Mathematical Toolkit for Isabelle/UTP

Simon Foster Pedro Ribeiro Frank Zeyda July 21, 2020

Abstract

This document describes our mathematical toolkit for Isabelle/UTP, which provides a foundational collection of definition, theorems, and proof facilities. This includes extensions to existing HOL libraries, such as for list and partial functions, and also new type definitions, theorems, and Isabelle/HOL commands.

Contents

1	Introduction	3
2	Lists: extra functions and properties	3
	2.1 Useful Abbreviations	4
	2.2 Folds	4
	2.3 List Lookup	4
	2.4 Extra List Theorems	4
	2.4.1 Map	4
	2.4.2 Sorted Lists	5
	2.4.3 List Update	8
	2.4.4 Drop While and Take While	8
	2.4.5 Last and But Last	9
	2.4.6 Prefixes and Strict Prefixes	9
	2.4.7 Lexicographic Order	12
	2.5 Distributed Concatenation	14
	2.6 List Domain and Range	14
	2.7 Extracting List Elements	15
	2.8 Filtering a list according to a set	17
	2.9 Minus on lists	17
	2.10 Laws on $take$, $drop$, and $nths$	19
	2.11 List power	21
3	Infinite Sequences	21
4	Finite Sets: extra functions and properties	27
5	Countable Sets: Extra functions and properties	32
	5.1 Extra syntax	32
	5.2 Countable set functions	32

6	Ext	ra Relational Definitions and Theorems	38
	6.1	Relational Function Operations	38
	6.2	Domain Restriction	39
	6.3	Relational Override	39
	6.4		39
	6.5		40
	6.6		41
	6.7		41
	0.1	Closure 110perview	11
7	Map	Type: extra functions and properties	42
	7.1		42
	7.2		44
	7.3		44
	7.4	1	$\frac{-}{44}$
	7.5	8	44
	7.6		45
	7.7	1	$\frac{10}{45}$
	7.8	g .	46
	7.9		53
			54
		1	
			54
		1	55
	7.13	Extra map lemmas	56
8	Δlta	ernative List Lexicographic Order	57
U	71100	Thative hist hexicographic order	01
9	Part	tial Functions	5 7
	9.1	Partial function type and operations	57
	9.2		59
	9.3		61
	9.4		61
	9.5	1 / 11 / 1	62
	9.6		63
	9.7		64
	9.8		65
	9.9		65
		*	65
			65
	9.12	Partial Function Lens	66
10	Fini	te Functions	67
10			67
			69
		9	09 70
		17 11 7 1	
			71
		0	71
			72 72
		9	72
	10.8	Graph laws	73
	40 -	Partial Function Lens	73

11 Infinity Supplement	7 3
11.1 Type class infinite	. 73
11.2 Infinity Theorems	
11.3 Instantiations	
2 Positive Subtypes	75
12.1 Type Definition	. 76
12.2 Operators	. 76
12.3 Instantiations	
12.4 Theorems	. 78
12.5 Transfer to Reals	. 78
3 Recall Undeclarations	7 9
13.1 ML File Import	. 79
13.2 Outer Commands	
4 Meta-theory for UTP Toolkit	80

1 Introduction

This document contains the description of our mathematical toolkit for Isabelle/UTP [2, 3, 4, 7], a mechanisation of Hoare and He's *Unifying Theories of Programming* [5, 1]. The toolkit provides a foundational collection of additional HOL theorems, new abstract types, and proof facilities, upon which Isabelle/UTP depends. In brief, the toolkit contains the following principal items:

- additional laws and functions for the list, map (partial functions), countable set, and finite set types;
- type definitions for partial and finite functions, together with additional functions and laws derived from the Z mathematical toolkit [6];
- positive subtypes of existing types;
- infinite sequences;
- the "total recall" package, which allows us to precisely control overriding of existing syntax annotations.

A few other theories exist that add smaller utilities and additional laws.

2 Lists: extra functions and properties

theory List-Extra imports HOL-Library.Sublist HOL-Library.Monad-Syntax HOL-Library.Prefix-Order Optics.Lens-Instances begin

2.1 Useful Abbreviations

abbreviation *list-sum* $xs \equiv foldr$ (+) $xs \theta$

2.2 Folds

```
context abel-semigroup begin  \begin{aligned} & \textbf{lemma } \textit{foldr-snoc: } \textit{foldr } (*) \; (xs @ [x]) \; k = (\textit{foldr } (*) \; xs \; k) * x \\ & \textbf{by } (\textit{induct } xs, \; \textit{simp-all } \textit{add: } \textit{commute } \textit{left-commute}) \end{aligned}
```

end

2.3 List Lookup

The following variant of the standard nth function returns \perp if the index is out of range.

```
primrec

nth\text{-}el :: 'a \ list \Rightarrow nat \Rightarrow 'a \ option \ (-\langle -\rangle_l \ [90,\ 0] \ 91)

where

[]\langle i\rangle_l = None

|(x \# xs)\langle i\rangle_l = (case \ i \ of \ 0 \Rightarrow Some \ x \ | Suc \ j \Rightarrow xs \ \langle j\rangle_l)

lemma nth\text{-}el\text{-}appendl[simp]: \ i < length \ xs \Longrightarrow (xs @ ys)\langle i\rangle_l = xs\langle i\rangle_l

apply (induct \ xs \ arbitrary: \ i)

apply simp

apply simp-all

done

lemma nth\text{-}el\text{-}appendr[simp]: \ length \ xs \le i \Longrightarrow (xs @ ys)\langle i\rangle_l = ys\langle i - length \ xs\rangle_l

apply (induct \ xs \ arbitrary: \ i)

apply simp

apply (case\text{-}tac \ i)

apply simp

apply (case\text{-}tac \ i)

apply simp

apply simp

apply simp

apply simp

apply simp

apply simp-all
```

2.4 Extra List Theorems

2.4.1 Map

done

```
lemma map-nth-Cons-atLeastLessThan:
map\ (nth\ (x\ \#\ xs))\ [Suc\ m...< n] = map\ (nth\ xs)\ [m...< n-1]
proof —
have nth\ xs = nth\ (x\ \#\ xs)\circ Suc
by auto
hence map\ (nth\ xs)\ [m...< n-1] = map\ (nth\ (x\ \#\ xs)\circ Suc)\ [m...< n-1]
by simp
also have ... = map\ (nth\ (x\ \#\ xs))\ (map\ Suc\ [m...< n-1])
by simp
also have ... = map\ (nth\ (x\ \#\ xs))\ [Suc\ m...< n]
by (metis\ Suc\ diff-1\ le-0\ eq\ length-upt\ list\ .simps(8)\ list\ .size(3)\ map\ -Suc\ -upt\ not\ -less\ upt\ -0)
finally show ?thesis\ ...
qed
```

2.4.2 Sorted Lists

lemma sorted-is-sorted-list-of-set:

```
lemma sorted-last [simp]: [x \in set \ xs; sorted \ xs] \implies x \leq last \ xs
 by (induct xs, auto)
lemma sorted-prefix:
 assumes xs \leq ys sorted ys
 shows sorted xs
proof -
 obtain zs where ys = xs @ zs
   using Prefix-Order.prefixE assms(1) by auto
 thus ?thesis
   using assms(2) sorted-append by blast
qed
lemma sorted-map: \llbracket sorted xs; mono f \rrbracket \Longrightarrow sorted (map f xs)
 by (simp add: monoD sorted-iff-nth-mono)
lemma sorted-distinct [intro]: [sorted (xs); distinct(xs)] \implies (\forall i < length xs - 1. xs!i < xs!(i + 1))
 apply (induct xs)
  apply (auto)
 apply (metis (no-types, hide-lams) Suc-leI Suc-less-eq Suc-pred qr0-conv-Suc not-le not-less-iff-qr-or-eq
nth-Cons-Suc nth-mem nth-non-equal-first-eq)
The concatenation of two lists is sorted provided (1) both the lists are sorted, and (2) the final
and first elements are ordered.
{f lemma}\ sorted-append-middle:
 sorted(xs@ys) = (sorted\ xs \land sorted\ ys \land (xs \neq [] \land ys \neq [] \longrightarrow xs!(length\ xs - 1) < ys!0))
 have \bigwedge x \ y. \llbracket sorted xs; sorted ys; xs! (length xs - Suc \ \theta) \leq ys! \theta \ \rrbracket \Longrightarrow x \in set \ xs \Longrightarrow y \in set \ ys
\implies x \leq y
 proof -
   \mathbf{fix} \ x \ y
   assume sorted xs sorted ys xs! (length xs - Suc 0) \leq ys! 0 x \in set xs y \in set ys
   moreover then obtain i j where i: x = xs!i i < length xs and j: y = ys!j j < length ys
     by (auto simp add: in-set-conv-nth)
   moreover have xs ! i \le xs!(length xs - 1)
    by (metis One-nat-def Suc-diff-Suc Suc-leI Suc-le-mono (i < length xs) (sorted xs) diff-less diff-zero
qr-implies-not-zero nat.simps(3) sorted-iff-nth-mono zero-less-iff-neq-zero)
   moreover have ys!\theta \leq ys!j
     by (simp add: calculation(2) calculation(9) sorted-nth-mono)
   ultimately have xs ! i \le ys ! j
     by (metis One-nat-def dual-order.trans)
   thus x \leq y
     by (simp \ add: i \ j)
 qed
 thus ?thesis
   by (auto simp add: sorted-append)
Is the given list a permutation of the given set?
definition is-sorted-list-of-set :: ('a::ord) set \Rightarrow 'a list \Rightarrow bool where
is-sorted-list-of-set A xs = ((\forall i < length(xs) - 1. xs!i < xs!(i + 1)) \land set(xs) = A)
```

```
assumes is-sorted-list-of-set A xs
  shows sorted(xs) and distinct(xs)
using assms proof (induct xs arbitrary: A)
  show sorted []
   by auto
next
  show distinct []
   by auto
next
  \mathbf{fix} \ A :: 'a \ set
 case (Cons \ x \ xs) note hyps = this
  assume isl: is-sorted-list-of-set A (x \# xs)
  hence srt: (\forall i < length xs - Suc 0. xs ! i < xs ! Suc i)
   using less-diff-conv by (auto simp add: is-sorted-list-of-set-def)
  with hyps(1) have srtd: sorted xs
   by (simp add: is-sorted-list-of-set-def)
  with isl show sorted (x \# xs)
   apply (auto simp add: is-sorted-list-of-set-def)
   apply (metis (mono-tags, lifting) all-nth-imp-all-set less-le-trans linorder-not-less not-less-iff-gr-or-eq
nth-Cons-0 sorted-iff-nth-mono zero-order(3))
   done
  from srt\ hyps(2) have distinct\ xs
   by (simp add: is-sorted-list-of-set-def)
  with isl show distinct (x \# xs)
  proof -
   have (\forall n, \neg n < length(x \# xs) - 1 \lor (x \# xs)! n < (x \# xs)! (n+1)) \land set(x \# xs) = A
     by (meson \ (is\text{-}sorted\text{-}list\text{-}of\text{-}set \ A \ (x \# xs)) \ is\text{-}sorted\text{-}list\text{-}of\text{-}set\text{-}def})
  then show ?thesis
  \textbf{by} \ (\textit{metis} \ (\textit{distinct} \ \textit{xs}) \ \textit{add.commute} \ \textit{add-diff-cancel-left'} \ \textit{distinct.simps} \ (\textit{2}) \ \textit{leD} \ \textit{length-Cons} \ \textit{length-greater-0-conv}
length-pos-if-in-set less-le nth-Cons-0 nth-Cons-Suc plus-1-eq-Suc set-ConsD sorted.elims(2) srtd)
  qed
qed
lemma is-sorted-list-of-set-alt-def:
  is-sorted-list-of-set A xs \longleftrightarrow sorted (xs) \land distinct (xs) \land set(xs) = A
 apply (auto intro: sorted-is-sorted-list-of-set)
   apply (auto simp add: is-sorted-list-of-set-def)
  apply (metis Nat.add-0-right One-nat-def add-Suc-right sorted-distinct)
  done
definition sorted-list-of-set-alt :: ('a::ord) set \Rightarrow 'a list where
sorted-list-of-set-alt A =
  (if (A = \{\}) then [] else (THE xs. is-sorted-list-of-set A xs))
lemma is-sorted-list-of-set:
 finite A \Longrightarrow is\text{-}sorted\text{-}list\text{-}of\text{-}set A (sorted\text{-}list\text{-}of\text{-}set A)
 apply (simp add: is-sorted-list-of-set-def)
 apply (metis One-nat-def add.right-neutral add-Suc-right sorted-distinct sorted-list-of-set)
  done
lemma sorted-list-of-set-other-def:
 finite A \Longrightarrow sorted-list-of-set(A) = (THE \ xs. \ sorted(xs) \land distinct(xs) \land set \ xs = A)
 apply (rule sym)
  apply (rule the-equality)
  apply (auto)
```

```
apply (simp add: sorted-distinct-set-unique)
    done
lemma sorted-list-of-set-alt [simp]:
    finite A \Longrightarrow sorted-list-of-set-alt(A) = sorted-list-of-set(A)
    apply (rule sym)
    apply (auto simp add: sorted-list-of-set-alt-def is-sorted-list-of-set-alt-def sorted-list-of-set-other-def)
    done
Sorting lists according to a relation
definition is-sorted-list-of-set-by :: 'a rel \Rightarrow 'a set \Rightarrow 'a list \Rightarrow bool where
is-sorted-list-of-set-by R A xs = ((\forall i < length(xs) - 1. (xs!i, xs!(i+1)) \in R) \land set(xs) = A)
definition sorted-list-of-set-by :: 'a rel \Rightarrow 'a set \Rightarrow 'a list where
sorted-list-of-set-by R A = (THE xs. is-sorted-list-of-set-by R A xs)
definition fin-set-lexord :: 'a rel \Rightarrow 'a set rel where
fin-set-lexord R = \{(A, B). \text{ finite } A \land \text{ finite } B \land A \}
                                                              (\exists xs ys. is\text{-}sorted\text{-}list\text{-}of\text{-}set\text{-}by R A xs \land is\text{-}sorted\text{-}list\text{-}of\text{-}set\text{-}by R B ys
                                                                \land (xs, ys) \in lexord R)
lemma is-sorted-list-of-set-by-mono:
    \llbracket R \subseteq S; \text{ is-sorted-list-of-set-by } R A \text{ xs } \rrbracket \Longrightarrow \text{ is-sorted-list-of-set-by } S A \text{ xs}
    by (auto simp add: is-sorted-list-of-set-by-def)
lemma lexord-mono':
    [(\land x y. fx y \longrightarrow gx y); (xs, ys) \in lexord \{(x, y). fx y\}] \Longrightarrow (xs, ys) \in lexord \{(x, y). gx y\}
    by (metis case-prodD case-prodI lexord-take-index-conv mem-Collect-eq)
lemma fin-set-lexord-mono [mono]:
    (\bigwedge x \ y. \ fx \ y \longrightarrow g \ x \ y) \Longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \in fin\text{-set-lexord} \ \{(x, \ y). \ fx \ y\} \longrightarrow (xs, \ ys) \mapsto (x
y). g x y}
proof
    assume
        fin: (xs, ys) \in fin\text{-}set\text{-}lexord \{(x, y), f x y\} and
        hyp: (\bigwedge x y. f x y \longrightarrow g x y)
    from fin have finite xs finite ys
        using fin-set-lexord-def by fastforce+
    with fin hyp show (xs, ys) \in fin\text{-set-lexord } \{(x, y), g \ x \ y\}
        apply (auto simp add: fin-set-lexord-def)
        apply (rename-tac xs' ys')
        apply (rule-tac x=xs' in exI)
        apply (auto)
          apply (metis case-prodD case-prodI is-sorted-list-of-set-by-def mem-Collect-eq)
        apply (metis case-prodD case-prodI is-sorted-list-of-set-by-def lexord-mono' mem-Collect-eq)
        done
qed
definition distincts :: 'a set \Rightarrow 'a list set where
distincts A = \{xs \in lists A. distinct(xs)\}\
lemma tl-element:
    \llbracket x \in set \ xs; \ x \neq hd(xs) \ \rrbracket \Longrightarrow x \in set(tl(xs))
```

2.4.3List Update

```
\mathbf{lemma}\ \mathit{list sum-update} \colon
 fixes xs :: 'a :: ring \ list
 assumes i < length xs
 shows list-sum (xs[i := v]) = list-sum xs - xs ! i + v
using assms proof (induct xs arbitrary: i)
 case Nil
  then show ?case by (simp)
next
  case (Cons a xs)
  then show ?case
 proof (cases i)
   case \theta
   thus ?thesis
     by (simp add: add.commute)
 next
   case (Suc\ i')
   with Cons show ?thesis
     by (auto)
  qed
qed
         Drop While and Take While
2.4.4
\mathbf{lemma}\ \mathit{drop\,While\text{-}sorted\text{-}le\text{-}above}\colon
  \llbracket \text{ sorted } xs; x \in \text{ set } (\text{drop While } (\lambda \ x. \ x \leq n) \ xs) \ \rrbracket \Longrightarrow x > n
 apply (induct xs)
  apply (auto)
 apply (rename-tac a xs)
 apply (case-tac a \leq n)
  apply (auto)
done
\mathbf{lemma}\ set	ext{-}drop\,While	ext{-}le:
  sorted xs \Longrightarrow set (drop While (\lambda x. x \le n) xs) = \{x \in set xs. x > n\}
 apply (induct xs)
  apply (simp)
 apply (rename-tac \ x \ xs)
 apply (subgoal-tac sorted xs)
  apply (simp)
  apply (safe)
```

apply (auto)

done

```
\llbracket \text{ sorted } I; x \in \text{set } I; x < n \rrbracket \Longrightarrow x \in \text{set } (\text{take While } (\lambda x. \ x < n) \ I)
proof (induct I arbitrary: x)
  case Nil thus ?case
    by (simp)
next
  case (Cons a I) thus ?case
    by auto
qed
```

```
lemma nth-le-takeWhile-ord: \llbracket sorted \ xs; \ i \geq length \ (takeWhile \ (\lambda \ x. \ x \leq n) \ xs); \ i < length \ xs \ \rrbracket \Longrightarrow
n \leq xs \mid i
  apply (induct xs arbitrary: i, auto)
 apply (rename-tac \ x \ xs \ i)
 apply (case-tac x \leq n)
  apply (auto)
  apply (metis One-nat-def Suc-eq-plus1 le-less-linear le-less-trans less-imp-le list.size(4) nth-mem
set-ConsD)
 done
\mathbf{lemma}\ \mathit{length-takeWhile-less}\colon
  \llbracket a \in set \ xs; \neg P \ a \rrbracket \implies length \ (take While \ P \ xs) < length \ xs
  by (metis in-set-conv-nth length-takeWhile-le nat-neg-iff not-less set-takeWhileD takeWhile-nth)
{f lemma} nth-length-takeWhile-less:
  \llbracket \text{ sorted } xs; \text{ distinct } xs; (\exists \ a \in \text{ set } xs. \ a \geq n) \ \rrbracket \Longrightarrow xs \ ! \text{ length } (\text{take While } (\lambda x. \ x < n) \ xs) \geq n
  by (induct xs, auto)
2.4.5
        Last and But Last
\mathbf{lemma}\ length-gt-zero-butlast-concat:
 assumes length ys > 0
 shows butlast (xs @ ys) = xs @ (butlast ys)
  using assms by (metis butlast-append length-greater-0-conv)
\mathbf{lemma}\ \mathit{length}\text{-}\mathit{eq}\text{-}\mathit{zero}\text{-}\mathit{butlast}\text{-}\mathit{concat}\text{:}
  assumes length ys = 0
  shows butlast (xs @ ys) = butlast xs
  using assms by (metis append-Nil2 length-0-conv)
lemma butlast-single-element:
  shows butlast [e] = []
  by (metis\ butlast.simps(2))
lemma last-single-element:
  shows last [e] = e
 by (metis last.simps)
lemma length-zero-last-concat:
  assumes length t = 0
 shows last (s @ t) = last s
 by (metis append-Nil2 assms length-0-conv)
lemma length-gt-zero-last-concat:
  assumes length t > 0
  shows last (s @ t) = last t
  by (metis assms last-append length-greater-0-conv)
2.4.6 Prefixes and Strict Prefixes
lemma prefix-length-eq:
  \llbracket length \ xs = length \ ys; \ prefix \ xs \ ys \ \rrbracket \Longrightarrow xs = ys
  by (metis not-equal-is-parallel parallel-def)
```

