

## Roll No.

## JSS MAHAVIDYAPEETHA JSS ACADEMY OF TECHNICAL EDUCATION, NOIDA DEPARTMENT OF APPLIED MATHEMATICS

## CIA-I

Course:B. Tech.AY 2020-21 (EVEN Semester)Semester:IVDate:3 June 21Subject:Mathematics-IVSubject Code:KAS 402Time:1:00-2:30 P.MMax. Marks:30

|        | COURSE OUTCOMES                                                                                                                                         |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| C229.1 | Classify partial differential equations and transform into canonical form and solve linear and nonlinear partial differential equations of first order. |  |  |  |  |
| C229.2 | Apply the knowledge of partial differential equations to Engineering, sciences & technology.                                                            |  |  |  |  |
| C229.3 | Introduce measures of central tendency and various forecasting techniques.                                                                              |  |  |  |  |
| C229.4 | To develop an understanding of the theory of probability, rules of probability and Probability distributions.                                           |  |  |  |  |
| C229.5 | Understand the meaning and process of hypothesis testing including T-test, F-test, Chi-Square test ,ANOVA, Quality Control chart.                       |  |  |  |  |

| Q.<br>No. | QUESTIONS                                                                                                                                                                                                                                                                                                   | CO  | BL  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--|--|--|
|           | PART- A: ATTEMPT ALL QUESTIONS (5X1 = 5 MARKS)                                                                                                                                                                                                                                                              |     |     |  |  |  |
| 1.        | Find the PDE of all the spheres whose centre lie on the Z-axis.                                                                                                                                                                                                                                             | CO1 | 1   |  |  |  |
| 2.        | Solve $\frac{\partial^4 z}{\partial x^4} = 0$                                                                                                                                                                                                                                                               | CO1 | 1   |  |  |  |
| 3.        | Find the general solution of PDE $xp + yq = z$ .                                                                                                                                                                                                                                                            | CO1 | 1   |  |  |  |
| 4.        | Classify the Partial differential equation                                                                                                                                                                                                                                                                  | CO2 | 1,2 |  |  |  |
|           | $(1+x^2)\frac{\partial^2 z}{\partial x^2} + (5+2x^2)\frac{\partial^2 z}{\partial y \partial x} + (4+x^2)\frac{\partial^2 z}{\partial y^2} = \sin(x+y).$                                                                                                                                                     |     |     |  |  |  |
| 5.        | Write Telegraph equation.                                                                                                                                                                                                                                                                                   | CO2 | 1   |  |  |  |
|           | PART-B: ATTEMPT ANY THREE QUESTIONS (3X5 = 15 MARKS)                                                                                                                                                                                                                                                        |     |     |  |  |  |
| 6.        | Solve the differential equation $z(x+y)p+z(x-y)q=x^2+y^2$ by Lagrange's method.                                                                                                                                                                                                                             | CO1 | 3,4 |  |  |  |
| 7.        | Solve $(2D^2 - DD' - D'^2 + 6D + 3D')z = xe^y$                                                                                                                                                                                                                                                              | CO1 | 3   |  |  |  |
| 8.        | Using method of separation of variables find the solution of $4\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 3u$ when $u(x,0) = 3e^{-x} - e^{-5x}$                                                                                                                                        | CO2 | 3   |  |  |  |
| 9.        | Neglecting R and G, find the emf $v(x,t)$ in a line of length 1, t seconds after the ends                                                                                                                                                                                                                   | CO2 | 3   |  |  |  |
|           | were suddenly grounded. Given that $i(x,0) = i_0$ and $v(x,0) = e_1 \sin \frac{\pi x}{l} + e_5 \sin \frac{5\pi x}{l}$                                                                                                                                                                                       |     |     |  |  |  |
|           | PART-C: ATTEMPT ANY ONE QUESTION (1X10 = 10 MARKS)                                                                                                                                                                                                                                                          |     |     |  |  |  |
| 10.       | a) Find the complete integral by using Charpit's method $zpq = p + q$                                                                                                                                                                                                                                       | CO1 | 3   |  |  |  |
|           | b) A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially at rest in its equilibrium position. If it is set vibrating by giving to each of its points an initial velocity $\lambda x(l-x)$ , Find the displacement of the string at any distance $x$ from one end at any time t. | CO2 | 3   |  |  |  |
| 11.       | a) Solve the following partial differential equation $x^2r - y^2t + px - qy = \log x$                                                                                                                                                                                                                       | CO1 | 2   |  |  |  |
|           | b) A rectangular plate with insulated surfaces is 8 cm wide and so long compared to its width that it may be consider infinite in length. If the temperature along one short                                                                                                                                | CO2 | 1,2 |  |  |  |



## JSS MAHAVIDYAPEETHA JSS ACADEMY OF TECHNICAL EDUCATION, NOIDA DEPARTMENT OF APPLIED MATHEMATICS

|     | edge y=0 is given by $u(x,0) = 100 \sin \frac{\pi x}{8}$ , $0 < x < 8$ while the two long edges x=0 and                     |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------|--|
| - 1 | x=8 as well as the other short edge are kept at $0^{\circ}$ C. Find the steady state temperature at any point of the plate. |  |