PROBLEM SET 01: THE REAL NUMBER SYSTEM

- Let A be a nonempty subset of \mathbb{R} and $M \in \mathbb{R}$. Prove that $M = \sup A$ if and only if M is an upper bound of A,
 - for any $\varepsilon > 0$, there exists $x \in A$ such that $x > M \varepsilon$.
- Let A, B be nonempty subsets of \mathbb{R} with $A \subset B$. Prove

$$\inf B \le \inf A \le \sup A \le \sup B.$$

- Prove that for any $x \in \mathbb{R}$, there exists $m \in \mathbb{N}$ such that -m < x.
- Let $x, y \in \mathbb{R}$ such that x < y. Show that there exist $m, n \in \mathbb{N}$ such that $x < x + \frac{1}{m} < y$ and $x < y \frac{1}{n} < y$.
- (6) Let x>0. Prove that there exists $n\in\mathbb{N}$ such that $x>\frac{1}{n}$.
 - Let $x \geq 0$. Prove that x = 0 if and only if $x \leq \frac{1}{n}$ for every $n \in \mathbb{N}$.
- Let $U_n = (0, \frac{1}{n})$ and $V_n = (\frac{1}{n}, 1)$. Find $\cap_n U_n$ and $\cup_n V_n$.
- Find the supremum and infimum of the following sets:
 - (a,b), where $a,b \in \mathbb{R}$.
 - (b) $\{1 \frac{1}{n^2} : n \in \mathbb{N}\}.$

 - $(x \in \mathbb{R} : x^2 5x + 6 < 0).$
 - The set of real numbers in (0,1) whose decimal expansions contains only 0's and 1's.
 - Let A be a nonempty subset of \mathbb{R} and $x, M \in \mathbb{R}$. Define the distance between x and A by

$$d(x,A) = \inf\{|x-a| : a \in A\}.$$

- If $M = \sup A$, show that d(M, A) = 0.
- Let $A, B \subset \mathbb{R}$ be nonempty such that $\alpha = \sup A$ and $\beta = \sup B$. Show that A + B is bounded above and $\sup(A + B) = \alpha + \beta$.
- (10) (\mathbb{Q} does not have the LUB property)
 - (a) Let $x \in \mathbb{Q}$ and x > 0. If $x^2 < 2$, show that there exists $n \in \mathbb{N}$ such that $(x + \frac{1}{n})^2 < 2$. Likewise, if $x^2 > 2$, show that there exists $m \in \mathbb{N}$ such that $(x - \frac{1}{m})^2 > 2$.
 - (b) Show that the set $A = \{r \in \mathbb{Q} : r > 0, r^2 < 2\}$ is bounded above in \mathbb{Q} but it does not have the LUB property in \mathbb{Q} .
 - (c) From part (b), \mathbb{Q} does not have the LUB property.
 - (d) Let A be the set defined in part (b) and $M = \sup A$. Show that $M^2 = 2$.