lemma prefix-Cons-elim [elim]:

```
assumes prefix (x \# xs) ys
 obtains ys' where ys = x \# ys' prefix xs \ ys'
 using assms
 by (metis append-Cons prefix-def)
lemma prefix-map-inj:
  \llbracket inj\text{-}on \ f \ (set \ xs \cup set \ ys); \ prefix \ (map \ f \ xs) \ (map \ f \ ys) \ \rrbracket \Longrightarrow
  prefix xs ys
 apply (induct xs arbitrary:ys)
  apply (simp-all)
 apply (erule prefix-Cons-elim)
 apply (auto)
 apply (metis image-insert insertI1 insert-Diff-if singletonE)
 done
lemma prefix-map-inj-eq [simp]:
  inj-on f (set xs \cup set \ ys) \Longrightarrow
  prefix (map f xs) (map f ys) \longleftrightarrow prefix xs ys
 using map-mono-prefix prefix-map-inj by blast
lemma strict-prefix-Cons-elim [elim]:
 assumes strict-prefix (x \# xs) ys
 obtains ys' where ys = x \# ys' strict-prefix xs \ ys'
 using assms
 by (metis Sublist.strict-prefixE' Sublist.strict-prefixI' append-Cons)
lemma strict-prefix-map-inj:
  \llbracket inj\text{-}on \ f \ (set \ xs \cup set \ ys); \ strict\text{-}prefix \ (map \ f \ xs) \ (map \ f \ ys) \ \rrbracket \Longrightarrow
  strict-prefix xs ys
 apply (induct xs arbitrary:ys)
  apply (auto)
 using prefix-bot.bot.not-eq-extremum apply fastforce
 apply (erule strict-prefix-Cons-elim)
 apply (auto)
 apply (metis (hide-lams, full-types) image-insert insertI1 insert-Diff-if singletonE)
 done
lemma strict-prefix-map-inj-eq [simp]:
  inj-on f (set xs \cup set \ ys) \Longrightarrow
  strict-prefix (map\ f\ xs)\ (map\ f\ ys) \longleftrightarrow strict-prefix xs\ ys
 by (simp add: inj-on-map-eq-map strict-prefix-def)
lemma prefix-drop:
  \llbracket drop (length xs) ys = zs; prefix xs ys \rrbracket
  \implies ys = xs @ zs
 by (metis append-eq-conv-conj prefix-def)
lemma list-append-prefixD [dest]: x @ y \le z \Longrightarrow x \le z
 using append-prefixD less-eq-list-def by blast
lemma prefix-not-empty:
 assumes strict-prefix xs ys and xs \neq []
 shows ys \neq []
 using Sublist.strict-prefix-simps(1) assms(1) by blast
```

```
lemma prefix-not-empty-length-gt-zero:
   assumes strict-prefix xs ys and xs \neq []
   shows length ys > 0
   using assms prefix-not-empty by auto
lemma butlast-prefix-suffix-not-empty:
   assumes strict-prefix (butlast xs) ys
   shows ys \neq []
   using assms prefix-not-empty-length-gt-zero by fastforce
lemma prefix-and-concat-prefix-is-concat-prefix:
   assumes prefix s t prefix (e @ t) u
   shows prefix (e @ s) u
   using Sublist.same-prefix-prefix assms(1) assms(2) prefix-order.dual-order.trans by blast
lemma prefix-eq-exists:
   prefix \ s \ t \longleftrightarrow (\exists xs \ . \ s \ @ \ xs = t)
   using prefix-def by auto
lemma strict-prefix-eq-exists:
    strict-prefix s \ t \longleftrightarrow (\exists xs \ . \ s \ @ \ xs = t \land (length \ xs) > 0)
   using prefix-def strict-prefix-def by auto
\mathbf{lemma}\ \mathit{butlast-strict-prefix-eq-butlast:}
   assumes length s = length t and strict-prefix (butlast s) t
   shows strict-prefix (butlast s) t \longleftrightarrow (butlast s) = (butlast t)
   \textbf{by} \ (\textit{metis append-butlast-last-id append-eq-append-conv} \ \textit{assms} (\textit{1}) \ \textit{assms} (\textit{2}) \ \textit{length-0-conv} \ \textit{length-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-butlast-but
strict-prefix-eq-exists)
lemma butlast-eq-if-eq-length-and-prefix:
   assumes length s > 0 length z > 0
                  length \ s = length \ z \ strict-prefix \ (butlast \ s) \ t \ strict-prefix \ (butlast \ z) \ t
   shows (butlast s) = (butlast z)
   using assms by (auto simp add:strict-prefix-eq-exists)
lemma prefix-imp-length-lteq:
   assumes prefix s t
   shows length s \leq length t
   using assms by (simp add: Sublist.prefix-length-le)
lemma prefix-imp-length-not-gt:
   assumes prefix s t
   shows \neg length t < length s
   using assms by (simp add: Sublist.prefix-length-le leD)
\mathbf{lemma} \ \mathit{prefix-and-eq-length-imp-eq-list}\colon
   assumes prefix s t and length t = length s
   shows s=t
   using assms by (simp add: prefix-length-eq)
lemma butlast-prefix-imp-length-not-gt:
   assumes length s > 0 strict-prefix (butlast s) t
   shows \neg (length t < length s)
   using assms prefix-length-less by fastforce
```

```
lemma length-not-gt-iff-eq-length:
 assumes length s > 0 and strict-prefix (butlast s) t
 shows (\neg (length \ s < length \ t)) = (length \ s = length \ t)
proof -
 have (\neg (length \ s < length \ t)) = ((length \ t < length \ s) \lor (length \ s = length \ t))
     by (metis not-less-iff-gr-or-eq)
 also have ... = (length \ s = length \ t)
     using assms
     by (simp add:butlast-prefix-imp-length-not-gt)
 finally show ?thesis.
qed
Greatest common prefix
fun gcp :: 'a \ list \Rightarrow 'a \ list \Rightarrow 'a \ list where
gcp \mid ys = \mid \mid
gcp (x \# xs) (y \# ys) = (if (x = y) then x \# gcp xs ys else []) |
gcp - - = []
lemma gcp\text{-}right [simp]: gcp \ xs \ [] = []
 by (induct xs, auto)
lemma gcp-append [simp]: gcp (xs @ ys) (xs @ zs) = xs @ gcp ys zs
 by (induct xs, auto)
lemma gcp-lb1: prefix (gcp xs ys) xs
 apply (induct xs arbitrary: ys, auto)
 apply (case-tac ys, auto)
 done
lemma gcp-lb2: prefix (gcp xs ys) ys
 apply (induct ys arbitrary: xs, auto)
 apply (case-tac xs, auto)
 done
interpretation prefix-semilattice: semilattice-inf gcp prefix strict-prefix
proof
 \mathbf{fix} \ xs \ ys :: 'a \ list
 show prefix (gcp xs ys) xs
   by (induct xs arbitrary: ys, auto, case-tac ys, auto)
 show prefix (gcp xs ys) ys
   by (induct ys arbitrary: xs, auto, case-tac xs, auto)
next
 \mathbf{fix} \ \mathit{xs} \ \mathit{ys} \ \mathit{zs} :: \ 'a \ \mathit{list}
 assume prefix xs ys prefix xs zs
 thus prefix xs (qcp ys zs)
   by (simp add: prefix-def, auto)
qed
2.4.7
         Lexicographic Order
lemma lexord-append:
 assumes (xs_1 @ ys_1, xs_2 @ ys_2) \in lexord R \ length(xs_1) = length(xs_2)
 shows (xs_1, xs_2) \in lexord R \lor (xs_1 = xs_2 \land (ys_1, ys_2) \in lexord R)
using assms
proof (induct xs_2 arbitrary: xs_1)
```

```
case (Cons \ x_2 \ xs_2') note hyps = this
  from hyps(3) obtain x_1 xs_1' where xs_1: xs_1 = x_1 \# xs_1' length(xs_1') = length(xs_2')
   by (auto, metis Suc-length-conv)
  with hyps(2) have xcases: (x_1, x_2) \in R \vee (xs_1' @ ys_1, xs_2' @ ys_2) \in lexord R
   by (auto)
 show ?case
 proof (cases\ (x_1,\ x_2)\in R)
   case True with xs<sub>1</sub> show ?thesis
     by (auto)
 \mathbf{next}
   case False
   with xcases have (xs_1' @ ys_1, xs_2' @ ys_2) \in lexord R
     by (auto)
   with hyps(1) xs_1 have dichot: (xs_1', xs_2') \in lexord R \lor (xs_1' = xs_2' \land (ys_1, ys_2) \in lexord R)
     by (auto)
   have x_1 = x_2
     using False hyps(2) xs_1(1) by auto
   with dichot xs<sub>1</sub> show ?thesis
     by (simp)
 qed
next
 case Nil thus ?case
   by auto
qed
lemma strict-prefix-lexord-rel:
 strict-prefix xs \ ys \implies (xs, \ ys) \in lexord \ R
 by (metis Sublist.strict-prefixE' lexord-append-rightI)
lemma strict-prefix-lexord-left:
 assumes trans R (xs, ys) \in lexord R strict-prefix xs' xs
 shows (xs', ys) \in lexord R
 by (metis assms lexord-trans strict-prefix-lexord-rel)
lemma prefix-lexord-right:
 assumes trans R (xs, ys) \in lexord R strict-prefix ys ys'
 shows (xs, ys') \in lexord R
 by (metis assms lexord-trans strict-prefix-lexord-rel)
lemma lexord-eq-length:
 assumes (xs, ys) \in lexord R length xs = length ys
 shows \exists i. (xs!i, ys!i) \in R \land i < length xs \land (\forall j < i. xs!j = ys!j)
using assms proof (induct xs arbitrary: ys)
 case (Cons \ x \ xs) note hyps = this
 then obtain y \ ys' where ys: ys = y \# ys' length ys' = length \ xs
   by (metis Suc-length-conv)
 show ?case
 proof (cases\ (x,\ y) \in R)
   case True with ys show ?thesis
     by (rule-tac \ x=0 \ in \ exI, \ simp)
 next
   case False
   with ys \ hyps(2) have xy: x = y \ (xs, \ ys') \in lexord \ R
   with hyps(1,3) ys obtain i where (xs!i, ys'!i) \in R i < length xs (\forall j < i. xs!j = ys'!j)
```

```
by force
   with xy ys show ?thesis
     apply (rule-tac \ x=Suc \ i \ in \ exI)
     apply (auto simp add: less-Suc-eq-0-disj)
   done
 qed
next
 case Nil thus ?case by (auto)
qed
lemma lexord-intro-elems:
 assumes length xs > i length ys > i (xs!i, ys!i) \in R \ \forall \ j < i. \ xs!j = ys!j
 shows (xs, ys) \in lexord R
using assms proof (induct i arbitrary: xs ys)
 case 0 thus ?case
   by (auto, metis lexord-cons-cons list.exhaust nth-Cons-0)
 case (Suc\ i) note hyps = this
 then obtain x' y' xs' ys' where xs = x' \# xs' ys = y' \# ys'
   by (metis Suc-length-conv Suc-lessE)
 moreover with hyps(5) have \forall j < i. xs' ! j = ys' ! j
   by (auto)
 ultimately show ?case using hyps
   by (auto)
qed
2.5
       Distributed Concatenation
definition uncurry :: ('a \Rightarrow 'b \Rightarrow 'c) \Rightarrow ('a \times 'b \Rightarrow 'c) where
[simp]: uncurry f = (\lambda(x, y). f x y)
definition dist-concat ::
  'a list set \Rightarrow 'a list set \Rightarrow 'a list set (infixr \cap 100) where
dist-concat ls1 ls2 = (uncurry (@) ' (ls1 \times ls2))
lemma dist-concat-left-empty [simp]:
 \{\} \cap ys = \{\}
 by (simp add: dist-concat-def)
lemma dist-concat-right-empty [simp]:
 xs \cap \{\} = \{\}
 by (simp add: dist-concat-def)
lemma dist-concat-insert [simp]:
insert l \ ls1 \cap ls2 = ((@) \ l \cdot (\ ls2)) \cup (ls1 \cap \ ls2)
 by (auto simp add: dist-concat-def)
2.6
       List Domain and Range
abbreviation seq-dom :: 'a list \Rightarrow nat set (dom_l) where
seq-dom xs \equiv \{0.. < length xs\}
abbreviation seq-ran :: 'a list \Rightarrow 'a set (ran_l) where
seq-ran xs \equiv set xs
```

2.7 Extracting List Elements

```
definition seg-extract :: nat set \Rightarrow 'a list \Rightarrow 'a list (infix 1, 80) where
seg\text{-}extract\ A\ xs=nths\ xs\ A
lemma seq-extract-Nil [simp]: A \upharpoonright_l [] = []
 by (simp add: seq-extract-def)
lemma seq-extract-Cons:
 A \upharpoonright_l (x \# xs) = (if \ 0 \in A \ then \ [x] \ else \ []) @ \{j. \ Suc \ j \in A\} \upharpoonright_l xs
 by (simp add: seq-extract-def nths-Cons)
lemma seq-extract-empty [simp]: \{\} \mid_l xs = []
 by (simp add: seq-extract-def)
lemma seq-extract-ident [simp]: \{0...< length \ xs\} \mid_l xs = xs
  unfolding list-eq-iff-nth-eq
 by (auto simp add: seq-extract-def length-nths atLeast0LessThan)
lemma seq-extract-split:
 assumes i \leq length xs
 shows \{0..< i\} \mid_l xs @ \{i..< length xs\} \mid_l xs = xs
using assms
proof (induct xs arbitrary: i)
 case Nil thus ?case by (simp add: seq-extract-def)
 case (Cons \ x \ xs) note hyp = this
 have \{j. \ Suc \ j < i\} = \{0..< i-1\}
 moreover have \{j. i \leq Suc \ j \land j < length \ xs\} = \{i - 1.. < length \ xs\}
   by (auto)
 ultimately show ?case
   using hyp by (force simp add: seq-extract-def nths-Cons)
qed
lemma seq-extract-append:
 A \upharpoonright_l (xs @ ys) = (A \upharpoonright_l xs) @ (\{j. j + length xs \in A\} \upharpoonright_l ys)
 by (simp add: seq-extract-def nths-append)
lemma seq-extract-range: A \upharpoonright_l xs = (A \cap dom_l(xs)) \upharpoonright_l xs
 apply (auto simp add: seq-extract-def nths-def)
 apply (metis (no-types, lifting) at Least Less Than-iff filter-cong in-set-zip nth-mem set-upt)
done
lemma seq-extract-out-of-range:
 A \cap dom_l(xs) = \{\} \Longrightarrow A \upharpoonright_l xs = []
 by (metis seq-extract-def seq-extract-range nths-empty)
lemma seq-extract-length [simp]:
 length (A \upharpoonright_l xs) = card (A \cap dom_l(xs))
proof -
 have \{i.\ i < length(xs) \land i \in A\} = (A \cap \{0..< length(xs)\})
   by (auto)
 thus ?thesis
   by (simp add: seq-extract-def length-nths)
qed
```

```
\mathbf{lemma}\ seq\text{-}extract\text{-}Cons\text{-}atLeastLessThan\text{:}
 assumes m < n
 shows \{m..< n\} \mid_l (x \# xs) = (if (m = 0) then x \# (\{0..< n-1\} \mid_l xs) else \{m-1..< n-1\} \mid_l xs)
proof -
 have \{j. \ Suc \ j < n\} = \{0... < n - Suc \ 0\}
   by (auto)
 moreover have \{j. \ m \leq Suc \ j \wedge Suc \ j < n\} = \{m - Suc \ 0... < n - Suc \ 0\}
   by (auto)
 ultimately show ?thesis using assms
   by (auto simp add: seq-extract-Cons)
qed
lemma seq-extract-singleton:
 assumes i < length xs
 shows \{i\} \mid_l xs = [xs ! i]
 using assms
 apply (induct xs arbitrary: i)
 apply (auto simp add: seq-extract-Cons)
 apply (rename-tac \ xs \ i)
 apply (subgoal-tac \{j. Suc \ j = i\} = \{i - 1\})
 apply (auto)
done
lemma seq-extract-as-map:
 assumes m < n \ n \le length \ xs
 shows \{m..< n\} \mid_{l} xs = map (nth xs) [m..< n]
using assms proof (induct xs arbitrary: m n)
 case Nil thus ?case by simp
next
 case (Cons \ x \ xs)
 have [m.. < n] = m \# [m+1.. < n]
   using Cons.prems(1) upt-eq-Cons-conv by blast
 moreover have map (nth (x \# xs)) [Suc \ m.. < n] = map (nth \ xs) [m.. < n-1]
   by (simp add: map-nth-Cons-atLeastLessThan)
 ultimately show ?case
   using Cons upt-rec
   by (auto simp add: seq-extract-Cons-atLeastLessThan)
qed
lemma seq-append-as-extract:
 xs = ys @ zs \longleftrightarrow (\exists i \leq length(xs), ys = \{0... < i\} \mid_l xs \land zs = \{i... < length(xs)\} \mid_l xs)
proof
 assume xs: xs = ys @ zs
 moreover have ys = \{0..< length \ ys\} \uparrow_l (ys @ zs)
   by (simp add: seq-extract-append)
 moreover have zs = \{length \ ys... < length \ ys + length \ zs\} \mid_l (ys @ zs)
 proof -
   have \{length\ ys..< length\ ys + length\ zs\} \cap \{0..< length\ ys\} = \{\}
   moreover have s1: \{j. \ j < length \ zs\} = \{0..< length \ zs\}
     by auto
   ultimately show ?thesis
     by (simp add: seq-extract-append seq-extract-out-of-range)
```

```
qed
  ultimately show (\exists i \leq length(xs). ys = \{0... < l\} \mid_l xs \land zs = \{i... < length(xs)\} \mid_l xs)
    by (rule-tac x=length ys in exI, auto)
next
  assume \exists i \leq length \ xs. \ ys = \{0... < i\} \mid_l xs \land zs = \{i... < length \ xs\} \mid_l xs
  thus xs = ys @ zs
    by (auto simp add: seq-extract-split)
\mathbf{qed}
```

Filtering a list according to a set 2.8

```
definition seq-filter :: 'a list \Rightarrow 'a set \Rightarrow 'a list (infix \restriction_l 80) where
seq-filter xs \ A = filter \ (\lambda \ x. \ x \in A) \ xs
lemma seq-filter-Cons-in [simp]:
  x \in cs \Longrightarrow (x \# xs) \upharpoonright_l cs = x \# (xs \upharpoonright_l cs)
  by (simp add: seq-filter-def)
lemma seq-filter-Cons-out [simp]:
  x \notin cs \Longrightarrow (x \# xs) \upharpoonright_{l} cs = (xs \upharpoonright_{l} cs)
  by (simp add: seq-filter-def)
lemma seq-filter-Nil [simp]: [] \upharpoonright_l A = []
  by (simp add: seq-filter-def)
lemma seq-filter-empty [simp]: xs \upharpoonright_l \{\} = []
  by (simp add: seq-filter-def)
lemma seq-filter-append: (xs @ ys) \upharpoonright_{l} A = (xs \upharpoonright_{l} A) @ (ys \upharpoonright_{l} A)
  by (simp add: seq-filter-def)
lemma seq-filter-UNIV [simp]: xs \upharpoonright_l UNIV = xs
  by (simp add: seq-filter-def)
lemma seq-filter-twice [simp]: (xs \upharpoonright_l A) \upharpoonright_l B = xs \upharpoonright_l (A \cap B)
  by (simp add: seq-filter-def)
```

