DIS 2014

2. Transactions Correctness

Gerhard Weikum Gottfried Vossen

© 2002 Morgan Kaufmann ISBN 1-55860-508-8

Basic Notion of Transactions
Histories and Schedules
Notions of Correctness
Serializability Classes

Preconsiderations Correctness (1)

Canonical Synchronization Problems

1. Dirty-Read

T1	T2
Read (A); A := A + 100; Write (A)	
	Read (A); Read (B); B := B + A; Write (B); Commit;
Abort;	
	, Time

Preconsiderations Correctness (2)

Canonical Synchronization Problems

2. Lost Update

T 1	T2
Read (A);	
	Read (A);
A := A - 1; Write (A);	
	A := A + 1; Write (A);
	Time

Preconsiderations Correctness (3)

Canonical Synchronization Problems

3. Non-repeatable (inconsistent) Read

Read Transaction	Update Transaction	DB (PNR, Salary)
SELECT Gehalt INTO :gehalt FROM Pers WHERE Pnr = 2345;		2345 39.000 3456 48.000
summe := summe + gehalt;	UPDATE Pers SET Gehalt = Gehalt + 1000 WHERE Pnr = 2345;	2345 40.000
	UPDATE Pers SET Gehalt = Gehalt + 2000 WHERE Pnr = 3456;	3456 50.000
SELECT Gehalt INTO :gehalt FROM Pers WHERE Pnr = 3456;		
summe := summe + gehalt;		▼ Zeit

Preconsiderations Correctness (4)

Canonical Synchronization Problems

4. Phantom-Problem

Read Transaction	Update Transaction
SELECT SUM (Gehalt) INTO :summe FROM Pers WHERE Anr = 17;	
	INSERT INTO Pers (Pnr, Anr, Gehalt) VALUES (4567, 17, 55.000);
	UPDATE Abt SET Gehaltssumme = Gehaltssumme + 55.000 WHERE Anr = 17;
SELECT Gehaltssumme INTO :gsumme FROM Abt WHERE Anr = 17;	
IF gsumme <> summe THEN	Zeit

Preconsiderations Correctness (5)

Notion of Correctness: Serializability

The concurrent execution of a set of transactions is considered to be correct, if there is a serial execution of the same set of transactions, leading

to the same resulting DB state
as well as the same output values

as the original execution.

- Background:
 - Serial processing is correct
 - Each schedule having the same effect as an (arbitrary) serial one is considered to be correct

Schedule Classes (1)

Overview (simplified)

Schedule Classes (2)

Requirements for an acceptable class of schedules

- At least lost update and inconsistent read are avoided
- Decision (of membership) can be taken efficiently
- In presence of failures (Aborts) also dirty read is avoided
- Focus: Conflict Serializability (CSR)
 - Most important for practical application

Page Model (1)

Modeling

- Page Model (Foundation)
 - Abstract model, not necessarily restricted to the notion of database pages
 - However, page-oriented Synchronization and Recovery (in the DBS storage system) are the major application areas of the page model

Basics

- Set of atomic, uninterpreted data objects (pages)
 - $D = \{x, y, z, ...\}$
 - with atomic read and write operations

Page Model (2)

Basics (contd.)

- A Transaction t is a finite sequence of steps/actions of the form r(x) or w(x):
 - $t = p_1 ... p_n$, with $n < \infty$, $p_i \in \{r(x), w(x)\}$ for $1 \le i \le n$, $x \in D$;
 - r stands for read, w for write
- Different transactions do not have steps in common; steps can be identified uniquely:
 - p_{ij} describes the jth step of Transaction i
 (Transaction index can be omitted, if context clear)

Page Model (3)

Interpretation of a Transaction (Semantics)

- $p_j = r(x)$
 - the j^{th} step of the transaction is a read operation assigning the current value of x to the local variable v_i
 - $v_j := x$
- $p_i = w(x)$
 - the jth of the transaction is a write operation assigning a computed value to x
 - each value written by a transaction potentially depends on all data objects previously read by this transaction
 - $x := f_j(v_{j1}, ..., v_{jk})$
 - x is the return value of a arbitrary, unknown function f_j with $\{j_1, ..., j_k\} = \{j_r \mid p_{jr} \text{ is a read operation } \land j_r < j\}$

UH <u>i</u>

Page Model (4)

So far assumption of total ordering of transaction steps

- Not necessary, as far as ACID is ensured
- Not reasonable, e.g., in case of parallelized transactions on multiprocessor system
- Definition Partial Order
 A arbitrary set. R ⊆ A × A is Partial Order on A, if for elements a, b, c ∈ A holds:
 - $(a, a) \in R$ (Reflexivity)
 - $(a, b) \in R \land (b, a) \in R \Rightarrow a = b$ (Anti-Symmetry)
 - $(a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R$ (Transitivity)

Note: each R can be represented as directed graph.

