TD 2 : Logique propositionnelle — syntaxe et sémantique

Exercice 1 – Formules de la logique propositionnelle

▶ Question 1 Parmi les expressions suivantes, quelles sont les formules de la logique propositionnelle? Représenter les formules sous forme d'arbre.

1.
$$r \lor (p \land \neg((\land q) \rightarrow \neg r))$$

2.
$$p \land (r \land ((\neg q) \rightarrow \neg p))$$

3.
$$((q \lor \neg p) \to (\neg \neg q \lor \neg p)) \land r$$

4.
$$((q \lor p) \neg q \land p) \rightarrow r$$

5.
$$\forall x p(x) \land q(x)$$

6.
$$(\neg p \lor p \lor q) \to (\neg r \land \neg q)$$

- 1. Ce n'est pas une formule, puisque l'expression $\wedge q$ n'en est pas une.
- 2. C'est bien une formule : on remarque que les parenthèses autour de $\neg q$ sont inutiles. L'arbre syntaxique associé est :

3. C'est aussi une formule. Ici, il faut faire attention à ne pas simplifier la double négation : l'arbre syntaxique de la formule s'intéresse à la syntaxe de la formule, et syntaxiquement, $\neg \neg p$ et p ne sont pas les mêmes.

- 4. Ce n'est pas une formule, puisque $(q \lor p) \neg q$ ne l'est pas.
- 5. Ce n'est pas une formule de la logique propositionnelle. On verra que c'est une formule de la logique du premier ordre.
- 6. C'est bien une formule de la logique propositionnelle. L'arbre syntaxique associé est :

Exercice 2 - Encore des inductions

▶ Question 1 Définir par induction le nombre d'occurences d'une variable propositionnelle dans une formule.

▶ Question 2 Définir par induction l'ensemble des propositions apparaissant dans une formule.

▶ Question 3 Définir par induction le nombre de connecteurs logiques d'une formule.

Exercice 3 – Arbre syntaxique et formules

Parmi les arbres suivants, repérer les arbres syntaxiques de la logique propositionnelle et les traduire en formules.

- 1. $(p \rightarrow r) \land \neg q$
- 2. Ce n'est pas un arbre syntaxique correct, puisque le connecteur ∨ n'a qu'un fils et qu'il devrait en avoir deux.
- 3. $\neg (r \land (p \lor q))$
- 4. Ce n'est pas un arbre syntaxique correct, puisque ∨ a trois fils au lieu de deux.
- 5. Ce n'est pas un arbre syntaxique correct, car $\neg q$ n'est pas une variable propositionnelle, donc ne peut pas être une feuille.

Exercice 4 - Ensemble des modèles d'une formule

▶ Question 1 Calculez l'ensemble des modèles de la formule $((p \to q) \lor (\neg p \to \neg q)) \land ((q \land r) \to \neg p)$.

On commence par remarque que $\neg(p \rightarrow q) \equiv \neg p \rightarrow \neg q$, donc le premier argument du \land est toujours vrai, donc la valeur de vérité de la formule est celle du second argument. Il suffit donc d'en écrire la table de vérité :

p	q	r	$q \wedge r$	$\neg p$	$\varphi \equiv (q \wedge r) \to \neg p$
faux	faux	faux	faux	vrai	vrai
faux	faux	vrai	faux	vrai	vrai
faux	vrai	faux	faux	vrai	vrai
faux	vrai	vrai	vrai	vrai	vrai
vrai	faux	faux	faux	faux	vrai
vrai	faux	vrai	faux	faux	vrai
vrai	vrai	faux	faux	faux	vrai
vrai	vrai	vrai	vrai	faux	faux

Donc l'ensemble des modèles de φ est $Mod(\varphi) = \mathcal{V} \setminus \left\{ \begin{cases} p \mapsto \mathsf{vrai} \\ q \mapsto \mathsf{vrai} \\ r \mapsto \mathsf{vrai} \end{cases} \right\}$

▶ Question 2 Proposer une définition par induction de l'ensemble des modèles d'une formule φ . On notera $Mod(\varphi)$ la fonction que l'on définit par induction.