2.9 Minus on lists

```
instantiation list :: (type) minus
begin
```

We define list minus so that if the second list is not a prefix of the first, then an arbitrary list longer than the combined length is produced. Thus we can always determined from the output whether the minus is defined or not.

```
definition xs - ys = (if (prefix ys xs) then drop (length ys) xs else [])
instance ..
end
lemma minus-cancel [simp]: xs - xs = []
 by (simp add: minus-list-def)
lemma append-minus [simp]: (xs @ ys) - xs = ys
 by (simp add: minus-list-def)
```

```
lemma minus-right-nil [simp]: xs - [] = xs
 by (simp add: minus-list-def)
lemma list-concat-minus-list-concat: (s @ t) - (s @ z) = t - z
 by (simp add: minus-list-def)
lemma length-minus-list: y \le x \Longrightarrow length(x - y) = length(x) - length(y)
 by (simp add: less-eq-list-def minus-list-def)
lemma map-list-minus:
 xs \le ys \Longrightarrow map \ f \ (ys - xs) = map \ f \ ys - map \ f \ xs
 by (simp add: drop-map less-eq-list-def map-mono-prefix minus-list-def)
lemma list-minus-first-tl [simp]:
 [x] \leq xs \Longrightarrow (xs - [x]) = tl \ xs
 by (metis Prefix-Order.prefixE append.left-neutral append-minus list.sel(3) not-Cons-self2 tl-append2)
Extra lemmas about prefix and strict\text{-}prefix
lemma prefix-concat-minus:
 assumes prefix xs ys
 \mathbf{shows}\ \mathit{xs}\ @\ (\mathit{ys}\ -\ \mathit{xs}) = \mathit{ys}
 using assms by (metis minus-list-def prefix-drop)
lemma prefix-minus-concat:
 assumes prefix s t
 shows (t - s) @ z = (t @ z) - s
 using assms by (simp add: Sublist.prefix-length-le minus-list-def)
lemma strict-prefix-minus-not-empty:
  assumes strict-prefix xs ys
 shows ys - xs \neq []
 using assms by (metis append-Nil2 prefix-concat-minus strict-prefix-def)
lemma strict-prefix-diff-minus:
 assumes prefix xs \ ys and xs \neq ys
 shows (ys - xs) \neq []
 using assms by (simp add: strict-prefix-minus-not-empty)
lemma length-tl-list-minus-butlast-qt-zero:
 assumes length s < length\ t and strict-prefix (butlast s) t and length\ s > 0
 shows length (tl (t - (butlast s))) > 0
 using assms
 by (metis Nitpick.size-list-simp(2) butlast-snoc hd-Cons-tl length-butlast length-greater-0-conv length-tl
less-trans\ nat-neq-iff\ strict-prefix-minus-not-empty\ prefix-order\ .dual-order\ .strict-implies-order\ prefix-concat-minus)
lemma list-minus-butlast-eq-butlast-list:
 assumes length t = length \ s and strict-prefix (butlast s) t
 \mathbf{shows} \ t - (butlast \ s) = [last \ t]
 using assms
 by (metis append-butlast-last-id append-eq-append-conv butlast.simps(1) length-butlast less-numeral-extra(3)
list.size(3) prefix-order.dual-order.strict-implies-order prefix-concat-minus prefix-length-less)
\mathbf{lemma}\ \textit{butlast-strict-prefix-length-lt-imp-last-tl-minus-butlast-eq-last:}
 assumes length s > 0 strict-prefix (butlast s) t length s < length t
```

```
shows last (tl (t - (butlast s))) = (last t)
  using assms by (metis last-append last-tl length-tl-list-minus-butlast-gt-zero less-numeral-extra(3)
list.size(3) append-minus strict-prefix-eq-exists)
lemma tl-list-minus-butlast-not-empty:
 assumes strict-prefix (butlast s) t and length s > 0 and length t > length s
 shows tl (t - (butlast s)) \neq []
 \mathbf{using} \ assms \ length-tl-list-minus-butlast-gt-zero \ \mathbf{by} \ fastforce
lemma tl-list-minus-butlast-empty:
 assumes strict-prefix (butlast s) t and length s > 0 and length t = length s
 shows tl (t - (butlast s)) = []
 using assms by (simp add: list-minus-butlast-eq-butlast-list)
lemma concat-minus-list-concat-butlast-eq-list-minus-butlast:
 assumes prefix (butlast u) s
 shows (t @ s) - (t @ (butlast u)) = s - (butlast u)
 using assms by (metis append-assoc prefix-concat-minus append-minus)
lemma tl-list-minus-butlast-eq-empty:
 assumes strict-prefix (butlast\ s) t and length\ s = length\ t
 shows tl (t - (butlast s)) = []
 using assms by (metis\ list.sel(3)\ list-minus-butlast-eq-butlast-list)
lemma prefix-length-tl-minus:
 assumes strict-prefix s t
 shows length (tl\ (t-s)) = (length\ (t-s)) - 1
 by (auto)
lemma length-list-minus:
 assumes strict-prefix s t
 shows length(t - s) = length(t) - length(s)
 using assms by (simp add: minus-list-def prefix-order.dual-order.strict-implies-order)
2.10
        Laws on take, drop, and nths
lemma take-prefix: m \le n \Longrightarrow take \ m \ xs \le take \ n \ xs
 by (metis Prefix-Order.prefixI append-take-drop-id min-absorb2 take-append take-take)
lemma nths-atLeastAtMost-0-take: nths xs \{0..m\} = take (Suc m) xs
 by (metis atLeast0AtMost lessThan-Suc-atMost nths-upt-eq-take)
lemma nths-atLeastLessThan-0-take: nths xs \{0...< m\} = take m xs
 by (simp add: atLeast0LessThan)
lemma nths-atLeastAtMost-prefix: <math>m \le n \implies nths \ xs \ \{0..m\} \le nths \ xs \ \{0..n\}
 by (simp add: nths-atLeastAtMost-0-take take-prefix)
lemma sorted-nths-atLeastAtMost-0: [m \le n; sorted (nths xs \{0..n\})] \implies sorted (nths xs \{0..n\})
 using nths-atLeastAtMost-prefix sorted-prefix by blast
lemma sorted-nths-atLeastLessThan-0: [m \le n; sorted (nths xs \{0... < n\})] \implies sorted (nths xs \{0... < n\})
 by (metis atLeast0LessThan nths-upt-eq-take sorted-prefix take-prefix)
lemma list-augment-as-update:
```

```
k < length \ xs \Longrightarrow list-augment \ xs \ k \ x = list-update \ xs \ k \ x
 \mathbf{by}\ (\textit{metis list-augment-def list-augment-idem list-update-overwrite})
lemma nths-list-update-out: k \notin A \Longrightarrow nths (list-update xs k x) A = nths xs A
  apply (induct xs arbitrary: k x A)
  apply (auto)
 apply (rename-tac \ a \ xs \ k \ x \ A)
  apply (case-tac \ k)
  apply (auto simp add: nths-Cons)
 done
lemma nths-list-augment-out: [k < length \ xs; \ k \notin A] \implies nths \ (list-augment \ xs \ k \ x) \ A = nths \ xs \ A
  by (simp add: list-augment-as-update nths-list-update-out)
lemma nths-single: n < length xs \implies nths xs \{n\} = [xs ! n]
proof (induct xs arbitrary: n)
  case Nil
  then show ?case by (simp)
next
  case (Cons a xs)
 have \bigwedge n. n > 0 \Longrightarrow \{j. \ Suc \ j = n\} = \{n-1\} by auto
  with Cons show ?case by (auto simp add: nths-Cons)
qed
\mathbf{lemma}\ nths-uptoLessThan:
  \llbracket m \leq n; n < length \ xs \ \rrbracket \Longrightarrow nths \ xs \ \{m..n\} = xs \ ! \ m \ \# \ nths \ xs \ \{Suc \ m..n\}
proof (induct xs arbitrary: m n)
case Nil
  then show ?case by (simp)
next
  case (Cons a xs)
 \mathbf{have}\ \widehat{l1}: \bigwedge\ m\ \widehat{n.}\ \mathbb{I}\ 0 < m;\ m \leq n\ \mathbb{I} \Longrightarrow \{j.\ m \leq Suc\ j \wedge Suc\ j \leq n\} = \{m-1..n-1\}
 \mathbf{have} \ \ l2: \bigwedge \ m \ n. \ \llbracket \ \theta < m; \ m \leq n \ \rrbracket \Longrightarrow \{j. \ m \leq j \ \land \ Suc \ j \leq n\} = \{m..n-1\}
    by (auto)
  from Cons show ?case by (auto simp add: nths-Cons l1 l2)
qed
lemma nths-upt-nth: [j < i; i < length xs] \implies (nths xs \{0..< i\}) ! j = xs ! j
 \mathbf{by}\ (\mathit{metis}\ \mathit{lessThan-atLeast0}\ \mathit{nth-take}\ \mathit{nths-upt-eq-take})
lemma nths-upt-length: [m \le n; n \le length \ xs] \implies length \ (nths \ xs \ \{m.. < n\}) = n-m
  by (metis at Least Less Than-empty diff-is-0-eq length-map length-upt list.size(3) not-less nths-empty
seq-extract-as-map seq-extract-def)
lemma nths-upt-le-length:
  \llbracket m \leq n; Suc \ n \leq length \ xs \ \rrbracket \Longrightarrow length \ (nths \ xs \ \{m..n\}) = Suc \ n - m
  by (metis atLeastLessThanSuc-atLeastAtMost le-SucI nths-upt-length)
lemma sl1: n > 0 \Longrightarrow \{j. Suc j \le n\} = \{0..n-1\}
  by (auto)
lemma sl2: [0 < m; m \le n] \Longrightarrow \{j. m \le Suc j \land Suc j \le n\} = \{m-1..n-1\}
 by auto
```

```
lemma nths-upt-le-nth: [m \le n; Suc \ n \le length \ xs; i < Suc \ n - m]
 \implies (nths \ xs \ \{m..n\}) ! i = xs ! (i + m)
proof (induct xs arbitrary: m n i)
 case Nil
 then show ?case by (simp)
next
 case (Cons a xs)
 then show ?case
 proof (cases i = 0)
   case True
   with Cons show ?thesis by (auto simp add: nths-Cons sl2)
 \mathbf{next}
   case False
   with Cons show ?thesis by (auto simp add: nths-Cons sl1 sl2)
 qed
qed
lemma nths-upt-le-append-split:
 [j \le i; i < length \ xs] \implies nths \ xs \{0... < j\} @ nths \ xs \{j...i\} = nths \ xs \{0...i\}
  by (auto simp add: list-eq-iff-nth-eq nths-upt-length nths-upt-le-length nths-upt-le-nth nths-upt-nth
nth-append)
2.11
        List power
overloading
 listpow \equiv compow :: nat \Rightarrow 'a \ list \Rightarrow 'a \ list
begin
fun listpow :: nat \Rightarrow 'a \ list \Rightarrow 'a \ list where
 listpow \ 0 \ xs = []
| listpow (Suc n) xs = xs @ listpow n xs
end
lemma listpow-Nil [simp]: [] ^ n = []
 by (induct \ n) \ simp-all
lemma listpow-Suc-right: xs ^^ Suc n = xs ^^ n @ xs
 by (induct \ n) \ simp-all
lemma listpow-add: xs ^ (m + n) = xs ^ m @ xs ^ n
 by (induct \ m) \ simp-all
end
3
     Infinite Sequences
theory Sequence
imports
```

```
theory Sequence
imports
HOL.Real
List-Extra
HOL-Library.Sublist
HOL-Library.Nat-Bijection
begin
```

```
typedef 'a seq = UNIV :: (nat \Rightarrow 'a) set
 by (auto)
setup-lifting type-definition-seq
definition ssubstr :: nat \Rightarrow nat \Rightarrow 'a seq \Rightarrow 'a list where
ssubstr\ i\ j\ xs = map\ (Rep-seq\ xs)\ [i\ ..< j]
lift-definition nth\text{-}seq :: 'a \ seq \Rightarrow nat \Rightarrow 'a \ (infixl !_s \ 100)
is \lambda f i. f i.
abbreviation sinit :: nat \Rightarrow 'a \ seq \Rightarrow 'a \ list \ \mathbf{where}
sinit i xs \equiv ssubstr 0 i xs
lemma sinit-len [simp]:
 length (sinit i xs) = i
 by (simp add: ssubstr-def)
lemma sinit-\theta [simp]: sinit \theta xs = []
 by (simp add: ssubstr-def)
lemma prefix-upt-\theta [intro]:
 i \leq j \implies prefix [0..< i] [0..< j]
 by (induct i, auto, metis append-prefixD le0 prefix-order.lift-Suc-mono-le prefix-order.order.order.refl upt-Suc)
lemma sinit-prefix:
 i \leq j \Longrightarrow prefix (sinit i xs) (sinit j xs)
 by (simp add: map-mono-prefix prefix-upt-0 ssubstr-def)
lemma sinit-strict-prefix:
 i < j \Longrightarrow strict\text{-prefix (sinit i xs) (sinit j xs)}
 by (metis sinit-len sinit-prefix le-less nat-neq-iff prefix-order.dual-order.strict-iff-order)
lemma nth-sinit:
 i < n \Longrightarrow sinit \ n \ xs \ ! \ i = xs \ !_s \ i
 apply (auto simp add: ssubstr-def)
 apply (transfer, auto)
 done
lemma sinit-append-split:
 assumes i < j
 shows sinit j xs = sinit i xs @ ssubstr i j xs
proof -
 have [0..< i] @ [i..< j] = [0..< j]
   by (metis assms le0 le-add-diff-inverse le-less upt-add-eq-append)
 thus ?thesis
   by (auto simp add: ssubstr-def, transfer, simp add: map-append[THEN sym])
qed
lemma sinit-linear-asym-lemma1:
 assumes asym R i < j (sinit i xs, sinit i ys) \in lexord R (sinit j ys, sinit j xs) \in lexord R
 shows False
proof -
 have sinit-xs: sinit j xs = sinit i xs @ ssubstr i j xs
```

```
by (metis\ assms(2)\ sinit-append-split)
 have sinit-ys: sinit j ys = sinit i ys @ ssubstr i j ys
   by (metis assms(2) sinit-append-split)
 from sinit-xs sinit-ys assms(4)
  have (sinit i ys, sinit i xs) \in lexord R \vee (sinit i ys = sinit i xs \wedge (ssubstr i j ys, ssubstr i j xs) \in
lexord R)
   by (auto dest: lexord-append)
 with assms lexord-asymmetric show False
   by (force)
qed
lemma sinit-linear-asym-lemma2:
 assumes asym R (sinit i xs, sinit i ys) \in lexord R (sinit j ys, sinit j xs) \in lexord R
 shows False
proof (cases i j rule: linorder-cases)
 case less with assms show ?thesis
   by (auto dest: sinit-linear-asym-lemma1)
 case equal with assms show ?thesis
   by (simp add: lexord-asymmetric)
next
 case greater with assms show ?thesis
   by (auto dest: sinit-linear-asym-lemma1)
qed
lemma range-ext:
 assumes \forall i :: nat. \ \forall x \in \{0... < i\}. \ f(x) = g(x)
 shows f = g
proof (rule ext)
 \mathbf{fix} \ x :: nat
 obtain i :: nat where i > x
   by (metis\ lessI)
 with assms show f(x) = g(x)
   by (auto)
qed
lemma sinit-ext:
 (\forall i. \ sinit \ i \ xs = sinit \ i \ ys) \Longrightarrow xs = ys
 by (simp add: ssubstr-def, transfer, auto intro: range-ext)
definition seq-lexord :: 'a rel \Rightarrow ('a seq) rel where
seq-lexord R = \{(xs, ys). (\exists i. (sinit i xs, sinit i ys) \in lexord R)\}
lemma seq-lexord-irreflexive:
 \forall x. (x, x) \notin R \Longrightarrow (xs, xs) \notin seq\text{-lexord } R
 by (auto dest: lexord-irreflexive simp add: irrefl-def seq-lexord-def)
lemma seq-lexord-irrefl:
 irrefl R \Longrightarrow irrefl (seg-lexord R)
 by (simp add: irrefl-def seq-lexord-irreflexive)
lemma seq-lexord-transitive:
 assumes trans R
 shows trans (seq-lexord R)
unfolding seq-lexord-def
```

```
proof (rule transI, clarify)
 fix xs \ ys \ zs :: 'a \ seq \ and \ m \ n :: nat
 assume las: (sinit \ m \ xs, \ sinit \ m \ ys) \in lexord \ R \ (sinit \ n \ ys, \ sinit \ n \ zs) \in lexord \ R
 hence inz: m > 0
   using gr\theta I by force
  from las(1) obtain i where sinitm: (sinit\ m\ xs!i,\ sinit\ m\ ys!i) \in R\ i < m\ \forall\ j < i.\ sinit\ m\ xs!j =
sinit m ys!j
   using lexord-eq-length by force
 from las(2) obtain j where sinitn: (sinit\ n\ ys!j,\ sinit\ n\ zs!j) \in R\ j < n\ \forall\ k < j.\ sinit\ n\ ys!k = sinit
n zs!k
   using lexord-eq-length by force
 show \exists i. (sinit i xs, sinit i zs) \in lexord R
 proof (cases \ i \leq j)
   case True note lt = this
   with sinitm sinitn have (sinit n xs!i, sinit n zs!i) \in R
     by (metis assms le-eq-less-or-eq le-less-trans nth-sinit transD)
   moreover from lt sinitm sinith have \forall j < i. sinit m xs!j = sinit m zs!j
     by (metis less-le-trans less-trans nth-sinit)
   ultimately have (sinit n xs, sinit n zs) \in lexord R using sinitm(2) sinitn(2) lt
     apply (rule-tac lexord-intro-elems)
       apply (auto)
     apply (metis less-le-trans less-trans nth-sinit)
     done
   thus ?thesis by auto
 next
   case False
   then have ge: i > j by auto
   with assms sinitm sinitn have (sinit n xs!j, sinit n zs!j) \in R
     by (metis less-trans nth-sinit)
   moreover from ge sinitm sinith have \forall k < j. sinit m xs!k = sinit m zs!k
     by (metis dual-order.strict-trans nth-sinit)
   ultimately have (sinit n xs, sinit n zs) \in lexord R using sinitm(2) sinitn(2) ge
     apply (rule-tac lexord-intro-elems)
       apply (auto)
     apply (metis less-trans nth-sinit)
     done
   thus ?thesis by auto
 qed
qed
lemma seq-lexord-trans:
  \llbracket (xs, ys) \in seq\text{-lexord } R; (ys, zs) \in seq\text{-lexord } R; trans R \rrbracket \Longrightarrow (xs, zs) \in seq\text{-lexord } R
 by (meson\ seq\ lexord\ transitive\ transE)
lemma seq-lexord-antisym:
  \llbracket asym\ R;\ (a,\ b)\in seq\ lexord\ R\ \rrbracket \Longrightarrow (b,\ a)\notin seq\ lexord\ R
 by (auto dest: sinit-linear-asym-lemma2 simp add: seq-lexord-def)
lemma seq-lexord-asym:
 assumes asym R
 shows asym (seq-lexord R)
 by (meson assms asym.simps seq-lexord-antisym seq-lexord-irreft)
lemma seq-lexord-total:
 assumes total R
```

```
shows total (seq-lexord R)
 using assms by (auto simp add: total-on-def seq-lexord-def, meson lexord-linear sinit-ext)
{f lemma} seq-lexord-strict-linear-order:
 assumes strict-linear-order R
 shows strict-linear-order (seq-lexord R)
 using assms
 by (auto simp add: strict-linear-order-on-def partial-order-on-def preorder-on-def
          intro:\ seq\text{-}lexord\text{-}transitive\ seq\text{-}lexord\text{-}irrefl\ seq\text{-}lexord\text{-}total)
lemma seq-lexord-linear:
 assumes (\forall a \ b. \ (a,b) \in R \lor a = b \lor (b,a) \in R)
 shows (x,y) \in seq\text{-lexord } R \lor x = y \lor (y,x) \in seq\text{-lexord } R
proof -
 have total R
   using assms total-on-def by blast
 hence total (seq-lexord R)
   using seq-lexord-total by blast
 thus ?thesis
   by (auto simp add: total-on-def)
qed
instantiation seq :: (ord) ord
begin
definition less-seq :: 'a seq \Rightarrow 'a seq \Rightarrow bool where
less-seq xs \ ys \longleftrightarrow (xs, \ ys) \in seq\text{-lexord} \{(xs, \ ys). \ xs < ys\}
definition less-eq-seq :: 'a seq \Rightarrow 'a seq \Rightarrow bool where
less-eq-seq xs ys = (xs = ys \lor xs < ys)
instance \dots
end
instance seq :: (order) order
 fix xs :: 'a seq
 show xs \le xs by (simp \ add: \ less-eq-seq-def)
next
 \mathbf{fix} \ xs \ ys \ zs :: 'a \ seq
 assume xs \leq ys and ys \leq zs
 then show xs \leq zs
   by (force dest: seq-lexord-trans simp add: less-eq-seq-def less-seq-def trans-def)
next
 \mathbf{fix} \ xs \ ys :: 'a \ seq
 assume xs \leq ys and ys \leq xs
 then show xs = ys
   apply (auto simp add: less-eq-seq-def less-seq-def)
   apply (rule seq-lexord-irreflexive [THEN notE])
    defer
    apply (rule seq-lexord-trans)
      apply (auto intro: transI)
   done
next
```

```
\mathbf{fix} \ xs \ ys :: 'a \ seq
     show xs < ys \longleftrightarrow xs \le ys \land \neg ys \le xs
         apply (auto simp add: less-seq-def less-eq-seq-def)
           defer
            apply (rule seq-lexord-irreflexive [THEN notE])
             apply auto
            apply (rule seq-lexord-irreflexive [THEN notE])
             defer
              apply (rule seq-lexord-trans)
                  apply (auto intro: transI)
         apply (simp add: seq-lexord-irreflexive)
         done
qed
instance seq :: (linorder) linorder
proof
    \mathbf{fix} \ xs \ ys :: 'a \ seq
    have (xs, ys) \in seq\text{-lexord } \{(u, v). \ u < v\} \lor xs = ys \lor (ys, xs) \in seq\text{-lexord } \{(u, v). \ u < v\}
         by (rule seq-lexord-linear) auto
     then show xs \leq ys \vee ys \leq xs
         by (auto simp add: less-eq-seq-def less-seq-def)
qed
lemma seq-lexord-mono [mono]:
    (\bigwedge x\ y.\ f\ x\ y \longrightarrow g\ x\ y) \Longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ f\ x\ y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \in \textit{seq-lexord}\ \{(x,\ y).\ g\ x y\} \longrightarrow (xs,\ ys) \mapsto (xs,\ ys
    apply (auto simp add: seq-lexord-def)
    apply (metis case-prodD case-prodI lexord-take-index-conv mem-Collect-eq)
done
fun insort-rel :: 'a rel \Rightarrow 'a list \Rightarrow 'a list where
\mathit{insort\text{-}rel}\ R\ x\ [] = [x]\ |
insort-rel R x (y \# ys) = (if (x = y \lor (x,y) \in R) then x \# y \# ys else y \# insort-rel R x ys)
inductive sorted-rel :: 'a rel \Rightarrow 'a list \Rightarrow bool where
Nil-rel [iff]: sorted-rel R [] |
Cons-rel: \forall y \in set \ xs. \ (x = y \lor (x, y) \in R) \Longrightarrow sorted-rel \ R \ xs \Longrightarrow sorted-rel \ R \ (x \# xs)
definition list-of-set :: 'a rel \Rightarrow 'a set \Rightarrow 'a list where
list-of-set R = folding.F (insort-rel R)
lift-definition seq-inj :: 'a seq seq \Rightarrow 'a seq is
\lambda \ f \ i. \ f \ (fst \ (prod-decode \ i)) \ (snd \ (prod-decode \ i)).
lift-definition seq-proj :: 'a seq \Rightarrow 'a seq seq is
\lambda \ f \ i \ j. \ f \ (prod\text{-}encode \ (i, j)).
lemma seq-inj-inverse: seq-proj (seq-inj x) = x
    by (transfer, simp)
lemma seq-proj-inverse: seq-inj (seq-proj x) = x
     by (transfer, simp)
lemma seq-inj: inj seq-inj
     by (metis injI seq-inj-inverse)
```

```
lemma seq-inj-surj: bij seq-inj
apply (rule bijI)
apply (auto simp add: seq-inj)
apply (metis rangeI seq-proj-inverse)
done
end
```

4 Finite Sets: extra functions and properties

```
theory FSet-Extra
imports
 HOL-Library.FSet
  HOL-Library. Countable-Set-Type
begin
\mathbf{setup\text{-}lifting}\ type\text{-}definition\text{-}fset
notation fempty (\{\})
notation fset (\langle - \rangle_f)
notation fminus (infixl -f 65)
syntax
  -FinFset :: args => 'a fset (\{(-)\})
translations
  \{\!\!\{x,\,xs\}\!\!\} == \mathit{CONST} \mathit{finsert} \ x \ \{\!\!\{xs\}\!\!\}
  \{x\} == CONST \text{ finsert } x \{\}
term fBall
syntax
 -fBall :: pttrn => 'a fset => bool => bool ((3\forall -|\in|-./-) [0, 0, 10] 10)
 -fBex :: pttrn => 'a fset => bool => bool ((3\exists -|\in|-./-) [0, 0, 10] 10)
translations
 \forall x \in A. P = CONST fBall A (\%x. P)
 \exists x \in A. P = CONST fBex A (\%x. P)
definition FUnion :: 'a fset fset \Rightarrow 'a fset (\bigcup_{f}- [90] 90) where
FUnion xs = Abs\text{-}fset (\bigcup x \in \langle xs \rangle_f, \langle x \rangle_f)
definition FInter :: 'a fset fset \Rightarrow 'a fset (\bigcap_{f}- [90] 90) where
FInter xs = Abs\text{-}fset \ (\bigcap x \in \langle xs \rangle_f, \langle x \rangle_f)
Finite power set
definition FinPow :: 'a fset \Rightarrow 'a fset fset where
FinPow \ xs = Abs\text{-}fset \ (Abs\text{-}fset \ `Pow \ \langle xs \rangle_f)
Set of all finite subsets of a set
definition Fow :: 'a set \Rightarrow 'a fset set where
Fow A = \{x. \langle x \rangle_f \subseteq A\}
declare Abs-fset-inverse [simp]
```

```
lemma fset-intro:
  fset \ x = fset \ y \Longrightarrow x = y
  by (simp add:fset-inject)
lemma fset-elim:
  \llbracket x = y; fset \ x = fset \ y \Longrightarrow P \ \rrbracket \Longrightarrow P
  by (auto)
lemma fmember-intro:
  \llbracket x \in fset(xs) \rrbracket \Longrightarrow x \in xs
  by (metis fmember.rep-eq)
lemma fmember-elim:
  \llbracket x \mid \in \mid xs; x \in fset(xs) \Longrightarrow P \rrbracket \Longrightarrow P
  by (metis fmember.rep-eq)
lemma fnmember-intro [intro]:
  \llbracket x \notin fset(xs) \rrbracket \Longrightarrow x \mid \notin \rrbracket xs
  by (metis fmember.rep-eq)
lemma fnmember-elim [elim]:
  \llbracket x \mid \notin \mid xs; x \notin fset(xs) \Longrightarrow P \rrbracket \Longrightarrow P
  by (metis fmember.rep-eq)
lemma fsubset-intro [intro]:
  \langle xs \rangle_f \subseteq \langle ys \rangle_f \Longrightarrow xs \mid \subseteq \mid ys
  by (metis less-eq-fset.rep-eq)
lemma fsubset-elim [elim]:
  \llbracket xs \mid \subseteq \mid ys; \langle xs \rangle_f \subseteq \langle ys \rangle_f \Longrightarrow P \rrbracket \Longrightarrow P
  by (metis less-eq-fset.rep-eq)
lemma fBall-intro [intro]:
  Ball \langle A \rangle_f P \Longrightarrow fBall A P
  by (metis (poly-guards-query) fBallI fmember.rep-eq)
lemma fBall-elim [elim]:
  \llbracket \ fBall \ A \ P; \ Ball \ \langle A \rangle_f \ P \implies Q \ \rrbracket \implies Q
  by (metis fBallE fmember.rep-eq)
lift-definition finset :: 'a list \Rightarrow 'a fset is set ..
context linorder
begin
lemma sorted-list-of-set-inj:
  \llbracket \text{ finite } xs; \text{ finite } ys; \text{ sorted-list-of-set } xs = \text{ sorted-list-of-set } ys \rrbracket
   \implies xs = ys
  apply (simp add:sorted-list-of-set-def)
  apply (induct xs rule:finite-induct)
   apply (induct ys rule:finite-induct)
    apply (simp-all)
  apply (metis finite.insertI insert-not-empty sorted-list-of-set-def sorted-list-of-set-empty sorted-list-of-set-eq-Nil-iff)
 apply (metis finite.insertI finite-list set-remdups set-sort sorted-list-of-set-def sorted-list-of-set-sort-remdups)
```

done

```
definition flist :: 'a fset \Rightarrow 'a list where
flist xs = sorted-list-of-set (fset xs)
lemma flist-inj: inj flist
 apply (simp add:flist-def inj-on-def)
 apply (clarify)
 apply (rename-tac \ x \ y)
 apply (subgoal-tac fset x = fset y)
  apply (simp add:fset-inject)
 apply (rule sorted-list-of-set-inj, simp-all)
 done
lemma flist-props [simp]:
 sorted (flist xs)
 distinct (flist xs)
 by (simp-all add:flist-def)
lemma flist-empty [simp]:
 flist \{ \} = []
 by (simp add:flist-def)
lemma flist-inv [simp]: finset (flist xs) = xs
 by (simp add:finset-def flist-def fset-inverse)
lemma flist-set [simp]: set (flist xs) = fset xs
 by (simp add:finset-def flist-def fset-inverse)
lemma fset-inv [simp]: \llbracket sorted xs; distinct xs \rrbracket \Longrightarrow flist (finset xs) = xs
 apply (simp add:finset-def flist-def fset-inverse)
 apply (metis local.sorted-list-of-set-sort-remdups local.sorted-sort-id remdups-id-iff-distinct)
 done
lemma fcard-flist:
 fcard xs = length (flist xs)
 apply (simp add:fcard-def)
 apply (fold flist-set)
 apply (unfold distinct-card [OF\ flist-props(2)])
 apply (rule refl)
 done
lemma flist-nth:
 i < fcard \ vs \Longrightarrow flist \ vs \ ! \ i \ | \in | \ vs
 apply (simp add: fmember-def flist-def fcard-def)
 apply (metis fcard.rep-eq fcard-flist finset.rep-eq flist-def flist-inv nth-mem)
 done
definition fmax :: 'a fset \Rightarrow 'a where
fmax \ xs = (if \ (xs = \{\}\}) \ then \ undefined \ else \ last \ (flist \ xs))
end
definition flists :: 'a fset \Rightarrow 'a list set where
flists A = \{xs. \ distinct \ xs \land finset \ xs = A\}
```

```
lemma flists-nonempty: \exists xs. xs \in flists A
 apply (simp add: flists-def)
 apply (metis Abs-fset-cases Abs-fset-inverse finite-distinct-list finite-fset finset.rep-eq)
  done
lemma flists-elem-uniq: [x \in flists A; x \in flists B] \implies A = B
 by (simp add: flists-def)
definition flist-arb :: 'a fset \Rightarrow 'a list where
flist-arb A = (SOME \ xs. \ xs \in flists \ A)
lemma flist-arb-distinct [simp]: distinct (flist-arb A)
 by (metis (mono-tags) flist-arb-def flists-def flists-nonempty mem-Collect-eq someI-ex)
lemma flist-arb-inv [simp]: finset (flist-arb\ A) = A
 by (metis (mono-tags) flist-arb-def flists-def flists-nonempty mem-Collect-eq someI-ex)
lemma flist-arb-inj:
  inj flist-arb
 by (metis flist-arb-inv injI)
lemma flist-arb-lists: flist-arb 'Fow A \subseteq lists A
  apply (auto)
  using Fow-def finset.rep-eq apply fastforce
  done
lemma countable-Fow:
 fixes A :: 'a \ set
 assumes countable A
  shows countable (Fow A)
proof -
  from assms obtain to-nat-list :: 'a list \Rightarrow nat where inj-on to-nat-list (lists A)
    by blast
  thus ?thesis
    apply (simp add: countable-def)
    apply (rule-tac x=to-nat-list \circ flist-arb in exI)
    apply (rule comp-inj-on)
    apply (metis flist-arb-inv inj-on-def)
    apply (simp add: flist-arb-lists subset-inj-on)
    done
qed
definition flub :: 'a fset set \Rightarrow 'a fset \Rightarrow 'a fset where
flub A \ t = (if \ (\forall \ a \in A. \ a \ |\subseteq| \ t) \ then \ Abs-fset \ (\bigcup x \in A. \ \langle x \rangle_f) \ else \ t)
lemma finite-Union-subsets:
  \llbracket \forall a \in A. \ a \subseteq b; finite \ b \ \rrbracket \Longrightarrow finite \ (\bigcup A)
 by (metis Sup-le-iff finite-subset)
lemma finite-UN-subsets:
  \llbracket \forall a \in A. \ B \ a \subseteq b; finite \ b \rrbracket \Longrightarrow finite \ (\bigcup a \in A. \ B \ a)
  by (metis UN-subset-iff finite-subset)
lemma flub-rep-eq:
  \langle flub \ A \ t \rangle_f = (if \ (\forall \ a \in A. \ a \ |\subseteq| \ t) \ then \ (\bigcup x \in A. \ \langle x \rangle_f) \ else \ \langle t \rangle_f)
```

```
apply (subgoal-tac (if (\forall a \in A. \ a \mid \subseteq \mid t) then (\bigcup x \in A. \ \langle x \rangle_f) else \langle t \rangle_f \in \{x. \ finite \ x\})
  apply (auto simp add:flub-def)
  apply (rule finite-UN-subsets[of - \langle t \rangle_f])
  apply (auto)
  done
definition fglb :: 'a \ fset \ set \Rightarrow 'a \ fset \Rightarrow 'a \ fset where
fglb \ A \ t = (if \ (A = \{\}) \ then \ t \ else \ Abs-fset \ (\bigcap x \in A. \ \langle x \rangle_f))
lemma fglb-rep-eq:
  \langle fglb \ A \ t \rangle_f = (if \ (A = \{\}) \ then \ \langle t \rangle_f \ else \ (\bigcap x \in A. \ \langle x \rangle_f))
  apply (subgoal-tac (if (A = \{\}) then \langle t \rangle_f else (\bigcap x \in A. \langle x \rangle_f)) \in \{x. \text{ finite } x\})
  apply (metis Abs-fset-inverse fglb-def)
  apply (auto)
  apply (metis finite-INT finite-fset)
  done
lemma FinPow-rep-eq [simp]:
  fset\ (FinPow\ xs) = \{ys.\ ys\ |\subseteq|\ xs\}
  apply (subgoal-tac finite (Abs-fset 'Pow \langle xs \rangle_f))
  apply (auto simp add: fmember-def FinPow-def)
  apply (rename-tac x' y')
  apply (subgoal-tac finite x')
    apply (auto)
  apply (metis finite-fset finite-subset)
  apply (metis (full-types) Pow-iff fset-inverse imageI less-eq-fset.rep-eq)
  done
lemma FUnion-rep-eq [simp]:
  \langle \bigcup_f xs \rangle_f = (\bigcup_f x \in \langle xs \rangle_f, \langle x \rangle_f)
  by (simp add:FUnion-def)
lemma FInter-rep-eq [simp]:
  xs \neq \{\}\} \Longrightarrow \langle \bigcap_f xs \rangle_f = (\bigcap x \in \langle xs \rangle_f, \langle x \rangle_f)
  apply (simp add:FInter-def)
  apply (subgoal-tac finite (\bigcap x \in \langle xs \rangle_f, \langle x \rangle_f))
  apply (simp)
  apply (metis (poly-quards-query) bot-fset.rep-eq fqlb-rep-eq finite-fset fset-inverse)
  done
lemma FUnion\text{-}empty [simp]:
  \bigcup_f \{\} = \{\}
  by (auto simp add:FUnion-def fmember-def)
lemma FinPow-member [simp]:
  xs \in |FinPow xs|
  by (auto simp add:fmember-def)
lemma FUnion-FinPow [simp]:
  \bigcup_f (FinPow x) = x
  by (auto simp add:fmember-def less-eq-fset-def)
lemma Fow-mem [iff]: x \in Fow \ A \longleftrightarrow \langle x \rangle_f \subseteq A
  by (auto simp add:Fow-def)
```

```
lemma Fow-UNIV [simp]: Fow UNIV = UNIV
 by (simp\ add:Fow-def)
lift-definition FMax :: ('a::linorder) fset \Rightarrow 'a \text{ is } Max \text{.}
end
      Countable Sets: Extra functions and properties
5
theory Countable-Set-Extra
imports
  HOL-Library. Countable-Set-Type
  Sequence
  FSet	ext{-}Extra
begin
5.1
        Extra syntax
notation cempty (\{\}_c)
notation cin (infix \in_c 50)
notation cUn (infixl \cup_c 65)
notation cInt (infixl \cap_c 70)
notation cDiff (infixl -c 65)
notation cUnion (\bigcup_{c}- [900] 900)
notation cimage (infixr 'c 90)
abbreviation csubseteq :: 'a cset \Rightarrow 'a cset \Rightarrow bool ((-/ \subseteq_c -) [51, 51] 50)
where A \subseteq_c B \equiv A \leq B
abbreviation csubset :: 'a cset \Rightarrow 'a cset \Rightarrow bool ((-/ \subset_c -) [51, 51] 50)
where A \subset_c B \equiv A < B
5.2
        Countable set functions
setup-lifting type-definition-cset
lift-definition cnin :: 'a \Rightarrow 'a \ cset \Rightarrow bool \ (\mathbf{infix} \notin_c 50) \ \mathbf{is} \ (\notin) \ .
definition cBall :: 'a \ cset \Rightarrow ('a \Rightarrow bool) \Rightarrow bool \ \mathbf{where}
cBall\ A\ P = (\forall x.\ x \in_c A \longrightarrow P\ x)
definition cBex :: 'a \ cset \Rightarrow ('a \Rightarrow bool) \Rightarrow bool \ \mathbf{where}
cBex\ A\ P = (\exists x.\ x \in_c A \longrightarrow P\ x)
\mathbf{declare}\ \mathit{cBall-def}\ [mono, simp]
declare cBex-def [mono,simp]
  -cBall :: pttrn => 'a \ cset => bool => bool ((3 \forall -\in_c -./ -) [0, 0, 10] \ 10)
```