PROBLEM SET 02: SEQUENCES AND THEIR CONVERGENCE

- Let $x_n \to \ell$. Show that if we alter a finite number of terms of (x_n) , the new sequence still converges to ℓ .
- (2) Let $x_n \to \ell$. If $\ell > 0$, then show that except for a finite number of terms, all $x_n > 0$.
- (3) Let $x_n \leq y_n$ for all n such that $x_n \to x$ and $y_n \to y$. Show that $x \leq y$.
- (4) True or False:
 - (a) If (x_n) and (x_ny_n) are bounded, then (y_n) is bounded.
 - (\mathcal{Y}) If (x_n) and (y_n) are such that $x_ny_n\to 0$, then one of the sequences converges to 0.
- (5) In each of the following sequences, write the first following terms of (x_n) , and then investigate its convergence.
 - (a) $x_n = \frac{n^r}{(1+s)^n}$, where r, s > 0.
 - (b) $x_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} \cdots + \frac{1}{\sqrt{n^2+n}}$.
 - (c) $x_n = \frac{n^2}{n^3 + n + 1} + \frac{n^2}{n^3 + n + 2} + \dots + \frac{n^2}{n^3 + n + n}$.
 - (d) $x_n = a^n (2n)^b$ where 0 < a < 1 and b > 1.
 - (x) $x_n = (a^n + b^n)^{1/n}$ where 0 < a < b.
 - (f) $x_n = n^{\alpha} (n+1)^{\alpha}$ for some $\alpha \in (0,1)$.
- (6) Show that the sequence (x_n) is bounded and monotone, and find its limit where
 - (a) $x_1 = 1$ and $x_{n+1} = \sqrt{3x_n}$.
 - (b) $x_1 = 1$ and $x_{n+1} = \frac{4+3x_n}{3+2x_n}$.
- (7) Let $M = \sup A \subset \mathbb{R}$. Show that there exists a sequence (x_n) in A such that $x_n \to M$. Prove the analogous result for infimum as well.
- (8) Show that the sequence $x_n = \sum_{k=1}^n \frac{1}{k}$ diverges to ∞ .
- (9) Let $0 < y_1 < x_1$. For $n \ge 2$, define

$$x_{n+1} = \frac{x_n + y_n}{2}$$
 and $y_{n+1} = \sqrt{x_n y_n}$.

- (a) Prove that (y_n) is increasing and bounded above while (x_n) is decreasing and bounded below.
- (b) For $n \in \mathbb{N}$, prove that

$$0 < x_{n+1} - y_{n+1} < \frac{1}{2^n} (x_1 - y_1).$$

- (c) Prove (x_n) and (y_n) converges to the same limit.
- (10) (**Euler's number** e) In general, it may not be possible to explicitly find the limit of a convergent sequence. So, some real numbers are defined as the limit of such sequences.

Let $x_n = (1 + \frac{1}{n})^n$. Prove that (x_n) is increasing and bounded above. Define $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$. Show that e is irrational.

PROBLEM SET 03: CAUCHY SEQUENCES AND SUBSEQUENCE

(3) Let (x_n) be a sequence and let a > 1. Assume that $|x_{k+1} - x_k| < a^{-k}$ for all $k \in \mathbb{N}$. Show that (x_n) is Cauchy. final GP solution?

(4) Let (x_n) be defined by

$$x_n = \frac{1}{1!} - \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{(-1)^{n+1}}{n!}.$$

Show that (x_n) converges.

(5) Show that the sequences (x_n) defined below are Cauchy.

$$\sqrt{a}$$
) $x_1 = 1$, $x_{n+1} = \frac{1}{2+x_n^2}$.

$$(x_1)$$
 $x_1 = 1, x_{n+1} = \frac{1}{6}(x_n^2 + 8).$

(c)
$$x_1 = \frac{1}{2}, x_{n+1} = \frac{1}{7}(x_n^3 + 2).$$

(1) $x_1 = a, x_2 = b, x_{n+2} = \frac{x_n + x_{n+1}}{2}$, where a and b are two distinct real numbers. and find the limit

(e) Let
$$0 < a \le x_1 \le x_2 \le b$$
, $x_{n+2} = \sqrt{x_{n+1}x_n}$.

(6) Show that the following sequences cannot converge.

(a)
$$x_n = 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}$$

(b)
$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
. x1, x2, x4, x8...

(7) Let (x_n) be a sequence such that $|x_n| \leq \frac{1+n}{1+n+2n^2}$ for all n. Prove that (x_n) is Cauchy.

(8) Show that if a monotone sequence has a convergent subsequence, then it is convergent.

(9) Let (r_n) be an enumeration of all rational numbers in [0,1]. Show that (r_n) is not convergent.

(10) (Elaborate version of Bolzano-Weierstrass Theorem) Let (x_n) be a sequence. If (x_n) is bounded above and does not diverge to $-\infty$, then prove that (x_n) has a convergent subsequence. Likewise, if (x_n) is bounded below and does not diverge to ∞ , then prove that (x_n) has a convergent subsequence.