L'ensemble des modèles de φ est défini par induction sur les formules par :

- pour $p \in \mathcal{P}$, $Mod(p) = \{ \nu \in \mathcal{V} \mid \nu(p) = \text{vrai} \}$
- $Mod(\neg \varphi) = \mathcal{V} \setminus Mod(\varphi)$
- $Mod(\varphi \wedge \psi) = Mod(\varphi) \cap Mod(\psi)$

▶ Question 3 Montrer que cette définition inductive de l'ensemble des modèles est la même que la définition d'un modèle du cours, c'est-à-dire pour toute valuation ν :

$$\nu \models \varphi \operatorname{ssi} \nu \in Mod(\varphi)$$

Reviens simplement à écrire la définition de chaque côté dans chaque cas de l'induction et trouver que c'est les mêmes...

Exercice 5 – Complétude fonctionnelle

On va compléter la Remarque 27 pour démontrer la propriété suivante :

Propriété 1

Supposons que $\mathcal P$ est fini. Soit $\mathcal V$ l'ensemble des valuations sur $\mathcal P$. Alors, à toute fonction $f:\mathcal V\to\mathbb B$ correspond la sémantique d'une formule propositionnelle sur $\mathcal P$, c'est-à-dire : il existe φ telle que pour toute valuation $\nu\in\mathcal V$, on a $\nu\models\varphi$ si et seulement si $f(\nu)=$ vrai.

▶ Question 1 Pour $\mathcal{P} = \{p_1\}$, quelles sont toutes les fonctions possibles de \mathcal{V} vers \mathbb{B} ? Écrire des formules représentant ces fonctions.

On a 4 functions de $\{p_1 \mapsto \text{faux}, p_1 \mapsto \text{vrai}\}^a$ dans $\{\text{faux}, \text{vrai}\}$:

$$f_1: egin{cases} \mathsf{faux} &\mapsto \mathsf{faux} \\ \mathsf{vrai} &\mapsto \mathsf{faux} \end{cases} \qquad f_2: egin{cases} \mathsf{faux} &\mapsto \mathsf{faux} \\ \mathsf{vrai} &\mapsto \mathsf{vrai} \\ \mathsf{vrai} &\mapsto \mathsf{vrai} \end{cases} \qquad f_4: egin{cases} \mathsf{faux} &\mapsto \mathsf{vrai} \\ \mathsf{vrai} &\mapsto \mathsf{vrai} \\ \mathsf{vrai} &\mapsto \mathsf{vrai} \end{cases}$$

qui sont représentées par les formules $\varphi_1:=p_1\land \neg p_1, \varphi_2:=p_1, \varphi_3:=\neg p_1,$ et $\varphi_4:=p_1\lor \neg p_1.$

a. Que l'on confond avec {faux, vrai} dans la suite.

Question 2 Montrer la Propriété 1. *Indication*: on peut le montrer par récurrence sur le nombre de variables propositionnelles dans \mathcal{P} .

On note $\mathcal{P} = \{p_1, \dots, p_n\}.$

- Pour n = 1, on a une seule variable propositionnelle p_1 . La première question est donc exactement ce qu'il fallait montrer pour l'initialisation.
- Soit $n \in \mathbb{N}^*$. On suppose que la propriété est vraie au rang n. Montrons la propriété au rang n+1. Considérons $\mathcal{P}=\{p_1,\dots,p_{n+1}\}$ et une fonction $f:\mathcal{V}\to\mathbb{B}$. On peut voir chaque valuation sur $\{p_1,\dots,p_n\}$ comme une restriction d'une valuation sur $\{p_1,\dots,p_{n+1}\}$. On représente ces deux restrictions par $f_{\mathsf{faux}}=f_{|\mathcal{V}(p_{n+1})=\mathsf{faux}}$ et $f_{\mathsf{vrai}}=f_{|\mathcal{V}(p_{n+1})=\mathsf{vrai}}$. Les fonctions f_{faux} et f_{vrai} sont donc définies sur l'ensemble des valuations sur $\{p_1,\dots,p_n\}$, ainsi par hypothèse de récurrence, on a deux formules $\varphi_{\mathsf{faux}}(p_1,\dots,p_n)$ et $\varphi_{\mathsf{vrai}}(p_1,\dots,p_n)$ dont la sémantique correspond à f_{faux} et f_{vrai} . On représente donc la fonction f par la formule

$$(\neg p_{n+1} \land \varphi_{\text{faux}}(p_1, \dots, p_n)) \lor (p_{n+1} \land \varphi_{\text{vrai}}(p_1, \dots, p_n))$$

Ce qui prouve l'hypothèse de récurrence au rang n+1. Ainsi, pour tout ensemble $\mathcal{P}=\{p_1,\dots,p_n\}$ fini, toute fonction f allant des valuations sur \mathcal{P} dans $\{\texttt{faux}, \texttt{vrai}\}$ est représentable par une formule F sur \mathcal{P} .