Page Model (5)

Definition Transaction

- A Transaction t is a partial order of steps of the form r(x) or w(x) with x ∈ D and read and write operations as well as multiple write operations on the same object are ordered.
- Formal: t = (op, <)
 - op is finite set of steps r(x) or w(x), $x \in D$
 - $< \subseteq op \times op$ is partial order over op with:

if $\{p, q\} \subseteq op$ and p and q access the same data object and at least one of the two is a write operation then:

$$p < q \lor q < p$$
.

13

Page Model (6)

Ordering ensures unambiguous interpretation

- for example, in case of unordered read and write operations on the same object
 - the read value would be ambiguous
 - it could be the value before or after the write operation

Further assumptions

- in each TA each data object is only read or written once
- no data object will be read again, after it has been written (does not exclude blind writes)

Histories and Schedules (1)

Goal

- Correctness notion for parallel TA executions
- The scheduler, which is the core component of concurrency control needs correctness criteria that can be applied efficiently

(additional) Termination Operations

- c_i: successful completion of TA t_i, Commit
- a_i: non-successful completion of TA t_i, Abort

15

Histories and Schedules (2)

Definition Histories and Schedules

- Let $T = \{t_1, ..., t_n\}$ be a (finite) set of TA, each $t_i \in T$ be of the form $t_i = \{op_i, <_i\}$, op_i is the set of operations of t_i and $<_i$ the corresponding ordering $(1 \le i \le n)$.
- A History for T_s is a pair $s = (op(s), <_s)$, with:
 - a) $op(s) \subseteq \bigcup_{i=1}^{n} op_i \cup \bigcup_{i=1}^{n} \{a_i, c_i\}$ and $\bigcup_{i=1}^{n} op_i \subseteq op(s)$
 - b) $(\forall i, 1 \le i \le n) c_i \in op(s) \Leftrightarrow a_i \notin op(s)$
 - c) $\bigcup_{i=1}^{n} <_i \subseteq <_s$
 - d) $(\forall i, 1 \le i \le n) (\forall p \in op_i) p <_s a_i or p <_s c_i$
 - e) Each pair of operations p, $q \in op(s)$ of different TAs, which access the same data object and at least one of which is a write operation is ordered, so that $p <_s q$ or $q <_s p$.
- A Schedule is a prefix of a History

Histories and Schedules (3)

Explanations:

- A History (for partial ordered TA)
 - a) Contains all operations of all TA
 - b) Requires a singe termination operation for each TA
 - c) Retains orderings within TA
 - d) Contains the termination operation of each TA as the last operation of this TA
 - e) Orders conflicting operations
- Because of (a) and (b) a History is also called a complete Schedule.

17

Histories and Schedules (4)

Comment

- A prefix of a history can be the history itself
- Histories can be considered to be special cases of Schedules.
 Thus, it is (mostly) sufficient, to deal with schedules.

Definition Serial History

• A History s is *serial*, if for two TA t_i und t_j ($i \neq j$) all operations of t_i occur in s before all operations of t_i or vice versa.

Histories and Schedules (5)

Example

3 TA as DAG (directed acyclic graph)

Example of a completely ordered history of these 3 TA

$$r_1(x)$$
 $r_2(x)$ $r_1(z)$ $w_1(x)$ $w_2(y)$ $r_3(z)$ $w_3(y)$ c_1 c_2 $w_3(z)$ c_3

Histories and Schedules (6)

Example (contd.)