 $-cBex :: pttrn => 'a \ cset => bool => bool ((3\exists -\in_c -./ -) [0, 0, 10] 10)$

translations

```
\forall x \in_{c} A. P == CONST \ cBall \ A \ (\%x. \ P)
\exists x \in_{c} A. \ P == CONST \ cBex \ A \ (\%x. \ P)
```

```
definition cset\text{-}Collect :: ('a \Rightarrow bool) \Rightarrow 'a \ cset \ \mathbf{where}
cset-Collect = (acset \ o \ Collect)
lift-definition cset-Coll :: 'a cset \Rightarrow ('a \Rightarrow bool) \Rightarrow 'a cset is \lambda A P. \{x \in A. P x\}
 by (auto)
lemma cset-Coll-equiv: cset-Coll A P = cset-Collect (\lambda x. x \in_{c} A \land P x)
 by (simp add:cset-Collect-def cset-Coll-def cin-def)
declare cset-Collect-def [simp]
syntax
  -cColl :: pttrn => bool => 'a cset ((1\{-./-\}_c))
translations
  \{x \cdot P\}_c \rightleftharpoons (CONST \ cset\text{-}Collect) \ (\lambda \ x \cdot P)
syntax (xsymbols)
  -cCollect :: pttrn => 'a \ cset => bool => 'a \ cset \ ((1\{-\in_c/-./-\}_c))
translations
  \{x \in_c A. P\}_c => CONST \ cset\text{-}Coll \ A \ (\lambda \ x. \ P)
lemma cset\text{-}CollectI: P (a :: 'a :: countable) \Longrightarrow a \in_c \{x. \ P \ x\}_c
 by (simp add: cin-def)
lemma cset-CollI: [a \in_c A; P \ a] \implies a \in_c \{x \in_c A. P \ x\}_c
 by (simp add: cin.rep-eq cset-Coll.rep-eq)
lemma cset-CollectD: (a :: 'a :: countable) \in_c \{x. \ P \ x\}_c \Longrightarrow P \ a
 by (simp add: cin-def)
lemma cset-Collect-cong: (\bigwedge x. P x = Q x) ==> \{x. P x\}_c = \{x. Q x\}_c
Avoid eta-contraction for robust pretty-printing.
print-translation (
[Syntax-Trans.preserve-binder-abs-tr']
   @\{const\text{-}syntax\ cset\text{-}Collect\}\ @\{syntax\text{-}const\ \text{-}cColl\}]
lift-definition cset\text{-}set :: 'a \ list \Rightarrow 'a \ cset \ \mathbf{is} \ set
  using countable-finite by blast
\mathbf{lemma}\ countable\textit{-}finite\textit{-}power:
  countable(A) \Longrightarrow countable \{B. B \subseteq A \land finite(B)\}\
  by (metis Collect-conj-eq Int-commute countable-Collect-finite-subset)
lift-definition cInter :: 'a cset cset \Rightarrow 'a cset (\bigcap_{c} [900] 900)
 is \lambda A. if A = \{\} then \{\} else \bigcap A
  using countable-INT [of - - id] by auto
abbreviation (input) cINTER :: 'a cset \Rightarrow ('a \Rightarrow 'b cset) \Rightarrow 'b cset
  where cINTER\ A\ f \equiv cInter\ (cimage\ f\ A)
```

lift-definition cfinite :: 'a cset \Rightarrow bool is finite.

```
lift-definition cInfinite :: 'a cset \Rightarrow bool is infinite.
lift-definition clist :: 'a::linorder cset \Rightarrow 'a list is sorted-list-of-set .
lift-definition ccard :: 'a \ cset \Rightarrow nat \ is \ card.
lift-definition cPow :: 'a \ cset \Rightarrow 'a \ cset \ cset \ is \ \lambda \ A. \ \{B.\ B \subseteq_c A \land cfinite(B)\}
proof -
  \mathbf{fix} \ A
 have \{B :: 'a \ cset. \ B \subseteq_c A \land cfinite \ B\} = acset \ `\{B :: 'a \ set. \ B \subseteq rcset \ A \land finite \ B\}
   apply (auto simp add: cfinite.rep-eq cin-def less-eq-cset-def countable-finite)
   using image-iff apply fastforce
   done
 moreover have countable \{B :: 'a \ set. \ B \subseteq rcset \ A \land finite \ B\}
   by (auto intro: countable-finite-power)
  ultimately show countable \{B.\ B \subseteq_c A \land cfinite\ B\}
   by simp
qed
definition CCollect :: ('a \Rightarrow bool \ option) \Rightarrow 'a \ cset \ option where
CCollect\ p = (if\ (None \notin range\ p)\ then\ Some\ (cset-Collect\ (the\ \circ\ p))\ else\ None)
definition cset-mapM :: 'a option cset \Rightarrow 'a cset option where
cset-mapM A = (if (None \in_{c} A) then None else Some (the 'c A))
lemma cset-mapM-Some-image [simp]:
  cset-mapM (cimage\ Some\ A) = Some\ A
  apply (auto simp add: cset-mapM-def)
 apply (metis cimage-cinsert cinsertI1 option.sel set-cinsert)
  done
definition CCollect-ext :: ('a \Rightarrow 'b \ option) \Rightarrow ('a \Rightarrow bool \ option) \Rightarrow 'b \ cset \ option where
CCollect\text{-}ext\ f\ p = do\ \{\ xs \leftarrow CCollect\ p;\ cset\text{-}mapM\ (f`_c\ xs)\ \}
lemma the-Some-image [simp]:
  the 'Some 'xs = xs
 by (auto simp add:image-iff)
lemma CCollect-ext-Some [simp]:
  CCollect-ext Some \ xs = CCollect \ xs
  apply (case-tac CCollect xs)
  apply (auto simp add: CCollect-ext-def)
  done
lift-definition list-of-cset :: 'a :: linorder cset \Rightarrow 'a list is sorted-list-of-set.
lift-definition fset-cset :: 'a fset \Rightarrow 'a cset is id
 \mathbf{using} \ \mathit{uncountable-infinite} \ \mathbf{by} \ \mathit{auto}
definition cset\text{-}count :: 'a \ cset \Rightarrow 'a \Rightarrow nat \ \mathbf{where}
cset-count A =
  (if (finite (rcset A)))
   then (SOME f::'a \Rightarrow nat. inj-on f (reset A))
   else (SOME f::'a \Rightarrow nat.\ bij\text{-betw}\ f\ (rcset\ A)\ UNIV))
lemma cset-count-inj-seq:
```

```
inj-on (cset-count A) (rcset A)
proof (cases finite (rcset A))
 case True note fin = this
 obtain count :: 'a \Rightarrow nat where count-inj: inj-on count (reset A)
   by (metis countable-def mem-Collect-eq rcset)
 with fin show ?thesis
   by (metis (poly-guards-query) cset-count-def some I-ex)
next
 case False note inf = this
 obtain count :: 'a \Rightarrow nat where count-bij: bij-betw count (reset A) UNIV
   by (metis countableE-infinite inf mem-Collect-eq rcset)
 with inf have bij-betw (cset-count A) (rcset A) UNIV
   by (metis (poly-guards-query) cset-count-def someI-ex)
 thus ?thesis
   by (metis bij-betw-imp-inj-on)
qed
lemma cset-count-infinite-bij:
 assumes infinite (reset A)
 shows bij-betw (cset-count A) (rcset A) UNIV
proof -
 from assms obtain count :: 'a \Rightarrow nat where count-bij: bij-betw count (reset A) UNIV
   by (metis countableE-infinite mem-Collect-eq rcset)
 with assms show ?thesis
   by (metis (poly-quards-query) cset-count-def some I-ex)
ged
definition cset\text{-}seq:: 'a \ cset \Rightarrow (nat \rightharpoonup 'a) where
cset-seq A i = (if (i \in range (cset-count A) \land inv-into (rcset A) (cset-count A) <math>i \in_c A)
               then Some (inv-into (reset A) (cset-count A) i)
               else None)
lemma cset-seq-ran: ran (cset-seq A) = <math>rcset(A)
 apply (auto simp add: ran-def cset-seq-def cin.rep-eq)
 {\bf apply}\ (\textit{metis cset-count-inj-seq inv-into-f-f range}I)
 done
lemma cset-seq-inj: inj cset-seq
proof (rule injI)
 fix A B :: 'a cset
 assume cset\text{-}seq\ A=cset\text{-}seq\ B
 thus A = B
   by (metis cset-seq-ran rcset-inverse)
lift-definition cset2seq :: 'a cset \Rightarrow 'a seq
is (\lambda \ A \ i.\ if\ (i \in cset\text{-}count\ A\ `rcset\ A)\ then\ inv\text{-}into\ (rcset\ A)\ (cset\text{-}count\ A)\ i\ else\ (SOME\ x.\ x \in_c
A)).
lemma range-cset2seg:
 A \neq \{\}_c \Longrightarrow range (Rep-seq (cset2seq A)) = rcset A
 by (force intro: some I2 simp add: cset2seq.rep-eq cset-count-inj-seq bot-cset.rep-eq cin.rep-eq)
lemma infinite-cset-count-surj: infinite (rcset A) \Longrightarrow surj (cset-count A)
 using bij-betw-imp-surj cset-count-infinite-bij by auto
```

```
lemma cset2seq-inj:
 inj-on cset2seq \{A. A \neq \{\}_c\}
 apply (rule inj-onI)
 apply (simp)
 apply (metis range-cset2seq rcset-inject)
 done
lift-definition nat\text{-}seq2set :: nat seq \Rightarrow nat set is
\lambda f. prod\text{-}encode ' \{(x, f x) \mid x. True\}.
lemma inj-nat-seq2set: inj nat-seq2set
proof (rule injI, transfer)
 \mathbf{fix} f g
 assume prod-encode '\{(x, f x) | x. True\} = prod-encode '\{(x, g x) | x. True\}
 hence \{(x, f x) | x. True\} = \{(x, g x) | x. True\}
   by (simp add: inj-image-eq-iff [OF inj-prod-encode])
 thus f = q
   by (auto simp add: set-eq-iff)
\mathbf{qed}
lift-definition bit-seq-of-nat-set :: nat set \Rightarrow bool seq
is \lambda A i. i \in A.
lemma bit-seq-of-nat-set-inj: inj bit-seq-of-nat-set
 apply (rule\ injI)
 apply transfer
 apply (auto simp add: fun-eq-iff)
 done
lemma bit-seq-of-nat-cset-bij: bij bit-seq-of-nat-set
 apply (rule\ bijI)
  apply (fact bit-seq-of-nat-set-inj)
 apply transfer
 apply (rule surjI)
 apply auto
 done
This function is a partial injection from countable sets of natural sets to natural sets. When
used with the Schroeder-Bernstein theorem, it can be used to conjure a total bijection between
these two types.
definition nat\text{-}set\text{-}cset\text{-}collapse :: nat set cset \Rightarrow nat set where
nat\text{-}set\text{-}cset\text{-}collapse = inv \ bit\text{-}seq\text{-}of\text{-}nat\text{-}set \circ seq\text{-}inj \circ cset2seq \circ (\lambda \ A. \ (bit\text{-}seq\text{-}of\text{-}nat\text{-}set \ '_c \ A))
lemma nat-set-cset-collapse-inj: inj-on nat-set-cset-collapse \{A.\ A \neq \{\}_c\}
 have ({}^{\circ}_{c}) bit-seq-of-nat-set {}^{\circ}_{c} {A. A \neq \{\}_{c}\} \subseteq \{A. A \neq \{\}_{c}\}
   by (auto simp add:cimage.rep-eq)
 thus ?thesis
   apply (simp add: nat-set-cset-collapse-def)
   apply (rule comp-inj-on)
    apply (meson bit-seq-of-nat-set-inj cset.inj-map injD inj-onI)
   apply (rule comp-inj-on)
    apply (metis cset2seq-inj subset-inj-on)
   apply (rule comp-inj-on)
```

```
apply (rule subset-inj-on)
     apply (rule seq-inj)
    apply (simp)
   apply (meson UNIV-I bij-imp-bij-inv bij-is-inj bit-seq-of-nat-cset-bij subsetI subset-inj-on)
   done
qed
lemma inj-csingle:
 inj csingle
 by (auto intro: injI simp add: cinsert-def bot-cset.rep-eq)
lemma range-csingle:
 range csingle \subseteq \{A. A \neq \{\}_c\}
 by (auto)
lift-definition csets :: 'a \ set \Rightarrow 'a \ cset \ set \ is
\lambda A. \{B. B \subseteq A \land countable B\} by auto
lemma csets-finite: finite A \Longrightarrow finite (csets A)
 by (auto simp add: csets-def)
lemma csets-infinite: infinite A \Longrightarrow infinite (csets A)
 by (auto simp add: csets-def, metis csets.abs-eq csets.rep-eq finite-countable-subset finite-imageI)
lemma csets-UNIV:
  csets (UNIV :: 'a set) = (UNIV :: 'a cset set)
 by (auto simp add: csets-def, metis image-iff rcset rcset-inverse)
lemma infinite-nempty-cset:
 assumes infinite (UNIV :: 'a set)
 shows infinite ({A. A \neq \{\}_c\} :: 'a cset set)
proof -
 have infinite (UNIV :: 'a cset set)
   by (metis assms csets-UNIV csets-infinite)
 hence infinite ((UNIV :: 'a \ cset \ set) - \{\{\}_c\})
   by (rule infinite-remove)
 thus ?thesis
   by (auto)
qed
lemma nat-set-cset-partial-bij:
 obtains f :: nat \ set \ cset \Rightarrow nat \ set \ where \ bij-betw \ f \ \{A. \ A \neq \{\}_c\} \ UNIV
  using Schroeder-Bernstein [OF nat-set-cset-collapse-inj, of UNIV csingle, simplified, OF inj-csingle
range-csingle
 by (auto)
lemma nat-set-cset-bij:
 obtains f :: nat \ set \ cset \Rightarrow nat \ set \ where \ bij f
proof
 obtain g :: nat \ set \ cset \Rightarrow nat \ set \ where \ bij-betw \ g \ \{A. \ A \neq \{\}_c\} \ UNIV
   using nat-set-cset-partial-bij by blast
 moreover obtain h: nat \ set \ cset \Rightarrow nat \ set \ cset \ where \ bij-betw \ h \ UNIV \ \{A.\ A \neq \{\}_c\}
 proof -
   have infinite (UNIV :: nat set cset set)
     by (metis Finite-Set.finite-set csets-UNIV csets-infinite infinite-UNIV-char-0)
```

```
then obtain h' :: nat \ set \ cset \Rightarrow nat \ set \ cset \ where \ bij-betw \ h' \ UNIV \ (UNIV - \{\{\}_c\})
     using infinite-imp-bij-betw[of\ UNIV\ ::\ nat\ set\ cset\ set\ \{\}_c] by auto
   moreover have (UNIV :: nat set cset set) - \{\{\}_c\} = \{A. A \neq \{\}_c\}
     by (auto)
   ultimately show ?thesis
     using that by (auto)
 qed
 ultimately have bij (g \circ h)
   using bij-betw-trans by blast
 with that show ?thesis
   by (auto)
qed
definition nat\text{-}set\text{-}cset\text{-}bij = (SOME f :: nat set cset <math>\Rightarrow nat set. bij f)
lemma bij-nat-set-cset-bij:
  bij nat-set-cset-bij
 by (metis nat-set-cset-bij nat-set-cset-bij-def someI-ex)
lemma inj-on-image-csets:
  inj-on f A \Longrightarrow inj-on ((`c) f) (csets A)
 by (fastforce simp add: inj-on-def cimage-def cin-def csets-def)
lemma image-csets-surj:
  \llbracket inj\text{-}on \ f \ A; \ f \ `A = B \ \rrbracket \Longrightarrow (`c) \ f \ `csets \ A = csets \ B
 apply (auto simp add: cimage-def csets-def image-mono map-fun-def)
 apply (simp add: image-comp)
 apply (auto simp add: image-Collect)
 apply (erule subset-imageE)
 using countable-image-inj-on subset-inj-on by blast
lemma bij-betw-image-csets:
  bij-betw f \land B \Longrightarrow bij-betw ((`c) f) (csets A) (csets B)
 by (simp add: bij-betw-def inj-on-image-csets image-csets-surj)
end
      Extra Relational Definitions and Theorems
6
theory Relation-Extra
 imports HOL-Library.FuncSet
begin
We set up some nice syntax for heterogeneous relations at the type level
  -rel-type :: type \Rightarrow type \Rightarrow type (\mathbf{infixr} \leftrightarrow \theta)
translations
 (type) 'a \leftrightarrow 'b == (type) ('a \times 'b) set
       Relational Function Operations
6.1
definition rel-apply :: ('a \leftrightarrow 'b) \Rightarrow 'a \Rightarrow 'b (-'(-')_r [999,0] 999) where
rel-apply R x = (if x \in Domain(R) \text{ then } THE y. (x, y) \in R \text{ else } undefined)
definition rel-domres :: 'a set \Rightarrow ('a \leftrightarrow 'b) \Rightarrow 'a \leftrightarrow 'b (infixr \triangleleft_r 85) where
```

```
rel-domres A R = \{(k, v) \in R. k \in A\}
definition rel-override :: ('a \leftrightarrow 'b) \Rightarrow ('a \leftrightarrow 'b) \Rightarrow 'a \leftrightarrow 'b \text{ (infixl } +_r 65) \text{ where}
rel-override\ R\ S = (-\ Domain\ S) \lhd_r R \cup S
definition rel-update :: ('a \leftrightarrow 'b) \Rightarrow 'a \Rightarrow 'b \Rightarrow 'a \leftrightarrow 'b where
rel-update R \ k \ v = rel-override R \ \{(k, \ v)\}
6.2
       Domain Restriction
lemma Domain-rel-domres [simp]: Domain (A \triangleleft_r R) = A \cap Domain(R)
 by (auto simp add: rel-domres-def)
lemma rel-domres-empty [simp]: \{\} \triangleleft_r R = \{\}
 by (simp add: rel-domres-def)
lemma rel-domres-UNIV [simp]: UNIV \triangleleft_r R = R
 by (simp add: rel-domres-def)
lemma rel-domres-nil [simp]: A \triangleleft_r \{\} = \{\}
 by (simp add: rel-domres-def)
lemma rel-domres-inter [simp]: A \triangleleft_r B \triangleleft_r R = (A \cap B) \triangleleft_r R
 by (auto simp add: rel-domres-def)
6.3
       Relational Override
interpretation rel-override-monoid: monoid-add (+_r) {}
 by (unfold-locales, simp-all add: rel-override-def, auto simp add: rel-domres-def)
lemma Domain-rel-override [simp]: Domain (R +_r S) = Domain(R) \cup Domain(S)
 by (auto simp add: rel-override-def Domain-Un-eq)
lemma Range-rel-override: Range(R +_r S) \subseteq Range(R) \cup Range(S)
 by (auto simp add: rel-override-def rel-domres-def)
       Functional Relations
definition functional :: ('a \leftrightarrow 'b) \Rightarrow bool where
functional\ g = inj-on fst\ g
lemma functional-algebraic: functional R \longleftrightarrow R^{-1} O R \subseteq Id
 apply (auto simp add: functional-def subset-iff relcomp-unfold)
 using inj-on-eq-iff apply fastforce
 apply (metis inj-onI surjective-pairing)
 done
lemma functional-determine: \llbracket functional R; (x, y) \in R; (x, z) \in R \rrbracket \Longrightarrow y = z
 by (auto simp add: functional-algebraic subset-iff relcomp-unfold)
lemma functional-apply:
 assumes functional R(x, y) \in R
 shows R(x)_r = y
 by (metis (no-types, lifting) Domain.intros DomainE assms(1) assms(2) functional-determine rel-apply-def
```

the I-unique)

```
lemma functional-elem:
 assumes functional R \ x \in Domain(R)
 shows (x, R(x)_r) \in R
 using assms(1) assms(2) functional-apply by fastforce
lemma functional-empty [simp]: functional {}
 by (simp add: functional-def)
lemma functional-override [intro]: \llbracket functional R; functional S \rrbracket \Longrightarrow functional (R +_r S)
 by (auto simp add: functional-algebraic rel-override-def rel-domres-def)
definition functional-list :: ('a \times 'b) list \Rightarrow bool where
functional-list xs = (\forall x y z. ListMem(x,y) xs \land ListMem(x,z) xs \longrightarrow y = z)
lemma functional-insert [simp]: functional (insert (x,y) g) \longleftrightarrow (g''\{x\} \subseteq \{y\} \land functional\ g)
 by (auto simp add:functional-def inj-on-def image-def)
lemma functional-list-nil[simp]: functional-list []
 by (simp add:functional-list-def ListMem-iff)
lemma functional-list: functional-list xs \longleftrightarrow functional \ (set \ xs)
 apply (induct xs)
  apply (simp add:functional-def)
 apply (simp add:functional-def functional-list-def ListMem-iff)
 apply (safe)
        apply (force)
       apply (force)
      apply (force)
     apply (force)
    apply (force)
   apply (force)
  apply (force)
 apply (force)
 done
definition fun-rel :: ('a \Rightarrow 'b) \Rightarrow ('a \leftrightarrow 'b) where
fun\text{-rel } f = \{(x, y), y = f x\}
lemma functional-fun-rel: functional (fun-rel f)
 by (simp add: fun-rel-def functional-def)
    (metis (mono-tags, lifting) Product-Type.Collect-case-prodD inj-onI prod.expand)
lemma rel-apply-fun [simp]: (fun\text{-rel } f)(x)_r = f x
 by (simp add: fun-rel-def rel-apply-def)
6.5
       Left-Total Relations
definition left-totalr-on :: 'a set \Rightarrow ('a \leftrightarrow 'b) \Rightarrow bool where
left-totalr-on A \ R \longleftrightarrow (\forall x \in A. \ \exists y. \ (x, y) \in R)
abbreviation left-total R \equiv left-total r-on UNIV R
lemma left-totalr-algebraic: left-totalr R \longleftrightarrow Id \subseteq R \ O \ R^{-1}
 by (auto simp add: left-totalr-on-def)
lemma left-totalr-fun-rel: left-totalr (fun-rel f)
```

6.6 Relation Sets

```
definition rel-typed :: 'a set \Rightarrow 'b set \Rightarrow ('a \leftrightarrow 'b) set (infixr \leftrightarrow_r 55) where rel-typed A B = \{R. \ Domain(R) \subseteq A \land Range(R) \subseteq B\}
```

lemma rel-typed-intro: $\llbracket Domain(R) \subseteq A; Range(R) \subseteq B \rrbracket \implies R \in A \leftrightarrow_r B$ **by** $(simp\ add:\ rel-typed-def)$

definition rel-pfun :: 'a set \Rightarrow 'b set \Rightarrow ('a \leftrightarrow 'b) set (infixr \rightharpoonup_r 55) where rel-pfun $A B = \{R. R \in A \leftrightarrow_r B \land functional R\}$

lemma rel-pfun-intro: $[\![R \in A \leftrightarrow_r B; functional R]\!] \Longrightarrow R \in A \rightharpoonup_r B$ **by** (simp add: rel-pfun-def)

definition rel-tfun :: 'a set \Rightarrow 'b set \Rightarrow ('a \leftrightarrow 'b) set (infixr \rightarrow_r 55) where rel-tfun $A B = \{R. R \in A \rightharpoonup_r B \land left-totalr R\}$

definition rel-ffun :: 'a set \Rightarrow 'b set \Rightarrow ('a \leftrightarrow 'b) set where rel-ffun $A B = \{R. R \in A \rightarrow_r B \land finite(Domain R)\}$

