BEST AVAILABLE COPY

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: A01N 37/18, 43/04, C12Q 1/00, 1/02, 1/68, C12N 5/00, 5/06, 15/00, 15/06,

15/09, 15/10, 15/11, G01N 33/53

A2

(11) International Publication Number:

WO 98/54963

(43) International Publication Date: 10 December 1998 (10.12.98)

(21) International Application Number:

PCT/US98/11422

(22) International Filing Date:

4 June 1998 (04.06.98)

(30) Priority Data:

60/048.915 60/048,882 6 June 1997 (06.06.97) 6 June 1997 (06.06.97) US US

(Continued on the following page)

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and (75) Inventors/Applicants (for US only): YOUNG, Paul [US/US]; 122 Beckwith Street, Gaithersburg, MD 20878 (US). GREENE, John, M. [US/US]; 872 Diamond Drive, Gaithersburg, MD 20878 (US). FERRIE, Ann, M. [US/US]; 13203 L Astoria Hill Court, Germantown, MD 20874 (US). RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). HU, Jing-Shan [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). OLSEN, Henrik, S. [DK/US]; 182 Kendrick Place #24, Gaithersburg, MD 20878 (US). EBNER, Reinhard [DE/US]; 9906 Shelburne Terrace #316, Gaithersburg, MD 20878 (US). BREWER, Laurie, A. [US/US]; 14920 Mt. Nebo Road, Poolesville, MD 20837 (US). MOORE, Paul, A. [GB/US]; Apartment 104, 1908 Holly Ridge Drive, McLean, VA 22102 (US). SHI, Yanggu [CN/US]; 437 West Side Drive, Gaithersburg, MD 20878 (US). FLORENCE, Charles [US/US]; (US). FLORENCE, Kimberly [US/US]; 12805 Atlantic Avenue, Rockville, MD 20851 (US). LAFLEUR, David, W. [US/US]; 1615 Q Street, N.W. #807, Washington, DC 20009 (US). NI, Jian [CN/US]; 5502 Manorfield Road, Rockville, MD 20853 (US). FAN, Ping [CN/US]; Apartment 302, 335 West Side Drive, Gaithesburg, MD 20878 (US). WEI, Ying-Fei [CN/US]; 13524 Straw Bale Lane, Darnestown, MD 20878 (US). FISCHER, Carrie, L. [US/US]; 5810 Hall Street, Burke, VA 22015 (US). SOPPET, Daniel, R. [US/US]; 15050 Stillfield Place, Centreville, VA 22020 (US). LI, Yi [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). ZENG, Zhizhen [CN/US]; 13950 Saddleview Drive, Gaithersburg, MD 20878 (US). KYAW, Hla [MM/US]; 520 Sugarbush Circle, Frederick, MD 21703 (US). YU, Guo-Liang [CN/US]; 13524 Straw Bale Lane, Damestown, MD 20878 (US). FENG, Ping [CN/US]; 4 Relda Court, Gaithersburg, MD 20878 (US). DILLON, Patrick, J. [US/US]; 1055 Snipe Court, Carlsbad, CA 92009 (US). ENDRESS, Gregory, A. [US/US]; 9729 Clagett Farm Drive, Potomac, MD 20854 (US). CARTER, Kenneth, C. [US/US]; 11601 Brandy Hall Lane, North Potomac, MD 20878 (US).

- (74) Agents: HOOVER, Kenley, K. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 10850 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority.

(54)	Title:	207	HUMAN	SECRETED	PROTEINS
------	--------	-----	-------	----------	----------

(Continued)					٠
60/048.892	6 June 1997 (06.06.97)	ÜS	60/057,651 .	5 September 1997 (05.09.97)	US
60/048,901	6 June 1997 (06.06.97)	US	60/057,769 .		US
60/048,900	6 June 1997 (06.06.97)	US	60/057,643	5 September 1997 (05.09.97)	US
60/048.893	6 June 1997 (06.06.97)	US	60/057,645	5 September 1997 (05.09.97)	US
60/048.964	6 June 1997 (06.06.97)	US	60/057,668	5 September 1997 (05.09.97)	US
60/048,884	6 June 1997 (06.06.97)	US	60/057,635	5 September 1997 (05.09.97)	US
60/048.894	6 June 1997 (06.06.97)	US	60/057,627	5 September 1997 (05.09.97)	US
60/048,971	6 June 1997 (06.06.97)	US	60/057,667	5 September 1997 (05.09.97)	US
60/048,885	6 June 1997 (06.06.97)	US	60/057,666	5 September 1997 (05.09.97)	US
60/049,375	6 June 1997 (06.06.97)	US	60/057,764	5 September 1997 (05.09.97)	US
60/048.881	6 June 1997 (06.06.97)	US	60/057,644	5 September 1997 (05.09.97)	US
60/048,880	6 June 1997 (06.06.97)	US	60/057,765	5 September 1997 (05.09.97)	US
60/048,896	6 June 1997 (06.06.97)	US	60/057,762	5 September 1997 (05.09.97)	US
60/049,020	6 June 1997 (06.06.97)	US	60/057,775	5 September 1997 (05.09.97)	US
60/048,876	6 June 1997 (06.06.97)	US	60/057,634	5 September 1997 (05.09.97)	US
60/048,895	6 June 1997 (06.06.97)	US	60/057,777	5 September 1997 (05.09.97)	US
60/049,019	6 June 1997 (06.06.97)	US	60/057,628	5 September 1997 (05.09.97)	US
60/048,916	6 June 1997 (06.06.97)	US	60/057,776	5 September 1997 (05.09.97)	US
60/048,970	6 June 1997 (06.06.97)	US	60/057,760	5 September 1997 (05.09.97)	US
60/048,972	6 June 1997 (06.06.97)	US	60/057,761	5 September 1997 (05.09.97)	US
60/048,949	6 June 1997 (06.06.97)	US	60/057,771	5 September 1997 (05.09.97)	US
60/048,974	6 June 1997 (06.06.97)	US	60/057,770	5 September 1997 (05.09.97)	US
60/048,883	6 June 1997 (06.06.97)	US	60/057,649	5 September 1997 (05.09.97)	US
60/048,897	6 June 1997 (06.06.97)	US	60/057,774	5 September 1997 (05.09.97)	US
60/048,898	6 June 1997 (06.06.97)	US	60/057,648	5 September 1997 (05.09.97)	US
60/049,373	6 June 1997 (06.06.97)	US	60/057,642	5 September 1997 (05.09.97)	US
60/048,917	6 June 1997 (06.06.97)	US	60/057,629	5 September 1997 (05.09.97)	US
60/048,962	6 June 1997 (06.06.97)	US	60/057,778	5 September 1997 (05.09.97)	US
60/048,878	6 June 1997 (06.06.97)	US	60/057,763	5 September 1997 (05.09.97)	US
60/049,374	6 June 1997 (06.06.97)	US	60/057,584	5 September 1997 (05.09.97)	US
60/048,875	6 June 1997 (06.06.97)	US	60/057,654	5 September 1997 (05.09.97)	US
60/048,899	6 June 1997 (06.06.97)	US	60/057,646	5 September 1997 (05.09.97)	US
60/048,877	6 June 1997 (06.06.97)	US	60/057,662	5 September 1997 (05.09.97)	US
60/048,963	6 June 1997 (06.06.97)	US	60/057,650	5 September 1997 (05.09.97)	US
			60/057,661	5 September 1997 (05.09.97)	US
			60/057,647	5 September 1997 (05.09.97)	US
			60/070,923	18 December 1997 (18.12.97)	US

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spein	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	Unked Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	kaly	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakatan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD.	Sudan		
DK	Denmark	LK	Sri Lenka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

5

10

15

20

25

30

35

207 Human Secreted Proteins

1

Field of the Invention

This invention relates to newly identified polynucleotides and the polypeptides encoded by these polynucleotides, uses of such polynucleotides and polypeptides, and their production.

Background of the Invention

Unlike bacterium, which exist as a single compartment surrounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Despite the great progress made in recent years, only a small number of genes encoding human secreted proteins have been identified. These secreted proteins include the commercially valuable human insulin, interferon, Factor VIII, human growth hormone, tissue plasminogen activator, and erythropoeitin. Thus, in light of the pervasive role of secreted proteins in human physiology, a need exists for identifying and characterizing novel human secreted proteins and the genes that encode them. This knowledge will allow one to detect, to treat, and to prevent medical disorders by using secreted proteins or the genes that encode them.

2

Summary of the Invention

The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and polynucleotides. Also provided are diagnostic methods for detecting disorders related to the polypeptides, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying binding partners of the polypeptides.

10

15

Detailed Description

Definitions

The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.

20

In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

25

30

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X or the cDNA contained within the clone deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.

35

In the present invention, the full length sequence identified as SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig

3

analysis). A representative clone containing all or most of the sequence for SEQ ID NO:X was deposited with the American Type Culture Collection ("ATCC"). As shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the ATCC Deposit Number. The ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 μg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

10

15

20

25

30

Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a

4

complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

5

10

15

20

25

30

35

The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single-and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

The polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine,

15

20

30

35

formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

"SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NO:Y" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.

"A polypeptide having biological activity" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention.)

25 Polynucleotides and Polypeptides of the Invention

FEATURES OF PROTEIN ENCODED BY GENE NO: 1

This gene is expressed primarily in melanocytes and, to a lesser extent, in testes, ovary, kidney and other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer, disorders of neural crest derived cells including pigmentation defects, melanoma, reproductive organ defects, and defects of the kidney. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skin,

6

reproductive, and renal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating disorders that arise from alterations in the number or fate of neural crest derived cells including cancers such as melanoma and defects of the developing reproductive system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 2

5

10

15

20

25

30

35

This gene is expressed primarily in infant brain and fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental disorders of the brain or lung. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and pulmonary systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating or diagnosing disorders associated with abnormal proliferation of cells in the Central nervous system and developing lung.

FEATURES OF PROTEIN ENCODED BY GENE NO: 3

This gene is expressed primarily in breast lymph node and to a lesser extent in ovarian cancer and chondrosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune responses such as inflammation or immune surveillance for

7

tumors. This gene may be important for inflammatory responses associated with tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 236 as residues: Lys-45 to Val-50, Lys-69 to Arg-76.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of immune responses including those associated with tumor-induced inflammation.

15

20

25

30

35

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 4

This gene is expressed primarily in T-cells and T-cell lymphomas.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunilogical diseases involving T-cells such as inflammation, autoimmunity, and cancers including T-cell lymphomas. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of T-cells and other cells of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing and treating T-cell based disorders such as inflammatory diseases, autoimmune disease and tumors including T-cell lymphomas.

8

FEATURES OF PROTEIN ENCODED BY GENE NO: 5

5

10

15

20

25

30

35

This gene is expressed primarily in activated monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation, autoimmunity, infection, or disorders involving activation of monocytes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 238 as residues: Asp-19 to Arg-31.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing or treating diseases that result in activation of monocytes including infections, inflammatory responses or autoimmune diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 6

The translation product of this gene shares sequence homology with terminal deoxynucleotidyltransferase which is thought to be important in catalyzing the elongation of oligo- or polydeoxynucleotide chains.

This gene is expressed primarily in activated human neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer, particularly those of the blood such as leukemia and deficiencies in neutrophils such as neutropenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having

10

15

20

25

30

35

WO 98/54963 PCT/US98/11422

such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

9

The tissue distribution and homology to terminal deoxynucleotidyltransferase indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and differential diagnosis of acute leukemia's. Alternatively, this gene may function in the proliferation of neutrophils and be useful as a treatment for neutropenia, for example, following neutropenia as a result of chemotherapy.

FEATURES OF PROTEIN ENCODED BY GENE NO: 7

The contig exhibits a reasonable homology to the human chorionic gonadotropic (HCG) analogue-GT beta-subunit as disclosed in U.S. Patent No. 5,508,261 and PCT Publication No. WO 92/22568. There is a high degree of conservation of the structurally important cysteine residues in these identities.

This gene is expressed primarily in IL-1 and LPS induced neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system, including inflammatory diseases and allergies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of diseases of the immune system since expression is primarily in neutrophils, and may be useful as a growth factor for the differentiation or proliferation of neutrophils for the treatment of neutropenia following chemotherapy.

FEATURES OF PROTEIN ENCODED BY GENE NO: 8

This gene is expressed primarily in IL-1- and LPS-induced neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

WO 98/54963

10

15

20

25

30

35

biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system, including inflammatory diseases and allergies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 241 as residues: Ser-14 to Pro-22, Leu-43 to Val-53.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases of the immune system since expression is primarily in neutrophils, and may be useful as a growth factor for the differentiation or proliferation of neutrophils for the treatment of neutropenia following chemotherapy.

FEATURES OF PROTEIN ENCODED BY GENE NO: 9

This gene is expressed primarily in IL-1 and LPS induced neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system, including inflammatory diseases and allergies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 242 as residues: Tyr-22 to His-35.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of diseases of the immune system since expression is primarily in neutrophils, and may be useful as a growth

factor for the differentiation or proliferation of neutrophils for the treatment of neutropenia following chemotherapy.

FEATURES OF PROTEIN ENCODED BY GENE NO: 10

This gene is expressed primarily in activated T-cells and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune dysfunctions including cancer of the T lymphocytes and autoimmune disorders and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of immune disorders particularly of T-cell origin and may act as a growth factor for particular subsets of T-cells such as CD4 positive cells which would make this a useful therapeutic for the treatment of HIV and other immune compromising illnesses.

25

30

35

20

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 11

This gene is expressed primarily in fetal tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of many developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing fetus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a growth factor or differentiation factor for particular cell types in the developing fetus and may be useful in replacement or other types of therapy in cases where the gene is expressed aberrantly.

FEATURES OF PROTEIN ENCODED BY GENE NO: 12

5

10

15

20

25

35

This gene is expressed primarily in T-cells and to a lesser extent in tumor tissue including glioblastoma, meningioma, and Wilm's tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system including autoimmune conditions such as rheumatoid arthritis, inflammatory disorders and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 245 as residues: Thr-9 to Ser-14.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis/ modulation of immune function disorders, including rheumatoid arthritis and inflammatory responses.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 13

This gene is expressed primarily in placenta and to a lesser extent in fetal liver and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of hematological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of

10

15

20

25

30

35

disorders of the above tissues or cells, particularly of the hematological and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a growth factor for hematapoietic stem cells or progenitor cells in the treatment of chemotherapy patients or kidney disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 14

This gene is expressed primarily in stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of hematapoietic disorders including cancer, neutropenia, anemia, and thrombocytopenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematapoietic and immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a growth factor for hematapoietic stem cells or progenitor cells, in particular following chemotherapy treatment.

FEATURES OF PROTEIN ENCODED BY GENE NO: 15

The translation product of this gene shares sequence homology with epsilon-COP from Bos taurus which is thought to be important as a component of coatomer, a complex of seven proteins, that is the major component of the non-clathrin membrane coat. Preferred polypeptides encoded by this gene comprise the following amino acid sequences:

MAPPAPGPASGGSGEVDELFDVKNAFYIGSYQQCINEAXXVKLSSPERDVERD

14

VFLYRAYLAQRKFGVVLDEIKPSSAPELQAVRMFADYLAHESRRDSIVAELDRE MSRSXDVTNTTFLLMAASIYLHDQNPDAALRALHQGDSLECTAMTVQILLKLD RLDLARKELKRMQDLDEDATLTQLATAWVSLATGGEKLQDAYYIFQEMADKCS PTLLLLNGQAACHMAQGRWEAAEGLLQEALDKDSGYPETLVNLIVLSQHLGKP PEVTNRYLSQLKDAHRSHPFIKEYQAKENDFDRLVLQYAPSAEAGPELSGP (SEQ ID NO:458); or RDVERDVFLYRAYLAQRKFGVVLDEIKPSSAPELQAVRMF ADYLAHESRRDSIVAELDREMSRSXDVTNTTFLLMAASIYLHDQNPDAALRALH QGDSLECTAMTVQILLKLDRLDLARKELKRMQDLDEDATLTQLATAWVSLATG GEKLQDAYYIFQEMADKCSPTLLLLNGQAACHMAQGRWEAAEGLLQEALDKD SGYPETLVNLIVLSQHLGKPPEVTNRYLSQLKDAHRSHPFIKEYQAKENDFDRL VLQYAPSA (SEQ ID NO:459).

5

10

15

20

25

30

35

This gene is expressed primarily in activated monocytes and T-cells, and to a lesser extent in multiple other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunomodulation, specifically relating to transport problems in these cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to epsilon-COP indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating /diagnosing problems with the cellular transport of proteins that may result in immunologic dysfunction.

FEATURES OF PROTEIN ENCODED BY GENE NO: 16

The translation product of this gene shares sequence homology with an RNA helicase which is thought to be important in polynucleotide metabolism. The translation product of this contig exhibits good homology to the LbeIF4A antigen of Leishmania braziliensis. The LbeIF4A antigen, or immunogenic portions of it, can be used to induce protective immunity against leishmaniasis, specifically L. donovani, L. chagasi,

15

L. infantum, L. major, L. braziliensis, L. panamensis, L. tropica and L. guyanensis. It can also be used diagnostically to detect Leishmania infection or to stimulate a cellular and/or humoral immune response or to stimulate the production of interleukin-12.

This gene is expressed primarily in colon cancer and to a lesser extent in pituitary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of cancers particularly of the colon. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the gastrointestinal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 249 as residues: Glu-93 to Ala-98, Gln-150 to Leu-156, Leu-220 to Leu-231, Leu-268 to Arg-273, Val-324 to Pro-341, Arg-372 to Asn-380, Ser-405 to Gly-410, Phe-426 to Ala-433, Glu-458 to Asp-470, Arg-506 to Ser-547.

The tissue distribution and homology to RNA helicase indicates that polynucleotides and polypeptides corresponding to this gene are useful for development of diagnostic tests for colon cancer.

25

30

35

5

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 17

The translation product of this contig has sequence homology to a cytoplasmic protein that binds specifically to JNK designated the JNK interacting protein-1 or JIP-1 in mice. JIP-1 caused cytoplasmic retention of JNK and inhibition of JNK-regulated gene expression.

This gene is expressed primarily in brain including pituitary cerebellum frontal cortex, fetal brain and to a lesser extent in the kidney cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of the central nervous system disorders including ischemia, epilepsy, Parkinson's disease, and schizophrenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological

10

15

20

25

30

35

WO 98/54963 PCT/US98/11422

16

probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Furthermore, the translation product of this contig may suppress the effects of the JNK signaling pathway on cellular proliferation, including transformation by the Bcr-Abl oncogene. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 250 as residues: Pro-6 to Ser-26, Ala-30 to Asp-41, Gly-55 to Ser-61, Gly-74 to Thr-80, Tyr-117 to Ala-123, Tyr-167 to Asp-172, Ala-212 to Cys-223, Pro-239 to Tyr-244.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for enhanced survival and/or differentiation of neurons as a treatment for neurodegenerative disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 18

The translation product of this gene shares sequence homology with a liver stage antigen from a protozoan parasite.

This gene is expressed primarily in fetal tissue and to a lesser extent in activated T-cells and other immune cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities and diseases of immune function. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

17

The tissue distribution and homology to a protozoan antigen indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/immune modulation of parasitic infections.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 19

10

15

20

25

30

35

Preferred polypeptide encoded by this gene comprise the following polypeptide sequences:

MKAIGIEPSLATYHHIIRLFDQPGDPLKRSSFIIYDIMNELMGKRFSPKD PDDDKFFQSAMSICSSLRDLELAYQVHGLLKTGDNWKFIGPDQHRNFYYSKFF DLICLMEQIDVTLKWYEDLIPSAYFPHSQTMIHLLQALDVANRLEVIPKIWER (SEQ ID NO:460); and/or KDSKEYGHTFRSDLREEILMLMARDKHPPELQVAF ADCAADIKSAYESQPIRQTAQDWPATSLNCIAILFLRAGRTQEAWKMLGLFRKH NKIPRSELLNELMDSAKVSNSPSQAIEVVELASAFSLPICEGLTQRVMSDFAINQ EQKEALSNLTALTSDSDTDSSSDSDSDTSEGK (SEQ ID NO:461). Polynucleotides encoding such polypeptides are also provided.

This gene is expressed primarily in stromal and CD34 depleted bone marrow cells and to a lesser extent in tissues of embryonic origin.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of hematologic origin including cancers and immune dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematapoietic and immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 252 as residues: Ser-28 to Gln-34.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a growth factor for hematopoietic stem cells or progenitor cells which may be useful in the treatment of chemotherapy patients suffering from neutropenia.

18

FEATURES OF PROTEIN ENCODED BY GENE NO: 20

5

10

15

20

25

30

35

Preferred polypeptide fragments can be found in an alternative open reading frame. These preferred polypeptides comprise the amino acid sequence: MSSDNESDIEDEDLKLELRRLRDKHLKEIQDLQSRQKHEIESLYTKLGKVPPAVI IPPAAPLSGRRRRPTKSKGSKSSRSSSLGNKSPQLSGNLSGQSAASVLHPQQTL HPPGNIPESGQNQLLQPLKPSPSSDNLYSAFTSDGAISVPSLSAPGQGTSSTNTV GATVNSQAAQAQPPAMTSSRKGTFTDDLHKLVDNWARDAMNLSGRRGSKGH MNYEGPGMARKFSAPGQLCISMTSNLGGSAPISAASATSLGHFTKSMCPPQQY GFPATPFGAQWSGTGGPAPQPLGQFQPVGTASLONFNISNLOKSISNPPGSNL RTT (SEQ ID NO:462); IQDLQSRQKHEIESLYTKLGKVPPAVIIPPAAPLSGRRRR PTKSKGSKSSRSSSLGNKSPQLSGNLSGQSAASVLHPQQTLHPPGNIPESGON QLLQPLKPSPSSDNLYSAFTSDGAISVPSLSAPGQGTSST (SEQ ID NO:463): TSDGAISVPSLSAPGQGTSSTNTVGATVNSQAAQAQPPAMTSSRKGTFTDDLH (SEQ ID NO:464); KGHMNYEGPGMARKFSAPGQLCISMTSNLGGSAPISAAS ATSLGHFTK (SEQ ID NO:465); QPLKPSPSSDNLYSAFTSDGAISVPSLSAPG (SEQ ID NO:466). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed in fetal liver and tissues associated with the CNS.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, liver and CNS diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver and CNS, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 253 as residues: Gln-26 to Lys-34.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for liver diseases such as hepatocellular carcinomas and diseases of the CNS.

FEATURES OF PROTEIN ENCODED BY GENE NO: 21

In an alternative reading frame, this gene shows sequence homology to two recently cloned genes, karyopherin beta 3 and Ran_GTP binding protein 5. (See Accession Nos. gil2102696 and gnllPIDle328731.) The Ran_GTP binding protein is related to importin-beta, the key mediator of nuclear localization signal (NLS)-dependent nuclear transport. Based on homology, it is likely that this gene may activity similar to the RAN_GTP binding protein. Preferred polypeptide fragments comprise the amino acid sequence: VRVAAAESMXLLLECAXVRGPEYLTQMWHFMCDALIKA IGTEPDSDVLSEIMHSFAK (SEQ ID NO:467). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed in thymus tissue.

5

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 22

This gene is expressed primarily in prostate and osteoclastoma tissues.

Preferred polypeptide fragments also comprise the amino acid sequence:

MEINNQNCFIVIDLVRTVMENGVEGLLIFGAFLPESWLIGVRCSSEPPKALLLIL

AHSQKRRLDGWSFIRHLRVHYCVSLTIHFS (SEQ ID NO:468). Also preferred are polynucleotide sequences encoding this polypeptide fragment.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, bone and prostate diseases, and cancers, particularly of the bone and prostate. Similarly, polypeptides and antibodies directed to these polypeptides are

10

15

20

25

30

35

useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone and prostate systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 255 as residues: Met-1 to Ser-11.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for bone and prostate disorders, especially cancers of those systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 23

This gene shares sequence homology with the FK506-binding protein (FKBP-13) family, a known cytosolic receptor for the immunosuppressants. Recently, another group has cloned a very similar gene, recognizing the homology to FK506-binding protein family, calling their gene FKBP23. (See Accession No. 2827255.)

This gene is expressed primarily in lymphoid tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample, especially for those susceptible to immune suppressant therapies and for diagnosis of diseases and conditions, which include, but are not limited to, immune suppressant disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 256 as residues: Ala-19 to Val-31, Arg-38 to Gly-49, Ala-61 to Lys-66, Tyr-68 to Pro-78, Gly-116 to Ala-121, Asp-154 to Ser-162, Glu-173 to Gln-186, Phe-194 to Gly-203, Pro-207 to Val-212.

The tissue distribution and homology to FKBP-12 and -13 indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for immune suppressant disorders.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 24

10

15

20

25

30

35

This gene is expressed primarily in the brain and in the retina. This gene maps to chromosome 8, and therefore can be used in linkage analysis as a marker for chromosome 8.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological and ocular associated disease states. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the disorders of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 257 as residues: Cys-34 to Asp-40.

The tissue distribution in retina indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or detection of eye disorders including blindness, color blindness, impaired vision, short and long sightedness, retinitis pigmentosa, retinitis proliferans, and retinoblastoma. Expression in the brain indicates a role in the is useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 25

This gene shows sequence homology to a newly identified class of proteins expressed in the nervous system, called stathmin family. (See Accession No. 2585991; see also Eur. J. Biochem. 248 (3), 794-806 (1997).) The stathmin family appears to be an ubiquitous phosphoprotein involved as a relay integrating various intracellular signaling pathways. These pathways affect cell proliferation and differentiation.

Preferred polypeptide fragments comprise the amino acid sequence:

QDKHAEEVRKNKELKEEASR (SEQ ID NO:469); QQDLSPWAAPVGCPLXXASX

TCHXLPLSGCLRRQSXSLPVVAXLCFWFSCPLASLFVPGQPCVTCPFPSLPFQD

KHAEEVRKNKELKEEASR (SEQ ID NO:470). Also preferred are the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in brain.

5

10

15

20

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntintons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 26

The polynucleotide sequence of this gene contains a domain similar to a Flt3 ligand peptide. Preferred polypeptide fragments comprise the amino acid sequence: PTRCCTTQPCRSSARRPCWVPMVPSPEGREXQPTCPS (SEQ ID NO:471). Thus, this gene may have activity as binding to Flt3 receptors, a process known to promote angiogenesis and/or lymphangiogenesis.

This gene is expressed in human tonsil, and to a lesser extent in teratocarcinoma, placenta, colon carcinoma, and fetal kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the tonsil, as well as cancers, such as colon, reproductive, and kidney cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful

in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tonsils, colon, reproductive organs, and kidneys, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 259 as residues: Pro-22 to Glu-33.

5

10

15

20

25

30

35

The tissue distribution in tonsil and several cancers and fetal tissues indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases of the tonsil or colon, such as tonsillitis, inflammatory diseases involving nose and paranasal sinuses, especially during the infection of influenza, adenoviruses, parainfluenza, rhinoviruses. The gene may also be useful in the diagnosis and treatment of neoplasms of nasopharynx or colon origins.

FEATURES OF PROTEIN ENCODED BY GENE NO: 27

In an alternative reading frame exists a large open reading frame that encodes a preferred polypeptide. Preferred polypeptide fragments comprise the amino acid sequence:

MKRSLNENSARSTAGCLPVPLFNQKKRNRQPLTSNPLKDDSGISTPSDNYDFP PLPTDWAWEAVNPEXAPVMKTVDTGQIPHSVSRPLRSQDSVFNSIQSNTGRSQ GGWSYRDGNKNTSLKTWXKNDFKPQCKRTNLVANDGKNSCPMSSGAQQQK QLRTPEPPNLSRNKETELLRQTHSSKISGCTMRGLDKNSALQTLKPNFQQNQY KXQMLDDIPEDNTLKETSLYQLQFKEKASSLRIISAVIESMKYWREHAQKTVLL FEVLAVLDSAVTPGPYYSKTFLMRDGKNTLPCVFYEIDRELPRLIRGRVHRCVG NYDQKKNIFQCVSVRPASVSEQKTFQAFVKIADVEMQYYINVMNET (SEQ ID NO:472); SQDSVFNSIQSNTGRSQGGWSYRDGNKNTSLKTWXKNDFKPQCKR (SEQ ID NO:473); NKETELLRQTHSSKISGCTMRGLDKNSALQTLKPNF (SEQ ID NO:474);SSLRIISAVIESMKYWREHAQKTVLLFEVLAVLDSAVTPGPYYSKTFLM (SEQ ID NO:475); and PRLIRGRVHRCVGNYDQKKNIFQCVSVRPASVSEQKT FQAFV (SEQ ID NO:476).

This gene is expressed primarily in human testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

WO 98/54963

5

10

15

20

25

30

35

24

PCT/US98/11422

not limited to, male reproductive disorders, including cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a hormone with reproductive or other systemic functions; contraceptive development; male infertility of testicular causes, such as Kleinfelterís syndrome, varicocele, orchitis; male sexual dysfunctions; testicular neoplasms; and inflammatory disorders such as epididymitis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 28

This gene is expressed primarily in apoptotic T-cell.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases relating to T cells, as well as cancer in general. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the disorders of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for immune disorders. Moreover, since the gene was isolated from an apoptotic cell and based on the understanding of the relationship of apoptosis and cancer, it is likely that this gene may play a role in the genesis of cancer.

WO 98/54963

5

10

15

20

35

26

PCT/US98/11422

polypeptide fragments. This gene maps to human chromosome 11, and therefore is useful in linkage analysis as a marker for chromosome 11.

This gene is expressed primarily in human T cells and to a lesser extent in human colon carcinoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and gastrointestinal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 263 as residues: Leu-21 to Ala-30, Ser-38 to Asp-47, Pro-87 to Asp-94, Leu-197 to Thr-204, Pro-256 to Ser-262, Thr-277 to Arg-282, Thr-293 to Trp-303.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of immune disorders and gastrointestinal diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 31

The translation product of this gene shares sequence homology with Ribosomal protein L11 of Caenorhabditis elegans. (See Accession No. 156201.) Preferred polypeptide fragments comprise the amino acid sequence:

ERGVSINQFCKEFNERTKDIKEGIPLPTKILVKPDRTFEIKIGQPTVSYFLKAAAG IEKGARQTGKEVAGLVTLKHVYEIARIKAQDEAFALQDVPLSSVVRSIIGSARSL

GIRVVKDLSSEELAAF QKERAIFLAAQKEADLAAQEEAAKK (SEQ ID NO:483). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed in human embryo tissue and to a lesser extent in human epithelioid sarcoma and other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, development disorders and epithelial cell cancer. Similarly, polypeptides and antibodies

FEATURES OF PROTEIN ENCODED BY GENE NO: 29

This gene is expressed primarily in human tonsils.

5

10

15

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, gastrointestinal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the gastrointestinal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of gastrointestinal diseases.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 30

The translation product of this gene shares sequence homology with C44C1.2 gene product of Caenorhabditis elegans with unknown function. Preferred polypeptide fragments comprise the amino acid sequence:

- GVFRPCVCGRPASLTCSPLDPEVGPYCDTPTMRTLFNLLWLALACSPVHTTLSK SDAKKAASKTLLEKSQFSDKPVQDRGLVVTDLKAESVVLEHRSYCSAKARDRH FAGDVLGYVTPWNSHGYDVTKVFGSKFTQISPVWLQLKRRGREMFEVTGLHD VDQGWMRAVRKHAKGLHIVPRLLFEDWTYDDFRNVLDSEDEIEELSKTVVQVA KNQHFDGFVVEVWNQLLSQKRVGLIHMLTHLAEALHQARLLALLVIPPAITPGT DQLGMFTHKEFEQLAPVLDGFSLMTYDYSTAHQPGPNAPLSWVRACVQVLDP KXKWRTKSSWGSTSMXWTXRXPXDARXPVVGXRXIQXLKDHXPRMVLDSK PQ (SEQ ID NO:477); TCSPLDPEVGPYCDTPTMRTLFNLLWLALACSPVHTTLS
- (SEQ ID NO:478); LVVTDLKAESVVLEHRSYCSAKARDRHFAGDVLGYVTPW
 NSHGYDVTKVFGSKF (SEQ ID NO:479); REMFEVTGLHDVDQGWMRAVRK
 HAKGLHIVPRLLFEDWTYDDFRNVLDSEDE (SEQ ID NO:480); HFDGFVVEVW
 NOLLSOKRYGLIHMI THI AFALHOARI LALL VIPPATTPGTDOLGM (SEO ID
- 35 NQLLSQKRVGLIHMLTHLAEALHQARLLALLVIPPAITPGTDQLGM (SEQ ID NO:481); DGFSLMTYDYSTAHQPGPNAPLSWVRACVQVLDPKXKWRTKSSW GST (SEQ ID NO:482). Also preferred are polynucleotide fragments encoding these

directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the embryonic and epithelial cell systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 264 as residues: Lys-34 to Gly-40.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of developmental disorders and epithelial cancer.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 32

5

10

20

25

30

35

This gene is expressed primarily in resting T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory and general immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of disorders of immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 33

This gene is believed to reside on chromosome 1. Accordingly, polynucleotides derived from this gene are useful in linkage analysis as chromosome 1 markers.

This gene is expressed primarily in prostate and to a lesser extent in soares adult brain, human umbilical vein endothelial cells, and amniotic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, prostate-related disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the urinary system and nervous system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for the diagnosis and treatment of disorders of the urinary and nervous systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 34

5

10

15

tissues.

35

This gene shares sequence homology with R05G6.4 gene product. (See Accession No. gill326338.) This gene also shares sequence homology with the cyclophilin-like protein 20 CyP-60. (See Accession No. 1199598, see also Biochem. J. 314 (1), 313-319 (1996).) Preferred polypeptide fragments comprise the amino acid sequence: AVYTYHEKKKDTAASGYGTQNIRLSRDAVKDFDCCCLSLQPCHDPVVTPDGYL YEREAILEYILHQKKEIARQMKAYEKQRGTRREEQKELQRAASQDHVRGFLEKE SAIVSRP LNPFTAKALSGTSPDDVQPGPSVGPPSKDKDKVLPSFWIPSLTPEAK 25 ATKLEKPSRTVTCPMSGKPLRMSDLTPVHFTPLDSSVDRVGLITRSERYVCAVT RDSLSNATPCAVLRPSGAVVTLECVEKLIRKDMVDPVTGDKLTDRDIIVLQRGT (SEQ ID NO:484); YLYEREAILEYILHQKKEIARQMKAYEKQRGTRREEQKELQ RAASQDHVRGFLE (SEQ ID NO:485); and FTAKALSGTSPDDVQPGPSVGPP SKDKDKVLPSFWIPSLTPEAKATKLEKPSRTVTCPMSGKPL (SEQ ID NO:486). 30 Also preferred are polynucleotide fragments that encode these polypeptide fragments.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male reproductive disorders and in particular testicular cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing

This gene is expressed primarily in human testis and to a lesser extent in other

29

immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system. Expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders of the male reproductive system and in particular of testicular cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 35

5

10

20

25

30

35

The translation product of this gene shares sequence homology with Lpe5p of Saccharomyces cerevisiae which is thought to be important in the metabolism of phospholipids.

This gene is expressed primarily in liver and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, metabolic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the metabolic and nervous systems expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 268 as residues: Pro-14 to Leu-20, Lys-28 to Asn-38, Arg-109 to Arg-114, Lys-119 to Asn-124, Glu-152 to Leu-157, Pro-172 to Val-180.

The tissue distribution and homology to Lpe5p of Saccharomyces cerevisiae indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of metabolic and nervous disorders.

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 36

This gene shares sequence homology with the nuclear ribonucleoprotein U (HNRNP U), encoded by *C. elegans* (See Accession gil1703576.) Preferred polypeptide fragments comprise the amino acid sequence:

5 MDTSENRPENDVPEPPMPIADQVSNDDRPEGSVEDEEKKESSLPKSFKRKISVV
SATKGVPAGNSDTEGGQPGRKRRWGASTATTQKKPSISITTESLKSLIPDIKPL
AGQEAVVDLHADDSRISEDETERNGDDGTHDKGLKICRTVTQVVPAEGQENGQ
REEEEEKEPEAEPPVPPQVSVEVALPPPAEHEVKKVTLGDTLTRRSISQQKSGV
SITIDDPVRTAQVPSPPRGKISNIVHISNLVRPFTLGQLKELLGRTGTLVEEAFWI
10 DKIKSHCFVTYSTVEEAVATRTALHGVKWPQSNPKFLCADYAEQDELDYHRGL
LVDRPSETKTEEQGIPRPLHPPPPPPVQPPQHPRAEQREQERAVREQWAERERE
MERRERTRSEREWDRDKVREGPRSRSRSRXRRKERAKSKEKKSEKKEKAQE
EPPAKLLDDLFRKTKAAPCIYWLPLTDSQIVQKEAERAERAKEREKRKEQEEE
EQKEREKEAERERNRQLEREKRREHSRERDRERERERDRGDRDRDRERDRE
15 RGRERDRRDTKRHSRSRSRSTPVRDRGGR (SEQ ID NO:488). Also preferred are
the polynucleotide fragments encoding this polypeptide fragments.

This gene is expressed primarily in epididymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 20 biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the male reproductive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of 25 this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the 30 disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of male reproductive disorders.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 37

This gene is expressed primarily in amygdala.

31

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory diseases and reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the amygdala, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of inflammatory diseases and reproductive disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 38

10

15

20

25

30

35

This gene shares sequence homology with human opsonin protein P35 fragment. (See Accession No. R94181.) The opsonin protein activates the phagocytosis of pathogenic microbes by phagocytic cells. Preferred polypeptide fragments comprise the amino acid sequence: GCDSCPPHLPREAFAQDTQAEGECSSRAERADMCPDAP PSQEVPEGPGAAP (SEQ ID NO:489). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed in immune-related tissues such as thymus, macrophage, T cells and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders and infectious disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and infectious disease, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 271 as residues: Lys-9 to Arg-14, Met-38 to Asp-51.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders, as well as the treatment and/or diagnosis of infectious disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 39

The translation product of this gene shares sequence homology with alpha-2 type I collagen which is thought to be important in tissue repair. (See, e.g., 211607.) Preferred polypeptide fragments comprise the amino acid sequence: PQLPSCGRPW PGTASVFQSHTQGPREDPDPCRAQGSAGTHCPISLSPPRQ (SEQ ID NO:490). Also preferred are the polynucleotide sequences encoding these polypeptide sequences.

This gene is expressed primarily in the brain and to a lesser extent in the kidney and thymus

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, brain, kidney, and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, kidney, and immune disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to alpha-2 type I collagen indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tissue repair, and brain, kidney, immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 40

The translation product of this gene shares sequence homology with minicollagen which is thought to be important in tissue repair tumor metastasis. (See Accession No. gnllPIDld1006976.) Preferred polypeptide fragments comprise the amino acid sequence: PGFRGPSGSLGCSFFPRSLGRVLPPGCQRPGAHAD

10

15

20

SSPPPTP (SEQ ID NO:491). Also preferred are polynucleotides encoding this polypeptide fragment.

This gene is expressed in ovarian cancer and to a lesser extent in dedritic cells and smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumor metastasis and tissue repair. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tumor metastasis and tissue repair, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 273 as residues: Asn-2 to His-11.

The tissue distribution and homology to mini-collegen gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tumor metastasis and tissue repair.

FEATURES OF PROTEIN ENCODED BY GENE NO: 41

This gene shares sequence homology with the HIV TAT protein. (See

25 Accession No. 328416.) Preferred polypeptide fragments comprise the amino acid
sequence: EDLKKPDPASLRAASCGEGKKRKACKNCTCGLAEELEKEK
SREQMSSQPKSACGNCYLGDAFRCASCPYLGMPAFKPGEKVLLS (SEQ ID
NO:492); EDLKKPDPASLRAASCGEGKKRKACKNCTCGLAEELEKEK
SREQMSSQPKSACGNCYLGDAFRCASCPYLGMPAFKPGEKVLLSDSNLHD
30 (SEQ ID NO:493); CGNCYLGDAFRCASCPYLGMPAFKPGEKVLLSDS
(SEQ ID NO:494); SCGEGKKRKACKNCTCGLAEELEKE (SEQ ID NO:495);
SQPKSAC GNCYLGDAFRCASC (SEQ ID NO:496); and REAGQNSERQYVS
LSRD (SEQ ID NO:497). Also preferred are polynucleotide fragments encoding these
polypeptide fragments.

This gene is expressed primarily in the infant brain and to a lesser extent in the breast and testes.

15

20

25

30

35

34

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, brain, testes and breast disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, testes and breast disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 274 as residues: Pro-7 to Val-15.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of brain, testes and breast, and other related disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 42

This gene is expressed primarily in the infant brain, human cerebellum, and to a lesser extent in medulloblastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, brain related disorders and medulloblastoma and other brain cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain related disorders and brain cancers, including medulloblastoma, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 275 as residues: Thr-41 to Glu-47.

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of human brain related disorders, brain cancers, and medulloblastoma.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 43

The translation product of this gene shares sequence homology with a phosphotyrosine-independent ligand for the lck SH2 domain which is thought to be important in signal transduction related to phosphotyrosine-independent ligand for the lck SH2 domain. (See Accession No. gil1184951.) Preferred polypeptide fragments comprise the amino acid sequence: ESSGQARTLADPGPGWPRQQGMCFGSLT GLSTTPHGFLTVSAEADPRLIESLSQMLSMGFSDEGGWLTRLLQTKNYDIGAAL DTIQYSKH (SEQ ID NO:498). Also preferred are polynucleotide fragments encoding this polypeptide fragment. It is likely that this gene is a new member of a family of phosphotyrosine-independent ligands for the lck SH2 domains.

This gene is expressed primarily in the placenta and to a lesser extent in endothelial cells and neutrophil.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, reproductive, cardiovascular, immune, and infectious diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular, reproductive, and immune system, and infectious diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to a phosphotyrosine-independent ligand for the lck SH2 domain indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cardiovascular, reproductive, and immune system diseases, as well as infectious diseases.

10

15

20

25

30

WO 98/54963

5

10

15

20

25

30

35

36

PCT/US98/11422

FEATURES OF PROTEIN ENCODED BY GENE NO: 44

This gene is expressed primarily in the fetal brain, cerebellum and to a lesser extent in the placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neuronal cell related disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuronal cell related disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 277 as residues: Thr-20 to Gly-28.

The tissue distribution and homology to proline-rich protein genes indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal cell related disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 45

The translation product of this gene shares sequence homology with precerebellin of human, which is thought to be important in synaptic physiology. (See Accession No. gil180251.) It has been observed that cerebellin-like immunoreactivity is associated with Purkinje cell postsynaptic structures. Thus, it is likely that this gene also have synaptic activity. Preferred polypeptide fragments comprise the amino acid sequence: QEGSEPVLLEGECLVVCEPGRAAAGGPGGAALGEAPPGRVAFXAV RSHHHEPAGETGNGTSGAIYFDQVLVNEGGGFDRASGSFVAPVRGVYSFRFH VVKVYNRQTVQVSLMLNTWPVISAFANDPDVTREAATSSVLLPLDPGDRVSLR LRRGXSTGW (SEQ ID NO:499). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in cerebellum and infant brain. By Northern analysis, a single transcript of 2.4 kb was observed in brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

37

not limited to, neuronal cell signal transduction and synaptic physiology. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuronal cell signal transduction and synaptic physiology expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to gene or gene family indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal cell related disorders.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 46

This gene is expressed in fetal liver and spleen, and to a lesser extent in bone marrow, umbilical vein, and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders of the immune system, particularly hematopoiesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoiesis and immune disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 279 as residues: Asp-30 to Glu-57.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hematopieotic and immune disorders.

5

10

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 47

5

10

15

20

30

35

The translation product of this gene shares sequence homology with a 12 kD nucleic acid binding protein of Feline calcivirus which is thought to be important in viral replication. (See Accession No. 59264)

This gene is expressed primarily in human cardiomyopathy and to a lesser extent in T helper cells, fetal brain and synovial sarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cardiomyopathy as well as viral infection. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 280 as residues: Trp-20 to Cys-26.

The tissue distribution in cardiomyopathy and homology to viral 12 kD nucleic acid binding protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of cardiomyopathy, including those caused by ischemic, hypertensive, congenital, valvular, or pericardial abnormalities.

25 The gene expression pattern may be the consequence or the cause for these conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 48

The translation product of this gene shares sequence homology with tumor necrosis factor related gene product which is thought to be important in tumor necrosis, bacterial and viral infection, immune diseases and immunoreactions.

This gene is expressed primarily in colon and to a lesser extent in ovarian and breast cancers.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumors of colon, ovary or breast origins. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

10

15

20

39

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the colon, ovary and breast, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Tumor necrosis factors indicates that polynucleotides and polypeptides corresponding to this gene are useful for intervention of cancers of colon, ovary and breast origins, because TNF family members are known to be involved in the tumor development.

FEATURES OF PROTEIN ENCODED BY GENE NO: 49

The translation product of this gene shares sequence homology with mucins, such as epithelial mucin, which is thought to be important in extracellular matrix functions such as protection, lubrication and cell adhesion (See for example Accession No. R68002). Preferred polypeptide fragments comprise the following amino acid sequence: PRSRPALRPGRQRPPSHSATSGVLRPRKKPDP (SEQ ID NO:500). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

Moreover, this gene maps to chromosome 22q11.2-qter, and therefore, can be used as a marker in linkage analysis for chromosome 22.

This gene is expressed primarily in corpus colosum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 25 biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumors, especially of corpus colosum, as well as metastatic lesions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell 30 type(s). For a number of disorders of the above tissues or cells, particularly of the corpus colosum and other solid tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder. 35 relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

WO 98/54963

The tissue distribution and homology to mucins indicates that polynucleotides and polypeptides corresponding to this gene are useful for serum tumor markers or immunotherapy targets because tumor cells have greatly elevated level of mucin expression and shed the molecules into the epithelial tissues.

5

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 50

This gene is expressed primarily in CD34 depleted buffy coat cord blood and primary dendritic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematopoietic disorders and immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in CD34 depleted buffy coat cord blood and primary dendritic cells indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hematopoietic and immune disorders. Secreted or cell surface proteins in the above tissue distribution often are involved in cell activation (e.g. cytokines) or molecules involved in cell surface activation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 51

The translation product of this gene shares sequence homology with Interferon induced 1-8 gene encoded polypeptide which is thought to be important in binding to retroviral rev responsive element. Preferred polypeptide fragment comprise the following amino acid sequences: MTLITPSXKLTFXKGNKSWSSRACSSTLVDP (SEQ ID NO:501). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

35

This gene is expressed primarily in CD34 positive cells and neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

41

biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, retroviral infection, such as AIDS, and other immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 284 as residues: Gln-51 to Trp-62.

The tissue distribution and homology to interferon induced gene 1-8 indicates that polynucleotides and polypeptides corresponding to this gene are useful for intervention of retroviral infection including HIV. The factor may be involved in viral stability or viral entry into the cells. Alternatively, the virus/factor complex may elicit the cellular immune reaction.

FEATURES OF PROTEIN ENCODED BY GENE NO: 52

5

10

15

20

25

30

35

This gene shares sequence homology to immunoglobulin lambda chain (See Accession No. 2865484). Therefore it is likely that this gene has activity similar to an immunoglobulin lambda chain. Preferred polypeptide fragments comprise the following amino acid sequence: GHPSPALSIAPSDGSQLPCDEVPYGEAHVTRYCKKPLTNS HLETEAQSSSL (SEQ ID NO:502). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in Hodgkin's lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, Hodgkin's lymphoma and other immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

WO 98/54963

5

10

15

20

25

30

35

PCT/US98/11422

the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 285 as residues: Pro-27 to Thr-32.

42

The tissue distribution in Hodgkin's lymphoma and the sequence homology indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of Hodgkin's lymphoma, since the elevated expression and secretion by the tumor mass may be indicative of tumors of this type. Additionally the gene product may be used as a target in the immunotherapy of the cancer. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 53

This gene has extensive homology to cDNA for Homo sapiens mRNA for the ISLR gene(See Accession No. AB003184). This protein is considered to be a new member of the Ig superfamily and contains a leucine-rich repeat (LRR) with conserved flanking sequences and a C2-type immunoglobulin (Ig)-like domain. These domains are important for protein-protein interaction or cell adhesion, and therefore it is possible that the novel protein ISLR may also interact with other proteins or cells. The ISLR gene was mapped on human chromosome 15q23-q24 by fluorescence in situ hybridization (See Medline Article No. 97468140). Homology to the ISLR gene has been confirmed by another independent group as well (See Accession No. Hs.102171)

This gene is expressed in a number of tissues including human retina, heart, skeletal muscle, prostate, ovary, small intestine, thyroid, adrenal cortex, testis, stomach, spinal cord, fetal lung and fetal kidney tissues, colon, tonsil and stomach cancer, and to a lesser extent in endometrial stromal cells treated with estradiol, breast tissue, synovium, lymphoma, and number of other tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumors of colon, ovary and breast origins. However, due to the wide range of expression in various tissues, protein may play a vital role in the development of cancer in other tissues as well, not just those mentioned above. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the colon, ovary and breast, expression of this gene at significantly higher or lower levels may be routinely

PCT/US98/11422

detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Additionally, this gene maps to chromosome 15q23-q24, and therefore, can be used as a marker in linkage analysis for chromosome 15.

The tissue distribution in tumors of colon, ovary, and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 54

10

15

20

25

30

35

This gene is expressed primarily in lung, esophagus, leukemia (Jurkat cells) and breast cancers and to a lesser extent in macrophages treated with GM-CSF fetal tissues and wide range of tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer of wide range of origins. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the solid tumors, lung and leukemia, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

44

the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Furthermore, due to the high expression level in lung tissue and the proposed function of the multidrug resistance protein 1 gene as the efflux pump responsible for low-drug accumulation in multidrug-resistant cells, protein as well mutants thereof, may also be beneficial as a target for gene therapy, particularly for the chronic patient. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 287 as residues: Met-1 to Lys-16.

The tissue distribution in wide range of cancers and fetal tissues indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection of cells in active proliferation, such as cancers. The gene products may be used for cancer markers or immunotherapy target.

FEATURES OF PROTEIN ENCODED BY GENE NO: 55

This gene maps to the X chromosome.

10

15

20

25

30

35

This gene is expressed primarily in the brain and to a lesser extent in the developing embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative disease states and developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders, including sex-linked disorders, of the above tissues or cells, particularly of the neurological, developmental systems, and cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Moreover, this gene maps to the X chromosome, and therefore, may be used as a marker in linkage analysis for this chromosome.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Klinefelter's, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental

45

disorders associated with the developing embryo, sexually-linked disorders, or disorders of the cardiovascular system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 56

5 The translation product of this gene shares sequence homology with paxillin which is thought to be important in mediating signal transduction from growth factor receptors to the cytoskeleton. Preferred polynucleotide fragments comprise the following sequence: TGGCTCACTGTCTTACAATCACTGCTGTGGAATCATGA TACCACTTTTAGCTCTTTGCATCTTCCTTCAGTGTATTTTTGTTTTTCAAGAGG 10 GGCTTGTGGTTTCAA (SEQ ID NO:506). Also preferred are polypeptide fragments encoded by these polynucleotide fragments. More preferably, polypeptide fragments comprise the amino acid sequence: LDELMAHLTEMQAKVAVRAD AGKKHLPDKQDHKASLDSMLGGLEQELQDLGIATVPKGHCASCQKPIAGKVI HALGQSWHPEHFVCTHCKEEIGSSPFFERSGLXYCPNDYHQLFSPRCAYCAAP 15 ILDKVLTAMNQTWHPEHFFCSHCGEVFGAEGFHEKDKKPYCRKDFLAMFSPK CGGCNRPVLENYLSAMDTVWHPECFVCGDCFTSFSTGSFFELDGRPFCELHYH HRRGTLCHGCGQPITGRCISAMGYKFHPEHFVCAFCLTQLSKGIFREQNDKTY CQPCFNKLF (SEQ ID NO:507); KASLDSMLGGLEQELQDLGIATVPKGHC 20 ASCQKPIAGKVIHAL (SEQ ID NO:508); CPNDYHQLFSPRCAYCAAPILDKVL TAMNQTWHPEHFFCSHCGEVFGAEG (SEQ ID NO:509); DKKPYCRKDFLAM FSPKCGGCNRPVLENYLSAMDTVWHPECFVCGDCFTSFSTGSFFELDGRPFCE L (SEQ ID NO:510); CGQPITGRCISAMGYKFHPEHFVCAFCLTQLSKGIFRE QNDKTYCQ (SEQ ID NO:511). Polynucleotide fragments encoding these preferred 25 polypeptide fragments are also contemplated.

This gene is expressed primarily in brain, and to a lesser extent in the developing embryo.

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disease states and developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or

46

cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Moreover, since this gene shares homology with a gene that maps to chromosome 11, (See Accession No.T87404), gene as well as its translated product may be used for linkage analysis on chromosome 11.

The tissue distribution and homology to paxillin indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and or detection of disease states associated with abnormal signal transduction in brain and/or the developing embryo. This would include treatment or detection of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder and also in the treatment and or detection of embryonic development defects.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 57

5

10

20

25

30

35

This gene is expressed primarily in fetal spleen, brain, and to a lesser extent in six week old embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders, neurological disorders, and developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and developmental systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 290 as residues: Arg-28 to Gly-34.

The expression of this gene in fetal spleen indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/detection of immune disorders such as arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. In addition the expression of this gene in the early embryo, indicates a key role in embryo development and hence the gene or gene product could be used in the treatment and or detection of embryonic development defects. This would include

47

treatment or detection of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntintons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder and also in the treatment and or detection of embryonic development defects.

5

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 58

The translation product of this gene shares sequence homology with the gene disrupted in the neurodegenerative disease dentatorubal-pallidoluysian atrophy. Moreover a long open reading fame exists in an alternative frame. Preferred polypeptide fragments comprise the following:

10 ${\tt MGSSQSVEIPGGGTEGYHVLRVQENSPGHRAGLEPFFDFIVSINGSRLNKDND}$ TLKDLLKXNVEKPVKMLIYSSKTLELRETSVTPSNLWGGQGLLGVSIRFCSFD GANENVWHVLEVESNSPAALAGLRPHSDYIIGADTVMNESEDLFSLIETHEAKP LKLYVYNTDTDNCREVIITPNSAWGGEGSLGCGIGYGYLHRIPTRPFEEGKKIS 15 LPGQMAGTPITPLKDGFTEVQLSSVNPPSLSPPGTTGIEQSLTGLSISSTPPAVSS VLSTGVPTVPLLPPQVNQSLTSVPPMNPATTLPGLMPLPAGLPNLPNLNLNLPA PHIMPGVGLPELVNPGLPPLPSMPPRNLPGIAPLPLPSEFLPSFPLVPESSSAASS GELLSSLPPTSNAPSDPATTTAKADAASSLTVDVTPPTAKAPTTVEDRVGDSTPV SEKPVSAAVDANASESP (SEQ ID NO:512); SVEIPGGGTEGYHVLRVQENSPGH 20 RAGLEPFFDFIVSINGSRLNKDNDTLKDLLKXNVEKPVKMLIYSSKTLELRETS VTPSNLWGGQGLLGVSIRFCSFDGANENVWH (SEQ ID NO:513); ESNSPAA LAGLRPHSDYIIGADTVMNESEDLFSLIETHEAKPLKLYVYNTDTDNCREVIITP NSAWGGEGSLGCGIGYGYLHRIPTRPFEEGKKISLPGQMAGTPITPLKDGFTEV QLSSVNPPSLSPPGTTGIEQSLTG LSISS (SEQ ID NO:514); RIPTRPFEEGKKI

SLPGQMAGTPITPLKDGFTEVQLSSVNPPSLSPPGTTGIEQSLTGLSISSTPPAVS SVLSTGVPTVPLLPPQVNQSLTSVPPMNPATTLPGLMPLPAGLPNLPNLNLNLP APHIMPGVGLPELVNPGLPPLPSMPPRN (SEQ ID NO:516); PGLPPLPSMPPRN LPGIAPLPLPSEFLPSFPLVPESSSAASSGELLSSLPPTSNAPSDPATTTAKADAA SSLTVDVTPPTAKAPTTVEDRVGDSTPVSEKPVSAAVDAN (SEQ ID NO:517).

This gene is expressed primarily in prostate cancer, and to a lesser extent in the pineal glands and in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological conditions and pulmonary disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For

WO 98/54963

5

10

15

20

25

30

35

PCT/US98/11422

48

a number of disorders of the above tissues or cells, particularly of the nervous, pulmonary, and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 291 as residues: Asn-9 to Leu-14.

The abundance of this gene in the pineal gland and its homology to a gene disrupted in the neurodegenerative disease state Dentatorubral-pallidoluysian atrophy indicates that this gene may be useful in the treatment and/or detection of other neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. The abundance of this gene in fetal lung would suggest that misregulation of the expression of this protein product in the adult could lead to lymphoma or sarcoma formation, particularly in the lung; that it may also be involved in predisposition to certain pulmonary defects such as pulmonary edema and embolism, bronchitis and cystic fibrosis; and thus the gen or the gene protein encoded by the gene could be used in the detection and/or treatment of these pulmonary disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 59

This gene is expressed primarily in the developing embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developmental system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene primarily in the embryo, indicates the gene plays a key role in embryo development and that the gene or the protein encoded by the gene could be used in the treatment and or detection of developmental defects in the embryo or in infants.

5

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 60

This gene displays homology to nestin, an intermediate filament protein, the expression of which correlates with the proliferation of Central Nervous System progenitor cells and that is useful in the identification of brain tumors. This gene maps to chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1 (See Accession No. AA527348).

This gene is expressed primarily in kidney and to a lesser extent in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, renal disorders and neurodegenerative conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the excretory and nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 293 as residues: Thr-128 to Asn-135.

The tissue distribution and homology to nestin indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and/or treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, its abundance in kidney indicates that it is useful in the treatment and detection of acute renal failure and other disease states associated with the kidney.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 61

Gene shares homology with the latrophilin-related protein 1 precursor as well as the calcium-independent alpha-latrotoxin receptor. Preferred polypeptide fragments

50

comprise the following amino acid sequence:

IYKVFRHTAGLKPEVSCFENIRSCARXXXXXXXXXXXXXXWIFGVLHVVHASVV TAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNVPCC (SEQ ID NO:518); WIFGVLHVVHASVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNVPC

5 C (SEQ ID NO:519). Also preferred are polynucleotide fragments encoding these polypeptide fragments. (See Accession No. 2213659) The translation product of this gene shares sequence homology with CD 97, a seven transmembrane bound receptor.

This gene is expressed primarily in infant brain and in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders and hematopoeitic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neurological and hematopoeitic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 294 as residues: Lys-13 to Leu-21.

The tissue distribution of this gene suggest that it may be useful in the detection and/or treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder, while its expression in hematopoietic cell types indicates that the gene could be important for the treatment or detection of immune or hematopoietic disorders including arthritis, asthma and immunodeficiency diseases.

30

35

25

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 62

This gene is expressed primarily in fetal liver and fetal spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematological and immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

10

25

30

35

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoetic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 295 as residues: Ser-91 to Lys-98.

The tissue distribution of this gene fetal liver and spleen indicates that the gene could be important for the treatment or detection of immune or hematopoietic disorders including arthritis, leukemia, asthma and immunodeficiency diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 63

Gene shares homology with human serum amyloid protein. Preferred polypeptide fragments comprise the following amino acid sequence:
 ALTRIPPGDWVINVTAVSFAGKTTARFFHSSPPSLGDQARTDPGHQRRD (SEQ ID NO:520) (See Accession No. W13671). Also preferred are polynucleotide fragments encoding these polypeptide fragments This gene maps to chromosome 9, and therefore, may be used as a marker in linkage analysis for chromosome 9 (See Accession No. AA004342).

This gene is expressed primarily in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematopoietic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene in fetal liver-spleen indicates that the gene could be important for the treatment or detection of immune or hematopoietic disorders including arthritis, leukemia, asthma, and immunodeficiency diseases.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 64

This gene maps to chromosome 3, and therefore, may be used as a marker in linkage analysis for chromosome 3 (See Accession No. AA219669).

This gene is expressed specifically in the brain.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative disease states. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neurological systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntintons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 65

Gene shares homology with a yeast protein. Preferred polypeptide fragments comprise the following amino acid sequence: LQEVNITLPENSVWYERYKFDIP VFHL (SEQ ID NO:521). Also preferred are polynucleotide fragments encoding these polypeptide fragments. (See Accession No. 1332638)

This gene is expressed primarily in fetal tissue (fetus and fetal liver).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, liver disorders and cancers (e.g. hepatoblastoma). Similarly,

polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 298 as residues: Asn-59 to Glu-64.

5

10

15

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities, fetal deficiencies, pre-natal disorders and various would-healing models and/or tissue trauma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 66

20 Gene has homology with a B-cell surface antigen which may indicate gene plays a role in the immune response, including, but not limited to disorders and infections of the immune system. Preferred polynucleotide fragments comprise the following sequence: TAGCATGTAGCCAGTCGAATAACNTATAAGGACAAAGTGGAGTC CACGCGTGCGGCCGTCTAGACTAGTGGATCCCCCGGCTGCAGGATTCGGC 25 ACGAG (SEQ ID NO:523). Also preferred are polypeptide fragments encoded by these polynucleotide fragments (See Accession No.T94535). Additionally, this gene shares homology with an interferon-gamma receptor. Preferred polypeptide fragments also comprise the following amino acid sequence: MQGSGSQFRACLLCLCFSCPC SPGGPRWNSRQGGRRFPKTCRAISQNLVFKYKTFCPVRYMQPHRSSLCLHFTS 30 YVFILSTWGSLRTYSTDLKKKKKNSRGGPVPIRPKS (SEQ ID NO:522); MQGSGSQFRACLLCLCFSCPCSPGGPRWNSROGGRRFPKTCRAISONLVFK (SEQ ID NO:524); PVRYMQPHRSSLCLHFTSYVFILSTWGSLRTYSTDLKKKKK NSRGGPVPIRPKS (SEQ ID NO:525); and GEEORDCSLGWRGVGMRATHCOAA RMFVLFSLPKYAGL (SEQ ID NO:526). Also preferred are polynucleotide fragments 35 encoding these polypeptide fragments

This gene is expressed primarily in T-cells and gall bladder.

15

20

25

30

35

Thr-41 to Gly-52.

54

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological disorders and conditions (immunodeficiencies, cancer, leukemia, hematopoeisis). Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and digestive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of immune disorders including: leukemias, lymphomas, auto-immune disorders, immuno-supressive (transplantation) and immunodeficiencies (e.g. AIDS), inflammation and hematopoeitic disorders. The expression of this gene in gall bladder would suggest a possible role for this gene product in digestive disorders, particularly of the pancreas.

in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 299 as residues:

FEATURES OF PROTEIN ENCODED BY GENE NO: 67

This gene maps to chromosome 11, and therefore, may be used as a marker in linkage analysis for chromosome 11 (See Accession No. AA011622).

This gene is expressed primarily in a variety of fetal and developmental tissues (e.g. fetal spleen, infant brain).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental, immune or neurological abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing immune and central nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or

PCT/US98/11422

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 300 as residues: Ser-38 to Ser-43.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for developmental abnormalities or fetal deficiencies. The detection in infant brain would suggest a role in neurological disorders (both developmental and neurodegenerative conditions of the brain and nervous system, behavioral disorders, depression, schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, mania, dementia). In addition, the detection in spleen would similarly suggest a role in detection and treatment of immunologically mediated disorders (e.g. immunodeficiency, inflammation, cancer, wound healing, tissue repair, hematopoeisis).

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 68

5

20

25

30

35

This gene is expressed primarily in spleen, T-cells, and fetal heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological deficiencies, including AIDSand cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and cardiovascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of immune disorders including: leukemias, lymphomas, autoimmune disorders, immunodeficiencies (e.g. AIDS), immuno-suppressive conditions (transplantation) and hematopoeitic disorders. The expression in fetal heart indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of cadiovascular disorders (e.g. heart disease, restenosis, atherosclerosis, stoke, angina, thrombosis).

56

FEATURES OF PROTEIN ENCODED BY GENE NO: 69

Gene shares homology with a human collagen protein. Preferred polypeptide fragments comprise the following amino acid sequence:

5 MPRKTSKCRQLLCSGASRNADTAARQSTCSSHRPPGKIPSLGPRRXPGCXSVP SSRGEQSTGSPAAPRCGRRDAHRGLPGGAAMTPGDTWASFNPRAGHSKSQGE GQESSGASRQDRHPVSHWVERQREAWGAPRSSSAGGVKVAATTEREPEFKIK TGKA (SEQ ID NO:527); CSGASRNADTAARQSTCSSHRPPGKIPSLGPRRXPG CXSVPSSRGEQSTGSPAAPRCGRRDAHRGLPGGAAMTPGDTWASFNPRAGHS (SEQ ID NO:528); QGEGQESSGASRQDRHPVSHWVERQREAWGAPRSSSAGG VKVAATTEREPEFKIKTGKA (SEQ ID NO:529) (See Accession No. 124886). Also preferred are polynucleotide fragments encoding these polypeptide fragments

This gene is expressed primarily in fetal heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 15 biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above 20 tissues or cells, particularly of the cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level 25 in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEO ID NO: 302 as residues: Pro-32 to Ser-39.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of cadiovascular disorders (e.g. heart disease, restenosis, atherosclerosis, stroke, angina, thrombosis).

FEATURES OF PROTEIN ENCODED BY GENE NO: 70

30

35

The translation product of this gene shares sequence homology with a chicken single-strand DNA-binding protein. Preferred polypeptide fragments comprise the following amino acid sequence:

MSPRYPGGPRPPLRIPNQALGGVPGSQPLLPSGMDPTRQQGHPNMGGPMQRM TPPRGMVPLGPQNYGGAMRPPLNALGGPGMPGMNMGPGGGRPWPNPTNAN

15

20

25

30

35

WO 98/54963 PCT/US98/11422

57

SIPYSSASPGNYVGPPGGGGPPGTPIMPSPADSTNSGDNMYTLMNAVPPGPNR PNFPMGPGSDGPMGGLGGMESHHMNGSLGSGDMDSISKNSPNNMSLSNQP GTPRDDGEMGGNFLNPFQSESYSPSMTMSV (SEQ ID NO:530); MSPRYPGG PRPPLRIPNQALGGVPGSQPLLPSGMDPTRQQGHPNMGGPMQRMTPPRGMVP LGPQNYGGAMRPPLNALGGPGMPGMNMGPGGGRPWPNPTNANSIPYSSASP GNY (SEQ ID. NO:531); LNALGGPGMPGMNMGPGGGRPWPNPTNANSIPYSS ASPGNYVGPPGGGGPPGTPIMPSPADSTNSGDNMYTLMNAVPPGPN (SEQ ID NO:532); GPMGGLGGMESHHMNGSLGSGDMDSISKNSPNNMSLSNQPGTPR DDGEMGGNFLNPFQSESYSPSMTMSV (SEQ ID NO:533); TCEHSSEAKAFHDY (SEQ ID NO:534). Also preferred are polynucleotide fragments encoding these polypeptide fragments. (See Accession No. 1562534)

This gene is expressed primarily in placenta and to a lesser extent in the fetal heart and a variety of other tissues and cell types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities, fetal deficiencies, and particularly of the cardiovascular system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of developmental abnormalities or fetal deficiencies, ovarian and other endometrial cancers, reproductive dysfunction, cardiovascular disorders, and pre-natal disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 71

This gene is expressed primarily in fetal liver and to a lesser extent in the breast and testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

WO 98/54963

10

15

25

30

35

not limited to, liver disorders (including hepatoblastomas) and reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). The expression in testes and breast indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of endocrine and reproductive disorders (e.g. sperm maturation, milk production, testicular and breast cancers).

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 72

This gene maps to chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1 (See Accession No. W93595).

This gene is expressed primarily in smooth muscle and to a lesser extent in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cardiovascular and neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular and central nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

WO 98/54963

The tissue distribution indicates that polynucleotides and polypeptides . corresponding to this gene are useful for the detection and treatment of restenosis, atherosclerosis, stroke, angina, thrombosis, wound healing and other conditions of heart disease. In addition, the expression in brain would suggest that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of developmental, degenerative and behavioral conditions of the brain and nervous system (e.g. schizophrenia, depression, Alzheimer's disease, Parkinson's disease, Huntington's disease, mania, dementia, paranoia, addictive behavior and sleep disorders).

59

PCT/US98/11422

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 73

Gene shares homology with human stromalin-2. Preferred polypeptide fragments comprise the following amino acid sequence:

QAFVLLSDLLLIFSPQMIVGGRDFLRPLVFFPEATLQSELASFLMDHVFIQPGDL
GSGA (SEQ ID NO:535); ACSYLLCNPEFTFFSRADFARSQLVDLLTDRFQQE
LEELLQVG (SEQ ID NO:536),QKQLSSLRDRMVAFCELCQSCLSDVDTEIQEQV
ST (SEQ ID NO:537); QVILPALTLVYFSILWTLTHISKSDAS (SEQ ID NO:538);
STHDLTRWELYEPCCQLLQKAVDTGXVPHQV (SEQ ID NO:539). Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No.R65208) This gene maps to chromosome 7, and therefore, may be used as a marker in linkage analysis for chromosome 7 (See Accession No.D52585).

This gene is expressed primarily in the brain (infant brain, adult brain, pituitary, cerebellum, hippocampus, schizophrenic hypothalmus, amygdala).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental and neurodegenerative diseases of the brain and nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those

15

20

25

35

WO 98/54963 PCT/US98/11422

60

comprising a sequence shown in SEQ ID NO: 306 as residues: Thr-25 to Lys-36, Lys-55 to Ser-63.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of developmental, degenerative and behavioral conditions of the brain and nervous system (e.g. schizophrenia, depression, Alzheimer's disease, Parkinson's disease, Huntington's disease, mania, dementia, paranoia, addictive behavior and sleep disorders).

FEATURES OF PROTEIN ENCODED BY GENE NO: 74

This gene is expressed primarily in the hypothalamus of a human suffering from schizophrenia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders of the CNS particularly schizophrenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS, such as schizophrenia expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 307 as residues: Gly-38 to Ala-44.

The tissue distribution indicates that the protein products of this gene are useful for the study, diagnosis and treatment of schizophrenia and other disorders involving the CNS.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 75

Preferred polypeptides of the invention comprise the following amino acid sequence encoded by this gene:

LAVSTSFICCADISTALPLGSSRPAPAPRHREHEHGHQARPPRLLXTSLMPLSTP AAAQLLWTQLTPMGGRPGGRHSPPTLHTGPRALPPGPPHPSLHVAALSLLR (SEQ ID NO:540). Polynucleotides encoding such polypeptides are also provided.

This gene is expressed primarily in endometrial tumor and to a lesser extent in amniotic cells.

61

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, reproductive and immune disorders particularly cancers of those systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 308 as residues: Ser-3 to Arg-9.

The tissue distribution indicates that the protein products of this gene are useful for study and treatment of immune and reproductive disorders particularly cancers of those systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 76

10

15

20

25

30

35

This gene is expressed primarily in kidney cortex and to a lesser extent in early stage human brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, renal disorders such as renal cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the kidney expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 309 as residues: Gly-38 to Gly-45, Gly-47 to Gly-52, Pro-92 to Lys-110.

The tissue distribution indicates that the protein products of this gene are useful for study, treatment and diagnosis of renal diseases such as cancer of the kidney.

10

15

25

30

35

62

FEATURES OF PROTEIN ENCODED BY GENE NO: 77

This gene is expressed primarily in kidney medulla.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, metabolic and renal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the metabolic and renal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for study, treatment and diagnosis of metabolic and renal diseases and disorders.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 78

This gene is expressed in chronic synovitis and microvascular endothelium.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, arthritis and atherosclerosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular and skeletal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for study, diagnosis and treatment of arthritic and other inflammatory diseases as well as cardiovascular diseases.

10

15

20

25

30

35

WO 98/54963 PCT/US98/11422

63

FEATURES OF PROTEIN ENCODED BY GENE NO: 79

This gene is expressed in resting T-cells and activated monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for the study and treatment of immune diseases such as inflammatory conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 80

This gene is expressed in a variety of immune system tissues, e.g., neutrophils, T-cells, and TNF induced epithelial and endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, infectious and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and vascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 313 as residues: Met-1 to Trp-6.

The tissue distribution indicates that the protein products of this gene are useful for study and treatment of infectious diseases, immune and vascular disorders.

10

15

20

25

30

35

64

FEATURES OF PROTEIN ENCODED BY GENE NO: 81

This gene is expressed in activated neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and other immune conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for study and treatment of immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 82

This gene is expressed in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory and other immune conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 315 as residues: Ala-83 to Thr-91.

The tissue distribution indicates that the protein products of this gene are useful for study and treatment of immune disorders.

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 83

This gene is expressed in human neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and inflammatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of disorders of the inflammatory and immune systems.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 84

This gene is expressed in human neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders of the inflammatory and immune systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the inflammatory and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of disorders of the immune and inflammatory systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 85

This gene is expressed in activated neutrophils.

5

10

15

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and immune system diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and inflammatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of diseases of the inflammatory and immune systems.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 86

This gene is expressed in activated neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and immune system disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the inflammatory and immune system. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 319 as residues: Met-1 to Gly-6, Gly-32 to Pro-43, Leu-55 to Gln-60.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of disorders of the immune and inflammatory system.

WO 98/54963

5

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 87

In specific embodiments, polypeptides of the invention comprise the sequence: EOVLALLWPRFELILEMNVQSVRSTDPQRLGGLDTRPHYITRRYAEFSSALVSIN QTIPNERTMQLLGQLQVEVENFVLRVAAEFSSRKEQLVFLINNYDMMLGVLME RAADDSKEVESFQQLLNARTQEFIEELLSPPFGGLVAFVKEAEALIERGQAERLR GEEARVTQLIRGFGSSWKSSVESLSQDVMRSFTNFRNGTSIIQG (SEO ID NO:541),ALLKYRFFYQFLLGNERATAKEIRDEYVETLSKIYLSYYRSYLGRLMK VQYEEVAEKDDLMGVEDTAKKGFXSKPSRSRNTIFTLGTRGSVISPTELEAPILV 10 PHTAQR (SEQ ID NO: 542); EQRYPFEALFRSQHYXLLDNSCREYLFICEFFVVS GPXAHDLFHAVMGRTLSMTLKHLDSYLADCYDAIAVFLCIHIVLRFRNIAAKRD VPALDRYW (SEQ ID NO:543),GGLDTRPHYITRRYAEFSSALVSINO (SEO ID NO:544); SRKEQLVFLINNYDMMLGVL (SEQ ID NO: 545) and/or ALLKYRFFY QFLLGNERATAKEIRDEYVETLSKIYLSYYRSYLGRLMKVQYEEVAEKDDLMG 15 VEDTAKKGFXSKPSLRSRNTIFTLGTRGSVISPTELEAPILVPHTAQRXEQRYPF EALFRSQHYXLLDNSCREYLFICEFFVVSGPXAHDLFHAVMGRTLSMTLKHLD SYLADCYDAIAVFLCIHIVLRFRNIAAKRDVPALDRYWEQVLALLWPRFELILEM NVQSVRSTDPQRLGGLDTRPHYITRRYAEFSSALVSINOTIPNERTMOLLGOLOV EVENFVLRVAAEFSSRKEQLVFLINNYDMMLGVLMERAADDSKEVESFQQLLN ARTQEFIEELLSPPFGGLVAFVKEAEALIERGQAERLRGEEARVTQLIRGFGSSW 20 KSSVESLSQDVMRSFTNFRNGTS (SEQ ID NO:546). Polynucleotides encoding these polypeptides are also encompassed by the invention. The translation product of this gene shares sequence homology with suppressor of actin mutation which is thought to be important in mutation suppression.

This gene is expressed primarily in fetal liver and to a lesser extent in a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, liver and mutations. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver or cancer, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level

10

15

30

35

in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 320 as residues: Val-53 to Arg-60, Thr-88 to Thr-94, Ala-142 to Ser-150, Gly-188 to Glu-196, Gly-208 to Ser-214, Thr-227 to Gly-232, Lys-279 to Phe-285.

The tissue distribution and homology to suppressor of actin mutation suggest that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and of liver disorder or cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 88

This gene maps to chromosome 9, and therefore can be used in linkage analysis as a marker for chromosome 9. In specific embodiments, polypeptides of the invention comprise the sequence:

YEGKEFDYVFSIDVNEGGPSYKLPYNTSDDPWLTAYNFLQKNDLNPMFLDQVA KFIIDNTKGQMLGLGNPSFSDPFTGGGRYVPGSSGSSNTLPTADPFTGAGRYV PGSASMGTTMAGVDPFTGNSAYRSAASKTMNIYFPKKEAVTFDQANPTQILGK LKELNGTAPEEKKLTEDDLILLEKILSLICNSSSEKPTVQQLQILWKAINCPEDIV FPALDILRLSIKHPSVNENFCNEKEGAQFSSHLINLLNPKGKPANQLLALRTFC NCFVGQAGQKLMMSQRESLMSHAIELKSGSNKNI (SEQ ID NO: 547); HIALATLALNYSVCFHKD (SEQ ID NO: 548); HNIEGKAQCLSLISTILEVVQ

- 20 DLEATFRLLVALGTLISDDSNAVQLAKS (SEQ ID NO:549); LGVDSQIKKYSS VSEPAKVSECCRFILNLL (SEQ ID NO:550); and/or YEGKEFDYVFSIDVNEGGPS YKLPYNTSDDPWLTAYNFLQKNDLNPMFLDQVAKFIIDNTKGQMLGLGNPSFS DPFTGGGRYVPGSSGSSNTLPTADPFTGAGRYVPGSASMGTTMAGVDPFTGN SAYRSAASKTMNIYFPKKEAVTFDQANPTQILGKLKELNGTAPEEKKLTEDDLI LLEKILSLICNSSSEKPTVOOLOILWKAINCPEDIVEPALDIJ RISIKHPSVNENEC
 25 LLEKILSLICNSSSEKPTVOOLOILWKAINCPEDIVEPALDIJ RISIKHPSVNENEC
- LLEKILSLICNSSSEKPTVQQLQILWKAINCPEDIVFPALDILRLSIKHPSVNENFC
 NEKEGAQFSSHLINLLNPKGKPANQLLALRTFCNCFVGQAGQKLMMSQRESL
 MSHAIELKSGSNKNIHIALATLALNYSVCFHKDHNIEGKAQCLSLISTILEVVQD
 LEATFRLLVALGTLISDDSNAVQLAKSLGVDSQIKKYSSVSEPAKVSECCRFILN
 LL (SEQ ID NO:551). Polynucleotides encoding these polypeptides are also
 - encompassed by the invention. These polypeptides share significant homology with phospholipase A2 activating protein which is thought to be important in signal transduction (see, e.g., Wang et al., Gene 161(2):237-241 (1995)).

This gene is expressed primarily in endothelial cells, to a less extent in placenta, endometrial stromal cells, osteosarcoma, testis tumor, muscle, and infant brain that are likely to be rich in blood vessles.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

69

biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders in vascular system, aberrent angiogenesis, tumor angiogenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system or tumors, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene in endothelial cells and several potential highly vascularized tissues and its homology to phospholipase A2 activating protein suggest that this gene may be involved in transducing signals for endothelial cells in angiogenesis or vasculogenesis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 89

5

10

15

35

In specific embodiments, polypeptides of the invention comprise the sequence: YPNQDGDILRDQVLHEHIQRLSKVVTANHRALQIPEVYLREAPWPSAQSEIRTIS 20 AYKTPRDKVQCILRMCSTIMNLLSLANEDSVPGADDFVPVLVFVLIKANPPCLL STVQYISSFYASCLSGEESYWWMQFTAAVE (SEQ ID NO:552); YPNQDGDILR DQVLHEHIQRLSKVVTANHRALQIPEVYLREAPWPSAQSEIRTISAYKTPRDKVQ CILRMCSTIMNLLSLANEDSVPGADDFVPVLVFVLIKANPPCLLSTVQYISSFYA SCLSGEESYWWMQFTAAVEFIKTI (SEQ ID NO:553); YPNQDGDILRDQVL (SEQ 25 ID NO:554); EAPWPSAQSEI (SEQ ID NO:555); PVLVFVLIKANP (SEQ ID NO:560); SGEESYWWMQFTAAVEFIKTI (SEQ ID NO:556); ADDFVPVLVF VLIKANPP (SEQ ID NO:557); YKTPRDKVQCIL (SEQ ID NO:558); and/or GADDFVPVLVFVLIK (SEQ ID NO:559). The translation product of this gene shares sequence homology with human ras inhibitor and yeast VPS9p which is thought to be 30 important in golgi vacuole transport.

This gene is expressed primarily in T cells and melanocytes and to a lesser extent in a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, dysfunction and disorders involving T cells and melanocytes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing

immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ras inhibitor indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating signal transduction; diagnosis and treatment of disorders involving T cells and melanocytes.

FEATURES OF PROTEIN ENCODED BY GENE NO: 90

5

10

15

20

25

30

35

This gene maps to chromosome 9 and therefore polypeptides of the invention can be used in linkage analysis as a marker for chromosome 9. The translation product of this gene shares sequence homology with neuronal olfactomedin-related ER localized protein which is thought to be important in influence the maintenance, growth, or differentiation of chemosensory cilia on the apical dendrites of olfactory neurons. In specific embodiments, polypeptides of the invention comprise the sequence:

SARASTQPPAGQHPGPC (SEQ ID NO:561); MPGRWRWQRDMHPARKLLSLL FLILMGTELTQD (SEQ ID NO:562); SAAPDSLLRSSKGSTRGSL (SEQ ID NO:563); AAIVIWRGKSESRIAKTPGI (SEQ ID NO:564); FRGGGTLVLPPTHT PEWLIL (SEQ ID NO:567); PLGITLPLGAPETGGGD (SEQ ID NO:565); and/or CAAETWKGSQRAGQLCALLA (SEQ ID NO:566).

This gene is expressed in pineal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological and endocrinological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neurological or endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

71

the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 323 as residues: Leu-20 to Ala-26, Arg-32 to Arg-39, Thr-104 to Gly-112.

The tissue distribution and homology to olfactomedin-related protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for maintenance, growth, or differentiation of neuron cells in pineal gland, therefore, may be useful for diagnosis and treatment of neurological disorders in pineal gland.

FEATURES OF PROTEIN ENCODED BY GENE NO: 91

5

10

15

20

25

30

This gene is expressed primarily in prostate and apoptotic T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, prostate disease and T cell dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate cancer, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detect abnormal activity in prostate and T cells or probably treatment of this abnormality.

FEATURES OF PROTEIN ENCODED BY GENE NO: 92

This gene is expressed primarily in prostate and to a lesser extent in smooth muscle cells, fibroblasts, and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders in prostate or vascular system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prosate or vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain

5

15

20

25

35

72

tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating function of prostate or highly vascularized tissues, e.g. placenta.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 93

This gene is expressed primarily in embryos and fetal tissues stage human and to a lesser extent in a wide variety of other proliferative tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders in embryonic development and cell proliferation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the embryonic tissues and proliferative cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of abnormalities in developing and proliferative cells and organs.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 94

The translation product of this gene shares sequence homology with transformation related protein which is thought to be important in transformation.

This gene is expressed primarily in female reproductive tissues, i.e., breast cancer cells, placenta, and ovary and to a lesser extent in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

not limited to, cancer or dysfunction of reproductive tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproduction system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 327 as residues: Ser-50 to Pro-61.

The tissue distribution and homology to transformation related protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of conditions caused by transformation, i.e. tumorigenesis in reproductive organs, e.g. breast, placenta, and ovary.

FEATURES OF PROTEIN ENCODED BY GENE NO: 95

5

10

15

20

25

30

35

This gene is expressed primarily in testes, rhabdomyosarcoma, infant brain and to a lesser extent in some tumors and highly vascularized tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumorigenesis, abnormal angiogenesis, and/or neurological disorders., Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tumor tissues or vascular tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 328 as residues: Arg-46 to Trp-54, Pro-60 to Ile-69, Asn-116 to Ala-122, Arg-147 to Lys-153, Ser-158 to Glu-170, Ile-399 to Ser-405, Pro-486 to Met-499, Pro-502 to Asp-508.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for a range of disease states including treatment of

15

20

25

30

35

74

tumor or vascular disorders and the treatment of neurological disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 96

This gene maps to chromosome 7 and therefore polynucleotides of the present invention can be used in linkage analysis as a marker for chromosome 7. The translation product of this gene is homologous to the Clostridium perfringens enterotoxin (CPE) receptor gene product and shares sequence homology with a human ORF specific to prostate and a glycoprotein specific to oligodendrocytes both of which are tissue specific proteins. (See e.g., Katahira et al., J Cell Biol. 136(6):1239-1247 (1997). PMID: 9087440; UI: 97242441.

This gene is expressed primarily in pancreas tumor and ulcerative colitis and to a lesser extent in several tumors and normal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, pancreatic disorder, ulcerative colitis, tumors and food poisoning. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system or tumorigenic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 329 as residues: Gly-147 to Met-152, Cys-177 to Lys-188.

The tissue distribution and homology to prostate and oligodendrocyte-specific protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for marker of diagnosis or treatment of disorder in pancreas, ulcerative colitis, and tumors. Furthermore, identity to the human receptor for Clostridium perfringenes entertoxin indicates that the soluble portion of this receptor could be used in the treatment of food poisoning associated with Clostridia perfringens by blocking the activity of perfringens enterotoxin.

10

15

20

30

WO 98/54963 PCT/US98/11422

75

FEATURES OF PROTEIN ENCODED BY GENE NO: 97

The translation product of this gene shares sequence homology with ATPase which is thought to be important in metabolism.

This gene is expressed primarily in testes and several hematopoietic cells and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, leukemia and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 330 as residues: Leu-37 to Ala-42.

The tissue distribution and homology to ATPase indicates that polynucleotides and polypeptides corresponding to this gene are useful for marker of diagnosis and treatment of leukemia and other hematopoietic disorders.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 98

In specific embodiments, polypeptides of the invention comprise the sequence: MRSARPSLGCLPSWAFSQALNI (SEQ ID NO:568); LLGLKGLAPAEISAVCE KGNFN (SEQ ID NO:569); VAHGLAWSYYIGYLRLILPELQARIR (SEQ ID NO:570); TYNQHYNNLLRGAVSQRC (SEQ ID NO:571); ILLPLDCGVPDNLSM ADPNIRFLDKLPQQTGDRAGIKDRVYSN (SEQ ID NO:572); SIYELLENGQRAGT CVLEYATPLQTLFAMSQYSQAGFSGEDRLEQ (SEQ ID NO:573); AKLFCRTLE DILADAPESQNNCRLIAYQEPADDSSFSLSQEVLRHLRQEEKEEVTVGSLKTSAV PSTSTMSQEPELLISGMEKPLPLRTDFS (SEQ ID NO:574); and/or LLGLKGLA PAEISAVCEKGNFNVAHGLAWSYYIGYLRLILPEL (SEQ ID NO:575).

Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in prostate BPH and to a lesser extent in bone

marrow.

76

PCT/US98/11422

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, benign prostatic hypertrophy or prostate cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male urinary system. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEO ID NO: 331 as residues: Ile-60 to Asn-69, Leu-106 to Asp-112, Glu-130 to Gly-136, Phe-160 to Glu-167, Pro-184 to Cys-190, Glu-197 to Ser-202, Arg-215 to Glu-221, Thr-237 to Pro-242.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of benign prostatic hypertrophy or prostate cancer.

20

25

30

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 99

This gene is expressed primarily in salivary gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders or injuries of the salivary gland. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of glandular tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of disorders of, or injuries to the salivary gland or other glandular tissue.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 100

This gene maps to chromosome 15, accordingly, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 15. The translation product of this gene shares sequence homology with a *C.elegans* gene of unknown function. In specific embodiments, polypeptides of the invention comprise the sequence: DPRVRLNSLTCKHIFISLTQ (SEQ ID NO:583); TMKLLKLRRNIV KLSLYRHFTN (SEQ ID NO:576); TLILAVAASIVFIIWTTMKFRI (SEQ ID NO:577); VTCQSDWRELWVDDAIWRLLFSMILFVI (SEQ ID NO:578); MVLWR PSANNQRFAFSPLSEEEEEDEQ (SEQ ID NO:580); KEPMLKESFEGMKMRS TKQEPNGNSKVNKAQEDDL (SEQ ID NO:584); and/or KWVEENVPSSVTDVALP ALLDSDEERMITHFERSKME (SEQ ID NO:582). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in thyroid and to a lesser extent in osteoclastoma, kidney medulla, and lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, thyroid dysfunction or cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 333 as residues: Lys-107 to Leu-124, Glu-150 to Thr-159, Pro-173 to Asp-179, Ser-192 to Ser-201.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of thyroid dysfunction or cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 101

This gene maps to chromosome 16, therefore polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 16. In specific embodiments, polypeptides of the invention comprise the sequence:

78

IRHELTVLRDTRPACA (SEQ ID NO:585); and/or MDFXMALIYD (SEQ ID NO:586). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in kidney cortex and to a lesser extent in adult brain, corpus colosum, hippocampus, and frontal cortex.

5

10

15

20

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of neurological disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 102

In specific embodiments, polypeptides of the invention comprise the sequence: MQEMMRNQDRALSNLESIPGGYNA (SEQ ID NO:587); LRRMYTDIQEPMLSA 25 AQEQF GGNPF (SEQ ID NO:588); ASLVSNTSSGEGSQPSRTENRDPLPNPWAP QT (SEQ ID NO:589); SQSSSASSGTASTVGGTTGSTASGTSGQSTTAPNLVPGV GASMFNTPG MQSLLQQITENPQLMQNMLSAPY (SEQ ID NO:590): MRSMMQSLSQNPDLAAQMMLNNPLFAGNPQLQEQMRQQLPTFLQQ (SEQ ID NO:591); MQNPDTLSAMSNPRAMQALLQIQQGLQTLATEAPGLIPGFTPGLG 30 ALGSTGGSSGTNGSNATPSENTSPTAGT (SEQ ID NO:592); TEPGHQQFI QQMLQALAGVNPQLQNPEVRFQQQLEQLSAMGFLNREANLQALIATGGDINAA IERLLGSQPS (SEQ ID NO:593); RNPAMMQEMMRNQDRALSNLESIPGGY NALRRMYTDIQEPMLSAA (SEQ ID NO:594); GNPFASLVSNTSS (SEQ ID NO:595); ENRDPLPNPWA (SEQ ID NO:595); GKILKDQDTLSQHGIHD (SEQ ID 35 NO:597); GLTVHLVIKTQNRP (SEQ ID NO:598); SELQSQMQRQLLSNPEMM (SEQ ID NO:599); PEISHMLNNPDIMR (SEQ ID NO:600); and/or RQLIMANPQMQQLIQRNP (SEQ ID NO:601). Polynucleotides encoding these

79

PCT/US98/11422

polypeptides are also encompassed by the invention.

5

10

15

25

30

35

This gene is expressed primarily in breast.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of tumor systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of some types of breast cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 103

The translation product of this gene shares sequence homology with secreted serine proteases and lysozyme C precursor, which is thought to be important in bacteriolytic function. In specific embodiments, polypeptides of the invention comprise the sequence: NLCHVDCQDLLNPNLLAGIHCAKRIVS (SEQ ID NO:602); LDGFEGYSLSDWLCLAFVESKFN (SEQ ID NO:603);

NENADGSFDYGLFQINSHYWCN (SEQ ID NO:604); and/or NLCHVDCQDLLNPNLLAGIHCAKRIVS (SEQ ID NO:605). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, infection. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or

15

20

25

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 336 as residues: Ile-62 to Phe-70, Asn-78 to Asn-84.

The tissue distribution and homology to lysozyme C precursor indicates that polynucleotides and polypeptides corresponding to this gene are useful for boosting the moncyte-macrophage system and enhance the activity of immunoagents.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 104

This gene is expressed primarily in apoptotic T-cell.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of some immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 105

The translation product of this gene shares sequence homology with ARI
protein of Drosophila (accession 2058299; EMBL: locus DMARIADNE, accession X98309), which is thought to be important in axonal path-finding in the central nervous system. In specific embodiments, polypeptides of the invention comprise the sequence IREVNEVIQNPAT (SEQ ID NO:606); ITRILLSHFNWDKEKLMERYF DGNLEKLFA (SEQ ID NO:607); NTRSSAQDMPCQICYLNYPNSYF (SEQ ID NO:608); TGLECGHKFCMQCWSEYLTTKIMEEGMGQTISCPAHG (SEQ ID NO:614); CDILVDDNTVMRLITDSKVKLKYQHLITNSFVECNRLLKWCPAPD CHHVVKVQYPDAKPV (SEQ ID NO:609); CDILVDDNTVMRLITDSK

15

20

25

30

VKLKYQHLITNSFVECNRLLKWCPAPDCHHVVKV (SEQ ID NO:610);
GCNHMVCRNQNCKAEFCWVCLGPWEPHGSAWYNCNRYNEDDAKAARDAQE
RSRAALQRYL (SEQ ID NO:611); FYCNRYMNHMQSLRFEHKLYAQVKQ
KMEEMQQHNMSWIEVQFLKKAVDVLCQCRATLMYT (SEQ ID NO: 612);
YVFAFYLKKNNQSIIFENNQADLENATEVLSGYLERDISQDSLQDIKQKVQDKY
RYCESR (SEQ ID NO:613) Polynucleotides encoding these polypeptides are also
encompassed by the invention.

This gene is expressed primarily in adult brain, and to a lesser extent in endometrial tumor, melanocytes, and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases or injuries involving axonal path development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ARI protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of disease states or injuries involving axonal path development, including neurodegenerative diseases and nerve injury.

FEATURES OF PROTEIN ENCODED BY GENE NO: 106

The translation product of this gene shares sequence homology with cytochrome b561 [Sus scrofa] which is thought to be an integral membrane protein of neuroendocrine storage vesicles of neurotransmitters and peptide hormones.

This gene is expressed primarily in frontal cortex and to a lesser extent in rhabdomyosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as

reagents for differential identification of the tissue(s) or cell type(s) present in a

biological sample and for diagnosis of diseases and conditions, which include, but are
not limited to, neurological disorders. Similarly, polypeptides and antibodies directed to

these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 339 as residues: Ser-18 to Pro-24.

The tissue distribution and homology to cytochrome b561 [Sus scrofa] indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of neurological disorders. This gene may also be important in regulation of some types of cancers.

15

5

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 107

In specific embodiments, polypeptides of the invention comprise the sequence: MWGYLFVDAAWNFLGCLICGW (SEQ ID NO:615); MHFISSGNVSAIRSSILLL RXSLSYLGNCLRVSAIFVYFLLFLLLS (SEQ ID NO:616); and/or MDQALRGSPSE GFSTDPSPPQVGRQIPSFPPWRRLVLPKASGCFLEREWWLCVFKLRTRPGAEA HAYNSSILGGRGKGIT (SEQ ID NO:617). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in pancreas tumor and to a lesser extent in cerebellum.

25

30

35

20

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, pancreatic tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred

83

epitopes include those comprising a sequence shown in SEQ ID NO: 340 as residues: Pro-22 to Phe-33.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of pancreatic tumors.

5

10

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 108

This gene maps to chromosome 17 and therefore polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 17. In specific embodiments, polypeptides of the invention comprise the sequence:

MLPALASCCHFSPPEQAARLKKLQEQEKQQKVEFRKRMEKEVSDFIQDSGQIK

KKFQPMNKIERSILHDVVEVAGLTSFSFGEDDDCRYVMIFKKEFAPSDEELDSY

RRGEEWDPQKAEEKRNXKELAQRQ (SEQ ID NO:618); EEEAAQQGPVVV

SPASDYKDKYSHLIGKGAAKDAAHMLQANKTYGCXPVANKRDTRSIEEAMNE
IRAKKRLRQSGE (SEQ ID NO:619); PPRRPAQLPLTPGAGQGAGRDKAAAIRA
15 HPGAPPLNHLLP (SEQ IDNO:620); AVPQAGGKQVFDLSPLELGYVRGMCVCV
(SEQ ID NO:621) and/or MLPALASCCHFSPPEQAARLKKLQEQEKQQKVEFRK
RMEKEVSDFIQDSGQIKKKFQPMNKIERSILHDVVEVAGLTSFSFGEDDDCRYV
MIFKKEFAPSDEELDSYRRGEEWDPQKAEEKRNXKELAQRQEEEAAQQGPVVV
SPASDYKDKYSHLIGKGAAKDAAHMLQANKTYGCXPVANKRDTRSIEEAMNE
20 IRAKKRLROSGE (SEO ID NO:622). Polynycleotides encoding these polynestides

IRAKKRLRQSGE (SEQ ID NO:622). Polynucleotides encoding these polypeptides are also encompassed by the invention. The translation product of this gene shares sequence homology with FSA-1 which may play a role as a structural protein component of the acrosome.

This gene is expressed primarily in fetal kidney and sperm.

Therefore, polynucleotides and polypeptides of the invention are useful as

reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male reproductive disorders, especially involving acrosomal disfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an

5

10

15

20

25

30

35

individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 341 as residues: Glu-8 to Asn-35.

The tissue distribution and homology to FSA-1 indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of infertility due to acrosomal disfunction of sperm.

FEATURES OF PROTEIN ENCODED BY GENE NO: 109

This gene is expressed primarily in pituitary and to a lesser extent in epididymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 342 as residues: Met-1 to Trp-6.

Because the gene is found in both pituitary and epididymus, this indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of male reproductive disorders. This may involve a secreted peptide produced in the pituitary targeting the epididymus.

FEATURES OF PROTEIN ENCODED BY GENE NO: 110

In specific embodiments, polypeptides of the invention comprise the sequence: LLCPVLNSGXSWNFPHPSQPEYSFHGFHSTRLWI (SEQ ID NO:623); and/or PSTPWFLFLLGLTCPFSTSHPRWDSIPP (SEQ ID NO:624). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in resting T-cells. .

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

WO 98/54963 PCT/US98/11422

85

not limited to, T-cell disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of certain immune disorders, especially those involving T-cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 111

This gene is expressed primarily in cerebellum and whole brain and to a lesser extent in infant brain and fetal kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 344 as residues: Asp-48 to Gly-55.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological disorders.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 112

The translation product of this gene shares sequence homology with yeast mitochondrial ribosomal protein homologous to ribosomal protein s15 of E.coli which

5

10

15

20

25

30

35

is thought to be important in the early assembly of ribosomes (See Accession No. M38016). This gene maps to chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1.

This gene is expressed primarily in developmental tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, development of cancers and tumors in addition to healing wounds. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and developmental expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ribosomal protein s15 of E. coli indicates that polynucleotides and polypeptides corresponding to this gene are useful for diseases related to the assembly of ribosomes in the mitochondria which is important in the translation of RNA into protein. Therefore, this indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of multiple tumors as well as in healing wounds which are thought to be under similar regulation as developmental tissues. Protein, as well as, antibodies directed against the protein have utility as tumor markers, in addition to immunotherapy targets, for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 113

The translation product of this gene shares sequence homology with human poliovirus receptor precursors which are thought to be important in viral binding and uptake. Preferred polypeptide fragments comprise the following amino acid sequence: ELSISISNVALADEGEYTCSIFTMPVRTAKSLVTVLGIPQKPIITGYKSSLREKDT ATLNCQSSGSKPAARLTWRKGDQELHGEPTRIQEDPNGKTFTVSSSVTFQVTR EDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPDPPHPREGQKLLLHC EGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKSDSGTYGCTATSNMGS YKAYYTLNVND (SEQ ID NO:625). Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No. gnllPIDld1002627).

87

This gene is expressed almost exclusively in human brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, susceptibility to viral disease and diseases of the CNS especially cancers of that system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 346 as residues: Leu-26 to Asp-37, Lys-53 to Ser-59.

The tissue distribution and homology to poliovirus receptor precursors indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and prevention of diseases that involve the binding and uptake of virus particles for infection. It might also be helpful in genetic therapy where the goal is to insert foreign DNA into infected cells. With the help of this protein, the binding and uptake of this foreign DNA might be aided. In addition, it is expected that over expression of this gene will indicate abnormalities involving the CNS, particularly cancers of that system.

25

30

35

20

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 114

The translation product of this gene shares sequence homology with YO87_CAEEL hypothetical 28.5 KD protein ZK1236.7 in chromosome III of Caenorhabditis elegans in addition to alpha-1 collagen type III (See Accession No. gil537432). One embodiment for this gene is the polypeptide fragment(s) comprising the following amino acid sequence: VPELPDRVHQLHQAVQGCALGRPGFPGGPTH SGHHKSHPGPAGGDYNRCDRPGQVHLHNPRGTGRRGQLHPTAGPGVHRRA CPSQQLPHRLGPGVPCPSPSLTPVLPSWTQSWCG LPGYTSSS (SEQ ID NO:630). An additional embodiment is the polynucleotide fragment(s) encoding these polypeptide fragments

This gene is expressed primarily in brain cells and to a lesser extent in activated B and T cells.

10

15

20

25

30

35

88

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegeneration and imunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 347 as residues: Glu-34 to Glu-39, Gly-51 to Ser-72, Ala-88 to Glu-93, Gln-100 to Val-105.

The tissue distribution and homology to YO87_CAEEL hypothetical 28.5 KD protein ZK1236.7 in chromosome III of Caenorhabditis elegans as well as to a conserved alpha-1 collagen type III protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons' Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorders. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 115

The translation product of this gene shares sequence homology with alpha 3 type IX collagen which is thought to be important in hyaline cartilage formation via its ability to uptake inorganic sulfate by cells (See Accession No. gil975657). One embodiment of this gene is the polypeptide fragment comprising the following amino acid sequence: SLRRPRSAAXQTLTTFLSSVSSASSSALPGSREPCDPRAPPPPR SGSAASCCSCCCSCPRRRAPLRSPRGSKRRIRQREVVDLYNGMCLQGPAGVPG RDGSPGANGIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNY GIDLGKIAECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGP LPIEAIIYLDQGSPEMNSTINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKG DASTGWNSVSRIIIEELPK (SEQ ID NO:634). An additional embodiment are the

89

polynucleotide fragments encoding this polypeptide fragment.

5

10

15

20

25

30

35

This gene is expressed primarily in smooth muscle and to a lesser extent in synovial tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, dwarfism, spinal deformation, and specific joint abnormalities as well as chondrodysplasias i.e., spondyloepiphyseal dysplasia congenita, familial osteoarthritis, Atelosteogenesis type II, metaphyseal chondrodysplasia type Schmid and autoimmune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to alpha 3 type IX collagen indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of diseases associated with the mutation in this gene which leads to the many different types of chondrodysplasias. By the use of this product, the abnormal growth and development of bones of the limbs and spine could be routinely detected or treated in utero since the protein or muteins thereof could affect epithelial cells early in development and later the chondrocytes of the developing craniofacial structure.

FEATURES OF PROTEIN ENCODED BY GENE NO: 116

The translation product of this gene shares sequence homology with retrovirus-related reverse transcriptase which is thought to be important in viral replication. One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: TKKENCRPASLMNIDTKILNKILMNQ (SEQ ID NO:640). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments (See Accession No. pirlA25313IGNHUL1).

This gene is expressed primarily in human meningima.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

WO 98/54963 PCT/US98/11422

90

not limited to, retroviral diseases such as AIDS, and possibly certain cancers due to transactivation of latent cell division genes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to retrovirus-related reverse transcriptase indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of diseases and maladies associated with retroviral infection since a functional reverse transcriptase (RT) or RT-like molecule is an integral component of the retroviral life cycle.

FEATURES OF PROTEIN ENCODED BY GENE NO: 117

The translation product of this gene shares sequence homology with an unknown gene from *C. elegans*, as well as weak homolog with mammalian metaxin, a gene contiguous to both thrombospondin 3 and glucocerebrosidase, is known to be required for embryonic development. Preferred polypeptide fragments comprise the following amino acid sequence: MCNLPIKVVCRANAEYMSPSGKVPXXHVGNQ VVSELGPIVQFVKAKGHSLSDGLEEVQKAEMKAYMELVNNMLLTAELYLQWC DEATVGXITHXRYGSPYPWPLXHILAYQKQWEVKRKXKAIGWGKKTLDQVLE DVDQCCQALSQRLGTQPYFFNKQPTELDALVFGHLYTILTTQLTNDELSEKVKN YSNLLAFCRRI EQHYFEDRGKGRLS (SEQ ID NO:641); MCNLPIKVVCRANAE YMSPSGKVPXXHVGNQVVSELGPIVQFVK (SEQ ID NO:642),. Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No. gill326108).

This gene is expressed primarily in fetal tissues and to a lesser extent in hematopoietic cells and tissues, including spleen, monocytes, and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer; lymphoproliferative disorders; inflammation; chondrosarcoma, and Gaucher disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification

5

10

15

20

25

30

35

91

PCT/US98/11422

of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and embryonic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of cancer and other proliferative disorders. Expression in embryonic tissue and other cellular sources marked by proliferating cells indicates that this protein may play a role in the regulation or cellular division. Additionally, the expression in hematopoietic cells and tissues indicates that this protein may play a role in the proliferation, differentiation, and survival of hematopoietic cell lineages. Thus, this gene may be useful in the treatment of lymphoproliferative disorders, and in the maintenance and differentiation of various hematopoietic lineages from early hematopoietic stem and committed progenitor cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 118

The translation product of this gene shares sequence homology with reverse transcriptase which is important in the synthesis of a cDNA chain from an RNA molecule, and is a method whereby the infecting RNA chains of retroviruses are transcribed into their DNA complements. One embodiment for this gene is the polypeptide fragment comprising the following amino acid sequence:

MXXXNSHITIFTLNVNGLNAPNERHRLANWIQSQDQVCCIQETHLTGRDTHRL KIKGWRKIYQANGKQKK (SEQ ID NO:647). An additional embodiment is the polynucleotide fragments comprising polynucleotides encoding these polypeptide fragments (See Accession No. gil2072964).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer, hematopoietic disorders; inflammation; disorders of immune surveillance. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the epidermis and/or hematopoietic system, expression of this gene at significantly

higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and

This gene is expressed primarily in skin and to a lesser extent in neutrophils.

92

wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to reverse transcriptase indicates that polynucleotides and polypeptides corresponding to this gene are useful for cancer therapy. Expression in the skin also indicates that this gene is useful in wound healing and fibrosis. Expression by neutrophils also indicates that this gene product plays a role in inflammation and the control of immune surveillance (i.e. recognition of viral pathogens). Reverse transcriptase family members are also useful in the detection and treatment of AIDS.

FEATURES OF PROTEIN ENCODED BY GENE NO: 119

The translation product of this gene shares sequence homology with reverse transcriptase which is important in the synthesis of a cDNA copy of an RNA molecule, and is a method whereby a retrovirus reverse-transcribes its genome into an inheritable DNA copy.

This gene is expressed primarily in the frontal cortex of brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer and neurodegenerative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS and peripheral nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to reverse transcriptase suggest that this is useful in the treatment of cancer and AIDS. The expression in brain indicates that it plays a role in neurodegenerative disorders and in neural degeneration.

5

10

15

20

25

30

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 120

One embodiment of this gene has homology to a hypothetical protein in Schizosaccharomyces pombe (See Accession No. 2281980). Another embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: IYHLHSWIFFHFKRAFCMCFITMKVIHAHCSKLRKCXNAQISVFCTTLTASYPT (SEQ ID NO:651). An additional embodiment is the polypucleotide fragments encoding these polypeptide fragments. This gene maps to chromosome 18, and therefore, may be used as a marker in linkage analysis for chromosome 18.

This gene is expressed primarily in adult hypothalamus and to a lesser extent in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative disorders; endocrine function; and vertigo. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, CNS and peripheral nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of neurodegenerative disorders; diagnosis of tumors of a brain or neuronal origin; treatments involving hormonal control of the entire body and of homeostasis, behavioral disorders, such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo.

FEATURES OF PROTEIN ENCODED BY GENE NO: 121

The translation product of this gene shares sequence homology with the human IRLB protein which is thought to be important in binding to a c-myc promoter element and thus regulating its transcription (See Accession No. gil33969). This gene maps to

94

chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1.

This gene is expressed primarily in brain and breast and to a lesser extent in a variety of hematopoietic tissues and cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer of the brain and breast; lymphoproliferative disorders; neurodegenerative diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS, breast, and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of cancer of the brain, breast, and hematopoietic system. In addition, it may be useful for the treatment of neurodegenerative disorders, as well as disorders of the hematopoietic system, including defects in immune competency and inflammation. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

25

35

5

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 122

The translation product of this gene shares sequence homology with an ATP synthase, a key component of the proton channel that is thought to be important in the translocation of protons across the membrane.

This gene is expressed primarily in T cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, T cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or

lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ATP synthase indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of defects in proton transport, homeostasis, and metabolism, as well as the diagnosis and treatment of lymphoma. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia

FEATURES OF PROTEIN ENCODED BY GENE NO: 123

5

10

20

25

30

35

This gene maps to chromosome 15, and therefore, may be used as a marker in linkage analysis for chromosome 15.

This gene is expressed primarily in a variety of fetal tissues, including fetal liver, lung, and spleen, and to a lesser extent in a variety of blood cells, including eosinophils and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer (abnormal cell proliferation); T cell lymphomas; and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetus and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of conditions involving cell proliferation. Expression of this gene in fetal tissues, as well as in a variety of blood cell lineages indicates that it may play a role in either cellular proliferation; apoptosis; or cell survival. Thus it may be useful in the management and

PCT/US98/11422 WO 98/54963

96

treatment of a variety of cancers and malignancies. In addition, its expression in blood cells suggest that it may play additional roles in hematopoietic disorders and conditions. and could be useful in treating diseases involving autoimmunity, immune modulation, immune surveillance, and inflammation...

5

10

15

20

25

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 124

This gene is expressed primarily in placenta and to a lesser extent in pineal gland and rhabdomyosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental, endocrine, and female reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the [insert system where a related disease state is likely, e.g., immune], expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 357 as residues: Leu-69 to Val-76.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders in development. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 125

This gene is expressed primarily in benign prostatic hyperplasia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of benign prostatic hyperplasia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive

97

system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of benign prostatic hyperplasia. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 126

This gene is expressed primarily in apoptotic T-cells and to a lesser extent in suppressor T cells and ulcerative colitis.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases involving premature apoptosis, and immunological and gastrointestinal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of disorders involving inappropriate levels of apoptosis, especially in immune cell lineages. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases (such as AIDS), and leukemia.

5

10

15

20

25

30

10

15

20

25

30

35

98

FEATURES OF PROTEIN ENCODED BY GENE NO: 127

This gene is expressed primarily in Raji cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and T cell autoimmune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 360 as residues: Asp-23 to Gly-29.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of inflammation and T cell autoimmune disorders. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases (such as AIDS), and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 128

The translation product of this gene shares sequence homology with an *C. elegans* coding region C47D12.2 of unknown function (See Accession No. gnllPIDle348986). One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: EDDGFNRSIHEVILKNITWY SERVLTEISLGSLLILVVIRTIQYNMTRTRDKYLHTNCLAALANMSAQFRSLHQY AAQRIISLFSLLSKKHNKVLEQATQSLRGSLSSNDVPLPDYAQDLNVIEEVIRMM LEIINSCLTNSLHHNPNLVALLYKRDLFEQFRTHPSFQDIMQNIDLVISFFSSRLL QAGS (SEQ ID NO:657); EDDGFNRSIHEVILKNITWYSERVLTEISLGSLLILVV (SEQ ID NO:658); RTIQYNMTRTRDKYLHTNCLAALANMSAQFRSLHQYAAQ RIISLFSLLSKKHN (SEQ ID NO:659); KKHNKVLEQATQSLRGSLSSNDVPLPDY AQD (SEQ ID NO:661); SCLTNSLHHNPNLVYALLYKRDLFEQFRTHPSFQD IMQNIDLVISFFSSRLLQAGS (SEQ ID NO:660). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments. This gene maps to

chromosome 18, and therefore, may be used as a marker in linkage analysis for chromosome 18.

5

10

15

20

25

30

This gene is expressed primarily in smooth muscle and to a lesser extent in fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, atherosclerosis and other cardiovascular and hepatic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of circulatory system disorders such as atherosclerosis, hypertension, and thrombosis. In addition, the tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities, fetal deficiencies, pre-natal disorders and various would-healing models and/or tissue trauma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 129

The translation product of this gene shares sequence homology with a ribosomal protein which is thought to be important in cellular metabolism, in addition to the *C.elegans* protein F40F11.1 which does not have a known function at the current time (See Accession No. gnllPIDle244552). Preferred polypeptide fragments comprise the following amino acid sequence:

35 MADIQTERAYQKQPTIFQNKKRVLLGETGKEKLPRVTNKNIGLGFKDT PRRLLRGTYIDKKCPFTGNVSIRGRILSGVVTQDEDAEDHCHPPRLSALHPQVQ PLREAPQEHVCTPVPL LQGRPDR (SEQ ID NO:662); MKMQRTIVIRRDYLH

15

20

25

30

35

YIRKYNRFEKRHKNMSVHLSPCFRDVQIGDIVTVGECRPLSKTVRFNVLKVTK AAGTKKQFQKF (SEQ ID NO:663); MADIQTERAYQKQPTIFQNKKRVLLGET GK (SEQ ID NO:664); HCHPPRLSALHPQVQPLREAPQEHVCTPVPL LQGRPDR (SEQ ID NO:666); NIGLGFKDTPRRLLRGTYIDKKCPFTGNVSIRGRILSGVVTQ (SEQ ID NO:669); MKMQRTIVIRRDYLHYIRKYNRFEKRHKNMSVHLSP (SEQ ID NO:667); CFRDVQIGDIVTVGECRPLSKTVRFNVLKVTKAAGTKKQFQKF (SEQ ID NO:668). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in Wilm's tumor and to a lesser extent in thymus and stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases affecting RNA translation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Wilm's tumors, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 362 as residues: Thr-11 to Asp-20.

The tissue distribution and homology to a ribosomal protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diseases affecting RNA translation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 130

The translation product of this gene shares sequence homology with a yeast DNA helicase which is thought to be important in global transcriptional regulation (See Accession No. gnllPIDle243594). One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: IFYDSDWNPTVDQQA MDRAHRLGQTKQVTVYRLICKGTIEERILQRAKEKSEIQRMVISG (SEQ ID NO:670); TRMIDLLEEYMVYRKHTYXRLDGSSKISERRDMVADFQNRNDI FVFLLSTRAGGLGINLTAXDTVHF (SEQ ID NO:671); TRMIDLLEEYMVYRK HTYXRLDGSSKISERRDM (SEQ ID NO:674); RRDMVADFQNRNDIFVFLL

10

15

20

25

30

35

STRAGGLGINLTAXDTVHF (SEQ ID NO:675), IFYDSDWNPTVDQQAMD RAHRLGQTKQVTVYRLICKG (SEQ ID NO:676); RLICKGTIEERILQRAK EKSEIQRMVISG (SEQ ID NO:678). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in amygdala.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases and disorders of the brain. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to a DNA helicase indicates that polynucleotides and polypeptides corresponding to this gene are useful for diseases affecting RNA transcription, particularly developmental disorders and healing wounds since the later are though to approximate developmental transcriptional regulation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 131

This gene is expressed primarily in prostate and to a lesser extent in amygdala and pancreatic tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, prostate enlargement and gastrointestinal disorders, particularly of the pancreas and gall bladder. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to

102

the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of prostate diseases, including benign prostatic hyperplasia and prostate cancer. In addition, the tissue distribution in tumors of the pancreas indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tissues where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 132

5

10

15

20

25

30

35

This gene is expressed primarily in adult lung and to a lesser extent in hypothalamus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, pulmonary diseases and neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pulmonary and respiratory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of pulmonary and respiratory disorders such as emphysema, pneumonia, and pulmonary edema and emboli. In addition, the tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental

5

10

15

20

30

35

103

disorders associated with the developing embryo, sexually-linked disorders, or disorders of the cardiovascular system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 133

This gene is expressed primarily in human liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cirrhosis of the liver and other hepatic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of liver disorders such as cirrhosis, jaundice, and Hepatitus. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 134

This gene is expressed primarily in fetal kidney and to a lesser extent in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, development and regeneration of liver and kidney and immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive and excretory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or

10

20

25

30

35

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 367 as residues: Pro-70 to Arg-77, Tyr-102 to Thr-107.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases of the kidney and liver, such as cirrhosis, kidney failure, kidney stones, and liver failure, hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells. In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities, fetal deficiencies, pre-natal disorders and various would-healing models and/or tissue trauma.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 135

This gene is expressed primarily in brain, bone marrow, and to a lesser extent in placenta, T cell, testis and neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative and immunological diseases and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 368 as residues: Met-1 to His-6.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also

play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 136

10

30

35

Translatation product of this gene is homologous to the human WD repeat protein HAN11. Preferred polypeptide fragments comprise the following amino acid sequence:

MSLHGKRKEIYKYEAPWTVYAMNWSVRPDKRFRLALGSFVEEYNNKVQLVG LDEESSEFICRNTFDHPYPTTKLMWIPDTKGVYPDLLATSGDYLRVWRVGETET RLECLLNNNKNSDFCAPLTSFDWNEVDPYLLGTSSIDTTCTIWGLETGQVLGRV NLVSGHVKTQLIAHDKEVYDIAFSRAGGGRDMFASVGADGSVRMFDLRHLEH STIIYEDPQHHPLLRLCWNKQDPNYLATMAMDGMEVVILDVRVPAHLXPGTTIE HVSMALLGPHIHPATSALQRMTTRLSSGTSSKCPEPLRTLSWPTQLXGEINNVQ WASTQPELSPSATTTAWRYSECSVGGAVPTRQGLLYFLPLPHPQS (SEQ ID

15 NO:679); MSLHGKRKEIYKYEAPWTVYAMNWSVRPDKRFRLALGSFV EEYNNKVQLVGLDEESSEFICRNTFDHPYPTTKLMWIPDTKGVYPDLLATSGDY LRVWRVGETETRLECLLNNNKNSDFCAPLTSFDWNEVDPYLL (SEQ ID NO:680); SFDWNEVDPYLLGTSSIDTTCTIWGLETGQVLGRVNLVSGHVK TQLIAHDKEVYDIAFSRAGGGRDMFASVGADGSVRMFDLRHLEHSTIIYEDPQH

20 HPLLRLCWNKQDPNYLATMAMDGMEVVILDVRVPAHLXPGTTI (SEQ ID NO:681); VGADGSVRMFDLRHLEHSTIIYEDPQHHPLLRLCWNKQDPNYLA TMAMDGMEVVILDVRVPAHLXPGTTIEHVSMALLGPHIHPATSALQRMTTRLS SGTSSKCPEPLRTLSWPTQLXGEINNVQWASTQPELSPSATTTAWRYSECSVG GAVPTRQGLLYFLPLPHPQS (SEQ ID NO:682). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in placenta, embryo, T cell and fetal lung and to a lesser extent in endothelial, tonsil and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological and developmental diseases in addition to cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or

106

cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 369 as residues: Gly-19 to Gln-28, Pro-36 to Phe-42.

The tissue distribution in tumors of colon, ovary, and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 137

This gene is expressed primarily in TNF and INF induced epithelial cells, T cells and kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory conditions particularly inflammatory reactions in the kidney. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 370 as residues: Thr-67 to Gly-72, Gln-132 to Ala-145, Arg-150 to Pro-157.

The tissue distribution indicates that the protein products of this gene are useful for treating the damage caused by inflammation of the kidney.

5

10

20

25

30

5

10

15

20

30

35

107

PCT/US98/11422

FEATURES OF PROTEIN ENCODED BY GENE NO: 138

This gene maps to chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1 (See Accession No. D63485).

This gene is expressed primarily in breast cancer and colon cancer and to a lesser extent in thymus and fetal spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers, especially of the breast and colon tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in tumors of colon and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 139

This gene maps to chromosome 17, and therefore, can be used as a marker for linkage analysis from chromosome 17.

This gene is expressed primarily in CD34 positive cells, and to lesser extent in activated T-cells and neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunologically related diseases and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and hematopoietic system, expression of this gene at significantly higher or lower levels

108

may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in CD34, T-cell and neutrophils indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of hematopoietic disorders and immunologically related diseases, such as anemia, leukemia, inflammation, infection, allergy, immunodeficiency disorders, arthritis, asthma, immune deficiency diseases such as AIDS.

FEATURES OF PROTEIN ENCODED BY GENE NO: 140

5

10

15

20

35

This gene was recently cloned by another group, who called the gene KIAA0313 gene. (See Accession No. d1021609.) Preferred polypeptide fragments comprise the amino acid sequence:

- LYATATVISSPSTEXLSQDQGDRASLDAADSGRGSWTSCSSGSHDNIQTIQ
 HQRSWETLPFGHTHFDYSGDPAGLWASSSHMDQIMFSDHSTKYNRQNQSRES
 LEQAQSRASWASSTGYWGEDSEGDTGTIKRRGGKDVSIEAESSSLTSVTTEETK
 PVPMPAHIAVASSTTKGLIARKEGRYREPPPTPPGYIGIPITDFPEGHSHPARKP
 PDYNVALQRSRMVARSSDTAGPSSVQQPHGHPTSSRPVNKPQWHKXNESDPR
 LAPYQSQGFSTEEDEDEQVSAV (SEQ ID NO:683); HMDQIMFSDHSTKYNRQ
- LAPYQSQGFSTEEDEDEQVSAV (SEQ ID NO:683); HMDQIMFSDHSTKYNRQ NQSRESLEQAQSRASWASSTGYWGE (SEQ ID NO:684); SVTTEETKPVPMP AHIAVASSTTKGLIARKEGRYREPPPTPPGYIGIPITD (SEQ ID NO:685); and VALQRSRMVARSSDTAGPSSVQQPHGHPTSSRPVNKPQW
- 25 HKXNESDPRLAPYQSQGF (SEQ ID NO:686). Also preferred are polynucleotide fragments encoding these polypeptide fragments. This gene maps to chromosome 4, and therefore, may be used as a marker in linkage analysis for chromosome 4 (See Accession No. AB002311).

This gene is expressed primarily in ovarian cancer, tumors of the Testis, brain, and colon.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, ovarian, testicle, brain and colon cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male and female reproductive systems,

109

expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in tumors of colon, ovary, testis, and brain origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 141

This gene is expressed primarily in spleen and colon cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, colon cancer and immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the gastrointestinal trace and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in tumors of colon, ovary, and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

10

15

20

25

30

110

FEATURES OF PROTEIN ENCODED BY GENE NO: 142

Translation product is homologous to T cell translocation protein, a putative zinc finger factor (See Accession No. 340454), as well as to the G-protein coupled receptor TM5 consensus polypeptide (See Accession No. R50734). Preferred polypeptide fragments comprise the following amino acid sequence:

CLLFVFVSLGMRCLFWTIVYNVLYLKHKCNTVLLCYHLCSI (SEQ·ID NO:687);

ACSKLIPAFEMVMRAKDNVYHLDCFACQLCNQRXCVGDKFFLKNNXXLCQT

DYEEGLMKEGYAPXVR (SEQ ID NO:688). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in fetal brain.

5

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders including brain cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Central Nervous System, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo.

FEATURES OF PROTEIN ENCODED BY GENE NO: 143

Translation product for this gene has significant homology to the Fas ligand, which is a cysteine-rich type II transmembrane protein/tumor necrosis factor receptor homolog. Mutations within this protein have been shown to result in generalized lymphoproliferative disease leading to the development of lymphadenopathy and autoimmune disease (See Medline Article No. 94185175). Preferred polypeptide

111

fragments comprise the following amino acid sequence:
SALSEPGAPDRRRPCPESVPRRPDDEOWPPPTALCLDVAPLPPSS (SEO ID

5

10

15

20

25

30

35

NO:689). Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No. 473565).

This gene is expressed primarily in osteoblasts, lung, and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoblast-related, pulmonary, neurological, and immunological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal and nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 376 as residues: Trp-33 to Thr-40, Lys-45 to Ile-63.

The tissue distribution in osteoblasts, lung, and brain combined with its homology to the Fas ligand indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues. Because the Fas ligand gene is known to be expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including asthma, immune deficiency diseases such as AIDS and leukemia, and various autoimmune disorders including lupus and arthritis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 144

This gene shares sequence homology with a 21.5 KD transmembrane protein in the SEC15-SAP4 intergenic region of yeast. (See Accession No. 1723971.) Preferred polypeptide fragments comprise the amino acid sequence:

AHASESGERWWACCGVRFGLRSIEAIGRSCCHDGPGGLVANRGRRFKWAIEL SGPGGGSRGRSDRGSGQGDSLYPVGYLDKQVPDTSVQETDRILVEKRCWDIAL

GPLKQIPMNLFIMYMAGNTISIFPTMMVCMMAWRPIQALMAISATFKMLESSSQ KFLQGLVYLIGNLMGLALAVYKCQSMGLLPTHASDWLAFIEPPERMEFSGG GLLL (SEQ ID NO:691); PVGYLDKQVPDTSVQETDRILVEKRCWDIALGPLKQ IPMNLFI (SEQ ID NO:693); and ATFKMLESSSQKFLQGLVYLIGNLMGLALAV YKCQSMGLLPTHASD (SEQ ID NO:692). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in osteoclastoma, hemangiopericytoma, liver, lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoclastoma, hemangiopericytoma, liver and lung tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the above tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the lung and liver systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing osteoclastoma, hemangiopericytoma, liver and lung tumors.

25

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 145

Translation product of this gene shares homology with the glucagon-69 gene which may indicate this gene plays a role in regulating metabolism. (See Accession No. A60318) One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

PTTKLDIMEKKKHIQIRFPSFYHKLVDSGRMRSKRETRREDSDTKHNL (SEQ ID NO:694). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in brain, kidney, colon, and testis.

35

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

30

35

not limited to, brain, kidney, colon, and testicular cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, neurological, circulatory, and gastrointestinal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in tumors of brain, kidney, colon, and testis origins, indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues. The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, sexually-linked disorders, or disorders of the cardiovascular system.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 146

The translation product of this gene shares sequence homology with goliath protein which is thought to be important in the regulation of gene expression during development. Protein may serve as a transcription factor. One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

TEHIIAVMITELRGKDILSYLEKNISVQMTIAVGTRMPPKNFSRGSLVFVSISFIV LMIISSAWLIFYFIQKIRYTNARDRNQRRLGDAAKKAISKLTTRTVKKGDKETD PDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDPWLSEHCTCPMCKLNILKA LGIV (SEQ ID NO:695); TEHIIAVMITELRGKDILSYLEKNISVQMTIAVGTRMP PKNFSRGSLVFVSISFIVLM IISSAWLIFYF (SEQ ID NO:697); SISFIVLMIISSA WLIFYFIQKIRYTNARDRNQRRLGDAAKKAISKLTTRTVKKGDKE (SEQ ID

NO:698); VKKGDKETDPDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDP

transduction pathway.