CONTINUITY AND LIMITS

- Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function such that f(c) > 0 for some $c \in \mathbb{R}$. Show that there exists an $\epsilon > 0$ such that f(x) > 0 for all $x \in (c \epsilon, c + \epsilon)$.
- (2) Let $f:(-1,1)\to\mathbb{R}$ be a continuous function such that in every neighborhood of 0, there exists a point where f takes the value 0. Show that f(0)=0.
- (3) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. If f is continuous at 0, show that f is continuous everywhere.
- (4) Discuss the continuity/discontinuity for the following functions

(a) $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by

$$f(x) = \begin{cases} 3x + 1, & \text{if } x \in \mathbb{Q} \\ x, & \text{otherwise.} \end{cases}$$
 discontinuous everywhere except at x = -1/2

(b) $f:[0,\pi] \longrightarrow \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0, & \text{if } x = 0 \\ x \sin \frac{1}{x} - \frac{1}{x} \cos \frac{1}{x}, & \text{otherwise.} \end{cases}$$

- \checkmark 5) Let A be a nonempty subset of \mathbb{R} and $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = \inf\{|x a| : a \in A\}$. Show that f is continuous on \mathbb{R} .
- (6) Let $J = \{\frac{1}{n} : n \in \mathbb{N}\}$. Show that any function $f : J \longrightarrow \mathbb{R}$ is continuous on J.
- (7) A function $f:[a,b] \longrightarrow \mathbb{R}$ is said to be Lipschitz on [a,b] if there exists L > 0 such that $|f(x) f(y)| \le L|x y|$ for all $x, y \in [a,b]$. Show that any Lipschitz function is continuous.
- (8) Let $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ be continuous such that given any two points x < y, there exists a point z such that x < z < y and f(z) = g(z). Show that f(x) = g(x) for all x.
- (2) Let $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ be continuous. If f(x) = g(x) for $x \in \mathbb{Q}$, then show that f = g.
- (10) Let $f:[0,\infty)\to\mathbb{R}$ be given by

$$f(x) = \begin{cases} 1, & \text{if } x = 0, \\ 1/q, & \text{if } x = p/q, \text{ where } p, q \in \mathbb{N} \text{ and } p, q \text{ have no common factors }, \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$$

Show that f is continuous at every irrational in $[0, \infty)$.

PROPERTIES OF CONTINUOUS FUNCTIONS

- $\sqrt{1}$) Let $f: J \to \mathbb{R}$ be a strictly monotonic function such that f(J) is an interval. Show that f is continuous.
- \checkmark 2) Let $f:[a,b] \to [a,b]$ be continuous. Show that f has a fixed point in [a,b], i.e., $\exists c \in [a,b]$ such that f(c) = c.
- (3) Prove that $x = \cos x$ for some $x \in (0, \pi/2)$.
- (4) Prove that $xe^x = 1$ for some $x \in (0, 1)$.
- (5) Is there a continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f(x) \notin \mathbb{Q}$ for $x \in \mathbb{Q}$ and $f(x) \in \mathbb{Q}$ for $x \notin \mathbb{Q}$.
- (6) Show that a polynomial of odd degree has at least one real root.
- (7) Show that $x^4 + 5x^3 7$ has at least two real roots.
- (8) Let $p(X) := a_0 + a_1 X + \dots + a_n X^n$, n is even. If $a_0 a_n < 0$, show that p has at least two real roots.
- (9) Let $f:[a,b] \longrightarrow \mathbb{R}$ be continuous. Show that f([a,b]) = [c,d] for some $c,d \in \mathbb{R}$ with $c \leq d$. Can you identify c,d.
- $\sqrt{10}$) Construct a continuous bijection $f:[a,b] \longrightarrow [c,d]$ such that f^{-1} is continuous.
- $\sqrt{11}$) Construct a continuous function from (0,1) onto [0,1]. Can such a function be one-one.
- (12) Construct a continuous one-one function from (0,1) to [0,1]. Can such a function be onto.

