For the complete discussion, see the corresponding slides a paper.

[1] Différence of Gradients (DoG) us. Laplacian of Gradients (LOG)

$$> DoG(I) = (I * G_{\sigma_1}) - (I * G_{\theta_2})$$

$$= I * (G_{\sigma_1} - G_{\theta_2})$$

If I is a one-dimensional signal:

 G_{σ_2} Gor Go, - Go2

⇒ Lo6 ;

$$\Delta G = \nabla^2 G = \nabla \cdot \nabla G$$

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$$

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$$
 $\nabla G = \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}\right)$

$$\Delta G = \nabla \cdot \nabla G = \frac{\partial}{\partial x} \left(\frac{\partial G}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial G}{\partial y} \right) = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

$$Log(I) = I * \Delta G$$

DOG is the approximation of LoG. VG 0,6(I) ≈ LoG(I)

$$\triangle G = \nabla^2 G$$

Mohivation:

- (1) Due to noise, the actual location of an extremum might be shifted.
- (2) Even if we know the actual location, it can be not high enough (=1000 contrast).
- Q: What does it mean by the actual location of an extremum? How to calculate the actual location?

A:

- The green bars are the noisy Dixel intensity values
- The red line is the actual (non-noisy)

the predicted extremum location (using DoG)

- » The actual signal is shifted by noise and discretization.
 - D = a 3x3 pixel patch where a keypoint located in the middle, and D is taken from one of the DoG images.

 This 3x3 putch might be affected by noise.
 - $D(\bar{x}) =$ the actual signal: $\bar{x} = (x,y) \rightarrow$ the actual location Unfortunately, we don't know the actual signal location $G(\bar{x})$.
- Q: How to get D(x), the signal we want to rewver?
- A: Through Taylor expansion:

$$\frac{f(x) = f(a) + f'(a) (x-a) + f''(x-a) (x-a)^{2} + \dots}{2!}$$

the unknown function

$$f(x) = f(a) + f'(a) (x-a) + f'(x-a) (x-a)^2 + ...$$

Meaning:

1. When x=a : f(x) = f(a)

The approximation is rough & basic

2. When f(x) = f(a) + f'(a) (x-a)scalar values

The approximation gets better.

3. When $f(x) = f(a) + f'(a) (x-a) + f''(a) (x-a)^2$

Notes:

- The approximation gets better when we include the higher order functions.
- 'a' is the point where we want to focus our approximation.

Using Taylor expansion in 20:

$$D(\bar{x}) = D(0) + \frac{\partial D^{T}(\bar{x})}{\partial \bar{x}} \begin{vmatrix} \bar{x} + \bar{x}\tau & \frac{\partial^{2}D(\bar{x})}{\partial \bar{x}^{2}} \end{vmatrix} \bar{x} = 0$$

$$|x| |x| |x| = 1$$

$$|x| |x| = 2$$

$$|x| = 2$$

Q: What are these D, Dx, Dy, Dxx, Dxy, Dyy?

A: D is a DoG image (the output of the previous step), where there are a number of keypoints. For each of these keypoints, we take 3x3 pixels from D.

 \mathbb{D}_{\times} (or $\frac{\partial \mathbb{D}}{\partial x}$) & \mathbb{D}_{y} (or $\frac{\partial \mathbb{D}}{\partial y}$) are the first derivative image of \mathbb{D} .

we compute Dy, Dyy, and Dxy (which is the same as Dyx) images in the same way.

