Lógica

	1º teste — 26 de março de 2022 -		— duração: 2 horas
nome:		número:	

Grupo I

Responda a cada uma das 8 questões deste grupo no enunciado, no espaço disponibilizado a seguir à questão, sem apresentar justificações.

1. Dê exemplo de uma fórmula φ do Cálculo Proposicional tal que $\varphi \to (p_0 \vee p_1)$ tenha exatamente quatro subfórmulas.

Resposta:

2. Dê exemplo de fórmulas φ e ψ do Cálculo Proposicional tais que $(p_0 \to \neg \varphi)[\psi/p_0] = (p_1 \lor p_2) \to \neg(\psi \land p_1)$.

Resposta:

3. Indique todos os subconjuntos consistentes de $\{p_1 \land \neg p_0, p_1 \leftrightarrow p_0, p_1\}$ que tenham exatamente dois elementos.

Resposta:

- 4. Seja $\Gamma = \{p_i \mid i \in \mathbb{N}_0 \text{ e } i \text{ é par}\} \cup \{\neg p_1 \lor \neg p_0, p_2 \to p_3\}$. Dê exemplo de uma valoração v tal que $v \models \Gamma$. Resposta:
- 5. Considere a fórmula $\varphi = p_1 \to (p_2 \vee \bot)$. Dê exemplo de uma fórmula ψ do Cálculo Proposicional tal que $\psi \Leftrightarrow \varphi$ e cujos conetivos estão no conjunto $\{\neg, \land\}$.

Resposta:

6. Dê exemplo de uma forma normal disjuntiva φ e de uma fórma normal conjuntiva ψ tais que $\varphi \wedge \psi$ não seja um forma normal conjuntiva.

Resposta:

7. Dê exemplo de uma fórmula φ do Cálculo Proposicional tal que apenas uma das fórmulas $\varphi \to p_0$ e $p_0 \to \varphi$ seja tautologia.

Resposta:

8. Seja $\Gamma = \{p_1 \vee p_2, \neg p_1 \vee p_2, \neg p_2 \vee p_1\}$. Dê exemplo de $\varphi \in \Gamma$ tal que: $\varphi, p_1 \models p_2$.

Resposta:

Grupo II

Responda às 6 questões deste grupo na folha de teste.

- 1. Defina por recursão estrutural a função $f: \mathcal{F}^{CP} \to \mathbb{N}_0$ que a cada $\varphi \in \mathcal{F}^{CP}$ faz corresponder o número de ocorrências do conetivo \wedge em φ .
- 2. Sejam p uma variável proposicional e ψ uma fórmula do Cálculo Proposicional. Prove por indução estrutural que, para todo $\varphi \in \mathcal{F}^{CP}$, $var(\varphi[\psi/p]) \subseteq var(\varphi) \cup var(\psi)$.
- 3. Indique, justificando, uma forma normal disjuntiva logicamente equivalente à fórmula $(\neg p_0 \land p_1) \rightarrow ((p_1 \rightarrow p_2) \rightarrow \bot)$.
- 4. Diga se: $\neg p_1 \lor p_2, p_2 \leftrightarrow p_3 \models p_1 \rightarrow p_3$. Justifique.
- 5. Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Mostre que: se $\Gamma \cup \{\varphi\}$ é consistente e $\Gamma \models \neg \psi \rightarrow \neg \varphi$, então $\Gamma \cup \{\varphi, \psi\}$ é consistente.
- 6. Construa uma demonstração em DNP da fórmula $(p_1 \land (p_1 \rightarrow (p_2 \land \neg p_3))) \rightarrow (p_1 \land p_2)$.

Cotações	II (8 valores)	II (12 valores)
Cotações	1+1+1+1+1+1+1+1	2+2+2+2+2+2