Numericals on Power

Transmission

Basic Numerical on Gears

 A gear wheel of 20 teeth drives another gear wheel having 36 teeth running at 200 rpm. Find the speed of the driving wheel and the velocity ratio

- Solution:
- Data: $T_1 = 20$, $T_2 = 36$, $N_2 = 200$ rpm
 - Velocity ration $N_1/N_2 = T_2/T_1$
 - Therefore $N_1/N_2 = 36/20 = 1.8:1$
 - Driving Speed $N_1 = N_2 \times T_2/T_1 = 200 \times 36/20 = 360 \text{ rpm}$

- 2. A gear wheel has 50 teeth of module 5 mm. Find the pitch circle diameter and the circular pitch.
- Solution:
 - Data: T = 50, m = 5 mm, pitch circle diameter = d = ?, Circular pitch = ?
 - We know that, Module is given by
 - m = d/T
 - Therefore pcd = d = m x T = 5 x 50 = 250 mm
 - Circular pitch = $P_c = \pi d/T = \frac{\pi x 250}{50}$
 - $P_c = 15.7 \text{ mm}$

 Two spur gears A and B connect two parallel shafts that are 500 mm apart. Gear A runs at 400 rpm and Gear B at 200 rpm. If the circular pitch is given to be 30 mm, calculate the number of teeth on gears A and B.

Solution:

- Data: $N_A = 400 \text{ rpm}, N_B = 200 \text{ rpm}, P_C = 30 \text{ mm}$
- Gap = $(d_A + d_B)/2 = 500 \text{ mm}$
- T_{Δ} = ? And T_{B} = ?
- Velocity ratio = $N_A/N_B = d_b/d_A$
- Therefore 400 / 200 = d_R/d_Δ
- $d_B = 2 \times d_A$
- Solving for the diameters, we get $d_{\Delta} + d_{B} = 1000$
- Therefore, $d_A = 333.33 \text{ mm}$ and $d_B = 666.67 \text{ mm}$

- Number of teeth of gear A
- TA = $_{\pi}d_{A/Pc}$ = $\pi x333.33/30$
- TA = 35 teeth
- Speed ratio = $N_A/N_B = T_B/T_A$
- T_B = 35 x 400 / 200
- $T_B = 70$ teeth

- A simple gear train is made up of four gears A, B, C and D having 20, 40, 60 and 70 teeth respectively. If gear A is the main driver rotating at 500 rpm clockwise, calculate the following:
 - Speeds of intermediate gears
 - ii. Speed and direction of the last follower
 - iii. Train Value
- Solution

- Data: $N_A = 500 \text{ rpm}$, $T_A = 20$, $T_B = 40$, $T_C = 60 \text{ and } T_D = 70$
- To find: Train Value = ? , $N_B = ?$, $N_C = ?$, $N_D = ?$

- Using Velocity ratio formula: $N_A/N_B = T_B/T_A$
- Therefore $N_B = N_A x T_A / T_B = 500 x 20 / 40 = 250 rpm$

Similarly

•
$$N_c = N_B \times T_B/T_c = 250 \times 40/60 = 166.67 \text{ rpm}$$
 ($N_c = 167 \text{ rpm}$)

 $(N_s = 143 \text{ rpm})$

• And
$$N_c/N_D = T_D/T_C$$

•
$$N_D = N_C \times T_C / T_D = 167 \times 60 / 70 = 142.8 \text{ rpm}$$

Train Value = 1/Velocity Ratio = N₂/N₃

Homework

5. A compound gear train consists of 4 gears A, B, C and D and they have 20, 30, 40 and 60 teeth respectively. A is keyed to the driving shaft and D is keyed to drive shaft, B and C are compound gears, B meshes with A and C meshes with D. If rotates at 180 rpm, find rpm of D