30

35

114

PCT/US98/11422

WLSEHCTCPMCKLNILKALGIV (SEQ ID NO:699). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments (See Accession No. 157535). Moreover, another embodiment is the polynucleotide fragments encoding these polypeptide fragments:

MTHPGTEHIIAVMITELRGKDILSYLEKNISVQMTIAVGTRMPPKNFSRGS LVFVSISFIVLMIISSAWLIFYFIQKIRYTNARDRNQRRLGDAAKKAISKLTTRTV KKGDKETDPDFDHCAVCIESYKONDVVRILPCKHVFHKSCVDPWLSEHCTCP MCKLNILKALGIVPNLPCTDNVAFDMERLTRTQAVNRRSALGDLAGDNSLGLE PLRTSGISPLPQDGELTPRTGEINIAVTKEWFIIASFGLLSALTLCYMIIRATASLN 10 ANEVEWF (SEQ ID NO:696);MTHPGTEHIIAVMITELRGKDILSYLEKNISVOM TIAVGTRMPPKNFSRGSLVFVSISFIVLMIISSAWLIFYFIQKIRYTNARDRNQRR LGDAAKKAISKLTTRT (SEQ ID NO:700); AAKKAISKLTTRTVKKGDKE TDPDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDPWLSEHCTCPMCKLNIL KALGIVPNLPC (SEQ ID NO:701); TQAVNRRSALGDLAGDNSLGLEPLRTSGI 15 SPLPQDGELTPRTGEINIAVTKEWFIIASFGLLSALTLCYMIIRATASLNANEVEW F (SEQ ID NO:702); PLHGVADHLGCDPOTRFFVPPNIKQWIALLQRGNCTF KEKISRAAFHNAVAVVIYNNKSKEEPVTMTHPGTEHIIAVMITELRGKDILSYLE KNISVOMTIAVGTRMPPKNFSRGSLVFVSISFIVLMIISSAWLIFYFIOKIRYTNA RDRNQRRLGDAAKKAISKLTTRTVKKGDKETDPDFDHCAVCIESYKQNDVVRI 20 LPCKHVFHKSCVDPWLSEHCTCPMCKLNILKALGIVPNLPCTDNVAFDMERLT RTQAVNRRSALGDLAGDNSLGLEPLRTSGISPLPQDGELTPRTGEINIAVTKEW FIIASFGLLSALTLCYMIIRATASLNANEVEWF(SEQ ID NO:703); and HGVADHLGCDPQTRFFVPPNIKQWIALLQRGNCTFKEKISRAAFHNAVAVVIY NNKSKEE (SEQ ID NO:704). An additional embodiment is the polynucleotide 25 fragments encoding these polypeptide fragments. When tested against Jurkat cell lines, supernatants removed from cells containing this gene activated the GAS pathway. Thus, it is likely that this gene activates immune cells through the JAKS/STAT signal

This gene is expressed primarily in macrophage, breast, kidney and to a lesser extent in synovium, hypothalamus and rhabdomyosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, schizophrenia and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and neural system, expression of this gene at

significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

5

10

15

The tissue distribution and homology to zinc finger protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of schizophrenia, kidney disease and other cancers. The tissue distribution in macrophage, breast, and kidney origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of tumors within these tissues, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 147

The translation product of this gene shares sequence homology with HNP36 protein, an equilibrative nucleoside transporter, which is thought to be important in gene transcription as well as serving as an important component of the nucleoside transport apparatus (See Accession No. 1845345). One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

- 25 MSGQGLAGFFASVAMICAIASGSELSESAFGYFITACAVIILTIICYLGLPRLEFYR YYQQLKLEGPGEQETKLDLISKGEEPRAGKEESGVSVSNSQPTNESHSIKAILK NISVLAFSVCFIFTITIGMFPAVTVEVKSSIAGSSTWERYFIPVSCFLTFNIFDWLG RSLTAVFMWPGKDSRWLPSWXLARLVFVPLLLLCNIKPRRYLTVVFEHDAWFI FFMAAFAFSNGYLASLCMCFGPKKVKPAEAETAEPSWPSSCVWVWHWGLFS
- 30 PSCSGQLCDKGWTEGLPASLPVCLLPLPSARGDPEWSGGFFF (SEQ ID NO:705); MSGQGLAGFFASVAMICAIASGSELSESAFGYFITACAVIILTIIC YLGLPRLEFYRYYQQLKLE GPGEQETKLDLISKGEEPRAGKEESGVSVSNSQ PTNESHSI (SEQ ID NO:706); SGVSVSNSQPTNESHSIKAILKNISVLAFSVCFI FTITIGMFPAVTVEVKSSIAGSSTWERYFIPVSCFLTFNIFDWLGRS (SEQ ID
- 35 NO:707),TIGMFPAVTVEVKSSIAGSSTWERYFIPVSCFLTFNIFDWLGRSLTAVF MWPGKDSRWLPSWXLARLVFVPLLLLCNIK PRRYLTVVFEHDA (SEQ ID NO:708); FGPKKVKPAEAETAEPSWPSSCVWVWHWGLFSPSCSGQLCDK

GWTEGLPASLPVCLLPLPSARGDPEWSGGFFF (SEQ ID NO:709). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in eosinophils and aortic endothelium and to a lesser extent in umbilical vein endothelial cell and thymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematopoietic disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to HNP36 protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of blood neoplasias and other hematopoietic disease.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 148

This gene is expressed primarily in breast cancer cell lines, thymus stromal cells, and ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, endocrine and female reproductive system diseases including breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of endocrine disorders. In addition, the tissue distribution in tumors of thymus, ovary, and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 149

This gene is expressed primarily in retina and ovary and to a lesser extent in brreast cancer cell, epididymus and osteosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neuronal growth disorders, cancer and reproductive system disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 382 as residues: Met-1 to Gly-7.

118

PCT/US98/11422

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis or treatment of reproductive system disease and cancers.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 150

10

15

20

25

30

35

One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

MIKDKGRARTALTSSQPAHLCPENPLLHLKAAVKEKKRNKKKKTIGSPKRIQS
PLNNKLLNSPAKTLPGACGSPQKLIDGFLKHEGPPAEKPLEELSASTSGVPGLS
SLQSDPAGCVRPPAPNLAGAVEFNDVKTLLREWITTISDPMEEDILQVVKYCTD
LIEEKDLEKLDLVIKYMKRLMQQSVESVWNMAFDFILDNVQVVLQQTYGSTLK
VT (SEQ ID NO:713); MIKDKGRARTALTSSQPAHLCPENPLLHLKAAVKE
KKRNKKKKTIGSPKRIQ (SEQ ID NO:714); KRIQSPLNNKLLNSPAKT
LPGACGSPQKLIDGFLKHEGPPAEKPLEELSASTSGVPGLSSLQSDPAGCVRPP
APNLAGAVEFNDVKTLLREWITTISDPM (SEQ ID NO:715);
TISDPMEEDII OVVKYCTDLIEEKDLEKI DLVIKYMKRI MOOSVE

TISDPMEEDILQVVKYCTDLIEEKDLEKLDLVIKYMKRLMQQSVE SVWNMAFDFILDNVQVVLQQTYGSTLKVT (SEQ ID NO:716). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in 12 week embryo and to a lesser extent in hemangiopericytoma and frontal cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, growth disorders and hemangiopericytoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circular and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 383 as residues: Leu-4 to Lys-11.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of growth disorders, hemangiopericytoma and other soft tissue tumors.

FEATURES OF PROTEIN ENCODED BY GENE NO: 151

The translation product of this gene has been found to have homology to a human DNA mismatch repair protein PMS3. Preferred polypeptide fragments comprise the following amino acid sequence: FCHDCKFPEASPAMNCEP (SEQ ID NO:717). Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No. R95250).

This gene is expressed primarily in neutrophils.

5

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, lymphoma, immunodeficiency diseases, and cancers resulting from genetic instability. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 384 as residues: Met-1 to Lys-6.

The tissue distribution in neutrophils and the sequence homology indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of Hodgkin's lymphoma, since the elevated expression and secretion by the tumor mass may be indicative of tumors of this type. Additionally the gene product may be used as a target in the immunotherapy of the cancer. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Furthermore, its homology to a known DNA repair protein would suggest gene may be useful in establishing cancer predisposition and prevention in gene therapy applications.

FEATURES OF PROTEIN ENCODED BY GENE NO: 152

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

10

20

25

30

35

PCT/US98/11422

biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, infectious diseases and lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of inflammation and infectious diseases.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 153

One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

MASSVPAGGHTRAGGIFLIGKLDLEASLFKSFQWLPFVLRKKC
NFFCWDSSAHSLPLHPLSASCSAPACHASDTHLLYPSTRALCPSIFAWLVAPHS
VFRTNAPGPTPSSQSSPVFPVFPVSFMALIVCXLVCC (SEQ ID NO:720);
MASSVPAGGHTRAGGIFLIGKLDLEASLFKSFQWLPFVLRKKCNFFCWDSSAH
SLPLHPLSASCSAPACHA (SEQ ID NO:721);FAWLVAPHSVFRTNAPGPTPS
SQSSPVFPVFPVSFMALIVCXLVCC (SEQ ID NO:722). An additional embodiment
is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and infectious disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred

10

15

20

25

30

35

121

PCT/US98/11422

epitopes include those comprising a sequence shown in SEQ ID NO: 386 as residues: Ser-11 to Pro-17.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of infectious diseases and inflammation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 154

This gene is expressed in multiple tissues including ovary, uterus, adipose tissue, brain, and the liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, uterine, ovarian, brain, and liver cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the female reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnostic or therapeutic uses in the treatment of the female reproductive system, obesity, and liver disorders, particularly cancer in the above tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 155

This gene maps to chromosome 3, and therefore, may be used as a marker in linkage analysis for chromosome 3 (See Accession No. D87452).

This gene is expressed in multiple tissues including brain, aortic endothelial cells, smooth muscle, pituitary, testis, melancytes, spleen, nertrophils, and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological disorders including immunodeficiencies, cancers of the brain and the female reproductive system, as well as cardiovascular disorders, such as

122

atherosclerosis and stroke. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution suggest that polynucleotides and polypeptides corresponding to this gene are useful in treatment/detection of disorders in the nervous system, including schizophrenia, neurodegeneration, neoplasia, brain cancer as well as cardiovascular and female reproductive disorders including cancer within the above tissues.

15

20

25

30

35

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 156

The translation product of this gene shares sequence homology with the human gene encoding cytochrome b561 (See Accession No. P10897). Cytochrome b561 is a transmembrane electron transport protein that is specific to a subset of secretory vesicles containing catecholamines and amidated peptides. This protein is thought to supply reducing equivalents to the intravesicular enzymes dopamine-beta-hydroxylase and alpha-peptide amidase. Preferred polypeptides of the invention comprise the amino acid sequence:

MAMEGYWRFLALLGSALLVGFLSVIFALVWVLHYREGLGWDGSALEFNWHP VLMVTGFVFIQGIAIIVYRLPWTWKCSKLLMKSIHAGLNAVAAILAIISVVAVFE NHNVNNIANMYSLHSWVGLIAVICYLLQLLSGFSVFLLPWAPLSLRAFLMPIHV YSGIVIFGTVIATALMGLTEKLIFSLRDPAYSTFPPEGVFVNTLGLLILVFGALIF WIVTRPQWKRPKEPNSTILHPNGGTEQGARGSMPAYSGNNMDKSDSEL NSEVAARKRNLALDEAGQRSTM (SEQ ID NO:724); as well as antigenic fragments of at least 20 amino acids of this gene and/or biologically active fragments. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in anergic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune system and metabolism related diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological

10

15

20

25

30

35

WO 98/54963 PCT/US98/11422

123

probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product or RNA of this gene is useful for treatment or diagnosis of immune system and metabolic diseases or conditions including Tay-Sachs disease, phenylketonuria, galactosemia, various porphyrias, and Hurler's syndrome.

FEATURES OF PROTEIN ENCODED BY GENE NO: 157

The translation product of this gene shares sequence homology with collagen which is important in mammalian development. This gene also shows sequence homology with bcl-2. (See Accession No. P80988.) Preferred polypeptide fragments comprise the amino acid sequence: PGRAGPSPGLSLQLPAEPGHPAGNLAPL TSRPQPLCRIPAVPG (SEQ ID NO:725). Also preferred are polynucleotide sequences encoding this polypeptide fragment.

This gene is expressed primarily in HL-60 tissue culture cells and to a lesser extent in liver, breast, and uterus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological diseases, hereditary disorders involving the MHC class of immune molecules, as well as developmental disorders and reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and reproductive system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those

124

comprising a sequence shown in SEQ ID NO: 390 as residues: Ser-39 to Gly-46, Leu-49 to Ala-62.

The tissue distribution and homology to collagen indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hereditary MHC disorders and particularly autoimmune disorders including rheumatoid arthritis, lupus, scleroderma, and dermatomyositis, as well as many reproductive disorders, including cancer of the uterus, and breast tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 158

10

15

20

25

30

35

This gene is expressed primarily in the amygdala region of the brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, a variety of brain disorders, particularly those effecting mood and personality. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and/or diagnosis of a variety of brain disorders, particularly bipolar disorder, unipolar depression, and dementia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 159

This gene is expressed in a variety of tissues and cell types including brain, smooth muscle, kidney, salivary gland and T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers of a variety of organs including brain, smooth muscle, kidney, salivary gland and T-cells and cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders

125

of the above tissues or cells, particularly of the central nervous, urinary, salivary, digestive, and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in brain, smooth muscle, and T-cells indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of various neurological, and cardiovascular disorders, but not limited to cancer within the above tissues. Additionally the gene product may be used as a target in the immunotherapy of the cancer. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 160

5

10

15

20

25

30

35

The translation product of this gene shares sequence homology with collagen which is thought to be important in cellular interactions, extracellular matrix formation, and has been found to be an identifying determinant in autoimmune disorders. Moreover, this gene shows sequence homology with the yeast protein, Sls1p, an endoplasmic reticulum component, involved in the protein translocation process in Yeast Yarrowia lipolytica. (See Accession No. 1052828; see also J. Biol. Chem. 271, 11668-11675 (1996).) With mouse, this same region shows sequence homology with the heavy chain of kinesin. (See Accession No. 2062607.) Recently, suppression of the heavy chain of kinesin was shown to inhibits insulin secretion from primary cultures of mouse beta-cells. (See Endocrinology 138 (5), 1979-1987 (1997).) Moreover, kinesin was found associated with drug resistance and cell immortalization. (See 468355.) Thus, it is likely that this gene also act as a genetic suppressor elements.

This gene is expressed primarily in the greater omentum and to a lesser extent in a variety of organs and cell types including gall bladder, stromal bone marrow cells, lymph node, liver, testes, pituitary, and thymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders of the endocrine, gastrointestinal, and immunological systems, including autoimmune disorders and cancers in a variety of organs and cell types.

5

10

15

20

25

30

126

PCT/US98/11422

Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and gastrointestinal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 393 as residues: Asn-27 to Leu-47, Gln-81 to Lys-88, Asp-93 to Lys-102, Asn-107 to Leu-116, Met-129 to Glu-141, Glu-150 to Asp-157, Lys-176 to Glu-185, Glu-333 to Tyr-349, Cys-393 to Leu-403, Gln-423 to Gly-429.

The tissue distribution in within various endocrine and immunological tissues combined with the sequence homology to a conserved collagen motif indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis of various autoimmune disorders including, but not limited to, rheumatoid arthritis, lupus erthyematosus, scleroderma, dermatomyositis Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 161

This gene has homology to the tissue inhibitor of metalloproteinase 2. Such inhibitors are vital to proper regulation of metalloproteins such as collagenases (See Accession No. P16368). In addition, this gene maps to chromosome 17, and therefore, may be used as a marker in linkage analysis for chromosome 17 (See Accession No. P16368).

This gene is expressed primarily in several types of cancer including osteoclastoma, chondrosarcoma, and rhabdomyosarcoma and to a lesser extent in several non-malignant tissues including synovium, amygdala, testes, placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, various types of cancer, particularly cancers of bone and cartilage, as well as various autoimmune disorders. Similarly, polypeptides and antibodies directed

to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the musculoskeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in various cancers and the sequence homology to a collagenase inhibitor indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection of various autoimmune disorders such as rheumatoid arthritis, lupus, scleroderma, and dermatomyositis. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

15

20

25

30

35

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 162

This gene is homologous to the mitochondrial ATP6 gene and therefore is likely a homolog of this gene family (See Accession No. X76197).

This gene is expressed primarily in brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, a variety of brain disorders, including Down's syndrome, depression, Schizophrenia, and epilepsy. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in brain tissue indicates this gene is useful for diagnosis of various neurological disorders including, but not limited to, brain cancer. Additionally the gene product may be used as a target in the immunotherapy of cancer in the brain as well as for the diagnosis of metabolic disorders such as obesity Tay-Sachs disease, phenylketonuria and Hurler's Syndrome.

5

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 163

This gene is expressed primarily in placenta, neutrophils, and microvascular endothelial cells and to a lesser extent in multiple tissues including brain, prostate, spleen, thymus, and bone.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neutropenea and other diseases of the immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in placenta indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis various female reproductive disorders. Additionally the gene product may be used as a target in the immunotherapy of various cancers. Because the gene is expressed in some cells of lymphoid and endocrine origin, the natural gene product may be involved in immune functions and metabolism regulation, respectively. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 164

This gene is expressed primarily in neutrophils, monocytes, bone marrow, and fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune system disorders including, but not limited to, autoimmune disorders such as lupus, and immunodeficiency disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders

of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in various immune system tissue indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis of various immunological disorders such as Hodgkin's lymphoma, arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 165

The translation product of this gene shares sequence homology with dystrophin which is thought to be defective in both Duchene and Becker Muscular Dystrophy. 15 Preferred polypeptide fragments comprise the following amino acid sequence: MKLLGECSSSIDSVKRLEHKLKEEEESLPGFVNLHSTETQTAGVIDRWELLQAQ ALSKELRMKQNLQKWQQFNSDLNSIWAWLGDTEEELEQLQRLELSTDIQTIELO IKKLKELQKAVDHRKAIILSINLCSPEFTQADSKESRDLQDRLXQMNGRWDRV CSLLEEWRGLLQDALMQCQGFHEMSHGLLLMLENIDRRKNEIVPIDSNLDAEIL 20 QDHHKQLMQIKHELLESQLRVASLQDMSCQLLVNAEGTDCLEAKEKVHVIGNR LKLLLKEVSRHIKELEKLLDVSSSQQDLSSWSSADELDTSGSVSPXSGRSTPNR OKTPRGKCSLSQPGPSVSSPHSRSTKGGSDSSLSEPXPGRSGRGFLFRVLRAA LPLQLLLLLIGLACLVPMSEEDYSCALSNNFARSFHPMLRYTNGPPPL (SEQ ID NO:726); MKLLGECSSSIDSVKRLEHKLKEEEESLPGFVNLHSTETQTAGVIDR 25 WELLQAQALSKELRMKQNLQKWQQFNSDLNSIWAWLGDTEEELEQLQRLELS TDIQTIELQIK (SEQ ID NO:727); KLKELQKAVDHRKAIILSINLCSPEFTQADSK ESRDLQDRLXQMNGRWDRVCSLLEEWRGLLQDALMQCQGFHEMSHGLLLML ENIDRRKNEIVPIDSNLDAEILQDHHKQLMQIKHELLESQLRVASLQDMSCQL (SEQ ID NO:728); QDMSCQLLVNAEGTDCLEAKEKVHVIGNRLKLLLKEVS 30 RHIKELEKLLDVSSSQQDLSSWSSADELDTSGSVSPXSGRSTPNRQKTPRGKCS LSQPGPSVSSPHS (SEQ ID NO:729); DSSLSEPXPGRSGRGFLFRVLRAAL PLQLLLLLIGLACLVPMSEEDYSCALSNNFARSFHPMLRYTNGPPPL (SEQ ID NO:730). Also preferred are polynucleotide fragments encoding these polypeptide fragments. Furthermore, this gene maps to chromosome 6, and therefore, may be used 35 as a marker in linkage analysis for chromosome 6 (See Accession No. N62896).

This gene is expressed in numerous tissues including the heart, kidney, and brain.

130

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, musculoskeletal disorders including Muscular Dystrophy and cardiovascular diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the muscle tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to dystrophin indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of Muscular Dystrophy and other muscle disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 166

5

10

15

20

25

30

35

This gene is expressed primarily in human cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the central nervous system, including Alzheimer's Disease, Parkinson's Disease, ALS, and mental illnesses. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 399 as residues: Pro-20 to Gly-26, Leu-37 to Pro-42, His-57 to Gly-63.

The tissue distribution indicates that the protein products of this gene are useful for treatment/diagnosis of diseases of the central nervous system and may protect or

10

15

20

25

30

35

WO 98/54963 PCT/US98/11422

131

enhance survival of neuronal cells by slowing progression of neurodegenerative diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 167

Preferred polypeptides encoded by this gene comprise the following amino acid sequence:

MKLLICGNYLAPSHSESSRRCCLLCFYPLCLEINFGMKVFLSMPFLVLFQ SLIQED (SEQ ID NO:731). Polynucleotides encoding such polypeptides are also provided. This gene is believed to reside on chromosome 15. Therefore polynucleotides derived from this gene are useful in linkage analysis as chromosome 15 markers.

This gene is expressed primarily in human testes tumor and to a lesser extent in normal human testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the testes, particularly cancer, and other reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for treatment/diagnosis of testicular diseases including cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 168

This gene is expressed primarily in fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, conditions affecting hematopoietic development and metabolic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the

132

hepatic system, and fetal hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 401 as residues: His-7 to Trp-17, Leu-19 to Lys-27, Pro-33 to Gly-44, Lys-68 to Gly-74, Lys-85 to Cys-95.

The tissue distribution indicates that the protein products of this gene are useful for treatment/diagnosis of diseases of the developing liver and hematopoietic system, and act as a growth differentiation factor for hematopoietic stem cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 169

5

10

15

20

25

30

35

provided.

The polypeptide encoded by this gene is believed to be a membrane bound receptor. The extracellular domain of which is expected to consist of the following amino acid sequence:

RILLVKYSANEENKYDYLPTTVNVCSELVKLVFCVLVSFCVIKKDHQSRNLKY ASWKEFSDFMKWSIPAFLYFLDNLIVFYVLSYLQPAMAVIFSNFSIITTALLFRIV LKXRLNWIQWASLLTLFLSIVALTAGTKTLQHNLAGRGFHHDAFFSPSNSCLL FRNECPRKDNCTAKEWTFPEAKWNTTARVFSHIRLGMGHVLIIVQCFISSMANI YNEKILKEGNQLTEXIFIQNSKLYFFGILFNGLTLGLQRSNRDQIKNCGFFYGH S (SEQ ID NO:732). Thus, preferred polypeptides encoded by this gene comprise the extracellular domain as shown above. It will be recognized, however, that deletions of either end of the extracellular domain up to the first cysteine from the N-terminus and the first cysteine of the C-terminus, is expected to retain the biological functions of the full-length extracellular domain because the cysteines are thought to be responsible for providing secondary structure to the molecule. Thus, deletions of one or more amino acids from either end (or both ends) of the extracellular domain are contemplated. Of course, further deletions including the cysteines are also contemplated as useful as such polypeptides is expected to have immunological properties such as the ability to evoke and immune response. Polynucleotides encoding all of the foregoing polypeptides are

This gene is expressed primarily in human osteoclastoma and to a lesser extent in hippocampus and chondrosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

133

not limited to, cancers, particularly those of the bone and connective tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 402 as residues: Met-1 to Cys-6, Ala-41 to Tyr-49, Lys-76 to Lys-84.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis of cancers of the bone and connective tissues, and may act as growth factors for cells involved in bone or connective tissue growth.

15

20

25

30

35

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 170

Preferred polypeptides encoded by this gene comprising the following amino acid sequence:

NSVPNLQTLAVLTEAIGPEPAIPRXPREPPVATSTPATPSAGPQPLPTGTV LVPGGPAPPCLGEAWALLLPPCRPSLTSCFWSPRPSPWKETGV (SEQ ID NO:733). Polynucleotides encoding such polypeptides are also provided herein. This gene is expressed primarily in hematopoietic progenitor cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the blood including cancer and autoimmune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the blood/circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 403 as residues: Gln-4 to His-10, Pro-25 to His-32.

134

The tissue distribution indicates that the protein products of this gene are useful for diagnosis of diseases involving growth differentiation of hematopoietic cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 171

5

10

15

20

25

30

35

Preferred polypeptides encoded by this gene comprise the following amino acid sequences: ALQLAFYPDAVEEWLEENVHPSLQRLQXLLQDLSEVSAPP (SEQ ID NO:734); and/or CHPPALAGTLLRTPEGRAHARGLLLEAGGA (SEQ ID NO:735). Polynucleotides encoding such polypeptides are also provided. The protein product of this gene shares sequence homology with metallothionines. Thus, polypeptide encoded by this gene are expected to have metallothionine activity, such activities are known in the art and described elsewhere herein.

This gene is expressed primarily in kidney cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the kidney including cancer and renal dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 404 as residues: Ser-47 to Gln-52.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of diseases of the kidney including kidney failure.

FEATURES OF PROTEIN ENCODED BY GENE NO: 172

This gene is expressed primarily in 12 week old early stage human.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for

10

15

20

25

30

35

differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing embryo, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 405 as residues: Gln-31 to Thr-43, Gly-51 to Ser-58, Pro-65 to Pro-72.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of developmental problems with fetal tissue. The gene may be involved in vital organ development in the early stage, especially hematopoiesis, cardiovascular system, and neural development.

FEATURES OF PROTEIN ENCODED BY GENE NO: 173

The translation product of this gene shares sequence homology with TGN38, an integral membrane protein previously shown to be predominantly localized to the trans-Golgi network (TGN) of cells.

This gene is expressed primarily in developing embryo and to a lesser extent in cancer tissues including lymphoma, endometrial, protate and colon.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing fetus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 406 as residues: His-65 to Ser-72, Pro-82 to Gly-91, Pro-98 to Glu-118, Ser-126 to Gly-166, Pro-180 to Asp-188, Tyr-209 to Lys-214, Gln-220 to Leu-228.

The tissue distribution and homology to an integral membrane protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for

PCT/US98/11422

diagnosis of cancers and developmental abnormalities where aberrant expression relates to an abnormality.

FEATURES OF PROTEIN ENCODED BY GENE NO: 174

5

10

15

20

25

35

The translation product of this gene shares sequence homology with a dnaJ heat shock protein from E. coli which is allelic to sec63, a gene that affects transit of nascent secretory proteins across the endoplasmic reticulum in yeast.

This gene is expressed primarily in Hodgkin's lymphoma and to a lesser extent in testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 407 as residues: Thr-13 to Trp-21, Arg-74 to Asp-81.

The tissue distribution and homology to dnaJ indicates that polynucleotides and polypeptides corresponding to this gene are useful as a diagnostic for cancer including Hodgkin's lymphoma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 175

This gene is expressed primarily in endothelial cells and to a lesser extent in bone marrow stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases involving angiogenic abnormalities including diabetic retinopathy, macular degeneration, and other diseases including arteriosclerosis and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

10

15

20

25

30

35

type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for treating diseases where an increase or decrease in angiogenesis is indicated and as a factor in the wound healing process.

FEATURES OF PROTEIN ENCODED BY GENE NO: 176

The translation product of this gene shares sequence homology with MAT8 (mouse) which is thought to be important in regulating chloride conductance in cells (particularly in the breast) by modulating the response mediated by cAMP and protein kinase C to extracellular signals.

This gene is expressed primarily in amniotic cells and hematopoeitic cells including macrophages, Neutrophils, T cells, TNF induced aortic endothelium and to a lesser extent in testes, TNF induced epithelial cells, and smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory responses mediated by T cells, macrophages, and/or neutrophils particularly those involving TNF, and also cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 409 as residues: Thr-19 to Ala-33, Leu-54 to Asp-82, Pro-89 to Ala-97, Pro-100 to Lys-125, Ser-127 to Phe-135, Gly-164 to Leu-169, Cys-173 to Arg-178.

The tissue distribution and homology to mat-8 indicates that polynucleotides and polypeptides corresponding to this gene are useful for modifying inflammatory

15

20

WO 98/54963 PCT/US98/11422

138

responses to cytokines such as TNF and thus modifying the duration and/or severity of inflammation. Polynucleotides and polypeptides derived from this gene are thought to be useful in the diagnosis and treatment of cancer.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 177

This gene is expressed primarily in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, vascular restenosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases associated with vascular response to injury such as vascular restenosis following angioplasty..

FEATURES OF PROTEIN ENCODED BY GENE NO: 178

One embodiment of the claimed invention comprises:

25 MRPDWKAGAGPGGPPQKPAPSSQRKPPARPSAAAAAIAVAAAEEERRLRQRN RLRLEEDKPAVERCLEELVFGDVENDEDALLRRLRGPRVQEHEDSGDSEVENEA KGNFPPQKKPVWVDEEDEDEEMVDMMNNRFRKDMMKNASESKLSKDNLKK RLKEEFQHAMGGVPAWAETTKRKTSSDDESEEDEDDLLQRTGNFISTSTSLPRG ILKMKNCQHANAERPTVARISICAVPSRCTDCDGCWD (SEQ ID NO:737); or 30 CLEELVFGDVENDEDALLRRLRGPRVQEHEDSGDSEVENEAKGNFPPOKKPV WVDEEDEDEEMVDMMNNRFRKDMMKNASESKLSKDNLKKRLKEEFQHAMG GVPAWAETTKRKTSSDDESEEDEDDLLQRTGNFISTSTSLPRGILKMKNCOHA NAERPTVARISICAVPSRCTDCDGC (SEO ID NO: 738), LKEKIVRSFEVSPDGS FLLINGIAGYLHLLAMKTKELIGSMKINGRVAASTFSSDSKKVYASSGDGEVYV 35 WDVNSRKCLNRFVDEGSLYGLSIATSRNGQYVACGSNCGVVNIYNQDSCLQE TNPKPIKAIMNLVTGVTSLTFNPTTEILAIASEKMKEAVRLVHLPSCTVFSNFPVI KNKNISHVHTMDFSPRSGYFALGNEKGKALMYRLHHYSDF (SEQ ID NO:739);

10

15

20

30

35

WO 98/54963 PCT/US98/11422

139

and/or KINGRVAASTFSSDSKKVYASSGDGEVYVWDVNSRKCLNRFVDEGSL YGLSIATSRNGQYVACGSNCGVVNIYNQDSCLQETNPKPIKAIMNLVTGVTSLT FNPTTEILAIASEKMKEAVRLVHLPSCTVFSNFPVIKNKNISHVHTMDFSPRSG YFALGNEKGKAL (SEQ ID NO:740).

This gene is expressed primarily in epidydimus and endometrial tumors and to a lesser extent in T cell lymphoma and cell lines derived from colon cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumors of the reproductive organs including testis and endometrial cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 411 as residues: Ser-67 to Lys-72, Val-87 to Leu-93, Tyr-128 to Pro-141, Asp-204 to Gly-210.

The tissue distribution indicates that the protein products of this gene are useful for treating tumors of the endometrium or epithelial tumors of the reproductive system.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 179

Preferred polypeptides encoded by this gene comprise the following amino acid sequence:

MRILQLILLALATGLVGGETRIIKGFECKLHSQPWQAALFEKTRLLCGATLIAPR WLLTAAHCLKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNNSLPNKDH RNDIMLVKMASPVSITWAVRPLTLSSRCVTAGTSCSFPAGAARPDPSYACLTPC DAPTSPSLSTRSVRTPTPATSQTPWCVPACRKGARTPARVTPGALWSVTSLFKA LSPGARIRVRSPESLVSTRKSANMWTGSRRR (SEQ ID NO:741); ETRIIKGFEC KLHSQPWQAALFEKTRLLCGATLIAPRWLLTAAHCLKPRYIVHLGQHNLQKEE GCEQTRTATESFPHPGFNNSLPNKDHRNDIMLVKMASPVSITWAVRPLTLSSR CVTAGTSCSFPAGAARPDPSYACLTPCDAPTSPSLSTRSVRTPTPATSQTPWCVP ACRKGARTPARVTPGALWSVTSLFKALSPGARIRVRSPESLVSTRKSANMWTG

140

SRRR (SEQ ID NO:742); or CKLHSQPWQAALFEKTRLLCGATLIAPRWLLT AAHCLKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNS

(SEQ ID NO:743). The translation product of this gene shares sequence homology with neuropsin a novel serine protease which is thought to be important in modulating extracellular signaling pathways in the brain. Owing to the structural similarity to other serine proteases the protein products of this gene are expected to have serine protease activity which may be assayed by methods known in the art and described elsewhere herein.

This gene is expressed primarily in endometrial tumor and to a lesser extent in colon cancer, benign hypertrophic prostate, and thymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers of the endometrium or colon and benign hypertrophy of the prostate. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the urogenital or reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 412 as residues: Gly-12 to Ser-22, Pro-34 to Ser-53.

The tissue distribution and homology to serine proteases indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing or treating hierproliferative disorders such as cancer of the endometrium or colon and hyperplasia of the prostate.

30

5

10

15

20

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 180

Preferred polypeptide encoded by this gene comprise the following amino acid sequence: VLQGRYFSPILEMRRLRPEGXXNLPGGSRAQKEPRQDLTLVLWPHC PHFAMTRSYVPTKQCMVQGSFYCIFIFKGPVQNWC (SEQ ID NO:744).

35 Polynucleotides encoding such polypeptide are also provided.

This gene is expressed primarily in fetal brain

5

10

15

20

25

30

35

141

PCT/US98/11422

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, identifying and expanding stem cells in the CNS. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for detecting and expanding stem cell populations in the (or of the) central nervous system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 181

This gene is expressed primarily in early stage human brain and a stromal cell line.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities of the CNS. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 414 as residues: Gln-42 to Gln-47, Gln-54 to Pro-60.

The tissue distribution indicates that the protein products of this gene play a role in the development of the central nervous system. Therefore this gene and its products

142

are useful for diagnosing or treating developmental abnormalities of the central nervous system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 182

5

10

15

20

25

30

35

Preferred polypeptides encoded by this gene comprise the following amino acid sequence:

MPIIDQVNPELHDFMQSAEVGTIFALSWLITWFGHVLSDFRHVVRLYDF
FLACHPLMPIYFAAVIVLYREQEVLDCDCDMASVHHLLSQIPQDLPYETLISRXE
TFLFSFPHPNLLGRPLPNSKLRGRQPLLSKTLSWHQPSRGLIWCCGSGXRGLL
RPEDRTKDVLTKPRTNRFVKLAVMGLTVALGAAALAVVKSALEWAPKFQLQL
FP (SEQ ID NO:745); or CPEFFIPATLPCPFVFAFTSEASSRAYLTQRGPGGLAQ
NLMPLPVGFWMGSLPPPWCWRKWVSEACSCFC (SEQ ID NO:746) These
polypeptides are structurally similar to various TGF-beta family members. Thus, this
polypeptide is expected to have a variety of activities in the modulation of cell growth
and proliferation.

This gene is expressed primarily in osteoclastoma, microvascular endothelium, and bone marrow derived cell lines.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematological diseases particularly involving aberrant proliferation of stem cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 415 as residues: Ser-33 to Ala-39.

The tissue distribution indicates that the protein products of this gene is useful for treating disorders of the progenitors of the immune system. Applications include in vivo expansion of progenitor cells, ex vivo expansion of progenitor cells, or the treatment of tumors of the circulatory system, such as lymphomas.

FEATURES OF PROTEIN ENCODED BY GENE NO: 183

This gene maps to chromosome 17 and therefore, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 17. In specific embodiments, polypeptides of the invention comprise the sequence: 5 GFGSVSAAGRRSGGTWQPVQ (SEQ ID NO:747); PGGLAVGSRWWSRSLT (SEQ ID NO:748); LEPSRQRRPRRRGGTSRPETDQRAKCWRQL (SEQ ID NO:749); and/or VCLRCQNRMEN (SEQ ID NO:750). In further specific embodiments, polypeptides of the invention comprise the sequence: MAACTARRPGR GQPLVVPVADXGPVAKAALCAAXAGAFSPASTTTTRRHLSSRNRPEGKVLETV 10 GVFEVPKQNGKYETGQLFLHSIFGYRGVVLFPWQARLXDRDVASAAPEKAEN PAGHGSKEVKGKTHTYYQVLIDARDCPHISQRSQTEAVTFLANHDDSRALYAIP GLDYVSHEDILPYTSTDQVPIQHELFERFLLYDQTKAPPFVARETLRAWQEKNH PWLELSDVHRETTENIRVTVIPFYMGMREAQNSHVYWWRYCIRLENLDSDVVQ LRERHWRIFSLSGTLETVRGRGVVGREPVLSKEQPAFQYSSHVSLQASSGHMW 15 GTFRFERPDGSHFDVRIPPFSLESNKDEKTPPSGLHW (SEQ ID NO:751); MAACTARRPGRGQPLVVPVADXGPVAKAALCAA (SEQ ID NO:752); VLETVGVFEVPKQNGKYETGQLFLHSIFGYRGVVL (SEQ ID NO:757); GLDYVSHEDILPYTST (SEQ ID NO:758); DVHRETTENIRVTVIPFYM (SEQ ID NO:759); WWRYCIRLENLDSDVVQLRER (SEQ ID NO:760); and/or PAFQYSS 20 HVSLQASSGHMWGTFRFER (SEQ ID NO:761). Polynucleotides encoding these

This gene is expressed primarily in gall bladder, prostate, and fetal brain, and to a lesser extent in a few tumor and fetal tissues.

polypeptides are also encompassed by the invention.

Therefore, polynucleotides and polypeptides of the invention are useful as 25 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, growth related disorders such as cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders 30 of the above tissues or cells, particularly of the prostate, gall bladder, and fetal brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the 35 disorder.

10

15

20

25

30

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of growth-related disorders, such cancers.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 184

In specific embodiments, polypeptides of the invention comprise the sequence:SLCCPEGAEGC (SEQ ID NO:762) and/or QLKKTHYDRPCP (SEQ ID NO:763). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in stromal cell, tonsil, and glioblastoma and to a lesser extent in some other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune and inflammatory disorders and glioblastoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the stromal cells, tonsil, and glioblastoma expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Additionally, it is believed that the product of this gene regulates pancreatic cell differentiation into beta cells. Accordingly, polynucleotides and polypeptides of the invention are useful in the treatment of insulindependent diabetes mellitus and associated conditions e.g. pancreatic hypofunction and the prevention, as well as the treatment of undifferentiated type pancreatic cancers. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 417 as residues: Pro-27 to Ala-32.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune and inflammatory disorders and glioblastoma.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 185

This gene is expressed primarily in hepatocellular carcinoma and to a lesser extent in other tissues.

10

15

WO 98/54963 PCT/US98/11422

145

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, liver diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 418 as residues: Gly-32 to Lys-39.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of liver diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 186

This gene is expressed primarily in hippocampus and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neutronal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hippocampus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal disorders.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 187

This gene is expressed primarily in bone cancer and hippocampus and to a lesser extent in osteoclastoma and other tissues.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, bone-related disorders and neuronal diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, ostoeclast, and hippocampus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of bone-related disorders and neuronal diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 188

This gene maps to chromosome 4 and therefore polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 4.

This gene is expressed primarily in neuronal tissues such as hippocampus, spinal cord, and hypothalamus and to a lesser extent in a few other tissues such as ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neuronal diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuronal tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal disorders.

10

15

20

WO 98/54963 PCT/US98/11422

147

FEATURES OF PROTEIN ENCODED BY GENE NO: 189

This gene maps to chromosome 10, therefore, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 10.

This gene is expressed primarily in neuronal tissues and immune tissues, and to a lesser extent in a few other tissues such as skin tumor, lung etc.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neuronal and immune-related disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuronal and immune-related tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 422 as residues: Pro-19 to Asp-25.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal and immune-related disorders.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 190

The translation product of this gene shares sequence homology with human N33, a gene located in a homozygously deleted region of human metastatic prostate cancer which is thought to be important in prevention of prostate cancer. In specific embodiments, polypeptides of the invention comprise the sequence:

- AQRKKEMVLSEKVSQLMEWTNKRPVIRMNGDKFRRLVKAPPRNYSVIVMFTA LQLHRQCVVCKQADEEFQILANSWRYSSAFTNRIFFAMVDFDEGSDVFQMLNM NSAPTFINFPAKGKPKRGDTYELQVRGFSAEQIARWIADRTDVNIRVIRPPNMA ARWRFWCVSVT (SEQ ID NO:765); MVVALLIVCDVPSAS (SEQ ID NO:766); AQRKKEMVLSEKVSQL (SEQ ID NO:767); MEWTNKRPVIRMNGDKF (SEQ
- 35 ID:768); RRLVKAPPRNYSVIVMFTALQLHRQCVVCKQADEEFQILANSWRY SSAFTNRIFFA (SEQ ID NO:769); MVDFDEGSDVFQMLNMNSAPTFINFPAK GKP (SEQ ID NO:770); KRGDTYELQVRGFSAEQIARWIADRTDVNIRVIRPPN

10

15

20

25

30

35

(SEQ ID NO:771); and/or YAGPLMLGLLLAVIGGLVYLRRVIWNFSLIKLDGLLQL CVLCLL (SEQ ID NO:772). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in infant adrenal gland prostate cell line and to a lesser extent in a few other tissues like liver, smooth muscle etc.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, prostate cancer and endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate and adrenal gland, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 423 as residues: Pro-34 to Gly-43, Arg-113 to Pro-120.

The tissue distribution and homology to N33 indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for prostate cancer and endocrine disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 191

This gene is expressed primarily in T cell and to a lesser extent in fetal lung. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue

149

or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 424 as residues: Trp-3 to Phe-9.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders.

5

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 192

This gene maps to chromosome 6, therefore, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 6. Neural activity and neurotrophins induce synaptic remodeling in part by altering gene expression. This gene is believed to be a glycosylphoshatidylinositol-anchored protein encoded by a hippocampal gene and to possess neural activity. This molecule is believed to be expressed in postmitotic-differentiating neurons of the developing nervous system and neuronal structures associated with plasticity in the adult. Message of this gene is believed to be induced by neuronal activity and by the activity-regulated neurotrophins BDNF and NT-3. The product of this gene is believed to stimulate neurite outgrowth and arborization in primary embryonic hippocampal and cortical cultures and to act as a downstream effector of activity-induced neurite outgrowth. In specific embodiments, polypeptides of the invention comprise the sequence: DAVFKGFSDCLLKLGDS (SEQ ID NO:773); CQEGAKDMWDKLRKESKNLN (SEQ ID NO:774);

VLLVSLSAALATWLSF (SEQ ID NO:775); MGLKLNGRYISLILAVQIAYLVQAVR AAGKCDAVFKGFSDCLLKLGDS (SEQ ID NO:776); PAAWDDKTNIKTVCTYW EDFHSCTVTALTDCQEGAKDMWDKLRKESKNLNIQGSLFELCGSGNGAAGSL LPAFPVLLVSLSAALATWLSF (SEQ ID NO:777); and/or MGLKLNGRYISLILA VQIAYLVQAVRAAGKCDAVFKGFSDCLLKLGDSXXXXXPAAWDDKTNIKTVC TYWEDFHSCTVTALTDCQEGAKDMWDKLRKESKNLNIQGSLFELCGSGNGAA GSLLPAFPVLLVSLSAALATWLSF (SEQ ID NO:778). Polynucleotides encoding this polypeptide are also encompassed by the invention.

This gene is expressed primarily in human placenta, endometrial tumor and tissues of the central nervous system (CNS).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, relating to reproductive disorders, cancers and neurological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and neurological disorders, expression of this gene at significantly higher

10

20

25

30

35

or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 425 as residues: Asp-47 to Asp-63, His-75 to Tyr-80, Pro-83 to Tyr-89.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of reproductive disorders such as endometrial tumors. Expression of this gene in tissues of the CNS and its strong homology to Neuritin suggest that the protein product from this gene may also be used in the treatment and diagnosis of neurological disorders and in the regeneration of neural tissues, e.g., following injury.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 193

The translation product of this gene shares sequence homology with tenascin which is thought to be important in development. The translation product of this gene is believed to be a ligand of the fibroblast growth factor family. FGF ligand activity is known in the art and can be assayed by methods known in the art and disclosed elsewhere herein.

This gene is expressed primarily in endometrial tumors, and other types of tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cancer tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 426 as residues: Gly-29 to Glu-34, Arg-71 to Arg-76, Thr-176 to Cys-182, Gly-184 to Glu-199.

15

20

25

30

35

The tissue distribution and homology to tenascin indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers.

151

PCT/US98/11422

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 194

In specific embodiments, polypeptides of the invention comprise the sequence: MNSAAGFSHLDRRERVLKLGESFEKQPRCASTLC (SEQ ID NO:779). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in fetal human lung and neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, lung development and respiratory disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the respiratory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in fetal lung and neutrophils indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of lung and immunity related diseases, for example, lung cancer, viral, fungal or bacterial infections (e.g. lesions caused by tuberculosis), inflammation (e.g. pneumonia), metabolic lesions etc.

FEATURES OF PROTEIN ENCODED BY GENE NO: 195

This gene is expressed primarily in breast lymph node.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at

5

15

20

25

30

35

significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of immunal disorders.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 196

This gene maps to chromosome 5 and accordingly, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 5. The translation product of this gene shares sequence homology with human M-phase phosphoprotein 4 which is thought to be important in phosphorylation and signal transduction processes. In specific embodiments, polypeptides of the invention comprise the sequence: TIYPTEEELQAVQKIVSITERALKLVSD (SEQ ID NO:780); RALKGVLRV GVLAKGLLLRGDRNVNLVLLC (SEO ID NO:781); ALAALRHAKWFQARAN GLOSCVIIIRILRDLCORVPTWS (SEO ID NO:782); GDALRRVFECISSGIIL (SEO ID NO:783); LAFROIHKVLGMDPLP (SEO ID NO:784); and/or TIYPTEELOAVO KIVSITERALKLVSDSLSEHEKNKNKEGDDKKEGGKDRALKGVLRVGVLAKG LLLRGDRNVNLVLLCSEKPSKTLLSRIAENLPKQLAVISPEKYDIKCAVSEAAIIL NSCVEPKMQVTITLTSPIIREENMREGDVTSGMVKDPPDVLDRQKCLDALAALR HAKWFQARANGLQSCVIIIRILRDLCQRVPTWSDFPSWAMELLVEKAISSASSP QSPGDALRRVFECISSGIILKGSPGLLDPCEKDPFDTLATMTDQQREDITSSAQFA LRLLAFRQIHKVLGMDPLPQMSQRFNIHNNRKRRRDSDGVDGFEAEGKKDKK DYDNF (SEQ ID NO:785). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in Human Hippocampus and to a lesser extent in Prostate, Human Frontal Cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders related to reproductive system and nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system and nervous system, expression of this gene at significantly higher or lower

153

levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to human M-phase phosphoprotein 4 indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of reproductive and nervous system disorders.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 197

In specific embodiments, polypeptides of the invention comprise the sequence: MGSQHSAAARPSSCRRKQEDDRDG (SEQ ID NO:786); LLAEREQEEAIAQFPYVEFTGRDSITCLTC (SEQ ID NO:787); and/or QGTGYIPTEQVNELVALIPHSDQRLRPQRTKQYV (SEQ ID NO:788).

Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in Human Primary Breast Cancer and to a lesser extent in Human Adult Spleen, Hodgkin's Lymphoma I, Salivary Gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer and immunal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cancer and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 430 as residues: Ser-126 to Gly-138.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of cancer and immunal disorders.

5

15

20

25

30

154

FEATURES OF PROTEIN ENCODED BY GENE NO: 198

This gene is expressed primarily in monocytes.

5

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, blood cell disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of blood cell disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 199

This gene is expressed primarily in Human Ovary and Synovia and to a lesser extent in Human 8 Week Whole Embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, reproductive and developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and developmental system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of reproductive and developmental disorders.

10

15

20

30

35

WO 98/54963 PCT/US98/11422

155

FEATURES OF PROTEIN ENCODED BY GENE NO: 200

This gene maps to chromosome 8 and therefore polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 8. The translation product of this gene shares limited sequence homology with collagen proline rich domain.

This gene is expressed primarily in CNS.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 433 as residues: Pro-35 to Asp-41.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological diseases.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 201

Translation product of this gene shares homology with a mammalian histone H1a protein. One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: ARLNVGRESLKREMLKSQGVKVSESPMGAR HSSWPEGAAFCKKVQGAQMQFPPRR (SEQ ID NO:789); ARLNVGRESLKR EML (SEQ ID NO:790); LKSQGVKVSESPMGARHSSW (SEQ ID NO:791); AFCKKVQGAQMQFPPRR (SEQ ID NO:792). An additional embodiment is the polynucleotide fragments encoding these polypeptide (See Accession No. pirlS24178) fragments.

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

156

PCT/US98/11422

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders. Since the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in vital immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 202

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders. Since the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

5

10

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 203

This gene is expressed primarily in Neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, infectious disorders, immune disorders, and cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 436 as residues: Thr-31 to Lys-36.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of infectious disorders, immune disorders, and cancers. Since the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 204

This gene maps to chromosome 16 and therefore polynucleotides of the invention can be used in linkage analysis as markers for chromosome 16. The translation product of this gene shares sequence homology with lactate dehydrogenase which is thought to be important in lactate metabolism.

This gene is expressed primarily in human tonsils and to a lesser extent in Spleen, and Neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders, infectious disorders, and cancers. Similarly,

158

polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune disorders, infectious disorders, and cancers, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 437 as residues: Gly-7 to Ser-12.

The tissue distribution and homology to lactate dehydrogenase gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders, infectious disorders, and cancers.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 205

10

20

25

30

35

The translation product of this gene shares sequence homology with Gcap1 protein which is developmentally regulated in brain.

This gene is expressed primarily in placenta and endometrial tumor and to a lesser extent in several other tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, vasculogenesis/angiogenesis and tumorigenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system and tumors, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Gcap1 protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorder or dysfunction of vascular system of tumorigenesis.

159

PCT/US98/11422

FEATURES OF PROTEIN ENCODED BY GENE NO: 206

In specific embodiments, polypeptides of the invention comprise the sequence MPYAQWLAENDRFEEAQKAFHKAGRQREA (SEQ ID NO:799); VQVLEQLTNNAVAESRFNDAAYYYWMLSMQCLDIAQD (SEQ ID NO:794); PAQKDTMLGKFYHFQRLAELYHGYHAIHRHTEDP (SEQ ID NO: 795); FSVHRPETLFNISRFLLHSLPKDTPSGISKVKILFT (SEQ ID NO:800); LAKQSKALGAYRLARHAYDKLRGLYIP (SEQ ID NO:796); ARFQKSIELG TLTIRAKPFHDSEELVPLCYRCSTNN (SEQ ID NO: 797); and/or PLLNNLGNVC INCRQPFIFSASSYDVLHLVEFYLEEGITDEEAISLIDLEVLRPKRDDRQLEICKQQ

10 LPDSCG (SEQ ID NO:798). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in testes.

5

15

20

25

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male reproductive and endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of male reproductive and endocrine disorders.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 207

This gene is expressed in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, lung diseases such as cystic fibrosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders

160

of the above tissues or cells, particularly of the respiratory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 440 as residues: Tyr-49 to Cys-54.

5

10

15

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of disorders associated with developing lungs particularly in premature infants where the lungs are the last tissues to develop. The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of lung tumors since the gene may be involved in the regulation of cell division, particularly since it is expressed in fetal tissue. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

=	10	9	∞	7	0	5	4	ω	ω	2	1	Gene No.		-
HOUDL69	HOUBE18	HNHGO09	HNHGC82	HNHDX07	HNFED65	HMSJX24	HLTEI25	HLMMJ13	HLMMJ13	HLHDZ58	HLHDS67	cDNA Clone ID	-	
97979 03/27/97	Nr and Date	Deposit	ATCC											
Uni-ZAP XR	Lambda ZAP II	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Vector									
21	20	19	18	17	16	15	14	218	13	12	11	×0.	Ħ	SA SA
1471	1446	959	869	553	199	8101	843	941	941	1131	2526	NT Seq.	Total	
579	1	1	_		1	1	1	39	39	1	427	Seq.	Clone	5' NT
1460	1446	959	869	553	661	1018	843	941	941	1131	2526	Seq.	0	5' NT 3' NT
692	101	176	101	106	76	90	155	245	62	129	458	Start Codo	of :	TN is
692	101	176	101	106	76	06	155	245	62	129	458	Signal n Pep	AA of	5' NT of First
244	243	242	241	240	239	238	237	441	236	235	234	≺ö	Ħ	S A
	-		1		_	_	1	1	1		1	Sig Pep	요 }	First
31	27	21	21	23	28	-18	19	35	44	14	30	Sig Pep	요 }	Last
32	28	22	22	24	29	19	20	36	45	15	31	Secreted Portion	of	First A A
42	50	4	8	66	127	36	42	41	102	115	30	ORF ORF	Αį	1 264

21	2	_		_	_							70		
	20	19	19	00	17	16	16	15	14	13	12	Gene No.		
HSDGP60	HSDFW61	HSAVU34	HSAVU34	HRGCZ46	HPTWC08	HPTWA66	HPTWA66	нРТВВ03	HPQAC69	HPMGQ55	HPMFI71	cDNA Clone ID		
97974 04/04/97	97974 04/04/97 209080 05/29/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	Nr and Date	ATCC Deposit	
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript	pBluescript	pBluescript	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Vector		
31	30	220	29	28	27	219	26	25	24	23	22	×ö	E SEQ	LN
1408	1667	3018	3735	3989	1951	219 575	1922	1208	990	1047	1402	Seq.	Total	
	59	220 3018 1929 3018	2966	2635	1422		1381	350	1	-	242	Seq.	of Clone	5' NT
1408	1625	3018	3735	3989	1874	575	1922	1173	988	1047	1402	Seq.	of of Clone	5' NT 3' NT
285	138	26	272		219	148	24	398	82	164	401	Start Codor	of N	
285	138	26	272	2748	219	148	24	868	82	164	401	Signal Pep	First AA of	of Of
254	253	443	252	251	250	442	249	248	247	246	245		E SEO	
	1	_		-	_	1	1	-	_	1	1	Sig Pep	s ≯	
	32	1	30	16	19	22	33	29	20	26	32	Sig Pep	유중	First Last
	33	2	31	17	20	23	34	30	21	27	33	Secreted Portion	First AA of	
20	130	156	594	39	299	65	547	210	37	35	60	of ORF	A Last	

27	26	25	24	23	23	22		Gene No.
HTEGQ64	HTDAF28	HSXAS67	HSXAM05	HSQEO84	HSQEO84	HSOAJ55		cDNA Clone ID
97974	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	209080 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	pSport1	Uni-ZAP XR		Vector				
37	36	35	34	221	33	32		× Ö B Š J
1382	912	896	1792	968	971	2031		Total NT Seq.
67	1	I	369	8	13	1273		5' NT of Clone Seq.
1382	912	896	1792	968	971	2031		5' NT 3' NT of of Clone Clone Seq. Seq.
271	38	96	470	86	91	1285		5' NT of Start Codon
271	38	96	470	98	91	1285		of First AA of Signal Pep
260	259	258	257	444	256	255		YÖ. BÖ SEQ SEQ A
	-		1		1	_		First AA of Sig Pep
Ц	22	32	26	20	19	29	_	Last AA of Sig Pep
	23	33	27	21	20	30		First AA of Secreted Portion
25	87	121	49	56	218	30		Last AA of ORF

33	32	31	30	30	29	28		Gene No.
HTWCI46	HTWBY48	HJPCD40	HTSEV09	HTPBW79	HTOAM21	HTGEU09		cDNA Clone ID
97974 04/04/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	209511 12/03/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	04/04/97 209080 05/29/97	ATCC Deposit Nr and Date
pSport1	pSport1	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector
43	42	41	222	40	39	38		× Ö. BÖ N.
1821	1094	704	1404	1515	812	872		Total NT Seq.
892	-	22	-	118	-			5' NT of Clone Seq.
1647	1094	704	1265	1507	812	872		5' NT 3' NT of of Clone Seq. Seq.
56	32		92	302	41	74		5' NT of Start Codon
56	32	117	92	302	41	74		of of First AA of Signal Pep
266	265	264	445	263	262	261		AA First SEQ AA ID of NO: Sig Y Pep
	-	-	-	_	,	_		First AA of Sig Pep
26	34	- 5	19	24	30	18		Last AA Of Sig Pep
27	35	19	20	25	31	19		First AA of Secreted Portion
28	53	127	415	362	43	28		Last AA of ORF

39	38	37	36	35	35	34		Gene No.	
HBMSN25	HATEF60	HAGFB60	HADAE74	HWTBF59	HWTBF59	HTXGI75		cDNA Clone ID	
97974	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	209080 05/29/97	ATCC Deposit Nr and Date	
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector	
49	48	47	46	223	45	4		×ÖES	, Fi
1742	2432	840	2421	707	983	1024		Total NT Seq.	
1165	1193		664	488	779	30			יין איזיי
1742	2246	840	1587	707	983	1024		of of Of Clone Clone Seq. Seq. Seq.	יין יין
1207	1491	97	710	514	85			5' NT of Start Codon	
1207	1491	97	710	514	85	167		First AA of Signal Pep	3
272	271	270	269	446	268	267		YÖ BŞ	\$
	-	_	-	-		 		AA of Sig Pep	7
23	17	30		41	30	20		AA of Sig Pep	1 22
24	- 5	31		42	31	21		First AA of Secreted Portion	
31	51	48	2	2	221	25		Last AA ORF	

45	4	43	42	41	40		Gene No.
HCESF40	HCEEC15	HCECA49	HMDAN54	HCE3J79	HCDAR68		cDNA Clone ID
97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	04/04/97 209080 05/29/97	ATCC Deposit Nr and Date
pBluescript	Uni-ZAP XR		Vector				
55	54	53	52	51	50		× N B SE S
990	948	1558	1856	1328	1487		Total NT Seq.
99	1	310	725	251	181		5' NT of Clone Seq.
990	948	1408	1853	1328	1455		5' NT 3' NT of of Clone Clone Seq. Seq.
193	6	393	928	525	325		5' NT of Start Codor
193	9	393	928	525	325		of AA First Of SEQ AA AA of ID of Signal NO: Sig Pep Y Pep
278	277	276	275	274	273		AA SEQ ID NO: Y
		-	F	1			First AA of Sig Pep
32	23		33		35		Last AA of Sig Pep
33	24		34		36		First AA of Secreted Portion
256	65	-	50	21	56		Last AA of ORF

51	Us.	4					70
	50	49	48	47	46	45	Gene No.
HCWBB42	HCUDC07	HCRAF32	HCNAP62	HCMSX86	HCFMV39	HCESF40	cDNA Clone ID
97975 04/04/97 209081	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	ATCC Deposit Nr and Date
ZAP Express	ZAP Express	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	pSport1	pBluescript	Vector
61	60	59	58	57	56	224	× Ö Ð SEZ NÖ. SEZ NÖ. Ð SEZ NO. Ð SE
618	478	1215	814	1052	1603	1384	Total NT Seq.
_	-	257	1	5	-	99	5' N7 of Clone Seq.
618	478	1215	558	786	1296	1384	3' N7 of Clone Seq.
212	147		93	12	96	193	5' NT of Start Codon
212	147	356	93	12	96	193	of AA First SEQ AA of ID Signal NO: Pep Y
284	283	282	281	280	279	447	AA First SEQ AA ID of NO: Sig
	ь	_	1	,			First AA of Sig Pep
35	36	19	22	28	29	32	PS
36	37	20	23	29	30	33	First AA of Secreted Portion
74	69	20	42	32	102	205	Last AA of ORF

	, 						_	
58	57	56	55	54	53	52		Gene No.
НЕ9НU17	не6еи50	HE2OF09	HE2GS36	HE2AY71	HE2AV74	HDTAB05		cDNA Clone ID
97975 04/04/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 2.0		Vector
68			65	2	63	62		X SEQ NO:
2483	1152	1866	774	588	780	751		Total NT Seq.
2483 1577	117	1313	272	21	283	-		5' NT of Clone Seq.
2448	686	1866 1313 1866	774	588	780	751		3' NT of Clone Seq.
1620	1	1596	445	169		257		5' NT of Start Codor
1620	237			169	433	257		of First AA of Signal Pep
291	290	T -		287	286	285		AA First Last SEQ AA AA ID of of NO: Sig Sig Y Pep Pep
		_				_		First AA of Sig Pep
	20					21		Last AA of Sig Pep
	21					22		First AA of Secreted Portion
14	34		37	10	16	32		Last AA of ORF

65	64	63	62	61	60	59		Gene No.	
HFVHY45	HFGAB89	HFEBA88	HEMAE80	HELDY74	HEBBW11	HE9ND48		e cDNA Clone ID	
97975	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	209081 05/29/97	Deposit Nr and Date	ATCC
pBluescript	Uni-ZAP XR		Vector						
75	74	73	72	71	70	69		ןĦ	SEQ
831	1069	785	996	932	865	536		Total NT Seq.	
-	196	464	1	-	647	. 1		Clone Seq.	of of
831	1047	785	945	932	865	536		Clone Clone Seq. Seq.	5' NT 3' NT of
	295		12	201		83		of Start Codo	5' N
89	295	356	12	201	388	83		AA of ID of Signal NO: Sig	5' NT of First
298	297	296	295	294	293	292		≺ÖE	AA SEQ
E	-	-	-	_	_	_		of Sig Pep	First AA
30	32	29	24	17	30	36		of Sig Pep	Last
31	33	30	25	18	31	37		of Secreted Portion	First AA
76	34	57	136	33	135	43		of ORF	Last

71	70	69	88	67	66		Gene No.
HHGCN69	HHFHR32	ннғнл59	ннгсго8	нсввое9	HGBAJ93		cDNA Clone ID
97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	04/04/97 209081 05/29/97	ATCC Deposit Nr and Date
Lambda ZAP II	Uni-ZAP XR		Vector				
81	80	79	78	77	76		X D D SEO NT
1440	1378	661	1133	1274	590		Total NT Seq.
298	_	1	4				5' NT of Clone Seq.
1440	1378	661	1042	1273	590		of Clone Seq.
532		192	175	105			5' NT of Start Codor
532	358	192	175	105	233		of First AA of Signal Pep
304	303	302	301	300	299		≺ÿ ₽Š¥
1	_			_	_		First AA of Sig Pep
23		29	23	24	38		Last AA of Sig Pep
24		30	24	25	39		First AA of Secreted Portion
34	13	112	30	43	94		Last AA of ORF

82	81	80	79	78	77	76	75	74	73	72	Gene No.
HNGBT31	HNFJH45	HNFAE54	HMSKS35	HMEJE31	HKMNC43	HKIXL73	HJPAV06	HHSEG23	HHPFD63	HHGD013	cDNA Clone ID
97976 04/04/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	ATCC Deposit Nr and Date								
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	pBluescript	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Vector
92		90	89	88	87	86	85	84	83	82	X D D NT
639	575	1533	1102	655	908	1036 591	684	573	1706	1381	Total NT Seq.
_		665	 -	-	-	591	199	1	182	766	S' NT of Clone Seq.
639	575	1518	1102	655	908	1036	684	573	1644	1371	3' NT of Clone Seq.
224	275	347		165	139	690	323	160	257		5' NT of Start Codon
224	275	347	228	165	139	690	323	160	257	993	of AA First SEQ AA of ID Signal NO: Pep Y
315	314	313	312	311	310	309	308	307	306	305	Y D D SEQ
_	_	-	_	Ь	1	_	j	1	_	-	First AA of Sig Pep
28	30	26	26	33	18	32	27	18	24	23	PSS
29	31	27	27	. 3 4	19	33	28	19	25	24	First AA of Secreted Portion
1 <u>0</u> 2	67	293	49	2	801	114	33	71	81	34	Last AA of ORF

91	90	89	88	87	86	85	84	83	Gene No.)	
HPCAL49	HPBCU51	HOSDI92	HOSBZ55	HOGAR52	HNHFL57	HNHDW42	HNGJG84	HNGIN60	cDNA Clone ID		
9 97977 04/04/97 209082	1 97977 04/04/97 209082 05/29/97			2 97977 04/04/97 209082 05/29/97				0 97976 04/04/97	Nr and Date	Deposit	ATCC
Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 2.0	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Vector		
101	100	99	98	97		95	94	93	×Ċ	Ħ	SEQ
101 784	599	1935	1416	1985	844	426	526	744	Seq.	Total	
1		141	69	453		_	-	_	Seq.		of Of
784	599	772	1416	1985	844	426	526	744	1	Clone Clone	5' NT 3' NT of of
	86		246	533		168	268	225	Codor	of	5' NJ
280	86	274	246	533	98	168	268	225	Signal Pep	AA of D	of First
324	323	322	321	320	319	318	317	316	۲.	Ð	AA SEQ
	_	F	_						Sig Pep	j oʻ	First AA
18	27	20	32	17	25	28	29	43	Pep		Last AA
19	28	21	33	18	26	29	30	4	Portion Portion	of	First AA
43	119	58	54	285	0	72	38 8	6		. ≱	Last

97	96	95	95	94	93	92		Gene No.	
HRGBR28	HRDFB85	HPWAN23	HPWAN23	нРМВQ32	НРНАС83	HPFCR13		cDNA Clone ID	
97977 04/04/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	05/29/97	Deposit Nr and Date	ATCC
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector	
107	106	226	105	104	103	102		ןĦŽ	SFO
1167	1705	2057	2066	1351	2218	1035		Total NT Seq.	
611	23	-	51	_	840	602		Clone Seq.	5' NT
1167	1697	1954	2052	1351	2182	1035		Total Clone Clone NT Seq. Seq. Seq.	5' NT 3' NT
53		220	1		1035		Т	of Start Codor	5' NT
53	233	220	270	18	1035	859		AA of ID of Signal NO: Signal Pep Y Pep	5' NT of First
330	329	449	328	327	326	325		≺Ö₽	AA
		-		-	_	<u> </u>		of Sig Pep	First AA
_	21	29	29	23	17	32		of Sig Pep	Last AA
2	22	30	30	24	18	33		of Secreted Portion	First AA
263	201	315	537	8	17	58		ORF OF	Last

102	101	100	100	99	98	98		Gene No.
НТЕГО9	HSXCS62	HSXBT86	HE8EU04	HSPAH56	HSKGN81	HSKGN81		cDNA Clone ID
97977 04/04/97 209082	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	209746 04/07/98	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	209082 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR 228 2143	Uni-ZAP XR	pSport1	pBluescript	pBluescript		Vector
112	111	228	110	109	227	108		× NO. BEON
2198	2249	2143	2632	611	2084	1907		Total NT Seq.
228	.	53	294	1	335	151		5' NT of Clone Seq.
2158	1953	1096	2632	576	2084	1432		S' NT 3' NT of of Clone Clone Seq. Seq.
400	90	235	337	229	537	353		5' I o Sta
400	90	235	337	229	537	353		of AA First Last VT First SEQ AA
335	334	451	333	332	450	331		Y. NO: SEQ AA
1	—	_	1	-	-	-		First AA of Sig Pep
	81		25	25	19	23		T
	19		26	26	20	24		First AA of Secreted Portion
23	199	9	333	47	23	260		Last AA of ORF

109	108	107	106	105	104	103		Gene No.	
							_	ੱ ਜ਼	
HTSHE40	HTSGM54	HTPCN79	НТОЕҮ 16	HTGEW91	HTGEP89	НТЕКМ35		cDNA Clone ID	
97977 04/04/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	05/29/97	Deposit Nr and Date	ATCC
pBluescript	pBluescript	Uni-ZAP XR		Vector					
119	118	117	116	115	114	113		×ŅE	SEQ
1101	1133	503	1965	3684	703	1043		NT Seq.	3
118	316		127	526		. 40		Clone Seq.	of NT
956	1069	503	1915	1338	703	1043		Seq. Seq.	5' NT 3' NT of
218			202	584	285	320		Start Codon	Ŋ
218	423	1	202	584	285	320		AA of ID Signal NO: Pep Y	5' NT of First
342	341	340	339	338	337	336		≺ÖĘ	AA SEQ
	-		1	1	1	1		Sig Pep	, First
31	12	7	27	24	29	20		Sig Pep	Last AA
32	13	∞	28	25	30	21		ot Secreted Portion	First AA
89	84	70	38	37	94	142		ORF A	Last

116	115	114	113	112	111	011		Gene No.
HE6EL90	HDTAW95	HCEVR60	HCE3Q10	HUKFC71	HTWBY29	HTWAF58		cDNA Clone ID
209007	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	209082 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	pCMVSport 2.0	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	pSport1	Lambda ZAP II		Vector
126 1517	125	124	123	122	121	120		XEO NT SEO NO:
1517	1288	1390	1542	994	2635	282		Total NT Seq.
_	412	82		1	1593			5' NT of Clone Seq.
1452	1288	1390	1542	932	1593 2489	282		5' NT 3' NT of of Clone Clone Seq. Seq.
243	571	127	143		1654	137	-	5' NT of Start Codor
243	571	127	143	272	1654	137		of AA First of SEQ AA AA of ID of Signal NO: Sig Pep Y Pep
349	348	347	346	345	344	343		AA SEQ DO: Y
1	-	-	_	Г	1	1		First AA of Sig Pep
		32	25	15	25	25		Last AA of Sig Pep
		33	26	16	26	26		First AA of Secreted Portion
9	16	153	63	221	55	48		Last AA of ORF

122	121	120	119	118	117		Gene No.
HLTER03	HIBED17	HHPTD20	HFXBW82	HERAH36	HELBU29		cDNA Clone ID
209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	04/28/97 209083 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Other	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR		Vector
132	131	130	129	128	127		× N E SEN
990	1950	130 472	1275	300	1073		Total NT Seq.
1	284	51	-	155			
990	1927	472	1275	300	1073		5' NT 3' NT of of Clone Clone Seq. Seq.
78	395		56	202			5' NT of Start Codor
78	395	243	56	202	776		of AA of SEQ AA of ID Signal NO: Pep Y
355	354	353	352	351	350		YO. BQ SEQ SEQ
-	-	-		-	_		First AA of Sig Pep
22	72		23				Last AA of Sig Pep
23	73		24				First AA of Secreted Portion
34	245	32	61	17	13		Last AA of ORF

129	128	127	126	125	124	123	Gene No.
H6EAA53	HUKCO64	HSUBW09	HRGBR18	HPWAZ95	НРМСЈ92	HOABL56	cDNA Clone ID
209007 04/28/97 209083	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Vector				
139	138	137	136	135	134	133	X EQ NT
643	1777	1021	582	323	705	1720	Total NT Seq.
303	439	1		1	28	565	5' NT of Clone Seq.
643	1777	1021	582	323	705	1720	5' NT 3' NT of Of Clone Clone Seq. Seq.
		153		88	106	660	5' NT of Start Codon
313	521	153	16	88	106	660	of of First AA of Signal Pep
362	361	360	359	358	357	356	
		1	1	-	-	-	First AA of Sig Pep
7		32	17	27	28	18	AA First Last SEQ AA AA ID of of NO: Sig Sig Y Pep Pep
∞		33	18	28	29	19	First AA of Secreted Portion
31	2	56	30	78	98		Last AA of ORF

<u></u>							r-		
135	134	134	133	132	131	130		Gene No.	
HBMTD81	нвссв91	HAIBP89	HALSQ59	HALSK07	HAGAO39	HAGAIII		cDNA Člone ID	
209008 04/28/97 209084 05/29/97	209007 04/28/97 209083 05/29/97	unknown 05/18/98	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	05/29/97	Deposit Nr and Date	ATCC
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector	
145	229	144	143	142	141	140		×ÖE	SEQ
1082	1025	144 2243	300	1468	721	1220		Total NT Seq.	
163	409	173	4	125		1		Clone Seq.	of S' NJ
1082	1025	2243	300	1468	721	1220		Clone Clone Seq. Seq.	5' NT 3' NT
357	624	311	101	210				of Start Codon	5' NT
357	624	311	101	210	415	127		AA of Signal Pep	S' NI of First
368	452	367	366	365	364	363		f ID of of NO: Sig Sig	AA
-		-	husk		_			of Sig Pep	First
	20	27	22	29		16		of Sig Pep	Last AA
	21	28	23	30		17		of Secreted Portion	First AA
30	25	317	66	33	14	27		AA of ORF	Last

142	141	140	139	138	137	136	Gene No.
HFCEB37	HE8EY43	HE2GT20	HCWHZ24	HCQAI40	HFKFJ07	HBXGK12	.cDNA Clone ID
209008 04/28/97 209084	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209010 04/28/97 209085 05/29/97	209008 04/28/97 209084 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Lambda ZAP II	Uni-ZAP XR	ZAP Express	Vector
152	151	150	149	148	147	146	× Ö. E. SEO NÖ. SEO NÖ. SEO NÖ. SEO
802	2399	150 2890	1405	734	1183	4313	Total NT Seg.
352	1181		-	_	_	1153	5' NT of Clone Seq.
802	2399	2890	1405	734	1183		S' NT 3' NT of of Clone Clone Seq. Seq.
	1265		108			13	CS St S,
487	1265	1178	108	285	149	1313	S' NT of AA First Last of SEQ AA AA first SEQ AA AA first Signal NO: Sig Sig don Pep Y Pep Pep
375	374	373	372	371	370	369	Y. BOS
-	-	_	_	-	-	_	First AA of Sig Pep
	30	ω	34		41	18	Last AA of Sig Pep
	31	32	35		42	19	First AA of Secreted Portion
10	34	39	63	19	254		Last AA of ORF

							_	
149	148	147	146	145	144	143		Gene No.
HLMMU76	HKLAB16	HUSIT49	HJAAU36	HHGBR15	HGLAM46	HFTCT67		cDNA Clone ID
209008 04/28/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	05/29/97	ATCC Deposit Nr and Date
Lambda ZAP II	Lambda ZAP II	pSport1	pBluescript SK-	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR		Vector
159	158	157	156	155		153		X D SEQ NT
1687	1625	2127 247	1251	642	2388	461		Total NT Seq.
1307	817	247	583	322	818	24		5' NT of Clone Seq.
1687		2127	1251	642	2388	461		5' NT 3' NT of of Clone Clone Seq. Seq.
1296		383		400	648	145		5' NT of Start Codon
1296	1012	3 8 3	933	400	648	145		of First AA of Signal Pep
382	381	380	379	378	377	376		AA First Last SEQ AA AA ID of of NO: Sig Sig Y Pep Pep
_	_	-	-	-	_	—		First AA of Sig Pep
28	18	47	16			37		Last AA of Sig Pep
29	19	48	17			38		First AA of Secreted Portion
28	20	83	16	4	18	63		Last AA of ORF

	1			1		_				0	
157	156	156	155	154	153	152	151	150		Gene No.	
H6EAE26	HSKCP69	HSKCP69	HPTRC15	HOECU83	HNHFQ63	HNHEJ88	HNHED86	HMSKQ35		cDNA Clone ID	
209009	209009 04/28/97	209009 04/28/97	209009 04/28/97	209009 04/28/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209084 05/29/97	Deposit Nr and Date	ATCC
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector	
167	230	166	165	164	163	162	161	160		׊Ħ	SEO
882	1250	1251	2153	164 1400	753	519	770	1842		Total NT Seq.	
48	223	219	594	189	1	1		172		Clone Seq.	of Of
882	1250	1120	2153	1400	753	519	770	1463		Clone Clone Seq. Seq.	5' NT 3' NT
155	393				164	242	30	319		of Start Codon	5' NT
155	393		611	508	164	242	30	319		AA of ID Signal NO: Pep Y	5' NT of First
390	453	389	388	387	386	385	384	383		≺ö⊟,	SEO
	1	1	1	1		1		1		of Sig Pep	AA First SEO AA
33	32			22	17	17	31	30		of Sig Pep	Last AA
34	33			23	18	18	32	31			First AA
153	171		13	33	67	24	46	33		AA of ORF	Last

168	167	166	165	164	163	162	161	160	159	158		No.			
HCFNF11	HCEZS40	HCEQA68	HCDDB78	НВМУР04	нвмтү28	HBHAD12	HAUAE83	HAICP19	HAGDQ47	HAGBX03		Clone ID		<u>.</u>	
209010	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209009 04/28/97	04/28/97	Date	Deposit	ATCC								
pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector			
178	177		175	174	173	172	171	170	169	168		×ċ	Ş U	SEQ	Z
1637	1502	176 1348	2379	888	1758	786	2003	1624	169 1307	1208		Seq.	Total		
26	178		750		962	1	889	89		1		orq.	Clone	of	Z
1607	1502	1348	2379	862	1758	786	2003	1483	1307	1208		, , ,	Clone Clone	of	5' NT 3' NT
152	315	12	901		1184		1080	128	4	182		Codon	of Of	5' NT	
152	315	12	901	546	1184	176	1080	128	4	182		Pep	AA of	First	of Of
401	400	399	398	397	396	395	394	393	392	391		۲.	Ž 🖯	SEQ	
E	1	1	_	1	1	1	-	1		1		Pep	င္ပဲ ဝင္	A	First
4		28	18		27	17		18	22			Pep		\$	Last
45		29	19		28	18		19	23			Portion	of	First AA	
257	20	78	24	2	34	23	23	446	60	∞		ORF	⋧⋧	Last	

173	172	171	170	169	169		Gene No.
HE8MG65	НЕ2СТ29	HDSAP81	HCUBL62	HCRBL20	HCRBL20		cDNA Clone ID
209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	04/28/97 209085 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Uni-ZAP XR	Uni-ZAP XR		Vector
183	182	181	180	231	179		×O. BO
2276	1128	968	519	1811	2911		Total NT Seq.
48	1	320	_	20	1103	i	5' NT of Clone Seq.
2276	1128	968	519	1811	2858		5' NT 3' NT of Clone Clone Seq. Seq.
88	111	476	57	93	192		5' I o: Sta
88	111	476	57	93	192		of AA First La of SEQ AA A If AA of ID of ool on Pep Y Pep Pe
406	405	404	403	454	402		YO. SEQ
—	_	-			_		First AA of Sig Pep
37	26	27	28	36	32		A A SE
38	27	28	29	37	33		First AA of Secreted Portion
257	94	79	32	95	424		Last AA of ORF

178	177	176	175	175	174	173	Gene No.
HETAR54	HEMDX17	HEMCV19	HEMAM41	HEMAM41	HE9FB42	HE8MG65	cDNA Clone ID
209010 04/28/97 209085	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Vector
188	187	186	233	185		232	× N. E. SEN
1848		941	1338	1337	2500	2271	1 - 1
454	_	ယ္	33	60	76	56	5' NT of Clone Seq.
1848	654	931	132/	1328	1693	2232	5' NT 3' NT of of Clone Clone Seq. Seq.
948	T	79	1/5	1/5	218	/9	5' N'I of Start Codor
948	137	79	1/5		210	/9] = =,
411	410	409	430	408	46/	455	YO. DE
	-	-		-	-	_	First AA of Sig Pep
4		2.3	32	3 3	-	÷ ÷	Last AA of Sig Pep
5		24	3	3 6	,	\$	≌ ॡ ≴
232	13	1,3	71	170	020	173	

187	186	185	184	183	182	181	180	179		Gene No.
HHPSD37	HHPDW05	ннцва89	HGLAM56	HGBF079	HFXHN68	HFKF140	HFGAB48	HETBX14		. cDNA Clone ID
209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	05/29/97	ATCC Deposit Nr and Date
pBluescript	Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector
197	196	195	194	193	192	191	190	189		X SEQ NT
1282	1443	1001	1098	1538	2118	1941	906	1146		Total NT Seq.
66	1		68	259	777	120	156	157		
1282	1443	1001	1098	1538	2118	1002	906	1146		5' NT 3' NT of of Clone Clone Seq. Seq.
171	246	324		273	966	213	245			5' NT of Start Codon
171	246	324	185	273	966	213	245	74		of of First AA of Signal Pep
420	419	418	417	416	415	414	413	412		ΥÖ. BÖ SEÖ A
	1	1	_	-	1	1	-			First AA of Sig Pep
19	-21	25	28	23	23	18	30	14		Last AA of Sig Pep
20	22	26	29	24	24	19	31	15		First AA of Secreted Portion
37	21	39	69	49	50	218	32	53		Last AA of ORF

200	199	198	197	196	195	194	193	192	191	190	189	188	Vene No.			į
HNFAH08	HMSHQ24	HMSHM43	HLTDB65	HLTCY93	HLMIW92	нінтс70	HLHSK94	нјрвв39	HJABZ65	HIASB53	HHSAK25	HHPSF70	Clone ID)		
209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	Nr and Date	Deposit	ATCC	
Uni-ZAP XR 210 2110 592	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	pBluescript	pBluescript	Uni-ZAP XR	pBluescript SK-	pBluescript	Uni-ZAP XR	pBluescript	Vector			
210	209	208	207	206	205	204	203	202	201	200	199	198	×Ċ	ë	SEQ	Z,
2110	1779	872	1480	2465	721	1057	203 1974	1617	779	200 1707	1740	951	Seq.	Total		
592	16		_	988	_	229	1	188	-	401	1390	26	seq.	Clone	of :	7. Z.
2110	1779	872	1480	2465	721	1057	1794	1605	779	1195	1740	951	_	Clone Clone	of;	2 TA 12 NT
611	148	35		1225	244	365		182	23		1534		Codon		5' NT	•
611	148	35	371	1225	244	365	112	182	23	652	1534	162	Pep Y	AA of	First	5' NT
433	432	431	430	429	428	427	426	425	424	423	422	421	۲ ۲	Ð	SEQ	AA
_	-		-	_	_	_	_	_	_	_	_		Pep	? င ှ	Ą	First
18	24	18	15		25	23	26	28	26	26	19	16	Pep	ိုင္	8	1 act
19	25	19	16		26	24	27	29	27	27	20	17	Portion	of	First AA	
191	36	36	143	4	46	22	379	91	68	126	31	3 4	ORF O	λ	Last	

207	206	202	305	204	203		202	201	Gene No.)		
HCDEO95	НРНАС88		HOSEMOO	HNHCM59	HNHAZ16		HNGBE45	HNGAO10	Clone ID			
209007 04/28/97 209083 05/29/97	97977 04/04/97 209082 05/29/97	04/04/97 209082 05/29/97	97977	209011	209011 04/28/97	04/28/97	209011	209011 04/28/97	Date	Deposit	ATCC	
Uni-ZAP XR 217	Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR 214 1496	Uni-ZAP XK 213 997		Uni-ZAP XR	Uni-ZAP XR				
217	216		215	214	213	2	212 1551	211		Ş B	SEQ	Z,
999	216 1/05		1308	1496	166	3	1551	938	•	Total		
608			501	-		-	1	,		Clone Sea.	of	5' NT
999	. 0	1702	1308	1132	777	207	1551	938		Clone Seg.	of	TN 'E
2./3	1				101	303	114	10/	Codon	Seq. Seq. Start Signal NO: Sig Sig	of of 5' NT	
2/3	7 1	610	809	105	591	383	114	107	Pep	AA of Signal	First	of Of
f		A 20	438	40,	137	436	435		\ \ \	ÖĘ	SEQ	A
-	-		-	٠	- ,	-	-		Pep	Sig	, }	First
1	3	23		3	28	24	17	2	Pep 37	Sig	\$ }	Last
3	<u>ئ</u>	24		ļ	29	25	22	3 8	Portion	Secreted of	First AA	!
3	54	24			4	36	٤	3 8	의 주	of ?	Last	· ·

189

Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

5

10

15

20

25

30

35

The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.

"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." and the "3' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

The translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

The first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID NO:Y of the last amino acid in the open reading frame is identified as "Last AA of ORF."

SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used to generate antibodies which bind specifically to the secreted proteins encoded by the cDNA clones identified in Table 1.

5

10

15

20

25

30

35

190

PCT/US98/11422

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1. The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

Also provided in the present invention are species homologs. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.

The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below).

191

It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies of the invention raised against the secreted protein in methods which are well known in the art.

Signal Sequences

5

10

15

20

25

30

35

Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1.

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 5 residues (i.e., + or - 5 residues) of the predicted cleavage point. Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely

5

15

20

25

30

35

uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

192

PCT/US98/11422

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

10 Polynucleotide and Polypeptide Variants

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire sequence shown inTable 1, the ORF (open reading frame), or any fragement specified as described herein.

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are:

Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization

Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is becuase the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignement of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query

194

amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

5

10

15

20

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequences shown in Table 1 or to the amino acid sequence encoded by deposited DNA clone can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or Cterminal deletions, not because of internal deletions, a manual correction must be made to the results. This is becuase the FASTDB program does not account for N- and Cterminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the the query 25 sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of 30 the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are 35 considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.

5

10

15

20

25

30

195

PCT/US98/11422

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the Nterminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or Ctermini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequnce are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988 (1993), reported variant KGF proteins having heparin binding activity even after

deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

5

10

15

20

25

30

35

Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.

Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).)

198

Polynucleotide and Polypeptide Fragments

10

20

25

30

35

In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clone or shown in SEQ ID NO:X. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in the deposited clone or the nucleotide sequence shown in SEQ ID NO:X. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.

Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, 701-750, 751-800, 800-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951-2000, or 2001 to the end of SEQ ID NO:X or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has biological activity. More preferably, these polynucleotides can be used as probes or primers as discussed herein.

In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:Y or encoded by the cDNA contained in the deposited clone. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, or 161 to the end of the coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the

carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Particularly, N-terminal deletions of the polypeptide of the present invention can be described by the general formula m-p, where p is the total number of amino acids in the polypeptide and m is an integer from 2 to (p-1), and where both of these integers (m & p) correspond to the position of the amino acid residue identified in SEQ ID NO:Y.

Moreover, C-terminal deletions of the polypeptide of the present invention can also be described by the general formula 1-n, where n is an integer from 2 to (p-1), and again where these integers (n & p) correspond to the position of the amino acid residue identified in SEQ ID NO:Y.

The invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini, which may be described generally as having residues m-n of SEQ ID NO:Y, where m and n are integers as described above.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.

Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide fragments encoding these domains are also contemplated.

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

Epitopes & Antibodies

5

10

15

20

25

30

35

In the present invention, "epitopes" refer to polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates to a polypeptide fragment comprising an

200

epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).)

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

Fusion Proteins

5

10

15

20

25

30

35

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the

5

10

15

20

25

30

35

polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

201

PCT/US98/11422

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D.

202

Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the present invention.

15 Vectors, Host Cells, and Protein Production

5

10

20

25

30

35

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance

genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

5

10

15

20

25

30

35

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein

204

after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

5

Uses of the Polynucleotides

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

10

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

15

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

20

25

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

30

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

35

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are

205

more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

5

10

15

20

25

30

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model

5

10

15

20

25

30

35

206

PCT/US98/11422

systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of

207

unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

Uses of the Polypeptides

5

10

15

20

25

30

35

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell. Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic

10

15

20

25

30

35

208

PCT/US98/11422

resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

Biological Activities

WO 98/54963

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

209

PCT/US98/11422

Immune Activity

10

5

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

20

15

A polynucleotide or polypeptide of the present invention may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or polynucleotide of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

30

35

25

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, a polynucleotide or polypeptide of the present invention that can

decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

5

10

15

20

25

30

35

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic

211

shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

Hyperproliferative Disorders

5

10

15

20

25

30

35

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, a polypeptide or polynucleotide of the present invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

Infectious Disease

A polypeptide or polynucleotide of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases

212

may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

5

10

20

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Similarly, bacterial or fungal agents that can cause disease or symptoms and that 25 can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter, 30 Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis. Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus, Heamophilus, Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis, 35 and Staphylococcal. These bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS

213

related infections), paronychia, prosthesis-related infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria,

- 5 Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.
- Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas.
- These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

25

30

35

A polynucleotide or polypeptide of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal

214

or cardiac), vascular (including vascular endothelium), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

Chemotaxis

5

10

15

20

25

30

35

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

215

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

5

10

15

20

25

30

35

Binding Activity

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

216

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

5

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

10

15

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

a

Other Activities

20

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

25

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

30

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

35

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

217

Other Preferred Embodiments

5

10

15

20

25

30

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEO ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

WO 98/54963

5

10

15

20

25

30

35

PCT/US98/11422

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

218

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame sequence encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method

WO 98/54963

5

10

15

20

25

30

35

comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95%

220

identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

5

10

15

20

25

30

35

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

221

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

10

15

20

25

30

35

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide

comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

5

10

15

20

25

30

35

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

223

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

5

10

15

20

25

30

35

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred.

224

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

10 Examples

5

15

20

30

35

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

	Vector Used to Construct Library	Corresponding Deposited Plasmid
	Lambda Zap	pBluescript (pBS)
	Uni-Zap XR	pBluescript (pBS)
	Zap Express	pBK
25	lafmid BA	plafmid BA
	pSport1	pSport1
	pCMVSport 2.0	pCMVSport 2.0
	pCMVSport 3.0	pCMVSport 3.0
	pCR [®] 2.1	pCR [®] 2.1

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1

WO 98/54963

10

15

20

25

30

35

225

PCT/US98/11422

Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).)

The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

PCT/US98/11422

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

15

20

25

30

35

10

5

WO 98/54963

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

Example 3: Tissue Distribution of Polypeptide

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P³² using the rediprimeTM DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100TM column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and the films developed according to standard procedures.

228

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

Example 5: Bacterial Expression of a Polypeptide

5

10

15

20

25

30

35

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^r). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG

(Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

5

10

15

20

25

30

35

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., *supra*).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number 209645, deposited on February 25, 1998.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA

230

insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

5

10

15

20

25

30

Example 6: Purification of a Polypeptide from an Inclusion Body

The following alternative method can be used to purify a polypeptide expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with $0.16\,\mu m$ membrane filter with appropriate surface area

(e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

5

10

15

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded.

The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

5

10

15

20

25

30

35

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. E. coli HB101 or other suitable E. coli hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGoldTM baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGoldTM virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm

tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

5

10

15

20

25

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μCi of ³⁵S-methionine and 5 μCi ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

30 Example 8: Expression of a Polypeptide in Mammalian Cells

The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates

234

the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

5

10

15

20

25

30

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No. 209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the

polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five µg of the expression plasmid pC6 is cotransfected with 0.5 µg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 µM, 2 µM, 5 µM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 -200 µM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

5

10

15

20

25

30

10

15

20

25

30

35

Example 9: Protein Fusions

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

Human IgG Fc region:

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCC CAGCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAACC CAAGGACACCCTCATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTGGT GGACGTAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC 10

15

20

25

30

35

237

AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG
AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAACCCCC
ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT
GTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT
GACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGGA
GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG
ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA
GGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC
ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGC
GACGGCCGCGACTCTAGAGGAT (SEQ ID NO:1)

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as

described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

30

35

25

5

10

15

20

Example 11: Production Of Secreted Protein For High-Throughput Screening Assays

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a

WO 98/54963

10

15

20

25

30

35

239

PCT/US98/11422

working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (116.6 mg/L of CaCl2 (anhyd); 0.00130 mg/L CuSO₄-5H₂O; 0.050 mg/L of Fe(NO₃)₃-9H₂O; 0.417 mg/L of FeSO₄-7H₂O; 311.80 mg/L of Kcl; 28.64 mg/L of MgCl₂; 48.84 mg/L of MgSO₄; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHCO₃; 62.50 mg/L of NaH₂PO₄-H₂O; 71.02 mg/L of Na₂HPO4; .4320 mg/L of ZnSO₄-7H₂O; .002 mg/L of Arachidonic Acid; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol-Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linolenic Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of Palmitric Acid; 100 mg/L of

240

Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L- Alanine; 147.50 mg/ml of L-Arginine-HCL; 7.50 mg/ml of L-Asparagine-H₂0; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H,0; 31.29 mg/ml of L-Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 5 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-H₂0; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L-Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalainine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tryrosine-2Na-2H₂0; 99.65 mg/ml of L-10 Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg/L of Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319 mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; and 0.680 mg/L of Vitamin B₁₂; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 15 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; and 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal) with 2mm glutamine and 1x 20 penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

25

30

35

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

241

Example 12: Construction of GAS Reporter Construct

5

10

15

20

25

30

35

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proxial region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

242

	<u>Ligand</u>	tyk2	JAKs Jakl	<u>Jak2</u>	Jak3	<u>STATS</u>	GAS(elements) or ISRE
5	IFN family IFN-a/B IFN-g II-10	+	+ + ?	- + ?	-	1,2,3 1 1,3	ISRE GAS (IRF1>Lys6>IFP)
10	gp130 family IL-6 (Pleiotrohic) II-11(Pleiotrohic) OnM(Pleiotrohic) LIF(Pleiotrohic)	+ ? ?	+ + +	+ ? + +	?????	1,3 1,3 1,3 1,3	GAS (IRF1>Lys6>IFP)
15	CNTF(Pleiotrohic) G-CSF(Pleiotrohic) IL-12(Pleiotrohic)	-/+ ? +	+ + -	+ ? +	? ? +	1,3 1,3 1,3	
20 .	g-C family IL-2 (lymphocytes) IL-4 (lymph/myeloid) IL-7 (lymphocytes) IL-9 (lymphocytes) IL-13 (lymphocyte) IL-15	- - - - - ?	+ + + + +	- - - ? ?	+ + + + ? +	1,3,5 6 5 5 6 5	GAS GAS (IRF1 = IFP >>Ly6)(IgH) GAS GAS GAS GAS
30	gp140 family IL-3 (myeloid) IL-5 (myeloid) GM-CSF (myeloid)	- - -	- -	+ + +	-	5 5 5	GAS (IRF1>IFP>>Ly6) GAS GAS
35	Growth hormone fam GH PRL EPO	? ?	- +/- -	+ + +	:	5 1,3,5 5	GAS(B-CAS>IRF1=IFP>>Ly6)
40	Receptor Tyrosine Ki EGF PDGF CSF-1	nases ? ? ?	+ + +	+ + +	- -	1,3 1,3 1,3	GAS (IRF1) GAS (not IRF1)

WO 98/54963

10

15

20

25

30

35

243

PCT/US98/11422

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCC

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with Xhol/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

244

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using SalI and Notl, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

5

10

15

20

25

30

35

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

Example 13: High-Throughput Screening Assay for T-cell Activity.

The following protocol is used to assess T-cell activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies)

with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

During the incubation period, count cell concentration, spin down the required number of cells (10⁷ per transfection), and resuspend in OPTI-MEM to a final concentration of 10⁷ cells/ml. Then add 1ml of 1 x 10⁷ cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

10

15

20

25

30

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest 2x10e⁷ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heatinactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

10

15

20

25

30

Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37°C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

These cells are tested by harvesting $1x10^8$ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of $5x10^5$ cells/ml. Plate 200 ul cells per well in the 96-well plate (or $1x10^5$ cells/well).

Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.

WO 98/54963

5

10

15

20

25

30

35

Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6) 5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO:7)

Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heatinactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine

growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

5

10

15

20

25

30

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as 5×10^5 cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to 1×10^5 cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

Example 16: High-Throughput Screening Assay for T-cell Activity

NF-kB (Nuclear Factor kB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-kB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF-kB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF- κB is retained in the cytoplasm with I- κB (Inhibitor κB). However, upon stimulation, I- κB is phosphorylated and degraded, causing NF- κB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- κB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-kB promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF-kB would be useful in treating

diseases. For example, inhibitors of NF-κB could be used to treat those diseases related to the acute or chronic activation of NF-kB, such as rheumatoid arthritis.

To construct a vector containing the NF-κB promoter element, a PCR based strategy is employed. The upstream primer contains four tandem copies of the NF-κB binding site (GGGGACTTTCCC) (SEQ ID NO:8), 18 bp of sequence complementary to the 5' end of the SV40 early promoter sequence, and is flanked with an XhoI site: 5':GCGGCCTCGAGGGGACTTTCCCGGGGACTTTCCGGGGACTTTCCATCCTGCCATCTCAATTAG:3' (SEQ ID NO:9)

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

5

10

20

25

PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene) Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:

5':CTCGAGGGGACTTTCCCGGGGACTTTCCGGGACTTTCC
ATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCA
TCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCATGGCTGACT
AATTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC
CAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTT:
3' (SEQ ID NO:10)

Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF-kB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF-kB/SV40/SEAP

cassette is removed from the above NF-kB/SEAP vector using restriction enzymes Sall and NotI, and inserted into a vector containing neomycin resistance. Particularly, the NF-kB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with Sall and NotI.

Once NF-kB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 17: Assay for SEAP Activity

5

10

15

20

25

As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 μ l of 2.5x dilution buffer into Optiplates containing 35 μ l of a supernatant. Seal the plates with a plastic sealer and incubate at 65°C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 µl Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 µl Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Ruffer Formulation:

Reaction	buller Formulation:	
# of plates	Rxn buffer diluent (ml)	CSPD (ml)
10	60	3
11	65	3.25
12	70	3.5
13	75	3.75
14	80	4
15	85	4.25
16	90	4.5
17	95	4.75
18	100	5
19	105	5.25
20	110	5.5
21	115	5.75
22	120	6

23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.5
41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12
47	245	12.25
48	250	12.5
49	255	12.75
50	260	

10

15

Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-3, used here.

For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO₂ incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

A stock solution of 1 mg/ml fluo-3 is made in 10% pluronic acid DMSO. To load the cells with fluo-3, 50 ul of 12 ug/ml fluo-3 is added to each well. The plate is incubated at 37°C in a CO₂ incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10⁶ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-3 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37°C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10⁶ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-3. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling event which has resulted in an increase in the intracellular Ca++ concentration.

20

25

30

35

15

5

10

Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

5

10

15

20

25

30

35

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a

10

15

20

25

30

35

biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg2+ (5mM ATP/50mM MgCl2), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl2, 5 mM MnCl2, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 19, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other

phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (lug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4°C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

25

30

5

10

15

20

Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252:706 (1991).

35

PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies).

256

The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

5

10

15

20

25

30

35

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10.

257

The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 23: Formulating a Polypeptide

5

10

15

20

25

30

35

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1 μ g/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 μ g/kg/hour to about 50 μ g/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally,

intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

10

15

20

25

30

35

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

10

15

20

25

260

Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

10

15

20

25

30

Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37°C for approximately one week.

261

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

5

10

15

20

25

15

20

25

30

35

WO 98/54963 PCT/US98/11422

262

Example 27: Method of Treatment Using Gene Therapy - In Vivo

Another aspect of the present invention is using *in vivo* gene therapy methods to treat disorders, diseases and conditions. The gene therapy method relates to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or decrease the expression of the polypeptide of the present invention. A polynucleotide of the present invention may be operatively linked to a promoter or any other genetic elements necessary for the expression of the encoded polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known in the art, see, for example, WO90/11092, WO98/11779; U.S. Patent NO. 5693622, 5705151, 5580859; Tabata H. et al. (1997) Cardiovasc. Res. 35(3):470-479, Chao J et al. (1997) Pharmacol. Res. 35(6):517-522, Wolff J.A. (1997) Neuromuscul. Disord. 7(5):314-318, Schwartz B. et al. (1996) Gene Ther. 3(5):405-411, Tsurumi Y. et al. (1996) Circulation 94(12):3281-3290 (incorporated herein by reference).

The polynucleotide constructs of the present invention may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). These polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotides may also be delivered in liposome formulations (such as those taught in Felgner P.L. et al. (1995) Ann. NY Acad. Sci. 772:126-139 and Abdallah B. et al. (1995) Biol. Cell 85(1):1-7) which can be prepared by methods well known to those skilled in the art.

The polynucleotide vector constructs of the present invention used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapies techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

PCT/US98/11422 WO 98/54963

The polynucleotide construct of the present invention can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less 15 completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides.

5

10

20

25

30

35

For the naked polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 g/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked polynucleotide constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

The dose response effects of injected polynucleotide in muscle in vivo is determined as follows. Suitable template DNA for production of mRNA coding for the polypeptide of the present invention is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with

264

liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA.

5

10

15

20

25

Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about 0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.

After an appropriate incubation time (e.g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section of the individual quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice. The results of the above experimentation in mice can be use to extrapolate proper dosages and other treatment parameters in humans and other animals using naked DNA of the present invention.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference.

Sequence Listing

	(1) GENERAL INFORMATION:
5	(i) APPLICANT: Human Genome Sciences, Inc., et al.
	(ii) TITLE OF INVENTION: 207 Human Secreted Proteins
10	(iii) NUMBER OF SEQUENCES: 800
15	(iv) CORRESPONDENCE ADDRESS:
1.5	(A) ADDRESSEE: Human Genome Sciences, Inc.
	(B) STREET: 9410 Key West Avenue
20	(C) CITY: Rockville
	(D) STATE: Maryland
25	(E) COUNTRY: USA
23	(F) ZIP: 20850
30	(v) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
35	(B) COMPUTER: HP Vectra 486/33
22	(C) OPERATING SYSTEM: MSDOS version 6.2
	(D) SOFTWARE: ASCII Text
40	
	(vi) CURRENT APPLICATION DATA:
45	(A) APPLICATION NUMBER:
73	(B) FILING DATE:
	(C) CLASSIFICATION:
50	
	(vii) PRIOR APPLICATION DATA:
55	(A) APPLICATION NUMBER:
55	(B) FILING DATE:

	(viii) ATTORNEY/AGENT INFORMATION:	
,	(A) NAME: Kenley K. Hoover	
5	(B) REGISTRATION NUMBER: 40,302	
	(C) REFERENCE/DOCKET NUMBER: PZ007PCT	
10		
	(vi) TELECOMMUNICATION INFORMATION:	
15	(A) TELEPHONE: (301) 309-8504	
15	(B) TELEFAX: (301) 309-8439	
20	(2) INFORMATION FOR SEQ ID NO: 1:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 733 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
30		60
	GGGATCCGGA GCCCAAATCT TCTGACAAAA CTCACACATG CCCACCGTGC CCAGCACCTG	
	AATTCGAGGG TGCACCGTCA GTCTTCCTCT TCCCCCCAAA ACCCAAGGAC ACCCTCATGA	120
35	TCTCCCGGAC TCCTGAGGTC ACATGCGTGG TGGTGGACGT AAGCCACGAA GACCCTGAGG	180
	TCAAGTTCAA CTGGTACGTG GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG	240
40	AGGAGCAGTA CAACAGCACG TACCGTGTGG TCAGCGTCCTC CACCGTCCTG CACCAGGACT	300
	GGCTGAATGG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGCCCTCCCA ACCCCCATCG	360
	AGAAAACCAT CTCCAAAGCC AAAGGGCAGC CCCGAGAACC ACAGGTGTAC ACCCTGCCCC	420
45	CATCCCGGGA TGAGCTGACC AAGAACCAGG TCAGCCTGAC CTGCCTGGTC AAAGGCTTCT	480
	ATCCAAGCGA CATCGCCGTG GAGTGGGAGA GCAATGGGCA GCCGGAGAAC AACTACAAGA	540
50	CCACGCCTCC CGTGCTGGAC TCCGACGGCT CCTTCTTCCT CTACAGCAAG CTCACCGTGG	600
50	ACAAGAGCAG GTGGCAGCAG GGGAACGTCT TCTCATGCTC CGTGATGCAT GAGGCTCTGC	660
	ACAACCACTA CACGCAGAAG AGCCTCTCCC TGTCTCCGGG TAAATGAGTG CGACGGCCGC	720
55	GACTCTAGAG GAT	733

	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 5 amino acids	
_	(B) TYPE: amino acid	
5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
	Trp Ser Xaa Trp Ser	
10	1 5	
	•	
15	(2) INFORMATION FOR SEQ ID NO: 3:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 86 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(b) 101020011 1111111	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
25	GCGCCTCGAG ATTTCCCCGA AATCTAGATT TCCCCGAAAT GATTTCCCCG AAATGATTTC	60
	CCCGAAATAT CTGCCATCTC AATTAG	86
30		
	(2) INFORMATION FOR SEQ ID NO: 4:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 27 base pairs	
55	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
	GCGGCAAGCT TTTTGCAAAG CCTAGGC	27
45		
73	(2) INFORMATION FOR SEQ ID NO: 5:	
	(2) DECOMMITCH FOR DDG ID 110. 5.	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 271 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(D) TOPOLOGI: Illiear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	CTCGAGATTT CCCCGAAATC TAGATTTCCC CGAAATGATT TCCCCGAAAT GATTTCCCCG	60
	AAATATCTGC CATCTCAATT AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC	120
60		

	GCCCCTAACT CCGCCCAGTT CCGCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTTAT	180
	TTATGCAGAG GCCGAGGCCG CCTCGGCCTC TGAGCTATTC CAGAAGTAGT GAGGAGGCTT	240
5	TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT T	271
10	(2) INFORMATION FOR SEQ ID NO: 6:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
20	GCGCTCGAGG GATGACAGCG ATAGAACCCC GG	32
25	(2) INFORMATION FOR SEQ ID NO: 7:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
35	GCGAAGCTTC GCGACTCCCC GGATCCGCCT C	31
40		
70	(2) INFORMATION FOR SEQ ID NO: 8:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	10
	GGGGACTTTC CC	12
55		
55	(2) INFORMATION FOR SEQ ID NO: 9:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 base pairs	
60	(A) LENGTH: 73 pase pairs (B) TYPE: nucleic acid	

WO 98/54963

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
5	GCGGCCTCGA GGGGACTTTC CCGGGGACTT TCCGGGGACT TTCCATCCTG	60
	CCATCTCAAT TAG	73
0		
	(2) INFORMATION FOR SEQ ID NO: 10:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 256 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	60
	CTCGAGGGGA CTTTCCCGGG GACTTTCCGG GGACTTTCCG GGACTTTCCA TCTGCCATCT	60
25	CAATTAGTCA GCAACCATAG TCCCGCCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC	120
	CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTTTT TTTATTTATG CAGAGGCCGA	180
30	GGCCCCCTCG GCCTCTGAGC TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG	240
	CTTTTGCAAA AAGCTT	256
35	(2) INFORMATION FOR SEQ ID NO: 11:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2526 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	60
	GACAGGCTAT CCGAGAATCT GAGAGCTGGG CCCGGCAATT CCTCCAGYTA CCCTTGTGAC	120
50	CTAAGTCCAG TCACACATTT CCCAAAGTTT CTCTTTGTCA TAACCCTGGT CTGGCTGGTT	180
50	TTGRGGRCTT GAGAATGGGT CAGGGACTCC AGGCCAAGTC CAACAGAGAC CCCAAACCCA	
	CCACACACCA GCAGCCACAA CCTCACCACC AACAAAGAGG ACTTTTGTGG GGCCACAAGT	300
55	AAGAGGTCAT TTCTGGAATG GACTCAGACC TTTAAACAGG AGAGTTGAGC ACTTCCAGKS	
	AGTTTTTAAG CAAGGCATGG GGAACAGGGA ATAGAACCTT TCAAAGAGGT TGCCCAGAGA	360
	AAAGCTGGGC CTCTTGCATT CGGCTTCCTT GGAGCAGCCT CTTCTGGCAG AAAGCCATCA	420
60	GGTGCTCAAT CATCTTCTCC TGGCCAAGGC TCTGACCATG CTTAGTACTG GAATAGAGGT	480

	GGCCAGGCCC CCAGCGACTC TTCTTGGCCT GATGTTTGTC CTCACAGGCA TGCCACGTGG	540
5	CCTGAGATGA TTCAGAACAA ATCATGCTAA CTTTGAATCC ATCCAGCCAC TTGCAAATGA	600
	TAATCAGAAG TCAGCTTGTT CACTGTTAGA AAGAAACTAA CAAAAGAGAA CCCAGAGCAA	660
	TCTAGAATCT TTGAGTGCTT GGCTTTCCAA GGATACTGCG GAGACTCTGG CCAAGCTGAT	720
10	GAMCTTCTGA ARTGTCACTG GCACCATATG CAACAAGAAC CACCATTCAC TGAGTAGCTA	780
	ATGGGTTTGG GGCCTGGGAC ATTCCATCTG AGGTCCTTCC TGAACATGTC ACTCCACAGC	840
	AGAGGACCGG TTGCAGCTTA CCCAGAACCA CTCCTCCAGG AGAGCTGGAT GTTTTGCGTG	900
15	CAACACCTTG AGCACTGACT GCTATTGTTC AAAAAAAGCC TTTGCTGCAT TCGGAGGACT	960
	GCCCCGTGCC CTGAGGTGAC TICCTAACTA TGTGGTTTCA TTAGCGAATT TATTTTTTGT	1020
20	GCTGGGTGGA CATTTGTATT TIGITAGGTT GCTGTTTAAG CTCAAGTTTG CTGTGCTCTC	1080
	TGCAGCTACA AAACATCTTG GCATATTTAA GAKTGGCTTT TATAAATAGC TTTATTCTGA	1140
	TATTAATCAG ATTCCCAACT TTACTGAGAA TTAAGGACTG GGGTACTTTA AAGAAATGCA	1200
25	AATAGCAATT GAAGAACCAC TGCTGCAGGT GGTAGCCCTG GCTAGACTGA ATTACACTAG	1260
	AAATCAGCCA GAAGGAAGCG TCCTTGGGAT CCCAGATCAC TCTTTTTTTT TTTTTTTTTA	1320
30	AAAGGGGCAG CCCCTTGATG GCTCATCTCT CTGAATAACA GITACGTCTT CATATCGATA	1380
	CCAGATGCCT TCTTCATCAT GCCACTGAAG CCACTCACCA CCTTCAAGAA CATGCCAACC	1440
	TCTGTCAGAT TCACTTACCC ACAAACAAGG AGGCACGTTT GGCACAAAGT GTTGTCCTCC	1500
35	AGGTCCAAGT GGACTCTACA GAGTGCTTGA CCTCAACACA CTGGATTCCA GGTGGACTGG	1560
	ACCAAGAGCA GGCAAAGACA CGGGAACTGA AAAACTCCAC AGGGTTTGGA GAATAGAAAT	1620
40	GAAAAGCCAC GTCATATAAC TCAAGAATAA ATGGTGTTTT GGAAATTTTA AAATTATCAT	1680
	CGAAGGTGGT GAAACTATTT CAGGCCCAAA TGAAAGGAAA TCGCCAGTTG GGGATGAAAT	1740
	CACAGAGCCT GIGTTTTATG ATATGGTTGG ATGTCCACTG ATGAAATTTT AAAGGAGTTT	1800
45	CATTITIANA AGIGOGCATG ATTOTACATA TGAGAATTOT TTAGGCCAAG AAACTGTCCT	1860
	TGGCTCAGAG GTGTTGGGAA TTAAAGCAGA GAGAAGCCAT TCGTGATGCT TAGAACCAAG	1920
50	GATGGTCATG TACACAAAGA CCATCGAGAC GGCCATTCTT GTTTACAAAA CACTTACCAA	1980
	GAAAGCACTT TGTAGGGGAA CTTTAGTAAG TTCTTCTCAT TTCATTATGT TTCTTCCAAG	2040
	GAAACAGGAG AGACTGAATT AATAATTCTC TCTTTCCTCT TAAGCACTTT TAAAATAATA	2100
55	AAGTACATCT TGAAATTTGG GGGGGCATCT CTGATTTAAA AAAAGAAAAA GGCTGCTTGA	2160
	TGTATGTTAT GCAGAGACAC TCTGCCTCTG GTGGCTGCAG AGCAATACCC AAGCCTCATT	2220
60	TYPE A COUNTY DE LA CATTURGE ATTROCACTIT AATTGATTAA TOOTCAATTO ATGTGGCCTT	2280

WO 98/54963

271

5	ACGCGATCGT	GGGTCTGGGA	CCCCAATTCA	TTCTTATCTG	CCAAAGAATT	ATCTAGAAGC	2340
	ACATCAAATA	CCAGCACCCC	ACCTGCACAA	TGGGGGTGGA	AAACTTTTGT	ATCCCTAAGC	2400
	ATATTATTTT	ATAGTGTCTG	CCATGCCATG	TGGAAATACT	TTATTTTTAA	CCTCAGGATT	2460
	TAAATAAAGT	AAACACTATG	ACATTTAAAA	ааааааааа	AAAACTCGAG	GGGGGCCCGG	2520
10	TACCCA						2526

(2) INFORMATION FOR SEQ ID NO: 12: 15

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1131 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

25	CACTGCACCA GCTTTGTTAT CTGTAAAATG ATGATAATAC CAACACCTTC TTCTTGGGGT	60
	ACTGAAGATG AGAGAACATG ATATGTGTAA AGTGCCTTCC ACAATACCCA GAACATAGCA	120
30	AACATGTAAT GAATGTAGTA ATAGTAATTA TTTTATTTTC TTTTGATTCA GTTGGGACTA	180
30	TOTTCAGCTG TAACAGAATA CCCAAAATAA CTGTTTTAAA CAAATTAAAG TTTWGTTGTG	240
	AAGTTTTGTT ACGAATTCAG ACAATCCAGG GCTTTTATAG ATGCACCAGG ATCAGCAGGT	300
. 35	ACAAAGGCAT CTTTCCTGAT TTCTGCCAGT CTCAATGCAT GGGTTGCAAT CCAGARTCCA	360
	RGATGGCAGT TCCAGCCCTG GTTACGCCCA TATTAGCACA CAGAAAGAAA GAGAAAGGGA	420
40	TGTGCCTCTT CACTITAATC ATAGCTCCCA CTAGATGCAC CCACTACTTC TGCTGATACT	480
40	CCATTAGCTA ATGCTTGCTT ACATGGTCAC ACTTAGTTTC CAGAGAGACA TGTCTGGACA	540
•	GTCATGTGCT CAATTAATAT CCAAGTGTCC AATTACTGAG AAAAAAAGAA ACTAGCACCT	600
45	TIGCTIGGIT GCATICCICT TAGCATAAGC CACATICITI TIAIGAAGII GICCTCAGII	660
	ACTTGGATGC CTCAGTTGTC CTTTCAWITA GAAAWGCYCC TKGGACAYCC TGAAWCTGAC	720
50	TTCTTTTGTC ATCAGCACCA TCACTACCAC TGCCYTCTTC AAAGCCACCA CGTTCTGTCC	780
30	CCAGGATGGT TGCAACAACC ACCATAGGGA CTTTTTGCCT TCTACTTCCA CACAATAGNC	840
	CAGAGTAAGC TTTTGAAAAT GTAGGTCAGA TCATGTCTCT CTCTTCCTCT TCAAAACCCT	900
55	CCCGATGGCT TITCATATTA CTCAAAAGAA AACCTAAAAC TITGCTGTGA GATCTATGTG	960
	ACCCGGCTTA TTCTTCCTCT TACTTTATCT CTGTATTGCT CTTCCTCACT CTACTCCAGC	1020
60	CATCCCACCT CCTTGCTGCT TGTCCTATAC TCCTAAAAGA AGTTCAGTCT TCCCTTATGA	1080

	TATTTGCACT TAAAATAGAA AAAAAAAAAA AAAAAAAACT CGAGGGGGC C	1131
5	(2) INFORMATION FOR SEQ ID NO: 13:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 941 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
13	GGCACGAGTA GCATTTCATT TAATCTGCAG GTATATTCTC CCAACAGTTT ATTGTCATGT	60
	GATGTCCTCA GCCAAGATTG TRAGGCAGAG AGGAGCTGTC CCAACCTACT ATACCACCGA	120
20	GGCTGGAGAG ATCATATTTT TGGTATTAAA CTGGAGTCTC TCCATCCTTC ACATTGTTGA	180
	TGTCCTCTGT AGCAAACCGG AAAAGTCAGT GACAGAAGAT GCCGCTAGCG GTTTGAGCCA	240
25	GAGAATGACA GCTCTGGTTT GGAGAAAAGG GCCGGATGGT GGCTCTAGAA AGCCCATCCT	300
23	TCTGCTCTTC TTTTTTCTCC CCCTTATATT GTGCTTTCAT TCATTCATTC ATTCATCAAA	360
	CATTIGITGA GCACCIATTA TGTGTCAAGC TCTGTGCTAG CCTCTGGAAA ACCTGCCCTC	420
30	ATGTAGCTCA CTGTGGAGTA GGAGAAACAA TGACTACACT ATGATAAGCA CGGGTTGTCA	480
	GGGTCTCACA GAGCAGTGGC CCCTCATCCA GACCGATGAG GTCAAAGAAG GCATCCAGGC	540
35	GAGGATGGTG TCAGAGCTAA CTGAAGAATG AGAGGGAGCT GCACCASCAG GGGTTGGAAC	600
33	TGAAGGTGGC AGTGCCTGGA GTCTTGATTC CAGCAGAGGG AGAGCAGTCT GTGAAAAGGC	660
	ACCAAGGGTG GGAGAGGGCA GAGCACATGG AGGAACTTCA GGTAGTTCTG GATGGCSCTG	720
40	GGGCAAAGCT AGAGAGGTAA GAAGAATCTA CAAATGTTCC TCGAGTTACA TGAACTTCCA	780
	TCCCAATAAA CCCATTGGAA ACGAAAAATT TAAGTCAGAA GTGCATTTAA GGCTGGTCCG	840
45	AGTAGAATGA TITTTACAAC GAATTGATCA CAACCAGTTA CAGATGTCTT TGTTCCTTCT	900
73	CCACTCCCAC TGCTTCACCT GACTAGCCTT TAAAAAAAAA A	941
50	(2) INFORMATION FOR SEQ ID NO: 14:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 843 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	

273

	CNAGGGATAA CCCCAAAGNT GGGAAATAAA CCCTCAATTA AAGGGGGAAC CAAAAAGCTG	6Ó
	GGAAGTTCCC CCCCGCGGTG GCGGCCNGNT CTAGGAACTA GTGGAATCCC CCGGGGCTGC	120
5	AGGGAATTCG GCACGGAGTG GGAATGTTGT TTGTATGATA CTATTTCCAC AAWATGCATT	180
	GAGACTTGGT KTGTGGCCTA GGACATGGTC AATTCTTTYT AAATATTCCG TGAATTTCTT	240
10	TAGTGCATAT TCTCCGATGG GGGCTGTGGG GACAGAGTTC TAAATATGCC CATTAGATTA	- 300
10	AATCTCTTCA TTCTGTTGCT CACATCTTCT ATATCCTTAT TAATCTGTCA ATCTCTTCAA	360
	GAGAGGTGTT ATTAAAATCT CTCACTGTAT GTGTCACTTT GCCCTTAAAA TTCTGATGAT	420
15	TTGCTTTATA AATGGTTATA ACCATTTTCC AGGAAGAACA TTAAAGAACT TTCCATTGGC	480
	ATTATCCAGT TTCCCTCAAA ATACTGGTTT TTTTTATTTT GGCTNCTAAG CAGCTATGAA	540
20	TCCAGTTTCT CAGAAGCCCT TGTCTCAAGG CATTTGTTTC CAGATTACCT TGTTAGCATC	500
20	CACACTATGG GCTATTTTAG AAAAACAAAA AAAGTATCAA AATCATATAG CTATGATTTT	560
	CCTGTGCTTG AAGGAGCCTT AAAGCTCATC TAGTCCAGCC AGTATTTGTT CATCCAAATT	720
25	CTGCCAAGAA ATCTCTATTG TCAAGATATT CTTTACCATC TTTGGGACAT TCTCATTATT	780
	AGAAACAAAT CCTAAGAAGA AATTCTGCCA TAKACAACCC ATCCGTTCTT TAAAAAAAAA	340
30	AAA	343
30		
	(2) INFORMATION FOR SEQ ID NO: 15:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1018 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
45	CTGTAATTTT TAATTTTCAT ATACCGTGCT TTGATTCTAA TTTTATTTTT TGAGTTCTCT	6
	GAAGGITACA TATACAGAGT GCTTCAGGAA TGATCATTIT GTTATTATIC ATGCTTCTTA	12
50	ACAATGITGT TITAGTCCAA GAAGATAATT GCCAGAGAAA GAATACAGTG CAGGAAAGAA	18
50	GARGCTGGAG CCAGTGGTGA AGARGGATTG AGARGACAGA CATTGTGGGA ATGAAATCAT	24
	GAATAATCGT GTTTTTGAAT TGTCCAAAAA CTTCTACAAA CCATGAAATG TTGGAGTTTA	30
55	AATCTAATTG TTGAAAAATT CCCCACATTC CTTGTATCCC TTAGGTTGAG CATAATTCCA	36
	CATCCGTGGA CTGATGCACT TCCCAAGAGG GGGCCTCATT AACTCTTCCG AGGCAGCAGC	42
	AGCAAGGGCA CCCCCTCCTT TCCCCCCACA CCCCAYTTCT CATGGCTCTT CTTTCTCTCA	48

60 TCTCATGCTT AGGTTAGAAA AGGGCACAAG GTAAGGAAGC CCTTGGGAAT AGGCTGAATC

	TGGCTATCTA ATTTGGTGCC AAATACTTAA TGTGCTTGAA TTTAAAAACA GCAAACATGT	600
_	AGAAAGGTAA TTATAATTAT GAGGCCAGTT CTTTAAGCTA GCTTTTTTTC CCCTCTCAAA	660
5	CAGCATATTG GCTTGGATGT CAGCAGGAGA AAGTGTTTTT TGCAATACAC ATAATGCATA	720
	TATGGTCCTG TTAGCAATCT ATAGAAAATA GATATTGCTC ATTAAGGTAA ATATTTTTGT	780
10	TGATGAATGA TCTGGAATGG TCTGGACTTG TTGTGTGAAC AGGAAATTGC TCTGTAGGCT	840
	TTGACTTGTG AGGTAAAGAG TGAGGCTGGT AAGATTAATT AAAGTAAATA CTGTGACAAT	900
15	AGGATGTCAA AACCAAAAAC GTGTTTCTGA AACTCAAGGA ATTAATGACA CATAGGGAAG	960
13	TTTTTGCCAT ATTAAGCATA GAGTAGGAGA GGCAAGTCAA GAATAAAAAA AAAAAAAA	1018
20	(2) INFORMATION FOR SEQ ID NO: 16:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 661 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
30	TTTAAGAAAT TAGTGAATCC CCGGNTGCAG GGAATTCGGC ACGAGGAGGA GGCCGTCAGC	60
	TEGCAGGAGC GCAGGATGGC AGCTGYTCCC CCGGGTTGCA CCCCCCAGY TCTGCTGGAC	120
35	ATAAGYTGGT TAACAGAGAG CCTGGGAGCT GGGCAGCCTG TACCTGTGGA GTGCCGGCAC	180
	CGCCTGGAGG TGGCTGGGCC AAGGAAGGGG CCTCTGAGCC CAGCATGGAT GCCTGCCTAT	240
40	GCCTGCCAGC GCCCTACGCC CCTCACACAC CACAACACTG GCCTMTCCGA GCTGCTGGAG	300
-10	CATGGAGTGT GTGAGGAGGT GGAGAGAGTT CGGCGCTCAG AGAGGTACCA GACCATGAAG	360
	GTGCGCAGGG CAGGGCTCGG ACCTACCCCA GGAATGTCCT GCCCTGGGAA TGACAACACA	420
45	GTCCACACCA TGCACGGGA GGCAAACAGG GGCAGCTGAC CCAGCCCAGG GGTCAGANGA	480
	GGTCTTGCCG AGGAAGTGGC AGCTAAGCTG ATACCTGATA TGCACWAGKC AGCCARGYGG	5 4 0
50	AGACAGGCAA GGAAGAAGCT TGTTTTGAGG ACAGAATTTT CTAGATCACT CAGCACCATC	600
50	TESCHTTTES GECTTTTET TITATTTTST TITTGAGACG GEGTCTCGCT CTGTCGCCCA	660
	N	661

55

(2) INFORMATION FOR SEQ ID NO: 17:

60 (i) SEQUENCE CHARACTERISTICS:

WO 98/54963

60

540

600

275

5	(A) LENGTH: 553 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	·
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
	GGCACAGGGC TATTTGCCCC TCTCTCCACA TGACAGAACT GCTCTAAGTT TCTTTGCTGC	60
10	TCTTCTCAGC TGTCAGACGG CTTGCTGCTT GTTTTCCACA CCACCATGTC TATTCTTTGC	120
	TGTCCTTWAC TCTGCCTGTT TTTTTCCTTT TGTATTTCTT CTGGCTCTTG TCCCTTTTCC	180
1.5	CACGTGTCWC AGCTTTCCTT TATTGCCACT TTCAGTCAGA GCAGTCCTGT GCTTCTGGTG	240
15	CCGGCATACA ATACTTACTT GAGTTTCTTG GCTTTTCTTG ACTGTGCATC TCTTACTTCA	300
	ACATAGGAAT AGCCTGTCAT AGAATTTCTC CAGTTCCAGG GCTCAAGAGG GAGAGTGCCA	360
20	GAAAATTGAG ACTGTTTTCC CTGTCTTGGA TTGAATTCAT AAAGCAAAAC CAGTGTTTGT	420
	GTGAGGGTTT GCTGTGTCAT GCCTATAGGT TGTTTGGGTG CAAACCTATA GAATCCAGCC	480
	TGCGAAAAGA AAGRAACCAG AGAATANCAG CATCAGAACA ATGCTTGACA TCATTTCTCA	540
25	ATCAAGCAGT CCA	553
30 35	(2) INFORMATION FOR SEQ ID NO: 18: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 869 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
40	GGCACGAGCT GCCAACACTG AGGTCTTCGT GGCTTCTCAC ATCTAGATGT ATCCCTCTCA	60
	AATCTATCCT CTATCCAGGC ACCAGATTGA GGTATCTAAA ATGTCAACTT TCCAGTTACT	120
45	CCTTCTTATA CTAGCCCAAT CAACTTACAA GATAAAGTCC AAGCCCCTTC ATATGACAAA	180
	CCACACCCTG CTTAACTCTC CAGGTTTGAA TCCTTCATCT CCTACTTTAA ACTTTAAAAC	240
50	CCAGCAGCAC GAAAGTGTCT CCTATGCATG TIGCCATATG CGTTCTCTCC ATCATGCATT	300
50	TOCCTGASCA AGATGTCTTG AGTTAACATC TTATTCTTTA AGACTCATTG TGGTGGTAGA	360
	CAGCCTTTAA TAACGGATCC TIGGCCAGGC ACAGTGACTC ACACCTGTAA TCCCAGAACT	420
55	TTGAAAGGCC AAAGAAGGAA GAAAGCTTGA GGCCAGTAGT TTGAGACCAG CCTGGGAAAC	480