Example of a partially ordered history of these 3 TA

 $r_1(x)$ $r_2(x)$ $r_1(z)$ $w_1(x)$ $w_2(y)$ $r_3(z)$ $w_3(y)$ c_1 c_2 $w_3(z)$ c_3

Partial orderings can always be extended to a variety of complete orderings (as special cases)

Histories and Schedules (7)

Prefix of a partial ordering

- Omitting parts at the end of the "accessibility chain"
- If $s = (op(s), <_s)$, then a *Prefix* of s has the form $s' = (op_{s'}, <_{s'})$, with:
 - $op_{s'} \subseteq op(s)$
 - <_{s′} ⊆ <_s
 - $(\forall p \in op_{s'}) (\forall q \in op(s)) q <_s p \Rightarrow q \in op_{s'}$
 - $(\forall p, q \in op_{s'}) p <_s q \Rightarrow p <_{s'} q$

洪

Histories and Schedules (8)

Shuffle Product

- Be $T = \{t_1, ..., t_n\}$ a set of completely ordered TA
- shuffle(T) denotes the *Shuffle Product*, i.e., the set of all operation sequences, in which the sequence $t_i \in T$ occurs as partial sequence and contains no other operations

Completely ordered Histories and Schedules

- a History s for T is derived from sequence s' ∈ shuffle(T), whereat c_i or a_i for each t_i ∈ T is added (Rules b) and d) in definition on slide 16).
- As before, a Schedule a is a prefix of a history.
- A history s is serial, if $s = t_{i_1}, ..., t_{i_n}$ with $i_1, ..., i_n$ permutation of 1, ..., n

)Н **Н**

Ritter, DIS, Chapter 2

Histories and Schedules (9)

Example (continuing slide 19)

Completely ordered TA:

$$t_1 = r_1(x) r_1(z) w_1(x)$$

 $t_2 = r_2(x) w_2(y)$
 $t_3 = r_3(z) w_3(y) w_3(z)$

The History

```
r_1(x) r_2(x) r_1(z) w_1(x) w_2(y) r_3(z) w_3(y) c_1 c_2 w_3(z) c_3 is completely ordered and has (among others) r_1(x) r_2(x) r_1(z) w_1(x) w_2(y) r_3(z) w_3(y), r_1(x) r_2(x) r_1(z) w_1(x) w_2(y), and r_1(x) r_2(x) r_1(z) as Prefixes
```

JH **∰**

Histories and Schedules (10)

(New) Example

```
• T = \{t_1, t_2, t_3\} with
   t_1 = r_1(x) w_1(x) r_1(y) w_1(y)
    t_2 = r_2(z) W_2(x) W_2(z)
    t_3 = r_3(x) r_3(y) w_3(z)
    s_1 = r_1(x) r_2(z) r_3(x) w_2(x) w_1(x) r_3(y) r_1(y) w_1(y) w_2(z) w_3(z)
    ∈ shuffle(T);
    s_2 = s_1 c_1 c_2 a_3 is a History, in which s_1 (\in \text{shuffle}(T)) has been
    amended by termination steps;
     s_3 = r_1(x) r_2(z) r_3(x) is a Schedule;
     s_4 = s_1 c_1 is another Schedule;
     s_5 = t_1 c_1 t_3 a_3 t_2 c_2 is a serial History.
```

Histories and Schedules (11)

Remark

- The statements given here hold for complete as well as partial orderings.
- Mostly it is easier to show them for complete orderings.

TA-Sets of Schedules

- trans(s) := {t_i | s contains steps of t_i}
- commit(s) := {t_i ∈ trans(s) | c_i ∈ s}
- abort(s) := {t_i ∈ trans(s) | a_i ∈ s}
- active(s):= trans(s) (commit(s) ∪ abort(s))

Histories and Schedules (12)

Example (continuing slide 24)

```
• s_1 = r_1(x) r_2(z) r_3(x) w_2(x) w_1(x) r_3(y) r_1(y) w_1(y) w_2(z) w_3(z) c_1 c_2 a_3

trans(s_1) = \{t_1, t_2, t_3\}

commit(s_1) = \{t_1, t_2\}

abort(s_1) = \{t_3\}

active(s_1) = \emptyset
```

• $s_2 = r_1(x) r_2(z) r_3(x) w_2(x) w_1(x) r_3(y) w_1(y) w_2(z) w_3(z) c_1$ trans(s_2) = { t_1 , t_2 , t_3 } commit(s_2) = { t_1 } abort(s_2) = Ø active(s_2) = { t_2 , t_3 }