To find the true extremum means:

$$\frac{\partial D(\bar{x})}{\partial \bar{x}} = 0 \quad \Rightarrow \text{ the output is a vector of } 2 \times 1.$$

$$\frac{\partial D(\bar{x})}{\partial \bar{x}} + \frac{\partial}{\partial \bar{x}} \left[\frac{\partial D^{T}}{\partial \bar{x}} |_{\bar{x}=0} \right] + \frac{\partial}{\partial \bar{x}} \left[\frac{\partial^{2} D}{\partial \bar{x}^{2}} |_{\bar{x}=0} \right] = 0$$

$$\Rightarrow \text{ constant}$$

$$0 + \frac{\partial \mathbb{D}(\bar{x})}{\partial \bar{x}} \Big|_{\bar{X}=0} + \frac{\partial^2 \mathbb{D}(\bar{x})}{\partial \bar{x}^2} \Big|_{\bar{X}=0} = 0$$

$$\bar{x}^* = -\left(\frac{\partial^2 D(\bar{x})}{\partial \bar{x}^2}\Big|_{\bar{x}=0}\right) \left(\frac{\partial D(\bar{x})}{\partial \bar{x}}\Big|_{\bar{x}=0}\right)$$

If the Offset of **> 0.5

then: check the contrast based on the new location $\vec{x} \to Dc\vec{x}^*$) also check the contrast based on Dco).

the distance from Co.o.) to the cell boundaries is 0.5.

#6

[5] low Contrast: Checking/Verification

Based on the new location \overline{x}^* , we check if the extremum is high enough: $D(\overline{x}^*) = D[0] + \frac{\partial}{\partial \overline{x}}D^T(\overline{x}) |_{\overline{x}=0}$ $|x| \qquad |x| \qquad |x| \qquad |x| \qquad |x|$

If $|D(\bar{x}^*)| < 0.03$ then reject!

it assumes the image intensity of the input is between $0 \sim 1$ (astead of $0 \sim 255$).

[6] First and Second Principal Components
of Curvatures

 $\alpha = 1$ The eigenvalue of the first principal component $\beta = 1$ The eigenvalue of the second principal component $\alpha \gg \beta$

Eigenvalues (α & β) can indicate whether a pixel cluster is edge or corner:

Unlike the above illustration, our data is only 3x3 pixels (9 pixels), which is too spaces to calculate the principal axes.

Solution: to use the ratio of x & B:

1. Hessian matrix:
$$H = \begin{bmatrix} 0xx & 0xy \\ 0xy & 0yy \end{bmatrix}$$

2. Tr(IH) =
$$D_{xx} + D_{yy} = \alpha + \beta$$

Def(IH) = $D_{xx} + D_{yy} = \alpha + \beta$

3.
$$\frac{\Gamma^{2}(H)}{\text{Det}(H)} = \frac{(\alpha + \beta)^{2}}{\text{KB}}$$
 is define: $\alpha = \beta$

$$= \frac{(\alpha + \beta)^{2}}{\text{KB}} = \frac{(\alpha + \beta)^{2}}{\text{C}}$$

if
$$\alpha = \beta$$
 $\rightarrow \Gamma = 1$: $Tr^{2}(H)/Det(H) = 4$ $\rightarrow Corner$

if $\alpha = \alpha\beta$ $\rightarrow \Gamma = \alpha$: $Tr^{2}(H)/Det(H) = 9/\alpha = 4.5$

if $\alpha = \alpha\beta$ $\rightarrow \Gamma = \alpha$: $Tr^{2}(H)/Det(H) = \frac{121}{10} = \frac{121$

Therefore: if Tr2(H)/Def(H) < 12.1
then retain the keypoints, else reject them.

(1) Orientation assignment

Goal: to make the descriptor invariant to image notation.

- r. Extract lox 16 pixels surrounding a keypoint.
- 2. Create a histogram of orientations with 36 bins covering 360°.
- 3. Choose the highest peak in the histogram, and any peaks above 80%, to calculate the orientation normalization.

(2) Descriptor:

one keypoint generates one descriptor, which has a length of 128.

These 128 numbers are obtained from 16x16 pixels:

For each block, we compute the histogram of gradients with 8 bins (= orientations)

Hence, for 1 block of 4×4 pixels we have 8 numbers. Thus, in total we have: $4\times4\times8 = 128.$