AGAGAGATAT CCCATCTGTA CCAAAAATTT AAAAAAATAT TAGCAGGGAG TAGTGGCATG

CACAAGTGGT CCCAGCTCCA TGGGAGASTG AGGTAGGAAC ATCACTTGAG CCCAGGAAGT

•	CAAGGCTGCA GTGAACCATG ATCAGAACAT TGCANTCCAG CTTGGGTAAC AGAGTGAGAC	660
	CTTAGGTCAG AAAAATGAAT AAATAAGCAT AAAATTTTAA AAACTTAGCC AGGCATGGTG	720
5	GCACACATCT GTGGTCCCTG CTACTTAGGA GGCTGAGGTG AGAGGATCCT TGAGCCCAGG	780
	AGGTCAACAC TACAGTGAGC TATGATTGTG CCACTAAACT CCAACCTGGG TGAAAAAAGCA	840
10	AAACCCTGCC AAAAAAAAAA AAAAAAACT	· 869
	(2) INFORMATION FOR SEQ ID NO: 19:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 959 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
25	GGCGAGCCGA GATCGTGCCA TTGCACTCCA GCCTGGGCAA CAAGAGTGAA ACTCTGTCTC	60
25	AAAAAAAAA AATTATAATA CTATATGCCA TAAAATGACA TTTCATATTT AAAGAGTTTT	120
	TTAAAACTCT TGTATTCACA TGCCATAATT TGAAACCCTA TTTCACTGAA TGAGAATGGT	180
30	ATCTGTTGTC CTCATTTTTT CATTTTTATC CTTAACAATT TCCACCACAG CCAGTGCATA	240
	TAATGGCAAT GACACCCAGG GATGGAATGA TAAGTTCCAT CRCMGCTCAG TCAAGACGCA	300
25	GACTTGATGT GGCCCCAACA ACAGTCAATA ATGGAGTCTC CAAAATAAAG CTCTATAGGA	360
35	AAGGTAAATA CCCGCTGCAC AAGAAACCAC AGCATCTAGG TTCTAACCCC ATCTCTATGA	420
	AGAGCTTGCT GGGAGAGTTT TGACATTWAA CAATCTGTCT GATKGCCAAT TTTYTTCTTC	480
40	TATAAAATGA TAATGITKGA YTCAAAGATC CAAAGTCAAT TCATGGTCTA AAACTTAATG	540
	ATTTTTTAG GTTTTGKGAC ATTTCACTGT ACACTGTAGT AATTTATATC TTATTTTCCC	600
45	ACTAATTTAG AAAAATATYT AAATGATCCT TAATTGGCAA TGGGTCCTAA GAATTTTGTT	660
45	TTAAATCCCT GTTACCCAAA AGAGCCCTTT TTTGTATCTC GCAGTAGTTA CAAGGATCTT	720
	тставатстт аварававая аварававая сваясьная сваясьная австсяссс	780
50	GGCGTGGTGG CTCATGCCTG TAATCCCAGC ACTTTGGGAC CAAGGTGGAC AGATCACGAG	840
	GTCAGGAGAT GGAGACCATC CCGGCCAACA TGGAGAAACC CTGTCTCTAC TAAAAAAAAA	900
	ACANTARA ACANTARA COCCOCCIDA CONCENTRADA ACANTARA	959

⁽²⁾ INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1446 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

10	CGGGGCAGGG CTGTGTGGCA CCGCCAGGGA GCGGGCCCCAC CTGAGTCACT TTATTGGGTT	. 60
10	CAGTCAACAC TITICTIGCTC CCTGTTTTCT CTTCTGTGGG ATGATCTCAG ATGCAGGGGC	120
	TGGTTTTGGG GTTTTCCTGC TTGTGCCAAG GGCTGGACAC TGCTGGGGGG CTGGAAAGCC	180
15	CCTCCCTTCC TGTCCTTCTG TGGCCTCCAT CCCCTCATGG GTGCTGCCAT CCTTCCTGGA	240
	GAGAGGGAGG TGAAAGCTGG TGTGAGCCCA GTGGGTTCCC GCCCACTCAC CCAGGAGCTG	300
20	GCTGGGCCAG GACCGGGAGA GGGAGCACTG CTGCCCTCCT GGCCCTGCTC CTTCCGCAGT	360
20	TAGGGGTGGA CCGAGCCTCG CTTTCCCCAC TGTTCTGGAG GGAAGGGGAA GGAGGGGGTC	420
	TTCAGGCTGG AGCCAGGCTG GGGGTGCTGG GTGGAGAGAT GAGATTTAGG GGGTGCCTCA	480
25	TGGGGTGGGC AGGCCTGGGG TGAAATRAGA AAGGCCCAGA ACGTGCAGGT CTGCGGAGGG	540
	GAAGTGTCCT GAGTGAAGGA GGGGACCCCC ATCCTGGGGG ATGCTGGGAG TGAGTGAGTG	600
30	AGATGCTGA GTGAGGGTTA TGGGGAGCCT GAGGTTTTAT GGGCCTGTGT ATCCCCTTCT	660
	CCCGGCCCCA GCCTGCCTCC CTCCTGCCCG CCTGGCCCAC AGGTCTCCCT CTGGTCCCTG	720
	TCCCTCTGGT GGTTGGGGAT GGAGCGGCAG CAAGGGGTGT AATGGGGCTG GGTTCTGTCT	780
35	TCTACAGGCC ACCCCGAGGT CCTCAGTGGT TGCCTGGGGA GCCGGACGGG GCTCCTGAGG	840
	GGTACAGGTT GGGTGGGCCC TCCCTGAGGG TCTGGGGTCA GGCTTTGGCT CTGCTGCCTC	900
40	TCAGTCACCA AGTCACCTCC CTCTGAAAAT CCAGTCCCTT CTTTGGATGT CCTTGTGAGT	960
	CACTCTGGGC CTGGCTGTCG TCCCTCCTCA GCTTCTTGTT CCTGGGACAA GGGTCAAGCC	1020
	AGGATGGGCC CAGGCCTGGG ATCCCCCACC CCAGGACCCC CAGGCCCCCT CCCCTGCTGC	1080
45	TTTGCGGGGG GCAGGGCAGA AATGGACTCC TTTTGGGTCC CCGAGGTGGG GTCCCCTCCC	1140
	AGCCCTGCAT CCTCCGTGCC STAGACCTGC TCCCCAGAGG AGGGGCCTTG ACCCACAGGA	1200
50	COTOTOGTOG COCCTOGCAC TCAGGGACCC CCAGCTGCCC CAGCCCTGGT CTCTGGCGCA	1260
	TCTCTTCCCT CTTGTCCCGA AGATCTGCGC CTCTAGTGCC TTTTGAGGGG TTCCCATCAT	1320
	CCCTCCCTGA TATTGTATTG AAAATATTAT GCACACTGTT CATGCTTCTA CTAATCAATA	1380
55	AACGCTTTAT TTAAAGCCAA AAAAAAAAAA AAAAAACTCG AGGGGGGGCC CGTACCCAAT	1440
	TCGCCA	1446

(2) INFORMATION FOR SEQ ID NO:	21	NO:	ID	SEO	FOR	INFORMATION	121
--------------------------------	----	-----	----	-----	-----	-------------	-----

60 атслассада алалалала алалалатти с

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1471 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	CAAAAAATAA TAATGATAAT TTAAAATAAA TAAGTAACTA ATAAAAAGAT TTTATATCCC	60
	AGTOTTATGA TGTTGGTTGG CAAGGOTAGA TAAAAAGATG TTAGAATGAA AGAACATATT	120
15	TTTAGTGATA TGTAAATGAA GGATTCTACA ATAGTCATAT ATTTTTATAT GAATGAATGT	180
	TGGGTTGGGC TGGAGAGGTA TGTGTGTGTA AATATAAAGG TCTCACATTC AGAGTATAGC	240
20	TCTGAAATAA TGGAACTCAT GTCTACAATT CAACATGCAT CTGTATAGTT ACATCTCATG	300
	TAAATATACA CAGACATATT TTGCAGCCAG TAATTGACAG TTAATGTCCA AAACAGGTGA	360
05	TTGATAGGTA ACAGAAATTA GATAACCACC AATTTTGCCC AAGAGAAAGA CTAGAAGGAC	420
25	TAAAAGCAGT TGAATGTATG GTACTGACAT TGTCATAAGC AGTCTGATAA CCAGTTTATT	480
	GAAACGTGTG CATTAACAGA GAATTTAATT TTAAACCCAT AATTTCTCCT ATCCATTAAA	540
30	ATATTATAAT TGTTAGTAGT ATGAAACCAA CAGGAAATGT TTTTTAATCA TTTAGTGAGG	600
	TGATTCATTT GTTTCATGGG CAAACACTAT CCAGGAAAAG CCTTGCTTGC CTGTTTCCCA	660
25	AAGAGCTCTA AGAAATAGAA TCAAGTGTAA AATGGTTCAG ACCATTCAGG ATTTCTTGTC	720
35	ACTOTTOTCA ACCOCGATOT TOOTGTTATT ACTGATGTTT GAAACCCTGT CATTAGCCCC	780
	GGCCTGGTTA AAGCCCCTCA GAGTCACCTC TCATTCATAG CAATAGAATT CAACCCCAAG	840
40	TOGTTGATGG TGTCCCCAGC ACAGCCGAGA GACCTGATCT CTGGATTCAG TGCTTTTAGC	900
	TCTTCGAGTT TACCCTAAGA TACCTTCGGG CAATATTTTT AACCAACCCA AAAGCTCTTC	960
4 ~	AGGTCATTTC TGAAGAGGAC AAGGTGAATC TTGGCTTGGA ACACCATTTT TGGGCTCTTG	1020
45	CTACTGAATG AATCAGAAAG GAATTTITTC TGAAGAGCAT TAGAAAGTAA AGGAGATGTT	1080
	AAAATAAGIT CITGAAGTAT GITTTATATT TATCTAAAAC ACTGATTITA AAAGITTACA	1140
50	TTCAAATGTG TATTCAAAAG AAGTACTGAT TTGTAATTAT TATAGTTTGT GTGTATCATC	1200
	CCCTTTTAAC CGTGCCTAAC AACTGTACTT AAATTTTGTT TTCCTAGTGT AACAAATGTT	1260
	TCCCATAAGA TTTTCTAGAG CCAAATAATG GGAGTGAAAA ATTCCTTAAG TGTTATATAA	1320
55	GAAAATATAT TAGAAAATCA GCTTTGGATT ATACGATTTC TAAAATATAC TAATACAGAA	1380
	TCCTCAGTAA TATGITTIGA ATTGGATTIT TTCTCAGAAC TGTTACATAA TAAATAATAC	1440

5	121	INFORMATION	FOR	SEO	מד	NO:	22:
)	1/1	INFORMATION	FUR	SEU		IVO.	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1402 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

	(112)	
15	AGGGACGTCT TGCCTGAGGA GATGCCCATT TCTGTCCTGG RTTACCCTCA CTGCGTGGTG	60
	CATGAGCTGC CAGAGCTGAC GGCGGAGAGT TTGGAAGCAG GTGACAGTAA CCAATTTTGC	120
20	TOGAGGAACC TOTTITOTTG TATCAATOTG CTTCGGATCT TGAACAAGCT GACAAAGTGG	180
20	AAGCATTCAA GGACAATGAT GCTGGTGGTG TTCAAGTCAG CCCCCATCTT GAAGCGGGCC	240
	CTAAAGGTGA AACAAGCCAT GATGCAGCTC TATGTGCTGA AGCTGCTCAA GGTACAGACC	300
25	AAATACTTGG GGCGGCAGTG GCGAAAGAGC AACATGAAGA CCATGTCTGC CATCTACCAG	360
	AAGGTGCGGC ATCGGCTGAA CGACGACTGG GCATACGGCA ATGATCTTGA TGCCCGGCCT	420
30	TGGGACTTCC AGGCAGAGGA GTGTGCCCTT CGTGCCAACA TTGAACGCTT CAACGCCCGG	480
30	COCTATGACC GGGCCCACAG CAACCCTGAC TTCCTGCCAG TGGACAACTG CCTGCAGAGT	540
	GTCCTGGGCC AACGGGTGGA CCTCCCTGAG GACTTTCAGA TGAACTATGA CCTCTGGTTA	600
35	GAAAGGGAGG TCTTCTCCAA GCCCATTTCC TGGGAAGAGC TGCTGCAGTG AGGCTGTTGG	660
	TTAGGGGACT GAAATGGAGA GAAAAGATGA TCTGAAGGTA CCTGTGGGAC TGTCCTAGTT	720
40	CATTGCTGCA GTGCTCCCAT CCCCCACCAG GTGGCAGCAC AGCCCCACTG TGTCTTCCGC	780
40	AGTETOTECT GGGCTTGGGT GAGCCCAGCT TGACCTCCCC TTGGTTCCCA GGGTCCTGCT	840
	CCGAAGCAGT CATCTCTGCC TGAGATCCAT TCTTCCTTTA MTTCCCCCAM CCTCCTCTCT	900
45	TGGATATGGT TGGTTTTGGC TCATTTCACA ATCAGCCCAA GGYTGGGAAA GCTGGAATGG	960
	GATGGGAACC CCTCCGCCGT GCATCTRAAT TTCAGGGGTC ATGCTGATGC CTCTCGAGAC	1020
50	ATACAAATCC TTGCCTTTGT CAGCTTGCAA AGGAGGAGAG TTTAGGATTA GGGCCAGGGC	1080
50	CAGAAAGTCG GTATCTTGGT TGTGCTCTGG GGTGGGGGTG GGGTGTTTCT GATGTTATTC	1140
	CAGCCTCCTG CTACATTATA TCCAGAAGTA ATTGCGGAGG CTCCTTCAGC TGCCTCAGCA	1200
55	CTTTGATTTT GGACAGGGAC AAGGTAGGAA GAGAAGCTTC CCTTAACCAG AGGGGCCATT	1260
	TTTCCTTTTG GCTTTCGAGG GCCTGTAAAT ATCTATATAT AATTCTGTGT GTATTCTGTG	1320
60	TCATGTTGGG GTTTTTAATG TGATTGTGTA TTCTGTTTAC ATTAAAAAGA AGCAAAAATA	1380

280

АТАЛАЛАЛА АЛАЛАЛАЛА СТ	1402
ATAAAAAAA AAAAAAAAA CI	=

(2) INFORMATION FOR SEQ ID NO: 23:

5

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1047 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

15 GGCACAGGGG ACTACAGGCA CCCACGACCA TACCCAGCTA ATTTTTGTAT TTTTTTGTAG 60 AGATGGGGTT TCACGATGTC GCCCAGGCTG GTCTTGAACT CCTGGGCTTG AGCGATCTTC 120 CCATCTTTCC ATCTTGGCCT CCTAAAGTGC TGGGACTGCA GGCATGAGCC ACCATGCCCA 180 20 GCCAAGATTC TTATTGATTA CCATGTTGCT TCAAGAAGCC AAGCCAGTTT CCAATATTCC 240 CCATTTCCTG GAGTCTTGGT ACTTTGGGTA GAAGCAACTG GTAAATTGTT AATTGGAACA 300 25 NTTGGTGGTG TAGATAACCA CGTATGGCCA AACCTAGAGC ATCTAGGCTC ACAATTACTA TCCTGACTTG ATAACAAGTG TTCTGATATT AACCTGAAAA TGGGAATAAT GCCAAATCTG 420 TGTAACTTAA CATCTATATA CACAGTGGGG AGAACTGAAG TTATTAAACC TGGAATCTCT 30 GTGATCAAGG CTAACAGTAG TTATCTAAGA AGCAAAGGAC CTACAATTCT TAGACTTGGA 540 GTCATATTCT TTAAGGACGT GTTCTGAAAC TATATCAAGC ATCTGGTTTC CACGTATTTC 600 35 TCCCTCAGAA ATTATGAAGT ACAAGTAAAA ATGAAGGTAC AGGGTAAGAC ACATGCTGCT 660 TTCTTGCTCT TGAGTGGAGA CAGTTTTCCA GCCATCTTAA CCCCTTWACA CAAAACAATT 720 780 TGTGTTTTAT AGCAAATAAG TGACTCAACA TAATTTCAAT ATGATGTTTA TCCACCAGTA 40 CTTTCCTTTC AGCTTCTAGT CCCATAARTG GTTTGTGAAG TCATCGGTTA CATTAGCCAA 840 GATAGGCCTA GACTTGAAGT CTAGAATGTT TTTCCCACTA TATGCCAAAG TAGAATGTGG 900 45 GTATCTCAGG GTCATTTTTG TTGTTCAATT TCCCACCTGT ACAGTTGTTA TGATTCACTT 960 1020 TCCTTATGTG TCTAATAAAT CTTGTTCCAT GAAATGATCA AAAAAAAAA AAAAAAAACT 1047 50 CGAGGGGGG CCCGGTACCC AAATCGC

55 (2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 990 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

WO 98/54963

281

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

5	TIGGAAAGGG TCTAGCTCTT TCTCATTCAC CAACTATATT AGAAGCACTT GAGGGAAATT	60
	TACCACTCCA AATCCAAAGC AATGAACAGT CTTTTCTGGA TGATTTTATT GCCTGTGTCC	120
10	CAGGATCAAG TOGTOGAAGG CTTGCAAGGT GGCTTCAGCC AGATTCATAT GCGGATCCTC	180
10	AGAAAACATC TTTGATCCTG GAATAAGGAT GATATTCGTT GTGGTTGGCC TACCACCATA	240
	ACTGTTCAAA CAAAAGACCA GTATGGGGAT GTGGTACATG TTCCCAATAT GAAGGTAATT	300
15	ATAACTGGAT TAAATTAGCA GACATCTATA TACTGGCTGC AATGACTGAT AAAATTTTAG	360
	AAATGCCAAG TGCTGAGRGT CCATTTGTTC TACCCTCTTT ATATAAAGGG TGATGCTGAA	420
20	AGITTGTTTA AATGACTTGT TTATATTAAT TAGTCCCCAA GTGTCCAAGT TACACCTGTT	480
20	TTTTTTGTGA GTTTGTTCTT TACATTTTGC TACCTGTTAC GGGGACTCAA AGGAGGGATA	540
	AGAAAGTATC CATCTAAAGA GTGCTAGACA CATACAGTGA AGCCCCTCAA TATGTATTGA	600
25	TTGAATAAAT GCATGAAAGA ATACATTTTT AAATTTTGTG TATAGTTTTG AAAGACTCAA	660
	GTACGITCTG TGTTTGGTAT TACTGAAACC ACATTTTAAA AATAACACTC ATTAAGTTAG	720
20	AAATATATGA GTTTAGATTG TAAAAGAATG AGGAATTGAA ATAGTTGTAT ACCATATTGA	780
30	TGAATATAGA GTTTTTAGGA TACCTCTTAC CTGAAATATT AATAATAATG TTTNCAGAGC	840
	ATATTATACA TAATTATTIG TGATTTAATC TGTTAATATG AATATCTCAT TTAAAACTTT	900
35	TATTTCTGAA AAAATTATAT TGAATAAAAT TTTATATAGG CAGTCCCCAG CCCTTTCCTC	960
	CTTCAAAGTT GTCTTATAGA GTGATTGGTT	990

40

45

55

60

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1208 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

TAATCGCTAC TATAGGGAAA GCTGGTCGCT GCAGGTACCG GTCCGGAATT CCGGGTCGAC 60

CCACGCGTCC GAGCGAAATG GCGCCTCCGG CCCCCGGCCC GGCCTCCGGC GGCTCCGGGG 120

AGGTAGACGA GCTGTTCGAC GTAAAGAACG CCTTCTACAT CGGCAGCTAC CAGCAGTGCA 180

TAAACGAGGC GCASGGGTGA AGCTRTCAAG CCCAGAGAGA GACGTGGAGA GGGACGTCTT 240

CCTGTATAGA GCGTACCTGG CGCAGAGGAA GTTCGGTGTG GTCCTGGATG AGATCAAGCC 300

282

•	CTCCTCGGCC CCTGAGCTCC AGGCCGTGCG CATGTTTGCT GACTACCTCG CCCACGAGAG	360
_	TCGGAGGGAC AGCATCGTGG CCGAGCTGGA CCGAGAGATG AGCAGGAGCK TGGACGTGAC	420
5	CAACACCACC TICCTGCTCA TGGCCGCCTC CATCTATCTC CACGACCAGA ACCCGGATGC	480
	CGCCCTGCGT GCGCTGCACC AGGGGGACAG CCTGGAGTGC ACAGCCATGA CAGTGCAGAT	540
10	CCTGCTGAAG CTGGACCGCC TGGACCTCGC CCGGAAGGAG CTGAAGAGAA TGCAGGACCT	600
	GGACGAGGAT GCCACCCTCA CCCAGCTCGC CACTGCCTGG GTCAGCCTGG CCACGGGTGG	660
16	TGAGAAGCTG CAGGATGCCT ACTACATCTT CCAGGAGATG GCTGACAAGT GCTCGCCCAC	720
15	CCTGCTGCTG CTCAATGGGC AGGCGGCCTG CCACATGGCC CAGGGCCGCT GGGAGGCCGC	780
	TGAGGGCCTG CTGCAGGAGG CGCTAGACAA GGATAGTGGC TACCCRGAGA CGCTGGTCAA	840
20	CCTCATCGTC CTGTCCCAGC ACCTKGGCAA GCCCCCTGAG GTGACAAACC GATACCTGTC	900
	CCAGCTGAAG GATGCCCACA GGTCCCATCC CTTCATCAAG GAGTACCAGG CCAAGGAGAA	960
25	CGACTITGAC AGGCTGGTGC TACAGTACGC TCCCAGCGCT GAGGCTGGCC CAGAGCTGTC	1020
23	AGGACCATGA AGCCAGGACA GAGGCCAGGA GCCAGCCCTG CAGCCCTCCC CACCCGGCAT	1080
	CCACCTGCAT CCCTCTGGGG CAGGAGCCCA CCCCCAGCAC CCCCATCTGT TAATAAATAT	1140
30	CTCAACTCCA RGGTGTTCCA CCTGAAAAAA AAAAAAAAAA AAAAAAAAA AAAAAAAAA	1200
	ААААААА	1208
35		
	(2) INFORMATION FOR SEQ ID NO: 26:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1922 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
	GTGCTGCGCT ACTGAGCAGC GCCATGGAGG ACTCTGAAGC ACTGGGCTTC GAACACATGG	60
50	GCCTCGATCC CCGGCTCCTT CAGGCTGTCA CCGATCTGGG CTGGTCGCGA CCTACGCTGA	120
50	TCCAGGAGAA GGCCATCCCA CTGGCCCTAG AAGGGAAGGA CCTCCTGGCT CGGGCCCGCA	180
	CGGGCTCCGG GAAGACGGCC GCTTATGCTA TTCCGATGCT GCAGCTGTTG CTCCATAGGA	240
55	AGGCGACAGG TCCGGTGGTA GAACAGGCAG TGAGAGGCCT TGTTCTTGTT CCTACCAAGG	300
	ACCIDENCES OF ACCIDENC MICHAELTHY ACCIDENTED TACCIACITY GCTCGGGATG	360

TCCGAGTGGC CAATGTCTCA GCTGCTGAAG ACTCAGTCTC TCAGAGAGCT GTGCTGATGG

60

	AGAAGCCAGA TGTGGTAGTA GGGACCCCAT CTCGCATATT AAGCCACTTG CAGCAAGACA	480
	GCCTGAAACT TCGTGACTCC CTGGAGCTTT TGGTGGTGGA CGAAGCTGAC CTTCTTTTTT	540
5	CCTTTGGCTT TGAAGAAGAG CTCAAGAGTC TCCTCTGTCA CTTGCCCCGG ATTTACCAGG	600
	CTITITCTCAT GTCAGCTACT TTTAACGAGG ACGTACAAGC ACTCAAGGAG CTGATATTAC	660
10	ATAACCCGGT TACCCTTAAG TTACAGGAGT CCCAGCTGCC TGGGCCAGAC CAGTTACAGC	. 720
10	AGITTCAGGT GGTCTGTGAG ACTGAGGAAG ACAAATTCCT CCTGCTGTAT GCCCTGCTCA	780
	AGCTGTCATT GATTCGGGGC AAGTCTCTGC TCTTTGTCAA CACTCTAGAA CGGAGTTACC	840
15	GGCTACGCCT GTTCTTGGAA CAGTTCAGCA TCCCCACCTG TGTGCTCAAT GGAGAGCTTC	900
	CACTGCGCTC CAGGTGCCAC ATCATCTCAC AGTTCAACCA AGGCTTCTAC GACTGTGTCA	960
20	TAGCAACTGA TGCTGAAGTC CTGGGGGCCC CAGTCAAGGG CAAGCGTCGG GGCCGAGGGC	1020
20	CNAAAGGGGA CAAGGCCTCT GATCCGGAAG CAGGTGTGGC CCGGGGCATA GACTTCCACC	1080
	ATGTGTCTGC TGTGCTCAAC TTTGATCTTC CCCCAACCCC TGAGGCCTAC ATCCATCGAG	1140
25	CTGGCAGGAC AGCACGCGCT AACAACCCAG GCATAGTCTT AACCTTTGTG CTTCCCACGG	1200
	AGCAGTTCCA CTTAGGCAAG ATTGAGGAGC TTCTCAGTGG AGAGAACAGG GGCCCCATTC	1260
30	TECTCCCCTA CCAGTTCCGG ATGGAGGAGA TCGAGGGCTT CCGCTATCGC TGCAGGGATG	1320
30	CCATGCGCTC AGTGACTAAG CAGGCCATTC GGGAGGCAAG ATTGAAGGAG ATCAAGGAAG	1380
	AGCTTCTGCA TTCTGAGAAG CTTAAGACAT ACTTTGAAGA CAACCCTAGG GACCTCCAGC	1440
35	TECTECEGCA TGACCTACCT TTECACCCCE CAGTEGTGAA ECCCCACCTE GECCATETTC	1500
	CTGACTACCT GGTTCCTCCT GCTCTCCGTG GCCTGGTRCG CCCTCACAAG AAGCGGAAGA	1560
40	AGCTGTCTTC CTCTTGTAGG AAGGCCAAGA GAGCAAAGTC CCAGAACCCA CTGCGCAGCT	1620
40	TCAAGCACAA AGGAAAGAAA TTCAGACCCA CAGCCAAGCC CTCCTGAGGT TGTTGGGCCT	1680
	CTCTGGAGCT GAGCACATTG TGGAGCACAG GCTTACACCC TTCGTGGACA GGCGAGGCTC	1740
45	TOGTECTTAC TECACAGCCT GAACAGACAG TTCTGGGGCC GGCAGTGCTG GGCCCTTTAG	1800
	CTCCTTGGCA CTTCCAAGCT GGCATCTTGC CCCTTGACAA CAGAATAAAA ATTTTAGCTG	1860
50	CCCCAAAAAA AAAAAAAAAA AAAAAAACTC GAGGGGGGC CCGTACCCAA TTCGCCCTAT	1920
20	AA	1922

60

(2) INFORMATION FOR SEQ ID NO: 27:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1951 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

5 TOGTOCCCAG AGCGGGCTGA GCCCCAGGCG SAGGGTGGCG GGGGAGCCTG GGGGAGCCGC 60 CGCCACCTCC ACGGGCCTCT CTGAGCTCGG ACACCAGCGC CCTGTCCTAT GACTCTGTCA 120 AGTACACGCT GGTGGTAGAT GAGCATGCAC AGCTGGAGCT GGTGAGCCTG CGCCGTGCTT 180 10 CGGAGACTAC AGTGACGAGA GTGACTCTGC CACCGTCTAT GACAACTGTG CCTCCGTCTC 240 CTCGCCCTAT GAGTCGGCCA TCGGAGAGGA ATATGAGGAG GCCCCGCGGC CCCAGCCCCC 300 15 TGCCTGCCTC TCCGAGGAAC TCCACGCCTG ATGAACCCGA CGTCCATTTC TCCAAGAAAT 360 TCCTGAACGT YTTCATGAGT GGCCGCTCCC GCTCCTCCAG TGCTGAGTCC TTCGGGCTGT 420 TCTCCTGCAT CATCAACGGG GAGGAGCAGG AGCAGACCCA CCGGGCCATA TTCAGGTTTG 480 20 TGCCTCGACA CGAAGACGAA CTTGAGCTGG AAGTGGATGA CCCTCTGCTA GTGGAGCTCC 540 AGGCTGAAGA CTACTGGTAC GAGGCCTACA ACATGCGCAC TGGTGCCCGG GGTGTCTTTC 600 25 660 CTGCCTATTA CGCCATCGAG GTCACCAAGG AGCCCGAGCA CATGGCAGCC CTGGCCAAAA ACAGTGACTG GGTGGACCAG TTCCGGGTGA AGTTCCTGGG CTCAGTCCAG GTTCCCTATC 720 ACAAGGGCAA TGACGTCCTC TGTGCTGCTA TGCAAAAGAT TGCCACCACC CGCCGGCTCA 30 CCGTGCACTT TAACCCGCCC TCCAGCTGTG TCCTGGAGAT CAGCGTGCGG GGTGTGAAGA 840 TAGGCGTCAA GGCCGATGAC TCCCAGGAGG CCAAGGGGAA TAAATGTAGC CACTTTTTCC 900 35 AGITAAAAA CATCTCTTTC TGCGGATATC ATCCAAAGAA CAACAAGTAC TTTGGGTTCA 960 TCACCAAGCA CCCCGCCGAC CACCGGTTTG CCTGCCACGT CTTTGTGTCT GAAGACTCCA 1020 CCAAAGCCCT GGCAGAGTCC GTGGGGAGAG CATTCCAGCA GTTCTACAAG CAGTTTGTGG 1080 40 AGTACACCTG CCCCACAGAA GATATCTACC TGGAGTAGCT GTGCAGCCCC GCCCTCTGCG 1140 TCCCCCAGCC CTCAGGCCAG TGCCAGGACA GCTGGCTGCT GACAGGATGT GGCACTGCTT 1200 45 GAGGAGGGC ACCTGCCACC GCCAGAGGAC AAGGAAGTGG GGCGCTGGCC CAGGGTAGGG 1260 1320 GAGGGTGGGG CAATGGGGAG AGGCAAATGC AGTTTATTGT AATATATGGG ATTAGATTCA TCTATGGAGG GCAGAGTGGG CTGCCTGGGG ATTGGGAGGG ACAGGGCTTG GGGAGCAGGT 1380 50 CTCTGGCAGA GAAGGATGTC CGTTCCAGGA GCACACGGCC CTGCCCCATC CTGGGCCTTA 1440 CCTCCCCTGC CAGGGCTCGG GCGCTGTGGC TCCTGCCTTG ATGAAGCCCG TGTCCTGCCT 1500 . 55 1560 TGATGAAGCC TGTGCCACCT GCAAGTGCCC GCCCTGCCCC TGCCCCAACC CCCACCGAAG AGCCCTGAGC TCAGGCTGAG CCCAGCCACC TCCCAAGGAC TTTCCAGTGA GGAAATGGCA 1620 1680 ACACGTGGAG GTGAAGTCCC TGTTCTCAGC TCCGTCATCT GCGGGGCTTC TGGGTGGCTC 60

285

•	CTGCCACTGA	CCTCACCGGC	ATGCTGGCCT	GTGGCAGGCC	TAGGACCTCA	GGCGGGGAGG	1740
_	AGGAGCTGCC	GCAAGGCCCT	GTCCCAGCAG	AAGAGGGAGG	CTTCCTGACT	GACACAGGCC	1800
5	AGCCCCATCT	TOGTCCTGTC	ACCCTGGCCC	CAACTATTAA	AGTGCCATTT	CCTGTCAAAA	1860
	AAAAAAAA	AAAATCGGGG	GGGGCCCGGA	ANCCAATTTC	CCCCAAAAAG	GGGGGTTATA .	1920
10	AAAATTCCCN	GGCNGTGTTT	TTAAAAATTC	G			1951

15 (2) INFORMATION FOR SEQ ID NO: 28:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3989 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

GGCACAGGCC GCAGGGNACC TATGGGCGCA TATAGGTTGT AATGAAACTG TAGTCTCAGT 60 25 120 TOGAAGCCTA GACATGAAAT GOGTCAGTGA GCAAGGCTCT ATTCCTAGTC TCCAGCCATG CCTGTGGAAC CTGARCCCRC TCTCAGCACA TTGGACCCAG GCAGATGYAA AAAATTCACA 180 30 GAACTATGAT TTGGACTCAA GGGTTTGTAG ATTTCCTCCT TCATTCTAAT TTCAGTGTCT 240 AAAATTCTTG CATCCRTGAA CGAGCTGGGC ATTTGATGAG ACAGGGCYGA ATACTGCAGT 300 TTTCCTCCTA GAAATCATCT GGGGCATTTT CTTTGAACTG ATGGGAACAA TAAGGCATAA 360 35 CTGTTTGCAC AAACTTGGGA TAARTGATTT TGGGATAACG ATCTACCAGA ATGGGGATAT 420 TTCACCCTTG GTTCTGAGAT GCAAACCAAA GAATATCATG ACCAGCTTTC AGGCCTCCTG 480 40 AAGTATATCT CTCACATTGT CCTGTTCTCA TGCTGAGGAG CCTGAGATCC CTGTGTGGGG 540 ATTAGACAGT GGACTGTTAT GGGTGTAGGT GAATTGGCTT ATTTTGTCTG TCCCTGTCTG 600 660 AATGTATTGC AGGAAYTAAA AAGGACCAAG AAGAGGAAGA AGACCAAGGC CCACCATGCC 45 CCAGGCTCAG CAGGGAGCTG CTGGAGGTAG TAGAGCCTGA AGTCTTGCAG GACTCACTGG 720 780 ATAGATGITA TICAACTCCT TCCAGTTGTC TIGAACAGCC TGACTCCTGC CAGCCCTATG 50 GAAGTTCCTT TTATGCATTG GAGGAAAAAC ATGTTGGCTT TTCTCTTGAC GTGGGAGAAA 840 900 GGGGAAGAAA AGAAGGGGAA GAAGATCAAA ACCCACCATG CCCCAGGCTC AGCAGGGAGC 960 55 TGCTGGATGA GAAAGRGCCT GAAGTCTTGC AGGACTCACT GGATAGATGT TATTCAACTC 1020 CTICAGITGT GTGAACIGT GTGACTCATG CCAGCCCTAC AGAAGTGCCT TTTATGTATT 1080 60

	GGAGCAACAG CATGITGGCT TGGCTGTTGA CATGGATGAA ATTGAAAAGT ACCAAGAAGT	1140
	GGAAGAAGAC CAAGACCCAT CATGCCCCAG GCTCAGCAGG GAGCTGCTGG ATGAGAAAGA	1200
5	GCCTGAAGTC TTGCAGGACT CACTGGATAG ATGTTATTCG ACTCCTTCAG GTTATCTTGA	1260
	ACTGCCTGAC TTAGGCCAGC CCTACAGCAG TGCKGTTTAC TCATTGGAGG AMCAKTACCT	1320
10	TGGCTTKKCT CTTGACGTGG ASAAATTGAA AAGAAGGGGA AGGGGAARAA AAGAAGGGGA .	1380
	AGAAGATCAA AGAAGGAAAG AAGAAGGGGA AGAAAAGAAG GGGAAGAA	1440
	CCATGCCCCA GGCTCAGCAG GGAGCTGCTG GATGAGAAAG GGCCTGAAGT CTTGCAGGAC	1500
15	TCACTGGATA GATGITATIC AACTCCTTCA GGTTGTCTTG AACTGACTGA CTCATGCCAG	1560
	CCCTACAGAA GTGCCTTTTA YRTATTGGAG CAACAGYGTG TTGGCTTGGC TGTTGACATG	1620
20	GATGAAATTG AAAAGTACCA AGAAGTGGAA GAAGACCAAG ACCCATCATG CCCCAGGCTC	1680
	AGCAGGGAGC TGCTGGATGA GAAAGAGCCT GAAGTCTTGC AGGACTCACT GGATAGATGT	1740
	TATTCGACTC CTTCAGGITA TCTTGAACTG CCTGACTTAG GCCAGCCCTA CAGCAGTGCT	1800
25	GTTTACTCAT TGGAGGAACA GTACCTTGGC TTGGCTCTTG ACGTGGACAG AATTAAAAAG	1860
	GACCAAGAAG AGGAAGAAGA CCAAGGCCCA CCATGCCCCA GGCTCAGCAG GGAGCTGCTG	1920
30	GAGGTAGTAG AGCCTGAAGT CTTGCAGGAC TCACTGGATA GATGTTATTC AACTCCTTCC	1980
	AGTTGTCTTG AACAGCCTGA CTCCTGCCAG CCCTATGGAA GTTCCTTTTA TGCATTGGAG	2040
	GAAAAACATG TTGGCTTTTC TCTTGACGTG GGAGAAATTG AAAAGAAGGG GAAGGGGAAG	2100
35	AAAAGAAGGG GAAGAAGATC AAMGAAGRAA AGAAGAAGGG GAAGAAAAGA AGGGGAAGAA	2160
	GATCAAAACC CACCATGCCC CAGGCTCAAC GGCGTGCTGA TGGAAGTGGA AGAGCSTGAA	2220
40	GTCTTACAGG ACTCACTGGA TAGATGTTAT TCGACTCCGT CAATGTACTT TGAACTACCT	2280
	GACTCATTCC AGCACTACAG AAGTGTGTTT TACTCATTTG AGGAACAGCA CATCAGCTTC	2340
	GCCCTTTACG TGGACAATAG GTTTTTTACT TTGACGGTGA CAAGTCTCCA CCTGGTGTTC	2400
45	CAGATGGGAG TCATATTCCC ACAATAAGCA GCCCTTASTA AKCCGAGAGA TGTCATTCCT	2460
	GCAGGCAGGA CCTATAGGCA MGTGAAGATT TGAATGAAAG TACAGTTCCA TTTGGAAGCC	2520
50	CAGACATAGG ATGGGTCAGT GGGCATGGCT CTATTCCTAT TCTCAAACCA TGCCAGTGGC	2580
	AACCTGTGCT CAGTCTGAAG ACAATGGACC CACGTTAGGT GTGACACGTT CACATAACTG	2640
	TGCAGCACAT GCCGGGAGTG ATCAGTCRGA CATTITAATT TGAACCACGT ATCTCTGGGT	2700
55	AGCTACAAAA TTCCTCAGGG ATITCATTTT GCAGGCATGT CTCTGAGCTT CTATACCTGC	2760
	TCAAGGTCAK TGTCATCTTT GTGTTTAGCT CATCCAAAGG TGTTACCCTG GTTTCAATGA	2820
60	ACCTAACCTC ATTCTTTGTG TCTTCAGTGT TGGCTTGTTT TAGCTGATCC ATCTGTAACA	2880
JU		

PCT/US98/11422 WO 98/54963

287

2940

CAGGAGGGAT CCTTGGCTGA GGATTGTATT TCAGAACCAC CAACTGCTCT TGACAATTGT

	TAACCCCCTA GRCTCCTTTG GTTAGAGAAG CCACAGTCCT TCAGCCTCCA ATTGGTGTCA	3000
5	GTACTTAGGA AGACCACAGC TAGATGGACA AACAGCATTG GGAGGCCTTA GCCCTGCTCC	3060
	TCTCRATTCC ATCCTGTAGA GAACAGGAGT CAGGAGCCGC TGGCAGGAGA CAGCATGTCA	3120
	CCCAGGACTC TGCCGGTGCA GAATATGAAC AAYGCCATGT TCTTGCAGAA AACGCTTAGC .	3180
10	CTGAGTTTCA TAGGAGGTAA TCACCAGACA ACTGCAGAAT GTRGARCACT GAGCAGGACA	3240
	GCTGACCTGT CTCCTTCACA TAGTCCATRT CACCACAAAT CACACAACAA AAAGGAGARG	3300
15	AGATATTTIG GGTTCAAAAA AAGTAAAAAG ATAATGTAGC TGCATTTCTT TAGTTATTTT	3360
	GARCCCCAAA TATTTCCTCA TCTTTTTGTT GTTGTCATKG ATGGTGGTGA CATGGACTTG	3420
20	TTTATAGAGG ACAGGTCAGC TGTCTGGCTC AGTGATCTAC ATTCTGAAGT TGTCTGAAAA	3480
20	TGTCTTCATG ATTAAATTCA GCCTAAACGT TTTGCCGGGA ACACTGCAGA GACAATGCTG	3540
	TGAGTTTCCA ACCTYAGCCC ATCTGCGGGC AGAGAAGGTC TAGTTTGTCC ATCASCATTA	3600
25	TCATGATATC AGGACTGGTT ACTTGGTTAA GGAGGGGTCT AGGAGATCTG TCCCTTTTAG	3660
	AGACACCITA CITATAATGA AGTATITGGG AGGGIGGITT TCAAAATTAG AAATGTCCTG	3720
30	TATTCCRATG ATCATCCTGT AAACATTTTA TCATTTATTA ATCATCCCTG CCTGTGTCTA	3780
50	TTATTATATT CATATCTCTA CGCTGGAAAC TTTCTGCCTC AATGTTTACT GTGCCTTTGT	3840
	TTTTGCTAGT GTGTGTTGTT GAAAAAAAA ACATTCTCTG CCTGAGTTTT AATTTTTGTC	3900
35	CAAAGTTATT TTAATCTATA CAATTAAAAG CTTTTGCCTA TCAAAAAAAA AAAAAAAAAA	3960
	AAAAAAAAA AAAAAGCGGA CGCGTGGGC	3989
40		
,,	(2) INFORMATION FOR SEQ ID NO: 29:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 3735 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
50		60
	CTGCTGTTCG CTGGCTGGGC TCCGCAGCAG GCTTGGCCAG CSGCTGACGG GTCGGCGGGC	
55	GGGTTTGTGT GAACAGGCAC GCAGCTGCAG ATTTTATTCT GGTAGTGCAN CCCTCTCAAA	120
	GGTTGAAGGA ACTGATGTAA CAGGGATTGA AGAAGTAGTA ATTCCAAAAA AGAAAACTTG	180
	GGATAAAGTA GCCGTTCTTC AGGCACTTGC ATCCACAGTA AACAGGGATA CCACAGCTGT	240
60	GCCTTATGTG TITCAAGATG ATCCTTACCT TATGCCAGCA TCATCTTTGG AATCTCGTTC	300

	ATTTTTACTG GCAAAGAAAT CCGGGGAGAA TGTGGCCAAG TTTATTATTA ATTCATACCC	360
5	CARATATTTT CAGAAGGACA TAGCTGAACC TCATATACCG TGTTTAATGC CTGAGTACTT	420
	TGAACCTCAG ATCAAAGACA TAAGTGAAGC CGCCCTGAAG GAACGAATTG AGCTCAGAAA	480
	AGTCAAAGCC TCTGTGGACA TGTTTGATCA GCTTTTGCAA GCAGGAACCA CTGTGTCTCT	540
10	TGAAACAACA AATAGTCTCT TGGATTTWTT GTGTTACTAT GGTGACCAGG AGCCCTCAAC	600
	TGATTACCAT TTTCAACAAA CTGGACAGTC AGAAGCATTG GAAGAGGAAA ATGATGAGAC	660
1.5	ATCTAGGAGG AAAGCTGGTC ATCAGTTTGG AGTTACATGG CGAGCAAAAA ACAACGCTGA	720
15	GAGAATCITT TCTCTAATGC CAGAGAAAAA TGAACATTCC TATTGCACAA TGATCCGAGG	780
	AATGGTGAAG CACCGAGCTT ATGAGCAGGC ATTAAACTTG TACACTGAGT TACTAAACAA	840
20	CAGACTCCAT GCTGATGTAT ACACATTTAA TGCATTGATT GAAGCAACAG TATGTGCGAT	900
	AAATGAGAAA TTTGAGGAAA AATGGAGTAA AATACTGGAG CTGCTAAGAC ACATGGTTGC	960
25	ACAGAAGGTG AAACCAAATC TTCAGACTTT TAATACCATT CTGAAATGTC TCCGAAGATT	1020
25	TCATGTGTTT GCAAGATCGC CAGCCTTACA GGTTTTACGT GAAATGAAAG CCATTGGAAT	1080
	AGAACCCTCG CTTGCAACAT ATCACCATAT TATTCGCCTG TTTGATCAAC CTGGAGACCC	1140
30	TITAAAGAGA TCATCCTTCA TCATTTATGA TATAATGAAT GAATTAATGG GAAAGAGATT	1200
	TTCTCCAAAG GACCCGGATG ATGATAAGTT TTTTCAGTCA GCCATGAGCA TATGCTCATC	1260
35	TCTCAGAGAT CTAGAACTTG CCTACCAAGT ACATGGCCTT TTAAAAACCG GAGACAACTG	1320
33	GAAATTCATT GGACCTGATC AACATCGTAA TTTCTATTAT TCCAAGTTCT TCGATTTGAT	1380
	TIGICTAATG GAACAAATTG ATGTTACCTT GAAGTGGTAT GAGGACCTGA TACCTTCAGC	1440
40	CTACTTTCCC CACTCCCAAA CAATGATACA TCTTCTCCAA GCATTGGATG TGGCCAATCG	1500
	GCTAGAAGTG ATTCCTAAAA TTTGGAAAGA TAGTAAAGAA TATGGTCATA CTTTCCGCAG	1560
45	TGACCTGAGA GAAGAGATCC TGATGCTCAT GGCAAGGGAC AAGCACCCAC CAGAGCTTCA	1620
43	GGTGGCATTT GCTGACTGTG CTGCTGATAT CAAATCTGCG TATGAAAGCC AACCCATCAG	1680
	ACAGACTECT CAGGATTEGC CAGCCACCTC TCTCAACTET ATAGCTATCC TCTTTTTAAG	1740
50	GGCTGGGAGA ACTCAGGAAG CCTGGAAAAT GTTGGGGCTT TTCAGGAAGC ATAATAAGAT	1800
	TCCTAGAAGT GAGTTGCTGA ATGAGCTTAT GGACAGTGCA AAAGTGTCTA ACAGCCCTTC	1860
5.5	CCAGGCCATT GAAGTAGTAG AGCTGGCAAG TGCCTTCAGC TTACCTATTT GTGAGGGCCT	1920
55	CACCCAGAGA GTAATGAGTG ATTITGCAAT CAACCAGGAA CAAAAGGAAG CCCTAAGTAA	1980
	TCTAACTGCA TTGACCAGTG ACAGTGATAC TGACAGCAGC AGTGACAGCG ACAGTGACAC	2040
60	CAGTGAAGGC AAATGAAAGT GGAGATTCAG GAGCAGCAAT GGTCTCACCA TAGCTGCTGG	2100

•	AATCACACCT GAGAACTGAG ATATACCAAT ATTTAACATT GTTACAAAGA AGAAAAGATA	2160
5	CAGATTTGGT GAATTTGTTA CTGTGAGGTA CAGTCAGTAC ACAGCTGACT TATGTAGATT	2220
	TAAGCTGCTA ATATGCTACT TAACCATCTA TTAATGCACC ATTAAAGGCT TAGCATTTAA	2280
	GTAGCAACAT TGCGGTTTTC AGACACATGG TGAGGTCCAT GGCTCTTGTC ATCAGGATAA	2340
10	GCCTGCACAC CTAGAGTGTC GGTGAGCTGA CCTCACGATG CTGTCCTCGT GCGATTGCCC	2400
	TCTCCTGCTG CTGGACTTCT GCCTTTGTTG GCCTGATGTG CTGCTGTGAT GCTGGTCCTT	2460
15	CATCTTAGGT GTTCATGCAG TTCTAACACA GTTGGGGTTG GGTCAATAGT TTCCCAATTT	2520
15	CAGGATATTT CGATGTCAGA AATAACGCAT CTTAGGAATG ACTAAACAAG ATAATGGCAG	2580
	TTTAGGCTGC ACAACTGGTA AAATGACTGT AGATAAATGT TGTAATTAGT GTACACGTTT	2640
20	GTATTITIGT TAATATAGCC GCTGCCATAG TTTTCTAACT TGAACAGCCA TGAATGTTTC	2700
	ATGTCTCCCT TTTTTTTTTG TCTATAGCTG TTACCTATTT TAGTGGTTGA AATGAGAGCT	2760
25	AGTGATGACA GAAGGATGTG GAATGTCTTC TIGACATCAT TGTGTATTGC TGGTAATCAA	2820
23	GTTGGTAACG ACTACTTCTA GCAGCTCTTA CCACTATGAC TTAAGTGGTC CTGGAAGGCA	2880
	GTAAGTGGAG GTTTGCAGCA TTCCTGCCTT CATGAGGGCT TCTACCACTG ACCACTTTGC	2940
30	ACGTACCTGG CTCCCAGATT TACTTAGGTA CCCCACGAGT CGTCCACATA AGCAGCTTCA	3000
	TCTTTACCTT GCCAGAGTTG ACAATTATGG GATACTCTAG TCTACTTATA CTTGTGTTCC	3060
35	CATCTGTCTG CCATCCTCTG AAGGCCAGGA CCCAGTCATA CATCCTTAGA AACCAAAGTA	3120
33	TGGTTTTTGT TTTCTCTTGG AATGTCAGGT CTTAAGGCAT TTAATTGAGG GACAAAAAAA	3180
	AAAAAAAGCC GATATAGTAG CTAGCTACTT AAGCATCCAT GGGTATTGCT CCATATCAAA	3240
40	GCAGATTTGC AGGACAGAAA GAGTAAATTA GCCTTCAGTC TTGGTTTACA GCTTCCAAGG	3300
	AGAGCCTTGG CCACCTGAAA TGTTAACTCG GTCCCTTCCT GTCTCTAGTT CATCAGCACC	3360
15	TGCAGATGCC TGACTCTTGT TAGCCTTACT ATTCAATACA GTCCTTAGAT TCACGGTATG	3420
45	CCTCTTCCTA TCCAGGCACC TATTCTGAAT CACCATGTTG CTCTGCAGCT AGAGTTGATA	3480
	GGAGAAAATC CATTTGGGTA GATGGCCTAT GAATTTGTAG TAGACTTTCA AAATGAGTGA	3540
50	TITGITAGCT TOGTACTITT AAGTITGIGG TACAGATCCT CCAAACCCAT ACTCTGAGCA	3600
	ATTAACTGCC TIGAACATAG AGAAAATTAA GGCCTCACAG GATGAGTCTC CATTCTCTGT	3660
~ ~	ARATGCTTAT TITATCATAG TCTTTAGCCN CTACTATGAG TARAATGTTC TCTTCNGCCG	372
55	GGTGTGGTGA CTCAC	373

WO 98/54963

290

PCT/US98/11422

(2) INFORMATION FOR S	EQ ID	NO:	30:
-----------------------	-------	-----	-----

5

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1667 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

10 TAGTAATICA TITAACTCCT CTTACATGAG TAGCGACAAT GAGTCAGATA TCGAAGATGA 60 AGACTTAAAG TTAGAGCTGC GACGACTACG AGATAAACAT CTCAAAGAGA TTCAGGACCT 120 GCAGAGTCGC CAGAAGCATG AAATTGAATC TTTGTATACC AAACTGGGCA AGGTGCCCCC 180 15 TGCTGTTATT ATTCCCCCAG CTGCTCCCCT TTCAGGGAGA AGACGACGAC CCACTAAAAG CAAAGGCAGC AAATCTAGTC GAAGCAGTTC CTTGGGGAAT AAAAGCCCCC AGCTTTCAGG 300 20 TAACCTGTCT GGTCAGAGTG CAGCTTCAGT CTTGCACCCC CAGCAGACCC TCCACCCTCC TOGCAACATO CCAGAGTOCG GGCAGAATCA GCTGTTACAG CCCCTTAAGC CATCTCCCTC 420 CAGTGACAAC CTCTATTCAG CCTTCACCAG TGATGGTGCC ATTTCAGTAC CAAGCCTTTC 480 25 TGCTCCAGGT CAAGGAACCA GCAGCACAAA CACTGTTGGG GCAACAGTGA ACAGCCAAGC 540 CGCCCAAGCT CAGCCTCCTG CCATGACGTC CAGCAGGAAG GGCACATTCA CAGATGACTT 600 30 GCACAAGTTG GTAGACAATT GGGCCCGAGA TGCCATGAAT CTCTCAGGCA GGAGAGGAAG 660 CAAAGGGCAC ATGAATTATG AGGGCCCTGG AATGGCAAGG AAGTTCTCTG CACCTGGGCA 720 ACTGTGCATC TCCATGACCT CGAACCTGGG TGGCTCTGCC CCCATCTCTG CAGCATCAGC 780 35 TACCTCTCTA GGTCACTTCA CCAAGTCTAT GTGCCCCCCA CAGCAGTATG GCTTTCCAGC 840 TACCCCATTT GGCGCTCAAT GGAGTGGGAC GGGTGGCCCA GCACCACAGC CACTTGGCCA 900 40 GTTCCAACCT GTGGGAACTG CCTCCTTGCA GAATTTCAAC ATCAGCAATT TGCAGAAATC 960 CATCAGCAAC CCCCCAGGCT CCAACCTGCG GACCACTTAG ACCTAGAGAC ATTAACTGAA 1020 TAGATCTGGG GGCAGGAGAT GGAATGCTGA GGGGGTGGGT GGGGGTGGGA AGTAGCCTAT 1080 45 ATACTAACTA CTAGTGCTGC ATTTAACTGG TTATTTCTTG CCAGAGGGGA ATGTTTTTAA 1140 TACTGCATTG AGCCCTCAGA ATGGAGAGTC TCCCCCGCTC CAGTTATTGG AATGGGAGAG 1200 50 1260 GAAGGAAAGA ACAGCTTTTT TGTCAAGGGG CAGCTTCAGA CCATGCTTTC CTGTTTATCT ATACTCAGTA ATGAGGATGA GGGCTAGGAA AGTCTTGTTC ATAAGGAAGC TGGAGAACTC 1320 AATGTAAAAT CAAACCCATC TGTAATTTCG AGTGGTGGA GCTCTTGCTT TTGGTACATG 1380 55 CCCTGAATCC CTCACTCCCT CAAGAATCCG AACCACAGGA CAAAAACCAC CTACTGGGCT 1440 CTCTCCTACC CTGCCCTCCT CCCTTTTTTT TACCCCTCTC TTTTTTATTT TTTCTTTGCT 1500

291

	CTTTAGAACC	CAGTGAAAAA	TACCAGGGTA	CTGGGGTGCA	ACICTITCIT	ATGATAGGTC	1560
	ATTAGTGCTT	TAAGCAAAAG	ATATTAGCAG	CTTTGACTGC	AGCATTAGCA	ATTAGGRAAA	1620
5	AWAAAAAA	AAAACTCGAG	GGGGGGCCCG	GTTACCCAAT	TCGCCCT		1667

10 (2) INFORMATION FOR SEQ ID NO: 31:

15

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1408 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

20	ATTACACACC TGAGCACTGT GCCTGGCAAG ACCTGTCTTA ATAGATTAGA GAACCACTGA	60
	TAGATGGTCA GCTTTCTGTA GCAGTGAGAA CCCTACATTT CAAATGTGGA TAGCACCTTT	120
	GCGGGGAAAC ATCACTTGGC ACATCTGCAT TCTTTTTTGA CACAGGGTCT CACTCTGTTG	180
25	CCCAGGCTAG AGTGCATGGC ACGATCTTAG CTCACTGCAA CCTCCACCTC CCAAGTTCAA	240
	GCGATTCTTC TGCCTCAGCC TCCTGAGCAG CTGGGATCAC AGACATGCGC TACCATGCCC	300
30	AGCTAATTTT TTGTATTTTT TGTKTGTTTG TTTTTGTTTK TAAGTAGAGA CGGGCTTTCA	360
	CCACGTTGGS CAGGCAGGTC TCGAACTCCT GAMCTCAGGT GATCCACCCA CATCTGCGTT	420
	CCAATATCTT TCTCAACATA ATGATAGCCG TAATTAATAT TTTCCAGTAC ATTTTTATGC	480
35	CTTTACACAC GAGAGTGGTA GACAGACACA AACCCAGATC TGTCTGACTC CAAAGCCCGT	540
	TIGICATCAT TCCTTTTACG GTATCCTATA GIGGTATCCT TTACAGAAAG ACAGCTTTTA	600
40	CCCAACAAAG ACTTAACTTC CCAGGATGCC AGAAGGACAA AGCGGGATTG CTTTTAAGRA	660
	GRAAGTTATC AAGAMCTTAT TTTATAAATG AGATTAGATA GGGAAAGGCA ATTTATCTTT	720
	ATTAAAAACT GAAAAGGCCA GCATAGGGAA GGAGGTCCTT CGGTGGTCTT TTTCAGGGAA	780
45	ATACTICAGT TGCTTTTATT AGAAACAGAT AGTACCTAAG GTTTTGAGGT AGGWACAGCT	840
	TAAGGCATGC TAATGKTCAT GGGTCCTTCC ATAGTCATTT TKGTATTTTG GTTWACATTT	900
50	GAGCAATAGG CAGCCCTTCA CTGCTGCTGG AYTCATTCCT GCCAYTATTA CAGGTGACAG	960
	AGGAGACAGG AGGTATGTCT TTTCTATTTT TAWACATGCT TTATATTTAA CACAAGCTCT	1020
	TEGGTATCTT AGATAAACAG AAGTTGCCTA GCACTCCTTT TAGTGCATTG AACCCTTTAA	1080
55	CATTTAAGCA AAATAATAAA CAGTCTTTTG AGGTTCCTTA ACAATGAAAC GTGTTCGAGT	1140
	GSCAGCAGCG GAATCCATGC YTCTTCTCCT GGAGTGTGCA AKAGTCCGTG GTCCTGAGTA	1200
60	TCTCACACAG ATGTGGCATT TTATGTGTGA TGCTCTAATT AAGGCCATTG GTACAGAACC	126

WO 98/54963

292

AGATTCAGAC	GICCICICAG	AAATAATGCA	TTCTTTTGCA	AAGGTGAATA	TTTTTCTCTT	1320
aaaaaatatg	TATTAAGGTGG	TATGTTCATT	TATTAGTCTT	GCTAAAAAA	ААААААА	1380
ACTINGAGGG	SCCCICCICCI	ACCCAATT				1408
	aaaaaatatg	AAAAATATG TATAAGGTGG		AAAAATATG TATAAGGTGG TATGITCATT TATTAGTCTT	AAAAAATATG TATAAGGTGG TATGTTCATT TATTAGTCTT GCTAAAAAAA	AGATTCAGAC GTCCTCTCAG AAATAATGCA TTCTTTTGCA AAGGTGAATA TTTTTCTCTT AAAAAATATG TACAAGGTGG TACGTTCATT TATTAGTCTT GCTAAAAAAA AAAAAAAAAA

10

15

(2) INFORMATION FOR SEQ ID NO: 32:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2031 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

20

25

30

35

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

AGGATATGCA TGATTCTTAA CCAGGCTATA TGTTAAAAAA AAATTGGAAA ATGCAATACA 60 PTTTTTACTA TACAAACTAC AGAATGAGTA TGCAAGTTTT ATTTATCAAA ATGTAATGGA 120 TTTTTAAAGG CTGAGAAATT TICCTTATAC CTACCTTTTC AGTTATTTTA ATTATACCAA 180 ATTATCARCT AGRATAGCTT CATCCATATG ARATATARAR TGRAGAGACA CCTAGGCTCT 240 ATCAGGCTTA GGATTCTTTG AACTTATTTC CACTTTAATT TCTCAGTGGA AGTTAAGAGG 300 GGTGAGALAA CAAAGAAGGG GAAAAACTGA CAACTAACAA AACCAGCACC ACATCGCTAG 360 GTGGTGCTTA CTAATTACCT TCTCAGGATT TTCCTCAGAT TGAAAAGCTT ATGAGGATTT 420 CTTGGGASTC TTAATAACCT GCCTGTTAGT ACAGAGCTTT CCTGATGATA TTTACTCTTG 480 AGCACATGTG GTTGTAAAAC CTTAACTTTC TTTCTCCAGG AGGGTGGTGA TAGAAACAGA 540 TGGTAGTATT TATGAACTGA TGTTCTCGTG AAATGTTGAG GGTGGGGAGA AAAGACTTTA 600 40 AGGGAGGAGA GCCATCTATT TEGTTCCTAA AGCCACCTCT CAGCAGAATC GTCATGTTTT 660 TOTGATECAC CECTOTECTT CATECCCAAG ATGACTTECG AGGCAATOTO AGGAGCTETE 720 GACTTAACCR TTGCAAAGCA CACTGTCTTT CTCAGCGTTC TCTGCAAGTC AGTAGGTGTT 780 45 AGTATGGTTG CAAAGTTCAC TGTCTCAGCA AAGTTGAACT GGGCTACCTC TCTACAGCTG 840 TTTCCTCAGA GGGAAAAATC TTGAGACCAG ATGGTGGAGC TCTGGAGTCA GAGGAAATGG 900 50 GTGTCTTCAG CACAAAGCTG CTGCTTTTAC TTCAGCCACT TCTGACATTT TTACATACCG 960 AGCCTGAGAT TRTGTGATTA TCTCAAATCA AATCACTTTG ATGGAGATAA ATAATCAAAA 1020 CTGTTTTATA GTCATTGATT TGGTGAGAAC AGTAATGGAA AATGGTGTTG AAGGACTTCT 1080 55 CATTITITISGA SCITITCCTTC CAGAGTCCTG SCTGATTGGT GITCGCTGTT CATCTGAGCC 1140 CCCAAAAGCA TTATTACTGA TACTTGCACA CAGTCAAAAG CGCAGACTGG ATGGATGGTC 1200 60

WO 98/54963

293

	TTTTATAAGG CATTTAAGGG TACACTACTG TGTTTCACTG ACCATACATT TTTCTTAGCC	1260
	CCTCAAGTAA TATAGCACAG AGTTATGAAT GACAATTCCC CTAACCATTC CTCTTCATAT	1320
5	CTGCCTCTTC CCCTTACCAT CGTAATTCTC CAAACTGGTC ATAAAGGCAC TCTGTGAAGA	1380
	TATTGGGGAC TGACATCTTA AGCTCTCACC TGGCTGCAGT AGGAAAGGCC AAACTGACGA	1440
10	CAAAAAAAAA ATTCTTTATA AAGATGATAT GGTAACATGT ATCTTTGCCC TGGGTCTGGG	. 1500
10	TGGGTCCAGT CAGTCTCAGA TTTACAAGCA TTTAGGAGCC TAGGTAAAAG CTGCTAGTAT	1560
	TCTTTTAAAA GTTACATITA TGACTTGCAA TGATAGAAAA CTCCTTCCAA TTAAATGGCA	1620
15	TTTTATAATA TTATGTGTGT ACTTCACAGT GTTAAAAATA CCCTCATACG TTATTGCATT	1680
	TGATCTTCAC AGAAAGTGCA TTTTAACCAG TACTCTGGGT GCAATAAATA ATATGTAGAA	1740
20	ATTTAAGTCC TCCAATTCCA GCATATCCAG TGAGTTTTGA CAGTGTGTTT ATGTGGAATG	1800
20	TTTAAGGATA TACAATTGTA CTTTATATAA ATTGGTTCTT GTTCTTCTTA AATGIGACAT	1860
	GAAATAATTG TGCTGCTACA TTATACTGGA AATTAACAGG GGAAAAGGGA AGAGCTCTTG	1920
25	GCTCCCTTGA GGTTCTGCTA GTGGTGTTAG GAGTGGTTAC AACTGAGCTT TTAGTAACCA	1980
	TTTAACCGTA TGTAAACTTG GTTTCTAATT AAAAAAAAAT TTCTTTTTCC A	2031

30

35

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 33:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 971 base pairs (B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33: 40

CGCGTCGGAA CTCGGCCGCG GGACATCCAC GGGGCGCGAG TGACACGCGG GAGGGAGAGC	60
AGTGTTCTGC TGGAGCCGAT GCCAAAAACC ATGCATTTCT TATTCAGATT CATTGTTTTC	120
TTTTATCTGT GGGGCCTTTT TACTGCTCAG AGACAAAAGA AAGAGGAGAG CACCGAAGAA	180
GTGAAAATAG AAGTTTTGCA TCGTCCAGAA AACTGCTCTA AGACAAGCAA GAAGGGAGAC	240
CTACTARATG CCCATTATGA CGGCTACCTG GCTARAGACG GCTCGARATT CTACTGCAGC	300
CGGACACAAA ATGAAGGCCA CCCCAAATGG TTTGTTCTTG GTGTTGGGCA AGTCATAAAA	360
GGCCTAGACA TTGCTATGAC AGATATGTGC CCTGGAGAAA AGCGAAAAGT AGTTATACCC	420
CCTTCATTIG CATACGGAAA GGAAGGCTAT GCAGAAGGCA AGATTCCACC GGATGCTACA	480
TIGATITITG AGATTGAACT TIATGCTGTG ACCAAAGGAC CACGGAGCAT TGAGACATIT	540
ARACARATAG ACATGGACAR TGACAGGCAG CTCTCTARAG CCGAGATARA CCTCTACTTG	600

	CAAAGGGAAT TTGAAAAAGA TGAGAAGCCA CGTGACAAGT CATATCAGGA TGCAGTTTTA	660
5	GAAGATATTT TTAAGAAGAA TGACCATGAT GGTGATGGCT TCATTTCTCC CAAGGAATAC	720
	AATGTATACC AACACGATGA ACTATAGCAT ATTTGTATTT CTACTTTTTT TTTTTAGCTA	780
	TTTACTGTAC TTTATGTATA AAACAAAGTC ACTITTCTCC AAGTTGTATT TGCTATTTTT	840
10	CCCCTATGAG AAGATATTTT GATCTCCCCA ATACATTGAT TTTGGTATAA TAAATGTGAG	900
	GCTGTTTTGC AAACTTAAAA AAAAAWWAAA AAAACTSGAG GGGGGCCCGT ACCCAANTCG	960
15	CCGNATATGA T	971
13		
20	(2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1792 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
30	GAACCCCCTT TCTCCTGGTA AAGGGTAAGG GGGGGGATAA TGTTTACCAC AGGTACGAAA	60
	TAGTCACTTT AACATTGAGA CCTCTGCCTC ATTGAATTCA GGTTTTTTAA GTACTTGAAA	120
	CTCTTCAGAT TCTCCTTATT TTAGTTTCTT TTTACATTTA TGAAGTAGAA AGCATTGTTT	
35	TGTAAACTGT TTTGAAAATA AATAGCCTAG TCTCTTATCC TCTTTAGCGT GGATTAAAGG	240
	TGAAGTTCTG CAAATGGGAG AGTGTTCACA GTAGATAGCT CAGATTGATT GAACACATTT	300
40	GAGGAAGAGA CTCCTGCATG AGATACCAGC ATTTTTACAA ATACTTTTTA TGTACATTCT	360
	TTATTTTGTC ATTITGTCAA CCCTCTCCCC AAGCACATCT TCTTTCCTTT TACTATGTCT	420
	ATGTAGGGAA AAACAAAACA AAAAATTGCA CTTACGTTAC ACTCCCAAAA TGTGGGTAAT	480
45	CCGTGTCTTT CAAAAAACAT TTCTGTTTTT TGTTTTTTTTTT	540
	TGACAAGTTT GGGTGCTTGT GGCACGTATG TATGAAGCGG GAGGGGGATG ASAATTGCCT	600
50	GTCCTTCAGT ARGCTGTAAA AGTAATTTAC ATGTAAGTAA AAAGGGAAAA TAGAATAGAT	660
	GCCAAAGTCA TTTATTCAGT CCTTAGTTTT CTTATGTGGC ATTACTGCAT CTGCTAGTTA	720
	GTGAGAAAGC ACCCTCAGCT TTTACTGCTC CCCTCCCTGC CTGCCAACAC ACTTGATGTG	
55		840
	TGTCAGTTTA GAAATGGACT GGATAAAACT TACTTGGTTG TCATTATTTT ATCTCATTTG	90
	TARGETTAAAT	96

600

	GAGTATTACA ACTGGCTAAT ATCATTTTT ATATACAAGG GTATGTGTAT ATTTGGAATT	1020
•		
	GRTATGAGAA ACTCATTTGT ACCCATTTGA GTGATATTGC ACAACAAACA CAGATAYCTA	1080
5	CAGACTCCGT TITCATTITC TCGTGTTCTT TATGATAATG ATCTTTGTAG ATTGGTTATT	1140
	TCTGTACTTT ATCTGTAATA AACTTTGTAG ATCCTGTGAA CCATTACTTT GCCTAAATCA	1200
10	CTTGAGACTT GAGTCTTTAA TAACAAAGCA TCAATATTCA CTAAAGTCAA TCTCTTTTGA	- 1260
10	GTTTCTGTGA CTTGGCTAGA AGCTCTTGAC ACTAAGGGAT TAGTGTTAAT TTTCCCTGGG	1320
	GGTGTTCCAC TAGGGCATTA CTGTATAATG ACTTGATGTT GCCACATAGA CTTCAAGATA	1380
15	TATAATATTT TGAGGATTTT GTTGATTGGC CTATGTTTTA TTGCATAGTG TGAAACGTGT	1440
	AAAGCTTGGT TAACCTGTAT ATAGATAGCT TATTGTTGAC TAGTTATAGT GTATTTAGGG	1500
00	TIGCCIGTAA TATTTAAGCT TCTTTACTGA TGTGTGTGCT GGTAGGAACA TATAATTTTT	1560
20	GTACATTATA TITACTGAGA TGTTGCCTTT TTTATTTTAC AAATACTTTG GAATTCCAAT	1620
	GTGTTTTTTG CTTCCGTGAG GATTAATTTG GAAAGGTTTT TAATGACATT CCACTGATTT	1680
25	CAGATTTTGC TTGAGATTGA CTTCAATAAA TTGTCCTGTA TGTTCCAAAA AAAAATTAAA	1740
	AAACTCGAGG GGGGCCCGGT ACCCAANNCG CCGGATATGA TCGTAAACAA TC	1792
30		
	(2) INFORMATION FOR SEQ ID NO: 35:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 896 base pairs	
22	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	AGTTGNANAC AACAGGACCT GAGTCCTTGG GCAGCACCAG TAGGTTGCCC CYTGCYTCYT	60
45	GCCAGCYTCA CYTGCCACYT TYTGCCCCTY TCGGGATGCC TTCGCAGACA GAGYTYTTCG	120
	CIGCCIGIGG TGGCCAYTCT TIGCTITIGG TTYTCTIGCC CCTTGGCCTC CCTTTTTGTC	180
	CCCGGGCAGC CTTGTGTGAC CTGCCCTTTT CCCTCCCTTC CTTTCCAGGA CAAGCACGCC	240
50	GAGGAGGTGC GGAAAAACAA GGAGCTGAAG GAAGAGGCCT CCAGGTAAAG CCTAGAGGCC	300
	AAAGAACTTT CCAGGTCAGC CGGACAGCTC CAGCAGCTCC ACGTTCCAGG CAGCCTCGMC	360
	CGCCGGCTGC GCTCCCAGCA CTGGGGTTTG GGGGGAGGGG GGTGGCCAAG GGGCGTTTCC	420
55	TCTGCTTTTG GTGTTTGTAC ATGTTAAGAA TTGACCAGTG AAGCCATCCT ATTTGTTTCC	480

60 AGAACTCAAG GACATTGCAA CCCTGCCCGG CGCAGATCTG ATTTTCACAT CTCTACCTGG

•	ACATTGAGCC TCCCAGGCAC CATGTTGAGG AGAGATGAAA ACCAGGGCGG TAGAACTTCA	660
5	GGGTGAAGGA CAGAGTCCTG GGTGGGGCAG CGGCTGCAGG GCGCACCAGA GAACCCAGCC	720
	AGAGGGGGTG TGAGTACCAG TGGTGTTGCT TCCACCCTGC AGCAGGTGGG ATGAGGTCTG	780
	TGTGTGTGTG TGAACCATCA TTTTTTGATC ATCATGACCA ATGAAACATT GAAAAAAAAA	840
10	AAAAAAACTG GAGGGGGCC CGTACCCAAN TCGCCGNATA GTGATCGTAA ACAATC	896
15	(2) INFORMATION FOR SEQ ID NO: 36:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 912 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
25	TOGACCCACG CGTCCGGTCA GCCAGTCGCA TCCAGCCATG ACAGCCTTCT GCTCCCTGCT	60
23		120
	CCTGCAAGCG CAGAGCCTCC TACCCAGGAC CATGGCAGCC CCCCAGGACA GCCTCAGACC	
30	AGGGGAGGAA GACGAAGGGA TGCAGCTGCT ACAGACAAAG GACTCCATGG CCAAGGGAGC	180
50	TAGGCCCGGG GCCAKCCGCG GCAGGGCTCG CTGGGGTCTG GCCTACACGC TGCTGCACAA	240
	CCCAACCCTG CAGGTCTTCC GCAAGACGGC CCTGTTGGGT GCCAATGGTG CCCAGCCCTG	300
35	ARGGCAGGGA AKGTCAACCC ACCTGCCCAT CTGTGCTGAG GCATGTTCCT GCCTACCATC	360
	CTCCTCCCTC CCCGGCTCTC CTCCCAGCAT CACACCAGCC ATGCAGCCAG CAGGTCCTCC	420
40	GGATCACYGT GGTTKGGTGG AGGTCTGTCT GCACTGGGAG CCTCARGARG GCTCTGCTCC	480
40	ACCCACTTGG CTATGGGAGA GCCAGCAGGG GTTCTGGAGA AAAAAACTGG TGGGTTAGGG	540
	CCTTGGTCCA GGAGCCAGTT GAGCCAGGGC AGCCACATCC AGGCGTCTCC CTACCCTGGC	600
45	TCTGCCATCA GCCTTGAAGG GCCTCGATGA AGCCTTCTCT GGAACCACTC CAGCCCAGCT	660
	CCACCTCAGC CTTGGCCTTC ACGCTGTGGA AGCAGCCAAG GCACTTCCTC ACCCCYTCAG	720
50	CGCCACGGAC CTYTYTGGGG AGTGGCCGGA AAGCTCCCSG GCCTYTGGCC TGCAGGGCAG	780
50	CCCAAGTCAT GACTCAGACC AGGTCCCACA CTGAGCTGCC CACACTCGAG AGCCAGATAT	840
	TTTTGTAGTT TTTATKCCTT TGGCTATTAT GAAAGAGGTT AGTGTGTTCC CTGCAATAAA	900
55	CTTGTTCCTG AG	912

297

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1382 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

AATTCGGCAC GAGCGGAGGC GAGCGAAACT RAGGGCGAAA GTTGTGTGTC GTGTTGGCAG 60 10 GAGGGCCTAG AAGGGAAAGA CTGTCTAGTG GGACAATGTC ATATTATAAA TTTGGAATGC 120 TGAATAGAAA ATTATAGATT TTGATATTGA AGGAAATGAA GCGAAGCYTA AATGAAAATT 180 15 CAGCTCGAAG TACAGCAGGC TGTTTGCCTG TTCCGTTGTT CAATCAGAAA AAGAGGAACA 240 GACAGCCATT AACTTCTAAT CCACTTAAAG ATGATTCAGG TATCAGTACC CCTTCTGACA 300 ATTATGATTT TCCTCCTCTA CCTACAGATT GGGCCTGGGA AGCTGTGAAT CCAGAGTTKG 360 20 CTCCTGTAAT GAAAACAGTG GACACCGGGC AAATACCACA TTCAGTTTCT CGTCCTCTGA 420 GAAGTCAAGA TTCTGTCTTT AACTCTATTC AATCAAATAC TGGAAGAAGC CAGGGTGGTT 480 25 GGAGCTACAG AGATGGTAAC AAAAATACCA GCTTGAAAAC TTGGRATAAA AATGATTTTA 540 AGCCTCAATG TAAACGAACA AACTTAGTGG CAAATGATGG AAAAAATTCT TGTCCAATGA 600 GTTCGGGAGC TCAACAACAA AAACAATTAA GAACACCTGA ACCTCCTAAC TTATCTCGCA 660 30 ACAAAGAAAC CGAGCTACTC AGACAAACAC ATTCATCAAA AATATCTGGC TGCACAATGA 720 GAGGGCTAGA CAAAAACAGT GCACTACAGA CACTTAAGCC CAATTTTCAA CAAAATCAAT 780 35 ATAAGANACA AATGITGGAT GATATTCCAG AAGACAACAC CCTGAAGGAA ACCTCATTGI 840 ATCAGTTACA GTTTAAGGAA AAAGCTAGTT CTTTAAGAAT TATTTCTGCA GTTATTGAAA 900 GCATGAAGTA TTGGCGTGAA CATGCACAGA AAACTGTACT TCTTTTTGAA GTATTAGCTG 960 40 TTCTTGATTC AGCTGTTACA CCTGGCCCAT ATTATTCGAA GACTTTTCTT ATGAGGGATG 1020 GGAAAAATAC TCTGCCTTGT GTCTTTTATG AAATCGATCG TGAACTTCCG AGACTGATTA 1080 45 GAGGCCGAGT TCATAGATGT GTTGGCAACT ATGACCAGAA AAAGAACATT TTCCAATGTG 1140 TTTCTGTCAG ACCGGCGTCT GTTTCTGAGC AAAAAACTTT CCAGGCATTT GTCAAAATTG 1200 CAGATGTTGA GATGCAGTAT TATATTAATG TGATGAATGA AACTTAAGTA GTGATAAAAG 1260 50 GAAGTTTAGC ATAAATTATA GCAGTTTTCT GTTATTGCTT AATTTACCAT CTCCATAGTT 1320 TTATAGCTAC TATTGTATTT CACTTGTTGA ATTAAAGTAT TTGAATTCTT TTAAAAAAAA 1380 55 1382 AA

	(2) INFORMATION FOR SEQ ID NO: 38:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 872 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
10	GGGCTACTTC AAAGCCCTGG GCCTTATTTC TTCAGGTAAA AAAATATAAA GTCAGATCTC	60
	ATCCCGGCTG GCCATGCTGT TAGACCCTTT CATCCTTCTC TTCTGCCTCT TCTCAACAGC	120
15	TGCCCAGTCC TGTTTGGAAT TCATATACAT ACAGTTCTAA TACTGATGTA TTTACCCTCA	180
	TAAGCCACTC AACCCAGAAT CTTATTTGAA TTATAATCCA GAAACATCAG GTGACGTGTG	240
20	AGACTACTGT ATGAGAAAGA GACAGTTTAA GGGTCAGTCC AATGGAAAAA AGAGTTCTCA	300
20	GAGCTITCTT TAGCTTATTC TCATCAAAGA GCTTTCTCTG CAGAAGGAAC CTACTGGTTC	360
	CTCCTTTCCA GTCCTAGAAA TCCTGACCTA GAGTGGCTTA ATCCTGCTAG CACCTCTCTC	420
25	TOGCACTOTG GTGCCAAATG ACTCCAGGAA CTGGGCCATG ATGTGGTGGG AATGACCTTA	480
	CCCTGAGCAT GTCACTCATG CATTGAACAA CAGCTAAGAG CAGAGCTTAG AGCTTAGAGC	540
20	TEGECCCTET AAGGTGAGAG GAATCACATC CTECAGAAGT CTETCCTGAG AAGCAEGTAC	600
30	TCCTGTCACA GCAGAGACAC AGTGGATACC TGAGTAACAA TAATACAAGA CAGGACGTGG	660
	GMACAGCAAA AGATTTGGGT GTCAGAAGAR GCCGAGAACA CTTYCAGGCA GGAACATTCA	720
35	RARTTGTTCT TGGAGGAART AGGCMCSAAG GCTGGGCAGG ATTTCMCGGG GCAGAGATGG	780
	AGCAAGCAAT TGAAATGAAA GCCATGGCAT GGGAAAAGGA GCACTGGCCA CAGGGAGTGC	840
40	AACGTTGTGA TGCAAGGCCA CTGTGGAGCC AT	872
45	(2) INFORMATION FOR SEQ ID NO: 39:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 812 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
55	GGCAGAGGCT CACCCCAGCA GAGATTGAGG GGGAACCGTG ATGAAATTTT TAAGTATTCT	60
55	GCTTGATGAT AATAATTTTY CTCTTATGTT AATGTTGGCT CCGTTTGGGT GTTTAGCTTT	120
	TGAAAGGAGT ATGAAAATGC GGAATGGGGC TTTGGGGCTT GAGGAGGTGT GATCTCTAGT	180
4۸	COMMANDADA TITTADITICCA CAAATAGAAA TAATICACCC ACATTATIGA ACCCCACTAA	240

299

							300
	AGCATATCCT	TTTTGTCCAT	ATTOCTTTCC	TGCTGCCCTC	GIGIGIACCA	TTATTACTCA	300
	GTTGTGATTT	GAGCTCGTTC	CACTTAAAGT	CATTCATAGA	TACTTTTGCG	TCGTGTTKGA	360
5						•	
•	ATATTTATTG	AATTTCTATT	CIGIGITITA	CTTAATTACT	TTATTATGGA	ACCTTTACAC	420
		TACTTGTTCT	THEADAGTE	TATESTEE	CACCATCACT	GAGCATATAG	480
	AGGICIGGIG	TACTIGITET	IIGAAAAGIC	11AIGI1G.C			
10	CTTTTTCCTT	ATTTCCTTGG	GATAATTACC	CGAAGTGGAA	ATACCGAATC	AAACTTCTGT	540
		TGGCACTATT	> m> m> 1 > mmc	mmmoca a a c	አ አ ር/ር/ር አ ጠር/ጥቦ	та са атасас	600
	TETCETTCTT	TGGCACTATT	ATATAAATTG	TTTTCCAAAC	MOOCHIGII	Inchairman	555
	AAAYPPPPP	ATCTGGGTAT	TTGTCCTATT	TTGCTCTCTG	TATGCAGAAT	TCAGCGGGGT	660
15							
	GCCAAGTCGT	TTTCTGTGTG	GGTTGAGAGA	CAGGCTGTGC	AGCCCACTGT	TGCATAGGAC	720
							200
	TAACTACTAC	AAATCATGCT	GAGACCGAGC	TATTTTTGCT	GCTTAGARGC	TTTGCAGCCT	780
20	mes ens semm	TCGNCATCTG	GAAACNTTIGN	AA			812
20	IGAGIAAGII	ICGNORICIO	0.410111011	• • • •			

25 (2) INFORMATION FOR SEQ ID NO: 40:

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1515 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

AATTCGGCAC GAGGGAAATT CAAGCACTTT TCCTAAAAGA AGGGGGAATG GATGCTGAAA	60
CAACACGTIVI CCCACAAAGG GAGCAGACAC TGGGCTTGTG AAGCTGCCCC ATACCTTCCC	120
CACAGAACTG GGGTCCGGCC TCCCTGACAT GCAGATTTCC ACCCAGAAGA CAGAGAAGGA	180
GCCAGTGGTC ATGGAATGGG CTGGGGTCAA AGACTGGGTG CCTGGGAGCT GAGGCAGCCA	240
CCGTTTCAGC CTGGCCAGCC CTCTGGACCC CGAGGTTGGA CCCTACTGTG ACACACCTAC	300
CATGCGGACA CTCTTCAACC TCCTCTGGCT TGCCCTGGCC TGCAGCCCTG TTCACACTAC	360
CCTGTCAAAG TCAGATGCCA AAAAAGCCGC CTCAAAGACG CTGCTGGAGA AGAGTCAGTT	420
TTCAGATAAG CCGGTGCAAG ACCGGGGTTT GGTGGTGACG GACCTCAAAG CTGAGAGTGT	480
GGTTCTTGAG CATCGCAGCT ACTGCTCGGC AAAGGCCCGG GACAGACACT TTGCTGGGGA	540
TGTACTGGGC TATGTCACTC CATGGAACAG CCATGGCTAC GATGTCACCA AGGTCTTTGG	600
GAGCAAGTTC ACACAGATCT CACCCGTCTG GCTGCAGCTG AAGAGACGTG GCCGTGAGAT	660
GTTTGAGGTC ACGGGCCTCC ACGACGTGGA CCAAGGGTGG ATGCGAGCTG TCAGGAAGCA	720
TGCCAAGGGC CTGCACATAG TGCCTCGGCT CCTGTTTGAG GACTGGACTT ACGATGATTT	780

300

	CCGGAACGTC	TTAGACAGTG	AGGATGAGAT	AGAGGAGCTG	AGCAAGACCG	TGGTCCAGGT	840
	GGCAAAGAAC	CAGCATTTCG	ATGGCTTCGT	GGTGGAGGTC	TGGAACCAGC	TGCTAAGCCA	900
5	GAAGCGCGTG	ACCGACCAGC	TGGGCATGTT	CACGCACAAG	GAGTTTGAGC	AGCTGGCCCC	960
	CGTGCTGGAT	GGTTTCAGCC	TCATGACCTA	CGACTACTCT	ACAGCGCATC	AGCCTGGCCC	1020
	TAATGCACCC	CTGTCCTGGG	TTCGAGCCTG	CGTCCAGGTC	CTGGACCCGA	AGTCCAAGTG	1080
10	GCGAAGCAAA	ATCCTCCTGG	GGCTCAACTT	CTATGGTATG	GACTACGCGA	CCTCCAAGGA	1140
	TGCCCGTGAG	CCTGTTGTCG	GGGCCAGGTA	CATCCAGACA	CTGAAGGACC	ACAGGCCCCG	1200
15	GATGGTGTGG	GACAGCCAGG	YCTCAGAGCA	CTTCTTCGAG	TACAAGAAGA	GCCGCAGTGG	1260
	GAGGCACGTC	GTCTTCTACC	CAACCCTGAA	GTCCCTGCAG	GTGCGGCTGG	AGCTGGCCCG	1320
20	GGAGCTGGGC	GTTGGGGTCT	CTATCTGGGA	GCTGGGCCAG	GCCTGGACT	ACTTCTACGA	1380
20	CCTGCTCTAG	GTGGGCATTG	COCCTCCCC	GGTGGACGTG	TTCTTTTCTA	AGCCATGGAG	144
	TGAGTGAGCA	GGTGTGAAAT	ACAGGCCTTC	ACTCCGTTAA	ААААААААА	AAAAAAAA	150
25	аааааааа	AAAAA					151

30 (2) INFORMATION FOR SEQ ID NO: 41:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 704 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

AAGATGGTGG CGCCCAGAGC TTCGCTCTAT GCTGCTCCCC TGAGAGAGGC GTTTCCATCA 40 ACCAGTTTTG CAAGGAGTTC AATGAGAGGA CAAAGGACAT CAAGGAAGGC ATTCCTCTGC 120 CTACCAAGAT TTTAGTGAAG CCTGACAGGA CATTTGAAAT TAAGATTGGA CAGCCCACTG 180 45 TTTCCTACTT CCTGAAGGCA GCAGCTGGGA TTGAAAAGGG GGCCCGGCAA ACAGGGAAAG 240 AGGTGGCAGG CCTGGTGACC TTGAAGCATG TGTATGAGAT TGCCCGCATC AAAGCTCAGG ATGAGGCATT TGCCCTGCAG GATGTACCCC TGTCGTCTGT TGTCCGCTCC ATCATCGGGT 360 50 CTGCCCGTTC TCTGGGCATT CGCGTGGTGA AGGACCTCAG TTCAGAAGAG CTTGCAGCTT 420 TCCAGAAGGA ACGAGCCATC TTCCTGGCTG CTCAGAAGGA GGCAGATTTG GCTGCCCAAG 480 55 AAGAAGCTGC CAAGAAGTGA CCCTTGCCCC ACCAACTCCC AGATTTCAAA GGAGGTAGTT GCAAAAGCTG TGCCCAAGGG GAGGAAGGAG GTCACACCAA TATGATGATG GTTTTCATGA 600 CTTTGAATGA TATATTTTTG TACATCTAGC TGTATCGAGG CATCAGGCCT GAATAAACAT 60

301

	CCTTTCTTAA AAAAAAAAA AAAAAAAAAA AAAAAAAA	704
5		
	(2) INFORMATION FOR SEQ ID NO: 42:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1094 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	•
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
	GGCAGCTTTC TTACAAACCC ATCCTTCTGA AATGTTGCTT CAAATTCATC CTCTGCTCCC	60
20	CAGTCCCACT ATTCCACACA TACTGTTACT GTTTCTTTAT CCTACTTTCT CAATTTTGGA	120
20	ACATAGITIGC AGITACTICA TIGAATACCT GIGGGITTIGC CIGITGITCT GICTGTCTCT	180
	GTGGTTCTTG TAATANTGGA TCCCAGAGAT AAAATGGACA GTTGTNATGC ACAGTTAATT	240
25	CAGAAACTAG ACCTTACTTG CTGTGTGAAA TACCAACTAA ATTCTCAGTG AACTCAGCTG	300
	ANCTITATCT CCTTTTGTTT CCCCAATTTA TAATTTCAGT TCAGGCCCAG AAAGATGGAA	360
	TCCCAGCTAA GAAATACAAG TTACACCCTG TACTAGCAGC CCATGTGTGC ATGTTCTTTA	420
30	AGTGCTCTTG CAGCTATGTC ATTTATATTG ATTTCCCTGT ATTATTATAA GCAAAGCAAA	480
	TTTGAGGAAA AAAACCCATA ATACCACACC TCATTTTTTT CAAGTAATAG GGTCATAAGT	540
35	CTCATYCTYC ATATAATATG TTGAGTATGC AGTATATTAT GTGTTAGGCT CTGGANAGGC	600
	AGAGGITAGA TCATGIWACA GATÇATATCK GATTAGGCAG ATAAACAGTA TTTTAACCTT	660
	TICCITATTA TATGIAACTI GCTTTCAGGT TTTTTAATGT TACTATTATG TCTTTAATAT	720
40	ATTATCTTTA TTIGTACTTT TGTATACAGA GTGATTTTCC TTTTTTAAAA AAAATTGTGT	786
	CTTTAGGATG GATTCCAAAG ATGTGGAATC AGTAGGTTTA AGGAATATGG ATATTTTGGC	84
45	TGGCAAGGTG GCTCACACCT GTAATCCCAG CACTTTGGGA GGCTGAGGTG GGTGGATCAC	90
	CTGAAGTCAG GAGTTCGAGA CCAGCCTGAC CAACATGGCG AAACCCTGTT TNTACTAAAG	96
	ACACACWWAA AATTRGCCAG TGGTGGTGGC ATGTGCTTGT AGTCCCACTT AGCTACTCGA	102
50	GAGGCTGAGG CAGGAGAATC GCTTGAACCC GGGAGGCAGA GGTTGCAGTG AGGCAAGATG	108
	GCACCTCTAC ACTC	109
55		

(2) INFORMATION FOR SEQ ID NO: 43:

60 (i) SEQUENCE CHARACTERISTICS:

302

(A) LEWIH: 1321 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPCLOGY: linear

5

/xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

	TEGETTAGGE CATCACCETT CECTTGGETG GAACTACTGG ACAGACCETT TTGAGATGTG	60
10	CCTGTGGTGC TGTGGAGATG TGTGTAGTGG TCTTAGCTCT TTGTTGAGCT TGTGTGTG	120
	THEIGHAGIC THASCIGTAT GCTGAAATTG GGCGTGTGTT GGAGGGCTTC TTAGCTCTTT	180
1.5	GGTGAGATIG TATTICTATG TGTTTGTATC ASCTGAATGT TGCTGGAAAT AAAACCTTGG	240
15	TITGINGAGG CICITITITG IGGGAAGTAA GTAGGGGAAA AGGICTITGA GGGITCCIAG	300
	GCTCCTTTGT ACAACAGGAA AATGCCTCAA AGCCTTGCTT CCCAGCAACC TGGGGCTGGT	360
20	TOCCAGTSCC TGGTCCTGCC CCTTCCTGGT TCTTATCTCA AGGCAGAGCT TCTGAATTTC	420
	AGGCCTTCAT TCCAGAGCCC TCTTGTGGCC AGGCCTTCCT TTGCTGGAGG AAGGTACACA	480
25	GGGTGAAGCT GATGCTGTAC TTGGGGGATC TCCTTGGCCT GTTCCACCAA GTGAGAGAAG	540
23	GTACTTACTC TTGTACCTCC TGTTCAGCCA GGTGCATTAA CAGACCTCCC TACAGCTGTA	600
	GGAACTACTG TCCCAGASCT GAGGCAAGGG GATTTCTCAG GTCATTTGGA GAACAAGTGC	660
30	TITASTASTA SITTAAASTA STAACTSCTA CTSTATTTAS TGGGGTGGAA TTCAGAAGAA	720
	ATTIGAAGAC CAGATCATGG GTGGTCTGCA TGTGAATGAA CAGGAATGAG CCGGACAGCC	780
35	TOGGREGATE TOGGREGATE GGACCOTTOT CTGCCCTTAC ATTITTGTT	840
<i></i>	CTCCATCTAC CACCATCCAC CAGTCTATTT ATTAACTTAG CAAGAGGACA AGTAAAGGGC	900
	CCTCTTGGCT TGATTTTGCT TCTTTCTTTC TGTGGAGGAT ATACTAAGTG CGACTTTGCC	960
40	CTATCCTAIT TGGAAATCCC TAACAGAATT GAGTTTTCTA TTAAGGATCC AAAAAGAAAA	1020
	ACALANTSCT ANTSAAGCCA TCAGTCAAGG GTCACATGCC AATAAACAAT AAATTTTCCA	1080
45	GAAGAAATGA AATCCAACTA GACAAATAAA GTAGAGCTTA TGAAATGGTT CAGTAAGGAT	1140
43	GAGIPTOTTG THTTPTGPHT TGPTTTGPHT TGKTTFTTTA AAGACGGAGT CTCGCTCTGT	1200
	CACTCAGGCT GGAGTGCAGT GGTATGATCT TGGCTCACTG TAACCTCCGC CTCCCGGGTT	1260
50	CAAGCCATTC TCCTGCCTCA GTCTCCTGAG TAGCTGGGAT TACAGGTGCG TGCCACCATG	1320
	CCTGGCTAAT TITTGTGTTT TTAGTAGAGA CAGGGTTTCA CCATGTTGGT CGGGCTGGTC	1380
55	TCAAACTCCT GACCTCTTGA TCCGCCTGCC TTGGCCTCCC AAAGTGATGG GATTACAGAT	1440
<i></i>	GTGAGCCACC CGTSCCCTAG CCAAGGATGA GATTITITAAA GTATGTTTCA GTTCTGTGTC	1500
	ATOGTTOGAA GACAGAGTAG GAAGGATATG GAAAAGGTCA TGGGGAAGCA GAGGTGATTC	1560
60	ATGGCTCTGT GAATTTGAGG TGAATGGTTC CTTATTGTCT AGGCCACTTG TGAAGAATAT	1620

	GAGTCAGTTA TTGCCAGCCT TGGAATTTAC TTCTCTAGCT TACAATGGAC CTTTTGAACT	1680
_	GGAAAACACC TTGTCTGCAT TCACTTTAAA ATGTCAAAAC TAATTTTTAT AATAAATGTT	1740
5	TATTTTCACA TTGAAAAAAA AAAAAAATTT AAAAACYCGG GGGGGCCCS G/IACCCCATT	1800
	NGCCCCTAAG GGGGGGGTT T	1821
10		
	(2) INFORMATION FOR SEQ ID NO: 44:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1024 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
	GGGGCACAGT TGAAGAAGCG ACCGAGGGAC TGGGAGTCGT TAGTGAGGAT GACGCGGCAT	60
25	GGCAAGAACT GCACCGCAGG GCCGTCTACA CCTACCACGA GAAGAAGAAG GACACAGCGG	120
	CCTCGGGCTA TGGGACCCAG AACATTCGAC TGAGCCGGGA TGCCGTGAAG GACTTCGACT	180
30	GCTGTTGTCT CTCCCTGCAG CCTTGCCACG ATCCTGTTGT CACCCCAGAT GGCTACCTGT	240
	ATGAGCGTGA GGCCATCCTG GAGTACATTC TGCACCAGAA GAAGGAGATT GCCCGGCAGA	300
	TGAAGGCCTA CGAGAAGCAG CGGGGCACCC GGCGCGAGGA GCAGAAGGAG CTTCAGCGGG	360
35	CGGCCTCGCA GGACCATGTG CGGGGCTTCC TGGAGAAGGA GTCGGCTATC GTGAGCCGGC	420
	CCCTCAACCC TTTCACAGCC AAGGCCCTCT CGGGCACCAG CCCAGATGAT GTCCAACCTG	480
40	GGCCCAGTGT GGGTCCTCCA AGTAAGGACA AGGACAAAGT GCTGCCCAGC TTCTGGATCC	540
40	CGTCGCTGAC GCCCGAAGCC AAGGCCACCA AGCTGGAGAA GCCGTCCCGC ACGGTGACCT	600
	GCCCCATGTC AGGGAAGCCC CTGCGCATGT CGGACCTGAC GCCCGTGCAC TTCACACCGC	660
45	TAGACAGCTC CGTGGACCGC GTGGGGCTCA TCACCCGCAG CGAGCGCTAC GTGTGTGCCG	720
	TGACCCGCGA CAGCCTGAGC AACGCCACCC CCTGCGCTGT GCTGCGGCCC TCTGGGGCTG	780
50	TOGTCACCCT CGAATGCGTG GAGAAGCTGA TTCGGAAGGA CATGGTGGAC CCTGTGACTG	840
50	GAGACAAACT CACAGACCGC GACATCATCG TGCTGCAGCG GGGCGGTACC GSTTCGCGGG	900
	CTCCGGAGTG AAGCTGCAAG CGGAGAAATC ACGGCCGGTG ATGCAGGCCT GAGTGTGTGC	960
55	GGGAGACCAA ATAAACCGGC TTGGGTGCGC AAAAAAAAAA	1020
	AAAA	1024

304

TGTGCCCCCC CCAGAGCCTA GAGGATGTTT CATGGGATCC CAGCCACGCC GGGCATAGGA 15 GCCCCTGGGA ACAAGCCGGA GCTGTATGAG GAAGTGAAGT	60 120 180 240
CGACACGCT GCGAGAAGAC GACAGAAGGG CCCGACCGCG AGCCGTCCAG GTCTCAGTGC TGTGCCCCCC CCAGAGCCTA GAGGATGTTT CATGGGATCC CAGCCACGCC GGGCATAGGA 15 GCCCCTGGGA ACAAGCCGGA GCTGTATGAG GAAGTGAAGT	120 180 240 300
TGTGCCCCC CCAGAGCCTA GAGGATGTTT CATGGGATCC CAGCCACGCC GGGCATAGGA 15 GCCCCTGGGA ACAAGCCGGA GCTGTATGAG GAAGTGAAGT	120 180 240 300
GCCCCTGGGA ACAAGCCGGA GCTGTATGAG GAAGTGAAGT	180 240 300
GCCCCTGGGA ACAAGCCGGA GCTGTATGAG GAAGTGAAGT	240 300
	300
20 GAGAAGGCCT ACATCAAGGA CTGTGTCTCC CCCAGCGAGT ACACTGCAGC CTGCTCCCGG	
CTCCTGGTCC AATACAAAGC TGCCTTCAGG CAGGTCCAGG GCTCAGAAAT CAGCTCTATT	360
GACGAATTCT GCCGCAAGTT CCGCCTGGAC TGCCCGCTGG CCTTGGTCG	420
GACCGGCCCA TCACCATCAA GGACGACAAG GGCAACCTCA ACCGCTGCAT CGCAGACGTG	480
GTCTCGCTCT TCATCACGGT CATGGACAAG CTGCGCCTGG AGATCCGCGC CATGGATGAG	540
30 ATCCAGCCCG ACCTGCGAGA GCTGATGGAG ACCATGCACC GCATGAGCCA CCTCCCACCC	600
GACTITGAGG GCCGCCAGAC GGTCAGCCAG TGGCTGCAGA CCCTGAGCGG CATGTCGGCG	660
TCAGATGAGC TGGACGACTC ACAGGTGCGT CAGATGCTGT TGGAGGTGCGT	720
35 AACGCCTTCA ACCGCTTCCT GCATGCCTGA GCCCGGGGCA CTAGCCCTTG CACAGAAGGG	780
CAGAGTOTGA GGCGATGGCT COTGGTCCCC TGTCCGCCAC ACAGGCCGTG GTCATCCACA	840
40 CAACTCACTG TCTGCAGCTG CCTGTCTGGT GTCTGTCTTT GGTGTCAGAA CTTTTGGGCC	900
GGGCCCCTCC CCACAATAAA GATGCTCTCC GACCTTCAAA AAAAAAAAAA	960
KGSGGCCGGT CCCCANTCCC CCC	983
(2) INFORMATION FOR SEQ ID NO: 46:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2421 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	

CCGGCTGATC GCTGCCGCTC CGCCAATACA ATAGAGCCAK CCACTACCAG CAGCCTGGCC 60

	CICTICCTCC	TTCTCCAGAG	AGACCAATCC	AGCCGAACTC	GGGTTTGCC	TGAGGAGAAG	120
	GAGGAAGTGA	CCATGGACAC	AAGTGAAAAC	AGACCTGAAA	ATGATGTTCC	AGAACCTCCC	180
5	ATGCCTATTG	CAGACCAAGT	CAGCAATGAT	GACCGCCCGG	AGGGCAGTGT	TGAAGATGAG	240
	GAGAAGAAAG	AGAGCTCGCT	GCCCAAATCA	TTCAAGAGGA	AGATCTCCGT	TGTCTCAGCT	300
	ACCAAGGGGG	TGCCAGCTGG	AAACAGTGAC	ACAGAGGGGG	GCCAGCCTGG	TCGGAAACGA	- 360
10	CGCTGGGGAG	CCAGCACAGC	CACCACACAG	AAGAAACCTT	CCATCAGTAT	CACCACTGAA	420
	TCACTAAAGA	GCCTCATCCC	CGACATCAAA	CCCCTGGCGG	GGCAGGAGGC	TGTTGTGGAT	480
15	CTTCATGCTG	ATGACTCTCG	CATCTCTGAG	GATGAGACAG	AGCGTAATGG	CGATGATGGG	540
	ACCCATGACA	AGGGGCTGAA	AATATGCCGG	ACAGTCACTC	AGGTAGTACC	TGCAGAGGGC	600
20	CAGGAGAATG	GGCAGAGGGA	AGAAGAGGAA	GAAGAGAAGG	AACCTGAAGC	AGAACCTCCT	660
20	GTACCTCCCC	AGGTGTCAGT	AGAGGTGGCC	TTGCCCCCAC	CTGCAGAGCA	TGAAGTAAAG	720
	AAAGTGACTT	TAGGAGATAC	CTTAACTCGA	CGTTCCATTA	GCCAGCAGAA	GTCCGGAGTT	780
25	TCCATTACCA	TTGATGACCC	AGTCCGAACT	GCCCAGGTGC	CCTCCCCACC	CCGGGGCAAG	840
	ATTAGCAACA	TTGTCCATAT	CTCCAATTTG	GTCCGTCCTT	TCACTTTAGG	CCAGCTAAAG	900
20	GAGTTGTTGG	GGCGCACAGG	AACCTTGGTG	GAAGAGGCCT	TCTGGATTGA	CAAGATCAAA	960
30	TCTCATTGCT	TTGTAACGTA	CTCAACAGTA	GAGGAAGCTG	TTGCCACCCG	CACAGCTCTG	1020
	CACGGGGTCA	AATGGCCCCA	GTCCAATCCC	AAATTCCTTT	GTGCTGACTA	TGCCGAGCAA	1080
35	GATGAGCTGG	ATTATCACCG	AGGCCTCTTG	GTGGACCGTC	CCTCTGAAAC	TAAGACAGAG	1140
	GAGCAGGGAA	TACCACGGCC	CCTGCACCCC	CCACCCCCAC	CCCCGGTCCA	GCCACCACAG	. 1200
40	CACCCCCGGG	CAGAGCAGCG	GGAGCAGGAA	CGGGCAGTGC	GGGAACAGTG	GGCAGAACGG	1260
40	GAACGGGAAA	TGGAGCGGCG	GGAGCGGACT	CGATCAGAGC	GTGAATGGGA	TCGGGACAAA	1320
	GTTCGAGAAG	GCCCCCTTC	CCGATCAAGG	TCCCGTRACC	GCCGCCGCAA	GGAACGTGCG	1380
45	AAGTCTAAAG	AAAAGAAGAG	TGAGAAGAAA	GAGAAAGCCC	AGGAGGAACC	ACCTGCCAAG	1440
	CTGCTGGATG	ACCTTTTCCG	AAAGACCAAG	GCAGCTCCCT	GCATCTATTG	GCTCCCACTG	1500
50	ACTGACAGCC	: AGATCGTTCA	GAAAGAGGCA	GAGCGGGCCG	AACGGCCAA	GGAGCGGGAG	1560
50	AAGCGGCGAA	AGGAGCAAGA	AGAAGAAGAG	CAAAAGGAGC	GGGAGAAGGA	AGCCGAGCGG	1620
	GAACGGAACC	GACAGCTGGA	. GCGAGAGAAA	CGTCGGGAGC	ACAGTCGGGA	GAGGGACAGG	1680
5 5	GAGAGAGAGA	GAGAAAGGGA	. GCGGGACAGG	GGGGACCGAG	ATCGGGATAG	GGAAAGGGAC	1740
	CGAGAACGAG	GCAGGGAAAG	GGATCGCAGG	GACACCAAGC	GCCACAGCAG	AAGCCGGAGT	1800
60	CGGAGCACAC	CTGTGCGGGA	CCGGGGTGGG	CGCCGCTAGC	TGGGAAAACA	CTAGAGCTGC	1860

306

	AGGTACCAGC CACTCGGCCC CAGGGGGTTA TGGCCACAGA GGGATAGGCA CAGTCTCCAC	1920
	CACCCTGGAG CCAAGGGTCT TTCACATCAC CTATCCCTAC ATACATACCA AATGGAAAAG	1930
5	TOGCCATCCT TTTCCCCCCA AACACACCCC CTTAACCTAT CTCTTGGGAC TTAGCCCGAC	2340
	CCTCCCTCTC ATTTCCCATT AAGTCTGAGA GGCAAGAGCT AGGTTAGGCA AGGAGGTGGT	2100
10	TGGCCAGAGA TGGGGAACAG CCAGGTGCCC CAGTCCTCTG ATTITTCCTC CATCCTGCTT	2160
10	ACCACCTCCC TGGGTACTTA CAGCCTTCTC TTGGGAACAG CCGGGGCCAG GACTGGGTCA	2220
	CCTATGAGCT GAATCAGCAT CTCCTCCTGA GTCCCAGGGC CCCTGCAGTT CCCAGTCTCT	2280
15	TCTGTCCTGC AGCCCTTGCC TCTTTCCCAC AGGTTCCACT TTATATCCAC CTTTTCCTTT	2340
	TGTTCAATTT TTATTTTAT TTTTTTTATT ATTAAATGAT GTGGTCTATG GAAAAAAAA	2:00
20	TAAAAATCTG ACTTAGTTTT A	2421
20		
	(2) INFORMATION FOR SEQ ID NO: 47:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 840 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
35	CTCAAACTCC TGAGCTGAAG CGATCTACCT GCCTCAGCTA GGATTACAGG TGTGAGCCAC	50
23	CGCACCCAAC CTCAATAAGC KTATTTGATA AAAKATATGC AAGCTCCCTT TATKCACTTT	120
	TCATTCAGAA TGTTTAGTAA TTTGTATTGT TTTTCAGATT TTCAGCCCAA TATATCTCC?	180
40	TGCCCACTGT GTCACTGTAT TCTACCTAWA CATCATCACG TGTTTCTGCT ATTGGCTGTA	240
	TGATGGAACA CTGCGGCTCA TTTTCCTGAA AACTGCCGAT AGTGCATAGA RTGCTGGGAT	300
15	GGAAACCAGA ARCTTTGAAT TCAAGCCTTG GTTCTGCCTT GTTTTTGCTT GGGTGGCCTT	360
45	GAGTCAGCCA CATACCTTTT AAAATCTCAA TTTATTAGAA ATTATTCCAA ATCAAAATCA	420
	AATGAGAAGG TATATACAAA AGTGCTTTAT CCCACAATAA ACTATTCAAG AGAGAGCAAA	4 80
50	GGAGAGGACA TITACTCAAC ACCTCCTAAA AGGCAGCCAG TGAAATTAGG CATTTTATTT	540
	AATCCTCCTG GCAACTCTGA GAGTAAAGCA TTATTAATCC CATTTTGGCT GTTTAAAGAA	500
F	ATTATTIGCA CTAGATICCA GCTGTAGTIT AGYTTCAGAA AAAAAAATCC TGAGATGTGA	560
55	ATTCACAGCT TTCTGGGTTT AAAGCCCCAAG CTCTATCACA TCATGCTATT ATTGTTACAT	720
	TACTGCTAGT TCTATGAAAA GAAATACTAA TITATGAAAT ACATCTTATC CAAAAAAAAA	780

60 AAAAAAAAAC TGGGAGGGG GGCCCGTACC CAAATCGCCG GATAGTGATC GTAAACAATC

307

5	(2)	INFORMATION	FOR	SEQ	ID	NO:	48:

10

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2432 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

GGCACGAGGC CCGGAACGCT GAGGAAGGGC CCGTCCCGCC TTCCCCGGCG CGCCATGGAG 60 15 CCCCGGCCGG TTGCAGAAGC CGTGGAGACG GGTGAGGAGG ATGTGATTAT GGAAGCTCTG CGGTCATACA ACCAGGAGCA CTCCCAGAGC TTCACGTTTG ATGATGCCCA ACAGGAGGAC 180 20 CGGAAGAGAC TGGCGGASTG CTGGTCTCCG TCCTGGAACA GGGCTTGCCA CCCTCCCACC GTGTCATCTG GCTGCAGAGT GTCCGAATCC TGTCCCGGGA CCGCAACTGC CTGGACCCGT 300 TCACCAGCCG CCAGAGCCTG CAGGCAYTAG CCTGYTATGY TGACATCTCT GTCTCTGAGG 360 25 GGTCCGTCCC AGAGTCCGCA GACATGGATG TTGTACTGGA GTCCCTCAAG TGCCTGTGCA 420 ACCTCGTGCT CAGCAGCCCT GTGGCACAGA TGCTGGCAGC AGAGGCCCGC CTAGTGGTGA 480 30 AGCTCACAGA GCGTGTGGGG CTGTACCGTG AGAGGAGCTT CCCCCACGAT GTCCAGTTCT TIGACTIGCG GCTCCTCTTC CTGCTAACGG CACTCCGCAC CGATGTGCGC CANAGCTGTT 600 TCAGGAGCTG AAAGGAGTGC GCCTGCTAAC TGACACACTG GAGCTGACGC TGGGGGTGAC 660 35 TCCTGAAGGG AACCCCCCAC CCACGCTCCT TCCTTCCCAA GAGACTGAGC GGGCCATGGA 720 GATCCTCAAA GTGCTCTTCA ACATCACCCT GGACTCCATC AAGGGGGAGG TGGACGAGGA 780 40 AGACGCTGCC CTTTACCGAC ACCTGGGGAC CCTTCTCCGG CACTGTGTGA TGATCGCTAC 840 TGCTGGAGAC CGCACAGAGG AGTTCCACGG CCACGCAGTA ASCCTCCTGG GGAACTTGCC 900 CCTCAAGTGT CTGGATGTTC TCCTCACCCT GGAGCCACAT GGAGACTCCA CGGAGTTCAT 960 45 GGGAGTGAAT ATGGATGTGA TTCGTGCCCT CCTCATCTTC CTAGAGAAGC GTTTGCACAA 1020 GACACACAGG CTGAAGGAGA GTGTAGCTCC CGTGCTGAGC GTGCTGACTG AATGTGCCCG 1080 50 GATGCACCGC CCAGCCAGGA AGTTCCTGAA GGCCCAGGTG CTGCCCCCTC TGCCGGATGT 1140 GAGGACACGG CCTGAGGTTG GGGAGATGCT GCGGAACAAG CTTGTCCGCC TCATGACACA 1200 CCTGGACACA GATGTGAAGA GGGTGGCTGC CGAGTTCTTG TTTGTCCTGT GCTCTGAGAG 1260 55 TGTGCCCCGA TTCATCAAGT ACACAGGCTA TGGGAATGCT GCTGGCCTTC TGGCTGCCAG 1320 GGGCCTCATG GCAGGAGGCG GCCCGAGGGC AGTACTCAGA GGATGAGGAC ACAGACACAG 1380

•	ATGAGTACAA	GGAAGCCAAA	GCCAGCATAA	ACCCTGTGAC	CCCGACCCTC	GAGGAGAAGC	1440
	CGCCTAACCC	TATGGAGGGC	ATGACAGAGG	AGCAGAAGGA	GCACGAGGCC	ATGAAGCTGG	1500
5	TGACCATGTT	TGACAAGCTC	TCCAGGAACA	GAGTCATCCA	GCCAATGGGG	ATGAGTCCCC	1560
	GGGGTCATCT	TACGTCCCTG	CAGGATGCCA	TGTGCGAGAC	TATGGAGCAG	CAGCTCTCCT	1620
10	CGGACCCTGA	CTCGGACCCT	GACTGAGGAT	GGCAGCTCTT	CTGCTCCCCC	ATCAGGACTG	i680
10	GTGCTGCTTC	CAGAGACTTC	CTTGGGGTTG	CAACCTGGGG	AAGCCACATC	CCACTGGATC	1740
	CACACCCGCC	CCCACTTCTC	CATCTTAGAA	ACCCCTTCTC	TTGACTCCCG	TTCTGTTCAT	1800
15	GATTTGCCTC	TGGTCCAGTT	TCTCATCTCT	GGACTGCAAC	GGTCTTCTTG	TGCTAGAACT	1860
	CAGGCTCAGC	CTCGAATTCC	ACAGACGAAG	TACTTTCTTT	TGTCTGCGCC	AAGAGGAATG	1920
20	TGTTCAGAAG	CTGCTGCCTG	AGGGCAGGGC	CTACCTGGGC	ACACAGAAGA	GCATATGGGA	1980
20	GGGCAGGGGT	TTGGGTGTGG	GTGCACACAA	AGCAAGCACC	ATCTGGGATT	GGCACACTGG	2040
	CAGAGCMANT	GTKTTGGGGT	ATGTGCTGCA	CTTCCCAGGG	AGAAAACCTG	TCAGAACTTT	2100
25	CCATACGAGT	ATATCAGAAC	ACACCCTTCC	AAGGTATGTA	TGCTCTGTTG	TTCCTGTCCT	2160
	GTCTTCACTG	AGCGCAGGGC	TGGAGGCCTC	TTAGACATTC	TCCTTGGTCC	TCGTTCAGCT	2220
30	GCCCACTGTA	GTATCCACAG	TGCCCGAGTT	CTCGCTGGTT	TTGGCAATTA	AACCTCCTTC	2280
30	CTACTGGTTT	AGACTACACT	TACAACAAGG	AAAATGCCCC	TCGTGTGACC	ATAGATTGAG	2340
	ATTTATACCA	CATACCACAC	ATAGCCACAG	AAACATCATC	TTGAAATAAA	GAAGAGTTTT	2400
35	GGACAAAAAA	АААААААА	ААААААААА	. AA			2432

40 (2) INFORMATION FOR SEQ ID NO: 49:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1742 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

50	GTCCTGCAGG	AGCTGCACGC	GGCCGAGGTG	CGCANGAACA	AGGAGCAGCG	AGAAGAGATG	60
	TCGGGCTAAG	GGCCCGGSAC	GRGSGGCGCC	CATCCTGCGA	CGGAACACGT	TOGGGTTTTG	120
55	GTTTTGTTTC	GTTCACCTCT	GTCTAGATGC	AACTTTTGTT	сстсстсссс	CACCCCAGCC	180
55	CCCAGCTTCA	TGCTTCTCTT	CCGCACTCAG	CCGCCCTGCC	CTGTCCTCGT	GGTGAGTCGC	240
	TGACCACGGC	TTCCCCTGCA	GGAGCCGCCG	GGCGTGRAGA	CGCGGTCCCT	CGGTGCAGAC	300
60	ACCAGGCCGG	GCGCGGCTGG	GTCCCCCGGG	GGCCCTGTGA	GAGAGGTGGY	GGTGACCGTG	360

	GTAAACCCAG GGCGGTGGCG TGGGATCRCG GGTCCTTACG CTGGGCTGTC TGGTCAGCAC	420
5	GTGCAGGTCA GGGCAGGTCC TCTGAGCCGG CGCCCCTGGC CAGCAGGCGA GGCTACAGTA	480
J	CCTGCTGTCT TTCCAGGGGG AAGGGGCTCC CCATGAGGRA GGGGCGACGG GGGAGGGGGG	540
	TGATGGTGCC TGGGAAGCCT GCKTGTGCAN CCGGTGCTTG TTGAACTGGC AGGCGGGTGG	. 600
10	GTGGGGGCTG CAGCTTTCCT TAATGTGGTT GCACAGGGGT CCTCTRAGAC CACCTGGCGT	660
	GAGGTGGACA CCCTGGGCCT TCCTGGAAGC CTGCAGTTGG GGGCCTGCCC TGAGTCTGCT	720
15	GGGGAGTGGG CATTCTCTGC CAGGGACCCA TGAGCAGGCT GCATGGTCTA GAGGTTGTGG	780
13	GCAGCATGGA CAGTCCCCCA CTCAGAAGTG CAAGAGTTCC AAAGAGCCTC TGGCCCAGGC	840
	CCCTCCGTGG GACAGCCCCG CCGCCCCTCC CCACCAGGGC TTTGCAGATG TCCTTGAAAG	900
20	ACCCACCCTA GAGCCCTTTG GAGTGCTGGC CCCTCTGTG CCCTCTGCCC TGGTGGAAGC	960
	GGCASCACAA GTCCTCCTCA GGGAGCCCCCA AGGGGGATTT TKTGGGACCG CTGCCCACAG	1020
25	ATCCAGGTGT TGGAAGGGCA GCGGGTAAGG TTCCCAAGCC AGCCCCAACA CCCTTCCCAC	1080
	TTGGCACCCA GAGGGGGCTG TGGGTGGAGG CCTGACTCCA GGCCTCTCCT GCCCACACCC	1140
	TCTGGGCTGA GTTCCTTCTT TCCCTTGGAC GCCCAGTGCT GGCCTTGGAG GACGGTCAGC	1200
30	TOGAGGATGG COGTGGGGGA GGCTGTCTTT GTACCACTGC AGCATCCCCC ACTTCTCCAC	1260
	GGAAGCCCCA TCCCAAAGCT GCTGCCTGGC CCCTTGCTGT AAAGTGTGAA GGGGGCGGCT	1320
35	GAGTTCTCTT AGGACCCAGA GCCAGGGCCC TCAACTTCCA TCCTGCGGGA GGCCTTGGCC	1380
	GGGCACTGCC AGTGTCTTCC AGAGCCACAC CCAGGGACCA CGGGAGGATC CTGACCCCTG	1440
	CAGGGCTCAG GGGTCAGCAG GGACCCACTG CCCCATCTCC CTCTCCCCAC CAAGACAGCC	1500
40	CCAGAAGGAG CAGCCAGCTG GGATGGGAAC CCAAGGCTGT CCACATCTGG CTTTTGTGGG	1560
	ACTCAGAAAG GGAAGCAGAA CTGAGGGCTG GGATATTCCT CATGGTGGCA GCGCTCATAG	1620
45	CGAAAGCCTA CTGTAATATG CACCCATCTC ATCCACGTAG TAAAGTGAAC TTAAAAATTC	1680
	AATCAAATGA ACAATTAAAT AAACACCTGT GTGTTTAAGA AAAAAAAAAA	1740
	cc	1742

(2) INFORMATION FOR SEQ ID NO: 50:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1487 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:	50:
------	----------	--------------	-----	----	-----	-----

	GGCACGAGCC	TCCGCGAACT	GTGGAGTCGG	CGGAGGGCTG	GAATCAGCGT	GGGCTCCAGG	60
5	TCGCTGGCAG	CCGGGTGGCA	GAACTCTTCC	GAGGCTCCTT	GGGAAGAAGC	TACACCCGAG	120
	GGAGCCGGAT	GGGCCTCGAA	AACCTGGCCC	GCTCTGGTTC	TGTACCATTG	CAAGGGGAAC	180
10	CGTAAACTGA	GCTTTTCTAA	CGTGGGTTTC	TGCCAAGTAC	TTTTCCAGCT	GCCCCCTTCC	. 240
10	CCCCAGCACA	CAGGAGAGCC	TCTGTGTAGC	CAGCGCTTGA	CAGTCGTTAG	GTAGGTTGTA	300
	CTGTGTAGGG	AGGAGCTCAA	GATCATGAAT	GGTTGTCACA	GGAGAAAGCG	GTTGCATCTT	360
15	TGCAAAACTA	TATACCTGCT	GTGGTTTGTG	TTTTCTTTTC	TGCTGAGTAA	TGAAGTTGTA	420
	AGTTCACACT	GGCACATTCT	CAGGGCTGTG	CAGATTATTT	GCACTTTATT	TCATAGGTGR	480
20	ATAAGTGCTT	TTTAGCTTTC	TTTGTATATT	GAGTTGCTTT	TGAATTGCTT	CCCATATTTT	540
20	TATTTCATAC	AAACTGAACA	ATTGTGGCCC	CTCTATTTTA	TTTATAAAGG	TTCAGTGTAT	600
	CTTTGCCTGC	CTACATCAAT	CTGCAAGGGA	GTTGCAGAAA	GCCTCATGTT	CATCGAGCCG	660
25	TGAGTCACAA	CCAATTTCTA	AGCTGTTATA	ACAAAAAAGT	GTTTGCTTTT	TTTCACAAGT	720
	AACTTTAAAA	GTGTAGTTTA	GAAAGAAAAC	АТТТТСААТА	AAAAGACACT	ACATTAATCC	780
30	TGGATGCTTG	CAAATCCTAA	AATMTATTCC	TCCTCTAGCG	TTGCACAGCT	CTGTGTTGTA	840
50	TACACAGACT	AGCTTTAAAA	TTTGTCACAT	ACCACTTTAC	CTTTACTTTT	ATGTATCATT	900
	CCCCCGACTT	CCTTACTGCA	GGTGTGGGCA	AGAAAACTTT	TCCTTTAACA	CTTTTCAACA	960
35	GCGGGCATAA	AATTCTGCAG	CTGAGGTCTT	GAAGAATGCA	GATGGGTACA	GTATGTGTTG	1020
	GAGCTCACAG	TGTGTATTGA	CTAACCTAGI	TCCTTTTTTG	CTTTTTTTGG	TATIGICITG	1080
40	TTAAAAGTGA	CTCCCAGGTA	GCAACTCTCT	TTTTTAAGGG	TGGGAACGAA	AGGGACGTAG	1140
	GAAGAATAGA	TCTAGATTAT	TTAACAGTCT	TCGATAGAGT	TIGAAAGCTT	TCTTCTTCAT	1200
	TCAATTTTGG	GCAAAATACT	GCCTCTGCAT	TTGTTCATAA	CAAAAAGATT	AGATTAATAA	1260
45	GTAGCTTTTG	TTGGTGGAAA	TTACCAGCTC	TATAAGTCAC	CCTTGGTGGT	TCATGGACCT	1320
	CTGATTAGCT	TGGGTTTTGC	AGTCTCATTC	CCACATGTAT	ATGTGGAGCC	AATGGCCTTT	1380
50	TGGTGCTCAG	CTGTTTACGI	CTGACTCCTT	GACTTCTTTG	GTACAGTGAT	GGAGTCAGAT	144
	CTCATTAACT	י כיויבאישיריוירי	מייים אייים יי	CAGCCCAA	AAAAANG		148

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1328 base pairs

(B) TYPE: nucleic acid 60

⁽²⁾ INFORMATION FOR SEQ ID NO: 51:

311

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

5		
	GGCACGAGCT CGTGCCGAAT TCGGCACGAG AGAAGATTTG AAGAAGCCAG ATCCAGCTTC	60
	CCTGCGGGCT GCTTCTTGTG GGGAAGGGAA AAAGAGGAAG GCCTGTAAGA ACTGCACCTG	120
10	TGGCCTTGCC GAAGAACTGG AAAAAGAGAA GTCAAGGGAA CAGATGAGCT CCCAACCCAA	180
	GTCAGCTTGT GGAAACTGCT ACCTGGGCGA TGCCTTCCGC TGTGCCAGCT GCCCCTACCT	240
	TGGGATGCCA GCCTTCAAAC CTGGGGAAAA GGTGCTTCTG AGTGATAGCA ATCTTCATGA	300
15	TGCCTAGGAG GTTCCTGACA TGGGACCCAT CTGCTCCTCC AGCCAACTCC TGTCCCTCAC	360
	ATCCCACCAT GGTGGCTCCT CCCACCTCCT CTGGATTTGT TCACTCTGAG ATCTGTTTGC	420
20	AGAGTGGGTG CTTAGCAGAC AGAGTGAAGC TGGCTGGGGG GCACAGTGGT GTGTAGTGCT	480
	GCTGTGTATC AAAAGACCAA GGTATTATGG GACCTGGTTT CAGAATGGGA TGGGTTTCTT	540
	CACCTCATGT TAAGAGAAGG GAGTGTGTCC TGAAGAAGCC CTTCTTCTGA TGTTAAAATG	600
25	CTGACCAGAA CGCTCTTGAG CCCAGGCATC GTTGAGCATT AACACTCTGT GACAGAGCTG	660
	CAGACCCCTG CCTTGAGTCT CATCTCAGCA ATGCTGCCAC CCTCTTGTCT TTCAGAGTTG	720
30	TTAGTTTACT CCATTCTTIG TGACACGAGT CAAGTGGCTC ACAACCTCCT CAGGGCACCA	780
	GAGGACTCAC TCACTGGTTG CTGTGATGAT ATCCAGTGTC CCTCTGCCCC CTTCCATCCC	840
	CAACCACATT TGACTGTAGC ATTGCATCTG TGTCCTGTTG TCATTTATGT TAACCTTCAG	900
35	GTATTAAACT TGCTGCATAT CTTGACATAT CTTGAGATTC TGCATGTCTT GTAAAGAGAG	960
	GGGATGTGCA TTTGTGTGG ATGTTGGATA GTCATCCACG CTCAGTTTGG ACCATTGGAG	1020
40	GAACTTAGTG TCACGCACAA ATGGGGCTAT TCCTACGCTT AGAATAGGGC TTGTCTGCCC	1080
	ACTITIAGAAG AGTCCCAGGI TGGTGAGCAT TIAGAGGGAA GCAGGGCAGA ACTCTGAACG	1140
	ACANTACGTC TCTCTGAGCA GAGACCCCTT TGTTCTTGTT ATCCACCCAT ATGGACTTGG	1200
45	AATCAATCTT GCCAAATATT TGGAGAGATT GTGTGGATTT AAGAGACCTG GATTTTATA	1260
		1320
	TTTTACCAGT AAATAAAAGT TITCATTGAT ATCTGTCCTT GAAAAAAAAA AAAAAAAAAA	
50	AAACTCGA	1328

