Sistemas de Numeração

Carlos Eduardo Tanajura da Silva

Eng. Da Computação – Area1

Msc Mecatrônica - UFBA

 Um número é visto como um conceito abstrato para representação de quantidade, sendo por tanto algo relevante para a computação;

Um sistema de numeração é o conjunto de símbolos que

representar quantidade

representação.

para s

Sistema de numeração Decimal. Sistema de numeração da Babilônia Criado aproximadamente 4 mil anos.

Sistema de numeração Maia.

- Principais sistemas numéricos:
 - Decimal:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Binário:
 - 0, 1
 - Octal:
 - 0,1,2,3,4,5,6,7,
 - Hexadecimal:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - **OBS** neste sistemas temos algumas letras de A até F, que equivalem em decimal: 10, 11, 12, 13, 14, 15

- Representação Decimal
 - São 10 símbolos usados de forma repetida para contagem: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Composição de um número: Unidade, Dezena, Centena, ...
 - Base: **10**
- Exemplo: 283₁₀

$$283_{10} = 2x10^2 + 8x10^1 + 3x10^0$$

- Representação Binário
 - São 2 símbolos usados de forma repetida para contagem: 0, 1
 - Base: 2
- Exemplo: **101**₂

$$101_2 = 1x2^2 + 0x2^1 + 1x2^0$$

$$101_2 = 1x4 + 0x2 + 1x1$$

$$101_2 = 4 + 0 + 1$$

$$101_2 = 5_{10}$$

- Representação Octal
 - São 8 símbolos usados de forma repetida para contagem: 0, 1, 2, 3, 4, 5, 6, 7
 - Base: 8
- Exemplo: **548**₈

$$548_8 = 5x8^2 + 4x8^1 + 8x8^0$$

$$548_8 = 5x64 + 4x8 + 8x1$$

$$548_8 = 320 + 32 + 8$$

$$548_8 = 360_{10}$$

Conversão Base X para Base 10

• Equação para conversão:

$$num_d = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 x^0$$

- Exemplos, Converter para a base 10:
 - 1011₂
 - 4*A*3*B*₁₆
 - 7271₈

Conversão Base X para Base 10

$$num_d = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 x^0$$

• Binário – Decimal: 1011_2 $1011_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0$ $1011_2 = 1x8 + 0x4 + 1x2 + 1x1$ $1011_2 = 8 + 0 + 2 + 1 = 11_{10}$

Octal – Decimal: 7271₈

$$7271_8 = 7x8^3 + 2x8^2 + 7x8^1 + 1x8^0$$

$$7271_8 = 7x512 + 2x64 + 7x8 + 1x1$$

$$7271_8 = 3.584 + 128 + 56 + 1 = 3.769_{10}$$

• Hexadecimal – Decimal: $4A3B_{16}$

$$4A3B_{16} = 4x16^{3} + Ax16^{2} + 3x16^{1} + Bx16^{0}$$

$$4A3B_{16} = 4x4096 + 10x256 + 3x16 + 11x1$$

$$4A3B_{16} = 16.384 + 2.560 + 48 + 11 = 19.003_{10}$$

• Soma:

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 1 = 0$ ("vai" 1 para o dígito com ordem superior)

- Propriedades:
 - Operações entre zeros, mantém-se a operação de forma neutra.
 - A ordem das parcelas não altera o resultado da soma.

• Soma:

Exemplo: 101 + 011 = 1000

$$111 \\
101 \\
+011 \\
1000$$

Subtração:

$$0-0=0$$

 $1-0=1$
 $1-1=0$
 $0-1=1$ (pega 1 "emprestado" do dígito superior)

- Propriedades:
 - Operações entre zeros, mantém-se a operação de forma neutra.

• Soma:

Exemplo: 101 - 011 = 010

Multiplicação:

$$0 \times 0 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

Propriedades:

- Operações entre zeros, mantém-se a operação de forma neutra.
- A ordem dos fatores não altera o produto.

• Soma:

```
Exemplo: 101 \times 011 = 011111
                     101
                  x 011
                     101
                    101
    Produto
```

• Divisão:

$$1:1=1$$

$$0:1=0$$

$$1:0=\exists$$

Propriedades:

• Não existe divisão por zero;

• Divisão:

Exemplo:
$$101010 : 110 = 1000$$

$$\begin{array}{c|c}
101010 & 110 \\
\underline{110} & 111 \\
01001 & \underline{110} \\
00110 & \underline{110} \\
00110 & \underline{110}
\end{array}$$
Produto $\underbrace{\begin{array}{c}
110 \\
00110 \\
00011
\end{array}}_{0000}$

