.1
          1500.6, 1600.6, 1700.6, 1800.6, 1900.6, 2000.7,
          3300.1, 3400.1, 3500.1, 3600.1, 3700.1, 3800.1,
                                                                  T
          3900.1, 4000.1, 4100.1, 4200.1, 4300.1, 4400.1,
                                                                  T Location
          4500.1, 4600.1, 4700.1, 4800.1, 4900.1, 5000.1,
                                                                                     1000.1-1000.3, 1000.9, 1000.12-1000.14
                                                                  T Lot ID
                                                                                   4700 1-4700 3
          5100.1, 5200.1, 5300.1, 5400.1, 5500.1, 5600.1,
                                                                  Tensile Test Type
          5700.1, 5800.1, 5900.1, 6000.1, 6100.1, 6200.1,
                                                                                              1000.1-1000.2, 1100.1, 1200.1,
                                                                            1300.1, 1400.1, 1500.1, 1600.1, 1700.1, 1800.1,
          6300.1, 7100.4, 7200.4, 7200.10, 13800.7
                7100.2, 16500.3, 16500.6, 18600.3, 18700.2,
     E 23
                                                                            1900.1, 2000.1, 2100.1-2100.2, 2200.1-2200.2, 2300.1-
          18800.3, 18900.3, 19000.4, 19100.4, 19200.4, 19300.4,
                                                                            2300.2, 2400.1-2400.2, 2600.1-2600.2, 2800.1-2800.2,
                                                                            2900.1-2900.2, 3000.1-3000.2, 3100.1, 7000.1, 7100.1,
          19400.4, 19600.3, 19600.10, 19600.16-19600.18
     E 604
                                                                            7200.1, 7200.7, 7300.1, 7400.1, 7600.1, 7800.1,
                  2000.8, 7100.5, 7200.5, 7200.11, 7200.15,
                                                                            7900.1, 9000.1, 9100.1, 9200.1, 9400.1, 9500.1,
          18600.5, 18700.4, 18800.5, 18900.5, 19000.6, 19100.6,
          19200.6, 19300.6, 19400.6, 19600.5, 19600.12, 19600.20
                                                                            9500.4, 9600.1, 9600.4, 9600.7, 9700.1, 9700.4,
    E 8
                7100.1, 7200.1, 7200.7, 16500.2, 16500.5,
                                                                            9800.1, 9900.1, 9900.4, 10000.1, 10100.1, 10200.1,
                                                                            10300.1, 10300.4, 10400.1, 10500.1, 10700.1, 10800.1,
         18600.1, 18800.1, 18900.1, 19000.2, 19100.2, 19200.2,
                                                                            10900.1, 11000.1, 11200.1, 11200.4, 11300.1, 11400.1,
          19300.2, 19400.2, 19600.1, 19600.8, 19600.14
    E318
                 12600.2
                                                                            11500.1, 11600.1, 11700.1, 11700.4, 11800.1, 11900.1,
    E813
                 7800.2, 7900.2, 9000.6, 9100.2, 12500.2,
                                                                            12000.1, 12100.1, 12200.1, 12300.1, 12400.1, 12500.1,
          12700.2, 15700.2, 15800.2, 15900.2, 16100.2, 19000.3,