UHI **H**

Histories and Schedules (13)

For each History s the following is true:

- trans(s) = commit(s) \cup abort(s)
- active(s) = Ø

Histories and Schedules (14)

Definition Monotonic Classes of Histories

- A class E of Histories is monotonic, if the following holds:
 - If s in E, then $\Pi_T(s)$, the Projection of s on T, is in E for each $T \subseteq \text{trans}(s)$
 - In other words: E is closed under arbitrary projections

Monotonicity

- Monotonicity is a wanted property of a history class, since it preserves E under arbitrary projections
- VSR is not monotonic

JH **#**

Correctness (1)

A correctness criterion can formally be considered to be a mapping

- $\sigma: S \to \{0, 1\}$ with S set of all Schedules.
- correct(S) := {s ∈ S | σ(s)=1 }

A concrete correctness criterion at least must fulfill the following requirements

- 1. correct(S) $\neq \emptyset$
- 2. $s \in correct(S)$ can be decided efficiently
- 3. correct(S) is "sufficiently large",
 - so that the scheduler has many possibilities to derive correct schedules
 - the bigger the set of allowed (correct) schedules, the higher concurrency and efficiency

UHI **#**

Correctness (2)

Basic Idea of Serializability

- Single TA is correct, since it leaves the database in consistent state
- Consequence: serial histories are correct!
- However, serial histories should ,only' be used as correctness measures via appropriate equivalence relations

Approach

- Definition of an equivalence relation ,≈' on S (set of all schedules) with
 - $[S]_{\approx} = \{[s]_{\approx} \mid s \in S\}$ set of equivalence classes
- 2. Consideration of those classes having serial schedules as representatives

UHI **!!!**

CSR (1)

Conflict Serializability

Most important serializability class w.r.t. pratical use

Goal

- Further reduction in comparison to VSR (VSR is not monotonic und membership test is NP-hard)
- Concept that is easy to test and, thus, is feasible for being applied in schedulers

Definitions Conflict and Conflict Relation

- s Schedule; t, t' ∈ trans(s), t ≠ t':
 - Two operations $p \in t$ und $q \in t'$ are in *Conflict* in s, if they access the same data object and at least one of them is a write operation
 - conf(s) := {(p, q) | p, q are in Conflict in s und p <_s q} is called
 Conflict Relation of s

CSR (2)

Remark

 Conflicts only occur between data operations, independently from the termination state of a TA; operations of aborted TAs can be ignored

Example

- $s = w_1(x) r_2(x) w_2(y) r_1(y) w_1(y) w_3(x) w_3(y) c_1 a_2$
- conf(s) = { $(w_1(x), w_3(x)), (r_1(y), w_3(y)), (w_1(y), w_3(y))$ }

Definition Conflict Equivalence

- Schedules s and s' are conflict equivalent, denoted as s ≈_c s', if
 - op(s) = op(s')
 - conf(s) = conf(s')

CSR (3)

• Example $(s \approx_c s')$

- $s = r_1(x) r_1(y) w_2(x) w_1(y) r_2(z) w_1(x) w_2(y)$
- $s' = r_1(y) r_1(x) w_1(y) w_2(x) w_1(x) r_2(z) w_2(y)$

Conflicting-Step-Graph D₂(s)

- Conflict equivalence can be illustrated as graph $D_2(s) := (V, E)$ with V = op(s) and E = conf(s)
- D₂(s) is called Conflicting-Step-Graph
- $s \approx_c s' \Leftrightarrow D_2(s) = D_2(s')$

Definition Conflict Serializability

- A History s is conflict serializable, if there is a serial History s' with $s \approx_c s'$
- CSR denotes the class of all conflict serializable Histories

CSR (4)

Examples

- $s_1 = r_1(x) r_2(x) r_1(z) w_1(x) w_2(y) r_3(z) w_3(y) c_1 c_2 w_3(z) c_3$ $s_1 \in CSR$
- $s_2 = r_2(x) w_2(x) r_1(x) r_1(y) r_2(y) w_2(y) c_1 c_2$ $s_2 \notin CSR$

CSR (5)