55 (2) INFORMATION FOR SEQ ID NO: 52:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1856 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ □ NO: 52:

	(XI) SEQUENCE SESCRETIZATION SEQ ES 113. 32.	
5	GAATTCGGCA CGAGCTCTGC AACATTSCAA ATGAACTTGC AGTCGAGGGT TCCGCTGCCC	60
	CCTAGATTAA ATTCCCCGGG CTGAAACTGA GTTGCAGATT TALAATATCA TATTTTAAAT	120
10	TOCTOTOTTC AATTAAACCA TTTATGACCA TAACTAATTI TCACGATGTC GATGCATGCT	180
10	THTCCAGGCC TTCCTTCTTT GTACAAAAST AAATGTCCAT AAAGCGTTTC ACTTATATTC	240
	TTCAAACATG ATGCTAATTT AAATTAALTA CTTCCTATGA TALGTTATTA TTCCTATGAT	300
15	THYSCOACTG THATTAGTTC TCTCAAAAAT ACATCTAGGG AAGAGGATTA TTTTAAGTRA	360
	THIGATTATC THICTATCTC THITATTIAL THURCALTTA CHIRAGAAAT TOGTTCCATT	420
20	GGTTGGCATT GATACAGTAA ATTTGTAAAT GAGGAGACAA TAIAAAAAAT CTAAATTACT	480
20	TGTGCTTAAT GACTGTAGCA GAATSCUTTT TCTCTAAATU AGALTGTCFT TCTTGCAGTT	540
	TAGTITGATA GATTIGCAAG CTATGCTGCT TCCATGAAGT TAGTIGCGCT GGTAGGAACG	600
25	CAGGCTTCTT TGTCTCTGGT TGTAGCTTGT ATGATTGCCCT CALTAGGCAG ACAACGTAGC	660
	COGAGATCAC AAATCAGGCC CTTGGTGTAG TTGCTAGTGT GTGGAGGTGC AGAGAGGTTG	720
30	GCAGAAACTG ACCTCACTGG GCAAGGGTGG CCATGGACCT GATTCTTTAA TGCACTCTAT	780
30	GTGTTCAGGA AGCCACAGGC CATATTTGAC TCTGAGAAAA AAAAAAAGAG GAAAAAACCCC	840
	ACAAAGTATA ACAACCCCTT AAGATACATC TATTITAAAS TGAAATTAAT TTTTCAGTTT	900
35	ATACCATTGG CCAATTACAA GATAAAAATG TTCAATTTGT TEAAGAATCC TTTGTTGACT	960
	TGTCTTTTCA TCTCTTGCTA TTTATATTTG TCACTGTTAG TCAACAAGT CTTATTTGCT	1020
40	GAGGAAGGAC TITSCTGCAC TTACTGTACO ACATCAAACA CTGGGGAGGG TGGTGTTTAA	1080
40	CTTTTTAAAA AATGTTATTC TGATTAIAAD AATAATATTG GCTTTTTCA TGAAAAGAGC	1140
	GCCACCTTGC AAGGTTTAGT GAGATTTATG GAAGTTGAAT ACCTAAGCAG GAATTGCTGC	1200
45	TAGCTCCAAA AATTTGCGAA GCAAAABCTA GCCCCAATTG STYTGGAAGT TTGAAACTGA	1260
	TTAACAGATT TOCATTIGAA GTGACTICAG ACATTAGGTI CAGACATTAG TTAAAAATAG	1320
50	AAAGAGGAAT AAAGACATOT YTTOTOTOTA GAAAAGATAA CACCECAACT AATAATOOTT	1380
50	CCCACTITCA TIGAGATCAG CTIGICIGAI AACCIGATAI GAGIGIGAIA ATGATAAACA	1440
	TGATAATAGT GGTACTTTTG TAATTTTGCT GGTGCATTTA AGAAGATAGT AAAKGATGAG	1500
55	TTCAYCTTYT CTYCGAACAT YCCTATYCCT AGATGTAGTT TACCTCAAAT TGGGAATTAT	1560
	AACTGTCCTA ATTTTTGTTG TGTACCCTGA TGCCCCTTTT GCTTTAATAC CCACAGTGTA	1620
60	ACAATTAAAT ATCACACTAT GACATAIGAI TEAAGIAGGA TATTITAAAG ATAAATTITA	1680

WO 98/54963

5

15

313

GGGGTAAATG	TTTACTTCAA	AATGACTCCA	TATTTCAAAT	ATCTGTTTAG	ACTGTGAAGG	1740
CCAAATAATT	TTTAAGAAAA	CATTTGAAGA	GTAGTGTGTT	TGCATTTGTG	AATAATCTTA	1800
CTCACAGCAA	GTAAACGTAA	TAAAAGCCAA	CATTTAAGCC	ааааааааа	AAAAAA	1856

10 (2) INFORMATION FOR SEQ ID NO: 53:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1558 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

20 TGGGTATCCA TTCCTGNAAT TACTTTACTT AGGATAATGG CCTCCAGCTC CGTCCAAGTT 60 GCTGCAAAAG GTATTATTTC GTTCCTTTTT GTGGCTGAGT AGTATTCCAT GGTGTATATA 120 TACCACATTT TCTTTATCCA CTCATTGCTT GATGGGCAGT TAGGTTGGTT CCACATCTTT 180 25 GCAATIGIGA GITGIGCIGC TCCAGATATC ATCTTTAACT CCTTTGCCTT CTCCACATAC 240 ATTTCCAAGT CCTGTTCATT CTACCTCCAA AATGTATCTT GTATCCATTC ATCTCTCCC 300 30 ATCTTCAATC TATTTCAATG CCCCATCATC TCTTGCATGG AGGAGTGTAA TAATTGGCTA 360 ACTGGCCTGT TCTTACATTT TAAAATCAAA AGATGTGACA GGTGAAATGC CTATTTCAGT 420 GTCCATTGAT GGTTCTGCTT ACACACCACC TGGCTGCCTG GTGTCGCAGT GGCAGAGTTG 480 35 AGCAGTGTGA AAAAGACTGC TTGGCCCTTT ACAGGGAAAG CAGGTCCACT GTGGCCTGTG 540 AGGACGAGAG CTCTGGGCAG GCTCGGACAC TGGCAGACCC TGGTCCTGGC TGGCCAAGGC 600 40 AGCAGGGTAT GTGTTTCGGG TCACTCACAG GGCTCAGCAC CACTCCTCAT GGCTTCCTTA 660 CTGTTTCGGC AGAGGCTGAC CCGCGGCTGA TTGAGTCCCT CTCCCAGATG CTGTCCATGG 720 GCTTCTCTGA TGAAGGCGGC TGGCTCACCA GGCTCCTGCA GACCAAGAAC TATGACATCG 45 GAGCGGCTCT GGACACCATC CAGTATTCAA AGCATCCCCC GCCGTTGTGA CCACTTTTGC 840 CCACCTCTTC TGCGTGCCCC TCTTCTGTCT CATAGTTGTG TTAAGCTTGC GTAGAATTGC 900 50 AGGTCTCTGT ACGGGCCAGT TTCTCTGCCT TCTTCCAGGA TCAGGGGTTA GGGTGCAAGA 960 AGCCATTTAG GGCAGCAAAA CAAGTGACAT GAAGGGAGGG TCCCTGTGTG TGTGTGTGCT 1020 GATGTTTCCT GGGTGCCCTG GCTCCTTGCA GCAGGGCTGG GCCTGCGAGA CCCAAGGCTC 1080 55 ACTGCAGCGC GCTCCTGACC CCTCCCTGCA GGGGCTACGT TAGCAGCCCA GCACATAGCT 1200 TGCCTAATGG CTTTCACTTT CTCTTTTGTT TTAAATGACT CATAGGTCCC TGACATTTAG 60 TIGATTATTT TCTGCTACAG ACCTGGTACA CTCTGATTTT AGATAAAGTA AGCCTAGGTG 1260 314

	TTGTCAGCAG	GCAGGCTGGG	GAGGCCAGTG	TIGIGGGCTT	CCTGCTGGGA	CTGAGAAGGC	1320
5	TCACGAAGGG	CATCCGCAAT	GTTGGTTTCA	CTGAGAGCTG	CCTCCTGGTC	TCTTCACCAC	1380
	TGTAGTTCTC	TCATTTCCAA	ACCATCAGCT	GCTTTTAAAA	TAAGATCTCT	TTGTAGCCAT	1440
	CCTGTTAAAT	TTGTAAACAA	TCTAATTAAA	TGGCATCAGC	ACTITAACCA	АААААААА	1500
10	ААААААААА	AAAAAAAAA	AAAAGGGGGC	CGCTCTAGAG	GTCCAAGTTA	NGACGNGG	1558

15 (2) INFORMATION FOR SEQ ID NO: 54:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 948 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

25	TAAAAATCAT GCTCTGTACC ATCCTCACCG TAGTCATCAT CATCGCCGCG CAGACCACGA	60
	GAACTACTGG GATCCCTAAA AACGCCCCTG GTCCGGCCCC ACTCTGCGCC CCTCGATCTC	120
	CCAGGCTCTT TCTGCAGWCA TACCGCGGAC CCAATGGGCG CCCTGCACAC CCGTTTCTGG	180
30	GGCCGTCAGA CTTGGATACA TCGTAAACTC CGCCTCCACG GAACGTCTCG CCTKGCGAGC	240
	AAGMTCGGAA TCCAGTTCCT CAGGAACCCC TCCAAAACCC ACACCCCCAG GGACGCCGCT	300
35	TTCCGGGATC CCGGSCAAAC GCCGGACCCT CAGTCGCTCC AGGCCCCCTC ACCCTCAAAG	360
	TGTAGCGCCC CCAACCGAGC AACCTCGGTT TGGTCCCTAA AACCCCGCCT CCTCTATAAG	420
	CACCGCCCCA GCTCTGACAA AACCCCGCCT CCAGGTCGGC AGGCTCCGCT TCTTTTCTTC	480
40	TCCGCGGGGT GATTCAGTCC AGTGATTGGG TTTGTGGCTC CAGGCCTCGC CCACAGACGG	540
	ACAGACCCCT CCCTTTCTTC CGGCAAAAGG ACCGAGCCCT GGGGTAGTAA GGSCCCCACA	600
45	CTCCTGTTTT TTGCAAGTAC ATTTTTGTCC YTCCTCCACC CAGGTATCTG CCTATTTTCT	660
	TGCTAATCCC AGAACCTTTC CTTTTGCTTT TTTTAAGGAC ATTTGGGAAG TTCCTGGTGT	720
	AGGACCCTTC TCCCTGGGAT AAGAAACCTG CCTGTAAACG CTCTGTAAAT ACTCCCTTCC	780
50	ACCCATCCCA GCCCCTGGGC AGCCGGGCAG AAGGGAATCC AGGCTATGGA CCTCCCAAGT	840
	CCCCGCTCCC CGCTCCCCTC GGCGGCCCCG CCTTGTTCTG ATCTGTGTGT GAGTGTGTGT	900
55	GAACTTCTGA AAGACAATAT TAAAGAGACT TAGTTGAAAA AAAAAAAA	948

^{60 (2)} INFORMATION FOR SEQ ID NO: 55:

315

(i) SEQUENCE CHARACTERISTICS:

5	(A) LENGTH: 990 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	•
10	GOGGAACTGC AGTGACAGCA GGAGTAAGAG TGGGAGGCAG GACAGAGCTG GGACACAGGT	60
	ATGGAGAGGG GGTTCAGCGA GCCTAGAGAG GGCAGACTAT CAGGGTGCCG GCGGTGAGAA	120
15	TCCAGGGAGA GGAGCGGAAA CAGAAGAGGG GCAGAAGACC GGGGCACTTG TGGGTTGCAG	180
15	AGCCCCTCAG CCATGTTGGG AGCCAAGCCA CACTGGCTAC CAGGTCCCCT ACACAGTCCC	240
	GGGCTGCCCT TGGTTCTGGT GCTTCTGGCC CTGGGGGCCG GGTGGGCCCA GGAGGGGTCA	300
20	GAGCCCGTCC TGCTGGAGGG GGAGTGCCTG GTGGTCTGTG AGCCTGGCCG AGCTGCTGCA	360
	GGGGGGCCCG GGGGAGCAGC CCTGGGAGAG GCACCCCCTG GGCGAGTGGC ATTTGYTGCG	420
25	GTCCGAAGCC ACCACCATGA GCCAGCAGGG GAAACCGGCA ATGGCACCAG TGGGGCCATC	480
25	TACTTCGACC AGGTCCTGGT GAACGAGGGC GGTGGCTTTG ACCGGGCCTC TGGCTCCTTC	540
	GTAGCCCCTG TCCGGGGTGT CTACAGCTTC CGGTTCCATG TGGTGAAGGT GTACAACCGC	600
30	CARACTETICC AGGTGAGCCT GATGCTGAAC ACGTGGCCTG TCATCTCAGC CTTTGCCAAT	660
	GATCCTGACG TGACCCGGGA GGCAGCCACC AGCTCTGTGC TACTGCCCTT GGACCCTGGG	720
25	GACCGAGTGT CTCTGCGCCT GCGTCGGGGG NAATCTACTG GGTGGTTGGA AATACTCAAG	780
35	TTTCTCTGGC TTCCTCATCT TCCCTCTCTG AAGGACCCAA GTCTTTCAAG CACAAGAATC	840
	CAGCCCCTGA CAACTTTCTT CTGCCCTCTC TTGCCCCANA AACAGCANAA GCAGGANANA	900
40	NACTOCCTCT GGCTCCTATC CCACCTCTTT GCATGGGAAC CTGTGCCAAA CACCCAAGTT	960
	TAAGAAAAA ATAAAACTGT GGCATCTCCA	990
45		
	(2) INFORMATION FOR SEQ ID NO: 56:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1603 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
	GGTCGACCCA CGCGTCCGGC CCGCCGGCTC CGGAGCGGCT CTGCCTTCCC GAGCGCGGGA	60
60	CCGCGCCCTG GGGGAGGAGG GCGAACGACG CGGCGATGGC TCCGGGGGA CTCCCGGGGT	120

•	CCGCCGTCCT	AGCCGCTGCT	GTCTTCGTGG	GAGGCGCCGT	GAGTTCGCCG	CTGGTGGCTC	180
	CGGACAATGG	GAGCAGCCGC	ACATTGCACT	CCAGAACAGA	GACGACCCCG	TCGCCCAGCA	240
5	ACGATACTCG	GAATGGACAC	CCAGAATATA	TTGCATACGC	GCTTGTCCCT	GTGTTCTTTA	300
	TCATGGGTCT	CTTTGGCGTC	CTCATTINGC	CAMCTNGCTT	NAAGAAGAAA	GCTATCGTT	360
10	GTACAACAGA	AGCAGAGCAA	GATATCGAAG	AAGAAAAAGG	TTGAAAAGWT	AGRATTGAAT	420
10	GACAGTGTGA	ATGAAAACAG	TGACACTGTT	GGGCAAATCG	TCCACTACAT	CATGAAAAAT	480
	GAAGCGAATG	CTGATGTYTT	AAAGGCGATG	GTAGCAGATA	ACAGCCTGTA	TGATCCTGAA	540
15	AGCCCCGTGA	CCCCCAGCAC	ACCAGGGAGC	CCGCCAGTGA	GTCCTGGGCT	TTGTCACCAG	600
	GGGGACGCC	AGGGAAGCAC	GTCTGTGGCC	ATCATCTGCA	TACGGTGGGC	GGTGTWGTCG	660
20	AGAGGGATGT	GTGTCATCGG	TGTAGGCACA	AGCGGTGGCA	CTTTATAAAG	CCCACTAACA	720
20	AGTCCAGAGA	GAGCAGACCA	CGGCGCCAAG	GCGAGGTCAC	GGTCCTTTCT	GTTGGCAGAT	780
	TTAGAGTNAC	AAAAGTGGAG	CACAAGTCAA	ACCAGAAGGA	ACGGAGAAGC	CTGATGTCTG	840
25	TTAGTGGGGC	TGAAACCGTC	AATGGGGAGG	TGCCGGCAAC	ACCTGTGAAG	AGAGAACGCA	900
	GTGGCACAGA	GTAGCAGGTG	AGCCGTGGTT	TTGGTGACAT	TGGGGGCAGA	GTGGTGCAGG	960
30	GTGAGGAGAA	GGTACTTGGA	GCCTCCCAGG	TGCTGTGGCA	GCATAGGAAT	GGTATTTGAC	1020
••	ACGGAAGTGC	GAGAGCTTTC	CTTGACCCAC	GAAGACTGAG	GGGGACTGAA	CATGATTACT	1080
	TGTCTGCCTA	GAGCTTCTTG	TAAAGAAGTO	: ACAAACTTAG	TGCCTCCAGC	GCTTGCCTG	1140
35	TGTGATAATC	GAGGATAGAGG	ATTACTTGTC	AGGCAATGTC	GCATGGTGGC	GATTGTGGCA	1200
	AACTAGAATT	CACATCACCC	: ACCATATAGO	GCTTGCATTA	A CCACGAGGCA	GAAAGCACCT	1260
40	AGTGTTGCTC	CATCTTCTTA	CGCAAAAAA	ACAAAATCC	A GACTTCTAA	ATGTAAAATC	1320
	ACTGATTTTC	C GATATTGGCA	GCTTACTTT	VAATTTTTTT 1	A CAACCATGC	A GGCCAAATGA	1380
	CTTGTAATC	r TGTCACCATI	TTTAGGTAA	A CTGTGACTTO	AAAAAGTCTY	GAGCAAACAA	144
45						A CAGTTYTGAA	
	ACCTCAATA	C GAATATTICI	CTTCCCACC	A AATATTITG	A GGCAATTGA	A AAGCCACAGT	156
50	GATTTATTTY	C TIGATITICS	TAATTTTAAT	TTGCAAGAC	A ATT		160

(2) INFORMATION FOR SEQ ID NO: 57:

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1052 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

5	TACAGCTCAG GATGCCTGTA ACATTGTCAT CTCTGGGCTT CTGGGTCCTG CTTAGCCTGC	60
•	TTTTTCCCTG GAGGACTGAC CAGGGATGCG GCCCAGCAAC ATGTTACTAA ATCATACTCT	120
	CCTCCCTACC TTTCCCAGAC CTCTCACTCC TGCCTGGTGT TCCAACCCGT TCTGTGGCCA	180
10	GAGTATACAT TTTGGAACCT CTTCGAGGCC ATCCTGCAGT TCCAGATGAA CCATAGCGTG	240
	CTTCAGCAGN AAGGCCCGAG ACATGTATGC AGAGGAGCGG AAGAGGCAGC AGCTGGAGAG	300
· 15	GGACCAGGCT ACAGTGACAG AGCAGCTGCT GCGAGAGGGG CTCCAAGCCA GTGGGGACGC	360
13	CCAGCTCCGA AGGACACGCT TGCACAAACT CTCGGCCAGA CGGGAAGAGC GAGTCCAAGG	420
	CTTCCTGCAG GCCTTGGAAC TCAAGCGAGC TGACTGGCTG GCCCGTCTGG GCACTGCATC	480
20	AGCCTGAATG AGGCTGGCCA CCTGCCACTT TGCCCTGCCC	540
	MYCCTTCCTT TTCTTGGTGA AAGGCACCTC CTTTCCTGAT AATGAATGGT GTTCCCTTTG	600
25	CTTGGCTGGG GAGCCCCCCA GGCCAGGTTT GCTGGCCATA GATACCTTTG GGCTGCCTGR	660
23	GACAGGCTCC TGAGGAGGAT TGAGGGTGAA AGTCTCCCAC GAGTACACTA AACCTAGGTC	720
	TGGTCACCAA TAGGGTTTGG AGAGCAAAGG GCCACAACTC ATCAGCTGCC TGTCTCTTAG	780
30	ATGCACTITC TITTITCCACC AGCACATCCT TCAACACACA GAATTTCAGG GAAGAGTTCT	840
	CCCCAAAACC CTAGCTCTTT ACCCTTCCAT TTTAGCCTTC CACCCAGCTT CCACAAAAGA	900
35	TTTGGCTCTA CCTTGGATCT GCTAGTAAAT AACTAATAGG CAGGCAGTTA TTTGGGTAAG	960
33	GAAAAAAGGG GTGGGAGAGA CAGAAAATTT GCCCACTGCT GCTCCTCCCC TTGGSTYTCC	1020
	ACCTGGGATT TGCTATTGAA TCTCTACCCT NN	1052
40		
	(2) INFORMATION FOR SEQ ID NO: 58:	
45		
43	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 814 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:	
<i>e e</i>	ACNOGNIEGO GGCCGCTCTA GAACTAGGGG ANCCCCCGGG CTGCAGGAAT TCGGCACGAG	60
55	CATAGACTIT TAAACTGGTA CGGTTCTTAG AGATGGTCCT TGGCCTTCTG TTGTTGTTGT	120
	KGITITITIC TITTICTICT TCTCCTICTC CTTCTTCTTC TCTTCTCTT CTTTCTTCTT	180
60	TTTTTTTCA GAGTCTTGCT CTGTCACCAA GACTGGAGTG AAGTGATGTG ATCTCGGCTT	240

	AAGGTCAGGT TAGGGCTCCT GTACCCATTC TGTTCCACCA CTGTTTGATC TCTCTGGCCT	900
5	CCCACCAGGA ATGCCGTTTC CTTTTTATGG ATCTGTTGGG AACCAGAGAG AATCAACAGA	960
_	TCAATGACAT AGGATCCGAA GTGCAATGAT AGTCACTTCT AGTTTGGCAT TTCACAAACT	1020
	CTGNACAGCA AGGTATTGGT AGGTTACTCA ATTTCAAAAG GGCCCCATGG CCAAATATGT	1080
10	TTAGGAACCG CTGTTTGNAT TTCTTTTTTT GGAGACGCAT TGTATATAAT ATATGTCAAA	1140
	GGCTTTCGGA ATTCCTGCAG GAAAGAAATC AGCTTTGTTA AATCCNAAAA AAAAAAAAA	1200
15	AAAAAAATAG ACTCG	1215
20	(2) INFORMATION FOR SEQ ID NO: 60:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 478 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
30	ATTTCTTATG ACATGGGGGT TTGAATTGGT TGGCAAATGT TTAATTTTAA TATCCATAAT	60
50	CAGTGAGGTC CTGCTGGCTG TAATCATTAA TTGTGAAATC TAAGGAGCTT AGTTCATGGC	120
	TCTAGAATTT CACAGAAAAR TGYGMTATGA TACGAGCATT AAGTTTATTT CTTCTGATCT	180
35	TTGATGCAGC TTTGTTCAGT TTATCTGTTT TTGTATTTAT TGGTCATCTA CTTCCCATGC	240
	CAAAAGGGAC TOGTCTACAT AGCTGCGCTA AACACCTGAT CAAATCACTA AAAGAAAATG	300
40	TGTTACCTCT AATGAATTAT CCTGATTGTA AGTTAAAAAT CAATATTTCC CCGTAGTGAG	360
	GTTTGCTTTT TAAAAAGAAK KCTTAAAAAA AAAAAAAAAA AAACGAGTTN AAGAAAAGGA	420
45	AGCAAGCTCA GGTAAGGTGC ACACATTGGG CTAAGGAAGC TAGAGCCTGT GGAGANGC	478
	(2) INFORMATION FOR SEQ ID NO: 61:	
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 618 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
60	TATGACCTTG ATAACCCCAA GITNGAAATT AACCTTCANI AAAGGGAACA AAAGCTGGAG	60
60	TTCGCGCGCT TGCAGTTCGA CACTAGTGGA TCCCAAAGAA TTCGGCACGA GTCATAATGA	120

320

•	GCTACTAGGT AAGCCTTCTG GGACTTTCAG ATATTTTGGG GAAGATTGAT TTTTGTTCTT	180
5	ACATGCTGTG GACCCTTGGC CATCAAATGG TATGGGGAAG CTCATCCGTC TGTCTGTGAT	240
J	GGTCATGTCA GTCAGGCGTC TTTTTAGTAT TTACTGGGTG CTCAGTACTG TGCCAGATGC	300
	TGTCGGGAGC CGTGGTGGTA TGGAGGAGGA GTGCTCCAGA GGACTCTGCT GTGTGGCAGG	360
10	CCAGCATAAA CAAGCCAAGG GGAAAAGGCA GGCATGGAAT AAAGGGGGGAG AATACCAGTG	420
	TGTGACTTAC TGCTGACTGT GTGGATTAGC CTATCAGCAG TAATCAAGCA GGGCGGAGGG	480
15	CATTATCTTT GAGCCAGAAG AGTGAGCACT GGSCCGAGGG TGGAGCATCA AGAGGGGGTG	540
13	TAGGACCNCA AGGCTTCTTN CNGGGGAGAC AACGTCAATA AGCNGTCAGT AGTCACCGAC	600
	AGTTTTGGGA AGCAAGGG	618
20		
	(2) INFORMATION FOR SEQ ID NO: 62:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 751 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
	TCGACCCACG CGTCCGAGGA GCTGGACTTC TGAGACAGCC ATTCTCCTTG CATAGCACTG	60
35,	TCTGCTGCTA CAGCTCATAG AAGTCAACAA TTTTCTTCAA CACTGGTAGG CAGCCTCTAA	120
	ATGGCCCTGA TCACCCTCAC CTCCTGCCAT TCACACCNNT GTAAAATTCC ACCCCTGGAC	180
40	CTAGTGACTC ACTTCTAACA ANGAGAATAC AGCAAAAGTA ACATCGCTTC TGAGGTGAGG	240
40	CTACAAGGAG ACTACGATGC CTGCCTTGGT CACCCTTCTC CTGCTCTTTC CATTGCTCCC	300
	TCTGATGGAA GCCAGTTGCC ATGTGATGAG GTGCCCTATG GAGAGGCCCA CGTGACAAGG	360
45	TATTGTAAAA AGCCTCTGAC CAATAGCCAT CTAGAAACGG AGGCCCAGTC CAGCAGCCTC	420
	TGAGATGAAT CCTGCCAACC TGAGCTTGGA GACAGATTCT CTCCCTATCC TGCCTTGGGA	480
50	TGATCACAGC CACCACCAAC ACCTTCACTG CCTGGTGAGA GGCCAAGCCA GTGAACCCAA	540
JU	GGTAAACTGG ACAGAATCCT GACCCACAGA AACTGAGATA ATGTTTGTTA TTTTAAGCTG	600
	CTCAGTTTGT TACAGAGCAA TAGATAACTA ACTCAAACAC CATAAAATTC TAATATTTTA	660
	THE THE THE TANK THE	-

720

751

ACACAATTAC ATGTGATTTT TTAAGAAGGC T

•	(2) DEFCEMATION FOR SEC ID NO: 63:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 780 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPCLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	•
	CNEXCLETCA CIRTCCCCGA TICCCGGGTC GACCCACGCG TCCGGGTTGG CAACTCCTGA	60
15	GECCTECATE GETCACTICA CATITITCCTA CCTCTCCTTC TAATCTCTTC TAGAGCACCT	120
13	GCTATCCCCA ACTTCTAGAC CIGCTCCAAA CTAGTGACTA GGATAGAATT TGATCCCCTA	180
	ACTERCTOTE TOCOGNOCITE ANTICCTOCTA ACAGEATTCC CTGTGCTCTC CTCTCAGGGG	240
20	CASCATOCTA ACGGGGGGAC GTCCTAATCC AACTGGGAGA AGCCTCAGTG GTGGAATTCC	300
	AGGCACTGTG ACTGTCAAGC TGGCAAGGGC CAGGATTGGG GGAATGGAGC TGGGGCTTAG	360
25	CTGGGLGGTG GTCTGAAGCA GLCAGGGAAT GGGAGAGGAG GATGGGAAGT AGACAGTGGC	420
23	TOGTATEGET CTGAGGETEC CTGAGGETEC TECTGETTETT	480
	TGATGATTIS GGGGCTTGGG ASTCCCTTTG TCCTCATCTG AGACTGAAAT GTGGGGATCC	540
30	AGGATGGCCT TOCTTCCTCT TACCCTTCCT CCCTCAGCCT GCAACCTCTA TCCTGGAACC	600
	TETCCTCCCT TTCTCCCCAA CTATGCATCT GTTGTCTGCT CCTCTGCAAA GGCCAGCCAG	660
35	CTTGGGAGCA GCAGAGAAAT AAACAGCATT TCTGATGCCA AAAAAAAAAA	720
,,,	GCGGCCGAAA GCTTACTNCC CCTTAAGTAA GGGGTTAATT TTTAGCTTGG GCACTNGGCC	780
40	(2) EXPOPMATION FOR SEQ ID NO: 64:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 588 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
50	TTCCGAATTA ATCGACTCAC TATAGGAAWT GCCGTCGCCA TGACCCGCGG TAACCAGCGT	60
	GAGCTCGCCC GCCAGAAGAA TATGAAAAAG CAGAGCGACT CGGTTAAGGG 'AAAGCGCCGA	120
55	GATGA-DGGC TITTCTSCTGC CSCCCGCAAG CAGAGGGACT CGGAGATCAT GCAGCAGAAG	180
	CAGAAAAAGS CAAACSAGAA GAAGGAGGAA CCCAAGTAGC TTTGTGGCTT CGTGTCCAAC	240
60	CCICITECCC TICCCCIGIG TECCICGAGC CAGICCCACC ACGCTCGCGI TICCTCCTGI	300

•	AGTGCTCACA GGTCCCAGCA CCGATGGCAT TCCCTTTGCC CTGAGTCTGC AGCGGGTCCC	360
	TITTETECTT CCTTCCCCTC AGGTAGCCTC TCTCCCCCTG GGCCACTCCC GGGGGTGAGG	420
5	GGGTTACCCC TTCCCAGTGT TTTTTATTCC TGTGGGGCTC ACCCCAAAGT ATTAAAAGTA	480
	ССТТТСТВАТ ТССАВАВАВА ВАВАВАВАВА ВАВАВАВАВА ВАВАВАВА	540
10	AAAAAAAAAA AAAAAAAAA AAAANNCGGG GGGGGGCCCC CCCCCCCC	`588
.15	(2) INFORMATION FOR SEQ ID NO: 65:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 774 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
25	TTTAAAGATG AAGAAATGAC AAGGGAGGGA GATGAGATGG AAAGGTGTTT GGAAGAGATA	60
25	ACCCCTCTRA GAAAGAAATT TAGGGCTCTG CATTCTAACC ATAGGCATTC TCGGGACCGT	120
	CCTTATCCCA TITAATTAAT TICTCTGACA ATTCAATTAT TITCTGTTAT TAATGTTGCC	180
30	ACTECTITCT GTTTGTCTGC ACTITCTTGA TAAATATTTG CTATCGTTTT ACTCCAGTCA	240
	TICGATGTTG CTGAGATTTA CATATGACTC TTGTCAACAT CTCATCTTTT GACCCAATCT	300
35	TATTCATTTA ATAAGAGGTC TCATTCATTT GCATGGAAAA ATGCTCATTG TATATTGCAA	360
55	AGTGAAAATA ACGAGTTGCA AAACAGTGTA TACATATATG TGTGTATATA TGTACACTTT	420
	ATTIGIACAT TICTATGIGA CATAATGCAA AGGAAAGIGT CIGATTITAT TATACACCAA	480
40	AGGITAACAG TGAATCTCTG TGTGATCTCT TTTTTTTTCT TTTTGCCTAT CTGCATCTTC	540
	TCACTTGCCA AAAAATGAAT ATATGTTTAT GTGTGTATAT TACTTGTGTC ACAAAAAACC	600
45	CTARAGTAGA CAGTAAAAGA ACTTGTCAAT CGCCTTTGGA AGGCAATGAA ACACTTAATA	660
	AACTCTCAAT AACAGAAGCG TAAAAATGAA ATGTAAACCT CCAATTACCT CTGGATCTCT	720
	TAGCCAGAGT AATAAACTGG TAATTATTAC AGATAAAAAA AAAAAAAAAA	774
50		
	(2) INFORMATION FOR SEQ ID NO: 66:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1866 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
60	(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:

	(XI) DEQUEED DESCRIPTION, DEQ IS NO. 44.	
	ACCCACGCGT CCGGTCCTCT TCTTCAGCAC ATGCCAAAGC TGTTCCTCAC GGCCTGTGAG	60
5	ACAAGAGCAT CTTGGATGTA GGACAATGGA AGAGTTAGAT GCCTTATTGG AGGAACTGGA	120
	ACGCTCCACC CTTCAGGACA GTGATGAATA TTCCAACCCA GCTCCTCTTC CCCTGGATCA	180
10	GCATTCCAGA AAGGAGACTA ACCTTGATGA GACTTCGGAG ATCCTTTCTA TTCAGGATAA	. 240
	CACAAGTCCC TTGCCGGCGC ANTCGTGTAT ACTACCAATA TCCAGGAGCT CAATGTCTAC	300
	AGTGAAGCCC AAGAGCCAAA GGAATCACCA CCACCTTCTA AAACGTCAGC AGCTGCTCAG	360
15	TTGGATGAGC TCATGGCTCA CCTGACTGAG ATGCAGGCCA AGGTTGCAGT GAGAGCAGAT	420
	GCTGGCAAGA AGCACTTACC AGACAAGCAG GATCACAAGG CCTCCCTGGA CTCAATGCTT	480
20	GGGGGTCTSG AGCAGGAATT GCAGGACCTT GGCATTGCCA CAGTGCCCAA GGGCCATTGT	540
20	GCATCCTGCC AGAAACCGAT TGCTGGGAAG GTGATCCATG CTCTAGGGCA ATCATGGCAT	600
	CCTGAGCATT TTGTCTGTAC TCATTGCAAA GAAGAGATTG GCTCCAGTCC CTTCTTTGAG	660
25	CGGAGTGGCT TGGNCTACTG CCCCAACGAC TACCACCAAC TTTTTTCTCC ACGCTGTGCT	720
	TACTGCGCTG CTCCCATCCT GGATAAAGTG CTGACAGCAA TGAACCAGAC CTGGCACCCA	780
30	GAGCACTTCT TCTGCTCTCA CTGCGGAGAG GTGTTTGGTG CAGAAGGCTT TCATGAGAAG	840
30	GACAAGAAGC CATATTGCCG AAAGGATTTC TTAGCCATGT TCTCACCCAA GTGTGGTGGC	900
	TGCAATCGCC CAGTGTTGGA AAACTACCTT TCAGCCATGG ACACTGTCTG GCACCCAGAG	960
35	TGCTTTGTTT GTGGGGACTG CTTCACCAGT TTTTCTACTG GCTCCTTCTT TGAACTGGAT	1020
	GGACGTCCAT TCTGTGAGCT CCATTACCAT CACCGCCGGG GAACGCTCTG CCATGGGTGT	1080
40	GGGCAGCCCA TCACTGGCCG TTGTATCAGT GCCATGGGGT ACAAGTTCCA TCCTGAGCAC	1140
10	TTTGTGTGTG CTTTCTGCCT GACACAGTTG TCGAAGGGCA TTTTCAGGGA GCAGAATGAC	1200
	AAGACCTATT GTCAACCTTG CTTCAATAAG CTCTTCCCAC TGTAATGCCA ACTGATCCAT	1260
45	AGCCTCTTCA GATTCCTTAT AAAATTTAAA CCAAGAGAG AGAGGAAAGG GTAAATTTTC	1320
	TGTTACTGAC CTTCTGCTTA ATAGTCTTAT AGAAAAAGGA AAGGTGATGA GCAAATAAAG	1380
50	GAACTTCTAG ACTTTACATG ACTAGGCTGA TAATCTTATT TTTTAGGCTT CTATACAGTT	1440
	AATTCTATAA ATTCTCTTTC TCCCTCTCTT CTCCAATCAA GCACTTGGAG TTAGATCTAG	1500
	GICCTICTAT CTCGTCCCTC TACAGATGTA TTTTCCACTT GCATAATTCA TGCCAACACT	1560
55	GGTTTTCTTA GGTTTCTCCA TTTTCACCTC TAGTGATGGC CCTACTCATA TCTTCTCTAA	1620
	THIGGICCTG ATACTIGITT CITTICACGT THICCCATTT CCCTGTGGCT CACIGTCTTA	1680
60	CAATCACTGC TGTGGAATCA TGATACCACT TTTAGCTCTT TGCATCTTCC TTCAGTGTAT	1740

324

;	ААААА						1866
	TAAATAAACT	GCCTTCTGCT	TTCAATAAAA	АААААААА	AAAAAAAA	ААААААААА	1860
	TTTTGTTTTT	CAAGAGGAAG	TAGATTTTAA	CTGGACAACT	TIGAGTACIG	ACATCATTGA	1800

10 (2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1152 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

CTCAAGGATG TAAAGGCTCT GCAGATTTCG GGAGGCCTGT CTCCCAGCAC CTGATGGGAC 60 20 ACTITITGCC CCACTGTAAA TICTGGGTGT ATCCTCCACT GTATGCTGTC ACCCCAAGGG 120 CAAGCACTGC ATCTGCTTAG TGAAGGATTT ATTGTTCGGA AGATACATTT TCCCCTTKAG 180 25 CAGAGAGTGG CGTATCCTGG CAGTCTTCGG TGAGCCAGTT GTACCAGGAT TATGAAATGC 240 AGATGTTTAC TGTGTCATTG TTGCTGTCAT TGCTACTGAG GAGTACTGAC CAGAATCATC 300 TGCAACTYTT AGTTGGCAGA GAGGACCACT ATGGCGGGTA GCTCTTTTCT TTCCTGCCAT 360 30 TGTGGGGATG ATTCCAGGCC AAAGATGATG GARAAGTATG GAAATCATCT GAAAGGTTGA 420 AGCTTGGCAC GTGAAGCCAT TCATGACTTT GTAAGGCAGT TTTGCTGAAG GCCAGTTCTG 480 35 CCCTGGGAGG GACGGAGGTG AATCCTCCTG AGTACCTGTG GTTTTCTTAC TTCCTGCTGA 540 ATTTACCTAA GTGCCTGTTG TTTGCTTGCT GTGGAGGCTT TCTGGTATTT CATTTCAGGT 600 GCAGATGCCT TCACTTTCCC ACCRAAAAA CCCCMACCAA ACCTAAGACC TTACTGCAAC 660 40 TAAGTYTNCC AAGTACTTTT TAACCCAATG GGATGAACAG CCTGTGGTCT GCTCAGATCA 720 CCCTGAGTGC GTGTGAGAAG GCMTNGGCTT TGCCAGGAAA TCCAGGAAGG CAGGGCCGGG 780 45 CTGTGTTGGA AGCTGGCTTA GCTGGTGGGG CAGCCTTATT TCAATTAAAA GGGCATTGAC 840 TGGGAGCAGC AGTCCTGGAG TTTGTTGCAT TTCCTATTGC CCTCAAAATG AGAAACCAGG 900 AAAATAGCAG ATTGGAGCCT TCGAGAAGGC AGTAAATGGC TGTTTTTATT GACAAAAGGA 960 50 AAACATTITA CIGCCATCIC ACIGAIGGCA ICICACIGAC ITAAAAIGAA GGCANGIIGI 1020 AGTAAAAAA AAAGTCTACA TTTTTCCACC GCCACGTTCT TATATCCTGT TTGTCAGCCA 1080 55 1140 CTGCTCANAA GGGCATGTTG TCTTGCGGAN TANAGGCGCT CTCCTTCCCT CGTTTTCCCT 1152 ATAGGTTGGG TG

325

(2) INFORMATION FOR SEQ ID NO: 68	(2)	INFORMATION	FOR	SEQ	ID	NO:	68
-----------------------------------	-----	-------------	-----	-----	----	-----	----

5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2483 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68: AGCAGGGGGT GCGCTGGGGG CGGGAGCAGC GCGKAGCCCG GCTCGGCCAC ACCGATCGCC 60 CGCCGCCATG GGCTCCTCGC AAAGCGTCGA GATCCCGGGC GGGGGCACCG AGGGCTACCA 15 CGTTCTGCGG GTACAAGAAA ATTCCCCAGG ACACAGAGCT GGTTTGGAGC CTTTCTTTGA TTTTATTGTT TCTATTAATG GTTCAAGATT AAATAAAGAC AATGACACTC TTAAGGATCT 240 20 GCTGAAASCA AACGTTGAAA AGCCTGTAAA GATGCTTATC TATAGCAGCA AAACATTGGA 300 ACTGCGAGAG ACCTCAGTCA CACCAAGTAA CCTGTGGGGC GGCCAGGGCT TATTGGGAGT 360 GAGCATTCGT TTCTGCAGCT TTGATGGGGC AAATGAAAAT GTTTGGCATG TGCTGGAGGT 420 25 GGAATCAAAT TCTCCTGCAG CACTGGCAGG TCTTAGACCA CACAGTGATT ATATAATTGG 480 AGCAGATACA GTCATGAATG AGTCTGAAGA TCTATTCAGC CTTATCGAAA CACATGAAGC 30 AAAACCATTG AAACTGTATG TGTACAACAC AGACACTGAT AACTGTCGAG AAGTGATTAT 600 TACACCAAAT TCTGCATGGG GTGGAGAAGG CAGCCTAGGA TGTGGCATTG GATATGGTTA 660 TTTGCATCGA ATACCTACAC GCCCATTTGA GGAAGGAAAG AAAATTTCTC TTCCAGGACA 720 35 AATGGCTGGT ACACCTATTA CACGTCTTAA AGATGGGTTT ACAGAGGTCC AGCTGTCCTC 780 AGTTAATCCC CCGTCTTTGT CACCACCAGG AACTACAGGA ATTGAACAGA GTCTGACTGG 840 40 ACTITICIATI AGCICAACIC CACCAGCIGI CAGIAGIGIT CICAGIACAG GIGIACCAAC 900 AGTACCGTTA TTGCCACCAC AAGTAAACCA GTCCCTCACT TCTGTGCCAC CAATGAATCC AGCTACTACA TTACCAGGTC TGATGCCTTT ACCAGCAGGA CTGCCCAACC TCCCCAACCT 45 1020 CAACCTCAAC CTCCCAGCAC CACACATCAT GCCAGGGGTT GGCTTACCAG AACTTGTAAA 1080 CCCAGGTCTG CCACCTCTTC CTTCCATGCC TCCCCGAAAC TTACCTGGCA TTGCACCTCT 1140 50 CCCCCTGCCA TCCGAGTTCC TCCCGTCATT CCCCTTGGTT CCAGAGAGCT CTTCTGCAGC 1200 AAGCTCAGGA GAGCTGCTGT CTTCCCTCCC GCCCACCAGC AACGCACCCT CTGACCCTGC 1260 CACAACTACT GCAAAGGCAG ACGCTGCCTC CTCACTCACT GTGGATGTGA CGCCCCCCAC 1320 55 TGCCAAGGCC CCCACCACCG TTGAGGACAG AGTCGGCGAC TCCACCCCAG TCAGCGAGAA 1380

GCCTGTTTCT GCGGCTGTGG ATGCCAATGC TTCTGAGTCA CCTTAACTTT GAACCATTCT

60

	TTGGAATTGG	CGTGGTATAT	TTAACCACGG	GAGCGTGTCT	GGAAACGCAA	ACTATCATTA	1500
	ATTTCATACT	AGTTTGTACC	GTATCTGTAG	GCATCCTGTA	AATAATTCCA	AGGGGAAAAC	1560
5	TAAACGAGGA	CCTCCCTTCT	ATCCTGCCAG	CTTGAGTGGG	GCTCACACGC	TAGGGTGAGA	1620
	TGTCAGAAAG	CGCTTGTATT	TTAAACAACC	AAAAAGAATT	GTAAGGGTGG	CTTGCTGCCA	1680
10	GCCTTCCACT	CCCCTTCCTG	GGGTGTGCA	TCTTCGGGAA	AGGTGGTGGC	GGGGCGTCCA	1740
10	CTAGGTTTCC	TGTCCCCTGC	TECTCCTTCC	GTAAGAAAAT	GAAATATTCT	ATGCCTAATA	1800
	CTCACACGCA	ACATTTCTTG	TACTTTGTAA	GICGITIGCG	AGAATGCAGA	CCACCTCACT	1860
15	AAACTGTAAA	CGGTAAAGAG	ATTTTTACTT	TTGGTCTCCG	TGAGTCGCAT	CTCTACTAAG	1920
	GTTTACACAG	GAATTCCACC	TGAAGACTTG	TGTTAAAGTT	CTACAGCGCG	CACTGTTAAC	1980
20	TGAACGTCTT	TTTCTTCAGC	CTATACGCGG	ATCCTTGTTT	TGAGCTCTCA	GAATCACTCA	2040
20	GACAACATTT	TGTAACTGCT	GCTGTTGCTT	TCTACATACA	CCTTATAAAG	TGACATTTCA	2100
	AAAGAAATAA	GGTGCCACAG	TTTTAAACCA	GAAGGTGGCA	CTCTGTGGCT	CCTTGTAGTA	2160
25	TTATAGCTAT	ACTGGGAAAG	CATAGATACA	GCAATAAAGT	ACAGTAATTT	TACTTTTTTT	2220
	CTTGTGTTAC	АТСТАААТТА	CAACCCTTAA	TTGCCACGTG	TGCACTTACT	ACTCTCCAGT	2280
30	ATGTCTTATT	ACTCTCCAGT	ATGTCACGCA	TCTTTAACTT	TTCACGTCCT	ATGTTTGCTT	2340
30	TCTCCCATTT	TTAAGAGATG	GTAAGTTAAC	TGGAATTGAT	TTACTGAATG	AAATTAAATG	2400
	CAGATATCCC	TGTTTTTGAA	АТААААААА	ААААААААА	AAAAAAAA	АААААААА	2460
35	ааааааааа	ааааааааа	AAA				2483

40 (2) INFORMATION FOR SEQ ID NO: 69:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 536 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

50	GAGAAATGGA	GCTTTGTTAG	TTTAAAAATA	TTTCAACGCA	AACAGTCATT	TTCCAGTGAA	60
	AGGAGAGCGT	ATCCGCCGTA	GGATGGACTT	AGATCGTGTA	AAAGCTGAGG	CCACCGAGGA	120
55	TATAACCTCC	CCCCTTT	GCCTCCTTTT	CCTTAGACTC	CCTCCAAACT	CGTGTATCTT	180
<i>JJ</i>	TCCTTCAGCA	GTACTGGGCT	CCACGCGAAC	CTAGTCCTTT	GTCTTTACCC	TATTACCTTT	240
	CATAACATCC	TAGTTGAAAA	GTARTTATTC	AACCGCGTTT	GAAAATGAGA	ACAGGTTCAC	300
60	AGARGCTAGG	TTACTTGCGA	AGGTCGTTCA	ATTAGTAACC	AGTAACGCCA	GGACTGCCAG	360

60

	TITICTTGCTT CCGAATTCTC ATGGTAGCTT TCACCARGCT CCCCGTCMAA TGCTAACGTC	420
5	AACTACTGAA CTAGATTAGC AAAAAGGTCT TTTAACAGAA TTCCTGGTTT TCAGAGAGAG	480
J	TTTCTTTCAT GAAGCGCCCC ATTTCTACAG AGGAAAATAA ACTCCAAGCA GCCAGT	536
10	(2) INFORMATION FOR SEQ ID NO: 70:	•
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 865 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	
20	CCACGCGTCC GGCCTTTCTT GGCCAGAGGC GCCGGTTGGA CTCACGGGCG GGGCATGATG	60
	GGTAACAGGA CCGGTGGGGT CCCCAGGAAG TCCTAGAGGG GGTCGGGGTT TGGGTGGACA	120
25	AGCTTTCCTC GTCCTCTCCC GACAGAGCTG ACGTGTCCTG GGTTCCACCG GGAGCGGGCA	180
	TTTCCACCGG ACGGGAGGGT TCGGGGTGTC CGGGGCTGGG GAATACGTAG GGGTTGCCGC	240
30	GCGGTGTGGG GAGTTGGGGC GTGTGGCTGC AGTCCCGGGA GTTCTTGGAG GGGGTCGGCC	300
50	CACCGAGCTT CCGGACCGGC TGATCTGCCC GTAGCTTGCC GGANGGARGG CGGAGCTGAC	360
	TCTCCGTCCC TTCTCCCATC CCCTCCAGTG GTGGGTACGG GCACCTCGCT GGCGCTCTCC	420
35	TCCCTCCTGT CCCTGCTGCT CTTTGCTGGG ATGCAGATGT ACAGCCGTCA GCTGGCCTCC	480
	ACCGAGTGGC TCACCATCCA GGGGGCCTG CTTGGTTCGG GTCTCTTCGT GTTCTCGCTC	540
40	ACTGCCTTCA ATAATCTGGA GAATCTTGTC TITGGCAAAG GATTCCAAGC AAAGATCTTC	600
40	CCTGAGATTC TCCTGTGCCT CCTGTTGCCT CTCTTTGCAT CTGGCCTCAT CCACCGAGTC	660
	TGTGTCACCA CCTGCTTCAT CTTCTCCATG GTTGGTCTGT ACTACATCAA CAAGATCTCC	720
45	TCCACCCTGT ACCAGGCAGC AGCTCCAGTC CTCACACCAG CCAAGGTCAC AGGCAAGAGC	780
	AAGAAGAGA ACTGACCCTG AATGTTCAAT AAAGTTGATT CTTTGTAAAA AAAAAAAAA	840
50	AAAAA AAAAAAAAA AAAAA	865
55	(2) INFORMATION FOR SEQ ID NO: 71: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 932 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
_	TCATCATATA CAAAGTTTTT CGTCACACTG CAGGGTTGAA ACCAGAAGTT AGTTGCTTTG	60
5	AGAACATAAG GTCTTGTGCA AGAGGAGCCC TCGCTCTTCT GTTCCTTCTC GGCACCACCT	120
	GGATCTTTGG GGTTCTCCAT GTTGTGCACG CATCAGTGGT TACAGCTTAC CTCTTCACAG	. 180
10	TCAGCAATGC TTTCCAGGGG ATGTTCATTT TTTTATTCCT GTGTGTTTTA TCTAGAAAGA	240
	TTCAAGAAGA ATATTACAGA TTGTTCAAAA ATGTCCCCTG TTGTTTTGGA TGTTTAAGGT	300
15	AAACATAGAG AATGGTGGAT AATTACAACT GCACAAAAAT AAAAATTCCA AGCTGTGGAT	360
13	GACCAATGTA TAAAAATGAC TCATCAAATT ATCCAATTAT TAACTACTAG ACAAAAAGTA	420
	TTTTAAATCA GITTTTCTGT TTATGCTATA GGAACTGTAG ATAATAAGGT AAAATTATGT	480
20	ATCATATAGA TATACTATGT TTTTCTATGT GAAATAGTTC TGTCAAAAAT AGTATTGCAG	540
	ATATTTGGAA AGTAATTGGT TTCTCAGGAG TGATATCACT GCACCCAAGG AAAGATTTTC	600
25	TTTCTAACAC GAGAAGTATA TGAATGTCCT GAAGGAAACC ACTGGCTTGA TATTTCTGTG	660
	ACTOGIGITG COTTIGAAAC TAGTCCCCTA CCACCTCGGT AATGAGCTCC ATTACAGAAA	720
	GTGGAACATA AGAGAATGAA GGGGCAGAAT ATCAAACAGT GAAAAGGGAA TGATAAGATG	780
30	TATTTIGAAT GAACIGTTTT TICTGTAGAC TAGCTGAGAA ATTGTTGACA TAAAATAAAG	840
	AATTGAAGAA ACACATTTTA CCATTTAAAA AAAAAAAAAA	900
35	CCAAATCGCC GCATAGTGAT CGTAAACAAT CT	932
	(2) INFORMATION FOR SEQ ID NO: 72:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 996 base pairs (B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:	
	CGCCTGGCAC CATGAGGACG CCTGGGCCTC TGCCTGTGCT GCTGCTGCTC CTGGCGGGAG	60
50	CCCCCGCCGC GCGCCCACT CCCCCGACCT GCTACTCCCG CATGCGGGCC CTGAGCCAGG	120
	AGATCACCCG CGACTTCAAC CTCCTGCAGG TCTCGGAGCC CTCGGAGCCA TGTGTGAGAT	180
55	ACCTGCCCAG GCTGTACCTG GACATACACA ATTACTGTGT GCTGGACAAG CTGCGGGACT	240
	TTGTGGCCTC GCCCCCGTGT TGGAAAGTGG CCCAGGTAGA TTCCTTGAAG GACAAAGCAC	300
	GGAAGCTGTA CACCATCATG AACTCGTTCT GCAGGAGAGA TITGGTATTC CTGTTGGATG	360
60		

WO 98/54963

60

780

329

	ACTGCAATGC CTTGGAATAC CCAATCCCAG TGACTACGGT CCTGCCAGAT CGTCAGCGCT	420
	AAGGGAACTG AGACCAGAGA AAGAACCCAA GAGAACTAAA GTTATGTCAG CTACCCAGAC	480
5	TTAATGGGCC AGAGCCATGA CCCTCACAGG TCTTGTGTTA GTTGTATCTG AAACTGTTAT	540
	GTATCTCTCT ACCTTCTGGA AAACAGGGCT GGTATTCCTA CCCNGGAACC TCCTTTGAGC	600
10	ATAGAGTTAG CAACCATGCT TCTCATTCCC TTGACTCATG TCTTGCCAGG ATGGTTAGAT	660
10	ACACAGCATG TTGATTTGGT CACCTAAAAA GAAGAAAAGG ACTAACAAGC TTCACTTTTA	720
	TGAACAACTA TTTTGAGAAC ATGCACAATA GTATGTTTTT ATTACTGGTT TAATGGAGTA	780
15	ATGGTACTTT TATTCTTTCT TGATAGAAAC CTGCTTACAT TTAACCAAGC TTCTATTATG	840
	CCTTTTTCTA ACACAGACTT TCTTCACTGT CTTTCATTTA AAAAGAAATT AATGCTCTTA	900
20	AGATATATAT TITAYGTAGT GCTGACAGGA CCCACTCTTT CATTGAAAGG TGATGAAAAT	960
20	CAAATAAAGA ATCTCTTCAC ATGARAAAA AAAAAA	996
25	(2) INFORMATION FOR SEQ ID NO: 73:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 785 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:	
	GGCACGAGGG GCTTTGCGTA CACAATAGCT GCTAGGAGTA CCCAAAGCCT GARTACARCC	60
	TGCTGGTGTC ATGGCCACGT GTGAGCAGGC CAGCGTCAMA CGGCTCGCTG TGACCCGTCC	120
40	CGRAGACTGA AATGGGCCTG GGTCTTCTCC TKGTCCTGTG ATWAAAGTCC TCTCTTGAAA	180
	GTGGAGAGCA AAGGCACACA GAGGTGCGCG CTCACAAGAA TTCCTCCCGG TGACTGGGTA	240
45	ATCAATGITA CIGCIGITIC CITIGCAGGA AAGACCACAG CAAGATICIT TCAITCGICT	300
73	CCTCCTAGCC TGGGGGACCA GGCTCGAACT GACCCTGGAC ATCAAAGGAG GGATTATGTG	360
	GCTGCTAAAG CCATCGGCCC ACAGCCCTGT TCACRTCTTG GTGCTTCTCT TTCCCAGAGG	420
50	CTGGTCCCAG CCAGGCACAC ACAAAAGGCA GATTCTCGTA AACSCAGCCT CCCTCCCTGG	480
-	AGGCTGCCTC CTGCCCTGGA TCTGGAGTGG AGCTGCTCTG AGATTTTGAG TTCTTCTGCA	540
55	GAGATGATTA AATATATCCA AGAGACATTG GAAAACCTGC TGAACATTTT ACATTGGTCT	600
JJ	GCTCAGCACA TGGCTGGATG CGGATATTTC TATAATTCCA GAAAGTCACA CAGCTCCTCT	660
	GTATGAGACC AGTGGGCGCC ATTTAAAAGA ACAGGATGAG AATCTAAGAT ATATTATTAA	720

330

•	AAAAA	785
5		
	(2) INFORMATION FOR SEQ ID NO: 74:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1069 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	•

(D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74: TOCTCACCAT TOCCCTAGGN CAGGTCCCTG CAGGTCCCAC ACTTCTCCCA GGTCCCTAAA 60 CTTGGGTCGG TCCTTTCCCT GGAGTAGCTG GNTCCTCCAG TCGAGGTCCC TGTTCAGTCG 120 20 GTTCTTAGGC TCCTGCACAT GAAGGTGTGT GCCTGTGGTG TGTGGGCTGC TCTAGGAGCA 180 GATACAGGCT GGTATAGAGG ATGCAGAAAG GTAGGGCAGT ATGTTTAAGT CCAGACTTGG 240 CACATGGCTA GGGATACTGC TCACTAGCTG TGGAGGTCCT CAGGAGTGGA GAGAATGAGT 300 25 AGGAGGGCAG AAGCTTCCAT TTTTGTCCTT CCTAAGACCC TGTTATTTGT GTTATTTCCT GCCTTTCCGA GTCCTGCAGT GGGCTGCCCT GTACCCTGAA CCTCATGAGC CTCTAAGGGA 420 30 AAGGAGGAAC AATTAGGACG TGGCAATGAG ACCTGGCAGG GCAGARTACA AGCCCAGCAC 480 CAGTGTCCCA GCCTTACTGG GTCCTTACCC TGGGCCAAAC AGGGAGGGCT GATACCTCCT 540 TGCTCTTCCT AGATGCCCAC CTCCTACAAT CTCAGCCCAC AAGTCCTCTC CACCCTAGGG 600 35 GGCTTGCTGC ATGGCAATAA CTCATAATCT GATTTGGAGG TTTGCCCTTT ACAGGGGCAG 660 ATTITICTGCT CAGTICAACA ATGAAATGAA GAGGAACTCC CTCTTTCTAC AGCTCACTTC 720 40 TATCAGAGGC CCAGGTGCCT CAGAGCCACA TTGAGTTGCT TTTTCTGGGA TGAGGAAGTA 780 GGGTTAAACT CCCCAGTTTC CTGAGGGAGG CTCCTGACAG GTGCCCTTTG TCAGACCCTA 840 CCACAGCCTG GATAGGCAGC CACATTGGTC CTCGCCCTTG CTCGGNACTC CGTGGTGGTC 900 45 CTGCCCTTCT CCCTGCATGC CTGTGGGTCT GCTCTGGTGT GTGAAGGTCG GTGGGTTAAC 960 1020 50

(2) INFORMATION FOR SEQ ID NO: 75:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 831 base pairs

АААААААА ААААААААА АААААААА АААААААА ААА

1069

60 (B) TYPE: nucleic acid

331

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:	
5	GGACATTAGA TCACTGTGGA CCTAAAACAA ACAAACAACT ATAAGGAAAA TGGCATTAGA	60
	AATGGTCTGG GGATCAGTTT ATCACTGCAG TTGTTACATC ACCCCATGGT CTAAAATACA	120
10	GAGCTITAGT CTGTCTCTGT TTCAGTTCAT TTTACAGGAG GTGAACATCA CACTTCCAGA	180
	AAACTCTGTC TGGTATGAAA GGTATAAATT TGATATTCCT GTCTTTCACT TGAATGGCCA	240
. ~	GTTTCTGATG ATGCATCGAG TAAACACCTC AAAACTTGAA AAACAGCTCC TGAAACTTGA	300
15	GCAGCAAAGT ACTGGARGCT GACTGATGCC CTCATGATTT TCCACCCTCT CTTCCCATAA	360
	AGCATCTTCC TAAGGAAATG AMCATGGCCT GATACTCATT TTGTCACTTG TACAGAGCCC	420
20	TAAGGATGTT CTGAATTCAG TGGTGCCAAA TAAATGTTGA CATTCCCCTT TTGGTTGATG	480
	GAAGTATCAG TGTGGGAACT GTTTGCTTAA TGGCATTTTA TAAAATAAKA AKAKCATATT	540
	AGCAGGGAGG GAGATGATGG AGGGAGGGAG AAGTCCATTT GTCTTATTTA TCCTTTTTGT	600
25	ATTAATAGAG AAGCACTTCA CAGTCACTGG CAATGCCATT TATAGGAAGA AGGTTCTGCA	660
	TTCCTGCTGC TCCCGGAGGG CTTAACTTTT TAATGAAAGA ATAAATGCTC TTCCACTCAG	720
30	TAGATAAAGT GAAATGTGAA TTGTTAATAA CTGTGCACGG TCAATAAAGC GATGTTTTAA	780
	GGAATACAAA AAAAAAAAA AAAAAAAAAA AAAAAAAAAA	831
35	,	
	(2) INFORMATION FOR SEQ ID NO: 76:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 590 base pairs	
70	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:	
	TATATATAGA CNGTTAATAG TCGTGANTGN TGTGNACGAA CATTAACGGA AGTAGCATGT	60
	AGCCAGTCGA ATAACNTATA AGGACAAAGT GGAGTCCACG CGTGCGGCCG TCTAGACTAG	120
50	TGGATCCCCC GGCTGCAGGA TTCGGCACGA GCTGCCAGGT GAGGAGCAGA GAGACTGTTC	180
	CCTTGGTGG AGAGGTGTGG GCATGAGAGC CACCCATTGC CAAGCAGCAA GAATGTTCGT	240
55	SCTTTTTCC CTTCCAAAAT ATSCAGGGCT CAGGCTCCCA ATTCCGGGCC TGTCTGCTTT	300
	SCTTGTGTTT CTCCTGTCCC TGTTCTCCCG GAGGGCCCAG GTGGAACTCA CGACAGGGAG	360

GGAGACGCTT CCCAAAAACC TGCAGGGCTA TTTCCCAGAA TTTGGTTTTC AAGTACAAAA

60

WO 98/54963

60

1260

332

	CTTTTTGTCC TGTAAGATAT ATGCAGCCTC ACAGAAGCAG CCTCTGCCTC CACTTTACCA	480
	GCTACGTTTT TATCTTAAGC ACATGGGGCT CCCTTAGAAC TTACTCCACT GATTTAAAAA	540
5	AAAAAAAAA AAACTCGAGG GGGGCCCGG TACCCATTCG CCCTAAAAGT	590
10	(2) INFORMATION FOR SEQ ID NO: 77:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1274 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
20	GAGCCACCAC ACCTGGCCTG GAAGGAACCT CTTAAAATCA GTTTACGTCT TGTATTTTGT	60
	TCTGTGATGG AGGACACTGG AGAGAGTTGC TATTCCAGTC AATCATGTCG AGTCACTGGA	120
25	CTCTGAAAAT CCTATTGGTT CCTTTATTTT ATTTGAGTTT AGAGTTCCCT TCTGGGTTTG	180
23	TATTATGTCT GGCAAATGAC CTGGGTTATC ACTTTTCCTC CAGGGTTAGA TCATAGATCT	240
	TGGAAACTCC TTAGAGAGCA TTTTGCTCCT ACCAAGGATC AGATACTGGA GCCCCACATA	300
30	ATAGATTICA TITICACTOTA GCCTACATAG AGCTITCTGT TGCTGTCTCT TGCCATGCAC	360
	TTGTGCGGTG ATTACACACT TGACAGTACC AGGAGACAAA TGACTTACAG ATCCCCCGAC	420
35	ATGCCTCTTC CCCTTGGCAA GCTCAGTTGC CCTGATAGTA GCATGTTTCT GTTTCTGATG	480
	TACCITTITT CTCTTCTTCT TTGCATCAGC CAATTCCCAG AATTTCCCCA GGCAATTTGT	540
	AGAGGACCTT TTTGGGGTCC TATATGAGCC ATGTCCTCAA AGCTTTTAAA CCTCCTTGCT	600
40	CTCCTACAAT ATTCAGTACA TGACCACTGT CATCCTAGAA GGCTTCTGAA AAGAGGGGCA	660
	AGAGCCACTC TGCGCCACAA AGGTTGGGGT CCATCTTCTC TCCGAGGTTG TGAAAGTTTT	720
45	CAAATTGTAC TAATAGGSTG GGGCCCTGAC TTGGCTGTGG GCTTTGGGAG GGGTAAGCTG	780
	CTTTCTAGAT CTCTCCCAGT GAGGCATGGA GGTGTTTCTG AATTTTGTCT ACCTCACAGG	840
	GATGTTGTGA GGCTTGAAAA GGTCAAAAAA TGATGGCCCC TTGAGCTCTT TGTAAGAAAG	900
50	GTAGATGAAA TATCGGATGT AATCTGAAAA AAAGATAAAA TGTGACTTCC CCTGCTCTGT	. 960
	GCAGCAGTCG GGCTGGATGC TCTGTGGCCT TTCTTGGGTC CTCATGCCAC CCCACAGCTC	1020
55	CCAGGAACCT TGAAGCCAAT CTGGGGGACT TTCAGATGTT TGACAAAGAG GTACCAGGCA	1080
	AACTTCCTGC TACACATGCC CTGAATGAAT TGCTAAATTT CAAAGGAAAT GGACCCTGCT	1140
	TTTAAGGATG TACAAAAGTA TGTCTGCATC GATGTCTGTA CTGTAAATTT CTAATTTATC	1200

ACTGTACAAA GAAAACCCCT TGCTATTTAA TTTTGTATTA AAGGAAAATA AAGTTTTGTT

333

TGTTAAAAAA AAAA 1274

5

20

25

30

35

40

45

50

(2) INFORMATION FOR SEQ ID NO: 78:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1133 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:

AGGATTTTTC CTTGTTCAAC CAAAATCTGA GCATTCTTTC TATGTTGAAA ACACTGAAAA 60 ACTAATTWA GTTAATGAAC TAGAAAGAAT ATTGATTTW AAGAAACAGA AAAATACTAC 120 TTATTTTCCT TCTCAAATAA CGTTTCTTTC AAAAACTTCT GGCTGAAGTA TAACATGCTG 180 GTAGTTAACA TAAATCTTGT CTTTCTCTTG TTCTTTATCT TTCTTTGTTA TTTAGATGCT TGTATAAATG TCTTTTGTTT TTATTAAGTG CCTAATTGAC AGAGCTTAAT TTGAAGAAGT 300 GCCCTAATTT ATTGACCACT TAAGAATTGC CTTTATTGGG GTATTTTATT TGTTCCTGCG 360 TCTTTTGAT GTTGTTCAGT CTACTCATCC CTGTGAGTAT GTGTGGGGGA CAGCTGATAG 420 AAGGGAGGAG AGTGTGTCTA TGCTCAGGAT TGCCCTTTAG CCACTCAGCC AGAGATCCAC 480 540 AGGGAGCAAC AAGGACAGTT TCACATGCTT AGACTTTCTT GGAAGAAACA GTGAGGAGGA GTAAGTCGTG AGTAGTGTCA AGCTGGATGT AGAATTGTCC TAAGGCAGTT GACCCCACCT 600 TCCAACATGT TITCACTTTA TITGCCCCTC CCTACATTTG GGTTAGGTTC CATTTGGATT 660 TGCAGCAATA ATGACTTTAT TTCTCTCTTG GTCAGGATTT GGCACATAAA ATCCTTTTAT 720 TATAGAACTA GCTATTTTAG TTACATAGTA ATGTAACTAA TGGAGAGATT TATAGAGAAT 780 TTTGKTTTTG CTGTCATATA TGTCCATTTT GGAGACAGAT ATGATAGAAC TAGAAATTAA 840 GTTGCATTTC TGCAAGTGCC ATTTGAATGA ACTTCAAGTA TCTTCTTAAT TATTAAATTT 900 TCTGATGAAG GCATTGTAAC AAATATATAG TATTATTAAA TCTAATTAAT ATTTGGAAAT 960 ATTAATAAAT AGGTATTTTA TTTACTGTAA AAAGTCAAAC TTCATTATGT AGATAAATCT 1020 1080 TATTCTTTCC ATTCTTCCC CTGTTTACAT CCTTTTTACA AAGCTTAGTC ACCAATTAAA GCTTTCCTAT CAAAAAAAA AAAAAAAAA ACTCGAGACT AGTTCTCTCT CCT 1133

55

(2) INFORMATION FOR SEQ ID NO: 79:

60 (i) SEQUENCE CHARACTERISTICS:

334

5	(A) LENGTH: 661 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:	
	GAATTCGCCA CGAGGGGAAA AGGATGCTGA ACGAGAGCAG AAAGCCTCTT TCCTTTGCTT	60
10	CACGCCTTTC CAGTCTTTAT TITAAACTCG GGTTCCCTTT CTGTGGTCGC AGCAACCTTT	120
	ACTOCACCTG CACTGCTGCT CCTGGGGGCT CCCCAGGCCT CCCTCTGCCT TTCTACCCAG	180
	TOGCTGACGG GATGCCTGTC TTGCCTGGAC GCACCACTGC TCTCCTGTCC CTCACCTTGG	240
15	CTTTTCCTGT GCCCTCCTCT GGGGTTGAAG CTGGCCCATG TGTCCCCCGG AGTCATGGCT	300
	GCTCCTCCTG GGAGGCCTCT GTGTGCGTCA CGTCTTCCAC ACCTGGGGGC AGCTGGCGAG	360
20	CCCGTGCTCT GTTCCCCTCG GCTGCTTGGC ACAGAGYTGC AGCCTGGGAY TCTCCGTGGA	420
	CCCAGACTGG GGATTTTGCC AGGGGGGCGA TGGGAGGAGC AGGTGCTTTG CCTGGCGGCT	480
	GTGTCTGCAT TTCTGGACGC CCCAGAGCAC AGAAGTTGCC GGCACTTTGA GGTCTTCCTC	540
25	GGCATGTGCC AGATTACATG AGTGACGGCT GGGAATATGT TTTCTTTTTT GTAATGGAGG	600
	CGTGTTTCAC ATATAGTAAA GCTCACCAAA AAGTAAAAAA AAAAAAAAA AAAAAACTCG	660
30	Α	661
35	(2) INFORMATION FOR SEQ ID NO: 80:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1378 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:	
45	ATTGGGTACC GGGCCCCCC TCGAAGTITT TTTTTTTTT TTTTAATGAA AGCTCTCAAA	60
	TAAGCGATTT TATTCCTATC CATGATTGCA GACATTTACA AAACCATAAC ATCTGAGTTC	120
50	ACCTTARARA ATRACTTATA TARAGCAGTG ATRTACACAG CACARARTAG TTCAGGGAGG	180
50	GGGCAGGAGC AACTTGTAAT AATTAAAATG TAAACGTGAA AAAAAGGATG GAATAAAAGT	240
	CCCTACTTAT TTCTACTTAA GATGTCATGT GATAATATTT TACAATGTCC TGTGGGTCAA	300
55	TGTATGTATG TGTATATGTC TGTATAACAT ACACATATAC AGTACATTCT CTTTCCCACA	360
	CATATACATA CACACATAAT TATTTGCAGT TCAGTTTAGG GCAATTCTAA TATGCCACTC	420

CGTACAGTTG TTTGAATCAC ATTTGGACCC GCTTTCTTCA CAAAAGAGGG GAGAGAGCAG

60

PCT/US98/11422

540

335

	GAAATAAAAA GGTTGGTTTG GTGTGACTGA GATTCCTTTG TTTAACTGTA CACTGTGATG	540
	AATAATTTTC TTCCGTAGTA GTTCTGTGAA GGGCTGACTC ACTGTGGTTT TCATGAGGAG	600
5	ACTTGGTAAT GGATCACACG CTCATTGTCA TGCTAGGGGA GTAACTCTCA CTCTGAAAAG	660
	GATTTAAGAA ATTTCCCCCC ATTTCGCCAT CATCCCTTGG AGTGCCCGGT TGATTACTCA	720
	GGCTCATATT ATTGGGAGA TTCTTGGAAA TACTGTCCAT ATCTCCTGAG CCTAAAGAGC .	780
10	CATTCATGTG ATGTGACTCC ATTCCTCCTA ATCCACCCAT GGGACCATCT GACCCAGGRC	840
	CCATTGGAAA ATTAGGTCTG TTAGGTCCAG GAGGTACTGC ATTCATTAAA GTATACATGT	900
15	TATCACCAGA GTTGGTTGAA TCTGCTGGAC TAGGCATGAT GGGTGTTCCT GGTGGCCCTC	960
	CACCTCCTGG AGGACCTACA TAATTCCCAG GAGATGCTGA GGAGTATGGT ATTGAATTGG	1020
	CATTTGTTGG GTTTGGCCAA GGTCTACCAC CACCTGGACC CATGTTCATT CCAGGCATTC	1080
20	CAGGGCCACC TAAAGCATTC AGTGGGGGTC TCATTGCACC TCCATAGTTC TGTGGTCCTA	1140
٠	AGGGCACCAT TCCTCTTGGA GGAGTCATTC TCTGCATTGG CCCACCCATA TTTGGATGTC	1200
25	CTTGTTGTCG AGTTGGATCC ATTCCACTGG GGAGTAATGG CTGACTTCCT GGGACACCTC	1260
	CAAGTGCCTG ATTAGGTATC CTCAATGGGG GCCTTGGACC TCCAGGGTAC CGAGGTGACA	1320
30	TAAAAGGGTA ATCATGGAAG GCTTTTGCTT CACTTGAGTG TTCACATGTT TCACGTCT	1378
35	(2) INFORMATION FOR SEQ ID NO: 81: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1440 base pairs	
40	(A) LENGTH: 144 base parts (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:	
	ACTITICICA AATGIGICIG TCACATGIAG TCAGCIGNAG NAATITAAAA IGAATIGCCA	60
45	ACTIVITICA ANTIGICIO ICACATORA ICACCIANO INTITITATIONALI ACTICALA ACTICAGAGAGA CIGIGGATTA ATTOGCOCTI AATTAACAGG CITTATCAAT GIGICCICAA	120
	GGGAGAGGCC CAACCCTAAT TAAGGAGCTA AACTTCCTGA GTGAGGGGCT GTGAGGATGG	180
50	AGGTGGAGGA GGCATCTGGG GCGGGTGGTG GCCGGGCCAG CAGATGGCGC CTCCCTGGCT	240
50		300
	GAGCTGCCCG CACCGCCAGT TCCCTCATTT CCACTCAGGA AGGCAGAGAA GGCAGAGTGA	360
-55	TCTCCTCAAG GAAGAGCTTC CCCAGCCTTC GGGAGCAGCT GGCAGGGCGT CCGGGAATAA	420
	GCCCTACACG CCGCCGCCTG CCTCCAACTC ACTAACCCTG CGCCTCTTGT CTTTCAGATT	
	CAACGCGTTC AACAGAAGCC ATCCCCAGCC CAGCTTAAAT TATAAAGATA GACAATAACT	480

CTGTTCCAAT CTGCGTGGTG CTTCTTTAGT AAATACTGTA CAGATTTTAC CATGGAGAAC

336

	TTTTTTTTTA GTTTTTACCT TTTCTTAATT ACCCTTATTC CGAATGGACG AACACTTTCT	600
5	ACCACTGCTG ACCATTGTAA AATACCGTGT ATATAAATCC CATTGAAATA ATGCCCTGGA	660
	ATAGAACATC TCAAATGCTG CTTAATTACA GACTCAGGTC GATTACTTGT ATTTCATGTA	720
	ATGTTCCTCC AAGTTAGACA TCTGGTGCAA GACCAACCGG GAGACCATGG AATTGTCAAA	780
10	AGTACAAACT GACAGTGTGT ATATTTAATT TAAAGACTTA TTTAAAAACT CACAAGCTCT	840
	CACCTAGACT TIGGAGAGCA GICTGTTTIC TGTAATGTCT GATACTAGAA ACTAATTIGC	900
15	TTATTTTAGT TGTATTCAAG ATTTGAAGAT GTATTTTATA GACAAGTTCT GTTTTTGAAC	960
13	TTTGTGGAAC TGTTCCAATC AATCAATTTC CCAGTTATGA TGAGTATTTA CATTATGAAT	1020
	GTATAACCCA GACATGATTT GTAAAGCCGA CAGTATGTTT CTATTACACA ACACTTTTTG	1080
20	ATACAGCGTC TCTTGTCTTC ACTGATACTG GAGTCTCCGT TGTCTGCNNG GTCCCTTCGA	1140
	GTTTCTAGTT ACAGACACAA TCATACTGTG ATTTTATTTT	1200
25	ACTGTGATAC ACTTATAATT CACTGGTCCT GCATCAGGAG ATGGAGTGGG GAAAACTGTA	1260
23	TTTAATACAG TTTGTATCTG AATAATCTGT ATGGTTTATA CAGTTTGTGT TGTTCAGAGA	1320
	TGTTTAAAGT TTGATCTTTG TTTTTCTAAA GATTAAAAAA GCACTTGCCC CACTGTAAAT	1380
30	ATACAGCATG TAAAATTTCT RTAGTATATA AATGGCAGCA AATCACAAAA AAAAAAAAAN	1440
35	(2) INFORMATION FOR SEQ ID NO: 82:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1381 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:	
45	CCCGGGCTGC AGGAATTCGK YACGAGGCCA GCAGTTGCTC CCAGTTCAGG AGGTGCTCCT	60
	GTACCCTGGC CACAGCCCAA TCCTGCCACT GCTGACATCT GGGGAGACTT TACCAAATCT	120
	ACAGGATCAA CTTCCAGCCA GACCCAGCCA GGCACAGGCT GGGTCCAGTT CTGACCTGAG	180
50	CACGGTTTTT CCTCATGTGA CTTCTGGGAA GGCGCTCCCT CATCTGGGCC AAAGGAAGGA	240
	GGACGAAGCC CTCCTCAGCT GGCCTGTGTT TGGGGCATGA ATCTCTCCTC TCCTCCTTGT	300
55	CTGGCTCTGT TGACAAACCG GGCATGTTTG GCAGTAAATT GGCACCGTGT CACACTGTTT	360

CCTGGGATTC AAGTATGCAA CCAGAACACA GGAGAAGAAA AGCTCCAGGA TCCCTGTCCC

CATCTGTCCT CTTGATGTGA GAGAGACTCT GAGACTTCTT CCATCGCAAT GACCTGTATT

60

420

337

	WHOWAND COCCURDED WINDWINDS HOURITIES ISSUED	240				
	CTTCCCAGGG TCTGCAGGTG TCACATGATC ACAGTTCAGC GGGAGGCTTT CCGTACCCAC	600				
5	ACTGGCTGTA GCACTTCAGT CCATCTGCCC TCCAGAGGAG GGTTTCTTCC TGATTTTTAG	660				
	CAGGTTTAGA GGCTGCAGCT TGAGCTACAA TCAGGAGGGA AATTGGAAGG ATTAGCAGCT	720				
10	TTTAAAAATG TTTAAATATT TIGCTTIGCT AATGIGCTGA TCCGCACTAA CTCATCTTTG	780				
10	CAAAAGGAAC TGCTCCCTCG GCGTGCCCCA GCTGGGGCCT CTGAAGGGAT TCCTCACTGT	840				
	GGGCAGCTGC CCTGAGCTTC AGGCAGCAGT GTTCATCTCT GGCCAGTTGT CTGGTTTCCA	900				
15	TGTATTCTAG GCCAGGTAGG CAACACAGAG CCAAGGCGGG TGCTGGAAGC CAGACGGAAC	960				
	AGTGTTGGGG CAGGAAGGTG GATGCTGTTG TCATGGAGCT GTGGGAGTTG GCACTCTGTC	1020				
20	TGCTGGTGGC CCTCTCGGCT CACATGTTCA CAGTGCAGCT CCTGGCAGAC TTGGGTTTTC	1080				
20	TCTTTGGTGG TTTCTAAAGT GCCTTATCTG CAAACAACTT CTTTTCTCCT TCAGGAACTG	1140				
	TGAATGGCTA GAAGAAGGAG CTCAGTAAAC TAGAAGTCCA GGGTTGCTTG GTTTACTGGT	1200				
25	TTATAAGAAA TCTGAAAGCA CCTCTGACAT TCCTTTTATT AACTCACCTC TCAGTTGAAA	1260				
	GATTTCTTCT TTGAAAGGTC AAGACCGTGA ACTGAAAAAA GTGTTGGCCT TTTTGCGGGA	1320				
30	CCAGATTTTT AAGATAAAAT AAATATTTTT ACTTCTGTCA AAAAAAAAAA	1380				
50	c	1381				
	·					
35	(2) INFORMATION FOR SEQ ID NO: 83:					
	(i) SEQUENCE CHARACTERISTICS:					
40	(A) LENGTH: 1706 base pairs					
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double					
	(D) TOPOLOGY: linear					
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:					
	ACTGCACCAC TGCCCAGGTC TCCCGGCTGG ATGAAGACGT GGTCCATGAG GAAGCTGGCT	60				
	AGCTCAGACT GGAGAGTAGC TTCAGGAAAA AAGACAAGTG GCCTAAGGAA ATCACGGCCC	120				
50	CCAACTATCA TCTGAGGGCT AAAGATGAGA AGTAGATCAC TTAATAAGAC AAAAGCCTGT	180				
	AGGGGGAAAA GAAAGGATGT TTAAAAGGAC AGAATGTTTC CCAAGGTAGA AATGACACTG	240				
55	TCAATTICTC CTTGGAATGG GGGCAGGGAT ACTCGCCTTG TTGCTCCCAC TTGAGTCAGT	300				
-	ACTCACCTGC TCCTGGATCT CAGTATCCAC ATCTGAGAGG CAACTCTGGC AGAGTTCACA	360				

GAAGGCCACC ATTCTGTCCC TCAAACTCGA CAGCTGCTTC TGTGGGCACA GTGGCTTGAA

GGGGAAGAAT GAAGACACAG ACTCCTCTGT TCCCATTATC CCATCTAAGA CCCACACTCA

60

420

338

	CCTGGGGAAG CATCTGATTT AGAAATGTGG GTTAGTGTCC AGAGAATGGA AAAATAGACA	540
•		
5	AGAGTCAAGG CTGGCAGGAT AACCTGTAAC AACAAAGGGT TTGAAAAAATG AGGTTTGGGT	600
	TAGGAGAGGG AGAGACAGAT AGCCAGAAAC ACACCAGTGA AGAGGAGAGA AAATGAGTAA	660
	AGGGAGAGCT AATTCCTTTT CCAGTGGAAA ATGAGTGATA TTCTGGACAT TCTTCAGAGG	720
10	CATCTACACG AAGTAGAAAT GTCACCGCTC CCTAATTTAC TCTACGTCTT CTAGAATCCC	780
	TCAATATTAT CCTTGGCTTC CAGGAAATCC AAGAAGACCC TGGAAGTAGA GTCCACCTTC	840
	TAAGAGAGGA ATGTAAGAGG TGACCCCCAC CCACCTGATC TTCCTCGCTT TGTCCACTCC	900
15	ACGCACTGAG ACTTGACACA CCTAGTGGCC ACCTAGAACG TAGGTCCTTA AAATYTAGCC	960
	CCCCAGCCCC CAACCCATCT CTAGCCTGTC CACTCACCTG GTGAGGAACY TYTCCTGTGT	1020
20	CCACAGCYTT CTGCAGGAGT TGGCAACATG GCTCATAGAG CTCCCAGCGA GTCAGGTCAT	1080
	GAGTGCTTTG GGGGAGAAAG GGGAATGTTA TACTGGAAAA GAACAGAGGG AACCAACTCC	1140
05	ACAGACACCA GTAAAAACGG GATGGGGAAG AGGAGGAAAG CCACTCACTT GTAGAAGGCA	1200
25	GAGAGGCGTT TCAGAGTGGC TGCCAGATTA TATACCTCAT CCTCATCTAG GAAGGACGAC	1260
	TGAGAAGGAA AGAAGATCCA CAATAGCATT TCCCCCAGAA CTCATCAGTC CACATCCCCC	1320
30	GTCTTGCAGC CCCTCCCACC CTTGTTTGGG GTGTCCCATT GTCCAGCCCC AGCTCCTACC	1380
	TGTAACAGCT CTTCAAGCTC CTGCTGGAAR CGGTCAGTCA GCAAATCTAC TAGCTGGCTG	1440
25	CGGGCAAAGT CCGCCCGGCT GAAGAAAGTG AATTCGGGAT TACAGAGCAG GTAAGAGCAT	1500
35	GCGCCCCAGC CTCAAGCACC GCTGGCTCTG CATGCTTCAC CACCACCTCC TGGAGTTGCT	1560
	GCAGGAACAG CTCCAGGTGC TGAGAAGAAA AGGCAGAAGA TGGTGTGCTG TGGGGATGGG	1620
40	AGGAGGACAC TCTTCTGGCG GGAAGTGGAA CGGGGTTAAA AGCATTAAAC TTCAAGGATA	1680
	AGATGCCTAA RAAAAAAAA AAAAAA	1706
15		
45		
	(2) INFORMATION FOR SEQ ID NO: 84:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 573 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEINESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:	

GAATTCGGCA CGAGCTTGGT AGCCTTAGAA CTGCATGAGC TGCTTTACCA CTGGGAAACA

CGAGCACAGC CTAGCTTGAT TITGTATGTG GTATCAGATC TAAGGTGGAT GGAATTCAGG

60

60

339

	ACTTCCTGTC	TACTCTTTGA	TTTTGTTTTA	TTTTTAGAAA	TGTTTTATTT	TGTTTTATTC	180
	ATTTATTCAT	CTTCAGAGAC	ATGGTCTGGC	TCTGTTGCCC	AGGATGGAGT	GCATGGTGTG	240
5	ATCATAGGCC	ACTGCAGTGT	TGAGCTCCCG	GGCTCAGGCG	ATCCTCCTGC	CTCAGCTYCC	300
	TTAGTAGCTG	GGACTATAGG	CACATGCCCT	ACCATGCCTG	GCTTTGTCTA	CTTTTTGAAT	360
10	GATGTCYCAA	ACTAGAAGGT	CTATTAATTT	AAAAAATTAA	GGATAGCATG	CCATAATTAA ·	420
10	AAATAATAAC	AGTGGGAAAA	GGCACCTTCC	AATGATTCAG	ACATCAACTT	GTGATTTAAA	480
	AAAACGAAAA	ATAAATAATA	GGAAAAAAG	GGGAAAAAGT	TAAATAAAA	TAAAATTAAA	540
15	АААААААА	AAAAACTCGA	GGGGGGCCG	GTA			573
20	(2) INFORM	ATION FOR S	EQ ID NO: 8	5:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 684 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:

CTCTTTGGCT GTGTCTACCT CCTTCATCTG CTGCGCCGAC ATAAGCACCG CCCTGCCCCT	60
AGGCTCCAGC CGTCCCGCAC CAGCCCCCAG GCACCGAGAG CACGAGCATG GGCACCAAGC	120
CAGGCCTCCC AGGCTGCTCT YCACGTCCCT TATGCCACTA TCAACACCAG CTGCYGCCCA	180
GCTACTTTGG ACACAGCTCA CCCCCATGGG GGGCCGTCCT GGTGGGCGTC ACTCCCCACC	240
CACGCTGCAC ACCGGCCCCA GGGCCCTGCC GCCTGGGCCCT CCACACCCAT CCCTGCACGT	300
GGCAGCTTTG TCTCTGTTGA GAATGGACTC TACGCTCAGG CAGGGGAGAR GCCTCCTCAC	360
ACTGGTCCCG GCCTCACTCT TTTCCCTGAC CCTCGGGGGC CCAGGGCCAT GGAAGGACCC	420
TTAGGAGTTC GATGAGAGAG ACCATGAGGC CACTGGGCTT TCCCCCTCCC AGGCCTCCTG	480
GGTGTCATCC CCTTACTTTA ATTCTTGGGC CTCCAATAAG TGTCCCATAG GTGTCTGGCC	540
AGGCCCACCT GCTGCGGATG TGGTCTGTGT GCGTGTGTGG GCACAGGTGT GAGTGTGTGA	600
GTGACAGTTA CCCCATTTCA GTCATTTCCT GCTGCAACTA AGTCAGCAAC ACAGTTTCTC	660
ТСААААААА ДАААААААА АААС	684

55

50

25

30

35

40

45

(2) INFORMATION FOR SEQ ID NO: 86:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1036 base pairs

340

(B)	TYPE:	nucleic	acid
(C)	STRAN	DEDNESS:	double

(D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86: TGGAGGCAGA TGCACAGGAG AAAGGTTCCC GTCCGCACCC TCTCAGACCT GAGGCTGAGC 60 TTGCAGTGAG GGCTTCTCCT CGGCCCCTCG CCCGCCCCCA GAGCTGCCAT CCCTGCTGTT 120 10 ACAAGCCAGA GGAGCCCGGA TGTGAGGCCC CAGATCACCT CCAGGGACTT GGGGTTCCCA TCTGAAATCC TTTATTTTG TACCATGGGG TGGGCCCCGG GCTGAGAAGG AAGAAGCACC 240 CTCTCCCCGG CCTCCTCTGT CTGCACCCGT GGGGCTGTGA CTTACTCCTG CCTCCAGGGG 300 15 CGGGGCGGGG CCCCCTGGGA CCTCTTAAGG CCCAAGGTGG GCCCCAGGAC CTYTGGGCAG 360 AGTGGAYTGC TCATGGCAGA TGTGTGGCAA TGTCTGGCTG WGTCTTTCCG GCAMCTGCGT 420 20 YCCCTYTCCC GGGYTCCCCT GCTGCATGGT GGATGTGCTC CTTCCTGGCC CGGTCACATT 480 GCCTCCTTGA GCCTTAGTCC AGGGGGTCAC TYCTCCCACC CCACCTACCT CACAGGGTTG 540 25 TTGTGAGGGT GCACAGAGGA GCAAAGTCCC TGAAGGCCCT CAGGCAGTAT ATAGGGGCCG 600 CCCACCTTCA GCTGCCCTGG GATGGGAAGG ACCCAGCCCG ACCCCTGGGC ATAACACTGT 660 GTTTGCAAAT GGAGATTCAG GTATTGGGGA TGCAGGTTGT GGGGAGCTGG CCTGGCAGAG 720 30 TAGGGGTAGT TGGCTTGGCC TTCTCTTTGG TGATCCCACC CCCAGCCATT TGCATTGCTG 780 GCCCAGCGCC TGGCCTGGGG GGCGGGGAGA GGCAGCAGAA GGGGCTGGGC AGGGGCGGTG 840 35 GAGGACTCAG GAACTGCCCG GGGAGAGTGG GTATGGCGGC TGAGCCAGGG GCCCTCCTGT 900 960 GTTTGACTTC CCGGGATGGG TCCTTGCTTC TCAGCTGTGT CCGACCCCAC CATGTAATAA 1020 ΑΛΟΟΟΛΑΙGG ΑΛΟΑGCΑΛΑΑ ΑΛΑΛΑΛΑΛΑ ΑΛΑΛΑΛΑΛΑ ΑΛΑΛΑΛΑΛΑ ΑΛΑΛΑΛΑΛΑΝ 40 1036 CCCNGGGGGG GNCCCG 45 (2) INFORMATION FOR SEQ ID NO: 87: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 908 base pairs 50 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87: 55 TTAAACAAAT GGAATCATGC AATATGTGAC CTTTTGCGTC TGGCTTATTT TATTTAGCAT 60 AATGTTTTTG AGGTTCATCC AAGCTGTAGC ATGTATCAGC ACCTCATTTC TTTTTCTGGC 120

TGAATATTAT TCCATTATAT GGATTTACCA CAATTCATTT ACCTATTCAT CTTTTGTTTC

60

	TGCTGTCTGG CTATTGTGAA TAATGCTTCG ATAAACATTC ATATACAAGT TTCTATGTGG	240
5	CTTTATGTTT TCATTTCTCT TGGCTATCTA CATGGGAGTA GAATTCTAGG TCATAATATA	300
	ATTITATGIT TAACTICICA AAGAATIGCC AAAAGGITIIT TCATAGIGGC TGCATCATIT	360
	ACATTCCCAC CGGCAATGTA CAAGGATTTC TATTTTTCCA TATCCTTGCA CTTACCAACA	420
10	CTTCTTTTTK GIWATWATTT TGTTTTTCA TTATTGCCAC CCTAGTGGAT GTGAAATGGC	480
	ATCTTATTGT TITGATTTGC ATTTCTCTAA TGACAAATGA TATCATACTT TTTTTATGTG	540
15	CTTACGGATC AAAGGTATTT CCTTGGAGAA ATGTCCCTTC AAGTCCTTTG CCATTTCAAA	600
13	ATTTGGTTAT TTGTCTTTTA TTATTCAGTT TTAAGAAATT CTGGCCAGGC GCAGTGGCTC	660
	ACCTGTAATC MTAGCACTTT GGGAGGCCAA GGCGGGCAGA TCACTTGAGK TCAGGACTTC	720
20	GAGACCAGCC TGGCCAACAT GGTGAAACCC CATCTTACTA AAAATACAAA AATTAGCTGG	780
	GCGTGGTGGC AGGTGCATGT AATCNTATCT ACTCAGGAGG CTGAGGCAGG AGAATCGCTT	840
25	GAACCCAGGA GGCGGAGGCT GCAGTGAGCC AAGATCACGC CATTGCACTC TAGCCTGGGT	900
	GACACAGA	908
30	(2) INFORMATION FOR SEQ ID NO: 88:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 655 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:	
40	TGCACTGGTT CCTTCTCCCC AGCAAATACT GCCTTCTTGT TTTTCTCTGA TGTGGCAGGT	60
	GACTACAAAA TCCGCCTTGG TATTCTTCAA ATGCATATAT ATTCCTTTCT TGTCAGCTCC	120
45	CTCTCTTCCT AGATTAGAAA ACTGCCTCAT TTTCTGCTCA CTGGATGTGC AGTCCCAGCT	180
	TOTOTTCCTC TOCTCCCCCC CTGTTGCAGG TGTTCTTTTT TTTTTTCTTC TCTCCCCACT	240
50	GGGCAGCAAA AGTTGTTCCA CAGTGGAAAW TTAGGCATCC TCAAGTTTCY TCCCAGCTTC	300
JU	TGCTGTGTTT TCTTAGAGTA AATTGCCAAT TTCTGTTTTT ACAGGAAATC CTTTTTTAAA	360
	AATGGAATCA GTGTGGTCCC CATCTACTCT GCAAAAATTG CATTTTTCTC TATTTTCAAA	420

CTTGGGCATT GCIMGATATG TGAAATGGGT TTATGAAAAA TAATAAAATC ATAACGCTAT . . TTGTTTGACT TTCAATTTCA TGGGAATTTT TCTCAGCTAA ACTCTAAATG GTGATTARGC

342

AAAAAAAAA AAAAAAACY GRAGGGGGC CCGGTACCAA TTCGCCCTAT AATGA 655

5

10

(2) INFORMATION FOR SEQ ID NO: 89:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1102 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

15 60 TTTTTTTTT ACCATTTAAA ATAAAATGAA AGTGACCTTC TGTTTATAAA AATCTTTGTC TGCATCTCTG CTTATTTCCT TAGAAGAGAT TCCAAGAAGC GGTGAGTGAT TTCACGGCAG 120 CAGAGGGTTG GGACATATTA CGGGCGCGGA TCCCTCTTGG AGTGAGATGA CTCTCCGGAG 180 20 AGATTTAGTC GTCACCCTCG CGTGTGAGGC TGCGTCACAC CCCAGGGATG TGTCTATCAA 240 GATGGAAGAT CTTTTACACG CTCTTGATTT TGTTTGSCTY TTTTTCTATT ACTAGTGAGA 300 25 AKGAAACTIT TTATATGATT ATTATCCATC ATAATCCAAC ACAAATTACT GCTTCATGIT 360 CTTTTACTTT CCTGTGAAGG TTTTAGTGCC TTTTAAAAAT TGCTATATAT TAAGCTTGTT 420 AATACTTCCA TGCTGTATTT GTGGSCATCA RTTTCCCCGG GNACAGGCNT GCACATTTTG 480 30 CCTTCACACG CTGGGTGGTT TTTCATTTTC AMTTCTATTT CTCGTTCTTC TATCGTTTTA 540 TGTTCAGACG GGTTTCTCCG TGTAGAAAGC AGTTTATGAA GATTTACTTT CGACAGTCTT 600 35 CTCTCTACTT TCTACAGTGA ATTCTCTGAT GTGTCTGGGA GTTTGGGGGT CTGGGTAAGA 660 RICCICCICI CACCCIATIC ICTATIACGA ICCACAGCCI CAIGCITIAI GARATIGGIG 720 GCCGGGARCG GGGGAGATTT GCGGATCCCC CAAGCCAGAC TTTATCCCCC TATCCCTGCC 40 780 TCTGGATCCC ACGTACAGGC CTGGGAACTC CCTGTGGGTA GGGGCCAATG GTCTCGCACT 840 CTCACCTGTA CCCCAGGGCT GGCACAGGAT GGTCAAGGAG AGAGGCTGCC CAAGCGCATC 900 45 960 CYTCTGGTGT CCCCCTGACA CGCCTCCAAA GTGAGCAGGT AGGTTTCAAC AGCCCCACGT TOCAGGTGGG AGATGAAGCT CAGGGTGGAG ACCAGTATCT CACAGTTCTC TTTGCATGGC 1020 1080 CGGGTACTTG TTAGTCAACT GATCAAGTGA AAATTCTAGC CCCAGAGGCA GGAGAATCCG 50 1102 GAACAAAATT AAACCAGCCA GG

55

(2) INFORMATION FOR SEQ ID NO: 90:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1533 base pairs

343

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:

60 GGCACGAGCC GNCACGGGCA GCGCCCCATA GCGCCAGGGA CCCCCTGGCA GCGGGAGCCG CGGGTCGAGG TTATGGATCC AGCGGGGGGC CCCCGGGGGG TGCTCCCGGG GCCCTGCCGG . 120 10 TGNCTGGTGC TGCTGAACCC GCGCGGCGC AAGGGCAAGG CCTTGCAGCT CTTCCGGAGT 180 CACGTGCAGC CCCTTTTGGC TGAGGCTGAA ATCTCCTTCA CGCTGATGCT CACTGAGCGG 240 15 CGGAACCACG CGCGGGARCT GGTGCGGTCG GAGGAGCTGG GCCGCTGGRA CGCTCTGGTG 300 GTCATGTYTG GAGACGGGCT GATGCACGAG GTGGTGAACG GGCTTCATGG AGCGGCCTGA 360 CTGGGAGACC GCCATCCAGA AGCCCCTGTG TAGCCTCCCA GCAGGCTCTG GCAACGCSCT 420 20 GGCAGCTTCC TTRAACCATT ATGCTGGCTA TRAGCAGGTC ACCAATGAAG ACCTCCTGAC 480 CAACTGCACG CTATTGCTGT GCCGCCGGCT GCTGTCACCC ATGAACCTGC TGTCTCTGCA 540 CACGGCTTCG GGGCTGCGCC TCTTCTCTGT GCTCAGCCTG GCCTGGGGCT TCATTGCTGA 600 25 TGTGGACCTA GAGAGTGAGA AGTATCGGCG TCTGGGGGAG ATGCGCTTCA CTCTGGGCAC 660 CTTCCTGCGT CTGGCAGCCC TGCGCACCTA CCGCGGCCGA CTGGCCTACC TCCCTGTAGG 720 30 AAGAGTGGGT TCCAAGACAC CTGCCTCCCC CGTTGTGGTC CAGCAGGGCC CGGTAGATGC 780 ACACCTTGTG CCACTGGAGG AGCCAGTGCC CTCTCACTGG ACAGTGGTGC CCGACGAGGA 840 CTTTGTGCTA GTCCTGGCAC TGCTGCACTC GCACCTGGGC AGTGAGATGT TTGCTGCACC 35 900 CATGGGCCGC TGTGCAGCTG GCGTCATGCA TCTGTTCTAC GTGCGGGCGG GAGTGTCTCG 960 TGCCATGCTG CTGCGCCTCT TCCTGGCCAT GGAGAAGGGC AGGCATATGG AGTATGAATG 1020 40 CCCCTACTTG GTATATGTGC CCGTGGTCGC CTTCCGCTTG GAGCCCAAGG ATGGGAAAGG 1080 TGTGTTTGCA GTGGATGGGG AATTGATGGT TAGCGAGGCC GTGCAGGGCC AGGTGCACCC 1140 45 1200 AAACTACTTC TGGATGGTCA GCGGTTGCGT GGAGCCCCCG CCCAGCTGGA AGCCCCAGCA GATGCCACCG CCAGAAGAGC CCTTATGACC CCTGGGCCGC GCTGTGCCTT AGTGTCTACT 1260 TGCAGGACCC TTCCTCCTTC CCTAGGCCTG CAGGGCCTGT CCACAGCTCC TGTGGGGGTG 1320 50 GAGGAGACTC CTCTGGAGAA GGGTGAGAAG GTGGAGGCTA TGCTTTGGGG GGACAGGCCA 1380 1440 GAATGAAGTC CTGGGTCAGG AGCCCAGCTG GCTGGGCCCA GCTGCCTATG TAAGGCCTTC TAGTTTGTTC TGAGACCCCC ACCCCACGAA CCAAATCCAA ATAAAGTGAC ATTCCCAAAA 55 1500 1533 AAAAAAAAA AAAAAAAAAA ANCCCGNGGG GGG

	(2) INFORMATION FOR SEQ ID NO: 91:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 575 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	
	ATCCTCTGGA ATCTAGGTGG AAGCCACCAA GCCTTCTTCA CACTTGCGTT CTGAGCATCT	60
15	GCAGACTTAA CCCCATGTGG CAATCACCAA GGCTTATGGC TTGTGTCCTC CAGAACTGTG	120
13	GCCAGAGCTG TACCTGGGCC CCTTTGAGCT GAGGCTGAAG CCAGAGTCTG AAGCTCAGCA	180
	GGGCAGTARG GCCCTGGGCC TGGCCCCTGA AACCATTCTT TTCTCCTAAG CCTCTGGGCC	240
20	TTTGATGGGA RGGGCTGTCC TCAAGATTTT TGAAATGCCT TTGGAGGGTT TTTGCCTTGT	300
	CTTGGATATT GGCTTCCTTT TAGTTATGCT CATCTCTCTA GCAAGTGAAT GTTTCACAAC	360
25	CTGCTTGGAT TCTTTCTCTA CCACAGARCC AGGCTGCAAA TTTTACAAAC TTTTACACTC	420
23	TGTTTCCCTT TTAAATATAA ATTTCAATGT TAAGTCACTT CTTTGCTCCC ATATCTGATT	480
	TAGGITGCIG GAAGTAGCCA AGICACCICI TGAATGCITT GCTGCITAGA AATTICCICI	540
30	ACTAGGTAGC CTGGGTCATC ACACTTAAGT TCAAA	575
35 40	(2) INFORMATION FOR SEQ ID NO: 92: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 639 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:	
45	TCCTTTCATC TTAAGCACCA CCCGACAGGG CAGGTACTAT TACCATCTCC GTTTGACAGA	60
	TNAGGAACCT GGCACAGGAA GCATTTAAGT GGATTCCCCA GGATCGCCCC ACTGTCAGGA	120
	GCAGANTCAG AATGGCCTC AGCATCAGGC TCCCAATCCT GGCTTCTAAC TGCTGCGCTC	180
50	TGCCCTTCYC TCWCCCCACC TCCCCACTCC AGTGCCTTTG GTCATGCCAC TGCAGCTTTC	240
	AGGCCAATAC TOGATTAGCC TCTTAGTGTT CTTGTCCCTG CAGCCATTTC CCCAGGCAGC	300
55	AATTCCATGT GCCCTCACTG ATGTAGGTGG CTCTTGTGTC ATTTGTCACA TCCTATTGAA	360
	TIGITIATGC ATCTIGITCA CACTCACAGC ACCCTCCCTC TCACACGTCC TCCTTATAAA	420
	. ANTOTOCOTO AGTOTOTOCT ATGAGOCCAGG TGCAGACTTA AGTGACAGGG CTGCTACGGG	480
60	•	

	AAATAAAAAA TTAACAAGGA GCACCTGCCT CTTAATGCAC AGTAACAAAC TATGTTAAGT	540
	GTCAGGAAGG AAAGGTTAAG GATGCCAGGA AGGCTTTTAA TAAATAACCT GACTTAGATG	600
5	GGCAGGTGGT GCTGARGATT AAGAACGTGT TCTTCTCGA	639
10	(a) THEORETICAL DOD ON TO AD NO. 92.	
10	(2) INFORMATION FOR SEQ ID NO: 93:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 744 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:	
20	GAATTCGGCA CGAGAGTGGC TGGAGTCTGG CTGCAGAGGG AAGACATCAG CAGGGAGGGA	60
	GCCAGGGCCT GTCACATCTT TCCTCTGGCC ATTGTCCTGG TCTTTGTAAG CCCAGAATCT	120
25	CCCCTTCCCT GAAGGGAGGC CAGCACCCCA GGAGGGCAGC AGGTGTGCTG TGAGGGTTGG	180
	AGTAGTGTGA GAGGTCAGGG TACACTAGAA TGGCCATGGA CACCATGTGG GGGTGCTCTG	240
	GECTIGGECCA CAGAACAGTG TCCTTCCTGC TGCTCCTCCC CTGCAGCTTC CCCCGACCTT	300
30	GTNGTTTATT TGGTTTGATA CCAATCAGCA GACCCTGCAA GGTGGAAGCT CCCAGGCTCT	360
	CAGTOCCACS ACTOTCATGT GCCAGTCACC CNTACTGTAA CTGCCCAATG AGTACTTCTT	420
35	GCCCACTGCC AAGATAGAGC CAGTTTACCA AGACAGGGGA ATTGCAGTAG AGAAAGAGTT	480
33	GAATATACAT AGAGCCAGCT AAATGGGAGA GTGGAGTTTT CTTATTACTT AAATCAGCCT	540
	CCCYTAAAAT TCAGAGGTGA GAATTTTTCA AGGACAGTTT GGTGGSCAGG CCTAGGGAAT	600
40	GGATGCTGCT GATTGGCTAG GGATGCAATC ATAGGGGTGT AGAAAAGTWC CTTGTGCACT	660
	GAGTCCACTT TIGGTGAGAG CTACCAAGGA GCTGCTGGTC TGCTGGTCCC GGTAGAGCCA	720
45	TCTGGTGTCA GGAATGCAAA AGTG	744
40		
50	(2) INFORMATION FOR SEQ ID NO: 94:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 526 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
	GCAGGGGAAT TOGGCCACGG AGGGGTTTCA ACAGGGCCCG TGGGGTGAGG TGCARACACA	60
60		

	AAGCCCATAA GTGCTGGCCT GTTGGGACAA ATGAGAGAAA TCCCATAGGG TGGTGATGAC	120
	AGCGCAYTCA GCCATCYTAY TCCTGGGGAA AATGAAACTT GTGCTCCTAT CAAATGCTCA	180
5	GTTGTAAAAC TGGAAAAAAA TTTTAGAAGA CATCTTGTCC AGCATCTGTG TTTATGTCTA	240
	TAAAATGTAG AAAACTAAAG CACAGAGATG TTAAATGTTT TGTCCAAGGT CCAACAGCTG	300
10	GTTAGCARGC TTGGTCTGGT GACCTTTCTA CTGAACCACA GTGCCGCTGG GGGAAGTCCT	360
10	CAGCACAGAT GCCTGCTGCT ATAGCTGGGG TATGGGCAGT ATTAGTAGTT AACCAGTCAA	420
	CCCAAGTTCC CATAGTCTAG GTTCTGCTTC AGCTGGAGGT TAGGGAAAAA CACAAGAAAA	480
15	TCCCTTACCA CTCTACCAGT GCTGGGGGAT GTACTAAGAG ATCCCC	526
20	(2) INFORMATION FOR SEQ ID NO: 95: (i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 426 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:	
30	GGCACAGGGC AGGAGAGACT TGGTCCATGG GGAGAAGCCT GCAGTATAGA TGGGACCTCC	60
	AGGAGCCCAA GTAGCATAGA CCCTGCTGAT CCGGGGCCAT TGAGCCAGAG GATTTGGGCT	120
35	GAATGTCCCC AGAGACAAAA GGGAAAGGTA GATCCTTTCC CTTAAAGATG AAAGCCATCG	180
	CCCGGGCTTG CTTATTGCTC TCTCTCCTGG TCCTTCCACA TGTTGTTTCT GAACATTTGT	240
	TCTGGCATCA CAATCCCCGT CATCCTGTCA TCTGGCCCTT CCCACCTTTC CACCTTATCT	300
40	CTTGCAGTGT CTCCGCGTCG ACCTGGCACC TGGGTGAARG CTTGCTCTTG CTGGTGCCCA	360
	TAGCCCCCAG TGTATGGTCT TGAMCTCCCC AGCCATATGG ARACCCACCT CAGGAGGGCC	420
45	CCTCGA	426
	(2) INFORMATION FOR SEQ ID NO: 96:	
50	(i) SEQUENCE CHARACTERISTICS:	
55	(A) LENGTH: 844 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:	
60	GGCACAGCGG CACGAGATAG GAAGCTTGGC AGGGGCAGCT CCCCCAGTGC GCATTGCCCT	60

WO 98/54963

	GIANCICAND COCCIOGNO IGGGGADADO CIIGGAAAIG GAGCACCOIG GIGGACCICO	120
	TCTTCTCCTG CTCATCCCAG GCCTCCTCCA TAACACCTAC CTAGCACGGC CTGGGGACTT	180
5	CCCAGCCCAA GGAACAACTG AGAATACTGA GTGCCAGGGT AGCCCTAGCC CCATTTCACA	240
	CCTGGGCAAA GTGAGGTCAC TGGATTCAAA CACTCAGATT TAAACCTCCT CTGTGTCTGC	300
10	AGCACCTGTA TATAACTGCC AGCCTCTGCT GCCCCTCTCC AAAAAGTCTC TGCCCTTGTC	360
10	TITGGCACCT GTCTCTGTCC TCCCCATTCT CTGCTCCTCC TTTCTCCAAC TCAGANTCAC	420
	CCTGTTAGTT CAGCAAATGT TCATCGAGCT CCATAATGTA GCAGGACAGG NCTGTCTAAC	480
15	AGATTCTGGN CTTGCAAGGG TGAGACAAGT ACTCTCCATC TTTCTCTCAT CTTCACAGAT	540
	GGTCTGCTCA ACAACTTTGC ACTGAATTGT AAATAATTGA TACTGCATAA AACATTGATG	600
20	TTCTTTAAGG GTAGTCCAGC AAGGTGGCAA GTCTTATAAT GATAACTGCT CAAGGATCTC	660
20	TCAGTGAAGC ATTTGGGGST GCTAGCTCTG CCTATGGGTG AGGTCAGCTA TCTCACGCCA	720
	TCTACTTCCA CNTGCCCCCC CATGCCAGGC TCACCCTGAG CTGAGATGCC TGAGCAGGTG	780
25	GCAGAAAGGA GCCACCTGGT TTATGCTTCG GGACCACAAA CTCCTCTATC CAGANGACAG	840
	TTTT	844
30		
50	(2) THEORMATION FOR CEO TO NO. 97.	
	(2) INFORMATION FOR SEQ ID NO: 97:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1985 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEENESS: double	
	(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:	
	AGCCCTGCTG AAGTACAGGT TCTTCTATCA GTTTCTGTTG GGCAATGAAC GAGCAACAGC	60
45	AAAGGAGATC AGGGATGAAT ATGTGGAGAC GCTGAGCAAG ATTTACCTGT CTTACTACCG	120
13	CTCTTACCTG GGGCGGCTCA TGAAGGTGCA GTATGAGGAA GTCGCTGAGA AAGATGATCT	180
	AATGGGTGTG GAAGATACAG CAAAGAAAGG ATTCTYCTCA AAGCCATCGC TCCGCAGCAG	240
50	GAACACCATT TTCACCCTAG GAACCCGCGG CTCTGTCATC TCCCCCACTG AACTTGAGGC	300
	CCCCATCCTG GTGCCTCACA CAGCGCAGCG GNAGAGCAGA GGTATCCATT TGAGGCCCTC	360
55	TTCCGCAGCC AGCACTACGS CCTCCTAGAC AATTCCTGCC GCGAATACCT TTTCATCTGT	420
JJ	GAATTTTTTG TTGTGTCTGG CCCAGYTGCA CACGACCTGT TCCATGCTGT CATGGGCCGT	480
	ACACTCAGCA TGACCCTGAA ACACCTGGAT TCTTATCTAG CTGACTGCTA CGATGCCATT	540
60		600

348

	GTTCCTGCCC	TGGACAGGTA	CTGGGGAACA	GCTGCTTGCC	TTGCTATGGC	CACGGTTTGA	660
5	ACTGATCCTG	GAGATGAATG	TTCAGAGCGT	CCGAAGCACT	GACCCCCAGC	GCCTAGGGGG	720
5	GTTGGATACT	CGGCCCCACT	ATATCACACG	CCGCTATGCA	GAGTTCTCCT	CCGCTCTTGT	780
	CAGTATCAAC	CAGACAATTC	CTAATGAACG	GACCATGCAA	TTGCTGGGAC	AGCTGCAGGT	. 840
10	GGAGGTGGAG	AATTTTGTCC	TCCGAGTGGC	AGCTGAGTTC	TCCTCAAGGA	AGGAGCAGCT	900
	TGTGTTTCTG	ATCAACAACT	ATGACATGAT	GCTGGGTGTG	CTGATGGAGC	GGGCTGCAGA	960
15	TGACAGCAAA	GAGGTTGAGA	GCTTCCAGCA	GCTGCTCAAT	GCTCGGACAC	AGGAATTCAT	1020
15	TGAAGAGTTG	CTGTCTCCCC	CTTTTGGGGG	TTTAGTGGCA	TTTGTGAAGG	AGGCTGAGGC	1080
	TTTGATTGAG	CGTGGACAGG	CTGAGCGACT	TCGAGGGGAA	GAAGCCCGGG	TAACTCAGCT	1140
20	GATCCGTGGC	TTTGGTAGTT	CCTGGAAATC	ATCAGTGGAA	TCTCTGAGTC	AGGATGTAAT	1200
	GCGGAGTTTC	ACCAACTTCA	GAAATGGCAC	CAGTATCATT	CAGGGAGCGC	TGACCCAGCT	1260
25	GATCCAGCTC	TATCATCGCT	TCCACCGGGT	GCTGTCCCAG	CCGCAGCTCC	GAGCCCTCCC	1320
	TGCCCGGGCT	GAGCTCATCA	ACATTCACCA	CCTTATGGTG	GAGCTCAAGA	AGCATAAGCC	1380
	CAACTTCTGA	TGTGCCAGAA	ACCGCCCTGA	GATCTGCCGG	TCATCTCCAT	GGACTTCTGC	1440
30	ACCCCATTCC	ATACCCTTCT	TCACCTGGGG	TACCCCTTCC	AGTTTTCCCC	TTGCTTCCCA	1500
	GGCCCTTGAC	ATGGCTTACC	TGCCTTCACT	CCCAGCACCT	TGCCCAACAG	GATAAGCTGG	1560
35	ATCCCCTTGG	CCTTCTGAAT	ATCCCAGTGT	CTTCAGGTTT	CCCAAGACCA	CTTCCCTGTG	1620
	GGCTTCCAAA	ATGGCCTTTA	TCATTTCTCC	AGTCTGTCAC	CCTCCTTTCC	TGCTCCCATA	1680
	CACCCAAGGC	TIGITICTIC	CCCTGTAAAA	ACCACTGCCT	CAATCTCTGG	TTCACTCAAC	1740
40	TAGTCACCAT	GTCCTGAGGC	ATGAAGCCTC	CTCAGCTCTT	GGAATTGCTG	GCAAGGGGTG	1800
	ACTGCCTCTG	AGTCATTGTG	TTTTTCAAAG	TGATTTCTTT	TCTGTAGCTT	TTTGACCTAA	1860
45	GATCTCAGCA	ATTTGAACAC	TAACCTCTCC	CCTCCTGGCT	CAAGAATTAC	TCCGAAGTCA	1920
	GTCTGCAGAA	AATAAATATT	TAGTATGACA	TGAAAAAAA	ааааааааа	AAAAAAAA	1980
	AAAAA						1985

50

(2) INFORMATION FOR SEQ ID NO: 98:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1416 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

	ATATGAAGGG	AAAGAATTTG	ATTATGTTTT	CTCAATTGAT	GTCAATGAAG	GTGGACCATC	60
5	ATATAAATTG	CCATATAATA	CCAGTGATGA	CCCTTGGTTA	ACTGCATACA	ACTTCTTACA	120
	GAAGAATGAT	TTGAATCCTA	TGTTTCTGGA	TCAAGTAGCT	ATTTATTA	TTGATAACAC	180
10	AAAAGGTCAA	ATGTTGGGAC	TTGGGAATCC	CAGCTTTTCA	GATCCATTTA	CAGGTGGTGG	240
	TCGGTATGTT	CCCCCCTCTT	CGGGATCTTC	TAACACACTA	CCCACAGCAG	ATCCTTTTAC	300
	AGGTGCTGGT	CGTTATGTAC	CAGGITCIGC	AAGTATGGGA	ACTACCATGG	CCGGAGTTGA	360
15	TCCATTTACA	GGGAATAGTG	CCTACCGATC	AGCTGCATCT	AAAACAATGA	ATATTTATTT	420
	CCCTAAAAAA	GAGGCTGTCA	CATTTGACCA	AGCAAACCCT	ACACAAATAT	TAGGTAAACT	480
20	GAAGGAACTT	AATGGAACTG	CACCTGAAGA	GAAGAAGTTA	ACTGAGGATG	ACTTGATACT	540
	TCTTGAGAAG	ATACTGTCTC	TAATATGTAA	TAGTTCTTCA	GAAAAACCCA	CAGTCCAGCA	600
	ACTTCAGATT	TTGTGGAAAG	CTATTAACTG	TCCTGAAGAT	ATTGTCTTTC	CTGCACTTGA	660
25	CATTCTTCGG	TTGTCAATTA	AACACCCCAG	TGTGAATGAG	AACTTCTGCA	ATGAAAAGGA	720
	AGGGGCTCAG	TTCAGCAGTC	ATCTTATCAA	TCTTCTGAAC	CCTAAAGGAA	AGCCAGCAAA	780
30						GACAAAAACT	
					•	CAGGGAGCAA	
26						GTTTTCATAA	
35						TCTTGGAAGT	1020
						TTATCAGTGA	1080
40						TAAAAAAGTA	1140
						TAAATTTGCT	
45						CCTCACATTT	
45						AAAATTTTAC	1320
			•		TTTGCACTGC	TGAAAAAAA	1380
50	AAAAAAAAA	AAAAGGAAAC	TCGAGGGGG	GCCCGG			1410

(2) INFORMATION FOR SEQ ID NO: 99:

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1935 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

350

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

5	NTCTACCCTA ATCAAGATGG GGACATACTT CGCGACCAGG TTCTTCATGA ACATATCCAG	60
,	AGATTGTCTA AAGTAGTGAC TGCAAATCAC AGAGCTCTTC AGATACCAGA GGTTTATCTT	120
	CGAGAAGCAC CATGGCCATC TGCACAATCA GAAATCAGGA CAATAAGTGC TTATAAAACC	. 180
10	CCCCGGGACA AAGTGCAGTG CATCCTGAGA ATGTGCTCTA CGATTATGAA CCTCCTGAGC	240
	CTGGCCAATG AGGACTCTGT CCCTGGAGCG GATGACTTTG TTCCTGTGTT GGTGTTTGTG	300
15	TIGATAAAGG CAAATCCACC CTGTTTGCTG TCTACTGTGC AGTATATCAG TAGCTTTTAT	360
13	GCTAGCTGTC TGTCTGGAGA GGAGTCCTAT TGGTGGATGC AGTTCACAGC AGCAGTAGAA	420
	TTCATTAAAA CCATCGATGA CCGAAAGTGA CCAAGACCAA GGCCCACCAA GGCAGCAGAC	480
20	TGTTAATCAG ACAAACAGAT CTCTGAGAAG GTGCATCAGC TGCTTTGAAG GCTGAAGATT	540
	GTTTTGTATG ATACTGCACA GCATCAGGCA TTTTAAAGCA GATCTTTACT AAACAGGTTA	600
25	ATGAGCTAAC AAGCAGGTTC TCTCGTCTTT GGGCTCTTTC CTTTCTGAGT TGCATATTCT	660
23	ATTITCTTGT CCCCAAGTAG AGACTAGTAC TACAAAAAGG GACCACATTT TTCAAGTATT	720
	TCTAAGTATA AAAAACAAAA CAAAAATCTC TTAGGAAATG TCTAGACCTC CATTCTTGGA	780
30	TTCCCTTTCT TTCCTTTTAT TTTAAAAAAG AACAGTACCC CTCTTTTAAG ATGCTGTCTT	840
	ACATTAATGA GCATCTAATG GAAAGAAGGT ATGAGTTGCA CTGAGGATTA GAATAGTGGT	900
35	GCGTTAGTGG CATTATCTAT AAATACACTC ACCTAAATTG AAAGCTAAGA AGGAAATGTA	960
	AATATAATAT ATATTTATAT TTGATGTAAT ATGGACATCT GCAGATTCTA ATAAACAAGG	1020
	ACTATIGCTG ATAGTAGGCT GTGACATACT GTCTTGTGAA ATGGTTTCCT TGACAAAATT	1080
40	TAAGCTGAGC TTAAAAGCAA AAAAACAAAA AGTACACAGA AATATTTATT AAAATGTAAT	1140
	ACAGTITATI GAACTITCTA GGTATGGAGT TIGATGGACA GGGCTGCCTY TAATGAGTGT	1200
45	GAAGGTCACT AAGTCACTTA GACATCTCAC CGTGGAAGTT TGTGAGCCTG CATTAGGAGA	1260
	TAGACTGATT ACCATACATG ACATAAAAAG GAACAGTGGA TAGCTCATAC TTTATGGTGG	1320
	TTCTTCTCCT CCGAAATAAT ATACTGCAGA AATCCCAGAC AGAGCTCCTT ACAAACCTTT	1380
50	AATTGTAATA TATTTTTGAT GATTATTCAC ATTGAATGCA CAGACCAAGA ATTCAGTGAA	1440
	TGTCATTTTT TAAAAAACTA ATTTGTATTG TCTGCTCTAG TGATACAAGT TTTACTAGTG	1500
55	ATAAACTATT TTAATCAACC ATACTATTCT TATGGAAAAA AATATCTATT TTGGCAGGTT	1560
	TCTGTGCCTT TATTTCCCTC TTCTGAAAAA AAGTCTGTGT TTTCATAGTT TGGTTTGCAT	1620
	TGTATATCAA TAATTAATCA GGAATGGGTT TTGGTGCCTG AAAAATTGGC CATGGAGGCA	1680
60	CACCAAAGCT TCAAGCACAA GTCTTGTACA TGGGCCATCA CTGTCTGGTT TCACTTCGTG	1740

	TGTTTCCTAA ACACATTTAG CTGCTTTTTT AACAAACTCA GCCCCATACT TGAGTCCCTT	1800
•	GTTGTTGGGA GCATTTCCAG GCATCTTTTA AGGGAACTGT GACAAACAGC CTCGGGCAGA	1860
5	TGAACACGGA GCCTCTCTGT TGTCTGTCTC TGAGATCTTT GTGTCTGGGA ATGCCTAAAG	1920
	NITTIGNITT TITT	1935
10	·	
	(2) INFORMATION FOR SEQ ID NO: 100:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 599 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:	
	GAATTCGGCA CGAGCGTCCA CGCAGCCGCC GGCCGGCCAG CACCCAGGGC CCTGCATGCC	60
25	AGGTCGTTGG AGGTGGCAGC GAGACATGCA CCCGGCCCGG	120
	CCTCATCCTG ATGGGCACTG AACTCACTCA AGACTCCGCT GCCCCCGACT CCCTGCTGAG	180
30	AAGTTCAAAG GGCAGCACGA GGGGGTCTTT GGCTGCTATT GTCATCTGGA GGGGGAAGAG	240
50	TGAGAGCCGG ATAGCCAAGA CCCCAGGCAT TTTCAGAGGT GGCGGGACCT TAGTCCTACC	300
	CCCAACACA ACCCCTGAGT GGCTCATCCT CCCTTTGGGC ATAACGCTGC CCTTGGGGGC	360
35	TCCAGAAACA GGCGGTGGGG ATTGTGCCGC TGAGACCTGG AAGGGCAGCC AGCGTGCCGG	420
	CCAGCTGTGT GCATTGCTGG CTTAATATGC AGGCTTGGG GGGCTGTGGC CACATGCCCG	480
40	GCAGGAGGTG AGTGAGGAGC CCTGTGGCGT GCTGGTGTGG GGATCGTGGG CATTTCAAAC	540
	GGGCTTGTCG TACCCTGAAC AATGTATCAA TAGAGAAAAA AAAAAAAAA AAAACTCGA	599
45	(2) INFORMATION FOR SEQ ID NO: 101:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 784 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:	
	GAATTCGGCA CAGAAAAAA AGAGAGACTG GGTCTTACTG TGTTGCCCAG ACTTGTCTTG	60
	AACTCCTGCC TCAGCCTCTC AAGTACTTGG GATTATAGGC CAAGAAGCCA CCATGCCTAG	120
60	CTTCTTCCTG TCATTGATCC AGACTAATAC TCTGGGGTCA GCCTCATTTC TTCTCTTTCT	180

	CACTUMCCAC AMOCACITION CACCAAAMOV normoamon coamoonaa	
	CACTITICAC ATCCACTIGIT CACCAAATCK RGITCATTCT GCATCCTAAG TAAGTCCTTT	240
5	GATTCCTCCA GITGTTCATT AGTAATGTCT CAARTGTAAT TTTTTCTAGT AGTTTTCAGC	300
	CTGTCTTTCC KGCCTTCAGT CTTAACTTCT CCAGTACATA KGCCACATTG TTGTCAGCAK	360
	GATCAWATTT TATTTAAAAA TACTTTACAW AKGTTTATKG CCAAATATTA GRAAATACAG	420
10	ATTCATGGAA AGAAAAATCA CTGTCCCAAG GAGGTCACTG GCATGGTGAG GTTAAGGGGT	480
	GATTITAATT TITAAAAATG TATATTITTI CCTGTGTAGA GTAGTAACAC CCTTGAAAAC	540
15	ACAMTCCCTT GTAAAGTCTC TAATTCTGTA CTCCGCATCT AGSTGRTCTC TTCTTTCTCA	600
13	GATATTTTAC AATTTCATTT ATCACCACCT TTCTCTAGCC TTTACCCGTC TCTTCAATAT	660
	TWACATATGC AGAAGTTTCT CCTAACAAAC ACCTGCCTCT GCCTCAGTTC TGCTACCACC	720
20	CTGTTGCTTT CTTTCCCTTC ACAATCAAAT TTAAGAGTGT CAAAAAAAAA AAAAAAAAAC	780
	TCGA	784
25		
25	(2) TITTODIA TOTAL	
	(2) INFORMATION FOR SEQ ID NO: 102:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1035 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:	
	AGAGGCCTGG CTGCGTTGCC CTATCTCCGT CTCCGCCACC CACTTAGCGT TTTAGGCATC	60
40	AATTACCAGC AGTTTCTCCG CCACTATCTG GAAAATTACC CGATTGCTCC CGGCAGAATA	120
10	CAAGAGCTTG AAGAACGCCG CAGTTGCGTG GAAGCCTGCA GAGCAAGGGA AGCAGCGTTT	180
	GATGCCGAAT ATCAGCGAAA TCCTCACAGG GTGGACCTCG ATATTTTAAC CTTTACGATA	240
45	GCTCTGACTG CCTCTGAAGT TATCAACCCT CTGATAGAAG AACTTGGTTG CGATAAGTTT	300
	ATCAATAGAG AATAGTTAGG TGGTGACACT ACTTCAAGAG AACCTCTGCA TTCCAGTCAT	360
50	ACCAATCCTG CAACTTGATT TTCAGAAGTC AAGAGTATAT CGCGATAAGA CAGTGCACAG	420
50	GTGGAGGGGA AAAAAAGGGG GAGGGGGAAG CTTATCTTGA AAAAGCATCA CAGAAGTAGA	480
	AAAAAATGTC GAAAGCATTA TAACTGTAAC GTTCTTTGAG TTTGTGATTG ATCCACATTT	540
55	TTCCCCCTGC ATTATGGAAA ATGTCTCTCA GCATTGCTTT ATTACAAAGT AAAGGATGGT	600
	TTTATAAAAT TGAGACTGAT GAAACATCAA TACTAGAGCC CATGAGGATG AAAGAAATTA	660
	TCAAATAGTG CTGAACAGAA TAAGATGTTA ACGCTGAGTT ATTAGGACTG GAAGGCTATG	720
60		

353

	AAAAGAACTT GAAATTGTCG GAATATGTGC TCTCTTCATG TCATATTCAA TAGAAGTTTC	780
	TAGTTTAAGA TIGATTTIGT GTFTTCTTAG GCATTTCAAG TGACAAGCAA AGTAAATGTA	840
5	TATATTATGT GATAAATCAT GTTTTCAAGA ACGTCAAATT TCTGGACTTT TTTCTTTCAA	900
	TTTTTAATTT TTAAAGTTTT TTTGGTATTA AAAAATCYAT TCACAAGCCA AAAAATWTWT	960
10	WAAATWIWCM GCGAAAAGCC AAAAAAAAAA AAAAMMAGGG GGGGCCGGGC CCCATCCCCC	1020
10	CAAGGGGGTC CNGNT	1035
15	(2) INFORMATION FOR SEQ ID NO: 103:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2218 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:	
	AGGTATTAGG CCCTTTTGTG GGAGCCCCAT GTTTGTTTT TCTGAGTTGG TGGGGAGGGA	60
	SGGAGGGGA GGGCTGAATT GTTTTGCAGA GGAAGATGGC ATCTGTGCTT TAAATTTCTC	120
30	ATTACTGGGT TAGAAAACAA AGAGGGAKTG CCCTGCACAT TITCTTTTGT GCTTTTAAAT	180
	GTTTCTTAAG TTGGAACAGG TTTCCTCGGG CCTGTTTTGA CTGATTGCTG GAGTGCATTT	240
35	GATAGITAAA AATTACTAAT TGGTTTTATT TCCCTTCACA CTCTGCCTCC CCACTTCTCC	300
	CCCCGTTACT GAAAAATAAC CATTTTAGTG TCAGGCTAGA AATTGAATTG	360
	TGTATCCTTT AAATTAAAAA CCACAAGTGT TTATTGTAGT GGTTAAACTG TAGCATCTCA	420
40	GCATCTGGGT GGAAGCTGCC TATATTTCTT CCCAGTTTAA CTGGGGACCA TCTGTGAAAT	480
	TAATTTTCCA TCCAGACAGC TGCTGTGAGC AAATGAACAT AAATGCTCGC TGGAAATTTA	540
45	CTAACCAGTT TITATATTGA CCTGCAGTGT AAAAAGCACA TTTAATTATA AACAATATAT	600
	TCAAAATGGG CAAATTTTAT TTTCAAATGC AGTGTAGAGC TAGATTAAAA GCAACTCTTT	660
	GCCACCTACT CTGCCCTTTT GGCAAAGTTA CCTTGAACAA AGAATCTTAA GGGTTTATTA	720
50	AGAACTCTTT ATTTTCTTCA TACCCTGTTC TCTGCAGTGC TTTCTAACAG CTTCTGGGTG	780
	CAGATTITCT TCGGCATCCT TTTGCACTCA GCTTATTACA GGTAGGTAGT GCTTAAGAAA	840
55	AGTCATGGAG GACTAAAGCC TAAGTCCTTT TCACTTTTCC TCCATCTGAA GGTAGGTGAG	900
	TTCATCCTCT TCATAGTAAT GCTGTTTTAC CAAGACTTTA TAGCAGATGG ACCCAGAAAG	960
	ADTERPORTED TRANSPORTED ACTION ACTION OF THE PROPERTY ACTION OF THE	1000

CTTCCAGATC TGATATGGGA CTATTAATTT TTATGCTGTT AATTGGTATT CATTCACAAT

1080

	GCAGTTGAAG	GGGGAAGGCT	CCACTGCATT	CTTTGGCTAA	GCCTGAATG	CTTGCTCATC	1140
5	TGTAAGATCT	ATACTCGAGG	TTTTGTTTTC	СТТТТААААТ	TCTTTAGGGA	GAGAGGGATG	1200
,	GTTTCTGAGG	GGTTCTGAAA	GTATGATTCA	ATGTGCAACA	TACAGGTAGG	TCTTCAGCAT	1260
	AAGCTGAAAT	ATATGCATGT	AAAAACTTTG	ACATCTTTTT	TTTTAATTTT	CCACTTTCTT	. 1320
10	CTTAACTTTA	CTTCTCTTTT	TGTCCCCCCC	CCATCTTACA	GAAGTTGAGG	CCAAGGGAGA	1380
	ATGGTAGGCA	CAGAAGAAAC	ATGGCAAACT	GCTCTGTGCT	TTCAAACCAA	AGTGTTCCCC	1440
15	CCAACCCCAA	ATTTGTCTAA	GCACTGGCCA	GTCTGTTGTG	GGCATTGTTT	TCTACAACCA	1500
•-	AATTCTGGGT	TTTTTTCTTC	TTTCTTTAAA	CATAGAGGTA	CCACCACAAG	GGATGCCCTA	1560
	CTCTCTCGCA	GCTCTTGAAA	GCATCTGTTT	GAGGGAAAGG	TCTCTGGGCA	AGCAAGTGGT	1620
20	TATTTGGATT	GCTTGCTTCC	CTTTTTCCAC	CTGGGACATT	GYAATCATAA	AATAACAGTA	1680
	AATTCCAAAC	CTCAAAAACT	ATTATGGCCT	GAGCACAGCT	GAAATCTAGC	AGAGTTTAAC	1740
25	TCTTCTGCCT	CCATGTCTGT	CACTTATAAT	TCAGGTTCTG	CTGTTGGCTT	CAGAACATGA	1800
	GCAGAAGAAT	CGTTTTATGC	TAGTTATTGC	ATTCATGGTT	GAAACTCAAC	TTAGGGAAAG	1860
	GGTTCCAATG	TATTAAGCAA	TOGGCTGCTT	CTCCCCAATC	CTCCCTAACA	ATTCGTTGTG	1920
30	TGGACTTCTC	ATCTAAAAGG	TTAGTGGCTT	TTGCTTGGGA	TCAGTGCTCT	CTATIGATGT	1980
	TCTTGCTGGT	CTCCAGACAC	ATTCCTGTTG	CATTAAGACT	TGAAAGACTT	GTAGATGTGT	2040
35	GATGTTCAGG	CACAGGATGC	TGAAAGCTAT	GTTACTATTC	TTAGTTTGTA	AATTGTCCTT	2100
	TTGATACCAT	CATCTTGTTT	TCTTTTTGTA	GGTATAAATA	AAAACACTGT	TGACAATAAA	2160
	AAAAAAAAA	ААААААААА	ааааааааа	AAAAAAAAA	ааааааааа	ААААААА	2218
40							
	(2) INFORM	ATION FOR S	EQ ID NO: 1	04:			
45	(i)	(B) TYP (C) STR	HARACTERIST GTH: 1351 b E: nucleic ANDEDNESS: OLOGY: line	ase pairs acid double			
50	(xi) SEQUENCE			. 104.		
				_		GTTTTTGAGA	60
55						TCACTGCAAG	120
-						TGGGACTACA	180
						GGGTTTCACC	240
60	Junior	ACCACOCCCO	GCIMITITT	IGIAITITT	MINUMENCO	GOG!!!CACC	240

	ATGITAGCCA GGATGGTCTC GATCTCCTGA CCTCGTGATC CGCCCGCYTC GGCCTCCCAA	300
	AGTGCTGGGA TTACAGGCGT GAGCCACCGT GCCTGCCCCA GAATGGTTTT TAAAGCCACA	360
5	GTTGAGARGC CACCCATTGC CCGGCGCCTG GACAGTGATC ATCTTGTTCA TCTTGTTCAG	420
	TCCTTTCTTG TGTGATTGGA ATTATTCATC CCCTTTGAAA GATGAGAAGG TTGAGATGCA	480
10	AAGAGTCTAC CTTTCCAAGT TCTCACTGCT GGAAAGARCT AGAAGCACAG TTCAAAGTTC	540
	TGGNITCTGG ACTCTGCAGT CCAGGTYTCC CTTYTCCCAC TTGCCTACCC TCAATGCCAC	600
	ACTGTTTTTG AAGTGGCCCA TAACTTGAAG GRAAAGTTTA AAGACAGTTC AATTTAATCA	660
15	TCAGRATGCA TTCTTTTTT TTTCGGARAC GGAKTTTCAC TCTTGCTGCC CASGCTGGAG	720
	TGCAATGGTG CAATGATCTC GGCTCACTGC AACCTATGCC TCCTGGGTTC AAGNGATTAT	780
20	CCAGCCTCAG CCTCCCGAGT AGCTGGGATT ATGGGCGCCC ACCACCATGC CCAGCTAATT	840
	TITGTATTIT TITITITAGI AGAGATGGGG TITCGCCAGG TIGGCCAGGC TGKTCTTGTG	900
	AAYTCCTGGC YTCAGGTGAT YTGCCCACYT CATCYTCCAA AAGTGCTGGG ATTACAGGCA	960
25	TGAGCCACTG CGCCTGGCYT CAGAATGCAT TCTTACACAT CTATCCTAGA CATTTATAAG	1020
	CACTCTAATG GATAACAATC CAAGAATAAA TGATTGTAAA AGATGATGCC GAAGAGTTGA	1080
30	TGTCAATCTT TTTTTCCTAA GAAAAAAAGT CCGCGAGTAT TAAATATTTA GATCAATGTT	1140
	TATAAAATGA TTACTTTGTA TATCTCATTA TTCCTATTTT GGAATAAAAA CTGACCTTCT	1200
	TTAATCATAT ACTTGTCTTT TGTAAATAGC AGCTTTTGTG TCATTCTCCC CACTTTATTA	1260
35	GTTAATTTAA ATTGGAAAAA ACCCTCAAAC TAATATTCTT GTCTGTTCCA GTCTTATAAA	1320
	TAAAACTTAT AATGCATGTA AAAAAAAAAA A	1351
40		
	(2) INFORMATION FOR SEQ ID NO: 105:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2066 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:	
	GGCACGAGGC GGCGGAGGGC CACAATCACA GCTCCGGGCA TTGGGGGAAC CCGAGCCGGC	60
55	TGCGCCGGGG GAATCCGTGC GGGCGCCTTC CGTCCCGGTC CCATCCTCGC CGCGCTCCAG	120
<i></i>	CACCTCTGAA GTTTTGCAGC GCCCAGAAAG GAGGCGAGGA AGGAGGGAGT GTGTGAGAGG	180
	AGGGAGCAAA AAGCTCACCC TAAAACATTT ATTTCAAGGA GAAAAGAAAA	240
60	CAAAAATGGC TGGGGCAATT ATAGAAAACA TGAGCACCAA GAAGCTGTGC ATTGTTGGTG	300

	GGATTCTGCT CGTGTTCCAA ATCATCGCCT TTCTGGTGGG AGGCTTGATT GCTCCAGGGC	360
_	CCACAACGGC AGTGTCCTAC ATGTCGGTGA AATGTGTGGA TGCCCGTAAG AACCATCACA	420
5	AGACAAAATG GTTCGTGCCT TGGGGACCCA ATCATTGTGA CAAGATCCGA GACATTGAAG	480
	AGGCAATTCC AAGGGAAATT GAAGCCAATG ACATCGTGTT TTCTGTTCAC ATTCCCCTCC	540
10	CCCACATGGA GATGAGTCCT TGGTTCCAAT TCATGCTGTT TATCCTGCAG CTGGACATTG	600
	CCTTCAAGCT AAACAACCAA ATCAGAGAAA ATGCAGAAGT CTCCATGGAC GTTTCCCTGG	660
15	CTTACCGTGA TGACGCATTT GCTGAGTGGA CTGAAATGGC CCATGAAAGA GTACCACGGA	720
13	AACTCAAATG CACCTTCACA TCTCCCAAGA CTCCAGAGCA TGAGGGCCGT TACTATGAAT	780
	GTGATGTCCT TCCTTTCATG GAAATTGGGT CTGTGGCCCA TAAGTTTTAC CTTTTAAACA	840
20	TCCGGCTGCC TGTGAATGAG AAGAAGAAAA TCAATGTGGG AATTGGGGAG ATAAAGGATA	900
	TCCGGTTGGT GGGGATCCAC CAAAATGGAG GCTTCACCAA GGTGTGGTTT GCCATGAAGA	960
25	CCTTCCTTAC GCCCAGCATC TTCATCATTA TGGTGTGGTA TTGGAGGAGG ATCACCATGA	1020
23	TGTCCCGACC CCCAGTGCTT CTGGAAAAAG TCATCTTTGC CCTTGGGATT TCCATGACCT	1080
	TTATCAATAT CCCAGTGGAA TGGTTTTCCA TCGGGTTTGA CTGGACCTGG ATGCTGCTGT	1140
30	TIGGTGACAT CCGACAGGGC ATCTTCTATG CGATGCTTCT GTCCTTCTGG ATCATCTTCT	1200
	GTGGCGAGCA CATGATGGAT CAGCACGAGC GGAACCACAT TGCAGGGTAT TGGAAGCAAG	1260
35	TOGGACCCAT TOCCGTTGGC TCCTTCTGCC TCTTCATATT TGACATGTGT GAGAGAGGGG	1320
33	TACAACTCAC GAATCCCTTC TACAGTATCT GGACTACAGA CATTGGAACA GAGCTGGCCA	1380
	TOGECTICAT CATCGTGGCT GGAATCTGCC TCTGCCTCTA CTTCCTGTTT CTATGCTTCA	1440
40	TOGTATTICA GGTGTTTCGG AACATCAGTG GGAAGCAGTC CAGCCTGCCA GCTATGAGCA	1500
	AAGTCCGGCG GCTACACTAT GAGGGGCTAA TTTTTAGGTT CAAGTTCCTC ATGCTTATCA	1560
45	CCTTGGCCTG CGCTGCCATG ACTGTCATCT TCTTCATCGT TAGTCAGGTA ACGGAAGGCC	1620
43	ATTGGAAATG GGGCGGCGTC ACAGTCCAAG TGAACAGTGC CTTTTTCACA GGCATCTATG	1680
	GGATGTGGAA TCTGTATGTC TTTGCTCTGA TGTTCTTGTA TGCACCATCC CATAAAAACT	1740
50	ATGGAGAAGA CCAGTCCAAT GGAATGCAAC TCCCATGTAA ATCGAGGGAA GATTGTGCTT	1800
	TGTTTGTTTC GGAACTTTAT CAAGAATTGT TCAGCGCTTC GAAATATTCC TTCATCAATG	1860
55	ACAACGCAGC TICTGGTATT TGAGTCAACA AGGCAACACA TGTTTATCAG CTTTGCATTT	1920
"	GCAGTTGTCA CAGTCACATT GATTGTACTT GTATACGCAC ACAAATACAC TCATTTAGCC	1980
	TTTATCTCAA AATGITAAAT ATAAGGAAAA AAGCGTCAAC AATAAATATT CTTGAGTATA	2040
60	ΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑ	2066

357

_							
5	121	INFORMATION	EVD	CEO	TD	NO ·	106.

