

Handwritten Name Recognition using Tensorflow

Adi Kurniawan - 152236035100-987 Dikky Kurniawan - 152236035100-51 Elyadityo Santoso - 152236035101-567 Novri Kurniawan - 152236035100-1068 Robby Alfardo Irfan - 152236035100-380

Machine Learning with TensorFlow Training Professional Academy Digital Talent Scholarship 2022

1. Project Framework

Framework

CRISP - DM **CR**oss Industry Standard Processing for Data Mining

Roadmap

Project Schedule

	Juli								
Task	9-10	11-12	13-14	15-16	17-18	19-20	21-22	23-24	25-27
Perkenalan masing-masing anggota									
Membentuk dan menyelesaikan proposal									
Mencari dan mempelajari paper terkait handwriting recognition									
Explore Handwriting Dataset									
Cleaning Handwriting Dataset									
Melakukan Exploratory Data Analysis									
Melakukan Modelling TensorFlow									
Membandingkan hasil model masing-masing anggota									
Mempersiapkan PPT hasil Modelling									
Presentasi hasil model dan pembuatan video									

2. Business Understanding

Business Understanding

Business Problem

Top Companies

amazon

Data

Data merupakan fakta yang tidak terorganisir dan butuh untuk diproses.

Contoh data yaitu, angka, teks, gambar, animasi, dan video.

Information

Ketika data terproses, terorganisir, dan terstruktur, itu akan membuat lebih berguna.

Data yang ingin kita ubah menjadi informasi adalah tulisan tangan manusia.

Business Solution

Contoh case Handwritten Names Recognition untuk menginterpretasi tulisan tangan pada gambar.

Business Objectives

Dengan mengembangkan model ini ada beberapa hal yang ingin tim kami capai:

3. Data Understanding

written_name_train_v2							
Columns	Unique values	Missing Values	%Missing Values	Example			
FILENAME	330.961	0	0,00%	TRAIN_00001.jpg			
IDENTITY	100.540	565	0,56%	BALTHAZAR			

written_name_validation_v2						
Columns	Unique values	Missing Values	%Missing Values	Example		
FILENAME	41.370	0	0,00%	VALIDATION_0001.jpg		
IDENTITY	20.228	78	0,39%	BILEL		

written_name_test_v2							
Columns	Unique values	Missing Values	%Missing Values	Example			
FILENAME	41.370	0	0,00%	TEST_0001.jpg			
IDENTITY	20.280	70	0,35%	KEVIN			

Exploratory Data Analysis

Contoh Image dengan jumlah karakter 1:

Contoh Image dengan jumlah karakter 2:

NOM:	24	, , , , , , , , , , , , , , , , , , , ,	
		LE	
NOM:	LE	, i	

	BE	
BE		
	ΚY	
KY	K!	

Exploratory Data Analysis etechready PRO Professional Academy displayed in the control of the co

Contoh Image dengan jumlah karakter lebih dari 21:

DARE DE NAISSANCE CLASSE		
PRENOM	PERETTI ANNE CHARLOTTE NOM: PERETTI	CAPUCINE CAPUCINE MARIE PHILIPPINE PRENOM: CAPUCINE CAPUCINE MARIE PHILIPPINE
DATE DE NAISSANCE CLASSE		
COLANONICO AICARDI	DE LA VALLEE DE PIMODAI	ANGEL MICHELL OU INDICI
DODE (11112) ONI . () / 1 + 2 () ()		A NCE UNIVALENCE NI NI NI NI NI NI
NOM: (OLANONICO-AICARDI	DELAVALLÉEDEPINODA	ANGE 1/ MICHAEL QUINDICI
Contoh Image dengan Identity		_
	-	
NOM	NOM:	
NOM		

Exploratory Data Analysis

Contoh Image dengan Identity "UNREADABLE":

UNREADABLE	
Betremieur	,
UNREADABLE CODE RNE / UAI : U 9 3 2 3 3 7 NOM: CBSCODTNO	

UNREADABLE

4. Data Preparation

Data Cleaning

Data Preparation

Data Cleaning

Missing Label

Jumlah:

565 pada training, 78 pada validation, dan 70 pada testing.