▶ Question 3 Est-ce que cela reste vrai si \mathcal{P} est infini?

Supposons que le théorème de complétude fonctionnelle soit vraie pour la fonction suivante :

$$f: \nu \mapsto \begin{cases} \text{vrai si } |\nu^{-1}(\text{vrai})| = 1\\ \text{faux sinon} \end{cases}$$

C'est-à-dire qu'il existe une formule φ vraie pour une valuation ν si et seulement si $f(\nu)=$ vrai. On va se restreindre dans la suite au cas où $\mathcal P$ est dénombrable et notons $\mathcal P=\{p_0,p_1,\ldots\}$. Puisque l'ensemble des variables propositionnelles apparaissant dans φ est fini, leurs indices dans $\mathcal P$ sont bornés par un entier n. Ainsi, pour toute valuation ν , la véracité de $\nu \models \varphi$ ne change pas si l'on ne modifie pas la valuation sur $\{p_0,\ldots,p_n\}$. Or, pour la valuation $\nu' \in \mathcal V$ qui n'est vraie qu'en p_{n+1} , on a $\nu \models \varphi$ puisque $f(\nu')=$ vrai, et pour la valuation ν'' toujours fausse on a $\nu'' \not\models \varphi$ puisque $f(\nu'')=$ faux. Or, ces deux valuations sont égales sur $\{p_0,\ldots,p_n\}$, donc la valeur de vérité de φ pour ces deux valuations ν',ν'' devrait être la même : contradiction. Pour généraliser à des ensembles $\mathcal P$ non dénombrables, il suffit d'en prendre une sous-partie dénombrable en s'assurant qu'elle contienne les variables propositionnelles de φ , et de continuer le même raisonnement.

Exercice 6 – Le théorème de lecture unique démontré

Le but de cet exercice est de montrer le théorème de lecture unique écrit en cours. Cette fois-ci, on considère que les mots utilisent l'alphabet $\Sigma = \mathcal{P} \cup \{\neg, \land, \lor, \rightarrow, (,)\}$. On reprend les définitions de préfixe, de $|\cdot|_{(}$ et $|\cdot|_{(}$). On ajoute la définition suivante : un *préfixe propre* d'un mot u est est un préfixe de u non vide et non égale à u.

- ▶ Question 1 Montrer que pour toute formule φ vue comme un mot de Σ^* , on a $|\varphi|_{\ell} = |\varphi|_{\lambda}$.
- ▶ Question 2 Soit φ une formule et u un préfixe de φ vu comme un mot de Σ^* . Montrer que $|u|_{\ell} \ge |u|_{\ell}$.
- ▶ Question 3 Soit φ une formule, et supposons que son premier symbole est "(". Soit u un préfixe propre de φ . Montrer que $|u|_{\zeta} > |u|_{\zeta}$.
- ▶ Question 4 Montrer qu'un préfixe propre d'une formule est une formule.
- ▶ **Question 5** Montrer le théorème de lecture unique.

Si ce n'est pas déjà fait, on peut corriger les Exercices II à IV. Ensuite, on peut faire l'Exercices V et VI. Ensuite :

Exercice 7 - Fonction parité

On souhaite étudier la taille d'une formule φ_n sur les variables propositionnelles $\mathcal{P}_n = \{p_1, \dots, p_n\}$ qui représente la fonction parité :

$$\begin{array}{ccc} f: & \mathcal{V} & \rightarrow & \{0,1\} \\ & \nu & \mapsto & \sum_{i=1}^n \delta_{\nu(p_i)}^{\mathsf{vrai}} \mod 2. \end{array}$$

avec $\delta_{b_1}^{b_2}=1$ si $b_1=b_2$, et $\delta_{b_1}^{b_2}=0$ sinon. Pour cet exercice, on va avoir besoin de la notation \mathcal{O} : pour $g:\mathbb{N}\to\mathbb{N}$, $\mathcal{O}(g)$ est l'ensemble des fonctions majorées par une constante fois g sur \mathbb{N} . Quand on l'utilise à l'intérieur d'une expression mathématique, $\mathcal{O}(g)$ désigne un de ses éléments : par exemple, on pourra écrire $g_1(n)=g_2(n)+\mathcal{O}(g(n))$ (même si cette notation est complètement impropre).