                                                                            12600.1, 12700.1, 12800.1, 12900.1, 13000.1, 13100.1,
                                                                            13200.1, 13300.1, 13400.1, 13500.1, 13600.1, 13700.1,
          19100.3, 19200.3, 19300.3, 19400.3
    JISZ3121
                       14600.46-14600.47
                                                                            13800.1-13800.2, 14100.1, 14100.4, 14500.46-14500.47,
```

14600.46-14600.47, 14700.3, 14700.8, 14700.12,

Standard Year

Index XXVIII

14700.17, 14700.21, 14700.26, 14800.3, 14800.8, 14800.12, 14800.17, 14800.21, 14800.26, 14900.3, 14900.8, 14900.12, 14900.17, 15000.3, 15000.8, 15000.12, 15000.17, 15000.21, 15000.26, 15100.3, 15100.8, 15100.12, 15100.17, 15100.21, 15100.26, 15200.3, 15200.8, 15200.12, 15200.17, 15300.1, 15400.1, 15500.1, 15600.1, 15700.1, 15800.1, 15900.1, 16000.1, 16100.1, 16200.1, 16300.1, 16400.1, 16500.2, 16500.5, 16600.5, 16700.1, 16700.5, 16700.8, 16700.11, 16700.14, 16700.17, 16700.20, 16700.23, 16700.26, 16800.1, 16800.5, 16900.1, 16900.5, 17000.1, 17000.7, 17100.1, 17100.5, 17100.8, 17100.11, 17100.14, 17100.17, 17200.1, 17200.7, 17200.12, 17200.17, 17200.22, 17200.27, 17200.32, 17200.37, 17200.42, 17300.1, 17300.5, 17300.8, 17300.11, 17300.14, 17300.17, 17400.1, 17400.5, 17400.8, 17400.11, 17400.14, 17400.17, 17400.20, 17400.23, 17400.26, 17500.1, 17500.5, 17500.8, 17500.11, 17500.14, 17500.17, 17600.1, 17600.5, 17700.1, 17700.5, 17700.8, 17700.11, 17700.14, 17700.17, 17700.20, 17700.23, 17700.26, 17800.1, 17800.5, 17900.1, 17900.7, 17900.12, 17900.17, 17900.22, 17900.27, 17900.32, 17900.37, 17900.42, 18000.1, 18000.7, 18100.1, 18100.7, 18200.1, 18200.5, 18200.8, 18200.11, 18200.14, 18200.17, 18200.20, 18200.23, 18200.26, 18300.1, 18300.7, 18300.12, 18300.17, 18300.22, 18300.27, 18300.32, 18300.37, 18300.42, 18400.1, 18400.5, 18400.8, 18400.11, 18400.14, 18400.17, 18400.20, 18400.23, 18400.26, 18500.1, 18500.5, 18600.1, 18800.1, 18900.1, 19000.2, 19100.2, 19200.2, 19300.2, 19400.2, 19500.1, 19600.1, 19600.8, 19600.14

Test Type

Charpy V Impact 1000.3, 1000.6, 1000.9, 1000.12, 1100.2, 1200.2, 1300.2, 1400.2, 1500.2, 1600.2, 1700.2, 1800.2, 1900.2, 2000.4, 2100.3, 2100.6, 2200.3, 2200.6, 2300.3, 2300.6, 2400.3, 2400.6, 2400.9, 2400.12, 2400.15, 2400.18, 2500.2-2500.4, 2500.7, 2500.10, 2500.13, 2500.16, 2600.3, 2600.6, 2600.9, 2600.12, 2600.15, 2600.18, 2700.2-2700.4, 2700.7, 2700.10, 2700.13, 2700.16, 2800.3, 2800.6, 2900.3, 2900.6, 3000.3, 3000.6, 3100.2-3100.10, 3200.2-3200.20, 3300.2, 3400.2, 3500.2, 3600.2, 3700.2, 3800.2, 3900.2, 4000.2, 4100.2, 4200.2, 4300.2, 4400.2, 4500.2, 4600.2, 4700.2, 4800.2, 4900.2, 5000.2, 5100.2, 5200.2, 5300.2, 5400.2, 5500.2, 5600.2, 5700.2, 5800.2, 5900.2, 6000.2, 6100.2, 6200.2, 6300.2, 6400.1, 6400.4, 6400.7, 6400.10, 6400.13, 6400.16, 6400.19-6400.21, 6500.2-6500.4,6600.2-6600.4,6700.2-6700.4,6800.2-6800.4, 6900.1, 7000.5, 7100.2, 7200.2, 7200.8, 7200.13, 7300.2, 7400.2-7400.10, 7500.2-7500.20, 7600.2-7600.20, 7700.2-7700.20, 7800.3, 7900.3, 8000.2-8000.4, 8100.2-8100.4, 8200.2-8200.4, 8300.28300.4, 8400.1, 8500.2-8500.4, 8600.2-8600.4, 8700.2-8700.4, 8800.2-8800.4, 8900.1, 9000.2, 9100.3, 9200.2-9200.20, 9300.2-9300.20, 9400.2, 9500.2, 9500.5, 9600.2, 9600.5, 9700.2, 9700.5-9700.9, 9800.2, 9900.2, 9900.5-9900.9, 10000.2, 10100.2, 10200.2-10200.10, 