Projekt

STEROWNIKI ROBOTÓW

Założenia projektowe

Piłka sterowana za pomocą żyroskopu ${\bf PS\dot{Z}}$

Skład grupy: Stanisław Chędoska, 259354 Mikołaj Sęk, 258955

Termin: wt. TP 18:55

 $\begin{tabular}{ll} $Prowadzący:$\\ dr inż. Wojciech DOMSKI \end{tabular}$

Spis treści

1	Opi	s projektu	2
	1.1	Założenia Projektowe	2
2	Kor	nfiguracja mikrokontrolera	3
	2.1	Konfiguracja pinów	5
	2.2	LTDC	7
	2.3	SDRAM	7
	2.4	DAC	
	2.5	SPI	8
	2.6	DMA2D	
3	Har	rmonogram pracy	9
	3.1	Kamienie milowe	9
	3.2	Wykres Gantta	10
	3.3	Podział pracy	
4	Pod	Isumowanie	10
Bi	bilog	grafia	11

1 Opis projektu

Celem projektu jest stworzenie prostej gry bazującej na płytce STM32F429l-DISC1, wyposażonej m.in. w dotykowy ekran TFT LCD oraz żyroskop. Gra będzie polegać na manipulowaniu ruchem piłki wyświetlonej na ekranie, poprzez przechylanie płytki w różne kierunki (odczyty z żyroskopu). Dodatkowo, piłka będzie odbijać się od ścian wydając przy tym dźwięk generowany z zewnętrznego urządzenia podłączonego do odpowiedniego pinu GPIO z konwerterem cyfrowo-analogowym.

1.1 Założenia Projektowe

- Do rysowania piłki na ekranie wykorzystane zostanie układ kontrolujący LTDC.
- Do rysowania obrazu na ekranie LCD zostanie wykorzystany kontorler LTDC, sterujący wyświetlaczaem za pomocą interfejsu RGB. Bufor z rysowanym obrazem będzie się znajdował w zewnętrznej pamięci SDRAM.
- Piłka zostanie przedstawiona jako zamalowane na jednolity kolor koło.
- Po zestknięciu się ze ścianą, wydany zostanie krótki 0.5 sekundowy dźwięk o stałej częstotliwości korzystając z przetwornika cyfrowo-analogowego.
- Żyroskop L3GD20 zwraca prędkości obrotowe. Aby uzyskać aktualny obrót, wartości te będą całkowane w czasie i w odpowiedni sposób przeliczane. Na podstawie pomiarów, piłka będzie liniowo przyśpieszała w kierunku wychylenia.
- wciśnięcie przycisku spowoduje sprowadzenie piłki na środek ekranu oraz wyzerowanie wyników
 całkowania pomiarów z żyroskopu (Pomiar wychylenia na podstawie żyroskopu, wraz z trwaniem
 czasu jest obarczony coraz większym błędem spowodowanym dryftem żyroskopu)

Docelowo pętla progeamu ma polegać na: sczytaniu pomiaru z żyroskopu i obliczeniu przechylenia. Następnie wyliczone zostanie przyśpieszenie piłki i nowa pozycja środka piłki po zastosowaniu przyśpieszenia. Jeśli nowa pozycja będzie znajdowała się w odległości równej (lub mniejszej) promieniowi od którejkolwiek z granic ekranu to piłka zostanie zatrzymana i wydany zostanie sygnał dźwiękowy. Jeśli nie to do bufora przechowującego piksele wpisane zostaną punkty znajdujące się w odległości (od środka piłki) mniejszej lub równej promieniowi w celu narysowania koła. Następnie kontroler LTDC wyświetli zapisany bufor na ekranie wykorzystując interfejs RGB.