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1705 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

15	AATTCGGCAK	AGGGCAGCTG	TCGGCTGGAA	GGAACTGGTC	TGCTCACACT	TGCTGGCTTG	60
	CGCATCAGGA	CTGGCTTTAT	CTCCTGACTC	ACGGTGCAAA	GGTGCACTCT	GCGAACGTTA	120
20	AGTCCGTCCC	CAGCGCTTGG	AATCCTACGG	CCCCACAGC	CGGATCCCCT	CAGCCTTCCA	180
20	GGTCCTCAAC	TCCCGYGGAC	GCTGAACAAT	GCCTCCATG	GGGCTACAGG	TAATGGGCAT	240
	CGCGCTGGCC	GTCCTGGGCT	GGCTGGCCGT	CATGCTGTGC	TGCGCGCTGC	CCATGTGGCG	300
25	CGTGACGGCC	TTCATCGGCA	GCAACATTGT	CACCTCGCAG	ACCATCTGGG	AGGGCCTATG	360
	GATGAACTGC	GTGGTGCAGA	GCACCGGCCA	GATGCAGTGC	AAGGTGTACG	ACTCGCTGCT	420
30	GGCACTGCCG	CAGGACCTGC	AGGCGGCCCG	CGCCCTCGTC	ATCATCAGCA	TCATCGTGGC	480
30	TGCTCTGGGC	GTGCTGCTGT	CCGTGGTGGG	GGGCAAGTGT	ACCAACTGCC	TGGAGGATGA	540
	AAGCGCCAAG	GCCAAGACCA	TGATCGTGGC	GGCGTGGTG	TICCIGITGG	CCGGCCTTAT	600
35	GGTGATAGTG	CCGGTGTCCT	GGACGGCCCA	CAACATCATC	CAAGACTTCT	ACAATCCGCT	660
	GGTGGCCTCC	GGGCAGAAGC	GGGAGATGGG	TGCCTCGCTC	TACGTCGGCT	GGGCCGCCTC	720
40	CGGNCTGCTG	CTCCTTGGCG	GGGGGCTGCT	TTGCTGCAAC	TGTCCACCCC	GCACAGACAA	780
40	GCCTTACTCC	GCCAAGTATT	CTGCTGCCCG	CTCTGCTGCT	GCCAGCAACT	ACGTGTAAGG	840
	TGCCACGGCT	CCACTCTGTT	CCTCTCTGCT	TIGITCITCC	CTGGACTGAG	CTCAGCGCAG	900
45	GCTGTGACCC	CAGGAGGGCC	CTGCCACGGG	CCACTGGCTG	CTGGGGACTG	GGGACTGGGC	960
	AGAGACTGAC	CCAGGCAGGA	AGGCAGCAGC	CTTCAGCCTC	TCTGGCCCAC	TCGGACAACT	1020
50	TCCCAAGGCC	GCCTCCTGCT	AGCAAGAACA	GAGTCCACCC	TCCTCTGGAT	ATTGGGGAGG	1080
50	GACGGAAGTG	ACAGGGTGTG	GTGGTGGAGT	GGGAGCTGG	CTTCTCCTCC	CCAGGATGGC	1140
	TTAACCCTGA	CTTTGGGATC	TGCCTGCATC	GTTTTGGCC	ACTGTCCCCA	TITACATTIT	1200
55	CCCCACTCTC	TCTGCCTGCA	TCTCCTCTGT	TGCGGGTAGG	CCTTGATATO	: ACCTCTGGGA	1260
	CIGIGCCIIC	CTCACCGAAA	. ccccccccz	GGAGTATGGC	TGAGGCCTTC	CCCACCCACC	1320
60	TGCCTGGGAI	A GTGCAGAGTG	GATGGACGG	TTTAGAGGGG	G AGGGGGGAAC	GIGCTGTAAA	1380

358

	CAGGTTTGGG	CACTGGTGGG	GGAGGGGGCC	AGAGAGGCGG	CTCAGGTTGC	CCAGCTCTGT	1	.440
	GGCCTCAGGA	CTCTCTGCCT	CACCCGCTTC	AGCCCAGGGC	CCCTGGAGAC	TGATCCCCTC	1	500
5	TGAGTCCTCT	GCCCCTTCCA	AGGACACTAA	TGAGCCTGGG	AGGGTGGCAG	GGAGGAGGGG	1	1560
	ACAGCTTCAC	CCTTGGAAGT	CCTGGGGTTT	TTCCTCTTCC	TTCTTTGTGG	TITCIGITIT	1	1620
10	GTAATTTAAG	AAGAGCTATT	CATCACTGTA	ATTATTATTA	TTTTCTACAA	TAAATGGGAC '	1	1680
	CTGTGCACAG	GRAAAAAAAA	AAAAG				1	1705

15

20

25

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 107:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1167 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

TGCAGGAATT CGGCAGAGGT TTTCCGCTAG ACTCTGGCAG TTGGTGAGCA TCATGGCAAC 60 CGTTACAGCC ACAACCAAAG TCCCGGAGAT CCGTGATGTA ACAAGGATTG AGCGAATCGG 120 TGCCCACTCC CACATCCGGG GACTGGGGCT GGACGATGCC TTGGAGCCTC GGCAGGCTTC 180 GCAAGGCATG GTGGGTCAGC TGGCGGCACG GCGGGCGGCT GGCGTGGTGC TGGAGATGAT 240 CCGGGAAGGG AAGATTGCCG GTCGGGCAGT CCTTATTGCT GGCCAGCCGG GCACGGGGAA 300 360 GACGGCCATC GCCATGGGCA TGGCGCAGGC CCTGGGCCCT GACACGCCAT TCACAGCCAT CGCCGGCAGT GAAATCTTCT CCCTGGAGAT GAGCAAGACC GAGGCGCTGA CGCAGGCCTT 420 CCGGCGGTCC ATCGGCGTTC GCATCAAGGA GGAGACGGAG ATCATCGAAG GGGAGGTGGT 480 GGAGATCCAG ATTGATCGAC CAGCAACAGG GACGGGCTCC AAGGTGGGCA AACTGACCCT 540 CAAGACCACA GAGATGGAGA CCATCTACGA CCTGGGCACC AAGATGATTG AKTCCCTGAC 600 CAAGGACAAG GTCCAGGCCG GGGACGTGAT CACCATCGAC AAGGCGACGG GCAAGATCTC 660 CAAGCTGGGC CGCTCCTTCA CACGCGCCCG CGAACTACGA CGCTATGGGC TCCCAGACCA 720 AGTTCGTGCA GTGCCCAGAT GGGGAGCTCC AGAAACGCAA GGAGGTGGTG CACACCGTGT 780 CCCTGCACGA GATCGACGTC ATCAACTCTC GCACCCAGGG CTTCCTGGGG CTCTTCTCAG 840 GTGACACAGG GGAGATCAAG TCAGAAGTCC GTGAGCAGAT CAATGCCAAG GTGGCTGAGT 900 960 GOCGCGAGGA GGGCAAGGCG GAGATCATCC CTGGAGTGCT GTTCATCGAC GAGGTCCACA TGCTGGACAT CGAGAGCTTC TCCTTCCTCA ACCGGGCCCT GGAGAGTGAC ATGGCGCCTG 1020 TCCAGCAGGT CTATGGGGAT GCCGTGAGGG CTCTGGTAGC TGGTGCCCCG GATTCGCGTG 1080

	ATGCCACGGT TGGTGGCCTC GTGCCGAATT CCTGCAGCCC GGGGGATCCA CTAGTTCTAG	1140
5	AGCGGCCGCC ACCGCGGTGG ANCTCCN	1167
10	(2) INFORMATION FOR SEQ ID NO: 108:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1907 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:	
20	GCCACAGGGG AATCATCGTG TGATGTGTGT GCTGCCTTTG TGAGTGTGTG GAGTCCTGCT	60
20	CAGGTGTTAG GTACAGTGTG TTTGATCGTG GTGGCTTGAG GGGAACCCTT GTTCAGAGCT	120
	GTGACTGCGG CTGCACTCAG AGAAGCTGCC CTTGGCTGCT CGTAGCGCCG GGCCTTCTCT	180
25	CCTCGTCATC ATCCAGAGCA GCCAGTGTCC GGGAGGCAGA AGGTACCGGG GCAGCTACTG	240
	GAGGACTGTG CGGGCCTGCC TGGGCTGCCC CCTCCGCCGT GGGGCCCTGT TGCTGCTGTC	300
20	CATCTATTTC TACTACTCCC TCCCAAATGC GGTCGGCCCG CCCTTCACTT GGATGCTTGC	360
30	CCTCCTGGGC CTCTCGCAGG CACTGAACAT CCTCCTGGGC CTCAAGGGCC TGGCCCCAGC	420
	TGAGATCTCT GCAGTGTGTG AAAAAGGGAA TTTCAACGTG GCCCATGGGC TGGCATGGTC	480
35	ATATTACATC GGATATCTGC GGCTGATCCT GCCAGAGCTC CAGGCCCGGA TTCGAACTTA	540
	CAATCAGCAT TACAACAACC TGCTACGGG TGCAGTGAGC CAGCGGCTGT ATATTCTCCT	600
40	CCCATTGGAC TGTGGGGTGC CTGATAACCT GAGTATGGCT GACCCCAACA TTCGCTTCCT	660
40	GGATAAACTG CCCCAGCAGA CCGGTGACCG TGCTGGCATC AAGGATCGGG TTTACAGCAA	720
	CAGCATCTAT GAGCTTCTGG AGAACGGGCA GCGGGGGGGC ACCTGTGTCC TGGAGTACGC	780
45	CACCCCCTTG CAGACTTTGT TTGCCATGTC ACAATACAGT CAAGCTGGCT TTAGCGGGGA	840
	GGATAGGCTT GAGCAGGCCA AACTCTTCTG CCGGACACTT GAGGACATCC TGGCAGATGC	900
5 0	CCCTGAGTCT CAGAACAACT GCCGCCTCAT TGCCTACCAG GAACCTGCAG ATGACAGCAG	960
50	CTTCTCGCTG TCCCAGGAGG TTCTCCGGCA CCTGCGGCAG GAGGAAAAGG AAGAGGTTAC	1020
	TGTGGGCAGC TTGAAGACCT CAGCGGTGCC CAGTACCTCC ACGATGTCCC AAGAGCCTGA	1080
55	GCTCCTCATC AGTGGAATGG AAAAGCCCCT CCCTCTCCGC ACGGATTTCT CTTGAGACCC	1140
	AGGGTCACCA GGCCAGAGCC TCCAGTGGTC TCCAAGCCTC TGGACTGGGG GCTCTCTTCA	1200
	GTGGCTGAAT GTCCAGCAGA GCTATTTCCT TCCACAGGGG GCCTTGCAGG GAAGGGTCCA	126

360

•	GGACTTGACA	TCTTAAGATG	CGTCTTGTCC	CCTTGGGCCA	GTCATTTCCC	CTCTCTGAGC	1320
	CTCGGTGTCT	TCAACCTGTG	AAATGGGATC	ATAATCACTG	CCTTACCTCC	CTCACGGTTG	1380
5	TTGTGAGGAC	TGAGTGTGTG	GAAGTTTTTC	ATAAACTTTG	GATGCTAGTG	TACTTAGGGG	1440
	GTGTGCCAGG	TGTCTTTCAT	GGGGCCTTCC	AGACCCACTC	CCCACCCTTC	TCCCCTTCCT	1500
10	TTGCCCGGGG	ACGCCGAACT	CTCTCAATGG	TATCAACAGG	CTCCTTCGCC	CTCTGGCTCC	1560
10	TOGTCATGTT	CCATTATTGG	GGAGCCCCAG	CAGAAGAATG	GAGAGGAGGA	GGAGGCTGAG	1620
	TTTGGGGTAT	TGAATCCCCC	GGCTCCCACC	CTGCAGCATC	AAGGTTGCTA	TGGACTCTCC	1680
15	TGCCGGGCAA	CTCTTGCGTA	ATCATGACTA	TCTCTAGGAT	TCTGGCACCA	CTTCCTTCCC	1740
	TGGCCCCTTA	AGCCTAGCTG	TGTATCGGCA	CCCCACCCC	ACTAGAGTAC	TCCCTCTCAC	1800
20	TIGCGGTTTC	CTTATACTCC	ACCCCTTTCT	CAACGGTCCT	TTTTTAAAGC	ACATCTCAGA	1860
20	TTAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAGGG	CCCCCCC		1907

25

30

(2) INFORMATION FOR SEQ ID NO: 109:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 611 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

40

45

50

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:

ATGAATTAAC GCCAAGCTNT NAATAGGGAC TCACTATGGG GGAAAGNTGG GTAACGCCTG 60 CAGGTACCGT TCCGGAATTC CCGGGTCGAC CCACGCGTCC GATGGGGCTT TAGTAAATCA GGCTTGCAGG CTCAAAGCTG CAATCTGCCC ACTCTCAGGT ACTGAGACTT TGTGGGCCTC 180 AGACACCAGG AAGAAAGTTG GGATACAGTC ATTTGAGTTA AAAAGGGAAT GACCCCTCAG 240 300 AAACCCGCAT TAGCAGTGTT ACTCTTGGAA GTGCCTTTAC TTTTAACGCT CTCTGTTCTG AAAAAGAGGT GTTTGGTTAC GTGTGAGCCA ACATCACGTT TTGTTAGCTG TGATTTACCT 360 TTGTCCGTTT AAAAGACTTC ACGGAGCCAT TCTGTATACA AGGTGTGCTC TTTCCAATGT 420 AGAAGGGGTT ATGGAAAAGG GTGCGATCCT TTGCTGTAAA CTGGAGAGAC CAGTCCCAAA 480 CAGAGGGGAA TTTTAAGCCC TTCTCATCAC CCAATTGGAT GTTTTTGCTT ATAGCAAATT 540 600 611 GGGGGGNCCN C

361

(2) INFORMATION FOR SEQ ID NO: 110:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2632 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:

10 TCCCAGCTCT CAGGACAAGG GCCCTGGGCG ATCTTTTAAA AAAGCCGATT GGGTGTCTTT 60 CTAAAANTAC AACCAGTACT TCATCGTCAA GTTTCTGGGA AGGGAGTCCC CTCCAGATTC 120 15 TCATGGAGTG ACAAATCTTG ACTCTTGCTC CTGGAATTTT TCAGGCCCAA ACTAGCGTTT CTACAATGAT TTATTTGGCA AATTTGTCTT GATTATGGGT GGCTGATGAG GAACGTGCTT 240 TTGTTAGGAA CCGAAACTGG GCGCGGTGA GGGCGTGTAC GCAATGAGTC CGGAAGAGGG 20 TGAAATGCTT TCGGTAGGCA CTCCACGGCT GTGAAGATGG CGGCGGCTGC GTGGCTTCAG 360 GTGTTGCCTG TCATTCTTCT GCTTCTGGGA GCTCACCCGT CACCACTGTC GTTTTTCAGT 25 GCGGGACCGG CAACCGTAGC TGCTGCCGAC CGGTCCAAAT GGCACATTCC GATACCGTCG 480 GGGAAAAATT ATTITAGTTT TGGAAAGATC CTCTTCAGAA ATACCACTAT CTTCCTGAAG 540 TTTGATGGAG AACCTTGTGA CCTGTCTTTG AATATAACCT GGTATCTGAA AAGCGCTGAT 30 TGTTACAATG AAATCTATAA CTTCAAGGCA GAAGAAGTAG AGTTGTATTT GGAAAAACTT 660 AAGGAAAAA GAGGCTTGTC TGGGAAATAT CAAACATCAT CAAAATTGTT CCAGAACTGC 35 AGTGAACTCT TTAAAACACA GACCTTTTCT GGAGATTTTA TGCATCGACT GCCTCTTTTA 780 GGAGAAAAAC AGGAGGCTAA GGAGAATGGA ACAAACCTTA CCTTTATTGG AGACAAAACC GCAATGCATG AACCATTGCA AACTTGGCAA GATGCACCAT ACATTTTTAT TGTACATATT 900 40 GGCATTICAT CCTCAAAGGA ATCATCAAAA GAAAATTCAC TGAGTAATCT TTTTACCATG 960 ACTGTTGAAG TGAAGGGTCC CTATGAATAC CTCACACTTG AAGACTATCC CTTGATGATT 1020 45 TTTTTCATGG TGATGTGTAT TGTATATGTC CTGTTTGGTG TTCTGTGGCT GGCATGGTCT 1080 GCCTGCTACT GGAGAGATCT CCTGAGAATT CAGTTTTGGA TTGGTGCTGT CATCTTCCTG 1140 GGAATGCTTG AGAAAGCTGT CTTCTATGCG GAATTTCAGA ATATCCGATA CAAAGGARAA 1200 50 TCTGTCCAGG GTGCTTTGAT CCTTGCAGAR CTGCTTTCAG CAGTGAAACG CTCACTGGCT 1260 CGAACCCTGG TCATCATAGT CAGTCTGGGA TATGGCATCG TCAAGCCACG CCTGGAGTCA 1320 55 CTCTTCATAA GGTTGTAGTA GCAGRAGCCC TCTATCTTTT GTTCTCTGGC ATGGAAGGGG 1380 TCCTCAGAGT TACTGGGGCC CAGACTGATC TTGCTTCCTT GGCCTTTATC CCCTTGGCTT 1440 TCCTAGACAC TGCCTTGTGC TGGTGGATAT TTATTAGCCT GACTCAAACA ATGAAGCTAT 1500 60

362

	TAAAACTTCG GAGGAACATT GTAAAACTCT CTTTGTATCG GCATTTCACC AACACGCTTA	1560
	TTTTGGCAGT GGCAGCATCC ATTGTGTTTA TCATCTGGAC AACCATGAAG TTCAGAATAG	1620
5	TGACATGTCA GTCGGACTGG CGGGAGCTGT GGGTAGACGA TGCCATCTGG CGCTTGCTGT	1680
	TCTCCATGAT CCTCTTTGTC ATCATGGTTC TCTGGCGACC ATCTGCAAAC AACCAGAGGT	1740
10	TTGCCTTTTC ACCATTGTCT GAGGAAGAGG AGGAGGATGA ACAAAAGGAG CCTATGCTGA	1800
10	AAGAAAGCTT TGAAGGAATG AAAATGAGAA GTACCAAACA AGAACCCAAT GGAAATAGTA	1860
	AAGTTAACAA AGCACAGGAA GATGATTTGA AGTGGGTAGA AGAGAATGTT CCTTCTTCTG	1920
15	TGACAGATGT AGCACTTCCA GCCCTTCTGG ATTCAGATGA GGAACGAATG ATCACACACT	1980
	TTGAAAGGTC CAAAATGGAG TAAGGAATGG GAAGATTTGC AGTTAAAGAT GGCTACCATC	2040
20	AGGGAAGAGA TCAGCATCTG TGTCAGTCTT CTGTACGGCT CCATGGGATT AAAGGAAGCA	2100
20	ATGACATCCT GATCTGTTCC TTGATCTTTG GGCATTGGAG TTGGCGAGAG GTGTCAGAAC	2160
	AAAGAGAACA TCTTACTGAA AACAAGTTCA TAAGATGAGA AAAATCTACG AGCTTCTTAT	2220
25	TTACAACACT GCTGCCCCCT TTCCTCCCAG ACTCTGACAT GGATGTTCAT GCAACTTAAG	2280
	TGTGTTGTTC CTGAACTTTC TGTAATGTTT CATTTTTTAA ATCTGACAAA CTAAAAAGTT	2340
30	TAACGTCTTC TAAAAGATTG TCATCAACAC CATAATATGT AATCTCCAGG AGCAACTGCC	2400
30	TGTAATTTTT ATTTATTTAG GGAGTTACAT AGGTGATGGG GGAAATTGTT AACTACCTTT	2460
	CATTITCCTG GGAAGTCAAG GTTACATCTT GCAGAGGTTG TTTTGAGAAA AAAGGGCCCT	2520
35	TCTGAGTTAA GGAGCCATAG TTCTATCAAT GATCAAAAGA AAAAAAAAA AACTCGATCG	2580
	GCACGAGGGG GGGCCCGGTA CCCAATTCGC CCTATGGGAN TCGAATGAGA CC	2632
40		
40	(2) THEORYMETON FOR CEO ID NO. 111.	
	(2) INFORMATION FOR SEQ ID NO: 111:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2249 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEINESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:	
	GAATTCGGCA CGAGCTCACC GTGCTGCGTG ACACAAGGCC AGCCTGCGCC TACGAGCCCA	60
55	TOGACTITKT RATGOCCCTC ATCTACGACA TOGTACTGSW TGTGGTCACC CTGGGGCTGG	120
55	CCCTCTTCAC TCTGTGCGGC AAGTTCAAGA GGTGGAAGCT GAACGGGGCC TTCCTCCTCA	180
	TCACAGCCTT CCTCTCTGTG CTCATCTGGG TGGCCTGGAT GACCATGTAC CTCTTCGGCA	240
60	ATCTCAAGCT GCAGCAGGG GATGCCTGGA ACGACCCCAC CTTGCCCATC ACGCTGGGG	300

WO 98/54963

	CCAGCGCTGG GTCTTCGTCA TCTTCCACGC CATCCCTGAG ATCCACTGCA CCCTTCTGCC	360
5	AGCCCTGCAG GAGAACACGC CCAACTACTT CGACACGTCG CAGCCCAGGA TGCGGGAGAC	420
	GCCCTTCGAG GAGGACGTGC AGCTGCCGCG GGCCTATATG GAGAACAAGG CCTTCTCCAT	480
	GGATGAACAC AATGCAGCTC TCCGAACAGC AGGATTTCCC AACGGCAGCT TGGGAAAAAG	540
10	ACCCAGTGGC AGCTTGGGGA AAAGACCCAG CGCTCCGTTT AGAAGCAACG TGTATCAGCC	600
	AACTGAGATG GCCGTCGTGC TCAACGGTGG GACCATCCCA ACTGCTCCGC CAAGTCACAC	660
1.5	AGGAAGAMAC CTTTGGTGAA AGACTTTAAG TTCCAGAGAA TCAGAATTTC TCTTACCGAT	720
15	TIGCCTCCCT GGCTGTGTCT TTCTTGAGGG AGAAATCGGT AACAGTTGCC GAACCAGGCC	780
	GCCTCACAGC CAGGAAATTT GGAAATCCTA GCCAAGGGGA TTTCGTGTAA ATGTGAACAC	840
20	TGACGAACTG AAAAGCTAAC ACCGACTGCC CGCCCCTCCC CTGCCACACA CACAGACACG	900
	TAATACCAGA CCAACCTCAA TCCCCGCAAA CTAAAGCAAA GCTAATTGCA AATAGTATTA	960
2.5	GGCTCACTGG AAAATGTGGC TGGGAAGACT GTTTCATCCT CTGGGGGTAG AACAGAACCA	1020
25	AATTCACAGC TGGTGGGCCA GACTGGTGTT GGTTGGAGGT GGGGGGCTCC CACTCTTATC	1080
	ACCTCTCCCC AGCAAGTGCT GGACCCCAGG TAGCCTCTTG GAGATGACCG TTGCGTTGAG	1140
30	GACAAATGGG GACTTTGCCA CCGGCTTTGC CTGGTGGTTT GCACATTTCA GGGGGGTCAG	1200
	GAGAGTTAAG GAGGTTGTGG GTGGGATTCC AAGGTGAGGC CCAACTGAAT CGTGGGGTGA	1260
25	GCTTTATAGC CAGTAGAGGT GGAGGGACCC TGGCATGTGC CAAAGAAGAG GCCCTCTGGG	1320
35	TGATGAAGTG ACCATCACAT TTGGAAAGTG ATCAACCACT GTTCCTTCTA TGGGGCTCTT	1380
	GCTCTAGTGT CTATGGTGAG AACACAGGCC CCGCCCCTTC CCTTGTAGAG CCATAGAAAT	1440
40	ATTCTGGCTT GGGGCAGCAG TCCCTTCTTC CCTTGATCAT CTCGCCCTGT TCCTACACTT	1500
	ACGGGTGTAT CTCCAAATCC TCTCCCAATT TTATTCCCTT ATTCATTTCA AGAGCTCCAA	1560
۸	TGGGGTCTCC AGCTGAAANS CCCTCCGGGA GGCAGGTTGG AAGGCAGGCA CCACGGCAGG	1620
45	TTTTCCGCGA TGATGTCACC TAGCAGGGCT TCAGGGGTTC CCACTAGGAT GCAGAGATGA	1680
	CCTCTCGCTG CCTCACAAGC AGTGACACCT CGGGTCCTTT CCGTTGCTAT GGTGAAAATT	1740
50	CCTGGATGGA ATGGATCACA TGAGGGTTTC TTGTTGCTTT TGGAGGGTGT GCGGGATATT	1800
	TTGTTTTGGT TTTTCTGCAG GTTCCATGAA AACAGCCCTT TTCCAAGCCC ATTGTTTCTG	1860
	TCATGGTTTC CATCTGTCCT GAGCAAGTCA TTCCTTTGTT ATTTAGCATT TCGAACATCT	1920
55	CGGCCATTCA AAGCCCCCAT GITCTCTGCA CTGTTTGGCC AGCATAACCT CTAGCATCGA	1980
	TTCAAAGCAG AGTTTTAACC TGACGGCATG GAATGTATAA ATGAGGGTGG GTCCTTCTGC	2040
60	AGATACTCTA ATCACTACAT TGCTTTTTCT ATAAAACTAC CCATAAGCCT TTAACCTTTA	2100

	AAGAAAATG AAAAAGGTTA GTGTTTGGGG GCCGGGGGGG GACTGACCGC TTCATAAGCC	2160
5	AGTACGTCTG AGCTGAGTAT GTTTCAATAA ACCTTTTGAT ATTTCTCAAA AAAAAAAAA	2220
J	AAAAANCCOG GGGGGGGGC CGGACGTFGG	2249
10	(2) INFORMATION FOR SEQ ID NO: 112:	
	(i) SEQUENCE CHRRACTERISTICS:	
15	(A) LENGTH: 2193 base pairs (3) TYPE: nucleic acid	
	(C) STRAIDENESS: double	
	(D) TOPCLOSF: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:	
	GATACTATAA GGCAAGTGAC TCACGGGTGC GCCGTTAGAC TAGTGGATCC CGGGTGCAGG	60
	AATTOGGCAG AGCGCCGCCG GAGCCGAAGT GCTGGCGCCCC CCGCGGCCGC TGCCTCCGCG	120
25	GANCCCAAAA TCATGAAAST CACCSTGAAG ACCCCGAAGA AAAGGAGGAA TTCGCCGTGC	180
	CCGAGAATAG CTCCGTCCAG CAGTTTAAGG AAGAAATCTC TAAACGTTTT AAATCACATA	240
30	CTGACCAACT TGTGTTGATA TTTGCTGGAA AAATTTTGAA AGATCAAGAT ACCTTGAGTC	300
30	AGCATGGAAT TCATGATGGA CTTACTGTTC ACCTTGTCAT TAAAACACAA AACAGGCCTC	360
	AGGATCATTC AGCTCAGCAA ACAAATACAG CTGGAAGCAA TGTTACTACA TCATCAACTC	420
35	CTAATAGTAA CTCTACATCT GGTTCTGCTA CTAGCAACCC TTTTGGTTTA GGTGGCCTTG	480
	GGGGACTTGC AGGTCTGAGT AGCTTGGGTT TGAATACTAC CAACTTCTCT GAACTACAGA	540
40	GTCAGATGCA GCGACAACTT TTGTCTAACC CTGAAATGAT GGTCCAGATC ATGGAAAAMC	600
40	CCYTTGTTCA GAGCATGCTC :/TCAAATCCT GACCTGATGN AGACAGTTAA TTATGGCCAA	660
	TCCACAAATG CAGCAGTTGA TACAGAGAAA TCCCAGAAAT TAGTCATATG TTGAATAATC	720
45	CAGATATAAT GAGACAAACG TTGGAACTTG CCCAGGAATC CAGCAATGAT GCAGGAGATG	780
	ATGAGGAACC AGGACCGASC TITTSAGCAAC CTAGAAAGCA TCCCAGGGGG ATATAATGCT	840
50	TTAAGGCGCA TGTACACAGA TATTCAGGAA CCAATGCTGA GTGCTGCACA AGAGCAGTTT	900
<i>5</i> 0	GGTGGTAATC CATTTGCTTC CTTGGTGAGC AATACATCCT CTGGTGAAGG TAGTCAACCT	960
	TCCCGTACAG AAAATAGAGA TCCACTACCC AATCCATGGG CTCCACAGAC TTCCCAGAGT	1020
55	TCATCAGCTT CCAGCGGCAC TGCCAGCACT GTGGGTGGCA CTACTGGTAG TACTGCCAGT	1080
	GGCACTTCTG GGCAGAGIAC TACTGCGCCA AATTTGGTGC CTGGAGTAGG AGCTAGTATG	1140
	TTCAACACAC CAGGAATECA GAGCTTGTTE CAACAAATAA CTGAAAAACCC ACAACTTATG	1200

WO 98/54963

1260

365

CAAAACATGT TGTCTGCCCC CTACATGAGA AGCATGATGC AGTCACTAAG ÇCAGAATCCT

	GACCTTCCTG CACAGATGAT GCTGAATAAT CCCCTATTTG CTGGAAATCC TCAGCTTCAA	1320
5	GAACAAATGA GACAACAGCT CCCAACTTTC CTCCAACAAA TGCAGAATCC TGATACACTA	1380
	TCAGCAATGT CAAACCCTAG AGCAATGCAG GCCTTGTTAC AGATTCAGCA GGGTTTACAG	1440
10	ACATTAGCAA CGGAAGCCCC GGGCCTCATC CCAGGGTTTA CTCCTGGCTT GGGGGCATTA	1500
10	GGAAGCACTG GAGGCTCTTC GGGAACTAAT GGATCTAACG CCACACCTAG TGAAAACACA	1560
	AGTCCCACAG CAGGAACCAC TGAACCTGGA CATCAGCAGT TTATTCAGCA GATGCTGCAG	1620
15	GCTCTTGCTG GAGTAAATCC TCAGCTACAG AATCCAGAAG TCAGATTTCA GCAACAACTG	1680
	GAACAACTCA GTGCAATGGG ATTTTTGAAC CGTGAAGCAA ACTTGCAAGC TCTAATAGCA	1740
20	ACAGGAGGTG ATATCAATGC AGCTATTGAA AGGTTACTGG GCTCCCAGCC ATCATAGCAG	1800
20	CATTICIGIA TCTKGAAAAA ATGTAATTTA TTTTTGATAA CGGCTCTTAA ACTTTAAAAT	1860
	ACCTGCTTTA TITCATTTTG ACTCTTGGAA TTCTGTGCTG TTATAAACAA ACCCAATATG	1920
25	ATGCATTITA AGGTGGAGTA CAGTAAGATG TGTGGGTTTT TCTGTATTTT TCTTTTCTGG	1980
	AACAGTGGGA ATTAAGGCTA CTGCATGCAT CACTTCTGCA TTTATTGTAA TTTTTTAAAA	2040
30	ACATCACCTT TTATAGTTGG GTGACCAGAT TTTGTCCTGC ATCTGTCCAG TTTATTTGCT	2100
20	TTTTAAACAT TAGCCTATGG TAGTAATTTA TGTAGAATAA AAGCATTAAA AAGAAGCAAA	2160
	AAAAAAAAA AAAAATTCCT GCGCCCGCGA ATTCTTCT	2198
35		
	(2) INFORMATION FOR SEQ ID NO: 113:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1043 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:	
	CTGAAGTGTA TGTGGTGAGG AAGAAGAGGC TCCTACTGTA GACAGCCTTG TTCTACAGAT	. 60
50	CCTCCCAGAA ATCTCTGGGC CAGGTGGAAC CCAGGGTCAG AGAGGGATGG GAGAGAGGTT	120
	TAATTTTCCA TGATAAATAA AAATCTATAA AATAATAAAC AAGAGAAAAG AGATTGGAAA	180
55	CAGCCAGGTT GGAGCAGTGA GTGAGTAAGG AAACCTGGCT GCCCTCTCCA GATTCCCCAG	240
JJ	GCTCTCAGAG AAGATCAGCA GAAAGTCTGC AAGACCCTAA GAACCATCAG CCCTCAGCTG	300
	CACCTCCTCC CCTCCAAGGA TGACAAAGGC GCTACTCATC TATTTGGTCA GCAGCTTTCT	360
60	TGCCCTAAAT CAGGCCAGCC TCATCAGTCG CTGTGACTTG GCCCAGGTGC TGCAGCTGGA	420

	RGACTTGGAT GGGTTTGAGG GTTACTCCCT GAGTGACTGG CTGTGCCTGG CTTTTGTGGA	480
5	AAGCAAGTTC AACATATCAA AGATWAATGA AAATGCAGAT GGAAGCTTTG ACTATGGSCT	540
J	CTTCCAGATC AACAGCCACT ACTGGTGCAA CRATTATAAG AGTTACTCGG AAAACCTTTG	600
	CCACGTAGAC TGTCAAGATC TGCTGAATCC CAACCTTCTT GCAGGCATCC ACTGCGCAAA	. 660
10	AAGGATTGTG TCCGGAGCAC GGGGGATGAA CAACTGGGTT AGAATGGAAG KTTGCACTGT	720
	TCAGGCCGGC CACTCTTCTA CTGGCTGACA GGATGCCGCC TGAGATKAAA CARGGTGCGG	780
15	GTGCACCGTG GARTCATTCC AAGACTCCTG TCCTCACTCA RGGATTCTTC ATTTCTTCTT	840
15	CCTACTGCCT CCACTTCATG TTATTTCTT CCCTTCCCAT TTACAACTAA AACTGACCAG	900
	AGCCCCAGGA ATAAATGGTT TTCTTGGCTT CCTCCTTACT CCCATCTGGA CCCAGTCCCC	960
20	TOGTTCCTGT CTGTTATTTG TAAACTGAGG ACCACAATAA AGAAATCTTT ATATTTATCG	1020
	аалалалал алалаласт сga	1043
25		
•	(2) INFORMATION FOR SEQ ID NO: 114:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 703 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:	
	GAATTCGGCA CGAGTGCGCG GGCACCACGG CGGTTTTTCG ACGCTGGCGG TGGACGCAGG	60
40	CAGCATGGAC CACGGTTGCT GGGCGGATGG GGAGCGTCTA TGGTCAGTTG CCTTAGAAGT	120
40	GOTGAGATGG GAAGCTGCAG TTGGAAGACC CTGGAGGATG CCTGACAAGG GGATGTCTGA	180
	CACATGATTG GAGCTCTTTT TGAAATGTTT CTTGCCCTTC CTGGAGCAGA GGAGCCATTA	240
45	TTTATGCAGG TACATCGAAG TCTTTTGACC TCCATACAGT GATTATGCTT GTCATCGCTG	300
	GIGGIATCCT GGCGGCCTIG CTCCIGCIGA TAGITGICGT GCTCTGTCTT TACTTCAAAA	360
50	TACACAACGC GCTAAAAGCT GCAAAGGAAC CTGAAGCTGT GGCTGTAAAA AATCACAACC	420
50	CAGACAAGGT GTGGTGGGCC AAGAACAGCC AGGCCAAAAC CATTGCCACG GAGTCTTGTC	480
	CTGCCCTGCA GTGCTGTGAA GGATATAGAA TGTGTGCCAG TTTTGATTCC CTGCCACCTT	540
55	GCTGTTGCGA CATAAATGAG GGCCTCTGAG TTAGGAAAGG TGGGCACAAA AATCTTCATG	600
	AGCAATACTT CTTAGTAGAT TGTTTTGTTA TTCAAATCAA GTTCTAGTGT TTTTATGTGA	660
	GATTATATAA TTTACAGTGT TGTTTTATAT ACTTTTGAAT AAA	703

WO 98/54963

PCT/US98/11422

367

(2) INFORMATION FOR SEQ ID NO: 115:

,		
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3684 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:	
15	GGCAGAGGGG GCATGAGCAG GAGGAGGATT ACCGCTACGA GGTGCTCACG GCCGAGCAGA	60
	TTCTACAACA CATGGTGGNA ATGTATCCGG GAGGTCAACG AGGTCATCCA GAATCCAGCA	120
	ACTATCACAA GAATACTCCT TAGCCACTTC AATTGGGATA AAGAGAAGCT AATGGAAAGG	180
20	TACTTTGATG GAAACCTGGA GAAGCTCTTT GCTGAGTGTC ATGTAATTAA TCCAAGTAAA	240
	AAGTCTCGAA CACGCCAGAT GAATACAAGG TCATCAGCAC AGGATATGCC TTGTCAGATC	300
25	TGCTACTTGA ACTACCCTAA CTCGTATTTC ACTGGCCTTG AATGTGGACA TAAGTTTTGT	360
23	ATGCAGTGCT GGAGTGAATA TTTAACTACC AAAATAATGG AAGAAGGCAT GGGTCAGACT	420
	ATTTCGTGTC CTGCTCATGG TTGTGATATC TTAGTGGATG ACAACACAGT TATGCGCCTG	480
30	ATCACAGATT CAAAAGTTAA ATTAAAGTAT CAGCATTTAA TAACAAATAG CTTTGTAGAG	540
	TGCAATCGAC TGTTAAAGTG GTGTCCTGCC CCAGATTGCC ACCATGTTGT TAAAGTCCAA	600
35	TATCCTGATG CTAAACCTGT TCGCTGCAAA TGTGGGCGCC AATTTTGCTT TAACTGTGGA	660
<i>ک</i> رک	GAAAATTGGC ATGATCCTGT TAAATGTAAG TGGTTAAAGA AATGGATTAA AAAGTGTGAT	720
	GATGACAGTG AAACCTCCAA TTGGATTGCA GCCAACACAA AGGAATGTCC CAAATGCCAT	780
40	GTCACAATTG AGAAGGATGG TGGTTGTAAT CACATGGTCT GTCGTAACCA GAATTGTAAA	840
	GCAGAGTTTT GCTGGGTGTG TCTTGGCCCA TGGGAACCAC ATGGATCTGC CTGGTACAAC	900
45	TGTAACCGCT ATAATGAGGA TGATGCAAAG GCAGCAAGAG ATGCACAGGA GCGATCTAGG	960
	GCAGCCCTGC AGAGGTACCT GTTCTACTGT AATCGCTATA TGAACCACAT GCAGAGCCTG	1020
	CGCTTTGAGC ACAAACTATA TGCTCAGGTG AAACAGAAAA TGGAGGAGAT GCAGCAGCAC	1080
50	AACATGTCCT GGATTGAGGT GCAGTTCCTG AAGAAGGCAG TTGATGTCCT CTGCCAGTGT	1140
	CGTGCCACAC TCATGTACAC TTATGTCTTC GCTTTCTACC TCAAAAAGAA TAACCAGTCC	1200
55	ATTATCTTTG AGAATAACCA AGCAGATCTA GAGAATGCCA CAGAGGTGCT CTCGGGCTAC	1260
,,	CTTGAACGAG ATATTTCCCA AGATTCTCTG CAGGATATAA AGCAGAAAGT ACAAGACAAG	1320
	TACAGATACT GTGAGAGTCG ACGAAGGGTT TTGTTACAGC ATGTGCATGA AGGCTATGAA	1380
60	AAAGATCTGT GGGAGTACAT TGAGGACTGA GAATGGCCCT GCATAAAATG AACTCTGAAA	1440

	ACTTTACCAT	CTAGAGTGCT	CATGCAATTA	AAACAAAACA	AACACAAACA	AGGAGGCACT	1500
5	AAGCCTATTC	TGACACCACT	GGTCTGTAGT	ACCAGAATTG	TTTTGTTAAT	GGAAAGTTTA	1560
J	AGTAAATTAT	ATTGTAATAA	AAAGGTAGAT	AAACCATTGT	ACAACAGTAT	TCTAGGCCGC	1620
	CAACAAAAGT	GTGACAGACA	CACTAAAAGC	CCTCCAACTT	TAACTTGTAA	CGTAGCTTCA .	1680
10	TTCTCAAAGC	TGACTCCTTT	TTTTTCTTTT	TCCTTTTCCT	GAGTGTAGTA	CAGTTAAAAT	1740
	TTCAAACAGC	TCCTTGACAC	TGCTTTTCAT	GTTCAAACCA	GCCATTTTGT	TGTACTTTGG	1800
15	TAAAGGACCT	CTTCCCCTTC	CTCCCCTACA	CATACAGATA	CACCCACACA	CAGACTGACT	1860
	CTCTTTCTCT	CATACCCCAA	GGTCATGAGT	GAATGATGCT	TAGTTCCTTG	TAAAGAAAAT	1920
	CTTGGGATGG	GGAAAGGGGT	AGGCAGCAAG	AGGATTCAAC	AAACGAAAAA	CATAAAAACT	1980
20	TTGTATATGA	CTTTTAAAAC	AAGAGGACAA	CACAGTATTT	TTCAAAATTG	TATATAGCGC	2040
	ATATGCATGG	ACAAAGCAAG	CGTGGCACGT	GTTTGCATAA	TGTTTAATTA	CAAAAAAATA	2100
25	TTTATTCTTT	AAAAATCTTC	AAGATTATGT	CTATTTGCTG	TGCATTTTCT	TTCAGTTTGC	2160
	TTATCTTTCC	CGGGTTGGGG	TTGGGATAAA	GGTGTGTCGG	TTTAGCACCT	CTGGAAGACC	2220
	TATCTAGAGC	TCTTTCACTT	TCCTGAGGTT	ATTTTGCCCY	TTCTGGTGTT	GGTATGTCTG	2280
30	TTGCCGGCCA	TGGGCTNCAY	GCCTTGAATT	CCTGCTCTTG	ATCAGGGACA	AGGGAGGTCA	2340
	AGCTCTGACT	AATGCCATGA	CCTGATTAAG	GGGTACAGCA	GGGAGTTTTG	TTGCTACAGC	2400
35	TCATGAATTA	ACCTGTCCCA	ACCTAATCCC	CCTCCATGGC	ATCATGCCTC	TACCCAAGCC	2460
	TTTGTGTGCC	CATGITATGC	ACACAGCTGT	AGGCATTCTT	AAGTCCCCTG	TCGCATCCAG	2520
	TGGAAGCATT	TTAAAATTTC	TTTTACTTTT	TGGTTTTCCC	TTAATTGCTG	CTTTTCAGAT	2580
40	TTTAGTTATG	GCTCGTCTGC	TCACCCCTTC	TCTACATTAG	GGTGTCAAAG	AGAATGTTTT	2640
	GCTTTAAATA	TAAATAGCCA	TTCATTTAGT	CTCAGATTGT	GAATTTAAAA	TGGTGGATAC	2700
45	CGAAATTGCT	TGTGTGTGTT	GCTGTGGGTT	TGGTTTGAAG	GCAAACACCC	CTAGAACATG	2760
	ATATTCCCAT	CTAGTGCATT	TAAATAGAAA	TCACTGAGTT	TGCTGCTTTT	TTATTGTCAG	2820
	CAGATAGGAG	TAATTAATTAA	GCATTTTAGC	TGTGATGTCC	ATTTTTATGA	AATTCCTACT	2880
50	AAGAGCTATG	TTAAAAGTAA	AGGATGGTGG	TGGTTGTATT	AACTATATAC	CTGTTTAGGC	2940
	CATTCTGGCT	GTGGTATTTT	TCAATAGGTC	AGCATCTGTA	AATCTGTCAG	TTTTATACAG	3000
55	GAGTGCAGAG	TGAACTAGGC	AACTAGATTA	AGAGGTCTAA	ATATGAAATA	CCAGTTGAGG	3060
	CTGAGGACCT	CTICGTCTIC	CTTTAAATGT	CTTTTGCCTA	GGGAGTGTTT	ACCATTIGTG	3120
	AGGCAGCTTT	GTCTGCTCTT	ACACTGTACA	TCCTATTACT	CCATTGGGAA	GTAGGTTCAC	3180
60	TTTCCTCTGG	CCTTTTGCCT	AAGTTAGGCT	TTGCTGAATC	AACCCTACTT	TTCCTTTTAG	324

369

	AAAAGGTTGT TACAGGAGAT TTACTGGCAA CTGTTCTTTT CCCATCAAAA ATCAGTGAAT	3300
5	GTTTGCTGAG TATAAATGCT GCTTCCTTAA ACCACTTGTC GCTTTAGGAT CAACTTTACC	3360
,	TGTACCTTTT CTCCTTTCCT CCCTTGCCAC CTCAGGTGCA AATCTGAACT CAGTGTCTGC	3420
	TTCTTCCATT TTCTCGTCTC TCTCCCCTCT TCCCCCATTA TCCATATGAC ATTATTTTAC	3480
10	TTCAAATGAC AGCATCAATC TTAAAAAGAT ATACATTAAA ACTAAGGAGT TTTTTTAAAG	3540
	AAAGCCTGAA TAAGTTCCTT TCCCTGGTAA CTTTGAAAAG CAGTCAGAGT TGCTATATAG	3600
15	ATATATGTGG CTCCTTTAAA ATGCTTTGTG TATGTGTGGT GTTTAAAAAA AAAAAAAAA	3660
13	TTCGGGGGG GGCCCGGTNC CCAT	3684
20	(2) INFORMATION FOR SEQ ID NO: 116:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 1965 base pairs (B) TYPE: nucleic acid	
23	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:	
	AAGAAAGGGT ATTAAAATTC TAGATCACAT ATGGACCCGG GAAGGTTTTT NACCCTCTGT	60
	TAGTGACATC GAGTCTCCCA CTAGACAAAA TAGGTGGAAA AATCTCTCGA GGGCTCACAT	120
35	TGTTTTGTCA TCTTCAGGAA AAACACCACC AGGCCATACC ACAGCCTGCC CAGTGAGGCG	180
	GTCTTTGCCA ACAGCACCGG GATGCTGGTG GTGGCCTTTG GGCTGCTGGT GCTCTACATC	240
40	CTTCTGGCTT CATCTTGGAA GCGCCCAGAG CCGGGGATCC TGACCGACAG ACAGCCCCTG	300
	CTGCATGATG GGGAGTGAAG CAGCAGGAAG GGGCTCCCAA GAGCTCCTGG TGGTGCAGCC	360
	TOTGCTCCCC TCAGAAGCTC TGCTCTTCCC AGGGCTCCCG GCTGGTTTCA GCAGGCGACT	420
45	TICTICCAAT GCTGGGCCCA GACTICTIGC CTGGGTGCTG GCCTGCCCTC TCCGGNCCGC	480
	TIGCTGCCTG TCTGCTTTCC TTGGTGGYTT TGCTGGGTGC TGGGCCTGCC CTCTCCGGCC	540
50	SCHISCIGCO TGICIGCITT CCTIGGIGGC TTIGGIGGGT SCHIGGGCCIG CCTICTCTGG	600
	CIGCITGCIG CCIGICIGCT TICCITGGIG GCTTIGGCIT CIGCACTCCT TGGCGTCASC	660
	TETCAGGTCC TCCATTCACA CGAGGTCCTC CTCGCTCTGG CCGCTCTTGC TGCTCCTGTC	720
55	TGAAGAWATC AGACTGATTT CCTCTTAAGA CTCCTAGGGA TGTGGTGAAG AGCTGGGACT	780
	CAAGTGCAGT CCACGGTGTG AAACATGAGG GARGTGAGGT GTCCGTCCAC TTCCCCCATA	840

AAGGTGTGCA TTTCAGTTAG GCTGCCCCGC CACAGAGCAG GCTTCATCTG CTCTGCCATC

60

PCT/US98/11422

370

	CAGCCCCATC	TGGATGTGAG	CTCCCCTCCA	GACATCATGG	GGTGATTGCA	GAAAGGGGGA	960
	CTGCCGCCC	ACGCAGCTTC	TGCTGAGGAG	CTGACCGCTC	TGAGCTGTTC	TGTTTCGTAT	1020
5	TECTECTCTG	TGTCTGCATG	TATTGTGACC	CTCCCCCTCC	ACCTCTTCCA	GCTGCTGCTA	1080
	CAGCTGAGGC	CTGGATCCCG	GCCTTTCCCT	GTGACTTACG	TGTCTGTCAC	CGGCANGCAG	1140
10	CCCTACAAAT	CCTGGTGACC	TGCTCTCCCA	AGAACAGAGC	CTGTCCCCAG	ATGTCCCAGT	. 1200
10	AGCGATGAGT	AACAGAGGTG	GCTGTGGACT	TCCTCTACTT	CTCCTTGCTG	GATCAGGGCC	1260
	TTCCTGCCTC	CCGCTGGGCA	GCTCTGGCCT	TECTCTCTTG	GCAGGGCCCC	AGCCCCTCTG	1320
15	ACCACTCTGC	AGCTCACCAT	GCAGCTGATG	CCAAAGTTGT	GGTGTCCAGT	GTGCAGCAGC	1380
	CCTGGGAGCC	ACTGCCACCT	TCAGAGGGGT	TCCTTGCTGA	GACCCACATT	GCTTCACCTG	1440
20	GCCCCACCAT	GGCTGCTTGC	CTGGCCCAAC	CTAGCGTTCT	GTGCCATGCT	AGAGCTTGAG	1500
20	CTGTTGCTCT	TCTTCAGGGG	AGGAAATAGG	GTGGAGAGCG	GGAAGGGTCT	TGCTCCTAAG	1560
	TGTTGCTGCT	GTGGCTTTTT	TGCCTTCTCC	AAAGACGCAC	TGCCAGGTCC	CAAGCTTCAG	1620
25	ACTGCTGTGC	TTAGTAAGCA	AGTGAGAAGC	CTGGGGTTTG	GAGCCCACCT	ACTCTCTGGC	1680
	AGCATCAGCA	TCCTACTCCT	GGCAACATCA	GCCAACGTC	CACCCCAGCC	TCACATTGCC	1740
30	AGATGTTGGC	AGAAGGCTA	ATATTGACCG	TCTTGACTGG	CTGGAGCCTT	CAAAGCCACT	1800
50	GGGATGTCCT	CCAGGCACCT	GGGTCCCATG	ACCAGCTCCC	CGTCTCCATA	GGGGTAGGCA	1860
	TTTCACTGGT	TTATGAAGCT	CGAGTTTCAT	TAAATATGTT	' AAGAATCAAA	GCTGTCTTTG	1920
35	TTCAGGCTGC	TATAACAAAA	ATATAATAGO	CTGGGTGGCT	TAAAC		1969

40 (2) INFORMATION FOR SEQ ID NO: 117:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 503 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:

50	AGTGATCCCC TTGCCTCGGC CTCCCAAA	AT GCTGGAATTG TAAGCGTGGG CCTCTGCACC	60
	CGGCCTGGTC CGCAATTTAA AAACGCAC	AG CCACCATTCC CTYTCCAGAA AGCACCCAGA	120
55	TGCCTTTGGG AGAACCAGCC TCCTCCAT	GG AGGAAAGCTT GGGATCTGCC TTCCCACCTG	180
	GGGAGGAGAG GGATCTGTGG AAAATCCT	TC TGACGGACTT CCCCTCAGTG CCTGATCCAT	240
	ACTCAATAGT AGAAAAAGTA AGAAATAT	AC AAAGATAGCA GATACACGGA GACAGTTCCC	300
60	CAAATAGCTG AGCGAWTAGC GCAGAAGC	AA TATTGAAGAC CTAATAGCTG AGACATTICC	360

	AGAACTGATA AAGTGCATCC AGCCACAGAT CAAGCAGCCC AGAAAATTCC AGGCAGCATC	420
_	AACAAATAAA TAGCCCCACA TGCACCCGTG AAAATGCAGA AGACCAAACA AAAAAGTCCG	480
5	GTCAACAGCC AGAGTTAAAG AGG	503
10	(2) INFORMATION FOR SEQ ID NO: 118:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1133 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:	
	GGCACAGCTT GGAATGAACC CCTGTGGATA AGGGGGACTA TTAGATAGAA TAAACATCAA	60
	TARATGCTTG ATGARTARAC GCTARTCCTA CCTTCCCAGC CTGACACCTC CCAGTGGACA	120
25	CCACACTTCA CTTGAAGCCT TAGAAACCTT TCCCACCCAT GCTTCCAGCC CTGGCTTCAT	180
	GTTGCCATTT CTCACCCCCA GAACAGGCCG CCCGCCTGAA GAAACTACAA GAGCAAGAGA	240
20	AACAACAGAA AGTGGAGTTT CGTAAAAGGA TGGAGAAGGA GGTGTCAGAT TTCATTCAAG	300
30	ACAGTGGGCA GATCAAGAAA AAGTTTCAGC CAATGAACAA GATCGAGAGG AGCATACTAC	360
	ATGATGTGGT GGAAGTGGCT GGCCTGACAT CCTTCTCCTT TGGGGAAGAT GATGACTGTC	420
35	GCTATGTCAT GATCTTCAAA AAGGAGTTTG CACCCTCAGA TGAAGAGCTA GACTCTTACC	480
	GTCGTGGAGA GGAATGGGAC CCCCAGAAGG CTGAGGAGAA GCGGAACNTG AAGGAGCTGG	540
	CCCAGAGGCA ANGAGGAGGA GGCAGCCCAG CAGGGGCCTG TGGTGGTGAG CCCTGCCAGC	600
40	GACTACAAGG ACAAGTACAG CCACCTCATC GGCAAGGGAG CAGCCAAAGA CGCAGCCCAC	660
	ATGCTACAGG CCAATAAGAC CTACGGCTGT KTGCCCGTGG CCAATAAGAG GGACACACGC	720
45	TCCATTGAAG AGGCTATGAA TGAGATCAGA GCCAAGAAGC GTCTGCGGCA GAGTGGGGAA	780
	GAGTTGCCGC CAACCTCCTA GGCGCCCCGC CCAGCTCCCT TTGACCCCTG GGGCAGGGCA	840
	GGGGGCAGGG AGAGACAAGG CTGCTGCTAT TAGAGCCCCAT CCTGGAGCCC CACCTCTGAA	900
50	CCACCTCCTA CCAGCTGTCC CTCAGGCTGG GGGAAAACAG GTGTTTGATT TGTCACCGTT	960
	CGAGCTTCGA TATGTCCGTG CCATGTGTGT GTGTGTGTGA GAGTGTGAAT GCACAGGTGG	1020
55		1080
"	GTATTTAATC TGTATTATTC CCCGTTCTTG GAATTTTCTT CCCATGGGGC TGGGGTACTT	1133
	TACATTCAAT AAATACTGTT TAACCCAAAA AAAAAAAAA AAAAGAAAGA AGN	113.

PCT/US98/11422 WO 98/54963

372

60

120

180

720

900

1080

(2) INFORMATION FOR SEO ID NO: 119:

5

10

15

20

25

30

35

40

45

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1101 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119: GGGCACAGCT GAAGCTGCAG ACCTCCCCAG GGGATGGCTC CTCTCCCCCA GGAGCCCCGA GGCAGGGGG GCAGAAGCC TGGGCTCTGG GGGTGGCCT GCGGACAGCT GTGCTGTGGG

TGGTGTCTGG GGATAGCTGG GAGGCACAGC GGCTGCCATG TGGGACTGGG ACTGGAGTGC 240 TCCCTGGTCT TGGCCTCTGT GGCTCAGCCT TGCTCTGGTC TGCCTGAGTG CAGGGGCCAA 300

CCGGGGGCTG GGCCTGTCCC ACAGGGNCGT GGAGCTCGTG GTTCTGAGCA GCCAGCTGGG

GGGGCACAGG GCCAGTGAGG CCGGCCACGC TCGGGCCCTC ACCTGTGAGA TGGGGTCGGA 360 ATTTKACACA GCCTANGGCT TGGTTCTTGG TKGTNGAMCG TGGACTYCTK AGAACGGGAG 420

TGCTGGTCCT .GAAAGGCGTG GTTGGAGACC AGCTGCTTTT CTCGCTGTTT TTCTCTTAGG 480

AGATTAAACA AAAACAGAAA GCACAAGACG AACTCAGTAG CAGACCCCAG ACTCTCCCCT 540

TGCCAGACGT GGTTCCAGAC GGGGAGACGC ACCTCGTCCA GAACGGGATT CAGCTGCTCA 600

ACGGGCATGC GCCGGGGCC GTCCCAAACC TCGCAGGCCT CCAGCAGGCC AACCGGCACC 660 ACGGACTCCT GGGTGGCGCC CTGGCGAACT TGTTTGTGAT AGTTGGGTTT GCAGCCTTTG

CTTACACGGT CAAGTACGTG CTGAGGAGCA TCGCGCAGGA GTGAGGCCCA GGCGCCGAGA 780

CCCAAGGCGC CACTGAGGGC ACCGCGCACC AGAGCGTGAC CTCGGCAGGC TGGACACACT 840

AGCAAAAACC AAAATGTGTG ACTGGGCTTT GGAGGAGACT GGAGCCTCAG CCCTGTCCTG 960

GCCCAGCACA GGCAGACCCA CCAGGCTCCT AGGTTTAGCT TTTAAAAACC TGAAAGGGGA

GCCACGGCC GCTGGGCTG GTGTGGGTGG GCCTTGTGTG CTGGATTTGT AGCTTATCTT 1020

AAACTTTGGG GGGGGGCCCC N 1101

(2) INFORMATION FOR SEQ ID NO: 120:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 282 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:	
	ASCITCICIG TCCAGTCTTG AACTCTGGGS TCTCTTGGAA CTTTCCTCAC CCCTCTCAGC	60
5	CTGAATATTC CTTCCATGGA TTCCACTCAA CCAGACTTTG GATCTGTGCC TACTTAATCA	120
	ACCITATETT TGCAATATGT TEGGGCCCAC CTTCCACTCC TTGGTTCTTG TTCCTCCTTG	180
10	GCCTAACTIG TCCCTTCTCC ACTICACATC CCCGGTGGGA CAGCATTCCT CCTTCCTCCC	240
10	AACCTCCCTC CGTCTCARAA AAAAAAAAAA AAAAAAAAAA TT	282
15	(2) INFORMATION FOR SEQ ID NO: 121:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 2635 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:	
43	TAAGGGGTG TGTGCTCACC TCCTCCTGAC CCTTAACACT CCTGTCCTGC CCAGACCAAC	60
	AGAGAGACT GTCCCTGAGA CCCCGGAGAG AAGCAGCTGC CGAAAGCTGC AGCCTTTCCG	120
30	CACTCTGAGA CCATGATCTT CCTCCTGCCA GGGGAGAGCC ACCCACAGGC CATGTCCAGC	180
	CCCACTTCCC TCAGCCCCCA GGGYTTCCTT CTGGCCCCTC TGAGGATTCC CTAGGGCTGC	240
35	CCCGCAGAGG GGYTTCCCCA AGCTCTGTTT TGAAGCCTGC AATGTGGAAA AGTGAGAAGT	300
	CAGAGGGAAC AGGACAGGTG CAGCCGGGCT CTGAGGCCAC ACCTCACACC TCGCTGTTCC	360
	CCAACATCCC CTGAGCAGTG TGAGCTCATC TCACCAGATG AGAAGAGGCC CTGTGCATTT	420
40	YTTTTGTTTG TTTGTTGCTG TTTTCCCCCA CCCATCCAGT TCTCCTCAGC AAAGCAAATT	480
	CCTTAACACC TITGGTGGAG AATTTCTTAC CCAGACTTGG GGCTGTGATG CCCTTCAGTG	540
45	CGTGGTGAGT GCAGCGTGTG TGCGTGTGCC TGTGTGTGAA CCTGGGGGCC ATCCTGGTGG	600
	CCTGGGAGCG TGAGGAGAGG CCCCCTGTGT GCTGGGTGAG TGGTGGGTGT GGGGTCAATG	660
	CAGTGAGGCT CTCTGGGTGA GGCTCCCAAC CTGGCAGTCC CCAGCCTCCC AGCATCTGTG	720
50	AGCGTCTGTT GGACTTTACA GAAGAGCCTC ATCCYGTCTG CCCCTCACTC TGCCCTGGAA	780
	TCAACATCTT CCGAGTCCTT CTTGGGGGAA ATAGCAGAGC CCCACTTAAC TCCATAAACT	84
55	GCTTCCCATT CCGCAGCCCA GTTCTGATTG TTGAGGTGTC GCGTCGTTCC AGGTCCCCCA	90
	GTCCCCTCTT TCTCCTGTCC TCTCTGTCC CTTCACCTCC CCACTCCAGC CCCGGCTCAG	96
	TTCAGGGAAA TGCTGTTCCA YATCAGCCCT CTGCTCTCTG AGGCAGCCGC GCCTCTGACT	102
60	CGGAGCTACT TGAAACTTCT GCTCTTGCTA GGATTGGAGT CTACCTATCT CTTCCATTTG	108

	TCCCAGCTGG	AGTTCTGGAA	CTTTCCTCCT	CGGGGTGGGG	GIGGGGTTG	TTAAGGATGC	1140
5	TGGGGGGCCT	GGGGAAGGAA	GGAGTTCAGA	GGAAGGGTGT	ccciaitai	CTTEATGTCA	1200
,	ccccccccc	CTGGGACACG	TECTCTCTCT	GICTCTGGGT	CTTCTGGGTG	TGCACGTTTG	1260
	TGTGTCCTTG	TAAATATGTT	TTAGGAAGAA	AGCAAAASGG	ACTGAACTAG	COTOTGGTAG	1320
10	GATTGCAGGG	GTCCAGCCTT	GCCTGTTTCC	GAAGCCCCCA	CACTGCTTT	CGCCCACTG	1380
	AGACTGGTCC	CCTCAAAAGG	TAGACAAAAC	AGCAGCTTCCC	TGTGGAGCTG	AAGGCGGCC	1440
15	TCAAAGTGGC	TTTTTGTTAG	ACAAGGTTAA	GGTTTCCTCA	TGAGCALGGE	TGCAGATCGG	1500
	TCCTTCCTCA	GCTCCTTGAT	TTGTGACCTT	GACCAAGGGG	CCTGCCACCC	AGCCCCTCCA	1560
	GTGCCCTCTC	CTCGATGCCT	CGCTCCTTCC	TGCCCCCACT	CCCCTGGTTT	AGGEAGGTAG	1620
20	GGGAATTAGG	GCCATGCTGG	AAGAAGCTTA	ACCATGIGTT	CAAAGAACGG	TTTCTTGCTT	1680
	GCTTGGTCCT	GGAACTCCCC	TTGGCTGCCC	CAGGCCTCCT	TEGECCELTEG	GTGTTGGGGG	1740
25	AGGTGGATGT	CAGATCTGGT	AGGTTGCAGC	AGAGAAAATA	AATGTGCCTT	GAGAGACCAC	1800
	TCAGAGAGGG	TCCAAGGGTG	ATGGAGAAGG	AAGCATGGCC	TOGGAGCITTS	GAADGGARGG	1860
	GTGGTGGGTG	GCGGCATCTT	GACTGCCCCC	TGTTGTCCCA	CACGIGGGGG	GTGGTCACCC	1920
30	CYCTTCACTC	CAGCCCGCCT	GCCTTCAGCC	TTCCATGAGC	TTCACCTGCT	TCCAACTTCA	1980
	CTTTGGAGGG	GGTGGGGTCC	GTTGGCATCA	ACACGGGGAC	CCTCTGCTTC	ACCAAAGCCC	2040
35	GAGCCCTCAG	CCCCTGGGGA	GAACAAATGG	CIGAGCTTIG	ATACCTOGGG	TCGTCGAGAG	2100
	GCTGCGGGCT	GGCGGCAGTC	CCAGGGGAGA	GACACCACAG	AAGGAGACC	AGALATOCOG	2160
	AGGAAGTTCC	CAGCAGAGCA	AACTGCTTTC	CAGCCTGAAG	CCTGCTTAAA	CTGIGIGATG	2220
40	TGCAATAACT	GAGCTTAGAG	TTAGGAATTG	TGTTCAASTG	CTTGGATTTC	CGTCTGTAGA	2280
	TTTAACTGCT	GAAATTGTAT	CTCTCAGTAA	TTTTAGATGT	CTTTTAAAA	ATTGAAAAAC	2340
45	AAAGTGTTAG	ACTGTGTGCG	TGTGCGTTGA	TGGGCACTCA	AGAGTCCCTT	GASTCATCCA	2400
	GCCCTGCCTT	TCCCCTGCGC	CCCCATCCTC	TCACGTCCCG	cccscccccc	ACTTGGGGAC	2460
50						TACACTCCAC	2520
50						ACTITATAAA	2580
	CACCAAAAAA	АААААААА	ACCCNGGGGG	GGGCCGGTA	ACCCATTTCG	CCTAA	2635

60

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 994 base pairs

⁽²⁾ INFORMATION FOR SEQ ID NO: 122:

PCT/US98/11422

(B) TYPE: nucleic acid

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:	
	GAATTCGGCA GAGGTTCGGC GAAGATAGGG AATAAGGAAG CACAGGAGTA GGGGAGAAGG	60
10	AAGCACAGGA GTAGGGGAGA TATACAGCGG TCAGGATAAG GGGGAAAGGG CGGTGGTTGC	120
10	SCAAGAGGTG AAACAAGATG TGAGAGACAA GGGGTAGGGA AGAAATGGGG CAGCGGTTAG	180
	GTTCAGAAGC GCATAGACCG TGGCGGACGG GCAATGCGAG GGGCACAGAA AGGAACTGAG	240
15	GGGTGGGCTA TTTTAARGGA GATGGTCCTT CAGCCCTCTT YTTTTCTGCG TAGTTCTCCT	300
	CCTCCAGGCC GCGCGCGGAT ATGTCGTCCG GAAACCAGCC CAGTCTAGGC TGGATGATGA	360
	CCCACCTCCT TCTACGCTGC TCAAAGACTA CCAGAATGTC CCTGGAATTG AGAAGGTTGA	420
20	TGATGTCGTG AAAAGACTCT TGTCTTTGGA AATGGCCAAC AAGAAGGAGA TGCTAAAAAT	480
	CAAGCAAGAA CAGTTTATGA AGAAGATTGT TGCAAACCCA GAGGACACCA GATCCCTGGA	540
25	GGCTCGAATT ATTGCCTTGT CTGTCAAGAT CCGCAGTTAT GAAGAACACT TGGAGAAACA	600
	TCGAAAGGAC AAAGCCCACA AACGCTATCT GCTAATGAGC ATTGACCAGA GGAAAAAGAT	660
20	GCTCAAAAAC CTCCGTAACA CCAACTATGA TGTCTTTGAG AAGATATGCT GGGGGCTGGG	720
30	AATTGAGTAC ACCTTCCCCC CTCTGTATTA CCGAAGAGCC CACCGCCGAT TCGTGACCAA	780
	GAAGGCTCTG TGCATTCGGG TTTTCCAGGA GACTCAAAAG CTGAAGAAGC GAAGAAGAGC	840
35	CTTAAAGGCT GCAGCAGCAG CCCAAAAACA AGCAAAGCGG AGGAACCCAG ACAGCCCTGC	900
	CAAAGCCATA CCAAAGACAC TCAAAGACAG CCAATAAATT CTGTTCAATC ATTTAAAAAA	960
40	AAAAAAAAA AAAAAAAAA AAAAAGGGGA GGGG	994
45	(2) INFORMATION FOR SEQ ID NO: 123:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1542 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear .	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:	
<i></i>	GGCASAGCCA CCTCGGCCCC GGGCTCCGAA GCGGCTCGGG GGCGCCCTTT CGGTCAACAT	60
55	CGTAGTCCAC CCCCTCCCCA TCCCCAGCCC CCGGGGATTC AGGCTCGCCA GCGCCCAGCC	120
	AGGGAGCCGG CCGGGAAGCG CGATGGGGGC CCCAGCCGCC TCGCTCCTGC TCCTGCTCCT	180
60	GCTGTTCGCC TGCTGCTGGG CGCCCGGCGG GGCCAACCTC TCCCAGGACG ACAGCCAGCC	240

	CTGGACATCT	GATGAAACAG	TGGTGGCTGG	TGGCACCGTG	GTGCTCAAGT	GCCAAGTGAA	300
5	AGATCACGAG	GACTCATCCC	TGCAATGGTC	TTAACCCTGC	TCAGCAGACT	CTCTACTTTG	360
,	GGGAGAAGAG	AGCCCTTCGA	GATAATCGAA	TTCAGCTGGT	TAMCTCTACG	CCCCACGAGC	420
	TCAGCATCAG	CATCAGCAAT	GTGGCCCTGG	CAGACGAGGG	CGAGTACACC	TGCTCAATCT	480
10	TCACTATGCC	TGTGCGAACT	GCCAAGTCCC	TCGTCACTGT	CCTAGGAATT	CCACAGAAGC	540
	CCATCATCAC	TGGTTATAAA	TCTTCATTAC	GGGAAAAAGA	CACAGCCACC	CTAAACTGTC	600
15	AGTCTTCTGG	GAGCAAGCCT	GCAGCCCGGC	TCACCTGGAG	AAAGGGTGAC	CAAGAACTCC	660
13	ACGGAGAACC	AACCCGCATA	CAGGAAGATC	CCAATGGTAA	AACCTTCACT	GTCAGCAGCT	720
	CGGTGACATT	CCAGGTTACC	COGGAGGATG	ATGGGGCGAG	CATCGTGTGC	TCTGTGAACC	780
20	ATGAATCTCT	AAAGGGAGCT	GACAGATCCA	CCTCTCAACG	CATTGAAGTT	TTATACACAC	840
	CAACTGCGAT	GATTAGGCCA	GACCCTCCCC	ATCCTCGTGA	GGGCCAGAAG	CTGTTGCTAC	900
25	ACTGTGAGGG	TCGCGGCAAT	CCAGTCCCCC	AGCAGTACCT	ATGGGAGAAG	GAGGGCAGTG	960
23	TGCCACCCCT	GAAGATGACC	CAGGAGAGTG	CCCTGATCTT	сссттестс	AACAAGAGTG	1020
	ACAGTGGCAC	CTACGGCTGC	ACAGCCACCA	GCAACATGGG	CAGCTACAAG	GCCTACTACA	1080
30	CCCTCAATGT	TAATGACCCC	AGTCCGGTGC	сстестестс	CAGCACCTAC	CACGCCATCA	1140
	TCGGTGGGAT	CGTGGCTTTC	ATTGTCTTCC	TGCTGCTCAT	CATGCTCATC	TTCCTTGGCC	1200
25	ACTACTTGAT	CCGGCACAAA	GGAACCTACC	TGACACATGA	GGCAAAAGGC	TCCGACGATG	1260
35	CTCCAGACGC	GGACACGGCC	ATCATCAATG	CAGAAGGCGG	GCAGTCAGGA	GGGGACGACA	1320
	AGAAGGAATA	TTTCATCTAG	AGGCGCCTGC	CCACTTCCTG	CGCCCCCCAG	GGCCCTGTGG	1380
40	GGACTTGCTG	GGGCCGTCAC	CAACCCGGAC	TTGTACAGAG	CAACCGCAGG	GCCGSCCCT	1440
	CCCGNTTGTT	CCCCAGCCCA	CCCACCCCCT	TGTTACAGAA	TGTYTKGTTT	GGGGTGCGGT	1500
4.5	TTTGTWATTG	GTTTNGGATN	GGGGAAGGGA	GGGANGGCGG	GG		1542
45							

(2) INFORMATION FOR SEQ ID NO: 124:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1390 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

50

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:

CAAGCTCTAA TACGACTCAC TATAGGGAAA GCTGGTACGC CTGCAGGTAC CGGTCCGGAA 60

	TTCCCGGGTC	GACCCACGCG	TCCGGGCCTC	AGGGTGGACG	CATGGTTCTG	CACTGAGGCC	120
	CTCGTCATGG	TGGCGCCTGT	GTGGTACTTG	GTAGCGGCGG	CTCTGCTAGT	CGGCTTTATC	180
5	CTCTTCCTGA	CTCGCAGCCG	ccccccccc	GCATCAGCCG	GCCAAGAGCC	ACTGCACAAT	240
	GAGGAGCTGG	CAGGAGCAGG	CCGGGTGGCC	CAGCCTGGGC	CCCTGGAGCC	TGAGGAGCCG	300
10	AGAGCTGGAG	GCAGGCCTCG	GCGCCGGAGG	GACCTGGGCA	GCCGCCTACA	GGCCCAGCGT	. 360
10	CGAGCCCAGC	GGCTGGCCTG	GGCAGAAGCA	GATGAGAACG	AGGAGGAAGC	TGTCATCCTA	420
	GCCCAGGAGG	AGGAAGGTGT	CGAGAAGCCA	GCGGAAAYTC	ACCTGTCGGG	GAAAATTGGA	480
15	GCTAAGAAAC	TGCGGAANNT	GGAGGAGAAA	CAAGCGCGAA	AGGCCCAGCK	TGAGGCAGAG	540
	GAGGCTGAAC	GTGARGWGCG	GAAACGACTC	GAGTCCCAGC	GCGAATGAGT	GGAAGAAGGA	eóo
20	GGAGGAGCGG	CTTCGCCTGG	AGGAGGAGCA	GAAGGAGGAG	GAGGAGAGGA	AGGCCCGCGA	660
20	GGAGCAGGCC	CAGCGGGAGC	ATGAGGAGTA	CCTGAAACTG	AAGGAGGCCT	TTGTGGTGGA	720
	GGAGGAAGGC	GTAGGAGAGA	CCATGACTGA	GGAACAGTCC	CAGAGCTTCC	TGACAGAGTT	780
25	CATCAACTAC	ATCAAGCAGT	CCAAGGTTGT	GCTCTTGGAA	GACCTGGCTT	CCCAGGTGGG	840
	CCTACGCACT	CAGGACACCA	TAAATCGCAT	CCAGGACCTG	CTGGCTGAGG	GGACTATAAC	900
30	AGGTGTGATT	GACGACCGGG	GCAAGTTCAT	CTACATAACC	CCAGAGGAAC	TGGCCGCCGT	960
•	GGCCAACTTC	ATCCGACAGC	CCCCCCCT	GTCCATCGCC	GAGCTTGCCC	AAGCCAGCAA	1020
	CTCCCTCATC	CCCTCCCCCC	GGGAGTCCCC	TGCCCAAGCC	CCAGCCTGAC	CCCAGTCCTT	1080
35	CCCTCTTGGA	CTCAGAGTTG	GTGTGGCCTA	CCTGGCTATA	CATCTTCATC	CCTCCCCACC	1140
	ATCCTGGGGA	AGTGATGGTG	TOGÇCAGGCA	GTTATAGATT	AAAGGCCTGT	GAGTACTGCT	1200
40	GAGCTTGGTG	TESCTTESTS	TOGCAGAAGG	CCTGGCCTAG	GATCCTAGAT	AAGCAGGTGA	1260
	AATTTAGGCT	TCAGAATATA	TCCGAGAGGT	GGGGAGGGTC	CCTTGGAAGC	TGGTGAAGTC	1320
	CTGTTCTTAT	TATGAATCCA	TTCATTCAAG	AAAATAGCCT	GTTGCAAAAA	AAAAAAAA.	1380
45	AAAAACTCGA						1390

50 (2) INFORMATION FOR SEQ ID NO: 125:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1288 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:

60 GCCCCCGCGG TGAAAGGCGC ATTGATGCAG CCTGCGGCGG CCTCGGAGCG CGCCGGASCA

	GACGCTGACC ACGTTCCTCT CCTCGGTCTC CTCCGCCTCC AGCTCCGCGC TGCCCGGCAG	120
_	CCGGGAGCCA TGCGACCCCA GGGCCCCGCC GCCTCCCGC AGCGGCTCCGG CGGCCTCCTG	180
5	CTGCTCCTGC TGCTGCAGCT GCCCGCGCCG TCGAGCCCCT CTGAGATCCC CAAGGGGAAG	240
	CAAAAGGCGC ATCCGGCAGA GGGAGGTGGT GGACCTGTAT AATGGAATGT GCTTACAAGG	300
0	GCCAGCAGGA GTGCCTGGTC GAGACGGGAG CCCTGGGGCC AATGGCATTC CGGGTACACC	360
	TGGGATCCCA GGTCGGGATG GATTCAAAGG AGAAAAGGGG GAATGTCTGA GGGAAAGCTT	420
. ~	TGAGGAGTCC TGGACACCCA ACTACAAGCA GTGTTCATGG AGTTCATTGA ATTATGGCAT	480
15	AGATCTTGGG AAAATTGCGG AGTGTACATT TACAAAGATG CGTTCAAATA GTGCTCTAAG	540
	AGTTTTGTTC AGTGGCTCAC TTCGGCTAAA ATGCAGAAAT GCATGCTGTC AGCGTTGGTA	600
20	TTTCACATTC AATOGAGCTG AATGTTCAGG ACCTCTTCCC ATTGAAGCTA TAATTTATTT	660
	GGACCAAGGA AGCCCTGAAA TGAATTCAAC AATTAATATT CATCGCACTT CTTCTGTGGA	720
25	AGGACTITGT GAAGGAATTG GTGCTGGATT AGTGGATGTT GCTATCTGGG TTGGCACTTG	780
25	TTCAGATTAC CCAAAAGGAG ATGCTTCTAC TGGATGGAAT TCAGTTTÇTC GCATCATTAT	840
	TGAAGAACTA CCAAAATAAA TGCTTTAATT TTCATTTGCT ACCTCTTTTT TTATTATGCC	900
30	TTGGAATGGT TCACTTAAAT GACATTITAA ATAAGTTTAT GTATACATCT GAATGAAAAG	960
	CAAAGCTAAA TATGTTTACA GACCAAAGTG TGATTTCACA TGTTTTTAAA TCTAGCATTA	1020
35	TYCATTITGC TYCAATCAAA AGTGGTTTCA ATATTTTTTT TAGTTGGTTA GAATACTTTC	1080
33	TTCATAGTCA CATTCTCTCA ACCTATAATT TGGGAATATT GTTGTGTCT TTTGTTTTTT	1140
	CTCTTAGTAT AGCATTTTTA AAAAAATATA AAAGCTACCA ATCTTTGTAC AATTTGTAAA	1200
40	TGTTAAGAAT TTTTTTTATA TCTGTTAAAT AAAAATTATT TCCMACAACC TTAAAAAAAA	1260
	AANAAAAA AAAAAAAAA	1288
45		
43	(a) Typopulatou TOD GEO TO NO. 126	
	(2) INFORMATION FOR SEQ ID NO: 126:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1517 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:	
	AGTGGCTTAA AGGCATCGTT TTAGGGATTA CTGGGAAGTA TCTTCAAAGT AATACATGAG	60
	AAACATTCCT TCCTAAATCC TTTATTATAT TGAATATCGT ATTAATTGGT TTTCAGAGGT	120

	TAAATTAACC ATGTATTCCT GCAATAAATG TCACTTGTNT CTTGTATATA ATCTTTTTTA	180
	TATATTACCG GATTGATTCA TTAGTATTTT GTTGAGGATT TTTGTGTCTA TATTCATAAG	240
5	AGATGCTGGT CTGCAGTTTT CTTTTTTTGT GATAATCTGG TTTTTGTATC AGTAATACAG	300
	GCCCCATGAA ACGAGTTGGG AAGTGTTCAC CTCTCTTGTA TTTTTTCAAG AGTTTGTGAA	360
10	GAATTGCTAT TAATTCTTTA AATGTTTGGT AGAATCTACC ATTGAAATCA TGTGTCCTGG	420
10	GCTTTTTTT GAGGGAAGTG TTCTGATAAC TAATTCAGTA TCTACTTTTT ATAGCTCTGT	480
	TCAGATTTTG CTTCTTCCTG AGTTAGTTTT GGTAATTTGT GTATCTCTAG GARTTTGTCC	540
15	ATTTCATTTA TCTCATTTGT TGGCATAAAT TAAACTAAAT TTGGCCTGAG CCTACCTGTA	600
	TATCTTGAGT CCCTCTGTAA GGAACTGTAG CCTAACTTGT ACATAAACAA ACTGAAATCC	660
20	TAAATTAGGA ATGTAGTTTT TGTAACAGCT CCTGAGTCTC AGGCAGTCAC AGCAGYCAAG	720
20	TCTGTCAATT GCAGGCTGCT AACTAAGCAG CCCATGSTCA AATGAGGCAA AAACCTTTGC	780
	TTTTAACACA TAGTATAGCT TTGTAATCCT TTTCTTGCAC ACTCGGGTAA TTTCTTCCTT	840
25	TTTCATTCCC KGWATTTTCC AKGAATATGA RTCTYCCTTT TTTCCCCTCC TGTCAGTCTA	900
	GCTAATGGTT TGTCAATTTT GTTGATCTTT TGAARAACAA ACCTTTGGTT CCACTTTCTT	960
30	GTTGCATATG CTGARTATTC TCATAATTGG AGTGGAAAGC TGATCTTTGA TTACTTATTT	1020
	TACTTAGGGC TGAGGAGTTC ATGGACTTCG CAAAACCTCC TTGAATCTAA ATTGCATCTT	1080
	CTTTCCTGGT TTCTGGGCTG AAACATGTTT TTTCCCATCT WANAWACCCT TGGTCTTTTC	1140
35	ATKGGCGATT AAGACTAGAG AAAGTTCTAG ATMCCTTGTC CTTTTATGCT GTCATTTTGT	1200
	TTAAAGGCTT TCTATGTAGT AAAACTATCT ATATAGACAA AATAGAGCCT TGAGTTGTGG	1260
40	TCTTGAATTT GATCAACATG ATTTACCACA TTCTGTACTG GATATTTCTT CACCTGCTGC	1320
	TACTGTAAAC CATTITTATTC TTGGATCITC TGTAGAGTAT ATTATCACAG GTACTTTTTA	1380
	CAGGGGTGTC TAATCTTTTG GCTTCCCTGG GCACATTGAA AGAAGAAGAA TTGTCTTGGG	1440
45	CCACACATCA AATACGCTAA CACTAATAAT AGTTGATGAG CTAAAAAAAA AAAAAAAAAG	1500
	GCAAAAAGN CCCAAAA	1517

55

- (2) INFORMATION FOR SEQ ID NO: 127:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1073 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:

	TGAATCTATT CTTTGAACAT TCTACAACAA GAATTACATT ATACTGTTAT ACCAGAGTAC	60
5	TTCTGCAGTG TGAAATAGAT TGGTTTGGAA AATGAACCTG GCTTTGCTAT AAATTACATT	120
-	CACAGGCCTT TITGCAAATG TGTAACTTGC CTATCAAAGT AGTTTGTAGG GCAAATGCAG	180
	AATATATGTC TCCATCTGGT AAAGTACCTT WIAYTCATGT GGGAAATCAA GTAGTATCAG	240
10	AACTTGGTCC AATAGTCCAA TTTGTTAAAG CCAAGGGCCA TTCTCTTAGT GATGGGCTGG	300
	AGGAAGTCCA AAAAGCAGAA ATGAAAGCTT ACATGGAATT AGTCAACAAT ATGCTGTTGA	360
	CTGCAGAGCT GTATCTTCAG TGGTGTGATG AAGCTACAGT AGGGRMGATC ACTCATGMTA	420
15	GGTATGGWTC TCCTTACCCT TGGCCTCTGW WTCATATTTT GGCCTATCAA AAACAGTGGG	480
	ANGTCAAACG TAAGNTGAAA GCTATTOGAT GGGGAAAGAA GACTCTGGAC CAGGTCTTAG	540
20	AGGATGTAGA CCAGTGCTGT CAAGCTCTCT CTCAAAGACT GGGAACACAA CCGTATTTCT	600
	TCAATAAGCA GCCTACTGAA CTTGACGCAC TGGTATTTGG CCATCTATAC ACCATTCTTA	660
	CCACACAATT GACAAATGAT GAACTTTCTG AGAAGGTGAA AAACTATAGC AACCTCCTTG	720
25	CTTTCTGTAG GAGAATTGAA CAGCACTATT TTGAAGATCG TGGTAAAGGC AGGCTGTCAT	780
	AGAGTTATGT GTTAGTCTCA GGAGTCTTAA CTTTTGAAAT ATGTTTACT TGAATGTTAC	840
30	ATTAGATATT GGTGTCAGAA TTTTAAAACC AAATTACTGC TTTTTGAAAC CTCAAATTAT	900
	ATAATGTATC TTATGTATGT GCTTTATATT GTTATTTGTG TATACATTAA AATAATTCTG	960
	AATTATTTAA TCTGATATGT TGTATTCTGT ATCTTGAAAT TTTTGTTTCC TTGAAACATG	1020
35	CATGCATTTA AAAATAAAGC TTAAACAACT GTAAAAAAAAA AAAAAAAAAA	1073
40		
	(2) INFORMATION FOR SEQ ID NO: 128:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 300 base pairs	
45	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:	
	CAACCCCTGC CTTTTTTTTG TTTTCCATTT GCTTGGTAGA TCTTCCTCCA TCCCTTTATT	60
	TTGAGCCTAT GTGTGTCTCT GCCCGTGAGA TGAGTCTCCT GAATACAGCA CACTTACTGG	120
55	TCTTGACTCT GTATCCAATT TGCCAGTCTG TGTCTTTCAT TTGGAGCATT TAGCCCATTT	180
	ACATTTAAGG TKAATATTGT TATGTGTGAA TITRATCYTR TCATTATGWT GTTAGCTGGT	240
	THE PROPERTY OF THE PROPERTY O	300

381

(2) INFORMATION FOR SEQ ID NO: 129:

5

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1275 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

10

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:

GGCAGAGCCT GTCCCTGCTG CCCCTGCAAA AAAAACCCCC TCTGGTGTGA GCAGGATGGT 60 15 TOGAGGITAT GTGAGCTCCT TCTCCTTTCC TCCAGTTTCC TCTTCCCTTC TCCTCCCTGC 120 CTCTTTTGCT TTTCCCTTTC TTCCTGGTAC CCCCTGCCCA TTCCTGTATT TTCTCCCATC GCCATTCTCC CCTCTCCCAC TGTCCCTAAC CCGTTCAAAC TCTTTCCTCT TAAATGGTTG 240 20 AGATTITICTO TOACCAAGOA CACCOCAGTA TTAATTAAAC TAGCTGCAAA CAGGCAGCAA 300 GTGGTCTACC ATGACAGATG GGTTTTGTGT GTGTGTGTGT GTGTGTAATT GTAATAAAAC 360 25 ATATTGARTC ACTCAATAAA CACAGAGTGT CTACTACATG TATCARGCAC TATCATAGAT 420 GCTAATTAAC GAAACTGAAA TGGCCAGGCC CTCACAGTGG CTCATGCCTA TAATCCCAGC 480 ACTITIGGAG GATGAGGCAG GAGGATCACT TGAGGCCGGG AGTTCAAGAC CAGCCTGGGC 540 30 AACATAGTAA GACTCCATCT CTACAAAAAA AAAATTTTTT TTATTATACT TTAAGTTTTG 600 GGTTACATGT GCAGAACGTG TAGTTTTGTT ACATAGGTAT ATACGTGCCC TGGTAGTTTG 660 35 CTGCACCCAT CAACCCATCA CCTACATTAG GTATTTCTCC TAATGTTACC CCTCTCCTAG 720 CCCCCCACCC CGTGACAGGC CCTGGTGTGT GATGTTCCCC TCCCTGTGTC CATGTGTTCT 780 CATTGGTCAA CTCTCACCTA TGGAGTGAGA ACATGTGGTA TTTGGTTTTC TGATCTTGTG 840 40 ATAGCTTGCT GAGAATGTKG GTTTCCAGCT TTATCCACGT CCCTGCAAAG GGCATAAACT 900 CATCCCTTTT TATGGCTGCA TAGTGTTCCA TGGTGTATAC GTGCCACATT TTCTTAATCT 960 45 1020 ATCATTGATG GACAAGTTTT GCTATTGTGA ATAGTGCCAC AATAAACATA CGTGTGCGTG TGTCTTTATA GCAGCATGAT TTATAATCCT TTGGGTATAT ACCCAGTAAT GGGATCACTG 1080 1140 AGTCAAATGG TATTTCTCGT TCTAGATCCG TAAGGAATTG CCACACTGTC TTCCACAATG 50 TTTGAACTAA TNTACACTCC CACCAACAGT GTAAAAGTGT TTCTATTTTT CCACAACCTC 1200 TCCAACATCT GITATTTCCT GACTITTTAA TGAACGTCAT TCTAACTGGC GTGAGATGGT 1260 55 1275 ATCTCATTGT GGTTT

	(2) INFORMATION FOR SEQ ID NO: 130:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 472 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:	•
10	CNGAAACCCC GTGAACCCTC CCCGGGTTAA AAAGCCCCCC CTAAATGGGG GGAACGCYTC	60
	ACACGTTATA AAAAAGCACT AGAATGTTTT GAAAGCGAGA AACAACAGCT GTGTAGGGTA	120
15	GCTAGCAGTT AGTGTTGTAC AGAAGACAGA TATTTGTGCA TTTYTGCATT TTCTAAGTTT	180
	GCTGCAATGA GCATGTATTA CTTTCATAGT TATAAAACAC ATGCAAAATG CCCTTTTAAA	240
20	ATGAAAAAA ATCCATGAGT GTAAGTGATA TATATGCTTT GGAAAGCCTG GGACGGTCAT	300
20	TGTTTACTCT CAATAGTATG TGTTTGCCTT TGTCTTTTTG AGACATTTTG TTTTAATCTG	360
	TTGATGACAA TAACCTGTTG ATAATATAAC TTGATAACAA ATAAAATGAC TTATGATTGA	420
25	VII АААААААА ААААААААА АААААААА АААААААА	472
30	(2) INFORMATION FOR SEQ ID NO: 131:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1950 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	• •	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:	60
40	ACCTCTCAGA ATCTTCTCTC AGCAACCTGA GTCTTCGCCG TTCCTCAGAG CGCCTCAGTG	60
	ACACCCCTGG ATCCTTCCAG TCACCTTCCC TGGAAATTCT GCTGTCCAGC TGCTCCCTGT	120
45	GCCGTGCCTG TNATTCGCTG GTGTATGATG AGGAAATCAT GGCTGGCTGG GCACCTGATG	180
75	ACTOTACCT CAACACAACC TGCCCCTTCT GCGCCTGCCC CTTTNTGCCC CTGCTCAGTG	240
	TCCAGACCNT TGATTCCCGG CCCAGTGTCC CCAGCCCCAA ATCTGCTGGT GCCAGTGGCA	300
50	GCAAAGATGC TCCTGTCCCT GGTGGTCCTG GCCCTGTGCT CAGTGACCGA AGCTCTGCCT	360
	TGCTCTGGAT GAGCCCCAGC TCTGCAACGG GCACATGGGG GGAGCCTCCC GGCGGGTTGA	420
55	GAGTGGGGCA TGGGCATACC TGAGCCCCCT GGTGCTGCGT AAGGAGCTGG AGTCGCTGGT	480
	AGAGAACGAG GGCAGTGAGG TGCTGGCGTT GCCTGAACTG CCCTCTGCCC ACCCCATCAT	
	CTTCTGGAAC CTTTTGTGGT ATTTCCAACG GCTACGNCTG CCCAGTATTC TACCAGGCCT	600
60	CETTETTESC TOTTETGATE GEOCTTOGMA CTCCCAGGCC CCATCTCCTT GGCTAACCCC	660

	TGATCCAGCC TCTGTTCAGG TACGGCTGCT GTGGGATGTA CTGACCCCTG ACCCCAATAG	720
_	CTGCCCACCT CTCTATGTGC TCTGGAGGGT CCACAGCCAG ATCCCCCAGC GGGTGGTATG	780
5	GCCAGGCCCT GTACCTGCAT CCCTTAGTTT GGCACTGTTG GAGTCAGTGC TGCGCCATGT	840
	TEGACTCAAT GAAGTECACA AGECTGTEGG GCTCCTGCTG GAAACTCTAG GGCCCCCACC	900
10	CACTOGCCTG CACCTGCAGA GGGGAATCTA CCGTGAGATA TTATTCCTGA CAATGGCTGC	960
	TCTGGGCAAG GACCACGTGG ACATAGTGGC CTTCGATAAG AAGTACAAGT CTGCCTTTAA	1020
	CAAGCTGGCC AGCAGCATGG GCAAGGAGGA GCTGAGGCAC CGGCGGGCGC AGATGCCCAC	1080
15	TCCCAAGGCC ATTGACTGCC GAAAATGTTT TGGAGCACCT CCAGAATGCT AGAGACCTTA	1140
	AGCTTCCCTC TCCAGCCTAG GGTGGGGAAG TGAGGAAGAA GGGATTCTAG AGTTAAACTG	1200
20	CTTCCCTGTT GCCTTCATGG AGTTGGGAAC AGGCTGGGAA GGATGCCCAG TCAAAGGCTC	1260
	CAAGCGAGGA CAACAGGAAG AGGGATCCAC TGTTACCAAA AGTCCTGATT CCCCCATCAC	1320
0.5	CAACCTACCC AGTTTGTTCG TGCTGATGTT GGGGGGAGATC TGGGGGGAGT TGGTACAGCT	1380
25	CTGTTCTTCC CTTGTCCTAT ACCGGGAACT CCCCTCCAGG GTACCCAÇAG ATCTGCATTG	1440
	CCCTGGTCAT TTTAGAAGTT TTTGTTTTAA AAAACAACTG GAAAGATGCA GAGCTACTGA	1500
30	GCCTTTGCCC TGAATGGGAG GTAGGGATGT CATTCTCCAC CAATAATGGT CCCTCTTCCC	1560
	TGACGTTGCT GAAGGAGCCC AAGGCTCTCC ATGCCTTTCT ACCTAAGTGT TTGTATTTTA	1620
25	TTTTAAATTA TTTATTCTGG AGCCACAGCC CCCTTGCTTA TGAGGTTCTT ATGGAGAGTG	1680
35	AGAAAGGGAA GGGAAATAGG GCACCATGGT CCGGTGGTTT GTAGTTCCTT CAAAGTCAGG	1740
	CACTOGGAGC TAGAGGAGTC TCAAGCTCCC CTTAGGAAGA ACTGGTGCCC CCTCCAGTCC	1800
40	TAATTITTCT TGCCTGCCCC GCCTTGGGGA ATGCCTCACC CACCCAGGTC CTGACCTGTG	186
	CAATAAGGAT TGTTCCCTGC GAAGTTTTGT TGGATGTAAA TATAGTAAAA GCTGCTTCTG	192
45	TCTTTTTCAA AANAAAAAA AAAAAAAACT	195
47		

(2) INFORMATION FOR SEQ ID NO: 132:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 990 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

55

(8) 10102011 1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:

TOGAAGATIT AAAATAGGIT TCATATITCT CTTGAATATG AATATATAAG CTTGAATAAG

	CHICAGISCI TATEATEATG AAATTTICCT TATTATTICT ACCAATGCTT CITATATAA	120
	AGCCTGATCT TTCTCATATT AGTATATGTA CATTAGCTGC CTGTGGATTA ACATTTCCAT	180
5	SARATGUATU TEUSCATUST TUSATCITAA ACTITETIGIG TCTTTATATA AGGTATGCTY	240
	CITITAASCA TGATATUTTT AASCACAATA GTTGAAAGAC AATCTYCACC TTTTACTTGT	300
	ATACTTACAT GTAATGTAAT TITTGATGCA TATTACGTCT TATTATTTAA CCAACCTATT	360
10	TTATTTTATC TAGGGCATTT TTCAGAAAGC CTTATTTTCT TGTATTAATC AAATATTTTT	420
	AYCAPTGIAI TYTCCYCTAT TAGTTAGKAA TACGKTACYC YAAATATATA TYGTGGSTAT	480
15	TTTCAGAATT GCAATATGCC TCCTTAATTT ATTAGAGGCT AACCTAAATT ATTACTTTTA	540
	CCACTTACTT GAAAATTCTG GAACTTTAGA ACATTTATTG TTTTATGCAT TTTAATTCTA	600
	CTTGTATTTT TACTACTCCT AAACATTATT ATTGTTTTAG ACAAGCCAAA ATATATNITG	660
20	TTACTACOTT ATYCTCCATT TCCTTCTGTA TTTTTATGCC ACTATGTATG CTCAATTTCC	720
	TICIATGIGA TGAACCIAAT TCAGTACTIT TGTTTTTTAA TCTGTGCAGG TAGCCTGGCC	780
25	ATTAATTTT TACTITUIGGT TIGCTGAAAA AATTGTGTTT ATTTCTATAT GCATACTTAT	840
	GCATATAGAA TXCTAGGTNG ACATATTTTT AGTATTTATA AATGTAAAGT CATTWATTKG	900
	GCTTCTATCA TTTCKGTKGA GAAATCAATT GTCAGCCCAA TAGTTTTTCA TTTTAAATTA	960
30	CNGARTITY TCATGISTCT GGTTTTAGGA	990
35		
	(2) INFORMATION FOR SEQ ID NO: 133:	
	(i) SEQUENCE CHAFACTERISTICS: (A) LENGTH: 1720 base pairs	
40	(3) TYPE: nucleic acid (C) STRANCEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:	60
	GTCTGATAAG CGACTGTGGT TATTCCCCTA AAGTTTACTT CAGCACTAAC ACTAGTGCTT	120
	CCGCTGGAGT TTGCAGTTTT CCAGCTTTAT ACAGGATTTT CCTTTGACTG GAAGAGTCAA	180
50		240
	CARACTGGGA TTATTCTTAT CHARACATGG TCTTCTTTGA ATAAGAAAAA TACATAGTTG	300
55	GTTATTATGG ACTTALAACT GTGTTAAATG GATATTCTGA TAAAATATTT GCTGCTCTGT	360
	AGASTGTGGA AAATCTGAGA ATATTAGCTT TACTCATCTT GAGCTTTGAG GATGTTCTCT	420
	GTACGCCGAT GGTTTCATAT TAACTAAAAA AGCTGGGTAT TGTAAAATCT CATTTATAAA	480
60	AACTCAGATG AGAAGAAAAT TITCTTTGAT GGTGAGACTG TTGTCTTAGT TCAGGAAATT	460

	ATTTAATAAT CCTTTGTTAC CTGTGAATGA AGGAACTTTG TAATTCTGAT TTATCGTAAA	540
5	ACATGAGCCT TTCCAGAGTC AGCTTAGACA CTGTTGTCGC AAATAGCCAT GCTTTGCCTT	600
J	ATECCAAGGA GCCCCAGAGG GAGGGCCTAG TCTTCCTCTG TTGCTGTACA TATATTGAAA	660
	TOCTTTTTTT TTTTATTTTG CATTTGTTAT CTATAATGAG CTTTCTGAGC CCTGATATTA	720
10	TGTGAGACAA ACAGGAGTTA TTGATGTTAT ACACTCCCTT CCATTCAGGA TTTTCTGCTT	780
	GGAGGGAAAT ATGTTGACCT TAGAGAATTG TGAATATTGT TGCAATTCTT GAATATATTA	840
15	CCATGTGAAT AATAGAGACT GTGTTGCTCT CTAGTATAAG CTATATTTAT TTTTGATTCA	900
13	TTTGAATTAC TAGTTATAAC TGGAGAAATT TTGTTACCTC TATCCTGGCT TGCCTGACTG	960
	GCTGTATAAT AGCAGCAGCC TCTTTTAGAG CATCTTAATG AAAACATGGA TGAAAGGAAT	1020
20	TAATGATGAT ATCTGCAGAC TGCGTAGAAA ATGGCTTTTG TTCCCAGCGT TAACATTTTC	1080
	TTCTCAATCA CATTTCAATG TTTGTGGAGA GTGGCAGATT CACACCAGAA ACACTAGGTG	1140
25	TTCATATCCA TAGCATGGAT GCAGAATAAG CAGTTGGGAG AGAAGCTTCT TCCTACCTGG	1200
23	TACTCCTCCC ATTCACCTCA GCCCAGCCCC AGACAGGCGT TAGCATTCAG TGTGGGCCCT	1260
	CAGGCAGCCC TGAAGCCTGG CTGGGTCATC AGATGGGGGC AGCCTGTGAC GGGCACCAGC	1320
30	GGCCTGATTC CAGGGAAGAG TTCCTGGAGG GTGTTGGCTG TTTTTGTTAG CTCAGTTTTT	1380
	TICTGGGCTC CACCATTCCT AACTCCAGGT AGACAAGATA GATGTCACAC ACAACAATTT	1440
35	TAAAGTATTT TGCTTAGTGC ATTTTGTTTA TGATTGCAGT GTTTGTTTCT TATTTAATAG	1500
33	GCTTTTTACT TCATTCTATT AAATTTTAGT GTTTAGAAGA GGCGGGTACT GTCACTGTGT	1560
	AAAATATGTA ATATTTTATA TGTTATACCA TGTCATATAT ACTTGCAATA TCAGACCTTG	1620
40	CATTCAATAT ACAATGCAAT TGACTCTTTG CAGACCTGCA TTTTTCAGTG AACAATAAAA	1680
	AGATTGTCTG GCACTCCAAA AAAAAAAAA AAAAAAAAA	1720
45		
	(2) INFORMATION FOR SEQ ID NO: 134:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 705 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:	
	GGCACGAGGC CATCTGGGCT CATTCAGCAG GAAATAATGG AAAAAGCTGC AATATCCAGG	60
	TOTTTACTAC AATCTGGAGG CAAGATCTTT CCTCAGTATG TGCTGATGTT TGGGTTGCTT	120

	GTGGAATCAC AGACACTCCT AGAGGAGAAT GCTGTTCAAG GAACAGAACG TACTCTTGGA	180
	TTAAATATAG CACCTTTTAT TAACCAGTTT CAGGTACCTA TACGTGTATT TTTGGACCTA	240
5	TCCTCATTGC CCTGTATACC TTTAAGCAAG CCAGTGGAAC TCTTAAGACT AGATTTAATG	300
	ACTCCGTATT TGAACACCTC TAACAGAGAA GTAAAGGTAT ACGTTTGTNA AATCTGGGAA	360
10	GACTIGACTG CTATTCCATT TIGGGTATCA TATGTACCTT GATGAAGANG ATTAGGTTGG	420
10	GATACTICAA GIGAAGCCTC CCACTGGAAA CAAGCTGCAG TIGTTTTAGA TAATCCCATC	480
	CAGGITGAAA TGGGAGAGGA ACTIGTACTC AGCATTCAGC ATCACAAAAG CAATGTCAGC	540
15	ATCACAGTAA AGCAATGAAG AGCAGTTTTC CAATGAAAAC TGTGTAAATA GAGCATCAAC	600
	AAGTACAAAA TTCTTGTCTT AATTAGTGGG GGTATATAAA AATTCCTTGT AATGGTCAAA	660
20	TATTITITAA AATTGACATT AATAAAGCAT ATTITAAAAG TITCT	705
20		
	(2) INFORMATION FOR SEQ ID NO: 135:	
25	(2) INFORMATION FOR SEQ 15 No. 155.	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 323 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:	
35	AGCACACCC TCCTTTAGTT GCTCCTAAGG TCATGTTCAA CATTCGTGGA GTGCATTTTC	60
	TECTCAGGGA GCTTTCCCAG ACCCGGAATG TTTGGTGCTC ACAGACYCTG GCAAGGATCG	120
	GTATTGCTGT TCCTCAGTTT TGCCTGGGGA AATGGAGGST CAGTGACGTT CAGTGACGTG	180
40	CCCAGAGTCA TGCCATTGGC GGGTGGCCCA GKGMTCCAGG TCTCCAGCAC CCCTCGGCCC	240
	CCTCCTCACC AGGTCACATC ATCTCCTGGA TTAGAATCTG CTCACATAGT CTGTCCTGAA	300
45	AGGAAAAAA AAAAAAAAA AAC	323
43		
	(2) INFORMATION FOR SEQ ID NO: 136:	
50	(2) INCOMMITON FOR SING ID NO. 250.	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 582 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:	
	GGACGGAATG GTGCAACCCT CCTWAMTTTT CTKGKGCTGT TGACAACAGA GGGAGGGAGG	60

387

	GAAAACATTT TTYGTGGGAG AATCCTACYT CTGCAGSGGA GCCCTTAAGC GATKGATTTT	120
	GAATCTKGAC CCTTTACCAA CTAATTTTGA AGGAAGATAC CTTGGAAATA TTTGGCATTC	180
5	AGTGGGTTAC TGAAACAGCA TTAGTGAATT CATCTAGAGA ACTCTTTCAT TTATTCAGGC	240
	AACAACTGTA CAACTTGGAA ACCTTGTTAC AGTCCAGTTG TGATTTTGGG AARGTATCAA	300
10	CTCTACACTG CAAAGCAGAC AATATTAGGC AGCAGTGTGT ACTATTTCTC CATTATGTTA	360
10	AAGTITICAT CITCAGGTAT CIGAAAGTAC AGAATGCIGA GAGTCATGIT CCTGTCCATC	420
	CTTATGAGGC TTTGGAGGCT CAGCTTCCCT CAGTGTTGAT TGATGAGCTT CATGGATTAC	480
15	TCTTGTATAT TGGACACCTA TCTGAACTTC CCAGTGTTAA TATAGGAGCA TTTGTAAATC	540
	AAAACCAGAT TAAGGTTTGA CTGGTTTCAT TTGATTTTTA AG	582
20		
20	(2) INFORMATION FOR SEQ ID NO: 137:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1021 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:	
	TTCGGCAGAG CCCTTGCGCG CTCTTGAATA CCTGCKTTCT GTAGCGCTAG TTCTCTTCAA	60
	GATTIGCTTA GIGTCATTIC ATTICGGITT CITTICTCGC CATGITITIC TGTCGGAATT	120
35	ACGGTTCGTT TTGGTTCTAT GTACTCTCTA AAATGTTATC GTTTTTCATT TGTCTACTAA	180
	THITCGIGCA THIGHTACTA CIGACITICT TAATATCIGA CIGGCCTCCG CCCACGGGCT	240
40	CTGCAGANCA TAAAATACTC AGGCTGATGG TAGTGCAGAG ACTCTCCCTC CTTGATCAGC	300
	GCAAACGTTG GTCTGAGGCT TGAGGGATGG AGCAACATTT TCTTGGCTGT GTGAAGCGGG	360
45	CTTGGGATTC CGCAGAGGTG GCGCCAGAGC CCCAGCCTCC ACCTATTGTG AGTTCAGAAG	420
43	ATCGTGGGCC GTGGCCTCTT CCTTTGTATC CAGTACTAGG AGAGTACTCA CTGGACAGCT	480
	GTGATTTGGG ACTGCTTTCC AGCCCTTGCT GGCGGCTGCC CGGAGTCTAC TGGCAAAACG	540
50	GACTOTOTOC TEGAGTOCAG ASCACOTTEG AACCAASTAC ASCGAASCOC ACTGASTTCA	600
	GTTGGCCGGG GACACAGAAG CAGCAAGARG CACCCGTAGA AKARGTGGGG CAGGCAGARG	660
55	AACCCGACAG ACTCAGGCTC CRGCAGCTTC CCTGGAGCAG TCCTCTCCAT CCYTGGGACA	720
<i>J J</i>	GACAGCAGGA CACCGAGGTC TGTGACAGCG GGTGCCTTTT GGAACGCCGC CATCCTCCTG	780
	CCCTCCAGCC GTGGCGCCAC CTCCCGGGTT TCTCAGACTG CCTGGAGTGG ATTCTTCGCG	840

60 TREGITTIEC CECETTETET GTACTETEGG CETECTETTC ACEGATETET GEAGCTAAGC

1020

1080

1140

1200

388

	AGCCTTAGAT AGCAGCAGAA GGCTTTTTGG ATTCTCCTCC TTGAAAAGAT TCTCAGTTAC	960
5	CAAACGTCTC CACCTAGAAA ATAAAAATAC ATTAAGATGT TGANAAAAAA AAANAAAAAA	1020
J	A	1021
10	(2) INFORMATION FOR SEQ ID NO: 138:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 1777 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:	
20	CGGAAGATGA TGGCTTCAAC AGATCCATTC ATGAAGTGAT ACTAAAAAAT ATTACTTGGT	60
	ATTCAGAACG AGTTTTAACT GAAATCTCCT TGGGGAGTCT CCTGATCCTG GTGGTAATAA	120
25	GAACCATTCA ATACAACATG ACTAGGACAC GAGACAAGTA CCTTCACACA AATTGTTTGG	180
	CAGCTTTAGC AAATATGTCG GCACAGTTTC GTTCTCTCCA TCAGTATGCT GCCCAGAGGA	240
20	TCATCAGTIT ATTITCTITG CTGTCTAAAA AACACAACAA AGTTCTGGAA CAAGCCACAC	300
30	AGTCCTTGAG AGGTTCGCTG AGTTCTAATG ATGTTCCTCT ACCAGATTAT GCACAAGACC	360
	TAAATGTCAT TGAAGAAGTG ATTCGAATGA TGTTAGAGAT CATCAACTCC TGCCTGACAA	420
35	ATTCCCTTCA CCACAACCCA AACTTGGTAT ACGCCCTGCT TTACAAACGC GATCTCTTTG	480
	AACAATTTCG AACTCATCCT TCATTTCAGG ATATAATGCA AAATATTGAT CTGGTGATCT	540
40	CCTTCTTTAG CTCAAGGTTG CTGCAAGCTG GGAGCTGAGC TGTCAGTGGA ACGGGTCCTG	600
40	GAAATCATTA AGCAAGGCGT CGTTGCGCTG CCCAAAGACA GACTGAAGAA ATTTCCAGAA	660
	TTGAAATTCA AATATGTGGA AGAGGAGCAG CCCGAGGAGT TTTTTATCCC CTATGTCTGG	720
45	TOTOTTGTOT ACAACTCAGC AGTOGGCOTG TACTGGAATC CACAGGACAT CCAGCTGTTC	780
	ACCATGGATT CCGACTGAGG GCAGGATGCT CTCCCACCCG GACCCCTCCA GCCAAGCAGC	840
	CCTTCAAGTT CTTTTATTTC TGGGTAACAG AAGTAGACAG ACAGGTTACT TGGTGTATCT	900

