ARENS REGULARITY OF CERTAIN WEIGHTED SEMIGROUP ALGEBRA AND COUNTABILITY

B. KHODSIANI¹, A. REJALI² AND H.R. EBRAHIMI VISHKI³

ABSTRACT. It is known that every countable semigroup admits a weight ω for which the semigroup algebra $\ell_1(S,\omega)$ is Arens regular and no uncountable group admits such a weight; see [4]. In this paper, among other things, we show that for a large class of semigroups, the Arens regularity of the weighted semigroup algebra $\ell_1(S,\omega)$ implies the countability of S.

1. Introduction and Preliminaries

Arens [2] introduced two multiplications on the second dual \mathfrak{A}^{**} of a Banach algebra \mathfrak{A} turning it into Banach algebra. If these multiplications are coincide then \mathfrak{A} is said to be Arens regular. The Arens regularity of the semigroup algebra $\ell_1(S)$ has been investigated in [7]. The Arens regularity of the weighted semigroup algebra $\ell_1(S,\omega)$ has been studied in [4] and [3]. In [3] Baker and Rejali obtained some nice criterions for Arens regularity of $\ell_1(S,\omega)$. Recent developments on the Arens regularity of $\ell_1(S,\omega)$ can be found in [5]. For the algebraic theory of semigroups our general reference is [6].

In this paper we first show that the Arens regularity of a weighted semigroup algebra is stable under certain homomorphisms of semigroups (Lemma 2.2). Then we study those conditions under which the Arens regularity of $\ell_1(S,\omega)$ necessities the countability of S. The most famous example for such a semigroup is actually a group, as Craw and Young have proved in their nice paper [4]. As the main aim of the paper we shall show that for a wide variety of semigroups the Arens regularity of $\ell_1(S,\omega)$ implies that S is countable; (see Theorems 3.4 and 3.5).

2. Arens Regularity of $\ell_1(S,\omega)$ and some hereditary properties

Let S be a semigroup and $\omega: S \to (0, \infty)$ be a weight on S, i.e. $\omega(st) \leq \omega(s)\omega(t)$ for all $s, t \in S$, and let $\Omega: S \times S \to (0, 1]$ be defined by $\Omega(s, t) = \frac{\omega(st)}{\omega(s)\omega(t)}$, for $s, t \in S$. Following

²⁰¹⁰ Mathematics Subject Classification. 43A10, 43A20, 46H20, 20M18.

Key words and phrases. Arens regularity; weighted semigroup algebra; completely simple semigroup; inverse semigroup.

[3], we call Ω to be 0-cluster if for each pair of sequences $(x_n), (y_m)$ of distinct elements of S, $\lim_n \lim_m \Omega(x_n, y_m) = 0 = \lim_m \lim_n \Omega(x_n, y_m)$ whenever both iterated limits exist. We define,

$$\ell_{\infty}(S,\omega) := \{ f : S \to \mathbb{C} : ||f||_{\omega,\infty} = \sup\{ |\frac{f(s)}{\omega(s)}| : s \in S\} < \infty \}$$

$$\ell_1(S,\omega):=\{g:S\to\mathbb{C}:||g||_{\omega,1}=\sum_{s\in S}|g(s)|\omega(s)<\infty\}.$$

For ease of reference we quote the following criterion from [3] which will be frequently used in the sequel.

Theorem 2.1. [3, Theorems 3.2, 3.3] For a weighted semigroup algebra $\ell_1(S,\omega)$, the following statements are equivalent.

- (i) $\ell_1(S,\omega)$ is regular.
- (ii) The map $(x,y) \mapsto \chi_A(xy)\Omega(x,y)$ is cluster on $S \times S$ for each $A \subseteq S$.
- (iii) For each pair of sequences (x_n) , (y_m) of distinct points of S there exist subsequences (x'_n) , (y'_m) of (x_n) , (y_m) respectively such that either
 - (a) $\lim_n \lim_m \Omega(x'_n, y'_m) = 0 = \lim_m \lim_n \Omega(x'_n, y'_m)$, or
 - (b) the matrix $(x'_n y'_m)$ is of type C.