10300.2, 10300.5, 10400.2, 10500.2-10500.6, 10600.1, 10700.2-10700.4, 10800.2-10800.6, 10900.2-10900.6, 11000.2-11000.6, 11100.1, 11200.2, 11200.5, 11300.2, 11400.2, 11500.2-11500.6, 11600.2, 11700.2, 11700.5, 11800.2, 11800.5, 11900.2-11900.4, 12000.2, 12100.2, 12200.2, 12300.2-12300.14, 12400.2, 12500.3, 12600.3, 12600.6, 12700.3, 12800.2, 12900.2, 13000.2, 13100.2, 13200.2, 13300.2, 13400.2, 13500.2, 13600.2, 13700.2, 13800.3 - 13800.5, 13800.8 - 13800.32,13900.2-13900.22, 14000.4-14000.22, 14100.5-14100.9, 14200.6-14200.48, 14300.6-14300.48, 14400.6-14400.48, 14500.6-14500.44, 14600.6-14600.44, 14700.4-14700.6, 14700.9, 14700.13-14700.15, 14700.18, 14700.22-14700.24, 14700.27, 14800.4-14800.6, 14800.9, 14800.13-14800.15, 14800.18, 14800.22-14800.24, 14800.27, 14900.4-14900.6, 14900.9, 14900.13-14900.15, 14900.18, 15000.4-15000.6, 15000.9, 15000.13-15000.15, 15000.18, 15000.22-15000.24, 15000.27, 15100.4-15100.6, 15100.9, 15100.13-15100.15, 15100.18, 15100.22-15100.24, 15100.27, 15200.4-15200.6, 15200.9, 15200.13-15200.15, 15200.18, 15300.2, 15400.2, 15500.2, 15600.2, 15700.3, 15800.3, 15900.3, 16000.2, 16100.3, 16200.2, 16300.2, 16400.2, 16500.3, 16500.6, 16600.2, 16700.2, 16700.6, 16700.9, 16700.12, 16700.15, 16700.18, 16700.21, 16700.24, 16700.27, 16800.2, 16800.6, 16900.2, 16900.6, 17000.2, 17000.8, 17100.2, 17100.6, 17100.9, 17100.12, 17100.15, 17100.18, 17200.2, 17200.8, 17200.13, 17200.18, 17200.23, 17200.28, 17200.33, 17200.38, 17200.43, 17300.2, 17300.6, 17300.9, 17300.12, 17300.15, 17300.18, 17400.2, 17400.6, 17400.9, 17400.12, 17400.15, 17400.18, 17400.21, 17400.24, 17400.27, 17500.2, 17500.6, 17500.9, 17500.12, 17500.15, 17500.18. 17600.2, 17600.6, 17700.2, 17700.6, 17700.9, 17700.12, 17700.15, 17700.18, 17700.21, 17700.24, 17700.27, 17800.2, 17800.6, 17900.2, 17900.8, 17900.13, 17900.18, 17900.23, 17900.28, 17900.33, 17900.38, 17900.43, 18000.2, 18000.8, 18100.2, 18100.8, 18200.2, 18200.6, 18200.9, 18200.12, 18200.15, 18200.18, 18200.21, 18200.24, 18200.27, 18300.2, 18300.8, 18300.13, 18300.18, 18300.23, 18300.28, 18300.33, 18300.38, 18300.43, 18400.2, 18400.6, 18400.9, 18400.12, 18400.15, 18400.18, 18400.21, 18400.24, 18400.27, 18500.2, 18500.6, 18600.3, 18700.2, 18800.3, 18900.3, 19000.4, 19100.4, 19200.4, 19300.4, 19400.4, 19500.5, 19600.3, 19600.10, 19600.16-19600.18

2000.8, 7100.5, 7200.5, 7200.11,

7200.15, 7300.5, 7800.5, 7900.5, 9000.7, 9100.7,

Dynamic Tear

12500.5, 12600.9-12600.13, 12700.6, 12800.4, 12900.4,

14900.8, 14900.12, 14900.17, 15000.3, 15000.8.

```
15000.12, 15000.17, 15000.21, 15000.26, 15100.3,
     13000.4, 13100.4, 13300.4, 13400.4, 13500.4, 13600.4,
     15300.5, 15400.5, 15500.6, 15600.5, 15700.7, 15800.7,
                                                                        15100.8, 15100.12, 15100.17, 15100.21, 15100.26,
     15900.5, 16000.5, 16100.7, 16200.5, 16300.5, 16400.5,
                                                                        15200.3, 15200.8, 15200.12, 15200.17, 15300.1,
     16600.6, 17000.5, 17000.10, 17200.5, 17200.10,
                                                                        15400.1, 15500.1, 15600.1, 15700.1, 15800.1, 15900.1,
     17200.15, 17200.20, 17200.25, 17200.30, 17200.35,
                                                                        16000.1, 16100.1, 16200.1, 16300.1, 16400.1, 16500.2.
