Kapitola 1

Rešerše

V této kapitole čtenáře seznámíme se známými výsledky v oblasti klastrové rovinnosti. Jedná se o výsledky, kde pro omezenou verzi klastrové rovinnosti je znám polynomiální deterministický algoritmus pro otestování klastrové rovinnosti, případně je znám i algoritmus pro nakreslení.

Jedním směrem, kde omezení přineslo nějaké výsledky, je omezení se na souvislé klastry. Pro další výsledky v tomto směru se vždy požadavek na souvislost upravil. Například, že klastry indukují nejvýše dvě komponenty či některé klastry jsou obecně nesouvislé. Nyní uvedeme několik výsledků dosažených v tomto směru.

Věta 1.1 (Cortese et al. [1]). Mějme klastrový graf (G, \mathcal{C}) , kde každý klastr $K \in \mathcal{C}$ je souvislý. Pak existuje lineární deterministický algoritmus rozhodující zda (G, \mathcal{C}) je klastrově rovinný.

Tento výsledek využijeme později při konstrukci lineárního nedeterministického algoritmu pro obecné klastrové grafy (viz kapitola ??).

Před uvedením dalšího výsledku uvedeme definici takzvaného úplně souvislého klastrové grafu.

Definice 1.2. Klastrový graf (G, \mathcal{C}) je *úplně souvislý*, pokud pro každý klastr $K \in \mathcal{C}$ je K souvislý a i $V \setminus K$ je souvislý.

Věta 1.3 (Cornelsen a Wagner [2]). Úplně souvislý klastrový graf (G, \mathcal{C}) je klastrově rovinný $\iff G$ je rovinný.

Rovinnost lze rozpoznávat v lineárním čase. A navíc je i možné získat v tomto případě v lineárním čase klastrové nakreslení.

- **Věta 1.4** (Jelínek et al. [3]). Mějme nakreslený klastrový graf (G, \mathcal{C}, ρ) . Pokud každý klastr $K \in \mathcal{C}$ indukuje nejvýše dvě komponenty, pak existuje lineární algoritmus pro rozhodnutí, zda (G, \mathcal{C}) je klastrově rovinný.
- **Věta 1.5** (Gutwenger et al. [4]). Pokud všechny nesouvislé klastry klastrového grafu (G, \mathcal{C}) leží na stejné cestě začínající v kořeni klastrové hierarchie, pak pro (G, \mathcal{C}) lze v kvadratickém čase rozhodnout, zda je klastrově rovinný.
- **Věta 1.6** (Goodrich et al. [5]). Mějme klastrový graf (G, C). Nechť pro každý nesouvislý klastr $K \in C$ platí, že jeho rodič a sourozenci v klastrové hierarchii jsou souvislé klastry. Potom pro (G, C) lze v kvadratickém čase rozhodnout, zda je klastrově rovinný.
- Věta 1.7 (Gutwenger et al. [4]). Mějme klastrový graf (G, C). Každý nesouvislý klastr K má souvislého rodiče a souvislé komponenty K mají napojení mimo rodiče. Pak je algoritmus pracující v polynomiálním čase rozhodující o klastrové rovinnosti a dávající klastrové nakreslení v případě kladné odpovědi.

Další směr, který přinesl výsledky, se týká takzvaných placatých klastrových grafů. Jedná se o omezení klastrové hierarchie, kde klastry jsou po dvou disjunktní (nepočítaje klastr obsahující všechny vrcholy a jednovrcholové klastry).

- **Definice 1.8.** Klastrový graf (G, \mathcal{C}) je placatý pokud všechny klastry kromě kořene (klastru obsahující všechny vrcholy) mají jako rodiče kořen (jednovrcholové klastry ignorujeme).
- **Věta 1.9** (Jelínková et al. [6]). Mějme placatý klastrový graf (G, C), kde G je kružnice. Pokud každý klastr obsahuje nejvýše tři vrcholy, pak lze v polynomiálním čase rozhodnout, zda je (G, C) klastrově rovinný.
- **Věta 1.10** (Cortese et al [7]). Mějme placatý klastrový graf (G, \mathcal{C}) , kde G je kružnice. Pokud klastry jsou uspořádané do cyklu nebo cesty, pak lze v polynomiálním čase rozhodnout, zda je (G, \mathcal{C}) klastrově rovinný.
- **Věta 1.11** (Cortese et al [8]). Mějme placatý klastrový graf (G, C), kde G je kružnice. Pokud klastry jsou uspořádané do nakresleného rovinného grafu, pak lze v polynomiálním čase rozhodnout, zda je (G, C) klastrově rovinný.
- **Věta 1.12** (Jelínková et al. [6]). Mějme placatý klastrový graf (G, \mathcal{C}) , kde G je 3-souvislý a všechny stěny mají velikost nejvýše 4, pak lze v polynomiálním čase rozhodnout, zda je (G, \mathcal{C}) klastrově rovinný.