▶ Question 1 Donner une formule φ_n de taille quadratique (c.-à-d. dans $\mathcal{O}\left(n^2\right)$) dont la sémantique corespond à la fonction parité (en assimilant vrai à 1 et faux à 0). *Indication : pour une fonction g* : $\mathbb{N} \to \mathbb{N}$ *telle que pour tout* $n \in \mathbb{N}$, $g(n) \leq 4g(\left\lceil \frac{n}{2} \right\rceil) + h(n)$ et $h \in \mathcal{O}(1)$, on a g quadratique.

On définit φ_n par récurrence sur n:

- $-\varphi_1(p_1)=p_1;$
- Pour n > 1,

$$\begin{split} \varphi_n(p_1,\ldots,p_n) &= \\ (\varphi_{\lfloor n/2\rfloor}(p_1,\ldots,p_{\lfloor n/2\rfloor}) \wedge \neg \varphi_{\lceil n/2\rceil}(p_{\lfloor n/2\rfloor+1},\ldots,p_n)) \vee \\ (\neg \varphi_{\lfloor n/2\rfloor}(p_1,\ldots,p_{\lfloor n/2\rfloor}) \wedge \varphi_{\lceil n/2\rfloor}(p_{\lfloor n/2\rfloor+1},\ldots,p_n)) \end{split}$$

La taille de φ_n vérifie $|\varphi_n| \le 4 \left| \varphi_{\lceil n/2 \rceil} \right| + O(1)$ d'où $|\varphi_n|$ quadratique.

▶ Question 2 Montrer que toute formule en forme normale disjonctive qui représente la fonction parité est de taille supérieure ou égale à $n2^{n-1}$.

Soit φ une FND représentant f. Supposons qu'une clause ne parle pas d'une certaine variable p_i . Soit une valuation ν qui rende cette clause vraie. En changeant la valeur de p_i dans ν , la formule reste vraie. Contradiction car φ est censé être une formule pour f. Donc, pour tout $i \in [\![1,n]\!]$, chaque clause contient p_i et/ou $\neg p_i$. Ainsi, la DNF est une disjonction des conjonctions qui, elles, décrivent les valuations complètes qui rendent φ vraie (ou sont ψ). Il doit y en avoir au moins $2^n/2$ (la moitié des valuations sont des modèles f). Puis chaque clause est de longueur au moins n. D'où $n2^{n-1}$.

▶ Question 3 Montrer qu'il en est de même pour une forme normale conjonctive.

Soit φ une forme normale conjonctive pour f. Alors on a ψ la formule obtenue en faisant descendre la négation $\neg \varphi$ obtenu en réalisant le passage d'une formule en FNC à une formule en FND. Sa sémantique correspond trivialement à la fonction 1-f. Par un raisonnement similaire à la question précédente, on montre que ψ doit contenir toutes les clauses avec n littéraux. Donc ψ est de taille au moins $n2^{n-1}$. De même pour φ .

Les étudiants intéressés pourront lire la démonstration dans le livre de Arora et Barak, *Computational Complexity — A Modern Approach*, p. 287.

Exercice 8 - Transformation de Tseitin

On cherche à montrer que, pour toute formule φ du calcul propositionnel, il existe une formule $tr(\varphi)$ sous forme normale conjonctive (CNF) de taille $\mathcal{O}\left(|\varphi|\right)$ et telle que φ et $tr(\varphi)$ sont équisatisfaisables (c'est-à-dire φ est satisfaisable ssi $tr(\varphi)$ est satisfaisable), avec $tr(\varphi)$ calculable en temps polynomial en la taille de φ .

▶ Question 1 Expliquer pourquoi on peut supposer sans perte de généralité que φ ne possède que les connecteurs \land , \lor , \neg .