DIFFERENTIABILITY

- $\sqrt{1}$ Discuss the differentiability of the following functions at x=0.
 - (A) $f(x) = x^{\frac{1}{3}}$
 - (b) $f(x) = x^2$ for rational x and f(x) = 0 for irrational x.
 - $f(x) = x \sin x \cos \frac{1}{x}$ for $x \neq 0$ and f(0) = 0.
 - (d) Let m, n be positive integers. Define

$$f(x) = \begin{cases} x^n, & x \ge 0 \\ x^m, & x < 0. \end{cases}$$

- \checkmark 2) Give an example of a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ which is differentiable only at x = 1.
- (3) Let $n \in \mathbb{N}$. Define $f : \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x) = x^n$ for $x \ge 0$ and f(x) = 0 if x < 0. For which values of n,
 - (2) is f continuous at 0?
 - (b) is f differentiable at 0?
 - (\mathscr{C}) is f' continuous at 0?
 - (d) is f' differentiable at 0?
- \checkmark 4) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $|f(x)| \leq x^2$ for all $x \in \mathbb{R}$. Discuss the differentiability of f at 0.
- (6) Find the number of real solutions of the following equations.
 - (a) $2x \cos^2 x + \sqrt{7} = 0$.
 - (8) $x^{17} e^{-x} + 5x + \cos x$.
- Let $P(X) := \sum_{k=0}^{n} a_k X^k$, $n \ge 2$ be a real polynomial. Assume that all roots of P lie in \mathbb{R} . Show that all roots its derivative P'(X) are also real.
- (a_1, a_2, \dots, a_n) be real numbers such that $a_1 + a_2 + \dots + a_n = 0$. Show that the polynomial $q(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1}$ has at least one real root.
- (8) Let $f:[a,b] \to \mathbb{R}$ be such that f'''(x) exists for all $x \in [a,b]$. Suppose f(a) = f(b) = f'(a) = f'(b) = 0 Show that the equation f'''(x) = 0 has a solution.
- (9) Let $f:(a,b)\to\mathbb{R}$ be a function. Prove that f is differentiable at x if and only if there exists a (unique) linear map $A:\mathbb{R}\to\mathbb{R}$ such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - Ah}{|h|} = 0.$$

(10) (**Differentiable Inverse Theorem**). Suppose $f: J \to \mathbb{R}$ is a one-one and continuous function. If f is differentiable at c and $f'(c) \neq 0$, then $f^{-1}: f(J) \to J$ is differentiable at f(c) and $f(c) = \frac{1}{f'(c)}$.

1

MEAN VALUE THEOREM

- (1) Find values of the constants a, b and c for which the graphs of the two functions $f(x) = x^2 + ax + b$ and $g(x) = x^3 c$, $x \in \mathbb{R}$ intersect at the point (1, 2) and the have the same tangent there.
- (2) Let $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable. Assume that f(0) = g(0) and $f'(x) \leq g'(x)$, $\forall x \in \mathbb{R}$. Show that $f(x) \leq g(x)$ for $x \geq 0$.
- (3) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable. Assume that $1 \leq f'(x) \leq 2$ for $x \in \mathbb{R}$ and f(0) = 0. Prove that $x \leq f(x) \leq 2x$ for $x \geq 0$.
- (4) Use MVT to establish the following inequalities
 - (a) $e^x > 1 + x, \ \forall \ x \in \mathbb{R}$.
 - (b) $\frac{y-x}{y} < \log \frac{y}{x} < \frac{y-x}{x}$ for 0 < x < y.
 - $(n) \frac{1}{2\sqrt{n+1}} < \sqrt{n+1} \sqrt{n} < \frac{1}{2\sqrt{n}}, \ \forall \ n \in \mathbb{N}.$
 - (d) If $e \le a < b$, then $a^b > b^a$. (Hint: Use part (b)).
 - **Bernoullis Inequality:** Let $\alpha > 0$ and $h \ge -1$. Then

$$(1+h)^{\alpha} \le 1+\alpha h$$
, for $0 < \alpha \le 1$,

$$(1+h)^{\alpha} \geq 1+\alpha h$$
, for $\alpha \geq 1$.