Věta 1.13 (DiBattista a Frati [9]). Mějme placatý nakreslený klastrový graf (G, \mathcal{C}, ρ) , kde všechny stěny mají velikost nejvýše 5 a mějme pevné nakreslení grafu G, pak lze v polynomiálním čase rozhodnout, zda je (G, \mathcal{C}) klastrově rovinný.

Jiným směrem bylo omezení grafu na vrcholově 3 souvislý.

Věta 1.14 (Jelínková et al. [6]). Mějme klastrový graf (G, \mathcal{C}) , kde klastry mají velikost nejvýše 3 (kromě kořene) a G je vrcholově 3-souvislý, pak lze v polynomiálním čase rozhodnout, zda je (G, \mathcal{C}) klastrově rovinný.

Věta 1.15 (Jelínková et al. [6]). Mějme klastrový graf (G, \mathcal{C}) , kde klastry mají velikost nejvýše 3 (kromě kořene) a G je dělení vrcholově 3-souvislého multigrafu, který má $\mathcal{O}(1)$ vrcholů, a G má všechny stupně sudé, pak lze v polynomiálním čase rozhodnout, zda je (G, \mathcal{C}) klastrově rovinný.

Ještě jedním směrem je omezení počtu klastrů. Konkrétně na dva klastry, viz články [10], [11], [12]. Dokazuje se v nich (mimo jiné) lineární algoritmus pro situaci, kdy množina vrcholů je rozdělena na právě dva neprázdné disjunktní klastry (nepoužívá se v nich terminologie klastrové rovinnosti, ale je to ekvivalentní).

Závěrem je nutno poznamenat, že jinak se jedná o otevřené problémy. Například pro obecné placaté grafy se neví, jestli lze efektivně rozhodovat o klastrové rovinnosti. Pro obecnou klastrovou rovinnost je otevřeným problémem zda patří do P nebo jestli je NP-úplný.

Literatura

- [1] Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity of connected clustered graphs. J. Graph Alg. Appl. 12(2), 225–262 (2008)
- [2] S. Cornelsen and D. Wagner. Completely connected clustered graphs. Journal of Discrete Algorithms, 4(2):313–323, 2006.
- [3] V. Jelínek, E. Jelínková, J. Kratochvíl, B. Lidický: Clustered Planarity: Embedded Clustered Graphs with Two-Component Clusters (extended abstract), Proceedings of Graph Drawing 2008, LNCS 5417 (2009), 121-132
- [4] Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD'02. LNCS, vol. 2528, pp. 220–235. Springer (2002)
- [5] Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs. In: Healy, P., Nikolov, N.S. (eds.) GD'05. LNCS, vol. 3843, pp. 211–222. Springer (2006)
- [6] Jelínková, E., Kára, J., Kratochvíl, J., Pergel, M., Suchý, O., Vyskocil, T.: Clustered planarity: Small clusters in cycles and eulerian graphs. J. Graph Alg. Appl. 13(3), 379–422 (2009)
- [7] P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. Clustering cycles into cycles of clusters. Journal of Graph Algorithms and Applications, 9(3):391–413, 2005.
- [8] P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. On embedding a cycle in a plane graph. In Proceedings of 13th International

- Symposium on Graph Drawing 2005, volume 3843 of LNCS, pages 49–60. Springer, Heidelberg, 2006.
- [9] Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with small faces. In: Hong, S.H., Nishizeki, T., Quan, W. (eds.) GD'07. LNCS, vol. 4875, pp. 291–302. Springer (2008)
- [10] Biedl, T.: Drawing planar partitions I; LL-drawings and LH-drawings. Technical Report RRR 11-98, RUTCOR, Rutgers University, 1998.
- [11] Bied, T., Kaufmannl, M., Mutzel, P.: Drawing planar partitions II: HH-drawings. Technical Report RRR 12-98, RUTCOR, Rutgers University, 1998.
- [12] Biedl, T.: Drawing planar partitions I; LL-drawings and LH-drawings. Technical Report RRR 11-98, RUTCOR, Rutgers University, 1998.