On peut supposer que φ ne possède que les connecteurs suivants \land, \lor, \neg puisque l'on peut remplacer $\psi_1 \to \psi_2$ par $\neg \psi_1 \lor \psi_2$ ce qui n'augmente la formule d'au plus 2 fois sa taille donc cela restera linéaire en $|\varphi|$.

On note $SF(\varphi)$ l'ensemble des sous-formules de φ (y compris φ). On note $\mathcal P$ l'ensemble des variables de φ .

Pour toute sous-formule $\psi \in SF(\varphi)$, on introduit une nouvelle variable propositionnelle p_{ψ} . La lecture intuitive de p_{ψ} est ψ est vraie.

▶ Question 2 Trouver des formules équivalentes à $p_{\psi_1\bowtie\psi_2}\leftrightarrow p_{\psi_1}\bowtie p_{\psi_2}$ sous CNF pour $\bowtie\in\{\land,\lor\}$ et une formule équivalente à $p_{\neg\psi}\leftrightarrow\neg p_{\psi}$ sous CNF. On appelle respectivement ces formules $tr'(\psi_1\bowtie\psi_2)$ et $tr'(\neg\psi)$.

La transformation $tr'(\psi)$ va permettre de faire le lien sémantique entre les p_{ψ} où $\psi \in SF(\varphi)$. De plus, elle aura l'avantage d'être sous CNF. $tr'(\psi_1 \wedge \psi_2)$:

$$\begin{aligned} p_{\psi_1 \wedge \psi_2} &\leftrightarrow p_{\psi_1} \wedge p_{\psi_2} \equiv (p_{\psi_1 \wedge \psi_2} \rightarrow p_{\psi_1} \wedge p_{\psi_2}) \wedge (p_{\psi_1} \wedge p_{\psi_2} \rightarrow p_{\psi_1 \wedge \psi_2}) \\ &\equiv (\neg p_{\psi_1 \wedge \psi_2} \vee p_{\psi_1}) \wedge (\neg p_{\psi_1 \wedge \psi_2} \vee p_{\psi_2}) \wedge (\neg p_{\psi_1} \vee \neg p_{\psi_2} \vee p_{\psi_1 \wedge \psi_2}) \end{aligned}$$

On pose donc $tr'(\psi_1 \wedge \psi_2) = (\neg p_{\psi_1 \wedge \psi_2} \vee p_{\psi_1}) \wedge (\neg p_{\psi_1 \wedge \psi_2} \vee p_{\psi_2}) \wedge (\neg p_{\psi_1} \vee \neg p_{\psi_2} \vee p_{\psi_1 \wedge \psi_2})$ de taille 10. $tr'(\psi_1 \vee \psi_2)$:

$$\begin{aligned} p_{\psi_1 \vee \psi_2} &\leftrightarrow p_{\psi_1} \vee p_{\psi_2} \equiv (p_{\psi_1 \vee \psi_2} \rightarrow p_{\psi_1} \vee p_{\psi_2}) \wedge (p_{\psi_1} \vee p_{\psi_2} \rightarrow p_{\psi_1 \vee \psi_2}) \\ &\equiv (\neg p_{\psi_1 \vee \psi_2} \vee p_{\psi_1} \vee p_{\psi_2}) \wedge (\neg p_{\psi_1} \vee p_{\psi_1 \vee \psi_2}) \wedge (\neg p_{\psi_2} \vee p_{\psi_1 \vee \psi_2}) \end{aligned}$$

On pose donc $tr'(\psi_1 \vee \psi_2) = (\neg p_{\psi_1 \vee \psi_2} \vee p_{\psi_1} \vee p_{\psi_2}) \wedge (\neg p_{\psi_1} \vee p_{\psi_1 \vee \psi_2}) \wedge (\neg p_{\psi_2} \vee p_{\psi_1 \vee \psi_2})$ de taille 9. $\underline{tr'(\neg \psi)} :$

$$\begin{aligned} p_{\neg \psi} &\leftrightarrow \neg p_{\psi} \equiv (p_{\neg \psi} \to \neg p_{\psi}) \land (\neg p_{\psi} \to p_{\neg \psi}) \\ &\equiv (\neg p_{\neg \psi} \lor \neg p_{\psi}) \land (p_{\psi} \lor p_{\neg \psi}) \end{aligned}$$

On pose donc $tr'(\neg \psi) = (\neg p_{\neg \psi} \lor \neg p_{\psi}) \land (p_{\psi} \lor p_{\neg \psi})$ de taille 5.

