UNIVERSITAS JENDERAL SOEDIRMAN FAKULTAS TEKNIK PROGRAM STUDI TEKNIK ELEKTRO UJIAN TENGAH SEMESTER

Aljabar Linear 1

Semester Gasal TA 2025/2026

Identitas MK

Kode MK	TKE221113
Nama MK	Aljabar Linear 1
Dosen MK	Aisyah Nur Aulia, Norma Amalia, Yogi Ramadhani, Imron Rosyadi

Capaian Pembelajaran MK Terkait

CPMK	Nomor Soal	Bobot
CPMK-2: Mahasiswa mampu menguasai konsep vektor,	1,2,3,4	100%
operasi vektor, dan ruang vektor dan menerapkannya di		
bidang teknik elektro.		

Pelaksanaan Ujian

Hari, Tanggal	Jumat, 31 Oktober 2025 (Kelas A,B)
	Rabu 29 Oktober 2025 (Kelas C,D)
Waktu	13.00-15.00
Durasi	120 menit
Bentuk	Tertulis
Bobot	$26{,}25\%$
Sifat	Open sheet (1 lembar A4)
Alat Bantu	Alat tulis, kalkulator, sheet

Peraturan Ujian

- Saat ujian, peserta hanya diperkenankan membawa alat bantu ujian yang diizinkan.
- Letakkan peranti selain alat bantu ujian di bagian depan kelas.
- Peserta dilarang bekerja sama, menyontek pekerjaan peserta lain, menyontek dari sumber dan menggunakan alat bantu yang tidak diizinkan.
- Perbuatan curang dan pelanggaran aturan ujian akan mendapatkan sanksi akademik.

Kode Soal Ujian

Α

A	
Identitas Peserta Ujian	
Nama:	
NIM:	
Soal 1 [CPMK-2, 15%]	
Diketahui tiga buah vektor $\mathbf{u}=(2,-4,0),\mathbf{v}=(0,4,-2),\mathrm{dan}\mathbf{w}=(2,-4,0)$,0,-4).
(a) Apakah $\mathbf{u}, \mathbf{v},$ dan \mathbf{w} merupakan himpunan orthogonal? Tunjukka Anda di lembar jawab.	an langkah-langkah perhitungan
Jawaban Ringkas:	
(b) Tentukan panjang vektor proyeksi orthogonal ${\bf u}$ pada vektor ${\bf v}$ perhitungan Anda di lembar jawab.	v. Tunjukkan langkah-langkah
Jawaban Ringkas:	
Soal 2 [CPMK-2, 20%]	
Untuk matriks berukuran 3x3 sebagai berikut,	
$A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 2 & 2 \\ 3 & 1 & 5 \end{bmatrix}$	
(a) Tentukan basis dari ruang kolom. Tunjukkan langkah-langkal jawab.	h perhitungan Anda di lembar
Jawaban Ringkas:	
(b) Tentukan basis dari ruang baris. Tunjukkan langkah-langkah jawab.	n perhitungan Anda di lembai

Jawaban Ringkas: _____

${f (c)}$ Tentukan basis dari ruang null. Tunjukkan langkah-langkah perhitungan Anda di lembar jawab.
Jawaban Ringkas:
Soal 3 [CPMK-2, 10%]
Kode batang (barcode) untuk berbagai produk ritel mengikuti standar tertentu, salah satunya adalah European Article Number (EAN-13). EAN-13 tersusun atas 13 digit angka, dengan digit terakhir merupakan digit uji (check digit) untuk mendeteksi galat (error) saat pembacaan.
Digit uji, yang terletak pada digit ke-13, diperoleh dari 12 digit awal (d_1,d_2,\dots,d_{12}) dengan cara sebagai berikut:
 Kalikan digit-digit pada posisi ganjil (yaitu d₁, d₃,, d₁₁) dengan 1. Kalikan digit-digit pada posisi genap (yaitu d₂, d₄,, d₁₂) dengan 3. Jumlahkan seluruh hasil perkalian tersebut. Sebut total ini sebagai S. Hitung sisa pembagian S oleh 10 (modulo 10), yaitu M = S (mod 10). Digit uji adalah C = (10 - M). (Catatan khusus: jika 10 - M menghasilkan 10, maka digit uji adalah 0).
(a) Jika 12 digit awal EAN-13 tersebut dapat dinyatakan sebagai suatu vektor \mathbf{d} dan 12 digit pengali $(1,3,\ldots,1,3)$ dapat dinyatakan sebagai suatu vektor \mathbf{w} . Nyatakan penghitungan digit uji tersebut dalam suatu formula matematis yang ringkas melibatkan notasi perkalian titik ($dot\ product$) (·). Tunjukkan langkah-langkah formulasi Anda di lembar jawab.
Jawaban Ringkas:
(b) Sebuah produk memiliki 12 digit awal kode EAN sebagai berikut: 871-1-253-00120. Digit ke-13 yang tercetak pada produk tersebut adalah 2. Verifikasi apakah kode EAN-13 yang diberikan (yaitu 871-1-253-00120-2) merupakan kode yang valid ataukah kode yang salah. Tunjukkan langkahlangkah perhitungan Anda di lembar jawab.
Jawaban Ringkas:

Soal 4 [CPMK-2, 20%]

Berdasarkan hukum Faraday, jika konduktor bergerak dalam suatu medan magnet maka akan timbul Gaya Gerak Listrik pada konduktor. Gaya Gerak Listrik (GGL) terinduksi (ε) pada kawat lurus dapat dinyatakan sebagai $\varepsilon = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{L}$, yang mana \mathbf{v} adalah kecepatan konduktor (m/s), \mathbf{B} adalah kekuatan medan magnet (Tesla), dan \mathbf{L} adalah vektor yang merepresentasikan panjang kawat (meter).