TCTGTTAAAG AGGATTGCAC GAGTGTGTTT TCCTCACACA CTTTGATTTG GAGAATTGGT

GCTAGTTGGC AATAGATAAC TCAGCGTAGA TAGTATTGCA AAAAGGGGAG GAAATACACA

ACAATAATAA ATGTAAAAAC CTGCTATTCA ACATGCAGTT TTATTTCGAR GCCAAAAATC

TAGAGCTTTC CCAAGATCCT GTTGCCTTAG GCACATNCAC ACTTCAACAG TGCACACTAT

CCAACAGTGC ACACTATTCA ACAGTGCACA CTATTCAAAA GCGTAGACTA TTTTTTTGCA

60

50

	TGTTCAAGAT ATTTGTTTTG GTCTTATGTG TGTGTGAGAG AGAGAGATTC CTTTGACATT	1260
	AAGGAGCATC AATGAGAAAA GATGATGAGG CAGGAATTAA TAAAGAAATG AAGTCGTGTG	1320
5	TGTTTGGTTG CCTGTCAGAG GGCACACAAT TTCATAAACA CCATGCCTGG ACAATTTGAT	1380
	ATTAATATTT AACACCTCTG CATCTTTTTC TTAAAAAAGA ATATGGGCCA GATACAGTGG	1440
10	CTCACATTTG TAATCCCAGC ACTTTGGGGA GCCAAGTTAG CAGAATCCCT TGAGCACAGG	1500
	AATCTGAAAC CAGCTTGGGC AACATAGTGA GATCCCATCT NTACAAAAAA CTTAAAAATT	1560
	AGCCAGGCAT GATGGCACAT TCCTGTAGTC CTAGCTACTC AGGAGGCTAA GGTAGGAGGA	1620
15	TTGCCTGAGC CCAGGAGTTC AAGGCTGCAG TGAGCTAAGN ACGTGCCAGT ACACTCCAGC	1680
	CTGAGCCACA AAGTGAGACC CTGTCTCGCA AAAAAAAAAA	1740
20	CCGGTACCCA AATCGCCGGA TATGATCGTA AACAATC	1777
	·	
	(2) INFORMATION FOR SEQ ID NO: 139:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 643 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:	
	TITTTTTTT TTTTTTTTT TTTTTTTTT TTTTTTGGG AATGAGAAAA TAACTTTATT	60
35	TTCATTGTGG GGAGCGGGC GATGTCCAGC CTCAGAACTT CTGGAACTGC TTCTTGGTGC	120
	COGCACCTT GOTGACCTTG AGCACGTTGA AGCGCACTGT CTTGCTCAGA GGCCGGCACT	180
40	COCCCACTGT GACGATGTCA CCGATCTGGA CGTCCCTGAA GCAGGGGGAC AGGTGTACAG	240
	ACATGITCTT GTGGCGCTTC TCGAAGCGGT TGTACTTGCG GATGTAGTGC AGATAGTCTC	300
	GGCGGATGAC AATGGTCCTC TGCATCTTCA TCTTGGGTCA CCACGCCAGA GAGGATCCGC	360
45	CCTCGAATGG ACACATTACC AGTGAAGGGG CATTTCTTGT CAATGTAGGT GCCCCTCAAT	420
	AGCCTCCTTG GGGTGTCTTT GAAGCCCAGA CCGATGTTCT TGTTAGTAAC CCGCGGGAGC	480
50	TTCTCCTTGC CAGTTTCTCC CAGCAGGACC CTCTTCTTGT TTTGAAAGAT GGTCGGCTGC	540
	TTTTGGTAGG CACGCTCAGT CTGAATGTCC GCCATCTTCT CGTGCCGMAY TCCTGCAGCC	600
	COCCOSTO ACTACIONTA CACCOCCO ACCOCCING ACC	643

(i)	SPOUENCE	CHARACTERISTICS:
11/		CIRCLE I DICE DI TACO

(A) LENGTH: 1220 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:

10	GGCACGAGGA	TGATAGACCT	ACTGGAGGAA	TACATGGTTT	ACAGGAAGCA	TACCTACATR	. 60
10	AGGCTTGATG	GCTCATCCAA	GATCTCGGAG	AGGCGAGACA	TGGTTGCTGA	TTTTCAGAAC	120
	AGGAATGACA	TCTTTGTGTT	CCTGTTAAGC	ACACGAGCTG	GAGGACTGGG	TATCAATCTC	180
15	ACTGCTGMAG	ACACAGTGCA	TTTTCTATGA	TAGCGACTGG	AACCCCACTG	TGGACCAGCA	240
	GGCCATGGAC	AGGGCCCACC	GCTTAGGGCA	GACAAAGCAG	GITACTGTGT	ACCGGCTCAT	300
20	CTGTAAAGGC	ACCATTGAAG	AACGCATTCT	GCAAAGAGCC	AAGGAGAAGA	GTGAGATTCA	360
20	GCGGATGGTG	ATTTCAGGTG	GGAACTTCAA	ACCAGATACC	TTGAAACCCA	AAGAGGTGGT	420
	TAGTCTTCTT	CTAGACGACG	AAGAGTTGGA	GAAGAAACGT	ATGTACTCTA	AACCTCTATA	480
25	CACTCCCCTC	ACGTATCTGA	GAATGGAAGA	GGTACTTGGS	TGTGTGCCAA	GGGTTAGGCA	540
	AAGCCAGAGG	CTGTATTTAG	GGAAAGTATT	TTTGTGCTCA	TATTTTATAT	AAAAACCCAA	600
30	ACAAGAATGT	GTTTGTAGGC	CAGGCGTGGT	GGCTCGCGCC	TCTAGTCTCA	GCATTTCGGG	660
30	ARGCCAAAGT	GGCAGATCA	CCTGARGTCA	GGARTTTGAG	TTTGARACCA	GCCTGGCCMA	720
	CGTTGTGAAA	CCCCACCTCT	ACTARGARTA	CSGAAAATTG	GTTGGGCATG	GTGGCGGGCA	780
35	CCTGTAATTC	CAGCACTITG	GGAGGCTGGG	GCAGAANAAT	TGCTTGAGCC	CAGGAGGTGG	840
	AGATTGCGGT	GAGCCGAGAT	YGTÇÇCATTG	CAMTCCAGCC	SGGCAATAA	GAGTGAAAYT	900
40	CCATCTTTTA	AAAACAAACA	AAAACAAAAA	ACACAAGACG	GCTCACACCT	GTAATCCCAG	960
40	CACTTTGGGA	RGCCGARGCA	GGTGGATCAC	GARGTCAGGA	GTTCCAAGAC	TAGCCTGGCC	1020
	AACCTGGTG	AGCCCCGTCT	CTACTAAAA	TACMAATATI	AGTICGGGCGT	GCTGCTGGCC	1080
45	ACGTGTAATC	CCAGCTACTC	: GGGAGGCTGA	GGCAGGAGAA	TCCCTTGAAG	CTAGGAGGCA	1140
	GAGGTTGCAC	TGAGCCAGGA	TCGTGCCATT	GCACTCCAGO	CTGGACAACA	AGAGCAAGAT	1200
50	TCCATCTCA	AAAAAAAA /					1220
50							

(2) INFORMATION FOR SEQ ID NO: 141:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 721 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

60 (D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:	
5	AATTCGGCAC GAGCCAGGTT AGCCGGAAGG GCAGCTCTCC AGGCCCTGCC CACCCCACAG	60
	GGGGCTCCTT ATGCACAGCG GGGCGTCTCC TTGTGGCCAT AGAAACGGAA CTGGCTCTTT	120
	TCAACAGTGC TGCAAGAGGA TGGTTATTTA ACGCTGGCCC CCAAGGAGGA AAGGCACAGA	180
10	CYTTCCTCCC TCCTGGAACA TCCAAGGGCA CTGGATCCTC TGTGTCCCTC TGAGATGGGG	240
	TGCCACTCCA GCAAGAGCAC CACGGTGGCA GCTGAGTCCC AGAAGCTTGA AGAAGAGYGC	300
15	GAGGGAAGAG AGCCAGGTCT GGAGACCGGC ACCCAGGCAG CAGACTGCAA GGATGCCCCG	360
13	CTGAAGGATG GAACCCCTGA GCCAAAGAGC TGAAATGCCT CTCTCCAGAG TCGGACCCTC	420
	ACCTCYTTCC TOGAACTGCC TTTGGCCCCA GAACCATGAG ACAATCCCCA CCCTGAGAAG	480
20	CTCCGATCAC TGGGAGGAGA GAGAAAGCCT CCAGCTTTGG GATTCAGGCT TCAGAAGTTT	540
	TTAGCAGCCT TTGCTCATTG GAGAGGTGGG GAAAGGATAA AGTTCTTATA AGGAAATCCC	600
25	TAATTTCCCC CAGCTCCTCC CCNCCNGAAG AAGGAACNAA AGAAAGTTCC TTCCACACGT	660
23	TTTGTTGGAA ACTITTCCCT TGCCAACTTT CCTTGGATTG CCAGAACAAA GCCCTCCAGA	720
	A .	721
30		
	(2) INFORMATION FOR SEQ ID NO: 142:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1468 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
40		
40	(D) TOPOLOGY: linear	60
45	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:	60 120
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142: ATGAATTAAT GTTTATAAAT GACTGTACTG AATTTAAAAC CGTACAGTTT CATTTGCATT	
45	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142: ATGAATTAAT GTTTATAAAT GACTGTACTG AATTTAAAAC CGTACAGTTT CATTTGCATT TTGACATTAC TTTATTATAC ATTTTGCATT TAAAAGGCTG CACCAGTTGG CTTTTCTTCT	120 180
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142: ATGAATTAAT GTTTATAAAT GACTGTACTG AATTTAAAAC CGTACAGTTT CATTTGCATT TTGACATTAC TTTATTATAC ATTTTGCATT TAAAAGGCTG CACCAGTTGG CTTTTCTTCT GTTTTATTCT CAAAATATAG AGATTCTGTG ATTTATTTGC CCTGTTTATG GATTAAAAAG	120 180
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142: ATGAATTAAT GTTTATAAAT GACTGTACTG AATTTAAAAC CGTACAGTTT CATTTGCATT TTGACATTAC TTTATTATAC ATTTTGCATT TAAAAGGCTG CACCAGTTGG CTTTTCTTCT GTTTTATTCT CAAAATATAG AGATTCTGTG ATTTATTTGC CCTGTTTATG GATTAAAAAG AAAATTCTAA TATAAAGCAT TTCAATAGGA TGCATAGGTA TATTACGTTT TTTAAATGCT	120 180 240
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142: ATGAATTAAT GTTTATAAAT GACTGTACTG AATTTAAAAC CGTACAGTTT CATTTGCATT TTGACATTAC TTTATTATAC ATTTTGCATT TAAAAGGCTG CACCAGTTGG CTTTTCTTCT GTTTTATTCT CAAAATATAG AGATTCTGTG ATTTATTTGC CCTGTTTATG GATTAAAAAG AAAATTCTAA TATAAAGCAT TTCAATAGGA TGCATAGGTA TATTACGTTT TTTAAATGCT TTAGATCTGT GATTCTTGAC TTACTATTTA TTTTATCCCC TTTAAGTCAG GGATGCTTTA	120 180 240 300
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142: ATGAATTAAT GTTTATAAAT GACTGTACTG AATTTAAAAC CGTACAGTTT CATTTGCATT TTGACATTAC TTTATTATAC ATTTTGCATT TAAAAGGCTG CACCAGTTGG CTTTTCTTCT GTTTTATTCT CAAAATATAG AGATTCTGTG ATTTATTTGC CCTGTTTATG GATTAAAAAG AAAATTCTAA TATAAAGCAT TTCAATAGGA TGCATAGGTA TATTACGTTT TTTAAATGCT TTAGATCTGT GATTCTTGAC TTACTATTTA TTTTATCCCC TTTAAGTCAG GGATGCTTTA TTCTATTTTA AAGCACTTAT GAGTTACATG TTGTAATCAA GTTTGCACAA TATATTTATC	120 180 240 300 360
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142: ATGAATTAAT GITTATAAAT GACTGTACTG AATTTAAAAC CGTACAGTIT CATTIGCATT TIGACATTAC TITATTATAC ATTITGCATT TAAAAGGCTG CACCAGTTGG CTTTTCTTCT GITTTATTCT CAAAATATAG AGATTCTGTG ATTTATTTGC CCTGTTTATG GATTAAAAAG AAAATTCTAA TATAAAGCAT TICAATAGGA TGCATAGGTA TATTACGTIT TITAAATGCT TIAGATCTGT GATTCTTGAC TTACTATTTA TITTATCCCC TITAAGTCAG GGATGCTTTA TTCTATTITA AAGCACTTAT GAGTTACATG TTGTAATCAA GTTTGCACAA TATATTTATC TATATGAGGA ACCCATAAAT GAATAGCTAA TITTTAAAAT GCCATTAAAA TGCATGAAAT	120 180 240 300 360 420

	GAAAAAAAA TTCTCATTAT TTGCAAAGAA TGAACAAGTT AATGAACAAA CAAACTAGAT	600
	TIGGTATGIT TICAGCITTI GTATCATGIT TAATIGITTA ATTIGGTIGA AAAACIGCAG	660
5	TTGAGAAATC AGATAGCAAT ATAGACATTC ACAGCAGCTC TGTGGATACC ATGTAATTGT	720
	CAGGTAATTT CAGAATGTTG AAAATTATTC AGTGCAGCCC TCATAGTATC ATACTTGAAG	780
	AAATTGATTA CAGTTCCACT AAATTGTTGA AGATAAATTA TTTTTAAAGG TTATGAAAAC	840
10	TAAGTTATAT TAATTCATAT GTTTGATTTT TAAATCCCAC CTCCTCAAGC TATCCAATTT	900
	NCTGACTTTG AAAATAACCA TGAGAGATGC CACATTTCTC TCTGGGAAAC TACCACTCAA	960
15	AGAATAATTG TTAAAAATTA AGCTTTTAGG TATTAGAAGC TGTTATAAAG TATAAAATTA	1020
	AGATATAAGC AGATCACATG TAAATCATTC CTAAAGCACA AGAAAAGAAT GTGCCTTGAT	1080
20	GTACATATAT TACTAAGTTG CCTCTCCCAG TTTACTTTAA AAATGGCTTT AAGGATAAAG	1140
20	AATAAATGTG ATAGCTGTGC ATGCATTATA TATTTGCATT TGCAAATTTC CCATTGTTTT	1200
	AACAGCTGTG TGGCTGACTT TCAATTTTAA GACGTGAATT GACATACAGC CCATAACTTT	1260
25	ATAATGGCTG CTCATTTATC TTATCTTTCA GTTAGTGGAA AAACATTTCA ACCTGACTAA	1320
	AATTTGGAAT TGTGTCTTTT ATGTTCCATC CTCTGTTGTT ACTAGATTTA GTTTAAAAAT	1380
30	TGTGTATGAC CATTAATGTA TGTCATAAAC ATGTAAATAA AAGATGTTGA ATCTTGTTGA	1440
30	AAAGCAWRAA AAAAAAAAA AAACTCGA	1468
35	(2) INFORMATION FOR SEQ ID NO: 143:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 300 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:	60
	TGAATTTTTT GCCAAACTTA GTAACTCTGT TAAATATTTG GAGGATTTAA AGAACATCCC	
50	AGTTTGAATT CATTTCAAAC TITTTAAATT TITTTGTACT ATGTTTGGTT TTATTTTCCT	120
50	TCTGTTAATC TTTTGTATTC RCTTATGCTC TCGTACATTG AGTACTTTTA TTCCAAAACT	
	AGTGGGTTTT CTCTACTGGA AATTTTCAAT AAACCTGTCA TTATTGCTTA CTTTGATTAA	240
55	AAAAAAAAA AAAAAAAAA AAACCCCNAG GGGGGGCCG GGTNCCCAAT CCCCCCCAAA	300

PCT/US98/11422 WO 98/54963

393

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2243 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

10	TGCCTCCCTT CCTGCAGATT GTGGACAGTA GTTCCTCAGC CTGCACCCTG GATTCCTTCT	. 60
10	TCCCCTTCCT AGCTCCATGG GACTCGCCCC AAGACTGTGG CTTCAAGGAC CACCAGCCCC	120
	TTACTCTTCA AGCCCTGACT GTGGAGTTGG TAGATGCCTC TGATCCTCAG TATTCTCTCT	180
15	GGCAATGTTC CACGGCTTCT CCTTCCTGGG AGCTGGCTCC ATAACTTGAT TTTCCCCAAA	240
	CGTGTTGCAA TCCCTGCTGC CCCTTAGCCA CCCAGGGTCT TGTGTGGGTA TGAGTGTAGA	300
20	GGATGGGGGT ATGCCAGGCC TGGGCCGTCC CAGGCAGGCC CGCTGGACCC TGATGCTACT	360
20	CCTATCCACT GCCATGTACG GTGCCCATGC CCCATTGCTG GCACTGTGCC ATGTGGACGG	420
	CCGAGTGCCC TTYCGGCCCT CCTCAGCCGT GCTGCTGACT GAGCTGACCA AGCTACTGTT	480
25	ATGCGCCTTC TCCCTTCTGG TAGGCTGGCA AGCATGGCCC CAGGGGCCCC CACCCTGGCG	540
	CCAGGCTGCT CCCTTCGCAC TATCAGCCCT GCTCTATGGC GCTAACAACA ACCTGGTGAT	600
30	CTATCTTCAG CGTTACATGG ACCCCAGCAC CTACCAGGTG CTGAGTAATC TCAAGATTGG	660
50	AAGCACAGCT GTGCTCTACT GCCTCTGCCT CCGGCACCGC CTCTCTGTGC GTCAGGGGTT	720
	AGCGCTGCTG CTGCTGATGG CTGCGGGGGC CTGCTATGCA GCAGGGGGCC TTCAAGTTCC	780
35	CGGGAACACC CTTCCCAGTC CCCCTCCAGC AGCTGCTGCC AGCCCCATGC CCCTGCATAT	840
	CACTCCGCTA GGCCTGCTGC TCCTCATTCT GTACTGCCTC ATCTCAGGCT TGTCGTCAGT	900
40	GTACACAGAG CTGCTCATGA AGCGACAGNG GCTGCCCCTG GCACTTCAGA ACCTCTTCCT	960
	CTACACTTTT GGTGTGCTTC TGAATCTAGG TCTGCATGCT GGCGGGGGCT CTGGCCCAGG	1020
	SCTCCTGGAA GGTTTCTCAG GATGGGCAGC ACTCGTGGTG CTGAGCCAGG CACTAAATGG	1080
45	ACTGCTCATG TCTGCTGTCA TGAAGCATGG CAGCAGCATC ACACGCCTCT TTGTGGTGTC	1140
	CTGCTCGCTG GTGGTCAACG CCGTGCTCTC AGCAGTCCTG CTACGGCTGC AGCTCACAGC	1200
50	CGCCTTCTTC CTGGCCACAT TGCTCATTGG CCTGGCCATG CGCCTGTACT ATGGCAGCCG	1260
50	CTAGTCCCTG ACAACTTCCA CCCTGATTCC GGACCCTGTA GATTGGGCGC CACCACCAGA	1320
	TCCCCCTCCC AGGCCTTCCT CCCTCTCCCA TCAGCAGCCC TGTAACAAGT GCCTTGTGAG	1380
55	AAAAGCTGGA GAAGTGAGGG CAGCCAGGTT ATTCTCTGGA GGTTGGTGGA TGAAGGGGTA	1440
	CCCCTAGGAG ATGTGAAGTG TGGGTTTGGT TAAGGAAATG CTTACCATCC CCCACCCCCA	1500
60	ACCAAGTTCT TCCAGACTAA AGAATTAAGG TAACATCAAT ACCTAGGCCT GAGAAATAAC	1560

394

	CCCATCCTTG TTGGGCAGCT CCCTGCTTTG TCCTGCATGA ACAGAGTTGA TGAAAGTGGG	1620
	GTGTGGGCAA CAAGTGGCTT TCCTTGCCTA CTTTAGTCAC CCAGCAGAGC CACTGGAGCT	1680
5	GGCTAGTCCA GCCCAGCCAT GGTGCATGAC TCTTCCATAA GGGATCCTCA CCCTTCCACT	1740
	TTCATGCAAG AAGGCCCAGT TGCCACAGAT TATACAACCA TTACCCAAAC CACTCTGACA	1800
10	GTCTCCTCCA GTTCCAGCAA TGCCTAGAGA CATGCTCCCT GCCCTCTCCA CAGTGCTGCT	1860
10	CCCCACACCT AGCCTTTGTT CTGGAAACCC CAGAGAGGGC TGGGCTTGAC TCATCTCAGG	1920
	GAATGTAGCC CCTGGGCCCT GGCTTAAGCC GACACTCCTG ACCTCTCTGT TCACCCTGAG	1980
15	GGCTGTCTTG AAGCCCGCTA CCCACTCTGA GGCTCCTAGG AGGTACCATG CTTCCCACTC	2040
	TOGGGCCTGC CCCTGCCTAG CAGTCTCCCA GCTCCCAACA GCCTGGGGAA GCTCTGCACA	2100
20	GAGTGACCTG AGACCAGGTA CAGGAAACCT GTAGCTCAAT CAGTGTCTCT WTAACTGCAT	2160
20	AAGCAATAAG ATCTTAATAA AGTCTTCTAG GCTGTAGGGT GGTTCCTACA ACCACAGCCA	2220
	AAAAAAAAA AAAAAAACTC GAG	2243
25		
	(2) INFORMATION FOR SEQ ID NO: 145:	
30	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 1082 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:	
	GCCAAGCTCT AATACGACTC ACTATAGGGA AAGCTGGTAC GCCTGCAGKT ACCGGTTCCG	60
40	GGAATTCCCG GGTCGACCCA CGCGTCCGCT TCCGTGTGTC AAAATCCTCA CCTCCTTCAT	120
	AACCATCTCC CACAATTAAT TCTTGACTAT ATAAATTTAT GGTTTGATAA TATTATCAAT	180
	TTGTAATCAA TTGAGATTTC TTTAGTGCTT GCTTTTCTGT GACTCAACTG CCCAGACACC	240
45	TCATTGTACT TGAAAACTGG AACANCTTGG GAATGCCATG GGGTTTGATA ATCTGCCAGG	300
	GACATGAAGA GOCTCAGCTT CCTGGGACCA TGACTTTGGC TCAGCTGATC CTGNACATGG	360
50	GAGAACAACC ACATTTTCT TTGTGTGTGC TTCTAGCAGC TGTTCGGGAG GACCKTGACC	420
	CAAYAGTGTT CCCATGCTGT TICTTGTGAA ATGCTCTCGG CTATGTAGCA GCTTTTGATT	480
	CCCTGCATAC CCTAGGCTGC TGCCCCTATC CTGTCCCTTG TTTATAACAT TGAGAGGTTT	540
55	TCTAGGGCAC ATACTGAGTG AGAGCAGTGT TGAGAAGTCG GGGAAAATGG TGACTACTTT	600
	TACACCAACC CTCCCCATCA CCACCTCTCC ACCTCTACTT CTCTCATCTT TCACGAACTC	660

60 ACCCCCTTTT TCTGCCTAGG ATAAGGAGCT GAAAGATTAA CTTGGATCTY CTAATGGTCC

	AAATCTTTTG GTCACAATAA AGAGTCTCCA AATTAGAGAC TGCATGTTAG TTCTGGATGG	780
_	ATTTGGTGGC CTGACATGAT ACCCTGCCAG CTGTGAGGGG ACCCCGTTTT TAAGATGCAT	840
5	GGCCAAGCTC TCTGCAAATG GAAATGCTTA CACTGGGTGT TGGGGATGTT TGCTACCTCC	900
	TGCTATTTTT GTGGTTTTGG TTCTCCCACT ATGGTAGGAC CCCTGGCCAG CATTGTGGCT	960
10	TGTCATGTCA GCCCCATTGA CTACCTTCTC ATGCTCTGAG GTACTACTGC CTCTGCAGCA	1020
	CAAATTTCTA TTTCTGTCAA TAAAAGGAGA TGAAAATAAA AAANAAAAAA AAAAAACTCG	1080
	NG	1082
15		
20	(2) INFORMATION FOR SEQ ID NO: 146: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4313 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:	
	CAAGCTGGTT TGAAACTAGG GGTCGGGCTC GGCCGTCGTC GTTGTTTGTC GCCGCATCCC	60
30	CGCTTCCGGG TTAGGCCGTT CCTGCCCGCC CCCTCCTCTC CTCCCTTCGG ACCCATAGAT	120
	CTCAGGCTCG GCTCCCCGCC CGCCGCAGCC CACTGTTGAC CCGGCCCGTA CTGCGGCCCC	180
35	GTGGCCACCA TGTCCCTGCA CGGCAAACGG AAGGAGATCT ACAAGTATGA AGCGCCCTGG	240
	ACAGTCTACG CGATGAACTG GAGTGTGCGG CCCGATAAGC GCTTTCGCTT GGCGCTGGGC	300
40	AGCTTCGTGG AGGAGTACAA CAACAAGGTT CAGCTTGTTG GTTTAGATGA GGAGAGTTCA	360
40	GAGTTTATTT GCAGAAACAC CTTTGACCAC CCATACCCCA CCACAAAGCT CATGTGGATC	420
	CCTGACACAA AAGGCGTCTA TCCAGACCTA CTGGCAACAA GCGGTGACTA TCTCCGTGTG	430
45	TOGAGOGTTG GTGAAACAGA GACCAGGCTG GAGTGTTTGC TAAACAATAA TAAGAACTCT	540
	GATTTCTGTG CTCCCCTGAC CTCCTTTGAC TGGAATGAGG TGGATCCTTA TCTTTTAGGT	600
50	ACCTCAAGCA TTGATACGAC ATGCACCATC TGGGGGCTGG AGACAGGGCA GGTGTTAGGG	660
50	CGAGTGAATC TCGTGTCTGG CCACGTGAAG ACCCAGCTGA TCGCCCATGA CAAAGAGGTC	720
	TATGATATTG CATTTAGCCG GGCCGGGGGT GGCAGGGACA TGTTTGCCTC TGTGGGTGCT	780
55	GATGGCTCGG TGCGGATGTT TGACCTCCGC CATCTAGAAC ACAGCACCAT CATTTACGAA	840
	GACCCACAGC ATCACCCACT GCTTCGCCTC TGCTGGAACA AGCAGGACCC TAACTACCTG	900
	GCCACCATGG CCATGGATGG AATGGAGGTG GTGATTCTAG ATGTCCGGGT TCCTGCACAC	960

	CTGTSGCCAG GTTAAACAAC CATCGAGCAT GTGTCAATGG CATTGCTTGG GCCCCACATT .	1020
	CATCCTGCCA CATCTGCACT GCAGCGGATG ACCACCAGGC TCTCATCTGG GACATCCAGC	1080
5	AAATGCCCCG AGCCATTGAG GACCCTATCC TGGCCTACAC AGCTGNAAGG WGAGATCAAC	1140
	AATGTGCAGT GGGCATCAAC TCAGCCCGAA YTGTCGCCAT CTGCTACAAC AACTGCCTGG	1200
	AGATACTCAG AGTGTAGTGT TGGTGGCGCT GTGCCCACGA GGCAGGGGCT TTTGTATTTC	1260
10	CTGCCTCTGC CCCACCCCCA AAGTAAGAAG AAACATGTTT CCAGTGGCCA GTATGTCTTT	1320
	CATTGCTTTG CACCCACTGT TACCAGAAGC TGCTCTAGGA GTTCCTGGCC AGTCACCCCA	1380
15	TCGCCCTCTG TGGCAGACTC AGTGCTGTGT GGCGCCTCCT CAGCCCAGGG CTGAGTTTTA	1440
	AGATTITCTC TCCTTTCCTC TTCTCCTTTG GTTCCTCAAT TAAAAAATGT GTGTATATTT	1500
20	GTTTGTCAGG CGTTGTGTTG AGGAGCAGTT CACGCACTGG CTGTGTCTAT TCCTCTGCCC	1560
20	AGGTGTCTCT GTTTGCTGCC CAAKGYWKKT TTTCATGTCT CGTCCATGTC CATGTTCGTG	1620
	TTAGCACTWA CGTGGGAACA AATACCAATT TGTCTTTTCT CCTAGTATCA GTGTGTTTAA	1680
25	CAAATTTTAA CTTTGTATAT TTGTTATCTA TCAGGCTAAT TTTTTTATGA AAAGAATTTT	1740
	ACTOTOCIGO TICATITOTI TGICTIATAG TOCTOCCIOT TIGCACCITO TICTOTICOC	1800
30	TCAGTGCCTG GAGCTGGTAC TGGGCCCCTG GCCCCATGAG CAGTTTGCCT TCTTGAGTCA	1860
30	CTGCCTGTGT AGTACATACC TGACCGGGAG TCCAAACCAC CTTGGTGCTC TGAAGTCCAC	1920
	TGACTCATCA CACCTTTCTT AGCCTGGCTC CTCTCAAGGG CATTCTGGGC TTGTAAACAG	1980
35	ACATAGGAAG CCTCTGTTTA CCCTGAAGCA CCACTGTCCA GCCCATTGGT TCCCACTGGC	2040
	AGCATGGTAG AGCTGAGAGA AACAGGCTCT CAGGGTACCT GACTTGAGGG GAATCGTTTC	2100
40	ATGAAGCTGA ACTTCAAGCA TATTTCCAGT ACATTCTTTC AGAGTCTGTT TTTCCATCCA	2160
40	AATATAAGCC CCAGGCCATT CCACTTAGTG TCTTTTCAAT GATAGGCAAG AATGATATCT	2220
	GAGTTGAACT TCGGTGCTTC TGTTGTTTGA GTTTACTGTG CCTGGTGGTA TATTGGGCAT	2280
45	TCTTTGGATT GAGTGTTCTG AGGTGAGAGA GTCTTCCCGA GGCATCCTGT CTGTGCTTCC	2340
	AACCCTGAAC AAGACCTTAC ATGAGAGATG GACTGATGGA CTGCGGCAAT CCTGGGCTGT	2400
50	CAAGTGGATA GATAGTTAAA AAGCATTATA CTGTGGGTAA TGAAAAGGGA GGAAAAAAAA	2460
30	AGAAGGAAAA GGAATTATAG ACCCCCAGGG TCAGCCAGTT AAGAGCTCTA CCCACACCTG	2520
	TCAACCCCTC TCTCCCCCAG TTTAGGTTCT GAGCAGTATT GGACTTGTAG CCTGCAGTTG	2580
55	TCTTTTGACT TGCAGGCCGC AGTGTCTTTC TGTTATGTGA ATGAGTTCCA TGGAGGGGCA	2640
	TATGTGTGAT TCCACCGTTA GATGAGCCCT TGGGGCAGGC AGTTTGGGAT GTGCTCTTGG	2700
40	GGGAAAGTTG GCTGTTTCCT TGCGCTCTGC TCCTACCCGA AGTTTTTAAG TCCCTCTGAA	276

	TIGCTCATCT GAGATTAGTA GAGTAGCAGG CCTGAAGGAT GATGGTTTTG TCCTCTTTGG	2820
	TTCTCACCTG CTTGAGAAGT AAAACAGTAA CTTTGTTCTT CTGGGCCCTT AAGCTTTTTT	2880
5	GGTTAAGTCT TCCTTTTCAG AAGTAGATGT CATTATATGC CAAAAGTCTA GCTCTTTGCT	2940
	TTACCATACA GGGACCTGTC CCAAAGAAAA AGGCTCTTTT TTTAGCCAGC ATATTTCCCC	3000
10	TICTACCCTT TTACTTTGTT GTTCTGATTT TAGGACTCTG GCTGGCCATG TGCTTGTGGT	3060
10	TGCCTCTCCT GCATTTGCCA CTGGATTTGC ACTGCATCGT TTGGAGATAC AAAGCGAGCA	3120
	GTTCTTGGTC AGAACCCTCC TCTGCTTTTC ATTGTGTTTG ATAATGGTTA CTGGGTCCTT	3180
15	CTCTCAAGGG TAGCAAGGCC AAGCTGATGG CTGCTTGTTT AGGAGGCCAT CAGTTCCTTC	3240
	CTGTGGAGAA GGGTCTGAAA TGGAAGTCAG TGGTAGAAGG GGCTGGTCTG CTGGGCAGGG	3300
20	CTTACATCCA CTGAGTTCTA AGATTCCTTT CCTGATCTGC ACCTACGCCT GGTCTGTATG	3360
20	GTGGAATTTG TCAGCTGGAA CTCAGAAACA ACAACTTGAA AAAAAAATAA TAATTAGAAC	3420
	ATATTTGCAT AAGATAGCTA TTTACTCTGG AAACCAACAA CTTTTGAGAT TTCCCTTGCC	3480
25	CTGTGGACGC CCAGCTCCTG TCATCCTTCC TTAGGTCCTG CAGTACAGTC TTCCCCTGAA	3540
	TGCCACCGGG GACCCAGGGG GACTCCACCC CCCTAAGCAA GCACACACAT ACTCACAGTT	3600
30	GATGAGTTGC TGGTCTTTGA GTCCCAGCTC TCTTACCCTC CCTTTACTCC ACCAGCCCGA	3660
30	CGACCCATGA CTGAGGAGGG GATTICTACA GTCTCAGGAT TTAGAAAGTC TGTAAGCCAT	3720
	CCATGCTCCA GAAAGCACCG ATCTGTTGTA GTTGCAAAAA CAACTCTGTA ATTTGTTGAG	3780
35	GTTCTCAAAC TGACAGCCAG CGAGACTGGG TGGGAGGCCC TGGATCTGTT CTCCCTGACT	3840
	GCGGGAGGAG CAGCCACTAG GACTTTAGCA GGAAGCCCAC ATGGAGGCTC CGCCAGGCTG	3900
40	TGGCCCAGCT GGTGATGGCC CTTTTGCTCC TGGCAGCCTG AGGCACAGCT GCCTGTATTG	3960
40	TCCTCATCTG TTCTGACTGA AGGATGGAGG TGCTGAATAA ATTAGGCCTC AGGCNTCTAC	4020
	CACCAGAGAG CTGGAGAATG GGTCCACGTC ATTCAAGGAC CTGAATTTT TATGCTCAGG	4080
45	AGCATTOGAA TCCTCTTCTT CCAGGGAGGA ATTAGCCTGC AAGGTTAGGA CTTGAAGAGG	4140
	GAAGGTATTT AATAACTGGG CGAGGATGGG TGTGGTGGCT CACACCTGTA ATCCCAGCAT	4200
50	TTTGGGAGGC TGAGGTGGCC AGATCCCAAG GTCAGAAGAT CGAGACCATC CTGGCTAACA	426
50	TOGTGAAACC CCATCTCTAC TAAAAATACA AAATTAAATT	431

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1183 base pairs
(B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 147:

398

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:

5							
J	GGCAGAGCCT	CAAGCTGACT	TGGATTATGT	GGTCCCTCAA	ATCTACCGAC	ACATGCAGGA	60
	GGAGTTCCGG	GGCCGGTTAG	AGAGGACCAA	ATCTCAGGGT	CCCCTGACTG	TGGCTGCTTA	. 120
10	TCAKWYGGGG	AGTGTCTACT	CAGCTGCTAT	GGTCACAGCC	CTCACCCTGT	TGGCCTTCCC	180
	ACTICIGCIG	TTGCATGCGG	AGCGCATCAG	CCTTGTGTTC	CTGCTTCTGT	TTCTGCAGAG	240
15	CTTCCTTCTC	CTACATCTGC	TIGCTGCTGG	GATACCCGTC	ACCACCCCTG	GTCCTTTTAC	300
13	TGTGCCATGG	CAGGCAGTCT	CGGCTTGGGC	CCTCATGGCC	ACACAGACCT	TCTACTCCAC	360
	AGGCCACCAG	CCTGTCTTTC	CAGCCATCCA	TTGGCATGCA	GCCTTCGTGG	GATTCCCAGA	420
20	GGGTCATGGC	TCCTGTACTT	GCTGCCTGC	TTTGCTAGTG	GGAGCCAACA	CCTTTGCCTC	480
	CCACCTCCTC	TTTGCAGTAG	GTTGCCCACT	GCTCCTGCTC	TGGCCTTTCC	TGTGTGAGAG	540
25	TCAAGGGCTG	CGGAAGAGAC	AGCAGCCCCC	AGGGAATGAA	GCTGATGCCA	GAGTCAGACC	600
23	CGAGGAGGAA	GAGGAGCCAC	TGATGGAGAT	GCGGCTCCGG	GATGCGCCTC	AGCACTTCTA	660
	TGCAGCACTG	CTGCAGCTGG	GCCTCAAGTA	CCTCTTTATC	CTTGGTATTC	AGATTCTGGC	720
30	CTGTGCCTTG	GCAGCCTCCA	TCCTTCGCAG	GCATCTCATG	GTCTGGAAAG	TGTTTGCCCC	780
	TAAGTTCATA	TTTGAGGCTG	TGGGCTTCAT	TGTGAGCAGC	GTGGGACTTC	TCCTGGGCAT	840
35	AGCTTTGGTG	ATGAGAGTGG	ATGGTGCTGT	GAGCTCCTGG	TTCAGGCAGC	TATTTCTGGC	900
<i>J J</i>	CCAGCAGAGG	TAGCCTAGTC	TGTGATTACT	GCACTIGGC	TACAGAGAGT	GCTGGAGAAC	960
	AGTGTAGCCT	GGCCTGTACA	GGTACTGGAT	GATCTGCAAG	ACAGGCTCAG	CCATACTCTT	1020
40	ACTATCATGO	: AGCCAGGGGC	CGCTGACATC	TANGACTICA	TTATTCWATE	ATTCAGGACC	1080
	ACAGTGGAGT	ATGATCCCTA	ACTCCTGATT	TGGATGCATC	TGAGGGACAA	GGGGGKCGGT	1140
45	STCCGAAGTC	GAATAAATA	GCCCCCCCTC	GTGACTTGCA	CCT		1183
7.5							

(2) INFORMATION FOR SEQ ID NO: 148:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 734 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

GAATTCGGCA GAGTGAAGCA TTAGAATGAT TCCAACACTG CTCTTCTGCA CCATGAGACC 60

399

	AACCCAGGGC AAGATCCCAT CCCATCACAT CAGCCTACCT CCCTCCTGGC TGCTGGCCAK	120
	GATGTCGCCA GCATTACCTT CCACTGCCTT TCTCCCTGGG AAGCAGCACA GCTGAGACTG	180
5	GGCACCAGGC CACCTCTGTT GGGACCCACA GGAAAGAGTG TGGCAGCAAC TGCMTGGCTG	240
	ACCTITCTAT CTTCTCTAGG CTCAGGTACT GCTCCTCCAT GCCCATGGYT GGGCCGTGGG	300
10	GAGAAGAAGC TCTCATACGC CTTCCCACTC CCTCTGGTTT ATAGGACTTC ACTCCCTAGC	360
10	CAACAGGAGA GGAGGCCTCC TGGGGTTTCC CCRRGGCAGT AGGTCAAACG ACCTCATCAC	420
	AGTOTTCCTT COTOTTCAAG COTTTCATGT TGAACACAGC TOTCTCCRCT CCCTTGTGAT	480
15	TTCTGAGGGT CACCACTGCC ARCCTCAGGC AACATAGAGA GCCTCCTGTT CTTTCTATGC	540
	TTGGTCTGAC TGAGCCTAAA GTTGAGAAAA TGGGTGCCAA GGCCAGTGCC AGTGTCTTGG	600
20	GGCCCCTTTG GCTCTCCCTC ACTCTCTGAG GCTCCAGCTG GTCCTGGGAC ATGCAGCCAG	660
20	GACTGTGAGT CTGGGCASGT CCAAGGCCTG CACCTTCAAG AAGTGGAATA AATGTGGCCT	720
	TTGCTTCTAT TTAA	734
25		
30	(2) INFORMATION FOR SEQ ID NO: 149: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1405 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:	
	GGCACAGTGG ACCCCAGACT CCCTCTCCGC CTTTCTCTGC CTGGGGAGAC CCACTGTGTG	60
40	CATGGCATCA CTGACTCCCA TACCTCTGGC TATCAAAGGT TTCTGCCATG GCCACCCTGG	120
	AAGSAAACCA GAGGGAGGTA GACAGGGAGA TCAGGTCCCT TCTACTCTGG TTCCTGCTCT	180
45	GTGAAATTGT CTCAGGCTGG CTGTGTCCAG ARGGTCCCTG GTTCTCTCAR GGATGCCAAA	240
	TCTACAAGAA TCTCTCCTCT TCCAGTTCCT ATAACCTCTC CTTCCTTTTG TCTCTTTAGA	300
	CCTTGGAGTA GTAGCAGCCA GGTTCTTTCT ATCTCTGGGT TAGTGCATTA TCTCTGGTGG	360
50	CTCCCTTACC CAGGACTITG GGAATGGTCT TTTTGTAATA CATTCTCCTC AAATAATTCA	420
	ATTTTGAGTG TTCTGTATGT ATCCTGCTGG GAGGTTGTTA TATACAAATC ACTGTGCCCG	480
55	TITAGCAGAG AAGGAGACTG AAGCTCAGGG AGGTTAAGTG TCTTTCTCTA GGTCGTATTG	540
-	TGGAGAAAGT GGCTGACTGG GGACTTGAAT GAGGTCCCTA GTTTCATGCT CGGAGGGCAA	60
	AGANGAATGT CCAATTGGCC TGAGATAAGC CTCTGGTAAA ATGTACTGTA CATAATAGGT	66

60 AATCAATAAA TGTTGGCTGA TGACAAACAT GTTTTCTTTG TTCATTAGTT ATAGTGATTA

	TGTTCTAAAT AACTCCMACA AGGAARTCAG CACATTTGGA ATATCAWTAT CTTTCCATGA	780
_	TAATATCTTT CCMYGGAAAG AWAATGATAT TCCMAACTGG GAGTGTCCCW ASCARATCTG	840
5	ANICTOTOTA TTGGCCCTGG GGTGGGCCAG CCCCTTAGAC TCTATGGTCT CATTCTCTTT	900
	GTTTACAAAA TTGAGATAAG GCCTTATTCT CTCCCCACCC CACCCATCCA TATTGTTTTG	960
10	AGAATAAAAT GAGAGGATGT GTGTCAAGGG TGTATTTTGG CAATAGTCTC TGAGCCATTT	1020
	TCTGAGCACC TCCATACTGT TGACACTCAA GTAATATTTC ATCAGCATTC CATTCAGGNT	1080
	CCTCCCTTAA TGAGGTGTGC GATGTACAAG AGTYGTGAGG TGGCAAAGGA TGGGCTCCTG	1140
15	AGGAAACACT TAGGAAACTG GGCTTTCTGC CATTAAAAGA GACAAACCTT TGTGGTGACC	1200
	TAATTAAAGT TITTAAAATT CAATTTGGAA AGTTAGCAAG CTAGCTCCTK TCCAGGWAAA	1260
20	ATAAGGAGTC AGTGCATGAC CTAACCGGTC CCGGGCTGCT TGCCATTCCA AACAACTGCA	1320
	GTAAGTTTAT CACMITCTTT CAGGGACTGA GGTTTCCAGG CACAGACTTG GATAAGGAAG	1380
	GATGTCCTAT GGGGTCACAT TGATG	1405
25		
30	(2) INFORMATION FOR SEQ ID NO: 150: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2890 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:	
40	TTATATGCTA CAGCTACAGT AATTTCTTCT CCAAGCACAG AGGANCTTTC CCAGGATCAG	60
40	GGGGATCGCG CGTCACTTGA TGCTGCTGAC AGTGGTCGTG GGAGCTGGAC GTCATGCTCA	120
	AGTGGCTCCC ATGATAATAT ACAGACGATC CAGCACCAGA GAAGCTGGGA GACTCTTCCA	180
45	TTCGGGCATA CTCACTTTGA TTATTCAGGG GATCCTGCAG GTTTATGGGC ATCAAGCAGC	240
	CATATGGACC AAATTATGTT TTCTGATCAT AGCACAAAGT ATAACAGGCA AAATCAAAGT	300
50	AGAGAGAGCC TTGAACAAGC CCAGTCCCGA GCAAGCTGGG CGTCTTCCAC AGGTTACTGG	360
50	GGAGAAGACT CAGAAGGTGA CACAGGCACA ATAAAGCGGA GGGTGGAAA GGATGTTTCC	420
	ATTGAAGCCG AAAGCAGTAG CCTAACGTCT GTGACTACGG AAGAAACCAA GCCTGTCCCC	480
55	ATGCCTGCCC ACATAGCTGT GGCATCAAGT ACTACAAAGG GGCTCATTGC ACGAAAGGAG	540
	GGCAGGTATC GAGAGCCCCC GCCCACCCCT CCCGGCTACA TTGGAATTCC CATTACTGAC	600
	TTTCCAGAAG GGCACTCCCA TCCAGCCAGG AAACCGCCGG ACTACAACGT GGCCCTTCAG	66

BEST AVAILABLE COPY

WO 98/54963 PCT/US98/11422

401

	AGATCGCGGA TGGTCGCACG ATCCTCCGAC ACAGCTGGGC CTTCATCCGT ACAGCAGCCA	720
	CATGGGCATC CCACCAGCAG CAGGCCTGTG AACAAACCTC AGTGGCATAA AYCGAACGAG	780
5	TCTGACCCGC GCCTCGCCCC YTATCAGTCC CAAGGGTTTT CCACCGAGGA GGATGAAGAT	840
	GAACAAGTTT CTGCTGTTTG AGGCACAGAC TTTTCTGGAA GCAGAGCGAG CCACCTGAAA	900
	GGAGAGCACA AGAAGACGTC CTGAGCATTG GAGCCTTGGA ACTCACATTC TGAGGACGGT	960
10	GGACCAGTTT GCCTCCTTCC CTGCCTTAAA AGCAGCATGG GGSTTCTTCT CCCCTTCTTC	1020
	CTTTCCCCTT TGCATGTGAA ATACTGTGAA GAAATTGCCC TGGCACTTTT CAGACTTTGT	1080
15	TGCTTGAAAT GCACAGTGCA GCAATCTTCG AGCTCCCACT GTTGCTGCCT GCCACATCAC	1140
	ACAGTATCAT TCCAAATTCC AAGATCATCA CAACAAGATG ATTCACTCTG GCTGCACTTC	1200
	TCAATGCCTG GAAGGATTTT TTTTAATCTT CCTTTTAGAT TTCAATCCAG TCCTAGCACT	1260
20	TGATCTCATT GGGATAATGA GAAAAGCTAG CCATTGAACT ACTTGGGGCC TTTAACCCAC	1320
	CAAGGAAGAC AAAGAAAAAC AATGAAATCC TTTGAGTACA GTGCTTGTCC ACTTGTTTAC	1380
25	AATGTCCTCC TTTTAAAAAA AAAAAAATGA GTTTAAAGAT TTTGTTCAGA GAGTAAATAT	1440
	ATATCCATTT AATGATTACA GTATTATTTT AAACCTTAAG TAGGGTTGCC AGCCTGGTTT	1500
	CTGAAAAACC AAATATGCCG GACAGGGTGT GGCCACACCA AGAAGACGGG AAGACCTGGC	1560
30	TTGTGACCCT GGCTTCCCAT GTCCTTCTGG TCTCACCCGC GAAGTGCCCT ATCCTGGAAG	1620
	TATGAAATGT TAGCCAATTA ATACCAAGAC ACCTCATCTG CTCCTTCCCC AGTGGATGGG	1680
35	GTTCTTCTGT AAAACTGTTT GCACATGGCC AGGGGAGGGA ACTAGGACCC TTGTGTCCTG	1740
	TCTGAGCCTT ATGGAGGCAG GACQGTGTCA TTGGCGGATG TGTCCTGCTC CATTGAGATG	1800
	GATGCCAAAC CCCATTITTA AGTTATATTT CTTTGATTTT TGTTAATTTA GAGGTGTAGG	1860
40	TTTTGTTTTT TGTTTTTTTG TTTTTTTTTA AGAGAAACAT TTATAACTGG ATAGCATTGC	1920
	AGTGAAAGCA GCTTGGGATG TTGGAGCTAA TGCCAGCTGT TTATACTGCT CTTTCAAGAC	1980
45	AGCCTCCCTT TATTGAATTG GCATTAGGGA ATAAACAAGC CTTTAAACGT GATAAAAGAT	2040
	CAAAAACCTG GTTAGACATG CCAGCCTTTG CAAGGCAGGT TAGTCACCAA AGACTAACCT	2100
	CCAAGTGGCT TTATGGACGC TGCATATAGA GAAGGCCTAA GTGTAGCAAC CATCTGCTCA	2160
50	CAGCTGCTAT TAACCCTATA ATGACTGAAA TGACCCCTCC ACTCTATTTT TGTGTTGTTT	2220
	TOCACAGACT COGGAAAAGT GAAGGCTGCC AATCTGAGTA GTACTCAAAT GTGAGGAACT	2280
55	GCTGGTCTTG GATTTTTTT CCATTAAATT CAGCTGATCA TATTGATCAG TAGATAAACG	2340
	TARATACCTT CARATTITAA AAGTGGAATT GCAGTGTTTT TICACTGTAT CARACAATGT	2400
	CAGTOCTITA TITAATAATI CICTICIGIA TCATGGCAIT IGICTACTIG CITATTACAT	2460

402

	TGTCAATTAT	GCATTTGTAA	TTTTACATGT	AATATGCATT	ATTTGCCAGT	TTTATTATAT	2520
	AGGCTATGGA	CCTCATGTGC	ATATAGAAAG	ACAGAAATCT	AGCTCTACCA	CAAGTTGCAC	2580
5	AAATGTTATC	TAAGCATTAA	GTAATTGTAG	AACATAGGAC	TGCTAATCTC	AGTTCGCTCT	2640
	GTGATGTCAA	GTGCAGAATG	TACAATTAAC	TGGTGATTTC	CTCATACTTT	TGATACTACT	2700
10	TGTACCTGTA	TGTCTTTTAG	AAAGACATTG	GTGGAGTCTG	TATCCCTTTT	GTATTTTTAA .	2760
10	TACAATAATT	GTACATATTG	GTTATATTTT	TGTTGAAGAT	GGTAGAAATG	TACTATGTTT	2820
	ATGCTTCTAC	ATCCAGTTTG	TACAAGCTGG	АТААТТААА	AATATAACAT	АААААААА	2880
15	АААААААА						2890

20 (2) INFORMATION FOR SEQ ID NO: 151:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2399 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:

30	GAACTITICC ATCIGGCAAA CCGGAAACTC CATCCCCATT AAACCAACTC CCCCTTITGG	60
	TITCCCCCCC AGNOGAATAG AATTTOGACN CCCATATAAA TCCAGGAAAC CACCTAAATT	120
25	CTTTAGTNGT TTGTGTTTGC AAGATCTAAG GTCATGGTAA ACATTAAGTT CTTAAAATTT	180
35	TTGGGAGGGA CCAGTGCACC TCTCCCTCTG AATTGTTCNC CAATTTAAAA TTGGAGTAAG	240
	GTTTTAAAAT GTCTNATTCC ATTGGAAGGG TNTGTTATTT CATTTTGAGC CCAGAGGGGA	300
40	GAGGCACATT TTAAATATCA GAATTAGATT AGCTTTGAGT TTGTACAATT GGGAACATAA	360
	TAGATTTTCA TAAATTATGT GTGCCTTGTT GGAAGTGTCA ACTGTCTTTA TGTCTGCTTG	420
45	TAAAAGTTTC AAAATATGTT TTCCCTCAAA AAGGCAACGT TACTTCATTT GCTTGAATAT	480
45	TATGATAGGA ATGCTTACTG ATATTACTTG ATAGTCATAT ATAGCCTAGG AAATTTAACA	540
	TATATATAAC TATAGCAGTA TTAATAATGA TAGTTGTACT TCTTTAAAAC ATTAAATTTG	600
50	AGGAAACTIT AATGCTGTCT CGTGTACATT GCTTTACTAC AGTGAGGGGG AATATCCTTT	660
	AGATTGAGCC TCAATTTACT GGTTAGTAGT ATGTGAACTC TGGTATAAAA ACGTAAACTA	720
	GACAGTAGAG CCGATGAATT AAAATTGTAA ATTGCTACAT TGGCATTTTC TACCTCCTTT	780
. 55	TCTGTCAGAG TATTACTTTT TCCAGCATTT ATTCTTATTT GTGAGTAAAG AGGAAATGGG	840
	AACCTGAGGT TAAAATTGAC ATTTTTGTTT CATTGAGAAT TTAAGCAGTA GGTACAGGAG	900
60	AAGTGACTTG TCACATTAAT TTGGTGCCTA AATCTGTAAC TACAAGTTGT GATCGACATG	960

	TACAAAATGT CTAAGAAAGG TCATATGCTG AATATTTTAC TTTTCCTGTA TAGTCTGCAT	1020
5	GATTTGTTTC ATAAACCCAG CTTATTTCCT CCAAAAAGCA AAATGGTCCT GTAATTTTTA	1080
3	AAGTAAAATA AACGTGCCAT TTTGTCTGCA ATCTATAATT TCAGGAAGTT ATTGRAAGTT	1140
	CTGACTCAGG GCTTTTTAAC AGTTCAAGCA ATTGTCAGTT ATATTTTGGA AACTCCATCT	1200
10	GTGTAATTCT CCAGTGCCTT GAAAGAATTA TTAACTTGGC AACACTATTA AAACTTTATA	1260
	AAAGATGGTC TTTAGTGCAC GTGTATCATT ATATACACGT TTTAAAGTCA TATTGCTTAG	1320
15	CTTGTTAATA ATGATTCTGC ATGTGTGCTG GGTTTGGGTA ATTCTTTAAA GGAAGTTTTC	1380
12	TAGATTTGCA CTTGATGTTT GTTTTTTAAA AACTGATTAT TTATGGCCGT GACACTGTTA	1440
	CCAGAAAAGT AATTCTAATT AAGTTATTAT GCAAAGTCAT CTATAAGTAG CATCTGGGAA	1500
20	GAGGAGATSG AGGCCACAGT TTGCTATTTT AGTATGAAAG GAGGATCTGT TTGGGAAACA	1560
	TAGATTGTCT TCCCCTCAAA TGAGGGGAAA AAAAAAGACC CTTTGTTCAA ATGGATTCTG	1620
25	TTGTAAAAA TTATTTTTAA AGGAAATCAC AAATTGTATG TCATTCTTAA TGCTAGTCTT	1680
23	ATAGAATAAA TCCATAAAAT TGTTTTTATG TTCAGTATGT TTATGTCATT CTAAATGCAG	1740
	CAAATTCAAT GATAGCAGTT CAATTGACTC ATAGCAGTGT TTTGTATTTT TTCTAATTCT	1800
30	TTAGCTTTCA ATATTGGATT AAAGTCTTGT TTGTGAATAT AGTTTCCGTA TGGCAAATGA	1860
	TITCTTGCTT ATTAGCTITT GTTAAAGAAT GCTTAGTAAG AGCTAAGCTT TTAAAAGTAA	1920
35	TGCAAACATT TATCGTTAAT AAAACCTATG GTGTAATATC ATATAATGCT TTTCTTTGAT	1980
33	CTTTGGAGAA TTATTCTTTT ATAGTAGTAT ACATGAATTT TGATTTTTAA AGCATTTAAA	2049
	AACAAATCTC AATACATTAA AAAACCTGTT ATTGTTAAAA RGGAAATTAC CATGCCTTTA	2100
40	AGAAACAAGG ATGTACATCT TCAATTCAGC ATRAGTGTCC ACATCTAGAA GGCTCTCATT	2160
	GCAGTTGTTT ACAGTTAAGG TACCTCTATC TAAAGGGCCA AAGAAGCATT TCATAYTTTA	2220
45	ACACCTCACA TTCTTTCAGG ATTAAGACAT ATGAAAATAG TCTGAATAGG ATAAATTTGG	2280
73	ATAGGAAGTA ACTTAACCAG TCTGGGAAGA TTCAGGCTTT TTCTATKAAA AAGCTTATTC	2340
	CTCTTCACAA CTCNGGTGGT AGGNTTTCAT TTTTCAAGAG GGTAGATATT TTAAAGCCA	2399

(2) INFORMATION FOR SEQ ID NO: 152:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 802 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

60

WO 98/54963

PCT/US98/11422

404

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:	
	CGTGCCTGTA GTAAGCTCAT CCCTGCCTTT GAGATGGTGA TGCGTGCCAA GGACAATGTT	60
5	TACCACCTGG ACTGCTTTGC ATGTCAGCTT TGTAATCAGA GATTNTGTGT TGGAGACAAA	120
	TTTTTCCTAA AGAATAACWT GAYCCTTTGC CARACGGACT ACGAGGAAGG TTTAATGAAA	180
10	GAAGGTTATG CACCCCMGGT TCGCTGATCT ATCAACATCA CCCCATTAAG AATACAAAGC	240
10	ACTACATTCT TITATCTTTT TIGCTCCACA TGTACATAAG AATTGACACA GGAACCTACT	300
	GAATAGCGTA GATATAGGAA GGCAGGATGG TTATATGGAA TAAAAGGCGG ACTGCATCTG	360
15	TATGTAGTGA AATTGCCCCA GTTCAGAGTT GAATGTTTAT TATTAAAGAA AAAAGTAATG	420
	TACATATGGC TGGATTTTTT TGCTTGCTAT TCGTTTTTGT GTCACTTGGC ATGAGATGTT	480
20	TATTITOGAC TATTGTATAT AATGTATTGT AATATTIGAA GCACAAATGT AATACAGTTT	540
20	TATTGTGTTA CCATTTGTGT TCCATTTGCT YCTTTGTATT GTTGCATTTA GTACAATCAG	600
	TGTTTAAACT TACTGTATAT TTATGCTTTC TGTATTTACC AGCTATTTTA AATGAGCTGT	660
25	AACTITCTAG TAAAGAATTG AAAAGCAAAT CCTCACTAAA GGATACACAG GATAGGATAA	720
	AGCCAAGTON CATCAACATT AAAAAATACT AAAANANAAA ACACAAAAAA AAAAAANCCC	780
30	GGGGGGGCC CGGAACCCAT TC	802
50		
	(2) INFORMATION FOR SEQ ID NO: 153:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH:-461 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:	
	CTAGGAGCAC CGAGCAGCTT GGCTAÀAAGT AAGGGTGTCG TGCTGATGGC CCTGTGCGCA	60
45	CTGACCCGCG CTCTGCNCTC TCTGAACCTG GCGCCCCCGA CCGTCGCCGC CCCTGCCCCG	120
	AGTOTOTTOC COGCOGCOCA GATGATGAAC AATGGCOTCC TOCAACAGCO CTOTGCOTTG	180
50	ATGTTGCTCC CCTGCCGCCC AGTTCTTACT TCTGTGGCCC TTAATGCCAA CTTTGTGTCC	240
	TGGAAGAGTC GTACCAAGTA CACCATTACA CCAGTGAAGA TGAGGAAGTC TGGGGGCCGA	
	GACCACACA GTGGGAACAA GGACAGGGG ATTTAAGCAG TCAAAAGGAA AAACATGTTA	
55	AGACCCTAGA CTTGTATATT GACACACTTG TACCTTGTAA GGCAGAGGAA TGTAATTAAA	420
	AAGCACTTAT TTGGCWNAAA AAAAAAAAAA AAAAAAAAAA C	461

405

(2) INFORMATION FOR SEQ ID NO: 154:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2388 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:

15

20

25

30

35

40

45

50

55

60

GCCCACGCGT CCGAAAGCGG AGAACGCTGG TGGGCCTGTT GTGGAGTACG CTTTGGACTG 60 AGAAGCATCG AGGCTATAGG ACGCAGCTGT TGCCATGACG GCCCAGGGGG GCTGGTGGCT 120 AACCGAGGCC GGCGCTTCAA GTGGGCCATT GAGCTAAGCG GGCCTGGAGG AGGCAGCAGC 180 GGTCGAAGTG ACCGGGGCAG TGGCCAGGGA GACTCGCTCT ACCCAGTCGG TTACTTGGAC 240 AAGCAAGTGC CTGATACCAG CGTGCAAGAG ACAGACCGGA TCCTGGTGGA GAAGCGCTGC 300 TGGGACATCG CCTTGGGTCC CCTCAAACAG ATTCCCATGA ATCTCTTCAT CATGTACATG 360 GCAGGCAATA CTATCTCCAT CTTCCCTACT ATGATGGTGT GTATGATGGC CTGGCGACCC 420 ATTCAGGCAC TTATGGCCAT TTCAGCCACT TTCAAGATGT TAGAAAGTTC AAGCCAGAAG 480 TITCTTCAGG GTTTGGTCTA TCTCATTGGG AACCTGATGG GTTTGGCATT GGCTGTTTAC 540 AAGTGCCAGT CCATGGGACT GTTACCTACA CATGCATCGG ATTGGTTAGC CTTCATTGAG 600 660 CCCCCTGAGA GAATGGAGTT CAGTGGTGGA GGACTGCTTT TGTGAACATG AGAAAGCAGC GCCTGGTCCC TATGTATTTG GGTCTTATTT ACATCCTTCT TTAAGCCCAG TGGCTCCTCA 720 GCATACTCTT AAACTAATCA CTTATGTTAA AAAGAACCAA AAGACTCTTT TCTCCATGGT 780 GGGGTGACAG GTCCTAGAAG GACAATGTGC ATATTACGAC AAACACAAAG AAACTATACC 840 ATAACCCAAG GCTGAAAATA ATGTAGAAAA CTTTATTTTT GTTTCCAGTA CAGAGCAAAA 900 CAACAACAAA AAAACATAAC TATGTAAACA AGAGAATAAC TGCTGCTAAA TCAAGAACTG 960 TTGCAGCATC TCCTTTCAAT AAATTAAATG GTTGAGAACA ATGCATAAAA AAAGTTGCAC 1020 AAGTTCCTTA TITTCCTTAA TATTTCACTT CTATTTAATA CAAGCTGGGA CATAAAAATT 1080 CTGTTGGGGA TACCTGGGGG AAGATGTGAG AAACTAATGC TGAATTCAGC TTATACATGA 1140 TGAAAAGAAA AACCAGACAA AAGGAGCACA TAAATATGCA TACAGTGTAA CTGTTATTAT 1200 TTTAATACCC ACGATAAGGG ATTTTTGTTA GCATGTTTAG GGGGAACGAG GATTGGTGGG 1260 ATCCTTGGGG CCACAGGAAT CTGAGGCAAC GGAAGATATA TAGAGTGATC GTCCCCCTGC 1320 CGAAGGAACC TGGCAYCTGT CAAGCAGATG CTGCAGTTCA AACTTCAGCT TTTAAGATAG 1380 ATAGCTATTG AAGGCAGAGG GTCAGCAGGA GGATGTGTAT TTCTAATCTA CCCTGGTAAA 1440

	GTCATAGGTA AGACTCAAAA GCGGGATCTT ATTCAAAAGG CAGGTATTTC CTTTGTTTTC	1500
	TGTCTTGAAA TAGCCCCTTC CCCTAAGGTG CATTCTCTCA AGTTTTCAGT ATTGCTTTAT	1560
5	TTGCAGTGAT TAAAAGAGAT GAGAGACTTT GGAGACAGAC AACGTAAGCA ACACATACAC	1620
	ACATGAAATA CTCTAGACAG AGATGAATAT AAATCTGGCC TAATAACCAG TTTTCCATGT	1680
	AACAGTGATT TTGTGTTTCG GGCTGAAGCA GTGGTTATAT TAAAAGCCAC TAATTCCCTT	1740
10	ATCCCTTTAA AAGATTTTTA CAATTCTCCA ACCACAAACA GCACTTCTAA AACTAACTTT	1800
	ACTITICISCO CATAATITIST TOTACATISSA AAAAAAAAAT ATTACTITISS CCASSISSIST	1860
15	GTGTAAATGT GGCAGAATTC CTAGGCAGGC TGACCTTTAC AGTATGGGCC TTTAAGATAC	1920
	TOGATCCTGG TTGGGCAACA AGTGTCACGC CTGAAGTTTC TGAAAACAAA TTAGAAGACT	1980
	GTTGGCTTGG CTAATCTCGT AGTTCAGGGC CAAGTTTCTG TAGTCAGAAT GAAGAATAAA	2040
20	ATTGAAAGAA AAAGGGGGAA ATGCTTATAC TTGGCATTAA GTTGAATGCC TCAAGTCTTA	2100
	ACTATGCTT TGTAGATGAG GCAAAAGATT TCTTAGTGGT AAAATTTCTT CAACAGGTCA	2160
25	ATGCCAATCT GTATGCCATT TTAGTAAAGT AGGTAAGGAG AGTAGCCGCT CAGTAACTTT	2220
	GGCACTAAAG AAAGAGTGTG GCTCTAGAAC TTCCAATCCC ATTGCTAGAT GTGCCCTTTA	2280
20	AAAGATGGTC CAGTGCTTTC AGGGAAGGAT GTTTAGCCAG TTTTCCTAGT ATTTGTTCCT	2340
30	TAAGATTTT TGACCTGTGC TTAATAAGAC GGACGCGTGG GTCGACCC	2388
35	(2) INFORMATION FOR SEQ ID NO: 155:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 642 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155:	
45	AAAACAGACC ATTTAAAAAC TCAGACAAGA TTATATTTAA TATATTAATT ACTAAAAAGG	60
	CACAAGATTA CACTGAACAT ATTAGCTACT AAAAAGGCAC TGCTAAGACA TTCAAGCAAA	120
50	TAGCTATTAC ACACTACTGC AGATTTTACA GGTTTCTAAT TCTAACATAT GTTTGAAAAA	180
	TCCGTGAGTA TTCCAAAATA TATTTAATAA TGGAATATCT GCATTAATAT ACCATCCATG	240
- -	TGTTTTTACC ATTTGCCTTA ATATTGAATA TACTGTTTAC CTCACACTAA AAAGAAAACC	300
55	AGAAGCCTTA TTTGTGATTT TGGGAGTGGA AGCTTCCATT TTTGTGTCAA AAATGAATCC	360

TGATTCTTAT GGAAATCTCT GTTATTAAGA TATTTCAAGA TGAGACAACA CTGAAGATCA
AATTGTGTTT AGTATCACTA TCTTCTCTCC TCGTTTCTCT CTTACTCCTC ATCCTCCCAG

60

	AATCTACCAG TITATGGTAG AAAGATGGGA ACCTTATTIG AATGTGTTIT TTTTTTTCCA	540
5	TGATGTCCAA TTTTGTTGTG GGAAAGGATT TGGATAAAAT TTTTGTTTAA ATTTTGGTAG	600
J	ATTTITATCT ATACAAATTT AAATAAAATT ATGTITTGTA AG	642
10	(2) INFORMATION FOR SEQ ID NO: 156:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1251 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:	
20	GCCGCTGCCC CTCCACGGAG TTGCTGATCA TCTGGGCTGT GATCCACAAA CCCGGTTCTT	60
	TGTCCCTCCT AATATCAAAC AGTGGATTGC CTTGCTGCAG AGGGGAAACT GCACGTTTAA	120
25	AGAGAAAATA TCACGGGCCG CTTTCCACAA TGCAGTTGCT GTAGTCATCT ACAATAATAA	180
	ATCCAAAGAG GAGCCAGTTA CCATGACTCA TCCAGGCACT GAGCATATTA TTGCTGTCAT	240
30	GATAACAGAA TTGAGGGGTA AGGATATTTT GAGTTATCTG GAGAAAAACA TCTCTGTACA	300
50	AATGACAATA GCTGTTGGAA CTCGAATGCC ACCGAAGAAC TTCAGCCGTG GCTCTCTAGT	360
	CTTCGTGTCA ATATCCTTTA TIGTTTTGAT GATTATTTCT TCAGCATGGC TCATATTCTA	420
35	CTTCATTCAG AAGATCAGGT ACACAAATGC ACGCGACAGG AACCAGCGTC GTCTCGGAGA	480
	TGCAGCCAAG AAAGCCATCA GTAAATTGAC AACCAGGACA GTAAAGAAGG GTGACAAGGA	540
40	AACTGACCCA GACTTTGATC ATTGTGCAGT CTGCATAGAG AGCTATAAGC AGAATGATGT	600
	CGTCCGAATT CTCCCCTGCA AGCATGTTTT CCACAAATCC TGCGTGGATC CCTGGCTTAG	660
	TGAACATTGT ACCTGTCCTA TGTGCAAACT TAATATATTG AAGGCCCTGG GAATTGTGCC	720
45	GAATTTGCCA TGTACTGATA ACGTAGCATT CGATATGGAA AGGCTCACCA GAACCCAAGC	780
	TGTTAACCGA AGATCAGCCC TCGGCGACCT CGCCGGCGAC AACTCCCTTG GCCTTGAGCC	840
50	ACTICGAACT TCGGGGATCT CACCICTICC TCAGGATGGG GAGCTCACTC CGAGAACAGG	900
	AGAAATCAAC ATTGCAGTAA CAAAAGAATG GTTTATTATT GCCAGTTTTG GCCTCCTCAG	960
	TGCCCTCACA CTCTGCTACA TGATCATCAG AGCCACAGCT AGCTTGAATG CTAATGAGGT	1020
55	AGAATGGTTT TGAAGAAGAA AAAACCTGCT TTCTGACTGA TTTTGCCTTG AAGGAAAAAA	1080
	GAACCTATTT TTGTGCATCA TTTACCAATC ATGCCACACA AGCATTTATT TTTAGTACAT	1140
		1200

408

ATAAAAAAA AAAAACCCCG GGGGGGCCC GGTCCCCAAT TGGCCCTATG G	АТАААААААА	AAAAACCCCG	GGGGGGCCC	GGTCCCCAAT	TGGCCCTATG	G	125
--	------------	------------	-----------	-------------------	------------	---	-----

5

(2) INFORMATION FOR SEQ ID NO: 157:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2127 base pairs

10 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:

15 CCGGCGGAG AGGGAAGCTG CAGCGAGAGG CGCGGATCTC AGCGCGGGAG CAGTGCTTCT 60 GCGGCAGGCC CCTGAGGGAG GGAGCTGTCA GCCAGGGAAA ACCGAGAACA CCATCACCAT 120 GACAACCAGT CACCAGCCTC AGGACAGATA CAAAGCTGTC TGGCTTATCT TCTTCATGCT 180 20 GGGTCTGGGA ACGCTGCTCC CGTGGAATTT TTTCATGACG GCCACTCAGT ATTTCACAAA 240 CCGCCTGGAC ATGTCCCAGA ATGTGTCCTT GGTCACTGCT GAACTGAGCA AGGACGCCCA 300 25 GGCGTCAGCG CNCCCTGCAG CACCCTTGCC TGAGCGGAAC TCTCTCAGTG CCATCTTCAA 360 CAATGTCATG ACCCTATGTG CCATGCTGCC CCTGCTGTTA TTCACCTACC TCAACTCCTT 420 CCTGCATCAG AGGATCCCCC AGTCCGTACG GATCCTGGGC AGCCTGGTGG CCATCCTGCT 480 30 GGTGTTTCTG ATCACTGCCA TCCTGGTGAA GGTGCAGCTG GATGCTCTGC CCTTCTTTGT 540 CATCACCATG ATCAAGATCG TGCTCATTAA TTCATTTGGT GCCATCCTGC AGGGCAGCCT 600 35 GTTTGGTCTG GCTGGCCTTC TGCCTGCCAG CTRACACGGC CCCCATCATG AGTGGCCAGG 660 GCCTAGCAGG CTTCTTTGCC TCCGTGGCCA TGATCTGCGC TATTGCCAGT GGCTCGGAGC 720 TATCAGAAAG TGCCTTCGGC TACTTTATCA CAGCCTGTGC TGTKATCATT TTGACCATCA 780 40 TCTGTTACCT GGGCCTGCCC CGCCTGGAAT TCTACCGCTA CTACCAGCAG CTCAAGCTTG 840 AAGGACCCGG GGAGCAGGAG ACCAAGTTGG ACCTCATTAG CAAAGGAGAG GAGCCAAGAG 900 45 CAGGCAAAGA GGAATCTGGA GTTTCAGTCT CCAACTCTCA GCCCACCAAT GAAAGCCACT 960 CTATCAAAGC CATCCTGAAA AATATCTCAG TCCTGGCTTT CTCTGTCTGC TTCATCTTCA 1020 1080 CTATCACCAT TGGGATGTTT CCAGCCGTGA CTGTTGAGGT CAAGTCCAGC ATCGCAGGCA 50 GCAGCACCTG GGAACGTTAC TTCATTCCTG TGTCCTGTTT CTTGACTTTC AATATCTTTG 1140 1200 ACTGGTTGGG CCGGAGCCTC ACAGCTGTAT TCATGTGGCC TGGGAAGGAC AGCCGCTGGC 55 TGCCAAGCTG GNTGCTGGCC CGGCTGGTGT TTGTGCCACT GCTGCTGCTG TGCAACATTA 1260 AGCCCCGCCG CTACCTGACT GTGGTCTTCG AGCACGATGC CTGGTTCATC TTCTTCATGG 1320 CTGCCTTTGC CTTCTCCAAC GGCTACCTCG CCAGCCTCTG CATGTGCTTC GGGCCCAAGA 1380 60

PCT/US98/11422 WO 98/54963

409

	AAGTGAAGCC	AGCTGAGGCA	GAGACCGCAG	AGCCATCATG	CCCTTCTTCC	TGTGTCTGGG	1440
5	TCTGGCACTG	GCCCCTCTTT	TCTCCTTCCT	GTTCCGGGCA	ATTGTGTGAC	AAAGGATGGA	1500
J	CAGAAGGACT	GCCTGCCTCC	CTCCCTGTCT	GCCTCCTGCC	CCTTCCTTCT	GCCAGGGGTG	1560
	ATCCTGAGTG	GTCTGGCGGT	TTTTTCTTCT	AACTGACTTC	TGCTTTCCAC	GCCTCTCCT	1620
0	GGGCCCGGAT	CTCCAGGCCC	TGGGGAGGGA	GCCTCTGGAC	GGACAGTGGG	GACATTGTGG	1680
	CTTTCCCCCT	CAGAGTCGAG	GGACGGGGTG	TAGCCTCGGC	ATTTGCTTGA	GTTTCTCCAC	1740
15	TCTTGGCTCT	GACTGATCCC	TGCTTGTGCA	GGCCAGTGGA	GCTCTTGGG	CTTGGAGAAC	1800
	ACCTGTGTCT	CTGTGTATGT	GTCTGTGTGT	CTGCGTCCGT	GTCTGTCAGA	CTGTCTGCCT	1860
	GTCCTGGGGT	GGCTAGGAGC	TOGGTCTGAC	CGTTGTATGG	TTTGACCTGA	TATACTCCAT	1920
20	TCTCCCCTGC	GCCTCCTCCT	CIGIGITCTC	TCCATGTCCC	CCTCCCAACT	CCCCATGCCC	1980
	AGTTCTTACC	CATCATGCAC	CCTGTACAGT	TGCCACGTTA	CTGCCTTTTT	TAAAAATATA	2040
25	TTTGACAGAA	ACCAGGTGCC	TTCAGAGGCT	CTCTGATTTA	AATAAACCTT	TCTTGTTTTT	2100
23	TTCTCCATGG	AAAAAAAA	AAAAAA				2127
30	(2) INFORM	MATION FOR S	EO ID NO: 1	.58 :			
	[1]	SECUENCE C	MAKACTERIS	1172:			

35

40

45

50

(A) LENGTH: 1625 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158:

CAAAAGATCT ATAATCAGGA CATTGTTTAT GTAAGTTGGA CAANAAAAAT TCTTCCCCTT 60 TATGTCCACC CTTCCTATGA TTGCAAGACA AAATTTCCCT CCTTTACCTC ATCCCTATAA 120 CATGGGAGGC TGAGAAAAAT GAGGGGAGAT GGAACCAGAT ACAAGGAGAT CCAATAAGAG 240 AAGCTTATTT AAATATTGTG AAATAAAGGA AGAMCCAAAG CATTTTTTTA AGTGGGGAAT CCTTTTGAAC AGTTATTATT TATCCATATT ATTAAYAACA TCTTTTCTGA CAAAATCCAT CAGATGAAGT GTAAATGGAT AATCTTTTAA TGGATCTAAA CCTAGAAAGT TTCACTTACT 360 GTTCATGTCC GTGTTCCAGA ATTGTGAAAT GGTGTGTGT TTTGCTTTCC AAGTTCTTCT 420 480 CTGCCTCCTC TTAATTCTCT AATTCCATGT CTTACAGAAG AATGAGAAAT TTCTTTCTTA CTTGAGTATC ATGCTCTAAA AAACTTGGCT TCAGTCACAG AAACGCTGGC TCTCCTGTGC 540 600 TTATATTGAA GCCAACTGCC TTTAATTCTT GGGCCCTCTT ATATTTTTAA GGTGCAAAAT

60

410

	TTGAAGTCTC	AGTCACCAGA	CACAGGTTCT	ATACAATTAA	TGATGAGCTG	GAGAAGTAAT	660
	ATGTAGCTAA	TTTTTCAAAA	GCATTGAATA	TACTTTCCGG	AAAGAAAACA	GAAATTAAAT	720
5	ATTGCCACAT	CTTGCCAGAA	TCCCATCTGA	CACCTTAACT	TTGTCAGGTT	TCCTACAACT	780
	TGCTAATCAA	GTTTTATACA	TTCTAAATCT	CCCCAGTTTC	TTTGGGGCTG	GAAGATGCAA	840
10	CTTCCATTTA	ATAGAAACTT	TGAAATCTTG	GGGTAAGGGA	GCAGTGGGGG	GACTAGGGAG	. 900
10	AAGGATAAGA	AATAGAATTA	TTGAAAAGCC	CCCACCAGGG	ACCTTCCTGG	CCAGAATATG	960
	CAGAGTAATT	CCTGCTGGCT	TCACCTTTGA	AAGTCCCTCG	AAACTATGCA	GATGAAACTG	1020
15	AGTCTGTTTT	TGATATTGTC	AGATGTATTC	TACCTTGGAA	GTCCCNACAC	CTAAACTGGA	1080
	ATTCTTGTAT	TTACATCTCC	TCCACTGTCC	CCCACACCAC	CCCTCAATTC	CTGCTGCCCC	1140
20	TGCTAATGTT	AAGCATTTTT	CTCTTGTTAT	CATCAGGTTC	ACATTAAAAM	CAGRTACTTA	1200
20	CAAACTGACT	TGAAGCACAG	ATACTTTTAC	GAATGTGATA	AAATATTTTC	TTAAGAAAAG	1260
	GAAAGAGGAT	GTGGGTCAAA	TAAAACACCG	CATGGATGTT	GATTGGTGAA	TACTGGTGTA	1320
25	AGAAAAGGGA	GCTCAGGAAT	TTTTATTACT	GTATTTGTAA	ATGAGTTTGA	AGGAATTIGT	1380
	AAATGCCACT	GGTACATTTT	TAAGGTGACA	CATTTGCTCC	TTATAAAGTT	ATTAAAAATT	1440
30	ACAGGGTAAG	CTTAAATGAC	GTTTGCCAGT	AGTTTTACTT	TATATAATCA	ATATTGATAT	1500
30	TGTTGCTGAA	CTATGTAACT	TTATGATGCA	TTTTTCAGTC	CCTTTTCAGA	GCAAATGCTT	1560
	TTGCAATGGT	AGTAATGTTT	AGTTTAAATT	GACTTAATAA	ATTMTTACCT	GAGCAAAAAA	1620
35	AAAA						1625

40 (2) INFORMATION FOR SEQ ID NO: 159:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1687 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159:

50	CGGGGTCACC	AGTTATTAGA	GGAAGTAACA	CAAGGGGATA	TGAGTGCAGC	AGACACATTT	60
55	CTGTCCGATC	TGCCAAGGGA	TGATATCTAT	GTGTCAGATG	TTGAGGACGA	CGGTGATGAC	120
	ACATCTCTGG	ATAGTGACCT	GGATCCAGAG	GAGCTGGCAG	GAGTCAGGGG	ACATCAGGGT	180
	CTAAGGGACC	AAAAGCGTAT	GCGACTTACT	GAAGTGCAAG	ATGATAAAGA	ĠGAGGAGGAG	240
	GAGGAGAATC	CACTGCTGGT	ACCACTGGAG	GAAAAGGCAG	TACTGCAGGA	AGAACAAGCC	300
60	AACCTGTGGT	TCTCAAAGGG	CAGCTTTGCT	GGGNATCGAG	GACGATGCCG	ATGAAGGCCC	360

	TGGAGATCAG	TCAGGCCCAG	CTGTTATTTG	AGAACCGGYG	GAAGGGACGG	CAGCAGCAGC	420
5	AGAAGCAGCA	GCTGCCACAG	ACACCCCCTT	CCTGTTTGAA	GACTGAGATA	ATGTCTCCCC	480
J	TGTACCAAGA	TGAAGCCCCT	AAGGNAACAG	AGGCTTCTTC	GGGGACAGAA	GCTGCCACTG	540
	GCCTTGAAGG	GGAAGAAAAG	GATGGCATCT	CAGACAGTGA	TAGCAGTACT	AGCAKTGAGG	500
10	AAGAAGAGAG	CTGGGAACCC	TCCGTGGTAA	GAAGCGAASC	GTGGGCCTAA	AGTCAGATGA	560
	TGACGGGTTT	GAGATAGTGC	CTATTGAGGA	CCCAGCGAAA	CATCGGATAC	TGGACCCCGA	720
15	AGGCCTTGCT	CTAGGTGCTG	TTATTGCCTC	TTCCAAAAAG	GCCAAGAGAG	ACCTCATAGA	780
15	TAACTCCTTC	AACCGGTACA	CATTTAATGA	GGATGAGGG	GAGCTTCCGG	AGTGGTTTGT	340
	GCAAGAGGAA	AAGCAGCACC	GGATACGACA	GTTGCCTGTT	GGTAAGAAGG	AGGTGGAGCA	900
20	TTACCGGAAA	CCCICCCCC	AAATCAATGC	ACGTCCCATC	AAGAAGGTGG	CTGAGGCTAA	960
	GGCTAGAAAG	AAAAGGAGGA	TGCTGAAGAG	GCTGGAGCAG	ACCAGGAAGA	AGGCAGAAGC	1020
25	CGTGGTGAAC	ACAGTGGACA	TCTNCAGAAC	GAGAGAAAGT	GGCACAGCTG	CGAAGTCTCT	1080
	ACAAGAAGGC	TGGGCTTGGC	AAGGAGAAAC	GCCATGTCAC	CTACGTTGTA	GCCAAAAAAG	1140
	GTGTGGGCCG	CAAAGTGCGC	CGGCCAGCTG	GAGTCAGAGG	TCATTTCAAG	GTGGTGGACT	1200
30	CAAGGATGAA	. GAAGGACCAA	AGAGCACAGC	AACGTAAGGA	ACAAAAGAAA	AAACACAAAC	1260
	GGAAGTAAGC	AGAGCTGCCA	GGCTCCCAGG	AGAGCATGGG	GACTAGGAGG	AAGGGTGTGG	1320
35	CATGGCTCAG	TCTGGCCCCC	TTGATTACCG	GCCTAGCCCC	TGCTCACATC	ACAGCTGTCT	1380
	GAAGAACAGT	GAGGTGGAGT	GCCTAGAACT	CCCGTGGTGG	TCCTGAGCAG	AGAGGAGGAT	1440
	GTCCTCCTGC	CTGCCTGAAG	GTCTCCCATG	AAAACACTGC	TGAACTGTGT	TGACACTCAT	1500
40	GACCCTTTT	TTAAACCGTT	AAAGGGAAGT	TCGGTGTTGG	AGCGATACTC	AATGTAGTCA	1560
	GTCTACACCI	GGACGTGTGG	GCCACTTAAG	CCCTCCCCAC	CCCCATCCTA	TTCCTRAATA	1620
45	AAACCAGGAT	' AATGGAARAA	. AAAAAAAAA	DAAAAAAAA	GGGGGGCCCN	TAAAGGGNCC	1580
	CANNTTT						1687

50

55

(2) INFORMATION FOR SEQ ID NO: 160:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1842 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(D) TOPOLOGI. IIIICAL

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

	GGATGACAGA	TTGCGACANA	GATTTGTGAC	CCTTCCTGCT	GAACTTCAGA	GGGAGCTGAA	60
	ANCAGCGTAT	GATCAAAGAC	AAAGGCAGGG	CGAGAACAGC	ACTCACCAGC	AGTCAGCCAG	120
5	CGCATCTGTG	CCCCGAGAAT	CCTTTACTTC	ATCTAAAGGC	AGCAGTGAAA	GAAAAGAAAA	180
	GAAACAAGAA	GAAAAAAACC	ATTGGTTCAC	CAAAAAGGAT	TCAGAGTCCT	TTGAATAACA	240
10	AGCTGCTTAA	CAGTCCTGCA	AAAACTCTGC	CAGGGGCCTG	TGGCAGTCCC	CAGAAGTTAA	. 300
10	TTGATGGGTT	TCTAAAACAT	GAAGGACCTC	CTGCAGAGAA	ACCCCTGGAA	GAACTCTCTG	360
	CTTCTACTTC	AGGTGTGCCA	GCCTTTCTA	GTTTGCAGTC	TGACCCAGCT	GGCTGTGTGA	420
15	GACCTCCAGC	ACCCAATCTA	GCTGGAGCTG	TTGAATTCAA	TGATGTGAAG	ACCTTGCTCA	480
	GAGAATGGAT	AACTACAATT	TCAGATCCAA	TGGAAGAAGA	CATTCTCCAA	GTTGTGAAAT	540
20	ACTGTACTGA	TCTAATAGAA	GAAAAAGATT	TGGAAAAACT	GGATCTAGTT	ATAAAATACA	600
20	TGAAAAGGCT	GATGCAGCAA	TCGGTGGAAT	CGGTTTGGAA	TATGGCATTT	GACTTTATTC	660
	TTGACAATGT	CCAGGTGGTT	TTACAACAAA	CTTATGGAAG	CACATTAAAA	GTTACATAAA	720
25	TATTACCAGA	GAGCCTGATG	CTCTCTGATA	GCTGTGCCAT	AAGTGCTTGT	GAGGTATTTG	780
	CAAAGTGCAT	GATAGTAATG	CTCGGAGTTT	TTATAATTTT	AAATTTCTTT	TAAAGCAAGT	840
30	GTTTTGTACA	TTTCTTTTCA	AAAAGTGCCA	AATTTGTCAG	TATTGCATGT	AAATAATTGT	900
	GTTAATTATT	TTACTGTAGC	ATAGATTCTA	TTTACAAAAT	CTTTCTTTAT	AAAGTTTTAT	960
	GGATTTTTAC	AGTGAAGTGT	TTACAGTTGT	TTAATAAAGA	ACTGTATGTA	TATTTGGTAC	1020
35	RGGCTCCTTT	TKGTGAAYCC	TTAAAAACTC	AACTCTAGGA	RGCAACTACT	GTTTATTATA	1080
	CTAAARGGCT	GAAAAMCCTC	CAGÇCAGAC	TGCTAAGCTC	TGAAATYCCT	GAGAGGTCTC	1140
40	AGACCGGGAT	TCTACTTGTT	CCAAGAAAGG	GTAAAGCTTC	TAAACCATCT	TATTCTTGTC	1200
	TCCAAGCATG	AACACAGGAG	CATGTYAAGA	AAATCTTTAC	TACTTTCTYC	CATGCGGAGA	1260
	AATCTACATA	TTTTGAATTA	GAAACACCCT	CACACCCACT	TGAAGATTTT	TTTCCTGGGA	1320
45	ACATTATGTC	CCGTAGATCA	GAGGTGGTGT	TGTCTTTTTG	CTTCTACTGG	CCATTGAGAA	1380
	ACTTTGATGA	TAAAAAAGAA	CGGTATAGAT	TTTTCAAACG	TATATAAAAT	ATTTTTATGT	1440
50	TATATGTTAT	GCCATAACTT	TAAAATAAAA	ATAGTTTAAA	ATTCTATGCT	AGTGGATATT	1500
	TGGAACTTTT	TCCTCAAACA	AACACCCCAC	ACTGACTTCA	GCAAAACCCT	AAAACTAGCT	1560
	ACAGATTACT	ACTACGAATG	AATCATYAAG	TTTTGTGTCT	GCAACAATTT	AGAAGCACTA	1620
55	AGCCCAAATA	TCAGGAAATG	TGTGTATGAT	GGAATTTTCT	AGGACAAAAC	AGATCAAGAT	1680
	TAAAACAGGA	TCAAGGATTA	ATGGTATAAA	AATGGTCTAC	TAAAACAGGA	TCAAGGATTA	1740
60	AAACAGGATC	AAGGATTAAT	GGTATAAAAA	TCTCTACTGG	TTACCGGGTG	GCNGGGCCAT	1800

	ACAGGGTAGT GGTGGATGGA TAGTTTAGTT TGGNAAGGGT AA	1842
5	(2) INFORMATION FOR SEQ ID NO: 161:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 770 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:	
	GGCACGAGCC CTATGCTGTT CTTGTGATAA TGAGTGAGTC TCACAAGATC TGGTGGTGTT	60
	ATAGGCATCT GGCATTTCCC CTGCTGACGC TCATTCTCTA TCCTGCCACC CTGGGAAGAA	120
20	GTGTCTTCTG TCATGATTGT AAGTTTCCTG AGGCCTCCCC AGCTATGTAG AACTGTGAGC	180
	CAATTAAACC TCTTTTCTCT ATAAATTATC CAGTCTTATA TATTTCTTCA TAGCAGTGTG	240
25	AGAACAGATA ATACCGTAAA TTGGTATCAC AGAGAGTGGG GTGTTGCTAT AAACACATCT	300
25	GAAAATGTTA AAGCAAATTT GGAACTGGGT AACAGGCAAA GGCTGGAACA GTTKGAAGAA	360
	CAGTTAAGAA GAAGACAGGA AAATATGAGA AATCTTGAAA CTTCCTAGAG TCTTAAAGGT	420
30	CTCAGAAGAC ATGAAGATGT GGGAAGCTTT GGAACTTCCT AGAGACTTGT TTGAATGGCT	480
	TTGACCAAAA TGCTGATAGT GATATGGACA ATGAAGTCCA GGCTGAGCTT ATCCAGACAG	540
~ =	ACATAAGAAG CTCGCTGGGA ACTTGAGTAA AGATCACTCT TGCTAGGCAA AGAGACTGGT	600
35	GGCCTTTTTT CCTCTGCCCT AGAGATCTGT GGAAATCTGA ACCTGAGAGA GATGATTTAG	660
	GGTATCTGGC AGAAGAAATA TCTAAGCGGC AAAACCTTCM AGAGGAAGCA GAGCATAAAC	720
40	GTTTGAAAAA TTTGCAGCCT GACNATGGGA GACCAAAGTT AAACCCAATT	770
45	(2) INFORMATION FOR SEQ ID NO: 162:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 519 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162:	
55	GAATTCGGCA CGAGCTGAGA GGCACAGGAG CAACAGCCAG TGCCCCCTGC AGAGGACCAC	60
	TGGGGTCACA GACTTCARAC CTGATGACCT GGGCTCAGAT CCCAGCTCTG CACCTACCAG	120
60	CCGTGTGACA AGGTGTCCTC TCTGAGCCTC AGTCACACAC TGCCTTAACG GTTGGGCCTC	18

PCT/US98/11422 WO 98/54963

414

	ATGGAGCTGT TTGTGAAGGT TAAATGGGAA GACATAAAGC ACTTAGCCCA GAGCCAAGGA	240
	CATGCTGAAT AGGATAATGG TGGCCTCCTT TGGCGCTGTG CTGGTGCAGG TGTGCCGAGG	300
5	AAYTGGGCAG GGGTGACAGA TACCTCTTCT AACCTAGTTC CTTTCCAAGA ACCTAATTGG	360
	TGTCTCTCCC TCCCCCAGGC AATTGGAAGG AGGAGGCTGG GCCCCAGCCC CAGAATACGG	420
10	GAGGTTTCTC ACCGTGGTAG GGAAATTGCT GGGTTGGGGG TGTGGGCAAC CACAGTGATC	480
10	GTCTCTCTGC AGGACGGATG AGGCTTTGCT GACAGAGGC	519
15 20	(2) INFORMATION FOR SEQ ID NO: 163: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 753 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:	
23	GGCACGAGCG GCACGAGCAG CCAGTTGCTG ACTGGCACAT GGCCTCCAGC GTCCCGGCTG	60
	GTGGGCACAC TAGAGCCGGA GGGATCTTCT TAATTGGTAA ATTGGATCTT GAAGCTTCAC	120
30	TGTTTAAATC TTTTCAGTGG CTTCCCTTTG TACTTAGAAA AAAATGCAAC TTCTTCTGCT	180
	GGGACTCATC CGCTCACAGC CTTCCCCTCC ACCCTCTCTC TGCCTCATGC TCTGCCCCTG	240
35	CCTGCCATGC CTCCGATACT CACCTTTTGT ACCCCAGCAC CCGTGCCCTC TGCCCCTCGA	300
	TCTTTGCCTG GCTGGTTGCT CCTCACTCAG TGTTCAGGAC AAATGCTCCT GGCCCTACCC	360
	CATCTAGCCA GTCTAGCCCG GTCTTCCCTG TCTTCCCTGT TTCATTCATG GCTCTTATTG	420
40	TTTGTTWACT TGTGTGCTGT TGACTTTTAA CTCTCTCAGT CCCCACTGGA ATGCAAGCGA	480
	TCTCCCAAGC TCCTAGAATT GTTCCTGCCT CTTCACAGGC CCTTACGCTG TGTGTGCTCG	540
45	TGCCGAATTC GGCACGAGGG TATGTGCACT TGCTGGTATG TATGTAGGTG TTTGCTAACA	600
	CATACGTGCA CACGCAGAAT GCTTCCAGGG GACTGCACAG CCTCTAGTTC GCAGCCCCCA	660
	CCCCTCCCTT TGSCCCTGCA CTCTCCCCTC TCTGAGCTGC ATTCGCATGA AAGGGTGCAN	720
50	GGTTCCTGAN CCCGCNAGCG NCACCTCCTG GGA	753
55	(2) INFORMATION FOR SEQ ID NO: 164:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1400 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double 60

415

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:

5	GGCACAGTTT ATTAATACCT ATTATSGGAA AGTCACTTTG GTTGGCATTG AAAATTACAT	60
	CATCTITAAA GCAGTATTIG TCCCCAGATG GACTCATCAC TAGCAAAGAC TAGGITCATT	120
10	GGAAGGCATA GGGTGAGAGA ATGGGAAGAT GRAGTGGAGG CGGGTTGTTA AAGTGCTGTC	180
10	AGTGAGTGAT TTTGTCTACT TGAATAATGG TCCATGTTTG GGGGCATATT GTGTTTCATA	240
	AGAAGTGAAA GGTATTTGCA AAGTAAGCTA CAAATGACCC ATAAATCTGT TAACAACAGT	300
15	CCTTAATATG CAAAGATGAA AAACAAGCAT TACTGCTACC CAAAGGGAAC TGGTGCTTGG	360
	TGATGTGCAG ATGGGGCTGT TGGTTAAGAG AGCTATTACA GGTTTTCTCT CTTAGGTTTC	420
20	ATAGGAGGTA GTTACTGAGA TGAGATTGTT TTATCTTTTT GAATACAGAT CTCTTGTCTT	480
20	GAGTTAGTTC TGAGGATGGG AGTAATAAAG GAGTTTTTTG TTTTTTTT	540
	TTTTGGCTCC TTAGTAATAC TCCTCTGACA TTTATTTCTA TTATTCTTCA AAGAAAGGAA	600
25	ACCAACTGAA ATGTTTGCTT TAACAAACAT TTTAATAAGT TCTCTGGGTT TTTTTTTCCC	660
	CTTTTAAAAA AATTAGCATA TACCATAGCA ATAAAAGAAC TAATGTTAAC TATTGTATGC	720
30	TACAACTTAA GTGATTTTTC TAAAGAAGCA CAATGTCATT GRAAGTATTA TTGAAAAGGA	780
50	TCATAGTCAC ATTGAATTTG TGAAGGCCAA AGAAATTGAA GGGAGTGATA TTTTCATTTT	840
	ATGATATTCA CATATTTAGT AAATTTTGTG TACAAGAATA CCAGGCAGAG TGTTTTACCC	900
35	ATGGAAACAG GTTTCAGATT ACTTTGTTTT TACTGTTAGA GTCTCAAGTT TAGAAATGCT	960
	AACACTTAAA TCAGTTTTTT TCTÇACTATA CTTGAAGATT GTTAATATTT TGATATCTTC	1020
40	CTAGCTTGAT GGAATTTAAA CATATCTTCA GATCTGTGAC AGTGACAGCC AATAGGACTG	1080
40	ATAATATTAG CTTCAAACCA ATAATATCCA GGGTTAAAAT AAAAATCATA GTGAAAGTAC	1140
	GATTGTAAAA TTATGCTATA TTAACTTTTA AGTCTGTAAT AACTTGACAT CAAAATGTTA	1200
45	TGTAATTACC ATAAATAATG GCTAGCGAGA ACATCTTTGG AAATTCTCAA ATTACCTTTC	1260
	TTACTACACT GTTTGCAGAA TGAATGTAGA AATGATCCTG TTAGCTTTCT GAATGTTCTG	1320
50	TOGTTGAATG TGTTTTGCT TAAATAAAGC TTTTGGTATT TGTTTAAATW ACAAAAAAAA	1380
50	AAAAAAAAA AAAAACTCGA	1400

55

60

(2) INFORMATION FOR SEQ ID NO: 165:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2153 base pairs

(B) TYPE: nucleic acid

416

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:	
J	CAGGCCTCAG GOCCTCTGGT GGCTCTGGCC CAGACAGTAT TTGCAGTTCT TGTGCTATGG	60
	GTGGGAGTCT TCTTCCTCAA GTTTCGGCAG CTGTGCTGTG	. 120
10	CAGGGCTCAA GGGCTGTGGT CCGCTCAGGG TCTCATTTCC CCAGGCCAAG TTCAAGGCAG	180
	CAGCCCTTTG TGAGGCGCTC TTGGCCCTGG GCTGGAGGGA GAACTTTAAG CTTTTTTGCT	240
15	CACAGGGACG TGGTATGGGC CCTGGGTGCA GGTGCCCACA TTCTGCTAAT GAGAGCTTTG	300
15	TCTGATCAGT CCTGGGTCCA TCAGTTTGTC CATGTGTCCG GCTGCCAGCC CGTCCCTTGG	360
	GATCCTTCCC CTGGGGTGTA GCCTTGTTCA TTAGTATATA CTCATTCCTT CATGCTTTCC	420
20	TCAGCAGAAC ACTTCCACTT CTGAGGTGAG CTTTTGCCCC RTGCCCTTCC TCCACAGGTG	480
	TTGCCTTTTT ATAAAGACCT GATAGCAGAA TAAATTGGTG TTTCCCTGTT GACCCAGCAC	540
25	CATTICIGIG GGCCTAGAAT ATGGCCCTCA ACCCTTAGAG TGGGGCAGTG AGGGCTTGAG	600
23	GAGTGACCCT TCCTTTCTCA TGGTTTTAGT CATTTTGGCT GCCAGCCCTT AATGGCACAG	660
	ATCTGCTGCT TCTAACAGAT GGCCAGGAGG TGACACCGAT TTCAGCCATT GCCAAGGTTA	720
30	GCACCCTCTC CTTTGAGCCT AGGGCCACAC TGTTCATTGT CACTTTAGGC AAGTGCCTGT	780
	TTGGCTTTAA AGGTAAGCCT GCCAGCTGTG AGAAGCCTTG GTAACTGATG GACTCATTTC	840
25	CTGGTCCTTA AAGATGCAGC CTCTTAAGGG CTCCTTGATG GATGCCATCT CTCCTAGCCC	900
35	CCAGCCCTGG TGCCACTGGT GGGCAGGTTC CCATTCTTTG GGGCTGGGAG GGACAGCTTG	960
	CCTGTTTCTG GTCACAAATT ACAGTCTTCT CTCCTGTACC ATTCTGTGGC TTCAGCATGG	1020
40	GGGCAGTAGC CTTTCATTAG TGTAGATAGT CATTCCCTGG TAGGGTGGAG GGTAAGACAT	1080
	AGGGTCTGGA ACTGTTTGGG ACCTTTTGGG GATGTCCTGT GCCTCCCAGA TTCCTMGATT	1140
15	CTGGGAGGAG AGGCTGCCGC ATTCTGCTGC TCCTCACAGC GAGCAAAGCT GCACCCACTT	1200
45	ACATTCAGTA TTTTCCTGGC ACTACAAAGA GTGGGAAGGC CTGGGATTTG CTGCTGCTCC	1260
	CTTAGAGCAG GGCCCCTYTT TTCAGCACTT TGGACACCTG GAGACCCAGC CCTGTTATTT	1320
50	AATGGTAGTG GGCAAGTGTG TGTGCATACT GTCTGCCACT GCTTTCTCCC TGCCCCATGC	1380
	CAGAGAGCCC TGTCCCTGCC AGGCCCAGCC TTCTTAGCCC CAACTTGGGA ACAAAGTGCA	1440
	ACATGGGATC ATGGGTTGGG GTGCTCAGGT GAGCCCTCTC TATAGTGCTT CCCTGGGCCA	1500
55	AGCTGACACC AGCCCCTGAG GGTGGGGTGG GACGGGTGGT GCTTAAAAGA GGAAGGGGAC	1560
	CAGTGTAGCA ACTTGCCAGG GACCCCACCC CTCCCTCTCT GGGCCTGTGC AGTGAGCATG	1620
60	GGGATTCCCA TCAAGGGGCC TGGCACCTGT GCTAGTTACG TAGCCGCTGN TCACGCGCTC	1680

417

	ACTCCTGACC ACATGCACGT TCCCTAGATG CAGACTGCTT TGAACTTTAA AGCTGTACAA	1740
_	TTTGGTTATG TTTGTGCTGA CTTAAAATAT ATTTTAATGA GGAAAAAATA ATGGAGAACC	1800
5	CTGGGAAGGA CCTGGTTCTT TTGCTTCTCG GGGAACTGTA AGCCCTCGCG TTCTGGGAAT	1860
	CGCTCTCTGC TGCTCTTTCC TGGAAGCTAA GCCTGTCTCC ACCGCCCGAG GCCTGCGCCG	1920
10	GTGCTCCCGC CGCAGTTGCG TTTGCTTTGG ACCTTGCGTG CGGGGGAGGG GGTGCTCGGT	1980
	CCGAGCCCGC TCCTTTCTGT ACACCTAGCG CTGCCCGCCC CGCTTGTGTC TGAGGTCGTG	2040
15	TATGTCAAAA ATAAAGCCGC TAGAAACGGA AAAAAAAAAA	2100
13	AAACTCGAGG GGGGCCCGT ACCCAATTAA CCCNNTATGA TCTATAAAGC GTC	2153
20	(2) INFORMATION FOR SEQ ID NO: 166:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1251 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:	
30	GCCCACGCGT CCGCCCACGC GTCCGGCGGT GCGGAGTATG GGGCGCTGAT GGCCATGGAG	60
	GECTACTGGC GCTTCCTGGC GCTGCTGGGG TCGGCACTGC TCGTCGGCTT CCTGTCGGTG	120
35	ATCTTCGCCC TCGTCTGGGT CCTCCACTAC CGAGAGGGGC TTGGCTGGGA TGGGAGCGCA	180
	CTAGAGTTTA ACTGGCACCC AGTGCTCATG GTCACCGGCT TCGTCTTCAT CCAGGGCATC	240
40	GCCATCATCG TCTACAGACT GCCGTGGACC TGGAAATGCA GCAAGCTCCT GATGAAATCC	300
	ATCCATGCAG GGTTAAATGC AGTTGCTGCC ATTCTTGCAA TTATCTCTGT GGTGGCCGTG	360
	TTTGAGAACC ACAATGTTAA CAATATAGCC AATATGTACA GTCTGCACAG CTGGGTTGGA	420
45	CTGATAGCTG TCATATGCTA TTTGTTACAG CTTCTTTCAG GTTTTTCAGT CTTTCTGCTT	480
	CCATGGGCTC CGCTTTCTCT CCGAGCATTT CTCATGCCCA TACATGTTTA TTCTGGAATT	540
50	GTCATCTTTG GAACAGTGAT TGCAACAGCA CTTATGGGAT TGACAGAGAA ACTGATTTTT	600
		660
	TCCCTGAGAG ATCCTGCATA CAGTACATTC CCGCCAGAAG GTGTTTTCGT AAATACGCTT	600

55 AAACGTCCTA AGGAGCCAAA TTCTACCATT CTTCATCCAA ATGGAGGCAC TGAACAGGGA

60

GCAAGAGGTT CCATGCCAGC CTACTCTGGC AACAACATGG ACAAATCAGA TTCAGAGTTA

AACAGTGAAG TAGCAGCAAG GAAAAGAAAC TTAGCTCTGG ATGAGGCTGG GCAGAGATCT

780

840

418

	ACCATGTAAA	ATGTTGTAGA	GATAGAGCCA	TATAACGICA	CGTTTCAAAA	CTAGCTCTAC	960
	AGTTTTGCTT	CTCCTATTAG	CCATATGATA	ATTGGGCTAT	GTAGTATCAA	TATTTACTTT	1020
5	AATCACAAAG	GATGGTTTCT	TGAAATAATT	TGTATTGATT	GAGGCCTATG	AACTGACCTG	1080
	AATTGGAAAG	GATGTGATTA	АТАТАААТАА	TAGCAGATAT	AAATTGTGGT	TATGTTACCT	1140
10	TTATCTTGTT	GAGGACCACA	ACATTAGCAC	GGTGCCTTGT	GCAKAATAGA	TACTCAATAT .	1200
	GTGAATATGT	GTCTACTAGT	AGTTAATTGG	ATAAACTGGC	AGCATCCCTG	A	1251

15

20

25

(2) INFORMATION FOR SEQ ID NO: 167:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 882 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:

60 GACSMTCTAG AACTATGGTC CCCCGGGACT GCAGGAATTC GGCACAGCGG CTGCGGGCGC GAGGTGAGGG GCGCGAGGTT CCCAGCAGGA TGCCCCGGCT CTGCAGGAAG CTGAAGTGAG 30 AGGCCCGGAG AGGGCCCAGC CCGCCCGGGG CAGGATGACC AAGGCCCGGC TGTTCCGGCT 180 GTGGCTGGTG CTGGGGTCGG TGTTCATGAT CCTGCTGATC ATCGTGTACT GGGACAGCGC 240 AGGCGCCGCG CACTTCTACT TGCACACGTC CTTCTCTAGG CCGCACACGG GGCCGCCGCT 300 35 GCCCACGCCC GGGCCGGACA GGGACAGGGA GCTCACGGCC GAYTCCGATG TCGACGAKTT 360 420 TCTGGACAAK TTTCTCAGTG CTGGCGTGAA GCAGAGTGAC YTTCCCAGAA AGGAGACGGA 40 GCAGCCGCCT GCGCCGGGGA GCATGGAGGA GAGCGTGAGA RGCTACGACT GGTCCCCGCG 480 CGAMCCCCGG CGCACCCAGA CCAGGGCCGG CAGCARGCGG ANCGGAGGAR CGTGCTGCGG 540 600 GGCTTCTGCG CCAAYTCCAG CCTGGCCTTC CCCACCAAGG AGCGCGCATT CRACGACATC 45 CCCAACTCGG AGCTGAGCCA CCTGATCGTG GACGACCGGC ACGGGGCCAT CTACTGCTAC 660 GTGCCCAAGG TGGCCTGCAC CAACTGGAAG CGCGTRATGA TCGTGCTGAG CGGAAGCTGT 720 50 GCACCGCGTG CGCCTACCGC GACCCGYTGC GNTCCCGCGC GAGCACGTGC ACAACGCCAG 780 -CGCGCACTGA CTTCAACAAT TCTGGCGCCG CTACGGGAAG TCTCCCCCAC CTCATGAAGT 840 882 CAAGCTCAAG AATACACCAA TTCTTTCTGC GCGACCCTTC TG

⁽²⁾ INFORMATION FOR SEQ ID NO: 168:

419

(i)	SEQUENCE	CHARACTERISTICS:
-----	----------	------------------

5

(A) LENGTH: 1208 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:

10	GGGAAACTCA	AAAGGATGAT	GGAATGGTTG	ATGGAGCCAG	AGCCTAGAAG	TRAAGGGATA	. 60
10	CAGAGTGAAG	ATAGAGGTAT	TTACGTATAT	TTWAATATTA	GCTTTGGAAT	TACGTAGGGA	120
	TTCTTAAGAA	AAGATCATGA	CAGGACAGCC	ACATTTGGTA	AAATGTCAGG	GCAGCCAGTG	180
15	CATGGTCCTC	CTGGGGCTCC	TCAGTTGACG	GGTTTAAATC	ATTTCCTGAT	CCCCCTGCCC	240
	TGGTTTGAGG	AATGCATACA	GTACGTGAAA	TGCCTGTGGT	ATGAGTTGCA	ATGGGCAATC	300
20	AACCTGGGTA	AATCCAAGAT	TAATGATTAG	TTCTAAAGAT	CCAGTTGAAG	TTCTAGAGTG	360
20	GGAATTTTCC	GTCAAGCARC	TCAGCACAGC	TTTATGCCTG	TTCCTCTAAT	AACGATAGGT	420
	AACAAATAGC	TGTGTKTWCA	CAGCTAGGAR	GATAACCAAA	TCTAGAGTTC	TTGARTCTCA	480
25	TTTAATAAAT	AAKTATTATG	AGTACCAACT	GCATATTTCA	GGCACTGCAT	TTGACTCTGT	540
	TAAATACTGA	TYCCTTAKGA	CMSCCACWTC	AGAWAACMIT	AATCTGTCTG	ATCAATAAAC	600
30	AGCTTGACTT	AGAGRGGTAA	AATAGCTTGC	CACAGGTWAC	CCAATTAGTA	GGTAACAGCG	660
30	ACAGAATAAC	AGTGCAGTTA	AAATCTTAGA	CTGGAGACTA	ATTGCATAAG	TTTGAATTTC	720
	AGTTCTGCTA	TGTAAATTTG	GGTGAGTACC	TTAATTYACC	TGAGTCTCGG	TCTTTATATC	780
35	TGTAGAATGG	AGCTAATGAT	ATTACTTAAT	TIGCTTTATG	TGAGATTAAA	TGTACTAATA	840
	TATGTAAATC	ACTTACAACA	GCAŢTTGACA	TATTTGACAT	ACTTAATATA	TTTGCTACTA	900
40	ATACTATTAG	CAACAGCATT	CTGATTTTCC	AAGTTGAAAT	TCAGTGTTTT	CTTTTTTACT	960
40	TTGCCATAAT	TTACAATGTT	GTGCTCTGTA	AACCATAAAT	TTCCCTGAGG	TGTTGTCAGG	1020
	ттаааааааа	ATCACTATGG	CCCCARNIMA	CTTGGAAAAT	AGAAATGAGA	CCAGCTTCAT	1080
45	CTATATTCTT	TACTGCAAAT	AACTTAGAAT	TGTAATAGGC	TAATATGTAC	TGGGACTTCC	1140
	AATTTGGGAA	TATGACAAAA	ATAATACTAT	TTAGCTAAAA	CATATACAGA	ACTTATTTTT	1200
50	CCTCTGAA						1208

(2) INFORMATION FOR SEQ ID NO: 169:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1307 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

60 (D) TOPOLOGY: linear

(xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:	169:
------	----------	--------------	-----	----	-----	------

5	GGCACGAGAG	AAAAGAGGTT	GAGAATGTTT	TCTAGCAGGC	AGAATGTGCA	TACATGTTTT	60
•	CATGARTGTC	CTTTGGGTGC	TGTTTCTTTT	AAATCCTCTG	TGCACAGGGC	TCTGGCCTTT	120
	ARTAAACTGT	TTTTCTGTCT	TACGTCATGC	TGACTGGGTG	CTAGGGGCTG	ATTACAAAGG	. 180
10	GGAAGAGTTG	AACAGACATC	AGGGGCCGAT	GAAACCAAAG	GACTAGGAGT	CAGGAGAACA	240
	AGTCAGGGAT	TAGGAGACAG	CGGTTTGGTT	TATTGTTATC	CAGCTGGAGG	ACTCCTAGGG	300
15	GCAGCAGCAG	GAGGAATACC	AGGGCCACGG	AGGGGCAGGA	GTCTCACAGT	GGAGGGCAGA	360
	CTCTAACAGA	TGCCAGCTGA	ACCCTCCCTG	GCCCTGGATG	TCATACGAGT	TGGGGACCAG	420
	AAATCTGGGC	TCAGAGAACC	CGTCCAGGGA	GATTTGAAGC	CATGGGTTAT	CTTCTAGAGT	480
20	TGATACTGAT	AATATATTTT	AATTTTTATT	GATGTTTAAT	ACCTTCTGAA	ACAGGAGGGT	540
	AAGATCAGAT	GGGAAGCCCY	TCTGTTGAAG	GATCTTGGGA	ACCTTGGTGG	TTTTTTTTT	600
25	TIGGTITITI	TTTTTTGAT	CGAGCTGTGG	ACATCCTTCT	TAATTCGATT	NTGAGGATTT	660
	GTTTAACTAA	AAAGTTCCCA	AACACAGAAA	GGCCTCCCC	ACCTGCTTTG	GGGAGCTGTC	720
	TGTSCTGGGA	GTGCCAGGCA	TCCSATGGGA	CCCATCACTG	CCAGTGTCTG	TGCCTCCCAG	780
30	AGGTCAGCCC	TETETCTGCC	CTGGCTCTGT	CTCCTCTGTG	ACAGGGCAGA	GCATTTCTGG	840
	TCAGTTTCTC	CATGGTGCCT	CCCACCCCTT	TGTAAAGTGG	ATGGACATGA	TGGAATTCAG	900
35	TTGTCTCACC	CTGATAGCCT	GGGTGTTGAT	ATTCACTTTA	CCCGCACTCA	GACACAGGCG	960
	ACCTTGAAGC	ACTTCTCGGT	GTGTAGAGTC	CACGTGACAG	TCCCCACAGC	CTCCCCAGAT	1020
	AGCTGTGTGC	CTGTGCGCTA	CTCCTGTGCC	ATTTTCCCAA	CTTNGGCGTT	TCACTAAATG	1080
40	CAGCTGATCT	CTCTCTCTGT	GCACTCGTGA	TCCATGTTGA	ACAATACATG	TAGGITCTTT	1140
	TTCCACGCAA	TGTAAGAACA	TGATATACTG	TACGTTGGAA	AGCATTTACC	TTATTTATAT	1200
45	ACCTGAATGT	TCCTACTACA	CAAATAAACA	TATATTAAAT	WCTAAAAAAA	AAAAAAAA	1260
	CTGGAGGGGG	GCCCGGTAC	CCAAATCGCC	GGATAGTGAT	CGTAAAC		1307

50

55

60

(2) INFORMATION FOR SEQ ID NO: 170:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1624 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170:

•	GGCACGAGGT	cccccccc	GCCGCCTGGA	ATTGTGGGAG	TIGIGICICC	CACTCGGCTG	60
	CCGGAGGCGA	AGGTCCCTGA	CTATGGCTCC	CCAGAGCCTG	CCTTCATCTA	GGATGGCTCC	120
5	TCTGGGCATG	CTGCTTGGGC	TGCTGATGGC	CGCCTGCTTC	ACCTTCTGCC	TCAGTCATCA	180
	GAACCTGAAG	GAGTTTGCCC	TGACCAACCC	AGAGAAGAGC	AGCACCAAAG	AAACRGAGAG	240
10	AAAAGAAACC	AAAGCCGAGG	AGGAGCTGGA	TGCCGAAGTC	CTGGAGGTGT	TCCACCCGAC	. 300
	GCATGAGTGG	CAGGCCCTTC	AGCCAGGGCA	GGCTGTCCCT	GCAGGATCCC	ACGTACGGCT	360
	GAATCTTCAG	ACTGGGGAAA	GAGAGGCAAA	ACTCCAATAT	GAGGACAAGT	TCCGAAATAA	420
15	TTTGAAAGGC	AAAAGGCTGG	ATATCAACAC	CAACACCTAC	ACATCTCAGG	ATCTCAAGAG	480
	TGCACTGGCA	AAATTCAAGG	AGGGGGCAGA	GATGGAGAGT	TCAAAGGAAG	ACAAGGCAAG	540
20	GCAGGCTGAG	GTAAAGCGGC	TCTTCCGCCC	CATTGAGGAA	CTGAAGAAAG	ACTITIGATGA	600
	GCTGAATGTT	GTCATTGAGA	CTGACATGCA	GATCATGGTA	CGGCTGATCA	ACAAGTTCAA	660
	TAGTTCCAGC	TCCAGTTTGG	AAGAGAAGAT	TGCTGCGCTC	TTTGATCTTG	AATATTATGT	720
25	CCATCAGATG	GACAATGCGC	AGGACCTGCT	TTCCTTTGGT	GGTCTTCAAG	TGGTGATCAA	780
	TGGGCTGAAC	AGCACAGAGC	CCCTCGTGAA	GGAGTATGCT	GCGTTTGTGC	TGGGCGCTGC	840
30	CTTTTCCAGC	AACCCCAAGG	TCCAGGTGGA	GGCCATCGAA	GGGGGAGCCC	TGCAGAAGCT	900
	GCTGGTCATC	CTGGCCACGG	AGCAGCCGCT	CACTGCAAAG	AAGAAGGTCC	TGTTTGCACT	960
	GTGCTCCCTG	CTGCGCCACT	TCCCCTATGC	CCAGCGGCAG	TTCCTGAAGC	TCGGGGGGCT	1020
35	GCAGGTCCTG	AGGACCCTGG	TGCAGGAGAA	GGGCACGGAG	CICCICCCC	TGCGCGTGGT	1080
	CACACTGCTC	TACGACCTGG	TCACGGAGAA	GATGTTCGCC	GAGGAGGAGG	CTGAGCTGAC	1140
40	CCAGGAGATG	TCCCCAGAGA	AGCTGCAGCA	GTATCGCCAG	GTACACCTCC	TGCCAGGCCT	1200
. •	GTGGGAACAG	GGCTGGTGCG	AGATCACGGC	CCACCTCCTG	CCCTCCCC	AGCATGATGC	1260
	CCGTGAGAAG	GTGCTGCAGA	CACTGGGCGT	CCTCCTGACC	ACCTGCCGGG	ACCGCTACCG	1320
45	TCAGGACCCC	CAGCTCGGCA	GGACACTGGC	CAGCCTGCAG	GCTGAGTACC	AGGTGCTGGC	1380
	CAGCCTGGAG	CTGCAGGATG	GTGAGGACGA	GGGCTACTTC	CAGGAGCTGC	TGGGCTCTGT	1440
50	CAACAGCTTG	CTGAAGGAGC	TGAGATGAGG	CCCCACACCA	GGACTGGACT	GGGATGCCGC	1500
	TAGTGAGGCT	GAGGGGTGCC	AGCGTGGGTG	GGCTTCTCAG	GCAGGAGGAC	ATCTTGGCAG	1560
	TGCTGGCTTG	GCCATTAAAT	GGAAACCTGA	AGGCCAAAAA	АААААААА	AAAAAAAA	1620
55	AAAA						1624

422

(i) SEQUENCE CHARACTERISTICS:

5

(A) LENGTH: 2003 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

10	GGCACGAGCC	AGCTTGCAGG	AGGAATCGGT	GAGGTCCTGT	CCTGAGGCTG	CTGTCCGGGG	60
	CCGGTGGCTG	CCCTCAAGGT	CCCTTCCCTA	GCTGCTGCGG	TTGCCATTGC	TTCTTGCCTG	120
15	TTCTGGCATC	AGGCACCTGG	ATTGAGTTGC	ACAGCTTTGC	TTTATCCGGG	CTTGTGTGCA	180
15	GGCCCGGCT	GGGCTCCCCA	TCTGCACATC	CTGAGGACAG	AAAAAGCTGG	GICTIGCIGI	240
	GCCCTCCCAG	GCTTAGTGTT	CCCTCCCTCA	AAGACTGACA	GCCATCGTTC	TGCACGGGGC	300
20	TTTCTGCATG	TGACGCCAGC	TAAGCATAGT	AAGAAGTCCA	GCCTAGGAAG	GGAAGGATTT	360
	TGGAGGTAGG	TGGCTTTGGT	GACACACTCA	CTTCTTTCTC	AGCCTCCAGG	ACACTATGGC	420
25	CTGTTTTAAG	AGACATCTTA	ТТТТТСТААА	GGTGAATTCT	CAGATGATAG	GTGAACCTGA	480
23	GTTGCAGATA	TACCAACTTC	TGCTTGTATT	TCTTAAATGA	CAAAGATTAC	CTAGCTAAGA	540
	AACTTCCTAG	GGAACTAGGG	AACCTATGTG	TTCCCTCAGT	GIGGITICCT	GAAGCCAGTG	600
30	ATATGGGGGT	TAGGATAGGA	AGAACTTTCT	CGGTAATGAT	AAGGAGAATC	TCTTGTTTCC	660
	TCCCACCTGT	GTTGTAAAGA	TAAACTGACG	ATATACAGGC	ACATTATGTA	AACATACACA	720
35	CGCAATGAAA	CCGAAGCTTG	CCCCCTCCC	CCTGCTCTTG	CAAAATGCTT	CCAAAGCCAC	780
33	CTTAGCCTGT	TCTATTCAGC	GGCAACCCCA	AAGCACCTGT	TAAGACTCCT	GACCCCCAAG	840
	TGGCATGCAG	CCCCCATGCC	CACCGGGACC	TGGTCAGCAC	AGATCTTGAT	GACTTCCCTT	900
40	TCTAGGGCAG	ACTGGGAGGG	TATCCAGGAA	TOGGCCCCTG	CCCCACGGGC	GTTTTCATGC	960
	TGTACAGTGA	CCTAAAGTTG	GTAAGATGTC	ATAATGGACC	AGTCCATGTG	ATTTCAGTAT	1020
45	ATACAACTCC	ACCAGACCCC	TCCAACCCAT	ATAACACCCC	ACCCCTGTTC	GCTTCCTGTA	1080
43	TGGTGATATC	ATATGTAACA	TTTACTCCTG	TTTCTGCTGA	TTGTTTTTT	AATGTTTTGG	1140
	TTTGTTTTTG	ACATCAGCTG	TAATCATTCC	TGTGCTGTGT	TTTTTATTAC	CCTTGGTAGG	1200
50	TATTAGACTT	GCACTITITT	AAAAAAAGGT	TTCTGCATCG	TGGAAGCATT	TGACCCAGAG	1260
	TGGAACGCGT	GGCCTATGCA	GGTGGATTCC	TTCAGGTCTT	TCCTTTCCTT	CTTTGAGCAT	1320
55	CTTTCCTTTC	ATTOGTCTCC	CCTCTTTCCT	TCTCCAGTTC	AAATTATTGC	AAAGTAAAGG	1380
33	ATCTTTGAGT	AGGTTCGGTC	TGAAAGGTGT	GCCTTTATA	TTTGATCCAC	ACACGTTGGT	1440
	CTTTTAACCG	TGCTGAGCAG	AAAACAAAAC	AGGTTAAGAA	GAGCCGGGTG	GCAGCTGACA	1500
60	GAGGAAGCCG	CTCAAATACC	TTCACAATAA	ATAGTGGCAA	. ТАТАТАТАТА	GTTTAAGAAG	1560

423

	GCTCTCCATT TGGCATCGTT TAATTTATAT GTTATGTTCT AAGCACAGCT CTCTTCTCCT	1620
5	ATTITICATICE TGCAAGCAAC TCAAAATATT TAAAATAAAG TTTACATTGT AGTTATTTTC	1680
,	AAATCTTTGC TTGATAAGTA TTAAGAAATA TTGGACTTGC TGCCGTAATT TAAAGCTCTG	1740
	TIGATITIGI TICCGITIGG ATTITIGGGG GAGGGGAGCA CIGIGITITAT GCIGGAATAT	. 1800
10	GAAGTCTGAG ACCTTCCGGT GCTGGGAACA CACAAGAGTT GTTGAAAGTT GACAAGCAGA	1860
	CTGCGCATGT CTCTGATGCT TTGTATCATT CTTGAGCAAT CGCTCGGTCC GTGGACAATA	1920
15	AACAGTATTA TCAAAGAGAA AAAAAAAAAA AAAAAACTCG NGGGGGGCC CGGTACCCAA	1980
13	TTCGCCCTAT AGTGAGCCNA TTC	2003
20	(2) INFORMATION FOR SEQ ID NO: 172:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 786 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:	
30	GGCACAGCGG CACGAGAAGA CTTTGGTGTT TAAGAGATTA ATGTGTTAGC CAGAACAACT	60
	CATTICTCTA COMGTGTGTA GTCCATTTAT CTTTAAAGAT TTTCTATTGG AATAATTTTG	120
35	AAATTACTTT CTTAGTTTTC TTCATTAAAA ACTAAGAAAA TGCTTTGTTT ATTATGAATT	180
	GCTATTTCTC TTGATTATTA TTCTTGGAGA AAGTCTATCA GACGTAATTC TTCTGATTTG	240
40	CTTCTAGGCT AGAGGAAAAT GTGAAAGATG ACAAATGAAA ATTTCAAAGG TTGTCAGTAG	300
70	TATGACTTCT TTTATCGTTT GTCATTATCA CAAATATATC AACATAGGAC TTTTAAAAGA	360
	TATTTTGTAC ATATTGGGCC TTAGTAGGAT TTTGCATGAA TTTTTTTTTT	420
45	CAGAGAGAAA GAGCAAAGAA ATAACCAAGG GTGATGTACT CGTATTGAAG GTTTACCAAA	480
	TAAGGACTGC TTTTATTATG AACTATAGTC TATATTCTAA GTAAATCAAT TTTTCTATTA	540
50	TGTGTTTTTT GTTCCTGCAG GCAAGATCTC TGAACTTTAT GCAGAGGGTT CTTTTAAAAA	600
	AACAAAGITG AATTITTTTA TITCTTGGAA TATTITTTTT CATTGATTTC TCCCAAGTAG	660

AGCAGATTCA AATCTCCTTT GTACCCTATG TCTTTTTTGT TTTGCTATTA GCTCAGTATT

55 сооттустае аттутестит естадаасса отсаатааат дасааааааа аааааааааа

720

780 786

ACTCGA

424

(2) INFORMATION FOR SEQ ID NO: 173:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1758 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:

	(112)	
	GGGACGAGCC CTGCCCACCT CCTGCAGCCT CCTGCGCCCC GCCGAGCTGG CGGATGGAGC	60
15	TGCGCACGGG GAGCGTGGGC AGCCAGGCGG TGGCGCGGAG GATGGATGGG GACAGCCGAG	120
15	ATGGCGGCGG CGGCAAGGAC GCCACCGGGT CGGAGGACTA CGAGAACCTG CCGACTAGCG	180
	CCTCCGTGTC CACCCACATG ACAGCAGGAG CGATGGCCGG GATCCTGGAG CACTCGGTCA	240
20	TGTACCCGGT GGACTCGGTG AAGACACGAA TGCAGAGTTT GAGTCCAGAT CCCAAAGCCC	300
	AGTACACAAG TATCTACGGA GCCCTCAAGA AAATCATGCG GACCGAAGCT TCTGGAGGCC	360
25	CTTGCGAGGC GTCAACGTCA TGATCATGGG TGCAGGGCCR GCCCATGCCA TGTATTTTGC	420
25	CTGCTATGAA AACATGAAAA GGACTTTAAA TGACGTTTTC CACCACCAAG GAAACAGCCA	480
	CCTAGCCAAC GGTATTITGA AAGCGTTTGT CTGGAGTTAG AAAGTTCTCT TCTTCAACAC	540
30	GTCCCTCCCC AGGGTGTTCC TCCCTGTGAC CCAGCCGCCT CGACTTCGGC CCGCTTGCTC	600
	ACGANTAAAG AACTCAGAGT TGTGTGTGCA ATGCACACCC AGACACACGC ACGCACACAC	660
25	ACGCGCGCG ACACACATGC TTTTTTCTGT TCCCCTCCGC TTTCTGAAGC CTGGGGAGAA	720
35	ATCAGTGACA GAGGTGTTTT GGTTTTATTG TTATGTGGGT TTTCTTTTGT ATTTTTTTTG	780
	TTTGTTTTGT TTTTAAACAT TCAAAAGCAA TTAATGATCA GACATAGGAG AAACCCTGAA	840
40	TAGAAACAAA ACTTTTGAAT GCTGGATTCA AAAAAAAAAA	900
	TTTGAGACTA TTTAAAAACT GGTACAACAG GTCTCTACAA CGCCAAGATC TAACTAAGCT	960
45	TTAAAAGGTC AAGAAGTTTT ATGGCTGACA AAGGACTCGC GCAACGCAGA AGGCCTTTCC	1020
43	CACCTTAAGC TICCGGGGAT CTGGGAATTT TACCCCCATT CTCTTCTGTT TGTCTGAGTC	1080
	TCATCTCTCT GCAAGCAAGG GCTGAAATCA TTTTGTTTGG TTGTTTTGAG GGAGAGAGGC	1140
50	GGGTGGGGG GGTGCAAATC TGCCAGCAGC TCTTACGTAA GGCATGTTTT ATTGGGGAGG	1200
	GCTGAGCTIT TATTTTCTCC TCTCCAGTGG GGTTGGCTTT TATTGTTTCT TGTTTGGGTT	1260
55	TGGAATGGAA ATATGGATAG CAGCATAAAG TACTTTTATT TTGACAAAAT TCATTTTTTT	1320
55	CAACAATGGA GACATAGATT TGACCCACAA TAACTTCTCC CCCTCTCTT TTACTCTGCT	1380
	CAAAAAGCAT CTCTCCTCCC ATTACCCAAC CTTGGTCATA AGTGTGCCTG GCTGGTTTGC	144
60	ACAMAMMET MEMOCRIPHET AAAAATHEEC CATTAGRICA TITATTGAGA TGATCTCTAA	150

WO 98/54963

425

PCT/US98/11422

	AGAGCTATGC CCTGACCTAC CCCTGATTCT ATGACATTGG GGCCCTTCTT TTGCTGAAAC	1560
5	TGCCTTACGT AATGGTTTTA CTCCTTGAAA GAGATTTGAC GGAATCCATT TTATGCCAAG	1620
	TGCTGCCCTG CACTGTTTCT GCAATATGTG GTGTATGCTG TGGTGATCTT GCTGGGAATG	1680
	ATTATAAGTG TGTGTGGGT GGGGGAGTGG GTATTACATG CATTGCTGAA GAGTCAAAAA	1740
10	AAAAAAAAA AAACTCGA	1758
15	(2) INFORMATION FOR SEQ ID NO: 174:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 888 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:	
25	CTGTTAGAAT GCCCAGTTTA CCTGGATGGC AACCCAACAG TGCTCCTGCC CACCTGCCCC	60
	TCAATCCTCC TAGAATTCAG CCCCCAATTG CCCAGTTACC AATAAAAACT TGTACACCAG	120
30	CCCCAGGGAC AGTCTCAAAT GCAAATCCAC AGAGTGASMC ACCACCTCGG GTAGAATTTG	180
	ATGACAACAA TCCCTTTAGT GAAAGTTITC AAGAACGGGA ACGTAAGGAA CGTTTACGAG	240
	AACAGCAAGA GAGACAACGG ATCCAACTCA TGCAGGAGGT AGATAGACAA AGAGCTTTGC	300
35	AGCAGAGGAT GGAAATGGAG CAGCATGGTA TGGTGGGCTC TGAGATAAGT AGTAGTAGGA	360
	CATCTGTGTC CCAGATTCCC TTCTACAGTT CCGACTTACC TTGTGATTTT ATGCAACCTC	420
40	TAGGACCCCT TCAGCAGTCT CCACAACACC AACAGCAAAT GGGGCAGGTT TTACAGCAGC	480
	AGAATATACA ACAAGGATCA ATTAATTCAC CCTCCACCCA AACTTTCATG CAGACTAATG	540
	AGCGAGGCAG GTAGGCCCTC CTTCATTTGT TCCTGATTCA CCATCAATCC CTGTTGGAAG	600
45	CCCAAATTT TCTTCTGTGA AGCAGGGACA TGGAAATCTT TCTGGGACCA GCTTCCAGCA	660
	GTCCCCAGTG AGGCCTTCTT TTACACCTGC TTTACCAGCA GCACCTCCAG TAGCTAATAG	720
50	CAGTCTCCCA TGTGGCCAAG ATTCTACTAT AACCCATGGA CACAGTTATC CGGGATCAAC	780
	CCAATCGCTC ATTCAGTTGT ATTCTGATAT AATCCCAGAG GAAAAAGGGN AAAAAAARA	840
	AMAARAAARA ARAAAGGAGA TGATGATGCA GAATTCCACC AAGGCTCC	888
55		

(2) INFORMATION FOR SEQ ID NO: 175:

60 (i) SEQUENCE CHARACTERISTICS:

426

(A) LENGTH: 2379 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175:

	GGCAGAGCTA	GTGTGGACTC	CATCCCCCTG	GAGTGGGATC	ACGNCTATGA	CCTCAGTCGG	. 60
10	GACCTGGAGT	CTGCAATGTC	CAGAGCTCTG	CCCTCTGAGG	ATGAAGAAGG	TCAGGATGAC	120
	AAAGATTTCT	ACCTCCGGG	AGCTGTTGSC	TTATCAGGGG	ACCACAGTGC	CCTAGAGTCA	180
15	CAGATCCGAC	AACTGGGCAA	AGCCTGGATG	ATAGCCGCTT	TCAGATACAG	CAAACCGAAA	240
13	ATATCATTCG	CAGCAAAACT	CCCACGGGGC	CGGAGCTAGA	CACCAGCTAC	AAAGGCTACA	300
	TGAAACTGCT	GGGCGAATGC	AGTAGCAGTA	TAGACTCCGT	GAAGAGACTG	GAGCACAAAC	360
20	TGAAGGAGGA	AGAGGAGAGC	CTTCCTGGCT	TTGTTAACCT	GCATAGTACC	GAAACCCAAA	420
	CGGCTGGTGT	GATTGACCGA	TGGGAGCTTC	TCCAGGCCCA	GGCATTGAGC	AAGGAGTTGA	480
25	GGATGAAGCA	GAACCTCCAG	AAGTGGCAGC	AGTTTAACTC	AGACTTGAAC	AGCATCTGGG	540
23	CCTGGCTGGG	GGACACGGAG	GAGGAGTTGG	AACAGCTCCA	GCGTCTGGAA	CTCAGCACTG	600
	ACATCCAGAC	CATCGAGCTC	CAGATCAAAA	AGCTCAAGGA	GCTCCAGAAA	GCTGTGGACC	660
30	ACCGCAAAGC	CATCATCCTC	TCCATCAATC	TCTGCAGCCC	TGAGTTCACC	CAGGCTGACA	720
	GCAAGGAGAG	CCGGGACCTG	CAGGATCGCT	TGTSGCAGAT	GAATGGGCGC	TGGGACCGAG	780
35	TGTGCTCTCT	GCTGGAGGAG	TOGCOGGCC	TGCTGCAGGA	TGCCCTGATG	CAGTGCCAGG	840
33	GTTTCCATGA	AATGAGCCAT	GGTTTGCTTC	TTATGCTGGA	GAACATTGAC	AGAAGGAAAA	900
	ATGAAATTGT	CCCTATTGAT	TCTAACCTTG	ATGCAGAGAT	ACTTCAGGAC	CATCACAAAC	960
40	AGCTTATGCA	AATAAAGCAT	GAGCTGTTGG	AATCCCAACT	CAGAGTAGCC	TCTTTGCAAG	1020
	ACATGTCTTG	CCAACTACTG	GTGAATGCTG	AAGGAACAGA	CTGTTTAGAA	GCCAAAGAAA	1080
45	AAGTCCATGT	TATTGGAAAT	CGGCTCAAAC	TICTCTTGAA	GGAGGTCAGT	CGTCATATCA	1140
43	AGGAACTGGA	GAAGTTATTA	GACGTGTCAA	GTAGTCAGCA	GGATTTGTCT	TCCTGGTCTT	1200
	CTGCTGATGA	ACTGGACACC	TCAGGGTCTG	TGAGTCCCAY	ATCAGGAAGG	AGCACCCCAA	1260
50	ACAGACAGAA	AACGCCACGA	GGCAAGTGTA	GTCTCTCACA	GCCTGGACCC	TCTGTCAGCA	1320
	GTCCACATAG	CAGGTCCACA	AAAGGTGGCT	CCGATTCCTC	CCTTTCTGAG	CCARGGCCAG	1380
55	GTCGGTCCGG	CCCCCCCTTC	CTGTTCAGAG	TCCTCCGAGC	AGCTCTTCCC	CTTCAGCTTC	1440
33	TCCTGCTCCT	CCTCATCGGG	CTTGCCTGCC	TTGTACCAAT	GTCAGAGGAA	GACTACAGCT	1500
	GTGCCCTCTC	CAACAACTTT	GCCCGGTCAT	TCCACCCCAT	GCTCAGATAC	ACGAATGGCC	1560
60	CTCCTCCACT	CTGAACTAAG	CAGATGCCAT	CTGCAGAAGT	GCTGGTAGCA	TAAGGAGGAT	1620

	CGGGTCATAA GCAATCOCAA ACTACCAACA AGAGGACCTT GATCTTGGCG AAAGCCMTCG	1680
5	GTGTGGCAGC TTTAGCCTCC TCCAGATCAC ATGTGTGCAA ATTATGGCTT CAGAGGTGGA	1740
J	AGATAAACAG TGACGGGGGA ACAAACAGAC AACAAGAAGG TTTGGAAGAA ATCTGGTTTG	1800
	AGACTCTGAA CCTTAGCACT AAGGAGATTG AGTAAGGACC TCCAAAGTTC CCCGGACTCA	1860
10	TGAATTCTGG GCCCTTGGCC NATTCTGTGC ACAGCCAAGG ACTTCAGTAG ACCATCTGGG	1920
	CASCITITCCC ATGGTGCTGC TCCAACCATC AGATAAATGA CCCTCCCAAG CACCATGTCA	1980
15	GTGTCGTACA ATCTACCAAC CAACCAGTGC TGAAGAGATT TTAGAACCTT GTAACATACA	2040
13	ATTITITAAGA GCTTATATGG CAGCITCCTT TITACCTTGT TTTCCTTTGG GGCATGATGT	2100
	TITAACCTTT GCTTTAGAAG CACAAGCTGT AAATCTAAAA GGCACTTTTT TTTAGAGGTA	2160
20	TAAAGAAAAA CTAGATGTAA TAAATAAGAT CATGGAAGGC TTTATGTGAA AAAAGTTGAA	2220
	TGTTATAGTA AAAAAAAAA ATATTTATGT ATGTACAGTT TGCTAAAGCC AAGTTTTGTT	2280
25	TGTATTGATT TCTTTGCATT TATTATAGAT ATTATAAAAT AAAAAAAAAA	2340
23	TCGAGGGGG GCCCGGTACC CAATTCGCCC TATAGTGAG	2379
30 35	(2) INFORMATION FOR SEQ ID NO: 176: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1348 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:	
40	GOGCOTTCAC GATGCCGGCG GTCAGTGGTC CAGGTCCCTT ATTCTGCCTT CTCCTCCTGC	60
	TCCTGGACCC CCACAGCCCT GAGACGGGGT GTCCTCCTCT ACGCAGGTTT GAGTACAAGC	120
45	TCAGCTTCAA AGGCCCAAGG CTGGCATTGC CTGGGGCTGG AATACCCTTC TGGAGCCATC	180
	ATGGAGGTGA GGGGCAGGG TGGGGACCGC TATGCCCAGG GTCCCTCAAA GTGCTGGAGG	240
	GGCTGTRACT TGGTGGGGAG TGGGTCTGTC ACAGCCATCC TCTGTCCAGG GTGGGGCAAG	300
50	GCCTGGGACA GTGCCAGGCA CCCCAGGACC CCTTCCAGGC TTGTCTCCTG CTCCACCGCC	360
	TCAACACCCC CCACCCCTGC CCAAGCTGTT TCTCCTCTGC CTCTCTNNTT CCCTGCCCCA	420
55	GGACTICTCT CTTCTCCTCT GCCTCTCCTT GGACCCCTGC CCTTCCTCTA CCTCTGACCT	480
	GTGAACACAC AGACACATGC TCACACACTA AGTCCCARGC ACACMSAAAG GCAATGTGGA	540
	CCAGCACAAA CCTCCACTCT CCCGGCTCCA TCCCARCGGG CCTGTGGCTG GCCATGAAAA	600

428

	CTGGGGGCTA	CCTGGAGGGA	AGCATCCTCA	TCCCAGGTGA	GTGGGCACCA	GCCCTTCCCT	660
	GTATGTGTGT	TGTGGGTGGA	AGCAGGCATG	AGAGCATCTT	AGCCCATAGG	TTTGTATTCA	720
5	GGGACTTCCA	AACCCAGACC	TACAAAGAGT	GTGTCTTCTA	CCAGATCTTG	TTCAAAAAAG	780
	GGTTTGTGAT	GATGGAACTA	CACGATAGAG	GGAGTGAGCA	AGAACAATGA	GGATTAGAGT	840
10	GGAGCGTGAA	ATAGTCTAGG	AGCATGGCTT	CCAAAACATA	TGCTGTGAGG	TCTGTCCACC	. 900
10	TGAGAGTTGG	GCCATGGATT	TAATTCTGAG	CCTCTTAGCA	GGCAAAGCAA	AGACAGAAAG	960
	CAGATCGGCT	GTGGATTTCT	GTCTATAAAA	TGTGAGTTCT	TGGCCGGGTG	CGGTGGCTCA	1020
15	CGCCTGTAAT	CCCGCCGCTT	TGGGAGGCCA	GGGCGGATGG	GTCGCGAGGT	CAGGAGGTTG	1080
	GAAACCATCC	TGGCCGGAAT	GGTGAAGCCC	TGACTCTACT	AGAAGTGCAA	AGATTGGCTG	1140
20	GGTGTGGTGG	CGTGCGCCTG	TGGTCCCAGC	TTCTCGGGAG	GCTGAGGCGG	GAGAGTTGCT	1200
20	TGGGCCTGGG	AGGCCGAGGT	TGCGGTGAGC	TGAGATCCTG	CCATTGCACT	TCAGCCTGGG	1260
	CACAGAGCCA	GACTCTGGCT	СААААААА	ААААААААА	ACTCGAGGGG	GCCCGTACC	1320
25	CAATTCGCCG	NATATGATCG	TAAACAAT				1348

30 (2) INFORMATION FOR SEQ ID NO: 177:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1502 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177:

40 60 CTCAAAATAA ATAAATAAAT AAAAATTTGT ATTCCATTGA TTTGGGTAGA CACCAGGAAT GTGCATTTCT AACAAGCTTT CCAGGCGATC CTATAGTAAG TCATCTGTGG ACTACTTTAA 120 180 GAAACTCTTC TATAGAGAAT GGAGTTGGAT TAATAATAGG TGATTTTTTA CACTGGACTG 45 ATTCACAAGA ACCTAAACAG TAGTCCATGA AGCTGCTCAT CTGTGGTAAC TATTTGGCCC 240 CGTCTCACTC TGAAAGCAGC AGGAGATGTT GTTTACTTTG TTTCTATCCC CTTTGTCTGG 300 50 360 AGATTAATTT TGGAATGAAA GTTTTTCTCT CTATGCCATT CCTGGTTCTT TTCCAAAGCC TCATACAAGA GGATTAGGTC ACAATGCATG CATTACCTTT TAAAAGAATG CGATATTGAT 420 ACCGATGCTT ACTITITTT TITTINACTA CITGITTTAT TCCTTCCAGN AAAGTATAGC 480 55 540 CCGCCTTTCT ATAGCATAGT TCTCTTTAGG TGGAATGATT CCTATAAGAT TTCTCATTAT TARATCATGC ATTITTCAAG ATGGAATCAA TMTTTGATTT AATCTAAGCT GATATTCTCA 600 60 TTTGTTAGAA GAACAACCTA CATGCTAGAG AGAGAGGAGG AAATATACCC ACGACCACAC 660

429

	AGCCAGTTAG TATCCAGTTG GTGCTGGACT CCAGCCAGGT GTCCTGCCTC ATGGTAGTTA	720
5	AATGATATAT AGAAAAGGTA AATTTTTAAA GAAATATTTA TTAATATATT CCTATAAAAC	780
	ATTITAAAGG TAACCACATA AAAATGGTTA ATTITTCCAT TCCAAAGTAA ATGCTAAGCA	840
	TGTTTATTAA TGAAGCAGTA CTTCTGATTA GTATATGACA TTCTGAAGTT AATTAAACTC	900
10	ATTGCACTAA ATGTGTCTTC CTTGGTATAG TGGAGGATTT GAGGATTGGA ATATAGAGTA	960
	GAGTGCTTGC TTAAGCCTGG GAGCCCATCT TTATAGCTAT TTGATGTAAG AAAAGAGACA	1020
15	TGGNCCATTT CTAAACTATA TAAGGTGAGT GTGTCTATTC CCAGCAGATA TAAAGGAAAA	1080
	AGGAAACTIT TITGATICCC ACCTTCCCAG CCTCACCTAG CCATCTTCCA GCCTCAAATA	1140
	TAGAGATGTT AGTGCAAGGT CCTGGGCTCT AGGTGATCAT TTCATAAGTC CTTTACAGAT	1200
20	AAAGAAAAAG TAGTGTTTGT ATGTTTGTTT TTAAGTAACC CCAAAACAAA TTTATATTGT	1260
	ATTCAGCAAA ATTGGAATTC AGGTGTTTAA TTTTAGAACA TGAAGTGCCT GCTGTTTAA	1320
25	GCATTGACTT GTATAAAAAG AATTGCATGT CTCCAGTAAG CTTATGGGTT TTCTCATTTT	1380
23	TAGGTATATG GCTTTTAATC ATGTAAAGTG AAACATTAGT TTTCTTGCAT TTTATTACAG	1440
	GTTCTTTGTT GCAATAAAGA TGCTGCTGAA ATTAATTGAA AAAAAAAAAA	1500
30	GA	1502
35	(2) INFORMATION FOR SEQ ID NO: 178:	
55	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1637 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178:	
45	•	60
40	ATTITICTAGE CEACAAGGAE TGAAGTICAG ATCCAAAAGT TEACTIGETA ATTATETICA CAAAAATGGA GAGACTICTE TTAAGCCAGA AGATTITGAT TITACTGTAE TITTETAAAAG	120
		180
50	GGGTATCAAG TCAAGATATA AAGACTGCAG CATGGCAGCC CTGACATCCC ATCTACAAAA	240
	CCAAAGTAAC AATTCAAACT GGAACCTCAG GACCCGAAGC AAGTGCAAAA AGGATGTGTT	300
5.5	TATGCCGCCA AGTAGTAGTT CAGAGTTGCA GGAGAGCAGA GGACTCTCTA ACTITACTTC	360
55	CACTCATTTG CTTTTGAAAG AAGATGAGGG TGTTGATGAT GTTAACTTCA GAAAGGTTAG	200

AAAGCCCAAA GGAAAGGTGA CTATTTTGAA AGGAATCCCA ATTAAGAAAA CTAAAAAAGG

ATGTAGGAAG AGCTGTTCAG GTTTTGTTCM AAGTGATAGC AAAAGAGAAT CTGTGTGTAA

60

420

	TAAAGCAGAT GCTGAAAGTG AACCTGTTGC ACAAAAAAGT CAGCTTGATA GAACTGTCTG	540
	CATTTCTGAT GCTGGAGCAT GTGGTGAGAC CCTCAGTGTG ACCAGTGAAG AAAACAGCCT	600
5	TGTAAAAAAA AAAGAAAGAT CATTGAGTTC AGGATCAAAT TTTTGTTCTG AACAAAAAAC	660
	TTCTGGCATC ATAAACAAAT TTTGTTCAGC CAAAGACTCA GAACACAACG AGAAGTATGA	720
10	GGATACCTTT TTAGAATCTG AAGAAATCCG AACAAAGTA GAAGTTGTGG AAAGGAAAGA	780
	ACATTTGCAT ACTGACATTT TAAAACGTCG CTCTGAAATG GACAACAACT GCTCACCAAC	840
	CAGGAAAGAC TTCACTGAAG ATACCATCCC ACGGAACACA GATAGAAAGA AGGAAAACAA	900
15	GCCTGTATTT TTGCAGCAAA TATAACAAAG AAGCTCTTAG CCCCCCACGA CGTAAAGCCT	960
	TTAAGAAATG GACACCTCCT CGGTCACCTT TTAATCTCGT TCAAGAAACA CTTTTTCATG	1020
20	ATCCATGGAA GCTTCTCATC GCTACTATAT TTCTCAATCG GACCTCAGGC AAAATGGCAA	1080
	TACCTGTGCT TTGGAAGTTT CTGGAGAAGT ATCCTTCAGC TGAGGTAGCA AGAACCGCAG	1140
	ACTGGAGAGA TGTGTCAGAA CTTCTTAAAC CTCTTGGTCT CTACGATCTT CGGGCAAAAA	1200
25	CCATTGTCAA GTTCTCAGAT GAATACCTGA CAAAGCAGTG GAAGTATCCA ATTGAGCTTC	1260
	ATGGGATTGG TGCACCCTGA AGACCACAAA TTAAATAAAT ATCATGACTG GCTTTGGGAA	1320
30	AATCATGAAA AATTAAGTCT ATCTTAAACT CIGCAGCTTT CAAGCTCATC TGTTATGCAT	1380
	AGCTTTGCAC TTCAAAAAAG CTTAATTAAG TACAACCAAC CACCTTTCCA GCCATAGAGA	1440
	TTTTAATTAG CCCAACTAGA AGCCTAGTGT GTGTGCTTTC TTAATGTGTG TGCCAATGGT	1500
35	GGATCTTTGC TACTGAATGT GTTTGAACAT GTTTTGAGAT TTTTTTAAAA TAAATTATTA	1560
	ТТТGACAACA АТССАААААА АААДААААА АААААААААА ААААААААА АААААА	1620
40	AAAAAA AAAAAAA	1637
40		
45	(2) INFORMATION FOR SEQ ID NO: 179:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2911 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179:	
55	GGTGGTTTTT GTTCTGCAAT AGGCGGCTTA GAGGGAGGGG CTTTTTCGCC TATACCTACT	60
	GTAGCTTCTC CACGTATGGA CCCTAAAGGC TACTGCTGCT ACTACGGGGC TAGACAGTTA	120
	CTGTCTCAGC TCTAGGATGT GCGTTCTTCC ACTAGAAGCT CTTCTGAGGG AGGTAATTAA	180
60	AAAACAGTGG AATGGAAAAA CAGTGCTGTA GTCATCCTGT AATATGCTCC TTGTCAACAA	240

WO 98/54963

	TGTATACATT CCTGCTAGGT GCCATATTCA TTGCTTTAAG CTCAAGTCGC ATCTTACTAG	300
5	TGAAGTATTC TGCCAATGAA GAAAACAAGT ATGATTATCT TCCAACTACT GTGAATGTGT	360
	GCTCAGAACT GGTGAAGCTA GTTTTCTGTG TGCTTGTGTC ATTCTGTGTT ATAAAGAAAG	420
	ATCATCAAAG TAGAAATTTG AAATATGCTT CCTGGAAGGA ATTCTCTGAT TTCATGAAGT	480
10	GGTCCATTCC TGCCTTTCTT TATTTCCTGG ATAACTTGAT TGTCTTCTAT GTCCTGTCCT	540
15	ATCTTCAACC AGCCATGGCT GTTATCTTCT CAAATTTTAG CATTATAACA ACAGCTCTTC	600
	TATTCAGGAT AGTGCTGAAG ANGCGTCTAA ACTGGATCCA GTGGGCTTCC CTCCTGACTT	660
	TATTITITGTC TATTGTGGCC TIGACTGCCG GGACTAAAAC TITACAGCAC AACTTGGCAG	720
	GACGTGGATT TCATCACGAT GCCTTTTTCA GCCCTTCCAA TTCCTGCCTT CTTTTCAGAA	780
20	ATGAGTGTCC CAGAAAAGAC AATTGTACAG CAAAGGAATG GACTTTTCCT GAAGCTAAAT	840
	GGAACACCAC AGCCAGAGTT TTCAGTCACA TCCGTCTTGG CATGGGCCAT GTTCTTATTA	900
25	TAGTCCAGTG TTTTATTTCT TCAATGGCTA ATATCTATAA TGAAAAGATA CTGAAGGAAG	960
	GGAACCAGCT CACTGAARGC ATCTTCATAC AGAACAGCAA ACTCTATTTC TTTGGCATTC	1020
	TOTTTAATGG GCTGACTCTG GGCCTTCAGA GGAGTAACCG TGATCAGATT AAGAACTGTG	1080
30	GATTTTTTTA TGGCCACAGT GCATTTTCAG TAGCCCTTAT TTTTGTAACT GCATTCCAGG	1140
	GCCTTTCAGT GGCTTTCATT CTGAAGTTCC TGGATAACAT GTTCCATGTC TTGATGGCCC	1200
35	AGGTTACCAC TGTCATTATC ACAACAGTGT CTGTCCTGGT CTTTGACTTC AGGCCCTCCC	1260
33	TGGAATTTTT CTTGGAAGCC CCATCAGTCC TTCTCTCTAT ATTTATTTAT AATGCCAGCA	1320
	AGCCTCAAGT TCCGGAATAC GCACCTAGGC AAGAAAGGAT CCGAGATCTA AGTGGCAATC	1380
40	TTTGGGAGCG TTCCAGTGGG GATGGAGAAG AACTAGAAAG ACTTACCAAA CCCAAGAGTG	1440
	ATGAGTCAGA TGAAGATACT TTCTAACTGG TACCCACATA GTTTGCAGCT CTCTTGAACC	1500
45	TTATTITCAC ATTITCAGIG TITGTAATAT TTATCTTITC ACTITGATAA ACCAGAAATG	1560
40	TTTCTAAATC CTAATATTCT TTGCATATAT CTAGCTACTC CCTAAATGGT TCCATCCAAG	1620
50	GCTTAGAGTA CCCAAAGGCT AAGAAATTCT AAAGAACTGA TACAGGAGTA ACAATATGAA	1680
	GAATTCATTA ATATCTCAGT ACTTGATAAA TCAGAAAGTT ATATGTGCAG ATTATTTTCC	1740
	TTGGCCTTCA AGCTTCCAAA AAACTTGTAA TAATCATGTT AGCTATAGCT TGTATATACA	1800
55	CATAGAGATC AATTTGCCAA ATATTCACAA TCATGTAGTT CTAGTTTACA TGCCAAAGTC	1860
	TICCCTITIT AACATTATAA AAGCTAGGIT GICTCTIGAA TITIGAGGCC CTAGAGATAG	1920
	TCATTTTGCA AGTAAAGAGC AACGGGACCC TTTCTAAAAA CGTTGGTTGA AGGACCTAAA	1980
60	TACCTGGCCA TACCATAGAT TIGGGATGAT GTAGTCTGTG CTAAATATTT TGCTGAAGAA	2040

	The second of th	2100
	GCAGTTTCTC AGACACAACA TCTCAGAATT TTAATTTTTA GAAATTCATG GGAAATTGGA	
5	TTTTTGTAAT AATCTTTTGA TGTTTTAAAC ATTGGTTCCC TAGTCACCAT AGTTACCACT	2160
J	TGTATTTTAA GTCATTTAAA CAAGCCACGG TGGGGCTTTT TTCTCCTCAG TTTGAGGAGA	2220
	AAAATCTTGA TGTCATTACT CCTGAATTAT TACATTTTGG AGAATAAGAG GGCATTTTAT	2280
10	TITATTAGTT ACTAATTCAA GCTGTGACTA TTGTATATCT TTCCAAGAGT TGAAATGCTG	2340
	GCTTCAGAAT CATACCAGAT TGTCAGTGAA GCTGATGCCT AGGAACTTTT AAAGGGATCC	2400
	TTTCAAAAGG ATCACTTAGC AAACACATGT TGACTTTTAA CTGATGTATG AATATTAATA	2460
15	CTCTAAAAAT AGAAAGACCA GTAATATATA AGTCACTTTA CAGTGCTACT TCACACTTAA	2520
	AAGTGCATGG TATTTTTCAT GGTATTTTGC ATGCAGCCAG TTAACTCTCG TAGATAGAGA	2580
20	AGTCAGGTGA TAGATGATAT TAAAAATTAG CAAACAAAAG TGACTTGCTC AGGGTCATGC	2640
	AGCTGGGTGA TGATAGAAGA GTGGGCTTTA ACTGGCAGGC CTGTATGTTT ACAGACTACC	2700
	ATACTGTAAA TATGAGCTTT ATGGTGTCAT TCTCAGAAAC TTATACATTT CTGCTCTCCT	2760
25	TICTCCTAAG TITCATGCAG ATGAATATAA GGTAATATAC TATTATATAA TICATTTGTG	2820
	ATATCCACAA TAATATGACT GGCAAGAATT GGTGGAAATT TGTAATTAAA ATAATTATTA	2880
30	ААССТААЛАЛ АЛЛАЛАЛАЛА АЛЛАЛАСТССБА С	2911
35	(2) INFORMATION FOR SEQ ID NO: 180:	
	(i) SEQUENCE CHARAÇTERISTICS: (A) LENGTH: 519 base pairs	
	(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180:	
45	GGCACGAGCC CCAGGCCAGC CAGGGCCAGG CCTACTTTGG CCACCCTTAA ATTAGAATGT	60
	GGGGTCAGGG GTCACAGAAA AGCCATTTCT CTGACCTAGT GTTTGGCGTC CGGGAACTCT	120
	GTGCCCAACC TTCAGACCCT GGCAGTCCTC ACTGAGGCCA TTGGCCCAGA GCCCGCCATC	180
50	CCCCGARACC CCCGGGAGCC GCCTGTTGCC ACGTCCACAC CTGCCACACC CTCTGCCGGG	240
	CCCCAGCCCC TCCCAACCGG GACCGTGCTG GTCCCTGGGG GTCCTGCCCC ACCTTGCCTT	300
55		360
	TOCCOCAGGO CTAGGOCTTG GAAGGAGACA GGAGTCTAGG GAGGOTGAAG CCCACTCCCG	420

433

519 TTCATGGCTC TAATAAAAAA AAAAAAAAA AAAACTCGA 5 (2) INFORMATION FOR SEQ ID NO: 181: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 968 base pairs (B) TYPE: nucleic acid 10 (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181: 15 TCCCCTTGGG GCCGGAAAAA GCGGGGTTGG CCTGNCCATT GGTTNTCCAT GCCGCCCGCC 60 CATGCCCCAG TACTAGCCTG CAGTCCCAAT GTAGCCCCTC CCTCYTCCMA GAGCCCYTCM 120 AACCGCCCCG STCANTTGTG ATTTCAGGAG GATTTGATGA AGATGTTAAA GCGAAAGTGG 180 20 AGAACCTTCT CGGGATTTCC AGCCTGGAAA AAACGGACCC TGTTAGGCAA GCACCCTGCA 240 GCCCTCCCTG TCCCCTTCTT CCCCTCCCCT TCYCCCGCCC GTGGAGACAG CTGTTYTCAG 300 25 CAGGGCTCTC CGCAGGGAGG GGGCCGGCTC CTTCCCTGGC AGCAACATCC TTGCCCTTGT 360 CACACAAGTC AGCCTCCATC TGCGCAGCTC TGTGGATGCG CTGCTGGAGG GCAACAGGTA 420 TGTCACTGGC TGGTTCAGCC CCTACCACCG CCAGCGGAAG CTCATCCACC CGGTCATGGT 480 30 TCAGCACATC CAGCCCGCAG CGCTCAGCCT CCTGGCACAG TGGAGCACCC TCGTGCAGGA 540 GCTGGAGGCT GCCCTGCAGC TGGCTTTCTA CCCGGATGCC GTGGAGGAGT GGCTGGAGGA 600 35 AAACGTGCAC CCCAGCCTGC AGCGGCTGCA ARCTCTGCTG CAGGACCTCA GCGAGGTGTC 660 TGCCCCCCG CTGCCACCCA CCAGCCCTGG CAGGGACGTT GCTCAGGACC CCTGAGGGGA 720 GAGCTCATGC CAGGGGCCTC CTGCTGGAGG CTGGGGGGGC TCTGCWYTKY CWWWTGGCCT 780 40 GGGCAATACG GCCCACGTGG GCGTCGTGCC CTCTGGCCCA GCAGTGTCTT GCCCACACTC 840 AGTTCCTGAG GGCCCTGGGC AGCCCCTGGG GGAGAGACTA GAAAACACAG AAGGAAGCAG 900 45 CACAGGGAGA CCCGCTTTGT GATCTGCATG TGTGACACTG ATTCTTTGGA AATAAAGAGT 968 GGAAGCTG 50 (2) INFORMATION FOR SEQ ID NO: 182: (i) SEQUENCE CHARACTERISTICS: 55 (A) LENGTH: 1128 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

	(X1) SEQUENCE DESCRIPTION: SEQ 15 NO. 102.	
	TGTAAAAGTT ATCAGTAATC CTAATTCTTT TCCTGGGTTT TCCTTTTGTC ACTTATTAAT	60
5	CAGTITITGA AAGGACGAAT GAATTTAGAG ATGTACTCTG GAGCAGTATC ATGTTAAACC	120
	AGGGGTATAT TAGAAAAATC ATCCTCATAA TCATTCTGGG AAGTTTTTCC TCCCCAAAAA	180
••	AAGCCATCCT GATGGGTTTT CAAAACCAGA AAAAAGCTCT TAATGAGGAA CAGACCACTG	240
10	GAGTACCCAT GAGCATCTCA GGAAAACTGA GACCCTCGAG AAGCCTTGAT TTCGTGCAAC '	300
	CCCCAAGGTT TCAGAGCCAG CAGCCCAGTG CTGTGGTTGA CAGACGTGGT TTTKTGGRGA	360
15	AAGCAGCCAG AGGCCAGGAA TTTTCAGAGT CGTGAGTCAC GRTYTCCCAC CCAAGATTAG	420
	AGCAMAGATT AGCCATACTG AGATTTGGTA AAATCATTCT GTCTAAGCAA TGGAGGTGTG	480
20	TGCAMACGTG CAGTGCCTGT TCACAGGGGA TGCAGGCAGA TCSYGGGTTT AGGATGGGGR	540
20	AGGCCACCGC ACCCCCYTTC AYTGCTCTGC ACCTGCTCCC TCACGTGGAC ACTGTCCACA	600
	ACTGTGGCTC TCACAGGACA GTTGCCCAAG GAGCTCATAT CTTATTGGAG ATAGGGGGTC	660
25	GTACAGGTGA CATTCATGAG CAGTGTGAGC CGGGTGACAT GGGGGTGTCA ACCCAGCATC	720
	TGTCCAGGAG CTCCTCCTGC AGCGGCTCTG GCAGGTGGCC TGAGGCTCCT TTTTGAGAGA	780
30	GAACTGTTTG GCCTTCCTGT CTCCTCTCCT CTGATCTGTT CTTTCTTGGA ACACCACCCA	840
50	AGAACGTCAC CTCCTCCATC AGATTGTGAG CTCCTGGAGG GCAGGAGCTG TGTCCTTCTA	900
	TICATCTICC TATCCCCAGA ACCTTGCACA GATCCTGGAA TGTGGTAGGT GCTCAGTAAA	960
35	TGTGTGTGA ATAAATGAAT GAATGAATGA ACAAATGAAT GAATTTGCTT ACTTCAAGGC	1020
	AAAAGAACCA TGAAACTGTA TTTRGAGTTT CTATGTTATA GCAGTCAGCA AATCCTATTA	1080
40	AATACTITGT GTTTCCAAGC AAAAAAAAAA AAAAAAAAA AAACTCGA	1128
	(2) INFORMATION FOR SEQ ID NO: 183:	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2276 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:	
55	CCGCGGCGTC TGACCTCATG GCGTAGAGCC TAGCAACAGC GCAGGCTCCC AGCCGAGTCC	60
JJ	GTTATGGCCG CTGCCGTCCC GAAGAGGATG AGGGGGCCAG CACAAGCGAA ACTGCTGCCC	120
	GGGTCGGCCA TCCAAGCCCT TGTGGGGTTG GCGCGGCCGC TGGTCTTGGC GCTCCTGCTT	180
60	GTGTCCGCCG CTCTATCCAG TGTTGTATCA CGGACTGATT CACCGAGCCC AACCGTACTC	240

	AACTCACATA TTTCTACCCC AAATGTGAAT GCTTTAACAC ATGAAAACCA AACCAAACCT	300
	TCTATTTCCC AAATCAGCAC CACCCTCCCT CCCACGACGA GTACCAAGAA AAGTGGAGGA	360
5	GCATCTGTGG TCCCTCATCC CTCGCCTACT CCTCTGTCTC AAGAGGAAGC TGATAACAAT	420
	GAAGATCCTA GTATAGAGGA GGAGGATCTT CTCATGCTGA ACAGTTCTCC ATCCACAGCC	480
10	AAAGACACTC TAGACAATGG CGATTATGGA GAACCAGACT ATGACTGGAC CACGGGCCCC	540
	AGGGACGACG ACGAGTCTGA TGACACCTTG GAAGAAAACA GGGGTTACAT GGAAATTGAA	600
	CAGTCAGTGA AATCTTTTAA GATGCCATCC TCAAATATAG AAGAGGAAGA CAGCCATTTC	660
15	TTTTTCATC TTATTATTTT TGCTTTTGC ATTGCTGTTG TTTACATTAC ATATCACAAC	720
	AAAAGGAAGA TTTTTCTTCT GGTTCAAAGC AGGAAATGGC GTGATGGCCT TTGTTCCAAA	780
20	ACAGTGGAAT ACCATCGCCT AGATCAGAAT GTTAATGAGG CAATGCCTTC TTTGAAGATT	840
	ACCAATGATT ATATTTTTTA AAGCACTGTG ATTTGAATTT GCTTATGTAA TITTATTTGC	900
	TTGACTTTTT ATATGATATT GTGCAAATGT TTGCCATAGG CAATTGGTAC TTAAATGAGA	960
25	GGTGAGTCTC TCTTTTGCCT TGGTGCTTTG GAAATTAAAT GTCACAAACG AGTATATAAT	1020
	TTTTTATCTG TACTTTAGA GCTGAGTTTA ATCAGGTGTC CAAAATGTGA GTTAAACATT	1080
30	ACCTTATATT TACACTGTTA GTTTTTATTG TTTTAGATTT ATTATGCTTC TTCTGGAAGT	1140
	ATTAGTGATG CTACTTTTAA AAGATCCCAA ACTTGTAACT AAATTCTGAC ATATCTGTTA	1200
	CTGCTGACTC ACATTCATTC TCCGCCATTC AAATACTATT TTTTATCCAC ATTTTTTTTT	1260
35	GTTCCCAAAC TGTAATGTAC AAGGATATGT GTGATAATGC TTTGGATTTG AGTAATATTT	1320
	TTTTTTCTTC CAAGAAAACT GCTTTGGATA TTTTTAGATA ATTTAAACAT AATTTAGGAT	1380
40	AATGATATTG CTCAATCTGA CCACAATTTT AGGTAAAACA TTAAATGTGT CAGAAATCTT	1440
	GGCAACAGAG ACTCTGCAGC TTGCAGTGGA CATAGATAAA ATGTTACAGA GATACTATTT	1500
	TTTTGGTTGG AATTACTATA TTAAATTTAG AAGCAGAAAC TGGTAAAATG TTAAATACAT	1560
45	GTACAATTGC TITTAGTTAG CAATTGATTG TAGCATGGGT TCCTCCAAGG TITCAAGCAA	1620
	TGGGCAGAGT TTAAAATTAT ATCAGATTCG TTTACTTCGT TTATTATTTT ACAGTAAATT	1680
50	TGAATAAATC TTAGGGGTCA TTATCACTTA AATAATACTG TACCTAGGTC TTTCAAATTA	1740
	AAATTATACC TGAATGAAGT TGTTTGTATA CATAAAGGAT ATTTGTGTAC AATTACCTTT	1800
	TITCCCCCAC ACTIGITITIC TITGITITIG TITTITATGG CAACTGGAAA GTATITACTA	1860
55	TGGGATTCAT TTATGTCTGT CTTTCTATCA TAAAGAATTG ATCAATATGT AAATATGTGA	1920
	TTTGAACCAT GGTTGACTTA CAAGTGTCAC TACAGCTTTT TAGAAAACAT AGCCCTAATA	1980
60	THE TOTAL OF THE T	2040

	GCCGTCCATC CTGTCTCTTG GGCGGACAGT GTACTTTCCT AATAGGGAAG GGAAGCACAA	2100
		2160
5	TOGANATACC CCTGANCCGT TTTATTGCAG TAATTTTTTT CATATCTGAN ACTATTATTT	2160
,	AATATTITGA ATAAGATTIT AAAAAATAAA TOGCAAAGAT ATAAATCTAA AAAAAAAAA	2220
	АААААА ААААААААА ААААААААА ААААААААА АААА	2276
10		
10		
	(2) INFORMATION FOR SEQ ID NO: 184:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2500 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184:	60
	TCCAAGCTAC GCCACTCGGG CTGGGGCGTT GGGAGCGGGA GTGCAGAGCG TGGTCGTGGC	60
25	GGCGGCGGTG AGAAGAGCGA GGCGKAGGAG GGGGTGCCAT GGCCGGGCAG CAGTTCCAGT	120
	ACGATGACAG TGGGAACACC TTCTTCTACT TCCTCACCTC CTTCGTGGGG CTCATCGTGA	180
	TCCCGGCGAC ATACTACCTC TGGCCCCGAG ATCAGAATGC CGAGCAAATT CGATTAAAGA	240
30	ATATCAGAAA AGTATATGGA AGGTGTATGT GGTACGTTTA CGGTTATTAA AACCCCAGCC	300
	AAATATTATT CCTACAGTAA AGAAAATAGT TCTGCTTGCA GGATGGGCAT TGTTCTTATT	360
35	CCTTGCATAT AAAGTTTCCA AAACAGACCG AGAATACCAA GAATACAATC CTTATGAAGT	420
	ATTAAATTTG GATCCTGGAG CCACAGTAGC AGAAATTAAA AAACAATATC GTTTGCTGTC	480
	ACTTAAATAT CATCCAGATA AAGGAGGTGA TGAGGTTATG TTCATGAGGA TAGCAAAAGC	540
40	TTATGCTGCT TTAACGGATG AAGAGTCCCG GAAAAATTGG GAAGAATTTG GAAATCCAGA	600
	TGGGCCTCAA GCCACAAGCT TTGGAATTGC CCTGCCAGCT TGGATAGTTG ACCAGAAAAA	660
45	TTCAATTCTG GTTTTACTTG TATATGGATT GGCATTTATG GTTATCCTTC CAGTTGTTGT	720
	GGGCTCTTGG TGGTATCGCT CAATACGCTA TAGTGGAGAC CAGATTCTAA TACGSACAAC	780
	ACAGATTTAT ACATACTTTG TTTATAAAAC CCGAAATATG GATATGAAAC GTCTTATCAT	840
50	GGTTTTGGST GGAGCTTCTG AATTTGATCC TCAGTATAAT AAAGATGCCA CAAGCAGACC	900
	AACGGATAAT ATTCTAATAC CACAGCTAAT CAGAGAAATT GGCAGCATTA ATTTAAAGAA	960
55	GAATGAGCCT CCACTTACCT GCCCATATAG CCTGAAGGCC AGAGTTCTTT TACTGTCTCA	1020
	TCTTGCTAGA ATGAAAATTC CTGAGACCCT TGAAGAAGAT CAGCAATTCA TGCTAAAAAA	1080
	GTGTCCTGCC CTACTTCAAG AAATGGTTAA TGTAATCTGC CAACTAATAG TAATGGCCCG	1140

60

-	GAACCGTGAA GAAAGGGAGT TTCGTGCTCC AACTTTGGCA TCCCTAGAAA ACTGCATGAA	1200
	GCTTTCTCAG ATGGCCGTTC AGGGACTTCA GCAATTTAAG TCTCCCCTTC TGCAGCTCCC	1260
5	TCATATTGAA GAGGACAATC TTAGACGGGT TTCTAATCAT AAGAAGTATA AAATTAAAAC	1320
	TATCCAGGAT TTGGTGAGTT TAAAAGAATC AGATCGTCAC ACTCTACTGC ACTTCCTTGA	1380
10	AGATGAAAAA TATGAAGAGG TTATGGCTGT CCTTGGGAGT TTTCCATATG TGACCATGGA	. 1440
10	TATAAAATCA CAGGTGTTAG ATGATGAAGA TAGCAACAAC ATCACAGTAG GATCCTTAGT	1500
	TACAGTGTTG GTTAAGTTGA CAAGGCAAAC AATGGCTGAA GTATTTGAAA AGGAGCAGTC	1560
15	CATCTGTGCT GCAGAGGAAC AGCCAGCAGA AGATGGGCAG GGTGAAACTA ACAAGAACAG	1620
	GACAAAAGGA GGATGGCAAC AGAAGAGTAA AGGACCCAAG AAAACTGCTA AATCAAAAAA	1680
20	AAAGAAACCT TTAAAAAAAA AACCTACACC TGTGCTATTA CCACAGTCAA AGCAACAGAA	1740
20	ACAAAAGCAG GCAAATGGAG TCGTTGGGAA TGAAGCTGCA GTAAAGGAAG ATGAAGAAGA	1800
	AGTITICAGAT AAGGGCAGTG ATTCTGAAGA AGAAGAAACC AATAGAGATT CCCAAAGTGA	1860
25	GAAAGATGAT GGTAGTGACA GAGACTCTGA TAGAGAGCAA GATGAAAAAC AAAACAAAGA	1920
	TGATGAAGCA GAGTGGCAAG AATTACAACA AAGCATACAG CGAAAAGAGA GAGCTCTATT	1980
30	GGAAACCAAA TCAAAAATAA CACATCCTGT GTATAGCCTT TACTTTCCTG AGGAAAAACA	2040
50	AGAATGGTGG TGGCTTTACA TTGCAGATAG GAAGGAGCAG ACATTAATAT CCATGCCATA	2100
	TCATGTGTGT ACGCTGAAAG ATACAGAGGA GGTAGAGCTG AAGTTTCCTG CACCAGGCAA	2160
35	GCCTGGAAAT TATCAGTATA CTGTGTTTCT GAGATCAGAC TCCTATATGG GTTTGGATCA	2220
	GATTAAACCA TTGGAAGTTK GGAAGTTCAT GAGGCTGAAG CCTGTGCCAG AAAATCACCC	2280
40	ACAGTGGGAT ACAGCAATAG AGGGGGATGA AGACCAGGAG GACAGTGAGG GCTTTGAAGA	2340
	TAGCTTTGAG GGAGGAAGAG GGACGGAGGA AGGAAGGTGG TGGACTTAAG GCAGTTACTC	2400
	TGGAATGGGA CCCACAGTGT TTTGCACCAT ATTTTGGCAA TTTTTTTTGC CCGTTTTTNG	2460
45	GAAGTGTTTT CCNINAANCC CAGGAACCAT TACAGAACCG	2500

50 (2) INFORMATION FOR SEQ ID NO: 185:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1337 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:

PCT/US98/11422

	TCTCCCTGGC GTTTGGTCAC CTCTGCTTCA TTCTCCACCG CGCCTATGGT CCCTCTTGGA	120
	GCCAGCGTGG CGGGCCTGGC GGCTCCCGGG TGGTGAGAGA GCGGTCCGGG AACGATGAAG	180
5	GCCTCGCAGT GCTGCTGCTG TCTCAGCCAC CTCTTGGCTT CCGTCCTCCT CCTGCTGTTG	240
	CTGCCTGAAC TAAGCGGGYC CCTGGMAGTC CTGCTGCAGG CAGCCGAGGC CGCGCCAGGT	300
10	CTTGGGCCTC CTGACCCTAG ACCACGGACA TTACCGCCGC TGCCACCGGG CCCTACCCCT	360
	GCCCAGCAGC CGGGCCGTGG TCTGGCTGAA GCTGCGGGGC CGCGGGGCTC CGAGGGAGGC	420
	AATGGCAGCA ACCCTGTGGC CGGGCTTGAG ACGGACGATC ACGGAGGGAA GGCCGGGGAA	480
15	GCCTCGGTGG GTGGCGGCCT TGCTGTGAGC CCCAACCCTG GCGACAAGCC CATGACCCAG	540
	CGGGCCCTGA CCGTGTTGAT GGTGGTGAGC GGCGCGGTGC TGGTGTACTT CGTGGTCAGG	600
20	ACGGTCAGGA TGAGAAGAAG AAACCGAAAG ACTAGGAGAT ATGGAGTTTT GGACACTAAC	660
	ATAGAAAATA TOGAATTGAC ACCTTTAGAA CAGGATGATG AGGATGATGA CAACACGTTG	720
	TTTGATGCCA ATCATCCTCG AAGATAAGAA TGTGCCTTTT GATGAAAGAA CTTTATCTTT	780
25	CTACAATGAA GAGTGGAATT TCTATGTTTA AGGAATAAGA AGCCACTATA TCAATGTTGG	840
	GGGGGTATTT AAGTTACATA TATTTTAACA ACCTTTAATT TGCTGTTGCA ATAAATACCG	900
30	TATCCTTTTA TTATATCTTT ATATGTATAG AAGTACTCTR TTAATGGGCT CAGAGATGTT	960
	GGGGATAAAG TATACTGTAA TAATTTATCT GTTTGAAAAT TACTATAAAA CGGTGTTTTC	1020
25	TGATCGGTTT TTGTTTCCTG CTTACCATAT GATTGTAAAT TGTTTTATGT ATTAATCAGT	1080
35	TAATGCTAAT TATTTTTGCT GATGTCATAT GTTAAAGAGC TATAAATTCC AACAACCAAC	1140
	TOGTGTGTAA AAATAATTTA AAATTTCCTT TACTGAAAGG TATTTCCCAT TTTTGTGGGG	1200
40	ARARGARGCC ARATTTATTA CTTTGTGTTG GGGTTTTTAR ARTATTARGA ARTGTCTARG	1260
	TTATTGTTTG CAAAACAATA AATATGATTT TAAATTCTCT TAAAAAAAAA AAAAAAAACC	1320
15	CCGGGGGGGG GCCCGGN	1337

(2) INFORMATION FOR SEQ ID NO: 186:

50 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 941 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186:

GGCACGAGCC TGGACGCAGC AGCCACCGCC GCGTCCCTCT CTCCACGAGG CTGCCGGCTT

439

	AGGACCCCCA GCTCCGACAT GTCGCCCTCT GGTCGCCTGT GTCTTCTCAC CATCGTTGGC	120
	CTGATTCTCC CCACCAGAGG ACAGACGTTG AAAGATACCA CGTCCAGTTC TTCAGCAGAC	180
5	TCAACTATCA TGGACATTCA GGTCCCGACA CGAGCCCCAG ATGCAGTCTA CACAGAACTC	240
	CAGCCCACCT CTCCAACCCC AACCTGGCCT GCTGATGAAA CACCACAACC CCAGACCCAG	300
	ACCCAGCAAC TGGAAGGAAC GGATGGGCCT CTAGTGACAG ATCCAGAGAC ACACAAGAGC .	360
10	ACCAAAGCAG CTCATCCCAC TGATGACACC ACGACGCTCT CTGAGAGACC ATCCCCAAGC	420
	ACAGACGTCC AGACAGACCC CCAGACCCTC AAGCCATCTG GTTTTCATGA GGATGACCCC	480
15	TTCTTCTATG ATGAACACAC CCTCCGGAAA CGGGGGCTGT TGGTCGCAGC TGTGCTGTTC	540
	ATCACAGGCA TCATCATCCT CACCAGTGGC AAGTGCAGGC AGCTGTCCCG GTTATGCCGG	600
	AATCATTGCA GGTGAGTCCA TCAGAAACAG GAGCTGACAA CCYGCTGGGC ACCCGAAGAC	660
20	CAAGCCCCCT GCCAGCTCAC CGTGCCCAGC CTCCTGCATC CCCTCGAAGA GCCTGGCCAG	720
	AGAGGGAAGA CACAGATGAT GAAGCTGGAG CCAGGGCTGC CGGTCCGAGT CTCCTACCTC	780
25	CCCCAACCCT GCCCGCCCCT GAAGGCTACC TGGCGCCTTG GGGGCTGTCC CTCAAGTTAT	840
	CTCCTCTGYT AAGACAAAAA GTAAAGCACT GTGGTCTTTG CAAAAAAAAA AAAAAAAAAA	900
	а ругоалалал алалалала алалалала алалалала	941
30		
35	(2) INFORMATION FOR SEQ ID NO: 187:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 654 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:	
45	GAATTCGGCA CGAGGCAGCT TGTGCTTTAA AGGAGGTGTT CAAAGCATGT CTGAGCAGAG	60
70	ACTITIGGG TOTGITITAA TTAATACITI AAAATAATIC ATATITAAAA TATCARATGI	120
	TTCCATAAAG AGGAGGATGT TTAAATGCCT CCAGACTACA TTCCTTTTTA TTSCTTGATT	180
50	TTACCTGGGA GTCCAAAGTT CAATTCCCAT AAAGCAAGCG TTTTATTTGT CACTTTCAAT	24
	ATACATCCGA TIGCCATGCT TAAGATGCAA TATGGGCTGC GGAAATAGGT TAACCCACAG	30
55	GCTCCCAGGG CCCAGTGTAG AAGGTGAGAG ATTCGTGTAA AATGATTCAA ATAAAAGGAA	36
23	GACCCTGGCC GGGTGCCGTA RCTCACGCCT GTAATCCCAG CACTTTGGGA GGCCGAAGCG	42
	AGTGGATGAC GAGGTTAGGA GTTGGAGACC AGCCTGGCCA ACATCGTGAA ACCCCGTCTC	48

TACTAAAAAT ACAAAAATTA GCCGGGCATG GTGGCAGGCA CCTGTAATCC TAGCTAGTTG

60

	GGAGGCTGAG GCAGGAGAAT COTTTGAATC TGGGAGTTGG AGGTTGTCAG TGAGCTGAGA	600
-	TCGCGCCACA GCACTCCAGC CTGGGTGACA GGGTGAGACT CTGTCTCAAA NAGA	654
3		
10	(2) INFORMATION FOR SEQ ID NO: 188:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1848 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:

GAAACTOGAC CGGAGAACCG GAGCGAAGCG AAGCGGAAGC CCGGAATGAG GCCGGACTGG	60
AAAGCCCGAG CGGGCCAGG CGGGCCTCCC CAAAAGCCTG CCCCTTCATC CCAGCGGAAA	120
CCGCCGGCCC GGCCGAGCGC GGCGGCCGCT GCGATTGCAG TCGCGGCGGC GGAGGAAGAG	180
AGACGGCTCC GGCAGCGGAA CCGCCTGAGG CTGGAGGAGG ACAAACCGGC CGTGGAGCGG	240
TECTTGGAGG AGCTGGTCTT CGGCGACGTC GAGAACGACG AGGACGCGTT GCTGCGGCGT	300
CTGCGAGGCC CGAGGGTTCA AGAACATGAA GACTCGGGTG ACTCAGAAGT GGAGAATGAA	360
GCAAAAGGTA ATTTTCCACC TCAAAAGAAG CCAGTTTGGG TGGATGAAGA AGATGAAGAT	420
GAGGAAATGG TTGACATGAT GAACAATCGG TTTCGGAAGG ATATGATGAA AAATGCTAGT	480
GAAAGTAAAC TTTCGAAAGA CAACCTTAAA AAGAGACTTA AAGAAGAATT CCAACATGCC	540
ATGGGAGGAG TACCTGCCTG GGCAGAGACT ACTAAGCGGA AAACATCTTC AGATGATGAA	600
AGTGAAGAGG ATGAAGATGA TTTGTTGCAA AGGACTGGGA ATTTCATATC CACATCAACT	660
TCTCTTCCAA GAGGCATCTT GAAGATGAAG AACTGCCAGC ATGCGAATGC TGAACGTCCT	72 0
ACTGITGCTC GGATCTCCAT CTGTGCAGTT CCATCCCGGT GCACAGATTG TGATGGTTGC	780
TGGGATTAGA TAATGCTGTA TCACTATTTC AGGTTGATGG GAAAACAAAT CCTAAAATTC	840
AGAGCATCTA TITGGAAAGG TITCCAATCT TTAAGGCTTG TITTAGTGCT AATGGGGAAG	900
AAGTTTTAGC CACGAGTACC CACAGCAAGG TTCTTTATGT CTATGACATG CTGGCTGGAA	960
AGTTAATTCC TGTGCATCAA GTGAGAGGTT TGAAAGAGAA GATAGTGAGG AGCTTTGAAG	1020
TCTCCCCAGA TGGGTCCTTC TTGCTCATAA ATGGCATTGC TGGATATTTG CATTTGCTAG	1080
CAATGAAGAC CAAAGAACTG ATTOGAAGCA TGAAAATTAA TGGAAGGGTT GCAGCATCCA	1140
CATTCTCTC AGATAGTAAG AAAGTATACG CCTCTTCGGG GGATGGAGAA GTTTATGTTT	1200
GGGATGTGAA CTCAAGGAAG TGCCTTAACA GATTTGTTGA TGAAGGCAGT TTATATGGAT	1260

441

	TAAGCATTGC CACATCTAGG AATGGACAGT ATGTTGCTTG TGGTTCTAAT TGTGGAGTGG	1320
	TARATATATA CARTCARGAT TCTTGTCTCC ARGARACARA CCCARAGCCA ATRARAGCTA	1380
5	TAATGAACTT GGTTACAGGT GTTACTTCTC TGACCTTCAA TCCTACTACA GAAATCTTGG	1440
	CAATTGCTTC AGAAAAAATG AAAGAAGCAG TCAGATTGGT TCATCTTCCT TCCTGTACAG	1500
	TATTTTCAAA CTTCCCAGTC ATTAAAAATA AGAATATTTC TCATGTTCAT ACCATGGATT	1560
10	TITCTCCGAG AAGTGGATAC TITGCCTTGG GGAATGAAAA GGGCAAGGCC CTGATGTATA	1620
	GGTTGCACCA TTACTCAGAC TTCTAAAGAG ACTATTTGAA GTCCAGTTGA GTCACAAGAG	1680
15	AAGCCTGTCT TGATATATCA TCTCAGAAAC TTTCCTGAAT ATGTGATAAT ATATGGAAAA	1740
	TGATTTATAG ATCCAGCTGT GCTTAAGAGC CAGTAATGTC TTAATAAACA TGTGGCAGCT	1800
20	тттотттоаа аааааааааа аааааааааа аааааааа	1848
20		

(2) INFORMATION FOR SEQ ID NO: 189:

25

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1146 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

30 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:

AAAAAAAACC CAGGGGAACN TTGGGGGCCG CTTINNNTTC CCCCTCCAGG CCATTGGGGA 60 ATTCTTCAAG TTAATCCTGC TTTGCTCTTG GCCAACAGGG CTTGTAGGGG GGAGAGACCC 120 AGGATCATCA AGGGGTTCGA GTGCAAGCCT CACTCCCAGC CCTGGCAGGC AGCCCTGTTC 180 GAGAAGACGC GGCTACTCTG TGGGGCGACG CTCATCGCCC CCAGATGGCT CCTGACAGCA 240 GCCCACTGCC TCAAGCCCCG CTACATAGTT CACCTGGGGC AGCACAACCT CCAGAAGGAG 300 GAGGGCTGTG AGCAGACCCG GACAGCCACT GAGTCCTTCC CCCACCCCGG CTTCAACAAC 360 AGCCTCCCCA ACAAAGACCA CCGCAATGAC ATCATGCTGG TGAAGATGGC ATCGCCAGTC TCCATCACCT GGGCTGTGCG ACCCCTCACC CTCTCCTCAC GCTGTGTCAC TGCTGGCACC 480 AGCTGYCTCA TTTCCGGCTG GGGCAGMACG TCCAGCCCCC AGTTACGCCT GCCTCACACC TTGSGATGCG CCAACATCAC CATCATTGAG CACCAGAAGT GTGAGAACGC CTACCCCGGC 600 AACATCACAG ACACCATGGT GTGTGCCAGC GTGCAGGAAG GGGGCAAGGA CTCCTGCCAG 660 GGTGACTCCG GGGCCCCTCT GGTCTGTAAC CAGTCTCTTC AAGGCATTAT CTCCTGGGGC 720 CAGGATCCGT GTGCGATCAC CCGAAAGCCT GGTGTCTACA CGAAAGTCTG CAAATATGTG 780 GACTGGATCC AGGAGACGAT GAAGAACAAT TAGACTGGAC CCACCCACCA CAGCCCATCA 840

442

	CCCTCCATTT CCACTTGGTG TTTGGTTCCT GTTCACTCTG TTAATAAGAA ACCCTAAGCC	900
_	AAGACCCTCT ACGAACATTC TTTGGGCCTC CTGGACTACA GGAGATGCTG TCACTTAATA	960
5	ATCAACCTGG GGTTCGAAAT CAGTGAGACC TGGATTCAAA TTCTGCCTTG AAATATTGTG	1020
	ACTOTOGGAA TGACAACACC TGGTTTGTTC TCTGTTGTAT CCCCAGCCCC AAAGACAGCT	1080
10	CCTGGCCATA TATCAAGGTT TCAATAAATA TTTGCTAAAT GAAAAAAAAA AAAAAAAAAA	1140
	ACTCGA	114

15

20

30

40

45

50

55

(2) INFORMATION FOR SEQ ID NO: 190:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 906 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:

ACTCCCTCAC CCAGGTCCCA GCCCTGGGAA CCACCTACCG TGAGCCCTTT TGCAGATATA 60 GACTCATTTC ATCCTCAGAT GGTCCTTCAA GGTAGGTACT TTAGTCCCAT TTTAGAGATG AGACGATTGA GGCCAGAGGG GTGNNGTAAC TTGCCTGGGG GCTCACGAGC ACAAAAGGAG 180 CCGAGGCAGG ATCTGACCCT TGTTCTCTGG CCTCACTGCC CTCACTTTGC CATGACCCGA 240 AGTTATGTCC CTACAAAGCA ATGCATGGTC CAAGGYTCTT TTTATTGTAT TTTTATTTTT 300 AAGGGTCCTG TTCAAAACTG GTGTGAGCTC TGAGGAGTCC TGAACCCTGG GTGCAGCATC 360 CTAGCATCCT GGGAGTCCTT TTCTGCCCAC ACTGAGCTGG GCTCCTCGAG GGGTGGGGCT 420 GCTGTCCCTG GAAGCCTGGC AGCAGCACTG TATCGGGTTG GCTGAAGCTG ARCGCCGTGG 480 GGTGCAGGGC TCCMGGAATC CCCGTTTGGC TGAAGGGGTT CCCTGTAGCC MGGGATGTTT 540 ATGAGGTCTC TCTGATGCCC CAGGCGCAGG ACATGTGTGC GGGTGGAGAA AAGCAGGCCC 600 TTTCAGTGCC AGCTCCACTC AATTTCTATG TGGACCAAGA ACGATAAACT TAAAAAATTT 660 TTTTTCCTAA GGTATCTTCA GAATATGGTG TATTTTTATG TGGAAAAGAA AAGTTATGAA 720 GGCAGCTGTT ACTITAAGAG AAAATTCATT AAAAGTCCTC GAGGTATGAA GATGACGGCG 780 TGCTTCTCAA TCATTTTGGC ATAACTTGAT TGTGGCTGTA ATTTTTTTTT TTTTTTTTGT 840 900 906 **ACTCGA**

5

(2) INFORMATION FOR SEQ ID NO: 19	121	INFORMATION	FOR	SEO	ID	NO:	191
-----------------------------------	-----	-------------	-----	-----	----	-----	-----

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1941 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:	
	CTTCAGCTGA AGCCCAGGGA CCCCTTTTCC ACCCTGGGCC CCAATGCCGT CCTTTCCCCG	60
15	CAGAGACTGG TCTTGGAAAC CCTCAGCAAA CTCAGCATCC AGGACAACAA TGTGGACCTG	120
13	ATTCTGGCCA CACCCCCTT CAGCCGCCTG GAGAAGTTGT ATAGCACTAT GGTGCGCTTC	180
	CTCAGTGACC GAAAGAACCC GGTGTGCCGG AGATGGCTGT GGTACTGCTG GCCAACCTGG	240
20	CTCAGGGGA CAGCCTGGCA GCTCGTGCCA TTGCAGTGCA GAAGGGCAGT ATCGGCAACC	300
	TCCTGGGCTT CCTAGAGGAC AGCCTTGCCG CCACACAGTT CCAGCAGAGC CAGGCCAGCC	360
25	TCCTCCACAT GCAGAACCCA CCCTTTGAGC CAAYTAGTGT GGACATGATG CGGCGGGCTG	420
23	CCCGCGCGCT GCTTGCCTTG GCCAAGGTGG ACGAGAACCA CTCAGAGTTT ACTCTGTACG	480
	AATCACGGCT GTTGGACATC TCGGTATCAC CGTTGATGAA CTCAKTGGTT TCACAAGTCA	540
30	TTTGTGATGT ACTGTTTTTG NATTGGCCAG TCATGACAGC CGTGGGACAC CTCCCCCCC	600
	CGIGIGIGIG TGCGIGIGIG GAGAACITAG AAACIGACIG TIGCCCITTA TITAIGCAAA	660
35	ACCACCTCAG AATCCAGTTT ACCCTGTGCT GTCCAGCTTC TCCCTTGGGA AAAAGTCTCT	720
	CCTGTTTCTC TCTCCTCCTT CCACCTCCCC TCCCTCCATC ACCTCACGCC TTTCTGTTCC	780
	TTGTCCTCAC CTTACTCCCC TCAGGACCCT ACCCCACCCT CTTTGAAAAG ACAAAGCTCT	840
40	GCCTACATAG AAGACTTTTT TTATTTTAAC CAAAGTTACT GTTGTTTACA GTGAGTTTGG	900
	GGAAAAAAA TAAAATAAAA ATGGCTTTCC CAGTCCTTGC ATCAACGGGA TGCCACATTT	960
45	CATAACTGTT TTTAATGGTA AAAAAAAAA AAAAAAATAC AAAAAAAAAT TCTGAAGGAC	1020
	AAAAAAGGTG ACTGCTGAAC TGTGTGTGGT TTATTGTTGT ACATTCACAA TCTTGCAGGA	1080
	GCCAAGAAGT TOGCAGTTGT GAACAGACCC TGTTCACTGG AGAGGCCTGT GCAGTAGAGT	1140
50	GTAGACCCTT TCATGTACTG TACTGTACAC CTGATACTGT AAACATACTG TAATAATAAT	1200
	GTCTCACATG GAAACAGAAA ACGCTGGGTC AGCAGCAAGC TGTAGTTTTT AAAAATGTTT	1260
55	TTAGTTAAAC GTTGAGGAGA AAAAAAAAAA AGGCTTTTCC CCCAAAGTAT CATGTGTGAA	1320
	CCTACAACAC CCTGACCTCT TTCTCTCCTC CTTGATTGTA TGAATAACCC TGAGATCACC	
	TCTTAGAACT GGTTTTAACC TTTAGCTGCA GCGNCTACGT CNAWCGNTGT GTATATATAT	1440
60	GACGTKGTAC ATTGCACATA CCCTTGGATC CCCACAGTTK GGTCCTCCTC CCAGCTACCC	1500

444

	CTTTATAGTA TGACGAGTTA ACAAGTTGGT GACCTGCACA AAGCGAGACA CAGCTATTTA	1560
_	ATCTCTTGCC CAGATATCGC CCCTCTTGGT GCGATGCTGT ACAGGTCTCT GTAAAAAGTC	1620
5	CTTGCTGTCT CAGCAGCCAA TCAACTTATA GTTTATTTTT TTCTGGGTTT TTGTTTTGTT	1680
	TIGITITCIT TCTAATCGAG GTGTGAAAAA GITCTAGGIT CAGTIGAAGI TCTGATGAAG	1740
10	AAACACAATT GAGATTTTT CAGTGATAAA ATCTGCATAT TTGTATTTCA ACAATGTAGC	1800
	TAAAACTTGA TGTAAATTCC TCCTTTTTTT CCTTTTTTGG CTTAATGAAT ATCATTTATT	1860
	CAGTATGAAA TCTTTATACT ATATGTTCCA CGTGTTAAGA ATAAATGTAC ATTAAATCTT	1920
15	GGTAAGACTT TAAAAAAAAA A	1941

20

25

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 192:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2118 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:

AAATAATAAT AANAATAAAT AAAAATWAAG TGCTTAKTGT AACTCAGCGG ACAGGGCTCC 60 CAGCTGCTCT GGCACGTGGG ACACCYTCCA CCCTGCACAC AACAGGCATG CAAAGAGGAC 120 TGGATATGGT GGGGTAGAGT GCTTCTGGTG TGTTCACTTT AAGAAAACAT CTGCCAAGAG 180 AGAAGAGTGC CCAGGAAAGA CCAGGAAAAT ACAAGTACAT GGCTGCTTCA TACCATATAC 240 CCCAATTCTT TAAAGCAGCA AAAGGCACTT TTTTTTTCAG GCCAGAGTGA ATCTAAAACA AACCTGGCTT TGCTTACAGG GAAGCTGTCC CAGAAGGACT GAGTGATGCC TCTTGTTCCC 360 TAAGGTCTGG AGAGTCTTTG CAAGTTTCCA ACGACATTTC CAACCAGGTG GGAGAGACCA GCAGTTGACG AGACAAGTCA GACCCAAAAA ACGACGCCAA GGTAGTGAGT GGGTGCCTAT 480 TTGGGAGTAG GATGATTTGA GGAAAACAGG AAGAAAAACC GGTCAGAAAG TGGCACTTTG 600 GAAGTGGAAA GCTGTTTGCA AATAGCAACT CTGGCTAAAG CGAAAATGTT AATCAAGTAG AAAGTAAAAT TCAGGATCTT AGAAGCTCAT CCTTCTGATG AGAACTATTT TTTTTTCCGT GAAGGAACTA TTATTACTTT AAAAGTGAGG GTAATTTACA TATGGGGTGT ATATATTCTA 720 AAAATAGTAA TAAAAGTACC TTTTATAAGC AATGTTGTGT GGCTTGTAGA AGAAAGCAGG GAGGAAAAAA AGGCAGGCAA AACTAGTCTA GGTCTAGGCC CTAAAAATGA GCTTCCTTCC 840 CACTIGACTG GAAACGCCCA TGTGATTTCT AGGCTGAAAA TAGGTAGGAT TTAACGAGTA 900

PCT/US98/11422

CAGCAGCAGC CCCCTCCTTC TGTGTCCATC TGATGCAGC ARCAGGAGC ARCAGGAGC ACTACGAGCA CATCCCATGT TCCAGTTCAC CTTCTATGGG GTGACTARGA GGTTCCCGGT AACTAGGGCA 11 GCCCARGCCC AGCAGGTTGC AAAAGCAGCT GCAAGCTTCA GAAACCCACT TCCTCCAACA 12 CCAGGGAGGT GGCAGAGAGC CCATCCAAAA GCCCACTGGG AGAGGCATAA GATTCTGTGC 12 CAGGCCCCCA GGTCCCCTCT GTGTCAGGTA GGCTCTGCTA CTGGCCTCTG AAGTAAAGGC 12 AAANACAAAC GGGCAGGGCA GGGTGGCAGG AATAAAAAAC TCTGGACAGA AACCCTTTTA 1 ATAAAGGAAA TTCCACCCCT CCCAATCCTT CCATGGAAGG GTGAGACCTT AATGTGATGT 1 AAGAGGAAGG TCTTCTCTGG CTTTCAGGGA AACAGCTGCA GCTGAAACTT AGGGGCCCATC 1 TCCAGGGCAC TTTTCACCAC AGCCAGTGCA GCCGCTCCAA GTGCCACTGT CAGCCCCATC 1 ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTCGATCT 1	20
CATCCCATGT TCCAGTTCAC CTTCTATGGG GTGACTARGA GGTTCCCGGT AACTAGGGCA GCCCARGCCC AGCAGGTTGC AAAAGCAGCT GCAAGCTTCA GAAACCCACT TCCTCCAACA CCAGGGAGGT GGCAGAGAGC CCATCCAAAA GCCCACTGGG AGAGGCATAA GATTCTGTGC CAGGCCCCCA GGTCCCCTCT GTGTCAGGTA GGCTCTGCTA CTGGCCTCTG AAGTAAAGGC AAAAAACAAAC GGGCAGGGCA GCGTGGCAGG AATAAAAAAC TCTGGACAGA AACCCTTTTA ATAAAGGAAA TTCCACCCCT CCCAATCCTT CCATGGAAGG GTGAGACCTT AATGTGATGT AAGAGGAAGG TCTTCTCTGG CTTTCAGGGA AACAGCTGCA GCTGAAACTT AGGGGCCCATC TCCAGGGCAC TTTTCACCAC AGCCAGTGCA GCCGCTCCAA GTGCCACTGT CAGCCCCATC ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTCGATCT 11 12 13 14 15 16 17 17 18 18 18 19 19 10 10 11 11 11 12 13 14 15 15 16 17 17 18 18 18 18 18 18 18 18	•
GCCCARGCCC AGCAGGTTGC AAAAGCAGCT GCAAGCTTCA GAAACCCACT TCCTCCAACA 12 CCAGGGAGGT GGCAGAGAGC CCATCCAAAA GCCCACTGG AGAGGCATAA GATTCTGTGC 12 CAGGCCCCCA GGTCCCCTCT GTGTCAGGTA GGCTCTGCTA CTGGCCTCTG AAGTAAAGGC 12 AAANACAAAC GGGCAGGGCA GGGTGGCAGG AATAAAAAAC TCTGGACAGA AACCCTTTTA 1 ATAAAGGAAA TTCCACCCCT CCCAATCCTT CCATGGAAGG GTGAGACCTT AATGTGATGT 12 AAGAGGAAGG TCTTCTCTGG CTTTCAGGGA AACAGCTGCA GCTGAAACTT AGGGGCCCATC 12 CCCAGGGCAC TTTTCACCAC AGCCAGTGCA GCCGCTCCAA GTGCCACTGT CAGCCCCATC 12 ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTCGATCT 12	80
CCAGGGAGGT GGCAGAGAGC CCATCCAAAA GCCCACTGGG AGAGGCATAA GATTCTGTGC CAGGCCCCCA GGTCCCCTCT GTGTCAGGTA GGCTCTGCTA CTGGCCTCTG AAGTAAAGGC 1: AAANACAAAC GGGCAGGGCA GGGTGGCAGG AATAAAAAAC TCTGGACAGA AACCCTTTTA ATAAAGGAAA TTCCACCCCT CCCAATCCTT CCATGGAAGG GTGAGACCTT AATGTGATGT AAGAGGAAGG TCTTCTCTGG CTTTCAGGGA AACAGCTGCA GCTGAAACTT AGGGGCCCAT TCCAGGGCAC TTTTCACCAC AGCCAGTGCA GCCGCTCCAA GTGCCACTGT CAGCCCCATC ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTCGATCT 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	L 4 0
CCAGGGAGGT GGCAGAGAGC CCATCCAAAA GCCCACTGG AGAGGCATAA GATTCTGTGC CAGGCCCCCA GGTCCCCTCT GTGTCAGGTA GGCTCTGCTA CTGGCCTCTG AAGTAAAGGC 15 AAANACAAAC GGGCAGGGCA GGGTGGCAGG AATAAAAAAC TCTGGACAGA AACCCTTTTA ATAAAGGAAA TTCCACCCCT CCCAATCCTT CCATGGAAGG GTGAGACCTT AATGTGATGT AAGAGGAAGG TCTTCTCTGG CTTTCAGGGA AACAGCTGCA GCTGAAACTT AGGGGCCCAT TCCAGGGCAC TTTTCACCAC AGCCAGTGCA GCCGCTCCAA GTGCCACTGT CAGCCCCATC ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTCGATCT 1	200
AAANACAAAC GGGCAGGGCA GGGTGGCAGG AATAAAAAAC TCTGGACAGA AACCCTTTTA ATAAAGGAAA TTCCACCCCT CCCAATCCTT CCATGGAAGG GTGAGACCTT AATGTGATGT AAGAGGAAGG TCTTCTCTGG CTTTCAGGGA AACAGCTGCA GCTGAAACTT AGGGGCCCAT TCCAGGGCAC TTTTCACCAC AGCCAGTGCA GCCGCTCCAA GTGCCACTGT CAGCCCCATC ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTCGATCT	260
ATAAAGGAAA TTCCACCCCT CCCAATCCTT CCATGGAAGG GTGAGACCTT AATGTGATGT 1 AAGAGGAAGG TCTTCTCTGG CTTTCAGGGA AACAGCTGCA GCTGAAACTT AGGGGCCCAT 1 TCCAGGGCAC TTTTCACCAC AGCCAGTGCA GCCGCTCCAA GTGCCACTGT CAGCCCCATC 1 ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTCGATCT 1	320
AAGAGGAAGG TCTTCTCTGG CTTTCAGGGA AACAGCTGCA GCTGAAACTT AGGGGCCCATC TCCAGGGCAC TTTTCACCAC AGCCAGTGCA GCCGCTCCAA GTGCCACTGT CAGCCCCATC ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTCGATCT 1	380
AAGAGGAAGG TCTTCTCTGG CTTTCAGGGA AACAGCTCCA GCTGAAACTT AGGGCCCATC TCCAGGGCAC TTTTCACCAC AGCCAGTGCA GCCGCTCCAA GTGCCACTGT CAGCCCCATC ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTCGATCT 1	440
TCCAGGGCAC TTTTCACCAC AGCCAGTGCA GCCGCTCCAA GTGCCACTGT CAGCCCCATC ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTCGATCT 1	500
ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTGGTCA	.560
25 TCAGGCCGCA GAAGTCCCCG AANACCGCTG CCGCAGCACC ATATCAGGCC TCTGCTGGGC	620
	1680
TGATGCCAGC TCAAAGTCTT TGAAAGTAGA GGCTGCCGTC CTCTCAGCTT GCTGTTGGGC	1740
AGCGGCCTCC CGAGCAAGTT CGGATGGGGG AAACTGAACA AAAAGGTCTC CTDTCTGGT	1800
30 ATCAGTGTCT CATAGGGCAA GTCCTGAGGG ATCTGGGACA ACAGGTGGTG GACCGAGGCC	1860
ATGTCACAGT CACAGTCCAG GACTTCCTGC TCGCGATACA ACACAATCAC GGCTGCAAAG	1920
35 TARATCOGCA TCAGTGGGTG GCAGGCCAGG AAGAAGTCAT ATAACCGCAC GACGTGCCTG	1980
AAGTCAGACA GGACATGCCC AAACCAGGTG ATGAGCCAGC TGAGGGCAAA GATGGTCCCT	2040
ACCTCAGCAC TCTGCATGAA GTCATGGAGC TCTGGATTCA CCTGGTCAAT GATGGGCATC	2100
40 AGATAGTITA ATATATGC	211

45

(2) INFORMATION FOR SEQ ID NO: 193:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1538 base pairs

50 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193:

55
CCGGGTTCGG CTCTGTGTCA GCAGCCGGG GGCGCTCGGG CGGGACATGG CAGCCTGTAC 60
AGCCCGGCGG CCTGGCCGTG GGCAGCCGCT GGTGGTCCCG GTCGCTGACT GNGGCCCGGT 120
60
GGCCAAGGCC GCTCTGTGCG CGGCCGNAGC TGGAGCCTTC TCGCCAGCGT CGACCACGAC 180

•	GACGCGGAGG CACCTCTCGT CCCGAAACCG ACCAGAGGGC AAAGTGTTGG AGACAGTTGG	240
	TGTGTTTGAG GTGCCAAAAC AGAATGGAAA ATATGAGACC GGGCAGCTTT TCCTTCATAG	300
5	CATTITIGGC TACCGAGGIG TCGTCCTGIT TCCCTGGCAG GCCAGACTGI RIGACCGGGA	360
	TGTGGCTTCT GCAGCTCCAG AAAAAGCAGA GAACCCTGCT GGCCATGGCT CCAAGGAGGT	420
10	GAAAGGCAAA ACTCACACTT ACTATCAGGT GCTGATTGAT GCTCGTGACT GCCCACATAT	480
	ATCTCAGAGA TCTCAGACAG AAGCTGTGAC CTTCTTGGCT AACCATGATG ACAGTCGGGC	540
	CCTCTATGCC ATCCCAGGCT TGGACTATGT CAGCCATGAA GACATCCTCC CCTACACCTC	600
15	CACTGATCAG GTTCCCATCC AACATGAACT CTTTGAAAGA TTTCTTCTGT ATGACCAGAC	660
	AAAAGCACCT CCTTTTGTGG CTCGGGAGAC GCTAAGGGCC TGGCAAGAGA AGAATCACCC	720
20	CTGGCTGGAG CTCTCCGATG TTCATCGGGA AACAACTGAG AACATACGTG TCACTGTCAT	780
	CCCCTTCTAC ATGGGCATGA GGGAAGCCCA GAATTCCCAC GTGTACTGGT GGCGCTACTG	840
25	TATCCGTTTG GAGAACCTTG ACAGTGATGT GGTACAGCTC CGGGAGCGGC ACTGGAGGAT	900
25	ATTCAGTCTC TCTGGCACCT TGGAGACAGT GCGAGGCCGA GGGGTAGTGG GCAGGGAACC	960
	AGTGTTATCC AAGGAGCAGC CTGCGTTCCA GTATAGCAGC CACGTCTCGC TGCAGGCTTC	1020
30	CAGTGGGCAC ATGTGGGGCA CGTTCCGCTT TGAAAGACCT GATGGCTCCC ACTTTGATGT	1080
	TOGGATTOOT COOTTOTOOC TGGAAAGCAA TAAAGATGAG AAGACACCAC COTCAGGCOT	1140
25	TCACTGGTAG GCCAGCTGAG GCCCCAAGTG CCCAGGCTTG GTCACCGGGA AGAACAACTC	1200
35	TCATCCCACA ATTGCTGCAG AACTCTTCTC TCCCCATCAT GGGCCACAGT GGGTCTCTTA	1260
	ATTTGATTGT GGGGTTCTTT TTGTGGGGAG GGGTGGTATA ACTTTTCTTC AGAAGACCCA	1320
40		1380
	CCTCTCCACC AAGGAACTGT GTTCAGCTGC CACAGGCCTG GAGGAGTTTC CTGGCCTGTC	1440
45	ACGTGAGGTT TGATCAGTAA ACCAGTGCAS GYTTGGCCAA AAAAAAAAAA AAAAAAAAAA	1500
	алалалала алалалала алалалалал аластоса	1538

50

55

(2) INFORMATION FOR SEQ ID NO: 194:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1098 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194:

	AGACCCTGTC TCAAATAATA ATAATAATAA TAATCTTATT TTGGAGAATA AAGAGACCTS	60
	TOGATTIGAG GIGCCATTIG GGIAGAAGA AAAGACGITI ACACCGAGAA ATAGICIGIG	120
5	TTGCCCTGAA GGAGCAGAGG GATGCATCGC TGGAGGTGAC CTACAGTTGA AGAAGACTCA	180
	TTATGACAGA CCTTGTCCTT CTTCCTTGTG GAAAGTGTTT CCTCTGCTGC TACTGCTCAT	240
	GAGACTETTE CECETECETG TECCAGGGAA CEAAAGGGET TINETACEAE ACCETTETT	300
10	NGCCCCCCGC CTCCCATGTC TGCTGTGCCT TTGTACTCAG CAATTCTTNG TTTGCTCCCA	360
	TTATCTTCCA GCCGGATACA GAGTGAATAG TTAACCACAC TTAGGTCAAA TAGGATCTAA	420
15	ATTITITITE CIGCICCNGT GTAAAGAGGC CAGIGITIGI GIGITGCAAG CAGCCITGGA	480
	ATAGTAACTC TTCTCATTTG TTTGGGATCT GGCCAMCAAG TTCCAGAATG ATACACGGAT	540
20	CAGTGCAGAA GTTCATCAGG CTCTCGGACC TTAGGGCTGT TGGAGAAGGC TTCAGCAGCA	600
20	GAACTGATGG TKAWKGYTCG TGTTCTCCAT CCTCAACTTT CTTTGCTTCG ATCATACACA	660
	AGAATACATT TGGAAGGGCA AAAAATGAAC ACTGTTGTTC ATTGCAGCCG TGTTTTGTGA	720
25	CACAGATGCA CAGTCTGCTG TGAAGACCTT CTCTCAAGTG GSATYTGGGA GTCCATGCCA	780
	GATCATGGTG CTTCATGAGA GACTGACAGC TATCAGGGGT TGTGGCACTT AGTGAGGACT	840
20	CTCCTCCCCC AGTGTGTGCT GATGACACAT ACACACCTGA CAATAGCTTG AGTCTTCTCT	900
30	GITCCTTTTA CTCTGTAGCC AACATACACA TGATTTAAAA CCCTTTCTAA ATATCTATCA	960
	TOGTTCATCC TTGTCCAAAT GCAGAGTCAG AGCTATTTGT ACTTCATTAT TATTTCCAAG	1020
35	GCGAATAGTT GGCTTTCTTT TTGCAAAAAT AATTAAAGTT TTTGTATGTT GCAAAAAAAA	1080
	AAAAAAAAA CTACGTAG	1098
40		
40	(2) INFORMATION FOR SEQ ID NO: 195:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1001 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 195:	
	GAATTCGGCA CGAGATAGCT TGCATCTCAT CCCAGTAAAA CCACTTATTT ATAACATATC	60
55	AACGTATTGA CAAGGTTGAA GAGCAAGATT GTTCTGAGGT GAGATGCAAA TTTCAAAGGG	120
رر	GTGAGCACTA ATTGTTCCAG TGATTGTTTA TTTATTGGCT AGGACATAAT TACTCTCTTT	180
	GAGGITACAC ATCTGCCTCC AGGITCCTGT GTGCTTGTGC CCTTGGGATC AGGCCAGGGC	240
60	AGACTGTGAT CACTGAGATT CAAACTCCCA GARTAATCAG CAAGAGCTTT CTAGAGACCA	300

448

	AGGCCAGGCC TGATCCCTGA GGGATGCATG AGAAGGCTTG GAATCTCATT CTGCTATGGT	360
_	GGCTCTCTCT TGATCTTCTT GGAGTAGCAA AAACAGCAAT GTGGGCCCCAA TGGTGTGGCC	420
5	TARATGATCA CARAGGTARA TGAGTARAGG GCTCAGCAGA TGAGTARAGGA GCCTTGTCCT	480
	GAGAAATTAG CACTGGGCTC TGCATTCAGA AACATGTGAT AAGCATTGCC CATTGCACAT	540
0	TGCCTTTATT GTGTAAGGAC ATGAAATTCC AGTTTTGCAT AGCTAGTGAT GAATACCTGA	600
	AGGGAATTGC AGACATATTT TATTTTATTT TTAATTGACA GATGGAATTG TATATATTTA	660
	TCATGTACAT AATCATGCTT TAAAATATGT ACATTATGGA ATGGCTAAAT CAAACTAACC	720
15	TAGGCATTAT CTCATATAAT TGTCATTTTT GTGGCGAGAA GACTAAAAAT CTACCCTTTC	780
	ACCATTITIA AAGAATACAA TGTGTTTTAT TAACAACAGT CACCATTTGG TACACTAGAT	840
20	CTCTTGAACT TCTTCCTCTT ATCTAACTGA GATCTTGTAA CCTTTGATAA CAGCTCCCAA	900
	GCCCTTCCCC AACCACTGCT CCACCCGTGG TAACCACCAT TCTATTCTCA ACTTCCTGGT	960
25	AATCACCATT CTAGACACAG GGAAGACTCT CTACCCTCTG A	1001
30	(2) INFORMATION FOR SEQ ID NO: 196: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1443 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:	
40	ATAAACTGAA ATAGGTCATG CAAATATAAA ATATTATTTT TAAATTATTT GTCATAAGAA	60
40	ACGATGGTGG CCATATTITG CTTTAATAAT GGAAAAAATG TGGTTAGCAT TCTKTGGAAG	120
	GTGGTCATCA GATAGTAGAC ATTITCTAGG ATTITATTTCT ACCTGCATAT GTGGAAATGT	180
.45	GTACTACTTT AGATTTATWT AATGGCAGCT AACTCAGAGG CATCAAAATG TGCTAATGGT	240
	GTAATATGGC CTTTGTCTTG CTGTYCTGTT TTGTARGCCT TCAATCAAGC ARGGCAGGG	300
50	CCGTACAGTG AACTTGTCCT TTGSCAGACG CCAGCGTCTG CCCCTGACCC CGTCTCCACT	360
50	CTCTGTGTCC TGGAGGAGGA GCCCCTTGAT GCYTACCCTG ATTCACCTTC TGCGTGCCTT	420

GTACTGAACT GGGAAGAGCC GTGCAATAAC GGATCTGAAA TCCTTGCTTA CACCATTGAT

CTAGGAGACA CTAGCATTAC CGTGGGCAAC ACCACCATGC ATGTTATGAA AGATCTCCTT

CCAGAAACCA CCTACCGGTG AGTGCAAGGG AGTAGAAATC TGCATCAGCA CATCAGCACT

TOGGGATCTA AGTAAACCTC TCGGGGAAAA TGACCAAGTG GATGTCATCT CCCAGCTGTT

55

60

540

600

449

	TCTAAGAGCC CAGATGTCCA GAGTATTGTC TCACCTTGAT CCCTCAGGCC AGAAGACCTG	720
	TGAAAAAGCC ACACTGGTTC AGGGACTCAC TGGACGGTTT TGTGTCCACT YTAACTTGCA	780
5	CCGTCTCTAC CCCAGAGTGG ACTCARATCC TCAAGTCACC CTCTGAACAT TGRRGTCAGA	840
	AATTATAAAA GGGCTTTGGC AATATGTTAG CCCAAGAATT TGGCTTCTTC CAGAAATTGT	900
••	GCCGACNITA ACAGTGGCTT AAATGATGGT AAAACTITITA AGATTTCTAA AAGGRTGGCA .	960
10	TTGGAGATAC GTTGACTTTT ATTAAACMAC CTATAGTTGT TTAATGAYTT CTAAAAAAAT	1020
	ATCTGGAGCT CAGGGGTTCA ACTGAGGGAA CACATGITGA GRATCATIGT TIALIAATTA	1080
15	ANTIGOCAGGT ANCOCGTTGA ANTINTOANA ANCHOTTOC ACGTACOAGA ANGENCOTOA	1140
	GAGGATAGTT CTGTTATGGA GAAGATGAAA TGGTTTAGTA GTGTAGGAAC TATGGAAAGG	1200
00	TGAGCTTAGA TTTGGATAGT AAAACCTCAA GACCCTATTT AAAAAGTATT TTATGAATGC	1260
20	AGCATAAATA ATTTAATTCA GTGTTAANAT GCCAAGGCTA GTATATTGAG CTGAATGTGA	1320
	AAAGAAACTC ACATTGGGAG AATGCCACCT TITCCIIATA AGATAGCTIT GAAGATACCA	1380
25	TTTTAGACAG ATGGAAATTG AATAGCTTTA GAAAASGCAA ATGTTTGATC TTGSGGAAAA	1440
	AAA	144

30

35

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 197:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1282 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: dcuble

(D) TOPOLOGY: linear

40 (xi) SEQUENCE DESCRIPTION: SEQ = NO: 197:

60	AGCTAGG CACCTGTGGC CCCGCCAAGT TGACACATAA	GAAAAAAAA AGTATGACCC
120	TAGAAGT GAAAGAASCC CCTTTATCCT GEAGTGCCCC	AATTAACTGT CACAGTATCA
180	BAACATGG TGCTATCTGG CATGGGAGAA ATGTTCAGTT	TCTACCACCA CCTACTGACA
240	TTCAAATT CAAGTGTTGC CAATGTGACA GCATCAAGAG	TGCTATGGCT TGTATGTGT
300	AGGCCATG AGGGATTCTC TTAGGACTGG GATGAAGGCC	GTGGGGTCTT TAAGAGATC
360	AGCATOCT GCTAGCTTGC CTTCTGTATG TGAGAACACA	CATAATAAAA GAGGTTTCA
420	GTGCCAGC TCCTTGAICT TAGACTTTCC AICCTCCAGA	GCAAGAAAGC CCTAGTCAA
480	TOOTTACA AATTACCCAG TOTOCTGTAT TOTGTTATAG	
540	ACCTGAAC ACCTGAACAT TCTTCACAAG GTAGTAAATG	
600	TATTOTOT GCTTAATAAG GAAATGACAA ACGSTGGGATC	
		C17010011111 1100111

PCT/US98/11422 WO 98/54963

450

	AGGGCATAGG ATGAACAAGT TACTGCTAGA CCTCTCACAA TGCCACTAAT GGALAAGATT	660
_	GTATTITCAT CATTNOTTGT CTCTTCGGAA GCTAACACCA TGCTATAATA GGCAJTAAAT	720
5	AGATGTCTAA AAACACCTTA AGTATTTGTC TAGAAATGTG GTGCATTGTC CAGAAAGAAC	780
	CAAAATTCMA AATAATTTCA AAGGGCCTAA AGCACTAKTT AATGGAAATT CATTAGTFTT	840
10	TANTOGTACT ACCACTOTCA ANTITANANT GTCATCTTAL GTTCCTCTTC GTCGCATTGG	900
	ATTTATTGCT AAAACCTGGT AAACACTTTA ATCCYTTICA ATTCCAUTAC CAUTSCTCTT	960
	GTCCAGAATT ACTOGCAGAC TAATAGTCAC CTGACTTCTC CCCCTGCATC CCGATTTGCT	1020
15	GTCTAATTCT GGTTACAAAT AAGTAACTGC CAAACTAATC TTTCTAAAAA GCAAGACTGA	1080
	TOTOGTOACT COTTTGCTCA ACAATGTAAA AGCTCCCATT GTCTCCCAAA TAAAACCAGC	1140
20	TITICCACTGT GTATACAATA CATCCATGAT CTGTATCCAG CATCATTITG TATTIGCTCA	1200
	CTTTATACAC CACCCCCCAT GCCACATCAA ATTAAATTAT CCTGATAAAT GCAACTGCAA	1260
	алалалала алалаластс ga	1282
25		
30	(2) INFORMATION FOR SEQ ID NO: 198: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 951 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:	
	ATTTCGGAAC GAGGACTGAA GTGGGAGCGG CGGCAGGGTA GAAGALAGAA GGGGGATCTA	60
40	TGTGGTAACT AAAGAATGTT TCTGTTTTGT TAATTATTGT GTGTGTGTG	120
	TGCTTAAGAG AATCAAAAAC TGAAAAAAAT GAGAATACAG GAAATSGCTC TTGTTTATTT	180
45	TTTTGCTGTG TTTACAGCTT GTTAATGCTC TACTGTCTTT GTTTCAAGAG AGATTTGTTC	240
	ACTOCCCAGO TOGTTTTGTG TOCTGAGCCC TATGCCCAGO CCACCTTATA AATCATGCCT	300
	GTTTAGATGT TIGATTTIGT TCTGTTTGCT ATTGTTATCT TAAAGGTGTA TAACTCTGAC	360
50	ATGCCAGACA TCAAATTAAG CTCAAATTAA GCTCTCGTTT AAATGTTTAA ACACCTAATT	420
	TATATTCTAA TIGATCCCAG CCACTGATGC ATGTACTTTA GCTACTTCTG CTAAATAAGC	480
55	ATATTAATTT TCCACATCAG GCCATCAGAT CTTGAGAACC AACAGTTATC TAGAATTCCG	540
	TOTOTACTAA TOTTTCACCT GCATGCAGCC TTCATTAACT TTGTAGCAAA ATATAAAGTG	600
	ATCATTATGT AGTITICIGGA TTAAAAAAAT TIGIGIGIGA AGTIGCTITIS CAAAGTGCAT	660

60

451

	CTGGAATTAA TGGGACAGTG TGCCCTTTGT GTTAGATGTT AGAGCAAAAG AAAGGGCTTA	720
	TAGTGTTAGT ATTGGAGCAC TTTGAAGATA GATATTTTCA GAAAAGATGT AGGATTTAAA	780
5	AGITAAATTT TAAATTTTAG AAAAAGATAT GATGGCAATT GGAAATAGTC ACAATGAAGT	840
	TCTTCATCCA GTAGGTGTTT AACAGTGTTA TTTTGCCACT GGTAATGTGT AAACTGTGAG	900
10	TGATTTACAA TAAATGATTA TGAATTCAAA AAAAAAAAA AAAAAACTCG A	951
10		
15	(2) INFORMATION FOR SEQ ID NO: 199:	
13	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1740 base pairs(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:	
	TTATTATAAT AATGATGATG ATTCCAAGGA AAAAACCTAC AGCGAATGTT CCATTTCTAC	60
25	CCCGCACGCA GACACTCTCC CTAACACTGA TAACCTGAGC CCCCAGCACT GGACGGAAGA	120
	ATECTOGOGY CICCOTOTOT ACTOGITCAG GGTTCTGGCC CCAGCCTTGT CAGGACCCCC	180
30	TGGTGTCCAG AGCCCCCACC CCTCCCGCAA CAAGCAGCTG ATGCCCCAGT GATTCTCTAT	240
	ACATTITICA CCICGGCCAA TATGICCAGG AAAACTGCTT ACTICICTIT TCTIGCCIGG	300
	AGCCTTCATT GTTCACCCTT ACGTTGCAAT ATAGGAATTA ATGCTACAAA ATAAAAGTAA	360
35	AGCTTACCTG AAAAGTGCAT AGTTTGGGGC AATGGTATCT ACATCTCCCA CTGTGGGAAA	420
	ACCAGCAAAG CATCAAAACT CTCAATTCTC CTGTTACCRA ATGCAGATCT GAATTATAAG	480
40	ATGTTTATGT TTGACCATTG TTTCAACAAT GGGATTTTGT TACGAATTAT CCCTTTAACT	540
	GAAACCCTCA GTTTTACTGT TTACATTATT AGGAAAACAG GGATATCTTT TGAATCTAAA	600
45	AATTIGATGT ACAGCATGTG ATTITTGAAG TITACATGTA AAGTCACAGT ATAGGTGAAA	660
73	TAACGTTTGT CATATTTTGA GACGTATCCT GCAGCCATGT TTTTACGTGA GTGTTTTAGT	720
	CAAAGTACAT GGTAGACAGT CTTTCACAAT AAAAGGAAAA GGATTTTTTT TCCTCCAAAT	780
50		840
	ATGAAAGITC ATTGCCCTAA ACTGTGCTGA TTGTTTTTAA TCAAGTTATA AATTTCCAAC	900
55	CTAGATCATG TATCTACCAA CTCTCCTGCA TTTTCCAAAA GGCATTGAGC TTAAATATTA	960
33	GTCTTGCTTA GAGTAGGTTA TCCACTTACA TGCTGCGCTA AAGCCATGCC TTTGAAACTC	1020
	CTTGTTTAAA ACATGATATG ATTTTTGTGG GCAGTTTCAG AAAAGAAAAC AAACAAACAA	1080

60 AAATCGACCC TTTAATTATT ACTIGCAACT CAACAGATCT CCCTGCCGTA CTGCCTTTTC 1140

PCT/US98/11422 WO 98/54963

452

	CAGGAACTIT ACTICAGGGC TGTCCAGATT GCAGTTGTGC CCCGTGTATG TGGATCTAGT	1200
_	TCACAGAGTC TITGGAAGCC AGCAGTCGTG CCCTCCGTAT ACTGTCCACT CATTITATGT	1260
5	AGATTTGGTA TCCTCAGCAG CCAGTGTTAA CACCACTGTC ACGTAGTTAN CAGATTCATC	1320
	TTTTATGTAT TTAAAGTAAT CCATACTATG ATTTGGTTTT TCCCTGCACC ATTAATTCTG	1380
10	GCATCAGATC AGTTTTTGTG TTGTGAAGTT CTACTGTGGT TTGACCCAAG ACCACAACCA	1440
	TGAGACCCTG AAGTAAAGAT AAGGTACACA TACATTATTT GAGTAACTGT TTCCTTGGGG	1500
	GCCAATCTGT GTATGCTTTT AGAAGTTTAC AGAATGCTTT TATTTTTGTC TATAACAAAC	1560
15	AGTOTGTCAT TTATTTCTGT TGATAAACCA TTTGGACAGA GTGAGGACGT TTGCCCTGTT	1620
	ATCTCCTAGT GCTAACAATA CACTCCAGTC ATGAGCCGGG CTTTACAAAT AAAGCACTTT	1680
20	TGATGACTCA MAAAAAAAAA AAAAAAAAMC YCGGGGGGGG GCCGGTAACC CATTINICCC	1740

(2) INFORMATION FOR SEQ ID NO: 200: 25

30

35

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1707 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200:

GCTTATAGAA GGGAGAGGAG CGAACATGGC AGCGCGTTGG CGGTTTTGGT GTGTCTCTGT 60 GACCATGGTG GTGGCGCTGC TCATCGTTTG CGACGTTCCC TCAGCCTCTG CCCAAAGAAA 120 GAAGGAGATG GTGTTATCTG AAAAGGTTAG TCAGCTGATG GAATGGACTA ACAAAAGACC 180 40 TGTAATAAGA ATGAATGGAG ACAAGTTCCG TCGCCTTGTG AAAGCCCCAC CGAGAAATTA 240 CTCCGTTATC GTCATGTTCA CTGCTCTCCA ACTGCATAGA CAGTGTGTCG TTTGCAAGCA 300 ACCTGATGAA GAATTCCAGA TCCTGGCAAA CTCCTGGCGA TACTCCAGTG CATTCACCAA 360 45 CAGGATATTT TTTGCCATGG TGGATTTTGA TGAAGGCTCT GATGTATTTC AGATGCTAAA 420 CATGAATTCA GCTCCAACTT TCATCAACTT TCCTGCAAAA GGGAAACCCA AACGGGGTGA 480 50 TACATATGAG TTACAGGTGC GGGGTTTTTC AGCTGAGCAG ATTGCCCGGT GGATCGCCGA 540 CAGAACTGAT GTCAATATTA GAGTGATTAG ACCCCCAAAT TATGCTGGTC CCCTTATGTT 600 GGGATTGCTT TTGGCTGTTA TTGGTGGACT TGTGTATCTT CGAAGAGTAA TATGGAATTT 660 55 CTCTTTAATA AAACTGGATG GGCTTTTGCA GCTTTGTGTT TTGTGCTTGC TATGACATCT GGTCAAATGT GGAACCATAT AAGAGGACCA CCATATGCCC ATAAGAATCC CCACACGGGA 780

PCT/US98/11422 WO 98/54963

453

	CATGTGAATT ATATCCATGG AAGCAGTCAA GCCCAGTTTG TAGCTGAAAC ACACATTGTT	840
	CTTCTGTTTA ATGGTGGAGT TACCTTAGGA ATGGTGCTTT TATGTGAAGC TGCTACCTCT	900
5	GACATGGATA TTGGAAAGCG AAAGATAATG TGTGTGCCTG GTATTGGACT TGTTGTATTA	960
	TTCTTCAGTT GGATGCTCTC TATTTTTAGA TCTAAATATC ATGGCTACCC ATACAGCTTT	1020
	CTGATGAGTT AAAAAGGTCC CAGAGATATA TAGACACTGG AGTACTGGAA ATTGAAAAAC	1080
10	GAAAATCGTG TGTGTTGAA AAGAAGAATG CAACTTGTAT ATTTTGTATT ACCTCTTTTT	1140
	TTCAAGTGAT TTAAATAGTT AATCATTTAA CCAAAGAAGA TGTGTAGTGC CTTAACAAGC	1200
15	AATCCTCTGT CAAAATCTGA GGTATTTGAA AATAATTATC CTCTTAACCT TCTCTTCCCA	1260
	GTGAACTTTA TGGAACATTT AATTTAGTAC AATTAAGTAT ATTATAAAAA TTGTAAAACT	1320
	ACTACTITGT TITAGTTAGA ACAAAGCTCA AAACTACTIT AGTTAACTIG GTCATCIGAT	1380
20	TTTATATTGC CTTATCCAAA GATGGGGAAA GTAAGTCCTG ACCAGGTGTT CCCACATATG	1440
	CCTGTTACAG ATAACTACAT TAGGAATTCA TTCTTAGCTT CTTCATCTTT GTGTGGATGT	1500
25	GTATACTITA CGCATCTITC CTTTTGAGTA GAGAAATTAT GTGTGTCATG TGGTCTTCTG	1560
	AAAATGGAAC ACCATTCTTC AGAGCACACG TCTAGCCCTC AGCAAGACAG TTGTTTCTCC	1620
	TCCTCCTTGC ATATTTCCTA CTGAAATACA GTGCTGTCTA TGATTGTTTT TGTTTTGTTG	1680
30	TTTTTTYGAG ATCACGYTAC TGGGCTC	1707
35	(2) INFORMATION FOR SEQ ID NO: 201:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 779 base pairs	
40		

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201:

45 CTGTCCCCAG TGTTTCCAGG TAATGACTTG GCACTCCAGA GAAAGTTTCA TRCTGTTGCG 60 TGTGGTGGCT CCAAGCCAAG CACCTGGCAT GCAGGTCAGC CCTTCCCAGC GGGCGTGGCG 120 TOGTOCTOTT CACAGATGCC ACGTTGCAGC CCCAAGGCCT CACCATTTTG CGTTTTTTAG 180 50 AAACCCATTT TCTTGGTCAT TTATAAAGCT GCTTTATAGA TATCTTTGAT CCTGGCATGC 240 CTIGGTTICC TCTCCCTTCC CTCTTTCCAA TCCTGGTTTC CTAACCTCCT CTTGTAGTAA 300 55 TTCTCAACTC AACTCAAAGT CCCAAGAATT TGGAATGGTA GGATGCTGTG CGGGGAGCTC 360 GAGGCTGAGG CATAATCACT GCTTCGGTTC TGCTCATCAG GGGACACGCT CCCTTACTCA 420 TOGCAGCCAT GTTTGATTGT CACAGAGCCC CCCGAATACT CTGTCTATAG TGACACACTG 480 60

454

	TAGGTGTCAT AAATTTTAAG AAACCTGCTT TTAAGTACTA TTTATAGGTT TTTCTGTTAT	540
	ACTTGCAACC TAGTTTTAAA ATACATGAGG ATTTTATGAA AGCTTTATAC AGACATTTAT	600
5	AGGAAACTCA TTCTTTGATT TTAGGTGCCA TTTAAATTGA TAACACTTAC TTTATAAAAA	660
	GATGCTTTTT GTCTGGATAG AGCCTTATAG TTTAAAATAT CTTCATATAT TGCCATTTGA	720
10	ТСАААТАААТ ТТСТТАСТТА GAAAAAAAAA ААААААААА ААААААААА ААААСТСGA	779
15	(2) INFORMATION FOR SEQ ID NO: 202:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1617 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202:	
25	GGCACAGCTT TCTGTCTCTT CCTCGCTCCC TCTCTTTCTC TCCTCCCTC	60
	TGCATAAAGT CTCTGTCGCT CCCGGAACTT GTTGGCAATG CCTATTTTTT GGCTTTCCCC	120
	CGCGTTCTCT AAACTAACTA TITAAAGGTC TGCGGTCGCA AATGGTTTGA CTAAACGTAG	180
30	GATGGGACTT AAGTTGAACG GCAGATATAT TTCACTGATC CTCGCGGTGC AAATAGCGTA	240
	TCTGGTGCAG GCCGTGAGAG CAGCGGGCAA GTGCGATGCG GTCTTCAAGG GCTTTTCGGA	300
35	CTGTTTGCTC AAGCTGGGCG ACACATGGCC AACTACCCGC AGCCTGGGAC GACAAGACGA	360
	ACATCAAGAC CGTGTGCACA TACTGGGAGG ATTTCCACAG CTGCACGGTC ACAGCCCTTA	420
40	CGGATTGCCA GGAAGGGGCG AAAGATATGT GGGATAAACT GAGAAAAGAA TCCAAAAACC	480
40	TCAACATCCA AGGCAGCTTA TTCGAACTCT GCGGCAGCGG CAACGGGGGG GCGGGGTCCC	540
	TGCTCCCGGC GTTCCCGGTG CTCCTGGTGT CTCTCTCGGC AGCTTTAGCG ACCTGGCTTT	600
45	CCTTCTGAGC GTGGGGCCAG CTCCCCCGC GCGCCCACCC ACACTCACTC CATGCTCCCG	660
	GAAATCGAGA GGAAGATCCA TTAGTTCTTT GGGGACGTTG TGATTCTCTG TGATGCTGAA	720
50	AACACTCATA TAGGATTGTG GGAAATCCTG ATTCTCTTTT TTATTTCGTT TGATTTCTTG	780
	TGTTTTATTT GCCAAATGTT ACCAATCAGT GAGCAAGCAA GCACAGCCAA AATCGGACCT	840

CASCTITAGT COSTCTTCAC ACACAAATAA GAAAACGGCA AACCCACCCC ATTTTTTAAT

CTATATTAAT CATGCTAGTA ACATGAAAAA TGATGGGCTC CTCCTAATAG GAAGGCGAGG

AGAGGAGAAG GCCAGGGGAA TGAATTCAAG AGAGATGTCC ACGGACGAAA CATACGGTGA

55 TTTATTATTA TTAATTTTT TTGTTGGCAA AAGAATCTCA GGAACGGCCC TGGGCACCTA

900

960

1020

1080

455

	ATAATTCACG CTCACGTCGT TCTTCCACAG TATCTTGTTT TGATCATTTC CACTGCACAT	1140
	TTCTCCTCAA GAAAAGCGAA AGGACAGACT GTTGGCTTTG TGTTTGGAGG ATAGGAGGGA	1200
5	GAGAGGGAAG GGGCTGAGGA AATCTCTGGG GTAAGAGTAA AGGCTTCCAG AAGACATGCT	1260
	GCTATGGTCA CTGAGGGGTT AGCTTTATCT GCTGTTGTTG ATGCATCCGT CCAAGTTCAC	1320
	TGCCTTTATT TTCCCTCCTC CCTCTTGTTT TAGCTGTTAC ACACAGTA ATACCTGAAT	1380
10	ATCCAACGGT ATAGATCACA AGGGGGGGAT GITAAATGTT AATCTAAAAT ATAGCTAAAA	1440
	AAAGATTTTG ACATAAAAGA GCCTTGATTT TAAAAAAAAA AGAGAGAGAG ATGTAATTTA	1500
15	AAAAGTTTAT TATAAATTAA ATTCAGCAAA AAAAGATTTG CTACAAAGTA TAGAGAAGTA	1560
	TAAAATAAAA GTTATTGTTT GAAAAAAAAA AAAAAAAA	1617

20

25

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 203:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1974 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203:

GAATTCGGCA CGAGGCTGAG GGAGCTGCAG CGCAGCAGAG TATCTGACGG CGCCAGGTTG 60 CGTAGGTGCG GCACGAGGAG TTTTCCCGGC AGCGAGGAGG TCCTGAGCAG CATGGCCCGG 120 AGGAGGGCT TCCCTGCCGC CGCGCTCTGG CTCTGGAGCA TCCTCCTGTG CCTGCTGGCA 180 CTGCGGGCGG AGGCCGGGCC GCCGCAGGAG GAGAGCCTGT ACCTATGGAT CGATGCTCAC 240 CAGGCAAGAG TACTCATAGG ATTTGAAGAA GATATCCTGA TTGTTTCAGA GGGGAAAATG 300 GCACCTTTTA CACATGATTT CAGAAAAGCG CAACAGAGAA TGCCAGCTAT TCCTGTCAAT 360 420 CTGTCCTTGC GCTCCCTGGA TAAAGGCATC ATGGCAGATC CAACCGTCAA TGTCCCTCTG 480 CTGGGAACAG TGCCTCACAA GGCATCAGTT GTTCAAGTTG GTTTCCCATG TCTTGGAAAA 540 CAGGATGGG TGGCAGCATT TGAAGTGGAT GTGATTGTTA TGAATTCTGA AGGCAACACC 600 ATTCTCCAAA CACCTCAAAA TGCTATCTTC TTTAAAACAT GTCAACAAGC TGAGTGCCCA 660 GGCGGGTGCC GAAATGGAGG CTTTTGTAAT GAAAGACGCA TCTGCGAGTG TCCTGATGGG 720 TTCCACGGAC CTCACTGTGA GAAAGCCCTT TGTACCCCAC GATGTATGAA TGGTGGACTT 780 TGTGTGACTC CTGGTTTCTG CATCTGCCCA CCTGGATTCT ATGGAGTGAA CTGTGACAAA 840 GCAAACTGCT CAACCACCTG CTTTAATGGA GGGACCTGTT TCTACCCTGG AAAATGTATT 900

456

	AAMOOGGA GA AGGGTGCTGCA	960
	TSCCCTCCAG GACTAGAGGG AGAGCAGTGT GAAATCAGCA AATGCCCACA ACCCTGTCGA	
_	AATGGAGGTA AATGCATTGG TAAAAGCAAA TGTAAGTKTT CCAAAGGTTA CCAGGGAGAC	1020
5	CTCTGTTCAA AGCCTGTCTG CGAGCCTGGC TGTGGTGCAC ATGGAACCTG CCATGAACCC	1080
	AACAAATGCC AATGTCAAGA AGGTTGGCAT GGAAGACACT GCAATAAAAG GTACGAAGCC	1140
10	AGCCTCATAC ATGCCCTGAG GCCAGCAGGC GCCCAGCTCA GGCAGCACAC GCCTTCACTT	1200
	AAAAAGGCCG AGGAGCGGCG GGATCCACCT GAATCCAATT ACATCTGGTG AACTCCGACA	1260
	TCTGAAACGT TTTAAGTTAC ACCAAGTTCA TAGCCTTTGT TAACCTTTCA TGTGTTGAAT	1320
15	GTTCAAATAA TGTTCATTAC ACTTAAGAAT ACTGGCCTGA ATTTTATTAG CTTCATTATA	1380
	AATCACTGAG CTGATATITA CTCTTCCTTT TAAGTTTTCT AAGTACGTCT GTAGCATGAT	1440
20	GGTATAGATT TTCTTGTTTC AGTGCTTTGG GACAGATTTT ATATTATGTC AATTGATCAG	1500
20	GTTAAAATTT TCAGTGTGTA GTTGGCAGAT ATTTTCAAAA TTACAATGCA TTTATGGTGT	1560
	CTGGGGGCAG GGGAACATCA GAAAGGTTAA ATTGGGCAAA AATGCGTAAG TCACAAGAAT	1620
25	TTGGATGGT CAGTTAATGT TGAAGTTACA GCATTTCAGA TTTTATTGTC AGATATTTAG	1680
		1740
	ATGITTGITA CATITITAAA AATTGCTCTT AATTITTAAA CTCTCAATAC AATATATITT	
30	GACCTTACCA TTATTCCAGA GATTCAGTAT TAAAAAAAAA AAAATTACAC TGTGGTAGTG	1800
	GCATTTAAAC AATATAATAT ATTCTAAACA CAATGAAATA GGGAATATAA TGTATGAACT	1860
25	TTTTGCATTG GCTTGAAGCA ATATAATATA TTGTAAACAA AACACAGCTC TTACCTAATA	1920
35	AACATITTAT ACTGITTGTA TGTATAAAAT AAAGGTGCTG CITTAGTTIT CTGA	1974
40		
	(2) INFORMATION FOR SEQ ID NO: 204:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1057 base pairs	
45	(A) LENGTH: 1057 base parts (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204:	
50	CGGCCTTCCG GGGCAACCGT TCGTCCCAAC NCGGGAAAGG GTCCTGGAGN CGGGAACTAG	60
	GAGCCTCGGA AGTCCAAGGG CGGAGCGCCC TTTGCTAATA AGCCAATCAG AACGTGAGAC	120
55	GCTCCGGTGG GNCGGTGCCG TCGAGCGCGG GGTGGAGTCT GGGTGACTTG GCTGGCGGGA	180
	TCAAGTGCAG CTGCTTCAGG CTGAGGTGGC AGATAGTGAG CGCTGGTGGC GGAGTTAAAG	240

TYAAAGCAGG AGAGTAATWA TGAATAGCGC AGCGGGATTC TCACACCTAG ACCGTCGCGA

60

457

	GCGGGTTCTC AAGTTAGGGG AGAGTTTCGA GAAGCAGCCG CGCTGCGCTT CCACACTGTG	360
	COCTATGACT TCAAACCTGC TTCTATTGAC ACTTCTTCTG AAGGATACCT TGAGKTTGGC	420
5	GAAGKTGAAC AGKTGACCAT WACTCTGCCM AATATAGAAA GTTGAAGGAA GCAGTAAAAT	480
	TCAGTATCGT AAAGAACAAC AGCAACAACA ATGTGGAATT CASCCAGGAC TCCCAATCTT	540
	GTAAAACATT CTCCATCTGA AGATAAGATG TCCCCAGCAT CTCCAATAGA TGATATCGAA	600
10	AGAGAACTGA AGGCAGAAGC TAGTCTAATG GACCAGATGA GTAGTTGTGA TAGTTCATCA	660
	GATTCCAAAA GTTCATCATC TTCAAGTAGT GAGGATAGTT CTAGTGACTC AGAAGATGAA	720
15	GATTGCAAAT CCTCTACTTC TGATACAGGG NAATTGTGTC TCAGGACATC CTACCATGAC	780
	ACAGTACAGG ATTCCTGATA TAGATGCCAG TCATAATAGA TTTCGAGACA ACAGTGGCCT	840
	TCTGATGAAT ACTTTAAGAA ATGATTTGCA GCTGAGTGAA TCAGGAAGTG ACAGTGATGA	900
20	CTGAAGAAAT ATTTAGCTAT AAATAAAAAT TTATACAGCA TGTATAATTT ATTTTGTATT	960
	AACAATAAAA ATTCCTAAGA CTGAGGGAAA TATGTCTTAA CTTTTGATGA TAAAAGAAAT	1020
25	TARATTIGAT TCAGARARAR ARARARARA ARCTCGR	1057

30 (2) INFORMATION FOR SEQ ID NO: 205:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 721 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205:

40	GAATICGGCA CGAGTCATCC CTCTCCCTCT TTCACTCCCT TACTCTTACT CTGTTTTTTG	60
	TECTCCAGAC AGACAGACCC TACCTCTTTT ECTTCTTTT TGTTTGTTTG TTTTGAGATG	120
	GAGTGTCGCT CTTGTTGCCC AGGCTGGAGT GCAGTGGCGC AATCTCGGCT CACCACAACC	180
45	TOTGCCTCCC GGGTTCAAGC AATTCTCCTG CCTCAGCCTC CCGAGAAGCT GGGGATTACA	240
	GGCATGCGCC ACCACACCCA GCTNAATTTT ATATTTTTAG TAGAGATGGT GTTTCTCCAT	300
50	GTTGGTCAGG CTGGCCTCAA ACTCCCAACC TCAGGTGATN CCGCCTGCTT TGGCCTCCCC	360
	AAAGTGCTGG GATTACAGGC GTGAGCCACT GCGCCCAGCC TCTTTTGCTC CTTTATACTC	420
	ATTAACTCAC GCCTGTAATC CCTGTTTTGG GAGGCCAAAG TGAGAAGGTT GCTTGAGGCC	480
55	AAGAGTTIGA GACTAGCCTG GGCAACACAG CAAGATGCCA TCTTTATAAT AAAAATAAAA	540
	ATAAAAATCA ATTAGCTGGG CATGGTGGAA CGCACCTGTA GTCCCAGCCA ATTGAGAGGC	600
60	TGAAGTGGGA GGATCATTGA GCCCAGGAGT TGAGGTTGCA GTGAGCCATG ATCATGTCAC	660
60	TGAAGICCGA GGAICATION GCCCACCAGO TGABOTTO	

	TACACTCAGC CTGGGCAATA GAGGGACATG TTGTCTCTAA AAAAAAAAAA	720 721
_	Α	,,,
5		
10	(2) INFORMATION FOR SEQ ID NO: 206:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2465 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
1.5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 206:	
	CCACCATTTA TCCAACTGAA GAGGAGTTAC AGGCAGTTCA GAAAATTGTT TCTATTACTG	60
20	AACGTGCTTT AAAACTCGTT TCAGACAGTT TGTCTGAACA TGAGAAGAAC AAGAACAAAG	120
	AGGGAGATGA TAAGAAAGAG GGAGGTAAAG ACAGAGCTTT GAAAGGAGTT TTGCGAGTGG	180
25	GAGTATTGGC AAAAGGATTA CTTCTCCGAG GAGATAGAAA TGTCAACCTT GTTTTGCTGT	240
	GCTCAGAGAA ACCTTCAAAG ACATTATTAA GCCGTATTGC AGAAAACCTA CCCAAACAGC	300
20	TTGCTGTTAT AAGCCCTGAG AAGTATGACA TAAAATGTGC TGTATCTGAA GCGGCAATAA	360
30	TTTTGAATTC ATGTGTGGAA CCCAAAATGC AAGTCACTAT CACACTGACA TCTCCAATTA	420
	TTCGAGAAGA GAACATGAGG GAAGGAGATG TAACCTCGGG TATGGTGAAA GACCCACCGG	480
35	ACGTCTTGGA CAGGCAAAAA TGCCTTGACG CTCTGGCTGC TCTACGCCAC GCTAAGTGGT	540
	TCCAGGCTAG AGCTAATGGT CTGCAGTCCT GTGTGATTAT CATACGCATT CTTCGAGACC	600
40	TCTGTCAGCG AGTTCCAACT TGGTCTGATT TTCCAAGCTG GGCTATGGAG TTACTAGTAG	660
40	AGAAAGCAAT CAGCAGTGCT TCTAGCCCTC AGAGCCCTGG GGATGCACTG AGAAGAGTTT	720
	TTGAATGCAT TTCTTCAGGG ATTATTCTTA AAGGTAGTCC TGGACTTCTG GATCCTTGTG	780
45		840
	CCAGTGCACA GTTTGCATTG AGACTCCTTG CATTCCGCCA GATACACAAA GTTCTAGGCA	900
50	TGGATCCATT ACCGCAAATG AGCCAACGTT TTAACATCCA CAACAACAGG AAACGAAGAA	960
30	GAGATAGTGA TGGAGTTGAT GGATTTGAAG CTGAGGGGAA AAAAGACAAA AAAGATTATG	1020
	ATAACTITTA AAAAGTGTCT GTAAATCTTC AGTGTTAAAA AAACAGATGC CCATTTGTTG	1080
55		1140
	CATGGAAGAA CCAAGITTIT CTATGATATT AAAAAATGTA CAGTGITAGG TATTATTIGA	1200
	ATGGAAAGAC ACCCAAAAAA AAAAATGTGC TCCGACTAGG GGGAAAACAG TAGTTCCGAT	1260

	TTTTTCCCAT TATTTTATT TTATTTTCTG GTTGCCCTAG CTTCCCCCCC TATTTTTGTG	1320
	TCTTTTATTA ACTAGTGCAT TGTCTTATTA AATCTTCACT GTATTTAATG CAGGATGTGT	1380
5	GCTTCAGTTG CTCTGTGTAT TTTGATATTT TAATTTAGAG GTTTTGTTTG	1440
	CTAGTTGTAA GTTACTTTGT TATAGATGGT ATCCTTTACC CCTTCTTAAT ATTTTACAGC	1500
	AGTACGTTTT TTTGTAACGT GAGACTGCAG AGTTTGTTTT TCTATATGTG AAGGATTACA	1560
10	ACACAAAAAG TTATCCTGCC ATTCGAGTGC TCAGAACTGA ATGTTTCTGC AGATCTTGTG	1620
	GCATTTGTCT CTAGTGTGAT ATATAAAGGT GTAATTAAGA CAGAGTTCTG TTAATCTAAT	1680
15	CAAGTITGCT GTTAGTTGTG CATTAGCAGT ATAAAAGCTA ATATATACTA TATGGTCTTG	1740
	CAACAGTITT AAAGCCICIG CATAATIGAT AATAAAAATG CATGACATIC TIGITTITAA	1800
	TAGACTITTA AAATCATAAT TITAGGTITA ACACGTAGAT CTTTGTACAG TIGACTITIT	1860
20	GACATAGCAA GGCCAAAAAT AACTITICTGA ATATTITTITT CITGTGTATA AGTGGAAAGG	1920
	GCATTTTCA CATATAAGTG GGCTAACCAA TATTTTCAAA AGAACTTCAT CATTGTACAA	1980
25	CTAACAACAG TAACTAGCCC TTAATTATGG TGACAGTTCC TTATTGGTGT GTGTGAGATT	2040
	ACTOTAGCAA CTATTACAGT ATAACACAGA TGATCTTCTC CACACACCCC ATCACCCAGA	2100
	TAATTTACAG TICTGTTAAC AGTGAGGTTG ATAAAGTATT ACTGATAAAA AATTATCTAA	2160
30	GGAAAAAAAC AGAAAATTAT TTGGTGTGGC CATCTTACCT GCTTATGTCT CCTACACAAA	2220
	GCTAAATATT CTAGCAGTGA TGTAATGAAA AATTACATCT TACTGTTGAT ATATGTATGC	2280
35	TCTGGTACAC AGATGTCATT TTGTTGTCAC AGCACTACAG TGAAATACAC AAAAAATGAA	2340
	ATTCATATAA TGACTTAAAT GTATTATATG TTAGAATTGA CAACATAAAC TACTTTTGCT	2400
	TTGAAATGAT GTATGCTTCA GTAAAATCAT ATTCAAATTT AAAAAAAAAA	2460
40	CTCGA	2465

