实验: 电离常数和电离度的测定

20xx 年 xx 月 xx 日

一、实验原理与操作方法

(一) 实验原理

乙酸(CH₃COOH或 HAc)是弱电解质,在水溶液中存在下列电离平衡:

$$HAc \Longrightarrow H^+ + Ac^-$$

$$K_a = \frac{[H^+][Ac^-]}{[HAc]}$$
 , $\alpha = \frac{[H^+]}{c}$

式中: $[H^+]$ 、 $[Ac^-]$ 和 [HAc] 分别为 H^+ 、 Ac^- 和 HAc 的平衡浓度, K_a 是电离平衡常数, α 是电离度。

HAc 溶液的总浓度 c 可以使用 NaOH 标准溶液滴定测得;由电离平衡式,可知 H⁺和 Ac⁻的平衡浓度相等,使用 pH 计测量溶液的 pH,再根据 pH = $-\lg[H^+]$ 就可以得到 平衡浓度;另外, $[HAc]=c-[H^+]$,带入公式可以计算得到该温度下的 K_a 和 α 。

(二) 操作方法

- (1) 使用分析天平取三份邻苯二甲酸氢钾($KHC_8H_4O_4$)固体于锥形瓶中,质量区间为 $0.4 \sim 0.6g$,加入 $40 \sim 60$ ml 纯水使其溶解,并加入 $2 \sim 3$ 滴酚酞指示剂;
- (2) 取 15ml 的 NaOH 溶液,稀释至约 300mL,用该溶液滴定锥形瓶中的 $KHC_8H_4O_4$ 溶液,使其变为微红色,并且保持半分钟不褪色(滴定三次);
- (3) 根据 $KHC_8H_4O_4$ 的质量和消耗 NaOH 溶液的体积计算 NaOH 溶液的浓度、相对偏差、平均相对偏差;
- (4) 取 25mL 的 HAc 溶液置于锥形瓶中,滴加酚酞指示剂之后用标定好的 NaOH 溶液进行滴定,计算得出 HAc 溶液的浓度、相对偏差、平均相对偏差(滴定三次);

- (5) 分别取 5mL、10mL、25mL 已标定浓度的 HAc 溶液于三个不同的 50mL 容量瓶中,定容至刻度线处,此时可以得到四种不同浓度的 HAc 溶液;
- (6) 用标准缓冲溶液校准 pH 计,将上述的四种不同浓度的 HAc 溶液注入 50mL 的 小烧杯中,然后用校准后的 pH 计由稀到浓依次测量它们的 pH 值,并记录温度。

(三) 实验中待记录的数据

 $KHC_8H_4O_4$ 的质量、标定 NaOH 时所消耗的 NaOH 溶液的体积、标定 HAc 时所消耗的 NaOH 溶液的体积、4 种不同浓度 HAc 溶液的 pH 值、测量 pH 时的温度。

(四) 化学反应方程式

$$\begin{array}{c} COOK \\ + NaOH = \\ \hline \\ COONa \end{array} + H_2O \\ \end{array}$$

 $HAc \Longrightarrow H^+ + Ac^-$

二、结果与讨论

表 1: NaOH 溶液标定及 HAc 溶液浓度测定数据表

	编号	1	2	3	
	基准物邻苯二甲酸氢钾质量 m/g		0.5163	0.4311	0.5236
标	所用 NaOH 溶液体积 V/	23.82	19.92	24.18	
	全距/mL	0.36			
	NaOH 溶液浓度 C/mol⋅L ⁻¹	测定值	0.1061	0.1060	0.1060
定		平均值	0.1060		
	NaOH 溶液浓度测定值的相	0.09%	0	0	
	NaOH 溶液浓度测定值的平均相对偏差		0.03%		
	所取 HAc 溶液体积 V/n	25.00	25.00	25.00	
测	所用 NaOH 溶液体积 V/	32.90	32.95	33.00	
19(1)	全距/mL	0.10			
	HAc 溶液浓度 C/mol⋅L ⁻¹	测定值	0.1395	0.1397	0.1399
定		平均值		0.1397	
	HAc 溶液浓度测定值的相对偏差		-0.15%	0	0.15%
	HAc 溶液浓度测定值的平均相对偏差		0.10%		

表 2: 测定醋酸电离度和电离常数的数据及处理(温度: 23.0°C)

编号	$V_{\mathrm{HAc}}/\mathrm{mL}$	定容体积/mL	$C_{\rm HAc}/{ m mol}\cdot L^{-1}$	рН	$[\mathrm{H^+}]/\mathrm{mol}\cdot\mathrm{L^{-1}}$	K_{a}	α
1	5.00	50.00	0.01397	3.33	4.7×10^{-4}	1.6×10^{-5}	3.4%
2	10.00	50.00	0.02794	3.15	7.1×10^{-4}	1.8×10^{-5}	2.4%
3	25.00	50.00	0.06985	2.92	1.2×10^{-3}	2.1×10^{-5}	1.7%
4	50.00		0.1397	2.78	1.7×10^{-3}	2.0×10^{-5}	1.2%