Sebuah kabel konduktor dengan panjang L = 0.6 meter bergerak dengan kecepatan $\mathbf{v} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ meter per detik dalam medan magnet seragam $\mathbf{B} = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ Tesla. Asumsikan kawat tersebut sejajar dengan sumbu-z, sehingga $\mathbf{L} = 0\mathbf{i} + 0\mathbf{j} + 0.5\mathbf{k}$ meter.

(a) Hitung nilai GGL terinduksi pada kabel tersebut. Tunjukkan langkah-langkah perhitungan Anda dengan jelas menggunakan operasi perkalian silang vektor (cross product) dan perkalian titik vektor (dot product) pada lembar jawab.

Jawaban	Ringkas:	

(b) Jika kabel tersebut merupakan bagian dari rangkaian tertutup dengan resistansi R=1 Ohm, berapakah arus (I) yang mengalir dalam rangkaian akibat induksi GGL tersebut? Tunjukkan langkahlangkah perhitungan Anda di lembar jawab.

Jawaban Ringkas:	 _	

Soal 5 [CPMK-2, 35%]

Sebuah ruang warna RGB menyatakan warna sebagai vektor di \mathbb{R}^3 , di mana setiap komponen merepresentasikan intensitas warna Merah (R), Hijau (G), dan Biru (B). Nilai intensitas dinyatakan dalam 8-bit, sehingga memiliki rentang nilai dari 0 hingga 255. Sebuah warna dapat dinyatakan sebagai

vektor kolom:
$$\mathbf{c} = \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$
.

- (a) Perhatikan tiga warna berikut yang direpresentasikan sebagai vektor:
 - \mathbf{c}_1 (Merah): $\begin{bmatrix} 255 \\ 0 \\ 0 \end{bmatrix}$
 - \mathbf{c}_2 (Hijau): $\begin{bmatrix} 0 \\ 255 \\ 0 \end{bmatrix}$ \mathbf{c}_3 (Biru): $\begin{bmatrix} 0 \\ 0 \\ 255 \end{bmatrix}$

Apakah himpunan $\{\mathbf{c}_1,\mathbf{c}_2,\mathbf{c}_3\}$ membentuk basis untuk ruang warna RGB? Tunjukkan langkahlangkah Anda di lembar jawab.

Jawaban	Ringkas:	

(b) Suatu warna ${\bf c}_4$ (Ungu) dinyatakan sebagai: $\begin{bmatrix} 128 \\ 0 \\ 128 \end{bmatrix}$. Nyatakan ${\bf c}_4$ sebagai kombinasi linear dari

vektor-vektor basis $\{\mathbf{c}_1,\mathbf{c}_2,\mathbf{c}_3\}$. Tunjukkan langkah-langkah Anda di lembar jawab.

Jawaban	Ringkas:	

(c) Sebuah warna	baru, \mathbf{c}_5	, diciptakan	dengan	mencampurkan	cahaya	Merah	dan	Hijau	ı. Vektor
	$\lceil 192 \rceil$								
RGB-nya adalah \mathbf{c}_{ξ}	$_{5} = 192 $. Nyatakan	\mathbf{c}_5 sebag	gai kombinasi lir	near dari	i $\mathbf{c}_1, \mathbf{c}_2,$	dan	\mathbf{c}_3 . T	Гunjukkan
langkah-langkah Ar	nda di len	nbar jawab.							

Jawaban Ringkas: _____

	$\lceil 1 \rceil$		[0]		[192]			
(d) Jika ada dua vektor arah $\mathbf{v}_1 =$	1	$\mathrm{dan}~\mathbf{v}_2 =$	1	, apakah warna $\mathbf{c}_5 =$	192	dapat dihasilkan		
	$\begin{bmatrix} 0 \end{bmatrix}$		1		$\begin{bmatrix} 0 \end{bmatrix}$			
oleh kombinasi linear dari ${\bf v}_1$ dan ${\bf v}_2$? Jelaskan jawaban Anda dengan menunjukkan apakah ${\bf c}_5$ berada								
dalam $ruang\ rentangan\ ({\rm span})\ {\rm yang}$	dib	entuk oleh v	7 ₁	dan \mathbf{v}_2 pada lembar jav	vab.			

Jawaban Ringkas: _____

	0		255					
(e) Hitung norma Euclidean (panjang vektor) antara warna Hitam (0) dan Putih (255) dalam				
	[0]		$\lfloor 255 \rfloor$					
ruang warna RGB ini. Norma ini merepresentasikan "jarak" atau perbedaan intensitas keseluruhan								
antara kedua warna tersebut. Tunjukkan langkah-langkah Anda di le	mh	ar iawab						

Jawaban Ringkas: _	 		

Purbalingga, 20 Oktober 2025

	PIC	Tanda Tangan	
Dipersiapkan oleh (Dosen MK)	Aisyah Nur Aulia	1.	
	Norma Amalia	2.	
	Yogi Ramadhani	3.	
	Imron Rosyadi	4.	
Diperiksa oleh (Korprodi)	Winasis	5.	