Lost Update

- $L = r_1(x) r_2(x) w_1(x) w_2(x) c_1 c_2$
- conf(L) = $\{(r_1(x), w_2(x)), (r_2(x), w_1(x)), (w_1(x), w_2(x))\}$
- $L \approx_c t_1 t_2$ and $L \approx_c t_2 t_1$

Inconsistent Read

- $I = r_2(x) w_2(x) r_1(x) r_1(y) r_2(y) w_2(y) c_1 c_2$
- conf(I) = { $(w_2(x), r_1(x)), (r_1(y), w_2(y))$ }
- I $\not\approx_c t_1 t_2$ and I $\not\approx_c t_2 t_1$

• $CSR \subset VSR \subset FSR$

CSR (6)

Example

- $s = w_1(x) w_2(x) w_2(y) c_2 w_1(y) c_1 w_3(x) w_3(y) c_3$
- $s \not\approx_c t_1 t_2 t_3$ and $s \not\in CSR$, but $s \approx_v t_1 t_2 t_3$ and thus $s \in VSR$

Theorem

- CSR is monotonic
- s ∈ CSR ⇔ Π_T(s) ∈ VSR for all T ⊆ trans(s)
 (i.e., CSR is the largest monotonic subset of VSR)

CSR (7)

Definition Conflict Graph (Serialization Graph)

- Let s be a Schedule. The Conflict Graph G(s) = (V, E) is a directed graph with
 - V = commit(s)
 - $(t, t') \in E \Leftrightarrow t \neq t' \land (\exists p \in t) (\exists q \in t') (p, q) \in conf(s)$

Remark

 The Conflict Graph abstracts from individual conflicts between pairs of TA (conf(s)) and represents multiple conflicts between the same (terminated) TA by a single edge.

л #

CSR (8)

Example

- $s = r_1(x) r_2(x) w_1(x) r_3(x) w_3(x) w_2(y) c_3 c_2 w_1(y) c_1$
- G(s) =

Serialization Theorem

• Let s be a History; then s ∈ CSR if and only if G(s) acyclic

Problem

Find a serial History, which is consistent to all edges in G(s)

CSR (9)

Example

• $s = r_1(y) r_3(w) r_2(y) w_1(y) w_1(x) w_2(x) w_2(z) w_3(x) c_1 c_3 c_2$

$$G(s) =$$

 $s \notin CSR$

•
$$s' = r_1(x) r_2(x) w_2(y) w_1(x) c_2 c_1$$

 $G(s') =$

$$t_1$$
 t_2

$$s' \in CSR$$

CSR (10)

Corollary

 Membership in CSR can be tested in polynomial time w.r.t to the set of TA contributing the considered schedule

Blind Write

- A blind Write (of a data object x) is given, if a TA performs a Write(x) without preceding Read(x)
- If blind writes are prohibited, the TA definition is intensified as follows:
 - If $w_i(x) \in T_i$, then $r_i(x) \in T_i$ and $r_i(x) < w_i(x)$
- Then it is true: a history is view-serializable (element of VSR) if and only if it is conflict-serializable (element of CSR)!

CSR (11)

Conflicts and Commutativity

- So far Conflict Serializability has been shown by use of the Conflict Graph
- (New) Goal
 - S is supposed to be stepwise transformed by the help of commutativity rules
 - After the transformation s is equivalent to a serial History

CSR (12)

Commutativity Rules

- ~ means that ordered pairs of actions can be replaced by each other
 - C1: $r_i(x) r_i(y) \sim r_i(y) r_i(x)$ if $i \neq j$
 - C2: $r_i(x) w_i(y) \sim w_i(y) r_i(x)$ if $i \neq j, x \neq y$
 - C3: $w_i(x) w_i(y) \sim w_i(y) w_i(x)$ if $i \neq j, x \neq y$
- Ordering rule for partially ordered schedules
 - C4: $o_i(x)$, $p_j(y)$ unordered $\Rightarrow o_i(x)$ $p_j(y)$ if $x \neq y \lor (o = r \land p = r)$
 - says that unordered operations can be ordered arbitrarily if they are not in conflict

UHI **#**

CSR (13)