Conversão Base 10 para Base 2

• Exemplo: $53_{10} = X_2$

$$53_{10} = 110101_2$$

Conversão Base 10 para Base 16

• Exemplos: $1016_{10} = X_{16}$

$$1016_{10} = 3F8_{16}$$

•
$$53_{10} = X_{16}$$

$$53_{10} = 35_{16}$$

Exercício

Converta para:

$$25_{10} = X_2$$
$$156_{10} = B_{16}$$

• Respostas:

$$25_{10} = 11001_2$$

 $156_{10} = 9C_{16}$

Representação com Sinal

- Uso de sinal para representação: "+" para positivo e "-" para negativo;
- Em binário não é possível fazer uso de símbolos;
- Uso de zero "O A_s A_s A₄ A₃ A₂ A₁ A₆ tivo; Magnitude = 52, Bit de sinal B₆ B₅ B₄ B₃ B₂ B₁ B₀ Magnitude = 52, Bit de sinal

Representação de Soma

- Sinal diferente (+/-):
 - Idêntica o número de maior magnitude;
 - Subtrai o maior pelo menor;
 - Atribuir o sinal do número com maior magnitude;
- Sinais iguais (+/+ ou (-/-):
 - Soma os dois números;
 - Atribuir o sinal dos operandos;
 - Observar o estouro da magnitude, tanto para mais quanto para menos;

Projeto em Sistemas

- Lógica em sistema é vista como complexa para as diversas condições que são submetidas (necessários vários testes);
- A nível de hardware operações aritméticas são execuções complicadas em sua execução;
- Operações:
 - Multiplicação realizadas por várias somas;
 - Exemplo: 4x3 = 4+4+4;
 - A divisão pode ser realizada por várias subtrações;
 - Exemplo: 9:3 = 9 3 3 3;

Representação de Subtração

- É realizada através do método: Complemento a Base.
 - É nada mais que a diferença entre dois números.
- Objetivo é determinar o complemento do número em relação a sua base e depois realizar a soma dos números;
- Grande aplicabilidade na computação;
- Como os computadores realiza operações em Base 2, o complemento será em (C2).
- Números com bits mais a esquerda são utilizados para determinar negativo (1), positivo (0).
- Para isso é necessário saber a quantidade de bits que o número deve ter.
- Processo:
 - Os números negativos terão seus bits invertidos;
 - Soma um ao resultado final;

Complemento

• Exemplo: Complemento de 297₁₀

Número máximo para essa centena: 999_{10}

Complemento: $\frac{999}{-297}$

Complemento

• Exemplo: Complemento de 0011_2

Número máximo para essa centena: 1111_2

Complemento: $\frac{-1111}{-0011}$

Complemento

• Exemplo: Complemento de $3A7E_{16}$

Número máximo para essa centena: $FFFF_{16}$

Complemento: $\frac{FFFF}{-3A7E}$

Quantidade de Representações

- Quantos números conseguimos representar:
 - Um bit:

$$2^1 = 2 \text{ números } (0,1)$$

• Dois bits:

$$2^2 = 4 \, números (00, 01, 10, 11)$$

• Três bits:

```
2^3 = 8 \, n \text{\'u} meros (000, 001, 010, 011, 100, 101, 110, 111)
```

Tabela de complemento para 4 bits

Decimal Positivo	Binário sem sinal	Decimal Negativo	Binário (Complemento)
0	0000	0	1111
1	0001	-1	1110
2	0010	-2	1101
3	0011	-3	1100
4	0100	-4	1011
5	0101	-5	1010
6	0110	-6	1001
7	0111	-7	1000

OBS: Neste caso o zero tem duas representações

Como solução para o complemento onde o zero possui duas representações, basta realizarmos a soma de um "1".

Exemplo:

Complemento do número: 0011_2

$$\begin{array}{r}
 1111 \\
 -0011 \\
 \hline
 1100 \\
 +0001 \\
 \hline
 1101
 \end{array}$$

Por fim, a representação de 4 bits fica:

Decimal Positivo	Binário sem sinal	Decimal Negativo	Binário (Complemento)
0	0000	-1	1111
1	0001	-2	1110
2	0010	-3	1101
3	0011	-4	1100
4	0100	-5	1011
5	0101	-6	1010
6	0110	(-7)	1001
7	0111	-8	1000

OBS: Resolvido o problema das duas representações e ganho de um n

Complementos para 4 bits:

```
0101
                   Carry sobre o bit de sinal
                   -> estouro = overflow
0101
                   Não houve Carry = não overflow
0010
```

Complementos para 4 bits:

$$\begin{array}{r}
0 & 1 & 0 & 1 \\
+ & 1 & 0 & 1 & 0 \\
\hline
1 & 1 & 1 & 1
\end{array}$$

Não houve Carry = não overflow

$$\begin{array}{r}
0 \ 1 \ 1 \ 0 \\
+ \ 1 \ 0 \ 1 \ 1 \\
\hline
0 \ 0 \ 0 \ 1
\end{array}$$

Carry sobre o "bit de sinal" e após ele = não overflow

$$\begin{array}{r}
 1011 \\
 +1010 \\
 \hline
 0101
 \end{array}$$

Carry somente após o "bit de sinal" = overflow