Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben Bearbeitungszeit: 90 min		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 3 für Physiker (Analysis 2) Prof. Dr. S. Warzel 4. August 2015, 15:00 – 16:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben Bearbeitungszeit: 90 min	I	l II
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 3 für Physiker (Analysis 2) Prof. Dr. S. Warzel 4. August 2015, 15:00 – 16:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben Bearbeitungszeit: 90 min		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik 6 Klausur Mathematik 3 für Physiker (Analysis 2) Prof. Dr. S. Warzel 4. August 2015, 15:00 – 16:30 Uhr Hörsaal: Reihe: Platz: II Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben Bearbeitungszeit: 90 min		
Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 3 für Physiker (Analysis 2) Prof. Dr. S. Warzel 4. August 2015, 15:00 − 16:30 Uhr Hörsaal:		
Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN 5 Fakultät für Mathematik 6 Klausur 7 Mathematik 3 für Physiker 8 (Analysis 2) 8 Prof. Dr. S. Warzel Σ 4. August 2015, 15:00 − 16:30 Uhr I Hörsaal: Reihe: Platz: Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben II Bearbeitungszeit: 90 min II 2		
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Mathematik 3 für Physiker (Analysis 2) Prof. Dr. S. Warzel 4. August 2015, 15:00 – 16:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben Bearbeitungszeit: 90 min		
TECHNISCHE UNIVERSITÄT MÜNCHEN 6 Fakultät für Mathematik 6 Klausur 7 Mathematik 3 für Physiker 8 (Analysis 2) 8 Prof. Dr. S. Warzel ∑ 4. August 2015, 15:00 − 16:30 Uhr I Hörsaal: Platz: Hinweise: I Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben II Bearbeitungszeit: 90 min II		
Fakultät für Mathematik Klausur Mathematik 3 für Physiker (Analysis 2) Prof. Dr. S. Warzel 4. August 2015, 15:00 − 16:30 Uhr Hörsaal: Reihe: Platz: Infinity Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben Bearbeitungszeit: 90 min		
Klausur		
Prof. Dr. S. Warzel 4. August 2015, 15:00 − 16:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben II II Bearbeitungszeit: 90 min II II		
4. August 2015, 15:00 − 16:30 Uhr Hörsaal:		
4. August 2015, 15:00 – 16:30 Uhr Hörsaal: Reihe: Platz: I Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben Bearbeitungszeit: 90 min		
Hörsaal: Reihe: Platz: II Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben Bearbeitungszeit: 90 min		
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben Bearbeitungszeit: 90 min		
Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben Bearbeitungszeit: 90 min	Erstkorrek	tur
	Zweitkorre	 ektur
Erlaubte Hilfsmittel: ein selbsterstelltes DIN A4 Blatt		
Erreichbare Gesamtpunktzahl: 54 Punkte		
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.		

Vorzeitig abgegeben um

 $Be sondere\ Bemerkungen:$

1. Stetigkeit und Differentiat Sei $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = (1 + x)$	(4 Punkte) rten an:						
(a) f ist im Ursprung stetig.			\Box J	a □ Nei	n		
(b) Die partielle Ableitung e	$\partial_1 f(0,0)$ ist						
	$-1 \qquad \Box \ 0$	$\Box \frac{1}{2}$	□ 1	\square nicht def	finiert.		
(c) Die partielle Ableitung $\partial_2 f(0,0)$ ist							
	-1 \square 0	$\Box \frac{1}{2}$	□ 1	□ nicht def	finiert.		
(d) Wie lautet die totale Ab	oleitung von	f im Nullp	ounkt?				
$\Box Df(0) = \begin{pmatrix} 0 & 1 \end{pmatrix} \qquad \Box$	$\Box Df(0) = \bigg($	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ \square	Df(0) =	$= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$	\square $Df(0)$ ist nicht definiert		

2. Taylorentwicklung

(6 Punkte)

Bestimmen Sie die Taylorentwicklung bis zur 3-ten Ordnung von $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = e^x (1 + x^2 + y^2)^{-1},$$

mit dem Ursprung als Entwicklungspunkt.

$$T_3 f((x,y);(0,0)) =$$

4. Umkehrfunktionen

(6 Punkte)

Sei $\Psi: (0, \infty) \times (0, 2\pi) \times \mathbb{R} \to \mathbb{R}^3$,

$$\Psi(r,\varphi,z) = \begin{pmatrix} r\cos\varphi\\r\sin\varphi\\z\end{pmatrix}.$$

(a) Bestimmen Sie die Ableitung von $\Psi.$

$$D\Psi(r,\varphi,z) =$$

(b) Ist Ψ ein lokaler Diffeomorphismus? Begründen Sie Ihre Antwort.

(9 Punkte)

5. Implizit definierte Funktionen Sei $f: \mathbb{R}^3 \to \mathbb{R}, \ f(x,y,z) = 2x^2 + y^2 + e^{z-1}z^2.$

(a) Beweisen Sie, dass die Gleichung f(x,y,z)=4 im Punkt (1,1,1) lokal nach z auflösbar ist.

Es sei $(x,y)\mapsto g(x,y)$ die dadurch implizit definierte Funktion.

(b) Berechnen Sie $\nabla g(1,1)$.

6. Vektoranalysis Seien $v, w \in C^1(\mathbb{R}^3, \mathbb{R}^3)$. Beweisen Sie:	(5 Punkte)
	$(\nabla \times v) - v \cdot (\nabla \times w)$

7. Gradientenfelder

(6 Punkte)

Gegeben sei das Gradientenfeld $v: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3, \ v(x) = \frac{x}{|x|^{2015}}.$

(a) Geben Sie explizit ein Potenzial $\Phi:\mathbb{R}^3\setminus\{0\}\to\mathbb{R}$ an.

 $\Phi(x) =$

(b) Berechnen Sie das Kurvenintegral $\int\limits_{\gamma} v(x) \cdot \mathrm{d}x$ mit $\gamma : [0,1] \to \mathbb{R}^3, \ \gamma(t) = (1-t) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$

8. Gewöhnliche Differentialgleichungen

(7 Punkte)

Gegeben sei $G \in C^1(\mathbb{R})$ mit G' = g und die Differentialgleichung

$$\dot{x} = g(t)x^2.$$

(a) Bestimmen Sie eine lokale Lösung für das zugehörige Anfangswertproblem zu x(0) = 1.

x(t) =

(b) Geben Sie eine Lösung für das zugehörige Anfangswertproblem zu x(0)=0 an.

x(t) =

(c) Besitzt das Anfangswertproblem zu $x(0)=x_0,\,x_0\in\mathbb{R}$, lokal eine eindeutige Lösung? (Begründen Sie Ihre Antwort!)