(5+5)

(10+5)

Real Analysis

Mid-Sem 2023

Time - 1.5 hours Full marks 50

1.a) Prove that for each
$$n \ge 2$$
, $(n+1)! > 2^n$.
b) Prove that for all $n \in \mathbb{N}$, $(3+\sqrt{5})^n + (3-\sqrt{5})^n$ is an even integer. $(4+6)$

- 2.a) Prove that the set of natural numbers is not bounded from above.
- b) Prove that there is an unique positive real number x, such that $x^2 = 2$
- 3.a) Prove that the union and intersection of finite number of open sets in $\mathbb R$ are open sets themselves.
- b) Show that the set N has no limit points.

- 4.a) Prove that $\lim_{n\to\infty}\frac{S_n}{t_n}=\frac{s}{t}$, given $\lim_{n\to\infty}S_n=s$ and $\lim_{n\to\infty}t_n=t$ with $t_n\neq 0$ $\forall n\in\mathbb{N}$ and $t\neq 0$. b) Show whether the following sequence (x_n) with $x_n=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n}$ is convergent or not. c) Given $x\geq 1$, show that $\lim_{n\to\infty}\left(2x^{1/n}-1\right)^n=x^2$ (5+5+5)