                                                                        16500.5, 16600.5, 16700.1, 16700.5, 16700.8, 16700.11,
     17200.40, 17200.45, 17900.5, 17900.10, 17900.15,
     17900.20, 17900.25, 17900.30, 17900.35, 17900.40,
                                                                        16700.14, 16700.17, 16700.20, 16700.23, 16700.26,
     17900.45, 18000.5, 18000.10, 18100.5, 18100.10,
                                                                        16800.1, 16800.5, 16900.1, 16900.5, 17000.1, 17000.7,
                                                                        17100.1, 17100.5, 17100.8, 17100.11, 17100.14,
     18300.5, 18300.10, 18300.15, 18300.20, 18300.25,
     18300.30, 18300.35, 18300.40, 18300.45, 18600.5,
                                                                        17100.17, 17200.1, 17200.7, 17200.12, 17200.17,
     18700.4, 18800.5, 18900.5, 19000.6, 19100.6, 19200.6,
                                                                        17200.22, 17200.27, 17200.32, 17200.37, 17200.42,
     19300.6, 19400.6, 19500.2, 19600.5, 19600.12, 19600.20
                                                                        17300.1, 17300.5, 17300.8, 17300.11, 17300.14.
Fracture Toughness
                               2000.3, 7000.2, 7800.2,
                                                                        17300.17, 17400.1, 17400.5, 17400.8, 17400.11,
                                                                        17400.14, 17400.17, 17400.20, 17400.23, 17400.26,
     7900.2, 9000.6, 9100.2, 12500.2, 12600.2, 12700.2,
     13800.34-13800.37, 13900.24-13900.26, 14000.2-
                                                                        17500.1, 17500.5, 17500.8, 17500.11, 17500.14,
                                                                        17500.17, 17600.1, 17600.5, 17700.1, 17700.5, 17700.8,
     14000.3, 14100.3, 14200.2-14200.5, 14300.2-14300.5.
                                                                        17700.11, 17700.14, 17700.17, 17700.20, 17700.23,
     14400.2-14400.5, 14500.2-14500.5, 14600.2-14600.5,
     14700.2, 14700.11, 14700.20, 14800.2, 14800.11,
                                                                        17700.26, 17800.1, 17800.5, 17900.1, 17900.7, 17900.12,
                                                                        17900.17, 17900.22, 17900.27, 17900.32, 17900.37,
     14800.20, 14900.2, 14900.11, 15000.2, 15000.11,
                                                                        17900.42, 18000.1, 18000.7, 18100.1, 18100.7, 18200.1,
     15000.20, 15100.2, 15100.11, 15100.20, 15200.2,
                                                                        18200.5, 18200.8, 18200.11, 18200.14, 18200.17,
     15200.11, 15700.2, 15800.2, 15900.2, 16100.2, 16600.1.
                                                                        18200.20, 18200.23, 18200.26, 18300.1, 18300.7,
     18600.2, 18700.1, 18800.2, 18900.2, 19000.3, 19100.3,
     19200.3, 19300.3, 19400.3, 19600.2, 19600.9, 19600.15
                                                                        18300.12, 18300.17, 18300.22, 18300.27, 18300.32,
Nil Ductilty Transition
                                    1000.14, 1100.6,
                                                                        18300.37, 18300.42, 18400.1, 18400.5, 18400.8,
                                                                        18400.11, 18400.14, 18400.17, 18400.20, 18400.23,
     1200.6, 1300.6, 1400.6, 1500.6, 1600.6, 1700.6,
     1800.6, 1900.6, 2000.7, 3300.1, 3400.1, 3500.1,
                                                                        18400.26, 18500.1, 18500.5, 18600.1, 18800.1, 18900.1,
     3600.1, 3700.1, 3800.1, 3900.1, 4000.1, 4100.1,
                                                                        19000.2, 19100.2, 19200.2, 19300.2, 19400.2, 19500.1,
                                                                        19600.1, 19600.8, 19600.14
     4200.1, 4300.1, 4400.1, 4500.1, 4600.1, 4700.1,
                                                             Top Composition Position
                                                                                                     2100.1-2100.5, 2200 1~
     4800.1, 4900.1, 5000.1, 5100.1, 5200.1, 5300.1,
                                                                        2200.5, 2300.1-2300.8, 2400.1-2400.5, 2400.9-2400.11,
     5400.1, 5500.1, 5600.1, 5700.1, 5800.1, 5900.1,
     6000.1, 6100.1, 6200.1, 6300.1, 7100.4, 7200.4,
                                                                        2400.15-2400.17, 2500.1-2500.18, 2600.1-2600.5,
                                                                        2600.9-2600.11, 2600.15-2600.17, 2700.1-2700.18,
     7200.10, 10000.5, 10100.5, 10600.4, 10700.7, 11100.4,
     11800.4, 11900.6, 13800.7, 14100.2
                                                                        2800.1-2800.5, 2900.1-2900.5, 3000.1-3000.5
