## TITLE

Cody Buntain, Christopher Natoli, Miroslav Živković

OSDC PIRE 2014, hosted at University of Amsterdam

 $24~\mathrm{July}~2014$ 

Likelihood ratio

# TITLE

• item

test statistic = 
$$\frac{\sum_{t=1}^{h} e_t}{\sum_{t=1}^{h} e_t}$$

test statistic = 
$$\frac{\sum_{t=1}^{h} e_t^{\top}}{}$$

test statistic = 
$$\frac{\sum_{t=1}^{h} \boldsymbol{e}_{t}^{\top}(\hat{\Sigma})^{-1} \boldsymbol{e}_{t}}{h}$$

$$\hat{\Sigma} := \frac{1}{n-1} \sum_{t=1}^{n} \boldsymbol{e}_{t} \boldsymbol{e}_{t}^{\mathsf{T}}$$

$$\text{test statistic} = \frac{\sum_{t=1}^{h} \boldsymbol{e_t}^{\top}(\hat{\Sigma})^{-1} \boldsymbol{e_t}}{h} - \frac{\sum_{t=1}^{n} \boldsymbol{e_t}^{\top}(\hat{\Sigma})^{-1} \boldsymbol{e_t}}{n}$$

#### Building the test statistic

test statistic = 
$$\frac{h}{\sqrt{2kn}} \left( \frac{\sum_{t=1}^{h} e_t^{\top} (\hat{\Sigma})^{-1} e_t}{h} - \frac{\sum_{t=1}^{n} e_t^{\top} (\hat{\Sigma})^{-1} e_t}{n} \right)$$

## FINDING A SINGLE CHANGEPOINT



Cusum statistic for a time series with three changepoints.

## FINDING A SINGLE CHANGEPOINT

$$\begin{aligned} \max(\text{test statistic}) &= \max \left( \frac{h}{\sqrt{2kn}} \left( \frac{\sum_{t=1}^{h} \boldsymbol{e}_{t}^{\top} (\hat{\Sigma})^{-1} \boldsymbol{e}_{t}}{h} - \frac{\sum_{t=1}^{n} \boldsymbol{e}_{t}^{\top} (\hat{\Sigma})^{-1} \boldsymbol{e}_{t}}{n} \right) \right) \\ &\xrightarrow{D} \sup \left\{ \text{Brownian bridge} \right\}, \end{aligned}$$

which is a known distribution!

# FINDING MORE CHANGEPOINTS



Cusum statistic for a time series with three changepoints.

Kernel changepoint detection

# TITLE

• item

Density ratio estimation

# TITLE

• item