2 Konfiguracja mikrokontrolera

Rysunek 1: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMX

Rysunek 2: Konfiguracja zegarów mikrokontrolera

2.1 Konfiguracja pinów

Numer pinu	PIN	Tryb pracy	Funkcja/etykieta
8	PC14	OSC32 IN*	
9	PC15	OSC32 OUT*	
10	PF0	$\overline{A0}$	A0
11	PF1	$\mathrm{FMC}^{-}\mathrm{A1}$	A1
12	PF2	$\mathrm{FMC}^{-}\mathrm{A2}$	A2
13	PF3	FMC A3	A3
14	PF4	FMCA4	A4
15	PF5	FMC A5	A5
19	PF7	SPI5 SCK	SPI5 SCK [L3GD20 SCL/SPC]
20	PF8	SPI5 MISO	SPI5 MISO [L3GD20 SDO]
21	PF9	SPI5 MOSI	SPI5 MOSI [L3GD20 SDA/SDI/SDO]
22	PF10	LTDC DE	ENABLE [LCD-RGB ENABLE]
23	PH0	OSC IN	RCC OSC IN PH0-OSC IN
24	PH1	OSC OUT	RCC OSC OUT PHI-OSC OUT
26	PC0	FMC SDNWE	SDNWE
27	PC1	GPIO Output	NCS MEMS SPI [L3GD20 CS I2C/SPI]
28	PC2	GPIO Output	CSX [LCD-RGB CSX]
34	PA0/WKUP	GPIO EXTI0	B1 [Blue PushButton]
35	PA1	GPIO EXTI1	MEMS INT1 [L3GD20 INT1]
36	PA2	GPIO EXTI2	MEMS INT2 [L3GD20 INT2]
37	PA3	LTDC B5	B5
40	PA4	LTDC VSYNC	VSYNC
41	PA5	DAC OUT2	VS 1110
42	PA6	LTDC G2	G_2
43	PA7	GPIO Output	ACP RST
44	PC4	GPIO Output	OTG FS PSO [OTG FS PowerSwitchOn]
45	PC5	GPIO EXTI5	OTG FS OC [OTG FS OverCurrent]
46	PB0	LTDC R3	R3
47	PB1	LTDC R6	R6
48	PB2/BOOT1	GPIO Input	BOOT1
49	PF11	FMC SDNRAS	SDNRAS
50	PF12	FMC A6	A6
53	PF13	FMC A7	A7
54	PF14	FMC A8	A8
55	PF15	FMC A9	A9
56	PG0	FMC A10	A10
57	PG1	FMC A11	A11
58	PE7	FMC D4	D4
59	PE8	FMC D5	D5
60	PE9	FMC D6	D6
63	PE10	FMC D7	D7
64	PE11	FMC D8	D8
65	PE12	FMC D9	D9
66	PE13	FMC D10	D10
67	PE14	FMC D11	D11
68	PE15	FMC D12	D12
69	PB10	LTDC G4	G4
69	PB10	LTDC_G4	G4

Tabela 1: Konfiguracja pinów mikrokontrolera cz.1

Numer pinu	PIN	Tryb pracy	Funkcja/etykieta
70	PB11	LTDC G5	G5
73	PB12	USB $\overline{\mathrm{O}}\mathrm{TG}\ \mathrm{HS}_ID$	OTG HS ID
74	PB13	USB OTG HS VBUS	VBUS HS
75	PB14	USB OTG HS DM	OTG HS DM
76	PB15	USB OTG HS DP	OTG HS DP
77	PD8	FMC D13	D13
78	PD9	FMC D14	D14
79	PD10	FMC D15	D15
80	PD11	GPIO Input	TE [LCD-RGB TE]
81	PD12	GPIO Output	RDX [LDC-RGB RDX]
73	PB12	USB $\overline{\text{OTG}}$ HS_ID	OTG HS ID
74	PB13	USB_OTG_HS_VBUS	VBUS HS
75	PB14	USB OTG HS DM	OTG HS DM
76	PB15	USB OTG HS DP	OTG HS DP
77	PD8	FMC D13	D13
78	PD9	FMC D14	D14
79	PD10	FMC D15	D15
80	PD11	GPIO_Input	TE [LCD-RGB_TE]
81	PD12	GPIO Output	RDX [LDC-RGB RDX]
82	PD13	GPIO Output	WRX DCX [LCD-RGB WRX DCX]
85	PD14	FMC_D0	D0
86	PD15	FMC_D1	D1
89	PG4	FMC_BA0	BA0
90	PG5	FMC_BA1	BA1
91	PG6	LTDC_R7	R7
92	PG7	LTDC_CLK	DOTCLK [LCT-RGB_DOTCLK]
93	PG8	FMC_SDCLK	SDCLK
96	PC6	LTDC_HSYNC	HSYNC
97	PC7	LTDC_G6	G6
99	PC9	I2C3_SDA	I2C3_SDA [ACP/RF_SDA]
100	PA8	I2C3_SCL	$I2C3_SCL$ [ACP/RF_SCL]
103	PA11	LTDC_R4	R4
104	PA12	LTDC_R5	R5
105	PA13	SYS_JTMS-SWDIO	SWDIO
109	PA14	SYS_JTCK-SWCLK	SWCLK
110	PA15	GPIO_EXTI15	TP_INT1 [Touch Panel]
111	PC10*	LTDC_R2	R2
114	PD0	FMC_D2	D2
115	PD1	FMC_D3	D3
117	PD3	LTDC_G7	G7
122	PD6*	LTDC_B2	B2
125	PG10	LTDC_G3	G3
126	PG11	LTDC_B3	B3
127	PG12	LTDC_B4	B4
128	PG13	GPIO_Output	LD3 [Green Led]
129	PG14	GPIO_Output	LD4 [Red Led]
132	PG15	FMC_SDNCAS	SDNCAS
135	PB5	FMC_SDCKE1	SDCKE1
136	PB6	FMC_SDNE1	SDNE1 [SDRAM_CS]
139	PB8	LTDC_B6	B6
140	PB9	LTDC_B7	B7
141	PE0	FMC_NBL0	NBL0 [SDRAM_LDQM]
142	PE1	FMC_NBL1	NBL1 [SDRAM_UDQM]