- (5) Prove that $\frac{\sin x}{x}$ is strictly decreasing on $(0, \pi/2)$.
- (6) Let $f:[0,1] \to \mathbb{R}$ be differentiable such that $|f'(x)| < 1, \ \forall \ x \in [0,1]$. Show that f has at most one fixed point.
- (7) Let $f:[0,1] \longrightarrow \mathbb{R}$ be differentiable and f(0)=0. Suppose that $|f'(x)| \le |f(x)| \ \forall \ x \in [0,1]$. Show that f=0.
- (8) Let $f:(0,1] \to \mathbb{R}$ be differentiable with |f'(x)| < 1. Define $a_n := f(1/n)$. Show that (a_n) converges.
- (9) Let $f:[a,b] \longrightarrow \mathbb{R}$ be differentiable and $a \ge 0$. Using Cauchy mean value theorem, show that there exist $c_1, c_2 \in (a,b)$ such that $\frac{f'(c_1)}{a+b} = \frac{f'(c_2)}{2c_2}$.

LOCAL EXTREMA AND POINTS OF INFLECTION

- 1) Let $h: \mathbb{R} \longrightarrow \mathbb{R}$ be defined as h(x) = f(x)g(x), where f and g are non-negative functions. Show that h has a local maximum at a if f and g have a local maximum at a.
- 2) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(x) = (\sin x \cos x)^2$. Find the maximum value of f on
- (3) Let $f: [-2,0] \longrightarrow \mathbb{R}$ be defined by $f(x) = 2x^3 + 2x^2 2x 1$. Find the maximum and minimum values of f on [-2,0].
- (4) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be such that $f'(x) = 14(x-2)(x-3)^2(x-4)^3(x-5)^4$. Find all the points of local maxima and local minima.
- Let $x_1, x_2, \ldots, x_n \in \mathbb{R}$ and $f(x) = \sqrt{(x-x_1)^2 + (x-x_2)^2 + \cdots + (x-x_n)^2}, x \in \mathbb{R}$. Find the point of absolute minimum of the function f. Find the point of absolute minimum of the function f.
- (6) Find the points of local maxima and local minima of $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by f(x) = f(x) $2x^4e^{-x^2}$.
- 7) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a twice differentiable function with the following properties: f(-1) = 4, f(0) = 2, f(1) = 0, f'(x) > 0 for |x| > 1, f'(x) < 0 for |x| < 1, f'(1) = 0, f'(-1) = 0, f''(x) < 0 for x < 0 and f''(x) > 0 for x > 0. Sketch the graph of f.
- 8) Sketch the graphs of the following functions after finding the intervals of decrease/increase, concavity/convexity, points of local minima/local maxima, points of inflection and asymp-

(a)
$$f(x) = \frac{x^2 + x - 5}{x - 1}$$

$$f(x) = \frac{2x^2 - 1}{x^2 - 1}$$

(a)
$$f(x) = \frac{x^2 + x - 5}{x - 1}$$
 (b) $f(x) = \frac{2x^2 - 1}{x^2 - 1}$ (c) $f(x) = \frac{x^2}{x^2 + 1}$

(1)
$$f(x) = \frac{2x^3}{x^2 - 4}$$

$$f(x) = 3x^4 - 8x^3 + 12.$$

TAYLOR'S THEOREM

- Let $f:[a,b] \longrightarrow \mathbb{R}$ and n be a non-negative integer. Suppose that $f^{(n+1)}$ exists on [a,b]. Show that f is a polynomial of degree $\leq n$ if $f^{(n+1)}(x) = 0$ for all $x \in [a,b]$. Observe that the statement for n = 0 can be proved by the mean value theorem.
- (2) Show that $1 + \frac{x}{2} \frac{x^2}{8} \le \sqrt{1+x} \le 1 + \frac{x}{2}$ for x > 0.
- (3) Show that for $x \in \mathbb{R}$ with $|x|^5 < \frac{5!}{10^4}$, we can replace $\sin x$ by $x \frac{x^3}{6}$ with an error of magnitude less than or equal to 10^{-4} .
- (4) Prove the binomial expansion: $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + x^n, \ x \in \mathbb{R}$.
- (5) Using Taylor's theorem compute: $\lim_{x\to 0} \frac{1-\sqrt{1-x^2}\cos x}{x^4}$.
- (6) If $x \in [0,1]$ and $n \in \mathbb{N}$, show that