In particular, if Ω is 0-cluster then $\ell_1(S,\omega)$ is regular.

Let $\psi: S \to T$ be a homomorphism of semigroups. If ω is a weight on T then trivially $\overleftarrow{\omega}(s) := \omega(\psi(s))$ defines a weight on S.

If $\psi: S \to T$ is an epimorphism and ω is a bounded below (that is, $\inf \omega(S) > 0$) weight on S then a direct verification reveals that

$$\overrightarrow{\omega}(t) := \inf \omega(\psi^{-1}(t)), \quad (t \in T),$$

defines a weight on T. We commence with the next elementary result concerning to the stability of regularity under the semigroup homomorphism.

Lemma 2.2. Let $\psi: S \to T$ be a homomorphism of semigroups.

- (i) If ψ is onto and ω is bounded below weight on S then the regularity of $\ell_1(S,\omega)$ necessities the regularity of $\ell_1(T,\overrightarrow{\omega})$. Furthermore if Ω is 0-cluster, then $\overrightarrow{\Omega}$ is 0-cluster.
- (ii) For a weight ω on T if $\ell_1(S, \overleftarrow{\omega})$ is regular, then $\ell_1(T, \omega)$ is regular.

Proof. (i) Since ω is bounded below, we can assume that, $\inf \omega(S) \geq \varepsilon > 0$, for some $\varepsilon < 1$. Hence $\overrightarrow{\omega} \geq \varepsilon$. Let $(x_n), (y_m)$ be sequences of distinct elements in T. Then there are sequences of distinct elements $(s_n), (t_m)$ in S such that

$$\begin{cases} \overrightarrow{\omega}(x_n) > \omega(s_n)(1-\varepsilon) & \text{and} \quad \psi(s_n) = x_n, \\ \overrightarrow{\omega}(y_m) > \omega(t_m)(1-\varepsilon) & \text{and} \quad \psi(t_m) = y_m. \end{cases}$$

It follows that $\overrightarrow{\omega}(x_n)\overrightarrow{\omega}(y_m) > \omega(s_n)\omega(t_m)(1-\varepsilon)^2$ and so from $\overrightarrow{\omega}(x_ny_m) \leq \omega(s_nt_m)$ we get $\frac{\overrightarrow{\omega}(x_ny_m)}{\overrightarrow{\omega}(x_n)\overrightarrow{\omega}(y_m)} \leq \frac{1}{(1-\varepsilon)^2}\frac{\omega(s_nt_m)}{\omega(s_n)\omega(t_m)}$; or equivalently,

$$\overrightarrow{\Omega}(x_n, y_m) \le \frac{1}{(1-\varepsilon)^2} \Omega(s_n, t_m), \quad (n, m \in \mathbb{N}).$$
(2.1)

Applying the inequality (2.1), an standard argument based on Theorem 2.1 shows that if $\ell_1(S,\omega)$ is regular then $\ell_1(T,\overrightarrow{\omega})$ is regular.

Corollary 2.3. Let $\psi: S \to T$ be a homomorphism of semigroups. If $\ell_1(S)$ is Arens regular then $\ell_1(T,\omega)$ is Arens regular, for every weight function ω on T.

Proof. Let $\ell^1(S)$ be Arens regular and let ω be a weight on T. Then $\ell^1(S, \overleftarrow{\omega})$ is Arens regular by [3, Corollary 3.4]. Lemma 2.2 implies that $\ell_1(T, \omega)$ is Arens regular. \square

3. Arens regularity of $\ell_1(S,\omega)$ and countability of S

We commence with the next result of Craw and Young with a slightly simpler proof.

Corollary 3.1. (See [4, Corollary 1]) Let S be a countable semigroup. Then there exists a bounded below weight ω on S such that Ω is 0-cluster. In particular, $\ell_1(S,\omega)$ is Arens regular.