Tensile
                                                             Top Ingot Position
                                                                                           2100.1-2100.3, 2200.1-2200.3,
               1000.1-1000.2, 1100.1, 1200.1, 1300.1,
                                                                        2300.1-2300.3, 2400.1-2400.3, 2400.9, 2400.15,
     1400.1, 1500.1, 1600.1, 1700.1, 1800.1, 1900.1,
                                                                        2500.1, 2600.1-2600.3, 2600.9, 2600.15, 2700.1,
     2000.1, 2100.1-2100.2, 2200.1-2200.2, 2300.1-2300.2,
                                                                        16700.1, 16800.1, 16900.1, 17000.1, 17100.1, 17200.1,
     2400.1-2400.2, 2600.1-2600.2, 2800.1-2800.2, 2900.1-
     2900.2, 3000.1-3000.2, 3100.1, 7000.1, 7100.1,
                                                                        17300.1, 17400.1, 17500.1, 17600.1, 17700.1, 17800.1,
                                                                        17900.1, 18000.1, 18100.1 18200.1, 18300.1, 18400.1,
     7200.1, 7200.7, 7300.1, 7400.1, 7600.1, 7800.1,
                                                                        18500.1
     7900.1, 9000.1, 9100.1, 9200.1, 9400.1, 9500.1,
     9500.4, 9600.1, 9600.4, 9600.7, 9700.1, 9700.4,
                                                             Transverse Location wrt Weld
                                                                                                             14500.46-
                                                                        14500.47, 14600.46-14600.47
     9800.1, 9900.1, 9900.4, 10000.1, 10100.1, 10200.1,
     10300.1, 10300.4, 10400.1, 10500.1, 10700.1, 10800.1,
                                                             TSAW Weld Type
                                                                                            14000.1-14000.22, 14400.1-
                                                                        14400.48, 14600.1-14600.47
     10900.1, 11000.1, 11200.1, 11200.4, 11300.1, 11400.1,
                                                             TW8544 Filler Name
                                                                                               6400.16, 6400.19-6400.21,
     11500.1, 11600.1, 11700.1, 11700.4, 11800.1, 11900.1,
                                                                        6700.1, 6700 6800.1, 6800.4, 8300.1, 8300.4,
     12000.1, 12100.1, 12200.1, 12300.1, 12400.1, 12500.1,
     12600.1, 12700.1, 12800.1, 12900.1, 13000.1, 13100.1,
                                                                        8500.1, 8500.4, 8800.1, 8800.4
     13200.1, 13300.1, 13400.1, 13500.1, 13600.1, 13700.1,
     13800.1-13800.2, 14100.1, 14100.4, 14500.46-14500.47,
                                                             U Groove Joint Preparation
                                                                                                         2500.1, 2500.4,
     14600.46-14600.47, 14700.3, 14700.8, 14700.12,
     14700.17, 14700.21, 14700.26, 14800.3, 14800.8,
                                                                        2500.7, 2500.10, 2500.13, 2500.16, 2700.1, 2700.4,
                                                                        2700.7, 2700.10, 2700.13, 2700.16
     14800.12, 14800.17, 14800.21, 14800.26, 14900.3,
```

Index XXX

```
Vert-Up Welding Position
Un Kansas Source
                                                                                                        10500.4-10500.6.
US Steel Producer
                             3100.1, 3200.1, 6500.1, 6600.1,
                                                                          12300.8-12300.14
          6700.1, 6800.1, 6900.1, 7000.1, 7400.1, 7500.1,
                                                                W
          7600.1, 7700.1, 8000.1, 8100.1, 8200.1, 8300.1,
                                                                W Final Processing
                                                                                               19000.1, 19100.1, 19200.1,
          8400.1, 8500.1, 9200.1, 9300.1
                                                                          19300.1, 19400.1
US Steel Source
                           3100.1, 3200.1, 7400.1, 7500.1,
                                                                                              19000.1, 19100.1, 19200.1,
                                                                W Heat Treatment
          7600.1, 7700.1, 9200.1, 9300.1
                                                                          19300.1, 19400.1
US-43 Flux Name
                            2500.1, 2500.4, 2500.7, 2500.10,
                                                                W36 Filler Name
                                                                                             13900.1, 13900.4-13900.26,
          2500.13, 2500.16, 2700.1, 2700.4, 2700.7, 2700.10.