经过计算, 23.0° C 下醋酸的电离平衡常数 K_a 的平均值为: 1.9×10^{-5} ,与文献值符合程度较好。

若以 298K 时的电离平衡常数 [1] 为基准(在该温度附近, K_a 随温度的变化不大 [2]),四种浓度下电离平衡常数测定值的相对偏差、平均相对偏差、相对误差、平均相对误差如下表:

编号	1	2	3	4	
$C_{\rm HAc}/{ m mol}\cdot L^{-1}$	0.01397	0.02794	0.06985	0.1397	
K_a	1.6×10^{-5}	1.8×10^{-5}	2.1×10^{-5}	2.0×10^{-5}	
K_a 平均值	1.9×10^{-5}				
相对偏差	-16%	-6%	11%	6%	
平均相对偏差	10%				
298K 下的 K _a	1.75×10^{-5}				
相对误差	-9%	3%	20%	15%	
平均相对误差	8%				

三、实验分析与总结

(一)、实验分析

本实验通过 pH 法测定醋酸溶液的 pH 值 (在校准 pH 计时, 仪表显示的斜率为 100.4)、通过酸碱滴定测定醋酸的浓度 c 来计算在一定温度下醋酸的电离平衡常数 K_a 与电离度 α ,实验原理较为简单。

通过该实验,我们可以得到以下几个结论:

- (1) 对于弱酸,其浓度越小,其电离度越大;
- (2)浓度越大,弱酸溶液的[H+]越大,pH值越小;
- (3) 在不同浓度下, 电离平衡常数略有波动, 但从变化趋势来看(具体可看下图), 这种波动应当是由实验误差造成的, 电离平衡常数的大小与弱酸的浓度无关。

查阅文献,醋酸在 298K 下的电离平衡常数为 1.75×10^{-5} [1],在 25.0°C 附近,电离平衡常数 K_a 与温度之间关联不明显,图像较为 "平坦",平坦段出现在 20°C ~ 24 °C [2],于是可以认为在 23.0°C 的温度下,电离平衡常数约为 1.75×10^{-5} ,而本实验的测定值与其略有偏差。出现该误差,原因可能是:

- (1)滴定时出现操作误差;
- (2) 醋酸易挥发,如果暴露在空气中太久会导致浓度的偏差;
- (3)转移溶液的时候,容器内壁有水,降低了溶液浓度。

(二)、实验改进

依据误差的来源,本实验有以下的几个改进方向:

- (1) 醋酸易挥发,NaOH 容易和空气中的 CO_2 发生反应,因此需要快速进行试验,尽量减少因挥发或者吸收空气中的物质导致的浓度变化;
 - (2) 测定 pH 时,盛放溶液的容器在盛放前应洁净干燥,使用滤纸片擦干水分;
 - (3) 进行滴定操作,快到滴定终点时需要放慢滴加溶液的速度,避免溶液添加过多。

四、思考题

(1) 弱电解质溶液的电离度 (α) 与哪些因素有关?

弱电解质的电离度与弱电解质溶液的温度、浓度以及弱电解质的电离平衡常数有关。

(2) 若分别改变 HAc 溶液的温度和浓度,测得的 K_a 和 α 有无变化? 为什么?

改变温度时,测得的 K_a 和 α 均有变化,因为两者都和温度有关;但若是仅改变浓度,由于 K_a 只和温度有关, K_a 将不会发生改变,但是会改变 α ,因为:

$$\alpha = \frac{[H^+]}{c} \quad , \quad K_a = \frac{[H^+][Ac^-]}{[HAc]} = \frac{[H^+]^2}{c - [H^+]}$$

根据两个式子,可以计算得到:

$$[H^+] = \frac{-K_a + \sqrt{K_a^2 + 4K_ac}}{2}$$

$$\alpha = \frac{[H^+]}{c} = \frac{-K_a + \sqrt{K_a^2 + 4K_ac}}{2c} = -\frac{K_a}{2c} + \sqrt{(\frac{K_a}{2c})^2 + \frac{K_a}{c}}$$

根据该式子,容易可以看出浓度 c 越小,电离度 α 越大。

参考文献

- [1] 宋天佑, 程鹏, 徐家宁, and 张丽荣, 无机化学. 高等教育出版社, 2019.
- [2] 韦明新 and 郑雪鹤,"醋酸电离平衡的温度影响及其热力学分析,"九江师专学报, no. 06, pp. 36-40, 1987.