$$\left| \ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} \right) \right| < \frac{x^{n+1}}{n+1}.$$

(7) (a) Let $f:[a,b] \longrightarrow \mathbb{R}$ be such that $f''(x) \ge 0$ for all $x \in [a,b]$. Suppose $x_0 \in [a,b]$. Show that for any $x \in [a,b]$

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$

i.e., the graph of f lies above the tangent line to the graph at $(x_0, f(x_0))$.

- (b) Show that $\cos y \cos x \ge (x y)\sin x$ for all $x, y \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.
- (8) (a) Let $f:[a,b] \longrightarrow \mathbb{R}$ be such that $f''(x) \ge 0$ for all $x \in [a,b]$. Suppose $x,y \in (a,b), x < y$ and $0 < \lambda < 1$. Show that

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

i.e., the chord joining the two points (x, f(x)) and (y, f(y)) lies above the portion of the graph $\{(z, f(z)) : z \in (x, y)\}$.

- (b) Show that $\lambda \sin x \leq \sin \lambda x$ for all $x \in [0; \pi]$ and $0 < \lambda < 1$.
- (9) Let f be a twice differentiable function on \mathbb{R} such that $f''(x) \geq 0$ for all $x \in \mathbb{R}$. Show that if f is bounded then it is a constant function.
- (10) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be such that f'''(x) > 0 for all $x \in \mathbb{R}$. Suppose that $x_1, x_2 \in \mathbb{R}$ and $x_1 < x_2$. Show that $f(x_2) f(x_1) > f'\left(\frac{x_1 + x_2}{2}\right)(x_2 x_1)$.
- (11) Suppose f is a three times differentiable function on [-1,1] such that f(-1)=0, f(1)=1 and f'(0)=0. Using Taylor's theorem show that $f'''(c)\geq 3$ for some $c\in (-1,1)$.

1

SERIES

1) Prove that if a series $\sum_{n=1}^{\infty} a_n$ converges, then the sum is unique.

(2) Show that $\sum_{n=1}^{\infty} a_n$ converges if and if $\sum_{n=k}^{\infty} a_n$ converges for any $k \in \mathbb{N}$.

 (a_n) be any sequence of real numbers. Show that this sequence converges to a number S if and only if the series

$$a_1 + \sum_{n=2}^{\infty} (a_n - a_{n-1})$$

converges and has sum S. Verify the convergence/divergence of the following series:

(a) $\sum_{n=1}^{\infty} \frac{4}{(4n-3)(4n+1)}$. (b) $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$.

 \checkmark 4) Let $\sum_{n=1}^{\infty} a_n$ converges and $a_n > 0$ for all n. If (a_{n_k}) is a subsequence of (a_n) , show that

 $\sum_{k=1}^{\infty} a_{n_k}$ also converges. (5) Let $\sum_{n=1}^{\infty} a_n$ be a convergent series. Show that for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\sum_{n=N+1}^{\infty} a_n < \epsilon$. The series $\sum_{n=N+1}^{\infty} a_n$ is called a tail of the series $\sum_{n=1}^{\infty} a_n$.

(6) Express the infinite repeating decimal

$0.123451234512345123451234512345\dots$

as the sum of a convergent geometric series and compute its sum.