                                                                          14000.1-14000.22, 14300.1-14300.48, 14400.1-14400.48,
          2700.13, 2700.16
                                                                          14500.1-14500.47, 14600 1-14600.47
USN 6/9 Reference
                               18600.1-18600.6, 18700.1-
                                                                Weld Type
          18700.5, 18800.1-18800.6, 18900.1-18900.6, 19000.1-
                                                                     ESW
                                                                                  6400.4, 6400.7, 6500.1, 6500.4, 8000.1,
          19000.7, 19100.1-19100.7, 19200.1-19200.7, 19300.1-
                                                                          8000.4, 8600.1, 8600.4
          19300.7, 19400.1-19400.7, 19600.1-19600.21
                                                                     FCA
                                                                                 14700.1-14700.3, 14700.6-14700.8, 14700.11-
USN 9/9 Reference
                               12800.1-12800.5, 12900.1-
                                                                          14700.12.14700.15-14700.17.14700.20-14700.21.
          12900.5, 13000.1-13000.5, 13100.1-13100.5, 13200.1-
                                                                          14700.24-14700.26, 14800.1-14800.3, 14800.6-14800.8,
          13200.3, 13300.1-13300.5, 13400.1-13400.5, 13500.1-
                                                                          14800.11-14800.12, 14800.15-14800.17, 14800.20-
          13500.5, 13600.1-13600.5, 15700.1-13700.3
USN Source
                                                                          14800.21, 14800.24-14800.26, 14900.1-14900.3,
                      12800.1, 12900.1, 13000.1, 13100.1,
                                                                          14900.6-14900.8, 14900.11-14900.12, 14900.15-
          13200.1, 13300.1, 13400.1, 13500.1, 13600.1, 13700.1,
                                                                          14900.17, 15000.1-15000.3, 15000.6-15000.8, 15000.11-
          18600.1, 18700.1, 18800.1, 18900.1, 19000.1, 19100.1,
                                                                          15000.12, 15000.15-15000.17, 15000.20-15000.21,
          19200.1, 19300.1, 19400.1, 19600.1, 19600.7
                                                                          15000.24-15000.26, 15100.1-15100.3, 15100.6-15100.8,
USN-1 Reference
                             16700.1-16700.28, 16800.1-
                                                                          15100.11-15100.12, 15100.15-15100.17, 15100.20-
          16800.7, 16900.1 16909.7, 17000.1-17000.11, 17100.1-
                                                                          15100.21, 15100.24-15100.26, 15200.1-15200.3,
          17100.19, 17200.1-17200.46, 17300.1-17300.19,
                                                                          15200.6-15200.8, 15200.11-15200.12, 15200.15-
          17400.1~17400.28.17500.1~17500.19.17600.1~17600.7.
                                                                          15200.17
          17700.1 - 17700.28, 17800.1 - 17800.7, 17900.1 - 17900.46,
                                                                     NGESW
                                                                                      6400.10, 6400.13, 6400.16, 6400.19~
          18000.1-18000.11, 18100.1-18100.11, 18200.1-18200.28,
                                                                          6400.21, 6600.1, 6600.4, 6700.1, 6700.4, 6800.1,
          18300.1-18300.46, 18400.1-18400.28, 18500.1-18500.7
                                                                          6800.4, 8100.1, 8100.4, 8200.1, 8200.4, 8300.1,
                                                                          8300.4, 8500.1, 8500.4, 8700.1, 8700.4, 8800.1,
                                                                          8800.4
V Groove Joint Preparation
                                         3200.1, 3200.4~
                                                                     SAW
                                                                                 2500.1, 2500.4, 2500.7, 2500.10, 2500.13,
          3200.20, 7500.1, 7500.4-7500.20, 7700.1, 7700.4-
                                                                          2500.16, 2700.1, 2700.4, 2700.7, 2700.10, 2700.13,
          7700.20, 9700.7-9700.9, 9900.7-9900.9, 10200.8-
                                                                          2700.16, 3200.1, 3200.4-3200.20, 7200.7-7200.8.