6.7 Closure Properties

These can be seen as typing rules for relational functions

named-theorems rclos

lemma rel-ffun-is-pfun [rclos]: $R \in rel$ -ffun $A B \Longrightarrow R \in A \rightharpoonup_r B$ by $(simp \ add: \ rel$ -ffun-def)

lemma rel-tfun-is-pfun [rclos]: $R \in A \rightarrow_r B \Longrightarrow R \in A \rightharpoonup_r B$ **by** (simp add: rel-tfun-def)

lemma rel-pfun-is-typed [rclos]: $R \in A \rightharpoonup_r B \Longrightarrow R \in A \leftrightarrow_r B$ **by** (simp add: rel-pfun-def)

lemma rel-ffun-empty [rclos]: $\{\} \in rel$ -ffun A B **by** (simp add: rel-ffun-def rel-pfun-def rel-typed-def)

lemma rel-pfun-apply [rclos]: $[x \in Domain(R); R \in A \rightarrow_r B] \Longrightarrow R(x)_r \in B$ **using** functional-apply **by** (fastforce simp add: rel-pfun-def rel-typed-def)

lemma rel-tfun-apply [rclos]: $[x \in A; R \in A \rightarrow_r B] \implies R(x)_r \in B$ **by** (metis (no-types, lifting) Domain-iff iso-tuple-UNIV-I left-totalr-on-def mem-Collect-eq rel-pfun-apply rel-tfun-def)

lemma rel-typed-insert [rclos]: $[R \in A \leftrightarrow_r B; x \in A; y \in B] \implies insert(x, y) R \in A \leftrightarrow_r B$ **by** (simp add: rel-typed-def)

lemma rel-pfun-insert [rclos]: [$R \in A \rightharpoonup_r B$; $x \in A$; $y \in B$; $x \notin Domain(R)$] $\Longrightarrow insert (x, y)$ $R \in A \rightharpoonup_r B$

by (auto intro: rclos simp add: rel-pfun-def)

lemma rel-pfun-override [rclos]: $[R \in A \rightharpoonup_r B; S \in A \rightharpoonup_r B] \Longrightarrow (R +_r S) \in A \rightharpoonup_r B$ apply (rule rel-pfun-intro)

```
\begin{array}{l} \textbf{apply} \ (\textit{rule rel-typed-intro}) \\ \textbf{apply} \ (\textit{auto simp add: rel-pfun-def rel-typed-def}) \\ \textbf{apply} \ (\textit{metis} \ (\textit{no-types}, \ \textit{hide-lams}) \ \textit{Range-simps Range-Un-eq Range-rel-override Un-iff rev-subsetD}) \\ \textbf{done} \end{array}
```

end

theory Map-Extra

7 Map Type: extra functions and properties

```
imports
    Relation-Extra
    HOL-Library. Countable-Set
    HOL-Library.Monad-Syntax
begin
7.1
                  Graphing Maps
definition map\text{-}graph :: ('a \rightarrow 'b) \Rightarrow ('a \leftrightarrow 'b) where
map-graph f = \{(x,y) \mid x \ y. \ f \ x = Some \ y\}
definition graph-map :: ('a \leftrightarrow 'b) \Rightarrow ('a \rightharpoonup 'b) where
graph-map g = (\lambda x. if (x \in fst 'g) then Some (SOME y. (x,y) \in g) else None)
definition graph-map':: ('a \leftrightarrow 'b) \rightharpoonup ('a \rightharpoonup 'b) where
graph-map' R = (if (functional R) then Some (graph-map R) else None)
\textbf{lemma} \ \textit{map-graph-mem-equiv:} \ (x, \ y) \in \textit{map-graph} \ f \longleftrightarrow f(x) = \textit{Some} \ y
    by (simp add: map-graph-def)
lemma map-graph-functional[simp]: functional\ (map-graph\ f)
    by (simp add:functional-def map-graph-def inj-on-def)
lemma map-graph-countable [simp]: countable (dom f) \Longrightarrow countable (map-graph f)
    apply (auto simp add:map-graph-def countable-def)
    apply (rename-tac\ f')
    apply (rule-tac x=f' \circ fst in exI)
    apply (auto simp add:inj-on-def dom-def)
    apply fastforce
    done
lemma map-graph-inv [simp]: graph-map (map-graph f) = f
    by (auto intro!:ext simp add:map-graph-def graph-map-def image-def)
lemma graph-map-empty[simp]: graph-map \{\} = Map.empty
    by (simp add:graph-map-def)
\textbf{lemma} \ \textit{graph-map-insert} \ [\textit{simp}] : \llbracket \textit{functional} \ g; \ g``\{x\} \subseteq \{y\} \rrbracket \Longrightarrow \textit{graph-map} \ (\textit{insert} \ (x,y) \ g) = (\textit{graph-map-insert} \ (x,y) \ g) = (\textit{graph-m
    by (rule ext, auto simp add:graph-map-def)
lemma dom\text{-}map\text{-}graph: dom f = Domain(map\text{-}graph f)
    by (simp add: map-graph-def dom-def image-def)
lemma ran-map-graph: ran f = Range(map-graph f)
```

```
by (simp add: map-graph-def ran-def image-def)
lemma rel-apply-map-graph:
 x \in dom(f) \Longrightarrow (map\operatorname{-}graph f)(x)_r = the (f x)
 by (auto simp add: rel-apply-def map-graph-def)
lemma ran-map-add-subset:
 ran (x ++ y) \subseteq (ran x) \cup (ran y)
 by (auto simp add:ran-def)
lemma finite-dom-graph: finite (dom f) \Longrightarrow finite (map-graph f)
 by (metis dom-map-graph finite-imageD fst-eq-Domain functional-def map-graph-functional)
lemma finite-dom-ran [simp]: finite (dom f) \Longrightarrow finite (ran f)
 by (metis finite-Range finite-dom-graph ran-map-graph)
lemma graph-map-inv [simp]: functional g \implies map-graph (graph-map g) = g
 apply (auto simp add:map-graph-def graph-map-def functional-def)
   apply (metis (lifting, no-types) image-iff option.distinct(1) option.inject someI surjective-pairing)
  apply (simp add:inj-on-def)
  apply (metis fst-conv snd-conv some-equality)
 apply (metis (lifting) fst-conv image-iff)
 done
lemma graph-map-dom: dom (graph-map R) = fst 'R
 by (simp add: graph-map-def dom-def)
lemma graph-map-countable-dom: countable R \Longrightarrow countable \ (dom \ (graph-map \ R))
 by (simp add: graph-map-dom)
lemma countable-ran:
 assumes countable (dom f)
 shows countable (ran f)
proof -
 have countable (map-graph f)
   by (simp add: assms)
 then have countable (Range(map-graph f))
   by (simp add: Range-snd)
 thus ?thesis
   by (simp add: ran-map-graph)
qed
lemma map-graph-inv' [simp]:
 graph-map' (map-graph f) = Some f
 by (simp add: graph-map'-def)
lemma map-graph-inj:
 inj map-graph
 by (metis injI map-graph-inv)
lemma map\text{-}eq\text{-}graph: f = g \longleftrightarrow map\text{-}graph f = map\text{-}graph g
 by (auto simp add: inj-eq map-graph-inj)
lemma map-le-graph: f \subseteq_m g \longleftrightarrow map-graph f \subseteq map-graph g
 by (force simp add: map-le-def map-graph-def)
```

```
lemma map-graph-comp: map-graph (g \circ_m f) = (map-graph f) O (map-graph g)
 apply (auto simp add: map-comp-def map-graph-def relcomp-unfold)
 apply (rename-tac \ a \ b)
 apply (case-tac\ f\ a,\ auto)
 done
7.2
       Map Application
definition map-apply :: ('a \rightarrow 'b) \Rightarrow 'a \Rightarrow 'b (-'(-')_m [999,0] 999) where
map\text{-}apply = (\lambda f x. the (f x))
7.3
       Map Membership
fun map-member :: 'a \times 'b \Rightarrow ('a \rightharpoonup 'b) \Rightarrow bool (infix \in_m 50) where
(k, v) \in_m m \longleftrightarrow m(k) = Some(v)
lemma map-ext:
  \llbracket \bigwedge x \ y. \ (x, y) \in_m A \longleftrightarrow (x, y) \in_m B \rrbracket \Longrightarrow A = B
 by (rule ext, auto, metis not-Some-eq)
lemma map-member-alt-def:
 (x, y) \in_m A \longleftrightarrow (x \in dom A \land A(x)_m = y)
 by (auto simp add: map-apply-def)
lemma map-le-member:
 f \subseteq_m g \longleftrightarrow (\forall x y. (x,y) \in_m f \longrightarrow (x,y) \in_m g)
 by (force simp add: map-le-def)
7.4
       Preimage
definition preimage :: ('a \rightarrow 'b) \Rightarrow 'b \ set \Rightarrow 'a \ set where
preimage f B = \{x \in dom(f). \ the(f(x)) \in B\}
lemma preimage-range: preimage f (ran f) = dom f
 by (auto simp add: preimage-def ran-def)
lemma dom-preimage: dom (m \circ_m f) = preimage f (dom m)
 apply (auto simp add: dom-def preimage-def)
  apply (meson map-comp-Some-iff)
 apply (metis map-comp-def option.case-eq-if option.distinct(1))
 done
lemma countable-preimage:
  \llbracket countable \ A; inj\text{-}on \ f \ (preimage \ f \ A) \ \rrbracket \Longrightarrow countable \ (preimage \ f \ A)
 apply (auto simp add: countable-def)
 apply (rename-tac\ g)
 apply (rule-tac x=g \circ the \circ f in exI)
 apply (rule inj-onI)
 apply (drule inj-onD)
```

7.5 Minus operation for maps

done

apply (auto simp add: preimage-def inj-onD)

```
definition map-minus :: ('a \rightarrow 'b) \Rightarrow ('a \rightarrow 'b) \Rightarrow ('a \rightarrow 'b) (infixl -- 100)
```

```
where map-minus f g = (\lambda x. if (f x = g x) then None else f x)
lemma map-minus-apply [simp]: y \in dom(f -- g) \Longrightarrow (f -- g)(y)_m = f(y)_m
  by (auto simp add: map-minus-def dom-def map-apply-def)
lemma map-member-plus:
  (x, y) \in_m f ++ g \longleftrightarrow ((x \notin dom(g) \land (x, y) \in_m f) \lor (x, y) \in_m g)
 by (auto simp add: map-add-Some-iff)
lemma map-member-minus:
  (x, y) \in_m f \longrightarrow (x, y) \in_m f \land (\neg (x, y) \in_m g)
 by (auto simp add: map-minus-def)
lemma map-minus-plus-commute:
  dom(g)\,\cap\,dom(h)\,=\,\{\}\,\Longrightarrow\,(f\,\,--\,\,g)\,\,++\,\,h\,=\,(f\,\,++\,\,h)\,\,--\,\,g
  apply (rule map-ext)
 apply (auto simp add: map-member-plus map-member-minus simp del: map-member.simps)
 apply (auto simp add: map-member-alt-def)
  done
lemma map-graph-minus: map-graph (f -- g) = map-graph f - map-graph g
 by (auto simp add: map-minus-def map-graph-def, (meson option.distinct(1))+)
\mathbf{lemma}\ \mathit{map-minus-common-subset} :
  \llbracket h \subseteq_m f; h \subseteq_m g \rrbracket \Longrightarrow (f -- h = g -- h) = (f = g)
 by (auto simp add: map-eq-graph map-graph-minus map-le-graph)
7.6
       Map Bind
Create some extra intro/elim rules to help dealing with proof about option bind.
lemma option-bindSomeE [elim!]:
  \llbracket X >>= F = Some(v); \land x. \llbracket X = Some(x); F(x) = Some(v) \rrbracket \Longrightarrow P \rrbracket \Longrightarrow P
 by (case-tac\ X,\ auto)
lemma option-bindSomeI [intro]:
  \llbracket \ X = Some(x); \ F(x) = Some(y) \ \rrbracket \Longrightarrow X >>= F = Some(y)
  by (simp)
lemma if Some E [elim]: [(if \ c \ then \ Some(x) \ else \ None) = Some(y); <math>[c; x = y] \implies P] \implies P
 by (case-tac\ c,\ auto)
7.7
       Range Restriction
A range restriction operator; only domain restriction is provided in HOL.
definition ran-restrict-map :: ('a \rightarrow 'b) \Rightarrow 'b \ set \Rightarrow 'a \rightarrow 'b \ (-]. [111,110] 110) where
ran-restrict-map f B = (\lambda x. \ do \{ v < -f(x); \ if \ (v \in B) \ then \ Some(v) \ else \ None \})
lemma ran-restrict-empty [simp]: f \upharpoonright_{\{\}} = Map.empty
 by (simp add:ran-restrict-map-def)
lemma ran-restrict-ran [simp]: f \upharpoonright_{ran(f)} = f
  apply (auto simp add:ran-restrict-map-def ran-def)
 apply (rule ext)
```

apply $(case-tac\ f(x),\ auto)$

done

```
lemma ran-ran-restrict [simp]: ran(f|_B) = ran(f) \cap B
 by (auto intro!:option-bindSomeI simp add:ran-restrict-map-def ran-def)
lemma dom\text{-}ran\text{-}restrict: } dom(f \mid_B) \subseteq dom(f)
 by (auto simp add:ran-restrict-map-def dom-def)
lemma ran-restrict-finite-dom [intro]:
 finite(dom(f)) \Longrightarrow finite(dom(f|_B))
 by (metis finite-subset dom-ran-restrict)
lemma dom-Some [simp]: dom (Some \circ f) = UNIV
 by (auto)
lemma dom-left-map-add [simp]: x \in dom \ g \Longrightarrow (f ++ g) \ x = g \ x
 by (auto simp add:map-add-def dom-def)
lemma dom-right-map-add [simp]: [x \notin dom \ g; \ x \in dom \ f] \implies (f ++ g) \ x = f \ x
 by (auto simp add:map-add-def dom-def)
lemma map-add-restrict:
 f ++ g = (f \mid `(-dom g)) ++ g
 by (rule ext, auto simp add: map-add-def restrict-map-def)
7.8
       Map Inverse and Identity
definition map\text{-}inv :: ('a \rightarrow 'b) \Rightarrow ('b \rightarrow 'a) where
map-inv f \equiv \lambda y. if (y \in ran f) then Some (SOME x. f x = Some y) else None
definition map-id-on :: 'a \ set \Rightarrow ('a \rightharpoonup 'a) where
map-id-on xs \equiv \lambda x. if (x \in xs) then Some x else None
lemma map-id-on-in [simp]:
 x \in xs \Longrightarrow map\text{-}id\text{-}on \ xs \ x = Some \ x
 by (simp add:map-id-on-def)
lemma map-id-on-out [simp]:
  x \notin xs \Longrightarrow map\text{-}id\text{-}on \ xs \ x = None
 by (simp add:map-id-on-def)
lemma map-id-dom [simp]: dom (map-id-on xs) = xs
 by (simp add:dom-def map-id-on-def)
lemma map-id-ran [simp]: ran (map-id-on xs) = xs
 by (force simp add:ran-def map-id-on-def)
lemma map-id-on-UNIV[simp]: map-id-on\ UNIV = Some
 by (simp add:map-id-on-def)
lemma map-id-on-inj [simp]:
 inj-on (map-id-on xs) xs
 by (simp add:inj-on-def)
lemma map-inv-empty [simp]: map-inv Map.empty = Map.empty
 by (simp\ add:map-inv-def)
```

```
lemma map-inv-id [simp]:
 map-inv \ (map-id-on \ xs) = map-id-on \ xs
 by (force simp add:map-inv-def map-id-on-def ran-def)
lemma map-inv-Some [simp]: map-inv Some = Some
 by (simp add:map-inv-def ran-def)
lemma map-inv-f-f [simp]:
 \llbracket inj\text{-}on \ f \ (dom \ f); f \ x = Some \ y \ \rrbracket \Longrightarrow map\text{-}inv \ f \ y = Some \ x
 apply (auto simp add: map-inv-def)
  apply (rule some-equality)
   apply (auto simp add:inj-on-def dom-def ran-def)
 done
lemma dom-map-inv [simp]:
 dom (map-inv f) = ran f
 by (auto simp add:map-inv-def)
lemma ran-map-inv [simp]:
 inj-on f (dom f) \Longrightarrow ran (map-inv f) = dom f
 apply (auto simp add:map-inv-def ran-def)
  apply (rename-tac \ a \ b)
  apply (rule-tac \ x=a \ in \ exI)
  apply (force intro:someI)
 apply (rename-tac \ x \ y)
 apply (rule-tac x=y in exI)
 apply (auto)
 apply (rule some-equality, simp-all)
 apply (auto simp add:inj-on-def dom-def)
 done
lemma dom-image-ran: f ' dom f = Some ' ran f
 by (auto simp add:dom-def ran-def image-def)
lemma inj-map-inv [intro]:
 inj-on f (dom f) \Longrightarrow inj-on (map-inv f) (ran f)
 apply (auto simp add:map-inv-def inj-on-def dom-def ran-def)
 apply (rename-tac \ x \ y \ u \ v)
 apply (frule-tac P=\lambda xa. f xa = Some x in some-equality)
  apply (auto)
 apply (metis (mono-tags) option.sel someI)
 done
lemma inj-map-bij: inj-on f (dom f) \Longrightarrow bij-betw f (dom f) (Some 'ran f)
 by (auto simp add:inj-on-def dom-def ran-def image-def bij-betw-def)
lemma map-inv-map-inv [simp]:
 assumes inj-on f (dom f)
 shows map-inv (map-inv f) = f
proof -
 from assms have inj-on (map-inv f) (ran f)
   by auto
```

```
thus ?thesis
         apply (rule-tac ext)
         apply (rename-tac x)
         apply (case-tac \exists y. map-inv f y = Some x)
           apply (auto)[1]
           apply (simp add:map-inv-def)
           apply (rename-tac \ x \ y)
           apply (case-tac y \in ran f, simp-all)
           apply (auto)
           apply (rule\ some I2-ex)
             apply (simp add:ran-def)
           apply (simp)
      \mathbf{apply} \; (\textit{metis assms dom-image-ran dom-map-inv image-iff map-add-dom-app-simps} (\textit{2}) \; \textit{map-add-dom-app-simps} (\textit{3}) \; \textit{map-add-do
ran-map-inv)
         done
qed
lemma map-self-adjoin-complete [intro]:
    assumes dom f \cap ran f = \{\} inj\text{-}on f (dom f)
    shows inj-on (map-inv f ++ f) (dom f \cup ran f)
    apply (rule inj-onI)
    apply (insert assms)
    apply (rename-tac \ x \ y)
    apply (case-tac \ x \in dom \ f)
      apply (simp)
      apply (case-tac\ y \in dom\ f)
        apply (simp add:inj-on-def)
      apply (case-tac\ y \in ran\ f)
        apply (subgoal-tac\ y \in dom\ (map-inv\ f))
           apply (simp)
           apply (metis Int-iff domD empty-iff ranI ran-map-inv)
         apply (simp)
      apply (simp)
    apply (simp)
    apply (case-tac \ y \in dom \ f)
      apply (simp)
      apply (case-tac y \in ran f)
        apply (subgoal-tac\ y \in dom\ (map-inv\ f))
           apply (simp)
           apply (metis Int-iff empty-iff)
         apply (simp)
      apply (metis Int-iff domD empty-iff ranI ran-map-inv)
    apply (simp)
    apply (metis (lifting) inj-map-inv inj-on-contraD)
    done
lemma inj-completed-map [intro]:
     \llbracket dom f = ran f; inj - on f (dom f) \rrbracket \implies inj (Some ++ f)
    apply (drule inj-map-bij)
    apply (auto simp add:bij-betw-def)
    apply (auto simp add:inj-on-def)[1]
    apply (rename-tac \ x \ y)
    apply (case-tac \ x \in dom \ f)
      apply (simp)
```

