SANJIVANI COLLEGE OF ENGINEERING, KOPARGAON

An Autonomous Institute Affiliated to SPPU, Pune

	DEPARTMENT OF INFORMATION	NTECHNOLOGY
01	Topic Solved Example of	Quick Bort Unit No. III
d.1	Apply Quick sort and sor	t these Number.
^	78,21,14,97,87,62,74,85,	76,45,84,22
Ans:-	PASS. I- pivot-78.	Y Jaj
	l=0, r=11 l++ and r >pivot <pivo< th=""><th>until appropriate element</th></pivo<>	until appropriate element
	··· l=3, Y=11.	191 19 31
	3:<11: Swap (97) and (22)	
	78,21,14,22,87,62,74,85,76	,45,84,97
	31 12	Ty Transit
		a dovig graz
	4<9: swap (87) and (45)	
	78,21,14,22,45,62,74,85,	76,87,84,97
	10	Y LITTER AND THE AND
	l=7, r=8 7<8: swap (85) and (76) 7001142245,62,74(46)	b 10 cura l
	7 < 8 - 30009 () (7) (7)),85,87,84,97
	7 < 8 = Swap (85) and (1) 18, 21, 14, 22, 45, 62, 74, 75	MY.
S ETT TO	- C. C. 10 · · · · · · · · · · · · · · · · · ·	
¥ b	1=8, r=7 8×7=Swap acr] with pivi	et ie. 78 and 76
	Markey Her Her Leaves	
F	Prepared by :	
	Demani	Page No.

SANJIVANI COLLEGE OF ENGINEERING, KOPARGAON

An Autonomous Institute Affiliated to SPPU, Pune DEPARTMENT OF INFORMATION TECHNOLOGY

	Topic Unit No.
	76,21,14,22,45,62,74,78,85,87,84,97
	(B)
	After pass . I A) and B) created
	Let, A part
PASS.	I, pivot = 76]
	76,21,14,22,45,62,74,78
	1e
	Increase 1 upto a CUJ7 pilot : l=7 7 /6
	Increase l'upto a cust pivot : l=7 7 26 Decrease 'r' upto a crs < pivot : l=6 : ie 776
	swap pivot with acris il 76 and 74
	Swap proof 20 25 27.84.97
	74,21,14,22,45,62,76) 78,85,87,84,97
PA39.7	I pîvot 74
	l now 6 and r=5 6>5 - swap 62 and 74
	1 - A 71 72 85. 87.84.97
	762,21,14,22,45,74) 76,78,85,87,84,97
PASS.11	[pivot 62] 62,21,14,22,45 : swap 45 and 62
	65,21,14,22,62),74,76,78,85,87,84,97
	F
	Prepared by : Page No.

SANJIVANI COLLEGE OF ENGINEERING, KOPARGAON

An Autonomous Institute Affiliated to SPPU, Pune

DEPARTMENT OF INFORMATION TECHNOLOGY				
Topic		Unit No.		
PASS. V/ pivot 45	45,21,14,22	1>r.swap with pivot		
22,21,14,6 G PASS-6/pivot=22	(5) 22,21,14, SU	sap with pivot		
14,21,22 H PASS-7 privot 14] 14 Now take	1,24 A B B 1.3			
85,87,84,9 PASS. 81 pint=85 (85)	97),87,84,97 :- swap =2 1×2 swap	85 and 84 87 and 84		
85,84,87, 84,85,87; Only Ctop Prepared by:	97 : swap 84 97. 97. take this	and 85 and pivot		
		Page No.		

SANJIVANI COLLEGE OF ENGINEERING, KOPARGAON

An Autonomous Institute Affiliated to SPPU, Pune DEPARTMENT OF INFORMATION TECHNOLOGY

T	Unit No.
PASS-9/pivot = 87/87,97	
- Finally, 14,21,22,45,62,74	, 7.6,7884,85,85,97
The state of the s	FP, F2. 12.22 3+12(22) 22-3-49
1 1 8 pura 1.8 doors 22 1	527 bon 133
today has proper.	
Prepared by:	Page No.

SANJIVANI COLLEGE OF ENGINEERING, KOPARGAON

An Autonomous Institute Affiliated to SPPU, Pune DEPARTMENT OF INFORMATION TECHNOLOGY

Unit No. Quick Sort Algorithm: Yord Quicksort (int ac], int l, int r)

i sort the aclir] elements
acl] is pivot element ie 1st element of given list if (l<x)

i 2 lg j=r+1

pivot = a[1] do { i++ 4 while (a [1] < pivot)
// increase luntil find larger than v do lj++ fwhile (acj) > pivot) if (i < j) then swap a [i] and a [j] 4 while (ikj); swap pivot and a [j] Quicksort (a, left sj-1); // sørt side Quicksort (a, j+1, r); //right side Prepared by: Page No. Denyani Bhamare

SANJIVANI COLLEGE OF ENGINEERING, KOPARGAON

An Autonomous Institute Affiliated to SPPU, Pune DEPARTMENT OF INFORMATION TECHNOLOGY

	Colored Commole of Quilt
	Topic Solved Example of Quick Unit No. le-1) Consider 10 elements 26,5,37,1,61,11,59,
Exam	ple- (1) Consider (0 elements 2615, 3+, 1,61,11,59,
,	15, 48, 19.
nint	26,5,37,1,61,11,59,15,48,19 Jeft right
Pivot T) 26	8
1) 26	
	011231456189
	11, 5, 19, 1, 15, (26), 59, 61, 48, 37 0 4
	My Light Lovid
II) V=1	1, 5, 1) 19, 15 26 59 61 48 37
~~^ \ _ (1 5 11 19 15 26 59 61 48 37
III) v =(1 5 11 19 15 20 31
TIT D2	F9 6 7
W Pz	1,5,11,19,15,26,48,37,69,61
P.Y. P	1, 5, 11, 19, 15, 26, 37 48 59 61 9 9
	1, 5, 11, 19, 15, 26, 3
D- N	
P.VI	
E still	
	Prepared by : Page No.