          10200.10.14700.1-14700.3.14700.6-14700.8.14700.11-
                                                                          7200.13, 7500.1, 7500.4-7500.20, 7700.1, 7700.4-
          14700.12.14700.15-14700.17, 14700.20-14700.21,
                                                                          7700.20, 9300.1, 9300.4-9300.20, 10200.4-10200.6
          14700.24-14700.26, 14800.1-14800.3, 14800.6-14800.8,
                                                                          10800.4-10800.6, 10900.4-10900.6, 11000.4-11000.6,
          14800.11-14800.12, 14800.15-14800.17, 14800.20-
                                                                          11500.4-11500.6, 12300.4-12300.6, 13900.1, 13900.4-
          14800.21, 14800.24-14800.26, 14900.1-14900.3,
                                                                          13900.26, 14300.1-14300.48, 14500.1-14500.47
          14900.6-14900.8. 14900.11-14900.12. 14900.15-
                                                                     SMA
                                                                                 3100.2-3100.10, 7400.2-7400.10, 7600.2-
          14900.17, 15000.1-15000.3, 15000.6-15000.8, 15000.11-
                                                                          7600.20, 9200.2-9200.20, 13800.8-13800.36, 14200.1-
          15000.12, 15000.15-15000.17, 15000.20-15000.21,
                                                                          14200.48, 16500.1, 16500.5, 19000.1, 19100.1, 19200.1,
          15000.24-15000.26, 15100.1-15100.3, 15100.6-15100.8,
                                                                          19300.1, 19400.1, 19600.7, 19600.14
          15100.11-15100.12, 15100.15-15100.17, 15100.20-
                                                                     SMAW
                                                                                    9700.7-9700.9, 10200.8-10200.10, 10500.4-
          15100.21, 15100.24-15100.26, 15200.1-15200.3,
                                                                          10500.6, 12300.8-12300.14
          15200.6-15200.8, 15200.11-15200.12, 15200.15-
                                                                     SMAW/SAW
                                                                                            9900.7-9900.9
          15200.17
                                                                     TSAW
                                                                                   14000.1-14000.22, 14400.1-14400.48, 14600.1-
Vertical Welding Position
                                     6400.4, 6400.7, 6400.10,
                                                                          14600.47
          6400.13, 6400.16, 6400.19-6400.21, 6500.1, 6500.4,
                                                                Welding Position
          6600.1, 6600.4, 6700.1, 6700.4, 6800.1, 6800.4,
                                                                     1G
                                                                              14800.11-14800.12, 14800.15-14800.17
          8000.1, 8000.4, 8100.1, 8100.4, 8200.1, 8200.4,
                                                                     2G
                                                                              14700.11-14700.12.14700.15-14700.17.14800.20-
          8300.1, 8300.4, 8500.1, 8500.4, 8600.1, 8600.4,
```

8700.1, 8700.4, 8800.1, 8800.4

14800.21, 14800.24-14800.26

 ${f Y}$

1979

1100.1, 1200.1, 1300.1, 1400.1, 1500.1, 1600.1, 1700.1, 1800.1, 1900.1, 15700.1, 15800.1,

```
3G
               14700.20-14700.21, 14700.24-14700.26, 14900.1-
                                                                           16300.1, 16400.1
          14900.3, 14900.6-14900.8, 15000.20-15000.21, 15000.24-
                                                                      1980
                                                                                  9000.1, 9100.1
                                                                      1981
          15000.26, 15100.1-15100.3, 15100.6-15100.8, 15100.20-
                                                                                  17400.1, 17400.11, 17400.20
                                                                      1982
                                                                                  12600 1, 16700 1, 16700.11, 16700.20, 16800.1,
          15100.21, 15100.24-15100.26, 15200.11-15200.12,
          15200.15-15200.17
                                                                            16800.5, 16900.1, 16900.5, 17000.1, 17000.7, 17100.1,
     4G
              14800.1-14800.3, 14800.6-14800.8, 14900.11-
                                                                            17100.11, 17200.1, 17200.17, 17200.32, 17300.1,
          14900.12, 14900.15-14900.17
                                                                            17300.11, 17500.1, 17500.11, 17600.1, 17600.5,
     Downhand
                        7200.7-7200.8, 7200.13, 13800.8-
                                                                            17700.1, 17700.11, 17700.20, 17800.1, 17800.5,
          13800 36, 13900.1, 13900.4-13900.26, 14000.1-
                                                                            17900.1, 17900.17, 17900.32, 18000.1, 18000.7,
          14000.22, 16500.1, 16500.5, 19000.1, 19100.1, 19200.1,
                                                                            18100.1, 18100.7, 18200.1, 18200.11, 18200.20,
          19300.1, 19400.1, 19600.7, 19600.14
                                                                           18300.1, 18300.17, 18300.32, 18400.1, 18400.11,
     Downhand IG
                             2500.1, 2500.4, 2500.7, 2500.10,
                                                                           18400.20, 18500.1, 18500.5, 19500.1
          2500.13, 2500.16, 2700.1, 2700.4, 2700.7, 2700.10,
                                                                      1983
                                                                                  7800.1, 7900.1
                                                                      1984
          2700.13, 2700.16, 3100.2-3100.10, 3200.1, 3200.4-
                                                                                  12500.1, 12700.1
                                                                 Yes Did Specimen Fracture?