45

50

(2) INFORMATION FOR SEQ ID NO: 207:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1480 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207:

GAATTCGGCA CGAGCTCAAG CTGGCAGGTG GTCGGGGGAG CGGCCGGAGA GGAGCTGCCG

GGAGTTCGTG CCCTGCAGGA CATGACACCA GTGGCATATC ACGGCCATGG GGTCTCAGCA

120

TTCCGCTGCT GCTCGCCCCT CCTCCTGCAG GCGAAAGCAA GAAGATGACA GGGACGGTTT

180

460

	GCTGGCTGAA CGAGAGCAGG AAGAAGCCAT TGCTCAGTTC CCATATGTGG AATTCACCGG	240
5	GAGAGATAGC ATCACCTGTC TCACGTGCCA GGGGACAGGC TACATTCCAA CAGAGCAAGT	300
	AAATGAGTTG GTGGCTTTGA TCCCACACAG TGATCAGAGA TTGCGCCCTC AGCGAACTAA	360
	GCAATATGTC CTCCTGTCCA TCCTGCTTTG TCTCCTGGCA TCTGGTTTGG TGGTTTTCTT	420
10	CCTGTTTCCG CATTCAGTCC TTGTGGATGA TGACGGCATC AAAGTGGTGA AAGTCACATT	480
	TAATAAGCAA GACTCCCTTG TAATTCTCAC CATCATGGCC ACCCTGAAAA TCAGGAACTC	540
	CAACTICTAC ACGGTGGCAG TGACCAGCCT GTCCAGCCAG ATTCAGTACA TGAACACAGT	600
15	GGTGAATTTT ACCGGGAAGG CCGAGATGGG AGGACCGTTT TCCTATGTGT ACTTCTTCTG	660
	CACGGTACCT GAGATCCTGG TGCACAACAT AGTGATCTTC ATGCGAACTT CAGTGAAGAT	720
20	TTCATACATT GGCCTCATGA CCCAGAGCTC CTTGGAGACA CATCACTATG TGGATTGTGG	780
	AGGAAATTCC ACAGCTATTT AACAACTGCT ATTGGTTCTT CCACACAGCG CCTGTAGAAG	840
	AGAGCACAGC ATATGTTCCC AAGGCCTGAG TTCTGGACCT ACCCCCACGT GGTGTAAGCA	900
25	GAGGAGGAAT TGGTTCACTT AACTCCCAGC AAACATCCTC CTGCCACTTA GGAGGAAACA	960
	CCTCCCTATG GTACCATTTA TGTTTCTCAG AACCAGCAGA ATCAGTGCCT AGCCTGTGCC	1020
30	CAGCAAATAG TTGGCACTCA ATAAAGATTT GCAGAATTTA ATACAGATCT TTTCAGCTGT	1080
	TCTTAGGGCA TTATAAATGG AAATCATAAC GTGGTTCTAG GTTATCAAAC CATGGAGTGA	1140
	TGTGGAGCTA GGATTGTGAG TGACCTGCAG GCCATTATCA GTGCCTCATC TGTGCAGAAG	1200
35	TCGCAGCAGA GAGGGACCAT CCAAATACCT AAGAGAAAAC AGACCTAGTC AGGATATGAA	1260
	TTTGTTTCAG CTGTTCCCAA AGGCCTGGGA GCTTTTTGAA AAGAAAGAAA AAAGTGTGTT	1320
40	GGCTTTTTTT TTTTTTAGAA AGTTAGAATT GTTTTTACCA AGAGTCTATG TGGGGCTTGA	1380
	TTCACCCTTC ATCCATTGGC TGGAACATGG ATTGGGGATT TGATAGAAAA ATAAACCCTG	144
	CTTTTGATTC AAAAAAAAA AAAAAAWAAA AAAAACTCGA	148
45		

(2) INFORMATION FOR SEQ ID NO: 208:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 872 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 208:

CAGTATTICC CTCAGTACTG TAAGCAAAAG TGGTATGTTT TTCTTTCTTT ATGTCTACTC

461

	TGTCCTCTGT GGCCTTCTGG TGTACCCCTC TCTTCCTAGC CATTCAGTCT CTCTAGTCAC	120
	CTCCCTAGTA GCTAGTGCTC TCTAAGTTTT TATTTAATTA GAACAACTCC ATTTCCATTT	180
5	CAAGGTAGGT CAATGGGGGG AAAAGCCTCA TGATTTAAAC TGAAGTTAAC AACACAGCTT	240
	TTAAAATGAA AACTCATACT CCAACTTCTA AAGTATATTT GAGCTGATTT GTTTCCAAAA	300
	CAAAGATATG CTGTACCTAA AACTGCTAAA ACAAAAATAT AAAGACAAGG ACTAGGTGAT	360
10	TAAGGGGAGA GAAAAATCAT YTCTTTTCCA GGAAACCTTT GCTAAAATAA GCAAAACTTG	420
	ANTICTATECT TCATEGAAAC TGACACAAAG AAAAGAAACT GATEGATTEC ACAEGCCTTG	480
15	TTATAGAAAT AGATCTATAA AAAGATCTGT CCACAGGAAA TATACACCTT CTCCTGGTTC	540
	TGAACTTCAA TGGGGATTTG TCACCTAGGT CTCCATCTAT AGGAATACCT TCACATACCT	600
20	ATCTATTCAT GCACATATTC TGAAAACAGG TACATACAAA ATTACAACAA AGGAAAAAAA	660
20	TTCTATTGAA CACTTAAAAA TAGAAACAGG CCAGGCACGG TGGCTCATGC TGTAATCCCA	720
	ACAATTTGGG AGGCTGAGGC TGGTGGATCA CCTGAGGTCA GGAGTGTGAG ACCAGCTTGG	780
25	CCAACATGGT GAAACCCCGT CACTACTAAA AATACAAAAA AAATTAGCCT GTGTGGTGGC	840
	ACACTONIAC AATOONGGOT GACTOGGGAA AN	872
30		
50	(2) INFORMATION FOR SEQ ID NO: 209:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1779 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEBNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209:	
	AATTGCCAAG ACTGCACAAA ATTACAGTGC TAATGTATAT GGTTGCAGTT CACATAAAGA	60
4.5	CAAAAGCATC TGTTATGAAA TGAGTAGTAA TATTGGGTGG TTGATTTGTT CTTAGCAGAC	120
45	TIGGCITCAT WITGGICTIG AGATAAAAIG GCCAGCATAA AIGCIGITTA TATICACGIT	180
	TTCCTAGGTG TGTGTGCCA GGCCACAGCA GCATGCCCTT GGTGTAGTCA GTGCCGAAAS	240
50	GGGTCTGTTC CTTCTTGAGC CTGCCTGCAG GGATGGTCTC CTTTTAAAGC AGGTTGTGTG	300
	CAGCATTCAG TACACTGAAG GTAAGCTAAA CCATCAACAT CTCTGGTGTT TTAAGATGTT	360
	ATTITATIOG AACAACIGAC AAATGAGGGA IGITAGCTIT GIGGCAGAAT ICCCIGCAIG	420
55	TGTGATAACT GATCTTGTTT TATTTTTTGG CATTGCAACT GTGGCATAGT TACAATTTCT	480
	COMPONENT CACAMPTANA ATTICCRAGAG AACGCGCTTG AKGGATAGAG CGCCTTCAGK	540

60 GTACTGTTTC TTATTAACTT TACTTTTTTT AAATCAACTT GCTATAGACT TTATATACAT

462

•	TTTGTTAAAT ATAGTTCCTA GTGACATAGA AACGATGCGT AGTTTTCATT TACTAATTAC	660
_	AAATGTTGAG GCCTAATTCT GAAAGTCCTC ATATTTAAAG GCTAGACAAC GTAATGAAAT	720
5	TTTTAACTAT TTGTATGTCA TTTTGAAAGT GTACTGCTTT ATGGTAAAAG TGTTTTTCAT	780
	TIGITCATTG TITTCATTAT TIGIGATCAT GITGICTITC AATACAGGCA TAAACCTTCC	840
10	ACTOTTGAAC AAAGCAGCTG CTTTTTAAAA GCGGTAATTG CTTCTTTACC TTTTATTTCT	900
	TTTGTAAATG AAGCTTTTCT TTAAGAATGT GACTTTAAAG TGTTGTCTAT TGCATAAAAC	960
15	AGTTGACACT CACTTATTGT AAAGTGAAGA TTGTTCTACT GCATGTGAAG TGGACCATG	1020
13	AGAITTCTGT ATGTTCTCAG TATGCATCAC TAGATAATAA AGTCTTTTGT GAACAAGGC	A 1080
	TTTGTAGCCA TTTTTAAAAG TTTTTGTCTT CAGTGCTGGT AAGTCAGGTA AACCATAAA	r 1140
20	AGTTAAAAGC AACCTTTIGT TTTTTTCCTG AAAGTTTTTA ATTGAAAGTA TTATTAGTT	A 1200
	AAGATGTAAA CCTAGCCAAA ATTACCAGTT TATTAATAAT TAGGATCCTA ATTATTTCA	A 1260
25	AAAATCCTAC AAATATTGTC AGCTTTCAGT GTAGTGAGAT TATTCCTGTA GGTTATGGG	G 1320
23	TATAATTCAG GATTTAACTA ATGTTTCTGC TATTTTCTCA CTTTTCCTTT TGATGGTGC	G 1380
	GAAAGAGAAA AAGGAAAACG GGGCACAGGC CATTCGACGC CTTCTCCAAG GGGTCTGAT	T 1440
30	TOCTGAGACA CCAGCTTCAC CTTCTTAACA AGGCACCTAA TTACAACAAG CATGCACAT	T 1500
	TYGGTGCATT CAAGAATGGA AAATCAGAAT AGCAGCATTG ATTCTTCTGG TGCAGCTCA	G 1560
35	TGGAAGATGA TGACAACCAG AAGACATGAG CTAAGGGTAA GGGACTGTTC TGAAGAACC	т 1620
<i>33</i>	TTCCATTTAG TGATCAAGAT ATGGAAGCTG ATTTCTGAAA ATGCTCAGTG TGTACTCTA	A 1680
	TTATTTATGG TACCATTTGA ATTGTAACTT GCATTTTAGC AGTGCATGTT TCTAATTGA	C 174
40	TTACTGGGAA ACTGAATAAA ATATGCCTCT TATTATCAA	177

45 (2) INFORMATION FOR SEQ ID NO: 210:

50

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2110 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210:

	GCCTCGGAGG GGCCTCGGCT GCCCCACCCT CGGAGCCACT GCTAGAAGGG GCCGCTCCCC	240
	AGCCTTTCAC CACCTCTGAT GACACCCCCT GCCAGGAGGCA GCCCAAGGAA GTCCTTAAGG	300
5	CTCCCAGCAC CTCGGGCCTT CAGCAGGTGG CCTTTMAGCC TGGGCAGAAG GTTTATGTGT	360
	GGTACGGGGG TCAAGAGTGC ACAGGACTGG TGGWGCAGCA CAGCTGGATG GAGGGTCAGG	420
10	TGACCGTCTG GCTGCTGGAG CAGAAGCTGC AGGTCTGCTG CAGGGTGGAG GAGGTGTGGC	480
10	TGGCAGAGCT GCAGGGCCCC TGTCCCCAGG CACCACCCCT GGAGCCCGGA GCCCAGGCCC	540
	TGGCCTACAG GCCCGTCTCC AGGAACATCG ATGTCCCAAA GAGGAAGTCG GACGCATGGA	600
15	AATGGATGAG ATGATGCCGG CCATGGTGCT GACGTCCCTG TCCTGCAGCC CTGTTGTACA	660
	GAGTCCTCCC GGGACCGAGG CCAACTTCTC TGCTTCCCGT GCGGCCTGCG ACCCATGGAA	720
20	GGAGAGTGGT GACATCTCGG ACAGCGGCAN CAGCACTACC AGCGGTCACT GGAGTGGGAG	780
20	CAGTGGTGTC TCCACCCCCT CGCCCCCCA CCCCCAGGCC AGCCCCAAGT ATTTGGGGGA	840
	TECTTTTEGT TCTCCCCAAA CTGATCATEG CTTTGAGACC GATCCTGACC CTTTCCTGCT	900
25	GGACGAACCA GCTCCACGAA AAAGAAAGAA CTCTGTGAAG GTGATGTACA AGTGCCTGTG	960
	GCCAAACTGT GGCAAAGTTC TGCGCTCCAT TGTGGGCATC AAACGACACG TCAAAGCCCT	1020
30	CCATCTGGGG GACACAGTGG ACTCTGATCA GTTCAAGCGG GAGGAGGATT TCTACTACAC	1080
50	AGAGGTGCAG CTGAAGGAGG AATCTGCTGC TGCTGCTGCT GCTGCTGCCG CAGACCCCCA	1140
	GTCCCTGGGA CTCCCACCTC CGAGCCAGCT CCCACCCCCA GCATGACTGG CCTGCCTCTG	1200
35	TOTGOTOTTO CACCACCTOT GCACAAAGCC CAGTCCTCCG GCCCAGAACA TCCTGGCCCG	1260
	GAGTCCTCCC TGCCCTCAGG GGCTCTCAGC AAGTCAGCTC CTGGGTCCTT CTGGCACATT	1320
40	CAGGCAGATC ATGCATACCA GGCTCTGCCA TCCTTCCAGA TCCCAGTCTC ACCACACATC	1380
40	TACACCAGTG TCAGCTGGGC TGCTGCCCCC TCCGCCGCCT GCTCTCTMTC TCCGGTCCGG	1440
	AGCCGGTCGC TAAGCTTCAG CGAAGCCCCA GCAGCCAGCA CCTGCGATGA AATCTCATCT	1500
45	GATCGTCACT TCTCCACCCC GGGCCCAGAG TGGTGCCAGG AAAGCCCGAG GGGAGGCTAA	1560
	GAAGTGCCGC AAGTGTATGG CATCGAGCAC CGGGACCAGT GGTGCACGGC CTGCCGGTGG	1620
50	AAGAAGGCCT GCCAGCGCTT TCTGGACTGA GCTGTGCTGC AGGTTCTACT CTGTTCCTGG	1680
50	CCCTGCCGGC AGCCACTGAC AAGAGGCCAG TGTGTCACCA GCCCTCAGCA GAAACCGAAA	1740
	GAGAAAGAAC GGAAACACGG AGTTTGGGCT CTGTTGGCTA AGGTGTAACA CTTAAAGCAA	1800
55	TTTTCTCCCA TTGTGCGAAC ATTTTATTTT TTAAAAAAAA GAAACAAAAA TATTTTTCCC	1860
	CCTAAAATAG GAGAGAGCCA AAACTGACCA AGGCTATTCA GCAGTGAACC AGTGACCAAA	1920
60	GAATTAATTA COCTCCGTTT CCCACATCCC CACTCTCTAG GGGATTAGCT TGTGCGTGTC	1980

PCT/US98/11422

464

	AAAAGAAGGA ACAGCTCGTT CTGCTTCCTG CTGAGTCGGT GAATTCTTTG CTTTCTAAAC	2040
	TCTTCCAGAA AGGACTGTGA GCAAGATGAA TTTACTTTTC TTAAAAAAAA AAAAAAAAAA	2100
5	AAAAACTCGA	2110
		•
10	(2) INFORMATION FOR SEQ ID NO: 211:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 938 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:	
20	GGCACAGGAA AAAAAAGAAA AAAGAAAAAA GAAAAAAGTT TTTGTACCCA CAGATTAGCA	60
	TTTTCTTGAT GTTTGAAAAA AGTTTAAGCT ATGTCCTAAT TTAAAAATGA GCACAAACTA	120
25	CTTAACAGAT GTCTGTTCCC TCTTCTCTTA CTTAAATTAT CTTTATTTTC ACCATCACCT	180
25	CCCAGTGCCG AACACCTGAN CTCTGTGTTT TGTGGTTGGA TCCTGGGTTG CCAAGTTCCT	240
	ATTTGGTCAG TCCCTGGCCT GTGGGGCGGT CTCAGGAAGT GGCATGCTCT TCAMGRAGGA	300
30	TOGTTCATYT CCAGTATAAC CAWITTGTTA ATAATAGTTG ATAATTCCCA GCTTTTACCA	360
	GATGARTITT GACTIATITT TCCTCCTTTG ACCTGTTCAA AGCTAACATA TCTCGGTCAG	420
35	TTCGGAGAGG GTGGGGGATT TGAGAATGTG AGGAGGAGTG GGGTTAGAAT GGGTTTGCCT	480
33	ATCTGGGCAA GGAAAGAGTT CCTAGTCGAT TGGGCACAAT GACAAAATGA TTCCATGGAT	540
	AGAATCGTCC CATGTTGCTG GAACACCTCA CGTGTTGTGA ACGCCTTAAA TTCCTGCCAT	600
40	CCCTTCTCTG ATTCCCCACC TCCCTGTAGT TTCCACAGGA TTTATCTCTC TGTACCCCCG	660
	TCCTCCAACT CTACTCTGTC AGCCTCTCCT CCATCCCTTA CTTCCCTTCT AAATTCCAGG	720
45	AGATGACCTC ACTITICCAAA GCAAATTGGA GCCACCAAAT TGTAGCTCTC CTCGGTGGAA	780
	ACTGCATCTG TGCTCATCCC TGCACCTTCT TGCAGAAAGC CGCCCCCTCA GGCCAAGATG	840
	AGRICOTIGGO COCCATGEGA GACTCAGACA CTTTGACCCC TTGTGACTTC AGCATCTCCC	90
50	TCTTTAAAGA TTCTCTCCCA ACATTCAGTC GTGCTCGA	93
55	(2) INFORMATION FOR SEQ ID NO: 212:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1551 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212:

5	AGGCTGGACT AAGCATAGAG AACCAGGAGA GAAAGAAAGA TTTAAGAGAC TGAGTAATAT	50
	TTTTTGACAG ATCATTTAAG AAACTGAGTA ATTTTTTTT TCTCCAAAAG GGCATGGGTT	120
10	TITITITIGE TITIGITITE CICTATITGG CACTITCIAG GGATIGGICT ATAAATITIT	130
	TGAAAGATCA TAGGATAAAT TTCTTTGTAG CAACTTCCTA TTTTAGTGTT TATGTTAGGG	240
	GARCCCCARG TGTCCCTGCT GATACGCCAT TAGGGCCACT TCTCAGCCTC TGGCTACATC	300
	ATAATGCTTT TTTTTCTATC TTGCCAAAGT TTCCMGAAAA TTKAKGTTTT CTAATTTAA	350
	AAAAATTGGT TGTGGAGATG GGATGGGACC TCTTTATAAG CCCTGAAAAT AAGTGATTTN	420
20	TITTAAGIGC TATTCIGCTA TAAACCIGAT TCTCACITIT TICTGTAGAC AACAGITITI	430
	TATAATATAT CTATTTTGTG TGGACATTAT TTCCTTTTAA CCAATACTGA AATTCCATAG	540
	TGTAWACTIT CTCCACATTT TCTTTGATTA ATACTTYCTT AAAATAGACA CTTGGATTGG	630
25	CACCAGCTGT CACCAATAAA GCTGCCCTGA ACATTGTCAA TCAATCCTGT TAACCAATTT	650
	GAGAATTITT CTGGAATGCT TAGTTAGGGA TGAAATTGCT GGGTTATAGG TATGAGTATG	720
	CTTGATATAC TTTTCTCCAG AATGTCTACA CCTGTGTGTA CACCACATCT CCAGAGATAG	730
30	GGGAATCTTA TGTCCCTGCT AACTGCTCTC GTTATTTAAT TTTCTGACAT TTGCCGCCGC	840
	CGCCGCCCCC TGCCCCCAAC ACACACATGG TATAAAGTGG TAGTTTCTTG TTTTAAATTG	900
35	AACTTITGAA TGATTTGAAT TTGGGCATTT CTTTGTATCC TGAGTTATTT TGGTTTCCCG	960
	TTATGIGAAT ATCCTTTTCC TATGCTTTAA CTACTTTTCT AATTIGICCC TTTTTTNGGT	1020
	TATCAAATTC CAGGCCATTG TCTATTCCAT CGTCACTTTT GGGTATTGGA AACATCTTTC	1030
40	CATTCTGTAG CCTGTCTGTT GAACATAAAT CTTGATTTTT ATGTAATCAG ATTTTTCTCC	1140
45	TTACGGTTAT GTTCTTGGAA TTTTATTTAA GAAATCTTTT TCTATCCTGA GACCACAAAA	1200
	TATCTTAAT CCTTTAAGGC	1250
	ATGTGTAGTT CATTITATAT GGTGTGAAAT AGTTCTTATT CATTTATTCA ACACATATTG	1320
50	GTGGAGTGCC TGCTGATGGT AGTACTCTTC AGAGTACTTT GTATATATTT GTGAACACAT	1330
	ATTCTTGCCC TGGAAGCTTA TGTTGTCNIT CAAGGTAGAT CCNTACTCGG TTTCCACCTG	1440
	TTTTCTTCAG CCCTCAGGAT GAATTCCACA ATTTTACACA TAGCACCAGT TAAGGAATAG	1500
5.5	A CONTRACTOR OF THE PROPERTY O	1551

^{60 (2)} INFORMATION FOR SEQ ID NO: 213:

. 5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 997 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 213:	
10	AGAGAGTCCT CAACAGAACC TAATCATGCT GGCACCCTAA TUTCATACTT CTAGCCTCCA	60
	GAACTGAGAG AACATAAACT CCAGTTGTTT AAGCTACCCA GGCTATGGTA TTTGTTATTA	120
15	TAGCCCAAGC TAAGTCAGGT GGAAAGGCAG AAATAITTIG AGAAGARTCA TITCTACAAA	130
	AACAGAGTIG TICTAAATGA AATGGCCAGA TATTICATCT TOTTCATACT AGTATTTATG	240
	AAAGTTTCAT TAAACACCAC TTGGCCAGCA CCCAGGCCTG CLACTITCAG AACGGCAAAC	300
20	AAAAGCAAAT GATTTGAGGA ACAAAAGAGT GGACACAGAG CTTCTCAGAA GATGGCTCCA	360
	TOTTOTGAGA TGATOTTOTG AGATCATCAA TTTTCTGCAC CTGATGTOTT ACTCCAATTG	420
25	TAGTAGATAA GAGCAAAGAC ACTTCCTGAT CCTGTGGAAA ATGCTGGAGC CCTGCTGATG	430
	GAGAGGCTGA CACTGGGACC AACAGAAGGC CGGACATTTA TYTGCTGCAG CCCTTCTGCA	540
	CCTGGGCCCT CTTCAGGCCT TGTACCTTGC ACTCCCCATG CCACTGTAGC ACCTGGTAAG	600
30	CTGAAGTTAG GTATTTGAAG AGATAATTTG CCCCCAACAA AGAATTACTT AAAAGAAAAA	560
	GGAAACCACT AAATTCCACT TGACAAACCA GTTTGTTCAG TYYVEACTYT TGCAAATTTG	720
	AAACTITICTO TITIGGCACCA TATGATTOTG TIACATTAGG GOTTALCAAT GOTAAGATAC	780
35	ACAGCTAGGT CTACCAGCTG CCAGTGGTCA AGAATGAAAG AACCTCTCAG AGAGAGATCA	240
	GTTTCTAATA ACCTAACAGT TTTCCTTGGS TATTACMAAA AAAAAAAAA TTAGAATAAA	900
40	ATGTCAGTGC CATGCAGGCA AGTACAGATA TGGAAATGAA AGCTTTGTGT ACAACTGCAA	960
	GATTTGTTTG TTAATAAAAT TGATTGGGAT CACTCGA	997
45		
43	(2) INFORMATION FOR SEQ ID NO: 214:	
	(i) SEQUENCE CHARACTERISTICS:	
50		
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55		60
	GAATTCGGCA CGAGTGACCA CAGATATCTT TGGCTTTCAG CCTCACCACA ATGCTGTCCA	120
60	CTATGTTTT TTTAATCGAT TGACATCTCA TGAATCCACA AATTTAGCCG CTTTTCCATC	

	TTTTCCATCT TTGTCATAGC TTCATCACGC ACGATGGAGG TCACTTCAGC ACTATCCGGA	180
	GCGGCCTCAC GGACAGATCR GTGAATTTCC TTTTCCTTTT TCTTGATGTA CCGGATTGTC	240
5	GACTOGTTAA CATTGAGCTC ATGGCCAACA GCACTGTAAC TCATGCCTGA TTGGAGCTTA	300
	TOCARCACGO GGAMITICITO CGTARGGSAM ATCAMGGTOT TOTTTOGOTT AGGRACACTG	360
10	GGCARARCTT AARCACTACG CTTGGGGGCC ATTTTAGAAA GCAAAACCAC CCACAAAAAG .	420
	CAGAAAAAA AGTGTCAGTA AACAGACTGN NGANAGGACT CTTTGTTTAC AGCACAGGAG	480
	CTGCGACTAG AAGGCGGCGC TTCTCCCCAG TTCAAACTTC AGCTGGGAAC CTTACCTCCG	540
15	CCAACTCCAA ATTTTCACCC TCTGCGCATG CCCGGGAAAS AAACCCCCAG AACAGTACCG	600
	TGATGATTGA TTTTAGGGTT ACAAATACAT TTTAGCAAGT AAGTGAATTT GGCATTACGA	660
20	ATTAATGATT AATGAAGGTC ACCTGTATTT CCATAGATAT GTAATTTTAT TTAAGCAGGT	720
	TTATTATATT AAGGCGGGGA GGCAGCGCCG AAGACTACAA GTTCCAGCAT GCACCGCGTC	780
	CGGGCGGGTT CGGGCTCCCA GCGAGGGCTT CAGGGACGCC AGCCCGGAGG CATCGGCCGG	840
25	AAGTGTCGTA GGGCAACCAC GTAGTACTCT CTGCGCATGT GCAAAGCGCT GTCGGGGGCC	900
	GCCCTAGCTG CCGTCGCCGC CGCCGGGGCT CTATGGTCTC TCCCTAGAGC TTTGCCGTTG	960
30	GAGGCGGCTG CTGCGGTCTT GTGAGTTTGA CCAGCGTCGA CCGGCAGCAA CATGGAGGAA	1020
	TICGACTCCG AAGACTTCTC TACGTCGGAG GAGGACGAGG ACTACGTGCC GTCGGGTGAG	1080
	CGATTCCGCC TGAGGCGAGA AGCGAATTGC CCCGCCCCAC GCCTCACGTG AGGCGCGCTC	1140
35	TECCCCCECE GEOGRATICC CTGTGGCCCA GGTGGTCCAG GGGGGCTCCT GTTCTCGAGC	1200
	GTCCGCTCCC TCAGGCCCCT CATCCTCGGC CGCTCCGGCC CGAGGCGTGT GCGCGTGGCG	1260
40	GITCTGTGCT CCCCTCCCGT TGGGCAGCTC CGGCCGCCGC CCCCTCTTGC AGCGCGGGAA	1320
	CGGCACATGG ACACGGCCCC TTGTCGCTAG GGACGCTCGT CGGTCAGCCC CGAACGACAA	1380
	CGCTGCTTCA GAAGTCGGGG CGGCAGTTCG AGCCTTGGAA GTTTTTTTCA GCCCTGGCCC	1440
45	GAGAGAGCTG CTGGCCAACA ACCCGTCCAA GATAGAGCTG TCCGNTCTCC GNCTGG	1496

50 (2) INFORMATION FOR SEQ ID NO: 215:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1308 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215:

	CTGCCTTTGA CCCATCACAC CCCATTTCCT CCTCTTTCCC TCTCCCCCT GCCAAAAAAA	120
_	AAAAAAAAGG AAACGTTTAT CATGAATCAA CAGGGTTTCA GTCCTTATCA AAGAGAGATG	180
5	TGGAAAGAGC TAAAGAAACC ACCCTTTGTT CCCAACTCCA CTTTACCCAT ATTTTATGCA	240
	ACACAAACAC TGTCCTTTG GGTCCCTTTC TTACAGATGG ACCTCTTGAG AAGAATTATC	300
10	GTATTCCACG TTTTTAGCCC TCAGGTTACC AAGATAAATA TATGTATATA TAACCTTTAT	360
	TATTGCTATA TCTTTGTGGA TAATACATTC AGGTGGTGCT GGGTGATTTA TTATAATCTG	420
	AACCTAGGTA TATCCTTTGG TCTTCCACAG TCATGTTGAG GTGGGCTCCC TGGTATGGTA	480
15	AAAAGCCAGG TATAATGTAA CTTCACCCCA GCCTTTGTAC TAAGCTCTTG ATAGTGGATA	540
	TACTCTTTTA AGTTTAGCCC CAATATAGGG TAATGGAAAT TTCCTGCCCT CTGGGTTCCC	600
20	CATTTTTACT ATTAAGAAGA CCAGTGATAA TTTAATAATG CCACCAACTC TGGCTTAGTT	660
	AAGTGAGAGT GTGAACTGTG TGGCAAGAGA GCCTCACACC TCACTAGGTG CAGAGAGCCC	720
٥٢	AGGCCTTATG TTAAAATCAT GCACTTGAAA AGCAAACCTT AATCTGCAAA GACAGCAGCA	780
25	AGCATTATAC GGTCATCTTG AATGATCCCT TTGAAATTTT TTTTTTGTTT GTTTGTTTAA	840
	ATCAAGCCTG AGGCTGGTGA ACAGTAGCTA CACACCCATA TTGTGTGTTC TGTGAATGCT	900
30	AGCTCTCTTG AATTTGGATA TIGGITATTT TITATAGAGT GTAAACCAAG TTTTATATTC	960
	TGCAATGCGA ACAGGTACCT ATCTGTTTCT AAATAAAACT GTTTACATTC ATTATGGGGT	1020
25	ATGTATGACC TTCATTTTCC AAGAAATAGA ACTCTAGCTT AGAATTATGG ATGCTCTAAA	1080
35	ATGTCAGAAT GGGAACTCTC CTCGAAGTTC TCCCAAACTC AGAGACAGCA CTGCCTTCTC	1140
	CTAAATGATT ATTCTTTTCT CCCTGTTTTC TGGTATTTTC TAGGCATCCT TCTCACCACA	1200
40	GCCATAACCC TTTTTTACTT CCATTAGGCC GTATAACTGG NGGGACNGCT GGTCGGTATA	1260
	TAATACTGGT WCCAACAMAG GGGTTCTGGA TGTACACMAG GTTATCTT	1308
45		
45	(2) INFORMATION FOR SEQ ID NO: 216:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 1705 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216:	
	TOGCCATOGA AGCOCTAGAA GOTTTAGATT TIGAAACAGC AAAGAAGGAT TTCCTTOGAT	60
60	CTGGAGACCC CAAAGAAACA AAGATGCTAA TCACCAAACA GGCTGACTGG GCCAGAAATA	120

	TCAAGGAGCC CAAAGCCGCC GTGGAGATGT ACATCTCAGC AGGAGAGCAC GTCAAGGCCA	180
	TCGAGATCTG TGGTGACCAT GGCTGGGTTG ACATGTTGAT CGACATCGCC CGCAAACTGG	240
5	ACAAGGCTGA GCGCGAGCCC CTGCTGCTGT GCGCTACCTA CCTCAAGAAG CTGGACAGCC	300
	CTGGCTATGC TGCTGAGACC TACCTGAAGA TGGGTGACCT CAAGTCCCTG GTGCAGCTGC	360
	AGTGGAGACC CAGCGCTGGG ATGAGGCCTT TGCTTTGGGT GAGAAGCATC CTGAGTTTAA	420
10	GGATGACATC TACATGCCGT ATGCTCAGTG GCTAGCAGAG AACGATCGCT TTGAGGAAGC	480
	CCAGAAAGCG TTCCACAAGG CTGGGCGACA GAGAGAAGCG GTCCAGGTGC TGGAGCAGCT	540
15	CACAAACAAT GCCGTGGCGG AGAGCAGGTT TAATGATGCT GCCTATTATT ACTGGATGCT	600
	GTCCATGCAG TGCCTCGATA TAGCTCAAGA TCCTGCCCAG AAGGACACAA TGCTTGGCAA	660
	GTTCTACCAC TTCCAGCGTT TGGCAGAGCT GTACCATGGT TACCATGCCA TCCATCGCCA	720
20	CACGGAAGAT CCGTTCAGTG TCCATCGTCC TGAAACTCTT TTCAACATCT CCAGGTTCCT	780
	GCTGCACAGC CTGCCCAAGG ACACCCCCTC GGGCATCTCT AAAGTGAAAA TACTCTTCAC	840
25	CTTGGCCAAG CAGAGCAAGG CCCTCGGTGC CTACAGGCTG GCCCGGCACG CCTATGACAA	900
	GCTGCGTGGC CTGTACATCC CTGCCAGATT CCAAAAGTCC ATTGAGCTGG GTACCCTGAC	960
	CATCCGCGCC AAGCCCTTCC ACGACAGTGA GGAGTTGGTG CCCTTGTGCT ACCGCTGCTC	1020
30	CACCAACAAC CCGCTGCTCA ACAACCTGGG CAACGTCTGC ATCAACTGCC GCCAGCCCTT	1080
	CATCTTCTCC GCCTCTTCCT ACGACGTGCT ACACCTGGTT GAGTTCTACC TGGAGGAAGG	1140
35	GATCACTGAT GAAGAAGCCA TCTCCCTCAT CGACCTGGAG GTGCTGAGAC CCAAGCGGGA	1200
	TGACAGACAG CTAGAGATTT GCAAACAACA GCTCCCAGAT TCTTGCGGCT AGTGGGAGAC	1260
	CAAGGGACTC CATCGGAGAT NAGGACCCGT TCACAGCTAA GCTRAGCTTT GAGCAAGGTG	1320
40	GCTCARAGTT CGTGCCAGTG GTGGTGAGCC GGCTGGTGCT GCGCTCCATG AGCCGCCGGG	1380
	ATGTCCTCAT CAAGCGATGG CCCCCACCCC TGAGGTGGCA ATACTTCCGC TCACTGCTGC	1440
45	CTGACGCCTC CATTACCATG TGCCCCTCCT GCTTCCAGAT GTTCCATTCT GAGGACTATG	1500
	AGTTGCTGGT GCTTCAGCAT GGCTGCTGCC CCTACTGCCG CAGGTGCAAG GATGACCCTG	156
	GCCCATGACC AGCATCCTGG GGACGGCCTG CACCCTCTGC CCGCCTTGGG GTCTGCTGGG	162
50	CTGTGAAGGA GAATAAAGAG TTAAACTGTC AAAAAAAAAA	168
	ANAAA AAAAAAAA AANA	170

(2) INFORMATION FOR SEQ ID NO: 217:

55

60 (i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 999 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217:	
	AGCABATCAC CTTAACGATC TGGAATGAAA CTGTGACCAG TGCCGCCCTG GGTGGTTCTG	60
10	GAGAGACTGC CGTCTTCTTG TTTGGCCATA GGTGCTGGGG CCCCGGCTTC AGTCACTGTC	120
	TCAGACAGKA GTCCCGATAA GCAGATCACC AGTCCTCCAC TGTCCTTCCT GTCGGCCTTG	180
	CIGCATGAGA AGATAGCTGC TTCCTCCCTC TITTCCTACA CTGTAAATTA TTGTTTTACA	240
15	ATTGAGTGYC TTAATAATAG TYTACAAATA CTATGTATTT ATGCAAAACT GTTAAAGTTC	300
	TCATCTGTTA TGATTGGATA CTTGGTCTTG TCAGTAGTGG TCAGCATTGG GTTGTGAGCT	360
20	TGTCCTACTC CATACGTGTT TATCCTGCTA TGCATTTTAC ATTGTGTGTT CACATCTATT	420
	CCAAGGAGCC TTGCTAGAAA CAACACTGGC GGTTCCTGCA GGCCAGGCAG GCATTGGCCC	480
	ATGCTGTGTC CCATAGGAGC CAATGGAAAG AACGTAGCTT GGTCTGCTAG CCAGCCGTGG	540
25	GGTGGCGCAG GCCAGGCAGC CTCTGCACCA GAGTCCAGCA CCTGCCCATT CCCCAGTCAC	600
	ACAATCATAC TCTTCTTTCA TAGAGATTTT ATTACCACCT AGACCACCCT AGTTTTCCTC	660
30	TOTOTTAGTG TOOTGAGGTC TTTTGCAACA AAATGTAGGT ACAGACCAAT COCTGTCCCT	720
	TCCCCAATCA GGAGCTCCAC ACCATGAGTT GTTTGGTTTT CCAGAAGCTG CCAGTGGGTT	780
	CCCGTGAATT GCGTTAAGAT ATCGATGATK TTTTTTATTG TTTTTCTTCT TGTTTTTTTA	840
35	AATAATATAT TTAAAGGCAG TATCTTTTGT ACTGTGAATT TGCAGTAGAA GATGCAGAAT	900
	GCACTITITI TITACTICIG TIGGIGIGIA TIGIATATAG TGIGIGIGCI TCTTGIGATG	960
40	AAAATAAACT TTTTCTTTAT AAAAAAAAAA AAAAAAAA	999
45		
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 941 base pairs (B) TYPE: nucleic acid (C) STRANDELNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218:	60
55		120
	GATGTCCTCA GCCAAGATTG TRAGGCAGAG AGGAGCTGTC CCAACCTACT ATACCACCGA	180
	GCCTGGAGAG ATCATATTTT TGGTATTAAA CTGGAGTCTC TCCATCCTTC ACATTGTTGA	

471

	TGTCCTCTGT AGCAAACCGG AAAAGTCAGT GACAGAAGAT GCCGCTAGCG GTTTGAGCCA	240
	GAGAATGACA GCTCTGGTTT GGAGAAAAGG GCCGGATGGT GGCTCTAGAA AGCCCATCCT	300
5	TCTGCTCTTC TTTTTTCTCC CCCTTATATT GTGCTTTCAT TCATTCATTC ATTCATCAAA	360
	CATTTGTTGA GCACCTATTA TGTGTCAAGC TCTGTGCTAG CCTCTGGAAA ACCTGCCCTC	420
	ATGTAGCTCA CTGTGGAGTA GGAGAAACAA TGACTACACT ATGATAAGCA CGGGTTGTCA	480
10	GGGTCTCACA GAGCAGTGGC CCCTCATCCA GACCGATGAG GTCAAAGAAG GCATCCAGGC	540
	GAGGATGGTG TCAGAGCTAA CTGAAGAATG AGAGGGAGCT GCACCASCAG GGGTTGGAAC	600
15	TGAAGGTGGC AGTGCCTGGA GTCTTGATTC CAGCAGAGGG AGAGCAGTCT GTGAAAAGGC	660
	ACCAAGGGTG GGAGAGGGCA GAGCACATGG AGGAACTTCA GGTAGTTCTG GATGGCSCTG	720
00	GGGCAAAGCT AGAGAGGTAA GAAGAATCTA CAAATGTTCC TCGAGTTACA TGAACTTCCA	780
20	TCCCAATAAA CCCATTGGAA ACGAAAAATT TAAGTCAGAA GTGCATTTAA GGCTGGTCCG	840
	AGTAGAATGA TTTTTACAAC GAATTGATCA CAACCAGTTA CAGATGTCTT TGTTCCTTCT	900
25	CCACTCCCAC TGCTTCACCT GACTAGCCTT TAAAAAAAAA A	941

30 (2) INFORMATION FOR SEQ ID NO: 219:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 575 base pairs (B) TYPE: nucleic acid

35 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219:

TAAGTGGAAT CCCCCGGGGT TGCAGGGAAT TCGGCACGAG GCATTCTGAG AAGCTTAAGA 60 CATACTITGA AGACAACCCT AGGGACCTCC AGCTGCTGCG GCATGACCTA CCTTTGCACC 120 CCGCAGTGGT GAAGCCCCAC CTGGGCCATG TTCCTGACTA CCTGGTTCCT CCTGCTCTCC 180 GTGGCCTGGT RCGCCCTCAC AAGAAGCGGA AGAAGCTGTC TTCCTCTTGT AGGAAGGCCA 240 AGAGAGCAAA GTCCCAGAAC CCACTGCGCA GCTTCAAGCA CAAAGGAAAG AAATTCAGAC 300 CCACAGCCAA GCCCTCCTGA GGTTGTTGGG CCTCTCTGGA GCTGAGCACA TTGTGGAGCA 360 CAGGCTTACA CCCTTCGTGG ACAGGCGAGG CTCTGGTGCT TACTGCACAG CCTGAACAGA 420 CAGTTCTGGG GCCGGCAGTG CTGGGCCCTT TAGCTCCTTG GCACTTCCAA GCTGGCATCT 480 540 575 CTCGAGGGG GGCCCGTACC CAATTCGCCC TATAA

40

45

50

472

(2)	INFORMATION	FOR	SEQ	ID	NO:	220:
(2)	THEOTOMYTHOM	101	224			

(i) SEQUENCE CHARACTERISTICS: 5 (A) LENGTH: 3018 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220: GCCAGCCTTA CAGGTTTTAC GTGAAATGAA AGCCATTGGA ATAGAACCCT CGCTTGCAAC 60 ATATCACCAT ATTATTCGCC TGTTTGATCA ACCTGGAGAC CCTTTAAAGA GATCATCCTT 120 15 CATCATTTAT GATATAATGA ATGAATTAAT GGGAAAGAGA TITTCTCCAA AGGACCCGGA 180 TGATGATAAG TTTTTTCAGT CAGCCATGAG CATATGCTCA TCTCTCAGAG ATCTAGAACT 240 20 TGCCTACCAA GTACATGGCC TTTTAAAAAC CGGAGACAAC TGGAAATTCA TTGGACCTGA TCAACATCGT AATTTCTATT ATTCCAAGTT CTTCGATTTG ATTTGTCTAA TGGAACAAAT 360 TGATGTTACC TTGAAGTGGT ATGAGGACCT GATACCTTCA GCCTACTTTC CCCACTCCCA 420 25 AACAATGATA CATCTTCTCC AAGCATTGGA TGTGGCCAAT CGGCTAGAAG TGATTCCTAA 480 540 30 TCCTGATGCT CATGGCAAGG GACAAGCACC CACCAGAGCT TCAGGTGGCA TTTGCTGACT 600 GTGCTGCTGA TATCAAATCT GCGTATGAAA GCCAACCCAT CAGACAGACT GCTCAGGATT 660 GGCCAGCCAC CTCTCTCAAC TGTATAGCTA TCCTCTTTTT AAGGGCTGGG AGAACTCAGG 720 35 AAGCCTGGAA AATGTTGGGG CTTTTCAGGA AGCATAATAA GATTCCTAGA AGTGAGTTGC 780 TGAATGAGCT TATGGACAGT GCAAAAGTGT CTAACAGCCC TTCCCAGGCC ATTGAAGTAG 840 40 TAGAGCTGGC AAGTGCCTTC AGCTTACCTA TTTGTGAGGG CCTCACCCAG AGAGTAATGA 900 GTGATTTTGC AATCAACCAG GAACAAAAGG AAGCCCTAAG TAATCTAACT GCATTGACCA 960 GTGACAGTGA TACTGACAGC AGCAGTGACA GCGACAGTGA CACCAGTGAA GGCAAATGAA 1020 45 AGTGGAGATT CAGGAGCAGC AATGGTCTCA CCATAGCTGC TGGAATCACA CCTGAGAACT 1080 GAGATATACC AATATTTAAC ATTGTTACAA AGAAGAAAAG ATACAGATTT GGTGAATTTG 1140 50 TTACTGTGAG GTACAGTCAG TACACAGCTG ACTTATGTAG ATTTAAGCTG CTAATATGCT 1200 ACTTAACCAT CTATTAATGC ACCATTAAAG GCTTAGCATT TAAGTAGCAA CATTGCGGTT 1260 TTCAGACACA TGGTGAGGTC CATGGCTCTT GTCATCAGGA TAAGCCTGCA CACCTAGAGT 1320 55 GTCGGTGAGC TGACCTCACG ATGCTGTCCT CGTGCGATTG CCCTCTCCTG CTGCTGGACT 1380 TCTGCCTTTG TTGGCCTGAT GTGCTGCTGT GATGCTGGTC CTTCATCTTA GGTGTTCATG 1440 60

	CAGTICTAAC ACAGTIGGG TIGGGTCAAT AGTITCCCAA TITCAGGATA TITCGATGIC	1300
	AGAAATAACG CATCTTAGGA ATGACTAAAC AAGATAATCG CAGTTTAGGC TGCACAACTG	1560
5	GTAAAATGAC TGTAGATAAA TGTTGTAATT AGTGTACACG TTTGTATTTT TGTTAATATA	1620
	GCCGCTGCCA TAGTTTTCTA ACTTGAACAG CCATGAATGT TICATGTCTC CCTTTTTTTT	1680
	TIGICTATAG CIGITACCTA TITTAGIGGI IGAAATGAGA GCTAGIGAIG ACAGAAGGAT .	1740
10	GTGGAATGTC TTCTTGACAT CATTGTGTAT TGCTGGTAAT CAAGITGGTA ACGACTACTT	1800
	CTAGCAGCTC TTACCACTAT GACTTAAGTG GTCCTGGAAG GCAGTAAGTG GAGGTTTGCA	1860
15	GCATTCCTGC CTTCATGAGG GCTTCTACCA CTGACCACTT TGCACGTACC TGGCTCCCAG	1920
	ATTTACTTAG GTACCCCACG AGTCGTCCAC ATAAGCAGCT TCATCTTTAC CTTGCCAGAG	1980
20	TTGACAATTA TGGGATACTC TAGTCTACTT ATACTTGTGT TCCCATCTGT CTGCCATCCT	2040
20	CTGAAGGCCA GGACCCAGTC ATACATCCTT AGAAACCAAA GTATGGTTTT TGTTTTCTCT	2100
	TGGAATGTCA GGTCTTAAGG CATTTAATTG AGGGACAAAA AAAAAAAAAA	2160
25	TAGCTAGCTA CTTAAGCATC CATGGGTATT GCTCCATATC AAAGCAGATT TGCAGGACAG	2220
	AAAGAGTAAA TTAGCCTTCA GTCTTGGTTT ACAGCTTCCA AGGAGAGCCT TGGSCACCTG	2280
30	AAATGITAAC TCGGTCCCTT CCTGTCTCTA GTTCATCAGC ACCTGCAGAT GCCTGACTCT	2340
30	TGTTAGCCTT ACTATTCAAT ACAGTCCTTA GATTCACGGT ATGCCTCTTC CTATCCAGGC	2400
	ACCTATTCTG AATCACCATG TTGCTCTGCA GCTAGAGTTG ATAGGAGAAA ATCCATTTGG	2460
35	GTAGATGGCC TATGAATTTG TAGTAGACTT TCAAAATGAG TGATTTGTTA GCTTGGTACT	2520
	TTTAAGTTTG TGGTACAGAT CCTCCAAACC CATACTCTGA GCAATTAACT GCCTTGAACA	2580
40	TAGAGAAAAA TTAAGGCCTC ACAGGATGAG TCTCCATTCT CTGTAAATGC TTATTTTATC	2640
40	ATAGTETTTA GESTEARCT ATGAGTAAAA TGTTETETTE GGESGGTGT GGTGACTEAC	2700
	ACCTGTAACC TCAGCACTTT GGGAGGCAGA GGTGGGAGGA TCACTTAGGT CCAGGAGTTC	2760
45	GAGACTAGCC TGGGCAACAT AGTGAGACAC CGGATCTACA AAAAAATAAA AAGCCAGACT	2820
	GGTGGTATGT ATCTGTGTCC CAGCTAATTG GGAGGGTGAG ATGGGAGGAT TGTTTGAGCC	2880
50	TAGGAGAGGG AGGTTGCAGT GAGCCGTGAT CGCACCACTG CACTCCAGCC TGGGCAACAG	2940
50	AGCAAGACCC TGTCTTGGAG AAACCAGAAT TTTGGAAGAG CAAATGGGGC TGAGTGCAGT	3000
	GGCTCATGCC TGTAATCC	301

55

60

(i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 221:

474

	(A) LENGTH: 968 base pairs	
•	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
_	(D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221:	
	GGCACGAGGG CCGCGGGACA TCCACGGGGC GCGAGTGACA CGCGGGAGGG AGAGCAGTGT	60
10	TCTGCTGGAG CCGATGCCAA AAACCATGCA TTTCTTATTC AGATTCATTG TTTTCTTTTA	120
	TCTGTGGGGC CTTTTTACTG CTCAGAGACA AAAGAAAGAG GAGAGCACCG AAGAAGTGAA	180
15	AATAGAAGTT TTGCATCGTC CAGAAAACTG CTCTAAGACA AGCAAGAAGG GAGACCTACT	240
13	NAAATGCCCA TTATGACGGC TACCTGGCTA AAGACGGCTC GAAATTCTAC TGCAGCCGGA	300
	CACAAAATGA AGGCCACCCC AAATGGTTTG TTCTTGGTGT TGGGCAAGTC ATAAAAGGCC	360
20	TAGACATTGC TATGACAGAT ATGTGCCCTG GAGAAAAGCG AAAAGTAGTT ATACCCCCTT	420
	CATTIGCATA CGGAAAGGAA GGCTATGCAG AAGGCAAGAT TCCACCGGAT GCTACATIGA	480
25	TTTTTGAGAT TGAACTTTAT GCTGTGACCA AAGGACCACG GAGCATTGAG ACATTTAAAC	540
	AAATAGACAT GGACAATGAC AGGCAGCTCT CTAAAGCCGA GATAAACCTC TACTTGCAAA	600
	GGGAATTTGA AAAAGATGAG AAGCCACGTG ACAAGTCATA TCAGGATGCA GTTTTAGAAG	660
30	ATATTITTAA GAAGAATGAC CATGATGGTG ATGGCTTCAT TTCTCCCAAG GAATACAATG	720
	TATACCAACA CGATGAACTA TAGCATATTT GTATTTCTAC TTTTTTTTT TAGCTATTTA	780
35	CTGTACTTTA TGTATWAAAC AAAGTCMCTT TTCTCCMAGT TGKATTTGCT ATTTTTCCCC	840
	TATGAGAAGA TATTTTGATC TCCCCAATAC ATTGATTTTG GTATAATAAA TGTGAGGCTG	900
	TTTTGCAAAC TTAAAAAAAA ATTTAAAAAA ACTGGAGGGG GGCCCGTACC CAANTCGCCG	960
40	NATATGAT	968
45	(2) INFORMATION FOR SEQ ID NO: 222:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1404 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 222:

55 CGTTTTCCGG CCGTGCGTTT GTGGCCGTCC GGCCTCCCTG ACATGCAGCC CTCTGGACCC 60
CGAGGTTGGA CCCTACTGTG ACACACCTAC CATGCGGACA CTCTTCAACC TCCTCTGGCT 120
TGCCCTGGCC TGCAGCCCTG TTCACACTAC CCTGTCAAAG TCAGATGCCA AAAAAAGCCGC 180

60

PCT/US98/11422

	CTCAAAGACG	CTGCTGGAGA	AGAGTCAGTT	TTCAGATAAG	CCGGTGCAAG	ACCGGGGTTT	240
	GGTGGTGACG	GACCTCAAAG	CTGAGAGTGT	GGTTCTTGAG	CATCGCAGCT	ACTGCTCGGC	300
5	AAAGGCCCGG	GACAGACACT	TTGCTGGGGA	TGTACTGGGC	TATGTCACTC	CATGGAACAG	360
	CCATGGCTAC	GATGTCACCA	AGGTCTTTGG	GAGCAAGTTC	ACACAGATCT	CACCCGTCTG	420
10	GCTGCAGCTG	AAGAGACGTG	GCCGTGAGAT	GTTTGAGGTC	ACGGGCCTCC	ACGACGTGGA	- 480
10	CCAAGGGTGG	ATGCGAGCTG	TCAGGAAGCA	TGCCAAGGGC	CTGCACATAG	TGCCTCGGCT	540
	CCTGTTTGAG	GACTGGACTT	ACGATGATTT	CCGGAACGTC	TTAGACAGTG	AGGATGAGAT	600
15	AGAGGAGCTG	AGCAAGACCG	TGGTCCAGGT	GGCAAAGAAC	CAGCATTTCG	ATGGCTTCGT	660
	GGTGGAGGTC	TGGAACCAGC	TGCTAAGCCA	GAAGCGCGTG	GGCCTCATCC	ACATGCTCAC	720
20	CCACTTGGCC	GAGGCTCTGC	ACCAGGCCCG	GCTGCTGGCC	CTCCTGGTCA	TCCCGCCTGC	780
20	CATCACCCC	GGGACCGACC	AGCTGGGCAT	GTTCACGCAC	AAGGAGTTTG	AGCAGCTGGC	840
	CCCCGTGCTG	GATGGTTTCA	GCCTCATGAC	CTACGACTAC	TCTACAGCGC	ATCAGCCTGG	900
25	CCCTAATGCA	CCCCTGTCCT	GGGTTCGAGC	CTGCGTCCAG	GTCCTGGACC	CGAAGTCCAA	960
	GTGGCGAAGC	AAAATCCTCC	TGGGGCTCAA	CTTCTATGGT	ATGGACTACG	CGACCTCCAA	1020
30	GGATGCCCGT	GAGCCTGTTG	TCGGGGCCAG	GTACATCCAG	ACACTGAAGG	ACCACAGGCC	1080
50	CCGGATGGTG	TGGGACAGCC	AGGYCTCAGA	GCACTTCTTC	GAGTACAAGA	AGAGCCGCAG	1140
	TGGGAGGCAC	GTCGTCTTCT	ACCCAACCCT	GAAGTCCCTG	CAGGTGCGGC	TGGAGCTGGC	1200
35	CCGGGAGCTG	GCCTTCCCC	TCTCTATCTG	GGAGCTGGCC	AGGCCTGGA	CTACTTCTAC	1260
	GACCTGCTCT	AGGTGGGCAT	. recééccico	GCGCTGGACG	TGTTCTTTTC	TAAGCCATGG	1320
40	AGTGAGTGAG	CAGGTGTGAA	ATACAGGCCT	NCACTCCGTT	TGCTGTGAAA	AAAAAAAA	1380
	АААААААА	AAAAAAAAA	AAAA				1404

45

50

(2) INFORMATION FOR SEQ ID NO: 223:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 707 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223:

55
NGCGCGCCTG CAGTCGACAC TAGTGGATCC AAAGAATTCG GCACGAGGGC AGGTCCAGGG 60
CTCAGAAATC AGCTCTATTG ACGAATTCTG CCGCAAGTTC CGCCTGGACT GCCCGCTGGC 120
60 CATGGAGCGG ATCAAGGAGG ACCGGCCCAT CACCATCAAG GACGACAAGG GCAACCTCAA 180

476

	COSCTGUATE GUAGACGTGG TETESCTETT CATCACGGTC ATGGACAAGC TGESCCTGGA	240
5	GATCCGCGCC ATGGATGAGA TCCAGCCCGA CCTGCGAGAG CTGATGGAGA CCATGCACCG	300
3	CATGAGCCAC CTCCCACCCG ACTITGAGGG CCGCCAGACG GICAGCCAGT GGCTGCAGAC	360
	CCTGAGCGGC ATGTCGGCGT CAGATGAGCT GGACGACTCA CAGGTGCGTC AGATGCTGTT	420
10	CGACCTGGAG TCAGCCTACA ACGCCTTCAA CCGCTTCCTG CATGCCTGAG CCCGGGGCAC	480
	TAGCCCTTGC ACAGAAGGC AGAGTCTGAG GCGATGGCTC CTGGTCCCCT GTCCGCCACA	540
15	CAGGCCGTGG TCATCCACAC AACTCACTGT CTSCAGCTGC CTGTCTSFIG TCTGTCTTTG	600
IJ	GTGTCAGAAC TTTTGGGCCG GGCCCCTCCC CALAATAAAG ATGCTCTCCG ACCTTCAAAA	660
	AAAAAAAAA AAAAACTCRG GGGGGGCCCG GTCCCAATCC CCCCNTZ;	707
20		
	(2) INFORMATION FOR SEQ ID NO: 224:	
25	-	
25	(i) SEQUENCE CHARACTERISTICS: (A) LEXGTH: 1384 base pairs	
	(B) TYPE: nucleic acid (C) STFANDEDNESS: double	
30	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224:	
	GGGGAACTGC AGTGACAGCA GGAGTAAGAG TGGGAGGCAG GACAGAGTTG GGACACAGGT	60
35	ATGGAGAGGG GGTTCAGCGA GCCTAGAGAG GGCAGACTAT CAGGGTGTCG GCGGTGAGAA	120
	TCCAGGGAGA GGAGCGGAAA CAGAAGAGGG GCAGAAGACC GGGGCAJTTG TGGGTTGCAG	180
40	AGCCCCTCAG CCATGTTGGG AGCCAAGCCA CACTGGCTAC CAGGTCTTCT ACACAGTCCC	240
	GGGCTGCCCT TGGTTCTGGT GCTTCTGGCC CTGGGGGCCG GGTGGGTTCA GGAGGGTCA	300
	GAGCCCGTCC TGCTGGAGGG GGAGTGCCTG GTGGTCTGTG AGCTTGCTGCA	360
45	GGGGGGCCCG GGGGAGCAGC CCTGGGAGAG GCACCCCCTG GGGGAGTIGC ACTTGCTGCG	420
	GTCCGAAGCC AMCACCATGA GCCAGCAGGG GAAACCGGCA ATGGCACCAK TGGGGCCATC	480
50	TACTTOGACC AGGTCCTGGT GAACGAGGGC GGTGGCTTTG ACCGGGTTTC TGGCTCCTTC	540
	GTAGCCCCTG TCCGGGGTGT CTACAGCTTC CGGTTCCATG TGGTGAAGGT GTACAACCGC	600
	CAAACTGTCC AGGTGAGCCT GATGCTGAAC ACGTGGCCTG TCATCTCAGC CTTTGCCAAT	660
55	GATCCTGACG TGACCCGGGA GGCAGCCACC AGCTCTGTGC TACTGCCCTT GGACCCTGGG	720
	and the same of th	

TICTCTGGCT TCCTCATCTT CCCTCTCTGA GGACCCAAGT YTTTCAAGCA CAAGAATCCA

60

477

	GCCCCTGACA	ACTTICTTCT	GCCCTCTCTT	GCCCCAGAAA	CAGCAGAGGC	AGGAGAGAGA	900
	CTCCCTCTGG	YTCCTATCCC	ACYTCTTTGC	ATGGGAMCCT	GTGCCAAACA	CCCAAGTTTA	960
5	AGARAARARY	ARARCTGWGG	CAGGTATACA	GAGCTGGAAG	TGGACCATGG	AAAACATSGA	1020
	TAACCATGCA	TCYTCTTGCT	TOGCCACCTC	CTGAAACTGT	CCACCTTTGA	AGTTTGAACT	1080
10	TTAGTCCCTC	CAMACTCTGA	CIGCIGCCIC	CTTCCTCCCA	GCTCTCTCAC	TGAGTTATYT	. 1140
10	TCACTGTACC	TGTTCCAGCA	TATCCCCACT	ATCTCTCTTT	CTCCTGATCT	GTGCTGTCTT	1200
	ATTCTCCTCC	TTAGGCTTCC	TATTACCTGG	GATTCCATGA	TTCATTCCTT	CAGACCCTCT	1260
15	CCTGCCAGTA	TGCTAAACCC	TCCCTCTCTC	TTTCTTATCC	CGCTGTCCCA	TTGGCCCAGC	1320
	CTGGATGAAT	СТАТСААТАА	AACAACTAGA	GAATGGTGGT	СААААААА	АААААААААС	1380
20	TCGA						1384

(2) INFORMATION FOR SEQ ID NO: 225:

25

35

40

45

50

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 760 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

30 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:

GGGTCGACCC ACGCGTCCGC TGACCAGTCC GTTATAGATA CTTCTTCCTA TACCAAAACT 60 GTTTAAACAG GTGCCACCAC AAGGGATGTC GTCCTTACTC TCTGCGGGTC TTCAAGCATC 120 CCTTTGTGGG AAARGTCTCT GGGCAAGCAC GTGGTATTTG GTCTGCTGCT TGCTTCCCTT 180 TTTCCACCAG GGATGTTGTG ATCATAAGTC AAAACAACAG TATATTCCAA ATCTCAAAAG 240 CTATTGTGGC CTGAGCACAA TTGAAATCTA GCAGAGTTTT TCCTATGTAG CTTTAGAGTA 300 360 ACTOTTCTGC TTCTCTGTCA CTTACAATTC AGGTTCTGCC TTTGCCTAAG AGCATGAGCA 420 GAAGAGTCCT CATGTGACGC TTAGTTCTAT TGCAGTCCTG GGTGAAACTA TTTAAGCWAT GGGGCTGCTK CTCCCCANWT CCTCCCTAAC AATTCGTTGT GTGGACTTCT CATCTAAAAG 480 GTTAGTGGCT TTTGCTTGGG ATCAGTGCTC TCTATTGATG TTCTTGCTGG TCTCCAGACA 540 600 CATTCCTGTT GCATTAAGAC TIGAAAGACT TGTAGATGTG TGATGTTCAG GCACAGGATG CTGAAAGCTA TGTTACTATT CTTAGTTTGT AAATTGTCCT TTTGATACCA TCATCTTGTT 660 720 760 ΑΛΑΛΑΛΑΑ ΑΛΑΛΑΛΑΑΝ ΝΑΛΑΛΑΛΑΑ ΑΛΑΛΑΛΑΛΑ

478

(2) INFORMATION FOR SEQ ID NO: 226:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2057 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226:

CCGAGCCGGC TGCGCCGGGG GAATCCGTGC GGGCGCCTTC CGTCCCRGTC CCATCCTCGC 60 CGCGCTCCAG CACCTCTGAA GTTTTGCAGC GCCCAGAAAG GAGGCGAGGA AGGAGGGAGT 15 120 180 AGGGGGGGG CAAAAATGGC TGGGGCAATT ATAGAAAACA TGAGCACCAA GAAGCTGTGC 20 ATTGTTGGTG GGATTCTGCT CGTGTTCCAA ATCATCGCCT TTCTGGTGGG AGGCTTGATT 300 GCTCCAGGGC CCACAACGGC AGTGTCCTAC ATGTCGGTGA AATGTGTGGA TGCCCGTAAG 25 AACCATCACA AGACAAAATG GTTCGTGCCT TGGGGACCCA ATCATTGTGA CAAGATCCGA 420 GACATTGAAG AGGCAATTCC AAGGGAAATT GAAGCCAATG ACATCGTGTT TTCTGTTCAC 480 ATTCCCCTCC CCCACATGGA GATGAGTCCT TGGTTCCAAT TCATGMTGTT TATCCTGCAG 540 30 CTGGACATTG CCTTCAAGCT AAACAACCAA ATCAGRGAAA ATGCAGAAGT CTCCATGGAC 600 660 GTTTCCCTGG CTTACCGTGA TGACGCGTTT GCTGAGTGGA CTGAAATGGC CCATGAAAGA GTACCACGGA AACTCAAATG CACCTTCACA TCTCCCAAGA CTCCAGAGCA TGGAGGGCCG 35 720 GTTACTATGA ATGTGATGTC CTTCCTTTCA TGGAAATTGG GTCTGTGGCC CATGAAGTTT 780 TACCTTTTAA ACATCCGGCT GCCTGTGAAT GAGAAGAAGA AAATCAATGT GGGAATTGGG 840 40 GAGATAAAGG ATATCCGGTT GGTGGGGATC CACCAAAATG GAGGCTTCAC CAAGGTGTGG 900 TTTGCCATGA AGACCTTCCT TACGCCCAGC ATCTTCATCA TTATGGTGTG GTATTGGAGG 960 AGGATCACCA TGATGTCCCG ACCCCCAGTG CTTCTGGAAA AAGTCATCTT TGCCCTTGGG 45 1080 ATTTCCATGA CCTTTATCAA TATCCCAGTG GAATGGTTTT CCATCGGGTT TGACTGGACC TOGATOCTOC TOTTTOCTGA CATCCGACAG GCATCTTCTA TGCRATGCTT CTKTCCTTCT 50 GGATCATCTT CTGTGGCGAG CACATGATGG ATCAGCACGA GCGGAACCAC ATCGCAGGGT 1200 ATTGGAAGCA AGTCGGACCC ATTGCCGTTG GTCCTTCTGC CTCTTCATAT TTGACATGTG 1260 TGAGAGAGGG GTACAACTCA CGAATCCCTT CTACAGTATC TGGACTACAG ACATTGGGAA 1320 55 1380 CAGAGCTGGC CATGGCTTTC ATCATCGTGG CTGGAATCTG CCTCTGCCTC TAACTTCCTG TITCTATGCT TCATGGTATT TCAGGTGTTT CGGAACATCA GTGGGAAGCA GTCCAGCCTG 1440 60

479

	CCASCTATGA SCHARGTCCS SISSCTACAC TATGAGSSGC TAATTTTTAG GTTCAAGTTC	1500
	CTCATSCITA TCACCITGGC TISCSCISCO AIGACISICA TOTTCTTCAT CGTTAGTCAG	1560
. 2	GTRACSERAS GCCATTGGGR RATGGGGGGG CGTCACASTC CCAAGTGAAC AGTGCCTTTT	1620
	TCACAGGCAT CTATGGGATG TGGAATCTGT ATGTCTTTGC TCTGATGTTC TTGTATGCAC	1680
10	CATCCCATAA AAACTATGGA GAAGACCAST CCAATGGAAT GCAACTCCCA TGTAAATCGA	. 1740
10	GGGAAGATTG TGCTYTGTTT GTTTCGGAAC TTTATCAAGA ATTGTTCAGC GCTTCGAAAT	1800
	ATTOCTTCAT CAATGACAAD SCAGOTTCTG STATTTGAST CAACAAGGCA ACACATGTTT	1860
15	ATCAGCTTTG CATTTGCAGT TOTCACAGTC ACATTGATTG TACTTGTATA CGCACACAAA	1920
	TACACTCATT TAGCCTTTAT CTCAAAACST TAAATATAAG GAAAAAAGCG TCAACAATAA	1980
20	ATAITCTTTG AGTATTGTCT TACTTCTCTT AAAAAAAAA AAAAAAACTC GTGCCGAATT	2040
20	CGCCACGAGC GGCACGA	2057
25	(2) DUFORMATION FOR SEQ ID NO: 227:	
	(i) SEQUENCE CHAFACTERISTICS:	
30	(A) LENGIH: 2084 base pairs (B) TIPE: nucleic acid	
	(C) STRACENNESS: double (D) COPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227:	
35	GGCAGAGGG CATTTOCTGC AAAGAGCCAA ACCCCCATTC CTCTGTGCCC CTCCTGTGCC	60
	ACCARATECT TERTARARAT RECTOTTETT RECEGRARIA ACTETICATE TITCACTECT	120
40	CCCTCCTAGG TCACACTTTT CAGAAAAGA ATCTGCATCC TGGAAACCAG AAGAAAAATA	180
	TGAGACOGGG AATCATOGTG TEATGTGTGT SCTGCCTTTG GCTGAGTGTG TGGAGTCCTG	240
	CTCAGGIGTT AGGTACAGIG TGTTTGATCG TGGTGGCTTG AGGGGAACCG CTTGTTCAGA	300
45	GOTGTGACTS CSGCTGCACT GCAGAGAASC TGCCCTTTGGC TGCTCGTAGC GCCGGGCCTT	360
	CTCTCCTCGT CATCATCCAG ASCAGCCAGT GTCCGGGAGG CAGAAGGTAC CGGGGCAGCT	420
50	ACTOGRAGAT TOTOCOGGCC TECCTOGGCT GCCCCCTCCG CCGTGGGGCC CTGTTGCTGC	480
	TGTCCATCTA TTTGTACTAC TCCCTCCCAA ATGCGGTCGG CCCGCCCTTC ACTTGGATGC	540
<i>e e</i>	TIGCCCTCCT GGGCCTTCTC GCAGGCACTG AACATCCTCC TGGGCCTCAA GGGCCTGGCC	600
55	CONCUES TOTAL CONTROL OF CONTROL	660

TOGTCATATT ACATCOGADA TOTGCOGCOG ATCOTGCCAG AGCTCCAGGC COGGATTCGA

ACTIACAATO AGCATTACAA CAACCIGCTA CGGGGTGCAG IGAGCCAGCG GIGINATAIT

60

720

	CTCCTCCCAT	TGGACTGTGG	GGTGCCTGAT	AACCTGAGTA	TGGCTGACCC	CAACATTCGC	840
_	TTCCTGGATA	AACTGCCCCA	GCAGACCGGT	GACCGTGCTG	GCATCAAGGA	TCGGGTTTAC	900
5	AGCAACAGCA	TCTATGAGCT	TCTGGAGAAC	GGGCAGCGGG	CGGGCACCTG	TGTCCTGGAG	960
	TACGCCACCC	CCTTGCAGAC	TTTGTTTGCC	ATGTCACAAT	ACAGTCAAGC	TGGCTTTAGC	. 1020
10	GGGGAGGATA	GGCTTGAGCA	GGCCAAACTC	TTCTGCCGGA	CACTTGAGGA	CATCCTGGCA	1080
	GATGCCCCTG	AGTCTCAGAA	CAACTGCCGC	CTCATTGCCT	ACCAGGAACC	TGCAGATGAC	1140
15	AGCAGCTTCT	CGCTGTCCCA	GGAGGTTCTC	CGCCACCTGC	GGCAGGAGGA	AAAGGAAGAG	1200
13	GTTACTGTGG	GCAGCTTGAA	GACCTCAGCG	GTGCCCAGTA	CCTCCACGAT	GTCCCAAGAG	1260
	CCTGAGCTCC	TCATCAGTGG	AATGGAAAAG	CCCTCCCTC	TCCGCACGGA	TTTCTCTTGA	1320
20	GACCCAGGGT	CACCAGGCCA	GAGCCTCCAG	TGGTCTCCAA	GCCTCTGGAC	TGGGGGCTCT	1380
	CTTCAGTGGC	TGAATGTCCA	GCAGAGCTAT	TTCCTTCCAC	AGGGGGCCTT	GCAGGGAAGG	1440
25	GTCCAGGACT	TGACATCTTA	AGATGCGTCT	TGTCCCCTTG	GGCCAGTCAT	TTCCCCTCTC	1500
23	TGAGCCTCGG	TGTCTTCAAC	CTGTGAAATG	GGATCATAAT	CACTGCCTTA	CCTCCCTCAC	1560
	GGTTGTTGTG	AGGACTGAGT	GTGTGGAAGT	TTTTCATAAA	CTTTGGATGC	TAGTGTACTT	1620
30	AGGGGGTGTG	CCAGGTGTCT	TTCATGGGGC	CTTCCAGACC	CACTCCCCAC	CCTTCTCCCC	1680
	TICCTITGCC	CGGGGACGCC	GAACTCTCTC	AATGGTATCA	ACAGGCTCCI	TOGCCCTCTG	1740
35	GCTCCTGGTC	ATGTTCCATT	ATTGGGGAGG	CCCAGCAGAA	GAATGGAGAG	GAGGAGGAGG	1800
55	CTGAGTTTGG	GGTATTGAAT	CCCCCCCCC	CCACCCTGCA	GCATCAAGGT	TGCTATGGAC	1860
	TCTCCTGCCG	GGCAACTCTT	GCGTAATCAT	GACTATCTCT	AGGATTCTGC	CACCACTICC	1920
40	TTCCCTGGCC	CCTTAAGCCT	AGCTGTGTAT	CGGCACCCC	ACCCCACTAC	G AGTACTCCCT	1980
	CTCACTTGCC	GTTTCCTTAT	ACTCCACCC	TTTCTCAACC	GTCCTTTTT	* AAAGCACATC	2040
45	TCAGATTAA	AAAAAAAAA	LAAAAAAAA	A AGGGGGGGCT	I GCNT		2084

(2) INFORMATION FOR SEQ ID NO: 228:

50 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2143 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228:

TOGACCCACG COTCCGCTTG AATTCCTTGA CCTGCAAACA CATATTTATT AGCCTGACTC

•	AAACAATGAA	GCTATTAAAA	CTTCGGAGGA	ACATTGTAAA	ACTOTOTITG	TATCGGCATT	120
	TCACCAACAC	GCTTATTTTG	GCAGTGGCAG	CATCCATTGT	GTTTATCATC	TGGACAACCA	180
5	TGAAGTTCAG	AATAGTGACA	TGTCAGTCGG	ACTGGCGGGA	GCTGTGGGTA	GACGATGCCA	240
	TCTGGCGCTT	GCTGTTCTCC	ATGATCCTCT	TTGTCATCAT	GGTTCTCTGG	CGACCATCTG	300
10	CAAACAACCA	GAGGTTTGCC	TTTTCACCAT	TGTCTGAGGA	AGAGGAGGAG	GATGAACAAA	360
10	AGGAGCCTAT	GCTGAAAGAA	AGCTTTGAAG	GAATGAAAAT	GAGAAGTACC	AAACAAGAAC	420
	CCAATGGAAA	TAGTAAAGTT	AACAAAGCAC	AGGAAGATGA	TTTGAAGTGG	GTAGAAGAGA	480
15	ATGTTCCTTC	TTCTGTGACA	GATGTAGCAC	TTCCAGCCCT	TCTGGATTCA	GATGAGGAAC	540
	GAATGATCAC	ACACTTIGAA	AGGTCCAAAA	TGGAGTAAGG	AATGGGAAGA	TTTGCAGTTA	600
20	AAGATGGCTA	CCATCAGGGA	AGAGATCAGC	ATCTGTGTCA	GTCTTCTGTA	CGGCTCCATG	660
20	GGATTAAAGG	AAGCAATGAC	ATCCTGATCT	GTTCCTTGAT	CTTTGGGCAT	TGGAGTTGGC	720
	GAGAGGTGTC	AGAACAAAGA	GAACATCTTA	CTGAAAACAA	GTTCATAAGA	TGAGAAAAAT	780
25	CTACGAGCTT	CTTATTTACA	ACACTGCTGC	CCCCTTTCCT	CCCAGACTCT	GACATGGATG	840
	TTCATGCAAC	TTAAGTGTGT	TGTTCCTGAA	CTTTCTGTAA	TGTTTCATTT	TTTAAATCTG	900
30	ACAAACTAAA	AAGTTTAACG	TCTTCTAAAA	GATTGTCATC	AACACCATAA	TATGTAATCT	960
50	CCAGGAGCAA	CTGCCTGTAA	TTTTTATTTA	TTTAGGGAGT	TACATAGGTG	ATGGGGGAAA	1020
	TTGTTAACTA	CCTTTCATTT	TCCTGGGAAG	TCAAGGTTAC	ATCTTGCAGA	GGTTGTTTTG	1080
35	AGAAAAAAGG	GCCCTTCTGA	GTTAAGGAGC	CATAGTTCTA	TCAATGATCA	AAAGAAAAA	1140
	AAAAAAAAGA	GAAACTGTTA	CAGTATGATT	CAGATCATTT	AAAAAAGCAA	AATCAAGTGC	1200
40	AATTITGTTT	ACAAATGGTG	TATATTAAAG	ATTTTTCTAT	TTCAGATGTA	CTTTAAAGAG	1260
	AAATATTAGC	TTAACTCTTT	TGACATCTGC	TATTGTGACA	CATCCCATTG	CTGGCAATGT	1320
	GGTGCACACT	CCGAAACTTT	TAACTACTGT	TTTGTAAGCC	TCCAAGGGTG	GCATTGCAGG	1380
45	GTCCTTAGGC	AATGTTTTGT	TTGCCTTTAT	GCAGAGAGGT	GCTCCAAGTG	CTGTGATTGA	1440
	GCACCGTGCT	AGAGGAACTG	TAATGCTTCA	GAAGTIGTAG	CTTATACAAA	GGAAACAGGT	1500
50	CCTGCTGGCT	TAATTTAAAC	AGTTATTGCA	TGAAGTAGCG	TGGAGGCCCT	GGACTGCTGC	1560
	TCGTTCTTTA	GGATGGACTG	TTCTGGTATC	TGGTATTGGT	TTAGAGACTG	TTAATAAGGG	1620
	ACATCACAAG	GTGATGGGAT	TCATTTGAAG	CACTCTATTT	CTGTTTTAAT	GGTTTTATCC	1680
55	AATTTTGCCT	TCCCAAGATT	TTTGTTCTAC	ATAAAAAGTT	CATGCCACTT	TTTAATATAA	1740
	AAAAATTTAA	CAAAATTAAT	GTATTTTTCT	CATTTTTTC	AAACTTTTTC	TAAAGACTCT	1800
60	TTCTGTCAAA	CTCATGAAAA	ATTTCTTTCT	ATGGCTTTTA	TTCTAGATTG	TCTTATTTTC	1860

482

	TO THE PROPERTY OF THE PROPERT	1920
	TGTTAAAACC AATGACCACA TGACCACAAT CTTCACTAAC TCATACTGCA GTGAAAGTGT	
	TAACCCTTAG GTAGITTCTC TACAACTCTT TGCTATGGTG ATTTTTAAAA AAGTTTCCTA	1980
5	GGGAAGTATC TCTGAGGGAA CAGGCAATCT GAAGGAACTG ACTATATTCT CCATGGCTAA	2040
	GTCCATTAGG CCAAAAGNCT GGGTGGGTAT TGGTTGTCAN GCTGTCTATT GGCATATTAA	2100
	AAACGTAGGC CGGANGGAAT AATTAGGTTG TNATGCCGGC GGG	2143
10		
15	(2) INFORMATION FOR SEQ ID NO: 229:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1025 base pairs	
	(B) TYPE: nucleic acid	
00	(C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229:	
25	CCTGGCCCAC ATTGCTTCAT TGGCCTGGCC ATGCGCCTGT ACTATGGCAG CCGCTAGTCC	60
23	CTGACAACTT CCACCCTGAT TCCGGACCCT GTAGATTGGG CGCCACCACC AGATCCCCCT	120
	CCCAGGCCTT CCTCCCTCTC CCATCAGCAG CCCTGTAACA AGTGCCTTGT GAGAAAAGCT	180
30	GGAGAAGTGA GGGCAGCCAG GTTATTCTCT GGAGGTTGGT GGATGAAGGG GTACCCTAGG	240
	AGATGTGAAG TGTGGGTTTG GTTAAGGAAA TGCTTACCAT CCCCCACCCC CAACCAAGTT	300
35	CTTCCAGACT AAAGAATTAA GGTAACATCA ATACCTAGGC CTGAGAAATA ACCCCATCCT	360
23	TGTTGGGCAG CTCCCTGCTT TGTCCTGCAT GAACAGAGTT GATGAAAGTG GGGTGTGGGC	420
	AACAAGTGGC TTTCCTTGCC TACTTTAGTC ACCCAGCAGA GCCACTGGAG CTGGCTAGTC	480
40	CAGCCCAGCC ATGGTGCATG ACTCTTCCAT AAGGGATCCT CACCCTTCCA CTTTCATGCA	540
	AGAAGGCCCA GTTGCCACAG ATTATACAAC CATTACCCAA ACCACTCTGA CAGTCTCCTC	600
45	CAGITICCAGC AATGCCTAGA GACATGCTCC CTGCCCTCTC CACAGTGCTG CTCCCCACAC	660
43	CTAGCCTTTG TTCTGGAAAC CCCAGAGAGG GCTGGGCTTG ACTCATCTCA GGGAATGTAG	720
•	CCCCTGGGCC CTGGCTTAAG CCGACACTCC TGACCTCTCT GTTCACCCTG AGGGCTGTCT	780
50	TGAAGCCCGC TACCCACTCT GAGGCTCCTA GGAGGTACCA TGCTTCCCAC TCTGGGGCCT	840
	GCCCCTGCCT AGCAGTCTCC CAGCTCCCAA CAGCCTGGGG AAGCTCTGCA CAGAGTGACC	90
55	TGAGACCAGG TACAGGAAAC CTGTAGCTCA ATCAGTGTCT CTTTAACTGC ATAAGCAATA	96
))	AGATOTTAAT AAAGTOTTOT AGGOTGTAGG GTGGTTCCTA CAACCACAGC CAAAAAAAAA	102

1025

60

AAAAA

483

(2)	INFORMATION	EUR	SEO	TD	NO:	230:

5	(i) SEQUENCE CHARACTERISTICS:
_	(A) LENGTH: 1250 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: double
	(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230:

	GCCCACGCGT CCGCCCACGC GTCCGGCGGT GCGGAGTATG GGGCGCTGAT GGCCATGGAG	60
15	GGCTACTGGC GCTTCCTGGC GCYGCTGGGG TCGGCACTGC TCGTCGGCTT CCTGTCGGTG	120
	ATSTTCGCCC TCGTCTGGGT CCTCCACTAC CGAGAGGGGC TTGGCTGGGA TGGGAGCGCA	180
	CTAGAGTTTA ACTGGCACCC AGTGCTSATG GTCACCGGCT TCGTCTTCAT CCAGGGCATC	240
20	GCATCATCGT CTACAGACTG CCGTGGACCT GGAAATGCAG CAAGCTCCTG ATGAAATCCA	300
	TCCATGCAGG GITAAATGCA GTTGCTGCCA TTCTTGCAAT TATCTCTGTG GTGGCCGTGT	360
25	TTGAGAACCA CAATGTTAAC AATATAGCCA ATATGTACAG TCTGCACAGC TGGGTTGGAC	420
	TGATAGCTGT CATATGCTAT TTGTTACAGC TTCTTTCAGG TTTTTCAGTC TTTCTGCTTC	480
	CATGGGCTCC GCTTTCTCTC CGAGCATTTC TCATGCCCAT ACATGTTTAT TCTGGAATTG	540
30	TCATCTTIGG AACAGTGATT GCAACAGCAC TTATGGGATT GACAGAGAAA CTGATTTTTT	600
	CCCTGAGAGA TCCTGCATAC AGTACATTCC CGCCAGAAGG TGTTTTCGTA AATACGCTTG	660
35	GCCTTCTGAT CCTGGTGTTC GGGGCCCTCA TTTTTTGGAT AGTCACCAGA CCGCAATGGA	720
	AACGTCCTAA GGAGCCAAAT TCTACCATTC TTCATCCAAA TGGAGGCACT GAACAGGGAG	780
	CAAGAGGITC CATGCCAGCC TACTCTGGCA ACAACATGGA CAAATCAGAT TCAGAGITAA	840
40	ACARTGAAGT AGCAGCAAGG AAAAGAAACT TAGCTCTGGA TGAGGCTGGG CAGAGATCTA	900
	CCATGTAAAA TGTTGTAGAG ATAGAGCCAT ATAACGTCAC GTTTCAAAAC TAGCTCTACA	960
45	GTTTGCTTC TCCTATTAGC CATATGATAA TTGGGCTATG TAGTATCAAT ATTTACTTTA	1020
43	ATCACAAAGG ATGGTTTCTT GAAATAATTT GTATTGATTG AGGCCTATGA ACTGACCTGA	1080
	ATTGGAAAGG ATGTGATTAA TATAAATAAT AGCAGATATA AATTGTGGTT ATGTTACCTT	1140
50	TATCTTGTTG AGGACCACAA CATTAGCACG GTGCCTTGTG CAKAATAGAT ACTCAATATG	1200
	•	1250
	TGAATATGTG TCTACTAGTA GTTAATTGGA TAAACTGGCA GCATCCCTGA	

55

(2) INFORMATION FOR SEQ ID NO: 231:

60 (i) SEQUENCE CHARACTERISTICS:

484

(A) LENGTH: 1811 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:

	CNGNCAGTAC CGGTCNGATT CCCGGGTCGA CCCACGCGTC CGCTGCATTC CAGGGCCTTT	60
10	CAGTGGCTTT CATTCTGAAG TTCCTGGATA ACATGTTCCA TGTCTTGATG GCCCAGGTTA	120
	CCASTGTCAT TATCACAACA GTGTCTGTCC TGGTCTTTGA CTTCAGGCCC TCCCTGGAAT	180
	TTTTCTTGGA AGCCSCATCA GTCSTYCTCT CTATATTTAT TTATAATGCC AGCAAGCCTC	240
15	AAGTTCCGGA ATACGCACCT AGGCAAGAAA GGATCCGAGA TCTAAGTGGC AATCTTTGGG	300
	AGCGTTCCAG TGGGGATGGA GAAGAACTAG AAAGACTTAC CAAACCCAAG AGTGATGAGT	360
20	CAGATGAAGA TACTITCTAA CIGGIACCCA CATAGITIGC AGCICTCTIG AACCITATIT	420
	TCACATTITC AGIGITIGIA ATATTATCT TITCACTITG ATAAACCAGA AATGITTCTA	480
25	AATCCTAATA TTCTTTGCAT ATATCTAGCT ACTCCCTAAA TGGTTCCATC CAAGGCTTAG	540
25	AGTACCCAAA GGCTAAGAAA TICTAAAGAA CTGATACAGG AGTAACAATA TGAAGAATTC	600
	ATTAATATCT CAGTACTTGA TAAATCAGAA AGTTATATGT GCAGATTATT TTCCTTGGCC	660
30	TTCAAGCTTC CAAAAAACTT GTAATAATCA TGTTAGCTAT AGCTTGTATA TACACATAGA	720
	GATCAATTIG CCAAATATIC ACAATCATGI AGTICTAGIT TACATGCCAA AGTCITCCCT	780
35	TTTTAACATT ATAAAAGCTA GGTTGTCTCT TGAATTTTGA GGCCCTAGAG ATAGTCATTT	840
55	TGCAAGTAAA GAGCAACGGG ACCCTTTCTA AAAACGTTGG TTGAAGGACC TAAATACCTG	900
	GCCATACCAT AGATTTGGGA TGATGTAGTC TGTGCTAAAT ATTTTGCTGA AGAAGCAGTT	960
40	TCTCAGACAC AACATCTCAG AATTTTAATT TTTAGAAATT CATGGGAAAT TGGATTTTTG	1020
	TAATAATCTT TIGATGTTTT AAACATTGGT TCCCTAGTCA CCATAGTTAC CACTIGTATT	1080
45	TTAAGTCATT TAAACAAGCC ACGGTGGGGC TTTTTTCTCC TCAGTTTGAG GAGAAAAATC	1140
1.5	TTGATGTCAT TACTCCTGAA TTATTACATT TTGGAGAATA AGAGGGCATT TTATTTTATT	1200
	AGTTACTAAT TCAAGCTGTG ACTATTGTAT ATCTTTCCAA GAGTTGAAAT GCTGGCTTCA	1260
50	GAATCATACC AGATTGTCAG TGAAGCTGAT GCCTAGGAAC TTTTAAAGGG ATCCTTTCAA	1320
	AAGGATCACT TAGCAAACAC ATGTTGACTT TTAACTGATG TATGAATATT AATACTCTAA	1380
55	AAATAGAAAG ACCAGTAATA TATAAGTCAC TTTACAGTGC TACTTCACAC TTAAAAGTGC	1440
<i></i>	ATGGTATTTT TCATGGTATT TTGCATGCAG CCAGTTAACT CTCGTAGATA GAGAAGTCAG	1500
	GTGATAGATG ATATTAAAAA TTAGCAAACA AAAGTGACTT GCTCAGGGTC ATGCAGCTGG	1560
60	CTGATGATAG AAGAGTGGGC TTTAACTGGC AGGCCTGTAT GTTTACAGAC TACCATACTG	162

	TARATATGAG CTTTATGGTG TCATTCTCAG ARACTTATAC ATTTCTGCTC TCCTTTCTCC	1680
	TAAGTITCAT GCAGATGAAT ATAAGGTAAT ATACTATTAT ATAATTCATT TGTGATATCC	1740
5		1800
	ACAATAATAT GACTGGCAAG AATTGGTGGA AATTTGTAAT TAAAATAATT ATTAAACCTA	
	AAAAAAAAN N	1811
10		
	(2) INFORMATION FOR SEQ ID NO: 232:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2271 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:	
	CTGACCTCAT GGCGTAGAGC CTAGCAACAG CGCAGGCTCC CAGCCGAGTC CGTTATGGCC	60
25	GCTGCCGTCC CGAAGAGGAT GAGGGGGCCA GCACAAGCGA AACTGCTGCC CGGGTCGGCC	120
	ATCCAAGCCC TIGTGGGGTT GGCGCGGCCG CTGGTCTTGG CGCTCCTGCT TGTGTCCGCC	180
	GCTCTATCCA GTGTTGTATC ACGGACTGAT TCACCGAGCC CAACCGTACT CAACTCACAT	240
30	ATTICTACCC CAAATGIGAA TGCTTTAACA CATGAAAACC AAACCAAACC TTCTATTTCC	300
	CAAATCAGCA CCACCCTCCC TCCCACGACG ACTACCAAGA AAAGTGGAGG AGCATCTGTG	360
		420
35	GTCCCTCATC CCTCGCCTAC TCCTCTGTCT CAAGAGGAAG CTGATAACAA TGAAGATCCT	480
	AGTATAGAGG AGGAGGATCT TCTCATGCTG AACAGTTCTC CATCCACAGC CAAAGACACT	
40	CTAGACAATG GCGATTATGG AGAACCAGAC TATGACTGGA CCACGGGCCCC CAGGGACGAC	540
40	GACGAGTCTG ATNGACACCT TGGAAGAAAA CAGGGGTTAC ATGGAAATTG AACAGTCAGT	600
	GAAATCTTTT AAGATGCCAT CCTCAAATAT AGAAGAGGAA GACAGCCATT TCTTTTTTCA	660
45	TCTTATTATT TTTGCTTTTT GCATTGCTGT TGTTTACATT ACATATCACA ACAAAAGGAA	720
	GATTITICIT CTGGTTCAAA GCAGGAAATG GCGTGATGGC CTTTGTTCCA AAACAGTGGA	780
	ATACCATCGC CTAGATCAGA ATGTTAATGA GGCAATGCCT TCTTTGAAGA TTACCAATGA	840
50	TTATATTTT TAAAGCACTG TGATTTGAAT TTGCTTATGT AATTTTATTT GCTTGACTTT	900
	TTATATGATA TTGTGCAAAT GTTTGCCATA GGCAATTGGT ACTTAAATGA GAGGTGAGTC	960
55		1020
	TGTACTTTTA GAGCTGAGTT TAATCAGGTG TCCAAAATGT GAGTTAAACA TTACCTTATA	1080
	TITACACTGT TAGTTTTTAT TGTTTTAGAT TTATTATGCT TCTTCTGGAA GTATTAGTGA	1140

•	TGCTACTTTT AAAAGATCCC AAACTTGTAA CTAAATTCTG ACATATCTGT TACTGCTGAC	1200
	TCACATTCAT TCTCCGCCAT TCAAATACTA TTTTTTATCC ACATTTTTT TTGTTCCCAA	1260
5	ACTGTAATGT ACAAGGATAT GTGTGATAAT GCTTTGGATT TGAGTAATAT TTTTTTTTCT	1320
	TCCAAGAAAA CTGCTTTGGA TATTTTTAGA TAATTTAAAC ATAATTTAGG ATAATGATAT	1380
	TGCTCAATCT GACCACAATT TTAGGTAAAA CATTAAATGT GTCAAGAAAT CTTGGCAACA	1440
10	GAGACTCTGC AGCTTGCAGT GGACATAGAT AAAATGTTAC AGAGATACTA TTTTTTTGGT	1500
	TGGAATTACT ATATTAAATT TAGAAGCAGA AACTGGTAAA ATGTTAAATA CATGTACAAT	1560
15	TGCTTTTAGT TAGCAATTGA TTGTAGCATG GGTTCCTCCA AGGTTTCAAG CAATGGGCAG	1620
	AGTITAAAAT TATATCAGAT TCGTTTACTT CGTTTATTAT TTTACAGTAA ATTTGAATAA	1680
20	ATCTTAGGGG TCATTATCAC TTAAATAATA CTGTACCTAG GTCTTTCAAA TTAAAATTAT	1740
20	ACCTGAATGA AGTTGTTTGT ATACATAAAG GATATTTGTG TACAATTACC TTTTTTCCCC	1800
	CACACTIGIT TICTITGITT TIGTTITITA TGGCAACTGG AAAGTATTTA CTATGGGATT	1860
25	CATTTATGTC TGTCTTTCTA TCATAAAGAA TTGATCAATA TGTAAATATG TGATTTGAAC	1920
	CATGGTTGAC TTACAAGTGT CACTACAGCT TTTTAGAAAA CATAGCCCTA ATATATGTTA	1980
30	AGCAGGACCC GGGTGAGCCA GTGGGCTTGC GCTTTATGTA GAGCTGGAAG AAGGCCGTCC	2040
30	ATCCTGTCTC TTGGGCGGAC AGTGTACTTT CCTAATAGGG AAGGGAAGCA CAATGGAAAT	2100
	ACCCCTGAAC CGTTTTATTG CAGTAATTTT TTTCATATCT GAAACTATTA TTTAATATTT	2160
35	TGAATAAGAT TTTAAAAAAT AAATGGCAAA GATATAAATC TAAAAAAAAA AAAAAAAAAA	2220
	и аиаиааааа ааааааааа ааааааааа аааааааа	2271
40		
40	(2) INFORMATION FOR SEQ ID NO: 233:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 1338 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:	
	CTTCCGGTTC TCCGGGCAGC TGCCACTGCT GTAGCTTCTG CCACCTGCCA CGACCGGGCC	60
55	TCTCCCTGGC GTTTGGTCAC CTCTGCTTCA TTCTCCACCG CGCCTATGGT CCCTCTTGGA	120
<i>)</i>	GCCAGCCTGG CGNGCCTGGC GGCTCCCGGG TGGTGAGAGA GCGGTCCGGG AACGATGAAG	180
	GCCTCGCAGT GCTGCTGCTG TCTCAGCCAC CTCTTGGCTT CCGTCCTCCT CCTGCTGTTG	240
60	CTGCCTGAAC TAAGCGGGYC CCTGGMAGTC CTGCTGCAGG CAGCCGAGGC CGCGCCAGGT	300

PCT/US98/11422

487

•	YTTGGGCCTC CTGACCCTAG ACCAGGACAT TACCGCCGCT GCCACCGGGC CCTWACCCCT	360
	GCCCAGCAGC CGGGCCGTGG TCTGGCTGAA GCTGCGGGGG CCGCGGGGGT CCGAGGGAGG	420
5	CAATGGCAGC AACCCTGTGG CCGGGCTTGA GACGGACGAT CACGGAGGGA AGGCCGGGGA	480
	ARGCTCGGTG GGTGGCGGCC TTGCTGTGAG CCCCAACCCT GGCGACAAGC CCATGACCCA	. 540
10	GCGGGCCCTG ACCGTGTTGA TGGTGGTGAG CGGCGCGGTG CTGGTGTACT TCGTGGTCAG	600
	GACGGTCAGG ATGAGAAGAA GAAACCGAAA GACTAGGAGA TATGGAGTTT TGGACACTAA	660
	CATAGAAAAT ATGGAATTGA CACCTTTAGA ACAGGATGAT GAGGATGATG ACAACACGTT	720
15	GTTTGATGCC AATCATCCTC GAAGATAAGA ATGTGCCTTT TGATGAAAGA ACTTTATCTT	780
	TCTACAATGA AGAGTGGAAT TTCTATGTTT AAGGAATAAG AAGCCACTAT ATCAATGTTG	840
20	GGGGGGTATT TAAGTTACAT ATATTINAAC AACCTTTAAT TTGCTGTTGC AATAAATACC	900
	GTATCCTTTT ATTATATCTT TATATGTATA GAAGTACTCT GTTAATGGGC TCAGAGATGT	960
	TGGGGATAAA GTATACTGTA ATAATTTATC TGTTTGAAAA TTACTATAAA ACGGTGTTTT	1020
25	CTGRTCGGTT TTTGTTTCCT GCTTACCATA TGATTGTAAA TTGTTTTATG TATTAATCAG	1080
	TTAATGCTAA TTATTTTTGC TGATGTCATA TGTTAAAGAG CTATAAATTC CAACAACCAA	1140
30	CTGGTGTGTA AAAATAATTT AAAATYTCCT TTACTGAAAG GTATTTCCCA TTTTTGTGGG	1200
	GAAAAGAAGC CAAATTTATT ACTITGTGTT GGGGTTTTTA AAATATTAAG AAATGTCTAA	1260
	GTTATTGTTT GCAAAACAAT AAATATGATT TTAAATTCTC TTAAAAAAAA AAAAAAAAAC	1320
35	CCCGGGGGGG GGCCCGGN	1338

40

(2) INFORMATION FOR SEQ ID NO: 234:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 31 amino acids

45 (B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:

Met Leu Ser Thr Gly Ile Glu Val Ala Arg Pro Pro Ala Thr Leu Leu 50 1 5 10 15

Gly Leu Met Phe Val Leu Thr Gly Met Pro Arg Gly Leu Arg Xaa 20 25 30

55

(2) INFORMATION FOR SEQ ID NO: 235:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 116 amino acids

488

(D) TOPOLOGY: linear										
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235:										
5	Met Asn Val Val Ile Val Ile Leu Phe Ser Phe Asp Ser Val Gly 1 5 10 15									
	Thr Met Phe Ser Cys Asn Arg Ile Pro Lys Ile Thr Val Leu Asn Lys 20 25 30									
10	Leu Lys Phe Xaa Cys Glu Val Leu Leu Arg Ile Gln Thr Ile Gln Gly 35 40 45									
15	Phe Tyr Arg Cys Thr Arg Ile Ser Arg Tyr Lys Gly Ile Phe Pro Asp 50 55 60									
	Phe Cys Gln Ser Gln Cys Met Gly Cys Asn Pro Glu Ser Xaa Met Ala 65 70 75 80									
20	Val Pro Ala Leu Val Thr Pro Ile Leu Ala His Arg Lys Lys Glu Lys 85 90 95									
	Gly Met Cys Leu Phe Thr Leu Ile Ile Ala Pro Thr Arg Cys Thr His 100 105 110									
25	Tyr Phe Cys Xaa 115									
30	(2) INFORMATION FOR SEQ ID NO: 236:									
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 103 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 236: 									
40	Met Ser Ser Ala Lys Ile Val Arg Gln Arg Gly Ala Val Pro Thr Tyr 1 5 10 15									
	Tyr Thr Thr Glu Ala Gly Glu Ile Ile Phe Leu Val Leu Asn Trp Ser 20 25 30									
45	Leu Ser Ile Leu His Ile Val Asp Val Leu Cys Ser Lys Pro Glu Lys 35 40 45									
50	Ser Val Thr Glu Asp Ala Ala Ser Gly Leu Ser Gln Arg Met Thr Ala 50 55 60									
50	Leu Val Trp Arg Lys Gly Pro Asp Gly Gly Ser Arg Lys Pro Ile Leu 65 70 75 80									
55	Leu Leu Phe Phe Phe Leu Pro Leu Ile Leu Cys Phe His Ser Phe Ile 85 90 95									
	His Ser Ser Asn Ile Cys Xaa 100									

•	(2) INFORMATION FOR SEQ ID NO: 237:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237:
10	Met Ile Leu Phe Pro Gln Xaa Ala Leu Arg Leu Gly Xaa Trp Pro Arg 1 5 10 15
15	Thr Trp Ser Ile Leu Xaa Lys Tyr Ser Val Asn Phe Phe Ser Ala Tyr 20 25 30 Ser Pro Met Gly Ala Val Gly Thr Glu Phe 35 40
20	(2) INFORMATION FOR SEQ ID NO: 238:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238:
30	Met Ile Ile Leu Leu Phe Met Leu Leu Asn Asn Val Val Leu Val 1 5 10 15
	Gln Glu Asp Asn Cys Gln Arg Lys Asn Thr Val Gln Glu Arg Arg Xaa 20 25 30
35	Trp Ser Gln Trp Xaa 35
40	(2) INFORMATION FOR SEQ ID NO: 239:
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239:
50	Met Ala Ala Xaa Pro Pro Gly Cys Thr Pro Pro Xaa Leu Leu Asp Ile 1 5 10 15
30	Ser Trp Leu Thr Glu Ser Leu Gly Ala Gly Gln Pro Val Pro Val Glu 20 25 30
55	Cys Arg His Arg Leu Glu Val Ala Gly Pro Arg Lys Gly Pro Leu Ser 35 40 45
	Pro Ala Trp Met Pro Ala Tyr Ala Cys Gln Arg Pro Thr Pro Leu Thr 50 55 60
60	His His Asn Thr Gly Leu Ser Glu Leu Leu Glu His Gly Val Cys Glu

•	65			70					75					80
5	Glu Val	Glu Arg	Val <i>1</i> 85	Arg A	rg S	er G	lu /	Arg 90	Tyr	Gln	Thr	Met 1	Lys 95	Val
5	Arg Arg	Ala Gly 100		Gly P	ro T		ro (Gly	Met	Ser	Суз	Pro (Gly	Asn
10	Asp Asn	Thr Val	His 1	Thr M		is C .20	Sly (Glu	Ala		Arg 125	Gly	Ser	Xaa
15	(2) INF	ORMATION	I FOR	SEO 1	ID NO	o: 24	10:							
20	(5) 214	(i) SEQI	UENCE (A) LI (B) TY (D) TO	CHAR ENGTH (PE:	ACTEI : 67 amin GY:	RIST ami o ac line	ICS: no a id	acid		: 24	0:			
25	Met Ser 1	: Ile Le	u Cys 5	Cys :	Pro I	Xaa :	Leu	Cys 10	Leu	Phe	Phe	Ser	Phe 15	Cys
30	Ile Ser	Ser Gl		Cys	Pro !	Phe	Ser 25	His	Val	Ser	Gln	Leu 30	Ser	Phe
50	Ile Ala	a Thr Ph 35	e Ser	Gln	Ser	Ser 40	Pro	Val	Leu	Leu	Val 45		Ala	Tyr
35	Asn Th	r Tyr Le O	u Ser	Phe	Leu . 55	Ala	Phe	Leu	Asp	Cys 60		Ser	Leu	Thr
	Ser Th	r Xaa												
40														
	(2) IN	FORMATIC												
45		(i) SE((xi) SI	(A) L (B) T (D) T	ENGT YPE : YPOL	H: 69 amin OGY:	9 am no a lin	ino cid ear	aci		D: 24	41:			
50	Met Se	er Thr Pi							e Lei			n Ser	Th:	
55	Lys Il	e Lys Se	er Lys 20	Pro	Leu	His	Met 25		c Ası	n His	s Thi	r Leu 30		ı Asn
<i>-</i>	Ser Pr	o Gly La 35	eu Asn	Pro	Ser	Ser 40	Pro	Th	r Le	u Ası	n Pho		Thi	r Gln
60		is Glu S	er Val	Ser	Tyr 55	Ala	Cys	Cy	s Hi	s Me		g Ser	: Le	u His

PCT/US98/11422

```
His Ala Phe Ala Xaa
      65
5
      (2) INFORMATION FOR SEQ ID NO: 242:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 44 amino acids
10
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242:
      Met Val Ser Val Val Leu Ile Phe Ser Phe Leu Ser Leu Thr Ile Ser
15
                                           10
      Thr Thr Ala Ser Ala Tyr Asn Gly Asn Asp Thr Gln Gly Trp Asn Asp
                   20
20
      Lys Phe His Xaa Xaa Ser Val Lys Thr Gln Thr Xaa
               35
25
      (2) INFORMATION FOR SEQ ID NO: 243:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 51 amino acids
                     (B) TYPE: amino acid
30
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243:
      Met Ile Ser Asp Ala Gly Ala Gly Phe Gly Val Phe Leu Leu Val Pro
35
      Arg Ala Gly His Cys Trp Gly Ala Gly Lys Pro Leu Pro Ser Cys Pro
       Ser Val Ala Ser Ile Pro Ser Trp Val Leu Pro Ser Phe Leu Glu Arg
 40
       Gly Arg Xaa
            50
 45
       (2) INFORMATION FOR SEQ ID NO: 244:
 50
               (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 43 amino acids
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244:
 55
       Met Val Gln Thr Ile Gln Asp Phe Leu Ser Leu Phe Ser Thr Pro Ile
       Phe Leu Leu Leu Met Phe Glu Thr Leu Ser Leu Ala Pro Ala Trp
 60
```

PCT/US98/11422

492

```
Leu Lys Pro Leu Arg Val Thr Ser His Ser Xaa
             35
                     . 43
5
     (2) INFORMATION FOR SEQ ID NO: 245:
            (i) SEQUENCE CHRACTERISTICS:
                   (A) LENGTH: 61 amino acids
10
                    (B) TYFE: amino acid
                    (D) TOPILOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245:
     Met Ile Leu Met Pro Gly Leu Gly Thr Ser Arg Gln Arg Ser Val Pro
15
      Phe Val Pro Thr Leu Ast Ala Ser Thr Pro Gly Ala Met Thr Gly Pro
                                      25
20
      Thr Ala Thr Leu Thr Ser Dys Glm Trp Thr Thr Ala Cys Arg Val Ser
      Trp Ala Asn Gly Trp Thr Ser Lew Arg Thr Phe Arg Kaa
                             55
25
      (2) INFORMATION FOR SEQ ID NO: 245:
30
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LEWIH: 36 amino acids
                    (B) TIFE: amino acid
                    (D) TOPILOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 246:
35
      Met Ser His His Ala Glm Pro Arg Phe Leu Leu Ile Thr Met Leu Leu
       1
      Gln Glu Ala Lys Pro Val Ser Asn Ile Pro His Leu Leu Glu Ser Trp
 40
                                    25
       Tyr Phe Gly Xaa
              35
 45
      (2) INFORMATION FOR SEQ ID NO: 247:
              (i) SEQUENCE CFARACTERISTICS:
 50
                     (A) LEWIH: 3: amino acids
                     (B) TYFE: amino acid
                     (D) TCFCLOGY: Limear
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247:
 55
       Met Asn Ser Leu Phe Trp Met Ile Leu Leu Pro Val Ser Gln Asp Gln
                                          10
       Val Val Glu Gly Leu Gln Gly Gly Phe Ser Gln Ile His Met Arg Ile
```

60

493

Leu Arg Lys His Leu Xaa 35

5

(2) INFORMATION FOR SEQ ID NO: 248:

(i) SEQUENCE CHARACTERISTICS:

10

- (A) LENGTH: 211 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248:
- Met Ser Arg Ser Xaa Asp Val Thr Asn Thr Thr Phe Leu Leu Met Ala 1 5 10 15

Ala Ser Ile Tyr Leu His Asp Gln Asn Pro Asp Ala Ala Leu Arg Ala 20 25 30

20

Leu His Gln Gly Asp Ser Leu Glu Cys Thr Ala Met Thr Val Gln Ile 35 40 45

Leu Leu Lys Leu Asp Arg Leu Asp Leu Ala Arg Lys Glu Leu Lys Arg 25 50 55 60

Met Gln Asp Leu Asp Glu Asp Ala Thr Leu Thr Gln Leu Ala Thr Ala 65 70 75 80

Trp Val Ser Leu Ala Thr Gly Gly Glu Lys Leu Gln Asp Ala Tyr Tyr
85 90 95

Ile Phe Gln Glu Met Ala Asp Lys Cys Ser Pro Thr Leu Leu Leu Leu 100 105 110

35

Asn Gly Gln Ala Ala Cys His Met Ala Gln Gly Arg Trp Glu Ala Ala 115 . 120 125

Glu Gly Leu Leu Gln Glu Ala Leu Asp Lys Asp Ser Gly Tyr Pro Glu 40 130 135 140

Thr Leu Val Asn Leu Ile Val Leu Ser Gln His Leu Gly Lys Pro Pro 145 150 155 160

45 Glu Val Thr Asn Arg Tyr Leu Ser Gln Leu Lys Asp Ala His Arg Ser 165 170 175

His Pro Phe Ile Lys Glu Tyr Gln Ala Lys Glu Asn Asp Phe Asp Arg 180 185 190

50

Leu Val Leu Gln Tyr Ala Pro Ser Ala Glu Ala Gly Pro Glu Leu Ser 195 . 200 205

Gly Pro Xaa 55 210

(2) INFORMATION FOR SEQ ID NO: 249:

		•	(i) S	(E	A) LE 3) TY	ength (PE :	: 54 amir	18 an 10 ac	ino id	ació	is					
5			(xi)	SEQU				line TION		ıı çı	NO:	249	:			
	Met 1	Glu	Asp	Ser	Glu 5	Ala	Leu	Gly	Phe	Glu 10	His	Met	Gly	Leu	Asp 15	Pro
10	Arg	Leu	Leu	Gln 20	Ala	Val	Thr	Asp	Leu 25	Gly	Trp	Ser	Arg	Pro 30	Thr	Leu
15			35	Lys				40					45			
••	Ala	Arg 50	Ala	Arg	Thr	Gly	Ser 55	Gly	Lys	Thr	Ala	Ala 60	Tyr	Ala	Ile	Pro
20	Met 65	Leu	Gln	Leu	Leu	Leu 70	His	Arg	Lys	Ala	Thr 75	Gly	Pro	Val	Val	Glu 80
	Gln	Ala	Val	Arg	Gly 85	Leu	Val	Leu	Val	Pro 90	Thr	Lys	Glu	Leu	Ala 95	Arg
25	Gln	Ala	Gln	Ser 100	Met	Ile	Gln	Gln	Leu 105	Ala	Thr	Tyr	Cys	Ala 110	Arg	Asp
30	Val	Arg	Val 115		Asn	Val	Ser	Ala 120	Ala	Glu	Asp	Ser	Val 125	Ser	Gln	Arg
	Ala	Val		Met	Glu	Lys	Pro 135		Val	Val	Val	Gly 140		Pro	Ser	Arg
35	Ile 145		ser	His	Leu	Gln 150		Asp	Ser	Leu	Lys 155		Arg	Asp	Ser	Leu 160
	Glu	Let	ı Lev	ı Val	Val 165		Glu	, Ala	Asp	170		Phe	Ser	Phe	Gly 175	Phe
40	Glu	Glu	ı Glu	180		: Ser	Leu	ı Leu	Cys 185		Leu	Pro	Arg	190	Tyr	Gln
45	Ala	Pho	e Let 195		: Ser	Ala	Thr	200		Glu	ı Asp	Val	. Gln 205		. Leu	Lys
73	Glu	Le:		e Leu	ı His	a Asr	219		. Thr	Leu	ı Lys	220		ı Glu	. Ser	Gln
50	Leu 225		o Gly	y Pro	Ası	Glr 230		u Glr	Glr	1 Phe	e Glr 235		l Val	l Cys	Glu	240
	Glv	ı Gl	u As	p Ly:	s Pho 24!		ı Le	u Let	тул	25		ı Lev	ı Lys	s Le	25!	r Leu 5
55	Ile	e Ar	g Gl	y Ly: 26		r Lei	ı Le	u Pho	26		n Thi	r Le	ı Gl	u Ar		r Tyr
60	Arg	g Le	u Ar 27		u Ph	e Le	u Gl	u Gl: 28		e Se	r Il	e Pro	28:		s Va	l Leu
DI I																

•	Asn	G1 ₃		Glu	Leu	Pro	Leu	Arg 295	Ser	Arg	Cys	His	Ile 300	Ile	Ser	Gln	Phe
5	Asn 305	Gli	a (Gly	Phe	Tyr	Asp 310	Cys	Val	Ile	Ala	Thr 315	Asp	Ala	Glu	Val	Leu 320
	Gly	Ala	a	Pro	Val	Lys 325	Gly	Lys	Arg	Arg	Gly 330	Arg	Gly	Pro	Lys	Gly 335	Asp
10					340					345		Arg			350		
15				355					360			Pro		365			
		37	0					375					380				Ile
20	385	•					390)				395					11e 400
						405	,				410)				415	
25					420)				425	5				430)	Asp
30				435					440)				445			Lys
		4	50					45	5				460)	•		Phe
35	46	5					47	0				47	5				480
						48	5				49	0				49	
40					50	0				50	5				51	0	g Lys
45				51	5				52	0				52	5		n Asn
		5	3()			e Ly	/s H1 53	.s Ly 5	'S G1	у гу	⁄ѕ ∟у	5 FA	0	y FI	J 11.	r Ala
50	_	/s I 15	?r	o Se	r Xa	a.											
55	(;	2) :	IN	FORM)ITA	n Fo	OR SI	EQ II	ONO:	250):						
55				(i)	SEC	(A)	LEN		299	ami	no a	cids					
60				(x	i) S	(D)	TOP	PE: a POLOG DESC	Y: 1	inea	r	ID	NO: 3	250:			

	Met 1	Thr	Thr	Val	Pro 5	Pro	Ser	Pro	Arg	Pro 10	Met	Ser	Arg	Pro	Ser 15	Glu
5	Arg	Asn	Met	Arg 20	Arg	Pro	Arg	Gly	Pro 25	Ser	Pro	Leu	Pro	Ala 30	Ser	Pro
10	Arg	Asn	Ser 35	Thr	Pro	Asp	Glu	Pro 40	Asp	Val	His	Phe	Ser 45	Lys	Lys	Phe
	Leu	Asn 50	Val	Phe	Met	Ser	Gly 55	Arg	Ser	Arg	Ser	Ser 60	Ser	Ala	Glu	Ser
15	Phe 65	Gly	Leu	Phe	Ser	Cys 70	Ile	Ile	Asn	Gly	Glu 75	Glu	Gln	Glu	Gln	Thr 80
	His	Arg	Ala	Ile	Phe 85	Arg	Phe	Val	Pro	Arg 90	His	Glu	Asp	Glu	Leu 95	Glu
20	Leu	Glu '	Val	Asp 100	Asp	Pro	Leu	Leu	Val 105	Glu	Leu	Gln	Ala	Glu 110	Asp	Tyr
25	Trp	Tyr	Glu 115	Ala	Tyr	Asn	Met	Arg 120	Thr	Gly	Ala	Arg	Gly 125	Val	Phe	Pro
	Ala	Tyr 130	Tyr	Ala	Ile	Glu	Val 135	Thr	Lys	Glu	Pro	Glu 140	His	Met	Ala	Ala
30	Leu 145	Ala	Lys	Asn	Ser	Asp 150	Trp	Val	Asp	Gln	Phe 155	Arg	Val	Lys	Phe	Leu 160
	Gly	Ser	Val	Gln	Val 165	Pro	Tyr	His	Lys	Gly 170	Asn	Asp	Val	Leu	Cys 175	Ala
35	Ala	Met	Gln	Lys 180		Ala	Thr	Thr	Arg 185		Leu	Thr	Val	His 190	Phe	Asn
40	Pro	Pro	Ser 195		Cys	Val	Leu	Glu 200		Ser	Val	Arg	Gly 205		Lys	Ile
	Gly	Val 210	_	Ala	Asp	Asp	Ser 215		Glu	Ala	Lys	Gly 220	Asn	Lys	Cys	Ser
45	His 225		Phe	Gln	Leu	Lys 230		Ile	Ser	Phe	235		Туг	His	Pro	Lys 240
	Asn	Asn	Lys	Туг	Phe 245		Phe	lle	Thr	Lys 250		Pro	Ala	. Asp	His 255	Arg
50	Phe	Ala	Cys	260		Phe	Val	Ser	Glu 265	-	Ser	Thr	Lys	Ala 270		Ala
55	Glu	Ser	Val 275	-	Arg	Ala	. Phe	280		Phe	туг	Lys	Gln 285		Val	Glu
	Tyr	Thr 290	_	Pro	Thr	Glu	Asp 295		Тух	Leu	Glu	1				

	121	1141	J. C. D	1014	1 011	JEQ	10 .	.0. 2								
5			(i) :	()	A) L B) T D) T	ENGT YPE : OPOL	H: 4 ami: OGY:	0 am no a lin	ino d cid ear	acid		: 25:	1:			
10	Leu 1		Tyr	Leu	Leu 5	Lys	Val	Xaa	Val	Ile 10	Phe	Val	Phe	Ser	Ser 15	Ser
	Lys	Gly	Val	Thr 20	Leu	Val	Ser	Met	Asn 25	Leu	Thr	Ser	Phe	Phe 30	Val	Ser
15	Ser	Val	Leu 35	Ala	Cys	Phe	Ser	Хаа 40								
20	(2)	INF	ORMA	rion	FOR	SEQ	ID I	vo: 2	252:							
25			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	94 a no a lin	mino cid ear	aci		: 25	2:			
30	Met 1		Ala	Ser	Ser 5	Leu	Glu	Ser	Arg	Ser 10	Phe	Leu	Leu	Ala	Lys 15	Lys
50	Ser	Gly	Glu	Asn 20	Val	Ala	Lys	Phe	Ile 25	Ile	Asn	Ser	Tyr	Pro 30	Lys	Tyr
35	Phe	Gln	Lys 35	Asp	Ile	Ala	Glu	Pro 40	His	Ile	Pro	Cys	Leu 45	Met	Pro	Glu
	Tyr	Phe 50	Glu	Pro	Gln	Ile	Lys 55	Asp	Ile	Ser	Glu	Ala 60	Ala	Leu	Lys	Glu
40	Arg 65		Glu	Leu	Arg	Lys 70	Val	Lys	Ala	Ser	Val 75	Asp	Met	Phe	Asp	Gln 80
45	Leu	Leu	Gln	Ala	Gly 85	Thr	Thr	Val	Ser	Leu 90	Glu	Thr	Thr	Asn	Ser 95	Leu
	Leu	Asp	Xaa	Leu 100	Cys	Tyr	Tyr	Gly	Asp 105	Gln	Glu	Pro	Ser	Thr 110	Asp	Tyr
50	His	Phe	Gln 115	Gln	Thr	Gly	Gln	Ser 120	Glu	Ala	Leu	Glu	Glu 125	Glu	Asn	Asp
	Glu	Thr 130	Ser	Arg	Arg	Lys	Ala 135	Gly	His	Gln	Phe	Gly 140	Val	Thr	Trp	Arg
55	Ala 145		Asn	Asn	Ala	Glu 150	Arg	Ile	Phe	Ser	Leu 155	Met	Pro	Glu	Lys	Asn 160
60	Glu	His	Ser	Tyr	Cys 165		Met	Ile	Arg	Gly 170	Met	Val	Lys	His	Arg 175	Ala

•	Tyr	Glu	Gln	Ala 180	Leu	Asn	Leu		185	GIU	ren	Leu	ASI	190	Arg	rea
5	His	Ala	Asp 195	Val	Tyr	Thr	Phe	Asn 200	Ala	Leu	Ile	Glu	Ala 205	Thr	Val	Cys
	Ala	Ile 210	Asn	Glu	Lys		Glu 215	Glu	Lys	Trp	Ser	Lys 220	Ile	Leu	Glu	Leu
10	Leu 225	Arg	His	Met	Val	Ala 230	Gln	Lys	Val	Lys	Pro 235	Asn	Leu	Gln	Thr	Phe 240
15	Asn	Thr	Ile	Leu	Lys 245	Cys	Leu	Arg	Arg	Phe 250	His	Val	Phe	Ala	Arg 255	Ser
.,	Pro	Ala	Leu	Gln 260	Val	Leu	Arg	Glu	Met 265	Lys	Ala	Ile	Gly	Ile 270	Glu	Pro
20	Ser	Leu	Ala 275	Thr	Tyr	Ĥis	His	Ile 280	Ile	Arg	Leu	Phe	Asp 285	Gln	Pro	Gly
	Asp	Pro 290		Lys	Arg	Ser	Ser 295	Phe	Ile	Ile	Tyr	Asp 300	Ile	Met	Asn	Glu
25	305					310					315					Phe 320
30					325					330					335	Leu
				340					345					350		Phe
35			355					360					365			Asp
		370)				375	i				380)			Glu
40	385	5				390	•				395	5				His 400
45					405	•				410)				415	
				420)				429	.				430)	Leu
50			43!	5 .				440)				449	5		Glu
		45	0				45	5				46	0			туг
55	46	5				470)				47	5				480
60	Le	u As	n Cy	s Il	e Ala 48		e Le	u Ph	e Le	49		a Gl	y Ar	g Thi	r Gl: 49!	n Glu S

	Ala	Trp	Lys	Met 500	Leu	Gly	Leu	Phe	Arg 505	Lys	His	Asn	Lys	Ile 510	Pro	Arg
5	Ser	Glu	Leu 515	Leu	Asn	Glu	Leu	Met 520	Asp	Ser	Ala	Lys	Val 525	Ser	Asn	Ser
	Pro	Ser 530	Gln	Ala	Ile	Glu	Val 535	Val	Glu	Leu	Ala	Ser 540	Ala	Phe	Ser	Leu
10	Pro 545	Ile	Cys	Glu	Gly	Leu 550	Thr	Gln	Arg	Val	Met 555	Ser	Asp	Phe	Ala	Ile 560
15	Asn	Gln	Glu	Gln	Lys 565	Glu	Ala	Leu	Ser	Asn 570	Leu	Thr	Ala	Leu	Thr 575	Ser
IJ	Asp	Ser	Asp	Thr 580	Asp	Ser	Ser	Ser	Asp 585	Ser	Asp	Ser	Asp	Thr 590	Ser	Glu
20	Gly	Lys														
	(2)	TARE	ОРМА	TION	FOR	SEO	TD	NO ·	253 •							
25	(2)	1141		SEQU	ENCE		RACT	ERIS	TICS		ds					
20				(B) T	YPE:	ami	no a	cid							
												. 25	3 .			
30			(xi)	SEQ	UENC	E DE	SCRI	PTIC	N: S	EQ 1	D NC): 25	3 :			
30	Met 1			SEQ Asn		Cys					Ala			Pro	Leu 15	Leu
35	1		Leu		Leu 5 Gln	Cys	Ile	Pro	Asn	Trp 10	Ala	Arg	Cys		15 Asp	
35	1 Leu	Leu	Leu Phe	Asn Pro 20	Leu 5 Gln	Cys Leu	Ile	Pro	Asn Phe 25	Trp 10	Ala Gly	Arg	Cys Asp	Asp 30	15 Asp	Pro
	1 Leu Leu	Lev Lys	Leu Phe Ala 35	Asn Pro 20	Leu 5 Gln Ala	Cys Leu	lle Leu	Pro Pro Leu 40	Asn Phe 25 Val	Trp 10 Glr	Ala Gly	Arg Glu Val	Cys Asp Pro 45	Asp 30	Asp Gly	Pro
35	Leu Leu Lys	Leu Lys Als 50	Phe Ala	Asn Pro 20	Leu 5 Gln Ala	Cys Leu Ala	Leu Asn Val	Pro Pro Leu 40	Asn Phe 25 Val	Trp 10 Glr Glv	Ala Gly Ala Val	Arg Val Arg 60	Cys Asp Pro 45	Asp 30 Trp	Asp Gly	Pro Ile Gln
35 40	Leu Leu Lys Ser 65	Leu Lys Als 50	Phe 35	Asn 20 Lys Ser	Leu 5 Gln Ala Phe	Cys Leu Ala Gln 70 Cys	Leu Lau Val	Pro Leu 40 Thr	Asn Phe 25 Val	Trp 10 Glr Glr Let	Ala Gly Ala Val Val Leu 75	Arg Val Arg 60	Cys Asp Pro 45 Val	Asp 30 Trp Gln	Asp Gly Leu	Pro Ile Gln Ser 80
35 40	Leu Leu Lys Ser 65	Leu Lys S(Cys) Cys Gly	Phe Phe 35 Thu	Asn 20 Lys Ser	Leu 5 Gln Ala Phe Ser 85	Cys Leu Ala Ala Control Cys	Ileu Leu Asn Val 55	Pro Pro Leu 40 Thr	Phe 25 Val	Glr. Lev. Lev. 90	Ala Gly Ala Val Val 75	Clu Val Arg 60 Arg 60 Final Ala	Pro 45	Asp 30 Trp Gln	Asp Gly Leu Gln Progs	Pro Ile Gln Ser 80
35 40 45	Leu Lys Ser 65	Leu Lys Si Cys Gly	Phee 35 Thr	Asn Pro 20 Lys Ser Pro Pro 11e	Leu 5 Gln Ala Ala Ser 85 Ser 85 Glr	Cys Leu Ala Gln Cys	Leu Asn Val 55 Fro	Pro Pro Leu 40 Thr	Asn Phe 25 Val Cys Thr Pro Val 105	Glr Glr Lev	Ala Gly Ala Val 1 Val 75 1 Ser	Arg	Cys Asp Pro 45 Val Thr	Asp 30 Trp Gln Ser	Asp Gly Leu Gln Pro 95	Pro Ile Gln Ser 80 Val
35 40 45	Leu Lys Ser 65 Pro	Levi Lys Ala 50 Cys Gly Thu	Phe 35 Ala 35 A Proc Ser 11:	Asn Pro 20 Lys Ser Pro Pro 11e	Leu 5 Gln Ala Ala Ser 85 Ser 85 Glr	Cys Leu Ala Gln Cys	Leu Asn Val 55 Fro	Pro Pro Pro Leu 40 Thr Ser Ser	Asn Phe 25 Val Cys Thr Pro Val 105	Glr Glr Lev	Ala Gly Ala Val 1 Val 75 1 Ser	Arg Glu Val Arg 60 Arg 61 Ala 61	Cys Asp Pro 45 Val Thr	Asp 30 Trp Gln Ser	Asp Gly Leu Gln Pro 95	Pro Ile Gln Ser 80 Val

•	(2) INFORMATION FOR SEQ ID NO: 254:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254:
10	Met Arg Tyr His Ala Gln Leu Ile Phe Cys Ile Phe Cys Xaa Phe Val 1 5 10 15
	Phe Val Xaa Lys Xaa 20
15	
	(2) INFORMATION FOR SEQ ID NO: 255:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255:
25	Met Asn Asp Asn Ser Pro Asn His Ser Ser Ser Tyr Leu Pro Leu Pro 1 5 10 15
30	Leu Thr Ile Val Ile Leu Gln Thr Gly His Lys Gly Thr Leu Xaa 20 25 30
	(2) INFORMATION FOR SEQ ID NO: 256:
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 219 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 256:
40	Met His Phe Leu Phe Arg Phe Ile Val Phe Phe Tyr Leu Trp Gly Leu 1 5 10 15
45	Phe Thr Ala Gln Arg Gln Lys Lys Glu Glu Ser Thr Glu Glu Val Lys 20 25 30
	Ile Glu Val Leu His Arg Pro Glu Asn Cys Ser Lys Thr Ser Lys Lys 35 40 45
50	Gly Asp Leu Leu Asn Ala His Tyr Asp Gly Tyr Leu Ala Lys Asp Gly 50 55 60
55	Ser Lys Phe Tyr Cys Ser Arg Thr Gln Asn Glu Gly His Pro Lys Trp 65 70 75 80
	Phe Val Leu Gly Val Gly Gln Val Ile Lys Gly Leu Asp Ile Ala Met 85 90 95
60	Thr Asp Met Cys Pro Gly Glu Lys Arg Lys Val Val Ile Pro Pro Ser

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.