On pose:

$$tr(\varphi) = p_{\varphi} \wedge \bigwedge_{\psi \in SF(\varphi) \setminus \mathcal{P}} tr'(\psi)$$

▶ **Question 3** Montrer que $tr(\varphi)$ est de taille $O(|\varphi|)$.

Remarquons que $|SF(\varphi)| \leq 2|\varphi|$ car chaque connecteur donne naissance à au plus 2 sous-formules de φ (on peut représenter la formule φ comme un arbre, celui-ci aura alors seulement des noeuds unaires et binaires).

De plus, pour tout $\psi \in SF(\varphi)$, on a $|tr'(\psi)| \le 10$ En conclusion, on a

$$|tr(\varphi)| \leq |p_{\varphi} \wedge \bigwedge_{\psi \in SF(\varphi) \backslash \mathcal{P}} tr'(\psi)|$$

$$\leq 1 + |\bigwedge_{\psi \in SF(\varphi) \backslash \mathcal{P}} tr'(\psi)|$$

$$\leq 1 + 11|(SF(\varphi) \setminus \mathcal{P})|^{1}$$

$$\leq 1 + 11|(SF(\varphi))|$$

$$\leq 1 + 22|\varphi|$$

Donc $|tr(\varphi)|$ est linéaire en taille de φ .

on a mis 11 car on compte 1 pour chaque ∧ entre chaque clause

▶ Question 4 Montrer que φ et $tr(\varphi)$ sont équisatisfaisables.

Supposons que φ est satisfaisable, il existe donc une valuation ν telle que $\nu(\varphi)=1$. On pose la valuation ν' telle que pour tout $\psi\in SF(\varphi)$, $\nu'(p_{\psi})=\nu(\psi)$. On regarde maintenant $\nu'(tr(\varphi))$.

$$tr(\varphi) = \underbrace{p_{\varphi}}_{\nu'(p_{\varphi})=1} \wedge \bigwedge_{\psi_{1} \wedge \psi_{2} \in SF(\varphi)} tr'(\psi_{1} \wedge \psi_{2}) \wedge \bigwedge_{\psi_{1} \vee \psi_{2} \in SF(\varphi)} tr'(\psi_{1} \vee \psi_{2}) \wedge \underbrace{\bigwedge_{\neg \psi \in SF(\varphi)} tr'(\neg \psi)}_{\neg \psi \in SF(\varphi)} tr'(\neg \psi)$$

On va regarder juste pour $\psi_1 \wedge \psi_2 \in SF(\varphi)$, on ferait pareil pour les autres.

$$\begin{split} \nu'(tr'(\psi_1 \wedge \psi_2)) &= \nu'(p_{\psi_1 \wedge \psi_2} \leftrightarrow p_{\psi_1} \wedge p_{\psi_2}) \\ &= \mathbf{1}_{\nu'(p_{\psi_1 \wedge \psi_2}) = \nu'(p_{\psi_1} \wedge p_{\psi_2})} \\ &= \mathbf{1}_{\nu'(p_{\psi_1 \wedge \psi_2}) = \nu'(p_{\psi_1}) \nu'(p_{\psi_2})} \\ &= \mathbf{1}_{\nu(\psi_1 \wedge \psi_2) = \nu(\psi_1) \nu(\psi_2)} \\ &= 1 \end{split}$$

Ainsi la valuation ν' rend vrai chaque clause, donc $\nu'(tr(\varphi)) = 1$. Ainsi $tr(\varphi)$ est satisfaisable.

Supposons que $tr(\varphi)$ est satisfaisable, il existe donc une valuation ν telle que $\nu(tr(\varphi))=1$.

On pose la valuation ν' telle que pour tout $q \in \mathcal{P}, \nu'(q) = \nu(p_q)$.

Or $\nu(tr(\varphi))=1$, donc $\nu(p_\varphi)=1$ ce qui implique que $\nu'(\varphi)=1$ car la variable associée à une sous-formule est équivalente à cette sous-formule par construction. Pour le prouver, on utilise une induction.

Donc φ est satisfaisable.