2025.05 DACON

신용카드 고객 세그먼트 분류

AI 경진대회

00. 목차

01

데이터 소개

02

EDA 및 전처리

결측치 처리 자료형 변환 파생변수 생성 변수 삭제 상관관계 분석 03

모델링 과정

모델 선정
Feature Importance 분석
Oversampling 적용
하이퍼파라미터 튜닝
Soft Voting 앙상블

04

최종 모델 선정

01. 데이터 소개

2018.07 ~ 2018.12 고객별 금융활동 데이터

train data

(2400000, 872)

회원 정보 + Segment : 78개 칼럼

신용 정보: 42개 칼럼

승인매출 정보: 406개 칼럼

청구입금 정보: 46개 칼럼

잔액 정보:82개 칼럼

채널 정보 : 105개 칼럼

마케팅 정보: 64개 칼럼

성과 정보: 49개 칼럼

test data

(600000, 871)

회원 정보: 78개 칼럼

신용 정보: 42개 칼럼

승인매출 정보: 406개 칼럼

청구입금 정보: 46개 칼럼

잔액 정보:82개 칼럼

채널 정보: 105개 칼럼

마케팅 정보: 64개 칼럼

성과 정보: 49개 칼럼

02.

EDA 및 전처리

결측치 처리

- 여러 변수에 결측치 존재
- 결측치가 너무 많은 변수는 삭제
- 변수 특성에 따라 '기타'로 분류하거나 '중앙값'으로 대체하는 등 다르게 처리

자료형 변환

문자열 변수에 대해 숫자로 인코딩해서 변환

ex) 한도심사요청건수 : '0회' → 0, '1회 이상' → 1

ex) 카드론동의여부: 'Y' → 1, 'N' →0

02.

EDA 및 전처리

파생변수 생성

- ex) '청구서수령방법'이 '당사멤버십'인 고객의 등급은 C,D,E만 존재
 - → 당사멤버십 여부 (0,1)로 파생변수 생성

변수 삭제

- 파생변수에 대한 원천변수 삭제
- 모든 값이 동일한 변수 삭제

03. 모델링

과정

모델 선정

GPU 지원이 가능하고 대용량 데이터를 효율적으로 처리할 수 있는 모델을 선정하였고, Google Colab T4 GPU를 이용하여 모델링 진행

XGBoost

과적합을 방지하기 위한 정규화 기법과 병렬 처리를 지원하며, 각 단계에서 가장 큰 손실 감소를 보이는 노드를 깊이 우선(Depth-wise) 방식으로 분할

CatBoost

범주형 데이터를 자동으로 처리하여 전처리 비용을 줄이고 빠른 학습 속도를 제공하며, 순열 기반 처리로 과적합을 줄이는 Category Boosting 방식

LightGBM

Gradient 기반의 Leaf-wise 분할 방식을 통해 손실 감소가 큰 리프 노드를 우선적으로 분할함으로써 학습 속도는 물론 예측 성능도 향상시키며, 히스토그램 기반 처리로 메모리 사용량을 최소화하여 대규모 데이터셋에 효과적

03. 모델링 과정

1) Feature Importance - 상위 변수 추출

문제	전체 변수 수가 너무 많아 학습 속도 저하 및 과적합 우려
방법	XGBoost / CatBoost / LGBM 로 각각 feature importance 산출 - feature_importances_ 기반
	중요도 기준 상위 100개 / 200개 / 300개 변수 조합별 모델 성능 비교

```
importance_df = pd.DataFrame({
    'feature': X.columns,
    'importance': temp_model.feature_importances_
}).sort_values(by='importance', ascending=False)
```

2) Oversampling - 클래스 불균형 보정

```
      문제
      A/B 클래스 데이터 부족 → 모델 성능 저하, 다수 클래스에 편향 발생

      SMOTE + 클래스 가중치 적용

      - 다양한 비율의 A/B/C 클래스 오버샘플링 조합 실험

      - Train set을 8:2 비율로 검증용 데이터 분리

      - 학습 시 균형잡힌 클래스 가중치 적용: class_weight = 'balanced'

      - mlogloss, macro F1-score 기준 비교
```

03. 모델링 과정

3) Hyperparameter tuning

모델 성능 극대화를 위한 파라미터 최적화 수행

모델	튜닝 시도한 파라미터 종류
XGBoost	n_estimators, learning_rate, max_depth, min_child_weight, subsample, colsample_bytree, gamma, reg_alpha, reg_lambda
CatBoost	learning_rate, depth, I2_leaf_reg, bagging_temperature, random_strength, border_count
LightGBM	num_boost_round, learning_rate, num_leaves, max_depth, min_data_in_leaf, bagging_fraction, bagging_freq, feature_fraction, lambda_I1, lambda_I2, min_gain_to_split

4) Soft voting - 단일 모델 대비 안정적이고 높은 성능 확보 시도

- 각 모델에서 predict_proba()로 클래스별 예측 확률 추출
- Soft Voting 방식으로 모델별 확률을 가중 평균: 가중치 비율 다양한 조합 실험
- np.argmax()를 통해 가장 높은 확률의 클래스 선택

04.

최종 모델 선정

Soft voting: XGBoost 40% + LightGBM 30% + CatBoost 30%

XGBoost 기준 중요도 상위 300개 변수 및 GPU 사용

XGBoost

- 오버샘플링 : A 3만, B 3만, C 25만
- n_estimators = 5000,
 objective = 'multi:softprob',
 num_class = 5,
 eval_metric = 'mlogloss'

LightGBM

- 오버샘플링 : A 3만, B 3만, C 25만
- objective='multiclass',metric = 'multi_logloss',num_class = 5
- 파라미터 튜닝 결과 사용

num_boost_round = 1500, learning_rate = 0.16304239034369372, num_leaves = 260, max_depth = 6, min_data_in_leaf = 1200, bagging_fraction = 0.899999999999999, bagging_freq = 4, feature_fraction = 0.8, lambda_l1 = 4.4610495762623494e-05, lambda_l2 = 0.6898684039866835, min_gain_to_split = 0.3944497642389666

CatBoost

- 오버샘플링 : A 6만, B 12만, C 24만
- iterations = 5000