- pelabelan manual -> tidak memungkinkan
- Jumlahnya tidak signifikan dibanding total sampel
- 3. Variasi image pada variabel NA masih terwakili oleh sampel lain

Treatment: Dikeluarkan dari sampel

Non Capital Label

Treatment:

Kesalahan Label, sehingga diubah menjadi capital

Unreadable Label

UNREADABLE COSCORTNO UNREADABLE DUE HNE/ UAI: 05 35 40 28 UNREADABLE CUUE HNE / UAL: 06 Q 00 4 5 Y SOLER

- Terdapat inkonsistensi data yang dilabeli unreadable.
- Telah dicoba membuat model untuk predict readability, tapi kurang optimal

Treatment:

Dikeluarkan dari training set. Untuk test tetap dimasukkan

Resize Gambar

Gambar perlu dipastikan 50 memiliki dimensi yang sama 2. Resize gambar 100 ke ukuran 256x64 (WxH) 150 3. Rotasi 90 derajat searah jarum jam 200 agar lebih mudah diekstraksi 250 fiturnya

Padding Label

pengecekan terhadap karakter yang digunakan pada label yang telah di ubah ke huruf kapital

Characters: [' ', "'", '-', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']

Set max input label = 16 Label > 16 = tidak digunakan di training Label < 16 = dipadding degan spesial token untuk melengkapi 16

Data Pipeline

Mengoptimalisasikan proses operasi terutama pada dataset gambar yang membutuhkan resource yang besar

- tf.data.Dataset.from tensor slices
- tf.io.read file(image path)
- tf.image.resize with pad
- tf.keras.layers.StringLookup
- dataset.batch(batch size).cache() .prefetch(tf.data.AUTOTUNE)

5. Model Building

Model Building

Model Building:

Convolutional Neural Network:

Mengektraksi fitur dari gambar untuk tiap karakter

Recurrent Neural Network:

Menentukan sequential dari karakter untuk membentuk kata

CTC Loss Function:

Menentukan probabilistik dari kata yang diprediksi dengan label

Transcription:

CTC Decoding:

greedy / best path decoding

Sumber gambar: http://www.sxlwork.top/

Model Building:

BASE MODEL

Convolutional Neural Network: 2 Layer konvolusi 3x3 2 Layer Max Pooling

Recurrent Neural Network: 2 Layer bidirectional LSTM Output berupa kelas character vocabulary

CTC Loss Function

Model ini mengadopsi dari keras example: https://keras.io/examples/

Model: "handwriting_recognizion"

Layer (type)	Output Shape	Param #	Connected to
image (InputLayer)	[(None, 64, 256	, 1)] 0	
Conv1 (Conv2D)	(None, 64, 256,	32) 320	image[0][0]
pool1 (MaxPooling2D)	(None, 32, 128,	32) 0	Conv1[0][0]
Conv2 (Conv2D)	(None, 32, 128,	64) 18496	pool1[0][0]
pool2 (MaxPooling2D)	(None, 16, 64,	64) 0	Conv2[0][0]
reshape (Reshape)	(None, 64, 1024) 0	pool2[0][0]
dense1 (Dense)	(None, 64, 64)	65600	reshape[0][0]
dropout_2 (Dropout)	(None, 64, 64)	0	dense1[0][0]
bidirectional_4 (Bidirectional)	(None, 64, 256)	197632	dropout_2[0][0]
bidirectional_5 (Bidirectional)	(None, 64, 128)	164352	bidirectional_4[0][0]
label (InputLayer)	[(None, None)]	0	
dense2 (Dense)	(None, 64, 31)	3999	bidirectional_5[0][0]
ctc_loss (CTCLayer)	(None, 64, 31)	0	label[0][0] dense2[0][0]

Total params: 450,399 Trainable params: 450,399 Non-trainable params: 0

6. Model Tuning & Evaluation

Single Evaluation Metrics

Traditional Metrics Akurasi, presisi, recall

Tidak Cocok Digunakan untuk OCR/Text Recognition

Rekomendasi:

Menggunakan Character Error Rate (CER) atau Word Error Rate (WER)

CER -> jumlah karakter yang yg harus diubah untuk membentuk label yang benar dibagi dengan jumlah karakter CER -> cocok untuk urutan karakter berjumlah sedikit WER -> cocok untuk transkripsi paragraf atau halaman

Dataset:

1-2 kata, jumlah karakter <20 Lebih cocok untuk dideteksi berdasarkan karakter level

Menggunakan CER sebagai pedoman dalam model tuning dan mengevaluasi model

Bias Optimal Error

Jumlah Error minimal yg dapat dicapai

Sampel 300 images -> sekitar 1-2% tidak dapat dibaca

Orthogonalization Technique

to Tune the Model

Model I

2 CNN layers & Max pooling

1 dense layers (64)

2 RNN layers (128, 64)

1 softmax layers

CTC

Model II

4 CNN layers & Max Pooling

2 dense layers (256, 64)

2 RNN layers (128, 64)

1 softmax layers

CTC

Model III

4 CNN layers & Max Pooling

2 dense layers (256, 64)

2 RNN layers (128, 64)

1 softmax layers

CTC

Dropout (0.2)

Dropout (0.2)

Dropout (0.25)