Proof. Let F be the free semigroup generated by the countable semigroup $S = \{a_k : k \in \mathbb{N}\}$. For every element $x \in F$ (with the unique presentation $x = a_{k_1} a_{k_2} \cdots a_{k_r}$) set $\omega_1(x) = 1 + k_1 + k_2 + \cdots k_r$. A direct verification shows that ω_1 is a weight on F with $1 \leq \omega_1$, and that Ω_1 is 0-cluster. Let $\psi : F \to S$ be the canonical epimorphism. Set $\omega := \overrightarrow{\omega_1}$. By Lemma 2.2, ω is our desired weight on S.

In the sequel the following elementary lemma will be frequently used.

Lemma 3.2. A nonempty set X is countable if and only if there exists a function $f: X \to (0, \infty)$ such that the sequence $(f(x_n))$ is unbounded for every sequence (x_n) with distinct elements in X.

Proof. If $X = \{x_n : n \in \mathbb{N}\}$ is countable the $f(x_n) = n$ is the desired function. For the converse, suppose that such a function $f: X \to (0, \infty)$ exists. Since $X = \bigcup_{n \in \mathbb{N}} \{x \in X : f(x) \leq n\}$ and each of the sets $\{x \in X : f(x) \leq n\}$ is countable, so X is countable. \square

Theorem 3.3. If $\ell^1(S)$ is not Arens regular and S admits a bounded below weight for which Ω is 0-cluster, then S is countable.

Proof. Let ω be a bounded below weight for which Ω is 0-cluster. Let $\epsilon > 0$ is so that $\omega \geq \epsilon$. Let S be uncountable. By Lemma 3.2 there is a sequence (s_n) of distinct elements in S and $n_0 \in \mathbb{N}$ such that $\omega(s_n) \leq n_0$ for all $n \in \mathbb{N}$. As $\ell_1(S)$ is not Arens regular, there exist subsequences $(s_{n_k}), (s_{m_l})$ of (s_n) such that $\{s_{n_k}s_{m_l} : k < l\} \cap \{s_{n_k}s_{m_l} : k > l\} = \emptyset$ (??????????????). We thus get

$$\Omega(s_{n_k}, s_{m_l}) = \frac{\omega(s_{n_k} s_{m_l})}{\omega(s_{n_k})\omega(s_{m_l})} \ge \frac{\epsilon}{n_0^2}, \quad (k, l \in \mathbb{N}),$$

contradicts the 0-clusterlity of Ω .

Abtehi et al. [1] have shown that for a wide variety of semigroups (including Brandt semigroups, weakly cancellative semigroups, (0-)simple inverse semigroups and inverse semigroups with finite set of idempotents) the Arens regularity of the semigroup algebra $\ell^1(S)$ necessities the finiteness of S (see [1, Corollary 3.2, Proposition 3.4 and Theorem 3.6]). Applying these together with Theorem 3.3 we arrive to the next result.

Note that as it has been reminded in Theorem 2.1, if Ω is 0-cluster then $\ell_1(S,\omega)$ is regular and the converse is also true in the case where S is weakly cancellative; (see [3, Corollary 3.8]).

Theorem 3.4. If S admits a bounded below weight for which Ω is 0-cluster then S is countable in either of the following cases.

- (1) S is a Brandt semigroup.
- (2) S is weakly cancellative.
- (3) S is a simple (resp. 0-simple) inverse semigroup.
- (4) S is an inverse semigroup with finitely many idempotents.

In the next result we shall show that the same result holds when S is a completely simple semigroup.

Theorem 3.5. If S admits a bounded below weight for which Ω is 0-cluster then S is countable in the case where S is completely simple [resp. 0-simple].

