

Universidade Federal De Ouro Preto

Departamento De Engenharia Elétrica – DEELT

Relatório I

Modelagem e Análise de Sistemas Lineares

Análise das respostas dos sistemas RC e RLC série.

Icaro Bicalho Quintão EC-14.1.8083

Breno Cardoso Coelho Turola EE-16.2.8337

Alex Barbosa Teotonio EC-15.2.8044

Verônica Nardy Paiva EC-15.2.8072

1.Objetivo:

O objetivo desta aula prática é levantar as especificações dos sistemas RC e RLC série por meio da montagem dos circuitos e analisar suas respostas transitórias e de regime permanente.

2. Análise circuito RC série.

Inicialmente, determinou-se a função de transferência $\frac{V_0(s)}{Vs}$:

$$V(s) = RI(s) + V_0(s)$$

$$V(s) = RC_sV_0(s) + V_0(s)$$

$$\frac{V_0(s)}{V(s)} = \frac{1}{RCS + 1}$$

$$\tau = RC$$

$$t_s = 0.98 = 1 - e^{\frac{-t}{\tau}}$$

$$0.02 = e^{\frac{-t}{\tau}}$$

$$t_s = -\ln(0.02)\tau$$

$$t_r = 0.9 = 1 - e^{\frac{t}{\tau}}$$

$$t_r = \ln(0.9) - \ln(0.1)$$

$$t_r = 2.2\tau$$

Após a montagem do circuito no protoboard, aplicamos uma entrada ao Degrau com amplitude de 10 V no circuito para observamos a resposta temporal do sistema e suas características para diferentes valores de resistência, mantendo a capacitância constante.

Figura 2: Resposta temporal do circuito RC série para R = 4000 ohms e C = 485 nF.

Figura 2.1: Resposta temporal do Circuito RC série para R = 1960 ohms e C = 485 nF.

Figura 2.2: Resposta temporal Circuito RC série para R = 130.5 ohms e C = 485 nF.

Situação	R (Ω)	C(nF)	τ	Ts	Tr
1	4000	485	63*∈-6	253*∈-6	139* ∈-6
2	1960	485	950 *∈- 6	3.8*∈-3	2.1* ∈-3
3	130.5	485	2.3*∈-3	9.3*∈-3	5.1* ∈-3

Tabela 1: Estimativa da constante de tempo, tempo de acomodação e tempo de subida.

3. Análise circuito RLC série.

$$\begin{split} V(s) &= \left(R + R_{p0T}\right)I(S) + sLI(S) + V_0(S) \\ V(s) &= \left[\left(R + R_{p0T}\right)s + s^2LC + 1\right]V_0(s) \\ \frac{V_0(s)}{V(s)} &= \frac{1}{s^2 + \frac{R + R_{p0T}S}{L} + \frac{1}{LC}} \\ forma\ geral:\ G(s) &= \frac{Kw_r}{s^2 + 2\zeta w_n s + w_n^2} \\ Logo:\ w_r &= \sqrt{\frac{1}{LC}} \\ \zeta w_n s &= \frac{R + R_{p0T}}{L} \end{split}$$

$$\zeta = \frac{R + R_{p0T}}{2Lw_r} = \frac{R + R_{p0T}}{2L\sqrt{\frac{1}{LC}}}$$

Após a montagem do circuito no protoboard, aplicamos uma onda quadrada com amplitude de 10 V, offset de 5 V e frequência de 10Hz no circuito e monitoramos a resposta na saída do sistema (tensão no capacitor) com o auxílio do osciloscópio.

Situação	R(Ω)	Rpot(Ω)	Valor	L (H)	C (F)	ξ	ωn
			Corrigido				
Situação 1	13	239	252	1m	1n	0,1275	1.10^{-6}
Situação 2	13	410	423	1m	1n	0,212	1.10^{-6}
Situação 3	13	660	673	1m	1n	0,336	1.10^{-6}
Situação 4	13	1400	1413	1m	1n	0,709	1.10^{-6}
Situação 5	13	4700	4713	1m	1n	2,358	1.10^{-6}

Situação 1:

Figura 3: Sistema Subamortecido

Situação 2:

Figura 3.1: Sistema Sem Amortecimento

Situação 3:

Figura 3.2: Sistema Subamortecido

Situação 4:

Figura 3.3: Sistema Superamortecido

Situação 5:

Figura 3.4: Sistema Criticamente Amortecido

4. Conclusão

Podemos concluir que no primeiro experimento (RC), a medida em que diminuímos o valor da resistência o modelo do sistema melhora. Já no sistema de segunda ordem (RLC), o potenciômetro controlava o quão o sistema seria amortecido ou não. Ou seja, ele controlava o valor que τ poderia assumir. Contudo, com a efetivação da aula prática , podemos observar e compreender os conceitos abordados em sala de aula , e que as respostas obtidas no mundo real se diferem das respostas obtidas teoricamente.