Solving Linear Recurrence Relations

Definition 1

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k},$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

The recurrence relation in the definition is **linear** because the right-hand side is a sum of previous terms of the sequence each multiplied by a function of n. The recurrence relation is **homogeneous** because no terms occur that are not multiples of the a_i s. The coefficients of the terms of the sequence are all **constants**, rather than functions that depend on n. The **degree** is k because a_n is expressed in terms of the previous k terms of the sequence.

THEOREM 1

Let c_1 and c_2 be real numbers. Suppose that $r^2 - c_1 r - c_2 = 0$ has two distinct roots r_1 and r_2 . Then the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ if and only if $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for n = 0, 1, 2, ..., where α_1 and α_2 are constants.

EXAMPLE 3 What is the solution of the recurrence relation

$$a_n = a_{n-1} + 2a_{n-2}$$

 $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$ and $a_1 = 7$?

THEOREM 2

Let c_1 and c_2 be real numbers with $c_2 \neq 0$. Suppose that $r^2 - c_1 r - c_2 = 0$ has only one root r_0 . A sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ if and only if $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$, for n = 0, 1, 2, ..., where α_1 and α_2 are constants.

EXAMPLE 5 What is the solution of the recurrence relation

$$a_n = 6a_{n-1} - 9a_{n-2}$$

with initial conditions $a_0 = 1$ and $a_1 = 6$?

THEOREM 3

Let c_1, c_2, \ldots, c_k be real numbers. Suppose that the characteristic equation

$$r^k - c_1 r^{k-1} - \dots - c_k = 0$$

has k distinct roots r_1, r_2, \dots, r_k . Then a sequence $\{a_n\}$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

if and only if

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \dots + \alpha_k r_k^n$$

for n = 0, 1, 2, ..., where $\alpha_1, \alpha_2, ..., \alpha_k$ are constants.

EXAMPLE 6 Find the solution to the recurrence relation

$$a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$$

with the initial conditions $a_0 = 2$, $a_1 = 5$, and $a_2 = 15$.

Determine which of these are linear homogeneous recurrence relations with constant coefficients. Also, find the degree of those that are.

a)
$$a_n = 3a_{n-2}$$

b)
$$a_n = 3$$

b)
$$a_n = 3$$

d) $a_n = a_{n-1} + 2a_{n-3}$

Exercises

- a) $a_n = 3a_{n-2}$ b) c) $a_n = a_{n-1}^2$ d) e) $a_n = a_{n-1}/n$ f) $a_n = a_{n-1} + a_{n-2} + n + 3$ g) $a_n = 4a_{n-2} + 5a_{n-4} + 9a_{n-7}$
- 4. Solve these recurrence relations together with the initial conditions given.

a)
$$a_n = a_{n-1} + 6a_{n-2}$$
 for $n \ge 2$, $a_0 = 3$, $a_1 = 6$

b)
$$a_n = 7a_{n-1} - 10a_{n-2}$$
 for $n \ge 2$, $a_0 = 2$, $a_1 = 1$

c)
$$a_n = 6a_{n-1} - 8a_{n-2}$$
 for $n \ge 2$, $a_0 = 4$, $a_1 = 10$

d)
$$a_n = 2a_{n-1}^{n-1} - a_{n-2}$$
 for $n \ge 2$, $a_0 = 4$, $a_1 = 1$

e)
$$a_n = a_{n-2}$$
 for $n \ge 2$, $a_0 = 5$, $a_1 = -1$

f)
$$a_n = -6a_{n-1} - 9a_{n-2}$$
 for $n \ge 2$, $a_0 = 3$, $a_1 = -3$

g)
$$a_{n+2} = -4a_{n+1} + 5a_n$$
 for $n \ge 0$, $a_0 = 2$, $a_1 = 8$

- **12.** Find the solution to $a_n = 2a_{n-1} + a_{n-2} 2a_{n-3}$ for n = 3, 4, 5, ..., with $a_0 = 3$, $a_1 = 6$, and $a_2 = 0$.
- **13.** Find the solution to $a_n = 7a_{n-2} + 6a_{n-3}$ with $a_0 = 9$, $a_1 = 10$, and $a_2 = 32$.
- **14.** Find the solution to $a_n = 5a_{n-2} 4a_{n-4}$ with $a_0 = 3$, $a_1 = 2$, $a_2 = 6$, and $a_3 = 8$.