Bias Optimal: 1% CER on Training: 6.1% CER on Validation: 6.8%

Bias Optimal: 1% CER on Training: 2.7%

CER on Validation: 5.7%

Bias Optimal: 1% CER on Training: 3% CER on Validation: 4%

Overfitting:

Coba fokus untuk menurunkan variance di model II

Slap untuk di test performanya pada test dataset

Underfitting: Coba fokus untuk

menurunkan bias di model II

Performa pada Test Data Set

Prediction: KEVIN	Prediction: CLOTHI	Prediction: LENA	Prediction: JULES
KENIM	24-112-12-11-15	LÉNA	30685
Prediction: CHERPIN	Prediction: MARTIN	Prediction: VALENTINE	Prediction: LORAS
CHERPIN	PRENOM: MARTIN	VALENTINE	NOM: LORAS
Prediction: THIBAULT	Prediction: AZAGI	Prediction: GORTCHAKOFF	Prediction: MAHENTHIRAN
PRENOM: THIBA - LT	gom: AZAGI	NOM: GORTCHAROFE	HABENTHE AN
	ė.		
Prediction: FRANSOISSOSEPH	Prediction: JEANNE	Prediction: DEBORAH	Prediction: DROUES
FRA NGO 15 50 5 6 PA	2 E A NN E	WHENOW: DEPOV # H	DROUES
Prediction: PARIS	Prediction: MELANIE	Prediction: NOUAZE	Prediction: LEURIT
PARIS	H & LANIE	NOUAZE	LEURIT

	FILENAME	IDENTITY	PREDICTION	CER	WER
0	TEST_0001.jpg	KEVIN	KEVIN	0.0	0.0
1	TEST_0002.jpg	CLOTAIRE	CLOTHI	37.5	100.0
2	TEST_0003.jpg	LENA	LENA	0.0	0.0
3	TEST_0004.jpg	JULES	JULES	0.0	0.0
4	TEST_0005.jpg	CHERPIN	CHERPIN	0.0	0.0
3195	TEST_3203.jpg	ENZO	ENZO	0.0	0.0
3196	TEST_3204.jpg	VALENTIN	VALENTIN	0.0	0.0
3197	TEST_3205.jpg	DUMONT	DUMONT	0.0	0.0
3198	TEST_3206.jpg	JUSTINE	JUSTINE	0.0	0.0
3199	TEST_3207.jpg	BROUQUIER	BROUQUIER	0.0	0.0
3200 r	ows × 5 colum	ns			
CER_t	est_average:	4.2776558	4375		

Komparasi: Good-> Printed Character (1-2%), Handwritten (<5%)

Error Analysis

LUDE HINE / WAI: US B & 8 8 9 V CODE RNE/UAI: 0771992 x NOM: DUCLOS MALL **EMPTY** TELL EMPTY CUDE HNE/ UAI: 0 + + 165 TH CODE RNE/UAI: 0672303D LE DEISS NOM: PALLOIS TEHI HUGO NONE **EMPTY** GRENOM: HUGU CODE RNE / UAI: 0 7 8 1 5 9 4 3 PRENOM: PAHILLALE BEFFIE AT ON 1.002 CLASSE: VAINE SCHIED JEAD **EMPTY** PRENOM PRENOM: ARTHUR TI A NI A NI VERGNE NOM ICHAGOTAN NOM: HUMMEN VengaE

7. Deployment

A faster way to build and share data apps

Streamlit turns data scripts into shareable web apps in minutes. All in pure Python. No front-end experience required.

Try Streamlit now

Sign up for Streamlit Community Cloud

import streamlit as st

Web Application

Project Reference

Dataset: Data Handwriting

(https://drive.google.com/drive/folders/1izbmpOCkNmVudpUVOmiVV7zW6Pt511p1?usp=sharing)

Jurnal:

- XinSheng, Z., Yu, W. 2022. Industrial character recognition based on improved CRNN in complex environments. Computers in Industry 142.
 - https://doi.org/10.1016/j.compind.2022.103732
- Hao Zeng, 2020. An Off-line Handwriting Recognition Employing Tensorflow. https://doi.org/10.1109/ICBAIE49996.2020.00040
- Weibo Yu, Chunyu Guo, Keping Liu, Hongtao Yang. 2020. Handwritten Digital Recognition **Optimization Method based on Deep Learning.** https://doi.org/10.1109/CAC51589.2020.9327647
- SaraAqab, Muhammad Usman Tariq. 2020. Handwriting Recognition using Artificial Intelligence **Neural Network and Image Processing.** https://doi.org/10.14569/IJACSA.2020.0110719
- G.R. Hemanth, M. Jayasree, S. Keerthi Venii, P. Akshaya, and R. Saranya. 2021. CNN-RNN Based **Handwritten Text Recognition.** https://doi.org/10.21917/ijsc.2021.0351

Thank You