apply $(case-tac\ y \in dom\ f)$

```
apply (simp)
  apply (simp add:ran-def)
  apply (case-tac \ y \in dom \ f)
  apply (auto intro:ranI)
  done
lemma bij-completed-map [intro]:
  \llbracket dom f = ran f; inj\text{-}on f (dom f) \rrbracket \Longrightarrow
   bij-betw (Some ++ f) UNIV (range Some)
  apply (auto simp add:bij-betw-def)
  apply (rename-tac x)
  apply (case-tac \ x \in dom \ f)
   apply (simp)
   apply (metis domD rangeI)
  apply (simp)
  apply (simp add:image-def)
  apply (metis (full-types) dom-image-ran dom-left-map-add image-iff map-add-dom-app-simps(3))
\mathbf{lemma}\ \mathit{bij}\text{-}\mathit{map}\text{-}\mathit{Some}\colon
  bij-betw f a (Some 'b) \Longrightarrow bij-betw (the \circ f) a b
  apply (simp add:bij-betw-def)
 apply (safe)
    \mathbf{apply} \ (\mathit{metis} \ (\mathit{hide-lams}, \ \mathit{no-types}) \ \mathit{comp-inj-on-iff} \ \mathit{f-the-inv-into-f} \ \mathit{inj-on-inverseI} \ \mathit{option.sel})
  apply (metis (hide-lams, no-types) image-iff option.sel)
  apply (metis Option.these-def Some-image-these-eq image-image these-image-Some-eq)
  done
lemma ran-map-add [simp]:
  m'(dom \ m \cap dom \ n) = n'(dom \ m \cap dom \ n) \Longrightarrow
  ran(m++n) = ran \ n \cup ran \ m
 apply (auto simp add:ran-def)
  apply (metis map-add-find-right)
  apply (rename-tac \ x \ a)
  apply (case-tac \ a \in dom \ n)
  apply (subgoal-tac \exists b. n b = Some x)
    apply (auto)
    apply (rename-tac \ x \ a \ b \ y)
    apply (rule-tac \ x=b \ in \ exI)
    apply (simp)
  apply (metis (hide-lams, no-types) IntI domI image-iff)
 \mathbf{apply} \ (\textit{metis} \ (\textit{full-types}) \ \textit{map-add-None} \ \textit{map-add-dom-app-simps} (1) \ \textit{map-add-dom-app-simps} (3) \ \textit{not-None-eq})
 done
lemma ran-maplets [simp]:
  \llbracket length \ xs = length \ ys; \ distinct \ xs \ \rrbracket \Longrightarrow ran \ [xs \ [\mapsto] \ ys] = set \ ys
    by (induct rule:list-induct2, simp-all)
lemma inj-map-add:
   \llbracket \ \textit{inj-on} \ f \ (\textit{dom} \ f); \ \textit{inj-on} \ g \ (\textit{dom} \ g); \ \textit{ran} \ f \ \cap \ \textit{ran} \ g = \{\} \ \rrbracket \Longrightarrow
   inj-on (f ++ g) (dom f \cup dom g)
 apply (auto simp add:inj-on-def)
     apply (metis (full-types) disjoint-iff-not-equal domI dom-left-map-add map-add-dom-app-simps(3)
ranI)
    apply (metis \ dom I)
```

```
apply (metis disjoint-iff-not-equal ranI)
  apply (metis disjoint-iff-not-equal domIff map-add-Some-iff ranI)
 apply (metis \ dom I)
 done
lemma map-inv-add [simp]:
 assumes inj-on f (dom f) inj-on g (dom g)
        dom f \cap dom g = \{\} ran f \cap ran g = \{\}
 shows map-inv (f ++ g) = map-inv f ++ map-inv g
proof (rule ext)
 from assms have minj: inj-on (f ++ g) (dom (f ++ g))
   by (simp, metis inj-map-add sup-commute)
 have x \in ran \ g \Longrightarrow map-inv \ (f ++ g) \ x = (map-inv \ f ++ map-inv \ g) \ x
 proof -
   assume ran:x \in ran \ q
   then obtain y where dom:g \ y = Some \ x \ y \in dom \ g
    by (auto simp add:ran-def)
   hence (f ++ g) y = Some x
    by simp
   with assms minj ran dom show map-inv (f ++ q) x = (map-inv f ++ map-inv q) x
     by simp
 qed
 moreover have \llbracket x \notin ran \ g; \ x \in ran \ f \ \rrbracket \Longrightarrow map-inv \ (f ++ g) \ x = (map-inv \ f ++ map-inv \ g) \ x
 proof -
   assume ran: x \notin ran \ g \ x \in ran \ f
   with assms obtain y where dom: f y = Some \ x \ y \in dom \ f \ y \notin dom \ g
    by (auto simp add:ran-def)
   with ran have (f ++ g) y = Some x
     by (simp)
   with assms minj ran dom show map-inv (f ++ q) x = (map-inv f ++ map-inv q) x
     by simp
 \mathbf{qed}
 moreover from assms minj have [x \notin ran \ g; x \notin ran \ f] \implies map-inv \ (f ++ g) \ x = (map-inv \ f)
++ map-inv g) x
   apply (auto simp add:map-inv-def ran-def map-add-def)
   apply (metis dom-left-map-add map-add-def map-add-dom-app-simps(3))
 ultimately show map-inv (f ++ g) x = (map-inv f ++ map-inv g) x
   apply (case-tac \ x \in ran \ g)
    apply (simp)
   apply (case-tac \ x \in ran \ f)
    apply (simp-all)
   done
qed
```

```
lemma map-add-lookup [simp]:
  x \notin dom f \Longrightarrow ([x \mapsto y] ++ f) \ x = Some \ y
 by (simp add:map-add-def dom-def)
lemma map-add-Some: Some ++ f = map-id-on (- dom f) ++ f
  apply (rule ext)
 apply (rename-tac x)
 apply (case-tac \ x \in dom \ f)
  apply (simp-all)
  done
\mathbf{lemma}\ \mathit{distinct}\text{-}\mathit{map}\text{-}\mathit{dom}\text{:}
  x \notin set \ xs \Longrightarrow x \notin dom \ [xs \ [\mapsto] \ ys]
 by (simp add:dom-def)
\mathbf{lemma}\ \textit{distinct-map-ran}\colon
  \llbracket distinct \ xs; \ y \notin set \ ys; \ length \ xs = length \ ys \ \rrbracket \Longrightarrow
  y \notin ran([xs \mapsto ys])
  apply (simp add:map-upds-def)
 apply (subgoal-tac distinct (map fst (rev (zip xs ys))))
 apply (simp add:ran-distinct)
 apply (metis (hide-lams, no-types) image-iff set-zip-rightD surjective-pairing)
  apply (simp add:zip-rev[THEN sym])
done
lemma maplets-lookup[rule-format,dest]:
  \llbracket length \ xs = length \ ys; \ distinct \ xs \ \rrbracket \Longrightarrow
    \forall y. [xs [\mapsto] ys] x = Some y \longrightarrow y \in set ys
  by (induct rule:list-induct2, auto)
lemma maplets-distinct-inj [intro]:
  \llbracket \ length \ xs = length \ ys; \ distinct \ xs; \ distinct \ ys; \ set \ xs \cap set \ ys = \{\} \ \rrbracket \Longrightarrow
  inj-on [xs \mapsto ys] (set xs)
  apply (induct rule:list-induct2)
  apply (simp-all)
  apply (rule\ conjI)
  apply (rule inj-onI)
  apply (rename-tac \ x \ xs \ y \ ys \ xa \ ya)
  apply (case-tac \ xa = x)
   apply (simp)
  apply (case-tac \ xa = y)
   apply (simp)
  apply (simp)
  apply (case-tac\ ya = x)
   apply (simp)
  apply (simp add:inj-on-def)
  apply (auto)
  apply (rename-tac x xs y ys xa)
  apply (case-tac \ xa = y)
  apply (simp)
  apply (metis maplets-lookup)
  done
lemma map\text{-}inv\text{-}maplet[simp]: map\text{-}inv [x \mapsto y] = [y \mapsto x]
 by (auto simp add:map-inv-def)
```

```
lemma map-inv-maplets [simp]:
  \llbracket length \ xs = length \ ys; \ distinct \ xs; \ distinct \ ys; \ set \ xs \cap set \ ys = \{\} \ \rrbracket \Longrightarrow
  map\text{-}inv [xs [\mapsto] ys] = [ys [\mapsto] xs]
 apply (induct rule:list-induct2)
  apply (simp-all)
 apply (rename-tac \ x \ xs \ y \ ys)
  \mathbf{apply} \ (\mathit{subgoal\text{-}tac} \ \mathit{map\text{-}inv} \ ([\mathit{xs} \ [\mapsto] \ \mathit{ys}] \ ++ \ [\mathit{x} \ \mapsto \mathit{y}]) = \mathit{map\text{-}inv} \ [\mathit{xs} \ [\mapsto] \ \mathit{ys}] \ ++ \ \mathit{map\text{-}inv} \ [\mathit{x} \ \mapsto \mathit{y}])
  apply (simp)
  apply (rule map-inv-add)
    apply (auto)
  done
lemma maplets-lookup-nth [rule-format,simp]:
  \llbracket length \ xs = length \ ys; \ distinct \ xs \ \rrbracket \Longrightarrow
  \forall i < length \ ys. \ [xs \ [\mapsto] \ ys] \ (xs \ ! \ i) = Some \ (ys \ ! \ i)
  apply (induct rule:list-induct2)
  apply (auto)
  apply (rename-tac \ x \ xs \ y \ ys \ i)
  apply (case-tac \ i)
   apply (simp-all)
  apply (metis nth-mem)
  \mathbf{apply} \ (\mathit{rename-tac} \ \mathit{x} \ \mathit{xs} \ \mathit{y} \ \mathit{ys} \ \mathit{i})
  apply (case-tac \ i)
  apply (auto)
  done
theorem inv-map-inv:
  \llbracket inj\text{-}on f (dom f); ran f = dom f \rrbracket
  \implies inv \ (the \circ (Some ++ f)) = the \circ map-inv \ (Some ++ f)
 apply (rule ext)
 apply (simp add:map-add-Some)
 apply (simp add:inv-def)
  apply (rename-tac x)
  apply (case-tac \exists y. fy = Some x)
  apply (erule exE)
  apply (rename-tac \ x \ y)
  apply (subgoal-tac \ x \in ran \ f)
    apply (subgoal-tac\ y \in dom\ f)
    apply (simp)
     apply (rule some-equality)
     apply (simp)
    apply (metis (hide-lams, mono-tags) domD domI dom-left-map-add inj-on-contraD map-add-Some
map-add-dom-app-simps(3) option.sel)
    apply (simp add:dom-def)
  apply (metis ranI)
  apply (simp)
  apply (rename-tac x)
  apply (subgoal-tac x \notin ran f)
  apply (simp)
  apply (rule some-equality)
   apply (simp)
  apply (metis domD dom-left-map-add map-add-Some map-add-dom-app-simps(3) option.sel)
  apply (metis dom-image-ran image-iff)
  done
```

```
lemma map-comp-dom: dom (g \circ_m f) \subseteq dom f
 by (metis (lifting, full-types) Collect-mono dom-def map-comp-simps(1))
lemma map-comp-assoc: f \circ_m (g \circ_m h) = f \circ_m g \circ_m h
proof
  \mathbf{fix} \ x
 show (f \circ_m (g \circ_m h)) x = (f \circ_m g \circ_m h) x
 proof (cases \ h \ x)
   case None thus ?thesis
     by (auto simp add: map-comp-def)
 \mathbf{next}
   case (Some y) thus ?thesis
     by (auto simp add: map-comp-def)
 qed
qed
lemma map-comp-runit [simp]: f \circ_m Some = f
 by (simp add: map-comp-def)
lemma map-comp-lunit [simp]: Some \circ_m f = f
proof
 \mathbf{fix} \ x
 show (Some \circ_m f) x = f x
 proof (cases f x)
   case None thus ?thesis
     by (simp add: map-comp-def)
 next
   case (Some y) thus ?thesis
     by (simp add: map-comp-def)
 qed
qed
lemma map-comp-apply [simp]: (f \circ_m g) x = g(x) >>= f
 by (auto simp add: map-comp-def option.case-eq-if)
7.9
        Merging of compatible maps
definition comp-map :: ('a \rightharpoonup 'b) \Rightarrow ('a \rightharpoonup 'b) \Rightarrow bool (infixl \parallel_m 60) where
comp\text{-}map\ f\ g = (\forall\ x \in dom(f) \cap dom(g).\ the(f(x)) = the(g(x)))
lemma comp-map-unit: Map.empty \parallel_m f
 by (simp add: comp-map-def)
lemma comp-map-refl: f \parallel_m f
 by (simp add: comp-map-def)
lemma comp-map-sym: f \parallel_m g \Longrightarrow g \parallel_m f
 by (simp add: comp-map-def)
definition merge :: ('a \rightharpoonup 'b) \ set \Rightarrow 'a \rightharpoonup 'b \ \mathbf{where}
 (\lambda \ x. \ if \ (\exists \ f \in \mathit{fs}. \ x \in \mathit{dom}(f)) \ then \ (\mathit{THE} \ y. \ \forall \ f \in \mathit{fs}. \ x \in \mathit{dom}(f) \longrightarrow f(x) = y) \ else \ \mathit{None})
lemma merge-empty: merge \{\} = Map.empty
 by (simp add: merge-def)
```

```
lemma merge-singleton: merge \{f\} = f apply (auto intro!: ext simp add: merge-def) using option.collapse apply fastforce done
```

7.10 Conversion between lists and maps

```
definition map\text{-}of\text{-}list :: 'a \ list \Rightarrow (nat \rightharpoonup 'a) where
map-of-list xs = (\lambda \ i. \ if \ (i < length \ xs) \ then \ Some \ (xs!i) \ else \ None)
lemma map-of-list-nil [simp]: map-of-list [] = Map.empty
 by (simp add: map-of-list-def)
lemma dom-map-of-list [simp]: dom (map-of-list \ xs) = \{0..< length \ xs\}
  by (auto simp add: map-of-list-def dom-def)
lemma ran-map-of-list [simp]: ran (map-of-list xs) = set xs
 apply (simp add: ran-def map-of-list-def)
  apply (safe)
  apply (force)
  apply (meson in-set-conv-nth)
  done
definition list-of-map :: (nat \rightharpoonup 'a) \Rightarrow 'a list where
\textit{list-of-map} \ f = (\textit{if} \ (f = \textit{Map.empty}) \ \textit{then} \ [] \ \textit{else map} \ (\textit{the} \circ f) \ [\textit{0} \ .. < \textit{Suc}(\textit{GREATEST} \ x. \ x \in \textit{dom} \ f)])
lemma list-of-map-empty [simp]: list-of-map Map.empty = []
  by (simp add: list-of-map-def)
definition list-of-map' :: (nat \rightharpoonup 'a) \rightharpoonup 'a list where
list-of-map' f = (if (\exists n. dom f = \{0...< n\}) then Some (list-of-map f) else None)
lemma map\text{-}of\text{-}list\text{-}inv [simp]: list\text{-}of\text{-}map (map\text{-}of\text{-}list \ xs) = xs
proof (cases \ xs = [])
  case True thus ?thesis by (simp)
next
  case False
  moreover hence (GREATEST \ x. \ x \in dom \ (map-of-list \ xs)) = length \ xs - 1
   by (auto intro: Greatest-equality)
  moreover from False have map-of-list xs \neq Map.empty
   by (metis ran-empty ran-map-of-list set-empty)
  ultimately show ?thesis
   by (auto intro!:nth-equalityI simp add: list-of-map-def map-of-list-def fun-eq-iff)
qed
```

7.11 Map Comprehension

Map comprehension simply converts a relation built through set comprehension into a map.

```
syntax
```

```
-Mapcompr :: 'a \Rightarrow 'b \Rightarrow idts \Rightarrow bool \Rightarrow 'a \rightarrow 'b \quad ((1[- \mapsto - |/-./-]))
```

translations

```
-Mapcompr F G xs P == CONST graph-map \{(F, G) \mid xs. P\}
```

```
lemma map-compr-eta:
 [x \mapsto y \mid x \ y. \ (x, \ y) \in_m f] = f
 apply (rule ext)
 apply (auto simp add: graph-map-def)
  apply (metis (mono-tags, lifting) Domain.DomainI fst-eq-Domain mem-Collect-eq old.prod.case op-
tion.distinct(1) option.expand option.sel)
 done
lemma map\text{-}compr\text{-}simple:
 [x \mapsto F \ x \ y \ | \ x \ y. \ (x, \ y) \in_m f] = (\lambda \ x. \ do \ \{ \ y \leftarrow f(x); \ Some(F \ x \ y) \ \})
 apply (rule ext)
 apply (auto simp add: graph-map-def image-Collect)
 done
lemma map-compr-dom-simple [simp]:
  dom [x \mapsto f x \mid x. P x] = \{x. P x\}
 by (force simp add: graph-map-dom image-Collect)
lemma map-compr-ran-simple [simp]:
 ran [x \mapsto f x \mid x. P x] = \{f x \mid x. P x\}
 apply (auto simp add: graph-map-def ran-def)
 apply (metis (mono-tags, lifting) fst-eqD image-eqI mem-Collect-eq someI)
 done
lemma map-compr-eval-simple [simp]:
 [x \mapsto f \ x \mid x. \ P \ x] \ x = (if \ (P \ x) \ then \ Some \ (f \ x) \ else \ None)
 by (auto simp add: graph-map-def image-Collect)
         Sorted lists from maps
definition sorted-list-of-map :: ('a::linorder \rightarrow 'b) \Rightarrow ('a \times 'b) list where
sorted-list-of-map f = map (\lambda k. (k, the (f k))) (sorted-list-of-set(dom(f)))
lemma sorted-list-of-map-empty [simp]:
 sorted-list-of-map Map.empty = []
 by (simp add: sorted-list-of-map-def)
\mathbf{lemma}\ sorted-list-of-map-inv:
 assumes finite(dom(f))
 shows map\text{-}of (sorted\text{-}list\text{-}of\text{-}map f) = f
proof -
 obtain A where finite A A = dom(f)
   by (simp add: assms)
 thus ?thesis
 proof (induct A rule: finite-induct)
   case empty thus ?thesis
     by (simp add: sorted-list-of-map-def, metis dom-empty empty-iff map-le-antisym map-le-def)
   case (insert x A) thus ?thesis
     by (simp add: assms sorted-list-of-map-def map-of-map-keys)
 qed
\mathbf{qed}
declare map-member.simps [simp del]
```

7.13 Extra map lemmas

```
lemma map-eqI:
 \llbracket dom f = dom g; \forall x \in dom(f). the(fx) = the(gx) \rrbracket \Longrightarrow f = g
 by (metis domIff map-le-antisym map-le-def option.expand)
lemma map-restrict-dom [simp]: f \mid `dom f = f
 by (simp\ add:\ map-eqI)
lemma map-restrict-dom-compl: f \mid '(-dom \ f) = Map.empty
 by (metis dom-eq-empty-conv dom-restrict inf-compl-bot)
lemma restrict-map-neg-disj:
 dom(f) \cap A = \{\} \Longrightarrow f \mid `(-A) = f
 by (auto simp add: restrict-map-def, rule ext, auto, metis disjoint-iff-not-equal domIff)
lemma map-plus-restrict-dist: (f ++ g) \mid A = (f \mid A) ++ (g \mid A)
 by (auto simp add: restrict-map-def map-add-def)
lemma map-plus-eq-left:
 \mathbf{assumes}\ f\ ++\ h\ =\ g\ ++\ h
 shows (f \mid `(-dom \ h)) = (q \mid `(-dom \ h))
proof -
 have h \mid `(-dom h) = Map.empty
   by (metis Compl-disjoint dom-eq-empty-conv dom-restrict)
 then have f2: f \mid `(-dom \ h) = (f ++ h) \mid `(-dom \ h)
   by (simp add: map-plus-restrict-dist)
 have h \mid `(-dom h) = Map.empty
   by (metis (no-types) Compl-disjoint dom-eq-empty-conv dom-restrict)
 then show ?thesis
   using f2 assms by (simp add: map-plus-restrict-dist)
qed
\mathbf{lemma}\ map\text{-}add\text{-}split:
 dom(f) = A \cup B \Longrightarrow (f \mid A) ++ (f \mid B) = f
 by (rule ext, auto simp add: map-add-def restrict-map-def option.case-eq-if)
lemma map-le-via-restrict:
 f \subseteq_m g \longleftrightarrow g \mid `dom(f) = f
 by (auto simp add: map-le-def restrict-map-def dom-def fun-eq-iff)
lemma map-add-cancel:
 f \subseteq_m g \Longrightarrow f ++ (g -- f) = g
 by (auto simp add: map-le-def map-add-def map-minus-def fun-eq-iff option.case-eq-if)
    (metis domIff)
\textbf{lemma} \ \textit{map-le-iff-add} : f \subseteq_m g \longleftrightarrow (\exists \ \textit{h.} \ \textit{dom}(f) \cap \textit{dom}(h) = \{\} \land f \ ++ \ h = g)
 apply (auto)
 apply (rule-tac x=g -- f in exI)
 apply (metis (no-types, lifting) Int-emptyI domIff map-add-cancel map-le-def map-minus-def)
 apply (simp add: map-add-comm)
 done
m.1
 by (auto simp add: map-add-def option.case-eq-if fun-eq-iff)
```

end

8 Alternative List Lexicographic Order

```
theory List-Lexord-Alt imports Main begin
```

Since we can't instantiate the order class twice for lists, and we want prefix as the default order for the UTP we here add syntax for the lexicographic order relation.

```
definition list-lex-less :: 'a::linorder list \Rightarrow 'a list \Rightarrow bool (infix <_l 50) where xs <_l ys \longleftrightarrow (xs, ys) \in lexord \{(u, v). u < v\}

lemma list-lex-less-neq [simp]: x <_l y \Longrightarrow x \neq y
apply (simp add: list-lex-less-def)
apply (meson case-prodD less-irrefl lexord-irreflexive mem-Collect-eq)
done

lemma not-less-Nil [simp]: \neg x <_l []
by (simp add: list-lex-less-def)

lemma Nil-less-Cons [simp]: [] <_l a \# x
by (simp add: list-lex-less-def)

lemma Cons-less-Cons [simp]: a \# x <_l b \# y \longleftrightarrow a < b \lor a = b \land x <_l y
by (simp add: list-lex-less-def)
end
```

9 Partial Functions

```
theory Partial-Fun
imports Optics.Lenses Map-Extra
begin
```

I'm not completely satisfied with partial functions as provided by Map.thy, since they don't have a unique type and so we can't instantiate classes, make use of adhoc-overloading etc. Consequently I've created a new type and derived the laws.

9.1 Partial function type and operations

```
typedef ('a, 'b) pfun = UNIV :: ('a \rightarrow 'b) \ set ...
setup-lifting type-definition-pfun
lift-definition pfun-app :: ('a, 'b) \ pfun \Rightarrow 'a \Rightarrow 'b \ (-'(-')_p \ [999,0] \ 999) is \lambda \ f \ x. \ if \ (x \in dom \ f) \ then \ the \ (f \ x) \ else \ undefined.
lift-definition pfun-upd :: ('a, 'b) \ pfun \Rightarrow 'a \Rightarrow 'b \Rightarrow ('a, 'b) \ pfun is \lambda \ f \ k \ v. \ f(k := Some \ v).
lift-definition pdom :: ('a, 'b) \ pfun \Rightarrow 'a \ set is dom.
```

```
lift-definition pran :: ('a, 'b) pfun \Rightarrow 'b set is ran.
lift-definition pfun-comp :: ('b, 'c) pfun \Rightarrow ('a, 'b) pfun \Rightarrow ('a, 'c) pfun (infixl \circ_p 55) is map-comp.
lift-definition pfun-member :: 'a × 'b \Rightarrow ('a, 'b) pfun \Rightarrow bool (infix \in_p 50) is (\in_m).
lift-definition pId-on :: 'a \ set \Rightarrow ('a, 'a) \ pfun \ is \ \lambda \ A \ x. \ if \ (x \in A) \ then \ Some \ x \ else \ None.
abbreviation pId :: ('a, 'a) pfun where
pId \equiv pId\text{-}on \ UNIV
lift-definition plambda :: ('a \Rightarrow bool) \Rightarrow ('a \Rightarrow 'b) \Rightarrow ('a, 'b) pfun
is \lambda P f x. if (P x) then Some (f x) else None.
lift-definition pdom-res :: 'a set \Rightarrow ('a, 'b) pfun \Rightarrow ('a, 'b) pfun (infixr \triangleleft_p 85)
is \lambda A f. restrict-map f A.
lift-definition pran-res :: ('a, 'b) pfun \Rightarrow 'b set \Rightarrow ('a, 'b) pfun (infixl \triangleright_p 85)
is ran-restrict-map.
lift-definition pfun-graph :: ('a, 'b) pfun \Rightarrow ('a \times 'b) set is map-graph.
lift-definition graph-pfun :: ('a \times 'b) set \Rightarrow ('a, 'b) pfun is graph-map.
lift-definition pfun-entries :: 'k set \Rightarrow ('k \Rightarrow 'v) \Rightarrow ('k, 'v) pfun is
\lambda \ d \ f \ x. \ if \ (x \in d) \ then \ Some \ (f \ x) \ else \ None \ .
definition pcard :: ('a, 'b) pfun \Rightarrow nat
where pcard f = card (pdom f)
instantiation pfun :: (type, type) zero
begin
lift-definition zero-pfun :: ('a, 'b) pfun is Map.empty .
instance ..
end
abbreviation pempty :: ('a, 'b) pfun (\{\}_p)
where pempty \equiv 0
\textbf{instantiation} \ \textit{pfun} \ :: \ (\textit{type}, \ \textit{type}) \ \textit{plus}
lift-definition plus-pfun :: ('a, 'b) pfun \Rightarrow ('a, 'b) pfun \Rightarrow ('a, 'b) pfun is (++).
instance ..
end
instantiation pfun :: (type, type) minus
lift-definition minus-pfun :: ('a, 'b) pfun \Rightarrow ('a, 'b) pfun \Rightarrow ('a, 'b) pfun is (--).
instance ..
end
instance pfun :: (type, type) monoid-add
 by (intro-classes, (transfer, auto)+)
```

instantiation pfun :: (type, type) inf

```
begin
lift-definition inf-pfun :: ('a, 'b) pfun \Rightarrow ('a, 'b) pfun \Rightarrow ('a, 'b) pfun is
\lambda f g x. if (x \in dom(f) \cap dom(g) \wedge f(x) = g(x)) then f(x) else None.
instance ..
\mathbf{end}
abbreviation pfun-inter :: ('a, 'b) pfun \Rightarrow ('a, 'b) pfun \Rightarrow ('a, 'b) pfun (infixl \cap_p 80)
where pfun-inter \equiv inf
instantiation pfun :: (type, type) \ order
begin
 lift-definition less-eq-pfun :: ('a, 'b) pfun \Rightarrow ('a, 'b) pfun \Rightarrow bool is
  \lambda f g. f \subseteq_m g.
 lift-definition less-pfun :: ('a, 'b) pfun \Rightarrow ('a, 'b) pfun \Rightarrow bool is
 \lambda f g. f \subseteq_m g \wedge f \neq g.
instance
 by (intro-classes, (transfer, auto intro: map-le-trans simp add: map-le-antisym)+)
abbreviation pfun-subset :: ('a, 'b) pfun \Rightarrow ('a, 'b) pfun \Rightarrow bool (infix \subset_p 50)
where pfun-subset \equiv less
abbreviation pfun-subset-eq :: ('a, 'b) pfun \Rightarrow ('a, 'b) pfun \Rightarrow bool (infix \subseteq_p 50)
where pfun-subset-eq \equiv less-eq
instance pfun :: (type, type) semilattice-inf
 by (intro-classes, (transfer, auto simp add: map-le-def dom-def)+)
lemma pfun-subset-eq-least [simp]:
  \{\}_p \subseteq_p f
  by (transfer, auto)
syntax
  -PfunUpd :: [('a, 'b) \ pfun, \ maplets] => ('a, 'b) \ pfun \ (-'(-')_p \ [900,0]900)
             :: maplets => ('a, 'b) pfun \qquad ((1\{-\}_p))
  -Pfun
  -plam
             :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic (\lambda - | - . - [0,0,10] 10)
translations
  -PfunUpd\ m\ (-Maplets\ xy\ ms)\ ==\ -PfunUpd\ (-PfunUpd\ m\ xy)\ ms
  -PfunUpd\ m\ (-maplet\ x\ y) = CONST\ pfun-upd\ m\ x\ y
  -Pfun ms
                                 => -PfunUpd (CONST pempty) ms
  -Pfun \ (-Maplets \ ms1 \ ms2) <= -PfunUpd \ (-Pfun \ ms1) \ ms2
                                 <= -PfunUpd (CONST pempty) ms
  -Pfun ms
  \lambda x \mid P \cdot e
                                => CONST \ plambda \ (\lambda \ x. \ P) \ (\lambda \ x. \ e)
 \lambda x \mid P \cdot e
                                \langle = CONST \ plambda \ (\lambda \ x. \ P) \ (\lambda \ y. \ e)
 \lambda y \mid P \cdot e
                                \langle = CONST \ plambda \ (\lambda \ x. \ P) \ (\lambda \ y. \ e)
 \lambda y \mid f v y \cdot e
                                <= CONST plambda (f v) (\lambda y. e)
        Algebraic laws
9.2
lemma pfun-comp-assoc: f \circ_p (g \circ_p h) = (f \circ_p g) \circ_p h
  by (transfer, simp add: map-comp-assoc)
lemma pfun-comp-left-id [simp]: pId \circ_p f = f
 by (transfer, auto)
```

```
lemma pfun-comp-right-id [simp]: f \circ_p pId = f
 by (transfer, auto)
lemma pfun-override-dist-comp:
 (f+g) \circ_p h = (f \circ_p h) + (g \circ_p h)
 apply (transfer)
 apply (rule ext)
 apply (auto simp add: map-add-def)
 apply (rename-tac\ f\ g\ h\ x)
 apply (case-tac \ h \ x)
  apply (auto)
 apply (rename-tac\ f\ g\ h\ x\ y)
 apply (case-tac \ g \ y)
  apply (auto)
 done
lemma pfun-minus-unit [simp]:
 fixes f :: ('a, 'b) pfun
 shows f - \theta = f
 by (transfer, simp add: map-minus-def)
lemma pfun-minus-zero [simp]:
 fixes f :: ('a, 'b) pfun
 shows \theta - f = \theta
 by (transfer, simp add: map-minus-def)
lemma pfun-minus-self [simp]:
 fixes f :: ('a, 'b) pfun
 shows f - f = 0
 by (transfer, simp add: map-minus-def)
lemma pfun-plus-commute:
 pdom(f) \cap pdom(g) = \{\} \Longrightarrow f + g = g + f
 by (transfer, metis map-add-comm)
lemma pfun-plus-commute-weak:
 (\forall k \in pdom(f) \cap pdom(g), f(k)_p = g(k)_p) \Longrightarrow f + g = g + f
 by (transfer, simp, metis IntD1 IntD2 domD map-add-comm-weak option.sel)
lemma pfun-minus-plus-commute:
 pdom(g) \cap pdom(h) = \{\} \Longrightarrow (f - g) + h = (f + h) - g
 by (transfer, simp add: map-minus-plus-commute)
lemma pfun-plus-minus:
 f \subseteq_p g \Longrightarrow (g - f) + f = g
 by (transfer, rule ext, auto simp add: map-le-def map-minus-def map-add-def option.case-eq-if)
lemma pfun-minus-common-subset:
 \llbracket h \subseteq_p f; h \subseteq_p g \rrbracket \Longrightarrow (f - h = g - h) = (f = g)
 by (transfer, simp add: map-minus-common-subset)
lemma pfun-minus-plus:
 pdom(f) \cap pdom(g) = \{\} \Longrightarrow (f+g) - g = f
 by (transfer, simp add: map-add-def map-minus-def option.case-eq-if, rule ext, auto)
    (metis Int-commute domIff insert-disjoint(1) insert-dom)
```

```
lemma pfun-plus-pos: x + y = \{\}_p \Longrightarrow x = \{\}_p
by (transfer, simp)
```

lemma pfun-le-plus: pdom $x \cap pdom \ y = \{\} \Longrightarrow x \le x + y$ **by** (transfer, auto simp add: map-le-iff-add)