Example

$$s = w_{1}(x) r_{2}(x) w_{1}(y) w_{1}(z) r_{3}(z) w_{2}(y) w_{3}(y) w_{3}(z)$$

$$\rightarrow (C2) w_{1}(x) w_{1}(y) r_{2}(x) w_{1}(z) w_{2}(y) r_{3}(z) w_{3}(y) w_{3}(z)$$

$$\rightarrow (C2) w_{1}(x) w_{1}(y) w_{1}(z) r_{2}(x) w_{2}(y) r_{3}(z) w_{3}(y) w_{3}(z)$$

$$= t_{1} t_{2} t_{3}$$

Definition Commutativity-based Equivalence

 Two Schedules s and s' with op(s) = op(s') are commutativitybased equivalent, denoted as s ~* s', if s can be transformed to s' by a finite sequence of steps following the rules C1, C2, C3 und C4.

UHI **#**

CSR (14)

Theorem

- Let s und s' be Schedules with op(s) = op(s')
- Then: $s \approx_c s'$ if and only if $s \sim^* s'$

Definition Commutativity-based Reducibility

 History s is commutativity-based reducible, if there is a serial History s' with s ~* s'

Corollary

 A History s is commutativity-based reducible if and only if s ∈ CSR

CSR (15)

Generalization of the Conflict Notion

- Scheduler does not have to 'know' the operations in detail, but only which
 of them are in conflict
- Example
 - $s = p_1 q_1 p_2 o_1 p_3 q_2 o_2 o_3 p_4 o_4 q_3$ with the conflicts (q_1, p_2) , (p_2, o_1) , (q_1, o_2) und (o_4, q_3)
- Applicable for 'semantic' concurrency control
 - Specification of a Commutativity- or Conflict Table for ,new` (possibly application-specific) Operations and
 - Derivation of Conflict Serializability from this Table
- Examples for operations
 - increment/decrement
 - enqueue/dequeue
 - ...

OCSR (1)

Restrictions

- Histories/Schedules of VSR and FSR cannot be used in practice!
- Further restrictions of CSR, on the other hand, are beneficial for certain practical applications!

Example

- $s = w_1(x) r_2(x) c_2 w_3(y) c_3 w_1(y) c_1$
- $G(s) = t_3 \longrightarrow t_1 \longrightarrow t_2$
- Contrast between serialization and actual processing order possibly unwanted
- Can be avoided by order preservation!

OCSR (2)

Definition Order Preserving Conflict Serializability

- A History s is called order preserving conflict serializable, if
 - s conflict serializable, i.e., there is s', with op(s) = op(s') and $s \approx_c s'$, and
 - additionally the following holds for all t_i, t_j ∈ trans(s): If t_i completely before t_i in s, then the same holds for s'

Theorem

 Let OCSR be the class of all order preserving conflict serializable histories: OCSR

CSR

Idea of prove

- s (previous) shows that inclusion is strict: s ∈ CSR OCSR

COCSR (1)

Further Restriction of CSR

- beneficial for distributed und possibly heterogeneous applications
- Observation: for conflict serializability it is sufficient that transactions which are in conflict, perform there commits in conflict order

Definition Preservation of Commit Order

- A History s is called commit order-preserving conflict serializable, if the following holds:
 - For all t_i , $t_j \in \text{commit}(s)$, $i \neq j$: If $(p, q) \in \text{conf}(s)$ for $p \in t_i$, $q \in t_j$, then $c_i < c_j$ in s
- Order of conflicting operations determines the order of the corresponding commit operations

COCSR (2)

Theorem

- Let COCSR be the class of all commit order-preserving conflict serializable histories; then
 - COCSR ⊂ CSR

Sketch of proof

- $s = r_1(x) w_2(x) c_2 c_1$
- s ∈ CSR COCSR (Inclusion is strict)

Theorem

- Let s be a History: s ∈ COCSR if and only if:
 - $s \in CSR$ and
 - there is a serial History s' so that s' \approx_c s and for all t_i , $t_j \in \text{trans}(s)$, $t_i <_{s'} t_j \Rightarrow c_{t_i} <_s c_{t_j}$
- Theorem: COCSR

 COCSR

Commit Serializability (1)

Assumption so far,

Every transaction terminates.