Proof. Suppose that ω is a bounded below weight on S such that Ω is 0-cluster. Let S be completely 0-simple, then as it has been explained in [6], S has the presentation $S \cong M^0(G, I, \Lambda; P) = (I \times G \times \Lambda) \cup \{0\}$, equipped with the multiplication

$$(i, a, \lambda)(j, b, \mu) = \begin{cases} (i, ap_{\lambda j}b, \mu) & \text{if} \quad p_{\lambda j} \neq 0 \\ 0 & \text{if} \quad p_{\lambda j} = 0, \end{cases}$$
$$(i, a, \lambda)0 = 0(i, a, \lambda) = 0.$$

Fix $i_0 \in I$, $\lambda_0 \in \Lambda$ and define $f: I \to (0, \infty)$ by

$$f(i) = \begin{cases} \omega(i, p_{\lambda_0 i}^{-1}, \lambda_0) & \text{if } p_{\lambda_0 i} \neq 0\\ \omega(i, 1, \lambda_0) & \text{if } p_{\lambda_0 i} = 0. \end{cases}$$

Let (i_n) be a sequence of distinct elements in I and set

$$x_n = \begin{cases} (i_n, p_{\lambda_0 i_n}^{-1}, \lambda_0) & \text{if } p_{\lambda_0 i_n} \neq 0\\ (i_n, 1, \lambda_0) & \text{if } p_{\lambda_0 i_n} = 0. \end{cases}$$

It is readily verified that if $p_{\lambda_0 i_n} \neq 0$ then $x_n x_m = x_n$, for all $m \in \mathbb{N}$; indeed

$$x_n x_m = (i_n, p_{\lambda_0 i_n}^{-1}, \lambda_0)(i_m, p_{\lambda_0 i_m}^{-1}, \lambda_0) = (i_n, p_{\lambda_0 i_n}^{-1} p_{\lambda_0 i_m} p_{\lambda_0 i_m}^{-1}, \lambda_0) = (i_n p_{\lambda_0 i_n}^{-1}, \lambda_0) = x_n.$$

And if $p_{\lambda_0 i_n} = 0$ then $x_n x_m = 0$, for all $m \in \mathbb{N}$.

Hence $\frac{1}{f(i_m)} = \frac{1}{\omega(x_m)} = \frac{\omega(x_n x_m)}{\omega(x_n)\omega(x_m)} = \Omega(x_n, x_m)$ in the case where $p_{\lambda_0 i_n} \neq 0$ and $(\frac{\omega(0)}{f(i_m)})^2 = (\frac{\omega(0)}{\omega(x_m)})^2 = \frac{\omega(0)}{\omega(x_n)\omega(x_m)}$ whenever $p_{\lambda_0 i_n} = 0$. These observations together with the 0-clusterlity of Ω imply that $(f(i_m))$ is unbounded. Hence I is countable, by Lemma 3.2. Similarly Λ is countable. We are going to show that G is also countable. To this end, let $\omega_0(g) = \omega(i_0, gp_{\lambda_0, i}^{-1}, \lambda_0)$ $(g \in G)$. Then ω_0 is a weight on G such that Ω_0 is 0-cluster and so G is countable, by Theorem 3.4. Therefore S is countable as claimed. Proof for the case that S completely simple semigroup is similar.

Acknowledgments. This research was supported by the Centers of Excellence for Mathematics at the University of Isfahan.

References

- [1] F. Abtahi, B. Khodsiani and A. Rejali, *The Arens regularity of inverse semigroup algebras*, Preprint.
- [2] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2,(1951), 839-848.
- [3] J.W. Baker and A. Rejali, On the Arens regularity of weighted convolution algebras, J. London Math. Soc. (2) 40(1989), 535-546. 1, 2, 2.1, 2, 3
- [4] I.G. Craw and N.J. Young, Regularity of multiplications in weighted group and semigroup algebras, Quart. J. Math. 25 (1974), 351-358. (document), 1, 3.1

- [5] H.G. Dales and A.T.M. Lau, *The Second Duals of Beurling Algebras*, Memoris American Math. Soc., **177**, 1-191, (2005). **1**
- [6] J.M. Howie, An Introduction to Semigroup Theory, Academic Press, (1976). 1, 3
- [7] N.J. Young, Semigroup algebras having regular multiplication, Stadia Math. 47(1973), 191-196. 1
- ^{1,2} Department of Mathematics, University of Isfahan, Isfahan, IRAN.

E-mail address: b-khodsiani@sci.ui.ac.ir

E-mail address: rejali@sci.ui.ac.ir

 3 Department of Pure Mathematics and Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran.

E-mail address: vishki@um.ac.ir