(7) Show that

$$\frac{1}{r-1} = \frac{1}{r+1} + \frac{2}{r^2+1} + \frac{4}{r^4+1} + \frac{8}{r^8+1} + \cdots$$

(8) Obtain a formula for the following sums
$$2 + \frac{2}{\sqrt{2}} + 1 + \frac{1}{\sqrt{2}} + \frac{1}{2} + \frac{1}{2\sqrt{2}} + \cdots$$

(a)
$$\sum_{k=1}^{\infty} \frac{1}{k(k+2)(k+4)}$$

(c)
$$\sum_{k=1}^{\infty} \frac{\alpha r + \beta}{k(k+1)(k+2)}$$

(c) $\sum_{k=1}^{\infty} \frac{1}{k(k+2)(k+4)}.$ (d) $\sum_{k=1}^{\infty} \frac{\alpha r + \beta}{k(k+1)(k+2)}.$ (e) $\sum_{k=1}^{\infty} \frac{\alpha r + \beta}{k(k+1)(k+2)}.$ (f) Let $\sum_{n=1}^{\infty} a_n \text{ be a convergent series and } \sum_{n=1}^{\infty} b_n \text{ is obtained by grouping finite number}$ of terms of $\sum_{n=1}^{\infty} a_n$ such as $(a_1 + a_2 + \dots + a_{m_1}) + (a_{m_1+1} + a_{m_1+2} + \dots + a_{m_2}) + \dots$ for some m_1, m_2, \dots (Here $b_1 = a_1 + a_2 + \dots + a_{m_1}, b_2 = a_{m_1+1} + a_{m_1+2} + \dots + a_{m_2}$ and so on). Show that $\sum_{n=1}^{\infty} b_n$ converges and has the same limit as $\sum_{n=1}^{\infty} a_n$. What happens if $\sum_{n=1}^{\infty} a_n$ diverges?

2 SERIE

- 10) Let $a_n \geq 0$ for all n such that $\sum_{n=1}^{\infty} a_n$ converges. Suppose $\sum_{n=1}^{\infty} b_n$ is obtained by rearranging the terms of $\sum_{n=1}^{\infty} a_n$ (i.e., the terms of $\sum_{n=1}^{\infty} b_n$ are same as those of $\sum_{n=1}^{\infty} a_n$ but they occur in different order). Show that $\sum_{n=1}^{\infty} b_n$ converges and has the same limit as $\sum_{n=1}^{\infty} a_n$.
- (11) Consider the series $\sum_{n=1}^{\infty} a_n$ where $a_n = \frac{(-1)^{n+1}}{n}$. Show that the series

$$(1-\frac{1}{2})-\frac{1}{4}+(\frac{1}{3}-\frac{1}{6})-\frac{1}{8}+(\frac{1}{5}-\frac{1}{10})-\frac{1}{12}+\cdots$$

which is obtained from $\sum_{n=1}^{\infty} a_n$ by rearranging and grouping, is $\frac{1}{2} \sum_{n=1}^{\infty} a_n$.

CONVERGENCE TESTS I: COMPARISON, LIMIT COMPARISON AND CAUCHY CONDENSATION TESTS

(1)	Let $a_n \ge 0$ for	all $n \in \mathbb{N}$.	If $\sum_{n=1}^{\infty} a$	n converges,	then sh	now that	the following	series	also
	converge.								

$$\sqrt{\mathbf{a}}) \sum_{n=1}^{\infty} a_n^2.$$

$$\checkmark b) \sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}.$$

$$\sqrt{c}$$
) $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$.

from 1a, this means that there is a negative term in the sequence

$$\checkmark$$
2) Let $\sum_{n=1}^{\infty} a_n$ be a convergent series. Show that $\sum_{n=1}^{\infty} |a_n|$ diverges if $\sum_{n=1}^{\infty} a_n^2$ diverges.

Let
$$a_n, b_n \geq 0$$
 for all $n \in \mathbb{N}$. Show that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converges if and only if $\sum_{n=1}^{\infty} \sqrt{a_n^2 + b_n^2}$ converges.

$$\sqrt{4}$$
) Suppose $a_n > 0$ for all n and $\sum_{n=1}^{\infty} a_n$ converges. Show that $\sum_{n=1}^{\infty} (1 - \frac{\sin a_n}{a_n})$ converges.