Tabela 2: Konfiguracja pinów mikrokontrolera cz.2

2.2 LTDC

Peryferium to służy do kontroli ekranu wyświetlacza LCD-THT. Kontroler ten stale przesyła zawartość określonego buforu w którym znajdują się informacje o kolorach pikseli które mają zostać wyświetlone na ekranie. Ekran ma wymiary 240 pikseli w pionie i 320 pikseli w poziomie.

Parametr	Wartość			
Synchronization for Width				
Horizontal Synchronization Width	10			
Horizontal Back Porch	20			
Active Width	240			
Horizontal Front Porch	10			
HSync Width	9			
Accumulated Horizontal Back Porch Width	29			
Accumulated Active Width	269			
Total Width	279			
Synchronization for Height				
Vertical Synchronization Height	2			
Vertical Back Porch	2			
Active Height	320			
Vertical Front Porch	4			
VSync Height	1			
Accumulated Vertical Back Porch Height	3			
Accumulated Active Height	323			
Total Height	327			
Synchronization for Height				
Horizontal Synchronization Polarity	Active Low			
Vertical Synchronization Polarity	Active Low			
Data Enable Polarity	Active Low			
Pixel Clock Polarity	Normal Input			
Backgruond Color				
Red	0			
Green	0			
Bluew	0			

Tabela 3: Konfiguracja peryferium LTDC

2.3 SDRAM

Jest to pamięć zewnętrzna, rozszerzająca pamięć dostępną do wykorzystania przez mikrokontorler. Na niej zapisywany będzie bufor przechuwujący obraz który ma być rysowany na ekranie. Użycie SDRAM jest konieczne gdyż bufor obrazu może zajmować duże ilości pamięci (W szczególności w przypadku podwójnego buforowania).

Parametr	Wartość
SDRAM controll	
Bank	bank SDRAM 2
Number of column address bits	8
Number of row address bits	12
CAS latency	3
Write protection	Disabled
SDRAM common clock	2
SDRAM common burst read	Disabled
SDRAM comon read pipe delay	2

Tabela 4: Konfiguracja peryferium SDRAM cz.1

Parametr	Wartość		
SDRAM timing in memory clock cycles			
Load mode register to active delay	2		
Exit self-refresh delay	7		
Self-refresh time	4		
SDRAM common row cycle delay	7		
Write recovery time	3		
SDRAM common row precharge delay	2		
Row to column delay	2		

Tabela 5: Konfiguracja peryferium SDRAM cz.2

2.4 DAC

Konwerter Cyfrowo-analogowy będzie służył do wytworzenia sygnału o zadanej częstotliwości (od 20Hz do 20kHz) by wytworzyć dźwięk.

Parametr	Wartość
DAC Out2 Se	ttings
Output Buffer	Enable
Trigger	None

Tabela 6: Konfiguracja peryferium DAC

2.5 SPI

Za pomocą komunikacji na SPI5 odbierane będą pomiary z żyrokopu L3GD20.

Parametr	Wartość			
Basic Parameters				
Frame Format	Motorola			
Data Size	8bit			
First Bit	MSB First			
Basic Parameters				
Prescaler (for Baud Rate)	16			
Baud Rate	$4.5~\mathrm{Mbit/s}$			
Clock Polarity (CPOL)	LOW			
Clock Phase (CPHA)	1 Edge			
Advanced Parameters				
CRC Calculation	Disabled			
NSS Signal Type	Software			

Tabela 7: Konfiguracja peryferium SPI5

2.6 DMA2D

Ten układ wspomaga operowanie na obrazach. Pozwala zastąpić CPU przy wykonywaniu niektórych czynności związancch z manipulowaniem tablicą obrazu. Może naprzykład wypełnić obszar obrazu jednyn kolorem lub w szybki sposób kopiować piksele do odpowiedniego regionu.