9.3 Lambda abstraction

lemma plambda-app [simp]: $(\lambda \ x \mid P \ x \ . f \ x)(v)_p = (if \ (P \ v) \ then \ (f \ v) \ else \ undefined)$ by $(transfer, \ auto)$

lemma plambda-eta [simp]: $(\lambda \ x \mid x \in pdom(f). \ f(x)_p) = f$ by (transfer; auto simp add: domIff)

lemma plambda-id [simp]: $(\lambda x \mid P x \cdot x) = pId-on \{x. P x\}$ **by** (transfer, simp)

9.4 Membership, application, and update

lemma pfun-ext: $\llbracket \bigwedge x \ y. \ (x, \ y) \in_p f \longleftrightarrow (x, \ y) \in_p g \rrbracket \Longrightarrow f = g$ by $(transfer, simp \ add: map-ext)$

 $\mathbf{lemma}\ pfun\text{-}member\text{-}alt\text{-}def\colon$

$$(x, y) \in_p f \longleftrightarrow (x \in pdom \ f \land f(x)_p = y)$$

by (transfer, auto simp add: map-member-alt-def map-apply-def)

 $\mathbf{lemma}\ \mathit{pfun-member-plus}\colon$

$$(x, y) \in_p f + g \longleftrightarrow ((x \notin pdom(g) \land (x, y) \in_p f) \lor (x, y) \in_p g)$$

by $(transfer, simp \ add: map-member-plus)$

lemma pfun-member-minus:

$$(x, y) \in_p f - g \longleftrightarrow (x, y) \in_p f \land (\neg (x, y) \in_p g)$$

by $(transfer, simp \ add: map-member-minus)$

lemma pfun-app-upd-1 [simp]: $x = y \Longrightarrow (f(x \mapsto v)_p)(y)_p = v$ by (transfer, simp)

lemma pfun-app-upd-2 [simp]: $x \neq y \Longrightarrow (f(x \mapsto v)_p)(y)_p = f(y)_p$ by (transfer, simp)

lemma pfun-graph-apply [simp]: rel-apply (pfun-graph f) $x = f(x)_p$ by (transfer, auto simp add: rel-apply-def map-graph-def)

lemma pfun-upd-ext [simp]: $x \in pdom(f) \Longrightarrow f(x \mapsto f(x)_p)_p = f$ **by** (transfer, simp add: domIff)

lemma pfun-app-add [simp]: $x \in pdom(g) \Longrightarrow (f+g)(x)_p = g(x)_p$ **by** (transfer, auto)

lemma pfun-upd-add [simp]: $f + g(x \mapsto v)_p = (f + g)(x \mapsto v)_p$ **by** (transfer, simp)

lemma pfun-upd-twice [simp]: $f(x \mapsto u, x \mapsto v)_p = f(x \mapsto v)_p$ **by** (transfer, simp)

```
lemma pfun-upd-comm:
  assumes x \neq y
  shows f(y \mapsto u, x \mapsto v)_p = f(x \mapsto v, y \mapsto u)_p
  using assms by (transfer, auto)
lemma pfun-upd-comm-linorder [simp]:
  fixes x y :: 'a :: linorder
  assumes x < y
  shows f(y \mapsto u, x \mapsto v)_p = f(x \mapsto v, y \mapsto u)_p
  using assms by (transfer, auto)
lemma pfun-app-minus [simp]: x \notin pdom\ g \Longrightarrow (f-g)(x)_p = f(x)_p
  by (transfer, auto simp add: map-minus-def)
lemma pfun-app-empty [simp]: \{\}_p(x)_p = undefined
 by (transfer, simp)
lemma pfun-app-not-in-dom:
  x \notin pdom(f) \Longrightarrow f(x)_p = undefined
 by (transfer, simp)
lemma pfun-upd-minus [simp]:
  x \notin pdom \ g \Longrightarrow (f - g)(x \mapsto v)_p = (f(x \mapsto v)_p - g)
 by (transfer, auto simp add: map-minus-def)
lemma pdom-member-minus-iff [simp]:
  x \notin pdom \ g \Longrightarrow x \in pdom(f - g) \longleftrightarrow x \in pdom(f)
 by (transfer, simp add: domIff map-minus-def)
lemma psubseteq-pfun-upd1 [intro]:
  \llbracket f \subseteq_p g; x \notin pdom(g) \rrbracket \Longrightarrow f \subseteq_p g(x \mapsto v)_p
  by (transfer, auto simp add: map-le-def dom-def)
lemma psubseteq-pfun-upd2 [intro]:
  \llbracket f \subseteq_p g; x \notin pdom(f) \rrbracket \Longrightarrow f \subseteq_p g(x \mapsto v)_p
  by (transfer, auto simp add: map-le-def dom-def)
lemma psubseteq-pfun-upd3 [intro]:
  \llbracket f \subseteq_p g; g(x)_p = v \rrbracket \Longrightarrow f \subseteq_p g(x \mapsto v)_p
 by (transfer, auto simp add: map-le-def dom-def)
lemma psubseteq-dom-subset:
 f \subseteq_p g \Longrightarrow pdom(f) \subseteq pdom(g)
 by (transfer, auto simp add: map-le-def dom-def)
{\bf lemma}\ psubseteq\text{-}ran\text{-}subset:
 f \subseteq_p g \Longrightarrow pran(f) \subseteq pran(g)
 by (transfer, auto simp add: map-le-def dom-def ran-def, fastforce)
9.5
        Domain laws
lemma pdom\text{-}zero [simp]: pdom \theta = \{\}
 by (transfer, simp)
lemma pdom-pId-on [simp]: pdom (pId-on A) = A
 by (transfer, auto)
```

```
lemma pdom\text{-}plus [simp]: pdom (f + g) = pdom f \cup pdom g
 by (transfer, auto)
lemma pdom-minus [simp]: g \le f \Longrightarrow pdom (f - g) = pdom f - pdom g
 apply (transfer, auto simp add: map-minus-def)
 apply (meson\ option.distinct(1))
 apply (metis\ domIff\ map-le-def\ option.simps(3))
 done
lemma pdom-inter: pdom (f \cap_p g) \subseteq pdom f \cap pdom g
 by (transfer, auto simp add: dom-def)
lemma pdom\text{-}comp [simp]: pdom <math>(g \circ_p f) = pdom (f \rhd_p pdom g)
 by (transfer, auto simp add: ran-restrict-map-def)
lemma pdom-upd [simp]: pdom (f(k \mapsto v)_p) = insert \ k \ (pdom \ f)
 by (transfer, simp)
lemma pdom\text{-}plamda [simp]: pdom (\lambda x \mid P x \cdot f x) = \{x \cdot P x\}
 by (transfer, auto)
\textbf{lemma} \ \textit{pdom-pdom-res} \ [\textit{simp}] \colon \textit{pdom} \ (A \vartriangleleft_p f) = A \cap \textit{pdom}(f)
 by (transfer, auto)
lemma pdom-graph-pfun [simp]: pdom (graph-pfun R) = Domain R
 by (transfer, simp add: Domain-fst graph-map-dom)
lemma pdom-pran-res-finite [simp]:
 finite\ (pdom\ f) \Longrightarrow finite\ (pdom\ (f \rhd_p A))
 by (transfer, auto)
lemma pdom-pfun-graph-finite [simp]:
 finite\ (pdom\ f) \Longrightarrow finite\ (pfun-graph\ f)
 by (transfer, simp add: finite-dom-graph)
9.6
       Range laws
lemma pran-zero [simp]: pran \theta = \{\}
 by (transfer, simp)
lemma pran-pId-on [simp]: pran (pId-on\ A) = A
 by (transfer, auto simp add: ran-def)
lemma pran-upd [simp]: pran (f(k \mapsto v)_p) = insert \ v \ (pran \ ((-\{k\}) \triangleleft_p f))
 by (transfer, auto simp add: ran-def restrict-map-def)
lemma pran-plamda [simp]: pran (\lambda x \mid P x \cdot f x) = \{f x \mid x \cdot P x\}
 by (transfer, auto simp add: ran-def)
lemma pran-pran-res [simp]: pran (f \triangleright_p A) = pran(f) \cap A
 by (transfer, auto)
lemma pran-comp [simp]: pran (g \circ_p f) = pran (pran f \triangleleft_p g)
 by (transfer, auto simp add: ran-def restrict-map-def)
```

```
lemma pran-finite [simp]: finite (pdom f) \Longrightarrow finite (pran f) by (transfer, auto)
```

9.7 Domain restriction laws

```
lemma pdom\text{-}res\text{-}zero [simp]: A \triangleleft_p \{\}_p = \{\}_p by (transfer, auto)
```

lemma pdom-res-empty [simp]:

$$(\{\} \triangleleft_p f) = \{\}_p$$

by $(transfer, auto)$

lemma pdom-res-pdom [simp]:

$$pdom(f) \triangleleft_p f = f$$

by $(transfer, auto)$

lemma
$$pdom\text{-}res\text{-}UNIV$$
 $[simp]$: $UNIV \triangleleft_p f = f$ **by** $(transfer, auto)$

lemma
$$pdom\text{-}res\text{-}alt\text{-}def \colon A \lhd_p f = f \circ_p pId\text{-}on \ A$$
 by $(transfer, rule\ ext,\ auto\ simp\ add \colon restrict\text{-}map\text{-}def)$

lemma pdom-res-upd-in [simp]:

$$k \in A \Longrightarrow A \triangleleft_p f(k \mapsto v)_p = (A \triangleleft_p f)(k \mapsto v)_p$$

by $(transfer, auto)$

lemma pdom-res-upd-out [simp]:

$$k \notin A \Longrightarrow A \lhd_p f(k \mapsto v)_p = A \lhd_p f$$

by $(transfer, auto)$

lemma pfun-pdom-antires-upd [simp]:

$$k \in A \Longrightarrow ((-A) \lhd_p m)(k \mapsto v)_p = ((-(A - \{k\})) \lhd_p m)(k \mapsto v)_p$$

by $(transfer, simp)$

lemma pdom-antires-insert-notin [simp]:

$$k \notin pdom(f) \Longrightarrow (-insert\ k\ A) \triangleleft_p f = (-A) \triangleleft_p f$$

by $(transfer, auto\ simp\ add:\ restrict-map-def)$

lemma pdom-res-override [simp]:
$$A \triangleleft_p (f + g) = (A \triangleleft_p f) + (A \triangleleft_p g)$$

by (simp add: pdom-res-alt-def pfun-override-dist-comp)

lemma pdom-res-minus [simp]:
$$A \triangleleft_p (f - g) = (A \triangleleft_p f) - g$$

by (transfer, auto simp add: map-minus-def restrict-map-def)

lemma pdom-res-swap:
$$(A \triangleleft_p f) \triangleright_p B = A \triangleleft_p (f \triangleright_p B)$$

by (transfer, auto simp add: restrict-map-def ran-restrict-map-def)

lemma pdom-res-twice [simp]:
$$A \triangleleft_p (B \triangleleft_p f) = (A \cap B) \triangleleft_p f$$
 by (transfer, auto simp add: Int-commute)

lemma
$$pdom\text{-}res\text{-}comp\ [simp]: A \lhd_p (g \circ_p f) = g \circ_p (A \lhd_p f)$$

by $(simp\ add:\ pdom\text{-}res\text{-}alt\text{-}def\ pfun\text{-}comp\text{-}assoc})$

lemma pdom-res-apply [simp]:

$$x \in A \Longrightarrow (A \lhd_p f)(x)_p = f(x)_p$$

by $(transfer, auto)$

9.8 Range restriction laws

```
lemma pran-res-zero [simp]: \{\}_p \rhd_p A = \{\}_p
 by (transfer, auto simp add: ran-restrict-map-def)
lemma pran-res-upd-1 [simp]: v \in A \Longrightarrow f(x \mapsto v)_p \triangleright_p A = (f \triangleright_p A)(x \mapsto v)_p
 by (transfer, auto simp add: ran-restrict-map-def)
lemma pran-res-upd-2 [simp]: v \notin A \Longrightarrow f(x \mapsto v)_p \rhd_p A = ((-\{x\}) \vartriangleleft_p f) \rhd_p A
 by (transfer, auto simp add: ran-restrict-map-def)
lemma pran-res-alt-def: f \triangleright_p A = pId-on A \circ_p f
 by (transfer, rule ext, auto simp add: ran-restrict-map-def)
lemma pran-res-override: (f + g) \triangleright_p A \subseteq_p (f \triangleright_p A) + (g \triangleright_p A)
 apply (transfer, auto simp add: map-add-def ran-restrict-map-def map-le-def)
 apply (rename-tac\ f\ g\ A\ a\ y\ x)
 apply (case-tac \ g \ a)
  apply (auto)
 done
9.9
        Graph laws
lemma pfun-qraph-inv: qraph-pfun (pfun-qraph f) = f
 by (transfer, simp)
lemma pfun-graph-zero: pfun-graph \theta = \{\}
 by (transfer, simp add: map-graph-def)
lemma pfun-graph-pId-on: <math>pfun-graph (pId-on A) = Id-on A
 by (transfer, auto simp add: map-graph-def)
lemma pfun-graph-minus: pfun-graph (f - g) = pfun-graph f - pfun-graph g
 by (transfer, simp add: map-graph-minus)
lemma pfun-graph-inter: pfun-graph (f \cap_p g) = pfun-graph f \cap pfun-graph g
 apply (transfer, auto simp add: map-graph-def)
  apply (metis\ option.discI)+
 done
9.10
         Entries
lemma pfun-entries-empty [simp]: pfun-entries \{\}\ f = \{\}_p
 by (transfer, simp)
lemma pfun-entries-apply-1 [simp]:
 x \in d \Longrightarrow (pfun\text{-}entries\ d\ f)(x)_p = f\ x
 by (transfer, auto)
lemma pfun-entries-apply-2 [simp]:
 x \notin d \Longrightarrow (pfun\text{-}entries\ d\ f)(x)_p = undefined
 by (transfer, auto)
```

9.11 Summation

definition pfun-sum :: ('k, 'v::comm-monoid-add) $pfun \Rightarrow 'v$ where

```
pfun\text{-}sum f = sum (pfun\text{-}app f) (pdom f)
lemma pfun-sum-empty [simp]: pfun-sum \{\}_p = 0
 by (simp add: pfun-sum-def)
lemma pfun-sum-upd-1:
 assumes finite(pdom(m)) k \notin pdom(m)
 shows pfun-sum (m(k \mapsto v)_p) = pfun-sum m + v
 by (simp-all add: pfun-sum-def assms, metis add.commute assms(2) pfun-app-upd-2 sum.cong)
lemma pfun-sums-upd-2:
 assumes finite(pdom(m))
 shows pfun-sum (m(k \mapsto v)_p) = pfun-sum ((-\{k\}) \triangleleft_p m) + v
proof (cases \ k \notin pdom(m))
 {f case}\ {\it True}
 then show ?thesis
   by (simp add: pfun-sum-upd-1 assms)
 case False
 then show ?thesis
   using assms pfun-sum-upd-1 [of ((-\{k\}) \triangleleft_p m) \ k \ v]
   by (simp add: pfun-sum-upd-1)
\mathbf{qed}
lemma pfun-sum-dom-res-insert [simp]:
 assumes x \in pdom \ f \ x \notin A \ finite \ A
 shows pfun-sum ((insert\ x\ A) \triangleleft_p f) = f(x)_p + pfun-sum\ (A \triangleleft_p f)
 using assms by (simp add: pfun-sum-def)
lemma pfun-sum-pdom-res:
 fixes f :: ('a, 'b :: ab - group - add) pfun
 assumes finite(pdom f)
 shows pfun-sum (A \triangleleft_p f) = pfun\text{-sum } f - (pfun\text{-sum } ((-A) \triangleleft_p f))
proof -
 have 1:A \cap pdom(f) = pdom(f) - (pdom(f) - A)
   by (auto)
 show ?thesis
   apply (simp add: pfun-sum-def)
   apply (subst 1)
   apply (subst sum-diff)
     apply (auto simp add: sum-diff Diff-subset Int-commute boolean-algebra-class.diff-eq assms)
   done
qed
lemma pfun-sum-pdom-antires [simp]:
 fixes f :: ('a, 'b::ab\text{-}group\text{-}add) pfun
 assumes finite(pdom f)
 shows pfun-sum ((-A) \triangleleft_p f) = pfun-sum (A \triangleleft_p f)
 by (subst pfun-sum-pdom-res, simp-all add: assms)
9.12
         Partial Function Lens
definition pfun-lens :: 'a \Rightarrow ('b \Longrightarrow ('a, 'b) \ pfun) where
[lens-defs]: pfun-lens i = (lens-get = \lambda \ s. \ s(i)_p, \ lens-put = \lambda \ s. \ s(i \mapsto v)_p)
lemma pfun-lens-mwb [simp]: mwb-lens (pfun-lens i)
```

```
by (unfold-locales, simp-all add: pfun-lens-def)
lemma pfun-lens-src: \mathcal{S}_{pfun-lens\ i} = \{f.\ i \in pdom(f)\}
 by (auto simp add: lens-defs lens-source-def, transfer, force)
Hide implementation details for partial functions
lifting-update pfun.lifting
lifting-forget pfun.lifting
end
        Finite Functions
10
theory Finite-Fun
imports Map-Extra Partial-Fun FSet-Extra
begin
10.1
         Finite function type and operations
typedef ('a, 'b) ffun = \{f :: ('a, 'b) pfun. finite(pdom(f))\}
 morphisms pfun-of Abs-pfun
 by (rule-tac \ x=\{\}_p \ in \ exI, \ auto)
setup-lifting type-definition-ffun
lift-definition ffun-app :: ('a, 'b) ffun \Rightarrow 'a \Rightarrow 'b (-'(-')_f [999,0] 999) is pfun-app.
lift-definition ffun-upd :: ('a, 'b) ffun \Rightarrow 'a \Rightarrow 'b \Rightarrow ('a, 'b) ffun is pfun-upd by simp
lift-definition fdom :: ('a, 'b) ffun \Rightarrow 'a set is pdom .
lift-definition fran :: ('a, 'b) ffun \Rightarrow 'b set is pran.
lift-definition ffun-comp :: ('b, 'c) ffun \Rightarrow ('a, 'b) ffun \Rightarrow ('a, 'c) ffun (infixl \circ_f 55) is pfun-comp by
auto
lift-definition ffun-member :: 'a × 'b \Rightarrow ('a, 'b) ffun \Rightarrow bool (infix \in_f 50) is (\in_p).
lift-definition fdom-res :: 'a set \Rightarrow ('a, 'b) ffun \Rightarrow ('a, 'b) ffun (infixl \triangleleft_f 85)
is pdom-res by simp
lift-definition fran-res :: ('a, 'b) ffun \Rightarrow 'b set \Rightarrow ('a, 'b) ffun (infixl \triangleright_f 85)
is pran-res by simp
lift-definition ffun-graph :: ('a, 'b) ffun \Rightarrow ('a \times 'b) set is pfun-graph.
lift-definition graph-ffun :: ('a \times 'b) set \Rightarrow ('a, 'b) ffun is
 \lambda R. if (finite (Domain R)) then graph-pfun R else pempty
 by (simp add: finite-Domain)
instantiation ffun :: (type, type) zero
begin
lift-definition zero-ffun :: ('a, 'b) ffun is 0 by simp
instance ..
```

end

```
abbreviation fempty :: ('a, 'b) ffun (\{\}_f)
where fempty \equiv 0
\textbf{instantiation} \ \textit{ffun} :: (\textit{type}, \ \textit{type}) \ \textit{plus}
lift-definition plus-ffun :: ('a, 'b) ffun \Rightarrow ('a, 'b) ffun \Rightarrow ('a, 'b) ffun is (+) by simp
instance ..
end
instantiation ffun :: (type, type) minus
begin
lift-definition minus-ffun :: ('a, 'b) ffun \Rightarrow ('a, 'b) ffun \Rightarrow ('a, 'b) ffun is (-)
 by (metis finite-Diff finite-Domain pdom-graph-pfun pdom-pfun-graph-finite pfun-graph-inv pfun-graph-minus)
instance ..
end
instance ffun :: (type, type) monoid-add
 by (intro-classes, (transfer, simp add: add.assoc)+)
instantiation ffun :: (type, type) inf
begin
lift-definition inf-ffun :: ('a, 'b) ffun \Rightarrow ('a, 'b) ffun \Rightarrow ('a, 'b) ffun is inf
  by (meson finite-Int infinite-super pdom-inter)
instance ..
\mathbf{end}
abbreviation ffun-inter :: ('a, 'b) ffun \Rightarrow ('a, 'b) ffun \Rightarrow ('a, 'b) ffun (infixl \cap_f 80)
where ffun-inter \equiv inf
instantiation ffun :: (type, type) \ order
begin
 lift-definition less-eq-ffun :: ('a, 'b) ffun \Rightarrow ('a, 'b) ffun \Rightarrow bool is
 \lambda f g. f \subseteq_p g.
 lift-definition less-ffun :: ('a, 'b) ffun \Rightarrow ('a, 'b) ffun \Rightarrow bool is
 \lambda f g. f < g.
instance
 by (intro-classes, (transfer, auto)+)
\mathbf{end}
abbreviation ffun-subset :: ('a, 'b) ffun \Rightarrow ('a, 'b) ffun \Rightarrow bool (infix \subset_f 50)
where ffun-subset \equiv less
abbreviation ffun-subset-eq :: ('a, 'b) ffun \Rightarrow ('a, 'b) ffun \Rightarrow bool (infix \subseteq_f 50)
where ffun-subset-eq \equiv less-eq
instance ffun :: (type, type) semilattice-inf
 by (intro-classes, (transfer, auto)+)
lemma ffun-subset-eq-least [simp]:
  \{\}_f \subseteq_f f
  by (transfer, auto)
syntax
  -FfunUpd :: [('a, 'b) ffun, maplets] => ('a, 'b) ffun (-'(-')_f [900, 0]900)
```

```
-Ffun
          :: maplets => ('a, 'b) ffun
                                             ((1\{-\}_f))
translations
 -FfunUpd\ m\ (-Maplets\ xy\ ms)\ ==\ -FfunUpd\ (-FfunUpd\ m\ xy)\ ms
 -FfunUpd\ m\ (-maplet\ x\ y) == CONST\ ffun-upd\ m\ x\ y
                          => -FfunUpd (CONST fempty) ms
 -Ffun ms
 -Ffun \ (-Maplets \ ms1 \ ms2) \ <= -Ffun Upd \ (-Ffun \ ms1) \ ms2
 -Ffun\ ms
                          <= -FfunUpd (CONST fempty) ms
        Algebraic laws
```

10.2

lemma ffun-comp-assoc: $f \circ_f (g \circ_f h) = (f \circ_f g) \circ_f h$ **by** (transfer, simp add: pfun-comp-assoc)

lemma pfun-override-dist-comp:

$$(f+g) \circ_f h = (f \circ_f h) + (g \circ_f h)$$

by $(transfer, simp add: pfun-override-dist-comp)$

lemma ffun-minus-unit [simp]:

fixes
$$f :: ('a, 'b)$$
 ffun
shows $f - \theta = f$
by $(transfer, simp)$

lemma ffun-minus-zero [simp]:

fixes
$$f :: ('a, 'b)$$
 ffun
shows $0 - f = 0$
by $(transfer, simp)$

lemma ffun-minus-self [simp]:

fixes
$$f :: ('a, 'b)$$
 ffun
shows $f - f = 0$
by $(transfer, simp)$

lemma ffun-plus-commute:

$$fdom(f) \cap fdom(g) = \{\} \Longrightarrow f + g = g + f$$

by $(transfer, metis pfun-plus-commute)$

lemma *ffun-minus-plus-commute*:

$$fdom(g) \cap fdom(h) = \{\} \Longrightarrow (f - g) + h = (f + h) - g$$

by $(transfer, simp \ add: pfun-minus-plus-commute)$

 $\mathbf{lemma}\ \mathit{ffun-plus-minus}\colon$

$$f \subseteq_f g \Longrightarrow (g - f) + f = g$$

by (transfer, simp add: pfun-plus-minus)