Let
$$(a_n)$$
 be a sequence of positive real numbers such that $a_{n+1} \leq a_n$ for all n and $\sum_{n=1}^{\infty} a_n$ converges. Show that $\sum_{n=1}^{\infty} n(a_n - a_{n+1})$ converges.

(6) Show that
$$\sum_{n=1}^{\infty} \frac{1}{n(\ln n)(\ln(\ln n))}$$
 diverges.

In each of the following cases, discuss the convergence/divergence of the series
$$\sum_{n=2}^{\infty} a_n$$
 where a_n equals
$$(1 + \frac{1}{(\ln n)^p}), (p > 0) \qquad (1 + \frac{1}{\sqrt{n}}) \qquad (1 + \frac{1}{n^2 - \ln n}) \qquad (1$$

$$\frac{1}{(\ln n)^p}, (p > 0)$$

$$\oint \frac{\sin\frac{1}{n}}{\sqrt{n}}$$

$$(n) \frac{1}{n^2 - \ln n}$$

$$\sqrt{1}$$
) e^{-n^2}

$$\stackrel{\checkmark}{e}) \frac{1}{n^{1+\frac{1}{n}}}$$

$$\sqrt{1-\cos\frac{\pi}{n}}$$

$$(\ln n)\sin\frac{1}{n^2}$$

$$(n+2)(1-\cos\frac{1}{n})$$

$$(i)$$
 $\frac{3+\cos n}{e^n}$

$$(n+1)$$
 $\frac{2+\sin^3(n+1)}{2^n+n^2}$

$$\sqrt{n+1}-\sqrt{n}$$

CONVERGENCE TESTS II: RATIO, ROOT AND LEIBNIZS TESTS

- Observation Determine the values of $\alpha \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} (\frac{\alpha n}{n+1})^n$ converges.
- Consider $\sum_{n=1}^{\infty} a_n$, where $a_n > 0$ for all n. Prove or disprove the following statements.
 - \sqrt{a}) If $\frac{a_{n+1}}{a_n} < 1$ for all n, then the series converges.
 - (b) If $\frac{a_{n+1}}{a_n} > 11$ for all n, then the series diverges.
- (3) Show that the series $\frac{1}{1^2} + \frac{1}{2^3} + \frac{1}{3^2} + \frac{1}{4^3} + \frac{1}{5^2} + \frac{1}{6^3} + \cdots$ converges and that the root test and ratio test are not applicable.
- Consider the rearranged geometric series $\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \frac{1}{128} + \frac{1}{64} + \cdots$. Show that the series converges by the root test and that the ratio test is not applicable.
- (5) (a) If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converges absolutely, show that $\sum_{n=1}^{\infty} a_n b_n$ converges ab-
 - (b) If $\sum_{n=1}^{\infty} a_n$ converges absolutely and (b_n) is a bounded sequence, show that $\sum_{n=1}^{\infty} a_n b_n$ converges absolutely.
 - (c) Give an example of a convergent series $\sum_{n=1}^{\infty} a_n$ and a bounded sequence (b_n) such that $\sum_{n=1}^{\infty} a_n b_n$ diverges.
- (\mathscr{G}) n each of the following cases, discuss the convergence/divergence of the series $\sum_{n=1}^{\infty} a_n$ where a_n equals
 - (2) $\frac{n!}{n^n}$

- $\frac{n!}{(e)^{n^2}}$ $\frac{n^2 2^n}{(2n+1)}$

- $(1 \frac{1}{n})^{n^2} \qquad (1 + \frac{1}{n})^{n^2} \qquad g) \sin(\frac{(-1)^n}{n^p}), \ p > M \frac{1}{2^n n}$

- $(1+\frac{2}{n})^{n^2-\sqrt{n}}$ $(1+\frac{2}{n})^{n^2-\sqrt{n}}$