Requirements w.r.t to possible failure cases

- A correctness notion should only take successfully completed TA into account
- 2. For each correct schedule all its prefixes should be correct, too

Definition Closure Properties

- Let E be Class of Schedules
 - 1. E is *prefix-closed*, if for every Schedule s in E all the prefixes of s are in E, too
 - 2. E is *commit-closed*, if for every Schedule s in E, CP(s) also in E, with CP(s) = $\Pi_{\text{commit(s)}}$ (s)

UHI **j**iji

Commit Serializability (2)

Prefix-Commit-Closed

- Both, previously mentioned closure properties
- If Class E prefix-commit-closed, then for each Schedule s in E it is true that CP(s') in E for each prefix s' of s

FSR is not prefix-commit-closed

- $s = w_1(x) w_2(x) w_2(y) c_2 w_1(y) c_1 w_3(x) w_3(y) c_3$
- $s \approx_{V} t_1 t_2 t_3$ that means $s \in VSR$, that means $s \in FSR$
- $s' = w_1(x) w_2(x) w_2(y) c_2 w_1(y) c_1$ is Prefix of s
- CP(s') = s'
- $s' \not\approx_f t_1 t_2$ and $s' \not\approx_f t_2 t_1$, that means $s' \not\in FSR$
- VSR is not prefix-commit-closed, since VSR not monotonic

UHI **#**

Commit Serializability (3)

Theorem

- CSR is prefix-commit-closed
- Proof
 - $s \in CSR$, then G(s) acyclic
 - For each partial sequence s' of s, G(s') is acyclic, too
 - Especially G(CP(s')) is acyclic
 - Thus: $CP(s') \in CSR$

Definition Commit-Serializability

 A Schedule s is called commit-serializable, if for every Prefix s' CP(s') serializable.

Classes of commit-serializable Schedules

- CMFSR
- CMVSR
- CMCSR

. **Ж**

Commit Serializability (4)

Theorem

- 1. CMFSR, CMVSR, CMCSR are commit-closed
- 2. CMCSR ⊂ CMVSR ⊂ CMFSR
- 3. CMFSR \subset FSR
- 4. CMVSR ⊂ VSR
- 5. CMCSR = CSR

Overview (1)

Historien

- $s_1 = w_1(x) w_2(x) w_2(y) c_2 w_1(y) c_1$
- $s_2 = w_1(x) r_2(x) w_2(y) c_2 r_1(y) w_1(y) c_1 w_3(x) w_3(y) c_3$
- $s_3 = w_1(x) r_2(x) w_2(y) w_1(y) c_1 c_2$
- $s_4 = w_1(x) w_2(x) w_2(y) c_2 w_1(y) c_1 w_3(x) w_3(y) c_3$
- $s_5 = w_1(x) r_2(x) w_2(y) w_1(y) c_1 c_2 w_3(x) w_3(y) c_3$
- $s_6 = w_1(x) w_2(x) w_2(y) c_2 w_1(y) w_3(x) w_3(y) c_3 w_1(z) c_1$
- $s_7 = w_1(x) w_2(x) w_2(y) c_2 w_1(z) c_1$
- $s_8 = w_3(y) c_3 w_1(x) r_2(x) c_2 w_1(y) c_1$
- $s_9 = w_3(y) c_3 w_1(x) r_2(x) w_1(y) c_1 c_2$
- $s_{10} = w_1(x) w_1(y) c_1 w_2(x) w_2(y) c_2$

Overview (2)

Conclusion (1)

Basic Correctness Notion:

(Conflict-) Serializability

Theory of Serializablility

- Simple Read/Write-Model
- Conflict Operations: order-depending operations of different transactions on the same data objects
- Conflikt-Serializability
 - relevant for practical applications

 (in contrast to Final-State- and View-Serializability)
 - can be checked efficiently
 - CSR ⊂ VSR ⊂ FSR
- Serialization Theorem: A History s is conflict serializable if and only if the corresponding G(s) is acyclic

UHI **#**

Conclusion (2)

Theory of Serializablility (contd.)

- CSR, albeit less general than VSR, is best suited
 - for complexity reasons
 - because of its monotonicity
 - because of its generalizabilty to semantically richer operations
- OCSR and COCSR have further beneficial properties
- Commit-Serializability also takes possible failures into account

Serializable Processes

- Ensure correctness of multi user processing automatically
- Number of possible schedules determines maximal degree of concurrency (parallelism)

UH **#**

Ritter, DIS, Chapter 2