 $\mathbf{lemma}\ \textit{ffun-minus-common-subset}:$

$$\llbracket h \subseteq_f f; h \subseteq_f g \rrbracket \Longrightarrow (f - h = g - h) = (f = g)$$

by (transfer, simp add: pfun-minus-common-subset)

 $\mathbf{lemma}\ \textit{\underline{ffun-minus-plus}}\colon$

$$fdom(f) \cap fdom(g) = \{\} \Longrightarrow (f+g) - g = f$$

by $(transfer, simp \ add: pfun-minus-plus)$

lemma ffun-plus-pos:
$$x + y = \{\}_f \Longrightarrow x = \{\}_f$$

by (transfer, simp add: pfun-plus-pos)

```
lemma ffun-le-plus: fdom x \cap fdom \ y = \{\} \Longrightarrow x \le x + y by (transfer, simp add: pfun-le-plus)
```

10.3 Membership, application, and update

```
lemma ffun-ext: \llbracket \bigwedge x \ y. \ (x, y) \in_f f \longleftrightarrow (x, y) \in_f g \rrbracket \Longrightarrow f = g by (transfer, simp \ add: pfun-ext)
```

lemma ffun-member-alt-def:

$$(x, y) \in_f f \longleftrightarrow (x \in fdom \ f \land f(x)_f = y)$$

by $(transfer, simp \ add: pfun-member-alt-def)$

 $\mathbf{lemma}\ \mathit{ffun-member-plus}\colon$

$$(x, y) \in_f f + g \longleftrightarrow ((x \notin fdom(g) \land (x, y) \in_f f) \lor (x, y) \in_f g)$$

by $(transfer, simp \ add: pfun-member-plus)$

lemma ffun-member-minus:

$$(x, y) \in_f f - g \longleftrightarrow (x, y) \in_f f \land (\neg (x, y) \in_f g)$$

by $(transfer, simp \ add: pfun-member-minus)$

lemma ffun-app-upd-1 [simp]:
$$x = y \Longrightarrow (f(x \mapsto v)_f)(y)_f = v$$

by (transfer, simp)

lemma ffun-app-upd-2 [simp]:
$$x \neq y \Longrightarrow (f(x \mapsto v)_f)(y)_f = f(y)_f$$

by (transfer, simp)

lemma ffun-upd-ext [simp]:
$$x \in fdom(f) \Longrightarrow f(x \mapsto f(x)_f)_f = f$$
 by (transfer, simp)

lemma ffun-app-add [simp]:
$$x \in fdom(g) \Longrightarrow (f+g)(x)_f = g(x)_f$$

by (transfer, simp)

lemma ffun-upd-add [simp]:
$$f + g(x \mapsto v)_f = (f + g)(x \mapsto v)_f$$

by (transfer, simp)

lemma ffun-upd-twice [simp]:
$$f(x \mapsto u, x \mapsto v)_f = f(x \mapsto v)_f$$

by (transfer, simp)

lemma ffun-upd-comm:

assumes
$$x \neq y$$

shows $f(y \mapsto u, x \mapsto v)_f = f(x \mapsto v, y \mapsto u)_f$
using assms by (transfer, simp add: pfun-upd-comm)

 $\mathbf{lemma}\ \mathit{ffun-upd-comm-linorder}\ [\mathit{simp}]:$

```
fixes xy :: 'a :: linorder
assumes x < y
shows f(y \mapsto u, x \mapsto v)_f = f(x \mapsto v, y \mapsto u)_f
using assms by (transfer, auto)
```

lemma ffun-app-minus [simp]: $x \notin fdom \ g \Longrightarrow (f - g)(x)_f = f(x)_f$ **by** (transfer, auto)

lemma ffun-upd-minus [simp]:

$$x \notin fdom \ g \Longrightarrow (f - g)(x \mapsto v)_f = (f(x \mapsto v)_f - g)$$

by $(transfer, auto)$

```
lemma fdom-member-minus-iff [simp]:
  x \notin fdom \ g \Longrightarrow x \in fdom(f - g) \longleftrightarrow x \in fdom(f)
 by (transfer, simp)
lemma fsubseteq-ffun-upd1 [intro]:
  \llbracket f \subseteq_f g; x \notin fdom(g) \rrbracket \Longrightarrow f \subseteq_f g(x \mapsto v)_f
 by (transfer, auto)
lemma fsubseteq-ffun-upd2 [intro]:
  \llbracket f \subseteq_f g; x \notin fdom(f) \rrbracket \Longrightarrow f \subseteq_f g(x \mapsto v)_f
 by (transfer, auto)
\mathbf{lemma} \ psubseteq\text{-}pfun\text{-}upd3 \ [intro]:
  \llbracket f \subseteq_f g; g(x)_f = v \rrbracket \Longrightarrow f \subseteq_f g(x \mapsto v)_f
 by (transfer, auto)
lemma f subseteq-dom-subset:
 f \subseteq_f g \Longrightarrow fdom(f) \subseteq fdom(g)
 by (transfer, auto simp add: psubseteq-dom-subset)
lemma fsubseteq-ran-subset:
 f \subseteq_f g \Longrightarrow fran(f) \subseteq fran(g)
 by (transfer, simp add: psubseteq-ran-subset)
10.4
          Domain laws
lemma fdom-finite [simp]: finite(fdom(f))
 by (transfer, simp)
lemma fdom\text{-}zero [simp]: fdom \theta = \{\}
  by (transfer, simp)
lemma fdom-plus [simp]: fdom (f + g) = fdom f \cup fdom g
 by (transfer, auto)
lemma fdom-inter: fdom (f \cap_f g) \subseteq fdom f \cap fdom g
  by (transfer, meson pdom-inter)
lemma fdom-comp [simp]: fdom (g \circ_f f) = fdom (f \rhd_f fdom g)
 by (transfer, auto)
lemma fdom-upd [simp]: fdom (f(k \mapsto v)_f) = insert \ k \ (fdom \ f)
 by (transfer, simp)
\textbf{lemma} \textit{ fdom-fdom-res } [\textit{simp}] \text{: } \textit{fdom } (A \lhd_f f) = A \cap \textit{fdom}(f)
 by (transfer, auto)
lemma fdom-graph-ffun [simp]:
 finite\ (Domain\ R) \Longrightarrow fdom\ (graph-ffun\ R) = Domain\ R
 by (transfer, simp add: Domain-fst graph-map-dom)
10.5
          Range laws
lemma fran-zero [simp]: fran \theta = \{\}
 by (transfer, simp)
```

```
lemma fran-upd [simp]: fran (f(k \mapsto v)_f) = insert \ v \ (fran \ ((-\{k\}) \triangleleft_f f))
 by (transfer, auto)
lemma fran-fran-res [simp]: fran (f \triangleright_f A) = fran(f) \cap A
 by (transfer, auto)
lemma fran-comp [simp]: fran (g \circ_f f) = fran (fran f \triangleleft_f g)
 by (transfer, auto)
          Domain restriction laws
10.6
lemma fdom-res-zero [simp]: A \triangleleft_f \{\}_f = \{\}_f
 by (transfer, auto)
lemma fdom-res-empty [simp]:
  (\{\} \triangleleft_f f) = \{\}_f
 by (transfer, auto)
lemma fdom-res-fdom [simp]:
 fdom(f) \triangleleft_f f = f
 by (transfer, auto)
lemma pdom-res-upd-in [simp]:
  k \in A \Longrightarrow A \triangleleft_f f(k \mapsto v)_f = (A \triangleleft_f f)(k \mapsto v)_f
 by (transfer, auto)
lemma pdom-res-upd-out [simp]:
  k \notin A \Longrightarrow A \lhd_f f(k \mapsto v)_f = A \lhd_f f
 by (transfer, auto)
lemma fdom-res-override [simp]: A \triangleleft_f (f + g) = (A \triangleleft_f f) + (A \triangleleft_f g)
  by (metis fdom-res.rep-eq pdom-res-override pfun-of-inject plus-ffun.rep-eq)
lemma fdom-res-minus [simp]: A \triangleleft_f (f - g) = (A \triangleleft_f f) - g
 by (transfer, auto)
lemma fdom-res-swap: (A \triangleleft_f f) \triangleright_f B = A \triangleleft_f (f \triangleright_f B)
  by (transfer, simp add: pdom-res-swap)
lemma fdom-res-twice [simp]: A \triangleleft_f (B \triangleleft_f f) = (A \cap B) \triangleleft_f f
 by (transfer, auto)
lemma fdom-res-comp [simp]: A \triangleleft_f (g \circ_f f) = g \circ_f (A \triangleleft_f f)
 by (transfer, simp)
          Range restriction laws
lemma fran-res-zero [simp]: \{\}_f \rhd_f A = \{\}_f
 by (transfer, auto)
lemma fran-res-upd-1 [simp]: v \in A \Longrightarrow f(x \mapsto v)_f \rhd_f A = (f \rhd_f A)(x \mapsto v)_f
```

lemma fran-res-upd-2 [simp]: $v \notin A \Longrightarrow f(x \mapsto v)_f \rhd_f A = ((-\{x\}) \lhd_f f) \rhd_f A$

by (transfer, auto)

by (transfer, auto)

```
lemma fran-res-override: (f+g) \triangleright_f A \subseteq_f (f \triangleright_f A) + (g \triangleright_f A)
by (transfer, simp add: pran-res-override)
```

10.8 Graph laws

```
lemma ffun-graph-inv: graph-ffun (ffun-graph f) = f
by (transfer, auto simp add: pfun-graph-inv finite-Domain)
lemma ffun-graph-zero: ffun-graph 0 = \{\}
by (transfer, simp add: pfun-graph-zero)
lemma ffun-graph-minus: ffun-graph (f - g) = ffun-graph f - ffun-graph g
by (transfer, simp add: pfun-graph-minus)
lemma ffun-graph-inter: ffun-graph (f \cap_f g) = ffun-graph f \cap ffun-graph g
by (transfer, simp add: pfun-graph-inter)
```

10.9 Partial Function Lens

```
definition ffun-lens :: 'a \Rightarrow ('b \Longrightarrow ('a, 'b) ffun) where [lens-defs]: ffun-lens i = (|lens-get = \lambda s. s(i)_f, lens-put = \lambda s. v. s(i \mapsto v)_f |) lemma ffun-lens-mwb [simp]: mwb-lens (ffun-lens i) by (unfold-locales, simp-all add: ffun-lens-def) lemma ffun-lens-src: S_{ffun-lens i = \{f. \ i \in fdom(f)\} by (auto \ simp \ add: \ lens-defs \ lens-source-def, metis <math>ffun-upd-ext) Hide implementation details for finite functions lifting-update ffun. lifting lifting-forget ffun. lifting
```

 \mathbf{end}

11 Infinity Supplement

```
theory Infinity
imports HOL.Real
HOL-Library.Infinite-Set
Optics.Two
begin
```

This theory introduces a type class *infinite* that guarantees that the underlying universe of the type is infinite. It also provides useful theorems to prove infinity of the universes for various HOL types.

11.1 Type class infinite

```
The type class postulates that the universe (carrier) of a type is infinite.
```

```
class infinite =
assumes infinite-UNIV [simp]: infinite (UNIV :: 'a set)
```

11.2 Infinity Theorems

```
Useful theorems to prove that a type's UNIV is infinite.
```

Note that infinite-UNIV-nat is already a simplification rule by default.

```
lemmas infinite-UNIV-int [simp]
theorem infinite-UNIV-real [simp]:
infinite (UNIV :: real set)
 by (rule infinite-UNIV-char-0)
theorem infinite-UNIV-fun1 [simp]:
infinite (UNIV :: 'a set) \Longrightarrow
card\ (\mathit{UNIV} :: 'b\ set) \neq \mathit{Suc}\ 0 \Longrightarrow
infinite (UNIV :: ('a \Rightarrow 'b) set)
 apply (erule contrapos-nn)
 apply (erule finite-fun-UNIVD1)
 apply (assumption)
 done
theorem infinite-UNIV-fun2 [simp]:
infinite (UNIV :: 'b set) \Longrightarrow
infinite (UNIV :: ('a \Rightarrow 'b) set)
 apply (erule contrapos-nn)
 apply (erule finite-fun-UNIVD2)
 done
theorem infinite-UNIV-set [simp]:
infinite (UNIV :: 'a set) \Longrightarrow
infinite (UNIV :: 'a set set)
 apply (erule contrapos-nn)
 apply (simp add: Finite-Set.finite-set)
 done
theorem infinite-UNIV-prod1 [simp]:
infinite (UNIV :: 'a set) \Longrightarrow
infinite (UNIV :: ('a \times 'b) set)
 apply (erule contrapos-nn)
 apply (simp add: finite-prod)
 done
theorem infinite-UNIV-prod2 [simp]:
infinite (UNIV :: 'b set) \Longrightarrow
infinite (UNIV :: ('a \times 'b) set)
 apply (erule contrapos-nn)
 apply (simp add: finite-prod)
 done
theorem infinite-UNIV-sum1 [simp]:
infinite (UNIV :: 'a set) \Longrightarrow
infinite (UNIV :: ('a + 'b) set)
 apply (erule contrapos-nn)
 apply (simp)
 done
```

theorem infinite-UNIV-sum2 [simp]:

```
infinite (UNIV :: 'b set) \Longrightarrow
infinite (UNIV :: ('a + 'b) set)
 apply (erule contrapos-nn)
 apply (simp)
 done
theorem infinite-UNIV-list [simp]:
infinite (UNIV :: 'a list set)
 apply (rule infinite-UNIV-listI)
 done
theorem infinite-UNIV-option [simp]:
infinite (UNIV :: 'a set) \Longrightarrow
infinite (UNIV :: 'a option set)
 apply (erule contrapos-nn)
 apply (simp)
 done
theorem infinite-image [intro]:
infinite A \Longrightarrow inf-on f A \Longrightarrow infinite (f 'A)
 apply (metis finite-imageD)
 done
{\bf theorem}\ infinite\mbox{-} transfer :
infinite\ B \Longrightarrow B \subseteq f \ `A \Longrightarrow infinite\ A
 using infinite-super
 apply (blast)
 done
```

11.3 Instantiations

The instantiations for product and sum types have stronger caveats than in principle needed. Namely, it would be sufficient for one type of a product or sum to be infinite. A corresponding rule, however, cannot be formulated using type classes. Generally, classes are not entirely adequate for the purpose of deriving the infinity of HOL types, which is perhaps why a class such as *infinite* was omitted from the Isabelle/HOL library.

```
instance nat :: infinite by (intro-classes, simp)
instance int :: infinite by (intro-classes, simp)
instance real :: infinite by (intro-classes, simp)
instance fun :: (type, infinite) infinite by (intro-classes, simp)
instance set :: (infinite) infinite by (intro-classes, simp)
instance prod :: (infinite, infinite) infinite by (intro-classes, simp)
instance sum :: (infinite, infinite) infinite by (intro-classes, simp)
instance list :: (type) infinite by (intro-classes, simp)
instance option :: (infinite) infinite by (intro-classes, simp)
subclass (in infinite) two by (intro-classes, auto)
end
```

12 Positive Subtypes

theory Positive imports

```
Infinity
  HOL-Library.\ Countable
begin
12.1
          Type Definition
typedef (overloaded) 'a::{zero, linorder} pos = {x::'a. x \ge 0}
 apply (rule-tac \ x = 0 \ in \ exI)
 apply (clarsimp)
 done
syntax
  -type-pos :: type \Rightarrow type (-+ [999] 999)
translations
  (type)'a^+ == (type)'a pos
\mathbf{setup\text{-}lifting}\ type\text{-}definition\text{-}pos
type-synonym preal = real pos
12.2
          Operators
lift-definition mk-pos :: 'a::\{zero, linorder\} \Rightarrow 'a pos is
\lambda n. if (n \geq 0) then n else 0 by auto
lift-definition real-of-pos :: real pos \Rightarrow real is id.
declare [[coercion real-of-pos]]
12.3
         Instantiations
instantiation pos :: ({zero, linorder}) zero
begin
 \textbf{lift-definition} \ \textit{zero-pos} :: \ 'a \ \textit{pos}
   is \theta :: 'a ..
 instance \dots
end
instantiation pos :: (\{zero, linorder\}) \ linorder
begin
 lift-definition less-eq-pos :: 'a pos \Rightarrow 'a pos \Rightarrow bool
   is (\leq) :: 'a \Rightarrow 'a \Rightarrow bool.
 lift-definition less-pos :: 'a pos \Rightarrow 'a pos \Rightarrow bool
   is (<) :: 'a \Rightarrow 'a \Rightarrow bool.
 {\bf instance}
   apply (intro-classes; transfer)
       \mathbf{apply} \,\, (\mathit{auto})
 done
end
instance pos :: ({zero, linorder, no-top}) no-top
 apply (intro-classes)
 \mathbf{apply}\ (\mathit{transfer})
 apply (clarsimp)
```

apply (meson gt-ex less-imp-le order.strict-trans1)

done

```
instance pos :: ({zero, linorder, no-top}) infinite
 apply (intro-classes)
 apply (rule notI)
 apply (subgoal-tac \forall x::'a pos. x \leq Max UNIV)
 using gt-ex leD apply (blast)
 apply (simp)
 done
instantiation pos :: (linordered-semidom) linordered-semidom
begin
 lift-definition one-pos :: 'a pos
   is 1 :: 'a by (simp)
 lift-definition plus-pos :: 'a pos \Rightarrow 'a pos \Rightarrow 'a pos
   is (+) by (simp)
 lift-definition minus-pos :: 'a pos \Rightarrow 'a pos \Rightarrow 'a pos
   is \lambda x y. if y < x then x - y else \theta
   by (simp add: add-le-imp-le-diff)
 lift-definition times-pos :: 'a pos \Rightarrow 'a pos \Rightarrow 'a pos
   is times by (simp)
 instance
   apply (intro-classes; transfer; simp?)
          apply (simp add: add.assoc)
         apply (simp add: add.commute)
        apply (safe; clarsimp?) [1]
           apply (simp add: diff-diff-add)
          apply (metis add-le-cancel-left le-add-diff-inverse)
         apply (simp add: add.commute add-le-imp-le-diff)
        apply (metis add-increasing2 antisym linear)
       apply (simp add: mult.assoc)
      apply (simp add: mult.commute)
     apply (simp add: comm-semiring-class.distrib)
     apply (simp add: mult-strict-left-mono)
    apply (safe; clarsimp?) [1]
     apply (simp add: right-diff-distrib')
     apply (simp add: mult-left-mono)
   using mult-left-le-imp-le apply (fastforce)
   apply (simp add: distrib-left)
   done
end
instantiation pos :: (linordered-field) semidom-divide
 lift-definition divide-pos :: 'a pos \Rightarrow 'a pos \Rightarrow 'a pos
   is divide by (simp)
 instance
   apply (intro-classes; transfer)
    apply (simp-all)
   done
end
instantiation pos :: (linordered-field) inverse
 lift-definition inverse-pos :: 'a pos \Rightarrow 'a pos
```

```
is inverse by (simp)
 instance ..
end
lemma pos-positive [simp]: 0 \le (x::'a::\{zero, linorder\}\ pos)
 by (transfer, simp)
         Theorems
12.4
lemma mk-pos-zero [simp]: mk-pos \theta = \theta
 by (transfer, simp)
lemma mk-pos-one [simp]: mk-pos 1 = 1
 by (transfer, simp)
lemma mk-pos-leq:
  \llbracket \ 0 \leq x; \, x \leq y \ \rrbracket \Longrightarrow \textit{mk-pos} \ x \leq \textit{mk-pos} \ y
 by (transfer, auto)
lemma mk-pos-less:
  \llbracket 0 \le x; x < y \rrbracket \implies mk\text{-pos } x < mk\text{-pos } y
 by (transfer, auto)
lemma real-of-pos [simp]: x \ge 0 \Longrightarrow real-of-pos (mk-pos x) = x
 by (transfer, simp)
lemma mk-pos-real-of-pos [simp]: mk-pos (real-of-pos x) = x
 by (transfer, simp)
12.5
         Transfer to Reals
{f named-theorems}\ pos-transfer
lemma real-of-pos-0 [pos-transfer]:
 real-of-pos \theta = \theta
 by (transfer, auto)
lemma real-of-pos-1 [pos-transfer]:
 real-of-pos 1 = 1
 by (transfer, auto)
lemma real-op-pos-plus [pos-transfer]:
 real-of-pos (x + y) = real-of-pos x + real-of-pos y
 by (transfer, simp)
lemma real-op-pos-minus [pos-transfer]:
 x \ge y \Longrightarrow real\text{-}of\text{-}pos\ (x-y) = real\text{-}of\text{-}pos\ x - real\text{-}of\text{-}pos\ y
 by (transfer, simp)
lemma real-op-pos-mult [pos-transfer]:
 real-of-pos (x * y) = real-of-pos x * real-of-pos y
 by (transfer, simp)
lemma real-op-pos-div [pos-transfer]:
 real-of-pos (x / y) = real-of-pos x / real-of-pos y
 by (transfer, simp)
```

```
lemma real-of-pos-numeral [pos-transfer]:
    real-of-pos (numeral n) = numeral n
by (induct n, simp-all only: numeral.simps pos-transfer)

lemma real-of-pos-eq-transfer [pos-transfer]:
    x = y \longleftrightarrow real-of-pos x = real-of-pos y
by (transfer, auto)

lemma real-of-pos-less-eq-transfer [pos-transfer]:
    x \le y \longleftrightarrow real-of-pos x \le real-of-pos y
by (transfer, auto)

lemma real-of-pos-less-transfer [pos-transfer]:
    x < y \longleftrightarrow real-of-pos x < real-of-pos y
by (transfer, auto)
```

13 Recall Undeclarations

```
theory Total-Recall
imports Main
keywords
purge-syntax :: thy-decl and
purge-notation :: thy-decl and
recall-syntax :: thy-decl
begin
```

13.1 ML File Import

ML-file Total-Recall.ML

13.2 Outer Commands

```
ML <
 val - =
   Outer-Syntax.command @{command-keyword purge-syntax}
     purge raw syntax clauses
     ((Parse.syntax-mode -- Scan.repeat1 \ Parse.const-decl) >>
      (\mathit{Toplevel.theory}\ o\ (\mathit{fn}\ (\mathit{mode},\ \mathit{args}) =>
        (TotalRecall.record-no-syntax mode args) o
        (Sign.del-syntax-cmd\ mode\ args))));
 val - =
   Outer-Syntax.local-theory @\{command-keyword\ purge-notation\}
     purge concrete syntax for constants / fixed variables
     ((Parse.syntax-mode -- Parse.and-list1 (Parse.const -- Parse.mixfix)) >>
       (fn \ (mode, \ args) =>
        (Local\hbox{-} Theory.background\hbox{-} theory
          (TotalRecall.record-no-notation mode args)) o
        (Specification.notation-cmd\ false\ mode\ args)));
  val - =
   Outer-Syntax.command @{command-keyword recall-syntax}
```

```
recall\ undecarations\ of\ all\ purged\ items\\ (Scan.succeed\ (Toplevel.theory\ TotalRecall.execute-all))\\ \\ \bullet \\ \mathbf{end}
```

14 Meta-theory for UTP Toolkit

```
theory utp-toolkit
 imports
 HOL.Deriv
 HOL-Library. Adhoc-Overloading
 HOL-Library.Char-ord
 HOL-Library. Countable-Set
 HOL-Library.FSet
 HOL-Library.Monad-Syntax
 HOL-Library.Countable
 HOL-Library. Order-Continuity
 HOL-Library.Prefix-Order
 HOL-Library.Product-Order
 HOL-Library.Sublist
 HOL-Algebra. Complete-Lattice
 HOL-Algebra.\ Galois-Connection
 HOL-Eisbach.Eisbach
 Optics. Optics
 Countable	ext{-}Set	ext{-}Extra
 FSet-Extra
 Relation-Extra
 Map-Extra
 List-Extra
 List-Lexord-Alt
 Partial-Fun
 Finite-Fun
 Infinity
 Positive
 Total-Recall
```

References

begin end

- [1] A. Cavalcanti and J. Woodcock. A tutorial introduction to CSP in unifying theories of programming. In *Refinement Techniques in Software Engineering*, volume 3167 of *LNCS*, pages 220–268. Springer, 2006.
- [2] A. Feliachi, M.-C. Gaudel, and B. Wolff. Unifying theories in Isabelle/HOL. In *UTP 2010*, volume 6445 of *LNCS*, pages 188–206. Springer, 2010.
- [3] S. Foster, F. Zeyda, and J. Woodcock. Isabelle/UTP: A mechanised theory engineering framework. In *UTP*, LNCS 8963, pages 21–41. Springer, 2014.
- [4] S. Foster, F. Zeyda, and J. Woodcock. Unifying heterogeneous state-spaces with lenses. In *ICTAC*, LNCS 9965. Springer, 2016.
- [5] T. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.

- $[6]\,$ J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1998.
- [7] F. Zeyda, S. Foster, and L. Freitas. An axiomatic value model for Isabelle/UTP. In UTP, LNCS 10134. Springer, 2016.