Parametr	Wartość			
Basic Parameters				
Transfer Mode	Memory to memory			
Color Mode	ARGB8888			
Output Offset	0			
DMA2D byte swap	Bytes in regular order in output FIFO			
DMA2D Line Offset Moode	Line offset expressed in pixels			
Foreground layer Configuration				
DMA2D Input Color Mode	ARGB8888			
DMA2D ALPHA MODE	No Modification of the alpha channel value			
Input Alpha	M0			
Input Offset	0			

Tabela 8: Konfiguracja peryferium SPI5

3 Harmonogram pracy

3.1 Kamienie milowe

Kamienie milowe w trakcie trwania projektu wraz z elemenatmi, które się na nie składaja:

- Wyświetlanie piłki w dowolnym miejscu na ekranie LCD.
 - Skonfigurowanie LTDC oraz SDRAM do wyświetlania zawartości buforu.
 - Stworzenie odpowiednich funkcji pozwalających rysować piłkę o zadanym rozmiarze i pozycji na ekranie.
- Odczyt i przetworzenie pomiarów z żyroskopu. [Zakres na etap II]
 - Komunikacja interfejsem SPI z żyroskopem L3GD20 w celu pobierania danych o aktualne prędkości obrotowej.
 - Opracowanie funkcji przekształcającej pomiary z żyroskopu na wartość wychylenia urządzenia.
- Sterowanie piłką za pomocą Żyroskopu.
 - Dodanie możliwości zerowania aktualnego wychylenia za pomocą przycisku (Zapobieganie zwiększaniu się dryftu).
 - Dodanie efektu inercji piłki. Zadawanie przyśpieszenia piłce na podstawie aktualnego wychylenia urządzenia w przestrzeni i ruch piłki w tym kierunku.
 - Dodanie mechanizmu zatrzymującego piłkę w momencie gdy piłka dotknie krawędzi wyświetlacza.
- Wydawanie dźwięku przy konatkcie z krawędzią. [Zakres na etap III]
 - Stworzenie układu wzmacniacza pozwalającego wzmocnić sygnał pochodzący z konwertera cyfrowo-analogowego na tyle by był słyszalny po podłączeniu do głośnika.
 - Generowanie na wyjśćiu DAC sygnału o zadanej, stałej częstotliwości.
 - Generowanie sygnału dźwiękowego po zetknięciu się piłki z krawędzią ekranu.

3.2 Wykres Gantta

Rysunek 3: Diagram Gantta

3.3 Podział pracy

Mikołaj Sęk	%	Stanisław Chędoska	%
Konfiguracja peryferiów w programie CubeMx		Konfiguracja peryferiów w programie CubeMx	
Nawiązanie połączenia z ekranem TFT LCD, Bufor i kontroler LTDC		Stworzenie funkcji pozwaljącej na rysowanie piłki o zadanym promieniu i w zadanym położeniu	
Przetworzenie pomiarów z żyroskopu na wartości wychylenia urządzenia względem osi X i Y.		Komunikacja z żyroskopem L3GD20 i odbieranie pomiarów szybkości kątowej	

Tabela 9: Podział pracy – Etap II

Mikołaj Sęk	%	Stanisław Chędoska	%
Dodanie mechanizmu wykrywającego dotknięcie krawędzi przez piłkę i zatrzymanie jej.		Implementacja fizyki piłki. Inercja, przyśpieszenie w kirunku wychylenia.	
Implementacja przerwania po wciśnięciu przycisku zerującego wychylenie (usunięcie dryftu)		Stworzenie wzmacniacza do generowanego sygnału z przetwornika DAC	
Generowanie dźwięku o zadanej częstotliwości przy zetknięciu się piłki ze ścianą		Generowanie dźwięku o zadanej częstotliwości przy zetknięciu się piłki ze ścianą	

Tabela 10: Podział pracy – Etap III

4 Podsumowanie

 $Repozytorium~Github~grupy:~ \verb|https://github.com/chedoska/PSZ_Sterowniki_Robotow_Projekt|$

Literatura

- [1] STMicroElectronics (2023) LCD-TFT display controller (LTDC) on STM32 MCUs, Application note
- [2] STMicro Electronics (2014) L3GD20: 3-axis digital output gyroscope , Application note
- [3] Luca Davidian (2017) STM32: using the LTDC display controller, http://www.lucadavidian.com/2017/10/02/stm32-using-the-ltdc-display-controller/
- [4] Wojciech Domski (2017) Sterowniki robotów, Laboratorium -Wprowadzenie, Wykorzystanie narzędzi STM32CubeMX oraz SW4STM32 do budowy programu mrugającej diody z obsługą przycisku, http://edu.domski.pl
- [5] Geoffrey Brown (2016) Discovering the STM32 Microcontroller,
- [6] STMicroElectronics (2013) $Getting\ started\ with\ the\ STM32F429\ Discovery\ kit$, User manual