          3200.20, 7400.2-7400.10, 7500.1, 7500.4-7500.20.
                                                                                                           1100.2. 1200.2.
          14200.1-14200.48, 14300.1-14300.48, 14400.1-14400.48,
                                                                            1300.2, 1400.2, 1500.2, 1600.2, 1700.2, 1800.2,
          14500.1-14500.47, 14600.1-14600.47
                                                                            1900.2, 2000.4, 2200.6, 2900.3, 2900.6, 3300.2,
     Flat
                9700.7-9700.9, 9900.7-9900.9, 10200.4-10200.10,
                                                                           3400.2, 3500.2, 3600.2, 3700.2, 3800.2, 3900.2,
          10800.4-10800.6, 10900.4-10900.6, 11000.4-11000.6,
                                                                            4000.2, 4100.2, 4200.2, 4300.2, 4400.2, 4500.2,
          11500.4-11500.6, 12300.4-12300.6
                                                                            4600.2, 4700.2, 4800.2, 4900.2, 5000.2, 5100.2,
     IG
                                                                           5200.2, 5300.2, 5400.2, 5500.2, 5600.2, 5700.2,
              7600.2-7600.20, 7700.1, 7700.4-7700.20, 9200.2-
          9200.20, 9300.1, 9300.4-9300.20, 14700.1-14700.3.
                                                                            5800.2, 5900.2, 6000.2, 6100.2, 6200.2, 6300.2,
          14700.6 14700.8, 15000.1-15000.3, 15000.6-15000.8,
                                                                           6400.1, 6400.4, 6400.7, 6400.10, 6400.13, 6400.16,
          15000.11-15000.12, 15000.15-15000.17, 15100.11-
                                                                            6400.19-6400.21, 6500.2-6500.4, 6600.2-6600.4,
          15100.12, 15100.15-15100.17, 15200.1-15200.3,
                                                                           6700.2-6700.4, 6800.2-6800.4, 6900.1, 8000.2-8000.4,
          15200.6-15200.8
                                                                            8100.2-8100.4, 8200.2-8200.4, 8300.2-8300.4, 8400.1,
     Vertical
                     6400.4, 6400.7, 6400.10, 6400.13, 6400.16,
                                                                           8500.2-8500.4, 8600.2-8600.4, 8700.2-8700.4, 8800.2-
          6400.19-6400.21, 6500.1, 6500.4, 6600.1, 6600.4,
                                                                           8800.4, 8900.1, 14100.5-14100.9
          6700.1, 6700.4, 6800.1, 6800.4, 8000.1, 8000.4,
          8100.1, 8100.4, 8200.1, 8200.4, 8300.1, 8300.4,
          8500.1, 8500.4, 8600.1, 8600.4, 8700.1 8700.4,
          8800.1, 8800.4
     Vert-Up
                     10500.4-10500.6, 12300.8-12300.14
WJ,3/87 Reference
                              16500.1-16500.7
WJ,7/87 Reference
                              14700.1-14700.28, 14800.1-
          14800.28, 14900.1-14900.19, 15000.1-15000.28,
          15100.1-15100.28, 15200.1-15200.19
Year Produced
     1971
                 1000.1-1000.3, 1000.6, 1000.9, 1000.12-
          1000.14
    1972
                2100.1-2100.3, 2100.6, 2200.1-2200.3, 2200.6,
          2300.1-2300.3, 2400.1-2400.3, 2400.6, 2400.9, 2400.12,
          2400.15, 2400.18, 2500.1, 2600.1-2600.3, 2600.6,
          2600.9, 2600.12, 2600.15, 2600.18, 2700.1, 2800.1-
          2800.3, 2800.6, 2900.1-2900.3, 2900.6, 3000.1-
          3000.3, 3000.6
    1976
                15300.1, 15400.1, 16000.1, 16200.1
    1977
                16100.1, 16600.1
    1978
                7300.1, 15500.1, 15600.1, 15900.1
```